

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Системы обработки информации и управления» (ИУ5)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Анализ и выбор оптимальных технических решений для автоматизации производственных процессов»

Студент группы ИУ5-32М	 Н.И. Калюта
Руководитель	 Ю.Е. Гапанюк

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ
	Заведующий кафедрой ИУ5
	«»20г.
ЗАДА на выполнение научно-ис	
по теме «Анализ и выбор оптимальных техниче производственных процессов»	_
Студент группы ИУ5-32М	
Калюта Ники:	га Игоревич
Направленность НИР (учебная, исследователься	кая, практическая, производственная, др.)
Исследова	тельская
Источник тематики (кафедра, предприятие, НИІ	Р) кафедра
График выполнения НИР: 25% к 5 нед., 50% в	к 9 нед., 75% к 13 нед., 100% к 15 нед.
Техническое задание Выбор промышленного род Анализ выбора смарт-ридера для считывания од	
Оформление научно-исследовательской работ Расчетно-пояснительная записка на 20 листах ф Перечень графического (иллюстративного) мате	ормата А4.
Дата выдачи задания « 02 » сентября 2024 г.	
Руководитель НИР	Ю.Е. Гапанюк
Студент	Н.И. Калюта

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Оглавление

Введение	∠
Выбор промышленного робота на основе сравнительного анализа	5
Анализ выбора смарт-ридера для считывания одномерных кодов	13
Заключение	19
Список использованных источников	20

Введение

В современном производственном процессе выбор технологического оборудования играет ключевую роль в повышении эффективности и оптимизации операций. Одним из наиболее значимых направлений является выбор промышленного робота, который способен выполнять широкий спектр задач с высокой точностью и надежностью. В данной работе будет проведен сравнительный анализ трех промышленных роботов: KUKA KR 120 R3500 prime K, ABB IRB 2600ID-15/1.85 и Reis RV150-2390. Каждый из этих роботов обладает уникальными характеристиками, которые делают их подходящими для различных производственных условий.

Кроме того, в рамках исследования будет рассмотрен выбор смарт-ридера для считывания одномерных кодов, что также является важным аспектом автоматизации процессов. На основе проведенных тестов и анализа производительности различных моделей смарт-ридеров, таких как Datalogic Matrix 220, iRayple R4013 и Omron V430, будет определен наиболее эффективный вариант для решения поставленных задач. Таким образом, цель данной работы заключается в проведении комплексного анализа и выборе оптимальных технических решений для автоматизации производственных процессов.

Выбор промышленного робота на основе сравнительного анализа

Произведём подбор промышленного робота. Сравним следующих роботов и выберем из них лучшего: KR 120 R3500 prime K, RV150-2390, IRB 2600ID-15/1.85

Робот KUKA KR 120 R3500 prime K производится немецкой компанией KUKA, ведущим разработчиком промышленных роботов и решений для автоматизации. Программирование этого робота осуществляется с помощью программного обеспечения KUKA, включая системы управления KR C4 и интуитивно понятный пульт KUKA smartPAD.

Робот KUKA KR 120 R3500 prime K относится к линейке высокопроизводительных промышленных роботов серии KR QUANTEC. Он спроектирован с учетом максимальной гибкости применения и оптимальной эргономики для работы в самых различных отраслях.

Этот робот обладает выдающимися характеристиками по грузоподъемности и радиусу действия, что позволяет ему решать широкий спектр задач — от манипуляций с тяжелыми грузами до высокоточных операций. Компактность конструкции и небольшой вес способствуют упрощению интеграции робота в существующие производственные процессы.

KR 120 R3500 prime K разработан для работы в сложных условиях, обеспечивая высокую скорость выполнения задач и минимизацию времени рабочего цикла. Благодаря усиленной конструкции и применению передовых технологий, этот робот демонстрирует исключительную точность и надежность при длительных нагрузках. В таблице 1 приведены основные технические характеристики робота KUKA KR 120 R3500 prime K.

