電腦視覺 Computer Vision: from Recognition to Geometry

簡韶逸 Shao-Yi Chien

Department of Electrical Engineering

National Taiwan University

Spring 2025

Computer Vision

- Describe the world that the computer see in one or more images and to reconstruct its properties, such as shape, illumination, and color distribution
- Is it hard? An inverse problem

Computer Vision

[R. C. James]

Computer Vision

Same Person?

Optical character recognition (OCR)

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

• Face detection: in all digital cameras and smart phones

Iris recognition
 (Vision-based biometrics)

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Object recognition

[Girod et al. 2011]

[slyce.it]

Motion capture

Pirates of the Carribean, Industrial Light and Magic

Computer vision in sports

Hawk-Eye: helping/improving referee decisions

Smart cars: ADAS

Surveillance system

Ref: Chih-Wei Wu, Meng-Ting Zhong, Yu Tsao, Shao-Wen Yang, Yen-Kuang Chen, and Shao-Yi Chien, "Track-clustering Error Evaluation for Track-based Multi-camera Tracking System Employing Human Re-identification," *CVPR 2016 Workshop*.

Vision-based interaction

Robotics

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Medical image

Image guided surgery
Grimson et al., MIT

[Ganzin]

[Ganzin]

AR/VR devices for the metaverse

[Apple]

[Sora]

Prompt: A Chinese Lunar New Year celebration video with Chinese Dragon.

Important Near-Future Applications

- AR/VR, Metaverse, spatial computing
- Autonomous vehicle
- Content generation
- Robot
- IoT: AloT (Al+IoT), IoVT (Internet-of-Video-Things)
- Medical imaging
- Large-scale video analysis
- Computational photography/image synthesis
- Industrial automation

• ...

Related Fields

 The boundaries between digital image processing/computer vision/computer graphics become vague nowadays

About this Course...

- Provide a comprehensive introduction to the field of computer vision (CV)
 - From classical methods to deep learning based methods
 - From recognition to geometry
 - No experiences in CV and image processing are required
- The two courses, Computer Vision and Deep Learning for Computer Vision, can give you a complete view of modern CV techniques
- Grading
 - Four homeworks: 60%
 - Class/talk participation: 10%
 - Group final project: 30%

Course Website

- Course website
 - https://cool.ntu.edu.tw/courses/49660
 - 採線上線下混合教學方式,請密切注意NTU Cool訊息
- TA
 - 范宇清 jackmafan@media.ee.ntu.edu.tw

(Tentative) Schedule: May be Modified...

Week	Date	Topic	
1	2/21	Introduction to human vision systems	
2	2/28	Camera basic, image formation and basic Image processing	228
3	3/7	Feature detection and matching	
4	3/14	Machine learning basics (I)	
5	3/21	Machine learning basics (II)	
6	3/28	Deep learning basics	
7	4/4	春假	
8	4/11	Segmentation	
9	4/18	Projective Geometry	
10	4/25	Estimation of Transformations	
11	5/2	Single Camera Geometry/Camera calibration	
12	5/9	Two-View Geometry	
13	5/16	Dense motion estimation/stereo	
14	5/23	Optical flow + object tracking	
15	5/30	3D reconstruction/depth sensing/Structure from motion	端午節
16	6/6	Final project presentation	

原則上每兩週會有一次實體上課

Homeworks

- Four assignments (tentative):
 - HW1: Image filters
 - HW2: Detection or recognition
 - HW3: Pose estimation
 - HW4: Stereo matching
- Official language is Python
- Lab0: Python and basic image processing
 - Will announce later in the next week

Final Project

- Will have one or two problems/challenges
- Each team should have 3—4 members
- Project may be supported by industry with awards
- Evaluated by professor, TAs, guest judges from industry, and you (peer review)!
- The problems/challenges will be announced around the week of mid exam

Reference Materials

Reference books

http://szeliski.org/Book/

 And papers in CVPR, ICCV, ECCV, BMVC, WACV, ACCV,