White Noise = ARIMA(0,0,0)

- Fixed, constant mean
- Fixed, constant variance
- No correlation over time
- simulating WN : arima.sim(model=c(0,0,0), n, mean, sd)
- estimating WN model : arima(x, order=c(0,0,0))
- No autocorrelation for any lags

Random Walk (RW) = ARIMA(0,1,0) without a constant

- example of non-stationary process
- o no specified mean or variance
- strong dependence over time
- o its changes or increments are white noise
 - $Y_t = Y_{t-1} + e$; e = mean zero white noise
 - has on only one parameter, variance of white noise
- \circ Y_t Y_{t-1} = e , white noise with mean 0

- o **RW with Drift:** ARIMA(0,1,0) with a constant
 - $Y_t = C + Y_{t-1} + e$, two parameters C and variance
 - i.e $Y_t Y_{t-1} = C + e$, WN with mean C and variance
- the RW ACF plot is likely to show large autocorrelation for many lags without quick decay to zero

The Autoregressive Model

$$\mu$$
 , ϕ , $\sigma_{\rm e}$

$$(Y_t - \mu) = \phi * (Y_{t-1} - \mu) + e$$
; e is WN(0, σ_e^2)

Three parameters : Mean - μ , Slope - ϕ , WN variance $\sigma_{\rm e}^{\ 2}$

- Fig. 1. If phi = 0, Y_t is WN with (μ, σ_e^2)
- ➤ If phi != 0, Y_t is auto correlated
- If phi = 1 and μ =0, Its a Random Walk, which is not stationary
- Large values of ϕ , leads to greater autocorrelation

- Negative values of ϕ result in oscillatory time series
- > **Persistence** is defined by a high correlation between an observation and its lag, while anti-persistence is defined by a large amount of variation between an observation and its lag
- > Example and ACFs : pg 5-6
- > Simulating: arima.sim(model = list(ar), n); -1 <= ar <= 1
- > AR Model Estimation and Forecasting

-
$$(Y_t - \mu) = \phi * (Y_{t-1} - \mu) + e$$
 ; e is WN(0, σ_e^2) arima(x, model=c(1,0,0))
$$ar1 = \hat{\phi}$$

$$Intercept = \hat{\mu}$$

$$\sigma^2 = \widehat{\sigma_e^2} \text{ of WN}$$

- Forecasting :
$$\widehat{Y_t} = \widehat{\mu} + \widehat{\phi} * (\widehat{Y_{t-1}} - \widehat{\mu})$$

- predict(mode, h)
- $-\hat{e} = Y_t \widehat{Y}t$
- Forecast Std.Error calculated ???
- Interval = $\widehat{\mathbf{Y_t} \pm \mathbf{2} * SE}$ for 95% confidence
- Dissipating autocorrelation across several lags
- More Info: https://www.otexts.org/fpp/8/3

The Simple Moving Average

- $Y_t = \mu + e_t + \Theta e_{t-1}$
 - o Mean: μ
 - o Slope: Θ
 - o WN variance: σ_e^2
- If slope = 0, then Y_t is $WN(\mu, \sigma_e^2)$
- If slope !=0, then Y_t is auto-correlated
- $\bullet \quad \text{Larger value of } \varTheta \text{ leads to greater autocorrelation}$
- Negative value of Θ leads to oscillatory time series
- Simulation

arima.sim(model=list(ma= θ), n)

More Info: https://www.otexts.org/fpp/8/4

Estimation

$$Today = Mean + Noise + Slope * (Yesterday'sNoise)$$
 $Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$ $\epsilon_t \sim WhiteNoise(0, \sigma_{\epsilon}^2)$

ma1
$$=\hat{ heta}$$
 , intercept $=\hat{\mu}$, sigma^2 $=\hat{\sigma}_{\epsilon}^2$

- Forecasting : $\widehat{Y_t} = \widehat{\mu} + \widehat{\theta} * \widehat{e_{t-1}}$
 - predict(mode, h)

-
$$\hat{e}$$
 = Y_t - $\widehat{Y}t$

- Interval =
$$\widehat{\mathbf{Y_t} \pm \mathbf{2} * SE}$$
 for 95% confidence

Autocorrelation for the first lag only

MA and AR Models

MA model:

$$Today = Mean + Noise + Slope * (Yesterday'sNoise)$$

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

AR model:

$$(Today - Mean) = Slope * (Yesterday - Mean) + Noise$$

 $Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$

Where:

$$\epsilon_t \sim WhiteNoise(0, \sigma_{\epsilon}^2)$$

MA models have autocorrelation only at lag-1 where AR models can have it at other lags

Model fitness measured using AIC and BIC, lower the better