Таблица 1 - Основные технические характеристики робота KUKA KR 120 R3500 prime K:

Характеристика	Значение		
Грузоподъемность		120 кг	
Радиус действия		3501 мм	
Повторяемость позиционировани	RK	±0,06 мм	
Количество осей		6	
Macca		1192 кг	
Степень защиты		IP67	
Диапазон движения осей	O1	±185°	
	O2	-120° / +70°	
	O3	-120° / +168°	
	O4	±350°	
	O5	±122,5°	
	O6	±350°	

Скорость движения осей	01	112°/c
	O2	107°/c
	О3	114°/c
	O4	150°/c
	O5	129°/c
	O6	219°/c

Робот ABB IRB 2600ID-15/1.85 — это компактное и высокоэффективное решение для автоматизации, предназначенное для широкого спектра задач. Этот робот создан с упором на универсальность, производительность и минимизацию занимаемого пространства, что делает его подходящим для использования в различных отраслях, таких как сборка, обработка материалов, упаковка и сварка.

IRB 2600ID-15/1.85 отличается высокой скоростью и точностью выполнения операций, что помогает оптимизировать производственные процессы и повышать качество продукции. Компактная конструкция позволяет легко интегрировать его в ограниченное пространство, а эргономичный дизайн снижает требования к техническому обслуживанию.

Компания-производитель ABB предлагает для программирования этого робота современные контроллеры IRC5 и OmniCore, которые поддерживают использование языка программирования RAPID. Интуитивно понятный интерфейс и разнообразные опции настройки делают его удобным инструментом для интеграторов и операторов. В таблице 2 приведены основные технические характеристики робота ABB IRB 2600ID-15/1.85.

Таблица 2 - Основные технические характеристики робота ABB IRB 2600ID-15/1.85:

Характеристика	Значение		
Грузоподъемность		15 кг	
Радиус действия		2600 мм	
Повторяемость позиционирован	ия	±0,026 мм	
Количество осей		6	
Macca		273 кг	
Степень защиты		IP67	
Диапазон движения осей	01	±180°	
	O2	-95° / +155°	
	O3	-180° / +75°	
O4		±175°	
	O5	±120°	
	O6	±360°	

Скорость движения осей	01	175°/c
	O2	175°/c
	О3	175°/c
	O4	360°/c
	O5	360°/c
	O6	500°/c

Робот Reis RV150-2390 — это современное 6-осевое устройство для выполнения высокоточных задач в различных промышленных областях. Благодаря высокой динамике, надежной конструкции и интеграции передовых технологий управления, он идеально подходит для таких операций, как тестирование, измерения, обработка материалов, лазерные и фрезерные работы.

Этот робот обеспечивает полный диапазон движений с шестью степенями свободы (3 трансляционные и 3 вращательные), что делает его универсальным решением для сложных промышленных применений. Конструкция включает инновационные материалы, такие как сталь, алюминий, магний и углеволокно, обеспечивающие сочетание максимальной стабильности и минимального веса.

Управление RV150-2390 осуществляется через продвинутый контроллер REIS ROBOTstar VII в комбинации с технологией SINAMICS, что гарантирует высокую точность траекторий и надежное управление сервоприводами. В таблице 3 приведены основные технические характеристики робота Reis RV150-2390.

Таблица 3 - Основные технические характеристики робота Reis RV150-2390:

Характеристика	Значение		
Грузоподъемность		150 кг	
Радиус действия		2390 мм	
Повторяемость позиционирова	ания	±0,036 мм	
Количество осей		6	
Macca		793 кг	
Степень защиты	Степень защиты		
Диапазон движения осей	O1	±185°	
	O2	-38° / +145°	
	О3	-180° / +65°	
O4 O5		±185°	
		±123°	
	O6	±360°	

Скорость движения осей	O1	100°/c
	O2	88°/c
	O3	115°/c
	O4	180°/c
	O5	170°/c
	O6	219°/c

В таблице 4 представлена сравнительная таблица характеристик роботов KUKA KR 120 R3500 prime K, ABB IRB 2600 и Reis RV150-2390.

