Single-subject grey matter networks in AD

2024-05-10

Set up

```
packages <- c("here", "readxl", "dplyr", "ggplot2", "psych", "lmerTest", "WriteXLS",</pre>
           "lme4", "emmeans")
lapply(packages, library, character.only = TRUE)
## [[1]]
## [1] "here"
                                 "graphics"
                                              "grDevices" "utils"
                                                                         "datasets"
                    "stats"
## [7] "methods"
                    "base"
##
## [[2]]
  [1] "readxl"
                    "here"
                                 "stats"
                                                           "grDevices" "utils"
                                               "graphics"
## [7] "datasets"
                    "methods"
                                 "base"
##
## [[3]]
                     "readxl"
##
    [1] "dplyr"
                                  "here"
                                               "stats"
                                                             "graphics"
                                                                         "grDevices"
    [7] "utils"
                     "datasets"
                                  "methods"
                                               "base"
##
##
  [[4]]
                     "dplyr"
                                  "readxl"
                                               "here"
    [1] "ggplot2"
                                                             "stats"
                                                                          "graphics"
    [7] "grDevices"
                     "utils"
                                  "datasets"
                                               "methods"
                                                             "base"
##
## [[5]]
    [1] "psych"
                     "ggplot2"
                                  "dplyr"
                                               "readxl"
                                                             "here"
                                                                          "stats"
##
    [7] "graphics"
                     "grDevices" "utils"
                                               "datasets"
                                                             "methods"
                                                                          "base"
##
##
## [[6]]
##
   [1] "lmerTest"
                     "lme4"
                                  "Matrix"
                                               "psych"
                                                             "ggplot2"
                                                                          "dplyr"
   [7] "readxl"
                     "here"
                                  "stats"
                                               "graphics"
                                                             "grDevices" "utils"
## [13] "datasets"
                                   "base"
                     "methods"
##
  [[7]]
##
                     "lmerTest"
                                  "lme4"
    [1] "WriteXLS"
                                               "Matrix"
                                                             "psych"
                                                                          "ggplot2"
                                   "here"
    [7] "dplyr"
                     "readxl"
                                               "stats"
                                                             "graphics"
                                                                          "grDevices"
  [13] "utils"
                     "datasets"
                                  "methods"
                                               "base"
##
##
## [[8]]
    [1] "WriteXLS"
                     "lmerTest"
                                  "lme4"
                                               "Matrix"
                                                             "psych"
                                                                          "ggplot2"
    [7] "dplyr"
                     "readxl"
                                  "here"
                                               "stats"
##
                                                             "graphics"
                                                                         "grDevices"
  [13] "utils"
                     "datasets"
                                  "methods"
                                               "base"
##
```

```
## [[9]]
## [1] "emmeans"
                    "WriteXLS" "lmerTest"
                                                         "Matrix"
                                                                     "psych"
                                            "lme4"
                                "readxl"
                                                        "stats"
                                                                     "graphics"
## [7] "ggplot2"
                    "dplyr"
                                            "here"
## [13] "grDevices" "utils"
                                "datasets"
                                            "methods"
                                                         "base"
```

Load data

```
sw_all_info <- read_xlsx("data/sw_all_info.xlsx", sheet = 1)</pre>
sw_all_info <- as.data.frame(sw_all_info)</pre>
dim(sw_all_info)
## [1] 488 31
colnames(sw_all_info)
## [1] "Subject.ID"
                                    "Age"
## [3] "Gender"
                                    "Research.Group"
## [5] "Education"
                                    "Global.CDR"
## [7] "MMSE.Total.Score"
                                    "MoCA.Total"
## [9] "MoCA.MIS"
                                    "Description"
                                    "Image.ID"
## [11] "Imaging.Protocol"
## [13] "nvol"
                                    "number.of.nodes"
## [15] "mean.degree"
                                    "mean.custering.coef"
## [17] "fp.rate"
                                    "mean.pathlength"
## [19] "rand.pathlength"
                                    "gamma"
## [21] "lambda"
                                    "sigma"
## [23] "rand.mean.custering.coef"
                                    "mean.intensity.roi"
## [25] "std.intensity.roi"
                                    "std.degree"
                                    "rand.sd.custering.coef"
## [27] "sd.custering.coef"
## [29] "connectivity.density"
                                    "rand.sd.pathlength"
## [31] "TIV"
```

