Estudo sobre Algoritmos de Menor Caminho em Grafos

Estudo sobre Algoritmos de Menor Caminho em Grafos

Monografia apresentada ao Curso de Ciência da Computação do Departamento de Informática da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Bacharel em Ciência da Computação.

Universidade Federal do Espírito Santo – UFES

Centro Tecnológico

Departamento de Informática

Orientador: Prof. Dra. Maria Cláudia Silva Boeres

Vitória, ES 2017

Estudo sobre Algoritmos de Menor Caminho em Grafos/Pedro. – Vitória, ES, 2017-

44 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dra. Maria Cláudia Silva Boeres

Monografia (PG) – Universidade Federal do Espírito Santo – UFES Centro Tecnológico

Departamento de Informática, 2017.

1. Palavra-chave
1. 2. Palavra-chave
2. I. Souza, Vítor Estêvão Silva. II. Universidade Federal do Espírito Santo. IV. Estudo sobre Algoritmos de Menor Caminho em Grafos

CDU 02:141:005.7

Estudo sobre Algoritmos de Menor Caminho em Grafos

Monografia apresentada ao Curso de Ciência da Computação do Departamento de Informática da Universidade Federal do Espírito Santo, como requisito parcial para obtenção do Grau de Bacharel em Ciência da Computação.

Trabalho aprovado. Vitória, ES, 25 de setembro de 2017:

Prof. Dra. Maria Cláudia Silva Orientador	a Boeres
Professor	
Convidado 1	
Professor	
Convidado 2	

Vitória, ES 2017

, ·	 	111 D : 1	
	nsectetur adipiscing os, dignissim sed ip		

Agradecimentos

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis malesuada laoreet leo at interdum. Nullam neque eros, dignissim sed ipsum sed, sagittis laoreet nisi. Duis a pulvinar nisl. Aenean varius nisl eu magna facilisis porttitor. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut mattis tortor nisi, facilisis molestie arcu hendrerit sed. Donec placerat velit at odio dignissim luctus. Suspendisse potenti. Integer tristique mattis arcu, ut venenatis nulla tempor non. Donec at tincidunt nulla. Cras ac dignissim neque. Morbi in odio nulla. Donec posuere sem finibus, auctor nisl eu, posuere nisl. Duis sit amet neque id massa vehicula commodo dapibus eu elit. Sed nec leo eu sem viverra aliquet. Nam at nunc nec massa rutrum aliquam sed ac ante.

Vivamus nec quam iaculis, tempus ipsum eu, cursus ante. Phasellus cursus euismod auctor. Fusce luctus mauris id tortor cursus, volutpat cursus lacus ornare. Proin tristique metus sed est semper, id finibus neque efficitur. Cras venenatis augue ac venenatis mollis. Maecenas nec tellus quis libero consequat suscipit. Aliquam enim leo, pretium non elementum sit amet, vestibulum ut diam. Maecenas vitae diam ligula.

Fusce ac pretium leo, in convallis augue. Mauris pulvinar elit rhoncus velit auctor finibus. Praesent et commodo est, eu luctus arcu. Vivamus ut porta tortor, eget facilisis ex. Nunc aliquet tristique mauris id sollicitudin. Donec quis commodo metus, sit amet accumsan nibh. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Resumo

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis malesuada laoreet leo at

interdum. Nullam neque eros, dignissim sed ipsum sed, sagittis laoreet nisi. Duis a pulvinar

nisl. Aenean varius nisl eu magna facilisis porttitor. Cum sociis natoque penatibus et

magnis dis parturient montes, nascetur ridiculus mus. Ut mattis tortor nisi, facilisis molestie

arcu hendrerit sed. Donec placerat velit at odio dignissim luctus. Suspendisse potenti.

Integer tristique mattis arcu, ut venenatis nulla tempor non. Donec at tincidunt nulla.

Cras ac dignissim neque. Morbi in odio nulla. Donec posuere sem finibus, auctor nisl eu,

posuere nisl. Duis sit amet neque id massa vehicula commodo dapibus eu elit. Sed nec leo

eu sem viverra aliquet. Nam at nunc nec massa rutrum aliquam sed ac ante.

Vivamus nec quam iaculis, tempus ipsum eu, cursus ante. Phasellus cursus euismod auctor.

Fusce luctus mauris id tortor cursus, volutpat cursus lacus ornare. Proin tristique metus sed

est semper, id finibus neque efficitur. Cras venenatis augue ac venenatis mollis. Maecenas

nec tellus quis libero consequat suscipit. Aliquam enim leo, pretium non elementum sit

amet, vestibulum ut diam. Maecenas vitae diam ligula.

Fusce ac pretium leo, in convallis augue. Mauris pulvinar elit rhoncus velit auctor finibus.

Praesent et commodo est, eu luctus arcu. Vivamus ut porta tortor, eget facilisis ex. Nunc

aliquet tristique mauris id sollicitudin. Donec quis commodo metus, sit amet accumsan

nibh. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus

mus.

Duis elementum dictum tristique. Integer mattis libero sit amet pretium euismod. Cura-

bitur auctor eu augue ut ornare. Integer bibendum eros ullamcorper rhoncus convallis.

Pellentesque non pretium ligula, sit amet bibendum eros. Nam venenatis ex felis, quis

blandit nunc auctor sit amet. Maecenas ut eros pharetra, lobortis neque id, fermentum

arcu. Cras neque dui, rhoncus feugiat leo id, semper facilisis lorem. Fusce non ex turpis.

Nullam venenatis sed ligula ac lacinia.

Palavras-chaves: lorem. ipsum. dolor. sit. amet.

Lista de ilustrações

Figura 1 –	Exemplo de figura: logo do Nemo	16
Figura 2 –	Exemplo de figura em modo paisagem: um modelo de objetivos (SOUZA;	
	MYLOPOULOS, 2013)	17
Figura 3 –	Aplicação do algoritmo de Dijkstra tendo o vértice "A"como origem.	
	As arestas pintadas de preto correspondem a rota calculada a todos os	
	demais vértices	22
Figura 4 –	Exemplo de Heap Binário representado como árvore	23
Figura 5 –	Representação do Heap Binário da figura 4 como vetor	23
Figura 6 –	Exemplo de Heap de Fibonacci (os números no canto superior esquerdo	
	de cada nodo correspondem ao grau de cada um, ou seja, o número de	
	filhos)	24
Figura 7 –	Heap de Fibonacci da figura 6 após a operação de extração de mínimo.	25
Figura 8 –	Tempos computacionais obtidos pelos Métodos de Dijkstra empregados	
	(tempo em escala logarítmica)	27
Figura 9 –	Ganho relativo dos Métodos do Algoritmo de Dijkstra sobre o Canônico.	27
Figura 10 –	Mapa da Romênia com os valores das distâncias entre as cidades e a	
	distância euclidiana de todas elas até Bucareste	31
Figura 11 –	Desenvolvimento do algoritmo A*	32
Figura 12 –	Exemplo de aplicação da estratégia de diminuição do valor de ϵ	39

Lista de tabelas

Tabela 1 –	Exemplo de tabela com diferentes alinhamentos de conteúdo	18
Tabela 2 –	Exemplo que especifica largura de coluna e usa lista enumerada (adap-	
	tada de (SOUZA; MYLOPOULOS, 2013))	18
Tabela 3 –	Exemplo que mostra equações em duas colunas (adaptada de (SOUZA;	
	MYLOPOULOS, 2013))	18
Tabela 4 –	Instâncias a serem rodadas pelo algoritmo de Dijkstra em suas três	
	versões	26
Tabela 5 –	Configuração dos grafos correspondestes as malhas viárias descritas na	
	tabela 4	26
Tabela 6 –	Tempos Computacionais obtidos pelo algoritmo de Dijkstra em suas	
	diferentes versões (tempo em milissegundos)	27
Tabela 7 –	Ganho relativo sobre o Dijkstra Canônico	28
Tabela 8 –	Descrição das versões a serem testadas neste capítulo	33
Tabela 9 –	Tempo médio obtido pelos métodos descritos na tabela 8 (tempo em	
	milissegundos)	34
Tabela 10 –	Diferença média de solução obtida pelo A* Manhattan com relação a	
	solução ótima.	34
Tabela 11 –	Número de Vértices Abertos (NVA) médio por cada método	34

Lista de abreviaturas e siglas

UML Unified Modeling Language

Sumário

1	INTRODUÇÃO	13
1.1	Seções e subseções	13
1.1.1	Referências a seções	13
1.1.2	Sobre referências cruzadas	13
1.2	Citações bibliográficas	14
1.3	Listagens de código	15
1.4	Figuras	15
1.5	Tabelas	18
2	ALGORITMO DE DIJKSTRA	21
2.1	O Algoritmo	21
2.1.1	Garantia do algoritmo retorna o menor valor	22
2.2	Versões do Algoritmo implementadas e suas Estrutura de Dados	22
2.2.1	Dijkstra Heap Binário	23
2.2.2	Dijkstra Heap de Fibonacci	24
2.3	Experimentos Computacionais	26
2.3.1	Resultados obtidos	26
2.3.2	Análise dos resultados	28
2.4	Conclusões	28
3	ALGORITMO A*	30
3.1	O Algoritmo	30
3.1.1	Heurísticas admissíveis e não-admissíveis	32
3.2	Experimentos Computacionais	33
3.2.1	Resultados obtidos	33
3.2.2	Análise dos resultados	34
3.3	Conclusões	35
4	ALGORITMOS DINÂMICOS	36
4.1	Grafos Dinâmicos	36
4.2	Algoritmo ARA*	36
4.2.1	Heurística inflada e considerações sobre o algoritmo	38
4.3	Algoritmo AD*	39
5	CONSIDERAÇÕES FINAIS	42

REFERÊNCIAS	 . 43
APÊNDICES	44

1 Introdução

Texto.

