A novel mechanistic modelling approach for microbial selection dynamics: towards improved design and control of raceway reactors for purple bacteria

Abbas Alloul^{a,c,1}, Ali Moradvandi^{b,f,1,*}, Daniel Puvol^d, Raúl Molina^d, Giorgio Gardella^b, Siegfried E. Vlaeminck^a, Bart De Schutter^f, Edo Abraham^b, Ralph E. F. Lindeboom^b, David G. Weissbrodt^{c,e}

^aResearch Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 17, 2020, Antwerpen, Belgium

^bDepartment of Water Management, Delft University of Technology, Mekelweg 5, 2628 CD, Delft, The Netherlands

^cDepartment of Biotechnology, Delft University of Technolog, Maasweg 9, Delft, 2629 HZ, The Netherlands

^dGroup of Chemical and Environmental Engineering, University Rey Juan Carlos, 28933, Madrid, Spain

^eDepartment of Biotechnology and Food Science, Norwegian University of Science and Technology, 7034, Trondheim, Norway

^fDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

This document consists of the supplementary materials of PPB model.

- The parameters that are needed to run the simulation can be found in the
- table below. The parameters that are not calibrated have been taken from
- the references below.

^{*}Corresponding author: A. Moradvandi: a.moradvandi@tudelft.nl

¹Abbas Alloul and Ali Moradvandi contributed equally as first co-author.

Symbol	Definition	Value	Unit
Kinetic parameter	S		
$\mu_{m,SS,PB,ph}$	Maximal specific phototrophic growth rate of PPB	0.0525	h ⁻¹
	on soluble organics	0.0020	п
$\mu_{m,VFA,PB,ph}$	Maximal specific phototrophic growth rate of PPB	0.0783	h^{-1}
	on volatile fatty acids	0.0100	
$\mu_{m,SS,PB,ch}$	Maximal specific aerobic chemotrophic growth rate	0.0500	h^{-1}
	of PPB on soluble organic		
$\mu_{m,VFA,PB,ch}$	Maximal specific aerobic chemoheterotrophic growth rate	0.0525	h^{-1}
r-m, v r A, r B, cn	of PPB on volatile fatty acids		
Ilm SS DD an	Maximal specific anerobic chemoheterotrophic growth rate	0.0124	h^{-1}
$\mu_{m,SS,PB,an}$	of PPB on soluble organic		
$b_{m,PB,dec}$	Specific decay rate of PPB	0.0113	h^{-1}
$\mu_{m,SS,AHB}$	Maximal specific growth rate of AHB on soluble organics	0.0758	h^{-1}
$\mu_{m,VFA,AHB}$	Maximal specific growth rate of AHB on volatile fatty acids	0.0758	h^{-1}
$b_{m,AHB,dec}$	Specific decay rate of AHB	0.0156	h^{-1}
$\mu_{m,SS,AN}$	Maximal specific growth rate of AN on soluble organics	0.0238	h^{-1}
$b_{m,AN,dec}$	Specific decay rate of AN	0.00083	h^{-1}
μ_{hyd}	Hydrolysis rate of suspended solids	0.0035	h^{-1}
$K_{S,E}$	Light half-saturation constant of PPB	3	$\mathrm{W}\mathrm{m}^{-2}$
$K_{I,E}$	Light inhibitory constant for chemotrophic growth of PPB	100	$\mathrm{W}\mathrm{m}^{-2}$
$K_{I,O2,PB}$	Oxygen inhibitory constant for phototrophic growth of PPB	0.7	$mgCODL^{-1}$
$K_{S,O2,PB}$	Oxygen half-saturation constant for chemotrophic growth of PPB	0.05	$mgCODL^{-1}$
$K_{I,O2,AHB}$	Oxygen half-saturation constant for AHB	0.05	$mgCODL^{-1}$
$K_{I,O2,AN}$	Oxygen inhibitory constant for AN	0.05	$mgCODL^{-1}$
$K_{S,SS,ph}$	Soluble organic half-saturation constant	5	$mgCODL^{-1}$
5,55,pn	for phototrophic growth of PPB		
$K_{S,VFA,ph}$	Volatile fatty acid half-saturation constant	20	${ m mgCODL}^{-1}$
$S, V \vdash A, pn$	for phototrophic growth of PPB		
$K_{S,SS,ch}$	Soluble organic half-saturation constant	0.4	${ m mgCODL}^{-1}$
5,55,cn	for chemotrophic growth of PPB	-	
$K_{S,VFA,ch}$	Volatile fatty acid half-saturation constant	0.4	${ m mgCODL}^{-1}$
	for chemotrophic growth of PPB		
$K_{S,SS,an}$	Soluble organic half-saturation constant	5	${ m mgCODL}^{-1}$
	for anaerobic chemotrophic growth of PPB		
$K_{S,SS,AHB}$	Soluble organic half-saturation constant for AHB	5	$^{\mathrm{mgCODL}^{-1}}$
$K_{S,VFA,AHB}$	Volatile fatty acid half-saturation constant for AHB	5	$mgCODL^{-1}$
$K_{S,SS,AN}$	Soluble organic half-saturation constant for AN	5	$^{\mathrm{mgCODL}^{-1}}$
$K_{S,IN}$	Inorganic nitrogen half-saturation constant	0.005	mgCODL ⁻¹
$K_{S,IP}$	Inorganic phosphorus half-saturation constant	0.001	${\rm mgCODL^{-1}}$
M_S	Metabolic switch	0.28	
Stoichiometric par	rameters		
$Y_{PB,ph}$	Biomass yield for phototrophic growth of PPB	1.00	$mgCODmgCOD^{-1}$
$Y_{PB,ch}$	Biomass yield for aerobic chemotrophic growth of PPB	0.52	$mgCODmgCOD^{-1}$
$Y_{PB,an}$	Biomass yield for anaerobic chemotrophic growth of PPB	0.197	$mgCODmgCOD^{-1}$
Y_{AHB}	Biomass yield for AHB	0.67	$mgCODmgCOD^{-1}$
Y_{AN}	Biomass yield for AN	0.197	$mgCODmgCOD^{-1}$
$f_{IC,ph,SS}$	Stoichiometry of inorganic carbon produced	3.897702e-3	$mgCODmgCOD^{-1}$
	for phototrophic growth of PPB on soluble organics		gCODgCOD

