MLBlocks: FPGA Blocks for Machine Learning Applications

SeyedRamin Rasoulinezhad, David Boland, and Philip H.W. Leong School of Electrical and Information Engineering, The University of Sydney

Observation:

- FPGA architectures are Optimized for networking, signal/image processing using high-precision DSP blocks
- DSP48 → 27×18 multiplier, 48-bit Accumulation or two one input shared 8x8 MACs

> Previous works:

- Enhancing existing DSP blocks: PIR-DSP [1], Boutrous et al [2], Intel Agilex Architecture
 - Works on logic elements: LUXOR [3], Boutros et al. [4]
- Integrating domain-specific engines: Xilinx Versal Al-engines
 - Fundamental issue: They do not address the shortcomings of current FPGA architectures
- Designing a new embedded block: Hamamu [5], Achronix MLP72
- > Aim: How to design a new block by a systematic fashion targeting future workloads

Overview and Generalized nested loop model

- > Four loop variable groups:
 - Reduction(IW) → reuse of temporary O
 - Like: dot product
 - Expansion(WO) → reuse of I
 - Batching(IO) → reuse of W
 - **G**rouping(IWO) → computation replication
 - Used in depth-wise and grouped convolution

Algorithm 1: Pseudo code of the generalized nested loop model

$$\begin{aligned} & \textbf{for} \ g_0 \leftarrow 0 : G_0^{stride} : G_0^{limit} - 1 \\ & \textbf{for} \ g_1 \leftarrow 0 : G_1^{stride} : G_1^{limit} - 1 \\ & \dots \\ & \textbf{for} \ b_0 \leftarrow 0 : B_0^{stride} : B_0^{limit} - 1 \\ & \textbf{for} \ b_1 \leftarrow 0 : B_1^{stride} : B_1^{limit} - 1 \\ & \dots \\ & \textbf{for} \ e_0 \leftarrow 0 : E_0^{stride} : E_0^{limit} - 1 \\ & \dots \\ & \textbf{for} \ e_1 \leftarrow 0 : E_1^{stride} : E_1^{limit} - 1 \\ & \dots \\ & \textbf{for} \ r_0 \leftarrow 0 : R_0^{stride} : R_0^{limit} - 1 \\ & \dots \\ & \textbf{for} \ r_1 \leftarrow 0 : R_1^{stride} : R_1^{limit} - 1 \\ & \dots \\ & \dots \\ & O[g_0, g_1, \dots, b_0, b_1, \dots, e_0, e_1, \dots] + = \\ & \quad I[g_0, g_1, \dots, b_0, b_1, \dots, r_0, r_1, \dots] \times \mathbf{W}[g_0, g_1, \dots, e_0, e_1, \dots, r_0, r_1, \dots] \end{aligned}$$

Projection selections

(a) Greedy search

(b) N-Config search

Micro Architecture

Figure 6: A serial multiplier-armed MAC unit

Macro Architecture

- > Each selected projection maps to an MLBlock configuration
- > A projection routing:

Results – DSP48-like MLBlocks

- Assumptions:
 - Greedy projection selection
 - DSP48 IO and Area constraints
- Compute density improvement:
 - Only 8x8 (top)
 - 8x8, 8x16, 16x8, 16x16 (down)

- > Briefly our contributions are:
 - A Methodology for designing coarse-grained embedded blocks for machine learning applications.
 - MLBlocks, a parameterized embedded block architecture
 - Two configuration selection techniques, called Greedy and heuristic
 - A python based framework to generate hardware description of an efficient MLBlock instance for a given set of constraints

Conclusions:

 Using Xilinx DSP48 constraints, our approach results to embedded blocks with 6 times more compute density

