

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Dirk-André Deckert & Jago Silberbauer

Wintersemester 2024/25

Mathematik 3 für Physiker - Übung 2

Aufgabe 1 (Monotone Konvergenz)

Es sei $f: \mathbb{N} \to [0, \infty[$ eine Funktion. Zeigen Sie, dass die Reihe $\sum_{m \in \mathbb{N}} f(m)$ konvergiert genau dann, wenn der Grenzwert

$$\lim_{n \to \infty} \sum_{m=1}^{\infty} n \cdot \ln\left(1 + \frac{f(m)}{n}\right) \tag{1}$$

existiert.

Aufgabe 2

Lösen Sie Exercise 2 im Abschnitt The Riemann Integral im Hitchhiker's Guide to Mathematics.

Aufgabe 3

Sei c>0. Berechnen Sie im Stil von Example 1 im Abschnitt Riemann Integral Calculus im Hitchhiker's Guide to Mathematics das Integral

$$\int_{[0,c]} x^2 dx. \tag{2}$$

Hinweis: Es gilt $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

Aufgabe 4

Beweisen Sie Lemma 7 im Abschnitt The Riemann Integral im Hitchhiker's Guide to Mathematics.

Aufgabe 5

Seien $a, b \in \mathbb{R}$ mit a < b und $f \in \mathcal{R}([a, b])$ mit

$$\int_{[a,b]} |f(x)| dx = 0. \tag{3}$$

- a) Angenommen f ist stetig. Zeigen Sie, dass dann bereits f(x) = 0 gilt für alle $x \in [a, b]$.
- b) Zeigen Sie, dass diese Folgerung im Allgemeinen nicht stimmt wenn f nicht stetig ist.

Aufgabe 6 (Cantormenge)

Betrachten Sie die Familie von Mengen $(C_n)_{n\in\mathbb{N}_0}$ rekursiv definiert durch

$$C_{n+1} := \frac{1}{3}C_n \cup \left(\frac{2}{3} + \frac{1}{3}C_n\right),\tag{4}$$

$$C_0 \coloneqq [0,1]. \tag{5}$$

Wir definieren die sogenannte Cantormenge als $C := \bigcap_{n \in \mathbb{N}_0} C_n$. Zeigen Sie dass $\mathbb{1}_C : \mathbb{R} \to \mathbb{R}$ Riemannintegrierbar ist und berechnen Sie

$$\int_{[0,1]} \mathbb{1}_C(x) dx. \tag{6}$$