Import necessary Libraries

```
In [1]:
            #!conda install -c conda-forge geopy --yes
            from geopy.geocoders import Nominatim # module to convert an address into Lat
            import requests # library to handle requests
            import pandas as pd # library for data analsysis
            import numpy as np # library to handle data in a vectorized manner
            import random # library for random number generation
            # libraries for displaying images
            from IPython.display import Image
            from IPython.core.display import HTML
            # tranforming json file into a pandas dataframe library
            from pandas.io.json import json_normalize
            #!conda install -c conda-forge folium=0.5.0 --yes
            import folium # plotting library
            print('Folium installed')
            print('Libraries imported.')
```

Folium installed Libraries imported.

Getting the data

All datasets were already downloaded and stored in the IBM Db2 database. We need to first get all the data for further analysis.

Connect to the database

Retreive data from the database

```
In [3]:  res = %sql SELECT * FROM CENSUS_DATA;

#retrieve the query results into a pandas dataframe
df_census = res.DataFrame()
df_census.head()
```

* ibm_db_sa://lsp45830:***@dashdb-txn-sbox-yp-dal09-03.services.dal.bluemix.net:50000/BLUDB
Done.

Out[3]:

	Community_Area_Number	community_area_name	percent_of_housing_crowded	percent_hou
0	1.0	Rogers Park	7.7	
1	2.0	West Ridge	7.8	
2	3.0	Uptown	3.8	
3	4.0	Lincoln Square	3.4	
4	5.0	North Center	0.3	
4				•

```
In [4]: # sql query for Public Schools
    res = %sql SELECT * FROM CHICAGO_PUBLIC_SCHOOLS;

#retrieve the query results into a pandas dataframe
    df_schools = res.DataFrame()
    df_schools.head()
```

Out[4]:

	School_ID	Name_of_School	Elementary, Middle, or High School	Street_Address	City	State	ZIP_Code	Phone
0	610038	Abraham Lincoln Elementary School	ES	615 W Kemper PI	Chicago	IL	60614	(773)
1	610281	Adam Clayton Powell Paideia Community Academy	ES	7511 S South Shore Dr	Chicago	IL	60649	(773)
2	610185	Adlai E Stevenson Elementary School	ES	8010 S Kostner Ave	Chicago	IL	60652	(773)
3	609993	Agustin Lara Elementary Academy	ES	4619 S Wolcott Ave	Chicago	IL	60609	(773)
4	610513	Air Force Academy High School	HS	3630 S Wells St	Chicago	IL	60609	(773)

5 rows × 79 columns

localhost:8888/notebooks/Desktop/projects/IBMDSCapstone/CAPSTONE.ipynb#

^{*} ibm_db_sa://lsp45830:***@dashdb-txn-sbox-yp-dal09-03.services.dal.bluemix.net:50000/BLUDB
Done.

```
In [5]:  # sql query for Crime Data
  res = %sql SELECT * FROM CHICAGO_CRIME_DATA;

#retrieve the query results into a pandas dataframe
  df_crime = res.DataFrame()
  df_crime.head()
```

* ibm_db_sa://lsp45830:***@dashdb-txn-sbox-yp-dal09-03.services.dal.bluemi x.net:50000/BLUDB Done.

Out[5]:

	id	Case_Number	Date	Block	iucr	Primary_Type	Description	Location
0	3512276	HK587712	08/28/2004 05:50:56 PM	047XX S KEDZIE AVE	0890	THEFT	FROM BUILDING	SI
1	3406613	HK456306	06/26/2004 12:40:00 PM	009XX N CENTRAL PARK AVE	0820	THEFT	\$500 AND UNDER	
2	8002131	HT233595	04/04/2011 05:45:00 AM	043XX S WABASH AVE	0820	THEFT	\$500 AND UNDER	HOME/F
3	7903289	HT133522	12/30/2010 04:30:00 PM	083XX S KINGSTON AVE	0840	THEFT	FINANCIAL ID THEFT: OVER \$300	
4	10402076	HZ138551	02/02/2016 07:30:00 PM	033XX W 66TH ST	0820	THEFT	\$500 AND UNDER	
5 rows x 22 columns								

