HEC 2016

Sujet E 65

Exercice avec préparation 1

Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. On appelle $m\acute{e}diane$ de X tout réel m qui vérifie les deux conditions :

$$\mathbb{P}([X\leqslant m])\geqslant \frac{1}{2} \text{ et } \mathbb{P}([X\geqslant m])\geqslant \frac{1}{2}$$

On suppose que X suit la loi exponentielle de paramètre $\lambda > 0$.

1. Question de cours : Définition et propriétés de la loi exponentielle.

Démonstration.

• Une v.a.r. X suit la loi exponentielle de paramètre λ (où $\lambda \in \mathbb{R}_+^*$), notée $\mathcal{E}(\lambda)$, si une densité de X est la fonction f définie par

$$\forall x \in \mathbb{R}, \ f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$

 \bullet Sa fonction de répartition est la fonction F définie par

$$\forall x \in \mathbb{R}, \ F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$

 \bullet La v.a.r. X admet une espérance et une variance et :

$$\mathbb{E}(X) = \frac{1}{\lambda}$$
 et $\mathbb{V}(X) = \frac{1}{\lambda^2}$

 \bullet La v.a.r. X est une v.a.r. sans mémoire, c'est-à-dire :

$$\forall (t,h) \in \mathbb{R}^2_+, \ \mathbb{P}([X > t+h]) = \mathbb{P}([X > t]) \, \mathbb{P}([X > h])$$

Remarque Cette question de cours est un peu vague, notamment à travers le terme « propriétés ». Le jour J, il faut donc énumérer toutes les propriétés connues sur la loi exponentielle. Si besoin, le jury stoppera dans l'énumération.

2. a) Montrer que X admet une unique médiane m que l'on calculera.

Démonstration.

• On commence par chercher les réels m tel que : $\mathbb{P}([X \leq m]) \geq \frac{1}{2}$. Tout d'abord : $\mathbb{P}([X \leq m]) = F_X(m)$. Donc :

$$\mathbb{P}([X \leqslant m]) \geqslant \frac{1}{2} \iff 1 - e^{-\lambda m} \geqslant \frac{1}{2} \iff \frac{1}{2} \geqslant e^{-\lambda m}$$

$$\Leftrightarrow \ln\left(\frac{1}{2}\right) \geqslant -\lambda m \qquad \qquad (car \ la \ fonction \ ln \ est \ strictement \ croissante \ sur \]0, +\infty[)$$

$$\Leftrightarrow -\ln(2) \geqslant -\lambda m \iff \frac{\ln(2)}{\lambda} \leqslant m$$

• On détermine ensuite les réels m tel que : $\mathbb{P}([X \geqslant m]) \geqslant \frac{1}{2}$. Tout d'abord, comme X est une v.a.r. à densité :

$$\mathbb{P}([X \geqslant m]) = 1 - \mathbb{P}([X < m]) = 1 - \mathbb{P}([X \leqslant m]) = 1 - F_X(m) = \mathbf{X} - \left(\mathbf{X} - e^{-\lambda m}\right) = e^{-\lambda m}$$

On obtient alors:

$$\mathbb{P}([X\geqslant m])\geqslant \frac{1}{2} \quad \Leftrightarrow \quad \mathrm{e}^{-\lambda\,m}\geqslant \frac{1}{2}$$

$$\Leftrightarrow \quad -\lambda\,m\geqslant \ln\left(\frac{1}{2}\right) \qquad \qquad \begin{array}{c} (car\ la\ fonction\ \ln\ est\ strictement\\ croissante\ sur\]0,+\infty[) \\ \\ \Leftrightarrow \quad -\lambda\,m\geqslant -\ln(2)\ \Leftrightarrow \ m\leqslant \frac{\ln(2)}{\lambda} \end{array}$$

