

## **Grid Computing**

Un nuevo paradigma de computación distribuida



Borja Sotomayor 9 de abril de 2003





#### Índice

- ▶ ¿Qué es la Computación Grid?
- Aplicaciones Prácticas
- Arquitectura de la Grid
- ► Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- Futuro de la Computación Grid

Grid Computing



#### Índice

- ¿Qué es la Computación Grid?
- ► Aplicaciones Prácticas
- ► Arquitectura de la Grid
- ► Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- ► Futuro de la Computación Grid



### ¿Qué es la Computación Grid? (1)



A comienzos del siglo XX, si querías tener electricidad, hacía falta estar situado cerca de un generador electrico.

**Grid Computing** 



#### ¿Qué es la Computación Grid? (2)



- Ahora, no tenemos generadores individuales, sino unos pocos 'supergeneradores' que abastecen a muchos clientes.
- Red Electrica (Electric Grid)



### ¿Qué es la Computación Grid? (3)

- Algo similar pasa con la informática ahora. Si en mi organización quiero disponer de cierto recurso computacional, no tengo más remedio que comprarlo.
  - ▶ Potencia computacional
  - Almacenamiento
  - ▶ Equipos para aplicaciones especificas

**Grid Computing** 



#### ¿Qué es la Computación Grid? (4)

- Actualmente, puedo subcontratar el acceso a recursos computacionales ajenos, pero cada compañía lo realiza de manera ad hoc.
- Además, el acceso a esos recursos dista mucho de ser optimo.



## ¿Qué es la Computación Grid? (5)

#### ► Ejemplo

- Supongamos que cuatro veces al año el centro de calculo de nuestra empresa genera varios terabytes (10<sup>6</sup> MB) de información que deben ser analizados.
- ▶ Puesto que no nos merece la pena tener un supercomputador, subcontratamos el proceso de los datos a otra empresa.

**Grid Computing** 



#### ¿Qué es la Computación Grid? (6)



Se generan los datos, que son volcados a cintas magneticas.







#### ¿Qué es la Computación Grid? (9)



Recibimos el resultado. Descubrimos que hay un fallo en los datos. ¡Vuelta a empezar!

**Grid Computing** 



#### ¿Qué es la Computación Grid? (10)

- ¿Sería posible crear algo similar a la red eléctrica pero en el ámbito computacional?
  - Acceder a recursos computacionales geograficamente dispersos (como las centrales eléctricas) con la misma facilidad con la que enchufo un electrodoméstico a la red electrica.
- Solución propuesta: Grid Computing



#### ¿Qué es la Computación Grid? (11)

#### Grid Computing

- Un nuevo paradigma de computación distribuida propuesto por lan Foster y Carl Kesselman a mediados de los 90.
- Está enfocado al acceso <u>remoto</u> a <u>recursos</u> computacionales.
- Es un paradigma. No describe ni favorece a ninguna tecnología concreta. Sienta las bases teoricas (arquitectura, requisitos previos, ...)
  - Tecnología estandar de facto: Globus Toolkit

**Grid Computing** 



### ¿Qué es la Computación Grid? (12)

- "The Grid": pool de recursos computacionales geográficamente dispersos al que tenemos aceso. "Red electrica de recursos computacionales"
- Sin embargo, todavía no existe "the Grid"
  - Hay muchos 'mini-Grids' a lo largo de todo el mundo (testbeds) que se están utilizando para poner a prueba tecnologías Grid.
  - Futuro: Un Grid a nivel mundial al que todos podremos tener acceso.



### ¿Qué es la Computación Grid? (13)

- ¿Por qué un nuevo paradigma y tecnologías?
- Los paradigmas (Cliente/Servidor 'tradicional') y tecnologías (CORBA, EJB, .Net, ...) actuales son insuficientes para la Computación Grid.
  - Orientados a la información, no a los recursos computacionales.
  - Sistemas fuertemente acoplados.
  - Seguridad en segundo plano.
  - Orientados a latencias bajas y a comunicación síncrona.
  - No suelen contemplar QoS.

