Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrif
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkei
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkei
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkei
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkei
- 13. coNP
- 14. PSPACE

Co-Nichtdeterministische Turing-Maschinen

Definition (Co-Nichtdeterministische Turing-Maschine)

- ightharpoonup "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ▶ coNTM akzeptiert \Leftrightarrow alle Berechnungspfade erreichen akzeptierende Konfiguration time_{coN} und coNTIME (f(n)) analog zu time_N und NTIME (f(n))

Definition (coNP)

 $coNP := \bigcup_{k \ge 1} coNTIME(n^k).$

"co-nichtdeterministisch, in Polynomzeit"

coNP

Theorem (Alternative Definition für coNP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in coNP, gdw. ein Polynom $p : \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\operatorname{time}_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt

$$x \in L \Leftrightarrow \forall_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M)$$

beziehungsweise $x \notin L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \notin T(M).$

Die Komplexitätsklasse coNP I

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \overline{L} \in \mathsf{NP} \}.$$

Beweis

Sei $L \subseteq \Sigma^*$. "Guess and Check" $\sim \bar{L} \in NP$ genau dann wenn es eine polynomiell zeitbeschränkte DTM M gibt mit

$$x \in \overline{L} \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M).$$

Eine solche DTM M gibt es genau dann, wenn es auch eine polynomiell zeitbeschränkte DTM M' gibt, die genau dann ablehnt, wenn M akzeptiert. Also gilt

$$x \in L \Leftrightarrow x \notin \overline{L} \Leftrightarrow \neg \left(\exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M) \right)$$
$$\Leftrightarrow \forall_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \notin T(M)$$
$$\Leftrightarrow \forall_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M')$$

Die Komplexitätsklasse coNP II

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

Bemerkungen:

- ▶ coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)
- ▶ $P \subseteq NP \cap coNP (da L \in P \Leftrightarrow \overline{L} \in P)$
- ► coNP-Vollständigkeit analog zu NP-Vollständigkeit: $A \subseteq \Sigma^*$ ist coNP-vollständig $\Leftrightarrow \forall_{L \in coNP} \ L \leq_m^p A$ und $A \in coNP$
- ▶ $\overline{SAT} := \{ \varphi \mid \varphi \text{ ist unerfullbar} \} \in coNP \text{ (sogar coNP-vollständig)}$
- ► (P = NP) \Rightarrow (NP = coNP = P)für alle $L \in coNP$ gilt: $\bar{L} \in NP \Rightarrow \bar{L} \in P \Rightarrow L \in P$ und somit $L \in NP$
- ▶ Offen: $(NP = coNP) \Rightarrow (P = NP)$?

Ein coNP-vollständiges Problem

TAUT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F eine **Tautologie**, d.h. wird F für **alle** $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Theorem

TAUT ist coNP-vollständig.

Beweis

- 1. $TAUT \in coNP$ via "Guess and Check" (nicht-erfüllende Belegung zertifiziert $F \notin TAUT$)
- 2. TAUT ist coNP-schwer (d.h. $\forall_{L \in coNP} L \leq_m^p TAUT$):

Da $\bar{L} \in NP$, gilt $\bar{L} \leq_m^p \mathrm{SAT}$ vermöge einer Polynomzeitreduktion $f: x \mapsto F_x$. Also

$$x \in L \Leftrightarrow x \notin \overline{L} \Leftrightarrow F_x \notin SAT \Leftrightarrow \neg F_x \in TAUT.$$

Also ist $g: x \mapsto \neg F_x$ eine Polynomzeitreduktion von L auf TAUT.