Use of transition metal complex as activator for peroxy cpd. - in oxidising, washing, cleaning and disinfecting compsn., partic. for removing colour soil and preventing colour transfer in washing textiles

Patent Number: DE19536082

International patents classification: C11D-003/20 C11D-003/395

DE19536082 A Transition metal complexes of formula M(L)x(A)y(I) are used as activators for peroxy cpds. in oxidising, washing, cleaning or disinfecting solns. M = Mn, Fe, Co, Ro or Mo; x = 1-3; A = a charge-equalising anion ligand; y = 0-4; L = an organic ligand of formula (II): X = H, R3, OR3, NO2, ONO, F, Cl, Br or iodine; R1, R2, R3 = H, alkyl, alkenyl, benzyl, Ph or a cycloalkyl gp., which is opt. alkyl- and/or aryl-substd., with a total

USE - Use is esp. for bleaching of coloured soil in washing textiles, partic. in baths contg. tensides. The prod. can also be used in the bleaching of hair,

ADVANTAGE - (1) improve the oxidising. and bleaching action of inorganic peroxy cpds. at below 80 deg. C (pref. 15-45 deg. C). Absorption of dyes and in oxidn. of (in)organic intermediates. into textiles of another colour is prevented. (Dwg.0/0)

• Publication data:

Patent Family: DE19536082 A1 19970403 DW1997-19 C11D-

003/20 8p * AP: 1995DE-1036082 19950928 Priority nº: 1995DE-1036082 19950928

Covered countries: 1 Publications count: 1

· Accession codes :

Accession Nº: 1997-204334 [19] Sec. Acc. n° CPI: C1997-065735 • Patentee & Inventor(s):

Patent assignee: (HENK) HENKEL KGAA Inventor(s): BLUM H; MAYER B; PEGELOW U

• Update codes : • Derwent codes : Basic update code:1997-19

Manual code: CPI: D08-B06 D11-B01D E05-L02A E05-L02B E05-L03A E05-M Derwent Classes: D21 D22 D25 E11 Compound Numbers: 9719-A1001-U 9719-A1002-U 9719-A1003-U

Others:

Image Copyright

Derwent 2002

		•

DE 19536082 A

BUNDESREPUBLIK DEUTSCHLAND

® Offenlegungsschrift

_® DE 195 36 082 A 1

C11 D 3/20 C 11 D 3/395

DEUTSCHES PATENTAMT

195 36 082.6 2) Aktenzeichen: 28. 9.95 Anmeldetag: 3, 4, 97 Offenlegungstag:

① Anmelder: Henkel KGaA, 40589 Düsseldorf, DE 2 Erfinder:

Blum, Helmut, 40595 Düsseldorf, DE; Pegelow, Ulrich, Dr., 40597 Düsseldorf, DE; Mayer, Bernd, Dr., 40597 Düsseldorf, DE

Aktivatorkomplexe für Persauerstoffverbindungen

Als Aktivatoren für Persauerstoffverbindungen in Oxidations-, Wasch-, Reinigungs- oder Desinfektionslösungen werden Übergangsmetall-Komplexe der Formel M(L)_x(A)_y, in der M für Mangan, Eisen, Cobalt, Ruthenium oder Molybdan steht, x sine Zahl von 1 bis 3 ist, A für einen ladungsausgleichenden Anionliganden steht, y eine Zahl von 0 bis 6-2x ist und L einen organischen Liganden der Formel (II) bedeutet,

X für -H, -R³, -OR³, -NO₂, -ONO, -F, -Cl, -Br oder -J steht, X für -H, -R³ unabhängig voneinander für Wasserstoff oder R¹, R² und R³ unabhängig voneinander für Wasserstoff oder für einen Alkyl-, Alkenyl-, Benzyl-, Phenyl- oder Cycloalkylrest, weicher gegebenenfalls alkyl- und/oder arylaubatituiert sein kenn, mit insgesamt 1 bis 12 C-Atomen stehen, n und m unabhängig voneinander 0 oder 1 sind, verwendet. Wasch- und Reinigungsmittel enthalten vorzugsweise 0,0025 Gew.-% bis 0,25 Gew.-% derartiger Aktivatorkomplexe.