Таблица 4 - Характеристики и сравнение роботов KUKA, ABB и Reis:

Характеристика		KUKA KR 120	ABB IRB	Reis
		R3500 prime K	2600ID-15/1.85	RV150-2390
Компания-производитель		KUKA	ABB	Reis Robotics
Страна		Германия	Швейцария	Германия
Грузоподъемность		120 кг	15 кг	150 кг
Радиус действия		3501 мм	2600 мм	2390 мм
Повторяемость позициони	рования	±0,06 мм	±0,026 мм	±0,036 мм
Количество осей		6	6	6
Macca		1192 кг	273 кг	793 кг
Степень защиты		IP67	IP67	IP66
Диапазон движения осей	O1	±180°	±185°	±185°
	O2	-95° / +155°	-38° / +145°	-120° / +70°
	О3	-180° / +75°	-180° / +65°	-120° / +168°
	O4	±175°	±185°	±350°
	O5	±120°	±123°	±122,5°
	O6	±360°	±360°	±350°
Скорость движения осей	O1	175°/c	100°/c	112°/c
	O2	175°/c	88°/c	107°/c
	О3	175°/c	115°/c	114°/c
	O4	360°/c	180°/c	150°/c
	O5	360°/c	170°/c	129°/c
	O6	500°/c	219°/c	219°/c

Подробно выполним расчет с использованием метода взвешенной суммы локальных критериев.

Проведем нормирование критериев.

• Для максимизируемых критериев:

$$K_{ij} = \frac{X_{ij}}{\max{(X_i)}},$$

где K_{ij} - нормализованное значение критерия ј для объекта i.

 X_{ij} - исходное значение критерия ј для объекта і.

 $\max{(X_j)}$ - максимальное значение критерия ј среди всех сравниваемых объектов.

• Для минимизируемых критериев:

$$K_{ij} = \frac{\min(X_j)}{X_{ij}},$$

где K_{ij} - нормализованное значение критерия ј для объекта i.

 X_{ij} - исходное значение критерия ј для объекта i.

 $\min(X_j)$ - минимальное значение критерия ј среди всех сравниваемых объектов.

Используя формулы (1.1), (1.2) и таблицу 2 производится нормирование исходных данных. Результат нормирования приведен в таблице 5.

Таблица 5 - Нормированные значения критериев сравниваемых роботов

Характеристика	Критерий	KUKA KR 120	ABB IRB	Reis
		R3500 prime K	2600ID-15/1.85	RV150-2390
Грузоподъемность	K1	$\frac{120}{150} = 0.8$	$\frac{15}{150} = 0.1$	$\frac{150}{150} = 1,0$
Радиус действия	K2	$\frac{3501}{3501} = 1,0$	$\frac{2600}{3501} = 0,74$	$\frac{2390}{3501} = 0,68$
Повторяемость позиционирования	K3	$\frac{0,026}{0,06} = 0,43$	$\frac{0,026}{0,026} = 1,0$	$\frac{0,026}{0,036} = 0,72$
Количество осей	K4	$\frac{6}{6} = 1,0$	$\frac{6}{6} = 1,0$	$\frac{6}{6} = 1,0$
Macca	K5	$\frac{273}{1192} = 0.23$	$\frac{273}{273} = 1,0$	$\frac{273}{793} = 0.34$