 \bullet Une médiane de X vérifie :

$$\left\{ \begin{array}{ll} \mathbb{P}([X\leqslant m])\geqslant \frac{1}{2} \\ \mathbb{P}([X\geqslant m])\geqslant \frac{1}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} m\geqslant \frac{\ln(2)}{\lambda} \\ m\leqslant \frac{\ln(2)}{\lambda} \end{array} \right. \Leftrightarrow m=\frac{\ln(2)}{\lambda}$$

La v.a.r.
$$X$$
 admet une unique médiane $m = \frac{\ln(2)}{\lambda}$.

b) Soit M la fonction définie sur \mathbb{R} , à valeurs réelles, telle que : $\forall x \in \mathbb{R}$, $M(x) = \mathbb{E}(|X - x|)$. Étudier les variations de la fonction M sur \mathbb{R} et montrer que m est l'unique point en lequel M atteint son minimum.

Démonstration.

Soit $x \in \mathbb{R}$.

• La fonction f_X est nulle en dehors de $[0, +\infty[$. Ainsi, d'après le théorème de transfert, la v.a.r. Y = |X - x| admet une espérance si et seulement si l'intégrale impropre $\int_0^{+\infty} |t - x| \, f_X(t) \, dt$ est absolument convergente., ce qui équivaut à démontrer sa convergence car l'intégrance est positive :

$$\forall t \in [0, +\infty[, |t - x| f_X(t) \geqslant 0]$$

• Soit $A \geqslant x$.

$$\int_0^A |t - x| f_X(t) dt = \int_0^x |t - x| f_X(t) dt + \int_x^A |t - x| f_X(t) dt$$
$$= \int_0^x -(t - x) f_X(t) dt + \int_x^A (t - x) f_X(t) dt$$

• D'une part :

$$\int_0^x (t - x) f_X(t) dt = \int_0^x t \lambda e^{-\lambda t} dt - x \int_0^x \lambda e^{-\lambda t} dt$$

$$= \int_0^x t \lambda e^{-\lambda t} dt - x \left[-e^{-\lambda t} \right]_0^x$$

$$= \int_0^x t \lambda e^{-\lambda t} dt - x (1 - e^{-\lambda x})$$

On calcule l'intégrale $\int_0^x t \lambda e^{-\lambda t} dt$ grâce à une intégration par parties (IPP).

Cette IPP est valide car les fonctions u et v sont de classe \mathcal{C}^1 sur [0,x]. On obtient :

$$\int_0^x t \, \lambda \, e^{-\lambda t} \, dt = \left[-t \, e^{-\lambda t} \right]_0^x + \int_0^x e^{-\lambda t} \, dt = -x \, e^{-\lambda x} + \left[-\frac{1}{\lambda} \, e^{-\lambda t} \right]_0^x$$
$$= -x \, e^{-\lambda x} - \frac{1}{\lambda} e^{-\lambda x} + \frac{1}{\lambda} = \frac{1}{\lambda} - \left(x + \frac{1}{\lambda} \right) e^{-\lambda x}$$

Finalement:

$$\int_0^x (t-x) f_X(t) dt = \frac{1}{\lambda} - \left(x + \frac{1}{\lambda}\right) e^{-\lambda x} - x + x e^{-\lambda x} = \frac{1}{\lambda} - x - \frac{1}{\lambda} e^{-\lambda x}$$

3. On suppose que le paramètre λ est inconnu. Soit α un réel vérifiant $0 < \alpha < 1$. Pour n entier de \mathbb{N}^* , soit (X_1, X_2, \dots, X_n) un n-échantillon de variables aléatoires indépendantes et de même loi que X. On pose pour tout $n \in \mathbb{N}^*$: $Z_n = \min(X_1, X_2, \dots, X_n)$.

a) Quelle est la loi de Z_n ?

b) Établir l'existence de deux réels c et d tels que : $\mathbb{P}\left(\left[Z_n \leqslant \frac{c}{\lambda}\right]\right) = \frac{\alpha}{2}$ et $\mathbb{P}\left(\left[Z_n \geqslant \frac{d}{\lambda}\right]\right) = \frac{\alpha}{2}$.

c) En déduire un intervalle de confiance du paramètre m au niveau de confiance $1-\alpha$.

