

COMPUTER PROGRAM FOR CALCULATION OF SEPARATED TURBULENT FLOWS ON AXISYMMETRIC AFTERBODIES INCLUDING EXHAUST PLUME EFFECTS

Gary D. Kuhn

NIELSEN ENGINEERING AND RESEARCH, INC 510 CLYDE AVENUE MOUNTAIN VIEW, CALIFORNIA 94043

March 1979

Final Report for Period July 5, 1977 - September 5, 1978

PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY

Approved for public release; distribution unlimited.

Property of U. S. Air Forest AEUC LIBRARY F40600-77-C-9093

Prepared for

Ç.,

ARNOLD ENGINEERING DEVELOPMENT CENTER/DOTR ARNOLD AIR FORCE STATION, TENNESSEE 37389

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto,

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government,

This final report was submitted by Nielsen Engineering and Research, Inc., 510 Clyde Avenue, Mountain View, California 94043, under contract F40600-77-C-0008, with the Arnold Engineering Development Center/DOTR, Arnold Air Force Station, TN 37389, Mr. E R. Thompson, DOTR, was the AEDC Project Engineer.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

Project Manager, Research Division

Directorate of Test Engineering

Approved for publication:

FOR THE COMMANDER

ROBERT W. CROSSLEY, Lt Colonel, USAF

Acting Director of Test Engineering

Deputy for Operations

UNCLASSIFIED

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
1 REPORT NUMBER	2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER		
AEDC-TR-79-4				
4 TITLE (and Subtitle) COMPUTER PROGRAI	M DOD CATCUIA.	5 TYPE OF REPORT & PERIOD COVERED		
		Final Report - July 5,		
TION OF SEPARATED TURBULENT FLOWS ON AXI- SYMMETRIC AFTERBODIES INCLUDING EXHAUST		1977 - September 5, 1978		
	ING EARAUST	6 PERFORMING ORG REPORT NUMBER		
PLUME EFFECTS		NEAR TR 165		
7 AUTHOR(s) Gary D. Kuhn		8 CONTRACT OR GRANT NUMBER(s)		
		F40600-77-C-0008		
9 PERFORMING ORGANIZATION NAME AND ADDRESS		1D PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS		
Nielsen Engineering & Research, Inc.		AREA B WORK UNIT NUMBERS		
510 Clyde Avenue Mountain View, CA 94043		Program Element 65807F		
11 CONTROLLING OFFICE NAME AND ADDRESS		I2. REPORT DATE		
Arnold Engineering Developmen	nt Center/OIS	March 1979		
Air Force Systems Command		13 NUMBER OF PAGES		
Arnold Air Force Station, Tennessee 37389		130		
14 MONITORING AGENCY NAME & ADDRESS(If differen	it from Controlling Office)	15. SECURITY CLASS, (of this report)		
		UNCLASSIFIED		
		15a. DECLASSIFICATION DOWNGRADING		
]		SCHEDULE N/A		
Approved for public release; distribution unlimited.				
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)				
18 SUPPLEMENTARY NOTES				
Available in DDC				
19 KEY WORDS (Continue or control of the control of	ed Idantifu by black washers			
19 KEY WORDS (Continue on reverse side if necessary and identify by block number) COMPRESSIBLE Flow integral methods exhaust plumes				
finite-difference methods turbulent boundary layers				
	ransonic flow			
separated flow inviscid flow				
_	ntrainment			
A computer code for a turbulent boundary-layer, inviscid interaction method for axisymmetric configurations of the type used				

interaction method for axisymmetric configurations of the type use for isolated nozzle afterbody models is presented. The method is applicable to flows with subsonic free streams, including slightly supercritical flows and to bodies with either high pressure exhaust plumes or solid plume simulators. The method consists of an integral boundary-layer and plume-entrainment method and a finite-

difference inviscid-flow method which are coupled iteratively

UNCLASSIFIED

20. ABSTRACT (Continued)

through the boundary-layer displacement thickness. Both attached and separated boundary layers can be calculated. An option is provided for calculating two-dimensional boundary layers. procedure for separated flows is to specify the displacement thickness of the boundary layer and calculate the free-stream velocity distribution from both the boundary-layer equations and the inviscid-flow equations. The separation point location and the angle of the displacement surface are found by an iterative procedure. Comparisons with experimental data indicate that the entrainment model and the viscous-inviscid iteration procedure provide an accurate engineering method for predicting boattail flow fields for moderately underexpanded exhaust flows, and for boattails with solid exhaust plume simulators. The equations programmed are presented along with detailed instructions for the preparation of input data, description of the program output and instructions for operation of the program on an IBM 370 com-Sample cases are provided for a complete axisymmetric interaction calculation and for a two-dimensional boundary-layer calculation.

Ar-pld AF5 Ten-

PREFACE

١.

The results reported herein were developed for the Arnold Engineering Development Center, Air Force Systems Command, by Nielsen Engineering & Research, Inc. under Contract F40600-77-C-0008. The Air Force Project Engineer for this contract was E. R. Thompson, AEDC/DOTR. This report covers the work done during the period July 5, 1977 to September 5, 1978. The reproducibles used in the reproduction of this report were provided by the author.

TABLE OF CONTENTS

Sect	ion		Page	
1.0	INTR	ODUCTION	5	
2.0	VISC	VISCOUS-INVISCID INTERACTION METHOD		
	2.1	ESTIMATION OF BOUNDARY OF SEPARATED REGION	7	
	2.2	ITERATION PROCEDURE	8	
3.0	INVI	SCID-FLOW MODEL	10	
4.0	INVISCID PLUME MODEL		12	
5.0	DEVE	DEVELOPMENT OF BOUNDARY-LAYER METHOD		
	5.1	ASSUMPTIONS	13	
	5.2	BOUNDARY-LAYER EQUATIONS FOR COMPRESSIBLE TURBULENT FLOW	14	
	5.3	TRANSFORMATION OF AXISYMMETRIC BOUNDARY-LAYER EQUATIONS	15	
	5.4	TRANSFORMATION OF THE COMPRESSIBLE BOUNDARY-LAYER EQUATIONS	16	
	5.5	DEVELOPMENT OF INTEGRAL BOUNDARY-LAYER METHOD	17	
•	5.6	CALCULATION OF SEPARATED BOUNDARY LAYERS	23	
6.0	6.0 EXHAUST PLUME ENTRAINMENT MODEL	UST PLUME ENTRAINMENT MODEL	26	
	6.1	ASSUMPTIONS	26	
	6.2	EQUATIONS FOR COMPRESSIBLE TURBULENT MIXING LAYER	27	
	6.3	DEVELOPMENT OF INTEGRAL METHOD FOR THE MIXING LAYER	27	
7.0	RESULTS			
	7.1	CIRCULAR ARC BOATTAILS WITH SOLID PLUME SIMULATORS	40	
	7.2	CIRCULAR ARC BOATTAILS WITH COMPRESSED AIR PLUMES	42	
	7.3	SUMMARY OF RESULTS	43	
8.0	COMP	UTER PROGRAM ORGANIZATION	44	
9.0	INPU	T TO THE PROGRAMS	46	
	9.1	TABULAR FORM	46	
	9.2	DICTIONARY OF INPUT VARIABLES	47	

AEDC-TR-79-4

TABLE OF CONTENTS (Concluded)

<u>Section</u>		Page	
10.0	PROGR	55	
	10.1	BOUNDARY-LAYER OPTION	55
	10.2	INVISCID-FLOW OPTION	56
	10.3	VISCID-INVISCID ITERATION OPTION	56
	10.4	BOUNDARY-LAYER INITIAL CONDITIONS	56
11.0	PROGR	58	
	11.1	STANDARD OUTPUT	58
	11.2	SPECIAL OUTPUT MESSAGES	61
12.0	PROGR	63	
	12.1	GENERAL JOB CONTROL SEQUENCE	64
	12.2	JOB CONTROL EXAMPLES	64
13.0	NUMER	RICAL EXAMPLES	68
	13.1	AXISYMMETRIC INTERACTION	68
	13.2	EXAMPLE OF RESTARTING AN INTERACTION CALCULATION	68
	13.3	TWO-DIMENSIONAL BOUNDARY LAYER	69 •
	13.4	AXISYMMETRIC INVISCID FLOW	69
REFERENCES		70	
FIGURES 1 THROUGH 24		73-122	
TABLES I THROUGH III		123-126	
NOMENCI ATURE		127	

COMPUTER PROGRAM FOR CALCULATION OF SEPARATED TURBULENT FLOWS ON AXISYMMETRIC AFTER-BODIES INCLUDING EXHAUST PLUME EFFECTS

by Gary D. Kuhn

Nielsen Engineering & Research, Inc. Mountain View, California

1.0 INTRODUCTION

One of the critical areas in the design of both aircraft and missiles is the interaction between propulsive jets and the external flow over the aerodynamic shapes from which they issue. The drag of the afterbody and exhaust nozzle can be a significant fraction of the total vehicle drag. In order to obtain knowledge of the afterbody and nozzle flow fields and their interaction as early as possible in the design procedure, it is desirable to have a fast computational method for accounting for the viscous flow over the afterbody including separation on the body and entrainment of the flow by the exhaust jet. Such a method should also account for the interaction between the external inviscid flow and the viscous flow.

This paper describes a method for predicting the viscous flow field about an axisymmetric body at zero angle of attack with a cylindrical sting or an exhaust jet. Several previous methods for calculating such flows have employed empirical or approximate methods of predicting the location of separation and the characteristics of the separated flow region (c.f. ref. l and 2). The method described herein uses insights from those methods to establish first approximations which are subsequently refined by iteration to satisfy the viscous-inviscid interaction more completely. The method combines a finite difference inviscid-flow method with integral methods for the boundary layer and exhaust plume mixing layer. An eddy viscosity is used to account for the Reynold's stresses.

The basic principle of the viscous-inviscid interaction calculation is to define a displacement surface for the viscous layer which forms an effective boundary for the inviscid flow and which is compatible with the resulting inviscid pressure distribution. When the boundary layer is separated, special techniques are needed to determine the appropriate boundary layer solution. In the case of a body with a solid sting, boundary layer theory is used for the entire viscous region. However, if the sting is replaced by an exhaust jet, the merging of the boundary layer with the exhaust plume mixing layer must be

accounted for. Thus, in this work, an entrainment model was developed which allows the viscous interaction between the separated boundary layer and the exhaust plume to be calculated.

Since the principle of the viscous-inviscid interaction is the same whether a sting or a plume exists downstream of the body, the elements of the calculative method will be described in the following order. First, the overall viscous-inviscid interaction method will be described in order to provide a framework for explaining the various individual components of the method. Next, the method used to calculate the external inviscid flow will be presented. That presentation will be brief since the method has been described in detail in other reports. Following the description of the external inviscid flow method will be the method used to calculate the inviscid exhaust plume flow. Next, the boundary layer calculative method will be presented, followed by the exhaust plume entrainment model. Finally, some comparisons with experimental data are shown, illustrating the capabilities of the method. The remainder of this report contains a description of the computer programs associated with the calculative methods followed by detailed instructions for the use of the programs. The composite computer program described herein contains the boundary-layer and entrainment programs developed for this work and an inviscid-flow program which is essentially the same as that described in reference 3. programs are incorporated as subprograms into a mainline program which performs iterations to calculate the flow for axisymmetric bodies of the type used for nozzle boattails.

The programs are written in the FORTRAN programming language for use on an IBM 370 computer. The boundary-layer program retains the capability to calculate two-dimensional flows as an option. Both the boundary-layer program and the inviscid-flow program can be used individually, without iterating if so desired.

2.0 VISCOUS-INVISCID INTERACTION METHOD

Separation is the result of an adverse pressure gradient causing reversal of the low-energy, low-momentum fluid near the wall in the boundary layer. The adverse pressure gradient is determined by the inviscid flow field and is the net result of the body shape and the displacement effect of the boundary layer. Thus, the viscous and inviscid flow fields are interdependent. Accounting for this interdependence with an interaction model is made difficult by the fact that the boundary-layer equations are parabolic and therefore cannot respond to disturbances downstream of local stations, while for subsonic and transonic flows the inviscid flow is elliptical and therefore subject to influence

by the entire flow field. In the method described herein, the viscous-flow and inviscid-flow methods are used alternately in an iterative scheme.

The major difficulty encountered in calculating viscousinviscid interactions with boundary layer separation is the problem of obtaining a smooth surface for coupling the viscous and inviscid flows. It is well known that for both laminar and turbulent boundary layers, the usual boundary layer equations exhibit singular behavior at the point of zero skin friction when the pressure gradient is prescribed. The details of the method used to avoid this singular behavior will be described in Section 5 of this report, along with the description of the integral boundary-layer method. For the present discussion, it is sufficient to note that a method is available for calculating a smooth surface which represents the displacement effect of the boundary layer, or exhaust plume entrainment layer, including boundary layer separation. The surface is constructed in two parts. In regions of attached flow, or far downstream in the exhaust plume mixing layer, the surface shape is calculated from a solution of the viscous flow equations with the velocity at the edge of the boundary layer prescribed from a calculation of the external inviscid flow. This velocity will subsequently be called the "inviscid velocity." In regions of separated flow, the edge velocity is calculated from the viscous flow equations with the boundary layer displacement thickness prescribed. This velocity is called the "viscous velocity." An iteration is performed to determine the surface shape so that the "viscous velocity" matches the "inviscid velocity" from the inviscid flow calculation.

2.1 ESTIMATION OF BOUNDARY OF SEPARATED REGION

The first step in calculating the viscous-inviscid interaction is to calculate the inviscid flow over the plain body. The resulting distribution of the velocity at the boundary is then prescribed as the boundary-layer-edge velocity, $\mathbf{u}_{\mathbf{e}}$, for the boundary-layer calculation. If strong adverse pressure gradients exist, the boundary-layer calculation may exhibit a singularity where the skin-friction coefficient approaches zero and the numerical calculation can proceed no further with $\mathbf{u}_{\mathbf{e}}$ prescribed. This point is not necessarily the true location of separation, however, since the interaction with the inviscid flow has not yet been accounted for. A first approximation to the separation point location, $\mathbf{x}_{\mathbf{s}}$ is obtained by a method which will be described in Section 5, along with the detailed description of the boundary layer method.

At the separation point, x_s the boundary-layer calculation is carried on into the separated flow using a prescribed distribution of the boundary layer displacement thickness, δ^* . The result of that calculation is a solution for the boundary-layer-

edge velocity (the "viscous velocity") which may or may not agree with the "inviscid velocity" produced by the inviscid flow theory. An iterative procedure is used to find the particular variation of δ^* downstream of \mathbf{x}_s for which the "viscous velocity" and the "inviscid velocity" agree.

A two-parameter analytical formulation is used to represent the effective displacement surface between separation and a point downstream of reattachment or in the plume entrainment region (fig. 1). Thus, the effective body shape is given by

$$r = r_w + \delta^*$$
 for $0 < x < x_s$ and $x_p < x < \infty$ (1)

$$r = (r_w + \delta^*)_s + (x - x_s) \tan \theta_s$$
 for $x_s < x < x_p$ (2)

A first approximation to the angle, θ_{s} , is obtained from an expression presented in reference 4.

$$\theta_{s} = \tan^{-1}[(r_{w})_{s}] + 14.4 - 4.89M_{s}$$
 (degrees) (3)

Downstream of x_p the boundary-layer-edge velocity is again prescribed on the viscous flow calculation as the inviscid boundary velocity from the previous calculation.

2.2 ITERATION PROCEDURE

The method developed in this work consists of two iterations. One iteration is used to locate the separation point, \mathbf{x}_{S} and determine the angle, θ_{S} , of a conical displacement surface. The second iteration calculates the best solution for the specific values of \mathbf{x}_{S} and θ_{S} . The iteration procedure is described schemátically in figure 2.

The iteration procedure consists of two cycles. In the inner cycle, the inviscid flow and the boundary layer are calculated alternately until the largest change in the δ^* solution between iterations becomes smaller than a specified percent of the nozzle radius and simultaneously, the inviscid calculation procedure converges to a specified tolerance. At each step of the cycle, the boundary-layer displacement thickness is used to calculate an augmented body shape by the relation

$$r_n = r_w + \alpha \delta_n^* + (1 - \alpha) \delta_{n-1}^*$$
(4)

where r_n is the effective body radius at iteration n, and α is a damping factor, usually equal to 0.5.

When the inner cycle has been terminated, the calculation is complete if no separation occurred. However, if separation is present, there exist two solutions for the boundary-layer-edge velocity as described previously. The next step of the procedure is to calculate the squared deviation between the two velocity solutions downstream of $\mathbf{x}_{\mathbf{S}}$ at corresponding points. The accuracy of the matching of the two solutions is then indicated by the value of the rms error, s, where

$$s = \begin{bmatrix} N \\ \Sigma \\ 1 \end{bmatrix} \left(u_{e_{V}} - u_{e_{I}} \right)^{2} / \left(u_{e_{O}}^{2} N \right)$$
 (5)

where ^{u_e}v is the "viscous velocity", ^{u_e}I is the "inviscid velocity", and ^{u_e}o is the free stream velocity. This quantity is then compared with the value from the previous iteration and if a minimum has not been found, x_s and θ_s are adjusted in an appropriate manner, the boundary layer is recalculated using the new values of x_s and θ_s and the calculation reenters the inner cycle. This process is repeated until a minimum of the rms error, s, is found or until the value of s is less than a specified amount. For practical purposes, a value of s of 0.01 or less is usually adequate.

The manner in which x_s and θ_s are adjusted will now be described. The first value of s (equation (5)) is calculated using the estimated values of x_s and θ_s . The next step is to change θ_s a small amount (.25 degree) and calculate a second value of s. The third step is to change x_s a small amount, keeping θ_s at the original value, to calculate a third value of s. With these three solutions, the gradient of s with respect to x_s and θ_s is calculated from

$$\mathbf{s}_{\theta} = \frac{\partial \mathbf{s}}{\partial \theta_{\mathbf{s}}} = \frac{\mathbf{s}_{2}^{-\mathbf{s}} \mathbf{1}}{\Delta \theta_{\mathbf{s}}} \tag{6}$$

$$s_{x} = \frac{\partial s}{\partial x_{s}} = \frac{s_{3}^{-s}1}{\Delta x_{s}}$$
 (7)

The maximum rate of decrease of s with respect to x_g and θ_g should be in the direction of the negative of the gradient. Therefore, both x_g and θ_g are adjusted according to

$$\Delta x_{s} = -k \left| \sin \alpha \right| \frac{s_{x}}{\left| s_{x} \right|} \quad L \tag{8}$$

AEDC-TR-79-4

$$\Delta\theta_{s} = -k \cos \alpha \frac{s_{\theta}}{|s_{\theta}|}$$
 (9)

where

$$k = .003$$

L = the length of the body

$$\alpha = \tan^{-1}\left(\frac{s_x}{s_\theta}\dot{L}\right)$$

After the third iteration, both quantities are adjusted along the direction of the negative gradient until either the tolerance is met or a minimum value of s is reached. If a minimum is found without satisfying the tolerance, the sequence is restarted, calculating a new gradient direction, using half steps for each subsequent adjustment of $\mathbf{x_s}$ and $\mathbf{\theta_s}$. If this procedure does not produce a value of s less than the specified tolerance after four restarts, the sequence is terminated.

A third element in the iteration procedure is the calculation of the inviscid exhaust plume. In the theory to be presented subsequently, the entrainment of the boundary layer flow and the turbulent mixing between the external inviscid flow and the exhaust plume flow are assumed to take place along a boundary defined by the radius of the exhaust plume with all mixing neglected. This "inviscid reference surface" is calculated twice during the iteration process described previously. plume calculation is performed assuming a constant external pressure. This gives a first approximate jet boundary upon which the viscous-inviscid iteration can be initiated. After 4 cycles of the iteration, a new exhaust plume is calculated using the external pressure distribution that exists at that time as calculated by the inviscid theory. Tests in which the plume was calculated a third time using the final converged pressure distribution indicated that only a slight change in the plume occurred. The effect on the flow characteristics on the body was Thus, the solution is not sensitive to the exact shape of the jet mixing boundary.

3.0 INVISCID-FLOW MODEL

The inviscid-flow method employed herein is the method of South and Jameson described in reference 5. The computer program used is that described in reference 3 with minor modifications

to accommodate the iteration between the inviscid and viscous flows. The detailed derivation of the flow equations, the calculative method, and the computer program are contained in references 3 and 5 and will not be repeated here.

The inviscid-flow method calculates the flow field about axisymmetric bodies by a finite-difference solution of the exact equation for the disturbance potential for axisymmetric compressible flow. The only simplifying assumption that is used is that the flow is isentropic. Thus, the entire subsonic velocity range can be calculated, and slightly supersonic free-stream Mach numbers are permissible so long as entropy production by shock waves is negligible. In addition, blunt as well as slender bodies can be treated accurately. A general description of the program is summarized here from reference 3.

"One of the important considerations when trying to solve the full potential equation is the choice of a coordinate system. For complex three-dimensional shapes cartesian coordinates may be best; however, for simpler two-dimensional or axisymmetric shapes the use of a coordinate transformation such that the body lies along a coordinate line can greatly simplify the application of the exact boundary condition at the body surface. program described in this paper uses a body-normal coordinate system for closed bodies. For open bodies (i.e., bodies with a sting or simulated wake) it uses a body-normal system on the forebody up to the first horizontal tangent and a sheared cylindrical coordinate system* aft of that point. This coordinate system is suitable for closed bodies which are blunt on both ends and convex and smooth over the entire body or for open bodies which are blunt-nosed and convex and smooth up to the first horizontal tangent. It is possible to treat pointed bodies and bodies with slope discontinuities but the coordinate system is not well suited for them and their solution may not be so accurate as the blunt-body solutions."

"A stretching is applied to both the normal and tangential coordinates such that the infinite physical space is mapped to a finite computational space. Thus, the boundary condition at infinity can be applied directly and there is no need for an asymptotic far-field solution. Details about the stretching functions are given in (reference 3) appendix A."

"The general method of solution is to replace the governing second-order partial differential equation with a system of

The origin of the x, r, θ coordinate system is shifted from the body axis to the body surface in a parallel transformation.

finite-difference equations, including Jameson's rotated difference scheme at supersonic points. The difference equations are solved by a column relaxation method."

"The boundary condition at the body surface is applied through the use of dummy points inside the body. Details of this computation are given in (reference 3) appendix B."

4.0 INVISCID PLUME MODEL

The inviscid exhaust flow calculation method used in this work is the same as the Henson and Robertson shock-expansion/one-dimensional method (reference 6) with two exceptions:

- 1. Compressions are computed as reverse Prandtl-Meyer expansions rather than by means of Newtonian impact theory.
- 2. Flow areas are computed as plane areas normal to the nozzle centerline rather than as spherical areas (normal to the nozzle centerline and the local plume contour).

A diagram of the nozzle plume region is shown in figure 3. The plume shape is calculated in a series of straight line segments which approximate the curved shape of the plume. The external pressure is compared with the internal pressure at the exit plume boundary point and at each consecutive boundary point, and an expansion or compression turn is calculated depending on the comparison.