Demographic and clinical information

```
"Global.CDR", "MMSE.Total.Score",
#
                          "MoCA.Total", "MoCA.MIS")])
#sw_all_info$MoCA.Total[sw_all_info$MoCA.Total == 0] <- NA
# summary table
demo_info <- as.data.frame(matrix(0,6,7))</pre>
colnames(demo_info) <- c("CN_mean", "CN_range", "MCI_mean", "MCI_range", "AD_mean",</pre>
             "AD_range", "p value")
rownames(demo_info) <- c("Gender", "Age", "Education", "CDR", "MMSE", "MoCA")</pre>
# gender: chi-squared test
gender_gr <- table(sw_all_info$Research.Group, sw_all_info$Gender)</pre>
chisq.test(gender_gr)$p.value
## [1] 0.1900976
demo_info["Gender", 1] <- paste0(gender_gr["CN",2],"/",gender_gr["CN",1])</pre>
demo_info["Gender", 3] <- paste0(gender_gr["MCI",2] ,"/",gender_gr["MCI",1])</pre>
demo_info["Gender", 5] <- paste0(gender_gr["AD",2] ,"/",gender_gr["AD",1])</pre>
demo_info["Gender", 7] <- round(chisq.test(gender_gr)$p.value,3)</pre>
# Age, Education, CDR, MMSE, MoCA: mean, sd, range
sw_all_info$Research.Group <- factor(sw_all_info$Research.Group,</pre>
                      levels = c("CN","MCI","AD"))
mean_all <- describeBy(sw_all_info[, c("Research.Group", "Age", "Education",
                          "Global.CDR", "MMSE.Total.Score",
                         "MoCA.Total")],
                         group = "Research.Group",
                         digits = 3)
demo_info[c("Age","Education","CDR","MMSE","MoCA"), 1:6] <-</pre>
    cbind(paste0(round(mean_all[[1]]$mean[2:6],2),"±",
             round(mean_all[[1]]$sd[2:6],2)),
          paste0(round(mean_all[[1]]$min[2:6],2),"-",
                  round(mean\_all[[1]]$max[2:6],2)),
          paste0(round(mean_all[[2]]$mean[2:6],2),"±",
                  round(mean_all[[2]]$sd[2:6],2)),
          paste0(round(mean_all[[2]]$min[2:6],2),"-",
                  round(mean_all[[2]]max[2:6],2)),
          paste0(round(mean_all[[3]]$mean[2:6],2),"±",
                  round(mean_all[[3]]$sd[2:6],2)),
          paste0(round(mean_all[[3]]$min[2:6],2),"-",
                 round(mean_all[[3]]$max[2:6],2)))
# one way ANOVA
ano_age <- anova(lm(Age ~ Research.Group, sw_all_info))</pre>
```

```
ano_education <- anova(lm(Education ~ Research.Group, sw_all_info))</pre>
ano_MMSE <- anova(lm(MMSE.Total.Score ~ Research.Group, sw_all_info))</pre>
ano_MoCA <- anova(lm(MoCA.Total ~ Research.Group, sw_all_info))</pre>
demo_info["Age", 7] <- round(ano_age$`Pr(>F)`[1],3)
demo_info["Education", 7] <- round(ano_education$\Pr(>F)\[1],3)
demo_info["MMSE", 7] <- round(ano_MMSE$`Pr(>F)`[1],4)
demo info["MoCA", 7] <- round(ano MoCA$`Pr(>F)`[1],4)
kruskal.test(Global.CDR ~ Research.Group, data = sw_all_info)
##
## Kruskal-Wallis rank sum test
##
## data: Global.CDR by Research.Group
## Kruskal-Wallis chi-squared = 425.75, df = 2, p-value < 2.2e-16
demo_info["CDR", 7] <- "< 0.001"
#knitr::kable(demo_info)
writexl::write_xlsx(demo_info, "results/demographic_info.xlsx")
# subjects with education
length(which(!is.na(sw_all_info$Education[sw_all_info$Research.Group == "CN"])))
## [1] 185
length(which(!is.na(sw all info$Education[sw all info$Research.Group == "MCI"])))
## [1] 150
length(which(!is.na(sw_all_info$Education[sw_all_info$Research.Group == "AD"])))
## [1] 153
# subjects with MMSE
length(which(!is.na(sw_all_info$MMSE.Total.Score[sw_all_info$Research.Group == "CN"])))
## [1] 185
length(which(!is.na(sw_all_info$MMSE.Total.Score[sw_all_info$Research.Group == "MCI"])))
## [1] 150
length(which(!is.na(sw_all_info$MMSE.Total.Score[sw_all_info$Research.Group == "AD"])))
## [1] 153
```

```
# subjects with MoCA
length(which(!is.na(sw_all_info$MoCA.Total[sw_all_info$Research.Group == "CN"])))

## [1] 174
length(which(!is.na(sw_all_info$MoCA.Total[sw_all_info$Research.Group == "MCI"])))

## [1] 100
length(which(!is.na(sw_all_info$MoCA.Total[sw_all_info$Research.Group == "AD"])))

## [1] 92
```

