CS556: BONUS HOMEWORK 3 due 02/25/2016 at 1pm

Please submit your homework reports in PDF format to the TEACH website:

https://secure.engr.oregonstate.edu:8000/teach.php?type=want_auth

This bonus assignment will require your results from the regular HW3 for the **five** stereo pairs of images provided on the class website. For **each stereo pair** of images, perform the following additional tasks:

Assignment

- 1) $(5 \times 1 \text{ points})$
 - 1.1) Identify two different planar surfaces that appear in the stereo image pair. For each planar surface $l = \{1, 2\}$, manually select $N_{man} = 10$ pairs of corresponding points in the images that lie on the same planar surface in the scene, as precisely as possible, and record their coordinates:

$$\{([x_{kl}, y_{kl}], [x'_{kl}, y'_{kl}]): k = 1, \dots, N_{man}, l = 1, 2\}$$

- 1.2) Estimate the two homography matrices $H_l^{(0)}$, $l=\{1,2\}$, based on the corresponding N_{man} point pairs, and **present** $H_l^{(0)}$ in your PDF report.
- 2) $(5 \times 2 \text{ points})$
 - 2.1) Use the result z of the regular HW3 for many-to-many matching of 100 strongest SURF interest points in each image:

$$\max_{\mathbf{z}} \ \boldsymbol{w}^{\top} \mathbf{z} \ , \quad \text{s.t.} \ \|\mathbf{z}\|_{2}^{2} = 1, \quad \mathbf{z} \in [0, 1]^{100 \times 100}, \tag{1}$$

From your binary solution z, automatically select N_{SURF} best pairs of SURF matches (i, j) for which the homography holds:

$$(i,j): \quad z_{i,j} = 1 \quad \text{and} \quad [x_j, y_j, 1]^{\top} - H_l^{(0)}[x_i, y_i, 1]^{\top} < \epsilon_l \approx 0$$
 (2)

where H_l is the homography matrix, $l = \{1, 2\}$, that you estimated using the N_{man} manually selected pairs of points. Select the value of ϵ so that $N_{SURF} = 10$.

- 2.2) Merge the two sets of N_{man} manually selected and N_{SURF} SURF point pairs, and thus obtain the new set of $N_l = N_{man} + N_{SURF} = 20$ point pairs. Re-estimate the homography matrix H_l based on these N_l point pairs, and **present** H_l in your PDF report.
- 3) (10 points) Formulate the objective function of a new many-to-many matching of the 100 strongest SURF interest points found in HW3 for each image, such that the objective function incorporates SURF similarities w and fundamental matrix F along with your homography matrices H_1 and H_2 . (Hint: the formulation should be very similar to the one given by (1)). Present you formulation in your PDF report.
- 4) (5 points) Solve **z** of your new matching formulation. In your PDF report, compare your new solution of **z** with the one you solved in the regular HW3.
- 5) (2 points) Printout of the software that you used for this homework assignment.

Summary of Your Report

- $5 \times 2 = 10$ homography matrices $H_l^{(0)}$ based on the $N_{man} = 10$ manually selected point pairs. $5 \times 2 = 10$ homography matrices H_l based on the $N_l = N_{man} + N_{SURF} = 20$ point pairs. New many-to-many matching formulation.

- 5 solutions of the new many-to-many matching z, and comparison with the corresponding solutions from HW3.
- Printout of the software.