Лекции По математическому анализу

Т.П. Лукашенко

Часть III Лекции третьего семестра

Глава 1

Определение 1.1. Пусть $\{a_k\}_{k=n}^{\infty}$ - последовательность, занумерованная целыми числами начиная с n и далее по возростанию.

Тогда выражение вида $a_m + a_{m+1} + a_{m+2} + \cdots = \sum_{k=m}^{\infty} a_k$ называется бесконечным рядом.

Изменением нумерации общий случай можно свести к случаю n=1 или n=0. Тоже можно получить при n>1 добавлением нулевых членов или заменой начальных членов их суммой в случае n<0.

Определение 1.2. $\delta_N = \sum_{k=m}^N$ — частичная сумма с номером N. $\delta_N = 0$, если N < m.

Если существует предел:

$$\lim_{n\to\infty}\mathbb{S}_N=\mathbb{S}$$

то его называют суммой ряда S. Если a_k - действительные числа, то S действительное число или $\pm \infty$. Ряд называется сходящимся, если его сумма конечна. Если это не так, то ряд называют расходящимся.

Утверждение 1.1. Критерий Коши.

Числовой ряд сходится тогда и только тогда, когда:

$$\forall \epsilon > 0 \quad \exists N \quad \forall m > N \quad \forall p \in \mathbb{N} : |S_{m+p} - S_m| < \epsilon$$

Утверждение 1.2. Необходимое условие сходимости.

Если ряд
$$\sum_{k=1}^{\infty} a_k$$
 сходится, то $a_k \xrightarrow{k \to \infty} 0$

Определение 1.3. Если ряд сходится и S – его сумма, то $r_n = S - S_n$ называется остатком ряда с номером n.

Определение 1.4. Ряд $\sum_{k=1}^{\infty} a_k$ называют абсолютно сходящимся, если сходится ряд $\sum_{k=1}^{\infty} |a_k|$.

Теорема 1.1. Если ряд $\sum_{k=1}^{\infty} a_k$ абсолюно сходится, то он сходится.

Доказательство. По критерию Коши, $\forall \epsilon > 0 \quad \exists N \quad \forall m > N \quad \forall p \in \mathbb{N} : |\mathbb{S}_{m+p} - \mathbb{S}_m| < \epsilon$ Так как $|\mathbb{S}_{m+p} - \mathbb{S}_m| \leq \sum_{k=m+1}^{m+p} |a_k|$, то выполняется критерий Коши для исходного ряда, и он сходится.

Определение 1.5. Если ряд сходится, но не сходится абсолютно, то его называют сходящимся условно.

ГЛАВА 1. 3

Свойства

1. Если ряд $\sum_{k=1}^\infty$ сходится (сходится абсолютно) и 8 – его сумма, то для любого числа α ряд $\sum_{k=1}^\infty \alpha a_k$ сходится.

Доказательство.

$$\sum_{k=1}^{n} \alpha a_k = \alpha \sum_{k=1}^{n} a_k = \alpha \, S_n$$

Если сущестует предел частичных сумм исходного ряда равный S, то $S_{\alpha}=\alpha$ S

2. Если ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ сходятся (абсолютно сходятся) и \mathcal{S}_a и \mathcal{S}_b – их суммы, то ряд $\sum_{k=1}^{\infty} (a_k + b_k)$ сходится (сходится абсолютно) и его сумма – $\mathcal{S}_a + \mathcal{S}_b$

Доказательство.

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{\infty} b_k \xrightarrow{n \to \infty} S_a + S_b$$

Так как

$$\sum_{k=1}^{n} |a_k + b_k| \le \sum_{k=1}^{n} |a_k| + \sum_{k=1}^{n} |b_k| \le \sum_{k=1}^{\infty} |a_k| + \sum_{k=1}^{\infty} |b_k|, \text{ To } \sum_{k=1}^{n} |a_k + b_k|$$

– монотонная ограниченная последовательность и, следовательно, сходится. $\hfill \Box$

3. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится (абсолютно сходится) и $\mathbb S$ его сумма, n_k – строго возрастающая последовательность натуральных чисел, то ряд $\sum_{k=1}^{\infty} \left(\sum_{j=n_{k-1}+1}^{n_k} a_j\right)$, где $n_0=0$, сходится (сходится абсолютно) и $\mathbb S$ – его сумма.