Além do template pronto para uso, este documento inclui exemplos de uso de LATEX que podem ser úteis para aqueles que possuem pouca experiência com a ferramenta. Quando for começar a escrever seu TCC, apague todo o conteúdo abaixo da palavra "Texto".

1.1 Seções e subseções

O documento é organizado em capítulos (\chapter{}), seções (\section{}), sub-seções (\subsection{}), sub-subseções (\subsubsection{}) e assim por diante. Atenção, porém, a não criar estruturas muito profundas (sub-sub-sub-...) pois o documento não fica bem estruturado.

1.1.1 Referências a seções

Cada parte do documento (capítulo, seção, etc.) deve possuir um rótulo logo abaixo de sua definição. Por exemplo, este capítulo é definido com \chapter{Introdução} seguido por \label{sec-intro}. Assim, podemos fazer referências cruzadas usando o comando \ref{rótulo}: "O Capítulo 1 começa com a Seção 1.1, que é ainda subdividida nas subseções 1.1.1 e 1.1.2.

Para melhor organização das partes do documento, sugere-se primeiro utilizar o prefixo sec- (para diferenciar de referências à figuras, tabelas, etc. quando usarmos o comando \ref{}) e também representar a hierarquia das seções nos rótulos. Por exemplo, o Capítulo 1 tem rótulo sec-intro, sua Seção 1.1 tem rótulo sec-intro-secoes e a Subseção 1.1.1 tem rótulo sec-intro-secoes-refs.

1.1.2 Sobre referências cruzadas

Nas próximas seções, veremos que é possível fazer referência cruzada não só a seções mas também a listagens de código, figuras, tabelas, etc. Em todos estes casos, quando nos referimos à Seção X, Listagem Y ou Figura Z, consideramos que estes são os nomes próprios destes elementos e, portanto, usa-se a primeira letra maiúscula. Isso pode ser visto na Subseção 1.1.1, acima. A exceção é quando nos referimos a vários elementos ao mesmo tempo, por exemplo: "as subseções 1.1.1 e 1.1.2".

Por fim, ao usar o comando \ref{}, sugere-se separá-lo da palavra que vem antes dele com um ~ ao invés de espaço. Por exemplo: o capítulo~\ref{sec-intro}. Isso faz com que o LATEX não quebre linha entre a palavra capítulo e o número do capítulo.

1.2 Citações bibliográficas

Este documento utiliza a ferramenta de gerenciamento de referências bibliográficas do LATEX, chamada *BibTeX*. O arquivo bibliografia.bib, referenciado no arquivo LATEX principal deste documento, contém algumas referências bibliográficas de exemplo. Assim como capítulos, seções, etc., tais referências também possuem rótulos, especificados como primeiro parâmetro de cada entrada (ex.: @incollection{souza-et-al:iism08, ...}.

Sugere-se um padrão para rótulos de referências bibliográficas para que fique claro também no código LATEX qual referência está sendo citada. Por exemplo, ao citar a referência souza-et-al:sesas13, sabemos que é um artigo escrito por Souza e outros, publicado no SESAS em 2013 (geralmente a pessoa que citou sabe que publicação é SESAS e quem é Souza).

Para citar uma referência bibliográfica contida no arquivo BibTeX, basta usar seu rótulo como parâmetro de um de dois comandos possíveis de citação:

- O comando \cite{} efetua uma citação tradicional, colocando o nome do(s) autor(es)
 e o ano entre parênteses. Por exemplo, \cite{souza-et-al:iism08} é transformado
 em (SOUZA; FALBO; GUIZZARDI, 2008);
- O comando \citeonline{} efetua uma citação integrada ao texto, colocando o nome do(s) autor(es) direto no texto e somente o ano entre parênteses. Por exemplo, "de acordo com \citeonline{souza-et-al:iism08}" é transformado em: de acordo com Souza, Falbo e Guizzardi (2008);

Também é possível citar vários trabalhos de uma só vez, separando os rótulos das referências bibliográficas com uma vírgula dentro do comando apropriado. Por exemplo, \cite{souza-et-al:sesas13,souza-et-al:csrd13} (SOUZA et al., 2013b; SOUZA et al., 2013a).

Os trabalhos citados são automaticamente incluídos na seção de referências bibliográficas, ao final do documento. Tudo é formatado automaticamente segundo padrões da ABNT.

1.3 Listagens de código

O pacote listings, incluído neste template, permite a inclusão de listagens de código. Análogo ao já feito anteriormente, listagens possuem rótulos para que possam ser referenciadas e sugerimos uma regra de nomenclatura para tais rótulos: usar como prefixo o rótulo do capítulo, substituindo sec- por lst-.

A Listagem 1.1, por exemplo, possui o rótulo lst-intro-exemplo e representa o código que foi usado no próprio documento para exibir as listagens desta seção. Como podemos ver, a sugestão é que os arquivos de código sejam colocados dentro da pasta codigos/ e tenham nome idêntico ao rótulo, colocando a extensão adequada ao tipo de código.

Listagem 1.1 – Exemplo de código LATEX para inclusão de listagens de código.

```
1 \lstinputlisting[label=lst-intro-exemplo, caption=Exemplo de código \latex para
inclusão de listagens de código., float=htpb]{codigos/lst-intro-exemplo.tex}
2
3 \lstinputlisting[label=lst-intro-outroexemplo, caption=Exemplo de código \java
especificando linguagem utilizada., language=Java]{codigos/lst-intro-
outroexemplo.java}
```

A Listagem 1.2 mostra um exemplo de listagem com especificação da linguagem utilizada no código. O pacote listings reconhece algumas linguagens¹ e faz "coloração" de código (na verdade, usa **negrito** e não cores) de acordo com a linguagem. O parâmetro float=htpb incluído em ambos os exemplos impede que a listagem seja quebrada em diferentes páginas.

Listagem 1.2 – Exemplo de código JavaTM especificando linguagem utilizada.

```
public class HelloWorld {
  public static void main(String[] args) {
    System.out.println("Hello, World!");
}
```

1.4 Figuras

Figuras podem ser inseridas no documento usando o *ambiente* figure (ou seja, \begin{figure} e \end{figure}) e o comando \includegraphics{}. Existem alguns outros elementos e propriedades úteis de serem configuradas, resultando no código exibido na Listagem 1.3.

O comando \centering centraliza a figura na página. A opção width do comando

Veja a lista de linguagens suportadas em http://en.wikibooks.org/wiki/LaTeX/Source_Code_

Listagem 1.3 – Código L^AT_FX utilizado para inclusão das figuras na Seção 1.4.

```
1 \begin{figure}
2 \centering
3 \includegraphics[width=.25\textwidth]{figuras/fig-intro-nemologo}
4 \caption{Exemplo de figura: logo do Nemo.}
5 \label{fig-intro-nemologo}
6 \end{figure}
7
8 \begin{sidewaysfigure}
9 \centering
10 \includegraphics[width=\textwidth]{figuras/fig-intro-exemplosideways}
11 \caption{Exemplo de figura em modo paisagem: um modelo de objetivos~\cite{souza-mylopoulos:spe13}.}
12 \label{fig-intro-exemplosideways}
13 \end{sidewaysfigure}
```


Figura 1 – Exemplo de figura: logo do Nemo.

\includegraphics{} determina o tamanho da figura e usa-se \textwidth (opcionalmente multiplicado por um número) para se referir à largura da página.

O parâmetro do comando \includegraphics{} indica onde a imagem pode ser encontrada. Foi criado o diretório figuras/ para conter as figuras do documento, dando uma melhor organização aos arquivos. Ao abrir esta pasta, repare que as figuras possuem duas versões—uma em .eps e outra em .pdf—e que o comando \includegraphics{} não especifica a extensão. Isso se dá porque o LATEX possui um compilador para formato PostScript (latex) que espera as imagens em .eps e um compilador para PDF (pdflatex) que espera as imagens em .pdf.