Beschreibung

Die vorliegende Erfindung betrifft die Verwendung von bestimmten Übergangsmetallkomplexen, die 1,3-Dicarbonylverbindungen als Liganden aufweisen, als Aktivatoren beziehungsweise Katalysatoren für Persauerstoffverbindungen, insbesondere zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, sowie Wasch-, Reinigungs- und Desinfektionsmittel, die derartige Aktivatoren beziehungsweise Katalysatoren enthalten.

Anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindungen, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat-Perhydrat, werden seit langem als Oxidationsmittel zu Desinsektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur ab; so erzielt man beispielsweise mit H2O2 oder Perborat in alkalischen Bleichslotten erst bei Temperaturen oberhalb von etwa 80°C eine ausreichend schnelle Bleiche verschmutzter Textilien. Bei niedrigeren Temperaturen kann die Oxidationswirkung der anorganischen Persauerstoffverbindungen durch Zusatz sogenannter Bleichaktivatoren verbessert werden, für die zahlreiche Vorschläge, vor allem aus den Stoffklassen der N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Hydrotriazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-nonanoyl-phenylsulfonat Natrium-isononanoylphenylsulfonat und acylierte Zuckerderivate, wie Pentaacetylglukose, in der Literatur bekannt geworden sind. Durch Zusatz dieser Substanzen kann die Bleichwirkung wäßriger Peroxidflotten so weit gesteigert werden, daß bereits bei Temperaturen um 60°C im wesentlichen die gleichen Wirkungen wie mit der Peroxidflotte allein bei 95°C eintreten.

Im Bemühen um energiesparende Wasch- und Bleichverfahren gewinnen in den letzten Jahren Anwendungstemperaturen deutlich unterhalb 60°C, insbesondere unterhalb 45°C bis herunter zur Kaltwassertemperatur an Bedeutung.

Bei diesen niedrigen Temperaturen läßt die Wirkung der bisher bekannten Aktivatorverbindungen in der Regel erkennbar nach. Es hat deshalb nicht an Bestrebungen gefehlt, für diesen Temperaturbereich wirksamere Aktivatoren zu entwickeln, ohne daß bis heute ein überzeugender Erfolg zu verzeichnen gewesen wäre. Ein Ansatzpunkt dazu ergibt sich durch den Einsatz von Übergangsmetallsalzen und -komplexen, wie zum Beispiel in den europäischen Patentanmeldungen EP 392 592, EP 443 651, EP 458 397, EP 544 490 oder EP 549 271 vorgeschlagen, als sogenannte Bleichkatalysatoren. Bei diesen besteht, vermutlich wegen der hohen Reaktivität der aus ihnen und der Persauerstoffverbindung entstehenden oxidierenden Intermediate, die Gefahr der Farbveränderung gefärbter Textilien und im Extremfall der oxidativen Textilschädigung. Aus der europäischen Patentanmeldung EP 630 964 sind bestimmte Mangankomplexe bekannt, welche keinen ausgeprägten Effekt hinsichtlich einer Bleichverstärkung von Persauerstoffverbindungen haben und gefärbte Textilfasern nicht entfärben, aber die Bleiche von in Waschlaugen befindlichem Schmutz oder Farbstoff bewirken können.

Die vorliegende Erfindung hat die Verbesserung der Oxidations- und Bleichwirkung anorganischer Persauerstoffverbindungen bei niedrigen Temperaturen unterhalb von 80°C, insbesondere im Temperaturbereich von ca. 15°C bis 45°C, zum Ziel.

Es wurde nun gefunden, daß Übergangsmetallkomplexe, deren Liganden eine 1,3-Dicarbonylstruktureinheit aufweisen, eine deutliche bleichkatalysierende Wirkung haben.

