1.	某机器字长为 32 位,其中 1 位表示符号位。若用定点整数原码表示,则最小负整数为
	()
	A(2 ³¹ -1)
	B(2 ³⁰ -1)
	C(2 ³¹ +1)
	D(2 ³⁰ +1)
2	四位机器内的数值代码 1001,它所表示的十进制真值为()
	A. 9
	B1
	C7
	D. 以上三者均有可能
	解:无符号数表示 9,原码表示-1,补码表示-7。
3	设[X] _* =1.X ₁ X ₂ X ₃ X ₄ , 仅当()时, X>-1/2 成立。如果绝对值会怎样?
٥.	A. X ₁ 必须为 1, X ₂ X ₃ X ₄ 至少有一个为 1
	B. X ₁ 必须为 1, X ₂ X ₃ X ₄ 任意
	C. X ₁ 必须为 0, X ₂ X ₃ X ₄ 至少有一个为 1
	D. X ₁ 必须为 0,X ₂ X ₃ X ₄ 任意
4.	以下有关运算器的描述中,正确的是()(第四章内容)
	A. 只做加法运算
	B. 只做算术运算
	C. 可做算术运算和逻辑运算
	D. 只做逻辑运算
5.	在机器数()中,零的表示形式是唯一的。
	A. 原码
	B. 补码
	C. 反码
	D. 原码和反码
6.	下列数中最小的数是()
	A. (101001) ₂
	B. (52) ₈
	C. (101001) _{BCD}
	D. (23) ₁₆
	解析: 如果都是无符号数的话
	A (101001) ₂
	B (52) ₈ =(101 010) ₂ 3 位二进制数表示一位 8 进制数
	C (101001) _{BCD} =(29) ₁₀ =(10 1001) ₂ BCD 码是 4 位二进制数表示一位十进制数
	D (23) ₁₆ =(10 0011) ₂ 4位二进制数表示 1位 16进制数
7.	设寄存器内容为 11111111, 若它等于+127, 则为()
	A. 原码
	B. 反码
	C. 补码
	D. 移码
	解析:原码、反码、补码最高位为符号位,+127,最高符号位应该是0.
8.	假定下列字符码中有奇偶校验位,但没有数据错误,采用奇校验的字符码是()

- A. 11001010
- B. 11010111
- C. 11001100
- D. 11001011
- 9. 若信息码字为 11100011,生成多项式 $G(x)=x^5+x^4+x+1$,则计算出的 CRC 校验码为 ()
 - A. 1110001101101
 - B. 1110001111010
 - C. 11100011001101
 - D. 111000110011010

解析: 生成多项式可以表示为: 110011 则 CRC 校验位占 5 位,比生成多项式少 1 位 信息码左移 5 位: 1110001100000 模 2 除:

余数: 11010

所以拼接 CRC 码校验位: 1110001111010

10. 请写出数据 **10110100110** 的海明码,用 **4** 位检验位,采用偶校验。() 解:信息位 **11** 位,校验位 **4** 位,海明码位数 **11+4 = 15** 位

校验位分布在2的整数次方位置上

H15 H14 H13 H12 H11 H10 H9 H8 H7 H6 H5 H4 H3 H2 H1

1 0 1 1 0 1 0 P4 0 1 1 P3 0 P2 P1

 $P1 = P1 \oplus H3 \oplus H5 \oplus H7 \oplus H9 \oplus H11 \oplus H13 \oplus H15 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$

 $P2 = P2 \oplus H3 \oplus H6 \oplus H7 \oplus H10 \oplus H11 \oplus H14 \oplus H15 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$

 $P3 = P3 \oplus H5 \oplus H6 \oplus H7 \oplus H12 \oplus H13 \oplus H14 \oplus H15 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $P4 = P4 \oplus H9 \oplus H10 \oplus H11 \oplus H12 \oplus H13 \oplus H14 \oplus H15 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 0$

海明码: 101101000111011

- 11. 设浮点数字长 16 位,其中阶码 5 位(含 1 位阶符),以 2 为底,补码表示,尾数 11 位(含 1 位数符),补码表示,判断下列各十进制数能否表示成规格化浮点数。若可以,请表示。
 - (1) 3.5
 - (2) 79/512
 - (3) -10-4

 $(4) 10^{10}$

解:

- (1) $(3.5)_{10}=(11.1)_2=0.111*2^{10}$ 00010;01110000000
- (2) $79/512 = (1001111)_2 *2^{-9} = 0.1001111 *2^{-10} 11101;010011111000$
- (3)(4)不能无损精度的转换成浮点数
- 12. 写出下列十进制数的 IEEE754 短浮点数编码
 - (1) 0.15625

(2) -5

解(1)转二进制:(0.15625)₁₀ = (0.00101)₂ = 1.01*2-3

计算阶码: E ※=127-3 = 01111100B

转十六进制: 3D200000H

(2) 转二进制: (-5) 10= (-101) 2=-1.01*22

计算阶码: E *=127+2=10000001B

转十六进制: COA00000H

- 13. 下列 IEEE 单精度浮点数所表示的十进制数分别是多少?

阶码: E *=01111010

计算阶码真值: E 真= E 移-127=(-101)₂=(-5)₁₀

分离尾数: M = 1.1

符号位: S=1

真值: -1.1*2⁻⁵= (-0.000011) ₂=0.046875

阶码: E *=10101010

计算阶码真值: E 真= E 移-127=(101011) 2=(43)10

分离尾数: M = 1.11

符号位: S=0

真值: (1.11)₂*2⁴³=1.75*2⁴³

阶码: E _移=10000011

计算阶码真值: E 真= E 移-127= (100) 2=(4)10

分离尾数: M = 1.111

符号位: S=1

真值: (-1.111)₂*2⁴=-18750

阶码: E *=01110101

计算阶码真值: E 真= E 移-127= (1010) 2=(10)10

分离尾数: M = 1.0

符号位: S=0

真值: (1.0)₂*2¹⁰=2¹⁰

- 14. 设浮点数的格式为
 - 第 15 位: 符号位;
 - 第14位到第8位:阶码,采用补码表示
 - 第7位到第0位: 尾数,与符号位一起采用规格化的补码表示,基数为2.问:
 - (1) 它能表示的数值范围是什么?
 - (2) 它能表示的最接近于 0 的正数和负数分别是什么?
 - (3) 它共能表示多少个数值?

解: 浮点数格式:

 15 14
 8 7
 0

 S E (补码)
 M(补码,不带符号位)

(1)范围:实际上是求绝对值最大的正数和负数(规格化)

最小: 1,0111111,00000000 -1*2²⁶⁻¹ (阶码最大,尾数最小)

(2)本质是求绝对值最小的正数和负数(规格化)

最小的正数(最接近于 0 的正数): 0,1000000,10000000 $2^{-1}*2^{-2^6}$

最大的负数(最接近于 0 的负数): 1,1000000,01111111 $-(2^{-1} + 2^{-8}) * 2^{-2^6}$

(3)可以表示 216个数值

15.