Доказательство. Последовательность частичных сумм сгруппированного ряда — это подпоследовательность S_{n_k} последовательности частичных сумм начального ряда. Последовательность:

$$\sum_{k=1}^{N} \left| \sum_{j=n_{k-1}}^{n_N} a_j \right| \le \sum_{j=1}^{n_N} |a_j|$$

ограничена, тогда первая сумма — монотонная ограничен
ная последовательность, которая сходится.
 $\hfill \Box$

4. Если члены ряда $a_k \xrightarrow{k \to \infty} 0$, n_k — строго возрастающая последовательность натуральных чисел и $\sup_k (n_k - n_{k-1} < \infty)$, сгруппированный ряд $\sum_{k=1}^{\infty} \left(\sum_{j=n_{k-1}+1}^{n_k} a_j\right)$, где $n_0 = 0$, сходится \mathbb{S} — его, сумма то начальный ряд также сходится и \mathbb{S} — его сумма.

 Γ ЛABA 1. 4

 $\mathcal{\ \ \, }$ Доказательство. Для любого $m\in\mathbb{N}$ найдем такое натуральное r, что $n_{r-1< m\leq n_r}.$ Тогда:

$$|\mathcal{S}_{n_r} - \mathcal{S}_m| \leq \sum_{k=m+1}^{n_r} |a_k| \leq \sum_{k=n_{r-1}+1}^{n_r} |a_k| \leq \sum_{k=n_r-l}^{n_r} |a_k|,$$

где $\sup_k (n_k-n_{k-1}) \leq l$. Последняя сумма – конечная сумма $\stackrel{=}{o}$ (1), значит, $\stackrel{=}{O}$ (1). Следовательно, если $\mathbb{S}_{n_r} \xrightarrow{r \to \infty} \mathbb{S}$, то $\mathbb{S}_m \xrightarrow{m \to \infty} \mathbb{S}$

Глава 2

Ряды неотрицательных чисел

Признаки сходимости рядов неотрицательных числел

TODO: Вставить замечания

- 1. Если дан ряд $\sum_{k=1}^{\infty} a_k$, то ряд сходится тогда и только тогда, когда последовательность частичных сумм \mathbb{S}_n ограничена.
- 2. (Признак сравнения) Если даны ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$, $0 \le a_k \le b_k$, $k > \mathbf{K}$, то из сходимости второго ряда следует сходимость первого, а из расходимости первого расходимость второго.

Доказательство.

$$\sum_{k=1}^{n} a_k \leq \sum_{k=1}^{K} a_k + \sum_{k=K+1}^{K} a_k \leq \sum_{k=1}^{K} a_k + \sum_{k=K+1}^{n} b_k \leq \sum_{k=1}^{K} a_k + \sum_{k=1}^{\infty} b_k \leq \sum_{k=1}^{K} a_k + \sum_{k=1}^{\infty} b_k$$

Из сходимости второго ряда следует ограниченность частиных сумм первого, а значит и сходимость первого.

Если $n>K, p\geq 0$, то $\sum_{k=n+1}^{n+p}a_k\leq \sum_{k=n+1}^{n+p}b_k$, поэтому из выполнения критерия Коши для второго ряда следует выполнение критерия Коши для превого.

3. (Сравн
нения) Пусть $\sum_{k=1}^{\infty}a_k$ и $\sum_{k=1}^{\infty}b_k$ – числовые ряды с неотрицательными членами. Если

$$0 < \alpha \le \frac{a_k}{b_k} \le \beta < \infty, \forall k > K,$$

то числовые ряды одновременно сходятся или одновременно расходятся.

 \mathcal{A} оказательство. $0 \le a_k \le \beta b_k$, поэтому, если ряд $\sum_{k=1}^\infty b_k$ сходится, то сходится $\sum_{k=1}^\infty a_k$.

Так как $0 \le b_k \le \frac{a_k}{\alpha},$ То если ряд $\sum_{k=1}^\infty a_k$ сходится, то сходится и второй.

