Tema 1. Introducción a la Ingeniería de Servidores

Obtener las prestaciones más altas para un presupuesto dado

Ingeniero de Servidores

Objetivos del Tema

- Identificar el concepto de sistema informático y sus distintas clasificaciones.
- Conocer los conceptos básicos relacionados con la ingeniería de servidores.
- Ofrecer una visión general de la evaluación de las prestaciones de un servidor.
- Entender las consecuencias de la leyes de Amdahl en el proceso de mejora del tiempo de respuesta de un trabajo dentro de un servidor.

Bibliografía

- Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum, Maarten Van Steen. Prentice Hall, 2006.
 - Capítulo 1
- The art of computer system performance analysis. R. Jain. John Wiley & Sons, 1991.
 - Capítulos 1 y 3
- Evaluación y modelado del rendimiento de los sistemas informáticos. Xavier Molero, C. Juiz, M. Rodeño. Pearson Educación, 2004.
 - Capítulo 1
- Measuring computer performance: a practitioner's guide. D. J. Lilja, Cambridge University Press, 2000.
 - Capítulos 1, 2 y 7
- Arquitectura de computadores. Julio Ortega, Mancia Anguita, Alberto Prieto. Thomson, 2005.
 - Capítulo 1

Contenido

- Concepto de Sistema Informático
- Clasificación de Sistemas Informáticos
- Fundamentos de Ingeniería de Servidores
- Comparación conjunta entre prestaciones y coste
- Límites en la mejora del tiempo de respuesta: Ley de Amdahl

- 2

Sistema Informático

- Conjunto de elementos hardware, software y humanware interrelacionados entre sí que permite obtener, procesar y almacenar información.
 - Hardware: conjunto de componentes físicos que forman el sistema informático: procesadores, memoria, almacenamiento externo, cables, etc.
 - **Software:** conjunto de componentes *lógicos* que forman el sistema informático: sistema operativo y aplicaciones.
 - Humanware: conjunto de recursos humanos. En nuestro caso, personal técnico que crea y mantiene el sistema (administradores, analistas, programadores, operarios, etc.) y los usuarios que lo utilizan.

Clasificación de Sistemas Informáticos

- Los Sistemas Informáticos pueden clasificarse según numerosos criterios. Por supuesto las clasificaciones no son estancas y es común encontrar sistemas híbridos que no encajen en una única categoría.
- Ejemplos de clasificación:
 - Según el nivel de paralelismo de su arquitectura
 - SISD, SIMD, MISD o MIMD
 - Según su uso
 - De uso general o de uso específico
 - Según la arquitectura de servicio
 - Sistema aislado, Arquitectura cliente-servidor, Arquitectura de *n* capas o Arquitectura Cliente-Cola-Cliente

6

Clasificación. Paralelismo arquitectura

- Según el **paralelismo** de su arquitectura:
 - SISD: Single Instruction Single Data
 - SIMD: Single Instruction Multiple Data
 - MISD: Multiple Instruction Single Data
 - MIMD: Multiple Instruction Multiple Data

	Una instrucción	Múltiples instrucciones
Un dato	SISD	MISD
Múltiples datos	SIMD	MIMD

Clasificación: Según su uso

- Según su **uso**, un sistema informático puede considerarse:
 - De uso general, como los computadores personales (PC) que son utilizados por un usuario para ejecutar muy diversas aplicaciones.
 - PC de sobremesa (desktop)
 - PC portátil (laptop)
 - De uso específico:
 - Sistemas empotrados (embedded systems)
 - Servidores (servers)

Clasificación. Uso específico

Sistemas empotrados (embedded systems)

 Sistemas informáticos acoplados a otro dispositivo o aparato, diseñados para realizar una o algunas funciones dedicadas, frecuentemente con fuertes restricciones de coste, consumo y tiempo de respuesta (sistemas de tiempo real).