The expansion or compression at the nozzle exit is computed by means of the Prandtl-Meyer relationships from specified values of the nozzle expansion angle and the exhaust jet Mach number such that the local external pressure is matched. This calculation yields M_{12} , the Mach number at the upstream end of the first plume segment and the inclination of this segment (the local flow direction). The local flow angle is used to compute the radius at the next downstream point, r_2 from which follows the area, A_2 . The Mach number at the downstream end of the segment, M_{21} , is then computed from the one-dimensional relationship

$$(A/A^*)_{21} = (A/A^*)_{12} A_2/A_1$$
 (10)

The Mach number at the upstream end of the second segment, $\rm M_{22}$, is then determined by matching the internal static pressure to the local external static pressure at point 2 by means of an expansion or compression beginning at a flow direction equal to that of the first segment and the Mach number $\rm M_{21}$. The Mach

number at the downstream end of the segment, M₃₁, is then computed by applying equation (10) to the second segment. Successive segments are constructed in the same manner until the plume boundary becomes parallel with the nozzle centerline.

The plume boundary velocity, $\mathbf{q}_{\rm p}$, corresponding to each axial station is computed from isentropic relations with the specified nozzle stagnation conditions. Thus

$$q_{p_2} = a_t M_{22} \left[1 + \frac{1}{2} (\gamma_p - 1) M_{22}^2 \right]^{-1/2}$$
 (11)

where

a_t = The sound speed corresponding to the nozzle stagnation temperature

 $\gamma_{\rm p}$ = The ratio of specific heats of the plume gas

In order to approximate the velocity distribution in each cross section of the plume, the flow is assumed to be locally source-like, so that the velocity components required at r_c, the inner boundary of the turbulent mixing layer are approximated by

$$u_{c} = q_{p} \left[1 + \left(\frac{r_{c}}{r_{w}} \frac{dr_{w}}{dx} \right)^{2} \right]^{-1/2}$$
(12)

$$v_{c} = u_{c} \frac{r_{c}}{r_{w}} \frac{dr_{w}}{dx}$$
 (13)

5.0 DEVELOPMENT OF BOUNDARY-LAYER METHOD

The complete derivation of the governing equations for the boundary layer has been presented in reference 7. In this report the derivation is summarized and modified for the application of interest herein.

5.1 ASSUMPTIONS

The analysis is based on the following assumptions:

- The governing equations are those for a compressible turbulent boundary layer.
- 2. The air behaves as an ideal gas.
- 3. The molecular viscosity, μ , is proportional to the temperature.

- 4. The specific heat of the gas is constant.
- 5. The wall is either two dimensional or axisymmetric, but can have an arbitrary profile in the direction of flow as long as the longitudinal radius of curvature of the wall is large compared to the boundary layer.
- 6. The pressure is constant through the boundary layer normal to the wall.
- 7. The wall temperature is constant.

5.2 BOUNDARY-LAYER EQUATIONS FOR COMPRESSIBLE TURBULENT FLOW

The basic notation and coordinate scheme are shown in figure 4. Note that the same symbols are used for the physical coordinates of both two-dimensional and axisymmetric configurations. Thus, r denotes the distance of a point from the axis of an axisymmetric configuration, x is the distance along the axis, measured from the nose and the dimension y is measured from the body surface normal to the axis. It is noted that these coordinates are not the usual boundary layer coordinates. They are employed to avoid difficulties at sharp concave corners such as a boattail-sting junction.

The governing equations describing the steady flow of a compressible turbulent boundary layer in these coordinates are:

$$(r\rho u)_{x} + \{r\rho [v - (r_{w})_{x} u]\}_{v} = 0$$
 (14)

$$\rho u u_{x} + \rho [v - (r_{w})_{x}] u_{y} = -p_{x} + (1/r) (r \mu \beta u_{y})_{y}$$
 (15)

$$\rho u S_{x} + \rho [v - (r_{w})_{x} u] S_{y} = (1/r) (r \mu \beta S_{y})_{y}$$
 (16)

where ρ is the density, u and v are the x and y velocity components, β is the eddy viscosity factor, μ is the molecular viscosity, p is the pressure and

$$S = T_t/T_t_e - 1 \tag{17}$$

where T_{t} is the total temperature and e denotes the boundary layer edge. Both laminar and turbulent Prandtl numbers are assumed to be unity.

Equations (14), (15), and (16) are easily applicable to laminar, transitional and turbulent flow. In laminar flow,

substitution of $\beta=1$ reduces the equations to those for a laminar boundary layer. Further, suitable variation of the eddy viscosity makes the equations applicable to the transition region.

5.3 TRANSFORMATION OF AXISYMMETRIC BOUNDARY-LAYER EQUATIONS

The Probstein-Elliott transformation is (ref. 8)

$$d\tilde{x} = [r_w(x)/L]^2 dx \qquad (18)$$

$$d\tilde{y} = [r(x,y)/L]dy$$
 (19)

where L is an arbitrary reference length, $r_w(x)$ is specified by the body shape and r(x,y) is given by

$$\mathbf{r}(\mathbf{x},\mathbf{y}) = \mathbf{r}_{\mathbf{w}}(\mathbf{x}) + \mathbf{y} \tag{20}$$

The transformed continuity equation has the form

$$(\rho \tilde{\mathbf{u}})_{\tilde{\mathbf{x}}} + (\rho \tilde{\mathbf{v}})_{\tilde{\mathbf{v}}} = 0$$
 (21)

where

$$\rho \tilde{\mathbf{u}} = \rho \mathbf{u}$$
 (22)

and

$$\rho \tilde{\mathbf{v}} = \left(\mathbf{r} \mathbf{L} / \mathbf{r}_{\mathbf{w}}^{2} \right) \rho \left(\mathbf{v} - (\mathbf{r}_{\mathbf{w}})_{\mathbf{x}} \mathbf{u} \right) + \left(\mathbf{L}^{2} / \mathbf{r}_{\mathbf{w}}^{2} \right) \tilde{\mathbf{y}}_{\mathbf{x}} \rho \mathbf{u}$$
 (23)

Applying the transformation to the momentum and energy equations (15) and (16) yields the transformed equations

$$\rho \tilde{u} \tilde{u}_{\tilde{X}} + \rho \tilde{v} \tilde{u}_{\tilde{Y}} = -p_{\tilde{X}} + [(1 + kt\tilde{Y})\mu\beta \tilde{u}_{\tilde{Y}}]_{\tilde{Y}}$$
 (24)

$$\rho \tilde{u} s_{\tilde{x}} + \rho \tilde{v} s_{\tilde{y}} = [(1 + k t_{\tilde{y}}) \mu \beta s_{\tilde{y}}]_{\tilde{y}}$$
 (25)

where t is the transverse curvature factor

$$t = 2L/r_w^2 \tag{26}$$

and, from equations (19) and (20),

$$\tilde{y} = (r_w/L)y + y^2/2L \tag{27}$$

For flows in which the transverse curvature is small, letting k=0 in equations (24) and (25) produces the equations of a two-dimensional boundary layer. The transverse curvature terms may be negligible for an axisymmetric flow if the body radius is large compared to the boundary-layer thickness. The Probstein-Elliott transformation is thus a first-order correction of the approximate equations for the effect of transverse curvature, allowing the boundary-layer thickness to be of the same order as the body radius.

5.4 TRANSFORMATION OF THE COMPRESSIBLE BOUNDARY-LAYER EQUATIONS

The Stewartson transformation (ref. 9) along with the assumption that the viscosity varies linearly with the temperature and laminar and turbulent Prandtl numbers are unity, reduces the equations of the compressible boundary layer to those of an incompressible boundary layer.

$$U_X + V_V = 0 \tag{28}$$

$$UU_X + VU_Y = (s + 1)U_eU_{e_X} + CV_{e_Q}[(1 + kt\tilde{y})\beta U_Y]_Y$$
 (29)

$$US_{X} + VS_{Y} = Cv_{e_{O}} [(1 + kt\tilde{y}) \beta S_{Y}]_{Y}$$
(30)

where the subscript o refers to reference conditions in the undisturbed free stream.

The coordinate \tilde{y} is not transformed in the transverse curvature terms because integration of the equations across the boundary layer is anticipated and only corresponding values are needed in those terms. The Chapman-Rubesin parameter, C is a constant evaluated at the wall temperature; that is,

$$C = \left(\mu_{\mathbf{w}}^{\mathbf{T}} \mathbf{e}_{\mathbf{o}}\right) / \left(\mu_{\mathbf{e}_{\mathbf{o}}}^{\mathbf{T}} \mathbf{w}\right) = \left(\mathbf{T}_{\mathbf{w}} / \mathbf{T}_{\mathbf{e}_{\mathbf{o}}}\right)^{1/2} \left(\mathbf{T}_{\mathbf{e}_{\mathbf{o}}} + \mathbf{T}_{\mathbf{s}}\right) / \left(\mathbf{T}_{\mathbf{w}} + \mathbf{T}_{\mathbf{s}}\right)$$
(31)

where Sutherland's law is used to evaluate the viscosity, with $\mathbf{T}_{\mathbf{S}}$ a constant.

In the remainder of this report, the solution of the energy equation (30) will be approximated for boundary layers by the Crocco relation

$$S = S_w(1 - U/U_e)$$
 (32)

The density profiles are then related to the velocity profiles through the temperature.

$$\rho_e/\rho = T/T_e = T_t/T_e - u^2/(2gJc_pT_e)$$
 (33)

but

$$c_{p} = \gamma R/(\gamma - 1) \tag{34}$$

So

$$T/T_{e} = \left(T_{t}/T_{t_{e}}\right)\left(T_{t_{e}}/T_{e}\right) - u^{2}/(2gJ\gamma RT_{e})$$
 (35)

or

$$(\rho_e/\rho) = (T/T_e) = (S + 1)(1 + m_e) - m_e(u/u_e)^2$$
 (36)

where

$$m_e = \frac{1}{2} (\gamma - 1) M_e^2$$
 (37)

Thus, the velocity profiles found to be valid for incompressible, two-dimensional turbulent boundary layers can be used by simply transforming the input quantities to the incompressible plane, performing the calculation for an equivalent incompressible boundary layer, and then transforming the results back to the compressible plane, and for an axisymmetric flow, back to the axisymmetric coordinates.

5.5 DEVELOPMENT OF INTEGRAL BOUNDARY-LAYER METHOD

5.5.1 Integral Equations

The integral method used herein was described in detail in reference 10. Families of integral equations are derived by eliminating V between the momentum and continuity equations (28) and (29), and then taking weighted integrals of the resulting equation across the boundary layer.

$$\int_{0}^{\delta} i \{ u u_{X} - u_{Y} \int_{0}^{Y} u_{X} d\eta - (s + 1) u_{e}(u_{e})_{X}$$

$$- C v_{e_{Q}} [(1 + k t \tilde{y}) \beta u_{Y}]_{Y} \} f(Y) dY = 0$$
(38)

In the present case, the functions

$$f = Y^n ; n = 0, 1$$
 (39)

produce the momentum and moment of momentum integral equations, respectively.

5.5.2 Velocity Profiles

The Y dependence of the integral equations is eliminated by substituting an appropriate parametric formulation for the velocity profiles. The function used for the present theory is a modification of the Coles family of profiles (ref. 11) with a laminar sublayer added and the wake function approximated analytically.

$$U = U_{\tau} [2.5 \ln(1 + Y^{+}) + 5.1 - (3.39Y^{+} + 5.1) \exp(-0.37Y^{+})] + U_{\beta} \sin^{2} \frac{\pi}{2} \frac{Y}{\delta_{i}}$$
(40)

The parameter U_{τ} is the friction velocity

$$U_{T} = (C_{f}/|C_{f}|)U_{e}\sqrt{|C_{f}|/2}$$
 (41)

The variable Y is defined to account for the axisymmetry of the flow

$$\dot{\mathbf{Y}}^{+} = (\mathbf{L}/\mathbf{r}_{\mathbf{w}}) (|\mathbf{U}_{\tau}|\mathbf{Y}/\mathbf{v}_{\mathbf{e}_{\mathbf{o}}})$$
 (42)

The other parameters in equation (40) are δ_1 , the transformed boundary-layer thickness and U_β a wake velocity. The exponential terms and the additional unit in the logarithmic term provide a smooth transition from the turbulent flow to the wall through a laminar sublayer.

5.5.3 Eddy Viscosity

The eddy-viscosity model used in this work is an extension of the two-layer model used by Kuhn (ref. 7) including an intermittency function for the outer layer and a modification of the outer layer for adverse pressure gradients and separated flows. In the inner layer of attached flows, the eddy-viscosity parameter, β , is represented by an exponential expression based on the law of the wall. In the outer layer Clauser's expression, modified for adverse pressure gradients, is used along with an intermittency function giving

$$\beta = [0.013+0.0038 \exp(-\delta_{k}^{*}p_{X}^{2}/15\tau_{w}^{2})]U_{e}\delta_{k}^{*}/[1+5.5(y/\delta)^{6}]$$
 (43)

where

$$\delta_{\mathbf{k}}^* = \int_0^\delta (1 - \mathbf{u}/\mathbf{u_e}) \, \mathrm{d}\mathbf{y} \tag{44}$$

For favorable pressure gradients, the exponential term in equation (43) is taken to be unity.

For separated flows, the eddy viscosity across the entire layer is represented by a relation based on the velocity profile above the U=0 line.

$$\beta = 0.013[1 + 5.5(y/\delta)^{6}]^{-1}(U_{e}/v) \int_{Y_{u=0}}^{\delta} (1 - u/u_{e}) dy$$
 (45)

5.5.4 Transitional Eddy Viscosity

Transition from laminar to turbulent flow is calculated by letting the eddy viscosity change from a laminar viscosity to a fully turbulent value over a short distance according to the relation (ref. 7)

$$\beta_{t} = \{1 - \exp[-\kappa(x - x_{t})^{2}]\} (\beta_{T} - 1) + 1$$
 (46)

where κ has been chosen to provide a transition length of approximately ten boundary layer thicknesses, so that

$$\kappa = 0.0001/\delta_{t}^{2}$$

and δ_{\pm} is the value of δ at the beginning of transition, X_{\pm} . The location of X_{\pm} must be specified independently.

5.5.5 Equations Solved

Substitution of equation (40) into the two equations produced by equations (38) and (39) produces two ordinary differential equations for the variation of the variables U_{τ} , U_{β} , δ_{i} , and U_{i} with x. A third equation produced by evaluating equation (40) at Y = δ_{i} allows the elimination of U_{β} from the equations, leaving a set of two equations

$$A_{11}(U_T)_x + A_{12}\delta_{i_x} + A_{13}(U_e)_x = B_n$$
 (47)

$$A_{21}(U_{\tau})_{x} + A_{22}\delta_{i_{x}} + A_{23}(U_{e})_{x} = B_{2}$$
 (48)

where the coefficients are integrals evaluated from the following definitions.

For n = 1 or 2 $G_{n} = 2UY^{n-1} - (n-1) \int_{0}^{Y} UdY - \delta_{i}^{n-1} U_{e} + (n-1) \int_{0}^{1} UdY \qquad (49)$

$$I_{n} = \int_{0}^{\delta} Y^{n-1} (s + 1) dY$$
 (50)

$$J_1 = -CU_{\tau} |U_{\tau}| \overline{K}^{\dagger}$$
 (51)

$$J_{2} = -Cv_{e_{O}} \stackrel{r}{=}_{U} \overline{K} \int_{O}^{\delta i} (1 + kt\tilde{y}) \beta \frac{\partial U}{\partial Y} dY$$
 (52)

with

$$\overline{K} = \frac{r_W}{L} \left(\frac{1 + m_e}{1 + m_e} \right) \frac{\frac{1 - 3\gamma}{2(\gamma - 1)}}{(\gamma - 1)}$$
(53)

The A_{nj} and B_n of equations (47) and (48) become For n = 1, or 2,

$$A_{n1} = \int_{0}^{\delta} G_{n} \frac{\partial U}{\partial U_{T}} dY$$

$$A_{n2} = \int_{0}^{\delta} G_{n} \frac{\partial U}{\partial \delta_{i}} dY$$

$$A_{n3} = \int_{0}^{\delta} G_{n} \frac{\partial U}{\partial U_{e}} dY - U_{e}I_{n}$$

$$B_{n} = J_{n} - (r_{w})_{x} \int_{0}^{\delta} G_{n} \frac{\partial U}{\partial r_{w}} dY$$
(54)

These integrals are evaluated numerically, using a simple 11-point trapezoidal integration. More sophisticated approaches were examined, but were not found to effect the calculations significantly. The simpler method was therefore chosen in the interest of speed and cost.

The coefficients A_{nj} and the term B_n are functions of the variables U_{τ} , δ_{j} , and U_{e} . The usual procedure for solving equations (47) and (48) for attached boundary layers is to prescribe the pressure distribution or the boundary-layer-edge velocity distribution, U_{e} . However, if separation occurs, the pressure distribution cannot be prescribed arbitrarily in the separated region. If an adverse pressure gradient is prescribed for an attached boundary layer, the value of U_{τ} can approach zero. When U_{τ} vanishes, the coefficients A_{11} and A_{22} in equations (47) and (48) also vanish, producing a singularity. The singularity can be removed by rearranging the equations so that U_{τ} is not a dependent variable. One method of accomplishing this is simply to rearrange the equations so that U_{τ} can be prescribed and U_{e} can be calculated as a dependent variable as shown in reference 10.

A different method of avoiding the singularity at $U_T=0$ is used herein. The displacement thickness, δ^* , is expressed in terms of U_T , δ_i , and U_e through the definition

$$\delta^* = \int_0^\delta (1 - \rho u/\rho_e u_e) (r/r_w) dy$$
 (55)

The result is differentiated with respect to x, producing a third equation.

$$A_{31}(U_{\tau})_{x} + A_{32}\delta_{i_{x}} + A_{33}(U_{e})_{x} + A_{34}\delta_{x}^{*} = B_{3}$$
 (56)

where the A_{31} and E_3 are functions of U_{\tau}, $\delta_{\dot{1}},$ and U_e, evaluated from the following definitions

$$G_3 = \frac{\partial}{\partial U} \left(\frac{\rho_e}{\rho} \right) - \frac{1}{U_e}$$
 (57)

$$I_{3} = -\frac{1}{U_{e}} \int_{0}^{\delta i} \left(\frac{\partial}{U_{e}} \left(\frac{\rho_{e}}{\rho} \right) + \frac{U}{U_{e}^{2}} \right) dy - \frac{1}{U_{e}} \frac{\dot{\gamma} + 1}{2} \frac{M_{e}}{a_{e}} \overline{K} \delta^{*}$$
 (58)

and

$$J_{3} = \frac{\delta^{*}}{r_{w}} (r_{w})_{x} \left(\frac{1 + m_{e}}{1 + m_{e}}\right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$
(59)

With these definitions, the coefficients A_{3j} and the term B_3 are evaluated by equations (54) for j=1,2, and 3. The final coefficient, A_{34} is given by

$$A_{34} = -\frac{r_{W}}{L} \left(\frac{1 + m_{e}}{1 + m_{e}} \right)^{-\frac{\gamma + 1}{2(\gamma - 1)}}$$
(60)

Like the coefficients A_{11} and A_{21} , the coefficient A_{31} also vanishes when $U_{=} 0$. However, it can be shown that A_{11}/A_{31} and A_{21}/A_{31}^{T} are both finite when $U_{T} = 0$. This allows the three equations, (47), (48), and (56), to be reduced to two ordinary differential equations in the four dependent variables, U_{T} , δ^* , δ_{1} , and U_{e} . The resulting equations are:

$$a_{11}\delta_{ix} + a_{12}(U_e)_{x} = b_1$$
 (61)

$$a_{21}\delta_{ix} + a_{22}(U_e)_x = b_2$$
 (62)

where, with n = 1 and 2 and j = 1 and 2

$$a_{nj} = (A_{n1}/A_{31})A_{3,j+1} - A_{n,j+1}$$
 (63)

and

$$b_n = (A_{n1}^{\dagger}/A_{31})(B_3 - U_e \delta_x^*) - B_n$$
 (64)

The value of $\rm U_T$ can be obtained directly from known values of $\rm \delta_i$, δ^* and $\rm U_e$ by solving the nonlinear relation (55).

Prescribing the distribution of δ^* in equations (61) and (62) and obtaining U_{τ} from equation (55) is equivalent to prescribing U_{τ} as described previously.

5.5.6 Method of Solution of Equations

The equations (47) and (48), or (61) and (62) are integrated numerically using the following procedure: If ϕ denotes any one of the variables $\delta_{\rm i}$, $\rm U_{\rm e}$, or $\rm U_{\rm T}$, the value of $\rm d\phi/dx$ at a particular x-station can be calculated from the equations as

functions of the variables themselves. The value of ϕ at the next x-station is then found by means of the elementary predictor-corrector scheme described by Nash and Hicks (ref. 12). Thus,

$$\phi_{\mathbf{x}+\Delta\mathbf{x}/2} = \phi_{\mathbf{x}} + (\mathbf{d}\phi/\mathbf{d}\mathbf{x})_{\mathbf{x}} \cdot \frac{\Delta\mathbf{x}}{2}$$

$$\phi_{\mathbf{x}+\Delta\mathbf{x}} = \phi_{\mathbf{x}} + (\mathbf{d}\phi/\mathbf{d}\mathbf{x})_{\mathbf{x}+\Delta\mathbf{x}/2} \cdot \Delta\mathbf{x}$$
(65)

In the present work, Δx is taken to be 1/16th of each finite-difference step of the inviscid calculational mesh. This provides a fast, accurate method of solution.

5.6 CALCULATION OF SEPARATED BOUNDARY LAYERS

As discussed previously, it is well known that for both laminar and turbulent boundary layers, the usual boundary layer equations exhibit singular behavior at the point of zero skin friction when the pressure is prescribed (or, equivalently, when the boundary-layer-edge velocity is prescribed). Stewartson (ref. 13) suggests that if the boundary layer is to continue downstream of separation, the external stream must adjust itself so that the singularity cannot appear. Furthermore, he says that the solution downstream of separation is no longer specified uniquely by the boundary-layer-edge velocity and the velocity profile at the beginning of the boundary layer. This is another way of saying that the boundary-layer-edge velocity cannot be specified arbitrarily at the separation point, or in the separated flow region downstream. If the solution continued downstream of separation does not satisfy some downstream boundary condition, the separation point must move until the downstream condition is met. It has been observed by many authors (c.f. Cebeci et al, ref. 14 and Gerhart and Bober, ref. 15) that the use of the experimental pressure distribution from a separated flow in a solution of the boundary layer equations does not always produce a singularity. Often the skin friction will simply decrease to some minimum value and then increase, with the calculated boundary layer remaining attached in a region known from experiment to be separated! The reason for this is believed to be due to the neglect of the terms in the Navier-Stokes equations which respond to downstream perturbations, i.e., the normal stress terms and normal pressure gradient terms. On the other hand, the work of Newman (ref. 16) and Simpson (ref. 17) has shown that these terms are negligible a short distance away from separation even though they can be very significant in the immediate vicinity of the separation point.

The approach taken in the present work is an engineering approximation based on the following assumptions:

- 1. Upstream influences are transmitted predominantly through the external inviscid flow which is elliptical in nature for a locally subsonic flow.
- 2. Violations of the boundary layer assumptions such as significant normal pressure gradients associated with separation can be neglected on the grounds that they are only important in a small neighborhood of the separation point and have negligible effect on the rest of the flow.
- 3. The effective boundary which determines the external flow field is a smooth boundary. That is, discontinuities in body slope are smoothed out by the boundary layer.

