Matematika G1-G2-G3 kidolgozott tételek

Kun László Ákos

2022/2023

MINTA!!

• To be continued

MINTA!!

• To be continued

MINTA!!

• To be continued

Matematika G1 szóbeli tételek

Halmazelmélet és komplex számok:

1. Halmaz, metszet, unió, különbség

- halmaz: nem definiált alapfogalom
 - **jelölés:** A, B halmazok; $a \in A; a \notin B$ (nem definiáljuk)
 - \varnothing **üreshalmaz:** egyetlen eleme sincs
 - **nemüres halmaz:** ∃ legalább egy eleme
 - jól megadott halmaz: ha bármely elemről eldönthető, hogy beletartozik-e

A és B az X alaphalmaz részhalmazai, ekkor

- metszet: $A \cap B = \{x \in X | x \in A \land x \in B\}$ Két halmaz diszjunkt, ha metszetük üres halmaz.
- unió: $A \cup B = \{x \in X | x \in A \lor x \in B\}$
- különbség: $A \setminus B = \{x \in X \mid x \in A \land x \notin B\}$
- egyéb: $A \subset A$ az A részhalmaza önmagának: reflexív tulajdonság

ha $A \subset B$ és $B \subset A \to A = B$ vagyis antiszimmetrikus (A részhz.-a B-nek és fordítva) ha $A \subset B$ és $B \subset C \to A \subset C$ tranzitív tulajdonság (A a nagyobb hz.-nak is részhz.-a)

2. Descartes-szorzat, hatványhalmaz

- **Descartes-szorzat:** Az A és B halmazok Descartes-szorzatán az A és B halmazok elemeiből alkotott összes rendezett elempár halmazát értjük.
 - Jelölése: $A \times B = \{(a; b) \mid a \in A \land b \in B\}$
 - Az $A \times B$ szorzathalmaz egy $T \in A \times B$ részhalmaza az A és B halmazok elemei közti kételemű (binér) reláció
 - Ha $(a;b) \in T$, akkor a és b relációban vannak: $a \top b$
- Hatványhalmaz: egy halmaz összes részhalmazainak halmaza Egy n elemű halmaznak 2^n darab részhalmaza van

Kommutativitás: felcserélhetőség Asszociativitás: csoportosíthatóság Disztributivitás: szétbonthatóság

3. Csoport, gyűrű, test

- Félcsoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak (pl. természetes számok esetén az összeadás)
- Csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak ÉS létezik zérus elem ill. inverz elem (összeadásnak a kivonás, szorzásnak az osztás az invertálása) (pl. egész számok halmaza esetén az összeadás)
- Abel-csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak és kommutatívak is ill. létezik a zérus elem és az inverz elem
- **Gyűrű:** olyan csoport, amelyben a kétváltozós műveletek már disztributívak is egymásra nézve (pl. az egész számok esetén az összeadásra nézve a szorzás) A gyűrűben tehát elvégezhető: az összeadás, a kivonás és a szorzás
- Test: olyan csoport, amelyben a kétváltozós műveletek disztributívak egymásra nézve (pl. racionális számoknál az összeadásra nézve a szorzás disztributív) A testben, mint algebrai struktúrában tehát elvégezhető az összeadás, kivonás, szorzás és az osztás

4. Komplex számok algebrai, trigonometrikus, exponenciális alakja

- Algebrai alak: $z = a + b \cdot i$ (z valós része a, képzetes része pedig b)
 - konjugált: $\overline{z} = a b \cdot i$
 - **abszolút érték:** $|z| = \sqrt{a^2 + b^2}$ (Pitagorasz-tételből), és mivel: $z \cdot \overline{z} = (a + b \cdot i)(a b \cdot i) = a^2 (b \cdot i)^2 = a^2 + b^2$, ezért $|z| = \sqrt{z \cdot \overline{z}}$
- Trigonometrikus (polár) alak: $z = r(cos(\varphi) + i \cdot sin(\varphi))$, mivel

$$\cos(\varphi) = \frac{a}{r}$$

$$sin(\varphi) = \frac{b}{r}$$

Tehát $a = r \cdot cos(\varphi)$ és $b = r \cdot sin(\varphi)$, innen már egyértelműen következik a trigonometrikus alak az algebraiból r-t kiemelve $(a = r \cdot cos(\varphi))$ és $b \cdot i = r \cdot i \cdot sin(\varphi)$

• Exponenciális alak: $z=r\cdot e^{e\cdot \varphi}$ - ez csak egy szimbólum, rövidítés, ami megkönnyíti a számolást a komplex számokkal, lényegében a trigonometrikus alak kicsit rövidebben.

