Lista 13 - IA

Edson Pimenta de Almeida

Junho de 2025

Nota Importante

O notebook Jupyter com todo o código-fonte, experimentações e análises realizadas neste projeto está disponível publicamente e pode ser acessado através do link abaixo:

» Acessar Notebook no Google Colab «

Sumário

Ι	Questão 01: Classificação de Comentários Tóxicos	3			
1	Introdução	3			
2	Configuração do Ambiente	3			
3	3 Carregamento e Exploração dos Dados				
4	Pré-processamento do Texto	4			
5	5 Vetorização de Texto com TF-IDF				
6	Análise do Desbalanceamento e Estratégia de Modelagem 6.1 Análise Visual do Desbalanceamento de Classes	5 5			
7 Treinamento e Seleção do Modelo Final					
8	Resultados e Conclusão (Questão 01) 8.1 Resultados da Validação Local	6 6			
II	Questão 02: Regras de Inferência	7			
II	I Questão 03: Lógica Clássica vs. Lógica Fuzzy 8.3 a) Aplicação da Lógica Clássica	10 10 10			

8.5	c) Proposta de Função de Pertinência Fuzzy	10
8.6	d) Aplicação da Lógica Fuzzy	11

Parte I

Questão 01: Classificação de Comentários Tóxicos

1 Introdução

Este relatório detalha o desenvolvimento de um sistema de classificação de texto multirrótulo. O objetivo foi analisar e categorizar comentários da plataforma Jigsaw em seis diferentes classes de toxicidade: toxic, severe_toxic, obscene, threat, insult e identity_hate. Devido à natureza do problema, onde um único comentário pode pertencer a múltiplas categorias simultaneamente, foram empregadas técnicas específicas para classificação multirrótulo.

2 Configuração do Ambiente

Inicialmente, foram importadas todas as bibliotecas necessárias para a análise, pré-processamento, modelagem e avaliação. Isso incluiu pandas para manipulação de dados, nltk e re para limpeza de texto, scikit-learn para vetorização e métricas, e scikit-multilearn para a construção do modelo de classificação. O ambiente de desenvolvimento foi baseado em Python.

```
import pandas as pd
import numpy as np
import re
import nltk
from nltk.corpus import stopwords

# Ferramentas do Scikit-learn
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report, f1_score
from skmultilearn.problem_transform import ClassifierChain

# Ferramentas do LightGBM
from lightgbm import LGBMClassifier

# Downloads de recursos do NLTK
nltk.download('stopwords')
```

Listing 1: Importação das bibliotecas

3 Carregamento e Exploração dos Dados

Os dados de treinamento foram carregados a partir do arquivo train.csv. Em seguida, foi realizada uma exploração inicial para entender a estrutura do dataset, o formato dos comentários e a distribuição das classes (rótulos).

```
# Carregando os dados de treinamento
2 df_train = pd.read_csv('train.csv')
```

Listing 2: Carregamento e exploração inicial

4 Pré-processamento do Texto

Antes de treinar o modelo, os dados de texto da coluna comment_text foram submetidos a um processo de limpeza e normalização, etapa fundamental para a extração de características relevantes. Foi definida uma função para realizar as seguintes transformações:

- Conversão para Minúsculas: Padronização de todo o texto.
- Remoção de Caracteres Especiais: Exclusão de pontuações, números e outros símbolos não alfabéticos.
- Remoção de Stopwords: Exclusão de palavras comuns da língua inglesa que não agregam valor semântico.

Essa função de limpeza foi aplicada a cada comentário no dataset.

```
stop_words = set(stopwords.words('english'))

def clean_text(text):
    text = text.lower()
    text = re.sub(r'[^a-z\s]', '', text)
    text = ' '.join([word for word in text.split() if word not in stop_words])
    return text

df_train['clean_comment_text'] = df_train['comment_text'].apply(
    clean_text)
```

Listing 3: Função de limpeza e sua aplicação

5 Vetorização de Texto com TF-IDF

Modelos de machine learning não conseguem interpretar texto bruto. Por isso, os comentários limpos foram convertidos em vetores numéricos através da técnica **TF-IDF** (**Term Frequency-Inverse Document Frequency**). Este método atribui um peso a cada palavra com base em sua frequência no documento e sua raridade no corpus total. O **TfidfVectorizer** do Scikit-learn foi utilizado para essa transformação, com um limite de 5000 características para otimizar o treinamento.

```
1 X = df_train['clean_comment_text']
2 y = df_train[label_cols]
3
```

```
vectorizer = TfidfVectorizer(max_features=5000)
X_tfidf = vectorizer.fit_transform(X)
```

Listing 4: Vetorização TF-IDF

6 Análise do Desbalanceamento e Estratégia de Modelagem

6.1 Análise Visual do Desbalanceamento de Classes

Uma etapa crucial da análise exploratória foi a verificação da distribuição das classes. Um gráfico de barras foi gerado para visualizar o número de ocorrências de cada rótulo, revelando um severo desbalanceamento. Categorias como toxic e obscene são classes majoritárias, enquanto threat e severe_toxic são classes minoritárias. Este desbalanceamento foi identificado como a causa principal do baixo desempenho do modelo inicial na detecção dessas classes raras.

