

IR2110L6

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- Separate logic supply range from 5 to 20V Logic and power ground ±5V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Outputs in phase with inputs

Product Summary

Description

The IR2110L6 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge-dized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

	Parameter	Min.	Max.	Units	
V _B	High Side Floating Supply Voltage	-0.5	V _S + 20		
Vs	High Side Floating Supply Offset Voltage	_	600		
V _{HO}	High Side Floating Output Voltage	V _S - 0.5	V _B + 0.5		
V _{CC}	Low Side Fixed Supply Voltage	-0.5	20		
V_{LO}	Low Side Output Voltage	-0.5	V _{CC} + 0.5	V	
V_{DD}	Logic SupplyVoltage	-0.5	V _{SS} + 20		
V _{SS}	Logic Supply Offset Voltage	V _{CC} - 20	V _{CC} + 0.5		
V _{IN}	Logic Input Voltage (HIN, LIN & SD)	V _{SS} - 0.5	V _{DD} + 0.5		
dV _s /dt	Allowable Offset Supply Voltage Transient (Figure 2)	_	50	V/ns	
PD	Package Power Dissipation @ T _A ≤+25°C — 1.6		W		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	_	75	°C/W	
TJ	Junction Temperature	-55	125		
T _S	Storage Temperature -55 150		°C		
TL	Lead Temperature (Soldering, 10 seconds)	_	300		
	Weight	1.5 (typical)		g	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37.

	Parameter	Min.	Max.	Units	
VB	High Side Floating Supply Absolute Voltage	Vs + 10	Vs + 20		
٧s	High Side Floating Supply Offset Voltage -4 600				
VHO	High Side Floating Output Voltage	٧s	VB		
Vcc	Low Side Fixed Supply Voltage	10	20	V	
VLO	Low Side Output Voltage	0	VCC		
V _{DD}	Logic Supply Voltage	VSS + 5	VSS + 20		
VSS	Logic Supply Offset Voltage	-5	5		
VIN	Logic Input Voltage (HIN, LIN & SD)	Vss	V _{DD}		

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

		Tj = 25°C		Tj = -55 to 125°C				
	Parameter	Min.	Тур.	Max.	Min.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay		120	150	_	260		V _S = 0V
t _{off}	Turn-Off Propagation Delay	-	94	125	_	220		V _S = 600V
t _{sd}	Shutdown Propagation Delay	l	110	140	_	235	ns	V _S = 600V
t _r	Turn-On RiseTime	-	25	35	_	50		C _L = 1000pf
t _f	Turn-Off Fall Time	-	17	25	_	40		C _L = 1000pf
MT	Delay Matching, HS & LS Turn-On/Off	_	_	10	_	_		$\left H_{t_{on}} - L_{t_{on}} \right / \left H_{t_{off}} - L_{t_{off}} \right $

Typical Connection

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15V, unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input pins: HIN, LIN and SD. The V_{O} and I_{O} parameters are referenced to COM or V_{S} and are applicable to the respective output pins: HO or LO.

		Tj = 25°C			= 125°C			
	Parameter	Min.	Тур.	Max.	Min.	Max.	Units	Test Conditions
V _{IH}	Logic"1" Input Voltage	3.1	_	_	3.3	_		V _{DD} = 5V
		6.4	_	_	6.8	_		V _{DD} = 10V
		9.5	_	_	10	_	V	V _{DD} = 15V
		12.5	_	_	13.3	_		V _{DD} = 20V
V _{IL}	Logic "0" Input Voltage	_	_	1.8	_	1.7		V _{DD} = 5V
		_	_	3.8	_	3.6		V _{DD} = 10V
		_	_	6	_	5.7	V	V _{DD} = 15V
		_	_	8.3	_	7.9		V _{DD} = 20V
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	l	0.7	1.2	_	1.5		$V_{IN} = V_{IH}$, $I_O = 0A$
V _{OL}	Low Level Output Voltage, VO	_	_	0.1	_	0.1		$V_{IN} = V_{IH}$, $I_O = 0A$
I _{LK}	Offset Supply Leakage Current	_	_	50	_	250		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	_	125	230	_	500	μΑ	$V_{IN} = 0V$ or V_{DD}
IQCC	Quiescent V _{CC} Supply Current	1	180	340	_	600		$V_{IN} = 0V_{,} \text{ or } V_{DD}$
I _{QDD}	Quiescent V _{DD} Supply Current	_	5	30	_	60		$V_{IN} = 0V_{,} \text{ or } V_{DD}$
I _{IN+}	Logic "1" Input Bias Current	_	15	40	_	70		$V_{IN} = V_{DD}$
I _{IN-}	Logic "0" Input Bias Current	_	_	1.0	_	10		V _{IN} = 0V
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going Threshold	7.5	8.6	9.7	_	_		
VBSUV-	VBS Supply Undervoltage Negative Going Threshold	7.0	8.2	9.4	_			
Vccuv+	V _{CC} Supply Undervoltage Positive GoingThreshold	7.4	8.5	9.6	_	_	V	
VCCUV-	V _{CC} Supply Undervoltage Negative Going Threshold	7.0	8.2	9.4	_	_		
I _{O+}	Output High Short Circuit Pulsed Current	2.0	_	_	_	_	А	V _O = 0V, V _{IN} = V _{DD} PW ≤ 10 μs
I _O -	Output Low Short Circuit Pulsed Current	2.0	_	_	_			V _O = 15V, V _{IN} = 0V PW ≤ 10 µs

