J.N.T.U.H. UNIVERSITY COLLEGE OF ENGINEERING, SCIENCE AND TECHNOLOGY HYDERABAD KUKATPALLY, HYDERABAD – 500085

CERTIFICATE

This is to certify that **KURAPATI TOYESH** of B.Tech III year II Semester bearing the Hall-Ticket number **21011A0524** has fulfilled his/her <u>DEEP LEARNING LAB</u> record for the academic year 2023-2024.

Signature of the Head of the Department member

Signature of the staff

Date of Examination: 11-06-2024

Internal Examiner External Examiner

TABLE OF CONTENTS

Sno.	Name of the experiment	Date	Page no.	Sign
1.	Logic Gates using Perceptron			
	a) OR		2	
	b) AND		4	
	c) NAND		6	
	d) NOR		8	
	e) NOT		10	
	f) XOR		12	
2.	ADALINE		15	
3.	MADALINE		18	
4.	Image Classification using CNN on MNIST dataset		22	
5.	Image Classification using CNN on CIFAR 10 dataset		25	

1. Logic Gates using Perceptron – OR gate

```
def activate(x):
  return 1 if x \ge 0 else 0
def perceptron(inputs):
  w1, w2, b = 0, 0, 0
  desired outputs = [0, 1, 1, 1]
  learning rate = 0.1
  epochs = 100
  for epoch in range(epochs):
     total error = 0
     for i in range(len(inputs)):
       A, B = inputs[i]
       target output = desired outputs[i]
       output = activate(w1 * A + w2 * B + b)
       error = target_output - output
       w1 += learning rate * error * A
       w2 += learning rate * error * B
       b += learning rate * error
       total error += abs(error)
     if total error == 0:
       break
```

```
if total_error == 0:
    return w1, w2, b

inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
w1, w2, b = perceptron(inputs)

print("Weights:", w1, w2)
print("Bias:", b)
for i in range(len(inputs)):
    A, B = inputs[i]
    output = activate(w1 * A + w2 * B + b)
    print("Input:", A, B, "Output:", output)
```

```
Weights: 0.1 0.1
Bias: -0.1
Input: 0 0 Output: 0
Input: 0 1 Output: 1
Input: 1 0 Output: 1
Input: 1 1 Output: 1
```

2. Logic Gates using Perceptron – AND gate

```
def activate(x):
  return 1 if x \ge 0 else 0
def perceptron(inputs):
  w1, w2, b = 0, 0, 0
  desired outputs = [0, 0, 0, 1]
  learning rate = 0.1
  epochs = 100
  for epoch in range(epochs):
     total error = 0
     for i in range(len(inputs)):
       A, B = inputs[i]
       target_output = desired_outputs[i]
       output = activate(w1 * A + w2 * B + b)
       error = target output - output
       w1 += learning_rate * error * A
       w2 += learning rate * error * B
       b += learning_rate * error
       total error += abs(error)
```

```
if total error == 0:
        break
  if total error == 0:
     return w1, w2, b
inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
w1, w2, b = perceptron(inputs)
print("Weights:", w1, w2)
print("Bias:", b)
for i in range(len(inputs)):
  A, B = inputs[i]
  output = activate(w1 * A + w2 * B + b)
  print("Input:", A, B, "Output:", output)
```

Weights: 0.2 0.1
Bias: -0.2000000000000000004
Input: 0 0 Output: 0
Input: 0 1 Output: 0
Input: 1 0 Output: 0
Input: 1 1 Output: 1

3. Logic Gates using Perceptron – NOR gate

```
def activate(x):
  return 1 if x \ge 0 else 0
def perceptron(inputs):
  w1, w2, b = 0, 0, 0
  desired outputs = [1, 0, 0, 0]
  learning rate = 0.1
  epochs = 100
  for epoch in range(epochs):
     total error = 0
     for i in range(len(inputs)):
       A, B = inputs[i]
       target output = desired outputs[i]
       output = activate(w1 * A + w2 * B + b)
       error = target output - output
       w1 += learning rate * error * A
       w2 += learning rate * error * B
       b += learning rate * error
       total error += abs(error)
     if total error == 0:
```

break

```
if total_error == 0:
    return w1, w2, b

inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
w1, w2, b = perceptron(inputs)

print("Weights:", w1, w2)
print("Bias:", b)
for i in range(len(inputs)):
    A, B = inputs[i]
    output = activate(w1 * A + w2 * B + b)
    print("Input:", A, B, "Output:", output)
```

```
Weights: -0.1 -0.1
Bias: 0.0
Input: 0 0 Output: 1
Input: 0 1 Output: 0
Input: 1 0 Output: 0
Input: 1 1 Output: 0
```