Степень защи	ТЫ	K6	$\frac{67}{67} = 1.0$	$\frac{67}{67} = 1.0$	$\frac{66}{67} = 0.99$
Диапазон	O1	K7	$\frac{180 - (-180)}{185 - (-185)} = 0,97$	$\frac{185 - (-185)}{185 - (-185)} = 1,0$	$\frac{185 - (-185)}{185 - (-185)} = 1,0$
движения осей	O2	K8	$\frac{155 - (-95)}{155 - (-95)} = 1,0$	$\frac{145 - (-38)}{155 - (-95)} = 0.73$	$\frac{70 - (-120)}{155 - (-95)} = 0,76$
	О3	K9	$\frac{75 - (-180)}{168 - (-120)} = 0,89$	$\frac{65 - (-180)}{168 - (-120)} = 0.85$	$\frac{168 - (-120)}{168 - (-120)} = 1,0$
	O4	K10	$\frac{175 - (-175)}{350 - (-350)} = 0,5$	$\frac{185 - (-185)}{350 - (-350)} = 0,53$	$\frac{350 - (-350)}{350 - (-350)} = 1,0$
	O5	K11	$\frac{120 - (-120)}{123 - (-123)} = 0.98$	$\frac{123 - (-123)}{123 - (-123)} = 1,0$	$\frac{122,5 - (-122,5)}{123 - (-123)} = 0,99$
	O6	K12	$\frac{360 - (-360)}{360 - (-360)} = 1,0$	$\frac{360 - (-360)}{360 - (-360)} = 1,0$	$\frac{350 - (-350)}{360 - (-360)} = 0,97$
Скорость	O1	K13	$\frac{175}{175} = 1,0$	$\frac{100}{175} = 0.57$	$\frac{112}{175} = 0,64$
осей	O2	K14	$\frac{175}{175} = 1,0$	$\frac{88}{175} = 0.5$	$\frac{107}{175} = 0.61$
	О3	K15	$\frac{175}{175} = 1,0$	$\frac{115}{175} = 0,66$	$\frac{114}{175} = 0.65$
	O4	K16	$\frac{360}{360} = 1.0$	$\frac{180}{360} = 0.5$	$\frac{150}{360} = 0,42$
	O5	K17	$\frac{360}{360} = 1.0$	$\frac{170}{360} = 0,47$	$\frac{129}{360} = 0.36$
	O6	K18	$\frac{500}{500} = 1.0$	$\frac{219}{500} = 0,44$	$\frac{219}{500} = 0,44$

Воспользуемся методом базового критерия для определения показателей важности локальных критериев:

Разделение показателей на группы важности:

Первая группа (самая значимая) — К1, К2, К7, К8, К9, К10, К11, К12, К13, К14, К15, К16, К17, К18

Вторая группа (менее значима, чем 1 группа в 2 раза) – К3, К4, К6

Третья группа (менее значима, чем 1 группа в 4 раза) – К5.

Количество групп показателей сравнения роботов g = 3.

Количество показателей, которые соответственно входят в состав первой, второй и третьей группы

$$n_1 = 14, n_2 = 3, n_3 = 1.$$

Коэффициенты, которые показывают степень превосходства 1-ой группы над критериями 2-ой, и 3-ей группы

$$k_1 = 4, k_2 = 2, k_3 = 1.$$

Коэффициент важности локального критерия:

$$\alpha = \frac{1}{k_1 \cdot n_1 + k_2 \cdot n_2 + k_3 \cdot n_3} = \frac{1}{4 \cdot 14 + 2 \cdot 3 + 1 \cdot 1} = \frac{1}{63} = 0,01587$$

$$\alpha_1 = k_1 \cdot \alpha = 4 \cdot 0,01587 = 0,06348$$

 $\alpha_2 = k_2 \cdot \alpha = 2 \cdot 0,01587 = 0,03174$
 $\alpha_3 = k_3 \cdot \alpha = 1 \cdot 0,01587 = 0,01587$

