### RPL Routing Protocol Overview

#### Yevhenii Shudrenko

Institute of Communication Networks Hamburg University of Technology

April, 2020

- 1 Introduction
  - Terminology
- 2 Control Messages
- 3 Routing
- 4 Trickle Algorithm
- 5 Limitations
- 6 Notable Improvements

#### Definition

RPL — proactive distance-vector routing protocol for Low Power and Lossy Networks.



Figure 1: RPL in IETF standardized stack<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Iova et al., "Rpl: The routing standard for the internet of things... or is it?"

#### Main Features

- Support of point-to-point (P2P), point-to-multipoint (P2MP), multipoint-to-point (MP2P) communication modes
- Configurable objective function for path computation
- Two operating modes for different resource constraints
- Trickle mechanism to leverage energy-efficiency for topology reactivity
- IPv6 compatibility
- High scalability for MP2P communication

### DODAG

- Destination Oriented Directed Acyclic Graph
- Network topology & Data flow



Figure 2: Example of a DODAG

#### Node Rank

Calculated using objective function, represents distance to the root.



Figure 3: DODAG with nodes' ranks

### Objective Function

Defines a metric for each node to choose preferred parent

Table 1: Commonly used metrics for objective function in LLNs<sup>2</sup>

| Node Metric                  | Link Metric |
|------------------------------|-------------|
| State: CPU, Memory Load etc. | Throughput  |
| Energy                       | Latency     |
| Hop Count                    | Reliability |

 $<sup>^2</sup>$ Zhao et al., "A comprehensive study of RPL and P2P-RPL routing protocols: Implementation, challenges and opportunities".

- 1 Introduction
  - Terminology
- 2 Control Messages
- 3 Routing
- 4 Trickle Algorithm
- **5** Limitations
- 6 Notable Improvements

### Control Messages

- **DIO** (DODAG Information Option) sent periodically by all nodes to maintain view of dynamic topology
- **DAO** (Destination Advertisement Object) announces node's availability, required for (Point-to-point) P2P, (Point-to-multipoint) P2MP routing
- **DIS** (DODAG Information Solicitation) multicast request for a DIO from a new node joining the DODAG

## DIO Message

Disseminates control data through the DODAG, includes:

- Node's rank
- Objective function
- DAGID
- Trickle timers
- DODAG sequence number (incremented by root to trigger rebuild procedure)



Figure 4: DODAG construction process



Figure 4: DODAG construction process



Figure 4: DODAG construction process



Figure 4: DODAG construction process

### DAO Message

- Triggered by reception of DIO message
- Informs parent about node's reachability
- Propagates *upwards* with a DAODelay per node
- Transfers data for MP2P, P2P routing

# DAO Message Propagation



Figure 5: DAO message propagation in DODAG<sup>1</sup>

- 1 Introduction
  - Terminology
- 2 Control Messages
- 3 Routing
- 4 Trickle Algorithm
- **5** Limitations
- 6 Notable Improvements

## Operating Modes

- Storing each node stores routing table based on information from DAO message
- Non-storing only root performs source routing based on data from all DAO messages

#### MP2P Routing

For MP2P communication, each node forwards the message to the preferred parent, ultimately reaching the root—sink.



Figure 6: Multipoint-to-point routing<sup>1</sup>

#### P2P Routing in Storing Mode

Packet is forwarded *upwards* until a common ancestor is reached.



Figure 7: Point-to-point routing in storing mode<sup>1</sup>

#### P2P Routing in Non-Storing Mode

Packet is forwarded to the root, then source-routed to target.



Figure 8: Point-to-point routing  $(D \to E)$  in non-storing mode<sup>1</sup>

- Introduction
  - Terminology
- 2 Control Messages
- 3 Routing
- 4 Trickle Algorithm
- 6 Limitations
- 6 Notable Improvements

#### Trickle Algorithm

Defines the intervals between DIO transmissions in a way to:

- Minimize messaging frequency in stable network
- Ensure fast DODAG (re)construction

#### Trickle Algorithm Time Intervals

Timeline is divided into dynamic intervals of size I:

$$I_{max} = I_{min} * 2^M \tag{1}$$

where  $I_{min}$  — least possible time between two DIO transmissions, M — upper limit on number of times I is doubled.

#### Trickle Algorithm DIO Transmissions

If  $< \sigma_{rc}$  messages heard from other nodes, DIO can be multicast,  $\sigma_{rc}$  – redundancy constant.



DIO multicast at random instant

Figure 9: DIO transmission intervals

#### Trickle Timer

Trickle timer (interval I) reset to  $I_{min}$ , if inconsistency is detected:

- Node joins a new DODAG
- Incremented DAG sequence number (rebuild triggered)
- Possiblity of a loop

- 1 Introduction
  - Terminology
- 2 Control Messages
- 3 Routing
- 4 Trickle Algorithm
- **5** Limitations
- 6 Notable Improvements

#### RPL Limitations

- Highly sensitive to trickle timer configuration, which is implementation-dependent
- MP2P and P2P traffic remain very costly in terms of memory and reliability<sup>2</sup>
- Poor performance in mobility scenarios<sup>3</sup>
- Limited support for heterogeneity of devices' resource constraints

 $<sup>^3</sup>$ Kamgueu, Nataf, and Ndie, "Survey on RPL enhancements: a focus on topology, security and mobility".

- 1 Introduction
  - Terminology
- 2 Control Messages
- 3 Routing
- 4 Trickle Algorithm
- **5** Limitations
- 6 Notable Improvements

#### RPL Improvements

- P2P route discovery mode<sup>4</sup> optimizes P2P communication by creating temporary DODAG with root at the sender
- DualMOP-RPL<sup>5</sup> allows to combine storing and non-storing modes in single instance
- RPLca $+^6$  and Trickle- $L^2$  mechanisms improve link quality estimation and reduce corresponding overhead<sup>7</sup>

Shudrenko Y. (TUHH)

<sup>&</sup>lt;sup>4</sup>Goyal et al., Reactive Discovery of Point-to-Point Routes in Low-Power and Lossy Networks.

<sup>&</sup>lt;sup>5</sup>Ko et al., "DualMOP-RPL: Supporting Multiple Modes of Downward Routing in a Single RPL Network".

<sup>&</sup>lt;sup>6</sup>E. Ancillotti, Bruno, and Conti, "Reliable Data Delivery With the IETF Routing Protocol for Low-Power and Lossy Networks".

<sup>&</sup>lt;sup>7</sup>Emilio Ancillotti et al., "Trickle-L<sup>2</sup>: Lightweight link quality estimation through Trickle in RPL networks".