**Grid Computing** 



#### ¿Qué es la Computación Grid? (14)

- Ejemplo
  - ¿Cómo se beneficiaría la empresa anterior de un enfoque Grid?
  - ► En vez de enviar los datos a una empresa subcontratada, 'lanzaría' el trabajo a la Grid.



# Ë

### ¿Qué es la Computación Grid? (16)

▶ Los datos (en general: el problema a resolver) se dividen en particiones manejables. Cada parte es enviada a un nodo de la Grid a través de una red de alta velocidad. El destino lo decide un 'planificador' en función de las caracteristicas de cada nodo y de cada partición.





## ¿Qué es la Computación Grid? (18)

Cada nodo procesa la parte que le toca. Periodicamente podemos contactar con cada nodo, para asegurarnos de que todo va bien, e incluso realizar correcciones sobre la marcha.



#### ¿Qué es la Computación Grid? (19)



Cada nodo devuelve el resultado de la computación realizada.

**Grid Computing** 



## ¿Qué es la Computación Grid? (20)

- Esto suena muy bien pero...¿es real?
  - Sí. La Computación Grid es una de las áreas más activamente investigadas actualmente.
  - Ya hay toolkits de desarrollo que nos permiten realizar programación Grid.
  - Existen muchos proyectos a nivel mundial y europeo: Crossgrid, Eurogrid, Datagrid, ...
  - Algunas grandes empresas ya apuestan por las tecnologías Grid (p.ej. IBM, Oracle, Intel)



## ¿Qué es la Computación Grid? (21)



#### Ejemplo Real #1

▶ SETI@Home: Los datos recogidos en el observatorio de Arecibo (Puerto Rico) son procesados por ordenadores de todo el mundo.

**Grid Computing** 



## ¿Qué es la Computación Grid? (22)

- Ejemplo Real #2
  - Analisis de Mamografías en Grid
  - ▶ Se reduce el tiempo de 1h a 40 segundos.
  - Diagnóstico más completo
  - ▶ 100 nodos de computacion en Grid
  - Acceso a una BD distribuida con imagenes de mamografías
  - ▶IBM, Miranda Solutions, Gobierno UK



## ¿Qué es la Computación Grid? (23)

- ► Ejemplo Real #3
  - Sistema de Apoyo a Decisiones para inundaciones.
  - Procesamiento en tiempo real de datos obtenidos en el lugar de la catastrofe, o en lugares susceptibles a grandes inundaciones.
  - Monitorización, Predicción, Simulación
  - ► Proyecto Crossgrid (Europa)

Grid Computing



#### Índice

- ▶ ¿Qué es la Computación Grid?
- ► Aplicaciones Prácticas
- Arquitectura de la Grid
- ► Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- ► Futuro de la Computación Grid



#### Aplicaciones Prácticas (1)

- Actualmente, hay 5 aplicaciones generales para la Computación Grid:
  - Supercomputación distribuida
  - Sistemas distribuidos en tiempo real
  - Servicios puntuales
  - Proceso intensivo de datos
  - Entornos virtuales de colaboración (Teleinmersión)

**Grid Computing** 



#### Aplicaciones Prácticas (2)

- Supercomputación distribuida
  - Aplicaciones cuyas necesidades es imposible satisfacer en un único nodo.
  - Estas aplicaciones se distinguen porque satisfacen necesidades *puntuales* e *intensivas* de computación.
  - Ejemplos: Simulaciones, cálculos numéricos, Data Mining, análisis de grandes volúmenes de datos.



### Aplicaciones Prácticas (3)

- Sistemas distribuidos en tiempo real
  - Sistemas que generan un flujo de datos a alta velocidad que debe ser analizado en tiempo real.
  - ► Ejemplos: e-Medicine, experimentos de física de alta energía, control remoto de un recurso no-trivial (un microscopio, equípo médico, ...)

