In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\22_countries - 22_countries.csv")
 data

Out[2]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_na	
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgl	
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	E	
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albaniar	
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian d	
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US De	
245	243	Wallis And Futuna Islands	WLF	WF	876	681	Mata Utu	XPF	CFP fr	
246	244	Western Sahara	ESH	EH	732	212	El-Aaiun	MAD	Moroc Dirl	
247	245	Yemen	YEM	YE	887	967	Sanaa	YER	Yemen	
248	246	Zambia	ZMB	ZM	894	260	Lusaka	ZMW	Zaml kwa	
249	247	Zimbabwe	ZWE	ZW	716	263	Harare	ZWL	Zimba Dı	
250 rows × 19 columns										

In [3]: df=data.head(100)
df

Out[3]:

	id	name	iso3	iso2	numeric_code	phone_code	capital	currency	currency_nan
0	1	Afghanistan	AFG	AF	4	93	Kabul	AFN	Afghan afgha
1	2	Aland Islands	ALA	AX	248	+358-18	Mariehamn	EUR	Eu
2	3	Albania	ALB	AL	8	355	Tirana	ALL	Albanian I
3	4	Algeria	DZA	DZ	12	213	Algiers	DZD	Algerian din
4	5	American Samoa	ASM	AS	16	+1-684	Pago Pago	USD	US Dol
95	95	Haiti	HTI	НТ	332	509	Port-au- Prince	HTG	Haitian gour
96	96	Heard Island and McDonald Islands	HMD	НМ	334	672	NaN	AUD	Australian dol
97	97	Honduras	HND	HN	340	504	Tegucigalpa	HNL	Hondur: lemp
98	98	Hong Kong S.A.R.	HKG	НК	344	852	Hong Kong	HKD	Hong Ko dol
99	99	Hungary	HUN	HU	348	36	Budapest	HUF	Hungarian for
100 rows × 19 columns									
4									•

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100 entries, 0 to 99
        Data columns (total 19 columns):
         #
             Column
                              Non-Null Count Dtype
         0
             id
                              100 non-null
                                               int64
                              100 non-null
                                               object
         1
             name
         2
                                               object
             iso3
                              100 non-null
         3
                              100 non-null
                                               object
             iso2
                                               int64
         4
             numeric_code
                              100 non-null
         5
             phone_code
                              100 non-null
                                               object
         6
             capital
                              97 non-null
                                               object
         7
             currency
                              100 non-null
                                               object
             currency_name
                                               object
         8
                              100 non-null
         9
             currency_symbol 100 non-null
                                               object
         10 tld
                              100 non-null
                                               object
         11 native
                              99 non-null
                                               object
                                               object
         12 region
                              98 non-null
                                               object
         13 subregion
                              97 non-null
         14 timezones
                              100 non-null
                                               object
         15 latitude
                              100 non-null
                                               float64
                                               float64
         16 longitude
                              100 non-null
         17 emoji
                              100 non-null
                                               object
         18 emojiU
                              100 non-null
                                               object
        dtypes: float64(2), int64(2), object(15)
        memory usage: 15.0+ KB
In [5]: |df.columns
Out[5]: Index(['id', 'name', 'iso3', 'iso2', 'numeric_code', 'phone_code', 'capital',
                'currency', 'currency_name', 'currency_symbol', 'tld', 'native',
                'region', 'subregion', 'timezones', 'latitude', 'longitude', 'emoji',
                'emojiU'],
              dtype='object')
In [6]: x=df[['id', 'numeric code','longitude']]
        y=df['latitude']
In [7]: from sklearn.model selection import train test split
        x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [8]: from sklearn.linear_model import LinearRegression
        lr=LinearRegression()
        lr.fit(x_train,y_train)
Out[8]: LinearRegression()
```

```
In [10]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[10]:

id -0.016889 numeric_code 0.020127 longitude 0.032597

```
In [11]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x218fcd3a6d0>


```
In [12]: print(lr.score(x_test,y_test))
```

-0.09511144376710368

```
In [13]: print(lr.score(x_train,y_train))
```

0.01841159242525303

```
In [14]: from sklearn.linear_model import Ridge,Lasso
```

```
In [15]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[15]: Ridge(alpha=10)

```
In [16]: |rr.score(x_test,y_test)
Out[16]: -0.0951104728831842
In [17]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[17]: Lasso(alpha=10)
In [18]: la.score(x_test,y_test)
Out[18]: -0.09304615152200091
In [19]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x train,y train)
Out[19]: ElasticNet()
In [20]: print(en.coef_)
         [-0.01610395 0.0200367
                                   0.03249673]
In [21]: |print(en.intercept_)
         8.867243374326067
In [22]: |print(en.predict(x test))
         [12.46496572 13.68806109 25.18540607 16.37007578 8.24716422 7.65243371
          12.40971061 11.42636648 10.13954912 14.89565752 9.14075814 9.86021571
           7.25893321 12.39858944 11.70028798 9.76499846 14.00781118 13.25673801
          11.63353707 10.62279265 12.73361482 13.44949361 13.36931843 11.75764262
          12.45047297 7.63654999 9.83658603 11.15822055 12.31223461 19.38502354
In [23]: |print(en.score(x_test,y_test))
         -0.09498091505607986
```

Evaluation metrics

Model Saving

```
In [28]: import pickle
In [29]: filename='prediction'
   pickle.dump(lr,open(filename,'wb'))
In []:
```