The significance of assumption number 3 is that a calculative technique which allows singular behavior at the separation point cannot produce a smooth body shape and may lead to instabilities in the iteration between the viscous and inviscid flow calculations. The approach taken herein is to obtain information about the location of the separation point independently from the boundary layer calculation, and simply let the skin friction be zero at that point keeping the boundary-layer-edge velocity and the displacement thickness, δ^* continuous. This means that the variation of $C_{\mathbf{f}}$ upstream of the separation point is probably slightly in error, the amount depending upon the extent of the neglected upstream influence. Also, other important boundary layer quantities may be slightly in error in that region. For many practical cases, however, the errors are not expected to be significant.

As discussed previously, if strong adverse pressure gradients are prescribed in equations (47) and (48), the boundary-layer calculation may reach a point where the friction velocity, \mathbf{U}_{T} approaches zero and the numerical calculation can proceed no further with \mathbf{u}_{e} prescribed. This point is not necessarily the true location of separation, since the interaction with the inviscid flow has not been accounted for.

A better approximation to the location of separation \mathbf{x}_s can be found by computing the shape factor, \mathbf{H}_i .

$$H_{i} = \int_{0}^{\delta_{i}} (1 - U/U_{e}) dy / \int_{0}^{\delta_{i}} U/U_{e} (1 - U/U_{e}) dy$$
 (66)

For the velocity profiles given by equation (40) this parameter has a value of 4.0 when $U_{\rm T}=0$. However, experimental measurements indicate that separation actually occurs when $H_{\rm i}$ is approximately 2.0. This suggests that the present boundary-layer

formulation is not accurate in the vicinity of the separation point. This is not unexpected in the light of the previous discussion. The velocity profiles of equation (40) have been demonstrated to provide a reasonable approximation to both attached and separated boundary layers (ref. 18) but to be of questionable accuracy at the point of zero skin friction. However, the effect of this inaccuracy is believed to be confined to the immediate vicinity of the separation point for the kind of flows of interest here. In order to obtain a smooth solution the first approximation to the value of $\mathbf{x_S}$ is taken to be the location at which $\mathbf{H_i}$ equals a specified value for the inviscid velocity calculated for the plain body.

When a value of x_S is established, the boundary layer is calculated from the nose of the body to x_S with the distribution of u_e from the external inviscid flow calculation prescribed using equations (47) and (48). At x_S the velocity u_e and the displacement thickness, δ^* are assumed to be continuous (see figure 5). The friction velocity, U_T , on the other hand, is assumed to be zero as the initial value for the integration into the separated region using equations (61) and (62) with δ^* prescribed. It must be noted that the calculation could be started with a positive value of U_T and the calculation would proceed through the point where $U_T = 0$ for an appropriate δ^* distribution with no singularity. However, due to the approximations inherent in the theory in the vicinity of the separation point, as discussed previously, it is not possible to determine the correct positive values of U_T approaching separation. It is known that U_T is zero at x_S . It is the purpose of the iteration procedure discussed previously to find the correct location of x_S .

For bodies of the type of interest herein, the imposition of a conical displacement surface corresponds to an increasing δ^* to the end of the body (figure 5c). When the plume or the sting surface is reached, δ^* begins to decrease. Correspondingly, U_{τ} , beginning at zero at x_s becomes negative, and increases in magnitude until the end of the body is reached. For a sting, \mathtt{U}_T then moves back toward zero, and eventually becomes positive (reattachment). At some point after reattachment, the calculation procedure must be changed back to the ue prescribed mode using equations (47) and (48). The determination of the point, x_p this switch is based on the behavior of the velocity, u_e , produced by the boundary layer solution. As shown in figure 5, ue becomes nearly constant in the increasing &* region between xs the end of the body. Then, as the boundary layer proceeds toward reattachment, ue decreases, eventually reaching a minimum a short distance downstream of reattachment. If δ* is prescribed beyond the point where the minimum velocity is reached, a singularity develops in the boundary layer solution. To avoid this

AEDC-TR-79-4

singularity, the minimum point is designated as \mathbf{x}_{p} : and the solution is switched back to the \mathbf{u}_{e} prescribed mode (equations (47) and (48)) with a \mathbf{u}_{e} distribution constructed by fairing the viscous velocity from the minimum value into the inviscid distribution.

The procedure just described was found to produce an effective body shape which allowed the viscous and inviscid velocity distributions to be approximately matched. However, to achieve a matching of the magnitude of the two velocities and locations of the minimum velocity on the sting, it was found to be necessary to adjust the value of $\rm U_T$ at $\rm x_p.$ If the calculated value of $\rm C_f$ at that point is less than 0.001, the initial value of $\rm U_T$ for the calculation downstream of $\rm x_p$ is adjusted to produce a value of $\rm C_f$ of 0.001.

6.0 EXHAUST PLUME ENTRAINMENT MODEL

The flow field of an exhaust jet mixing with a subsonic external flow and a separated boattail boundary layer is shown in figure 6. Two regions can be distinguished in the flow field. In region 1, the boundary layer merges with the mixing layer at the exhaust plume boundary and the exhaust plume contains a core of inviscid flow. In region 2, the turbulent mixing reaches all the way to the axis of the jet so there is no inviscid core flow. In this report, only the flow in region 1 is considered since for the kinds of flow conditions of interest the entrainment is expected to be essentially completed in the length of the inviscid core.

6.1 ASSUMPTIONS

The analysis is based on the following assumptions:

- 1. The flow is axisymmetric.
- All gases obey the perfect gas law.
- 3. The usual boundary layer assumptions are applicable to the mixing layer.
- The mixing layer is fully turbulent.
- 5. The turbulent Prandtl and Lewis numbers are unity.
- 6. The exhaust jet flow is supersonic at the nozzle exit.
- 7. Radial pressure gradients are negligible in the mixing layer.

- 8. Streamwise turbulent transport mechanisms are negligible.
- 9. The exhaust jet flow is isentropic.

6.2 EQUATIONS FOR COMPRESSIBLE TURBULENT MIXING LAYER

The mixing layer is assumed to develop about a surface defined by the radius the plume would have if it was completely inviscid and subject to the pressure distribution calculated from the external inviscid flow. The basic equations are assumed to be the same as those of a turbulent boundary layer. In cylindrical coordinates for axisymmetric flow, these equations have been presented previously as equations (14)-(16). For the entrainment layer, as for the boundary layer, the energy equation (Eq. 16) will be approximated by an assumed temperature-velocity relation.

6.3 DEVELOPMENT OF INTEGRAL METHOD FOR THE MIXING LAYER

6.3.1 Integral Equations

For the entrainment layer, two equations are derived by eliminating the radial velocity terms between the momentum and continuity equations (14) and (15) and integrating the resulting equation across the mixing layer in two strips. No compressibility or geometric transformations are used. Eliminating the $[v-u(r_w)_x]$ term between the momentum and continuity equations and integrating yields

$$\int_{r_{c}}^{r} \rho u r u_{x} dr - \int_{r_{c}}^{r} u_{r} \int_{r_{c}}^{\eta} (\rho u r)_{x} d\eta dr = -\frac{1}{2} \left(r^{2} - r_{c}^{2}\right) p_{x} + r \mu \beta u_{r}$$

$$- \rho_{c} r_{c} [v_{c} - u_{c} (r_{w})_{x}] (u - u_{c})$$
 (67)

where it has been assumed that the shear stress term vanishes at $r_{\rm C}$, the inner boundary of the mixing layer. Evaluating equation (67) at $r=r_{\rm W}$ and $r=r_{\rm e}$ yields the two independent integral equations

$$\int_{\mathbf{r}_{\mathbf{c}}}^{\mathbf{r}_{\mathbf{w}}} \mathbf{r} [\rho (2\mathbf{u} - \mathbf{u}_{\mathbf{w}}) \mathbf{u}_{\mathbf{x}} + \mathbf{u} (\mathbf{u} - \mathbf{u}_{\mathbf{w}}) \rho_{\mathbf{x}}] d\mathbf{r} = \frac{1}{2} \rho_{\mathbf{e}} \mathbf{u}_{\mathbf{e}} (\mathbf{r}_{\mathbf{w}}^{2} - \mathbf{r}_{\mathbf{c}}^{2}) (\mathbf{u}_{\mathbf{e}})_{\mathbf{x}} + \mathbf{r}_{\mathbf{w}} \mu_{\mathbf{w}} \beta_{\mathbf{w}} (\mathbf{u}_{\mathbf{r}})_{\mathbf{w}} - \rho_{\mathbf{c}} \mathbf{r}_{\mathbf{c}} [\mathbf{v}_{\mathbf{c}} - \mathbf{u}_{\mathbf{c}} (\mathbf{r}_{\mathbf{w}})_{\mathbf{x}}] (\mathbf{u}_{\mathbf{w}} - \mathbf{u}_{\mathbf{c}})$$
(68)

and

$$\int_{r_{C}}^{r_{e}} r[\rho(2u-u_{e})u_{x} + u(u-u_{e})\rho_{x}]dr = \frac{1}{2}\rho_{e}u_{e}\left(r_{e}^{2}-r_{c}^{2}\right)(u_{e})_{x}$$

$$-\rho_{c}r_{c}\left[v_{c}-u_{c}(r_{w})_{x}\right](u_{e}-u_{c}) \quad (69)$$

where the pressure has been eliminated by evaluating equation (15) at $r = r_e$.

The external boundary of the mixing region is defined as follows:

If
$$\delta_{c} < \delta_{u_{1}}$$

then $r_{e} = r_{w} + \delta_{u_{1}}$ (70)
but, if $\delta_{c} > \delta_{u_{1}}$
then $r_{e} = r_{w} + \delta_{c}$ (71)

where δu_1 is the thickness corresponding to the boundary layer profile at the end of the boattail, and $\delta_{\rm C}$ is the thickness of the inner part of the mixing layer.

It will be recalled that the viscous-inviscid interaction between the boundary layer-mixing layer and the external inviscid flow requires the calculation of an effective boundary shape for the inviscid flow. For the boundary layer, the effective shape is defined by the body radius plus the boundary layer displacement thickness, equation (55). In a similar manner, a displacement thickness is defined for the exhaust jet. For purely inviscid flow, the boundary of the exhaust jet is a streamline separating the nozzle efflux from the external flow. With entrainment and turbulent mixing, this line is no longer a streamline. However, in order to produce a continuous and smooth surface for the external inviscid flow, it is postulated that the effective boundary may be defined by a displacement from the inviscid plume boundary in the same manner as for a solid boundary. Thus, an additional equation is derived by defining

$$\delta^* = \int_{\mathbf{r}_{\mathbf{w}}}^{\mathbf{r}_{\mathbf{e}}} (1 - \rho \mathbf{u} / \rho_{\mathbf{e}} \mathbf{u}_{\mathbf{e}}) (\mathbf{r} / \mathbf{r}_{\mathbf{w}}) d\mathbf{r}$$
 (72)

Differentiating equation (72) yields a third integral equation

$$\int_{r_{w}}^{r_{e}} (r/r_{w}) (\rho u/\rho_{e} u_{e})_{x}^{dr} = -\delta_{x}^{*} - (r_{w})_{x}^{(1-\rho_{w} u_{w}/\rho_{e} u_{e} + \delta^{*}/r_{w})}$$
(73)

6.3.2 Velocity Profiles

It has been experimentally observed that the velocity and temperature profiles in jets in the absence of entrainment effects exhibit self-similar behaviors. That is, appropriate combinations of the radial and axial coordinates will reduce these profiles to functions of a single variable to a high degree of accuracy. In the present case, it is assumed that such a condition exists at a large distance from the nozzle. Near the nozzle, the flow profiles are assumed to be composed of a linear combination of functions representing the boundary layer profile at the nozzle exit and the equilibrium jet boundary profile far downstream. Thus,

$$u = (1-K)u_n + Ku_s \tag{74}$$

where

u_n is a velocity profile proportional to the boundary layer profile at the nozzle exit station (both internal and external boundary layers)

u_s is a velocity profile function representing the downstream profile

and

K is a factor to be determined.

The velocity profiles in this relation are defined as follows:

For r < r,,:

$$u_{n} = \left(\frac{r_{w}-r}{\delta_{c}}\right)^{1/7} u_{c} = \left(\frac{-y}{\delta_{c}}\right)^{1/7} u_{c}$$
 (75)

where $y = r - r_w$

AEDC-TR-79-4

For $r > r_w$:

$$u_n = (u/u_e)_n u_e \tag{76}$$

where $(u/u_e)_n$ is the profile of the external boundary layer at the end of the body. A family of profiles of u for several values of K and δ_C/r_W is shown for illustration in figure 7. The similarity behavior of the downstream profile is assumed to be approximated by a sine function.

Thus, for
$$r_w - \delta_c < r < r_w + \delta_c$$

$$u_s = u_c + \frac{1}{2}(u_e - u_c) [1 + \sin(\pi y/2\delta_c)]$$
 (77)

and, for $r > r_w + \delta_c$

$$u_{s} = u_{e} \tag{78}$$

With these definitions, five quantities must be determined to describe the flow. Two of the required quantities, $r_{\rm w}$ and $u_{\rm c}$ are determined by the approximate model of the flow in the inviscid exhaust jet. The remaining three quantities, $u_{\rm e}$, $\delta_{\rm c}$ and K will be calculated from solutions of equations (68), (69) and (73) combined with the inviscid external flow in the same manner as described previously for boundary layers.

6.3.3 Temperature-Velocity Relationship

At the end of the boattail, the temperature parameter, S is that of the boundary layer as described previously. For the external flow, a function $\, S_n \,$ is thus defined

$$S_n = [1 - (u/u_e)]S_w$$
 (79)

Inside the nozzle, a different relation is needed to accommodate the different jet total temperature. Assuming the linear relation between the total temperature and the velocity also exists inside the nozzle boundary layer, the following relation is proposed for $r < r_w$:

$$S_n = [1 - (u/u_c)]S_w + S_c (u/u_c)$$
 (80)

For fully developed plume mixing layers, the following temperature profile was derived by Nielsen et al (ref. 19)

$$\frac{{}^{T}t_{c}^{-T}t_{e}}{{}^{T}t_{c}^{-T}t_{e}} = \frac{{}^{u}s_{u}^{-u}e}{{}^{u}c_{u}^{-u}e} - \frac{{}^{DC_{c}^{2}}}{{}^{1-T}t_{e}/{}^{T}t_{c}} \left[\frac{{}^{u}s_{u}^{-u}e}{{}^{u}c_{u}} \left[1 - \frac{{}^{u}e}{{}^{u}c_{u}} \right] - \left(\frac{{}^{u}s_{u}^{-u}e}{{}^{u}c_{u}} \right]^{2} \right]$$
(81)

where

$$C_{c}^{2} = \frac{m_{c}}{1 + m_{c}}$$
 (82)

The value of the parameter D has the following effects:

D = 0 gives linear T_t-u relation and quadratic T-u relation.

D = 1 gives quadratic T_t -u relation and linear T-u relation.

In this work, D = 0 is used for calculative examples.

In order to express all terms of the equations in terms of a single reference quantity, equation (81) is rewritten using the external flow reference conditions. Thus, the similarity form of the temperature function S becomes

$$S_s = S_c \frac{u_s - u_e}{u_c - u_e} + D \frac{m_e}{1 + m_e} \left(\frac{u_s}{u_e} - 1 \right) \left(\frac{u_s}{u_e} - \frac{u_c}{u_e} \right)$$
 (83)

For the region immediately downstream of the nozzle exit, a transitional model of the temperature profiles is defined. Thus,

$$S = (1 - K)S_{n} + KS_{s}$$
 (84)

The density profiles are related to the velocity profiles through the temperature in the same way as for the boundary layer. It is assumed that the mixing in the entrainment region is dominated by the external flow, since for separated flow, the boundary layer on the body is expected to be much thicker than the boundary layer inside the nozzle. With this assumption, the ratio of specific heats of the mixing layer is taken to be that of the external flow. The density profiles are then obtained from

$$\rho_e/\rho = (s+1)(1+m_e) - m_e(u/u_e)^2$$
 (85)

6.3.4 Turbulent Shear Stress

Recalling equations (68) and (69), it is noted that a relation is required for the shear stress along the inviscid reference line, $r = r_w$. In equation (68) it has been assumed that the shear stress is related to the radial velocity gradient through an eddy viscosity in the same manner as for the boundary layer on the body. Also, only the value of the shear at the boundary, $r = r_w$ is needed.

As for the velocity and temperature profiles, the eddy viscosity for a shear layer such as the jet boundary far down-stream of the nozzle is found in the literature to have a specific form different from that of the boundary layer. In the present work, the eddy viscosity was assumed to undergo a transition from the value on the body to a value determined for the downstream flow in the same manner as for the velocity and temperature profiles, namely,

$$\varepsilon = (1-K) v_{e_{O}} + 2K\overline{\varepsilon} \left[\left(\frac{1+m_{e}}{1+m_{c}} \right) \left(\frac{u_{\text{max}} + u_{\text{min}}}{u_{\text{max}} - u_{\text{min}}} \right) \right]^{0.9} \delta_{c} (u_{\text{max}} - u_{\text{min}})$$
(86)

The value of the constant $\overline{\epsilon}$ used in this work was

$$\overline{\epsilon} = 0.0009$$

This value corresponds to the correlation of Nielsen et al (ref. 19) for mixing of two supersonic streams.

It is noted that the shear stress term in equation (68) contains the radial velocity gradient as well as the eddy viscosity. Differentiating equation (74), the gradient is

$$U_r = (1-K)(U_n)_r + K(U_s)_r$$
 (87)

The gradient of the similarity function u_s is well defined. However, the gradient of the initial boundary layer function is not well defined. The boundary layers developing on the boattail surface and the nozzle interior surface cannot be expected to have a continuous gradient at the nozzle exit. However, immediately downstream of the nozzle, a continuous gradient must exist as the two flows begin to merge. Since the jet velocity is expected to be much greater in magnitude than the velocity in the recirculating region over the boattail, an approximation for the velocity gradient at the inviscid reference line was derived by assuming that the velocity near the boundary $\mathbf{r} = \mathbf{r}_{\mathbf{w}}$ is describable by a sine function in a similar manner to the downstream similarity function. To maintain continuity of the

velocity profile, the parameters of the function were evaluated by requiring the magnitude and gradient of the velocity profile to be continuous at r_W -r/ δ_C = 0.1. The resulting gradient at $r = r_W$ is

$$(u_r)_{r_w} = -3.3931\pi u_c/\delta_c$$
 (88)

Calculations have indicated that this relation provides a reasonable approximation. The solution of the flow equations does not appear to be very sensitive to errors in this term.

6.3.5 Equations Solved

The integrands of equations (68), (69), and (73) contain the axial derivatives of u and ρ which must be expressed in terms of the variables u_e , δ_C , and K of the formulation. The quantities u and ρ are considered to be functions of x and the mixing layer variable $y=r-r_w$. However, the axial functional relationship is implicit in the variation of the other parameters of equations (41)-(44) so that

$$u(x,y) = u(u_e, \delta_C, K, y)$$
 (89)

$$\rho(\mathbf{x}, \mathbf{y}) = \rho(\mathbf{u}_{\mathbf{e}}, \delta_{\mathbf{C}}, \mathbf{K}, \mathbf{y}) \tag{90}$$

Then

$$u_{x} = \frac{\partial u}{\partial u_{e}} (u_{e})_{x} + \frac{\partial u}{\partial \delta_{c}} (\delta_{c})_{x} + \frac{\partial u}{\partial K} K_{x}$$
 (91)

$$\frac{\partial \rho}{\partial \mathbf{x}} = \frac{\partial \rho}{\partial \mathbf{u_e}} \left(\mathbf{u_e} \right)_{\mathbf{x}} + \frac{\partial \rho}{\partial \delta_{\mathbf{C}}} \left(\delta_{\mathbf{C}} \right)_{\mathbf{x}} + \frac{\partial \rho}{\partial K} K_{\mathbf{x}}$$
 (92)

The parameters $r_{\rm W}$ and $u_{\rm C}$ found in equations (75)-(78) are assumed to be related to the external flow velocity, $u_{\rm e}$ and do not appear explicitly in these relations. For convenience, the density expression is rewritten in terms of the density ratio of equation (85). Thus,

$$\rho_{\mathbf{x}} = (\rho/\rho_{\mathbf{e}})(\rho_{\mathbf{e}})_{\mathbf{x}} - \rho_{\mathbf{e}}(\rho/\rho_{\mathbf{e}})^{2}(\rho_{\mathbf{e}}/\rho)_{\mathbf{x}}$$
(93)

and

$$(\rho_{e}/\rho)_{x} = \frac{\partial}{\partial u_{e}} \left(\frac{\rho_{e}}{\rho}\right) (u_{e})_{x} + \frac{\partial}{\partial \delta_{c}} \left(\frac{\rho_{e}}{\rho}\right) (\delta_{c})_{x} + \frac{\partial}{\partial K} \left(\frac{\rho_{e}}{\rho}\right) K_{x}$$
 (94)

where it can easily be shown that

$$(\rho_e)_x = -\frac{2\rho_e}{\gamma - 1} \left(\frac{1 + m_e}{1 + m_e} \right)^{-\frac{\gamma}{\gamma - 1}} \frac{m_e}{u_e} (1 + m_e) (u_e)_x$$
 (95)