Summary of global network metrics

```
sum_metrics <- as.data.frame(matrix(0,8,6))</pre>
mean_all <- describeBy(sw_all_info[, c(4,14:15, 29, 16,18,20:22)], group = "Research.Group",
               digits = 3)
   sum metrics[1:8, 1:6] <-
        cbind(paste0(round(mean all[[1]]$mean[2:9],3),"±",
                 round(mean_all[[1]]$sd[2:9],3)),
             paste0(round(mean_all[[1]]$min[2:9],3),"-",
                    round(mean_all[[1]]$max[2:9],3)),
             paste0(round(mean_all[[2]]$mean[2:9],3),"±",
                    round(mean_all[[2]]$sd[2:9],3)),
             paste0(round(mean_all[[2]]$min[2:9],3),"-",
                    round(mean_all[[2]]$max[2:9],3)),
             paste0(round(mean_all[[3]]$mean[2:9],3),"±",
                    round(mean_all[[3]]$sd[2:9],3)),
             paste0(round(mean_all[[3]]$min[2:9],3),"-",
                    round(mean_all[[3]]$max[2:9],3)))
row.names(sum_metrics) <- colnames(sw_all_info[, c(14:15, 29, 16,18,20:22)])
colnames(sum_metrics) <- c("CN.mean", "CN.range", "MCI.mean", "MCI.range",</pre>
               "AD.mean", "AD.range")
#knitr::kable(sum metrics)
WriteXLS::WriteXLS(sum_metrics, "results/sum_metrics.xlsx", row.names = T, col.names = T)
```

Correlations between education and global network metrics (revision on 2024-3-21)

network_measure	group	t-value	p-value
number.of.nodes	CN	0.133	0.072
number.of.nodes	AD	0.135	0.097
number.of.nodes	MCI	0.247	0.002
mean.degree	$_{\rm CN}$	0.084	0.256
mean.degree	AD	0.149	0.066
mean.degree	MCI	0.252	0.002
connectivity.density	CN	-0.048	0.515
connectivity.density	AD	0.084	0.301
connectivity.density	MCI	0.038	0.645
mean.custering.coef	$_{\rm CN}$	-0.039	0.602
mean.custering.coef	AD	0.141	0.082
mean.custering.coef	MCI	0.089	0.281
mean.pathlength	$_{\rm CN}$	0.023	0.758
mean.pathlength	AD	0.010	0.898
mean.pathlength	MCI	0.008	0.923
gamma	$_{\rm CN}$	0.000	0.998
gamma	AD	0.146	0.071
gamma	MCI	0.123	0.134
lambda	$_{\rm CN}$	-0.018	0.806
lambda	AD	0.108	0.183
lambda	MCI	0.056	0.496
sigma	$_{\rm CN}$	0.005	0.947
sigma	AD	0.143	0.078
sigma	MCI	0.130	0.113