Таблица 6 - Весовые коэффициенты локальных критериев

Характеристика		Критерий	KUKA KR 120	ABB IRB	Reis	Весовые
			R3500 prime K	2600ID-15/1.85	RV150-2390	коэффициенты
Грузоподъемность		K1	0,8	0,1	1,0	0,06348
Радиус действия		K2	1,0	0,74	0,68	0,06348
Повторяемость		К3	0,43	1,0	0,72	0,03174
позиционирования						
Количество осей		K4	1,0	1,0	1,0	0,03174
Macca		K5	0,23	1,0	0,34	0,01587
Степень защиты		K6	1,0	1,0	0,99	0,03174
Диапазон	O1	K7	0,97	1,0	1,0	0,06348
движения	O2	K8	1,0	0,73	0,76	0,06348
осей	О3	К9	0,89	0,85	1,0	0,06348
	O4	K10	0,5	0,53	1,0	0,06348
	O5	K11	0,98	1,0	0,99	0,06348
	O6	K12	1,0	1,0	0,97	0,06348
Ск	O1	K13	1,0	0,57	0,64	0,06348
орость	O2	K14	1,0	0,5	0,61	0,06348
движения	О3	K15	1,0	0,66	0,65	0,06348
осей	O4	K16	1,0	0,5	0,42	0,06348
	O5	K17	1,0	0,47	0,36	0,06348
	O6	K18	1,0	0,44	0,44	0,06348

Интегральный критерий взвешенной суммы показателей:

$$Y_{sum,i} = \sum_{j=1}^{18} a_j \cdot k_{j,i}$$

Где $k_{j,i}$ – нормализованное значение j-ого критерия для i-ого варианта робота.

$$Y_{sum,1} = \sum_{j=1}^{18} a_j \cdot k_{j,1} = 0,91491$$

$$Y_{sum,2} = \sum_{j=1}^{18} a_j \cdot k_{j,2} = 0,68812$$

$$Y_{sum,3} = \sum_{j=1}^{18} a_j \cdot k_{j,3} = 0,75922$$

Лучший вариант имеет наибольшее значение интегрального критерия взвешенной суммы показателей.

$$\max_{i \in \{1,2,3\}} Y_{sum,i} = 0,91491$$

Наилучшим вариантом по данному критерию является KUKA KR 120 R3500 prime K.

Анализ выбора смарт-ридера для считывания одномерных кодов

Проведём исследование, на основании которого выберем необходимую камеру для задачи по считыванию одномерного кода. В рамках исследования был написан нагрузочный тест на ПЛК NX1P2-9024DT1 с периодичностью триггера 75мс и выбраны три смарт-ридера: Matrix 220, V430 и R4013.

Результаты смарт-ридера Datalogic Matrix 220:

Время декодирования одномерного кода составило от 10 до 19 миллисекунд. (Рисунок 1-2).

Рисунок 1 — Время декодирования одномерного кода Matrix 220

Рисунок 2 — Время декодирования одномерного кода Matrix 220

Время, необходимое для выполнения всего задания, включая захват, обработку и обмен, составляет от 27 до 38 миллисекунд (Рисунок 3).

Рисунок 3 — Время необходимое для выполнения всего задания Matrix 220

Соответственно время на ТСР обмен составляет от 17 до 20 миллисекунд.

Успешность считывания составила 100% из 3355 заданий (Рисунок 4).

Рисунок 4 — Успешность считывания Matrix 220

Результаты смарт-ридера iRayple R4013:

Время декодирования одномерного кода составило от 53 до 90 миллисекунд. (Рисунок

5).

Рисунок 5 — Время декодирования одномерного кода R4013

Время, необходимое для выполнения всего задания, включая захват, обработку и обмен, составляет от 92 до 162 миллисекунд (Рисунок 6).

Рисунок 6 — Время необходимое для выполнения всего задания R4013

Соответственно время на ТСР обмен составляет от 39 до 72 миллисекунд.

Успешность считывания составила 99,8% из 3355 заданий (Рисунок 7).

Рисунок 7 — Успешность считывания R4013

Результаты смарт-ридера Omron V430:

Время декодирования одномерного кода составило от 25 до 75 миллисекунд. (Рисунок 8).

