RNA seq

BoQiang Hu 胡博强 School of Life Sciences, Peking University

Before our talk:

- What can RNA-seq do?
 - Level 1:
 - Gene Expression (RPKM)
 - Level 2:
 - Transcriptome reconstruction & Alternative Splicing
 - Isoform abundance & Differential Expression
 - Also:
 - RNA-editing(DNA-SNP vs RNA-SNP)
 - eQTL(SNP-Expression)
 - Fusion
 - Using result:
 - GO & Pathway Enrichment

Topic

- 1. Read mapping
- 2. Transcriptome reconstruction
- > 3. Differential Expression

```
Homo sapiens aurora kinase A interacting protein 1 (AURKAIP1), transcript variant 1, mRNA
NM_017900
CCCGCACCCCTGGGATTGTGGGAAATGTAGTTTTTTGCCTCCGTAAGGGACCAGGCGGAGCTGAGGAAC
CGCGCGAGGACTGGGACCGTGATTCCACTAACCGGAAACCGTCGCCTTTCGGGCCCGGCGGGGCCTGAGC
CAATGCAGAATCGGGGGCCGCGAGGACGCCAGCGGGCGCTGTGCGTAGGAACCGCCGGGTGGCCGCTGCC
GATCGGGGCCGACTTGGGGACGGACCGGAAGTGCCCGAGGGCGGCCGCAGAACGGTCAATTTGAGCCGCG
TCGAGCTCCCTGGGACCTGTGGCCGCCCACAGACCATGCTCCTGGGGCGCCTGACTTCCCAGCTGT
TGAGGGCCGTTCCTTGGGCAGGCGGCCGCCCGCCTTGGCCCGTCTCTGGAGTGCTGGGCAGCCGGGTCTG
CGGGCCCCTTTACAGCACATCGCCGGCCGGCCCAGGTAGGGCGGCCTCTCTCCCTCGCAAGGGGGCCCAG
GCTGCTTCCTGCCCAGACTGGATACCGGGACCGCAGGGACTGTGGCTCCACCGCAATCCTACCAGTGTCC
GCCCAGCCAGATAGGGGAAGGGGCCGAGCAGGGGGGATGAAGGCGTCGCGGATGCGCCTCAAATTCAGTGC
AAAAACGTGCTGAAGATCCGCCGGCGGAAGATGAACCACCACAAGTACCGGAAGCTGGTGAAGAAGACGC
GGTTCCTGCGGAGGAAGGTCCAGGAGGGACGCCTGAGACGCAAGCAGATCAAGTTCGAGAAAGACCTGAG
GCGCATCTGGCTGAAGGCGGGGCTAAAGGAAGCCCCCGAAGGCTGGCAGACCCCCAAGATCTACCTGCGG
GGCAAATGAGTCTGGCGCCGCCCTTCCCGCCCGTTGCTGCTGTGATCCGTAGTAATAAATTCTCAGAGGA
>NM_001127229 Homo sapiens aurora kinase A interacting protein 1 (AURKAIP1), transcript variant 2, mRNA
AAGTGCCCGAGGGCCGCCGCAGAACGGTCAATTTGAGCCGCGTCGAGGTCGGGCTTGGGAAGGGTCAGCG
GGAGGCCTGAGGGCGCCGGGCGCTGCGGCAGGCGGGCCCGGGGTCCAGCCGAGAGGGTCCGGGCGCCCAGG
TGGGACCTGTGGCCGCCGCCCACAGACCATGCTCCTGGGGCGCCTGACTTCCCAGCTGTTGAGGGCCGTT
CCTTGGGCAGGCGGCCGCCCTTGGCCCGTCTCTGGAGTGCTGGGCAGCCGGGTCTGCGGGCCCCTTT
ACAGCACATCGCCGGCCGGCCCAGGTAGGGCGGCCTCTCTCCCTCGCAAGGGGGCCCAGCTGGAGCTGGA
GGAGATGCTGGTCCCCAGGAAGATGTCCGTCAGCCCCCTGGAGAGCTGGCTCACGGCCCGCTGCTTCCTG
TAGGGGAAGGGGCCGAGCAGGGGGATGAAGGCGTCGCGGATGCGCCTCAAATTCAGTGCAAAAACGTGCT
GAAGATCCGCCGGCGGAAGATGAACCACCACAAGTACCGGAAGCTGGTGAAGAAGACGCGGTTCCTGCGG
AGGAAGGTCCAGGAGGGACGCCTGAGACGCAAGCAGATCAAGTTCGAGAAAGACCTGAGGCGCATCTGGC
TGAAGGCGGGGCTAAAGGAAGCCCCCGAAGGCTGGCAGACCCCCAAGATCTACCTGCGGGGCAAATGAGT
CTGGCGCCGCCCTTCCCGCCCGTTGCTGCTGTGATCCGTAGTAATAAATTCTCAGAGGACTCAGCCTTTA
>NM_001127230 Homo sapiens aurora kinase A interacting protein 1 (AURKAIP1), transcript variant 3, mRNA
GCAGAACGGTCAATTTGAGCCGCGTCGAGGTCGGGCTTGGGAAGGGTCAGCGGGAGGCCTGAGGGCCCCG
GGCGCTGCGGCAGGCCGGGGCCCGGGGTCCAGCCGAGAGGCTCCCCTGGGACCTGTGGCCGCCGCCCACAGA
GCCCGTCTCTGGAGTGCTGGGCAGCCGGGTCTGCGGGCCCCTTTACAGCACATCGCCGGCCCGGCCCAGGT
AGGGCGGCCTCTCCCCTCGCAAGGGGGCCCAGCTGGAGCTGGAGGAGATGCTGGTCCCCAGGAAGATGT
CCGTCAGCCCCCTGGAGAGCTGGCTCACGGCCCGCTGCTTCCTGCCCAGACTGGATACCGGGACCGCAGG
RefSeq Genes
```

