Examiner (initials)	Module Code PHY 2063
Question Number	Page of (please number each page)

 Use BLACK ink only Writing must be LEGIBLE Indicate whether "bookwork" or not 	MARKS (to total 20 for each question)
a)i) For a thermally isolated System the change in antropy for any process dS ≥ 0.	3
ii) W — the number of microstates associated with a partialer set of contraints leng. volume,	3
evergy, pressure etc.)	
b) i) For N objects (N-m) type A $=>W=\frac{N!}{m!(N-m)!}$	2 -
$=) l_{n} \mathbb{W} = N l_{n} \mathbb{N} - \mathbb{N} - m l_{n} m + m$ $-(N-m) l_{n} (N-m) + N-m$ $= N l_{n} \mathbb{N} - m l_{n} m - (N-m) l_{n} (N-m)$	3
= S= keluW = ke I Ndn N-mlum-(N-m) dn(N-m)]	1

• Please keep written material within the box to make photocopying easier

• For "cut and paste", the rectangle immediately above is 8.1" h x 6.5" w (20.5cm x 16.5cm)

Examiner (initials)	Module Code	
Question	Page 7 of (please number each page)	

 Use BLACK ink only Writing must be LEGIBLE Indicate whether "bookwork" or not 	MARKS (to total 20 for each question)
ii) In equilibrium of = 0	2
$=) 0 = \epsilon + k_B T \left(\ln x + t \right)$	
$\frac{x}{1-x} = \frac{-\epsilon_{ksT}}{1-\epsilon_{ksT}}$	
c) Set $x = 0.03$ $=) E = -k_BT ln\left(\frac{x}{1-x}\right)$.)
$=) C = -k_0 T(-3.476) = +1.44 \times 10^{-20} J$ $= 90 \text{ meV}$	2
=) at (00K	
$\lim_{x \to \infty} \frac{x}{1-x} = 2.92 \times (0^{-5}) = x \approx \frac{2.92 \times (0^{-5})}{1+2.92 \times (0^{-5})}$	#2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$3 \sim 10^{-3} \%$	
	,:

Examiner (initials)		Module	Code			
Question 2	(please r	າumber each ເ	Page page)	3	of	

 Use BLACK ink only Writing must be LEGIBLE Indicate whether "bookwork" or not 	MARKS (to total 20 for each question)
$\frac{\alpha}{2} = \sum_{k=1}^{\infty} e^{-\frac{\epsilon_{i}}{k_{B}T}}$	
The state with energy 6: 15	
The probability of State with energy 6i is Pi = e ikst E	2
The Helmholtz free every is given $F = -k_B T \ln Z$	
b)i) $Z = \sum_{n=1}^{\infty} e^{-\frac{E_n}{k_BT}} = \sum_{n=1}^{\infty} e^{-\frac{k_n V_n}{k_BT}(n+\frac{1}{2})}$	2
= -truster To -trust n = -truster = e truster n	2
1-e-stw	
CE>= - 3 In Z	i i
	,:

Examiner (initials)	Module Code		
Question Z	(please number each page)	of	

 Use BLACK ink only Writing must be LEGIBLE Indicate whether "bookwork" or not 	MARKS (to total 20 for each question)
(E) = - 2 (-truß - ln (1- e-Btw))	
= tru + 1 - (+ true - Btw)	2
= the + the etstore	1
c)i) Each degree of freedom associated	
c)i) Each degree of freedom associated with a quadretic energy has 1 kgT of energy associated with it.	2
degree of freedom has the rotational	2
A freedom is guended of doesn't	2
T>> Ter => 3 ksT for trobation	
copaet => <e>= \(\xi_ksT => \) (\xi_ks.</e>	

• Please keep written material within the box to make photocopying easier

• For "cut and paste", the rectangle immediately above is 8.1" h x 6.5" w (20.5cm x 16.5cm)

Examiner (initials)	Module Code	384	
Question 3	(please number each page) 5	of	

Use BLACK ink only	MARKS (to total 20
 Writing must be LEGIBLE Indicate whether "bookwork" or not 	for each question)
a)i) Evergy is carsered if heat is taken	
a)i) Evergy is careered if heat is taken into account Mu = Au + AQ	2
lutered work heat	
ange system	
ii) ds = dll + f dv	
S is a function of state homee	
ds = 35 du + 35 dv	2
$= \frac{\partial S}{\partial u} \left \frac{1}{\tau} + \frac{\partial S}{\partial v} \right _{u} = \frac{f}{\tau}.$	
$ iii)$ $p \propto exp(S_{e_B})$	
S(U+ DU) = S(U) + DS DU + DS DUZ Zeso in equilibrium.	2
Zeso in equilibrim.	
	.:

Examiner (initials)	Module Code			
Question 3	Page (please number each page)	6	of	

 Use BLACK ink only Writing must be LEGIBLE Indicate whether "bookwork" or not 	MARKS (to total 20 for each question)
: pa exp (S(W) + 235 du2 7 Zks)	
Since $\frac{\partial S}{\partial u} = \frac{1}{T} = \frac{\partial^2 S}{\partial u^2} = -\frac{1}{T^2} \frac{\partial u}{\partial u}$ $= -\frac{1}{T^2} \frac{1}{C_V}$	2
=> p < exp { - \lambda u^2 \\ ZC_r R_BT.} Compain with p(x) => \lambda u^2 > = C_r R_BT^2	2 0
b) i) = \(\lambda \text{\left} \right) \right\	7

Examiner (initials)	Module Code			
Question 3	Page (please number each page)	7	of	

 Use BLACK ink only Writing must be LEGIBLE Indicate whether "bookwork" or not 	
ii) A Fermias obey the Pauli exchesion principle =) only particle con occupy any states sais particular quater State. — (E-pr)/EBT	
$N_i = 0$ $K_i = 0$	3
$\langle n \rangle = \frac{1}{1 - 0} \cdot 0 + \frac{e}{1 - 1}$ $= \frac{1}{1 + e} \cdot \frac{(t - n)/k_B T}{1 - 1}$	3
iv) (n) High T = it m)/ksT 2.>= e (Classical/ Classical/ distribution)	2
Low T => Only E < 1 occupied (Quenter => buli Exclusion)	, :