Verjetnost in statistika - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Jaka Smrekarja

2020/21

Kazalo

1	SLUČAJNI VEKTORJI	3
2	NEODVISNOST	5
3	FUNKCIJE in TRANSFORMACIJE slučajnih spremenljivk in vektorjev 3.1 Slučajne spremenljivke	6 6 7
4	PRIČAKOVANA VREDNOST zveznih slučajnih spremenljivk in vektorjev 4.1 Pričakovana vrednost funkcij slučajnih spremenljivk in vektorjev	8 8 10
5	POGOJNE PORAZDELITVE in POGOJNA PRIČAKOVANA VREDNOST	13
6	MOMENTI in MOMENTNO-RODOVNA FUNKCIJA	15
7	LIMITNI IZREKI	18
8	TOČKOVNO OCENJEVANJE 8.1 Metode za konstrukcijo cenilk	21 22
9	INTERVALSKO OCENJEVANJE	24
10	PREIZKUŠANJE DOMNEV	28

1 SLUČAJNI VEKTORJI

Definicija 1.1 (Komulativna porazdelitvena funkcija). Slučajni vektor je taka funkcija/preslikava $\vec{X} = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$, kjer je Ω verjetnostni prostor, za katero so množice

$$\{X_1 \le x_1, \dots, X_n \le x_n\} = \{X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n]\}$$
$$= \{\vec{X} \in (-\infty, x_1] \times \dots \times (-\infty, x_n]\}$$
$$= \vec{X}^{-1} ((-\infty, x_1] \times \dots \times (-\infty, x_n])$$

dogodki za vse realne n-terice $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Komulativna porazdelitvena funkcija slučajnega vektorja \vec{X} je funkcija $F_X: \mathbb{R}^n \to [0,1]$ s predpisom

$$F_{\vec{X}}(x_1,\ldots,x_n) = \mathbb{P}(X_1 \le x_1,\ldots,X_n \le x_n).$$

Trditev 1.1 (Lastnosti KPF).

(1)

$$\lim_{\substack{x_i \to -\infty \\ x_1 \to \infty}} F_{\vec{X}}(x_1, \dots, x_n) = 0$$

$$\lim_{\substack{x_1 \to \infty \\ x_n \to \infty}} F_{\vec{X}}(x_1, \dots, x_n) = 1$$

(2) Monotonost:

Če je $x_i \leq y_i$ za $\forall i \in \{1, \dots, n\}$, je

$$F_{\vec{X}}(x_1,\ldots,x_n) = F_{\vec{X}}(\vec{x}) \le F_{\vec{X}}(\vec{y}).$$

To sledi iz monotonosti \mathbb{P} .

(3) ZVEZNOST Z DESNE:

$$\lim_{\vec{y} \searrow \vec{x}} F_{\vec{X}}(\vec{y}) = F_{\vec{X}}(\vec{x})$$

Tu $\vec{y} \searrow \vec{x}$ interpretiramo kot $\vec{y_i} \searrow \vec{x_i}$ za $\forall i$.

Opomba. Lastnosti (1), (2) in (3) karakterizirajo družino abstraktnih komulativnih porazdelitvenih funkcij v primeru slučajnih spremeljivk (n = 1). V večrazsežnem prostoru to ne drži.

Izrek 1.1. Če je $F : \mathbb{R}^2 \to [0,1]$ zadošča (1), (2), (3) in (4):

$$F(b,d) - F(a,d) - F(b,c) + F(a,c) \ge 0$$

za vse četverice a < b in c < d, je F komulativna porazdelitvena funkcija nekega slučajnega vektorja $(X,Y): \Omega \to \mathbb{R}^2$.

Definicija 1.2 ("Zvezni" slučajni vektorj). Slučajni vektor $\vec{X}:\Omega\to\mathbb{R}^n$ ima (zvezno) gostoto, če obstaja taka zvezna funkcija $f_{\vec{X}}:\mathbb{R}^n\to[0,\infty)$, da zanjo velja

$$\mathbb{P}(\vec{x} \in \mathcal{B}) = \int_{\mathcal{B}} f_{\vec{X}}(x_1, \dots, x_n) \, dx_1 \dots dx_n,$$

za vsako Borelovo množico $\mathcal{B} \subset \mathbb{R}^n$.

Posplošitev. Pravimo, da ima vektor $\vec{X} = (X_1, \dots, X_n)$ n-razsežno normalno porazdelitev s parametrom $\vec{\mu} \in \mathbb{R}$ in $\Sigma \in \mathbb{R}^{n \times n}$ (simetrična in pozitivno definitna), če ima gostoto:

$$f_{\vec{X}}(\vec{x}) = (2\pi)^{-\frac{n}{2}} (\det \Sigma)^{-1} e^{-\frac{1}{2} \langle \Sigma^{-1}(\vec{x} - \vec{\mu}), (\vec{x} - \vec{\mu}) \rangle}$$

2 NEODVISNOST

Definicija 2.1. Komponente X_1, \ldots, X_n slučajnega vektorja $\vec{X} = (X_1, \ldots, X_n)$ so *neodvisne*, če velja

$$F_{\vec{X}}(x_1,\ldots,x_n) = F_{X_1}(x_1)\cdot\ldots\cdot F_{X_n}(x_n)$$

za vse *n*-terice $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Opomba. Enakost lahko prepišemo v

$$\mathbb{P}\left(\vec{X} \in (-\infty, x_1] \times \ldots \times (-\infty, x_n]\right) = \mathbb{P}\left(X_1 \in (-\infty, x_1]\right) \cdot \ldots \cdot \mathbb{P}\left(X_n \in (-\infty, x_n]\right)$$

Trditev 2.1. Naj ima (X,Y) "zvezno" gostoto f(X,Y) in naj bosta f_X in f_Y robni gostoti. Tedaj sta X in Y neodvisni natanko takrat, ko

$$f_{(X,Y)}(x,y) = f_X(x) \cdot f_Y(y)$$

za skoraj vse pare x in y.

Trditev 2.2 (Posledica prejšnje trditve). Naj ima (X,Y) "zvezno" gostoto $f_{(X,Y)}(x,y)$. Tedaj sta X in Y neodvisni natanko takrat, ko velja

$$f_{(X,Y)}(x,y) = \Phi(x)\Psi(y)$$

za skoraj vse x in y, za neki nenegativni integralski funkciji.