Exercice sans préparation 1

Soit E un \mathbb{R} -espace vectoriel de dimension n et f un endomorphisme de E admettant n valeurs propres distinctes.

Montrer qu'un endomorphisme g de E vérifie $f \circ g = g \circ f$ si et seulement si les vecteurs propres de f sont des vecteurs propres de g.

Sujet E 82

Exercice avec préparation 2

On suppose que toutes les variables aléatoires qui interviennent dans l'exercice sont définies sur un même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

- 1. Question de cours : Loi uniforme sur un intervalle [a, b]; définition, propriétés.
- 2. Pour tout x réel, on note |x| la partie entière de x.
 - a) Pour n entier de \mathbb{N}^* , montrer que pour tout x réel, on a : $\lim_{n \to +\infty} \frac{\lfloor nx \rfloor}{n} = x$.
 - b) Établir pour tout $(x,y) \in \mathbb{R}^2$ l'équivalence suivante : $|y| \leq x \iff y < |x| + 1$.
 - c) Soit α et β deux réels vérifiant $0 \le \alpha \le \beta \le 1$ et soit $N_n(\alpha, \beta)$ le nombre d'entiers k qui vérifient $\alpha < \frac{k}{n} \le \beta$. Exprimer $N_n(\alpha, \beta)$ en fonction de $\lfloor n\alpha \rfloor$ et $\lfloor n\beta \rfloor$.
- 3. Pour tout entier $n \ge 1$, on note Y_n la variable aléatoire discrète dont la loi est donnée par :

$$\forall k \in [0, n-1], \ \mathbb{P}\left(\left[Y_n = \frac{k}{n}\right]\right) = \frac{1}{n}.$$

Soit Z une variable aléatoire suivant la loi uniforme sur l'intervalle [0,1]. Pour tout entier $n \ge 1$, on définit la variable aléatoire Z_n par : $Z_n = \frac{\lfloor nZ \rfloor}{n}$. Soit α et β deux réels vérifiant $0 \le \alpha \le \beta \le 1$.

- a) Montrer que $\lim_{n \to +\infty} \mathbb{P}([\alpha < Y_n \leq \beta]) = \beta \alpha$.
- b) Comparer les fonctions de répartition respectives de Y_n et Z_n . Conclusion.

Exercice sans préparation 2

Soit x réel et M(x) la matrice de $\mathcal{M}_2(\mathbb{R})$ définie par : $M(x) = \begin{pmatrix} x & -1 \\ 2x & 2x \end{pmatrix}$. Pour quelles valeurs de x la matrice M(x) est-elle diagonalisable?

Sujet E 83

Exercice avec préparation 3

Pour tout entier naturel n, on note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n.

On définit l'application φ de $\mathbb{R}_n[X]$ par : $\forall P \in \mathbb{R}_n[X], \ \varphi(P)(X) = P(X+1) - P(X)$.

On pose
$$H_0(X) = 1$$
 et pour tout $k \in [1, n]$, $H_k(X) = \frac{X(X-1)(X-2)\cdots(X-k+1)}{k!}$.

On note $\mathscr{B} = (1, X, X^2, \dots, X^n)$ la base canonique de $\mathbb{R}_n[X]$.