Due to the iterative nature of the solution procedure, an exact relation cannot be derived between the external flow velocity, $\mathbf{u_e}$ and the inviscid plume parameters, $\mathbf{r_w}$ and $\mathbf{u_c}$. However, the relationship is approximately accounted for by use of the assumption that the solution is not very far from convergence so that both the external and the plume inviscid flows are subject to the same pressure distribution, $\mathbf{p_e}$. The external flow is isentropic so that

$$\frac{\partial u_e}{\partial p_e} = -\frac{1}{\rho_e u_e} \tag{96}$$

Also, for an inviscid plume which is nearly uniform and axial, the Bernoulli equation gives

$$p_e + \frac{1}{2}\rho_c u_c^2 = p_{tc}$$
 (97)

so that

$$\frac{\partial \mathbf{u}_{\mathbf{c}}}{\partial \mathbf{p}_{\mathbf{c}}} = -\frac{1}{\rho_{\mathbf{c}} \mathbf{u}_{\mathbf{c}}} \tag{98}$$

and

$$\frac{\partial u_c}{\partial u_e} = \frac{\partial u_c / \partial p_e}{\partial u_e / \partial p_e} = \frac{\rho_e u_e}{\rho_c u_c}$$
 (99)

with these relations and the definitions of equations (75)-(78), the required derivatives of u can be obtained as follows

$$\frac{\partial \mathbf{u}}{\partial \mathbf{K}} = \mathbf{u}_{\mathbf{S}} - \mathbf{u}_{\mathbf{n}} \tag{100}$$

$$\frac{\partial \mathbf{u}}{\partial \delta_{\mathbf{C}}} = 0 \quad \text{for} \quad \mathbf{r} > \mathbf{r}_{\mathbf{w}} + \delta_{\mathbf{C}} \quad \text{when} \quad \delta_{\mathbf{C}} < \delta_{\mathbf{u}}$$

$$= (1 - \mathbf{K}) \frac{\partial \mathbf{u}}{\partial \delta_{\mathbf{C}}} + \mathbf{K} \frac{\partial \mathbf{u}}{\partial \delta_{\mathbf{C}}} \quad \text{for} \quad \mathbf{r}_{\mathbf{w}} - \delta_{\mathbf{C}} < \mathbf{r} < \mathbf{r}_{\mathbf{w}} + \delta_{\mathbf{C}}$$

$$(101)$$

where

$$\frac{\partial u_{s}}{\partial \delta_{c}} = -\frac{\pi}{4} \left(u_{e} - u_{c} \right) \frac{r - r_{w}}{\delta_{c}^{2}} \cos \left(\frac{\pi}{2} \frac{y}{\delta_{c}} \right) \tag{102}$$

and

$$\frac{\partial \mathbf{u}}{\partial \delta_{\mathbf{C}}} = \frac{1}{7} \mathbf{u}_{\mathbf{C}} \left(\mathbf{y} / \delta_{\mathbf{C}}^{2} \right) \left(-\mathbf{y} / \delta_{\mathbf{C}} \right)^{-6/7} \quad \text{for } \mathbf{r}_{\mathbf{w}} - \delta_{\mathbf{C}} < \mathbf{r} < \mathbf{r}_{\mathbf{w}} \right)$$

$$= 0 \quad \text{for } \mathbf{r} > \mathbf{r}_{\mathbf{w}} \quad \text{and } \delta_{\mathbf{C}} < \delta_{\mathbf{u}_{1}}$$

$$= -\left(\mathbf{y} / \delta_{\mathbf{C}}^{2} \right) \mathbf{u}_{\mathbf{e}} \left(\frac{\mathbf{u}}{\mathbf{u}_{\mathbf{c}}} \right)^{'} \quad \text{for } \mathbf{r} > \mathbf{r}_{\mathbf{w}} \quad \text{and } \delta_{\mathbf{C}} > \delta_{\mathbf{u}_{1}}$$
(103)

where $(u/u_e)'$ denotes differentiation with respect to y/δ_c . Continuing,

$$\frac{\partial u}{\partial u_e} = (1-K)(u/u_e) + K \frac{\partial u_s}{\partial u_e} \text{ for } r > r_w$$

$$= (1-K)(u/u_c) \frac{\partial u_c}{\partial u_e} + K \frac{\partial u_s}{\partial u_e} \text{ for } r < r_w$$
(104)

where

$$\frac{\partial u_{S}}{\partial u_{e}} = 1 \quad \text{for} \quad r \geq r_{W} + \delta_{C}$$

$$= \frac{1}{2} \left[1 + \sin \left(\pi y / 2 \delta_{C} \right) \right] \left(1 - \frac{\partial u_{C}}{\partial u_{e}} \right) + \frac{\partial u_{C}}{\partial u_{e}}$$

$$\text{for} \quad r_{W} - \delta_{C} \leq r \leq r_{W} + \delta_{C}$$

$$(105)$$

Using equation (85) in equation (94)

$$\frac{\partial}{\partial u_{e}} \left(\frac{\rho_{e}}{\rho} \right) = (1+m_{e}) \frac{\partial S}{\partial u_{e}} - \frac{2m_{e}}{u_{e}} \left[\frac{u}{u_{e}} \frac{\partial u}{\partial u_{e}} - (S+1)(1+m_{e}) - (1-m_{e}) \left(\frac{u}{u_{e}} \right)^{2} \right]$$
(106)

$$\frac{\partial}{\partial \delta_{\mathbf{C}}} \left(\frac{\rho_{\mathbf{e}}}{\rho} \right) = (1 + m_{\mathbf{e}}) \frac{\partial S}{\partial \delta_{\mathbf{C}}} - 2 \frac{m_{\mathbf{e}}}{u_{\mathbf{e}}} \frac{u}{u_{\mathbf{e}}} \frac{\partial u}{\partial \delta_{\mathbf{C}}}$$
 (107).

$$\frac{\partial}{\partial K} \left(\frac{\rho_{\mathbf{e}}}{\rho} \right) = (1 + m_{\mathbf{e}}) \frac{\partial S}{\partial K} - 2 \frac{m_{\mathbf{e}}}{u_{\mathbf{e}}} \frac{u'}{u_{\mathbf{e}}} \frac{\partial u}{\partial K}$$
 (108)

where

$$\frac{\partial S}{\partial u_e} = (1-K) \frac{\partial S_n}{\partial u_e} + K \left(\frac{\partial S_s}{\partial u_s} \frac{\partial u_s}{\partial u_e} + \frac{\partial S_s}{\partial u_e} \right)$$
 (109)

$$\frac{\partial S_{n}}{\partial u_{e}} = (S_{w} - S_{c}) \frac{u}{u_{c}} \frac{1}{u_{c}} \frac{\partial u_{c}}{\partial u_{e}} \quad \text{for } r < r_{w}$$

$$= \frac{S_{w}}{u_{e}} \frac{u}{u_{e}} \quad \text{for } r > r_{w}$$
(110)

$$\frac{\partial S_{s}}{\partial u_{e}} = -S_{c} \frac{u_{c} - u_{s}}{(u_{c} - u_{e})^{2}} + D \frac{m_{e}}{1 + m_{e}} \frac{1}{u_{e}} \left[\left(\frac{u_{c}}{u_{e}} - \frac{u_{s}}{u_{e}} \right) \left(1 - 4 \frac{u_{s}}{u_{e}} \right) \right] + \frac{\partial S_{s}}{\partial u_{c}} \frac{\partial u_{c}}{\partial u_{e}}$$

$$(111)$$

$$\frac{\partial S_{s}}{\partial u_{s}} = \frac{S_{c}}{u_{c}^{-u}e} - D \frac{m_{e}}{1+m_{e}} \frac{1}{u_{e}} \left[1-2 \frac{u_{s}}{u_{e}} + \frac{u_{c}}{u_{e}} \right]$$
 (112)

and

$$\frac{\partial S_{s}}{\partial u_{c}} = -S_{c} \frac{u_{s} - u_{e}}{(u_{c} - u_{e})^{2}} + D \frac{m_{e}}{1 + m_{e}} \frac{1}{u_{e}} \left(1 - \frac{u_{s}}{u_{e}} \right)$$
 (113)

Also,

$$\frac{\partial S}{\partial \delta_{C}} = K \frac{\partial S}{\partial u_{S}} \frac{\partial u_{S}}{\partial \delta_{C}} + (1 - K) \frac{\partial S}{\partial \delta_{C}}$$
(114)

where

$$\frac{\partial S_{n}}{\partial \delta_{c}} = 0 \quad \text{for } r > r_{w} \text{ and } \delta_{c} < \delta_{u_{1}}$$

$$= \frac{1}{7} \frac{y}{\delta_{c}^{2}} \left(\frac{-y}{\delta_{c}}\right)^{-6/7} (S_{c} - S_{w}) \quad \text{for } r \le r_{w}$$

$$= S_{w} \frac{y}{\delta_{c}^{2}} \left(\frac{u}{u_{e}}\right)^{\prime} \quad \text{for } r > r_{w} \text{ and } \delta_{c} > \delta_{u_{1}}$$

$$(115)$$

Finally,

$$\frac{\partial S}{\partial K} = S_s - S_n$$

Equations (68), (69), and (73) can now be written, after some algebra, in the form

$$A_{n1} K_{x} + A_{n2} (\delta_{c})_{x} + A_{n3} (u_{e})_{x} = B_{n}$$
 (116)
with $n = 1, 2 \text{ or } 3$

where the coefficients are integrals evaluated from the following definitions:

$$R_1 = r \frac{\rho}{\rho_e} (2u - u_e)$$
 (117)

$$R_2 = r \frac{\rho}{\rho_e} (2u - u_w) \tag{118}$$

$$R_3 = \frac{\rho_e}{\rho_e} \frac{r}{r_w} \frac{\rho}{\rho_e} \frac{1}{u_e} \tag{119}$$

$$P_1 = ru \left(\frac{\rho}{\rho_e}\right)^2 (u - u_e)$$
 (120)

$$P_2 = ru \left(\frac{\rho}{\rho_0}\right)^2 (u - u_w)$$
 (121)

$$P_3 = \frac{\rho_e}{\rho_e} \frac{r}{r_w} \frac{u}{u_e} \left(\frac{\rho}{\rho_e}\right)^2 \tag{122}$$

$$G_{1} = G_{2} = (2m_{e}/u_{e})(1+m_{e_{o}})/(\Upsilon-1)$$

$$G_{3} = 1/u_{e}$$
(123)

Thus, for n = 1, 2 or 3

$$A_{nl} = \frac{\rho_e}{\rho_e} \int_{r_c}^{r_e} \left[R_n \frac{\partial u}{\partial K} - P_n \frac{\partial}{\partial K} \left(\frac{\rho_e}{\rho} \right) \right] dr$$

$$A_{n2} = \frac{\rho_e}{\rho_e} \int_{\mathbf{r}_c}^{\mathbf{r}_e} \left[R_n \frac{\partial u}{\partial \delta_c} - P_n \frac{\partial}{\partial \delta_c} \left(\frac{\rho_e}{\rho} \right) \right] d\mathbf{r}$$
 (124)

and

$$A_{n3} = \frac{\rho_e}{\rho_{e_o}} \int_{r_c}^{r_e} \left[R_n \frac{\partial u}{\partial u_e} - P_n \frac{\partial}{\partial u_e} (\frac{\rho_e}{\rho}) - GP_n \frac{\rho_e}{\rho} \right] dr + A'_{n3}$$

where

$$A_{13}' = -\frac{1}{2} (r_e^2 - r_c^2) (\rho_e/\rho_{e_0}) u_e$$

$$A_{23}' = -\frac{1}{2} (r_w^2 - r_c^2) (\rho_e/\rho_{e_0}) u_e$$

$$A_{33}' = 0$$
(125)

Also,

$$B_{1} = -r_{c}\rho_{c}(u_{e} - u_{c})[v_{c} - u_{c}(r_{w})_{x}]$$

$$B_{2} = -r_{c}\rho_{c}(u_{w} - u_{c})[v_{c} - u_{c}(r_{w})_{x}] + \left((1-K)(\rho_{e}/\rho_{e_{o}})\nu_{e_{o}} + 2K\overline{\epsilon}\left[\frac{1+m_{e}}{1+m_{e_{o}}}\left[\frac{u_{\max} + u_{\min}}{u_{\max} - u_{\min}}\right]^{0.9} \delta_{c}(u_{\max}-u_{\min})\right)r_{w}(u_{r})r_{w}$$

$$B_{3} = (\rho_{w}u_{w}/\rho_{e}u_{e} - 1 - \delta^{*}/r_{w})(r_{w})_{x} - \delta^{*}_{x}$$
(126)

The integrals in these equations are evaluated using a 21-point trapezoidal integration, with the intervals r_c to r_w and rw to re each divided into 10 equal segments. It is noted that equations (116) are similar in form to the equations solved for the boundary layer over the body. Indeed, a similar approach is taken to solving the entrainment equations as was used for the boundary layer equations. At the end of the body (the beginning of the entrainment region), the value of δ^* is known, along with $\delta_{\bf u}$ and ${\bf u}_{\bf e}$. A value of $\delta_{\bf c}$ is determined from a nozzle boundary layer calculation. The value of K is assumed to be zero. The variation of 6* is specified continuously from the boundary layer into the entrainment region, while u_e , δ_c and K are calculated by solving equations (116). To accomplish this calculation, the first two of equations (116) are reduced to two equations in the derivatives of δ_{c} and u_{e} by eliminating the derivative of K with the third equation. The value of K is determined at each step of the integration of the solution by solving equation (72) directly. When the point of minimum ue is reached downstream of the nozzle, the need for prescribing δ^* is eliminated. From that point to the end of the calculation, ue is prescribed as for the boundary layer on a sting and the values of K and $\delta_{\rm C}$ are calculated from the first two of equations (116).

7.0 RESULTS

In this section, the theory is compared with experimental results on axisymmetric boattail-sting and boattail-exhaust plume configurations. In all cases, the boundary-layer was initialized as a laminar boundary-layer near the nose of the forebody with transition specified shortly downstream of the initial point. Initial boundary-layer quantities \mathbf{U}_{T} and δ_{I} were obtained from a similarity solution transformed to conical coordinates (see section 10.4).

7.1 CIRCULAR ARC BOATTAILS WITH SOLID PLUME SIMULATORS

Wind tunnel studies of the configuration shown in figure 8 were described in reference 20. The configuration is a conecylinder, with a circular arc boattail. Two of the boattails are examined here to illustrate the capabilities of the calculative method. The first example is for a boattail (configuration 2 in figure 8) for which no separation is evident experimentally at the Mach numbers of the tests. Surface static pressure distributions were measured along the boattail and along the sting for free-stream Mach numbers from 0.4 to 1.2. Boundary-layer transition was tripped at x/D = .167. Calculations for Mach numbers of 0.6, 0.8, and 0.9 were initialized as described previously. On the first iteration of each calculation for the M_O = 0.6 and 0.8 cases, a separation point was indicated on the boattail. subsequent iterations, the separation point moved aft on the boattail until it eventually moved off the boattail and the calculation subsequently converged as an attached flow. The calculation for $M_O = 0.9$ converged without separation. Comparisons between the theory and measured results for the pressure coefficient distributions at Mach numbers of 0.6, 0.8, and 0.9 are presented in figure 9. The theory is seen to be in good agreement with the data for all three cases.

It will be recalled from section 5.6 that the initial estimate of the separation point location is obtained from the application of the plain-body (the body with no boundary layer) inviscid-flow solution to the boundary-layer calculation, with the separation point taken to be at the point where the transformed shape factor Hi reaches a specified value in the adverse pressure gradient on the boattail. The present case illustrates that the calculative method also has the capability to calculate attached flows. However, for such flows a separation point is often found on the first iteration because of the steep pressure gradients associated with the inviscid flow on the plain body. Whether the subsequent calculations actually proceed to move the separation point off the boattail, for a case in which that is the correct result, depends somewhat on the initial value of xs, or on the initial value of H;. If the initial value of xs is too far forward, the calculation may not converge at all. move the initial value of x_s back, the input value of H_i is increased. For the cases shown in figures 9a and 9b, a value of H; of 1.3 was appropriate, while for the case shown in figure 9c, a value of 1.5 was required. The decision as to whether the solution is converged is based primarily on the magnitude of the If the best value of s produced by the iteration is rms errors. significantly greater than 1.0 percent (.01), the solution can generally be improved by adjusting H;.

The second example is for a boattail (configuration 1 in figure 8) that has an extensive region of separated flow for all Mach numbers. This is evidenced by the pressure distribution which is typical of separated flows on such configurations and has been corroborated by oil flow studies described in reference Comparisons between the theory and measured results for the pressure distributions at $M_0 = 0.6$, 0.8, and 0.9 are presented in figure 10. For the two lowest Mach numbers, the theory is seen to be in excellent agreement with the data on the boattail, with a slight discrepancy on the solid plume simulator. Also, the calculated location of the separation point agrees exactly with the oil flow determination of reference 21 for the $M_O = 0.6$ case of figure 10a, with a small error noted for the $M_O = 0.8$ case of figure 10b. For the $M_O = 0.9$ case of figure 10c, the agreement is not so good. A fairly large discrepancy is noted in the pressure coefficient over the entire boattail, and a larger error occurs in the prediction of the separation location. For that case, supersonic flow occurs over the beginning of the boattail, with a shock of Mach number approximately 1.25 just ahead of the separation point. Abeyounis (ref. 21) suggests that for this configuration, the separation for free-stream Mach numbers above 0.8 probably occurs at the shock. Thus, the discrepancies noted in figure 10c are probably due to the fact that the present theoretical model assumes separation occurs behind the shock. Another measure of the accuracy of the solution is the degree of convergence of the calculated viscous-inviscid interaction. For the calculations of figures 10a and 10b, the iteration converged to an rms error of 1.0 percent, which has been found to yield generally good results, while results shown in figure 10c had an rms error of 2.3 percent.

As for the unseparated flows, the separated flows were also found to be somewhat dependent on the value of $\rm H_{1}$ for determining the outcome of the iterative calculations. In the two subsonic cases of figures 10a and 10b, a value of $\rm H_{1}$ of 1.15 was used, while for the transonic case of figure 10c a value of 1.0 was used. For other values of $\rm H_{1}$ the iteration either did not converge to a sufficiently small rms error, or developed numerical difficulties which subsequently stopped the calculations. A value of $\rm H_{1}=1.3$ is usually used to start calculations when nothing is known of the solution. Experience indicates that if the iteration procedure does not lead to a solution with an rms error of 1.0 percent or less, it may be possible to reduce the error by adjusting the initial value of $\rm H_{1}$ and starting a new iteration sequence.

Although no data were available for comparison, other boundary-layer quantities of interest are shown in figure 11. The velocity corresponding to the pressure of figure 10b is shown in figure 11a. The displacement thickness, also shown in figure 11a, is smooth and continuous, with an abrupt reversal of slope at the end of the boattail, consistent with the prescribed conical surface of the effective body as shown in figure 11b. In figure 11c, the skin-friction coefficient on the boattail and sting is shown. As described in section 5.6, the skin friction is negative in the region between $\mathbf{x_S}$ and reattachment, and undergoes an adjustment at $\mathbf{x_D}$, with $\mathbf{u_e}$ and δ^* continuous.

The integrated pressure drag on the boattails is shown in figure 12. The calculated values at $M_{\rm O}=0.6$ and 0.8 are in excellent agreement with the data for the separated flow (figure 12a). For higher Mach numbers, the agreement is not so good, as would be expected from the pressure coefficient comparisons and the previous discussion. Even so, the calculations for $M_{\rm O}=0.9$ and an additional calculation at $M_{\rm O}=0.96$ indicate the method predicts the transonic drag rise with fair accuracy.

The integrated pressure drag on the unseparated boattail is shown in figure 12b. The error in the calculated drag is fairly large for the $\rm M_{\odot}=0.6$ case, but improves considerably for the higher Mach numbers.

7.2 CIRCULAR ARC BOATTAILS WITH COMPRESSED AIR PLUMES

Some of the wind tunnel tests of reference 20 were conducted with the exhaust plume simulated with high pressure air. Comparison between the theory and data for the pressure coefficient distribution on the boattail of configuration 1 (figure 8) is presented in figure 13 for exhaust nozzle total pressure ratios of 2.0 and 4.0 at a free-stream Mach number of 0.8 and for a nozzle pressure ratio of 2.0 for a Mach number of 0.6. The agreement between the theory and data for a pressure ratio of 2.0 and $\rm M_{\rm O}=0.8$ is good as shown in figure 13a even though there is some error in the predicted separation point location. The rms error of the calculated viscous and inviscous solutions was 1.6 percent.

The comparison for a nozzle pressure ratio of 4.0 and $\rm M_{\odot}$ = 0.8 shown in figure 13b indicates good agreement for the pressure coefficient distribution and somewhat better agreement for the separation point location than the previous case. The rms error of that calculation was 1.1 percent.

The comparison for a nozzle pressure ratio of 2.0 and $\rm M_{\odot}$ = 0.6 shown in figure 13c indicates fair agreement for the pressure coefficient distribution and the separation point location. The rms error of that calculation was 1.66 percent.

Plots of the important entrainment region parameters for the $M_{\odot} = 0.8$ case are presented in figure 14. The case with exhaust total pressure ratio of 4.0 is presented in figure 14a. plume inviscid reference surface represented by rw is seen to expand slightly as it leaves the nozzle, reaching an essentially cylindrical shape in approximately 2 nozzle diameters. boundary of the mixing region, represented by rc, requires more than 6 nozzle diameters to reach the axis of the plume. entrainment parameter, K increases rapidly at first and then more gradually after $\mathbf{x}_{\mathbf{p}}$ is reached and the calculation switches from prescribed δ^* to prescribed u_e . Another change in the behavior of K occurs further downstream, associated with the change in the definition of the outer edge of the mixing layer, r_e , as defined by equations (70) and (71). The entrainment reaches completion (K = 1.0) asymptotically, but is effectively complete in less than 6 nozzle diameters.

The entrainment parameters for the exhaust pressure ratio of 2.0 are presented in figure 14b. The inviscid plume boundary, $r_{\mathbf{w}}$ is cylindrical for the entire plume, reflecting the fact that the plume is only very slightly underexpanded. Entrainment appears to proceed at a faster rate than for the higher pressure ratio as evidenced by the fast initial rise of the entrainment parameter, K. However, the entrainment calculations were terminated after approximately 2 nozzle diameters when the value of K reached a maximum and began to decrease. The reason for this behavior is not fully understood, although it is believed to be related to the fact that the jet velocity and the external flow velocity are nearly equal. For velocity ratios, $u_{\rm c}/u_{\rm e}$ close to 1.0, it is expected that numerical calculations would encounter difficulties as K approached 1.0. For K = 1.0 and $u_c/u_e = 1.0$, the velocity profiles (Eqs. (74)-(78)) become constant with radius, and the equations (68) and (69) are redundant. The ratio $\rm u_{\rm c}/\rm u_{\rm e}$ for the case shown in figure 14b is approximately 1.2.

Boattail drag coefficients calculated from the measured and calculated pressure coefficient distributions of figure 13 are shown in figure 15. The theoretical drag coefficients for the pressure ratios of 2.0 and 4.0 at $M_{\rm O}=0.8$ are in excellent agreement with the data (figure 15a). A third case, for an exhaust total pressure ratio of 5.0 has a calculated drag coefficient slightly higher than the data. The rms error for that case was 3.2 percent. The theoretical drag coefficients for the $M_{\rm O}=0.6$ case shown in figure 15b are in good agreement for a pressure ratio of 4.0 but the agreement for lower pressure ratios is poor. The rms error of the solutions shown in figure 15b was 0.77 percent for $p_{\rm t_j}/p_{\rm O}=4.0$, 1.39 percent for $p_{\rm t_j}/p_{\rm O}=3.0$ and and 1.66 percent for $p_{\rm t_j}/p_{\rm O}=2.0$.

7.3 SUMMARY OF RESULTS

The calculative method has been found to be applicable to both attached and separated flows on boattails with solid plume simulators and with high pressure jets. The viscous-inviscid iteration procedure is somewhat sensitive to the first approximation to the separation point location, $x_{\rm g}$, and the angle, $\theta_{\rm g}$, in that the iteration will not converge to the smallest possible error unless the initial values are close to the correct values. This does not appear to be a major limitation, since adequate starting conditions can usually be determined by trial and error in a few trials. Comparisons with experimental data indicate that the entrainment model and the viscous-inviscid iteration procedure provide an accurate engineering method for predicting boattail flow fields for moderately underexpanded exhaust flows, and for boattails with solid exhaust plume simulators.

8.0 COMPUTER PROGRAM ORGANIZATION

In this section, the general organization of the programs will be described. Specific information on data required for input and data developed for output will be described in sections 9, 10, and 11. Sample Job Control Card decks for a typical IBM 370 installation are presented in section 12.

