3D Viewing, Orthographic and Perspective Projection

COMP557
Paul Kry

Roadmap

- Transformations (FCA 6)
- Scene graphs (FCA 12.2)
- Viewing and Projection (FCA 7)
- Meshes, simplification (FCA 12.1 + pdf)
- Subdivision (pdf + notes)
- ...

May insert material on graphics pipeline / rasterization, clipping /culling (FCA 8), light and shadow (FCA 4.5, 10), before meshes.

Recall: Image order and Object order

- Image order: "backward" approach
 - start from pixel
 - ask what part of scene projects to pixel
 - explicitly construct the ray corresponding to the pixel
- Object order: "forward" approach
 - start from a point in 3D
 - compute its projection into the image
- matrix transformations critical for object order approach:
 - combines seamlessly with coordinate transformations used to position camera and model
 - ultimate goal: single matrix operation to map any 3D point to its correct screen location.

Image Order Approach to Viewing

- Ray generation produces rays, not points in scene
- Cast a ray at every pixel and find points of intersection
- This is called ray tracing

Object Order Approach to Viewing

Projection (left) and rasterization (right) of a triangle.

- Inverting the ray tracing process requires division for the perspective case
- Once triangle vertices are known in screen coordinates the triangle can be filled in (rasterization... more on this later)

Mathematics of projection

- Always work in eye coords
 - assume eye point at 0 and plane perpendicular to z
- Orthographic case
 - a simple projection: just toss out z
- Perspective case: scale diminishes with z
 - and increases with d

Pipeline of transformations

Standard sequence of transforms

Camera / Eye Coordinates

- We have discussed object to world transformations
- Need world to camera transformation
 - In viewing, we typically know:
 - Where the camera is
 - What we want to look at
 - Which way is up
 - Need a rigid transformation (rotation and translation)
 - How many degrees of freedom?
 - How to compute it?
 - Can use gluLookat

"Lookat" Transformation

- uvn or uvw commonly used for xyz camera axes
- Compute transform from points e, l, and vector $V_{\rm up}$
 - e is the eye point, or view reference point (vrp)
 - I is the lookat point
- Separate the rotation R and translation T
 - What order to compose? What is easiest?
 - What is T?
 - What is R?
- We want $\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$

Pipeline of transformations

Standard sequence of transforms

Projection

How to form an image by planar perspective projection?

Parallel projection: orthographic

But lets start with something simpler... orthographic projection to implement orthographic, just toss out *z*.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Pipeline of transformations

Standard sequence of transforms

View volume: orthographic

Viewing a cube of size 2

- Start by looking at a restricted case: the *canonical view volume*
- It is the cube $[-1,1]^3$, viewed from the z direction
- Matrix to project it into a square image in [-1,1]² is trivial:

$$egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Viewing a cube of size 2

- To draw in image, need coordinates in pixel units
- Suppose n_x pixels in x direction and n_y pixels in y direction

Pixel size in canonical view volume is $2/n_x$ by $2/n_y$ Center is at ½ pixel width and height away from (-1, -1) i.e., $(-1+1/n_x, -1+1/n_y)$ maps to (0,0) integer pixel location $(1-1/n_x, 1-1/n_y)$ maps to (n_x-1,n_y-1) integer pixel location

Windowing transforms

- This transformation is worth generalizing
 - take one axis-aligned rectangle or box to another
 - a useful transformation chain

$$\begin{bmatrix} 1 & 0 & x_l' \\ 0 & 1 & y_l' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{x_h' - x_l'}{x_h - x_l} & 0 & 0 \\ 0 & \frac{y_h' - y_l'}{y_h - y_l} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_l \\ 0 & 1 & -y_l \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{x_h' - x_l'}{x_h - x_l} & 0 & \frac{x_l' x_h - x_h' x_l}{x_h - x_l} \\ 0 & \frac{y_h' - y_l'}{y_h - y_l} & \frac{y_l' y_h - y_h' y_l}{y_h - y_l} \\ 0 & 0 & 1 \end{bmatrix}$$

[Shirley3e f. 6-16; eq. 6-6]

Viewport transformation

$$egin{bmatrix} x_{ ext{screen}} \ y_{ ext{screen}} \ 1 \end{bmatrix} = egin{bmatrix} rac{n_x}{2} & 0 & rac{n_x-1}{2} \ 0 & rac{n_y}{2} & rac{n_y-1}{2} \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x_{ ext{canonical}} \ y_{ ext{canonical}} \ 1 \end{bmatrix}$$

