

Compatible Coarse-Grained Caprylic Acid-substituted Polyethylenimine and siRNA for Simulations in Gene Delivery

Niloofar Hashemi¹, Subhamoy Mahajan¹, and Tian Tang¹

¹Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada

Introduction

Gene therapy

- Introduces a therapeutic gene to treat cellular dysfunctions caused by genetic mutation [1].
- Short interfering RNA (siRNA) can selectively cleave messenger RNA (mRNA) that produces harmful proteins. This process is known as RNA interference (RNAi) [2].

Polyethylenimine (PEI) as a potent siRNA carrier

- Native siRNA is susceptible to degradation, and has limited ability to translocate across cell membrane.
- PEI neutralizes, condenses, and protects siRNAs.
- High molecular weight PEIs result in high toxicity and low biodegradability.
- Low molecular weight PEIs exhibit tolerable toxicity but lack efficient siRNA delivery.

Figure 1: Schematic of gene delivery process [3].

Enhancing PEI performance with lipids

- Improves biocompatibility
- Enhances hydrophobic interactions with lipid membranes such as cell membrane and lung surfactant, increasing cellular uptake [4].
- Facilitates endosomal escape [4].
- Provides better protection from degradation [4]

Coarse-grained (CG) molecular dynamics (MD) simulations

- Improves computational efficiency to extend simulation time and length scales.
- Allows study of large biomolecular systems comparable to experiments.
- New CG forcefield needs validation with allatom (AA) simulations to ensure accuracy.

Methods

Coarse-graining:

- Martini CG forcefield was used [5], where nonbonded interaction parameters are determined from solvation and partitioning free energy of atomistic analogue of beads.
- CCN, CCN⁺, C(=O)C_{2.5} and C_{4.5} atom groups were mapped into beads with bead type P_1 , Q_d , N_a , and C_1 , respectively (**Figure 2**).
- Bonded interaction parameters are determined by matching probability distributions of bonded interactions (length, angle, dihedral) from CG and AA simulations.

Simulations:

PEI-CA in water

- 2 kDa PEI substituted with one or three caprylic acids (PEI-CA; **Figure 2**) was simulated in water at 300 K and 1 bar with neutralizing Cl⁻ ions in a 7.1 x 7.1 x 7.1 nm³ cuboidal box.
- TIP3P water used for AA and polarizable Martini water for CG simulations.

Potential of mean force (PMF) calculation

- To validated CG-PEI/PEI-CA and siRNA interactions, PMFs were calculated using AA and CG simulations with distance between their centers of mass as the reaction coordinate. (**Figure 3**)
- The PEI used in PMF simulations was a smaller 500 Da fragment of 2 kDa PEI (**Figure 2**) with two protonation states: fully unprotonated or 40% protonated, and two lipid modification states: 0 or 1 CA substitution (site 2 in **Figure 2**).
- The siRNA were used in a PMF simulations was fully deprotonated 18-nucleotide (UGUGGAUGA)₂.
- PMF calculations were conducted in a 6.3 x 6.3 x 20 nm³ cuboidal box with water and neutralizing NaCl salt at 300 K and 1 bar.

Tuning of nonbonded interactions:

- Default Lennard-Jones (LJ) parameters (interaction strength and van der Waal's radius) in Martini were adjusted to improve the accuracy of CG PEI-siRNA interactions.
- Nonbonded parameters were adjusted by trial-and-error to match CG and AA PMF.
- Different adjustments were performed for siRNA backbone and sidechain beads.

Figure 2: Molecular structure, protonation sites, and lipid substitution sites of 2 kDa PEI, with red enclosure depicting a 500 Da portion. The blue enclosures show the CG mapping. The substitution sites for caprylic acid (CA) are indicated by 1, 2, 3. For one CA substitution, site 2 and 1 is chosen for 500 Da and 2 kDa PEI, respectively. The nitrogen connected to substitution sites are protonated if they were not substituted.

Figure 3: PEI-CA is moved along the z-axis (blue axis) to span various reaction coordinate values.

Results & Discussions

Figure 4: End-to-end distances (left) and radius of gyration (right) for 2 kDa PEI with one or three caprylic acid substitutions in both AA and CG simulations.

- CG 2 kDa PEI with caprylic acid substitutions accurately reproduces the structural properties of its AA counterpart (**Figure 4**).
- CG PMF between 500 Da PEI and siRNA with default nonbonded parameters does not match the AA-PMF (**Figure 5a**); subsequent adjustments to nonbonded parameters improve PMF matching (**Figure 5b**).
- AA and CG PMF between 500 Da PEI substituted with 1 CA and siRNA were comparable without additional adjustments of nonbonded parameters (**Figure 5c**).

Figure 5: Comparison of AA and CG PMF between siRNA and a 500 Da PEI with a) default and b) modified nonbonded parameters, as well as c) 500 Da PEI-CA. The PEI is either uncharged or charged at 40% protonation ratio, while PEI-CA had a protonation ratio of 30%. The nonbonded interaction parameters from b) are used without additional modification in c).

Conclusions

- Achieved compatibility between CG PEI forcefield and siRNA.
- Extended the CG PEI forcefield to model CG PEI substituted with caprylic acid.
- Compatibility of CG PEI-CA and siRNA was demonstrated, which did not need additional tuning of nonbonded interactions.

Acknowledgements

T.T. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada and Canada Research Chairs Program.

References

- 1. Culver, K. W. (1994). Methods for gene transfer. In Gene Therapy: A Handbook for Physicians (pp. 15-31). *Mary Ann Liebert, Inc New York, NY*.
- 2. Cross, D., & Burmester, J. K. (2006). Gene therapy for cancer treatment: past, present and future. *Clinical medicine & research*, 4(3), 218-227.
- 3. Meneksedag-Erol, D., Tang, T., & Uludağ, H. (2014). Molecular Modeling of Polynucleotide Complexes. *Biomaterials*, 35(25), 7068-7076.
- 4. Schäfer, J., Höbel, S., Bakowsky, U., & Aigner, A. (2010). Liposome–polyethylenimine complexes for enhanced DNA and siRNA delivery. *Biomaterials*, 31(26), 6892-6900.
- 5. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & De Vries, A. H. (2007). The MARTINI forcefield: coarse grained model for biomolecular simulations. *The Journal of Physical Chemistry B*, 111(27), 7812-7824.