3 FUNKCIJE in TRANSFORMACIJE slučajnih spremenljivk in vektorjev

3.1 Slučajne spremenljivke

Trditev 3.1 (Diskretni primer). Če je X diskretna slučajna spremenljivka z vrednostmi $\{x_i \mid i \in I\}$ in je g funkcija, ki preslika množico $\{x_i \mid i \in I\}$ na množico $\{y_j \mid j \in J\}$, je $g \circ X = g(X)$ diskretna slučajna spremenljivka z verjetnostno funkcijo

$$\mathbb{P}(g(X) = y_j) = \sum_{i: \ g(x_i) = y_j} \mathbb{P}(X = x_i)$$

Trditev 3.2 (Zvezni primer). Naj ima slučajna spremenljivka X "zvezno" gostoto f_X , ki je različna od 0 natanko na intervalu (a,b), kjer $-\infty \le a \le b \le \infty$.

Naj bo $g:(a,b)\to(c,d)$ zvezna bijekcija. Zanima nas funkcija g(X) slučajne spremenljivke X.

Velja tudi

$$\mathbb{P}(X \in (a,b)) = \int_{a}^{b} f_X(x) dx = \int_{\mathbb{R}} f_X(x) dx = 1.$$

Velja $\{g(X) \leq z\} = \{X \leq g^{-1}(z)\}$. Ker je X slučajna spremenljivka, so $\{X \leq g^{-1}(z)\}$ dogodki za $z \in (c,d)$. Sledi, da je g(X) slučajna spremenljivka in velja:

$$F_{g(X)}(z) = \mathbb{P}(g(X) \le z) = \begin{cases} 1 & ; & z \ge d \\ F_X(g^{-1}(z)) & ; & z \in (c,d) \\ 0 & ; & z \le c \end{cases}$$

Če je g odvedljiva, sledi:

$$f_{g(X)}(z) = \frac{d}{dz} F_{g(X)}(z) = \begin{cases} \frac{f_X(g^{-1}(z))}{g'(g^{-1}(z))} ; & z \in (c, d) \\ 0 & ; \text{ sicer} \end{cases}$$

Za splošno odvedljivo bijekcijo $g:(a,b)\to(c,d)$ velja t.i. transformacijska formula:

$$f_{g(X)}(z) = \frac{f_X(g^{-1}(z))}{|g'(g^{-1}(z))|}, \quad \text{za } z \in (c, d).$$

3.2 Slučajni vektorji

Trditev 3.3. Naj bo $\vec{X}: \Omega \to \mathbb{R}^n$ slučajni vektor in naj bo $h: \mathbb{R}^n \to \mathbb{R}$ zvezna funkcija. Tedaj je $h(\vec{X}) = h(X_1, \dots, X_n)$ slučajna spremenljivka.

Trditev 3.4. Naj bo $\vec{X}:\Omega\to\mathbb{R}^n$ slučajni vektor z gostoto $f_{\vec{X}}$. Dalje naj bo $g:\mathbb{R}^n\to\mathbb{R}^n$ (ali $g:D\to E$ za primerni množici $D,E\subset\mathbb{R}^n$, kjer $\mathbb{P}(\vec{X}\in D)=1)$ zvezno diferenciabilna bijekcija. Tedaj ima slučajni vektor $g(\vec{X})$ gostoto

$$f_{g(\vec{X})}(\vec{z}) \ = \ f_{\vec{X}}(g^{-1}(\vec{z})) \cdot |\det Jg^{-1}(\vec{z})|$$

v točkah $\vec{z} \in \mathbb{R}^n$ (oz. $\vec{z} \in E$).

Za dvorazsežne vektorje, kjer je $\vec{z}=(u,v)$ in (U,V)=g(X,Y) ter posledično $(X,Y)=g^{-1}(U,V)$ se transformacijska formula glasi

$$f_{(U,V)}(u,v) = f_{(X,Y)}(g^{-1}(u,v)) \cdot |\det Jg^{-1}(u,v)|$$

oziroma

$$f_{(U,V)}(u,v) = f_{(X,Y)}(x(u,v),y(u,v)) \cdot \left\| \frac{\partial x}{\partial u} - \frac{\partial x}{\partial v} \right\|.$$

Upoštevaje $g \circ g^{-1} = id$ in posledično

$$Jg(g^{-1}(u,v))\cdot Jg^{-1}(u,v) \ = \ I$$

zgornje prepišemo v

$$f_{(U,V)}(u,v) = \frac{f_{(X,Y))}(g^{-1}(u,v))}{|\det Jg(g^{-1}(u,v))|} = \frac{f_{(X,Y)}(x(u,v),y(u,v))}{\left|\left|\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}\right|\right|_{(x(u,v),y(u,v))}}.$$

Trditev 3.5. Naj za $\vec{X}: \Omega \to \mathbb{R}^n$ velja $\vec{X} \sim N(\vec{\mu}, \Sigma)$ in naj bo $A: \mathbb{R}^n \to \mathbb{R}^n$ obraljiva matrika. Dalje naj bo $\vec{\nu} \in \mathbb{R}^n$. Tedaj

$$A\vec{X} + \vec{\nu} \sim \mathcal{N}(A\vec{\mu} + \vec{\nu}, A\Sigma A^T).$$

4 PRIČAKOVANA VREDNOST zveznih slučajnih spremenljivk in vektorjev

Definicija 4.1. Naj bo X slučajna spremenljivka z "zvezno" gostoto f_X : $\mathbb{R} \to [0,\infty)$. *Pričakovana vrednost* slučajne spremenljivke X je

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f_X \, dx,$$

če integral absolutno konvergira.

Za slučajni vektor $\vec{X} = (X_1, \dots, X_n)$ definiramo pričakovano vrednost po komponentah

$$\mathbb{E}(\vec{X}) = (\mathbb{E}(X_1), \dots, \mathbb{E}(X_2)) \in \mathbb{R}^n.$$

Podobno definiramo tudi pričakovano vrednost slučajnih matrik.

