

FIG. 1

PRIOR ART

(\ominus) ; SWITCH CELL (ON STATE; MIRROR INSERTED)

(\circ) ; SWITCH CELL (OFF STATE; MIRROR NOT INSERTED)

FIG.2 PRIOR ART

TD6080 90942660

FIG. 3

FIG.4A

FIG.4B

FIG. 5

T06080" 30942660

FIG. 6

FIG.7A

SIZE;2 x 2
 OPTICAL PATH LENGTH ;2
 NUMBER OF REFLECTIONS;2/1
 KINDS OF MIRRORS;UPWARD REFLECTIN;2
 DOWNWARD REFLECTION;2
 NUMBER OF CELLS;4

2 x 2 OPTICAL SWITCH

SIZE;3 x 3
 OPTICAL PATH LENGTH ;3
 NUMBER OF REFLECTIONS;2/4/0
 KINDS OF MIRRORS;UPWARD REFLECTIN;4
 DOWNWARD REFLECTION;4
 BIDIRECTIONAL REFLECTION;1
 NUMBER OF CELLS;9

3 x 3 OPTICAL SWITCH

FIG.7B

FIG.8

NUMBER OF SWITCH CELLS;

UPWARD REFLECTION; $n+1$

DOWNDWARD REFLECTION; $n+1$

BIDIRECTIONAL REFLECTION; $n^2 - 2n - 2$

TOTAL NUMBER; n^2

FIG. 9

ANGLE OF INCIDENCE; 30°

FIG.10

$$d = a \cdot \tan \theta i$$

$$dm = 1/2 \cdot a \cdot \tan \theta i$$

FIG. 11

FIG.12A

FIG.12B

FIG.13A

FIG.13B

FIG. 14A

FIG. 14B

T06080 "90912660

FIG.15

FIG.16

FIG.17A

FIG.17B

T06080" 909+2660

FIG. 18

T06080" 909+2660

FIG. 19

FIG.20

\otimes SIMULTANEOUS BIDIRECTIONAL
REFLECTION MIRROR

FIG.21

106080 " 90942660

FIG.22

099624906 " 080901

106080 "00942660

FIG. 23

106080 "90942660

FIG.24

FIG.25

0996249606 - 080901

FIG.26

{

099214606 . 080901

FIG.27

09624605 . 080901

FIG.28

FIG.29

FIG.30

FIG.31

(n) : UPWARD REFLECTION SWITCH CELL FOR
CONNECTING INPUT CHANNEL $\#i$
TO OUTPUT CHANNEL $\#n$

FIG.32

FIG.33

FIG.34

01060800 5054526660

FIG.35

T06080 "90942660

FIG.36

FIG.37

2 x 2 OPTICAL SWITCH

SIZE; 3 x 3

OPTICAL PATH LENGTH; 3

NUMBER OF CELLS; 6

NUMBER OF UPWARD REFLECTION MIRRORS; 4

NUMBER OF DOWNWARD REFLECTION MIRRORS; 2

NUMBER OF REFLECTIONS ; ALWAYS 2

۱۰۶۰۸۰ "۹۰۹۴۲۶۶۰

FIG.38

106080 " 90942660

FIG.39

06080 "9912660

FIG. 40

FIG.41

706080-90942660

FIG. 42

٢٠٦٠٨٠ " ٩٥٩٤٢٦٦٠

FIG. 43

FIG.44

FIG.45

FIG.46

FIG.47

DEDICATED ROUTE FROM INPUT CHANNEL #1 TO EVEN-NUMBERED OUTPUT CHANNEL

DEDICATED ROUTE FROM INPUT CHANNEL #3 TO EVEN-NUMBERED OUTPUT CHANNEL

DEDICATED ROUTE FROM INPUT CHANNEL #5 TO EVEN-NUMBERED OUTPUT CHANNEL

✓ DEDICATED ROUTE FROM
INPUT CHANNEL #7 TO
EVEN-NUMBERED OUTPUT
CHANNEL

- ①, ②, ③ : ROUTES TO OUTPUT CHANNELS
#2, #4, #6, AND #8
 - ④ : ROUTES TO OUTPUT CHANNELS
#2, #4, AND #6
 - ⑤ : ROUTES TO OUTPUT CHANNELS
#2, AND #4
 - ⑥ : ROUTES TO OUTPUT CHANNELS
#2

INPUT CHANNEL	ROUTE TO EVEN-NUMBERED OUTPUT CHANNEL
2	①/②/③
4	①②③,④
6	①②③,④,⑤
8	①②③,④,⑤,⑥

INPUT CHANNEL	OUTPUT CHANNEL	ROUTE
2	2	① or ② or ③
4	4	① or ② or ③
6	6	④
8	8	① or ② or ③

FIG.48

DEDICATED ROUTE FROM INPUT CHANNEL
#2 TO ODD-NUMBERED OUTPUT CHANNEL

- ①, ② : ROUTES TO OUTPUT CHANNELS #1, #3, #5, AND #7
- ③ : ROUTES TO OUTPUT CHANNELS #1, #3, #5 AND #7 WHEN INPUT CHANNEL IS #3, #5, OR #7
- ④ : ROUTES TO OUTPUT CHANNELS #1, #3, AND #5
- ⑤ : ROUTES TO OUTPUT CHANNELS #1 AND #3

INPUT CHANNEL	ROUTE TO ODD-NUMBERED OUTPUT CHANNEL
1	①/②
3	①/②, ③
5	①/②, ③, ④
7	①/②, ③, ④, ⑤

INPUT CHANNEL	OUTPUT CHANNEL	ROUTE
1 → 1		① or ②
3 → 3		③
5 → 5		④
7 → 7		① or ②

FIG.49

FIG.50

$$\text{NUMBER OF UPWARD REFLECTION SWITCH CELLS} : \sum_{m=1}^n m-1 + \frac{n}{4} \times n = \frac{n(n+1)}{2} - 1 + \frac{n^2}{4} = \frac{3}{4} n^2 + \frac{1}{2} n - 1$$

$$\text{NUMBER OF DOWNWARD REFLECTION SWITCH CELLS} : 2 \sum_{m=1}^{n/2} m + \frac{n}{4} \times \frac{n}{2} + (\frac{n}{4} - 1) \times \frac{n}{2} = \frac{n^2}{2}$$

SHOWN IN THE FIGURE
 SHOWN IN THE FIGURE
 SHOWN IN LEFT UPER PORTION OF THE FIGURE

$$\text{NUMBER OF ALL SWITCH CELLS} : \frac{5}{4} n^2 + \frac{1}{2} n - 1$$

FIG.51

