Inhaltsverzeichnis

Vo	prwort	5
1	Der Körper $\mathbb C$ der komplexen Zahlen	7
2	Topologische Grundbegriffe	ç
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21
6	Zusammenhängende Räume, Gebiete in C	25
7	Komplexe Differentialrechnung	31
8	Holomorphe Funktionen	35
9	Konvergenzbegriffe der Funktionentheorie	39
10	Potenzreihen 10.1 Konvergenzkriterien	41 41 44 45
11	Elementar-transzendente Funktionen 11.1 Exponentialfunktion und trigonometrische Funktionen	49 49 51 53
12	Komplexe Integralrechnung 12.1 Wegintegrale in \mathbb{C}	55 55 55 55
13	Integralsatz, Integralformel und Potenzreihenentwicklung 13.1 Cauchyscher Integralsatz für Sterngebiete 13.2 Cauchysche Integralformel für Kreisscheiben 13.3 Entwicklung holomorpher Funktionen in Potenzreihen	59 59 62 64

13

Integralsatz, Integralformel und Potenzreihenentwicklung

13.1 Cauchyscher Integralsatz für Sterngebiete

Lemma 13.1.1 Integrallemma von Goursat

Es sei f holomorph im Bereich D. Dann gilt für den Rand $\partial \Delta$ eines jeden Dreiecks $\Delta \subset D$:

$$\int_{\partial \Lambda} f \, \mathrm{d}\zeta = 0$$

Beweis: Sei $\int_{\partial \Delta} f \, d\zeta \neq 0$ und sei

$$\alpha(\Delta) := \left| \int_{\partial \Delta} f \, \mathrm{d}\zeta \right| \neq 0$$

Wir teilen Δ in vier gleiche Dreiecke $\Delta_1^1, \Delta_1^2, \Delta_1^3, \Delta_1^4.$ Dann

$$\int_{\partial \Delta} f \, \mathrm{d}\zeta = \sum_{k=1}^4 \int_{\partial \Delta_1^k} f \, \mathrm{d}\zeta$$

Damit existiert ein k_1 , so dass

$$\left| \int_{\partial \Delta_1^{k_1}} f \, \mathrm{d} \zeta \right| \ge \frac{\alpha(\Delta)}{4}$$

Wir teilen $\Delta_1^{k_1}$ in vier gleiche Dreiecke $\Delta_2^{k_1,1},\Delta_2^{k_1,2},\Delta_2^{k_1,3},\Delta_2^{k_1,4}$ und bekommen

$$\int_{\partial \Delta_1^{k_1}} f \, \mathrm{d}\zeta = \sum_{k=1}^4 \int_{\partial \Delta_2^{k_1,k}} f \, \mathrm{d}\zeta$$

Damit existiert ein k_2 , so dass

$$\left| \int_{\partial \Delta_2^{k_1, k_2}} f \, \mathrm{d} \zeta \right| \ge \frac{1}{4} \left| \int_{\partial \Delta_1^k} f \, \mathrm{d} \zeta \right| \ge \frac{1}{4^2} \alpha(\Delta)$$

Wir machen genau das gleiche für $\Delta_2^{k_1,k_2}$ und bekommen $\Delta_3^{k_1,k_2,k_3},...,\Delta_m^{k_1,k_2,...,k_m}$, so dass

$$\left| \int_{\partial \Delta_m^{k_1, \dots, k_m}} f \, \mathrm{d} \zeta \right| \ge \frac{1}{4^m} \alpha(\Delta)$$

Es existiert genau ein

$$p = \bigcap_{m=1}^{\infty} \Delta_m^{k_1, \dots, k_m} \subset D$$

 $f \in \mathcal{O}(D)$, also:

$$f(\zeta) = f(p) + f'(p)(\zeta - p) + g(\zeta)(\zeta - p), \quad g \in C(D), g(p) = 0$$

Dann:

$$\int_{\partial \Delta_m^{k_1,\dots,k_m}} f \, \mathrm{d} \zeta = \int_{\partial \Delta_m^{k_1,\dots,k_m}} f(p) \, \mathrm{d} \zeta + \int_{\partial \Delta_m^{k_1,\dots,k_m}} f'(p) (\zeta - p) \, \mathrm{d} \zeta + \int_{\partial \Delta_m^{k_1,\dots,k_m}} g(\zeta) (\zeta - p) \, \mathrm{d} \zeta$$