AURKAIP1 AURKAIP1 AURKAIP1

- Disadvantage:
 - For Level1 (Gene-Expression) is OK.
 - However, we cannot get transcripts expression because of potential multi-match of reads in transcripts of a single gene.

Which transcript to map?

Read:

CGGGGCTAAAGGAAGCCCCCGAAGGCTGGCAGACCCCCAAGATCTACCTGCGG GGCAAATGAGTCTGGCGCCCCCCTTCCCGCCCGTTGCTGCTGATCCGTAGT AATAAATTCTCAGAGGACTCAGCCT

Homo sapiens aurora kinase A interacting protein 1 (AURKAIP1), transcript variant 1, mRNA >NM_017900 CCCGCACCCCTGGGATTGTGGGAAATGTAGTTTTTTGCCTCCGTAAGGGACCAGGCGGAGGAACCGCGCGAGGACTGGGACCGTGATTCCACTAACCGG AACCGTCGCCTTTCGGGCCCGGCGGGCCTGAGCCAATGCAGAATCGGGGGCCCGCGAGGACGCCAGCGGGCGCTGTGCGTAGGAACCGCCGGGTGGCCGCTG TCGGGGCCGACTTGGGGACGGACCGGAAGTGCCCGAGGGCGGCCGCAGAACGGTCAATTTGAGCCGCGTCGAGCTCCCCTGGGACCTGTGGCCGCCGCCCACAGA(CCCCTTTACAGCACATCGCCGGCCGGCCCAGGTAGGGCGGCCTCTCTCCCCTCGCAAGGGGGCCCAGCTGGAGGAGATGCTGGTCCCCAGGAAGATGTCCG TCAGCCCCCTGGAGAGCTGGCTCACGGCCCGCTGCTTCCTGCCCAGACTGGATACCGGGACCGCAGGGACTGTGGCTCCACCGCAATCCTACCAGTGTCCGCCCAG CCAGATAGGGGAAGGGGCCGAGCAGGGGGATGAAGGCGTCGCGGATGCGCCTCAAATTCAGTGCAAAAACGTGCTGAAGATCCGCCGGCGGAAGATGAACCACCAC AAGTACCGGAAGCTGGTGAAGAAGACGCGGTTCCTGCGGAGGAAGGTCCAGGAGGGACGCCTGAGACGCAAGCAGATCAAGTTCGAGAAAGACCTGAGGCGCATCT Homo sapiens aurora kinase A interacting protein 1 (AURKAIP1), transcript variant 2, mRNA AAGTGCCCGAGGGCGGCCGCAGAACGGTCAATTTGAGCCGCGTCGAGGTCGGGCTTGGGAAGGGTCAGCGGGAGGCCTGAGGGCGCCGGGCGCTGCGGCAGGCGGC GGACCTGTGGCCGCCGCCCACAGACCATGCTCCTGGGGCGCCCTGACTTCCCAGCTGTTGAGGGCCGTTCCTTGGGCAGGCGGCCGCCGCCCTTGGCCCGTCTCTGG AGTGCTGGGCAGCCGGGTCTGCGGGCCCCTTTACAGCACATCGCCGGCCCGGCCCAGGTAGGGCGGCCTCTCTCCCCTCGCAAGGGGGCCCCAGCTGGAGCTGGAGGAG ATGCTGGTCCCCAGGAAGATGTCCGTCAGCCCCCTGGAGAGCTGGCTCACGGCCCGCTGCTTCCTGCCCAGACTGGATACCGGGACCGCAGGGACTGTGGCTCCAC