EE669: VLSI Technology

Apurba Laha
Department of Electrical Engineering
IIT Bombay 400076

Email: <u>laha@ee.iitb.ac.in</u>, Tel: **022 25769408**

Office hour: Friday 10:00 – 11.00 AM, EE Annex, Room: 104

Types of semiconductor materials

- Group IV elemental semiconductors, (C, Si, Ge, Sn)
- Group IV compound semiconductors (SiC)
- > Group VI elemental semiconductors, (S, Se, Te)
- > III-V semiconductors: Crystallizing with high degree of stoichiometry) e,g. GaAs, GaP, GaN
- ➤ II—VI semiconductors: usually p-type, except ZnTe and ZnO which is n-type

Portion of periodic table relevant to semiconductor materials and doping III-V

Semiconductors and their Band gaps

Schriconductors and their band gaps						
	No of element					
IV	1	<u>Diamond</u>	С	5.47	indirect	
IV	1	<u>Silicon</u>	Si	1.12	indirect	
IV	1	<u>Germanium</u>	Ge	0.67	indirect	
IV	1	Gray tin, α-Sn	Sn	0.00, 0.08	indirect	
IV	2	Silicon carbide, 3C-SiC	SiC	2.3	indirect	
IV	2	Silicon carbide, 4H-SiC	SiC	3.3	indirect	
IV	2	Silicon carbide, 6H-SiC	SiC	3.0	indirect	
III-V	2	Boron nitride, cubic	BN	6.36 [[]	indirect	
III-V	2	Boron nitride, hexagonal	BN	5.96	quasi-direct	
III-V	2	Aluminium nitride	AIN	6.28	direct	
III-V	2	Aluminium arsenide	AlAs	2.16	indirect	

Semiconductors and their Band gaps

	No of element		8.78		
III-V	2	Gallium nitride	GaN	3.44	direct
III-V	2	Gallium phosphide	GaP	2.26	indirect
III-V	2	Gallium arsenide	GaAs	1.43	direct
III-V	2	Gallium antimonide	GaSb	0.726	direct
III-V	2	Indium nitride	InN	0.7	direct
III-V	2	Indium phosphide	InP	1.35	direct
III-V	2	Indium arsenide	InAs	0.36	direct
III-V	2	Indium antimonide	InSb	0.17	direct
II-VI	2	Cadmium selenide	CdSe	1.74	direct
II-VI	2	Cadmium sulfide	CdS	2.42	direct
II-VI	2	Cadmium telluride	CdTe	1.49	direct
II-VI,	2	Zinc oxide	ZnO	3.37	direct
II-VI	2	Zinc selenide	ZnSe	2.7	direct

SnGe band structure

Achieving direct band gap in germanium through integration of Sn alloying and external strain

(a) Dependence of direct (Γ) and indirect (Γ) energy band gap in unstrained $Ge_{1-x}Sn_x$ on alloy Sn composition

Source: S. Gupta et al. Nano Lett. 13, (8) 3783-3790 (2013)

Carriers and doping in Si

Free carrier generation

Source: Plummer

Si Crystal growth: Czochralski method

Schematic of the principle of the Czochralski method

The seed crystal is dipped into the melt, followed by Dash necking (e), shouldering (f), cylindrical growth (g), growth of end cone (h), lift off (i), cooling down and removing of the crystal (j).

Float Zone Crystal Growth

- The basic idea in float zone (**FZ**) crystal growth is to move a liquid zone through the material.
- A polycrystalline rod of ultra-pure electronic grade silicon is passed through an RF heating coil,
- Create a localized molten zone from which the crystal ingot grows.
- A <u>seed crystal</u> is used at one end in order to start the growth
- ➤ The whole process is carried out in an evacuated chamber or in an inert gas purge
- ➤ The molten zone carries the impurities away with it and hence reduces impurity concentration
- ➤ Float-zone silicon is typically used for <u>power devices</u> and <u>detector</u> applications.

