

Many effective ensemble methods

Sequential methods

AdaBoost [Freund & Schapire, JCSS97]

Arc-x4 [Breiman, AnnStat98]

LPBoost [Demiriz, Bennett, Shawe-Taylor, MLJ06]

....

Parallel methods

Bagging

Random Subspace

Random Forests

[Breiman, MLJ96]

[Ho, TPAMI98]

[Breiman, MLJ01]

... ...

Freund & Schapire [JCSS97] proved that the generalization error of AdaBoost is bounded by:

$$\epsilon_{\mathcal{D}} \leq \epsilon_{\mathcal{D}} + \hat{O}\left(\sqrt{\frac{dT}{m}}\right)$$

with probability at least $1-\delta$, where d is the VC-dimension of base learners, m is the number of training instances, T is the number of learning rounds and $\tilde{O}(\cdot)$ is used instead of $O(\cdot)$ to hide logarithmic terms and constant factors.

Freund & Schapire [JCSS97] proved that the generalization error of AdaBoost is bounded by:

$$\epsilon_{\mathcal{D}} \leq \epsilon_D + \tilde{O}\left(\sqrt{\frac{dT}{m}}\right)$$

with probability at least $1-\delta$, where d is the VC-dimension of base learners, m is the number of training instances, T is the number of learning rounds and $O(\cdot)$ is used instead of $O(\cdot)$ to hide logarithmic terms and constant factors.

It implies that AdaBoost will overfit if T is large

Overfit (回放台): The trained model fits the training data too much such that it can exaggerate minor fluctuations in the training data, leading to poor generalization performance

http://cs.rgu.edu.co/zhousty

However, AdaBoost often does not overfit in real practice

Seems contradict with the Occam's Razor

Knowing the reason may inspire new methodology for algorithm design

Figure replot based on [Schapire, Freund, Bartlett & Lee. Ann. Stat. 1998]

Major theoretical efforts

☐ Margin Theory

Started from [Schapire, Freund, Bartlett & Lee, Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, 1998]

☐ Statistical View

Started from [Friedman, Hastie & Tibshirani. Additive logistic regression: A statistical view of boosting (with discussions). Annals of Statistics, 28(2):337–407, 2000]

■ Margin Theory

Started from [Schapire, Freund, Bartlett & Lee, Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–1686, 1998]

☐ Statistical View

Started from [Friedman, Hastie & Tibshirani. Additive logistic regression: A statistical view of boosting (with discussions). Annals of Statis

The biggest issue:
The statistical view did not explain why
AdaBoost is resistant to overfitting

Binary classification can be viewed as the task of separating classes in a feature space

The bigger the margin, the higher the predictive confidence

For binary classification, the ground-truth $f(x) \in \{-1, +1\}$

The margin of a single classifier h: f(x)h(x)

For
$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x_t)$$

the margin is

$$f(\mathbf{x})H(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t f(\mathbf{x})h_t(\mathbf{x})$$

and the normalized margin:

$$\frac{\sum_{t=1}^{T} \alpha_t f(x) h_t(x)}{\sum_{t=1}^{T} \alpha_t}$$

Margin explanation of AdaBoost

Based on the concept of margin, Schapire et al. [1998] proved that, given any threshold $\theta > 0$ of margin over the training data D, with probability at least $1 - \delta$, the generalization error of the ensemble $\epsilon_D = P_{x \sim D}(f(x) \neq H(x))$ is bounded by

$$\begin{split} \epsilon_{\mathcal{D}} & \leq P_{\boldsymbol{x} \sim D}(f(\boldsymbol{x})H(\boldsymbol{x}) \leq \theta) + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2} + \ln\frac{1}{\delta}}\right) \\ & \leq 2^T \prod_{t=1}^T \sqrt{\epsilon_t^{1-\theta}(1-\epsilon_t)^{1+\theta}} + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2} + \ln\frac{1}{\delta}}\right) \end{split}$$

This bound implies that, when other variables are fixed, the larger the margin over the training data, the smaller the generalization error

Margin explanation of AdaBoost (con't)

Why AdaBoost tends to be resistant to overfitting?

the margin theory answers:

Because it is able to increase the ensemble margin even after the training error reaches zero

This explanation is quite intuitive

It receives good support in empirical study

The minimum margin bound

Schapire et al.'s bound depends heavily on the smallest margin, because $P_{x\sim D}(f(x)H(x)\leq \theta)$ will be small if the smallest margin is large

Thus, by considering the minimum margin:

$$\varrho = \min_{x \in D} f(x)H(x)$$

Breiman [Neural Comp. 1999] proved a generalization bound, which is tighter than Schapire et al.'s bound

The doubt about margin theory

Breiman [Neural Comp. 1999] designed a variant of AdaBoost, the arc-gv algorithm, which directly maximizes the minimum margin

the margin theory would appear to predict that arc-gv should perform better than AdaBoost

However, experiments show that, comparing with AdaBoost:

- arc-gv does produce uniformly larger minimum margin
- the test error increases drastically in almost every case

The doubt about margin theory

Breiman [Neural Comp. 1999] designed a variant of AdaBoost, the arc-gv algorithm, which directly maximizes the minimum margin

the margin theory would appear to predict that arc-gv should perform better than AdaBoost

However, experiments show that, comparing with AdaBoost:

- · arc-gv does produce uniformly larger minimum margin
- · the test error increases drastically in almost every case

Thus, Breiman convincingly concluded that the margin theory was in serious doubt. This almost sentenced the margin theory to death

Long march of margin theory for AdaBoost

- 1989, [Kearns & Valiant], open problem
- 1990, [Schapire], proof by construction, the first Boosting algorithm
- 1993, [Freund], another impractical boosting algorithm by voting.
- 1995/97, [Freund & Schapire], AdaBoost
- 1998, [Schapire, Freund, Bartlett & Lee], Margin theory
- 1999, [Breiman], serious doubt by minimum margin bound
- 2006, [Reyzin & Schapire], finding the model complexity issue in exps, emphasizing the importance of margin distribution
- 2008, [Wang, Sugiyama, Yang, Zhou & Feng], Emargin bound, believed to be a margin distribution bound
- 2013, [Gao & Zhou], a real margin distribution bound, sheding new insight; margin theory defensed

Deep models revisited

NANJING FORUM

Currently, Deep Models are DNNs:
multiple layers of parameterized
differentiable nonlinear modules that
can be trained by backpropagation

- Not all properties in the world are "differentiable", or best modelled as "differentiable"
- There are many non-differentiable learning modules (not able to be trained by backpropagation)