Problem

Chef has the binary representation S of a number X with him. He can modify the number by applying the following operation **exactly once**:

ullet Make $X:=X\oplus \lfloor rac{X}{2^Y}
floor$, where $(1\leq Y\leq |S|)$ and \oplus denotes the <u>bitwise XOR operation</u>.

Chef wants to **minimize** the value of X after performing the operation. Help Chef in determining the value of Y which will minimize the value of X after the operation.

Input Format

- The first line of input will contain a single integer T, denoting the number of test cases.
- Each test case consists of two lines of inputs:
 - \circ The first line contains the length of the binary string S.
 - $\circ \;\;$ The second line contains the binary string S.

Output Format

For each test case, output on a new line, the value of Y which will minimize the value of X after the operation.

Constraints

- $1 \le T \le 5 \cdot 10^4$
- $1 \le |S| \le 10^5$
- The sum of |S| over all test cases won't exceed $5\cdot 10^5$.
- ullet S contains the characters 0 and 1 only.

Sample 1:

Input	Output
4	2
2	1
10	2
2	1
11	
3	
101	
3	
110	

Explanation:

Test case 1: Since S=10 is the binary representation of 2, the current value of X=2. On choosing Y=2, X becomes $2\oplus\lfloor\frac{2}{2^2}\rfloor=2$. We can show that this is the minimum value of X we can achieve after one operation.

Test case 2: Since S=11 is the binary representation of 3, the current value of X=3. On choosing Y=1, X becomes $3\oplus\lfloor\frac{3}{2^1}\rfloor=2$. We can show that this is the minimum value of X we can achieve after one operation.

Test case 3: Since S=101 is the binary representation of 5, the current value of X=5. On choosing Y=2, X becomes $5\oplus\lfloor\frac{5}{2^2}\rfloor=4$. We can show that this is the minimum value of X we can achieve after one operation.

Test case 4: Since S=110 is the binary representation of 6, the current value of X=6. On choosing Y=1, X becomes $6\oplus\lfloor\frac{6}{2^1}\rfloor=5$. We can show that this is the minimum value of X we can achieve after one operation.