Midterm 1: Math 6266

Peter Williams

Section 1.1

Exercise 1. Consider the linear regression model with mean zero, uncorrelated, heteroscedastic noise:

$$Y_i = X_i^{\mathsf{T}} \theta + \varepsilon_i, \text{ for } i = 1, ..., n, \ E \varepsilon_i = 0, \ cov(\varepsilon_i, \varepsilon_j) = \begin{cases} \sigma_i^2, & \text{if } i = j \\ 0, & i \neq j \end{cases}$$
 (1)

Find expressions for the LSE and response estimator in this model

To set up the problem, take $W^{-1}=diag\{\sigma_1^2,...,\sigma_n^2\}$, $W=diag\{\frac{1}{\sigma_1^2},...,\frac{1}{\sigma_n^2}\}$, $W^{1/2}=diag\{\sqrt{\frac{1}{\sigma_1^2}},...,\sqrt{\frac{1}{\sigma_n^2}}\}$, with $W^{\intercal}=W$, and $W^{1/2}W^{1/2}=W$, since they are diagonal matrices. Also we will use $w_i=\frac{1}{\sigma_i^2}=W_{ii}$.

Under heteroscedastic noise assumptions, we define the least squares estimator, denoted $\hat{\theta}$, as:

$$\hat{\theta} = \underset{\theta}{argmin} \sum_{i=1}^n w_i (Y_i - X_i^\intercal \theta)^2 = \underset{\theta}{argmin} \sum_{i=1}^n (\sqrt{w_i} Y_i - \sqrt{w_i} X_i^\intercal \theta)^2 = \underset{\theta}{argmin} ||W^{1/2} Y - W^{1/2} X^\intercal \theta||^2$$

 $G(\theta) = ||W^{1/2}Y - W^{1/2}X^\intercal\theta||^2 = (W^{1/2}Y - W^{1/2}X^\intercal\theta)^\intercal(W^{1/2}Y - W^{1/2}X^\intercal\theta) = Y^\intercal WY - 2\theta^\intercal XWY + \theta^\intercal XWX^\intercal\theta$ with gradient,

$$\nabla G(\theta) = -2XWY + 2XWX^{\mathsf{T}}\theta$$

Setting this expression equal to zero leads to estimator $\hat{\theta} = (XWX^{\intercal})^{-1}XWY$, which leads to response estimator $\hat{Y} = X^{\intercal}\hat{\theta} = X^{\intercal}(XWX^{\intercal})^{-1}XWY$.

Exercise 2. Assume that $\varepsilon_i \sim N(0, \sigma_i^2)$ in the previous problem. What is known about the distribution of $\hat{\theta}$ and \hat{Y} ?

For $\hat{\theta}$, we have,

$$E[\hat{\theta}] = E[(XWX^{\mathsf{T}})^{-1}XWY] = E[(XWX^{\mathsf{T}})^{-1}XW(X^{\mathsf{T}}\theta^* + \varepsilon)] = E[\theta^*] + E[(XWX^{\mathsf{T}})^{-1}XW\varepsilon] = \theta^*$$

indicating that $\hat{\theta}$ is unbiased. Further $\hat{\theta}$ is normally distributed, since is a linear transformation of $\varepsilon \sim N(0, W^{-1})$. Further we have,

$$Var(\hat{\theta}) = Var((XWX^\intercal)^{-1}XWY) = Var((XWX^\intercal)^{-1}XW(X^\intercal\theta^* + \varepsilon)) = Var((XWX^\intercal)^{-1}XW\varepsilon)) = \dots$$
$$= (XWX^\intercal)^{-1}XWVar(\varepsilon)W^\intercal X^\intercal (XWX^\intercal)^{-1} = (XWX^\intercal)^{-1}XWX^\intercal (XWX^\intercal)^{-1} = (XWX^\intercal)^{-1} = Var(\hat{\theta})$$

