PTC3360 - Introdução a Redes e Comunicações

4.2 Sinais aleatórios e Filtros Casados - Parte 1

[Lathi and Ding, 2012, Seções 8.1 a 8.3]

Outubro 2025

Sumário

- Redes de Comunicação
- Introdução às camadas superiores
- Camadas de enlace e física
- Comunicações digitais e sua aplicação na camada física
 - Introdução
 - Densidade espectral de energia e de potência
 - Sinais Aleatórios e Filtros Casados
 - Probabilidade condicional e probabilidade total
 - Variáveis aleatórias gaussianas

Sumário

- Redes de Comunicação
- Introdução às camadas superiores
- Camadas de enlace e física
- Comunicações digitais e sua aplicação na camada física
 - Introdução
 - Densidade espectral de energia e de potência
 - Sinais Aleatórios e Filtros Casados
 - Probabilidade condicional e probabilidade total
 - Variáveis aleatórias gaussianas

Sumário

- Redes de Comunicação
- 2 Introdução às camadas superiores
- Camadas de enlace e física
- Comunicações digitais e sua aplicação na camada física
 - Introdução
 - Densidade espectral de energia e de potência
 - Sinais Aleatórios e Filtros Casados
 - Probabilidade condicional e probabilidade total
 - Variáveis aleatórias gaussianas

Sinais Aleatórios e Filtro Casado

- Nessa seção estabelecem-se conceitos e definem-se notações sobre probabilidades e variáveis aleatórias que serão muito utilizadas nas próximas aulas.
- A aplicação dos modelos abordados vai muito além da área de redes de comunicações, sendo também relevantes em diversas áreas da Engenharia e das Ciências de modo mais geral.

Probabilidade condicional

Probabilidade condicional

Dado um evento B com probabilidade não nula, define-se a probabilidade condicional de um evento A, dado B, como

$$P[A|B] \triangleq \frac{P[AB]}{P[B]}$$

Exemplo na lousa: caixa de resistores

Teorema da Probabilidade Total

Dados N eventos mutuamente exclusivos $B_n, n=1, 2, \ldots, N$, cuja união seja o espaço de amostras S, a probabilidade de qualquer evento A pode ser escrita como

$$P[A] = \sum_{n=1}^{N} P[A|B_n] P[B_n]$$

Representação gráfica na lousa

Teorema de Bayes

Teorema de Bayes

$$P[B_n|A] = \frac{P[A|B_n] P[B_n]}{P[A]}$$

ou

$$P[B_n|A] = \frac{P[A|B_n] P[B_n]}{\sum_{n=1}^{N} P[A|B_n] P[B_n]}$$

Dedução na lousa

- $P[B_n]$ probabilidades *a priori* (antes de se saber da ocorrência de A)
- $P[B_n|A]$ probabilidades *a posteriori* (depois de se saber da ocorrência de A)

Exemplos: Canal Binário

Exemplo 1: Canal simétrico ([Lathi and Ding, 2012, Exemplo 8.13])

Considere que num sistema de comunicação digital a probabilidade de transmitir $\mathbf{1}$ é Q e a de transmitir $\mathbf{0}$ é 1-Q. A probabilidade de cometer um erro na recepção é P_e em ambos os casos. Determine as probabilidades de se ter $\mathbf{1}$ e de se ter $\mathbf{0}$ na saída do receptor.

Exemplo 2: Canal assimétrico ([Lathi and Ding, 2012, Exemplo 8.14])

Considere agora que $P[\varepsilon|\mathbf{0}]=10^{-6}$ e $P[\varepsilon|\mathbf{1}]=10^{-4}$, sendo $P[\varepsilon|x_i]$ a probabilidade de erro dado que x_i foi transmitido. Se $\mathbf{0}$ é transmitido com probabilidade 0.4, determine a probabilidade de erro no canal. Dado que houve erro, qual a probabilidade de ter se enviado $\mathbf{0}$?

VA gaussiana - Definição

Uma VA é dita *gaussiana* ou *normal* se sua função densidade de probabilidade tem a forma

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

em que $\sigma > 0$ e m são constantes reais.