4.1 Pričakovana vrednost funkcij slučajnih spremenljivk in vektorjev

Trditev 4.1. Naj bo $g: \mathbb{R} \to \mathbb{R}$ (ali $g: (a,b) \to (c,d)$) zvezna funkcija. Tedaj je

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx,$$

če obstaja.

Posledica. Za $p \neq 0$ velja:

$$\mathbb{E}(|x|^p) = \int_0^\infty |z|^p (f_X(z) + f_X(-z)) \, dz = \dots = \int_{-\infty}^\infty |x|^p f_X(x) \, dx.$$

Trditev 4.2. Naj bo $h: \mathbb{R}^2 \to \mathbb{R}$ (oziroma $h: D \to \mathbb{R}$ v primeru, da $\mathbb{P}((X,Y) \in D) = 1)$ zvezna funkcija in (X,Y) slučajni vektor z gostoto $f_{(X,Y)}$. Tedaj velja

$$\mathbb{E}(h(X,Y)) = \int_{R^2 \ (ali \ D)} h(x,y) f_{(X,Y)}(x,y) \, dx \, dy,$$

če obstaja.

Posledica.

$$\mathbb{E}(XY) = \int_{\mathbb{R}} x \cdot y \cdot f_{(X,Y)}(x,y) \, dx \, dy,$$

če integral absolutno konvergira.

Opomba. Če sta X in Y neodvisni slučajni spremenljivki, za kateri obstajata $\mathbb{E}(X)$ in $\mathbb{E}(Y)$, potem obstaja $\mathbb{E}(XY)$ in je

$$\mathbb{E}(XY) = \mathbb{E}(X) \cdot \mathbb{E}(Y).$$

Posledica (Aditivnosti pričakovane vrednosti). Če je $X \leq Y$ (z verjetnostjo 1), velja

$$\mathbb{E}(X) \leq \mathbb{E}(Y)$$

če $\mathbb{E}(|Y|)$ < ∞).

Izrek 4.1. Naj za slučajni spremenljivki X in Y velja $\mathbb{E}(X^2)<\infty$ in $\mathbb{E}(Y^2)<\infty$. Tedaj obstaja $\mathbb{E}(XY)$ in velja

$$\mathbb{E}(|XY|) \ \leq \ \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}.$$

Enakost nastopi $\iff \frac{Y}{\sqrt{\mathbb{E}(Y^2)}} = \pm \frac{X}{\sqrt{\mathbb{E}(X^2)}}$ skoraj gotovo.

Posledica. Če je $\mathbb{E}(X^2) < \infty$, je $\mathbb{E}(|X|) < \infty$ in

$$\mathbb{E}(|X|) \leq \sqrt{\mathbb{E}(X^2)}.$$

4.2 Disperzija, kovarianca in variančno-kovariančno matrika

Definicija 4.2. Disperzija (razpršenost, varianca) slučajne spremenljivke X je

$$\mathbb{E}((X - \mathbb{E}(X))^2),$$

če ta pričakovana vrednost obstaja. Ta obstaja, če obstaja $\mathbb{E}(X^2)$ in tedaj velja

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Definicija 4.3. Standardni odklon slučajne spremenljivke X definiramo kot

$$\sigma(X) = \sigma_X = \sqrt{Var(X)}.$$

Pripomnimo, da ima $\sigma(X)$ iste enote kot X in je zato $\sigma(X)$ "količina" ki je neposredno primerljiva z X.

Trditev 4.3 (Lastnosti variance). Naj za slučajno spremenljivko X obstaja $\mathbb{E}(X^2)$ (torej obstaja tudi Var(X)):

- $Var(X) \geq 0$ in $Var(X) = 0 \iff X \equiv \mathbb{E}(X)$ skoraj gotovo,
- Var(X) je minimum funkcije $a \mapsto \mathbb{E}((X-a)^2)$,
- $Var(aX + b) = a^2Var(X)$,
- Var(X + Y) = Var(X) + Var(Y), če sta X in Y neodvisni.

Komentar. Vemo, da je σ^2 v $\mathcal{N}(\mu, \sigma^2)$ disperzija.

Opomba. Za *zvezno* slučajno spremenljivko X z gostoto f_X je

$$Var(X) = \int_{-\infty}^{\infty} (x - \mathbb{E}(X))^2 f_X(x) dx.$$

Definicija 4.4. Kovarianca slučajnih spremenljivk X in Y je

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))),$$

če obstaja. Cov(X,Y) obstaja, če obstajajo $\mathbb{E}(X),~\mathbb{E}(Y),~\mathbb{E}(XY).$ Če je tako, velja

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Če sta X in Y neodvisni in imata pričakovano vrednost, potem

$$Cov(X,Y) = 0.$$

Trditev 4.4 (Lastnosti kovariance).

 \bullet Cov(X,Y)obstaja, če obstajata Var(X) in Var(Y) ter velja Cauchy-Schwarzova neenakost

$$|Cov(X,Y)| \le \sqrt{Var(X)Var(Y)} = \sigma(X)\sigma(Y),$$

enakost nastopi $\iff \frac{Y - \mathbb{E}(Y)}{\sigma(Y)} = \pm \frac{X - \mathbb{E}(X)}{\sigma(X)}$ skoraj gotovo. V tem primeru pravimo, da sta X in Y skoraj gotovo linearno povezani.

- Cov(X, X) = Var(X)
- Kovarianca je *simetrična bilinearna* funkcija. Dovolj je preveriti bilinearnost v eni spremenljivki.
- Če ima (X,Y) zvezno gostoto f_X , potem je

$$Cov(X,Y) = \iint_{\mathbb{D}^2} (x - \mathbb{E}(X))(y - \mathbb{E}(Y)) f_{(X,Y)}(x,y) dx dy.$$

• Če imata X in Y disperzijo, jo ima tudi X + Y in velja

$$Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y).$$

Posplošitev na disperzijo vrste $X_1 + \ldots + X_n$:

$$Var(X_1 + ... + X_n) = \sum_{i=1}^{n} Var(X_i) + 2 \sum_{1 \le i < j \le n} Cov(X_i, X_j)$$

Definicija 4.5. Variančno-kovariančna matrika slučajnega vektorja $\vec{X} = (X_1, \ldots, X_n)$ je matrika $Var(\vec{X}) \in \mathbb{R}^{n \times n}$ z elementi

$$[Var(\vec{X})]_{ij} = Cov(X_i, X_j).$$

To je simetrična matrika z diagonalnimi elementi $Var(X_1), \dots, Var(X_n)$.

