Tensor Ranks, Shapes, and Types

TensorFlow programs use a tensor data structure to represent all data. You can think of a TensorFlow tensor as an n-dimensional array or list. A tensor has a static type and dynamic dimensions. Only tensors may be passed between nodes in the computation graph.

Rank

In the TensorFlow system, tensors are described by a unit of dimensionality known as *rank*. Tensor rank is not the same as matrix rank. Tensor rank (sometimes referred to as *order* or *degree* or *n-dimension*) is the number of dimensions of the tensor. For example, the following tensor (defined as a Python list) has a rank of 2:

```
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```

A rank two tensor is what we typically think of as a matrix, a rank one tensor is a vector. For a rank two tensor you can access any element with the syntax t[i, j]. For a rank three tensor you would need to address an element with t[i, j, k].

RankMath entity		Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	

Shape

The TensorFlow documentation uses three notational conventions to describe tensor dimensionality: rank, shape, and dimension number. The following table shows how these relate to one another:

Rank	Shape	Dimension number	Example
0	0	0-D	A 0-D tensor. A scalar.
1	[D0]	1-D	A 1-D tensor with shape [5].
2	[D0, D1]	2-D	A 2-D tensor with shape [3, 4].
3	[D0, D1, D2]	3-D	A 3-D tensor with shape [1, 4, 3].
n	[D0, D1, Dn-1]	n-D	A tensor with shape [D0, D1, Dn-1].

Shapes can be represented via Python lists / tuples of ints, or with the tf.TensorShape (https://www.tensorflow.org/api_docs/python/tf/TensorShape).

Data types

In addition to dimensionality, Tensors have a data type. You can assign any one of the following data types to a tensor:

Data type	Python type	Description
DT_FLOAT	tf.float32	32 bits floating point.
DT_DOUBLE	tf.float64	64 bits floating point.
DT_INT8	tf.int8	8 bits signed integer.
DT_INT16	tf.int16	16 bits signed integer.
DT_INT32	tf.int32	32 bits signed integer.
DT_INT64	tf.int64	64 bits signed integer.
DT_UINT8	tf.uint8	8 bits unsigned integer.
DT_UINT16	tf.uint16	16 bits unsigned integer.
DT_STRING	tf.string	Variable length byte arrays. Each element of a Tensor is a byte array.
DT_B00L	tf.bool	Boolean.
DT_COMPLEX64	tf. complex64	Complex number made of two 32 bits floating points: real and imaginary parts.
DT_COMPLEX128	Btf. complex128	Complex number made of two 64 bits floating points: real and imaginary parts.

Data type	Python type	Description
DT_QINT8	tf.qint8	8 bits signed integer used in quantized Ops.
DT_QINT32	tf.qint32	32 bits signed integer used in quantized Ops.
DT_QUINT8	tf.quint8	8 bits unsigned integer used in quantized Ops.

Except as otherwise noted, the content of this page is licensed under the <u>Creative Commons Attribution 3.0</u>
<u>License</u> (http://creativecommons.org/licenses/by/3.0/), and code samples are licensed under the <u>Apache 2.0</u>
<u>License</u> (http://www.apache.org/licenses/LICENSE-2.0). For details, see our <u>Site Policies</u>
(https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

上次更新日期:三月8,2017