

Principles of Physics

Lecture 2: Units and Dimensions

References

- University Physics Volume 1, 2016
 - o https://cnx.org/content/col12031/1.10
- University Physics Volume 2, 2016
 - o https://cnx.org/content/col12074/1.9
- D. C. Giancoli, Physics: Principles with Applications, 6th ed. Pearson.

Table of Contents

- Units and Dimensions..
- Uses of the dimensions.
- Problems

Units

Base and Derived Units

• In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the **base quantities** for that system and their units are the system's **base units**. All other physical quantities can then be expressed as algebraic combinations of the base quantities. Each of these physical quantities is then known as a **derived quantity** and each unit is called a **derived unit**.

Base quantity

Base Quantity	SI units	
Length, I	metres, m	
Mass, m	kilogram,	
	kg	
Time, t	second, s	
Temperature, T	Kelvin, k	
Electrical current, I	current, I Ampere, A	

Derived quantity

Derived Quantity	Units
Volume, V	m³
Density, ρ	kgm ⁻³
Velocity, v	ms ⁻¹
Force, F	N
Acceleration, a	ms ⁻²

Units Conversion

Unit Conversion

A conversion factor is an expression used to change from one unit to another.

Unit Conversion

Mass	1 kg = 10^3 g 1 g = 10^{-3} kg 1 u = 1.66×10^{-24} g = 1.66×10^{-27} kg 1 slug = 14.6 kg 1 metric ton = 1000 kg	Force	1 N = 0.225 lb 1 lb = 4.45 N Equivalent weight of a mass of 1 kg on Earth's surface = 2.2 lb = 9.8 N 1 dyne = 10^{-5} N = 2.25 × 10^{-6} lb
Length	1 Å = 10^{-10} m 1 nm = 10^{-9} m 1 cm = 10^{-2} m = 0.394 in. 1 yd = 3 ft 1 m = 10^{-3} km = 3.281 ft = 39.4 in. 1 km = 10^{3} m = 0.621 mi 1 in. = 2.54 cm = 2.54 × 10^{-2} m 1 ft = 0.305 m = 30.5 cm 1 mi = 5280 ft = 1609 m = 1.609 km 1 ly (light year) = 9.46 × 10^{12} km	Pressure	1 Pa = 1 N/m ² = 1.45 × 10 ⁻⁴ lb/in. ² = 7.5 × 10 ⁻³ mm Hg 1 mm Hg = 133 Pa = 0.02 lb/in. ² = 1 torr 1 atm = 14.7 lb/in. ² = 101.3 kPa = 30 in. Hg = 760 mm Hg 1 lb/in. ² = 6.89 kPa 1 bar = 10 ⁵ Pa = 100 kPa 1 millibar = 10 ² Pa
Area	1 pc (parsec) = 3.09×10^{13} km 1 cm ² = 10^{-4} m ² = 0.1550 in. ² = 1.08×10^{-3} ft ² 1 m ² = 10^4 cm ² = 10.76 ft ² = 1550 in. ² 1 in. ² = 6.94×10^{-3} ft ² = 6.45 cm ² - 6.45×10^{-4} m ² 1 ft ² = 144 in. ² = 9.29×10^{-2} m ² = 929 cm ²	Energy	1 J = 0.738 ft·lb = 0.239 cal = 9.48 × 10 ⁻⁴ Btu = 6.24 × 10 ¹⁸ eV 1 kcal = 4186 J = 3.968 Btu 1Btu = 1055 J = 778 ft·lb = 0.252 kcal 1 cal = 4.186 J = 3.97 × 10 ⁻³ Btu = 3.09 ft·lb 1 ft·lb = 1.36 J = 1.29 × 10 ⁻³ Btu 1 eV = 1.60 × 10 ⁻¹⁹ J
