1

Lecture 06: Active Contours & Intelligent Scissors

Credits for slides: Octavia Camps, NEU David Jacobs, UMD Steve Seitz, UW

Yin, MST Spring, 2014

Active Contours

- Raises level of image feature description from edges to boundaries.
- Edge is strong change in pixel intensity.
- Boundary is boundary of an object.
 - Smooth (more or less)
 - Closed

Improved Boundary Detection

- Integrate information over distance.
- Use shape cues
 - Smoothness
 - Closure
- Get User to Help.

Active Contours

- They are also called
 - Snakes
 - Deformable Contours
- Think of a snake as an elastic band:
 - of arbitrary shape
 - sensitive to image gradient
 - that can "wiggle" in the image
 - represented as a sequential list of points

The Energy Functional

9

- Associate to each possible shape and location of the snake a value **E**.
 - Values should be s.t. the image contour to be detected has the <u>minimum</u> value.
 - E is called the energy of the snake.
- Iteratively adjust points on the snake to achieve a smaller energy E

Yin, MST Spring, 2014

Energy Functional Design

- We need a function that given a snake state, associates to it an Energy value.
- The function should be designed so that the snake moves towards the contour that we are seeking!

Forces moving the snake (External)

13

- It needs to be attracted to contours:
 - Edge pixels "pull" the snake points.
 - The stronger the edge, the stronger the pull.
 - The force is proportional to $|\nabla I|$

Yin, MST Spring, 2014 14

Edgeness Term

Given a snake with N points $p_1, p_2, ..., p_N$

Define the edgeness term of the Energy Functional:

$$E_g(p_i) = ||\nabla I(p_i)||$$

Magnitude of the gradient should be LARGE (which will make this term SMALL (very negative)

Forces preserving the snake (Internal)

15

• The snake should not break apart!

- Points on the snake must stay close to each other
- The farther the neighbor, the stronger the force to pull them back together
- The force is proportional to the distance $|P_i P_{i-1}|$

Yin, MST Spring, 2014 6

Continuity Term

Given a snake with N points $p_1,p_2,...,p_N$ Let d be the average distance between points

Define the continuity term of the Energy Functional:

$$E_c(p_i) = (d - ||p_i - p_{i-1}||)^2$$

Distance between points should be kept close to average

Forces preserving the snake (Internal)

17

The snake contour should be "smooth"

- Penalize high curvature.
- Force proportional to snake curvature

Yin, MST Spring, 2014 18

Smoothness Term

Given a snake with N points $p_1, p_2, ..., p_N$ Curvature should be kept small

Define the smoothness term of the Energy Functional:

$$E_s(p_i) = ||p_{i-1} - 2p_i + p_{i+1}||^2$$

Second derivative measures curvature

19

Snake Energy Functional

Given a snake with N points $p_1, p_2, ..., p_N$

Define the following Energy Functional:

$$E = \sum_{i=1}^{N} a_i E_c(p_i) + b_i E_s(p_i) + c_i E_g(p_i)$$

Where:

 E_c "Continuity"

 E_s "Smoothness"

 $E_{
m g}$ "Edgeness"

ai,bi,ci are "weights" to control influence

Yin, MST Spring, 2014

Greedy Algorithm

20

Minimize energy one point at a time.
For each point, consider a finite set of moves in a small window around it

Compute the new energy for each candidate location Move the point to the one with the minimum value

Implementation Considerations

- To avoid numerical problems, the terms of the energy function should be normalized.
 - E_c and E_s are normalized by their maximum in the neighborhood
 - E_{g} is normalized as $|\nabla I m|/(M m)$
 - M and m are the max and min value of the gradient magnitude in the neighborhood

That is, want all terms scaled from 0 to 1 so they are treated equally

Yin, MST Spring, 2014

Implementation Considerations

Keeping high-curvature corners

- Before starting a new iteration:
 - Search for "corners":
 - max curvature
 - · large gradient
 - Corner points should not contribute to the energy (set $b_i = 0$)

Snake Algorithm

23

- Input:
 - gray scale image I
 - a chain of points $p_1, p_2, ..., p_N$
- f is the fraction of points that must move to start a new iteration
- U(p) is a neighborhood around p
- d is the average distance between snake points (computed from the list of points).

