Univerzita Tomáše Bati ve Zlíně

Ústav elektrotechniky a měření

Stabilizátory

Přednáška č. 3

Milan Adámek

<u>adamek@ft.utb.cz</u> **U5 A711** +420576035251

Stabilizátory napětí a proudu

- a) Stabilizátor se Zenerovou diodou (dvojbran)
- b) Integrované stabilizátory

Voltampérová charakteristika Zenerovy diody

- ZD jsou provozovány v závěrném směru
- \bullet druh dotování polovodiče určuje výši průrazného napětí (**Zenerova** $\mathbf{U}_{\mathbf{Z}}$) v závěrném směru
- pro U_Z < 5V převládá Zenerův efekt ele. napětí vyrazí valenční elektrony, ty spolu s děrami tvoří průrazový proud

• pro $U_z > 7V$ vznikne lavinový efekt - ele. napětí vyrazí vnitřní

valenční elektrony, nastane lavinový efekt

Schéma zapojení stabilizátoru (dvojbranu) se Zenerovou diodou

- ZD zapojena v závěrném směru
- zapojen ochranný odpor R_V

Požadavky při konstrukci stabilizátoru se Zenerovou diodou

- nesmí být překročený ztrátový výkon na diodě
- ochranný odpor R_V omezí proud přes ZD
- \bullet R_{V} musí být volen tak, aby ZD pracovala mezi I_{Zmin} a I_{Zmax}

Výpočet hodnoty ochranného odporu R_V ve stabilizátoru

 při minimálním napětí na vstupu stabilizátoru a maximálním odebíraném proudu na výstupu musí téct diodou alespoň I_{Zmin}

$$R_{\text{vmax}} = \frac{U_{1\text{min}} - U_{z}}{I_{z\text{min}} + I_{L\text{max}}}$$

• při maximálním napětí na vstupu stabilizátoru a nulovém odebíraném proudu na výstupu musí téct diodou maximálně $I_{Z_{max}}$

$$R_{\text{vmin}} = \frac{U_{1\text{max}} - U_{z}}{I_{z\text{max}} + I_{\text{Lmin}}}$$

 $R_{\rm v}$ předřadný odpor

U₁ vstupní napětí

Uz Zenerovo napětí

Iz Zenerův proud

I_L proud zátěže

Činitel stabilizace

$$S = \frac{\Delta U_1 \cdot U_2}{\Delta U_2 \cdot U_1}$$

S činitel stabilizace
 U₂ výstupní napětí
 U₁ vstupní napětí

• jde o třísvorkové stabilizátory

tranzistor omezující výstupní napětí U_{BE3} V2 R1 R3 U1 A1 UA

- komparátor porovnávající velikost U₄ a U_Z (referenční)
- pro U₄ < U_Z komparátor přiotevře V2
- pro $U_4 > U_Z$ komparátor přivře V2

tranzistor omezující výstupní proud

- je-li I_L pod jmenovitou hodnotou, pak U_{BE3} je malé a neotevře V3 proto I_{C3} =0
- pro I_L nad jmenovitou hodnotou se otevře V3 poklesne I_{B2} a V2 se přizavře, proto poklesne I_L

Ukázka síťového zdroje s integrovaným stabilizátorem

Příklady integrovaných stabilizátorů (LM 317)

40 V vstupní stejnosměrné napětí
1,2 V- 37 V rozsah výstupního napětí
1,5 A maximální regulovaný proud
20 W maximální ztrátový výkon
odolný proti zkratu vnitřním
omezením proudu na 1,5 A

Příklady integrovaných stabilizátorů (LM 317)

Příklady integrovaných stabilizátorů (TDB 117)

Nastavitelné napětí 1,2 až 25V

Příklady integrovaných stabilizátorů (pevné výstupní napětí)

MH 7805, MH 7905 +5V, -5V

MH 7812, MH 7912 +12V,-12V

MH 7815, MH 7915 +15V,-15V

Příklady integrovaných stabilizátorů (pevné výstupní napětí)

Příklady integrovaných stabilizátorů (pevné výstupní napětí)

Použití Zenerových diod

c) Stabilizátory proudu

 zaručuje konstantní výstupní proud při kolísání výstupního odporu, teploty a napětí

- poklesne li I_L, poklesne U₁
- protože U₂=konst. vzroste U_{BE}
- tranzistor se přioevře, vroste I_L

d) Omezovače proudu

• úkolem je omezit výstupní proud

- roste li I_L, poklesne U_{BE}
- protože U₂=konst.
- tranzistor se přizavře, klesne I_L