Gegenstand der Erfindung ist demgemäß die Verwendung von Übergangsmetall-Komplexen der Formel (I) M(L)_x(A)_y, in der M für Mangan, Eisen, Cobalt, Ruthenium oder Molybdän steht, x eine Zahl von 1 bis 3 ist, A für einen ladungsausgleichenden Anionliganden steht, y eine Zahl von 0 bis 6-2x ist und L einen organischen Liganden der Formel (II) bedeutet,

$$R^1(0)$$
 $(0)_mR^2$

in der

55

65

X für -H, $-R^3$, $-OR^3$, $-NO_2$, -ONO, -F, -Cl, -Br oder -J steht,

R¹, R² und R³ unabhängig voneinander für Wasserstoff oder für einen Alkyl-, Alkenyl-, Benzyl-, Phenyl- oder Cycloalkylrest, welcher gegebenenfalls alkyl- und/oder arylsubstituiert sein kann, mit insgesamt 1 bis 12 C-Atomen stehen.

n und m unabhängig voneinander 0 oder 1 sind,

als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen in Oxidations-, Wasch-, Reinigungsoder Desinfektionslösungen.

Bevorzugtes Übergangsmetall M in den Verbindungen der Formel (I) ist Cobalt.

Zu den bevorzugten Verbindungen gemäß Formel (II) gehören solche, in denen R¹ und/oder R² eine Methylgruppe ist, insbesondere wenn n und/oder m 0 ist, und solche, bei denen R¹ und/oder R² eine Ethylgruppe ist, insbesondere wenn n und/oder m 1 ist.

Zu den Substitutenten X in den Verbindungen der Formel (II) gehören die Hydroxygruppe, Alkoxygruppen mit insbesondere 1 bis 4 C-Atomen, Aryloxgruppen, die Nitrogruppe, Halogene wie Fluor, Chlor, Brom und Jod, die Aminogruppe, welche auch mono- oder dialkyliert oder -aryliert sein kann, lineare oder verzweigtkettige Alkylgruppen mit insbesondere 1 bis 4 C-Atomen, Cycloalkylgruppen mit 3 bis insbesondere 6 C-Atomen, lineare oder verzweigtkettige Alkenylgruppen mit 2 bis insbesondere 5 C-Atomen, und Arylgruppen, welche ihrerseits die vorgenannten Substituenten tragen können.

Zu den genannten Alkylresten, insbesondere R¹, R² und R³, gehören insbesondere die Methyl-, Ethyl-, n-Pro-

pyl-, iso-Propyl-, n-Butyl-, sec-Butyl-, iso-Butyl- und tert-Butyl-Gruppe.

Der ladungsausgleichende Anionligand A in den erfindungsgemäß verwendeten Verbindungen der Formel (I) kann ein- oder mehrwertig sein. Vorzugsweise handelt es sich um ein Halogenid, insbesondere Chlorid, ein 10 Hydroxid, Hexasluorophosphat, Perchlorat oder um das Anion einer Carbonsaure, wie Formiat, Acetat, Benzoat

Die erfindungsgemäß verwendeten Verbindungen können nach im Prinzip bekannten Verfahren durch die oder Citrat. Reaktion von 1,3-Dicarbonylverbindungen gemäß Formel (II) mit Übergangsmetallsalzen hergestellt werden.

Ein Bleichkatalysator gemäß Formel (I) wird vorzugsweise zum Bleichen von Farbanschmutzungen beim Waschen von Textilien, insbesondere in wäßriger, tensidhaltiger Flotte, verwendet. Die Formulierung "Bleichen von Farbanschmutzungen" ist dabei in ihrer weitesten Bedeutung zu verstehen und umfaßt sowohl das Bleichen von sich auf dem Textil befindenden Schmutz, das Bleichen von in der Waschflotte befindlichem, vom Textil abgelöstem Schmutz und das oxidative Zerstören von sich in der Waschflotte befindenden Textilfarben, die sich unter den Waschbedingungen von Textilien ablösen, bevor sie auf andersfarbige Textilien aufziehen können.

