Apprentissage par Renforcement Hors Ligne (BATCH)

Alexandre Gerussi, Léo Pérard, Lucas Seguinot

M2 MOCAD - IIR

15 décembre 2015

Plan de l'exposé

- Introduction
- 2 Principes généraux
- 3 Kernel Based Approximate Dynamic Programming
- 4 Fitted Q-iteration
- 5 Least-Squares Policy Iteration

Pourquoi batch?

- en ligne: interactions libres, voir illimitées avec l'environnement
- pas toujours possible
 - sondages
 - "conduite de vélo": nécessite un opérateur humain
 - ?? : casse du matériel en cas d'échec

Types de batch

- pure batch
- growing batch
- semi-batch

Principes généraux

- utilisation maximale de l'expérience déjà acquise
- experience replay: faire converger sans explorer
- fitting: accélérer la propagation en globalisant les mises à jour

Kernel Based Approximate Dynamic Programming

Fitted Q-iteration

•

Least-Squares Policy Iteration

Équilibre et conduite d'un vélo

- rester debout et atteindre un but en vélo
- valeurs sous contrôle:
 - force rotatoire à appliquer au guidon
 - placement du centre de masse par rapport au vélo
- pure hors-ligne
- dizaine de milliers de trajectoires effectuées aléatoirement
- experience replay: quelques passes de l'ensemble des données font converger