6.2 Investigação de Estratégias Multirrótulo

A biblioteca scikit-multilearn foi investigada por ser especializada em classificação multirrótulo. Dentre os métodos de transformação de problema, a abordagem Classifier Chains (Cadeias de Classificadores) foi selecionada. Este método treina um classificador para cada rótulo de forma encadeada, onde a previsão de um classificador serve como característica para o próximo. Isso permite que o modelo capture dependências entre os rótulos.

7 Treinamento e Seleção do Modelo Final

O processo de modelagem foi iterativo. Com os dados pré-processados, foi realizada a divisão em conjuntos de treino e teste (80/20). Diferentes abordagens de balanceamento e algoritmos foram testados. A estratégia final, que apresentou o melhor equilíbrio de desempenho, consistiu em utilizar o classificador LGBMClassifier (LightGBM) combinado com a técnica de ponderação de classes, através do parâmetro class_weight.

```
# Divisao dos dados
2 X_train, X_test, y_train, y_test = train_test_split(X_tfidf, y,
     test_size=0.2, random_state=42)
4 # Definicao do classificador base LightGBM com balanceamento
5 base_classifier = LGBMClassifier(
      objective='binary',
      n_estimators=150,
      learning_rate=0.1,
      class_weight={0: 1, 1: 2}
9
 )
10
11
# Criacao da cadeia de classificadores
13 classifier_chain = ClassifierChain(base_classifier)
15 # Treinamento do modelo
classifier_chain.fit(X_train, y_train)
```

```
# Realizacao das previsoes
predictions = classifier_chain.predict(X_test)
```

Listing 5: Treinamento do Modelo Final Selecionado

8 Resultados e Conclusão (Questão 01)

8.1 Resultados da Validação Local

O modelo final ('LightGBM' com 'class weight=0:1, 1:2') alcançou um desempenho superior às outras tentativas na validação local. As métricas-chave foram:

• **F1-Score** (Micro): 0.7185

• F1-Score (Weighted): 0.72

O relatório de classificação detalhado é apresentado na Tabela 1.

Tabela 1: Relatório de Classificação do Modelo Final.

Classe	precision	recall	f1-score	support
toxic	0.84	0.68	0.75	3056
$severe_toxic$	0.42	0.32	0.36	321
obscene	0.83	0.78	0.80	1715
threat	0.37	0.34	0.35	74
insult	0.66	0.72	0.69	1614
$identity_hate$	0.56	0.33	0.42	294

8.2 Validação Final (Kaggle)

Para a validação final, o modelo foi submetido à competição do Kaggle, obtendo os seguintes resultados no conjunto de dados de teste oficial:

• Public Score (AUC ROC): 0.78522

• Private Score (AUC ROC): 0.77802

A proximidade entre os scores público e privado demonstrou a **robustez e a boa capacidade de generalização** do modelo, confirmando que não houve superajuste (*overfitting*) e que o processo de validação local foi eficaz.

Parte II

Questão 02: Regras de Inferência

A seguir, são apresentadas as resoluções para os exercícios selecionados da seção "14.7 Regras de Inferência".

1) "Se é feriado, os bancos estão fechados"

Resposta: a) Se os bancos não estão fechados, não é feriado.

Justificativa: A resposta é a contrapositiva da sentença original (Se P \rightarrow Q, então \sim Q \rightarrow \sim P), que é logicamente equivalente.

4) "Se não chover, Cláudia vai à praia..."

Resposta: e) Fábia foi ao clube.

Justificativa: A premissa "choveu" ativa a segunda regra ("Se chover, Fábia vai ao clube") por Modus Ponens, garantindo a conclusão.

5) "Pedro é estudioso e trabalhador, ou Pedro é bonito..."

Resposta: a) Pedro é estudioso e trabalhador.

Justificativa: Como a segunda parte da disjunção ("Pedro é bonito") é falsa, a primeira parte deve ser verdadeira, por Silogismo Disjuntivo.

7) "Se Rubens estudar, então passará no concurso."

Resposta: a) Se Rubens não passar no concurso, então não terá estudado.

Justificativa: A afirmação é a contrapositiva da original, mantendo a equivalência lógica.

8) "Se Felipe toca violão, ele canta..."

Resposta: b) Se Felipe toca violão, então ele não toca piano.

Justificativa: Das premissas $V \to C$ e $P \to \sim C$ (ou $C \to \sim P$), conclui-se por silogismo hipotético que $V \to \sim P$.

9) "A proposição p $\rightarrow \sim$ q é equivalente a:"

Resposta: e) \sim p $\vee \sim$ q.

Justificativa: Uma condicional $A \to B$ é sempre equivalente a $\sim A \vee B$.

13) "Se Carlos é administrador, então é pobre."

Resposta: c) Se Carlos não é pobre, então não é administrador.

Justificativa: Trata-se da contrapositiva da proposição original.

16) "Meu salário cobrirá as despesas somente se eu economizar."

Resposta: e) Se eu não economizar, meu salário não cobrirá as despesas.

