(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 5 August 2004 (05.08.2004)

PCT

(10) International Publication Number WO~2004/065401~A1

- (51) International Patent Classification⁷: C07H 15/203, 15/26, 15/10, C07C 229/30, 237/16, C12P 19/44, A61K 31/7032, A61P 31/00
- (21) International Application Number:

PCT/CA2004/000068

- **(22) International Filing Date:** 21 January 2004 (21.01.2004)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

60/441,123 21 January 2003 (21.01.2003)	US
60/469,810 13 May 2003 (13.05.2003)	US
60/491,516 1 August 2003 (01.08.2003)	US
60/494,568 13 August 2003 (13.08.2003)	US

- (71) Applicant (for all designated States except US): ECOPIA BIOSCIENCES INC. [CA/CA]; 7290 Frederick-Banting, Saint-Laurent, Québec H4S 2A1 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BACHMANN, Brian, O. [US/US]; 2905 Snowden Rd., Nashville, TN 37204 (US). MCALPINE, James, B. [US/CA]; 40 Upper Trafalgar Place, Montreal, Québec H3H 1T3 (CA). ZAZOPOULOS, Emmanuel [CA/CA]; 455 Saint-Pierre, apt. 410, Montreal, Québec H2Y 2M8 (CA). FARNET, Chris, M. [US/CA]; 772 Bloomfield, Outremont, Québec H2V 3S3 (CA).
- (74) Agent: LOOPER, Ywe, J.; 7290 Frederick-Banting, Saint-Laurent, Québec H4S 2A1 (CA).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to the identity of the inventor (Rule 4.17(i)) for all designations
- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations
- of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: POLYENE POLYKETIDES, PROCESSES FOR THEIR PRODUCTION AND THEIR USE AS A PHARMACEUTICAL

(57) Abstract: This invention relates to a new class of polyene polyketides, their pharmaceutically acceptable salts and derivatives, and to methods for obtaining the compounds. One method of obtaining these compounds is by cultivation of novel strains of *Streptomyces aizunensis*; another method involves expression of biosynthetic pathway genes in transformed host cells. The present invention further relates to the novel strains of *Streptomyces aizunensis* used to produce these compounds, to the use of these compounds and their pharmaceutically acceptable salts and derivatives as pharmaceuticals, in particular to their use as inhibitors of fungal cell growth and cancer cell growth. The invention also relates to pharmaceutical compositions comprising these novel polyketides or a pharmaceutically acceptable salts or derivatives thereof. Finally, the invention relates to novel polynucleotide sequences and their encoded proteins, which are involved in the biosynthesis of these novel polyketides.

004/065401

WO 2004/065401 PCT/CA2004/000068

TITLE OF INVENTION: POLYENE POLYKETIDES, PROCESSES FOR THEIR PRODUCTION AND THEIR USE AS A PHARMACEUTICAL

RELATED APPLICATIONS:

This application claims priority to U.S. Provisional Application 60/441,123 filed January 21, 2003; U.S. Provisional Application 60/494,568 filed August 13, 2003; U.S. Provisional Application 60/469,810 filed May 13, 2003; and U.S. Provisional 60/491,516 filed August 1, 2003.

FIELD OF INVENTION:

This invention relates to a new class of polyene polyketides, their pharmaceutically acceptable salts and derivatives, and to methods for their production. One method of obtaining these novel polyketides is by cultivation of novel strains of *Streptomyces aizunensis*; another method involves expression of the biosynthetic gene cluster of the invention in transformed host cells. The compounds may also be produced by known strains of certain bacteria. The invention also encompasses the novel strains of *Streptomyces aizunensis* which produce these compounds, as well as the gene cluster which directs the biosynthesis of these compounds. The invention also includes the use of these novel polyketides and their pharmaceutically acceptable salts and derivatives as pharmaceuticals, in particular, to their use as inhibitors of fungal and bacterial cell growth, inhibitors of cancer cell growth and for lowering serum cholesterol and other steroids. The invention also encompasses pharmaceutical compositions comprising these novel polyketides, or pharmaceutically acceptable salts or derivatives thereof.

BACKGROUND:

Actinomycetes comprise a family of bacteria that are abundant in soil and have generated significant commercial and scientific interest as a result of the large number of therapeutically useful antibiotics, antifungals, anticancer and cholesterol-lowering agents, produced as secondary metabolites by these bacteria. Many actinomycetes, particularly those of the Streptomyces genus,

have been extensively studied because of their ability to produce a notable diversity of biologically active metabolites. The intensive search for new natural products has led to the identification of new species of bacteria and the creation of improved strains.

Polyene polyketides are a group of natural products produced by actinomycetes that have generated significant commercial interest. For example Sakuda *et al.*, 1996 *J. of Chem. Soc., Perkin trans.* 1, 2315-19; and Sakuda *et al.*, *Tetrahedron Letters*, Vol 35, No. 16, 2777-2789 (1995) disclose the linear polyene linearmycin A produced by a Streptomyces sp. Sakuda *et al.* report that linearmycin A has shown both antifungal and antibacterial activity. Pawlak *et al. J of Antibiotics*, Vol. XXXIII No. 9, 989-997 disclose the polyene macrolide lienomycin produced by *Actinomyces diastatochromogenes*. Pawlak *et al.* report that lienomycin has shown antifungal, antibacterial and anti-tumor activity. Antifungal activity of polyene macrolides has also been correlated with hyperchlesterolemic effect (C.P. Schaffner, Polyene Microlides in Clinical Practice, in Macrolide Antibiotics: Chemistry, biology and practice, S. Omura, ed. Academic Press (1984), p. 491; C.P. Schaffner and H.W. Gordon, *Proc Natl. Acad. Sci. U.S.A.* 61, 36 (1968)).

Polyketides have carbon chain backbones formed of two-carbon units through a series of condensations reactions and subsequent modifications. Type I polyketides are synthesized in nature by modular polyketide synthase (PKS) enzymes having a set of separate catalytic active sites for each cycle of carbon chain elongation and modification. Because of the multimodular nature of PKS proteins, much is known of the specificity and mechanism of the biosynthesis of polyketides.

Although many biologically active compounds have been identified, there remains the need to obtain novel naturally occurring compounds with enhanced properties. Current methods of obtaining such compounds include screening of natural isolates and chemical modification of existing compounds, both of which are costly and time consuming. Current screening methods are based on general biological properties of the compound, which require prior knowledge of the structure of the molecules. Methods for

chemically modifying known active compounds exist, but still suffer from practical limitations as to the type of compounds obtainable.

Thus, there exists a considerable need to obtain pharmaceutically active compounds in a cost-effective manner and with high yield. The present invention solves these problems by providing improved strains of *Streptomyces aizunensis* capable of producing potent new therapeutic compounds, as well as reagents (*e.g.* polynucleotides, vectors comprising the polynucleotides and host cells comprising the vectors) and methods to generate novel compounds by de novo biosynthesis rather than by chemical synthesis.

SUMMARY OF THE INVENTION:

The present invention encompasses compounds of Formula I:

A
$$W^1$$
 V^1 W^2 V^3 V^4 CH_3

Formula I

and pharmaceutically acceptable salts thereof; wherein,

A is selected from the group consisting of -NR¹R², -N=CR¹R²,

$$\frac{NR^2}{-NR^1-NHR^3}$$
, and $\frac{O}{R^4}$;

 R^1 , R^2 , R^3 and R^4 are each independently selected from the group consisting of H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl, C_{2-6} heterocycloalkyl, aryl, heteroaryl and amino acid, wherein said alkyl, alkenyl, aryl and heteroaryl are optionally substituted with a group selected from halogen, OH, NO_2 , NH_2 or aryl, said aryl being optionally further substituted with one or more groups independently selected from halogen, OH, NO_2 or NH_2 ;

wherein R¹⁰ is oxo or OR¹¹;

wherein R¹¹ is H or a heterocycloalkyl, the heterocycloalkyl being optionally substituted with 1-4 substituents selected from OX, C₁₋₃ alkyl and -O-C(O)R¹, wherein X is H or, when there are at least two neighboring substituent groups that are OX, then the X can be a bond such that the two neighboring oxygen groups form a five-membered acetal ring of the formula:

$$\mathbb{R}^5$$
 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^5 ; wherein \mathbb{R}^5 and \mathbb{R}^6 are each

independently selected from the group consisting of H, C_{1-6} alkyl, and C_{2-7} alkenyl;

D is selected from

wherein

 R^{12} is selected from H and C_{1-6} alkyl optionally substituted with 1 to 2 phenyl groups, wherein the phenyl group is optionally substituted with C_{1-6} alkyl or halo;

 R^{12a} and R^{12a} are each indepedently selected from H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl, C_{2-6} heterocycloalkyl, aryl, heteroaryl and amino acid, wherein said alkyl, alkenyl, aryl and heteroaryl are optionally substituted with a group selected from halogen, OH, NO_2 , NH_2 or aryl, said aryl being optionally further substituted with one or more groups independently selected from halogen, OH, NO_2 or NH_2 ;

$$W^1$$
 is $OX^1 OX^2$; $OX^3 OX^4 OX^5 OX^6$; W^2 is $OX^7 OX^8 OX^9$; $OX^{12}OX^{13}$; $OX^{12}OX^{13}$

 X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{12} and X^{13} are each independently selected from H, -C(O)-R⁷ and a bond such that when any of two neighboring X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{12} and X^{13} is a bond then the two neighboring oxygen atoms and their attached carbon atoms together form a six-membered acetal ring of the formula:

 ${
m R}^{5},\,{
m R}^{6}$ and ${
m R}^{7}$ are each independently selected from H, C $_{1$ -6 alkyl, C $_{2$ -7 alkenyl;

Y¹, Y², Y³, Y⁴, Y⁵, Y⁶, Y⁷, Y⁹, Y¹⁰, Y¹¹, Y¹², Y¹³ and Y¹⁵ are each independently selected from the group consisting of ethene-1,2-diyl,

ethane-1,2-diyl and ; wherein said ethene-1,2-diyl and ethane-1,2-diyl groups are optionally substituted with a methyl group;

Z is selected from OH, NHR⁸, and when the dotted line is a bond then Z is oxo, or NR⁹;

 R^8 is selected from H, C_{1-6} alkyl, C_{2-6} alkenyl; R^9 is C_{1-6} alkyl optionally substituted with aryl.

The invention is also directed to the Compound 2(a), a linear glycosylated polyketide with an amidohydroxycyclopentenone component, and pharmaceutically acceptable salts thereof:

Compound 2(a)

The systematic name for Compound 2(a) has been determined to be: 56-Amino-15,17,33,35,37,41,43,45,47,51,53-undecahydroxy-14,16,30-trimethyl-31-oxo-29-(3,4,5-trihydroxy-6-methyl-tetrahydro-pyran-2-yloxy)-hexapentaconta-2,4,6,8,12,18,20,22,24,26,38,48-dodecaenoic acid (2-hydroxy-5-oxo-cyclopent-1-enyl)-amide.

The invention encompasses pharmaceutical compositions of compounds of Formula I comprising, a therapeutically effective amount of the

compound of Formula I or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier. In particular, the invention is directed to pharmaceutical compositions of compound 2(a) comprising, a therapeutically effective amount of the compound 2(a) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The present invention is also directed to methods for producing the compound 2(a) and related compounds, including compounds of Formula I and Formula II as defined herein. Such methods comprise the steps of cultivating cells derived from a Streptomyces aizunensis strain, incubating said cultured cells aerobically in a growth medium for such time as is required for production of the desired compound, extracting said medium with a solvent such as methanol or ethanol and purifying the compound from the crude extract. The Streptomyces aizunensis strain which may be used in the methods of the invention may be NRRL B-11277 or a mutant thereof. A preferred strain of *Streptomyces aizunensis* useful in the methods of the invention is a mutant strain identified as [C03]023 (deposit accession number IDAC 070803-1); a most preferred strain of Streptomyces aizunensis useful in the methods of the invention is a mutant strain identified as [C03U03]023 (deposit accession number IDAC 231203-02). The invention also encompasses the Streptomyces aizunensis strains identified by deposit accession numbers IDAC 070803-1 and IDAC 231203-02.

The invention also includes methods of inhibiting fungal cell growth, which comprise contacting a fungal cell with a compound of Formula I, a compound of Formula II or compound 2(a), or a pharmaceutically acceptable salt thereof. In addition, the invention encompasses methods for treating a fungal infection in a mammal, which comprise administering to a mammal suffering from such an infection, a therapeutically effective amount of a compound of Formula I, a compound of Formula II or compound 2(a), or a pharmaceutically acceptable salt thereof. The methods of the invention are particularly useful for treating fungal infections or inhibiting the growth of fungal cells in mammals caused by *Candida albicans*. The invention also encompasses methods for treating or inhibiting other types of fungal infections in a subject, wherein said fungal infections include those caused by *Candida*

sp. such as *C. glabrata*, *C. lusitaniae C. parapsilosis*, *C. krusei*, *C. tropicalis*, *S. cerevisiae*; *Aspergillus sp.* such as *A. fumigatus*, *A. niger*, *A. terreus*, *A. flavus*; *Fusarium spp.*; *Scedosporium spp.*; *Cryptococcus spp.*; *Mucor ssp.*; *Histoplasma spp.*; *Trichosporon spp.*; and *Blaspomyces spp.* Such methods comprise administering to a subject suffering from the fungal infection, a therapeutically effective amount of a compound of Formula I, Formula II or compound 2(a), or a pharmaceutically acceptable salt thereof.

The invention also provides methods of inhibiting cancer cell growth, which comprise contacting said cancer cell with a compound of Formula I, Formula II or compound 2(a), or a pharmaceutically acceptable salt thereof. The invention further encompasses methods for treating cancer in a subject, comprising administering to said subject suffering from said cancer, a therapeutically effective amount of a compound of Formula I, Formula II or compound 2(a) or a pharmaceutically acceptable salt thereof. Examples of cancers that may be treated or inhibited according to the methods of the invention include leukemia, non-small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer.

The present invention also provides the biosynthetic locus from *Streptomyces aizunensis* (NRRL B-11277) which biosynthetic locus is responsible for producing the compound of Formula 2(a). *Streptomyces aizunensis* was not previously reported to produce Compound 2(a). We have now discovered, in the *Streptomyces aizunensis* genome, the gene cluster responsible for the production of the Compound 2(a). Thus the invention provides polynucleotides and polypeptides useful in the production and engineering of compounds of Formula I and Compound 2(a). The invention also provides chemical modifications of compounds of Formula I and Compound 2(a).

In one aspect, the invention relates to the biosynthetic locus for production of a polyketide of Formula I and provides, in one embodiment, an isolated, purified or enriched nucleic acid for production of a polyketide of Formula I comprising a nucleic acid encoding at least one domain of the

polyketide synthase system formed by the polyketide synthases of SEQ ID NOS: 21, 23, 25, 27, 29, 31, 33, 35 and 37.

In a further embodiment, the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 21 and comprises a nucleic acid selected from the group consisting of: a) SEQ ID NO: 22; b) the nucleic acid of residues 169-354 of SEQ ID NO: 22, the nucleic acid of residues 421-1698 of SEQ ID NO: 22, the nucleic acid of residues 1789-3093 of SEQ ID NO: 22, the nucleic acid of residues 3910-4551 of SEQ ID NO: 22, the nucleic acid of residues 4807-4992 of SEQ ID NO: 22, the nucleic acid of residues 5068-6354 of SEQ ID NO: 22, the nucleic acid of residues 6403-7686 of SEQ ID NO: 22, the nucleic acid of residues 8497-9135 of SEQ ID NO: 22, the nucleic acid of residues 9388-9573 of SEQ ID NO: 22, the nucleic acid of residues 9643-10920 of SEQ ID NO: 22, the nucleic acid of residues 10978-12267 of SEQ ID NO: 22, the nucleic acid of residues 12304-12624 of SEQ ID NO: 22, the nucleic acid of residues 13834-14487 of SEQ ID NO: 22, the nucleic acid of residues 14731-14916 of SEQ ID NO: 22, the nucleic acid of residues 15019-16314 of SEQ ID NO: 22, the nucleic acid of residues 16378-17649 of SEQ ID NO: 22, the nucleic acid of residues 18439-19080 of SEQ ID NO: 22, the nucleic acid of residues 19330-19515 of SEQ ID NO: 22, the nucleic acid of residues 19585-20862 of SEQ ID NO: 22, the nucleic acid of residues 20935-22206 of SEQ ID NO: 22, the nucleic acid of residues 23107-23754 of SEQ ID NO: 22, the nucleic acid of residues 24004-24189 of SEQ ID NO: 22; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 23 and comprises a nucleic acid selected from the group consisting of: a) SEQ ID NO: 24; b) the nucleic acid of residues 109-1386 of SEQ ID NO: 24, the nucleic acid of residues 1477-2757 of SEQ ID NO: 24, the nucleic acid of residues 2794-3114 of SEQ ID NO: 24, the nucleic acid of residues 4231-4881 of SEQ ID NO: 24, the nucleic acid of residues 5116-5301 of SEQ ID NO: 24, the nucleic acid of residues 5380-6645 of SEQ ID NO: 24, the nucleic acid of residues 6694-7977 of SEQ ID

NO: 24, the nucleic acid of residues 8878-9519 of SEQ ID NO: 24, the nucleic acid of residues 9772-9957 of SEQ ID NO: 24; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 25 and comprises a nucleic acid selected from the group consisting of: a) SEQ ID NO: 26; b) the nucleic acid of residues 106-1383 of SEQ ID NO: 26, the nucleic acid of residues 1447-2721 of SEQ ID NO: 26, the nucleic acid of residues 2755-3081 of SEQ ID NO: 26, the nucleic acid of residues 4315-4965 of SEQ ID NO: 26, the nucleic acid of residues 5206-5391 of SEQ ID NO: 26, the nucleic acid of residues 5491-6768 of SEQ ID NO: 26, the nucleic acid of residues 6841-8142 of SEQ ID NO: 26, the nucleic acid of residues 8941-9582 of SEQ ID NO: 26, the nucleic acid of residues 9832-10017 of SEQ ID NO: 26, the nucleic acid of residues 10081-11358 of SEQ ID NO: 26, the nucleic acid of residues 11407-12675 of SEQ ID NO: 26, the nucleic acid of residues 13480-14118 of SEQ ID NO: 26, the nucleic acid of residues 14383-14568 of SEQ ID NO: 26, the nucleic acid of residues 14638-15912 of SEQ ID NO: 26, the nucleic acid of residues 15967-17244 of SEQ ID NO: 26, the nucleic acid of residues 17278-17598 of SEQ ID NO: 26, the nucleic acid of residues 18880-19530 of SEQ ID NO: 26, the nucleic acid of residues 19795-19980 of SEQ ID NO: 26; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 27 and comprises a nucleic acid selected from the group consisting of: a) SEQ ID NO: 28; b) the nucleic acid of residues 103-1380 of SEQ ID NO: 28, the nucleic acid of residues 1450-2760 of SEQ ID NO: 28, the nucleic acid of residues 3583-4218 of SEQ ID NO: 28, the nucleic acid of residues 4468-4653 of SEQ ID NO: 28; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 29 and comprises a nucleic acid

selected from the group consisting of: a) SEQ ID NO: 30; b) the nucleic acid of residues 103-1380 of SEQ ID NO: 30, the nucleic acid of residues 1459-2754 of SEQ ID NO: 30, the nucleic acid of residues 3655-4293 of SEQ ID NO: 30, the nucleic acid of residues 4540-4725 of SEQ ID NO: 30, the nucleic acid of residues 4804-6081 of SEQ ID NO: 30, the nucleic acid of residues 6136-7419 of SEQ ID NO: 30, the nucleic acid of residues 7456-7776 of SEQ ID NO: 30, the nucleic acid of residues 8938-9588 of SEQ ID NO: 30, the nucleic acid of residues 9832-10017 of SEQ ID NO: 30, the nucleic acid of residues 11428-12711 of SEQ ID NO: 30, the nucleic acid of residues 12745-13065 of SEQ ID NO: 30, the nucleic acid of residues 14278-14928 of SEQ ID NO: 30, the nucleic acid of residues 15187-15372 of SEQ ID NO: 30; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 31 and comprises a nucleic acid selected from the group consisting of: a) SEQ ID NO: 32; b) the nucleic acid of residues 103-1380 of SEQ ID NO: 32, the nucleic acid of residues 1438-2742 of SEQ ID NO: 32, the nucleic acid of residues 2776-3096 of SEQ ID NO: 32, the nucleic acid of residues 4267-4917 of SEQ ID NO: 32, the nucleic acid of residues 5209-5394 of SEQ ID NO: 32, the nucleic acid of residues 5464-6741 of SEQ ID NO: 32, the nucleic acid of residues 6787-8070 of SEQ ID NO: 32, the nucleic acid of residues 8107-8427 of SEQ ID NO: 32, the nucleic acid of residues 9562-10212 of SEQ ID NO: 32, the nucleic acid of residues 10447-10632 of SEQ ID NO: 32, the nucleic acid of residues 10702-11979 of SEQ ID NO: 32, the nucleic acid of residues 12049-13326 of SEQ ID NO: 32, the nucleic acid of residues 13366-13686 of SEQ ID NO: 32, the nucleic acid of residues 14932-15582 of SEQ ID NO: 32, the nucleic acid of residues 15853-16038 of SEQ ID NO: 32; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 33 and comprises a nucleic acid

selected from the group consisting of: a) SEQ ID NO: 34; b) the nucleic acid of residues 103-1380 of SEQ ID NO: 34, the nucleic acid of residues 1441-2751 of SEQ ID NO: 34, the nucleic acid of residues 3613-4248 of SEQ ID NO: 34, the nucleic acid of residues 4498-4683 of SEQ ID NO: 34, the nucleic acid of residues 4753-6030 of SEQ ID NO: 34, the nucleic acid of residues 6199-7515 of SEQ ID NO: 34, the nucleic acid of residues 8356-8994 of SEQ ID NO: 34, the nucleic acid of residues 9247-9432 of SEQ ID NO: 34; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 35 and comprises a nucleic acid selected from the group consisting of: a) SED ID NO: 36; b) the nucleic acid of residues 118-1395 of SEQ ID NO: 36, the nucleic acid of residues 1507-2823 of SEQ ID NO: 36, the nucleic acid of residues 2860-3180 of SEQ ID NO: 36, the nucleic acid of residues 4366-5016 of SEQ ID NO: 36, the nucleic acid of residues 5251-5436 of SEQ ID NO: 36, the nucleic acid of residues 5503-6780 of SEQ ID NO: 36, the nucleic acid of residues 6841-8154 of SEQ ID NO: 36, the nucleic acid of residues 8191-8511 of SEQ ID NO: 36, the nucleic acid of residues 9562-10638 of SEQ ID NO: 36, the nucleic acid of residues 10651-11301 of SEQ ID NO: 36, the nucleic acid of residues 11536-11721 of SEQ ID NO: 36, the nucleic acid of residues 11794-13071 of SEQ ID NO: 36, the nucleic acid of residues 13117-14409 of SEQ ID NO: 36, the nucleic acid of residues 14443-14763 of SEQ ID NO: 36, the nucleic acid of residues 15898-16548 of SEQ ID NO: 36, the nucleic acid of residues 16789-16974 of SEQ ID NO: 36, the nucleic acid of residues 17056-18333 of SEQ ID NO: 36, the nucleic acid of residues 18391-19671 of SEQ ID NO: 36, the nucleic acid of residues 19714-20034 of SEQ ID NO: 36, the nucleic acid of residues 21184-21834 of SEQ ID NO: 36, the nucleic acid of residues 22087-22272 of SEQ ID NO: 36; c) a nucleic acid having at least 80% identity to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

In another embodiment the nucleic acid encodes one or more domains of the polyketide synthase of SEQ ID NO: 37 and comprises a nucleic acid

selected from the group consisting of: a) SEQ ID NO: 38; b) the nucleic acid of residues 100-1377 of SEQ ID NO: 38, the nucleic acid of residues 1504-2778 of SEQ ID NO: 38, the nucleic acid of residues 2812-3132 of SEQ ID NO: 38, the nucleic acid of residues 4258-4908 of SEQ ID NO: 38, the nucleic acid of residues 5143-5328 of SEQ ID NO: 38, the nucleic acid of residues 5395-6672 of SEQ ID NO: 38, the nucleic acid of residues 6739-8019 of SEQ ID NO: 38, the nucleic acid of residues 8056-8376 of SEQ ID NO: 38, the nucleic acid of residues 10537-10722 of SEQ ID NO: 38, the nucleic acid of residues 10537-10722 of SEQ ID NO: 38, the nucleic acid of residues 10945-11616 of SEQ ID NO: 38; c) a nucleic acid having at least 80% identical to a nucleic acid of a) or b); and d) a nucleic acid complementary to a nucleic acid of a), b) or c).

The invention also provides nucleic acids involved in the biosynthesis of a polyketide of Formula I other than those encoding a domain of the polyketide synthase system. In this embodiment, the invention provides an isolated, purified or enriched nucleic acid selected from the group consisting of: a) a nucleic acid of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76 and 78; b) a nucleic acid encoding a polypeptide of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 71, 73, 75 and 77; c) a nucleic acid having at least 75% identity to a nucleic acid of (a) or (b); and d) a nucleic acid complementary to a nucleic acid of (a), (b) or (c).

The invention further provides a nucleic acid that is hybridizable under stringent conditions to any one of the above nucleic acids and is substitutable for the nucleic acid to which it specifically hybridizes to direct the synthesis of a compound of Formula I. The invention further provides an isolated, purified or enriched nucleic acid comprising the sequence of at least two, preferably three, more preferably five, still more preferably 7 or more of the above nucleic acids.

The invention further provides an expression vector comprising any of the above nucleic acids. The invention further provides a host cell transformed with such an expression vector.

In a further aspect, the invention provides a gene cluster for production of a polyketide of Formula I. In one embodiment, the gene cluster may comprise at least ten, preferably twelve, more preferably fifteen, still more preferably twenty or more of the above nucleic acids. In a further embodiment, the gene cluster may include the nucleic acids of a cosmid selected from the cosmids deposited under IDAC accession nos. 250203-01, 250203-02, 250203-03, 250203-04, and 250203-05. In a further embodiment, the deposited cosmids are inserted into a prokaryotic host for expressing a product. The host may be E. coli, Streptomyces lividans, Streptomyces griseofuscus, Streptomyces ambofaciens, another species of Actinomycetes, or bacteria of the genus Bacillus, Corynebacteria, or Thermoactinomyces. In a further embodiment, the invention provides a nucleic acid which hybridizes under stringent hybridization conditions to the nucleic acids of the deposited cosmids and which encodes at least one protein involved in the biosynthesis of a polyene polyketide. In a further embodiment, the invention provides the isolated gene cluster from Streptomyces aizunensis encoding the biosynthetic pathway for the formation of compound 2(a), wherein said isolated gene cluster is the gene cluster formed by the deposited cosmids.

In another aspect, the invention relates to an isolated polypeptide for production of a polyketide of Formula I, and provides, in one embodiment, an amino acid sequence of a polyketide synthase domain of SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35 and SEQ ID NO: 37. The domain may be a β-ketoacyl synthase (KS) domain, an acyl carrier protein (ACP) domain, an acyl transferase (AT) domain, a ketoreductase (KR) domain, an enoyl reductase (ER) domain, a thioesterase (TE) domain or a dehydratase (DH) domain. In one embodiment, the domain is a KS domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of residues 141 to 566 of SEQ ID NO: 21, residues 1690 to 2118 of SEQ ID NO: 21, residues 3215 to 3640 of SEQ ID NO: 21, residues 5007 to 5438 of SEQ ID NO: 21, residues 6529 to 6954 of SEQ ID NO: 21, residues 37 to 462 of SEQ ID NO: 23, residues 1794 to 2215 of SEQ ID NO: 23, residues 36 to 461 of SEQ ID NO: 25, residues 1831 to 2256 of SEQ ID NO: 25, residues

3361 to 3786 of SEQ ID NO: 25, residues 4880 to 5304 of SEQ ID NO: 25, residues 35 to 460 of SEQ ID NO: 27, residues 35 to 460 of SEQ ID NO: 29, residues 1602 to 2027 of SEQ ID NO: 29, residues 3363 to 3788 of SEQ ID NO: 29, residues 35 to 460 of SEQ ID NO: 31, residues 1822 to 2247 of SEQ ID NO: 31, residues 3568 to 3993 of SEQ ID NO: 31, residues 35 to 460 of SEQ ID NO: 33, residues 1585 to 2010 of SEQ ID NO: 33, residues 40 to 465 of SEQ ID NO: 35, residues 1835 to 2260 of SEQ ID NO: 35, residues 3932 to 4357 of SEQ ID NO: 35, residues 5686 to 6111 of SEQ ID NO: 35, residues 34 to 459 of SEQ ID NO: 37, residues 1799 to 2224 of SEQ ID NO: 37; and amino acid sequence having at least 75% identity to any one of the above amino acid residues.

In another embodiment, the domain is an ACP domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of: residues 57 to 118 of SEQ ID NO: 21, residues 1603 to 1664 of SEQ ID NO: 21, residues 3130 to 3191 of SEQ ID NO: 21, residues 4911 to 4972 of SEQ ID NO: 21, residues 6444 to 6505 of SEQ ID NO: 21, residues 8002 to 8063 of SEQ ID NO: 21, residues 1706 to 1767 of SEQ ID NO: 23, residues 3258 to 3319 of SEQ ID NO: 23, residues 1736 to 1797 of SEQ ID NO: 25, residues 3278 to 3339 of SEQ ID NO: 25, residues 4795 to 4856 of SEQ ID NO: 25, residues 6599 to 6660 of SEQ ID NO: 25, residues 1490 to 1551 of SEQ ID NO: 27, residues 1514 to 1575 of SEQ ID NO: 29, residues 3278 to 3339 of SEQ ID NO: 29, residues 5060 to 5124 of SEQ ID NO: 29, residues 1737 to 1798 of SEQ ID NO: 31, residues 3483 to 3544 of SEQ ID NO: 31, residues 5285 to 5346 of SEQ ID NO: 31, residues 1500 to 1561 of SEQ ID NO: 33, residues 3083 to 3144 of SEQ ID NO: 33, residues 1751 to 1812 of SEQ ID NO: 35, residues 3846 to 3907 of SEQ ID NO: 35, residues 5597 to 5658 of SEQ ID NO: 35, residues 7363 to 7424 of SEQ ID NO: 35, residues 1715 to 1776 of SEQ ID NO: 37, residues 3513 to 3574 of SEQ ID NO: 37, and an amino acid sequence having at least 75% identity to any one of the above amino acid residues.

In another embodiment, the domain is a AT domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of: residues 597 to 1013 of SEQ ID NO: 21, residues 2135 to 2562 of SEQ ID

NO: 21, residues 3660 to 4089 of SEQ ID NO: 21, residues 5460 to 5883 of SEQ ID NO: 21, residues 6979 to 7402 of SEQ ID NO: 21, residues 493 to 919 of SEQ ID NO: 23, residues 2232 to 2659 of SEQ ID NO: 23, residues 483 to 907 of SEQ ID NO: 25, residues 2281 to 2714 of SEQ ID NO: 25, residues 3803 to 4225 of SEQ ID NO: 25, residues 5323 to 5748 of SEQ ID NO: 25, residues 484 to 920 of SEQ ID NO: 27, residues 487 to 918 of SEQ ID NO: 29, residues 2046 to 2473 of SEQ ID NO: 29, residues 3810 to 4237 of SEQ ID NO: 29, residues 480 to 914 of SEQ ID NO: 31, residues 2263 to 2690 of SEQ ID NO: 31, residues 4017 to 4442 of SEQ ID NO: 31, residues 481 to 917 of SEQ ID NO: 33, residues 2067 to 2505 of SEQ ID NO: 33, residues 503 to 941 of SEQ ID NO: 35, residues 2281 to 2718 of SEQ ID NO: 35, residues 4373 to 4803 of SEQ ID NO: 35, residues 6131 to 6557 of SEQ ID NO: 35, residues 502 to 926 of SEQ ID NO: 37, residues 2247 to 2673 of SEQ ID NO: 37; and an amino acid sequence having at least 75% identity to any one of the above amino acid residues.

In another embodiment, the domain is a KR domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of: residues 1304 to 1517 of SEQ ID NO: 21, residues 2833 to 3045 of SEQ ID NO: 21, residues 4612 to 4829 of SEQ ID NO: 21, residues 6147 to 6360 of SEQ ID NO: 21, residues 7703 to 7918 of SEQ ID NO: 21, residues 1411 to 1627 of SEQ ID NO: 23, residues 2960 to 3173 of SEQ ID NO: 23, residues 1439 to 1655 of SEQ ID NO: 25, residues 2981 to 3194 of SEQ ID NO: 25, residues 4494 to 4706 of SEQ ID NO: 25, residues 6294 to 6510 of SEQ ID NO: 25, residues 1195 to 1406 of SEQ ID NO: 27, residues 1219 to 1431 of SEQ ID NO: 29, residues 2980 to 3196 of SEQ ID NO: 29, residues 4760 to 4976 of SEQ ID NO: 29, residues 1423 to 1639 of SEQ ID NO: 31, residues 3188 to 3404 of SEQ ID NO: 31, residues 4978 to 5194 of SEQ ID NO: 31, residues 1205 to 1416 of SEQ ID NO: 33, residues 2786 to 2998 of SEQ ID NO: 33, residues 1456 to 1672 of SEQ ID NO: 35, residues 3551 to 3767 of SEQ ID NO: 35, residues 5300 to 5516 of SEQ ID NO: 35, residues 7062 to 7288 of SEQ ID NO: 35, residues 1420 to 1636 of SEQ ID NO: 37, residues 3203 to 3419 of SEQ ID NO: 37; and an amino acid sequence having at least 75% identity to any one of the above amino acid residues.

In another embodiment, the domain is a DH domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of: residues 4102 to 4208 of SEQ ID NO: 21, residues 932 to 1038 of SEQ ID NO: 23, residues 919 to 1027 of SEQ ID NO: 25, residues 5761 to 5866 of SEQ ID NO: 25, residues 2486 to 2592 of SEQ ID NO: 29, residues 4249-4355 of SEQ ID NO: 29 residues 926 to 1032 of SEQ ID NO: 31, residues 2703 to 2809 of SEQ ID NO: 31, residues 4456 to 4562 of SEQ ID NO: 31, residues 954 to 1060 of SEQ ID NO: 35, residues 2731 to 2837 of SEQ ID NO: 35, residues 4815 to 4921 of SEQ ID NO: 35, residues 6572 to 6678 of SEQ ID NO: 35, residues 938 to 1044 of SEQ ID NO: 37; residues 2686 to 2792 of SEQ ID NO: 37; and an amino acid sequence having at least 75% identity to any one of the above amino acid residues.

In another embodiment, the domain is an ER domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of: residues 3188 to 3546 of SEQ ID NO: 35 and any amino acid sequence having at least 75% identity to residues 3188 to 3546 of SEQ ID NO: 35.

In another embodiment, the domain is an TE domain and the amino acid comprises a sequence selected from the group consisting of the amino acid of: residues 3649 to 3872 of SEQ ID NO: 37, and any amino acid sequence having at least 75% identity to residues 3649 to 3872 of SEQ ID NO: 37.

In another embodiment, the invention provides a polypeptide involved in the biosynthesis of a polyketide of Formula I other than a polypeptide encoding a domain of the polyketide synthase system of the invention. In this embodiment, the invention provides an isolated polypeptide for the production of a polyketide of Formula I selected from the group consisting of: a) SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75 and 77; and b) a polypeptide which is at least 75% identical to SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75 and 77.

In another aspect, the invention provides a method of making a polypeptide having a sequence selected from the group consisting of SEQ ID

NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75 and 77 comprising the steps of: (a) introducing a nucleic acid encoding said polypeptide, said nucleic acid being operably linked to a promoter, into a bacterial host cell; and (b) culturing the transformed host cell under conditions which result in the expression of the polypeptide.

In another aspect the invention is drawn to a method for increasing the yield of the polyketides of the invention using the deposited cosmids of the nucleic acids described above, said method comprising the steps of transforming a prokaryotic host with cosmids or nucleic acids and culturing the transformed prokaryotic host under conditions which result in the expression of the polyketide.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1: Diagram of the biosynthetic locus for compound 2(a) from *Streptomyces aizunensis*. Also indicated are the positions of cosmids depositedunder IIDAC accession numbers 250203-01, 250203-02, 250203-03, 250203-04 and 250203-05, which span the locus of compound 2(a).

Figure 2a-d: Multiple amino acid alignment comparing the 26 KS domains present in the polyketide synthase (PKS) for compound 2(a) (ORFs 10 to 18). The boundaries and key residues (highlighted in black) of the KS domains were chosen as described by Kakavas *et al.*, *J. Bacteriol*.179, 7515-7522 (1997).

Figure 3a-d: Multiple amino acid alignment comparing the 26 AT domains present in the compound 2(a) PKS (ORFs 10 to 18). The boundaries and key residues (highlighted in black) of the AT domains were chosen as described by Kakavas *et al.*, *supra*.

Figure 4: Multiple amino acid alignment comparing the 15 DH domains present in the compound 2(a) PKS (ORFs 10, 11, 12, 14, 15, 17 and 18). The boundaries and key residues (highlighted in black) of the DH domains were chosen as described by Kakavas *et al. supra*. The inactive DH domains are highlighted.

Figure 5: Amino acid alignment comparing the ER domain present in the compound 2(a) PKS (ORF 17) with the ER domains from modules 5 and 15 in the nystatin biosynthetic locus as described by Brautaset *et al.*, *Chem. Biol.*, 7, 395-403 (2000). The boundaries and key residues (highlighted in black) of the ER domain were chosen as described by Kakavas *et al. supra*.

Figure 6a and 6b: Multiple amino acid alignment comparing the 26 KR domains present in the compound 2(a) PKS (ORFs 10 to 18). The boundaries and key residues (highlighted in black) of the KR domains were chosen as described by Kakavas *et al. supra*, and Fisher *et al. Structure Fold Des.* 8, 339-347 (2000). The inactive KR domain found in ORF 13/module 12 is highlighted.

Figure 7: Multiple amino acid alignment comparing the 27 ACP domains present in the compound 2(a) PKS (ORFs 10 to 18). The boundaries and key serine residues (highlighted in black) of the ACP domains were chosen as described by Kakavas *et al. supra*.

Figure 8: Amino acid alignment comparing the TE domain present in the compound 2(a) PKS (ORF 18) with the TE domain from module 7 in the nystatin biosynthetic locus as described by Brautaset *et al. supra*. The boundaries and key residues (highlighted in black) of the ER domain were chosen as described by Kakavas *et al. supra*.

In each of the clustal alignments (Figs 2 to 8) a line below the alignment is used to mark strongly conserved positions. In addition, three characters, namely * (asterisk), : (colon) and . (period) are used, wherein "*" indicates positions which have a single, fully conserved residue; ":" indicates that one of the following strong groups is fully conserved: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, and FYW; and "." indicates that one of the following weaker groups is fully conserved: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, and HFY.

Figure 9: Phylogenetic analysis of the 26 AT domains present in the compound 2(a) PKS (ORFs 10 to 18) along with a malonyl-specific and a methylmalonyl-specific AT domain present in modules 3 and 11 respectively of the nystatin PKS system as described by Brautaset *et al. supra*.

Figure 10a to 10c: biosynthetic pathway for compound 2(a) polyketide core structure.

Figure 11a and 11b: biosynthetic pathways for compound 2(a) aminohydroxy-cyclopentenone (a) and deoxysugar (b) components.

Figures 12a to 12f: outline of strategies for the genetic modification of locus for compound 2(a) providing for variants that functionally modify compound 2(a).

Figure 13: shows the data for the compound of compound 2(a) obtained by electrospray mass spectrometry.

Figure 14: shows the data for the compound of compound 2(a) obtained by UV λ_{max} .

Figure 15: shows the data obtained for the compound of compound 2(a) by NMR at 500 MHz dissolved in d₃-MeOH including proton 15 A, carbon 15 B, and multidimensional pulse sequences gDQCOSY, gHSQC, gHMBC, and TOCSY 15 C, 15D, 15E and 15F, respectively.

Figure 16: is a plot of the data from a study to evaluate the antifungal activity of compound 2(a) against *Candida albicans* in a mouse model as described in Example 5. Figure 16 depicts the percent survival versus days post-inoculation with compound 2(a) (3 mg/kg), compound 2(a) (1 mg/kg), Fungizone (0.25 mg/kg) and Fungizone (0.50 mg/kg).

Figure 17: proton-NMR (Figure 17A) and carbon-13 NMR (Figure 17B) spectral assignments for Compound 2(a) as discussed in Example 3.

DETAILED DESCRIPTION OF THE INVENTION

The present invention encompasses compounds of Formula I, and pharmaceutically acceptable salts thereof:

A
$$W^1$$
 W^2 W^3 CH_3 Y^4

Formula I

wherein,

A is selected from the group consisting of -NR¹R², -N=CR¹R²,

R¹, R², R³ and R⁴ are each independently selected from the group consisting of H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, C₂₋₆ heterocycloalkyl, aryl, heteroaryl and amino acid, wherein said alkyl, alkenyl, aryl and heteroaryl are optionally substituted with a group selected from halogen, OH, NO₂, NH₂ or aryl, said aryl being optionally further substituted with one or more groups independently selected from halogen, OH, NO₂ or NH₂;

wherein R¹⁰ is oxo or OR¹¹;

wherein R¹¹ is H or a heterocycloalkyl, the heterocycloalkyl being optionally substituted with 1-4 substituents selected from OX, C₁₋₃ alkyl and -O-C(O)R¹, wherein X is H or, when there are at least two neighboring substituent groups that are OX, then the X can be a bond such that the two neighboring oxygen groups form a five-membered acetal ring of the formula:

; wherein R⁵ and R⁶ are each

independently selected from the group consisting of H, C_{1-6} alkyl, and C_{2-7} alkenyl;

D is selected from:

wherein

 R^{12} is selected from H, C_{1-6} alkyl optionally substituted with 1 to 2 phenyl groups, wherein the phenyl group is optionally substituted with C_{1-6} alkyl and halo;

R^{12a} and R^{12a} are each indepedently selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, C₂₋₆ heterocycloalkyl, aryl, heteroaryl and amino acid, wherein said alkyl, alkenyl, aryl and heteroaryl are optionally substituted with a group selected from halogen, OH, NO₂, NH₂ or aryl, said aryl being optionally further substituted with one or more groups independently selected from halogen, OH, NO₂ or NH₂;

$$W^{1}$$
 is $OX^{1} OX^{2}$; $OX^{3} OX^{4} OX^{5} OX^{6}$; $OX^{7} OX^{8} OX^{9}$; $OX^{7} OX^{8} OX^{9}$

$$V^5$$
 is CH_3 :

 X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{12} and X^{13} are each independently selected from H, -C(O)-R⁷ and a bond such that when any of two neighboring X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{12} and X^{13} is a bond then the two neighboring oxygen atoms and their attached carbon atoms together form a six-membered acetal ring of the formula:

 R^5 , R^6 and R^7 are each independently selected from H, C_{1-6} alkyl, C_{2-7} alkenyl;

Y¹, Y², Y³, Y⁴, Y⁵, Y⁶, Y⁷, Y⁹, Y¹⁰, Y¹¹, Y¹², Y¹³ and Y¹⁵ are each independently selected from the group consisting of ethene-1,2-diyl,

ethane-1,2-diyl and 0, wherein said ethene-1,2-diyl and ethane-1,2-diyl groups are optionally substituted with a methyl group;

Z is selected from OH, NHR⁸, and when the dotted line is a bond then Z is oxo, or NR⁹;

 R^8 is selected from H, C_{1-6} alkyl, C_{2-6} alkenyl; R^9 is C_{1-6} alkyl optionally substituted with aryl.

In a first embodiment the invention provides compounds of Formula I wherein Z is oxo; and all other groups are as previously defined; or a pharmaceutically acceptable salt thereof.

Within this first embodiment Z is oxo, A is -NR¹R²; and all other groups are as previously defined; or a pharmaceutically acceptable salt thereof.

Further within this embodiment Z is oxo, A is - NR¹R²; and D is

; and all other groups are as previously defined; or a pharmaceutically acceptable salt thereof.

Within the first embodiment the invention provides compounds of Formula I wherein Z is oxo and A is

-NH R⁴; and all other groups are as previously defined; or a pharmaceutically acceptable salt thereof.

Further within this embodiment Z is oxo and A is -NH R⁴ and D is

; and all other groups are as previously defined; or a pharmaceutically acceptable salt thereof.

In a second embodiment the invention provides compounds of Formula I wherein B is

wherein R¹⁰ is oxo or OR¹¹; and all other groups are as previously defined; or a pharmaceutically acceptable salt thereof.

Within this second embodiment R^{10} is OR^{11} , wherein R^{11} is a heterocycloalkyl, the heterocycloalkyl being optionally substituted with 1-4 substituents selected from OX, C_{1-3} alkyl and -O-C(O) R^{1} , wherein X is H or,

when there are at least two neighboring substituent groups that are OX, then the X can be a bond such that the two neighboring oxygen groups form a fivemembered acetal ring of the formula:

Within this embodiment R¹¹ is a heterocycloalkyl, the heterocycloalkyl being optionally substituted with 1-4 substituents selected from OX, C₁₋₃ alkyl and -O-C(O)R¹, wherein X is H or, when there are at least two neighboring substituent groups that are OX, then the X can be a bond such that the two neighboring oxygen groups form a five- membered acetal ring of the formula:

Further within this embodiment the invention provides compounds of Formula I, wherein R¹¹ is a heterocycloalkyl, the heterocycloalkyl being optionally substituted with 1-4 substituents selected from OX, C₁₋₃ alkyl and -O-C(O)R¹, wherein X is H or, when there are at least two neighboring substituent groups that are OX, then the X can be a bond such that the two neighboring oxygen groups form a five-membered acetal ring of the formula:

Preferred compounds of the invention comprise compounds of Formula

11:

wherein A^1 is $-NH_2$, $-N=CH-R^{13}$, amino acid or $-NH-R^{14}$, wherein R^{13} is hydrogen or phenyl and R^{14} is selected from the group consisting of isopropyl, 1-(4-nitrophenyl)methyl, cyclohexyl, and wherein said amino acid is attached via its nitrogen atom;

wherein R¹⁵ is selected from the group consisting of methyl, isopropyl, phenyl, 4-nitrophenyl, 1-amino-1-(4-hydroxyphenyl)methyl, 1-amino-2-(4-hydroxyphenyl)ethyl, 1-amino-2-methylpropyl, 2-pyrrolidinyl and 1-amino-2-hydroxyethyl;

Y²⁰ is selected from the group consisting of ethene-1,2-diyl and

Z¹ is selected from the group consisting of:

R²⁰ is selected from the group consisting of hydrogen and

 Y^{30} is ethene-1,2-diyl or ethane-1,2-diyl; and D^1 is hydroxy, methoxy or

and pharmaceutically acceptable salts thereof.

The present invention includes pharmaceutical compositions of the compounds of Formula II, said compositions comprising a therapeutically effective amount of the compound of Formula II or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

Particularly preferred compounds of the present invention include those of Formula II

wherein A^1 is amino (-NH₂), and Y^{20} , Z^1 , R^{20} , Y^{30} and D^1 are as defined in Table A below.

Table A. Compounds of Formula II wherein A¹ is NH₂

Compound	Y ²⁰	Z ¹	R ²⁰	A ₃₀	D ¹
2(a)	ethene-1,2- diyl	*	3,4,5- trihydroxy-6- methyl- tetrahydro- pyran-2-yl	ethane-1,2- diyl	OH OH

2(b)	*	"	"	u u	žš.
2(c)	ethene-1,2- diyl	OH CH	33	66	CC .
2(d)	и	OCH O	"	"	66
2(e)	u	N-CH ₂ -	11		
2(f)	"	NH	cc .	EE	εε
2(g)	77	Å,	CC .	66	hydroxy
2(h)	tt	"	íí.	ii.	methoxy
2(i)	cc	ti	hydrogen	· .	HN OH
2(j)	££	"	s:	ű	hydroxy
2(k)	u	tt	3,4,5- trihydroxy-6- methyl- tetrahydro- pyran-2-yl	ethene-1,2- diyl	HN OH
2(l)	44	CH.		et.	

Additional preferred compounds of the invention include compounds of Formula II

as set forth in Tables B and C below,

wherein Y²⁰ is ethene-1,2-diyl;

$$Z^1$$
 is X^2 is X^2 X^3 X^4 X^4 X^4 X^4 X^5 X^5 X^5 X^5 X^5 X^5 X^6 X^6 X^6 X^6

Y³⁰ is ethane-1,2-diyl; and

$$\mathbb{D}^1$$
 is \mathbb{C}^{OH} ; and

wherein A¹ is -N=CH-R¹³ (Table B); -NH-R¹⁴ (Table C).

Table B. Compounds of Formula II wherein A^1 is $-N=CH-R^{13}$ and Y^{20} , Z^1 , R^{20} , Y^{30} and D^1 are as defined above.

Compound	R ¹³
2(m)	CH ₃
2(n)	phenyl

Table C. Compounds of Formula II wherein A^1 is -NH- R^{14} and Y^{20} , Z^1 , R^{20} , Y^{30} and D^1 are as defined above.

Compound	R ¹⁴	R ¹⁵ ,
2(0)	NH NH₂	NA [*]
2(p)	isopropyl	NA
2(q)	1-(4-nitrophenyl)methyl	NA
2(r)	cyclohexyl	NA
2(s)	H ₁₅	CH₃
2(t)	R ₁₅	isopropyl
2(u)	R ¹⁵	phenyl
2(v)	H ₁₆	4-nitrophenyl
2(w)	R ¹⁵	1-aminoethyl
2(x)		1-amino-1-(4-
	R ¹⁶	hydroxyphenyl)methyl
2(y)		1-amino-2-(4-
	1 → R ¹⁵	hydroxyphenyl)ethyl

		hydroxyphenyl)ethyl
2(z)	H ₁₂	1-amino-2-methylpropyl
2(aa)	H16	2-pyrrolidinyl
2(ab)	P ₁₅	1-amino-2-hydroxyethyl

^{*}NA = not applicable

The compounds of Tables A, B and C are shown below.

Compound 2(a)

Compound 2(b)

Compound 2(c)

Compound 2(e)

Compound 2(f)

Compound 2(g)

Compound 2(h)

Compound 2(i)

Compound 2(j)

Compound 2(k)

Compound 2(I)

Compound 2(m)

Compound 2(n)

Compound 2(o)

Compound 2(p)

Compound 2(q)

Compound 2(r)

Compound 2(s)

Compound 2(t)

Compound 2(u)

Compound 2(v)

Compound 2(w)

Compound 2(x)

Compound 2(y)

Compound 2(z)

The following bivalent moieties are referred to herein by the nomenclature as indicated below:

1-hydroxymethylene-1,1-diyl

1,3-dioxacyclopentane-2,2-diyl

(2-propylamino)methylene-1,1-diyl

1-benzyliminomethylene-1,1-diyl

oxirane-2,3-diyl.

The following monovalent moieties are referred to herein by the nomenclature as indicated:

(2-hydroxy-5-oxo-cyclopent-1-enyl)-amino

3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl.

The terms "polyketide" or "polyene polyketide" refer to a class of polyketide compounds defined by Formula I or II. A preferred polyketide of

the invention is the compound 2a, having the systematic name 56-Amino-15,17,33,35,37,41,43,45,47,51,53-undecahydroxy-14,16,30-trimethyl-31-oxo-29-(3,4,5-trihydroxy-6-methyl-tetrahydro-pyran-2-yloxy)-hexapentaconta-2,4,6,8,12,18,20,22,24,26,38,48-dodecaenoic acid (2-hydroxy-5-oxo-cyclopent-1-enyl)-amide. The term further includes compounds of this class that can be used as intermediates in chemical synthesis.

The terms "producer of compounds of Formula I" and "compounds of Formula I -producing organism" refer to a microorganism that carries genetic information necessary to produce a compound of Formula I, whether or not the organism is known to produce a compound of Formula I. The terms "producer of compounds of Formula II" and "compound of Formula IIproducing organism" refer to a microorganism that carries genetic information necessary to produce a compound of Formula II, whether or not the organism is known to produce a compound of Formula II. The terms "producer of Compound 2(a)" and "Compound 2(a)-producing organism" refer to a microorganism that carries genetic information necessary to produce Compound 2(a), whether or not the organism is known to produce Compound 2(a). The term "polyketide producer" refer to a microorganism that carries genetic information necessary to produce a polyketide of Formula I or II. The terms apply equally to organisms in which the genetic information to produce the compound of Formula I or II or Compound 2(a) is found in the organism as it exists in its natural environment, and to organisms in which the genetic information is introduced by recombinant techniques. For the sake of particularity, specific organisms contemplated herein include organisms of the family *Micromonosporaceae*, of which preferred genera include Micromonospora, Actinoplanes and Dactylosporangium; the family Streptomycetaceae, of which preferred genera include Streptomyces and Kitasatospora; the family Pseudonocardiaceae, of which preferred genera are Amycolatopsis and Saccharopolyspora; and the family Actinosynnemataceae, of which preferred genera include Saccharothrix and Actinosynnema; however the terms are intended to encompass all organisms containing genetic information necessary to produce a compound of Formula I or II or Compound 2(a). Preferred producers of a compound of formula I or II or Compound 2(a)

include *Streptomyces aizunensis* (NRRL B-11277) and any mutant or improved strain of *Streptomyces aizunensis*, including strain [C03]023 (IDAC accession no. 070803-01) and strain [C03U03]023 (IDAC accession no. 231203-02).

The term "isolated" means that the material is removed from its original environment, *e.g.* the natural environment if it is naturally-occurring. For example, a naturally occurring polynucleotide or polypeptide present in a living organism is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual nucleic acids obtained from a library have been conventionally purified to electrophoretic homogeneity. The purified nucleic acids of the present invention have been purified from the remainder of the genomic DNA in the organism by at least 10⁴ to 10⁶ fold. However, the term "purified" also includes nucleic acids which have been purified from the remainder of the genomic DNA or from other sequences in a library or other environment by at least one order of magnitude, preferably two or three orders of magnitude, and more preferably four or five orders of magnitude.

"Recombinant" means that the nucleic acid is present in the cell with "backbone" nucleic acid, wherein the nucleic acid is not present with "backbone" nucleic acid in its natural environment. "Recombinant" can also be defined to mean that the nucleic acid is adjacent to "backbone" nucleic acid to which it is not adjacent in its natural environment. "Enriched" nucleic acids represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. "Backbone" molecules include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid of interest. Preferably, the enriched nucleic acids

represent 15% or more, more preferably 50% or more, and most preferably 90% or more, of the number of nucleic acid inserts in the population of recombinant backbone molecules.

"Recombinant" polypeptides or proteins refer to polypeptides or proteins produced by recombinant DNA techniques, *i.e.* produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide or protein. "Synthetic" polypeptides or proteins are those prepared by chemical synthesis.

The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as, where applicable, intervening regions (introns) between individual coding segments (exons).

The terms "gene locus, "gene cluster," and "biosynthetic locus" refer to a group of genes or variants thereof involved in the biosynthesis of the polyketide of Formula 2a. Genetic modification of gene locus, gene cluster or biosynthetic locus refers to any genetic recombinant techniques known in the art including mutagenesis, inactivation, or replacement of nucleic acids that can be applied to generate variants of the compounds of Formula 2a. Genetic modification of gene locus, gene cluster or biosynthetic locus refers to any genetic recombinant techniques known in the art including mutagenesis, inactivation, or replacement of nucleic acids that can be applied to generate genetic variants of compounds of Formula I.

A DNA or nucleotide "coding sequence" or "sequence encoding" a particular polypeptide or protein, is a DNA sequence which is transcribed and translated into a polypeptide or protein when placed under the control of appropriate regulatory sequences.

"Oligonucleotide" refers to a nucleic acid, generally of at least 10, preferably 15 and more preferably at least 20 nucleotides, preferably no more than 100 nucleotides, that are hybridizable to a genomic DNA molecule, a cDNA molecule, or an mRNA molecule encoding a gene, mRNA, cDNA or other nucleic acid of interest.

A promoter sequence is "operably linked to" a coding sequence recognized by RNA polymerase which initiates transcription at the promoter and transcribes the coding sequence into mRNA.

"Digestion" of DNA refers to enzymatic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinary skilled artisan. For analytical purposes, typically 1 μg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 μl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 μg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37°C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion, gel electrophoresis may be performed to isolate the desired fragment.

As used herein and as known in the art, the term "identity" is the relationship between two or more polynucleotide sequences, as determined by comparing the sequences. Identity also means the degree of sequence relatedness between polynucleotide sequences, as determined by the match between strings of such sequences. Identity can be readily calculated (see, e.g., Computation Molecular Biology, Lesk, A.M., eds., Oxford University Press, New York (1998), and Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York (1993), both of which are incorporated by reference herein). While there exist a number of methods to measure identity between two polynucleotide sequences, the term is well known to skilled artisans (see, e.g., Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); and Sequence Analysis Primer, Gribskov., M. and Devereux, J., eds., M. Stockton Press, New York (1991)). Methods commonly employed to determine identity between sequences include, for example, those disclosed in Carillo, H., and Lipman, D., SIAM J. Applied Math. (1988) 48:1073. "Substantially identical," as used herein, means there is a very high degree of homology (preferably 100% sequence

identity) between subject polynucleotide sequences. However, polynucleotides having greater than 90%, or 95% sequence identity may be used in the present invention, and thus sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence can be tolerated.

The biosynthetic locus for the production of the Compound 2(a) spans approximately 176,000 base pairs of DNA and encodes 38 proteins. More than 10 kilobases of DNA sequence were analyzed on each side of the locus and these regions were found to contain primary metabolic genes.

The order and relative position of the 38 open reading frames representing the proteins of the biosynthetic locus for Compound 2(a) are provided in Figure 1. Referring to Figure 1, the genes involved in the biosynthesis of Compound 2(a) are contained within two contiguous nucleotide sequences (SEQ ID NOS: 1 and 18). The contiguous nucleotide sequences are arranged such that, as found within the compound 2(a) biosynthetic locus, the 3' end of the 11740 base pairs of DNA of contig 1 (SEQ ID NO: 1) is found adjacent to the 5' end of the 164,051 base pairs of DNA of contig 2 (SEQ ID NO: 18).

The nucleotide sequence and polypeptide sequences relating to the locus of compound 2(a) are provided in the sequence listing filed together with and forming part of this application. SEQ ID NO: 1 is the 11740 contiguous base pairs of contig 1 comprising eight open reading frames, namely ORF 1 to ORF 8 listed in SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15 and 17 respectively. The gene product of ORF 1 (SEQ ID NO: 2) is the 719 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 3 which is drawn from residues 418 to 2577 (sense strand) of contig 1 (SEQ ID NO: 1). The gene product of ORF 2 (SEQ ID NO: 4) is the 253 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 5 which is drawn from residues 3006 to 3767 (sense strand) of contig 1 (SEQ ID NO: 1). The gene product of ORF 3 (SEQ ID NO: 6) is the 956 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 7 which is drawn from residues 4016 to 6886 (sense strand) of contig 1 (SEQ ID NO: 1). The gene product of ORF 4 (SEQ ID NO: 8) is the 201 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 9 which is drawn from residues 7581 to 6976 (antisense strand) of contig 1 (SEQ ID

NO: 1). The gene product of ORF 5 (SEQ ID NO: 10) is the 416 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 11 which is drawn from residues 8848 to 7598 (antisense strand) of contig 1 (SEQ ID NO: 1). The gene product of ORF 6 (SEQ ID NO: 12) is the 186 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 13 which is drawn from residues 9053 to 9613 (sense strand) of contig 1 (SEQ ID NO: 1). The gene product of ORF 7 (SEQ ID NO: 14) is the 163 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 15 which is drawn from residues 9682 to 10173 (sense strand) of contig 1 (SEQ ID NO: 1). The gene product of ORF 8 (SEQ ID NO: 16) is the 514 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 17 which is drawn from residues 10170 to 11714 (sense strand) of contig 1 (SEQ ID NO: 1).

SEQ ID NO: 18 is the 164,051 contiguous base pairs of contig 2 comprising 30 ORFs, namely ORF 9 to ORF 38 listed in SEQ ID NOS: 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76 and 78 respectively. The gene product of ORF 9 (SEQ ID NO: 19) is the 367 amino acids deduced from the nucleic acids sequence of SEQ ID NO: 20 which is drawn from residues 1109 to 6 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 10 (SEQ ID NO: 21) is the 8147 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 22 which is drawn from residues 1375 to 25818 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 11 (SEQ ID NO: 23) is the 3428 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 24 which is drawn from residues 25902 to 36188 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 12 (SEQ ID NO: 25) is the 6751 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 26 which is drawn from residues 36213 to 56468 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 13 (SEQ ID NO: 27) is the 1657 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 28 which is drawn from residues 56600 to 61573 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 14 (SEQ ID NO: 29) is the 5207 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 30 which is drawn from residues 61852 to 77475

(sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 15 (SEQ ID NO: 31) is the 5432 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 32 which is drawn from residues 77606 to 93904 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 16 (SEQ ID NO: 33) is the 3227 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 34 which is drawn from residues 94057 to 103740 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 17 (SEQ ID NO: 35) is the 7510 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 36 which is drawn from residues 103789 to 126321 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 18 (SEQ ID NO: 37) is the 3872 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 38 which is drawn from residues 126389 to 138007 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 19 (SEQ ID NO: 39) is the 338 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 40 which is drawn from residues 139079 to 138063 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 20 (SEQ ID NO: 41) is the 283 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 42 which is drawn from residues 140117 to 139266 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 21 (SEQ ID NO: 43) is the 329 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 44 which is drawn from residues 141103 to 140114 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 22 (SEQ ID NO: 45) is the 317 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 46 which is drawn from residues 141483 to 142436 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 23 (SEQ ID NO: 47) is the 204 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 48 which is drawn from residues 142440 to 143054 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 24 (SEQ ID NO: 49) is the 328 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 50 which is drawn from residues 143133 to 144119 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 25 (SEQ ID NO: 51) is the 328 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 52 which is drawn from residues 144116 to 145102

(sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 26 (SEQ ID NO: 53) is the 214 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 54 which is drawn from residues 145099 to 145743 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 27 (SEQ ID NO: 55) is the 470 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 56 which is drawn from residues 145818 to 147230 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 28 (SEQ ID NO: 57) is the 553 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 58 which is drawn from residues 148967 to 147306 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 29 (SEQ ID NO: 59) is the 231 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 60 which is drawn from residues 149871 to 149176 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 30 (SEQ ID NO: 61) is the 306 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 62 which is drawn from residues 150788 to 149868 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 31 (SEQ ID NO: 63) is the 998 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 64 which is drawn from residues 153765 to 150769 (antisense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 32 (SEQ ID NO: 65) is the 518 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 66 which is drawn from residues 154485 to 156041 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 33 (SEQ ID NO: 67) is the 329 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 68 which is drawn from residues 156075 to 157064 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 34 (SEQ ID NO: 69) is the 521 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 70 which is drawn from residues 157308 to 158873 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 35 (SEQ ID NO: 71) is the 410 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 72 which is drawn from residues 158970 to 160202 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 36 (SEQ ID NO: 73) is the 506 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 74 which is drawn from residues 160199 to 161719

(sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 37 (SEQ ID NO: 75) is the 217 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 76 which is drawn from residues 161924 to 162577 (sense strand) of contig 2 (SEQ ID NO: 18). The gene product of ORF 38 (SEQ ID NO: 77) is the 442 amino acids deduced from the nucleic acid sequence of SEQ ID NO: 78 which is drawn from residues 162723 to 164051 (sense strand) of contig 2 (SEQ ID NO: 18).

Some open reading frames listed herein initiate with non-standard initiation codons (*e.g.* GTG – Valine or CTG - Leucine) rather than the standard initiation codon ATG, namely ORFs 3, 5, 6, 9, 11, 13, 21, 22, 23, 24, 27, 34, 36 and 37 (SEQ ID NOS: 7, 11, 13, 20, 24, 28, 44, 46, 48, 50, 56, 70, 74 and 76). All ORFs are listed with the appropriate M, V or L amino acids at the amino-terminal position to indicate the specificity of the first codon of the ORF. It is expected, however, that in all cases the biosynthesized protein will contain a methionine residue, and more specifically a formylmethionine residue, at the amino terminal position, in keeping with the widely accepted principle that protein synthesis in bacteria initiates with methionine (formylmethionine) even when the encoding gene specifies a non-standard initiation codon (e.g. Stryer, Biochemistry 3rd edition, 1998, W.H. Freeman and Co., New York, pp. 752-754).

Five *E. coli* DH10B deposits, each harbouring a cosmid clone of a partial biosynthetic locus for compound 2(a) from *Streptomyces aizunensis* (NRRL B-11277) and together spanning the full locus were deposited with the International Depositary Authority of Canada, Bureau of Microbiology, Health Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3R2 on February 25, 2003 and were assigned deposit accession numbers IDAC 250203-01, IDAC 250203-02, IDAC 250203-03, IDAC 250203-04 and IDAC 250203-05 respectively. The sequence of the polynucleotides comprised in the deposited strains, as well as the amino acid sequence of any polypeptide encoded thereby are controlling in the event of any conflict with any description of sequences herein.

A natural mutant of *Streptomyces aizunensis* (NRRL B-11277), referred to as strain [C03]023 producing Compound 2(a) and used to produce the

compounds of Formula I and Formula II was deposited with the International Depositary Authority of Canada, Bureau of Microbiology, Health Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3R2 on August 7, 2003 and was assigned deposit accession number IDAC 070803-1.

Another mutant of *Streptomyces aizunensis* (NRRL B-11277), referred to as strain [C03U03]023 producing Compound 2(a) and used to produce the compounds of Formula I and Formula II was deposited with the International Depositary Authority of Canada, Bureau of Microbiology, Health Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3R2 on December 23, 2003 and was assigned deposit accession number IDAC 231203-02.

The deposited cosmids and strains [C03]023 and [C03U03]023 (the deposited stains) have been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure. The deposited strains will be irrevocably and without restriction or condition released to the public upon the issuance of a patent. The deposited strains are provided merely as convenience to those skilled in the art and are not an admission that a deposit is required for enablement. A license may be required to make, use or sell the deposited strains, and compounds derived there from, and no such license is hereby granted.

The order and relative position of the 38 open reading frames representing the proteins of the biosynthetic locus for compound 2(a) (compound 2(a) ORFs) are illustrated schematically in Figure 1. The top line in Figure 1 provides a scale in base pairs. The gray bars depict the two DNA contigs that cover the compound 2(a) locus. The empty arrows represent the 38 open reading frames of the compound 2(a) biosynthetic locus. The black arrows represent the five deposited cosmid clones covering the entire compound 2(a) locus.

One aspect of the present invention is an isolated, purified, or enriched nucleic acid comprising one of the sequences of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, the sequences complementary thereto, or a fragment comprising at least 100, 200, 300, 400, 500, 600, 700, 800 or more consecutive bases of one of the sequences of

SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 or the sequences complementary thereto. The isolated, purified or enriched nucleic acids may comprise DNA, including cDNA, genomic DNA, and synthetic DNA. The DNA may be double stranded or single stranded, and if single stranded may be the coding (sense) or non-coding (anti-sense) strand. Alternatively, the isolated, purified or enriched nucleic acids may comprise RNA.

As discussed in more detail below, the isolated, purified or enriched nucleic acids of one of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 may be used to prepare one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, respectively, or fragments comprising at least 50, 75, 100, 200, 300, 500 or more consecutive amino acids of one of the polypeptides of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 5, 7, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77.

Accordingly, another aspect of the present invention is an isolated, purified or enriched nucleic acid which encodes one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200, 300 or more consecutive amino acids of one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77. The coding sequences of these nucleic acids may be identical to one of the coding sequences of one of the nucleic acids of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 or a fragment thereof, or may be different coding sequences which encode one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50,

75, 100, 150, 200, 300 consecutive amino acids of one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 as a result of the redundancy or degeneracy of the genetic code. The genetic code is well known to those of skill in the art and can be obtained, for example, from Stryer, *Biochemistry*, 3rd edition, W. H. Freeman & Co., New York.

The isolated, purified or enriched nucleic acid which encodes one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 may include, but is not limited to: (1) only the coding sequences of one of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78; (2) the coding sequences of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 and additional coding sequences, such as leader sequences or proprotein; and (3) the coding sequences of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 and non-coding sequences, such as non-coding sequences 5' and/or 3' of the coding sequence. Thus, as used herein, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide that includes only coding sequence for the polypeptide as well as a polynucleotide that includes additional coding and/or non-coding sequence.

The invention relates to polynucleotides based on SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 but having polynucleotide changes that are "silent", for example changes which do not alter the amino acid sequence encoded by the polynucleotides of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78. The invention also relates to polynucleotides which have nucleotide changes which result in amino acid substitutions, additions, deletions, fusions and

truncations of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77. Such nucleotide changes may be introduced using techniques such as site directed mutagenesis, random chemical mutagenesis, exonuclease III deletion, and other recombinant DNA techniques.

The isolated, purified or enriched nucleic acids of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400 or 500 consecutive bases of one of the sequence of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, or the sequences complementary thereto may be used as probes to identify and isolate DNAs encoding the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 respectively. In such procedures, a genomic DNA library is constructed from a sample microorganism or a sample containing a microorganism capable of producing a polyketide. The genomic DNA library is then contacted with a probe comprising a coding sequence or a fragment of the coding sequence, encoding one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, or a fragment thereof under conditions which permit the probe to specifically hybridize to sequences complementary thereto. In a preferred embodiment, the probe is an oligonucleotide of about 10 to about 30 nucleotides in length designed based on a nucleic acid of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76 or 78. Genomic DNA clones which hybridize to the probe are then detected and isolated. Procedures for preparing and identifying DNA clones of interest are disclosed in Ausubel et al., Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997; and Sambrook et al., Molecular Cloning: A Laboratory

Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989. In another embodiment, the probe is a restriction fragment or a PCR amplified nucleic acid derived from SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78.

The isolated, purified or enriched nucleic acids of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400 or 500 consecutive bases of one of the sequences of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, or the sequences complementary thereto may be used as probes to identify and isolate related nucleic acids. In some embodiments, the related nucleic acids may be genomic DNAs (or cDNAs) from potential polyketide producers. In such procedures, a nucleic acid sample containing nucleic acids from a potential polyketide producer is contacted with the probe under conditions that permit the probe to specifically hybridize to related sequences. The nucleic acid sample may be a genomic DNA (or cDNA) library from the potential polyketide-producer. Hybridization of the probe to nucleic acids is then detected using any of the methods described above.

Hybridization may be carried out under conditions of low stringency, moderate stringency or high stringency. As an example of nucleic acid hybridization, a polymer membrane containing immobilized denatured nucleic acids is first prehybridized for 30 minutes at 45 °C in a solution consisting of 0.9 M NaCl, 50 mM NaH₂PO₄, pH 7.0, 5.0 mM Na₂EDTA, 0.5% SDS, 10X Denhardt's, and 0.5 mg/ml polyriboadenylic acid. Approximately 2 x 10⁷ cpm (specific activity 4-9 x 10⁸ cpm/ug) of ³²P end-labeled oligonucleotide probe are then added to the solution. After 12-16 hours of incubation, the membrane is washed for 30 minutes at room temperature in 1X SET (150 mM NaCl, 20 mM Tris hydrochloride, pH 7.8, 1 mM Na₂EDTA) containing 0.5% SDS, followed by a 30 minute wash in fresh 1X SET at Tm-10°C for the

oligonucleotide probe where Tm is the melting temperature. The membrane is then exposed to autoradiographic film for detection of hybridization signals.

By varying the stringency of the hybridization conditions used to identify nucleic acids, such as genomic DNAs or cDNAs, which hybridize to the detectable probe, nucleic acids having different levels of homology to the probe can be identified and isolated. Stringency may be varied by conducting the hybridization at varying temperatures below the melting temperatures of the probes. The melting temperature of the probe may be calculated using the following formulas:

For oligonucleotide probes between 14 and 70 nucleotides in length the melting temperature (Tm) in degrees Celcius may be calculated using the formula: Tm=81.5+16.6(log [Na+]) + 0.41(fraction G+C)-(600/N) where N is the length of the oligonucleotide.

If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation Tm=81.5+16.6(log [Na +]) + 0.41(fraction G + C)-(0.63% formamide)-(600/N) where N is the length of the probe.

Prehybridization may be carried out in 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 0.1 mg/ml denatured fragmented salmon sperm DNA or 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 0.1 mg/ml denatured fragmented salmon sperm DNA, 50% formamide. The composition of the SSC and Denhardt's solutions are listed in Sambrook et al., *supra*.

Hybridization is conducted by adding the detectable probe to the hybridization solutions listed above. Where the probe comprises double stranded DNA, it is denatured by incubating at elevated temperatures and quickly cooling before addition to the hybridization solution. It may also be desirable to similarly denature single stranded probes to eliminate or diminish formation of secondary structures or oligomerization. The filter is contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200 nucleotides in length, the hybridization may be carried out at 15-25 °C below the Tm. For shorter probes, such as oligonucleotide probes, the hybridization

may be conducted at 5-10 °C below the Tm. Preferably, the hybridization is conducted in 6X SSC, for shorter probes. Preferably, the hybridization is conducted in 50% formamide containing solutions, for longer probes. All the foregoing hybridizations would be considered to be examples of hybridization performed under conditions of high stringency.

Following hybridization, the filter is washed for at least 15 minutes in 2X SSC, 0.1% SDS at room temperature or higher, depending on the desired stringency. The filter is then washed with 0.1X SSC, 0.5% SDS at room temperature (again) for 30 minutes to 1 hour. Nucleic acids which have hybridized to the probe are identified by conventional autoradiography and non-radioactive detection methods.

The above procedure may be modified to identify nucleic acids having decreasing levels of homology to the probe sequence. For example, to obtain nucleic acids of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5 °C from 68 °C to 42 °C in a hybridization buffer having a Na+ concentration of approximately 1M. Following hybridization, the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate stringency" conditions above 50°C and "low stringency" conditions below 50°C. A specific example of "moderate stringency" hybridization conditions is when the above hybridization conditions is when the above hybridization conducted at 45°C.

Alternatively, the hybridization may be carried out in buffers, such as 6X SSC, containing formamide at a temperature of 42 °C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from 50% to 0% to identify clones having decreasing levels of homology to the probe. Following hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 50 °C. These conditions are considered to be "moderate stringency" conditions above 25% formamide and "low stringency" conditions below 25% formamide. A specific example of "moderate stringency" hybridization conditions is when the above hybridization is conducted at 30% formamide. A specific example of "low stringency"

hybridization conditions is when the above hybridization is conducted at 10% formamide. Nucleic acids which have hybridized to the probe are identified by conventional autoradiography and non-radioactive detection methods.

The preceding methods may be used to isolate nucleic acids having at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% sequence identity to a nucleic acid sequence selected from the group consisting of the sequences of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases thereof, and the sequences complementary thereto. The isolated nucleic acid may have a coding sequence that is a naturally occurring allelic variant of one of the coding sequences described herein. Such allelic variant may have a substitution, deletion or addition of one or more nucleotides when compared to the nucleic acids of SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, or the sequences complementary thereto.

Additionally, the above procedures may be used to isolate nucleic acids which encode polypeptides having at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% identity to a polypeptide having the sequence of one of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200, 300 consecutive amino acids thereof as determined using the BLASTP version 2.2.2 algorithm with default parameters.

Another aspect of the present invention is an isolated or purified polypeptide comprising the sequence of one of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof. As discussed herein, such polypeptides may be obtained by inserting a nucleic acid encoding the polypeptide into a vector such that the coding sequence is operably linked to a sequence capable of driving the expression of the

encoded polypeptide in a suitable host cell. For example, the expression vector may comprise a promoter, a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for modulating expression levels, an origin of replication and a selectable marker.

Promoters suitable for expressing the polypeptide or fragment thereof in bacteria include the *E.coli lac* or *trp* promoters, the lacl promoter, the lacZ promoter, the T3 promoter, the T7 promoter, the gpt promoter, the lambda P_R promoter, the lambda P_L promoter, promoters from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), and the acid phosphatase promoter. Fungal promoters include the α factor promoter. Eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, heat shock promoters, the early and late SV40 promoter, LTRs from retroviruses, and the mouse metallothionein-I promoter. Other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses may also be used.

Mammalian expression vectors may also comprise an origin of replication, any necessary ribosome binding sites, a polyadenylation site, splice donors and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. In some embodiments, DNA sequences derived from the SV40 splice and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Vectors for expressing the polypeptide or fragment thereof in eukaryotic cells may also contain enhancers to increase expression levels. Enhancers are cis-acting elements of DNA, usually from about 10 to about 300 bp in length that act on a promoter to increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and the adenovirus enhancers.

In addition, the expression vectors preferably contain one or more selectable marker genes to permit selection of host cells containing the vector. Examples of selectable markers that may be used include genes encoding dihydrofolate reductase or genes conferring neomycin resistance for

eukaryotic cell culture, genes conferring tetracycline or ampicillin resistance in *E. coli*, and the *S. cerevisiae* TRP1 gene.

In some embodiments, the nucleic acid encoding one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptides or fragments thereof. Optionally, the nucleic acid can encode a fusion polypeptide in which one of the polypeptide of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof is fused to heterologous peptides or polypeptides, such as N-terminal identification peptides which impart desired characteristics such as increased stability or simplified purification or detection.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is ligated to the desired position in the vector following digestion of the insert and the vector with appropriate restriction endonucleases. Alternatively, appropriate restriction enzyme sites can be engineered into a DNA sequence by PCR. A variety of cloning techniques are disclosed in Ausbel *et al.* Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook *et al.*, Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbour Laboratory Press, 1989. Such procedures and others are deemed to be within the scope of those skilled in the art.

The vector may be, for example, in the form of a plasmid, a viral particle, or a phage. Other vectors include derivatives of chromosomal, nonchromosomal and synthetic DNA sequences, viruses, bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. A variety of cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook *et al.*,

Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989).

Particular bacterial vectors which may be used include the commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017), pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden), pGEM1 (Promega Biotec, Madison, WI, USA) pQE70, pQE60, pQE-9 (Qiagen), pD10, phiX174, pBluescript™ II KS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene), ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pKK232-8 and pCM7. Particular eukaryotic vectors include pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, and pSVL (Pharmacia). However, any other vector may be used as long as it is replicable and stable in the host cell.

The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells or eukaryotic cells. As representative examples of appropriate hosts, there may be mentioned: bacteria cells, such as *E. coli*, *Streptomyces lividans*, *Streptomyces griseofuscus*, *Streptomyces ambofaciens*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, *Bacillus*, and *Staphylococcus*, fungal cells, such as yeast, insect cells such as *Drosophila S2* and *Spodoptera Sf9*, animal cells such as CHO, COS or Bowes melanoma, and adenoviruses. The selection of an appropriate host is within the abilities of those skilled in the art.

The vector may be introduced into the host cells using any of a variety of techniques, including electroporation transformation, transfection, transduction, viral infection, gene guns, or Ti-mediated gene transfer. Where appropriate, the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g., temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment thereof can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts (described by Gluzman, Cell, 23:175(1981)), and other cell lines capable of expressing proteins from a compatible vector, such as the C127, 3T3, CHO, HeLa and BHK cell lines. The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Polypeptides of the invention may or may not also include an initial methionine amino acid residue.

Alternatively, the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof can be synthetically produced by conventional peptide synthesizers. In other embodiments, fragments or portions of the polynucleotides may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides.

Cell-free translation systems can also be employed to produce one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof using mRNAs transcribed from a DNA construct comprising a promoter operably linked to a nucleic acid encoding the polypeptide or fragment thereof. In some embodiments, the DNA construct may be linearized prior to conducting an *in vitro* transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.

The present invention also relates to variants of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof. The term "variant" includes derivatives or analogs of these polypeptides. In particular, the variants may differ in amino acid sequence from the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 by one or more substitutions, additions, deletions, fusions and truncations, which may be present in any combination.

The variants may be naturally occurring or created *in vitro*. In particular, such variants may be created using genetic engineering techniques such as site directed mutagenesis, random chemical mutagenesis, exonuclease III deletion procedures, and standard cloning techniques.

Alternatively, such variants, fragments, analogs, or derivatives may be created using chemical synthesis or modification procedures.

Other methods of making variants are also familiar to those skilled in the art. These include procedures in which nucleic acid sequences obtained from natural isolates are modified to generate nucleic acids that encode polypeptides having characteristics which enhance their value in industrial or laboratory applications. In such procedures, a large number of variant sequences having one or more nucleotide differences with respect to the

sequence obtained from the natural isolate are generated and characterized. Preferably, these nucleotide differences result in amino acid changes with respect to the polypeptides encoded by the nucleic acids from the natural isolates.

For example, variants may be created using error prone PCR. In error prone PCR, DNA amplification is performed under conditions where the fidelity of the DNA polymerase is low, such that a high rate of point mutation is obtained along the entire length of the PCR product. Error prone PCR is described in Leung, D.W., et al., Technique, 1:11-15 (1989) and Caldwell, R. C. & Joyce G.F., PCR Methods Applic., 2:28-33 (1992). Variants may also be created using site directed mutagenesis to generate site-specific mutations in any cloned DNA segment of interest. Oligonucleotide mutagenesis is described in Reidhaar-Olson, J.F. & Sauer, R.T., et al., Science, 241:53-57 (1988). Variants may also be created using directed evolution strategies such as those described in US patent nos. 6,361,974 and 6,372,497. The variants of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75 and 77 may be variants in which one or more of the amino acid residues of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75 or 77 are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code.

Conservative substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the following replacements: replacements of an aliphatic amino acid such as Ala, Val, Leu and Ile with another aliphatic amino acid; replacement of a Ser with a Thr or vice versa; replacement of an acidic residue such as Asp or Glu with another acidic residue; replacement of a residue bearing an amide group, such as Asn or Gln, with another residue bearing an amide group; exchange of a basic residue such as Lys or Arg with

another basic residue; and replacement of an aromatic residue such as Phe or Tyr with another aromatic residue.

Other variants are those in which one or more of the amino acid residues of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 include a substituent group. Still other variants are those in which the polypeptide is associated with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol). Additional variants are those in which additional amino acids are fused to the polypeptide, such as leader sequence, a secretory sequence, a proprotein sequence or a sequence that facilitates purification, enrichment, or stabilization of the polypeptide.

In some embodiments, the fragments, derivatives and analogs retain the same biological function or activity as the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77. In other embodiments, the fragment, derivative or analogue includes a fused heterologous sequence that facilitates purification, enrichment, detection, stabilization or secretion of the polypeptide that can be enzymatically cleaved, in whole or in part, away from the fragment, derivative or analogue.

Another aspect of the present invention are polypeptides or fragments thereof which have at least 70%, at least 80%, at least 85%, at least 90%, or more than 95% identity to one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75 and 77 or a fragment comprising at least 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof. It will be appreciated that amino acid "identity" includes conservative substitutions such as those described above.

The polypeptides or fragments having homology to one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or a fragment comprising at least 50, 75, 100, 150, 200 or 300

consecutive amino acids thereof may be obtained by isolating the nucleic acids encoding them using the techniques described above.

Alternatively, the homologous polypeptides or fragments may be obtained through biochemical enrichment or purification procedures. The sequence of potentially homologous polypeptides or fragments may be determined by proteolytic digestion, gel electrophoresis and/or microsequencing. The sequence of the prospective homologous polypeptide or fragment can be compared to one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof.

The polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments, derivatives or analogs thereof comprising at least 40, 50, 75, 100, 150, 200 or 300 consecutive amino acids thereof invention may be used in a variety of applications. For example, the polypeptides or fragments, derivatives or analogs thereof may be used to catalyze biochemical reactions as described elsewhere in the specification.

The polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments, derivatives or analogues thereof comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof, may also be used to generate antibodies which bind specifically to the polypeptides or fragments, derivatives or analogues. The antibodies generated from SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 may be used to determine whether a biological sample contains *Streptomyces aizunensis* or a related microorganism.

In such procedures, a biological sample is contacted with an antibody capable of specifically binding to one of the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45,

47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. The ability of the biological sample to bind to the antibody is then determined. For example, binding may be determined by labeling the antibody with a detectable label such as a fluorescent agent, an enzymatic label, or a radioisotope. Alternatively, binding of the antibody to the sample may be detected using a secondary antibody having such a detectable label thereon. A variety of assay protocols which may be used to detect the presence of a polyketide-producer or of Streptomyces aizunensis or of polypeptides related to SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23. 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 in a sample are familiar to those skilled in the art. Particular assays include ELISA assays, sandwich assays, radioimmunoassays, and Western Blots. Alternatively, antibodies generated from SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 may be used to determine whether a biological sample contains related

Polyclonal antibodies generated against the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies that may bind to the whole native polypeptide. Such antibodies can then be used to isolate the polypeptide from cells expressing that polypeptide.

polypeptides that may be involved in the biosynthesis of polyketides.

For preparation of monoclonal antibodies, any technique that provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kholer and Milstein, 1975, Nature, 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et

al., 1983, Immunology Today 4:72), and the EBV-hybridoma technique (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. Alternatively, transgenic mice may be used to express humanized antibodies to these polypeptides or fragments thereof.

Antibodies generated against the polypeptides of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof may be used in screening for similar polypeptides from a sample containing organisms or cell-free extracts thereof. In such techniques, polypeptides from the sample are contacted with the antibodies and those polypeptides which specifically bind the antibody are detected. Any of the procedures described above may be used to detect antibody binding. One such screening assay is described in "Methods for measuring Cellulase Activities", Methods in Enzymology, Vol 160, pp. 87-116.

In order to identify the function of the genes in the compound 2(a) locus, ORFs 1 to 38 were compared, using the BLASTP version 2.2.1 algorithm with the default parameters, to sequences in the National Center for Biotechnology Information (NCBI) nonredundant protein database and the DECIPHER® database of microbial genes, pathways and natural products (Ecopia BioSciences Inc. St.-Laurent, QC, Canada).

The accession numbers of the top GenBank hits of this Blast analysis are presented in Table 1 along with the corresponding E values. The E value relates the expected number of chance alignments with an alignment score at least equal to the observed alignment score. An E value of 0.00 indicates a perfect homolog. The E values are calculated as described in Altschul *et al. J.*

WO 2004/065401 PCT/CA2004/000068 63

Mol. Biol., 215, 403-410 (1990). The E value assists in the determination of whether two sequences display sufficient similarity to justify an inference of homology.

