HANDWRITING RECOGNITION

By: Ashley Jacob and Brendan Barnett

PROBLEM

- Handwriting recognition
- Initial Task
 - Classify an image of any given capital letter
 - 26 classes
 - ~3.8% accuracy if guessed at random
 - o Originally aimed for 80% accuracy
- End Goal
 - o Analyze an image of handwriting and return a string with the correct text

THE SLY FOX JUMPED OVER THE LAZY DOG

DIVISION OF WORK

- Model Creation: Brendan, Ashley
- Dataset Analysis: Brendan
- Image Preprocessing: Ashley, Brendan
- Letter Isolation: Ashley

DATASETS

- Initial dataset was too small and resulted in overfitting
 - Only 55 samples per letter
 - o Data augmentation
- New dataset had tens of thousands of images
 - 28 x 28
 - More data improved accuracy

LITERATURE REVIEW (CNN)

- "CNNs are primarily used in the field of pattern recognition within images, allowing for the encoding of image-specific features into the architecture, making the network more suited for image-focused tasks."
 - o An Introduction to Convolutional Neural Networks, source

LITERATURE REVIEW (POOLING)

- "Pooling is a key-step in convolutional based systems that reduces the dimensionality of the feature maps. It combines a set of values into a smaller number of values, i.e., the reduction in the dimensionality of the feature map."
 - o Pooling Methods in Deep Neural Networks, <u>source</u>

INITIAL ATTEMPT (MODEL)

- 1st, we overfit...
 - Too many epochs, no dropout layers
- Then underfit
 - o Too much dropout, batch size too big
- And poor preprocessing

Expected

Reality (thin, no padding)

FINAL MODEL ARCHITECTURE

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d (MaxPooling2D)	(None, 13, 13, 32)	0
dropout (Dropout)	(None, 13, 13, 32)	0
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18,496
max_pooling2d_1 (MaxPooling2D)	(None, 5, 5, 64)	0
dropout_1 (Dropout)	(None, 5, 5, 64)	0
flatten (Flatten)	(None, 1600)	0
dense (Dense)	(None, 128)	204,928
dropout_2 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 26)	3,354

MODEL RESULTS (TEST SET)

20% holdout for testing:

• Accuracy: 0.9918512701

• Precision: 0.99186832351

• Recall: 0.99185125520

• F1-Score: 0.99185087003

True Label: D, Predicted Label: O, Count: 42 True Label: O, Predicted Label: D, Count: 35 True Label: L, Predicted Label: C, Count: 25 True Label: A, Predicted Label: H, Count: 21 True Label: Q, Predicted Label: O, Count: 19

- 8000

- 6000

- 4000

- 2000

MODEL RESULTS (CUSTOM TESTS)

- Using commonly mixed-up letters with my own handwriting (rigid).
- Probabilities from softmax output activation.


```
Rank 1: B with probability 1.0000
Rank 2: R with probability 0.0000
Rank 3: G with probability 0.0000
```

Rank 1: R with probability 0.9841
Rank 2: K with probability 0.0159
Rank 3: B with probability 0.0000

Rank 1: D with probability 0.9999
Rank 2: U with probability 0.0001
Rank 3: N with probability 0.0000

INITIAL ATTEMPTS (LETTER ISOLATION)

- Used K-means for clustering
 - o Grouped pixels inaccurately
 - o Inconsistent results

Issues with padding and centering

CVEL

LITERATURE REVIEW (DBSCAN)

- o"...DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm..."
- o A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Source

database 3

LETTER ISOLATION

OVER

OVER

- Eventually chose DBSCAN
 - Always returns the same clusters
 - Two layers
 - One isolates words, other isolates letters
 - Sorted the cluster centers to figure out order
 - o Take points from each cluster and create a new image
 - Make sure to pad and center letters to match dataset

MODEL RESULTS (CUSTOM SAMPLES)

• When writing neatly, the model seems to predict the sentence very well

```
[59] print(sentence_pred)
```


BRENDAN IS SUPER LOOL

```
[127] print(sentence_pred)
```



```
I AM ASHLEY
```

```
[140] print(sentence_pred)
```


ERRORS AND SHORTCOMINGS

- Letters cannot touch
- Letters cannot have gaps
- Assumes certain distance between letters and words
- Some letters look very similar

JJMPED

THE SLY FOX JUMPED OVER THE LAZY DOG