Volume	$ \begin{array}{l} 1~\text{cm}^3 = 10^{-6}~\text{m}^3 = 3.35 \times 10^{-5}~\text{ft}^3 \\ = 6.10 \times 10^{-2}~\text{in.}^3 \\ 1~\text{m}^3 = 10^6~\text{cm}^3 = 10^3~\text{L} = 35.3~\text{ft}^3 \\ = 6.10 \times 10^4~\text{in.}^3 = 264~\text{gal} \\ 1~\text{liter} = 10^3~\text{cm}^3 = 10^{-2}~\text{m}^2 = 1.056~\text{qt} \\ = 0.264~\text{gal} \\ 1~\text{in.}^3 = 5.79 \times 10^{-4}~\text{ft}^3 = 16.4~\text{cm}^3 \\ = 1.64 \times 10^{-5}~\text{m}^3 \\ 1~\text{ft}^3 = 1728~\text{in.}^3 = 7.48~\text{gal} = 0.0283~\text{m}^3 \\ = 28.3~\text{L} \\ 1~\text{gt} = 2~\text{pt} = 946~\text{cm}^3 = 0.946~\text{L} \\ \end{array} $	Power Mass-Energy Equivalents	1 kWh = 3.6×10^6 J 1 erg = 10^{-7} J = 7.38×10^{-6} ft · lb 1 W = 1 J/s = 0.738 ft · lb/s = 1.34×10^{-3} hp = 3.41 Btu/h 1 ft · lb/s = 1.36 W = 1.82×10^{-3} hp = 1.86×10^{-3} hp = 1.86×10^{-2} kg 1.86×10^{-2}
Time	$\begin{array}{l} 1 \text{ gal} = 4 \text{ qt} = 231 \text{ in.}^3 = 0.134 \text{ ft}^3 = 3.785 \text{ l.} \\ 1 \text{ h} = 60 \text{ min} = 3600 \text{ s} \\ 1 \text{ day} = 24 \text{ h} = 1440 \text{ min} = 8.64 \times 10^4 \text{ s} \\ 1 \text{ y} = 365 \text{ days} = 8.76 \times 10^3 \text{ h} \end{array}$		1 proton mass = 1.673×10^{-27} kg = $1.007 267 \text{u} \leftrightarrow 938.28 \text{MeV}$ 1 neutron mass = 1.675×10^{-27} kg = $1.008 665 \text{u} \leftrightarrow 939.57 \text{MeV}$
Speed	= 5.26×10^{5} min = 3.16×10^{7} s 1 m/s = 3.60 km/h = 3.28 ft/s = 2.24 mi/h	Temperature	$T_{\rm F} = \frac{9}{5}T_{\rm C} + 32$ $T_{\rm C} = \frac{3}{9}(T_{\rm F} - 32)$ $T_{\rm K} = T_{\rm C} + 273.15$
	1 km/h = 0.278 m/s = 0.621 mi/h = 0.911 ft/s 1 ft/s = 0.682 mi/h = 0.305 m/s = 1.10 km/h 1 mi/h = 1.467 ft/s = 1.609 km/h = 0.447 m/s 60 mi/h = 88 ft/s	Angle	1 rad = 57.3° 1° = 0.0175 rad 60° = $\pi/3$ rad 15° = $\pi/12$ rad 90° = $\pi/2$ rad 30° = $\pi/6$ rad 180° = π rad 45° = $\pi/4$ rad 360° = 2π rad 1 rev/min = ($\pi/30$) rad/s = 0.1047 rad/s

Dimensions

Dimensions

 The dimension of any physical quantity expresses its dependence on the base quantities as a product of symbols representing the base quantities. This table lists the base quantities and the symbols used for their dimension.