 $(-1+1/n_x, -1+1/n_y)$ maps to (0,0) $(1-1/n_x, 1-1/n_y)$ maps to (n_x-1,n_y-1)

Viewport transformation

- In 3D, carry along z for the ride
 - one extra row and column

$$\mathbf{M}_{ ext{vp}} = egin{bmatrix} rac{n_x}{2} & 0 & 0 & rac{n_x-1}{2} \ 0 & rac{n_y}{2} & 0 & rac{n_y-1}{2} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic projection

- First generalization: different view rectangle
 - retain the minus-z view direction

- specify view by left, right, top, bottom (as in RT)
- also near, far

Clipping planes

- Recall...
 - Object-order rendering considers each object in turn
 - i.e., forward rendering, rasterization
 - Image-order rendering considers each pixel in turn
 - i.e., backward rendering, ray tracing
- In object-order systems we always use at least two clipping planes that further constrain the view volume
 - near plane: parallel to view plane; things between it and the viewpoint will not be rendered
 - far plane: also parallel; things behind it will not be rendered
- These planes are:
 - partly to remove unnecessary stuff (e.g., behind the camera)
 - but really to constrain the range of depths (we'll see why later)

Orthographic projection

- We can implement this by mapping the view volume to the canonical view volume.
- This is just a 3D windowing transformation!

$$\begin{bmatrix} \frac{x'_h - x'_l}{x_h - x_l} & 0 & 0 & \frac{x'_l x_h - x'_h x_l}{x_h - x_l} \\ 0 & \frac{y'_h - y'_l}{y_h - y_l} & 0 & \frac{y'_l y_h - y'_h y_l}{y_h - y_l} \\ 0 & 0 & \frac{z'_h - z'_l}{z_h - z_l} & \frac{z'_l z_h - z'_h z_l}{z_h - z_l} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{\mathrm{orth}} = egin{bmatrix} rac{2}{r-l} & 0 & 0 & -rac{r+l}{r-l} \ 0 & rac{2}{t-b} & 0 & -rac{t+b}{t-b} \ 0 & 0 & rac{2}{n-f} & -rac{n+f}{n-f} \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera and modeling matrices

- We worked out all the preceding transforms starting from eye coordinates
 - before we do any of this we need to transform into that space
- Transform from world (canonical) to eye space is traditionally called the *viewing matrix*
 - Easy for us to compute the matrix F_c which takes us from eye space to canonical space, but here we use the inverse F_c^{-1}
- Remember that geometry would originally have been in the object's local coordinates; transform into world coordinates is called the modeling matrix, M_m
- Note some systems (e.g., OpenGL) combine the two into a modelview matrix and just skip world coordinates

Viewing transformation

the camera matrix rewrites all coordinates in eye space

Orthographic transformation chain

- Start with coordinates in object's local coordinates
- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{cam} = F_c^{-1}$)
- Orthographic projection, M_{orth}
- Viewport transform, M_{vp}

$$\mathbf{p}_s = \mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r - l} & 0 & 0 & -\frac{r + l}{r - l} \\ 0 & \frac{2}{t - b} & 0 & -\frac{t + b}{t - b} \\ 0 & 0 & \frac{2}{n - f} & -\frac{n + f}{n - f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \mathbf{M}_{\mathbf{m}} \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$

Planar Perspective projection

With the Projection plane at distance d, note the similar triangles:

$$\frac{y'}{d} = \frac{y}{-z}$$
$$y' = -dy/z$$

- y' is the foreshortened version of y, that is, it is smaller by a factor -d/z
- W can think of dividing by negative
 z so that y' has the same sign as y!

Homogeneous coordinates revisited

- Perspective requires division
 - that is not part of affine transformations
 - in affine, parallel lines stay parallel
 - therefore no vanishing point
 - therefore no rays converging on viewpoint
- "True" purpose of homogeneous coords: projection

Homogeneous coordinates revisited

Introduced w = 1 coordinate as a placeholder

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- used as a convenience for unifying translation with linear
- Can also allow arbitrary w

$$egin{bmatrix} x \ y \ z \ 1 \end{bmatrix} \sim egin{bmatrix} wx \ wy \ wz \ w \end{bmatrix}$$

Implications of w

$$egin{bmatrix} x \ y \ z \ 1 \end{bmatrix} \sim egin{bmatrix} wx \ wy \ wz \ w \end{bmatrix}$$

