Unidad 4 SOLIDIFICACIÓN

Ciencia de los materiales
2021

TEMARIO

- Solidificación de metales
- Mecánica de la solidificación
- Nucleación homogénea y heterogénea
- Defectos de las estructuras

Importancia de su estudio

El proceso de solidificación de un metal o aleación metálica define gran parte de sus propiedades mecánicas.

• 3

Mecanismo de solidificación

1 Nucleación: formación de núcleos estables en el metal fundido por agrupación de átomos.

2 Crecimiento: aumento de tamaño de los núcleos para formar cristales y la estructura granular.

CRECIMIENTO Y BORDE DE GRANO

Solidificación de mat. poliméricos

Solidificación vítrea

NUCLEACIÓN

HOMOGÉNEA

HETEROGÉNEA

NUCLEACIÓN

HOMOGÉNEA

Ocurre cuando el metal líquido proporciona por sí mismo los átomos que se requieren para formar los núcleos.

• 11

Fuerza impulsora

Balance de energía

- $\Delta G = Gs Gv$
- Si la T es la de equilibrio
- Gs = Gl

$$G_{sol} = G_{liq}$$

$$H_{sol} - To \cdot S_{sol} = H_{liq} - To \cdot S_{liq}$$

$$H_{sol} - H_{liq} = To \cdot S_{liq} - To \cdot S_{sol}$$

$$L = To \cdot (S_{liq} - S_{sol})$$

$$\Delta S = \frac{L}{To}$$

• 14

Relación de ΔS con L

- ΔS es semejante para distintas estructuras cristalinas
- Es grande la energía necesaria para pasar del desorden total al ordenamiento.
- La energía interna del líquido desordenado es superior a la del sólido ordenado.
- Entonces se libera el calor latente de solidificación.

Cálculo del radio crítico

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 \left(G_{liq} - G_{sol} \right)$$

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 \left(\left(H_{liq} - T \cdot S_{liq} \right) - \left(H_{sol} - T \cdot S_{sol} \right) \right)$$

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 (L - T \cdot \Delta S)$$

$$\Delta S = \frac{L}{To}$$

• 17

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 \left(L - T \cdot \frac{L}{To} \right)$$

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 L \frac{To - T}{To}$$

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 L \frac{\Delta T}{To}$$

$$\Delta G_{\rm sup} = 4\pi r^2 \gamma$$

$$\Delta G_{vol} = -\frac{4}{3}\pi r^3 L \frac{\Delta T}{To}$$

$$\Delta G = \Delta G_{\sup} + \Delta G_{vol}$$

$$\Delta G = 4\pi r^2 \gamma - \frac{4}{3}\pi r^3 L \frac{\Delta T}{To}$$

$$\frac{\partial \Delta G}{\partial r} = 8\pi r^* \gamma - 4\pi r^{*2} L \frac{\Delta T}{To} = 0$$

$$r^* = \frac{2\gamma}{L} \cdot \frac{To}{\Delta T}$$

Grado de subenfriamiento

más gérmenes pueden pasar a ser núcleos de solidificación

Grano más fino (pequeño)

NUCLEACIÓN

HETEROGÉNEA

Tiene lugar sobre la superficie de un agente de nucleación: molde o impurezas insolubles.

La energía superficial para formar el núcleo estable es inferior a que si el núcleo se formara en el líquido puro. Disminuye la barrera energética:

$$\Delta G_{het}^* < \Delta G_{hom}^*$$

Al agregar impurezas, hay más sitios de nucleación y entonces se afina el grano.

ΔG_{homo} mayor ΔG_{heter}

ΔG

ΔT_2 mayor ΔT_1

• ΔG

ESTRUCTURA CRISTALINA DE LA SECCIÓN DE UN LINGOTE

Solidificación según Condiciones de flujo de calor

Efecto de la velocidad de enfriamiento

- **Zona de chill** corresponde a una zona de enfriamiento rápido.
- Zona columnar se origina en aquellos granos de la zona chillcontinuando su crecimiento hacia el centro del lingote
- Zona central de granos equiaxiales se origina cuando la velocidad de enfriamiento es lenta

• 26

Estructura de un lingote

Defectos en estructuras coladas

BURBUJAS

Causadas por los gases del horno, disueltos en el metal durante la fusión, o por reacciones químicas que tienen lugar en la masa fundida.

