IIC3253

OTP y perfect secrecy

Cifrado (simétrico)

Cifrado del César

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z X Y Z A B C D E F G H I J K L M N Ñ O P Q R S T U V W

HOLA MUNDO EMIX JRKAM

MANDEN BITCOINS A UCRANIA
JXKABK YFQZMFKP X RZOXKFX

¿Problemas?

Cifrado del César + llave

Llave = shift

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z T U V W X Y Z A B C D E F G H I J K L M N Ñ O P O R S

HOLA MUNDO AIET FÑGWI

MANDEN BITCOINS A UCRANIA FTGWXG UBNVIBGM T ÑVLTGBT

¿Problemas?

La probabilidad de que un atacante "seleccione" o "adivine" la llave correcta debe ser muy baja.

⇒ El espacio de llaves posibles debe ser muy (muy) grande

¿Cómo podríamos agrandar el espacio de llaves siguiendo la idea de "sustituir"?

Shift -> Permutación

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z P Q O W I E U R Y T L K A J S H D F G Ñ M Z N X B C V

HOLA MUNDO RHKP AZJWH

¿Cuántas llaves posibles?

27! = 10,888,869,450,418,352,160,768,000,000

¿Es este un buen cifrado?

Un espacio de llaves grande es necesario. no suficiente.

ONE-TIME PAD (OTP)

Operación Módulo

(Recordatorio)

Dados $a,n\in\mathbb{Z}$, existe un único par de elementos $(q,r)\in\mathbb{Z}^2$ tal que:

$$0 \leq r < |n|$$
 $a = q \cdot n + r$ Cuociente Resto

Decimos entonces que $a \bmod n = r$ y que $a \equiv r \bmod n$

Operación Módulo

(Ejemplos)

$$10 \mod 3 = 1$$
 $28 \mod 8 = 4$
 $6 \mod -20 = 6$
 $-6 \mod -20 = 14$

Siempre esperaríamos que

$$n \cdot \lfloor \frac{a}{n} \rfloor + (a \bmod n) = a$$

Programando, esto se ve como

$$n * (a / n) + a / n = a$$
División entera

```
1 # Python
2 print("La división entera entre 6 y -20 es:")
3 print(6 // -20)
```

Output: -1

```
1 // C++
2 #include <iostream>
3 using namespace std;
4
5 int main() {
    cout << "La división entera entre 6 y -20 es: " << endl;
7    cout << (6 / 20) << endl;
8    return 0;
9 }</pre>
```

Output: 0

Esperamos que

$$n * (a / n) + a % n = a$$

$$-20 * (6 / -20) + 6 % -20 = 6$$

Python:
$$-20 * -1 + 6 \% -20 = 6 \implies 6 \% -20 = -14$$

C++:
$$-20 * 0 + 6 % -20 = 6 \Rightarrow 6 % -20 = 6$$

Operación Módulo

Dados $a,n\in\mathbb{Z}$, existe un único par de elementos $(q,r)\in\mathbb{Z}^2$ tal que:

$$0 \le r < |n|$$

$$a = q \cdot n + r$$

Decimos entonces que $a \bmod n = r$ y que $a \equiv r \bmod n$

ONE-TIME PAD (OTP)

Partimos enumerando las letras

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Para enviar un mensaje de largo ℓ necesitaremos una llave de largo ℓ

$Enc_{\mathrm{SECRETKEY}}(\mathrm{HOLAMUNDO}) = \mathbf{ZSNRPNWHN}$

¿Cómo decriptar?

 $Dec_{ ext{SECRETKEY}}(ext{ZSNRP idNWHN}) = ext{HOLAMUNDO}$

ABCDEFGHIJK L M N Ñ O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Decantando OTP...

Dado un string $a \in \{A, B, C, \dots, Z\}^*$, llamaremos \bar{a} al string en $\{0, 1, 2, \dots, 26\}^*$ correspondiente a a.

Dado un string $s \in \{0, 1, 2, ..., 26\}^*$, llamaremos \bar{s} al string en $s \in \{A, B, C, ..., Z\}^*$ correspondiente a s.

Extendemos las operaciones de los enteros a strings de enteros, aplicando las operaciones por coordenada.

Dados $k, m \in \{A, B, C, \dots, Z\}^{\ell}$, OTP se define por:

$$Enc_k(m) = \overline{(ar{m} + ar{k}) \mod 27} =: c$$

$$Dec_k(c) = \overline{(ar{c} - ar{k}) \mod 27} = ? \ m$$

$$egin{aligned} Dec_k(Enc_k(m)) &= \overline{(\overline{(ar{m}+ar{k})} \mod 27} - ar{k}) \mod 27 \ &= \overline{((ar{m}+ar{k}) \mod 27} - ar{k}) \mod 27 \ &= \overline{(ar{m}+ar{k}-ar{k})} \mod 27 = \overline{m} \mod 27 \ &= \overline{m} = m \end{aligned}$$

Generalmente abusaremos de la notación y supondremos que nuestros mensajes son directamente arreglos de números

Dados $k, m \in \{0, \dots, N-1\}^{\ell}$, OTP se define por:

$$Enc_k(m) = (m+k) \mod N =: c$$

$$Dec_k(c) = (c - k) \mod N = m$$

¿Qué tan bueno es OTP?

¿Qué pasa si veo un mensaje cifrado c pasar?

Aquí un ejemplo:

c = YFTGXEIWIWEHAGQGESLPKRVLMYGXSJIQZVIYHVBRJGNTR

m = ESTEMENSAJEESLITERALMENTEIMPOSIBLEDEDECRIPTAR

k = UNACLAVEINADIVINABLEYNISIQUIERAPORFUERZABRUTA