```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv('/cleveland.csv')
df.head(10)
```

	age	gender	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tl
0	63	1	1	145	233	1	2	150	0	2.3	3	0.0	
1	67	1	4	160	286	0	2	108	1	1.5	2	3.0	
2	67	1	4	120	229	0	2	129	1	2.6	2	2.0	
3	37	1	3	130	250	0	0	187	0	3.5	3	0.0	
4	41	0	2	130	204	0	2	172	0	1.4	1	0.0	
5	56	1	2	120	236	0	0	178	0	0.8	1	0.0	
6	62	0	4	140	268	0	2	160	0	3.6	3	2.0	
7	57	0	4	120	354	0	0	163	1	0.6	1	0.0	
8	63	1	4	130	254	0	2	147	0	1.4	2	1.0	
9	53	1	4	140	203	1	2	155	1	3.1	3	0.0	
4													•

```
df.isnull().sum()
```

```
age
                 0
C→
                 0
    gender
                 0
    ср
    trestbps
                 0
    chol
                 0
    fbs
                 0
    restecg
                 0
    thalach
                 0
    exang
                 0
    oldpeak
                 0
    slope
                 4
    ca
                 2
    thal
    CHD
                 0
    dtype: int64
```

```
df['CHD'] = df.CHD.map({0: 0, 1: 1, 2: 1, 3: 1, 4: 1})
df['gender'] = df.gender.map({0: 'female', 1: 'male'})
df['thal'] = df.thal.fillna(df.thal.mean())
df['ca'] = df.ca.fillna(df.ca.mean())
```

df.describe()

	age	ср	trestbps	chol	fbs	restecg	thalach
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.438944	3.158416	131.689769	246.693069	0.148515	0.990099	149.607261
std	9.038662	0.960126	17.599748	51.776918	0.356198	0.994971	22.875003
min	29.000000	1.000000	94.000000	126.000000	0.000000	0.000000	71.000000
25%	48.000000	3.000000	120.000000	211.000000	0.000000	0.000000	133.500000
50%	56.000000	3.000000	130.000000	241.000000	0.000000	1.000000	153.000000
75%	61.000000	4.000000	140.000000	275.000000	0.000000	2.000000	166.000000
max	77 በበበበበበ	4 000000	200 000000	564 000000	1 000000	2 000000	202 000000

sns.countplot(x='CHD',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5397a12a10>

sns.catplot(kind = 'count', data = df, x = 'age', hue = 'CHD', order = df['age'].sort_values(
plt.title('Variation of Age for each target class')
plt.show()

Variation of Age for each target class


```
df['gender'] = df.gender.map({'female': 0, 'male': 1})
sns.catplot(kind = 'bar', data = df, y = 'age', x = 'gender', hue = 'CHD')
plt.title('Distribution of age vs gender with the CHD class')
plt.show()
```



```
from sklearn.model_selection import train_test_split
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()

X_train=sc.fit_transform(X_train)
X_test=sc.transform(X_test)

X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
```

from sklearn.model selection import train test split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from sklearn.linear model import LogisticRegression
classifier = LogisticRegression()
result=classifier.fit(X train, y train)
    /usr/local/lib/python3.7/dist-packages/sklearn/linear model/ logistic.py:818: Convergence
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
      extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
y pred = classifier.predict(X test)
from sklearn.metrics import confusion matrix
cm_test = confusion_matrix(y_pred, y_test)
y pred train = classifier.predict(X train)
cm train = confusion matrix(y pred train, y train)
#Testing Accuracy Score
from sklearn.metrics import accuracy score
predictions = result.predict(X test)
accuracy score(y test,predictions)
    0.8032786885245902
Prediction of New Values: Requires 13 values: age | gender | chestPain | restBP | cholestoral |
fastbloodSugar | restECG | MaxHeartRate | exerciseInduceAngina | oldpeak | slopeSTsegmnt | ca |
thal; pred_new = classifier.predict([[,,,,,,,,,,]]) pred_new
pred new = classifier.predict([[41, 0.2, 130, 204, 0.2, 172, 0.1.4, 1.0.0, 3.0]])
pred new
    array([0])
pred_new = classifier.predict([[53, 1, 4, 140,
                                                 203,
                                                         1, 2 ,155 ,1 ,3.1, 3 ,
pred_new
    array([1])
```