Für f(p) ist $f(p)\zeta$ eine Stammfunktion, für $f'(p)(\zeta - p)$ ist $\frac{1}{2}f'(p)(\zeta - p)^2$ eine Stammfunktion, also folgt:

$$\left| \int_{\partial \Delta_m^{k_1,\dots,k_m}} f \, \mathrm{d}\zeta \right| = \left| \int_{\partial \Delta_m^{k_1,\dots,k_m}} g(\zeta)(\zeta - p) \, \mathrm{d}\zeta \right| \leq \sup_{\partial \Delta_m^{k_1,\dots,k_m}} |g(\zeta)(\zeta - p)| \cdot \frac{l(\Delta)}{2^m} \leq \sup_{\zeta \in \partial \Delta_m^{k_1,\dots,k_m}} |g(\zeta)| \frac{l(\Delta)^2}{4^m} \xrightarrow{m \to \infty} 0$$

Auf der anderen Seite:

$$\left| \int_{\partial \Delta_m^{k_1, \dots, k_m}} f \, \mathrm{d}\zeta \right| \ge \frac{1}{4^m} \alpha(\Delta)$$

$$\frac{1}{4^m} \alpha(\Delta) \ge \sup_{\zeta \in \partial \Delta_m^{k_1, \dots, k_m}} |g(\zeta)| \frac{l(\Delta)^2}{4^m} \xrightarrow{m \to \infty} 0 \ \zeta$$

Satz 13.1.2 Cauchyscher Integralsatz für Sterngebiete

Es sei G ein Sterngebiet mit Zentrum c, es sei $f:G\to\mathbb{C}$ holomorph in G. Dann ist f integrabel in G, die Funktion

$$F(z) \coloneqq \int_{[c,z]} f \,\mathrm{d}\zeta, \quad z \in G$$

ist eine Stammfunktion von f in G. Speziell gilt:

$$\int_{\gamma} f \, \mathrm{d}\zeta = 0$$

für jeden geschlossenen Weg γ in G.

Beweis: Wegen $f \in \mathcal{O}(G)$ folgt mit Goursat:

$$\int_{\partial \Delta} f \, \mathrm{d}\zeta = 0, \quad \Delta \subset G$$

Mit dem Integrabilitätskriterium für Sterngebiete folgt dann, dass

$$F(z) = \int_{[c,z]} f \,\mathrm{d}\zeta$$

eine Stammfunktion von f ist.

Reeller Beweis des Integrallemmas von Goursat: Sei $D \subset \mathbb{C}$ ein Bereich, $\Sigma \subset D$ mit glattem Rand $\partial \Sigma$ und $f \in \mathcal{O}(D)$.

$$\int_{\partial \Sigma} f \, d\zeta = \int_{\partial \Sigma} (u + iv)(dx + idy)$$

$$= \int_{\partial \Sigma} (u dx - v dy) + i \int_{\partial \Sigma} (v dx + u dy)$$

$$= \iint_{\Sigma} -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} dx dy + i \iint_{\Sigma} -\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} dx dy$$

$$= 0$$

13.2 Cauchysche Integralformel für Kreisscheiben

Lemma 13.2.1 Zentrierungslemma

Sei $D \subset \mathbb{C}$ ein Bereich, $\bar{B} \subset D$ eine Kreisscheibe, $B_r(z) := \{ \eta \mid |z - \zeta| = r \}$ und $f \in \mathcal{O}(D \setminus \{z\})$. Dann ist

$$\int_{\partial B} f \, \mathrm{d}\zeta = \int_{\partial B_r(z)} f \, \mathrm{d}\zeta$$

Beweis: Sei l eine Gerade, so dass $z \in l$. Wir nehmen Ω_1, Ω_2 wie auf dem Bild (:1). Dann sind $\omega_1 \subset \tilde{\Omega}_1$ und $\Omega_2 \subset \tilde{\Omega}_2$ Sterngebiete. Dann:

$$\int_{\partial\Omega_1}f\,\mathrm{d}\zeta=0,\quad \int_{\partial\Omega_2}f\,\mathrm{d}\zeta=0\Rightarrow \int_{\partial\Omega_1\cup\partial\Omega_2}f\,\mathrm{d}\zeta=0$$

Es folgt:

$$\int_{\partial B} f \, \mathrm{d}\zeta - \int_{\partial B_{r}(z)} f \, \mathrm{d}\zeta = 0$$

Die Aussage folgt.

