TEACHING CPUS TO HIGH SCHOOL STUDENTS LESSONS, TAKEAWAYS AND HURDLES

NICHOLAS MIEHLBRADT

EVERYTHING OPEN 2025

HOW DID I GET HERE

- Linux kernel developer at IBM
- One of the former coordinators of the Canberra Computer Science Enrichment Program
- Former tutor at ANU

CANBERRA COMPUTER SCIENCE ENRICHMENT

- Run by the CoLab
- Aims to encourage high school students to pursue computer science
- Topics varied based on presenters
- Students nominated by their teachers

WHY TEACH THIS?

- I was already teaching it
- I wanted to give students an understanding of how electrical devices can compute

- Go from digital logic to a working implementation of a processor
- As little hidden as possible

STARTING WITH THE ARCHITECTURE

- Turing complete
- Simple enough to implement in four sessions
- Need to be able to write simple but non-trivial programs
- Easy to hand assemble

STARTING WITH THE ARCHITECTURE

- Existing ISA
- Existing teaching ISA
- Create my own

STARTING WITH THE ARCHITECTURE

- Regular format RISC style
 - Align things to 4 bits → Easy to hand assemble
 - add r3, r1, r2 \rightarrow 1000 0011 0001 0010 \rightarrow 0x8312
- Omit key features
 - Call instructions, multiple jump instructions, reading program counter
 - Limitations spark discussion

- Digital logic simulator
- Developed by Helmut Neemann
- Open source (of course)

- Great playground for introductory digital circuit design
- Good library of built-in components
- Ability to create your own custom sub-circuits

AND gates

Resistor-Transistor-Logic

Transistor-Transistor-Logic

- Started with basic combinatorial logic
 - Going from truth tables to a circuit
 - No rigorous approach
- Use encapsulation to identify and reuse generic components

Α	В	S	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Α	В	Cin	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Sequential logic
 - Presented SR latch

- Sequential logic
 - Presented SR latch
 - Used combinatorial logic to upgrade to D latch

- Sequential logic
 - Presented SR latch
 - Used combinatorial logic to upgrade to D latch
 - Continued to D flip flop

Combined it all to make a register file

Hooked together the register file and ALU to create a 'manual' CPU

- Introduced memory as a means of storing a list of instructions
- Program counter gets the next instruction

- Control Unit → Just combinatorial logic
- Adding in all the other bits
 - Zero flag
 - put instruction
 - Offset program counter
 - Sign Extended Immediate
 - **■** 1000 0001 **→** 1111 1111 1000 0001

- All done! We made a CPU
- Got students to write and hand assemble some programs

ISA REVISITED

- Students quickly became frustrated writing programs this was good!
 - How can we write functions?
 - How can we do things like greater/less than tests?
 - How do we subtract?
- Struggles prompted interesting discussion

WHAT DIDN'T GO WELL

- Felt too lecture-y at times?
- Session pacing didn't account for perceived complexity
- Some black boxes sequential logic, register file, sign extension

THINGS TO IMPROVE

- Spread over more sessions
- Some exercises needed to be more guided, some need more room for exploration
- Give students more time with Digital
- Reorder some topics bring control unit before memory

WRAP UP

- Sessions were generally well received several students cited it as their favorite of the year!
- Gave a good launching point for discussions students wanted to have
- Helped me to improve my teaching skills

THANK YOU

LINKS

- Slides: github.com/NMiehlbradt/talks
- Session Materials
- Digital