continued on following page

continued from previous page

Symbol	Definition	Value	Unit			
$f_{IC,ph,VFA}$	Stoichiometry of inorganic carbon produced for phototrophic growth of PPB on volatile fatty acids	3.897702e-3	${\rm mgCODmgCOD^{-1}}$			
$f_{IC,ch,SS}$	Stoichiometry of inorganic carbon produced for aerobic chemotrophic growth of PPB on soluble organics	0.01400	${\rm mgCODmgCOD^{-1}}$			
$f_{IC,ch,VFA}$	Stoichiometry of inorganic carbon produced for aerobic chemotrophic growth of PPB on volatile fatty acids	0.023728	${\rm mgCODmgCOD}^{-1}$			
$f_{IC,an,SS}$	Stoichiometry of inorganic carbon produced for anaerobic chemotrophic growth of PPB on soluble organics	-0.02702	${\rm mgCODmgCOD^{-1}}$			
$f_{IC,AHB,SS}$	Stoichiometry of inorganic carbon produced for growth of AHB on soluble organics	0.01400	$mgCODmgCOD^{-1}$			
$f_{IC,AHB,VFA}$	Stoichiometry of inorganic carbon produced for growth of AHB on volatile fatty acids	0.023728	$mgCODmgCOD^{-1}$			
$f_{IC,AN,SS}$	Stoichiometry of inorganic carbon produced for growth of AN on soluble organics	-0.02702	${\rm mgCODmgCOD}^{-1}$			
$f_{IC,dec}$	Inorganic carbon produced from bacterial biomass decay	-1.984127e-04	$mmolHCO_3 - CmgCOD^{-1}$			
$f_{IN,dec}$	Inorganic nitrogen produced from bacterial biomass decay	0.058	$mgNH_3 - NmgCOD^{-1}$			
$f_{IP,dec}$	Inorganic phosphorus produced from bacterial biomass decay	0.01	$mgPO_4 - PmgCOD^{-1}$			
$f_{SIC,XS}$	Suspended solids produced from hydrolysis	1.303971e-06	$mmolHCO_3 - CmgCOD^{-1}$			
$f_{SS,XS}$	Soluble organics produced from hydrolysis	1.638241-01	mgCODmgCOD ⁻¹			
$f_{SH2,XS}$	Hydrogen produced from hydrolysis	8.442468e-02	$mmolHCO_3 - CmgCOD^{-1}$			
$f_{SIN,XS}$	Inorganic nitrogen produced from hydrolysis	1.162246 - 02	$mgNH_3 - NmgCOD^{-1}$			
$f_{SIP,XS}$	Inorganic phosphorus produced from hydrolysis	2.075440e-03	$mgPO_4 - PmgCOD^{-1}$			
$f_{SI,XS}$	Inert soluble organics produced from hydrolysis	1.518208e-01	mgCODmgCOD ⁻¹			
$f_{XI,XS}$	Inert suspended solids produced from hydrolysis	4.330911e-01	$mgCODmgCOD^{-1}$			
$f_{VFA,AN,SS}$	Fraction of VFA produced during acidogenic fermentation	0.7728	$mgCODmgCOD^{-1}$			
$f_{H2,AN}$	Fraction of hydrogen produced during acidogenic fermentation	0.0304	mgCODmgCOD ⁻¹			
$Y_{N,PB}$	Nitrogen content of PPB	-0.0860	${\rm mgNmgCOD}^{-1}$			
$Y_{N,AHB}$	Nitrogen content of AHB	-0.0860	$mgNmgCOD^{-1}$			
$Y_{N,AN}$	Nitrogen content of AN	-0.0860	$mgNmgCOD^{-1}$			
$Y_{P,PB}$	Phosphorus content of PPB	-0.0150	$mgPmgCOD^{-1}$			
$Y_{P,AHB}$	Phosphorus content of AHB	-0.0150	$mgPmgCOD^{-1}$			
$Y_{P,AN}$	Phosphorus content of AN	-0.0150	$mgPmgCOD^{-1}$			
Physico-chemical parameters						
ϵ	Light extinction coefficient	0.07				
σ	Light absorbance and scattering factor	1.15				
S_{E0}	Light intensity	54	$\mathrm{W}\mathrm{m}^{-2}$			
$P_{ka_{CO_2}}$	Acid-base equilibrium coefficient for inorganic carbon	6.37				
$P_{ka_{NH_{4}}}$	Acid-base equilibrium coefficient for inorganic nitrogen	9.25				
Kla_{O2}	Oxygen gas-liquid transfer coefficient	1	h^{-1}			
Kla_{CO2}	Carbon dioxide gas-liquid transfer coefficient	0.0127	h^{-1}			
Kla_{NH3}	Ammonia gas-liquid transfer coefficient	0.533186	h^{-1}			
Kla_{H2}	Hydrogen gas-liquid transfer coefficient	1.6	h^{-1}			
O_2^{sat}	Saturated oxygen	7.85	$^{\mathrm{m}}_{\mathrm{mgO}_{2}\mathrm{L}^{-1}}$			
CO_2^{sat}	Saturated carbon dioxide	0.0127	mmolHCO ₃ ⁻ L ⁻¹			
NH_3^{sat}	Saturated ammonia	0.533186	$_{\rm mgNL}^{-1}$			
H_2^{sat}	Saturated hydrogen	1.6	$_{\mathrm{mgH}_{2}\mathrm{L}^{-1}}$			
2	Davaracca nyarogen	1.0	811.7.r.			