Weitere Gegegenstände der Erfindung sind Wasch-, Reinigungs- und Desinfektionsmittel, die einen oben beschriebenen Bleichkatalysator gemäß Formel (I) enthalten und ein Verfahren zur Aktivierung von Persauer-

stoffverbindungen unter Einsatz eines derartigen Bleichkatalysators.

Bei dem erfindungsgemäßen Verfahren und im Rahmen einer erfindungsgemäßen Verwendung kann der Bleichkatalysator im Sinne eines Aktivators überall dort eingesetzt werden, wo es auf eine besondere Steigerung 25 der Oxidationswirkung der Persauerstoffverbindungen bei niedrigen Temperaturen ankommt, beispielsweise bei der Bleiche von Textilien oder Haaren, bei der Oxidation organischer oder anorganischer Zwischenprodukte und bei der Desinfektion.

Die erfindungsgemäße Verwendung besteht im wesentlichen darin, Bedingungen zu schaffen, unter denen die Persauerstoffverbindung und der Bleichkatalysator gemäß Formel (I) miteinander reagieren können, mit dem 30 Ziel, stärker oxidierend wirkende Folgeprodukte zu erhalten. Solche Bedingungen liegen insbesondere dann vor, wenn beide Reaktionspartner in wäßriger Lösung aufeinandertreffen. Dies kann durch separate Zugabe der Persauerstoffverbindung und des Bleichkatalysators zu einer gegebenenfalls wasch- oder reinigungsmittelhaltigen Lösung geschehen. Besonders vorteilhaft wird das erfindungsgemäße Verfahren jedoch unter Verwendung eines erfindungsgemäßen Wasch-, Reinigungs- oder Desinfektionsmittels, das den Bleichkatalysator und gegebenenfalls ein peroxidisches Oxidationsmittel enthält, durchgeführt. Die Persauerstoffverbindung kann auch separat, in Substanz oder als vorzugsweise wäßrige Lösung oder Suspension, zur Lösung zugegeben werden, wenn ein persauerstofffreies Mittel verwendet wird.

Je nach Verwendungszweck können die Bedingungen weit variiert werden. So kommen neben rein wäßrigen Lösungen auch Mischungen aus Wasser und geeigneten organischen Lösungsmitteln als Reaktionsmedium in Frage. Die Einsatzmengen an Persauerstoffverbindungen werden im allgemeinen so gewählt, daß in den Lösungen zwischen 10 ppm und 10% Aktivsauerstoff, vorzugsweise zwischen 50 und 5000 ppm Aktivsauerstoff vorhanden sind. Auch die verwendete Menge an Bleichkatalysator hängt vom Anwendungszweck ab. Je nach gewünschtem Aktivierungsgrad werden 0,00001 Mol bis 0,025 Mol, vorzugsweise 0,0001 Mol bis 0,002 Mol Aktivator pro Mol Persauerstoffverbindung verwendet, doch können in besonderen Fällen diese Grenzen auch

über- oder unterschritten werden. Ein erfindungsgemäßes Wasch-, Reinigungs- oder Desinfektionsmittel enthält vorzugsweise 0,0025 Gew.-% bis 0,25 Gew.-%, insbesondere 0,01 Gew.-% bis 0,1 Gew.-% des Bleichkatalysators gemäß Formel (I) neben üblichen, mit dem Bleichkatalysator verträglichen Inhaltsstoffen. Der Bleichkatalysator kann in im Prinzip bekannter Weise an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein.

Die erfindungsgemäßen Wasch-, Reinigungs- und Desinfektionsmittel, die als insbesondere pulverförmige Feststoffe, homogene Lösungen oder Suspensionen vorliegen können, können außer dem erfindungsgemäß verwendeten Bleichkatalysator im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Wasch- und Reinigungsmittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, organische und/oder anorganische Persauerstoffverbindungen, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbüberfragungsinhibitoren, Schaumregulatoren, zusätzliche Persauerstoff-Aktivatoren, Farb- und Duftstoffe, enthalten.