Por fim, o comando \caption{} especifica a descrição da figura e \label{}, como de costume, estabelece um rótulo para permitir referência cruzada de figuras. Note ainda que é utilizada a mesma estratégia de nomenclatura de rótulos usada nas listagens, porém utilizando o prefixo fig-.

As figuras 1 e 2 mostram o resultado do código da Listagem 1.3. A Figura 2, em particular, utiliza o pacote rotating para mostrar figuras largas em modo paisagem. Basta usar o ambiente sidewaysfigure ao invés de figure.

Figura 2 – Exemplo de figura em modo paisagem: um modelo de objetivos (SOUZA; MYLOPOULOS, 2013).

Centralizado	Esquerda	Direita	Parágrafo	
С	L	R	Alinhamento de tipo	
			parágrafo especifica	
			largura da coluna	
			e quebra o texto	
			automaticamente.	
Linha 2	Linha 2	Linha 2	Linha 2	

Tabela 1 – Exemplo de tabela com diferentes alinhamentos de conteúdo.

Tabela 2 – Exemplo que especifica largura de coluna e usa lista enumerada (adaptada de (SOUZA; MYLOPOULOS, 2013)).

AwReq	Adaptation strategies	Applicability conditions
AR1	 Warning("AS Management") Reconfigure(∅) 	 Once per adaptation session; Always.
AR2	 Warning("AS Management") Reconfigure(∅) 	 Once per adaptation session; Always.

Tabela 3 – Exemplo que mostra equações em duas colunas (adaptada de (SOUZA; MY-LOPOULOS, 2013)).

$\Delta (I_{AR1}/NoSM) [0, maxSM] > 0 (1.1) \Delta (I_{AR11}/VP2) < 0$ $\Delta (I_{AR2}/NoSM) [0, maxSM] > 0 (1.2) \Delta (I_{AR12}/VP2) > 0$ $\Delta (I_{AR3}/LoA) < 0 (1.3) \Delta (I_{AR6}/VP3) > 0$ (1.4)	(1.5) (1.6) (1.7) (1.8)
---	----------------------------------

1.5 Tabelas

Tabelas são um ponto fraco do LATEX. Elas são complicadas de fazer e, dependendo da complexidade da tabela (muitas células mescladas, por exemplo), vale a pena construilas em outro programa (por exemplo, em seu editor de texto favorito), converter para PDF e inclui-las no documento como figuras. Mostramos, no entanto, alguns exemplos de tabela a seguir. O código utilizado para criar as tabelas encontra-se nas listagens 1.4 e 1.5.

Listagem 1.4 – Código L^AT_FX utilizado para inclusão das tabelas 1 e 2.

```
1 % Exemplo de tabela 01:
2 \begin{table}
3 \caption {Exemplo de tabela com diferentes alinhamentos de conteudo.}
4 \label{tbl-intro-exemplo01}
5 \centering
6 \begin{tabular}{ | c | 1 | r | p{40mm} |}\hline
7 \textbf{Centralizado} & \textbf{Esquerda} & \textbf{Direita} & \textbf{Parágrafo
      }\\\ hline
  C & Ĺ & R & Alinhamento de tipo parágrafo especifica largura da coluna e quebra o
       texto automaticamente. \\
9 \hline
10 Linha 2 & Linha 2 & Linha 2 \ Linha 2\\
11 \hline
12 \end{tabular}
13 \end{table}
14
15 % Exemplo de tabela 02:
16 \begin{table}
17 \caption {Exemplo que especifica largura de coluna e usa lista enumerada (adaptada
       de \sim cite \{ souza - mylopoulos : spe13 \} ). \}
18 \setminus label\{tbl-intro-exemplo02\}
19 \centering
20 \renewcommand \{ \arraystretch \} \{1.2 \}
21 \setminus begin\{small\}
22 \begin{tabular}{ | p{15mm} | p{77mm} | p{55mm} |} \hline 23 \textbf{\textit{AwReq}} & \textbf{\Adaptation strategies} & \textbf{\Applicability}
      conditions } \ \ hline
24
25 AR1 &
26 \vspace{-2mm}\begin{enumerate}[topsep=0cm, partopsep=0cm, itemsep=0cm, parsep=0cm]
       , leftmargin=0.5cm
27 \item \textit{Warning(''AS Management'')}
28 \item \textit { Reconfigure ($\varnothing$)}
29 \end{enumerate} \vspace{-4mm} &
, leftmargin=0.5cm
31 \item Once per adaptation session;
32 \item Always.
33 \end{enumerate}\vspace{-4mm}
36 AR2 &
37 \vspace{-2mm}\begin{enumerate}[topsep=0cm, partopsep=0cm, itemsep=0cm, parsep=0cm]
       , leftmargin=0.5cm
38 \item \textit { Warning (''AS Management'') }
39 \item \textit { Reconfigure ($\varnothing$)}
40 \end{enumerate} \vspace{-4mm} &
41 \vspace{-2mm}\begin{enumerate}[topsep=0cm, partopsep=0cm, itemsep=0cm, parsep=0cm]
      , leftmargin = 0.5cm
42 \item Once per adaptation session;
43 \item Always.
44 \end{enumerate}\vspace{-4mm}
45 \\\ hline
46 \end{tabular}
47 \end{small}
48 \end{table}
```

Listagem 1.5 – Código LATFX utilizado para inclusão da Tabela 3.

```
1 % Exemplo de tabela 03:
2 \begin{table}
3 \caption {Exemplo que mostra equações em duas colunas (adaptada de~\cite {souza-
      mylopoulos: spe13 }).}
4 \label{tbl-intro-exemplo03}
5 \centering
6 \vspace{1mm}
7 \lceil \text{fbox} \{ \lceil \text{begin} \{ \text{minipage} \} \{ .98 \rceil \} 
8 \setminus begin\{minipage\}\{0.51 \setminus linewidth\}
9 \bigvee vspace\{-4mm\}
10 \begin{eqnarray}
14 \end{eqnarray}
15 \bigvee vspace\{-6mm\}
16 \end{minipage}
17 \hspace\{2mm\}
18 \vline
19 \begin{minipage} \{0.41 \setminus linewidth\}
20 \ \ vspace\{-4mm\}
21 \begin{eqnarray}
25 \end{eqnarray}
27 \end{minipage}
28 \end{minipage}}
29 \end{table}
```

2 Algoritmo de Dijkstra

2.1 O Algoritmo

O algoritmo de Dijkstra foi proposto por Edgar W. Dijkstra em 1959 (DIJKSTRA, 1959). Ele tem por objetivo definir o menor caminho partindo do vértice origem v_s e chegando a todos os demais vértices v_i do grafo G = (V, E). Para garantir a viabilidade do algoritmo, assume-se que todos os pesos w(u, v) sejam maiores ou iguais a zero para toda aresta E do grafo G (CORMEN, 2009).

A seguir é apresentado o pseudocódigo do algoritmo conforme descrito em Drozdek (2012).

Listagem 2.1 – Algoritmo de Dijkstra.

```
1 DijkstraAlgorithm (weighted simple digraph, vertex first)
    for all vertices v
3
       currDist(v) = \infty;
    currDist(first) = 0;
    toBeChecked = all vertices;
5
    while toBeChecked is not empty
       v = a vertex in toBeChecked with minimal currDist(v);
       remove v from toBeChecked;
       for all vertices u adjacent to v and in toBeChecked
9
10
         if currDist( u ) > currDist( v ) + weight( edge(vu) )
           currDist( u ) = currDist( v ) + weight( edge(vu) );
predecessor( u ) = v;
11
```

O algoritmo inicia atribuindo o valor inicial de cada distância de cada vértice do grafo igual a ∞ , com exceção do vértice inicial v_s que será iniciado por 0. Em seguida todos os vértices são adicionados ao conjunto dos "toBeChecked" ("aSeremChecados"). Feito isso, inicia-se o processo iterativo: seleciona-se o vértice v de menor custo que esteja dentro do conjunto "toBeChecked", retira-se ele do conjunto e a partir dele, para cada vértice adjacente u de v, verifica-se se a distância atual calculada de v é maior do que a distância calculada de v mais o valor referente ao peso da aresta de v e u (origem em v). Caso seja verdade, a distância atual de v é substituída pela soma da distância atual de v mais o peso da aresta de v e v (este valor corresponde a distância do vértice de origem v até v0, além de definir o antecessor v0 como sendo v0. Repete-se o passo iterativo até que o conjunto "toBeChecked" esteja vazio 1.