Definicija 4.6. Pearsonov korelacijski koeficient slučajnih spremenljivk X in Y z disperzijo je

$$\rho(X,Y) \ = \ \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)} \in [-1,1].$$

Definicija 4.7. Slučajni spremenljivki X in Y sta nekorelirani natanko takrat, ko

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y).$$

Vidimo:

- \bullet Če sta X in Y neodvisni slučajni spremenljivki s pričakovano vrednostjo, sta nekorelirani.
- Obrat v splošnem ne drži, drži pa v primeru dvorazsežne normalno porazdeljenega slučajnega vektorja.
- Če imata X in Y disperzijo, sta nekorelirani $\iff \rho(X,Y) = 0.$

5 POGOJNE PORAZDELITVE in POGOJNA PRIČAKOVANA VREDNOST

Definicija 5.1. Naj bo $\mathcal{B} \subseteq \mathbb{R}$ Borelova množica. Pogojna verjetnost, da Y zavzame vrednost v \mathcal{B} pri pogoju X = x je

$$\mathbb{P}(Y \in \mathcal{B} \mid X = x) = \lim_{h \searrow 0} \mathbb{P}(Y \in \mathcal{B} \mid X \in (x - h, x + h)) =$$

$$= \lim_{h \searrow 0} \frac{\mathbb{P}(Y \in \mathcal{B}, X \in (x - h, x + h))}{\mathbb{P}(X \in (x - h, x + h))},$$

če ta limita obstaja.

Trditev 5.1. Naj ima (X,Y) "zvezno" gostoto $f_{(X,Y)}$ in naj bo $f_X(x)$ zvezna v x. Tedaj je

$$\mathbb{P}(Y \in \mathcal{B} \mid X = x) = \int_{\mathcal{B}} \frac{f_{(X,Y)}(x,y)}{f_{X}(x)} \, dy.$$

Opomba. Če sta X, Y neodvisni, je

$$f_{(Y|X)}(y \mid x) = f_Y(y).$$

Brez privzetka zveznosti je

$$\mathbb{P}(Y \in \mathcal{B} \mid X = x) = \mathbb{P}(Y = \mathcal{B}).$$

Trditev 5.2. Velja tako imenovani zakon popolne verjetnosti:

$$\mathbb{P}(Y \in \mathcal{B}) = \int_{-\infty}^{\infty} \mathbb{P}(Y \in \mathcal{B} \mid X = x) f_X(x) dx.$$

Definicija 5.2. Pogojna pričakovana vrednost Y, pogojna na X=x, je pričakovana vrednost pogojne porazdelitve $(Y \mid X=x)$. V primeru, ko ima (X,Y) "zvezno" gostoto, to pomeni

$$\mathbb{E}(Y \mid X = x) = \int_{-\infty}^{\infty} y \cdot f_{(Y|X)}(y \mid x) \, dy.$$

Trditev 5.3. Zakon popolne pričakovane vrednosti:

$$\mathbb{E}(Y) = \int_{-\infty}^{\infty} \mathbb{E}(Y \mid X = x) f_X(x) \, dx.$$

Komentar. Velja tudi:

$$\mathbb{E}(g(Y) \mid X = x) = \int_{-\infty}^{\infty} g(y) f_{(Y|X)}(y \mid x) \, dy$$
in
$$\mathbb{E}(g(Y)) = \int_{-\infty}^{\infty} \mathbb{E}(g(y) \mid X = x) f_X(x) \, dx.$$

Definicija 5.3. Pogojna pričakovana vrednost $\mathbb{E}(Y \mid X)$ je slučajna spremenljivka, definirana¹ kot:

$$\mathbb{E}(Y \mid X)(\omega) = \mathbb{E}(Y \mid X = X(\omega)).$$

Če pišemo $g(x)=\mathbb{E}(Y\mid X=x),$ je $\mathbb{E}(Y\mid X)=g(X)$ transformacija slučajne spremenljivke X.

Sledi:

$$\mathbb{E}(\mathbb{E}(Y \mid X)) = \mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(y) f_X(x) dx =$$
$$= \int_{-\infty}^{\infty} \mathbb{E}(Y \mid X = x) f_X(x) dx = \mathbb{E}(Y).$$

Pravimo, da je $\mathbb{E}(Y \mid X)$ najboljši približek za Y, če poznamo X.

 $^{^1\}mathrm{Na}$ istem verjetnostnem prostoru.

6 MOMENTI in MOMENTNO-RODOVNA FUNKCIJA

Definicija 6.1. Naj bo X slučajna spremenljivka in naj bosta $k \in \mathbb{N}$ in $a \in \mathbb{R}$. Moment slučajne spremenljivke X glede na a je

$$m_k(a) = \mathbb{E}((X-a)^k),$$

če obstaja, torej če $\mathbb{E}(|X-a|^k)<\infty.$

V zveznem primeru je

$$m_k(a) = \int_{-\infty}^{\infty} (x-a)^k f(x) dx,$$

če integral absolutno konvergira.

Pravimo:

- $m_k(0) \dots k$ -ti $za\check{c}etni$ moment
- $m_k(\mathbb{E}(k)) \dots k$ -ti centralni moment

Trditev 6.1. Če obstaja $m_n(a)$, potem obstajajo $m_k(a)$ za k < n.

Trditev 6.2. Če obstaja $m_n(a)$ za neki $a \in \mathbb{R}$, obstaja $m_n(b)$ za $b \in \mathbb{R}$.

Posledica. Če m_n obstaja, je

$$m_n(b) = \sum_{k=0}^{\infty} \binom{n}{k} (a-b)^{n-k} m_n(a).$$

Izrek 6.1. Naj obstajajo vsi momenti $m_k = \mathbb{E}(X^k)$ in naj vrsta

$$\sum_{k=0}^{\infty} \frac{1}{k!} t^k \mathbb{E}(X^k)$$

absolutno konvergira za neki t>0. Potem je porazdelitev slučajne spremenljivke X enolično določena z momenti. Če ima Y enako lastnost in velja

$$\mathbb{E}(X^k) = \mathbb{E}(Y^k) \quad \forall k,$$

sta X in Y enako porazdeljeni.

