

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY **Z MATEMATYKI** POZIOM PODSTAWOWY

DATA: 7 maja 2018 r. GODZINA ROZPOCZECIA: 9:00 CZAS PRACY: 170 minut

CENTRALNA

EGZAMINACYJNA

KOMISJA

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ **NADZORUJĄCY** Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę dostosowania w zw. z dyskalkulią

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamknietych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj **p**ola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 **1**P-182

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba 2 log₃ 6 – log₃ 4 jest równa

A. 4

B. 2 C. 2 log₃ 2

 \mathbf{D} . $\log_3 8$

Zadanie 2. (0-1)

Liczba $\sqrt[3]{\frac{7}{3}} \cdot \sqrt[3]{\frac{81}{56}}$ jest równa

A. $\frac{\sqrt{3}}{2}$

B. $\frac{3}{2\sqrt[3]{21}}$ **C.** $\frac{3}{2}$

D. $\frac{9}{4}$

Zadanie 3. (0–1)

Dane są liczby $a = 3, 6 \cdot 10^{-12}$ oraz $b = 2, 4 \cdot 10^{-20}$. Wtedy iloraz $\frac{a}{b}$ jest równy

A. $8,64 \cdot 10^{-32}$ **B.** $1,5 \cdot 10^{-8}$ **C.** $1,5 \cdot 10^{8}$

D. $8.64 \cdot 10^{32}$

Zadanie 4. (0-1)

Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował

A. 865,00 zł

B. 850,15 zł

C. 1000,00 zł

D. 977,50 zł

Zadanie 5. (0-1)

Zbiorem wszystkich rozwiązań nierówności $\frac{1-2x}{2} > \frac{1}{3}$ jest przedział

A. $\left(-\infty, \frac{1}{6}\right)$ **B.** $\left(-\infty, \frac{2}{3}\right)$ **C.** $\left(\frac{1}{6}, +\infty\right)$ **D.** $\left(\frac{2}{3}, +\infty\right)$

Zadanie 6. (0–1)

Funkcja kwadratowa jest określona wzorem f(x) = -2(x+3)(x-5). Liczby x_1 , x_2 są różnymi miejscami zerowymi funkcji f. Zatem

A. $x_1 + x_2 = -8$ **B.** $x_1 + x_2 = -2$ **C.** $x_1 + x_2 = 2$ **D.** $x_1 + x_2 = 8$

Zadanie 7. (0-1)

Równanie
$$\frac{x^2 + 2x}{x^2 - 4} = 0$$

A. ma trzy rozwiązania: x = -2, x = 0, x = 2

B. ma dwa rozwiązania: x = 0, x = -2

C. ma dwa rozwiązania: x = -2, x = 2

D. ma jedno rozwiązanie: x = 0

Zadanie 8. (0–1)

f określona jest wzorem $f(x) = \frac{1}{2}x - 1$, dla wszystkich Funkcja liniowa rzeczywistych x. Wskaż zdanie prawdziwe.

A. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie $P = \left(0, \frac{1}{3}\right)$.

B. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie P = (0, -1).

C. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie $P = \left(0, \frac{1}{2}\right)$.

D. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie P = (0, -1).

Zadanie 9. (0-1)

Wykresem funkcji kwadratowej $f(x) = x^2 - 6x - 3$ jest parabola, której wierzchołkiem jest punkt o współrzędnych

A. (-6, -3)

B. (-6, 69) **C.** (3, -12) **D.** (6, -3)

Zadanie 10. (0-1)

Liczba 1 jest miejscem zerowym funkcji liniowej f(x) = ax + b, a punkt M = (3, -2) należy do wykresu tej funkcji. Współczynnik a we wzorze tej funkcji jest równy

A. 1

C. $-\frac{3}{2}$

D. -1

Zadanie 11. (0-1)

Dany jest ciąg (a_n) określony wzorem $a_n = \frac{5-2n}{6}$ dla $n \ge 1$. Ciąg ten jest