Float-zone pulling

Compound Semiconductor and Phase Diagrams

arise from minimizing free energies for each phase use for

- √ gas liquid solid transitions
- √ structural changes (graphite <--> diamond)
- √ stable alloys

ONE COMPONENT SYSTEM

Example: Carbon (C)

the two phases (diamond and graphite) can coexist on the line that separates them

Water

triple point has three phases coexisting (very well defined point)

Two components system: Example Si_(1-x)Ge_x

Binary Solid Solutions:

completely soluble in liquid and solid state at all compositions

phases and compositions:

at I: liquid with composition C_o (about 30% Si, 70% Ge)

at II: liquid with composition C_o and solid with composition $C_s(II)$

at III: liquid with composition $C_I(III)$ and solid with composition $C_S(III)$

How much (mole fraction) is in each phase?

at IV: solid with composition C_o

$$f_{solid} = \frac{C_o - C_l(III)}{C_s(III) - C_l(III)} \qquad f_{hquad} = \frac{C_s(III) - C_o}{C_s(III) - C_l(III)}$$

Compound semiconductor and Phase diagram

 $T_{\rm m}({\rm GaAs}) = 1238 \, {\rm ^{\circ}C}$

GaAs crystal growth

Mix Ga and As in a (molar) ratio of **50:50** and melt it in a crucible

T_m: Ga: 30 °C; As: ? °C

what happens if our mixture

is not **50**: **50** but **49.999**: **50.001**?

little droplets of liquid in our growing crystal!

Compound semiconductor: High purity Poly GaAs

Compound semiconductor: Single crystal growth

Liquid Encapsulated Czochralski

The starting materials (either pre-synthesised polycrystalline chunks or, in the case of semi-insulating GaAs, elemental Ga and As)

At 460°C the boron trioxide melts to form a thick, viscous liquid which coats the entire melt, including the crucible (hence, liquid encapsulated). This layer, in combination with the pressure in the crystal puller, prevents sublimation of the volatile group V element.

Gallium Nitride: The unconventional phase diagram

Growth must be carried out at a condition far away from thermodynamic equilibrium

Materials Properties Comparison

Material	μ	ε	Eg	BFOM Ratio	JFM Ratio	Tmax
Si	1300	11.4	1.1	1.0	1.0	300 C
GaAs	5000	13.1	1.4	9.6	3.5	300 C
SiC	260	9.7	2.9	3.1	60	600 C
GaN	1500	9.5	3.4	24.6	80	700 C

BFOM = Baliga's figure of merit for power transistor performance $[\varepsilon^*\mu^*E_g^3]$

JFM = Johnson's figure of merit for power transistor performance

(Breakdown, saturation electron velocity product) $[E_{br}^*V_{sat}/2\pi]$

GaN: A superman semiconductor

Source: Umesh Mishra, UCSB

Semiconductor Devices: PN Junction

- > The p-n junction is created by doping, (ion implantation, diffusion of dopants)
- > By epitaxy (growing a layer of crystal doped with one type of dopant on top of a layer of crystal doped with another type of dopant).

Semiconductor Devices: MOS transistor

An integrated structure

Source: https://www.tf.uni-kiel.de

Bipolar Junction Transistor (BJT)

Heterojunction bipolar transistor (HBT)

Wide-gap emitter bipolar junction transistor (Band bending neglected)

$$E_{g}^{I} > E_{g}^{II}$$
 $E_{g}^{Emitter} > E_{g}^{Base}$

Example: Si and Si_(1-x)Ge_x heterostructure

How do we grow such complicated structure??

High Electron Mobility Transistor (HEMT)

Cross section of a GaAs/AlGaAs/InGaAs pHEMT

Band diagram of GaAs/AlGaAs heterojunction-based HEMT, at equilibrium.

GaN HEMT

Energy band of AlGaN/AIN/GaN HEMT.

