STAT525 HOMEWORK#1

- 1. KNNL Problem 1.26
- 2. A regression analysis of a set of data produced the following fitted equation: $\hat{y} = 3 + 8x$.
 - (a) If x increases 5 units, how does \hat{y} change?
 - (b) Here x was measured in degrees Celsius. Rewrite the fitted equation with x replaced by x^* where x^* is x expressed in degrees Fahrenheit. Use the fact that $x = (5/9) \times (x^* 32)$.
- 3. KNNL Problem 1.39 part a.

Hint
$$(Y_1 - a)^2 + (Y_2 - a)^2 = 2(\bar{Y} - a)^2 + (Y_1 - \bar{Y})^2 + (Y_2 - \bar{Y})^2$$
, where $\bar{Y} = (Y_1 + Y_2)/2$ for any Y_1 , Y_2 and a .

- 4. Derive the MLE estimator for $(\beta_0, \beta_1, \sigma^2)$ for simple linear regression with normal error.
- 5. Show that $s^2 = \sum (Y_i \hat{Y}_i)^2/(n-2)$ is an unbiased estimator for σ^2 .

1. KNNL Problem 1.26

Plastic hardness. Refer to Problems 1.3 and 1.14. Sixteen batches of the plastic were made, and from each batch one test item was molded. Each test item was randomly assigned to one of the four predetermined time levels, and the hardness was measured after the assigned elapsed time. The results are shown below; *X* is the elapsed time in hours, and *Y* is hardness in Brinell units. Assume that first-order regression model (1.1) is appropriate.

i:	1	2	3	 14	15	16
X_i :	16	16	16	 40	40	40
Y_I :	199	205			253	246

1.26. Refer to Plastic hardness Problem 1.22.

a. Obtain the residuals e_i . Do they sum to zero in accord with (1.17)?

5	/* Regression, residuals, predictions */	
	PROC REG DATA=a1;	
7	MODEL $y = x / CLB P R$;	
8	OUTPUT OUT=a2 P=pred R=resid;	
9	ID x;	
0	RUN;	

The REG Procedure Model: MODEL1 Dependent Variable: y

Obs	x	Dependent Variable	Predicted Value	Std Error Mean Predict	Residual	Std Error Residual	Student Residual	Cook's D
1	16	199	201.1500	1.3529	- <mark>2.150</mark> 0	2.937	-0.732	0.057
2	16	205	201.1500	1.3529	3.85 <mark>0</mark> 0	2.937	1.311	0.182
3	16	196	201.1500	1.3529	- <mark>5.150</mark> 0	2.937	-1.753	0.326
4	16	200	201.1500	1.3529	- <mark>1.150</mark> 0	2.937	-0.391	0.016
5	24	218	217.4250	0.8857	0.57 5 0	3.110	0.185	0.001
6	24	220	217.4250	0.8857	<mark>2.575</mark> 0	3.110	0.828	0.028
7	24	215	217.4250	0.8857	- <mark>2.425</mark> 0	3.110	-0.780	0.025
8	24	223	217.4250	0.8857	<mark>5.575</mark> 0	3.110	1.792	0.130
9	32	237	233.7000	0.8857	3.3000	3.110	1.061	0.046
10	32	234	233.7000	0.8857	0.3000	3.110	0.096	0.000
11	32	235	233.7000	0.8857	1.3000	3.110	0.418	0.007
12	32	230	233.7000	0.8857	- <mark>3.700</mark> 0	3.110	-1.190	0.057
13	40	250	249.9750	1.3529	0.0250	2.937	0.009	0.000
14	40	248	249.9750	1.3529	- <mark>1.975</mark> 0	2.937	-0.672	0.048
15	40	253	249.9750	1.3529	3.0250	2.937	1.030	0.112
16	40	246	249.9750	1.3529	- <mark>3.975</mark> 0	2.937	-1.353	0.194

Yes, Residuals do sum up to D, confirming property (1.17).

b. Estimate σ^2 and σ . In what units is σ expressed?

$$0^2 = 10.459$$

Units: 0^2 is hardness² Y^2 (plastic hardness units)

Ø=,	10.459 =	3.23	4					
·	W							
Units : ô	has the	same	unit a	as Y	plastic	harolness	units)	
					. 1			

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 16 Number of Observations Used 16

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	5297.51250	5297.51250	506.51	<.0001		
Error	14	146.42500	10.45893				
Corrected Total	15	5443.93750					

Root MSE	3.23403	R-Square	0.9731
Dependent Mean	225.56250	Adj R-Sq	0.9712
Coeff Var	1.43376		

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confid	ence Limits	
Intercept	1	168.60000	2.65702	63.45	<.0001	162.90125	174.29875	
x	1	2.03438	0.09039	22.51	<.0001	1.84050	2.22825	