- 1. Question de cours : Définition de deux matrices semblables.
- 2. a) Montrer que φ est un endomorphisme non bijectif de $\mathbb{R}_n[X]$.
 - **b)** Justifier que la famille $\mathscr{B}' = (H_0, H_1, \dots, H_n)$ est une base de $\mathbb{R}_n[X]$.
 - c) Déterminer la matrice M' de φ dans la base \mathscr{B}' .
 - d) L'endomorphisme φ est-il diagonalisable?
- 3. Dans cette question, p est un entier fixé supérieur ou égal à 1. Pour tout $i \in [0, p]$, soit f_i l'application de $\mathbb{R}_p[X]$ dans \mathbb{R} définie par : $\forall Q \in \mathbb{R}_p[X]$, $f_i(Q) = \sum_{k=0}^{i} (-1)^{i-k} \binom{i}{k} Q(k)$.
 - a) Justifier que pour tout $i \in [0, p]$, l'application f_i est linéaire.
 - **b)** Soit $(i,j) \in [0,p]^2$. Établir la relation : $f_i(H_j) = \begin{cases} 1 & \text{si } i=j \\ 0 & \text{si } i \neq j \end{cases}$.
 - c) Soit a_0, a_1, \ldots, a_p les réels vérifiant : $X^p = a_0 H_0 + a_1 H_1 + \cdots + a_p H_p$. Déduire de la question précédente, la relation : $\forall i \in [0, p], a_i = \sum_{k=0}^i (-1)^{i-k} \binom{i}{k} k^p$.

Exercice sans préparation 3

Les variables aléatoires de cet exercice sont supposées définies sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. Soit Z une variable aléatoire qui suit la loi uniforme sur l'intervalle [0,1] et pour tout entier $n \ge 1$, on note Y_n une variable aléatoire à valeurs dans $\left\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n}\right\}$ telle que :

$$\forall k \in [0, n-1], \ \mathbb{P}\left(\left[Y_n = \frac{k}{n}\right]\right) = \frac{1}{n}$$

Soit f une fonction définie et continue sur [0,1]. Montrer que $\lim_{n\to+\infty} \mathbb{E}(f(Y_n)) = \mathbb{E}(f(Z))$.

Sujet E 85

Exercice avec préparation 4

Toutes les variables aléatoires qui interviennent dans l'exercice sont supposées définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

1. Question de cours : Définition et propriétés de la covariance de deux variables aléatoires discrètes. Soit p, q et r des réels fixés de l'intervalle]0,1[tels que p+q+r=1. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires à valeurs dans $\{-1,0,1\}$, indépendantes et de même loi donnée par :

$$\forall n \in \mathbb{N}^*, \ \mathbb{P}([X_n = 1]) = p, \ \mathbb{P}([X_n = -1]) = q, \ \mathbb{P}([X_n = 0]) = r.$$

On pose pour tout entier $n \ge 1$: $Y_n = \prod_{k=1}^n X_k$.

- 2. a) Pour tout entier $n \ge 1$, préciser $Y_n(\Omega)$ et calculer $\mathbb{P}([Y_n = 0])$.
 - b) Pour tout entier $n \ge 1$, calculer $\mathbb{E}(X_n)$ et $\mathbb{E}(Y_n)$.
- 3. On pose pour tout entier $n \ge 1$, on a : $p_n = \mathbb{P}([Y_n = 1])$.
 - a) Calculer p_1 et p_2 .
 - b) Établir une relation de récurrence entre p_{n+1} et p_n .
 - c) En déduire que pour tout entier $n \ge 1$, on a : $p_n = \frac{(p+q)^n + (p-q)^n}{2}$.
 - d) Pouvait-on à l'aide de la question 2, trouver directement la loi de Y_n ?
- **4.** a) Établir l'inégalité : $(p+q)^n > (p-q)^{2n}$. Calculer $\mathbb{V}(Y_n)$.
 - b) Calculer la covariance $Cov(Y_n, Y_{n+1})$ des deux variables aléatoires Y_n et Y_{n+1} .