The overall program consists of a mainline program (program 1) and three main subprograms each consisting of several subroutines. The first main subprogram is the inviscid-flow program (program 2). It is a modified version of the program described in reference 3. The second main subprogram is the boundary-layer-entrainment-layer program (program 3). It is based on the integral theory described previously. The third subprogram is the inviscid exhaust plume program (program 4). The mainline program controls the iteration between the other three programs. Either of the first two subprograms may be used separately, without iterating by appropriate choice of the input parameters.

Both the viscous-flow program and the inviscid-flow programs require some punched card input and may require some input data from disc or tape data files. The data files must be identified by specific Logical Unit numbers. Each program in turn produces new data files and printed output. The general relationship of the programs and the various data files are shown in figure 8. The specific Logical Unit numbers required for input and output are listed in Table I. Two Logical Unit numbers are associated with each data file shown in figure 16. One unit is used for input, the other for output.

Program 2 requires initially data from cards describing the free-stream conditions, the computational mesh and the body shape. Alternately, the program can accept the input body shape from data file 1. It can also accept an initial solution for the perturbation velocity potential from another data file (data file 2). Program 2 produces printed output lists of the appropriate flow field quantities, quantities describing the configurations and the computational mesh and several data files. Data file 2 is rewritten using the new solution for the potential. A third file (data file 3) is written containing the distribution of the axial velocity component at the inviscid boundary for use by the viscous flow program.

Program 3 requires initially the free-stream conditions and gas constants as well as parameters describing the shape of the surface over which the boundary layer is flowing. On the first iteration of a viscous-inviscid interaction, the surface shape is the same as that for program 2. On subsequent iterations, the body shape for the boundary-layer program remains the same, except when it is modified by the calculation of a new plume shape, while that for the inviscid flow is modified by the addition of the boundary layer. Program 3 can also accept data from data files as optional input. The boundary-layer-edge velocity distribution, ue, can be input from data file 3, produced by program 2. The distribution of the body shape augmented by the displacement thickness can be input from data file 4. That file differs from data file I because it contains the raw data for δ^* + r_w versus x as calculated by the boundary-layer program while data file 1 contains the shape adjusted according to equation (4) and interpolated to the x stations of the original input shape. If program 3 is being used separately from program 2 (i.e., without iterating), two additional options are available for card input. Either the boundary-layer-edge velocity, ue, can be input as mentioned previously, or the displacement thickness, δ^* , may be input. These options are described more fully in sections 10.1 and 10.2.

Program 3 produces as output lists of the boundary layer and flow quantities as they are calculated along the body. In addition, program 3 produces an updated version of data file 4 and the augmented body shape (data file 1) required by program 2. Data file 4 also contains a list of the velocity ratio u_e/u_{e_0} corresponding to the boundary layer.

Program 3 can be used in a two-dimensional boundary layer mode if desired. However, calculation of a viscous-inviscid interaction or exhaust plume entrainment can only be done for axisymmetric cases with the present inviscid program.

All card input pertaining to programs 2 and 3 is input through an input subroutine called by program 1. Program 1 also produces a file of the quantities needed to restart and continue the calculation if the calculation should terminate before all iterations are completed. These data are stored on data file 5. Detailed instructions regarding restarting are presented in sections 12.2.3 and 13.2.

9.0 INPUT TO THE PROGRAMS

The data required by the programs generally fall into three categories: (1) geometrical data; (2) flow field data; and (3) control parameters. The control parameters are indices for specifying options and iteration counters. It will be noted by comparison with reference 3 that a number of input quantities required for the inviscid-flow program have been eliminated in the present version. This has been done by incorporating the calculations required to obtain some of the quantities into the present code or by simply defining fixed values which have been found to be successful. Specifically, a value of 1.4 is used for the initial value of the subsonic relaxation factor, a value of 0.1 is used for the initial value of the supersonic relaxation factor and a value of 1.3 is used for the exponent in the normal coordinate stretching function. Also, it is assumed that the computational grid has equal step sizes in both coordinate directions at the nose of the body. Finally, the number of relaxation steps allowed in the inviscid program is fixed at 20 for the first four interaction iterations and is changed to 40 and 80 after four and eight iterations, respectively.

The general requirement of the input data is that the tabular lists of the various distributions required represent smooth curves. This is especially true of the list of body shape coordinates. The inviscid program uses cubic splines to fit the input coordinates, so those coordinates must accurately represent a smooth curve with continuous second derivatives.

9.1 TABULAR FORM

The input data required for calculating transonic viscous, inviscid-flow interactions consist of several punched cards containing parameters describing the free-stream flow conditions, the computational mesh for the inviscid calculation, initial values for the viscous flow calculation, and certain options that are available in the program. A dictionary of the input data is presented in the next section. Table II shows the input variables as they are to be punched on the data cards. More detailed explanation of the requirements for the inviscid-flow program (program 2) are presented in ref. 3 and are not repeated herein.

9.2 DICTIONARY OF INPUT VARIABLES

The variables required for input on punched cards are defined in this section in the order in which they are required. Additional details on the format of the punched data are given in Table II. The first three cards of any input data deck contain a description of the case being calculated. Any or all of these three cards may be blank, but all three are required. The remaining variables in Table II are as follows:

NRSTRT Integer indicating whether calculation is being restarted to continue a previous calculation. Only valid for interaction calculations (LPROG = 0. See below)

- = 0 Start from zero. Input all quantities on cards or data files as required.
- > 0 Restart. Input data file 5 (Logical Unit 11) containing data from previous iteration plus all other input data files plus other card data as indicated in Table II.

NPRINT Integer indicating quantity of output to be printed (see section 11.1).

- = 0 Minimum output.
- = 1 All output.
- N3 Integer indicating whether restart is to begin with new values of x_s and θ_s (see section 13.2).
- ILIM Integer number of seconds corresponding to estimated length of calculation. When the time from the beginning of the calculation is within 30 seconds of this limit, the final restart files will be written. This assures that the job will not terminate while writing such files.
- IITER Integer determining size of perturbation of x_s and θ_s . The initial step sizes used will be those given by equations (8) and (9) divided by IITER.

LPROG Integer indicating level of calculation.

- = -1 Inviscid flow only.
- = 0 Viscous-Inviscid interaction.
- = 1 Boundary layer only.

- Nl Integer iteration counter for inner viscous-inviscid iteration.
- N2 Integer iteration counter for $x_s \theta_s$ iteration presently limited to a maximum of 20.
- IBL Integer indicating how interaction calculations are to begin.
 - = 3 Start with inviscid flow.
 - = 0 Start with boundary layer.
- IUNIT Integer indicating which value of the gas constant, RGAS, and the constants in Sutherlands temperature-viscosity relation are to be used. The choice depends on whether air is the gas being calculated and the units of the input quantities.

 - = 2 Input units must be pounds, inches, seconds, and °R.
 - = 3 Input units must be newtons, meters, seconds, and

For another gas, or other units, put in anything for IUNIT and put in nonzero values of VISC, RGAS, and SCON. Any units are allowed. The basic rule is that all input quantities must be consistent with regard to units.

- MIT Number of relaxation cycles allowed for the inviscid-flow program (Program 2). If a value of zero is input, a value of 20 is used. Otherwise, the input value is used.
- GAM Ratio of specific heats of the external inviscid flow.
- AMINF Free-stream Mach number.
- IXY Integer number of values of coordinate pairs, XO,YO, to be input for inviscid body shape. If IXY = 0, the required shape must be input from data file 1 (Logical Unit 14). Maximum value is 200.
- XO,YO Axial and radial coordinates of body shape for inviscidflow calculation, 2 per card.

The next series of variables, items 7 and 8 in Table II, are for the inviscid-flow program (Program 2). Detailed information on how these data are to be obtained is contained in reference 1.

IMAX Number of grid lines in the tangential direction; I = 1 is the forward stagnation line, I = IMAX is the rear stagnation line for closed bodies and downstream infinity for open bodies. For each grid refinement IMAX is increased such that IMAX_{NEW} = 2(IMAX_{OLD}) - 1. The present limit on IMAX is 81. Instructions for changing this limit appear as comments in the program listing (subroutine ONEO). The grid refinement option is generally not used for viscous-inviscid interaction calculations.

JMAX Number of grid lines in the normal direction; J = 1 corresponds to an infinite distance from the body and J = JMAX is on the body. The same formula and limit that apply to IMAX also apply to JMAX.

MHALF Number of grid refinements to be done. For interaction calculations a value of zero should be used with a grid fine enough for adequate resolution.

KLOSE Body type.

= 0 Open body '(i.e., one with a sting or wake).

= 1 Closed body.

LREADP Integer indicating whether initial estimate of potential distribution is to be input from data file 2 (Logical Unit 13).

= 0 No.

= 1 Yes.

If any one, or all of the next four input quantities are input as zero, the pre-programmed values are used.

DNDZO Step size of the normal coordinate at the body. The preprogrammed value is 7 percent of the maximum body diameter.

Value of the computational coordinate, X, at the matching point of the two stretching functions used in the finite-difference scheme (see ref. 3), for open bodies only. Since X varies from zero to one, XIXM is the fraction of the total number of grid points which will be in the first stretching region (ahead of x_m). The pre-programmed value is 0.75.

XM Axial location, x_m , (in physical coordinates) of the junction (or matching point) between the two tangential stretching functions, for open bodies only, see reference 3. Must be less than XO(IXY). This parameter is used to concentrate computational mesh points in a certain region. The usual approach for interaction calculations (the pre-programmed value) is to let x_m be equal to the length of the body to the beginning of the sting, or plume, XBT.

DSDXIM Step size of the tangential coordinate at the junction between the two tangential stretching functions. The pre-programmed value is 8 percent of the length of the afterbody (XBT-XZNEW).

XBT Length of the body.

DMAX Maximum body diameter.

XZNEW Length of forebody. Also, this is the axial location at which boundary-layer calculations will begin after four iterations have been calculated. The usual procedure is to start the boundary-layer calculations close to the nose of a long body at XZ (see item 17 in Table II) and then after four iterations move the starting point to XZNEW (XZNEW > XZ). In subsequent iterations, the boundary layer does not change for X < XZNEW. For long slender bodies with boattails, XZNEW should be the beginning of the boattail.

PLUMIN Logical variable indicating whether an exhaust plume is being calculated.

GAMAP Ratio of specific heats of exhaust gas.

PTPPFS Ratio of nozzle total pressure to free stream static pressure.

AMP Nozzle exit Mach number.

THETAP Nozzle exit divergence angle.

TTP Nozzle total temperature.

GMP Ratio of gas constant of air to that of the exhaust gas.

DELCZ Thickness of nozzle internal boundary layer at the nozzle exit.

The remaining input variables are related to the boundary-layer program alone or to the viscous-inviscid interaction method.

LSEP Logical variable indicating whether the location of separation (XSEP) is known (TRUE) or not (FALSE).

XSEP Axial location of separation. Put in only if LSEP = TRUE.

THETS Angle of δ^* surface with the boattail tangent at x_s . Put in only if LSEP = TRUE. A value of 0.0 will cause the program to calculate a value using equation (3).

IOPT Integer indicating the mode of the calculation.

- = 1 u_e is to be input.
- = 2 δ * is to be input.

Put in a value of 1 for starting an interaction calculation.

K Integer indicating whether flow is axisymmetric.

- = 0 Two dimensional.
- = 1 Axisymmetric.

LVAR1 Integer indicator for method of input of ue when IOPT = 1.

- = 0 Input u_e (dimensional) on cards.
- = 1 Input u_e/u_{e_O} on cards.
- = 2 Input u_e/u_e from data file 3 on Logical Unit 12.

LSHAPE Integer indicating option for calculating all initial conditions (I.C.) except u_e (see section 10.4).

- = 0 Input initial values per LIC.
- = 1 Calculate I.C. for flat plate.
- = 2 Calculate I.C. for cylinder.
- = 3 Calculate I.C. for cone.

LIC Integer indicating initial condition options for IOPT = 1 and LSHAPE = 0.

- = 1 Put in CFCl and DELTAl.
- = 2 Put in CFCl and DELSTl.

LDSTAR Integer indicating whether a file of $\delta^* + r_w$ is to be input.

- = 0 No input.
- = 1 File of δ^* + r_w versus x is required on Logical Unit 15 (data file 4).

LSHPBL Integer indicating whether body shape is to be input for boundary-layer calculations.

- = 0 XRL and RL are assumed to be the same as XO and YO. This is usually the case when starting an interaction calculation.
- = 1 XRL and RL will be required.

NOTE: The next three variables, NVAR, XVAR, VAR, are only required on cards if LPROG = 1 and LVAR1 = 0 or 1.

NVAR Integer indicating the number of values to be input for the prescribed variable (u or δ^*). Maximum value is 100.

XVAR, Axial location and value of prescribed variable as VAR follows:

IOPT = 1 and LVAR1 = 0, VAR = u_{ρ}

IOPT = 1 and LVAR1 = 1, VAR = u_e/u_e

IOPT = 2, VAR = δ^*

EL Reference length. Needed if input data lengths are non-dimensionalized. If lengths are dimensional, put in EL = 1.0.

PT Total pressure, p_+ (lb/ft²), (lb/in²), or (newton/m²).

TT Total temperature, T_t (°R) or (°K).

TWONTT Ratio of body surface temperature to total temperature, T_{w}/T_{t} .

VISC Constant λ in Sutherlands formula for viscosity.

$$\mu = \lambda \, \frac{T^{3/2}}{T + T_s}$$

If one of the programmed values is acceptable, put in a value of 0.0. The value used will then be determined by the value of IUNIT on item number 3 as follows:

IUNIT	VISC
1	$2.27(10^{-8})$ lb sec/ft ² (°R) $^{1/2}$
2	$1.5764(10^{-10})$ lb sec/in ² (°R) ^{1/2}
3	$1.4582(10^{-6})$ Newton sec/m^2 (°K) $^{1/2}$

RGAS Gas constant. If one of the programmed values is acceptable, put in a value of 0.0. The value used will be determined by the value of IUNIT as follows:

IUNIT	RGAS
1	1716.0 ft ² /sec ² °R
2	247104.0 in ² /sec ² °R
3	286.96 m ² /sec ² °K

SCON Constant T_s , in Sutherlands viscosity law (see definition for VISC and equation 31). If one of the programmed values is acceptable, put in a value of 0.0. The value used will be determined by the value of IUNIT as follows.

IUNIT

DFACT Relaxation factor for adding 6* to body, the factor α in equation (4). Usual value is 0.5. If a value of 0.0 is put in, a value of 0.5 will be used.

XZ Axial location of beginning, of boundary-layer calculation.

RLEN Axial location of end of boundary-layer calculation.
Usually at least one maximum diameter larger than XBT.
For a plume RLEN is automatically extended to match the inviscid grid.

- XT Axial location of transition from laminar to turbulent boundary-layer flow.
- DXP Axial interval at which velocity profiles are to be printed. If a value of 0.0 is put in, no profiles are printed. In any case, profiles will not be printed more often than the output step size for individual output quantities (see section 11.1).
 - HLIM Limit value of H_1 to indicate separation as discussed in section 5.6. Input of a blank or a value of 0.0 will cause a value of 1.3 to be used. To move the initial value of x_s forward, decrease HLIM. To move x_s downstream, increase HLIM. A value greater than 4.0 will allow the calculation to proceed to a separation singularity if one should occur. The calculation will terminate at that point. See section 7 for a discussion of the use of HLIM in sample calculations.
- CFCl Value of skin-friction coefficient at initial boundarylayer station (see section 10.4).
- DELTAl Value of boundary-layer thickness, δ (compressible), at initial boundary-layer station (see section 10.4).
- DELST1 Value of boundary-layer displacement thickness, δ^* , at initial boundary-layer station (see section 10.4).
- UEl Value of boundary-layer-edge velocity ue at initial boundary-layer station.
- DUEDX Value of boundary-layer-edge velocity gradient at initial boundary-layer station.
- NR Integer number of values of XRP and RL to be input for body shape. If NSHPBL = 0, this is assumed to be the same as IXY. Maximum value is 200.
- XRP,RL Axial and radial coordinates of body shape for boundarylayer calculation. If LSHPBL = 0, these are assumed to be the same as XO and YO, respectively. For twodimensional configurations, these represent the x and y coordinates of a surface measured from a reference plane.

10.0 PROGRAM OPTIONS

Several optional modes of calculation are available through the input parameters. A description of the options and the corresponding values of the pertinent parameters follows.

10.1 BOUNDARY-LAYER OPTION

To use only the boundary-layer program, put in the three card description, then all values on the fourth input data card, Item 2 in Table II, should be zero. Then the first value on the fifth input data card should be:

Of the remaining variables shown on item number 3 in Table II, only IUNIT is required. The remaining cards would be those corresponding to item 4 and items 13 to 21 as described in Table II. With this option, the user has the choice of specifying either the free-stream velocity, $\mathbf{u_e}$, or the displacement thickness, δ^* , through the variables NVAR, XVAR, and VAR on items 14 and 15. The boundary-layer calculation can be restarted at any station by inputting the values of the variables at that station as listed in the output. The calculated list of δ^* + $\mathbf{r_w}$ and $\mathbf{u_e/u_e}$ will be written on Logical Unit 10 (data file 4) when the calculation terminates.

Another method is also available for calculating the boundary layer alone. The boundary-layer step of a viscid-inviscid iteration can be executed separately. The appropriate values on the fifth card would be:

LPROG = 0
N1 = 1
N2 = 21
IBL = 0
IUNIT = 1, 2, or 3

This option requires input of all quantities as though the iterative sequence were to be completed. With the values just described, only the boundary layer will be calculated and then the run will be terminated. If it is desired to continue the iteration, simply make N2 less than 21. The free-stream velocity distribution must be provided on Logical Unit 12 for this case. All other optional inputs are the user's choice.

10.2 INVISCID-FLOW OPTION

To use only the inviscid-flow program, put in the three card description, then all values on the fourth card should be zero. Then put in LPROG = -1 on the fifth card (item number 3 in Table II). Of the remaining values on that card, only IUNIT is required and that quantity is required only if PLUMIN is TRUE. After the first five cards only the data for items 4 to 9 or 10 as described in Table II and section 9.2 are required for this option.

10.3 VISCID-INVISCID ITERATION OPTION

To use both the boundary-layer and the inviscid-flow programs iteratively, put in LPROG = 0 and all other quantities as appropriate. Such iterations can be started with only the body shape and free-stream flow quantities known and may be restarted to continue a prematurely terminated iteration. Several options are available to the user for restarting an unfinished iteration. See section 13.2 for an example of restarting. The simplest option is to put in NRSTRT = 1 as the first value on the fourth input data card and to provide the required input data files on Logical Units 11, 12, 13, 14, and 15 (see fig. 16 and Table I). The only other data required for restarting are the three-card description of the case. The calculation then proceeds from where the previous iteration stopped. Another method of restarting would be to omit the restart file and put in NRSTRT = 0. user can then vary any of the other input quantities, using the data files or punched cards as desired. Note that the calculation terminates when N2 reaches a value of 21. The value of N1 increases continuously throughout the calculation while the value of N2 is reset to 1 each time the $x_s - \theta_s$ cycle finds a minimum error without satisfying the convergence criterion.

10.4 BOUNDARY-LAYER INITIAL CONDITIONS

Initial values of boundary-layer quantities can be obtained in several ways. The user can obtain values of the skin-friction coefficient, C_f , and either the boundary-layer thickness, δ , or the displacement thickness, δ^* . These are shown on item 19 in Table II. The appropriate values LSHAPE = 0 and LIC = 1 or 2 are punched on the card corresponding to item 13. For the case when no other source of this information is available, formulas have been included in the program based on the Blasius solution for laminar boundary layers and based on one-seventh power law velocity profiles for turbulent flows. These formulas are only available if u_e is being specified (IOPT = 1). The basic formulas calculate C_f and δ in the transform plane (incompressible, two-dimensional). The formulas are as follows:

Laminar Flow

$$C_{f_{i}} = \frac{0.664}{\sqrt{\frac{U_{e}}{v_{e_{o}}}}} x$$
 (127)

$$\delta_{i} = \frac{5x}{\sqrt{\frac{v_{e}}{v_{e}}}} x \tag{128}$$

Turbulent Flow

$$c_{f_i} = 0.0592 \left(\frac{v_e}{v_{e_o}} x \right)^{-0.2}$$
 (129)

$$\delta_{i} = 0.37 \times \left(\frac{U_{e}}{v_{e_{O}}} \times\right)^{-0.2}$$
 (130)

These formulas provide initial values for boundary layers on flat plates. They are chosen by inputting LSHAPE = 1: For other geometries, the value of the x coordinate is transformed. Thus, LSHAPE = 2 chooses the values for a circular cylinder where

$$x = \frac{r_w^2}{x_a} \tag{131}$$

where x_a is the axial coordinate and LSHAPE = 3 chooses the values for a cone, where

$$x = \frac{1}{3} \left\{ \frac{r_{w}^{2}}{x_{a}} \right\} \tag{132}$$

These formulas have been found to be quite adequate for calculating flows over long bodies. Small initial errors in the calculated boundary layer become negligible in a few boundary-layer thicknesses.

11.0 PROGRAM OUTPUT

11.1 STANDARD OUTPUT

Several options are available for output from the programs. The parameter NPRINT on item number 2 in Table II chooses either all the available output (NPRINT = 1) or only that essential for monitoring the progress of an iterative calculation. The parameter DXP on item 17 controls the printing of boundary-layer velocity profiles. For iterative calculations, the full output from the inviscid-flow program is printed only on the first iteration (Nl = 1). For subsequent iterations, only the short form output is printed. No units are printed in the output since any units are allowed in the input.

The complete program output is presented in the following list. Steps 1-10 are always printed for the first iteration. Of the remaining steps, those denoted by an asterisk (*) are those printed at the end of an $x_s-\theta_s$ iteration (N2 index) when NPRINT = 0. For NPRINT = 1 all output (steps 11-18) is printed for every value of N1.

- 1. Three-line title or description.
- List of all values of integers on first and second data card.
- 3. List of Body Geometry input.
- 4. List of other input values for inviscid flow.
- 5. List of input indices for boundary-layer calculation.
- 6. List of Body shape data for boundary layer.
- 7. List of other boundary-layer input quantities.
- 8. Computed geometric parameters in normal direction for inviscid flow.
 - J Normal grid index.
 - AN Normal coordinate.
 - G Stretching function derivative (refs. 3 and 5).
 - GH Stretching function derivative at half intervals.
- 9. Computed geometric parameters in tangential direction.
 - I Tangential grid index.
 - S Arc length along reference surface.
 - X Axial coordinate.
 - Y Radial coordinate.

THET - Angle of reference coordinate surface, θ . For closed bodies, θ is the same as the body angle, θ_B . For open bodies, $\theta = \theta_B$ on the forebody and $\theta = 0$ on the afterbody.

THETB - Body angle, θ_{R} .

AK - Surface curvature on closed bodies. For open bodies AK is the surface curvature on the forebody and AK = $-(d^2r_w/dx^2)$ on the afterbody.

 Derivative of the tangential stretch function (refs. 3 and 5).

- 10. Plume velocity and shape distributions. These lists are printed at the beginning, after the 4th iteration and after the last iteration if the solution converges to the least squares error tolerance.
- 11. Inviscid relaxation iteration history.