5 rows × 22 columns

Let's visualize crime in some communities

```
In [7]: # convert some object columns to float
    df_crime.dropna(inplace=True)
    df_crime = df_crime.apply(pd.to_numeric, errors='ignore')
    df_crime.dtypes
```

```
Out[7]: id
                                   int64
        Case_Number
                                  object
        Date
                                  object
        Block
                                  object
                                  object
        iucr
                                  object
        Primary_Type
        Description
                                  object
        Location_Description
                                  object
        Arrest
                                  object
        Domestic
                                  object
                                   int64
        Beat
                                 float64
        District
        Ward
                                 float64
                                 float64
        Community_Area
        FBI_Code
                                  object
        X_Coordinate
                                 float64
        Y Coordinate
                                 float64
        Year
                                   int64
        Updated_On
                                  object
        Latitude
                                 float64
        Longitude
                                 float64
        Location
                                  object
        dtype: object
```

```
In [8]:
            # Group by Community Area and count the number of crime
            df grouped = df crime
            df_grouped = df_grouped.groupby('Community_Area', as_index=False)['Community]
            # get Community Area Name
            df_grouped.rename(columns={'Community_Area':'Community_Area_Number'}, inplace
            df grouped = pd.merge(df grouped,
                                   df community,
                                   how='left',
                                   on = ['Community_Area_Number']).drop(['Community_Area_N
            # sort dataframe on 'Count' column (descending)
            df_top15 = df_grouped.set_index(['Community_Area_Name'])
            df_top15.sort_values(by='Count', ascending=True, inplace=True)
            # get top 15 areas
            df_top15 = df_top15['Count'].tail(15)
            df_top15
   Out[8]: Community_Area_Name
            WEST GARFIELD PARK
                                       10
            BRIGHTON PARK
                                       10
            LAKE VIEW
                                       11
            ROSELAND
                                       11
            GREATER GRAND CROSSING
                                       11
            WEST ENGLEWOOD
                                       12
            CHICAGO LAWN
                                       12
            WEST TOWN
                                       13
            AUBURN GRESHAM
                                       14
            NEAR NORTH SIDE
                                       15
            NEAR WEST SIDE
                                       16
            NORTH LAWNDALE
                                       16
            ENGLEWOOD
                                       21
            HUMBOLDT PARK
                                       21
            AUSTIN
                                       42
            Name: Count, dtype: int64
In [9]:
            # use the inline backend to generate the plots within the browser
            %matplotlib inline
            import matplotlib as mpl
            import matplotlib.pyplot as plt
            mpl.style.use('ggplot') # optional: for ggplot-like style
            # check for latest version of Matplotlib
            print ('Matplotlib version: ', mpl.__version__) # >= 2.0.0
```