continued on following page

continued from previous page

Symbol	Definition	Value	Unit
$f_{O2,PB}$	Oxygen uptake chemoheterotrophy of PPB	$\frac{-(1-Y_{PB,ch})}{Y_{PB,ch}}$	mgO2mgCOD ⁻¹
$f_{O2,AHB}$	Oxygen uptake chemoheterotrophy of AHB	$\frac{\overline{Y_{PB,ch}}}{\overline{-(1-Y_{AHB})}}$ $\overline{Y_{AHB}}$	${\rm mgO2mgCOD}^{-1}$
Reactor geomet	try		
V	Volume	100	L
A	Area	0.5	m
$f_{H/S}$	Fraction of removed particles	$\frac{HRT}{SRT}$	

5

References

- Alloul, A., Cerruti, M., Adamczyk, D., Weissbrodt, D.G., Vlaeminck, S.E., 2021a. Op-
- 8 erational strategies to selectively produce purple bacteria for microbial protein in raceway
- 9 reactors. Environmental Science & Technology, 8278-8286. doi:10.1021/acs.est.0c08204.
- Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A.,
- 11 Sanders, W., Siegrist, H., Vavilin, V., 2002. The IWA anaerobic digestion model no 1
- 12 (ADM1). Water Science and Technology 45, 65–73. doi:10.2166/wst.2002.0292
- Capson-Tojo, G., Lin, S., Batstone, D.J., Hulsen, T., 2021. Purple phototrophic bac-
- 14 teria are outcompeted by aerobic heterotrophs in the presence of oxygen. Water Research
- 15 194, 116941. doi:10.1016/j.watres.2021.116941.
- Puyol, D., Barry, E., Hulsen, T., Batstone, D., 2017. A mechanistic model for anaer-
- obic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM).
- ¹⁸ Water Research 116, 241–253. doi:10.1016/j.watres.2017.03.022.