Ein erfindungsgemäßes Desinfektionsmittel kann zur Verstärkung der Desinfektionswirkung gegenüber speziellen Keimen zusätzlich zu den bisher genannten Inhaltsstoffen übliche antimikrobielle Wirkstoffe enthalten. Derartige antimikrobielle Zusatzstoffe sind in den erfindungsgemäßen Desinfektionsmitteln vorzugsweise nicht über 10 Gew.-%, besonders bevorzugt von 0,1 Gew.-% bis 5 Gew.-% enthalten.

Zusätzlich zu den Bleichkatalysatoren gemäß Formel (I) können, insbesondere in Kombination mit anorganischen Persauerstoffverbindungen, konventionelle Bleichaktivatoren, das heißt Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder aliphatische Peroxocarbonsäuren 65 mit 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, eingesetzt werden. Geeignet sind die eingangs zitierten üblichen Bleichaktivatoren, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAG U), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Phenylsulfonate, insbesondere Nonanoyl- oder Isononanoylbenzolsulfonat, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran sowie acetyliertes Sorbit und Mannit, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton. Auch die aus der deutschen Patentanmeldung DE 44 43 177.5 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.

Die erfindungsgemäßen Mittel können ein oder mehrere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische in Frage kommen. Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten langkettigen Alkoholderivaten entsprechen, sowie von Alkylphenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.

Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat-Gruppen mit bevorzugt Alkaliionen als Kationen enthalten. Verwendbare Seifen sind bevorzugt die Alkalisalze der gesättigten oder ungesättigten Fettsäuren mit 12 bis 18 C-Atomen. Derartige Fettsäuren können auch in nicht vollständig neutralisierter Form eingesetzt werden. Zu den brauchbaren Tensiden des Sulfat-Typs gehören die Salze der Schwefelsäurehalbester von Fettalkoholen mit 12 bis 18 C-Atomen und die Sulfatierungsprodukte der genannten nichtionischen Tenside mit niedrigem Ethoxylierungsgrad. Zu den verwendbaren Tensiden vom Sulfonat-Typ gehören lineare Alkylbenzolsulfonate mit 9 bis 14 C-Atomen im Alkylteil, Alkansulfonate mit 12 bis 18 C-Atomen, sowie Olefinsulfonate mit 12 bis 18 C-Atomen, die bei der Umsetzung entsprechender Monoolefine mit Schwefeltrioxid entstehen, sowie alpha-Sulfofettsäureester, die bei der Sulfonierung von Fettsäuremethyloder -ethylestern entstehen.

Derartige Tenside sind in den erfindungsgemäßen Reinigungs- oder Waschmitteln in Mengenanteilen von vorzugsweise 5 Gew.-% bis 50 Gew.-%, insbesondere von 8 Gew.-% bis 30 Gew.-%, enthalten, während die erfindungsgemäßen Desinfektionsmittel vorzugsweise 0,1 Gew.-% bis 20 Gew.-%, insbesondere 0,2 Gew.-% bis 5 Gew.-% Tenside, enthalten.

Als geeignete Persauerstoffverbindungen kommen insbesondere organische Persäuren, Wasserstoffperoxid und unter den Reinigungsbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, in Betracht. Sofern feste Perverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Die Persauerstoffverbindungen können als solche oder in Form diese enthaltender Mittel, die prinzipiell alle üblichen Wasch-, Reinigungs- oder Desinfektionsmittelbestandteile enthalten können, zu der Reinigungslauge zugegeben werden. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat oder Wasserstoffperoxid in Form wäßriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Falls ein erfindungsgemäßes Wasch- oder Reinigungsmittel Persauerstoffverbindungen enthält, sind diese in Mengen von vorzugsweise nicht über 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, vorhanden, während in den erfindungsgemäßen Desinfektionsmitteln vorzugsweise von 0,5 Gew.-% bis 40 Gew.-%, insbesondere von 5 Gew.-% bis 20 Gew.-%, an Persauerstoffverbindungen enthalten sind.

Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Aminopolycarbonsäuren, insbesondere Nitrilotriessigsäure und Ethylendiamintetraessigsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, sowie polymere (Poly-)carbonsäuren, insbesondere die durch Oxidation von Polysacchariden zugänglichen Polycarboxylate der internationalen Patentanmeldung WO 93116110, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-Carbonsäure und vorzugsweise von einer C₃-C₄-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, vorzugsweise einer C₄-C₆-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C₁ - C₄-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Terpolymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw.(Meth)acrylat, besonders bevorzugt Acrylsaure bzw. Acrylat, und Maleinsaure bzw. Maleat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise

10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Terpolymere, in denen das Gewichtsverhältnis von (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleat zwischen 1:1 und 4:1, vorzugsweise zwischen 2:1 und 3:1 und insbesondere 2:1 und 2,5:1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsaure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem C₁-C₄-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure beziehungsweise (Meth)acrylat, besonders bevorzugt Acrylsäure beziehungsweise Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure bzw. Methallylsulfonat und als drittes Monomer 10 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind. Besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in das Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere lassen sich insbesondere nach Verfahren herstellen, die in der deutschen 15 Patentschrift DE 42 21 381 und der deutschen Patentanmeldung DE 43 00 772 beschrieben sind, und weisen im allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000, vorzugsweise zwischen 200 und 50 000 und insbesondere zwischen 3 000 und 10 000 auf. Sie können, insbesondere zur Herstellung flüssiger Mittel, in Form wäßriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wäßriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre 20

Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere Alkalisalze, eingesetzt. bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, erfindungsge-

Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Polyphosphate, vorzugsweise Namäßen Mitteln eingesetzt. triumtriphosphat, in Betracht. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebe- 30 nenfalls X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden

kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.

Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die in den erfindungsgemäßen Mitteln als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na₂O:SiO₂ von 1:2 bis 1:28. Derartige amorphe Alkalisilikate sind beispielsweise unter dem Namen Portil® im Handel erhältlich. Solche mit einem molaren Verhältnis Na₂O:SiO₂ von 1:1,9 bis 1:2,8 können nach dem Verfahren der europäischen Patentanmeldung EP 0 425 427 hergestellt werden. Sie werden im Rahmen der Herstellung erfindungsgemäßer Mittel bevorzugt als Feststoff und nicht in Form einer Lösung zugegeben. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na₂Si_xO_{2x+1} · y H₂O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Kristalline Schichtsilikate, die unter diese allgemeine Formel fallen, werden beispielsweise in der europäischen Patentanmeldung EP 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdis- 50 ilikate (Na₂Si₂O₅ · y H₂O) bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. δ-Natriumsilikate mit einem Modul zwischen 1,9 und 3,2 können gemäß den japanischen Patentanmeldungen JP 04/238 809 oder JP 04/260610 hergestellt werden. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, herstellbar 55 wie in den europäischen Patentanmeldungen EP 0 548 599, EP 0 502 325 und EP 0452 428 beschrieben, können in erfindungsgemäßen Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es nach dem Verfahren der europäischen Patentanmeldung EP 0 436 835 aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5, wie sie nach den Verfahren der 60 europäischen Patentschriften EP 0 164 552 und/oder EP 0293 753 erhältlich sind, werden in einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel eingesetzt. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 4:1 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu 65 kristallinem Alkalisilikat vorzugsweise 1:2 bis 2:1 und insbesondere 1:1 bis 2:1.

Buildersubstanzen sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten, während die erfindungsgemäßen

DE 195 36 082 A

Desinfektionsmittel vorzugsweise frei von den lediglich die Komponenten der Wasserhärte komplexierenden Buildersubstanzen sind und bevorzugt nicht über 20 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, an schwermetallkomplexierenden Stoffen, vorzugsweise aus der Gruppe umfassend Aminopolycarbonsäuren Aminopolyphosphonsäuren und Hydroxypolyphosphonsäuren und deren wasserlösliche Salze sowie deren Gemische, enthalten.

Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Cellulasen, Oxidasen und Peroxidasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92111347 oder WO 94123005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch-, Reinigungs- und Desinfektionsmitteln vorzugsweise nicht über 2 Gew.-%, insbesondere von 0,2 Gew.-% bis 0,7 Gew.-%, enthalten.