- > [1] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. W. Leong, PIR-DSP: an FPGA DSP block architecture for multi-precision deep neural networks, FCCM 2019,
- > [2] A. Boutros, S. Yazdanshenas, and V. Betz, Embracing diversity: Enhanced DSP blocks for low-precision deep learning on FPGAs, FPL 2018
- > [3] S. Rasoulinezhad, Siddhartha, H. Zhou, L. Wang, D. Boland, and P. H. W. Leong, LUXOR: an FPGA logic cell architecture for efficient compressor tree implementations, in FPGA '20
- > [4] A. Boutros, M. Eldafrawy, S. Yazdanshenas, and V. Betz, Math doesn't have to be hard: Logic block architectures to enhance low-precision multiply-accumulate on FPGAs, FPGA 2019
- [5]A. Aror, Z. Wei2, and L. K. John, Hamamu: Specializing FPGAs for ML Applications by Adding Hard Matrix Multiplier Blocks, ASAP20

Spare Slides

Projection selections

(a) Greedy search

(b) N-Config search

$$utilization = \prod_{\hat{v} \in \mathbb{V}} \frac{V^{count}}{\lceil \frac{V^{count}}{\hat{V}_{i}^{unroll}} \rceil \hat{V}^{count}} \qquad \text{compute density} = M \frac{set_{utilization}}{set_{area}}$$

Algorithm 2: Pseudo code of standard convolution layer

```
\begin{aligned} & \textbf{for} \ b_0 \leftarrow 0 : B_0^{stride} : B_0^{limit} - 1 \\ & \textbf{for} \ b_1 \leftarrow 0 : B_1^{stride} : B_1^{limit} - 1 \\ & \textbf{for} \ b_2 \leftarrow 0 : B_2^{stride} : B_2^{limit} - 1 \\ & \textbf{for} \ e_0 \leftarrow 0 : E_0^{stride} : E_0^{limit} - 1 \\ & \textbf{for} \ r_0 \leftarrow 0 : R_0^{stride} : R_0^{limit} - 1 \\ & \textbf{for} \ r_1 \leftarrow 0 : R_1^{stride} : R_1^{limit} - 1 \\ & \textbf{for} \ r_2 \leftarrow 0 : R_2^{stride} : R_2^{limit} - 1 \\ & \textbf{O}[e_0, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0, r_0, r_1, r_2] \end{aligned}
```

- Unrolling a variable increases the number of:
 - MACs by the same factor
 - IO (I W O) where the variable accesses
- Variables in the same group
 - Have the same characteristics
 - Describe dimensions of the same access pattern
 - Example: in a Convolution layer x and y are similar when f_x is different (respectively B2, B1, R2)
- An Exception: Some variables in Reduction group can be windowed → we a separate them as two subgroups for Reduction group called, Windowed and NonWindowed.

```
Algorithm 3: Pseudo code of an unrolled standard convolution layer (E_0^{unroll} = 2, R_0^{unroll} = 3)
```

```
\begin{aligned} & \textbf{for}\ b_0 \leftarrow 0 : B_0^{stride} : B_0^{limit} - 1 \\ & \textbf{for}\ b_1 \leftarrow 0 : B_1^{stride} : B_1^{limit} - 1 \\ & \textbf{for}\ b_2 \leftarrow 0 : B_2^{stride} : B_2^{limit} - 1 \\ & \textbf{for}\ e_0 \leftarrow 0 : E_0^{stride} \times E_0^{limit} - 1 \\ & \textbf{for}\ r_0 \leftarrow 0 : E_0^{stride} \times E_0^{unroll} : E_0^{limit} - 1 \\ & \textbf{for}\ r_0 \leftarrow 0 : R_0^{stride} \times R_0^{unroll} : R_0^{limit} - 1 \\ & \textbf{for}\ r_1 \leftarrow 0 : R_1^{stride} : R_1^{limit} - 1 \\ & \textbf{for}\ r_2 \leftarrow 0 : R_2^{stride} : R_2^{limit} - 1 \\ & \textbf{O}[e_0, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0, r_0, r_1, r_2] \\ & \textbf{O}[e_0, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0 + 1, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0, r_0 + 1, r_1, r_2] \\ & \textbf{O}[e_0, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0 + 2, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0 + 1, r_0, r_1, r_2] \\ & \textbf{O}[e_0 + 1, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0 + 1, r_0, r_1, r_2] \\ & \textbf{O}[e_0 + 1, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0 + 1, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0 + 1, r_0 + 1, r_1, r_2] \\ & \textbf{O}[e_0 + 1, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0 + 2, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0 + 1, r_0 + 1, r_1, r_2] \\ & \textbf{O}[e_0 + 1, b_0, b_1, b_2] + \textbf{I}[b_0 + r_0 + 2, b_1 + r_1, b_2, r_2] \times \textbf{W}[e_0 + 1, r_0 + 2, r_1, r_2] \end{aligned}
```


