1	Discrete Malls
-	
1.1	a E => EeL
	E is of the form a"b" for 1=0
	Assume u = a" b" for some n E N
	and => and E 1
	aub = aanb = an 6 = an 6 4+1
	N+1 E N
	VuEL. 4: a" for some MEN
柳	b. Base case: 1=0 a"b" = E EL
	and EEL
	Assume able & for some k & M
	akbk = akbk : ak+1 bk+1 eL
	VneN. abnel
4	:. L = {anb n ∈ N}
`	
c.	The set L' is not colored under the rule, as
	and but and & L'
	The smallest closed set would be Eanbu, and ha nEN
	Why?

,

1.2a Rt is reflexive by the axion (2,x)ERT (XEX) => YEEX. (X,X) ERT RTP: (y, z) & R1 Let x=4 (x,x) E R+ 122 (x,y) ER+ (x,y) \in R+ ... (x, 2) \in R+ .. (y, Z) ER+ RERT b Base case: (y,y) ERT FyEX RTP YXEX. (x,y) ERT => (x,y) = ERT which is clearly time. .. (y,y) € S Assume (x',y') & S' and (x',y') & R+ and (y', z') & R (x', z') ERT RTP: (x' 2') & 5 Equivalently, $\forall x \in X$, $(x, x') \in \mathbb{R}^+ \Rightarrow (x, z') \in \mathbb{R}^+$ Let x EX. s.t. (x,x') eR+ . R+P: (s, 2') ER+ By (t). $\forall x \in X$. $(x, x') \in R^+ \Rightarrow (x, y') \in R^+$ $(x, y') \in R^+$ (for all w - x is used) (x,z')ert (zex. (y',z')er) ... (x,z')ert · (x', z') ES

Assume (z', y') & Rt and (y', 2') & Rt . Yxex. ((x,x') & R+ > (x,y') & R+) \((x,y') & R+ = (x,z') & R+) · della (2', y') ER+ : ()c', z') ER+ i. It is transitive oc. Base case: Will (x,x) $(x,x) \in \mathbb{R}^+$ $(x,x) \in \mathbb{S}$ Assume (ay) ER+ ~ (y, z) ER ~ (xy) ES RTP: (x, z) = 5 (y, z) ∈ R => (y, z) ∈ S (x,y) = R = 5 x (y, x) = 5 => (x, 2) = 5 : RES 8. ° Rt is reflexive · R is honsiture · R' = any other reflexive, hars the setting of .. It is the reflexione transitive closure of R must be in the form ab Case 2: ab = an

I asim ab 3 = ab 3 65 at . at = at" where 12 = 2 - 3.0 Rule C: and theme an : ab" where N=2k-Smido. Kinch and : ab where 2n: 2k+1- (can 3(2m) 78. k+1. 2m & N au Assime ab" = ab" where 11:26-Son Zo. k, on EN au : ab where n-3:2 -3(m+1) > 0 . k, m+1 & A : Fuel deal for same 11= 2 - 3m 20 . kmEN c. Assume ab 3 EL : 3: 2t - 3m fer some house A : 2h = 3(m+1) but 2k does not have 3 as a factor Cartradication .. ab & & L= Eab" L11=2k-3m Zok, m EIN 3

You have shown \subseteq . Why does the other inclusion hold?

21a. (0*10*10*)* h. La Contraction of the second (1*01*01*)*(1*01*) 2.20. RTP (u,a)∈ U ⇔ u=a ">" fint Assume (u, a) EU a must be in the form a, e, r, r15, r15, r5, r* Given a E. The only possible form is "a" and so the only relevant rule axiom is the axiom (a, a) : u=a "E" next. Assure u=~ (a, a) = (u, a) 6. ATP: (u, E) & U => u=E " > " Arst. Assume (u, E) & U i. E must be in the form a, e, rt, rls, 1/s, 15, 15 .. The only relievent assum/rule is the arrian (2,€) .. u . E "E" next Assume the u= q. (E,e)=(4, E).

