An Interpretation of Standard ML in Type Theory

Robert Harper Christopher Stone June 27, 1997 CMU-CS-97-147

> School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

This report also appears as Fox Memorandum CMU-CS-FOX-97-01

This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title "The Fox Project: Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050, in part by the National Science Foundation under Grant No. CCR-9502674, and in part by the US Army Research Office under Grant No. DAAH04-94-G-0289. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the Advanced Research Projects Agency, the U.S. Government or the National Science Foundation.

Abstract

We define an interpretation of Standard ML into type theory. The interpretation takes the form of a set of elaboration rules reminiscent of the static semantics given in *The Definition of Standard ML*. In particular, the elaboration rules are given in a relational style, exploiting indeterminacy to avoid over-commitment to specific implementation techniques. Elaboration consists of identifier scope resolution, type checking and type inference, expansion of derived forms, pattern compilation, overloading resolution, equality compilation, and the coercive aspects of signature matching.

The underlying type theory is an explicitly-typed λ -calculus with product, sum, function, and recursive types, together with module types derived from the translucent sum formalism of Harper and Lillibridge. Programs of the type theory are given a type-passing dynamic semantics compatible with constructs such as polymorphic equality that rely on type analysis at run-time.

This document supercedes the previous CMU CS technical reports CMU-CS-96-136 and CMU-CS-96-136R. The revision reflects our experience in implementing the specified elaborator, and includes several essential corrections and simplifications to the presentation.

Contents

1 Introduction		
	1.1	Overview
	1.2	Notes on Implementation
	1.3	Major Differences from Standard ML
		1.3.1 Value Restriction
		1.3.2 Abstype
		1.3.3 Local and Higher-Order Functors
		1.3.4 Top-level
	1.4	Major Technical Differences from Version 2
		1.4.1 Internal Language
		1.4.2 Datatypes
		1.4.3 Generativity
		1.4.4 Subtyping
		1.4.5 Syntactic concatenation
2	Inte	ernal Language Abstract Syntax
_	2.1	Constructors and Kinds
	2.2	Expressions
	2.3	Modules and Signatures
	2.4	Useful Abbreviations and Notation
	2.5	Bindings and Scope
	_	
3		tic Semantics 16
	3.1	Introduction
	3.2	Notation
		Judgment Forms
	3.4	Inference Rules
		3.4.1 Well-formed Declarations
		3.4.2 Well-formed Bindings
		3.4.3 Well-formed Kinds
		3.4.4 Well-formed Constructors
		3.4.5 Constructor Equivalence
		3.4.6 Well-formed Expressions
		3.4.7 Well-formed Signatures
		3.4.8 Signature Subtyping
		3.4.9 Signature Equivalence
		3.4.10 Well-formed Modules
		3.4.11 Valuability
4	Dvr	namic Semantics
_	4.1	Introduction
	4.2	Transition Relation
		4.2.1 Search for Next Redex

		4.2.2 Reduction	32
5	Exte	ernal Language	3 4
	5.1	Notation	34
	5.2	Grammar of the Abstract Syntax	34
	5.3	Syntactic Restrictions	36
6	Elab	ooration	37
	6.1	Introduction	37
	6.2	Notation	38
	6.3	Initial Basis	39
	6.4	Derived Forms	39
	6.5	Judgment Forms	41
	6.6	Translation Rules	41
		6.6.1 Expressions	41
		6.6.2 Matches	44
		6.6.3 Declarations	45
		6.6.4 Structure Expressions	47
		6.6.5 Structure Bindings	48
		6.6.6 Functor Bindings	49
		6.6.7 Specifications	49
		6.6.8 Signature Expressions	51
		6.6.9 Type Expressions	51
		6.6.10 Type Definitions	52
		6.6.11 Type Descriptions	52
		6.6.12 Equality Type Descriptions	52
		6.6.13 Datatype Definitions	52
	6.7	Polymorphic Instantiation	54
	6.8	Equality Compilation	54
	6.9	Pattern Compilation	56
	6.10	-	59
	6.11	Signature Patching	61
		Lookup Rules	62
		6.12.1 Context Lookup	62
		6.12.2 Signature Lookup	63
	6.13	Overloading	64
_	ъ	,•	.
7		perties	6 4
	7.1	Properties of the Internal Language	64
		7.1.1 Static Semantics	64
		7.1.2 Dynamic Semantics	67
	7 0	7.1.3 Soundness of the Internal Language	68
	7.2	Properties of the Elaborator	70
8	Ack	nowledgments	72

1 Introduction

1.1 Overview

This document consists of a type-theoretic account of a variant of (Revised) Standard ML [MTHM97], hereafter referred to simply as Standard ML or SML. The approach taken here is to elaborate SML abstract syntax (the external language, or EL) into an explicitly-typed λ -calculus (the internal language, or IL). The internal language is designed to be as simple and orthogonal as possible while still being able to represent the entire Standard ML language.

The translation is presented by a set of inference rules reminiscent of the static semantics given in *The Definition of Standard ML*, with the internal language playing the role of the static semantic objects of *The Definition*. The translation rules typically define the translation of a phrase in terms of the translation of its constituent phrases, subject to context-sensitive constraints expressed by the internal language type system. Context-sensitive formation constraints are expressed by type checking constraints on the translation. Type propagation is controlled by a combination of the translucent sum formalism together with the representation of abstract types as modules with opaque type components. The internal language ensures that abstraction is respected, and, moreover, provides the requisite association of the abstract type to its representation at run-time.

We believe that looking at Standard ML language features in terms of how they translate into type theory clarifies a number of issues in the design of SML. For example, the notion of "type generativity" is replaced by explicit control of type propagation.

The internal language may be shared among many different language descriptions given in the style presented here. In particular, we envision the possibility of using the IL given here (with very minor modifications) for Scheme, Caml Special Light, or Haskell. A more long-term goal would be to see what changes would be needed—especially with regards to object-oriented features—in order to handle Java or Modula-3.

The elaboration has application to language implementation as well, as it may be viewed as a reference implementation of a front-end for an SML compiler. In particular, we are using this translation as a guide to our re-implementation of the TIL/ML compiler [HM95, Mor95, Tar96, TMC+96]. Compilers for other languages defined by interpretation into the internal language could share the back end of the TIL/ML compiler; only a front-end need be written for each specific language.

There are some disadvantages to our approach. The translation of some SML language features is quite complex. To some extent this is a direct reflection of the intrinsic complexity of mechanisms such as datatype definitions (which introduce several mutually recursive abstract types, each a multinary sum of multinary product types) and polymorphic, recursive function bindings. However, ensuring that the invariants of our encodings are respected everywhere in the document can be tedious and error-prone.

Furthermore, understanding the elaboration requires understanding the internal language as well, though this may be mitigated if the same internal language can be used for several different external languages.

The type-theoretic interpretation of Standard ML is divided into three main parts.

Type Structure of the Internal Language. The internal language is an explicitly-typed λ -calculus, with a second-class modules system.

The core of the internal language is based on the XML and λ^{ML} calculi [HM93, HMM90]. The constructors of kind Ω (where Ω is the kind of types) include partial and total function types, record types, sum types, reference types, recursive types, and a single extensible sum. Additionally, the constructors are extended with (restricted) tuples of constructors and functions at the constructor level. Note that there are no polymorphic types (polytypes) in our system.

The modules system is based on the translucent sum or manifest type modules calculi [HL94, Ler94]. In addition to translucent signatures, we have total and partial functor signatures. Our subtyping relation on signatures involves only forgetting of type definitions and totality, and not dropping or reordering components. This means that subtyping has no run-time effect.

The two levels are connected by the ability to define modules local to a core expression.

Dynamic Semantics of the Internal Language. The dynamic semantics is essentially a contextual semantics [WF91]. The handling of references and exceptions is similar to Harper's account of polymorphic references [Har93].

Elaboration. The translation is defined by a series of translation judgments of the general form

$$\Gamma \vdash EL\text{-phrase} \leadsto IL\text{-phrase} : IL\text{-classifier}$$

where Γ is an internal-language context extended with information mapping EL identifiers to IL variables.

1.2 Notes on Implementation

This document is intended as an experiment in formally specifying the first stage of the TIL compiler, and additionally to see if this generates a plausible definition for a language. We are not advocating that a compiler should generate exactly the IL code given here, nor even that the internal language of the compiler should be exactly the IL we present. However, any implementation of an elaborator should be essentially equivalent to what we present, and we suggest the compiler's internal language should be definable in terms of the IL we present here. Differences we would expect in an actual implementation include:

- The internal language is likely be extended to make our derived forms into primitives, possibly along with other definable forms.
- A compiler is likely to use a much more complicated pattern compiler, generating much more efficient pattern-matching code (in particular, making better use case).
- Clausal function definitions would not be sequenced through uses of the exception mechanism.

- A compiler is likely to use a much more efficient implementation of elaboration contexts, avoiding the the sequential search which we have formalized.
- Equality functions would be cached, so that multiple equality tests for values of the same type would not generate multiple equality functions.
- In order to achieve SML's typing behavior, locally-defined types at the module level are hidden through renaming rather than through use of internal-language local bindings. For simplicity, all module-level local definitions (including values) are translated in this fashion, though this is not required, and could cause wasted space at run-time. An implementation would use a more sophisticated criterion for which local bindings to rename.

1.3 Major Differences from Standard ML

1.3.1 Value Restriction

The value restriction used in this translation is different than that specified in SML.

• We treat

val
$$\langle rec \rangle$$
 $pat_1 = expr_1$ and ... and $pat_n = expr_n$

as a derived form for

$$\operatorname{val} \langle \operatorname{rec} \rangle (pat_1, \dots, pat_n) = (expr_1, \dots, expr_n).$$

• When v is a value, we treat the binding val h::t = v as completely equivalent to val h = hd v and val t = tl v. Since in the latter cases h and t will not be generalized (hd and tl may raise exceptions!), h and t are not made polymorphic in the former case.

The translation allows variables in a val binding to be generalized if the translations of the bindings are "valuable." At the external language level, this is equivalent to the right-hand side being a value, and the variable not be in the argument of a constructor pattern, unless the constructor in for a single-constructor datatype. Note that tuple-patterns pose no problem, since projection is a total function.

This corresponds to the notion of "polymorphism as substitution," in which

let val
$$id = expr$$
 in $expr'$ end

is considered equivalent to $\{expr/id\}expr'$ when expr is a value.

Because of this difference, a few variables that would have been polymorphic according to the SML specification will not be generalized in this treatment.

1.3.2 Abstype

We do not consider abstype declarations in this document because abstract data types can be easily created using the SML module system instead. There would be no technical difficulties in including abstype, if desired.

1.3.3 Local and Higher-Order Functors

Our external language permits structure and functor declarations within a let or local declarations, and also within structure and functor declarations; this is a reflection of the fact that the internal language has local and higher-order modules.

These higher-order modules are based on the translucent sum formalism [HL94]. As this is compatible with first-class modules (which are not included in this definition), our higher-order functors propagate less type-sharing information than those in the system of MacQueen and Tofte [MT94]. Finding a clean type-theoretic description of this latter system is the subject of current research.

1.3.4 Top-level

Since we allow locally-defined modules in our external language, it suffices to consider programs to be closed expressions of type *ans*, where *ans* is a fixed base type of answers. We do not explicitly consider the translation of SML top-level declarations.

Note that this does not require an *implementation* to accept only complete programs of some fixed type. For example, a batch compiler may expect a sequence of structure, functor, and signature bindings (SML top-level declarations, possibly separately compiled), which are then "logically" treated as a sequence of declarations in a wrapper generated by the compiler. For a UNIX system, for example, the wrapper might be along the lines of:

where *ans* is chosen to be the type int and a program returns either 0 for normal termination or ~1 for an uncaught exception.

To enable this interpretation, we view **signature** declarations as simple "macros," defining abbreviations for signatures. The translation assumes abbreviations have previously been expanded out in the program body.

1.4 Major Technical Differences from Version 2

1.4.1 Internal Language

Some minor changes have been made to the internal language, for purposes of efficient implementation (e.g., the unbundling of mutual recursion and projection operations at the constructor and expression levels), or for the purposes of a cleaner elaboration or internal language (e.g., the generalization of the kind structure, and the replacement of partial destructuring operations with total versions at the expression level).

1.4.2 Datatypes

The rule for datatypes has been simplified; additionally the internal language has been extended to allow all valid SML datatypes to elaborate. However, certain datatypes that SML defines as admitting equality would require polymorphic recursion to implement this equality function. Since our language does not currently admit polymorphic recursion (which would correspond to recursive functors) these datatypes do not admit equality in our formulation.

1.4.3 Generativity

A technical problem with our presentation caused us to reject some legal Standard ML programs, because of type information was not tracked properly. This problem involved abstract types defined in anonymous structure expressions, defined locally in let or local at the module level, or hidden by SML's transparent ascription (strexp: sigexp). This has been corrected by:

1. Restricting the EL to named form at the module level, following Leroy [Ler96]. This can always be achieved by a simple prepass over the program. (The grammar in Section 5 shows what we mean by named form.)

2. In the case that let and local module forms define abstract types locally, in the translation we augment the bodies of these forms with extra "hidden" fields containing these abstract types. In conjunction with the restriction to named form, this has the effect of causing types concealed by transparent ascription to be *renamed* rather than dropped entirely.¹

Although the internal language module system presented here does not have most-specific signatures in general, we also ensure that all modules generated by the elaborator do have most-specific signatures. This means that the elaborator never requires "guessing" of signatures for modules such as functor applications.

1.4.4 Subtyping

We have dropped the implicit subsumption between total and partial function types; every expression now has a unique most-specific types up to equivalence. Unfortunately this means datatype and exception constructors must now be handled specially when used as function values. However, a full subtyping relation would seem to be overkill—at least until features such as objects are added to the internal language.

1.4.5 Syntactic concatenation

Rather than using the starred structure convention for general concatenation of modules, we use a syntactic concatenation of structure field bindings. This includes renaming to prevent ill-formed constructions where two fields share the same label.

¹For simplicity, the rules essentially augment the bodies of let and local with *all* the locally-defined quantities. Most of these—including all value components and transparent type components—are obviously unnecessary and undesirable in an actual implementation.

2 Internal Language Abstract Syntax

2.1 Constructors and Kinds

```
type variables
 con ::= var
             Int | Float | Char | · · ·
                                                         base types
             \{rdecs\}
                                                         record type
             con Ref
                                                         reference type
             con \rightharpoonup con'
                                                         partial function type
             con \rightarrow con'
                                                         total function type
             Tagged
                                                         extensible sum type
             con Tag
                                                         exception-tag type
            \Sigma_{\langle lab \rangle} (lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)
                                                         (labelled) sum type
             mod_{\rm v}.lab
                                                         module projection
             \lambda var:knd.con
                                                         constructor-level nonrecursive function
                                                         constructor-level fixpoint
            \mu \ con
             con\ con'
                                                         constructor application
             \{lab_1 = con_1, \ldots, lab_n = con_n\}
                                                         records of constructors
                                                         record projection
rdecs ::=
                                                         empty
            rdecs, rdec
                                                         sequence
 rdec ::= lab:con
                                                         record field type
 knd ::= \Omega
                                                         kind of types
          | \{lab_1:knd_1,\ldots,lab_n:knd_n\} 
 | knd \Rightarrow knd'
                                                         constructor tuple kinds
                                                         constructor function kinds
```

Figure 1: Constructors and Kinds

The syntax $\langle \cdots \rangle$ denotes a phrase which may optionally appear.

2.2 Expressions

```
constants
  exp ::= scon
             var
                                                          variables
                                                          memory locations
             loc
                                                          exception tags
             taq
             fix fbnds end
                                                          mutually-recursive functions
             exp \ exp'
                                                          application
             \{rbnds\}
                                                          record expression
                                                          record projection
             \pi_{lab} \ exp
             handle exp with exp'
                                                          handle exception
             \mathsf{raise}^{con}\ exp
                                                          raise exception
             \mathsf{ref}^{\mathit{con}}\ \mathit{exp}
                                                          allocate new ref cell
                                                          dereference
             get exp
             set(exp, exp')
                                                          assignment
             roll^{\stackrel{\circ}{con}} exp
                                                          coerce into \mu type
             unroll exp
                                                          coerce from \mu type
                                                          coerce from partial to total function
             \partial exp
             \operatorname{inj}_{lab}^{con} exp
\operatorname{proj}_{lab}^{con} exp
                                                          injection into sum
                                                          total projection from sum
             case^{con} exp of exp_1, \ldots, exp_n end
                                                          sum case analysis
             new_tag[con]
                                                          extend type Tagged
             tag(exp, exp)
                                                          injection into type Tagged
             iftagof exp is exp' then exp'' else exp'''
                                                          exception tag case analysis
             mod.lab
                                                          module projection
                                                          equalities at base types
             exp_1 =_{\mathsf{Int}} exp_2, exp_1 =_{\mathsf{Float}} exp_2, \dots
rbnds ::=
                                                          empty
          rbnds, rbnd
                                                          sequence
rbnd ::= lab = exp
                                                          record field binding
fbnds ::= \cdot
                                                          empty
          fbnds, fbnd
                                                          sequence
 fbnd ::= var'(var:con):con' \mapsto exp
                                                          function binding
 labs ::= lab \mid labs.lab
                                                          sequence of labels
 path ::= var | var.labs
                                                          path (qualified variable)
```

Figure 2: Expressions

2.3 Modules and Signatures

```
mod ::= var
                             module variable
           [sbnds]
                             structure
           \lambda var:sig.mod
                             functor
           mod \ mod'
                             functor application
           mod.lab
                             projection from structure
           mod:sig
                             signature ascription
sbnds ::=
                             structure field bindings
           sbnds, sbnd
sbnd ::= lab \triangleright bnd
 bnd ::= var = con
                             constructor binding
                             expression binding
           var = exp
           var = mod
                             module binding
  sig ::= [sdecs]
                             structure signature
         | (var:sig) \rightharpoonup sig' partial functor signature
                            total functor signature
sdecs ::= \cdot
                             structure field declarations
        sdecs, sdec
 sdec ::= lab \triangleright dec
 decs ::= \cdot
                             declaration lists
       decs, dec
  dec ::= var:con
                             expression variable declaration
           var:sig
                             module variable declaration
           var:knd
                             opaque type declaration
           var:knd=con
                             transparent type declaration
           loc:con
                             typed locations
           tag:con
                             typed exception tag
```

Figure 3: Modules and Signatures

2.4 Useful Abbreviations and Notation

- For readability, we often elide the internal names (var's) when writing out sbnds (and sdecs). In all cases it should be immediately obvious how to consistently restore these with fresh variables.
- We use $sig \rightarrow sig'$ and $sig \rightarrow sig'$ to abbreviate $(var:sig) \rightarrow sig'$ and $(var:sig) \rightarrow sig'$ respectively, where var is not free in sig'.
- Many grammatical classes (labs, decs, rdecs, rbnds, fbnds, sdecs, sbnds, etc.) specify lists of elements. For each of these classes we define a binary append operation, written

with a comma. For example, we define

$$decs, \cdot := decs$$

 $decs, (decs', dec') := (decs, decs'), dec'$

with analogous definitions for all the other classes listed above.

• It is useful to define the following very general syntactic categories of program phrases and program phrase classifiers:

- The notation $\{phrase/var\}phrase'$ denotes the capture-free substitution of phrase for free occurrences of var within phrase'.
- For consision, we often abbreviate structure bindings $lab \triangleright var = phrase$ as lab = phrase, (and similarly signature bindings $lab \triangleright var : class$ as lab : class) when the local name is not used. In all cases it should be obvious how to consistently insert fresh variables to correct these omissions.
- We occasionally use the abbreviation $(phrase_i)_{i=1}^n$ as shorthand for $phrase_1, \dots, phrase_n$ (where the phrases are comma-separated).
- The syntactic values of the language are defined in Figure 4. We view each class of syntactic values $(class_v)$ as subsets of the corresponding class in the abstract syntax (class).

```
\begin{array}{ccc} \mathit{mod}_v ::= & \mathit{path} \\ & | & [\mathit{sbnds}_v] \\ & | & \lambda \mathit{var} \mathpunct{:}\!\mathit{sig}.\mathit{mod} \end{array}
                                     loc
                                    tag
                               path
                                                                                                              \begin{array}{cccc} \mathit{bnd}_{v} ::= & \mathit{var} \! = \! \mathit{exp}_{v} \\ & | & \mathit{var} \! = \! \mathit{mod}_{v} \\ & | & \mathit{var} \! = \! \mathit{con} \end{array}
                                    \{rbnds_{\mathrm{v}}\}
                                    fix fbnds end
                                    \pi_{\overline{k}} \operatorname{fix} fbnds end \operatorname{inj}_{lab}^{con} exp_{\operatorname{v}}
                                    	ag(exp_{
m v}, exp_{
m v}') \ {
m roll}^{con} \ exp_{
m v}
                                                                                                         \mathit{sbnds}_v ::= \ \cdot
                                                                                                                                      sbnds_{
m v}, sbnd_{
m v}
                                     \partial \ exp_{\rm v}
                                                                                                            \mathit{sbnd}_{\mathsf{v}} ::= \mathit{lab} \colon \! \mathit{bnd}_{\mathsf{v}}
                            rbnds_{
m v}, rbnd_{
m v}
rbnd_{v} ::= lab = exp_{v}
        val ::= exp_{v}
                                     mod_{\mathrm{v}}
                                      con
```

Figure 4: IL values

2.5 Bindings and Scope

We define the functions $\mathrm{BV}(\cdot)$ and $\mathrm{dom}(\cdot)$ for various bindings, declarations, and lists thereof:

Function	Definition	
$\mathrm{BV}(\mathit{dec})$	BV(var:con) $BV(var:knd)$ $BV(var:knd=con)$ $BV(var:sig)$ $BV(loc:con)$ $BV(tag:con)$	= var $= var$ $= var$ $= var$ $= loc$ $= tag$
BV(decs)	$\mathrm{BV}(dec_1,\cdots,dec_n)$	$= \{\mathrm{BV}(dec_1), \cdots, \mathrm{BV}(dec_n)\}$
BV(sdecs)	$BV(lab_1 \triangleright dec_1, \cdots, lab_n \triangleright dec_n)$	$= \{\mathrm{BV}(dec_1), \cdots, \mathrm{BV}(dec_n)\}$
BV(bnd)	BV(var=exp) BV(var=con) BV(var=mod)	= var $= var$ $= var$
BV(sbnds)	$BV(lab_1 \triangleright bnd_1, \cdots, lab_n \triangleright bnd_n)$	$= \{\mathrm{BV}(bnd_1), \cdots, \mathrm{BV}(bnd_n)\}\$
dom(sdecs)	$dom(lab_1 \triangleright dec_1, \cdots, lab_n \triangleright dec_n)$	$=\{lab_1,\cdots,lab_n\}$
$\operatorname{dom}(rdecs)$	$dom(lab_1:con_1,\cdots,lab_n:con_n)$	$=\{lab_1,\cdots,lab_n\}$

The scopes of bound variables are given by the following table:

Binding Phrase	Bound Vars	Scope
$ fix fb nds, var'(var:con):exp \mapsto, fb nds' \text{ end} $	var' var	entire phrase exp
$\lambda var:knd.con$	$oxed{var}$	con
$sbnd, sbnds \ \lambda var: sig.mod$	$\begin{bmatrix} \mathrm{BV}(sbnd) \\ var \end{bmatrix}$	$sbnds \\ mod$
sdec, sdecs $var:sig \rightarrow sig'$ $var:sig \rightarrow sig'$	$egin{array}{c} \mathrm{BV}(sdec) \ var \ var \end{array}$	$sdecs \ sig' \ sig'$

We follow standard practice and identify all phrases which differ only with respect to bound variables, locations, and exception names. We use the notation FV(phrase) to denote the set of free variables in phrase. A phrase is said to be closed if it has no free variables (though it may contain free locations or tags).