CGCAATCCTACCAGTGTCCGCCCAGCCAGATAGGGGAAGGGGCCGAGCAGGGGGGATGAAGGCGTCGCGGATGCGCCTCAAATTCAGTGCAAAAACGTGCTGAAGAT CCGCCGGCGGAAGATGAACCACCACAAGTACCGGAAGCTGGTGAAGAAGACGCGGTTCCTGCGGAGGAAGGTCCAGGAGGGACGCCTGAGACGCAAGCAGATCAAG TTCGAGAAAGACCTGAGGCGCATCTGGCTGAAGGCGGGGCTAAAGGAAGCCCCCGAAGGCTGGCAGACCCCCAAGATCTACCTGCGGGGCAAATGA Homo sapiens aurora kinase A interacting protein 1 (AURKAIP1), transcript variant 3, mRNA GCAGAACGGTCAATTTGAGCCGCGTCGAGGTCGGGCTTGGGAAGGGTCAGCGGGAGGCCTGAGGGCGCCGGGCGCTGCGGCAGGCGGGCCCGGGGTCCAGCC CCGTCTCTGGAGTGCTGGGCAGCCGGGTCTGCGGGCCCCTTTACAGCACATCGCCGGCCCAGGTAGGGCGGCCTCTCTCCCCTCGCAAGGGGGCCCCAG GCTGGAGGAGATGCTGGTCCCCAGGAAGATGTCCGTCAGCCCCCTGGAGAGCTGGCTCACGGCCCGCTGCTTCCTGCCCAGACTGGATACCGGGACCGCAGGGACT GTGGCTCCACCGCAATCCTACCAGTGTCCGCCCAGCCAGATAGGGGAAGGGGCCGAGCAGGGGGATGAAGGCGTCGCGGATGCGCCTCAAATTCAGTGCAAAAACG TGCTGAAGATCCGCCGGCGGAAGATGAACCACCACAAGT<u>ACCGGAAGCTGGTGAAGAAGACGCGGTTCCTGCGGAGGAAGGTCCAGGAGGGACGCCTGAGACGCCA</u> GCAGATCAAGTTCGAGAAAGACCTGAGGCGCATCTGGCTGAAGGCCGGGGCTAAAGGAAGCCCCCGAAGGCTGGCAGACCCCCAAGATCTACCTGCGGGGCAAATG

- ▶ 1. Spliced aligners:
 - Align reads to genome, noval splice junctions were OK.
 - Using junctions and expression of each exons to estimate expression of each transcript.
 - So reference is genome.
 - Exon-first vs Seed-extend

1. Spliced aligners
 Exon-first vs Seed-extend

Garber, Manuel, et al. Nature methods, 2011

- Exon-first's disadvantage:
 - When there is a retrotransposed pseudogene, a spliced read could be incorrectly assigned to the pseudogene as it appears to be exonic.

However, this method is still recommended because of its balance of resource usage and accuracy.

So the solution is to make a adjustment of this strategy

Penalty for a junction Penalty for a mismatch

- Exon-first's disadvantage:
 - An alternative strategy: map to cDNA first.