Group differences in global network metrics

```
# network size/density across all subjects
mean(sw_all_info$number.of.nodes)
## [1] 6589.988
sd(sw_all_info$number.of.nodes)
## [1] 607.7006
mean(sw_all_info$connectivity.density)
## [1] 17.32638
sd(sw_all_info$connectivity.density)
## [1] 1.133136
# network metrics in each group
sw all info$Research.Group <- factor(sw all info$Research.Group,
                      levels = c("CN","MCI","AD"))
gr_diff <- as.data.frame(matrix(0, 8, 12))</pre>
i <- 0
for (sw in colnames(sw_all_info)[c(14:15, 29, 16,18,20:22)]) {
    i <- i+1
    fl <- formula(paste0(sw, " ~ Research.Group + Age + Gender + TIV + Education"))</pre>
    diff <- anova(lm(fl, sw_all_info))</pre>
    gr_diff[i,1] <- sw</pre>
    gr_diff[i, 2:6] <- round(diff$`Pr(>F)`[1:5],3)
    # post-hoc analysis
    tt <- pairwise.t.test(sw_all_info[,sw], sw_all_info[, "Research.Group"],</pre>
                   p.adjust="fdr", pool.sd = T)
    gr_diff[i,7] <- "CN vs. MCI"</pre>
    gr_diff[i,8] <- round(tt$p.value[1,1],3)</pre>
```

							p-		p-		p-
parameter	Group	Age	Gende	rTIV	Educati	oncontrast1	value1	contrast	2 value2	contrast3	value3
number.of.node	s 0.010	0.060	0.000	0.000	0.885	CN	0.605	CN	0.412	MCI	0.377
						vs. MCI		vs. AD		vs. AD	
mean.degree	0.001	0.000	0.000	0.000	0.326	CN	0.917	CN	0.026	MCI	0.026
						vs. MCI		vs. AD		vs. AD	
connectivity.der	ns 0t 9009	0.001	0.026	0.010	0.203	$_{\rm CN}$	0.451	CN	0.010	MCI	0.058
						vs. MCI		vs. AD		vs. AD	
mean.custering.	c oe €000	0.000	0.001	0.107	0.019	CN	0.081	CN	0.000	MCI	0.000
						vs. MCI		vs. AD		vs. AD	
mean.pathlengt	h0.002	0.017	0.071	0.225	0.589	CN	0.397	CN	0.002	MCI	0.021
						vs. MCI		vs. AD		vs. AD	
gamma	0.000	0.000	0.021	0.001	0.016	CN	0.014	CN	0.000	MCI	0.000
						vs. MCI		vs. AD		vs. AD	
lambda	0.000	0.000	0.000	0.354	0.015	CN	0.030	CN	0.000	MCI	0.000
						vs. MCI		vs. AD		vs. AD	
sigma	0.000	0.000	0.203	0.000	0.029	CN	0.020	CN	0.000	MCI	0.000
						${\rm vs.\ MCI}$		vs. AD		vs. AD	

```
which(p.adjust(gr_diff$Group) < 0.05)
## [1] 1 2 3 4 5 6 7 8
#writexl::write_xlsx(gr_diff, "results/group_diff_all.xlsx", col_names = T)</pre>
```

Plots for group differences in global network metrics

```
geom_boxplot(color = "white", width = 0.2) + # position = position_dodge(width=0.9)
    guides(fill = "none") +
    scale_fill_brewer(palette = "Set1")+
    stat_summary(fun=mean, size = 4, position = position_dodge(width=0.9),
             geom = "point", shape=4, col = "black") + # shape=1
    theme(axis.text = element_text(size = 16, face = "bold"),
          axis.title = element_blank())+
    theme(panel.border = element blank(),
          panel.background = element_blank(),
          panel.grid = element_blank(),
          axis.line = element_line(colour = "black"))
    if (sw == "mean.custering.coef") {
        p \leftarrow p + coord_cartesian(ylim = c(0.35, 0.5))
    } else if (sw =="mean.degree") {
        p \leftarrow p + coord_cartesian(ylim = c(800, 1500))
    } else if (sw =="mean.pathlength") {
        p \leftarrow p + coord_cartesian(ylim = c(1.8, 1.95))
    } else if (sw == "connection.density")
        p \leftarrow p + coord_cartesian(ylim = c(14, 22))
    } else if (sw == "number.of.nodes") {
        p \leftarrow p + coord_cartesian(ylim = c(5000, 9000))
    } else if (sw == "gamma")
                                {
        p \leftarrow p + coord_cartesian(ylim = c(1.2, 1.5))
    } else if (sw == "lambda")
                                  {
        p \leftarrow p + coord cartesian(vlim = c(1.01, 1.05))
    } else if (sw == "sigma")
        p \leftarrow p + coord_cartesian(ylim = c(1.2, 1.5))
    }
    print(p)
    ggsave(paste0("results/","violin_plot.",sw,".png"), width = 3, height = 3,
           units = c("in"), dpi = 200)
}
```