Korollar 13.2.2

Ist g beschränkt um z, so gilt:

$$\int_{\partial B} g \, \mathrm{d}\zeta = 0$$

Beweis: $\exists M > 0, \varepsilon > 0$, so dass \forall Kreis $S \subseteq B$ um z mit Radius t < s gilt: $|g|_S \le M$. Mit dem Zentrierungslemma und der Standardabschätzung haben wir:

$$\left| \int_{\partial B} g \, \mathrm{d}\zeta \right| = \left| \int_{S} g \, \mathrm{d}\zeta \right| \le |g|_{S} 2\pi t \le M 2\pi t \, \forall t > 0$$

Hieraus folgt die Behauptung.

Satz 13.2.3 Cauchysche Integralformel für Kreisscheiben

Es sei f holomorph im Bereich D, es sei $B := B_r(c)$, r > 0, eine Kreisscheibe, die nebst Rand ∂B in D liegt. Dann gilt $\forall z \in B$:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Beweis: Sei $z \in B$ fixiert. Die Funktion $g(\zeta) = \frac{f(\zeta) - f(z)}{\zeta - z}$ für $\zeta \in D \setminus \{z\}$, g(z) := f'(z), ist holomorph in $D \setminus \{z\}$ und stetig in D. Dann folgt:

$$0 = \int_{\partial B} g d\zeta = \int_{\partial B} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \int_{\partial B} \frac{d\zeta}{\zeta - z} = \int_{\partial B} \frac{f(\zeta)}{\zeta - z} d\zeta - 2\pi i f(z)$$

Die Behauptung folgt.

Korollar 13.2.4 Mittelwertgleichung

Unter den Voraussetzungen von obigem Satz gilt:

$$f(c) = \frac{1}{2\pi} \int_0^{2\pi} f(c + re^{i\theta}) d\theta$$

Beweis:

$$f(c) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(c + re^{i\theta})}{re^{i\theta}} d(c + re^{i\theta}) = \frac{1}{2\pi i} \in_0^{2\pi} \frac{f(c + re^{i\theta})rie^{i\theta}re^{i\theta}}{d} \theta$$

Durch Kürzen erhält man die obige Formel.

Korollar 13.2.5 Mittelwertungleichung

$$|f(c)| \le |f|_{\partial B_r(c)}$$

13.3 Entwicklung holomorpher Funktionen in Potenzreihen

Definition 13.3.1

Eine Funktion $f: D \to \mathbb{C}$ heißt im Kreis $B = B_r(c) \subset D$ in eine Potenzreihe $\sum a_v(z-c)^v$ um c entwickelbar, wenn die Potenzreihe in B gegen $f|_B$ konvergiert.

Aus der Vertauschbarkeit von Differentation und Summation für Potenzreihen folgt sofort:

Satz 13.3.2

Ist f in B um c in eine Potenzreihe $\sum a_v(z-c)^v$ entwickelbar, so ist f in B beliebig oft komplex differenzierbar und es gilt:

$$a_{v} = \frac{f^{(v)}(c)}{v!} \forall v \in \mathbb{N}$$

Eine Potenzreihenentwicklung einer Funktion f um c ist also, unabhängig vom Radius r des Kreises B, eindeutig durch die Ableitungen von f in c bestimmt und hat immer die Form

$$f(z) = \sum \frac{f^{(v)}(c)}{v} (z - c)^{v}$$

Diese Reihe heißt (wie im Reellen) die Taylorreihe von f um c. Sie konvergiert in B normal.