For \hat{Y} we have,

$$E[\hat{Y}] = E[X^{\mathsf{T}}(XWX^{\mathsf{T}})^{-1}XWY] = E[X^{\mathsf{T}}(XWX^{\mathsf{T}})^{-1}XW(X^{\mathsf{T}}\theta^* + \varepsilon)] = E[X^{\mathsf{T}}\theta^* + X^{\mathsf{T}}(XWX^{\mathsf{T}})^{-1}XW\varepsilon] = E[X^{\mathsf{T}}\theta^*] = Y$$
 and,

$$\begin{split} Var[\hat{Y}] &= Var[X^\intercal(XWX^\intercal)^{-1}XWY] = Var[X^\intercal(XWX^\intercal)^{-1}XW(X^\intercal\theta^* + \varepsilon)] = Var[X^\intercal\theta^* + X^\intercal(XWX^\intercal)^{-1}XW\varepsilon] = \dots \\ &\dots = Var[X^\intercal(XWX^\intercal)^{-1}XW\varepsilon] = X^\intercal(XWX^\intercal)^{-1}XW \ Var(\varepsilon) \ W^\intercal X^\intercal(XWX^\intercal)^{-1}X = \dots \\ &= X^\intercal(XWX^\intercal)^{-1}XWX^\intercal(XWX^\intercal)^{-1}X = X^\intercal(XWX^\intercal)^{-1}X \end{split}$$

Now suppose additionally that $\sigma_i^2 \equiv \sigma^2 > 0$. What can be said about distribution of the estimator $\hat{\sigma}^2$?

With $\sigma_i^2 \equiv \sigma^2 > 0$, we have $\hat{\sigma^2} = \frac{||Y - X^{\mathsf{T}}\hat{\theta}||^2}{n-p} = \frac{||\hat{\varepsilon}||^2}{n-p}$. Further denote, $||\hat{\varepsilon}|| = ||Y - \hat{Y}|| = ||Y - \Pi Y|| = ||(I_n - \Pi)Y||$, also noting that $(I_n - \Pi)X^{\mathsf{T}} = X^{\mathsf{T}} - \Pi X^{\mathsf{T}} = X^{\mathsf{T}} - X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}XX^{\mathsf{T}} = X^{\mathsf{T}} - X^{\mathsf{T}} = 0$. Then we have,

$$(n-p)E[\hat{\sigma^2}] = E||Y - X^{\mathsf{T}}\hat{\theta}||^2 = E||\hat{\varepsilon}||^2 = E[tr(\hat{\varepsilon}\hat{\varepsilon}^{\mathsf{T}})] = E[tr((I_n - \Pi)YY^{\mathsf{T}}(I_n - \Pi))] = \dots$$

,

$$\ldots = E[tr((I_n - \Pi)(X^\intercal \theta^* + \varepsilon)(X^\intercal \theta^* + \varepsilon)^\intercal (I_n - \Pi))] = E[tr((I_n - \Pi)\varepsilon\varepsilon^\intercal (I_n - \Pi))] = tr((I_n - \Pi)E[\varepsilon\varepsilon^\intercal]) = \ldots$$

Using the cylic property of the trace operator, the property that $(I_n - \Pi)(I_n - \Pi) = (I_n - \Pi)$, and the expectation $E[\varepsilon \varepsilon^{\dagger}] = \sigma^2 I_n$, leading to

... =
$$\sigma^2 tr(I_n - \Pi) = \sigma^2(n - p) = (n - p)E[\hat{\sigma}^2]$$

Looking further at the distribution of $||Y - X^{\mathsf{T}}\hat{\theta}||^2 = \hat{\varepsilon}^{\mathsf{T}}\hat{\varepsilon}$, we have $\hat{\varepsilon}^{\mathsf{T}}\hat{\varepsilon} = ((I_n - \Pi)Y)^{\mathsf{T}}((I_n - \Pi)Y) = Y^{\mathsf{T}}(I_n - \Pi)Y = (X^{\mathsf{T}}\theta^* + \varepsilon)^{\mathsf{T}}(I_n - \Pi)(X^{\mathsf{T}}\theta^* + \varepsilon) = \varepsilon^{\mathsf{T}}(I_n - \Pi)\varepsilon$.