179/374 (47.86%) glycosyl transferase, Streptomyces nogalater response regulator, Streptomyces avermitilis CalG3 glycosyltransferase, Micromonospora Piml thioesterase, Streptomyces natalensis NbmM regulator, Streptomyces narbonensis glycosyltransferase, Streptomyces olivaceus proposed function of GenBank match 140/204 (68.63%) response regulator, Streptomyces coelicolor membrane protein, Streptomyces coelicolor NysE thioesterase, Streptomyces noursei 138/202 (68.32%) response regulator, Streptomyces reticuli hypothetical protein, Thermobifida fusca hypothetical protein, Thermobifida fusca helicase, Corynebacterium glutamicum thioesterase, Streptomyces avermitilis transcriptional activator, Streptomyces hypothetical protein,Halobacterium sp. helicase, Corynebacterium efficiens 132/201 (65.67%) regulator, Xanthomonas axonopodis hypothetical protein, Mycobacterium nypothetical protein, Mycobacterium hypothetical protein, Xanthomonas axonopodis helicase, Streptomyces coelicolor 163/312 (52.24%) kinase, Streptomyces coelicolor 139/267 (52.06%) kinase, Streptomyces coelicolor 157/304 (51.64%) kinase, Streptomyces reticuli echinospora tuberculosis tuberculosis venezuelae 407/700 (58.14%) 582/705 (82.55%) 180/247 (72.87%) 451/965 (46.74%) 185/243 (76.13%) 472/959 (49.22%) 169/475 (35.58%) 412/701 (58.77%) 173/244 (70.9%) 468/957 (48.9%) 216/516 (41.86%) 205/370 (55.41%) 187/373 (50.13%) 50/102 (49.02%) 210/494 (42.51%) 97/162 (59.88%) 98/177 (55.37%) 58/107 (54.21%) % similarity 145/494 (29.35%) 340/700 (48.57%) 336/959 (35.04%) 339/965 (35.13%) 106/204 (51.96%) 142/243 (58.44%) 135/244 (55.33%) 331/957 (34.59%) 113/304 (37.17%) 150/373 (40.21%) 556/705 (78.7%) 334/701 (47.65%) 145/247 (58.7%) 100/202 (49.5%) 116/312 (37.18%) 109/267 (40.82%) 30/102 (29.41%) 155/516 (30.04%) 107/475 (22.53%) 155/370 (41.89%) 67/162 (41.36%) 35/107 (32.71%) 96/201 (47.76%) 66/177 (37.29%) 138/374 (36.9%) % identity probability 1E-200 1E-132 1E-165 1E-161 1E-131 1E-127 2E-82 3E-78 2E-73 8E-49 8E-47 1E-43 7E-39 2E-37 2E-27 1E-08 5E-39 1E-07 0.002 4E-24 4E-41 4E-69 2E-60 5E-54 6E-37 ZP_00059442.1,172aa GenBank homology ZP_00059443.1,554aa NP_628447.1,428aa NP_600121.1,683aa NP_629592.1,224aa NP 642485.1,213aa NP_628531.1,185aa NP_644099.1,158aa BAB69315.1,255aa CAC20922.1,255aa AAM88362.1,945aa BAC17778.1,686aa AAF71777.1,251aa AAC68887.1,928aa BAA84600.1,949aa CAA74720.1,217aa CAA74719.1,398aa CAC32293.1,404aa CAB10923.1,177aa 280206.1,514aa CAC16413.2.382aa AAM94798.1,376aa AAF01811.1,390aa T35189,719aa E70508,487aa 닐 #aa 719 253 926 416 186 163 201 514 367 Family TESA REGD RREB SPKK UNEW UNEX GTFA NNO I ORF Q က 4 S ဖ / ω တ

Table 1

	rn.	l	Γ	<u> </u>	T			<u> </u>	Τ		1	T					T	I
polyketide synthase,Saccharopolyspora spinosa	2452/4407 (55.64%) 2853/4407 (64.74%) polyketide synthase, Streptomyces avermitilis	Nysl polyketide synthase, Streptomyces noursei	Nysl polyketide synthase, Streptomyces noursei	1738/3394 (51.21%) 2065/3394 (60.84%) Amphl polyketide synthase,Streptomyces	PimS2 polyketide synthase, Streptomyces natalensis	Nysl polyketide synthase,Streptomyces noursei	Amphl polyketide synthase, Streptomyces nodosus	PimS2 polyketide synthase, Streptomyces natalensis	NysB polyketide synthase, Streptomyces noursei	936/1562 (59.92%) polyketide synthase, Streptomyces avermitilis	polyketide synthase,Saccharopolyspora spinosa	2713/5239 (51.78%) 3215/5239 (61.37%) polyketide synthase, Streptomyces avermitilis	2651/5183 (51.15%) 3187/5183 (61.49%) PimS1polyketide synthase, Streptomyces natalensis	AmphC polyketide synthase, Streptomyces nodosus	AmphC polyketide synthase, Streptomyces nodosus	NysC polyketide synthase,Streptomyces noursei	2824/5426 (52.05%) 3378/5426 (62.26%) PimS1polyketide synthase, Streptomyces natalensis	NysB polyketide synthase, Streptomyces noursei
0.53%)	4.74%)	1.25%)	0.78%)	0.84%)		1.56%)	1.82%)	1.72%)	i	(%26:6	(%98.6	1.37%)	1.49%)			1(%83%)	2.26%)	1.02%)
2487/5027 (49.47%) 3043/5027 (60.53%) spinosa	53/4407 (6	Nysl po 2489/4970 (50.08%) 3044/4970 (61.25%) noursei	Nysl po 1763/3432 (51.37%) 2086/3432 (60.78%) noursei	65/3394 (6	1729/3385 (51.08%) 2050/3385 (60.56%)	2992/5949 (50.29%) 3662/5949 (61.56%) Inoursei	2961/5904 (50.15%) 3650/5904 (61.82%)	2962/5917 (50.06%) 3652/5917 (61.72%)	938/1553 (60.4%)	36/1562 (59	polyketii 941/1572 (59.86%) spinosa	15/5239 (6	87/5183 (6	2047/4174 (49.04%)2494/4174 (59.75%)	3377/5447 (62%)	NysC p 2836/5548 (51.12%) 3375/5548 (60.83%) noursei	78/5426 (6/	NysB p 1628/3207 (50.76%) 1957/3207 (61.02%) noursei
7%) 30	4%)28	8%)30	7%)20	1%)20	8%)20	98 (%6	2%)36	e%) 36		-		8%)32	5%)31	1%)24		2%) 33.	2%) 33.	3%) 199
7 (49.4	7 (55.6	0 (50.0	2 (51.3	4 (51.2	5 (51.0	9 (50.2	4 (50.1	7 (50.0	3 (50.29	(49.62	2 (49.3	9 (51.7	3 (51.1	4 (49.0	7 (51.6	8 (51.12	3 (52.0	7 (50.76
2487/502	2452/440	2489/497	1763/343	1738/339	1729/338	2992/594	2961/590	2962/591	781/1553 (50.29%)	775/1562 (49.62%)	775/1572 (49.3%)	2713/523	2651/518	2047/417	2814/5447 (51.66%)	2836/554	2824/5420	1628/320
1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200	1E-200
928aa)48aa	177aa	177aa	.1,9510aa	.1,9507aa	177aa	.1,9510aa	.1,9507aa	.1,3192aa	313aa	70aa	.1,6048aa	.1,6797aa	.1,10917aa	.1,10917aa	1,11096aa	'97aa	92aa
263.1,4	303.1,60	66.1,9	66.1,9			6.1,97			75.1,31	96.1,36	66.1,31			14.1,10	14.1,10	76.1,110	31.1,67	75.1,31
AAG23263.1,4928aa	BAB69303.1,6048aa	AAF71766.1,9477aa	AAF71766.1,9477aa	AAK73501	CAC20921	AAF71766.1,9477aa	AAK73501	CAC20921	AAF71775	BAB69196.1,3613aa	AAG23266.1,3170aa	BAB69303	CAC20931	AAK73514.	AAK73514.	AAF71776.	CAC20931.1,6797aa	AAF71775.1,3192aa
8147			3428			6751			1657		- "	5207			5432		·	3227
PKSH			PKSH			PKSH			PKSH			PKSH			PKSH			PKSH
10			1			12			13			41			15			16

		AAF82408.1,4150aa	1E-200	1643/3237 (50.76%)	1957/3237 (60.46%)	1643/3237 (50.76%) 1957/3237 (60.46%) antibioticus
		BAB69307.1,3352aa	1E-200	1612/3170 (50.85%)	1948/3170 (61.45%)	1612/3170 (50.85%) 1948/3170 (61.45%) polyketide synthase, Streptomyces avermitilis
PKSH	7510	AAK73502.1,5644aa	1E-200	2761/5719 (48.28%)	3366/5719 (58.86%)	2761/5719 (48.28%) 3366/5719 (58.86%) AmphJ polyketide synthase, Streptomyces nodosus
		AAF71776.1,11096aa	1E-200	2313/4464 (51.81%)	NysC p 2313/4464 (51.81%) 2755/4464 (61.72%) noursei	NysC polyketide synthase, Streptomyces noursei
		CAA60460.1,8563aa	1E-200	2448/5643 (43.38%)	polyketide synt 2448/5643 (43.38%) 3074/5643 (54.47%) hygroscopicus	polyketide synthase, Streptomyces hygroscopicus
PKSH	3872	AAK73514.1,10917aa	1E-200	1913/3588 (53.32%)	2273/3588 (63.35%)	1913/3588 (53.32%) 2273/3588 (63.35%) AmphC polyketide synthase, Streptomyces nodosus
		AAF71776.1,11096aa	1E-200	1907/3684 (51.76%)	NysC p 1907/3684 (51.76%) 2280/3684 (61.89%) nourse	NysC polyketide synthase, Streptomyces noursei
		CAC20931.1,6797aa	1E-200	1879/3564 (52.72%)	2241/3564 (62.88%)	1879/3564 (52.72%) 2241/3564 (62.88%) PimS1polyketide synthase, Streptomyces natalensis
AYTF	338	D83961,313aa	1E-09	72/294 (24.49%)	118/294 (40.14%)	malonyl CoA-ACP transacylase,Bacillus halodurans
		AAL20123.1,309aa	1E-08	73/303 (24.09%)	120/303 (39.6%)	malonyl-CoA-ACP transacylase,Salmonella typhimurium
		AAK60008.1,316aa	1E-07	74/286 (25.87%)	110/286 (38.46%)	malonyl-CoA-ACP transacylase,Streptomyces aureofaciens
MEAY	283	AD2333,275aa	6E-11	60/220 (27.27%)	97/220 (44.09%)	hypothetical protein, Nostoc sp.
		S76277,294aa	2E-08	70/255 (27.45%)	112/255 (43.92%)	hypothetical protein, Synechocystis sp.
		ZP_00019722.1,251aa	6E-08	56/224 (25%)	99/224 (44.2%)	hypothetical protein, Chloroflexus aurantiacus
ABCD	329	ZP_00080468.1,308aa	1E-54	142/334 (42.51%)	176/334 (52.69%)	hypothetical protein, Geobacter metallireducens
		D72257,327aa	5E-52	131/330 (39.7%)	186/330 (56.36%)	hypothetical protein, Thermotoga maritima
		NP_578312.1,321aa	5E-49	121/327 (37%)	176/327 (53.82%)	daunorubicin resistance protein, Pyrococcus furiosus
DEPL	317	CAA07388.1,305aa	4E-73	152/290 (52.41%)	173/290 (59.66%)	StrL, Streptomyces glaucescens
		AAF59936.1,294aa	5E-65	139/285 (48.77%)	165/285 (57.89%)	4-ketoreductase, Streptomyces antibioticus
		AAF01815.1,291aa	8E-63	136/289 (47.06%)	161/289 (55.71%)	dTDP-4-dehydrorhamnose reductase,Streptomyces nogalater
EPIM	204	CAA4442,200aa	1E-56	108/195 (55.38%)	137/195 (70.26%)	137/195 (70.26%) epimerase, Streptomyces griseus

7.54%) epimerase Strentomyces clausescens					3.55%) putative dehydratase, Streptomyces coelicolor	dTDP-glucose 4,6-dehydratase,Streptomyces argillaceus	dTDP-glucose 4,6-dehydratase,Streptomyces rimosus	.59%) thioesterase, Streptomyces avermitilis					3.39%) acyl-CoA synthase.Mycobacterium leprae	ı			1.41%) hypothetical protein, Streptomyces coelicolor		.93%) hypothetical protein, Streptomyces sp.			hypothetical protein, Mycobacterium (75%) tuberculosis	
129/191 (67.54%)	121/188 (64.36%)	263/328 (80.18%)	261/328 (79.57%)	260/329 (79.03%)	218/318 (68.55%)	218/317 (68.77%)	214/318 (67.3%)	97/239 (40.59%)	95/242 (39.26%)	88/225 (39.11%)	188/466 (40.34%)	192/474 (40.51%)	195/495 (39.39%)	383/522 (73.37%)	369/521 (70.83%)	370/521 (71.02%)	132/226 (58.41%)	127/228 (55.7%)	109/214 (50.93%)	195/275 (70.91%)	190/269 (70.63%)	187/276 (67.75%)	
108/191 (56.54%)	104/188 (55.32%)	215/328 (65.55%)	217/328 (66.16%)	214/329 (65.05%)	201/318 (63.21%)	200/317 (63.09%)	191/318 (60.06%)	74/239 (30.96%)	73/242 (30.17%)	61/225 (27.11%)	116/466 (24.89%)	125/474 (26.37%)	120/495 (24.24%)	318/522 (60.92%)	280/521 (53.74%)	280/521 (53.74%)	115/226 (50.88%)	105/228 (46.05%)	91/214 (42.52%)	169/275 (61.45%)	163/269 (60.59%)	159/276 (57.61%)	
2E-55	1E-51	1E-125	1E-122	1E-119	1E-108	1E-107	1E-105	7E-22	3E-17	3E-15	1E-27	5E-22	1e-20	1E-200	1E-172	1E-171	3E-50	1E-43	5E-36	2E-97	1E-91	8E-89	
CAA55578.1,200aa	AAG29805.1,198aa	CAA68514.1,355aa	BAC55207.1,350aa	AAF59934.1,356aa	NP_625052.1,324aa	CAA07755.1,331aa	AAF82605.1,317aa	BAB69315.1,255aa	T17413,281aa	AAC01736.1,254aa	ZP_00025699.1,510aa	ZP_00006768.1,501aa	G87227,548aa	CAB76876.1,565aa	ZP_00086824.1,560aa	ZP_00126831.1,559aa	CAA19952.1,226aa	AAG43513.1,246aa	BAA22407.1,208aa	CAA19951.1,295aa	AAL15596.1,293aa	NP_217311.1,324aa	
		328			328			214			470			553			231			306			_
	į	NUTA			DEPA			TESA			CALB			TMOA			PPTF			UNAK			_
		24			25			56			27			28			29			30		ı	_

_		Т		-	_	_		т_			_	,	т		_		_		Т			
438/1007 (43.5%) NbmM regulator, Streptomyces narbonensis	regulatory protein, Streptomyces hygroscopicus	carboxyl transferase, Streptomyces coelicolor	putative decarboxylase, Streptomyces antibioticus	decarboxylase, Streptomyces cyanogen is	273/314 (86.94%) putative agmatinase. Streptomyces coelicolor	260/312 (83.33%) hypothetical protein, Thermobifida fusca	guanidinobutyrase, Arthrobacter sp.	ligase, Streptomyces rishiriensis	amide synthetase,Streptomyces roseochromogenes	aminocoumarin ligase, Streptomyces antibioticus	5-aminolevulinic acid synthase.Brucella suis	5-aminolevulinic acid synthase,Brucella melitensis	5-aminolevulinic acid synthase,Mesorhizobium loti	long-chain-fatty-acid-CoA ligase,Streptomyces coelicolor	315/505 (62.38%) hypothetical protein, Thermobifida fusca	hypothetical protein, Nostoc punctiforme	regulatory protein, Xanthomonas campestris	response regulator,Halomonas halodenitrificans	response regulator, Streptomyces coelicolor	hypothetical protein. Streptomyces coelicolor	hypothetical protein, Thermobifida fusca	hypothetical protein, Mycobacterium tuberculosis
	427/1019 (41.9%)	487/516 (94.38%)	464/510 (90.98%)	450/511 (88.06%)	273/314 (86.94%)	260/312 (83.33%)	252/307 (82.08%)	255/512 (49.8%)	252/512 (49.22%)	248/515 (48.16%)	252/385 (65.45%)	250/385 (64.94%)	249/385 (64.68%)	319/505 (63.17%)	315/505 (62.38%)	260/501 (51.9%)	77/139 (55.4%)	101/221 (45.7%)	99/218 (45.41%)	ı _	145/358 (40.5%)	130/357 (36.42%)
323/1007 (32.08%)	322/1019 (31.6%)	461/516 (89.34%)	423/510 (82.94%)	411/511 (80.43%)	240/314 (76.43%)	216/312 (69.23%)	206/307 (67.1%)	189/512 (36.91%)	183/512 (35.74%)	186/515 (36.12%)	193/385 (50.13%)	192/385 (49.87%)	191/385 (49.61%)	256/505 (50.69%)	241/505 (47.72%)	185/501 (36.93%)	54/139 (38.85%)	66/221 (29.86%)	71/218 (32.57%)	206/359 (57.38%)	98/358 (27.37%)	85/357 (23.81%)
1E-110	1E-105	1E-200	1E-200	1E-200	1E-140	1E-128	1E-119	6E-86	1E-81	3E-74	1E-104	1E-103	1E-102	1E-134	1E-122	7E-78	6E-11	6E-11	8E-11	1E-116	7E-19	3E-08
AAM88362.1,945aa	AAC38065.1,948aa	NP_629669.1,527aa	AAK06793.1,528aa	AAD13544.1,524aa	CAD55203.1,322aa	ZP_00057179.1,324aa	BAB96819.1,353aa	AAG29784.1,529aa	AAN65228.1,527aa	AAG34183.1,519aa	NP_697353.1,425aa	AAL52785.1,425aa	BAB52860.1,425aa	CAB89029.1,511aa	ZP_00059397.1,557aa	ZP_00105928.1,513aa	NP_635504.1,210aa	BAB84309.1,221aa	NP_631750.1,226aa	CAA18514,534aa	ZP_00058746.1,366aa	AAK47101,352aa
		518			329			521			410			506			217			442		
		CTFC			ADHY			ADSN	,		AYTP			CALB)				
		32			33			34			35			36			37			88		

The gene product of each of ORFs 1-38 in the compound 2(a) locus is assigned a protein family based on sequence similarity to the structure of known proteins as determined in Table 1. A putative function is attributed to each gene product of the compound 2(a) locus biosynthetic locus based on the known function of members of the respective protein families. Each protein family is referred to by a four-letter designation used throughout the description and figures. For example, members of protein family ABCD including the gene product of ORF 21 (SEQ ID NO: 43) are transmembrane transporters; members of protein family ADHY including the gene product ORF 33 (SEQ ID NO: 67) are amidinohydrolases; members of protein family ADSN including the gene product of ORF 34 (SEQ ID NO: 69) are adenylation/condensing enzymes; members of protein families AYTF and AYTP including ORFs 19 and 35 (SEQ ID NOS: 39 and 71) are acyltransferases; members of protein family CALB are acyl CoA ligases including ORF 27 and 36 (SEQ ID NO: 55 and 73); members of protein family CTFC including ORF 32 (SEQ ID NO: 65) are carboxyltransferase/decarboxylases; members of protein families DEPA and DEPL including ORFs 25 and 22 (SEQ ID NOS: 51 and 45) are dehydratase/epimerases; members of protein family EPIM including ORF 23 (SEQ ID NO: 47) are epimerises; members of protein family GTFA including ORF 9 (SEQ ID NO: 19) are glycosyl transferases; members of protein family MEAY including ORF 20 (SEQ ID NO: 41) are membrane proteins; members of protein family NUTA including ORF 24 (SEQ ID NO: 49) are nucleotidyltransferases; members of protein family PKSH including ORFs 10, 11, 12, 13, 14, 15, 16, 17 and 18 (SEQ ID NOS: 21, 23, 25, 27, 29, 31, 33, 35 and 37) are polyketide synthase, type I proteins; members of PPTF protein family including ORF 29 (SEQ ID NO: 59) are phosphopantetheinyl transferases; members of protein family REGD including ORFs 3 and 31 (SEQ ID NOS: 6 and 63) are transcriptional regulators; members of protein family RREB including ORF 4 (SEQ ID NO: 8) are response regulators; members of protein family SPKK including ORF 5 (SEQ ID NO: 10) are sensory protein kinases; members of protein family TESA including ORFs 2 and 26 (SEQ ID NOS: 4 and 53) are thioesterases; and members of protein family TMOA including ORF 28 (SEQ ID NO: 57) are monooxygenases. A

more detailed description of the function of each protein family is provided in Table 2. The correlation between structure and function for each protein family is provided in Table 2.

Table 2

Protein Family	Function
ABCD	ABC transporter; ATP-binding cassette transmembrane transporter; includes proteins with similarity to Mdr proteins of mammalian tumor cells that confer resistance to chemotherapeutic agents.
ADHY	amidinohydrolase; agmatine ureohydrolase; hydrolyzes linear amidines; requires manganese for catalysis and contains a conserved His important for catalytic function
ADSN	Adenylating/condensing synthase; amide synthase; enzymes able to activate substrates as acyl adenylates and subsequently transfer the acyl group to an amino group of the acceptor molecule
AYTF	acyltransferase; acyl CoA-acyl carrier protein transacylase; includes malonyl CoA-ACP transacylases
AYTP	acyltransferase; pyridoxal phosphate-dependent; includes 5-aminolevulinate synthase, a glycyl transferase that condenses glycine and succinyl-CoA.
CALB	acyl CoA ligase; shows similarity to plant coumarate CoA ligases, other aryl CoA ligases, yeast CoA synthetase and aminocoumarin ligases.
CTFC	carboxyltransferase/decarboxylase; carboxyltransferase component of acetyl-CoA carboxylase, generally a 2 subunit component, this family consists of a fusion of the beta and alpha subunits (beta-alpha).
DEPA	dehydratase/epimerase; dTDP-glucose 4,6-dehydratases, catalyze the second step in 6-deoxyhexose biosynthesis.
DEPL	dehydratase/epimerase; similar to StrL dTDP-dihydrostreptose synthase; OleU 4-ketoreductase; SnogC putative dTDP-4-dehydrorhamnose reductase
EPIM	epimerase; NDP-hexose epimerase; TDP-4-ketohexose- 3,5-epimerases, convert TDP-4-keto-6-deoxy-D-glucose to TDP-4-keto-6-deoxy-L-mannose (TDP-4-keto-L-rhamnose).
GTFA	glycosyl transferase.
MEAY	membrane protein; putative transporter, permease
NUTA	nucleotidyltransferase; dNDP-glucose synthase; alpha-D-glucose-1-phosphate thymidylyltransferase; catalyze the first step in 6-deoxyhexose biosynthesis.
PKSH	polyketide synthase, type I.
PPTF	phosphopantetheinyl transferases, required for activation of both PKSs and NRPSs from inactive apo forms to active holo forms.
REGD	transcriptional regulator
RREB	response regulator; similar to response regulators that are known to bind DNA and act as transcriptional activators
SPKK	sensory protein kinase.
TESA	thioesterase.
TMOA	monooxygenase; strong similarity to plasmid-encoded tryptophan-2-monooxygenases.

UNAK	unknown; homolog of S. coelicolor hypothetical protein
UNEW	unknown; similar to putative integral membrane protein in S. coelicolor
UNEX	unknown; domain homology to many bacterial putative membrane proteins; contain so-called "bacterial membrane flanked domains" found in an uncharacterised family of membrane proteins that have one to three copies of the domain flanked by transmembrane helices.
UNFI	unknown; similar to putative membrane proteins

Biosynthesis of Compound 2(a) involves the multimodular type I polyketide synthase system (PKS) of ORFs 10 to 18 (SEQ ID NOS: 21, 23, 25, 27, 29, 31, 33, 35 and 37) illustrated in Figure 1. Type I PKSs are large modular proteins that condense acyl thioester units in a sequential manner. PKS systems consist of one or more polyfunctional polypeptides each of which is made up of modules. Each type I PKS module contains three domains; a β-ketoacyl protein synthase (KS), an acyltransferase (AT) and an acyl carrier protein (ACP). Domains conferring additional enzymatic activities such as ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) can also be found in the PKS modules. These additional domains result in various degrees of reduction of the β -keto groups of the growing polyketide chain. Each module is responsible for one round of condensation and reduction of the β-ketoacyl units. There is a direct correlation between the number of modules and the length of the polyketide chain as well as between the domain composition of the modules and the degree of reduction of the polyketide product. The final polyketide product is released from the PKS protein through the action of a thioesterase domain found in the ultimate module of the PKS system. The genetic organization of most type I PKS enzymes is colinear with the order of biochemical reactions giving rise to the polyketide chain. One skilled in the art will readily understand that these features allow prediction of polyketide core structure based on the architecture of the PKS modules found in a given biosynthetic pathway [Hopwood, Chem. Rev., 97:2465-2497 (1997)].

The compound 2(a) locus PKS system is composed of ORFs 10 to 18 (SEQ ID NOS: 21, 23, 25, 27, 29, 31, 33, 35 and 37) and comprises a total of 27 modules described in Table 3. The first module contains only an ACP domain and corresponds to the loading module (module 0) whereas each of the remaining 26 modules contain domains KS, AT and ACP in various

combinations with KR, DH and ER domains. The thioesterase domain present in ORF 18/module 26 indicates that this module is the ultimate one in the biosynthesis of the polyketide chain. Dehydratase domains in modules 6 and 11 as well as ketoreductase domain in module 12 appear to be inactive due to the presence of non-conservative amino acid residues in highly conserved regions important for catalysis.

Table 3 compound 2(a) locus PKS domain coordinates

ORF no.	SEQ ID NO Amino acid/ Nucleic acid	Amino Acid Residue	Nucleic Acid	Homology	Module no.
10	21/22	57-118	169-354	ACP	0 ·
	21/22	141-566	421-1698	KS	
	21/22	597-1031	1789-3093	AT	1
	21/22	1304-1517	3910-4551	KR	
	21/22	1603-1664	4807-4992	ACP	
	21/22	1690-2118	5068-6354	KS	
	21/22	2135-2562	6403-7686	AT	2
	21/22	2833-3045	8497-9135	KR	
	21/22	3130-3191	9388-9573	ACP	
	21/22	3215-3640	9643-10920	KS	
	21/22	3660-4089	10978-12267	AT	
	21/22	4102-4208	12304-12624	DH	3
	21/22	4612-4829	13834-14487	KR	
	21/22	4911-4972	14731-14916	ACP	
	21/22	5007-5438	15019-16314	KS	
	21/22	5460-5883	16378-17649	AT	4
	21/22	6147-6360	18439-19080	KR	
	21/22	6444-6505	19330-19515	ACP	
	21/22	6529-6954	19585-20862	KS	
	21/22	6979-7402	20935-22206	AT	5
	21/22	7703-7918	23107-23754	KR	
	21/22	8002-8063	24004-24189	ACP	
11	23/24	37-462	109-1386	ks	
• •	23/24	493-919	1477-2757	AT	
	23/24	932-1038	2794-3114	DH*	6
	23/24	1411-1672	4231-4881	KR	J

	23/24	1706-1767	5116-5301	ACP	
	23/24	1794-2215	5380-6645	KS]
•	23/24	2232-2659	6694-7977	AT	7
	23/24	2960-3173	8878-9519	KR	· '
	23/24	3258-3319	9772-9957	ACP	
		000000	0112 0001	AOI	
12	25/26	36-461	106-1383	KS	
	25/26	483-907	1447-2721	AT	
	25/26	919-1027	2755-3081	DH	. 8
	25/26	1439-1655	4315-4965	KR	
	25/26	1736-1797	5206-5391	ACP	
	25/26	1831-2256	5491-6768	KS	
	25/26	2281-2714	6841-8142	AT	9
	25/26	2981-3194	8941-9582	KR	
	25/26	3287-3339	9832-10017	ACP	
	25/26	3361-3786	10081-11358	KS	
	25/26	3803-4225	11407-12675	AT	
	25/26	4494-4706	13480-14118	KR	10
	25/26	4795-4856	14383-14568	ACP	
	25/26	4880-5304	14638-15912	ks	
	25/26	5323-5748	15967-17244	AT	
	25/26	5761-5866	17278-17598	DH*	11
	25/26	6294-6510	18880-19530	KR	
	25/26	6599-6660	19795-19980	ACP	
10	27/28	05.400		1	
13	27/28 27/28	35-460	103-1380	KS	
	27/28 27/28	484-920	1450-2760	AT	12
	27/28 27/28	1195-1406	3583-4218	KR*	
•	21/20	1490-1551	4468-4653	ACP	
14	29/30	35-460	103-1380	KS	
	29/30	487-918	1459-2754	AT	13
	29/30	1219-1431	3655-4293	KR	10
	29/30	1514-1575	4540-4725	ACP	
	29/30	1602-2027	4804-6081	KS	
	29/30	2046-2473	6136-7419	AT	
	29/30	2486-2592	7456-7776	DH	14
	29/30	2980-3196	8938-9588	KR	14
	29/30	3287-3339	9832-10017	ACP	
	29/30	3363-3788	10087-11364	KS	
	29/30	3810-4237	11428-12711	AT	
	29/30	4249-4355	12745-13065	DH	15
	29/30	4760-4976	14278-14928	KR	13
	29/30	5060-5124	15187-15372	ACP	
		0000 0127	10.07	AUI	

15	31/32 31/32 31/32 31/32	35-460 480-914 926-1032	103-1380 1438-2742 2776-3096	KS AT DH	16
	31/32	1423-1639	4267-4917	KR	
	01702	1737-1798	5209-5394	ACP	1
	31/32	1822-2247	5464-6741	KS ·	
	31/32	2263-2690	6787-8070	AT	
	31/32	2703-2809	8107-8427	DH	17
	31/32	3188-3404	9562-10212	KR	
	31/32	3483-3544	10447-10632	ACP	
	31/32	3568-3993	10702-11979	KS	1
	31/32	4017-4442	12049-13326	ΆΤ	
	31/32	4456-4562	13366-13686	DH	. 18
	31/32	4978-5194	14932-15582	KR	10
	31/32	5285-5346	15853-16038	ACP	
16	33/34	35-460	103-1380	KS	
	33/34	481-917	1441-2751	AT [.]	19
	33/34	1205-1416	3613-4248	KR	
	33/34	1500-1561	4498-4683	ACP	
	33/34	1585-2010	4753-6030	KS	
	33/34	2067-2505	6199-7515	AT	20
	33/34	2786-2998	8356-8994	KŖ	
	33/34	3083-3144	9247-9432	ACP	
	0=10-			,	
17	35/36	40-465	118-1395	KS	
	35/36	503-941	1507-2823	AT	
	35/36	954-1060	2860-3180	DH	21
	35/36	1456-1672	4366-5016	KR	
	35/36	1751-1812	5251-5436	ACP	
	35/36	1835-2260	5503-6780	KS	
	35/36	2281-2718	6841-8154	AT	,
	35/36	2731-2837	8191-8511	DH	22
	35/36	3188-3546	9562-10638	ER	
	35/36	3551-3767	10651-11301	KR	
	35/36	3846-3907	11536-11721	ACP	
	35/36	3932-4357	11794-13071	KS	
	35/36	4373-4803	13117-14409	AT	
	35/36	4815-4921	14443-14763	DH	23
	35/36	5300-5516	15898-16548	KR	
	35/36	5597-5658	16789-16974	ACP	,
	35/36	5686-6111	17056-18333	KS	
	35/36	6131-6557	18391-19671	AT	
			· · · · · · · · · · · · · · · · · · ·	- ***	

24	DH	19714-20034	6572-6678	35/36	•
	KR	21184-21834	7062-7288	35/36	
	ACP	22087-22272	7363-7424	35/36	
Ę			•		
	KS	100-1377	34-459	37/38	18
	AT	1504-2778	502-926	37/38	
25	DH	2812-3132	938-1044	37/38	
	KR	4258-4908	1420-1636	37/38	
	ACP	5143-5328	1715-1776	37/38	
	KS	5395-6672	1799-2224	37/38	
	AT	6739-8019	2247-2673	37/38	
26	DH	8056-8376	2686-2792	37/38	
	KR	9607-10257	3203-3419	37/38	
	ACP	10537-10722	3513-3574	37/38	

3649-3872

10945-11616

75

PCT/CA2004/000068

TE

WO 2004/065401

37/38

One skilled in the art would understand that all KS domains are functional as the multiple amino acid alignment of KS domains present in the compound 2(a) locus PKS system (Figure 2) shows an overall similarity of domains and conservation of amino acid residues and domain regions important for activity. Similarly, multiple amino acid alignment of AT domains (Figure 3), ER domains (Figure 5), ACP domains (Figure 7) and TE domains (Figure 8) show an overall similarity of related domains and a high conservation of protein regions and of amino acid residues important for catalytic activity. The domains that occur only once in the compound 2(a) locus PKS, namely the enoylreductase (ER) domain in ORF 17 (SEQ ID NO: 35) and the thioesterase (TE) domain in ORF 18 (SEQ ID NO: 37) are compared to prototypical domains from the nystatin type I polyketide system (Figures 5 and 8) (see Brauteset *et al.*, *supra*).

Comparison of DH domains found in the compound 2(a) locus PKS indicates a high conservation of amino acid residues important for catalytic activity (Figure 4). However, two DH domains are inactive as they contain non-conservative amino acid substitutions in a region of high sequence conservation. As highlighted in Figure 4, the DH domain of module 6 in ORF 11 (SEQ ID NO: 23) and the DH domain of module 11 in ORF 12 (SEQ ID

NO: 25) contain substitutions of charged amino acids arginine and glutamic acid respectively for non-charged aliphatic amino acids.

Comparison of KR domains found in the compound 2(a) locus PKS system also displays a conservation of active sites and amino acid residues important for catalysis with the exception of the KR domain of module 12 found in ORF 13 (SEQ ID NO: 27). Figure 6 shows the presence in that module of a substitution of a glutamine (Q) for a highly conserved tyrosine (Y) amino acid residue. This non-conservative amino acid substitution results in the inactivation of the enzymatic activity of the KR domain of module 12 in ORF 13 (SEQ ID NO: 27) (ORF13_pKR01).

Phylogenetic analysis of the compound 2(a) locus PKS AT domains was conducted to assess the nature of the β-keto acyl units that are incorporated in the growing polyketide chain. The compound 2(a) locus PKS AT domains were compared to two domains, AAF71779mod03 and AAF71766mod11, derived from the nystatin PKS system [Brautaset, *supra*] and specifying the incorporation of malonyl-CoA and methylmalonyl-CoA respectively. Figure 9 shows the phylogenetic relatedness of the various AT domains indicating that, in the compound 2(a) locus PKS, ORF 13 (SEQ ID NO: 27) module 12 as well as ORF 16 (SEQ ID NO: 33) modules 19 and 20 incorporate methylmalonate in the polyketide chain whereas all remaining AT domains incorporate malonate extender β-keto acyl units.

Domain analysis of the compound 2(a) locus PKS system provides clear indication as to synthesis of the polyketide core structure. While not intending to be limited to any particular mode of action or biosynthetic scheme, the nature and organization of the compound 2(a) locus PKS modules can explain the synthesis of Compound 2(a). Figure 10 highlights schematically a series of reactions catalyzed by the polyketide synthase system based on the correlation between the deduced domain architecture and the polyketide core of the compounds 2(a). Type I PKS domains and the reactions they carry out are well known to those skilled in the art and well documented in the literature; see for example, Hopwood, *supra*.

A biosynthetic pathway for the production of the γ-aminobutyryl-CoA starter unit is also shown. The gene product of ORF 28 (SEQ ID NO: 57), a

member of protein family TMOA, catalyzes the decarboxylative oxidation of arginine forming 4-guanidinobutanamide. The gene product of ORF 33 (SEQ ID NO: 67), a member of protein family ADHY, catalyzes hydrolysis of the amidino group forming γ -aminobutanamide that is further activated by either ORF 27 or 36 (SEQ ID NOS: 55 and 73 respectively), both members of protein family CALB, to give γ -aminobutyryl-CoA (Figure 10a). The gene product of ORF 19 (SEQ ID NO: SEQ ID NO: 39), a member of protein family AYTF, loads this unusual extender unit onto the ACP domain of the loading module (module 0) of ORF 10 (SEQ ID NO: 21), a member of protein family PKSH, as illustrated in Figure 10b. The polyketide chain continues to grow by the sequential condensation of malonyl-CoA and methylmalonyl-CoA extender units that are further reduced by specific domains to various degrees. Dehydratase domains found in module 6 of ORF 11 (SEQ ID NO: 23) and module 11 of ORF 12 (SEQ ID NO: 25) as well as the ketoreductase domain found in module 12 of ORF 13 (SEQ ID NO: 27) are inactive and consequently do not catalyze their respective reductive reactions. The mature polyketide chain is then released through the action of the thioesterase domain found in module 26 of ORF 18 (SEQ ID NO: 37), a member of protein family PKSH as illustrated in Figure 10b. The polyketide core structure expected from the architecture of the PKS domains of the compound 2(a) locus is entirely consistent with the polyketide portion of the compound 2(a).

The compound 2(a) locus contains genes involved in the synthesis of two other components found in the chemical structure of the compound 2(a) locus. Figure 11a illustrates a biosynthetic pathway for the production of the aminohydroxy-cyclopentenone moiety found in the compound 2(a) locus. The gene product of ORF 35 (SEQ ID NO: 71), a member of protein family AYTP, condenses glycine with succinyl-CoA forming 5-aminolevulinate. This intermediate is further activated through the action of either the gene products of ORF 27 or 36 (SEQ ID NOS: 55 and 73 respectively), both members of protein family CALB, forming 5-aminolevulinate-CoA that may spontaneously cyclize to produce aminohydroxycyclopentenone. This moiety is subsequently condensed to the activated carboxy terminus of the polyketide chain through

the action of the gene product of ORF 34 (SEQ ID NO: 69), a member of protein family ADSN as illustrated in Figure 10c.

Figure 11b depicts the biosynthetic pathway of the deoxysugar component of Compound 2(a). The gene product of ORF 24 (SEQ ID NO: 49), a member of protein family NUTA, activates D-glucose forming dNDP-D-glucose that is subsequently dehydrated through the action of the gene product of ORF 25 (SEQ ID NO: 51), a member of protein family DEPA, forming dNDP-4-keto-4, 6-dideoxy-D-glucose. The gene product of ORF 22 (SEQ ID NO: 45), a member of protein family DEPL, further reduces this intermediate forming dNDP-D-fucose that is subsequently epimerized by the gene product of ORF 23 (SEQ ID NO: 47), a member of protein family EPIM, producing dNDP-L-rhamnose.

The final deoxysugar moiety is transferred onto a hydroxyl group of the polyketide core structure through the action of a glycosyltransferase, i.e. the gene product of ORF 9 (SEQ ID NO: 19), a member of protein family GTFA, as illustrated in Figure 10c. Figure 10c proposes one scheme in regard to timing of the reactions catalyzed by the gene product of ORF 34 (SEQ ID NO: 69), a member of protein family CALB, and by the gene product of ORF 9 (SEQ ID NO: 19), a member of protein family GTFA. However, it will be readily understood that the invention does not reside in the actual timing and order of the reactions as depicted in Figure 10c.

Additional proteins forming the compound 2(a) locus include the gene product of ORF 2 (SEQ ID NO: 4) and a member of protein family TESA which is expected to having polyketide-priming editing functions; the gene products of ORFs 3, 4, 5 and 31 (SEQ ID NOS: 6, 8, 10 and 63), members of protein families REGD, RREB, SPKK and REGD respectively, are expected to regulate synthesis of Compound 2(a); the gene products of ORFs 6 and 21 (SEQ ID NOS: 12 and 43), members of protein families UNEW and ABCD respectively, are involved in transmembrane transport; and the gene product of ORF 29 (SEQ ID NO: 59), a member of protein family PPTF, activates ACP domains through phosphopantetheinylation.

Structural modification of compound of Formula I and Formula II and Compound 2(a) are attained by the genetic modifications of the compound 2(a) locus. Genetic modifications of PKS biosynthetic loci are well known in

the art. The WO 01/34816 patent publication teaches the construction of a library of structural variants of the macrolide polyketide rapamycin derived from the genetic modification of genes in the locus that directs rapamycin synthesis. The genetic modifications taught, include gene inactivation, gene insertion and gene replacement. These modifications, both individually and in combination at different positions within the rapamycin locus, resulted in alteration of polyketide starter units, chain length and hydroxyl sterospecificities in rapamycin. Similarly, McDaniel *et.al.* [Proc Natl Acad Sci USA, 1999, 96:18646-51] generated a library of over 50 derivatives of the macrolide antibiotic erythromycin using a combination of genetic modifications including gene inactivation, macrolide chain length and hydroxyl sterospecificity modifications of the erythromycin biosynthesis genes.

The elucidation of the nucleic acid sequences that encodes the biosynthesis of Compound 2a provides the biological tools to enable one skilled in the art to genetically modify the biosynthetic pathway to generate variants of the Compound 2a. In particular, Type I PKS systems may be manipulated by changing the number of modules, their specificities towards carboxylic acids, and by inactivating or inserting domains with reductive activities (Katz, Chem. Rev. v. 97, 2557-2575, 1997). Thus, the polyketide synthase system of Compound 2(a) may be engineered by modifying, adding, or deleting domains, or replacing them with those taken from other Type I PKS enzymes. Compounds of Formula I may be produced using a modified PKS system created based on the polyketide synthase system for the production of Compound 2a. Preferred modified PKS systems are those wherein a KS, AT, KR, DH or ER domain has been inactivated or deleted.

In one aspect, the invention is directed to preparation of a polyketide of Formula I or II resulting from a modified polyketide synthase system, which modification include deletions, mutagenesis, inactivation or replacement of one or more of the domains of the invention. The modified polyketide synthase system produces compounds of Formula I that may differ from the compound of Formula 2a in size, degree of saturation and oxidation. In another aspect, the invention is directed to compounds of Formula I or II produced by genetic modification of the polyketide synthase system for the compound 2(a) locus.

The compounds of this invention may be formulated into pharmaceutical compositions comprised of compounds of Formula I in combination with a pharmaceutically acceptable carrier.

The compounds of this invention are useful in treating bacterial infections, fungal infections and cancer.

Molecular terms, when used in this application, have their common meaning unless otherwise specified.

The term alkyl refers to a linear or branched hydrocarbon group. Examples of alkyl groups include, without limitation, methyl, ethyl, n-propyl, isopropyl, n-butyl, pentyl, hexyl, heptyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexymethyl, and the like. Alkyl groups may optionally be substituted with one or more substituents selected from acyl, amino, acylamino, acyloxy, carboalkoxy, carboxy, carboxyamido, cyano, halo, hydroxyl, nitro, thio, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, sulfinyl, sulfonyl, oxo, guanidino and formyl.

The term alkenyl refers to a linear, branched or cyclic hydrocarbon group containing at least one carbon-carbon double bond. Examples of alkenyl groups include, without limitation, vinyl, 1-propene-2-yl, 1-butene-4-yl, 2-butene-4-yl, 1-pentene-5-yl and the like. Alkenyl groups may optionally be substituted with one or more substituents selected from acyl, amino, acylamino, acyloxy, carboalkoxy, carboxy, carboxyamido, cyano, halo, hydroxyl, nitro, thio, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, sulfinyl, sulfonyl, formyl, oxo and guanidino. The double bond portion(s) of the unsaturated hydrocarbon chain may be either in the cis or trans configuration.

The term cycloalkyl or cycloalkyl ring refers to a saturated or partially unsaturated carbocyclic ring in a single or fused carbocyclic ring system having from three to fifteen ring members. Examples of cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclohexyl, and cycloheptyl. Cycloalkyl groups may optionally be substituted with one ore more substituents selected from acyl, amino, acylamino, acyloxy, carboalkoxy, carboxy, carboxyamido, cyano, halo, hydroxyl, nitro, thio, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, sulfinyl, sulfonyl and formyl.

The term heterocycloalkyl, heterocyclic or heterocycloalkyl ring refers to a saturated or partially unsaturated ring containing one to four hetero atoms or hetero groups selected from O, N, NH, NR^x, PO₂, S, SO or SO₂ in a single or fused heterocyclic ring system having from three to fifteen ring members. Examples of heterocycloakyl groups include, without limitation, morpholinyl, piperidinyl, and pyrrolidinyl. Heterocycloalkyl groups may optionally be substituted with one or more substituents selected from acyl, amino, acylamino, acyloxy, oxo, thiocarbonyl, imino, carboalkoxy, carboxy, carboxyamido, cyano, halo, hydroxyl, nitro, thio, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, sulfinyl, sulfonyl and formyl.

The term amino acid refers to a natural amino acid, a synthetic amino acid or a synthetic derivative of a natural amino acid. Examples of natural amino acids include, but are not limited to alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine.

The term halo is defined as a bromine, chlorine, fluorine or iodine atom.

The term aryl or aryl ring refers to an aromatic group comprising a single or fused ring system, having from five to fifteen ring members. Examples of aryl groups include, without limitation, phenyl, naphthyl, biphenyl, terphenyl. Aryl groups may optionally be substituted with one or more substituent group selected from acyl, amino, acylamino, acyloxy, azido, alkythio, carboalkoxy, carboxy, carboxyamido, cyano, halo, hydroxyl, nitro, thio, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, sulfinyl, sulfonyl and formyl.

The term heteroaryl or heteroaryl ring refers to an aromatic group comprising a single or fused ring system, having from five to fifteen ring members and containing at least one hetero atom such as O, N, S, SO and SO₂. Examples of heteroaryl groups include, without limitation, pyridinyl, thiazolyl, thiadiazoyl, isoquinolinyl, pyrazolyl, oxazolyl, oxadiazoyl, triazolyl, and pyrrolyl groups. Heteroaryl groups may optionally be substituted with one or more substituent groups selected from acyl, amino, acylamino, acyloxy, carboalkoxy, carboxy, carboxyamido, cyano, halo, hydroxyl, nitro, thio,

thiocarbonyl, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, aryloxy, sulfinyl, sulfonyl, and formyl.

As used herein, the term "treatment" refers to the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disorder, e.g., a disease or condition, a symptom of disease, or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptoms of disease, or the predisposition toward disease.

As used herein, a "pharmaceutical composition" comprises a pharmacologically effective amount of a farnesyl dibenzodiazepinone and a pharmaceutically acceptable carrier. As used herein, "pharmacologically effective amount," "therapeutically effective amount" or simply "effective amount" refers to that amount of a farnesyl dibenzodiazepinone effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 25% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 25% reduction in that parameter.

The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as

glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.

Pharmaceutically acceptable salts include acid addition salts and base addition salts. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Without being limited, examples of acid addition salts include hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulphuric, phosphoric, formic, acetic, citric, tartaric, succinic, oxalic, malic, glutamic, propionic, glycolic, gluconic, maleic, embonic (pamoic), methanesulfonic, ethanesulfonic, 2-hydroxyethanesulfonic, pantothenic, benzenesulfonic, toluenesulfonic, sulfanilic, mesylic, cyclohexylaminosulfonic, stearic, algenic, β-hydroxybutyric, malonic, galactantic, galacturonic acid and the like. Suitable pharmaceutically-acceptable base addition salts of compounds of the invention include, but are not limited to, metallic salts made from aluminium, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, N-methylglucamine, lysine, procaine and the like. Additional examples of pharmaceutically acceptable salts are listed in Journal of Pharmaceutical Sciences, 1977, 66:2. All of these salts may be prepared by conventional means form the corresponding compounds of Formula I by treating with the appropriate acid or base.

The compounds of the present invention can possess one or more asymetric carbon atoms and can exist as optical isomers forming mixtures of racemic or non-racemic compounds. The compounds of the present invention are useful as a single isomer or as a mixture of stereochemical isomeric forms. Diastereoisomers, i.e., nonsuperimposable stereochemical isomers, can be seperated by conventional means such as chromatography, distillation, crystallization and sublimation. The optical isomers can be obtained by resolution of the racemic mixtures according to conventional processes.

The invention embraces isolated compounds. An isolated compound refers to a compound which represents at least 10%, 20%, 50% and 80% of the compound of the present invention present in a mixture, provided that the mixture comprising the compound of the invention has demonstrable (i.e. statistically significant) biological activity including antibacterial, antifungal or

anticancer activity when tested in conventional biological assays known to a person skilled in the art.

The compounds of the present invention, or pharmaceutically acceptable salts thereof, can be formulated for oral, intravenous, intramuscular, subcutaneous, topical or parenteral administration for the therapeutic or prophylactic treatment of diseases, particularly bacterial and fungal infections. For oral or parental administration, compounds of the present invention can be mixed with conventional pharmaceutical carriers and excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, wafers and the like. The compositions comprising a compound of this present invention will contain from about 0.1% to about 99.9%, about 5% to about 95%, about 10% to about 80% or about 15% to about 60% by weight of the active compound.

The pharmaceutical preparations disclosed herein are prepared in accordance with standard procedures and are administered at dosages that are selected to reduce, prevent, or eliminate bacterial and fungal infection or the cancer (See, e.g., Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA and Goodman and Gilman's the Pharmaceutical Basis of Therapeutics, Pergamon Press, New York, NY, the contents of which are incorporated herein by reference, for a general description of the methods for administering various antimicrobial agents for human therapy). The compositions of the present invention can be delivered using controlled (e.g., capsules) or sustained release delivery systems (e.g., bioerodable matrices). Exemplary delayed release delivery systems for drug delivery that are suitable for administration of the compositions of the invention (preferably of Formula I) are described in U.S. Patent Nos 4,452,775 (issued to Kent), 5,239,660 (issued to Leonard), 3,854,480 (issued to Zaffaroni).

The pharmaceutically-acceptable compositions of the present invention comprise one or more compounds of the present invention in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants and/or excipients, collectively referred to herein as "carrier" materials, and if desired other active ingredients. The compositions may contain common carriers and excipients, such as corn starch or gelatin,

lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid. The compositions may contain crosarmellose sodium, microcrystalline cellulose, sodium starch glycolate and alginic acid.

Lubricants that can be used include magnesium stearate or other metallic stearates, stearic acid, silicon fluid, talc, waxes, oils and colloical silica.

Flavouring agents such as peppermint, oil of wintergreen, cherry flavouring or the like can also be used. It may also be desirable to add a coloring agent to make the dosage form more esthetic in appearance or to help identify the product comprising a compound of the present invention.

For oral administration, the pharmaceutical compositions are in the form of, for example, a tablet, capsule, suspension or liquid. For oral use, solid formulations such as tablets and capsules are particularly useful. Sustained released or enterically coated preparations may also be devised. Tablet binders that can be included are acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Providone), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose. For pediatric and geriatric applications, suspension, syrups and chewable tablets are especially suitable. The pharmaceutical composition is preferably made in the form of a dosage unit containing a therapeutically-effective amount of the active ingredient. Examples of such dosage units are tablets and capsules. For therapeutic purposes, the tablets and capsules can contain, in addition to the active ingredient, conventional carriers such as binding agents, for example, acacia gum, gelatin, polyvinylpyrrolidone, sorbitol, or tragacanth; fillers, for example, calcium phosphate, glycine, lactose, maize-starch, sorbitol, or sucrose; lubricants, for example, magnesium stearate, polyethylene glycol, silica or talc: disintegrants, for example, potato starch, flavoring or coloring agents, or acceptable wetting agents. Oral liquid preparations generally are in the form of aqueous or oily solutions, suspensions, emulsions, syrups or elixirs may contain conventional additives such as suspending agents, emulsifying agents, non-aqueous agents, preservatives, coloring agents and flavoring agents. Examples of additives for liquid preparations include acacia, almond

oil, ethyl alcohol, fractionated coconut oil, gelatin, glucose syrup, glycerin, hydrogenated edible fats, lecithin, methyl cellulose, methyl or propyl *para-*hydroxybenzoate, propylene glycol, sorbitol, or sorbic acid.

For intravenous (IV) use, compounds of the present invention can be dissolved or suspended in any of the commonly used intravenous fluids and administered by infusion. Intravenous fluids include, without limitation, physiological saline or Ringer's solution.

Formulations for parental administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions or suspensions can be prepared from sterile powders or granules having one or more of the carriers mentioned for use in the formulations for oral administration. The compounds can be dissolved in polyethylene glycol, propylene glycol, ethanol, corn oil, benzyl alcohol, sodium chloride, and/or various buffers.

For intramuscular preparations, a sterile formulation of compounds of the present invention or suitable soluble salts forming the compound, can be dissolved and administered in a pharmaceutical diluent such as Water-for-Injection (WFI), physiological saline or 5% glucose. A suitable insoluble form of the compound may be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil base, e.g. an ester of a long chain fatty acid such as ethyl oleate.

For topical use the compounds of present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of creams, ointments, liquid sprays or inhalants, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration of the active ingredient.

For application to the eyes or ears, the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.

For rectal administration the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as cocoa butter, wax or other glyceride. Alternatively, the compound of the present invention can be in powder form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery. In another embodiment, the unit dosage form of the compound can be a solution of the compound or a salt thereof in a suitable diluent in sterile, hermetically sealed ampoules.

The amount of the compound of the present invention in a unit dosage comprises a therapeutically-effective amount of at least one active compound of the present invention which may vary depending on the recipient subject, route and frequency of administration. A recipient subject refers to a plant, a cell culture or an animal such as an ovine or a mammal including a human.

According to this aspect of the present invention, the novel compositions disclosed herein are placed in a pharmaceutically acceptable carrier and are delivered to a recipient subject (including a human subject) in accordance with known methods of drug delivery. In general, the methods of the invention for delivering the compositions of the invention in vivo utilize artrecognized protocols for delivering the agent with the only substantial procedural modification being the substitution of the compounds of the present invention for the drugs in the art-recognized protocols.

Likewise, the methods for using the claimed composition for treating cells in culture, for example, to eliminate or reduce the level of bacterial or fungal contamination of a cell culture, utilize art-recognized protocols for treating cell cultures with antibacterial or antifungal agent(s) with the only substantial procedural modification being the substitution of the compounds of the present invention for the agents used in the art-recognized protocols.

The compounds of the present invention provide a method for treating bacterial infections, fungal infections and pre-cancerous or cancerous conditions. As used herein the term unit dosage refers to a quantity of a therapeutically-effective amount of a compound of the present invention that elicits a desired therapeutic response. As used herein the phrase therapeutically-effective amount means an amount of a compound of the present invention that prevents the onset, alleviates the symptoms, or stops the progression of a bacterial infection, fungal infection or pre-cancerous or cancerous condition. The term treating is defined as administering, to a subject, a therapeutically-effective amount of at least one compound of the

present invention, both to prevent the occurrence of a bacterial or fungal infection or pre-cancer or cancer condition, or to control or eliminate a bacterial or fungal infection or pre-cancer or cancer condition. The term desired therapeutic response refers to treating a recipient subject with a compound of the present invention such that a bacterial or fungal infection or pre-cancer or cancer condition is reversed, arrested or prevented in a recipient subject.

The compounds of the present invention can be administered as a single daily dose or in multiple doses per day. The treatment regime may require administration over extended periods of time, e.g., for several days or for from two to four weeks. The amount per administered dose or the total amount administered will depend on such factors as the nature and severity of the infection, the age and general health of the recipient subject, the tolerance of the recipient subject to the compound and the type of the bacterial or fungal infection, or type of cancer.

A compound according to this invention may also be administered in the diet or feed of a patient or animal. The diet for animals can be normal foodstuffs to which the compound can be added or it can be added to a premix.

The compounds of the present invention may be taken in combination, together or separately with any known clinically approved antibiotic, antifungal or anti-cancer to treat a recipient subject in need of such treatment.

Compounds of Formula I are obtained biosynthetically by culturing *Actinomycetes* species in growth media described in Table 4, at temperatures between 24° C – 34° C and with shaking to aerate of the culture medium for 3 to 40 days. The compounds of Formula I are extracted and isolated from the bacterial culture by methods known to a skilled person including centrifugation, chromatography, adsorption, filtration, extraction or other methods of separation.

The compounds of Formula I may be biosynthesized by various microorganisms. Microorganisms that may synthesize the compounds of the present invention include but are not limited to bacteria of the order Actinomycetales, also referred to as actinomycetes. Non-limiting examples of members belonging to the genera of Actinomycetes include *Nocardia*,

Geodermatophilus, Actinoplanes, Micromonospora, Nocardioides, Saccharothrix, Amycolatopsis, Kutzneria, Saccharomonospora, Saccharopolyspora, Kitasatospora, Streptomyces, Microbispora, Streptosporangium, Actinomadura. The taxonomy of actinomycetes is complex and reference is made to Goodfellow (1989) Suprageneric classification of actinomycetes, Bergey's Manual of Systematic Bacteriology, Vol. 4, Williams and Wilkins, Baltimore, pp 2322-2339, and to Embley and Stackebrandt, (1994), and The molecular phylogeny and systematics of the actinomycetes, Annu. Rev. Microbiol. 48, 257-289 (1994), for genera that may synthesize the compounds of the invention, incorporated herein in their entirety by reference.

Microorganisms biosynthetically producing compounds of Formula I are cultivated in culture media containing known nutritional sources for actinomycetes having assimilable sources of carbon, nitrogen plus optional inorganic salts and other known growth factors at a pH of about 6 to about 9, non-limiting examples of growth media are provided in Table 4 below. Microorganisms are cultivated at incubation temperatures of about 20°C to about 40°C for about 3 to about 40 days.

Table 4. Examples of Growth Media for Production of Compounds of Formula

Component	VA	QB	GA*4	MA	NA	KH	OA	НА	RM	EA	KA	CA
pH*5	7	7.2		7.5	7	7	7		6.85	7	5.7	7
Glucose	50	12	10			10	10	10	10	5	10	10
Sucrose			103					340	100	 		
Lactose										50		
Cane molasses					10					·	1	15
Soluble starch		10		25						 	<u> </u>	_
Potato dextrin						20						40
Corn steep										5	 	
Corn steep		5					3			<u> </u>	10	† —
Dried yeast				2			***				5	
Yeast extract			5			5	3	3	5			
Malt extract							3	3				
Pharmamedia™		10										*
Glycerol					20		5			15	5	
NA-Amine A						5						10
Soybean				15							10	•
Soybean flour	30									10		
Beef extract						_	3				**	
Bacto-peptone					1			5		5		
MgSO ₄ .7H₂O					" -					0.5		1
MgCl ₂ . 6H ₂ O			10.12									
CaCO ₃	6		-	4	4	1	2			3	2	2
NaCl	5			5							5	
(NH ₄) ₂ SO ₄	3			2						2		
K ₂ SO ₄			0.25						0.25			
MnCl ₂ .4H ₂ O								_		0.1		
MgCl ₂ .6H ₂ O								1	10			
FeCl ₂ .4H ₂ O										0.1		
ZnCl ₂										0.1		
Thiamine						\neg	0.1					
Casamino acid			0.1		5				0.1			
Proflo oil		4										
MOPS									21			
Trace element solution *3 ml/L									2			

Unless otherwise indicated all the ingredients are in gm/L. *3 Trace elements solution contains: ZnCl₂ 40 mg; Fe Cl₃ 6H₂O (200 mg); CuCl₂ 2H₂O (10 mg); MnCl₂.4H₂O; Na₂B₄O₇.10H₂O (10mg); (NH₄) 6 Mo₇O₂₄.4H₂O (10 mg) per litre.

^{*4} Dissolve components in 800 ml water and autoclave, later add: 10 ml KH₂PO₄ (0.5% solution); 80 ml CaCl₂.2H₂O (3.68 % solution); 15 ml L-proline (20% solution); 100 ml TES buffer (5.73% solution, pH 7.2); 5 ml NaOH (1N solution), and 2 ml of trace elements

solution.

*5 The pH is to be adjusted as marked prior to the addition of CaCO₃ in those media containing it.

The culture media inoculated with the microorganisms which biosynthetically produce compounds of Formula I, may be aerated by incubating the inoculated culture media with agitation, for example shaking on a rotary shaker, or a shaking water bath. Aeration may also be achieved by the injection of air, oxygen or an appropriate gaseous mixture to the inoculated culture media during incubation.

After cultivation and production of compounds of Formula I, the compounds can be extracted and isolated from the cultivated culture media by techniques known to a skilled person in the art and/or disclosed herein, including for example centrifugation, chromatography, adsorption. For example, the cultivated culture media can be mixed with a suitable organic solvent such as n-butanol, n-butyl acetate and 4-methyl-2-pentanone, the organic layer can be separated for example, by centrifugation followed by the removal of the solvent, by evaporation to dryness or by evaporation to dryness under vacuum. The resulting residue can optionally be reconstituted with for example water, ethanol, ethyl acetate, methanol or a mixture thereof, and re-extracted with a suitable organic solvent such as hexane, carbon tetrachloride, methylene chloride or a mixture thereof. After removal of the solvent, the compound of Formula I can be further purified by the use of standard techniques such as chromatography.

The compounds of Formula I that are biosynthesized by microorganisms may optionally be subjected to random and/or directed chemical modifications to form compounds that are derivatives or structural analogs of compounds of Formula I. Derivatives or structural analogs of compounds of Formula I having similar functional activities are within the scope of the present invention. Compounds of Formula I may optionally be modified using methods known in the art and described herein.

Unless otherwise indicated, all numbers expressing quantities of ingredients and properties such as molecular weight, reaction conditions, IC₅₀ and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in the present specification and attached claims are approximations. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the

scope of the claims, each numerical parameter should at least be construed in light of the number of significant figures and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set in the examples, Tables and Figures are reported as precisely as possible. Any numerical values may inherently contain certain errors resulting from variations in experiments, testing measurements, statistical analyses and such.

The compounds of Formula I, Formula II and compound 2(a) may optionally be chemically modified using methods known in the art and described herein.

The compounds of the invention are made by biofermentation and well-known chemical schemes. The schemes described herein are exemplary, any chemical synthetic process known to a person skilled in the art providing the structures described herein, may be used and are therefore comprised in the present invention.

SCHEME 1 Acylation Reactions

AA represents a naturally occurring amino acid

$$\label{eq:edge_energy} \begin{split} &\text{EDC} = \text{1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide} \\ &\text{Protective groups include N-benzyloxycarbonyl (CBZ), N-butoxycarbonyl (BOC), N-fluoren-9-ylmethoxycarbonyl (FMOC)} \\ &\text{R}^{x} \text{ represents } C_{1-6} \text{ alkyl, } C_{2-6} \text{ alkenyl, aryl or heteroaryl} \end{split}$$

$$H_2N$$
 R^X
 H_2N
 H_2N
 K_2CO_3
 H_2N
 NH_2
 NH_2
 NH_2
 NH_3
 NH_4
 NH_4

1. EDC =
$$N$$
-protected AA

H₂N

2. Deprotection, e.g.
H₂/Pd, TFA. etc.

Scheme 2. Aminations/reductive aminations of terminal nitrogen

Scheme 3. Olefin reactions

Scheme 4. Ketone reactions

R¹ and R⁸ are as previously defined.

Scheme 5. O- Reactions

 R^1 , R^5 and R^6 are as peviously defined.

Scheme 6. Hydrolysis/Esterification

Scheme 1 is used to obtain Compounds 2(m), 2(n), 2(o), 2(p), 2(q), 2(r), 2(s), 2(t), 2(u), 2(v), 2(w), 2(x), 2(y), 2(z), 2(aa), and 2(ab) from Compound 2(a).

Scheme 3 is used to obtain Compound 2(b) from Compound 2(a).

Scheme 4 is used to obtain Compounds 2(c), 2(d), 2(e) and 2(f) from Compound 2(a).

Scheme 6 is used to obtain Compounds 2(g), 2(h), 2(i) and 2(j) from Compound 2(a).

The features of the invention are further described below by way of examples and are not to be construed as limiting in their scope.

Example 1 Production of Compound 2(a) by Fermentation

Example 1(A): Preparation of Strain [C03U03]023

Strain [C03]023: Streptomyces aizunensis NRRL B-11277 was plated on three tomato paste oatmeal agar (ATCC medium 1360) plates for sporulation at 28 °C. The plates were incubated for a period of 5-7 days, after which spores were collected from each plate into 5 ml sterile distilled water. spun down by centrifugation at 5000 rpm (10 min), and dispersed in 20 ml sterile water. After a second centrifugation under the same conditions the pellet was resuspended in 10 ml sterile distilled water. A series of ten-fold dilutions of the original spore suspension were prepared and 0.5 ml aliquots plated on tomato paste-oat meal agar until sporulation occurred (5-7 days). Each individual clone from the plates with single well-isolated colonies (generated from 10⁻⁸ to 10⁻¹⁰ dilutions of the spore suspension) was chosen and transferred to one plate of tomato paste-oat meal agar to generate spores for storage. Each clone was grown in 25x150 mm glass tubes for its production of Compound 2(a). A total of 385 clones were tested for production levels of Compound 2(a). Clone [C03]023 showed a production of 3 times better than the wild-type strain. This clone was chosen, stored, and used for mutagenesis.

Strain [C03U03]023: An aqueous spore suspension of [C03]023 was mutagenized by UV radiation (254 nm) at different energy levels (expressed as mJoules per surface area). Clone [C03U03]023 obtained at 0.4 mJ/1 cm² showed slightly more than three times better production than the parent clone [C03]023. Production of Compound 2(a) by the new clone has been consistently reproducible both in shaken flask (500 ml medium QB or VA in 2-L baffled flasks) and in 100-L fermentors with medium VA.

Example 1(B) Activation of lyophilized sample of Strain [C03U03]023

Strain [C03U03]023 was provided as a lyophilized pellet. The lyophilized sample was opened under aseptic conditions, and 0.3-0.5 ml of medium ITSB was added to the sample to make a cell suspension. The cell suspension was transferred to 25 ml of medium ITSB (described below) in a 125-ml flask to form a liquid culture. The liquid culture was incubated at 28 °C

for 3-5 days until visible growth occurred. Purity of the culture was tested by streaking a loop on ISP2 agar plate.

Example 1(C): Preparation and Storage of glycerol stocks of Strain [C03U03]023

Strain [C03U03]023 was grown for 7-10 days at 28°C on several tomato paste-oat meal agar plates. Surface growth was collected from each plate into 5 ml sterile distilled water, spun down by centrifugation at 5000 rpm (10 min), and dispersed in 10 ml sterile water. After a second centrifugation under the same conditions the pellet was resuspended in 2 ml sterile 25% glycerol and 0.5-ml aliquots were stored at –80 °C in screw-capped vials. In addition to the glycerol stocks, the collected cell mass could be resuspended in 15% sterile skim milk and dispensed in 0.5-ml aliquots into glass ampoules and lyophilized following standard procedures.

Example 1(D): Preparation of Seed Culture

A vial containing frozen mycelia prepared as described in Example 1(C) was taken out of freezer and kept on dry ice. Under aseptic conditions, a loopfull of the frozen culture was taken and streaked on the surface of tomato paste-oat meal agar plate and incubated at 28°C until vegetative mycelium appeared (5-7 days). In order to start the seed culture, 2-3 loopfull of the surface growth obtained from the tomato paste-oat meal agar plate was transferred to a 1.5-ml Eppendorf tube containing 300 µl of medium ITSB. The mycelium with agar fragments was homogenized, and 1 ml of medium ITSB was added to the suspension. The content was used to inoculate two 125-ml flasks containing 25 ml of sterile medium ITSB. The flasks were incubated at 28°C for 65-70 hours in a rotary shaker at 250 rpm. This seed culture was then used to inoculate production medium QB or VA.

Example 1(E): Production of Compound 2(a) by Fermentation

A sample of the seed culture prepared as described in Example 1(D) above was checked microscopically for any possible contamination. A sample of the seed culture was then streaked onto one ISP2 plate (control plate) and incubated at 28 $^{\circ}$ C. From the seed culture under aseptic conditions, 10 ml was

taken and used to inoculate each 2 Liter baffled flask containing 500 ml of sterile medium QB or VA. The fermentation batches were incubated aerobically with shaking (250 rpm) at 28°C for a period of 7 days. After 3-5 days of incubation the control plate was checked for purity of the culture.

The compositions of the growth media used in Examples 1(A) - 1(E) are given below. Note that either of Production media QB or VA may be used in the production of Compound 2(a); however, production medium VA is preferred when conducting the fermentation on a large scale.

Seed Medium ITSB:

Trypticase Soy Broth (Difco) 30 g	
Yeast extract (Sigma)	3 g	
MgSO ₄ (Sigma)	2 g	
Glucose (Sigma)	5 g	
Maltose (Sigma)	4 g	-
Distilled water	1 L	
Production Medium VA		
Glucose	50g	
Soybean Flour	30g	
CaCO ₃	6 g	
NaCl	5g	
$(NH_4)_2SO_4$	3 g	
Distilled water	· 1L	
Production Medium QB:	•	
Soluble starch (Sigma)	10 g	
Glucose (Sigma)	12 g	
Pharmamedia (Traders protein)	10 g	
Corn steep liquor (Sigma)	5 g	
Proflo oil (Traders Protein)	4 mL ¹	*
Distilled water	1 L	

^{*} Adjust pH to 7.2, then add Proflo oil

Tomato paste Oatmeal Agar:

WO 2004/065401	100	PCT/CA2004/000068
Baby Oatmeal Food (Heinz)	20 g	
Tomato Paste	20 g	
Agar	15 g	
Tap water	1 L	•

The production of Compound 2(a) may also be carried out in the production media having the compositions as indicated in Table 4, *supra*, in order of preference.

Example 2 Isolation of Compound 2(a)

pH 7.0

Thirty minutes prior to harvest of Compound 2(a) from the fermentation broth of the baffled flasks of Example 1E, regenerated, water-washed, Diaion HP-20® in a quantity of wet-packed volume equal to 12% of the initial fermentation beer volume was added to the whole fermentation broth of Example 1E and modest agitation was continued for 30 minutes. At harvest the fermentation broth from 2 x 500 ml flasks was centrifuged and the supernatant was decanted from the resin and mycelia pellet. The pellet was resuspended in 15% MeOH in water (half the original fermentation beer volume), agitated mildly and recentrifuged, and the surpernatant was decanted from the residue. The residue was washed a second time in the same manner with another 15% MeOH in water, followed by a single final wash with methanol: water (7:3 v/v) (half the original fermentation beer volume) to obtain a well-washed residue. The well-washed mycelia:resin residue was extracted three times with 100% ethanol, each extract being at 20% original beer volume. The three extracts were combined and concentrated under vacuum on a rotary evaporator, to dryness.

The three extracts (representing material from 2 x 500 ml flasks) were combined, filtered on paper and concentrated under vacuo to remove organic solvents. The resulting semi-solid residue (aqueous suspension) of crude Compound 2(a) represented greater than 90% of the respective compounds produced and was about 25% pure. The aqueous suspension was freezedried overnight to give 460 mg of a dark brown solid. The solid was stirred

with 10 ml of methanol and centrifuged for 2 minutes to remove insoluble matter.

The semi-solid residue of crude Compound 2(a) was then purified using a Waters Xterra® preparative MS C-18 column with 10 µm packing of dimensions 19 mm diameter x 150 mm length, using the following gradient table (Table 5) from 5mM aqueous ammonium bicarbonate to acetonitrile.

Table 5:

Time (min)	% Aqueous	% Acetonitrile		
0	70	30		
5	45	55		
10	70	30		

The eluate was monitored at 390 nm, a single run was loaded with 23 mg of crude residue in 0.5 ml of methanol, and a conservative cut of the peak eluting at 3.4 minutes afforded compound 2(a). Nineteen runs were conducted to yield 33 mg of product with about 95% purity.

Example 3 Structural Determination of Compound 2(a)

The structure of compound 2(a) was determined by a combination of genomic information and spectroscopic data, including Mass, UV, and NMR spectroscopy. The Mass was determined by electrospray mass spectrometry to be 1297 (Figure 13) and the UV λ_{max} were found to be 319, 333, 350 (Figure 14). The NMR data were collected at 500 MHz with the compound 2(a) dissolved in MeOH-d4, and included proton (Figure 15A), carbon-13 (Figure 15B), and multidimensional pulse sequences gDQCOSY, gHSQC, gHMBC, and TOCSY (Figures 15C, 15 D, 15E and 15F, respectively).

Streptomyces aizunensis NRRL B-11277 was grown on oat meal agar plates for 5-7 days. The surface growth was collected and washed with water, and DNA was extracted following standard procedures (T. Kiesser *et al.* Practical Streptomyces Genetics, The John Innes Foundation, Norwich, UK, 2000). The genomic library was produced in cosmid and plasmid vectors, and the genome was scanned for the presence of gene sequence tags (GSTs) related to the biosynthesis of secondary metabolites as described in E. Zazopoulos et al., Nature Biotechnology 21:187-190 (2003). The GSTs

were used to isolate cosmids containing the compound 2(a) locus. The PKS system found within the compound 2(a) locus was determined to contain 9 PKS genes containing 27 modules. (The analysis of this PKS system is fully described elsewhere herein; see, e.g., Table III and accompanying text). Full analysis of the PKS and associated genes led to the prediction of a structure of Formula 1 below.

The position of the glycosidic linkage to the sugar moiety could not be determined by the genomic analysis; however, the positioning of the aminohydroxycyclopentenone unit was determined by analogy with its placement in other actinomycete metabolites (Colabomycin A from *Streptomyces griseoflavus* Tue 2880, J. Antibiot. 1988, 41, 1178-85, 1186-1195 or Enopeptin-A from *Streptomyces griseus*, Osada et al., J. Antibiot. 44, 1463-6 1991).

To obtain expression of these genes, and the end product of this biosynthesis pathway, *S. aizunensis* NRRL B-11277 was grown in several different media designed for the production of secondary metabolites in shaken flasks. At harvest the broth was diluted with an equal volume of methanol to induce cell lysis, and the diluted, clarified broth was concentrated 10 fold. An aliquot (50 μ L) from the concentrate from each medium was chromatographed on a Waters Xterra C-18 HPLC column (19 x 150 mm) at a flow rate of 1mL/min and monitored by diode array detector (DAD) UV and positive and negative ion MS. Fractions (800 μ L) were collected and tested for antimicrobial activity against a panel of indicator strains. From the extracts of several different media, HPLC fractions in the number 39 to 45 region exhibited strong activity against *Candida albicans* and this correlated with a UV absorption λ_{max} 319, 333, and 351 nm, and with strong MS peaks at m/z 1298 (positive ion mode) and 1296 (negative ion mode). These physical characteristics were entirely consistent with a metabolite of formula 1.

A high yielding medium was chosen and the organism was regrown on a 2-liter scale. The compound 2(a) was extracted from the mycelial pellet with methanol and acetone, and from the broth with Diaion HP-20[®] resin, from which it was recovered with methanol after the resin had been washed with methanol/water 3:2. The crude extracts were purified by HPLC on a Waters Xterra C-18 column (19 x 150 mm) using an aqueous (5 mM ammonium bicarbonate) / acetonitrile gradient.

Compound 2(a), a yellow solid of MW 1297 Da (C₇₀H₁₀₈N₂O₂₀ requires 1296.75) λ_{max} 319, 334, and 351 nm was the subject of a series of 1D and 2D NMR measurements including a CMR, ¹H-NMR, gDQCOSY, gHSQC, gHMBC, TOCSY, gHSQCTOXY, and several 1D TOCSY experiments. See Figures 15A – 15E. Analysis of these spectra led to the assignments shown for compound 2(a) in Figure 17. Although considerable overlap of signals rendered unambiguous assignments of all of the signals to specific protons and carbons impractical, those that could be made unambiguously confirmed the structure predicted from the genomics. A major cross peak in the gHMBC spectrum between the well separated proton resonance at 4.01 ppm and the anomeric carbon at 102.6 ppm placed the sugar as shown, as this proton falls within a 14 carbon section of the major chain with fully assigned carbon and proton signals. A well resolved carbon spectrum with high signal to noise ratio showed that the unassigned methylene carbons were at 42.0, 45.3, 45.4 and 46.6 ppm. Analysis by gHSQC indicates that that these were attached to protons at 2.24, 1.62, 1.50 and 1.68, and 1.55 ppm respectively. Similarly the unassigned carbinols at 66.2, 66.2 (resolved), 67.2 and 69.0 ppm attached to protons at 4.06, 4.08, 4.22 and 3.89 ppm respectively and the unassigned olefinic carbons at 129.1, 131.0, 131.9, 133.3, 133.7, 134.3, 134.8, 136.5, and 138.0 ppm attached to protons at 5.72, 5.72, 6.28, 6.25, 6.28, 6.25, 6.19, 5.53, and 5.86 respectively. The aminohydroxycyclopentenone signals were not straightforward and reflected the tautomeric equilibrium of this moiety. The upfield methylene signal and the downfield carbonyl signals were only 10% of the intensity of those from the other tautomer. The signal from C-1 of this moiety was not detected, a phenomenon which has been previously ascribed to tautomerization for the same structural unit. See, He, H.; Shen, B.;, Korshalla, J.; Siegel, M.M.; Carter, G.T. J. Antibiot. 2000, 53, 191~195.

104

The MIC determination for fungal and bacterial organisms was performed using the broth microdilution assay adapted from National Committee for Clinical Laboratory Standards (NCCLS) M27-A (Vol. 17 No. 9, 1997), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard guidelines: M23-A: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, vol. 22, No. 16.

Materials:

- 1) Overnight broth cultures of bacterial and fungal strains to be tested;
- 2) Stock solution of Compound 2(a) at 3.2 mg/ml in DMSO;
- 3) Standard 96 well round-bottom plates, sterile;
- 4) Cation adjusted Mueller-Hinton broth, or Brain Heart Infusion broth (for antibacterial testing);
- 5) Morpholinepropanesulfonic acid (MOPS)-buffered RPMI-1640 medium (for antifungal testing);
- 6) Sterile isotonic saline (0.85%);
- 7) McFarland 0.5 Barium Sulfate Turbidity Standard at 100 X 3.2mg/ml.

Test compound preparation: The test article was prepared as 100x stock solutions in DMSO, with concentrations ranging from 3.2 mg/ml to 0.0625 mg/ml (a two-fold dilution series over 10 points). The first dilution (3.2mg/ml) was prepared by resuspending 0.5 mg of each test article in 156.25 µl of DMSO. The stock is then serially diluted by two-fold increments to obtain the desired concentration range.

<u>Inoculum preparation:</u> For fungal strains, the inoculum was prepared as follows. From an overnight culture in Yeast Media broth, cell density was

adjusted in 0.85% saline to 0.5 McFarland. This procedure yielded a stock suspension of about 5 X 10⁶ cells/ml. Following thorough vortexing, a working suspension was prepared by diluting the stock 1:50 in RPMI 1640, and then further diluting it 1:20 with RPMI 1640 to obtain the 2x test inoculum (about 5 X 10³ cells/ml). For filamentous fungi, the inoculum was prepared as follows. From a spore suspension kept at 4°C, an appropriate dilution in 0.85% saline was made to obtain a final optical density 600 between 0.09-0.11. A working suspension was then prepared by diluting the spore suspension 50 times in RPMI to obtain the 2x test inoculum (about 1 X 105 CFU/ml).

MIC Determination: The 100X test article solutions were diluted 50 times in RPMI 1640, MH or BHI media and dispensed in a 96 well plate, one concentration per column, 10 columns in total. The 11th column contained RPMI 1640 with 1% DMSO with cells, the 12th column contained 100 μ I of RPMI 1640 alone.

50 μl of the final cell dilution (yeast, filamentous fungi or bacteria) of each indicator strain was added to each corresponding well of the microplate containing 50 μl of diluted drug or media alone. Assay plates were incubated at 35°C for up to 72 hrs. MIC readings were determined at 24 and 48 hrs for the *Candida* and *Aspergillus* species, and at 48 and 72 hrs for *Cryptococcus neoformans*. MIC readout for each indicator was determined as the lowest concentration of test compound resulting in total absence of growth.

Table 6: MIC (µg/ml) for Compound 2(a) for various strains of yeast and fungi

	MIC	(µg/ml)
Yeasts and filamentous fungi	24 hrs	48 hrs
Candida albicans ATCC 10231	4	4
Candida krusei LSPQ 0309	8	8
Candida glabrata LSPQ 0250	4	8
Candida lusitaniae ATCC 200953	4	4
Saccharomyces cerevisiae ATCC 9763	4	4
Cryptococcus neoformans ATCC 32045	2*	4**
Aspergillus flavus ATCC 204304	4	8
Aspergillus fumigatus ATCC 204305	16	16

^{* 48} hrs reading; ** 72 hrs reading

Example 5. In vitro activity of compound 2(a) against *Aspergillus* species

To determine the antifungal activity of compound 2(a) against Aspergillus species (A. fumigatus and A. flavus) a disk diffusion assay was used to determine the minimum effective concentration (MEC) as described by Wong GK, Griffith S, Kojima I and Demain AL. Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin. J. Antibiotics, 51(5): 487-491,1998. Such assay is commonly used to reveal activity of antifungal drugs against filamentous fungi such as Aspergillus sp. (Arikan S, Yurdakul P, Hascelik G. Comparison of two methods and three end points in determination of in vitro activity of micafungin against Aspergillus spp. Antimicrobial Agents and Chemotherapy 47(8): 2640-2643, 2003).

<u>Preparation of the inoculum:</u> After spreading on YM agar (in cell culture flasks), *Aspergillus* strains (*A. flavus* – ATCC 204304 and *A. fumigatus* - LSPQ 204305) were left sporulating for 4 to 5 days at 35°C. After the addition

of 10 to 20 ml of saline solution (0.85% NaCl), spores were collected by gently rubbing the surface of the conidiophores with a disposable inoculation loop. *Aspergillus* spore suspensions, kept at 4°C, were used as the inoculum for the disc assays.

Preparation of the disks: Stock solutions (5 mg/ml) in methanol and dilutions (0.25, 0.5, 1.0, 2.5, 5.0, 7.5, 10.0 and 50.0 μ g/ml), prepared by serial dilutions of stock solution in methanol were prepared for the test article and each of the control compounds. Itraconazole and casponfungin were used as positive controls while fluconazole or DMSO alone were used as negative controls. Drug-containing disks were prepared by spotting of 10 μ l of the proper drug solution (or methanol as control) onto filter disks that were then allowed to air-dry.

Agar plate preparation: Aspergillus spore suspensions were adjusted to about 81% of transmittance at 530 nm in saline solution. 200 μ l of the adjusted inoculum was then mixed with 50 ml of melted 0.8% YM agar (cooled to ~50°C), mixed thoroughly and poured in a 150 mm Petri dish. Once the agar was set, the prepared filters were loaded onto the plates, which were incubated at 35°C. The zone of inhibition (ZOI) of fungal growth was measured after 24 hours of incubation.

Results: Data presented in Table 7 show the lowest concentration (MEC) inducing inhibition of the fungal growth and the corresponding ZOI obtained at this concentration for compound 2(a) and the controls. Results demonstrated that compound 2(a) was active against *Aspergillus fumigatus* and *Aspergillus flavus*. Similar effect was obtained for itraconazole and caspofungin while fluconazole was inactive.

Table 7

	Aspergillus fumigatus		Aspergillus flavus	
	MEC (μg/ml)	ZOI (mm)	MEC (μg/ml)	ZOI (mm)
lethanol	0	0	0	0
compound 2(a)	2.5	2.7	2.5	2.7
raconazole	1.0	1.7	0.5	1.7
asponfungin	2.5	0.7	2.5	0.7
luconazole	0	0.	0	0

MEC: mimimum effective concentration

ZOI: zone of inhibition of fungal growth calculated for each MEC

Example 6. Evaluation of Antifungal Activity of Compound 2(a) in a Mouse Model of Disseminated Candidiasis

Compound 2(a) was provided as a dry powder with an estimated purity of 95+%. Fungizone (amphotericin B desoxycholate, to be used as a comparitor), was also provided as a dry powder with an estimated purity of 95+%. The compound 2(a) and Fungizone were stored as dry powders at -80°C until the day of administration.

Female mice (species *Mus musculus*, strain CD-1, Charles River) with body weight range of 22-24 g were used in the study. The animals were observed for 3 days before treatment. All animal experiments were performed at the Ste-Justine Hospital (Montreal, Quebec) according to ethical guidelines of animal experimentation of the ethical committee of the hospital. During the study, dead or apparently sick animals were promptly removed and sick mice were euthanized upon removal from the cage.

The animals were maintained in rooms under controlled conditions of temperature (23±2°C), humidity (45±5%), photoperiodicity (12 hrs light / 12 hrs dark) and air exchange. The animals were housed in polycarbonate cages (4/single cage) equipped to provide food and water. Sterile wood

shavings were used for animal bedding and the bedding was replaced every other day. Food (Harlam Tecklab, Canada) and autoclaved tap water was provided *ab libitum*, the food being placed in the metal lid on top of the cage. Water bottles were equipped with rubber stoppers and sipper tubes and were cleaned, sterilized and replaced once a week.

Six groups of mice (10 mice per group) were infected intravenously with 3 x 10⁶ CFU of *C. albicans* SC5314 as previously described (see Dubois, N., et al., *Microbiology* 1998, 144: 2299-2310). Twenty-four hours after infection, each individual group of mice was treated with Compound 2(a) (1 or 3 mg/kg i.p.), Fungizone (0.25, 0.5 or 1 mg/kg i.p.) as comparitor, or shamtreated with sterile water containing 5% dextrose and 3% DMSO. Each animal received 100 µl of test solution.

The treatment regimen was repeated once daily for a total of 4 days. The mice were observed twice daily for signs of morbidity over 21 days. Moribund animals were scored as non-survivors and euthanized by CO₂ inhalation. The Kaplan and Meier product limit estimate was used to analyze survival data and plot the survival function.

Table 8: Survival Rates Over Time After Inoculation with Compound 2(a) and Fungizone

Groups	Treatment	Dose (mg/kg)	Median survival
1	Vehicle		5 days
2	Compound 2(a)	1.0	8.5 days
3	Compound 2(a)	3.0	20 days
4	Fungizone	0.25	>21 days
5	Fungizone	0.5	>21 days
6	Fungizone	1.0	>21 days

As indicated in Table 8, compound 2(a) has *in vivo* antifungal activity similar to a dose of 0.25 mg/kg of Fungizone and increases 4-fold the median survival time of infected mice.

The data (percent survival versus days post-inoculation) was plotted; the resulting graph is shown in Figure 16.

Example 7. In Vitro Antitumor activity of Compound 2(a)

In vitro antipoliferative study of Compound 2a was performed by the National Cancer Institute (National Institutes of Health, Bethesda, Maryland, USA) against a panel of cancer cell lines in order to determine the concentrations needed to obtain a 50% inhibition of cell proliferation (IC₅₀). The operation of this unique screen utilizes 60 different human tumor cell lines, representing leukemia, melanoma, and cancers of the lung, colon, brain, ovary, breast prostate and kidney. Compound 2(a) was provided as a lyophilized powder with an estimated purity of 90+%. The compound was stored at -20°C until day of use.

The human tumor cell lines of the cancer-screening panel were grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. For a typical screening experiment, cells were inoculated into 96 well microtiter plates in 100 µl at plating densities ranging from 5000 to 40,000 cells/well depending on the doubling time of individual cell lines (Table 8). After cell inoculation, the microtiter plates were incubated at 37 °C, under 5% CO₂, 95% air and 100% relative humidity for 24 hours prior to addition of the experimental drugs.

After 24 hours, two plates of each cell line were fixed *in situ* with TCA, to represent a measurement of the cell population for each cell line at the time of drug addition (Tz). Compound 2(a) was solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate was thawed and diluted to twice the desired final maximum test concentration with complete medium containing 50 μ g/ml gentamicin. Additional four, serial dilutions were made to provide a total of five drug concentrations plus control. Aliquots of 100 μ l of these different drug dilutions were added to the appropriate microtiter wells already containing 100 μ l of medium, resulting in the required final drug concentrations (2.5 x 10⁻⁵ M to 2.5 x 10⁻⁹ M).

Following drug addition, the plates were incubated for an additional 48 hours at 37°C, 5 % CO₂, 95 % air, and 100 % relative humidity. For adherent

cells, the assay was terminated by the addition of cold TCA. Cells were fixed *in situ* by the gentle addition of 50 μ I of cold 50 % (w/v) TCA (final concentration, 10 % TCA) and incubation for 60 minutes at 4°C. The supernatant was discarded, and the plates were washed five times with tap water and air-dried. Sulforhodamine B (SRB) solution (100 μ I) at 0.4 % (w/v) in 1 % acetic acid was added to each well, and plates were incubated for 10 minutes at room temperature. After staining, unbound dye was removed by washing five times with 1 % acetic acid and the plates were air-dried. Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance was read on an automated plate reader at a wavelength of 515 nm. For suspension cells, the methodology was the same except that the assay was terminated by fixing settled cells at the bottom of the wells by gently adding 50 μ I of 80 % TCA (final concentration, 16 % TCA).

The growth inhibitory power of compound 2(a) was measured by NCI utilizing the GI_{50} value, rather than the classical IC_{50} value. The GI_{50} value emphasizes the correction for the cell count at time zero and, using the seven adsorbance measurements [time zero (Tz), control growth (C), and the test growth in the presence of drug at each of the five concentration levels (Ti)], GI_{50} is calculated as $[(Ti - Tz) / (C - Tz) \times 100 = -50$. which is the drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation. The GI_{50} values for compound 2(a) for the various cell lines tested are presented in Table 9 below.

Table 9: NCI Developmental Therapeutics Program In-Vitro Testing Results for Compound 2(a)

Cell Line	Panel name	Inoculation density (no. of cells per well)	GI ₅₀ (x 10 ⁻⁶ , unless otherwise indicated)
K-562	Leukemia	5000	9.18
MOLT-4	Leukemia ,	30,000	5.57
A549/ATCC	Non-small cell lung cancer	7500	4.09

EKVX	Non-small cell	20,000	5.87
	lung cancer	, , , , , ,	0.07
HOP-62	Non-small cell	10,000	6.83
HOP-92	lung cancer Non-small cell	00.000	0.77 40-8
1101-92	lung cancer	20,000	9.77 x 10 ⁻⁸
NCI-H226	Non-small cell	20,000	3.10
	lung cancer		
NCI-H23	Non-small cell	20,000	4.25
NOL HOOM	lung cancer		
NCI-H322M	Non-small cell lung cancer	20,000	3.48
NCI-H460	Non-small cell	7500	3.83
	lung cancer	7300	3.63
NCI-H522	Non-small cell	20,000	2.80
	lung cancer	-	
COLO 205	Colon cancer	15,000	5.00
HCC-2998	Colon cancer	15,000	6.03 x 10 ⁻⁸
HCT-116	Colon cancer	5000	4.18
HCT-15	Colon cancer	10,000	3.25
HT29	Colon cancer	5000	6.36
KM12	Colon cancer	15,000	2.76
SW-620	Colon cancer	10,000	5.35
SF-268	CNS cancer	15,000	3.64
SF-295	CNS cancer	10,000	3.91
SNB-19	CNS cancer	15,000	5.58
SNB-75	CNS cancer	20,000	3.87
U251	CNS cancer	7500	3.65
LOX IMVI	Melanoma	7500	3.73
MALME-3M .	Melanoma	20,000	2.40
M14	Melanoma	15,000	4.15
SK-MEL-2	Melanoma	20,000	4.34
SK-MEL-28	Melanoma	10,000	6.75
SK-MEL-5	Melanoma	10,000	4.16
UACC-257	Melanoma	20,000	3.74
UACC-62	Melanoma	10,000	2.68
IGROV1	Ovarian cancer	10,000	2.95
OVCAR-3	Ovarian cancer	10,000	3.40
OVCAR-4	Ovarian cancer	15,000	4.48
OVCAR-5	Ovarian cancer	20,000	4.00
OVCAR-8	Ovarian cancer	10,000	4.34
SK-OV-3	Ovarian cancer	20,000	7.94
786-0	Renal cancer	10,000	3.07
	1.101141 0411061	10,000	0.07

A498	Renal cancer	25,000	4.82
ACHN	Renal cancer	10,000	2.96
CAKI-1	Renal cancer	10,000	2.99
RXF 393	Renal cancer	15,000	1.20
SN12C	Renal cancer	15,000	1.38 x 10 ⁻⁷
TK-10	Renal cancer	15,000	3.32
UO-31	Renal cancer	15,000	3.65
PC-3	Prostate cancer	7500	2.66
DU-145	Prostate cancer	10,000	3.78
MCF7	Breast cancer	10,000	4.22
NCI/ADR-RES	Breast cancer	15,000	4.76
MDA-MB-	Breast cancer	20,000	3.38
MDA-MB-435	Breast cancer	15,000	3.26
BT-549	Breast cancer	20,000	4.59
T-47D	Breast cancer	20,000	6.00

The results indicate that compound 2(a) is effective against all the human tumor cell lines that have been assayed in the NCI screening panel suggesting a broad anticancer activity against several types of human cancer. In fact, the GI50 calculated for all cell lines was lower than 10 x10-6 M, a significant level of pharmacological activity for anticancer drugs, and in some cases reached the nanomolar or picomolar level (SN12C/renal carcinoma; HOP92/non-small cell lung carcinoma; HCC2998/colon carcinoma).

Example 8 Activation of inactive domains in the polyketide synthase system

The gene cluster encoding the Compound 2(a) derived from *Streptomyces aizunensis* strain NRRL B-11277 is genetically modified to reactivate the ketoreductase (KR) domain, which is encoded in the ORF 13 module 12. This modification results in the conversion of the central carbonyl group adjacent to the sugar molecule of Compound 2(a), to a hydroxyl group (as shown in Figure 12a).

In the compound 2(a) locus, the KR domain present in ORF 13, module 12 is inactive. To provide for the compound of Example 7 the KR domain is reactivated or swapped for an active KR domain. Reactivation of the KR domain requires diagnosis of the integrity of critical active site residues necessary for a functional KR domain. The active site residues can be divided into those required for co-enzyme activation of the KR enzyme and those for catalysis. Experiments identifying the specific residues for ketoreductase activity [Ried et. al. Biochemistry 2003, 42:72-79; Udo et.al., Biochemistry, 1997, 36:34-40] reveal that functional KR coenzyme binding site residues include glycine (G), glycine (G), alanine (A) and the functional KR active site residues include serine (S), tyrosine (Y) and asparagine (N). These residues are highlighted in Figures 6a and 6b. The sequence of the KR domain in the compound 2(a) locus shows that the coenzyme active site residues are glycine (G), glycine (G), alanine (A) indicating that this site is indeed active. However, the amino acid residues found in the KR site responsible for catalytic activity are serine (S), glutamine (Q) and asparagine (N) indicating that the catalytic site is likely to be inactive. This observation is confirmed by the fact compound 2(a) contains a carbonyl group at that specific position (Figure 10, module 12). Modification of the codon encoding glutamine to a codon encoding tyrosine provides for an active site residue required for functional ketoreduction of PKS monomers. This results in an altered nucleic acid sequence of the compound 2(a) locus used to modify a suitable host cell to produce the compound 2(a) variant of Example 7 as shown in Figure 12a.

The modification of glutamine to tyrosine may be introduced using a mismatched primer that hybridizes to the native nucleotide sequence at a temperature below the melting temperature of the mismatched duplex. The primer is kept specific by keeping primer length and base composition within narrow limits and keeping the mutant base centrally located as described in Zoller and Smith' Methods in Enzymol. (1983) 100:468. Primer extension is achieved using DNA polymerase. The product is cloned and positive clones containing the mutated DNA, derived by segregation of the primer extended strand, are selected. Selection is made using the mutant primer as a

hybridization probe (Dalbie-McFarland et al Proc. Natl. Acad Sci. USA (1982) 79:6409).

Another method to generate the compound of Example 7 involves swapping the inactive ketoreductase domain from the gene locus of the compound 2(a) (ORF 13 module 12) with an active ketoreductase domain from the same or different locus. Example of domains within the same locus suitable for swapping include the active ketoreductases that occur in the modules that encode the incorporation of methyl malonate extender units, namely ORF 16 modules 19 or 20. Swapping of acyltransferase domains between PKS loci has been demonstrated by Oliynyk *et.al.* Chem Biol, 1996, 3(10):833-9, wherein the gene encoding the acyltransferase domain in 6-deoxyerythronolide (DEBS) module 1 is swapped with the gene encoding the rapamycin module 2 acyltransferase resulting in the synthesis of novel triketides since the two acyltransferases had different acyl specificities. In Hans *et.al.* J Am Chem Soc, 2003, 125(18):5366-74, the kinetic aspects of product formation as a consequence of acyltransferase domain swaps is taught.

Swapping of domains is achieved using techniques developed by Kao et.al. Science, 1994, 265:509-512. The genetic strategy utilizes derivatives of pMAK705 to permit in vivo recombination between a temperature sensitive donor plasmid and a recipient shuttle vector by means of a double recombination event in *E.coli*. An Amp^R Tc^R recipient subclone of the regions flanking the domain to be swapped is made, pCK5, containing 1kb of flanking sequence from either flank. Endonuclease restriction sites are introduced at the boundaries of the domain, Pstl at 3' end of the left flank and Xbal at the 5' end of the right flank. Subclones pCK6 Cm^R of the domains to be swapped are generated and endonuclease restriction sites are introduced into the boundaries of the domain. The restriction site Pstl is introduced at the 5' boundary of the KR domain and an Xbal site at the 3' boundary of the domain. Restriction sites are introduced into subclones by PCR mutagenesis. The fragment containing the domain is excised and ligated into the temperature sensitive Cm^R donor plasmid, pCK6. The recipient plasmid is generated by in vivo recombination of the plasmid in the host strain using the selection method outlined by Kao *et.al.*, *supra*. After selection recombinant strains are produced with the domain of interest replacing the original domain.

Example 9 Inactivation of functional domains within the polyketide synthase system

The gene locus encoding Compound 2(a) derived from a *Streptomyces aizunensis* strain is genetically modified to inactivate the enoyl reductase (ER) domain in the ORF 17 module 22. Inactivation of this domain abolishes the conversion the double bond to the single bond between the acyl units incorporated by modules 21 and 22 of Compound 2(a) (as shown in Figure 12e).

Generating the compound of Example 8 is achieved through insertional inactivation by double crossover techniques developed by Oh and Chater, 1997, Journal of Bacteriology 179:122-127. Examples of insertional inactivation of genes involved in polyketide biosynthesis in *Streptomyces* are well known in the art. Arrowsmith *et.al.*, 1992, Mol Gen Genet 234:254-264, used these techniques to identify the role of a cassette of secondary metabolic genes in the production of monensin by *Streptomyces cinnamonensis*. Paradkar, *et.al.*, 2001, Appl Environ Microbiol 67:2292-7, inactivated the *lat* gene encoding for lysine aminotransferase to disrupt the first step in the cephamycin pathway to block production of cephamycin C in *Streptomyces clavuligerus*. Similarly, these authors inactivated the *cvm*1 gene involved in late stage antipodal clavam synthesis.

Methods used to inactivate domains in polyketide systems include domain swapping as described in Example 7 as well as targeted disruption by insertional gene inactivation. For this, a replicative plasmid-mediated homologous recombination is applied to *Streptomyces aizunensis*. Plasmids for homologous recombination are constructed by cloning a kanamycin resistance marker between the left and right flanking regions of the genes to be modified. Such a construct is cloned into a delivery plasmid that is marked with thiostrepton resistance producing a disruption plasmid. This plasmid is

introduced into *Streptomyces aizunensis* by either PEG-mediated protoplast transformation, by electroporation or by natural infection with a phage (Keiser *et al* (2000) Practical Streptomyces genetics, John Innes Foundation, Norwich). The spores from individual transformants or transconjugants are cultured on non-selective plates to induce recombination. The cycle is repeated three times to enhance the opportunity for recombination. Crossovers yielding targeted gene recombinants are then selected and screened using kanamycin and thiostrepton for single crossovers and kanamycin for double crossovers. Replica plating and southern hybridization are used to confirm the double crossover inactivation (Keiser *et al* (2000) *supra.*).

Example 10 Inactivation of the glycosyltransferase activity

Inactivation of the glycosyltransferase gene (GTFA) encoding ORF 9 of the compound 2(a) locus (as shown in Figure 12b) provides for the compound of this example. The inactivation of the GFTA disrupts the transfer of the sugar moiety onto the backbone of Compound 2(a). The absence of the sugar moiety results in a non-glycosylated form of Compound 2(a). Insertional inactivation of GTFA genes in polyketide biosynthesis in *Streptomyces* is known in the art. Blanco *et.al.*, 2000, Mol Gen Genet 262:991-1000, identified two genes of the mithramycin biosynthetic gene cluster as glycosyltransferases by the production of a non-glycosylated mithramycin upon inactivation of these genes. A similar observation was made by Chen *et.al.*, Gene, 2001, 263:255-64 investigating genes responsible for glycosylation in the biosynthetic pathways encoding pikromycin, narbomycin, methymycin and neomethymycin.

Targeted inactivation of the glycosyltransferase activity is achieved using the method of insertional gene disruption as described in Example 8.

Example 11 Elimination of the aminohydroxycyclopentenone unit

Elimination of the terminal aminohydroxycyclopentenone unit may be accomplished by inactivation of any one of the following three ORFs of the compound 2(a) locus. First, disruption of ORF 35 results in the inactivation of the acyltransferase (AYTP) activity (as shown in Figure 12c) that abolishes condensation of succinyl-CoA and glycine to form 5-aminolevulinate. Second, disruption of ORF 36 results in the inactivation of acyl CoA ligase (CALB) preventing the conversion of 5-aminolevulinate to 5-aminolevulinate-CoA which cyclizes to form aminohydroxycyclopentenone. Third, disruption of ORF 34 (ADSN) prevents transfer of the aminohydroxycyclopentenone unit to the polyketide chain. Thus, the compound of Example 10 is provided by genetically modifying at least one of ORFs 34, 35 and 36. Methods used for insertional inactivation of all three genes are described in Example 9.

<u>Example 12</u> Replacement of the terminal amine group with a guanidino group

The replacement of the terminal amine with a guanidino group may be accomplished by the insertional inactivation of ORF 33 (ADHY) using the methods described in Example 9. The inactivation of ORF 33 ADHY (as shown in Figure 12d) disrupts the synthesis of gamma-amino butanamide leading to the accumulation of 4-guanidino butanamide. The accumulated 4-guanidino butanamide is converted by ORF 27 CALB to 4-guanidino butyryl-CoA which is then attached onto the polyketide synthase enzyme (ORF 10, module 0 as shown in Figure 10b) through the action of ORF 19 (AYTF).

Example 13: Synthesis of Compound 2(b) by epoxidation of Compound 2(a)

Compound 2(b)

To a mixture of Compound 2(a) dissolved in tetrahydrofuran (THF) is added 1 equivalent of *meta*-chloroperbenzoic acid. The reaction is cooled in an ice bath and stirred at 0 °C for 1-2 hours. The reaction mixture is then evaporated to dryness, re-dissolved in methanol and subjected to liquid chromatography on a column of Sephadex LH-20 to isolate the Compound 2(b).

The epoxide group of Compound 2(b) may be hydrolyzed by treatment of Compound 2(b) with small quantity of aqueous hydrochloric acid (1.0 N), thereby forming the corresponding diol of the formula:

Example 14: Synthesis of Compound 2(c) by Reduction of 31-oxo group

Compound 2(c)

A solution of Compound 2(a) in acetonitrile is treated with 1.5 equivalents of NaCNBH₃. The reaction is stirred at room temperature for 1 hour. The reaction mixture is then concentrated to dryness and then taken up into methanol. The mixture is filtered and the filtrate is subjected to liquid chromatography on a column of Sephadex LH-20 to isolate the Compound 2(c). Alternatively, the reduction of the oxo group at the 31-position may be done using lithium borohydride (LiBH₄).

Example 15: Synthesis of Compound 2(d) by addition of acetal ring at the 31-position

A solution of Compound 2(a) in tetrahydrofuran is treated with 3 equivalents of 2,2-dimethyl-1,3-dioxacyclopentane in the presence of a trace amount of toluene sulfonic acid. The reaction is stirred overnight at room temperature, evaporated to dryness and taken up into dry THF, followed by purification by liquid chromatography on a column of Sephadex LH-20. The 2,2-dimethyl-1,3-dioxacyclopentane may be synthesized by reaction of acetone with ethylene glycol in the presence of a trace of toluene sulfonic acid, over molecular sieves to remove water.

Alternatively, the addition of an acetal ring at the 31-position may be accomplished by reaction of Compound 2(a) with an excess of ethylene glycol in the presence of a trace of toluene sulfonic acid. The reaction may be conducted over molecular sieves to remove water.

Example 16: Synthesis of Compound 2(e)

To a solution of Compound 2(a) in benzene or toluene is added 10 equivalents of benzylamine. The reaction is stirred at room temperature overnight. The reaction may be conducted over molecular sieves to remove water; alternatively, the water may be removed under reflux as an azeotrope with benzene or toluene using a Dean-Stark trap. The reaction mixture is concentrated under vacuum and residual reagent is removed by high vacuum at room temperature overnight.

The carbon-nitrogen double bond of Compound 2(e) may be reduced to the amine by reaction of Compound 2(e) with NaCNBH3 or LiBH4 (1.5 equivalents) in acetonitrile, to form a compound of the structure:

Example 17: Synthesis of Compound 2(f)

Compound 2(f)

To a solution of one equivalent of Compound 2(a) in acetonitrile is added ten equivalents of isobutylamine. The reaction is stirred at room temperature for two hours. Benzene (1/10 volume) is added and the mixture is concentrated to dryness under vacuum on a rotary evaporator.

The Schiff base is then treated with NaCNBH₃ or LiBH₄ (1.5 equivalents) in acetonitrile, to reduce the carbon-nitrogen double bond of the imine to the amine, to form the compound 2(f).