Correlations between network metrics and cognitive ability

```
gr_correlation <- as.data.frame(matrix(0, 7, 27))
i <- 0
for (sw in colnames(sw_all_info)[c(15, 29, 16,18,20:22)]) {
    i <- i+1
    fl <- formula(pasteO(sw, " ~ MoCA.Total + Age + Gender + TIV+Education" ))</pre>
```

```
corr <- anova(lm(fl, sw_all_info))</pre>
    gr_correlation[i,1] <- sw</pre>
    gr_correlation[i, 2:6] <- round(corr$`Pr(>F)`[1:5],4)
    # CN
    lmCN <- lm(f1, sw all info[sw all info$Research.Group == "CN",])</pre>
    ano CN <- anova(lmCN)
    mycor <- cor.test(sw_all_info[sw_all_info$Research.Group == "CN",sw],</pre>
         sw_all_info[sw_all_info$Research.Group == "CN", "MoCA.Total"])
    gr_correlation[i, 7] <- round(mycor$estimate,4)</pre>
    gr_correlation[i, 8] <- coef(lmCN)[2]</pre>
    gr_correlation[i, 9:13] <- round(ano_CN$`Pr(>F)`[1:5],4)
    # MCI
    lmMCI <- lm(f1, sw_all_info[sw_all_info$Research.Group == "MCI",])</pre>
    ano_MCI <- anova(lmMCI)</pre>
    mycor <- cor.test(sw all info[sw all info$Research.Group == "MCI",sw],</pre>
         sw_all_info[sw_all_info$Research.Group == "MCI", "MoCA.Total"])
    gr_correlation[i, 14] <- round(mycor$estimate,4)</pre>
    gr_correlation[i, 15] <- coef(lmMCI)[2]</pre>
    gr_correlation[i, 16:20] <- round(ano_MCI$`Pr(>F)`[1:5],4)
    # AD
    lmAD <- lm(f1, sw_all_info[sw_all_info$Research.Group == "AD",])</pre>
    ano_AD <- anova(lmAD)</pre>
      mycor <- cor.test(sw_all_info[sw_all_info$Research.Group == "AD",sw],</pre>
     sw_all_info[sw_all_info$Research.Group == "AD", "MoCA.Total"])
    gr_correlation[i, 21] <- round(mycor$estimate,4)</pre>
    gr_correlation[i, 22] <- coef(lmAD)[2]</pre>
    gr_correlation[i, 23:27] <- round(ano_AD$`Pr(>F)`[1:5],4)
}
colnames(gr_correlation) <- c("parameter", "MoCA", "Age", "Gender", "TIV", "Education",
                   "r-CN", "beta-CN", "MoCA_CN", "Age_CN", "Gender_CN",
                   "TIV_CN", "Education_CN", "r-MCI", "beta-MCI", "MoCA_MCI",
                   "Age_MCI", "Gender_MCI", "TIV_MCI", "Education_MCI",
                   "r-AD", "beta-AD", "MoCA_AD", "Age_AD", "Gender_AD",
                   "TIV_AD", "Education_AD")
#View(qr_correlation)
#knitr::kable(qr_correlation)
writexl::write_xlsx(gr_correlation, "results/MoCA.correlation_new.xlsx", col_names = T)
```

