共轭空间

January 15, 2021

1 共轭算子(Adjoint operator)

共轭算子是个非常有用的工具.

Definition 1.1. 设 \mathcal{X} , \mathcal{Y} 是线性赋范空间, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. 若 $T^* \in \mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$ 满足: 对 $\forall x \in \mathcal{X}$ 和 $\forall f \in \mathcal{Y}^*$,

$$\langle f, Tx \rangle = \langle T^*f, x \rangle,$$

则称 T^* 是T 的共轭算子.

Remark 1.2. 注意, 共轭算子是一定存在的, 且 $\|T^*\|_{\mathscr{L}(\mathcal{Y}^*,\mathcal{X}^*)} = \|T\|_{\mathscr{L}(\mathcal{X},\mathcal{Y})}$.

Proof. 先证存在性. 对 $\forall f \in \mathcal{Y}^*$, 定义

$$g_f: \mathcal{X} \to \mathbb{K}, \ x \mapsto \langle f, Tx \rangle,$$

则易证 $g_f \in \mathcal{X}^*$. 令

$$T^*: \mathcal{Y}^* \to \mathcal{X}^*, f \to g_f,$$

则易证 $T^* \in \mathcal{L}(\mathcal{Y}^*, \mathcal{X}^*)$ 且对 $\forall x \in \mathcal{X}$ 和 $\forall f \in \mathcal{Y}^*$,

$$\langle f, Tx \rangle = \langle T^*f, x \rangle.$$

再证 $\|T^*\|_{\mathscr{L}(\mathcal{Y}^*,\mathcal{X}^*)} = \|T\|_{\mathscr{L}(\mathcal{X},\mathcal{Y})}$. 一方面,

$$\begin{split} \|T^*\|_{\mathscr{L}(\mathcal{Y}^*,\mathcal{X}^*)} &= \sup_{\|f\|_{\mathcal{Y}^*}=1} \|T^*f\|_{\mathcal{X}^*} = \sup_{\|f\|_{\mathcal{Y}^*}=1} \sup_{\|x\|_{\mathcal{X}}=1} |\langle T^*f,x\rangle| \\ &= \sup_{\|f\|_{\mathcal{Y}^*}=1} \sup_{\|x\|_{\mathcal{X}}=1} |\langle f,Tx\rangle| \leq \sup_{\|x\|_{\mathcal{X}}=1} \|Tx\|_{\mathcal{Y}} \leq \|T\|_{\mathscr{L}(\mathcal{X},\mathcal{Y})}. \end{split}$$

另一方面, 由Hahn-Banach 定理推论(Corollary 2.4)知

$$\begin{split} \|T\|_{\mathscr{L}(\mathcal{X},\mathcal{Y})} &= \sup_{\|x\|_{\mathcal{X}} = 1} \|Tx\|_{\mathcal{Y}} \stackrel{Corollary \, 2.4}{=} \sup_{\|x\|_{\mathcal{X}} = 1} \max_{\|f\|_{\mathcal{Y}^*} = 1} f(Tx) \\ &= \sup_{\|x\|_{\mathcal{X}} = 1} \max_{\|f\|_{\mathcal{Y}^*} = 1} \langle T^*f, x \rangle \leq \max_{\|f\|_{\mathcal{Y}^*} = 1} \|T^*f\|_{\mathcal{X}^*} \leq \|T^*\|_{\mathscr{L}(\mathcal{Y}^*, \mathcal{X}^*)}. \end{split}$$

因此 $||T^*||_{\mathcal{L}(\mathcal{Y}^*,\mathcal{X}^*)} = ||T||_{\mathcal{L}(\mathcal{X},\mathcal{Y})}.$

共轭算子会保持原来算子的性质.

Proposition 1.3. 设 \mathcal{X} , \mathcal{Y} 是Banach 空间, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. 若T 是双射, 则 T^* 也是双射.

Proof. 由开映射定理知, $T^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$, 因此 $(T^{-1})^*$ 存在. 对 $\forall x^* \in \mathcal{X}^*$, $\diamondsuit y^* := (T^{-1})^*(x^*)$, 则 $y^* \in \mathcal{Y}^*$ 且对 $\forall x \in \mathcal{X}$,

$$\langle T^*(y^*), x \rangle = \langle y^*, Tx \rangle = \langle (T^{-1})^*(x^*), Tx \rangle = \langle x^*, x \rangle,$$

即 $T^*(y^*) = x^*$. 故 T^* 是满射. 对 $\forall y_1^*, y_2^* \in \mathcal{Y}^*, 若<math>T^*(y_1^*) = T^*(y_2^*)$, 则对 $\forall x \in \mathcal{X}$,

$$\langle y_1^*, Tx \rangle = \langle T^*(y_1^*), x \rangle = \langle T^*(y_2^*), x \rangle = \langle y_2^*, Tx \rangle$$

由此及T 是满射知, $y_1^* = y_2^*$. 故 T^* 是单射.