3 Static Semantics

3.1 Introduction

In this section we define the well-formedness and typing judgments for the internal language. Points of interest include:

- There are no metatsyntactic "semantic objects" in the sense of the Definition.
- The rules are explicitly formulated so that a judgment holds only if its constituents (declaration lists, etc.) are well-formed.
- The *valuable* expressions always evaluate to a value without side-effects, referencing the store, or raising exceptions. Similarly, valuable modules evaluate without side-effects, referencing the store, or raising exceptions. The purpose of distinguishing total and partial functions, as well as total and partial functors, is to specify which function/functor applications are valuable.

3.2 Notation

• Within the static semantics, optional elements are enclosed by single brackets $\langle \cdots \rangle$. Within a single rule, either all such optional elements must occur, or none.

3.3 Judgment Forms

Section	Judgment	Meaning
3.4.1	$\vdash decs \text{ ok}$ $decs \vdash dec \text{ ok}$	decs is well-formed dec is well-formed
3.4.2	$decs \vdash bnd : dec$	bnd has declaration dec
3.4.3	$decs \vdash knd : Kind$	knd is well-formed
3.4.4	$decs \vdash con : knd$	con has kind knd
3.4.5	$decs \vdash con \equiv con' : knd$	constructor equivalence at kind knd
3.4.6	$decs \vdash exp : con$	exp has type con
3.4.7	$decs \vdash sdecs \text{ ok}$ $decs \vdash sig : Sig$	sdecs is well-formed sig is well-formed
3.4.8	$\begin{array}{l} decs \vdash sdecs \leq sdecs' \\ decs \vdash sig \leq sig' : Sig \end{array}$	component-wise subtyping signature subtyping
3.4.9	$decs \vdash sdecs \equiv sdecs'$ $decs \vdash sig \equiv sig' : Sig$	component-wise equivalence signature equivalence
3.4.10	$decs \vdash sbnds : sdecs$ $decs \vdash mod : sig$	sbnds has declaration list $sdecs$ mod has signature sig
3.4.11	$decs \vdash exp \downarrow con$ $decs \vdash mod \downarrow sig$ $decs \vdash exp \downarrow$ $decs \vdash sbnds \downarrow$ $decs \vdash mod \downarrow$	exp is valuable with type con mod is valuable with signature sig

3.4 Inference Rules

3.4.1 Well-formed Declarations

 $\vdash decs \ \mathbf{ok}$

$$\frac{decs \vdash dec \text{ ok}}{\vdash decs, dec \text{ ok}} \tag{2}$$

 $decs \vdash dec \ \mathbf{ok}$

$$\frac{decs \vdash knd : \mathsf{Kind} \quad var \not\in \mathsf{BV}(decs)}{decs \vdash var : knd \text{ ok}} \tag{3}$$

$$\frac{decs \vdash con : knd \quad var \notin BV(decs)}{decs \vdash var : knd = con \text{ ok}}$$
(4)

$$\frac{decs \vdash con : \Omega \qquad var \notin BV(decs)}{decs \vdash var : con \text{ ok}}$$
 (5)

$$\frac{decs \vdash sig : \mathsf{Sig} \quad var \not\in \mathsf{BV}(decs)}{decs \vdash var : sig \ \mathsf{ok}} \tag{6}$$

$$\frac{decs \vdash con \equiv con' \operatorname{Ref} : \Omega \quad loc \notin \operatorname{BV}(decs)}{decs \vdash loc:con \text{ ok}} \tag{7}$$

$$\frac{decs \vdash con \equiv con' \operatorname{Tag} : \Omega \qquad tag \notin \operatorname{BV}(decs)}{decs \vdash tag:con \text{ ok}} \tag{8}$$

3.4.2 Well-formed Bindings

 $decs \vdash bnd : dec$

$$\frac{decs \vdash con : knd}{decs \vdash var = con : var : knd} \tag{9}$$

$$\frac{decs \vdash con \equiv con' : knd}{decs \vdash var = con : var:knd = con'}$$
(10)

$$\frac{decs \vdash exp : con}{decs \vdash var = exp : var : con} \tag{11}$$

$$\frac{decs \vdash mod : sig' \qquad decs \vdash sig' \leq sig : \mathsf{Sig}}{decs \vdash var = mod : var : sig} \tag{12}$$

3.4.3 Well-formed Kinds

$$decs \vdash knd$$
: Kind

$$decs \vdash \Omega : \mathsf{Kind}$$
 (13)

$$\frac{lab_1, \dots, lab_n \text{ distinct} \quad n \ge 0}{decs \vdash \{lab_1: knd_1, \dots, lab_n: knd_n\} : \mathsf{Kind}}$$
(14)

$$\frac{decs \vdash knd : \mathsf{Kind} \qquad decs \vdash knd' : \mathsf{Kind}}{decs \vdash knd \Rightarrow knd' : \mathsf{Kind}} \tag{15}$$

3.4.4 Well-formed Constructors

 $decs \vdash con : knd$

$$\frac{decs = decs', var: knd \langle =con \rangle, decs''}{decs \vdash var: knd} \tag{16}$$

$$\frac{1}{decs} \vdash \mathsf{Tagged} : \Omega \tag{17}$$

$$\frac{decs \vdash con : \Omega}{decs \vdash con \operatorname{Ref} : \Omega} \tag{18}$$

$$\frac{decs \vdash con : \Omega}{decs \vdash con \, \mathsf{Tag} : \Omega} \tag{19}$$

$$\frac{decs \vdash con : \Omega \qquad decs \vdash con' : \Omega}{decs \vdash con \rightharpoonup con' : \Omega}$$
 (20)

$$\frac{decs \vdash con : \Omega \qquad decs \vdash con' : \Omega}{decs \vdash con \rightarrow con' : \Omega}$$
 (21)

$$\frac{lab_1, \dots, lab_n \text{ distinct}}{decs \vdash con_1 : \Omega \cdots decs \vdash con_n : \Omega}$$

$$\frac{decs \vdash \{lab_1 : con_1, \dots, lab_n : con_n\} : \Omega}{decs \vdash \{lab_1 : con_1, \dots, lab_n : con_n\} : \Omega}$$
(22)

$$\langle i \in 1..n \rangle$$

$$lab_1, \dots, lab_n \text{ distinct}$$

$$\frac{decs \vdash con_1 : \Omega \quad \cdots \quad decs \vdash con_n : \Omega}{decs \vdash \Sigma_{\langle lab_i \rangle} (lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n) : \Omega}$$
(23)

$$\frac{lab_1, \dots, lab_n \text{ distinct}}{decs \vdash con_1 : knd_1 \cdots decs \vdash con_n : knd_n} \frac{decs \vdash con_1 : knd_1 \cdots decs \vdash con_n : knd_n}{decs \vdash \{lab_1 = con_1, \dots, lab_1 = con_n\} : \{lab_1 : knd_1, \dots, lab_1 : knd_n\}}$$
(24)

$$\frac{i \in 1..n}{decs \vdash con : \{lab_1:knd_1, \dots, lab_n:knd_n\}} \\
\frac{decs \vdash \pi_{lab_i} con : knd_i}{}$$
(25)

$$\frac{decs, var:knd \vdash con : knd'}{decs \vdash \lambda var:knd.con : knd \Rightarrow knd'}$$
(26)

$$\frac{decs \vdash con : knd \Rightarrow knd}{decs \vdash \mu \ con : knd} \tag{27}$$

$$\frac{decs \vdash con : knd' \Rightarrow knd \qquad decs \vdash con' : knd'}{decs \vdash con \ con' : knd}$$
(28)

$$\frac{decs \vdash mod_{v} : [sdecs, lab \triangleright var:knd, sdecs']}{decs \vdash mod_{v}.lab : knd}$$
(29)

3.4.5 Constructor Equivalence

$$decs \vdash con \equiv con' : knd$$

$$\frac{decs = decs', var:knd = con, decs''}{decs \vdash var \equiv con : knd} \tag{30}$$

Rule 30: The well-formedness judgment $\vdash decs$ ok guarantees that $FV(con) \cap BV(decs'') = \emptyset$.

$$\frac{decs \vdash mod_{v} : [sdecs, lab:knd = con, sdecs']}{BV(sdecs) \cap FV(con) = \emptyset}$$
$$\frac{decs \vdash mod_{v}.lab \equiv con : knd}$$
(31)

Rule 31: The projection must yield a valid constructor with respect to the ambient context, decs. This can always be arranged through use of the self rules (Rules 101 and 102).

$$\frac{decs \vdash con_1 \equiv con_2 : \Omega \qquad decs \vdash con'_1 \equiv con'_2 : \Omega}{decs \vdash con_1 \rightharpoonup con'_1 \equiv con_2 \rightharpoonup con'_2 : \Omega}$$
(32)

$$\frac{decs \vdash con_1 \equiv con_2 : \Omega \qquad decs \vdash con'_1 \equiv con'_2 : \Omega}{decs \vdash con_1 \rightarrow con'_1 \equiv con_2 \rightarrow con'_2 : \Omega}$$
(33)

$$\frac{decs \vdash con \equiv con' : \Omega}{decs \vdash con \operatorname{Ref} \equiv con' \operatorname{Ref} : \Omega}$$
(34)

$$\frac{decs \vdash con \equiv con' : \Omega}{decs \vdash con \mathsf{Tag} \equiv con' \mathsf{Tag} : \Omega}$$
(35)

$$lab_1, \ldots, lab_n$$
 distinct

$$\frac{\forall i \in 1..n: decs \vdash con_i \equiv con'_i : \Omega}{decs \vdash \{lab_1: con_1, \cdots, lab_n: con_n\} \equiv \{lab_1: con'_1, \cdots, lab_n: con'_n\} : \Omega}$$
(36)

Rule 36: To be equivalent, two IL record types must have equivalent components with the same labels in the same order.

$$\frac{i \in 1..n}{decs \vdash con \equiv con' : \{lab_1:knd_1, \dots, lab_n:knd_n\}}{decs \vdash \pi_{lab_i} con \equiv \pi_{lab_i} con' : knd_i}$$
(37)

$$\frac{decs \vdash con \equiv \{lab_1: con_1, \dots, lab_n: con_n\} : \{lab_1: knd_1, \dots, lab_n: knd_n\}}{decs \vdash \pi_{lab_i} \ con \equiv con_i : knd_i}$$
(38)

$$\frac{decs \vdash con \equiv con' : knd \Rightarrow knd}{decs \vdash \mu \ con \equiv \mu \ con' : knd}$$
(39)

$$\frac{decs \vdash con_{1} \equiv con'_{1} : \Omega \quad \cdots \quad decs \vdash con_{n} \equiv con'_{n} : \Omega}{decs \vdash \sum_{\langle lab_{i} \rangle} (lab_{1} \mapsto con_{1}, \dots, lab_{n} \mapsto con_{n}) \equiv \sum_{\langle lab_{i} \rangle} (lab_{1} \mapsto con'_{1}, \dots, lab_{n} \mapsto con'_{n}) : \Omega}$$
(40)

$$decs \vdash con_1 \equiv con_2 : knd' \Rightarrow knd$$

$$decs \vdash con'_1 \equiv con'_2 : knd'$$

$$decs \vdash con_1 \ con_2 \equiv con'_1 \ con'_2 : knd$$

$$(41)$$

$$\frac{decs, var:knd' \vdash con : knd}{decs \vdash (\lambda var:knd'.con) \ con' \equiv \{con'/var\}con : knd}$$
 (42)

$$\frac{decs \vdash con : knd}{decs \vdash con \equiv con : knd} \tag{43}$$

$$\frac{decs \vdash con' \equiv con : knd}{decs \vdash con \equiv con' : knd} \tag{44}$$

$$decs \vdash con \equiv con' : knd$$

$$decs \vdash con' \equiv con'' : knd$$

$$decs \vdash con \equiv con'' : knd$$

$$(45)$$

Well-formed Expressions 3.4.6

 $decs \vdash exp : con$

$$\frac{decs = decs', var:con, decs''}{decs \vdash var:con}$$

$$(46)$$

$$\frac{decs = decs', loc:con, decs''}{decs \vdash loc:con}$$

$$(47)$$

$$\frac{decs = decs', tag:con, decs''}{decs \vdash tag:con} \tag{48}$$

$$\frac{decs \vdash exp : con' \rightharpoonup con \qquad decs \vdash exp' : con'}{decs \vdash exp \ exp' : con} \tag{49}$$

$$\frac{decs \vdash exp : con' \rightarrow con \quad decs \vdash exp' : con'}{decs \vdash exp \ exp' : con}$$
 (50)

$$\forall i \in 1..n: decs, (var'_{j}:con_{j} \rightharpoonup con'_{j})_{j=1}^{n}, var_{i}:con_{i} \vdash exp_{i}:con'_{i}$$
Rule 52 does not apply.

$$\frac{\text{Rule 52 does not apply.}}{\text{Rule 52 does not apply.}}$$
(51)

$$decs \vdash \text{fix} (var'_i(var_i:con_i):con'_i \mapsto exp_i)_{i=1}^n \text{ end } :$$

$$\{1:con_1 \rightharpoonup con'_1, \dots, n:con_n \rightharpoonup con'_n\}$$

$$var' \notin FV exp$$

$$decs, var:con \vdash exp \downarrow con'$$

$$\overline{decs \vdash fix \ var'(var:con):con' \mapsto exp \ end : \{\overline{1}:con \rightarrow con'\}}$$
(52)

$$\frac{lab_1, \cdots, lab_n \text{ distinct}}{decs \vdash exp_1 : con_1 \cdots decs \vdash exp_n : con_n}$$

$$\frac{decs \vdash \{lab_1 = exp_1, \cdots, lab_n = exp_n\} : \{lab_1 : con_1, \cdots, lab_n : con_n\}}{decs \vdash \{lab_1 = exp_1, \cdots, lab_n = exp_n\} : \{lab_1 : con_1, \cdots, lab_n : con_n\}}$$
(53)

Rule 53: For the record bindings to be well-typed with respect to the declarations, they must have the same labels in the same order (with no duplicate labels) and components must be well-typed elementwise.

$$\frac{decs \vdash exp : \{rdecs, lab:con, rdecs'\}}{decs \vdash \pi_{lab} \ exp : con}$$

$$(54)$$

$$\frac{decs \vdash exp : con \qquad decs \vdash exp' : \mathsf{Tagged} \rightharpoonup con}{decs \vdash \mathsf{handle} \ exp \ \mathsf{with} \ exp' : con} \tag{55}$$

$$\frac{decs \vdash exp : \mathsf{Tagged} \qquad decs \vdash con : \Omega}{decs \vdash \mathsf{raise}^{con} \ exp : con} \tag{56}$$

$$\frac{decs \vdash con : \Omega}{decs \vdash \mathsf{new_tag}[con] : con \mathsf{Tag}} \tag{57}$$

$$\frac{decs \vdash exp : con}{decs \vdash \mathsf{ref}^{con} \ exp : con \ \mathsf{Ref}} \tag{58}$$

$$\frac{decs \vdash exp : con \operatorname{Ref}}{decs \vdash \operatorname{get} exp : con} \tag{59}$$

$$\frac{decs \vdash exp : con \operatorname{Ref}}{decs \vdash exp' : con}$$

$$\frac{decs \vdash \operatorname{set}(exp, exp') : \operatorname{Unit}}{decs \vdash \operatorname{set}(exp, exp') : \operatorname{Unit}}$$
(60)

$$\frac{decs \vdash con \equiv (\pi_{lab} (\mu con')) \langle con'' \rangle : \Omega}{\frac{decs \vdash exp : (\pi_{lab} (con' (\mu con'))) \langle con'' \rangle}{decs \vdash roll^{con} exp : con}}$$
(61)

$$\frac{decs \vdash con \equiv (\pi_{lab} (\mu \ con')) \langle con'' \rangle : \Omega}{decs \vdash exp : con} \frac{decs \vdash unroll \ exp : (\pi_{lab} (con' (\mu \ con'))) \langle con'' \rangle}{(62)}$$

$$\frac{decs \vdash exp : con \rightarrow con'}{decs \vdash \partial exp : con \rightarrow con'}$$

$$(63)$$

$$i \in 1..n$$

$$con = \sum_{lab_i} (lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)$$

$$\frac{decs \vdash exp : con_i}{decs \vdash \mathsf{inj}_{lab_i}^{con} exp : con}$$
(64)

$$\frac{i \in 1..n}{\frac{decs \vdash exp : \sum_{lab_{i}} (lab_{1} \mapsto con_{1}, \dots, lab_{n} \mapsto con_{n})}{decs \vdash \operatorname{proj}_{lab_{i}}^{\sum_{lab_{i}} (lab_{1} \mapsto con_{1}, \dots, lab_{n} \mapsto con_{n})} exp : con_{i}}}$$
(65)

$$con = \sum (lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)$$

$$decs \vdash exp : con$$

$$\forall i \in 1..n : decs \vdash exp_i : \sum_{lab_i} (lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n) \rightarrow con'$$

$$decs \vdash case^{con} \ exp \ of \ exp_1, \dots, exp_n \ end : con'$$

$$(66)$$

$$\frac{decs \vdash exp : con \, \mathsf{Tag} \qquad decs \vdash exp' : con}{decs \vdash \mathsf{tag}(exp, exp') : \mathsf{Tagged}} \tag{67}$$

$$\frac{decs \vdash exp : \mathsf{Tagged} \qquad decs \vdash exp' : con \, \mathsf{Tag}}{decs \vdash exp'' : con \rightharpoonup con' \qquad decs \vdash exp''' : con'}$$

$$\frac{decs \vdash \mathsf{iftagof} \, exp \, \mathsf{is} \, exp' \, \mathsf{then} \, exp'' \, \mathsf{else} \, exp''' : con'}{decs \vdash \mathsf{iftagof} \, exp \, \mathsf{is} \, exp' \, \mathsf{then} \, exp'' \, \mathsf{else} \, exp''' : con'}$$
(68)

$$\frac{decs \vdash mod : [sdecs, lab:con, sdecs']}{BV(sdecs) \cap FV(con) = \emptyset}$$

$$\frac{decs \vdash mod.lab : con}{decs \vdash mod.lab : con}$$
(69)

Rule 69: A projection is only well-formed if the result is typable. If mod is a value, the projection is always well-formed.

$$\frac{decs \vdash exp : con' \quad decs \vdash con \equiv con' : \Omega}{decs \vdash exp : con}$$
 (70)

3.4.7 Well-formed Signatures

 $decs \vdash sdecs$ ok

$$\frac{\vdash decs \text{ ok}}{decs \vdash \cdot \text{ ok}} \tag{71}$$

$$decs \vdash dec \text{ ok}$$

$$decs, dec \vdash sdecs \text{ ok}$$

$$lab \notin dom(sdecs)$$

$$decs \vdash lab \triangleright dec, sdecs \text{ ok}$$

$$(72)$$

 $decs \vdash sig : \mathsf{Sig}$

$$\frac{decs \vdash sdecs \text{ ok}}{decs \vdash [sdecs] : \mathsf{Sig}} \tag{73}$$

$$\frac{decs, var:sig \vdash sig' : \mathsf{Sig}}{decs \vdash var:sig \rightharpoonup sig' : \mathsf{Sig}}$$

$$\tag{74}$$

$$\frac{decs, var:sig \vdash sig' : \mathsf{Sig}}{decs \vdash var:sig \rightarrow sig' : \mathsf{Sig}}$$

$$\tag{75}$$

3.4.8 Signature Subtyping

 $decs \vdash sdecs \leq sdecs'$

$$\frac{1}{decs \vdash \cdot < \cdot} \tag{76}$$

$$\frac{decs, var:knd = con \vdash sdecs \leq sdecs'}{decs \vdash lab \triangleright var:knd = con, sdecs \leq lab \triangleright var:knd, sdecs'}$$

$$(77)$$

$$\frac{decs \vdash sig \leq sig' : \mathsf{Sig}}{decs, var : sig \vdash sdecs \leq sdecs'}$$

$$\frac{decs \vdash lab \triangleright var : sig, sdecs \leq lab \triangleright var : sig', sdecs'}{(78)}$$

$$\frac{decs \vdash lab:dec \equiv lab:dec'}{decs, dec \vdash sdecs \leq sdecs'}$$

$$\frac{decs \vdash lab \triangleright dec, sdecs \leq lab \triangleright dec', sdecs'}{(79)}$$

$$decs \vdash sig \leq sig' : \mathsf{Sig}$$

$$\frac{decs \vdash sdecs \leq sdecs'}{decs \vdash [sdecs] \leq [sdecs'] : \mathsf{Sig}}$$
(80)

$$\frac{decs \vdash sig_2 \leq sig_1 : \mathsf{Sig} \quad decs, var: sig_2 \vdash sig_1' \leq sig_2' : \mathsf{Sig}}{decs \vdash var: sig_1 \rightharpoonup sig_1' \leq var: sig_2 \rightharpoonup sig_2' : \mathsf{Sig}} \tag{81}$$

$$\frac{decs \vdash sig_2 \leq sig_1 : \mathsf{Sig} \quad decs, var: sig_2 \vdash sig_1' \leq sig_2' : \mathsf{Sig}}{decs \vdash var: sig_1 \rightarrow sig_1' \leq var: sig_2 \rightarrow sig_2' : \mathsf{Sig}} \tag{82}$$

$$\frac{decs \vdash sig_2 \leq sig_1 : \mathsf{Sig} \quad decs, var: sig_2 \vdash sig_1' \leq sig_2' : \mathsf{Sig}}{decs \vdash var: sig_1 \rightarrow sig_1' \leq var: sig_2 \rightarrow sig_2' : \mathsf{Sig}} \tag{83}$$

