NAME:

CS 583 – Assignment 2

- **1.** We have three random variables, A, B, C, each of which is binary. We have the following factors over these variables: $\phi(A)$, $\phi(B)$, $\phi(C)$, $\phi(A, B)$, $\phi(A, C)$, $\phi(B, C)$.
 - **a.** Draw a Markov network graph over these variables.
 - **b.** Draw a factor graph over these variables.
 - **c.** Here are the values of the factors. Compute *P*(*A*, *B*, *C*).

Α	φ(A)	_	В	φ(B)	С	φ(C)
Т		2	Т	1	Т	1
F		1	F	4	F	8

Α	В	φ(A,B)	Α	С	φ(A,C)
Т	Т	5	Т	Т	6
Т	F	1	Т	F	1
F	Т	1	F	Т	1
F	F	5	F	F	6

В	С	φ(B,C)
Т	Т	1
Т	F	10
F	Т	10
F	F	1

2. For the following Markov network graph, indicate whether the following independence statements are True or False.

- a. $A \perp B$
- **b.** A ⊥ B | C
- c. $A \perp G \mid D$
- **d.** A ⊥ G | D, F
- e. $A \perp H \mid G$

3. We have the Markov network over 3 binary variables: A-B-C. We define a pairwise Markov random field (MRF) over this network. We define the following features.

$$f_1(A) = 1$$
 if $A = T$, 0 otherwise. $w_1 = \ln (2)$.q

$$f_2(B) = 1$$
 if $B = F$, 0 otherwise. $w_2 = -\ln(3)$.

$$f_3(C) = 1 \text{ if } C = T, 0 \text{ otherwise. } w_3 = \ln (4).$$

$$f_4(A, B) = 1$$
 if $A = B$, 0 otherwise. $w_4 = -\ln(5)$.

$$f_5(B,C) = 1 \text{ if } B \neq C, 0 \text{ otherwise. } w_5 = \ln (6).$$

$$P(A, B, C) = \frac{1}{Z} e^{-\sum_{i=1}^{5} w_i \times f_i(A, B, C)}$$

Note that to simplify the notation, we simply wrote $f_i(A,B,C)$, though features are defined only over nodes and edges. Assume f_i ignores the variables that it is not defined over. For example, $f_1(A,B,C) = f_1(A)$. Populate the following table.

Α	В	С	$\phi(A) * \phi(B) * \phi(C) * \phi(A,B) * \phi(B,C) = e^{-\sum_{i=1}^{5} w_i \times f_i(A,B,C)}$	P(A,B,C)
Т	Т	Т		
Т	T	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		

Hints: $e^{\ln(x)} = x$ and $e^{-\ln(x)} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$.

4. We have a document classification task. We have four documents, D₁ and D₂. We are interested in classifying these documents into one of two topics: Artificial Intelligence (AI) or Databases (DB). Each document has one or both words: Agent and SQL. We will represent this data as follows: the labels of D₁ and D₂ are: Y₁ and Y₂. Each Y_i can take one of two values: AI or DB. The presence of word Agent in document D_i represented as X_{1i}, and the presence of the word SQL in document D_i represented as X_{2i}. The documents and their contents are as follows:

$$D_1$$
: X_{11} = True, X_{21} = False (i.e, D_1 contains only the word Agent)

$$D_2$$
: X_{12} = True, X_{22} = True (i.e., D_2 contains both words)

We also have the additional knowledge that D_1 cites D_2 . We construct the following CRF, with the following feature functions.

Features:

$$f_1(X_{1i}, Y_i) = 1$$
 if $X_{1i} = T$ and $Y_i = AI$, 0 otherwise; $w_1 = -1$.

$$f_2(X_{1i}, Y_i) = 1$$
 if $X_{1i} = T$ and $Y_i = DB$, 0 otherwise; $w_2 = +1$.

$$f_3(X_{2i}, Y_i) = 1$$
 if $X_{2i} = T$ and $Y_i = AI$, 0 otherwise; $w_3 = +1$.

$$f_4(X_{2i}, Y_i) = 1$$
 if $X_{2i} = T$ and $Y_i = DB$, 0 otherwise; $w_4 = -1$.

$$f_5(Y_i, Y_j) = 1$$
 if $Y_i = Y_j$, 0 otherwise; $w_5 = -1$.

$$f_6(Y_i, Y_i) = 1$$
 if $Y_i \neq Y_i$, 0 otherwise; $w_6 = +1$.

Potentials:

$$\phi_1(X_{1i}, Y_i) = e^{-(w1f1+ w2f2)}$$

$$\phi_2(X_{2i}, Y_i) = e^{-(w3f3+ w4f4)}$$

$$\phi_3(Y_i, Y_j) = e^{-(w5f5 + w6f6)}$$

The factor graph is given as follows:

Calculate P(Y|X), that is $P(Y_1, Y_2 \mid X_{11}=T, X_{21}=F, X_{12}=T, X_{22}=T)$. What is the MAP assignment to Y given X? Show your work.

5. We are given the following Markov network structure, H.

- **a.** Find a minimal I-Map Bayesian network structure G_1 for H. Use the variable order of A, B, C, D, E.
- **b.** Find a minimal I-Map Bayesian network structure G_2 for H. Use the variable order of E, D, C, B, A.
- **c.** Is G₁ a P-Map for H? If not, which independencies are missing?
- **d.** Is G₂ a P-Map for H? If not, which independencies are missing?
- **6.** We are given the following Bayesian network structure G.

- **a.** Find a minimal I-Map Markov network structure H for G. Use any method/variable order you like; make sure H is a *minimal* I-Map.
- **b.** Is H a P-Map for G? If not, which independencies are missing?