(a) If x increases 5 units, how does \hat{y} change?
	^ .
	$\hat{y}=3+8(5)=43$ $\Delta \hat{y}=40$ $\hat{y} \text{ increases by 40 units.}$
	$\Delta \hat{y} = 40$ \hat{y} increases by 40 units
	(b) Here x was measured in degrees Celsius. Rewrite the fitted equation with x
	replaced by x^* where x^* is x expressed in degrees Fahrenheit. Use the fact that $x = (5/9) \times (x^* - 32)$.
	$\mathcal{J} = 3 + 8(\sqrt[5]{9}(\chi^{6}-32))$
	$=3+\frac{40}{9}(\chi^{*}-32)$
	= 3+4% x*-128%
	= 40/9 x* + 27/9 - 1280/9
,	
	$\hat{y} = 40/9 x^* - 1253/9$ or $\hat{y} = 4.44 x^* - 139.22$
	°6 observations: x2 Y's at each X=5,10,15
	o Y1 and Y2 are two observations at the same X level
	$\circ \overline{\gamma} = (\gamma_1 + \gamma_2)/2$ is the mean.
	o a' is the target value you want to compare them to.
	fitted value from the regression line at line X:
	$\alpha = \hat{\gamma}(x)$
	• $2(\overline{Y}-A)^2$: depend on mean of replicates + regression line to derive
	• $2(\tilde{Y}-\tilde{A})^2$: depend on mean of replicates + regression line to derive • $(\tilde{Y}_1-\tilde{Y})^2$: depend on deviations within replicates \Rightarrow constant
	⇒ • : Within cell do not involve a cody Y matter
	(vithin cell, do not involve a, only r matter.

Λ
splitting sum of squares into 2 parts
3. KNNL Problem 1.39 part a.
Hint $(Y_1 - a)^2 + (Y_2 - a)^2 = 2(\bar{Y} - a)^2 + (Y_1 - \bar{Y})^2 + (Y_2 - \bar{Y})^2$, where $\bar{Y} = (Y_1 + Y_2)/2$
for any Y_1 , Y_2 and a .
1.39. Two observations on Y were obtained at each of three X levels, namely, at $X = 5$, $X = 10$, and
a. Show that the least squares regression line fitted to the <i>three</i> points (5, \bar{Y}_1), (10, \bar{Y}_2), and
(15, \vec{Y}_3), where \vec{Y}_1 , \vec{Y}_2 , and \vec{Y}_3 denote the means of the Y observations at the three X levels,
is identical to the least squares regression line fitted to the original six cases.
• We can 2 observations on Y at each level X (X=5,10,15).
· let these be Yji, Yj2 at level X=xj, and let = Yj=Yji+Yj2
o The LS Regression minimizes: 3xs 2065 each x SSE = \(\frac{2}{i=1}\) (Yij - \(\hat{Y}(xj))^2
55E = \(\frac{2}{5} \) \(\frac{1}{1} - \frac{1}{1} - \frac{1} - \frac{1}{1} - \frac{1} - \frac{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} -
O Step 1. Apply the hint
o For any 2 obs. Y1, Y2, with mean ₹:
$(y-a)^2 + (y-a)^2 = 2(\bar{y}-a)^2 + (y-\bar{y})^2 + (y-\bar{y})^2$
$ (Y_{i}-\alpha)^{2} + (Y_{2}-\alpha)^{2} = 2(\bar{Y}-\alpha)^{2} + (Y_{i}-\bar{Y})^{2} + (Y_{2}-\bar{Y})^{2} $ $ (Y_{i}-\bar{Y}(x_{j})) + (Y_{i}-\bar{Y}(x_{j}))^{2} = 2(\bar{Y}_{j}-\bar{Y}(x_{j}))^{2} + (Y_{i}-\bar{Y}_{i})^{2} + (Y_{i}-\bar{Y}_{i})^{2} $
$\left(Y_{i} - \widehat{Y}(x_{i})\right) + \left(Y_{i} - \widehat{Y}(x_{i})\right)^{2} = 2\left(\widehat{Y} - \widehat{Y}(x_{i})\right)^{2} + \left(Y_{i} - \widehat{Y}_{i}\right)^{2} + \left(Y_{i} - \widehat{Y}_{i}\right)^{2}$
e (tale Cliffe I. it con.
O Step 2. Substitude into SSE: Depend on Y so it matters when minimizing SSE.
SSE= = [2(\(\bar{r}_{i} - \bar{Y}(x_{i}))^{2} + (Y_{i}1 - \bar{r}_{i})^{2} + (Y_{i}2 - Y_{i})^{2} \)
only depend on data, not the regression line, if
does not matter
 Step 3, Simplify the minimization problem.
weight, nj
$\frac{\sum_{j,j}(x_{j}-\bar{x}_{w})(\bar{x}_{j}-\bar{y}_{w})}{SSE=2\sum_{j=1}^{\infty}[\bar{x}_{j}-\bar{y}_{(x_{j})}]^{2}+Constant} \rightarrow b_{1}=\frac{\sum_{j}n_{j}(x_{j}-\bar{x}_{w})(\bar{x}_{j}-\bar{y}_{w})}{\sum_{j}n_{j}(x_{j}-\bar{x}_{w})^{2}}$ number of abservations
number of absentations in each Xj. level
• This is the same as fitting the regression line to the 3 mean points $(5,\overline{Y_1})(10,\overline{Y_2})(15,\overline{Y_3})$, each with weight $2^{-n}j$. • Since the weights are equal, the line is the same as the vinweighted' regression on just the 3 means.
Since the weights are equal, the line is the same as the inweighted regression on just the 3 means.
> exactly 2 obs. at each level
Therefore, the LS Regression line fitted to the 6 original cases is identical to the line fitted to the 3 mean points.