3.4.9 Signature Equivalence

$$decs \vdash sdecs \equiv sdecs'$$

$$\frac{1}{decs \vdash \cdot = \cdot} \tag{84}$$

$$\frac{decs, var:knd \vdash sdecs \equiv sdecs'}{decs \vdash lab \triangleright var:knd, sdecs \equiv lab \triangleright var:knd, sdecs'}$$
(85)

$$\frac{decs \vdash con \equiv con' : knd \quad decs, var:knd = con \vdash sdecs \equiv sdecs'}{decs \vdash lab \triangleright var:knd = con, sdecs \equiv lab \triangleright var:knd = con', sdecs'}$$
(86)

$$\frac{decs \vdash con \equiv con' : \Omega \quad decs, var: con \vdash sdecs \equiv sdecs'}{decs \vdash lab \triangleright var: con, sdecs \equiv lab \triangleright var: con', sdecs'}$$
(87)

$$\frac{decs \vdash sig \equiv sig' : knd \quad decs, var:sig \vdash sdecs \equiv sdecs'}{decs \vdash lab \triangleright var:sig, sdecs \equiv lab \triangleright var:sig', sdecs'}$$
(88)

$$decs \vdash sig \equiv sig' : \mathsf{Sig}$$

$$\frac{decs \vdash sdecs \equiv sdecs'}{decs \vdash [sdecs] \equiv [sdecs'] : \mathsf{Sig}}$$
(89)

$$\frac{decs \vdash sig_1 \equiv sig_2 : \mathsf{Sig} \qquad decs, var : sig_1 \vdash sig_1' \equiv sig_2' : \mathsf{Sig}}{decs \vdash var : sig_1 \rightharpoonup sig_1' \equiv var : sig_2 \rightharpoonup sig_2' : \mathsf{Sig}}$$
(90)

$$\frac{decs \vdash sig_1 \equiv sig_2 : \mathsf{Sig} \qquad decs, var: sig_1 \vdash sig_1' \equiv sig_2' : \mathsf{Sig}}{decs \vdash var: sig_1 \rightarrow sig_1' \equiv var: sig_2 \rightarrow sig_2' : \mathsf{Sig}} \tag{91}$$

3.4.10 Well-formed Modules

$$decs \vdash sbnds : sdecs$$

$$\frac{1}{decs \vdash \cdot : \cdot} \tag{92}$$

$$\frac{decs \vdash bnd : dec}{decs \vdash lab \triangleright bnd, sbnds : lab \triangleright dec, sdecs}$$
(93)

 $\overline{decs} \vdash mod : sig$

$$\frac{decs = decs', var:sig, decs''}{decs \vdash var:sig}$$
(94)

$$\frac{decs \vdash sbnds : sdecs}{decs \vdash [sbnds] : [sdecs]} \tag{95}$$

$$\frac{decs, var:sig \vdash mod : sig'}{decs \vdash \lambda var:sig.mod : var:sig \rightharpoonup sig'}$$

$$(96)$$

$$\frac{decs, var: sig \vdash mod \downarrow sig'}{decs \vdash \lambda var: sig.mod : var: sig \rightarrow sig'}$$

$$(97)$$

$$\frac{decs \vdash mod : sig' \rightarrow sig \qquad decs \vdash mod' : sig'}{decs \vdash mod \ mod' : sig}$$

$$(98)$$

Rule 98: Only functors with non-dependent types may be applied. Dependencies can be eliminated by uses of the subtyping and equivalence rules. If the argument is a value, dependencies can always be eliminated.

$$\frac{decs \vdash mod : [sdecs, lab:sig, sdecs']}{BV(sdecs) \cap FV(sig) = \emptyset}$$

$$\frac{decs \vdash mod.lab : sig}{decs \vdash mod.lab : sig}$$
(99)

Rule 99: A projection is only well-formed if the result can be given a signature in the ambient context. If mod is a value, this can always occur.

$$\frac{decs \vdash mod : sig}{decs \vdash mod : sig : sig} \tag{100}$$

Rule 100: Ascription of a signature to a module can make types in mod abstract by forgetting equations.

$$\frac{decs \vdash mod_{v} : [sdecs, lab \triangleright var:knd, sdecs']}{decs \vdash mod_{v} : [sdecs, lab \triangleright var:knd = mod_{v}.lab, sdecs']}$$
(101)

Rule 101: The "self" rule. If mod.labs specifies a type and mod has a well-defined value then $mod.labs \equiv mod.labs$; we add this fact to the signature.

$$\frac{decs \vdash mod_{v} : [sdecs, lab \triangleright var : sig, sdecs']}{decs \vdash mod_{v} . lab : sig'}$$

$$\frac{decs \vdash mod_{v} : [sdecs, lab \triangleright var : sig', sdecs']}{(102)}$$

Rule 102: The "self" rule can be recursively applied.

$$\frac{decs \vdash mod : sig \qquad decs \vdash sig \le sig' : \mathsf{Sig}}{decs \vdash mod : sig'} \tag{103}$$

3.4.11 Valuability

$$decs \vdash exp \downarrow con$$

$$\frac{decs \vdash exp : con \qquad decs \vdash exp \downarrow}{decs \vdash exp \downarrow con} \tag{104}$$

$$decs \vdash mod \downarrow sig$$

$$\frac{decs \vdash mod : sig \qquad decs \vdash mod \downarrow}{decs \vdash mod \downarrow sig} \tag{105}$$

$$decs \vdash exp \downarrow$$

$$\frac{1}{decs \vdash exp_{v} \downarrow} \tag{106}$$

$$\frac{decs \vdash mod \downarrow}{decs \vdash mod.lab \downarrow} \tag{107}$$

$$\frac{decs \vdash exp_1 \downarrow con' \rightarrow con \qquad decs \vdash exp_2 \downarrow}{decs \vdash exp_1 exp_2 \downarrow}$$
 (108)

$$\frac{decs \vdash exp_1 \downarrow \cdots decs \vdash exp_n \downarrow}{decs \vdash \{lab_1 = exp_1, \cdots, lab_n = exp_n\} \downarrow}$$
(109)

$$\frac{decs \vdash exp \downarrow}{decs \vdash \pi_{lab} \ exp \downarrow} \tag{110}$$

$$\frac{decs \vdash exp \downarrow}{decs \vdash roll^{con} exp \downarrow} \tag{111}$$

$$\frac{decs \vdash exp \downarrow}{decs \vdash \mathsf{unroll}\, exp \downarrow} \tag{112}$$

$$\frac{decs \vdash exp \downarrow}{decs \vdash \mathsf{inj}_{lab}^{con} exp \downarrow} \tag{113}$$

$$\frac{1}{decs \vdash \mathsf{proj}_{lab}^{con} \ exp \downarrow} \tag{114}$$

$$\frac{decs \vdash exp \downarrow \qquad decs \vdash exp' \downarrow}{decs \vdash \mathsf{tag}(exp, exp') \downarrow} \tag{115}$$

$$decs \vdash exp \downarrow$$

$$\frac{decs \vdash exp_1 \downarrow \cdots \stackrel{1}{decs} \vdash exp_n \downarrow}{decs \vdash \mathsf{case}^{con} \; exp \; \mathsf{of} \; exp_1, \ldots, exp_n \; \mathsf{end} \; \downarrow} \tag{116}$$

$decs \vdash sbnds \downarrow$

$$\frac{1}{decs \vdash \cdot \downarrow} \tag{117}$$

$$\frac{decs \vdash exp \downarrow con \quad decs, var:con \vdash sbnds \downarrow}{decs \vdash lab \triangleright var = exp, sbnds \downarrow}$$
(118)

$$\frac{decs \vdash con : knd \qquad decs, var:knd = con \vdash sbnds \downarrow}{decs \vdash lab \triangleright var = con, sbnds \downarrow}$$
(119)

$$\frac{decs \vdash mod \downarrow sig \qquad decs, var:sig \vdash sbnds \downarrow}{decs \vdash lab \triangleright var=mod, sbnds \downarrow}$$
 (120)

$decs \vdash mod \downarrow$

$$\frac{1}{decs \vdash mod_{v} \downarrow} \tag{121}$$

$$\frac{decs \vdash sbnds \downarrow}{decs \vdash \lceil sbnds \rceil \downarrow} \tag{122}$$

$$\frac{decs \vdash mod \downarrow sig' \rightarrow sig \qquad decs \vdash mod' \downarrow}{decs \vdash mod \ mod' \downarrow}$$
 (123)

$$\frac{decs \vdash mod \downarrow}{decs \vdash mod .lab \downarrow} \tag{124}$$

$$\frac{decs \vdash mod \downarrow}{decs \vdash mod:siq \downarrow} \tag{125}$$

4 Dynamic Semantics

4.1 Introduction

The dynamic semantics of the internal language is a call-by-value operational semantics presented as a rewriting system on states of an abstract machine. The presentation is strongly influenced by the work of Plotkin [Plo81] and Wright and Felleisen [WF91], and is a significant departure from the framework employed in *The Definition*. In particular we employ a *small step* semantics in which transitions represent basic evaluation steps of an abstract machine. We rely on substitution, rather than environments; values are particular expressions of the language. Exception propagation is handled by explicitly maintaining the evaluation context, rather than relying on implicit rules for exception propagation. We maintain a store for assignable cells, as in *The Definition*, and a typing context which types locations and dynamically-created tags associated with values of type Tagged; these are the only extra-linguistic constructs in the formalism. As Wright and Felleisen have demonstrated these could be made part of the language by introducing a letref construct.

Each state Σ of the abstract machine is a four-tuple of the form

$$(\Delta, \sigma, E, phrase),$$

where

- Δ is a typing context (decs) for locations and tags created at run-time. This maintains a record of what exception tags and locations have been allocated, and is also used in our soundness proofs.
- σ is a finite mapping from locations (loc's) typed in Δ to expression values (exp_v). The syntax for all internal language values appeared in Figure 4.
- E is a stack of evaluation frames (see Figure 5). This represents an implementation's control stack, or equivalently, the current continuation. Appending two stacks corresponds to composition of continuations; accordingly, we write $E \circ E'$ for the concatenation of E and E', defined in the obvious way. The meta-variable R ranges over control stacks that do not contain a frame of the form "handle [] with exp".
- phrase is an expression, module, or constructor.

We let Σ_t range over the set of terminal states, where a state is called *terminal* if it has one of the forms:

$$(\Delta, \sigma, [], val)$$
 normal termination $(\Delta, \sigma, [], \mathsf{raise}^{con} \ exp_{\mathsf{v}})$ uncaught exception

All other states are called *nonterminal*.

The dynamic semantics is a transition relation $\Sigma \hookrightarrow \Sigma'$ between states. As usual, we denote the reflexive, transitive closure of \hookrightarrow by \hookrightarrow^* .

```
F ::= [] exp
             exp_{\rm v} []
             \{rbnds_{v}, lab=[], rbnds\}
             \pi_{lab} []
             handle [] with exp
             raise con []
             \mathsf{ref}^{\mathit{con}}\left[\right]
             get []
             set([], exp)
             \operatorname{set}\left(\operatorname{exp}_{\operatorname{v}},[]\right)
             roll con []
             unroll []
             \partial
             \mathsf{inj}_i^{\mathit{con}}\left[\right]
             \operatorname{proj}_i^{con}[]
             case ^{con} [] of exp_1, \ldots, exp_n end
             tag(exp_{v},[])
             iftagof [] is exp' then exp'' else exp'''
             iftagof exp_v is [] then exp'' else exp'''
             [].lab
             [sbnds_{v}, lab \triangleright var = [], sbnds]
             [] mod
             mod_{\mathrm{v}}[]
             []:sig
E ::= []
       E \circ F
```

Figure 5: Evaluation Frames

4.2 Transition Relation

4.2.1 Search for Next Redex

$$(\Delta, \sigma, E, exp \ exp') \hookrightarrow (\Delta, \sigma, E \circ ([] \ exp'), exp) \tag{126}$$

$$(\Delta, \sigma, E \circ ([] exp), exp_{v}) \hookrightarrow (\Delta, \sigma, E \circ (exp_{v} []), exp)$$
 (127)

$$(\Delta, \sigma, E, \{rbnds_{v}, lab = exp, rbnds\}) \hookrightarrow (\Delta, \sigma, E \circ \{rbnds_{v}, lab = [], rbnds\}, exp)$$
 if exp is not a value (128)

$$(\Delta, \sigma, E \circ \{rbnds_{\mathbf{v}}, lab = [], rbnds_{\mathbf{v}}'\}, exp_{\mathbf{v}}) \hookrightarrow (\Delta, \sigma, E, \{rbnds_{\mathbf{v}}, lab = exp_{\mathbf{v}}, rbnds_{\mathbf{v}}'\})$$
(129)

$$(\Delta, \sigma, E \circ \{rbnds_{v}, lab=[], rbnds_{v}', lab'=exp', rbnds\}, exp_{v}) \hookrightarrow (\Delta, \sigma, E \circ \{rbnds_{v}, lab=exp_{v}, rbnds_{v}', lab'=[], rbnds\}, exp')$$

$$if exp' is not a value$$

$$(130)$$

$$(\Delta, \sigma, E, \pi_{lab} \ exp) \hookrightarrow (\Delta, \sigma, E \circ (\pi_{lab} \ []), exp)$$
if exp' is not a fix value (131)

$$(\Delta, \sigma, E, \text{ handle } exp \text{ with } exp') \hookrightarrow (\Delta, \sigma, E \circ (\text{handle } [] \text{ with } exp'), exp)$$
 (132)

$$(\Delta, \sigma, E, \mathsf{raise}^{con} \ exp) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{raise}^{con} \ []), \ exp)$$
if exp is not a value

$$(\Delta, \sigma, E \circ (\mathsf{raise}^{con} []), exp_v) \hookrightarrow (\Delta, \sigma, E, \mathsf{raise}^{con} exp_v)$$
 (134)

$$(\Delta, \sigma, E, \mathsf{ref}^{con} \ exp) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{ref}^{con} \ []), exp) \tag{135}$$

$$(\Delta, \sigma, E, \mathsf{get} \; exp) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{get}[]), exp) \tag{136}$$

$$(\Delta, \sigma, E, \mathsf{set}(exp, exp')) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{set}([], exp')), exp) \tag{137}$$

$$(\Delta, \sigma, E \circ (\mathsf{set}([], exp)), exp_{\mathsf{v}}) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{set}(exp_{\mathsf{v}}, [])), exp) \tag{138}$$

$$(\Delta, \sigma, E, \mathsf{roll}^{con} \ exp) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{roll}^{con} \ []), exp)$$
if exp is not a value (139)

$$(\Delta, \sigma, E \circ (\mathsf{roll}^{con} []), exp_{v}) \hookrightarrow (\Delta, \sigma, E, \mathsf{roll}^{con} exp_{v})$$
(140)

$$(\Delta, \sigma, E, \mathsf{unroll}\ exp) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{unroll}\ []), exp) \tag{141}$$

$$(\Delta, \sigma, E, \partial \ exp) \hookrightarrow (\Delta, \sigma, E \circ (\partial []), exp)$$
if exp is not a value (142)

$$(\Delta, \sigma, E \circ (\partial []), exp_{v}) \hookrightarrow (\Delta, \sigma, E, \partial exp_{v})$$
(143)

$$(\Delta, \sigma, E, \mathsf{inj}_{lab}^{con} \ exp) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{inj}_{lab}^{con} \ []), \ exp)$$
if exp is not a value

$$(\Delta, \sigma, E \circ (\mathsf{inj}_{lab}^{con} []), exp_{v}) \hookrightarrow (\Delta, \sigma, E, \mathsf{inj}_{lab}^{con} exp_{v})$$
 (145)

$$(\Delta, \sigma, E, \operatorname{proj}_{lab}^{con} exp) \hookrightarrow (\Delta, \sigma, E \circ (\operatorname{proj}_{lab}^{con} []), exp)$$

$$(146)$$

$$(\Delta, \sigma, E, \mathsf{tag}(exp, exp')) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{tag}([], exp')), exp)$$
if exp or exp' is not a value (147)

$$(\Delta, \sigma, E \circ \mathsf{tag}([], exp), exp_{\mathsf{v}}) \hookrightarrow (\Delta, \sigma, E \circ (\mathsf{tag}(exp_{\mathsf{v}}, [])), exp) \tag{148}$$

$$(\Delta, \sigma, E \circ (\mathsf{tag}(exp_{\mathsf{v}}, [])), exp_{\mathsf{v}}') \hookrightarrow (\Delta, \sigma, E, \mathsf{tag}(exp_{\mathsf{v}}, exp_{\mathsf{v}}')) \tag{149}$$

$$(\Delta, \sigma, E, \text{iftagof } exp \text{ is } exp' \text{ then } exp'' \text{ else } exp''') \hookrightarrow (\Delta, \sigma, E \circ (\text{iftagof } [] \text{ is } exp' \text{ then } exp'' \text{ else } exp'''), exp)$$
 (150)

$$(\Delta, \sigma, E \circ (\mathsf{iftagof} [] \mathsf{is} \ exp' \ \mathsf{then} \ exp'' \ \mathsf{else} \ exp'''), \ exp_{\mathsf{v}}) \hookrightarrow \\ (\Delta, \sigma, E \circ (\mathsf{iftagof} \ exp_{\mathsf{v}} \ \mathsf{is} [] \ \mathsf{then} \ exp'' \ \mathsf{else} \ exp'''), \ exp')$$

$$(151)$$

$$(\Delta, \sigma, E, [lab \triangleright var = phrase, sbnds]) \hookrightarrow (\Delta, \sigma, E \circ [lab \triangleright var = [], sbnds], phrase)$$

$$(152)$$

$$(\Delta, \sigma, E \circ [sbnds_{v}, lab \triangleright var = [], \\ lab' \triangleright var' = phrase, sbnds], val) \hookrightarrow \\ (\Delta, \sigma, E \circ [sbnds_{v}, lab \triangleright var = val, \\ lab' \triangleright var' = [], \{val/var\}sbnds], \{val/var\}phrase)$$

$$(153)$$

$$(\Delta, \sigma, E \circ [sbnds_{v}, lab \triangleright var = []], val) \hookrightarrow (\Delta, \sigma, E, [sbnds_{v}, lab \triangleright var = val])$$

$$(154)$$

$$(\Delta, \sigma, E, mod.lab) \hookrightarrow (\Delta, \sigma, E \circ [].lab, mod) \tag{155}$$

$$(\Delta, \sigma, E, mod \ mod') \hookrightarrow (\Delta, \sigma, E \circ ([] \ mod'), mod) \tag{156}$$

$$(\Delta, \sigma, E \circ ([] \ mod'), mod_{v}) \hookrightarrow (\Delta, \sigma, E \circ (mod_{v} []), mod)$$

$$(157)$$

$$(\Delta, \sigma, E, mod:sig) \hookrightarrow (\Delta, \sigma, E \circ []:sig, mod) \tag{158}$$

4.2.2 Reduction

$$(\Delta, \sigma, E \circ (exp_{v}^{j} []), exp_{v}) \hookrightarrow (\Delta, \sigma, E, \{exp_{v}^{1}/var'_{1}\} \cdots \{exp_{v}^{n}/var'_{n}\} \{exp_{v}/var_{j}\} exp_{j}) \text{ where } \forall k \in 1..n : exp_{v}^{k} = \langle \partial \rangle \pi_{\overline{k}} \operatorname{fix} (var'_{i}(var_{i}:con_{i}):con'_{i} \mapsto exp_{j})_{i=1}^{n} \operatorname{end}$$

$$(159)$$

$$(\Delta, \sigma, E \circ (\pi_{lab} []), \{rbnds_{v}, lab = exp_{v}, rbnds_{v}'\}) \hookrightarrow (\Delta, \sigma, E, exp_{v})$$

$$(160)$$

$$(\Delta, \sigma, E \circ (\mathsf{handle}[] \mathsf{with} \ exp), \ exp_v) \hookrightarrow (\Delta, \sigma, E, \ exp_v)$$
 (161)

$$(\Delta, \sigma, E \circ (\mathsf{ref}^{con}[]), exp_{v}) \hookrightarrow (\Delta[loc:con], \sigma[loc \mapsto exp_{v}], E, loc)$$
 if $loc \not\in BV(\Delta)$ (162)

$$(\Delta, \sigma, E \circ (\mathsf{get}[]), loc) \hookrightarrow (\Delta, \sigma, E, exp_{v})$$

$$if \ \sigma(loc) = exp_{v}$$

$$(163)$$

$$(\Delta, \sigma, E \circ (\mathsf{set}(loc, [])), exp_{\mathsf{v}}) \hookrightarrow (\Delta, \sigma[loc \mapsto exp_{\mathsf{v}}], E, \{\})$$

$$(164)$$

$$(\Delta, \sigma, E \circ (\mathsf{unroll}\,[]), \mathsf{roll}^{con'}\, exp_{\mathsf{v}}) \hookrightarrow (\Delta, \sigma, E, exp_{\mathsf{v}})$$
 (165)

$$(\Delta, \sigma, E, \mathsf{new_tag}[\mathit{con}]) \hookrightarrow (\Delta[\mathit{tag}: \mathit{con}\,\mathsf{Tag}], \sigma, E, \mathit{tag})$$
if $\mathit{tag} \not\in \mathsf{BV}(\Delta)$

$$(\Delta, \sigma, E \circ (\operatorname{proj}_{lab'}^{con'}[]), \operatorname{inj}_{lab}^{con} exp_{v}) \hookrightarrow (\Delta, \sigma, E, exp_{v})$$

$$(167)$$

$$\begin{array}{l} (\Delta, \sigma, E \circ (\mathsf{case}^{con} \, [] \, \mathsf{of} \, exp_1, \ldots, exp_n \, \mathsf{end}), \mathsf{inj}_{lab_k}^{\Sigma(lab_1 \mapsto con_1, \ldots, lab_n \mapsto con_n)} \, exp_{\mathsf{v}}) \hookrightarrow \\ (\Delta, \sigma, E, exp_k \, exp_{\mathsf{v}}) \end{array} \tag{168}$$

$$(\Delta, \sigma, E \circ (\mathsf{iftagof} \, \mathsf{tag}(tag, exp_{\mathsf{v}}) \, \mathsf{is} \, [] \, \mathsf{then} \, exp'' \, \mathsf{else} \, exp'''), \, tag) \hookrightarrow \\ (\Delta, \sigma, E, exp'' \, exp_{\mathsf{v}})$$

$$(169)$$

$$(\Delta, \sigma, E \circ (\mathsf{iftagof} \, \mathsf{tag}(\mathit{tag}, \mathit{exp}_{\mathtt{v}}) \, \mathsf{is} \, [] \, \mathsf{then} \, \mathit{exp''} \, \mathsf{else} \, \mathit{exp'''}), \, \mathit{tag'}) \hookrightarrow \\ (\Delta, \sigma, E, \mathit{exp'''}) \\ \mathsf{if} \, \mathit{tag} \neq \mathit{tag'}$$

$$(\Delta, \sigma, E \circ ((\lambda var:sig.mod) []), mod_{v}) \hookrightarrow (\Delta, \sigma, E, \{mod_{v}/var\} mod)$$

$$(171)$$

$$(\Delta, \sigma, E \circ []: sig, mod_{v}) \hookrightarrow (\Delta, \sigma, E, mod_{v})$$

$$(172)$$

$$(\Delta, \sigma, E \circ (\mathsf{handle}[] \mathsf{with} \ exp') \circ R, \mathsf{raise}^{con} \ exp_{\mathsf{v}}) \hookrightarrow (\Delta, \sigma, E, exp' \ exp_{\mathsf{v}})$$

$$(173)$$

$$(\Delta, \sigma, R, \mathsf{raise}^{con} \ exp_{\mathsf{v}}) \hookrightarrow (\Delta, \sigma, [], \mathsf{raise}^{ans} \ exp_{\mathsf{v}})$$
 (174)

5 External Language

5.1 Notation

As in the *Definition*, optional elements are enclosed by single brackets $\langle \cdots \rangle$ or double brackets $\langle \langle \cdots \rangle \rangle$. For the purposes of this grammar, all optional choices are completely independent.