Matplotlib version: 2.2.3


```
In [11]:
             df top15 = df grouped.copy()
             df_top15.sort_values(by='Count', ascending=True, inplace=True)
             # get top 15 areas
             df_top15 = df_top15.head(15)
             print(df_top15)
             lats = []
             longs = []
             geolocator = Nominatim()
             for area in df_top15.loc[:,'Community_Area_Name']:
                 location = geolocator.geocode(area)
                 lats.append(location.latitude)
                 longs.append(location.longitude)
             df_top15['Latitude'] = lats
             df_top15['Longitude'] = longs
             df_top15.drop(['Count'], axis=1, inplace=True)
             df_top15.reset_index(inplace=True)
             print(df_top15)
```

```
Count Community_Area_Name
30
        1
              NEAR SOUTH SIDE
67
        1
                  MORGAN PARK
41
        1
                     BURNSIDE
53
        1
                   BRIDGEPORT
49
        1
                    HEGEWISCH
10
        1
                  FOREST GLEN
35
        2
                    HYDE PARK
15
        2
                    MONTCLARE
        2
46
                    EAST SIDE
        2
48
                    RIVERDALE
69
        2
                    EDGEWATER
50
        2
               GARFIELD RIDGE
        2
52
                MCKINLEY PARK
57
        2
                     CLEARING
32
                  FULLER PARK
/home/biosys/anaconda3/lib/python3.6/site-packages/geopy/geocoders/osm.p
y:143: UserWarning: Using Nominatim with the default "geopy/1.17.0" `user
 agent' is strongly discouraged as it violates Mominatim's ToS https://o
```

```
In [12]:
              # create map of top 15 crime areas in Chicago using latitude and longitude vd
              latitude = df_top15.loc[0, 'Latitude']
              longitude = df_top15.loc[0, 'Longitude']
              print(type(latitude))
              map_crime = folium.Map(location=[latitude, longitude], zoom_start=12)
              # add markers to map
              for lat, lng, label in zip(df_top15['Latitude'], df_top15['Longitude'], df_top
                  label = folium.Popup(label, parse_html=True)
                  folium.CircleMarker(
                      [lat, lng],
                      radius=5,
                      popup=label,
                      color='blue',
                      fill=True,
                      fill_color='#3186cc',
                      fill_opacity=0.7,
                      parse_html=False).add_to(map_crime)
              for lat, lng, label in zip(healthy_schools['Latitude'], healthy_schools['Long
                  label = folium.Popup(label, parse_html=True)
                  folium.CircleMarker(
                      [lat, lng],
                      radius=5,
                      popup=label,
                      color='red',
                      fill=True,
                      fill color='#3186cc',
                      fill_opacity=0.7,
                      parse_html=False).add_to(map_crime)
              map_crime
              <class 'numpy.float64'>
    Out[12]:
                                                                 Lincoln Park
                                                                           hicago
               23A = 23B = 23B
                                                           University Village/
                                                              Little Italy
                                                                          South Loop
                                                                Pilsen
```

Let's find top 10 community by number of puclic schoools

Out[14]:

Number of Schools

Community_Area_Name

	Community_Area_Name
23.0	AUSTIN
22.0	SOUTH LAWNDALE
20.0	WEST TOWN
17.0	ENGLEWOOD
16.0	NEAR WEST SIDE
16.0	NORTH LAWNDALE
13.0	EAST GARFIELD PARK
13.0	ROSELAND
13.0	NEW CITY
13.0	HUMBOLDT PARK

^{*} ibm_db_sa://lsp45830:***@dashdb-txn-sbox-yp-dal09-03.services.dal.bluemix.net:50000/BLUDB
Done.

```
In [15]: If df_top10 = community_top10['Number of Schools']

df_top10.plot(kind='barh', figsize=(12, 12), color='steelblue')

# annotate value labels to each country
for index, value in enumerate(df_top10):
    label = format(int(value), ',') # format int with commas

# place text at the end of bar (subtracting 47000 from x, and 0.1 from y plt.annotate(label, xy=(value - 1.2, index - 0.10), color='white')

plt.xlabel('Number of schools')
plt.title('Top 10 community with the most number of schools')
plt.show()
```


It seems to be that SOUTH LAWNDALE is a community with a good number of schools and the lowest number of crime as well. We could analysis it's venues furthure thanks to Foursquare

Let's explore SOUTH LAWNDALE

Define Foursquare Credentials and Version

Use geopy library to get the latitude and longitude values of SOUTH LAWNDALE

The geograpical coordinate of SOUTH LAWNDALE are 41.8436437, -87.7125544.

/home/biosys/anaconda3/lib/python3.6/site-packages/geopy/geocoders/osm.py:1 43: UserWarning: Using Nominatim with the default "geopy/1.17.0" `user_agen t` is strongly discouraged, as it violates Nominatim's ToS https://operations.osmfoundation.org/policies/nominatim/ (https://operations.osmfoundation.org/policies/nominatim/) and may possibly cause 403 and 429 HTTP errors. Pl ease specify a custom `user_agent` with `Nominatim(user_agent="my-application")` or by overriding the default `user_agent`: `geopy.geocoders.options.d efault_user_agent = "my-application"`. In geopy 2.0 this will become an exception.