A. arytmetyczny i jego różnica jest równa $r = -\frac{1}{3}$.

B. arytmetyczny i jego różnica jest równa r = -2.

C. geometryczny i jego iloraz jest równy $q = -\frac{1}{3}$.

D. geometryczny i jego iloraz jest równy $q = \frac{5}{4}$.

Zadanie 12. (0-1)

Dla ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest spełniony warunek $a_4 + a_5 + a_6 = 12$. Wtedy

A.
$$a_5 = 4$$

C.
$$a_5 = 6$$

D.
$$a_5 = 5$$

Zadanie 13. (0-1)

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$, w którym $a_1 = \sqrt{2}$, $a_2 = 2\sqrt{2}$, $a_{\scriptscriptstyle 3} = 4\sqrt{2}$. Wzór na n-tywyraz tego ciągu ma postać

$$\mathbf{A.} \quad a_n = \left(\sqrt{2}\right)^n$$

B.
$$a_n = \frac{2^n}{\sqrt{2}}$$

$$\mathbf{C.} \quad a_n = \left(\frac{\sqrt{2}}{2}\right)^n$$

$$\mathbf{D.} \quad a_n = \frac{\left(\sqrt{2}\right)^n}{2}$$

Zadanie 14. (0-1)

Przyprostokatna LM trójkata prostokatnego KLM ma długość 3, a przeciwprostokatna KL ma długość 8 (zobacz rysunek).

Wtedy miara α kata ostrego *LKM* tego trójkata spełnia warunek

A.
$$27^{\circ} < \alpha \le 30^{\circ}$$

B.
$$24^{\circ} < \alpha \le 27^{\circ}$$
 C. $21^{\circ} < \alpha \le 24^{\circ}$ **D.** $18^{\circ} < \alpha \le 21^{\circ}$

C.
$$21^{\circ} < \alpha < 24^{\circ}$$

D.
$$18^{\circ} < \alpha \le 21^{\circ}$$

Zadanie 15. (0–1)

Dany jest trójkąt o bokach długości: $2\sqrt{5}$, $3\sqrt{5}$, $4\sqrt{5}$. Trójkątem podobnym do tego trójkąta jest trójkat, którego boki mają długości

C.
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{4}$

B. 20, 45, 80 **C.**
$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{4}$ **D.** $\sqrt{5}$, $2\sqrt{5}$, $3\sqrt{5}$

Zadanie 16. (0-1)

Dany jest okrąg o środku S. Punkty K, L i M leżą na tym okręgu. Na łuku KL tego okręgu są oparte kąty KSL i KML (zobacz rysunek), których miary α i β spełniają warunek $\alpha + \beta = 111^{\circ}$. Wynika stąd, że

- A. $\alpha = 74^{\circ}$
- **B.** $\alpha = 76^{\circ}$
- C. $\alpha = 70^{\circ}$
- **D.** $\alpha = 72^{\circ}$

Zadanie 17. (0-1)

Dany jest trapez prostokątny KLMN, którego podstawy mają długości |KL| = a, |MN| = b, a > b. Kat KLM ma miarę 60° . Długość ramienia LM tego trapezu jest równa

- A. a-b
- **B.** 2(a-b) **C.** $a+\frac{1}{2}b$

Zadanie 18. (0-1)

Punkt K = (2, 2) jest wierzchołkiem trójkąta równoramiennego KLM, w którym |KM| = |LM|. Odcinek MN jest wysokością trójkąta i N = (4,3). Zatem

- **A.** L = (5,3)

- **B.** L = (6, 4) **C.** L = (3, 5) **D.** L = (4, 6)

Zadanie 19. (0-1)

Proste o równaniach y = (m+2)x+3 oraz y = (2m-1)x-3 są równoległe, gdy

- **A.** m = 2
- **B.** m = 3
- **C.** m = 0
- **D.** m = 1

Zadanie 20. (0-1)

Podstawa ostrosłupa jest kwadrat KLMN o boku długości 4. Wysokością tego ostrosłupa jest krawędź NS, a jej długość też jest równa 4 (zobacz rysunek).

