Implementacje w kodzie

A-law

μ-law

```
def u_law_encode(signal, mu=255.0): 2 usages new *
    """u-law encoding."""
    abs_signal = np.abs(signal)
    encoded_signal = np.sign(signal) * np.log(1 + mu * abs_signal) / np.log(1 + mu)
    return encoded_signal

def u_law_decode(encoded_signal, mu=255.0): 2 usages new *
    """u-law decoding."""
    abs_encoded_signal = np.abs(encoded_signal)
    decoded_signal = np.sign(encoded_signal) * (1 / mu) * ((1 + mu) ** abs_encoded_signal - 1)
    return decoded_signal
```

DPCM bez predykcji

```
def dpcm_encode(signal, bit=8): 2 usages new *
    """DPCM encoding without prediction."""
    encoded_signal = np.zeros(signal.shape)
    e = 0
    for i in range(0, signal.shape[0]):
        encoded_signal[i] = quantize_signal(signal[i] - e, bit)
        e += encoded_signal[i]
    return encoded_signal

def dpcm_decode(encoded_signal): 2 usages new *
    """DPCM decoding without prediction."""
    decoded_signal = np.zeros(encoded_signal.shape)
    e = 0
    for i in range(0, encoded_signal.shape[0]):
        decoded_signal[i] = encoded_signal[i] + e
        e = decoded_signal[i]
    return decoded_signal
```

DPCM z predykcją np.mean (lub dowolną inną jako argument) oraz dla wskazanego n (domyślnie = 1)

```
def dpcm_encode_with_prediction(signal, bit=8, predictor=np.mean, n=1): 1usage new*
   encoded_signal = np.zeros(signal.shape)
   xp = np.zeros(signal.shape)
   e = 0
   for i in range(1, signal.shape[0]):
       encoded_signal[i] = quantize_signal(signal[i] - e, bit)
       xp[i] = encoded_signal[i] + e
       idx = (np.arange(i - n, i, 1, dtype=int) + 1)
       idx = np.delete(idx, idx < 0)
       e = predictor(xp[idx])
   return encoded_signal
def dpcm_decode_with_prediction(encoded_signal, predictor=np.mean, n=1): 1usage new*
   decoded_signal = np.zeros(encoded_signal.shape)
   xp = np.zeros(encoded_signal.shape)
   decoded_signal[0] = encoded_signal[0] # Set the first value to the first value of the encoded signal
   e = decoded_signal[0]
   for i in range(1, encoded_signal.shape[0]):
       decoded_signal[i] = encoded_signal[i] + e
       xp[i] = decoded_signal[i]
       idx = (np.arange(i - n, i, 1, dtype=int) + 1)
       idx = np.delete(idx, idx < 0)
       e = predictor(xp[idx])
    return decoded_signal
```

Metoda quantize_signal

```
def quantize_signal(signal, num_bits=8): 7 usages new *
    """Quantize the signal to the specified number of bits."""
    # Calculate the number of quantization levels
    num_levels = 2 ** num_bits

# Scale the signal to the range [0, num_levels - 1]
    scaled_signal = (signal + 1) * (num_levels / 2)

# Quantize the signal
    quantized_signal = np.round(scaled_signal)

# Scale the quantized signal back to the range [-1, 1]
    quantized_signal = (quantized_signal / (num_levels / 2)) - 1

return quantized_signal
```

Przypadki testowe

x = np.linspace(-1, 1, 1000), y = x

x = np.linspace(-1, 1, 1000), y = 0.9*np.sin(np.pi*x*4)Bit=4, predictor = np.mean, n = 4

Wnioski

Porównanie a-law i u-law vs dcpm

A-law i u-law: Używają logarytmicznego kompandowania do kompresji zakresu dynamicznego sygnału, redukując błąd kwantyzacji dla sygnałów o szerokim zakresie dynamicznym.

DPCM: Koduje różnice między próbkami, co może być dodatkowo zoptymalizowane za pomocą predykcji, aby zmniejszyć zakres dynamiczny i poprawić efektywność kwantyzacji.

Każda metoda ma swoje zalety i jest odpowiednia do różnych zastosowań, przy czym A-law i u-law są bardziej powszechne w systemach telekomunikacyjnych, a DPCM jest używane w różnych zastosowaniach kompresji audio i wideo.

Badanie plików dźwiękowych

Dla sing_hig1.wav w a-law i u-law mocniej słychać zniekształcenia dźwięku niż dla DPCM.

Dla sing_low1.wav najgorzej wypada a-law, potem dpcm i u-law. A-law najwięcej zniekształceń, dpcm najwięcej szumu.

Dla sing_medium1.wav próbki brzmią porównywalnie do siebie.

	8	7	6	5	4	3	2
sing_low1. wav	Bardzo dobrze może lekki szum	Identyczni e jak wcześniej	Mocniejsz y szum lekkie zniekształc enia	Gorsza jakość	Dużo gorzej brzmi ale wciąż raczej da się rozpoznać	Do rozpoznani a, jakby bardzo blisko mikrofonu nagrać w słabej jakości	Z grubsza buczenie, można nie rozpoznać, bardzo zniekształc one
sing_medi um1.wav	Dobrze	Dobrze + minimalny szum	Nieźle + szum	Gorsza jakość dźwięki	Zła jakość duży szum	Ciężej rozpoznać ciężko się słucha	Strasznie głośno i straszny dźwięk
sing_high1 .wav	Dobrze, krzyk	Nieźle, trochę jak czajnik	Bardziej jak lokomotyw a	Lokomoty wa gorsza jakość dźwięku	Express polarny mocne zniekształc enia	Mocno nieprzyjem ny dźwięk trudno rozpoznać	Jak wcześniej i dużo głośniej