Zu den in den erfindungsgemäßen Mitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Wasch-, Reinigungs- und Desinfektionsmitteln vorzugsweise nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.

Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Apfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.

Die Herstellung der erfindungsgemäßen festen Mittel bietet keine Schwierigkeiten und kann in im Prinzip bekannter Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Persauerstoffverbindung und Bleichkatalysator gegebenenfalls später zugesetzt werden. Zur Herstellung erfindungsgemäßer Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein aus der europäischen Patentschrift EP 486 592 bekanntes, einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Erfindungsgemäße Wasch-, Reinigungs- oder Desinfektionsmittel in Form wäßriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.

Beispiele

35

55

60

65

Beispiel 1

In einer Lösung, die 2,5 mg Morin in 99,5 ml vollentsalztem Wasser enthielt, wurden 98 mg NatriumperboratMonohydrat gelöst. Der pH-Wert wurde auf 9,5 eingestellt und mit Hilfe eines pH-Stat-Gerätes während der
gesamten nachfolgenden Meßdauer bei diesem Wert gehalten. Ebenso wurde die Temperatur konstant bei 20°C
gehalten. 0,5 ml einer Lösung, die den zu testenden Bleichkatalysator in einer Konzentration von 50 ppm
bezogen auf Übergangsmetall enthielt, wurden zugesetzt. Über einen Zeitraum von 30 Minuten wurde minütlich
die Extinktion E der Lösung bei 400 nm gemessen. In der nachfolgenden Tabelle sind die Werte für die
prozentuale Entfärbung D(t), berechnet nach D(t) = [E(t) - E(0)] / E(0) • 100, angegeben.

Getestet wurden die nach bekannten Verfahren hergestellten Komplexe Co(III)-Nitroacetylacetonat (E1) und Co(II)-acetessigester (E2) im Sinne der Erfindung. Zum Vergleich wurde der herkömmliche Bleichaktivator N,N,N',N'-Tetraacetyl-ethylendiamin (TAED) unter ansonsten gleichen Bedingungen, aber in einer Konzentration von 6 Gew.-%, ebenfalls getestet (VI).

— Tabelle 1

Prozentuale Entfärbung in Abhängigkeit der Zeit

	Komplex	Entfärbung nach		
		5 min	15 min	28 min
E1	Co(III)-Nitroacetylacetonat	38	76	92
E2	Co(II)-acetessigester	33	75	93
V1	TAED	35	63	84

195 36 082 \mathbf{DE}

Man erkennt, daß durch die erfindungsgemäßen Verwendungen (E1 und E2) eine signifikant bessere Bleichwirkung erreicht werden kann als durch den konventionellen Bleichaktivator TAED in wesentlich höherer Konzentration (VI).

Beispiel 2

5

15

20

25

35

50

In einem Launderometer wurden unter Verwendung eines bleichaktivatorfreien Waschmittels B1, enthaltend 16 Gew.-% Natriumperborat-Monohydrat, ein mit Currysauce-Öl verunreinigtes Gewebe aus weißer Baumwolle bei 30°C 30 Minuten gewaschen. Nach Spülen und Trocknen wurde die Remission (Meßwellenlänge 460 nm) des augenscheinlich sauberen Testgewebes photometrisch bestimmt. Zusätzlich wurde in gleicher Dosierung ein Mittel B2, das 6 Gew. % TAED und 94 Gew. % B1 enthielt, unter den gleichen Bedingungen getestet. Den aus diesen Vergleichsversuchen erhaltenen Werten ist der unter Einsatz eines Mittels, das B1 und den Komplex E1 in einer Konzentration von 50 ppm bezogen auf Cobalt enthielt (M1), klar überlegen (Tabelle 2).

