HW 1

Zach Fechko (011711215) 1/22/23

```
library(tidyverse)
library(ggplot2)
library(dplyr)
library(nycflights13)
library(plotly)
```

Problem 1

```
# create data frame df from flights with the following attributes:
# - months 12, 1, 2, 6, 7, and 8
# - carriers UA, AA, and DL
# - distance greater than 700

flights_sml <- flights %>% select(month, carrier, distance, arr_delay)

#dataframe grouped by month
month.df <- flights_sml %>%
    filter(month %in% c(12, 1, 2, 6, 7, 8) & carrier %in% c("UA", "AA", "DL") & distance > group_by(month)

#dataframe grouped by carrier
carrier.df <- flights_sml %>%
    filter(month %in% c(12, 1, 2, 6, 7, 8) & carrier %in% c("UA", "AA", "DL") & distance > group_by(carrier)
```

Problem 1.a

In a single plot, create a density plot for arr_delay for each of the 6 months with color aesthetic designated by month. Note that you need to convert month to a factor in order to create the plot. What can you say about the average arr_delay for each month?

```
#convert month to factor
month.df$month <- as.factor(month.df$month)

# create density plot
pla <- ggplot(month.df) +
    geom_density(mapping = aes(x = arr_delay, color = month)) +
    labs(title = "Density Plot of Arrival Delay by Month", x = " Arrival Delay", y = "Density Plot.title = element_text(hjust = 0.5))</pre>
pla
```

Warning: Removed 1307 rows containing non-finite values (`stat_density()`).

In the density plot, we can see that the average arrival delay for each month centers around 0.

Problem 1.b

In a single plot, create a boxplot for arr_delay for each of the 3 carriers. What can you say about the average arr_delay for each carrier?

```
p1b <- ggplot(carrier.df, aes(x = carrier, y = arr_delay)) +
    geom_boxplot() +
    stat_summary(fun.y = mean, geom = "point", shape = 18, size = 3) +
    labs(title = "Boxplot of Arrival Delay by Carrier", x = "Carrier", y = "Arrival Delay"
    theme(plot.title = element_text(hjust = 0.5))</pre>
```

Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0. i Please use the `fun` argument instead.

```
p1b
```

Warning: Removed 1307 rows containing non-finite values (`stat_boxplot()`).

Warning: Removed 1307 rows containing non-finite values (`stat_summary()`).

Boxplot of Arrival Delay by Carrier

Carrier	Mean Arrival Delay
AA	2.978
DL	5.112
UA	7.599

United airlines had the highest average arrival delay, followed by Delta, and then American.

Problem 1.c

Create a pie chart for the 3 carriers where the percentages are the proportions of observations and where percentages are superimposed on the sectors of the pie chart.

```
library(scales)
df1c <- carrier.df %>%
    group_by(carrier) %>%
    dplyr::count() %>% ungroup() %>%
    mutate(percentage = n/sum(n)) %>%
    dplyr::arrange(desc(carrier))
df1c$labels <- scales::percent(df1c$percentage)</pre>
# create pie chart
p1c <- ggplot(df1c, aes(x = "", y = percentage, fill = carrier)) +
    geom_bar(width = 1, stat = "identity") +
    geom_text(aes(label = labels), position = position_stack(vjust = 0.5)) +
    coord_polar("y", start = 0) +
    labs(title = "Proportion of Observations by Carrier", x = "", y = "Proportion") +
    theme_void() +
    theme(plot.title = element_text(hjust = 0.5))
p1c
```

Proportion of Observations by Carrier

Problem 1.d

Plot arr_delay against distance with facet_grid designated by month and carrier

```
df1d <- flights_sml %>%
    filter(month %in% c(12, 1, 2, 6, 7, 8) & carrier %in% c("UA", "AA", "DL") & distance >
p1d <- ggplot(df1d, aes(x = distance, y = arr_delay)) +
    geom_point() +
    facet_grid(month ~ carrier) +
    labs(title = "Arrival Delay vs Distance by Month and Carrier", x = "Distance", y = "Ar
    theme(plot.title = element_text(hjust = 0.5))</pre>
```

Warning: Removed 1307 rows containing missing values (`geom_point()`).

Problem 1.e

For each feasible combination of values of month and carrier, compute the sample average of arr_delay and save them into the variable mean_arr_delay, and compute the sample average of distance and save these averages into the variable mean_distance.

Plot month against mean_arr_delay with shape designated by carrier and color by mean_distance and annotate each point by its associated carrier name.

```
df1e <- flights_sml %>%
    filter(month %in% c(12, 1, 2, 6, 7, 8) & carrier %in% c("UA", "AA", "DL") & distance >
    group_by(month, carrier) %>%
    summarise(mean_arr_delay = mean(arr_delay, na.rm = TRUE), mean_distance = mean(distance)
```

`summarise()` has grouped output by 'month'. You can override using the `.groups` argument.

df1e

A tibble: 18 x 4 # Groups: month [6]

```
month carrier mean_arr_delay mean_distance
   <int> <chr>
                            <dbl>
                                            <dbl>
                                           1404.
1
       1 AA
                            1.19
2
       1 DL
                           -4.04
                                           1314.
3
       1 UA
                            3.72
                                           1598.
4
       2 AA
                            1.01
                                            1404.
5
       2 DL
                           -4.68
                                            1312.
6
       2 UA
                            0.470
                                           1569.
7
                            6.58
                                           1382.
       6 AA
8
       6 DL
                           13.9
                                           1353.
9
       6 UA
                           12.2
                                            1693.
10
       7 AA
                            4.28
                                           1376.
11
       7 DL
                           15.3
                                            1357.
12
       7 UA
                           10.2
                                           1708.
13
       8 AA
                           -2.51
                                           1378.
14
       8 DL
                            1.31
                                           1352.
15
       8 UA
                            3.63
                                           1722.
16
      12 AA
                            7.52
                                           1412.
17
      12 DL
                            6.22
                                            1324.
18
      12 UA
                           14.0
                                            1655.
```


Problem 2

Refer to the mpg dataset. Plot displ against hwy with faceting by drv and cyl, color designated by class, and shape by trans