Ao final do algoritmo, teremos o conjunto de predecessores de cada vértice do grafo, e a partir deste, poderemos definir a rota para qualquer vértice do grafo partindo de v_s . A figura 3 mostra um exemplo de aplicação do algoritmo a um grafo.

Em linguagens de programação, é costume substituir o valor ∞ pelo maior número representativo do tipo

Figura 3 – Aplicação do algoritmo de Dijkstra tendo o vértice "A"como origem. As arestas pintadas de preto correspondem a rota calculada a todos os demais vértices.

2.1.1 Garantia do algoritmo retorna o menor valor

[Professora, a prova de que algoritmo de Dijkstra retorna o menor caminho entre todos os pontos eu penso colocar nesta subseção.]

2.2 Versões do Algoritmo implementadas e suas Estrutura de Dados

Para este projeto de graduação será implementada três versões do algoritmo de Dijkstra baseados em estruturas de dados diversas que implicam em tempos computacionais diferentes (CORMEN, 2009).

da variável selecionado para representar a distância. Por exemplo na linguagem C, caso se utilize o valor int (inteiro) para representar a distância, a atribuição inicial será dado pela constante INT_MAX definida pela biblioteca "limits.h", que representa o maior valor numérico representado por esse tipo de variável.

As versões implementadas são o Dijkstra Canônico (descrito a seguir), Dijkstra Heap Binário (subseção 2.2.1) e Dijkstra Heap de Fibonacci (subseção 2.2.2), todas baseadas em Cormen (2009), Drozdek (2012).

Para a versão Dijkstra Canônico o algoritmo utiliza de um vetor para armazenar as distâncias calculadas pelo algoritmo (o indíce dos vértices correspondem ao indíce do vetor em que são armazenados), e a cada passo iterativo (conforme demonstrado pelo algoritmo na seção 2.1), uma busca linear é realizada para determinar o vértice (fora do conjunto "toBeChecked") cuja a distância é menor dentre todas as outras. O tempo computacional para esse caso é $O(|V^2|)$ (DROZDEK, 2012).

2.2.1 Dijkstra Heap Binário

Para esta implementação, será utilizada a estrutura de dados heap binária mínima como fila de prioridade. Heaps binária podem ser descritas como árvores binárias que possuem as seguintes propriedades (DROZDEK, 2012):

- O valor de cada nodo n\(\tilde{a}\)o \(\text{e}\) maior do que os valores guardados em cada um de seus filhos.
- A árvore é perfeitamente balanceada, e as folhas no último nível estão todas mais a esquerda.

Um exemplo de estrutura Heap Binário representada tanto como árvore como vetor pode ser visualizado nas figuras 4 e 5 respectivamente.

Figura 4 – Exemplo de Heap Binário representado como árvore.

Figura 5 – Representação do Heap Binário da figura 4 como vetor.

A disposição dos elementos da árvore no vetor segue as seguintes relações entre nós pai, filho-direita e filho-esquerda:

Pai(i): $\lfloor i/2 \rfloor$

Filho-esquerda(i): 2 * i

Filho-direita(i): 2 * i + 1

Onde $i \in \mathbb{N}$ e $i \subset [1, n]$, sendo que i representa o índice do elemento no vetor e n o número de elementos da árvore.

Para efeito de exemplo (observe as figuras 4 e 5 para constatação), o nó que está contido na posição 4 do vetor possui como pai o nó de posição 2 ($\lfloor 4/2 \rfloor = 2$), tem como filho da esquerda o nó de posição 8 (2*4=8) e filho da direita o nó de posição 9 (2*4+1=9).

A vantagem de se usar essa estrutura de dados reside no fato de suas operações de inserção, extração de mínimo e reconstrução da heap possuirem tempo computacional de $O(\lg n)$. Por consequência, o tempo computacional para este caso é de $O(|E|\lg|V|)$ (CORMEN, 2009).

2.2.2 Dijkstra Heap de Fibonacci

A Heap de Fibonacci consiste de uma coleção de árvores que seguem a regra de árvore heap mínima, ou seja, os nós pais são maiores ou iguais aos nós filhos. Os nós raízes de cada árvore são interligados por uma lista circular duplamente encadeada. Um ponteiro chamado "raiz mínima" aponta para o nó de menor valor.

Sua característica é que operações de adição são executadas de uma maneira "preguiçosa", não procurando criar uma forma para as árvores (como por exemplo, deixala balanceada), apenas as adicionados-as a lista principal de raízes. Por consequência, operações de inserção possuem tempo computacional O(1) (CORMEN, 2009).

Figura 6 – Exemplo de Heap de Fibonacci (os números no canto superior esquerdo de cada nodo correspondem ao grau de cada um, ou seja, o número de filhos).

Para operações de extração de mínimo o tempo computacional é mais custoso. Isso é devido ao fato de que quando o mínimo é retirado, a heap precisa ser reorganizada de forma que sua propriedade principal não seja violada e o um novo mínimo seja determinado. Para isso a operação de extração de mínimo se dá em três etapas. Primeiro é retirado o mínimo da heap (se caso o mínimo possua nós filhos, eles são colocados na lista principal de raízes) e o seu vizinho é assimilado como o novo mínimo provisório. Agora precisamos definir quem é o novo mínimo e para isso teremos que verificar todos os demais nós raízes. Com o intuito de diminuir o número de nós raízes é que o segundo passo é aplicado. Ele consiste em lincar raízes com o mesmo número de grau (grau corresponde ao número de filhos que cada nodo possui) e para cada par de nodos licandos, verifica-se qual dos dois é menor. O que for o menor será o nodo pai e outro por consequência será o nodo filho. Após a lincagem de todos os nodos com mesmo número de grau, uma busca linear é realizada para se determinar o menor elemento entre os nodos raízes restantes². O tempo computacional para a extração de mínimo é $O(\lg n)$ (CORMEN, 2009).

Figura 7 – Heap de Fibonacci da figura 6 após a operação de extração de mínimo.

Finalmente para a operação de mudança de chave de um determinado nodo, e após a mudança realizada em tempo constante (O(1)), é verificado se a propriedade heap foi violada. Se caso sim, esse nodo é cortado de seu nodo pai e colocado junto a lista principal. Se o pai não pertencer a lista de nodos raízes, ele é "marcado" ("pintado") e caso já estivesse "marcado" ele também é cortado e seu pai é "marcado". Esse processo continua subindo até encontrarmos um nodo pai "não marcado" ou um nodo raiz. Após esse processo recursivo ter terminado, verifica-se se nodo modificado inicialmente é menor do que o nodo mínimo

Para otimizar a busca de nodos com o mesmo número de grau é utilizado um vetor auxiliar de tamanho mínimo ao maior grau de um nodo da estrutura. Esse vetor contém ponteiros para os nodos e a posição desse nodo no ponteiro corresponde ao grau do nodo. Por exemplo, se um nodo possui grau 3, ele ocupará a posição de número 3 no vetor. Quando um nodo da lista é referenciado na posição que já está ocupado, o processo de lincagem é feito conforme descrito.

atual. Se caso sim, o novo nodo mínimo é o modificado. O tempo computacional é O(1) (CORMEN, 2009).

Por consequência, o tempo computacional aplicado para o algoritmo de Dijkstra é de $O(|V| \lg |V| + |E|)$ (CORMEN, 2009).

2.3 Experimentos Computacionais

Para a realização dos experimentos computacionais será rodado instâncias de grafos que representam malhas rodoviárias reais. Todas elas descritas nas tabelas 4 e 5, e disponíveis no sítio eletrônico http://www.dis.uniroma1.it/challenge9/download.shtml (acesso em 28 de janeiro de 2017).

Tabela 4 – Instâncias a serem rodadas pelo algoritmo de Dijkstra em suas três versões.

Nome Instância	Descrição		
USA-road-d.NY.gr	Representa a malha viária do estado de Nova Iorque, Estados Unidos		
USA-road-d.BAY.gr	Representa a malha viária da bahia de São Francisco, Califórnia, Estados Unidos		
USA-road-d.COL.gr	Representa a malha viária do estado do Colorado, Estados Unidos		
USA-road-d.FLA.gr	Representa a malha viária do estado da Flórida, Estados Unidos		

Tabela 5 – Configuração dos grafos correspondestes as malhas viárias descritas na tabela 4.

Nome Instância	Número de Vértices V	Número de Arestas E
USA-road-d.NY.gr	264.346	733.846
USA-road-d.BAY.gr	321.270	800.172
USA-road-d.COL.gr	435.666	1.057.066
USA-road-d.FLA.gr	1.070.376	2.712.798

2.3.1 Resultados obtidos

Os resultados dos testes obtidos estão descritos a seguir.

Figura 8 – Tempos computacionais obtidos pelos Métodos de Dijkstra empregados (tempo em escala logarítmica).

Figura 9 – Ganho relativo dos Métodos do Algoritmo de Dijkstra sobre o Canônico.