Sujet E 86

Exercice avec préparation 5

- 1. Question de cours : Fonctions équivalentes au voisinage de $+\infty$. Pour tout entier naturel n, soit f_n la fonction définie sur \mathbb{R}_+ par : $\forall x \ge 0$, $f_n(x) = \int_0^1 t^n \mathrm{e}^{-tx} dt$.
- 2. a) Montrer que pour tout entier naturel n, la fonction f_n est décroissante sur \mathbb{R}_+ .
 - b) Étudier la suite $(f_n(0))_{n\geqslant 0}$. En déduire pour tout réel $x\geqslant 0$ fixé, la limite de la suite $(f_n(x))_{n\geqslant 0}$.
- 3. a) Soit x un réel strictement positif. Établir pour tout entier $n \ge 1$, la relation :

$$f_{n+1}(x) = \frac{n+1}{x} f_n(x) - \frac{e^{-x}}{x}$$

- b) Expliciter les fonctions f_0 et f_1 .
- c) Montrer que pour tout entier naturel n, $f_n(x)$ est équivalent à $\frac{n!}{x^{n+1}}$ lorsque x tend vers $+\infty$.
- 4. a) Montrer que pour tout entier naturel n et tout réel x > 0, on a : $f_n(x) = \frac{1}{x^{n+1}} \int_0^x u^n e^{-u} du$.
 - b) En déduire que la fonction f_n est dérivable sur \mathbb{R}_+ et déterminer sa dérivée f'_n .
 - c) Comparer pour tout réel $y \ge 0$, leq deux réels y et $1 e^{-y}$. En déduire que pour tout entier naturel n, la fonction f_n est continue en 0.

Exercice sans préparation 4

Soit c et r deux réels strictement positifs.

- 1. Justifier que la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} \frac{rc^r}{x^{r+1}} & \text{si } x > c \\ 0 & \text{sinon} \end{cases}$ est une densité de probabilité.
- 2. Soit X une variable aléatoire de densité f. Identifier la loi de la variable aléatoire $Y = \ln(X) \ln(c)$.
- 3. Compléter les lignes du code Scilab suivant pour que V soit un vecteur ligne contenant 100 réalisations de la loi de la variable aléatoire X.

Sujet E 88

Exercice avec préparation 6

Toutes les variables aléatoires qui interviennent dans l'exercice sont supposées définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- Question de cours : Convergence en loi d'une suite de variables aléatoires.
 Dans tout l'exercice, X désigne une variable aléatoire suivant la loi exponentielle de paramètre λ > 0.
- 2. a) On pose : T = |X| (partie entière de X). Montrer que la loi de T est donnée par :

$$\forall k \in \mathbb{N}, \ \mathbb{P}([T=k]) = (1 - e^{-\lambda}) (e^{-\lambda})^k$$

- b) Quelle est la loi de T+1? En déduire l'espérance et la variance de T.
- 3. On pose : $Z = X \lfloor X \rfloor$. Montrer que Z est une variable aléatoire à densité et déterminer une densité de Z.
- 4. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes telles que, pour tout $n\in\mathbb{N}^*$, X_n suit une loi exponentielle de paramètre $\frac{\lambda}{n}$. On pose pour tout $n\in\mathbb{N}^*$: $Z_n=X_n-\lfloor X_n\rfloor$. Montrer que la suite de variables aléatoires $(Z_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire dont on précisera la loi.

Exercice sans préparation 5

Soit E un espace vectoriel de dimension 3 et f un endomorphisme de E tel que $f^4 = f^2$ et $rg(f^2) = 1$. Montrer que le spectre de f est $\{0\}$ ou $\{0,1\}$ ou $\{-1,0\}$.

Sujet E 89

Exercice avec préparation 7

1. Question de cours : Définition et propriétés de la fonction de répartition d'une variable aléatoire à densité.

Pour tout $n \in \mathbb{N}$, soit f_n la fonction définie par :

$$\forall x \in \mathbb{R}, \ f_n(x) = \begin{cases} x^n \exp\left(-\frac{x^2}{2}\right) & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$