 Suelen estar formados por un microcontrolador, memoria y una amplia gama de interfaces de comunicación.

 Ejemplo: un taxímetro, un sistema de control de acceso, el sistema de control de una fotocopiadora, una cámara de vigilancia, un teléfono, la electrónica que controla un automóvil, un cajero automático, una lavadora, etc.

Clasificación. Uso específico

Servidores

- Son sistemas informáticos que, formando parte de una red, proporcionan servicios a otros sistemas informáticos denominados clientes.
- Un servidor no es necesariamente una máquina de última generación de grandes proporciones; un servidor puede ser desde un computador de gama baja (coste bajo) hasta un conjunto de **clusters de computadores** (=asociación de computadores de modo que pueden ser percibidos externamente como un único sistema) en un Centro de Procesamiento de Datos (CPD).

10

Clasificación. Uso específico

- Algunos tipos de servidores
 - **Servidor de archivos**: permite el acceso remoto a archivos almacenados en él o directamente accesibles por este.
 - **Servidor web**: almacena documentos HTML, imágenes, archivos de texto, escrituras, y distribuye este contenido a clientes que lo soliciten en la red.
 - **Servidor de base de datos**: provee servicios de base de datos a otros programas u otras computadoras.
 - Servidor de transacciones: cumple o procesa transacciones comerciales (comercio electrónico). Valida el cliente y genera un pedido al servidor de bases de datos.
 - **Servidor de impresión**: controla una o más impresoras y acepta trabajos de impresión de otros clientes de la red.
 - **Servidor de correo**: almacena, envía, recibe, enruta y realiza otras operaciones relacionadas con email para los clientes de la red.

Clasificación. Arquitectura de Servicio

Clasificación. Arquitectura de servicio

Sistema aislado

• Por ejemplo: computadores personales.

Arquitectura cliente-servidor

• Es un modelo de aplicación distribuida en el que las tareas se reparten entre los proveedores de recursos o servicios, llamados servidores, y los demandantes, llamados clientes.

• Suele tener dos tipos de nodos en la red

• los clientes (remitentes de solicitudes)

• los servidores (receptores de solicitudes)

13

Clasificación. Arquitectura de servicio

• Arquitectura de *n* capas

- Es una arquitectura cliente/servidor que tiene *n* tipos de nodos en la red.
- Mejora la distribución de carga entre los diversos servidores. Es más escalable.
- Pone más carga en la red.
- Difícil de programar y administrar.

- Ejemplo de arquitectura de 3 capas:
 - Capa 1: Clientes que interactúan con los usuarios finales.
 - Capa 2: Servidores de aplicación que procesan los datos para los clientes.
 - Capa 3: Servidores de bases de datos que almacenan/buscan/gestionan los datos para los servidores de aplicación.

4

Clasificación. Arquitectura de servicio

• Arquitectura Cliente-Cola-Cliente

- Habilita a todos los clientes para desempeñar tareas semejantes interactuando cooperativamente para realizar una actividad distribuida, mientras que el servidor actúa como una cola que va capturando las peticiones de los clientes y sincronizando el funcionamiento del sistema.
- La arquitectura P2P se basa en el concepto "Cliente-Cola-Cliente".
- Aplicaciones:
 - Intercambio y búsqueda de ficheros (BitTorrent, eDonkey2000, eMule).
 - Sistemas de telefonía por Internet (Skype).

1.2. Fundamentos de Ingeniería de Servidores

Fundamentos de Ingeniería de Servidores

- Diseño, configuración y evaluación de un Servidor
 - Requisitos funcionales
 - Prestaciones
 - <u>Segurid</u>ad
 - Mantenimiento

 - Componentes físicos y lógicos
 - Placa base
 - Memoria
 - Microprocesador
 - Fuente de alimentación
 - Periféricos (E/S, Almacenamiento)

- Disponibilidad
- **Extensibilidad**
- Escalabilidad

Fiabilidad

- Coste

 - Sistema Operativo
 - Middleware
 - Aplicaciones
 - · Conexiones de red
 - Cableado
 - Refrigeración, local...