Base Quantity	Symbol for Dimension	
Mass	M	
Length	L	
Time	Т	

Dimensions

Quantity	Law	Unit	Dimension
Area	$A = l^2$	m^2	L^2
Volume	$V = l^3$	m^3	L^3
Velocity	v = l/t	m/s	$L \cdot T^{-1}$
Acceleration	a = v/t	m/s^2	$L \cdot T^{-2}$
Force	F = m a	$kg \cdot m/s^2(N)$	$M \cdot L \cdot T^{-2}$
Energy	E = F d	$kg \cdot m^2/s^2 (J)$	$M \cdot L^2 \cdot T^{-2}$
Denisty	D = m/V	kg/m^3	$M \cdot L^{-3}$
Pressure	P = F/A	$kg/m \cdot s^2$	$M \cdot L^{-1} \cdot T^{-2}$

Important rules

قو اعد هامة

۲) يفضل مراعاة الترتيب عند كتابة الـ Dimension لاى كمية فيزيائية بمعنى نكتب الـ كان Dimension كالاتـ ۲ كان كان $(M \rightarrow L \rightarrow T)$ کالاتی Dimension

Dimensionless quantity

- All the numbers
- Some constant (such as $\pi = {}^{22}/_7 = 3.14$)
- Ratios (Proportions)
- Non-algebraic Functions such as: Logarithmic functions $\log(x)$, $\ln(x)$ Exponential Functions e^x , a^x Trigonometric Functions $\sin(x)$, $\cos(x)$, $\tan(x)$.

Dimension of a dimensionless quantities is 1

Uses of the dimensions

التأكد من صحة أي معادلة Verify the validity of any equation

Verify the following equations:

$$\bullet \quad x = \frac{1}{2} a t^2$$

L. H. S. =
$$x = L$$

R. H. S. = $\frac{1}{2}$ a $t^2 = L T^{-2}$. $T^2 = L$
 \therefore L. H. S. = R. H. S.
The equation is correct

• $P = \rho g h$

L. H. S. =
$$P = \frac{F}{A} = \frac{M \ L \ T^{-2}}{L^2} = M \ L^{-1} T^{-2}$$

R. H. S. = $\rho \ g \ h = M L^{-3} \cdot L T^{-2} \cdot L = M L^{-1} T^{-2}$
 $\therefore L. H. S. = R. H. S.$
The equation is correct

إستنتاج القانون الخاص بأي كمية فيزيائية Deduce the law of any physical quantity

Example: Prove that the period of oscillations of a simple pendulums is proportinal to its length (L), the acceleration of garvity (g) & the mass of pendulum (m)

Solution

let that
$$T_p = f(l,g,m)$$

$$T_p = k \left(l^a g^b m^c \right)$$

take the dimension of both sides

$$[T_p] = [l^a] [g^b] [m^c]$$

$$T = M^{c} * L^{a} * L^{b} . T^{-2b} = M^{c} L^{a+b} T^{-2b}$$

بمساواة الاسس في الطرفين

$$w.r.t(T) \rightarrow -2b = 1 \implies b = -\frac{1}{2}$$

$$w.r.t(M) \rightarrow c = 0$$

$$w.r.t(L) \rightarrow a+b=0 \implies a=\frac{1}{2}$$

$$T = k l^{0.5} g^{-0.5} m^{0} \implies T = k \sqrt{\frac{l}{g}}$$

Example: Suppose we are told that the acceleration (a) of a particle moving with uniform speed (v) in a circle of radius (r) is proportional to some power of (r), say (r^x) & some power of (v), say (v^y) . Determine the values of (x & y) and write the simplest form for the acceleration .

Solution

$$a = k(r^x v^y)$$

$$k:$$
 ثابت ليس له وحدة

take the dimension of both sides

$$[a] = [r^x][v^y]$$

$$L.T^{-2} = L^x * (L.T^{-1})^y = L^{x+y}.T^{-y}$$

بمساواة الاسس في الطرفين

$$w.r.t(T) \rightarrow -y = -2 \Rightarrow y = 2$$

 $w.r.t(L) \rightarrow x + y = 1 \Rightarrow x = -1$
 $a = k r^{-1} v^2$

$$a = k \frac{v^2}{r}$$

Assuming that the mass m of the largest stone that can be moved by a flowing river depends on the velocity V of the water, its density p, and the acceleration of gravity g. Show that m varies as the sixth power of the water velocity in the river.