- 2. a) Établir la convergence de l'intégrale $\int_0^{+\infty} f_n(x) \ dx$. On pose : $\forall n \in \mathbb{N}, \ I_n = \int_0^{+\infty} f_n(x) \ dx$.
 - **b)** Calculer I_0 et I_1 .
- 3. a) Montrer que f_1 est une densité de probabilité.
 - b) Tracer la courbe représentative de f_1 dans le plan rapporté à un repère orthogonal. Dans la suite, on note X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ admettant f_1 pour densité.
 - c) Déterminer la fonction de répartition F de X.
 - d) Justifier l'existence de l'espérance $\mathbb{E}(X)$ et de la variance $\mathbb{V}(X)$ de X. Calculer $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 4. On pose : $Y = X^2$.
 - a) Montrer que Y est une variable aléatoire à densité.
 - \boldsymbol{b}) Quelle est la loi de Y?

Exercice sans préparation 6

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice A dans la base canonique de \mathbb{R}^3 est : $A = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Déterminer une base de Ker(f) et une base de Im(f).
- 2. On admet sans démonstration que $A^3 = 0$. Soit $M \in \mathcal{M}_3(\mathbb{R})$ définie par $M = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 2 \end{pmatrix}$.
 - a) Quelles sont les valeurs propres de M? La matrice M est-elle diagonalisable?
 - b) Justifier que M est inversible et exprimer M^{-1} en fonction de A et I (matrice identité de $M \in \mathcal{M}_3(\mathbb{R})$).

Sujet E 90

Exercice avec préparation 8

Toutes les variables aléatoires utilisées dans cet exercice sont supposées définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. Question de cours : loi faible des grands nombres. Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, de loi uniforme sur [0, 1].
- 2. Pour tout $n \in \mathbb{N}^*$, on note U_n la variable aléatoire $\min(X_1, X_2, \dots, X_n)$.
 - a) Calculer la fonction de répartition de U_n .
 - b) Démontrer que, pour tout $\varepsilon > 0$, la probabilité $\mathbb{P}([U_n \geqslant \varepsilon])$ tend vers 0 quand n tend vers l'infini.
- 3. Compléter la deuxième ligne du code Scilab suivant pour que la fonction minu simule la variable U_k pour la valeur k du paramètre.

```
    function u = minu(k)
    x = .....
    u = min(x)
    endfunction
```

4. Soit $p \in [0,1[$ et Z une variable aléatoire telle que, pour tout réel x:

$$\mathbb{P}([Z \leqslant x]) = \sum_{k=1}^{+\infty} p (1-p)^{k-1} \mathbb{P}([U_k \leqslant x])$$

(on admet qu'il existe une telle variable aléatoire et qu'elle possède une densité).

- a) Justifier, pour tout $x \in [0,1]$, l'égalité : $\mathbb{P}([Z \leqslant x]) = 1 \frac{p(1-x)}{p+(1-p)x}$.
- b) En déduire une densité de Z.
- 5. a) Justifier que la fonction Scilab suivante fournit une simulation de la variable aléatoire Z de la question précédente.

```
function z = geomin(p)
z z = minu(grand(1, 1, 'geom', p))
endfunction
```

b) De quel nombre réel les instructions suivantes fournissent-elles une valeur approchée et pourquoi?

```
____ p = 0.5;
____ R = [];
____ for k = 1:10000
____ R = [R, geomin(p)]
____ end;
____ disp(mean(R))
```

Exercice sans préparation 7

Pour tout $n \in \mathbb{N}$, soit f_n la fonction définie sur l'intervalle [0,1] par :

$$\forall x \in [0, 1], \ f_n(x) = \int_0^x e^{nt^2} dt - \int_x^1 e^{-nt^2} dt.$$

- 1. Montrer que la fonction f_n est strictement monotone sur [0,1].
- 2. Établir l'existence d'un unique réel de [0,1], noté c_n , tel que $\int_0^{c_n} e^{nt^2} dt = \int_{c_n}^1 e^{-nt^2} dt$.
- 3. Montrer que la suite $(c_n)_{n\in\mathbb{N}}$ est convergente.