Fundamentos de Ingeniería de Servidores

- **Disponibilidad** (Availability)
 - Un servidor está disponible si se encuentra en estado operativo.
 - **Tiempo de inactividad** (*Downtime*): cantidad de tiempo en el que el sistema no está disponible.
 - Tiempo de inactividad planificado
 - es usualmente el resultado de un evento lógico o de gestión iniciado.
 - Tiempo de inactividad no planificado
 - surgen de algún evento físico tales como fallos en el hardware, anomalías ambientales o fallos software → tolerancia a fallos

Fundamentos de Ingeniería de Servidores

- **Disponibilidad** (*Availability*). Algunas sugerencias:
 - Sistemas redundantes de alimentación
 - Configuraciones RAID
 - Sistemas de red redundantes
 - Sistemas distribuidos
 - Reemplazo en caliente de componentes

• Fiabilidad (Reliability)

• Un sistema es fiable cuando desarrolla su actividad sin presencia de errores. MTBF (Mean Time Between Failures): tiempo medio que tiene un sistema (disco, memoria, etc.) entre dos fallos consecutivos. Soluciones: uso de sumas de comprobación (checksums) para detección y corrección de fallos, retransmisión de mensajes/datos,...

Fundamentos de Ingeniería de Servidores

Seguridad

- Un servidor debe ser seguro ante:
 - La incursión de individuos no autorizados (confidencialidad).
 - La corrupción o alteración no autorizada de datos (integridad).
 - Las interferencias (ataques) que impidan el acceso a los recursos.
- Soluciones:
 - Autenticación segura de usuarios.
 - Encriptación de datos.
- Cortafuegos (firewalls)
- Mecanismos de prevención de ataques de denegación de servicio.

Fundamentos de Ingeniería de Servidores

• Extensibilidad-expansibilidad

- Hace referencia a la facilidad que ofrece el sistema para aumentar sus características o recursos.
- Soluciones:
 - Uso de Sistemas Operativos modulares de código abierto (para extender la capacidad del S.O.)
 - Uso de interfaces de E/S estándar (para facilitar la incorporación de más dispositivos al sistema)
- El uso de sistemas abiertos también repercute en que el **coste** de los componentes añadidos suele ser menor así como los gastos de mantenimiento debido a la mayor facilidad de elección de proveedores.

Fundamentos de Ingeniería de Servidores

Escalabilidad

- Un servidor es escalable si sus prestaciones pueden aumentar significativamente ante un incremento significativo en su carga.
- Soluciones (muchas interrelacionadas):
 - Cloud computing.
 - Servidores modulares /clusters.
 - Virtualización.
 - Grid computing.
 - Distribución de carga.
 - Storage Area Networks (SAN).
 - Arquitecturas distribuidas /arquitecturas por capas.
 - Programación paralela (software escalable).

Fundamentos de Ingeniería de Servidores

- **Mantenimiento** (*Maintenance*, support)
 - Hace referencia a todas las acciones que tienen como objetivo prolongar el funcionamiento correcto del sistema.
 - Es importante que el servidor sea fácil de mantener. Por ejemplo, facilidad de actualizar el S.O., aplicaciones, servicios, drivers, etc.
 - Sistema actualizado.
 - Drivers actualizados.
 - Chequeo periódico de componentes.
 - Garantía de componentes.
 - Backup & recovery.
 - Contratación con un distribuidor autorizado.

Fundamentos de Ingeniería de Servidores

- Coste (Cost)
 - Un diseño que sea asequible y se ajuste al presupuesto.
 - Coste hardware.
 - Coste software (S.O. + aplicaciones)
 - Coste actualizaciones hw/sw.
 - Coste personal (administrador, técnicos, apoyo...)
 - Coste proveedores de red.
 - Coste alquiler local.
 - Coste consumo eléctrico tanto del hardware como de la refrigeración: Eficiencia energética.

