FY2045 Quantum Mechanics I

Fall 2023

Henning Goa Hugdal

Week 2

Measurement of a degenerate eigenvalue

D: The measurement postulate

- (i) The only possible result of a precise measurement of an observable F is **one of the eigenvalues** f_n of the corresponding linear operator \hat{F} .
- (ii) Immediately after the measurement of the eigenvalue f_n , the system is in an eigenstate of \hat{F} , namely, the eigenstate ψ_n corresponding to the measured eigenvalue f_n .

Non-degenerate case

$$\hat{F}\psi_n = f_n\psi_n$$

has only one solution ψ_n for eigenvalue f_n .

If a measurement of observable F gives f_n , the system is in state ψ_n immediately after the measurement.

Ø7.2

Measurement of a degenerate eigenvalue

$$\hat{F}\psi_{ni}=f_n\psi_{ni},\quad i=1,2,\ldots g_n.$$

Complete set, expand general state as

$$\Psi = \sum_{n} \Psi_{n} = \sum_{n} \sum_{i=1}^{g_{n}} c_{ni} \psi_{ni},$$

resulting in probability of measuring f_n

$$P_n = \sum_{i=1}^{g_n} |c_{ni}|^2.$$

D (ii) — degenerate case

Immediately after a measurement of eigenvalue f_n , the system is in the normalized state

$$\frac{\Psi_n}{||\Psi_n||} = \frac{\sum_{i=1}^{g_n} c_i \psi_{ni}}{||\sum_{i=1}^{g_n} c_i \psi_{ni}||},$$

with $||\Psi_n||$ the norm of Ψ_n .

Example — 3D isotropic harmonic oscillator

1D case

3D case

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m \omega^2 (x^2 + y^2 + z^2),$$

$$\psi_{n_x n_y n_z} = \psi_{n_x}(x) \psi_{n_y}(y) \psi_{n_z}(z),$$

$$E_{n_x n_y n_z} = \hbar \omega \left(n_x + n_y + n_z + \frac{3}{2} \right)$$

$$= \hbar \omega \left(N + \frac{3}{2} \right) \equiv E_N.$$

Eigenfunctions of continuous variables

Momentum eigenfunctions

$$\hat{p}\psi_p(x) = p\psi_p(x) \quad \Rightarrow \quad \psi_p(x) = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar}.$$

Position eigenfunctions

$$\hat{x}\psi_y(x) = y\psi_y(x) \quad \Rightarrow \quad \psi_y(x) = \delta(x-y).$$

Normalization

For continuous case,

$$\int d\tau \ \Psi_{f'}^* \Psi_f = \delta(f - f'),$$

compared to

$$\int d\tau \; \Psi_{n'}^* \Psi_n = \delta_{nn'},$$

in discrete case.

Physical interpretation of the continuous case

Discrete case

The probability that a measurement of F gives the result f_n , when the system is in the state Ψ , is

$$|c_n|^2 = \left| \int d\tau \ \Psi_n^* \Psi \right|^2,$$

where Ψ_n is the eigenstate corresponding to f_n .

Continuous case

The probability that a measurement of F gives a result in the interval (f, f + df) when the system is in the state Ψ , is

$$|c(f)|^2 df = \left| \int d\tau \ \Psi_f^* \Psi \right|^2 df,$$

where Ψ_f is the eigenstate corresponding to the value f.

Ø7.3

Momentum-space representation

	Position-space formulation	Momentum-space formulation
Wavefunction	$\Psi(x,y,z,t)$	$\Phi(p_{x},p_{y},p_{z},t)$
Operator \hat{x}_i	Xi	$-\frac{\hbar}{i}\frac{\partial}{\partial p_i}$
Operator \hat{p}_i	$\frac{\hbar}{i} \frac{\partial}{\partial x_i}$	p _i
Wave equation	$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}(\hat{x}_i, \hat{p}_i)\Psi$	$i\hbar \frac{\partial \Phi}{\partial t} = \hat{H}(\hat{x}_i, \hat{p}_i)\Phi$

General formulation of QM

Dirac's $\langle bra|ket \rangle$ notation

State vector

A quantum mechanical state of a system is described by a state vector

$$|\psi\rangle$$

in a complex, linear vector space $\mathcal{H}-$ Hilbert space.

Dual vector

For each vector $|a\rangle$ we define the dual vector $\langle a|$ in the dual space \mathcal{H}^* ,

$$|a\rangle \stackrel{\text{dual}}{\longleftrightarrow} \langle a|,$$

so that we can define the scalar (inner) product of vectors $|a\rangle$ and $|b\rangle$

$$\langle a||b\rangle \equiv \langle a|b\rangle \in \mathbb{C},$$

with $\langle a|b\rangle = \langle b|a\rangle^*$.

Interpretation

Example

Probability amplitude for particle arriving at point *x*:

⟨Particle arrives at x|particle leaves s⟩

or simply

$$\langle x|s\rangle$$
.

Can go through either slit 1 or 2:

$$\langle x|s\rangle = \langle x|1\rangle\langle 1|s\rangle + \langle x|2\rangle\langle 2|s\rangle.$$

Based on Ch. 3 of Vol. III in the Feynman Lectures.

Interpretation

The wavefunction is probability amplitude of finding state $|\psi\rangle$ at point x:

$$\psi(\mathsf{X}) = \langle \mathsf{X} | \psi \rangle.$$

The momentum wavefunction is probability amplitude of finding state $|\psi\rangle$ with momentum p:

$$\phi(p) = \langle p | \psi \rangle.$$

The probability amplitude of finding state $|\psi\rangle$ with energy E_n :

$$\langle \psi_n | \psi \rangle$$
.

Completeness

n linearly independent vectors $|1\rangle, |2\rangle, |3\rangle, ...$ span \mathcal{H} if $\forall |\psi\rangle \in \mathcal{H}$ we have

$$|\psi\rangle = \sum_{k=1}^{n} c_n |k\rangle.$$

Assuming orthonormality $\langle m|k\rangle=\delta_{mk}$,

$$\Rightarrow \ |\psi\rangle = \sum_{k} \langle k|\psi\rangle |k\rangle = \sum_{k} |k\rangle \langle k||\psi\rangle,$$

meaning we have the completeness relation

$$\sum_{k} |k\rangle\langle k| = 1.$$