Pb(35 **Al**, 34 **Aln** γ) **2017Ch36,2021Bh12**

Coulomb dissociation of ³⁵Al on Pb target.

2017Ch36,2014ChZZ: ³⁵Al was produced via the projectile fragmentation of a 531-MeV/nucleon ⁴⁰Ar primary beam from the Heavy Ion Synchrotron (SIS18) at GSI. The secondary cocktail beam was separated by the FRS separator and impinged on a 2 g/cm² Pb target and a 0.93 g/cm² C target. Projectiles and reaction fragments were detected using 8 DSSDs, separated by a large-area dipole magnet (ALADIN) and tracked using two large scintillator fiber detectors (GFIs). Neutrons from the excited projectiles were detected using the high-efficiency Large Area Neutron Detector (LAND). γ rays from the deexcited projectile and projectile-like fragments were detected using a spherical 4π Crystal Ball detector array of 162 NaI(Tl) crystals. Measured E(fragment), E_n, E_γ, Coulomb dissociation cross sections. Deduced relative populations of ³⁴Al, ³⁵Al g.s. configuration. Comparisons with shell-model calculations with the SDPF-M interaction. The measured inclusive differential CD cross section (integrated up to 5.0 MeV relative energy) for ³⁵Al->³⁴Al+n using a Pb target is 78 mb *13*.

2021Bh12: A further analysis of the data from 2017Ch36. The 35 Al(γ ,n) 34 Al photoabsorption cross section was obtained from fitting the direct breakup model to the measured differential Coulomb dissociation cross section of 35 Al breaking up into 34 Al core excited states. The 34 Al(n, γ) 35 Al neutron capture cross sections were obtained from the photoabsorption cross sections using the detailed balance theorem.

35Al Levels

 $\frac{\text{E(level)}}{0} \frac{J^n}{(5/2^+, 3/2^+, 1/2^+)}$

Comments

J^π: From comparisons of measured differential Coulomb dissociation cross section of ³⁵Al breaking up into ³⁴Al in its g.s. and/or 46-keV isomer with theoretical calculations from the direct breakup model using the plane-wave approximation assuming the valence neutron at different orbitals. 2017Ch36 stated that the differential CD cross section of ³⁵Al->³⁴Al+n has been interpreted in the light of a direct breakup model, and it suggests that the possible ground-state spin and parity of ³⁵Al could be, tentatively, 1/2+ or 3/2+ or 5/2+.

Major configurations and spectroscopic factor for J^{π} =5/2+ of 35 Al g.s.: (g.s., 4- in 34 Al) $\otimes vp_{3/2}$, S=0.36 *9* (2017Ch36); (46 keV, 1+ in 34 Al) $\otimes vd_{3/2}$, S=1.47 22 (2017Ch36); (1.4 MeV, 2+ in 34 Al) $\otimes vs_{1/2}$, S=0.16 *I* (2021Bh12); (2.5 MeV, 3- in 34 Al) $\otimes vp_{3/2}$, S=1.48 *I8* (2021Bh12). Other configurations for J^{π} =1/2+,3/2+ of 35 Al g.s.: (g.s., 4- in 34 Al) $\otimes vf_{7/2}$, S=1.03 *43* and (46 keV, 1+ in 34 Al) $\otimes vs_{1/2}$, S=0.45 *7* and (46 keV,1+ in 34 Al) $\otimes vs_{1/2}$, S=0.45 *7* and (46 keV,1+ in 34 Al) $\otimes vs_{1/2}$, S=0.94 22.