VA gaussiana - Definição

- Possivelmente VA mais utilizada nas Ciências e Engenharia.
- Motivos:
 - Teorema do Limite Central
 - Bom modelo para diversos fenômenos físicos
 - Simplicidade
 - Também conhecida como normal: Aparentemente, o próprio Gauss cunhou o termo com referência às "equações normais" envolvidas em suas aplicações, sendo que normal tem o significado técnico de ortogonal em vez de "usual"
- Valor esperado de X: $\mathbb{E}[X] = m$
- Variância de X: $var[X] = \sigma^2$
- Notação: $X \sim N\left(m, \sigma^2\right)$

Calculando probabilidades

 Lembre-se que para calcular probabilidades, é necessário integrar a função densidade de probabilidade:

$$P(a < X \le b) = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$$

• Problema: $F_X(x)$ é a função de distribuição de probabilidade de X, uma primitiva de $f_X(x)$. Porém, no caso da VA gaussiana, $F_X(x)$ não pode ser escrita na forma de funções elementares!

A função $Q(\cdot)$

Função Q(.)

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-u^2/2} du$$

No Python (Scipy), pode-se usar a função $\operatorname{erfc}()$: $Q(x) = \frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)$. Para cálculos rápidos veja esta calculadora. Note que Q(-x) = 1 - Q(x).