Since we know that $\varepsilon \sim N(0, \sigma^2 I_n)$, and further $\frac{\varepsilon^{\mathsf{T}} \varepsilon}{\sigma^2} \sim \chi^2(n)$, $(\frac{\varepsilon}{\sigma})^{\mathsf{T}} (I_n - \Pi)(\frac{\varepsilon}{\sigma}) \sim \chi^2(n-p)$, since we know from earlier that $(I_n - \Pi)$, is idempotent, with rank equal to $tr(I_n - \Pi) = tr(I_n) - tr(\Pi) = n - p$.

Section 1.3

Exercise 4. Let $A \in \mathbb{R}^{n \times n}$ be a matrix (corresponding to a linear map in \mathbb{R}^n). Show that A preserves length for all $x \in \mathbb{R}^n$ iff it preserves the inner product. I.e. one needs to show the following:

$$||Ax|| = ||x|| \ \forall \ x \in R^n \iff (Ax)^\intercal(Ay) \ \forall \ x, y \in R^n.$$

Take,

$$||x|| = \sqrt{x \cdot x} = \sqrt{x^\intercal x} \implies ||Ax|| = \sqrt{Ax \cdot Ax} = \sqrt{x^\intercal A^\intercal Ax} \implies$$

$$A^{\mathsf{T}}A = I_n = A^{-1}, \ A^{\mathsf{T}} = A^{-1}, ||Ax|| = ||x||$$

this implies A is an orthogonal matrix, and further,

$$(Ax)^{\mathsf{T}}(Ay) = ||AxAy||^2 = x^{\mathsf{T}}A^{\mathsf{T}}Ay = x^{\mathsf{T}}y = ||xy||^2$$

Exercise 5. (a) Let $x_0 \in R^n$ be some fixed vector, find a projection map on the subspace $span(x_0)$. Compare your result with matrix Π (from section 1.3) for the case of p = 1.

Let $x = span(x_0) = span(x_1, x_2, ..., x_n)$, denote the subspace of interest, and $x_1, x_2, ...$ are basis vectors and $y = (y_1, y_2, ..., y_n)^{\intercal}$. The projection map is,

$$Proj_x(y) = \frac{\langle y \cdot x \rangle}{\langle y \cdot y \rangle} x = \sum_{i=1}^n \frac{\langle y_i \cdot x_i \rangle}{\langle y_i \cdot y_i \rangle} x_i$$

For the case p=1, and $\Pi=X^{\intercal}(XX^{\intercal})^{-1}X, X^{\intercal}\in \mathbb{R}^n$, we have,

$$\Pi y = \hat{y} = X^{\mathsf{T}} (XX^{\mathsf{T}})^{-1} X y = X^{\mathsf{T}} \frac{Xy}{XX^{\mathsf{T}}} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} (x_{1}, x_{2}, ..., x_{n})^{\mathsf{T}} = \frac{\langle X \cdot y \rangle}{\langle y \cdot y \rangle} X^{\mathsf{T}} = Proj_{X}(y)$$

(b) Prove part 3) of Lemma 1.1 for an arbitrary orthogonal projection in \mathbb{R}^n . Show $\forall h \in \mathbb{R}^n$, $||h||^2 = ||\Pi h||^2 + ||h - \Pi h||^2$.

Using the fact that $(I_n - \Pi)^{\intercal}(I_n - \Pi) = I_n - 2\Pi + \Pi = I_n - \Pi$, we have,

$$||h||^2 = ||\Pi h||^2 + ||h - \Pi h||^2 = h^\intercal \Pi^\intercal \Pi h + h^\intercal (I_n - \Pi)^\intercal (I_n - \Pi) h = h^\intercal \Pi h + h^\intercal (I_n - \Pi) h = h^\intercal \Pi h + h^\intercal \Pi h - h^\intercal \Pi h - h^\intercal \Pi h = ||h||^2$$