- Eficiencia Energética (Energy Efficiency)
 - Uso eficiente de los recursos computacionales minimizando el coste energético, cuidando el impacto ambiental y observando deberes sociales.
 - ¿Por qué preocuparse por la eficiencia energética?
 - reducir costes (consumo potencia servidores + refrigeración)
 - mayor vida útil de los componentes (temperatura)
 - preservar el medio ambiente
 - Soluciones:
 - Ajuste automático del consumo de potencia de los componentes electrónicos según la carga.
 - Free cooling: Utilización de bajas temperaturas exteriores para refrigeración gratuita.
 - Consolidación de servidores.

25

Fundamentos de Ingeniería de Servidores

- Medidas fundamentales de prestaciones de un servidor
 - Tiempo de respuesta (response time) o latencia (latency)
 - Tiempo total desde que se solicita una tarea al servidor o a un componente del mismo y la finalización de la misma. Por ejemplo:
 - Tiempo de ejecución de un programa.
 - Tiempo de acceso a un disco.
 - **Productividad** (throughput) o **ancho de banda** (bandwidth)
 - Cantidad de trabajo (carga) realizado por el servidor o por un componente del mismo por unidad de tiempo. Por ejemplo:
 - Programas ejecutados por hora.
 - Páginas por hora servidas por un servidor web.
 - Correos por segundo procesados por un servidor de correo.
 - Peticiones por minuto procesados por un servidor de comercio electrónico.

Fundamentos de Ingeniería de Servidores

- **Prestaciones** (*Performance*)
 - Medida o cuantificación de la velocidad con que se realiza una determinada cantidad de trabajo (**carga**, *workload/load*).
- **Prestaciones** del servidor ↔ el **tiempo**
 - El servidor que realiza la misma cantidad de trabajo (carga) en el menor tiempo es el que *mejor* prestaciones tiene.
- - Tiempo que tarda un componente o el sistema en realizar una tarea.
 - Número de trabajos realizados por algún componente o por el sistema completo por unidad de tiempo.
 - Porcentaje de tiempo que se está usando cada componente (utilización).

20

Fundamentos de Ingeniería de Servidores

Formas típicas de la productividad y tiempo de respuesta frente a la carga

Fundamentos de Ingeniería de Servidores

• ¿Qué afecta a las **prestaciones**? ¿Cómo podemos mejorarlas?

Componentes hardware del sistema

• Características y configuración

Parámetros del sistema operativo

- Tipos de sistema operativo
- Políticas de planificación de procesos
- Configuración de memoria virtual

Diseño de los programas

- Fallos de caché
- Hot spots
- Swapping a disco
- E/S

Actualización de componentes:

- Reemplazar por dispositivos más rápidos.
- Añadir nuevas unidades.

Configuración de dispositivos.

Ajuste o sintonización:

- Parámetros del sistema operativo.
- Optimización de programas.

Distribución de la carga (load balancing): Mayor carga a componentes más rápidos.

Una de nuestras principales misiones será analizar nuestro servidor para determinar los factores que afectan a su rendimiento y encontrar posibles soluciones para su mejora.

1.3. Comparación conjunta entre prestaciones y coste

Relación de prestaciones: Speedup Relación prestaciones/coste

Comparación de prestaciones

- Debemos ejecutar los programas reales (o los más parecidos a los programas reales) para evaluar el rendimiento de un sistema.
- El computador más rápido es aquel que ejecuta el programa (o el conjunto de programas) en el tiempo más corto.
- ¿Cuántas veces es más **rápido** un computador que el otro?