TopHat recommand

Table 1 | Selected list of RNA-seq analysis programs

Class	Category	Package	Notes	Uses	Input
Read mapping					
Unspliced aligners ^a	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	Reads and reference transcriptome
		Stampy ³⁹	Probabilistic model		
	Burrows-Wheeler transform methods	Bowtie ⁴³			
		BWA ⁴⁴	Incorporates quality scores		
Spliced aligners	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a reference genome. Allows for the identification of novel splice junctions	Reads and reference genome
		SpliceMap ⁵⁰	aligners		
		TopHat ⁵¹	Uses Bowtie alignments		
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases	novet splice junctions	
		QPALMA ⁵⁴	Smith-Waterman for large gaps		

Spliced-reads in tophat

>nBank, CCDS, Rfam, tRNAs & Comparative G♣#omics)

HWI-ST1350:87:C280PACXX:1:1304:7130:36972	81	1	15805	1	101M 9	14814	0	GCTCC
HWI-ST1350:87:C280PACXX:1:1108:4641:160539	163	1	15915	3	3:M659N68M	=	16608	794
HWI-ST1350:87:C280PACXX:1:1108:4632:160552	163	1	15915	3	3:M659N68M	=	16608	794
HWI-ST1350:87:C280PACXX:1:1106:6042:190742	163	1	15927	1	2: <mark>M659N</mark> 80M	=	15929	762
HWI-ST1350:87:C280PACXX:1:1106:6042:190742	83	1	15929	1	19M659N82M	=	15927	-762
HWI-ST1350:87:C280PACXX:1:2105:18972:128998	433	1	15929	0	19M659N82M	12	89007	0
HWI-ST1350:87:C280PACXX:1:2105:18972:128998	433	1	15929	0	19M659N82M	X	1552533	114
HWI-ST1350:87:C280PACXX:1:2203:17531:129928	355	1	15930	1	18M659N83M	=	16615	786
HWI-ST1350:87:C280PACXX:1:2104:11984:128469	419	1	15934	1	14M659N87M	=	16630	797
HWI-ST1350:87:C280PACXX:1:1303:8796:164892	355	1	15935	1	1;M659N88M	=	16633	799
HWI-ST1350:87:C280PACXX:1:1202:1240:186280	419	1	15942	1	659N9 <mark>5M</mark>	=	16623	782
HWI-ST1350:87:C280PACXX:1:2107:17117:77107	329	1	15942	1	6M659N95M	*	0	0
HWI-ST1350:87:C280PACXX:1:2106:7957:112336	355	1	15945	1	3N659N98M	=	16629	785
HWI-ST1350:87:C280PACXX:1:2106:17233:149766	355	1	15946		2 <mark>1</mark> 659N9 <mark>9</mark> M	=	16616	771
HWI-ST1350:87:C280PACXX:1:1301:19190:180166	163	1	16003	50	101M =	16040	138	GGGGA
16 9991			Æ.	. Фаб	1			

Copyright © Peking University

Topic

- ▶ 1. Read mapping
- 2. Transcriptome reconstruction
- > 3. Differential Expression

- 2 approaches:
 - 1. Genome-guided
 - · Map genome reads to Exon region.

Gene-region

Fragments aligned to genome

- 2 approaches:
 - 1. Genome-guided
 - Map Splicing-reads as junctions.

Trapnell, Cole, et al. Nature biotechnology, 2010

- 2 approaches:
 - 2. De novo Assemble
- Usually for species without transcriptomes

- Approach2:
 - Assemble

Transcript 2

Trapnell, Cole, et al. Nature biotechnology, 2010

A example


```
$ cat a.fasta
>1
ATGGCGT
>2
GGCGTGC
>3
CGTGCAA
>4
TGCAATG
>5
CAATGGC
```

Former dimer => Next dimer

```
Dossible combination of 2 consist bases in all sequence
Relationship of 2-bases comb and 3-bases comb
AA
          enlonaate with 1 base
                                       AAT
          enlon AA
ΑT
                                          G
                                TG
CA
          enlon<sub>CA</sub>
                                ДΔ
CG
          enloncG
                                GT
GC
                                CA or CG
          enlon<sup>GC</sup>
                                          A or GCG
          enlon GT
                                GC
GG
                                TG
GΤ
         enlon<sub>TG</sub>
                                GC or GG
TG
          enlongate with 1 base
                                       TGC or TGG
```

Input fasta

Compeau et al . Nature biotechnology, 2011

Compeau et al . Nature biotechnology, 2011

Compeau et al . Nature biotechnology, 2011 Copyright © Peking University

Sequence: ATGGCGTGCA

For gene-isoform detection:

Transcriptome reconstruction

Genome-guided	Exon identification	G.Mor.Se	Assembles exons	Identifying novel transcripts	Alignments to
reconstruction	Genome-guided	Scripture ²⁸	Reports all isoforms	using a known reference	reference genome
	assembly	Cufflinks ²⁹	Reports a minimal set of isoforms	genome	
Genome-	Genome-independent	Velvet ⁶¹	Reports all isoforms	Identifying novel genes and	Reads
independent	assembly	TransABySS ⁵⁶		transcript isoforms without	
reconstruction		•		a known reference genome	