Example 18: Synthesis of Compound 2(g)

Compound 2(g)

Compound 2(g) may be synthesized biosynthetically as described in Example 9. Alternatively, Compound 2(g) may be prepared by hydrolysis of Compound 2(a). This is accomplished by treatment of Compound 2(a) in diethylether/THF with Meerwein's reagent (triethyloxonium tetrafluoroborate) for two hours at room temperature followed by cooling to -20 °C and dropwise addition of aqueous acetic acid in THF. The reaction mixture is stirred for 20 minutes during which time it is allowed to come to room temperature. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is

122

added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(g).

Example 19: Synthesis of Compound 2(h)

To a solution of 0.1 equivalents of Compound 2(g) in methanol is added 0.5 equivalents of diazomethane in diethyl ether. The reaction mixture is allowed to stand at room temperature overnight, and then the solvent is removed under vacuum to give compound 2(h).

Example 20: Synthesis of Compound 2(i)

A solution of Compound 2(a) in methanol is treated with an equal volume of 0.1N HCl, and the reaction mixture is stirred overnight at room temperature. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(i).

Example 21: Synthesis of Compound 2(j)

Compound 2(j) is prepared by hydrolysis of compound 2(g). The hydrolysis may carried out in the same way that compound 2(a) is hydrolysed to compound 2(i) as described in Example 19 above.

Example 22: Synthesis of Compound 2(k)

Compound 2(k) is prepared biosynthetically by inactivation of the enoyl reductase as described in Example 8.

Example 23: Synthesis of Compound 2(I)

Compound 2(I)

A solution of Compound 2(k) in acetonitrile is treated with 1.5 equivalents of NaCNBH₃. The reaction is stirred at room temperature for 1 hour. The reaction mixture is then concentrated to dryness and then taken up into methanol. The mixture is filtered and the filtrate is subjected to liquid chromatography on a column of Sephadex LH-20 to isolate the Compound 2(l). Alternatively, the reduction of the oxo group at the 31-position may be done using lithium borohydride (LiBH₄).

Example 24: Synthesis of Compound 2(m)

A solution of 10 equivalents of Compound 2(a) in acetonitrile is treated with one equivalent of acetaldehyde. The reaction is stirred at room temperature for two hours. Benzene (1/10 volume) is added and the mixture is concentrated to dryness under vacuum on a rotary evaporator to give the compound 2(m).

124

Compound 2(m) may be treated with NaCNBH₃ or LiBH₄ (1.5 equivalents) in acetonitrile, to reduce the carbon-nitrogen double bond of the imine to the amine.

Example 25: Synthesis of Compound 2(n)

Compound 2(n)

A solution of 10 equivalents of Compound 2(a) in acetonitrile is treated with one equivalent of benzaldehyde. The reaction is stirred at room temperature for two hours. Benzene (1/10 volume) is added and the mixture is concentrated to dryness under vacuum on a rotary evaporator to give the compound 2(n).

Compound 2(n) may be treated with NaCNBH₃ or LiBH₄ (1.5 equivalents) in acetonitrile, to reduce the carbon-nitrogen double bond of the imine to the amine.

Example 26: Synthesis of Compound 2(o)

Compound 2(o)

A solution of Compound 2(a) in tetrahydrofuran is treated with one equivalent of cyanamide. The reaction mixture is stirred at room temperature overnight. Solvent is removed from the reaction mixture under vacuum to give compound 2(o).

Example 27: Synthesis of Compound 2(p)

Compound 2(p)

To a solution of 10 equivalents of Compound 2(a) in acetonitrile is added 1 equivalent of acetone. The reaction is stirred at room temperature for two hours. Benzene (1/10 volume) is added and the mixture is concentrated to dryness under vacuum on a rotary evaporator.

The resulting Schiff base imine is then treated with NaCNBH3 or LiBH4 (1.5 equivalents) in acetonitrile, to reduce the carbon-nitrogen double bond of the imine to the amine, to form the compound 2(p).

Example 28: Synthesis of Compound 2(q)

Compound 2(q)

To a solution of 10 equivalents of Compound 2(a) in acetonitrile is added 1 equivalent of 4-nitrobenzaldehyde. The reaction is stirred at room temperature for two hours. Benzene (1/10 volume) is added and the mixture is concentrated to dryness under vacuum on a rotary evaporator.

The resulting Schiff base imine is then treated with NaCNBH3 or LiBH4 (1.5 equivalents) in acetonitrile, to reduce the carbon-nitrogen double bond of the imine to the amine, to form the compound 2(q).

Example 29: Synthesis of Compound 2(r)

Compound 2(r)

To a solution of 10 equivalents of Compound 2(a) in acetonitrile is added 1 equivalent of cyclohexylformaldehyde. The reaction is stirred at room temperature for two hours. Benzene (1/10 volume) is added and the mixture is concentrated to dryness under vacuum on a rotary evaporator.

The resulting Schiff base imine is then treated with NaCNBH₃ or LiBH₄ (1.5 equivalents) in acetonitrile, to reduce the carbon-nitrogen double bond of the imine to the amine, to form the compound 2(r).

Example 30: Synthesis of Compound 2(s)

Compound 2(s)

To a solution of Compound 2(a) in tetrahydrofuan is added one equivalent of acetic anhydride and two equivalents of triethylamine. The reaction is stirred at room temperature for two hours. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(s).

Example 31: Synthesis of Compound 2(t)

Compound 2(t)

To a solution of Compound 2(a) in is added one equivalent of isobutyrl anhydride and two equivalents of triethylamine. The reaction is stirred at room temperature for two hours. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(t).

Example 32: Synthesis of Compound 2(u)

Compound 2(u)

To a solution of Compound 2(a) in is added one equivalent of benzoic anhydride and two equivalents of triethylamine. The reaction is stirred at room temperature for two hours. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(u).

Example 33: Synthesis of Compound 2(v)

Compound 2(v)

To a solution of Compound 2(a) in is added one equivalent of p-nitrobenzoic anhydride and two equivalents of triethylamine. The reaction is stirred at room temperature for two hours. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(v).

Example 34: Synthesis of Compound 2(w)

Compound 2(w)

A solution of Compound 2(a) is reacted with 1 equivalent of N-protected alanine active ester. The amino group of alanine is protected by reacting alanine with DCC (dicyclohexyldicarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and the carboxylic acid group is converted to an active ester such as an N-hydroxysuccinimide ester. The N-protected active ester is added to Compound 2(a) in an inert solvent such as tetrahydrofuran. The mixture is warmed under reflux for one hour. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(w).

Example 35: Synthesis of Compound 2(x)

Compound 2(x)

A solution of Compound 2(a) is reacted with 1 equivalent of N-protected *para*-hydroxyphenyl glycine active ester. The amino group of the *para*-hydroxyphenyl glycine is protected by reacting alanine with DCC (dicyclohexyldicarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and the carboxylic acid group is converted to an active ester such as an N-hydroxysuccinimide ester. The N-protected active ester is added to Compound 2(a) in an inert solvent such as tetrahydrofuran. The mixture is warmed under reflux for one hour. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(x).

Example 36: Synthesis of Compound 2(y)

Compound 2(y)

A solution of Compound 2(a) is reacted with 1 equivalent of N-protected tyrosine active ester. The amino group of tyrosine is protected by reacting alanine with DCC (dicyclohexyldicarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and the carboxylic acid group is converted to an active ester such as an N-hydroxysuccinimide ester. The N-protected active ester is added to Compound 2(a) in an inert solvent such as tetrahydrofuran. The mixture is warmed under reflux for one hour. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(y).

Example 37: Synthesis of Compound 2(z)

A solution of Compound 2(a) is reacted with 1 equivalent of N-protected valine active ester. The amino group of valine is protected by reacting alanine with DCC (dicyclohexyldicarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and the carboxylic acid group is converted to an active ester such as an N-hydroxysuccinimide ester. The N-protected active ester is added to Compound 2(a) in an inert solvent such as tetrahydrofuran. The mixture is warmed under reflux for one hour. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well

with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(z).

Example 38: Synthesis of Compound 2(aa)

A solution of Compound 2(a) is reacted with 1 equivalent of N-protected proline active ester. The amino group of proline is protected by reacting alanine with DCC (dicyclohexyldicarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and the carboxylic acid group is converted to an active ester such as an N-hydroxysuccinimide ester. The N-protected active ester is added to Compound 2(a) in an inert solvent such as tetrahydrofuran. The mixture is warmed under reflux for one hour. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(aa).

Example 39: Synthesis of Compound 2(ab)

A solution of Compound 2(a) is reacted with 1 equivalent of N-protected serine active ester. The amino group of serine is protected by reacting alanine with DCC (dicyclohexyldicarbodiimide) or EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) and the carboxylic acid group is converted to an active ester such as an N-hydroxysuccinimide ester. The N-protected active ester is added to Compound 2(a) in an inert solvent such as tetrahydrofuran. The mixture is warmed under reflux for one hour. The mixture is then diluted with water (2 volumes) and HP-20 polystyrene resin is

added. The mixture is stirred for 30 minutes, filtered, the resin is washed well with water, and the product is eluted with 100% ethanol. The elutes are concentrated under vacuum to give compound 2(ab).

<u>Example 40</u>: Compound 2(a) for the treatment of cardiovascular disorders

Polyene compounds are not generally absorbed from the gastrointestinal tract and exhibit hypocholesterolemic properties by binding cholesterol in the gastrointestinal tract following oral administration. The hypocholesterolemic properties of polyene compounds was first demonstrated by studies in dogs (Schaffner, C.P. and Gordon H.W. The hypocholesterolemic activity of orally administered polyene macrolides. P.N.A.S. 61:36-41, 1968.). In another study with chickens, small amounts of polyene compounds in the diet led to the inhibition of enterohepatic cholesterol circulation, increased fecal lipid excretion and reduced atherogenesis (Fisher, H., Griminger P. and Siller W. Effect of candicidin on plasma cholesterol and avian atherosclerosis. Proceedings of the Society for Experimental Biology and Medicine, 145: 836-839, 1974). The beneficial effects of orally administered polyene compounds on cholesterol-lipid metabolism is not species-dependent as it was demonstrated in several species including humans, rats, dogs and chickens (Pagliano FM, Correction of hyperdyslipidemia using polyene-structure substances. Controlled clinical trial. Arch Sci Med (Torino). 136: 303-308, 1979; Barbaro A. and Casella G. Action of a polyene macrolide on hyperdislipidaemic disorders. Archivio per Scienze Mediche 137: 211-216, 1980; Singhal, A.K., Mosbach, E.H. and Schaffner, C.P. Effect of candicidin on cholesterol and bile acid metabolism in the rat. Lipids, 16: 423-426, 1981.).

The therapeutic potential of compound 2(a) for the treatment of cardiovascular disorders such as high cholesterol, dyslipidemia and atherosclerosis is demonstrated by measuring the effects of oral administration of compound 2(a) to rabbits. New Zealand rabbits are maintained under controlled light and temperature conditions and fed for several weeks with two different diets: normal rabbit chow (control) and a diet

containing 0.5 to 1% cholesterol to induce hypercholesterolemia. Rabbits are administered compound 2(a) (3, 10, 30 mg/kg) or vehicle by oral gavage daily for up to one month. Food intake and rabbit weight is measured daily for the duration of the experiment. Blood samples to measure cholesterol, lipoproteins and triglycerides are collected through a catheter inserted in the ear artery in the beginning and at the end of the experiment as well as every 4 days for the duration of the experiment. Serum cholesterol, lipoproteins and triglycerides are measured by enzymatic assays employing commercial kits as specified by the manufacturer (Sigma Chemical Co) and as described in Staprans I, Pan X-M, Rapp JH, Feingold KR. Oxidized cholesterol in the diet accelerates the development of aortic atherosclerosis in cholesterol-fed rabbits. Arteriosclerosis, Thrombosis and Vascular Biology, 18: 977-983. 1998. At the end of the experiment, after collecting the final blood sample, animals are anesthetized and the descending aorta is exposed, excised and processed for histological examination following fixation in formalin. Briefly, paraffin longitudinal or cross sections (five micron) are stained with Sudan black (dying lipids) and counterstained with Masson trichrome. Morphometric quantitative determination of the area of the intima, media and adventitia layers is performed by image analysis. Lipid deposition in the aorta is determined by evaluation of the percentage of the aorta covered by lesions visualized by fat staining. Arterial concentration of cholesterol is measured after extraction of lipids as described in Thiery J, Nebendahl K, Rapp K, Kluge R, Teupser D and Seidel D. Low atherosclerotic response of a strain of rabbits to diet-induced hypercholesterolemia. Arteriosclerosis, Thrombosis and Vascular Biology, 15: 1181-1188, 1995.

What is Claimed is:

1. A compound of Formula I,

A
$$W^1$$
 V^1 W^2 V^3 V^4 CH_3

Formula I

or a pharmaceutically acceptable salt thereof; wherein,

A is selected from the group consisting of -NR¹R², -N=CR¹R²,

R¹, R², R³ and R⁴ are each independently selected from the group consisting of H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, C₂₋₆ heterocycloalkyl, aryl, heteroaryl and amino acid, wherein said alkyl, alkenyl, aryl and heteroaryl groups are optionally substituted with a group selected from halogen, OH, NO₂, NH₂ or aryl, said aryl being optionally further substituted with one or more groups independently selected from halogen, OH, NO₂ or NH₂;

B is selected from: ethene-1,2-diyl or wherein R¹⁰ is oxo or OR¹¹;

wherein R^{11} is H or a heterocycloalkyl, the heterocycloalkyl being optionally substituted with 1-4 substituents selected from OX, C_{1-3} alkyl and $-O-C(O)R^1$, wherein X is H or, when there are at least two neighboring

PCT/CA2004/000068 134

substituent groups that are OX, then the X can be a bond such that the two neighboring oxygen groups form a five-membered acetal ring of the formula:

$$\mathbb{R}^5$$
 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^5 ; wherein \mathbb{R}^5 and \mathbb{R}^6 are each

independently selected from the group consisting of H, C₁₋₆ alkyl, and C₂₋₇ alkenyl;

R¹² is selected from H, C₁₋₆ alkyl optionally substituted with 1 to 2 phenyl groups, wherein the phenyl group is optionally substituted with C₁₋₆ alkyl or halo;

R^{12a} and R^{12a} are each indepedently selected from H, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₃₋₆ cycloalkyl, C₂₋₆ heterocycloalkyl, aryl, heteroaryl and amino acid, wherein said alkyl, alkenyl, aryl and heteroaryl are optionally substituted with a group selected from halogen, OH, NO₂, NH₂ or aryl, said aryl being optionally further substituted with one or more groups independently selected from halogen, OH, NO₂ or NH₂;

$$W^{1}$$
 is $(x^{1})^{0}$ $(x^{2})^{1}$ $(x^{2})^{1}$ $(x^{3})^{0}$ $(x^{4})^{0}$ $(x^{5})^{0}$ $(x^{7})^{0}$ $(x^{8})^{0}$ $(x^{7})^{0}$ $(x^{12})^{0}$ $(x^{13})^{13}$ $(x^{15})^{0}$

D is selected from:

 X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{12} and X^{13} is each independently selected from H, -C(O)-R⁷ and a bond such that when any of two neighboring X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{12} and X^{13} is a bond then the two neighboring oxygen atoms and their attached carbon atoms together form a six-membered acetal ring of the formula:

wherein R^5 , R^6 and R^7 are each independently selected from H, C_{1-6} alkyl, C_{2-7} alkenyl;

Y¹, Y², Y³, Y⁴, Y⁵, Y⁶, Y⁷, Y⁹, Y¹⁰, Y¹¹, Y¹², Y¹³ and Y¹⁵ are each independently selected from the group consisting of ethene-1,2-diyl,

ethane-1,2-diyl and of some with a methyl group;

Z is selected from OH, NHR⁸, and when the dotted line is a bond then Z is oxo, or NR⁹;

 R^8 is independently selected from H, C_{1-6} alkyl, C_{2-6} alkenyl; R^9 is C_{1-6} alkyl optionally substituted with aryl.

2. The compound of claim 1, wherein Z is oxo, or a pharmaceutically acceptable salt thereof.

3. The compound of claim 1 or 2, wherein D is pharmaceutically acceptable salt thereof.

- 5. The compound of claim any one of claims 1 to 4, wherein A is NR¹R², or a pharmaceutically acceptable salt thereof.
- 6. The compound of claim 4, wherein A is -NH R⁴ or a pharmaceutically acceptable salt thereof.
- 7. The compound of any one of claims 1, 2, 4, 5 or 6, wherein D is
 - 8. A compound of the fomula:

9. A compound of the formula II:

wherein A^1 is $-NH_2$, $-N=CH-R^{13}$, amino acid or $-NH-R^{14}$, wherein R^{13} is hydrogen or phenyl and R^{14} is selected from the group consisting of isopropyl, 1-(4-nitrophenyl)methyl, cyclohexyl, and wherein said amino acid is attached via its nitrogen atom;

wherein R¹⁵ is selected from the group consisting of methyl, isopropyl, phenyl, 4-nitrophenyl, 1-amino-1-(4-hydroxyphenyl)methyl, 1-amino-2-(4-hydroxyphenyl)ethyl, 1-amino-2-methylpropyl, 2-pyrrolidinyl and 1-amino-2-hydroxyethyl;

Y²⁰ is selected from the group consisting of ethene-1,2-diyl and

Z¹ is selected from the group consisting of:

R²⁰ is selected from the group consisting of hydrogen and

Y³⁰ is ethene-1,2-diyl or ethane-1,2-diyl; and

D¹ is hydroxy, methoxy or

and pharmaceutically acceptable salts thereof.

10. A compound selected from the group consisting of:

Compound 2(b)

Compound 2(c)

Compound 2(d)

Compound 2(f)

Compound 2(g)

Compound 2(h)

Compound 2(i)

Compound 2(j)

Compound 2(k)

Compound 2(I)

Compound 2(m)

Compound 2(n)

Compound 2(o)

Compound 2(p)

Compound 2(q)

Compound 2(r)

Compound 2(s)

Compound 2(t)

Compound 2(u)

Compound 2(v)

Compound 2(w)

Compound 2(x)

Compound 2(y)

- 11. A method for producing the compound of claim 8, comprising the steps of cultivating cells derived from a *Streptomyces aizunensis* strain, incubating said cultured cells aerobically in a growth medium for such time as is required for production of said compound of claim 8, extracting said medium with a solvent and purifying the compound of claim 8 from the crude extract.
- 12. The method of claim 11 wherein said *Streptomyces aizunensis* strain is NRRL B-11277 or a mutant thereof.
- 13. The method of claim 12 wherein said mutant is strain [C03]023 (deposit accession number IDAC 070803-1) or [C03U03]023 (deposit accession number IDAC 231203-02).
- 14. The strain of *Streptomyces aizunensis* identified by deposit accession number IDAC 070803-1.

- 15. The strain of *Streptomyces aizunensis* identified by deposit accession number number IDAC 231203-02.
- 16. A pharmaceutical composition comprising a therapeutically effective amount of a compound of any one of claims 1 to 10, and a pharmaceutically acceptable carrier.
- 17. A pharmaceutical composition comprising a therapeutically effective amount of the compound of claim 8, and a pharmaceutically acceptable carrier.
- 18. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 9, and a pharmaceutically acceptable carrier.
- 19. A method of treating a fungal infection in a mammal, comprising administering to said mammal suffering from said infection, a therapeutically effective amount of a compound of any one of claims 1 to 10.
- 20. The method of claim 19 wherein said fungal infection is caused by Candida albicans.
- 21. The method of claim 19 wherein said fungal infection is caused by a Candida sp., wherein said Candida sp. is selected from the group consisting of C. glabrata, C. lusitaniae C. parapsilosis, C. krusei and C. tropicalis.
- 22. The method of claim 19 wherein said fungal infection is caused by an *Aspergillus sp.*, wherein said *Aspergillus sp.* is selected from the group consisting of *A. fumigatus*, *A. niger*, *A. terreus* and *A. flavus*.
- 23. The method of claim 19 wherein said fungal infection is caused by Fusarium spp.; Scedosporium spp.; Cryptococcus spp.; Mucor ssp.; Histoplasma spp.; Trichosporon spp.; Blaspomyces spp.; or S. cerevisiae.

- 24. A method of treating a fungal infection in a subject, comprising administering to said subject suffering from said infection, a therapeutically effective amount of a compound of any one of claims 1 to 10.
- 25. The method of claim 24 wherein said fungal infection is caused by a fungus selected from the group consisiting of *Candida albicans, Candida sp., Aspergillus sp., Fusarium spp.; Scedosporium spp.; Cryptococcus spp.; Mucor ssp.; Histoplasma spp.; Trichosporon spp.; Blaspomyces spp.;* and *S. cerevisiae*.
- 26. The method of claim 24 wherein said *Candida sp.* is selected from the group consisting of *C. glabrata, C. lusitaniae, C. parapsilosis, C. krusei* and *C. tropicalis*.
- 27. The method of claim 24 wherein said *Aspergillus sp.* is selected from the group consisting of *A. fumigatus, A. niger, A. terreus* and *A. flavus.*
- 28. A method of treating cancer in a subject, comprising administering to said subject suffering from said cancer, a therapeutically effective amount of a compound of any one of claims 1 to 10.
- 29. The method of claim 28, wherein said cancer is selected from the group consisting of leukemia, non-small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer.

Gene Cluster for Production

Figure 1

Figure 2a

ORF10_pKS01 ORF10_pKS02 ORF10_pKS03 ORF10_pKS04 ORF10_pKS05 ORF11_pKS01 ORF11_pKS02 ORF12_pKS01 ORF12_pKS02 ORF12_pKS03 ORF12_pKS04 ORF13_pKS01 ORF14_pKS01 ORF14_pKS02 ORF14_pKS03 ORF15_pKS01 ORF15_pKS02 ORF15_pKS03 ORF16_pKS01 ORF16_pKS02 ORF17_pKS01 ORF17_pKS02 ORF17_pKS03 ORF17_pKS04 ORF18_pKS01 ORF18_pKS02

PIAIVGIGCHFPGGVQSPEALWNLVETGTDAISAFPTGRGWDLDALYDPDPDRAGTSYAR ${\tt PIVIVSMSCRFPGGVRTPEDLWQLLADGTDTVAAFPADRGWDLDGLYSADPERSGTSYTR}$ PIAIVSMSCRFPGGVRTPEDLWRLLVDGTDAVGAFPADRGWDLDRLYSPDPDQPGTSYTR PIVIVGMGCRFPGGVRSPEDLWQLVATGGDGITGFPSDRGWNVEALYHPDPDHAGTSYTR PIAIVAMSCRFPGGVRTPEDLWRLLSTGGDAIGEFPADRGWDLSRLYSPDPDKQGTFYAR PIAIVAMSCRFPNGVGSPEDLWRLVDEGGDAITGFPADRGWDIESLADPDPDRKGTFYNT PIAIVAMSCRYPGGVRTPEELWRLVETGGDAIAGLPGNRGWDTDALH---ADEDGRTFA-PIAIVGMSCRFPGGVSSPEDLWRLVESGGDAISGFPVNRGWDIESLYDPDPDHEGTTYAR PIAIVAMSCRFPGGIASPEDLWQLLVTGRDGITGFPADRGWDLDSLYSDDPDREGTSYAR PIAIVSMSCRFPGGVRTPEDLWELLSTGGDAISDLPLDRGWDIDALYDADPSTQGTSYAR PIAIVAMSCRFPGGVRTPEDLWQLLATGRDAIGEFPEDRGWDAEALFGP-QFEQDAPYAR PIATTAMSCRFPGGVRSPEELWELLRTGGDALTAFPADRGWDLDNLFSDDPDDHNTSVTR PIAIVGMGCRYPGGVTSPEELWQLVVDGGDAISGFPADRGWDMETVYHPDPEHPGTSYAN PIAIVAMSCRFPGGVQSPEDLWQLLSTGRDAISGFPGDRGWDLDGLYDPESAGENTSYVR PIAIVAMSCRYPGDVRTPEDLWQLLTAGADGITRLPENRGWDTEGLYDPDPESQGTSYAR PIAVVAMSCRYPGGIDTPEKLWDLVAHGRDAVSAYPTDRGWDAEVLFDPDPETGIEAYEQ PIAIVAMSCRYPGGVTTPEELWQLLAGGGDAISGFPADRGWDVESLYDPDPDHPGTSYTR PIAIVGLGCRYPGGVESPDDLWRLVLEGRDAITEFPEDRGWDVDALFDADPDQQGTSYAR PIAIVAMSCRYPGGVRSPEDLWRLVENGDDAVSGFPVDRGWDVEALYDADPDSSGSSYVS PIAIVAMSCRFPGGVRNPEELWQLLTSEGDGLSQFPLDRGWDVDALYDPNPDAQGTSYTR PIAIVGMSCRFPGGIESPEGLWDLVAGGRDAITDFPTDRGWDIESLYDADPDQQGTSYTR PIAIVGMSCRYPGGVTTPEELWQLVAGSVDAISPFPTDRGWNLDALYDADPGRAGTSYTR PIAIVAMSCRFPGDVRTPEDLWELLAEGRDGISDLPDDRGWDTEALYDPDPDSPGTSYAR PIAIVGMSCRYPGGVETPEDLWRLVVGGGDAISEFPQGRGWDLESLYDPDPDGKGTSYTR PIAIVGMSCRYPGDVESPEDLWRLVSEETDAISPFPTDRGWDMGRLFDADPDGRGTSYVQ PIAIVAMSCRFPGGVRSPEDLWGLVLDGRDAISDMPDDRGWDVEGLFDPDPDRPGTSYSR * .***: **.:..*::*..: .*: ** *: * :

ORF10_pKS01 ORF10_pKS02 ORF10_pKS03 ORF10_pKS04 ORF10_pKS05 ORF11_pKS01 ORF11_pKS02 ORF12_pKS01 ORF12_pKS02 ORF12_pKS03 ORF12_pKS04 ORF13_pKS01 ORF14_pKS01 ORF14_pKS02 ORF14_pKS03 ORF15_pKS01 ORF15_pKS02 ORF15_pKS03 ORF16_pKS01 ORF16_pKS02 ORF17_pKS01 ORF17_pKS02 ORF17_pKS03 ORF17_pKS04 ORF18_pKS01 ORF18_pKS02

EGGFLHDADAFDAAFFGISPREALAMDPQQRLLLEASWEAFDRAGVDPAALRGGQVGVFV EGGFLYDAADFDADFFGISPREALAMDPQQRLLLETAWETFERAGIDPASLRGSQAGVFV EGGFFDGAADFDPGFFGISPREALAMDPQQRLLLETSWEAIERAGIDPSSLRGSQAGVFV EGGFLHDAADFDPGFFGISPREALAMDPQQRLLLETSWEAFERAGIDPATLRGSRTGVFA AGGFLYDAADFDADFFGISPREALAMDPQQRLLLETSWEAFERAGIDPSSLRGSQAGVFV GGGFLDGATAFDPGFFGISPREALAMDPQQRQLLETSWEVFERAGIDPAAVRGSRTGVYV -GGFLYDADSFDADFFGISPREALAMDPQQRLLLETSWEAIERAGIDPSSLRGSRAGVFV DGGFLHEAADFDPAFFGISPREALAMDPQQRLLLETTWEVFERAGIDPASLRGSRAGVFV EGGFLHEAAEFDASFFGISPREALAMDPQQRLLLETTWETFERAGIDPTSLRGSRTGVFV AGGFLYDAADFDADFFGISPREALAMDPQQRLLLETSWEAFERAGIDPETLRGSQAGVFV ${\tt EGGFLYDVADFDPAFFGISPREALAMDPQQRLLLETSWEAFERAGIDPLSVRGSQAGVFV}$ EGGFLGEASSFDAAFFGISPREAMAMDPQQRLLLETSWEAFERAGIDPQALRGSQSGVFV QGGFVRDFARFDPSLFGISPREALAMDPQQRLLLETSWEAFERAGIDPTSMRGKQVGVFV EGGFLAGATEFDPAFFGISPREALAMDPQQRLLLETSWEAFERAGIDPATVRGEQIGVFT ${\tt DGGFLHDAAEFDASFFGISPREALAMDPQQRLLLETTWEVFERAGIAPSAVRGSRTGVFA}$ VGGFLHDAADFDPAFFGISPREALAMDPQQRLLLETSWEAFERAGIDPATLRGSRTGVFA HGGFLRDAAAFDPTFFGISPREAVGTDPQQRLLLETTWEAFERAGIDPATVRGSRTGVFA EGGFVRDAGHFDPAFFGISPREAVAMDPQQRLLLETSWEAFERAGIDPAALRGSRTGVFA EGGFLYDAASFDPAPFGISPREALAMDPQORLLLEASWEAFERAGIDPSSVRGSRTAVFA EGGFLSDAAAFDSSFFGISPREALAMDPQQRLLLETSWEAFERAGIDPQTLRGSQSGVFV EGGFLDGVGKFDASFFGISPRETLGMDPQQRLLLETSWEAFERAGIDAATLRGSKAGVFI EGGFLHDAADFDPDVFGINPREALAMDPHQRLLLETSWEAFEQAGIAPSSMRGSRTGVFA EGGFFYDAHHFDPAFFGINPREALAMDPQQRLLLETSWEAFERAGIDPTGLRGKQVGVFV SGGFLHDAGRFDPAFFGISPREAVAMDPQQRLLLETSWEAFERAGIDPASMRGSRTGVFA ${\tt EGGFLHSANRFDPAFFGISPREAVAMDPQQRLLLETSWEAFERAGIDPTSLRGSRTGVFA}$

Figure 2b

GAETQEYGPRLQ-----DATDGFEGYLVTGNAASVASGRIAYTFGFEGPTVTVDTA ORF10_pKS01 GTNGQDYLSLVTREGDG---LDGLEGHVGTGNAASVVSGRLSYVFGLEGPAITVDTACSS GTNGQDYLSLITRESE-----GLEGHLGTGNAGSVMSGRVSYVLGLEGPAVTVDTACSS ORF10_pKS02 ORF10_pKS03 GVMYHDYVTGIGDGGSAVELPEGVEGYLGTGNAGSIASGRIAYTFGLEGPAVTVDTACSS ORF10_pKS04 GTNGQDYGAMLQTIPD-----GIEGFLGTGNAASVVSGRLSYAFGLEGPAVTVDTACSA GAGAMGYGADLKEA-----PEGLEGLLLTGGATSVLSGRVSYVFGLEGPAATVDTACSS GAAYSGYDAQLEQSG-----VDGVLGHVMTGNAGSVMSGRVSYALGLEGPAVTVDTACSS ORF10_pKS05 ORF11_pKS01 ORF11_pKS02 GASANAYGAGSHDL-----PDGVEGHLLTGTASSVLSGRLAYVFGLEGPAATIDTACSS ORF12_pKS01 GSNAQDYLQLWINDAD------GLEGHLGTGNAASVVSGRLSYTFGLEGPAVTVDTACSS GTNGQDYLSVLLEEPE------GLEGHLGTGNAASVVSGRLSYVFGLEGPAVTVDTACSS GTNGQDYLSLVLNSAD------GGDGFMSTGNSASVVSGRLSYVFGLEGPAVTVDTACSA ORF12_pKS02 ORF12_pKS03 ORF12_pKS04 GINGSDYLTPLLEAAE-----DYAGHLGTGNASSVMSGRLSYTFGLEGPAVTVDTACSA
GTSNHDYLSALLSS-----SENVEGYLGTGNAASVASGRLSYTFGLEGPAVTVDTACSS
GTNGQDYLNVILAAPD-----GVEGFLGTGNAASVVSGRVSYVLGLEGPAVTVDTACSS ORF13_pKS01 ORF14_pKS01 ORF14_pKS02 ORF14_pKS03 GVMYHDYGARLH----AVPDGVEGYLGTGSSSSIVSGRVAYTFGLEGPAVTVDTAGSS GLMYHDYAARLF----SVPEEIEGFLGNGSSGSIASGRIAYTLGLEGPAVTVDTACSS GVMYHDYAALLE----RSKDGADGSLGSGSTGSIASGRVSYTFGLEGPAVTIDTACSS ORF15_pKS01 ORF15_pKS02 ORF15_pKS03 GVMYHDYASRLT-----ALPEGVEGFLGTGNAASVISGRLSYAFGLEGPAITVDTAGSS GVMYHDYTARLD----SVPEGVEGFLGTGSSGSIASGRVAYTFGLEGPAVTVDTACSS ORF16_pKS01 ORF16_pKS02 ORF17_pKS01 GTNGSDYSNLVRAGAD-----GLEGHLATGNAGSVVSGRLSYTFGLEGPAVTVDTACSA GTNGQDYPELLREVPK-----GVEGYLLTGNAASVVSGRISYTFGLEGPAVTVDTACSA GVMYHDYLTRLP-----AVPEGLEGYLGTGTAGSVASGRISYTFGLEGPAVTVDTAGSS ORF17_pKS02 ORF17_pKS03 ORF17_pKS04 GQMHNDYVSRLN-----TVPEGVEGYLGTGGSSSIASGRVSYTFDFEGPAVTVDTACSSGIMYHDYATRIT----SVPDGVEGYLGTGNSGSIASGRVSYAFGLEGPAVTVDTACSS ORF18_pKS01 GVMYHDYASRLR-----AVPEEVEGYLGTGGSSSIASGRVSYTFGLEGPALTVDTACSS GVMYNDYGTLLH----RAPEGLEGYMGTSSSGSVASGRVSYTFGLEGPAVTVDTAGSS ORF18_pKS02 * : .. : *: ***::*.:.:***: *:***<mark>*</mark>*:

ORF10_pKS01 ORF10_pKS02 ORF10_pKS03 ORF10_pKS04 ORF10_pKS05 ORF11_pKS01 ORF11_pKS02 ORF12_pKS01 ORF12_pKS02 ORF12_pKS03 ORF12_pKS04 ORF13_pKS01 ORF14_pKS01 ORF14_pKS02 ORF14_pKS03 ORF15_pKS01 ORF15_pKS02 ORF15_pKS03 ORF16_pKS01 ORF16_pKS02 ORF17_pKS01 ORF17_pKS02 ORF17_pKS03 ORF17_pKS04 ORF18_pKS01 ORF18_pKS02

 ${\tt SLAALHLAVQALRTGECSLALAGGVAVMASPGSFVSFSRQRGLAPDGRCKPFAAAADGTA}$ SLVALHLAVOALROGECTLALAGGVTVMSTPDAFVDFSRORGLAEDGRIKAFASAADGTG SLVALHWAIQALRQGECSMALAGGVTVMSTPENFVDFSRQRGLAEDGRIKAFASAADGTG SLVALHWAIQALRSGECTMALAGGVAVMATPETFVDFSRQRGLSADGRCKSFAAAADGTG SLVALHWAVQALRSGECSLALAGGVTVMSSPGAYIDFSRQRGLAEDGRIKAFAAAADGTG SLVALHLATQALRQRECSLALVGGVCVMPSPDVFVEFSRQRGLSPDGRCKSFAASADGTG SLVALHWAIQALRNGECSLALAGGVTVMSTPGTFSEFSQQGGLSPDGRCKAFASAADGTG SSVALHMAVQALRQGECSLALAAGVTVLAGPDVFVEFSRQRGLSPDGRCRSFAESADGTG SLVTLHLAAQALRRGECSMALAGAVTIMSTPGAFTEFSRQRGLAADGRIKAFAAAADGTS SLVALHWAIQALRNGECSLALAGGVTVMSTPGTFIEFSRQRGLAEDGRIKAFAAAADGTG SLVALHLAVOALRNGECSLALAGGVTVMSTPGAFAEFSRORGLAEDGRIKAFAAAADGTG SLVALHLAVQALRAGECSLAVAGGVHVMSTPGLFVEFSKQRGLSTDGRCKAFAAGADGFG SSVALHLAVQALRNGECSLALAGGATLMSAPGTFIDYSKQRGLATDGRCKAFSPDADGFS SLVALHWAIQALRQGECTMALAGGVTVMSTPASFIDFSRQRGLAEDGRIKAFAAAADGTG ${\tt SLVALHLAAQALRNGECSLALAGGVTVMFTPGTFIEFSRQRGLAADGRCKSFAAAADGTG}$ SLVAVHLAAQALRNGECTLALAGGVTVMSTPGTFTEFSRQRGLAADGRCKSFAAAADGTG SLVALHMAIQALRTGECDMALAGGVTVMATPGTFIGFSRQRGLSADGRCRAFSADADGTG SLVALHLAVQALRNGECSLALAGGVTVMATPAAFVEFSRQRGLAADGRCKAFSAGADGTG ${\tt SLVTLHLAVQALRAGECSMALAGGVTVMATPATFTEFSRQRGLAPDGRCKPFAAAADGTG}$ SLVALHLAVQALRSGECSLALAGGVTVMSTPGTFIEFSRQRGLSTDGRCKAFSSDADGFS SLVALHLAVQALRNDECSLALAGGVTVMSSPRAFVQFSRQRGLAPDGRCKPFADGADGTG ${\tt SLVALHLAAQALRNGECDMALAGGVTVMSTPDTFIDFSRQRGLSGNGRCKSFSADADGTG}$ SLVALHLAAQALRNGECTLALAGGVTIITTPDVFTEFSRQRGLASDGRCKPFAEAADGTA SLVALHWAIQALRNGECTMALAGGVTVMSTPGTFTEFSRQRGLAADGRIKSFAAAADGTS SLVTLHLAMQALRKGECSLALAGGVTVMATPGTFTEFSRQRGLSFDGRCKSFADSADGTG SLVTLHLAVQALRNGECDLALAGGVTVMATPGTFVAFSRQRGLASDGRCKPFAAAADGTA

* ...* * **** ** :*.... :: * : :*:* **: :*:

Figure 2c

ORF10_pKS01
ORF10_pKS02
ORF10_pKS03
ORF10_pKS04
ORF10_pKS05
ORF11_pKS01
ORF11_pKS01
ORF12_pKS01
ORF12_pKS02
ORF12_pKS03
ORF12_pKS04
ORF13_pKS01
ORF14_pKS01
ORF14_pKS02
ORF14_pKS02
ORF15_pKS01
ORF15_pKS01
ORF15_pKS01
ORF15_pKS01
ORF15_pKS01
ORF15_pKS01
ORF17_pKS01
ORF17_pKS03
ORF17_pKS01
ORF17_pKS01
ORF17_pKS03
ORF17_pKS03
ORF17_pKS04
ORF17_pKS04
ORF18_pKS01
ORF18_pKS01

WGEGVGMLLVERLSDARAKGHRILAVVRGSAINQDGASNGLTAPSGPSQQRVIRQALANA WGEGVGMLLVERLSDARRNGHPVLAVVRGSAINQDGASNGLTAPNGPSQQRVIRQALAGA WGEGVGMLLVERLSDARRNGHPVLAVVRGSAVNQDGASNGLTAPNGPSQQRVIRAALASA WAEGAGMLLVERLSDAERNGHPVLAVVRGSAINQDGASNGLTAPNGPSQQRVIREALASA WGEGVGMLLVERLSDARRNGHPVLALVRGSAINQDGASNGLTAPNGPSQQRVIRQALANA WSEGVGVLLVERLSDARRNGHPVLAVVRGSAVNQDGASNGLTAPNGPAQQRVIRQALENA wgegvgmllverlsdarrnghpvlavvrgsavnodgasngltapngpsoorviraalasa WSEGAGVLLVERLSDARRNGHHILAVVRGSAVNQDGASNGLTAPNGPAQQKVIRQALESA WSEGVGLLLVERLSDARRNGHPVLAVVRGTAVNQDGASNGLTAPNGPSQQRVIREALADA WGEGVGMLLVERLSDAERNGHPVLAIVRGSAINQDGASNGLTAPNGPSQQRVIRAALASA WGEGVGMLLVERLSDARRNGHPVLALVRGSAVNQDGASNGLTAPNGPSQQRVIRAALASA PAEGVGVLLLERLSDARKNGRPVLAVVRGSAVNQDGASNGLTAPNGPSQQRVIRQALANA LAEGVGILLVERLSDARRKGHPVLAVVRGTAVNQDGASNGLTAPNGPSQQRVILQALSNA WGEGVGILLVERLSDAQRNGHPVLAIVRGSAINQDGASNGLTAPNGPSQQRVIRQALASG WGEGAGMLLLERLSDARRNGHQVLAVVRGSAVNQDGASNGLTAPNGPSQQRVIRQALANA WGEGAGMLVLERLSEARRNGHPVLALVRGSAVNQDGASSGLTAPNGPSQQRVTRQALAGA WGEGVGMLLVERLSDARRNGHPVLAVVRGSAINQDGASNGLTAPNGPSQQRVIRAALASA WSEGAGVLLVERLSDARRNGHPVLAVVRGSAINQDGASNGLTAPNGPSQQRVIRQALASA WGEGVGMLLVERLSDAQRNGHPILAVVRGSAINQDGASNGLTAPNGPSQQRVIHQALTNA PAEGVGVLLVERLSDARRNGHPILAVVRGSAINQDGASNGLTAPNGPSQQRVIRQALANA WGEGVGMLLVERLSDARRNGHPVLALVRGSAINQDGASNGLTAPNGPSQQRVIRQALTNA WAEGAGMILVERLSDARRNGHQVLAVVRGTAVNQDGASNGLTAPNGPSQQRVIRQALANA WGEGVGMLLVERLSDARRNGHOVLAVVRGTAVNODGASNGLTAPNGPSQQRVIRQALANA WAEGAGMLLVERLSEARAKGHPVLAIVRGSAINQDGASNGLTAPNGPSQQRVIRQALAGA waegagmllverlsdarknghtvlavvrgsavnodgasngltapngpsoorviroalada WGEGVGMLLVERLSDARAKGHPVLAVVRGSAINQDGASNGLTAPNGPSQQRVIRQALASA .**.*::::****:*:::***:**:**:**:**

ORF10_pKS01 ORF10_pKS02 ORF10_pKS03 ORF10_pKS04 ORF10_pKS05 ORF11_pKS01 ORF11_pKS02 ORF12_pKS01 ORF12_pKS02 ORF12_pKS03 ORF12_pKS04 ORF13_pKS01 ORF14_pKS01 ORF14_pKS02 ORF14_pKS03 ORF15_pKS01 ORF15_pKS02 ORF15_pKS03 ORF16_pKS01 ORF16_pKS02 ORF17_pKS01 ORF17_pKS02 ORF17_pKS03 ORF17_pKS04 ORF18_pKS01 ORF18_pKS02

GLSAAEVDVVEAHGTGTRLGDPIEAQALLATYGQEHTDDRPLWLGSLKSNIGHTQAAAGV
GLSAADVDAVEAHGTGTRLGDPIEAQALLATYGQGRPADRPLWLGSVKSNIGHTQAAAGV
GLSAADVDVVEAHGTGTKLGDPIEAQALLATYGQDRPAGRPLWLGSIKSNIGHTQAAAGV
DLSAADIDAVEAHGTGTRLGDPIEAQALLATYGREREAGRPLWLGSIKSNIGHTQAAAGV
GLSAAEVDAVEAHGTGTRLGDPIEAQALLATYGREREADQPLWLGSIKSNIGHTQAAAGV
RLSAAEVDVVEAHGTGTTLGDPIEAQALLATYGQDRPEGRPLWLGSIKSNIGHTQAAAGV
RLSAAEVDAVEAHGTGTTLGDPIEAQALLATYGQDRPEGRPLWLGSIKSNIGHTQAAAGV
RLTPADIDAVEAHGTGTTLGDPIEAQALLATYGQGRPDGRPLWLGSIKSNIGHTQAAAGV
RLTPADIDAVEAHGTGTTLGDPIEAQALLATYGQGRPDDQPLWLGSVKSNIGHTQAAAGV
GLSAADVDAVEAHGTGTTLGDPIEAQALLATYGQDRPADRPLQLGSIKSNIGHTQAAAGV
RLSTDQVDVVEAHGTGTTLGDPIEAQALLATYGQDRPADRPLQLGSIKSNIGHTQAAAGV
RLSTDQVDVVEAHGTGTTLGDPIEAQALLATYGQDRPADRPLQLGSIKSNIGHTQAAAGV
RLSTDQVDAVEAHGTGTSLGDPIEAQALLATYGQDRPADRPLLLGSIKSNIGHTQAAAGV
RLTPDQVDAVEAHGTGTKLGDPIEAQALLATYGQDRPEGRPLLLGSIKSNIGHTQAAAGV
RLSTDQVDAVEAHGTGTKLGDPIEAQALLATYGQDRPEGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDAVEAHGTGTKLGDPIEAQALLATYGQDRPEGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDAVEAHGTGTTLGDPIEAQALLATYGQDRPEGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDAVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLSAADVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLTAAEVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLTAAEVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLTAAEVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLTAAEVDVVEAHGTGTTLGDPIEAQALLATYGQDRPAGRPLLLGSIKSNIGHTQAAAGV
RLTAAEVDVVEAHGTGTTLGDPIEAQALLATYGGDRPAGRPLLLGSIKSNIGHTQAAAGV
RLTAAEVDAVEAHGTGTTLGDPIEAQALLATYGREHTEDSPLWLGSIKSNIGHTQAAAGV
RLTAADVDVVEAHGTGTTLGDPIEAQALLATYGREHTEDSPLWLGSIKSNIGHTQAAAGV
RLTAABVDVVEAHGTGTTLGDPIEAQALLATYGREHTEDSPLWLGSIKSNIGHTQAAAGV
RLTAABVDAVEAHGTGTTLGDPIEAQALLATYG

Figure 2d

ORF10_pKS01	AGIIKMIMAMRHGVLPRTLHVDAPTPHVDWEAGAVTLLTEAVEWPESDRPRRAGVSSFGM
ORF10_pKS02	AGVMKMVMAMRHGVLPRTLHVDGPTPHVDWSAGDVALLTEQREWPATGHPRRAGVSSFGL
ORF10_pKS03	AGIIKMVLAMQHGVLPQTLHVDEPTPHVDWSAGEVTLLTEQTAWPTVDRPRRAGVSSFGI
ORF10_pKS04	AGIIKMVMAMRHGVLPQTLHVDEPSPQVDWEAGEVSLLTGAMPWPQTGRPRRAGVSSFGI
ORF10_pKS05	AGVIKMVLAMEHGVLPQTLHVDEPTPHVDWSAGDVALLTDAVEWPETGRPRRAGVSSFGF
ORF11_pKS01	AGIIKMVMAMRHGVLPQTLHVDEPTPNVDWTAGAVSLLTEPMPWPETGAPRRAAVSAFGV
ORF11 pKS02	AGIIKMVMAMRHGVLPRTLHVDEPTSHVDWSAGEVSLLSESAEWPLTERPRRAGVSSFGI
ORF12 pKS01	AGIIKMVMAMRHGVLPRTLHVDEPTSHVDWSTGAVALLTEPVEWPETGRPRRVGVSAFGV
ORF12_pKS02	AGIIKMVMAMRHGVLPQTLHIDEPTPYVDWSAGDIALLTEQRAWPETGRPRRAGVSSFGY
ORF12_pKS03	AGVIKMVLAMEHGVLPQSLHIDAPSPQVDWEAGDIALLTEQRQWPETGRPRRAGVSSFGF
ORF12_pKS04	AGLMKMYLAMOHGYLPOTLHVDEPTPHVDWSAGDIALLTERREWPETGRPRRAGISSFGV
ORF13_pKS01	AGVIKMVLAMQHGVLPQSLHIDEPSPHVDWESGAVSLLTEQTAWPETTHPRRAGVSSFGF
ORF14_pKS01	AGVIKSVMAMRHGVLPRTLHVDEPTPEVDWSAGDVSLLTEARPWPLGDQPRRIGVSSFGM
ORF14_pKS02	AGVMKMVLAMQHGVLPQTLHVDEPTPHVDWSAGDVALLADAVAWPETGRPRRAGVSSFGI
ORF14_pKS03	AGVIKMVMSMRHGVLPKTLHVDEPTPHVDWSAGAVSLLTEQTPWPETGRPRRAGVSSFGI
ORF15_pKS01	AGIIKMVMAMRHGILPKTLHVDEPTPNVDWSEGAVSLLTESVPWPETGAPRRAGVSSFGI
ORF15_pKS02	AGVIKMVLAIQHGVLPRTLHADRPSPHVDWSQGAVSLLTESVPWPETGRPRRAGVSSFGI
ORF15_pKS03	AGIIKIVQAMRHGVVPKTLHVDEPTPHVDWSAGAVSLLTEQVAWPETGRPRRAAISSFGF
ORF16_pKS01	ASIIKMVEAMRHGVVPKTLHLDEPTPHVDWEAGAVSLIGEKIAWPETGELRRAGVSSFGF
ORF16_pKS02	AGVMKMVLAMQHGVLPQSLHIAEPTPHVDWSAGEVALLTEERAWPETGRPWRAGVSSFGF
ORF17_pKS01	AGIIKMVLAMQHGVLPESLHIDQPSGNVDWAAGDVKLLTEAVPWPQTGQPRRAGVSSFGV
ORF17_pKS02	AGIIKMILAMRHGVMPPSLHIGEPSPHIDWTAGAVSLLTEAAEWPDAGRPRRAGISSFGV
ORF17_pKS03	AGIIKMVQAMHHGVLPKTLHVDAPSPHVDWSAGAVSLLTEQMAWPETGRPRRAGVSSFGM
ORF17_pKS04	AGIIKMIMAIRHGVLPKTLHVDEPTPHVDWEAGAVSLLTESVPWPETGRPRRAGVSSFGI
ORF18_pKS01	AGIIKMVMAIRHGRIPKTLHVDEPSTNVDWSAGAVSLLRESVEWPETGRPRRAAISSFGI
ORF18_pKS02	AGIIKMVQAMHHGVVPKTLHVDEPSPHVDWSAGAVSLLTEQMAWPETGRPRRAAISSFGI
	.::: **: ** ** *: ** *: ** * *:*:**

ORF10_pKS01 SGTNAHVIVEEP ORF10_pKS02 SGTNAHTIIEEA ORF10_pKS03 ORF10_pKS04 SGTNAHTIIEQA SGTNAHTIIEQP ORF10_pKS05 ORF11_pKS01 SGTNAHTVLEQA SGTNAHTIIEQA ORF11_pKS02 SGTNAHTIIEQA SGTNVHTIIEQA ORF12_pKS01 ORF12_pKS02 ORF12_pKS03 ORF12_pKS04 SGTNAHAVIEQA SGTNAHTIIEQA SGTNAHTILEQA ORF13_pKS01 SGTNAHVIVEQA ORF14_pKS01 ORF14_pKS02 SGTNAHILLESA SGTNAHTIIEQA ORF14_pKS03 SGTNAHAIIEQA ORF15_pKS01 ORF15_pKS02 SGTNAHTILEQA SGTNAHTIIEQA ORF15_pKS03 SGTNAHAIIEQA ORF16_pKS01 SGTNAHVIVEQA ORF16_pKS02 ORF17_pKS01 SGTNAHAIIEQA SGTNAHTVIEQA ORF17_pKS02 SGTNAHVIIEQP ORF17_pKS03 SGTNAHAIIELA ORF17_pKS04 ORF18_pKS01 SGTNAHTIIEQA SGTNAHTIIEQA ORF18_pKS02 SGTNAHTIIEQA **** . * : : * .

Figure 3a

```
ORF10_pAT01
                                VLLPWALSAKTPEALRAQAR-----RLGTLIAAQP--HVTPL---DIGHSLATTRGRF
                                SVLPLLISAKSDAGLRAQSE-----QLATHLVGNP--DVPIG---DIAYSLTTGRSGL
 ORF10_pAT02
                                LPLPYVLSAKSPEALRAQAS-----VLRTHLEATD--HNGPG-SDDLAFSLATARAHL
 ORF10_pAT03
                                PVVPWVLSGKGEEALRAQAR------QLQSYVLRAP--ELRPV---DIAGSLAVGRASF
GVMPWTLSAKSEAALRVQAE------RLRTRIA----SDPLLQPVDVAYSLATSRAAL
 ORF10_pAT04
 ORF10_pAT05
                                AVLPWTLSGRSTAALRAQAA-----RLLTTQGQDG--ATEPGRPLDIGYSLATTRAAL
 ORF11_pAT01
                                GTVPYVLSAKSSDALRAQAR-----QLLAVVEAAE--SPRVA---DLAYSLATSRAGL
KALPWLLSAKGRDALRDRAA------QLLAYAEEHP--DLRPV---DIAGSLAVGRPSF
 ORF11_pAT02
ORF12_pAT01
ORF12_pAT02
                                PVLPLLVSGRTAPALRAQAERLRPAATALATGTVTNSG-ALEAL---DLGYSLATSRAAL
                                DFVPLMLSAKSDVALRAQAA-----SLRARLIAAP--DMRLS---DVGSTLTTGRSAF
 ORF12_pAT03
ORF12_pAT04
ORF13_pAT01
                                AVSAWPLAGKTEAGLREQAE-----RLLAHIDAHS--ELR---PVDVGHSLATGRAAF
                                -VVPWVLSGKSAGALRAQAE-----RLSGFLAGASAVDVPSV---DVGWSLASSRAGL
ORF14_pAT01
                                GALPVVLSGRTEPALRAQAA-----ALHAHLAAHP--GLGIA---DLAFSQALTRAAL
                                ORF14_pAT02
ORF14_pAT03
ORF15_pAT01
                                VPPLWTLSAKSPAALRAQAG-----KLHAHLTAHP--GLRPG---DIAHSLAVGRTDF
ORF15_pAT02
ORF15_pAT03
                                SALPLOLAGRSAEALSAOAR-----ALSAHLT----AHPDVPLADLAYSLATSRATF
                                GSLPWLLSAKGADALRDQAA-----RLRAHAIGHP--ELSLA---DIGYALATSRATAL-VVPWVLSGKSAGALRAQAE------RLSGWLAGASAAGVASV---DVGWSLASSRAGL-VLPWTLTAKTEKALQGQAE-------RLTQLT--TRSDLRLV---DVGHSLATTRTALGPVPVLVSGQSDAALRAQAE-------RLAHLRAHPGLGADTGTLTDLGFSLATSRSSL
ORF16_pAT01
ORF16_pAT02
ORF17_pAT01
ORF17_pAT02
ORF17_pAT03
                                TPLPFALSGRTPAALRAQAA-----RLIGHLAPRP--EAAPA---DVALSLATTRTAL
                                AALPWNLSARTPDALRAQGE-----RLLSHLETHCE-THPETVLADIGHSLTTGRALF
ORF17_pAT04
                                RVLPFVLSAKSAGALRGQAV-----RLKAHVEASP--EVSGAGAVDVAYSLATRRAVF
                                PVLPWPVSARTEEALHAQAE-----RLLAHVR----TNPDQAPVGVALSLATGRAAL
RVLPFVLSAKSAGALRGQAV------RLKAHVEASP--EVSGAGAADVAYSLATRRAVF
ORF18_pAT01
ORF18_pAT02
                                                  .* :.
                                         ::.:
ORF10_pAT01
                                EQRAIVLGDD---REAFLDALHALAEGN-----DTPSVVQGAA-APGKLAFLFTGO
                                ETRAILVGDADN-RTGLAAALRSLAAGE------QAPGLVQGTV-TEGGLAFLFTGOG
EHRAVLT-ADD--PQEFREALARLADGD------PSPRITTGAV-SDGRTAFLFTGOG
EDRAAVV--AAD-REGLLAALAALADGG-----SATGAVEGSA-VGGKLAFLFTGOG
ORF10_pAT02
ORF10_pAT03
ORF10_pAT04
ORF10_pAT05
ORF11_pAT01
                                ERRAVVVATE---RDEFLAGLKALASGQ------PAPGLVQGR-VTEGGLAFLFTCQG
EHRAVLL-GRT--EDDFAAALSALAEGA-----ESAGLVQGRV-TEGGLAFLFTGQG
                               DHRAALVADD---RENLTRALAALAADE------QVPGLVRGTA-TGGGLAFLFTG G
EDRAAVV-AAD--REGLLAGLAALADGG------SATGLVKGSSQLVGKLAFLFTG G
EHRAVLIGTPSD-GQALASRLDALAAGE-----QVPGLVQGTA-SGGGLAFLFTG G
ERRAALV--AGG-REGLLAGLEALADGG-----SAAGLVEGSP-VSGKLAFLFTG G
ORF11_pAT02
ORF12_pAT01
ORF12_pAT02
ORF12_pAT03
                                DHRAVLVAGDD--RSEFRRALAALASGE-----SVAQVVQGIARPDQQVAFLFTGQG
ORF12_pAT04
                               DHRAVLVAGDD--RSEFRRALAALASGE-----SVAQVVQGIARPDQQVAFIFTGOGERHAVVLG-----DHAAGVAAVASGV------MAAGVVTGSV-VGGKTAFVFPGOGDRRAAVVADD--RDALLAGLAALAEGR------PSADVVEGSA-TDGKLAFLFTGOGERRAAVI-AAD--RDGLLAGLAALADGG------AAAGLVEGSP-VAGKLAFLFTGOGEQRAALVAGD---RAELLRGLDALARGE------DTAGLVRGTA-REGQVAFLFTGOG
ORF13_pAT01
ORF14_pAT01
ORF14_pAT02
ORF14_pAT03
ORF15_pAT01
ORF15_pAT02
                                EHRAVLT-SADG-PVGLVRALEALADSAPEDTAPADRAPGVTRGRP-VAGKLAFLFTG G
                               DHRAVLVATEGTTAATAVTALDALADRR-----TAPGLVRGTASKGGRTAFLFTGOGDRRAAVVAGD---REEFLAGLAALAEGA-----TAAGLTEGSP-AGGKLAFLFTGOG
ORF15_pAT03
ORF16_pAT01
                               ORF16_pAT02
ORF17_pAT01
ORF17_pAT02
ORF17_pAT03
ORF17_pAT04
ORF18_pAT01
ORF18_pAT02
                               DHRAVVVAGD---REELLRALAAVESEG-----TAAGVTRGTAG-GGKLAFLFTGGG
```

104

Figure 3b

ORF10_pAT01 ORF10_pAT02 ORF10_pAT03 ORF10_pAT04 ORF10_pAT05 ORF11_pAT01 ORF11_pAT02 ORF12_pAT01 ORF12_pAT02 ORF12_pAT03 ORF12_pAT04 ORF13_pAT01 ORF14_pAT01 ORF14_pAT02 ORF14_pAT03 ORF15_pAT01 ORF15_pAT02 ORF15_pAT03 ORF16_pAT01 ORF16_pAT02 ORF17_pAT01 ORF17_pAT02 ORF17_pAT03 ORF17_pAT04 ORF18_pAT01 ORF18_pAT02

M1

SQRLGMGRELYETHPVFADALDDACWYLDDQLELPL--LDVLFADEGSPEAALLHQTAYT ORF10_pAT01 ORF10_pAT02 SORLGMGRELYETYPVFADALDAVCARMD--LEVPL--RDVLFGAY----AGLLDETAYT SQRLGMGRELYEAYPVFADALDAVCAHVDAHLEVPL--KDVLFGAD----AGLLDQTAYT ORF10_pAT03 ORF10_pAT04 ORF10_pAT05 SQRLGMGRELYEAYPVFAEALDAVCAR----LELPL--KDVLFGAD----AGLLDETAYT SQRLGMGRELYETYPVFADALDAVCVR----LELPL--MDVLFGTE----RDALDETGYT SQRLGMGRELYEAYPVFADALDAVCAR----LELPL--KDVLFGAD----AGLLDETAYT ORF11_pAT01 SQRLGMGRELYETYPVFARALDAV----DARLELPM--KEVLFGAD----ADLLNETAHT ORF11_pAT02 SQRLGMGRELYETYPVFAQALDAVCER----LELPL--KNVLFGTD----SAALDETSYT ORF12_pAT01 ORF12_pAT02 SQRLGMGRELYETYPVFAEALDAVCAR----LELPL--KEVLFGAD----GAALDQTAVT ORF12_pAT03 SQRLGMGRELYEAYPVFADALDAVCVR----LELPL--MDVLFGAD----AGLLNETAYT ORF12_pAT04 ORF13_pAT01 SORLGMGRELYETYPVFADALDAVCAR----LELPL--KDVLFGGD----ADRLNETAYT SQWVGMAVGLLDSSPVFAARVEECAKALEPFTDWSL--VDVLRGVEG---APSLERVDVV ORF14_pAT01 SORPGMGRELYATYPVFAQALDAVCER----LELPL--KDVLFGTDGAA-GAALDETAYT SORLGMGRELYDTYPVFADALDAVCAHVDAHLEVPL--KDVLFGAD----TGLLDQTAYT ORF14_pAT02 ORF14_pAT03 ORF15_pAT01 SQRPGMGRELYDAHPVFADALDEICGELDRHLEVPL--KGVLFATE----GDLIHQTAYT SORLGMGRELYETYPVFAQALDAVCERLN--LEVPL--RDVLFGAD----AGLLDQTVYT SQRLGMGRELYEAHPVFARALDAVCDR----LELPL--KDVLFGTD----AGLLNETVYT ORF15_pAT02 SQRLAMGRELYSAHPVFARALDAVCDG--LALDVPL--KQVLFGSD----ADLLDRTAYT ORF15_pAT03 SQWVGMAVGLLDSSPVFAARVDECAKALEPFTDWSL--VDVLRGVEG---APSLERVDVV ORF16_pAT01 SOWVGMAVALLDASPVFAARVDECAKALEPFTDWSL--RDVLRGVTG---APSLDRVDVV ORF16_pAT02 SQRLGMGRELYATHPGFARALDEVRAELDQHLERPL--FDVLFAAEGTPEADLLDETAYT ORF17_pAT01 ORF17_pAT02 ORF17_pAT03 SORPGMGRELYETYPAFAEALDAVCAELDPHLEQPL--KEVLFTAD----GDLLNRTGRT SQRLGMGRELYEAYPVFARALDEVCAR----LELPLPLKDVLFGTD----TGLLNETAYT SQRLGMGRELYETYPVFARALDAACAR----LELPL--KDALFGTD----AGLLGETAYT ORF17_pAT04 SORLGMGRELYEEYPVFADALDAVCAR----LELPL--KDVLFGAD----ARLLDETAYT ORF18_pAT01 SQRLGMGRELYETYPVFARALDAACAG----LELPL--KDALFGAD----AGLLDETAYT ORF18_pAT02 * * ** :: : .:

М3

QPALFAVEVALFRLVESWGLKPDFVAGHS IGEIAAAHVAGVFSLEDACMLVAAR GRLMQA
QPALFAVEVALFRLVESWGLKPDFVAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVKPDFVAGHS IGEIAAAHVAGVFSLQDASELVFAR GRLMGA
QPALFAVEVALFRLVESWGVKPDFVAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVFSLDDACALVSAR GRLMGA
QPALFAVEVALFRLVESWGLRPDFVAGHS IGEIAAAHVAGVFSLDDACALVSAR GRLMGA
QPALFAVEVALFRLVESWGLRPDFVAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVFSLDDACALVEAR GRLMQA
QPALFAVEVALFRLVESWGLKPDYLAGHS IGEIAAAHVAGVFSLQDASELVVAR GRLMQA
QPALFAVEVALFRLVESWGLKPDFLAGHS IGEIAAAHVAGVFSLQDASELVVAR GRLMQA
QPALFAVEVALFRLVESWGLKPDFLAGHS IGEIAAAHVAGVFSLQDASELVVAR GRLMQA
QPALFAVEVALFRLVESWGLKPDFLAGHS IGEIAAAHVAGVFSLQDASELVVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVFSLQDASELVVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVFSLDACALVEAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVFSLDACALVSAR GRLMGA
QPALFAVEVALFRLVESWGVRPDFLAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRQLEQWGVGADFLIGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRLVESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
QPALFAVEVALFRLESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACALVAR GRLMQA
CHAFAVEVALFRLESWGVRPDFVAGHS IGEIAAAHVAGVLSLDDACAL

Figure 3c

LPAG-GVMIALQASEDEVLPLLT----DRVSIAAINGPQAVVIAGDEDAAAAIAETFQAA ORF10_pAT01 LPGG-GVMIAVOAPEAEVLPLLT----ERVSIAAINGPOSVVIAGDEADAVAIVESFTG-ORF10_pAT02 LPTG-GVMIAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAESFTD-ORF10_pAT03 LPAG-GVMIAVOASEDEVLPLLT----DRVSIAAINGPRSVVIAGDEADAVAIVESFTG-ORF10_pAT04 LPTG-GVMIAVQASEAEVLPLLT----ERVSIAAINGPQSVVIAGDEADAVALVESFTG-ORF10_pAT05 LPAG-GVMIAVQASEAEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAGSFAD-ORF11_pAT01 LPTG-GVMTAVQASEDEVLPLLT----GQVSIAAINGPQSVVIAGDEADAVAIAESFTD-LPGG-GVMTAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAESFAD-LPGG-GVMTAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAESFTG-ORF11_pAT02 ORF12_pAT01 ORF12_pAT02 LPAG-GVMIAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIVESFTG-ORF12_pAT03 ORF12_pAT04 LPTG-GVMIAVOASEAEVLPLLT----ERVSIAAINGPOSVVIAGDEADAVAIVDAFND-ORF13_pAT01 VLAGLGGMVSVPLPAKAVRELIAPWGEGRISVAAVNGPSSVVVSGEAAALDELLVSCESE ORF14_pAT01 LPTG-GVMIAVEASEDEVLPLLT----DWVSIAAVNGPRSVVVAGDEDAAVAIAEAFAAQ LPTG-GVMIAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAESFTG-ORF14_pAT02 ORF14_pAT03 ORF15_pAT01 LPTG-GVMIAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAESFTD-LPGG-GVMIAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIAESFAD-LPGG-GVMIAVQASEAEVLPLLT----DRVSIAAINGPRSVVIAGDEADAVAIVESFTD-ORF15_pAT02 ORF15_pAT03 ORF16_pAT01 LPTG-GVMIAVĒASEDEVLPLLT----DRVSIAAINGPOSVVIAGDEĀDAVAIAESFTG-VLAGLGGMVSVPLPAKAVRELIAPWGEGRISVAAVNGPSSVVVSGEAAALDEMLASCESE ORF16_pAT02 VLAGLGGMVSVALPAKAVRELIAPWGEDRISVAAVNGPSSVVVSGETAALDELLASCESD LPAD-GAMIAVEATEDEVAPLLT----GRVSIAAVNGPRSVVVSGDEDAATALAETLRAR ORF17_pAT01 ORF17_pAT02 ORF17_pAT03 LPEG-GAMIALTATEDEVLPLLAGH-EDRIGIAAVNSASSVVISGEEGLALEIAAEFERR LPGG-GVMIAVQASEGEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIVESFSD-ORF17_pAT04 LPTG-GVMIAVQASEAEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIVESFSG-ORF18_pAT01 LPAG-GVMIAVQASEDEVLPLLT----ARVSIAAINGPQSVVIAGDEADAVAIVESFTG-LPTG-GVMIAVQASEDEVLPLLT----DRVSIAAINGPQSVVIAGDEADAVAIVESFSG-ORF18_pAT02 *:: : . : * * : * . . . : * * : : * : . . * *:::

M4

GRKTKRLTVSHAFTSPHMDAMLEEFLRVAQVLDYAKPTLPVVSLLTGTTATPAELATPAY
-RKSKRLTVSHAFTSPHMDGMLEDFRAVAEGLSYEAPRIPVVSNLTGALVS-DEMGSAEF
-RKSKRLTVSHAFTSPHMDGMLDAFREIAEGLSYEPSRIPVVSNLTGALVS-DEMGSAEF ORF10_pAT01 ORF10_pAT02 ORF10_pAT03 -RKSKRLTVSHAF SPHMDGMLEDFRAVAEGLSYEAPRIPVVSNLTGTLVT-DEMGSAEF ORF10_pAT04 -RKSKRLTVSHAF SPHMDGMLADFRKVAEGLSYEAPRIPVVSNLTGALVT-DEMGSADF -RKSKRLTVSHAF SPHMDGMLEDFRLVAEGLSYEAPRIPVVSNLTGALVS-DEMGSAEF ORF10_pAT05 ORF11_pAT01 -RKSKRLTVSHAFESPHMDGMLADFRKVAEGLVYENPRIPIVSNLTGTLVT-DEMASADF ORF11_pAT02 ORF12_pAT01 ORF12_pAT02 -RKSKRLTVSHAF SPHMDGMLEDFRVVAEGLSYEAPRIPVVSNLTGALVS-DEMGSADF -RKSKHLAVSHAF SPHMDGMLEDFRAVAEGLSYEAPRIAVVSNLTGALVS-DEMSSAEF -RKSKRLSVSHAFHSPHMDGMLEDFRVVAEGLSYDAPRIPVVSNLTGALVT-DEMGSADF ORF12_pAT03 -RKSKRLAVSHAFHSPHMDGMLADFRKVAEELSYEAPRIPIVSNLTGALVT-DEMGSADF ORF12_pAT04 -RKSKRLAVSHAFHSFHIDGMLADFRKVALELSILAPRIPIVSNLIGALVI-DEMGSADF
GVRAKRIAVDYASHSAQVELLREELAELLAPIVPRAAEVPFLSTVTGEWVRGPELDGG-Y
GRKTKKLTVSHAFHSPHMDGMLDAFRTVAQGLSYGTPRIPVVSNLTGALVI-DEMGSADF
-RKSKRLTVSHAFHSPHMDGMLEDFRAVAEGLSYEAPRIPVVSNLTGALIS-DEMGSAEF
-RKSKRLTVSHAFHSPHMDGMLADFRKVAEGLVYENPRIPVVSNLTGALVT-DEMGSADF
-RKSKRLTVSHAFHSPHMDAMLEDFRAVAEGLSYEAPRIPVVSNLTGALVS-DEMGSADF
-RKSKRLTVSHAFHSPHMDGMLDAFREIAEGLSYEAPRIPVVSNLTGALVS-DEMGSADF ORF13_pAT01 ORF14_pAT01 ORF14_pAT02 ORF14_pAT03 ORF15_pAT01 ORF15_pAT02 -RKSKRLTVSHAFHSPHINDGILDAFREVAEGLSYGTPLIPVVSHLTGALVS-DEMGSADF
-RKSKRLTVSHAFHSPHINDGILDAFREVAEGLSYGTPLIPVVSHLTGTLVT-DEMRSPDF
GVRAKRIAVDYASHSAQVELLREELAELLAPIVPRAAEVPFLSTVTGEWVRGPELDAG-Y
GVRAKRIAVDYASHSAQVELLREELAELLAPIVPRAAEVPFLSTVTGEWVRGPELDGG-Y
GRRTKRLTVSHAFHSPLIMDGILDAFREVAESVAYAPPVIPIVSNLTGASVTAEEICAADY
GRRTKRLTVSHAFHSPLIMDGILDAFREVAESLTYRAPAIPVVTLLTGTVAG-DELRTAEH
-RKSKRLTVSHAFHSPHINDGILDDFRAVAEGLSYGAPRIPVVSNLTGALVS-DEMGSADF ORF15_pAT03 ORF16_pAT01 ORF16_pAT02 ORF17_pAT01 ORF17_pAT02 ORF17_pAT03 -RKSKRLTVSHAF<mark>H</mark>SPHMDGMLAGFRKVAESLSYEAPRIPVVSNLTGALVT-DEMGSADF ORF17_pAT04 ORF18_pAT01 ORF18_pAT02

Figure 3d

WVRHVRDAVRYLDGVRTLHQRGVRTFLELGPDAVLTAMAQDCVDP----QGAAFAPALR ORF10_pAT01 WVRHVREAVRFLDGMRVLEAAGVTTYVELGPGGVLSALAQECVSG----DGAAFVPVLR ORF10_pAT02 WVRHVREAVRFLDGIRTLEAAGVTKYVELGPDGVLSAMAQDCVSG----EGSVFIPVLR ORF10_pAT03 WVRHVREAVRFLDGIRALEAAGVTTYVELGPGGVLSALAQECVSG----DGAAFVPVLR ORF10_pAT04 WVRHVREAVRFLDGTRTLEALGVTTYVELGPDGVLSAMAQECVTG----EDSVFVPVLR ORF10_pAT05 WVRHVREAVRFLDGIRTLEAAGVTKYVELGPDGVLSAMAQDCVSG----EGSVFIPVLR ORF11_pAT01 WVRHVREAVRFLDGIRALESRGVTTYIELGPDGVLSALAQDCLTAGTG-TGTAIFAPVLR ORF11_pAT02 ORF12_pAT01 ORF12_pAT02 WVRHVRETVRFLDGIRTLEAAGVTKYVELGPDGVLSALAQDCVSG----EDSVFIPVLR WVRHVREAVRFLDGIRALEAAGVTTYVELGPGGVLSALAQECVSG----DGAAFVPVLR WVRHVREAVRFLDGIRALEAAGVTTYVELGPDGVLSAMAQECVTE----GGAAFVPVLR ORF12_pAT03 ORF12_pAT04 ORF13_pAT01 WVRHVREAVRFLDGIRALEAAGVTVYVELGPDGVLSAMAQECVTG----EGAAFVPALR WFQNLRRTVELEEATRTLLEQGFGVFVESSPHPVLSVGMQETVEDAG---REAAVLGSLR WVRHVREAVRFLDGIRWLESRGVTTYIELGPGGVLSALGQDCQTATG--PRAAAFLPALR ORF14_pAT01 WVRHVREAVRFLDGIRTLEAAGVTKYVELGPDGVLSAMAQDCVSG----EGSVFIPVLR ORF14_pAT02 WVRHVREAVRFLDGIRALEAAGVTTHIELGPDGVLCAMAQECVSG----EDTVFVPVLR ORF14_pAT03 ORF15_pAT01 WVRHVRETVRFLDGIRALTERNVVHFVELGPDAVLSAMAQDCPSA----DTAAFVPVLR WVRHVREAVRFLDGIHALEAAGVTTYVELGPDGVLSAMAQECVTG----EDSVFVPVLR ORF15_pAT02 ORF15_pAT03 ORF16_pAT01 WVRHVREAVRFLDGIRTLEDAGVTTYIELGPGGVLSAMGQSCVTR----DDAAFLPALR WFQNLRRTVELEEATRTLLEQGFGVFVESSPHPVLSVGMQETVEDAG---REAAVLGSLR ORF16_pAT02 WFONLRRTVELEEATRTLLEQGFGVFVESSPHPVLTMGVQETVEDAG---RDAAVLGSLR WVRHVREAVRFLDGVRKLSAQGVTTFVEVGPGGVLTALAQECVTG----QDAVFVPVLR ORF17_pAT01 ORF17_pAT02 ORF17_pAT03 WVSHVREAVRFLDGIRTLDAEHVTTYLELGPQGVLSGLGRDCLTDPADPADTAVFVPALR WVRHVREAVRFLDGIRALEAAGVTTYIELGPDGILSAMAQECITG----EGAAFAPVLR WVRHVREAVRFLDGIRTLEAAGVATYVELGPDGVLSAMAQDCVTG----EGAAFAPALR WVRHVREAVRFLDGIRALEAAGVTTYVELGPDGVLSAMAQACVTG----ENSVFVPVLR ORF17_pAT04 ORF18_pAT01 WVRHVREAVRFLDGIRALEAAGVTAYVELGPDGVLSALAQECVTG----EGAAFAPALR ORF18_pAT02 . .:* .* :* *. ::* :*. :. : *

ORF10_pAT01 SGRPEAATVLNAVAHAHVRGAETDWAAFFAGTGAQRVDLPTYAFQRQRYWM--SGRPEAETAVTALAQAHVRGVDVDWAAFFSGTGVQRVDLPTYAFQRQRFWP--ORF10_pAT02 KARPEAESVTTALASAHVHGIPVDWQAYFAGTGAQRVDLPTYAFQRQRYWP--ORF10_pAT03 ORF10_pAT04 SGRSEAETAVTALAOAHVRGVNVDWAAFFAGTGAERVDLPTYAFQRQRYWL--SGRPEAESVTTALAQVHVRGIAVDWQAYFAGTGAQRVDLPTYAFQRRRYWL--ORF10_pAT05 ORF11_pAT01 ORF11_pAT02 KARPEAESVTTALATAHVHGIPVDWQAFYAGTGAQRVDLPTYAFQHERYWL--AARPEAESVTTALATAHVHGTPVDWRAYFAGTGARRADLPTYPFQGRRYWP--KARPEAETVATALASAHVHGIPVDWRAYFAGTGAQRVDLPTYPFQRQRYWI--ORF12_pAT01 ORF12_pAT02 ORF12_pAT03 SGRSEAETVVTALAOAHVRGVEVDWAAFFAGTGAERIDLPTYAFQRQRYWP--KGRPEAETVMATLGQAHVRGVAVDWHSVYG-TGAQRVDLPTYSFQRQRYWP--ORF12_pAT04 KGRPEAETITAALAHAHTHGIAVDWQAYFAGTGAQRVDLPTYAFQRQRYWV--RGEGGLERFWLSLGEAWVRGVGVDWHAVFAGTGAQRVDLPTYAFQSQRFWPEA ORF13_pAT01 ORF14_pAT01 TGRPEASSLTAAVAGAHVRGLSPDWTVRFAGTGAQRVELPTYAFQRELYWP--KARPEPESVTTALTTAHVHGIPVDWQAFFAGTGARRVDLPTYAFQRQRYWP--ORF14_pAT02 ${\tt PGRPEAETVTTALARVHVQGVPVDWQAYFSGTGAQRVDLPTYAFQRKRYWL--}$ ORF14_pAT03 ORF15_pAT01 ORF15_pAT02 KGRSETGSLTDALARLHVGGVAVDWDAYYSGTDVQRVDLPTYAFQRAHYWL--SGRPEAESVTTALAQAHVRGIAVDWQAYFAGTSAQRVDLPTYRFQREHYWP--ORF15_pAT03 ADRSEEETLTSAVARAHLRGITVDWDAYYSGTGARRVDLPTYAFQRQRYWL--ORF16_pAT01 RGEGGLERFWLSLGEAWVRGVAVDWHAVFAGTGARRVDLPTYAFQQEHYWLES ORF16_pAT02 RGEGGLERFWLSLGEAWVRGVGVDWSAVFAGTGARRVDLPTYAFQSQRFWPEA ORF17_pAT01 GDRPEAAAFATAVAQAHVHGVAVDWSAVFAGRGATRIDLPTYAFQRELYWP--RDRGEAEALTAAIAAAHTRGVPLDWSAYFAGTGARRVELPTYAFQRERFWL--ORF17_pAT02 ORF17_pAT03 ORF17_pAT04 AGRDEAETVLSALAAAHVRGVPVDWQAFYAPAGAQRVPLPTYAFQRSVYWL--KGRPETETITTALALAHAHGTSVDWETYFAGTGAQGVELPTYAFQRDWYWL--ORF18_pAT01 SGRSEAESVTTALAQAHVRGIAVDWQAYFAGTGAERVDLPTYAFQRDHYWL--KGRPEAETITTALALAHNHGTSVDWETYFSGTGAQRVDLPTYAFQRERYWI--ORF18_pAT02

Figure 4

ORF10_pDH03	IGLGDAGHPLLGAAVALADSEGVLFTGRLSLDTHPWLADHTILGSVLLPGTAFVDLAIRA
ORF11 pDH01	AGLDPAGHPLLGAAVTLAGSDSVLFTGRLSLRTQPWLADTTVSGTTVLPGAAFVELAVRA
ORF12_pDH01	AGLEEAGHPLLGAAVPLADSEGFLFTGRLGRTSHPWLADHAVMDTVLLEGTAFVDLAVRA
ORF12 pDH04	AGIGSAGHPLLGAAVELPDSDGFLFTGRLSLRTHPWLADTVVADTVVVPGAAFVELAVRA
ORF14_pDH02	IGLDDTAHPLLSAGVALPESDGMVFAGRLALSTHAWLADHAILGSVLLEGTAFVELATRA
ORF14 pDH03	AGLDAADHPLLGATVSLPGSDGLVLTGRLALSTHPWLSD TVMDTVLLPGTAFVELALRA
ORF15_pDH01	AGLGAAGHPLLGAAVALADLDGFLYTGRLSLDTHPWLADHAVMGSAVLPGTAFVELAIRA
ORF15_pDH02	LGLAAAGHPLLGAAVTLADADGCVLTGRLSLRTHPWLADHAVMCSVLLEGTALVELALHA
ORF15_pDH03	AGLGSAGHPLLGAAVELPDSDGFLFTGRLSLRTHPWLGDHRVAGTVLLPGAALLELAVRA
ORF17_pDH01	AGIGAADHPLLGAAIALADGDGHLFTGRLSLATHPWLADHTVMDTVLLEGTAFVELALQA
ORF17_pDH02	AGMGAAHHPLLGAAVALADGEGFLFTGRLSLDTHPWLADHAVMCNVLLEGTAFVELAIRA
ORF17_pDH03	AGLGATDHPLLSAAVELPDSDGFLFTGRLSLATHPWLADHAVLGSVLLEGTAFVELALRA
ORF17_pDH04	FGLGATDHPLLDATIELPDSDGFLFTSRLSLDTQPWLADHAVLGSVLLPGTAFVEIAVRA
ORF18_pDH01	AGLRSADHPLLGASVALADAEGLLLTGRLSLDTHPWLADHAVAGTVLLPGTAFVELALRA
ORF18_pDH02	AGLGAAEHPLLGAAVELPDSDGLLLTGRLSLLSHPWLADHAVAGTVLLPGTAFVELALHA
	*: : ****.* : *. :. : :.**. ::.**.** :::**:*::* :*

ORF10_pDH03
ORF11_pDH01
ORF11_pDH01
ORF12_pDH01
ORF12_pDH04
ORF12_pDH04
ORF14_pDH02
ORF14_pDH03
ORF14_pDH03
ORF15_pDH01
ORF15_pDH01
ORF15_pDH01
ORF15_pDH01
ORF15_pDH02
ORF17_pDH03
ORF17_pDH01
ORF17_pDH01
ORF17_pDH01
ORF17_pDH01
ORF17_pDH02
ORF17_pDH03
ORF17_pDH04
ORF17_pDH03
ORF17_pDH04
ORF17_pDH05
ORF17_pDH01
ORF17_pDH01
ORF17_pDH01
ORF17_pDH03
ORF17_pDH03
ORF17_pDH04
ORF18_pDH04
ORF18_pDH01
ORF18_pDH01
ORF18_pDH01
ORF18_pDH02
ORF18_pDH02

Figure 5

QLAVRRGTVHAPRLARVPAATPLTPPPGESAWRMDIEDKGTLDHLTLVPSPESAAPLEPG ORF17_pER02 QLALRDGGVLAARLARFDTAAALTPPAD-RAWRLDSTAKGSLNGLALTPYPAALAPLTGH AAF71776_mod05|NYST QAVVREGTVRVGRLARLDSGRGLVPPPG-TPWRLGSRAKGSLDGLALLPHPEARRPLTGH AAF71767_mod15 | NYST .:* * * . **** .: *.**. . **: **: *: * * * : ** QVRVAVRAAGLNFRDVLNALGMYPG-DPGLMGSEGAGIVVETGPGVTGLAPGDRVMGMLP ORF17_pER02 ${\tt EVRVEVRAAGLNFRDVLNALGMYPGDDVGSFGSEAAGVVVEVGPEVTGLAPGDQVMGMIT}$ AAF71776_mod05 | NYST EVRVGIRAAGLNFRDVLNALGMYPG-DAGLFGSEAAGVVVEVGPEVTGLAPGDRVMGMLF AAF71767_mod15 NYST ORF17_pER02 AAF71776_mod05 NYST AAF71767_mod15 NYST ORF17_pER02 AAF71776_mod05 NYST AAF71767_mod15 NYST VVLDSLAREFVDASLRLLPRGGRFVEMGKTDVRSPQDVADAHPGVSYQAFDLTEAGLDRI ORF17_pER02 VVLNSLAGDFVDASMRLLGDGGRFLEMGKTDIRAADSVPD---GLSYQSFDLAWVVPETI AAF71776_mod05|NYST VVLNALSGEFVDASMRLLGDGGRFLEMGKTDIRAADSVPD---GLSYHSFDLGMVDPEHI AAF71767_mod15 NYST ***::*: :**** **** ******* *::.*.* * :**:*** QEMLTELLTLFRSGALRPVPVSAWDLRQAPEAFRYLSQARHVGKIVLTLP ORF17_pER02 GTMLAELMDLFRTGALRPLPVRTWDVRHAKDAFRFMSMAKHIGKIVLTLP AAF71776_mod05 NYST QRMLLDLVELFDRGALAALPVRSWDVRRAGEAFRFMSLAQHIGKIVLTVP AAF71767_mod15 NYST ** :*: ** *** :** :** :** :** * : * * : * * : * * : * * : * * : * * : * * : * * : * * :

Figure 6a

PTGTVLVTGCTGVLGGRVARWLAGA-GAERLVLTSRRGLDAPGAVELVEELTTGFGVEVS
PTGTVLVTGGTGVLGGRVARWLAGA-GAERLVLTSRRGLDAPGTAELVEELTS-SGVEVS
PSGTVLVTGATGTI GGLFARHLVTAYGVRRLLLTSRRGPEAEGAAELVAELEQ-LGAHVE
PTGTVLVTGGTGVLGGRVARWLAGA-GAERLVLTSRRGPDAPGAAELVEELTTGFGVEVS
PRGTVLVTGGTGALGGHVARWLAGA-GAERLVLLSRRGPDAPGAAELVEELTTGFGVEVS
PRGTVLVTGGTGALGGHVARWLAGA-GAERLVLLSRRGPDAPGAAELVEELTTGFGVEVS
PRGTVLVTGGTGALGGHVARHLATAHGVRRLLLLSRRGADAPGAGELTAELAG-LGAQVS
PRGTVLVTGGTGALGHVARHLAER-GAERLVLUSRRGADAPGAAETEAELSA-FGAAVT
PGSTVLITGAGGMLGGLTARRLVAEHGVRHLLLVGRRGAAAPGAEQLSAELAE-AGASVT
PTGTVLVTGGTGVLGGRVARWLAGA-GAERLVLTSRRGPDAPGAAELVEELTTGFGVEVS
PTGTVLVTGGTGVLGGRVARWLAGA-GAERLVLTSRRGPDAPGAAELVEELAG-SGVEVS
PRGTVLITGASGGLAGLFARHLVAEHGVRHLLLTSRRGPDAPGAAELVEELAG-SGVEVS
PRGTVLITGATGALGAHVARWLAGN-GAEHLLLTSRRGPDAPGAAALVELAG-SGVEVS
PGGTVLITGATGALGGLFARHLVAEHGVRHLLLTSRRGPDAPGAAALVAELAE-SGTLAT
ADGTVLVTGATGALGGLFARHLVAEHGVRHLLLUSRRGPDAPGAAALVAELAE-SGTLAT
ADGTVLVTGATGALGGLFARHLAEHGVERLLLVGRRGADAPGAAELVAELAE-SGTLAT
ADGTVLVTGASGTILGGLFARHLATHGARHLLLLSRRGDRAPGAGELTAELTE-AGVDVT
PDGTTVLVTGASGTILGGLVARHLVTGRGVRRLLLLVSRRGADAPGAGELTAELTG-LGAEVS
VDGTVLVTGASGTILGGLVARHLVTGRGVRRLLLLSRRGDRAPGAGELTAELTG-LGAQVT
PQGTTLVTGGTGALGAHVARWLAEN-GAEHLLLTSRRGPDAPGAAELAELTG-LGAQVT
PQGTTLVTGGTGALGAHVARWLAEN-GAEHLLLTSRRGPDAPGAAELAELTG-LGAQVT
PQGTTLVTGGTGALGAHVARWLAEN-GAEHLLLTSRRGPDAPGAAELAELTG-LGAQVT
PDGTALVTGTTGTGALGAHVARWLAEN-GAEHLLLTSRRGPDAPGAAELAELTA-LGAQVT
PDGTALVTGTTGTICGLVARHLVVARHGVRHLLLTSRRGPDAPGAAELAELTE-LGAQVT
PDGTALVTGTTGTICGLVARHLVVARHGVRHLLLTSRRGBAAAGAAELAAGLTE-LGAQVT
PDGTALVTGTGTGTGAVARHAVTTRGARRILLTSRRGBAAAGAAELAAGLTE-LGAQVT
SQGTVLITGGTGTICGLFARHLVVERGVRRLLLVSRRGEAAAGAAELAAGLTE-LGADVR
SDGTVLVTGASGTLGGLFARHLVVERGVRRLLLVSRRGEAAAGAAELAAELTE-LGADVR
SDGTVLVTGASGTLGGLFARHLVVERGVRRLLLVSRRGEAAAGAAELAAELTE-LGADVR
SDGTVLVTGASGTLGGLFARHLVVERGVRRLLLVSRRGEAABGAAELGAELTE-LGADVR
SDGTVLVTGASGTLGGLFARHLVVERGVRRLLLVSRRGEAABGAAELGAELTE-LGADVR
SDGTVLVTGASGTLGGLFARHLVVERGVRRLLLVSRRGEAABGAAELGAELTE-LGADVR
SDGTVLVTGASGTLGGLFARHLVVERGVRRLLLVSRRGEAABGAAELGAELTG-LGADVR
SCHLITGGTGSTATATTATTATTATTATTATTA ORF10_pKR01 ORF10_pKR02 ORF10_pKR03 ORF10_pKR04 ORF10_pKR05 ORF11_pKR01 ORF11_pKR02 ORF12_pKR01 ORF12_pKR02 ORF12_pKR03 ORF12_pKR04 ORF13_pKR01 ORF14_pKR01 ORF14_pKR02 ORF14_pKR03 ORF15_pKR01 ORF15_pKR02 ORF15_pKR03 ORF16_pKR01 ORF16_pKR02 ORF17_pKR01 ORF17_pKR02 ORF17_pKR03 ORF17_pKR04 ORF18_pKR01 ORF18_pKR02

VVACDAADRDALRALLSAEAG----SLTAVVHTAGVLDDGVLDALTPDRIDSVVRAKAV ORF10_pKR01 ORF10_pKR02 ORF10_pKR03 VVACDAADRDALRALLSSEAG----SLTAVIHTAGVLDDGVLDALTPDRIDGVVRAKAV ${\tt LVACDAADRSALAALLGAVPSE---HPLTAVVHTAGVLDDGILSSLTPERVAAVLRPKVD}$ ORF10_pKR04 VVACDAADRDALRTI,LSAEAG----TLTAVIHTAGVLDDGVLDALTPDRIDSVLRAKAV AVACDVTDRTAVSELLAGLADGTYGPGLTAVFHTAGAGQFAPLDGTGPGEVAEVVAAKVA ORF10_pKR05 ORF11_pKR01 WAACDAGDRDALAAVLAAVPAA---HPLTAVVHTAGVLDDGVIGSLTPERLDTVLRPKAD ORF11_pKR02 LVACDVADRDALGTLVARLAAD--GTPVRAVVHAAGVSQ-PPGTGTDLPGFARVVAAKTA ORF12_pKR01 WAACDVADRDALSAVLHAIPAE---HPLGAVVHTAGVLDDGVIASLTPERLSAVLRPKVD ORF12_pKR02 ORF12_pKR03 IVACDAADRDALRALLSAEAG----TLTAVIHTAGVLDDGVLDALTPDRIDSVLRAKAV VVACDAADRDALRALLSAEAG----TLTAVIHTAGVLDDGVLDALTPDRIDSVLRAKAV ORF12_pKR04 WAACDVADRDALAALLASVPAE---QPLTAVVHTAAVLDDGVVDLLTPERVDRVLRPKAE ORF13_pKR01 IASCDMADRDAVTALIAAIPAD---QPLTAVIHAAAVVDDGVIETLAPEQVEAVLRVKVD ORF14_pKR01 ORF14_pKR02 IAACDVADRDAVAALLATLPAE---HPLTNVVHAAGVLDDGVLDAQTPQRLAGVLRPKAH WAACDVADRDALAALLADIPAE---HPLTAVVHTAGVLDDGVISSLTPERLSAVLRPKVD ORF14_pKR03 WAACDAADRDALAAVLAAIPAD---RPLTAVVHTAGVLDDGIIDSLTPERLDTVLRPKVD ORF15_pKR01 ORF15_pKR02 WAACDAGDRDALAAVLAAVPAA---HPLTAVVHTAGVLDDGVIGSLTPERLDTVLRPKAD WAACDVADREALESVLAGIPAE---YPLSGVVHTAGVLDDGVVSSLTAERVSAVLRPKVD ORF15_pKR03 WAACDAADRDALAALLESVPAA---HPLTAVVHTAGVLDDGTVESLTAGRMATVLRPKVD ORF16_pKR01 IAACDVSDRDAVAALIAAVPAD---QPLTAVVHTAAVLDDGVIEALTPEQIERVLRVKVD ORF16_pKR02 ORF17_pKR01 IATCDMADRDAVAALIAAVPAD---QPLTAVMHTAGVLDDGVIDALTPERFGTVLAPKAD IAACDAADRDALAALIGSVPAE---HPLTAVVHTAGVLDDGVLEALTPERIDAVLPAKVD ORF17_pKR02 IAACDAADRDALAALIESIPSE---HPLTAVIHTAGVLDDGVVDSLTPERLSTVLRPKVD ORF17_pKR03 ORF17_pKR04 WAACDVADRDALEAVLAGIPAE---YPLSGVVHTAGVLDDGVVSSLTPERLSAVLRPKVD WAACDVADRDALESVLAGIPAE---YPLSGVVHTAGVLDDGVVSSLTPERLSAVLRPKVD ORF18_pKR01 WAACDVADREALESVLAGIPAE---YPLSGVVHTAGVLDDGVVSSLTAERVSAVLRPKVD VAACDAADREALAALLAGIPAA---HPLTAVVHTAGRVDDGLLASLSPERIDTVLRPKAD ORF18_pKR02 .:** ** *: :: . : *.*:*. :

Figure 6b

SALNLHELTAELGIELSDFVLFS SVTGTVGAAGQANYAAANAFLDALAEQRRADGLAATS
SALNLHELTAELGIELSAFVLFS MSGTVGTAGQANYAAANAYLDALAEQRRADGLAATS
AAWNLHELTREL—GLSAFVLFS MSGTVGTAGQANYAAANAYLDALAEQRRADGLAATS
SAFNLHELTAELGIELSAFVLFS MSGTVGAAGQANYAAANAYLDALAEQRRADGLAATS
GAAHLDELLGD—TELDAFVLFS TAGVWGSGGQSAYAAANAHLDALAQQRRARGLTATS
AALHLHELTRDL—PLTAFVLFS TAGVWGSGGQSAYAAANAHLDALAQQRRARGLTATS
GAVHLDALFDAP—DSLDAFVLFS TAGVWGSGGQGAYSAANTHLDALAQHRHDQDLPATS
GAVHLDALFDAP—DSLDAFVLFS TAGVWGSGGQGAYSAANTFLDTLAERRRARGLAATA
AACNLHELTRHL—DLTAFVLFS TAGVWGSGGQGAYSAANTFLDTLAERRRARGLAATS
SALNLHELTAELDIELSAFVLFS TAGGVGGGGGAYSAANTFLDALAQHRRSQGLAATS
SALNLHELTAELDIELSAFVLFS SWGGTVGAAGQANYAAANAFLDALAEQRRADGLAATS
SALNLHELTAELGIELSAFVLFS SWGGTVGAAGQANYAAANAFLDALAEQRRADGLAATS
AALHLHELTRGL—DLSAFVLFS FAATFGAPGQGNQAPGNAYLDAFAEYRRGSGLPATS
AAQVLHELTRGL—DLSAFVLFS SVAAVFGAAGQANYAAANASLBALAEQRRADGLPATV
AAWNLHELTRGL—DLSAFVLFS SVAAVFGAAGQANYAAANASLBALAEQRRADGLPATV
AAWNLHELTRGL—DLSAFVLFS SVAAVFGAAGQANYAAANSFLDALAQHRRAHGLPATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGAAGQANYAAANSFLDALAQHRRAHGLPATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGAAGQANYAAANSFLDALAQHRRAQGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGAGQANYAAANSFLDALAQHRRAQGLAATS
AATLHLHETREL—DLSAFVLFS SAAGVFGAGQANYAAANSFLDALAQHRRAQGLAATS
AALHLHELTREL—DLSAFVLFS SAAGVFGAGQANYAAANSFLDALAQHRRAQGLAATS
AAWNLHELTREL—DLSAFVLFS SAAGTTGAFGQGNYAAANNFLDALAQHRRAGLTAVS
AALHLHELTREL—DLSAFVLFS SAAGTTGAGGQANYAAANNFLDALAQHRRAGGLTAVS
AAWNLHELTRGL—DLSAFVLFS SAAGTTGAGGGANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGTTGGAGGANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGQANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGQANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGQANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGTTGGAGGANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGQANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGQANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGQANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGGANYAAANNFLDALAQHRRAGGLAATS
AAWNLHELTRGL—DLSAFVLFS SAAGVFGGAGGANYAAA ORF10_pKR01 ORF10_pKR02 ORF10_pKR03 ORF10_pKR04 ORF10_pKR05 ORF11_pKR01 ORF11_pKR02 ORF12_pKR01 ORF12_pKR02 ORF12_pKR03 ORF12_pKR04 ORF13_pKR01 ORF14_pKR01 ORF14_pKR02 ORF14_pKR03 ORF15_pKR01 ORF15_pKR02 ORF15_pKR03 ORF16_pKR01 ORF16_pKR02 ORF17_pKR01 ORF17_pKR02 ORF17_pKR03 ORF17_pKR04 ORF18_pKR01 ORF18_pKR02

ORF10_pKR01 IAWGPWA--EGGMAAD--EAMDARMRREGMPPMAPTSAMSALEQ IAWGPWA--EGGMAAD--AALEARMRRDGVPPMPADPAIRALRQ ORF10_pKR02 ORF10_pKR03 ORF10_pKR04 LAWGLWAPQTGGMAQQLDEVDLRRIARDGVGGLSGDEGLGLFDT LAWGPWA--EGGMAGD--DAMDARMRREGLPPMAPDAALTLLRQ ORF10_pKR05 VAWGPWG--EGGLVAD--DEAAEQLRRRGLPVMAPELSIAALQQ ORF11_pKR01 LAWGLWA-DASGMTGGLDEAQLRRMEQHGMGTLSATDGMALFDA ORF11_pKR02 IAWGPWA--DGGMATE--GDAEEQLSRRGLPPMDRATNLLALER ORF12_pKR01 LAWALWA-DSTGMAGSLDEADISRMRRGGLPPLTTAEGLELFDL ORF12_pKR02 ORF12_pKR03 ORF12_pKR04 LAWGPWA--EGGMAAD--AALEARMRRGGVPPMDAELALSALRQ IAWGPWA--EGGMAAD--AALEARMRRGGVPPMKGEAAVNALQR LVWGMWA-EERGMAGRLTEAELGRAGRGGVAPLSATEGLALFDA ORF13_pKR01 IAWGPWG--SADGDDS---AAGDRMRRHGIIVMSPERTLVSLQH ORF14_pKR01 LAWGAWA--EGGMATD--ELVAERLRLAGLPALAPELALSALHR ORF14_pKR02 TAWGLWS-VADGMAGALDAADVNRMRRAGLPPLTAADGLGLFDT ORF14_pKR03 LAWGLWE-TTDGMAGALDEADLTRMARSGVAALAPDEGLALFDT ORF15_pKR01 ORF15_pKR02 ORF15_pKR03 LAWGLWE-DAEGMAGALDRADLDRMKRGGVHGLTASEGLALLDL LAWGLWA-EPGGMAGALDADDVSRLGRGGVSGLSAGEGVALFDA LAWGLWD-DEAGMAATLDEQDRRRLSRGSMNPLSVAEGLALFDA ORF16_pKR01 IAWGPWG--DGGMAEG---AVGDRMRRHGVIEMSPERAVAALQH ORF16_pKR02 VAWGRWG--DSGLAAGG--AIGERLDRGGVPAMAPRSAIRALQL ORF17_pKR01 ORF17_pKR02 LAWGLWA-ERSGMTGDLADADLERISRAGVAALSSAEGLALLDT LAWGLWA-EASGMTGELDTADKDRMTRSGVLGLSSEEGVALLDT ORF17_pKR03 LAWGLWA-GVGGMGGELTESDRERINRGGITALEPETGLALFDA ORF17_pKR04 ORF18_pKR01 LAWGLWA-EPGGMAGALDADDVSRLGRGGVSGLSAQEGVALFDA LAWGLWD-EPGGMAGALDADDVSRLGRGGVSGLSAGEGVALFDA ORF18_pKR02 LAWGLWE-QRSAMTGALSDADVQRMARAGLAPLSSAEGLALFDT .: :

Figure 7

SAALRDAAPDTLDPHRPFLDLGFD LAAVDLHARLVAGTGLRLPVTLAFDHPTPAHLARHLH AAVLGHDGSDAVGAERAFKELGFD LTSVELRNRLGAATDLRLPTTLVYDYPTSAALAEYLR AAVLGHAGVENVGAGRAFKELGFD LMAVELRNRIGSATELRLPATLIYDHPTSAALAEFLR AEVLGHTDARAVDADRAFKELGFD LTAVELRNVLKAATGLRLSPTLVFDYPTPVALARHLL AAVLGHGGSEAVGAERAFKELGFD LTAVELRNRLGAATGVRLPATLIFDYPTATALAAYLR ORF10_pAC00 ORF10_pAC01 ORF10_pAC02 ORF10_pAC03 AEVLGHTDARAVDADRAFKELGFD SLTAVELRNVLKAATGLRLSPTLVFDYPTPVALARHLL AAVLGHGGSEAVGABRAFKELGFD SLTAVELRNRLGAATGVRLPATLIFDYPTATALAAYLR AVVLGHGGATAVEARAFKELGFD SLTAVELRNRLSTATGLRLPASLVFDYPTPAALAAHIR ASVLGHASAEQVDPARAFKDLGFD SLTAVELRNRLGAATGLRLPTTLVFDHPTPTALVRHLR ATALGHTSADAVAABRAFKDLGFD SLTAVELRNRLGAATGLRLPTTLVFDHPTPTALVRHLR AAALGYPGPSAVEPGRSFKELGFD SLTAVELRNRLGAATGLRLPATLVTDYPTPAALAVHLR AAALGYPGPSAVEPGRSFKELGFD SLTAVELRNRLGAATGLRLPATLVYDYPTPAALAVHLR AAVLGHAGVESIGAARAFKELGFD SLTAVELRNRLGAAGLRLPATLIYDYPTSGALAEYLR AAVLGYAGPESVPGSAFRDLGFD SLTAVELRNRLGAVTGLRLPATLIYDYPNPAALAVHLR AAVLGHADLAAVEAGRAFKELGFD SLTAVELRNRLGAVGLRLPATLIYDYPNPAALAQHLL AAVLGHADLAAVEAGRAFKELGFD SLTAVELRNRLGAVGLRLPATLIYDYPNPAALAQHLL AAVLGYAGPESVPPGSAFRDLGFD SLTAVELRNRLGAVSGLKLPASLVFDHPTPAAVAAFLR AAVLGYAGPESVPPGSAFRDLGFD SLTAVELRNRLNAATALRLPATLIFDYPDSLSLAAFLQ AAVLGHAGPAAVESGRAFKELGFD SLTAVELRNRLNAATALRLPATLIFDYPDSPTALAAYLA ADVLGHAGPAAVESGRAFKELGFD SLTAVELRNRLNAATALRLPATLIFDYPDSPTALAAYLA ADVLGHGSPDAIDPEQAFSELGFD SLTAVELRNRLGAATGRRLPATLIFDYPTSPTALAAYLA AAVLGYASPEAVEKDSSFRELGFD SLTAVELRNRLGAATGRRLPATLVFDYPTSAVLADHLR AAVLGYAGPDAVEAGRAFKELGFD SLTAVELRNRLGAATGRRLPATLVFDYPTSAVLADHLR AAVLGYAGPDAVEAGRAFKELGFD SLTAVELRNRLGAATGRRLPATLVFDYPTPEALSGHLR AAVLGYAGPDAVEAGRAFKELGFD SLTAVELRNRLGAATGRRLPATLVFDYPTPPAALSGHLR AAVLGYAGPDAVEAGRAFKELGFD SLTAVELRNRLGAATGRLPATLVFDYPTPPAALSGHLR AAVLGHASTDEVPADRAFKELGFD SLTAVELRNRLGAATGRLPATLVFDYPTPDALSAFLR AAVLGHASTDEVPADRAFKELGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALSAFLR AAVLGHASTDEVPADRAFKELGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGHASTDEVPADRAFKELGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGHASTDEVPADRAFKELGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGHASTDEVPADRAFFSEVGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGHASTDEVPADRAFFSEVGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGHASTDEVPADRAFFSEVGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGAGPEAVDPARSFSEVGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGAGPEAVDPARSFSEVGFD SLTAVELRNRLGAATGVRLPATLVFDYPTPDALVEYLR AAVLGAGPEAVDPARSFSEVGFD SLTAVELRNRLGAATGVRLPATLVFDYPTSLALADFLG ORF10_pAC04 ORF10_pAC05 ORF11_pAC01 ORF11_pAC02 ORF12_pAC01 ORF12_pAC02 ORF12_pAC03 ORF12_pAC04 ORF13_pAC01 ORF14_pAC01 ORF14_pAC02 ORF14_pAC03 ORF15_pAC01 ORF15_pAC02 ORF15_pAC03 ORF16_pAC01 ORF16_pAC02 ORF17_pAC01 ORF17_pAC02 ORF17_pAC03 ORF17_pAC04 ORF18_pAC01 ORF18_pAC02

Figure 8

ORF18_pTE02 AAF71777 NYST	RGDTRPGLVCFSSILSISGPHQYARFASAFRGRRDVHALGAPGF MTTSTEESLWARCFHPAPAAPVRLFCFPHAGGSASFYFPVSAQLSSVAEVFAIQYPGRQD : ** : : : : : : : ** **
ORF18_pTE02 AAF71777 NYST	LRGEQLPSATDAVIEAQAEAVLRHADGAPFVLLCHSSGGMLAHAVAGRLESEG RRKEAGVSDLATLADQVYDALRPLLKERPSTFFGHSMGATLAFEVARRFEADDGDLVRLF * * * :: : *: . * .:: *** * . ** * *: ::.
ORF18_pTE02 AAF71777 NYST	VFPQALVMIDIYSHDDDAIIGIQPGLSEGMDERQDTYVPVDDNRLLAMGAYFRLFG ASGRRAPSRVREEAVHRRSDDGIVEELK-LLAGTNTALLGDEEILRMILPAIRSDYQAIE *.: ::**.*: * *: : * *::::
ORF18_pTE02 AAF71777 NYST	GWKPEVVKTPTLLVRAGERFFDWTRSTDGDWRSYWDLDHTALDVPCNHFTMMEEHAPT TYRCPPDVTVRAPLTVLTGDRDPKTSLDEAEAWRGHTTGDFDLKVLPCGHF-FVSSEAPA :: *:* * * :*:*
ORF18_pTE02 AAF71777 NYST	TAQAVEGWLDTTG IIDLLRAHLAGNG

.