UserWarning

```
In [18]:
             def getNearbyVenues(names, latitudes, longitudes, radius=1000):
                 venues_list=[]
                 for name, lat, lng in zip(names, latitudes, longitudes):
                      print(name)
                      # create the API request URL
                      url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&cli
                          CLIENT_ID,
                          CLIENT_SECRET,
                          VERSION,
                          lat,
                          lng,
                          radius,
                          LIMIT)
                      # make the GET request
                      results = requests.get(url).json()["response"]['groups'][0]['items']
                      # return only relevant information for each nearby venue
                      venues_list.append([(
                          name,
                          lat,
                          lng,
                          v['venue']['name'],
                          v['venue']['location']['lat'],
                          v['venue']['location']['lng'],
                          v['venue']['categories'][0]['name']) for v in results])
                 nearby_venues = pd.DataFrame([item for venue_list in venues_list for item
                  nearby_venues.columns = ['Neighborhood',
                                'Neighborhood Latitude',
                                'Neighborhood Longitude',
                                'Venue',
                                'Venue Latitude',
                                'Venue Longitude',
                                'Venue Category']
                 return(nearby venues)
```

SOUTH LAWNDALE

Out[19]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	V Cat€
0	SOUTH LAWNDALE	41.843644	-87.712554	La Catedral Cafe & Restaurant	41.846218	-87.708894	Resta
1	SOUTH LAWNDALE	41.843644	-87.712554	Restaurante Nuevo Leon	41.844396	-87.717063	Me Resta
2	SOUTH LAWNDALE	41.843644	-87.712554	Azucar	41.842580	-87.715514	D€
3	SOUTH LAWNDALE	41.843644	-87.712554	Moreno's Liquors	41.844425	-87.718220	Liquor
4	SOUTH LAWNDALE	41.843644	-87.712554	El Milagro Taqueria	41.844717	-87.702247	Me Resta
5	SOUTH LAWNDALE	41.843644	-87.712554	Mi Tierra	41.845352	-87.705347	Me Resta
6	SOUTH LAWNDALE	41.843644	-87.712554	Los Candiles Restaurant	41.843627	-87.714736	Me Resta
7	SOUTH LAWNDALE	41.843644	-87.712554	La Chaparrita Taqueria	41.846354	-87.701661	Taco I
8	SOUTH LAWNDALE	41.843644	-87.712554	Taqueria Atotonilco	41.844303	-87.722848	Me Resta
9	SOUTH LAWNDALE	41.843644	-87.712554	Cermak Produce	41.845487	-87.707904	Gr
10	SOUTH LAWNDALE	41.843644	-87.712554	Little Village Arch	41.844484	-87.703793	Scul Ga
11	SOUTH LAWNDALE	41.843644	-87.712554	Dunkin' Donuts	41.840580	-87.704668	Donut
12	SOUTH LAWNDALE	41.843644	-87.712554	Birrieria Patiños Ocotlan	41.844101	-87.720338	Me Resta
13	SOUTH LAWNDALE	41.843644	-87.712554	Tortillería El Milagro	41.844726	-87.702255	Taco I
14	SOUTH LAWNDALE	41.843644	-87.712554	T-Mobile	41.844626	-87.709617	N Phone
15	SOUTH LAWNDALE	41.843644	-87.712554	El Pollo Feliz	41.842945	-87.702733	Me Resta
16	SOUTH LAWNDALE	41.843644	-87.712554	Carniceria Aguascalientes	41.844682	-87.704267	Me Resta
17	SOUTH LAWNDALE	41.843644	-87.712554	"Las Quecas" Quesadillas de México	41.846215	-87.709119	Me Resta

