Formulário

Fórmula de Sturges	$K \approx 1 + 3.222 \log_{10}(n); K = \text{número de classes}$
Quantil de ordem p	$q_p = \begin{cases} \frac{x_{(np)} + x_{(np+1)}}{2} & \Leftarrow np \text{ inteiro} \\ x_{(k+1)} & \Leftarrow np \text{ não inteiro } (k \text{ \'e a parte inteira de } np) \end{cases}$
Variância amostral	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} (X_{i})^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right)$
Variância amostral ponderada	$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$
Covariância amostral	$S_{X,Y} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$ $= \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i Y_i - \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right) \left(\sum_{i=1}^{n} Y_i \right) \right)$
Coeficiente correlação amostral (Pearson)	$R_P = \frac{S_{X,Y}}{S_X S_Y}$
Distibuição Binomial $B(n,p)$	$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{para } x = 0, 1, \dots, n; \ 0 \le p \le 1\\ 0 & \text{caso contrário,} \end{cases}$ $E(X) = np; \ V(X) = np(1-p)$
Distibuição de Poisson $P(\lambda)$	$f(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & \text{para } x = 0, 1, \dots; \ \lambda > 0, \\ 0 & \text{caso contrário.} \end{cases}$ $E(X) = V(X) = \lambda$

Inferência Estatística

Notação	$P(Z > z_{\alpha/2}) = \alpha/2, \ Z \sim N(0, 1); \ P(T > t_{(\alpha/2, n)}) = \alpha/2, \ T \sim t_n$
Erro padrão de \overline{X}	$se = \frac{s}{\sqrt{n}}$
Erro padrão de $\overline{X}_1 - \overline{X}_2$	$se^* = \sqrt{se_1^2 + se_2^2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Erro padrão de \widetilde{P}	$se_{\widetilde{P}} = \sqrt{\frac{\widetilde{p}(1-\widetilde{p})}{n+4}}$
Graus de liberdade	$gl \approx \frac{(se_1^2 + se_2^2)^2}{\frac{se_1^4}{n_1 - 1} + \frac{se_2^4}{n_2 - 1}}; gl^* = n_1 + n_2 - 2$

Populações normais		
IC para a média (variância conhecida)	$\left(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right); \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$	
IC para a média (variância desconhecida)	$\left(\overline{x} - t_{(\alpha/2, n-1)}se , \overline{x} + t_{(\alpha/2, n-1)}se\right); \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$	
IC para a diferença de médias (variâncias conhecidas)	$\overline{x}_1 - \overline{x}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	
IC para a diferença de médias (variância desconhecidas)	$\overline{x}_1 - \overline{x}_2 \pm t_{(\alpha/2, gl)} \ se^*; \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{\cdot}{\sim} t_{gl}$	

Populações não normais (grau aproximado)		
IC para a média (variância desconhecida)	$\left(\overline{x} - z_{\alpha/2} \ se \ , \ \overline{x} + z_{\alpha/2} \ se\right); \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{.}{\sim} N(0, 1)$	
IC para a diferença de médias (variância desconhecidas)	$\overline{x}_1 - \overline{x}_2 \pm z_{\alpha/2} \sqrt{se_1^2 + se_2^2}; \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{\cdot}{\sim} N(0, 1)$	
$\begin{array}{c} \text{IC para } p \\ \text{(Wald)} \end{array}$	$\left(\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right); \frac{\hat{P} - p}{\sqrt{p(1-p)/n}} \stackrel{.}{\sim} N(0,1)$	
IC para p (Agresti-Coull grau de confiança aproximado: 0.95)	$\tilde{p} \pm 1.96\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}; \tilde{p} = \frac{y+2}{n+4}$	
IC para p_1-p_2 (Agresti-Coull)	$ ilde{p_1} - ilde{p_2} \pm z_{lpha/2} \sqrt{rac{ ilde{p_1}(1- ilde{p_1})}{n_1 + 2} + rac{ ilde{p_2}(1- ilde{p_2})}{n_2 + 2}}; ilde{p_1} = rac{y_1 + 1}{n_1 + 2}; ilde{p_2} = rac{y_2 + 1}{n_2 + 2}$	

Estatísticas dos testes do qui-quadrado		
Notação	O_i : frequência observada da categoria i e_i : frequência esperada da categoria i (sob $H_0)$	
Ajustamento	$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - e_{i})^{2}}{e_{i}} \stackrel{.}{\sim} \chi^{2}_{k-1}$	
Homogeneidade Independência	$X^2 = \sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{.}{\sim} \chi^2_{(r-1)(c-1)}$ r : número de linhas; c : número de colunas; k : número de células	