IT - Iteration number.

DPMAX - Maximum ϕ correction, $\max_{ij} \begin{vmatrix} \phi^{IT}_{ij} - \phi^{IT-1}_{ij} \end{vmatrix}$

ID, JD - I and J location of DPMAX.

RMAX - Maximum residual, $\max_{ij} |R_{ij}|$, where R_{ij} is the right-hand side of the difference equation.

IR, JR - I and J location of RMAX.

ISUB, ISUP - Indicates if maximum residual occurred at a subsonic or supersonic point.

RAVG - Average value of the residual.

RF1 - Relaxation factor for subsonic points.

QF3 - Relaxation factor for supersonic points.

NS - Number of supersonic points.

SEC/CY - Time for iteration cycle.

- 12. List of solution of perturbation potential.
- *13. Tabulated values of surface pressure coefficient, C_p , Mach number, and axial velocity on the body along with a rough plot of C_p along the body. This plot is

distorted in the axial direction because it is for equal spacing in the computational space. The asterisks show the level of sonic \mathbf{C}_{p} .

- *14. Drag coefficients by trapezoidal integration of the Cp's on the real body. The displacement surface is removed for calculation of the drag.
- *15. Coordinates x and y of the sonic line.
 - 16. Boundary-layer reference velocity, u_{e_0} , unit Reynolds number, R_{e_0}/L and viscosity, v_{e_0} . This is only printed on the first step (Nl = 1).
- *17. List of boundary-layer quantities with profiles at intervals governed by DXP. This is always printed on the 4th iteration since that is the last iteration for which the calculation begins at the nose of the body.

AX - Axial distance from the nose, x.

UTAU - Friction velocity, u_T.

DELTA - Boundary-layer thickness, δ .

DELST - Displacement thickness, δ*.

THETA - Momentum thickness, θ .

CF - Skin-friction coefficient, C_f.

UE/UZ - Boundary-layer-edge velocity ratio; ue/ueo.

DELST+R - Augmented body radius, $\delta^* + r_w$.

DX - Integration step size.

HTR - Transformed shape factor, $\delta_{i}^{*}/\theta_{i}$.

*18. Quantities showing status of inner iteration.

XMAX - Location of maximum change in boundary layer & from previous iteration.

DPMAX - Maximum change in δ^* .

RBT - Body radius at nozzle exit.

*19. Rough plot and list of $u_{e_{V}}$ and $u_{e_{I}}$. This is printed at

the end of the inner iteration cycle whenever a new comparison is being made between the viscous and inviscid velocities. This is followed by a list of the current results of the iteration.

 $XSEP = x_s$

THET = θ_s (degrees)

DRMS = rms error, s (percent of u_{e_0})

11.2 SPECIAL OUTPUT MESSAGES

Several special messages are contained in the output to call attention to specific conditions that may occur. The messages are listed in this section with instructions about what to do when they are encountered.

(1)-----DIVERGENCE.RMAX EXCEEDS RCHEK,-----

This message is printed by the inviscid-flow program if the relaxation procedure diverges. Check all input to verify that it is correct. If no obvious errors appear, the difficulty is probably either in the choice of parameters for the computational mesh, or the smoothness of the data defining the body shape.

(2) RF1 DECREASED TO BECAUSE 10-CYCLE AVG FOR RMAX INCREASED.

This message refers to the subsonic relaxation factor in the inviscid-flow program. The initial value is 1.4. The value is automatically reduced by 10 percent if: (1) the maximum residual, averaged over 10 cycles, is greater than that for the previous 10 cycles and (2) the last maximum residual occurred at a subsonic point.

(3) QF3 INCREASED TO ____ BECAUSE 10-CYCLE AVE FOR RMAX INCREASED.

This message refers to the supersonic damping factor in the inviscid-flow program. The initial value is 0.1. The value is automatically increased if: (1) the maximum correction, averaged over 10 cycles, is greater than that for the previous 10 cycles, and (2) the last maximum residual is at a supersonic point.

(4) INPUT FROM TAPE13 HAS INCOMPATIBLE DIMENSIONS

This message is printed if the dimensions of the $\phi_{\mbox{ij}}$ solution read from Logical Unit 13 (data file 2 in figure 3) are not

the same as the values of IMAX and JMAX put on item number 7 in Table II.

(5) ****ITERATION FOR BOUNDARY LAYER/INVISCID FLOW EQUILIBRIUM CONVERGED

This message is printed whenever the maximum change in δ^* between iterations is less than the specified percent.

(6) METHOD FOR CALCULATING UTAU IN DERIV DOES NOT CONVERGE

This message refers to the iteration used to solve equation (55) for U_{τ} when δ^* is prescribed in the boundary-layer calculation. The only known cause of the iteration failing to converge is an error in the input data.

(7) DELTAI HAS BECOME NEGATIVE STOP INTEGRATION, PRINT PROFILE AT PREVIOUS STEP

This message refers to the transformed boundary-layer thickness, δ_i . The error condition may occur due to the initial integration step size DXZ being too large. Another possible cause might be a too sudden change in the body shape, or in the prescribed u_a or δ^* distribution.

(8) DELTA HAS BECOME NEGATIVE STOP INTEGRATION, PRINT VALUES AT PREVIOUS STEP

This message is not expected to occur in the finished program. If it does, check the input data carefully.

(9) METHOD FOR CALCULATING K IN ENTRAN DOES NOT CONVERGE

This message refers to the iteration used to solve equation (72) for K when δ^* is prescribed in the entrainment-layer calculation. The only known cause of the iteration failing to converge is an error in the input data.

(10) METHOD FOR CALCULATING INITIAL VALUE OF DELI DOES NOT CONVERGE

When initial values of C_f , δ , or δ^* are known, the calculation must solve an integral equation for the initial value of the transformed thickness, δ_i . This is done by iteration in a similar manner as for u_τ described in message (6). If the iteration does not converge, it is usually due to errors in the input quantities.

(11) INTERMEDIATE RESULTS OF ITERATION

This message is printed at the end of each step of the x_s - θ_s cycle. It is followed by the current value of x_s , XSEP, the current value of θ_s , THET, and the value of the rms error, DRMS.

(12) ***FINAL RESULTS***
BEST SOLUTION WAS ITERATION NO.

This message is printed whenever the least squared error has been found for the $x_s-\theta_s$ cycle discussed in section 2.2.

(13) ****SOLUTION CONVERGED TO LEAST SQUARED ERROR TOLERANCE

This message is printed whenever the rms error is less than l percent of ue at any stage of the iteration. The inviscid and viscous solutions immediately preceding this message are then the best solutions of the calculation procedure.

(14) SKIN FRICTION HAS BECOME NEGATIVE IN AN INCORRECT MANNER. CHECK ALL INPUT CAREFULLY

This message will be printed if the skin-friction coefficient changes sign. It may indicate that the initial estimate of the separation point location was too far downstream. It has usually been observed to occur when strong shocks are present, or when too few relaxation steps, MIT were used initially.

(15) ATTACHED BOUNDARY LAYER SOLUTION TERMINATED AFTER ____

This message will be printed if the viscous-inviscid interaction converges (Message 5) and no separation occurred or the separation point for the next iteration would have been downstream of the end of the body.

12.0 PROGRAM OPERATING PROCEDURE

In this section, the construction of card decks for operation of the computer programs is described. First, a general description of the operations required is given. Then the specific Job Control cards needed for operation on an IBM 370 computer are listed. The same card decks should be applicable at any 370 installation with minor modifications.

12.1 GENERAL JOB CONTROL SEQUENCE

The following list is the general Job Control procedure that would be required to run the programs for a complete viscid-inviscid interaction calculation. The reader is referred to figure 16 and Table I.

- 1. Create partitioned data sets for restart files (files 1-5 in figure 16).
- 2. Define units 2,3,8,9, and 10. These unit numbers are needed for output.
- 3. Define units 11,12,13,14, and 15 if NRSTRT = 1 in the input data. These unit numbers correspond to the input files. They contain data created in a previous run.

For starting an initial calculation, the partitioned data sets would be created in a separate operation. Then, since no data would be on file, only units 2,3,8,9, and 10 need to be defined. For restarting an iterative calculation, all data files would exist, so units 11 to 15 must also be defined.

To execute the boundary-layer program alone, unit 10 must be defined in order to output the $\delta*+r_w$ and u_e/u_{e_O} list. Unit 12 must be defined when LVAR1 = 2, and unit 15 must be defined when LDSTAR = 1.

To execute the inviscid program alone, units 2 and 8 must be defined. Unit 13 is also required when LREADP = 1, and unit 14 is required when IXY = 0.

12.2 JOB CONTROL EXAMPLES

In this section, specific examples of Job Control cards used for the operations discussed previously are presented. In the examples, the computer program is referred to as "ITER" with the source code names "SITER" and the load module or binary version named "BITER". The account ID used in the examples is WYL.XM.KOl. Logical units 5 and 6 are the standard input/output file numbers. It is not necessary to specifically define these unit numbers in the JCL deck.

12.2.1 Creating Partitioned Data Sets

Partitioned data sets for use as input/output disk files must be created before the normal program operation can proceed. The following procedure is suggested:

Use IBM Utility Program IEFBR14.

Use default values for DCB (DSORG=PO, RECFM=VS).

On 3330 disk, use SPACE in tracks as follows (refer to figure 16 and Table I for explanation of file numbers):

```
VELBOD (File 3) SPACE = (TRK, (2,1,10))

RESTRT (File 5) SPACE = (TRK, (10,2,10))

PHI (File 2) SPACE = (TRK, (20,4,10))

XOFILE (File 1) SPACE = (TRK, (4,1,10))

DSFILE (File 4) SPACE = (TRK, (6,1,10))
```

Example of creating a partitioned data set called VELBOD:

```
//EXEC PGM=IEFBR14
//A DD DSN=WYL.XM.K01.VELBOD,VOL=volume,
// UNIT=3330,DISP=(,CATLG),
// SPACE=(TRK,(2,1,10))
```

12.2.2 Starting an Iteration Sequence

To start an iteration sequence, unit numbers 2, 3, 8, 9, and 10 must be defined. The specific sequence of cards used to perform the calculations presented in section 13.1 is as follows:

```
//EXEC FORTGO, PROG=ITER, VOL=volume
       LIB='WYL.XM.KO1.BITER'
//GO.FT02F001 DD DSN=WYL.XM.K01.VELBOD(RUN1),
       DISP=OLD
//GO.FT03F001 DD DSK=WYL.XM.K01.RESTRT(RUN1),
       DISP=OLD
//GO.FT08F001 DD DSN=WYL.XM.K01.PHI(RUN1),
//
     . DISP=OLD
//GO.FT09F001 DD DSN=WYL.XM.K01.XOFILE(RUN1),
//
       DISP=OLD
//GO.FT10F001 DD DSN=WYL.XM.K01,DSFILE(RUN1),
//
      DISP=OLD
//GO.SYSIN DD *
       Input data cards
```

12.2.3 Restarting an Iteration Sequence

The specific cards used to perform a restart of the calculation started in the previous section are:

```
// EXEC FORTGO, PROG=ITER, VOL=volume,
       LIB='WYL.XM.KOl.BITER'
//GO.FT02F001 DD DSN=WYL.XM.K01.VELBOD(RUN2),
       DISP=OLD
//GO.FT03F001 DD DSN=WYL.XM.K01.RESTRT(RUN2),
       DISP=OLD
//GO.FT08F001 DD DSN=WYL.XM.K01.PHI(RUN2),
//
       DISP=OLD
//GO.FT09F001 DD DSN=WYL.XM.K01.XOFILE(RUN2),
//
       DISP=OLD
//GO.FT10F001 DD DSN=WYL.XM.K01.DSFILE(RUN2),
       DISP=OLD
//GO.FT11F001 DD DSN=WYL.XM.K01.RESTRT(RUN1),
       DISP=OLD, LABEL=(,,,IN)
//
//GO.FT12F001 DD DSN=WYL.XM.K01.VELBOD(RUN1),
       DISP=OLD, LABEL=(,,,IN)
//GO.FT13F001 DD DSN=WYL.XM.K01.PHI(RUN1),
//
       DISP=OLD, LABEL=(,,,IN)
//GO.FT14F001 DD DSN-WYL.XM.K01.XOFILE(RUN1),
//
       DISP=OLD, LABEL=(,,,IN)
//GO.FT15F001 DD DSN=WYL.XM.KO'l.DSFILE(RUN1),
       DISP=OLD, LABEL=(,,,IN)
//
//GO.SYSIN DD *
       Input data cards
/*
```

These cards were used with the example discussed in section 13.2. The input data cards required for restarting are summarized in Table III.

12.2.4 Executing the Boundary-Layer Program Alone

The specific cards used to perform the calculations discussed in section 13.3 are listed in this section. In the example shown here, all input is assumed to be from cards, but the output list of $\delta^* + r_w$ and u_e/u_{e_O} is to be saved on unit 10. Unit 12 would be required for input if LVAR1 = 2, and unit 15 would be required if LDSTAR = 1. The cards used in the example in section 13.3 are:

12.2.5 Executing the Inviscid Program Alone

The cards used to perform the calculations discussed in section 13.4 are listed in this section. In this example, the velocity potential, ϕ , is input from unit 13, and the new solution for ϕ is output on unit 8. The calculated velocity on the body is output on unit 2. Input: from unit 13 corresponds to LREADP = 1 in the card input data. In addition, unit 14 would be required for input of the body shape if IXY = 0 in the card input data. The specific cards used in the example are:

13.0 NUMERICAL EXAMPLES

In this section, several example calculations are presented to aid in program checkout. An example is presented of a complete viscid-inviscid interaction. An example is also presented of the use of the boundary-layer program alone for a two-dimensional geometry. That example also demonstrates the two options for boundary conditions, having u_e specified in the beginning of the calculation, and δ^* specified in the second part. Input data for another sample case are also presented to demonstrate the use of the program to calculate the inviscid flow alone.

13.1 AXISYMMETRIC INTERACTION

A list of the punched card input data for a sample calculation on the boattailed body shown in figure 8a and b is presented in figure 17. The case being calculated is for a free-stream Mach number of 0.8. The body corresponds to the ogive-cylinder body with a circular-arc boattail described in reference 20. The JCL card deck for this case has been presented in section 12.2.2. The running time for the complete calculation is about 3.6 minutes on the IBM 370/165.

Selected output for the sample case is shown in figure 18. The solution converged to the least squared error tolerance in 25 iterations.

The complete list of output for this case, with NPRINT = 0, consisted of a total of approximately 2500 lines. Output steps-1-7 as listed in section 11.1 have been omitted from this presentation since they simply verify the input data. The output pages shown are those corresponding to steps 8-19 of the set described in section 11.1 for NPRINT = 0 on the first iteration and then a few samples of the rough plots of $u_{\rm ey}$ and $u_{\rm e_I}$ at intermediate steps, including that at iteration 25 (fig. 18(f)). Finally, figure 18 concludes with the inviscid solution and boundary-layer and plume solutions corresponding to the final result.

13.2 EXAMPLE OF RESTARTING AN INTERACTION CALCULATION

The punched card input data for restarting the interaction calculation of section 13.1 if that calculation should undergo premature termination at an intermediate iteration is presented in figure 19. The JCL card deck for this calculation was presented in section 12.2.3. Note that the iterative calculations cannot be restarted at any arbitrary iteration using the restart file, unit 11. That file and the other output files contain only the data that were output just prior to the termination.

13.3 TWO-DIMENSIONAL BOUNDARY LAYER

A list of the punched card input data for a sample calculation on the two-dimensional configuration shown in figure 20 is presented in figure 21. Note that two sets of input are presented for this case, giving an example of the options of prescribed $\mathbf{u}_{\mathbf{e}}$ and prescribed δ^* . The data for $\mathbf{u}_{\mathbf{e}}$ and δ^* were obtained from the experimental results of reference 18 which indicate separation occurring in an adverse pressure gradient region downstream of a shock wave. The output for the complete boundary-layer calculation are presented in figure 22. No external data files were used for input for this case. The JCL card deck for this case was presented in section 12.2.4.

13.4 AXISYMMETRIC INVISCID FLOW

The punched card input data for a sample calculation of the inviscid flow alone are presented in figure 23. The output for this case is shown in figure 24.

REFERENCES

- Presz, W. M., Jr. and Pitkin, E. T.: Analytical Model of Axisymmetric Afterbody Flow Separation. Journal of Aircraft, Vol. 13, No. 7, July 1976, pp. 500-505.
- Cosner, R. R. and Bower, W. W.: A Patched Solution of the Transonic Flow Fields About an Axisymmetric Boattail. AIAA Paper No. 77-227, presented at Fifteenth Aerospace Sciences Meeting, Los Angeles, CA, Jan. 24-26, 1977.
- 3. Keller, J. D. and South, J. C., Jr.: RAXBOD: A FORTRAN Program for Inviscid Transonic Flow Over Axisymmetric Bodies. NASA TM X-72831, Feb. 1976.
- 4. Reubush, D. E. and Putnam, L. E.: An Experimental and Analytical Investigation of the Effect on Isolated Boattail Drag of Varying Reynolds Number up to 130×10⁶. NASA TN D-8210, May 1976.
- 5. South, J. C., Jr. and Jameson, A.: Relaxation Solutions for Inviscid Axisymmetric Transonic Flow Over Blunt or Pointed Bodies. Proceedings of the AIAA Computational Fluid Dynamics Conference, Palm Springs, CA, July 19-20, 1973.
- 6. Henson, J. R. and Robertson, J. E.: Methods of Approximating Jet Boundaries for Highly Underexpanded Supersonic Nozzles. AEDC-TDR-62-7, May 1962.
- 7. Kuhn, G. D.: Calculation of Compressible, Nonadiabatic Boundary Layers in Laminar, Transitional and Turbulent Flow by the Method of Integral Relations. NASA CR-1797, Nov. 1971.
- 8. Probstein, R. F. and Elliott, D.: The Transverse Curvature Effect in Compressible Axially Symmetric Laminar Boundary-Layer Flow. J. Aero. Sci., Vol. 23, 1956, p. 208.
- 9. Stewartson, K.: Correlated Incompressible and Compressible Boundary Layers. Proc. of the Royal Soc., A, Vol. 200, 1949, pp. 85-100.
- 10. Kuhn, G. D. and Nielsen, J. N.: An Analytical Method for Calculating Turbulent Separated Flow Due to Adverse Pressure Gradients. Project SQUID Tech. Rept. NEAR-1-PU, Oct. 1971.

- 11. Coles, D.: The Law of the Wake in the Turbulent Boundary Layer. J. Fluid Mech., Vol. 1, pt. 2, 1956, pp. 191-226.
- 12. Nash, J. F. and Hicks, J. G.: An Integral Method Including the Effect of Upstream History on the Turbulent Shear Stress. Proceedings of the 1968 AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers. Stanford University, CA, p. 41.
- 13. Stewartson, K.: On Goldstein's Theory of Laminar Separation. Quarterly Journal of Mechanics and Applied Mathematics, Vol. XI, Pt. 4, 1958.
- 14. Cebeci, T., Mosinskis, G., and Smith, A.M.O.: Calculation of Separation Points in Incompressible Turbulent Flows. Jour. of Aircraft, Vol. 9, No. 9, 1972, pp. 618-624.
- 15. Gerhart, P. and Bober, L.: Comparison of Several Methods for Predicting Separation in a Compressible Turbulent Boundary Layer. NASA TM X-3102, 1974.
 - 16. Newman, B. G.: Some Contributions to the Study of the Turbulent Boundary Layer Near Separation. Australian Dept. of Supply, Rept. ACA-53, March 1951.
 - 17. Simpson, R. L.: Characteristics of a Separating Incompressible Turbulent Boundary Layer. Paper No. 14 in Flow Separation, AGARD CP-168, May 1975.
 - 18. Alber, I. E., Bacon, J. W., Masson, B. S., and Collins, D.J.: An Experimental Investigation of Turbulent Transonic Viscous-Inviscid Interactions. AIAA Journal, Vol. 11, No. 5, 1973, pp. 620-627.
 - 19. Nielsen, J. N., Stahara, S. S., and Woolley, J. P.: A Study of Ingestion and Dispersion of Engine Exhaust Products in Trailing Vortex Systems. NASA CR-114,721, November 1973.
 - 20. Reubush, D. E.: Experimental Study of the Effectiveness of Cylindrical Plume Simulators for Predicting Jet-On Boattail Drag at Mach Numbers up to 1.3. NASA TN D-7795, Nov. 1974.
 - 21. Abeyounis, W. K.: Boundary Layer Separation on Isolated Boattail Nozzles. M.S. Thesis, School of Engineering and Applied Science, The George Washington University, May 1977.

Figure 1.- Effective body shape for separated flow.

Figure 2.- Schematic of viscous-inviscid interaction iteration.

Figure 3.- Illustration of exhaust plume construction.

Figure 4.- Boundary layer coordinates and notation.

Figure 3.- Illustration of exhaust plume construction.

Figure 4.- Boundary layer coordinates and notation.

(c) Friction velocity and displacement thickness.

Figure 5.- Typical variation of boundary layer quantities for separated boattail flow.

Region 1

Region 2

Inviscid

Boundary of inviscid jet

Viscous

Viscous

Inviscid

Te

Te

Te

Figure 6.- Schematic of exhaust plume-separated flow entrainment model.

Figure 7.- Typical velocity profiles in the entrainment region.

(b) Boattail configuration 1.

(c) Boattail configuration 2.

Figure 8.- Body with circular arc boattail (ref. 20).

Figure 9.- Comparison between calculated and measured pressure coefficient distributions on unseparated boattail-sting configuration.

Figure 10.- Comparison between calculated and measured pressure coefficient distributions on a boattail-sting configuration with separation.

Figure 10. - Concluded.

(b) Effective body shape.

Figure 11.- Calculated boundary layer quanties on configuration 1; M_{∞} = 0.8.

(c) Skin-friction coefficient.

Figure 11.- Concluded.

Figure 12.- Comparison between the theory and experimental data for integrated boattail drag coefficient on boattails with solid plume simulators.

Figure 13.- Comparison between calculated and measured pressure coefficient distributions for separated flow on configuration 1 with exhaust plume simulated by high pressure air.

Figure 13.- Concluded.

Figure 14. - Calculated entrainment quantities.

\EDC-T H . 79-4

Figure 14.- Concluded.

Figure 15.- Comparison of experimental and calculated boattail drag on configuration 1 with plume simulated with high pressure air.

7

Figure 16.- General relationship of programs and data files.

NASA DATA COMPARISON - CONFIGURATION 1 JET SIMULATED WITH HIGH PRESSURE AIR BOATTAIL L/D = 0.8DE/D = 0.510 0 0 700 0 0 1 1 1 1 0 1.4 0.8 98 0.0 0.0 0.025013 0.1 0.2 0.050026 0.3 0.075038 0.4 0.100051 0.5 0.125064 0.6 0.150077 0.7 0.175090 0.8 0.200102 0.9 0.225115 1.0 0.250128 1.1 0.275141 1,2 0.300154 1.3 0.325166 1.4 0.350179 1.5 0.375192 1.6 0,400205 1.7 0.425218 1.8 0.450230 1.9 0.473630 2.0 0.489760 2.1 0.498366 2.2 0.500000 2.3 0.500000 2.5 0.500000 3.0 0.500000 3.5 0.500000 4.0 0.500000 5.0 0.500000 6.0 0.500000 7.0 0.500000 7.5 0.500000 8.0 0.500000 8,025 0.499781 8.05 0.499125 8.075 0.498030 8.1 0.496496 8.125 0,494521 0.492104 8.15 8.175 0.489241

(a) First 49 cards.