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	V Cate
18	SOUTH LAWNDALE	41.843644	-87.712554	AT&T	41.844120	-87.718564	N Phone
19	SOUTH LAWNDALE	41.843644	-87.712554	Taquería Los Comales	41.844459	-87.704090	Me Resta
20	SOUTH LAWNDALE	41.843644	-87.712554	Taqueria Los Barrilitos	41.846263	-87.713156	Me Resta
21	SOUTH LAWNDALE	41.843644	-87.712554	Subway	41.840620	-87.704688	Sand I
22	SOUTH LAWNDALE	41.843644	-87.712554	Discount Mall	41.843578	-87.702629	Clc
23	SOUTH LAWNDALE	41.843644	-87.712554	ALDI	41.838257	-87.705649	Superm
24	SOUTH LAWNDALE	41.843644	-87.712554	Redbox	41.848924	-87.719919	Video
25	SOUTH LAWNDALE	41.843644	-87.712554	Walgreens	41.844353	-87.701925	Phar
26	SOUTH LAWNDALE	41.843644	-87.712554	La Chiquita	41.842973	-87.724289	M
27	SOUTH LAWNDALE	41.843644	-87.712554	Burger King	41.842357	-87.705449	Fast Resta
28	SOUTH LAWNDALE	41.843644	-87.712554	Chase Bank	41.844489	-87.721931	
29	SOUTH LAWNDALE	41.843644	-87.712554	Fifth Third Bank & ATM	41.844056	-87.724345	
30	SOUTH LAWNDALE	41.843644	-87.712554	Volkan	41.845968	-87.704967	Nigh
31	SOUTH LAWNDALE	41.843644	-87.712554	Dona Torta	41.844301	-87.708836	Me Resta
32	SOUTH LAWNDALE	41.843644	-87.712554	Las 3 Campanitas	41.844353	-87.720112	D€
33	SOUTH LAWNDALE	41.843644	-87.712554	Slice Factory	41.844400	-87.711370	Pizza I
34	SOUTH LAWNDALE	41.843644	-87.712554	El Tecolote Ostioneria Y Restaurante	41.844658	-87.710972	Me Resta
35	SOUTH LAWNDALE	41.843644	-87.712554	La Chiquita Supermarket	41.844528	-87.714739	Superm
36	SOUTH LAWNDALE	41.843644	-87.712554	Jacaranda's	41.844432	-87.715203	
37	SOUTH LAWNDALE	41.843644	-87.712554	McDonald's	41.844080	-87.704772	Fast Resta
38	SOUTH LAWNDALE	41.843644	-87.712554	Tropical Optical	41.844369	-87.716134	Optical
39	SOUTH LAWNDALE	41.843644	-87.712554	La Espiga de Oro	41.846272	-87.713782	Ві
40	SOUTH LAWNDALE	41.843644	-87.712554	Little Village Plaza	41.844141	-87.704491	I

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	V Cate
41	SOUTH LAWNDALE	41.843644	-87.712554	K-OZ	41.846146	-87.704701	Nigh
42	SOUTH LAWNDALE	41.843644	-87.712554	Falcon Repair and Car Wash	41.847298	-87.705338	Resta
43	SOUTH LAWNDALE	41.843644	-87.712554	Los Olivos	41.837233	-87.709976	Me Resta
44	SOUTH LAWNDALE	41.843644	-87.712554	Wic Food Center	41.848160	-87.705400	
45	SOUTH LAWNDALE	41.843644	-87.712554	La Baguette Bakery	41.844304	-87.703188	В
46	SOUTH LAWNDALE	41.843644	-87.712554	Shedd Park	41.849904	-87.716968	
47	SOUTH LAWNDALE	41.843644	-87.712554	Dennis Carry Outs	41.848747	-87.719703	Fast Resta
48	SOUTH LAWNDALE	41.843644	-87.712554	Our Lady Of Tepeyac Social Center	41.847687	-87.702679	(Fi C
49	SOUTH LAWNDALE	41.843644	-87.712554	Fresh Moves - Mobile Grocery.	41.851357	-87.717933	Food [·]
50	SOUTH LAWNDALE	41.843644	-87.712554	Homan Park	41.852166	-87.710305	
51	SOUTH LAWNDALE	41.843644	-87.712554	Kenny Jenkins	41.834750	-87.712194	Lε

↓

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7fcca6e73c18>