Komentar. To pomeni, da je komulativna porazdelitvena funkcija F_X : $\mathbb{R} \to [0,1]$ določena s *števnim* naborom števil.

Definicija 6.2. Momentno-rodovna funkcija slučajne spremenljivke X je funkcija

$$M_X(t) = \mathbb{E}(e^{tX}),$$

ki je definirana za tista realna števila $t \in \mathbb{R},$ za katera pričakovana vrednost obstaja. Vedno je

$$M_X(0) = \mathbb{E}(1) = 1.$$

Za $t\neq 0$ je $y(x)=e^{tx}$ zvezno odvedljiva bijekcija $\mathbb{R}\to (0,\infty)$ in za slučajno spremenljivko X z gostoto f_X velja

$$M_X(t) = \sum_{k=0}^{\infty} \frac{1}{k!} t^k \mathbb{E}(X^k).$$

To pomeni, da je M_X analitična; porazdelitev slučajne spremenljivke X je enolično določena z momenti.

Trditev 6.3.

$$M_{aX+b}(t) = e^{tb} M_X(at)$$

Posledica.

$$M_{\mathcal{N}(\mu,\sigma^2)}(t) = M_{\sigma \cdot \mathcal{N}(0,1) + \mu}(t) = e^{t\mu} \cdot e^{\frac{(\sigma t)^2}{2}}$$

Trditev 6.4. Če sta slučajni spremenljivki X in Y neodvisni, velja

$$M_{X+Y}(t) = M_X(t) \cdot M_Y(t).$$

Lema 1. Če sta slučajni spremenljivki X in Y neodvisni in $f,g:\mathbb{R}\to\mathbb{R}$ (ali $f:(a,b)\to\mathbb{R},\ g:(c,d)\to\mathbb{R})$ zvezni funkciji, potem sta f(X) in g(Y) neodvisni:

$$\mathbb{P}(f(X) \in \mathcal{B}, \ g(Y) \in \mathcal{C}) = \mathbb{P}(X \in f^{-1}(\mathcal{B}), \ Y \in g^{-1}(\mathcal{C})) =$$
$$= \mathbb{P}(X \in f^{-1}(\mathcal{B})) \cdot \mathbb{P}(Y \in g^{-1}(\mathcal{C})),$$

kjer smo pri zadnjem enačaju upoštevali neodvisnost.

7 LIMITNI IZREKI

Izrek 7.1 (Krepki zakon velikih števil). Verjetnost tistih vzorcev $s = (\omega_1, \omega_2, \omega_3, \ldots) \in S$, za katere je

$$\lim_{n \to \infty} \frac{X(\omega_1) + \ldots + X(\omega_n)}{n} = \lim_{n \to \infty} \frac{X_1(s) + \ldots + X_n(s)}{n} = \mathbb{E}(x),$$

je enaka 1.

Trditev 7.1 (Markova neenakost). Naj bo X slučajna spremenljivka s pričakovano vrednostjo in a > 0. Tedaj je

$$\mathbb{P}(|X| > a) \le \frac{1}{|a|} \mathbb{E}(|X|).$$

Posledica (Čebiševa neenakost). Naj bo $\mathbb{E}(X^2) < \infty$ in bo $\varepsilon > 0$. Tedaj je

$$\mathbb{P}(|X - \mathbb{E}(X)| > \varepsilon) = \frac{Var(X)}{\varepsilon^2}.$$

Izrek 7.2 (Šibki zakon velikih števil Markova). Naj bodo X_1, X_2, \ldots neodvisne in enako porazdeljene sličajne spremenljivka z varianco $\sigma^2 < \infty$ in pričakovano vrednostjo μ . Tedaj $\forall \varepsilon > 0$ velja

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{X_1 + \ldots + X_n}{n} - \mu \right| > \varepsilon \right) = 0.$$

Definicija 7.1. Naj bodo Y, Y_1, Y_2, Y_3, \ldots slučajne spremenljivke, definirane na skupnem verjetnostnem prostoru. Pravimo, da zaporedje $\{Y_n\}_n$ verjetnostno konvergira k Y, pišemo $Y_n \xrightarrow[n \to \infty]{p} Y$, če $\forall \varepsilon > 0$ velja

$$\lim_{n \to \infty} \mathbb{P}(|Y_n - Y| > \varepsilon) = 0.$$

Komentar. Če so X_1, X_2, \ldots neodvisne enako porazdeljene slučajne spremenljivke s pričakovano vrednostjo μ in disperzijo σ^2 , potem

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow[n \to \infty]{p} \mu.$$

 $\forall \varepsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}(|\overline{X} - \mu| > \varepsilon) = 0.$$

Definicija 7.2. Zaporedje $\{Y_n\}_n$ konvergira *skoraj gotovo* k $Y, Y_n \xrightarrow[n \to \infty]{s.g.} Y$, če je

$$\mathbb{P}(\lim_{n \to \infty} Y_n = Y) = \mathbb{P}(\{s \mid \exists \lim_{n \to \infty} Y_n(s) = Y(s)\}) = 1.$$

Izrek 7.3 (Krepki zakon velikih števil Kolmogorova). Naj bodo X_1, X_2, \ldots neodvisne in enako porazdeljene slučajne spremenljivke s pričakovano vrednostjo μ . Tedaj velja

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow[n \to \infty]{s.g.} \mu.$$

Komentar. • obstoj variance ni potreben

• za $X: \Omega \to \mathbb{R}$ smo konstruirali $X_i: \Omega^{\mathbb{N}} \to \mathbb{R}$

Trditev 7.2. Iz *skoraj gotove* konvergence sledi konvergenca v *verjetnosti*.

Trditev 7.3. Naj bo $g: \mathbb{R} \to \mathbb{R}$ zvezna funkcija:

- (1) Če velja $Y_n \xrightarrow[n\to\infty]{s.g.} Y_n$, potem $g(Y_n) \xrightarrow[n\to\infty]{s.g.} g(Y)$.
- (2) Če velja $Y_n \xrightarrow[n \to \infty]{p} Y_n$, potem $g(Y_n) \xrightarrow[n \to \infty]{p} g(Y)$.