- All scalar multiples of a 4-vector are equivalent
- When w is not zero, can divide by w
 - therefore these points represent "normal" affine points
- When w is zero, it's a point at infinity, i.e., a direction
 - can think of this as the point where parallel lines intersect
 - can also think of it as the vanishing point

Perspective projection

to implement perspective, just move z to w:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -dx/z \\ -dy/z \\ 1 \end{bmatrix} \sim \begin{bmatrix} dx \\ dy \\ -z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

View volume: perspective

View volume: perspective (clipped)

Carrying depth through perspective

- Perspective has a varying denominator—can't preserve depth!
- Compromise: preserve order, and depth on near and far planes

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} \sim \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ -z \end{bmatrix} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

— that is, choose a and b so that z'(n) = n and z'(f) = f.

$$\tilde{z}(z) = az + b$$

$$z'(z) = \frac{\tilde{z}}{-z} = \frac{az + b}{-z}$$
want $z'(n) = n$ and $z'(f) = f$
result: $a = -(n + f)$ and $b = nf$ (try it)

Official perspective matrix

- Use near plane distance as the projection distance
- Let n be **negative** and d = -n
- Scale by -1 to have fewer minus signs
 - The matrix is different but this does not change the projective transformation

$$\mathbf{P} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \begin{array}{l} \textbf{Potential Confusion:} \\ \textbf{In OpenGL the near and} \\ \textbf{far plane are specified as} \\ \textbf{positive numbers giving} \\ \textbf{the distance along the} \\ \textbf{negative z axis!} \end{array}$$

negative z axis!

Questions

- Questions to better understand the action of a 4x4 homogenous planar perspective transformation matrix
 - What happens to lines through the origin ?
 - They become parallel
 - What happens to vectors (x,y,z,0) ?
 - They map to plane z=near+far
 - What happens to points on *plane with z normal* at center of projection ?
 - Map to points at infinity (all vectors come from the homogeneous representations of points on this plane at center of projection)
 - What happens to points at z = (near + far)/2?
 - (n*n+f*f) / (n+f), that is, z is not preserved !! However, order is!
 (has implications for z depth precision)
 - What happens to points behind the camera ?
 - It goes in front of the camera

Questions (the easier version)

 Given the following projection matrix, with near at 1 and far at 3, answer the following by interpreting the result in non-homogeneous coordinates

$$P = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -4 & -3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- What happens to points on the near plane?
- What happens to points on the far plane?
- What happens to points half way between?
- What happens to points behind the camera?

Aside: What goes where?

camera coordinates

(non-normalized) projection coordinate

This has implications for clipping (i.e., discarding) geometry!

Perspective projection matrix

 Need perspective projection to produce points in the canonical view volume, so combine with an orthographic projection matrix (windowing transform)

$$\mathbf{M}_{\mathrm{per}} = \mathbf{M}_{\mathrm{orth}} \mathbf{P}$$

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Is n-f a bug?
Is it not f-n ??

The convention is that -near maps to -1 and -far maps to 1.

Perspective transformation chain

- Transform into world coords (modeling transform, M_m)
- Transform into eye coords (camera xf., $M_{cam} = F_c^{-1}$)
- Perspective matrix, P
- Orthographic projection, M_{orth}
- Viewport transform, M_{vp}

$$\mathbf{p}_s = \mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_o$$

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{r - l} & 0 & 0 & -\frac{r + l}{r - l} \\ 0 & \frac{2}{t - b} & 0 & -\frac{t + b}{t - b} \\ 0 & 0 & \frac{2}{n - f} & -\frac{n + f}{n - f} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n + f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{M}_{\text{cam}} \mathbf{M}_{\text{m}} \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$

OpenGL view frustum: orthographic

Note OpenGL puts the near and far planes at -n and -f so the user should give positive numbers

OpenGL view frustum: perspective

Note OpenGL puts the near and far planes at -n and -f so that the user should give positive numbers gluPerspective(fovy, aspect, near, far) glFrustum(left, right, bottom, top, near, far)

Defined on near plane

Frustum applications

- Shifted perspective
- Tiled rendering (e.g., render very high resolutions)
- 3D viewing (i.e., left eye right eye)
- Depth of field (i.e., accumulating multiple render passes)

.

Review and more information

- Textbook chapter 7
 - Viewing and projection