

From:
Fariba Amiri
WaterSTP, University of Waterloo
200 University Ave W,
Waterloo, ON N2L 3G1
f3amiri@uwaterloo.ca

Tel: 519-888-4567 Ext. 33821

To:
Mark Johnson, Hannah J. McSorley
Geological Sciences,
University of British Colombia
UBC ESB: 5033 (Office) | 3062 (Lab)
mark.johnson@ubc.ca,
hmcsorley@eoas.ubc.ca

Tel: 250-755-6062

Report: R-2019F-PM-UBC-MJ Date: 03/12/19

University of Waterloo WaterSTP Laboratory Seasonal Report

Fall 2019 Pacific Maritime

Table1- List of parameters measured for water treatability study, method and instrument used for each measurement, and minimum reporting level and analysis precision.

Parameter	Method	Instrument	Minimum Reporting Level	Precision (±)
pH	B. Electrometric SM 4500-H ^{+ (1)}	Fisherbrand, accumet AB250 pH/mV/Ion	-	0.1 pH
UV_{254}	Ultraviolet Absorption SM 5910B (2)	RealTech, UV254 P200B	0.005 cm ⁻¹	0.001 cm ⁻¹
DOC	High-Temperature Combustion SM 5310B (3)	Shimadzu, TOC-V CPH Total Organic Carbon Analyzer	0.1 mg/L	0.1 mg/L
Turbidity	Nephelometric Method SM 2130B (4)	HACH, 2100Q Portable Turbidimeter	0.05 NTU	0.01 NTU
Zeta Potential	Electrophoretic light scattering ISO 13099-2:2012 (5)	Malvern, Zetasizer ZEN2600WT	-	5 mV
DBPsFP	SM 5710 ⁽⁶⁾	-	-	-
THMs	P&T/GC/MS method derived from USEPA SW-846, 5030B ⁽⁷⁾ and 8260C ⁽⁸⁾	n/a*	0.37 ug/L	n/a*
HAAs	LLE/GC/MS method derived from USEPA 552.3 (9)	n/a*	5.3 ug/L	n/a*

^{*} Samples were chlorinated by the WaterSTP group and are then sent to SGS for THMs and HAAs analysis.

Sample Identifier	рН	UV ₂₅₄ [cm ⁻¹]	DOC [ppm]	Turbidity [NTU]	Zeta Potential [mV]	THMsFP [μg/L]	HAAsFP [μg/L]
12Nov19_PM-UBC-HMC_DCP.375	6.7	0.067	2.6	1.52	-15	160	202
12Nov19_PM-UBC-HMC_JDG.855	7.3	0.283	7.0	0.65	-15	615	1020
12Nov19_PM-UBC-HMC_TUN.601	6.9	0.107	2.8	0.41	-8	243	370

References:

- (1) Standard Methods for the Examination of Water and Wastewater, 2017, pH VALUE, (4500-H+).
- (2) Standard Methods for the Examination of Water and Wastewater, 2017, UV-Absorbing Organic Constituents, (5910B).
- (3) Standard Methods for the Examination of Water and Wastewater, 2017, Total Organic Carbon, (5310B).
- (4) Standard Methods for the Examination of Water and Wastewater, 2017, Turbidity, (2130B).
- (5) International Organization for Standardization, 2012, Colloidal systems-Methods for zeta potential determination-Part 2: Optical methods, (ISO 13099-2:2012).
- (6) Standard Methods for the Examination of Water and Wastewater, 2017, Formation of Trihalomethanes and Other Disinfection Byproducts, (5710).
- (7) U.S. Environmental Protection Agency, 1996, Purge-and-Trap for Aqueous Samples, (SW-846 Test Method 5030B).
- (8) U.S. Environmental Protection Agency, 2006, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry, (Validated Test Method 8260C).
- (9) U.S. Environmental Protection Agency, 2003, Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection, (552.3).