# Complexity of Randomization

Ryan Anselm

June 22, 2022

### Outline

- Probabilistic Turing machines
- 2 The BPP complexity class
- 3 Error reduction for BPP
- 4 RP, coRP, and ZPP complexity classes

# Background on Turing Machines

- (Deterministic) Turing machines (TMs) are a model of computation which use an infinite tape and a finite state automata.
- The transition function  $\delta$  is a function of the current state of the automata and the current value being read on the tape that tells the TM what to do next. Given a standard TM, the computation it performs on an input string is a completely **deterministic** process.
- The set of input strings that a Turing machine will accept is its language, often denoted L.



# Probabilistic Turing Machines (PTMs) (Section 7.1)

- To formalize randomized computation, we define *Probabilistic Turing Machines (PTMs)*.
- **Def 7.1:** A probabilistic Turing machine is a Turing machine with two transition functions:  $\delta_0$  and  $\delta_1$ . To execute PTM M on an input x, at each step we randomly choose with probability  $\frac{1}{2}$  for each whether to apply  $\delta_0$  or  $\delta_1$ .
- Choice of  $\delta_0$  or  $\delta_1$  is an independent random variable. M outputs 1 (accept) or 0 (reject).



#### PTMs cont.

- At each step of a PTM, each computation randomly branches into two paths with a 50/50 chance.
- For a computation of t steps, there are  $2^t$  possible paths in the graph of all possible computations.
- Pr[M(x) = 1] is equal to the fraction of branches leading to a 1 (accept) output.



### **BPP**

- **Def 7.2:** For function  $T: \mathbb{N} \to \mathbb{N}$  and  $L \subseteq \{0,1\}^*$ , a PTM M decides L in T(n) if for every input  $x \in \{0,1\}^*$ , M halts in T(|x|) steps regardless of its random steps, and  $Pr[M(x) = L(x)] \ge \frac{2}{3}$ .
- **BPTIME**(T(n)) = class of languages decided in <math>O(T(n)) steps.
- BPP =  $\cup_c$ BPTIME( $n^c$ ).
- Essentially, **BPP** is the complexity class of problems that can be decided in polynomial time with sufficiently high probability of correctness (taken to be  $\frac{2}{3}$  here).
- Choice of  $\frac{2}{3}$  as constant is arbitrary, any fraction  $> \frac{1}{2}$  would be equivalently strong. (Shown in Error Reduction Proof)

#### BPP cont.

- **P**  $\subseteq$  **BPP** because if we choose  $\delta_0 = \delta_1 = \delta$ , the transition function becomes fixed.
- (Alternative) Def 7.3: a language L is in BPP if there exists a poly-time TM M and a polynomial  $p: \mathbb{N} \to \mathbb{N}$  such that for every  $x \in \{0,1\}^*$ ,  $Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) = L(x)] \ge 2/3$ .
- All this is doing is making the sequence of randomized coin flips be an additional input to a standard Turing machine.
- This suggests that **BPP**  $\subseteq$  **EXP** since it is possible to enumerate all possible random choices of a poly(n) PTM in  $2^{poly(n)}$  time.
- **BPP** = **P**? Suspected to be true, but presently unproven.

# Error reduction/amplification (Thm. 7.10)

We can show that we can replace  $\frac{2}{3}$  with any constant greater than  $\frac{1}{2}$  in the definition of **BPP**.

- Thm. 7.10: Suppose there exists a poly-time PTM M for language L such that for every input x and c > 0,  $Pr[M(x) = L(x)] \ge \frac{1}{2} + |x|^{-c}$ . Then, for every constant d > 0, there exists a poly-time PTM M'such that for every input x,  $Pr[M'(x) = L(x)] > 1 - 2^{-|x|^d}$ .
- This theorem shows there is a way to transform a poly-time PTM that has any tolerance greater than 1/2 (since  $1/2 + |x|^{-c}$  gets arbitrarily close to 1/2 based on choice of c) to a new poly-time PTM with an arbitrarily high tolerance level (since  $1 - 2^{-|x|^d}$  gets arbitrarily close to 1 based on choice of d).
- M' does the following: Repeat running M(x) for  $k = 8|x|^{2c+d}$  times, obtaining k outputs of 1 or 0. Output 1 if the majority of these runs output 1 and 0 otherwise.
- Repeating M k times is scaling it by a polynomial factor, so M' is still poly.

8 / 15

## Error reduction/amplfication (Thm. 7.10) cont.

- Define random variable  $X_i$  as whether M(x) = L(x) on the ith run of M. We have that  $\mathbb{E}[X_i] = Pr[X_i = 1] = p$  where  $p = \frac{1}{2} + |x|^{-c}$  in the worst case.
- We can use the *Chernoff Bound* from probability theory to analyze this:  $Pr[|\sum_{i=1}^k X_i pk| > \delta pk] < e^{-\frac{\delta^2}{4}pk}$  (proof of this statement not provided).
- If we set  $\delta=|x|^{-c}/2$ , for the RHS of the Chernoff Bound we get  $e^{-\frac{1}{4|x|^{2c}}\frac{1}{2}8|x|^{2c+d}}=e^{-|x|^d}<2^{-|x|^d}$
- To interpret the LHS of the Chernoff bound, note that  $\mathbb{E}[\sum_{i=1}^k X_i] = \sum_{i=1}^k \mathbb{E}[X_i] = kp$  so Chernoff describes an upper bound on the amount the actual number of successes deviates from the expected number of successes.
- The Chernoff bound shows that if we pick  $k = 8|x|^{2c+d}$ , the probability of M' outputting an incorrect result is at most  $2^{-|x|^d}$ , so the probability of a correct result is  $\geq 1 2^{-|x|^d}$  (as arbitrarily close to 1 as we like).