5.2 Grammar of the Abstract Syntax

The (disjoint) base syntax classes include scon (syntactic constants), tyvar (type variables), id (core-level identifiers), tycon (type constructors), strid (structure identifiers), and funid (functor identifiers). As in The Definition of Standard ML, all but the first two have corresponding "long" forms, containing a finite sequence of structure identifiers as as prefix.

```
expr ::= scon
            \{lab_1 = expr_1, \cdots, lab_n = expr_n\}
            let strdec in expr end
           expr\ expr'
            expr: ty
            expr handle match
            raise expr
            {\tt fn}\ match
             expr_1 = expr_2
mrule ::= pat => expr
match ::= mrule
            mrule \mid match
strdec ::=
            \texttt{val } (\textit{tyvar}_1, \cdots, \textit{tyvar}_n) \textit{ pat = exp}
            val (tyvar_1, \dots, tyvar_n) rec pat = exp
            strdec_1 \ strdec_2
            open longid_1 \cdots longid_n
            exception id
            exception id of ty
            exception id = longid
            local strdec_1 in strdec_2 end
            type tybind
            datatype datbind
            datatype (tyvar_1, \cdots, tyvar_n) tycon =
               datatype (tyvar_1, \cdots, tyvar_n) longtycon
             structure strbind
             functor funbind
```

```
tybind ::= (tyvar_1, \dots, tyvar_n) \ tycon = ty \ \langle and \ tybind \rangle
datbind ::= \ \ (\mathit{tyvar}_1, \cdots, \mathit{tyvar}_n) \ \mathit{tycon} = \mathit{conbind}
                 \langle and datbind \rangle
conbind ::= id \langle of ty \rangle \langle \langle | conbind \rangle \rangle
  strexp ::= longstrid
                 struct \ strdec \ end
                 longfunid (longstrid)
                 longstrid:sigexp
                 longstrid :> sigexp
                 let strdec in strexp end
     spec ::=
                 val id : ty
                 type typdesc
                 eqtype etypdesc
                datatype datbind
                datatype (tyvar_1, \cdots, tyvar_n) tycon' =
                   datatype (tyvar_1, \cdots, tyvar_n) long tycon
                 exception id
                 exception id of ty
                 structure strid : sigexp
                 functor funid (strid : sigexp) : sigexp'
                 include sigexp
                 spec_1 \ spec_2
                 spec sharing type longid_1 = longid_2
 typdesc ::= (tyvar_1, \cdots, tyvar_n) \ tycon \ \langle and \ typdesc \rangle
             | (tyvar_1, \cdots, tyvar_n) \ tycon = ty \langle and \ typdesc \rangle
etypdesc ::= (tyvar_1, \cdots, tyvar_n) \ tycon \ \langle and \ etypdesc \rangle
  sigexp ::= sig spec end
                sigexp where type (tyvar_1, \cdots, tyvar_n) longtycon = ty
      pat ::= scon
                 longid
                pat: ty
                longid pat
                \{lab_1 = pat_1, \cdots, lab_n = pat_n\langle, \ldots\rangle\}
                pat_1 as pat_2
                ref pat
```

```
\begin{array}{c|cccc} ty ::= & base & & & & \\ & & tyvar & & & \\ & & \{lab_1 : ty_1, \cdots, lab_n : ty_n\} & & & \\ & & (ty_1, \cdots, ty_n) \ longtycon & & \\ & & ty \rightarrow ty' & \\ & strbind ::= & strid = strexp \ \langle \text{and} \ strbind \rangle & \\ & funbind ::= & funid \ (strid : sigexp) = strexp \ \langle \text{and} \ funbind \rangle & \\ \end{array}
```

5.3 Syntactic Restrictions

- No record expression, record pattern, or record type may contain duplicate field labels. No *tyvar* may appear more than once in a single sequence.
- Any type variable occurring in a *combind* must also appear in the enclosing *datbind*. Any type variable appearing in the *ty* of a where type must appear in the type variable sequence.
- No val, type, datatype, exception, structure, signature or functor *strdec* or *spec* may bind the same identifier twice; this applies also to value constructors within a *dathind*.
- In a val rec declaration, the pattern must be of the form

$$\{lab_1 = id_1, \cdots, lab_n = id_n\}$$

and the expression must be of the form

$$\{lab_1 = fn \ match_1, \cdots, lab_n = fn \ match_n\}.$$

The "..." EL-notation may not appear in the pattern.

6 Elaboration

6.1 Introduction

In addition to type-checking and type-reconstruction, the elaborator performs the following tasks:

- 1. Datatypes are expanded into structures and signatures whose components include
 - an abstract type (implemented as a recursive sum type);
 - operations corresponding to datatype constructors as values (those datatype constructors which carry values are total functions, while non value-carrying constructors are constants of the abstract type);
 - an "expose" operation which presents datatype values as elements of a (tagged) sum type.

The "generativity" of datatypes is handled via signature ascription; the type is made opaque and is therefore inequivalent to any previous type. The matching of datatypes in signatures reduces to the matching of substructures.

- 2. Polymorphism (including equality polymorphism) is encoded as a use of the modules system. Polymorphic values are translated into functors, which can be explicitly instantiated with structures of types (and equality functions). More precisely, the functor takes a structure containing type constructors of kind Ω (for types which the polymorphic value requires to be equality types, the structure also contains equality functions for the instantiating types); the functor returns a structure whose single component (with label "it") is the polymorphic value made monomorphic by instantiating it with the given types.
- 3. Equality polymorphism, as just mentioned, and equality types are handled by explicitly constructing and passing equality functions as needed. We do not explicitly distinguish types that admit equality; rather, a type admits equality iff the equality compiler can create an equality function for this type.
- 4. We make explicit the propagation of abstract types defined locally to module-level let and local constructors, or hidden through the use of transparent signature ascription. In particular, the "hiding" effect of these constructs on types is implemented as renaming rather than simple scoping. This is necessary to obtain the same type propagation behavior as the stamp-based semantics of The Definition.
- 5. Patterns are expanded into uses of the appropriate record projections and datatype deconstructors. Thus the elaboration specifies a reference pattern compiler.
- 6. Each series of external language bindings (*strdec*) elaborates into a structure, containing a component for every variable bound in the external language. External language *identifiers* correspond to internal language *labels*.

- 7. Some structure labels are explicitly marked with an asterisk (lab^*) . This indicates that the structure is "open" for the purposes of identifier lookup. (See the lookup rules for more details.)
- 8. All coercive aspects of the signature matching relation (the reordering and forgetting of components) are handled by introducing explicit coercion functors witnessing the relation. This makes the order and number of components of a structure apparent from its signature, though there is a run-time cost to signature ascription.

6.2 Notation

• The overbar function $\overline{}$ maps each EL identifier to an IL label. We assume that this function is injective, that the range is coinfinite in the set of IL labels, and that identifiers of different classes map to different labels. In particular, we assume that the parser distinguishes between the classes of expression variables, type constructors, type variables, structure identifiers, signature identifiers, and functor identifiers. However, we do not distinguish between an identifier being used as an expression variable, datatype constructor, or exception constructor.

The distinguished labels "eq", "expose", "it", and "tag" used by the elaborator are not in the range of the overbar mapping, and other labels chosen to be fresh are similarly not in the range of the mapping.

We extend the overbar mapping component-wise to long identifiers, which thus map to sequences of labels.

- Optional elements are enclosed in single or double angle brackets. For each rule, either all or none of the elements in single angle brackets must be present, and similarly all or none of the elements in double angle brackets must be present. Single and double angle brackets in the same rule represent two *independent* choices.
- In some cases, the optional element notation is insufficient. Therefore, we have the additional notation

$$\left\{egin{array}{l} element_1 \ ext{or} \ element_2 \end{array}
ight\}$$

which means that either $element_1$ or $element_2$ must be present. If there are multiple such choices in a single rule, this means that either the first element should always be chosen in all cases, or the second element must be chosen in all cases.

An extension of this notation gives the choices subscripts. Then all choices with the same subscript must agree (all first element or all second element) but two choices with different subscripts are completely independent.

• The elaboration maintains an elaboration context Γ , which is simply a list of structure declarations (sdecs) except that we allow duplicate labels. When Γ appears in an IL judgment where decs is expected, there is an implicit coercion which drops all top-level

labels and all signature declarations. We extend the notion of variable bindings from Section 2.5 with the following:

Function	Definition	
$BV(\Gamma)$	$\mathrm{BV}(sdec,\Gamma)$	$= \{\mathrm{BV}(sdec)\} \cup \mathrm{BV}(\Gamma)$
$\operatorname{dom}(\Gamma)$	$\mathrm{dom}(sdec,\Gamma)$	$= \{\mathrm{dom}(sdec)\} \cup \mathrm{dom}(\Gamma)$

Binding Phrase	Bound Vars	Scope
$sdec, \Gamma$	BV(sdec)	Γ

• We use an operation of "syntactic concatenation with renaming" for *sbnds* and, in parallel, for *sdecs*. This is defined by:

```
 \begin{array}{l} (\cdot + + sbnds') : (\cdot + + sdecs') := sbnds' : sdecs' \\ (lab^{\langle * \rangle} \rhd bnd, sbnds + + sbnds') : (lab^{\langle * \rangle} \rhd bnd, sdecs + + sdecs') := \\ \begin{cases} lab^{\langle * \rangle} \rhd bnd, sbnds'' : lab^{\langle * \rangle} \rhd dec, sdecs'' & \text{if } lab^{\langle * \rangle} \not\in \text{dom}(sbnds'') \\ lab'^{\langle * \rangle} \rhd bnd, sbnds'' : lab'^{\langle * \rangle} \rhd dec, sdecs'' & \text{otherwise, where } lab'^{\langle * \rangle} \not\in \text{dom}(sbnds'') \\ \text{where } sbnds + + sbnds' : sdecs + + sdecs' = sbnds'' : sdecs'' \\ \end{cases}
```

6.3 Initial Basis

The elaborator assumes the presence of a structure $basis:sig_{basis}$ serving as the initial basis for the internal language. It must contain at least the following fields which define three exceptions:

```
[Bind* :[tag:Unit Tag, Bind:Tagged],
Match*:[tag:Unit Tag, Match:Tagged],
fail* :[tag:Unit Tag, fail:Tagged]].
```

6.4 Derived Forms

The translation also makes use of a number of derived forms of kinds, constructors, and expressions. These are shown in Figure 6.

The representation of tuples as records with numbered fields is copied from SML. The encoding of multi-argument functions as single-argument functions is also very standard, as is the encoding of booleans as a sum type.

The purpose of the catch form is to serve as a special handler for the "fail" exception, and to propagate all other exceptions. The fail exception is only used by the elaborator to signal a failure in pattern-matching.

```
knd_1 \times \cdots \times knd_n
                                                                              \mapsto \{1:knd_1,\ldots,n:knd_n\}
knd^n
                                                                              \mapsto \{1:knd,\ldots,n:knd\}
Unit
                                                                              \mapsto \{\}
                                                                              \mapsto \Sigma_{\langle lab \rangle} (\overline{1} \mapsto \mathsf{Unit}, \overline{2} \mapsto \mathsf{Unit})
\mathsf{Bool}_{\langle lab \rangle}
                                                                              \mapsto \{\overline{1} = con_1, \cdots, \overline{n} = con_n\}
con_1 \times \cdots \times con_n
                                                                              \mapsto \lambda var:\Omega^n.(\{\pi_1 \ var/var_1\}\cdots \{\pi_n \ var/var_n\} con)
\lambda(var_1,\ldots,var_n).con
                                                                              \mapsto \{1=con_1,\ldots,n=con_n\}
(con_1,\ldots,con_n)
                                                                             \mapsto \{\overline{1} = exp_1, \cdots, \overline{n} = exp_n\}
(exp_1, \cdots, exp_n)
                                                                             \mapsto \pi_{\mathsf{T}} \operatorname{fix} var'(var:con):con'\mapsto exp \operatorname{end}
\lambda(var:con):con'.exp
                                                                                               var' \not\in FV(exp)
\lambda(var_1:con_1,\ldots,var_n:con_n):con.exp \mapsto \lambda(var:con_1 \times \cdots \times con_n):con.
                                                                                         \{\pi_1 \ var/var_1\} \cdots \{\pi_n \ var/var_n\} exp
                                                                                               var \not\in FV(exp)
                                                                              \mapsto [1=b \, nd_1, \dots, n=b \, nd_n, (n+1)=exp].(n+1)
let bnd_1, \ldots, bnd_n in exp end
\mathsf{fail}^{\mathit{con}}
                                                                              \mapsto raise ^{con} basis.fail*.fail
{\sf catch}^{\it con} \ exp \ {\sf with} \ exp'
                                                                              \mapsto handle exp with (\lambda var: \mathsf{Tagged}).
                                                                                          iftagof var is basis.fail*.tag then \lambda var:Unit.exp' else raise^{con} var
                                                                                              var \notin FV(exp')
\mathsf{pproj}_{lab}^{\Sigma(con_1,\ldots,con_n)}\left(exp,\,exp'\right)
                                                                              \mapsto \mathsf{case}^{\mathit{con'}} \mathit{exp} \mathsf{of}
                                                                                      \lambda var: con'_{lab_1}.raise^{con_i} exp', \ldots,
                                                                                      \lambda var: con'_{lab_i}. 	ext{proj}_{lab_i}^{con'_{lab_i}} var, \ldots \ \lambda var: con'_{lab_n}. 	ext{raise}_{con_i}^{con'} exp' 	ext{ end}
                                                                                              where con'_{\langle lab \rangle} = \Sigma_{\langle lab \rangle} (lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)
                                                                              \mapsto \mathsf{inj}_{\overline{1}}^{\mathsf{Bool}}\left\{\right\}
false
                                                                              \mapsto \operatorname{inj}_{\overline{2}}^{\underline{\mathsf{Bool}}}\left\{\right\}
true
if exp_1 then exp_2 else exp_3
                                                                              \mapsto \mathsf{case}^{\mathsf{Bool}} \ exp_1 \ \mathsf{of} \ \lambda var : \mathsf{Bool}_{\overline{1}}. exp_3, \lambda var : \mathsf{Bool}_{\overline{2}}. exp_2 \ \mathsf{end}
                                                                                              var \not\in FV(exp_2, exp_3)
                                                                              \mapsto if exp_1 then exp_2 else false
exp_1 and exp_2
\Lambda(var_1^{\langle eq \rangle_1}, \dots, var_n^{\langle eq \rangle_n}).exp
                                                                              \mapsto \lambda(var:[1^*:[1\triangleright var_1:\Omega\langle,eq:var_1\times var_1\rightharpoonup \mathsf{Bool}\rangle_1],\ldots,
                                                                                                   n^*:[n\triangleright var_n:\Omega\langle,\operatorname{eq}:var_n\times var_n\longrightarrow \mathsf{Bool}\rangle_n]]).
                                                                                          [it={var.1^*.1/var_1}\cdots{var.n^*.n/var_n}exp]
\forall (var_1^{\langle eq \rangle_1}, \dots, var_n^{\langle eq \rangle_n}).con
                                                                              \mapsto (var:[1^*:[1\triangleright var_1:\Omega\langle,eq:var_1\times var_1\rightarrow \mathsf{Bool}\rangle_1],\ldots,
                                                                                                n^*:[n\triangleright var_n:\Omega\langle, eq:var_n\times var_n\longrightarrow \mathsf{Bool}\rangle_n]])\to
                                                                                          [it: \{var.1^*.1/var_1\} \cdots \{var.n^*.n/var_n\} con]
```

Figure 6: Derived Forms

6.5 Judgment Forms

Judgment	Meaning
$\Gamma \vdash expr \leadsto exp : con$	expression
$\Gamma \vdash match \leadsto exp : con$	pattern match
$\Gamma \vdash strdec \leadsto sbnds : sdecs$	$\operatorname{declaration}$
$\Gamma \vdash strexp \leadsto mod : sig$	structure expression
$\Gamma \vdash spec \leadsto sdecs$	signature specification
$\Gamma \vdash sigexp \leadsto sig : Sig$	signature expression
$\Gamma \vdash ty \leadsto con : \Omega$	type expression
$\Gamma \vdash tybind \leadsto sbnds : sdecs$	type definition
$\Gamma \vdash datbind \leadsto sbnds : sdecs$	datatype definition
$\begin{array}{l} \Gamma \vdash_{ctx} labs \leadsto path : class \\ \Gamma \vdash_{ctx} labs \leadsto path \\ decs; path : sig \vdash_{sig} labs \leadsto labs' : class \\ sig \vdash_{sig} lab \leadsto labs' \end{array}$	lookup in Γ lookup in signature
$decs \vdash_{Inst} \sim [sbnds_{v}] : [sdecs']$	polymorphic instantiation
$\Gamma \vdash pat \Leftarrow exp : con \ else \ exp \leadsto sbnds : sbnds$	pattern compilation
$decs \models_{\mathrm{eq}} con \leadsto \mathit{exp}_{\mathrm{v}}$	equality compilation
$\begin{array}{l} decs \vdash_{\text{sub}} path : sig_0 \preceq sig \leadsto mod : sig' \\ decs; path : sig_0 \vdash_{\text{sub}} sdec \leadsto sbnd : sdec' \end{array}$	coercion compilation
$sig \vdash_{\mathrm{wt}} labs := con : knd \leadsto sig' : Sig$ $sig \vdash_{sh} labs := labs' : knd \leadsto sig' : Sig$	impose definition impose sharing

6.6 Translation Rules

6.6.1 Expressions

$$\frac{\Gamma \vdash expr \leadsto exp : con}{\Gamma \vdash scon \leadsto scon : type(scon)}$$
(175)

Rule 175: We assume a meta-level function type which gives the IL type of each constant.

$$\Gamma \vdash_{\text{ctx}} \overline{longid} \rightsquigarrow path : con$$
Rule 177 does not apply.
$$\Gamma \vdash longid \rightsquigarrow path : con$$
(176)

Rule 176: Monomorphic variables.

$$\frac{\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path : con \to con'}{\Gamma \vdash longid \leadsto \partial (path) : con \to con'}$$
(177)

Rule 176: Monomorphic datatype or exception constructors. Because the IL has no subsumption, these must be coerced to a partial function type when used as function values (not immediately applied).

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path : sig \to [\mathsf{it} : con]$$

$$\Gamma \vdash_{\mathsf{finst}} \leadsto mod : sig$$

$$\mathsf{Rule} \ 179 \ \mathsf{does} \ \mathsf{not} \ \mathsf{apply}.$$

$$\Gamma \vdash longid \leadsto path(mod).\mathsf{it} : con$$

$$(178)$$

Rule 178: Instantiation of polymorphic variables. All polymorphic functions are translated into total functors whose body contains a single component with the label "it". The module mod is the structure of types (and equality functions, if needed) that are used to instantiate the polymorphic function.

$$\Gamma \vdash_{\text{ctx}} \overline{longid} \rightsquigarrow path : sig \rightarrow [\text{it}:con \rightarrow con']
\Gamma \vdash_{\text{inst}} \rightsquigarrow mod : sig
\overline{\Gamma \vdash longid} \rightsquigarrow \partial (path(mod).\text{it}) : con \rightarrow con'}$$
(179)

Rule 179: Instantitaion of polymorphic datatype constructors. As in Rule 176, we coerce to a partial function type.

$$\sigma \text{ a permutation of } 1..n$$

$$var_{1}, \cdots, var_{n} \notin BV(\Gamma)$$

$$lab_{\sigma(1)} < \cdots < lab_{\sigma(n)}$$

$$\Gamma \vdash expr_{1} \leadsto exp_{1} : con_{1} \cdots \Gamma \vdash expr_{n} \leadsto exp_{n} : con_{n}$$

$$\Gamma \vdash \{lab_{1} = expr_{1}, \cdots, lab_{n} = expr_{n}\} \leadsto \{lab_{\sigma(1)} = expr_{1}, \cdots, var_{n} = exp_{n} \text{ in } \{\overline{lab_{\sigma(1)}} = var_{\sigma(1)}, \cdots, \overline{var_{\sigma(n)}} = var_{\sigma(n)}\} \text{ end } :$$

$$\{\overline{lab_{\sigma(1)}} : con_{\sigma(1)}, \cdots, \overline{lab_{\sigma(n)}} : con_{\sigma(n)}\}$$

Rule 180: The order in which labels appear in the record type is significant for the IL but not the EL, so in the translation we normalize record values and types by sorting the labels with some fixed ordering <. The order in which effects occur, however, is determined by the order of the expressions in the EL.

$$\Gamma \vdash strdec \rightsquigarrow sbnds : sdecs$$

$$var \not\in BV(\Gamma) \qquad \Gamma, 1^* \triangleright var : [sdecs] \vdash expr \rightsquigarrow exp : con'$$

$$\frac{\Gamma, var : [sdecs] \vdash con' \equiv con : \Omega \qquad \Gamma \vdash con : \Omega}{\Gamma \vdash \mathsf{let} \ strdec \ \mathsf{in} \ expr \ \mathsf{end} \ \rightsquigarrow \ \mathsf{let} \ var = [mod] \ \mathsf{in} \ exp \ \mathsf{end} : con}$$

$$(181)$$

Rule 181: The "starred label" convention is used here to make the locally-defined bindings accessible while translating *expr*. The elaborator verifies that the translated expression can be given a a type, which must not depend on any abstract types (e.g., datatypes) defined in *strdec*.

$$\Gamma \vdash expr \leadsto exp : con'' \rightarrow con$$

$$\Gamma \vdash expr' \leadsto exp' : con'$$

$$\Gamma \vdash con' \equiv con'' : \Omega$$

$$\Gamma \vdash expr \ expr' \leadsto exp \ exp' : con$$
(182)

Rule 182: General application.

$$\frac{\Gamma \vdash_{\text{ctx}} longid \leadsto path : con' \to con}{\Gamma \vdash expr' \leadsto exp' : con'} \frac{\Gamma \vdash longid \ expr' \leadsto exp \ exp' : con}{(183)}$$

Rule 183: Application of a monomorphic datatype constructor, which is valuable if expr' is valuable.

$$\Gamma \vdash_{\text{ctx}} longid \rightsquigarrow path : sig \rightarrow [\text{it}:con' \rightarrow con]
\Gamma \vdash_{\text{inst}} \rightsquigarrow mod : sig
\Gamma \vdash expr' \rightsquigarrow exp' : con'
\overline{\Gamma \vdash longid \ expr'} \rightsquigarrow (path \ (mod).\text{it}) \ exp' : con}$$
(184)

Rule 184: Application of a polymorphic datatype constructor, which is valuable if expr' is valuable.

$$\frac{\Gamma \vdash expr \leadsto exp : con}{\Gamma \vdash ty \leadsto con' : \Omega \qquad \Gamma \vdash con \equiv con' : \Omega} \frac{\Gamma \vdash ty \leadsto con' : \Omega}{\Gamma \vdash expr : ty \leadsto exp : con}$$
(185)

Rule 185: Type constraints on expressions are verified, but do not appear in the translation.

$$\Gamma \vdash expr \leadsto exp : con$$

$$\Gamma \vdash match \leadsto exp' : \mathsf{Tagged} \rightharpoonup con'$$

$$\Gamma \vdash con \equiv con' : \Omega$$

$$var \not\in \mathsf{BV}(\Gamma)$$

$$\Gamma \vdash expr \; \mathsf{handle} \; match \leadsto$$

$$\mathsf{handle} \; exp \; \mathsf{with}$$

$$\lambda(var:\mathsf{Tagged}) : con.(\mathsf{catch}^{con} \; exp' \; var \; \mathsf{with} \; \mathsf{raise}^{con} \; var) :$$

$$con$$

$$(186)$$

Rule 186: The handling expression exp'var will fail if the handler pattern does not match the exception caught by the IL handle, in which case we re-raise the exception.

$$\frac{\Gamma \vdash expr \leadsto exp : \mathsf{Tagged} \quad \Gamma \vdash con : \Omega}{\Gamma \vdash \mathsf{raise} \ expr \leadsto \mathsf{raise}^{con} \ exp : con}$$
 (187)

Rule 187: raise expressions can be given any (valid) type. To preserve the property that every IL expression has a unique type up to equivalence, we annotate the IL raise with this type.

$$\frac{\Gamma \vdash match \leadsto exp : con_1 \rightharpoonup con_2 \quad var \not\in BV(\Gamma)}{\Gamma \vdash \text{fn } match \leadsto}$$

$$\lambda(var:con_1):con_2.(\mathsf{catch}^{con_2} \ exp \ var \ \text{with raise}^{con_2} \ basis.\overline{\mathtt{Match}}^*.\overline{\mathtt{Match}}) :$$

$$con_1 \rightharpoonup con_2$$

$$(188)$$

Rule 188: The application *exp var* will fail if the match fails; we turn the failure into a match exception. The resulting function has a partial type because it can (syntactically) raise an exception.

$$\frac{\Gamma \vdash expr_1 \leadsto exp_1 : con_1}{\Gamma \vdash con_1 \equiv con_2 : \Omega} \frac{\Gamma \vdash expr_2 \leadsto exp_2 : con_2}{\Gamma \vdash expr_1 \equiv expr_2 \leadsto exp\left(exp_1, exp_2\right) : \mathsf{Bool}}$$

$$(189)$$

Rule 189: Translation of equality comparison; exp is the equality function generated by the equality compiler and has type $con \times con \rightarrow Bool$.

