AMATH 563: FAST SPECTRAL (PCA + RFF + LINEAR RIDGE) CLASSIFICATION OF MNIST DIGIT PAIRS

JIAJI QU

Department of Applied Mathematics, University of Washington, Seattle, WA jiajiq@uw.edu

1. Introduction

Kernel methods give excellent accuracy on MNIST but become slow once the dual Gram matrix must be formed and inverted for large $N \gg 10^4$ samples.¹ In this report, I retain kernel accuracy while eliminating the $\mathcal{O}(N^3)$ bottleneck by stacking two spectral techniques:

- (i) The Bamdad suggested **PCA** reduction which finds an orthonormal basis that explains 95 % of the pixel variance reduces the ambient dimension from d = 784 to $r \approx 250$.
- (ii) Random Fourier features (RFF). The trick is to use Bochner's theorem to map each PCA vector to a D-dimensional Euclidean space (D = 500) and then use a linear ridge classifier to approximate the RBF decision boundary See [Rahimi and Recht(2007)].

The entire trick is that PCA discards pixel noise by spectral truncation of X^TX , while RFF converts the shift-invariant RBF kernel into inner products via random Fourier bases. Both techniques exploit the frequency structure of the data or kernel.

The entire pipeline finishes in ≈ 60 s on a single Colab CPU while achieving 96-99% test accuracy on the four digit pairs (1,9), (3,8), (1,7), and (5,2).

2. Methods

Data and notation. Each centered image (after subtracting the mean from each column) is a row $x_i \in \mathbb{R}^{784}$, labelled $y_i \in \{0,1\}$. For a given pair we obtain $X \in \mathbb{R}^{n \times 784}$ with $n \approx 12\,000$.

- **1. Principal Component Analysis.** We compute the full SVD $X = U\Sigma V^{\top}$ and choose the smallest r satisfying $\sum_{j \leq r} \Sigma_{jj}^2 / \sum_j \Sigma_{jj}^2 \geq 0.95$. Our projection $z_i = V_r^{\top} x_i$ lowers the dimension yet preserves all pairwise distances up to a factor < 1.03 for these data.
- **2. Random Fourier Features.** For the RBF kernel $k_{\gamma}(z,z') = \exp(-\gamma ||z-z'||^2)$, Bochner's theorem states that k_{γ} is the Fourier transform of $\mathcal{N}(0,2\gamma I_r)$. Drawing D iid frequencies $w_{\ell} \sim \mathcal{N}(0,2\gamma I_r)$ and phases $b_{\ell} \sim \mathrm{U}[0,2\pi]$ yields the Fourier form

$$\phi(z) = \sqrt{\frac{2}{D}} \left[\cos(w_1^{\mathsf{T}} z + b_1), \dots, \cos(w_D^{\mathsf{T}} z + b_D) \right], \qquad \mathbb{E} \phi(z)^{\mathsf{T}} \phi(z') = k_{\gamma}(z, z').$$

from [Rahimi and Recht(2007)] Algorithm 1 on page 4. With D=500, we can compute the Johnson–Lindenstrauss error bound $|k_{\gamma}-\phi(z)^{\top}\phi(z')|=\mathcal{O}(D^{-1/2})\leq 0.05$ with high probability. So our spectral method actually works, with the degree of accuracy we care about. ²

 $Date \hbox{: } 28 \hbox{ April } 2025.$

¹I learned this the slow and painful way when nothing else worked under an hour except for a spectral method.

²In actual runs the Monte-Carlo error is completely negligible - doubling D to 1000 improves test accuracy only a little (< 0.2 pp).

- 2 AMATH 563: FAST SPECTRAL (PCA + RFF + LINEAR RIDGE) CLASSIFICATION OF MNIST DIGIT PAIRS
- 3. Linear Ridge Classifier. On the feature matrix $\Phi = \phi(Z) \in \mathbb{R}^{n \times D}$ we solve linear ridge problem

$$\hat{\beta} = \arg\min_{\beta} \left\| \Phi \beta - y \right\|_2^2 + \alpha \|\beta\|_2^2, \quad \hat{y} = \mathbf{1} \{\beta^\top \phi(z) > 0\}.$$

The closed-form solution costs $\mathcal{O}(nD^2)$, i.e. very freakin' cheap, milliseconds.

4. Hyper-parameter search and complexity. A 6-draw RandomizedSearchCV over $\gamma \in \{0.01, 0.05, 0.1, \text{scale}\}$ and $\alpha \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}$ with three CV folds does not impact the overall complexity:

$$\underbrace{\mathcal{O}(ndr)}_{\text{PCA}} + \underbrace{\mathcal{O}(nDr)}_{\text{RFF}} + \underbrace{\mathcal{O}(nD^2)}_{\text{ridge}} \ll \mathcal{O}(n^3) \text{ for dense KRR.}$$

3. Results

Best hyper-parameters and accuracies are summarised in Table 1. All digit pairs exceed $95\,\%$ test accuracy.

Digits	PCs	γ	α	Test acc.
(1,9)	242	scale	10	0.988
(3,8)	257	scale	10	0.959
(1,7)	267	scale	10	0.982
(5,2)	269	scale	10	0.977

TABLE 1. Selected PCA rank r, best hyper-parameters, and test accuracy. "scale" is $\gamma = 1/r$ in scikit-learn.

FIGURE 1. Test embeddings in the first two principal components with the RFF-ridge decision boundary (red = class 1).

4. Discussion of Results

- Raw accuracy: All digit pairs exceed 95% test accuracy. All pairs are separated as clearly shown in Figure 1.
- Speed: Full KRR on a single pair took 12+ minutes (due to an N^3 solve of size 12 000), whereas PCA-RFF-ridge finishes in ~ 15 s per pair.

- 4 AMATH 563: FAST SPECTRAL (PCA + RFF + LINEAR RIDGE) CLASSIFICATION OF MNIST DIGIT PAIRS
- Memory usage: The dense kernel matrix required $N^2 \approx 1.4$ GB. The method I used for my pipeline stores at most an $n \times 500$ sketch (< 50 MB) plus an $r \times 500$ PCA projector.
- When RFF is bad: If classes are very bad, i.e. extremely convoluted, we might need a larger D or a non-stationary kernel but the Monte-Carlo error decays as $\mathcal{O}(D^{-1/2})$, so doubling D halves the approximation error. This method is robust. The others suck (are way too slow).

5. Conclusions

Using Rahimi and Recht (2007)'S double spectral method i.e. the pipeline StandardScaler \rightarrow PCA_{95%} \rightarrow RFF₅₀₀ \rightarrow RidgeClassifier achieved near kernel accuracy on MNIST digit pairs while reducing runtime from minutes to seconds and memory from gigabytes to megabytes.

This is kind of incredible.

ACKNOWLEDGEMENTS

I thank my 563 classmates Nate Whybra and Peter Xu for late-night debugging tips and Google Colab for free compute. Special thanks to Kuikui Liu for suggesting a spectral method and the paper.

References

[Rahimi and Recht(2007)] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems (NIPS), volume 20, pages 1177–1184, 2007.