5. Komplex számok hatványozása

de Moivre-képlet:

$$z^{n} = [r(\cos(\varphi) + i \cdot \sin(\varphi))]^{n} = r^{n}(\cos(n\varphi) + i \cdot \sin(n\varphi))$$

Bizonyítás: Teljes indukció használatával

- 1. n = 1-re és n = 2-re **igaz**
- 2. indukciós feltétel: n = k
- 3. Ekkor $z^k = r^k(\cos(k\varphi) + i \cdot \sin(k\varphi))$
- 4. ha n = k + 1, akkor:

$$\begin{split} z^{k+1} &= z^k \cdot k = r^k (\cos(k\varphi) + i \cdot \sin(k\varphi)) \cdot r(\cos(\varphi) + i \cdot \sin(\varphi)) \\ &= r^{k+1} [\cos(k\varphi + \varphi) + i \cdot \sin(k\varphi + \varphi)] = \\ &\qquad \qquad r^{k+1} [\cos((k+1)\varphi) + i \cdot \sin((k+1)\varphi)] \end{split}$$

és k + 1 az n volt, tehát a bizonyítás kész.

6. Komplex számok gyökvonása

$$z_1^n = z_2 = r_1^n \cdot (\cos(n\varphi_1) + i \cdot \sin(n\varphi_1)) = r_2 \cdot (\cos(\varphi_2) + i \cdot \sin(\varphi_2))$$
$$z_1 = \sqrt[n]{z_2}$$

Két komplex szám akkor egyenlő, ha a hosszuk és argumentumuk is egyenlő:

- $r_1 = \sqrt[n]{r_2}$ (hossz)
- $n \cdot \varphi_1 = \varphi_2 + k \cdot 2\pi$ (argumentum) \rightarrow forgásszög, periodicitás miatt $p = 2\pi$
- Így $\varphi_1 = \frac{\varphi_2 + k \cdot 2\pi}{n}$ $k \in \{0, 1, 2, ..., n-1\}$
- Tehát:

$$\sqrt[n]{z} = \sqrt[n]{r}(\cos(\frac{\varphi + k \cdot 2\pi}{n}) + i \cdot \sin(\frac{\varphi + k \cdot 2\pi}{n}))$$

Az n-edik gyökvonás után olyan komplex számokat kapunk, amik egy szabályos sokszög (n-szög) csúcsai! Tehát n-edik gyökvonás esetén n db komplex szám a megoldás.

Numerikus sorozatok:

1. Numerikus sorozat határértéke

• Egy függvényt numerikus sorozatnak nevezünk, ha értelmezési tartománya \mathbb{N}^+ **Jelölései:** a_n , (a:n);

Megadása: explicit alak, rekurzív, leírás.

• **Tétel:** Az (a_n) konvergens és határértéke az $a \in \mathbb{R}$ akkor és csak akkor, ha bármely pozitív ε -hoz létezik olyan $N(\varepsilon)$ küszöbindex (küszöbszám), hogy a sorozat $N(\varepsilon)$ -nál nagyobb indexű elemei már az "a" ε -sugarú környezetébe esnek.

Következmény:

Ha egy sorozatnak véges sok elemét megváltoztatjuk, vagy a sorozathoz véges sok elemet hozzáveszünk/elhagyunk belőle, akkor sem a konvergencia, sem a határérték nem változik meg!

2. Konvergens, divergens sorozat

• **Definíció** Az (a_n) konvergens, ha van olyan $a \in R$ szám, hogy minden $\varepsilon > 0$ valós szám esetén létezik $N(\varepsilon)$ valós küszöbszám, hogy

$$|a_n - a| < \varepsilon, \ ha \ n > N(\varepsilon)$$

$$azaz$$

$$a - \varepsilon < a_n < a + \varepsilon$$

- Az "a" számot az (a_n) határértékének hívjuk, és a $\lim_{n\to\infty} a_n = a$ vagy az $a_n \to a$, ha $n \to \infty$ jelölést használjuk.
- Az (a_n) divergens, ha nem konvergens.

Tételek:

- Konvergens sorozat korlátos.
- Monoton korlátos sorozat konvergens.
- Monoton, nem korlátos sorozatnak van határértéke.
- \bullet konvergens \rightarrow van határértéke
- van határértéke/torlódási pontjai → nem biztos, hogy konvergens
- Bolzano-Weierstrass-tétel: minden korlátos sorozatnak van konvergens részsorozata.

3. Nevezetes sorozatok

Olyan sorozatok, amelyek határértékét nem kell bizonyítani, csak felhasználni!