Figure 9

γ-amino butyryl-CoA

Figure 11

E P **ORF 23** EPIM ÇH3 **ORF 22** DEPL OH CH3 CO AGNPO **ORF 25** DEPA R **ORF 24** NUTA CH₂OH

5-aminolevulinate-CoA

5-aminolevulinate

glycine

succinyl-CoA

ಜ

20/21

Filename: _

Figure 15d

STANDARD PROTON PARAMETERS
Pulse Sequence: gHSQC
Solvent: CB300

Ambient temperature
file: ECO-02301_CD30D_gHSqC_12_
INOVA-500 "resonance"
Relax, delay 1.000 sec
Acq, time 0.128 sec
Vidth 4001.6 Hz
2 Width 21361.8 Hz
64 reperitions
2 x 128 increments
085ReVE H1, 493.7495714 MHz
POWER to 13, 125.6727810 MHz
POWER to 10 delay
W40_id419 modulated
DATA PROCESSING
Gauss appolization 0.059 sec
F1 DATA PROCESSING
Gauss appolization 0.022 sec

Filename:

Figure 15e

STANDARD PROTON PARAMETERS
Pulse Sequence: gHMBC
Solvent: C030D
Ambient temperature
File: EC002301_C030D_gHMBC_12_02
INDVA-500 "resonance"
Relax, delay 1.000 sec
Acq. time 0.128 sec
Vidth 4001.6 Hz
20 Width 28901.7 Hz
128 repetitions

12B repetitions
12B repetitions
10BSERVE H1, 499.7495714 MHz
0BSERVE H1, 499.7495714 MHz
0BTA PROCESSING
Sine bell 0.064 sec
F1 DATA PROCESSING
Sine bell 0.07 sec
FT size 2048 x 4096
Total time 17 hr, 18 min, 49 sec

Filename: _

STANDARD PROTON PARAMETERS

Pulse Sequence: TOCSY

Figure 16

SEQUENCE LISTING

<110> Ecopia BioSciences Inc Bachmann, Brian O. McAlpine, James B. Zazopoulos, Emmanuel Farnet, Chris M.

<120> POLYENE POLYKETIDES, PROCESSES FOR THEIR PRODUCTION AND THEIR USE AS A
PHARMACEUTICAL

PHARMACEUTICAL <130> 3004-8PCT <150> USSN 60/441,123 <151> 2003-01-21 <150> USSN 60/469,810 <151> 2003-05-13 <150> USSN 60/491,516 <151> 2003-08-01 <150> USSN 60/494,568 <151> 2003-08-13 <160> 78 <170> PatentIn version 3.0 <210> 1 <211> 11740 <212> DNA <213> Streptomyces aizunensis <400> 1 60 gatcatggcc ggcgaggtgg tcgcggggcgg ggcgaatccg aaggtcacgg tcctcccttc gggttacgcg cgccgctgac gggcacggct gggttgcggg cgcgccgcag cgcggccctc 120 aagagtgccg acgagccgag cgggaacact ccaattctcg cgcggcccgc gaggatgcgg 180 caacgagcaa ttggcgccgc ggaccgtaat tggccggtat gccgttcata tccttgcccc 240 300 gttacgccgt cgatgacgca tccggtgccg cccggaccgc cggtaccagc ggaaacacct cccgcgcggc ggcccgctgg agccgcggag atccaccgga cacccctgg gcctggcgga 360 gtccgtgcgt gccgcgtgga ttcgccgatt gtcggtggga tcgggttgca tgggggcatg 420 gacaacctgg agctccgtcg tgaagccgat gccatcctcg ctgagctggt cggtgcccct 480 540 gggggttegg egeggetgeg ggaggaceag tggeaggegg tegeggeeet ggtggaggag cgccggcggg ccctggtggt gcagcgcacg ggctggggca agtccgcggt ctacttcgtc 600 gccaccgctc tgctgcgccg gcgcggctcc gggccgacgg tgatcatttc tccgctgctg 660 gegetgatge geaaceaggt egaggeggee gegegggeeg ggateeagge gegeaegate 720

1/251

780

840

aactcggcca acccggagga gtgggaaacc atctacgggg aggtcgagcg cggcgagacc

gatgtgctcc tcgtcagccc cgagcgcctc aactccgtgg atttccgcga ccaggtactg

	cccaagctgg	cggccacgac	gggtctgctg	gtggtcgacg	aggcgcactg	catctccgac	900
	tggggccacg	acttccgccc	cgactaccga	cggctgcgca	cgatgctggc	ggagctgccg	960
	gagggcgtgc	cggtcctggc	cacgacggcg	accgcgaacg	cgcgggtgac	cgcggacgtg	1020
	gcggagcagc	tgggcacgca	cggcgagcac	gccctggtcc	tgcgcggacc	gctcgaccgg	1080
	gagagcctgc	ggctgggagt	gctgcagctg	ccggacgcgg	cgcaccggct	ggcctggctg	1140
	ggggaccggc	tggcgcacct	gccgggttcg	gggatcatct	acacgctgac	cgtggcggcg	1200
	gcggaggagg	tcgcggcgtt	cctgcggcaa	cgcgggtatc	cggtggcttc	ctacaccggg	1260
	aagacggaga	acgccgaccg	gttgcaggcg	gaggaggatc	tgctggcgaa	ccgggtgaag	1320
	gcactggtgg	cgacctcggc	gctgggcatg	gggttcgaca	agccggacct	ggggttcgtg	1380
	gtgcacatgg	ggtcgccctc	gtccccgatc	gcctactacc	agcaggtggg	gcgcgcgggg	1440
	cgtggggtgg	atcacgcgga	cgtgctgctg	ctgccgggcc	gggaggacga	ggcgatctgg	1500
	gcgtacttcg	cctcggtggg	cttcccgccc	gaggagcagg	tccggcgcac	cctggacgta	1560
	ctggcgcagg	cgggccgccc	gctgtcgctg.	cccgcgctgg	agccgctggt	ggacctccgg	1620
	cgctcgcgcc	tggagacgat	gctgaaggtc	ctggacgtgg	acggcgcggt	caagcgcgtg	1680
•	aagggcggct	ggaccgccac	cgggcagccg	tggacgtacg	acgcggagcg	gtacgcctgg	1740
	gtcgcgaagc	agcgggcggc	ggagcagcag	gccatgcggg	actacgtggc	gaccacgggc	1800
	tgccggatgg	agttcctgca	gcggcagctg	gacgacgaga	aggeggteee	gtgcggccgc	1860
	tgcgacaact	gcgccggatc	ctggctggag	gcggtcgtgt	cgcccgcggc	cctcgcggcc	1920
	gcggcgggcg	agctggaccg	cgcgggggtc	gaggtcgagt	cccgcaagat	gtggccgacc	1980
	gggctcgccg	cggtcggcat	ggacctgaag	ggccggatcc	ccgcgggcca	gcaggccgtc	2040
	accgggcgcg	cgctcggcag	gctgtcggac	atcggctggg	gcaaccggct	gcgccccctg	2100
	ctgtcggcgc	aggccgcgga	cgggccggtt	ccggacgatg	tgctggccgc	cgtcgtgacg	2160
ď	gtgctcgccg	actgggcccg	ctcgccgggc	ggctgggcga	gcggcgggcc	ggacgcgatg	2220
	gegeggeegg	tggggatcgt	cgccatgccc	tcccgtaccc	gcccgcggct	ggtcgcctcg	2280
	ctggccgagg	gegtggeeeg	ggtcggcagg	ctcccgctgc	tgggcagcct	cgcctacacc	2340
	ccgcaggccg	acgtgtacgg	ggcgcaccgc	agcaactcag	cccagcggct	gegegeeetg	2400
	gccgactcgt	tcaccgtgcc	cgaggaactc	gccgcggccc	tggccgccgc	teceggeeeg	2460
	gtcctgctcg	tcgacgacta	caccgactcc	ggctggaccc	tggccgtggg	cgcacgcctg	2520
	ctgcgccagt	ccggcgcggg	cggcgtgctc	ccgctcgtcc	tcgcgctggc	cgggtaggcg	2580
	gactccaccg	gcctcggcct	atcgccaacc	gacggggggc	ggcaagatca	aaacaaccgc	2640
	ccgtaaagca	aacgtaaaga	tgtggcttct	ttgggaagtc	gcgtatgggc	ctgttttgag	2700
	ccacgcggcg	gaagtcaccc	ctggcgggat	ccgtggtggc	gcattcggtg	cggacggccg	2760

aacgggccgt	cgtcgctccc	gttcgggccg	gggggccctg	tcgtcgcacg	gggagagcga	2820
atgccggccg	gggctgcgga	ccgggaggtt	ccagccaggg	taggggtaga	aagtaggggt	2880
actccccgcc	ttgatcgtcc	tggtagacat	gacacatccg	aaacgcgcgt	gcggaagtgg	2940
cggaagggtt	cgacccgtcg	aacgggcgcg	ctgcatctgg	ggcttgaaca	gggagtttca	3000
gtccgttgaa	taagcaagaa	actageetet	gggttcgccg	ctaccacgct	tcggacgaaa	3060
gccggatcca	attggtctgt	ctgccgcacg	ccggtggctc	ggcctccttc	tacttcccca	3120
tgtcccagtc	gctggctccg	gcgatggacg	tcctctcggt	ccagtacccc	ggcaggcagg	3180
accgcaggga	cgagcccggg	atcgtggaca	tcggcgccta	cgcggacgcc	ctgaccgagc	3240
aactcgtacc	gtggctcgac	cggcccctgg	ccttcttcgg	ccacagcatg	ggtgcgatcc	3300
tcgccttcga	ggtgacgcgc	aggctggagc	gtgaccacgg	cgtcactccg	gagcacatct	3360
tegetteegg	ceggegeteg,	cccgccagtt	tccggcacga	gaccgtgcac	ctgcgggacg	3420
acgacggaat	cgtggcggaa	atgcgggaac	tcagcggaac	cgacgcgaag	atactcggca	3480
acgaggaaat	cctccgcatg	gtgctccccg	cgattcgaag	cgactacacc	gccatcgaga	3540
actaccgtgc	cgcgccggaa	gacgtcgtgc	gtactcccat	cacggtgctg	accggtgacg	3600
cggacccgag	gaccagccgg	gaagaggcgg	acgcctggaa	ggcgcacacg	accggcggat	3660
tegatetgea	ttccttcccc	ggtggacatt	tetteetgge	gaatcaccag	gagaagatca	3720
tgggaattat	ttcggaggaa	ctetecgege	cggctcgcat	ggcgtgagca	gagagctgtg	3780
gaccaggccg	gggaaacccg	gctcgcccct	tgccgacctc	caccgcgatg	gcggagccga	3840
gaagccgaat	gaccaacggc	cgcggtggcg	atcgaaaggg	gcaggccgcg	gtgacggccc	3900
gccggtgcac	accgtgcacc	ggcacaccaa	gcggtgcggc	ggcggcttcg	ccgggcgccc	3960
accgggcccg	ttgcgaagtc	ttcgcaagtc	gtgcagttcg	ggggaaagga	agcccgtggc	4020
ggttaggctc	gtcgagcgcg	agaagcagct	ggaaacgctg	aaggaactac	teggeagege	4080
agtccgtggc	cgagggcggg	tcgccgtcat	cagcggggca	gtcgccggcg	ggaaaacgag	4140
tctgctggaa	atcttcaccg	aagaggcgat	ctccgcgggc	gcgctggtgc	tggaagccac	4200
gggctcccgg	gcggagcgct	atctgccctt	cggaattctg	cgcagaatcc	tegacagege	4260
ggcgcccctg	tcgcccgaga	tccacgccta	cgccaccgag	ctgctggacc	gcgtcagcgc	4320
cgggacgacg	gacgccgaag	gcgccgtcga	ggccggtatg	cgcgtcctgc	cccatgtcgc	4380
caccgcactg	ttaaggatcg	cccggaaccg	gaccgtcgtc	atagccatcg	acgacgtcca	4440
ccacggggac	gaactctccc	tegeetteet	gctgtgcctc	gcccgccgag	tgcgccaggc	4500
gggcgtcctg	atcgtgctca	ccgaagccgt	ccggctgcgg	tccgcgcaac	tegeetteea	4560
cgccgaactg	cagcgccagc	ccaactgcac	cagcctccgg	ctgcccctgc	tcaccacgcg	4620

0/054

cggcaccacc	cgcgtcctcg	ccgagcactt	ctcccctcg	acggcgcaac	ggctgtccgc	4680
cgagtgccag	gagaccaccg	gcggcaatcc	actgctggtc	agggcgctga	tcgacgacgg	4740
cctcacggcg	ctcggagaca	gcgagccctt	ccagcggctc	geeeeegeeg	aaaccttcga	4800
acgcgccgtg	ctcgactgcc	tgcaccgcgg	cgaccccgag	ctgctgaccg	tcgcccgggg	4860
cgtcgccgta	ctcggtagcg	cctgctcctt	ggccctgctc	aacgggatcg	tcgacctgca	4920
cgccaaggcc	accgaacagg	cccttcagga	cctcagccgg	tgcgccgtcc	tgcaccacgg	4980
ctccttccgc	gacccggcgg	cccgtaccgc	cgtcctggaa	gccactccgc	ccgcggcgct	5040
gtccgccctg	cacctgcgca	ccgcgcgact	cctgcaccag	gaaggcgcga	cggcgctcga	5100
tgtcgcccgc	cacctcctcg	ccgcccgcaa	gaacgtcgag	gactgggcga	tccccgtcct	5160
ccaggaggcg	gtcgagtacg	ccctcgtcga	ggacgagcac	gaactcgccc	tgcggtgcgg	5220
ggaactggcg	gtcgcctcct	gcgcggaggg	cccccgacac	gccgccctga	agtcccgcct	5280
ggcgagcatc	gtctggcgca	gcagcccggc	cgccgctgaa	gggcatctgc	ggcagctgtc	5340
ccgcgaactc	gccgccggcc	ggctcgccga	ccgcgatctc	gtccaggccg	tgtcgctcct	5400
ggcgtggatg	ggggagtccc	ggggggccgg	cgaggcggta	ctgcgactgc	agcggaccga	5460
cagcgaggcc	gaggcggccg	gacgggcgcc	cgcctacgac	ccgggcacgc	tcaccgccgc	5520
acagagctgg	ctctcgatgg	tcagcccgcc	ggcccgcgac	ctcttcgacg	ccgtggaacc	5580
gcgccggaca	acgctgtcag	acacaccaaa	ggcgctgccc	ggcgcggggc	ccgacaccgt	5640
cccctacgac	atgcccgaca	acgcctacgt	ccaggccgcc	gacgccgtcc	gcaccgccct	5700
gcgcggcgga	acccaggccg	acgccgccgt	cagcaaggcc	acccgggtgc	tccagcgcta	5760
ccacctgagc	gaccgcaccc	tccagccgct	cgtcttcgcc	ctcctcgccg	tcatctacgc	5820
gggtcgcctc	gacctcgcgt	ccgcctggtg	cgaacgactg	ctcggcgagt	gctccgcccg	5880
caacgccccg	acctggcagg	ccgccctcgg	tgtggtccgg	gccgagatcc	tgctgcgcca	5940
gggcgatctg	cccggtgcgg	ccgcccaggc	ccgccacgcc	atgtcccgga	tctccctgca	6000
gagctggggc	gtgggcatcg	cgctgccgct	ggccgtcctc	gtcgaggccg	aggtccagat	6060
gggcgaccac	gaggaggcga	tgagcctgct	cgaacagccg	gtgccccagg	ccatgttcga	6120
caccctggcc	ggcctgcact	acctcagggc	ccgcggccgc	tgccacctgg	ccaccggccg	6180
ctaccacgcc	gccgtgcggg	acttcctgaa	ctgcggcgag	ctgatgcagg	cctggggcgt	6240
ggacggggcg	gagctggtgc	cgtggcggct	ggacgccgcc	gaggcgtggc	tggccctcgg	6300
caacgtcgcg	cgcgccaagg	agtacaccga	gcagcagaag	cagcgcgaga	cggggcccgt	6360
gggcagccgg	acgcgtggct	ccctgctgct	cacgctcgcc	cacaccggcg	gtgacctcac	6420
ggtccggctc	aagcggctcg	tcgaggccgt	cgagaccctg	gaggagggcg	gggaccggct	6480
ccagctggcg	gtggcgctgg	gggagctggg	ccgcggctac	catacactaa	gcgacttcaa	6540

ccgggcccgg	atgctggtgc	gcaaggcctg	gcacgtcgcc	aagtcctgcg	gcgccgaacc	6600
gctgtgccag	cagttcatgc	cggggcaggt	cgacggcgag	geeggtgege	agagcggccg	6660
ggaggcggag	cttcccagcg	aggtcgaggt	cctgtccgag	gccgaggcgc	gggtcgcgct	6720
gctggcggcg	cgcggccaca	ccaaccgtga	gatagcgacc	aagctctacg	tcacggtgtc	6780
cacggtcgag	cagcatctga	cgcgcatcta	ccgcaagctg	aaggtgaagc	ggcgccgcga	6840
tatgacagaa	cggctgtcgg	acctgagcct	gccgagcatc	gcctgaccgc	gcccgtcgcc	6900
gggagcgcgt	tgcgggagcg	cgttgcccgg	agcgcggcgc	cacgcgcggc	gccgccgcc	6960
cgcgggccgc	acccgtcagg	acagcaggcc	gagcttcagt	gccgtgatca	ccgcggccgt	7020
ccggtccgag	accgacagct	tcttgaacga	gcgcagcaga	tgcgtcttca	ccgtcgcctc	7080
gctgatgaac	agctggcggc	cgatgtccgc	gttggtcagc	ccgaggctga	ccaactggag	7140
cacctcgcgc	tcacggtccg	acagcgcggg	cggctccacc	acccgggccc	ggaacagctt	7200
gggggcgagc	gacggcgtca	ggaccgtctc	accgcgggcc	gccgccttta	ccgcctgcac	7260
cagttcgtcg	cgcgagctgc	ccttgagcag	gtagcccgcc	gegeeegeet	ccacggcccg	7320
caggatgtcc	gtgtcgctct	cgtacgtcgt	cacgatcacc	accttggtgg	ccggcgcgac	7380
gcgcagcagg	tggccggtgg	tctccacccc	gtccatcccg	cccatctgaa	ggtcgagcag	7440
gacgatgtcg	ggagcaagtc	tggtgaccat	cgcgatcgcc	tcctcgcccg	agtcggcctg	7500
cccgacgacg	ctcacgccgt	cggcggattg	cagcatcgag	ctgagaccct	cccgtacgac	7560
cgggtggtcg	tcgaccagca	tcacaccgat	cgtcttgtca	gcgctcatcg	gcttcctctc	7620
ccttcgcggg	cacgggcacc	gtcacttcga	tggtggtgcc	ctgtccgggg	ctgctgacca	7680
cggtcgccgc	cccgctgatc	tegtgtgege	gagtctgcat	gccgcgcagc	ccgcttcccc	7740
gctggtccc	ggtgacggtg	aacccgggtc	cgtcgtcccg	tacgagcagc	cgtacggtgt	7800
cctgttcgta	cacgagccgg	atctcggccg	cgcgtgcctt	ccccgcgtgc	ttgcggatgt	7860
tcgcgatggc	ctcctggagg	gaacgcagca	ggaccacgct	gatcgccatc	ggcagttccc	7920
getegtetee	ttcgacggtg	acgtgcgccc	gcatgccggt	ctgcgccgtc	aggccctcgg	7980
cctgccgccg	cgtcgcctgc	acgagcgagg	actcctgcag	cgcgggcggg	gtcagctcgg	8040
tgacgaacto	gegggettet	cccaggcttt	cgcgggccac	geggeeegee	agtgccagat	8100
gegeeetege	ccggtccggg	teggeegtga	agtcggtctc	ggcggcctgt	acgaggctga	8160
tgatgctggt	gaggccctgg	gcgagggtgt	cgtggatctc	ccgggcgagc	cgctcgcgct	8220
cggcggagac	ccccgccttg	cgcgacagcc	gggcgacttg	cgcacggttg	cggtgcaact	8280
cctcgatgag	ctcggcccgg	tcacggctct	gccgggtcac	ccgggtgatc	cacagecega	8340
gcatgaccga	cagggcgatg	ccgaggagcg	aggtcggcag	gacggccagg	atgtcgcggc	8400

tcagggtgcc	gccgcgcagc	cacaccacga	tgaccggaac	cagattggcc	agcgtgacca	8460
cggcgatggc	cggcgaggtc	gccaggctca	tcatcagcat	cgggaccacg	gcgaacagcg	8520
cgaacgaggc	cgcgaggtcg	aagaccacgg	ccaccgcgaa	cagcacgaac	aggccgacgg	8580
agaagacgac	gctgcgccgg	acgggcccct	ggccctcgtg	gaccatggtg	ctgcgcccca	8640
gggccgcgta	ccagggcacg	gccgcggtca	gcgcggccat	ggccacggcc	cggtggacct	8700
gttcaccgtc	ggaggtgaac	agcagcatgg	tggtgacggc	gtacgagacc	gcgaagagcg	8760
cgtcccacag	gccgaaccac	cgggctcccg	cctcgggcgc	gtcgtcctgg	ccgtctgtcg	8820
cctgcgccgc	gggggattca	gtgctcaccc	gacaagtcct	atcacttcgg	tcgggcacgg	8880
tacgagggcg	gcccggcgcc	gtccaccgtg	tccaccggtc	ggtggacagc	cgaacccact	8940
ggtcggttgt	cctcgcgtcc	cttgcccgcc	gcctaacgtt	gcaggtgaga	ggcacgaagc	9000
gaccgcactg	ccggagagaa	ggcagtgccg	aggaagagga	agaggtcatc	ccctgagccc	9060
gttcttgaac	acactgatcg	ccagcgggac	gatcttggcc	gtcattctgt	cgaccgacct	9120
cggcacccgc	aaagtcacca	cgacgcggat	gcttccttcg	ctcctcgcgg	tcgtcgtgat	9180
cctcgcgctc	ctcgtgcaca	cactgccgct	cgacggcaac	gacccctcgc	tccaactggc	9240
gggcatcggc	gccggtatca	tctgcggact	ggccgccacg	gcgctcctcc	ccgcccaccg	9300
gaacgcttcc	ggtgaggtct	ccaccaaggg	cggtatcggt	tacgcgctgg	tgtggaccgc	9360
gctgtccgcc	tcgcgtgtgc	tcttcgccta	cggttcacag	cactggttca	gcgagggcat	9420
cgtccggttc	agcaccgact	acaagctcag	cggacaggcc	gtctactcca	acgctttcgc	9480
cttcatggcc	ctggccatgg	tgctgacgcg	gaccgccgtc	ctgttgaaca	cgcgccgccg	9540
gctgcgcggc	gggcagcttc	ccgcggccga	caacacggcc	ccacatcagg	cgagttccgc	9600
caatacgcac	tgacatgacg	gagcgtcaga	tccggcttgg	gtgcaagatc	gtctcagaac	9660
tagggtgaag	cagtgaaaca	catgcatgat	gtcaggctcc	ggccccgcg	caatcgtgtc	9720
gactcccggg	cagtgggctg	gtggacggtc	cagtccgcga	tgtacgccct	gecectgeeg	9780
atcaccttcg	gcgtgctgta	cctgtgcatc	ccgcccgcca	ggccgttctt	cggctgggcc	9840
ttcctgatct	cgctcgtacc	gggcctcgcc	tacatggccg	tcatgcccgc	ctggcgctac	9900
cgggtgcacc	gttgggagac	caccgacgaa	gccgtctacg	cggcgtccgg	ctggctctgg	9960
cagcagtggc	gggtcgtgcc	gatgtcccgc	atccagacgg	tggacaccct	gcgcggaccc	10020
ctccagcagc	tetteggeet	ctccggcatc	accgtcacca	ccgcctccta	ctccggcgcc	10080
gt <u>g</u> aagatca	agggaatcga	ccaccggacc	gcgcgggacg	tggtcgagca	cctcaccagg	10140
gtgacccagg	ccacccccgg	agacgcgaca	tgagccacga	caccggacag	tgggaggcca	10200
ccgcgacctc	ccacggcgcc	gccgaagacc	ccgagtggag	caggctcagc	ccccgactgc	10260
tgctggtcaa	cctgagcatg	ctcgccggcc	cgctcgccct	gttcgccgtc	acggtcgccc	10320

tgaccggcgc	caacctccag	gccctcatct	ccctcggctc	cctgctgatc	gtcttcctgg	10380
tcatcaccgg	gatcagcacg	atgeggetge	tgaccacccg	cttccgcgtc	accgccgaac	10440
gcgtcgaact	gegeteggge	ctgctcttcc	gcagccgccg	ctcggtcccc	atcgaccggg	10500
tccgcagcgt	cgacgtcgaa	gccaagccgg	tgcaccgcct	cttcggcctc	gcctcgctgc	10560
gcatcggcac	cggtgaacag	ggcgcgtcca	gccgcaggct	ctccctcgac	ggcatcacca	10620
ggcgtcaggc	gcggcgactg	cgcaggctcc	tcatcgaccg	ccgtggcagc	ggcċatgcca	10680
ccggccagga	ccaggacgtc	accatcgccg	agatggactg	ggcctggctg	cggtacgcgc	10740
cgctcaccat	ctggggcgtc	ggcagcgtct	tcgccgccgt	cggcaccgcc	taccgcatcc	10800
tgcacgagat	gaaggtcgac	ccgctcgaac	tgggcgtcgt	caaggacatc	gaggaccgct	10860
tcggttccgt	acccctgtgg	ttcggcatcc	tcgtcgccgt	cgtgatcacc	gccgtcgtgg	10920
gcgccgcggt	ctccaccgcc	accttcgtgg	acgcctggac	caactaccgc	ctggagcgtg	10980
agggggtcgg	catcttccgg	atccgccgcg	gactgctcat	ttcccgctcc	gtcaccatcg	11040
aggagcgccg	gctgcgcggc	gtcgagctcg	ccgagccgat	gctgctgcgc	tgggcgggcg	11100
gcgccaccct	gagcgccatc	gccagcggcc	tcagcaacag	ccaggagaac	cgcagccgct	11160
gttccctcac	cccgcccgtg	ccccgggacg	aggcgctgcg	ggtcgccgcc	gacgtcctcg	11220
ccgaggaagg	gtccccgacg	gagctgacca	agctcgtccg	gcactcccgt	gccgccctgc	11280
gccgtcgcat	caaccgcggc	ctgctggtcc	tcgcggccgt	cgtcgcggtg	ccgctgggcc	11340
tggggctgtg	gctcaccccc	gtcctggtgc	acaccgcctg	gatcacggcg	ctcgtcggcc	11400
tgccggtcgt	catcgtcctc	gccaacgacg	cctaccgctc	cctcggccac	ggaatccgcg	11460
accgctacct	cgtcgtccgc	gccggcacct	tcgcccgccg	tacggtcgcc	gtccagcggg	11520
acggcgtcat	cggctggaac	atctcccgct	cctacttcca	gcggcgcagc	ggactgctca	11580
ccatcggcgc	caccaccgcg	ggcgtcggct	gccacaaggt	gcgcgacgta	teegteggeg	11640
ccggcctcgc	cttcgccgaa	gaggccgtac	ccaggctgct	cgccccgttc	atcgaacgcg	11700
tecegegegg	ctgaaccccc	tcagaccaac	tggcgaaccc			11740

<210> 2 <211> 719 <212> PRT

Met Asp Asn Leu Glu Leu Arg Arg Glu Ala Asp Ala Ile Leu Ala Glu 10

Leu Val Gly Ala Pro Gly Gly Ser Ala Arg Leu Arg Glu Asp Gln Trp 25 30

<213> Streptomyces aizunensis

<400> 2

Gln Ala Val Ala Ala Leu Val Glu Glu Arg Arg Arg Ala Leu Val Val
35 40 45

- Gln Arg Thr Gly Trp Gly Lys Ser Ala Val Tyr Phe Val Ala Thr Ala 50 55 60
- Leu Leu Arg Arg Gly Ser Gly Pro Thr Val Ile Ile Ser Pro Leu 65 70 75 80
- Leu Ala Leu Met Arg Asn Gln Val Glu Ala Ala Ala Arg Ala Gly Ile 85 90 95
- Gln Ala Arg Thr Ile Asn Ser Ala Asn Pro Glu Glu Trp Glu Thr Ile 100 105 110
- Tyr Gly Glu Val Glu Arg Gly Glu Thr Asp Val Leu Leu Val Ser Pro 115 120 125
- Glu Arg Leu Asn Ser Val Asp Phe Arg Asp Gln Val Leu Pro Lys Leu 130 135 140
- Ala Ala Thr Thr Gly Leu Leu Val Val Asp Glu Ala His Cys Ile Ser 145 150 155 160
- Asp Trp Gly His Asp Phe Arg Pro Asp Tyr Arg Arg Leu Arg Thr Met 165 170 175
- Leu Ala Glu Leu Pro Glu Gly Val Pro Val Leu Ala Thr Thr Ala Thr 180 185 190
- Ala Asn Ala Arg Val Thr Ala Asp Val Ala Glu Gln Leu Gly Thr His
 195 200 205
- Gly Glu His Ala Leu Val Leu Arg Gly Pro Leu Asp Arg Glu Ser Leu 210 215 220
- Arg Leu Gly Val Leu Gln Leu Pro Asp Ala Ala His Arg Leu Ala Trp 225 230 235 240
- Leu Gly Asp Arg Leu Ala His Leu Pro Gly Ser Gly Ile Ile Tyr Thr 245 250 255
- Leu Thr Val Ala Ala Ala Glu Glu Val Ala Ala Phe Leu Arg Gln Arg 260 265 270
- Gly Tyr Pro Val Ala Ser Tyr Thr Gly Lys Thr Glu Asn Ala Asp Arg 275 280 285
- Leu Gln Ala Glu Glu Asp Leu Leu Ala Asn Arg Val Lys Ala Leu Val 290 295 300
- Ala Thr Ser Ala Leu Gly Met Gly Phe Asp Lys Pro Asp Leu Gly Phe 305 310 315 320
- Val Val His Met Gly Ser Pro Ser Ser Pro Ile Ala Tyr Tyr Gln Gln
 325 330 335
- Val Gly Arg Ala Gly Arg Gly Val Asp His Ala Asp Val Leu Leu Leu 340 345 350
- Pro Gly Arg Glu Asp Glu Ala Ile Trp Ala Tyr Phe Ala Ser Val Gly 355 360 365

0/25

	****	_001,								,					101/
Phe	Pro 370	Pro	Glu	Glu	Gln	Val 375	Arg	Arg	Thr	Leu	Asp 380		. Leu	Ala	Gln
Ala 385	Gly	Arg	Pro	Leu	Ser 390	Leu	Pro	Ala	Leu	Glu 395		Leu	Val	Asp	Leu 400
Arg	Arg	Ser	Arg	Leu 405	Glu	Thr	Met	Leu	Lys 410		Leu	Asp	Val	Asp 415	Gly
Ala	Val	Lys	Arg 420	Val	Lys	G1y	Gly	Trp 425	Thr	Ala	Thr	Gly	Gln 430	Pro	Trp
Thr	Tyr	Asp 435		Glu	Arg	Tyr	Ala 440	Trp	Val	Ala	Lys	Gln 445	Arg	Ala	Ala
Glu	Gln 450		Ala	Met	Arg	Asp 455	Tyr	Val	Ala	Thr	Thr 460	Gly	Cys	Arg	Met
Glu 465	Phe	Leu	Gln	Arg	Gln 470	Leu	Asp	Asp	Glu	Lys 475	Ala	Val	Pro	Cys	Gly 480
Arg	Cys	Asp	Asn	Cys 485	Ala	Gly	Ser	Trp	Leu 490	Glu	Ala	Val	Val	Ser 495	Pro
Ala	Ala	Leu	Ala 500	Ala	Ala	Ala	Gly	Glu 505	Leu	Asp	Arg	Ala	Gly 510	Val	Glu
Val	Glu	Ser 515	Arg	Lys	Met	Trp	Pro 520	Thr	Gly	Leu	Ala	Ala 525	Val	Gly	Met
Asp	Leu 530	Lys	Gly	Arg	Ile	Pro 535	Ala	Gly	Gln	Gln	Ala 540	Val	Thr	Gly	Arg
Ala 545	Leu	Gly	Arg	Leu	Ser 550	Asp	Ile	Gly	Trp	Gly 555	Asn	Arg	Leu	Arg	Pro 560
Leu	Leu	Ser	Ala	Gln 565		Ala	Asp	Gly	Pro 570	Val	Pro	Asp	Asp	Val 575	Leu
Ala	Ala	Val	Va1 580	Thr	Val	Leu	Ala	Asp 585	Trp	Ala	Arg	Ser	Pro 590	Gly	Gly
Trp	Ala	Ser 595	Gly	Gly	Pro	Asp	Ala 600	Met	Ala	Arg	Pro	Val 605	Gly	Ile	Val
Ala	Met 610	Pro	Ser	Arg	Thr	Arg 615	Pro	Arg	Leu	Val	Ala 620	Ser	Leu	Ala	Glu
625					630					635	Gly				640
Thr	Pro	Gln	Ala	Asp 645	Val	Tyr	Gly	Ala	His 650	Arg	Ser	Asn	Ser	Ala 655	Gln
			660					665			Pro		670		
		675					680			1	Leu	685			
Thr	Asp 690	Ser	Gly	Trp		Leu 695	Ala	Val	Gly	Alá	Arg 700	Leu	Leu	Arg	Glņ

0/251

Ser Gly Ala Gly Gly Val Leu Pro Leu Val Leu Ala Leu Ala Gly 710 715

<210> 3 <211> 2160 <212> DNA

<213> Streptomyces aizunensis

<400> 3

atggacaacc	tggagctccg	tcgtgaagcc	gatgccatcc	tegetgaget	ggtcggtgcc	60
cctgggggtt	cggcgcggct	gcgggaggac	cagtggcagg	cggtcgcggc	cctggtggag	120
gagcgccggc	gggccctggt	ggtgcagcgc	acgggctggg	gcaagtccgc	ggtctacttc	180
gtcgccaccg	ctctgctgcg	ccggcgcggc	tccgggccga	cggtgatcat	ttctccgctg	240
ctggcgctga	tgcgcaacca	ggtcgaggcg	gccgcgcggg	ccgggatcca	ggcgcgcacg	300
atcaactcgg	ccaacccgga	ggagtgggaa	accatctacg	gggaggtcga	gcgcggcgag	360
accgatgtgc	tcctcgtcag	ccccgagcgc	ctcaactccg	tggatttccg	cgaccaggta	420
ctgcccaagc	tggcggccac	gacgggtctg	ctggtggtcg	acgaggcgca	ctgcatctcc	480
gactggggcc	acgacttccg	ccccgactac	cgacggctgc	gcacgatgct	ggcggagctg	540
ccggagggcg	tgccggtcct	ggccacgacg	gcgaccgcga	acgcgcgggt	gaccgcggac	600
gtggcggagc	agctgggcac	gcacggcgag	cacgccctgg	tcctgcgcgg	accgctcgac	660
cgggagagcc	tgcggctggg	agtgctgcag	ct'gccggacg	cggcgcaccg	gctggcctgg	. 720
ctgggggacc	ggctggcgca	cctgccgggt	tcggggatca	tctacacgct	gaccgtggcg	780
gcggcggagg	aggtcgcggc	gttcctgcgg	caacgcgggt	atccggtggc	ttcctacacc	840
gggaagacgg	agaacgccga	ccggttgcag	gcggaggagg	atctgctggc	gaaccgggtg	900
aaggcactgg	tggcgacctc	ggcgctgggc	atggggttcg	acaagccgga	cctggggttc	960
gtggtgcaca	tggggtcgcc	ctcgtccccg	atcgcctact	accagcaggt	ggggcgcgcg	1020
gggcgtgggg	tggatcacgc	ggacgtgctg	ctgctgccgg	gccgggagga	cgaggcgatc	1080
tgggcgtact	tegeeteggt	gggcttcccg	cccgaggagc	aggtccggcg	caccctggac	1140
gtactggcgc	aggcgggccg	cccgctgtcg	ctgcccgcgc	tggagccgct	ggtggacctc	1200
cggcgctcgc	gcctggagac	gatgctgaag	gtcctggacg	tggacggcgc	ggtcaagcgc	1260
gtgaagggcg	gctggaccgc	caccgggcag	ccgtggacgt	acgacgcgga	gcggtacgcc	1320
tgggtcgcga	agcagcgggc	ggcggagcag	caggccatgc	gggactacgt	ggcgaccacg	1380
ggctgccgga	tggagttcct	gcagcggcag	ctggacgacg	agaaggcggt	cccgtgcggc	1440
cgctgcgaca	actgcgccgg	atcctggctg	gaggcggtcg	tgtcgcccgc	ggccctcgcg	1500
gccgcggcgg	gcgagctgga	ccgcgcgggg	gtcgaggtcg	agtcccgcaa	gatgtggccg	1560
accgggctcg	ccgcggtcgg	catggacctg	aagggccgga	teceegeggg	ccagcaggcc	1620

gtcaccgggc	gcgcgctcgg	caggctgtcg	gacatcggct	ggggcaaccg	gctgcgcccc	1680
ctgctgtcgg	cgcaggccgc	ggacgggccg	gttccggacg	atgtgctggc	cgccgtcgtg	1740
acggtgctcg	ccgactgggc	ccgctcgccg	ggcggctggg	cgagcggcgg	gccggacgcg	1800
atggcgcggc	cggtggggat	cgtcgccatg	ccctcccgta	cccgcccgcg	gctggtcgcc	1860
tegetggeeg	agggcgtggc	ccgggtcggc	aggeteeege	tgctgggcag	cctcgcctac	1920
accccgcagg	ccgacgtgta	cggggcgcac	cgcagcaact	cagcccagcg	gctgcgcgcc	1980
ctggccgact	cgttcaccgt	gcccgaggaa	ctcgccgcgg	ccctggccgc	cgctcccggc	2040
ccggtcctgc	tcgtcgacga	ctacaccgac	tccggctgga	ccctggccgt	gggcgcacgc	2100
ctgctgcgcc	agtccggcgc	gggcggcgtg	ctcccgctcg	tcctcgcgct	ggccgggtag	2160

<210> 4

<211> 253

<212> PRT

<213> Streptomyces aizunensis

<400> 4

Leu Asn Lys Gln Glu Thr Ser Leu Trp Val Arg Arg Tyr His Ala Ser 1 5 10 15

Asp Glu Ser Arg Ile Gln Leu Val Cys Leu Pro His Ala Gly Gly Ser 20 25 30

Ala Ser Phe Tyr Phe Pro Met Ser Gln Ser Leu Ala Pro Ala Met Asp 35 40 45

Val Leu Ser Val Gln Tyr Pro Gly Arg Gln Asp Arg Arg Asp Glu Pro 50 . 55 60

Gly Ile Val Asp Ile Gly Ala Tyr Ala Asp Ala Leu Thr Glu Gln Leu 65 70 75 80

Val Pro Trp Leu Asp Arg Pro Leu Ala Phe Phe Gly His Ser Met Gly 85 90 95

Ala Ile Leu Ala Phe Glu Val Thr Arg Arg Leu Glu Arg Asp His Gly 100 105 110

Val Thr Pro Glu His Ile Phe Ala Ser Gly Arg Arg Ser Pro Ala Ser 115 120 125

Phe Arg His Glu Thr Val His Leu Arg Asp Asp Gly Ile Val Ala 130 135 140

Glu Met Arg Glu Leu Ser Gly Thr Asp Ala Lys Ile Leu Gly Asn Glu 145 150 155 160

Glu Ile Leu Arg Met Val Leu Pro Ala Ile Arg Ser Asp Tyr Thr Ala 165 170 175

Ile Glu Asn Tyr Arg Ala Ala Pro Glu Asp Val Val Arg Thr Pro Ile 180 185 190

Thr Val Leu Thr Gly Asp Ala Asp Pro Arg Thr Ser Arg Glu Glu Ala

19	5	200		205	
Asp Ala Tr 210	p Lys Ala H	is Thr Thr 215	Gly Gly Phe	e Asp Leu His Ser Phe 220	
Pro Gly Gl 225		ne Leu Ala 30	Asn His Gln 235	Glu Lys Ile Met Gly 240	
Ile Ile Se	r Glu Glu Le 245	eu Ser Ala	Pro Ala Arg 250	Met Ala	
<210> 5 <211> 762 <212> DNA <213> Str		izunensis			
<400> 5				·	
ttgaataagc	aagaaactag	cctctgggtt	cgccgctacc	acgcttcgga cgaaagccgg	60
atccaattgg	tctgtctgcc	gcacgccggt	ggctcggcct	ccttctactt ccccatgtcc	120
cagtcgctgg	ctccggcgat	ggacgtcctc	: tcggtccagt	acceeggeag geaggaeege	180
agggacgagc	ccgggatcgt	ggacatcggc	geetaegegg	acgccctgac cgagcaactc	240
gtaccgtggc	tegaceggee	cctggccttc	ttcggccaca	gcatgggtgc gatcctcgcc	300
ttcgaggtga	cgcgcaggct	ggagcgtgac	: cacggcgtca	ctccggagca catcttcgct	360
teeggeegge	gctcgcccgc	cagtttccgg	r cacgagaccg	tgcacctgcg ggacgacgac	420
ggaatcgtgg	cggaaatgcg	ggaactcagc	ggaaccgacg	cgaagatact cggcaacgag	480
gaaatcctcc	gcatggtgct	ccccgcgatt	cgaagcgact	acaccgccat cgagaactac	540
cgtgccgcgc	cggaagacgt	cgtgcgtact	cccatcacgg	tgctgaccgg tgacgcggac	600
ccgaggacca	gccgggaaga	ggeggaegee	tggaaggcgc	acacgaccgg cggattcgat	660
ctgcattcct	tccccggtgg	acatttcttc	ctggcgaatc	accaggagaa gatcatggga	720
attatttcgg	aggaactctc	cgcgccggct	cgcatggcgt	ga	762
<210> 6 <211> 956 <212> PRT <213> Stre	eptomyces ai	zunensis			
<400> 6		**			
Val Ala Val 1	. Arg Leu Va 5	l Glu Arg	Glu Lys Gln 10	Leu Glu Thr Leu Lys 15	
Glu Leu Leu	Gly Ser Al 20		Gly Arg Gly 25	Arg Val Ala Val Ile	
Ser Gly Ala	. Val Ala Gl	y Gly Lys '	Thr Ser Leu	Leu Glu Ile Phe Thr	

Glu Glu Ala Ile Ser Ala Gly Ala Leu Val Leu Glu Ala Thr Gly Ser 50 60

Arg Ala Glu Arg Tyr Leu Pro Phe Gly Ile Leu Arg Arg Ile Leu Asp 70 Ser Ala Ala Pro Leu Ser Pro Glu Ile His Ala Tyr Ala Thr Glu Leu 90 Leu Asp Arg Val Ser Ala Gly Thr Thr Asp Ala Glu Gly Ala Val Glu 100 105 Ala Gly Met Arg Val Leu Pro His Val Ala Thr Ala Leu Leu Arg Ile 120 Ala Arg Asn Arg Thr Val Val Ile Ala Ile Asp Asp Val His His Gly 135 Asp Glu Leu Ser Leu Ala Phe Leu Leu Cys Leu Ala Arg Arg Val Arg 145 150 Gln Ala Gly Val Leu Ile Val Leu Thr Glu Ala Val Arg Leu Arg Ser 165 170 Ala Gln Leu Ala Phe His Ala Glu Leu Gln Arg Gln Pro Asn Cys Thr 190 Ser Leu Arg Leu Pro Leu Leu Thr Thr Arg Gly Thr Thr Arg Val Leu 200 Ala Glu His Phe Ser Pro Ser Thr Ala Gln Arg Leu Ser Ala Glu Cys 215 Gln Glu Thr Thr Gly Gly Asn Pro Leu Leu Val Arg Ala Leu Ile Asp 225 235 240 Asp Gly Leu Thr Ala Leu Gly Asp Ser Glu Pro Phe Gln Arg Leu Ala Pro Ala Glu Thr Phe Glu Arg Ala Val Leu Asp Cys Leu His Arg Gly 265 Asp Pro Glu Leu Leu Thr Val Ala Arg Gly Val Ala Val Leu Gly Ser 275 Ala Cys Ser Leu Ala Leu Leu Asn Gly Ile Val Asp Leu His Ala Lys 295 Ala Thr Glu Gln Ala Leu Gln Asp Leu Ser Arg Cys Ala Val Leu His 305 310 His Gly Ser Phe Arg Asp Pro Ala Ala Arg Thr Ala Val Leu Glu Ala 330 Thr Pro Pro Ala Ala Leu Ser Ala Leu His Leu Arg Thr Ala Arg Leu 345 Leu His Gln Glu Gly Ala Thr Ala Leu Asp Val Ala Arg His Leu Leu 355 Ala Ala Arg Lys Asn Val Glu Asp Trp Ala Ile Pro Val Leu Gln Glu 375 380 Ala Val Glu Tyr Ala Leu Val Glu Asp Glu His Glu Leu Ala Leu Arg

395

Cys Gly Glu Leu Ala Val Ala Ser Cys Ala Glu Gly Pro Arg His Ala 405 Ala Leu Lys Ser Arg Leu Ala Ser Ile Val Trp Arg Ser Ser Pro Ala Ala Ala Glu Gly His Leu Arg Gln Leu Ser Arg Glu Leu Ala Ala Gly 440 Arg Leu Ala Asp Arg Asp Leu Val Gln Ala Val Ser Leu Leu Ala Trp 455 Met Gly Glu Ser Arg Gly Ala Gly Glu Ala Val Leu Arg Leu Gln Arg 475 Thr Asp Ser Glu Ala Glu Ala Gly Arg Ala Pro Ala Tyr Asp Pro 485 490 Gly Thr Leu Thr Ala Ala Gln Ser Trp Leu Ser Met Val Ser Pro Pro 505 Ala Arg Asp Leu Phe Asp Ala Val Glu Pro Arg Arg Thr Thr Leu Ser 520 Gly Ala Pro Gly Ala Leu Pro Gly Ala Gly Pro Asp Thr Val Pro Tyr 535 Asp Met Pro Asp Asn Ala Tyr Val Gln Ala Ala Asp Ala Val Arg Thr 550 555 Ala Leu Arg Gly Gly Thr Gln Ala Asp Ala Ala Val Ser Lys Ala Thr Arg Val Leu Gln Arg Tyr His Leu Ser Asp Arg Thr Leu Gln Pro Leu Val Phe Ala Leu Leu Ala Val Ile Tyr Ala Gly Arg Leu Asp Leu Ala 600 Ser Ala Trp Cys Glu Arg Leu Leu Gly Glu Cys Ser Ala Arg Asn Ala 610 Pro Thr Trp Gln Ala Ala Leu Gly Val Val Arg Ala Glu Ile Leu Leu 630 Arg Gln Gly Asp Leu Pro Gly Ala Ala Gln Ala Arg His Ala Met 645 Ser Arg Ile Ser Leu Gln Ser Trp Gly Val Gly Ile Ala Leu Pro Leu 660 Ala Val Leu Val Glu Ala Glu Val Gln Met Gly Asp His Glu Glu Ala 680 Met Ser Leu Glu Gln Pro Val Pro Gln Ala Met Phe Asp Thr Leu 690 695 Ala Gly Leu His Tyr Leu Arg Ala Arg Gly Arg Cys His Leu Ala Thr 705 710 715 Gly Arg Tyr His Ala Ala Val Arg Asp Phe Leu Asn Cys Gly Glu Leu

4.4054

Met Gln Ala Trp Gly Val Asp Gly Ala Glu Leu Val Pro Trp Arg Leu 745 740 Asp Ala Ala Glu Ala Trp Leu Ala Leu Gly Asn Val Ala Arg Ala Lys 760 Glu Tyr Thr Glu Gln Gln Lys Gln Arg Glu Thr Gly Pro Val Gly Ser 770 775 Arg Thr Arg Gly Ser Leu Leu Leu Thr Leu Ala His Thr Gly Gly Asp 795 Leu Thr Val Arg Leu Lys Arg Leu Val Glu Ala Val Glu Thr Leu Glu 810 Glu Gly Gly Asp Arg Leu Gln Leu Ala Val Ala Leu Gly Glu Leu Gly 825 Arg Gly Tyr Arg Ala Leu Gly Asp Phe Asn Arg Ala Arg Met Leu Val 840 Arg Lys Ala Trp His Val Ala Lys Ser Cys Gly Ala Glu Pro Leu Cys 855 Gln Gln Phe Met Pro Gly Gln Val Asp Gly Glu Ala Gly Ala Gln Ser 875 865 Gly Arg Glu Ala Glu Leu Pro Ser Glu Val Glu Val Leu Ser Glu Ala 890 885 Glu Ala Arg Val Ala Leu Leu Ala Ala Arg Gly His Thr Asn Arg Glu 900 Ile Ala Thr Lys Leu Tyr Val Thr Val Ser Thr Val Glu Gln His Leu Thr Arg Ile Tyr Arg Lys Leu Lys Val Lys Arg Arg Arg Asp Leu Pro 935 Ala Arg Leu Ser Asp Leu Ser Leu Pro Ser Ile Ala 950 945 <210> 7 <211> 2871 <212> DNA Streptomyces aizunensis <213> <400> gtggcggtta ggctcgtcga gcgcgagaag cagctggaaa cgctgaagga actactcggc 60 agcgcagtcc gtggccgagg gcgggtcgcc gtcatcagcg gggcagtcgc cggcgggaaa 120 acgagtetge tggaaatett caccgaagag gegateteeg egggegeget ggtgetggaa 180 240 gccacgggct cccgggcgga gcgctatctg cccttcggaa ttctgcgcag aatcctcgac agegeggege ceetgtegee egagateeae geetaegeea eegagetget ggacegegte 300 agcgccggga cgacggacgc cgaaggcgcc gtcgaggccg gtatgcgcgt cctgcccat 360 gtcgccaccg cactgttaag gatcgcccgg aaccggaccg tcgtcatagc catcgacgac 420

gtccaccacg gggacgaact ctccctcgcc ttcctgctgt gcctcgcccg ccgagtgcgc

ttccacqceg aactgcageg cagcccaac tgcacqcagec tccgggtgce cctgctcacc acgcgggga ccacccggg catccacc cctcgacgga gcaacgggtg cctcgccgag catccactgc tggtcaggg gcaacgggtg cctcgcggag acacggggg catccactgc tggtcagggc gctgatcgac 72 gacgggctcg ccgggggac cctctcagg ggctgcccc cgccgaaacc 78 ttcgaacgg ccgtgctcga ctgctgcac cgcgggacc ccgaactgc gacggggcgc ccgaggggcc ccgaggggccg ccgaggggccg ccgaggggcg ccgagggggg ccgaggggg ccagggggggcgacccgagggggggg								
acqqqqqqa ccaccqqqt cctcqqqqq cattetecc cctcqacqqq gaaqqqqtq 666 tccqqcqqqt gccaqqqaq caccqqqqq aatccactqc tggtcqqqqq gctqatcqac 778 gacqqqctca cqqqqtcqq aqacqqqqq ccttccqqq gqctqqcc cqcqqaaccc 788 ttcqqaaqqq ccqtqctqq tqqcqtqq ccqtcqcc cqcqqqtqcc cqcqqqqqq ccqtqqcq cqqqqqqq acqqqqqqq ccqtqqqq qqqqqqqqqq		caggcgggcg	tcctgatcgt	gctcaccgaa	gccgtccggo	c tgcggtccgc	gcaactcgcc	540
tecgecgast gecaggagae caeeggegg aatecatetge tygteaggge getgategae 72 gacggeetea eggegtegg agacagegg ceettecage ggetegeece egecgaaace 78 ttegaacgeg cegtgetega etgeetegee teettggeec tegaggegee gaeegtegee 99 ctgeacgeea aggeeacega acaggeett cattggeec tygteacagg gategtegae 96 caegggeteet teeggacee ggeggeege acegeggee etgeagaggeg eggetgeeg 102 gegetgteeg eetgeacet gegaacgeeg egacteetge aceaggagag eggaacggeg 103 ctegatgteeg eetgeacet gegaacgeeg egacteetge aceaggagag eggaacggeg 103 ctegatgteeg eetgeacet gegaacgeeg egacteetge aceaggagag eggaacggeg 103 ctegatgteeg eectgeacet eetegeegee egaaggacg agacagaact egeetgegg 120 gegetgteeg eectgeacet eetegeegee gaaggacgaact eggeetgegg 120 tgeegggaac tggeggtega gtacgeeete gtegaggacg agacagaact egeetgegg 120 tgeegggaac tggeggtege etectgeege gagggeeee gaacageege eetgaaggea 132 ctgeetgaga gaategtetg gegaagage eeggeegee egaacgeege etgaaggea 132 ctgteeegeg acetegtetg egeaggage eeggeegee etgaaggga atetgeggaag 132 ctgteeegga acetegeege eggeeggete geegacegeg atetegea aggeegtgteg 138 acegacagga gaggeggag ggeegggagg geggeggagg eggtactgag acggetaace 150 geegacaaga gaggegagg ggeeggagg gegeeggee gegacetett egacgeegg 144 acegacaaga gatggetete gatggteage eeggeggee gegacetett egacgeegg 146 gaacegeege ggaacacaa ggeegaacge eggaggege tgeeggage ggggeegga 162 gaacegeeg gagaacaca ggeegacge eggaggege tgeeggagg ggggeegae 162 gacetgeggg geggaacea ggeegacge eggaggege tgeeggage ggggeegae 162 acegteecet acgacaacge egaacacca ggeegacge eggetegaac 174 cgetaccace tgagegace eggaaceca geegtegaa agactgetee 186 geectgeagg geggaacea eggeagee eeggetggaa gateetgetg 192 cgetaccace tgagegace eggageege etggtggaac gaateetgetg 192 cgecaaggeg gectegaace eggageege etggtggaac gaateetgetg 192 cgecaaggeg acetgacet geaggacge etggtggagega gateetgetg 192 cegecaaggeg atetgeegg tgeggacge eaggeegga agacgaggea eeggaggeega agacgagge 204 cagatgggeg atetgeegg tgeggacge eaggeegga ageeggagge eeggaggega agacgaggeg 204 cagatgggag acacagaga gggatgag etgetgaac aggeeggag ggeggaggega acetggegg acacacagagag gggatgage eggacgageggageggaggaggaggaggag		ttccacgccg	aactgcagcg	ccagcccaac	tgcaccagco	c teeggetgee	cctgctcacc	600
tegaacgeg cegtacteg agacagegag cecttecage ggetegece egecgaaace tegaacgeg cegtgetega etgeetgeae egeggegace eegagetget gacegtegee eggggegteg cegtactegg tagegeetge teettggeee tgeteaacgg gategtegae etgeacgea aggecacega acaggeett caggacetea geeggtgege egteetgeae eacggeteet teegegacee ggegaceegt acegegtee tggaaggea etgeeggeg gegetgteeg cectgeacet gegeacegeg egacteetge aceaggaagg eggaacggeg etegatgteg cectgeacet eetegeegee egaaggaceg aceaggaggg etegatgteg cectgeacet eetegeegee egaaggaceg aceaggaggg gtgeetgeg eetegaace eetegeegee egaaggaceg agacggeg eetgeetgeg gtcetecagg aggeggtega gtacgeete gegaggaceg egaacggeg eetgaaggace etgegggagace etgegggagace etgegggagace egacetgggagace etgegggagace etgeggagace etgegggagace etgegggagace etgegggagace etgeggagace etgeggagacegace etgeeggacegace etgeeggacegacegacegacegacegacegacegacegace		acgcgcggca	ccacccgcgt	cctcgccgag	cacttctccc	cctcgacggc	gcaacggctg	660
ttegaacgeg cegtgetega etgeetgeae eggeggeaee eggeggtget gacegtegee 84 eggggegteg cegtaetegg tagegeetge teettggeee tgeteaaegg gategtegae 90 etgeaegeea aggeeaeeg acaggeetgt acegeggeee tggaageeae teegeeegg 102 gegetgteeg ceetgeaeet gegeaeeegg egacteetge aceaggaagg eggaaggeg 108 etegaatgteg ceetgeaeet eetegegee egaagaaag tegaggaagg eggaaggeg 120 etegatgteg eeegeeaeet eetegeegee egaagaaag tegaggaag gegaatgee 120 geoetgatgteg eeegeeaeet eetegeege egaagaaeg tegaggaatg ggegateee 120 tgeggggaae tggeggtega gtaeggeete gtegaaggaeg agaacgaaet egeeetgegg 120 tgeggggaae tggeggteg eteetggegg gagggeeee gaaacgeege eetgaaggea 122 etgeetggeg geategtetg gegeagaeg eeggeegge etgaaggea tetgeggeag 132 etgteeegg aactegeeg eggeeggete geegaeegge etgaaggea tetgeggeag 132 etgteeegg aactegeeg eggeeggete geegaeegge actegteea ggeegtgteg 133 etegteegga gaateggagga gteeeggggg gegeggaagg eggtaetgea actgeagegg 144 acegacageg ggatgggga geeeggggggggggggggggggggg		tccgccgagt	gccaggagac	caccggcggc	aatccactgo	tggtcagggc	gctgatcgac	720
cggggggtog ccgtactcgg tagcgcctge tecttggeec tgeteaacgg gategtegac ctgcacgcca aggccaccga acaggcctt caggacctca geoggtgege cgteetgeac cacggetect tecggacce ggcggeegt accgccgte tggaagccac tecgccgcg gegetgteeg cectgcacct gegacaccgc cgcactctge accaggaagg ggcgacggcg ctcgatgteg cectgcacct cetegccgce cgcaagaacg tegaggactg ggcgatcccc gtcgatgteg cectgcacct cetegcgce cgcaagaacg tegaggactg ggcgctggg tgcctccagg aggcggtega gtacgcctc gtcgaggacg agcacgaact cgccctgcgg tgcgggaac tggcggtega ctcctgcgcg gagggcccc gacacgacgc cetgaagtcc cgcctggcga gcatcgtctg gcgcagcagc cegacgcgc ctgaagggca tetgcggaag ctgtcccgc aactcgccgc cgcaggacg ccggacgcg ctgaagggca tetgcggaag ctgtcccgg aactcgccg cggcaggag gcgggagggggggggg		gacggcctca	cggcgctcgg	agacagcgag	cccttccago	ggctcgcccc	cgccgaaacc	780
ctgcacgcca aggecaccga acaggccctt caggacctca geoggtgege egtectgeac cacggctect teegegacce ggeggeegt acegeegtee tggaagcac teegecegeg gegetgteeg ceetgeacct gegeacegeg egactectge accaggaagg egegacggeg ctegatgteeg ecegeacect ectegeegee egeaagaaeg tegaggactg ggegatecec gtcetceagg aggeggtega gtacgeete gtegaggacg agcacgaact egecetgegg tgeggggaac tggeggtege etectgegeg gagggeeee gacacgeege etgaaggea ctgatgega geategtetg gegeagacge eeggeegeg etgaaggga tetgeggaag ctgtecegeg aactegeege eggeegget geegacegeg attegteea ggeggtgeg cteetggegg gaategggag geegggagg gegeggagg geggacegeg actgaaggga actgaaggga cteeteggegg ggatgggag geeggacgg geggacggag geggacegga eacgetace cteetggegt ggatgggga gteeeggagg gegeeggee acgaceggg actgaagggag cteeteggegt ggatgggga geeggacgg gegeeggee gegacetett egacgeggg acegacaaga getggetete gatggteage eegeeggee gegacetett egacgeeggg gaacegegee ggacaacget gteagggege eeggggggeg tgeeeggeg ggggeegac acegteecet acgacatgee egacaacgee tacgteeagg eggegacegae ggeeegace geeetgeggg geggaaceaa ggeegaacge eaceteeag eegeegace ggtgeteeag geeetgeggg geggaaceaa ggeegacge gegetgate tegeecteet egeegteaac tacgegggte geetegacet eggeteegee taggtegaac gactgeteg ggagtgetee geeegeaacg eecegaacet geaggeegee eteggtgg teeggegaag gateetget geeegeaacg eecegaacet geaggeegee eteggtggg teeggegaag gateetget geeegeaagge atetgeeegg tgeggeegee eteggtggg teeggegaag gateetget geeagaagge geggagggagg eateggege eaggeegee acgeeatge eeggaagge ctgeaaggag accagaagga ggegatgag eategeege gegetgeaa agcegatgee eaggeagge ttegaaace gggeggagg eateggege etegetgaac agcegatgee eaggeagge ttegaacace tggeeggeet gaactacete agggeegge gegetgea eetggeaac ggeegtggaac gggggaggat gegggaactte etgaactgeg geggtgeace eaggeagge ggegtggaac accegacgg gegggaactte etgaactgeg gegetgaac eetggeaac ggeegtggaac accegacgg gegggaactte etgaactgeg gegetgaac geggggggggggggggggggggggggggggggggg		ttcgaacgcg	ccgtgctcga	ctgcctgcac	cgcggcgacc	ccgagetget	gaccgtcgcc	840
cacqqctect tecqeqacee ggeggeegg acqqcqtee tggaagqeae tecqqcqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq		cggggcgtcg	ccgtactcgg	tagcgcctgc	tccttggccc	tgctcaacgg	gatcgtcgac	900
gegetyteeg ecetgeacet gegeacegeg egaeteetge accaggaagg egegacegeg 108 ctegatyteg ecegeacet ectegeegee egeaagaacg tegaagactg ggegateece 114 gteeteeagg aggegytega gtaegeeete gtegaggaeg agaeagaact egeeetgegg 120 tgeggggaac tggegytege eteetgegg gagggeeee gaeaaggege eetgaaggee 126 cgeetggega geategtetg gegeageage eeggeegeeg etgaagggea tetgeggeag 132 ctgteeegeg aactegeege eggeeggete geegacegeg atetegteea ggeegyteg 132 cteetggegt ggatgggga gteeeggggggggggggggg		ctgcacgcca	aggccaccga	acaggccctt	caggacctca	geeggtgege	cgtcctgcac	960
ctcgatgtcg cccgccacct cctcgccgcc cgcaagaacg tcgaggactg ggcgatcccc 114 gtcctccagg aggcggtcga gtacgcctc gtcgaggacg agcacgaact cgcctgcgg 120 tgcggggaac tggcggtcgc ctcctggcgg gagggcccc gacacgcgc cctgaagtcc 126 cgcctggcga gcatcgtctg gcgcagcagc ccggccgcg ctgaagggca tctgcggcag 132 ctgtcccgcg aactcgccgc cggccggctc gcgacgcgc ctgaagggca tctgcggcag 132 ctgtcccgcg aactcgccgc cggccggctc gcgaccgcg atctcgtca ggccgtgtcg 138 ctccctggcgt gagaggggg gcggaactgg actgcagcgg 144 accgacagcg aggccgagg ggccggagg gcggcaggg cacgctcacc 150 gaccgacaga gctggctctc gatggtcagc ccgccggccc gcgacctctt cgaccgcgtg 156 gaaccgcacaga gctggctctc gatggtcagc ccgcgggccc gcgacctctt cgacgccgtg 168 gaaccgcgcc ggacaacagc gcgacaacagc gcacaacagc gcgacaacagc tacgtccaga accgccaca accgtccct acgacacagc gcacaacagc caccacacagc gccgacacaca gccgcacacaca		cacggctcct	tccgcgaccc	ggcggcccgt	accgccgtcc	tggaagccac	tccgcccgcg	1020
gtcctccagg aggcggtcga gtacgccctc gtcgaggacg agcacgaact cgcctgcgg 1200 tgcggggaac tggcggtcgc ctcctgcgg gagggccccc gacacgccgc cctgaagtcc 1260 cgcctggcga gcatcgtctg gcgcagcagc ccggccgcg ctgaagggca tctgcggaag 1320 ctgtcccgcg aactcgccgc cggccggctc gccgaccgcg ctgaagggca tctgcggaag 1320 ctcctggcgt ggatggggaa gtcccggggg gccggcgcg atctcgca ggccgtgtcg 1380 ctcctggcgt ggatggggaa gtcccggggg gccggcaggag cggtactgcg actgcagcgg 1440 accgacagcg aggccgaggc ggccggacgg gcgccgcct acgacccggg cacgctcacc 1500 gccgcacagaa gctggctctc gatggtcagc ccgccggccc gcgacctctt cgacgccgtg 1560 gaaccgcgcc ggacaacgct gtcaggcgg ccggggggcc tgcccggcg ggggcccgac 1620 accgtccct acgacatgcc cgacaacgcc tacgtccagg ccgccgacgc ggtgctccag 1740 cgctaccacc tgagcgacca ggccgacgc gccgtcagca aggccacccg ggtgctccag 1740 cgctaccacc tgagcgaccg caccctccag ccgctcgtct tcgccctcct cgccgtcatc 1800 gcccgcaacg ccccgacct gcaggccgcc ctcggtgtgg tccgggccga gatcctgct 1800 cgccaggggt gcctcgacct cgcgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacctg gcaggccgcc ctcggtgtgg tccgggccga gatcctgctg 1920 cgccagggcg atctgcccg tgcggccgcc ctcggtgtgg tccgggccga gatcctgctg 1920 cgccaggagc atctgcccgg tgcggcgcc caggcccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtgg catcgcgcc caggcccgc acgccatgtc ccggatctcc 1980 ctgcagagct ggggggggg accacgagc ctcgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggc accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg ttcgacaccc tggccggcct gcactacctc agggcccgc gccgctgcca cctggccacc ggccgtacc acgccgcgt gcaggacttc ctgaactgcg gccgctgcca cctggccacc ggccgtacc acgccgcgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg		gcgctgtccg	ccctgcacct	gcgcaccgcg	cgactcctgc	accaggaagg	cgcgacggcg	1080
tgcggggaac tggcggtcgc ctcctgcgcg gagggccccc gacacgccgc cctgaagtcc 126ccgcctggcga gcatcgtctg gcgcagcagc ccggccgcgc ctgaagggca tctgcggcag 132cctgtcccgcg aactcgccgc cggccggctc gccgaccgcg atctcgtcca ggccgtgtcg 138ccccctggcgt ggatgggga gtcccggggggggggggg		ctcgatgtcg	cccgccacct	cctcgccgcc	cgcaagaacg	tegaggaetg	ggcgatcccc	1140
cgcctggcga gcatcgtctg gcgcagcagc ccggccgcg ctgaagggca tctgcggcag 1321 ctgtcccgcg aactcgccgc cggccggctc gccgaccgcg atctcgtcca ggccgtgtcg 1386 ctcctggcgt ggatgggga gtcccggggg gccggcagg cggtactgcg actgcagcgg 1446 accgacagca aggccgaggc ggccggacgg gcgccgcct acgacccggg cacgctcacc 1506 gccgcacaga gctggctctc gatggtcagc ccgccggccc gcgacctctt cgacgccgtg 1566 gaaccgcgcc ggacaacgct gtcaggcgcg ccggggggcc gcgccgacg ggggcccgac 1626 accgtccct acgacatgcc cgacaacgcc tacgtccagg cgccgacgc ggtgcccac 1686 gccctgcgcg gcggaaccca ggccgacgc gccgtcagca aggccacccg ggtgctccag 1746 cgctaccacc tgagcgaccg caccctccag ccgtcgtct tcgccctcct cgccgtcatc 1866 gcccgcaacg ccccgacct gcagtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1866 gcccgcaacg ccccgacct gcagtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1866 gcccgcaacg ccccgacct gcagtccgcc tcggtgtgg tccgggccga gatcctgctg 1926 cgccagggcg atctgccgg tgcggccgcc ctcggttgtg tccgggccga gatcctgct 1986 ctgcagagct ggggcgtggg catcgcgcc caggccgcc acgccatgtc ccggatctcc 1986 ctgcagagct ggggcgtggg catcgcgct ccgcttgcgc tcctcgtcga ggccgaggtc 2046 cagatgggcg accacgagag ggcgatgac ctgctcgaac agccgttgca ccaggccatg ttcgacaccc tggccgcct gcactacctc agggccgcc gccgtgcca cctggccacc 2160 ggccgctacc acgccgcgt gcgggacttc ctgaactgc gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtggccgc ggggacttc ctgaactgc gcgcgagctgat gcaggcctgg		gtcctccagg	aggcggtcga	gtacgccctc	gtcgaggacg	agcacgaact	cgccctgcgg	1200
ctgtcccgcg aactcgccgc cggccggctc gccgaccgcg atctcgtca ggccgtgtcg 1386 ctcctggcgt ggatgggga gtcccggggg gccggcgagg cggtactgcg actgcagcgg 1446 accgacagcg aggccgagg gccggacgg gcgccgcct acgacccggg cacgctcacc 1506 gccgcacaga gctggctctc gatggtcagc ccgccggccc gcgacctctt cgacgccgtg 1566 gaaccgcgcc ggacaacgct gtcaggcgc ccgggggcgc tgcccggcc ggggcccgac 1626 accgtccct acgacagcc tgcagcgcc gcgcacaccac 1506 gccctgccct acgacatgcc cgacaacgcc tacgtccagg ccgccgacc 1626 accgtccct acgacatgcc cgacaacgcc tacgtcaga aggccaccac ggtgctccag 1746 cgcctgcgcg gcggaaccca ggccgaccgc gccgtcagca aggccaccac ggtgctccag 1746 cgctaccacc tgagcgaccg caccctccag ccgctcgtct tcgccctcct cgccgtcatc 1886 gcccggacc gcctcgacct cgcgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1886 gcccgcaacg ccccgacct gcagccgcc ctcggtgtgg tccggggcga gatcctgctg 1920 cgccagggcg atctgccgg tgcggcgcc caggccgcc caggccgca accctccag gccgggggggggg		tgcggggaac	tggcggtcgc	ctcctgcgcg	gagggccccc	gacacgccgc	cctgaagtcc	1260
ctcctggcgt ggatgggga gtcccggggg gccggcagg cggtactgcg actgcagcgg 1446 accgacagcg aggccgaggc ggccggacgg gcgcccgcc		cgcctggcga	gcatcgtctg	gcgcagcagc	ccggccgccg	ctgaagggca	tctgcggcag	1320
accgacagcy aggccgaggc ggccggacgy gcgcccgcct acgacccggg cacgctcacc 1500 gccgcacaga gctggctctc gatggtcagc ccgccggccc gcgacctctt cgacgccgtg 1560 gaaccgcgcc ggacaacgct gtcaggcgc ccgggggccc gcgacctctt cgacgccgtc 1680 accgtcccct acgacatgcc cgacaacgcc tacgtccagg ccgccgacgc cgtccgcacc 1680 gccctgcgcg gcggaaccca ggccgacgcc gccgtcagca aggccacccg ggtgctccag 1740 cgctaccacc tgagcgaccg caccctccag ccgctcgtct tcgccctcct cgccgtcatc 1800 cgctaccacc tgagcgaccc gccgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacctc gcgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacctg gcaggccgcc ctcggtgtg tccgggccga gatcctgctg 1920 cgccaagggc atctgcccgg tgcggccgcc ctcggtgtgg tccgggccga gatcctgctg 1920 cgccagggcg atctgcccgg tgcggccgcc caggcccgcc acgccatgtc ccggatctcc 1980 ctgcaagagct gggggcgtggg catcgcgctg ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggcg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccgcct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgct gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggggactg gggggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggggagct ggtgcgtgg cggcgtggac ccgccgaggc gtggctggcc 2280 ggcgtggacg gggggagct ggggggact ggggggacg ccgccgaggc gtggctggcc 2280		ctgtcccgcg	aactcgccgc	cggccggctc	gccgaccgcg	atctcgtcca	ggccgtgtcg	1380
gccgcacaga gctggctctc gatggtcage ccgccggccc gcgacctctt cgacgccgtg 1560 gaaccgcgcc ggacaacgct gtcaggcgcg ccgggggcgc tgcccggcgc gggggcccgac 1620 accgtcccct acgacatgcc cgacaacgcc tacgtccagg ccgccgacgc cgtccgcacc 1680 gccctgcgcg gcggaaccca ggccgacgcc gcgctagca aggccacccg ggtgctccag 1740 cgctaccacc tgagcgaccg caccctccag ccgctcgtct tcgccctcct cgccgtcatc 1800 gcccgcaacg gcctcgacct cgcgtccacc tgagcgggtc gcctcgacc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacct gcagccgcc tggtgcgaac gactgctcgg cgagtgctcc 1920 cgccaacg ccccgacctg gcaggccgcc ctcggtgtgg tccgggccga gatcctgctg 1920 cgccagggcg atctgccgg tgcggccgcc caggcccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgct ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatggcg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggct gcactacctc agggccgcg gcgctgca cctggccacc 2160 ggccgctacc acgccgcgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct gggggacttc ctgaactgcg gcgccgaggc gtggctggcc 2280 ggcgtggacg gggcggagct ggggcggac cggccgaggc gtggctggcc 2280 ggcgtggacg gggcggagct gggcggagc cggccgaggc gtggctggcc 2280		ctcctggcgt	ggatggggga	gtcccggggg	gccggcgagg	cggtactgcg	actgcagcgg	1440
gaaccgcgcc ggacaacgct gtcaggcgcg ccggggggcgc tgcccggcgc ggggcccgac 1620 accgtccct acgacatgcc cgacaacgcc tacgtccagg ccgccgacgc cgtccgcacc 1680 gccctgcgcg gcggaaccca ggccgacgcc gccgtcagca aggccacccg ggtgctccag 1740 cgctaccacc tgagcgaccg caccctccag ccgctcgtct tcgccctcct cgccgtcatc 1800 tacgcgggtc gcctcgacct cgcgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacctg gcaggccgcc ctcggtgtg tccgggccga gatcctgctg 1920 cgccagggcg atctgccgg tgcggccgcc caggccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgcc caggccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgcc caggccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgct ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggcg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggcct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgcgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		accgacagcg	aggccgaggc	ggccggacgg	gcgcccgcct	acgacccggg	cacgctcacc	1500
accepted acgaeatese egacaacese taceptecage eegeegacese egteegeace 1680 geectgeege geegaaceaa geegaaceaa geegaaceaa geegaaceaa geegaaceaa geegaaceaa geegaaceaa aggeeaacea geegateaaa 1740 eegataceaac tegagegaaceg eaccetecaag eegateegaa geegaaceaaceaa geegateaace 1800 geegaaaceg eectegaaceaaceaaceaaceaaceaaceaaceaaceaaceaa		gccgcacaga	gctggctctc	gatggtcagc	ccgccggccc	gcgacctctt	cgacgccgtg	1560
geectgegeg geggaaccca ggeegaegee geegteagea aggeeaeceg ggtgeteeag 1740 egetaceaec tgagegaeeg eaeceteeag eegetegtet tegeeeteet egeegteate 1800 taegegggte geetegaeet egegteegee tggtgegaae gaetgetegg egagtgetee 1860 geeegeaaeg eecegaeetg geaggeegee eteggtgtgg teeggggeega gateetgetg 1920 egeeagggeg atetgeeegg tgeggeegee eaggeeegee aegeeatgte eeggatetee 1980 etgeagggeg atetgeeegg tgeggeege eaggeeegee aegeeatgte eeggatetee 1980 etgeagggeg accaegagg eateggeetg eegetggeeg teetegtega ggeegaggte 2040 eagatgggeg accaegagga ggegatgage etgetegaae ageeggtgee eeaggeeatg 2100 ttegaeaece tggeeggeet geactaeete agggeeegeg geegetgeea eetggeeaec 2160 ggeegetaee aegeegegt gegggaette etgaaetgeg gegagetgat geaggeetgg 2220 ggegtggaeg gggeggaget ggtgeegtgg eggetggae eegeegagge gtggetggee 2280		gaaccgcgcc	ggacaacgct	gtcaggcgcg	ccgggggcgc	tgcccggcgc	ggggcccgac	1,620
cgctaccacc tgagcgaccg caccetecag ccgctcgtct tcgccctcct cgccgtcatc tacgcgggtc gcctcgacct cgcgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacctg gcaggccgcc ctcggtgtgg tccggggcga gatcctgctg 1920 cgccagggcg atctgcccgg tgcggccgcc caggcccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgct ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggcg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggct gcactacctc agggcccgcg gccgctgca cctggccacc 2160 ggccgctacc acgccgct gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		accgtcccct	acgacatgcc	cgacaacgcc	tacgtccagg	ccgccgacgc	cgtccgcacc	1680
tacgcgggtc gcctcgacct cgcgtccgcc tggtgcgaac gactgctcgg cgagtgctcc 1860 gcccgcaacg ccccgacctg gcaggccgc ctcggtgtgg tccgggccga gatcctgctg 1920 cgccagggcg atctgccgg tgcggcgcc caggcccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgct ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggcg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgct gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		gccctgcgcg	gcggaaccca	ggccgacgcc	gccgtcagca	aggccacccg	ggtgctccag	1740
gecegeaacg cecegacetg geaggeegee eteggtgtgg teegggeega gateetgetg 1920 egecagggeg atetgeegg tgeggeegee caggeeegee acgecatgte eeggatetee 1980 etgeagaget ggggegtggg categegetg eegetggeeg teetegtega ggeegaggte 2040 eagatgggeg accaegagga ggegatgage etgetegaac ageeggtgee eeaggeeatg 2100 etegacace tggeeggeet geactacete agggeeegeg geegetgeea eetggeeace 2160 ggeegetace acgeegegt geggactte etgaactgeg gegagetgat geaggeetgg 2220 ggegtggacg gggegaget ggtgeegtgg eggetggacg eegeegagge gtggetggee 2280		cgctaccacc	tgagcgaccg	caccctccag	ccgctcgtct	tegecetect	cgccgtcatc	1800
cgccagggcg atctgccgg tgcggccgcc caggcccgcc acgccatgtc ccggatctcc 1980 ctgcagagct ggggcgtggg catcgcgctg ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggcg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggcct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgcgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		tacgcgggtc	gcctcgacct	cgcgtccgcc	tggtgcgaac	gactgctcgg	cgagtgctcc	1860
ctgcagaget ggggcgtggg catcgcgctg ccgctggccg tcctcgtcga ggccgaggtc 2040 cagatgggcg accacgagga ggcgatgage ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggcct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgcgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		gcccgcaacg	ccccgacctg	gcaggccgcc	ctcggtgtgg	tccgggccga	gatcctgctg	1920
cagatgggeg accacgagga ggcgatgagc ctgctcgaac agccggtgcc ccaggccatg 2100 ttcgacaccc tggccggcct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgcgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280	,	cgccagggcg	atctgcccgg	tgcggccgcc	caggcccgcc	acgccatgtc	ccggatctcc	1980
ttcgacaccc tggccggcct gcactacctc agggcccgcg gccgctgcca cctggccacc 2160 ggccgctacc acgccgccgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		ctgcagagct	ggggcgtggg	catcgcgctg	ccgctggccg	tcctcgtcga	ggccgaggtc	2040
ggccgctacc acgccgccgt gcgggacttc ctgaactgcg gcgagctgat gcaggcctgg 2220 ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		cagatgggcg	accacgagga	ggcgatgagc	ctgctcgaac	agccggtgcc	ccaggccatg	2100
ggcgtggacg gggcggagct ggtgccgtgg cggctggacg ccgccgaggc gtggctggcc 2280		ttcgacaccc	tggccggcct	gcactacctc	agggcccgcg	gccgctgcca	cctggccacc	2160
		ggccgctacc	acgccgccgt	gcgggacttc	ctgaactgcg	gcgagctgat	gcaggcctgg	2220
ctcggcaacg tcgcgcgcgc caaggagtac accgagcagc agaagcagcg cgagacgggg 2340		ggcgtggacg	gggcggagct	ggtgccgtgg	cggctggacg	ccgccgaggc	gtggctggcc	2280
		ctcggcaacg	tcgcgcgcgc	caaggagtac	accgagcagc	agaagcagcg	cgagacgggg	2340

4.610.51

cccgtgggca	gccggacgcg	tggctccctg	ctgctcacgc	tcgcccacac	cggcggtgac	2400
ctcacggtcc	ggctcaagcg	gctcgtcgag	gccgtcgaga	ccctggagga	gggcggggac	2460
cggctccagc	tggcggtggc	gctgggggag	ctgggccgcg	gctaccgtgc	gctgggcgac	2520
ttcaaccggg	cccggatgct	ggtgcgcaag	gcctggcacg	tegecaagte	ctgcggcgcc	2580
gaaccgctgt	gccagcagtt	catgccgggg	caggtcgacg	gcgaggccgg	tgcgcagagc	2640
ggccgggagg	cggagcttcc	cagcgaggtc	gaggtcctgt	ccgaggccga	ggcgcgggtc	2700
gcgctgctgg	cggcgcgcgg	ccacaccaac	cgtgagatag	cgaccaagct	ctacgtcacg	2760
gtgtccacgg	tcgagcagca	tctgacgcgc	atctaccgca	agctgaaggt	gaagcggcgc	2820
cgcgatctgc	ccgcccggct	gtcggacctg	agcctgccga	gcatcgcctg	а	2871

<210> 8

<211> 201

<212> PRT

<213> Streptomyces aizunensis

<400> 8

Met Leu Val Asp Asp His Pro Val Val Arg Glu Gly Leu Ser Ser Met 1 5 10 15

Leu Gln Ser Ala Asp Gly Val Ser Val Val Gly Gln Ala Asp Ser Gly 20 25 30

Glu Glu Ala Ile Ala Met Val Thr Arg Leu Ala Pro Asp Ile Val Leu 35 40 45

Leu Asp Leu Gln Met Gly Gly Met Asp Gly Val Glu Thr Thr Gly His 50 55 60

Leu Leu Arg Val Ala Pro Ala Thr Lys Val Val Ile Val Thr Tyr 65 70 75 80

Glu Ser Asp Thr Asp Ile Leu Arg Ala Val Glu Ala Gly Ala Ala Gly 85 90 95

Tyr Leu Leu Lys Gly Ser Ser Arg Asp Glu Leu Val Gln Ala Val Lys
100 105 110

Ala Ala Arg Gly Glu Thr Val Leu Thr Pro Ser Leu Ala Pro Lys 115 120 125

Leu Phe Arg Ala Arg Val Val Glu Pro Pro Ala Leu Ser Asp Arg Glu 130 135 140

Arg Glu Val Leu Gln Leu Val Ser Leu Gly Leu Thr Asn Ala Asp Ile 145 150 155 160

Gly Arg Gln Leu Phe Ile Ser Glu Ala Thr Val Lys Thr His Leu Leu 165 170 175

Arg Ser Phe Lys Lys Leu Ser Val Ser Asp Arg Thr Ala Ala Val Ile 180 185 190

Thr Ala Leu Lys Leu Gly Leu Leu Ser

195 200 <210> <211> 606 <212> DNA <213> Streptomyces aizunensis <400> 9 atgctggtcg acgaccaccc ggtcgtacgg gagggtctca gctcgatgct gcaatccgcc 60 gacggcgtga gcgtcgtcgg gcaggccgac tcgggcgagg aggcgatcgc gatggtcacc 120 agacttgctc ccgacatcgt cctgctcgac cttcagatgg gcgggatgga cggggtggag 180 accaccagge acctgetgeg egtegegeeg gecaccaagg tggtgategt gacgacgtae 240 gagagegaca eggacateet gegggeegtg gaggegggeg eggegggeta eetgeteaag 300 ggcagctcgc gcgacgaact ggtgcaggcg gtaaaggcgg cggcccgcgg tgagacggtc 360 ctgacgccgt cgctcgcccc caagctgttc cgggcccggg tggtggagcc gcccgcgctg 420 toggacogtg agogogaggt gotocagttg gtoagootog ggotgacoaa cgoggacato 480 ggccgccagc tgttcatcag cgaggcgacg gtgaagacgc atctgctgcg ctcgttcaag 540 aagctgtcgg tctcggaccg gacggccgcg gtgatcacgg cactgaagct cggcctgctg 600 tcctga 606 <210> 10 <211> 416 <212> PRT <213> Streptomyces aizunensis <400> 10 Val Ser Thr Glu Ser Pro Ala Ala Gln Ala Thr Asp Gly Gln Asp Asp 5 Ala Pro Glu Ala Gly Ala Arg Trp Phe Gly Leu Trp Asp Ala Leu Phe Ala Val Ser Tyr Ala Val Thr Thr Met Leu Leu Phe Thr Ser Asp Gly Glu Gln Val His Arg Ala Val Ala Met Ala Ala Leu Thr Ala Ala Val . 55 Pro Trp Tyr Ala Ala Leu Gly Arg Ser Thr Met Val His Glu Gly Gln Gly Pro Val Arg Arg Ser Val Val Phe Ser Val Gly Leu Phe Val Leu 90 Phe Ala Val Ala Val Val Phe Asp Leu Ala Ala Ser Phe Ala Leu Phe 100 Ala Val Val Pro Met Leu Met Met Ser Leu Ala Thr Ser Pro Ala Ile