4. Logic Gates using Perceptron – NAND gate

```
def activate(x):
  return 1 if x \ge 0 else 0
def perceptron(inputs):
  w1, w2, b = 0, 0, 0
  desired\_outputs = [0, 1, 1, 1] #[0, 0, 0, 1] #[1, 0, 0, 0] #[1, 1, 1, 0]
  learning rate = 0.1
  epochs = 100
  for epoch in range(epochs):
     total error = 0
     for i in range(len(inputs)):
       A, B = inputs[i]
       target output = desired outputs[i]
       output = activate(w1 * A + w2 * B + b)
       error = target output - output
       w1 += learning rate * error * A
       w2 += learning rate * error * B
       b += learning rate * error
       total error += abs(error)
     if total error == 0:
```

break

```
if total_error == 0:
    return w1, w2, b

inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
w1, w2, b = perceptron(inputs)

print("Weights:", w1, w2)
print("Bias:", b)
for i in range(len(inputs)):
    A, B = inputs[i]
    output = activate(w1 * A + w2 * B + b)
    print("Input:", A, B, "Output:", output)
```

```
Weights: -0.2 -0.1
Bias: 0.2
Input: 0 0 Output: 1
Input: 0 1 Output: 1
Input: 1 0 Output: 1
Input: 1 1 Output: 0
```

5. Logic Gates using Perceptron – NOT gate

```
def activate(x):
  return 1 if x \ge 0 else 0
def perceptron(inputs):
  w1, b = 0, -1
  desired outputs = [1, 0]
  learning rate = 0.1
  epochs = 100
  for epoch in range(epochs):
     total error = 0
     for i in range(len(inputs)):
       A = inputs[i]
       target_output = desired_outputs[i]
       output = activate(w1 * A + b)
       error = target_output - output
       w1 += learning rate * error * A
       b += learning rate * error
       total_error += abs(error)
     if total error == 0:
       break
```

```
if total_error == 0:
    return w1, b

inputs = [0, 1]
w1, b = perceptron(inputs)

print("NOT Gate Output:")
print("Weight:", w1)
print("Bias:", b)
for i in range(len(inputs)):
    A = inputs[i]
    output = activate(w1 * A + b)
    print("Input:", A, "Output:", output)
```

```
NOT Gate Output:
Weight: -0.1
Bias: 0.0999999999999987
Input: 0 Output: 1
Input: 1 Output: 0
```

6. Logic Gates using Perceptron – XOR gate

```
import numpy as np
# define Unit Step Function
def unitStep(v):
 if v \ge 0:
  return 1
 else:
  return 0
# design Perceptron Model
def perceptronModel(x, w, b):
 v = np.dot(w, x) + b
 y = unitStep(v)
 return y
# NOT Logic Function
# wNOT = -1, bNOT = 0.5
def NOT_logicFunction(x):
 wNOT = -1
 bNOT = 0.5
 return perceptronModel(x, wNOT, bNOT)
```

```
# AND Logic Function
# here w1 = wAND1 = 1,
# w2 = wAND2 = 1, bAND = -1.5
def AND logicFunction(x):
 w = np.array([1, 1])
 bAND = -1.5
 return perceptronModel(x, w, bAND)
# OR Logic Function
# w1 = 1, w2 = 1, bOR = -0.5
def OR_logicFunction(x):
 w = np.array([1, 1])
 bOR = -0.5
 return perceptronModel(x, w, bOR)
# XOR Logic Function
# with AND, OR and NOT
# function calls in sequence
def XOR logicFunction(x):
 y1 = AND_logicFunction(x)
 y2 = OR_logicFunction(x)
 y3 = NOT_logicFunction(y1)
 final_x = np.array([y2, y3])
```

```
finalOutput = AND_logicFunction(final_x)
return finalOutput
```

```
# testing the Perceptron Model
```