6.6.2 Matches

$$\Gamma \vdash \mathit{match} \leadsto \mathit{exp} : \mathit{con}$$

$$var, var' \notin BV(\Gamma) \qquad \Gamma \vdash con' : \Omega$$

$$\Gamma \vdash pat \Leftarrow var' : con' \text{ else } basis.\text{fail}^*.\text{fail} \leadsto sbnds : sdecs}$$

$$\Gamma, 1^* \triangleright var: [sdecs] \vdash expr \leadsto exp : con$$

$$\Gamma \vdash pat \Rightarrow expr \leadsto \lambda(var':con') : con.\text{let } var = [sbnds] \text{ in } exp \text{ end } : con' \rightharpoonup con$$

$$(190)$$

Rule 190: The result of translating a match is a function that may fail if the match fails. The IL let expression is well-formed because the pattern compiler returns no type components in sbnds.

$$var \notin BV(\Gamma)$$

$$\Gamma \vdash mrule \leadsto exp : con_1 \rightharpoonup con_2$$

$$\Gamma \vdash match \leadsto exp' : con'_1 \rightharpoonup con'_2$$

$$\Gamma \vdash con_1 \rightharpoonup con_2 \equiv con'_1 \rightharpoonup con'_2 : \Omega$$

$$\Gamma \vdash mrule \mid match \leadsto \lambda(var:con_1):con_2.\mathsf{catch}^{con} \ exp \ var \ \mathsf{with} \ exp' \ var : con' \rightharpoonup con$$

$$(191)$$

Rule 191: The failure of pattern matching in the first clause is caught, and we try again with the next clause.

6.6.3 Declarations

$$\Gamma \vdash strdec \leadsto sbnds : sdecs$$

$$var \notin BV(\Gamma)$$

$$\Gamma \vdash expr \leadsto exp : con$$

$$\frac{\Gamma, var: con \vdash pat \Leftarrow var : con \text{ else } basis.\overline{Bind}^*.\overline{Bind} \leadsto sbnds : sdecs}{\Gamma \vdash val \text{ () } pat = expr \leadsto 1 \triangleright var = exp, sbnds : 1 \triangleright var: con, sdecs}$$

$$(192)$$

Rule 192: Monomorphic, non-recursive variable bindings.

$$sig_{p} = \overline{[\langle eq \rangle_{1} tyvar_{1}^{-*} : [\langle eq \rangle_{n} tyvar_{1}^{-} \triangleright var: \Omega, \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{1}], \cdots, \langle eq \rangle_{n} tyvar_{n}^{-*} : [\langle eq \rangle_{n} tyvar_{n}^{-} \triangleright var: \Omega, \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{n}], \\ 1^{*} : [1 \triangleright var: \Omega \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{1'}], \cdots, \\ m^{*} : [m \triangleright var: \Omega \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{m'}]] \\ \Gamma, 1^{*} \triangleright var_{p} : sig_{p} \vdash expr \rightarrow exp: con \\ \Gamma, 1^{*} \triangleright var_{p} : sig_{p} \vdash basis. \overline{\mathsf{Bind}}^{*}. \overline{\mathsf{Bind}} \Leftarrow exp: con \text{ else } pat \rightsquigarrow sbnd_{1}, \dots, sbnd_{n}: sdec_{1}, \dots, sdec_{n} \\ \forall i \in 1..n: \\ sbnd_{i} = lab_{i} = exp_{i} \\ sdec_{i} = lab_{i} : con_{i} \\ sbnd'_{i} = \begin{cases} lab_{i} = (var_{p} : sig_{p}) \rightarrow [\mathrm{it} = exp_{i}] & \text{if } \Gamma, var_{p} : sig_{p} \vdash sbnd_{i} \downarrow sdec_{i} \\ lab_{i} = exp_{i} & \text{if } \Gamma \vdash exp_{i} : con_{i} \end{cases} \\ sdec'_{i} = \begin{cases} lab_{i} : (var_{p} : sig_{p}) \rightarrow [\mathrm{it} : con_{i}] & \text{if } \Gamma, var_{p} : sig_{p} \vdash sbnd_{i} \downarrow sdec_{i} \\ lab_{i} : con_{i} & \text{if } \Gamma \vdash exp_{i} : con_{i} \end{cases}$$

$$\Gamma \vdash \mathbf{val} \ (\langle eq \rangle_{1} tyvar_{1}, \cdots, \langle eq \rangle_{n} tyvar_{n}) \ pat = expr \rightsquigarrow sbnd'_{1}, \dots, sbnd'_{n} : sdec'_{1}, \dots, sdec'_{n} \end{cases}$$

Rule 193: Polymorphic, non-recursive val bindings. We assume a prepass which annotates val declarations with the explicit type variables implicitly scoped by that declaration. Type inference may introduce m new type (or equality type) variables which not mentioned in the source (as in val f = fn x => x or val f = fn x => (x=x)). In this formulation, some variables in the pattern may become polymorphic while others may remain monomorphic. Therefore, for each i, either $sbnd'_i$ and $sdec'_i$ must both choose the first option (polymorphic) or must both choose the second option (monomorphic).

$$sig_{p} = \overline{[\langle eq \rangle_{1} tyvar_{1}^{-}} : \overline{[\langle eq \rangle_{1} tyvar_{1} \triangleright var: \Omega \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{1}], \cdots, \\ \overline{\langle eq \rangle_{m} tyvar_{m}^{-}} : \overline{[\langle eq \rangle_{m} tyvar_{m} \triangleright var: \Omega \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{m}]} \\ 1^{*} : [1 \triangleright var: \Omega \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{1'}], \cdots, \\ k^{*} : [k \triangleright var: \Omega \langle, eq:var \times var \rightarrow \mathsf{Bool} \rangle_{k'}]] \\ \Gamma' = \Gamma, lab^{*} \triangleright var_{p} : sig_{p}, \overline{id_{1}} \triangleright var'_{1} : con_{1} \rightarrow con'_{1}, \cdots, \overline{id_{n}} \triangleright var'_{n} : con_{n} \rightarrow con'_{n} \\ \forall i \in 1..n : \\ \Gamma' \vdash match_{i} \leadsto \lambda(var_{i} : con_{i}) : con'_{i} . exp_{i} : con_{i} \rightarrow con'_{i} \\ \text{If } \Gamma \vdash_{\mathsf{ctx}} id_{i} \leadsto path'' : con'' \text{ then } path''. expose, path''. tag aren't well-formed. \\ exp = \text{fix } var'_{1}(var_{1} : con_{1}) : con'_{1} \mapsto exp_{1}, \cdots, var'_{m}(var_{m} : con_{m}) : con'_{m} \mapsto exp_{m} \text{ end} \\ \hline{\Gamma \vdash \text{val}} \ (\langle eq \rangle_{1} tyvar_{1}, \cdots, \langle eq \rangle_{m} tyvar_{m}) \text{ rec } \{(lab_{i} = id_{i})_{i=1}^{n}\} = \{(lab_{i} = \text{fn } match_{i})_{i=1}^{n}\} \leadsto \\ \overline{id_{1}} = \lambda var_{p} : sig_{p}. [\text{it} = \pi_{\overline{1}} exp], \ldots, \overline{id_{n}} = \lambda var_{p} : sig_{p}. [\text{it} = \pi_{\overline{n}} exp] : \\ \overline{id_{1}} : (var_{p} : sig_{p}) \rightarrow [\text{it} : con_{1} \rightarrow con'_{1}], \ldots, \overline{id_{n}} : (var_{p} : sig_{p}) \rightarrow [\text{it} : con_{n} \rightarrow con'_{n}] \end{cases}$$

Rule 194: This rule handles recursive val bindings. As in Rule 193, we assume that the implicit scoping of explicit type variables has been made explicit by a prepass over the EL. We also assume that val rec ... and ... is syntactic sugar for a single val rec binding of a record of functions. Since this rule does not use the pattern compiler, we must explicitly check that we're do not redefine datatype or exception constructors.

$$\frac{\Gamma \vdash strdec_1 \leadsto sbnds_1 : sdecs_1}{\Gamma, sdecs_1 \vdash strdec_2 \leadsto sbnds_2 : sdecs_2} \\
\frac{\Gamma \vdash strdec_1 : strdec_2 \leadsto sbnds_1 + + sbnds_2 : sdecs_1 + + sdecs_2}{\Gamma \vdash strdec_1 : strdec_2 \leadsto sbnds_1 + + sbnds_2 : sdecs_1 + + sdecs_2}$$
(195)

Rule 195: We use the syntactic-concatenation-with-renaming operation defined in Section 6.2.

$$\frac{\forall i \in 1..n : \quad \Gamma \vdash_{\mathsf{ctx}} \overline{longstrid}_i \leadsto path_i : sig_i}{\Gamma \vdash_{\mathsf{open}} longstrid_1 \cdots longstrid_n \leadsto}$$

$$1^* = path_1, \cdots, n^* = path_n : 1^* : sig_1, \cdots, n^* : sig_n$$

$$(196)$$

$$\frac{\Gamma \vdash ty \leadsto con : \Omega \qquad var \not\in \mathrm{BV}(\Gamma)}{\Gamma \vdash \mathsf{exception} \ id \ \mathsf{of} \ ty \leadsto} \tag{197}$$

 $\overline{id}^* = [\text{tag} \triangleright var = \text{new_tag}[con], \overline{id} = \lambda(var' : con) : \text{Tagged.tag}(var, var')] :$ \overline{id}^* :[tag>var:con Tag, \overline{id} : $con \rightarrow Tagged$]

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab : con$$

$$\Gamma \vdash path.\mathsf{tag} : con'$$

$$\Gamma \vdash \mathsf{exception} \ id = longid \leadsto$$

$$\overline{id}^* = [\mathsf{tag} = path.\mathsf{tag}, \overline{id} = path.lab] : \overline{id}^* : [\mathsf{tag} : con', \overline{id} : con]$$
(199)

Rule 199: Structures containing a "tag" component are created by EL exception declrations only.

$$var \notin BV(\Gamma)$$

$$\Gamma \vdash strdec_1 \leadsto sbnds_1 : sdecs_1$$

$$\Gamma, 1^* \triangleright var : [sdecs_1] \vdash strdec' \leadsto sbnds_2 : sdecs_2$$

$$\Gamma \vdash local \ strdec \ in \ strdec' \ end \leadsto$$

$$1 \triangleright var = [sbnds_1], sbnds_2 : 1 \triangleright var : [sdecs_1], sdecs_2$$

$$(200)$$

Rule 200: We create bindings for all of the declarations, but the local bindings are segregated into a substructure inaccessible from the EL.

$$\frac{\Gamma \vdash tybind \leadsto sbnds : sdecs}{\Gamma \vdash \mathsf{type} \ tybind \leadsto sbnds : sdecs} \tag{201}$$

$$\Gamma \vdash_{\operatorname{ctx}} \overline{longtycon} \leadsto path.\overline{tycon} : \Omega^m \Longrightarrow \Omega$$

$$\Gamma \vdash path : [\overline{tycon} \triangleright var:\Omega^m \Longrightarrow \Omega, lab_1 \triangleright dec_1, \cdots, lab_n \triangleright dec_n]$$

$$lab_n = \operatorname{expose}$$

$$\Gamma \vdash \operatorname{datatype} \ (tyvar_1, \cdots, tyvar_m) \ tycon' \quad \leadsto$$

$$= \operatorname{datatype} \ (tyvar_1, \cdots, tyvar_m) \ longtycon$$

$$\overline{tycon'}^* = [\overline{tycon'} \triangleright var = path.\overline{tycon}, lab_1 = path.lab_1, \cdots, lab_n = path.lab_n] :$$

$$\overline{tycon'}^* = [\overline{tycon'} \triangleright var:\Omega^m \Longrightarrow \Omega = path.\overline{tycon}, lab_1 = dec_1, \cdots, lab_n = dec_n]$$

$$(202)$$

Rule 202: SML '96 adds the ability to copy datatypes. Only structures which are the translations of EL datatype declarations have an initial type component and a final component named "expose".

$$\frac{\Gamma \vdash datbind \leadsto sbnds : sdecs}{\Gamma \vdash datatype \ datbind \leadsto sbnds : sdecs}$$
 (203)

$$\frac{\Gamma \vdash strbind \leadsto sbnds : sdecs}{\Gamma \vdash \mathsf{structure} \ strbind \leadsto sbnds : sdecs}$$
 (204)

$$\frac{\Gamma \vdash funbind \leadsto sbnds : sdecs}{\Gamma \vdash \text{functor } funbind \leadsto sbnds : sdecs}$$
 (205)

6.6.4 Structure Expressions

$$\boxed{\Gamma \vdash strexp \leadsto mod : sig}$$

$$\frac{\Gamma \vdash_{\text{ctx}} \overline{longstrid} \leadsto path : sig}{\Gamma \vdash longstrid \leadsto path : sig}$$
(206)

$$\frac{\Gamma \vdash strdec \leadsto sbnds : sdecs}{\Gamma \vdash \mathsf{struct} \ strdec \ \mathsf{end} \leadsto sbnds : sdecs} \tag{207}$$

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longfunid} \leadsto path_f : (var_1 : sig_1) \rightharpoonup sig_2$$

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longstrid} \leadsto path : sig$$

$$\Gamma \vdash_{\mathsf{sub}} path : sig \preceq sig_1 \leadsto mod : sig'$$

$$\Gamma \vdash (var_1 : sig) \rightharpoonup sig_2 \equiv sig' \rightharpoonup sig'' : \mathsf{Sig}$$

$$\overline{\Gamma \vdash longfunid (longstrid)} \leadsto (path_f : sig' \rightharpoonup sig'') \ mod : sig''}$$

$$(208)$$

Rule 208: We insert an explicit coercion to drop and reorder components of the argument structure (which has signature sig), in order to match the domain signature of the functor (sig_1) . The signature sig' is the most-specific (and fully transparent) signature of the coerced structure, which may expose more types (is a sub-signature of) sig_1 .

$$\frac{\Gamma \vdash_{\mathsf{ctx}} longstrid \leadsto path : sig \qquad \Gamma \vdash sigexp \leadsto sig' : \mathsf{Sig}}{\Gamma \vdash_{\mathsf{sub}} path : sig \preceq sig' \leadsto mod : sig''}$$

$$\frac{\Gamma \vdash_{\mathsf{longstrid}} : sigexp \leadsto mod : sig''}{\Gamma \vdash longstrid : sigexp \leadsto mod : sig''}$$
(209)

Rule 209: As in SML, ascribing a signature to a structure using ":" hides components (this hiding being accomplished here via an explicit coercion), but allows the identity of the remaining type components to leak through. The rules for coercions ensure that sig'' will be fully transparent, maximizing propagation of type information.

$$\frac{\Gamma \vdash_{\mathsf{ctx}} longstrid \leadsto path : sig \qquad \Gamma \vdash sigexp \leadsto sig' : \mathsf{Sig}}{\Gamma \vdash_{\mathsf{sub}} path : sig \leq sig' \leadsto mod : sig''}$$

$$\frac{\Gamma \vdash_{\mathsf{longstrid}} : sigexp \leadsto (mod : sig') : sig'}{\Gamma \vdash longstrid : sigexp \leadsto (mod : sig') : sig'}$$
(210)

Rule 210: Ascribing a signature to a structure with :> not only hides components, but restricts information about types to that which appears in the signature.

$$var \notin BV(\Gamma)$$

$$\Gamma \vdash strdec \leadsto sbnds : sdecs$$

$$\Gamma, 1^* \triangleright var : [sdecs] \vdash strexp \leadsto mod : sig$$

$$\Gamma \vdash \mathsf{let} \ strdec \ \mathsf{in} \ strexp \ \mathsf{end} \leadsto$$

$$[1 \triangleright var = [sbnds], 2^* = mod] : [1 \triangleright var : [sdecs], 2^* : sig]$$

$$(211)$$

6.6.5 Structure Bindings

$$\Gamma \vdash strbind \leadsto sbnds : sdecs$$

$$\frac{\Gamma \vdash strexp_1 \leadsto mod_1 : sig_1 \quad \langle \cdots \quad \Gamma \vdash strexp_n \leadsto mod_n : sig_n \rangle}{\Gamma \vdash \underline{strid}_1 = strexp_1 \ \langle \text{and} \quad \cdots \quad \text{and} \quad strid}_n = \underline{strexp}_n \rangle \leadsto} \\ \frac{strid}{strid}_1 = mod_1 \langle \cdots, \overline{strid}_n = mod_n \rangle : \overline{strid}_1 : sig_1 \langle \cdots, \overline{strid}_n : sig_n \rangle}$$

$$(212)$$

6.6.6 Functor Bindings

$$\Gamma \vdash funbind \leadsto sbnds : sdecs$$

$$\begin{array}{c} var \not\in \operatorname{BV}(\Gamma) \\ \Gamma \vdash sigexp_1 \leadsto sig_1 : \operatorname{Sig} \quad \Gamma, \overline{strid}_1 \triangleright var : sig_1 \vdash strexp_1 \leadsto mod_1 : sig_1' \\ \hline \frac{\langle \vdots \rangle}{\langle \Gamma \vdash sigexp_n \leadsto sig_n : \operatorname{Sig} \quad \Gamma, \overline{strid}_n \triangleright var : sig_n \vdash strexp_n \leadsto mod_n : sig_n' \rangle} \\ \hline \Gamma \vdash funid_1(strid_1 : sigexp_1) = strexp_1 \\ & \langle \operatorname{and} \quad \cdots \quad \operatorname{and} \ funid_n (strid_n : sigexp_1) = strexp_n \rangle \leadsto \\ & (\overline{funid}_1 = \lambda var : sig_1 \longrightarrow sig_1')_{i=1}^n : \\ & (\overline{funid}_1 : var : sig_1 \longrightarrow sig_1')_{i=1}^n \end{array}$$

Rule 213: As for functions at the expression level, user-defined functors are given partial functor types.

6.6.7 Specifications

$$\frac{\Gamma \vdash spec \leadsto sdecs}{\Gamma \vdash \cdot \leadsto \cdot}$$

$$\frac{\text{TV}(ty) = \emptyset}{\Gamma \vdash ty \leadsto con : \Omega}$$
(214)

Rule 215: A value specifiation is monomorphic if the EL type contains no type variables. (The set of type variables of the EL type ty is denoted by TV(ty).)