Remark 1.4. 反过来, 若 T^* 是双射, 能否推出T 是双射? 似乎是对的, Rudin 的书中有零散的结论.

Proposition 1.5. 设 \mathcal{X} , \mathcal{Y} 是Banach 空间, $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. 若T 是线性等距同构映射(满的等距映射(), 则 T^* 也是线性等距同构映射(

Proof. T 是线性等距同构映射, 故T 是双射, 由此及Proposition 1.3 知, T^* 是双射. 又 对 $\forall y^* \in \mathcal{Y}^*$,

$$||T^*y^*||_{\mathcal{X}^*} = \sup_{||x||_{\mathcal{X}}=1} |\langle T^*y^*, x \rangle| = \sup_{||x||_{\mathcal{X}}=1} |\langle y^*, Tx \rangle| = \sup_{||y||_{\mathcal{Y}}=1} |\langle y^*, y \rangle| = ||y^*||_{\mathcal{Y}^*}.$$

故T* 也是线性等距同构映射.

2 自反空间(Reflexive Spaces)

Definition 2.1. 设 \mathcal{X} 是线性赋范空间. 称 $\mathcal{X}^* := \mathcal{L}(\mathcal{X}, \mathbb{K})$ 为 \mathcal{X} 的共轭空间, 称 $\mathcal{X}^{**} := (\mathcal{X}^*)^*$ 为 \mathcal{X} 的第二共轭空间,

Definition 2.2. 设 \mathcal{X} 是线性赋范空间. 对 $\forall x \in \mathcal{X}$,

$$X: \mathcal{X}^* \to \mathbb{K}, f \mapsto \langle f, x \rangle$$

是 \mathcal{X}^{**} 中的元素, 称

$$J_{\mathcal{X}}: \ \mathcal{X} \to \mathcal{X}^{**}, \ x \mapsto X$$

为 χ 的自然映射.

Definition 2.3. 设 \mathcal{X} 是线性赋范空间. 称 \mathcal{X} 是自反空间, 若自然映射 $J_{\mathcal{X}}$ 是满射.

Corollary 2.4 (H. Brezis, Functional Analysis, Corollary 1.4). 设 \mathcal{X} 是线性赋范空间. 则对 $\forall x \in \mathcal{X}$,

$$||x||_{\mathcal{X}} = \sup_{\|f\|_{\mathcal{X}^*}=1} |f(x)| = \max_{\|f\|_{\mathcal{X}^*}=1} |f(x)|.$$

Proposition 2.5. J_X 是线性等距映射.

Proof. J_X 线性显然. 又由Hahn-Banach 定理推论(Corollary 2.4)知

$$||J_{\mathcal{X}}x||_{\mathcal{X}^{**}} = \sup_{\|f\|_{\mathcal{X}^{*}}=1} |\langle J_{\mathcal{X}}x, f \rangle| = \sup_{\|f\|_{\mathcal{X}^{*}}=1} |f(x)| \stackrel{Corollary 2.4}{=} ||x||_{\mathcal{X}}.$$

故 J_{χ} 是线性等距映射.

Remark 2.6. 若线性赋范空间 \mathcal{X} 是自反空间,则 $J_{\mathcal{X}}$ 是满的线性等距映射,故 \mathcal{X} 和 \mathcal{X}^{**} 等距同构. 注意到, \mathcal{X}^{**} 是完备的,因此自反空间必定完备.

一个很自然的问题是, 如果 \mathcal{X} 和 \mathcal{X}^{**} 等距同构, 能否推出 \mathcal{X} 自反呢? 答案是否定的, James 在[1] 中给出了反例.

下面引入另外两种拓扑, 弱收敛和*-弱收敛.

Definition 2.7. 设义 是线性赋范空间, $\{x_n\}_{n=0}^{\infty} \subset \mathcal{X}$. 若对 $\forall f \in \mathcal{X}^*$,

$$\lim_{n \to \infty} f(x_n) = f(x_0),$$

则称 x_n 弱收敛到 x_0 , 记为 $x_n \rightarrow x_0$.

Definition 2.8. 设义 是线性赋范空间, $\{f_n\}_{n=0}^{\infty} \subset \mathcal{X}^*$. 若对 $\forall x \in \mathcal{X}$,

$$\lim_{n \to \infty} f_n(x) = f_0(x),$$

则称 f_n *-弱收敛到 f_0 , 记为 $w^* - \lim_{n \to \infty} f_n = f_0$.