Рисунок 8 — Время декодирования одномерного кода V430

Время, необходимое для выполнения всего задания, включая захват, обработку и обмен, составляет от 46 до 99 миллисекунд (Рисунок 9).

Рисунок 9 — Время необходимое для выполнения всего задания V430

Соответственно время на ТСР обмен составляет от 21 до 24 миллисекунд. Успешность считывания составила 95,95% из 3355 заданий (Рисунок 10).

Рисунок 10 — Успешность считывания V430

 Таблица 7 - Сравнительные характеристики смарт-ридеров по критериям

 производительности

Смарт-ридер	Время	Время ТСР	Время	Успешность
	декодирования (мс)	обмена (мс)	выполнения	считывания(%)
			задания (мс)	
Datalogic Matrix 220	10-19	17-20	27-38	100
iRayple R4013	53-90	39-72	92-162	99,8

Omron V430	25-75	21-24	46-99	95,95

На основании проведенного исследования, смарт-ридер Datalogic Matrix 220 демонстрирует наилучшие результаты по всем критериям: минимальное время декодирования, самое быстрое выполнение задания и 100% успешность считывания. Это делает его наиболее подходящим выбором для задач по считыванию одномерного кода.

Заключение

В результате проведенного анализа технологического оборудования, включая сравнительный анализ промышленных роботов KUKA KR 120 R3500 prime K, ABB IRB 2600ID-15/1.85 и Reis RV150-2390, а также выбор смарт-ридера для считывания одномерных кодов, были получены важные выводы, способствующие оптимизации производственных процессов.

Робот KUKA KR 120 R3500 prime K продемонстрировал наилучшие характеристики по грузоподъемности и радиусу действия, что делает его идеальным выбором для задач, требующих высокой точности и надежности. В то же время, смарт-ридер Datalogic Matrix 220 оказался наиболее эффективным решением для считывания одномерных кодов, обеспечивая минимальное время декодирования и 100% успешность считывания.

Таким образом, результаты данного исследования подчеркивают важность тщательного выбора технологического оборудования для повышения эффективности и производительности в современных производственных условиях. Рекомендуется учитывать полученные данные при принятии решений о внедрении новых технологий и оборудования в производственные процессы.

Список использованных источников

- 1.ABBIRB2600IDIndustrialRobot— URL:https://teswel.ru/upload/iblock/0a6/f3ke481pbutla382vck2sa062zywp12o.pdf?ysclid=m4rjf8ahw69375451 (дата обращения 11.11.2024). Текст: электронный
- 2. KUKA KR 120 R3500 prime K URL: https://www.kuka.com/-/media/kuka-downloads/imported/8350ff3ca11642998dbdc81dcc2ed44c/0000188839_ru.pdf?rev=e3ecf75f5610
 4dadbcc3a79057e9416f&hash=FCE28AB91F94BAB8AD9FE6C7588C7CD0&ysclid=m4rjjr97t16

 22416725 (дата обращения 11.11.2024). Текст: электронный
- 3. REIS RV150-2390 URL: https://reisrobotics.com/wp-content/uploads/2024/10/Reis_RV150-2390_e_2024-10_web.pdf (дата обращения 11.11.2024). Текст: электронный
- 4. Datalogic Matrix 220 URL: https://www.rrc.ru/storage/app/media/uploaded-files/Datalogic-Matrix-220.pdf?ysclid=m4rk2i6zp9305312220 (дата обращения 03.12.2024). Текст: электронный
- 5. Omron V430 URL: https://www.omron.com.au/data_pdf/mnu/z407-e1-06_v3_0-f_v4_0-f f.pdf?id=3702 (дата обращения 03.12.2024). Текст: электронный
- 6. iRayple R4013 URL: https://alrad.com/product/irayple-r4000-series-code-readers/ (дата обращения 03.12.2024). Текст: электронный