Q(x)										
x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0000	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
.1000	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
.2000	.4207	.4168	.4129	.4090	.4052	.4013	3974	.3936	.3897	3859
.3000	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	3483
.4000	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	3121
.5000	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
.6000	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
.7000	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
.8000	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
.9000	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.000	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.100	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.200	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.9853E-0
1.300	.9680E-01	.9510E-01	.9342E-01	.9176E-01	.9012E-01	.8851E-01	.8691E-01	.8534E-01	.8379E-01	8226E-0
1.400	.8076E-01	.7927E-01	.7780E-01	.7636E-01	.7493E-01	.7353E-01	.7215E-01	.7078E-01	.6944E-01	.6811E-0
1.500	.6681E-01	.6552E-01	.6426E-01	.6301E-01	.6178E-01	.6057E-01	.5938E-01	.5821E-01	.5705E-01	.5592E-0
1.600	.5480E-01	.5370E-01	.5262E-01	.5155E-01	.5050E-01	.4947E-01	4846E-01	.4746E-01	.4648E-01	4551E-0
1.700	.4457E-01	.4363E-01	.4272E-01	.4182E-01	.4093E-01	.4006E-01	.3920E-01	.3836E-01	3754E-01	.3673E-0
1.800	.3593E-01	3515E-01	.3438E-01	.3362E-01	.3288E-01	.3216E-01	.3144E-01	.3074E-01	.3005E-01	.2938E-0
1.900	.2872E-01	2807E-01	.2743E-01	.2680E-01	.2619E-01	.2559E-01	.2500E-01	.2442E-01		.2330E-0
2.000	.2275E-01	.2222E-01	.2169E-01	.2118E-01	.2068E-01	.2018E-01	.1970E-01	.1923E-01	.2385E-01	.1831E-0
2.100	.1786E-01	.1743E-01	.1700E-01	.1659E-01	.1618E-01	.1578E-01	.1539E-01	.1923E-01	.1876E-01	.1831E-0 .1426E-0
2.200		.1355E-01	.1321E-01	.1287E-01	.1255E-01	.1222E-01	.1539E-01		.1463E-01	.1420E-0
2.300	.1072E-01	.1044E-01	.1017E-01	.9903E-02	.9642E-02	.9387E-02	.9137E-02	.1160E-01	.1130E-01	.1101E-0.
2.400	.8198E-02	.7976E-02	.7760E-02	.7549E-02	.7344E-02	.7143E-02		.8894E-02	.8656E-02	.6387E-0
2.500	.6210E-02	.6037E-02	.5868E-02	.5703E-02	.5543E-02	.5386E-02	.6947E-02	.6756E-02	.6569E-02	
2.600	.4661E-02	.4527E-02	.4396E-02	.4269E-02	.4145E-02	.4025E-02	.5234E-02	.5085E-02	.4940E-02	.4799E-00
2.700	.3467E-02	.3364E-02	.3264E-02	.3167E-02	.3072E-02	.2980E-02	.3907E-02	.3793E-02	.3681E-02	
2.800	.2555E-02	.2477E-02	.2401E-02	.2327E-02	.2256E-02	.2186E-02	.2890E-02	.2803E-02	.2718E-02	2635E-00
2.900	.1866E-02	.1807E-02	.1750E-02	.1695E-02	.1641E-02	.1589E-02	.2118E-02	.2052E-02	.1988E-02	.1926E-00
3.000	.1350E-02	.1306E-02	.1264E-02	.1223E-02	.1183E-02	.1144E-02	.1538E-02	.1489E-02	.1441E-02	.1395E-00
3.100	.9676E-03	.9354E-03	.9043E-03	.8740E-03	.8447E-03		.1107E-02	.1070E-02	.1035E-02	.1001E-03
3.200	.6871E-03	.6637E-03	.6410E-03	.6190E-03	.5976E-03	.8164E-03	.7888E-03	.7622E-03	.7364E-03	.7114E-03
3.300	.4834E-03	.4665E-03	.4501E-03	.4342E-03	.4189E-03		.5571E-03	.5377E-03	.5190E-03	.5009E-03
3.400	.3369E-03	.3248E-03	.3131E-03	3018E-03	.2909E-03	.4041E-03	.3897E-03	.3758E-03	.3624E-03	.3495E-03
3.500	.2326E-03	.2241E-03	.2158E-03	.2078E-03	.2001E-03	.2802E-03	.2701E-03	.2602E-03	.2507E-03	.2415E-03
3,600	.1591E-03	.1531E-03	.1473E-03	.1417E-03	.1363E-03	.1926E-03	.1854E-03	.1785E-03	.1718E-03	.1653E-03
3,700	.1078E-03	.1036E-03	.9961E-04	.9574E-04	.9201E-04	.1311E-03	.1261E-03	.1213E-03	.1166E-03	.1121E-03
3.800	.7235E-04	.6948E-04	.6673E-04	.6407E-04	.6152E-04	.8842E-04	.8496E-04	.8162E-04	.7841E-04	.7532E-04
3.900	.4810E-04	.4615E-04	.4427E-04	.4247E-04	.4074E-04	.5906E-04	.5669E-04	.5442E-04	.5223E-04	.5012E-04
1.000	.3167E-04	.3036E-04	.2910E-04	.2789E-04	.2673E-04	.3908E-04	.3747E-04	.3594E-04	.3446E-04	.3304E-04
1.100	.2066E-04	.1978E-04	.1894E-04	.1814E-04	.1737E-04	.2561E-04	.2454E-04	.2351E-04	.2252E-04	2157E-04
1.200	.1335E-04	.1277E-04	.1222E-04	.1168E-04		.1662E-04	.1591E-04	.1523E-04	.1458E-04	.1395E-0
1.300	.8540E-05	.8163E-05	.7801E-05	.7455E-05	.1118E-04	.1069E-04	.1022E-04	.9774E-05	.9345E-05	.8934E-05
1.400	.5413E-05	.5169E-05	.4935E-05	.7455E-05	.7124E-05 .4498E-05	.8807E-05	.6503E-05	.6212E-05	5934E-05	.5668E-05
1.500	.3398E-05	.3241E-05	.3092E-05	.2949E-05		.4294E-05	.4098E-05	.3911E-05	.3732E-05	.3561E-05
1.600	-2112E-05	.2013E-05	.1919E-05	.1828E-05	.2813E-05	.2682E-05	.2558E-05	.2439E-05	.2325E-05	.2216E-05
1.700	.1301E-05	.1239E-05	.1179E-05		.1742E-05	.1660E-05	.1581E-05	.1506E-05	.1434E-05	.1366E-05
1.800	.7933E-06	.7547E-06	.7178E-06	.1123E-05	.1069E-05	.1017E-05	.9680E-06	.9211E-06	.8765E-06	,8339E-06
.900	.4792E-06	.4554E-06		.6827E-06	.6492E-06	.6173E-06	.5869E-06	.5580E-06	.5304E-06	.5042E-00
5.000	.2867E-06	.2722E-06	.4327E-06	.4111E-06	-3906E-06	.3711E-06	.3525E-06	.3448E-06	.3179E-06	3019E-06
5.100	.1698E-06	.1611E-06	.2584E-06	.2452E-06	.2328E-06	.2209E-06	.2096E-06	.1989E-06	.1887E-06	.1790E-06
-11-0-0	100-0E-06	.1011E-06	.1528E-06	.1449E-06	.1374E-06	.1302E-06		1170E 06	1100E-06	.1051E-06

Q(x) em Javascript. Salvar e executar em um navegador.

Cálculo de probabilidade para VA gaussiana

Cálculo de probabilidade para VA gaussiana

$$X \sim N(m, \sigma^2)$$

$$F_X(x) = P(X \le x) = 1 - Q\left(\frac{x - m}{\sigma}\right)$$

Exemplo 3: Calculando probabilidades para VA gaussiana

A relação sinal-ruído no canal de um certo sistema de comunicações dada em dB pode ser aproximada por uma variável aleatória gaussiana X com m=3 e $\sigma=2$. Encontre a probabilidade do evento $\{X\leq 5.5\}$.

Referências

Lathi, B. B. P. and Ding, Z. (2012). Sistemas de Comunicações Analógicos e Digitais Modernos. LTC.