- Bernoulli-féle egyenlőtlenség: ha $x \ge -1$, akkor $(1+x)^n \ge 1 + n \cdot x$
- 1. $a^n \to 0$, ha |a| < 1 $a^n \to 1$, ha a = 1 $a^n \to +\infty$, ha a > 1 a^n divergens, ha a < -1
- 2. $\sqrt[n]{a} \to 1$, ha $n \to \infty (a > 0)$
- 3. $a^n \cdot n^k \to 0$, nullsorozat, ha |a| < 1 és k rögzített természetes szám
- 4. $\sqrt[n]{n} \to 1$, ha $n \to \infty \ (n \ge 2)$
- 5. $\frac{a^n}{n!} \to 0 (a \in \mathbb{R})$

Legfontosabb:

$$(1+\frac{\alpha}{n})^n \to e^{\alpha}$$

4. Cauchy sorozat

• **Definíció:** Az (a_n) -t Cauchy-sorozatnak nevezzük, ha minden $\varepsilon > 0$ esetén $\exists N(\varepsilon)$ küszöbindex, hogy:

$$|a_n - a_m| < \varepsilon$$
, ha $n, m > N(\varepsilon)$ $(n, m \in N)$

• **Tétel:** Cauchy-féle konvergencia kritérium (szükséges ÉS elégséges feltétel). Az (a_n) akkor és csak akkor konvergens, ha Cauchy sorozat!

5. Torlódási pont

• **Definíció:** A h a H halmaz torlódási pontja, ha h bármely környezetében van H-nak h-tól különböző eleme. A t szám a sorozat torlódási pontja, ha t akármilyen kicsi környezete a sorozat végtelen sok elemét tartalmazza. Például: $(-1)^n$

Függvények, derivált:

1. Függvények, értelmezési tartomány, értékkészlet

- Függvény: ha az A (nemüres) halmaz minden egyes eleméhez hozzárendeljük a B (nemüres) halmaz pontosan egy elemét, akkor ezt a leképezést függvénynek nevezzük.
- Értelmezési tartomány: azon elemek halmaza, melyekhez a függvény hozzárendel egy-egy elemet a B halmazból, jelen esetben ez az A halmaz.

$$D_f = A$$

• Értékkészlet: A képhalmaz, azaz a B halmaz azon elemei, melyeket az f függvény ténylegesen hozzárendel az A valamelyik eleméhez. Az értékkészlet tehát része a képhalmaznak:

$$R_f \subset B$$

2. Függvény határérték

Azt mondjuk, hogy az f függvény határértéke az "a" pontban A, ha minden $\varepsilon>0$ számhoz létezik olyan $\delta(\varepsilon)>0$, hogy ha $0<|x-a|<\delta(\varepsilon)$, akkor $|f(x)-A|<\varepsilon$. /Ez a Cauchy-féle definíció/

$$|x - a| < \delta(\varepsilon)$$
 azt jelenti, hogy:
 $-\delta(\varepsilon) < x - a < \delta(\varepsilon) / + a$
 $a - \delta(\varepsilon) < x < a + \delta(\varepsilon)$

pontban acsa (akkor és csak akkor) van határértéke, ha van bal- és jobboldali határértéke

Szemléletesesen: azt jelenti, hogy a függvényértékek (f(x) - ek) tetszőlegesen megközelítik az A számot, ha az ε értékek elég közel kerülnek a-hoz. Az f függvénynek az "a"

és ez a kettő megegyezik!

• Határérték a végtelenben:

- Az f függvény határértéke +∞-ben A, ha minden $\varepsilon > 0$ esetén van olyan $N(\varepsilon)$, hogy $|f(x) A| < \varepsilon$, ha $x > N(\varepsilon)$.
- Az f függvény határértéke $-\infty$ -ben A, ha minden $\varepsilon > 0$ esetén van olyan $N(\varepsilon)$, hogy $|f(x) A| < \varepsilon$, ha $x < N(\varepsilon)$.
- A végtelen, mint határérték:
 - Az f függvény határértéke a-ban +∞, ha bármely N>0 esetén van olyan $\delta(N)$, hogy f(x)>N, ha $0<|x-a|<\delta(N)$.
 - Az f függvény határértéke a-ban -∞, ha bármely N>0 esetén van olyan $\delta(N)$, hogy f(x) < N, ha $0 < |x-a| < \delta(N)$.

3. Függvény folytonosság

Az f függvény az értelmezési tartományának "a" pontjában folytonos, ha ebben a pontban létezik határértéke és ez egyenlő az adott pontbeli helyettesítési értékkel, azaz ha

$$\lim_{x \to a} f(x) = f(a)$$

• **Definíció:** Az f függvényt folytonosnak nevezzük az $a \in D_f$ pontban, ha bármely $\varepsilon > 0$ esetén van olyan $\delta(\varepsilon) > 0$ szám, hogy ha $|x-a| < \delta(\varepsilon)$, akkor $|f(x)-f(a)| < \varepsilon$.

