Numeric Cheat Sheet

Cholesky-Zerlegung

Basics

Die Cholesky-Zerlegung erstellt eine Matrix G und G^T , so dass folgendes gilt:

$$\begin{bmatrix} g_{11} & & \\ \vdots & \ddots & \\ g_{gk1} & \cdots & g_{kk} \end{bmatrix} \begin{bmatrix} g_{11} & \cdots & g_{k1} \\ & \ddots & \vdots \\ & & g_{kk} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}$$

Formeln

$$g_{11} = \sqrt{a_{11}}$$

$$g_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} g_{kj}^2}$$

$$g_{ik} = \frac{a_{ik} - \sum_{j=1}^{k-1} g_{ij}g_{kj}}{g_{kk}}$$

Interpolations polynomen

Newton

In der Newton-Darstellung entsteht ein Polynom dessen Koeffizienten durch divergierten Differenzen definiert sind. Die Polynome sind die Newton-Polynome $w_i(x)$.

$$p(x) = f[x_0]w_0(x) + f[x_0, x_1]w_1(x) + \dots + f[x_0, \dots, x_n]w_n(x)$$

Newton-Polynome

Die Newton-Polynome haben alle folgende Form:

$$w_i(x) = \sum_{j=0}^{i-1} (x - x_j)$$

dividierte Differenzen

$$\begin{array}{lll} f[x_i] & = f_i \\ f[x_0, x_1] & = \frac{f[x_0] - f[x_1]}{x_0 - x_n} \\ f[x_0, ..., x_n] & = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n} \\ f_0 := f[x_0] & & & & \\ f_1 := f[x_1] & \rightarrow & f[x_0, x_1] \\ & & & & & \\ f_2 := f[x_2] & \rightarrow & f[x_1, x_2] & \rightarrow & f[x_0, ..., x_2] \end{array}$$

Copyright © 2006 Winston Chang

\$Revision: 1.13 \$, \$Date: 2008/05/29 06:11:56 \$. http://www.stdout.org/~winston/latex/