10/251

120

Ala Val Val Thr Leu Ala Asn Leu Val Pro Val Ile Val Val Trp Leu

135 140 130 Arg Gly Gly Thr Leu Ser Arg Asp Ile Leu Ala Val Leu Pro Thr Ser 150 Leu Leu Gly Ile Ala Leu Ser Val Met Leu Gly Leu Trp Ile Thr Arg 165 170 Val Thr Arg Gln Ser Arg Asp Arg Ala Glu Leu Ile Glu Glu Leu His 185 Arg Asn Arg Ala Gln Val Ala Arg Leu Ser Arg Lys Ala Gly Val Ser 200 Ala Glu Arg Glu Arg Leu Ala Arg Glu Ile His Asp Thr Leu Ala Gln 215 Gly Leu Thr Ser Ile Ile Ser Leu Val Gln Ala Ala Glu Thr Asp Phe 225 230 Thr Ala Asp Pro Asp Arg Ala Arg Ala His Leu Ala Leu Ala Gly Arg 250 Val Ala Arg Glu Ser Leu Gly Glu Ala Arg Glu Phe Val Thr Glu Leu 265 260 Thr Pro Pro Ala Leu Gln Glu Ser Ser Leu Val Gln Ala Thr Arg Arg 280 275 Gln Ala Glu Gly Leu Thr Ala Gln Thr Gly Met Arg Ala His Val Thr 295 Val Glu Gly Asp Glu Arg Glu Leu Pro Met Ala Ile Ser Val Val Leu 305 310 Leu Arg Ser Leu Gln Glu Ala Ile Ala Asn Ile Arg Lys His Ala Gly 325 330 Lys Ala Arg Ala Ala Glu Ile Arg Leu Val Tyr Glu Gln Asp Thr Val 345 Arg Leu Leu Val Arg Asp Gly Pro Gly Phe Thr Val Thr Gly Asp Gln Arg Gly Ser Gly Leu Arg Gly Met Gln Thr Arg Ala His Glu Ile Ser Gly Ala Ala Thr Val Val Ser Ser Pro Gly Gln Gly Thr Thr Ile 395 390 Glu Val Thr Val Pro Val Pro Ala Lys Gly Glu Glu Ala Asp Glu Arg 410 405 <210> 11 <211> 1251 <212> DNA <213> Streptomyces aizunensis gtgagcactg aatcccccgc ggcgcaggcg acagacggcc aggacgacgc gcccgaggcg

ggagcccggt ggttcggcct gtgggacgcg ctcttcgcgg tctcgtacgc cgtcaccacc

60

atgctgctgt	tcacctccga	cggtgaacag	gtccaccggg	ccgtggccat	ggccgcgctg	180
accgcggccg	tgccctggta	cgcggccctģ	gggcgcagca	ccatggtcca	cgagggccag	240
gggcccgtcc	ggcgcagcgt	cgtcttctcc	gtcggcctgt	tegtgetgtt	cgcggtggcc	300
gtggtcttcg	acctcgcggc	ctcgttcgcg	ctgttcgccg	tggtcccgat	gctgatgatg	360
agcctggcga	cctcgccggc	catcgccgtg	gtcacgctgg	ccaatctggt	tccggtcatc	420
gtggtgtggc	tgcgcggcgg	caccctgagc	cgcgacatcc	tggccgtcct	gccgacctcg	480
ctcctcggca	tcgccctgtc	ggtcatgctc	gggctgtgga	tcacccgggt	gacccggcag	540
agccgtgacc	gggccgagct	catcgaggag	ttgcaccgca	accgtgcgca	agtcgcccgg	600
ctgtcgcgca	aggcgggggt	ctccgccgag	cgcgagcggc	tegeceggga	gatccacgac	660
accetegeec	agggcctcac	cagcatcatc	agcctcgtac	aggccgccga	gaccgacttc	720
acggccgacc	cggaccgggc	gagggcgcat	ctggcactgg	cgggccgcgt	ggcccgcgaa	780
agcctgggag	aagcccgcga	gttcgtcacc	gagctgaccc	cgcccgcgct	gcaggagtcc	840
tcgctcgtgc	aggcgacgcg	gcggcaggcc	gagggcctga	cggcgcagac	cggcatgcgg	900
gcgcacgtca	ccgtcgaagg	agacgagcgg	gaactgccga	tggcgatcag	cgtggtcctg	960
ctgcgttccc	tccaggaggc	catcgcgaac	atccgcaagc	acgcggggaa	ggcacgcgcg	1020
gccgagatcc	ggctcgtgta	cgaacaggac	accgtacggc	tgctcgtacg	ggacgacgga	1080
cccgggttca	ccgtcaccgg	ggaccagcgg	ggaagcgggc	tgcgcggcat	gcagactcgc	1140
gcacacgaga	tcagcggggc	ggcgaccgtg	gtcagcagcc	ccggacaggg	caccaccatc	1200
gaagtgacgg	tgcccgtgcc	cgcgaaggga	gaggaagccg	atgagcgctg	a	1251

<210> 12

<211> 186

<212> PRT

<213> Streptomyces aizunensis

<400> 12

Leu Ser Pro Phe Leu Asn Thr Leu Ile Ala Ser Gly Thr Ile Leu Ala 1 5 10 15

Val Ile Leu Ser Thr Asp Leu Gly Thr Arg Lys Val Thr Thr Thr Arg
20 25 30

Met Leu Pro Ser Leu Leu Ala Val Val Val Ile Leu Ala Leu Leu Val 35 40 45

His Thr Leu Pro Leu Asp Gly Asn Asp Pro Ser Leu Gln Leu Ala Gly 50 55 60

Ile Gly Ala Gly Ile Ile Cys Gly Leu Ala Ala Thr Ala Leu Leu Pro 65 70 75 80

Ala His Arg Asn Ala Ser Gly Glu Val Ser Thr Lys Gly Gly Ile Gly 85 90 95

	•
Tyr Ala Leu Val Trp Thr Ala Leu Ser Ala Ser A 100 105	arg Val Leu Phe Ala 110
Tyr Gly Ser Gln His Trp Phe Ser Glu Gly Ile V 115 120	al Arg Phe Ser Thr
Asp Tyr Lys Leu Ser Gly Gln Ala Val Tyr Ser A 130 135 1	sn Ala Phe Ala Phe 40
Met Ala Leu Ala Met Val Leu Thr Arg Thr Ala Val 145 150 155	al Leu Leu Asn Thr 160
Arg Arg Arg Leu Arg Gly Gly Gln Leu Pro Ala Ai	la Asp Asn Thr Ala 175
Pro His Gln Ala Ser Ser Ala Asn Thr His 180 185	
<210> 13 <211> 561 <212> DNA <213> Streptomyces aizunensis	
<400> 13 ctgagcccgt tcttgaacac actgatcgcc agcgggacga tc	Ettggeegt eattetgteg 60
accgaceteg geaccegeaa agteaceaeg aegeggatge tt	
gtcgtgatcc tcgcgctcct cgtgcacaca ctgccgctcg ac	· -
caactggcgg gcatcggcgc cggtatcatc tgcggactgg cc	
gcccaccgga acgcttccgg tgaggtctcc accaagggcg gt	
tggaccgcgc tgtccgcctc gcgtgtgctc ttcgcctacg gt	
gagggcatcg tccggttcag caccgactac aagctcagcg ga	
gctttcgcct tcatggccct ggccatggtg ctgacgcgga cc	
cgccgccggc tgcgcggcgg gcagcttccc gcggccgaca ac	
agttccgcca atacgcactg a	561
<210> 14 <211> 163 <212> PRT <213> Streptomyces aizunensis	
<400> 14	,
Met His Asp Val Arg Leu Arg Pro Pro Arg Asn Arg	g Vál Asp Ser Arg 15
Ala Val Gly Trp Trp Thr Val Gln Ser Ala Met Typ 20 25	r Ala Leu Pro Leu 30
Pro Ile Thr Phe Gly Val Leu Tyr Leu Cys Ile Pro	o Pro Ala Arg Pro

Phe Phe Gly Trp Ala Phe Leu Ile Ser Leu Val Pro Gly Leu Ala Tyr

50		55	60		
Met Ala Va 65	al Met Pro Ala 70	Trp Arg Tyr	Arg Val His	Arg Trp Glu	Thr
Thr Asp Gl	lu Ala Val Tyr 85	Ala Ala Ser	Gly Trp Leu 90	Trp Gln Gln 95	Trp
Arg Val Va	al Pro Met Ser 100	Arg Ile Gln 105	Thr Val Asp	Thr Leu Arg	Gly
Pro Leu Gl 11	n Gln Leu Phe .5	Gly Leu Ser 120	Gly Ile Thr	Val Thr Thr 125	Ala
Ser Tyr Se 130	er Gly Ala Val	Lys Ile Lys 135	Gly Ile Asp	His Arg Thr	Ala
Arg Asp Va 145	l Val Glu His 150	Leu Thr Arg	Val Thr Gln 155	Ala Thr Pro	Gly 160
Asp Ala Th	.r				
		nensis		4	
<400> 15 atgcatgatg	tcaggctccg go	ccccgcgc aat	cgtgtcg acto	ccgggc agtgg	gctgg 60
tggacggtcc	agtccgcgat gt	acgccctg ccc	ctgccga tcad	ecttegg egtge	tgtac 120
ctgtgcatcc	cgcccgccag gc	cgttcttc ggc	tgggcct tcct	gatete geteg	taccg 180
ggcctcgcct	acatggccgt ca	tgcccgcc tgg	cgctacc gggt	gcaccg ttggg	agacc 240
accgacgaag	ccgtctacgc gg	egteegge tgg	ctctggc agca	agtggcg ggtcg	tgccg 300
atgtcccgca	tccagacggt gg	acaccctg cgc	ggacccc tcca	gcaget etteg	geete 360
teeggeatea	ccgtcaccac cg	cctcctac tcc	ggcgccg tgaa	ıgatcaa gggaa	tcgac 420
caccggaccg	cgcgggacgt gg	tcgagcac ctc	accaggg tgac	ccaggc caccc	ccgga 480
gacgcgacat	ga				492
<210> 16 <211> 514 <212> PRT <213> Street	eptomyces aizu	nensis	1		
Met Ser His	s Asp Thr Gly (Ala Thr Ala	Thr Ser His	Gly

Val Asn Leu Ser Met Leu Ala Gly Pro Leu Ala Leu Phe Ala Val Thr 35 40

Ala Ala Glu Asp Pro Glu Trp Ser Arg Leu Ser Pro Arg Leu Leu Leu 25

Val	Ala 50	Leu	. Thr	Gly	Ala	Asn 55	. Leu	Gln	ı Ala	. Leu	Ile 60	. Ser	Leu	ı Gly	Ser
Leu 65	Leu	Ile	· Val	Phe	Leu 70	Val	Ile	Thr	. Gly	75	. Ser	Thr	Met	: Arg	Leu 80
Leu	Thr	Thr	Arg	Phe 85	Arg	Val	Thr	Ala	Glu 90	Arg	Val	Glu	Leu	Arg 95	Ser
Gly	Leu	Leu	Phe 100		Ser	Arg	Arg	Ser 105	Val	Pro	Ile	Asp	Arg		Arg
Ser	Val	Asp 115		Glu	Ala	Lys	Pro 120	Val	His	Arg	Leu	Phe 125		Leu	Ala
Ser	Leu 130	Arg	Ile	Gly	Thr	Gly 135	Glu	Gln	Gly	Ala	Ser 140	Ser	Arg	Arg	Leu
Ser 145	Leu	Asp	Gly	Ile	Thr 150	Arg	Arg	Gln	Ala	Arg 155	Arg	Leu	Arg	Arg	Leu 160
Leu	Ile	Asp	Arg	Arg 165	Gly	Ser	Gly	His	Ala 170	Thr	Gly	Gln	Asp	Gln 175	Asp
Val	Thr	Ile	Ala 180	Glu	Met	Asp	Trp	Ala 185	Trp	Leu	Arg	Tyr	Ala 190	Pro	Leu
Thr	Ile	Trp 195	Gly	Val	Gly	Ser	Va1 200	Phe	Ala	Ala	Val	Gly 205	Thr	Ala	Tyr
Arg	Ile 210	Leu	His	Glu	Met	Lys 215	Val	Asp	Pro	Leu	Glu 220	Leu	Gly	Val	Val
Lys 225	qaA	Ile	Glu	Asp	Arg 230	Phe	Gly	Ser	Val	Pro 235	Leu	Trp	Phe	Gly	Ile 240
Leu	Val	Ala	Val	Val 245	Ile	Thr	Ala	Val	Val 250	Gly	Ala	Ala	Val	Ser 255	Thr
Ala	Thr	Phe	Val 260	Asp	Ala	Trp	Thr	Asn 265	Tyr	Arg	Leu	Glu	Arg 270	Glu	Gly
Val	Gly	Ile 275	Phe	Arg	Ile	Arg	Arg 280	Gly	Leu	Leu	Ile	Ser 285	Arg	Ser	Val
Thr	I1e 290	Glu	Glu	Arg	Arg	Leu 295	Arg	Gly	Val	Glu	Leu 300	Ala	Glu	Pro	Met
Leu 305	Leu	Arg	Trp	Ala	Gly 310	Gly	Ala	Thr	Leu	Ser 315	Ala	Ile	Ala	Ser	Gly 320
Leu	Ser	Asn	Ser	Gln 325	Glu	Asn	Arg	Ser	Arg 330	Cys	Ser	Leu	Thr	Pro 335	Pro
Val	Pro	Arg	Asp 340	Glu	Ala	Leu	Arg	Val 345	Ala	Ala	Asp	Val	Leu 350	Ala	Glu
Glu	Gly	Ser 355	Pro	Thr	Glu	Leu	Thr 360	Lys	Leu	Va1	Arg	His 365	Ser	Arg	Ala
7.7	T	7	7	71	~- 7	_		_			-	_			

Ala Leu Arg Arg Ile Asn Arg Gly Leu Leu Val Leu Ala Ala Val 370 380

380

Val Ala Val Pro Leu Gly Leu Gly Leu Trp Leu Thr Pro Val Leu Val 385 His Thr Ala Trp Ile Thr Ala Leu Val Gly Leu Pro Val Val Ile Val 405 410 Leu Ala Asn Asp Ala Tyr Arg Ser Leu Gly His Gly Ile Arg Asp Arg 425 Tyr Leu Val Val Arg Ala Gly Thr Phe Ala Arg Arg Thr Val Ala Val 435 Gln Arg Asp Gly Val Ile Gly Trp Asn Ile Ser Arg Ser Tyr Phe Gln 450 455 Arg Arg Ser Gly Leu Leu Thr Ile Gly Ala Thr Thr Ala Gly Val Gly 470 475 Cys His Lys Val Arg Asp Val Ser Val Gly Ala Gly Leu Ala Phe Ala 485 490 495 Glu Glu Ala Val Pro Arg Leu Leu Ala Pro Phe Ile Glu Arg Val Pro 500 505 Arg Gly <210> 17 <211> 1545 <212> DNA <213> Streptomyces aizunensis <400> 17 atgagecacg acaceggaca gtgggaggec acegegacet cecaeggege egeegaagae cccgagtgga gcaggctcag ccccgactg ctgctggtca acctgagcat gctcgccggc ccgctcgccc tgttcgccgt cacggtcgcc ctgaccggcg ccaacctcca ggccctcatc

60 120 180 tecetegget ecetgetgat egtetteetg gteateaceg ggateageac gatgeggetg 240 ctgaccaccc getteegegt caccgccgaa cgcgtegaac tgcgcteggg cetgetette 300 cgcagccgcc gctcggtccc catcgaccgg gtccgcagcg tcgacgtcga agccaagccg 360 gtgcaccgcc tcttcggcct cgcctcgctg cgcatcggca ccggtgaaca gggcgcgtcc 420 agccgcaggc tctccctcga cggcatcacc aggcgtcagg cgcggcgact gcgcaggctc 480 ctcatcgacc gccgtggcag cggccatgcc accggccagg accaggacgt caccatcgcc 540 gagatggact gggcctggct gcggtacgcg ccgctcacca tctggggcgt cggcagcgtc 600 ttcgccgccg tcggcaccgc ctaccgcatc ctgcacgaga tgaaggtcga cccgctcgaa 660 ctgggcgtcg tcaaggacat cgaggaccgc ttcggttccg tacccctgtg gttcggcatc 720 ctcgtcgccg tcgtgatcac cgccgtcgtg ggcgccgcgg tctccaccgc caccttcgtg 780 gacgcctgga ccaactaccg cctggagcgt gagggggtcg gcatcttccg gatccgccgc 840 ggactgctca tttcccgctc cgtcaccatc gaggagcgcc ggctgcgcgg cgtcgagctc 900

gccgagccga	tgctgctgcg	ctgggcgggc	ggcgccaccc	tgagcgccat	cgccagcggc	960
ctcágcaaca	gccaggagaa	ccgcagccgc	tgttccctca	ccccgcccgt	gccccgggac	1020
gaggcgctgc	gggtcgccgc	cgacgtcctc	gccgaggaag	ggtccccgac	ggagctgacc	1080
aagctcgtcc	ggcactcccg	tgccgccctg	cgccgtcgca	tcaaccgcgg	cctgctggtc	1140
ctcgcggccg	tcgtcgcggt	gccgctgggc	ctggggctgt	ggctcacccc	cgtcctggtg	1200
cacaccgcct	ggatcacggc	gctcgtcggc	ctgccggtcg	tcatcgtcct	cgccaacgac	1260
gcctaccgct	ccctcggcca	cggaatccgc	gaccgctacc	tcgtcgtccg	cgccggcacc	1320
ttcgcccgcc	gtacggtcgc	cgtccagcgg	gacggcgtca	tcggctggaa	catctcccgc	1380
tcctacttcc	agcggcgcag	cggactgctc	accatcggcg	ccaccaccgc	gggcgtcggc	1440
tgccacaagg	tgcgcgacgt	atccgtcggc	gccggcctcg	ccttcgccga	agaggccgta	1500
cccaggctgc	tcgccccgtt	catcgaacgc	gtcccgcgcg	gctga		1545

<210> 18

<400> 18

<400> 18		*				
	ccgccagctc	ctccagcctc	ggcaccagcg	acaccggaga	gggcatcgtc	. 60
cggatctccg	cgcgcacctc	gcgcgcggcc	gccgtcatct	tctcgtccga	aagcagctgt	120
acgaggacct	ccgcggagag	gtcgtcggcg	gtgccgagca	gaccggcacc	ceggtecegt	180
acggcctccg	cattgatgtg	adggtccgct	ccgtccggca	ggacgagctg	cggcacaccg	240
gcgttcagcg	ccgccagcgt	cgtccccgca	ccaccgtggt	gcacggccgc	gtcgcaggtc	300
tgcagcagcg	ccgtcagcgg	cacccacccc	acggcccgga	cgttgggagg	cagttcaccg	360
agcgccgtgg	tgtccacatc	gcccagcgcc	agcacgaact	cggcgtccac	cccggcagcc	420
gccgccgcga	gccgctgcac	cgggcccagg	ccgttgatgt	ggaccgaggc	cgtgccgagc	480
gtcaccccga	cccggcggcg	ccccggcttc	tccagcagcc	agtccggcag	caccgcaccg	540
ctgttgtacg	ggaccggccg	catcgaccag	ccgtcccgct	cgggctccgc	catgctcggc	600
ggcgcgatgt	cgatcaccgg	gacccgttcg	gacacccggt	ccacgccgtg	ccgcgccatc	660
gtctcggtga	gcatcgacac	cgtcagctcg	cgcagctgcg	taccccgcgc	gaaaccgaag	720
ttgtgctgca	cggccggcac	acccagccgc	gccgccgcga	tcagaccgga	cacgaagatc	780
tgctcgaaga	cgatcagatc	gggccggaaa	tcgtcggcgg	teegeaegat	gccgtccgcc	840
aggtggttgt	tgaggtgggc	gaagagggtc	agcccgtcca	tcgggtcgac	gccgcccgga	900
ccgcgcaggc	gggccatcag	ctcaccggcc	gtcgactgga	ggaagtcctc	caggtggaag	960
ccgggggcga	catccgccac	gtgcagaccg	gcgttggcgg	cctccagcgc	gtcacccgcg	1020

<211> 164051

<212> DNA <213> Streptomyces aizunensis

ctggcgacca	gcacctcgtg	gccggccgag	cgcaacgccc	aggccagcgg	aacaatggga	1080
aaaacgtggc	: cgatggccgg	atacgtcacg	aacagtatgc	gcaaggaaac	gcgccccctt	1140
gggtagcttt	gtattctccg	gaccggtatg	gtccagatgg	aatacggtgg	atattcttta	1200
aateceegae	ggtgcctggg	catcctgatg	cagtcgcaca	tgccgagtca	aggeggegte	1260
cgaaggcccg	tgttaggggt	ccgtaggggc	ctgttagggg	tttctcccac	ttccctcgca	1320
tgcaagagtg	tcccctggtc	ttggattctt	tattcggggg	taatggagcg	cgcgatgttg	1380
aatgagtccg	aggaattcac	gcccgaaatc	aatgtcgcct	ccgaagtcgg	tggaacgcag	1440
ggcgaaagtc	ctgaaagcac	gccgtcgtgg	cagcagcgcc	tgaccggcct	caccgaggcc	1500
gagcagcaca	ccgcactgct	ggagtgggtg	tcctcgctgg	catccgccgc	actgcgcgac	1560
gcggcccccg	acacgctcga	ccccaccgc	cccttcctgg	atctgggctt	cgactcgctc	1620
gccgccgtcg	acctgcacgc	caggctcgtc	gcgggaaccg	ggctgcggct	gccggtcacc	1680
ctggccttcg	accaccccac	ccccgcgcac	ctcgcccgtc	atctgcacgc	ggcgatcctc	1740
ggactgaccg	gccccgccga	gacgcccgtc	accgcggcgg	tcggcagcga	cgaacccatc	1800
gccatcgtcg	gcatcggctg	ccatttcccg	ggcggcgtac	agtececega	ggcgctgtgg	1860
aacctcgtcg	agaccggcac	cgacgccatt	tccgcattcc	ccaccgggcg	cggctgggat	1920
ctcgacgcgc	tgtatgaccc	ggatcccgac	cgggcgggca	ccagttatgc	ccgcgagggc	1980
ggattcctgc	acgacgccga	cgcattcġac	gcggcattct	tcgggatatc	cccgcgcgaa	2040
gccctcgcca	tggatccgca	gcagcgactc	cttctcgaag	cgtcctggga	ggcattcgac	2100
cgcgccgggg	tagaccccgc	cgcattgcgc	ggcggtcagg	tcggcgtatt	cgtcggcgcc	2160
gagacccagg	aatacggccc	ccggctccag	gacgccaccg	acggattcga	gggctacctc	2220
gtcaccggaa	acgcggccag	cgtcgcctcc	ggccgtatcg	cctacacctt	cggcttcgag	2280
ggcccgacgg	tcaccgtcga	cacggcctgc	tcctcctcac	tcgccgccct	ccacctcgcc	2340
gtccaggcgc	tgcgcaccgg	cgaatgctcc	ctcgcgctcg	ccggtggcgt	cgcggtcatg	2400
gegageeeeg	gctcgttcgt	ctcgttcagc	cgccagcgcg	gcctggcccc	cgacggccgc	2460
tgcaagccgt	tcgcggccgc	cgccgacggc	acggcgtggg	gcgagggcgt	cggcatgctg	2520
ctggtcgaac	ggctctccga	cgcgcgcgcc	aagggccacc	ggatectege	ggtcgtccgc	2580
ggctccgcca	tcaaccagga	cggcgccagc	aacggcctca	ccgcccccag	cggtccgtcc	2640
cagcagcgcg	tcatccgcca	ggccctcgcc	aacgccggcc	tgtccgccgc	cgaggtcgac	2700
gtcgtcgagg	cgcacggcac	cggcacccgg	ctcggcgacc	cgatcgaggc	ccaggcgctc	2760
ctcgccacgt	acggccagga	gcacaccgat	gaccggccgc	tgtggctcgg	ctccctgaag .	2820
tcgaacatcg	gccacacgca	ggccgccgcc	ggagtcgccg	gcatcatcaa	gatgatcatg	2880

0.61051

gcgatgcggc	acggggtact	gccccggacc	ctgcacgtcg	acgcgccgac	cccgcacgtc	2940
gactgggagg	ccggagcggt	caccttgctg	accgaagccg	tggagtggcc	ggagtcggac	3000
cgcccgcgcc	gtgcgggcgt	gtcctccttc	ggcatgagcg	gcaccaacgc	ccacgtcatc	3060
gtcgaagagc	cggccgccca	ggaccgcgag	ggcgcccca	cctccggcgc	ccaagccccc	3120
gactccagcc	agggccaggc	acagggcacc	tccaccgcgc	cggttctcct	cccgtgggcg	3180
ctctccgcca	agacccccga	ggccctccgc	gcccaggcac	gccgactcgg	caccctgatc	3240
gcggcgcagc	cgcacgtcac	cccctcgac	atcggccact	ccctcgcgac	cacccggggc	3300
cgcttcgagc	agcgcgccat	cgtgctcggc	gacgaccgcg	aggcgttcct	cgacgccctg	3360
cacgccctcg	ccgagggcaa	cgacacgccc	tccgtggtcc	agggcgccgc	cgcaccgggc	3420
aagctcgcct	tcctcttcac	cggccagggc	agccagcgcc	tcggcatggg	ccgcgaactg	3480
tacgagaccc	acccggtgtt	cgccgacgcc	ctcgacgacg	cctgctggta	cctggacgac	3540
caactcgaac	tecegetect	cgacgtgctg	ttcgccgacg	agggcagccc	cgaggccgca	3600
cttctgcacc	agaccgccta	cacgcagccc	gcgctgttcg	cggtcgaggt	ggcgctgttc	3660
cgcctggtcg	acagctgggg	cctgaagccc	gacttcgtcg	cgggccactc	catcggcgag	3720
atcgcggccg	cacacgtggc	cggagtgttc	tccctggagg	acgcctgcat	gctcgtcgcc	3780
gcacgcggcc	gcctcatgca	ggcgctgccg	gccggtggcg	tgatgatcgc	gctgcaagcg	3840
tccgaggacg	aggtgctgcc	gctgctcacc	gaccgggtga	gcatcgccgc	gatcaacggc	3900
ccgcaggccg	tggtcatcgc	cggtgacgaa	gacgcggcgg	ccgcgatcgc	cgagaccttc	3960
caggccgcgg	gccgcaagac	caagcggctg	acggtcagcc	acgcgttcca	ctcgccccac	4020
atggacgcca	tgctggagga	attcctccgc	gtcgcccagg	tgctggacta	cgccaagccc	4080
accctccccg	tcgtctccct	cctcaccggc	accaccgcga	ccccgccga	actggccacc	4140
cccgcatact	gggtgcgcca	cgtccgggac	gccgtccgtt	acctcgacgg	cgtacgcacc	4200
ctccaccagc	ggggcgtacg	caccttcctg	gaactcgggc	cggacgcggt	gctcaccgcc	4260
atggcacagg	actgcgtcga	cccgcagggc	gccgccttcg	ccccgcgct	gcgctccggc	4320
cgcccggagg	cggccactgt	gctcaacgcc	gtcgcgcacg	cccacgtccg	gggtgcgġag	4380
acggactggg	ccgcgttctt	cgccggtacg	ggcgctcagc	gggtcgatct	gccgacgtac	4440
gccttccagc	ggcagcgcta	ctggatggac	tcccgcaccc	cggccccgga	ctccgccgcg	4500
cagcgggcgc	acggcggcgc	cgatccggtc	gaccgtgtgt	tctgggacgc	cgtcgagcac	4560
gaggacgtgg	ccacgctcgc	cgccgccctc	gaactcgacc	tcgacggcga	acageegete	4620
agcgaggtcg	ttccggcact	gtccgcctgg	cgtcgccgcc	gccgcaccca	gtcggaggtg	-4680
gacggctggc	gttaccgggt	gacgtggaag	ccgctgactg	aggtctcgac	gtctgggttg	4740
teeggtteet	gggtggtgat	ctcgccagct	gggggtgccg	atgactcggc	tgtggtgagt	4800

gcgctggttg	ggcgtggtgt	tgacgtccgt	cgggttgtgg	tcgaggcggg	tgtggaccgt	4860
tcggcgctgg	ctgggttgct	ggctgaggtt	ggttcgcctt	cgggtgtggt	gtcgcttctc	4920
gggctggatg	agtccggggg	gttættgggg	actgttggtt	tggtgcaggc	gttgggtgat	4980
gccggggtgg	gggcgccgtt	gtggtgcctg	actcgtggtg	cggtgtctgt	ggggcgttcg	5040
gatcggcttg	tgtcgccggt	tcaggcgcag	gtgtggggtt	tggggcgggt	tgctgctctg	5100
gaggttccgg	agtggtgggg	cgggctcatc	gatctgcctg	aggtgctgga	cgagcgggct	5160
gtgtcccgct	tggtcggtgt	acttgcgggt	tccggtgagg	atcaggtcgc	ggttcgttcg	5220
tctggtgtgt	teggtegteg	tctggtgcgt	gcaccgcggg	ccgagggtgc	ttcggcgtgg	5280
tctccgaccg	gcacggttct	cgtcaccggt	ggtacgggtg	tgctgggtgg	ccgggtggcg	5340
cgttggctgg	cgggggcggg	tgctgagcgt	ctggtgctga	ccagccgtcg	tgggctggat	5400
gcgccgggtg	cggttgagct	ggtggaagag	ctgaccaccg	gctttggggt	ggaggtttcg	5460
gtcgtcgcgt	gtgatgcggc	cgaccgtgac	gccctgcgtg	ccctgctgtc	cgctgaggcc	5520
gggtctctga	ccgctgtggt	gcacacggcc	ggtgttctgg	acgacggcgt	cctggatgct	5580
ctgaccccgg	accgtatcga	cagcgtcgtg	cgtgcgaaag	ccgtctcggc	tctcaacctg	5640
catgagctga	cggccgagct	gggtatcgag	ctgtccgact	tegteetett	ctcctccgtc	5700
acaggtacgg	tcggcgcggc	cggacaggcc	aactacgccg	ctgcgaatgc	cttcttggat	5760
gctctggccg	agcagcggcg	cgccgatggt	ctcgcggcga	cgtccatcgc	gtggggtccg	5820
tgggccgagg	gaggcatggc	cgccgacgag	gcgatggacg	cacggatgcg	ccgcgagggc	5880
atgcccccga	tggcgcccac	atccgcgatg	agcgcactgg	agcaggccgt	tggtgcgggc	5940
gagacggcgc	tgaccgttgc	cgacatcgac	tgggagcgtt	tctcctccgt	catcgccgca	6000
gtccgcccca	acccgctgat	cggtgacttc	gtcgtcggag	cggaaggcac	ggccgccgcc	6060
agcggccacg	gatccgtggt	caccggcgcc	gatgtcgccg	ccaccgtctc	gggccggttg	6120
gcgggcctga	cccaggccga	gcaggagcgg	gaactgctca	gcctggtccg	tctgcacgtg	6180
gccgcggtac	tcgggcacga	cggatcggac	gcggtcggtg	ccgaacgggc	cttcaaggaa	6240
ctcggcttcg	actccctgac	ctccgtcgag	ctgcgcaacc	gcctcggagc	cgccaccgat	6300
ctccggctcc	ccaccacgct	cgtctacgac	taccccacgt	ccgccgctct	cgccgagtac	6360
ctgcggggcg	aactggccgg	cagcgcgcag	gacgccgggc	cgcccctgcc	cgccgtggtc	6420
ggctccgccg	ccgacgacga	tccgatcgtg	atcgtctcga	tgagctgccg	cttccccggt	6480
ggcgtacgga	ctccggaaga	cctgtggcag	ctcctcgcgg	acggcacgga	cacggtcgcc	6540
gccttcccgg	ccgaccgcgg	ctgggacctg	gacggcctct	acagcgccga	cccggagcgt	6600
tcggggacct	cgtacacgcg	tgaaggcggg	ttcctctacg	acgccgccga	cttcgacgcg	6660

00/054

gacttcttcg	ggatctcgcc	gcgcgaggcc	ctcgccatgg	acccgcagca	gcgcctgctg	6720
ctcgaaaccg	cctgggagac	cttcgagcgc	gccgggatcg	acccggcgtc	gctgcggggc	6780
agccaggccg	gtgtcttcgt	cggcaccaac	ggccaggact	acctctcgct	ggtcacgcgc	6840
gaaggcgacg	gactcgacgg	actcgaagga	catgtcggca	ccggcaatgc	ggccagtgtc	6900
gtctccggcc	ggctctctta	cgtcttcggt	ctcgaaggcc	cggcgatcac	ggtcgacacg	6960
gcctgctcgt	cgtcgttggt	cgccctgcac	ctggccgtgc	aggcgctgcg	ccagggcgag	7020
tgcaccttgg	cgctcgccgg	tggtgtgacg	gtgatgtcca	ctccggacgc	cttcgtcgac	7080
ttcagccgtc	agcgtgggct	cgcggaggac	ggccgtatca	aggcgttcgc	gtaggaagag	7140
gacggtacgg	gctggggtga	gggcgtcggc	atgctcctgg	tggagcggct	gtccgacgcc	7200
cgtaggaacg	gtcacccggt	cctggcggtc	gtgcggggct	cggcgatcaa	ccaggacggc	7260
gcgagcaacg	gcctgaccgc	gccgaacggt	ccgtcccagc	agcgcgtcat	ccgccaggcg	7320
ctggccggtg	cggggctgtc	ggccgccgac	gtggacgcgg	tggaggcgca	cggtacgggc	7380
acccggctcg	gtgacccgat	cgaggcgcag	gcgctgctcg	ccacgtacgg	ccaaggccgc,	7440
ccggcggacc	ggccgttgtg	gctgggctcc	gtgaagtcga	acatcggtca	cacgcaggcc	7500
gccgcgggcg	tggcgggcgt	gatgaagatg	gtcatggcga	tgcggcacgg	tgtgctcccg	7560
cgcacgctgc	acgtggacgg	gccgaccccg	cacgtcgact	ggtcggcggg	cgacgtcgcc	7620
ctgctgaccg	agcagcggga	gtggccggcg	accggccacc	cgcggcgggc	ággtgtgtcc	7680
tegtteggee	tgagcggtac	gaacgcccac	accatcatcg	aagaagcccc	ggccgacgac	7740
gacgccgagc	ccacgaccgg	cgcggggacg	gccccgtccg	ttctgccgct	gctcatctct	7800
gccaagagcg	acgccggcct	gcgcgcacag	tcggagcagc	tggcgaccca	tctggtcgga	7860
aacccggacg	tccccatcgg	ggacatcgcc	tactccctca	cgaccggacg	ctccgggctg	7920
gagacgcgag	cgatcctggt	cggcgacgcc	gacaaccgca	cagggctcgc	ggccgcgctg	7980
cgaagcctcg	ctgccggcga	gcaggctccg	ggcctggtcc	agggcacggt	gaccgagggc	8040
gggctggcgt	tcctgttcac	ggggcagggg	agccagcggc	tggggatggg	ccgtgagctg	8100
tacgagacgt	atccggtgtt	cgcggatgcg	ctcgacgcgg	tgtgcgcģcg	gatggatctc	8160
gaagtcccgc	tgagggacgt	gctgttcggg	gcgtatgcgg	gtctgctgga	tgagaccgcg	8220
tatacgcagc	ctgcgttgtt	cgcggttgag	gtggcgttgt	tccggctggt	ggagagctgg	8280
ggtctgaggc	cggacttcgt	ggcgggtcat	tcgattggtg	agatcgctgc	tgcgcatgtg	8340
gcgggggttc	tgtccctgga	tgacgcctgt	gctctggtgg	aggcgcgtgg	gcggttgatg	8400
ggtgcgctgc	ctggtggtgg	cgtgatgatc	gcggtccagg	cgcctgaggc	tgaagtcctg	8460
ccgctgctga	ccgagcgcgt	gagcattgcc	gcgatcaatg	gtccgcagtc	ggtcgtgatc	8520
gcgggtgacg	aggccgacgc	ggtggcgatc	gtggagtcgt	tcacggggcg	taagtccaag	8580

cggctcacgg	tcagccacgc	gttccattcg	ccgcacatgg	acggcatgtt	ggaggacttc	8640
cgggccgtgg	cggaagggct	gtcgtacgag	gccccgcgca	tccctgtggt	ttccaacctc	8700
accggggccc	tggtctcgga	tgagatgggg	tcggctgagt	tctgggtgcg	tcatgtccgc	8760
gaggcggttc	gcttcctgga	cgggatgcgt	gttctggagg	ccgccggggt	tacgacgtac	8820
gtcgagcttg	gcccgggggg	tgtgctgtcg	gcgctggcgc	aggagtgtgt	cagtggggac	8880
ggtgctgctt	tcgtgccggt	gctgcgttct	ggccgtcccg	aggccgagac	cgcggtcacc	8940
gcgttggccc	aggcacatgt	gcggggtgtg	gacgtcgact	gggccgcgtt	cttctccggg	9000
accggcgtcc	agcgggtcga	cctgcccacc	tacgccttcc	agaggcagcg	gttctggccc	9060
gcgatgacgg	cggagagtgc	gccggtcggc	gggacggtcg	acgcggtgga	cgcccacttc	9120
tgggatgtca	tcgagcagga	ggacgtcgag	tcccttgctg	agttgctcgg	tctcgacgac	9180
gcgagcgcgt	gggggagtgt	ggtccccgcg	ctctcggcct	ggcgtcggca	gggccaacag	9240
caggcccagg	tcgacggatg	gcgctaccgg	gcgagctgga	agccggtgac	ggctgcggtg	9300
tcgtccggcg	tggtgagcgg	gacatgggtt	gtcgccgtac	ctgccggatc	tgcgggggac	9360
gacgcgcggg	tcgaggccgt	gaccaacggg	ctggctgggc	gtggcgttga	cgtccgtcgg	9420
gttgtggtcg	aggcgggtgt	ggaccgggcc	gcgctggctg	ggttgctggc	tggtgaggga	9480
tctctcgctg	gtgtggtgtc	gcttctcggg	ctggatgagt	ccggggggct	ggcggctact	9540
gctggtttgg	tgcaggcgtt	gggtgatgcc	ggggtgtcgg	cgccgttgtg	gtgcctgacc	9600
cgcggggctg	tttccgtcgg	tcgttcggat	cggcttgtgt	cgccggttca	ggcgcaggtg	9660
tggggtctgg	ggcgggttgc	tgctctggag	gttcccgagc	gttggggcgg	gctggttgac	9720
cttccggaag	tgctggatga	gcgggctgtg	tcccgcttga	tcggtgtact	tgcgggttcc	9780
ggtgaggatc	aggttgcggt	tcgttcgtct	ggtgtcttcg	gtcgtcgtct	ggtgcgtgca	9840
ccgcgggccg	agggtgctgc	gtcgtggact	ccgaccggca	cggttctcgt	caccggtggc	9900
acgggtgtgc	tgggtggccg	ggtggcgcgt	tggctggcgg	gggcgggtgc	tgagcgtctg	9960
gtgctgacca	gccgtcgtgg	gctggatgcg	ccgggtacgg	ctgaactggt	cgaggagctg	10020
accagctccg	gggtggaggt	gtcggtcgtc	gcgtgtgacg	cggccgaccg	tgacgccctg	10080
cgcgccctgc	tctcctctga	ggccgggtct	ctgaccgctg	tgatccacac	ggccggtgtc	10140
ctggacgacg	gtgtcctgga	tgctctgacg	ccggaccgta	tcgatggtgt	cgtgcgtgcg	10200
aaggccgtct	cggctctcaa	cctgcacgaa	ctgacggccg	agctgggcat	cgagctgtcc	10260
geettegtee	tgttctcgtc	catgagcggc	acggtgggca	cggcgggtca	ggccaactac	10320
gcggctgcca	atgcctacct	ggatgctctg	gccgagcagc	gccgggcgga	cggtctcgcg	10380
gcgacgtcca	tegettgggg	tccgtgggcg	gagggtggca	tggccgccga	tgcggcgctc	10440

gaagcccgta	tgcgccgaga	cggggtgcct	ccgatgcccg	cggatccggc	gatccgcgct	10500
ctccggcagg	ccgttgcagg	cgacgacgcc	gtgcttaccg	ttgccgatgt	cgaatgggac	10560
cggttcctcc	cgggcttcgt	cgccgcacgg	cacagcgagc	tgttcagcga	gctgcġtgac	10620
gtccgtgatg	cccgcgcggc	acaggatcgg	gcgcaggccg	ccgttgccgc	cgaccgtccg	10680
gactcccttt	ccgggcggct	gtccgcccag	gcgccggccg	agcaggagcg	agagctgctg	10740
gacctggtcc	gtacgcaggt	cgccgccgtg	ctcgggcacg	ccggagtgga	aaacgtgggc	10800
gcggggcggg	cgttcaagga	gcttggcttc	gactcgctca	tggccgtcga	gctgcgcaac	10860
cgcatcggct	cggccaccga	gcttcggctc	ccggccacct	tgatctacga	ccaccccacg	10920
teegeegeee	tcgcggagtt	cctgcggggt	gagctggtcg	gcaccgtgcg	ggtcgccgac	10980
aaggtgctgc	ccgccgtggt	ctccgccgac	gaggatccga	tcgcgatcgt	ctcgatgagc	11040
tgccgcttcc	ccggtggcgt	acgģactccg	gaagacctgt	ggcggctcct	cgtggacggc	11100
acggacgccg	tcggcgcgtt	cccggccgac	cgcggctggg	acctggacag	gctctacagc	11160
cccgacccgg	accagccggg	cacctcgtac	acccgcgaag	gcgggttctt	cgacggggcc	11220
geggaetteg	atcccgggtt	cttcgggatc	tcgccgcgcg	aggcgctcgc	catggacccg	11280
cagcagcgac	tgctgctcga	aacctcctgg	gaggcgatcg	agcgggcggg	catcgacccg	11340
tcgtcgctgc	gcggcagcca	ggccggtgtc	ttcgtcggca	ccaacggcca	ggactacctc	11400
tccctcatca	cccgtgaatc	ggagggcctg	gaaggtcact	tgggcacggg	taacgcgggc	11460
agcgtcatgt	ccggccgcgt	ctcctacgtg	ctcggcctgg	agggtccggc	ggtcacggtc	11520
gacacggcgt	gctcgtcctc	gctggtcgcc	ctgcactggg	cgatccaggc	cctgcgtcag	11580
ggcgagtgca	gcatggctct	ggccggcggc	gtgaccgtca	tgtcgacgcc	cgagaacţtc	11640
gtcgacttca	gccgtcagcg	cgggctcgcg	gaggacgggc	gcatcaaggc	gttcgcgtcg	11700
gccgcggacg	gtacgggctg	gggtgagggt	gtcggcatgc	tcctggtgga	gcggctgtcg	,11760
gatgcccggc	gcaacgggca	teeggttetg	gcggtagtac	gtggttcggc	tgtcaatcag	11820
gacggtgcga	gcaatggtct	gacggctccg	aatggtcctt	cgcagcagcg	ggtgatccgt	11880
gcggcgctgg	cgagtgcagg	tctgtcggcc	gctgatgtgg	atgtggtgga	ggcgcacggt	11940
acggggacga	agctgggtga	cccgatcgag	gcgcaggcgc	tgctggcgac	gtacgggcag	12000
gaccggcccg	cgggccgtcc	gctgtggctg	ggttccatca	agtcgaacat	cggtcatacg	12060
caggccgccg	ccggtgtcgc	gggcatcatc	aagatggtcc	tcgccatgca	gcacggcgtg	12120
ctgccgcaga	cgctgcacgt	cgacgagccg	accccgcacg	tcgactggtc	ggcgggcgag	12180
gtcaccctgc	tgaccgagca	gacggcctgg	ccgacggtgg	accggccgag	gcgagcggga	12240
gtgtcgtcct	teggeateag	cggcaccaac	gcccacacca	tcatcgaaca	ggccccggcg	12300
gtcgagcagt	tggcggacgg	tgacgcgact	cccgccactc	cggccctcgc	gctcccgctg	12360

ccgtacgtcc tctccg	cgaa gagccccgag	g gccctgcgcg	cccaggcgtc	cgtactgcgc	12420
acgcacctgg aggccad	cgga ccacaacggg	g cccggttccg	acgacctggc	cttctcgctc	12480
gccacggcac gtgcgca	acct cgaacaccgo	gcagtcctga	ccgccgacga	cccacaggaa	12540
ttccgggagg cactcg	cacg cctcgccgac	ggtgatccct	caccgaggat	caccaccggg	12600
gcggtgagcg acggtco	gtac ggcgttcctg	ttcacgggcc	aggggagtca	gcggctcggg	12660
atgggccgtg agctgta	acga ggcgtatccg	gtgttcgcgg	acgcgcttga	cgcggtctgc	12720
gcgcatgtgg acgcgca	acct cgaagtgccc	ctgaaggacg	tectgttegg	ggcggatgcg	12780
ggtetgetgg accagac	ggc ttacacgcag	cccgcgttgt	tcgcggtcga	ggtggcgttg	12840
ttccggctgg tggagag	ctg gggtgtgaag	ccggacttcg	tggccggtca	ttcgatcggt	12900
gagategegg eegegea	tgt ggcgggcgtc	ttctcgctcc	aggacgccag	tgaactggtc	12960
ttcgctcgtg ggcggtt	gat gcaggcgctg	ccgaccggtg	gcgtgatgat	cgcggtccag	13020
gcgtcggagg acgaggt	cct gccgctgctg	accgaccggg	tgagcattgc	cgcgatcaac	13080
ggcccccagt cggtcgt	cat cgcgggcgac	gaggccgacg	cggtggccat	cgccgagtcc	13140
ttcacggacc gcaagtc	caa gcgcctcacg	gtgagccacg	cgttccactc	gccgcacatg	13200
gacggcatgc tcgacgc	ctt ccgtgagatc	gccgagggcc	tctcctacga	accttcgcgc	13260
atcccggtcg tctcgaa	cct caccggcgct	ctcgtctccg	atgagatggg	ctcggccgag	13320
ttctgggtgc ggcacgt	ccg cgaggccgtc	cgtttcctcg	atggcatccg	cacgctggaa	13380
gccgcgggcg tcaccaa	gta cgtcgaactc	ggccccgacg	gcgtgctgtc	ggcgatggcc	13440
caggactgcg tgagtgg	cga gggctccgtc	ttcatccccg	tgctccgcaa	ggcgcgcccc	13500
gaggccgaga gcgtcac	gac cgccctcgcc	teggeeeaeg	tccacggcat	ccccgtcgac	13560
tggcaggcgt acttcgc	cgg gaccggcgcc	cagcgcgtcg	acctccccac	ctacgccttc	13620
cagegeeage getactg	gcc cagcgctgcc	gcgttcgtca	ccggcgatcc	gacggcgatc	13680
gggctcgggg atgccggg	gca cccgttgctg	ggtgcggcgg	tggcgctcgc	cgactccgag	13740
ggcgtgctct tcaccgg	ccg cctgtcgctc	gacacccacc'	cctggctcgc	cgaccacacc	13800
atcctcggca gcgtcctq	get geegggeaeg	gccttcgtcg	acctggcgat	ccgggccggc	13860
gatcaggtcg gatgcgat	gt ggtcgaggag	ctgaccctcg	aagcgcccct	cgtcgtcccc	13920
cagcggggcg gtgtgcag	gct ccagctcgtc	gtcgaggcgc	cgagcgggcc	cgggcagcgg	13980
ccgttcagcg tgcactco	ccg gcggcaggac	gcctacgcgg	aggagccgtg	gatgcggcac	14040
gcctccggag tgctgact	tc cggcgtttcc	cgccgcgaac	tgtccgtgga	aggcggggag	14100
ttcgaggcgc tggccgtc	tg gccgccgacc	ggagccgtac	ccgtggacgt	acgaggtctg	14160
tacgaggagc tcgccgag	gc cggtgtggcc	tacgggccgc	tgttccaggg (gctcaaggcg	14220

20/25

gaggcggcac ggttcggtct gcacccggct ctgctggacg ccggtctgca cgccatcggc 1 cacggcgagg gaccggaacc ggcaatgacc ggcgcgctgt tgcccttctc ctgggcagga gccgagggggggggg	14280 14340 144400 14460 14520 14580 14640 14700 14760 14820 14880 14940
cacggcgagg gaccggaacc ggcaatgacc ggcgcgctgt tgcccttctc ctgggcagga gtctcgctgt acgcggcggg cgcctcctca ctcaggatgc ggctgacccc gcacacaccc gacgacgcc acaccatggc gttgctcgtg gcggatgaga ccggacgtcc ggtggcggcc gtggaggcc tgatcctgcg taccgcgtcg gccgaccagg tgcgcgggc cgacggaggt cacctcgact ccctcttcaa ggtggagtgg ctgcccgtgg cgggcggagc cacgccgcac ggcgactcca ccggacggcg atgggccgtc ctgggccgcg acggactcgg cctgccggcc acggcggcg aggggcaggt ggccgagtac gacgatgcc ccgcgcgcc ccggcgcgc accggcgcg aaccggcgc ggacgcgtg ttcgtccacc ctggggccgc gaccgggcag accggcgcg aaccggcgc cccggcgcg gaccgcgtg ttcgtccacc ctggggccgc gtccttcgta gacaccggaca ccacggcgcc ctccgtacac gccgccgtga cggacgcgc gtccttcgta gaccacggaca ccacggcgcc ctccgtacac gccgccgtga cggacgcgct gtccttcgta gaccacggaca ccacggcgcc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	L4400 L4460 L4520 L4580 L4640 L4700 L4760 L4820 L4880 L4940
gtctcgctgt acgcggggg cgcctcctca ctcaggatgc ggctgacccc gcacacaccc gacgacgcc acaccatggc gttgctcgtg gcggatgaga ccggacgtcc ggtggcggcc gtggagtcgc tgatcctgcg taccgcgtcg gccgaccagg tgcgcgggc cgacgaggt cacctcgact ccctcttcaa ggtggagtgg ctgcccgtgg cgggcggagc cacgccgcac acggcgtgc atgggcggc atgggccgtc ctgggccgcg acggactcgg cctgccggcc acggcggcg agggcgggt ggccgagtac gacgactcgg cctgccggcc accggcggcg aaccggtgc ggacgccgtg ttcgtccacc ctggggctct tccggggcag accggcgc gacacggacg ccacgcgcag accggcgcag accggcgcg accggcgcgcg accggcgcgcg accggcgcgcgc	14460 14520 14580 14640 14700 14760 14820 14880
gacgacgcc acaccatggc gttgctcgtg gcggatgaga ccggacgtcc ggtggcggcc gtgggagtcgc tgatcctgcg taccgcgtcg gccgaccagg tgcgcgcggc cgacggaggt cacctcgact ccctcttcaa ggtggagtgg ctgccgtgg cgggcggagc cacgccgcac ggcgactcca ccggacggcg atgggccgtc ctgggccgcg acggactcgg cctgccggcc acggcggtg agggcaggt ggccgagtac gacgatgcct ccgcgctcgg tgcggcgcc ggacgcgcg acggccggcg aaccggtgc ggacgccgtg ttcgtccacc ctggggctct tccggggcag gacacggaca ccacggcggc ctccgtacac gccgccgtga cggacgcgct gtccttcgta gacacggaca ccacggcggc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	14520 14580 14640 14700 14760 14820 14880
gtggagtcgc tgatcctgcg taccgcgtcg gccgaccagg tgcgcgggc cgacggaggt cacctcgact ccctcttcaa ggtggagtgg ctgcccgtgg cgggcggagc cacgccgcac aggcgactcca ccggacggcg atgggccgtc ctgggccgcg acggactcgg cctgccggcc aggggcaggt ggccgagtac gacgatgcct ccgcgctcgg tgcggcgcc acggccgcg aaccggcgc agggccggcg aaccggtgc ggacgccgtg ttcgtccacc ctggggctct tccggggcag gacacggaca ccacggcggc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	14580 14640 14700 14760 14820 14880
cacctcgact ccctcttcaa ggtggagtgg ctgcccgtgg cgggcggagc cacgccgcac aggcgactcca ccggacggcg atgggccgtc ctgggccgcg acggactcgg cctgccggcc accggcgtgc aggggcaggt ggccgagtac gacgatgcct ccgcgctcgg tgcggcgcgc accggcgcg aaccggtgc ggacgccgtg ttcgtccacc ctggggctct tccggggcag gacacggaca ccacggcgc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	14640 14700 14760 14820 14880
ggegacteca ceggacggeg atgggeegte etgggeegeg aeggactegg cetgeeggee aeggactega aggggeaggt ggeegagtac gacgatgeet eeggeetegg tgeggegete agggeeggeg aaeeggtgee ggacgeegtg ttegteeaee etggggetet teeggggeag gacaeggaea ceaeggegge eteegtaeae geegeegtga eggacgeget gteettegta	14700 14760 14820 14880 14940
accggcgtgc aggggcaggt ggccgagtac gacgatgcct ccgcgctcgg tgcggcgctc gcggccggcg aaccggtgcc ggacgccgtg ttcgtccacc ctggggctct tccggggcag gacacggaca ccacggcggc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	14760 14820 14880 14940
gcggccggcg aaccggtgcc ggacgccgtg ttcgtccacc ctggggctct tccggggcag gacacggaca ccacggcggc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	14820 14880 14940
gacacggaca ccacggcggc ctccgtacac gccgccgtga cggacgcgct gtccttcgta	14880 14940
	14940
caggaatggc tggcggacga gcggttcgcc gccacgcgcc tggtgtggct gacatccggc	
	15000
geggtggegg aegageeegg egegggegte egggaeetgg egggeagege egtaegegge	
ctgctgcgct cggcgcagtc cgagaacccc ggccagctgc tgatgctcga cctcgaccag	15060 -
gacccggcct cgctcgcggc gctgcccgcc gcgctggccg cgggtgagcc ggaactggcg	15120
atacgacgcg gagaactccg taccccgcgc ctgacgcgcg tcccctcggc ggacgccgcg	15180
gcagagccgc tcggcacact cggcgacccg tccggcacgg tactcgtgac cggagccacc	15240
ggaaccctgg gcggactctt cgcccgccat ctggtgacgg cgtacggggt gcggcgactg	15300
ctgctcacca gccgtcgcgg ccccgaggcc gaaggtgcgg ccgaactggt cgccgaactg	15360
gagcagttgg gggcgcacgt cgaactcgtc gcctgcgacg ccgccgaccg ctccgcgctc	15420
gccgcgctcc tcggagccgt accgtccgag cacccgctga cggccgtggt gcacacggca	15480
ggcgtactgg acgacggcat cetetecteg etcacceceg agegegtgge egeegtactg	15540
cgtccgaagg tggacgccgc ctggaacctg cacgagctga cgcgggaact cggcctctcg	15600
gcgttcgtgc tcttctcggg cgccgccgcc gcgttcggcg cggccgggca ggggaactac	15660
gccgccgcca acagcttcct ggaagccctg gcggagcagc gccgcgccga aggcctgccc	15720
gccacctcac tcgcgtgggg cctgtgggct ccgcagacgg gcggcatggc ccagcagctg	15780
gacgaggtcg acctgcggcg catcgccagg gacggcgtcg gcgggctctc cggtgacgag	15840
ggcctcggcc tcttcgacac cgcgatgacg gtcgacgcgg cggtcctgct gcccatgcgg	15900
ctcgacctcg cggtggcgcg ggcgcaggcc gtctccacgg gcgagacacc ggcgctgctg	15960
cgcgccctca tacgggtgcc cgcgcggcgc gcggtcgagc agcgtacggc ggcggacggg	16020
gcctcgcccc tggcggccag gctgtccgcc ctgccggacg cggaacgcga ggacatgctg	16080
ctggacctgg tgtgcgggcg ggtggccgag gtcctcggcc acaccgacgc ccgcgcggtc	16140

gacgcggacc	gcgcgttcaa	ggaactcgga	ttcgactccc	tcacggccgt	cgagctgcgc	16200
aacgtcctga	aggccgcgac	cggcctcagg	ctctcaccga	ccctcgtctt	cgactatccg	16260
accccggtgg	cgctggcccg	gcacctgctc	gccgagctgg	cgggaaccgc	cgatgaccag	16320
gacgccgtac	gcggccggaa	ggcacccgca	cggcccgcca	cggccgcggt	cacctccgtg	16380
accggcgaag	acccgatcgt	catcgtcggc	atgggctgcc	gcttccccgg	cggcgtacgg	16440
tcgccggagg	acctgtggca	gctcgtcgcc	accggcggcg	acggcatcac	cggcttcccg	16500
tccgaccgcg	gctggaacgt	cgaggccctc	taccaccccg	acccggacca	cgcaggcacc	16560
tcgtacaccc	gcgaaggcgg	cttcctgcac	gacgccgccg	acttcgatcc	cgggttcttc	16620
gggatetege	cgcgcgaggc	cctcgccatg	gacccgcagc	agcgcctgct	gctggaaacc	16680
tcgtgggagg	cgttcgagcg	ggccggaatc	gacccggcga	cgctgcgcgg	aagccgtacg	16740
ggcgtcttcg	ccggtgtcat	gtaccacgac	tacgtgaccg	gcatcggcga	cggcggcagc	16800
gccgtcgaac	tgcccgaggg	ggtcgagggc	tacctcggca	ccggcaacgc	cggcagcatc	16860
gcctccggcc	ggatcgccta	caccttcggc	ctcgaaggcc	cggcggtcac	cgtcgacacg	16920
gcctgctcct	cgtcgctcgt	cgccctgcac	tgggcgatcc	aggcgctgcg	cagcggcgag	16980
tgcacgatgg	cactggccgg	cggtgtcgcc	gtcatggcca	cccccgagac	cttcgtcgac	.17040
ttcagccgcc	agegeggeet	ctcggccgac	ggtcgctgca	agtccttcgc	cgcggcggcg	17100
gacggtacgg	gctgggccga	aggcgcgggc	atgctcctgg	tggagcgcct	ctccgacgcc	17160
gaacgcaacg	ggcacccggt	cctggccgtg	gtccgcggct	cggcgatcaa	ccaggacggc	17220
gcgagcaacg	gcctgaccgc	accgaacggt	ccgtcccagc	agcgcgtcat	ccgcgaggcg	17280
ctggccagtg	ccgacctgtc	ggccgccgac	atcgacgcgg	tcgaggccca	cggcacgggc	17340
acccggctcg	gcgacccgat	cgaggcgcag	gcactcctgg	ccacgtacgg	ccgtgagcgc	17400
gaggcgggcc	gcccgctgtg	gctcggctcg	atcaagtcga	acatcggtca	cacgcaggcg	17460
gcggccggtg	tcgcgggcat	catcaagatg	gtcatggcga	tgcggcacgg	cgtactgccg	17520
cagacettge	acgtcgacga	gccgtcaccg	caggtcgact	gggaggccgg	tgaggtctcc	17580
ctgctgaccg	gggcgatgcc	ctggccgcag	acgggccgtc	egegeegtge	gggcgtgtcg	17640
tcattcggca	tcagcggcac	caacgcccac	acgatcatcg	agcagccgcc	gacccgtgag	17700
gtgacgccga	cggttccggt	ggctccggtg	gttccgacgg	ttccgacggt	tccggtggtg	17760
ccgtgggtgc	tctcgggcaa	gggcgaggag	gcgctgcgag	cgcaggcacg	tcagctccag	17820
tcgtacgtgc	teegegeace	ggaactgcgt	. ccggtcgaca	tegeeggete	gctggcggtg	17880
ggccgggcgt	ccttcgagga	ccgcgcggcg	gtggtcgccg	ccgaccgcga	ggggcttctg	17940
gccgcccttg	cggcgctggc	ggacggcggc	tcggcgacgg	gggctgtgga	gggttccgcg	18000

24/251

gtgggcggga	agctggcgtt	cctgttcacg	gggcagggga	gccagcggct	ggggatgggg	18060
cgcgagctgt	acgaggcgta	tccggtgttc	gcggaggcgt	tggatgcggt	gtgtgctcgt	18120
cttgaactgc	ctttgaagga	tgtgttgttc	ggggcggatg	cgggtctgct	ggatgagacc	18180
gcgtatacgc	agcctgcgtt	gttcgccgtt	gaggtggcgt	tgttccggct	ggtggagagc	18240
tggggtctga	ggccggactt	cgtggcgggt	cattcgattg	gtgagattgc	tgccgcccat	18300
gtggcggggg	tgttctcgct	ggatgacgcc	tgtgctctgg	tggaggcgcg	tgggcggttg	18360
atgggtgcgc	tgcctgcggg	tggcgtgatg	atcgcggtgc	aggcgtcgga	ggacgaggtc	18420
ctgccgttgt	tgaccgaccg	ggtgagcatt	gccgcgatca	acggtcctcg	gtcggtggtg	18480
atcgcgggtg	acgaggccga	cgcggtggcg	atcgtggagt	cgttcacggg	gcgtaagtcg	18540
aagcggctta	cggtgagtca	cgcgttccat	tcgccgcaca	tggacggcat	gttggaggac	18600
ttccgggccg	tggcggaggg	cctgtcgtac	gaggccccgc	gcatccccgt	cgtctccaac	18660
ctcaccggca	ctctcgtcac	cgacgagatg	ggctcggctg	agttctgggt	gcgtcatgtc	18720
cgtgaggcgg	ttcgcttcct	ggacggtatt	cgggctttgg	aggctgctgg	ggttacgacg	18780
tatgtcgagc	ttggccctgg	gggtgtgctg	tcggcgctgg	cgcaggagtg	tgtcagtggg	18840
gacggtgctg	ctttcgtgcc	ggtgctgcgt	tctggacgtt	ccgaggccga	gactgcggtg	18900
accgcgttgg	cccaggcgca	tgtgcggggt	gtgaacgtcg	actgggccgc	attcttcgcc	18960
gggaccggcg	ctgagcgggt	cgacctgccg	acgtacgcct	tccagcggca	gcgctactgg	19020
ctgcacatcc	cccgcgtcgc	gcagagcggg	gtcgccgacg	aggtggacgc	ccggttctgg	19080
gatgccgtgg	agcgtgagga	tctggagtcg	ctcgcctcca	ccctggaggt	cgacgacgag	19140
agcgcgtgga	gcagcgtctt	gcctgcgctg	tcggcgtggc	gtcgggagcg	gcgtgcccag	19200
tccgaggtgg	acggttggcg	ttaccgggtg	tcgtggaagc	cgctggctga	ggtctcggcg	19260
tcggggttgt	ccggttcctg	ggtggtgatc	tcgcctgctg	ggagtgtgga	cgactcggct	19320
gtggtgagtg	cgctggttgg	gcgtggtgct	gaggtccgtc	gggttgtggt	cgaggcgggt	19380
gtggaccgtt	cggcgctggc	tgggttgctg	gccgatgcgg	gttctgccgc	gggtgtggtg	19440
tegetteteg	ggctggatga	gtctgagggg	ttgttgggga	ctgttggttt	ggtgcaggcg	19500
ttgggtgatg	ccggggtgga	ggcgccgttg	tggtgcctga	ctcgtggtgc	ggtctccgtc	19560
ggtcgttcgg	atcggctggt	gtcgccggtt	caggctcagg	tgtggggtct	ggggcgggtt	19620
geegeeetgg	aggttccgga	gcgttggggc	gggctggttg	acctgccgga	agtgctggat	19680
gagcgggctg	tggcccgctt	ggtcggtgta	cttgcgggtt	ccggcgaaga	tcaggtcgcg	19740
gttcgttcgt	ctggtgtgtt	cggtcgtcgt	ctggtgcgtg	caccgcgggc	cgagggtgct	19800
tcggcgtgga	caccgaccgg	cactgttctt	gtcaccggtg	gtacgggtgt	gctgggtggc	19860
cgggtggcgc	gttggctggc	gggggcgggc	gctgagcgtc	tggtgctgac	cagtcgtcgt	19920
			0 = 10 = 4			

ggtccggatg	ctccgggtgc	ggctgagctg	gtggaggagc	tgaccaccgg	cttcggggtg	19980	,
gaggtttcgg	tegtegegtg	tgacgcggcc	gaccgtgacg	ccctgcgcac	: cctgctctcc	20040	
gccgaggccg	ggactctgac	cgctgtgatc	cacacggccg	gtgttctgga	cgacggcgtc	20100	`{.
ctcgacgcgc	tcaccccgga	ccgtatcgac	agcgttctgc	gtgccaaggc	tgtctcggcg	20160	
ttcaacctgc	acgagctgac	ggccgagctg	gggatcgagc	tgtccgcctt	cgtgctgttc	20220	
tcgtcgatga	gtggcacggt	gggtgcggcc	ggtcaggcca	actacgccgc	tgccaacgcc	20280	
tacctggatg	ctctggccga	gcagcggcgc	gccgatggtc	tcgcggcgac	ctcgctcgct	20340	r
tggggtccgt	gggccgaggg	cggcatggcc	ggcgacgacg	cgatggacgc	acggatgcgc	20400	
cgcgaggggc	tgcccccgat	ggcgccggac	gcggcactga	ccctgctgcg	tcagagcgtg	20460	,
gggtccgccg	atgcggcgct	gatggtggtc	gacgtggagt	ggcagcggtt	cgcccctgcc	20520	
ctgaccgtcg	tgcgccccag	caacctcctc	gccgagttgc	ccgaggctcg	ccccgccgga	20580	
acggattccc	gtacgggtgg	cgcaacgtcc	tccgaggggg	ccggctcgtt	cgccgagcgg	20640	
ttggccgccc	tgggtggggc	cgagcaggac	aaggagctgc	tgaacctggt	ccgtacgcat	20700	,
atcgccgccg	tactcggaca	tggcggctcg	gaggccgtgg	gtgccgaacg	ggccttcaag	20760	
gaactcggct	tegaetecet	gaccgccgtc	gagctgcgca	acaggctcgg	tgccgcgacc	20820	;
ggtgtacgtc	tcccggccac	gctgatcttc	gactacccga	ccgccacggc	tetegeegee	20880	
tacctgcggg	gcgagttgct	cggtacgcag	gtcgtggtgt	ccggtccggt	gtccaacggc	20940	
gtcgtcgtgg	acgacgatcc	gatcgcgatc	gtcgcgatga	gctgccgctt	cccggtggc	21000	
gtacggacgc	cggaagacct	gtggcggctg	ctgtcgaccg	gcggtgacgc	catcggtgag	21060	
tteeeegeeg	atcgcggctg	ggatctgagt	cggctctaca	gccccgaccc	cgacaagcag	21120	
ggcaccttct	atgcccgcgc	gggcggtttc	ctctacgacg	ccgccgactt	cgacgcggac	21180	
ttcttcggga	tctcgccgcg	cgaggccctc	gccatggacc	cccagcagcg	actgctcctg	21240	
gagacgtcct	gggaggcctt	cgagcgggcg	ggcatcgacc	cgtcgtcgct	gcgcggcagc	21300	
caggccggtg	tcttcgtcgg	caccaacggc	caggactacg	gagcgatgct	ccagaccatc	21360	
ccggacggca	tcgagggctt	cctcggtacg	ggcaacgcgg	cgagcgtcgt	ctccggccgg	21420	
ctgtcctacg	ccttcgggct	cgaaggtccg	gccgtcacgg	tggacaccgc	ctgctctgcc	21480	
tegetggteg	cccttcactg	ggcggtccag	gcgctgcgca	gcggcgagtg	ctcgctcgca	21540	
ctggccggtg	gcgtgaccgt	catgtcctcg	cccggtgcct	acatcgactt	cagccgtcag	21600	
cgtgggctcg	cggaggacgg	tcgtatcaag	gcattcgcgg	cagccgcgga	cggtacgggc	21660	
tggggcgagg	gcgtcggcat	gctcctcgtg	gagcggctct	ccgacgcccg	caggaacggt	21720	
cacccggtcc	tggccctggt	ccggggctcg	gccatcaacc	aggacggcgc	gagcaacggc	21780	

ctgaccgcgc	cgaacggccc	ctcgcagcag	cgtgtgatcc	gccaggccct	ggccaacgcg	21840
ggcttgtccg	ccgcggaggt	ggacgcggtc	gaggcgcacg	gcaccggcac	gaggctcggc	21900
gacccgatcg	aggtgcaggc	actcctggcc	acgtacggcc	gtgagcgcga	ggccgaccag	21960
cccctgtggc	tcggctcgat	caagtcgaac	atcggccaca	cgcaggcggc	cgccggtgtc	22020
gcgggagtca	tcaagatggt	cctcgccatg	gagcacgggg	tgctgccgca	gaccctgcac	22080
gtggacgagc	cgactccgca	cgtggactgg	teggeaggeg	atgtcgccct	gctgaccgac	22140
gccgtggagt	ggcccgagac	eggtegeeeg	cgtcgagcgg	gtgtgtcgtc	gttcggcttc	22200
agcgggacga	acgctcacac	ggttctggaa	caggcaccga	agcccgagga	gcctgaggag	22260
tctcagcagc	ctgaggagac	gaacgcgccc	gcccgaccgc	atcagtccgg	agtcatgccg	22320
tggacgctct	cggcgaagag	cgaggcggcg	ctgcgggtcc	aggccgagcg	gctgcggacg	22380
cgcatcgctt	ccgacccgct	gctccagccc	gtcgacgtgg	cctactcact	cgcgacatcg	22440
agggccgccc	ttgagcggcg	cgccgtggtc	gtcgcgacgg	aacgtgacga	gttcctggcc	22500
ggactcaagg	cgctggcctc	cgggcagcct	gctccgggcc	tggtgcaggg	cagggtgacc	22560
gagggcgggc	tggcgttcct	gttcacgggg	caggggagcc	agcgactggg	gatgggccgg	22620
gagctgtacg	agacgtatcc	cgtcttcgcg	gatgcgctcg	acgcggtgtg	tgtgcgtctt	22680
gaactgccct	tgatggatgt	gctgttcgga	accgagcgcg	acgcgctgga	cgagaccggg	22740
tacacccagc	cggctctctt	cgcggtcgag	gtggcgttgt	teeggetggt	ggagtcgtgg	22800
ggtgtgaggc	cggacttcct	ggccgggcac	tcgatcggtg	agatcgcggc	cgcgcatgtg	22860
gcgggagtgt	tctcgctgga	tgacgcctgc	gctctggtgg	aggcgcgtgg	gcggttgatg	22920
caggcgctgc	cgaccggcgg	cgtgatgatc	gccgtccagg	cgtctgaggc	cgaggtcctg	22980
ccgctgctga	ccgagcgcgt	gagtatcgcc	gcgatcaatg	gtccgcagtc	ggtcgtgatc	23040
gcgggtgacg	aagccgatgc	ggtggccctc	gtggagtcct	tcacgggccg	caagtccaag	23100
cggctcacgg	tcagtcacgc	cttccactcg	ccgcacatgg	acggcatgct	cgccgacttc	23160
cgcaaggtgg	cggaggggtt	gtcgtacgag	gccccgcgta	tcccggtcgt	ttcgaacctc	23220
acgggggccc	tggtcaccga	cgagatgggc	tcggccgact	tctgggtgcg	gcacgtccgc	23280
gaggccgtcc	gcttcctgga	cggcacccgc	acgctggaag	ccctgggcgt	cacgacgtac	23340
gtcgaactcg	gccccgacgg	ggtcctgtcg	gcgatggccc	aggagtgtgt	gaccggcgag	23400
gactccgtct	tcgtgccggt	cctgcgctcg	ggtcgtcccg	aggccgagag	cgtcaccacg	23460
gecetegeee	aggtacacgt	ccgcgggatc	gccgtcgact	ggcaggcgta	cttcgccggg	23520
accggcgccc	agcgcgtcga	cctcccgacc	tacgccttcc	agcgccggcg	ctactggttg	23580
gaagaggctc	ccgccacggc	ggccgtcgag	cccctgaccg	gctcgctcgg	ggccgtggac	23640
gcgcagttct	gggcggccgt	cgacaacgcg	gatctctccg	cgctcaccgc	caccctggac	23700

atcgacgtcg	acgccgacca	gccactgagc	gccctgctgc	ccgcactgtc	cgcctggcgg	23760
cggcagcgtc	aggagcagtc	ggtcgtcgac	ggctggcgct	acacggtcac	atggaagccg	23820
atggccgatc	cggccgtcgc	acggccgacc	gggacctggc	tcgtcgtgac	cccgccacc	23880
agccttgtcg	acctgcccgc	ggtctccgcc	gcgttggcag	cgcagggagt	ggacgtacgg	23940
gaagtcgccc	tggaggcggc	cgagttggat	cgcgacggcg	tggcgggccg	gatgcgtgag	24000
gcgctcgcgg	gcgaccgggc	cgacggggtg	ctgtccctgc	tggcgctcgc	cgaacacccg	24060
cacccggccc	atccggcggc	gcccaccggg	ctgctcctga	ccgggacgct	cgtacaggca	24120
ctcggtgacg	ccggagtcga	cgccccgctg	tggtgcctca	ccaccggcgc	cgtggcgacc	24180
gcaccctccg	acctgatcgg	gagcgcggcg	caggcgcagg	tctggggcct	cggccgggtc	24240
gtcgccctgg	aacaccccga	gcgctggggc	gggctcgtgg	acctgcccgt	accggcggac	24300
gagcgggcac	tcgaccggct	gctcgccgtc	ctcgcgggcg	ccggggacga	ggaccagatc	24360
gccgtacggt	cegegggeet	cctcgcccgc	cgcatcgggc	acgccgcgcc	tecegeegee	24420
gggcagcacg	ccgacagcgg	gacatcgggc	gccggcgctg	cggccggctc	cgcctggcgg	24480
ccgcgcggca	ccgtcctggt	caccggaggc	acgggcgcgc	teggegggea	cgtcgcccgc	24540
tggctcgcgg	cacacggcgc	ggaacacctg	gtgctgctca	gcaggagggg	cccgcaggcg	24600
cccggcgccg	atgccctggt	cgccgagatc	gccgcgctgg	gtgccggggc	cacggccgtc	24660
gcctgtgacg	tgaccgaccg	gaccgccgtg	tcggagctgc	tegeeggget	cgccgacggc	24720
acgtacggtc	ccggcctcac	cgccgtcttc	cacacggcgg	gcgccgggca	gttcgcgccg	24780
ctcgacggga	ccggccccgg	cgaggtcgcc	gaggtcgtcg	ccgccaaggt	cgcgggcgcc	24840
gcccacctcg	acgagctgct	cggggacacg	gaactggacg	ccttcgtcct	cttctcctcc	24900
atcgccggcg	tctggggcag	cggcggccag	agcgcctacg	cggcggccaa	tgcccacctg	24960
gacgccctgg	cccagcagcg	ccgggcccgc	ggactgacgg	ccacgtccgt	ggcctggggc	25020
ccgtggggcg	agggcggcct	ggtcgccgac	gacgaagcgg	ccgaacaact	gcgccgccgc	25080
ggcctgcccg	tcatggcgcc	ggagctgtcg	atcgccgccc	tccagcaggc	gctggacggg	25140
gacgagacgg	cggtgacggt	ggccgatgtc	gactgggacc	tgttcgtgcc	ggccttcacc	25200
gccgcccggc	cgcgtccgct	gatcaccgac	ctccccgagg	tgcgccgcgc	tctggcggca	25260
gagcaggacg	gagccgccac	cgcggccggg	gaagcggccg	gcctcgaagc	cgagctgcgg	25320
gggatgagcg	gaaccgaggc	ggagggcgtc	gtcctgaacc	tggtccgtac	gcaggtcgcc	25380
gtcgttctcg	gacacggggg	agcgacggcg	gtcgaggcgg	cccgcgcctt	caaggaactg	25440
ggcttcgact	cgctcaccgc	ggtcgagctg	cgcaaccgcc	tcagcaccgc	caccggactg	25500
cggctgcccg	cgagcctggt	cttcgactac	ccgaccccgg	ccgcactggc	cgcgcacatc	25560

20/251

cgggcggaac	tcctcggcga	ggacaccacg	cccgaactgc	ccgccctcgc	ggagatcgac	25620	
aagctggaat	tcctcctctc	gtcggttccc	gaggacacca	ccgaacgcgc	ccgcgtcacc	25680	
gcacggctcg	aatcgctcct	gtcgaactgg	aacagggcag	aacgagcggt	catcggagag	25740	
gacgaagaaa	tatccatcga	atcggcatcc	gccgacgacc	tcttcgacat	catcaacaac	25800	
gaattcggaa	aatcctgacc	tgatgaccga	teegatgace	gatccgaatt	ccgatccaat	25860	
gtccgtatgc	attccgcaat	tccccaggag	gtgacgttcc	agtggccagc	gcgaacgaag	25920	
aaaagcttct	cgaaaacctg	aagtggatga	ccaatgagct	gcggcgggcc	cgccgtcgcc	25980	
tccatgaggt	cgaggcggac	gcccaggaac	cgatcgcgat	cgtcgcgatg	agctgccggt	26040	
tccccaacgg	ggtgggatcc	ccggaggatt	tgtggcgcct	ggtcgacgag	ggcggcgacg	26100	
ccatcaccgg	attccccgcc	gaccgcggct	gggacatcga	gtcgctcgcc	gatccggacc	26160	
ccgaccgcaa	gggcaccttc	tacaacaccg	gcggcggatt	cctcgacggg	gccaccgcat	26220	
tcgatcccgg	atttttcggc	atatcgcccc	gcgaagcgct	cgccatggac	ccgcagcagc	26280	
gccagctcct	ggagacctcg	tgggaggtat	tcgagcgcgc	gggcatcgac	cccgcggccg	26340	
tacgcggcag	ccgcaccggc	gtctacgtcg	gcgcgggcgc	gatggggtac	ggagccgacc	26400	
tcaaggaagc	gccggaaggg	ctggagggac	tgctgctgac	cggcggcgcc	accagcgtcc	26460	
tgtcgggacg	ggtcagctac	gtgttcggac	tggagggccc	cgccgccacc	gtcgacacgg	26520	
cctgctcctc	ctcgctcgtc	gccctgcacc	tegecaceca	ggccctgcgt	cagcgcgagt	26580	
gctcgctcgc	gctggtcggc	ggcgtgtgcg	tgatgcccag	ccccgatgtg	ttcgtcgagt	26640	
tcagccgcca	gcgcggcctg	tcgcccgacg	gccgctgcaa	gtccttcgcc	gcgtccgccg	26700	
acggcaccgg	ctggtccgaa	ggcgtcggtg	tcctcctggt	ggagcgcctc	tccgacgccc	26760	
gtaggaatgg	tcatccggtc	ctcgcggtgg	tgcgtggctc	ggccgtcaat	caggacggcg	26820	
ccagcaacgg	cctgaccgcc	cccaacgggc	ccgcccagca	gcgcgtcata	cgccaggccc	26880	
tggagaacgc	ccggctgtcg	gcggccgagg	tcgacgtcgt	cgaggcccac	ggcacgggga	26940	
ccacgctcgg	cgaccccatc	gaggcccagg	cactcctcgc	gacctacggg	caggaccgcc	27000	
ccgagggccg	ccccctgcgc	ctggggtccc	tcaagtccaa	catcggtcac	acgcaggccg	27060	
ccgcgggtgt	cgcgggcatc	atcaagatgg	tcatggcgat	gcggcacggc	gtactgccgc	27120	
agaccctcca	cgtcgacgag	ccgaccccga	acgtcgactg	gaccgcgggc	gccgtttccc	27180	
tgctcaccga	gccgatgccc	tggcccgaga	ccggcgcgcc	ccgccgcgcg	gccgtctccg	27240	
cgttcggcgt	gageggeace	aacgcgcaca	ccatcatcga	acaggccccc	gagccggacg	27300	
ccgagtccgt	gtccgtgtcc	ggctccgcgc	ccgcggcggc	tcccgccgtc	ccgacccctg	27360	
tcccgaccct	cgtcccggcg	gtcctgccct	ggacactctc	cggcaggagc	accgcggcgc	27420	
tgcgcgccca	ggccgccaga	cttctcacca	cccagggcca	ggacggtgcg	accgaacccg	27480	
			20/2=4				

ggcgtcccct cgacatcggc tactcactgg	g ccaccacccg	cgcagccctt	gagcaccgcg	27540
cggtgctcct cgggcgtacg gaggacgact	ttgccgccgc	cctctcggcg	ctcgccgagg	27600
gtgcggagtc cgcaggcctg gtacagggca	gggtgaccga	gggcgggctg	gcgttcctgt	27660
tcacggggca ggggagtcag cggctgggga	ı tgggccgtga	gctgtatgag	gcgtatccgg	27720
tgttcgcgga tgcgctggat gcggtgtgtg	cccgtcttga	actgcctttg	aaggatgttc	27780
tgttcggggc ggatgcgggt ctgctggacg	agaccgcgta	cacgcagccg	gcgttgttcg	27840
ccgttgaggt ggcgctgttc cggttggtgg	agagctgggg	tgtgaagccg	gacttcgtgg	27900
ccgggcattc gatcggtgag atcgcggccg	cccatgtggc	gggggtgttc	tcgctggagg	27960
atgcgtgcgc gctggtgtcg gctcgtgggc	ggttgatggg	cgcgctgcct	gcgggtggcg	28020
tgatgatcgc ggtccaggcg tcggaggccg	aggtcctgcc	gctgctgacc	gaccgggtga	28080
gcattgccgc gatcaatggt ccccagtcgg	tcgtgatcgc	gggtgacgag	gccgacgcgg	28140
tggcgatcgc agggtccttc gccgaccgca	agtccaagcg	gcttacggtc	agtcacgcct	28200
tecaetegee geacatggae ggeatgttgg	aggacttccg	gctcgtggcg	gagggcctgt	28260
cgtacgaggc cccgcgcatc ccggtcgtct	cgaatctcac	cggtgctctc	gtctccgatg	28320
agatgggctc ggctgagttc tgggtgcggc	acgtccgcga	ggccgtccgt	ttccttgacg	28380
gcatccggac gctggaagcc gctggcgtga	ccaagtacgt	cgaactcggc	cccgacggcg	28440
tgctgtcggc gatggcccag gactgcgtga	gtggcgaggg	ctccgtcttc	atccccgtgc	28500
teegeaagge acgeecegag geegagageg	tcaccaccgc	cctcgccacg	gcccacgtcc	28560
acggcatccc cgtcgactgg caggcgttct	acgccggaac	cggcgcccag	cgcgtcgacc	28620
tecceaecta egecttecag caegagegtt	actggctgga	gcccgccacc	ggcggagccg	28680
gtgatgtgag cggagccggg ctcgacccgg	ccgggcatcc	cctgctcggc	gcggccgtca	28740
ccctggccgg ctcggacagt gtgctgttca	ccggtcggct	ctcgctccgc	acgcagccct	28800
ggctcgccga ccacaccgtg tccggtacca	ccgtgctgcc	gggcgccgca	ttcgtcgaac	28860
tegeegtgeg tgeeggtgae caggeagget	gcgagcgggt	cgaggcgttg	gtgctcgatg	28920
cgccgctcgc cctgcccgcg gagggcgccg	tacgcgtcca	ggtgctcgtc	gaggcgcccg	28980
acgagcaggg ccgccgtccc ttcaccgttt	cctcccagcc	ggagaccgcg	ccggccgaca	29040
ccccctgggg gcggcacgcc cggggcgtgc	tcgcgcccac	ggcccccgca	ccgtcgttcg	29100
atctggcgca gtggccgccc gccggggccg	aggccgtgga	catcacggac	ctctacgcgt	29160
cccacgacac ccctggcgcg cacgggcccg	agcgcggtgg	cctgttccgt	gccgtggagg	29220
ccgtctggcg ctgtgacggt gacctcttcg	ccgaggtgcg	tctgcccgag	ggcggcccgg	29280
acgcacaggc cttcggcctg cacccggcgc	tgctcgacgc	cgccgcgcac	gcggcctcgg	29340

40/054

tactggacga	gcagcacgga	acgggggcag	ggctgggcac	gtggtccgat	gtgactctgc	29400
acgccgtggg	cgccggcgcc	ctgcgcgtac	ggatacggtc	ggccctcgac	ggcactgtgg	29460
gcctggacct	cgcggacgac	ctgggtgaac	cggtggcgac	cgtgggcggg	ttgactccgc	29520
gacccttcgc	gcaagcgggt	tcaggtggac	aggttgtcca	gcatgacgcg	ctgttccagc	29580
tcgactgggt	geggetgeeg	ctcgccgacc	gctcgtccgc	tcccaccggg	gagtgggccg	29640
tactcggctc	tgccgacggg	ttcgcggacc	tggaggcgct	gggcgcagcg	gtcgacgcgg	29700
gtgctcccgt	accgccgtac	gtcgtcgtcc	ccttggagcg	gcaggccacc	ggcaacgggt	29760
cggacgccct	gcacgaggcc	gtgcaccggg	cgctcgccct	ggtgcggtcc	tggctggacg	29820
accagcgctt	cgagacctcg	cgcctcgtgg	tcctgacccg	aggcgcggtc	gccgggcccg	29880
gcgaaggcgt	cgaggacctg	ccgcatgccg	cggtgtgggg	cctggtgcgt	tcggcggaga	29940
cggagaaccc	cggccgtttc	gttctcgccg	acgtagacgt	agacctcgac	gcggacttgg	30000
gctcaggcgt	gggcctcgcc	gccgtactcg	cctccggtga	gccggagttg	ctgctgcggg	30060
acggagtcgt	acacgccccc	cggctgaacc	gggcccgtac	cgccacctcg	tccgacgccc	30120
ccggcatcga	tccggccgga	accgtcctga	tcaccggtgg	gtccggcacg	ctcgccggta	30180
tegtegeeeg	gcacctggcc	accgcccacg	gtgtgcggcg	tctgctgctg	ctgagccgca	30240
ggggcgccga	tgcccccggt	gccggtgaac	tgaccgctga	gctggccggg	ttgggcgcgc	30300
aggtctcgtg	ggcggcgtgt	gacgcgggtg	accgcgacgc	gctcgcggcc	gtactggccg	30360
ccgttcccgc	agcgcacccg	ctcaccgcgg	tcgtccacac	ggccggtgtc	ctcgacgacg	30420
gcgtgatcgg	ttcgctcacc	ccggaacgtc	tcgacacggt	ccttcgcccg	aaggccgatg	30480
ccgctctcca	cctgcacgaa	ctgacccgcg	acctgcccct	gaccgccttc	gtcctcttct	30540
ccgcgatcgc	cggaaccctc	ggcagtgcgg	gtcaggccaa	ctacgcggcc	gccaacgtct	30600
tectggaege	tctggcccag	caccgccatg	accaggacct	gccggccacc	tegetegeet	30660
ggggcctgtg	ggccgatgcc	agcgggatga	ccggcggcct	cgacgaggcc	cagctgcggc	30720
gcatggagca	gcacggcatg	ggcacgctct	ccgccaccga	cggcatggcg	ctgttcgacg	30780
cegecetege	cgccggccgg	ccggtcctcg	tcccggcccg	tctgcacctc	cccggcctgc	30840
gcaatgccgc	cgggccgggc	ccggtggctc	cggtgttccg	gtcgctcctg	ggtgcctcgg	30900
geegeeggge	cgcgcggacc	cgtaccgacg	gcggcacccc	gctcgccgag	cggctgaccc	30960
gcctcgccgg	tcccgaacag	gaccgggcgc	tgctcgatct	cgtacgggca	caggtcgcat	31020
ccgtactcgg	ccacgcctcg	gccgaacagg	tggaccccgc	acgcgcgttc	aaggatctgg	31080
gcttcgactc	cctgaccgcc	gtcgagctgc	gcaaccggct	gggcgccgcc	accggactcc	31140
ggctgccgac	cacgctcgtc	ttcgatcatc	cgacgcccac	cgcgctcgtc	cggcacttgc	31200
gtacggacct	tctcggcgcc	gcgccggacc	ccggagccga	cgccccgggc	ctgcccgcgc	31260

gcgtcggcct	cgccgacgac	ccgatcgcca	tcgtggccat	gagctgccgc	taccccggcg	31320
gtgtccgcac	ccccgaggag	ctgtggcggc	tcgtcgagac	cggtggcgac	gcgatcgccg	31380
gactcccggg	caaccggggg	tgggacaccg	acgcgttgca	cgccgacgag	gacggccgga	31440
ccttcgcggg	cggcttcctg	tacgacgccg	actcgttcga	cgcggacttc	ttcggcatct	31500
cgccgcgcga	ggcgctcgcc	atggacccgc	agcagcgact	gctgctcgaa	acctcctggg	31560
aggcgatcga	gcgcgccggg	atcgacccgt	cgtcgctgcg	cggcagccgg	gccggtgtct	31620
tcgtcggcgc	cgcctacagc	ggctacgacg	cgcaattgga	gcagtccgga	gtggacggtg	31680
tcctcggcca	tgtgatgacc	ggcaatgcgg	gcagtgtcat	gtccggccgt	gtgtcctacg	31740
cgctgggcct	ggagggtccg	gcggtcacgg	tcgacacggc	gtgctcgtcc	tcgctggtcg	31800
ccctgcactg	ggcgatccag	gccctgcgca	acggcgaatg	ctcgctggcg	ctcgccggtg	31860
gtgtgacggt	gatgtcgacc	ccgggcacct	tcagcgagtt	cagccagcag	ggcggcctgt	31920
caccggacgg	ccggtgcaag	gcgttcgcgt	cggccgcgga	cggtacgggc	tggggtgagg	31980
gtgtcgggat	gctgctggtg	gagcggctgt	ccgatgcccg	taggaatggg	catccggttc	32040
tggcggtggt	gcgtggttcg	gctgtcaatc	aggacggtgc	gagcaatggt	ctgacggctc	32100
cgaatggtcc	ttcgcagcag	cgggtgatcc	gtgcggcgtt	ggcgagtgcg	ggtctgtcgg	32160
ccgctgatgt	ggatgtggtg	gaggcgcacg	gtacggggac	gaagctgggt	gacccgatcg	32220
aggcgcaggc	gctgctggcg	acgtacgggc	aggaccggcc	cgatggccgt	ccgctgtggt	32280
tgggttccat	caagtccaac	atcggtcaca	cgcaggccgc	cgccggtgtc	gcgggcatca	32340
tcaagatggt	catggcgatg	cggcacgggg	tgctgccccg	gaccctgcac	gtcgacgagc	32400
cgacctcgca	tgtggactgg	teggegggeg	aggtgtccct	gctgtcggag	tcggccgaat	32460
ggccgctcac	cgagcggccc	cggcgagccg	gagtgtcgtc	cttcggcatc	agcggcacca	32520
acgcccacac	catcatcgag	caggcgccgg	agaccgggac	cgaggcggag	ccgtcggcgg	32580
agaccctcac	gcacgggacc	gtgccctacg	tcctctccgc	caagagctcc	gacgctctcc	32640
gcgcccaagc	gcggcagctg	cttgccgtgg	tggaagccgc	cgagagcccc	cgagtcgccg	32700
atctggccta	ctcgttggcc	accagtcggg	ccggtctcga	tcaccgcgcg	gcgctcgtcg	32760
ccgacgaccg	ggagaacctg	acgcgggcgc	tcgcggccct	ggcggcggac	gagcaggtgc	32820
ccggcctggt	gcggggcacg	gccaccggtg	geggeetege	cttcctgttc	acggggcagg	32880
ggagtcagcg	gctggggatg	ggccgggagc	tgtacgagac	gtatcccgtc	ttcgcgcggg	32940
ctctcgacgc	ggtggacgca	cgcctggaac	tgcccatgaa	ggaggtgctg	ttcggcgcgg	33000
acgcggatct	gctgaacgag	accgcccaca	cgcagccggc	tctcttcgcc	gtcgaggtgg	33060
cgctgttccg	tctgctggag	tcgtggggcg	tgcggcccga	cgtcctggcc	gggcactcga	33120

0/251

tcggtgagat	cgccgcggcc	catgtggccg	gggtgttctc	cctggacgat	gcgtgcacgc	33180
tggtcgaggc	tcgcggtcgg	ctcatgcagg	cgctgccgac	cggcggcgtg	atgatcgccg	33240
tccaggcgtc	ggaggacgaa	gtcctgccgc	tgctgaccgg	ccaggtgagc	attgccgcga	33300
tcaacggccc	ccagtcggtc	gtcatcgcgg	gcgacgaggc	cgacgcggtc	gcgatcgccg	33360
agtccttcac	cgaccgcaag	tccaagcggc	tcaccgtcag	ccacgccttc	cactcgcccc	33420
acatggacgg	catgctcgcc	gacttccgca	aggtcgccga	gggcctcgtc	tacgagaacc	33480
cgcgcatccc	catcgtctcg	aacctcaccg	gcactctcgt	caccgacgag	atggcttcgg	33540
ccgacttctg	ggtccgccac	gtccgcgagg	ccgtccgttt	cctcgacggc	atccgcgcgc	33600
tggagagccg	cggggtcacc	acctacatcg	aactcggccc	cgacggggtc	ctctccgccc	33660
tcgcccagga	ctgcctcacc	gccgggaccg	ggaccgggac	cgcgatcttc	gctcccgtac	33720
teegggegge	ccgtcccgag	gccgagagcg	tcaccaccgc	cctcgccacg	gcacacgtcc	33780
acggcacccc	cgtcgactgg	cgggcgtact	tcgccgggac	cggtgcccgg	cgcgccgacc	33840
tccccaccta	ccccttccag	ggcaggcgct	actggcccga	agccgccgcc	ccgagcggtg	33900
cggcggccgg	actcggggac	caggcggtcg	acgcgcgctt	ctgggacgcg	gtcgagcggg	33960
cggacctggg	ctccctgatc	ggtgggccgg	agatcgacgg	ggaccagccg	ctcagctccg	34020
tactgcccgc	cctctccgac	tggcggcgca	accagcaggc	gcagtcgcag	gcggacgccc	34080
ggctctaccg	catcgcgtgg	cagccgtggt	ccggggccgg	ccggggcaca	cccgcgggta	34140
cctggctggt	ggccgtgccg	gcgccgtacg	cggacgatcc	gtgggtccgt	gcgctgaccg	34200
accgcatggc	cgagggtggc	gcggaggtcg	taccgctcac	gctcgatgtc	gccgacagcg	34260
acccggcgtc	gctgcgcgcc	cggctggacg	agcggctgcg	cgaggcggtg	ggcgacggcc	34320
cggtggccgg	tgtcctgtcc	ctgctcgcgc	tggacgagcg	gccccacccc	gaccacccga	34380
gcgtgcccgt	aggactggcc	ctcaccagcg	ccctcacctc	cgtgctcacc	ccggtgctca	34440
cggaaccgga	cccggaaggc	ggggcgagcg	gaggcatcga	agcaccgctg	tggtgtgtca	34500
cgcgtgacgc	cgtcgcggca	gccggtggtg	acgaactcgg	cggcgccgcc	caggcgcagg	34560
tctggggcct	cggccgcgtc	gtcgccctgg	agcaccccga	ccgctggggc	ggtctcgtcg	34620
acctcccggc	ggtatgcgac	gaccgggtcc	tgtcccggct	gatggcggtg	ctcgcaggat	34680
ccggtgacga	ggaccaggtg	gcggtccgta	cctccggcac	cctcgtacga	cggctcctgc	34740
gggccgcccc	gacgagcgtg	ccgtccgcac	cctggacccc	gcgcggcacg	gtgctcgtca	34800
ccggcggcac	gggcgccctc	ggccgccatg	tggcgcgcca	cctcgccgag	cggggcgccg	34860
aacggctcgt	gctcgtcagc	cgccggggcg	ccgacgcgcc	cggtgcggcc	gagaccgagg	34920
cggaactctc	cgcgttcggc	gcggccgtga	ccctcgtggc	ctgcgacgtc	gccgaccgcg	34980
atgcgctcgg	aacgctcgtc	gcgcggctcg	ccgccgacgg	cactccggtc	cgtgccgtgg	35040

tgcacgccgc	cggtgtctcg	cagccgccag	gtacgggaac	ggacctcccc	gggttcgccc	35100
gtgtcgtggc	cgcgaagacg	gcgggagccg	tccacctcga	cgcgctgttc	gacgcgccgg	35160
actccctcga	cgcgttcgtc	ctcttctcct	ccatcgccgg	tgtctggggc	agtggcggcc	35220
aaggggccta	ctccgccgcc	aacaccttcc	tcgacacgct	cgccgaacgg	cgccgggccc	35280
geggtetege	cgccacggcg	atcgcctggg	gaccgtgggc	cgacggcggc	atggccaccg	35340
agggcgacgc	ggaggagcag	ctgagccgac	gcggcctgcc	gcccatggac	cgggcgacga	35400
acctgctggc	gctggagcgt	gccgtcgcgg	gccgggaggc	ggcgctgacc	gtcgccgacg	35460
tcgactgggc	gcgcttcgca	cccgtgttcg	ccgcggcccg	ccccgcccg	ctcatcggcg	35520
acctgcccga	ggtacgggac	gcactgcgcg	gggacacccc	ggccggggaa	ggaccggccg	35580
agaccgcttc	ctccgccgta	ctccggaggc	tgacggaact	caccggggcg	gaccgggaaa	35640
eggecetect	cgacctcgtg	cgcgagcacg	cggcaacggc	cctgggccac	acgtccgccg	35700
acgcggtcgc	ggccgaacgg	gccttcaagg	acctcggctt	cgactcgctc	accgcagtcg	35760
aactgcgcaa	ccgcctcggc	gccgcgtgcg	gcctgcggct	gccctccagc	ctcgtcttcg	35820
actaccccaa	cccgcaggcg	ctcacccggc	acctgctgca	caccctcttc	cccgaagggg	35880
cgggcgggcc	ggacgtaccg	gctctggaca	ccgaccccca	ggaagcggaa	ctgcgccgga	35940
cgctcgccgc	catcccgctg	ggccggatcc	gcgaggcagg	gctcctggac	acgctgctcc	36000
ggctcgccgg	acccgacacc	cccgctcccg	ccacgagtac	cgccgacgag	agcgagtcca	36060
tcgacacgat	ggatctccag	gacctcctcg	acctggcgct	cgacggcggc	ggcgatcccg	36120
acggcctcaa	cggcctcgac	agcctcgacg	gccccagtgg	caacgacaac	gacagcaacc	36180
gattctgacg	tgcccgaagt	gcggagtaag	tgatgacaac	ccccaacgaa	aaagtcgttg	36240
aagcgctgcg	ggcctccctc	aaggaaaccg	agcggctgcg	ccgccggaac	caggagctca	36300
ccgacgccgc	gegegageee	atcgcgatcg	tcggcatgag	ctgccgcttc	ccgggcggag	36360
tcagctcgcc	cgaggacctg	tggagactcg	tcgagagcgg	tggcgacgcc	atctcgggct	36420
tccccgtcaa	cegeggetgg	gacatcgagt	cgctgtacga	ccccgatccg	gaccacgagg	36480
gcaccaccta	cgcccgcgac	ggeggettee	tccacgaggc	ggccgacttc	gaccccgcgt	36540
tcttcgggat	ctccccgcgc	gaggccctcg	ccatggaccc	gcagcagcgg	ctgctcctgg	36600
agaccacctg	ggaggtcttc	gaacgagccg	gaatcgatcc	cgcgtcgctg	cgcggcagcc	36660
gggccggcgt	cttcgtcggc	gcgtccgcca	acgcctacgg	agccggctcc	cacgaccttc	36720
ccgacggcgt	ggagggacac	ctcctcaccg	gcaccgcgtc	cagtgtcctg	teeggeegge	36780
tcgcctacgt	cttcggcctg	gagggccccg	ccgccaccat	cgacacggcg	tgctcgtcct	36840
cctccgtcgc	cctgcacatg	gccgtccagg	cgctgcgcca	gggcgagtgc	tegetegege	36900

