LOGISTICS AND INTRODUCTION

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Computer System Architecture

- Computer systems are everywhere.
- What are the current and emerging challenges?

Logistics

Course organization and rules

Instructor

- □ Mahdi Nazm Bojnordi
 - Assistant Professor, School of Computing
 - □ PhD degree in Electrical Engineering (2016)
 - Worked in industry for four years (before PhD)
- □ Research in Computer Architecture
 - Energy-efficient computing
 - Novel memory technologies
- □ Office Hours
 - Please email me for appointment
 - MEB 3418

This Course

- □ Prerequisite
 - □ CS/ECE 6810: Computer Architecture

- Advanced topics in computer architecture
 - cache energy innovations
 - memory system optimizations
 - interconnection networks
 - cache coherence protocols
 - emerging computation models

Resources

- Recommended books and references
 - "Memory Systems: Cache, DRAM, Disk", Jacob et al
 - "Principles and Practices of Interconnection Networks", Dally and Towles
 - "Parallel Computer Architecture", Culler, Singh, Gupta
 - "Synthesis Lectures on Computer Architecture", Morgan& Claypool Publishers
- Class webpage
 - http://cs.utah.edu/~bojnordi/teaching.html

Course Expectation

- Use Canvas for all of your submissions
 - No scanned handwritten documents please!
- Grading
 - Up to 10% extra points for insightful questions during project presentations.

	Fraction	Notes
Project	50%	One simulation-based project
Homework	20%	One homework assignment
Paper presentation	10%	One in class paper presentation
Final	20%	

Course Project

- A creative, simulation-based project on
 - Memory system optimization (SRAM, DRAM, RRAM, etc.)
 - Data movement optimizations (Off/On-chip interfaces)
 - Hardware accelerators (GPU, FPGA, ASIC)
 - **-** ...
- □ Form a group of 2-3 people by Feb. 1
- Choose your topic by Feb. 8
- Prepare for an in-class presentation in April
- Prepare a conference-style report by early May

Paper Presentation and Assignment

- Every student presents a paper in class
 - A related work on your course project is recommended
 - Three main components must be included
 - The goal and key idea
 - Strengths and weaknesses
 - Future work
 - Email me your paper by Mar. 29
 - Conferences such as ISCA, MICRO, ASPLOS, HPCA
- □ A homework assignment will be posted on Feb. 27
 - Due on Mar. 8 (11:59PM)

Academic Integrity

- □ Do NOT cheat!!
 - Disciplinary hearings are no fun
 - Please read the Policy Statement on Academic Misconduct, carefully.
 - We have no tolerance for cheating
- Also, read the College of Engineering Guidelines for disabilities, add, drop, appeals, etc.
- For more information, please refer to the important policies on the class webpage.

About You ...

□ Are you working in a research areas?

- □ Do you know programming languages?
 - **□** C/C++

- Do you know any hardware description languages?
 - Verilog

□ Are you familiar with simulators?

Energy-efficient Computing

The importance of energy efficient computing

Energy and Power Trends

Power consumption is increasing significantly

New Challenges

- □ Excessive energy consumption
 - More energy-efficient architectures are needed

200M wearable devices will be sold in 2019 (source: IDC forecast)

New Challenges

- □ Power delivery and cooling systems
 - More energy-efficient architectures are required

Facebook datacenter at edge of the Arctic circle (source: CNET, 2013)

Microsoft underwater datacenter (source: NYTimes, 2016)

The High Cost of Data Movement

 Data movement is the primary contributor to energy dissipation in nanometer ICs.

Data Movement Energy Increasing

By 2020, the energy cost of moving data across the memory hierarchy will be orders of magnitude higher than the cost of performing a floating point operation.

-- U.S. Department of Energy, 2014

Shekhar Borkar, Journal of Lightwave Technology, 2013

Possible Solutions

□ How to minimize data movement energy?

An Example Optimization

Cache Architecture

□ Physical cache structure

[CACTI 1.0]

Cache Banking

- Divide cache into multiple identical arrays
- Use part of the address bits to select the bank
- □ Remaining banks consume no dynamic power

