Questions for Christmas

- 1. Let \mathscr{F} be a sheaf of sets on a topological space. What is $\mathscr{F}(\emptyset)$?
- 2. Let $X = \operatorname{Spec}(k[x])$ and fix a closed point $p \in X$. Consider the sheaf \mathscr{F} of \mathscr{O}_X -modules defined by setting $\mathscr{F}(U) = 0$ if $p \in U$ and $\mathscr{F}(U) = \mathscr{O}_X(U)$ otherwise. Is \mathscr{F} quasicoherent? Same question if p is the generic point.
- 3. Let *X* be the complement to a closed point in Spec($\mathbb{C}[x, y]$). Is *X* affine?
- 4. Let $X = \operatorname{Spec}(\mathbb{Z})$ and $p \in \mathbb{Z}$ be a prime. What is the fibre $\mathcal{O}_{X,(p)}$ of \mathcal{O}_X at $(p) \in X$? What is the fibre $\mathcal{O}_{X,(0)}$ at the generic point?
- 5. Let A = k[[t]] be the ring of formal power series over a field. Describe the topological space Spec(A).
- 6. Let $X = \operatorname{Spec}(\mathbb{Z}[x])$. Describe the fibre product $X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{F}_p)$.
- 7. Let $X = \operatorname{Spec}(k[x])$, $Y = \operatorname{Spec}(k[y])$ and $f: X \to Y$ be induced by the map $y \mapsto x^2$. Describe the fibre of f over the closed point y = 0.
- 8. Let $X = \operatorname{Spec}(k[x])$. Consider the two projections $p_1, p_2 \colon X \times X \to X$ (the product is over $\operatorname{Spec}(k)$). Let $a \in X \times X$ be a point, such that $p_1(a) = p_2(a)$. Is it true that a lies in the image of the diagonal morphism $\Delta \colon X \to X \times X$?
- 9. Let $X = \operatorname{Spec}(k[x,y]/(xy))$ and $o \in X$ be the point corresponding to the maximal ideal $\mathfrak{m} = (x,y)$. What is the dimension of the tangent space of X at o?
- 10. Let k be a field, $X = \operatorname{Spec}(k[x])$ and $f: X \to \operatorname{Spec}(k)$ be the natural morphism. Describe $f_* \mathcal{O}_X$. Same question for $X = \operatorname{Proj}(k[x, y])$.
- 11. Let $X = \operatorname{Spec}(k[x,y]/(xy^2))$. Describe the reduction X_{red} . Describe the normalization of the reduction $\widetilde{X_{red}}$.
- 12. Let the morphism $f : \operatorname{Spec}(k[x,y,t]/(y^2 tx(x^2 1))) \to \operatorname{Spec}(k[t])$ be induced by the inclusion $k[t] \to k[x,y,t]$. Is the fibre of f over the generic point $(0) \subset k[t]$ reduced? Is it normal?
- 13. Let the morphism $f: \operatorname{Spec}(\mathbb{C}[x,y]) \to \operatorname{Spec}(\mathbb{C}[z,w])$ be given by $z \mapsto x$, $w \mapsto xy$. Is f an open morphism?
- 14. Let \mathscr{I} be a non-zero ideal sheaf on an integral scheme X. What is the support of \mathscr{I} ?
- 15. Let $I = (x, y) \subset \mathbb{C}[x, y]$ be the ideal and \widetilde{I} the corresponding ideal sheaf on $X = \operatorname{Spec}(\mathbb{C}[x, y])$. Compute the dimensions $\dim_{k(p)}(\widetilde{I}_p \otimes_{\mathscr{O}_{X,p}} k(p))$ for all points $p \in X$.
- 16. Let X be a Noetherian scheme and \mathcal{F} a coherent sheaf on it. Is it true that the subset

$$X_n = \{ p \in X \mid \dim_{k(p)}(\mathscr{F}_p \otimes_{\mathscr{O}_{X_n}} k(p)) = n \} \subset X$$

for $n \in \mathbb{Z}$ is locally closed (that is, an intersection of a closed and an open subsets)?

- 17. Consider the ideal $I = (x) \subset k[x]$ and the corresponding ideal sheaf \widetilde{I} on Spec(k[x]). Is \widetilde{I} locally free? Same question for $I = (x, y) \subset k[x, y]$.
- 18. Let $A = \bigoplus_{i>0} A_i$ be a graded algebra over a field $k = A_0$. If A is finite-dimensional as a k-vector space, what is Proj(A)?
- 19. If for a graded algebra $A = \bigoplus_{i \ge 0} A_i$ over a field $k = A_0$ we have $Proj(A) = \emptyset$, is it true that A is finite-dimensional as a k-vector space?

- 20. Let X and Z be schemes and $i: Z \to X$ a closed immersion. Consider the push-forward $i_* \mathcal{O}_Z$ of the structure sheaf of Z. What is $i_* \mathcal{O}_Z \otimes_{\mathcal{O}_X} i_* \mathcal{O}_Z$?
- 21. For a graded ring A, is the nilradical a homogeneous ideal?
- 22. Give an example of two local rings and a ring homomorphism which is not local.
- 23. Give examples: of a reduced scheme which is not geometrically reduced; of an irreducible scheme which is not geometrically irreducible.
- 24. If *k* is a field of characteristic zero, does there exist a *k*-scheme possessing a non-trivial automorphism which acts identically on the underlying topological space?
- 25. Is the scheme $\text{Spec}(\bar{\mathbb{Q}} \otimes_{\mathbb{Q}} \bar{\mathbb{Q}})$ connected?