0.485931

0.482171

8.2

8, 225

Figure 17.- Input data for viscous-inviscid interaction calculation.

```
8.25
          0.477956
8.275
          0.473282
          0.468146
8.3
8.325
          0.462542
8.35
          0.456463
          0.449905
8,375
8.4
          0.442859
8.425
          0.435319
8.45
          0.427277
8.475
          0.418722
8.5
          0.409646
8.525
          0.400037
          0.389885
8.55
          0.379176
8.575
8.6
          0.367897
8.625
          0.356032
8.65
          0.343565
8.675
          0.330479
8.7
          0.316753
8.725
          0.302368
8,75
          0.287298
          0.271518
8.775
8.8
          0.255000
8.81
          0.255000
8.82
          0.255000
8,83
          0.255000
8.84
          0.255000
          0.255000
8.85
8,86
          0.255000
8,87
          0.255000
8.88
          0.255000
8,89
          0,255000
8.9
          0.255000
8.92
          0.255000
          0.255000
8.94
8.96
          0.255000
8.98
          0.255000
          0,255000
9.0
9.025
          0.255000
9.05
          0.255000
9.075
          0.255000
          0.255000
9.1
9.15
          0.255000
9.2
          0.255000
9.3
          0,255000
9.4
          0.255000
9.5
          0.255000
9.7
          0,255000
9.9
          0.255000
```

(b) Next 49 cards.

Figure 17.- Continued.

10.1 10.3 10.5 10.8 11.2	,	0.255 0.255 0.255 0.255 0.255	000 000 000 000						
12.0		0.255							
61	31	0	0	0				•	
0.0		0.0		0.0		0.0	8.8	1.0	8.0
T									-
1.4		4.0		1.0		0.0	523.8	1.0	0.0125
F	-	_	_	_	_	_			
1	Τ	2	_ 3	1	0	0			
0.5		2134.		576.9		0 .97			
0.15		10.0		0,166	667	0.0			

(c) Remaining 15 cards.

Figure 17. - Concluded.

---- NORMAL COORD. STRETCH FOR ALE 1.300 -----G GH , AN 0.3490E-53 0.77256-04 2.0 0.1617E 03 0.1545E-03 0.4607E-03 0.76685-03 3 0.63395 02 0.13655-02 0.36086 02 0.1964E-02 9-29005-02 0.2391F 02 0.3836F-02 5 0.51480-02 6 0.1720F 02 0.1307F 92 0.9905E-02 0.1207E-01 0.1424t-01 0.1687E-01 0.1951E-01 0.2265E-01 _ 8_ 0-1055- 05 0.821% 01 10 0.67295 01 0.25795-01 0.29476-01 0.5583E 01 0.4690€ 01 0.2314E-01 0.2738E-01 0.416[E-01 0.4644E-0] 11 12 13 0.796BE 01 0.5126E-01 0.5670E-01 14 0.2377F 01 0.6215E-01 0.68245-01 15 0.28865 01 0.74236-01 0.9110F-01 0.74336-01 0.91105-01 0.2474F 01 .0.87378±01 . 0.9535E-01. 15. 0.10285 00 0.1110F 00 0.1193E 00 0.1282F 00 9.2123E 01 17 0.1322F 01 18 0.1561F 01 19 0.1372E 00 0.1470E 00 20 0.13340 01 21 0.1135E 01 .1.1568E 10 .0.1674E 00 0.1780E CO 0.1895F 00 _0.2010F 00 0.4595E_00 0.8020E_00 23 0.2134E _00 23 0.22590 00 0.2391E 90 0.2567F 00 24 0.66236 00 0.2524E 00 25 0.53718 00 -0.2810E 00 0.29638 00 _26 0.4245F 00 0.3116F 00 0.7227E 00 0.3443F 00 0.3280F 90 0.3617C 00 27 0.2304F 00 0.1465E 00 0.3792F 00 28 0.25776 00 29 0.41635 00 0.43605 00 30 0.7000E-01 0.4558E 00 0.4767E CO 31 0.11985-00 0.49766 00 0.5198E 00

(a) Computed geometric parameters in normal direction for inviscid flow.

Figure 18.- Selected output for viscid-inviscid interation calculation.

ı

1	5	x	Υ ,	THET	THFTB	AK	F
1	0.1	0.0	0.0	0.9000E 0	2 0.90005 02	0.2747E-04	0.23P1E 00
2	0.7030=-01	0.6820F-01	0.170fE-01	0.14045 0	2 0,14045 02	0-33165-04	0.22509 00
٦	0.1474E GO	0.1782E 00	0.74566-01	0.1404E 0	2 0.1404€ 02	0.44135-74	3.22645 (4)
4	A.2181E 20	0.2116E 00	0.52976-01	D-1404E 0	2 0.14045 02	0.15957-03	C.2174F 00
5	0.2992F 00	0.2903E 00	0.7260E-01	0.1404E 0	2 0.1404F 02	0.1727E-07	0.1977E 00
e	0.36735 00	0.757E 00	0.9398F-01	0.14945 0	P 0.14045 02	0.1889F-05	0.1309F 11
7	0.4840E 00	0.46965 00	^.1175E 00	0.1404E 0	2 0,14045 02	0.9937E-05	0.16425 00
Ħ	0.59045 60	0.57225 00	0.1434E 00	0.14045 0	2 041404E 02	0.7906E-04	0.1484F NO
9	0.70916 00	0.6879E 00	0.1721E 90	0.1404E 0	2 . Q.1404 <u>F.</u> 02	0.15785-03	0.13405 00
1 ግ	₽•940JE ∿ጋ	0.31494 CQ	0.2038E CO	0-1404E 0	2 14045 02	0.1533E-03	0-1511E 00
11	0.96465 00	0.95525 00	0.2389E 00	0.1404F, 0	2 0.1404E 02	0.93595-05	0.1099F 07
12	0.1144E 01	0.1330E 01	0.?775E 00	0.1404E 0		D.7055E-04	0.1000F 00
13	0.1318€ 01	0.12795 01	0.3198E 90	7-1494E 0			0.9156F-01
14	0.15085 01	D-1463E 01	0.3659E 0 D	0.14045 0			0.8426E-01
15	0-1714E 01	0 . 16C 2E 01	0.4158E 00	0.1404E 0			0.7800E-01
16	0.1935F ^1	0.1878E 61	0.46898 00	0.1251E 0			0.7265E-01
17	0.2172F 01	0.21121 01	0.4989E 00		1 0.2243E 01	0.7612F 00	0.6809F-01
18	0.2425E 01	0.2765F 01	0.5000E 00	0.0		-0.49005-02	0.64225-01
19	0.2691F 11	0.2631F P1	0.5000E 00	0.0	0.2473E-02		0.6096F-01
20	0.2971E 01	0.2911E 01	0.5000E 00	0.0		-0.5435F-04 -0.1585E-03	0.5823E-01
21	0.3263F 01	_ <u>0.</u> 3203E 01_ 0.3596E 01	_0 <u>.50</u> 00E_00_ 0.5000F_00	_0 <u>.0</u>		0.9587E-04	0.5599F-01 C.5419F-01
? 2 23	0.3878F 01	0.3818E 01	0.5000F 00	0.0		-0.5328E-06.	
24	0.4197E 01	0.4137E 01	0450905 00	0.0		-0.3248E-04	D.51785-01
25	0.4521E 01	0.4461F 01	0.5000E 00	2.0	0.4920E-03		0.51145-01
26	0-4848F 01	0.4788E 01	0.50002 00	0.0	-0.53240-03		0.5087E-01
27	0.5175E 01	0.5115E 01	0.5000E 00	0.0		0.5825E-04	0.5098F-01
28	0.55016 01	0.5441F 01	0.5000E CO	0.0		-3.1216E-03	Q.5148E-01
29	0.5822E 01	0.57(2E D1	0.5000E 00	0.0		-0.2990E-03	0.52425-01
30	0.61360 01	0.6076E 01	0.5000E 00	0.0		-0.2757E-03	0.53875-01
31	0.644QE 01	0.6380F 01	0.5001E 00	0.0	2_80295-02	0.3416E-03	D.5579E-01
72	0.6732F 01	0.6672E 01	0.5001E 00	0.0	-0.26620-02	0.9352F-03	0.5840F-01
33	0.7010E 01	0.6950E 01	0.50005_00	0.0	-0.2203E-01	0.1499E-02	0-51795-01
34	0.7271E 01	0.72115 01	0.49595 00	0.0	-0.1939F-01	-J.2769E-02	0.5614F-01
35	0.7513E 01	0.74545 01	0.4999F 00	0+0	0.5385F- 0 1	-0.7781F-02	0.71725-01
36	0.7735F 01	0.7676E 01	0.500JE 00	0.0	0.9941E-D1	0.6040F-02	0.78885-01
27	0.7936E 01	0.7876£ 01	0.50045 00	0.0	-D.76*7E-01		7.5812F-01
39	0.8114E 01	0.80540 01	0.4990E 00	0-0	-0.2162F 01		0.10015 00
39	0.8269F 01	0 *8 SOOE 01		0.0_	-0.839BE 01	**	0.1159E_00
40	0.8401F 01	9.0341E 01	0.458fE 00	0.0	-D.13834 02		0.1368F C7
41	7.851 TE 71	9 .8453E 01	0.4263F 00	0.0	-0.1848E 02		0.16425 00
42	0.6505E 01	0.85459 01	0.39185 00	0+0	-0.2744E 02		0.1992E 00
43	0.8681F 01	0.86215 01	0.3578F 00	0+0	-0.2579E 02		D.2404E 00
44	0.8745E 11	0.8686E 01	1.32485 00	n.)	-0.2971E 02		0.2792E 00
45	0.8503F 01	0_•∺743€ 01	0.8916E 00	0.0	.÷0•3100€ 05	0.1939E.01	0.2977E 00

(b) Computed tangential geometric parameters.

Figure 18. - Continued.

```
46 0.8860E D1 C.6800E D1 0.2550E D0 0.0
47 0.8524E 11 0.6864E D1 0.2550E D0 0.0
48 0.8998E D1 0.8528E D1 0.2550E D0 0.0
                                                                   -0.1086E 02 -0.6596E 02 0.2790E 00
                                                                   ^.1355E-03 -0.1205F-01 0.2471E 00
-0.2549E-05 -3.2950E-05 0.2096E 00
 49 0.9084F 01 0.9024F 01
50 0.9186F 01 0.9126E 01
                                    0.2550F 00 0.0
0.2550F 00 0.0
                                                                   -0.1286C-07 -0.2236E-07
                                                                                                   0.1786F 00
                                                                   -C.5914E-10 J.1232E-09 0.1501E 00
51 0.930 BE 91
52 9.9457E 01
                                                                 -0.4399E-[1 0.6637E-11 0.1240E 00 0.2231E-11 0.1014E-11 0.1004F 00
                     0.92497 01
                                    0.2550E 00 0.0
                                     0.2550E 00 0.0
                     0.93576 01
                                    0.255DE 00
                                                                                                   9.79375-01
                                                                   0.48485-13 -3.1016E-12
 5.2
      0.9644E 01
                     C.9884E 01
                                                    9.7
    0.9884E 01
                     0.98245 01 .0.25506 00
                                                                   -0.5845E-13 0.1246E-13
                                                                                                   0.6076E-01
 54
                                                     9.0
55 0.1020E 02 0.1014E 02 0.2550E 00 0.0
56 0.1065E 02 0.1059E 02 0.2550F 00 0.1
                                                                                                   0.44645-01
                                                                   0.47845-14 0.30165-14
                                                                    0.1875E-15 0.1476E-15 0.3100E-01
                                                                                                   0.19845-01
                                     0.25505 00 0.0
                                                                    0.4834--16 0.11786-16
 57 0.1132E 02
                     9-11265 02
 58 0.1244E 02 0.1238E 02
59 0.1468E 0? 0.1467F 02
60 0.2140E 02 0.2134F 02
                                                                                                   D.1116E-01
                                     0.2550E 00 0.0
                                                                    0.0
                                                                                    0.0
                                     0.2550F PO 0.7
0.2550E 00 0.0
                                                                                   0.0
                                                                                                   0.4961E-02
                                                                    0.3
                                                                                                   0-1240E-02
                                                                                   0.0
                                                                    0.0
                                                                                   0.0 ... , ... 0.1000E-29
 61 0.1000E 21 0.1000E 31 0.2550E 00 0.0 ____
                                                                    0.0
```

UZ = 8.86764E 02 REZ = 3.82561E 06 _NUZ = 2.31797E-04

(b) Concluded.

Figure 18. - Continued.

≥
ED
5
R-7
9
_

PLUMF VILCOITY		PLUME SMAPE	
		JP m 56	
NUT = 55			_
=	<u> </u>	x	R
		8,40705 10	2.5579F-01
8.86705.00		4.81500 00	2.5627F~01
8.8140F 00	1,4179F 03	8.82205 00	2.6109F-01
J.FFFGE 00	1.40#4E 03	8,84700 00	2.4350t -/ 1
9.34P7£ 00		8.864 OE 00	2.4556F-C1
8.8(49% 20		. 8.98246 00	2.6758E-01
8.3P24E 13	1-3850E #3	8.9009E 00	2 .69336-01
8.90097. 90		8.9194E 00	2.70A3E-01
8.9194E 00	1.37677 03	8.9378F 00	2.7213F-01
4.737dE 00	1.37601 03	₹.95 \$4₹ Q 8	2,7343E-01
R.9594E 70	1.3752F 03	8.9869E 00	2.7462F-01
8.9609E 00	1.278 <u>8</u> F 02	9.00245.00	247572F-01
₽.00%4E 60	1.3827F 03	9.0240E DG	2.7673F-01
9.8249E AQ		, 9,0494E 00	2 - 7786E - 01
9,9494E 90		9.0749E DD	2.7889F-01
4.0749E 00		9,10036 00	2.7986F-01
9,19736 10		9.1258E 00	2.8076E-01
.e.1529E võ			2.616QE-01
9.1563F 00	1.4106E D7	9+18690 00	7.8268F-01
*.1869F 00	1.4115E 03	9.21 <u>745</u> 00	2,8335E-01
9.21746 00		9,2480E 90	2.84135-01
9.2480€ 00	1.4141E OF	_ 9,2853E 00	2_+#487E-01
9.20536 00	1.4166F 03	9.3226E 00	2.0549E-01
9,32266 00		9,36075 00	7 - 860 IE -0 1
9.7600F 70		7.3973E 00	2.8647E-01
9.7977 00		9.4440F 00	2.86976-01
9,4440€ 00		9.4906F ^0	2.2739F-01
9.4986E RB		9.53738 00	2.8774E-01
9.5377 00		9.5840E 00	2.8804E-01
9.5847E 70		9.644 <u>9E ^Q</u>	2.9840F-C1
9.644 OF 70		7.7940E 00	2.5567E-01
9.7040F 00		9.76405 00	2.6839E-01
9.7640E 00		9.8240E ^O	2.8909E-01
9.82436 00		a-āūķāE oa	2.8932E01
9_9040€ 00		9.984BE 00	2.8949E-01
9-98478 30		<u></u>	2,∙8 <u>963</u> €-0 L
1.00645 01		1.0144E OL	2.6975F-01
1.91495 01		1.0 \$55E 01	.2 • 8991E-01
1.02565 01 1.03686 71		1.03685 01	7.9032E-91
		140480E OL	5 . 401 1E-01
1.0480F 01 1.0592E 01		1.05920 01	2.9019F-01
1.05722 01		_ 1.07c01_01	2 . 9 0 3 0F - Q 2
1.09295 01		1.092HE 01	2.9033E-01
1.1096 01		1.1096E OL	2.9035E-01
1.12645 01	_	1.1264E 01	2.9037F-01
1,15445 01			2.90415-01
1.18246 01		1.1824E 01	2.90428-01
1.21045 01	·	1.21040 01	2 .90 4 5E - 01
1.23845.00		1.23H4F 01	2.9046E-11
1.2944F 01		1,29445 01	2.90517-01
1.2504F 01		1.7504F 01	7.9051E-C1
1.04646 1		I • 40 A + 1	2.9051F-01
1.46245 71		1.4624E 01	2.4051E-C
1.42045 01		1.63048 01	2.9051E-01
1.7584F 01		1.7994 01	2.97515-11
, , , , , , , , , , , , , , , , , , ,	STAME AN	1,96516 51	~- 0151L-01

(c) Calculated inviscid plume velocity and shape after four iterations. Figure 18.- Continued.

							•		
AX	UTAU	DELTA	DELST	THETA	'CF	UE/UZ	DEL ST+R	. >x	HTR
1.50000F-01	2.33723E 01	8.12110E-04	2.99359E-04	1.173985-04	2.482325-03	2.76755	3.791896-32	1.2505 29	⊓ UK 2•3664
1 - 877 746- 51	2.55566E 01	8-44613E-04	_2.98955E-04	1.21524E-04	2.75536E-03		4.55170E-02	7.695E-03	2.2599
2-11557E-01	2.97197E 01	9.50981E-04	3.00651E-04	1.33346E-04	3.46842E-03	0.82138	5.321745-02	7.695E-07	
2.50871E- 01	3.31723E 01	1.32066E-03	3.49580E-04	1.71777E-04	4.16471E-03		6.309945-02		2.0364
2.991366-91	3.52674F 01	1.81454E-03	4-11406E-04	2 -1 3935E-04	4.54002E-03	0.84948	7.29945F-02	9.829E-03	1,7842
3.32904E-01	3.54707E 01	2.34252E-03	4.94322E-04	2-63096E-04	4-49364E-03		8.37 <u>624E-02</u>	9.829E-03	1.6139
3.75622E-01	3.54577E 01	2.80815E-07	5-71 088E-04	3.07384E-04	4.29370E-03	0.86650		1.068E-02	1_5249
4.22519F-01	3-51695E_01	3.27641E-03	6-54452E-04	3.54614E-04		-	9.45243F-02	1.068E-02	1.4737
4.694 16E-01	3.50368F 01	3.71552F-03	7.29910E-04	3.97470E-04	4.15884E-D3	0.87274_	1.06338F-01	1.1725-02	1.4410
5.21212F-01		4.18222E-03		4-43672E-04	4.05851E-03	0.87897	1.191445-01	1 - 1 72E - 02	1.4150
5.730 75E-01	3.473.14E 01	4.63265F-03	8.87329E-04	4.86727E-04		0.8 <u>8411</u> 0.88923	.1-31181F-01	1.295E-02	1.3942
6.30354E-01			9.69349E-04		3-98432E-03		1.44213E-01		1.3758
6.877 02E-01	3.45476E 01	5.58996F-03	1.04707E-03	5.773126-04	3.90954E-03			1-434E-02	1.3597
7.51181F-01	3.44856E 01	6.10030E-03	1-13089E-03	6.24772E-04	3.84983E-03	0.89883	1-73061E-01	1.4345-02	1.3453
6 . 1 45 62 E- 01	3.44616E 01	6.59389E-03	1.21136E-03	6.70268E-04	3.79037E-03	0.90373	1.89022E-01		1.7320
8.847768-01	3.44644E 01	7-13670E-03		7-1 8645E-04	3.74031E-03	0.90962	2.049B1E-01	1.587E-02	1.3201
9.54897E-01	3.44892E 01	7.66259F-03	1.38028E-03	7.65373E- 0 4	3.69230E-03	0.91402	2-226D4E-01	L • 753E = 02	_ <u>l. 308</u> 4.
1.03205F 00	3.45736E 01	8 • 22651E-03	1.46708E-03		3.64987E-03	0.91941	2.40225E-01	1.753E-02	1.2981
1.10921E 00	3.46655E 01	8.776901-03	1.5520EF-03	8-13957E-04	3.61203E-03	0-92579	2.59611E-01	1.929E-02	<u>1.</u> 2873
1.19373E 00	3.48792E 01	9.35990E-03	1.63672E-03	8.61208E-04	3.57649E-03	0.93216	2.78947E-01	1.9295-02	1.2779
1.27826E 00	3.50805E 01	9-92495F-03	1.72096E-03	9.07686E-04 9.53774E-04	3.55074E-03	0.94039	3-00222E-01	2.113E-02_	1.2670
1.370398 00	3.555298 01	1.05087E-02			3.52304E-03	0.94859	3.214494-01	2.113E-02	1.2581
1.46246E 00	3.59728E 01	1.19627E-02	1.79453E-03 1.87131E-03	9-92829E-04	3.51757E-03	0.96071	3-4455BE-01	5 - 103 E - 05 T	1.2452
1.56225E 00	3.73569E 01			1-03257E-03	3.50290E-93	0.97277	3-67673E-01	2.303E-02	1.2357
1.66205E 00	3.85255E 01	1.20360E-02	1.890725-03	1.03716E-03	3.56584E-03	0,99795	3.926545-01	2 <u>-495=-0</u> 2	1 <u>.2</u> 113
1.76974E 00	4-31532E 01	1.24262E-02	1.93213E-03	1-05097E-03	3.58643E-03	1.02290	4.17657E-01	2.495E-02	1.1974
1.87743E 00	4+69889E 01	1.26458E-02	1-79148E-03	9.46336E-04	3.85213E-03	1.09468	<u>4.444</u> 52E- <u>01</u>	2.692E-02	1•135 <u>6</u>
1.99481E 00	4.59360E 01	1.276236-02	1.77124E-03	9-020308-04	3.95402E-03	1.16430	4.70121E-01	2.6 92 E- 0 2	1.1104
2.11220E 00	4.53606E 01			1.031359-03	2.67774E-03	1 - 1 77 71	4.90959F-01	2.935E-02	.1.1627
2.23829E 00	3.91642E 01	1.355725-02		1.15815E-03	3.491546-03	1.19102	5.00869E-01	2.935E-02	1.1861
2.36438E 00	3.418210 01	1.49761E-02 1.73931E-02		1.535A5E-03	5.91 <u>8</u> 88E-03	1 <u>.1</u> 3462_	<u>5.03</u> 02701_	3.152E-0 <u>2</u>	1.2855
2.49766E_00	3.14853E 01	· · · · · · · · · · · · · · · · · · ·	3.86262E-03	1-97059E-03	2.510952-03	1.07674	5.03863E-01	3 • 1 525 - 0 2	1.3532
2.63094E 00	3.251530 01	2 - 006 765 - 02	4,28871E-03	2.22781E-03	2.51425E-03	1.05699	5.04289E-21	3 <u>.332E</u> -02	1.3257
2.77090E 00	3.20185E 01	2.27232E-02	4.76754E-03	2.50880E-03	2-47592E-03	1.03709	5.04768E-01	3,332E-02	1.3128
2.91086E 00	3.24675E 01	2.574950-02	5.06888E-03			1.03053	5-050691-01	3 4 9 9 5 - 02	1.2793
3.35689E 00	3.24675E 01	2.78481E-02	5.40366E-03		2.54126E-03	1.02395	5-05404E-01	3.499E-02	1.2587
3.20292E 90	•	3.03379E-02	5.70605E-03	3 • 0 9 5 6 3 E <u>- 0</u> 3	2.56159E-03		5.05706E-01	3.6515-02	1.2376
3.35431E 00	3.23860E 01	3.27380E-02	6.02343E-Q3	3.28633E-03		1.01744	5.060237-01	3.651E-02	1.2727
3.50569E 00	3.22932E 01 3.21587E 01	3_51542F-02	6.74535E-03	3.47829F-03	2.56527E-23		5-06345E-01	3.785E-02	1.2796
3.66159E 00		3.75140E-02	6.67404E-03	3.67254E-03	2.55854E-03	1.01232	5-05674F-01	3.785E-02	1.1994
3.66159E 00	3.21024E 01	3.98895E-02	6.98608E-03	3-85704E-03	2,556560-03	1.01110	5-06986=-01	3.8985-02	1,1386
3.97698E 00	3.20196F 01	4.22145E-02	7.30225E-03	4.042735-03	2.55035E-73	1.00998	5.073025-01	3.8985-02	1.1798
4.13647E 00	3-19579E 31 3-18823E 01	4 - 4 54 98E - 02		4-22631E-03	2.544625-03	1.00916	5.07616F-01	3+ <u>98</u> 7E-02	1.1714
4.29351E 00	· - ·	4.68461E-02	7.93097E-03	4-41031E-07	2.53667E-03	1.00944	5.07931F-01	3.9875-02	1.1643
-+E9131C 00	3.1/982E 01	4.91466E- 0 2	8.25184E-03	4.59711E-D3	E0-126752-5	1.00773	5.98252E-01	4.051E-02	1.158^

(d) Boundary-layer after four iterations.