自反空间有些有意思的性质, 比如:

Theorem 2.9. 设 \mathcal{X} 是自反空间, $E \subset \mathcal{X}$. 则E 弱列紧当且仅当E 有界.

Remark 2.10. "E 弱列紧 $\Longrightarrow E$ 有界" 只需要E 是线性赋范空间即可.

Theorem 2.11 (H. Brezis, Functional Analysis, Proposition 3.20). 自反空间的闭线性子空间也自反.

Lemma 2.12. 等距同构的两线性赋范空间, 自反性相同.

Proof. 设 \mathcal{X} 和 \mathcal{Y} 是等距同构的线性赋范空间,则存在 \mathcal{X} 到 \mathcal{Y} 的线性等距同构映射 φ . 由Proposition 1.5 知, φ^{**} 也是线性等距同构映射.

设 \mathcal{X} 自反,则 $J_{\mathcal{X}}$ 是满射,从而 $J_{\mathcal{X}}$ 是双射. 下证 \mathcal{Y} 自反.事实上,对 $\forall y^{**} \in \mathcal{Y}^{**}$, 令 $y := \varphi((J_{\mathcal{X}})^{-1}((\varphi^{**})^{-1}(y^{**})))$,则 $y \in \mathcal{Y}$ 且对 $\forall y^{*} \in \mathcal{Y}^{*}$,

$$\langle J_{\mathcal{Y}}y, y^* \rangle = \langle y^*, y \rangle = \langle y^*, \varphi((J_{\mathcal{X}})^{-1}((\varphi^{**})^{-1}(y^{**}))) \rangle$$

= $\langle \varphi^*(y^*), (J_{\mathcal{X}})^{-1}((\varphi^{**})^{-1}(y^{**})) \rangle = \langle (\varphi^{**})^{-1}(y^{**}), \varphi^*(y^*) \rangle = \langle y^{**}, y^* \rangle,$

即 $J_{\mathcal{V}}y = y^{**}$. 故 $J_{\mathcal{V}}$ 是满射, 从而 \mathcal{Y} 自反.

下面给出自反的等价特征.

Theorem 2.13. 设 \mathcal{X} 是Banach 空间. 则以下叙述等价:

- (i) *X* 自反;
- (ii) X* 自反;
- (iii) 单位球弱列紧.

Proof. 先证"(i) \Longrightarrow (ii)". 对 $\forall x^{***} \in \mathcal{X}^{***}$, $\diamondsuit x^* := (J_{\mathcal{X}})^*(x^{***})$, 则 $x^* \in \mathcal{X}^*$ 且对 $\forall x^{**} \in \mathcal{X}^{**}$,

$$\langle J_{\mathcal{X}^*} x^*, x^{**} \rangle = \langle x^{**}, x^* \rangle = \langle x^{**}, x^* \rangle = \langle J_{\mathcal{X}}((J_{\mathcal{X}})^{-1} x^{**}), x^* \rangle$$
$$= \langle x^*, (J_{\mathcal{X}})^{-1} x^{**} \rangle = \langle (J_{\mathcal{X}})^* (x^{***}), (J_{\mathcal{X}})^{-1} x^{**} \rangle = \langle x^{***}, x^{**} \rangle,$$

即 $J_{\mathcal{X}^*}x^* = x^{***}$. 故 $J_{\mathcal{X}^*}$ 是满射, 从而 \mathcal{X}^* 自反.

再证"(ii) \Longrightarrow (i)". 因 \mathcal{X} 完备,故 $J_{\mathcal{X}}(\mathcal{X})$ 是 \mathcal{X}^{**} 的闭线性子空间. 又因为 \mathcal{X}^{*} 自反和"(i) \Longrightarrow (ii)" 知, \mathcal{X}^{**} 自反. 进一步由Theorem 2.11 知, $J_{\mathcal{X}}(\mathcal{X})$ 自反. 而 $J_{\mathcal{X}}(\mathcal{X})$ 与 \mathcal{X} 等距同构, 故由Lemma 2.12 知, \mathcal{X} 自反.

"(i) \Longrightarrow (iii)" 是经典结论. 下证"(iii) \Longrightarrow (i)". 证明非常复杂, 需要弄清楚拓扑的构造. 思路是证 $J_{\mathcal{X}}(B_{\mathcal{X}}) = B_{\mathcal{X}^{**}}$, 从而有 $J_{\mathcal{X}}(\mathcal{X}) = \mathcal{X}^{**}$.

References

[1] R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174–177.