

VenomPred: A Machine Learning Based Platform for Molecular Toxicity Predictions

Miriana Di Stefano ^{1,2}, Salvatore Galati ¹, Elisa Martinelli ¹, Marco Macchia ¹, Adriano Martinelli ¹, Giulio Poli ¹, and Tiziano Tuccinardi ^{1,3}

RDKit UGM 12-14 October 2022 Berlin, Germany

Int. J. Mol. Sci. 2022, 23, 2105. https://doi.org/10.3390/ijms23042105

¹ Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; ² Department of Life Sciences, University of Siena, 53100 Siena, Italy

³ Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA

VenomPred Platform

VenomPred is a user-friendly online platform for the evaluation of potential mutagenic, hepatotoxic, carcinogenic and estrogenic effects of small molecules. The platform is freely available, without downloading any software, by using reliable machine learning models.

DEVELOPMENT OF MACHINE LEARNING MODELS

Modeling Datasets

VEGA QSAR datasets

Mutagenicity Hepatotoxicity Carcinogenicity

Estrogenicity 💢

Molecular representation

5 different types of molecular fingerprints (FPs)

RDKit Morgan Pharm2D PubChem LINGO

Classification Models

4 different classification algorithms

Random Forest
Support Vector Machine
k-Nearest Neighbor
Multi-Layer Perceptron

DEVELOPMENT OF MACHINE LEARNING MODELS

Model Building and Evaluation

Combination of FPs with each algorithm, setting the best hyperparameters and application of a 20-fold cross-validation (CV) in order to select the top 5 models for each endpoint for further analysis

Consensus Strategy

Application of a consensus strategy combining the bestperforming models in order to improve predictive performance. A consensus score (CS) for each tested molecule is computed by averaging the Probability Scores produced by the top-scored models.

NON-TOXIC: CS < 0.5

TOXIC: $CS \ge 0.5$

VenomPred Platform

Name	Entry_1
SMILES	CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O

Endpoint	Probability
Mutagenicity	8 %
Carcinogenicity	23 %

Endpoint	Probability
Hepatotoxicity	53 %
Estrogenicity	45 %

THANKS FOR YOUR ATTENTION

ACKNOWLEDGMENTS:

Prof. Dr. Marco Macchia, Prof. Dr. Tiziano Tuccinardi, Dr. Giulio Poli, Salvatore Galati