4. (Сравнения) Пусть $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ – числовые ряды со строго положительными членами. Если

$$\frac{a_{k+1}}{a_k} \le \frac{b_{k+1}}{b_k}, \forall k \ge K,$$

то из сходимости ряда $\sum_{{\bf k}=1}^\infty b_k$ следует сходимость ряда $\sum_{{\bf k}=1}^\infty a_k$

Доказательство.

$$\prod_{k+K}^{n-1} \frac{a_{k+1}}{a_k} \le \prod_{k+K}^{n-1} \frac{b_{k+1}}{b_k}, \text{ r.e. } \frac{a_n}{a_K} \le \frac{b_n}{b_K}, n > K$$

Значит, $a_n \leq \frac{a_K}{b_K} b_n, n > K$, поэтому из сходимости ряда $\sum_{k=1}^\infty b_k$ следует сходимость ряда $\sum_{k=1}^\infty a_k$

5. (Д'Алабера) Пусть $\sum_{{\bf k}=1}^{\infty} a_k$ – ряд с неотрицательными членами. Если

$$\frac{a_{k+1}}{a_k} \le q < 1$$
при $n \ge K$

то ряд сходится. Если

$$\frac{a_{k+!}}{a_k}$$
при $n \ge K$

То члены ряда не стремятся к нулю, и ряд расходится

 \mathcal{A} оказательство. Возьмём $b_k=q^k$ – геометрическую прогрессию, ряд $\sum_{k=1}^\infty q^k$ сходится. Далее используем признак сравнение. Другой случай очевиден.

6. (Коши) Пусть $\sum_{k=1}^{\infty} a_k$ – ряд с неотрицательными членами. Если $\sqrt[n]{a_k} \le q < 1$ при $k \ge K$, то ряд сходится, а если $\sqrt[k]{a_k} \ge 1$ для бесконечного числа номеров, то члены ряда не стремятся к нулю и ряд расходится.

Доказательство. Если $\sqrt[n]{a_k} \le q < 1$, то повторому признаку ряд расходится.

7. (Интегральный Маклорена-Коши) Пусть f(x) – неотрицательная невозрастающая функция на $[1, +\infty]$. Тогда

$$0 \le \sum_{k=1}^{n} f(k) - \int_{1}^{n+1} f(x)dx \le f(1)$$

Ряд и интеграл одновременно сходятся или одновременно расходятся.

Доказательство.

$$0 \le \sum_{k=1}^{n} \left(f(k) - \int_{k}^{k+1} f(x) dx \right) = \sum_{k=1}^{n} f(k) - \int_{1}^{n+1} f(x) dx =$$

$$= f(1) + \sum_{k=2}^{n} \left(f(k) - \int_{k-1}^{k} f(x) dx \right) - \int_{n}^{n+1} f(x) dx \le f(1)$$

Тогда частичные интеграллы и суммы ограниченны одновременно.

8. (Признак Куммера) Пусть $\sum_{k=1}^{\infty} a_k$ – ряд со строго положительными членами, b_k – последовательность строго положительных чисел,

$$v_k = \frac{a_k}{a_{k+1}} b_k - b_{k+1}$$

Если $v_k \ge l.0$ при $k \ge K$, то ряд сходится. Если $v_l \le 0$ при $k \ge K$ и ряд $\sum_{k=1}^{\infty} (b_k)^{-1}$ расходится, то ряд $\sum_{k=1}^{\infty} a_k$ также расходится.

Доказательство.

$$v_k = \frac{a_k}{a_{k+1}} b_k - b_{k+1} \ge l \ge l > 0, k \ge K$$

$$a_k b_k - a_{k+1} b_{k+1} \ge l a_{k+1}, k \ge K$$

$$\sum_{k=K}^{n-1} (a_k b_k - a_{k+1} b_{k+1}) = a_K b_K - a_n b_n \ge l \sum_{k=K}^{n-1} a_{k+1} = l \sum_{j=K+1}^n a_j$$

Так как $a_K b_K \ge l \sum_{j=K+1} n$, то частичные суммы ряда $\sum_{j=K+1} \infty$ ограничены и, значит, ряд $\sum_{k=1}^\infty a_k$ сходится. Итак,

$$v_k = \frac{a_k}{a_{k+1}} b_k - b_{k+1} \le 0$$
 при $k \ge K$,

т.е. $a_k b_k - a_{k+!} b_{k+1} \le 0k \ge$. Значит,

$$\sum_{k=K}^{n-1} (a_k b_k - a_{k+1} b_{k+1}) = a_K b_K - a_n b_n \le 0, n > K$$

отсюда: $a_N \ge a_K b_K - (b_n)^{-1}$. Из расходимости ряда $\sum_{k=1}^\infty b_k$ следует расходимость ряда $\sum_{k=1}^\infty a_k$

9. (Признак Раабе) Пусть $\sum_{k=1}^{\infty} a_k$ – ряд со строго положительными членами. Если

$$k\left(\frac{a_k}{a_{k+1}} - 1\right) > q > 1, k \ge K,$$

то ряд сходится. Если

$$k\left(\frac{a_k}{a_{k+1}} - 1\right) \le 1, k \ge K,$$

то ряд расходится.