 $\Gamma \vdash \mathtt{val} \ id : tu \leadsto \overline{id} : con$

$$sig_{p} = \underbrace{ \begin{bmatrix} \nabla V(ty) = \{\langle eq \rangle_{1} tyvar_{1}, \cdots, \langle eq \rangle_{n} tyvar_{n}\} \neq \emptyset}_{sig_{p} = \underbrace{ [\langle eq \rangle_{1} tyvar_{1}^{*} : [\langle eq \rangle_{1} tyvar_{1} \triangleright var: \Omega \langle, eq: var \times var \rightarrow \mathsf{Bool} \rangle_{1}], \cdots, \underbrace{ \langle eq \rangle_{n} tyvar_{n}^{*} : [\langle eq \rangle_{n} tyvar_{n} \triangleright var: \Omega \langle, eq: var \times var \rightarrow \mathsf{Bool} \rangle_{n}]]}_{\Gamma, lab^{*} \triangleright var: sig_{p} \vdash ty \rightsquigarrow con : \Omega}$$

$$\Gamma \vdash \mathsf{val} \ id : ty \rightsquigarrow \overline{id} : (var: sig_{p}) \rightarrow [\mathsf{it} : con]$$

$$(216)$$

Rule 216: Specification of a polymorphic value.

$$\frac{\Gamma \vdash typdesc \leadsto sdecs}{\Gamma \vdash type \ typdesc \leadsto sdecs}$$
 (217)

$$\frac{\Gamma \vdash etypdesc \leadsto sdecs}{\Gamma \vdash \mathsf{eqtype}\ etypdesc \leadsto sdecs} \tag{218}$$

$$\frac{\Gamma \vdash ty \leadsto con : \Omega}{\Gamma \vdash \mathsf{exception} \ id \ \mathsf{of} \ ty \leadsto \overline{id} : [\mathsf{tag} : con \, \mathsf{Tag}, \, \overline{id} : con \to \mathsf{Tagged}]} \tag{219}$$

$$\frac{}{\Gamma \vdash \text{exception } id \leadsto \overline{id}: [\text{tag}: con \, \mathsf{Tag}, \, \overline{id}: \mathsf{Tagged}]}$$
 (220)

$$\frac{\Gamma \vdash datbind \leadsto sbnd : 1^*:[sdecs]}{\Gamma \vdash \texttt{datatype} \ datbind \leadsto sdecs}$$
 (221)

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longtycon} \leadsto path.\overline{tycon} : \Omega^n \Rightarrow \Omega$$

$$\Gamma \vdash path : [\overline{tycon}:\Omega^n \Rightarrow \Omega, sdecs]$$
(222)

$$\frac{\Gamma \vdash \text{datatype } (tyvar_1, \cdots, tyvar_n) \ tycon'}{\Gamma \vdash \text{datatype } (tyvar_1, \cdots, tyvar_n) \ tongtycon} \sim \frac{\text{datatype } (tyvar_1, \cdots, tyvar_n) \ longtycon}{tycon'^*: [tycon' \triangleright var: \Omega^n \Rightarrow \Omega = path. \ tycon, sdees]}$$
(222)

$$\frac{\Gamma \vdash sigexp \leadsto sig : \mathsf{Sig}}{\Gamma \vdash \mathsf{structure} \ strid : sigexp \leadsto \overline{strid} : sig}$$
 (223)

$$\Gamma \vdash sigexp \leadsto sig : \mathsf{Sig}$$

$$var \not\in \mathsf{BV}(\Gamma)$$

$$\Gamma, \overline{strid} \triangleright var : sig \vdash sigexp' \leadsto sig' : \mathsf{Sig}$$

$$(224)$$

$$\frac{1}{\Gamma \vdash \text{functor } funid \; (strid \; : \; sigexp) \; : \; sigexp' \leadsto \overline{funid} : (var:sig \rightharpoonup sig')}$$

$$\frac{\Gamma \vdash sigexp \leadsto [sdecs] : \mathsf{Sig}}{\Gamma \vdash \mathsf{include} \ sigexp \leadsto sdecs}$$
 (225)

$$\frac{\Gamma \vdash spec_{1} \leadsto sdecs_{1} \quad \Gamma, sdecs_{1} \vdash spec_{2} \leadsto sdecs_{2}}{\Gamma \vdash sdecs_{1}, sdecs_{2} \text{ ok}}$$

$$\frac{\Gamma \vdash spec_{1} \quad spec_{2} \leadsto sdecs_{1}, sdecs_{2}}{\Gamma \vdash spec_{1} \quad spec_{2} \leadsto sdecs_{1}, sdecs_{2}}$$
(226)

Rule 226: We disallow redeclaring EL identifiers in a signature. In the presence of include, we cannot syntactically restrict the EL to guarantee the syntactic concatenation of $sdecs_1$ and $sdecs_2$ will be well-formed.

$$\Gamma \vdash spec \leadsto sig : \mathsf{Sig}$$

$$var \not\in \mathsf{BV}(\Gamma)$$

$$\Gamma; var:sig \vdash_{\mathsf{Sig}} \overline{longid_1} \leadsto labs_1 : knd$$

$$\Gamma; var:sig \vdash_{\mathsf{Sig}} \overline{longid_2} \leadsto labs_2 : knd$$

$$\Gamma, var:sig \vdash var.labs_1 \equiv var.labs_1' : knd$$

$$\Gamma, var:sig \vdash var.labs_2 \equiv var.labs_2' : knd$$

$$\begin{cases} sig \vdash_{\mathsf{Sh}} labs_1' := labs_2' : knd \leadsto sig' : \mathsf{Sig} \\ \mathsf{or} \\ sig \vdash_{\mathsf{Sh}} labs_2' := labs_1' : knd \leadsto sig' : \mathsf{Sig} \end{cases}$$

$$\Gamma \vdash spec \; \mathsf{sharing} \; \mathsf{type} \; longid_1 = longid_2 \leadsto sig' : \mathsf{Sig}$$

$$(227)$$

Rule 227: A type component in a signature is considered abstract, and hence eligible to appear in a sharing constraint, if it is equivalent to an opaque type (type component that is not a type abbreviation) in the *spec*.

We find the two opaque types to which the given components are equivalent, and patch the signature such that the opaque type with the smaller scope becomes a type abbreviation for the other opaque type.

6.6.8 Signature Expressions

$$\Gamma \vdash sigexp \leadsto sig : \mathsf{Sig}$$

$$\frac{\Gamma \vdash spec \leadsto sig : \mathsf{Sig}}{\Gamma \vdash \mathsf{sig} \; spec \; \mathsf{end} \leadsto sig : \mathsf{Sig}} \tag{228}$$

$$var, var_{1}, \cdots, var_{n} \notin BV(\Gamma)$$

$$\Gamma \vdash sigexp \leadsto sig : Sig$$

$$\Gamma, \overline{tyvar_{1}} \triangleright var_{1} : \Omega, \cdots, \overline{tyvar_{n}} \triangleright var_{n} : \Omega \vdash ty \leadsto con : \Omega$$

$$\Gamma; var: sig \vdash_{sig} \overline{longtycon} \leadsto labs : \Omega^{n} \Rightarrow \Omega$$

$$\Gamma, var: sig \vdash var. labs \equiv var. labs' : \Omega^{n} \Rightarrow \Omega$$

$$sig \vdash_{wt} labs' := \lambda(var_{1}, \cdots, var_{n}).con : \Omega^{n} \Rightarrow \Omega \leadsto sig' : Sig$$

$$\Gamma \vdash sigexp \text{ where type } (tyvar_{1}, \cdots, tyvar_{n}) \ longtycon = ty \leadsto sig' : Sig}$$

$$(229)$$

Rule 229: Note that type EL type expression ty is evaluated using the ambient scope.

6.6.9 Type Expressions

$$\frac{\Gamma \vdash ty \leadsto con : \Omega}{\Gamma \vdash \text{int} \leadsto \text{Int} : \Omega}$$
(230)

Rule 230: There are analogous rules for the other base types (Float, Bool, Unit, String, and so on), and the base type constructors (ref).

$$\frac{}{\Gamma \vdash \mathsf{exn} \leadsto \mathsf{Tagged} : \Omega} \tag{231}$$

$$\frac{\Gamma \vdash_{\text{ctx}} \overline{tyvar} \leadsto path : \Omega}{\Gamma \vdash tyvar \leadsto path : \Omega}$$
(232)

$$\Gamma \vdash ty_{1} \leadsto con_{1} : \Omega \qquad \cdots \qquad \Gamma \vdash ty_{n} \leadsto con_{n} : \Omega$$

$$\sigma \text{ a permutation of } 1..n$$

$$lab_{\sigma(1)} < \cdots < lab_{\sigma(n)}$$

$$\overline{\Gamma \vdash \{lab_{1} : ty_{1}, \cdots, lab_{n} : ty_{n}\}} \leadsto \{\overline{lab_{\sigma(1)}} : con_{\sigma(1)}, \cdots, \overline{lab_{\sigma(n)}} : con_{\sigma(n)}\} : \Omega$$

$$(233)$$

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longtycon} \leadsto path : \Omega^n \Rightarrow \Omega
\forall i \in 1..n : \Gamma \vdash ty_i \leadsto con_i : \Omega
\overline{\Gamma \vdash (ty_1, \dots, ty_n)} \ longtycon \leadsto path (con_1, \dots, con_n) : \Omega$$
(234)

$$\frac{\Gamma \vdash ty \leadsto con : \Omega \qquad \Gamma \vdash ty' \leadsto con' : \Omega}{\Gamma \vdash ty \Longrightarrow ty' \leadsto con \rightharpoonup con' : \Omega}$$
(235)

Rule 235: There is no way to express total (\rightarrow) types in the external language.

6.6.10 Type Definitions

$$\Gamma \vdash tybind \leadsto sbnds : sdecs$$

$$var_{1}, \cdots, var_{n} \notin BV(\Gamma)$$

$$\Gamma, \overline{tyvar_{1}} \triangleright var_{1}:\Omega, \cdots, \overline{tyvar_{n}} \triangleright var_{n}:\Omega \vdash ty \leadsto con':\Omega$$

$$con = \lambda(var_{1}, \cdots, var_{n}).con'$$

$$\langle \Gamma \vdash tybind \leadsto sbnds: sdecs \qquad var \notin FV(sdecs) \rangle$$

$$\overline{\Gamma \vdash (tyvar_{1}, \cdots, tyvar_{n}) \ tycon = ty \ \langle and \ tybind \rangle \leadsto}$$

$$\overline{tycon} \triangleright var = con \langle, sbnds \rangle: \overline{tycon} \triangleright var:\Omega^{n} \Rightarrow \Omega = con \langle, sdecs \rangle}$$

$$(236)$$

6.6.11 Type Descriptions

$$\boxed{\Gamma \vdash typdesc \leadsto [sdecs]}$$

$$\frac{\langle \Gamma \vdash typdesc \leadsto sdecs \rangle}{\Gamma \vdash \mathsf{type} \ (tyvar_1, \cdots, tyvar_n) \ id \ \langle \ \mathsf{and} \ typdesc \rangle \leadsto \overline{id} : \Omega^n \Rightarrow \Omega \langle, sdecs \rangle} \tag{237}$$

$$\begin{array}{c} var_1, \cdots, var_n \not\in \mathrm{BV}(\Gamma) \\ \Gamma, \overline{tyvar_1} \rhd var_1 : \Omega, \cdots, \overline{tyvar_n} \rhd var_n : \Omega \vdash ty \leadsto con' : \Omega \\ con := \lambda(var_1, \cdots, var_n).con' \\ \frac{\langle \Gamma \vdash typdesc \leadsto sdecs \quad var \not\in \mathrm{FV} sdecs \rangle}{\Gamma \vdash \mathsf{type} \ (tyvar_1, \cdots, tyvar_n) \ id = ty \ \langle \langle \ \mathrm{and} \ typdesc \rangle \rangle \leadsto \overline{id} : \Omega^n \Rightarrow \Omega = con \langle , sdecs \rangle } \end{array}$$

6.6.12 Equality Type Descriptions

$$\boxed{\Gamma \vdash etypdesc \leadsto sdecs}$$

The polymorphic equality functions defined by this judgment the same as the default "structural" equality supplied by SML. Essentially, a type is an equality type if and only if we can use this judgment to create the equality function at that type.

$$sig' = [\overline{tyvar_1}^* : [\overline{tyvar_1} \triangleright var_1 : \Omega, \operatorname{eq} : var_1 \times var_1 \rightharpoonup \operatorname{Bool}], \cdots, \\ \overline{tyvar_n}^* : [\overline{tyvar_n} \triangleright var_n : \Omega, \operatorname{eq} : var_n \times var_n \rightharpoonup \operatorname{Bool}]] \\ con = var(var' . \overline{tyvar_1}^* . \overline{tyvar_1}, \cdots, var' . \overline{tyvar_n}^* . \overline{tyvar_n}) \\ \frac{\langle \Gamma \vdash etypdesc \leadsto sdecs \rangle}{\Gamma \vdash (tyvar_1, \cdots, tyvar_n) \ id \ \langle \operatorname{and} \ etypdesc \rangle \leadsto} \\ \overline{id}^* : [\overline{id} \triangleright var : \Omega^n \Rightarrow \Omega, \operatorname{eq} : (var' : sig') \rightarrow [\operatorname{it} : con \times con \rightharpoonup \operatorname{Bool}]] \langle, sdecs \rangle}$$

$$(239)$$

6.6.13 Datatype Definitions

$$\Gamma \vdash datbind \leadsto sbnds : sdecs$$

Without loss of generality, we may assume that there are no duplicate tyvar's among the bindings.

6.7 Polymorphic Instantiation

$$\boxed{decs \vdash_{inst} \sim [sbnds_{v}] : [sdecs']}$$

$$decs \vdash con : \Omega$$

$$\langle decs \vdash_{eq} con \leadsto exp_{v} \rangle$$

$$\langle \langle decs \vdash_{inst} \leadsto [sbnds_{v}] : [sdecs] \rangle \rangle$$

$$decs \vdash_{inst} \leadsto [lab' = [lab \triangleright var = con \langle, eq = exp_{v} \rangle] \langle \langle, sbnds_{v} \rangle \rangle] :$$

$$[lab' : [lab \triangleright var : \Omega = con \langle, eq : var \times var \rightharpoonup \mathsf{Bool} \rangle]] \langle \langle, sdecs \rangle \rangle$$
(241)

Rule 241 Nondeterministically choose types and the corresponding equality functions so as to match a fully-transparent signature.

6.8 Equality Compilation

$$\boxed{\textit{decs} \vdash_{eq} \textit{con} \sim \textit{exp}}$$

$$\overline{decs} \vdash_{\text{eq}} \text{Int} \rightsquigarrow \lambda(var_1:\text{Int}, var_2:\text{Int:}).\text{Bool}(var_1 =_{\text{Int}} var_2)$$
(242)

Rule 242: We assume primitive equality operations already exist at type Int, with similar rules for the other base types.

$$con = \{lab_1: con_1, \dots, lab_n: con_n\}$$

$$\frac{decs \models_{eq} con_1 \leadsto exp_1 \cdots decs \models_{eq} con_n \leadsto exp_n}{decs \models_{eq} con \leadsto}$$

$$\lambda(var_1: con, var_2: con): \mathsf{Bool}. exp_1(\pi_{lab_1} var_1, \pi_{lab_1} var_2) \mathsf{ and }$$

$$\cdots \mathsf{ and } exp_n(\pi_{lab_n} var_1, \pi_{lab_n} var_2)$$

$$(243)$$

Rule 243: Records are compared component-wise for equality.

Rule 244: Values of a sum type are equal if they have the same tag and the tagged values are equal.

$$k \in 1..n$$

$$\forall i \in 1..n : \begin{cases} con_{i} = (\pi_{i} (\mu con')) con'' \\ con'_{i} := (\pi_{i} (con' (\mu con'))) con'' \end{cases}$$

$$decs' = decs, var_{1} : [1 \triangleright var : \Omega = con_{1}, eq : var \times var \rightarrow Bool], \dots,$$

$$var_{n} : [1 \triangleright var : \Omega = con_{n}, eq : var \times var \rightarrow Bool] \end{cases}$$

$$\forall i \in 1..n : \begin{cases} decs' \vdash_{eq} Unroll con'_{i} \rightsquigarrow exp_{i} \\ exp_{i}^{eq} = (\{var_{1}^{eq}/var'_{1}.eq\} \cdots \{var_{n}^{eq}/var'_{n}.eq\} exp_{i}) \\ (unroll (\pi_{\overline{1}} var), unroll (\pi_{\overline{2}} var)) \end{cases}$$

$$decs \vdash_{eq} con_{k} \rightsquigarrow fix (var_{i}^{eq}(var : con_{i} \times con_{i}) : Bool \mapsto exp_{i}^{eq})_{i=1}^{n} end var_{j}^{eq} \end{cases}$$

$$(245)$$

Rule 245: A recursive type generates recursively-defined equality functions.

$$\frac{decs \vdash path.eq : path.lab \times path.lab \longrightarrow Bool}{decs \vdash_{eq} path.lab \longrightarrow path.eq}$$
 (246)

Rule 246: If the constructor is simply a path—the name of an abstract type—we look for an equality function for that type in the same structure.

$$con = path.lab (con_1, ..., con_n)$$

$$decs \vdash_{inst} \sim mod_p : sig_p$$

$$decs \vdash path.eq : sig_p \rightarrow [it:con \times con \rightarrow Bool]$$

$$decs \vdash_{eq} con \sim (path.eq (mod_v)).it$$

$$(247)$$

Rule 247: Same as Rule 246, except here we deal with the application of an abstract type to a tuple of types. The instantiation judgment may recursively invoke the equality compiler, in order to create equality functions for con_1, \ldots, con_n .

$$\frac{decs \vdash con \equiv con' : \Omega}{\frac{decs \vdash_{eq} con' \leadsto exp}{decs \vdash_{eq} con \leadsto exp}}$$
(248)

$$\boxed{\textit{decs} \vdash_{\text{eq}} \textit{sig} \leadsto \textit{mod}}$$

$$sig = [1^*:[1 \triangleright var_1:\Omega], \dots, n^*:[n \triangleright var_n:\Omega]]$$

$$sig' := [1^*:[1 \triangleright var_1:\Omega\langle, \operatorname{eq}:var_1 \times var_1 \rightharpoonup \operatorname{Bool}\rangle_1], \dots, n^*:[n \triangleright var_n:\Omega\langle, \operatorname{eq}:var_n \times var_n \rightharpoonup \operatorname{Bool}\rangle_n]]$$

$$decs, var:sig' \models_{\operatorname{eq}} con \leadsto exp$$

$$decs \models_{\operatorname{eq}} var:sig \rightarrow [\operatorname{it}:con] \leadsto \lambda var:sig'.[\operatorname{it}=exp]$$

$$(249)$$

6.9 Pattern Compilation

Patterns

$$\Gamma \vdash pat \Leftarrow exp : con \text{ else } exp' \leadsto sbnds : sdecs$$

The judgment should be read as "the bindings of the result of matching exp to the pattern pat are sbnds."

Rules 255, 257, and 259 do not apply.
$$\frac{\Gamma \vdash exp : con}{\Gamma \vdash id \Leftarrow exp : con \text{ else } exp' \leadsto \overline{id} = exp : \overline{id} : con}$$
(250)

Rule 250: Pattern match against an variable (which is not a datatype or exception constructor).

$$lab \text{ fresh} \qquad \text{type}(scon) = con$$

$$\Gamma \vdash exp : con$$

$$\Gamma \vdash scon \Leftarrow exp : con \text{ else } exp' \leadsto$$

$$lab = \text{if } exp = _{con} scon \text{ then } \{\} \text{ else raise}^{\mathsf{Unit}} exp' : lab : \mathsf{Unit}$$

Rule 251: Pattern match against a constant. We need primitive equality functions for constants which can appear in patterns.

$$\frac{lab \text{ fresh} \qquad \Gamma \vdash exp : con}{\Gamma \vdash \bot \Leftarrow exp : con \text{ else } exp' \leadsto lab = exp : lab : con}$$
(252)

Rule 252: Pattern match against a wildcard.

$$\begin{array}{cccc} \Gamma \vdash ty \leadsto con' : \Omega & \Gamma \vdash con \equiv con' : \Omega \\ \frac{\Gamma \vdash pat \Leftarrow exp : con \text{ else } exp' \leadsto sbnds : sdecs}{\Gamma \vdash pat : ty \Leftarrow exp : con \text{ else } exp' \leadsto sbnds : sdecs} \end{array}$$
 (253)

Rule 253: Pattern match against an explicitly-typed pattern.

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab_i : con_i \to con$$

$$\Gamma \vdash path. \mathsf{expose} : con \to \Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)$$

$$\Gamma \vdash pat \Leftarrow \mathsf{pproj}_{lab_i}^{\Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)} ((path. \mathsf{expose} \ exp), exp') : con_i \ \mathsf{else} \ exp' \leadsto sbnds : sdecs$$

$$\Gamma \vdash longid \ pat \Leftarrow exp : con \ \mathsf{else} \ exp' \leadsto sbnds : sdecs$$

$$(254)$$

Rule 254: Pattern match against a monomorphic datatype constructor which carries a value.

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab_i : con \quad lab \text{ fresh}$$

$$\Gamma \vdash exp : con$$

$$\Gamma \vdash path. \mathsf{expose} : con \rightarrow \Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)$$

$$\Gamma \vdash longid \Leftarrow exp : con \text{ else } exp' \leadsto lab = \mathsf{pproj}_{lab_i}^{\Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)} ((path. \mathsf{expose} \ exp), \ exp') : lab: \mathsf{Unit}$$

Rule 255: Pattern match against a constant, monomorphic datatype constructor.

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab_i : sig$$

$$\Gamma \vdash path. \mathsf{expose} : sig_p \to [\mathsf{it} : con \to \Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)]$$

$$\Gamma \vdash_{\mathsf{Inst}} \leadsto mod_p : sig_p$$

$$\Gamma \vdash pat \Leftarrow \mathsf{pproj}_{lab_i}^{\Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)} (((path. \mathsf{expose} \ mod_p). \mathsf{it} \ exp), exp') : con_i \ \mathsf{else} \ exp' \leadsto sbnds : sdecs$$

$$\Gamma \vdash longid \ pat \Leftarrow exp : con \ \mathsf{else} \ exp' \leadsto sbnds : sdecs$$

$$(256)$$

Rule 256: Pattern match against a polymorphic datatype constructor carrying a value.

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab_i : sig$$

$$\Gamma \vdash exp : con$$

$$\Gamma \vdash path. \mathsf{expose} : sig_p \to [\mathsf{it} : con \to \Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)]$$

$$\Gamma \vdash_{\mathsf{Inst}} \leadsto mod_p : sig_p \quad lab \; \mathsf{fresh}$$

$$\Gamma \vdash longid \Leftarrow exp : con \; \mathsf{else} \; exp' \leadsto \\ lab = \mathsf{pproj}_{lab_i}^{\Sigma(lab_1 \mapsto con_1, \dots, lab_n \mapsto con_n)} \left((path. \mathsf{expose} \; mod_p). \mathsf{it} \; exp, exp' \right) : lab: \mathsf{Unit}$$

Rule 257: Pattern match against a constant polymorphic constructor.