Az f függvény egy intervallumon egyenletesen folytonos, ha bármely $\varepsilon > 0$ számhoz van olyan $\delta > 0$ szám, hogy f értelmezési tartományának bármely x_1 , x_2 elemére, amelyek távolsága egymástól kisebb δ -nál, fennáll az alábbi egyenlőtlenség.

$$|f(x_1) - f(x_2)| < \varepsilon$$

- **Tétel:** Az f függvény pontosan akkor folytonos értelmezési tartományának "a" pontjában, ha ott balról és jobbról is folytonos.
- **Definíció:** Az f függvény folytonos az]a,b[-on, ha folytonos]a,b[minden pont-jában. Az f függvény folytonos az [a,b]-on, ha folytonos]a,b[-on és a-ban balról, b-ben jobbról folytonos.

A folytonosság néhány nevezetes következménye:

- ha f folytonos egy zárt intervallumon, akkor ott egyenletesen folytonos.
- Bolzano-tétel: ha a függvény a zárt intervallumon folytonos, és az intervallum két végpontjában az értékei különböző előjelűek, akkor az intervallum belsejében van zérushelye. Másképp: felvesz minden f(a) és f(b) közé eső értéket egy folytonos függvény egy zárt intervallumon.
- Weierstrass-tétel: Zárt intervallumon folytonos függvény felveszi a minimumát és a maximumát is függvényértékként; továbbá minden olyan értéket, ami a legnagyobb és legkisebb érték közé esik.

4. Inverz függvény

Ha az $f: X \to Y$ függvénynél a leképezés irányát megfordítjuk, vagyis az Y halmaz elemeit képezzük le az X halmaz elemeire, akkor ez a fordított leképezés általában nem függvény, mert nem biztos, hogy egy $y \in Y$ elemnek egyetlen $x \in X$ elem felel meg. Ezért fontos az, hogy f bijektív, azaz kölcsönösen egyértelmű legyen, mert ekkor az f-1-gyel jelölt fordított leképezés is már függvény lesz.

• Definíció: Ha az $f:X\to Y$ függvény kölcsönösen egyértelmű, akkor az $f^{-1}=Y\to X$ függvényt f inverz függvényének nevezzük. Ekkor igaz az alábbi összefüggés:

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

5. Derivált

- \bullet Legyen $f:I\subset R\to R$ függvény értelmezve az $x\in I$ pontban és annak egy környezetében.
- \bullet Ha $x\neq a,$ akkor az $\frac{f(x)-f(a)}{x-a}$ hányados
t differenciahányadosnak nevezzük.
- Ha létezik és véges a $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ határérték, akkor azt az f függvény deriváltjának vagy "a" pontbeli differenciálhányadosának nevezzük és a $\frac{df(a)}{dx}$ vagy f'(a) jelöléseket használjuk.
- Ha x-szel elkezdek közelíteni a-hoz: a szelőkből érintő lesz. $m = tan(\alpha) = \frac{f(x) f(a)}{x a}$
- Az érintő egyenlete: $y = f'(a)(x-a) + f(a) \sim m(x-x_0) = y y_0$ átrendezve.
- Adott pontbeli derivált = adott pontbeli érintő meredeksége!
- **Definíció:** az $f:[a;b] \to R$ függvény balról differenciálható a b pontban, ha létezik és véges a $\lim_{x\to b^-} \frac{f(x)-f(b)}{x-b}$ egyoldali határérték.
- **Definíció:** az $f:[a;b] \to R$ függvény jobbról differenciálható az a pontban, ha létezik és véges a $\lim_{x\to a+} \frac{f(x)-f(a)}{x-a}$ egyoldali határérték. Eszerint megkülönböztetünk bal- és jobboldali deriváltat.
- **Tétel:** az $f: I \to R$ függvény differenciálható az $a \in I$ pontban \iff ha létezik a bal- és jobboldali deriváltja a-ban és ezek egyenlők.
- **Tétel:** ha az f függvény differenciálható az x_0 pontban, akkor ott folytonos.
- **Definíció:** az $f:]a; b[\to R$ függvény differenciálható]a; b[-on, ha differenciálható $\forall x \in]a; b[$ pontban. Az $f: [a; b] \to R$ függvény differenciálható [a; b]-on, ha differenciálható]a; b[-on és a-ban jobbról, b-ben balról differenciálható.

6. Lokális szélsőérték definíciója és feltétele

• To be continued