test1 = np.array([0, 1])

test2 = np.array([1, 1])

test3 = np.array([0, 0])

test4 = np.array([1, 0])

```
 print("XOR(\{\}, \{\}) = \{\}".format(0, 1, XOR\_logicFunction(test1))) \\ print("XOR(\{\}, \{\}) = \{\}".format(1, 1, XOR\_logicFunction(test2))) \\ print("XOR(\{\}, \{\}) = \{\}".format(0, 0, XOR\_logicFunction(test3))) \\ print("XOR(\{\}, \{\}) = \{\}".format(1, 0, XOR\_logicFunction(test4))) \\ print("XOR(\{\}, \{\}) = \{\}".format(1
```

$$XOR(0, 1) = 1$$

 $XOR(1, 1) = 0$
 $XOR(0, 0) = 0$
 $XOR(1, 0) = 1$

7. ADALINE Neural Network

```
import numpy as np
def Adaline(Input, Target, Ir=0.2, stop=0.001):
  weight = np.random.random(Input.shape[1])
  bias = np.random.random(1)[0] # Extract scalar from array
  Error = [stop + 1]
  # Check the stop condition for the network
  while Error[-1] > stop or Error[-1] - Error[-2] > 0.0001:
     error = []
     for i in range(Input.shape[0]):
       Y input = np.dot(weight, Input[i]) + bias
       # Update the weight
       for j in range(Input.shape[1]):
          weight[j] = weight[j] + Ir * (Target[i] - Y input) * Input[i][j]
       # Update the bias
       bias = bias + Ir * (Target[i] - Y input)
```

```
# Store squared error value
       error.append((Target[i] - Y input) ** 2)
     # Store sum of squared errors
     Error.append(sum(error))
  return weight, bias
# Input dataset
x = np.array([[1.0, 1.0, 1.0],
         [1.0, -1.0, 1.0],
         [-1.0, 1.0, 1.0],
         [-1.0, -1.0, -1.0]])
# Target values
t = np.array([1, 1, 1, -1])
# Train the Adaline model
w, b = Adaline(x, t, Ir=0.2, stop=0.001)
# Print the final weights and bias
print('Weights:', w)
print('Bias:', b)
```

```
# Predict outputs
predicted_outputs = []
for i in range(x.shape[0]):
    predicted_output = np.dot(w, x[i]) + b
    predicted_outputs.append(predicted_output)

# Display inputs and predicted outputs
for i in range(x.shape[0]):
    print("Input:", x[i][0], x[i][1], "Output:", predicted_outputs[i])
```

```
Weights: [0.00916354 0.00916354 0.988777 ]
Bias: 0.009163537511307641
Input: 1.0 1.0 Output: 1.016267616963145
Input: 1.0 -1.0 Output: 0.9979405419405291
Input: -1.0 1.0 Output: 0.9979405419405288
Input: -1.0 -1.0 Output: -0.9979405419405297
```