For splicing type (SE, A3SS,A5SS,MXE,TandemUTR,RI,AFE,ALE) detection or Percent Splicing In (PSI) caculation:

Analysis and design of RNA sequencing experiments for identifying isoform regulation

Yarden Katz, Eric T Wang, Edoardo M Airoldi & Christopher B Burge

Affiliations | Contributions | Corresponding authors

Nature Methods 7, 1009–1015 (2010) | doi:10.1038/nmeth.1528 Received 18 August 2010 | Accepted 08 October 2010 | Published online 07 November 2010

Nature **456**, 470-476 (27 November 2008) | doi:10.1038/nature07509; Received 23 June 2008; Accepted 3 October 2008; Published online 2 November 2008; Corrected 27 November 2008

Alternative isoform regulation in human tissue transcriptomes

Eric T. Wang $^{\underline{1},\underline{2},\underline{7}}$, Rickard Sandberg $^{\underline{1},\underline{3},\underline{7}}$, Shujun Luo $^{\underline{4}}$, Irina Khrebtukova $^{\underline{4}}$, Lu Zhang $^{\underline{4}}$, Christine Mayr $^{\underline{5}}$, Stephen F. Kingsmore $^{\underline{6}}$, Gary P. Schroth $^{\underline{4}}$ & Christopher B. Burge $^{\underline{1}}$

- ▶ 1. FPKM, the indicator of expression:
 - FPKM, Fragments(pair-reads) Per Kilo-bases per Million-reads total

$$FPKM = 10^9 \times \frac{C}{NL}$$

C= the number of reads mapped onto the gene's exons
N= total number of reads in the experiment

L= the sum of the exons in base pairs.

- ▶ 1. FPKM, the indicator of expression:
- Normalize the effect of length.

Normalize the effect of different Total Reads in different experiment.

2. Abundance of different transcripts in a single gene.

Cufflinks Pair-End sequence

If this reads belong to C, length_in_C = 500, likehood=11 If this reads belong to B, length_in_B = 250, likehood=12 If this reads belong to A, length_in_A = 150, likehood=13

All reads' likehoold of possible transcripts

Fragment_length distribution (Normal)

Trapnell, Cole, et al. Nature biotechnology, 2010

3.Transcripts difference in different samples:

Isoform change for a single gene

Heatmap for Expression difference for a group gene

Trapnell, Cole, et al. *Nature protocols*, 2012 Copyright © Peking University

Want have a try?

A recommend pipeline for

PROTOCOL

Differential gene and transci of RNA-seq experiments with

Cole Trapnell^{1,2}, Adam Roberts³, Loyal Goff^{1,2,4}, Geo Pertea^{5,6}, D Steven L Salzberg^{5,6}, John L Rinn^{1,2} & Lior Pachter^{3,8,9}

Reference

- Garber, Manuel, et al. "Computational methods for transcriptome annotation and quantification using RNA-seq." *Nature methods* 8.6 (2011): 469-477.
- Trapnell, Cole, et al. "Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation." *Nature biotechnology* 28.5 (2010): 511-515.
- Compeau, Phillip EC, Pavel A. Pevzner, and Glenn Tesler. "How to apply de Bruijn graphs to genome assembly." Nature biotechnology 29.11 (2011): 987-991.
- Trapnell, Cole, et al. "Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks." *Nature protocols* 7.3 (2012): 562-578.
- Mortazavi, Ali, et al. "Mapping and quantifying mammalian transcriptomes by RNA-Seq." *Nature methods* 5.7 (2008): 621-628.
- Katz, Yarden, et al. "Analysis and design of RNA sequencing experiments for identifying isoform regulation." Nature methods 7.12 (2010): 1009-1015.
 - Wang, Eric T., et al. "Alternative isoform regulation in human tissue transcriptomes." Nature 456.7221 (2008): 470-476.

Thank you!

- ▶ Tingting Lu陆婷婷
- ▶ Rongfeng Zhu祝融峰
- ▶ Boqiang Hu胡博强
- ▶ Mingshan Liu刘明珊
- ▶ Yongzhegn Li李永正
- ▶ Yirong Wang王奕蓉
- Chuze Shen沈初泽
- ▶ Xiao Wang王潇