Tabela 6 – Tempos Computacionais obtidos pelo algoritmo de Dijkstra em suas diferentes versões (tempo em milissegundos).

Nome Instância	Tempo Canônico	Tempo Heap Binário	Tempo Heap Fibonacci
USA-road-d.NY.gr	65287	153	302
USA-road-d.BAY.gr	256690	248	755
USA-road-d.COL.gr	181687	318	627
USA-road-d.FLA.gr	2909655	6601	8732

Nome Instância	Ganho Heap Binário	Ganho Heap Fibonacci
USA-road-d.NY.gr	42.671%	21.618%
USA-road-d.BAY.gr	103.504%	33.999%
USA-road-d.COL.gr	57.134%	28.977%
USA-road-d.FLA.gr	44.079%	33.322%

Tabela 7 – Ganho relativo sobre o Dijkstra Canônico.

2.3.2 Análise dos resultados

Podemos observar que o Dijkstra Canônico elevou um tempo consideravelmente grande (a instância USA-road-d.FLA.gr por exemplo levou aproximadamente 48 minutos). Já o uso de estrutura de dados impactou consideravelmente no ganho do tempo sendo que o Heap Binário teve um ganho médio de 61.847% com relação ao Dijkstra Canônico enquanto Dijkstra Heap de Fibonacci teve um ganho médio de 29.479% (vide tabela 7).

Com relação ao resultado obtido pelos métodos do Heap Binário e Heap de Fibonacci, ele é de certo modo inesperado, já que conforme demonstrados nas subseções 2.2.1 e 2.2.2, o heap de Fibonacci possui tempo computacional, aplicado ao algoritmo de Dijkstra, de $O(|V| \lg |V| + |E|)$ enquanto o heap binário possui $O(|E| \lg |V|)$. Como para todas as instâncias rodadas |E| > |V| (vide tabela 5), era de se esperar do ponto de vista teórico que a heap de Fibonacci apresentasse tempos mais rápidos do que o Heap Binário.

Porém, conforme também constatado por Larkin, Sen e Tarjan (2014), a aplicação prática das estruturas de dados nem sempre corresponde a esperada descrita na teoria. Larkin, Sen e Tarjan (2014) mostram que estrutura de dados heaps baseadas em vetor são, na prática, mais eficientes do que a Heap de Fibonacci (vide referência para mais detalhes). É o que os testes realizados por este trabalho também constatam.

2.4 Conclusões

Conforme demonstramos pelos experimentos descritos na seção 2.3, o algoritmo de Dijkstra que obteve o melhor resultado foi o Heap Binário, sendo mais rápido do que o próprio Heap de Fibonacci que teoricamente deveria ser mais rápido. O Dijkstra canônico obteve tempos que para aplicações como sistema de ponto global (em inglês, GPS) é indesejado, sendo sua implementação interessante apenas para fins de aprendizado e entendimento do algoritmo.

Em termos de implementação, sem dúvida o mais complicado para se implementar foi o Heap de Fibonacci devido a sua própria estrutura que contém uma lista circular duplamente encadeada (a lista de raízes), e pelas funções de restruturação da estrutura que possui muitas movimentações de nodos e tratamento de casos de desvio de condição.

Com isso, colocando em termos práticos, das formas de implementação apresentadas e testadas, a que melhor se sobressai é o Heap Binário que não só foi melhor no tempo dentre outros, como sua implementação é simples.

3 Algoritmo A*

3.1 O Algoritmo

O algoritmo A* (lê-se "A estrela"), também conhecido como busca A*, é um algoritmo de busca informatizada em grafos. Foi proposta originalmente em Hart, Nilsson e Raphael (1968) e pode ser visto como uma adaptação do algoritmo de Dijkstra (apresentado no capítulo 2) em que, ao invés de se calcular a melhor rota de um ponto de partida para todos os demais vértices do grafo, se estabelece uma boa rota (ou mesmo a rota ótima¹) partindo do vértice origem a um vértice destino. Isso é feito realizando "podas"do caminho de forma que não seja necessário visitar todos os vértices, apenas os mais promissores.

A seguir é apresentado o algoritmo A* adaptado de Likhachev et al. (2008) sobre o algoritmo de Dijkstra apresentado na seção 2.1.

Listagem 3.1 – Algoritmo A*

```
A^*Algorithm (weighted simple digraph, vertex first, vertex goal)
        for all vertices v
            g(v) = \infty;
        g(first) = 0;
 4
        toBeChecked = all vertices;
        while goal is in toBeChecked
            v = a vertex in toBeChecked with minimal f(v);
 8
            remove v from toBeChecked;
            for all vertices u adjacent to v and in toBeChecked
 9
                \begin{array}{l} \text{if } g\left(\begin{array}{c} u \end{array}\right) > g\left(\begin{array}{c} v \end{array}\right) + \text{weight}\left(\begin{array}{c} \text{edge}(vu) \end{array}\right) \\ g\left(\begin{array}{c} u \end{array}\right) = g\left(\begin{array}{c} v \end{array}\right) + \text{weight}\left(\begin{array}{c} \text{edge}(vu) \end{array}\right); \end{array}
10
11
                   predecessor( u ) = v;
12
                   update u in toBeChecked with f(u) = g(u) + h(u);
13
```

O algoritmo segue em sua essência como um Dijkstra adaptado. Iniciamos a distância de todos os vértices g(v) (valor que corresponde ao valor da distância calculada do vértice origem "first"até o vértice "v") como sendo ∞^2 , com exceção do vértice origem, cujo valor atribuído é zero. Adicionamos todos os vértices ao grupo dos "toBeChecked" Feito isso inicia-se o processo iterativo: enquanto o vértice "goal" estiver dentro do conjunto do "toBeChecked" (ou seja, o vértice "goal" não foi alcançado ainda pelo algoritmo), o vértice com menor valor f(v) é retirado do conjunto "toBeChecked" e para cada vértice adjacente u de v, verifica-se se o valor de g(u) atual é maior que g(v) mais o peso da aresta entre v e v (edge(v)). Se caso for verdade, o valor de v0 e atualizado para v0 y mais o peso da aresta entre v1 e v2 e v3 e marcado como o predecessor de v3. O valor do peso do vértice v3 e v4 marcado como o predecessor de v5 valor do peso do vértice v6 marcado como o predecessor de v6 valor do peso do vértice v6 marcado como o predecessor de v6 valor do peso do vértice v6 marcado como o predecessor de v6 valor do peso do vértice v6 marcado como o predecessor de v6 valor do peso do vértice v6 marcado como o predecessor de v6 valor do peso do vértice v6 marcado como o predecessor de v6 valor do peso do vértice v7 mais o peso do vértice v8 marcado como o predecessor de v9 valor do peso do vértice v9 mais o peso do vértice v9 marcado como o predecessor de v9 valor do peso do vértice v9 marcado como o predecessor de v9 valor do peso do vértice v9 marcado como o predecessor de v9 valor do peso do vértice v9 marcado como o predecessor de v9 valor do peso do vértice v9 marcado como o predecessor de v9 valor do peso do vértice v9 marcado como o predecessor de v9 valor do peso do vértice v9 marcado como o predecessor de v9 valor de v9 marcado como o predecessor de v9 valor de v9 marcado como o predecessor de v9 valor de v9 m

¹ A garantia do valor ótimo do algoritmo depende de fatores que serão discutidos na subseção 3.1.1.

² Vide nota de rodapé da secão 2.1.

³ Algumas literaturas designam esse conjunto como OPEN.

é atualizado na fila de prioridades utilizada (como a heap binária, descrita na subseção 2.2.1) com o valor f(u) = g(u) + h(u).

Observe que para o algoritmo A*, diferente do que ocorre em Dijkstra, não se utiliza o valor de g(u) (valor da distância calculada do vértice origem "first"até o vértice "u") como chave de ordenamento da fila de prioridade, mas sim esse valor acrescido de h(u). Observe também que o algoritmo termina ao ser removido o vértice destino ("goal") da lista do "toBeChecked"em contrapartida ao Dijkstra que calcula para todos os vértices do grafo.

O termo h(u) significa o valor heurístico que corresponde a uma estimativa da distância de u ao vértice destino "goal". É devido a esse valor que o algoritmo A* realiza "podas"no número de vértices a serem checados, buscando os mais promissores, já que esse valor faz com que os vértices cujas estimativas sejam mais próximas do vértice destino ("goal") sejam colocados mais a frente na fila de prioridades e por consequência, sejam calculadas primeiros. E assim é mais provável que o vértice destino seja alcançado antes e tenha sua rota calculada, terminando o algoritmo. O valor h(u) é classificado como admissível e não-admissível cujo significado será dado na subseção 3.1.1.

A figura 10 contida em Russell e Norvig (1995) mostra um exemplo de aplicação do algoritmo.