		error (residuals) in the LR Model
·We assume the mo	odel: $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $\epsilon_i \sim N(0, 0^2)$ $Y_i \sim N(\beta_0 + \beta_1 x_i, 0^2)$	follow normal distribution
Step 1. Likelihood Function:		
1	re independent normal, the joint density is:	
L(Bo, B1, 03) =	$\frac{1}{1 + \sqrt{2\pi 0^2}} \exp \left[-\frac{1}{20^2} (y_1 - \beta_0 - \beta_1 x_1)^2 \right]$	
Step 2. Take the Log-Likelihood		
(Bo, B1, O2) =	$\log L = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \log (0^2) - \frac{1}{20^2} \sum_{i=1}^{n}$	
tep 3. Maximize the Log-Likeli To maximize I, we		on Bo, B ₁ , O ²
,	$S(B_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_i x_i)^2$ (Same	as ols)
oPartial derivative for Bo:	oPartia	derivative for Bo:
	9/28 SSE= -2 Σ (yi-βo-β1xi)	3/3B1 SSE= -2 ∑ (yi-βο-β1xi)
	V set to a	₩ set to a
	ξy;-nβ,+β, Σx;= & (1)	$\sum x_i y_i - \beta_0 \sum x_i^2 - \beta_1 \sum x_i^2 = \emptyset$ (2)
Solve normal equations:	# rewrite	U Plug in Bo=y-Biz and solve
· let x= 1, Exi	ny = n Bo + βιn π	$\sum x_{i}y_{i} - (\overline{y} - \beta_{1}\overline{x}) \sum x_{i} - \beta_{1} \sum x_{i}^{2} = \emptyset$
<u>y= h</u> Σy;		Σχίγί - (Ψ-β ₁ γ)Σχί - β ₁ Σχί ² = \ Σχίγί - ΨΣχί + β ₁ γ Σχί - β ₁ Σχί ² = \ β ₁ (Σχίχ - Σχί ²) = ΨΣχί - Σχίγί
	$\beta_0 = \overline{y} - \beta_1 \overline{x}$	· · · · · · · · · · · · · · · · · · ·
		V sîmplify
Step 4. Maximize 02		$\beta_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$ (Same as of
Plug Bo and B, back	c into Log-Likelihoodi	2 (A) X)
_	= $\left(\text{Constant}\right) - \frac{n}{2} \log_{10}(0^{2}) - \frac{1}{20^{2}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{i})$	$(\chi_{\tilde{1}})^2$
Differentiate 0^2 , set to	> Ø.;	
	$\frac{1}{2(6^3)^2} \overline{\geq} e_1^{-2} = 8$	$\hat{\beta}_{1} = \frac{\sum (x_{1} - \overline{x})(y_{1} - \overline{y})}{\sum (x_{1} - \overline{x})^{2}}$
₩ sol	ve	$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$
02 MLE = 1 5 (41 -	$\beta_0 - \beta_1 \chi_1^2 = \frac{SSE}{n}$ biased	$\hat{O}^{2}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2}$
* * * * * * * * * * * * * * * * * * *		$(Q^2, Q^2) = \frac{1}{2} \times (Q^2 - Q^2 - Q^2)$

5. Show that $s^2 = \sum (Y_i - \hat{Y}_i)^2/(n-2)$ is an unbiased estimator for σ^2 . Step 1. Define Error Model In simple linear regression, $Y_i = B_0 + B_1 X_i + E_i$, where $E_i \sim N(0,0^2)$ Υ̂ = β̂ + β, χ; The fitted value, ei = Yi - Ŷi The residual, Step 2. Define SSE and 5^2 SSE = \((Yi - Yi)^2 = \(\in e^2 \) $S^2 = SSE/n-2$ 2 of lost by using Bo, B, in place of Bo, B, $\mathbb{E}(s^2) = \theta^2$ we want to show: Step 3. Use Theorem: If the model is correct and errors are independent $\sim N(0,0^2)$, then, SSE ~ X n-2 50, $\mathbb{E}(SSE) = (n-2)O^2$ $\mathbb{E}(S^2) = \frac{1}{n-2} \cdot \mathbb{E}(SSE) = 0^2$ Hence, $\mathbb{E}(S^2) = 0^2 \rightarrow S^2$ is an unbiased estimator of 0^2 The MLE divides by n because it maximizes the likelihood without adjusting for parameter estimation, while the LSE divides by n-2 to correct for the loss of two degrees of freedom from estimating β_0 and β_1 , making it an unbiased estimator.