Доказательство. Возьмем $b_k = k$, ряд $\sum_{k=1}^{\infty} (b_k)^{-1}$ расходится.

$$v_k = \frac{a_k}{a_{k+1}}k - (k+1) = k(\frac{a_k}{a_{k+1}}) - 1$$

И пользуемся признаком Куммера.

10. (Признак Гаусса) Пусть

$$(\forall k \in \mathbb{N}) a_k > 0, \frac{a_k}{a_{k+1}} = \alpha + \frac{\beta}{k} + \frac{\gamma_k}{k^{1+\epsilon}},$$

где $\alpha, \beta, \epsilon \in \mathbb{R}, \epsilon > 0, \gamma_k$ — ограниченная числова последовательность. Тогда при $\alpha > 1$ или $\alpha = 1, \beta > 1$, ряд $\sum_{k=1}^{\infty} a_k$ сходится, а при $\alpha < 1$ или $\alpha = 1, \beta \leq 1$ — расходится.

Доказательство.

$$\lim_{k \to \infty} \frac{a_k}{a_{k+1}} = \alpha, \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \frac{1}{\alpha} (\alpha \neq 0)$$

Тогда по признаку Даламбера ряд сходится при $\alpha>1$ и расходится при $\alpha<1$

При $\alpha = 1$

$$\lim_{k \to \infty} k(\frac{a_k}{a_{k+1}} - 1) = \beta$$

тогда по признаку Раабе ряд сходится при $\beta>1$ и расходится при ≤ 1 При $\alpha=1,\beta=1$ воспользуемся признаком Куммера с $b_k=k\ln k,k\geq 2$.

Ряд обратных к b расходится по интегральному признаку, так как расходится соответствующий интеграл

$$v_k = \frac{a_k}{a_{k+1}} b_k - b_{k+1} =$$

$$= \left(1 + \frac{1}{k} + \frac{\gamma_k}{k^{1+\epsilon}}\right) k \ln k - (k+1) \ln(k+1) =$$

$$= (k+1) \ln k + \frac{\gamma_k}{k^{\epsilon}} \ln k - (k+1) \ln(k+1) = \frac{\gamma_k \ln k}{k^{\epsilon}} - \ln(\frac{k+1}{k})^{k+1}$$

$$\frac{\gamma_k \ln k}{k^{\epsilon}} \xrightarrow{k \to \infty} 0$$

$$\ln(\frac{k+1}{k})^{k+1} \xrightarrow{k \to \infty} 1$$

$$\frac{\gamma_k \ln k}{k^{\epsilon}} - \ln(\frac{k+1}{k})^{k+1} \to -1$$

Теорема 2.1. Если выполнено условие сходимости Д'Аламбера, то выполнено условие сходимости ряда Коши.

Доказательство.

$$a_n = a_K \prod_{k=K}^{n-1} \frac{a_{k+1}}{a_k} \le a_K q^{n-K}, \ \sqrt[n]{a_n} \le \sqrt[n]{a_K} q^{1-\frac{K}{n}} \xrightarrow{n \to \infty} 1 * q < 1$$

Если взять $p,q то, начиная с некоторого номера <math>\sqrt[n]{a_n}$

Глава 3

Ряды с членами разных знаков или с членами — комплексными числами.

Теорема 3.1. (Признак Лейбница) Пусть $\sum_{k=1}^{\infty} a_k$ – ряд со знакочередующимся членами, которые по модулю монотонно стремятся к нулю. Тогда ряд сходится и остаток $|r_n| \ge |a_{n+1}| \ge |a_n|$.

Доказательство. Пусть $a_1>0$. Тогда $S_{2n}=\sum_{k=1}^n(a_{2k-1}+a_{2k})$ – неубывающая последовательность, $S_{2n+1}=a_1+\sum_{k=1}^n(a_{2k}+a_{2k+1})$ – невозрастающая последовательность, $S_{2n}\leq S_{2n+1}=a_1+\sum_{k=1}^n(a_{2k}+a_{2k+1})\leq 0$ – невозрастающая последовательность, $S_{2n}\leq S_{2n+1}$.