Figura 10 – Mapa da Romênia com os valores das distâncias entre as cidades e a distância euclidiana de todas elas até Bucareste.

Um viajante deseja partir da cidade de Arad com destino a Bucareste buscando percorrer o menor caminho entre essas duas cidades. Para isso é utilizado o algoritmo A* que explora o grafos conforme descrito na figura 11⁴, tendo como heurística utilizada, a

⁴ A figura 11 foi obtida do vídeo "Algoritmo A*"contido no sítio eletrônico https://www.youtube.com/watch?v=6CqZ5AaTfhQ, acesso em 25 de abril de 2017.

distância euclidiana entre todas as cidades e Bucareste (distâncias também contida na figura 10).

Figura 11 – Desenvolvimento do algoritmo A*.

3.1.1 Heurísticas admissíveis e não-admissíveis

O fator heurístico h(u) é uma estimativa da distância entre o vértice "u"e o vértice "goal". Ela é chamada de **admissível** quando o valor da estimativa garantidamente não superestima o valor da distância real entre "u"e "goal"(RUSSELL; NORVIG, 1995). Um exemplo clássico usado de heurística admissível é a distância euclidiana, já que a menor distância entre dois pontos é uma reta (RUSSELL; NORVIG, 1995).

O cálculo da distância euclidiana porém, nem sempre é a forma mais rápida em termos computacionais, já que geralmente ela é calculada em termos dos pontos geográficos do vértice e esse cálculo envolve exponenciação e radiação. É por isso que existe o uso de heurísticas **não-admissíveis** que são estimativas que visam a usar cálculos mais simples e que, porém, não há a garantia que essa distância superestime a distância real entre "u"e "goal". Por consequência não há garantia que o caminho ótimo seja encontrado.

Exemplos de heurísticas não-admissíveis:

• Distância Manhattan:

- h(u) =
$$|x_u - x_{goal}| + |y_u - y_{goal}|$$
;

• Atalho Diagonal:

- h(u) =
$$\sqrt{2} * |y_u - y_{goal}| + (|x_u - x_{goal}| - |y_u - y_{goal}|)$$
 [Se a distância $|x_u - x_{goal}| > |y_u - y_{goal}|$];

- h(u) =
$$\sqrt{2} * |x_u - x_{goal}| + (|y_u - y_{goal}| - |x_u - x_{goal}|)$$
 [Se a distância $|x_u - x_{goal}| < |y_u - y_{goal}|$];

3.2 Experimentos Computacionais

Para os experimentos computacionais serão utilizados as mesmas instâncias descritas em subseção 2.3. Serão comparados quatro versões de algoritmos: o algoritmo de Dijkstra descrito no capítulo 2, o algoritmo de Dijkstra adaptado onde o algoritmo é parado assim que se é explorado o vértice objetivo, o algoritmo A* onde se utiliza a heurística admissível distância euclidiana e o algoritmo A* onde se utiliza a heurística não-admissível distância Manhattan, todas sumarizadas na tabela 8.

Nome Instância	Descrição
Dijkstra	Versão de Dijsktra conforme descrito no capítulo 2
Dijkstra Adaptado	Versão de Dijkstra adaptado para parar quando o vértice destino é encontrado
Algoritmo A*	Algoritmo A* utilizando a distância euclidiana
Algoritmo A* Manhattan	Algoritmo A* utilizando a distância Manhattan

Tabela 8 – Descrição das versões a serem testadas neste capítulo.

Será rodado dez vezes cada algoritmo para cada instância da subseção 2.3 em que para cada rodada, será afixado o vértice origem como o sendo de valor de identificação "0"e terá como vértice destino um vértice escolhido aleatoriamente, sendo que não haverá repetição de vértices⁵ (ou seja, supomos que o vértice de valor de identificação "180"tenha sido escolhido na primeira rodada. Esse vértice não será escolhido como destino nas demais 9 rodadas. Caso esse vértice seja "sorteado"na próxima iteração, um novo vértice será escolhido aleatoriamente). Nessas dez rodadas será verificado o tempo médio de execução, o número médio de vértices abertos por cada versão e para o algoritmo A* com a heurística Manhattan, será verificado a qualidade da solução.

Para todas as versões será utilizada a estrutura de dados Heap Binário (descrito na subseção 2.2.1) pois conforme mostrado no capítulo 2, foi a estrutura que melhor se sobressaiu entre as outras em termos de tempo computacional.

3.2.1 Resultados obtidos

Os resultados dos testes computacionais descritos anteriormente podem ser vistos nas tabelas $9,\ 10$ e 11.

⁵ Para o caso do algoritmo de Dijkstra especificado na primeira linha da tabela 8, não será estabelecido um vértice destino já que o algoritmo calcula a melhor rota para todos os vértices do grafo.

Tabela 9 –	Tempo me	édio ol	btido p	pelos	métodos	descritos	na	tabela	8 (ten)	npo	em	milisse-
	gundos).											

Nome Instância	Dijkstra	Dijkstra Adaptado	Algoritmo A*	Algoritmo A* Manhattan
USA-road-d.NY.gr	236	109	29	14
USA-road-d.BAY.gr	321	187	54	23
USA-road-d.COL.gr	494	229	117	27
USA-road-d.FLA.gr	2858	1026	886	101

Tabela 10 – Diferença média de solução obtida pelo A* Manhattan com relação a solução ótima.

Nome Instância	Qualidade Solução
USA-road-d.NY.gr	5%
USA-road-d.BAY.gr	4%
USA-road-d.COL.gr	3%
USA-road-d.FLA.gr	3%

Tabela 11 – Número de Vértices Abertos (NVA) médio por cada método.

Nome Instância	NVA Dijkstra Adptado	NVA A*	NVA A* Manhattan
USA-road-d.NY.gr	140501	31995	9079
USA-road-d.BAY.gr	225754	53206	17044
USA-road-d.COL.gr	242674	108343	21577
USA-road-d.FLA.gr	580010	349201	79077

3.2.2 Análise dos resultados

Como apontado pelos testes realizados, o algoritmo A* teve um desempenho computacional melhor do que o algoritmo Dijkstra, inclusive sobre o Dijkstra Adaptado (descrito anteriormente). Podemos ver que esse resultado está diretamente ligado ao número de vértices abertos por cada algoritmo (tabela 11). Aqueles que abriram mais vértices, obtiveram um tempo computacional maior. Isso já esperado, já que o algoritmo teve que processar mais etapas até que sua condição de parada fosse encontrada.

Dos quatro métodos testados, o que obteve menor tempo computacional foi o algoritmo A* aplicando a heurística não-admissível Distância Manhattan. Isso se deve ao fato de o cálculo da distância (que é realizado em tempo de execução) ser mais simples do que o empregado pela distância euclidiana (que envolve radiação e exponenciação). Porém esse resultado possui um "preço a ser pago" que é, conforme descrito na subseção 3.1.1, a não garantia do menor caminho entre os vértices pesquisados. Mas, conforme demonstra a tabela 10, a diferença média entre as soluções encontradas e suas respectivas soluções ótimas giram em torno de 4%, o que pode ser considerado como um bom resultado.

3.3 Conclusões

O algoritmo A* demonstra ser um ótimo algoritmo para o cálculo de menor caminho entre dois vértices (origem e destino), superando em tempo computacional o algoritmo de Dijsktra (mas que retorna a menor rota para todos os demais vértices), sendo mais indicado para esse tipo de cálculo. Sua implementação é simples e é praticamente uma adaptação do algoritmo de Dijsktra.

Com relação as heurísticas, para a garantia do melhor caminho como o algoritmo de Dijkstra o faz, é obrigatório o uso de uma heurística admissível, mesmo que isso tenha um impacto negativo no tempo com relação ao uso de outras heurísticas (as não-admissíveis). Porém, conforme mostrado na seção 3.2, a diferença entre as soluções ótimas e obtidos pelo método Manhattan giraram em torno de 4%, o que é um bom resultado para quem deseja menor tempo computacional e não possui a obrigatoriedade do menor caminho.

4 Algoritmos Dinâmicos

4.1 Grafos Dinâmicos

Os algoritmos apresentados até agora, tratam apenas com grafos estáticos. Mas em situações reais podemos ter casos em que a modelagem feita por grafos requerem que o peso de suas arestas variem com tempo. Para esses casos, temos grafos ditos **dinâmicos**. Exemplos de modelagem por grafos dinâmicos são o sistema de tempo real de trânsito em que os pesos das arestas correspondem ao tempo médio para percorrer um determinado trecho e esse tempo está diretamente ligado ao trânsito local em uma determinada hora e o fluxo de em uma rede interna onde as arestas representam o caminho entre roteadores e os seus pesos correspondem ao uso desta linha, ou seja, o quão congestionada está.