e & is not in the form a. E. r. rls, rls, rs, or r. so there is no rule axion which might allow it to match any string 0. ATP (u,r/s) & U () (MATHER (u,r) & U V(u,s) & U ⇒ fint Assure (u, vis) ∈ U ris must be in the form a, E, ~ ris, ris, rs. s. 30 the only referent rules/axions one the rules (u, r) (u,s) (u, rls) (u, rls) : (a, r) & U v (4, s) & U Assure (u,r) & U v (u.s) & U Case D: (yr) Ell Case 1; (u,s) & U e ltp. (u, rs) ∈ U ⇔ FV, w ∈ E. u=vw n (v, r) ∈ U n (w, s) ∈ U Assume (urs) Ell is must be for of the form a c, r*, rb, rls, rs, r* 1. The only relevant rule/axion in the rule in France usun (Wile U a (wis) & Th

Assume ZV, w & E. u=vw ~ (V,r) & U ~ (w,s) & U (ww, 15) = (u, 15) P. RTP: (u, r) € U ← > u = E v (u, r) € Uv(Ju, u, ..., u=u, u. n(u,,r)eun(uz,r)eU... " => " first Assume (u, r*) EU pt much be in the form a, c, 1, 1/5, 1/5, 15, 15 "The only relevent rules / assions are Case 0: (e.s) .. u= 8 (U,r) (V,r*) " = u, v s.t. (u, .r) ∈ U n (t, n+) ∈ U By symmetry, V= U2V' s.t. (u2, r) EU n (v', r+) et or (v,r) e U .. u=u,u2u3 ... s.t. (u1,r) + W, (u2,r)+ W. Asome u= E v(u, r) & av(]u, u, u=u, u, u, n(u, r) & u. Case 0: 4= 8 (8, mrt)

Case 1: (ur) EU (A) (A) (u,r) (e=r*) Case 2: Let u,, ue, ... 5-t. u=u,uz ... and lungeth a (uz, r) ett. (4) S Carlotter -(u, r) (e, r*) (un, r*) (un-211) (an-, an , 1+) (un-zun-, un , ++) (uuz ~ un, u, , , ,) = (u, , ,) 100

State Mari	Next state (a)	Next state (6)
Ø	ø	7
50	5, 54	5, 53
S	S,	Sz
Sz	5,	52
5,	Sy	S3
54	Sy	5 ₃ .
5,5,	5,,54	50,52,53
5.,5	5,104	5,52,53
50.53	Susy	50,53
50,54	5,,5,	5., 53
5,,52	5,	52
51.53	5,,54	52, 53
5,,54	5,54	52,53
5,5,	5,,54	52,53
52,54	5,,54	52,53
S3, S4	Sy	53
5,5,5,	5, ,54	5, 52, 53
5,5,5	5,,54	50,52,53
50,5,54	5,,5y	5.,52,57
50,52,53	5,,54	50,52,53
50,52,54	5, ,54	50,52,5,
50,53,54	5,,5u	50,5,
5,5,5,	5, ,5y	52, 53
5,,52,54	5,,54	52,53
5, 53, 54		52, 53
52,53,54	5, ,54	52,53
So, S, Sz, S3		5., 52, 53
50,5,52,54	3,,54	5,52,53
30,5,53,5	5,,54	5,5,5,
50, 51, 53,		50.52.53
5,,52,53.5	5500	36 S2,53

3.2. RTP: (q > q') (q, 1, q') can be inductively defined by the rule. Let u : 4 & u & e u & e u & e 2 ... de de la contra la c alea Yndlune Znene N Let q on q = q on q on q on q on q on (2, uou, uz; giri)

RTP: Vary defined by the rules, 9 =>9 Assume 9 = 9' " og = 9" RTP 9=39" which is fine by (1) Rule 1: Assume q = q' a q' = q" (9, uasq") RTP g => g" which is true by (†) D

NFA 4.1 There may have been other ways of reaching the Skird state of M which we would that want to sahisfy Shor (M) Adding the extra state with an epsilon transition makes the aceptance "one-way" "e. just because you end up at the stort state it does quarantee that the string was accepted matches (alb) aa (alb) * ((alb) * aa (alb) +) * as required