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab : con \to \mathsf{Tagged}$$

$$\Gamma \vdash path.\mathsf{tag} : con \, \mathsf{Tag}$$

$$\Gamma \vdash pat \Leftarrow (\mathsf{iftagof} \; exp \; \mathsf{is} \; path.\mathsf{tag} \; \mathsf{then} \; \lambda var : con.var \; \mathsf{else} \; \mathsf{raise}^{con} \; exp') \; \mathsf{else} \; exp' \leadsto sbnds : sdecs$$

$$\Gamma \vdash longid \; pat \Leftarrow exp : con \; \mathsf{else} \; exp' \leadsto sbnds : sdecs$$

$$(258)$$

Rule 258: Pattern match against value-carrying exception constructor.

$$\Gamma \vdash_{\mathsf{ctx}} \overline{longid} \leadsto path.lab : \mathsf{Tagged} \qquad lab \; \mathsf{fresh}$$

$$\Gamma \vdash exp : con$$

$$\Gamma \vdash path.\mathsf{tag} : \mathsf{Unit} \; \mathsf{Tag}$$

$$\Gamma \vdash longid \Leftarrow exp : con \; \mathsf{else} \; exp' \leadsto$$

$$lab = \mathsf{iftagof} \; exp \; \mathsf{is} \; path.\mathsf{tag} \; \mathsf{then} \; \lambda var : \mathsf{Unit}.\{\} \; \mathsf{else} \; \mathsf{raise}^{\mathsf{Unit}} \; exp' : lab : \mathsf{Unit}$$

Rule 259: Pattern match against constant exception constructor.

$$\Gamma \vdash \underline{con} \equiv \{lab'_1 : con'_1, \cdots, lab'_k : con'_k\} : \Omega$$

$$\{\overline{lab_1}, \cdots, \overline{lab_n}\} \subseteq \{lab'_1, \cdots, lab'_n\}$$

$$\forall i \in 1..n : \quad \Gamma, lab \triangleright var : con \vdash pat_i \Leftarrow \pi_{\overline{lab_i}} exp : con_i \text{ else } exp' \leadsto sbnds_i : sdecs_i$$

$$\Gamma \vdash \{lab_1 = pat_1, \dots, lab_n = pat_n \langle , \dots \rangle \} \Leftarrow exp : con \text{ else } exp' \leadsto sbnds_1, \dots, sbnds_n : sdecs_1, \dots, sdecs_n$$

$$(260)$$

Rule 260: Pattern match against a record of patterns. Because we disallow repeated variables in patterns, the syntactic concatenation of structure here is well-formed.

$$\begin{array}{c} \Gamma \vdash pat_1 \Leftarrow exp : con \ \mathsf{else} \ exp' \leadsto sbnds_1 : sdecs_1 \\ \Gamma \vdash pat_2 \Leftarrow exp : con \ \mathsf{else} \ exp' \leadsto sbnds_2 : sdecs_2 \\ \hline \Gamma \vdash pat_1 \ \mathsf{as} \ pat_2 \Leftarrow exp : con \ \mathsf{else} \ exp' \leadsto sbnds_1, sbnds_2 : sdecs_1, sdecs_2 \end{array} \tag{261}$$

Rule 261: Pattern match against two patterns simultaneously.

$$\frac{\Gamma \vdash pat \Leftarrow \mathsf{get} \; exp : con \; \mathsf{else} \; exp' \leadsto sbnds : sdecs}{\Gamma \vdash \mathsf{ref} \; pat \Leftarrow exp : con \; \mathsf{Ref} \; \mathsf{else} \; exp' \leadsto sbnds : sdecs}$$
 (262)

Rule 262: Pattern match involving implicit dereferencing of a ref cell.

$$\Gamma \vdash pat \Leftarrow exp : con' \text{ else } exp' \leadsto sbnds : sdecs$$

$$\Gamma \vdash con \equiv con' : \Omega$$

$$\Gamma \vdash pat \Leftarrow exp : con \text{ else } exp' \leadsto sbnds : sdecs}$$
(263)

Coercion Compilation 6.10

$$decs; path: sig_0 \vdash_{\text{sub}} sdec \leadsto sbnd: sdec'$$

$$\frac{decs; var_0: sig_0 \vdash_{sig} lab \leadsto labs: con'}{decs; path: sig_0 \vdash_{sub} lab \rhd var: con \leadsto lab \rhd var= var_0. labs: lab \rhd var: con}$$
(264)

Rule 264: Coercion of a monomorphic value specification to a monomorphic value specification.

$$\frac{decs; var_0: sig_0 \vdash_{\overline{s}ig} lab \leadsto labs: con \to con'}{decs; path: sig_0 \vdash_{\overline{s}ub} lab \rhd var: con \rightharpoonup con' \leadsto lab \rhd var= \partial \ var_0. labs: lab \rhd var: con \rightharpoonup con'} \quad (265)$$

$$decs, var'_{p}:sig'_{p}; var_{0}:sig_{0} \vdash_{sig} lab \rightsquigarrow labs : sig_{p} \rightarrow [it:con]$$

$$decs, var'_{p}:sig'_{p}, var_{0}:sig_{0} \vdash_{inst} \rightsquigarrow mod_{p} : sig_{p}$$

$$decs; path:sig_{0} \vdash_{sub} lab \triangleright var: (var'_{p}:sig'_{p}) \rightarrow [it:con] \rightsquigarrow$$

$$lab \triangleright var = \lambda var'_{p}:sig'_{p}. (var_{0}.labs\ mod_{p}) :$$

$$lab \triangleright var: (var'_{p}:sig'_{p}) \rightarrow [it:con]$$

$$(266)$$

Rule 266: Coercion of a polymorphic value specification to a polymorphic value specification; this may involve implicit polymorphic instantiation. (The rule also handles matching polymorphic datatype constructors to val specifications.) Note that sig_p and sig_p' need not have the same labels, so this rule also handles alpha-conversion of EL type variables.

$$\frac{decs, var'_{p}:sig'_{p}; var_{0}:sig_{0} \vdash_{\overline{s}ig} lab \rightsquigarrow labs: sig_{p} \rightarrow [it:con \rightarrow con']}{decs, var'_{p}:sig'_{p}, var_{0}:sig_{0} \vdash_{\overline{i}nst} \rightsquigarrow mod_{p}: sig_{p}}$$

$$\frac{decs; path:sig_{0} \vdash_{\overline{s}ub} lab \triangleright var: (var'_{p}:sig'_{p}) \rightarrow [it:con \rightarrow con'] \rightsquigarrow}{lab \triangleright var = \lambda var'_{p}:sig'_{p}. [it = \partial ((var_{0}.labs\ mod_{p}).it)]:}$$

$$lab \triangleright var: (var'_{p}:sig'_{p}) \rightarrow [it:con \rightarrow con']$$

$$(267)$$

$$\frac{decs; var_0: sig_0 \vdash_{sig} lab \leadsto labs: var_p: sig \rightarrow [it:con]}{decs \vdash_{inst} \leadsto mod: sig} \frac{decs; path: sig_0 \vdash_{sub} lab \triangleright var: con \leadsto lab \triangleright var = (var_0.labs\ mod).it: lab \triangleright var: con}{(268)}$$

Rule 268: Coercion of a polymorphic value (or datatype constructor) to match a monomorphic value specification.

$$decs; var_0: sig_0 \vdash_{sig} lab \leadsto labs: var_p: sig \rightarrow [it: con \rightarrow con']$$

$$decs \vdash_{inst} \leadsto mod: sig$$

 $\frac{decs \vdash_{\mathsf{inst}} \sim mod : sig}{decs; path : sig_0 \vdash_{\mathsf{sub}} lab \rhd var : con \rightharpoonup con' \leadsto lab \rhd var = \partial \left((var_0.labs \ mod).\mathsf{it} \right) : lab \rhd var : con \rightharpoonup con' }$ (269)

$$\begin{array}{l} decs; var_0{:}sig_0 \vdash_{\text{sig}} lab \leadsto labs: knd \\ \langle decs, var_0{:}sig_0 \vdash var_0.labs \equiv con: knd \rangle \end{array}$$

 $\overline{decs; path: sig_0 \mid_{sub} lab \triangleright var: knd \langle =con \rangle} \sim lab \triangleright var= var_0.labs: lab \triangleright var: knd = var_0.labs$ (270) Rule 270: Coercion of a type component to a type specification.

$$decs; var_0: sig_0 \vdash_{sig} lab \rightsquigarrow labs : \Omega$$

$$\langle decs, var_0: sig_0 \vdash_{var_0}. labs \equiv con : \Omega \rangle$$

$$decs, var_0: sig_0 \vdash_{eq} var_0. labs \rightsquigarrow exp$$

$$decs; path: sig_0 \vdash_{sub} lab^*: [lab \triangleright var: \Omega \langle =con \rangle, eq: var \times var \rightarrow Bool] \rightsquigarrow$$

$$lab'^*: [lab \triangleright var = var_0. labs, eq: exp] :$$

$$lab'^*: [lab \triangleright var: \Omega = var_0. labs, eq: var \times var \rightarrow Bool]$$

$$(271)$$

Coercion of a type declaration corresponding to an **eqtype** signature specification involving no type variables. We invoke the equality compiler to create an equality function for the type being copied.

$$decs; var_0: sig_0 \models_{sig} lab \rightsquigarrow labs: \Omega^n \Rightarrow \Omega$$

$$con' = var(var_p.lab'_1.lab_1, \cdots, var_p.lab'_n.lab_n)$$

$$decs, var_0: sig_0, var_p: sig_p \models_{eq} con' \rightsquigarrow exp$$

$$decs; path: sig_0 \models_{sub} lab'^*: [lab \triangleright var: \Omega^n \Rightarrow \Omega, eq: var_p: sig_p \rightarrow [it: con' \times con' \rightarrow Bool]] \rightarrow$$

$$lab^*: [lab \triangleright var = var_0.labs, eq: \lambda var_p: sig_p, [it = exp]]:$$

$$lab^*: [lab \triangleright var: \Omega^n \Rightarrow \Omega \langle = var_0.labs \rangle, eq: var_p: sig_p \rightarrow [it: con' \times con' \rightarrow Bool]]$$

$$(272)$$

Coercion of a type declaration correspond to a eqtype signature specification involving type variables (i.e., eqtype ('a,'b) foo).

$$\frac{decs; var_0: sig_0 \vdash_{sig} lab \rightsquigarrow labs: sig'}{decs, var_0: sig_0 \vdash_{sub} path. labs: sig' \leq sig \rightsquigarrow mod_c: sig_c}{decs; path: sig_0 \vdash_{sub} lab \triangleright var: sig \sim lab \triangleright var = mod_c: lab \triangleright var: sig_c}$$

$$(273)$$

Rule 273: Coercion of a module component.

$$decs \vdash_{\text{sub}} path : sig_0 \preceq sig \leadsto mod : sig'$$

$$\begin{array}{c} decs; path: sig_0 \models_{\mathsf{sub}} lab_1 \triangleright dec_1 \leadsto sbnd_1 : sdec_1 \\ decs, dec_1; path: sig_0 \models_{\mathsf{sub}} lab_2 \triangleright dec_2 \leadsto sbnd_2 : sdec_2 \\ & \vdots \end{array}$$

$$\frac{decs, dec_1, \dots, dec_{n-1}; path: sig_0 \vdash_{\text{sub}} lab_n \triangleright dec_n \rightsquigarrow sbnd_n : sdec_n}{decs \vdash_{\text{sub}} path : sig_0 \preceq [lab_1 \triangleright dec_1, \dots, lab_n \triangleright dec_n] \rightsquigarrow}$$

$$[sbnd_1, \dots, sbnd_n] : [sdec_1, \dots, sdec_n]$$

$$(274)$$

$$decs \vdash_{\text{sub}} var_2 : sig_2 \preceq sig_1 \rightsquigarrow mod_3 : sig_3$$

$$decs, var_2 : sig_2 \vdash_{\text{sub}} var'_1 : sig'_1 \preceq sig'_2 \rightsquigarrow mod_4 : sig_4$$

$$decs, var_2 : sig_2 \vdash mod_4 : sig_4$$

$$decs \vdash_{\text{sub}} path : (var_1 : sig_1 \rightharpoonup sig'_1) \preceq (var_2 : sig_2 \rightharpoonup sig'_2) \rightsquigarrow$$

$$\lambda var_2 : sig_2 . \text{let } var'_1 = path \ mod_3 \text{ in } mod_4 \text{ end } :$$

$$var_2 : sig_2 \rightharpoonup sig_4$$

$$(275)$$

Rule 275: Coercions for functor subtyping. We also need the same rule for subtyping of total functors (not shown here).

6.11 Signature Patching

where type

$$sig \vdash_{\mathrm{wt}} labs := con : knd \leadsto sig' : \mathsf{Sig}$$

This judgment should be read "By adding to the signature sig the fact that the abstract type component selected by labs is equal to con: knd, we get the signature sig'."

$$FV(con) \cap BV(sdecs) = \emptyset$$

$$sig = [sdecs, lab \triangleright var:knd, sdecs']$$

$$sig \vdash_{wt} lab := con : knd \leadsto [sdecs, lab \triangleright var:knd = con, sdecs'] : Sig$$
(276)

$$FV(con) \cap BV(sdecs) = \emptyset$$

$$sig = [sdecs, lab \triangleright var: sig', sdecs']$$

$$sig' \vdash_{wt} labs := con : knd \rightsquigarrow sig'' : Sig$$

$$\overline{sig \vdash_{wt} lab. labs} := con : knd \rightsquigarrow [sdecs, lab \triangleright var: sig'', sdecs'] : Sig$$

$$(277)$$

sharing

$$sig \vdash_{\operatorname{sh}} labs_1 := labs_2 : knd \leadsto sig' : \mathsf{Sig}$$

This judgment should be read "By adding to the signature sig the fact that the (abstract) type components of kind knd selected by $labs_1$ and $labs_2$ are equal, we get the signature sig'."

$$\frac{sig = [sdecs, lab' \triangleright var':knd, sdecs', lab \triangleright var:knd, sdecs'']}{sig \vdash_{sh} lab := lab' : knd \leadsto [sdecs, lab' \triangleright var':knd, sdecs', lab \triangleright var:knd = var', sdecs'] : Sig}$$
(278)

$$sig = [sdecs, lab' \triangleright var': knd, sdecs', lab \triangleright var: sig, sdecs'']$$

$$sig \vdash_{wt} labs := var' : knd \rightsquigarrow sig' : Sig$$

$$sig \vdash_{sh} lab.labs := lab' : knd \rightsquigarrow$$

$$[sdecs, lab' \triangleright var': knd, sdecs', lab \triangleright var: sig', sdecs'] : Sig$$

$$(279)$$

$$sig = [sdecs, lab' \triangleright var': sig', sdecs', lab \triangleright var: sig'', sdecs'']$$

$$sig'' \models_{wt} labs := var'. labs' : knd \rightsquigarrow sig''' : Sig$$

$$sig \models_{sh} lab. labs := lab'. labs' : knd \rightsquigarrow$$

$$[sdecs, lab' \triangleright var': sig', sdecs', lab \triangleright var: sig''', sdecs''] : Sig$$

$$(280)$$

$$sig = [sdecs, lab \triangleright var: sig', sdecs']$$

$$sig' \mid_{\overline{sh}} labs := labs' : knd \rightsquigarrow sig'' : Sig$$

$$sig \mid_{\overline{sh}} lab.labs := lab.labs' : knd \rightsquigarrow [sdecs, lab \triangleright var: sig'', sdecs'] : Sig$$

$$(281)$$

6.12 Lookup Rules

The lookup rules specify the order in which translation contexts and IL signatures are searched.

- To prevent an explosion of rules, the metavariable *class* is used to denote a type, signature, or kind as appropriate.
- Any IL structure label starred with an asterisk (e.g., lab^*) is treated specially by the lookup, which checks inside the structure. That is, when looking for an identifier in a context, we also look *inside* starred structure declarations. If the identifier is found inside such a structure, the full path to the identifier through the open structure is returned.
- Any type or signature returned by a lookup will be valid with respect to the ambient context.

6.12.1 Context Lookup

$$\boxed{\Gamma \vdash_{\mathsf{ctx}} \mathit{labs} \leadsto \mathit{path} : \mathit{class}}$$

Main rules for looking up identifiers in a translation context.

$$\frac{\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path \qquad \Gamma \vdash path : con}{\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path : con} \tag{282}$$

$$\frac{\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path \qquad \Gamma \vdash path : knd}{\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path : knd}$$
(283)

$$\frac{\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path \qquad \Gamma \vdash path : sig}{\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path : sig}$$
(284)

$$\Gamma \vdash_{\operatorname{ctx}} labs \leadsto path$$

"Utility" rules used to look up identifiers in a translation context.

$$\frac{lab = lab'}{\Gamma, lab \triangleright var : con \vdash_{\mathsf{ctx}} lab' \leadsto var} \tag{285}$$

$$\frac{lab \neq lab'}{\Gamma, lab \triangleright var: con \vdash_{\mathsf{ctx}} lab' \rightsquigarrow path}$$

$$(286)$$

$$\frac{lab = lab'}{\Gamma, lab \triangleright var: knd \langle = con \rangle \vdash_{\mathsf{ctx}} lab' \leadsto var}$$
 (287)

$$\frac{lab \neq lab' \quad \Gamma \vdash_{\mathsf{ctx}} lab' \rightsquigarrow path}{\Gamma, \, lab \triangleright var: knd \langle =con \rangle \vdash_{\mathsf{ctx}} lab' \rightsquigarrow path}$$
 (288)

$$\frac{lab = lab'}{\Gamma, lab \triangleright var: sig \vdash_{\mathsf{ctx}} lab' \leadsto var}$$
 (289)

$$\frac{lab \neq lab'}{\Gamma, lab \triangleright var: sig \vdash_{\mathsf{ctx}} lab' \rightsquigarrow path}$$

$$(290)$$

$$\frac{sig \vdash_{\text{sig}} lab' \leadsto path}{\Gamma, lab^* \triangleright var: sig \vdash_{\text{ctx}} lab' \leadsto var. path}$$
(291)

$$\frac{sig \vdash_{\text{sig}} lab' \not \rightsquigarrow \qquad \Gamma \vdash_{\text{ctx}} lab' \rightsquigarrow path}{\Gamma, lab^* \triangleright var: sig \vdash_{\text{ctx}} lab' \rightsquigarrow path}$$

$$(292)$$

$$\frac{\Gamma \vdash_{\mathsf{ctx}} lab \rightsquigarrow path : sig \quad \Gamma; path : sig \vdash_{\mathsf{sig}} labs \rightsquigarrow labs' : class}{\Gamma \vdash_{\mathsf{ctx}} lab . labs \rightsquigarrow path . labs'}$$

$$(293)$$

6.12.2 Signature Lookup

$$decs; path: sig \vdash_{sig} labs \leadsto labs': class$$

Main rules for looking up identifiers in a signature.

$$\frac{decs \vdash sig : \mathsf{Sig} \quad sig \vdash_{\mathsf{Sig}} lab \leadsto labs' \quad decs \vdash path.labs' : con}{decs ; path:sig \vdash_{\mathsf{Sig}} lab \leadsto labs' : con} \tag{294}$$

$$\frac{decs \vdash sig : \mathsf{Sig} \quad sig \vdash_{\mathsf{sig}} lab \leadsto labs' \quad decs \vdash path.labs' : sig'}{decs; path:sig \vdash_{\mathsf{sig}} lab \leadsto labs' : sig'} \tag{295}$$

$$\frac{decs \vdash sig : \mathsf{Sig} \quad sig \vdash_{\mathsf{\overline{sig}}} lab \leadsto labs' \quad decs \vdash path.labs' : knd}{decs ; path : sig \vdash_{\mathsf{\overline{sig}}} lab \leadsto labs' : knd} \tag{296}$$

$$decs \vdash sig : Sig$$

$$decs; path: sig \vdash_{sig} lab \rightsquigarrow labs' : sig'$$

$$decs; path. labs': sig' \vdash_{sig} labs \rightsquigarrow labs'' : class$$

$$decs; path: sig \vdash_{sig} lab. labs \rightsquigarrow labs'. labs'' : class$$

$$(297)$$

 $sig \vdash_{sig} lab \leadsto labs'$

"Utility" rules used to look up identifiers in a signature.

$$\frac{lab = lab'}{[sdecs, lab \triangleright var:con] \vdash_{sig} lab' \rightsquigarrow lab}$$
(298)

$$\frac{lab \neq lab' \quad [sdecs] \vdash_{\text{sig}} lab' \leadsto labs}{[sdecs, lab \triangleright var:con] \vdash_{\text{sig}} lab' \leadsto labs}$$
(299)

$$\frac{lab = lab'}{[sdecs, lab \triangleright var: knd \langle =con \rangle] \vdash_{sig} lab' \rightsquigarrow lab}$$
(300)

$$\frac{lab \neq lab' \quad [sdecs] \vdash_{\overline{s}ig} lab' \rightsquigarrow labs}{[sdecs, lab \triangleright var: knd \langle =con \rangle] \vdash_{\overline{s}ig} lab' \rightsquigarrow labs}$$
(301)

$$\frac{lab = lab'}{[sdecs, lab \triangleright var:sig] \vdash_{sig} lab' \rightsquigarrow lab}$$
(302)

$$\frac{lab \neq lab' \quad [sdecs] \vdash_{\text{sig}} lab' \leadsto labs}{[sdecs, lab \rhd var:sig] \vdash_{\text{sig}} lab' \leadsto labs}$$

$$(303)$$

$$\frac{sig \vdash_{\text{sig}} lab' \leadsto labs}{[sdecs, lab^* \rhd var: sig] \vdash_{\text{sig}} lab' \leadsto lab^*.labs}$$
(304)

$$\frac{sig \vdash_{\overline{s}ig} lab' \not \rightsquigarrow [sdecs] \vdash_{\overline{s}ig} lab' \rightsquigarrow labs}{[sdecs, lab^* \triangleright var: sig] \vdash_{\overline{s}ig} lab' \rightsquigarrow labs}$$

$$(305)$$

6.13 Overloading

For each overloaded identifier we wish to add to the EL, we add one translation rule for each overloaded type. For example, we may want to overload the EL identifier + for addition at types int and real. In this case, we would add two rules along the lines of:

$$\frac{}{\Gamma \vdash + \leadsto +_{\mathsf{Int}} : \mathsf{Int} \times \mathsf{Int} \rightharpoonup \mathsf{Int}}$$

and

$$\frac{}{\Gamma \vdash + \leadsto +_{\mathsf{Float}} : \mathsf{Float} \times \mathsf{Float} \rightharpoonup \mathsf{Float}},$$

where $+_{Int}$ and $+_{Float}$ are the two IL primitive addition functions.

7 Properties

The proofs presented here are only sketches; the Standard ML language is far too large to check every case by hand in a reasonable amount of time. Future work may involve attempting to check these proofs with an automated system.

7.1 Properties of the Internal Language

7.1.1 Static Semantics

Lemma 1 (Well-formedness)

The following propositions hold:

1. If $decs \vdash dec$ ok then $\vdash decs$ ok.

- 2. If $decs \vdash bnd : dec then decs \vdash dec ok$.
- 3. If $decs \vdash knd$: Kind then $\vdash decs$ ok.
- 4. If $decs \vdash con : knd \ then \ decs \vdash knd : Kind$.
- 5. If $decs \vdash con \equiv con' : knd$ then $decs \vdash con : knd$ and $decs \vdash con' : knd$.
- 6. If $decs \vdash exp : con then decs \vdash con : \Omega$.
- 7. If $decs \vdash sdecs$ ok then $\vdash decs$ ok.
- 8. If $decs \vdash sig : Sig then \vdash decs ok$.
- 9. If $decs \vdash sdecs < sdecs'$ then $decs \vdash sdecs$ ok and $decs \vdash sdecs'$ ok.
- 10. If $decs \vdash sig \leq sig' : \mathsf{Sig}\ then\ decs \vdash sig : \mathsf{Sig}\ and\ decs \vdash sig' : \mathsf{Sig}.$
- 11. If $decs \vdash sdecs \equiv sdecs'$ then $decs \vdash sdecs$ ok and $decs \vdash sdecs'$ ok.
- 12. If $decs \vdash sig \equiv sig' : \mathsf{Sig}\ then\ decs \vdash sig : \mathsf{Sig}\ and\ decs \vdash sig' : \mathsf{Sig}$.
- 13. If $decs \vdash sbnds$: sdecs then $decs \vdash sdecs$ ok.
- 14. If $decs \vdash mod : sig then decs \vdash sig : Sig$.
- 15. If $decs \vdash exp \downarrow con$ then $decs \vdash exp : con$. If in addition $decs \vdash exp : con'$, then $decs \vdash exp \downarrow con'$.
- 16. If $decs \vdash mod \downarrow sig$ then $decs \vdash mod : sig$. If in addition $decs \vdash mod : sig'$, then $decs \vdash mod \downarrow sig'$.