Tiempos de ejecución mayores/menores

- Sea t_A=tiempo de ejecución de un determinado programa en la máquina A (ídem para t_B).
 - $t_A \operatorname{es} t_A / t_B \operatorname{veces} t_B$. **Ejemplo:** $t_A = 10s$, $t_B = 5s \rightarrow t_A \operatorname{es} 10/5 = 2 \operatorname{veces} t_B$ (el doble).
 - Igualmente, en el ejemplo anterior: t_B es 5/10=0.5 veces t_A (la mitad).
- El cambio relativo de t_A con respecto a t_B viene dado por:

$$\Delta t_{A,B} = \frac{t_A - t_B}{t_B} = \frac{t_A}{t_B} - 1$$

- En el ejemplo anterior, el cambio relativo de t_A con respecto a t_B es 1 (100%).
- Igualmente, el cambio relativo de t_B con respecto a t_A sería -0,50 (-50%).
- Uso del lenguaje "común" en el ejemplo anterior:
 - t_A es un 100% **mayor que** t_B.
 - t_B es un 50% **menor que** t_A .
 - t_A es 2 veces "mayor que" t_B (¡ojo!, "1 vez mayor" quiere decir "iguales").

¿Qué máquina es más "rápida"? Speedup

- Sea t_A=tiempo de ejecución de un determinado programa en la máquina A (ídem para t_B).
- La "velocidad" de la máquina A para ejecutar dicho programa será inversamente proporcional a t_A: v_A=D/t_A (siendo D la "distancia" recorrida por la máquina = cómputo realizado). Igualmente v_B=D/t_B, donde hemos utilizado la misma distancia "D" ya que han realizado la misma cantidad de cómputo (el mismo programa).
- Para ese programa, se define la ganancia en velocidad (speedup o aceleración) de la máquina A con respecto a la máquina B como:

$$S_B(A) = \frac{v_A}{v_B} = \frac{t_B}{t_A}$$

• El cambio relativo de v_A con respecto a v_B viene dado por:

$$\Delta v_{A,B} = \frac{v_A - v_B}{v_B} = \frac{D/t_A - D/t_B}{D/t_B} = \frac{t_B}{t_A} - 1 = S_B(A) - 1$$

¿Qué máquina es más "rápida"? Ejemplo

- Supongamos que, para un determinado programa, $t_A=36s$ y $t_B=45s$.
- En ese caso, la ganancia en velocidad (=speedup) de la máquina A con respecto a la máquina B sería:

$$S_B(A) = \frac{v_A}{v_B} = \frac{t_B}{t_A} = \frac{45}{36} = 1,25$$

• El cambio relativo de v_A con respecto a v_B viene dado por:

$$\Delta v_{A,B} = \frac{v_A - v_B}{v_B} = S_B(A) - 1 = 0.25 (= 25\%)$$

- Usando el lenguaje "común" diremos que, para ese programa:
 - La máquina A es 1,25 veces **más rápida que** la B (¡ojo!, "1 vez más rápido" o "ganancia en velocidad = 1" quieren decir "misma velocidad")
 - La máquina A es un 25% **más rápida que** la B.
- Igualmente:
 - La máquina B es $(S_A(B)-1=36/_{45}-1=-0.2)$ un 20% **más lenta que** la A

"

Relación prestaciones/coste

- Supongamos que, siguiendo el ejemplo anterior $(t_A=36s \text{ y } t_B=45s)$:
 - El computador A cuesta 625 €
 - El computador B cuesta 550 €
- El computador A es 625/550 = 1,14 veces **más caro que** el B (un 14% más caro)
- ¿Cuál ofrece mejor relación prestaciones/coste para nuestro programa?

$$\frac{Prestaciones_A}{Coste_A} \propto \frac{1/t_A}{Coste_A} = \frac{1/36s}{625 \cdot \epsilon} = 4.4 \times 10^{-5} s^{-1} / \epsilon$$

$$\frac{Prestaciones_B}{Coste_B} \propto \frac{1/t_B}{Coste_B} = \frac{1/45s}{550 \cdot \epsilon} = 4.0 \times 10^{-5} s^{-1} / \epsilon$$

- En este caso, el computador A presenta una relación más alta que el B (1.1 veces "mayor" = un 10% mayor) para nuestro programa y sería el que, en ausencia de otra información, compraríamos.
- En otros ejemplos, las prestaciones se pueden medir de forma distinta: speedups, productividades, índices SPEC, etc.