Solution:

Add (3) and (4):

$$\begin{array}{c} & \text{m } \alpha \text{ } \rho \text{V g} \\ & \text{m } = \text{k } \text{V}^{\text{a}} \, \rho^{\text{b}} \, \text{g}^{\text{c}} \\ & \text{M } = (\text{L } \text{T}^{-1})^{\text{a}} \, \left(\text{M } \text{L}^{-3} \right)^{\text{b}} \, (\text{L } \text{T}^{-2})^{\text{c}} \\ & \text{M } = \text{L}^{\text{a}} \, \text{T}^{-\text{a}} \, \, \text{M}^{\text{b}} \, \text{L}^{-3\text{b}} \, \, \text{L}^{\text{c}} \, \text{T}^{-2\text{c}} \\ & \text{M } = \text{L}^{\text{a}-3\text{b}+\text{c}} \, \, \text{T}^{-\text{a}-2\text{c}} \, \, \, \text{M}^{\text{b}} \\ & \text{For M: b } = 1 \\ & \text{For L: a } - 3\text{b} + \text{c} = 0 \\ & \text{a } + \text{c} = 3 \\ & \text{a } + \text{c} = 3 \\ & \text{For T: } -\text{a} - 2\text{c} = 0 \\ & \text{Add (3) and (4):} \\ & \text{c} = -3 \\ & \text{Substitute from (5) in (3):} \\ & \text{a } = 6 \\ & \text{ } \Rightarrow \text{(6)} \\ \end{array}$$

Substitute from (2), (5), and (6) in (1):

$$\therefore \mathbf{m} = \frac{\mathbf{k} \ \mathbf{V}^6 \ \mathbf{\rho}}{\mathbf{g}^3}$$

• Given that the time period T of oscillation of a gas bubble from an explosion under water depends upon P, d and E, where P is the static pressure, d the density of water and E is the total energy of explosion. Find dimensionally a relation for T.

Solution:

$$P = M \cdot L^{-1} \cdot T^{-2}$$

 $d = M \cdot L^{-3}$
 $E = M \cdot L^{2} \cdot T^{-2}$

 $T \alpha P d E$

$$T = k P^{a} d^{b} E^{c} \qquad \Rightarrow (1)$$

$$T = (M . L^{-1} . T^{-2})^{a} (M . L^{-3})^{b} (M . L^{2} . T^{-2})^{c}$$

$$T = M^{a} . L^{-a} . T^{-a} M^{b} . L^{-3b} M^{c} . L^{2c} . T^{-2c}$$

$$T = M^{a+b+c} L^{-a-3b+2c} T^{-a-2c}$$

For T:
$$-2a - 2c = 1 \Rightarrow a + c = \frac{-1}{2}$$

$$\Rightarrow$$
 (2)

For M:
$$a + b + c = 0$$

$$\Rightarrow$$
 (3)

For L:
$$-a - 3b + 2c = 0$$

$$\Rightarrow$$
 (4)

Substitute from (2) in (3):

$$-\frac{1}{2} + b = 0 \Rightarrow b = \frac{1}{2}$$

$$\Rightarrow$$
 (5)

Substitute in (4):

$$\therefore -a - 3\left(\frac{1}{2}\right) + 2c = 0 \Rightarrow -a + 2c = \frac{3}{2}$$

$$\Rightarrow$$
 (6)

(2)+(6):

$$3c = \frac{-1}{2} + \frac{3}{2} \Rightarrow 3c = \frac{2}{2} \Rightarrow 3c = 1 \Rightarrow c = \frac{1}{3}$$

$$\Rightarrow$$
 (7)

$$a + \frac{1}{3} = \frac{-1}{2} \rightarrow a = \frac{-5}{6}$$

$$\Rightarrow$$
 (8)

Substitute in (1), (8), (7), (5):

$$\therefore T = k P^{\frac{-5}{6}} d^{\frac{1}{2}} E^{\frac{1}{3}} \Rightarrow T = \frac{k d^{\frac{1}{2}} E^{\frac{1}{3}}}{P^{\frac{5}{6}}}$$