Kąt α , jaki tworzą krawędzie KS i MS, spełnia warunek

A.
$$\alpha = 45^{\circ}$$

B.
$$45^{\circ} < \alpha < 60^{\circ}$$
 C. $\alpha > 60^{\circ}$ **D.** $\alpha = 60^{\circ}$

C.
$$\alpha > 60^\circ$$

D.
$$\alpha = 60^\circ$$

Zadanie 21. (0-1)

Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 45° (zobacz rysunek).

Wysokość graniastosłupa jest równa

B.
$$3\sqrt{2}$$

C.
$$5\sqrt{2}$$

D.
$$\frac{5\sqrt{3}}{3}$$

Zadanie 22. (0-1)

Na rysunku przedstawiono bryłę zbudowaną z walca i półkuli. Wysokość walca jest równa r i jest taka sama jak promień półkuli oraz taka sama jak promień podstawy walca.

Objętość tej bryły jest równa

A.
$$\frac{5}{3}\pi r$$

$$\mathbf{B.} \quad \frac{4}{3}\pi r$$

C.
$$\frac{2}{3}\pi r^3$$

A.
$$\frac{5}{3}\pi r^3$$
 B. $\frac{4}{3}\pi r^3$ **C.** $\frac{2}{3}\pi r^3$ **D.** $\frac{1}{3}\pi r^3$

Zadanie 23. (0-1)

W zestawie $\underbrace{2,2,2,...,2}_{m \text{ liczb}},\underbrace{4,4,4,...,4}_{m \text{ liczb}}$ jest 2m liczb $(m \ge 1)$, w tym m liczb 2 i m liczb 4.

Odchylenie standardowe tego zestawu liczb jest równe

A. 2

B. 1

C. $\frac{1}{\sqrt{2}}$ D. $\sqrt{2}$

Zadanie 24. (0-1)

Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych od 2018 i podzielnych przez 5?

A. 402

B. 403

C. 203

D. 204

Zadanie 25. (0-1)

W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony sa wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe

A. $\frac{15}{35}$

C. $\frac{15}{50}$

Zadanie 26. (0–2) Rozwiąż nierówność $2x^2 - 3x > 5$.

Zadanie 27. (0-2)

Rozwiąż równanie $(x^3 + 125)(x^2 - 64) = 0$.

	Nr zadania	26.	27.
agzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 28. (0–2)Udowodnij, że dla dowolnych liczb dodatnich *a*, *b* prawdziwa jest nierówność

$$\frac{1}{2a} + \frac{1}{2b} \ge \frac{2}{a+b}.$$

Zadanie 29. (0–2)

Okręgi o środkach odpowiednio A i B są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku A jest równy 2.

Uzasadnij, że promień okręgu o środku B jest mniejszy od $\sqrt{2}-1$.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (0–2)

Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej x wzorem $f(x) = a^x$ (gdzie a > 0 i $a \ne 1$), należy punkt P = (2, 9). Oblicz a i zapisz zbiór wartości funkcji g, określonej wzorem g(x) = f(x) - 2.

Odr	owiedź.			
Out	owieuz.	 	 	

Zadanie 31. (0–2)

Dwunasty wyraz ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu.

	Nr zadania	30.	31.
Wypełnia egzaminator	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 32. (0–5)

W układzie współrzędnych punkty A = (4,3) i B = (10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y = 2x + 3. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty.

	Nr zadania	32.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 33. (0–4)

Dane są dwa zbiory: $A = \{100, 200, 300, 400, 500, 600, 700\}$ i $B = \{10, 11, 12, 13, 14, 15, 16\}$. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego.

	Nr zadania	33.
Wypelnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 34. (0–4)

Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe $45\sqrt{3}$. Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa.

	Nr zadania	34.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	