Лабораторная работа №4.

МЕТОД БИСЕКЦИЙ (ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ)

Цель работы: приобретение и закрепление практических навыков при решении нелинейных уравнений методом бисекций (деления отрезка пополам).

Задание. Найти корень уравнения (1) из таблицы 3.1 методом бисекций (деления отрезка пополам) с погрешностью $\varepsilon = 0,001$.

Указать число итераций необходимое для достижения заданной точности.

Отчет по лабораторной работе должен содержать:

- тему лабораторной работы, полный текст задания и исходные данные в соответствии с номером варианта;
- проверку выполнения достаточного условия существования и единственности корня уравнения (1) внутри найденного отрезка;
 - расчеты в соответствие с алгоритмом метода бисекций;
 - таблицу результатов вычислений по методу бисекций;
- априорную оценку числа итераций, необходимого для достижения заданной точности результата вычислений;
 - выводы по работе.

Пример 4. Найти методом бисекций с погрешностью $\varepsilon = 0,001$ корень уравнения

$$x - e^{-x} = 0. (4.1)$$

В примере 3.1 из лабораторной работы №3 был установлен отрезок [a,b] = [0;1], внутри которого находится единственный корень уравнения (4.1). Действительно, на концах отрезка [0;1] функция $F(x) = x - e^{-x}$ принимает значения различных знаков: F(0) = -1 < 0 и $F(1) = 1 - \frac{1}{e} \approx 0,6321 > 0$, так, что F(0)F(1) < 0. Очевидно, что если за корень уравнения (4.1) \overline{x} принять середину отрезка [0;1] — точку x = 0,5000, то предельная абсолютная погрешность Δx : $|x - \overline{x}| \le \Delta x$, такого приближения будет равна $\Delta x = 0,5000 > \varepsilon$.

При уточнении приближенного значения корня уравнения (4.1) методом бисекций используем следующий алгоритм вычислений.

- 1. Разделим отрезок [a,b] = [0;1] точкой $c = \frac{a+b}{2} = 0,5000$ пополам и вычислим значение функции F(x) в этой точке: F(0,5000) = -0,1065.
- 2. Из двух полученных отрезков [a,c] = [0;0,5000] и [c,b] = [0,5000;1] в качестве отрезка, содержащего корень уравнения (4.1), выбираем отрезок [c,b], так как на его концах функция $F(x) = x e^{-x}$ принимает значения различных знаков: F(0,5000) = -0,1065 < 0 и $F(1) \approx 0,6321 > 0$, так, что F(0,500)F(1) < 0.
- 3. Переобозначим левый конец выбранного отрезка [c,b]: a=c, и найдем длину нового отрезка [a,b]=[0,5000;1]: |b-a|=0,5000.
- 4. Сравним длину отрезка [a,b], |b-a|=0,5000, с величиной $\varepsilon=0,001.$ Так как имеем $|b-a|>\varepsilon$, то переходим к шагу 1.

Результаты вычислений по описанному выше алгоритму метода бисекций представлены в таблице 4.

Таблица 4 **Результаты вычислений по методу бисекций**

№ итер.	a	b	c	F(a)	F(b)	F(c)	b-a
0	0,0000	1,0000	0,5000	-1,0000	0,6321	-0,1065	1,00000
1	0,5000	1,0000	0,7500	-0,1065	0,6321	0,2776	0,50000
2	0,5000	0,7500	0,6250	-0,1065	0,2776	0,0897	0,25000
3	0,5000	0,6250	0,5625	-0,1065	0,0897	-0,0073	0,12500
4	0,5625	0,6250	0,5938	-0,0073	0,0897	0,0415	0,06250
5	0,5625	0,5938	0,5781	-0,0073	0,0415	0,0172	0,03125
6	0,5625	0,5781	0,5703	-0,0073	0,0172	0,0050	0,01563
7	0,5625	0,5703	0,5664	-0,0073	0,0050	-0,0012	0,00781
8	0,5664	0,5703	0,5684	-0,0012	0,0050	0,0019	0,00391
9	0,5664	0,5684	0,5674	-0,0012	0,0019	0,0004	0,00195
10	0,5664	0,5674	0,5669	-0,0012	0,0004	-0,0004	0,00098

Можно априорно оценить число итераций, необходимое для достижения заданной точности. Очевидно, что на каждой итерации метода бисекций длина отрезка, внутри которого содержится корень уравнения (4.1), уменьшается в два раза. Поэтому на n-ой итерации длина такого отрезка составит $\frac{|b-a|}{2^n}$. Из неравенства $\frac{|b-a|}{2^n} < \varepsilon$ полу-

чаем: $n > \frac{\ln |b-a| - \ln \varepsilon}{\ln 2}$, где |b-a| — длина первоначального отрезка [a,b]. При [a,b] = [0;1] и $\varepsilon = 0,001$ имеем:

$$n > \frac{\ln 1 - \ln 10^{-3}}{\ln 2} = \frac{3 \ln 10}{\ln 2} = 9,97.$$

Таким образом, заданная точность вычислений будет достигнута при n=10. Действительно, из таблицы 4.1 видно, что на десятой итерации вычислений длина отрезка [a,b]=[0,5664;0,5674] составляет $|b-a|=0,00098<\varepsilon$. При выполнении этого условия вычисления заканчиваются и за приближенное с заданной точностью значение корня уравнения (4.1) принимается середина полученного отрезка: $\overline{x}=0,567\pm0,001$.

Контрольные вопросы

- 1. В чем заключается задача уточнения корня уравнения с заданной точностью?
- 2. Сформулировать достаточное условие существования и единственности корня уравнения внутри отрезка [a,b].
 - 3. Описать алгоритм метода бисекций.
- 4. Как оценить число итераций в методе бисекций, необходимое для достижения заданной точности?
- 5. Доказать сходимость процесса деления отрезка пополам к точному значению корня уравнения.
 - 6. Дать геометрическую интерпретацию метода бисекций.
 - 7. Указать достоинства и недостатки метода бисекций.