**Grid Computing** 



#### Aplicaciones Prácticas (4)

- Servicios puntuales
  - Acceso puntual a un recurso que no nos merece la pena tener en nuestra organización.
  - Similar a las dos aplicaciones anteriores.
    - Diferencias: no nos referimos a 'potencia computacional', y no tiene que ser en tiempo real.
  - ► Ejemplos: acceso a hardware específico para ciertos tipos de análisis (químico, biológico, ...)



#### Aplicaciones Prácticas (5)

- Proceso intensivo de datos
  - Aplicaciones que trabajan con grandes volúmenes de datos, y que es imposible almacenar en un único nodo.
  - Los datos se distribuyen a lo largo de la Grid.

**Grid Computing** 



#### Aplicaciones Prácticas (6)

- ▶ Teleinmersión
  - Utilizar la potencia computacional y la naturaleza distribuida de la Grid para crear entornos virtuales 3D distribuidos.



#### Aplicaciones Prácticas (7)

- Actualmente, las aplicaciones del Grid Computing están muy orientadas al mundo cientifico.
- Las empresas empiezan a interesarse por estas tecnologías.
- Futuro (10 años): Un Grid Público a nivel mundial, en el que cualquier persona puede disponer, si lo necesita, del poder computacional de un supercomputador. Además, todos podemos ser también proveedores de ciclos de CPU.

**Grid Computing** 



#### Índice

- ▶ ¿Qué es la Computación Grid?
- ► Aplicaciones Prácticas
- Arquitectura de la Grid
- ► Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- ► Futuro de la Computación Grid



#### Arquitectura de la Grid (1)

► En el artículo 'clasico' Anatomy of the Grid: Enabling Scalable Virtual Organizations (2000), lan Foster, Carl Kesselman, y Steven Tuecke proponen una arquitectura general que deberían cumplir aplicaciones, toolkits, APIs, SDKs, etc. relacionadas con la Computación Grid.







#### Arquitectura de la Grid (4)

- La infraestructura de la Grid está compuesta por los recursos computacionales que queremos compartir.
  - Ordenadores individuales
  - ▶ Pool de ordenadores
  - Clusters
  - Supercomputadores
  - Sistemas de almacenamiento
- También incluye la infraestructura de red y sus mecanismos de gestión y control.





#### Arquitectura de la Grid (6)

- La capa de conectividad incluye los protocolos de comunicación y de seguridad que permiten que los recursos computacionales se comuniquen.
  - ▶ Pila de protocolos TCP/IP
  - Se están estudiando otros protocolos que proporcionen mejor rendimiento en redes de alta velocidad.
  - SSL, Certificados X.509



#### Arquitectura de la Grid (7)

- En la Computación Grid es especialmente importante la seguridad.
  - Compartimos recursos entre distintas organizaciones (con distintas políticas de seguridad, etc.)
  - Importante --> Delegación de autentificación y autorización.





#### Arquitectura de la Grid (9)

- Esta capa incluye protocolos para el control y gestión de recursos individuales.
  - ►Información: Debe ser posible obtener información sobre un recurso (caracteristicas técnicas, carga actual, precio, ...)
  - ► Control: Acceso, arranque, gestión, parada, monitorización, contabilidad, auditoria del recurso.





### Arquitectura de la Grid (11)

- Esta capa engloba todos los servicios que nos permiten gestionar varios recursos.
  - Servicios de directorio: Localización de los recursos que nos interesan.
  - Schedulers distribuidos: Asignación de tareas a cada recurso.
  - Monitorización y diagnostico de la ejecución de las distintas tareas de una aplicación.
  - Contabilidad: Calculo del coste de la utilización de varios recursos heterogeneos.
  - Acceso a datos distribuidos. Gestión de replicación.

**Grid Computing** 



#### Arquitectura de la Grid (12)

- Los schedulers distribuidos suelen ser una de las partes más complicadas de una aplicación grid, porque se 'pelean' tres schedulers distintos:
  - Planificador de jobs: Su objetivo es maximizar el throughput de jobs (jobs/unidad de tiempo).
  - Planificador de recursos: Su objetivo es maximizar el uso de los recursos.
  - Planificador de la aplicación: Divide la aplicación en tareas, las asigna a recursos concretos, vigila la ejecución, ...
- ▶ 1 y 2 priman la eficiencia del sistema. 3 prima la eficiencia de la aplicación.