Izrek 7.4 (Centralni limitni izrek). Naj bo X_1, X_2, \ldots zaporedje neodvisnih in enako porazdeljenih slučajnih spremenljivk s pričakovano vrednostjo μ in varianco $\sigma^2 < \infty$. Tedaj $\forall x \in \mathbb{R}$:

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\frac{X_1 + \ldots + X_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} \le x\right) = \Phi(x) = \mathbb{P}(\mathcal{N}(0, 1) \le x).$$

Komentar. $\frac{X_1+\ldots+X_n}{n}-\mu=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ je standardizacija od \overline{X} . Izjava centralnega limitnega izreka pravi, da komulativne porazdelitvene funkcije standardiziranih vzorčnih povprečij po točkah konvergirajo k komulativni porazdelitveni funkciji Φ . Za realni števili a < b sledi

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\in(a,b]\right)\ =\ \mathbb{P}\left(\overline{X}\in(\underbrace{\mu+a\frac{\sigma}{\sqrt{n}}},\underbrace{\mu+b\frac{\sigma}{\sqrt{n}}}]\right).$$

Torej:

$$\mathbb{P}(\overline{X} \in (c,d]) \approx \Phi\left(\frac{d-\mu}{\frac{\sigma}{\sqrt{n}}}\right) - \Phi\left(\frac{c-\mu}{\frac{\sigma}{\sqrt{n}}}\right) = F_{\mathcal{N}(\mu, \frac{\sigma^2}{n})}(d) - F_{\mathcal{N}(\mu, \frac{\sigma^2}{n})}(c)$$

oziroma

$$\mathbb{P}(\overline{X} \in (c,d]) \approx \mathbb{P}\left(\mathcal{N}\left(\mu,\frac{\sigma^2}{n}\right) \in (c,d]\right) \text{ za velike } n.$$

Rečemo tudi

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

Izrek 7.5 (Izrek o zveznosti). Če za slučajne spremenljivke $Y_1, Y_2, ...,$ ki imajo momentno-rodovne funkcije na nekem intervalu $(-\delta, \delta), \delta > 0$, velja

$$\lim_{n \to \infty} M_{Y_n}(t) = e^{\frac{t^2}{2}} = M_{\mathcal{N}(0,1)}(t) \quad \forall t \in (-\delta, \delta),$$

potem $\forall x \in \mathbb{R}$ velja

$$\lim_{n \to \infty} \mathbb{P}(Y_n \le x) = \Phi(x).$$

8 TOČKOVNO OCENJEVANJE

Definicija 8.1. Naj bo c realnoštevilska "karakteristika" proučevane porazdelitve². Cenilka za c je funkcija slučajnega vzorca $T = T(X_1, \ldots, X_n)$, s katero ocenjujemo c. Cenilka je določena s funkcijo $T : \mathbb{R}^n \to \mathbb{R}$; za $T(X_1, \ldots, X_n) = \overline{X}$ je

$$T(x_1,\ldots,x_n) = \frac{1}{n}(x_1+\ldots+x_n).$$

Cenilka T karakteristike c je nepristranska, če velja

$$\mathbb{E}(T(X_1,\ldots,X_n)) = c(X)$$

za vsako dopustno porazdelitev. Natančneje: za vsako dopustno porazdelitev (k.p.f.) $F \in \mathcal{F}$ in vsak vzorec $X_1, \ldots, X_n \stackrel{NEP}{\sim} F$ velja

$$\mathbb{E}(T(X_1,\ldots,X_n)) = c(F).$$

Definicija 8.2. Naj bosta U in V nepristranski cenilki za c(X) v modelu \mathcal{F} . Tedaj ima U enakomerno manjšo varianco od V, če velja

$$Var(U(X_1, ..., X_n)) \leq Var(V(X_1, ..., X_n))$$

 $\forall F \in \mathcal{F} \text{ in vsak vzorec } X_1, \dots, X_n \stackrel{NEP}{\sim} F.$

Definicija 8.3. Zaporedje cenilk T_n za karakteristike c, je dosledno (angl. consistent), če $\forall F \in \mathcal{F}$ in vsako neskončno zaporedje $X_1, X_2, \dots \stackrel{NEP}{\sim} F$ zaporedje $T_n(X_1, \dots, X_n)$ konvergira h konstanti c(F) verjetnostno.

Komentar. Če X_1, X_2, \ldots generiramo kot neodvisne replikacije slučajne spremenljivke $X: \Omega \to \mathbb{R}$, lahko X_i razumemo kot funkcijo na prostoru neskončnih vzorcev

$$S \ = \ \Omega^{\mathbb{N}} \ = \ \{ \text{neskončna zaporedje iz } \Omega \}.$$

²npr. $c = \mathbb{E}(X)$, c = Var(X), $c = \mathbb{P}(X \ge 2)$, ...

8.1 Metode za konstrukcijo cenilk

Metoda 1 (Metoda momentov). Zanima nas karakteristika c(X) proučevane slučajne spremenljivke $X: \Omega \to \mathbb{R}$ v nekem modelu. Če je c(X) mogoče izraziti z momenti kot $c(X) = g(m_1, m_2, \ldots, m_2)$, potem c(X) ocenjujemo s cenilko $\hat{c} = g(\hat{m}_1, \hat{m}_2, \ldots, \hat{m}_r)$. Če je g zvezna, je cenilka \hat{c} dosledna. V praksi imamo najpogosteje parametrični model z vektorskim parametrom $\vartheta = (\vartheta_1, \ldots, \vartheta_r)$, kjer izrazimo

$$m_1 = m_1(\vartheta_1, \dots, \vartheta_r)$$

$$\vdots$$

$$m_r = m_r(\vartheta_1, \dots, \vartheta_r)$$

Privzemimo, da znamo zgornji sistem razrešiti na ϑ z vektorsko funkcijo $(\vartheta_1,\ldots,\vartheta_r)=(g_1(m_1,\ldots,m_r),\ldots,g_r(m_1,\ldots,m_r))$. Potem za ϑ vzamemo cenilko

$$\hat{\vartheta} = (g_1(\hat{m}_1, \dots, \hat{m}_r), \dots, g_r(\hat{m}_1, \dots, \hat{m}_r)).$$

Že vemo: če je $g = (g_1, \ldots, g_r)$ zvezna, je $\hat{\vartheta}$ dosledna.