Para calcularmos o menor caminho entre dois vértices em grafos dinâmicos, poderíamos utilizar os algoritmos de Dijsktra e A* (capítulos 2 e 3) para acharmos a rota, e quando houver uma detecção de mudança do peso de arestas, recalcularíamos novamente o trajeto reutilizando esses algoritmos. Porém, ás vezes desejamos (ou necessitamos) que esse recálculo seja mais rápido. Para esse fim existem os algoritmos dinâmicos que calculam uma solução rápida porém não garantidamente ótima (elas são ditas sub-ótimas).

Exemplos de algoritmos são o D* (citar referência), D* Lite (KOENIG; LIKHA-CHEV, 2002), ARA* e AD* (LIKHACHEV et al., 2008). Esses dois últimos serão apresentados a seguir.

4.2 Algoritmo ARA*

O algoritmo ARA* proposto em Likhachev et al. (2008), está descrito nas listagens 4.1, 4.2 e 4.3.

Listagem 4.1 – Algoritmo ARA* - função de cálculo de caminho

```
procedure ComputePath()
         \begin{array}{l} \text{while} \left( \ker \left( s_{goal} \right) > \min_{s \in OPEN(key(s))} \right) \\ \text{remove s with smallest } \ker \left( s \right) \text{ from OPEN}; \end{array}
 3
             \begin{array}{l} v(\,s\,) \,=\, g\,(\,s\,)\,; \;\; CLOSED \,=\, CLOSED\, \cup \, \{\,s\,\}\,; \\ for \;\; each \;\; successor \;\; s\, ' \;\; of \;\; s \end{array}
 4
                  if s' was never visited by ARA* before then
 6
                     v(s') = g(s') = \infty;
                  if g(s') > g(s) + c(s, s')
 8
                     g(s') = g(s) + c(s, s');
if s' \notin CLOSED
 9
10
11
                          insert/update s' in OPEN with key(s');
12
                          insert s' into INCONS;
13
```

Listagem 4.2 – Algoritmo ARA* - função da chave ordenadora da fila de prioridades

```
1 procedure key(s)
2 return g(s) + \epsilon * h(s);
```

Listagem 4.3 – Algoritmo ARA* - função principal

```
procedure Main()
      g(s_{goal}) = v(s_{goal}) = \infty; \ v(s_{start}) = \infty; \ g(s_{start}) = 0; \ OPEN = CLOSED = INCONS = \emptyset;
3
      insert s_{start} into OPEN with key (s_{start});
      ComputePath();
5
      publish current \epsilon-suboptimal solution;
      while \epsilon > 1
8
         decrease \epsilon;
         Move states from INCONS into OPEN
9
         Update the priorities for all s \in OPEN according to key(s);
10
         CLOSED = \emptyset;
11
         ComputePath();
12
         publish current \epsilon-suboptimal solution;
13
```

Começando pela função principal (listagem 4.3), temos as variáveis g(s) e v(s) que correspondem ao valor da distância real calculada da origem s_{start} até o vértice s (o valor de v(s), apesar de estar descrito no algoritmo conforme a literatura de origem, não é utilizado pelo algoritmo e por isso será ignorado na explicação que se segue). O valor de g(s_{goal}) (distância real calculada da origem ao vértice destino) é atribuído como ∞ (infinito)¹, enquanto que o valor de g(s_{start}) é atribuído com o valor 0 (já que o valor da distancia real calculada se baseia a partir da origem). Em seguida são criados o conjunto "OPEN", "CLOSED"e "INCONS", correspondendo respectivamente ao conjunto dos "ABERTOS", "FECHADOS"e "INCONSISTENTES". Em seguida, s_{start} é inserido na fila de prioridades do conjunto OPEN utilizado a função de chave ordenadora descrito na listagem 4.2, a qual utiliza a estratégia da heurística inflada (descrito a seguir).

A função de cálculo de caminho é então invocada pela função principal (listagem 4.1). Nesta função, o processo iterativo se faz enquanto o valor da chave de s_{goal} for maior do que o valor da chave do termo mínimo da fila de prioridades. Enquanto isso for verdade, o vértice s, que corresponde ao valor do vértice com menor chave de OPEN, é removido deste e adicionado ao conjunto CLOSED. Para cada s', que representa o conjunto de vértices adjacentes de s, é verificado se tal vértice já foi visitado pelo algoritmo e em caso negativo, o seu valor de g(s') é atribuído como ∞ (infinito). Em seguida, é verificado se a distância calculada até o momento para s', g(s'), é maior do que a soma de g(s) mais o peso da aresta entre s e s'. Se caso positivo, g(s') é atribuído com esse novo valor. A seguir é verificado se o vértice s' não pertence ao conjunto dos fechados e em caso positivo, ele é adicionado/atualizado no conjunto OPEN baseando-se na função de chave ordenadora. Em caso contrário, ele é adicionado ao conjunto dos INCONS.

Vide nota de rodapé da seção 2.1.

Após o cálculo do caminho e continuando a função principal (listagem 4.3), a solução ϵ sub-ótima é apresentada pelo algoritmo. A partir daí começa o processo iterativo em que o valor de ϵ é verificado se é maior do que 1. Em caso positivo, o valor de ϵ é decrescido por um fator de corte estipulado pelo programador. Os vértices pertencentes a INCONS são movidos para OPEN. E todas as chaves da fila de prioridades são atualizados considerando o novo valor de ϵ . O conjunto CLOSED é limpo e a função de cálculo de caminho é invocada novamente, e o resultado publicado.

4.2.1 Heurística inflada e considerações sobre o algoritmo

A principal diferença entre o algoritmo ARA* e o A* está na utilização da estratégia da heurística inflada. Ela consiste em utilizar a mesma função de ordenação de chaves da fila de prioridades do algoritmo A*, com a exceção de que o valor heurístico é multiplicado por um fator ϵ . Isso faz com que menos vértices sejam visitados, já que os menos "promissores" serão jogados mais para o final da fila de prioridades enquanto que os mais "promissores" serão jogados para frente. Entretanto, ao se utilizar esta técnica perdemos a garantia do resultado ótimo do algoritmo (algo semelhante ao que ocorre quando não utilizamos heurísticas não-admissíveis. Vide subseção 3.1.1).

Porém, "Uma grande vantagem de se utilizar a estratégia apresentada é que temos um limite superior para a solução encontrada. Suponha que a melhor solução tenha custo C*. Se utilizarmos uma busca com o A* com um valor real $\epsilon \geq 1$ multiplicando o valor heurístico na função de avaliação, então há a garantia que para a nova solução C, C* \leq C $\leq \epsilon$ x C*. Portanto, se $\epsilon = 1$, a solução encontrada é ótima."(MOURA; RITT; BURIOL, 2010).

Portanto a ideia principal é achar uma solução rápida, porém não-garantidamente ótima, atribuindo um valor ϵ maior do que 1, e a mediada que mais tempo é nos dado, diminuímos o valor de ϵ até termos $\epsilon = 1$, em que a solução será garantidamente ótima.

Outra estratégia utilizada é que para ganhar tempo, a cada novo valor de ϵ em que a função para cálculo de caminho é invocada (listagem 4.1), não é necessário recalcular todos os vértices visitados anteriormente, já que os mesmo permanecem na lista de abertos (tendo apenas suas chaves atualizadas com o novo valor de ϵ e consequentemente a ordem dos vértices também é reconfigurada de acordo com esses novos valores). Além disso, para caso haja um melhor caminho encontrado para um vértice que pertence aos fechados, este é enviando para os INCONS dos quais serão enviados para OPEN para serem recalculados na próxima iteração.

A figura 12, contida em Likhachev et al. (2008), mostra a aplicação da estratégia dita anteriormente.

Figura 12 – Exemplo de aplicação da estratégia de diminuição do valor de ϵ .

4.3 Algoritmo AD*

O algoritmo AD* também proposto em Likhachev et al. (2008), está descrito nas listagens 4.4, 4.5, 4.6 e 4.7.