#### Arquitectura de la Grid (13)

- Virtual Organization (VO)
  - Concepto fundamental en Computación Grid.
  - Agrupación de recursos de varios individuos y/o organizaciones distintas que colaboran para alcanzar una meta común.
  - La pertenencia a una VO no es permanente. Puede cambiar según las necesidades.
  - Agrupación en VOs --> Facilita gestión de recursos y seguridad.





#### Índice

- ▶ ¿Qué es la Computación Grid?
- ► Aplicaciones Prácticas
- ► Arquitectura de la Grid
- ► Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- ► Futuro de la Computación Grid

Grid Computing



#### Globus Toolkit 3 (1)

- ▶ El Globus Toolkit es el estandar *de facto* para la implementación de aplicaciones Grid.
- La versión 2 goza de una gran aceptación, pero tiene algunas deficiencias.
- La versión 3 está en fase alfa, y está basada (casi) completamente en tecnologías estándar como XML, SOAP, WSDL, Servicios Web.
  - Implementado integramente en Java.



#### Globus Toolkit 3 (2)

- ▶ El Globus Toolkit 3 (GT3) introduce el concepto de *Grid Service*, que es una ampliación considerable a los Web Services.
- La arquitectura Grid Service está especificada por el Global Grid Forum
  - ▶ OGSA: Open Grid Services Architecture
  - ▶ OGSI: Open Grid Services Infrastructure
- Los Grid Services son la base de la arquitectura GT3.







#### Globus Toolkit 3 (4)



Globus Project: <a href="http://www.globus.org/">http://www.globus.org/</a>

Global Grid Forum: <a href="http://www.ggf.org/">http://www.ggf.org/</a>



#### Índice

- ▶ ¿Qué es la Computación Grid?
- ► Aplicaciones Prácticas
- ► Arquitectura de la Grid
- ▶ Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- ► Futuro de la Computación Grid

**Grid Computing** 



#### Grid Services (1)

- Al plantear la siguiente generación de tecnologías grid (OGSA y OGSI), el Global Grid Forum buscó una tecnología de objetos distribuidos que se adaptase a las necesidades de una aplicación grid.
- Los Web Services son la mejor opción. Sin embargo, a pesar de sus ventajas, también tienen importantes limitaciones.



#### Grid Services (2)

- Principales desventajas de los Web Services:
  - Stateless
  - ► No-transientes ('Persistentes')
  - No tienen 'servicios de apoyo' (notificaciones, servicio de persistencia, gestión del ciclo de vida, etc.)

**Grid Computing** 



#### Grid Services (3)

- Los Grid Services son Web Services mejorados.
- Estan basados en SOAP y WSDL y, por lo tanto, 100% compatibles con Web Services 'tradicionales'.



#### Grid Services (4)

- Caracteristicas de los Grid Services
  - Stateful: El estado del Grid Service se mantiene de una invocación a otro.
  - Puede ser transiente: Podemos crear varias instancias de un mismo Grid Service 'onthe-fly' y destruirlas cuando ya no son necesarias.
  - ▶ Servicios de apoyo

**Grid Computing** 



#### Grid Services (5)

- Novedad: Los Grid Services utilizan un enfoque de 'Factorías de objetos'.
- ► En lugar de tener un único servicio sin estado, compartido por todos los usuarios (Web Service), tenemos un servicio-factoria para crear instancias individuales del servicio (Grid Service).



# Ë

#### Grid Services (7)

- Las instancias se crean a través de la factoría.
- Cuando queremos invocar una operación del servicio, accedemos a la instancia no a la factoria.
- ▶ Podemos tener una instancia por cliente, varias instancias por cliente, varios clientes por instancia, ...
- La destrucción de la instancia puede correr a cargo del cliente o de la factoría.