The following lemma states that internal language judgments are preserved under substitution of values for free variables in a typing judgment, where a value is defined syntactically in Figure 4 to be a phrase in evaluated form.

Proposition 2 (Substitution)

- 1. If decs, var: class, $decs' \vdash con_1 \equiv con_2 : knd$ and $decs \vdash val : class$ then decs, $\{val/var\}decs' \vdash \{val/var\}con_1 \equiv \{val/var\}con_2 : knd$.
- 2. If decs, var: class, $decs' \vdash sig_1 \equiv sig_2$: Sig and $decs \vdash val$: class then decs, $\{val/var\}decs' \vdash \{val/var\}sig_1 \equiv \{val/var\}sig_2$: Sig.
- 3. If decs, var: class, $decs' \vdash sig_1 \leq sig_2$: Sig and $decs \vdash val$: class then decs, $\{val/var\}decs' \vdash \{val/var\}sig_1 \leq \{val/var\}sig_2$: Sig.
- 4. If decs, var: class, $decs' \vdash exp : con$ and $decs \vdash val : class$ then decs, $\{val/var\}decs' \vdash \{val/var\}exp : \{val/var\}con$.
- 5. If decs, var: class, $decs' \vdash mod : sig$ and $decs \vdash val : class$ then decs, $\{val/var\}decs' \vdash \{val/var\}mod : \{val/var\}sig$.

- 6. If decs, var:class, $decs' \vdash con : knd$ and $decs \vdash val : sig'$ then decs, $\{val/var\}decs' \vdash \{val/var\}con : knd$.
- 7. If decs, var: class, $decs' \vdash exp \downarrow con$ and $decs \vdash val: class$ then decs, $\{val/var\}decs' \vdash \{val/var\}exp \downarrow \{val/var\}con$.
- 8. If decs, var: class, $decs' \vdash mod \downarrow sig$ and $decs \vdash val: class$ then decs, $\{val/var\}decs' \vdash \{val/var\}mod \downarrow \{val/var\}sig$.

Proof (sketch): [By induction on the derivation of the first premises; due to space constraints we show only two sample cases]

• Case: The derivation ends with Typing Rule 49:

$$decs, var:class, decs' \vdash exp : con_2 \rightharpoonup con$$

 $decs, var:class, decs' \vdash exp' : con_2$
 $decs, var:class, decs' \vdash exp \ exp' : con$

and $decs \vdash val : class$. By the inductive hypotheses,

$$decs, \{val/var\}decs' \vdash \{val/var\}exp : \\ (\{val/var\}con_2) \rightharpoonup (\{val/var\}con)$$

and

$$decs, \{val/var\}decs' \vdash \{val/var\}exp' : \{val/var\}con_2.$$

Therefore from Typing Rule 49, we can conclude

$$decs, \{val/var\}decs' \vdash \{exp_v/var\}(exp\ exp') : con.$$

• Case: the derivation ends with Typing Rule 31:

$$decs, var: class, decs' \vdash mod_v : [lab_1: dec_1, \cdots, lab_m: dec_m, lab: var: knd = con_2, sdecs] \\ decs, var: class, decs', dec_1, \cdots, dec_m \vdash con \equiv con_2 : knd \\ decs, var: class, decs' \vdash con : knd \\ decs, var: class, decs' \vdash mod_v. lab \equiv con : knd$$

and $decs \vdash val : class$. By the using properties 5, 1, and 6 of the induction hypothesis, and Typing Rule 31, we have

$$decs, \{val/var\}decs' \vdash \{val/var\}mod_v.lab \equiv \{val/var\}con : knd.$$

Claim 3 (Decidability)

All internal language judgments considered by the elaborator are decidable.

Proof (sketch): Because all internal-language module expressions generated by the elaborator have most-specific signatures, the decidability of the static semantics can be reduced in a straightforward fashion to the decidability of constructor equivalence. Of the constructor equivalence judgments, Rules 32–45 describe a familiar simply-typed lambda calculus with records and constants. Even allowing the use of simple abbreviations in the context (Rule 30) can be seen to preserve decidability. Roughly speaking one can always first "inline" the abbreviations and then test for equivalence as in the previous case.

It is not obvious how to extend the proof to include Rule 31 in a simple fashion. Lillibridge [Lil97] gives a complex argument for the decidability of constructor equivalence in a related system (without records of constructors). We conjecture an analogous argument would apply for our system.

7.1.2 Dynamic Semantics

We define two states to be equivalent, written

$$(\Delta, \sigma, E, phrase) \cong (\Delta', \sigma', E', phrase'),$$

if the two states are equal componentwise up to consistent renaming of the locations and exception tags appearing in Δ and normal renaming of bound-variables. This is clearly an equivalence relation on states which preserves the property of being a terminal state.

Lemma 4 (Determinacy of Evaluation)

The following properties hold:

- 1. If Σ is terminal and $\Sigma \cong \Sigma'$, then Σ' is also terminal.
- 2. If $\Sigma \hookrightarrow \Sigma_1$ and $\Sigma \cong \Sigma'$, then there exists a state $\Sigma'_1 \cong \Sigma_1$ such that $\Sigma' \hookrightarrow \Sigma'_1$.
- 3. If $\Sigma_1 \hookrightarrow \Sigma_1'$, $\Sigma_2 \hookrightarrow \Sigma_2'$ and $\Sigma_1 \cong \Sigma_2$ then $\Sigma_1' \cong \Sigma_2'$.
- 4. If $\Sigma \hookrightarrow^* \Sigma_t$ and $\Sigma \hookrightarrow^* \Sigma_t'$ then $\Sigma_t \cong \Sigma_t'$.

A context C is a phrase with a single *hole*, written []. We write C[phrase] for the result of filling the hole in C with phrase, possibly incurring variable capture. A stack of frames E determines a context \widehat{E} in the obvious way: $\widehat{[]}$ is the context $\widehat{[]}$, and $\widehat{E \circ F}$ is the context $\widehat{E}[F]$.

Proposition 5 (Decomposition & Replacement)

- 1. If $decs \vdash \widehat{E}[exp] : con$ and exp is closed, then $decs \vdash exp : con'$ for some type con'. Furthermore, if $decs \vdash exp' : con'$ where exp' is closed, then $decs \vdash \widehat{E}[exp'] : con$.
- 2. If $decs \vdash \widehat{E}[mod]$: con and mod is closed, then $decs \vdash mod$: sig for some signature sig. Furthermore, if $decs \vdash mod'$: sig where mod' is closed, then $decs \vdash \widehat{E}[mod']$: con.
- 3. If $decs \vdash \widehat{E}[con']$: con and con' is closed, then $decs \vdash con$: knd for some kind knd. Furthermore, if $decs \vdash con''$: knd where con'' is closed, then $decs \vdash \widehat{E}[con'']$: con.

Proof (sketch): [By induction on E]

If E = [] then the proposition is trivial, since $\widehat{E}[phrase] = phrase$. Hence, assume $E = E' \circ F$. Due to space constraints, we show just one typical case.

• Case: $F = [] exp_2$. Then $\widehat{E}[exp] = \widehat{E'}[exp \ exp_2]$. By the inductive hypothesis, we have $decs \vdash exp \ exp_2 : con'$ for some con'. Inspection of the typing rules shows that this derivation must contain an application of Rule 49 or Rule 50; we show here only the former case, the other is similar. By inversion $decs \vdash exp : con_2 \rightharpoonup con'$ and $decs \vdash exp_2 : con_2$ for some type con_2 . Furthermore, if $decs \vdash exp' : con_2 \rightharpoonup con'$ then $decs \vdash exp' \ exp : con'$ and by the inductive hypothesis we have $decs \vdash \widehat{E'}[exp' \ exp_2] : con$; that is, $decs \vdash \widehat{E}[exp'] : con$.

7.1.3 Soundness of the Internal Language

Following Harper [Har93], we say that a store σ is well-formed with respect to a context Δ , written $\Delta \vdash \sigma$, if

$$\forall loc \in BV(\Delta), \text{ if } \Delta \vdash loc : con \text{ Ref then } \Delta \vdash \sigma(x) : con.$$

This formulation of store typing avoids the need for complex maximal fixed point constructions [Tof90]. (An essentially similar observation was made by Wright and Felleisen [WF91].)

Fix a base type ans of answers to which a complete, closed program might evaluate.² We can say that a machine state is well-formed, written

$$\vdash (\Delta, \sigma, E, phrase),$$

if and only if $\Delta \vdash \widehat{E}[phrase]$: ans, phrase is closed, and $\Delta \vdash \sigma$. An important property of the internal language semantics is that well-formedness of a state is preserved by evaluation.

Proposition 6 (Preservation)

If $\vdash (\Delta, \sigma, E, phrase)$ and

$$(\Delta, \sigma, E, phrase) \hookrightarrow (\Delta', \sigma', E', phrase')$$

then $\vdash (\Delta', \sigma', E', phrase')$.

Proof (sketch):

If the transition is a search rule then preservation follows trivially, for $\Delta = \Delta'$, $\sigma = \sigma'$, and $\widehat{E}[phrase] = \widehat{E'}[phrase']$. Hence we need only consider the reduction rules. We show only one sample case here.

²A reasonable choice might be String, or Unit if we model all I/O by updating the store; the particular choice does not affect our results.

• Case: Transition Rule 160:

$$(\Delta, \sigma, E \circ (\pi_{lab} []), \{rbnds_{v}, lab = exp_{v}, rbnds_{v}'\}) \hookrightarrow (\Delta, \sigma, E, exp_{v})$$

Then $E \circ (\pi_{lab}[])[\{rbnds_{v}, lab = exp_{v}, rbnds_{v}'\}] = \widehat{E}[\pi_{lab}\{rbnds_{v}, lab = exp_{v}, rbnds_{v}'\}].$ By the well-formedness assumption and Decomposition, $decs \vdash \pi_{lab}\{rbnds_{v}, lab = exp_{v}, rbnds_{v}'\} : con'$ for some type con'. Since this judgement must be proven using Typing Rules 54 and 53, by inversion we have that $decs \vdash exp_{v} : con'$. Since exp_{v} is must by closed by the well-formedness assumption and $decs \vdash \widehat{E}[exp_{v}] : ans$ by Replacement, well-formedness is preserved.

Furthermore, evaluation of a well-typed program can never "get stuck": if a well-formed state is not terminal, there is always an applicable transition to another (well-formed) state. The proof relies on a characterization of the shapes of closed values of each type.

Lemma 7 (Canonical Forms)

1. Assume $\Delta \vdash exp_{v}' : con'$ where exp_{v}' is closed.

```
\begin{array}{ll} \textit{If } \textit{con'} \textit{ is of the form.} .. & \textit{then } \textit{exp}_{v}\textit{'} \textit{ is of the form.} .. \\ \textit{con}_{1} \rightarrow \textit{con}_{2} & \pi_{\overline{k}} \textit{ fix } \textit{fbnds} \textit{ end} \\ \textit{con}_{1} \rightarrow \textit{con}_{2} & \pi_{\overline{1}} \textit{ fix } \textit{fbnd} \textit{ end} \\ \{\textit{lab}_{1} : \textit{con}_{1}, \cdots, \textit{lab}_{n} : \textit{con}_{n}\} & \{\textit{lab}_{1} = \textit{exp}_{v_{1}}, \cdots, \textit{lab}_{n} = \textit{exp}_{v_{n}}\} \\ \{\textit{fix } \textit{fbnds} \textit{ end} \\ \sum_{\langle \textit{lab}_{i} \rangle} (\textit{lab}_{1} \mapsto \textit{con}_{1}, \ldots, \textit{lab}_{n} \mapsto \textit{con}_{n}) & \textit{inj}_{\substack{\textit{lab}_{i} \\ \textit{lab}_{i} \\ \textit{tag}}} (\textit{tag}_{1} \mapsto \textit{con}_{1}, \ldots, \textit{lab}_{n} \mapsto \textit{con}_{n}) & \textit{exp}_{v} \\ \text{Tagged} & \textit{tag}(\textit{tag}, \textit{exp}_{v}) \\ \textit{con } \textit{Ref} & \textit{loc} \\ \textit{base type} & \textit{scon} \\ \end{array}
```

2. Assume $\Delta \vdash mod_{v}' : sig'$ where mod_{v}' is closed.

If
$$sig'$$
 is of the form... then mod_{v}' is of the form... $[sdecs]$ $[sbnds_{v}]$ $var:sig \rightarrow sig'$ $\lambda var:sig.mod$ $var:sig \rightarrow sig'$ $\lambda var:sig.mod$

Proof: By inspection of the applicable typing rules for values. For example, consider the case in which $\Delta \vdash exp_{v}' : con'$ where con' is a record type. There are numerous rules that allow the conclusion that an expression has a record type (application, record projection, etc.) but only one—the rule for record expressions—applies in the case of a closed value. This is the only possible form for exp_{v} . The other cases are analogous.

Proposition 8 (Progress)

If $\vdash \Sigma$ then either Σ is terminal or there exists a state Σ' such that $\Sigma \hookrightarrow \Sigma'$.

Proof (sketch):

There are three cases:

- 1. Σ is terminal.
- 2. $\Sigma = (\Delta, \sigma, \mu, E, phrase)$ where phrase is not a value. By inspection, for every possible phrase syntax there is an applicable rule in the dynamic semantics (a reduction rule for $new_tag[con]$ and search rules otherwise).
- 3. $\Sigma = (\Delta, \sigma, \mu, E \circ F, val)$. This has one subcase for each possible frame F. We show one such case:
 - Case: F = (get []). By well-formedness and Decomposition, Δ ⊢ get val : con' for some type con'. By inversion of Rule 59 we have that Δ ⊢ val : con' Ref. By Canonical Forms, val is a location, and by well-formedness val ∈ BV(σ). Therefore, Transition Rule 163 applies.

7.2 Properties of the Elaborator

The minimal requirement for the elaborator is that the elaboration of EL code yields well-formed IL code:

Proposition 9 (Well-formed translation)

Assume $\vdash \Gamma$ ok. Then the following propositions hold:

- 1. If $\Gamma \vdash expr \leadsto exp : con \ then \ \Gamma \vdash exp : con$.
- 2. If $\Gamma \vdash match \rightsquigarrow exp : con then \Gamma \vdash exp : con$.
- 3. If $\Gamma \vdash strdec \rightsquigarrow sbnds : sdecs \ then \ \Gamma \vdash sbnds : sdecs$.
- 4. If $\Gamma \vdash strexp \rightsquigarrow mod : sig then \Gamma \vdash mod : sig$.
- 5. If $\Gamma \vdash strbind \rightsquigarrow sbnds : sdecs then \Gamma \vdash sbnds : sdecs$.
- 6. If $\Gamma \vdash funbind \leadsto sbnds : sdecs \ then \ \Gamma \vdash sbnds : sdecs$.
- 7. If $\Gamma \vdash spec \leadsto sdecs \ then \ \Gamma \vdash sdecs \ ok$.
- 8. If $\Gamma \vdash sigexp \leadsto sig : Sig then \Gamma \vdash sig : Sig.$
- 9. If $\Gamma \vdash ty \leadsto con : \Omega \text{ then } \Gamma \vdash con : \Omega$.
- 10. If $\Gamma \vdash tybind \rightsquigarrow sbnds : sdecs then \Gamma \vdash sbnds : sdecs$.

- 11. If $\Gamma \vdash typdesc \leadsto sbnds : sdecs then \Gamma \vdash sbnds : sdecs$.
- 12. If $\Gamma \vdash etypdesc \rightsquigarrow sbnds : sdecs then \Gamma \vdash sbnds : sdecs$.
- 13. If $\Gamma \vdash datbind \leadsto sbnds : sdecs then \Gamma \vdash sbnds : sdecs$.
- 14. If $decs \vdash_{inst} \leadsto mod : sig then <math>decs \vdash mod : sig$. Furthermore, mod is a syntactic value and sig is the most-specific signature of mod.
- 15. If $decs \vdash_{eq} con \rightsquigarrow exp$ then $decs \vdash exp : con \times con \rightarrow \mathsf{Bool}$. Furthermore, exp is a syntactic value. If $decs \vdash_{eq} \Lambda(var_1, \ldots, var_n).con \rightsquigarrow mod$ then $decs \vdash mod : \forall var^{\langle eq \rangle_1}, \ldots, var^{\langle eq \rangle_n}.con \times con \rightarrow \mathsf{Bool}$.
- 16. If $\Gamma \vdash pat \Leftarrow exp : con \text{ else } sbnds \leadsto sdecs :, \Gamma \vdash exp : \text{Tagged } and \Gamma \vdash exp : con, then <math>\Gamma \vdash sbnds : sdecs$.
- 17. If decs; $path:sig_0 \vdash_{sub} sdec \rightsquigarrow sbnd: sdec'$ then $decs \vdash path: sig_0$, $decs \vdash sdec$ ok, and $decs \vdash sbnd: sdec'$.
- 18. If $decs \vdash_{\text{sub}} path : sig_0 \preceq sig \leadsto mod : sig'$ then $decs \vdash path : sig_0, decs \vdash sig_0 \leq sig : \mathsf{Sig},$ $decs \vdash mod : sig', \text{ and } decs \vdash sig' \leq sig : \mathsf{Sig}.$
- 19. If $\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path : class \ then \ \Gamma \vdash path : class.$ Furthermore, $\Gamma \vdash path : class'$ if and only if $\Gamma \vdash_{\mathsf{ctx}} labs \leadsto path : class$.
- 20. If Γ ; $path:sig \vdash_{sig} labs \rightsquigarrow labs : class then <math>\Gamma \vdash path.labs : class$. Furthermore, if $\Gamma \vdash path.labs : class'$ then Γ ; $path:sig \vdash_{sig} labs \rightsquigarrow labs : class'$.
- 21. If $sig \vdash_{wt} labs := con : knd \rightsquigarrow sig' : \mathsf{Sig}, \Gamma \vdash sig : \mathsf{Sig}, \text{ and } \Gamma \vdash con : knd, \text{ then } \Gamma \vdash sig' : \mathsf{Sig}.$
- 22. If $sig \vdash_{sh} labs := labs' : knd \leadsto sig' : Sig and <math>\Gamma \vdash sig : Sig then \Gamma \vdash sig' : Sig.$

Proof: This follows by induction on the derivation of the first premises.

To claim that we have *defined* a language, we need elaboration to be a "function" in the sense that all possible elaborations of an EL program yield "equivalent" IL programs. We argue that such coherence is plausible, also we have not attempted a formal proof.

Claim 10 (Coherence)

If

$$basis^* \triangleright basis: sig_{basis} \vdash expr \leadsto exp: ans$$

and

$$basis^* \triangleright basis: sig_{basis} \vdash expr \leadsto exp': ans$$

and

$$(\cdot, \cdot, \mathsf{let} \ basis = mod_{basis} \ \mathsf{in} \ exp \ \mathsf{end}) \hookrightarrow^* \Sigma_t$$

then for some terminal state $\Sigma'_t \cong \Sigma_t$,

$$(\cdot, \cdot, \mathsf{let}\ \mathit{basis} = \mathit{mod}_{\mathit{basis}}\ \mathsf{in}\ \mathit{exp'}\ \mathsf{end}) \hookrightarrow^* \Sigma'_t.$$

Proof (sketch): We enumerate the instances of non-determinism in the elaborator, and argue that these should not cause incoherence.

1. The elaborator may "guess" types for bound variables (in fn expressions) and when instantiating polymorphism. Types in "dead" code may be underconstrained, as in

$$(fn x \Rightarrow 3)(fn y \Rightarrow y)$$

where there are infinitely many choices for the type of the identity fn y => y. However, the dynamic semantics is sufficiently abstract that choices of types do not affect the course of evaluation.

- 2. Similarly, the elaborator may have a choice regarding how to resolve overloading. The simplest argument is that each overloaded operator corresponds to a single operator in the dynamic semantics, so that again evaluation does not depend on the resolved type. (A more sophisticated argument should be able to show that in a complete program, whenever there is a choice of how to resolve overloading, the operator will never be applied.)
- 3. The elaborator must decide whether valuable expressions should be monomorphic or polymorphic, and in the latter case, on how many type variables to generalize. This turns expressions into functor abstractions, which in general causes incoherence by changing the order of evaluation—an expression wrapped by a functor will not be evaluated until the functor is applied. However, we only generalize valuable expressions, which have no effects, so that these choices will not affect observable behavior.
- 4. There is nondeterminism in the creation of equality functions: there may be different definitions of equality at the same type. However, we maintain the invariant that equality functions always perform structural equality on the underlying values regardless of abstraction. Any two candidate definitions then have the same behavior, and no incoherence can arise.

8 Acknowledgments

We would like to thank Perry Cheng and Martin Elsman for their particularly helpful comments on the work presented here.

References

[Har93] Robert Harper. A simplified account of polymorphic references. Technical Report CMU-CS-93-169, School of Computer Science, Carnegie Mellon University, 1993.

- [HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing. In 21st Symposium on Principles of Programming Languages, pages 123–137, 1994.
- [HM93] Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM Transactions on Programming Languages and Systems, 15(2):211–252, 1993.
- [HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis. In 22nd Symposium on Principles of Programming Languages, pages 130–141, 1995.
- [HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase distinction. In 17th Symposium on Principles of Programming Languages, pages 341–354, 1990.
- [Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st Symposium on Principles of Programming Languages, pages 109–122, 1994.
- [Ler96] Xavier Leroy. A syntactic theory of type generativity and sharing. *Journal of Functional Programming*, 6(5):667–698, 1996.
- [Lil97] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD thesis, School of Computer Science, Carnegie Mellon University, 1997. Available as CMU Technical Report CMU-CS-97-122.
- [Mor95] Greg Morrisett. Compiling with Types. PhD thesis, School of Computer Science, Carnegie Mellon University, 1995. Available as CMU Technical Report CMU-CS-95-226.
- [MT94] David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In European Symposium on Programming, pages 409–423. Springer-Verlag, LNCS 788, April 1994.
- [MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, 1990.
- [MTHM97] Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Definition of Standard ML (Revised). MIT Press, 1997.
- [Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, September 1981.
- [Tar96] David Tarditi. Design and Implementation of Code Optimizations for a Type-Directed Compiler for Standard ML. PhD thesis, School of Computer Science, Carnegie Mellon University, 1996.

- [TMC⁺96] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. TIL: A type-directed optimizing compiler for ML. In *Proceedings* of the ACM SIGPLAN '96 Conference on Programming Language Design and Implementation, pages 181–192, 1996.
- [Tof90] Mads Tofte. Type inference for polymorphic references. *Information and Computation*, 89(1):1–34, November 1990.
- [WF91] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness. Technical Report TR91-160, Department of Computer Science, Rice University, 1991.