## Course 5



# **Theorem**: A language is a regular set if and only if is accepted by a FA

#### Proof:

- => Apply lemma 1' and lemma 2' (to follow, similar to RG)
- <= construct a system of regular exp equations where:
- Indeterminants states
- Coefficients terminals
- Equation for A: all the possibilities that put the FA in state A
- Equation of the form: X=Xa+b => solution X=ba\*



$$\begin{cases} q_1 = q_3 0 + \mathbf{\epsilon} \\ q_2 = q_1 0 + q_1 1 + q_2 0 + q_3 0 \\ q_3 = q_2 1 \end{cases}$$

Regular exp = union of solutions corresponding to final states

## Lemma 1': $\boldsymbol{\phi}$ , $\{\boldsymbol{\varepsilon}\}$ , $\{a\}$ , $\forall a \in \Sigma$ are accepted by FA

| Reg exp        | FA                                                                     |
|----------------|------------------------------------------------------------------------|
| Φ              | $M = (Q, \Sigma, \delta, q_{0}, \boldsymbol{\Phi})$                    |
| ε              | $M = (Q, \Sigma, \Phi, q_{0}, \{q_{0}\})$                              |
| a,∀a∈ <b>Σ</b> | $M = (\{q_0, q_1\}, \Sigma, \{\delta(q_0, a) = q_1\}, q_{0,} \{q_1\})$ |

## Lemma 2':If $L_1$ and $L_2$ are accepted by a FA then: $L_1 \cup L_2$ , $L_1L_2$ and $L_1^*$ are accepted by FA

#### Proof:

$$M_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, F_1)$$
 such that  $L_1 = L(M_1)$   
 $M_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, F_2)$  such that  $L_2 = L(M_2)$ 

$$\begin{split} \mathsf{M}_3 &= (\mathsf{Q}_3, \, \pmb{\Sigma}_{1\mathsf{U}}, \, \delta_3, \, \mathsf{q}_{03}, \, \mathsf{F}_3) \\ \mathsf{Q}_3 &= \mathsf{Q}_1 \, \mathsf{U} \, \mathsf{Q}_2 \, \mathsf{U} \, \{\mathsf{q}_{03}\}; \, \textstyle \textstyle \sum_3 = \textstyle \textstyle \textstyle \sum_1 \, \mathsf{U} \, \textstyle \textstyle \textstyle \sum_2 } \\ \mathsf{F}_3 &= \mathsf{F}_1 \, \mathsf{U} \, \mathsf{F}_2 \, \mathsf{U} \, \{\mathsf{q}_{03} \mid \, \mathsf{if} \, \mathsf{q}_{01} \in \mathsf{F}_1 \, \mathsf{or} \, \mathsf{q}_{02} \in \mathsf{F}_2\} \\ \delta_3 &= \delta_1 \, \mathsf{U} \, \delta_2 \, \mathsf{U} \, \{\delta_3(\mathsf{q}_{03}, \mathsf{a}) = \mathsf{p} \mid \, \exists \, \delta_1(\mathsf{q}_{01}, \mathsf{a}) = \mathsf{p} \} \, \mathsf{U} \\ \{\delta_3(\mathsf{q}_{03}, \mathsf{a}) = \mathsf{p} \mid \, \exists \, \delta_2(\mathsf{q}_{02}, \mathsf{a}) = \mathsf{p} \} \, \end{split}$$

$$L(M_3) = L(M_1) U L(M_2)$$

**PROOF!!! Homework** 

$$M_4 = (Q_4, \Sigma_4, \delta_4, q_{04}, F_4)$$
  
 $Q_4 = Q_1 \cup Q_2; \qquad q_{04} = q_{01};$ 

$$\begin{aligned} \mathsf{F}_4 &= \mathsf{F}_2 \ \mathsf{U} \ \{ \mathsf{q} \in \mathsf{F}_1 \ | \ \text{if} \ \mathsf{q}_{02} \in \mathsf{F}_2 \} \\ \delta_4(\mathsf{q},\mathsf{a}) &= \delta_1(\mathsf{q},\mathsf{a}), \ \text{if} \ \mathsf{q} \in \mathsf{Q}_1\text{-}\mathsf{F}_1 \\ \delta_1(\mathsf{q},\mathsf{a}) \ \mathsf{U} \ \delta_2(\mathsf{q}_{02},\mathsf{a}) \ \text{if} \ \mathsf{q} \in \mathsf{F}_1 \\ \delta_2(\mathsf{q},\mathsf{a}), \ \text{if} \ \mathsf{q} \in \mathsf{Q}_2 \end{aligned}$$

 $L(M_3) = L(M_1)L(M_2)$ 

**PROOF!!! Homework** 

$$\begin{aligned} \mathsf{M}_5 &= (\mathsf{Q}_5, \, \pmb{\Sigma}_1, \, \delta_5, \, \mathsf{q}_{05}, \, \mathsf{F}_5) \\ \mathsf{Q}_5 &= \mathsf{Q}_1; \qquad \mathsf{q}_{05} = \mathsf{q}_{01} \\ \mathsf{F}_5 &= \mathsf{F}_1 \, \, \mathsf{U} \, \{ \mathsf{q}_{01} \} \\ \delta_5(\mathsf{q}, \mathsf{a}) &= \delta_1(\mathsf{q}, \mathsf{a}), \, \mathsf{if} \, \mathsf{q} \in \mathsf{Q}_1 \text{-} \mathsf{F}_1 \\ \delta_1(\mathsf{q}, \mathsf{a}) \, \, \mathsf{U} \, \delta_1(\mathsf{q}_{01}, \mathsf{a}) \, \, \mathsf{if} \, \mathsf{q} \in \mathsf{F}_1 \end{aligned}$$

$$L(M_3) = L(M_1)^*$$

**PROOF!!!** Homework

### Pumping Lemma

- Not all languages are regular
- How to decide if a language is regular or not?