Metoda 2 (Metoda največjega verjetja). Privzemimo parametrični model s prostorom parametrov $\Theta \subset \mathbb{R}^r$ in splošnim parametrom $\vartheta = (\vartheta_1, \dots, \vartheta_r) \in \Theta$. Dalje privzemimo, da imajo dopustne porazdelitve verjetnostne funkcije (v diskretnem modelu) oz. gostote (v zveznem modelu) oblike

$$f(x; \vartheta) = f(x; \vartheta_1, \dots, \vartheta_r).$$

Definicija 8.4. Funkcija verjetja za vzorec velikosti n je $L: \mathbb{R}^n \times \Theta \to [0, \infty)$,

$$L(x_1,\ldots,x_n; \vartheta) = f(x_1; \vartheta) \cdot \ldots \cdot f(x_n; \vartheta).$$

Kot funkcija vzorca $\vec{x} = (x_1, \dots, x_n)$ je L gostota vektorja (x_1, \dots, x_n) . V teoriji verjetja L pri danem \vec{x} gledamo kot funkcijo parametra ϑ . Oceno za ϑ pri danem \vec{x} po metodi najmanjših kvadratov je tak $\hat{\vartheta} \in \Theta$, pri katerem ima $L(\vec{x}; \vartheta)$ maksimum, torej velja:

$$L(\vec{x}; \ \hat{\vartheta}) = \max_{\vartheta \in \Theta} L(\vec{x}; \ \vartheta).$$

Oceno $\hat{\vartheta}$ analitično tipično izračunamo z odvajanjem. Zaradi preprostosti raje odvajamo logaritemsko funkcijo verjetja:

$$\ln(L(\vec{x}; \vartheta)) = \sum_{i=1}^{n} \ln f(x_i; \vartheta).$$

Stacionarne točke funkcije $\ln L$ imenujemo rešitve enačb verjetja (EV)

$$\frac{\partial}{\partial \vartheta_j}(\ln L) = 0, \quad 1 \le j \le n.$$

Definicija 8.5 (Cenilka največjega verjetja). Če za vse možne (v diskretnem primeru) ali skoraj vse (v zveznem primeru) realizacije \vec{x} slučajnega vektorja \vec{X} obstaja ocena $\hat{\vartheta}(\vec{x})$ za ϑ po metodi največjega verjetja, to je

$$\max_{\vartheta \in \overline{\Theta}} L(\vec{x}; \ \vartheta \ = \ L(\vec{x}; \ \hat{\vartheta}(\vec{x})),$$

potem funkciji $\hat{\vartheta}: \mathbb{R}^n \to \overline{\Theta}$ pravimo cenilka največjega verjetja (CNV) za ϑ .

Opomba. Imamo parametrični model s parametričnim prostorom Θ .

- Množica "možnih" vrednosti se ne spreminja s ϑ .
- Za "skoraj vse vrednosti" se ne spreminja s ϑ : če je $D_{\hat{\vartheta}}$ definicijsko območje, mora veljati

$$\mathbb{P}((X_1,\ldots,X_n)\in D_{\hat{\vartheta})} = 1$$

za vsako dopustno porazdelitev, $\forall \vartheta$ in $\forall X_i \overset{NEP}{\sim} \vartheta$.

Izrek 8.1. Naj bodo gostote (verjetnostne funkcije) $f(\vec{x}; \vartheta)$ dvakrat zvezno parcialno odvedljive na ϑ_j , naj bo $\{\vec{x} \mid f(\vec{x}; \vartheta) > 0\}$ neodvisna od ϑ in naj veljajo še dodatni blagi regularnostni privzetki. ČE imajo (EV) enolične rešitve za vse dovoolj velike vzorce, ki jih označimo $\hat{\vartheta} = \hat{\vartheta}(x_1, \ldots, x_n)$, potem je $\hat{\vartheta}(x_1, \ldots, x_n)$ dosledno zaporedje cenilk za ϑ .

9 INTERVALSKO OCENJEVANJE

Definicija 9.1. Naj bo $c = c(X) = c(F_X)$ proučevana karakteristika slučajne spremenljivke X. Naj bo $\alpha \in (0,1)$ vnaprej podano ("majhno") in naj bo n velikost vzorca. Interval zaupanja za c stopnje zaupanja $1 - \alpha$ je prireditev $\vec{X} = (X_1, \ldots, X_n) \mapsto [L(X_1, \ldots, X_n), U(X_1, \ldots, X_n)]$ za katero velja:

$$\mathbb{P}([L(X_1,\ldots,X_n),U(X_1,\ldots,X_n)]\ni c(F)) \geq 1-\alpha$$

za vsako dopustno porazdelitev F in $\forall X_1, \dots, X_n \stackrel{NEP}{\sim} F$.

Komentar. Interval zaupanja je določen s funkcijama $L, U : \mathbb{R}^n \to \mathbb{R}$.

Metoda 3 (Intervali zaupanja v normalnih modelih).

i) Interval zaupanja za μ pri poznani disperziji σ^2

$$X_1, \dots, X_n \stackrel{NEP}{\sim} \mathcal{N}(\mu, \sigma^2) \implies \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$$

Privzemimo, da za $a < b \ (a, b \in \mathbb{R})$ velja

$$\mathbb{P}(\mathcal{N}(0,1) \in [a,b]) = \Phi(b) - \Phi(a) = 1 - \alpha.$$

Tedaj

$$\mathbb{P}\left(a \leq \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \leq b\right) \ = \ 1 - \alpha \quad \Longleftrightarrow \quad \mathbb{P}\left(\overline{X} - a\frac{\sigma}{\sqrt{n}} \geq \mu \geq \overline{X} - b\frac{\sigma}{\sqrt{n}}\right) \ = \ 1 - \alpha.$$