Listagem 4.4 – Algoritmo AD* - função para determinar o conjunto ao qual vértice pertencerá

```
1 procedure UpdateSetMembership(s)

2 if (v(s) \neq g(s))

3 if (s \notin CLOSED) insert/update s in OPEN with key(s);

4 else if (s \notin INCONS) insert s in INCONS;

5 else

6 if (s \in OPEN) remove s from OPEN;

7 else if (s \in INCONS) remove s from INCONS;
```

Listagem 4.5 – Algoritmo AD* - função de cálculo de caminho

```
procedure ComputePath()
       \begin{array}{l} \text{while} \left( \text{key} \left( s_{goal} \right) > \min_{s \in OPEN(key(s))} \text{ OR v} \left( s_{goal} \right) < \text{g} \left( s_{goal} \right) \right) \\ \text{remove s with smallest key} \left( \text{s} \right) \text{ from OPEN}; \\ \end{array} 
 3
 4
          if v(s) > g(s)
             v(s) = g(s); CLOSED = CLOSED \cup \{s\};
 5
 6
             for each successor s' of s
                if s' was never visited by AD* before then
 7
                v(s') = g(s') = \infty; bp(s') = null;
if g(s') > g(s) + c(s, s')
9
                   g(s') = g(s) + c(s, s');
10
                   \overline{bp}(s') = s;
11
                   g(s') = g(bp(s')) + c(bp(s'), s'); UpdateSetMembership(s');
12
13
          else
            v(s) = \infty; UpdateSetMembership(s);
14
             for each successor s' of s
15
             if s' was never visited by AD* before then
16
                v(s') = g(s') = \infty; bp(s') = null;
17
             if bp(s') = s
18
               bp(s') = argmin_{s'' \in pred(s')} v(s'') + c(s'', s');
19
               g(s') = v(bp(s')) + c(bp(s'), s'); UpdateSetMembership(s');
20
```

O algoritmo é muito semelhante em sua execução ao ARA*, já que o AD* é uma adaptação do mesmo. A função principal (listagem 4.7) começa iniciando os valores de $g(s_{qoal})$, $v(s_{qoal})$ e $v(s_{start})$ como ∞ , bp (s_{start}) como nulo e $g(s_{start})$ como 0. Em seguida o

Listagem 4.6 – Algoritmo AD * - função da chave ordenadora da fila de prioridades

```
1 procedure key(s)

2 if (v(s) \ge g(s))

3 return [g(s) + \epsilon * h(s); g(s)];

4 else

5 return [v(s) + h(s); v(s)];
```

Listagem 4.7 – Algoritmo AD* - função principal

```
procedure Main()
      g(s_{goal}) = v(s_{goal}) = \infty; \ v(s_{start}) = \infty; bp(s_{goal}) = bp(s_{start}) = null;
      g(s_{start}) = 0; OPEN = CLOSED = INCONS = \emptyset; \epsilon = \epsilon_0;
      insert s_{start} into OPEN with key(s_{start});
4
5
         ComputePath();
6
         publish current \epsilon-suboptimal solution;
8
         if \epsilon = 1
9
            wait changes in edge costs;
         for all directed edges (u,v) with changed edge costs
10
            update the edge cost c(u,v);
11
            if (v \neq s_{start} \text{ AND } v \text{ was } v \text{ isited by AD* before})
12
               bp(v) = argmin_{s'' \in pred(v)} v(s'') + c(s'', v);
13
         \begin{array}{l} g(v) = v(bp(v)) + c(bp(v),v) \,; \; UpdateSetMembership(v) \,; \\ if \; significant \; edge \; cost \; changes \; were \; observed \end{array}
14
15
            increase \epsilon or re-plan from scratch (i.e., re-excute Main function);
16
17
         else if \epsilon > 1
18
            decrease \epsilon;
         Move states from INCONS into OPEN
19
20
         Update the priorities for all s \in OPEN according to key(s);
21
         CLOSED = \emptyset;
```

vértice s_{start} é inserido na fila de prioridades de acordo com a função de chave ordenadora descrita na listagem 4.6. Disso, é invocado a função de cálculo de caminho (listagem 4.5).

Essa função trabalha da seguinte forma: inicialmente se verifica se o valor da chave de s_{qoal} é maior do que a menor chave da fila de prioridades (condição semelhante ao do algoritmo ARA*, vide listagem 4.1) ou se o valor de $v(s_{qoal})$ é menor do que o valor de g(s_{goal}). Se caso for verdade, o processo iterativo é inciado. O vértice s, que corresponde ao vértice com menor chave na fila de prioridades é removido do conjunto OPEN, e é verificado se o valor de v(s) é maior do que o g(s) (ou seja, se o valor da distância calculada da busca anterior é maior do que o valor da busca atual, esse é o caso normal do algoritmo). Sendo verdade, o algoritmo segue a mesma forma de execução do ARA*, conforme descrito na seção 4.2. A diferença de tratamento ocorre quando a condição inicial não ocorre, e neste caso, o valor de v(s) é atribuído como ∞ , e para cada vértice s' de s é verificado se este já havia sido visitado pelo algoritmo. Se caso não havia sido visitado, os valores de v(s'), g(s') são inciados como ∞ e bp(s') é inciado como nulo. Seguindo, é verificado se o bp(s') é igual o vértice s. Se caso sim, o bp(s') é atualizado com o vértice predecessor de s', s", cuja a função v(s") + c(s", s') é a menor. Feito isso, o valor de g(s') é atualizado com esse novo valor. Em seguida a função de determinação para qual conjunto pertencerá s' é chamado (função "UpdateSetMembership").

A função de determinação ao qual conjunto pertencerá funciona de uma maneira muito simples. Caso os valores de v(s) e g(s) sejam diferentes, a função é igual ao que ocorre no processo de atribuição de conjunto do ARA* (vide listagem 4.1), a diferença ocorre quando esses valores são iguais (ou seja, não houve mudança de valores entre a busca atual e a anterior), o vértice é removido de OPEN caso esteja nele ou removido de INCONS caso pertença a este. Isso feito para que este vértice não precise ser calculada nesta busca ou na próxima (caso esteja em INCOS).

Voltando ao método principal (listagem 4.7), a função segue o mesmo padrão da ARA*, a única exceção se dá quando mudanças no grafo são detectadas (mudança dos pesos das arestas). Neste caso, para cada aresta (u,v) mudada, é atribuído ao valor bp(v), o vértice s", predecessor de v, cuja a função v(s") + c(s", v) seja mínima. Consequentemente, o valor de g(v) é atualizado conforme esse valor e a função de atribuição de conjunto é invocada.

5 Considerações Finais

Texto.

Referências

- CORMEN, T. H. *Introduction to algorithms*. [S.l.]: MIT press, 2009. Citado 6 vezes nas páginas 21, 22, 23, 24, 25 e 26.
- DIJKSTRA, E. W. A note on two problems in connexion with graphs. *Numerische mathematik*, Springer, v. 1, n. 1, p. 269–271, 1959. Citado na página 21.
- DROZDEK, A. Data Structures and algorithms in C++. [S.l.]: Cengage Learning, 2012. Citado 2 vezes nas páginas 21 e 23.
- HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic determination of minimum cost paths. *IEEE transactions on Systems Science and Cybernetics*, IEEE, v. 4, n. 2, p. 100–107, 1968. Citado na página 30.
- KOENIG, S.; LIKHACHEV, M. D* lite. AAAI/IAAI, v. 15, 2002. Citado na página 36.
- LARKIN, D. H.; SEN, S.; TARJAN, R. E. A back-to-basics empirical study of priority queues. In: SIAM. 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX). [S.1.], 2014. p. 61–72. Citado na página 28.
- LIKHACHEV, M. et al. Anytime search in dynamic graphs. *Artificial Intelligence*, Elsevier, v. 172, n. 14, p. 1613–1643, 2008. Citado 4 vezes nas páginas 30, 36, 38 e 39.
- MOURA, L.; RITT, M.; BURIOL, L. S. Estudo experimental de algoritmos em tempo real de caminho mínimo ponto a ponto em grafos dinâmicos. *Anais do XLII Simpósio Brasileiro de Pesquisa Operacional, ser. SBPO*, 2010. Citado na página 38.
- RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: A Modern Approach. [S.1.]: Prentice-Hall, 1995. Citado 2 vezes nas páginas 31 e 32.
- SOUZA, V. E. S.; FALBO, R. A.; GUIZZARDI, G. Designing Web Information Systems for a Framework-based Construction. In: HALPIN, T.; PROPER, E.; KROGSTIE, J. (Ed.). *Innovations in Information Systems Modeling: Methods and Best Practices.* 1. ed. [S.l.]: IGI Global, 2008. cap. 11, p. 203–237. Citado na página 14.
- SOUZA, V. E. S. et al. Requirements-driven software evolution. *Computer Science Research and Development*, Springer, v. 28, n. 4, p. 311–329, 2013. Citado na página 14.
- SOUZA, V. E. S. et al. Awareness Requirements. In: LEMOS, R. et al. (Ed.). *Software Engineering for Self-Adaptive Systems II.* [S.l.]: Springer, 2013, (Lecture Notes in Computer Science, v. 7475). p. 133–161. Citado na página 14.
- SOUZA, V. E. S.; MYLOPOULOS, J. Designing an adaptive computer-aided ambulance dispatch system with Zanshin: an experience report. *Software: Practice and Experience (online first: http://dx.doi.org/10.1002/spe.2245)*, Wiley, 2013. Citado 4 vezes nas páginas 8, 9, 17 e 18.

