```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LogisticRegression
   import seaborn as sns
   from sklearn import metrics
```

In [2]: # 1.We will use acoustic features to distinguish a male voice from female.
Load the dataset from "voice.csv",identify the target variable and do a onehot encoding for the same.
Split the dataset in train-test with 20% of the data kept aside for testing
df_voices = pd.read_csv("voice.csv")
df_voices.head()

Out[2]:

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.en
0	0.059781	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462	274.402906	0.89336
1	0.066009	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285	634.613855	0.89219
2	0.077316	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155	1024.927705	0.84638
3	0.151228	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.177296	0.96332
4	0.135120	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.333713	0.97195

5 rows × 21 columns

```
In [3]: df_voices["label"] = df_voices["label"].map({'male':0, 'female':1})

X = df_voices.iloc[:,0:19]
Y = df_voices["label"]
```

In [4]: # 2.Fit a logistic regression model and measure the accuracy on the test set
 x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.20, rand
 om_state=10)

linear_model = LogisticRegression()
linear_model.fit(x_train, y_train)

predicted_data = linear_model.predict(x_test)

metrics.accuracy_score(predicted_data, y_test)

C:\Users\hp\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:94
0: ConvergenceWarning: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
sion
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

Out[4]: 0.9211356466876972

In [5]: # 3.Compute the correlation matrix that describes the dependence between all p
 redictors and identify the
 # predictors that are highly correlated. Plot the correlation matrix using se
 aborn heatmap.
 corr = df_voices.corr()
 sns.heatmap(corr)

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x269e4720bc8>

In [14]: df_voices.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3168 entries, 0 to 3167
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	meanfreq	3168 non-null	float64
1	sd	3168 non-null	float64
2	median	3168 non-null	float64
3	Q25	3168 non-null	float64
4	Q75	3168 non-null	float64
5	IQR	3168 non-null	float64
6	skew	3168 non-null	float64
7	kurt	3168 non-null	float64
8	sp.ent	3168 non-null	float64
9	sfm	3168 non-null	float64
10	mode	3168 non-null	float64
11	centroid	3168 non-null	float64
12	meanfun	3168 non-null	float64
13	minfun	3168 non-null	float64
14	maxfun	3168 non-null	float64
15	meandom	3168 non-null	float64
16	mindom	3168 non-null	float64
17	maxdom	3168 non-null	float64
18	dfrange	3168 non-null	float64
19	modindx	3168 non-null	float64
20	label	3168 non-null	int64
		4 (0 0)	

dtypes: float64(20), int64(1)

memory usage: 519.9 KB

```
In [18]: # 4. Based on correlation remove those predictors that are correlated and fit
    a logistic regression model again
    # and compare the accuracy with that of previous model
    X = X.drop("median", axis=1)
    X = X.drop("Q25", axis=1)
    X = X.drop("centroid", axis=1)
    X = X.drop("dfrange", axis=1)

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.20, raindom_state=10)

linear_model = LogisticRegression()
linear_model.fit(x_train, y_train)

predicted_data = linear_model.predict(x_test)

metrics.accuracy_score(predicted_data)
```

```
KeyError
                                          Traceback (most recent call last)
<ipython-input-18-d7754f2510a5> in <module>
      1 # 4. Based on correlation remove those predictors that are correlated
and fit a logistic regression model again
      2 # and compare the accuracy with that of previous model
----> 3 X = X.drop("median", axis=1)
     4 X = X.drop("Q25", axis=1)
      5 X = X.drop("centroid", axis=1)
~\anaconda3\lib\site-packages\pandas\core\frame.py in drop(self, labels, axi
s, index, columns, level, inplace, errors)
   3995
                    level=level,
   3996
                    inplace=inplace,
                    errors=errors,
-> 3997
   3998
                )
   3999
~\anaconda3\lib\site-packages\pandas\core\generic.py in drop(self, labels, ax
is, index, columns, level, inplace, errors)
   3934
                for axis, labels in axes.items():
   3935
                    if labels is not None:
-> 3936
                        obj = obj. drop axis(labels, axis, level=level, error
s=errors)
   3937
   3938
                if inplace:
~\anaconda3\lib\site-packages\pandas\core\generic.py in drop axis(self, labe
ls, axis, level, errors)
   3968
                        new axis = axis.drop(labels, level=level, errors=erro
rs)
                    else:
   3969
-> 3970
                        new_axis = axis.drop(labels, errors=errors)
   3971
                    result = self.reindex(**{axis_name: new_axis})
   3972
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in drop(self, label
s, errors)
                if mask.any():
   5016
   5017
                    if errors != "ignore":
                        raise KeyError(f"{labels[mask]} not found in axis")
-> 5018
                    indexer = indexer[~mask]
   5019
   5020
                return self.delete(indexer)
KeyError: "['median'] not found in axis"
```

In []: