Wersja:	A
Wersja:	A

Numer	:	1.01.0
Numer	1110	ieksii

Logika dla informatyków

Sprawdzian nr 2, 6 grudnia 2012

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach

lub na odwrocie tej kartki.
Zadanie 1 (3 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \setminus i nawiasy, oraz W zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $A \cup (B \setminus C) \cup ((C \setminus A) \cap B)$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 2 (3 punkty). Rozważmy zbiory osób O , barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podaj \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formułę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz barów, które podają tylko soki lubiane przez $Maliniaka$.
Zadanie 3 (3 punkty). W prostokąt poniżej wpisz dowód tautologii $((p \land q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ w systemie naturalnej dedukcji.
Zadanie 4 (3 punkty). Jeśli istnieją takie indeksowane rodziny zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, dla których zachodzi inkluzja $(\bigcup_{t\in T}A_t)\setminus(\bigcup_{t\in T}B_t)\subseteq\bigcup_{t\in T}(A_t\setminus B_t)$, to w prostokąt poniżej wpisz dowolny przykład takich rodzin. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 5 (7 punktów). Dla relacji $R \subseteq A \times A$ definiujemy $R^1 = R$ oraz $R^{n+1} = R^n R$ dla $n \ge 1$. Rozważmy

symetryczną relację R. Udowodnij, że dla wszystkich $n \geq 1$ relacja R^n jest symetryczna. Możesz przy tym skorzystać z faktu, że dla dowolnej relacji R zachodzi równość $R^iR^j=R^{i+j}$ dla wszysktich $i,j\geq 1$.

Zadanie 6 (6 punktów). Udowodnij, że jeśli rodzina $\{A_n\}_{n\in\mathbb{N}}$ jest wstępująca¹, to $\bigcap_{n=0}^{\infty}\bigcup_{i=n}^{\infty}A_i=\bigcup_{n=0}^{\infty}A_n$.

¹Dla przypomnienia: rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest wstępująca jeśli dla wszystkich $n\in\mathbb{N}$ zachodzi $A_n\subseteq A_{n+1}$.

Wersja:	\mathbf{C}
	_

TN T	. 1	1 1
Numer	-1 n 0	leksii

Logika dla informatyków

Sprawdzian nr 2, 6 grudnia 2012

Rozwiązania wszystkich zadań powinny zmieścić się w odpowiednich prostokątach

lub na odwrocie tej kartki.
Zadanie 1 (3 punkty). Mówimy, że w algebrze zbiorów wyrażenie W jest uproszczeniem wyrażenia W' jeśli oba wyrażenia oznaczają ten sam zbiór, oba zawierają tylko zmienne, binarne symbole \cup , \cap , \setminus i nawiasy, oraz W zawiera mniej symboli niż W' . Np. $A \setminus B$ jest uproszczeniem $(A \cup B) \setminus B$. Jeśli istnieje uproszczenie wyrażenia $B \cup (C \setminus A) \cup ((A \setminus B) \cap C)$ to w prostokąt poniżej wpisz dowolne takie uproszczenie. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 2 (3 punkty). Rozważmy zbiory osób O , barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Lubi \subseteq O \times S$ i $Podaj \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie osoby lubią jakie soki oraz jakie bary podają jakie soki. W prostokąt poniżej wpisz taką formulę φ , że $\{x \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób, które lubią tylko soki podawane w barze $Jagódka$.
Zadanie 3 (3 punkty). W prostokąt poniżej wpisz dowód tautologii $((p \land q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ w systemie naturalnej dedukcji.
Zadanie 4 (3 punkty). Jeśli istnieją takie indeksowane rodziny zbiorów $\{A_t\}_{t\in T}$ i $\{B_t\}_{t\in T}$, dla których zachodzi inkluzja $\bigcup_{t\in T} (A_t \setminus B_t) \subseteq (\bigcup_{t\in T} A_t) \setminus (\bigcap_{t\in T} B_t)$, to w prostokąt poniżej wpisz dowolny przykład takich
rodzin. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 5 (7 punktów). Dla relacji $R \subseteq A \times A$ definiujemy $R^1 = R$ oraz $R^{n+1} = R^n R$ dla $n \ge 1$. Rozważmy

przechodnią relację R. Udowodnij, że dla wszystkich $n \ge 1$ relacja R^n jest zawarta w relacji R.

Zadanie 6 (6 punktów). Udowodnij, że jeśli rodzina $\{A_n\}_{n\in\mathbb{N}}$ jest zstępująca², to $\bigcap_{n=0}^{\infty}\bigcup_{i=n}^{\infty}A_i=\bigcap_{n=0}^{\infty}A_n$.

²Dla przypomnienia: rodzina zbiorów $\{A_n\}_{n\in\mathbb{N}}$ jest zstępująca jeśli dla wszystkich $n\in\mathbb{N}$ zachodzi $A_{n+1}\subseteq A_n$.