1.4. Límites en la mejora del tiempo de respuesta

La ley de Amdahl

4

Mejora del Tiempo de Respuesta

- La mejora del tiempo de respuesta (en nuestro caso, tiempo de ejecución de un proceso) no es ilimitada.
 - Hay que saber hacia dónde dirigir los esfuerzos de optimización.
- La mejora de cualquier sistema usando un componente más rápido depende de la fracción de tiempo que éste se utilice.
- Planteamiento:
 - ullet Un sistema tarda un tiempo T_{original} en ejecutar un proceso/programa.
 - Mejoramos el sistema reemplazando uno de sus componentes por otro *k* veces más rápido.
 - Este componente se utilizaba durante una fracción f del tiempo T_{original} .
 - ¿Cuál es la ganancia en prestaciones (*speedup*) del sistema para ese programa?

Tiempo original vs tiempo mejorado

38

Ley de Amdahl

• ¿Cuál es la ganancia en velocidad *S* (*speedup*) del sistema después de mejorar *k* veces un componente?

$$T_m = (1 - f) \cdot T_o + \frac{f \cdot T_o}{k}$$

$$S \equiv S_{original}(mejorado) = \frac{v_m}{v_o} = \frac{T_o}{T_m} = \frac{T_o}{(1-f) \cdot T_o + \frac{f \cdot T_o}{k}} = \frac{1}{1-f + \frac{f}{k}}$$

$$S = \frac{1}{1 - f + f/k}$$
 Ley de Amdahl

- Casos particulares de la ley
 - Si $f = o \Rightarrow S = 1$: no hay ninguna mejora en el sistema
 - Si $f = 1 \Rightarrow S = k$: el sistema mejora igual que el componente

Ejemplo de cálculo

- La utilización de un disco duro es del 60% para un programa monohebra dado ejecutado sobre un determinado sistema informático.
- ¿Cuál será la ganancia en velocidad del sistema si se duplica la velocidad del disco?

$$S = \frac{1}{1 - 0.6 + \frac{0.6}{2}} = 1.43$$
 El sistema es ahora 1,43 veces "más rápido" (un 43% más rápido) que antes.

• Ganancia máxima que se puede conseguir actuando solo sobre el disco:

$$S_{max} = \lim_{k \to \infty} S = \frac{1}{1 - f} = \frac{1}{1 - 0.6} = 2.5$$

El sistema como mucho puede ser 2,5 veces "más rápido" (un 150% más rápido) que antes.

Análisis: Relación entre S, f y k

Generalización de la ley de Amdahl

• Caso general con n mejoras:

$$S = \frac{1}{(1 - \sum_{i=1}^{n} f_i) + \sum_{i=1}^{n} f_i/k_i}$$

42

Algunas reflexiones finales

- Una mejora es más efectiva cuanto más grande es la fracción de tiempo en que ésta se aplica.
- Para mejorar un sistema complejo hay que optimizar los elementos que se utilicen durante la mayor parte del tiempo (caso más común)
- Con la ley de Amdahl podemos estimar la ganancia en velocidad (speedup) de la ejecución de un único trabajo en un sistema después de mejorar k veces un componente, es decir, su tiempo de respuesta óptimo en ausencia de otros trabajos.

¿Qué ocurre cuando tenemos varios trabajos ejecutándose simultáneamente en el servidor?

En los próximos temas...

• ¿Cómo podemos evaluar/analizar/estudiar el rendimiento de un servidor?

