Mathematical Proof

John Shea

January 25, 2019

Assignment #3

Question 1

- a. True
 - For all persons, it is not true that the given person is his or her own twin.
 - More succinctly: No one is their own twin.
- b. False
 - There exists at least one person who is his or her own twin.
- c. False
 - There exists at least one person who is twins with every other person.
- d. False
 - For all people, there is not a single person with whom they are twins.
- e. True
 - There exists at least one person who does not have a twin.
- f. True
 - for all people, it is not true that they are twins with everyone.
 - More succinctly: No one is twins with everyone.

Question 2

- $a. \ \forall x (5 < x < 10 \rightarrow \exists a \exists b \exists c (a^2 + b^2 + c^2 = x)).$
- b. $\exists ! \hat{\mathbf{x}}((x-4)^2 = 36).$
- c. $\exists ! \mathbf{x}((x=11)^2=49)$.
- d. $\exists x \exists y (((x \neq y)^{(x-4)^2} = 36)^{(x-4)^2} = 36).$

Question #3

$$\neg \forall x \in A \neg P(x) \equiv \exists x \in P(x).$$

$$\equiv x, y, z$$
 (rule)
 $\equiv a, b, c$ (rule)
 $\equiv zzzqx$ (conclusion)

Question 4

- a. The identity element for multiplication is 1.
- b. Every positive real number has a positive multiplicative inverse.
- c. No positive real number has a negative multiplicative inverse.

Question 5

a. •
$$A_2 = \{2,3,4,6\}$$

 $- j = 2$
 $- j + 1 = 3$
 $- j + 2 = 4$
 $- 2j = 4$ (only one 4 is included in the set because two is superflous)
 $- 3j = 6$
• $A_3 = \{3,4,5,6,9\}$
 $- j = 3$
 $- j + 1 = 4$
 $- j + 2 = 5$
 $- 2j = 6$
 $- 3j = 9$
• $A_4 = \{4,5,6,8,12\}$
 $- j = 4$
 $- j + 1 = 5$
 $- j + 2 = 6$
 $- 2j = 8$
 $- 3j = 12$
b. • $\cap_{j \in J} A_j = \{4,6\}$

Question 6

a.
$$\wp(A) \cup \wp(B) \subseteq \wp(A \cup B)$$

b. $\wp(A) \cup \wp(B) = \wp(A \cup B)$

• $\bigcup_{j \in J} A_j = \{2, 3, 4, 5, 6, 8, 9, 12\}$