Ist γ ein stückweise stetig differenzierbarer Weg in \mathbb{C} , so ordnen wir jeder stetigen Funktion $f: |\gamma| \to \mathbb{C}$ die Funktion

$$F(z) := \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in \mathbb{C} \setminus |\gamma|$$

zu. Wir behaupten:

Lemma 13.3.3 Entwicklungslemma

Die Funktion F ist in $\mathbb{C}\setminus |\gamma|$ holomorph. Ist $c\notin |\gamma|$ irgendein Punkt, so konvergiert die Potenzreihe

$$\sum_{0}^{\infty} a_{\nu}(z-c)^{\nu} \quad \text{mit} \quad a_{\nu} \coloneqq \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{\nu+1}} d\zeta$$

in jeder Kreisscheibe um c, die $|\gamma|$ nicht trifft, gegen F. Die Funktion F ist beliebig oft differenzierbar in $\mathbb{C} \setminus |\gamma|$. Es gilt:

$$F^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} \mathrm{d}\zeta \, \forall \zeta \in \mathbb{C} \setminus |\gamma| \, \forall k \in \mathbb{N}$$

Beweis: Sei $B = B_r(c)$ mit $B \cap |\gamma| = \emptyset$. Die in \mathbb{E} konvergente Reihe

$$\frac{1}{(1-w)^{k+1}} = \sum_{v \ge k} {v \choose k} w^{v-k}$$

liefert (mit $w := \frac{z-c}{\zeta-c}$):

$$\begin{split} \frac{1}{(\zeta - c)^{k+1}} &= \sum_{v \ge k} \frac{1}{(\zeta - c)^{v+1}} (\zeta - c)^{v-k} \, \forall z \in B, \zeta \in |\gamma|, k \in \mathbb{N} \\ &= \frac{1}{((\zeta - c) - (z - c))^{k+1}} \\ &= \frac{1}{(\zeta - c)^{k+1}} \frac{1}{\left(1 - \left(\frac{z - c}{\zeta - c}\right)\right)^{k+1}} \\ &= \frac{1}{(\zeta - c)^{k+1}} \sum_{v \ge k} \binom{v}{k} \left(\frac{z - c}{\zeta - c}\right)^{v-k} \end{split}$$

Mit $g_{\nu}(\zeta)$, $\zeta \in |\gamma|$, folgt daher:

$$\frac{k!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} d\zeta = \frac{1}{2\pi i} \int_{\gamma} \sum_{v \ge k} k! \binom{v}{k} g_v(\zeta) (z - c)^{v - k} d\zeta$$

Da $|\zeta - c| \ge r \forall \zeta \in |\gamma|$, folgt $|g_{\nu}|_{|\gamma|} \le r^{-(\nu+1)} |f|_{|\gamma|}$ und also

$$\max_{\zeta \in |\gamma|} |g_{\nu}(\zeta)(z-c)^{\nu-k}| \leq \frac{1}{r^{k+1}} |f|_{|\gamma|} q^{\nu-k} \quad \text{mit} \quad q \coloneqq \frac{|z-c|}{r}$$

Da $0 \le q < 1 \forall z \in B$ und da

$$\sum_{v \ge k} \binom{v}{k} q^{v-k} = \frac{1}{(1-q)^{v+1}}$$

konvergiert oben die rechts unter dem Integral stehende Reihe für feste $z \in B$ in ζ normal auf γ . Daher gilt nach dem Vertauschungssatz für Reihen:

$$\frac{k!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} d\zeta = \sum_{v > k} k! \binom{v}{k} a_v (z - c)^{v - k} \quad \text{mit} \quad a_v := \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{v + 1}} d\zeta$$

Damit ist gezeigt, dass die durch oben definierte Funktion F in der Kreisscheibe B durch die Potenzreihe $\sum a_{\nu}(z-c)^{\nu}$ dargestellt wird (k=0), wegen Eigenschafteen von Potenzreihen folgt weiter, dass F in B komplex differenzierbar ist und dass gilt:

$$F^{(k)}(z) = \sum_{v > k} k! \binom{v}{k} a_v (z - c)^{v - k}, \quad z \in B, k \in \mathbb{N}$$

Da B irgendeine Kreisscheibe in $\mathbb{C} \setminus |\gamma|$, so folgt (2) und insbesondere $F \in \mathcal{O}(\setminus |\gamma|)$.