To pomeni, da je $[\overline{X}-b\frac{\sigma}{\sqrt{n}},\overline{X}-a\frac{\sigma}{\sqrt{n}}]$ interval zaupanja za μ stopnje zaupanja $1-\alpha$. Širina intervala znaša $(b-a)\frac{\sigma}{\sqrt{n}}$. Zaradi simetričnosti gostote $f_{\mathcal{N}(0,1)}$, je minimum dosežen pri a=-b.

$$\implies \Phi(b) = \Phi(b_{\text{sim}}) = 1 - \frac{\alpha}{2} \text{ in } b = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) =: z_{\frac{\alpha}{2}}$$

Standardni interval zaupanja je torej

$$\left[\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right].$$

ii) Interval zaupanja za μ z neznano disperzijo σ^2 Neznani σ^2 ocenimo s

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Uporabimo Studentovo porazdelitev z n-1 prostorskimi stopnjami:

$$t_{n-1} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}.$$

Interval zaupanja za μ stopnje zaupanja $1-\alpha$

$$\left[\overline{X} - b\frac{S}{\sqrt{n}}, \overline{X} - a\frac{S}{\sqrt{n}}\right]$$

dobimo, če za a < b velja

$$\mathbb{P}(t_{n-1} \in [a,b]) = F_{t_{n-1}}(b) - F_{t_{n-1}}(a) = 1 - \alpha.$$

Ker je tudi t_{n-1} simetrična porazdelitev, minimum dosežemo pri

$$-a = b = F_{t_{n-1}}^{-1}(1 - \frac{\alpha}{2}) = t_{n-1;\frac{\alpha}{2}}.$$

Standardni interval zaupanja:

$$\left[\overline{X} - t_{n-1;\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + t_{n-1;\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right].$$

iii) Interval zaupanja za σ^2 zznano pričakovano vrednostjo μ Za $X_i \stackrel{NEP}{\sim} \mathcal{N}(\mu,\sigma^2)$ je

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi_n^2.$$

Če velja $\mathbb{P}(\chi_n^2 \in [a,b]) = 1 - \alpha,$ je

$$\mathbb{P}\left(a \le \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \le b\right) = 1 - \alpha$$

oziroma

$$\mathbb{P}\left(\left[\frac{1}{b}\sum_{i=1}^{n}(X_{i}-\mu)^{2},\frac{1}{a}\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right]\right) = 1-\alpha.$$

Širina dobljenega intervala je $\left(\frac{1}{a}-\frac{1}{b}\right)\sum_{i=1}^n(X_i-\mu)^2$, z minimizacijo dobimo $\frac{1}{a}-\frac{1}{b}$ pri vezi

$$\mathbb{P}(\chi_n^2 \in [a, b]) = F_{\chi_n^2}(b) - F_{\chi_n^2}(a) = 1 - \alpha.$$

Izrek 9.1 (Student, Fisher). Naj bodo $X_1, \ldots, X_n \overset{NEP}{\sim} \mathcal{N}(\mu, \sigma^2)$. Tedaj sta

$$\overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$$
 in $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

neodvisni slučajni spremenljivki. Velja

$$\frac{n-1}{\sigma^2} \cdot S^2 = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 \sim \chi_{n-1}^2 = \Gamma\left(\frac{n-1}{2}, \frac{1}{2} \right).$$

Definicija 9.2. Naj bosta Z in K neodvisni slučajni spremenljivki in $Z \sim \mathcal{N}(0,1)$ ter $K \sim \chi_k^2$. Tedaj pravimo, da ima slučajna spremenljivka $\frac{Z}{\sqrt{\frac{K}{k}}}$ Studentovo porazdelitev s k prostorskimi stopnjami. Označimo jo s t_k .

Komentar. Porazdelitev t_k je zaradi neodvisnosti funkcija porazdelitve slučajne spremenljivke Z in slučajne spremenljivke K. Takoj sledi, da je t_k simetrična okrog 0. Očitno sta $\frac{Z}{\sqrt{\frac{K}{k}}}$ in $\frac{-Z}{\sqrt{\frac{K}{k}}}$ enako porazdeljeni.

Posledica. Slučajna spremenljivka

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

(tu je $S = \sqrt{S^2}$).

Metoda 4 (Naprej: Intervali zaupanja v normalnih modelih).

iv) Interval zaupanja za σ^2 z neznano pričakovano vrednostjo μ Za $X_i \stackrel{NEP}{\sim} \mathcal{N}(\mu,\sigma^2)$ je

$$\sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 \sim \chi_{n-1}^2.$$

Če velja $\mathbb{P}(\chi^2_{n-1} \in [a,b]) = 1-\alpha,$ je

$$\mathbb{P}\left(a \le \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \le b\right) = 1 - \alpha$$

oziroma

$$\mathbb{P}\left(\left[\frac{1}{b}\sum_{i=1}^{n}(X_i-\overline{X})^2, \frac{1}{a}\sum_{i=1}^{n}(X_i-\overline{X})^2\right]\right) = 1-\alpha.$$

Širina dobljenega intervala je $\left(\frac{1}{a}-\frac{1}{b}\right)\sum_{i=1}^n(X_i-\overline{X})^2$, z minimizacijo dobimo $\frac{1}{a}-\frac{1}{b}$ pri vezi

$$\mathbb{P}(\chi_{n-1}^2 \in [a,b]) \ = \ F_{\chi_{n-1}^2}(b) - F_{\chi_{n-1}^2}(a) \ = \ 1 - \alpha.$$

10 PREIZKUŠANJE DOMNEV

Definicija 10.1. Statistična domneva (hipoteza) je izjava, da porazdelitev slučajne spremenljivke X pripada neki podmnožici $\mathcal{H} \subseteq \mathcal{F}$.

Definicija 10.2. Preizkus domneve \mathcal{H} proti alternativi \mathcal{A} za vzorec velikosti n je odločitveno pravilo, ki na podlagi realizacije n neodvisnih replikacij proučevane slučajne spremenljivke odloči, ali \mathcal{H} zavrnemo (in s tem sprejmemo \mathcal{A}) ali je ne zavrnemo (oz. jo "sprejmemo").

Komentar. Verjetnost napake 1. vrste je funkcija, definirana na domnevi \mathcal{H} . Če je \mathcal{H} sestavljena iz ene porazdelitve ("enostavna"), je to v resnici eno število.