#### Grid Services (8)

- Servicios de apoyo
  - Datos del Servicio (Service Data): Podemos asociar información a cada instancia para facilitar la clasificación e indexado de los servicios.
  - Notificaciones, Modelo Push.
  - ▶ Servicio de Persistencia.
  - Gestión del Ciclo de vida.

Grid Computing



#### Grid Services (9)

- El Globus Toolkit 3 ya incluye una implementación completa de OGSA/OGSI.
- ► El Global Grid Forum está en contacto con la W3C para que las mejoras propuestas lleguen a formar parte del estándar oficial de Web Services.
  - Se espera que, en el futuro, ambas lineas de desarrollo se fusionen en una única.



#### Índice

- ▶ ¿Qué es la Computación Grid?
- ► Aplicaciones Prácticas
- ► Arquitectura de la Grid
- ▶ Globus Toolkit 3
- ▶ Del "Web Service" al "Grid Service"
- ► Futuro de la Computación Grid

**Grid Computing** 



#### Futuro de la Computación Grid (1)

- ► La Computación Grid es bastante reciente. Sin embargo, parece que no es simplemente una 'moda', ya que está siendo activamente investigada y desarrollada en todo el mundo.
- Plantea interesantes desafíos en una gran cantidad de áreas de investigación distintas.



#### Futuro de la Computación Grid (2)

- Sistemas Distribuidos
  - Modelos de componentes para entornos grid.
  - ▶ Grid Services.
- Sistemas Operativos Distribuidos y Computación Paralela
  - Paralelismo entre recursos heterogeneos con una alta latencia y un ancho de banda limitado y variable.
  - Scheduling distribuido.
  - Ejecución ubicua de código.

**Grid Computing** 



### Futuro de la Computación Grid (3)

- ▶ Redes de Computadores
  - Redes de alta velocidad a escala mundial.
  - Nuevos protocolos con sobrecarga (overhead) mínima.
  - ▶IPv6
- Seguridad
  - Nuevo panorama en el que no tenemos los clásicos roles de 'cliente' y 'servidor', sino un montón de nodos geograficamente dispersos colaborando para resolver una tarea común.



#### Futuro de la Computación Grid (4)

- Bases de datos
  - Aplicación de tecnologías Grid al Data Mining, Data Warehousing, y a Sistemas de Apoyo a la Decisión.

Grid Computing



#### Futuro de la Computación Grid (5)

- I+D liderado principalmente por EEUU
  - Global Grid Forum. Desarrollo de estándares para la Grid.
  - ▶ The Globus Project
  - ► TeraGrid. Redes WAN de alta velocidad (40 Gb/s), y almacenamiento distribuido (1 Petabyte).
  - ► Empresas: IBM, Oracle, Intel, HP-Compaq, Entropia, Platform, Avaki, ...



#### Futuro de la Computación Grid (6)

- Proyectos Europeos
  - CrossGrid. Supercomputación y análisis de grandes volúmenes de datos.
  - ► EuroGrid. Aplicación de tecnologías Grid en el ambito científico e industrial.
  - DataGrid. Análisis de grandes volúmenes de datos.
  - UK e-Science (Reino Unido). Investigación distribuida.

**Grid Computing** 



#### Futuro de la Computación Grid (7)

- Infraestructura en Europa
  - ► GÉANT: Backbone Gigabit en Europa (10 y 2.5 Gbps)
  - ► REDIRIS2: Backbone Gigabit en España (2.5 Gbps)
- Además...
  - ► IRIS-GRID: Grupo de trabajo de RED-IRIS sobre tecnologías Grid.



#### Futuro de la Computación Grid (8)

- ► ¿El Futuro?
  - La Computación Grid es una de las tecnologías más prometedoras actualmente.
  - Ahora mismo está presente principalmente en el ámbito científico.
    - Sin embargo, gracias a la Computación Grid ya se está realizando investigación de mayor calidad.
  - ► Todavía falta *mucho* para que llegue al público general --> *Grid Público*.

**Grid Computing** 

#### Turno de Preguntas



Borja Sotomayor Facultad de Ingeniería - ESIDE Universidad de Deusto borja@borjanet.com