Justificativa: A sentença "A somente se B"é A \rightarrow B. A resposta é a contrapositiva (\sim B \rightarrow \sim A).

17) "Ou Lógica é fácil ou Artur não gosta de Lógica..."

Resposta: b) Lógica é fácil e geografia é difícil.

Justificativa: Se Artur gosta de Lógica, então "Lógica é fácil" deve ser verdade. A partir disso, na segunda premissa, conclui-se que "Geografia é difícil".

19) "Se Iara não fala italiano, então Ana fala alemão..."

Resposta: a) Iara não fala italiano e Débora não fala dinamarquês.

Justificativa: Seguindo a cadeia de implicações a partir dos fatos dados (\sim F_fra e \sim C chi), chega-se às conclusões \sim D din e \sim I ita.

20) "Se Carina é amiga de Carol..."

Resposta: b) Carina não é amiga de Carol ou não é cunhada de Carmem.

Justificativa: Das duas primeiras premissas, conclui-se que "Carina não é amiga de Carol". Como esta parte da disjunção é verdadeira, a disjunção inteira é verdadeira.

21) "se x = 7, então y = 9"

Resposta: c) Se $y \neq 9$, então $x \neq 7$.

Justificativa: A resposta é a contrapositiva da afirmação original.

23) "Se Júlio estiver certo, então Vítor estará enganado..."

Resposta: b) André não participou da corrida.

Justificativa: A cadeia de Modus Ponens a partir de "Júlio estava certo"leva à conclusão de que o carro não ficou pronto, o que, por sua vez, implica que André não participou da corrida.

24) "Se Carla é solteira, então Maria é estudante"

Resposta: c) Se Maria não é estudante, então Carla não é solteira.

Justificativa: A resposta é a contrapositiva da proposição original.

26) "Se x + y = 2, então x = 0. Ora, x não é zero."

Resposta: d) $x + y \neq 2$.

Justificativa: Aplicação da regra de inferência Modus Tollens.

27) "O rei ir à caça é condição necessária para o duque..."

Resposta: c) O rei não foi à caça e o conde não encontrou a princesa.

Justificativa: A partir do fato de que o barão não sorriu, uma cadeia de Modus Tollens é acionada, provando ambas as partes da conjunção como verdadeiras.

28) "Se você se esforçar, então irá vencer."

Resposta: a) Seu esforço é condição suficiente para vencer.

Justificativa: Em uma condicional "Se P, então Q", P é, por definição, a condição suficiente para Q.

31) "Se Francisco desviou dinheiro..."

Resposta: e) Alguém não desviou dinheiro da campanha assistencial.

Justificativa: Tentar concluir sobre o delito de Francisco seria a falácia da negação do antecedente. A única conclusão logicamente válida é a generalização existencial da premissa "Francisco não desviou dinheiro".

32) "Se Rodrigo mentiu, então ele é culpado."

Resposta: a) Se Rodrigo não é culpado, então ele não mentiu.

Justificativa: A resposta é a contrapositiva da afirmação original.

Parte III

Questão 03: Lógica Clássica vs. Lógica Fuzzy

Nesta questão, foi explorada a diferença entre a lógica booleana tradicional e a lógica fuzzy para classificar a altura de personagens.

8.3 a) Aplicação da Lógica Clássica

Foi aplicada a regra "Se a altura for maior ou igual a 170 cm, então o personagem é alto (valor 1); caso contrário, não é alto (valor 0)". Os resultados são mostrados na Tabela 2.

Altura (cm) Personagem Alto (lógica clássica) Ana 148 0 Bruno 165 Carla 1 172 1 Diego 180 Elisa 1 191

Tabela 2: Classificação de altura usando lógica clássica.

8.4 b) Análise Crítica da Lógica Clássica

A lógica clássica impõe uma fronteira rígida e irrealista. Não é sensato afirmar que uma pessoa com 169 cm não é "nada alta" (valor 0) e outra com 170 cm é "totalmente alta" (valor 1). Essa transição abrupta não representa bem a natureza gradual de conceitos humanos como "alto".

8.5 c) Proposta de Função de Pertinência Fuzzy

Para superar a limitação da lógica clássica, foi proposta uma função de pertinência fuzzy linear para a categoria "alto":

- Altura $< 160 \text{ cm} \rightarrow \text{Grau de pertinência} = 0$
- 160 cm \leq Altura \leq 190 cm \rightarrow O grau aumenta linearmente de 0 a 1.
- Altura $> 190 \text{ cm} \rightarrow \text{Grau de pertinência} = 1$

A fórmula para o intervalo linear é:

Grau de "alto =
$$\frac{\text{Altura} - 160}{30}$$

8.6 d) Aplicação da Lógica Fuzzy

Com base na função de pertinência, foram calculados os graus de "alto"para cada personagem, conforme a Tabela 3. Esta abordagem oferece uma representação muito mais nuançada e realista da característica "altura".

Tabela 3: Grau de "alto" usando lógica fuzzy.

Personagem	Altura (cm)	Grau de "alto"(fuzzy)
Ana	148	0.000
Bruno	165	0.167
Carla	172	0.400
Diego	180	0.667
Elisa	191	1.000