UNIVERSIDAD POLITÉCNICA DE MADRID

DEPARTAMENTO DE INTELIGENCIA ARTIFICIAL

Búsqueda Inteligente Basada en Metaheurísticas

Recocido Simulado aplicado al problema de las N-Reinas

Fragua Baeza, Ángel Jiménez López de Castro, Joaquín Solís García, Javier

Índice

- Problema de las N-Reinas
- Recocido Simulado
- Implementación
- Resultados
- Conclusiones
- Trabajo Futuro

Problema de las N-Reinas

- El problema para N=8 fue inicialmente propuesto por Bezzel (1848).
- Consiste en colocar N reinas en un tablero de ajedrez NxN, cuyas reinas deben estar colocadas de tal forma que ninguna se pueda capturar entre sí.
- Una reina puede capturar a otra si están en la misma fila, columna o diagonal.

Recocido Simulado Kirkpatrick et al. (1983)

- Variante del método de máximo descenso que intenta evitar los óptimos locales.
- Al igual que en máximo descenso, se genera una solución aleatoria del entorno de la solución actual y si esta es mejor pasa a ser la actual.
- Se escogen soluciones peores que la actual con una probabilidad que decrece con respecto al número de iteraciones trascurridas (y por tanto la temperatura) y el empeoramiento que supone la nueva solución.

Decisiones					
Genéricas		Específicas			
T_0 :	Temperatura Inicial	<i>x</i> ₀ :	Solución Inicial		
T_k :	Función Temperatura		Generación de entornos		
p(k):	Aceptación		Evaluación de Δf_{ij}		
	Criterio de Parada				

Implementación. Framework

- Hemos partido de la librería Python simanneal (https://github.com/perrygeo/simanneal)
- Se ha adaptado el código para:
 - Una codificación específica del problema
 - Representación gráfica de la evolución de los parámetros más relevantes
 - Representación gráfica de la solución o tablero
 - Programa interactivo mediante ipywidgets

Implementación. Decisiones Genéricas

	Decisiones				
	Genéricas		Específicas		
T_0 :	Temperatura Inicial	x_0 :	Solución Inicial		
T_k :	Función Temperatura		Generación de entornos		
p(k):	Aceptación		Evaluación de Δf_{ij}		
	Criterio de Parada				

El framework define los siguientes hiperparámetros:

- Tmax: Temperatura máxima
- Tmin: Temperatura mínima
- steps: n° de iteraciones total

- $T_0 = \mathsf{Tmax}$
- $T_k = \alpha^k T_0$ (Recocido Geométrico)
 - k: n° de iteraciones $(0 \le k \le steps)$
 - α^{steps} · Tmax = Tmin (Decrecimiento exponencial de la Temperatura)

•
$$p(k) = \min\{1, \exp(-\frac{f(y) - f(x_k)}{T_k})\}$$

- Criterio de parada:
 - k = steps
 - Obtener solución óptima (especificado por el usuario)

Implementación. Decisiones Específicas

Decisiones				
Genéricas	Específicas			
T_0 : Temperatura Inicial	x_0 : Solución Inicial			
T_k : Función Temperatura	Generación de entornos			
p(k): Aceptación	Evaluación de Δf_{ij}			
Criterio de Parada				

- Array unidimensional de tamaño N cuya posición i-ésima indica la fila de la reina en la columna i.
- Ejemplo: [0, 4, 1, 5, 2, 6, 3]
- Otras representaciones serían posibles como una matriz binaria NxN, pero introduciría la posibilidad de generar soluciones no válidas.

Implementación. Decisiones Específicas

Decisiones				
Genéricas		Específicas		
T_0 :	Temperatura Inicial	x_0 :	Solución Inicial	
T_k :	Función Temperatura		Generación de entornos	
p(k):	Aceptación		Evaluación de Δf_{ij}	
	Criterio de Parada			

A. Se intercambian los valores de dos posiciones aleatorias del array.

- Requiere que el estado inicial sea un reordenamiento de la secuencia [0,1,...,N].
- Evita colisiones en filas y columnas. (Solo hay colisiones en diagonales)
- B. Se escoge una reina aleatoriamente y se mueve a una fila aleatoria dentro de su misma columna.
- C. Se escoge una reina aleatoria y se mueve una fila hacia arriba o hacia abajo.

Implementación. Decisiones Específicas

Decisiones				
Genéricas	Específicas			
T_0 : Temperatura Inicial	x_0 : Solución Inicial			
T_k : Función Temperatura	Generación de entornos			
p(k): Aceptación	Evaluación de Δf_{ij}			
Criterio de Parada				

- Cada solución es evaluada en relación al número de colisiones únicas que hay entre sus reinas. Ejemplo: 2 colisiones.
- El objetivo es obtener cero colisiones. (Una de las condiciones de parada)

Implementación. Estimación mejores parámetros

- El framework cuenta con una función de estimación llamada auto.
- Ejecuta el método de recocido simulado múltiples veces:
 - 1. Tmax con una aceptación de soluciones cercana al 98%
 - 2. Tmin con una mejora de soluciones del 0%
- Estima el número de iteraciones máximas para que el tiempo de ejecución del algoritmo sea menor al establecido. Las pruebas las hemos realizado con tiempo máximo de **2 minutos**.

Resultados. Evolución del algoritmo

• Tmax = 60

Tmin = 0.3

steps = 1700000

Tmax = 50 • Tmin = 0.0

• Tmin = 0.058 • steps = 31000

Resultados. Comparación de colisiones

Hiperparámetros por defecto:

- Tmax = 25000
- Tmin = 2.5
- steps = 50000

Hiperparámetros establecidos por el estimador *auto*

Resultados. Evolución de colisiones

Hiperparámetros establecidos por el estimador *auto*

Resultados. Comparación de épocas

Hiperparámetros establecidos por el estimador *auto*

Hiperparámetros por defecto:

- Tmax = 25000
- Tmin = 2.5
- steps = 50000

Resultados. Evolución de épocas

Hiperparámetros establecidos por el estimador *auto*

Resultados. Evolución de Tmax

Hiperparámetros establecidos por el estimador *auto*

Resultados. Comparación de codificaciones

Hiperparámetros establecidos por el estimador *auto* N = 100

Codificación A

Codificación B

Codificación C

Conclusiones

- La codificación del problema afecta significativamente al rendimiento.
- La elección de la función de evaluación afecta a la elección de la temperatura.
- La metaheurística es muy sensible a la elección de los hiperparámetros.

• El problema de las 7-Reinas es fácilmente resoluble con cualquier configuración, mientras que para un número de reinas mayor, es imprescindible la realización de un ajuste inicial.

Trabajo Futuro

- Coste actual de evaluación es $O(N^2)$
 - Para cada reina evaluar sus colisiones siguientes
- Se podría conseguir coste O(N)
 - Tablero NxN tiene 2(2N-1) diagonales
 - Calcular las colisiones por diagonal
 - Detalles específicos de codificación:
 - d_1[2N-1]={-1,..,-1}, d_2[2N-1]={-1,..,-1}
 - for r in solución:
 - $d_1[r.j r.i] += 1$
 - $d_2[r.i r.j] += 1$
 - colisiones = valores de d_1 y d_2 mayores que 0

Referencias

- M. Bezzel, Proposal of 8-queens problem, Berliner Schachzeitung 3 (1848), 363. (Submitted under the author name "Schachfreund".)
- Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.

MUCHAS GRACIAS POR SU ATENCIÓN