8. MADALINE Neural Network

```
import numpy as np
# Activation function
def activation_fn(z):
  return 1 if z \ge 0 else -1
def Madaline(Input, Target, Ir, epoch):
  weight = np.random.random((Input.shape[1], Input.shape[1]))
  bias = np.random.random(Input.shape[1])
  w = np.array([0.5 for _ in range(weight.shape[1])])
  b = 0.5
  k = 0
  while k < epoch:
     error = []
     z input = np.zeros(bias.shape[0])
     z = np.zeros(bias.shape[0])
     for i in range(Input.shape[0]):
       for j in range(Input.shape[1]):
          z_input[j] = sum(weight[j] * Input[i]) + bias[j]
```

```
z[j] = activation_fn(z_input[j])
        y_{input} = sum(z * w) + b
        y = activation_fn(y_input)
        # Update the weight & bias
        if y != Target[i]:
          for j in range(weight.shape[1]):
             weight[j] = weight[j] + Ir * (Target[i] - z_input[j]) * Input[i][j]
             bias[j] = bias[j] + Ir * (Target[i] - z_input[j])
        # Store squared error value
        error.append((Target[i] - y_input) ** 2)
     # Compute sum of square error
     Error = sum(error)
     k += 1
  return weight, bias
# Prediction function
def prediction(X, w, b):
  y = []
```

```
for i in range(X.shape[0]):
     x = X[i]
     z1 = x * w
     z 1 = []
     for j in range(z1.shape[1]):
       z_1.append(activation_fn(sum(z1[j]) + b[j]))
     y in = sum(np.array(z 1) * np.array([0.5 for in range(w.shape[1])]))
+0.5
     y.append(activation_fn(y_in))
  return y
# Input dataset
x = np.array([[1.0, 1.0, 1.0],
        [1.0, -1.0, 1.0],
        [-1.0, 1.0, 1.0],
        [-1.0, -1.0, -1.0]])
# Target values
t = np.array([1, 1, 1, -1])
# Train the MADALINE model
w, b = Madaline(x, t, Ir=0.0001, epoch=3)
```

```
# Print the final weights and bias
print('Weights:', w)
print('Bias:', b)

# Predict outputs
predicted_outputs = prediction(x, w, b)

# Display inputs and predicted outputs
for i in range(x.shape[0]):
    print("Input:", x[i][0], x[i][1], "Output:", predicted_outputs[i])
```

```
Weights: [[0.57658    0.55301413 0.42396924]
    [0.93762437 0.91234253 0.12067558]
    [0.64274761 0.60354512 0.335578 ]]
Bias: [0.98596296 0.28329168 0.31065159]
Input: 1.0 1.0 Output: 1
Input: 1.0 -1.0 Output: 1
Input: -1.0 1.0 Output: 1
Input: -1.0 1.0 Output: 1
```

9. Image Classification using MNIST dataset

```
import tensorflow as tf
import keras
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data()
X train.shape, X test.shape
 Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz</a>
 11490434/11490434 [============ ] - Os Ous/step
 ((60000, 28, 28), (10000, 28, 28))
#Normalisation
X train=X train/255
X test=X test/255
cnn=models.Sequential([
   #cnn
   layers.Conv2D(filters=32,kernel size=(3,3),activation='relu',input shape
=(28,28,1)),
```

```
layers.MaxPooling2D((2,2)),
  layers.Conv2D(filters=64,kernel size=(3,3),activation='relu'),
  layers.MaxPooling2D((2,2)),
  #dense
  layers.Flatten(),
  layers.Dense(50, activation='relu'),
  layers.Dense(10, activation='softmax')
])
cnn.compile(optimizer='adam',
       loss='sparse categorical crossentropy',
      metrics=['accuracy'])
cnn.fit(X train, y train, epochs=10)
1875/1875 [============ - - 53s 28ms/step - loss: 0.1517 - accuracy: 0.9538
Epoch 2/10
1875/1875 [=========== ] - 51s 27ms/step - loss: 0.0477 - accuracy: 0.9854
Epoch 3/10
Epoch 4/10
Epoch 5/10
1875/1875 [============ ] - 51s 27ms/step - loss: 0.0186 - accuracy: 0.9940
Epoch 6/10
1875/1875 [============ - 50s 27ms/step - loss: 0.0158 - accuracy: 0.9949
Epoch 7/10
1875/1875 [============ ] - 51s 27ms/step - loss: 0.0117 - accuracy: 0.9962
Epoch 8/10
Epoch 9/10
1875/1875 [============ ] - 50s 27ms/step - loss: 0.0086 - accuracy: 0.9973
Epoch 10/10
1875/1875 [=========== ] - 52s 28ms/step - loss: 0.0066 - accuracy: 0.9978
<keras.src.callbacks.History at 0x78a2550a1fc0>
```

plt.matshow(X_test[1])
print("Test Label:",y_test[1])
print("Predicted Value:",y_classes[1])

from sklearn.metrics import confusion_matrix, classification_report print("Classification Report:\n",classification_report(y_test, y_classes))