4.410.51

tggccgcggg	cgtcaccgtc	ctcgcgggcc	cggacgtctţ	cgtcgagttc	agccgccagc	36960
gcggcctgtc	gcccgacggc	cgctgccggt	ccttcgccga	gtcggccgac	ggcaccggct	37020
ggtcggaggg	cgccggcgtc	ctcctggtgg	agegeetete	cgacgcccgc	cgcaacggcc	37080
accacatect	cgccgtggtc	cgcggctcgg	ccgtcaacca	ggacggcgcc	agcaacggcc	37140
tgaccgcccc	caacgggccc	gcccagcaga	aggtcatccg	ccaggccctg	gagagcgccc	37200
ggctgacccc	cgcggacatc	gacgcggtcg	aggcccacgg	caccggcacg	accctcggcg	37260
accccatcga	ggcgcaggcg	ctcctcgcca	cctacgggca	agggcgcacg	gacggccggc	37320
cgctgtggct	cggctccttg	aagtcgaacc	tcggccacac	ccagaacgcc	gccggtgtcg	37380
ccggcatcat	caagatggtc	atggcgatgc	ggcacggggt	gctgccccgg	accetgeacg	37440
tcgacgagcc	cacctcgcac	gtcgactggt	cgacgggcgc	ggtggcgctg	ctgaccgagc	37500
cggtggagtg	gccggagacc	aaacaccac	gccgggtcgg	cgtctccgcc	ttcggcgtca	37560
gcggcacgaa	tgtgcacacg	atcatcgagc	aggccccggc	ccctgccccg	gccccgtcg	37620
cggacgacac	atcggaaccg	gcgcccgccg	cccggccgaa	ggcgctgccc	tggctcctct	37680
ccgcgaaggg	ccgggacgcc	ctgcgcgacc	gggccgcaca	gctgctcgcg	tacgccgagg	37740
aacaccccga	cctgcggccg	gtcgacatcg	ccgggtcgct	ggcggtgggc	aggccgtcct	37800
tcgaggaccg	cgccgcggtg	gtcgccgccg	accgcgaggg	gctgctggcc	ggcctcgcgg	37860
cactggcgga	cggcggctcg	gcgacgggtc	tcgtcaaggg	gtcgtcgcag	ctcgtgggga	37920
agctggcgtt	cctgttcacc	gggcagggga	gccagcggct	ggggatgggc	cgtgagctgt	37980
acgagacgta	tcccgtcttc	gcgcaggcct	tggacgcggt	gtgtgagcgg	ctggaactac	38040
ccctgaagaa	cgtgctgttc	gggacggaca	gcgctgcgct	ggacgagacc	tcgtacacgc	38100
agcctgctct	cttcgccgtt	gaggtggcgt	tgttccggct	cgtggagagc	tggggcctga	38160
agccggactt	cctggccggg	cattcgatcg	gtgagatcgc	ggccgcgcat	gtggccgggg	38220
 tgttctcgct	ggacgacgcg	tgcgcgctgg	tgtcggctcg	cggccggttg	atgggggcgc	38280
tgccgggcgg	tggcgtgatg	atcgcggtcc	aggcgtcgga	ggacgaggtc	ctgccgctgc	38340
tgaccgatcg	cgtgagcatt	gccgcgatca	acggtccgca	gtcggtcgtg	atcgcgggtg	38400
acgaagccga	tgcggtagcc	atcgccgagt	ccttcgcgga	ccgcaagtcc	aagcggctca	38460
cggtcagtca	cgcgttccat	tcgccgcaca	tggacggcat	gttggaggac	ttccgggtcg	38520
tggcggaggg	tctgtcgtac	gaggctccgc	gcatcccggt	cgtctcgaac	ctcaccggcg	38580
ctctcgtctc	cgacgagatg	ggctcggccg	acttctgggt	ccgccacgtc	cgcgagaccg	38640
tacgattact	ggacggtatc	cgcaccctgg	aagccgctgg	cgtcaccaag	tacgtcgaac	38700
teggeeegga	cggcgtgctg	tccgccctgg	cccaggactg	cgtgagcggc	gaggactccg	38760
tcttcatccc	tgtactccgc	aaggcacgcc	ccgaggccga	gacggtcgcc	accgccctcg	38820

cctcggccca	cgtccacggc	atccccgtcg	actggcgggc	gtacttcgcc	gggaccggcg	38880
cccagcgcgt	agacctcccc	acctacccct	tccagcgcca	gcgctactgg	atcgagccgg	38940
gcggccgtgc	cggagacgtg	ggcgcggccg	ggctggagga	ggcggggcat	ccgctgctgg	39000 {
gtgcggccgt	accgctcgcc	gactccgagg	gcttcctctt	caccgggcgg	ctcggtcgca	39060
cctcgcaccc	ctggctggcc	gatcacgcgg	tcatggacac	cgttctgctc	cccggcacgg	39120
ccttcgtcga	cctcgcggtg	cgcgccggtg	accaggtcgg	atgcgatgtc	gtcgaggagc	39180
tgacgctgga	agcgccgctg	gtgctgcccg	agcgcggtgc	cgtccagata	cagatgcacg	39240
tcggcgcgcc	cgacgcggac	ggtacgggac	ggcggacgtt	caccctgtcc	tegegtaege	39300
aggacggcgc	ggccgacgaa	ccgtggacgc	ggcacgccgg	cggcgtcctc	gcgcacggcg	39360
cggcgcaacc	ggccttcgcg	ccggtccagt	ggcccccggc	gggtgccgag	ccgatcccga	39420
cggagagcct	gtacgcggac	ctggccgagg	tcggcatggg	atacggaccc	gcgttccgcg	39480
gcctcacggc	cgcctggcgg	cacggcgaga	gcgtctacgt	cgaggtcgcg	ctccccgagg	39540
aaaccgcctc	cacggcacgg	gacttcggcc	tgcaccccgc	cctcctggac	gcggcgctgc	39600
acgcgctggg	tctcggcgta	ctgggtggcg	tcgagggtga	agggcggctc	cccttcgcgt	39660
ggagcggtgt	gaccctgcac	gcggccggag	cggacgcgct	gcgcgtgcac	ctcgctccgg	39720
cgggcgccca	cggcgtacgc	ctggagatcg	cggacgccgc	gggcgcacct	gtcgcgaccg	39780
tcgactcgct	cgtcctgcgg	accgtatcgg	aggagcaggt	acgcgccgcg	cgcaccgcgt	39840
accacgagtc	ggtgttccgg	gcggagtgga	cggccctgcc	gaccgccgcc	gaatccgcgg	39900
ccacgcatgg	ccgttgggcc	gtgctgggag	cggcggacgc	gggcgattcg	ccgcgcgacg	39960
cgctggtgaa	egggetgete	ggccacctgc	ccggcgaggt	cgcgcgctac	gccgacctgg	40020
ccgagctggc	ggcggccgtc	gaggccggag	cggccacgcc	ggacgccgtg	ttcgccgcgt	40080
acgcgcggtc	cgatgacgac	ggaccggccg	caccggacgt	gtccgcaccg	gacgtgtccg	40140
cgcaggcggt	gcacgcggcc	acccacgacg	ccctcgcact	cgtccagacg	tggttcggtg	40200
aggagccctt	cgccggggac	cggttcgccg	ccacccgcct	ggtcgtgctc	acccggggcg	40260
cggtcgcggc	gggcgacggc	gacacggtca	ccgaccccgc	acacgcggcc	gtctggggtc	40320
tgctgcgctc	cgcgcagtcc	gagtaccccg	accggctgct	gctgatcgac	accgacgggg	40380
tcgaggactc	cgtacacgcc	ctgcccgccg	tgctcgccgt	cggagagccg	caactcgccc	40440
tgcgtgcagg	ctccgtacac	gcgctccggc	tegeeegegt	ggccgccgcg	acgccggagg	40500
acgccgccgc	tccgacgcag	tacgcgcccg	gatcgacggt	gctgatcacc	ggcgcgggcg	40560
gcatgctcgg	cggtctgatc	gcccgccgtc	tegtegeega	acacggcgta	cggcacctgc	40620
tgctggtggg	ccgccgcggc	gccgccgctc	ccggagcgga	acagctgagc	gccgaactgg	40680

ccgaggcggg	cgcctcggtg	acctgggccg	cgtgcgacgt	cgccgaccgg	gacgccctct	40740
cggccgtact	gcacgcgata	cccgccgagc	acccgctcgg	cgcggtcgtc	cacaccgctg	40800
gtgtgctgga	cgacggtgtg	atcgcctcac	tgacccccga	gcggctctcg	gccgtgctgc	40860
gccccaaggt	cgacgccgcc	tgcaacctcc	acgagctgac	ccggcacctc	gacctcacgg	40920
cgttcgtgct	cttctcctcc	atcggcggcg	tcttcggcgg	cccgggacag	ggcaactacg	40980
cggcggcgaa	cgtgttcctc	gacgcactcg	cccagcaccg	ccgctcccag	ggactcgccg	41040
ccacctccct	ggcctgggcc	ctgtgggccg	acagcacggg	catggccggc	agcctcgacg	41100
aggccgacat	cagccggatg	cggcggggcg	gcctgcccc	gctgaccacg	gccgagggcc	41160
tggaactgtt	cgacctcgcc	caccgcatcg	acgaggccgc	accggtcctg	atgcgcgccg	41220
acctgaccgc	cctgcgcacg	caggcccagg	ccggcacgat	gtcgccgctg	ctgcgcggtc	41280
tcgtacgggt	ccccgcgcgc	cgcagcgcca	gtggcgcggc	cggtacgggc	ggtgagtccg	41340
gactgcgcga	gcgcctcgcc	ggactctcgg	ccgccgaacg	ggaccgtacg	ctgctcgacc	41400
tcgtccgcaa	gcaggtcgcc	gcggccctcg	gctaccccgg	accctccgcc	gtcgagcccg	41460
gccgctcctt	caaggaactc	ggcttcgact	cgctcaccgc	cgtcgaactg	cgcaacctgc	41520
teggegaege	caccggccgc	cgcctccccg	ccaccctcgt	cttcgactac	ccgacggcga	41580
ccgccctcgc	cgggtacctc	cgcgaggaga	tcatcggaga	cctggcggac	gccgtcaccg	41640
ccccggccct	cgtgccgtcc	gcggccgtgg	cgggcgcggg	cgcgggcgcg	gacgacgacg	41700
atccgatcgc	gatcgtcgcc	atgagctgcc	ggttccccgg	agggatcgca	tccccgagg	41760
acctgtggca	gctgctcgtc	accggccgcg	acggcatcac	gggcttcccg	gcggaccgtg	41820
gctgggacct	cgacagcctc	tacagcgacg	accccgaccg	cgagggcacg	agctacgccc	41880
gcgagggcgg	attcctgcac	gaggccgccg	agttcgacgc	ctccttcttc	gggatctcgc	41940
cgcgcgaggc	cctcgccatg	gacccgcagc	agcggctgct	cctggagacc	acctgggaga	42000
cgttcgagcg	cgcgggcatc	gacccgacca	gcctgcgcgg	cagccggacc	ggcgtgttcg	42060
teggetecaa	cgcccaggac	tacctccagc	tctggctgaa	cgacgcggac	ggcctcgaag	42120
gacacctggg	caccggcaac	gcggccagcg	tcgtctccgg	ccgcctctcc	tacaccttcg	42180
gcctggaggg	cccggccgtc	acggtcgaca	cggcctgctc	gtcctccctc	gtcaccctgc	42240
acctggccgc	ccaggccctg	cgccgcggcg	agtgctccat	ggcgctcgcc	ggcgcggtca	42300
ccatcatgtc	cacgcccggc	gcgttcaccg	agttcagccg	ccagcgcgga	ctcgccgccg	42360
acggccgcat	caaggcgttc	gccgccgccg	ccgacggcac	gagctggtcc	gaaggcgtcg	42420
gcctgctgct	cgtcgagcgg	ctctcggacg	cacggcgcaa	cggtcacccg	gttctggcgg	42480
tggtgcgggg	caccgccgtc	aaccaggacg	gcgcgagcaa	cggcctgacc	gcgccgaacg	42540
gcccgtccca	gcagcgcgtc	atccgcgagg	cgctggccga	cgcgggcctg	tcggccgccg	42600

aggtggatgc	ggtcgaggcc	cacggcaccg	gcacgaccct	cggcgacccc	atcgaggcgc	42660
aggcgctcct	cgccacgtac	ggccagggcc	gcccggacga	ccagccgctg	tggctcggct	42720
ccgtgaagtc	caacatcggc	cacacccagg	ccgtggccgg	agccgccggc	atcatcaaga	42780
tggtcatggc	gatgcgccac	ggcgtactgc	cgcagaccct	gcacatcgac	gagccgacgc	42840
cgtacgtgga	ctggtcggcg	ggcgacatcg	ccctgctgac	cgagcagcgg	gcgtggccgg	42900
agaccggccg	cccgcgcagg	gcgggcgtct	cctcgttcgg	ctacagcgga	accaacgcgc	42960
acgccgtcat	cgagcaggca	ccgcagaacg	cgatggagcg	gaccccgcag	ggcgacaacc	43020
tgccggcccg	cacccccgcg	acgcggaccc	tcccggtgct	gccgctgctc	gtctccggcc	43080
gcacggcgcc	ggccctgcga	gcccaggcgg	aacgcctgcg	accggccgcg	accgccctcg	43140
cgacgggcac	ggtaacgaac	tccggagctt	tggaagcact	cgacctgggc	tactccctgg	43200
ccacgagccg	cgccgcactg	gaacaccggg	cggtcctgat	cggcaccccg	tcggacggcc	43260
aggcactggc	ctcgcgactc	gacgccctgg	cggcgggcga	gcaggtgccc	ggcctggtgc	43320
agggcacggc	ttccggtggc	gggctcgcct	tcctgttcac	gggacagggg	agccagcggc	43380
tggggatggg	gcgcgagctg	tacgagacgt	acccggtgtt	cgcggaggcg	ttggatgcgg	43440
tgtgcgcccg	gctcgaactg	cctttgaagg	aggtgctgtt	cggggcggat	ggcgctgcgc	43500
tggatcagac	ggcggtgaca	cageeggeee	tcttcgccat	tgaggtggcg	ttgttccggc	43560
tggtcgagtc	gtggggtctg	aggccggact	ttgtggcggg	tcattcgatt	ggtgagatcg	43620
ccgctgcgca	tgtggcgggg	gtgttctcgc	tggaggacgc	ctgcaggttg	gtcgaggcgc	43680
gtgggcgtct	tatgcaggcg	ctgcctggtg	gtggcgtgat	gatcgcggtc	caggcgtcgg	43740
aggatgaagt	cctgccgttg	ctgaccgatc	gcgtgagcat	tgccgcgatc	aatggtccgc	43800
agtcggtggt	gatcgcgggt	gacgaggccg	acgcggtggc	catcgcggag	tecttcaegg	43860
gccgcaagtc	gaagcatctg	gcggtcagcc	acgcgttcca	ttcgccgcac	atggacggca	43920
tgttggagga	cttccgggcc	gtggcggagg	gcctgtcgta	cgaggctccg	cgtattgcgg	43980
tggtgtcgaa	tctgacgggt	gcgttggtct	ccgacgagat	gtcgtcggct	gagttctggg	44040
tgcgtcatgt	ccgtgaggcg	gttcgcttcc	tggacggtat	tcgggctttg	gaggctgctg	44100
gggttacgac	gtatgtcgag	cttggccctg	ggggtgtgct	gtcggcgctg	gcgcaggagt	44160
gtgtcagtgg	ggacggtgct	gctttcgtgc	cggtgctgcg	ttctggacgt	teegaggeeg	44220
agaccgtggt	gaccgcgctg	gctcaggcgc	atgtgcgggg	tgtggaggtc	gactgggcgg	44280
cgttcttcgc	cgggaccggt	gctgagcgga	tcgatctgcc	gacgtacgcc	ttccagcgcc	44340
agcgctactg	gccggagacc	gtgctgtcga	ccgtgggccc	ggtcgttgcc	gaggccgtcg	44400
atgcggtgga	cgcccggttc	tgggatgcgg	tggagcggga	ggatctcgcg	tegettgteg	44460

10/251

cagagetgga	cgtggacgag	acgcctctcg	gcgaggtcgt	tecegegetg	teggegtgge	44520
gtcgggagcg	gcgtgcccag	tcggaggtgg	acggttggcg	ctaccgggtg	tcgtggaagc	44580
cgctggctga	tgcttcgacg	gcgcggttgt	ccggetcttg	ggtggtggtg	tegecegata	44640
agggtgtgga	tgactcggct	gtggtcgccg	gtctggctgg	gcgtggtgct	gaggtccgtc	44700
gggttgtggt	cgaggcgggt	gtggaccgtt	cggcgctggc	tgggttgctg	gccgatgcgg	44760
gttctgctgc	gggtgtggtg	tegetteteg	ggctggatga	gtctgagggg	ctgctgggga	44820
ctgttggttt	ggtgcaggcg	ttgggtgatg	ccggggtgga	ggcgccgttg	tggtgcctga	44880
cccgtggtgc	tgtctccgtc	ggtcgttcgg	atcggcttgt	gtcgccggtg	caggcgcagg	44940
tgtggggtct	gggccgggtt	gccgccctgg	aggttccgga	gcattggggc	gggctggttg	. 45000
acctgccgga	agtgctggat	gagcgggctg	tggcccgctt	ggtcggtgtg	cttgcgggtt	45060
ccggcgaaga	tcaggtcgcg	gttcgttcgt	ctggtgtgtt	cggtcgtcgt	ttggtgcgtg	45120
caccgcgggc	cgagggtgct	gcggcgtgga	caccgaccgg	cactgttctt	gtcaccggtg	45180
gtacgggtgt	gctgggtggc	cgggtggcgc	gttggctggc	gggggcgggc	gctgagcgtc	45240
tggtgctgac	cagtcgtcgt	ggtccggatg	ctccgggtgc	ggctgagctg	gtggaagagc	45300
tgaccaccgg	cttcggggtg	gaggtttcga	tcgtcgcgtg	tgacgcggct	gaccgtgacg	45360
ccctgcgcgc	cctgctctcc	gctgaggccg	ggactctgac	cgctgtgatc	cacacggccg	45420
gtgtcctgga	cgacggcgtc	ctcgacgcac	tcaccccgga	ccgcatcgac	agcgttctgc	45480
gcgccaaggc	cgtctcggca	ctcaacctgc	acgaactgac	ggccgagctt	gatatcgagc	45540
tgtccgcctt	cgtcctcttc	tcgtcgatga	gtggcacggt	gggtgcggcc	ggtcaggcca	45600
actacgcggc	cgccaacgcc	ttcctggatg	ccctggccga	gcagcggcgc	gccgatggtc	45660
tcgcggcgac	ctcgctcgct	tggggtccgt	gggcggaagg	cggcatggcc	gccgatgcgg	45720
cgctcgaagc	ccgtatgcgc	cgcggcggag	taccgcccat	ggacgcggag	cttgcccttt	45780
cggctcttcg	gcaggccatc	ggttccgccg	atgccgctct	gaccatcgtg	gacttcgact	45840
gggcacggtt	cgcgcccggc	ttcaccgccg	tgcgagccgg	caacctgctc	gccgaactgc	45900
ccgaggcggc	ggccgtcatg	cgcggcccgg	agaacgcgga	cagccgcccg	gaacacgccg	45960
actcgtcgct	cgccctgagg	cttcagggca	tggcccaggc	cgaccaggag	cctttccttc	46020
tggagctcgt	gcgtgcacag	gtcgccgagg	tgctgggaca	ctccggcgcc	gaggacatcg	46080
aggcgggacg	cgcgttcagg	gagatcggct	tcgactcgct	gaccgccgtc	gagctgcgca	46140
accgcctcgg	ggcggctgcc	gagctgcggc	teceggeeae	gctcgtctac	gactacccga	46200
caccggcggc	cctcgccgtc	cacctccgta	ccgaactgct	cggcaagcag	gtcgtcgtgt	46260
ccggtccggt	ctccaaggtc	gttgacgacg	atccgatcgc	gatcgtctcg	atgagctgcc	46320
gcttccccgg	tggcgtgcgg	accccggaag	acctgtggga	actgctgtcc	accggcggcg	46380
	gtcgggagcg cgctggctga agggtgtgga gggttgtggt gttctgctgc ctgttggttt cccgtggtgc tgtggggtct acctgccgga caccgcgggc gtacgggtgt tggtgctgac tgaccaccgg ccctgcgcgc gtgtcctga gcgcaaggc tgtcctgga gcgcaaggc ccggcgaaga ccgcggcgc gtgtcctgga gcgcaaggc tgtccggt tcgcggcgc tcgcgcgc cggtcgcgc cggccaaggc ccggcgcgc ccggcgcgc ccggcgcgc ccggcgc ccggcgcgc ccggcgcgc ccggcgcgc actcgcgc ccggcgcgc ccggcgcc ccggcgcgc ccggcgcgc ccggcgcgc ccggcgcgc	gtcgggagcg gcgttgcccag cgctggctga tgcttcgacg agggtgtgga tgactcggct gggttgtggt cgaggcgggt ctgttggtt ggtgcaggcg cccgtggtgc tgtctccgtc tgtggggtc gggccgggtt acctgccgaa agtgctggat ccggcgaaga tcaggtcgg caccgcgggc cgagggtgc gtacgggtg gctgggtgg tgaccaccgg cgagggtgc tgaccaccgg cctgcggtg tgaccaccgg cctgctctc gtgtcctgac cagtcgggt ccctgcgcgc cctgctcgga tgtccggcgc cgtcctctc gcgccaaggc cgtcctcttc actacgcggc cgccaacgcc tcgctggaac ccgtatcgc cggctcttcg gcaggccatc cggctcggac cgcgcccggc ccgaggcggc ggccctgagg actcgtcggt cgccctgagg actcgtcgg gcgttcagg acggtccgg gcgttcagg acggtcccggc cgcttcagg acggtcgggac </th <th>gtegggageg gcgtggecaa teggaggtgg egetggetga tgettegaeg gcgeggttgt agggttgtga tgaetegget gtggtegeg gttetgetg gggtgtggtg tegetteteg ctgttggtt gggtgtggtg tegetteteg ctgttggtt gggteggggt tegggtggg tgtggggte tggeceggtt gecegeetgg tgtggggte gggeceggtt gecgecetgg ccggcgaaga teaggtegg gttegttegt cacegegge cgaggtgge gttegttegt cacegeggge cgaggtggg gttegttegt cacegeggge cgaggtggg gttegttegt cacegeggge cgaggtggg gggtteggg gtaceggggg ggtteggggg ggggttegggggggggggggggggggggggggggggg</th> <th>gtcgggacg gcgtgcccag tcggaggtgg acggttgccg cgctggctga tgcttcgacg gcgcggtttg ccggctcttg agggttgtga tgactcggct gtggtcgccg gtctggctgg gggttgtggt cgggtcgccg gtctggctgg gcgcggttg gttctgctgc gggtgtggtg tcgcttctcg ggctggtga ctgttggtt ggtcaggcg ttgggtgatg ccggggttga cccgtggtgc tgtctccgtc ggtcgttcgg acggcggttg tgtggggtct ggccgggtt gcgcccttg aggttccgga cccggcgaaa tcaggtcgg gtcgtttcg tggcccgtt cccggcgaaa tcaggtcgg gtcggtggc gttggtgt caccgcggg cgagggtgc gttggtgtgt cccgggtgt tgatcgggtg ggtcggtgt ctggtgtgtg gttggctgg tgatcggggt ggtccggtg gtttggctgg gttggctgg tgatcgtga cctgggtgg ggttcgggtg gttggctgg tgatcacgg cctgctgggg gaggtttgg gagctcgag ggcccaagg cgtctcgaa cctgaccgga tca</th> <th>gtegggageg gegtgeeda teggaggtgg aeggttgge etaeegggtgg eggtggtgg tgettegaeg gegeggttgt ceggetggg gegtggtget agggtgtgga tgaetegget gtggteece gtetggetgg gegtggtget gggttgtggt egaggeggt tegetteeg geetggtgg teggtggtg gttetgetg eggtgggtg tegetteeg ggetggtga teggtgggg etgttggtt ggtgeagge teggtgtgg eeggggggg etgttggtt ggtgeagggt teggtgtgg aeggggggg etgttggtt ggtgeagggt geetggggggggggggggg</th> <th>cagactagga cytggacaga acycecteteg cycgagyttg teccegyttg tectgagateg gteggaaged gegtgeccag teggagyttg ceggtgttg tectgagyttg gagyttgtg gagyttggg gagyttgggg g</th>	gtegggageg gcgtggecaa teggaggtgg egetggetga tgettegaeg gcgeggttgt agggttgtga tgaetegget gtggtegeg gttetgetg gggtgtggtg tegetteteg ctgttggtt gggtgtggtg tegetteteg ctgttggtt gggteggggt tegggtggg tgtggggte tggeceggtt gecegeetgg tgtggggte gggeceggtt gecgecetgg ccggcgaaga teaggtegg gttegttegt cacegegge cgaggtgge gttegttegt cacegeggge cgaggtggg gttegttegt cacegeggge cgaggtggg gttegttegt cacegeggge cgaggtggg gggtteggg gtaceggggg ggtteggggg ggggttegggggggggggggggggggggggggggggg	gtcgggacg gcgtgcccag tcggaggtgg acggttgccg cgctggctga tgcttcgacg gcgcggtttg ccggctcttg agggttgtga tgactcggct gtggtcgccg gtctggctgg gggttgtggt cgggtcgccg gtctggctgg gcgcggttg gttctgctgc gggtgtggtg tcgcttctcg ggctggtga ctgttggtt ggtcaggcg ttgggtgatg ccggggttga cccgtggtgc tgtctccgtc ggtcgttcgg acggcggttg tgtggggtct ggccgggtt gcgcccttg aggttccgga cccggcgaaa tcaggtcgg gtcgtttcg tggcccgtt cccggcgaaa tcaggtcgg gtcggtggc gttggtgt caccgcggg cgagggtgc gttggtgtgt cccgggtgt tgatcgggtg ggtcggtgt ctggtgtgtg gttggctgg tgatcggggt ggtccggtg gtttggctgg gttggctgg tgatcgtga cctgggtgg ggttcgggtg gttggctgg tgatcacgg cctgctgggg gaggtttgg gagctcgag ggcccaagg cgtctcgaa cctgaccgga tca	gtegggageg gegtgeeda teggaggtgg aeggttgge etaeegggtgg eggtggtgg tgettegaeg gegeggttgt ceggetggg gegtggtget agggtgtgga tgaetegget gtggteece gtetggetgg gegtggtget gggttgtggt egaggeggt tegetteeg geetggtgg teggtggtg gttetgetg eggtgggtg tegetteeg ggetggtga teggtgggg etgttggtt ggtgeagge teggtgtgg eeggggggg etgttggtt ggtgeagggt teggtgtgg aeggggggg etgttggtt ggtgeagggt geetggggggggggggggg	cagactagga cytggacaga acycecteteg cycgagyttg teccegyttg tectgagateg gteggaaged gegtgeccag teggagyttg ceggtgttg tectgagyttg gagyttgtg gagyttggg gagyttgggg g

acgccatctc	ggatettece	ctggaccgtg	gctgggacat	cgacgcgctg	tacgacgccg	46440
atcccagcac	acagggcact	tegtaegeee	gcgcgggtgg	cttcctctac	gacgccgccg	46500
acttcgacgc	ggacttcttc	gggatctcgc	cgcgcgaggc	cctcgccatg	gacccccagc	46560
agcgactgct	cctggagacg	tcctgggaag	ccttcgagcg	ggcgggcatc	gaccccgaga	46620
cgctccgggg	cagccaggcc	ggtgtcttcg	tcggcaccaa	cggccaggac	tacctctccg	46680
tactgctgga	ggagcccgaa	ggcctcgaag	gccacttggg	caccggcaac	gcggcgagcg	46740
tcgtctccgg	teggeteteg	tacgtgttcg	gcctggaggg	teeggeggte	acggtcgaca	46800
cggcgtgctc	gtcctcgttg	gtcgccctgc	actgggcgat	ccaggccctg	cgcaacggcg	46860
aatgctcgct	ggcgctcgcc	ggtggtgtga	cggtgatgtc	gaccccgggc	accttcatcg	46920
agttcagccg	tcagcgtggg	ctcgcggagg	acggccgtat	caaggcgttc	gcggcggccg	46980
cggacggtac	gggctggggc	gagggcgtcg	gcatgctcct	ggtggagcgg	ctgtccgacg	47040
ccgagcggaa	cgggcacccg	gtcctggcga	tcgtgcgggg	ctcggcgatc	aaccaggacg	47100
gtgcgagcaa	'cggcctcacc	gcccccaatg	gcccctcgca	gcagcgcgtg	atccgtgcgg	47160
cgctggcgag	cgcgggtctg	tccgccgccg	acgtggacgc	ggtcgaggcg	cacggcaccg	47220
gtacgacgct	gggcgacccg	atcgaggcgc	aggccctgct	cgccacgtac	gggcaggacc	47280
gcccggccga	ccggcctctg	cagctcggtt	ccatcaagtc	caacatcggg	cacacgcagg	47340
ccgcggccgg	tgtcgccgga	gtgatcaaga	tggtgctggc	catggagcac	ggcgtgctcc	47400
cgcagagcct	ccacatcgac	gcaccgtcac	cgcaggtcga	ctgggaagcc	ggtgacatcg	47460
cgctgctcac	cgagcagcgg	cagtggccgg	agaccggacg	tcccgccgg	gcaggtgtgt	47520
cgtcgttcgg	cttcagtggc	accaacgctc	acaccatcat	cgagcaggca	ccggcgtcga	47580
cggagaccga	ccgggccgaa	teeggetegg	tggaaccgga	cttcgttccc	ctgatgctct	47640
cggcgaagag	cgacgtcgca	ctccgggccc	aggccgcaag	cctgcgcgca	cggctgatcg	47700
ccgcccccga	catgcgcctg	tccgacgtcg	gctccacgct	gacgaccggc	cgctcggcgt	47760
tcgagcgccg	ggcggcgctg	gtggcagggg	gccgcgaggg	gctgctcgcg	gggcttgagg	47820
cactggcgga	cggcggttcg	gcggcagggc	tggtggaagg	ttcgccggtg	agtggaaagc	47880
tggcgttcct	gttcacgggg	caggggagtc	agcgtctggg	catgggccgt	gagctgtacg	47940
aggcgtatcc	ggtgttcgcg	gatgcgctgg	atgcggtgtg	tgtccgtctt	gaactgccct	48000
tgatggatgt	gctgttcggg	gcggatgcgg	gtctgctgaa	cgagaccgcg	tacacccagc	48060
cggcgctctt	cgccgttgag	gtggcgttgt	tccggctggt	ggagagctgg	ggtctgaggc	48120
cggacttcct	ggcgggtcat	tcgatcggtg	agatcgc'ggc	cgcgcatgtg	gccggggtgc	48180
tgtccctgga	cgatgcctgt	gctctggtgg	aggctcgggg	gcggttgatg	ggtgcgctgc	48240

E0/251

					•	
ctgcgggtgg	cgtgatgatc	gcggtgcagg	cgtcggagga	cgaggtcctg	ccgctgctga	48300
cggaccgcgt	gagcattgcc	gcgatcaatg	gtcctcagtc	ggtggtgatc	gcgggcgacg	48360
aagccgacgc	ggtcgcgatc	gtggagtcgt	tcacggggcg	taagtcgaag	cggctatcgg	48420
tgagtcacgc	gttccattcg	ccgcacatgg	acggcatgtt	ggaggacttc	cgggtcgtgg	48480
cggagggcct	gtcgtacgac	gccccgcgca	tccccgtcgt	ctcgaacctc	accggcgctc	48540
tggtcaccga	cgagatgggt	teggeggaet	tctgggtccg	gcacgtccgc	gaggccgttc	48600
gcttcctgga	cggcatccgg	gccctggagg	ccgcgggcgt	gacgacgtac	gtcgaactcg	48660
gccccgacgg	tgttctgtcg	gcgatggccc	aggagtgtgt	gaccgaaggt	ggagcggcgt	48720
tcgttcccgt	cctgcggaag	gggcggcccg	aggccgagac	ggtgatggcc	accettggcc	48780
aggcacacgt	caggggcgtc	gcggtcgact	ggcattcggt	ctacgggacc	ggtgcccagc	48840
gggtcgatct	gccgacctac	tccttccagc	gacagcggta	ctggccggcg	gcgtcttcga	48900
cggcaggtgg	ttcggtcgac	aggagcgtcg	atgcggtgga	cgcccggttc	tgggatgcgg	48960
tggagcggga	ggatctcgcg	tcgctggccg	cggagctgga	cctggacgac	gacgctccct	49020
tcagtgaact	ggcccccgcg	ctgtcggcgt	ggcggcggga	gcggcgtgcc	ctgtcggagg	49080
tggatggctg	gcgctatcgg	gtgtcgtgga	agccgctggc	ggatgtctcg	gcgtcggggt	49140
tgtccggctc	ttgggtggtg	atctcgcctg	ctgggggtgt	ggacgactcg	gctgtggtgg	49200
gtgcgctggt	tgggcgtggt	gctgaggtcc	gtcgggttgt	ggtcgaggcg	ggtgtggatc	49260
gttcggcgct	ggctgggttg	ctggccgatg	cgggttctgc	tgcgggtgtg	gtgtcgcttc	49320
tcgggctgga	tgagtctgag	gggctgctgg	ggactgttgg	tttggtgcag	gcgttgggtg	49380
atgccggggt	ggaggcgccg	ttgtggtgcc	tgacccgtgg	tgctgtctcc	gtcggtcgtt	49440
cggatcggct	tgtgtcgccg	gttcaggcgc	aggtgtgggg	tttggggcgg	gttgccgccc	49500
tggaggtccc	cgagcgctgg	ggcgggctca	tcgatctgcc	tgaggtgctg	gatgagcggg	49560
ctgtgtcccg	tctggtcggt	gtgctttcgg	gtggtggttc	tggtgaggat	caggttgcgg	49620
ttcgttcgtc	gggtgtgttc	ggtcgtcgtc	tggtgcgtgc	accgcgggct	gagggggctt	49680
cggcgtggtc	teegacegge	acggttcttg	tcaccggtgg	tacgggtgtg	ctgggtggcc	49740
gggtggcgcg	ttggctggcc	ggggcgggtg	ctgagcgtct	ggtgctgacc	agtcgtcgtg	49800
gtccggatgc	tccgggtgcg	gctgagctgg	tcgaggaact	ggccgggtcg	ggggtcgagg	49860
tttcggtcgt	cgcgtgtgat	gcggccgacc	gtgacgctct	gcgcgccctg	ctctccgccg	49920
aggccgggac	tctgaccgct	gtgatccaca	cggccggagt	tctggacgac	ggcgtcctcg	49980
acgcgctcac	cccggaccgc	atcgacagcg	ttctgcgcgc	caaggcagtc	tcggccatca	50040
acctgcacga	actgacggcc	gageteggea	tcgaactctc	cgccttcgtc	ctcttctcct	50100
ccgtcacagg	cacctggggt	acggcggggc	aagccaacta	cgcggctgcc	aacgcctacc	50160

tggatgctct	ggccgagcag	cggcgcgccg	acggcctcgc	ggcgacgtcc	atcgcgtggg	50220
gtccgtgggc	cgagggcggc	atggccgccg	atgcggcact	cgaagcccgt	atgcgccgtg	50280
gcggagtacc	gcccatgaag	ggtgaggcag	ccgtcaacgc	ccttcagcgg	gcgttgaacg	50340
cgaacgacac	ggttgtcacc	gtcgtggatg	tggaatggga	gcggttcgca	cccggtttca	50400
ccgccgcacg	ggcaagcacg	ctcctcgccg	aactgccaga	ggcccagcgg	gcacttgctc	50460
cgcaggaggg	cgacgagggc	caggacgacg	gcgctgtcca	cggtcgcggt	ggtcactcgc	50520
ttgcggaacg	gctcgcggag	ctgtcggccg	ccgagcgcga	ccggctgctg	ctcggcctcg	50580
tgcgcaagga	agtcgccgcg	gtactcggtc	acgccggcgt	ggaaagcatc	ggtgcggcgc	50640
gcgcgttcaa	ggaactcggc	ttcgactcgc	tcacggccgt	cgaactgcgc	aaccggctcg	50700
gcgcggtcac	cgggcttcgg	ctcccggcca	cgctgatcta	cgactacccc	acgtccgggg	50760
ccttggcgga	atacctgcgg	ggcgagttgc	tcggtacgca	ggccgtggtg	tccggtccgg	50820
tgtccaatgo	cgtcgccgtc	gacgacgacc	cgatcgcgat	cgtcgcgatg	agctgccgct	50880
tacaggagg	cgtacggacc	ccggaagacc	tgtggcaact	gctggcgacg	ggacgcgacg	50940
ccatcggcga	. gttcccggaa	gaccgtggct	gggacgcgga	ggccctgttc	gggccccagt	51000
tcgagcagga	. cgccccgtat	gcgcgtgagg	gcgggttcct	ctacgacgtc	gccgacttcg	51060
atcccgcctt	cttcgggatc	tegeegegeg	aggccctcgc	catggacccg	cagcagcgcc	51120
tgctgctcga	. aacctcctgg	gaagccttcg	agegggeegg	gatcgatccg	ctctcggtgc	51180
ggggcagcca	. ggccggtgtc	ttcgtcggca	ccaacggcca	ggactacctc	tegetegtge	51240
tgaactccgc	ggacggcggc	gacggcttca	tgagcaccgg	aaactcggcg	agtgtcgtct	51300
ccggccgact	ttcctatgtg	ttcggcctgg	aaggccccgc	ggtcaccgtc	gacaccgcgt	51360
gctcggcgtc	cctggtcgcg	ctgcatctcg	cggtgcaggc	gctgcgcaac	ggcgaatgct	51420
ccctggcgct	cgcgggcggt	gtgacggtga	tgtccacgcc	cggcgccttc	gccgagttca	51480
gccgtcagcg	ggggetegeg	gaggacggcc	gtatcaaggc	gttcgcggcg	gccgcggacg	51540
gtacgggctg	gggcgagggc	gtgggcatgc	tcctggtgga	gcggctctcc	gacgcccgca	51600
ggaacggtca	ccccgtcctg	gccctggtcc	ggggctcggc	cgtcaaccag	gacggcgcga	51660
gcaacgggct	cacggeteeg	aacggcccct	cgcagcagcg	cgtcatccgt	geegeteteg	51720
cgagcgccgg	g cctggcaccc	ggcgacatcg	acgcggtcga	ggcacacggc	accggtacca	51780
agctcggcga	cccgatcgag	gcgcaggccc	tgctcgccac	gtacgggcag	gaccgcccgg	51840
ccgaccggc	cctgcagctc	ggttccatca	agtccaacat	cgggcacacg	caggccgcgg	51900
ccggtgtcgc	c cggtttgatg	aagatggtcc	tcgccatgca	gcacggggtg	ctgccgcaga	51960
ccctgcacgt	ggacgagccg	accccccacg	tcgactggtc	ggccggtgac	atcgcgctgc	52020

-0/054

tgaccgagcg	gcgggagtgg	ccggagacgg	gccgtccgcg	ccgggcgggc	atctcctcgt	52080
tcggtgtgag	cggtacgaac	gcgcacacca	tcctggagca	ggcaccgccg	ctcacggaga	52140
aggacgaggc	tgaggccgcg	aggccggaga	ccggctccgc	cgtctcggcg	tggcccctcg	52200
cgggcaagac	cgaagccggc	ctgcgtgagc	aggcggaacg	gctgctggca	cacatcgatg	52260
cccactccga	gctgcggccg	gtggacgtcg	gtcactcgct	cgcgaccggc	cgggcggcgt	52320
tcgaccaccg	tgccgtgctc	gtggcgggag	acgaccggtc	ggagttccga	cgggcactgg	52380
ccgcgctggc	gtcgggagaa	tccgtcgcgc	aggtggtaca	gggcatcgcg	cgaccggatc	52440
agcaagtggc	gttcctgttc	acggggcagg	ggagccagcg	gctggggatg	gggcgtgagc	52500
tgtacgagac	gtatcccgtc	ttcgcggatg	cgctggacgc	ggtgtgtgct	cgccttgaac	52560
tgccgctgaa	ggatgtgctg	ttcggagggg	acgcggatcg	gctgaacgag	accgcgtaca	52620
cccagccggc	tatattagag	gtcgaggtgg	cgttgttccg	gctggtggag	tcgtggggtg	52680
tgaggccgga	cttcctggcc	gggcattcga	tcggtgagat	cgcggccgcg	catgtggcgg	52740
gggtgttctc	gctggatgac	gcctgtgctc	tggtggaggc	gcgtgggcgg	ttgatgcagg	52800
cgctgccgac	cggtggcgtg	atgatcgcgg	tccaggcgtc	ggaggccgag	gttctgccgc	52860
tgctgaccga	gcgcgtgagc	atcgccgcga	tcaacggtcc	gcagtcggtc	gtgatcgcgg	52920
gtgacgaggc	cgacgcggtc	gcgatcgtgg	acgcattcaa	cgaccgcaag	tccaagcggc	52980
tcgcggtcag	tcacgcgttc	cactcgccgc	acatggacgg	catgctcgcc	gacttccgca	53040
aggtggcgga	ggagctgtcg	tacgaggctc	cgcgcatccc	catcgtctcg	aacctcacgg	53100
gggccctggt	caccgacgag	atggggtcgg	ccgacttctg	ggtgcggcac	gtccgcgagg	53160
ccgtccgctt	cctggacggc	atccgggccc	ttgaggccgc	gggggtcacg	gtgtacgtcg	53220
aactgggccc	ggacggagtc	ctgtcggcta	tggcccagga	gtgcgtcacc	ggcgagggtg	53280
cggccttcgt	gcccgctctc	cgcaagggtc	gtcccgaggc	cgagacgatc	acagcggccc	53340
tcgcccacgc	gcacacccac	ggcatcgccg	tcgactggca	ggcctacttc	gccgggaccg	53400
gcgcccagcg	cgtcgacctc	ccgacctacg	ccttccagcg	ccagcgctac	tgggtggatt	53460
ccttcgccga	gttcgacgat	gtcgcctcgg	ccgggatcgg	atcggccggt	catccactgc	53520
tgggtgcggc	ggtcgagctg	ccggactcgg	acgggttcct	gttcaccggg	cggctctccc	53580
tccgtacgca	cecetggete	gccgatcacg	tggtggcgga	caccgttgtg	gtgccgggcg	53640
cggcgttcgt	cgagctggcg	gtgcgcgccg	gggacgaggt	cggatgcgag	gaagtggagg	53700
agctggttct	tgaggcgccg	ctcgtactgc	ccgagaaggg	ggccgtgcag	ctgcggctca	53760
gcgtgggcgg	ggcggacgac	cagggacgcc	ggtccgtaca	cgtgcacagc	cgcgttgagg	53820
cggccgatgg	gggcggggtc	cccggcgggg	cgtggtcccg	caatgcaacg	ggtctcctct	53880
ccaccggcgg	tagcggaagc	gacgtcgact	ccggcacggt	catcggtgag	tggccgccgg	53940

ccggagccga	gcaggtggat	gtgaccgcgg	tacgcgaacg	actggcggcc	geggggetee	54000
accacgggcc	gggcttccgg	acgctgaccg	aggtgtgggt	gcggggcgag	gaggtgttcg	54060
cggaggctag	gatataagaa	gaactgagcg	cgtccgcagg	gcggttcgcc	ctgcacccga	54120
cgctgctcga	cgccgcctcg	caggcgctgg	cggccggtac	gaccgccgcc	gcatccggca	54180
tcggtggtgc	gggacggctg	cctcaggcat	ggcgcggggt	acggctgcac	gcggggggag	54240
cggacgctct	gegteteegg	atcaccgcgg	gcggtcagga	caccgtttcc	gtcgtcctga	54300
ccgacacgca	gggtgcgccg	gtcgcgacgg	tcggctcgct	ggtcacggag	gcggtcgacg	54360
ccgagcggta	cgcggcggtt	ccggacggat	cccacgattc	gctgttccgc	ctcgactggg	54420
tgcggacgac	ggctccgggg	cggccgacct	ccgcggactt	cgcggtgctc	ggtacccccg	54480
gcactggcat	cggcgcccgc	atcggcggtg	acgagggctt	cctcgtcggc	gcgttggagc	54540
gggcgggtct	gaccgccgag	acgtacgacg	gtctcgcggc	gctcgactcg	gccgtcgcgg	54600
ccgggatggc	gatgccggaa	acggtggtgg	tgtcattcgc	cgcagctttg	gacccggcct	54660
cggactcggc	cgcggacacg	gtggcctccg	tcgactcggc	ggaggaggtc	gcgcggctcg	54720
cccaggcggt	gcgcgaggcg	acgcaccggg	cgctcgcgac	cgtgcagggc	tggctggaca	54780
acggccggtt	cgccggagcg	cgtctggtcg	tcgtcacccg	aggagcggtg	gccacgggca	54840
gggacaccga	ggtggaggac	ctcgcccacg	caccggtgtg	gggtctgctg	cgtgccgcac	54900
agaccgagca	cccggaccgg	ttcgtcctcg	tcgacctcga	cggggcggac	gcctccgtcc	54960
gggccctgcc	gggcgccatc	gcctcgcagg	agtccgaact	ggccgtacgt	gacggtgtgt	55020
tgtacgcgcc	gcgcctggtc	agggtcgggg	cggaggcggt	cacgggtgac	accggcggtc	55080
gccgcatcga	teegegggge	acggtcctga	tcaccggggc	gagcggcgga	ctcgccgggc	55140
tcttcgcccg	ccatctggtg	gcggagcacg	gcgtacggca	tetgetgete	accagccgca	55200
ggggcgccgc	cgccgaaggt	gccgcccaac	tcgccgatga	actcgtcgcg	ttgggtgcgc	55260
aggtgacctg	ggcggcgtgc	gacgtggccg	accgggacgc	gctggccgca	ctgctggcgt	55320
ccgtaccggc	cgaacagccg	ctgacggccg	tcgtgcacac	cgcggccgtc	ctggacgacg	55380
gcgtcgtgga	cctgctcacc	cccgagcggg	tggaccgggt	gctgcggccc	aaggcggaag	55440
cggcgctcca	cctccacgag	ctgaccaagg	acctcgatct	gtcggcgttc	gtcctcttct	55500
ccgccgccgc	cggcacgctc	ggcggcgcgg	ggcaggccaa	ctacgccgcg	gcgaacgtct	55560
tcctcgacgc	cctcgcccgg	caccgcacgg	cccgtggtct	caccgcgctg	tecetegtet	55620
ggggcatgtg	ggccgaggag	cggggcatgg	cgggcaggct	gacggaggcg	gagctgggca	55680
gggcgggccg	cggcggtgtg	gcaccgctgt	cggcgacgga	ggggctcgcc	ctcttcgacg	55740
cggccctcgc	cgcggacgag	gccgtgctcg	taccggtcag	gatcgatgtc	ccgaccctgc	55800

= 4 10 = 4

gggcccgggc	ggcggacggc	gggatccacc	cgatgttccg	cggactggta	cggactccgg	55860
tgcgcaggtc	ggcgcagagc	gcgggccgcg	cggcgggcac	cgtgcccacg	gacggcgcgg	55920
gggagcggac	gctggcccgg	caactggccg	agctgtccgt	cgccgagcgg	gagcggaccg	55980
tactggacct	ggtacgcggc	caggtggccg	ccgtactcgg	gtacgggtcc	gccgaacaca	56040
tcggcggtga	gcaggcgttc	aaggaactcg	gcttcgactc	gctgaccgcg	gtcgagctgc	56100
gcaaccgact	cggcgcggcc	ggcggtctga	ggctgcccgc	cacgctgatc	tacgactacc	56160
cgaacccggc	cgccctcgcc	cagcacctgc	tgagcgaggt	ggccccggac	acggcggagc	56220
gcaagctctc	cgtactggag	gaactcgacc	ggctggagag	caccttctcc	tegetggete	56280
ccgcggaact	gtccgcggcc	gccggtgacg	aggcggccca	cgcgcgggtc	geggtaegee	56340
tccagaccct	gctggcccag	tggaacgacg	cccgtctggc	agagggcggg	agcggggccc	56400
acgcgatcga	agaggcgagc	gacgacgagc	tgttcgccct	catcgacaag	aagttcggac	56460
agggctgaac	ctcgcccacc	gggcgcgccg	ccgggtcagt	ccccggcggc	gccgccacc	56520
cctgaaacga	gacccgagac	attccgagta	cgtgcgaata	ccgccacgat	ctcggccacg	56580
cgaataggtg	gaagcgccag	tggcgaacga	agcaaagctc	cgcgagtacc	tcaagaaagt	56640
cacgaccgat	ctggacgagg	cgtacggacg	cctgcgggag	atcgagagcc	aggcccacga	56700
gcccattgcc	atcacggcga	tgagctgccg	gttcccggga	ggcgtacggt	ctcccgaaga	56760
gctgtgggaa	ctgctccgca	ccggcgggga	cgcactcacc	gcgtttcccg	cggaccgcgg	56820
ctgggacctc	gacaacctgt	tctcggacga	ccccgacgac	cacaacacgt	cggtcacccg	56880
tgagggcggg	ttcctcggcg	aggcgtcctc	gttcgacgcc	gcgttcttcg	ggatctcgcc	56940
gcgcgaggcc	atggcgatgg	acccgcagca	geggetgetg	ctggagacct	cgtgggaggc	57000
gttcgaacgg	gccgggatcg	acccccaggc	gctgcgcggc	agccagtccg	gtgtgttcgt	57060
cgggatcaac	gggtcggact	acctgacccc	gctgctggaa	gcggccgagg	actacgcggg	57120
gcacctgggg	accggcaacg	cctccagcgt	gatgtcgggc	aggctctcgt	acacgttcgg	57180
cctggagggc	ccggcggtca	cggtcgacac	ggcgtgctcc	gcgtcgctgg	tcgccctgca	57240
cctggccgtg	caggegetge	gggccggaga	gtgctcgctg	gccgtcgccg	gcggggtgca	57300
cgtcatgtcc	acgcccggac	tcttcgtcga	attcagcaag	cagegeggae	tgtccacgga	57360
cggccgctgc	aaggccttcg	cggcgggcgc	cgacggattc	ggcccggcgg	aaggcgtggg	57420
cgtcctgctg	ctggagcggc	tctccgacgc	ccgcaagaac	gggcgtccgg	tccttgcggt	57480
ggtccgcggt	tcggcggtca	accaggacgg	tgcgagcaac	ggtctgacgg	ctccgaacgg	57540
tccgtcgcag	cagcgcgtca	tccggcaggc	cctcgccaac	gcacggctct	ccaccgacca	57600
ggtcgatgtc	gtggaggcac	acggcaccgg	caccagcctc	ggcgacccga	tcgaggccca	57660
ggcgctcatc	gccacgtacg	gccaggaccg	cccggccgat	caaccgctgc	tgctcgggtc	57720

ggtcaagtcc	aacatcggtc	acacccaggc	ggccgccggt	gtggccggcg	tgatcaagat	57780
ggtgctggcg	atgcagcacg	gcgtgcttcc	gcagagcctg	cacatcgacg	agccgtcgcc	57840
ccacgtggac	tgggagtccg	gcgcggtctc	gctgctcacg	gaacagacgg	cctggcccga	57900
gacgacgcat	ccgcgtcgtg	cgggtgtgtc	gtcgttcggg	ttcagcggga	cgaacgcgca	57960
tgtgatcgtc	gagcaggctc	cggtggttga	ggaggtggcg	ggggatccgg	ccggtgtggt	58020
cgagggttcg	ggtcccgggg	tggtgccggt	ggtgccttgg	gtgttgtcgg	gcaagagtgc	58080
gggggcgttg	cgggcgcagg	cggagcggtt	gtccggattc	ctcgcgggtg	cttcggctgt	58140
ggatgtgccg	toggttgatg	tggggtggtc	gttggcgtcg	tcgcgtgctg	ggctggaaca	58200
ccgggctgtg	gtgctgggcg	atcacgcggc	cggtgtggcg	gcggtggcgt	cgggtgtgat	58260
ggccgcgggt	gtggtgacgg	ggtcggttgt	cggcgggaag	accgcgttcg	tgttcccggg	58320
gcagggctcg	cagtgggtgg	gtatggcggt	ggggttgctg	gattcctcgc	cggtgttcgc	58380
tgcgcgggtg	gaggagtgtg	cgaaggcgtt	ggagccgttc	accgactggt	cgttggtgga	58440
tgtgctgcgg	ggtgtggagg	gtgcgccgtc	gttggagcgg	gtggatgtgg	tccagcccgc	58500
tctgttcgcg	gtgatggtgt	cgttggcgga	ggtgtggcga	gccgctggtg	tgcgtcctgg	58560
cgcggtgatc	ggtcattcgc	agggtgagat	cgctgccgcg	tgtgtggcgg	ggatcttgtc	58620
gcttgaggat	gcggcgcggg	tggttgcgtt	gcgtagtcag	gcgatcggcc	gggtcctggc	58680
gggtctgggc	gggatggtgt	cggtgccgtt	gccggcgaag	getgtgeggg	agctgatcgc	58740
tccgtggggt	gagggccgga	tctcggtggc	cgcggtgaac	gggccgtcgt	cggtggttgt	58800
ttcgggtgag	gccgcggccc	tggatgagct	gctggtctcg	tgcgagtcgg	agggtgtgcg	58860
ggcgaagcgg	atcgcggtgg	attacgcgtc	gcattcggct	caggtggagt	tgctgcggga	58920
agagcttgct	gagctgctgg	ctccgattgt	teegegeget	gctgaggtgc	cgttcttgtc	58980
gacggtcacc	ggtgagtggg	tgcgaggccc	ggagctggat	ggcgggtact	ggttccagaa	59040
cctgcgtcgg	acggtggagt	tggaagaggc	gacgcggacg	ttgctggagc	agggcttcgg	59100
tgtgttcgtc	gagtcgagcc	cgcacccggt	gttgagcgtg	ggcatgcagg	agacggtcga	59160
ggacgcgggc	cgggaggcgg	ctgttctggg	ctcgttgcgt	cgtggtgagg	ggggtctgga	59220
gcgtttctgg	ctgtcgctgg	gtgaggcctg	ggtccgtggc	gtgggtgtcg	actggcatgc	59280
cgtgttcgcg	ggcacgggtg	cccagcgggt	tgacctgccc	acctacgcct	tccagtcgca	59340
gcggttctgg	ccggaggccg	cgcccatcga	ggctgtggcg	gtgtcggcgg	agagtgcgat	59400
cgatgcccgg	ttctgggagg	ccgtcgagcg	cgaggacctg	gaggcgctga	ccgcggaact	59460
cgacatcgag	ggcgaccagc	cgctgaccgc	actgctgccc	gcgctgtcgt	cgtggcgtcg	59520
gcagagccgt	gagcattcga	cagtggacgg	ctggcgctac	cgcgtcacct	ggaagcggat	59580

EC 1251

cgctgagcct	tecceggeee	gcctgtcggg	tacgtggctg	gtcgtcgttc	ccgaggtcgg	59640
cccggccgac	gagtggacgg	gagccgtcct	gcgcatgctc	gccgagcgcg	gcgctgaggt	59700
ccgtaccgtg	accgtcccgg	ctgacggggc	ggaccgtgac	cggctcgccg	tcacgctgaa	59760
ggccgagacg	agcgaggtcg	ctccgagcgg	cgttctctcc	ctcctcgccc	tegeegeegg	59820
tgcgggagcc	ttagaagaag	aactcgccct	gtgccaggcg	ctcggtgacg	ccgacgtggc	59880
cgcacctctg	tggtgcgtga	cgcgtggcgc	tgtcgccacc	ggccgttccg	agcaggtggc	59940
cgaccccgcg	caggcgctcg	tctggggtct	cgggcgggtc	gcctccatgg	agcagggggg	60000
caggtgggga	ggcctgctcg	accttcccgc	cgatctcgac	ggccgtacgc	tcgaacgtct	60060
cgcgggtgtc	ctggccggtg	atggttcgga	ggaccaggtg	gcgctgcgcg	cctcgggtct	60120
cttcggtcgg	cgtctggtgc	acgcacccct	cgccgacacc	gccgccgtgc	aggagtggcg	60180
teegeaggge	acgaccctgg	tcacgggcgg	tacgggcgcg	ctgggcgcgc	acgtggcccg	60240
ctggctcgcc	gggaacggcg	ccgagcacct	gctgctcacc	agccgacggg	gccccgacgc	60300
gcccggagcc	gccgcactcc	gcgacgaact	caccgccctc	ggcacccagg	tcaccatcgc	60360
gtcctgcgac	atggccgacc	gggacgccgt	caccgccctc	atcgccgcca	tccccgccga	60420
ccagcccctc	accgcggtga	tccatgccgc	ggcggtcgtg	gacgacgggg	tcatcgagac	60480
getggeeceg	gagcaggtgg	aggccgttct	gcgggtcaag	gtcgacgcga	ccctcatcct .	60540
ccacgagctg	acccgtggcc	tggacctgtc	ggcgttcgtc	ctcttctcct	ccttcgccgc	60600
caccttcggc	gccccggcc	agggcaacca	ggcacccgga	aacgcgtacc	tggacgcctt	60660
cgccgagtac	cgccgggggt	cgggactgcc	cgccacctcc	atcgcctggg	ggccgtgggg	60720
cagcgcggac	ggcgacgaca	gcgcggcggg	cgaccggatg	cgccgccacg	gcatcatcgt	60780
gatgtcgccc	gaacggaccc	tcgtctccct	ccagcacgcg	ctggaccgtg	acgagacgac	60840
cctgaccgtc	gccgacatgg	actggaagcg	gttcaccctc	gccttcaccg	cggaccggga	60900
ccggccgctg	ctcctggagc	ttcccgaggc	ccggcgcatc	atcgagagcg	cggagcggga	60960
gtccgccgac	gacctggccg	ggggagtgcc	gctcacgcag	cagetegeeg	ggctgcccga	61020
ggtcgaacag	gagcggctgc	tcctcgacct	ggtccgtacg	gccgtcgccg	ccgtcctcgg	61080
ccatgccgac	ctggccgccg	tcgaggcggg	ccgggcgttc	aaggagctcg	gcttcgactc	61140
gctcacctcg	gtcgaactgc	gcaaccggct	cggcgcggtc	agcggtctga	agctgcccgc	61200
cagectggtc	ttcgaccacc	cgacccccgc	cgccgtcgcg	gccttcctac	gcgccgggat	61260
cgtgcccgac	gcggccgcgg	gcggcgcgcc	gctgctggag	gagetegaca	agctcgaagc	61320
cgtactggag	cggggcaccg	ccgacaacgt	cgtacgggcc	cgggtgacca	tgcggctcca	61380
gaagctcctg	gggaagtgga	acgagagcga	ggaccagtcg	ggcgccgagg	tgtgggcggc	61440
cgcggccaac	ggctccgggt	cgggcatcgg	cgcggggtcg	gcggacggcg	tgctggacga	61500

ggtcgagcag	ctccaggagg	cgagcgacga	agagctgttc	gccttcatca	acaagggact	61560
cggccgcgcc	tgaccgcaat	ggatgtggat	attgacggcg	tgccgttaat	tggccaggat	61620
agtcagcccc	cttgttaatt	tccacaaggc	tcactgcccc	ctgtcacacc	ctcccaccca	61680
ggggtgtgta	gggggcagtt	aggggttgtc	gggaagattg	ggcggcgaat	aacctgccgc	61740
tgagcagtcg	attcaggcaa	gaagtgaacc	ggctgcatac	ccgattcaat	tctcggcttt	61800
atctgcacag	ttattccgat	gccgtctgct	gcaaatgggt	ggttgcgtta	aatggcgaat	61860
gaagagacgc	tgcgggacta	cctgaagctg	gtgacggcgg	atctgcacca	gacgcgacag	61920
cgtctgcgcg	acgtcgaggc	gaagaatcag	gaccccatcg	cgatcgtcgg	catgggctgc	61980
cgctatcccg	gcggtgtgac	ctcgcccgag	gagctgtggc	agctcgtcgt	ggacggtggg	62040
gacgccattt	ccggcttccc	cgccgaccgc	ggctgggaca	tggagacggt	ctaccacccg	62100
gatcccgagc	accccggcac	gagctacgcc	aaccagggtg	gcttcgtccg	ggacttcgcc	62160
cggttcgacc	cgtcgctctt	cggcatctcg	ccgcgcgagg	ccctcgccat	ggacccgcag	62220
cagcggttgc	tcctggagac	ctcgtgggag	gcgttcgagc	gggccgggat	cgacccgacg	62280
tcgatgcggg	gcaagcaggt	cggtgtcttc	gtcggcacca	gcaaccacga	ctacctgtcg	62340
gcgctgctga	gttcctcgga	gaacgtggag	ggctacctcg	gcaccggcaa	cgcggcgagc	62400
gtcgcctcgg	gccggctctc	gtacaccttc	ggcctcgaag	gcccggccgt	caccgtcgac	62460
acggcctgct	cgtcgtcctc	ggtagccctg	cacctggccg	tgcaggcgct	gcgcaacggc	62520
gagtgctcgc	tcgccctcgc	gggcggtgcc	acgctgatgt	cggctcccgg	cacgttcatc	62580
gactacagca	agcagcgcgg	actggccacc	gacggacgct	gcaaggcgtt	ctcgcccgac	62640
gccgacggct	tcagcctcgc	cgagggcgtg	ggcatcctgc	tggtcgagcg	gctctccgac	62700
gcccgccgca	agggacatcc	cgtcctggcc	gtggtccgtg	gcaccgccgt	caaccaggac	62760
ggcgccagca	acggcctgac	cgcgcccaac	ggcccgtccc	agcagcgcgt	catccttcag	62820
gcgctgtcca	acgccaggct	cacccccgac	caggtcgacg	cggtcgaggc	ccacggcacg	62880
ggcaccggcc	tcggtgaccc	gatcgaggcg	caggcgctca	tcgccaccta	cggccaggac	62940
cgccccgacg	ggcggccgct	gtggctgggt	tcgctcaaga	ccaacatcgg	acacgcacag	63000
gccgcggccg	gtgtcgcggg	cgtcatcaag	agcgtcatgg	cgatgcgcca	cggcgtgctg	63060
ccgcgcaccc	tgcacgtgga	cgagccgacc	cccgaggtcg	actggtcggc	gggtgacgtc	63120
tecetgetea	ccgaagcgcg	gccctggccc	ctgggcgacc	agccgcgccg	gatcggcgtc	63180
tegtegtteg	gcatgagcgg	caccaacgcc	cacatcatcc	tggagagcgc	gcaggagtac	63240
gccgacggcc	ggcaggccga	cgccggtacc	gcggggaacg	aaccggccac	cggccgtacg	63300
aacccgcccg	gcgccctccc	cgtcgtcctg	tccggccgga	ccgagcccgc	cctgcgcgcc	63360

E0 (0E)

gecttetece aggeceteae eggecage etggacege gtgeggeet egtegegae 6348 gacegegaeq eeetgetgge eggetgeeq geactggega aggacgeec eagegggaag eggeggeeg eggeggeeggeggaeggeggeggeggeggeggeggeggeg							
gaccegogace coctgetege cagcegogace cagcacegogace cagcacegogace cagcacegogace cagcacegogace cagcacegogace cagcacegogace cagcacegogace caccegogace caccegogace cagcacegogace caccegogace caccego	caggccgccg	cgctgcacgc	ccacctcgcg	gcccaccccg	gcctcggcat	cgccgacctc	63420
cagegreeg geatggeeg tgagetgtac gegaeggtac cegtettege geaggggagge cagegggeeg t gagetgtac gegaeggtac cegtettege geagggeegg gaegggeggegggggggggg	gccttctccc	aggccctcac	ccgcgcagcg	ctggaccggc	gtgcggccgt	cgtcgccgac	63480
cageggeceg geatggeceg tegagetgtac gegaegtate eegtettege geaggetete gaeggeggtet gegaeggeget egaactgeeg eteaaggaeg tyetgttegg gaeegaeggeg 6372 geegeeggeg eegegetega egagaeeggeg tacacecage eegegetgtt egegggeae 6384 tegateggtg agateggegg eggeegaegg geeggaggtg tetegetggg gaeegggeae 6384 tegateggtg agategggg eegtetgatg eaggeggtg tetegetggg gaeeggggg eggetgatgt tetegetggg gaeegggg eggetgatgt eggeggtgg eggetgatgg eggetgatggeggatgggggggggg	gaccgcgacg	ccctgctggc	egggetegeg	gcactggcgg	aaggacgccc	cagcgcggac	63540
gacqggggggggggggggggggggggggggggggggggg	gtggtcgaag	gcagcgccac	ggacggaaag	ctggcgttcc	tcttcaccgg	gcaggggagc	63600
geogroggeg cegegetega egagacegeg tacacceage cegegetgtt egegggaca 6378 gtagecetet teeggetegt gagageteg geotgaage cegactacet geoeggeaca 6384 tegateggtg agategegg egegeacegtg geoggatgt tetegetgga gaaegeetge 6390 accetggteg agagegetgg egegeacegtg eegegetge egacegggg egtgatgate 6396 geoggatgag egteggagga egaggetegt egeggatgg egtgatgate 6408 geoggatgagag egteggagga egagetegte geoggatgatg aggaegetge ggtgatgate 6408 geoggatgate tetegeagga egageteteg geoggatgatg aggaegetge ggtgatgate 6408 geoggatgate tetegatgga gacategee 6414 cactegoege acatggatgg eatgetegae geotgatgatg aggaegeteg ggtgatgate 6426 atgggatee etegatece ggtegteteg accteaceg gegeeteteg eacegagag 6426 atgggatee etegateee ggtegteteg accteaceg gegeeteteg eacegagag 6426 atgggetegg egagatetetg ggteetega accteaceg gegeetete etegategg 6432 atgggetegg egagatetetg ggteetega accteaceg gegeetete etegategg 6432 atgggetegg egagatetetg ggteeggate egagagetege egagagetege egagagetege egagagetege egagagetege egagagetge egagagagagagagagagagagagagagagagagaga	cageggeeeg	gcatgggccg	tgagctgtac	gcgacgtatc	ccgtcttcgc	gcaggctctg	63660
gtggcectet teeggetegt ggagagetgg ggeetgaage eegactaeet ggeegggeae 6384 teegateggg agategeege egegeaetgg geeggagtgt tetegetgga ggagageetge 6390 accetggteg aggegetgg eegtetgatg eaggegetge egegtetaatg eaggegetge egegteaaeg egtggagga eggggggge egggggggggg	gacgcggtgt	gcgagcggct	cgaactgccg	ctcaaggacg	tgctgttcgg	gaccgacggc	63720
tegateggtg agategegge egegacagtg geeggagtgt tetegetgga ggaegeetge 6390 accetggteg aggeggtgg cegtetgatg eaggegetge egaceggegg egtgatgate 6396 geggtegagg egteggagga egaggteetg egeggteeta eegaceggegg ggtgatgate 6402 geegteaacg geeceeggte ggtegteetg egeggtatg aggaegetge ggtegegate 6402 geggaggeet tegeageea gggeegaag accaagaage tgaeggteag ecaegeette 6414 cactegeege acatggaegg eatgeteega geetteegaa eggtegeea gggaeteteg 6426 atgggaete etegeateee ggtegteeg accetaceg gggeeteetg eacegagag 6426 atgggaeteg eggaggeegaag etgeeggaag eegteegett eetegaeggg 6432 ateeggtgge tggagageeg eggggteaee acetacateg acctegett eetegaeggg 6432 ateeggetgg tggagageeg eggggteaee acetacateg acctegeege eggegggget 6438 ctgteegee teggeeagga etgeeaggee gegaeeggee eegggggggggg	gccgccggcg	ccgcgctcga	cgagaccgcg	tacacccagc	ccgcgctgtt	cgcggtcgag	63780
accetgyteg aggegegtgg cegtetgatg caggegetge egaceggegg egtgatgate 6396 geggtegagg egtegagga egaggteetg egegtgetea eegactgggt gageategee 6402 geegteaaeg gececeggte ggtegtegte geegtgatg aggaegetge ggtegegate 6408 geggaggeet tegeageea gggeegaaag accaagaage tgaeggteag ceaegcette 6414 cactegeege acatggaegg eatgeteega geetteega eggtegeeaa gggaegeeta 6426 atggggete etegeateee ggtegteega geetteega eggeeeteegt eacegagag 6426 atgggetegg eggaggeete ggggggaaeg eggeeteegg eggegggget eggegggget eggeggggget eggeggggget eggegggggggg	gtggccctct	teeggetegt	ggagagctgg	ggcctgaagc	ccgactacct	ggccgggcac	63840
geggtegagg egteggagga egaggteetg eegetgetea eegaetgggt gageategee 6402 geegteaaeg geeeeegge ggteggege ggteggegag geeggeggaggeet tegeageea gggegegaag acaaagaage tgaeggteag eeacgeette 6414 eacteegeegg acatggaegg eatgetegae geetteegaa gggeeetegt eacegaeggaggeet tegeagaee ggteggeae ggeetteega acaetggaete ettegaaggg eatgetega geetteegaa gegeeteegt eacegaegga 6426 atggggetegg eegaetteetg ggteeggeae gteeggaag eegteegett eetegaaggg 6432 ateeggeteg tegagagaeeg egggggteaee acetaaateg aacteeggee eggeggeget 6438 ateeggeteg tegagaggeeg eggeaeggegegegegegegegegegege	tcgatcggtg	agategegge	cgcgcacgtg	gccggagtgt	tctcgctgga	ggacgcctgc	63900
geograggect tegeagecea gggeograag accaagaage tgaeggteag ecaeggectte 6414 caeteggeage etegeatee ggtegteteg geotteegea eggtegeea gggaeteteg 6426 taegggaete etegeateee ggtegteteg acceteaceg gegeetetegt eacegaagg 6426 atgggetegg cegaettetg ggteeggeag gtegeaggaag eegteegget ectegaaggg 6432 atcegetegg tggagageeg eggggteace acctacateg accteggee eggeggete 6438 etggeetegg tggagageeg eggggteace acctacateg accteggeeg eggegggete 6438 etgteegeeg geaceggeeg eeggggteace acctacateg accteggegggggggggggggggggggggggggggggggg	accetggteg	aggegegtgg	ccgtctgatg	caggcgctgc	cgaccggcgg	cgtgatgatc	63960
gcggaggcct tegeagecea gggccgeaag accaagaage tgaeggteag ceaegeette 6414 cactegeege acatggaegg catgetegae geetteegea eggtegeeea gggaeteteg 6420 taegggaete etegeateee ggtegteteg aaceteaceg gegecetegt cacegaegag 6426 atgggetegg cegaettetg ggteeggeae gteeggaag eegteegett eetegaeggg 6432 atecgetgge tggagageeg eggggteaee acetacateg aacteggeee eggeggegte 6438 etgteegeee teggeeagga etgeeaggee gegaeeggee eeeggeggg egeetteete 6444 eeegeggetgg geaeeggeeg eeeeggagg tegtegetga eegggeggt ggeeggege 6456 catgteegeg ggeteteee ggaetggaee gteegetteg eeggaeegg egeaeagge 6456 gtegagetge eeacetaege ettecagegg gagetgtaet ggeeeggae eeeetteaee 6462 gaeeeggeeg aateegeea eggeggegaa eteggegeea eegaeegga ggeeggaega 6474 eeeeteagea gegaggaeet egeeggete geeggaeee eeggggtegg eggeagaa 6474 eeeeteagea gegaggaeet egeeggetee geeggaeee geegeeaeeg egaeeggae 6480 acegtggaeg getggegea eeggetetee geeggaeee geegeeaeeg egaeeggae 6480 acegtggaeg getggegeta eegegteee tggaageee tegaggaeae eaegeeggae 6480 acegtggaeg getggeget eetggtege egeaeegge tgaeggaeae eaegeegge 6492 gtegeegeeg agegggeaet gaeegaeeg ggtgteaeeg tgaeggaee eeettgggee 6492 gtegeegeeg agegggeaet gaeegaeege egeaeegg eggagaeege egeaeege 6504 geegeeaeeg acteegeee ggegggege gaaaegeet egetgeetee 6504 geegeeaeeg acteegeee ggegggegee egeaeegee egegggatt etegetgete 6504 geegeeaeeg agegggaa eeeeggggae eeeeggaaege egeegeaeg eeeetgggeg 65160 geeetggagg ageggeeea eeeegggae eggaaeege eeeggegget egeegeaeg 65160 geeetggagg ageggeeea eeeegggae eggaaegge eggaaegeet egeegeaeg 65160 geeetggagg ageggeeea eeeeggggae eggaaegget egeegeaeg 6522	gcggtcgagg	cgtcggagga	cgaggtcctg	ccgctgctca	ccgactgggt	gagcatcgcc	64020
cactegeege acatggaegg catgetegae geetteegea eggtegeeca gggaetetegg 6420 taegggaete etegeateec ggtegteteg aaceteaceg gegeetetegt cacegaegag 6432 ateggetegg cegaettetig ggteeggeae gteeggaag eegteegett eetegaeggg 6432 atecgetigge tiggagageeg eggggteace acetacateg aacteggeee eggeggegte 6438 ctigteegeec teggeeagga etgeegaage gegaeeggee eegeetteete 6444 ceegeggetig geaeeggae eegeegggeggeggeggeggeggeggeggeggeggegg	gccgtcaacg	gcccccggtc	ggtcgtcgtc	gccggtgatg	aggacgctgc	ggtcgcgatc	64080
tacgggactc ctcgcatccc ggtcgtctcg aacctcaccg gegccctcgt caccgacgag 6426 atgggctcgg ccgacttctg ggtccggcac gtccgcgaag ccgtccgctt cctcgacggg 6432 atccgctggc tggagagccg cggggtcacc acctacatcg aactcggccc cggcggcgtc 6438 ctgtccgccc tcggccagga ctgccagacc gcgaccggc cccgcgggcgc cgccttcctc 6444 cccgcggctgc gcaccggcg ccccgaggcg tcgtcgctga ccgcggcgc ggccggcgc 6450 catgtccgcg ggctctcccc ggactgaacc gtccgcttg ccgggaccgg cgcacaggcg 6450 gtcgagctgc ccacctacgc cttccagcgc gagctgtact ggcccgcga ccccttcacc 6462 gacccggccg aatccgcca cggcggcgaa ctcgggcgca ccgacagcgc 6460 gtcgagctgc gaggacct cgccgcgaa ctcgggcaa ggcacagaa 6474 cccctcagaa gcgggacact cgccgcgctc gccgacaccc tcgggggtgg cggcacaga 6480 accgtggacg gctgctgc cgggtcacc tggaagccgc tgacggacac cacgcccgg 6492 gtcgccgca agcgggcat accgcgcacc tggaagccgc tgacggacac cacgcccgcg 6492 gtcgccgca agcgggcact gaccgcacg ggtgtacaccg tgagaaccct cgctgggcc 6492 gtcgccgca acggggcact gaccgacac cggcggatcg ggaagccct cgctgcacc 6504 gcgaccctca acgaccggc cgcaccgc cggcggatcg ggaagccct cgctgcccc 6504 gccgcacccg actccgcc ggcggacca cccggcggac cccgggggtt ctcgcctcc 6510 gccctggagg agcgccac cccgcggac cccgggacctg cccgcgggct cgcccaccg 65160 gccctggagg agcgccac cccgcggac ccggcacctg cccgcgggct cgcccaccg 6522 gtcgccctca tccaggcact cggcgaccg ggagtggaag ccccgcttg ggccgcacc 6522	gcggaggcct	tcgcagccca	gggccgcaag	accaagaagc	tgacggtcag	ccacgccttc	64140
atgggetegg tegacytett ggteeggeac gteegegaag cegteegett eetegaeggg 6432 atcegetgge tggagageeg eggggteace acctacateg aacteggeec eggeggegte 6438 etgteegeec teggeeagga etgeegagee gegaeeggee eegeetteete 6444 eeeggegetge geaeeggeeg eeeeggegge tegteegetg eggegeegge ggeeggegegeggeggeggeggeggeg	cactcgccgc	acatggacgg	catgctcgac	gccttccgca	cggtcgccca	gggactctcg	64200
atcegetgge tggagageeg eggggteace acetacateg aacteggeec eggeggegte 6438 ctgteegeec teggeeagg etgeeaggee gegaceggee eeeggeggeggegggggggggg	tacgggactc	ctcgcatccc	ggtcgtctcg	aacctcaccg	gcgccctcgt	caccgacgag	64260
ctgtccgccc tcggccagga ctgccagacc gcgaccggcc cccgcgggc cgccttcctc 64444 cccgcgctgc gcaccggcg ccccgaggcg tcgtcgctga ccgcggcgc ggccggcgcc 6450 catgtccgcg ggctctcccc ggactggacc gtccgcttcg ccggcaccgg cgcacagcgc 6456 gtcgagctgc ccacctacgc cttccagcgc gagctgtact ggccccgcga ccccttcacc 6462 gacccggccg aatccgcca cggcggcgaa ctcggcca ccgaccgg cgcacagcgc 6456 gtcgaccggca aatccgccca cggcggcgaa ctcggcgca ccgaccgcaa gttctgggag 6468 gtcgtcgaca gcgaggacct cgccgcgct gccgacaccc tcggggtcgg cggcacagaa 6474 cccctcagca gcgtgctgcc cgcgctctcc gcctggcacc gcgccaccg cgaccgcgaa 6480 accgtggacg gctggcgca ccggctcacc tggaaggcgc tgaccgacac caccgccgg 6486 tccccctccg ggcactggct cctggtcgtc cccaccgagc acgccgacc cccttgggcc 6492 gcgccgccg agcggcact gaccgaccg ggtgtcaccg tgagcaccgt cgtgctcgac 6492 gcgaccctcg acgaccggc cgccaccgc cggcggatcg gcgaagccct cgctgctcc 6504 gccgccaccg actcgcccc ggcgggccc gaaacgctcg ccggggttt ctcgctcc 6510 gccctggagg agcggcact cccgcgggac ccgggaacgcg ggagtggaag ccccggttt cccgcaccg 6510 gccctggagg agcggcact cgcgcaccg ggagtggaag ccccgctgtg ggccgcacc 6522 gccgccctca tccaggcact cggcgaccg ggagtggaag ccccgctgtg ggccgcacc 6522 gccgccccc 6522 gccgccctca tccaggcact cggcgaccg ggagtggaag ccccgctgtg ggccgcacc 6522 gccgccctca tccaggcact tccaggcacc cggcgaccacc 6522 gccgcaccg cgcgcaccaccaccaccaccaccaccaccaccaccaccac	atgggctcgg	ccgacttctg	ggtccggcac	gtccgcgaag	ccgtccgctt	cctcgacggg	64320
ceegegetge geaceggeeg ceeegaggeg tegtegetga cegeggeeg ggeeggegee 6450 catgteegeg ggeteteece ggaetggaee gteegetteg ceggeacegg egeacagege 6456 gtegagetge ceacetacge ettecagege gagetgtaet ggeeegega eecetteace 6462 gaceeggeeg aateegeea eggeggegaa eteggegeea eeggeggeaa gteegtegae 6468 gtegtegaea gegaggaeet egeeggete geeggaacee teggggtegg eggeggaa 6474 ceeeteagea gegtgetgee eggegtetee geetggaace geeggeaceg egacegegaa 6486 acegtggaeg getggegeta eeggetetee geetggaace geeggeaceg eacegegae 6486 teeeeteeg ggeactgget eetggtegte eecacegage aegeegaace eecttgggee 6492 gtegeegeeg agegggaeet gacegeaceg ggtgteaceg tgacgaacegt egtgetegae 6492 geegaceeteg aegacegge egecacegee eggeggateg gegaageet egetgetee 6504 geegecaceg acteegeee ggegggegee gaaacgeteg eeggeggtt etegetgete 65106 geectggaag ageggeegaa eeeeggaac eeggeactgt eegeeggee 65166 gtegeectea teeaggeact eggegaegg ggagtggaag eeeegttgt ggeegeace 65226	atccgctggc	tggagagccg	cggggtcacc	acctacatcg	aactcggccc	cggcggcgtc	64380
catgtccgcg ggctctcccc ggactggacc gtccgcttcg ccggcaccgg cgcacagcgc 6456 gtcgagctgc ccacctacgc cttccagcgc gagctgtact ggccccgcga ccccttcacc 6462 gacccggccg aatccgcca cggcggcgaa ctcggcgca ccgacgccaa gttctgggag 6468 gtcgtcgaca gcgaggacct cgccgcgctc gccgacaccc tcggggtcgg cggcgacgaa 6474 cccctcagca gcgtgctgcc cgcgctctcc gcctggcacc gccgccaccg cgaccgcgac 6486 accgtggacg gctggcgta ccgcgtcacc tggaagccgc tgacggacac cacgccgcgac 6486 tcccctccg ggcactggct cctggtcgtc cccaccgagc acgccgcacc gccgcaccg gccgcaccg ggcgccaccg ggcgccaccg ggcgccaccg ggcgccaccg ggcgccaccg ggcgccaccg ggcgcacct gaccgcaccg ggtgtcaccg tgacgcaccg cccttgggcc 6492 gccgccaccg acgcggacct gaccgcaccg cggcggatcg ggtgtcaccg tgagcaccct cgctgcctcc 65046 gccgccaccg actccgccc ggcggaccc ccggcggac ccggcgaccc cggcggaccc ccggcggac cccggcgac ccggcgaccc cggcggaccc ccggcgaccc ccgcgcaccg ccgccaccg ccggcgaccc ccggcgaccc ccggcgaccc ccggcgaccc ccgccaccg ccgccaccg ccggcgaccc ccggcgaccc ccgccaccg ccgccaccaccg ccgccaccaccaccaccaccaccaccaccaccaccaccac	ctgtccgccc	tcggccagga	ctgccagacc	gcgaccggcc	cccgcgcggc	cgccttcctc	64440
gtegagetge ceacetacge ettecagege gagetgtaet ggeecegega cecetteace 6462 gaceeggeeg aateegeeca eggeggegaa eteggegeea eeggegeeaa gttetgggag 6468 gtegtegaea gegaggaeet egeeggetee geeggeaee tegggggtegg eggeggegaa 6474 eeeeteagea gegtgetgee eggegetetee geetggeaee geeggeaeeg egaeeggae 6486 acegtggaeg getggegeta eeggeteaee tggaageege tgaeeggaeae eaeggeegg 6486 teeeeeteeg ggeaetgget eetggtegte eeeaeeggae aegeeggaeae eettgggee 6492 gtegeegeeg ageggeaet gaeeggaeeg ggtgteaeeg tgageaeege egtgetegae 6492 geeggaeeeteg aegaeegge egeeaeege eggeggateg gegaageeet egetgetee 6504 geeggeaeeg aeteegeee ggegggegee gaaaeggeteg eeggegtgtt etegetgete 6510 geegeetega ageggeeet egeeggaee eeegggaee eeggeggaee eggegggete egeeggget egeegeaeg 65166 gtegeeetea teeaggeaet eggeggaege ggagtggaag eeegeegtgt ggeegeeaeeg 65226 gtegeeetea teeaggeaet eggeggaeeg ggagtggaag eeeegetgt ggeegeeaee 65226 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegetgt ggeegeeaee 65226 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegeeteg ggeegeeaee 65226 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegeeteg ggeegeeaee 65226 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegetgt ggeegeeaee 65226 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegetgt ggeegeeaee 65226 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegetgt ggeegeeaee 65226 gtegeeetea	cccgcgctgc	gcaccggccg	ccccgaggcg	tcgtcgctga	ccgcggccgt	ggccggcgcc	64500
gacceggeeg aateegeea eggeggegaa eteggegea eeggegeea gtetetgggag 6468 gtegtegaca geggggeet egeegacaeee teggggtegg eggegaegaa 6474 eeeeteagaa gegtgetgee eggegtetee geetggaac geegeeaeeg egacegegae 6480 accgtggaeg getggeget eegggteaee tggaageege tgacggaeae caegeeegeg 6486 teeeeeteeg ggeaetgget eetggtegte eeeaeeggae acgeegaege eeettgggee 64920 gtegeegeeg agegggeaet gacegaege ggtgteaeeg tgageaeege egtgetegae 64920 gegaaeeeteg aegaeegge egeeaeege eggeggateg gegaageeet egetgeetee 65040 geegeeaeeg acteegeee ggegggegee gaaaegeteg eeggggtgt etegetgete 65100 geeettggagg ageggeegea eeeegggae eeggeaeetg eeggegget egeegeeaeg 65160 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeegggget egeegeeaee 65220 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeeggggg eggegeeaee 65220 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeeggggg eggeegeeaee 65220 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeeggggg eggeegeeaee 65220 gtegeeetea teeaggeaet eggegaeege ggagtggaag eeeeggggg eggeegeeaee 65220 gtegeeetea teeaggeaet eggegaeegeg ggagtggaag eeeeggetgt eggegeeaee 65220 gtegeeetea teeaggeaet eggegaeegeg ggagtggaag eeeeggetgt eggegeeaee 65220 gtegeeetea teeaggeaet eggegaeegeg ggagtggaag eeeeggetgt eggegeeaee 65220 gtegeeetea	catgtccgcg	ggctctcccc	ggactggacc	gtccgcttcg	ccggcaccgg	cgcacagcgc	64560
gtegtegaca gegaggacet egeegete geegacace teggggtegg eggegacgaa 6474 ecceteagea gegtgetgee egegetetee geetggeace geegeeaceg egacegegac 6480 eacegtggacg getggegeta eeggeteace tggaageege tgaeggacac eacgeegege 6486 etceeeteeg ggeactgget eetggtegte eccaeegage aegeegacge eettgggee 6492 egegaceeteg agegggeact gaeegacaeg ggtgteaeeg tgagcacegt egtgetegac 6498 egegaceeteg aegaeegge egecaeege eggeggateg gegaageet egetgeetee 6504 egeegeeaceg aeteegeee ggegggege gaaaegeteg eeggegtgt etegetgete 6510 egeettggagg ageggeegea eeeegggae eeggeactgt eegeegeaceg 6516 egtegeeetea teeaggeact eggeggaege ggagtggaag eeeegeeace 6522 eggegeetea teeaggeact eggegeace 6522 eggegeeteace 6522 eggegeeteaceaceaceaceaceaceaceaceaceaceaceaceace	gtcgagctgc	ccacctacgc	cttccagcgc	gagctgtact	ggccccgcga	ccccttcacc	64620
ceceteagea gegtgetgee egegtetee geetggeace geegeeaceg egacegegae 6486 acegtggaeg getggegeta eegegteace tggaageege tgaeggaeae caegeegegg 6486 acegeegeeg ggeactgget eetggtegte eecacegage aegeegaege eeettgggee 6492 gtegeegeeg agegggeact gaeegeaege ggtgteaeeg tgageaeegt egtgetegae 6498 gegaaeeeteg aegaeeggge egeeaeege eggeggateg gegaageeet egetgetee 6504 geegeeaeeg aeteegeee ggegggegee gaaaegeteg eeggegtgtt etegetgete 6510 geeettggagg ageggeegea eeeegggae eggeaeetg eeggegget egeegeeaeg 6516 gtegeeetea teeaggeaet eggeggaege ggagtggaag eeeeggtgt ggeegeeaee 6522 gtegeeetea teeaggeaet eggegaegeg ggagtggaag eeeeggtgt ggeegeeaee 6522 gtegeeetea teeaggeaet eggegaegeg ggagtggaag eeeeggtgt ggeegeeaee 6522 g	gacccggccg	aatccgccca	cggcggcgaa	ctcggcgcca	ccgacgccaa	gttctgggag	64680
acceptagace getageceta cegegateace tagaageege tagaegacae caegeeegeegegegegegegegegegegegegegegege	gtcgtcgaca	gcgaggacct	cgccgcgctc	gccgacaccc	teggggtegg	cggcgacgaa	64740
teccetecg ggeactgget ectggtegte eccacegage aegeegaege ecettgggee 64926 gtegeegeeg agegggeaet gaeegeaege ggtgteaeeg tgageaeegt egtgetegae 64986 gegaeeeteg aegaeeggge egeeaeegee eggeggateg gegaageeet egetgeetee 65046 geegeeaeeg aeteegeee ggegggegee gaaaegeteg eeggegtgtt etegetgete 65106 geeetggagg ageggeegea eeeegggae eeggeaetgt eegeeggget egeegeeaeg 65166 gtegeeetea teeaggeaet eggegaegeg ggagtggaag eeeegggget ggeegeeaee 65226	cccctcagca	gcgtgctgcc	cgcgctctcc	gcctggcacc	gccgccaccg	cgaccgcgac	64800
gtcgccgccg agcgggcact gaccgcacgc ggtgtcaccg tgagcaccgt cgtgctcgac 64986 gcgaccctcg acgaccgggc cgccaccgcc cggcggatcg gcgaagccct cgctgcctcc 65046 gccgccaccg actccgccc ggcgggcgcc gaaacgctcg ccggcgtgtt ctcgctgctc 65106 gccctggagg agcggccgca cccggggac ccggcactgt ccgccggggt cgccgcaccg 65166 gtcgccctca tccaggcact cggcgacgcg ggagtggaag ccccgctgtg ggccgccacc 65226	accgtggacg	gctggcgcta	ccgcgtcacc	tggaagccgc	tgacggacac	cacgcccgcg	64860
gegaceteg acgacegge egecacegee eggeggateg gegaageeet egetgetee 6504 geegecaceg acteegeee ggegggegee gaaacgeteg eeggegtgtt etegetgete 6510 geeetggagg ageggeegea eeeegggae eeggeactgt eegeeggget egeegeeacg 6516 gtegeeetea teeaggeact eggegaegeg ggagtggaag eeeegetgtg ggeegeeace 6522 g	teceecteeg	ggcactggct	cctggtcgtc	cccaccgagc	acgccgacgc	cccttgggcc	64920
geogecaccy acteegecce ggegggege gaaacgeteg eeggegtgtt etegetgete 65100 geoetggagg ageggeegea eeeegggae eeggeactgt eegeeggget egeegeeacg 65160 gtegeeetea teeaggeact eggegaegeg ggagtggaag eeeegetgtg ggeegeeace 65220	gtcgccgccg	agcgggcact	gaccgcacgc	ggtgtcaccg	tgagcaccgt	cgtgctcgac	64980
gccctggagg agcggccgca ccccgcggac ccggcactgt ccgccgggct cgccgccacg 65160 gtcgccctca tccaggcact cggcgacgcg ggagtggaag ccccgctgtg ggccgccacc 65220	gcgaccctcg	acgaccgggc	cgccaccgcc	cggcggatcg	gcgaagccct	cgctgcctcc	65040
gtcgccctca tccaggcact cggcgacgcg ggagtggaag ccccgctgtg ggccgccacc 65220	gecgecaceg	actccgcccc	ggcgggcgcc	gaaacgctcg	ccggcgtgtt	ctcgctgctc	65100
	gccctggagg	agcggccgca	ccccgcggac	ccggcactgt	ccgccgggct	cgccgccacg	65160
tgcggcgcgg tctccaccgg ccgcaccgac cggctctcca gcaccgccca ggcgcaggtg 6528	gtcgccctca	tccaggcact	cggcgacgcg	ggagtggaag	ccccgctgtg	ggccgccacc	65220
	tgcggcgcgg	tctccaccgg	ccgcaccgac	cggctctcca	gcaccgccca	ggcgcaggtg	65280

tggggcctcg	gccgcaccgc	cgccctcgaa	ctgcccgtgc	gctggggcgg	tctcgtcgac	65340
ctgcccggga	ccccgacga	gcgggccgcg	ggccggctcg	ccgacgtcct	cggcggactc	65400
ggcggacccg	gcgccgagga	tcacctcgcc	gtacgctcca	ccggcgtctt	cgtccgcagg	65460
ctggcccgcg	ccacccgcga	cgagcgcccc	accaccgagt	gggccaccac	cggcacggct	65520
ctcatcaccg	gcggcacggg	cgcactcggc	cgccacgtcg	cccgctggct	cgcccggacc	65580
ggggcgcagc	acctgctcct	ggtcagcagg	cgcggcccgg	aagccgaggg	agccgacgcg	65640
ctcgccgccg	aactgcgcgc	actgggcgcc	gaggtcacca	tegeegeetg	cgacgtcgcc	65700
gaccgcgacg	ccgtcgcggc	cctgctcgcc	accctcccgg	ccgagcaccc	gctgaccaac	65760
gtcgtgcacg	ccgccggggt	gctcgacgac	ggcgtcctgg	acgcccagac	cccgcagcgc	65820
ctcgcggggg	tectgegeee	caaggcccac	gcggcgcagg	tcctgcacga	gctgacccgc	65880
gacctggacc	teteegeett	cgtcctcttc	tcgtccgtcg	ccgccgtctt	cggcgccgcc	65940
ggtcaggcca	actacgctgc	cgcgaacgcc	tccttggagg	ccctcgccga	gcagcgccgc	66000
gccgacggcc	tgcccgccac	cgtgctggcc	tggggcgcct	gggccgaagg	cggcatggcc	66060
accgacgaac	tegtegeega	gcgcctgcgg	ctggccggac	tgcccgccct	cgcacccgaa	66120
ctcgccctgt	ccgcactgca	cagggcgctc	accctggacg	agaccgcctc	gctcgtcgcc	66180
gacatcgact	gggagcgcct	ggcccccggc	ctcaccgccg	tacgcccctg	cccgctgatc	66240
gccgacctcc	ccgaggccgt	gcacgccctc	gccggagccg	aggcgtccac	cgggcccggc	66300
gccgccgccg	acacgttcgc	gcggcagctg	gccgacgccc	ccgccggtga	acgcgaccag	66360
ctcgccctgg	agttcgtacg	cacccaggtc	gcggccgtac	tcggttacgc	cggtcccgag	66420
tccgtcgacc	cgggcagcgc	cttccgggac	ctcggcttcg	actcgctcac	cgcggtggag	66480
atccgcaacc	tcctcacctc	ccggaccggc	ctgcgcctcc	cggcgacgct	gatcttcgac	66540
taccccaact	ccctctccct	ggccgccttc	ctgcagggag	aactgctcgg	cgcgcaggcg	66600
accgaccccg	cccgccacac	ccccgcgggc	cccggcaccg	ccaccgatga	cgaccccatc	66660
gcgatcgtcg	cgatgagctg	ccgcttcccc	ggcggcgtac	agagcccgga	agacctctgg	66720
cagctgctct	ccaccggccg	tgacgcgatc	tegggettee	ccggcgaccg	cggctgggac	66780
ctcgacgggc	tgtacgaccc	cgagtccgcc	ggggagaaca	ccagttacgt	ccgcgagggc	66840
ggcttcctcg	ccggtgccac	cgagttcgac	cccgcgttct	tcgggatctc	cccgcgcgag	66900
gccctcgcca	tggacccgca	gcagcgcctg	ctgctcgaaa	cctcgtggga	ggccttcgag	66960
cgcgccggaa	tcgaccccgc	caccgtgcgc	ggcgaacaga	teggegtett	caccggcacc	67020
aacggccagg	actacctcaa	cgtcatcctg	gccgcacccg	acggtgtcga	ggggttcctg	67080
ggcacgggca	acgcggcgag	cgtggtctcc	ggccgcgtct	cctacgtcct	cggcctggag	67140