Yin, MST Spring, 2014

Snake Algorithm

24

While the fraction of moved points > f

- 1. For i=1,2,...,N
 - 1. find a point in $U(p_i)$ s.t. the energy E is minimum,
 - 2. move p_i to this location
- 2. For i=1,2,...,N
 - 1. Estimate the curvature $k=|p_{i-1}-2p_i+p_{i+1}|$
 - 2. Look for local max, and set $b_{max} = 0$
- 3. Update d

Where

$$E = \sum_{i=1}^{N} a_i E_c(p_i) + b_i E_s(p_i) + c_i E_g(p_i)$$

Issue with this Algorithm

25

This algorithm is not guaranteed to find the "best" curve, in the sense of lowest cost.

Why? Greedy algorithms do not explore the space of <u>all</u> curves

Yin, MST Spring, 2014

Non-Optimality

26

Typical snake behavior is far from optimal

Snake movement gets "hung up" on high contrast stone in wall.

There have been a *lot* of papers written about how to make snakes work robustly: different energy functions, different optimization methods...

A More Optimal Strategy

_

- Given a start and end point, use dynamic programming to determine "best" path from start to end location.
 - Need to determine what is a good path?
 - Need procedure to find best path

Algorithm we will discuss now is from E. N. Mortensen and W. A. Barrett, "Intelligent Scissors for Image Composition," in ACM Computer Graphics (SIGGRAPH `95), pp. 191-198, 1995

Yin, MST Spring, 2014

We'll do something easier than finding the whole boundary. Finding the best path between two boundary points.

To start: contour near edge

- For each step from one pixel to another, we measure edge strength (change in intensity across edge).
- Find path with biggest total edge strength.

Yin, MST Spring, 2014

So How do we find the best Path?

32

Dynamic programming

A Curve is a path through the grid.

Cost depends on each step of the path.

We want to minimize cost.

Incrementally determine best path, starting from end state

Defining the costs

• Treat the image as a graph

- Want to hug image edges: how to define cost of a link?
 - the link should follow the intensity edge
 - want intensity to change rapidly orthogonal to the link
 - \mathbf{c} ≈ |difference of intensity orthogonal to link|

Defining the costs

- First, smooth the image to reduce noise.
- c can be computed using a cross-correlation filter
 - assume it is centered at p
- Also typically scale c by it's length
 - set c = (max-|filter response|) * length(c)
 - where max = maximum |filter response| over all pixels in the image

Yin, MST Spring, 2014

Defining the costs

- c can be computed using a cross-correlation filter
 - assume it is centered at p
- Also typically scale c by it's length
 - set c = (max-|filter response|) * length(c)
 - where max = maximum |filter response| over all pixels in the image

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- $set cost(q) = min(cost(p) + c_{pq}, cost(q))$

- Algorithm
 - 1. init node costs to ∞ , set p = seed point, cost(p) = 0
 - 2. expand p as follows:

for each of p's neighbors q that are not expanded

- $set cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if q's cost changed, make q point back to p
- put q on the ACTIVE list (if not already there)

- 1. init node costs to ∞ , set p = seed point, cost(p) = 0
- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- $set cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if q's cost changed, make q point back to p
- put q on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. repeat Step 2 for p = r.

4. repeat Step 2 for p = r.

- 2. expand p as follows:

for each of p's neighbors q that are not expanded

- $set cost(q) = min(cost(p) + c_{pq}, cost(q))$
 - » if q's cost changed, make q point back to p
- put q on the ACTIVE list (if not already there)
- 3. set r = node with minimum cost on the ACTIVE list
- 4. repeat Step 2 for p = r
- 5. Stop when next point to expand is goal point. Read off shortest path.

from previous free point positions $(t_0, t_1, and t_2)$ are shown in green.

Lessons Learned

44

- Perceptual organization: contour continuity constraints needed for boundary detection.
- Fully automatic methods for boundary finding (snakes, active contours) are not yet good enough
- Formulate desired solution as a cost function, then optimize it

greedy methods, easy but suboptimal dynamic programming --> optimal solution when the method is applicable