- 1. a) kleiner
- b) kleiner
- 2. a) Ruhelagen: ☐ Umkehrpunkte: ○

b)
$$\hat{y} = 3.0 \text{ m}$$
, $T = 8.0 \text{ s}$, $f = \frac{1}{T} = \frac{1}{8.0 \text{ s}} = 0.125 \text{ Hz}$,

$$\omega = 2 \cdot \pi \cdot f = 2 \cdot \pi \cdot 0.125 \text{ Hz} = 0.785 \text{ s}^{-1}$$

- c) 2.0 m
- d) 1.0 s, 3.0 s, 9.0 s, 11 s, 17 s, 19 s, etc.

- a) 0, 6.0 cm, 0
- b) 3 mal
- c) 2 mal
- d) 2.5

e)
$$T = 4.0 \text{ s}, f = \frac{1}{T} = \frac{1}{4 \text{ s}} = 0.25 \text{ Hz}$$

f)
$$\omega = 2 \cdot \pi \cdot f = 2 \cdot \pi \cdot 0.25 \text{ Hz} = 1.57 \text{ s}^{-1}$$

g) $\frac{\pi}{2}$

4. a)
$$f = \frac{1}{T} = \frac{1}{3.60 \text{ s}} = \frac{0.278 \text{ Hz}}{2.000 \text{ Hz}}$$

b)
$$\omega = 2 \cdot \pi \cdot f = 2 \cdot \pi \cdot 0.278 \text{ Hz} = 1.75 \text{ s}^{-1}$$

c)
$$y(t_1) = \hat{y} \cdot \sin(\omega \cdot t_1) = 4.30 \text{ cm} \cdot \sin(1.75 \text{ s}^{-1} \cdot 0.900 \text{ s}) = 4.30 \text{ cm}$$

$$y(t_2) = 0$$
 $y(t_3) = 2.15 \text{ cm}$ $y(t_4) = -4.30 \text{ cm}$

5. a)
$$T = \frac{1}{f} = \frac{1}{0.40 \text{ Hz}} = \frac{2.5 \text{ s}}{1.00 \text{ s}}$$

b)
$$\omega = 2 \cdot \pi \cdot f = 2 \cdot \pi \cdot 0.40 \text{ Hz} = 2.5 \text{ s}^{-1}$$

c)
$$y(t_1) = \hat{y} \cdot \sin(\omega \cdot t_1 + \varphi_0) = 1.7 \text{ cm} \cdot \sin(2.5 \text{ s}^{-1} \cdot 1.2 \text{ s} + \frac{\pi}{4}) = \underline{-1.0 \text{ cm}}$$

 $y(t_2) = 1.2 \text{ cm}$

6.
$$\hat{y} = \frac{y(t)}{\sin(\omega \cdot t)} = \frac{8.00 \text{ cm}}{\sin(2 \cdot \pi \cdot 0.160 \text{ Hz} \cdot 0.500 \text{ s})} = \frac{16.6 \text{ cm}}{\sin(2 \cdot \pi \cdot 0.160 \text{ Hz} \cdot 0.500 \text{ s})}$$

7. a)
$$\sin(\omega \cdot t) = \frac{y(t)}{\hat{y}}$$
 $\Rightarrow \qquad \omega \cdot t = \arcsin\left(\frac{y(t)}{\hat{y}}\right) = \arcsin\left(\frac{4.0 \text{ cm}}{10.0 \text{ cm}}\right) = 0.41$

$$f = \frac{\arcsin\left(\frac{y(t)}{\hat{y}}\right)}{2 \cdot \pi \cdot t} = \frac{0.41}{2 \cdot \pi \cdot 0.0050 \text{ s}} = \frac{13 \text{ Hz}}{2}$$

b)
$$T = \frac{1}{f} = \frac{1}{13 \text{ Hz}} = \underline{0.076 \text{ s}}$$

8.
$$\sin(\omega \cdot t) = \frac{y(t)}{\hat{y}}$$
 $\Rightarrow \qquad \omega \cdot t = \arcsin\left(\frac{y(t)}{\hat{y}}\right) = \arcsin\left(\frac{8.0 \text{ cm}}{10.0 \text{ cm}}\right) = 0.93$

$$t = \frac{\arcsin\left(\frac{y(t)}{\hat{y}}\right)}{2 \cdot \pi \cdot f} = \frac{0.93}{2 \cdot \pi \cdot 2.0 \text{ Hz}} = \frac{0.074 \text{ s}}{2 \cdot \pi \cdot 2.0 \text{ Hz}}$$

- 9. a) Zu den Zeiten t = 0, 8.0 s, 16 s, 24 s, etc. (jeweils nach 0, $\frac{1}{2}$, $\frac{3}{2}$ etc. einer Periode)
 - b) $v(t) = \hat{y} \cdot \omega \cdot \cos(\omega \cdot t) = 0.15 \text{ m} \cdot 0.39 \text{ s}^{-1} \cdot \cos(0.39 \text{ s}^{-1} \cdot 0) = 0.059 \frac{\text{m}}{\text{s}}$ Hinweis: $\cos(0) = 1$
 - c) $a(t) = -\hat{y} \cdot \omega^2 \cdot \sin(\omega \cdot t) = -0.15 \text{ m} \cdot (0.39 \text{ s}^{-1})^2 \cdot \sin(0.39 \text{ s}^{-1} \cdot 0) = \underline{0}$ *Hinweis:* $\sin(0) = 0$
 - d) Zu den Zeiten t = 4.0 s, 12 s, 20 s, 28 s, etc. (jeweils nach $\frac{1}{4}$, $\frac{3}{4}$, $\frac{5}{4}$, $\frac{7}{4}$ etc einer Periode)
 - e) $v(t) = \hat{y} \cdot \omega \cdot \cos(\omega \cdot t) = 0.15 \text{ m} \cdot 0.39 \text{ s}^{-1} \cdot \cos(\frac{2 \cdot \pi}{16 \text{ s}} \cdot 4.0 \text{ s}) = \underline{0}$ Hinweis: $\cos(\frac{\pi}{2}) = 0$
 - f) $a(t) = -\hat{y} \cdot \omega^2 \cdot \sin(\omega \cdot t) = -0.15 \text{ m} \cdot (0.39 \text{ s}^{-1})^2 \cdot \sin(\frac{2 \cdot \pi}{16 \text{ s}} \cdot 4.0 \text{ s}) = \frac{-0.023 \frac{\text{m}}{\text{s}^2}}{\frac{\text{m}}{16 \text{ s}}}$

Hinweis: $\sin(\frac{\pi}{2}) = 1$