Las burbujas del gas expulsado quedan atrapadas en los brazos dendríticos y no pueden subir a la superficie.

Defectos en estructuras coladas

RECHUPE

Defectos en estructuras coladas

SEGREGACION MENOR

Las impurezas se depositan en los límites de los cristales

Defectos en estructuras coladas SEGREGACION

Mayor (en v) Mayor Y en v INVERTIDA

Las impurezas bajan el punto de solidificación

RECUPERACION Y RECRISTALIZACION

-Cuando se deforma plásticamente un metal a temperaturas bastante inferiores a la de su punto de fusión, se dice que el metal ha sido trabajado en frío.

-La energía de deformación se acumula en forma de **dislocaciones** y de **defectos puntuales**, por ejemplo: ruptura de enlaces y vacancias. Cuando se calienta este material ocurren dos procesos que disminuyen la energía interna almacenada:

Recuperación Recristalización

-Además puede ocurrir el **crecimiento de grano**, cuando se continúa el recocido luego de completarse la recristalización.

RECUPERACION

-Es la primera etapa del proceso de recocido, con mayor temperatura (menor a 0.4Tf) se produce el alivio de esfuerzos internos causados por el trabajo en frío, (tensiones residuales), y también se producen cambios microestructurales

-Comprende una serie de fenómenos como los siguientes: Aniquilación de defectos puntuales Poligonización Caída de la resistividad eléctrica (R)

-La aniquilación de defectos puntuales consiste en la difusión, mediante la adición de calor, de las vacancias hacia las dislocaciones y bordes de granos, así se logra disminuir su cantidad hasta el número de equilibrio a la temperatura correspondiente.

-La resistividad eléctrica (R) se ve afectada cuando las vacancias emigran a bordes de granos y disminuyen en número porque su campo de deformaciones interfiere con el flujo de los electrones.

RECUPERACION

Las dislocaciones comienzan a agruparse y a reordenarse en configuraciones de menor energía, que se disponen en hexágonos formando subgranos, poligonización. Redes hexagonales.

Recuperación. Poligonización

-Cuando dislocaciones de borde del mismo signo se acumulan sobre el mismo plano de deslizamiento, sus campos de deformación son aditivos. Las regiones inmediatamente superior e inferior a los planos de deslizamiento son zonas de alta concentración de tensiones, de tracción y de compresión respectivamente.

-Cuando se disponen en una secuencia perpendicular al plano de deslizamiento, los campos de deformación de las dislocaciones adyacentes se cancelan unos a otros.

- (a) Dislocaciones en exceso sobre planos de deslizamiento
- (b) Reordenamiento de dislocaciones después de la poligonización.

- (a) Disposición de alta energía de dislocaciones;
- (b) Disposición de dislocaciones de baja energía.

C y T: compresión y tracción

RECRISTALIZACIÓN

Si un metal previamente deformado en frío, es recocido a una temperatura sobre 0,4 – 0,5 Tfusión (temperatura de recristalización), aparecen nuevos cristales en la microestructura. Los que se nuclean en zonas con alta densidad de dislocaciones, como los planos de deslizamiento, y en borde de grano por su alta energía.

Representación esquemática de cómo en regiones de la red cristalina altamente deformadas, se nuclean nuevos granos recristalizados.

Temperatura de recristalización

-La temperatura de recristalización corresponde a la temperatura aproximada a la que un material trabajado en frío se recristaliza por completo en una hora.

-La recristalización es sensible a cambios en la temperatura a la que se realiza, también es sensible a la deformación en frío previa. (140°C con 87,5%; 160°C con 75% y 180°C con 50%)

Variación de la tensión máxima y del porcentaje de elongación con la temperatura de recocido y con el porcentaje de def. en frío previo para un alambre de cobre puro.

Efecto de la temperatura de recocido en la fuerza y ductilidad de una aleación de latón que muestra que la mayoría del ablandamiento de la aleación ocurre durante la etapa de recristalización.

Recristalización completa

Crecimiento del grano

• 40

Bibliografía

- -Apuntes de la cátedra
- -CAP 4: SMITH Fundamentos de la ciencia e ingeniería de materiales.
- -ASKELAND-6° Edición
- -http://aprendemostecnologia.org/2009/
- 03/16/metodo-de-moldeo-por-arena/