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Shutdown Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 7A. Turn-On Time vs. Temperature

Figure 7B. Turn-On Time vs. Voltage

Figure 8A. Turn-Off Time vs. Temperature

Figure 8B. Turn-Off Time vs. Voltage

Figure 9A. Shutdown Time vs. Temperature

Figure 9B. Shutdown Time vs. Voltage

Figure 10A. Turn-On Rise Time vs. Temperature

Figure 10B. Turn-On Rise Time vs. Voltage

Figure 11A. Turn-Off Fall Time vs. Temperature

Figure 11B. Turn-Off Fall Time vs. Voltage

Figure 12A. Logic "1" Input Threshold vs. Temperature

Figure 12B. Logic "1" Input Threshold vs. Voltage

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 13B. Logic "0" Input Threshold vs. Voltage

Figure 14A. High Level Output vs. Temperature

Figure 14B. High Level Output vs. Voltage

Figure 15A. Low Level Output vs. Temperature

Figure 15B. Low Level Output vs. Voltage

Figure 16A. Offset Supply Current vs. Temperature

Figure 16B. Offset Supply Current vs. Voltage

Figure 17A. V_{BS} Supply Current vs. Temperature

Figure 17B. V_{BS} Supply Current vs. Voltage

Figure 18A. Vcc Supply Current vs. Temperature

Figure 18B. Vcc Supply Current vs. Voltage

Figure 19A. V_{DD} Supply Current vs. Temperature

Figure 19B. V_{DD} Supply Current vs. Voltage

Figure 20A. Logic "1" Input Current vs. Temperature

Figure 20B. Logic "1" Input Current vs. Voltage

Figure 21A. Logic "0" Input Current vs. Temperature

Figure 21B. Logic "0" Input Current vs. Voltage

Figure 22. VBS Undervoltage (+) vs. Temperature

Figure 23. V_{BS} Undervoltage (-) vs. Temperature

Figure 24. V_{CC} Undervoltage (+) vs. Temperature

Figure 25. V_{CC} Undervoltage (-) vs. Temperature

Figure 26A. Output Source Current vs. Temperature

Figure 26B. Output Source Current vs. Voltage

Figure 27A. Output Sink Current vs. Temperature

Figure 27B. Output Sink Current vs. Voltage

Figure 28. IR2110L6T_J vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, V_{CC} = 15V$

Figure 29. IR2110L6T_J vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega, V_{CC} = 15V$

Figure 30. IR2110L6T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega$, $V_{CC} = 15V$

Figure 31. IR2110L6T_J vs. Frequency (IRFPE50) $R_{GATE} = 10\Omega, V_{CC} = 15V$

Figure 32. IR2110L6STJ vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, V_{CC} = 15V$

Figure 34. IR2110L6STJ vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega, V_{CC} = 15V$

Figure 36. Maximum V_S Negative Offset vs. V_{BS} Supply Voltage

Figure 33. IR2110L6STJ vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega$, $V_{CC} = 15V$

Figure 35. IR2110L6STJ vs.Frequency (IRFPE50) $R_{GATE} = 10\Omega, V_{CC} = 15V$

Figure 37. Maximum Vss Positive Offset vs. V_{CC} Supply Voltage

Functional Block Diagram

Lead Definitions

Lead			
Symbol	Description		
V_{DD}	Logic supply		
HIN	Logic input for high side gate driver output (HO), in phase		
SD	Logic input for shutdown		
LIN	Logic input for low side gate driver output (LO), in phase		
Vss	Logic ground		
VB	High side floating supply		
НО	High side gate drive output		
Vs	High side floating supply return		
Vcc	Low side supply		
LO	Low side gate drive output		
COM	Low side return		

Case Outline and Dimensions — MO-036AB

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371