Question number	Scheme	Marks
9.	(a) $x = 2$ oe	B1
	(b) $\frac{dy}{dx} = \frac{4x(3x-6)-3(2x^2-6)}{(3x-6)^2}$	M1A1A1
	$\frac{dy}{dx} = 0 \qquad 12x^2 - 24x - 6x^2 + 18 = 0$ $x^2 - 4x + 3 = 0$	M1
	(2)(2)(3) = 0	
	(x-5)(x-1)=0 2×9-6 12	M1
	$x = 3$ $y = \frac{2\times 5}{9-6} = \frac{12}{3}$ (3,4)	A1
	$x = 3 y = \frac{2 \times 9 - 6}{9 - 6} = \frac{12}{3} (3,4)$ $x = 1 y = \frac{-4}{-3} = \frac{4}{3} (1, \frac{4}{3})$	
	(c) $x = 0$ $y = 1$	A1
	$\frac{dy}{dx} = \frac{18}{36} = \frac{1}{2}$ grad. normal = -2	B1
	eqn. normal: $y-1=-2x$ oe	B1
	(d) $-2x+1=\frac{2x^2-6}{3x-6}$	B1
	$-6x^2 + 15x - 6 = 2x^2 - 6$	M1
	$8x^2 - 15x = 0$	
	$(x = 0 \text{ (at } A)) \qquad \therefore \text{ at } B x = \frac{15}{8}$	M1A1
		A1 (15)