Classification	Report:			
	precision	recall	f1-score	support
0	0.99	1.00	0.99	980
1	0.99	1.00	0.99	1135
2	0.99	0.99	0.99	1032
3	0.99	0.99	0.99	1010
4	0.99	0.99	0.99	982
5	0.99	0.99	0.99	892
6	0.99	0.99	0.99	958
7	0.99	0.98	0.98	1028
8	0.99	0.99	0.99	974
9	0.99	0.99	0.99	1009
accuracy			0.99	10000
macro avg	0.99	0.99	0.99	10000
weighted avg	0.99	0.99	0.99	10000

10. Image Classification using CIFAR10 dataset

```
import tensorflow as tf
import keras
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
(X train, y train), (X test, y test)=datasets.cifar10.load data()
X train.shape, X test.shape
 ((50000, 32, 32, 3), (10000, 32, 32, 3))
classes=["airplane","automobile","bird","cat","deer","dog","frog","horse","shi
p","truck"]
y train=y train.reshape(-1,)
y_train
 array([6, 9, 9, ..., 9, 1, 1], dtype=uint8)
def plot sample(X, y,index):
 plt.figure(figsize=(15,2))
```

plt.imshow(X[index])
plt.xlabel(classes[y[index]])
plot_sample(X_train, y_train, 1)

#Normalisation

X_train=X_train/255

X_test=X_test/255

cnn=models.Sequential([#cnn

layers.Conv2D(filters=32,kernel_size=(3,3),activation='relu',input_shape=(3 2,32,3)),

layers.MaxPooling2D((2,2)),

layers.Conv2D(filters=64,kernel_size=(3,3),activation='relu'), layers.MaxPooling2D((2,2)),

```
#dense
layers.Flatten(),
layers.Dense(50, activation='relu'),
layers.Dense(10, activation='softmax')
])

cnn.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
```

cnn.fit(X_train, y_train, epochs=10)

```
Epoch 1/10
1563/1563 [=================== ] - 58s 36ms/step - loss: 2.4180 - accuracy: 0.0986
Epoch 2/10
Epoch 3/10
         1563/1563 [==
Epoch 4/10
1563/1563 [===================== ] - 48s 31ms/step - loss: 2.3030 - accuracy: 0.0950
Epoch 5/10
1563/1563 [================== ] - 50s 32ms/step - loss: 2.3028 - accuracy: 0.0980
Epoch 6/10
1563/1563 [================ ] - 49s 32ms/step - loss: 2.3028 - accuracy: 0.0958
Epoch 7/10
1563/1563 [================= ] - 48s 31ms/step - loss: 2.3028 - accuracy: 0.0999
Epoch 8/10
1563/1563 [================= ] - 49s 32ms/step - loss: 2.3028 - accuracy: 0.0999
Epoch 9/10
1563/1563 [================= ] - 48s 31ms/step - loss: 2.3028 - accuracy: 0.0985
Epoch 10/10
<keras.src.callbacks.History at 0x7af8d054a6e0>
```

y pred=cnn.predict(X test)

y_classes=[np.argmax(element) for element in y_pred]

```
y_test=y_test.reshape(-1,)

print("Calculated Class:",classes[y_classes[1]])

print("Test Dataset Label:")
```


from sklearn.metrics import confusion_matrix, classification_report print("Classification Report: \n",classification_report(y_test, y_classes))

Classification	Report:			
	precision	recall	f1-score	support
0	0.75	0.73	0.74	1000
1	0.82	0.84	0.83	1000
2	0.65	0.51	0.57	1000
3	0.54	0.47	0.50	1000
4	0.58	0.69	0.63	1000
5	0.56	0.68	0.62	1000
6	0.75	0.79	0.77	1000
7	0.75	0.75	0.75	1000
8	0.81	0.81	0.81	1000
9	0.85	0.73	0.79	1000
accuracy			0.70	10000
macro avg	0.70	0.70	0.70	10000
weighted avg	0.70	0.70	0.70	10000