We define unrolling degree for each group:

Specifically, we define unrolling degree for each variable group as $U_{group} = \prod \hat{V}_i^{unroll}$ for the relevant variable group. Using this

Then total number of MACs and required IOs are as follows:

$$M = \prod_{\mathbb{V}} \hat{V}_i^{unroll} \qquad Bandwidth = \prod_{\mathbb{V}_I} \hat{V}_i^{unroll} + \prod_{\mathbb{V}_W} \hat{V}_i^{unroll} + \prod_{\mathbb{V}_O} \hat{V}_i^{unroll}$$

- Where $^{\mathbb{V}, \mathbb{V}_I, \mathbb{V}_W, \mathbb{V}_O}$ are all variables, and the variables appeared in I, W, and O respectively
- A projection is a circuit abstraction based on unrolling degrees and windowing details:

$$<(U_{R}^{W},W_{buffer},W_{stride}),U_{R}^{N},U_{E},U_{B},U_{G}>$$

- A projection maps to a block configuration
- Finding projection is non-invertible, So, more than one unrolling could be mapped to a projection

BRAM

BRAM

BRAM

Results - Projection Selections

Benchmarks: Selected kernels from DeepBench-Baidu [25], for Training/inference tasks.

name	# of Cases	b_0	b_1	b_2	e_0	r_0	r_1	r_2
GEMM	19	(35-10752,1)	-	-	(1-1500,1)	-	-	(1024-3584,1)
CNN	12	(7-350,1-2)	(7-224,1-2)	(1-32,1)	(32-2048,1)	(1-7,1)	(1-20,1)	(1-512,1)
LSTM	4	(1024-8448,1)	-	-	(1-4,1)	-	-	(512-5632,1)

Greedy vs N-Config

Table 2: Selection methods for MLBlock-12

Method	utilization	Area [†]	Obj [‡]	# Synth.	time
Greedy	88.241	6093	1	1	1-2 mins
1-Config	72.000	5243	0.94	28	3-4 mins
2-Config	86.019	5245	1.13	378	1-2 hours
3-Config	88.192	5634	1.08	3276	≈ a day
4-Config	88.241	-	-	20475	≈ a week
5-Config	88.241	-	-	98280	≈ a month

Results – DSP48-like MLBlocks

Using greedy approach for projection selection

Table 3: Post-synthesis results for different EB architectures

EB name	Precisions	Utilization	Area*	Power*
DSP48E2	27×18 or two 8×8	≈ 1	1	1
MLBlock-12	8 × 8	88%	0.85	0.98
MLBlock-9	8 × 8	86%	0.66	0.81
MLBlock-8	8 × 8	92%	0.56	0.65
MLBlock-6	8 × 8	93%	0.46	0.54
MLBlock-12	$(16/8) \times (16/8)$	88%	1.44	1.81
MLBlock-9	$(16/8) \times (16/8)$	86%	1.20	1.57
MLBlock-8	$(16/8) \times (16/8)$	92%	0.96	1.20
MLBlock-6	$(16/8) \times (16/8)$	93%	0.80	1.02

^{*}normalized