Значит, S_{2n} — неубывающая, ограниченная сверху последовательность. S_{2n+1} — невозрастающая, ограниченная снизу последовательность. Они сходятся и, так как $S_{2n+1} - S_{2n} = a_{2n+1} = \overline{o}(1)$, то имеют бощий предел S.

$$r_{2n+1} = \sum_{k=2n+2}^{\infty} a_k = \underbrace{a_{2n+2}}_{\leq 0} + \sum_{k=n+2}^{\infty} \underbrace{\left(a_{2k-1} + a_{2k}\right)}_{\geq 0} = \sum_{k=n+1}^{\infty} \underbrace{\left(a_{2k} + a_{2k+1}\right)}_{\leq 0}$$

Следовательно,

$$a_{2n+2} \le r_{2n+1} \le 0, |r_{2n+1}| \le |a_{2n+2}| \le |a_{2n+2}|$$

$$r_{2n} = \sum_{k=2n+1}^{\infty} a_k = \sum_{k=n}^{\infty} \underbrace{\left(a_{2k+1} + a_{2k+2}\right)}_{\geq 0} = \underbrace{a_{2n+1}}_{\geq 0} + \sum_{k=n+1}^{\infty} \underbrace{\left(a_{2k-1} + a_{2k}\right)}_{\leq 0}$$

Следовательно $0 \le r_{2n} \le a_{2n+1} \le |a_{2n}|$

Преобразование Абеля

$$\sum_{k=m}^{n} u_k v_k = \sum_{s=m-1}^{n-1} U_k (v_k - v_{k+1}) + U_n v_n - U_{m-1} v_{m-1} =$$

$$=\sum_{k=m}^n U_k(v_k-v_{k+1})+U_nv_n-U_{m-1}u_m,$$
 где $U_n=\sum_{k=1}^n u_k, U_0=0, v_0=0$

Доказательство.

$$\sum_{k=m}^{n} u_k v_k = \sum_{k=m}^{n} \left(U_k - U_{k-1} \right) v_k = \sum_{k=m}^{n} U_k v_k - \sum_{k=m}^{n} U_{k-1} v_k =$$

$$= \sum_{k=m}^{n} U_k v_k - \sum_{k=m-1}^{n-1} U_k v_{k+1} = \sum_{k=m-1}^{n-1} U_k (v_k - v_{k+1}) + V_n v_n - U_{m-1} v_{m-1} =$$

$$= \sum_{k=m}^{n-1} U_k (v_k - v_{k+1}) + U_n v_n - U_{m-1} v_m$$

Последовательность ограниченной вариации.

Определение 3.1. Последовательность $\{v_k\}_{k=1}^{\infty}$ называется последовательностью ограниченной вариации, если сходится ряд модулей разниц между соседними членами

Теорема 3.2. Последовательность действительных чисел является последовательностью ограниенной вариации тогда и только тогда, когда её можно представить как разность двух неубывающих(невозрастающих) сходящихся последовательностей

Доказательство. Достаточность Монотонная сходящаяся последовательность v_k является последовательностью ограниченнной вариации. Действительно, если v_k – невозрастающая последовательность, то $\sum_{k=1}^n |v_k - v_{k+1}| = \sum_{k=1}^n (v_k - v_k + 1) = v_! - v_{n+1}$ – имеет предел при $n \to \infty$, следовательно, последовательность имеет ограниченную вариацию.

Сумма, разность последовательностей ограниченной вариации являются последовательностями ограниченной вариации. Для любого числа α и VB-последовательности $v_k \alpha v_k$ ограниченна.

Доказательство. Необходимость. Последовательность $S_n = \sum_{k=1}^{n-1} |v_k - v_{k+1}|$ – неубывающая, $G_n = \sum_{k=1}^{n-1} |v_k - v_k + 1| + (v_k - v_{k+1})$ – неубывающая последовательность, $v_n = v_1 - \sum_{k=1}^{n-1} (v_k - v_{k+1}) = S_n + v_1 - G_n = S_n - (-v_1 + G_n)$ Домножением на минус единицу можно получить рвзность двух невозрастающей последовательностей.

Теорема 3.3. Если v_n – последовательность ограниченной вариации, то она сходится

Доказательство. $v_n = v_1 + \sum_{k=1}^{n-1} (v_{k+1} - v_k)$, ряд $\sum_{k=1}^{n-1} (v_{k+1} - v_k)$ сходится абсолютно.