• Idea: pump symbols

Example:  $L = \{0^n1^n \mid n > = 0\}$ 

#### **Theorem**: (Pumping lemma, Bar-Hillel)

Let L be a regular language.  $\exists p \in N$ , such that if  $w \in L$  with |w| > p, then w = xyz, where 0 < |y| < = p and  $xy^iz \in L$ ,  $\forall i \geq 0$ 

#### **Proof**

```
L regular => \exists M = (Q,\Sigma,\delta, q<sub>0</sub>, F) such that L= L(M)

Let |Q| = p

If w \in L(M): (q<sub>0</sub>,w) \vdash (q<sub>f</sub>,\varepsilon), q<sub>f</sub>\inF process at least p+1 symbols and |w|>p
```

$$\Rightarrow \exists q_1 \text{ that appear in at least 2 configurations}$$
  
 $(q_0,xyz) \not\models (q_1,yz) \not\vdash (q_1,z) \not\models (q_f, \varepsilon), q_f \in F \Rightarrow 0 <= |y| <= p$ 

## Proof (cont)

```
(q_0,xy^iz) \vdash^* (q_1,y^iz)
                        +^* (q_1, y^{i-1}z)
                        ⊢* ...
                        + (q<sub>1</sub>,yz)
                        +^* (q<sub>1</sub>, z)
                        +^*(q_f, \varepsilon), q_f \in F
So, if w=xyz \in L then xy^iz \in L, for all i>0
If i=0: (q_0,xz) \stackrel{*}{\vdash} (q_1,z) \stackrel{*}{\vdash} (q_f,\varepsilon), q_f \in F
```

#### **Example**: $L = \{0^n1^n \mid n >= 0\}$

Suppose L is regular => w= xyz =  $0^{n}1^{n}$ 

Consider all possible decomposition =>

Case 1. 
$$y = 0^k$$

$$xyz = 0^{n-k}0^k1^n$$
;  $xy^iz = 0^{n-k}0^{ik}1^n \notin L$ 

Case 2. 
$$y = 1^k$$

$$xyz = 0^{n}1^{k}1^{n-k}$$
;  $xy^{i}z = 0^{n}1^{ik}1^{n-k} \notin L$ 

Case 3.  $y = 0^k 1^l$ 

$$xyz = 0^{n-k}0^k1^l1^{n-l}; xy^iz = 0^{n-k}(0^k1^l)^i1^{n-l} \notin L$$

Case 4.  $y = 0^k 1^K$ 

$$xyz = 0^{n-k}0^k1^k1^{n-k}$$
;  $xy^iz = 0^{n-k}0^k1^k0^k1^k...1^{n-l} \notin L$ 

=> L is not regular

## Context free grammar (cfg)

• Produtions of the form: A  $\rightarrow \alpha$ , A $\in$ N,  $\alpha \in$ (NU $\Sigma$ )\*

More powerful

Can model programming language:

$$G = (N, \Sigma, P, S)$$
 s.t.  $L(G) = programming language$ 

#### Syntax tree

**Definition**: A syntax tree corresponding to a cfg  $G = (N, \Sigma, P, S)$  is a tree obtained in the following way:

- 1. Root is the starting symbol S
- 2. Nodes ∈  $NU\Sigma$ :
  - 1. Internal nodes ∈N
  - 2. Leaves ∈ $\Sigma$
- 3. For a node A the descendants in order from left to right are  $X_1, X_2, ..., X_n$  only if  $A \rightarrow X_1X_2... X_n \in P$

#### **Remarks:**

- a) Parse tree = syntax tree result of parsing (syntatic analysis)
- b) Derivation tree condition 2.2 not satisfied
- c) Abstract syntax tree (AST) ≠ syntax tree (semantic analysis)

## Syntax tree (cont)

**Property:** In a cfg  $G = (N, \Sigma, P, S)$ ,  $w \in L(G)$  if and only if there exists a syntax tree with frontier w.

Proof: HW

**Definition**: A cfg  $G = (N, \Sigma, P, S)$  is ambigous if for a  $w \in L(G)$  there exists 2 distinct syntax tree with frontier w.

Example:

## Parsing (syntax analysis) modeled with cfg:

#### cfg G = (N, $\Sigma$ ,P,S):

- N nonterminal: syntactical constructions: declaration, statement, expression, a.s.o.
- $\Sigma$  terminals; elements of the language: identifiers, constants, reserved words, operators, separators
- P syntactical rules expressed in BNF simple transformation
- S syntactical construct corresponding to program

#### THEN

Program syntactical correct  $\langle = \rangle$  w  $\in$  L(G)

# Back to compiler construction