4.6 r: (a/b) * a 6 (a/b) "
makeles any string with a consecutive "a6" in in, any "a" much be followed by another "a" or be at the end of the string sold in All the "b" s must appear before the : ur = b a + 4.7. 830 ATP. u EL (M) () WEL (M,) A UEL (M2) Assume $u \in L(M)$ a (f_1, f_2) in M for some $f_1 \in F_1$, $f_2 \in F_2$ Let that path he $(s_0s_2) \xrightarrow{u_1} (q_1, q_2) \xrightarrow{u_2} (q_1, q_2) \xrightarrow{u_3} (q_1, q_2) \xrightarrow{u_3} (q_1, q_2) \xrightarrow{u_4} (f_1, f_2)$ Let 5, = 9°, Sz = 9°, f. : 9°, fz : 9° where u= u, uzu, ...un without loss of generality, consider the inclovidual (gk, gk) - (gkr1, gk+1) : 8((9 k, 9 k), un,) = (9 k, 92 k, 1) = (8, (9 k, un), 5, (9 k, un))
: 8((9 k, 9 k), un) = 9 k, 1 a 52 (9 k, uk, 1) = 9 k, 1

A grand in M. and granding ghat in U/2 Similarly for the other housitions: Sport of or of the M. Som gi of gi on Ma : 5, => f, .. M. .. u ∈ L(M.) Sz = fz in Mz .. u + L (Mz) 4 =" next Assume weL (M,) nueL(M2) $S_1 \Longrightarrow f_1$ for some $f_1 \in F_1$ in M_2 $S_2 \Longrightarrow f_2$ for some $f_2 \in F_2$ in M_2 Let these paths respectively be 5, -> q' -> q' -> q' -> f, in M,

5, -> q' -> q' -> q' -> f, in M, where $S_1 = g_1^0$, $S_2 = g_2^0$, $f_1 = g_1^0$, $f_2 = g_2^0$ where $U = U_1 U_2 U_3 ... U_n$

Considering two individual transitions: ghe were ghere in the gk dkni gkni ir M2 1. 8. (9 t Mun) = 9 km n 8, (9 t u) = 92 : (8(9 k ukm), 82(92, ukm)) = (9 km, 9 km) = 8 ((9 k 9 k), ukr) the housition (q 4, q 4) deri (q 4+1 q k+1) existes in M Likewise for all OckEN & u the path (5, 52) - (9, 9;) - (9, 92) - (4, f2) (Sy, S2) => (f, f2) in M 1. u ∈ L(M)

5.1 Suppose such on M exists Let M = DFA(Q, {a,b,c3, 8m, 8m, F) Let M' : DFA(Q, Ea, 63, Sm, Sm(Sm, c), F) where $\delta_{M} : \{(q, \sigma) \in \delta_{M} \mid \sigma \in \{a, b\}\}$ YneN≥o, carbre1(M) $s_{m} \xrightarrow{c} s_{m}(s_{m,i}) \xrightarrow{a^{m}b^{m}} f$ for some $f \in F$ in M \mathfrak{D} $s_{m}(s_{m,i}) \xrightarrow{a^{m}b^{m}} f$ for some $f \in F$ in M'1. {a"b" | nEN > 03 5 L(m') Vx € 1 [a, b, c3*. x € L(m) > x € {cmab m | m > 18 m > 03 v x ∈ [a" 6" | m, n > 0 3 : Vx & {a,b,c}*, y & {a,b}* x & L(m) nx : cy => y = anb n nx 1(mi) < {y | Vx & {a,b,c}, y & {a,b}, x & (m) ~ x = cy} 1. L(M') < {an6 n | n €N≥0} : f(m1) = { a 6 1 n EN 203

FLGINZI, ab is of length ZL Let v: ak with k<1 Let uz = bl such that a 6 = 4, vuz & 2 (M') 14, 1 = 1 5 1 However, u, vovz = u, vz = a b & £ L(m') ...t(M') is not regular there can exist no such M