Tabelle 2

Remissionswerte(%)

Mittel	Remission
M1	56,6
B1	48,1
B2	53,9

Patentansprüche

1. Verwendung von Übergangsmetall-Komplexen der Formel (I) M(L),(A), in der M für Mangan, Eisen, Cobalt, Ruthenium oder Molybdan steht, x eine Zahl von 1 bis 3 ist, A für einen ladungsausgleichenden Anionliganden steht, y eine Zahl von 0 bis 6-2x ist und L einen organischen Liganden der Formel (II) bedeutet,

X für -H, $-R^3$, $-OR^3$, $-NO_2$, -ONO, $-F_1$ -Cl, -Br oder -J steht,

R¹, R² und R³ unabhängig voneinander für Wasserstoff oder für einen Alkyl-, Alkenyl-, Benzyl-, Phenyl- oder Cycloalkylrest, welcher gegebenenfalls alkyl- und/oder arylsubstituiert sein kann, mit insgesamt 1 bis 12

n und m unabhängig voneinander 0 oder 1 sind, als Aktivatoren für Persauerstoffverbindungen in Oxida-

tions-, Wasch-, Reinigungs- oder Desinfektionslösungen. 2. Verwendung von Komplexen der Formel (I) zum Bleichen von Farbanschmutzungen beim Waschen von

3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Übergangsmetall M im Komplex 55

4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in Formel (II) R1 und/oder R² eine Methylgruppe ist, insbesondere wenn n und/oder m 0 ist.

5. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in Formel (II) R¹ und/oder R² eine Ethylgruppe ist, insbesondere wenn n und/oder m 1 ist.

6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Substituent X in den Verbindungen der Formel (II) unter der Hydroxygruppe, Alkoxygruppen mit insbesondere 1 bis 4 C-Atomen, Aryloxgruppen, der Nitrogruppe, Halogenen, der Aminogruppe, welche auch mono- oder dialkyliert oder -aryliert sein kann, linearen oder verzweigtkettigen Alkylgruppen, Cycloalkylgruppen mit 3 bis insbesondere 6 C-Atomen, lineare oder verzweigtkettige Alkenylgruppen mit 2 bis insbesondere 5 C-Atomen, 65 und Arylgruppen, welche ihrerseits die vorgenannten Substituenten tragen, ausgewählt wird.

7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der ladungsausgleichende Anionligand A in den Verbindungen der Formel (I) ein- oder mehrwertig ist.

DE 195 36 082

8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß R^1 , R^2 und R^3 unabhängig voneinander aus den Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, sec-Butyl-, iso-Butyl- und tert-Butyl-Gruppen ausgewählt werden.

9. Verwendung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die zu aktivierende Persauerstoffverbindung aus der Gruppe umfassend organische Persauren, Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische ausgewählt wird.

10. Wasch-, Reinigungs- oder Desinfektionsmittel, dadurch gekennzeichnet, daß es 0,0025 Gew.-% bis 0,25 Gew.-%, insbesondere 0,01 Gew.-% bis 0,1 Gew.-% eines Bleichkatalysators gemäß Formel (I) neben

üblichen, mit dem Bleichkatalysator verträglichen Inhaltsstoffen enthält.

11. Waschmittel nach Anspruch 10, dadurch gekennzeichnet, daß es 5 bis 50 Gew.-%, insbesondere 8 bis 30 Gew.-% anionisches und/oder nichtionisches Tensid, bis zu 60 Gew.-%, insbesondere 5 bis 40 Gew.-% Buildersubstanz, bis zu 2 Gew.-%, insbesondere 0,2 bis 0,7 Gew.-%, Enzym, bis zu 30 Gew.-%, insbesondere 6 bis 20 Gew.-%, organisches Lösungsmittel aus der Gruppe umfassend Alkohole mit 1 bis 4 C-Atomen, Diole mit 2 bis 4 C-Atomen sowie deren Gemische und die aus diesen Verbindungsklassen ableitbaren Ether, bis zu 20 Gew.-%, insbesondere 1,2—17 Gew.-% pH-Regulator, enthält

12. Waschmittel nach Anspruch 11, dadurch gekennzeichnet, daß es zusätzlich zu den genannten Bestandteilen nicht über 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-% Persauerstoffverbindung, ausgewählt aus der Gruppe umfassend Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische,

enthält.

5

10

15

20

25

30

35

40

45

55

60

65