Double & Triple Integral Calculus I

Sunday, 30 June 2024 6:47 pm

Also, we will initially assume that $f(x,y) \ge 0$ although this doesn't really have to be the case. Let's start out with the graph of the surface S given by graphing f(x,y) over the rectangle R.

$$\operatorname{Volume} = \iint\limits_{R} f\left(x,y
ight) \, dA$$

Fubini's Theorem

If $f\left(x,y
ight)$ is continuous on $R=\left[a,b
ight] imes\left[c,d
ight]$ then,

$$\iint\limits_R f(x,y) \ dA = \int_a^b \int_c^d f(x,y) \ dy \, dx = \int_c^d \int_a^b f(x,y) \ dx \, dy$$

These integrals are called iterated integrals

4. Compute the following double integrals. a)
$$\int_0^3 \int_0^4 (4x+3y) \ dx \ dy$$
 b) $\int_0^2 \int_0^3 (x^2+y^2) \ dy \ dx$ c) $\int_0^1 \int_0^2 (x^2y) \ dx \ dy$ d) $\int_0^1 \int_0^1 y \ e^{xy} \ dx \ dy$

5. Find the triple integrals of the function over

- a) $f(x,y,z) = x^2 + 5y^2 z$, W is the rectangular box $0 \le x \le 2, -1 \le y \le 1$,
- b) h(x, y, z) = ax + by + cz, W is the rectangular box $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 2.$
- c) $f(x,y,z) = \sin x \cos(y+z)$, W is the cube $0 \le x \le \pi$, $0 \le y \le \pi$, $0 \le z \le \pi$
- d) $f(x, y, z) = e^{-x-y-z}$ W is the rectangular box with corners at (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c).