# One-sided error (Section 7.3)

- **BPP** allows for both false positives and false negatives to occur. (i.e. outputting 0 when  $x \in L$  and 1 when  $x \notin L$ )
- Many probabilistic algorithms have one-sided error (i.e. if x not in L, they will never output 1, but may output 0 when x in L). This is better than BPP, and is captured by the class RP.

#### RP and coRP

- **Def 7.6: RTIME**(T(n)) contains all L such that there exists a PTM that runs in T(n) such that  $x \in L \implies Pr[M(x) = 1] \ge \frac{2}{3}, x \notin L \implies Pr[M(x) = 0] = 1$
- $RP = \bigcup_{c>0} RTIME(T(n^c)).$
- RP ⊆ NP because any accepting branch of the computation is a "certificate" showing that an input is in the language
- **coRP** is the class of one-sided error on the other side. (**coRP** =  $\{L|\bar{L} \in \mathbf{RP}\}$ ).
- RP only has false negative errors, coRP only has false positive errors.

## **ZPP**

- Define random variable  $T_{M,x}$  to be the running time of PTM M on input x.
- "Zero-sided error": a PTM that never makes errors.
- **Def 7.7: ZTIME**(T(n)) contains all languages L for which there is a machine M which has an expected running time of O(T(n)), and such that for all inputs x, M(x) = L(x). (The machine returns a result that is always correct)
- $ZPP = \bigcup_c ZTIME(T(n^c)).$
- **ZPP** is the class of all algorithms which have an *expected* running time that is polynomial time. (i.e.  $\mathbb{E}[T_{M,x}]$  is polynomial in |x|).
- The running time may be longer than poly(|x|) in some computation paths, but the overall expected value must be O(poly(|x|)).

### Theorem 7.8: $ZPP = RP \cap coRP$

#### Proof:

- 1. Show  $RP \cap coRP \subseteq ZPP$ 
  - Let  $L \in RP \cap coRP$
  - Then L is recognized by PTMs  $M_1$  and  $M_2$  where  $M_1$  matches RP constraints (if output is 1, guaranteed  $x \in L$ ) and  $M_2$  matches coRP constraints (if output is 0, guaranteed  $x \notin L$ ).
  - Construct a PTM M which is always right and has polynomial expected runtime as follows:
  - Run  $M_1$ . If it outputs 1, M outputs 1. Run  $M_2$ . If it outputs 0, M outputs 0. If  $M_1$  gives 0 and  $M_2$  gives 1, loop back and repeat this process again.
  - In each loop,  $Pr[M_1(x) = 0 \land M_2(x) = 1] \le 1/2$ . (If  $x \notin L$ ,  $M_1$ always outputs 0 and  $M_2$  outputs 1  $\frac{1}{3}$  of the time; If  $x \in L$ ,  $M_1$ outputs  $0^{\frac{1}{3}}$  of the time and  $M_2$  always outputs 1)
  - The times needed to repeat the loop follows a geometric random variable.  $\mathbb{E}[\text{runtime of M}] \leq 2(\text{runtime of } M_1 + \text{runtime of } M_2)$ .

### $\mathsf{ZPP} = \mathsf{RP} \cap \mathsf{coRP}$ cont.

#### 2. Show $ZPP \subseteq RP \cap coRP$

- Fix  $L \in ZPP$ , let M be a PTM accepting L that satisfies ZPP constraints (i.e.  $\mathbb{E}[\text{runtime of M on x}] \leq p(|x|)$  for some polynomial p of |x|).
- To show  $L \in RP$ : Create a PTM M' which on an input x runs M for 3p(|x|) steps.
- If M' outputs something in 3p(|x|) steps, return that output.
- If M' runs more than 3p(|x|) steps, halt and output 0.
- We can use Markov's inequality:  $Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$  with  $a = 3\mathbb{E}[X]$  to observe that  $Pr(X \ge 3\mathbb{E}[X]) \le \frac{1}{3}$ .
- If  $x \notin L$  then M' is guaranteed to output 0. If  $x \in L$ , then M' outputs 0 with probability  $\leq \frac{1}{3}$  (take X as a random variable representing the running time of M on x), so outputs 1 with probability  $\geq \frac{2}{3}$
- $\Longrightarrow L \in RP$ . To show  $L \in coRP$ , have M' output 1 instead after 3p(|x|) steps.

June 22, 2022

$$ZPP = RP \cap coRP$$

- We have shown  $RP \cap coRP \subseteq ZPP$
- We have also shown  $ZPP \subseteq RP \cap coRP$
- Hence,  $ZPP = RP \cap coRP \blacksquare !$