

Funktionsweise der Honey Encryption

Konstantin Kobs Tom Petersen

20. Januar 2015

- 1. Einleitung
- 2. Honey Encryption Ein Beispiel
- 3. Verfahren der Honey Encryption
 - Distribution Transforming Encoder
 - Verschlüsselung
- 4. Einschränkungen
- 5. Fazit

Brute-Force-Angriff auf klassische Verfahren

 $K_1 \rightarrow \mathsf{yxV\#U}$ $K_2 \rightarrow \mathsf{Katze}$ $K_3 \rightarrow \mathsf{-CPK9}$ $\dots \rightarrow \dots$

Verwendete Passwörter

https://xato.net/wp-content/xup/passwordscloud.png

Honey Encryption - Idee

 $K_1 \rightarrow \mathsf{Hund}$

 $\textit{K}_2 \rightarrow \textit{Katze}$

 $\textit{K}_3 \rightarrow \text{Maus}$

 $\ldots \to \ldots$

Honey Encryption

Honey Encryption wurde entwickelt, um Ciphertexte zu generieren, die bei Entschlüsselung mit einem falschen Schlüssel zu einem plausibel wirkenden, aber unechten Klartext führen.

- A. Juels, T. Ristenpart

7

Verschlüsselung

- 01 ← Nachricht *M* (grün)
- \oplus 10 \leftarrow Schlüssel K
 - 11 ← Ciphertext *C*

Entschlüsselung

11 ← Ciphertext C

 $\oplus \underline{10} \leftarrow \text{Schlüssel } K$

01 ← Nachricht *M* (grün)

Verschlüsselung

01 ← Nachricht *M* (grün)

 \oplus 10 \leftarrow Schlüssel K

11 ← Ciphertext C

Verschlüsselung

01 ← Nachricht *M* (grün)

 \oplus 10 \leftarrow Schlüssel K

11 ← Ciphertext C

Entschlüsselung

11 ← Ciphertext *C*

 $\oplus \underline{10} \leftarrow \text{Schlüssel } K$

01 ← Nachricht *M* (*grün*)

Brute-Force-Angriff

11 ← Ciphertext *C*

 $\oplus \underline{11} \leftarrow \text{Schlüssel } K'$

 $00 \leftarrow \text{Nachricht } M' \text{ (rot)}$

8

DTE - Distribution Transforming Encoder

(

DTE - Schema

$$DTE = (encode, decode)$$

 $encode(Nachricht) \stackrel{\langle r \rangle}{=} Seed$ decode(Seed) = Nachricht

DTE - Speicherung

• Datenstruktur (z.B. Tabelle)

Seed	Nachricht
00	rot
01	grün
10, 11	blau

- Algorithmus zur direkten Berechnung
 - PINs
 - Kreditkarten-Nummern

DTE - Voraussetzungen

- Struktur/Menge der Nachrichten
 - Klartexte sollen plausibel sein!
- Verteilung der Nachrichten
 - Nachricht wahrscheinlicher ⇒ mehr Seeds

Verschlüsselung

Hashbasierte Verschlüsselung

Verschlüsselung

```
\mathsf{HEnc}_{\mathsf{Hash}}(M,K)
S \stackrel{\langle r \rangle}{=} \mathsf{DTE}_{\mathsf{encode}}(M)
R \stackrel{\langle r \rangle}{=} \{0,1\}^k
H = \mathsf{HF}(K,R)
C = H \oplus S
\mathsf{Return}\; (C,R)
```


Hashbasierte Verschlüsselung

Verschlüsselung

$$\mathsf{HEnc}_{\mathsf{Hash}}(M,K)$$
 $S \stackrel{\langle r \rangle}{=} \mathsf{DTE}_{\mathsf{encode}}(M)$
 $R \stackrel{\langle r \rangle}{=} \{0,1\}^k$
 $H = \mathsf{HF}(K,R)$
 $C = H \oplus S$
 $\mathsf{Return}\; (C,R)$

Entschlüsselung

$$\mathsf{HDec}_{\mathsf{Hash}}((C,R),K)$$
 $H = \mathsf{HF}(K,R)$
 $S = H \oplus C$
 $M = \mathsf{DTE}_{\mathsf{decode}}(S)$
 $\mathsf{Return}\ M$

Einschränkungen der Honey Encryption

- Freitext nicht möglich
 - Menge der Nachrichten unendlich groß
 - Verteilung nicht bekannt

Einschränkungen der Honey Encryption

- Freitext nicht möglich
 - Menge der Nachrichten unendlich groß
 - Verteilung nicht bekannt
- Vorab bekannte Informationen
 - Angreifer hat Zusatzinformationen ⇒ Verifizierung des Ergebnisses
 - Sicherheit der Verschlüsselung

Einschränkungen der Honey Encryption

- Freitext nicht möglich
 - Menge der Nachrichten unendlich groß
 - Verteilung nicht bekannt
- Vorab bekannte Informationen
 - Angreifer hat Zusatzinformationen ⇒ Verifizierung des Ergebnisses
 - Sicherheit der Verschlüsselung
- Typo-Safety
 - Tippfehler führt zu falschen Daten
 - große Stärke ⇒ große Schwäche

Fazit

- Sehr sicher
- Nicht universal anwendbar
- Forschungsgebiete:
 - Natural Language Processing
 - Stochastik
 - User Experience
- Nächstes Ziel: Passwort-Manager