ç	gcccggccg	tcacggtcga	cacggcctgc	tcgtcctcgc	tggtcgccct	gcactgggcg	67200
ē	atccaggccc	tgcgccaggg	cgagtgcacc	atggccctgg	ccggcggcgt	gaccgtcatg	67260
t	ccacgcccg	cctccttcat	cgacttcagc	cgtcagcgcg	gcctcgcgga	agacggccgt	67320
ć	atcaaggcgt	tegeegegge	cgcggacggt	acgggctggg	gcgagggcgt	cggcatcctc	67380
(ctcgtcgaga	ggctctccga	cgcacagcgc	aacggccatc	cggtcctggc	gatcgtgcgc	67440
ç	ggctcggcca	tcaaccagga	cggcgccagc	aacggcctca	cggcgcccaa	cggcccgtcc	67500
Ċ	cagcagcgcg	tcatccgcca	ggccctcgcc	agcggcggac	tgacgacgat	ggacgtcgac	67560
ç	geegtegagg	cccacggcac	gggtacgaag	ctcggcgacc	cgatcgaggc	gcaggcactc	67620
c	ctcgccacct	acgggcagga	ccggccggaa	ggccgtccgc	tgctcctcgg	ctcgatcaag	67680
t	ccgaacctcg	ggcacacgca	ggccgccgcc	ggtgtcgccg	gtgtcatgaa	gatggtcctc	67740
Ç	gccatgcagc	acggtgtgct	gccgcagacc	ctgcacgtcg	acgagccgac	cccgcacgtg	67800
Ç	gactggtcgg	cgggcgacgt	cgccctgctg	gccgatgccg	tggcgtggcc	cgagaccggg	67860
(cgtccgcgcc	gggcgggcgt	ctcgtcgttc	ggcatcagcg	gcaccaacgc	ccacaccatc	67920
č	atcgaacagg	ccccggcagc	cgtggcgccc	gtecegeeeg	tegecaceae	gcccgcacgg	67980
ç	gccgacggac	cgcagccgtg	gatactatag	gcgaagaccc	gcgacgcact	ccacgaccag	68040
ç	gegegeegae	tgcacgccca	cgcggagctg	aacccggaac	tgagccccgc	cgacctcgga	68100
(ctctccctgg	cggccggccg	tteggegtte	gagcggcgcg	cggccgtgat	cgccgcagac	68160
(cgtgacgggc	tgctggccgg	cctcgcggcc	ctggcggacg	gcggcgcggc	ggcaggactg	68220
ç	gtggagggct	caccggtcgc	cggaaagctg	gcgttcctgt	tcaccgggca	ggggagtcag	68280
(cggctcggga	tgggccgtga	gctgtacgac	acgtaccccg	tcttcgcgga	cgcgctcgac	68340
ç	geggtetgeg	cgcatgtgga	cgcgcacctc	gaagtcccgc	tgaaggacgt	cctgttcggg	68400
ģ	gcggatacgg	gtctgctgga	ccagacggct	tacacgcagc	ccgcgttgtt	cgcggttgag	68460
(gtggcgttgt	tccggctggt	ggagagctgg	ggtctgaggc	ccgacttcct	ggccggtcat	68520
	tcgatcggtg	agatcgcggc	cgcgcatgtg	gcgggcgtct	tctcgcttca	ggacgccagc	68580
,	gaactggtcg	tegecegtgg	gcggttgatg	caggcgctgc	cgaccggtgg	cgtgatgatc	68640
,	gccgtccagg	cgtcggagga	cgaagtcctg	ccgctgctga	ccgaccgggt	gagcattgcc	68700
!	gcgatcaacg	gccctcagtc	ggtcgtcatc	gcgggtgacg	aggccgacgc	ggtcgcgatc	68760
	gcggagtcgt	tcacggggcg	caagtccaag	cgcctcacgg	tcagccacgc	gttccattcg	68820
	ccgcacatgg	acggcatgct	ggaagacttc	cgggccgtgg	cggagggcct	ctcgtacgag	68880
	gctccgcgca	teceegtegt	ctcgaacctc	accggcgctc	tgatctcgga	cgagatgggc	68940
	teggeegagt	tetgggteeg	gcacgtccgt	gaggccgtcc	gcttcctcga	cggcatccgc	69000
	acgctggaag	ccgcaggcgt	caccaagtac	gtcgaactcg	gccccgacgg	cgtcctgtca	69060

•				•		
gccatggccc	aggactgcgt	gagcggcgag	ggctccgtct	tcatccccgt	actccgcaag	69120
gcgcgcccg	agcccgagag	cgtcaccacc	gccctcacca	cggcccacgt	ccacggcatc	69180
cccgtcgact	ggcaggcgtt	cttcgccggg	accggcgccc	ggcgcgtcga	cctccccacc	69240
tacgccttcc	agcgccagcg	ctactggccc	gccgtctcct	ccctctacct	cggcgacgtc	69300
gaggcgatcg	ggctcgacga	caccgcgcac	ccgctgctca	gtgcgggtgt	cgccctgccc.	69360
gagtccgacg	gcatggtgtt	cgccgggcgg	ctcgcgctct	ccacccacgc	ctggctcgcc	69420
gaccacgcca	tcctcggcag	cgtcctgctg	cccggtacgg	ccttcgtcga	gctggccacc	69480
cgcgccggcg	accaggtcgg	ctgcgattac	ctggaagagc	tgaccctcga	agcgcccctc	69540
gtcctgcccg	agcacggcgg	cgtccagctg	cgcgtgtggg	tcggcgccgc	cgacgagtcc	69600
ggccgacggc	cgttcgccct	gcactcccgg	gccgaaggcc	tgccggtcga	ggagccgtgg	69660
acgcggcacg	ccggcggtgt	actcgccgaa	ggegggegge	ccccggccga	cttcgacctg	69720
acggcctggc	cccgccggg	cgccgtcgaa	gtggaccttg	acgggcgcta	cgaccagctc	69780
gacggcatcg	gcttcgccta	tggccccacc	ttccgtggcc	tgcgtacggc	ctggcagctc	69840
gacggcgaga	tctacgccga	ggtcaggctg	cccgagggag	ccgagggcga	ggcgggccgg	69900
ttcggcctgc	acceggecet	gctcgacgcg	gcactgcacg	ccatcgggct	gggcggcctc	69960
ggcgccgacg	acggccaggg	gaggeteece	ttcgcctgga	gcggagtatc	gctgcacgcg	70020
ggcggggctg	ccgcactgcg	cgtccacctc	gctccggcgg	gcgccgaggg	cgtccgcctg	70080
gagatcgcgg	acgcctcggg	cgcaccggtc	gcggccgtcg	agtcgctcgg	gctgcgcccg	70140
gtgacggccg	agcagctccg	tgccgctcgt	gccacctacc	acgagtccgt	gttccgtcag	70200
cagtggaccg	agctgccggg	tctcggcgct	ccggccgcga	cccccgccgt	ccggtacgcg	70260
ttcctcggcg	gcgacagcgg	cgacagcggc	gacagcggtg	acaccgcagc	cgccgaccgt	70320
caccaggacc	tggcggcgct	cgccgccgcg	atcgacgccg	gaaggcccgt	accggacgag	70380
gtggtcgtcg	aactcgccgc	cgcgccctgg	gccgtgtcgg	cgtcggccgt	gcacagtgcc	70440
gcgcacgatg	cgctggcact	catccagacc	tggctcgcgg	acgaccggtt	cgccgccgca	70500
cgcctggtgt	tcctcacccg	cggcgcggtg	gccgcggacg	cgggcgacga	cgtgaccgat	70560
ctcgccgccg	ccaccgtgtg	gggcctgctg	cggtccgcgc	agacggagaa	cccggcagg	70620
atcgccctcg	tcgacaccga	cggccacgac	cggagcgagc	aggccctgcg	ggcggcgctc	70680
acctccgacg	aggagcggtt	cgcgctgcgc	gccggagcgg	tcctcgtgcc	ccggctcgcc	70740
cgggtcgaga	tccagcagga	cgactccgcc	cggacaccgg	ccctcacgcc	cggcggcacg	70800
gtactgatca	ccggagccac	cggagcgctg	ggcggtctct	tcgcccggca	cctcgccgcc	70860
gaacacggcg	tggagcggct	gctcctcgtc	ggcaggcgcg	gggccgacgc	ccccáacaca	70920

gccgaactc	g tegeegaact	cgccgagtcg	ggcaccctcg	ccacctgggc	ggcgtgcgac	70980
gtggccgaco	gggacgcgct	cgcggcactg	r ctcgcggaca	ttcccgccga	gcacccgctg	71040
accgccgtcg	g tccacacggc	cggagtcctc	gacgacggcg	tcatctcctc	gctgacgccc	71100
gagcggctct	ccgccgtgct	gcggcccaag	gtggacgcgg	cctggaacct	gcacgagctg	71160
acccggggc	tcgacctcgc	cgccttcgtg	ctcttctcct	ccacctccgg	cctcttcggc	71220
ggccccggac	agggcaacta	cgccgccgcc	aactccttcc	tggacgccct	cgcccagcac	71280
cgccgcgctc	acgggctccc	cgcgacctcg	acggcctggg	gcctgtggtc	cgtggccgac	71340
ggcatggcgg	gegeeetgga	cgcggccgac	gtcaaccgca	tgcggcgggc	cggactgccg	71400
ccgctgaccg	ccgccgacgg	cctcggcctg	ttcgacacgg	cggtctccct	cgacgaggcc	71460
tacatggaca	tgatgcgggt	ggacaccgaa	gtcctgcgca	cccaggccgg	ggccggtacc	71520
atcgcgccgc	tgctgcgcgg	tctcgtacgg	ggcgtggccc	gccggtcggt	cgacgtgtcg	71580
gccggtgccg	ggggcgccga	atcggagctg	cgcggcaggc	tggcggcgct	caccgccgcc	71640
gagcaggacc	gggcgctgct	ggacctggtg	cgtacgcagg	tcgcggcggt	cctcggacac	71700
gccggacccg	cggccgtgga	gtcgggacgg	gccttcaagg	aactcggttt	cgactcgctc	71760
accgcggtgg	agctgcgcaa	ccggctgaac	gccgccaccg	cgctgcgcct	gcccgcgacg	71820
ctgatcttcg	actatccgga	cccgaccgtt	ctcgcccggt	acctgcgcgg	cgagctgatc	71880
ggtgacgaca	ccacggacgc	cgtggccgag	ccgctcacgg	ccgtggccga	cgacgagccc	71940
atcgccatcg	tcgccatgag	ctgccgctac	cccggtgacg	tacgcacccc	cgaggacctg	72000
tggcagctgc	tgacggcggg	cgccgacggc	atcacccggc	tccccgagaa	ccggggctgg	72060
gacaccgagg	gcctgtacga	cccggacccg	gagagccagg	gcacctcgta	cgcccgcgac	72120
ggcggattcc	tgcacgacgc	ggccgagttc	gacgcctcct	tcttcgggat	ctcgccgcgc	72180
gaggccctcg	ccatggaccc	gcagcagcgc	ctcctcctgg	agacgacctg	ggaggtcttc	72240
gaacgggccg	gcatcgcgcc	gtccgcggtg	cgcggcagcc	ggacgggtgt	cttcgcgggt	72300
gtcatgtacc	acgactacgg	cgcgcgcctg	cacgccgtgc	ccgacggcgt	cgagggctac	72360
ctcggcaccg	gcagctccag	cagcatcgtg	tcgggccggg	tegeetacae	cttcggcctg	72420
gagggcccgg	cggtcaccgt	cgacacggcc	tgctcctcgt	cgctggtcgc	cctgcacctc	72480
gcggcccagg	cgctgcgcaa	cggcgagtgc	tegetegete	tegegggegg	tgtcaccgtg	72540
atgttcacgc	ccggaacctt	catcgagttc	agccgtcagc	gcggcctggc	cgccgacgga	72600
cgctgcaagt	ccttcgcggc	cgccgccgac	ggcacgggct	ggggcgaggg	cgcgggcatg	72660
ctcctgctgg	ageggetete	cgacgcgcga	cgcaacggcc	accaggtcct	cgcggtcgtc	72720
cgcggctcgg	ccgtcaacca	ggacggcgcc	agcaacggcc	tcaccgcccc	gaacggcccc	72780
tcgcagcagc	gcgtcatccg	gcaggccctc	gccaacgccg	gtgtcgccgc	cggacacgtc	72840

gacgccgtcg	aggcacacgg	caccggcacc	accctcggtg	accccatcga	ggcgcaggcc	72900
ctgctcgcga	cctacggcca	ggagcacacc	gacgaccggc	cgctgctcct	cggctcggtg	72960
aagtccaacc	tcggtcacac	acaggccgct	tcgggcgtcg	ccggtgtcat	caagatggtc	73020
atgtcgatgc	ggcacggtgt	gctgccgaag	accctgcacg	tcgacgagcc	gaccccgcac	73080
gtggactggt	cggcgggcgc	ggtctcgctc	ctcaccgagc	agaccccgtg	gcccgagacc	73140
ggccgtccgc	gccgcgcggg	cgtctcctcc	ttcggcatca	gcggcaccaa	cgcgcacgcc	73200
atcatcgagc	aggccccgga	gccggacccg	gcccgggcga	aggcgacggc	gcggcccgcg	73260
ccggacgccg	cggcgccgtc	gtccgtgccc	ctgatcgtgt	ccgcccgcgg	cgaggacgcg	73320
ctgcgcgccc	aggcccgcag	gctccacgcc	cacgtccacg	ccgaccccgg	cctgcgcgcc	73380
gtcgacctcg	gcctctccct	ggcgaccacc	cgctcggccc	tggagcagcg	cgcggcgctg	73440
gtggccggcg	accgcgcgga	actgctgcgc	ggcctggacg	ccctggcccg	cggcgaggac	73500
accgcggggc	tggtgcgcgg	caccgcccgc	gagggccagg	tggcgttcct	gttcaccggt	73560
cagggcagcc	agcggccggg	gatgggacgc	gagctgtacg	acgcgcatcc	cgtcttcgcg	73620
gacgcgctcg	acgagatctg	cggcgaactg	gaccggcacc	tcgaagtacc	gctcaagggc	73680
gtgctgttcg	cgaccgaggg	cgatctgatc	caccagaccg	cgtacacgca	gcccgcgctg	73740
ttcgccgtgg	aggtggccct	gttccggctc	ctggagagcc	ggggcgtgca	gcccgacttc	73800
ctggccggtc	actcgatcgg	tgagatcgcc	gcagcccatg	tggcgggcgt	cttctcgctc	73860
caggacgcca	gtgaactggt	cgccgcccgt	gggcggttga	tgcaggcgct	gccgaccggt	73920
ggcgtgatga	tegeegteea	ggcatcggag	gacgaggtcc	tgccgctgct	gacggaccgg	73980
gtgagcatcg	ccgcgatcaa	cggcccccag	tcggtcgtga	tcgcgggcga	cgaggccgac	74040
gcggtggcca	tcgccgagtc	cttcacggac	cgcaagtcca	ageggeteae	ggtcagtcac	74100
gccttccact	cgccgcacat	ggacggcatg	ctcgccgact	tccgcaaggt	cgccgagggc	74160
ctcgtctacg	agaacccgcg	catcccggtc	gtctcgaacc	tcacgggggc	cctggtcacc	74220
gacgagatgg	gttcggccga	cttctgggtc	cggcacgtcc	gcgaggccgt	ccgcttcctc	74280
gacggcatcc	gegeeetgga	agccgcgggc	gtcaccacac	acatcgagct	gggccccgac	74340
ggcgtgctct	gcgccatggc	ccaggaatgc	gtgagcggcg	aggacaccgt	cttcgtcccc	74400
gtactgcgcc	ccggccgccc	cgaggccgag	accgtcacca	ccgccctcgc	ccgcgtccac	74460
gtccagggcg	tacccgtgga	ctggcaggcg	tacttctccg	gcaccggcgc	ccagcgcgtc	74520
gacctgccca	cctacgcctt	ccagcgcaag	cgctactggc	tcgacgtcgg	cgtctccgtc	74580
gaggacgtgc	tggcggccgg	tctcgatgcg	gccgaccacc	ccctgctggg	cgccaccgtc	74640
tecetgeeeg	gatccgacgg	gctggtcctc	accggacgcc	tcgcgctgtc	cacgcacccc	74700

tggctgagcg	accacaccgt	catggacacc	gtcctgctgc	ccggcacggc	cttcgtcgaa	74760
ctcgccctgc	gggccggtga	actggtcggc	tgcggcgccg	tcgaagagct	ggcgctcgaa	74820
gccccgctca	ccctcgccga	ccagggcgcc	gtccagttcc	agctggccgt	ggacgcgccg	74880
gacggcgccg	ggcgccggac	cctgaccctg	cactcccgcc	gcgcgggtgc	cccggccgaa	74940
gagccgtgga	cacggcacgc	caccggcgtt	ctcacgcccg	aagcgtccgc	cgtgcccgcg	75000
caccccttcg	acctgaccgc	atggccgccg	gccgacgcgg	agcccgtgcc	caccgacgcc	75060
ttctaccccg	gegeggeege	ggccggcctc	ggctacggac	cggtcttcca	ggggctgcgg	75120
gccgcctggc	ggcgcggcga	cgaactgttc	gccgaggtcg	cactcgacga	ggagcacgag	75180
gccgacgccg	ccgcctacgg	gctgcacccc	gccctgctcg	acgcggccct	gcacgccatc	75240
ggcctcggag	cgcccggcgc	gcccgccgac	gccccggccg	aaggagcccg	gctgcccttc	75300
gcctggaccg	gcgtacgcct	gtacgcggcc	ggcgcggcgg	gcatccgcgt	ccggctgacc	75360
gecgccgcat	ccggcggcat	cgccctggac	gtggccgact	ccaccggagc	gccggtggcc	75420
tccgtcgagt	ccctgatcct	gegeeeegte	tccgcggagc	agctcggcgg	ggaccgcacg	75480
gcccaccacg	agtcgctctt	cggcgtcgag	tggaccaggc	tgtccctccc	caccggtgcg	75540
atcccctccg	gcgaacgctg	ggccgtactc	ggcgaggacg	agccggacct	ccgggtcggc	75600
ggcgaacgcc	tcgacgtgta	cagcggtctc	acggcgctgc	gcgaggaaat	cgccgcgggc	75660
acctcggcgc	cggacgtcgt	cgtcgtaccc	ctgtcctccg	ccgcgtccgg	tggcggacgt	75720
gcggggaccg	cccgggccgc	cgcgcaccac	gcgctggccc	tggtcaagga	gtggctggcc	75780
gacgaacggc	tcgacggcgc	acggctcgtg	ctgctgaccc	ggggcgcggt	ggccgccgta	75840
cccgacgagc	acgtgaccga	tctgacccac	gccccggtgt	ggggcctcgt	acggtccgcg	75900
cagtcggaga	accccggccg	gttcgtgctc	gccgacaccg	acggcgccga	cgcctccttc	75960
ggggcgctgg	ccgccgcgct	cgccaccgac	gagccgcagc	tcgccctgcg	gtccggcgag	76020
gcacacgcct	teeggetgeg	ccgcatcgcc	cgtaccgcga	gcgatccggc	cggtgaaacc	76080
ggcacgggcg	acggccccac	ccgtgccgac	gacgccggga	ggatcgccgc	cgacggcacg	76140
gtcctggtca	ccggcgcgag	cggcaccctc	ggcgggctct	tcgcccgcca	cctggccacc	76200
acgcacggcg	cacggcacct	gctgctgctg	agccgtcgcg	gggaccgggc	ccccggggcc	76260
ggggaactga	cccgtgagct	gaccgaagcg	ggcgtggacg	tgacctgggc	ggcgtgcgac	76320
geggeegaee	gggacgcgct	cgccgccgta	ctcgccgcga	tcccggccga	ccggccgctg	76380
acggcggtcg	tccacaccgc	cggtgtgctc	gacgacggca	tcatcgactc	cctcacaccc	76440
gaacgcctcg	acaccgtgct	gcggcccaag	gtcgacgcgg	cctggaacct	gcacgagctg	76500
accgagggcc	acgaactctc	cgccttcgtg	ctcttctcct	cggtcgccgg	ctgcttcggc	76560
gccgcgggcc	agggcaacta	cgcggcggcc	aacaccttcc	tggacgccct	cgcccagcac	76620

cgcaaggccc	ggggcctcac	cgccagttcc	ctcgcctggg	gcctgtggga	gacgacggac	76680
ggcatggccg	gcgcgctcga	cgaagccgac	ctgacccgca	tggcccgctc	cggtgtggcc	76740
gcgctcgccc	ccgacgaggg	cctggccctc	ttcgacacct	cccgcaccct	ggacgacgcg	76800
gteetegtee	ccatgcggat	cgaactgggc	gcgctgcgcg	cccaggccgc	ggacggcacc	76860
ctgccgccgc	tgctgcgcgg	actggtgcgc	actcccgcgc	gccgggccgc	cggctccacg	76920
gcacgcgccg	gaacgcgccc	cggcaccgac	ccggcgggca	ccctcgaaga	gegeetegee	76980
ggactgtcgg	ccgccgaacg	cgaccgggcc	ctcatggagc	tggtccgcac	acaggtggcc	77040
gcggtcctgg	gctacgcggg	ccccgacgac	gtcgacgccg	cacggggctt	cctcgacctg	77100
ggcttcgact	cgctcacggc	cgtcgacctg	cgcaaccgcc	tcacggcgag	cgccggactc	77160
cggctgcccg	tcacgctcat	cttcgactac	ccgtctccga	ccgcgctcgc	cgcgtacctc	77220
gccgaacgcc	tcggccaggg	cgacccgtcc	cgccggcccg	tccacgcgga	actcgacaag	77280
ctcgaatcga	tectetegae	ggtcggcccc	gacgacgtcg	aacgcgcggg	catcaccgcc	77340
cggctgcgag	accttctggc	gaagtggaat	gaaacgcaca	gtgcacagga	cagcgccgca	77400
gacgagcggg	aaatccagtc	cgcgacggcc	gacgagatct	tcgatctcct	cgacgacgaa	77460
ctcgggctgt	cctgaccggc	teetgeeegg	cgggcggccg	gccggtgcgg	agcaccggct	77520
cccggccgcc	cgcccgtccg	gcacccacct	tccgatccac	cggctccgcg	cgagctttcc	77580
gactctgacc	acggggatgg	cgtaaatggt	gaacgaggag	aagtacctcg	attacctcaa	77640
gcgggcgact	accgacctcc	gcgaggcacg	acgacggctg	cgcgaggtgg	aggaacggga	77700
gcaggagccg	atcgccgtcg	tggcgatgag	ctgccgctac	cccgggggga	tcgacacccc	77760
cgagaagctg	tgggacctcg	tegeceaegg	ccgggacgcc	gteteegeet	accccacgga	77820
ccgcggctgg	gacgccgaag	tcctcttcga	ccccgacccc	gagaccggga	tcgaggcgta	77880
cgaacaggtc	ggcggcttcc	tgcacgacgc	ggccgacttc	gaccccgcgt	tcttcgggat	77940
ctcgccgcgc	gaagccctcg	ccatggaccc	ccagcagcgg	ctgctgctgg	aaacctcctg	78000
ggaggcgttc	gagcgggccg	gaatcgaccc	ggcgaccctg	cgcggcagcc	gtacgggcgt	78060
cttcgccggc	ctgatgtacc	acgactacgc	cgcccggctg	ttcagcgtgc	ccgaggagat	78120
cgagggcttc	ctcggcaacg	gcagctccgg	cagcatcgcc	tcgggccgga	tcgcctacac	78180
cctcggcctc	gaaggccccg	ccgtcaccgt	cgacacggcc	tgctcctcct	cactggtcgc	78240
cgtgcacctc	geggeecagg	cactgcgcaa	cggcgagtgc	acgctcgccc	tcgccggtgg	78300
tgtcaccgtc	atgtcgaccc	ccggcacctt	caccgagttc	agccgccagc	gcggcctggc	78360
ggccgacggc	cgctgcaagt	ccttcgcggc	cgcggcggac	ggtacgggct	ggggcgaagg	78420
cgccggcatg	ctcgtcctgg	aacggctctc	cgaagcccgc	aggaacggcc	accccgtcct	78480

CC 1051

	•						
ggcactcgto	g cgcggttcgg	ccgtcaacca	ggacggcgcc	agcagcggto	tgacggcccc	78540	
caacgggccg	f teceageage	gegteateeg	ccaggcacto	gccggtgcgc	ggctgtcggc	78600	
cacccaggto	gacgcggtcg	aggcccacgg	caccggcacc	accctcggcg	, acccgatcga	78660	
agcgcaggco	ctgctcgcca	cctacggcca	ggaccgtccc	gacggccgcc	: cgctgtggct	78720	
gggctccatc	: aaatcgaaca	tgggtcacac	: ccaggccgcc	gccggtatcg	cgggcattat	78780	
caagatggto	atggcgatgc	gccacggcat	cctccccaag	accctgcacg	tcgacgagcc	78840	
gaccccgaac	gtcgactggt	ccgagggcgc	ggtctccctg	ctcaccgagt	ccgtgccgtg	78900	
gcccgagacc	ggcgcgccc	gccgcgcggg	agtctcgtcg	ttcggcatca	gcggcaccaa	78960	
cgcccacacc	atcctcgaac	aggccccgga	cgccgtcgag	gccgcacccg	ggaccgagcc	79020	
ccccgcggcg	gccgcaccgc	ccgtgcccc	gctctggacc	ctctccgcca	agagcccggc	79080	
cgcgctgcgc	gcccaggccg	ggaaactgca	cgcccacctg	accgcacacc	ccggcctgcg	79140	
ccccggggac	atcgcccact	cgetegeegt	cggacgcacc	gacttcgagc	accgcgccgt	79200	
cctcacctcc	gccgacgggc	ccgtgggcct	cgtccgtgcg	ctggaagccc	tcgcggactc	79260	
ggctcccgag	gacacggcac	ccgccgacag	ggcaccgggg	gtcacccggg	gccgcccggt	79320	
cgccgggaag	ctggcgttcc	tgttcaccgg	gcaggggagc	cagcggctgg	ggatgggccg	79380	
cgagctgtac	gagacgtatc	ccgtcttcgc	gcaggctttg	gacgcggtgt	gtgagcggct	79440	
gaatctcgaa	gtgccgctga	gggatgtcct	gttcggggcg	gatgcgggtc	tgctggacca	79500	
gacggtctac	acgcagaccg	cgttgttcgc	ggtcgaggtg	gcgttgttcc	ggctggtgga	79560	
gagctggggt	ctgaagcccg	acttcctggc	gggtcattcg	atcggtgaga	tcgcggccgc	79620	
gcatgtggcg	ggggtgttct	cgctggagga	tgcgtgcgcg	ctggtgtcgg	cgcgtggccg	79680	
cttgatgggt	gcgctgccgg	gtggcggcgt	gatgatcgcc	gtccaggcgt	cggaggacga	79740	
ggtcctgccg	ctgctcaccg	accgcgtgag	cattgccgcg	atcaacggtc	cgcagtcggt	79800	
cgtgatcgcg	ggcgacgagg	ccgacgcggt	ggcgatcgcc	gagtccttcg	cggaccgcaa	79860	
gtccaagcgg	ctcacggtca	gtcacgcctt	ccattcgccg	cacatggacg	ccatgctgga	79920	
ggacttccgg	gccgtggcgg	agggcctgtc	gtacgaggcc	ccgcgcatcc	ccgtcgtctc	7,9980	
caacctcacc	ggcgccctcg	tctccgacga	gatgggctcg	gccgacttct	gggtccgcca	80040	
cgtccgcgag	accgtccgct	tcctcgacgg	catccgcgcc	ctcaccgagc	gcaacgtcgt	80100	
ccacttcgtc	gaactcggcc	cggacgccgt	gctgtcggcc	atggcccagg	actgcccctc	80160	
cgccgacacc	gcggccttcg	tgcccgtact	ccgcaagggc	cgttcggaga	ccggttcgct	80220	
gaccgacgcc	ctcgcgcggc	tccatgtggg	cggggtggcc	gtcgactggg	acgcgtacta	80280	
ctccggtacg	gacgtccagc	gcgtcgacct	gcccacctac	gccttccagc	gcgcgcacta	80340	
ctggctcgac	gcaggccggc	ccctcggcga	cgtctcctcg	gccgggctcg	gtgcggccgg	80400	

ccacccgctg	ctcggggccg	ccgtggccct	cgccgacctc	gacggtttcc	tctacaccgg	80460
ccgtctctcg	ctcgacaccc	acccctggct	cgccgaccac	gccgtcatgg	gtteggeegt	80520
actgccgggc	accgccttcg	tcgaactggc	catccgcgcc	ggtgaccagg	tcggctgcga	80580
cctgctcgaa	gaactcaccc	tgcacgcacc	gctcgtactg	ccccggccg	gaggtgtgca	80640
ggtccagttg	tgggtcggcg	caccggacgc	caccggccgc	cgcaccctgg	gtgtgcactc	80700
ccgccccgag	cccgcaccgg	acgccgtcgg	cccggacgcc	gacgcggcgġ	agccgtggac	80760
ccggcacgcc	gacggtgtgc	tcgccacggg	tgccccgcag	ccgtccttcg	ccccgacgt	80820
ctggccgccg	gccggtgcca	ggcccctgcc	cgtcgacgag	ctgtacgccg	ggctcgccga	80880
ggcgggcctc	gaatacggcc	ccgccttcca	gggcgtccgc	gcggcctggg	cgagcgacga	80940
cgcggcctac	gtcgagatcg	cggccgccga	cggacagtgg	gccgatgccc	cgctgttcgg	81000
actgcatccc	gegeteeteg	actcggcgct	gcacgccatc	ggtctggccg	ggctcgtcga	81060
ggacaccggc	cgcggccggc	tgcccttctc	ctggtccggg	gtgtccctgt	acgccgtggg	81120
cgcctcggtg	ctgcgcgtac	ggctggccaa	ggccggaccg	gacgcggtgt	ccctggccct	81180
cgccgacggc	gccggacagc	ccgtgggcga	catcgcctcg	éteaceetge	gccctgtctc	81240
ggccgagcag	ctggacaccg	ggcggggcgg	tcaccatgac	gcgctgttcc	aggtggactg	81300
gaccccgctg	aacctgcccc	gtgctgtcga	cagccgctgg	gccgtgctcg	gcgagcccgt	81360
ccccaccgac	gagccgggcg	acggcgtggc	gcgccacgcg	gacgcggagg	cgctgagcgc	81420
ggccctcgac	gcgggtgctc	cggtgccgga	tgccgtactc	gtacgccacc	ccgccctgcc	81480
cgaacccacc	cccgaggcgg	tccaccaggc	cgcgcaccgg	accctcggcc	tgctgcggca	81540
ctggctcggc	gacgaccggc	tcgccgacag	ccgcctcgtc	ctgctcacgc	acggcgcggt	81600
cgccgcggga	gacgcggacc	aggtacccga	cccggtgcac	gccgtggtct	gggggctggt	81660
ccgctccgca	cagtccgagc	acccgggccg	gttcctgctg	atcgacagcg	attccggtat	81720
cgacacactc	tcctggccga	cgttcggtgc	cgttctcgcc	tccgaggagc	cgcaggtcgc	81780
cctgcgcggc	ggcgtggccc	acgcacccag	gctggccaag	gttcccgcca	ccgctaccgc	81840
cgctgccgtc	gtcgagacgt	cgtcgtacga	ccctgacggc	accgtcctcg	tcaccggggc	81900
cageggcaeg	ctcggcggac	tegtegeeeg	tcacctcgtg	accgggcgcg	gcgtacggcg	81960
tctgctgctg	ctgagccgtc	ggggcgccga	tgcccccggt	gccggtgaac	tggccgctga	82020
gctgaccggg	ttgggtgccg	aggtgtcgtg	ggcggcgtgt	gacgcgggtg	accgcgacgc	82080
gctcgcggcc	gtactggccg	ccgttcccgc	agcgcacccg	ctcaccgcgg	tcgtccacac	82140
ggccggtgtc	ctcgacgacg	gcgtgatcgg	ttcgctcacc	ccggagcgcc	tcgacacggt	82200
ccttcgcccg	aaggccgacg	ccgctctcca	cctgcacgaa	ctgacccgcg	acctgcccct	82260

CO 1051

gaccgcctto	gteetettet	cctccgcgg	cggggtcttc	ggcgcaccgg	gtcagggcaa	82320
ctacgccgcc	gccaactcct	tcctggacgc	cctcgcccag	taccggcgtg	cccacgggct	82380
ccccggccgg	, tcgctggcct	ggggcctctg	ggaggacgcc	gaaggcatgg	cgggcgccct	82440
cgaccgcgcc	gacctcgacc	ggatgaagcg	r cggcggagtc	cacggactca	ccgcctccga	82500
gggcctcgcg	ctcctcgacc	tegeegaege	: cctcggcgcg	gaccgtgacg	accagggcca	82560
ggatcaggag	acggccggac	gggcgctgct	cgtgccgatg	cggctgaccc	ttcccgccgt	82620
cgcccccggc	gccgaagtcg	ccccgctgtt	ccggggattg	gtccgcaccc	ccgcgagacg	82680
cgtcgcggcc	ggagccacca	cgggagccac	caccggaacc	gggcccgacc	tctccgctct	82740
cgaacggcgg	ctcctcggcc	tcgacgcgcc	ggagcgggag	cggctgctcc	tcgacctcgt	82800
ccgcggccat	gtcgccgacg	tgctcggcca	cggctccccg	gacgccatcg	accccgaaca	82860
ggccttcagc	gagctgggct	tcgactccct	gacggcggtg	gaactgcgca	accgcctggg	82920
cgcggccatc	ggccggcggc	tgcccgccac	gctgatcttc	gaccacccgg	cctcgctcac	82980
cctcgcccgt	cacctctccg	gtgaactcgc	cgggtcccag	gccgcgttgg	cgccagccgg	83040
gcccgcgccc	accgtgaccg	acgacgaccc	gatcgccatc	gtggcgatga	gctgccgcta	83100
ccccggcggc	gtgaccaccc	ccgaggagct	gtggcagctc	ctcgcgggcg	gcggggacgc	83160
gatatccggc	ttccccgccg	accgcggctg	ggacgtcgag	tcgctgtacg	accccgatcc	83220
cgaccacccg	ggcacctcgt	acacccgcca	cggcggcttc	ctgcgcgacg	ccgccgcgtt	83280
cgatccgacg	ttcttcggga	tcagcccgcg	cgaggccgtc	gggacggacc	cgcagcagcg	83340
gctcctcctg	gagaccacct	gggaggcgtt	cgaacgggcc	gggatcgacc	cggccaccgt	83400
gcgcggcagc	cggaccggtg	tgttcgcggg	cgtcatgtac	cacgactacg	cggccctgct	83460
ggagcgctcg	aaggacggag	cggacggctc	cctcggctcg	ggcagcaccg	gcagcatcgc	83520
ctcgggccgg	gtctcgtaca	ccttcggtct	cgaaggcccc	gccgtcacga	tcgacaccgc	83580
ctgctcgtcg	tcgctcgtgg	ccctgcacat	ggccatccag	gcgctgcgca	ccggcgagtg	83640
cgacatggcg	ctggccggcg	gtgtcaccgt	catggcgacc	cccggcacgt	tcatcggctt	83700
cagccgtcag	cgcggcctgt	ccgccgacgg	ccgctgccgc	gccttctcgg	ccgacgccga	83760
cggtacgggc	tggggcgagg	gcgtcggcat	gctcctcgtg	gaacgcctgt	ccgacgcccg	83820
ccgcaacggg	catccggtcc	tggccgtggt	ccgtggctcg	gcgatcaacc	aggacggcgc	83880
gagcaacggc	ctcaccgccc	ccaacggccc	ctcgcagcag	cgcgtgatcc	gcgcggccct	83940
cgcgagcgcg	ggcctgtcgg	ccgccgaggt	cgacgcggtc (gaggcgcacg	gcaccggtac	84000
gacgctcggc	gateegateg	aggcgcaggc	gctcctggcc a	acctacggcc	gggagcacac	84060
cgaggacagc	ccgctgtggc	tcggctcgat	caagtccaac a	atgggtcaca	cgcaggcggc	84120
cgccggtgtc	gcgggcgtca	tcaagatggt	cctcgccatc o	cagcacggcg	tgctgccgcg	84180

caccctgcac	gcggaccggc	cctcgcccca	cgtggactgg	tcgcagggcg	ccgtctcgct	84240
gctcaccgag	tccgtcccgt	ggccggagac	gggccgtccg	cgccgcgcgg	gcgtgtcgtc	8,4300
gttcggcatc	agcggcacca	acgcgcacac	gatcatcgag	caggcgccgg	aggaggccac	84360
ggtggccccg	gccgacgcgg	tggccgcgcc	gagcgcgctg	cccctgcagc	tegegggeeg	84420
cagcgccgag	gcgctctccg	cccaggcccg	tgcgctgagc	gcacacctga	ccgcacaccc	84480
cgacgtcccc	ctcgcagacc	tegeetaete	cctggccacg	agccgtgcca	ccttcgacca	84540
ccgggcggtc	ctggtcgcga	cggagggcac	aacggccgcc	acggccgtca	cggcgctcga	84600
cgccctcgcc	gaccggcgca	cggcaccggg	cctggtgcgg	ggcacggcca	gcaagggcgg	84660
tegeaeggeg	ttcctgttca	cggggcaggg	gagccagcgg	ctggggatgg	ggcgtgagct	84720
gtacgaggcg	catcccgtct	tcgcgcgggc	tctcgacgcg	gtgtgtgatc	gcctggaact	84780
gccgctgaag	gatgtgctgt	tcggtactga	cgcgggtctg	ctgaacgaga	ccgtgtacac	84840
gcagccgggt	ctcttcgccg	tcgaggtggc	gctgttccgt	ctgctggaga	gctggggtgt	84900
gaagcccgac	tteetggeeg	ggcactcgat	cggtgagatc	gccgcagccc	atgtggccgg	84960
ggtgctctcc	ctcgatgacg	tgtgcgctct	ggtggaggcg	cgtgggcggt	tgatgggtgc	85020
gctgccgggc	ggtggcgtga	tgatcgccgt	ccaggcgtct	gaggctgagg	tcctgccgct	85080
gctgaccgac	cgggtgagca	ttgccgcgat	caacggcccc	cggtcggtcg	tcatcgcggg	85140
cgacgaggcc	gacgcggtcg	cgatcgtgga	gtccttcacg	gaccgcaagt	cgaagcggct	85200
cacggtcagt	cacgccttcc	actcgccgca	catggacggc	atgctcgacg	ccttccgtga	85260
aatcgcggag	ggtctgtcgt	acgaggctcc	gcgcatcccg	gtcgtctcca	acctcaccgg	85320
ggccctggtc	tcggatgaga	tgggttcggc	ggacttctgg	gtgcggcacg	tccgtgaggc	85380
cgttcgtttc	ctggatggca	tccacgccct	ggaggccgcg	ggcgtgacga	cgtacgtcga	85440
acteggeece	gacggagtcc	tgtcggcgat	ggctcaggag	tgcgtgaccg	gcgaggactc	85500
cgtcttcgtg	ccggtcctgc	gctcgggtcg	tcccgaggcc	gagagcgtca	ccacggccct	85560
cgcccaggcg	catgtccgcg	ggatcgccgt	cgactggcag	gcgtacttcg	ccgggaccag	85620
tgcccagcgc	gtcgacctgc	ccacctaccg	cttccagcgc	gagcactact	ggcccgagac	85680
gggcatcccc	ctgcccggcg	acaccgctgg	gctcgggctc	gccgccgcgg	gtcatccgct	85740
gctgggtgcg	gccgtgacac	tcgcggacgc	cgacggatgc	gtcctcaccg	gtcggctctc	85800
cctgcggacg	catccctggc	tcgcggacca	cgccgtcatg	gggtccgtac	tgctcccggg	85860
aacggctctc	gtcgaactgg	ccctgcatgc	gggcgagcgc	gtcggaaccc	gtgccctgga	85920
cgagctgacg	cttcaggccc	cgctgatcct	gccgaacgag	ggcgcggttc	agctgcaagt	85980
cgtggtcggt	gcgcccgatg	ccgcgggcca	ccgcacggtg	gccgtgtact	cccgcccgga	86040

50 (054

cgccgacggd	gaagcgtggg	tccggcacgc	cgacggactg	ctggtggacg	, aggtccgggg	86100
cgccgccgc	gacctcggcg	tctggccccc	ggccggtgcg	accgccgttc	: cggtggacga	86160
cgcctacgcg	g atcttggaga	cctcggggct	cgcgtacggc	cccctgttcc	: aggggctgcg	86220
ggcggcctgg	g cggcgagcag	gagagctgtt	cgcggaactg	gccctgccca	cggaggcgca	86280
ggcggacgcc	geegegtteg	ggctgcaccc	tgcgctgctg	gactcggcgc	tgcacaccct	86340
ggcgctgggt	gatctgctgt	ccggcgcgga	cgcggaggaa	acgcccggcg	ccgcacggct	86400
gccgttcgcc	: tggcgtggtg	tccgcctcca	cgcggccggt	gccccggcgg	tacgggtccg	86460
gctggccgag	gccggtcagg	gcgcggtgtc	gctggaactg	gccgactccg	cgggtgcccc	86520
cgtcgcctcg	gtggattccc	tggtactgcg	ggcgatgtcg	cccgagcagc	teggegegge	86580
gagcgccggc	cgccaggagt	cgttgttcca	gatcgactgg	gtggagccgg	cggccgaccg	86640
gacggcggct	gcgaccgatg	tcgaacgggc	cctggtgggc	ccggagctgc	ggggtctgga	86700
cgccacgccg	tacgccgacc	tggccgcgct	ggcggccgcg	gactccgacg	tgcccgaact	86760
cgtgttcatc	accacgcgag	cggagtcgga	gccggagggc	ctgccgggga	cggtgcacgt	86820
ccgggccgtc	gacgcgctca	cccacgtacg	ggcatggctg	gccgaggaac	gcttcgcgtc	86880
cgcccggctg	gtgttcgtca	cccgcggtgc	catgaccgtg	ggttcggacg	aggccgtccg	86940
cgatctcgcg	ggtgccgcgg	tgtggggtct	ggtccgctcc	gccggtaccg	agcaccccgg	87000
ccggttcgct	ctcgtcgatc	tcgacgacga	cgacgtgctg	cccgagcaga	ccgtcctgac	87060
ggccctggcc	gcaggggaat	cggaactggt	cgtacgcgag	ggatccctcc	ttgtgccgcg	87120
cctcgcgcgt	gctgctgtcg	ttgagggttc	cggtcgtgaa	ctggacgtcg	acggcacggt	87180
gttggtgacg	ggtgcgagtg	gcaccttggg	tggtttgttc	gcccgtcatt	tggtggttga	87240
gcgtggtgtg	cggcgcctgc	tgttggtgag	tcgtcgtggt	ggggctgcgg	agggtgctgc	87300
tgaactgggc	gccgaactca	cggagctggg	tgctgatgtg	cggtgggcgg	cgtgtgatgt	87360
ggccgaccgt	gaggcgcttg	agtcggtcct	ggccgggatt	cccgccgagt	atccgttgtc	87420
gggtgtggtg	cataccgctg _.	gtgtgctgga	cgacggtgtg	gtgtcgtccc	tgaccgctga	87480
gcgcgtgtcg	geggtgetge	gtccgaaggt	ggacgcggca	tggaacctgc	atgagctgac	87540
ccgtggcctg	gatctttctc	tcttcgtgtt	gttctcgtcg	gctgccggtg	tgttcggtgg	87600
tgccggtcag	gcgaactatg	cggcggcgaa	tgtgttcctg	gacgctctgg	cccagcaccg	87660
cagggcccag	ggtctggccg	cgacctccct	tgcgtggggt	ctgtgggctg	agccgggtgg	87720
tatggcgggc	gcgctggacg	ctgatgatgt (gtcgcgtctg	ggccgtggtg	gtgtcagcgg	87780
gctgtccgcg	ggggagggtg	tggcgttgtt (cgacgcggca	teegegteeg	aacaggcctt	87840
gttcgttccc	gtgaagctgg (acctggccgc (catgagagaa (caggcgggta	gcgggatgct	87900
gccgccgctg	ctcagcggtc	ttgtccgtac d	cccacccgc (egegeegegg	gcaccgccaa	87960

cgctgcggta	teegeeeegg	gggaccgcct	cgccggattg	teegeegetg	aacaggtggc	88020
gcacgtactg	gagttggtcc	gtactcaggt	tgccgcggtg	ctggggtacg	cctccccgga	88080
ggcggtcgag	aaggacagct	cgttccgcga	gctgggcttc	gactcgctga	ccgccgtcga	88140
gctgcgcaac	ctgctcggcg	cggcgacggg	gctgcgcctg	cccgccacgc	tegtettega	88200
ctacccgacc	tcagcggtcc	tggccgacca	cctgcggtcg	gagctggtcg	gaacggcgcc	88260
cgtgacatcg	gctccggtcg	ttatagagga	ccgggacgat	gacgagccca	tcgcgatcgt	88320
gggcctcggc	tgccgctacc	ccggcggcgt	ggagagcccg	gacgacctct	ggcggctcgt	88380
cctggaaggc	cgggatgcca	tcacggagtt	cccggaggac	cggggctggg	acgtggacgc	88440
gctgttcgac	gccgaccccg	accagcaggg	tacgagttat	gcccgcgagg	gcggcttcgt	88500
ccgcgacgcg	ggccacttcg	acccggcgtt	cttcgggatc	tegeegegeg	aggccgtggc	88560
catggacccg	cagcagcgac	tcctcctcga	aacctcgtgg	gaggcgttcg	aacgggcggg	88620
categaceeg	geggeeetge	gcggcagccg	gaccggcgtc	ttcgcgggtg	tgatgtacca	88680
cgactacgct	teceggetea	cggccctccc	cgagggcgtc	gagggcttcc	tcggcacggg	88740
caacgcggcg	agcgtcatct	ccggacggct	gtcgtacgcc	tteggeetgg	aaggcccggc	88800
catcaccgtc	gacacggcct	gctcgtcctc	gctggtcgcc	ctgcacctgg	cggtgcaggc	88860
gctccgcaac	ggcgagtgtt	ccctcgctct	cgcgggcggt	gtcacggtca	tggcgacccc	88920
cgctgccttc	gtggagttca	gtcgccagcg	cgggctcgcg	gccgacggcc	ggtgcaaggc	88980
gttctcggcc	ggcgccgacg	gcacgggctg	gtccgagggc	gegggegtee	tgctggtgga	89040
geggetetee	gacgcgcggc	gcaacggtca	cccggtgctc	geggtggtee	gtgggtcggc	89100
gatcaaccag	gacggtgcga	gcaacggtct	gacggctccg	aacggtccct	cgcagcagcg	89160
ggtgatccgc	caggcgctgg	ccagcgcggg	cctgtcggcg	gcggatgtgg	acgtcgtgga	89220
ggcgcacggc	accggcacca	ccctcggcga	cccgatcgag	gcgcaggcgc	tcctcgccac	89280
ctatggccag	gagcacacgg	acgagcagcc	gatgatgata	ggctcgatca	agtccaactt	89340
cggccacacg	caggccgccg	ccggtgtcgc	gggcatcatc	aagatcgtcc	aggcgatgcg	89400
tcacggtgtc	gtccccaaga	cgctgcacgt	ggacgagccc	accccgcacg	tcgactggtc	89460
ggcgggcgcg	gtctcgctcc	tcaccgagca	ggtggcctgg	cccgaaaccg	gccgtccccg	89520
ccgcgcggcg	atctcttcct	teggetteag	cggcaccaac	gcgcacgcca	tcatcgagca	89580
ggcccccgac	cccgctcccg	aggacctgcc	cgacgcagga	cccgacgtac	ggcccgagcc	89640
cgcccggact	ccgggcagcc	tgccgtggct	cctctcggcg	aagggcgcgg	acgccctgcg	89700
cgaccaggcc	geceggetec	gggcgcatgc	catcgggcac	cccgagctgt	ccctcgccga	89760
catcggctac	gecetggeca	cgagcaggac	cgcgctcgac	cggcgggccg	ccgtggtcgc	89820

50 IO51

cggggaccgc	gaggagttcc	tcgcgggact	cgcggcgctc	gccgagggtg	ccacggcggc	89880
cggcctgacg	gagggatcac	cggccggtgg	caagctcgcc	ttcctgttca	ccgggcaggg	89940
cagccagcgc	ctggccatgg	gcagggagct	gtactccgcc	catcccgtct	tegeceggge	90000
cctggacgcc	gtgtgcgacg	ggctcgccct	ggacgtaccg	ctgaagcagg	tgctgttcgg	90060
gtccgacgcg	gacctgctcg	accggaccgc	gtacacccag	cccgccctct	tegeegtega	90120
agtcgcgctg	ttccgcctgg	tcgagagctg	gggcctgaag	cccgacttcc	tggccgggca	90180
ctccatcggc	gagatcaccg	cggcccatgt	ggccggggtg	ctctccctcg	acgacgcctg	90240
cacgctggtc	gccgcccgcg	gccggctcat	gcaggcactg	cccaccggcg	gcgtgatgat	90300
cgccgttgag	gcatcggagg	acgaggtcct	gccgctgctc	accgaccggg	tgagcatcgc	90360
cgcgatcaac	ggcccccagt	cggtcgtgat	cgcgggtgac	gaggccgacg	cggtggcgat	90420
cgcggagtcc	ttcaccggtc	gcaagtccaa	gcggctcacg	gtcagccacg	ccttccactc	90480
gccgcacatg	gacggcatgc	tcgacgcctt	ccgcgaggtc	gccgagggac	tgtcgtacgg	90540
gaccccgctc	atcccggtcg	tctcccacct	caccgggacc	ctggtcaccg	acgagatgcg	90600
gtcgccggac	ttctgggtcc	ggcacgtccg	cgaggcggtc	cgcttcctgg	acggcatccg	90660
cacgctggag	gacgcgggcg	tcaccacgta	catcgaactc	ggccccggcg	gcgtcctctc	90720
cgcgatgggt	cagtcgtgcg	tcacgcgcga	cgacgcggcc	ttcctcccgg	ccctgcgcgc	90780
ggaccgctcc	gaagaggaga	cgctcacctc	ggccgtcgcc	cgggcacacc	tgcgcgggat	90840
caccgtcgac	tgggacgcgt	actactccgg	caccggcgcc	cggcgcgtcg	acctgccgac	90900
gtacgccttc	cagaggcagc	gctactggct	ggaggccccc	gcccacgccc	ccggcgggga	90960
cgtgacgtcc	geegggeteg	geteegeggg	gcacccgctc	ctcggcgcgg	ccgtcgaact	91020
gccggactcg	gacgggttcc	tgttcaccgg	gcggctctcc	ctgcgcaccc	acccctggct	91080
cggcgaccac	agggtggcgg	gcaccgtcct	gctgccgggc	gccgcgctgc	tggaactcgc	91140
egtgcgcgcc	ggggaccacg	cgggctgcga	tctgctggag	gacctcacgc	tggaggctcc	91200
gctcgtactg	cccgaggcgg	gcggggtaca	gctgcggctc	gtcgtggccg	aacccgacgc	91260
gtcgcgcagg	cgggtgttcc	acatctactc	ccgcccggag	gacgcggcct	tcgaggagcc	91320
gtggacccgg	cacgccggcg	gtgtcctggc	cgtcgagggc	gcgcacccgg	ccgaggcgga	91380
gtccgagtgg	ccgcccgccg	gagccgtccc	ctgcccggtg	gaggacctct	acccgtcgct	91440
cgacgccatc	gggctcggat	acggtcccgc	gttccgcaat	ctgctgctgg	cctggaagcg	91500
cggcgacgag	gtgttcgccg	aggtcgctct	cggcgaggac	cggcggaccg	aaggcgccct	91560
ctacgggctc	cacccggcgc	tgctcgacgc	cgccctgcac	gcggtcggcc	tcggggactt	91620
cttccccgac	gggcccgagg	gcgcgcggct	gccgttctcg	tgggacggcg	tgcggctgca	91680
cgccgtgggc	gccgcggcgc	tccgggtacg	gatggcaccg	gccgggcagg	acgcggtcac	91740

gctggccgtc	tccgacgaaa	cgggccggcc	ggteeteace	gtcgactcgc	tcgtcctgcg	91800
tccgctggcc	ctcgatggtc	cgggcgggct	cggcggagcg	ggccggggac	cgggttcggt	.91860
gcgcgacgcg	ctgttccagg	tcgactggca	. cgcgctgccg	ctgcccgagg	cgcagtcacc	91920
ggccgaaggc	cgctgggccc	tgctcggcgg	cgacccgctg	aagctggccg	ccgcgctgga	91980
gcgcaccggg	gtcctggagc	cgggcgcgct	gttcggcacg	gcctccgagg	acaccggcgg	92040
gcaccctcgc	gacctgtccg	ccctggcgga	cgcggtcgag	ctggccgagg	cactcgggga	92100
gcccgcgccc	gagaccgtcc	tegteteect	ggcacccgac	ctcgccgcca	cgggcggcct	92160
cgcgtcggcc	gcccaccgcg	ccgccgcgga	cgcgctggag	ctgatccagg	cctggctggc	92220
ggacgagcgg	ctcgccggtt	cacggctggc	cctcgtcacg	cggggcgccg	tcgccacgga	92280
ccccgacgcg	gacgtggacg	acctcgcgca	cgccgcggtg	tggggactgg	tgegeteege	92340
gcaggccgag	caccccggcc	ggctggttct	ggtcgacctc	gacgacgagg	acgactccta	92400
ccgggccctg	cccgccgcgc	tcgacaccga	tgagacccag	ctcgccgtgc	gcgacggggc	92460
cgtcctggcc	ccgcgtctgg	cgcgagcggt	catcgccccģ	gcaacggatg	cggcggcccc	92520
ggacgttgcc	ccggacccgg	agggcaccgt	cctcatcacg	ggcgccagcg	gcaccctcgg	92580
cggcctgctg	gcccggcacc	tggtgacgga	gcacggtgtg	cggcatctgc	tgctcaccag	92640
ccgcaggggc	gccgctgccg	aaggcgccac	ccaactcgca	gacgaactcg	tcacgttggg	92700
tgcgcaggtc	acctgggcgg	cgtgtgacgc	ggccgaccgg	gacgcgctgg	ccgcgctgct	92760
ggagtccgta	cccgcggccc	atccgctgac	ggccgtcgtg	cacaccgccg	gtgtgctgga	92820
cgacggcacg	gtcgagtcgc	tgaccgccgg	acggatggcg	acggtgctgc	ggcccaaggt	92880
cgacgccgcg	tggaacctgc	acgaactgac	ccacggactc	gacctggccg	cattcgtcct	92940
gttctcctcg	gcggccggtg	tgttcggcaa	cgccgggcag	gccaactacg	cggcgggcaa	93000
caccttcctg	gacgccctcg	cccagcaccg	ccgcgcccag	ggcctcacgg	ccgtctcact	93060
ggcctggggt	ctgtgggacg,	acgaggcggg	catggcagcc	accctcgacg	agcaggaccg	93120
gcggcgcctg	agccggggca	gcatgaaccc	gctgtcggtg	gccgaggggc	tcgcgctctt	93180
cgacgccgcg	ctgccgggcg	gggcatecte	cggcgccgtg	cccgagggcg	cgcggaccgc _.	93240
gagcgtactc	gtgcccgcgc	ggctcgactt	ggccgtgctc	caggcccaag	tgggggatct	93300
cgtaccgccc	ttgctgcgcg	gcctgctccg	tactccggta	cggcgcaggg	cgagcggcgc	93360
ggcggccgac	gcgcccgact	cgctggcgca	geggetegee	caactgccgc	ccgccgaacg	93420
ggaccgggtg	ctgctcgacc	tcgtctgcac	ccaggtggcc	caggtgctgg	gccacagcgg	93480
cgcggccgcc	atcgaaccgg	gaagcgcctt	caaggaactc	ggcttcgact	cgctgaccgc	93540
ggtggagctg	cgcaaccggc	tcggtgccgt	gacggggctg	cgcctccccg	ccacgctcat	93600
					1	

5 4 IO 5 4

cttcgactac	ccgacccccg	aagcgctgag	cggacatctg	cgctccgcgc	tgcccctcga	93660
cgaggacgga	ccgtccgtct	tcagcgaact	cgaccggctg	gagagcgcct	tgggcgcggc	93720
ggacgcggac	agcgtcacgc	gttcacggat	cacgatgcgc	ctccaggccc	tgatgaccaa	93780
gtggaacgac	gcacaggacg	cgaacggcgg	cgccccgac	gaggacgccg	acgacggcgc	93840
cctcgaaacg	gcgaccgacg	acgagctgtt	cgacctgctc	gacaacgagc	teggegeete	93900
ctgagaaacc	gcgcggcgcg	cctcccttcc	gggccttccg	ggcggggggc	gcgccgcccc	93960
gcaccaccgc	aacagccacg	ggatcccgca	cgccgggacc	ccgggccacc	cagacgaccg	94020
accgtacaac	cgcctctctg	gcatggagcc	cacgcaatgg	tgaacgagga	caagcttcgc	94080
gactacctca	agcgggcgac	cgccgatctg	cgccaggccc	gcaggcggct	gcgcgaggtc	94140
gaggacaaga	accaggaacc	catcgccatc	gtcgcgatga	gctgccgcta	ccccggcggc	94200
gtccgcagcc	ccgaggacct	gtggcggctc	gtggagaacg	gcgacgacgc	cgtctccggc	94260
ttccccgtcg	accgcggctg	ggacgtggag	gcgctctacg	acgccgaccc	cgacagctcc	94320
ggatccagct	acgtcagcga	gggcggcttc	ctctacgacg	ccgcgagctt	cgaccccgcc	94380
cccttcggga	tetegeegeg	cgaggccctc	gccatggacc	cgcagcagcg	gctgctcctc	94440
gaagcgtcct	gggaggcgtt	cgagcgcgcg	ggcatcgacc	cgtcgtccgt	gcgcggcagc	94500
cggacggccg	tgttcgccgg	tgtgatgtac	cacgactaca	ccgcgcgcct	cgattccgtg	94560
cccgagggcg	tcgaaggatt	cctcggcacc	ggcagctcag	gcagcatcgc	ctcgggccgg	94620
gtggcctaca	cgttcggcct	ggagggcccg	gcggtcaccg	tcgacacggc	ctgctcgtcc	94680
tcgctcgtca	ccctgcacct	ggccgtccag	gcgctgcggg	ccggcgaatg	ctcgatggcg	94740
ctcgcgggcg	gtgtcaccgt	catggcgacc	cccgcgacct	tcaccgagtt	cagccgccag	94800
cgcggcctcg	cgccggacgg	gcgctgcaag	cccttcgcgg	ccgccgcgga	cggtacgggc	94860
tggggcgaag	gcgtcggcat	gctcctcgtc	gagcgccttt	cggacgctca	gcgcaacgga	94920
catccgatcc	tcgcggtggt	ccgcgggtcg	gcgatcaacc	aggacggtgc	gagcaacggc	94980
ctgacggctc	cgaacggtcc	gtcgcagcag	cgcgtcatcc	accaggcgct	caccaacgca	95040
eggetgtegg	ccgcggatgt	ggacgtcgtc	gaggcgcacg	gtacggggac	gaccctcggc	95100
gacccgatcg	aggcgcaggc	cctgctcgcc	acctacggcc	aggaccgccc	ggccggacgc	95160
ccgctgctgc	tcggctccat	caagtccaac	atcggccaca	cccaggccgc	cgcgggtgtc	95220
gcgagcatca	tcaagatggt	cgaggcgatg	cgtcacggag	tggtccccaa	gaccctccac	95280
ctcgacgagc	cgactccgca	cgtggactgg	gaggcgggcg	ccgtctccct	gatcggcgag	95340
aagatcgcct	ggccggagac	cggtgaactc	cgtcgtgcgg	gtgtgtcgtc	gttcgggttc	95400
agcgggacga	acgcgcatgt	gatcgtcgag	caggctccgg	tggtcgagga	ggtggcgggg	95460
gateeggeeg	gtgaggtcga	gggttcggaa	ctcgcggtgg	tgccgtgggt	gttgtcgggc	95520

aagagtgcgg	gggcgttgcg	ggcgcaggcg	gagcggttgt	cggggtggct	cgccggtgct	95580
tcggctgcgg	gtgtggcgtc	ggttgacgtg	ggctggtcgt	tggcgtcgtc	gcgggccggg	95640
ctggaacacc	gggctgtggt	gctgggcgat	cacgcggccg	gtgtgggggc	ggtggcgtcg	95700
ggtgtgatgg	ccgcgggtgt	ggtgacgggg	tcggttgtcg	gcgggaagac	cgcgttcgtg	95760
tteccggggc	agggctcgca	gtgggtgggt	atggcggtgg	ggttgctgga	ttcctcgccg	95820
gtgttcgctg	cgcgggtgga	tgagtgtgcg	aaggcgttgg	agccgttcac	tgactggtcg	95880
ttggtggatg	tgctgcgggg	tgtggagggt	gcgccgtcgt	tggagcgggt	ggatgtggtc	95940
cagcctgctc	tgttcgcggt	gatggtgtcg	ttggcggagg	tgtggcgggc	tgctggtgtg	96000
cgtcctggtg	cggtgatcgg	tcattcgcag	ggtgagatcg	ctgcggcgtg	tgtggcgggg	96060
atcttgtcgc	ttgaggacgc	cgcgcgagtg	gttgcgttgc	gcagtcaggc	gatcggccgg	96120
gtcctggcag	gtctcggcgg	gatggtgtcg	gtgccgctgc	ccgcgaaggc	agtacgagag	96180
ctgatcgctc	cgtggggtga	gggccggatc	tcggtggccg	cggtgaacgg	gccgtcctcg	96240
gtggtcgttt	cgggtgaggc	cgccgccctg	gacgagatgc	tggcctcgtg	cgagtcggag	96300
ggtgtgcggg	cgaagcggat	cgcggtggat	tacgcgtcgc	attcggctca	ggtggagttg	96360
ctgcgggaag	agcttgctga	gctgctggct	ccgattgttc	cgcgcgctgc	tgaggtgccg	96420
ttcttgtcga	cggtgacggg	tgagtgggtg	cgaggcccgg	agctggatgc	tggttactgg	96480
ttccagaatc	tgcgccggac	ggtggagttg	gaagaggcga	cgcggacgtt	gctggagcag	96540
ggcttcggtg	tgttcgtcga	gtcgagcccg	cacccggtgt	tgagcgtggg	catgcaggag	96600
acggtcgagg	acgcgggccg	ggaggcggct	gttctgggtt	cgctgcgtcg	tggtgagggg	96660
ggtctggagc	gtttctggct	gtcgctgggt	gaggcctggg	tccgtggcgt	ggctgtcgac	96720
tggcatgccg	tgttcgcggg	tacgggtgcc	cggcgggtgg	acctgcccac	ctacgccttc	96780
cagcaggagc	actactggct	cgaaagcggc	accgccgagg	acgtcacggc	caccgcccac	96840
cccgtcgacg	ccgtcgaagc	ccgcttctgg	gaggccgtcg	agcgccagga	cgtggcggcg	96900
ctcaccgccg	agctggacgt	ggacgagaac	gagaacctca	ccgcgctgct	gcccgcgctg	96960
tegtegtgge	gtcggcagag	ccgtgagcgg	teegeegtgg	acggctggcg	ctaccgggtg	97020
acctggaagc	ccgcgccgga	gcccacgacg	gcccgcctct	ccggcacctg	gcttgttgcc	97080
gtcgccgagg	gcgcgccggg	tgatgagtgg	acgtccgctg	tcctgcgtac	gctcgccgaa	97140
cacggcgccg	acgtacggca	gatcacggtc	gcccggaccg	aggacacccg	ggccggtctc	97200
gccgagcgga	tacgtgacgt	actcgcggac	ggtcccgcgg	tgtcgggagt	cttgtccctg	97260
ctgaccccgg	cgggggccga	cgagccgttc	caggtctccg	cgcccggcgg	tgtgatcacc	97320
accctgtccc	tcgtccaggc	gctcggcgac	gccgaggtgg	ccgcacccct	gtggtgcgtc	97380

1/1051

acgcgcggcg	ccgtcgccac	cggccgttcc	gagcaggtgg	ccgaccccgc	gcaggctccg	97440
gtctggggcc	tgggccgggt	gaccgcgctg	gagcacggcg	agcgctgggg	agggctgatc	97500
gacctgcccg	gcacggacgc	cgtggacgac	cgggcactcg	cccggctcgc	gggcgtcctc	97560
gccggtgacg	ccgccgagga	ccaggtggcg	gtgcgcgcct	ccggcctctt	cgtacgacgg	97620
ctcgtacgcg	teegtetege	cgagacgccc	gtcgtacggg	agtggcgtcc	gcagggcacc	97680
accctggtca	cgggcggtac	gggcgcgctg	ggcgcgcacg	tggcccgctg	gctcgctgag	97740
aacggcgccg	agcacctgct	gctcaccagc	cgccggggcc	ccgacgcgcc	cggagccgcc	97800
gcactccgcg	acgaactcac	cgccctcggc	gcccaggtca	ccatcgcggc	ctgcgatgtg	97860
agcgaccggg	acgccgtcgc	ggccctcatc	gccgcggttc	ccgccgacca	gcccctcacc	97920
geegtegtge	acacggcggc	cgtcctcgat	gacggggtca	tcgaggcgct	cacgcccgag	97980
cagatcgagc	gcgtcctgcg	ggtgaaggtc	gacgcgacgc	tgcacctgca	cgaactgacc	98040
cgcgagctcg	acctgtcggc	gttcgtgttc	ttctcgtcct	tcgccgccac	cttcggcgcc	98100
cccggccagg	gcaactacgc	gccgggcaac	gcgttcctgg	acgccttcgc	cgagtaccgc	98160
cgggcatccg	gactgcccgc	cacctccatc	gcctggggcc	cttggggcga	cgggggcatg	98220
gccgagggcg	cggtcggtga	ccggatgcgc	cgccacgggg.	tcatcgagat	gtcgcccgag	98280
cgtgccgtcg	ccgcactcca	gcacgccctg	gaccgcgacg	agacgaccct	gaccgtcgcc	98340
gacatggagt	ggaagcgctt	cgtcctcgcc	ttcacctccg	gccgcgccag	gccgctgctg	98400
cacgacctgc	ccgaggcgcg	ggaggtcatg	gacgccacgc	gcacggaggc	ggcggaggac	98460
accggcagcg	ccgccgcgct	ggcccagcag	ctgaccggcc	ggcccgaggc	cgaacaggag	98520
cgactgctcc	tcgaactggt	ccgcaccgcc	gtagaagaag	tcctcggcta	cgcgggcccc	98580
gacgcggtcg	aggcgggccg	ggccttcaag	gagctgggct	tcgactccct	cacctccgtc	98640
gaactgcgca	accgcctgaa	cgcggccagc	ggcctcaagc	tgccgcccac	cctcgtcttc	98700
gaccacccga	cgcccaccgt	cctcgcccgg	cacctgcggg	ccgagttctt	cggccagggc	98760
geegeggeeg	ccgtgcccgt	gccgatggcc	gcggtctccg	acgacgagcc	gatcgccatc	98820
gtcgcgatga	gctgccgctt	ccccggcggg	gtccgcaacc	ccgaggagct	gtggcagctg	98880
ctcacctccg	agggtgacgg	gctgtcccag	ttccccctgg	accgcggctg	ggacgtcgac	98940
gcgctgtacg	accccaaccc	cgacgcgcaa	ggcacctcgt	acacgcggga	gggcggcttc	99000
ctgtccgacg	ccgcggcctt	cgactcctcg	ttcttcggga	tctcgccgcg	cgaggccctc	99060
gccatggacc	cgcagcagcg	gctgctcctc	gaaacctcgt	gggaggcgtt	cgagcgggcg	99120
ggcatcgacc	cgcagaccct	gcgcggcagc	cagtccggtg	tgttcgtcgg	caccaacggc	99180
tctgactact	ccaacctcgt	acgggcgggg	gcggacggcc	tggaggggca	cctggccacc	99240
ggcaacgcgg	gcagtgtcgt	ctccggccgg	ctctcctaca	ccttcggtct	cgaaggcccg	99300

gccgtcaccg	tcgacaccgc	ctgctcggcc	tccctcgtcg	ccctccacct	cgccgtgcag	99360
gccctgcgca	gcggtgaatg	ctcgctcgcc	ctggccggtg	gcgtgacggt	gatgtccacg	99420
ccgggcacct	tcatcgagtt	cagccgtcag	cgcggactct	ccaccgacgg	ccgctgcaag	99480
gcgttctcct	cggacgccga	cggattcagc	cccgcggagg	gcgtcggcgt	gctcctcgtc	99540
gagcgccttt	cggacgctcg	gcgcaacggg	catccgatcc	tcgcggtggt	ccgtgggtcg	99600
gcgatcaacc	aggacggtgc	gagcaacggt	ctgacggctc	cgaacggtcc	gtcgcagcag	99660
cgcgtcatcc	ggcaggccct	cgccaacgca	cggctgtcgg	ccgcggatgt	ggacgtcgtc	99720
gaggcgcacg	gtacgggtac	gacgctgggt	gacccgatcg	aggcgcaggc	cctgctcgcc	99780
acctacggcc	aggaccgccc	ggccggccgg	ccgctgctgc	tcggctccat	caagtccaac	99840
atcggccacg	cccaggcggc	ggccggtgtc	gcgggcgtca	tgaagatggt	gctcgccatg	99900
cagcacggag	tgctgccgca	gagcctgcac	atcgccgagc	ccacgccgca	cgtcgactgg	99960
agcgcgggcg	aggtcgccct	gctcaccgag	gagcgggcct	ggcccgagac	cggccgcccc	100020
tggcgggcgg	gcgtctcgtc	gttcggcttc	agcggcacca	acgcccacgc	catcatcgag	100080
caggctccgg	ccgaagcggg	atccgacgac	gaccgggaga	cccctgagcc	gtcggcccaa	100140
cccctactgg	tcgcgcccac	ccgggacgac	tccgcgtccg	cccgggacga	ctccgcgtcc	100200
gccccggacg	gctccgtatc	cggcccggac	gactccgtgt	ccgaccgtcc	cggcgtgctg	100260
ccctggaccc	tgacggccaa	gaccgagaag	gcgctgcaag	gccaggccga	acgcctgctg	100320
acccagctca	ccacccgctc	tgacctgcga	cttgtcgatg	tcggccactc	cctggcgacg	100380
acccgtaccg	cgctcgacca	gegegeegte	ctcatcggac	gggaccgccc	cgactacctc	100440
ggagccctga	ccgcactcgc	ggcgggggac	acctccccc	tgctggtgca	gggggcggtc	100500
gtcgggggga	agacggcgtt	cgtgttcccc	ggacaggggt	cgcaatgggt	aggcatggcg	100560
gtggcgctgt	tggacgcttc	acccgtgttc	gctgcccgag	tggatgagtg	tgcgaaggcc	100620
cttgagccct	tcaccgactg	gtegetgege	gatgtactgc	gcggcgtcac	aggcgcgccg	100680
tcgttggacc	gcgtggatgt	ggtccagcct	gctctgtttg	cggtgatggt	gtcgttggcg	100740
gaggtgtggc	gggccgctgg	tgtgcgtcct	gatgcggtga	teggteacte	gcagggcgag	100800
atcgctgccg	cgtgtgtggc	gggcatcttg	tcgcttgagg	acgcggcgcg	agtggtcgcg	100860
ttgcgcagtc	aggcgatcgg	ccgggtcctg	gcgggcctgg	gcgggatggt	gtccgtggca	100920
ctgccggcga	aggctgtgcg	ggagctgatc	gctccgtggg	gcgaggaccg	gatctcggtg	100980
gccgcggtga	acgggccttc	ctccgtggtc	gtttccggtg	agaccgccgc	cctggacgag	101040
ctgctggcct	cgtgcgagtc	ggacggcgtc	cgggcgaagc	ggatcgcggt	ggattacgcg	101100
tcgcattcgg	ctćaggtgga	gttgctgcgt	gaggagcttg	ctgagctgct	ggctccgatt	101160

50/054

gttccgcggg	ctgccgaggt	gccgttcctg	tcgacggtga	cgggtgagtg	ggtgcgcggt	101220
ccggagctgg	atggcgggta	ctggttccag	aacctgcgtc	ggacggtgga	gttggaagag	101280
gcgacgcgga	cgttgctgga	gcagggcttc	ggtgtgttcg	tcgagtcgag	cccgcacccc	101340
gttctgacga	tgggtgtgca	ggagaccgtc	gaggacgcgg	gccgtgacgc	ggctgttctg	101400
ggctcgctgc	gtcgtggtga	ggggggtctg	gagcgtttct	ggctgtcgct	gggtgaggcc	101460
tgggtccgtg	gcgtgggtgt	ggactggagt	gccgtgttcg	cgggcacggg	tgcccggcgg	101520
gtggatctgc	ccacttacgc	cttccagtcg	cagcggttct	ggccggaggc	cgcgcccatc	101580
gaggctgtgg	cggtgtcggc	ggagagtgcg	atcgatgcgc	ggttctggga	ggccgtcgag	101640
cgcgaggatc	tcgaagcgct	gaccgctgag	ctcgacatcg	agggcgacca	gccgctgacc	101700
gcgctgctgc	ccgcgctgtc	gtcgtggcgt	cggcagagcc	gtgagcactc	gacggtggac	101760
ggctggcgct	accgggtcac	ctggaagccg	ctggccgagg	ccaagacctc	tegeetetee	101820
ggtacttggç	tggtcgtcgt	tcccgagaac	ggcccggccg	acgagtggac	gggggccgtg	101880
ctgcgcgtgc	tcgccgaccg	cggcgcggag	gtccgtactg	tgaccgtccc	ggccgacggg	101940
gccgatcgtg	accggctcgc	cgccacgctg	aaggccgaga	cggacggggc	cgctccggcc	102000
ggagtgctgt	ccctcctcgc	ccttgccgtc	gaaagcgctg	aactccgtac	gcacaccggg	102060
ctcctcgcca	ccgccgcgct	cgtccaggcg	cttggtgacg	ccgatgtggc	cgcacccctg	102120
tggtgcgtca	cgcgtggcgc	tgtctccgtc	gcccgtacgg	agcggctcca	ggacccggcg	102180
caggcgctcg	tgtcgggctt	cggacgcacg	gtcgccctgg	agtacccgga	ccgttggggc	102240
ggtctcgtcg	acctgccgga	gcaggccgac	ggccgtacgc	tcgaacgtct	tgcgggtgtg	102300
ctggccggtg	acggttccga	ggaccaggtg	gcgctgcgcg	cctcgggtct	cttcggccgg	102360
cgtctggtcc	acgcacccct	cgccgacacc	gccgcggtac	gggagtggcg	tccgcagggc	102420
acgaccctgg	tcaccggtgg	tacgggtgcg	ctgggcgcgc	acgtggcccg	etggeteget	102480
gagaacggtg	ccgagcactt	gctgctcacc	agecgeeggg	gcccggacgc	geceggtgee	102540
gccgaactcc	gcgacgaact	cacggccctc	ggcgcccagg	tcaccatcgc	cacctgcgac	102600
atggccgacc	gggacgccgt	cgcggccctc	ategeegeeg	ttcccgccga	ccagcccctc	102660
accgcggtga	tgcacacggc	cggtgtcctc	gacgacggcg	tgatcgacgc	gttgactccg	102720
gagcggttcg	ggacggtgct	cgcccccaag	gcggacgcgg	ccctcaccct	ccatgagctg	102780
acccgcgagc	tgggcctctc	ggcgttcgtc	ctcttctccg	gtgtcgcggg	cacgctcggc	102840
gacgcgggac	agggcaacta	cgccgccgca	aactcctact	tggacgccct	cgccgagcag	102900
cgtcacgccg	acggcctcgc	cgccacctcg	gtggcctggg	gtcgctgggg	cgacagcggg	102960
ctcgccgcgg	gcggtgcgat	cggtgagcgg	ctcgaccgcg	gcggggtgcc	cgccatggca	103020
ccccgctcgg	cgatccgcgc	gctgcagctg	gccctcgacc	acgcggaggc	ggccgtcgcc	103080

gtcgccgaca tccagtggga gcggttcgcg cccggctaca cggcggtgcg gcccagcccg 103140 ttcctcggtg acctgccgga ggtgcggcag ctcgccgcgt ccgctccggc ggccggtgaa 103200 gcgggcgggg actccccggc cgaggcgctg cgccgacggc tcgccgtcat gccgcaggcc 103260 gaacaggeee tggeegteet egaactggte egeteeeaeg eggeeaeege getgggeeae 103320 cccacgaccg acgaggtggg cgcgggccgc gcgttcaagg agctcggatt cgactccctg 103380 atcgcgctgg aactgcgcaa ccggctcaac gcagccaccg ggctgaggct cccggccacg 103440 ctcgtattcg accacccgac cccgacgatc ctggccgagt tcctccgggc cgagatcacc 103500 caggacggca gtgccggggc cgccccgggc atcacggaac tcgaaaagct ggagtccgcg 103560 ctgtccgttc tcgacccgga cagtgaaacg cgtaccgata tcgcactgcg cctgcaggca 103620 cttctcgcga aatggggtga accgcacatc gaatcaagtg gcgaggccgt gaccgagaaa 103680 ctccaggagg ccacgcccga cgaactcttc gaattcatcg agaaagagtt cggtatttag 103740 cacagcggac agcaggcagt agcagcgcaa gggtttgtga cgagaagcat gggtgaggtt 103800 ccaatggcag atcaggacaa gatcctcggt tacctgaagc gggtgacggc cgatctgcac 103860 cagacgegec agegeetteg tgaggtegag geeeaggage eggageegat egegategte 103920 ggcatgagct gcaggttccc cggcggcatc gagtcgccgg agggcctgtg ggacctggtg 103980 gccggtgggc gggacgcgat caccgatttc cccaccgacc gtggctggga catcgagtcg 104040 ctgtacgacg ccgaccccga ccagcagggc acctcgtaca cccgtgaggg cggattcctc 104100 gacggcgtcg ggaagttcga cgcgtccttc ttcgggatca gcccgcgcga aaccctcggc 104160 atggacccgc agcagcgcct gctcctcgaa acgtcctggg aagccttcga aagagccgga 104220 atcgacgcgg ctaccctgcg cggcagcaag gccggtgtct tcataggcac caacggccag 104280 gactateegg agetgetgeg egaagteece aagggtgteg agggatatet ceteaeegga 104340 aacgeggeea gegtegtete eggeegeatt teetaeaeet teggeetega aggeeeggee 104400 gtcaccgtcg acaccgcctg ctcggcctcg ctcgtcgccc tgcacctcgc cgtccaggcg 104460 ctgcgcaacg acgagtgctc gctggcgctg gcgggcggtg tcaccgtgat gtcgagcccg 104520 cgcgcgttcg tacagttcag ccgccagcgc gggctcgcgc ccgacggacg ctgcaagccg 104580 ttcgccgacg gggccgacgg caccggctgg ggcgagggcg tcggcatgct gctcgtcgag 104640 eggeteteeg aegeeegeag gaaeggteat eeegteeteg eeetegtgeg eggeteggeg 104700 atcaaccagg acggcgcgag caacggcctg accgcgccca acggcccgtc ccagcagcgg 104760 gtgatccggc aggcgctcac gaacgccggg ctcacccccg cgcaggtcga cgtcgtcgag 104820 gegeacygea ceggtacyac ceteggegac cegategagg egeaggeeet getegecacg 104880 tacggccaga accgccccga ggggcgcccg ctgtggctgg gttccgtcaa gtcgaacatc 104940

gggcacacgc aggccgccgc cggtgtcgcg ggcatcatca agatggtcct cgccatgcag 105000 cacggegtge tgeecgagte getecacate gaccageegt eeggeaacgt egactgggee 105060 gccggtgacg tcaagctgct caccgaggcc gtgccgtggc cgcagaccgg ccagccgcgc 105120 cgcgccggcg tctcctctt cggcgtcagc ggcaccaacg cgcacaccgt catcgagcag 105180 gccccgcccg ccgacgacgc gccggagacc ggcgcggaca ccgcacccac cgccgaggcg 105240 ccggaggcgg cctccgcgga cgcttccgag gccgggacgc cgaccggtgc caccggcccg 105300 gtgccggtgc tcgtctcggg ccagagcgac gccgcactgc gcgcccaggc cgagcgcctc 105360 gccgcccacc tgcgcgcca cccggactc ggggccgaca ccggaaccct gaccgacctc 105420 ggtttctcgc tcgccaccag ccgctcctcg ctcgaccgca gggccgtcct gttcggcgac 105480 cgggacagcc tgctcgccga cctcagcgcc ctcgccgagg gcgagcagcc cgccggcccg 105540 gtcctcggcg cggtgggcga gggcaagacc gccttcctct tcaccggcca gggcagccag 105600 cgcctgggca tgggacgcga gctgtacgcc acgcatcccg gcttcgcccg cgccctcgac 105660 gaggtccgcg cggaactgga ccagcacctc gaacgccccc tgttcgacgt cctgttcgcc 105720 gccgaaggca cccccgaggc ggacctgctc gacgagaccg cctacaccca gagcgccctg 105780 ttcgccgtcg aggtcgccct gttccggcag ctcgaacagt ggggcgtcgg cgccgacttc 105840 ctcatcggcc actccatcgg cgaactcgcc gccgcccacg tctccggcgt gttcaccctc 105900 gccgacgcgg ccaagctcgt cgccgcccgc ggccgcctca tgcaggcgct gcccgccgac 105960 ggcgcgatga tcgccgtcga ggccaccgag gacgaggtcg caccgctgct caccggccgg 106020 gtgagcatcg ccgccgtcaa cggcccccgc tccgtggtcg tctcgggcga cgaggacgcc 106080 gccacggcgc tcgccgagac cctgcgcgca cggggccgca ggacgaagcg gctcacggtc 106140 agccacgcct tccactcgcc gctgatggac ggcatgctcg acgcgttccg tgaggtcgcc 106200 gagagegteg cetaegegee gecegteate eegategtet ceaacetgae eggegeetee 106260 gtcaccgcgg aggagatctg cgccgccgac tactgggtgc gccacgtccg cgaggccgtc 106320 cgcttcctcg acggagtccg caagctctcc gcgcagggcg tcaccacctt cgtcgaggtg 106380 ggaccgggcg gggtcctcac cgccctggcg caggagtgcg tcaccggcca ggacgccgtc 106440 ttcgtgcccg tcctgcgcgg tgaccgcccc gaggcggccg ccttcgcgac ggccgtcgcc 106500 caggcccatg tccacggtgt ggccgtcgac tggtccgccg tcttcgccgg gcgcggagcc 106560 accegeateg acetgeegae gtaegeette eagegegage tgtaetggee egageageee 106620 accgcctggg cgggcgacgt caccgccgcc gggatcggcg ccgccgacca cccgctgctg 106680 ggcgcggcca tcgccctggc cgacggcgac gggcacctgt tcaccgggcg gctctcgctg 106740 gccacccacc cctggctcgc cgaccacacg gtgatggaca ccgtgctgct gcccggcacc 106800 geettegteg aactegeeet ecaggeggge gaccacaceg getgegaeet getggaegaa 106860

ctcaccetgg aagcaceget ggtgetgeee eegcaeggeg gggtgeagat ceagetegee 106920 gtgggcgcgc ccgacgccga gggccgccgc tcgctgacac tgcactcccg gcccgaggac 106980 gccgccgacg acacctgggg agagggcgcc tggacgcgcc acgccaccgg cttcctcgcc 107040 accgccgccc agggcgcccg cgagcccctc gccgacctca ccagctggcc gccgaagaac 107100 gccacgaagg tcgacgtaga aggcctgtac gcgtacctca ccgagtccgg cttcgcctac 107160 ggtccggtct tccagggcct gaccggcgcc tggcagcgcg gcgacgaggt cttcgccgag 107220 gtccgcctgc cggagcaggc gcacgccgag gccgccctgt tcggtctgca tcccgcgctg 107280 ctggacgccg cgctgcacgc cgtcggcatc ggctccctcc tggaggacac cgaacacggc 107340 aggctgccgt tctcctggag cggagtctcc ctgcgggcgg tcggcgcccg tgccctgcgc 107400 gtccggctcg ccccgcagg caacgacacc gtgtcggtga ccctcgccga cgagaccgga 107460 gcgcccgtcg ccgccgtcga cgcgctgctg ctgcggcccg tctccccgga ccaggtgcac 107520 gccgcccgca ccgccttcca cgactcgctg ttccgcgtgg agtggaccgg tacgccctc 107580 ccggccgcca ccaccgtcgc cgcgggccag tgggcgctgc tgggcgagcc ccgtacggag 107640 ctggacgcgg gcggcccggt cccgcgggcc gtcatcgtcc cgttctccgc gtccggcgcc 107760 ccctcggcga ctcccgtcga cgccgcgctg cccaccgccg tcgccgacgc cctgcaccgc 107820 accetggage tegeceagge gtggetegee gaegaeeggt tegeeggete eeggetegtg 107880 ttcgtcaccc gcgacgccgt cgccaccacc gccggatccg atgtcgccga cctggcccac 107940 gccccgctgt ggggtctgct gcgctccgcg cagtccgagc accccgaccg gttcgtcctg 108000 ctggacctgg acggacgcga ggactccctg cgggccctgc ccgccgcgct cgccacggcc 108060 gagecgeage tegecetgeg egegggeaag geeetegtge eeeggetege eegggtegee 108120 gccgcccccg gccaggaggc gcccgcgctc gaccccgacg gcaccgccct ggtcaccggc 108180 gccaccggca ccctcggcgg cctggtcgcc cgccacctcg tcgccgcgca cggcgtccgc 108240 cacctgctgc tgaccagccg gcgcggcgag gccgccgccg gcgccgccga actcgccgcc 108300 ggactgeggg aactgggege egaggteace ategeggeet gtgaegeege egacegegae 108360 gegetegeeg egeteategg gteegtaceg geegaacace egeteacege egtegteeac 108420 accgccggag tectegacga cggcgteete gaagegetea eeccegageg categaegee 108480 gtcctgcccg ccaaggtcga cgcggccgtg cacctgcacg agctgacccg cgagctggac 108540 ctcgcggcct tcgtcctgtt ctccgccgcc gccggcaccc tcggcggccc cggacaggcc 108600 aactacgccg ccgccaacac cttcctcgac gcgctcgccc accggcgccg cgccgaagga 108660 ctgcccgcca ccgccctcgc ctggggcctg tgggccgaac gcagcggcat gaccggcgac 108720

ctcgccgacg	ccgacctgga	gcggatctcc	cgcgccggag	tegeegeeet	gtcgtccgcc	108780
gagggcctgg	cgctgctgga	caccgcccgc	gccgtgggcg	accccaccgc	cgtccccatg	108840
cacctcgacc	tggcgtccct	gcgccacgcc	gacgcgagca	tggtccccgc	gctgctgcgc	108900
ggcctggtcc	gcgcgcccgc	ccgcaggtcc	gtcgagtccc	cgggcgccgc	cccggccggc	108960
ggcctcgccg	agcgcctgct	gcccctgacc	gccgccgagc	gcgaccggct	gctcctggac	109020
accgtccggg	tccaggtcgc	cgccgtcctc	ggctaccccg	gccccgaggc	cgtcgacccg	109080
ggccgtgcct	tcaaggaact	cggcttcgac	tcgctgaccg	ccgtagagct	gcgcaaccgc	109140
ctcggctccg	ccaccggcgt	acggctgccc	gccaccctcg	tcttcgacta	ccccaccccg	109200
aacgcgctct	ccgcgttcct	gcggaccgaa	ctcctcggcg	acgccgcgga	ctcggccccg	109260
gtcgcggccg	tcaccgcccg	tgacgacgag	cccatcgcca	tcgtcggcat	gagctgccgc	109320
taccccggcg	gggtcaccac	ccccgaggag	ctgtggcagc	tcgtcgccgg	ctccgtcgac	109380
gcgatctcgc	ccttccccac	ggaccgcggc	tggaacctcg	acgcgctgta	cgacgccgac	109440
cccggccggg	ccgggacctc	gtacacccgg	gagggcggct	tcctgcacga	cgccgccgac	109500
ttcgacccgg	acgtcttcgg	catcaacccg	cgcgaagccc	tegecatgga	cccgcaccag	109560
cggctcctcc	tggagacgtc	ctgggaggcg	ttcgagcagg	ccgggatcgc	cccctcgtcc	109620
atgcgcggca	gccgcaccgg	cgtgttcgcc	ggcgtcatgt	accacgacta	cctgacccgg	109680
ctcccggccg	tgcccgaggg	cctggagggc	tacctcggca	ccggcaccgc	gggcagcgtc	109740
gcctccggcc	gcatctcgta	caccttcggc	ctcgaaggcc	ccgccgtcac	cgtcgacacg	109800
gcctgctcct	cctcgctggt	cgccctgcac	ctcgcggccc	aggccctgcg	caacggcgaa	109860
tgcgacatgg	ccctcgcggg	cggtgtcacc	gtcatgtcca	ccccggacac	cttcatcgac	109920
ttcagccgcc	agcgcggcct	ctccggcaac	ggccgctgca	agtccttctc	cgccgacgcc	109980
gacggaaccg	gctgggccga	gggcgcgggc	atgatcctcg	tcgagcggct	ctccgacgcc	110040
cgccgcaacg	gccaccaggt	cctggcggtc	gtccgcggca	ccgccgtcaa	ccaggacggc	110100
gccagcaacg	gcctgaccgc	cccgaacggc	ccctcccagc	agcgcgtcat	ccgccaggcc	110160
ctcgccaacg	cgggcctgac	caccgccgag	gtcgacgtcg	tcgaggcgca	cggcaccggc	110220
accaccctcg	gcgaccccat	cgaggcgcag	gccctcctcg	ccacctacgg	ccaggaccgc	110280
ccggccgggc	agçegetgeg	gataggataa	atcaagtcca	acatcggcca	cacccaggcc	110340
gcggcgggcg	cggcgggcat	catcaagatg	atcctcgcca	tgcgccacgg	cgtcatgccg	110400
ccgtcgctgc	acatcggcga	gccgtccccg	cacatcgact	ggaccgcggg	cgcggtctcg	110460
ctgctcaccg	aggccgccga	gtggcccgac	gcgggccgcc	cccgccgcgc	gggcatctcc	110520
tectteggeg	tcagcggcac	caacgcccac	gtcatcatcg	agcagccgcc	cgtcgaggaa	110580
cccgccaccg	cgaccgagac	cggctccggc	accggcctgc	ccgccggcac	gcccctgccg	110640

ttcgccctct ccggccggac ccccgccgcg ctgcgcgccc aggccgcccg gctgatcggc 110700 cacctegege egeggeeega ggeegeeece geegatgtgg egeteteget ggeeaecace 110760 cgtaccgccc tggaccgcag ggccgccgtc atcgcgcacg accgcaccga gctcctcgcc 110820 gggctcaccg ccctggccga gggccacgac agcgcccggc tggtccagca caccgccgcc 110880 gacggccgca ccgcgatcct gttcaccgga cagggcagcc agcgccccgg catgggacgc 110940 gagetgtacg agacgtaccc egeettegee gaggegetgg aegeggtetg egeegagetg 111000 gacccgcacc tcgaacagcc cctcaaggag gtcctgttca ccgccgacgg cgacctgctg 111060 aaccggaccg gccgcaccca gcccgccctg ttcgcgctgg agaccgccct gtaccggctc 111120 gtcgaatcgt ggggcgtgcg ccccgacttc gtcgccgggc actccatcgg cgagatcacc 111180 geogegeacy tegegggegt cetetecety ecegacycyg ceaecetygt cyceycecyc 111240 ggccgcctca tgcaggaact gcccgagggc ggcgcgatga tcgcgctcac cgccaccgag 111300 gacgaggtcc tgccgctgct ggccggccac gaggaccgca tcggcatcgc cgccgtcaac 111360 tcagcctcct ccgtggtcat ttccggcgag gagggcctcg cgctggagat cgccgccgag 111420 ttcgagcggc gcggtcggcg caccaagcgg ctcaccgtca gccacgcctt ccactcgccg 111480 ctgatggacg gcatgctcga cgccttccgc gaggtcgccg agtccctgac ctaccgggcg 111540 cccgccatcc cggtcgtcac gctcctcacg ggaacggtcg ccggggacga actgcgcacc 111600 gccgagcact gggtctccca cgtccgcgag gcggtccgct tcctcgacgg catccgcacc 111660 ctggacgccg agcacgtcac cacctacctc gaactcggcc cgcagggcgt gctgtccggc 111720 ctcggccgcg actgcctcac cgacccgcc gacccggccg acaccgccgt cttcgtaccg 111780 gegetgegee gegaeegegg egaggeegaa geeetgaeeg eegegatege egeggeeeae 111840 accegeggtg tgccgctcga ctggtccgcg tacttcgcgg gcaccggcgc ccgccgcgtc 111900 gaactgccca cctacgcctt ccagcgcgag cggttctggc tcgaagcccc ggccggctac 111960 ateggegacg tegaategge gggeatggge geggeeeace accegetget eggegeegee 112020 gtcgccctcg ccgacggcga aggattcctg ttcaccggcc ggctctcgct cgacacccac 112080 ccctggctcg ccgaccacgc cgtcatgggc aacgtcctgc tgccgggcac cgccttcgtc 112140 gaactegeca teegegeggg egaecaggee ggetgegaee teetegaaga acteaecete 112200 gaagcaccgc tgatcctcgc cccgcaggcc gcggcacgcc tccagatcgt ggtcggagcc 112260 cccgacgggt ccggccgccg caccctggac gtgtactcca gcgacccgga cgccccgcc 112320 gacgagccgt ggacccgcca cgccggcggc atcctcgcca ccggggcaca ggcacccgcc 112380 ttcgacctga ccgcgtggcc cccgccgggc gccgaagccg tcggcgtcga cggcctctac 112440 gaacaceteg geeggggegg ettegeetae ggteeegtet teeagggget gegegeegee 112500

