ФГБОУ ВО

Национальный исследовательский университет «МЭИ» »

Институт радиотехники и электроники
Направление радиоэлектронные системы и комплексы
Кафедра радиотехнических систем

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

«Прогнозирование спутникового созвездия» курса «Аппаратура потребителей СРНС»

Выполнил студент:

Муратов Николай Сергеевич группа: ЭР-15-17

Проверил:

к.т.н., доцент Корогодин Илья Владимирович

Москва, 2021 г.

Содержание

1	Ошибки позиционирования в городских условиях				
	1.1	Цель работы			
	1.2	Основная часть			
		1.2.1 Подготовка			
		1.2.2 Процесс сбора данных			
		1.2.3 Анализ результатов			
	1.3	Выводы			

Лабораторная работа 1

Ошибки позиционирования в городских условиях

1.1 Цель работы

Цель данной лабораторной работы – получить навыки предсказания состава видимых KA и их положения с помощью программы Trimble GNSS Planning Online. Оценить состояние спутниковых группировок различных ГНСС. Оценить возможности смартфона по приему сигналов разных ГНС

1.2 Основная часть

1.2.1 Подготовка

С помощью сервиса Trimble GNSS Planning Online получим данные о прогозе видимого спутникового созвездия(рис.1.2.2) в выбранной точке простраства и времени(рис. 1.2.1).

Рисунок 1.2.1 — Страница настроек исходных данных в программе Trimble GNNS Planning Online

Рисунок 1.2.2 — Прогнозируемое спутниковое созвездие в заданной точке и времени проведения эксперимента.

Карта местности фактического места получения созвездия представлена на Рис. 1.2.3

Рисунок 1.2.3 — Фактическое место проведения эксперимента

1.2.2 Процесс сбора данных

Для выполнения лабораторных измерений использовался смартфон Google Pixel 4a с процессором Qualcomm Snapdragon 730G, поддерживающий навигационные системы такие как:

- NAVSTAR GPS
- GLONASS
- BeiDou
- Galileo

Для снятия исследуемых данных была скачана и установлена программа GPS Test, с помощью которой было получено спутниковое созвездие и все последующие необходимые данные (рис. 1.2.4 и 1.2.5):

Рисунок 1.2.4 — Спутниковое созвездие, полученное в программе GPS Test

Рисунок 1.2.5 — Часть списка спутников с указанием ОСШ

1.2.3 Анализ результатов

Из полученных в программе данных мы наблюдаем примерно то же число видимых спутников, которые прогнозировались в программе Trimble GNNS Planning Online. Для наглядности приведем сравнение ожидаемого количества спутников и количества, полученного в ходе эксперимента (см. табл. 1.1, где n – прогнозируемое кол-во спутников; m – полученное в ходе эксперимента число спутников):

Таблица 1.1 — Количество спутников

Название СРНС	GPS	GLONASS	BeiDou	Galileo
n	14	9	27	9
m	11	9	9	7

Максимальное отношение сигнал-шум: 39 Минимальное отношение сигнал-шум: 15 Отношение сигнал-шум для каждого спутника по отдельности:

- GPS: 35, 28, 43, 39, 29, 36, 31, 23, 28, 0, 0; среднее 29,1;
- Glonass: 31, 21, 21, 24, 25, 23, 37, 43, 0; среднее 32,1;
- Galileo: 41, 31, 30, 0, 0, 0, 0; среднее 35,7

• Для BeiDou по непонятным причинам во время эксперимента отношение сигнал-шум для всех спутников было равно нулю, несмотря на то что спутники были видны.

Рисунок 1.2.6 — Фото бригады с места проведения эксперимента

1.3 Выводы

В ходе лабораторной работы с помощью необходимых программ были получены и сравнены спутниковые созвездия и получены значения ОСШ для каждого наблюдаемого спутника СРНС. По полученным данным можно сделать вывод, что прогнозируемые данные практически не отличаются от данных, полученных в ходе эксперимента. Полученные же расхождения можно списать на повышенную облачность во время выполнения эксперимента, а также на достаточную плотность застройки вблизи точки выполнения эксперимента. Из полученных данных следует, что самое большое количество спутников у системы GPS (данная СРНС имеет самое большое количество спутников среди всех СРНС, и, как следствие, они более плотно расположены на околоземной орбите).