Scatter plots for correlations between network metrics and cognitive ability

```
library(RColorBrewer)
library(ppcor)
## Loading required package: MASS
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
brewer.pal(3, "Set1")
## [1] "#E41A1C" "#377EB8" "#4DAF4A"
\#table(gqplot\_build(p)\$data[[1]]\$colour)
# CN
mm <- gr_correlation$parameter[gr_correlation$MoCA_CN < 0.05]</pre>
## [1] "mean.degree"
gr <- "CN"
tmp <- sw_all_info[sw_all_info$Research.Group == gr & !is.na(sw_all_info$MoCA.Total),]</pre>
for(sig_sw in mm) {
plm <- lm(formula(paste0(sig_sw, " ~ MoCA.Total + Age + Gender + TIV + Education")),</pre>
      data=tmp)
anova(plm)
tmp$Research.Group <- droplevels(tmp$Research.Group)</pre>
p <- ggplot(data=tmp, aes_string(y=sig_sw, x="MoCA.Total")) +</pre>
    geom_point(size = 5, col = '#E41A1C', alpha = 0.8) + #col = 'blue',
    geom_smooth(method = "lm", col = 'black', linewidth = 2, se = FALSE) +
    geom_smooth(method = "lm", mapping=aes(y=predict(plm,tmp)),
            col = 'black',linewidth = 2, se = FALSE) +
    guides(color = "none") +
    labs(x = "", y = "") +
    theme(legend.title = element_text(colour="black", size=14, face="bold"),
          legend.text = element_text(colour="black", size=14, face="bold")) +
    theme(plot.title = element_text(hjust = 0.5))+
    theme(axis.title = element_blank(),
```

```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```



```
# MCI
mm <- gr_correlation$parameter[gr_correlation$MoCA_MCI < 0.05]

gr <- "MCI"
tmp <- sw_all_info[sw_all_info$Research.Group == gr,]

cor.test(tmp[,"gamma"],tmp$MoCA.Total)</pre>
```

```
##
## Pearson's product-moment correlation
##
## data: tmp[, "gamma"] and tmp$MoCA.Total
## t = 1.9518, df = 98, p-value = 0.05381
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.003094065 0.375589060
## sample estimates:
## cor
## 0.1934416
```

```
cor.test(tmp[,"sigma"],tmp$MoCA.Total)
##
## Pearson's product-moment correlation
## data: tmp[, "sigma"] and tmp$MoCA.Total
## t = 1.8979, df = 98, p-value = 0.06066
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.008445788 0.370982910
## sample estimates:
##
         cor
## 0.1882847
for(sig_sw in mm) {
plm <- lm(formula(pasteO(sig_sw, " ~ MoCA.Total + Age + Gender + TIV")),</pre>
      data=tmp)
anova(plm)
tmp$Research.Group <- droplevels(tmp$Research.Group)</pre>
p <- ggplot(data=tmp, aes_string(y=sig_sw, x="MoCA.Total")) +</pre>
    geom_point(size = 5, col = '#377EB8', alpha = 0.8) + #col = 'blue',
    geom_smooth(method = "lm", col = 'black', linewidth = 2, se = FALSE) +
   geom smooth(method = "lm", mapping=aes(y=predict(plm,tmp)),
            col = 'black',linewidth = 2, se = FALSE) +
    guides(color = "none") +
   labs(x = "", y = "") +
    theme(legend.title = element_text(colour="black", size=14, face="bold"),
          legend.text = element_text(colour="black", size=14, face="bold")) +
   theme(plot.title = element_text(hjust = 0.5))+
    theme(axis.title = element_blank(),
          axis.text = element_text(size = 16, face = "bold")) +
    theme(panel.background = element_blank(),
          panel.border = element_blank(),
          panel.grid = element_blank(),
          axis.line = element line(colour = "black")) +
    coord_cartesian(xlim=c(10,30))
   print(p)
    ggsave(paste0("results/",gr,".",sig_sw,".png"), width = 6,
           height = 4, units = c("in"), dpi = 200)
}
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```

```
1.45

1.35

1.30

1.25

10 15 20 25 30
```

```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```



```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```



```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```



```
## 'geom_smooth()' using formula = 'y ~ x'
## 'geom_smooth()' using formula = 'y ~ x'
```


'geom_smooth()' using formula = 'y ~ x'
'geom_smooth()' using formula = 'y ~ x'