tggctcctcg gcgacgacgt gtacgccgag gtcgccctgc ccgacgaccg gcaggccgag 112560 gccgcccggt tcggcctgca cccggcgctc ctcgacgcgg ccctgcacgc caccttcgtc 112620 cagccgtccc ccgacgggga ccagcagggc cggctgccgt tctcctggcg cgatgtgtcc 112680 ctgcacgccg tcggtgcgtc cgcgctgcgc gtccgcctca cccccgacgg ccgggacacc 112740 ctctccctcc agctcgctga caccaccggc gctcccgtcg ccgccgtcgg ccacctgacg 112800 ctgcggcccg tctccgccga ccagctcggc agcgcacgct ccgcacacca cgagtccctg 112860 ttccggatcg actgggccac cgtgccgctg ccgtccgacg cccccgccgc cacggacgag 112920 tgggccgtca tagccgcgga cggaggcacg gacggcggta cggacggagg cacggacggc 112980 ggcatccccg ccgccctccc cgggcgcgtg cacaccggcc tggacgccct cggcgcggca 113040 gtcgacgcgg gcgccccggt gcccgccac gtcctggtgc accacaccc cgcggccacc 113100 accyccyacy ccytccacyc gyccacccac gagycyctcc ycctcytccy gycctgyctc 113160 gccgacgacc ggttcgccgc gtcccgcctg gtcttcgtca cccgcggcgc gatcgccacg 113220 cagagegact gggaceteae egacetgace caegeceeeg tgtggggaet ggtgegeaee 113280 gcccagtccg agaaccccga ccggttcgtc ctcgccgacc tcgacgccga cccggcctcg 113340 acggacgccc tcgccgcagc cctcgccacc ggcgagccgc agctcgcggt ccgccgtggc 113400 acceptedacy decedeget egeologic degeleged decegetgad decegelege 113460 ggcgagtccg cctggcgcat ggacatcgag gacaagggaa cgctcgacca cctcaccctc 113520 gtccccagcc cggagtccgc cgcgcccctg gagcccggcc aggtccgcgt cgccgtccgc 113580 gccgcgggcc tcaacttccg cgatgtgctc aacgccctcg gcatgtaccc cggcgacccg 113640 ggcctcatgg gcagcgaagg cgccggcatc gtcgtggaga cgggccccgg tgtcaccggc 113700 ctcgcacccg gcgaccgcgt catgggcatg ctgcccggct cgttcggccc gctcgcggtc 113760 gtcgaccgcc gcatgatcgc ccccatgccc gagggctgga ccttcgccga ggccgcgtcc 113820 gtacccatcg tetteatgae ggegtaetae geceteeaeg acetegeegg actgeaggge 113880 ggcgagtccc tcctcgtgca cgccgccgcc ggtggcgtcg gcatggccgc cgtccagctc 113940 gcccgccact ggggcgccga cgtctacgcg acggccagcc ccgccaagtg ggacaccctg 114000 cgcggactcg gcctcggcga cgaccggatc gcctcgtccc gcaccctcga cttcgaggag 114060 accttccgca cggccaccgg gggacgcggc gtcgacgtcg tactcgactc gctggcccgg 114120 gagttcgtcg acgcctccct gcggctcctg ccgcgcggcg gacgcttcgt cgaaatgggc 114180 aagaccgacg teegeteece geaggacgte geegaegeee accegggegt cagetaceag 114240 gegttegace tgacegagge eggeetegae egeateeagg agatgeteae egagetgete 114300 accetettee geteeggege cetgegeece gtaceggtet eegeatggga cetgeggeag 114360 gcccccgagg cgttccgcta cctcagccag gcacgccacg tcggcaagat cgtgctcacc 114420

ctgccgggcg agtggaactc gcagggcacc gtcctcatca ccggcggcac cggcaccctc 114480 ggcgcggtgg tcgcccggca cgccgtcacc acccgcggcg cccgccgcct gctgctcacc 114540 agteggegeg gegaggeege egeeggegee geegaacteg eegeegaact gegggaactg 114600 ggcgccgagg tcacgatcgc ggcctgcgac gccgccgacc gcgacgcgct cgccgcgctc 114660 atcgaatcca taccgtcaga gcacccgctg acggccgtca tccacaccgc cggagtcctc 114720 gacgacggcg tcgtcgactc gctgaccccc gagcgcctgt ccacggtcct gcgcccgaag 114780 gtggacgccg cctggaacct gcacgagctg acccgtcacc tcgacctggc cgacttcgtc 114840 ctgttctcct ccgccgccgg caccttcggc ggcgccggac aggccaacta cgcggccgcg 114900 aacgtettee tggaegeest egeeegeeae eggeaegees aeggeetege egeeaeetee 114960 ctggcctggg gcctgtgggc cgaggccagc ggcatgaccg gcgaactcga caccgccgac 115020 aaggaccgga tgacgcgctc cggcgtcctc ggcctctcct ccgaagaggg cgtggcgctg 115080 ctcgacaccg cacggctcac cggcgacgcc ctcctcgtcc ccatgcacct cgacctggcg 115140 ccgctgcgcc ggaccgacgc cagcatggtc cccgccctgc tgcgcggcct ggtccgcgcc 115200 cccgcccgca gggccgtcgg agccaccgcc gccggcgccg gaaccccgct ggtggagcgg 115260 ctcgtacggc tccccgagaa cgagcgcgac ccgctcctgc tcgacctcgt acgccagcag 115320 gtggccgccg tactcggcca cgccacccc gacgccgtcg aacccacccg cgcgttcaag 115380 gacctcggct tcgactcgct gaccgccgtg gagttccgca accggctcgg cgcgaccgcc 115440 ggcatccggc tgcccgccac gctcgtcttc gactacccca ccccacggt cctggccggc 115500 tacctcaagg acgaactcct cggctccgag gccgcggccg ccctcccgaa gctcgccgcc 115560 accgccgtcg agggcgacga ccccatcgcc atcgtcgcca tgagctgccg cttccccggt 115620 gacgtccgca ctcccgagga cctgtgggag ctgctcgccg agggccgcga cggcatctcc 115680 gacetecegg acgaeeggg etgggaeace gaggegetgt acgaeecega eccegaeage 115740 cccggcacct cctatgccag ggagggcgga ttcttctacg acgcccacca cttcgacccg 115800 gcgttcttcg ggatcaaccc gcgcgaggcc ctcgccatgg acccgcagca gcgcctgctg 115860 ctggagacgt cctgggaggc gttcgagcgg gccgggatcg acccgacggg cctgcgcgc 115920 aagcaggtcg gcgtcttcgt cggccagatg cacaacgact acgtgtcccg gctgaacacc 115980 gtccccgaag gcgtcgaggg ctacctcggc accggcggct ccagcagcat cgcctccggc 116040 cgcgtctcct acaccttcga cttcgaaggc cccgccgtca ccgtcgacac ggcctgctcc 116100 tcgtcgctgg tcgccctgca cctcgcggcc caggccctgc gcaacggcga gtgcacgctg 116160 gccctcgcgg gcggcgtcac catcatcacc acccccgacg tcttcaccga gttcagccgc 116220 cagegeggee tegecagega eggeegetge aageegtteg eegaggeege egaeggeaeg 116280

gcgtggggag	agggcgtcgg	catgctgctc	gtcgagcggc	tctcggacgc	ccgccgcaac	116340
ggccaccagg	tcctggcggt	cgtccgcggc	accgccgtca	accaggacgg	cgccagcaac	116400
ggcctgaccg	ccccgaacgg	cccttcccag	cagcgcgtca	teegeeagge	cctcgccaac	116460
gcgggcctga	ccgccgccga	ggtggacgcg	gtcgaggcac	acggcacggg	cacccggctc	116520
ggcgacccga	tcgaggcgca	ggcgctgctc	gcgacctacg	gtcaggaccg	ccccgagggc	116580
agccccctgt	ggctgggctc	catcaagtcc	aacttcggtc	acacgcaggc	cgccgccggt	116640
gtcgccggga	tcatcaagat	ggtccaggcg	atgcaccacg	gggtgctgcc	gaagaccctg	116700
cacgtcgacg	cgccgtcccc	gcacgtggac	tggtcggcgg	gcgcggtctc	gctcctcacc	116760
gagcagatgg	cctggcccga	aaccggccgc	ccgcgccgcg	cgggtgtgtc	gtcgttcggc	116820
atgagcggta	cgaacgccca	cgccatcatc	gaactcgccc	cggacgccgc	caccccgagt	116880
gccgcccggc	cggagccggc	cccggccgcc	ctcccgtgga	acctctcggc	ccgcaccccg	116940
gacgccctgc	gcgcccaggg	cgagcggctg	ctgtcccacc	tggagaccca	ctgtgagacc	117000
cacccggaga	cggtgctcgc	cgacatcggc	cactcgctga	cgaccggccg	tgccctcttc	117060
gagcaccgcg	cgacggtggt	ggcgggcgac	cgcgacggct	teegegeegg	actggccgca	117120
ctcgccgaag	gccggacggc	ggcgggcctg	atccagggct	cgtcctcgac	cggcggtcgc	117180
acggcgttcc	tgttcacggg	gcaggggagc	cagcggctgg	ggatggggcg	cgagctgtac	117240
gaggcgtatc	ccgttttcgc	gcgggctctg	gacgaggtgt	gtgcccgtct	ggaactgcct	117300
ctgcctctga	aggatgtgct	gttcggtact	gacacgggtc	tgctgaacga	gaccgcgtac	117360
acccagccgg	cgctgttcgc	cgtcgaggtg	gcgctgttcc	ggctggtgga	gagctggggc	117420
ctgaagccgg	acttcctggc	gggtcattcg	attggtgaga	tcgctgctgc	gcatgtggcg	117480
ggggtgctct	cgctggagga	tgcctgtgct	ctggtgtcgg	ctcgcgggcg	gttgatgggt	117540
gcgctgcctg	gtggtggcgt	gatgatcgcg	gtgcaggcgt	cggagggcga	ggtcctgccg	117600
ctgctgaccg	accgggtgag	tategeegeg	atcaacggtc	cgcagtcggt	cgtgatcgcg	117660
ggtgacgagg	ccgacgcggt	cgcgatcgtg	gagtccttct	cggaccgcaa	gtccaagcgg	117720
ctcacggtga	gccacgcgtt	ccactcgccg	cacatggacg	gcatgttgga	cgacttccgg	117780
gccgtggcgg	aaggcctgtc	ctacggggcc	ccgcgcatcc	cggtcgtttc	gaacctcacc	117840
ggggccctgg	tctcggatga	gatgggttcg	gcggacttct	gggtccggca	cgtccgtgag	117900
gccgttcgct	tcctggatgg	catccgcgcc	ctggaggccg	cgggcgtcac	gacatacatc	117960
gagctgggcc	ccgacggcat	cctgtcggcg	atggcccagg	agtgcatcac	cggcgagggt	118020
geggeetteg	cgcccgtcct	gcgggcggga	cgcgacgagg	ccgagacggt	gctctccgcg	118080
ctcgcggcgg	ctcacgtccg	cggcgttccc	gtcgactggc	aggccttcta	cgccccggcc	118140
ggagcacagc	gcgtgcccct	gccgacgtac	gccttccagc	gctccgtcta	ctggctggac	118200

gcgggccggg cacagggtga catcgcctcc gctggactcg gcgcgacgga ccatccgctg 118260 ctcagcgccg cggtcgaact gcccgactcg gacggtttcc tcttcaccgg ccgcctgtcg 118320 ctggccaccc accegtggct egeegaccac geggteetgg geteegtact cetteegggt 118380 acggettteg tegaactege getgegggee ggtgaecagg teggetgega cetgategae 118440 gaactcactc togaagcacc getggtgctg ecceegcacg gaggegteca getgeggete 118500 gccgtcgcgg ccgccgacgc gacgggtcgg cgcaccctgg cgttccactc ccggagcgag 118560 gacgcggacg ccgggacgcc gtggacccgt cacgcctccg gtgtactcgc ggtcggggcc 118620 gagcggactc cgcagagcct caccgagtgg ccgccgaccg gggccgaatc cgtaccggtg 118680 gacgggctgt acgagggcct ggccgaatcc ggcttcggat acggtccggt cttccagggc 118740 ctgcgtgccg cctggcggcg cgacggcgag tactacgccg aggtcgccct gcccgagggc 118800 acggaggacg aggccggacg cttcggcctc cacccggccc tgctcgacgc ggcgctgcac 118860 gegetgggte tgggeageac ggacacegaa ggeggegaag gaeggetgee gtteteetgg 118920 teeggtgtge acctgeacge egteggtgee teeggetge gegtaegtet caceaegtee 118980 cgaagcggtg aggtggcgct gaccatcgcc gacgcggccg gagagccggt cgcgaccgtg 119040 cgtgacgcgc tgttccgggt ggactggact gcgttgcctg cgggcggtgc cgtggggtcg 119160 ctggacgact ggatgttgtt gggtgcgggt tcgcaggtgt atgcggatct ggcggggctg 119220 ggtgtggctg ttgcggaggg tggtgggatt ccggcggcgt tggtggtgcc ggtttcggag 119280 cctgatgcgg agtctgctgc gggtggtgtg gcgggtacgg tgcacgcggc tgttgagcgt 119340 gcgctgtctc tggtgcagga gtggttgtcg gacgagcggt tcgcggatgc gcgtctggtg 119400 ttcctgacgc ggggtgcggt ggctgcgcgg gccggggaca cggttccggg gctggtgcag 119460 gccgctgtgt ggggtctggt gcgctcggcg cagtcggaga atccgggtcg tttcgctctg 119520 ategatgteg aeggegaegg egaeggtgae ggtgaagtgg aeggggaegt getgteggee 119580 gegetegeea eeggtgagee tgagetggeg gteegtgaag gggetttget egtgeegege 119640 cttgcccgcg ccgctgtcgt tgagggtgcc ggtcgtgaac tggatgtcga cggcaccgtg 119700 ttggtcacgg gtgcgagcgg caccetgggt ggcttgttcg ceegtcatet ggtggttgag 119760 cgtggtgtgc ggcggctgct gttggtcagt cgtcgtggcg aggctgcgga aggtgctgct 119820 gaactgggcg ccgaactcac ggagctgggt gctgatgtgc ggtgggcggc gtgtgatgtg 119880 gccgaccgcg atgcgcttga ggctgtcctg gccgggattc ctgctgagta tccgttgtcg 119940 ggtgtggtgc atacggctgg tgtgctggac gacggtgtgg tgtcgtccct gaccccggag 120000 cgcctctcgg cggtgctgcg tccgaaggtg gatgcggcat ggaatctgca tgagctgacc 120060

cgcggtttgg	atctgtcgct	gttcgtgttg	ttetettegg	ctgccggagt	gttcggcggt	120120	
gcgggtcagg	cgaactatgc	ggcggcgaat	gtgttcctgg	acgctctggc	ccagcaccgc	120180	
agggcccagg	geetggeege	gacctccctt	gcctggggtc	tgtgggccgg	tgtgggcggc	120240	
atgggcggtg	agctgacgga	atccgaccgc	gagcgcatca	accgcggcgg	catcaccgct	120300	
cttgagcccg	agaccggtct	cgccctcttc	gacgcggcac	agcgcaccac	cgacgcactg	120360	
ctcgtcccc	tcccgctcga	cctggccgcc	ctgcgcgtcc	aggccggcag	cggaatgctt	120420	
ccggacctgc	tgcgcggcct	ggtccgcgta	ccggtgcgcc	gggcggcggg	gcagggaagc	120480	
gcggccgggg	gcgggtcggt	actccgtacc	cgactggctg	cgatgcccgc	cgatgagcgg	120540	
gacgcggccc	tgctggacct	ggtccgggcc	gaggtggcgg	ccgtactcgg	ccacgcgtcg	120600	
accgacgagg	taccggccga	ccgggcgttc	aaggagctcg	gcttcgactc	gctgacctcg	120660	
gtcgagctgc	gcaaccgcct	cggcgccacc	acgggtgaac	ggctctccgc	caccctcgtc	120720	
ttcgactacc	cgaccccgca	cgcgctcgcc	gagttcctgc	gcaccgaggt	gctgggcctg	120780	
gacgagccga	cggatacggc	cacgaccgcc	cccacgcacc	tcgggacatc	gctcgacgac	120840	
gacccgatcg	cgatcgtcgg	catgagctgc	cggtaccccg	gcggggtcga	gacccccgag	120900	
gacctctggc	gcctggtggt	gggtggcggc	gacgccatct	cggagttccc	gcagggacgc	120960	
ggctgggacc	ttgagtcgct	ctacgacccg	gacccggacg	gcaagggcac	cagctacacc	121020	
cggtcgggtg	gcttcctgca	cgacgcgggc	cggttcgacc	cggcgttctt	cgggatctcg	121080	
ccgcgcgagg	ccgtggcgat	ggacccgcag	cagcggctgc	tcctcgaaac	ctcgtgggag	121140	
gcgttcgagc	gggccgggat	cgacccggcc	tcgatgcgcg	gcagccggac	cggtgtcttc	121200	
gcgggcatca	tgtaccacga	ctacgcgacc	cggatcacct	ccgttccgga	cggggtcgag	121260	
ggctacctcg	gcaccggaaa	ctccggcagc	atcgcctccg	gccgcgtctc	gtacgccttc	121320	
ggcctggagg	gcccggcggt	caccgtcgac	acggcctgct	cgtcctcgct	cgtcgccctg	121380	
cactgggcga	tccaggcgct	gcgcaacggc	gagtgcacga	tggcgctggc	cggcggtgtc	121440	
accgtcatgt	cgacgccggg	caccttcacc	gagttcagcc	gccagcgcgg	cctggccgcc	121500	
gacggccgca	tcaagtcctt	cgcggccgcg	gccgacggca	ccagctgggc	cgaaggcgcg	121560	
ggcatgctgc	tcgtagagcg	gctgtcggag	gcgcgggcca	agggccaccc	ggtcctggcg	121620	
atcgtgcggg	gctcggcgat	caaccaggac	ggtgcgagca	acggcctgac	cgctccgaac	121680	
ggtccctcgc	agcagcgggt	gatccgccag	gccctcgcgg	gggcccggct	gaccagtgac	121740	
cagatcgacg	tggtggaggc	gcacggcacg	ggcaccaccc	tcggcgaccc	gatcgaggcg	121800	
caggcgctcc	tggccacgta	cggccgcgag	cgcgaggcgg	accagccgct	gtggctgggc	121860	
tcgatcaagt	ccaacatggg	tcacacgcag	gcggccgccg	gtgtcgcggg	catcatcaag	121920	
atgatcatgg	ccatccggca	cggtgtgctg	ccgaagaccc	tgcacgtcga	cgagccgact	121980	

ccgcatgtgg actgggaggc cggtgcggtc tcgctcctca ccgagtccgt cccgtggccg 122040 gagacgggcc gtccgccgccg cgccggtgtg tcgtcgttcg gtatcagcgg caccaacgcg 122100 cacacgatca tegageagge geeggaggag ttegteeegg teegtgtgae egagtegeag 122160 acgccgggcg cgggttcgcg agtgctgccg ttcgtgttgt ccgcgaagtc ggcgggggcg 122220 ttgcgtggtc aggcggtgcg tctgaaggcg catgtggagg cttcgccgga ggtgtctgga 122280 gccggggccg ttgatgtggc gtattcgctg gcgacgcggc gtgcggtctt cgaccaccgt 122340 gcggtggtgg tggccggtga ccgcgaggag ttgctgcgtt ctctggctgc tgtggagtcg 122400 gagggcgcgg cggctggtgt gacccgtggg gccgtgggtg gcggaaagct tgccttcctg 122460 ttcacgggcc aggggagcca gcggctcggg atgggccgtg agctgtacga gacgtatccc 122520 gtcttcgcgc gggctctgga cgcggcgtgt gctcgtcttg aactgccgct gaaggatgcg 122580 ctgttcggca ccgatgcggg tctgctgggc gagacggcgt acacccagcc ggctctcttc 122640 gcggtcgagg tggcgttgtt ccgactgctg gagagctggg gtgtgaggcc ggacttcctg 122700 gcgggtcatt cgatcggtga gatcgcggcc gcccatgtgg ccggggtgct ctccctcgat 122760 gacgcctgcg cactggtcga ggcgcgtggt cgtctgatgc aggcgctgcc gaccggtggc 122820 gtgatgatcg ccgtccaggc gtctgaggct gaagtcctgc cgctgctgac cgaccgcgtg 122880 agtategeeg egateaaegg teegeagteg gtegtgateg egggtgaega ggeegaegeg 122940 gtggcgatcg tggagtcctt ctcgggccgc aagtccaagc ggctcacggt cagtcacgcg 123000 ttccactcgc cgcacatgga cggcatgctg gctggcttcc gcaaggtggc ggagagcctg 123060 tcgtacgagg ctccgcgcat cccggtcgtc tcgaacctca ccggggccct ggtcaccgac 123120 gagatgggtt cggccgactt ctgggtgcgg cacgtccgcg aggccgtccg cttcctggac 123180 ggtatccgca ccctggaagc cgcaggcgtc gcgacgtacg tcgaactcgg ccccgatggc 123240 gtcctgtcgg cgatggccca ggactgcgtc accggcgagg gtgcggcctt cgcgcccgcc 123300 ctccgcaagg gccgcccga gaccgagacg atcaccacgg ccctcgccct tgcccacgcc 123360 cacggcacgt ccgtcgactg ggagacgtac ttcgccggga ccggcgccca gggcgtcgag 123420 ctgccgacct acgccttcca gcgtgactgg tactggctga actcggccgt ggtgcaggcc 123480 ggtccgggcg acgcgagcgg attcgggctc ggcgcgaccg atcacccct gctcgacgcg 123540 accategaac tgcccgactc ggacggcttc ctgttcacca gcaggctgtc cctcgacacg 123600 cagccgtggc tcgcggacca cgccgtcctg gggtcggtcc tcctcccggg cacggccttc 123660 gtggaaatcg ccgtacgggc aggtgaccag gtcggttgcg acgtactgga agagctgacg 123720 ctggaggcac cgctggtggt gcccgagcgg ggcggtgtgc agctgcggct caccgtcgcc 123780 geegeegaeg agtegggaeg gegaggtetg tegetgtaet eeegegaega ggaegeteee 123840

gccgacgagc	cgtggacgcg	ccacgccagc	ggcgtgctcg	ccaccggcgc	ggcggcccc	: 123900
		gcccccggcc				
		cgggttcgac				
		ggtgtacgcc				
		gcacccggcc				
		caccggccag	•			
		gtccgcggta				
		çgacgcggcg				
		cgaccagatc				
	•	cgccctcccg				
1.		cgacgggtcc				
		actcgcggcg	•			
•		tgcggcgaac				
		gctgggtctg				
		cctgacgcgc				
		tccggtgtgg				
		cgacaccgac				
		gccggagttc				
		tgtcgctgtg				
		gagtggcacg				
		cctgctgttg				
gctgctgaac			1		•	
gatgtggccg						
ttgtcgggtg						
ccggagcgcc						
ctgacccgcg						
ggtggtgccg						
caccgcaggg						
gggggcatgg					-	
agcgggctct						
gccctgttcg						
atgcttccgc						
			04/254		- 3 vaggeace	-63100

aacaaaaaa	an and a coord	cacaaacaat	aaaa aaaaaa	+ aaaaaaaaa	cetaaceaaa	125820
	gagacaccgg					
ctcgcaccgg	ccgcgcggga	cgaagcgctg	ctggagctcg	tctgcacgta	cgtcgcggcg	125880
gtgctcggct	tegeegggee	cgaggcggtc	gateeggege	ggtcgttcag	cgaggtcggc	125940
ttcgactcgc	tgaccgccgt	cgagctgcgc	aacaggctcg	gcgccgcgac	cggcgtacgc	126000
ctccccgcca	ccctcgtctt	cgactacccg	acaccggacg	cgctggtgga	gtacctgcgc	126060
gacgaactct	ggcaggacgg	cgccgcggcg	gtacccccgc	tgctcgccga	actcgaccgg	126120
ctggagaaga	cgctcgtggc	gtccgtgccc	gacgacgacg	gccgcacccg	catcaccgag	126180
cggctgcagg	ccctgctggc	cgcctggagc	gaggccggcg	aatcaacgga	caccgccgac	126240
gccgatgtgg	ccgaggcgct	tgagaccgcg	accgacgatg	acctcttcga	cttcatcggc	126300
aaggagttcg	ggatctcgtg	atgcgaaggc	ccggctccgc	cctttccgac	ggctctgtct	126360
ttctggcttc	tgtacgaggg	atgcacgcat	gaatgaggaa	aaactccggt	acttcctgaa	126420
gcgggtgacg	gccgatctcc	acgagacgcg	ccggcgtctt	caggaggtcg	agtcggagga	126480
gcaggagccg	atcgcgatcg	tcgggatgag	cțgccgctac	ccgggagacg	tcgagtcgcc	126540
cgaggacctg	tggcggctgg	tgtccgagga	gaccgacgcc	atctcccctt	tccccaccga	126600
ccggggctgg	gacatggggc	ggctcttcga	cgcggacccc	gacgggcggg	gcacgagcta	126660
tgtgcaggaa	ggcggcttcc	tgcactccgc	caaccggttc	gacccggcgt	tcttcgggat	126720
ctcgccgcgc	gaggccgtgg	cgatggaccc	gcagcagcgg	ctgctcctcg	aaacctcgtg	126780
ggaggcgttc	gagcgggccg	ggatcgaccc	gacctcgctg	cgcggcagcc	ggaccggcgt	126840
cttcgcgggc	gtcatgtacc	acgactacgc	ctcgcggctg	cgtgccgtcc	cggaggaggt	126900
cgagggttac	ctcggcaccg	gcggctccag	cagcatcgcc	tccggccggg	tctcgtacac	126960
cttcggcctg	gagggcccgg	cgctcaccgt	cgacacggcc	tgctcgtcct	ccctcgtcac	127020
gctgcacctg	gccatgcagg	cgctccgcaa	gggcgagtgc	tegetegece	tcgcgggcgg	127080
tgtcaccgtg	atggcgacac	cgggcacctt	cacggagttc	agccgccagc	gcggtctgtc	127140
cttcgacggc	cgctgcaagt	ccttcgcgga	ctccgcggac	ggcaccggct	gggccgaggg	127200
cgcgggcatg	ctcctcgtgg	agcggctctc	ggacgcccgt	aagaacggcc	atacggtact	127260
cgccgtggtc	cggggctcgg	ccgtcaacca	ggacggtgcc	agcaacggcc	tgaccgcccc	127320
gaacggcccc	tcccagcagc	gggtcatccg	gcaggccctg	gccgacgccc	gcctcacggc	127380
ggccgacgtc	gacgtcgtgg	aggcacacgg	caccggcacc	accctcggtg	acccgatcga	127440
ggcgcaggcc	ctgctcgcca	cgtacggccg	ggaacacacc	gaggacagcc	cgctgtggct	127500
cggctcggtc	aagtcgaacc	tcggtcacac	ccaggcggcc	gcgggcgtcg	ccggcatcat	127560
caagatggtc	atggcgatcc	gccacggccg	gatececaag	acgctgcatg	tcgacgagcc	127620

geogragace geogracege geogracege gatetetee teggeates eggeateta 127780 teggeacace geogracege geogracege gatetettee teeggeates geograceta 127740 teggeacace ateategace aggetecest geogragese gagacegaa cegacegae 127800 eggeacaga acggaceget etgagageae geogragege gagaggacaa acggacegae 127800 eggeacagag geocetecace cetagagega cegatette cegtegeceg teteggeceg 127920 taceggaggag geocetecace cecagegga acgectegt geocacege gagaceace 127880 ggaccaggee ceggteggee tegetetet cetagaceae ggegacege gagaceae 128040 ecgegeegt gtegtegeca cegacegga acececece geogracete cegacege 128100 gtecggeaga aceteggeae gegtegtee eggegagee gagagegegg gaagaceae 128100 gtecggeaga aceteggeae gegtegtee eggegagee gagagegegg eagagaceg 128100 gtecggeaga aceteggeae gegtegtee eggegagee gagagegegg eagagaceg 128100 gtecggeaga aceteggeae gegtegtee eggegagee gagagegegg eagagaceg 128100 gtecggeaga aceteggeae gagaceaeg gegtgggat gagagegegg eagagaceg 128200 gtatecegte tegggagga gagacagae gagtgggaae acgcetetaa egcaacegae 128200 gtatecegte tegggagga atgegeae gatgggaga acgcettata egcaacegae 128300 getettegee gggaattega tegggagaaa ecgcecega cacgteggag gggtgttete 128400 ettectggee gggaattega tegggagaaa ecgcecegag acgteggag ggggtgttete 128400 ettectggee gggaattega tegggaggaa teggaggaga tegateggag 128400 ettectggaa atgategege teggtgegge teggaggagga gtettggga ggggtgttete 128400 getggaaggaa atgategega tegatggaga teggaggag gagagagga gggaggaga 128600 gegggaggaga atgategega agacetteae gagageggg stagaggga gagagagag 128600 ecggggagaa atgategega agacetteae gagagagag teggaggaga gagagagaga 128600 ecgagggagaa atgategega agacetteae gagagagaga teggagagaga 128700 teacegggte eggategtga agacetteae gagagagaga gaceteaegagagagagagagagagagagagagagagagagag							
tgcgcacaga acatecgage aggetceget geeggagge gagacegaa eeggaggagga 127800 eggeggaegga acggaegget etgagagae geeggaggae gagggaeag agggaeaga 127800 eggegaeggag gtgeggeegg tgtgeegtgee teegteett eegtgeeeg teteggeeeg 127920 taeggaggag geectgeaeg eeggetgeeg acgeetgeeg geecaegtge ggaeaaace 127980 ggaecaggee eeggtgggeg tegetetete eetggeeaea gggegeeeg eggtgaaaa 128040 eeggeegtt gtegteeae eegaeegga aacegeetee geegaeetee eegaeegg 128100 gteeggeega aceteggeeg gggteegee gegtggaae 128100 gteeggeega aceteggeeg gegtggtee eggtggagg geaagaeegg 128100 gteeggeega aceteggeeg gegtggaeg gggtggagg ggaagaeegg 128100 gteeggeega aceteggeeg gggtggagg ggggggggggggggggggggg	gtcgaccaac	gtcgactggt	cggcgggcgc	cgtctcgctg	ctgcgggagt	ccgtggagtg	127680
eggegacgag acggacggc etgagacgac gegggggac gagggacag aggggacag 127860 gggaccggg gtgcggcccg tgtccgtgcc tcccgtcctt ccgtggcccg tctcggcccg 127920 tacggaggag gccctgcacg cccaggcgga acgcctgctg gcccacgtgc ggaccaaccc 127980 ggaccaggcc ccggtgggcg tcgctctctc cctggccaca gggcgccgc cgctggaaca 128040 ccgcgccgtt gtcgtcgcc ccgaccggga accccgccg gegggggg ccgccgcg cgctggaaca 128040 gtccggcaga acctcggcgc gcgtcgtgct cggcgacccg ggacgcgcg cacacggc 128100 gtccggcgag acctcggcgc gcgtggtgct cggcggacg ggaggcggg gcaagaccg 128100 gtcctgttc acggggacgg ggagtcagcg ggtgtgtgcc gtcttgaac tgccacgga 12820 gtatcccgtc ttcgcggatg cgctggacg ggtgtgtgcc cgtcttgaac tgccctga 12820 gtatcccgtc ttcgcggatg cgctggggt ggtgtgtgcc cgtcttgaac tgccctga 128200 gtctctgcc gttgaggtg cgctggggt ggtgtgtgcc cgtcttgaac tgccaccgg 128340 gctcttcgcc gttgaggtg cgctggggat gggggggggg	gccggagacc	ggccgcccgc	gccgcgcggc	gatctcttcc	ttcggcatca	gcggcactaa	127740
tacggaggag gtgeggeceg tgtecegtect tecegtect cettggeceg teteggeceg 127920 tacggaggag geeetgeacg eecaggegga aegeetgetg geeeaegtge ggaceaacce 127980 ggaceaggee eeggtgggeg tegetetete eetggecaca gggegegeeg egetggaaca 128040 cegegeegtt gtegtegeca eegaceggga aacegeete geegaceteg eegaceteg 128100 gteeggegga aeeteeggeg gegtegtet eggegageeg ggagegegg geaagaeegg 128100 gteeggeggag aeeteeggeg ggggtegge gggggggggg	tgcgcacacg	atcatcgagc	aggctccgct	gccggaggcc	gagaccgaaa	ccgagccgac	127800
tacggaggag gcctgcacg ccaggcgga acgctgctg gccacgtg ggaccaccc 127980 ggaccaggc ccggtgggcg tcgctctc ctggccaca gggcgcccc cgctggaca 128040 ccgcgcgtt gtcgtcgca ccgaccgga aaccgcctc gccgacctc ccgcactgg 128100 gtccggcag acctcggcg ggtgtgt cggcgagcc ggagcgcgg gcaagaccg 128100 gtccggcgag acctcggcg ggagtcagcg gctggggat gggcgcgg gcaagaccg 128100 gttcctgttc acggggacg ggagtcagcg gctggggat gggcgcgg tcgacgaga 128220 gtatccgtc tcgcggatg cgctggacg ggtgtgtgc cgtcttgaac tgctctgaa 128280 ggatgtgtg ttcgggggg atgcgcgcg ggtgtgtgc cgtcttgaac tgcctctgaa 128280 ggatgtgtg ttcgggggg atgcgcgg cgttgtggag acctctgac tgaagccgg 128340 gctctcgcc gttgaaggg cgttgtggag acctctgac gggagtccg ggtggggag acctcgg gggggggggg	cggcgacgag	acggacggct	ctgagagcac	ggcgggggca	gaggggacag	aggggacaga	127860
egaccaggec ceggtgggeg tegetetete etggecaca gggegegec egetggaaca 128040 cegegegett gtegtegeca cegaceggga aacegeete geegaceteg eegaceteg 128100 gteeggegag aceteggege gegtegtet eggegagee ggagegegg geaagacege 128100 gteeggegag aceteggege gegtegtet eggegagee ggagegeggg geaagacege 128100 gteetgtte aeggggaagg ggagteageg getggggatg gggegegage tgtacagaga 128220 gtatecegte teggeggatg egetggaege ggtgtgtgee egetettaa egeacegg 128340 getettegee gttgaggtgg egttgtteeg gttggtggag aegetgggg tgaageegg 128400 etteetggee gggeattega teggegagat egeegeege eaegtegegg gggtgttet 128400 getggaggat gettgegee tggtgtegg etggtgggg eaegteggg gggtgttet 128400 getggaggat gettgegeg teggtgggeg teggtggggg eetgggggggg	gggcgccggg	gtgcggcccg	tgtccgtgcc	tcccgtcctt	ccgtggcccg	teteggeeeg	127920
cecegocogtt gtegtegeea eegaceggga aacegeetee geegaceteg eegaceteg 128100 gteeggeegag aceteggeeg gegtegtget eggegageeg ggagegeggg geaagaceg 128160 gtteetgtte aeggggeag gagteageg getggggat gggegegage tgtacegaga 128220 gtatecegte ttegeggatg egetggace ggtgtggee egettgaae tgeetetgaa 128280 ggatgtgtt tteggggeg atgeegget getgggagag acegettata egeaacege 128340 getettegee gttgagggg egttgtee gttgagggag acegettata egeaacege 128340 getettegee gttgagggg eggtgggggggggggggg	tacggaggag	gccctgcacg	cccaggcgga	acgcctgctg	gcccacgtgc	ggaccaaccc	127980
gtccggcgag accteggcg gcgtcgtgct eggcgagccg ggagcgggg gcaagaccg 128160 gttcctgttc acgggcagg ggagtcagcg gctgggagc gctgggagc tgtacgaga 128220 gtatcccgtc ttcgcggatg egctggaccg ggtgtgtgcc egctttgaac tgcctctgaa 128280 ggagtgtgtt ttcgggggg atgcgggt gctgggagag accgcttata egcaaccgg 128340 gctcttegcc gttgagggg egttgttccg gttggtggag accgcttata egcaaccgg 128400 cttcctggcc gggcattcga teggggagat egceggegg eacgtegggg gggtgttct 128460 gctggaggag acggttggaggggggggggggggggggg	ggaccaggcc	ccggtgggcg	tagatatata	cctggccaca	gggcgcgccg	cgctggaaca	128040
gttcctgttc acgggcagg gagtcagcg gctggggatg gggcgagc tgtacggg 128220 gatcccgtc ttcgcggatg cgctggacgc ggtgtgtcc cgtcttgaac tgcctctgaa 128280 ggatgtgttg ttcgggggg atgcgcgtct gctggacgag accgcttata cgcaaccggc 128340 gctcttcgcc gttgaggtgg cgttgttccg gttggtggag accgcttata cgcaaccggc 128340 gctcttcgcc gttgaggtgg cgttgttccg gttggtggag agctggggt tgaagcccga 128400 cttcctggcc gggcattcga tcgggcgagat cgccgccgcg cacgtcgcg ggggtttctc 128460 gctggaggat gcttgcgcg tggtgtcgc tcgtggcgg ttgatgggg gggtgttctc 128520 gggtggcgtg atgatcgcgg tggaggcgt ggaggacgag gttctgccg tgctgacgg 128580 ccgggtggag attgatcgcgg tcaatggtcc gcagtcggg gtgatcgcg tgatggggg atgacgggg agtccttcac ggggggtaag tcgaagcgg ttcaagggc 128700 tcacgcgttc cattcgccg acatggacg gatgttgga gacttccggg tggaggggg 128700 ggggcttcg tacgaggct cgcgcatccc cgtcgtttcg aacctcaccg gggccttggt 12880 cctggatgag atcggggcg acatggagg gatgttgga acctcaccg gggccttgg 12880 cctggatgag atcggggcc gggactctcg ggtccgaca gtccgtgagg ccgttcgct 12880 cctggatgag atcggggcc tggaggccg gggcgtcacg acgtcaggg ccgttcgct 12880 cctggatgag atcgggccc tggaggccc gggcgtcacg acgtcaggag ccgttctcg 129940 cgacggtcc ctgtcggcg tggccagg atggcgcac gggcgaact ccgtctcgt 129000 gccggtcctg cgctcgggc ggactcgag gggaggcga accactac ggcggagacc ttggccagg 12910 cgtcgacct gcaccactac cttccagcg cgggcgagac gggcgagac ccaccactac gcggcagac gtgaccacg cgggcgagac gggcgagac gtgaccacg cgggccttcd atcgccga cggcgagac ccggaaccc 129180 cggcggagac gtgaccacg cgggccttcd atcgccga cggcctctcd tcgacacca 129300 cccgtggctc gccgaccac ctgtggcggg gacgcttct cctcaccggc cggcttctcg tcgacacca 129300 cccgtggctc gccgaccac ctgtggcggg gacgctcct ctgacccga cggcttcg ctgaccacca 129300 cccgtggctc gccgaccac ctgtggcgg gacggtcctg ctgaccagac acctcaccc 129300 ccaccaccac ctggggcgc ccgaccagg tggaccagg cggcctcc ctgaccacac ctgaccacac ctgtggcgg gacgtcctg ctgaccagac acctcaccc 129300 ccgaccaccac ctggggcgc ccgaccacg cggctccac cggaccacca ctgaccacacaccaccaccaccaccaccaccaccaccaccac	ccgcgccgtt	gtcgtcgcca	ccgaccggga	aaccgccctc	gccgacctcg	ccgcactggc	128100
gtatecegte teegegate egetegace egetegace egetetegae tegetetegae 128280 ggatgtgttg teegegaeg atecegetet eetegacega acceptata egecacegae 128340 getettegee gttgaggteg egttgtteeg gttggtggaa acceptata egetegeeg 128340 etteetggee gggattega teegegagat egeegeege eacgtegegg egggtttete 128460 getggaggat gettgegee tegtgtege tegtggeegg tegatgggg eetegeeg 128520 gggtggegtg atgategegg tgeaggete ggaggaegag gttetgeege tegtgaegg 128580 eegggtgage attgeegga teaatggtee geagteggg gtgategeg gtgacegag 128640 eeggegtgage attgeegga teaatggtee geagteggg gtgategeg gtgacegag 128700 teaegegtte cattegeege acatggaegg gatgttggaa gaetteeggg tegtgeega 128700 ggggetgteg taegaggete eggeateete egtegtteg acceteace gggeetteg teegaggega 128700 eeteggatgag atgggttegg eggaettete gggeegaeae gteegtgag eegteeggt 128820 eeteggatgag ateegggee tggaageege gggeegaeae gteegtgag eegteeget 128880 eeteggatgag ateegggee tggaageege gggegtaeae acceteace gggeeetteg 128880 eeteggatgge ateegggee tggaageege gggegtaeae accateaceg eggeetteeg 129000 geeggteete etgteggega tggeeeagge ggagagegte accaceggee ttgeeagge 129100 geeggteete egetegggte geteegagge ggagagegte accaceggee ttgeeagge 129120 egtegacete eccacetaeg eetteeagge egaceactae tggetegae eeggaacget 129180 eggeggagaae gtgaceaegg egggeetteg ateegeegat eacectete teggegeette 129240 tgtggetete geeggategg agggeette ecteacegge eggetetege tegacacea 129300 eeggtggete geegaategeg gtgaceaggt eggetgega etgacegga accteace 129300 eeggtggete geegaategeg gtgaceaggt eggetgega etgacegga accteace 129300 eeggtggete geegaategeg gtgaceaggt eggetgega etgacegga accteacet 12940 eeggtggeete geegaategeg gtgaceaggt eggetgega etgacegga accteacet 129420 eeggeggeege etgggteeg etgaceaggt eggetgega etgaceaga accteacet 129420 eeggeggeegee etggsteege eegagaeggt eggetgega etgaceaga accteacet 129420 eegeggegeege etggsteeg eegagaggg teggsteeg etgaceaga accteacet 129420	gtccggcgag	acctcggcgc	gcgtcgtgct	cggcgagccg	ggagcgcggg	gcaagaccgc	128160
ggatgtgttg ttcggggcgg atgcgcgtct gctggacgag accgcttata cgcaaccggc 128340 gctcttcgcc gttgaggtg cgttgttccg gttggtgag agctgggtc tgaagcccga 128400 cttcctggcc gggcattcga tcggcgagat cgccgccgc cacgtcgcgg gggtgttct 128460 gctggaggat gcttgcgcc tggtgtcgcc tcgtggccgg ttgatgggtg ccctgctgc 128520 gggtggggtg atgatcgcgg tggtgccc ggaggacgag gttctgcccc tgctgacggc 128520 ccgggtgaga attgccgcg tcaatggtcc gcagtcggtg gtgatcgcg gtgacgagg 128640 cgacgggtc gcgatcggg agtccttcac ggggcgtaag tcgaagcggc ttacggtcag 128700 tcacgggttc cattcgccg acatggacgg gatgttggaa gacttccgg tggtgcgga 128700 ggggctgtc tacgaggcc cggcatccc cgtcgttcg accctacgg gggcctggt 128820 cctggatgag atgggttcg cggactccc cgtcgtttcg accctaccg gggccctggt 128820 cctggatgag atgggttcg cggacttctg ggtccggcac gtccgtgagg ccgttcgtt 128820 cctggatgag atccgggccc tggaggccg gggcgtacc acctacgcg ggccctggt 128940 cgacggttc ctgtcggcac tggaggccg gggcgtacc acctacgc gggcggaact ccgttcgtt 128940 cgacggttc ctgtcggga tggccaggag atggcggagacc accacggccc ttgccggac ggagggggagaccgggggggagac gggagagggggggg	gttcctgttc	acggggcagg	ggagtcagcg	gctggggatg	gggcgcgagc	tgtacgagga	128220
getettegee gttgaggtgg egttgtteeg gttggtggag agetggggte tgaageegg 128400 etteetggee gggeattega teggeggagt egeegeegg caegtegegg ggggtgtteet 128400 getggaggat gettgegege tggtgtegee tegtggeegg ttgatggggg cectgeegg 128520 gggtggggggggggggggggggggggggggggggggg	gtatcccgtc	ttcgcggatg	cgctggacgc	ggtgtgtgcc	cgtcttgaac	tgcctctgaa	128280
cttectggee gggeattega teggegagat egecgeeg caegtegeg gggtgttete 128460 getggaggat gettgeege tegtgteege tegtggeegg ttgatggetg eeetgeetge 128520 gggtggeegg atgategegg tgeaggegte ggaggaegag gttetgeege tgetgaegge 128580 eegggtgage attgeegegg teeatggeeg egaggeeggg gtgategeeg 128580 eegggtgage attgeegega teaatggtee geagteggtg gtgategeeg gtgaegagge 128640 egaegeggte gegategtg agteetteae ggggegtaag tegaagegge ttaeggteag 128700 teaegggtte cattegeege acattggaegg gatgttggaa gaetteeggg tegtggega 128760 ggggetgteg taegaggete egegateee egegateee egtegtteg aaceteaeeg gggeeetggt 128820 eeteggatgga atgggttegg eggaettetg ggteeggae gteegtgagg eegtteegt 128880 eetggatgge ateegggee tggaggeeg aggeeteeg aggegteaeg aceteggee 128940 egaeggtgte etgteeggea tggeeeagge gggegteaeg atggegagaet eegtetegt 129000 geeggteetg egetegggee geteeggag gggeetaete geeggaaeeg 129120 egtegaeetg eggategeeg eggeetteeg ateeggeege 129180 eggeggagae gtgaeeagg eggeettee ateegegae eggegteetg eeggegaeeg 129180 eggeggagae gtgaeeagg eggeetteeg ateegegga eggeetteeg tegaaeee 129300 eeggtggete geeggaeeg etgggeggg gaeggeete etgaeegge etggaeegggggggggeggeeg etgggegggggggggg	ggatgtgttg	ttcggggcgg	atgcgcgtct	gctggacgag	accgcttata	cgcaaccggc	128340
getggaggat gettgegege tegtgtegge tegtggeegg ttgatgggg tegtgegge tegtggeegg tgetggeegg tgetggeegg gegaggeegg gtettgeege tgetgaegge 128580 cegggtgage attgeegga teaatggtee geagteggtg gtgategegg gtgacgagge 128640 cgacgeggte gegategtgg agteetteae gegggetaag tegaagegge ttaeggteag 128700 teaegggtte cattegeege acatggaegg gatgttggaa gaetteeggg tegtggeegga 128760 ggggetgteg taegaggete egegeateee egegettetg aceetteegg ggaettetg ggteeggaa geggeeggaeggaeggaggetgeggaeggaeggaeggaeg	gctcttcgcc	gttgaggtgg	cgttgttccg	gttggtggag	agctggggtc	tgaagcccga	128400
ceggetgage atgategeg tecaggege egagegage gttetgeeg tectgageg 128580 cegggtgage attgeegga teaatggtee geagteggtg gtgategegg gtgategage 128640 cgacegeggte gegategtgg agteetteae ggggegtaag tegaagegge ttaeggteag 128700 teaeggegte cattegeeg acatggaegg gatgttggaa gaetteeggg tegtggegga 128760 ggggetgteg taegaggete egegateee egegeateee egtegtteeg aaceteaeeg gggeettegt 128820 eeteggatgag atgegttegg eggaettetg ggteeggaae gteegtgagg eegtetegt 128880 eeteggatgge ateegggee tggaggeege gggegteaeg acgtaegteg aaceteggee 128940 egaeggtee etgteggge ggeetagge atgegtgaee gggegteaeg acgtaegteg aaceteggee 129000 geeggteetg eggeteegg eggegteaetg egeggaaeet eegtettegt 129000 geatgteege gggategeeg tggaetggae ggagagegte accaeggeee ttgeeeagge 129060 geatgteege gggategeeg tggaetggae ggeetaette geeggtaeeg gtgeegageg 129120 egtegaeetg eegaeetge eggeetteeg ateegeegae eggaaeget 129180 eggeggagae gtgaeeaegg egggeettee eeteeaegg eggeeteteg tegaeeega 129300 eeegtggete geegaaegeg etgtgegggg gaeggteetg etgeeeggat eggegteegt 129360 eegaaetegg etgegggeeg gtgaeeagg eggeteetg etgeeegga eggettegt 129360 eegaaetegg etgegggeeg gtgaeeagg eggeteteg etgeeegga eggettegt 129360 eegaaetegg etgegggeeg gtgaeeagg eggeteteg etgeeegga eggettegt 129360 eegaaetegg etgegggeeg gtgaeeagg eggeteetg etgeeegga aacteaeet 129300 eegaaetegg etgegggeeg gtgaeeagg eggeteetg etgeeegga aacteaeet 129420 eggeggeege etggggeeg gtgaeeagg eggategaa etgeaegga aacteaeet 129420 eggeggeege etggtgeeg etggggeeg gtgaeeagg eggateeaa etgeaega aacteaeet 129420 eggeggeege etggtgeeg etggggeegg gtgaeeagg eggategaa etgeaega aacteaeet 129420 eggeggeege etggtgeeg etggggeegg gtgaeeagg eggateega etgeaega eeggeeteg 129480	cttcctggcc	gggcattcga	tcggcgagat	cgccgccgcg	cacgtcgcgg	gggtgttctc	128460
cegggtgage attgeegga teaatggtee geagteggtg gtgategegg gtgacgagge 128640 cgacgeggte gegategtgg agteetteae ggggegtaag tegaagegge ttaeggteag 128700 teaeggegte cattegeegg acattggaegg gatgttggaa gaetteeggg tegtggegga 128760 ggggetgteg taegaggete eggeateee eggegtteeg aaceteaeeg gggeettegg 128820 eeteggatgag atgggttegg eggaettetg ggteeggaee gteegtgagg eegtteeget 128820 eeteggatgae ateegggeee tggaggeege gggegteaeg aegtaegteg aacteeggee 128940 egaeggteet etggeggee tggaggeege atggegeee atggaggeege atggeggaeeg atggeggaaeet eegteteg 129000 geeggteetg egetegggee geteegggee ggagageegte aceaeggeee ttgeeeggee 129000 geatgteege gggategeeg tggaetggea ggegtaeete geeggaaeeg 129120 egtegaeetg eeeteeaegg eggeetteg ateeggeggaeeg eggegaaege teggeggaeegeegeegeegeeggeegggggggggg	gctggaggat	gcttgcgcgc	tggtgtcggc	tcgtggccgg	ttgatgggtg	ccctgcctgc	128520
cgacgcggtc gcgatcgtgg agtccttcac ggggcgtaag tcgaagcggc ttacggtcag 128700 tcacgcgttc cattcgccgc acatggacgg gatgttggaa gacttccgggg tcgtggcgga 128760 gggggctgtcg tacgaggctc cgcgcatccc cgtcgtttcg aacctcaccg gggccctggt 128820 ctcggatgag atgggttcgg cggacttctg ggtccggcac gtccgtgagg ccgttcgctt 128880 cctggatggc atccgggccc tggaggccgc gggcgtcacg acgtacgtcg aactcggccc 128940 cgacggtgtc ctgtcggga tggcccaggc atgcgtgacc ggcggaact ccgtcttcg 129000 gccggtcctg cgctcgggtc gcccaggc ggagagcgtc accacggccc ttgcccaggc 129060 gcatgtccg gggatcgccg tggactggaa ggcctacttc gccggtaccg gtgccaggc 129120 cgtcgacct cccacctacg ccttccagcg cgaccactac tggctcgacg ccggaacgct 129180 cggcggagac gtgaccacgg cgggccttcg atccgcgat caccctctgc tcgacacca 129300 cccgtggctc gccgaccacc ctgtggcgg gacggtcctg ctgaccactac tggctccgat cggcgctc 129240 tgtggctct gccgaccac ctgtggcgg gacggtcctg ctgaccacca 129300 ccacgtggctc gccgaccacc ctgtggcgg gacggtcctg ctgaccacgat acccctctgc tcgacaccca 129360 cgaactcgc ctgcgggccg ctgggcgcg gtgaccaggt cggctgcac ctgatcgac aactcacct 129420 cgcgggcgcc ctggggccc ctggggcgcg gtgaccaggt tggagtcgaa ctccagatca ccgtcgggc 129480	gggtggcgtg	atgatcgcgg	tgcaggcgtc	ggaggacgag	gttctgccgc	tgctgacggc	128580
tcacgegttc cattegecge acatggacgg gatgttggaa gactteeggg tegtggggg 128760 gggggetgteg tacgaggete egegeatece egtegtteg aaceteaceg gggeeetggt 128820 eteggatgag atgggttegg eggaettetg ggteeggaac gteegtgagg cegttegett 128880 eetggatgge atcegggee tggaggeege gggegteacg acgtaegteg aacteggee 128940 egacggtgte etgteeggag tggeeeagge atgegtgace ggeggaacet eegtettegt 129000 geeggteetg egeteeggge ggaggegte accaeggee ttggeeagge 129000 geatgteetg eggateegg tggaetggea ggeetaette geeggtaeeg ttgeeeagge 129000 geatgteege gggategeeg tggaetggea ggeetaette geeggtaeeg gtgeegageg 129120 egteggaeet eccaectaeg eggeetteg ateeggeat eaccaeggee eggaeeget 129180 eggeggagae gtgaeeagg agggeettet eeteacegge eggetetege tegaeacea 129300 eeegtggete geeggaeegg etgtggeggg gaeggteetg etgeeeggta eggegtteg 129360 egaactegge etgegggeeg gtgaeeagg tggaetggae etgateggae aacteaecet 129420 egegggegee etggtgeteg eeggaeaggg tggaetgaa etceagate eegteggee 129480 egegggegee etggtgeteg eeggaeaggg tggagtegaa etceagatea eegteggeg 129480	ccgggtgagc	attgccgcga	tcaatggtcc	gcagtcggtg	gtgatcgcgg	gtgacgaggc	128640
ggggctgtcg tacgaggctc cgcgcatccc cgtcgtttcg aacctcaccg gggccttggt 128820 ctcggatgag atgggttcgg cggacttctg ggtccggcac gtccgtgagg ccgttcgctt 128880 cctggatggc atccgggccc tggaggccgc gggcgtcacg acgtacgtcg aactcggccc 128940 cgacggtgtc ctgtcggga tggcccaggc atgcgtgacc ggcgagaact ccgtcttcgt 129000 gccggtcctg cgctcgggtc gctccgaggc ggagagcgtc accacggccc ttgcccaggc 129060 gcatgtccgc gggatcgccg tggactggca ggcctacttc gccggtaccg gtgcccaggc 129120 cgtcgacctg cccacctacg ccttccagcg cgaccactac tggctcgacc gcggaacgct 129180 cggcggagac gtgaccacgg cgggccttcd accacctacg tcggcgcct 129240 tgtggctctg gccgaccac ctgtggcggg gacggtcctg ctgcccggta cggcttcg tcgacccc 129300 cccgtggctc gccgaccacc ctgtggcggg gacggtcctg ctgcccggta cggcgttcg 129360 cgaactcgc ctgcgggccg gtgaccaggt cggctgcac ctgatcgacg aactcaccc 129320 cgcggcgcc ctggtgctc ccgagcagg tggagtcgac ctgatcgac aactcaccc 129420 cgcgggcgcc ctggtgctc ccgagcagg tggagtcgaa ctccagatca ccgtcgcgc 129480	cgacgcggtc	gcgatcgtgg	agtccttcac	ggggcgtaag	tcgaagcggc	ttacggtcag	128700
cteggatgag atgggttegg eggaettetg ggteeggeae gteegtgagg eegttegett 128880 cetggatgge ateegggeee tggaggeege gggegteaeg aegtaegteg aacteggeee 128940 egaeggtete etgteggea tggeeeagge atgegtgaee ggegagaaet eegtettegt 129000 geeggteetg egeteegggte geteegagge ggagagegte accaeggeee ttgeeeagge 129060 geatgteege gggategeeg tggaetggea ggeetaette geeggtaeeg gtgeeegage 129120 egtegaeetg eccaectaeg eetteeagge egaeeaetae tggetegaeg eeggaaegee 129180 eggeggagae gtgaeeaegg egggeetteg ateegeegat eaccetetge teggegeete 129240 tgtggetetg geeggatgeeg agggeettet eeteaeegge eggetetege tegaeaecea 129300 eccegtggete geegaeeaeg etgtgeeggg gaeggteetg etgeeeggta eggegteegt 129360 egaaetegeg etgeggeeg gtgaeeaggt eggetgeae etgategaeg aacteaecet 129420 eggeggeege etggtgetge eegagaaggg tggagtegaa etceagatea eegteggge 129480	tcacgcgttc	cattcgccgc	acatggacgg	gatgttggaa	gacttccggg	tcgtggcgga	128760
cctggatggc atccgggcc tggaggccgc gggcgtcacg acgtacgtcg aactcggccc 128940 cgacggtgtc ctgtcggcga tggcccaggc atgcgtgacc ggcgagaact ccgtcttcgt 129000 gccggtcctg cgctcgggtc gctccgaggc ggagagcgtc accacggccc ttgcccaggc 129060 gcatgtccgc gggatcgccg tggactggca ggcctacttc gccggtaccg gtgccgagcg 129120 cgtcgacctg cccacctacg ccttccagcg cgaccactac tggctcgacg ccggaacgct 129180 cggcggagac gtgaccacgg cgggccttcd atccgccgat caccctctgc tcggcgctc 129240 tgtggctctg gcggatcgg agggccttct cctcaccggc cggctctcgc tcgaccacca 129300 cccgtggctc gccgaccac ctgtggcggg gacggtcctg ctgccggta cggcgttcgt 129360 cgaactcgcg ctgcgggccg gtgaccaggt cggctgcac ctgatcgacg aactcacct 129420 cgcggcgcc ctggtgctc ccgaggaggg tggagtcgaa ctccagatca ccgtcgcgc 129480	ggggctgtcg	tacgaggctc	cgcgcatccc	cgtcgtttcg	aacctcaccg	gggccctggt	128820
cgacggtgte ctgteggga tggcccagg atgcgtgac ggcgagact ccgtctcgt 129000 gccggtcctg cgctcgggtc gctccgaggc ggagagcgtc accacggccc ttgcccaggc 129060 gcatgtccg gggatcgccg tggactggca ggcctacttc gccggtaccg gtgccgagcg 129120 cgtcgacctg cccacctacg ccttccagcg cgaccactac tggctcgacg ccggaacgct 129180 cggcggagac gtgaccacgg cggccttcg atccgccgat caccctctgc tcggcgcct 129240 tgtggctctg gcggatgcgg agggccttct cctcaccgge cggctctcgc tcgacaccca 129300 cccgtggctc gccgaccacg ctgtggcggg gacggtcctg ctgcccggta cggcgttcgt 129360 cgaactcgcg ctgcgggccg gtgaccaggt cggctgcaac ctgatcgacg aactcacct 129420 cgcggcccg ctggtgctg ccgagcaggg tggagtcgaa ctccagatca ccgtcgcgc 129480	ctcggatgag	atgggttcgg	cggacttctg	ggtccggcac	gtccgtgagg	ccgttcgctt	128880
gccggtcctg cgctcgggtc gctccgaggc ggagagcgtc accacggccc ttgcccaggc 129060 gcatgtccgc gggatcgccg tggactggca ggcctacttc gccggtaccg gtgccgagcg 129120 cgtcgacctg cccacctacg ccttccagcg cgaccactac tggctcgacg ccggaacgct 129180 cggcggagac gtgaccacgg cgggccttcg atccgccgat caccctctgc tcggcgcct 129240 tgtggctctg gccgatcgg agggccttct cctcaccggc cggctctcgc tcgaccacca 129300 cccgtggctc gccgaccacg ctgtggcggg gacggtcctg ctgcccggta cggcgttcgt 129360 cgaactcgcg ctgcgggccg gtgaccaggt cggctgcac ctgatcgacg aactcacct 129420 cgcggcccg ctggtgctc ccgaacggg tggagtcgaa ctccagatca ccgtcgcgc 129480	cctggatggc	atccgggccc	tggaggccgc	gggcgtcacg	acgtacgtcg	aactcggccc	128940
gcatgtccgc gggatcgccg tggactggca ggcctacttc gccggtaccg gtgccgagcg 129120 cgtcgacctg cccacctacg ccttccagcg cgaccactac tggctcgacg ccggaacgct 129180 cggcggagac gtgaccacgg cgggccttcg atccgccgat caccctctgc tcggcgcctc 129240 tgtggctctg gccggatgcgg agggccttct cctcaccggc cggctctcgc tcgacaccca 129300 cccgtggctc gccgaccacg ctgtggcggg gacggtcctg ctgccggta cggcgttcgt 129360 cgaactcgcg ctgcgggccg gtgaccaggt cggctgcac ctgatcgacg aactcaccct 129420 cgcggcgccg ctggtgctgc ccgagcaggg tggagtcgaa ctccagatca ccgtcgcgc 129480	cgacggtgtc	ctgtcggcga	tggcccaggc	atgcgtgacc	ggcgagaact	ccgtcttcgt	129000
cgtcgacctg cccacctacg ccttccagcg cgaccactac tggctcgacg ccggaacgct 129180 cggcggagac gtgaccacgg cgggccttcg atccgccgat caccctctgc tcggcgcctc 129240 tgtgggctctg gcggatgcgg agggccttct cctcaccggc cggctctcgc tcgacaccca 129300 cccgtggctc gccgaccacg ctgtggcgg gacggtcctg ctgcccggta cggcgttcgt 129360 cgaactcgcg ctggcgccg gtgaccaggt cggctgcac ctgatcgacg aactcaccct 129420 cgcggcgccg ctggtgctgc ccgagcaggg tggagtcgaa ctccagatca ccgtcgcggc 129480	gccggtcctg	cgctcgggtc	gctccgaggc	ggagagcgtc	accacggccc	ttgcccaggc	129060
cggcggagac gtgaccacgg cgggccttcg atccgccgat caccctctgc tcggcgcctc 129240 tgtggctctg gcggatgcgg agggccttct cctcaccggc cggctctcgc tcgacaccca 129300 cccgtggctc gccgaccacg ctgtggcgg gacggtcctg ctgcccggta cggcgttcgt 129360 cgaactcgcg ctgcggccg gtgaccaggt cggctgcgac ctgatcgacg aactcaccct 129420 cgcggcccg ctggtgctgc ccgagcaggg tggagtcgaa ctccagatca ccgtcgcggc 129480	gcatgtccgc	gggatcgccg	tggactggca	ggcctacttc	gccggtaccg	gtgccgagcg	129120
tgtggetetg geggatgegg agggeettet eeteacegge eggetetege tegacacea 129300 eeegtggete geegaceaeg etgtggegg gaeggteetg etgeeeggta eggegteegt 129360 egaactegeg etgeggeeg etgggeegg etggaceaggt eggetgegae etgategaeg aacteaceet 129420 egeggeege etggtgetge eegageaggg tggagtegaa etceagatea eegtegegge 129480	cgtcgacctg	cccacctacg	ccttccagcg	cgaccactac	tggctcgacg	ccggaacgct	129180
cccgtggctc gccgaccacg ctgtggcggg gacggtcctg ctgcccggta cggcgttcgt 129360 cgaactcgcg ctgcggccg gtgaccaggt cggctgcgac ctgatcgacg aactcaccct 129420 cgcggcgccg ctggtgctgc ccgagcaggg tggagtcgaa ctccagatca ccgtcgcggc 129480	cggcggagac	gtgaccacgg	cgggccttcg	atccgccgat	caccctctgc	teggegeete	129240
cgaactcgcg ctgcgggccg gtgaccaggt cggctgcgac ctgatcgacg aactcaccct 129420 cgcggcgccg ctggtgctgc ccgagcaggg tggagtcgaa ctccagatca ccgtcgcggc 129480	tgtggctctg	gcggatgcgg	agggccttct	cctcaccggc	cggctctcgc	tcgacaccca	129300
cgcggcgccg ctggtgctgc ccgagcaggg tggagtcgaa ctccagatca ccgtcgcggc 129480	cccgtggctc	gccgaccacg	ctgtggcggg	gacggtcctg	ctgcccggta	cggcgttcgt	129360
	cgaactcgcg	ctgcgggccg	gtgaccaggt	cggctgcgac	ctgatcgacg	aactcaccct	129420
ccccgacgaa tcgggccgcc ggtccgtcgc cttccactcg cgcgccgaca gcgccgcgga 129540	cgcggcgccg	ctggtgctgc	ccgagcaggg	tggagtcgaa	ctccagatca	ccgtcgcggc	129480
·	ccccgacgaa	tegggeegee	ggtccgtcgc	cttccactcg	cgcgccgaca	gcgccgcgga	129540

cgacgaggcg	tgggtccggc	acgcgaccgc	agtactggcc	gagggcgcgg	acacccggt	129600
gttcgacttc	ggcgtctggc	cgccgaccgg	ggctgaatcc	gtaccggtgg	acgggctcta	129660
cgaggggctc	gcgcactccg	gattcggcta	cggtcccgtg	ttccaggggc	tgcgtgccgc	129720
ctggcgccag	ggcgaggacg	tgttcgccga	agtgagcctc	ggggacgggg	tcgagcccgg	129780
agcagcgcac	ttcaccgtgc	acccggccct	gctcgactcc	gccctgcacg	ccatcaacct	129840
cggcaccctc	gtcgaggaca	ccggccaggg	gcgactgccg	ttcgcatgga	gcggggtcgc	129900
ggttcacgcc	gtgggggcgg	acaccctgcg	cgtacggctc	tcccgggccg	gtcaggacgc	129960
ggtggccctg	gagatcgcgg	acgcggacgg	cgcgcccgtc	gcttccgtac	gcagcctggc	130020
cctgcgcgcc	ttctcacccg	accagctgac	cgggccggac	ggcgccggtc	acggcgacgc	130080
gctgttccgg	gtggactggg	cggcgttgcc	tgcgggcggt	gcggtcgggt	cgctggacga	130140
ctggatgttg	ttgggtgctg	gttcgcaggt	gtatgcggat	ctggcggggt	tgggtgtggc	130200
tgttgcggag	ggtggtggga	ttccggcggc	gttggtggtg	ccggtttcgg	agcctgatgc	130260
ggagtctgct	gcgggtggtg	tggcgggtgc	ggtgcatgcg	gctgttgagc	gtgcgctggg	130320
tctggtgcag	gagtggttgt	cggatgagcg	gttcgcggat	gegegtetgg	tgttcttgac	130380
gcggggtgcg	gcggctgcgc	gggccgggga	cácggttccc	gggctggtgc	aggcggccgt	130440
gcggggtctg	gtgcgctcgg	cgcagtcgga	gaacccgggc	cgtttcgctc	tgatcgatgt	130500
cgacggcgat	ggtgaagtgg	atgcggaggt	gctgtcggcc	gcgcttgcta	cgggtgagcc	130560
cgagctggca	gtccgtgaag	cggctttgct	cgtgccgcgc	cttgcccgtg	ccgctgtcgc	130620
ggtggagcct	gcgcccgaac	tcggttcgga	tggcacggtg	ttggtgacgg	gtgcgagtgg	130680
cacgttgggt	ggtttgttcg	cccggcattt	ggtggttgag	cgtggtgtgc	ggcggctgct	130740
gttggtcagt	cgtcgtggtg	aggctgcgga	aggtgctgct	gaactgggcg	ccgaactgac	130800
tgggttgggt	gctgatgtgc	ggtgggcggc	gtgtgatgtg	gccgaccgtg	aggcgcttga	130860
gtcggtcctg	gccgggattc	ctgccgagta	teegttgteg	ggtgtggtgc	ataccgctgg	130920
tgtgctcgat	gacggtgtgg	tgtcgtcgct	gactgccgag	cgtgtgtcgg	cggtactgcg	130980
tccgaaggtg	gacgcggcgt	ggaacctgca	cgagctgacc	cgtggcctgg	atctctcgct	131040
cttcgtgttg	ttctcgtcgg	ctgccggtgt	gttcggtggt	gccggtcagg	cgaactatgc	131100
ggcggcgaat	gtgtttctgg	acgctctggc	ccagcaccgc	agggcccagg	gtctggccgc	131160
gacctctctt	gegtggggte	tgtgggatga	gccggggggc	atggcgggcg	cgctggacgc	131220
tgatgatgtg	tegegtetgg	gccgtggtgg	tgtcagcgga	ctctccgcgg	gggagggtgt	131280
ggcgttgttc	gacgctgcgt	ccgcgtccga	acaggccttg	ttcgttccgg	tgaagctgga	131340
cctggccgcc	: ctgcgtgccc	aggcgggcag	tgggatgttg	ccgccgctgc	tcagcggtct	131400

tgtccgtacc	cccacccgcc	gcgccgcccg	gggcggttcg	gccgcggggg	gaacgttcgc	131460
ccggaagctg	gccggcctcg	cggtggacca	gcggtccgca	gccgtgatgg	agctcgtgcg	131520
tgctcaggtc	gcagccgtgc	teggeettge	cgggcccgaa	gcggtagacc	cggcacggtc	131580
gttcagcgag	gtcggcttcg	actcgctgac	cgccgtcgag	ctgcgcaaca	ggctcggcgc	131640
cgcgaccggt	gtacgcctcc	ccgccaccct	cgtcttcgac	tacccgacct	ccctcgccct	131700
cgccgacttc	ctgggtggcg	aactgctcgg	cggtcaggaa	gcggcagcag	ccccgacggc	131760
cttcacggcc	cgggacgacg	agccgatcgc	gatcgtggcg	atgtcttgcc	gtttccccgg	131820
cggcgtgcgg	tegeeegagg	atctgtgggg	gctggtcctg	gacggccggg	atgccatctc	131880
ggacatgccg	gacgaccgcg	gctgggacgt	cgagggactc	ttcgaccccg	accccgaccg	131940
cccgggcacc	agctacagca	gggcgggcgg	gttcctgcac	gacgcccacc	acttcgaccc	132000
gacgttcttc	gggatctcgc	cgcgcgaggc	cctcgccacc	gacccccagc	agcggctgct	132060
cctcgaaacc	tcgtgggagg	cgttcgagcg	ggccgggatc	gatccggcca	ccgtacgcgg	132120
cagccggacc	ggcgtcttcg	cgggcgtcat	gtacaacgac	tacggcaccc	tcctgcaccg	132180
cgccccggag	ggcctcgaag	gctatatggg	cacctccagc	tegggeageg	tegecteggg	132240
ccgggtctcg	tacaccttcg	gtctggaggg	cccggcggtc	accgtcgaca	cggcctgctc	132300
gtcctcgctc	gtcaccctgc	acctcgccgt	gcaggccctg	cgcaacggcg	agtgcgacct	132360
cgcgctggcc	ggcggtgtca	cggtgatggc	cacgcccggt	acgttcgtcg	cgttcagccg	132420
tcagcgcggc	ctcgcgagtg	acggccgctg	caagccgttc	gccgcggccg	ccgacggtac	132480
ggcgtggggc	gagggcgtcg	gcatgctgct	cgtcgagcgc	ctgtcggacg	ctcgggccaa	132540
gggccacccg	gtgctcgcgg	tggtccgtgg	ctcggcgatc	aaccaggacg	gtgccagcaa	132600
tggcctgacg	gctccgaacg	gtccctcgca	gcagcgggtg	atccgccagg	cgctggccag	132660
tgccggtctg	tcggcggcgg	atgtggacgt	agtggaggcg	cacggcaccg	gcaccaccct	132720
gggcgacccg	atcgaggcgc	aggcactcct	cgccacctac	ggtcaggagc	acacggacga	132780
cagcccgctg	tggctggggt	ccatcaagtc	caacttcggt	cacacgcagg	ccgctgccgg	132840
tgtcgcgggc	atcatcaaga	tggtgcaggc	gatgcaccac	ggggtcgtcc	ccaagacgct	132900
gcacgtggac	gagccgtccc	cgcacgtgga	ctggtcggcg	ggcgcggtct	cgctcctcac	132960
cgagcagatg	gcctggcccg	aaaccggccg	tccccgccgc	gcggcgattt	cttccttcgg	133020
tatcagcggt	accaacgcgc	acacgatcat	cgagcaggcg	ccggaggagt	tegeteeggt	133080
ccgtccggtc	cgtgtgatcg	agccggaggc	ggtgggtgcg	ggttcgcggg	tgctgccgtt	133140
cgtgttgtcc	gcgaagtcgg	cgggggcgtt	gcgtggtcag	gcggtgcgtc	tgaaggcgca	133200
tgtggaggct	tegeeggagg	tgtcgggggc	cggggctgct	gatgtggcgt	attcgctggc	133260
gacgcggcgt	gcggtcttcg	accaccgtgc	ggtggtggtg	gccggtgacc	gtgaggagct	133320

gttgcgtgct	ctggctgctg	tggagtcgga	gggcacggcg	gctggtgtga	cccgtgggac	133380
ggcgggtggc	ggaaagcttg	ccttcctgtt	cacgggccag	gggagccagc	ggctggggat	133440
ggggcgtgag	ctgtacgaga	cctatcccgt	cttcgcgcgg	gctctggacg	cggcgtgtgc	133500
tggtctcgaa	ctgccgctga	aggatgcgct	gttcggcgcc	gatgcgggtc	tgctggacga	133560
gacggcgtac	acccagcccg	ctctcttcgc	ggtcgaggtg	gcgttgttcc	gactgctgga	133620
gagctggggt	gtgaggccgg	acttcctggc	cgggcactcg	atcggtgaga	tcgcggccgc	133680
gcatgtggcc	ggggtgctgt	ccctggacga	cgcctgtgcg	ctggtcgcgg	cccgcggccg	133740
gctcatgcag	gcgctgccca	ccggcggtgt	gatgatcgcc	gtccaggcgt	cggaggacga	133800
ggtcctgccg	ctgctgaccg	accgggtgag	catcgccgcg	atcaacggtc	cgcagtcggt	133860
cgtgatcgcg	ggcgacgagg	ccgacgcggt	ggcgatcgtg	gagtccttct	cgggccgcaa	133920
gtccaagcgg	ctcacggtca	gtcatgcgtt	ccactcgccg	cacatggacg	gcatgctggc	133980
tggcttccgc	aaggtggcgg	agagcctgtc	gtacgaggct	ccgcgcatcc	cggtcgtctc	134040
gaacctcacc	ggggccctgg	tcaccgacga	gatgggttcg	gccgacttct	gggtccggca	134100
cgttcgcgag	gcggtccgtt	tcctggacgg	tatccgggcc	ctggaggccg	cgggcgtgac	134160
ggcgtacgtc	gaactcggtc	ccgacggtgt	tctgtcggcg	ttggcccagg	agtgcgtcac	134220
cggcgagggt	geggeetteg	cgcccgccct	ccgcaagggc	cgccccgagg	ccgagacgat	134280
cacaacggcc	ctcgcccttg	cccacaacca	cggcacgtcc	gtcgactggg	agacgtactt	134340
ctccgggacc	ggcgcccagc	gcgtcgacct	gcccacctac	gccttccagc	gcgagcgcta	134400
ctggatcgac	gtgcccgtcc	actccgtcgg	cgacgtggcc	tccgccggac	teggtgegge	134460
ggagcacccg	ctgctgggcg	cggccgtcga	actgcccgac	tccgacgggc	tgctgctcac	134520
cggtcggctg	tegeteetgt	cgcacccctg	gctggccgat	cacgccgtcg	cgggcaccgt	134580
tctgctcccc	gggaccgcct	tcgtggagct	ggcgctccac	gccgggcagc	gggtgggcag	134640
tggcctgctc	gaagagctga	ccctggaggc	gccgctggtg	cttcccgagc	gcggggcgct	134700
ccagctgcgg	gtgtccgtgg	ccgcgcccga	cgaggcgggg	cgtcgtgcgc	tgcacgtgca	134760
ctcgcgtccc	gaggacctgg	gcggcgagga	ccgtacgggg	cacgaggtgc	cgtggacgcg	134820
gcacgccggc	ggtgtgctcg	ccgcgccgga	ggcggccggt	gccgcgccgg	aggagtccgg	134880
cctggacgtc	tggccgcccg	cggacgccga	accgctcgat	gccggcgacc	tgtacgaccg	134940
gttcgccgag	ggcgggttcg	cgtacggtcc	tgtcttccgc	aacctgcgcg	ctgcctggcg	135000
gcgcggcgac	gagctgttcg	ccgaactgct	cctgcccgag	gggcagctcg	cccaggccgg	135060
ccacttcggt	gtgcacccgg	cgctgctgga	cgcgggtctg	cacggcctcg	cgctcggctc	135120
gttccatgac	ggtgcggacg	aggacgcccg	gatccggctc	ccgttctcct	tcagcggtgt	135180

cgctctgcac tcggtcggcg cgggctcgtt gcgcgtacgg ctcgccccgg ccgggtccgg 135240 cgcggtgtcg ctcgcggcct tcgacgagca gggcgcaccg gtcgtgtcgg tggaatcact 135300 gctgctgcgg gcggtggatc cggcacggct gaaggccgcg gaacagccgg tgttccacga 135360 gtcgctcttc cggctggagt ggccggcgct ggccgcgggc ccgcgtacgg acaacgcccc 135420 [cggggacggc ggccggtggg ccgtggtcgg ggccgactcg ctcggccttg aggccgggct 135480 gcgggcggac ggcgtcgccg tcgacgggta cgcggacctg tccgcgctcg ccggagtcgt 135540 ggccgcgggc aagccgcagc cggacacggt gctggtctcg tacgcctcct cgggtcccgg 135600 catcaggacg gcggacgccg ttcggcaggc ggctcacgac gcgctggagc tggtccaggg 135660 ctggctcgcc gaggagtcgc tcgccgggtc acgactggtc gtggtcaccc gcggcgcggt 135720 cgaggcgcgg cccggcgagg gcgtgcccga tctggcgcac gcggcggtgt ggggcctgct 135780 gcggtccgcg cagtccgaga accccgggcg gttcgtactg ctcgacctcg acgcggaaga 135840 cgcggaggtc ctggctccgc tgatggccgc cgctgtggcg agcggggaac cccagctcgc 135900 cgcccgcgag ggcgtcctgc atgccgcgag gctggcacgg gttcccgccg ccccaccgc 135960 ggtggcgggc acggagcgcg cgcccgcct cgaccccgac ggtacggtcc tcatcaccgg 136020 cggcaccgga tcgctcggca gcctgctggc ccgccacctg gtcgtggagc acggcgtacg 136080 gcacctgctg ctgaccagcc ggcgcggtgc cgccgcgag ggcgccccgg aactcgtcgc 136140 cgcactggcc gaactgggcg ccgaggcgac cgtcgccgcg tgtgacgccg ccgaccggga 136200 ggcgctggcc gcgctgctgg ccggcattcc ggccgcgcac ccctcacgg ccgtcgtcca 136260 cacggeggge egegtegaeg aegggeteet ggegtegete ageeeggage ggategaeae 136320 ggtgctgcgt cccaaggccg acgcggcgct gcatctgcac gagctgaccc gcgggctgga 136380 cetegeegeg thegteetgt tetecteege ggeeggaace eteggeaace ceggeeagge 136440 caactacgcg gcggccaacg ccttcctgga cgccctggca cagcaccggc gcgcggcggg 136500 gctgcccgcg gtgtcgctgg cctgggggct gtgggagcag cgcagcgcga tgaccggagc 136560 gctgtcggac gcggacgtcc agcggatggc acgcgccgga ctcgcgcccc tctcctcggc 136620 ggagggcctg gccctcttcg acacggcgtg cgccctcgcg ccggtgggcg ccacggagac 136680 cgccaccggc gacggagcgt tcgtcgccat gcggctggac accgcgcccc tgcgggccca 136740 ggcggacgcc ggagcccttc cggcggtctt ccgcgggctg gtgcgcggag gtcctcgcag 136800 ggccgccgca catcaggccg ccgattcggc ggcatccact gccgcgcgaa agctcgcggg 136860 cctgtccggg ctgccgcagg acgagcagga gcgcgtgctg ctcgacctgg tgcgcgccca 136920 ggtggccgcc gtactcgcct atccgtcgcc ggacgcggtg ggggagtcgc aggagttcct 136980 ggagctgggt ctggactcgc tgaccgccgt cgagctgcgc aaccagctga acgcggcgac 137040 cggcctgcgg ctgcccgcca ccctgctctt cgaccacccc actcccgcgc tggtcgccga 137100

gcggctgcgc gccgaactcg ccggagcctc cggcccggcg gcggtccggg agggcgcggc 137160 ggacagegge geggaggget cegegggtgt etteggggee atgeteeaeg aggeeggaae 137220 gcagggtgcg tccgggcagt tcatggagct gctcatgcag gcgtcgcggt tccggccgtc 137280 § gttcgcctcg gcggccgagc tgcgcaaggc gccgagcctc gtgcggctct cccgcggtga 137340 cacceggeeg ggactggtet gttteteete gateetgteg atetegggee egeaceagta 137400 cgcgcgcttc gcctccgcgt tccggggccg ccgggacgtg cacgcgctcg gtgcccccgg 137460 cttcctgcgg ggcgagcagc tgccctcggc caccgacgcg gtgatcgagg cccaggcgga 137520 ggccgtgctc cggcacgcgg acggtgcgcc gttcgtcctc ctcggccact cctcgggcgg 137580 catgctcgcc cacgcggtgg ccgggaggct ggagagcgag ggggtcttcc cccaggcgct 137640 ggtgatgatc gacatctact cgcacgacga cgacgcgatc atcggcatcc agcccggcct 137700 ctccgagggg atggacgagc ggcaggacac ctacgtaccg gtcgacgaca accggctgct 137760 ggcgatgggc gcgtacttcc ggctgttcgg aggctggaag cccgaggtgg tgaagacgcc 137820 gaccctgctg gtccgggcgg gtgagcggtt cttcgactgg acccggtcca cggacggcga 137880 ctggcgttcg tactgggacc tggaccacac ggccctggac gtgccgggca accacttcac 137940 catgatggag gagcacgctc cgacgaccgc acaggccgtc gaggggtggc tggacacgac 138000 cggctgacac caccggctga cggcgccgga cagcgacatg gccgggcgtc aagcgtcaga 138060 cgtcaggcga cgcgcttctc acgctcgcgg gagcgcttct tcggcagccc caccgtcacg 138120 acctcgaagc tgtccttggt gaggtcgagg cggtggaaga ggttgtcggg cccggtcacg 138180 cacaccgtgc ccacgccgag ccccttgagg gactccacca cgcccggcca gtggacgggc 138240 cggtcgaagg tgtccagcat catcgtgcgc atcccggcgg cgtcccggac gaccccgccg 138300 tectggtegt tgaccaeggg cagggtgggg teggeeagtt egtaegegge gaagacetet 138360 tecteegeet tgeggegeag egeegagaag geegeegegt geaegggegg gegeategag 138420 tacatggagt agccgccgac cgcgctgatg cccgccttca gcccgtccag ctccttctcc 138480 tgtacggaca ccatgtggaa agcggcgtcc agccgcccgg agatgtcgta ccaggcaccg 138540 cggtcgtcga agccggccag gatctcgtcc agccggtcct gcggggtgcg gacgaagcag 138600 tgcgtgacga cgtcctggta cgcgtcggcg aagtactcct cctcgcagcg ggccagctcc 138660 gcggtgagcc ggacgacgtc cgcgaagggc agcgacccga cgaaagcgga ggcggccttc 138720 tggccgaaac tcgggccggc gcagacggtg ggagagatgc cgagcgcgtc caccgcccgg 138780 teggecatag ceategaatt caccaggaag gegatetgeg aatagacega gtagtegtee 138840 teggaggtge ggaaacggte gaacaccgaa tatecgageg cetegtetge etecgegagg 138900 cgccggcgcg cgtaagggtc gagcagcagg aactttccga cctccgcgaa ggacgagggg 138960

cccataccgg	gaaagacgat	cgccgtctcg	gtcgagggag	tctgctcgga	gtcgaagccg	139020
gagttgaagc	cggagtcgga	gccggaacgg	gagtcggaac	gggaatcaga	agtggtcatg	139080
atccgtgaat	gcctttgctt	ccggggacgg	caccggcagg	cacctgccgc	cgtcacgaac	139140
gtaggaacgg	ccccgcaccc	ggccggacgc	gaatgcgccg	agccgggcac	gaggccagga	139200
gggacgagag	gggggagacg	agagaggga	gaccagacgg	ggcagcgcgc	gctcagtcct	139260
gcgcctcagt	cctgcgccct	gcggtggaac	cccttgatgc	cgatcagccc	gaagaccacg	139320
atcgccccgc	tcagggcgag	cagatcgatc	cacageggaa	tcgagccggg	gccgcccggc	139380
ggcagcagca	gggcgcggat	cccctcgctg	acgtaggtca	gcgggttgat	ggcgcacagc	139440
acctggaacc	agcggatgtc	cgccaggctg	tgccagggga	actgggtgca	gccggtgaac	139500
atcagcgggg	tcagcgtcac	ggcgaagatg	acgctgatgt	gccgcggcgg	ggccagcgtg	139560
ccgatggtca	gacccaccgt	gctgcccgcc	agcgcgcccg	tcagcagcac	gcccagcgtg	139620
ggcaggaagc	tgtccatcgg	ccaggacacg	tcgtcgagga	tcaggaagcc	gacggggatc	139680
atcaccagtg	aggcgatgat	gccgcgcagc	gccccgaaga	ccagcttctc	gacggccacc	139740
aggctggtgg	ggatgggcgc	gaggagccgg	tcctcgatct	ccttggtcca	ggagaagtcg	139800
atgaccaggg	gcagcgcggt	gttctgcagg	ctgaccagga	agctgttgag	cgcgaccacg	139860
cccgggagca	ggatctgctg	gaacccgccg	ccggtgtaac	cgagttcgcc	gaggaccttg	139920
ccgaagacga	acaggatgaa	gaacggttcc	acgagcacct	gggcgaggaa	cgggcccagt	139980
tcgcggccgg	tgacgaagat	gtcccgccac	aggatgaaga	agaacgtgcg	ggtcgcggtg	140040
cgcacgtcgg	tgcgcgcggg	ccgcagttcg	gccgggaagt	cggtgaccgg	gtcgggtgcg	140100
gtcagggtgg	ccgtcatcgc	agctcccggc	cggtgagctt	gatgaagacg	tcctccaggg	140160
tegeggttee	gacgctcacg	tccttgatgt	cgtgactcgc	ttccgtcagg	gccgtgatgg	140220
cggtcggcag	caccgcgccg	gacggcgcgt	cgctgtagag	gcggagccgt	accggcgcgg	140280
gcgcgccgcc	ctgctccttg	gcgtgttcct	ggtgtgccag	ctcgacccgc	tcgaccgtct	140340
cgatccgctc	cagcaggcgt	acgacgctct	cggcgtcgtg	cccgcgggc	tggacggtga	140400
gggtgagggc	ggtgctgctc	aggctccggg	tcagcgcctg	cggggtgtcg	agggccagca	140460
gtcggccgtg	gtcgacgatg	ccgacgcggt	cgcagagctt	ggcggcttcg	tccatgtcgt	140520
gcgtggtcag	cacggtggtc	accccgcgct	tgctcagctc	ggccacgcgc	tcgtggatga	140580
acagccgtgc	ctgcggatcg	agtccggtgg	cgggctcgtc	gaggaagagc	acgtcggggc	140640
ggtgcatcag	ggcccgggcg	atcatcacgc	gctgggcctg	gccgccggag	agttcgtcgc	140700
cgcgggcctt	gccccggtcg	gcgagaccca	cccactccag	gcactcgtcg	gcgagccgtc	140760
cgcgttcgga	gcggctcatg	ccgtgatagc	cggcgtggaa	ggtcaggttc	tgccggaggg	140820
tcagcgaccg	gtcgaggttg	ttgcgctgcg	gtacgacggc	gaaggcccgg	cgcgcctggg	140880

cggggtgggc	cacgacgtcg	acgccctgga	cgaacgctcg	ccccgccgtg	ggggccacgc	140940
gggtggtgag	gatgccgatg	gtcgtcgtct	tgcccgcccc	gttcgggccg	aggaatccga	141000
agacctcgcc	cctgcggacc	gagaagctca	ggtcgtccac	cgctggtcgg	tegeggetee	141060
ggtacttctt	gactagtccg	tcgaccacga	cggcggaatc	cacgggtcgt	tcagagttca	141120
tttacgcctg	cgaatcaagc	gggacgcggc	gacggcagtc	cgggggattc	gcacaggaat	141180
gtcgcgtgac	cggccgcgcg	tcgagcgccg	actgaatagg	gcataggagt	ggtgcggaat	141240
ctttctagcg	cgcaggacgg	cgcgttgccc	caactggcca	atcggttagg	gggagatgcg	141300
gaatcctagg	gggggatagg	gggtgaggcg	gcgaatcggg	gccatttggg	ggtgctggtc	141360
ggacaacccc	tattcgaaag	gatccggggt	ggcgagtgtt	geggtteegt	cgaatgtcct	141420
catagcatcg	gcgcgtgatc	gcgccgaatt	attcttcgca	aaaaagagcg	tcggcgggtc	141480
gtgtgtccgc	gggctttggg	gtggaacccg	ggtcgctgcg	gtggatggtg	atcggcgcga	141540
cgggcatgct	cggcggcgaa	gtggccgccc	agctcacggc	ccggggcgcc	gacccggtgg	141600
gggtcggcag	tgcggatctg	gacctcaccg	acccgcaggc	ggtcgccgcg	gccgtggccg	141660
acggcggccc	cgatgtcgtc	gtcaactgcg	ccgcctggac	cgccgtggac	ctggccgaga	141720
ccgaggagga	ggcggccctc	gccgtcaacg	ggacgggagc	gggccacctc	gcccgggcct	141780
gcgccgccac	cggcagccgg	ctcctccacg	tctccaccga	ctacgtcttc	cgaggtgccc	141840
cggccgatgc	cggacacccc	tatgcggagg	acgccgaacc	cgaccccgcc	accgcgtacg	141900
gacgcaccaa	gctcgtcggc	gagcgcgccg	tcctcgccga	actccccgcc	accgctgccg	141960
tggtgcgcac	gtcctggctg	tacggacgcg	acaacggcgg	cttcgtgcac	accatggccc	142020
ggctcgcgcg	cgagccggga	cgcaccgtgg	acgtggtcga	cgaccagcac	ggacagccga	142080
gctggacccc	cgatgtcgcg	gcccggatca	tcgagctcgc	cgccctgccc	gccgaccggg	142140
cgcacggcgt	cttccatgcc	accggcgggg	gccgcaccac	ctggtacgac	ctggcccgcg	142200
aggtgttccg	gctgaccggc	caggacccgg	accgggtccg	gcgcatcgac	agctccgggc	142260
tgcgacgggc	ggcggtccgc	ccggcatgga	gcgttctggg	ccatgaccgc	tgggccgcca	142320
cggggctcgc	cccgatgcgt	cactggcgca	cggccctcgc	ggacgccctc	atgggcgacc	142380
ccgtgggcga	ccgacttccc	gagagtgtga	actcccccgg	cccgaaaggc	tgttgaaggg	142440
tgaaatccct	gtcgatagag	ggcgcctggc	tctatgagcc	gctgctccac	gacgatgagc	142500
gcggcacgtt	cctggaggtg	ttccagagcc	aggccttcga	gctggccacc	ggccgccgcc	142560
tcgaactggc	ccaggtcaac	tgctccgtgt	cccgccgcgg	cgtcgtgcgc	ggcgtccact	142620
tegeegaett	accgcccggc	caggccaagt	acgtcacctg	cgtacgcggc	gcggtgcgcg	142680
atgtgatcgt	ggacctgcgc	accggctcgc	ccacctaccg	cgcctgggag	gccgtcgaac	142740

100/25

tcgacgaccg cgaccggcgg	gcggtcttcc	tctccgaggg	cctcggccac	gccttccagg	142800
cgatcaccga cgacgccacc	gtcgtctacc	tgaccacctc	gggctacgcc	cccggccgtg	142860
agcacggcgt ccacccgctc	gacccggagc	tgggcatcac	ctggcttccc	ggcatggaac	142920
cgctgctgtc cccgaaggac	gctgtcgccc	ccaccctcgc	ggtggccgag	gcccagggtc	142980
tgctgcccgc gtacgaggac	tgcgtacggt	acgtgtcctc	gctcgccaca	ccactcagcg	143040
aggagacccc gtgaaggcac	tegteetgge	ggggggatcc	ggcacccgcc	tgcgccccct	143100
gacccacacc tcggcgaagc	aactcgtgcc	cggtggccaa	caaacccatc	ctcttctacg	143160
tcctggaagg gatcgccgac	gcgggcgtca	ccgatgtcgg	catcatcgtc	ggcgacacgg	143220
ccgacgagat cagggcggcc	gtcggcgacg	gctcccgctt	cggcatcagc	gtcacctaca	143280
tecegeagea ecageegete	ggcctggccc	acgccgtgcg	catcgcacgg	gactggctcg	143340
gcgaggacga cttcgtgatg	tacctgggcg	acaacttcct	geteggeggg	atcagcgagc	143400
agctggagga gttccgcacc	cggcggcccg	ccgcgcagat	catgctcacc	egggteeeeg	143460
ateceteege etteggegte	gtcaccctcg	acgaggcggg	ccgggtcacc	ggcctggagg	143520
agaagccgaa gttccccaag	agcgatctcg	cgctggtcgg	cgtgtacttc	ttcaccgccg	143580
ccgtgcacga cgccgtggac	gccatccagc	cctccgcccg	cggcgagctg	gagatcaccg	143640
aggccctcca gtggctcctc	gacaagggcc	teggeatege	gtcctccacg	gtcaacggct	143700
actggaagga caccggcaac	gccaccgaca	tgctggaggt	caaccgcacg	gtgctcgaca	143760
ggctgacccc gtactgcgac	ggctccgtcg	acggcgagag	cgaactggtc	ggccgggtcg	143820
tcgtcgagga cggcgcggtg	atcacccgct	cccggatcgt	gggccccgcc	atcatcggcc	143880
gcggcacccg cgtcgagggc	tcctacatcg	gcccgttcac	ctccgtcggg	gcggactgcg	143940
tggtcgtcga cagcgagatc	gagtactcca	tegtgetgge	cggcgcggcc	atcgacggcg	144000
teggeeggat egaggegtee	atgatcggcc	gtcaggcgca	ggtcaccccc	gcgccccgca	144060
cgccccaggc ccaccgtctg	atcctcggcg	accacagcaa	ggtgcagatc	cgttcatgaa	144120
catcctgatc acgggagcgg	ccggcttcat	cggctcccac	ctcgtacgca	cgatcctggg	144180
cccggacaaa ccgctcggcg	acgacgtccg	cgtcaccgtc	ctggacgcgc	tgacctacgc	144240
gggcaaccgc gcctccctcg	ccgccgtcga	ggacgaaccg	ggcttcacct	tcgtgcacgg	144300
cgacatcacc gacgcgctgc	tggtggaccg	cctggtggcg	gcccacgacg	ccgtggtgca	144360
cctggccgcc gagtcgcacg	tcgaccgttc	gatetggegg	gccgacgcgt	tegtaegeae	144420
caatgtgctc ggcacccaca	ccctgctgga	ggccgcgctg	cggcacggca	ccggcccgtt	144480
cgtgcacgtg tcgaccgacg	aggtgtacgg	ctcggtcccg	gtcggctcgt	ccgtcgagag	144540
cgacccgctg acgcccagct	cgccctactc	cgcgtccaag	gcgtccagtg	atctgctggc	144600
cctggcctac caccacaccc	acggactcga	catacanggtg	acgcgctgct	ccaacaacta	144660