Figure 18. - Continued.

```
4.16055F 00
             3.17089E 91
                          5-14199E-02 8-57225E-03 4-78394E-03
                                                                 2.51718E-03 1.00702
                                                                                       5.08573E-01
                                                                                                   4.051E-02
                                                                                                                 1.1524
                                       9.89015E-03 4.96801E-03
4.62403E 90
             3.163495 01
                          5.36889E-02
                                                                 2.50799E-03 1.00657
                                                                                       5.08890E-01
                                                                                                   4.0871-02
                                                                                                                 1-1470
4.78757F 00
             3.15579E 01
                          5.597428-02
                                       9.20700E-03 5.15189E-03
                                                                 2.498335-03
                                                                              1.00612
                                                                                       5.09207=-01
                                                                                                    4.0870-02
                                                                                                                 1.1422
4.95126E 91
             3.15072F 91
                          5.81621E-02
                                       9.51535E-03
                                                    5.33069E-03
                                                                 2.49007E-03
                                                                             1.00596
                                                                                       5.09515E-71
                                                                                                    4.094F-02
                                                                                                                 1.1372
5.11501E 00
             3.14407E 01
                          0.03685E-02
                                       9.82352E-03
                                                    5.50914E-03
                                                                 2.48149E-03
                                                                              1.00550
                                                                                       5.098246-01
                                                                                                    4.0945-02
                                                                                                                 1.1328
5.277791 00
             2.139HAF 01
                          6.25421E-02
                                       1.01208F-02
                                                    5.68109E-03
                                                                 2.474276-03 1.00592
                                                                                       5.10121F-01
                                                                                                    4.070=-02
                                                                                                                 1.1283
5.447548 77
             3.13552F C1 6.46958F-02
                                       1.C4177E-02
                                                    5-85267E-03
                                                                 2.46681E-03 1.00603
                                                                                       5-10418E-D1
                                                                                                    4.070E-0?
                                                                                                                 1.1241
5-60111E 30
             3-131108 01
                          6.68024E-02
                                       1.071026-02
                                                    6.02153E-03
                                                                 2.459275-03 1.00614
                                                                                                                 1.1203
                                                                                       5-107105-01
                                                                                                    4-0135-02
5.76165F 00
             3.12664F 01
                          6.8893?E-02
                                       1.10019E-02
                                                    6.18988E-03
                                                                 2.45170E-03 1.00624
                                                                                       5.110025-01
                                                                                                    4.013E-02
                                                                                                                 1.1168
5.91867F 03
             3.123085 01
                          7.09243E-02
                                       1.128256-02
                                                    6.351586-03
                                                                 2.44492E-03
                                                                             1.00646
                                                                                      5.11283E-01
                                                                                                    3.925F-02
                                                                                                                 1.1134
6.07368F QQ
             3.119505 01
                          7.294125-02
                                       1.15(23E-02
                                                    6.51278E-03
                                                                 2.4381JE-03
                                                                             1.00668
                                                                                       5,115622-01
                                                                                                    3.9255-02
                                                                                                                 1.1101
6.2788E 00
             3.11720E 01
                          7.48845E-02
                                       1 . 18267E -02
                                                    6.56481F-D3
                                                                 2.43244E-03
                                                                              1.00706
                                                                                       5.11327F-01
                                                                                                    3.905=-02
                                                                                                                 1.1069
6.38009E 01
             3.11486E 01
                          7.68143E-02
                                       1.209036-02
                                                    6.81631E-03
                                                                 2.42672E-03
                                                                              1.00/44
                                                                                       5-12090E-01
                                                                                                    3.805E-02
                                                                                                                 1.1038
6.5 26 23F 02
             3-11455E 01
                          7.865726-02
                                      1.23320F-02
                                                    6.95472E-03
                                                                 2.42267E-03 1.00810
                                                                                       5.123325-01
                                                                                                                 1.1005
6.57338E 00
             3.1141fE 01
                          8.04859E-02
                                       1.25730E-02
                                                    7.09261E-03
                                                                 2.41851E-03 1.00375
                                                                                       5.12573E-01
                                                                                                    3.6542-02
                                                                                                                 1.0974
6.81126E 00
             3.12104E 01 -8.22196F-02
                                      1 • 27 59 15 - 02
                                                    7.19732E-03
                                                                 2.41988E-03 I.01047 5.12759E-01
                                                                                                    3.4720-02
                                                                                                                 1.0928
6.95015F 00
             3.127560 01
                          8.39300E-02
                                       1.29461E-02
                                                    7.30187E-03
                                                                 2-42069E-03 1.01218 5.12945E-01
                                                                                                   3.4725-02
                                                                                                                 1.0885
7.080676.00
             3 . 14 24 1t . 0 1.
                         .8.55338E-02 1.30686E-02
                                                   <u>7.36697E-03, 2.42759E-03, 1.01515, 5.13069E-01, 3.263E-0?</u>
                                                                                                                 1.0825
                          8.71105E-02 1.31933E-02 7.43245E-03 2.43351E-03 1.01812
7.21119F 00
             3.156655.01
                                                                                       5.13193E-01 3.263E-02
                                                                                                                 1.0768
7.33236U 00
                                      1.72560E-02
             3.178600 01
                          8.85734E-02
                                                    7.45918E-03 2.44484E-03 1.02226
                                                                                       5.13256E-01
                                                                                                    3.0295-02
                                                                                                                 1.0697
7.45352F 00
             2.19980E 01
                          9.00070E-02
                                       1.33225F-02 7.48708E-03 2.45493F-03 1.02640
                                                                                       5.133225-01
                                                                                                  3.0296-02
                                                                                                                 1.0630
7.561505 00
             3.24814F 01
                          9-14006E-02
                                      1.32133F-02 7.40307E-D3 2.48365E-03 1.03472 5.13213E-01 2.774E-02
                                                                                                                 .1.0501
                          9.27c21E-02 1.31200E-02 7.32549E-03 2.50944E-03 1.04301 5.13120E-01 2.774E-02
7.57548E 00
             2.29479E 01
                                                                                                                 1.0381
             34499 0E 01 . 9.44088E-02 1.26455E-02 6.99374E-03 2.57829E-03 1.06200 5.12645E-01 2.504E-02
7.77563E 00
                                                                                                                1.0104
7.37578E 00
             3.51911F 01 9.61257E-02
                                      1.22420E-02 6.69406E-03 2.63820F-03 1.08083 5.12242E-01 2.534F-02
                                                                                                                 0.9849
7.96469E 00
             3.73129F 01
                          9.91520E-02 1.13989E-02.6.06749E-03.2.75098E-03 1.11650 5.11399F-01 2.223E-02
                                                                                                                 0.9354
8.053590 00
             3.93225F 01
                                      1.07564E-02 5.52741E-03 2.84160F-03
                          1.03084E-01
                                                                              1.15161 5.097245-01 2.223--02
                                                                                                                 0.8387
8-13:126 00
             3.95440F C1
                                       1.090476-02 _5.580028-03
                          1.04533E-01
                                                                 2.83764E-03
                                                                              1-15779 5-048345-01 1-9395-02
                                                                                                                 0.8861
                                       1.11470h-02 5.68015E-03 2.82929E-03 1.16397 4.95775E-01 1.93AE-02
8-20866F 00
             3.97343E 01
                          1.06773E-01
                                                                                                                 0.8831
8.27503E_Q0 _ 3.716/5F Q1
                          1.04317E-01...1.25702E-02.6.68407E-03.2.68315E-03.1.12474.4.85846E-01.1.659E-02
                                                                                                                 0.2470
B.34140E OO 3.44723E OL
                          1.04577E-01 1.44581E-02 7.91667E-D3 2.51016E-03 1.08481 4.73013E-01 1.659E-02
                                                                                                                 1.0796
8.39716E 00
             3.15/36E 01
                          1.06212E-01
                                       1.69063E-02 _V.43149E-03 _2.30723F-03
                                                                              1,04246 _4.60565E=01_ 1.394E=02
                                                                                                                1.0771
                                       2.02242H-02 1.13608E-02 2.07359F-03
8.452926 00
             2.85331E 01
                          1.10010E-01
                                                                              0.99937 4.46500F-01 1.394E-02
                                                                                                                 1.1515
                                       2.42374E-02, 1.35461E-02, 1.83453E-03, 7.96989, 4.34208E-01, 1.155E-02
8.45910F DD
             2.565090 01
                          1.15064E-01
                                                                                                                 1.2293
8.54529F 03
             2.25796E 01
                          1.27392E-01 2.98527E-02 1.63763E-02 1.56284E-03 0.91982 4.21650E-01 1.165E-02
                                                                                                                 1.3247
8.58337E DO
            2.2833<u>0</u>F 01
                          1.26880E-01 3.06594E-02 1.69008E-02 1.58533E-03
                                                                              0.92316
                                                                                       4-06059E-01 9-520I-02
                                                                                                                 1,3088
8.583776 00 0.0
                          5.45527E-02 3.06594E-02 6.96424E-03 0.0
                                                                              0.92316 4.36758E-01 9.525E-03
                                                                                                                 4.0737
8.602415 00 -1.6976/1 00
                          6.927.296-02 3.50257E-02 7.373926-03 -8.884626-06 0.91748 4.017806-01 4.7606-03
                                                                                                                 4.3543
                          6.58273E-02 3.93940t-02 7.77784E-03 -2.30086t-05 0.91449 3.97110E-01
8.62145F 00 -2.72218E 00
                                                                                                    4.760E-03
                                                                                                                 4.6891
8.65349E 00 -4.21888E 00
                          7.62267E-02
                                       4.75100E-02._8.42734E-03 -5.57226E-05 .Q.91109 3.896E0F-01 8.012E-03 ...
                                                                                                                 5,3586
8.68553E 00 -5.24587E 00
                          8.73331E-02
                                       5.733986-02 9.139896-03 -8.639991-05 0.90991 3.820386-01
                                                                                                    8.010--03
                                                                                                                 6.0079
                                       6.64550F-03 9.75541F-03 -1.12200E-04 0.90994
8.71416E 00 -5.97823E 00
                          9.7465 LE-02
                                                                                       3.75060E-01 7.158E-03
                                                                                                              6.6144
8.74274F 00 -6.53781E 00
                          1.08495E-01
                                       7.68384F-02 1.04835E-02 -1.34047(-04 0.91037 3.68480E-01 7.158F-03
                                                                                                                 7.2100
                                      8.79177E-02 1.17487E-02 -1.49076E-04 0.91020 3.61719E-01 7.147E-G7
8.771385 00 -6.893156 00
                          1-19655E-01
                                                                                                                 7.7028
                         1.30874E-01 9.96709F-02 1.24793E-02 -1.55279E-04 0.90925 3.54689F-01 7.147F-03
·8.79997E 09 -7.02704E 00
                                                                                                                 7.9946
```

COMPARISON OF VISCOUS AND INVISCID VELOCITIES IN SEPARATED REGION

(e) Comparison of viscous and inviscid calculations after eight and nine iterations,

Figure 18.- Continued.

102

ITERATION NO. 8

THET

DH4S

= -10.5165

3.8265

ITERATION NO. 16			
COMPARISON OF VISCOU	S AND INVISCID VELO	CITIES IN SEPARATED REGION	
+ = BOUNDAR	Y LAYER		
O = INVISCI	D SOLUTION		
X _ QFBL	E.O. VALBU		
8.453 0.98914	0.485'4	0	
8.545 0.95372	. 0. 95183		
A.621 D.94601	0.55359	0	
8.686 0.94805	0.95366	. 0	
8.743 0.94923	0.93704	Ω+	
	0.91070	0.+	
8.864 0.90478	0.87447	0 +	
8.978 0.86563	.0.82679		
9.024 0.86101	0.83286	0 +	
9.126 0.8 <u>7</u> 325	_0.87325		
RESULTS OF ITERATI	ON	 , . 	
			_
XSEP = 8.530			
THET = -10.793 DRMS = 2.465		·	
ITERATION NO. 25	; •		
		CITIES IN SEPARATED REGION	
COMPARISON OF VISCOS	3 AND INVISCID VECO	CITIES IN SEPARATED REGION	
000000	• •	· · · · · · · · · · · · · · · · · · ·	
+ = BOUNDAR	Y LAYER		_
. 0 = INVISCI	_	· · · · · · · · · · · · · · · · · · ·	
0 = INVISCI	D SOLUTION		
0 = INVISCI	D SOLUTION		
0 = INVISCI X UEBL 8-341 1-07127	D SOLUTION	0	
0 = INVISCI XUE8 8-341 1-07127	D SOLUTION		
0 = INVESCE X UE81 8.341 1.07127 8.453 0.97377	D SOLUTION	<u>.</u>	
0 = INVISCI X UEBJ 8.341 1.07127 8.453 0.97377 8.545 0.96454	D SOLUTION		
0 = INVISCI X UEB_ 8.341 1.07127 8.453 0.97377 8.545 0.96454 8.621 0.96964	D SOLUTION	0 0+ 	
0 = INVISCI X	D SOLUTION	0+ 0+ +0	
0 = INVISCI X	D SOLUTION	0 0+ 0 +0 +0	
N = INVISCI X	D SOLUTION UEINY0,3 1.07127 0.97336 0.94500 7.97057 0.98364 0.98522 0.97512 0.94256 0.92213	0 0+ 0 +0 +0	
N = INVISCI X	D SOLUTION UE_INV0,3 1.07127 0.97336 0.94500 9.97057 0.98364 0.98522 0.97512 0.94256 0.92213 0.91389	0 0* 0 +0 +0 +0 0* 0*	
0 = INVISCI X	D SOLUTION UE_INV	0 0+ 0 +0 +0 +0 -0 -0 -0 -0 -0 -0	
0 = INVISCI X	D SOLUTION	0 0+ 	
0 = INVISCI X	D SOLUTION UE_INV	0 0+ 0 +0 +0 +0 -0 -0 -0 -0 -0 -0	
0 = INVISCI X	D SOLUTION	0 0+ 	
0 = INVISCI X	D SOLUTION UE_INY0,3 1.07127 0.97336 0.94500 9.97057 0.98364 0.98522 0.97512 0.94256 0.92213 0.91389 0.89018 0.89063 0.91338	0 0+ 	
N = INVISCI X UEBL 8.341 1.07127 8.453 0.97377 8.545 0.96454 8.621 0.96964 8.686 0.97305 8.747 0.97383 8.800 0.97361 8.800 0.97361 8.938 0.92769 9.024 0.89913 9.126 0.88098 9.248 0.89078 9.397 0.91337	D SOLUTION	0 0+ 	
0 = INVISCI X	D SOLUTION UE_INY0.3 1.07127 0.97336 0.94500 9.97057 0.98364 0.98522 0.97512 0.94256 0.92213 0.91389 0.89018 0.89063 0.91338	0 0+ 	
0 = INVISCI X	D SOLUTION UEINY0,3 1.07127 0.97336 0.94500 7.97057 0.98364 0,98522 0.97512 0.94256 0.92213 0.91389 0.89063 0.91338 DN 8 3	0 0+ 	
0 = INVISCI X. UEBL. 8.341 1.07127 8.453 0.97377 8.545 0.96454 8.6521 0.96964 8.686 0.97305 8.743 0.97383 8.800 0.97361 8.964 0.95968 8.938 0.92769 9.024 0.89913 9.126 0.88098 9.248 0.89078 9.397 0.91337 RESULTS OF LITERATI XSFP = 8.451 THET = -10.833	D SOLUTION UEINY0,3 1.07127 0.97336 0.94500 7.97057 0.98364 0,98522 0.97512 0.94256 0.92213 0.91389 0.89063 0.91338 DN 8 3	0 0+ 	
0 = INVISCI X. UEBL. 8.341 1.07127 8.453 0.97377 8.545 0.96454 8.6521 0.96964 8.686 0.97305 8.743 0.97383 8.800 0.97361 8.964 0.95968 8.938 0.92769 9.024 0.89913 9.126 0.88098 9.248 0.89078 9.397 0.91337 RESULTS OF LITERATI XSFP = 8.451 THET = -10.833	D SOLUTION UEINY0,3 1.07127 0.97336 0.94500 7.97057 0.98364 0,98522 0.97512 0.94256 0.92213 0.91389 0.89063 0.91338 DN 8 3	0 0+ 	
0 = INVISCI X. UEBL. 8.341 1.07127 8.453 0.97377 8.545 0.96454 8.6521 0.96964 8.686 0.97305 8.743 0.97383 8.800 0.97361 8.964 0.95968 8.938 0.92769 9.024 0.89913 9.126 0.88098 9.248 0.89078 9.397 0.91337 RESULTS OF LITERATI XSFP = 8.451 THET = -10.833	D SOLUTION UEINY0,3 1.07127 0.97336 0.94500 7.97057 0.98364 0.98522 0.97512 0.94256 0.92213 0.91389 0.89018 0.89063 0.91338	0 0+ 	

(f) Comparison of viscous and inviscid calculations after 16 and 25 iterations.

Figure 18. - Continued.

PLUT OF CP AT EQUAL XI-INCREMENTS

τ	XB	YÐ	FM	95,	.CP_			<u>-</u>			- ·	•	
1	0.0	0.3	0.0	0.0	1.1 704		-			-	-	*	;
2	0.068	0.017	_0.838	1.041	0.0831	. .						*	
3	0.138	0.035	0.591	0.758	0.4547	,			+			*	
4.	0-212	0.053	2.646	0.824	0.3380				±_				_
5	0.290	0.073	0.671	0.853	0.2849)			·-	•		*	
6	0.376	0.095	0-686	0, <u>870</u>	0.2520) <u> </u>				-)		*	_
7	0.469	0.118	0.697	0.883	0.2278	l .				+		*	
8	0.573	0-144	.0.706	0.094	0.2078	1 _				t			
9	0.688	0.173	0.714	0.903	0.1892	2				+		*	
10	0,815	0.205	0 <u>.723</u>	0.913	0.1703							t	_
1.2	0.955	0.240	0.732	0.924	0.1495					+		*	-
12	1.109	0.279	0.744	0.237	0-1248	;				+		*	
13	1.778	0.321	0.758	0.953	0.0928	1				+			
14	1.462	0.368	0.780	0.977	0.0452					<u> </u>		*	_
15	1.6t 2	0.418	0.B25	1.028	-0.0553	-					+	*	
16	.1.877	0.469	0.959	1.170	-0.3478							+ +	
17	2.112	0.500	0.984	1.196	-0.4013							+*	_
18	2.364	0.504	0.874	1.080	-0.1629						.	•	
19	2.671	0.505	0.837	1.041	-0.0826	,					•		Ē
.20	2,911	0.505	0.824	1.027	-0.9542						. +		
21	3.203	0.506	0.819	1.021	-0.0412	. - .					+		Ē
22	3.506	0.507	0,815	1.017	-0.0331			- -			+	*	_
23	3.817	0.507	0.812	1.014	-0.0271						+	*	
24	4.136	0.508	0.810	1.011	-0.0230						+	. *	
25	4-461	0.509	0.809	1.010	-0.0208						÷		
26	4.787	0.509	0.809		-0.0200		_				+	*	
27	5.115	0.510	0.809		-0.0200						•	•	
28	5,441	0.510	0.809	1,010	-0.0208	l					+	*	
29	5.76?	0.5!1	0.810	1.011	-0.0220						+ ~		j
30	6.076	0.512	0,811	1.012	-0.0239	ı					+		
31	6. 380	0.512	0.812	1.013	-0.0268		•	• •			+		
32	6.672	0.513	Q.814	1.016	-0.0319	,					+	*	
33	6.450	0.513	0.819	1.021	-0.0412		-				+		
34	7.211	0.513	0.825	1-027	-0.0547	,					+	*	
35	7.454	0.513	0.834		-0-0748						+	*	1
36	7.675	0.513	7.850		-0.1117							*	
37	7.876	0.512	0.893		-0.2051					-	•		
38	8.054	0.510	0.963		-0.3559						•		
35	9.209	0.496	0.974		-0.3796		-					4.8	
40	8.341	0.474	0.884		-0.1861							*	

(g) Final plot of inviscid solution.

Figure 18. - Continued.

.:			A 700	6 073	0.0239			
41	8.453	0.450	0.789	0.973				Ţ
42	8.545	0.437	0.776	0.945	0.0521			
43	8.621	0.427	0.781	0.971	0.0428			+
44	8.686	0.418	0.764	0.984	0.0363		B 41.11	
45	8.743	0.411	0.784	0.985	0.0351			+
46	8.000	0.492	0.783	0.975	0.0367			_ , _
47	8.864	0.394	0.773	0.943	0.0596	-		•
48	8.938	0.384	0.744	0.922	9.1248			+
40	9.024	0.372	0.718	0.914	0-1814			•
50	9.126	0.358	0.702	0.890	0.2174			*
51	9.249	0.342	0.706	0.951	0.2080			+
52	9.397	0.332	7.724	0.913	0.1679			+
53	9,584	0.324	0.744	0.937	0.1242			+
54	9.824	0.317	0.761	0.956	0.0860		• _	_ ± _
55	10.144	0.319	0.775	0.972	0.0561			+
56	10.592	0.302	0.785	0.983	0.0341	_		
57	11-264	0.291	0.793	0.992	0.0163			+
58	12.384	0.269	0.793	0.992	0,0153		_ ,,	
59	14.624	0.240	0.796	0.996	0.0083			+
60	21.343	0.240	0.800	1.000	0.0Q10			. <u> +</u>
61 0	*****	0.240	0.800	1-000	0.0			•
614	*****	V. 240	44400					-

TOTAL BODY DRAG COEFFICIENT= 0,03189

AFTERBODY DRAG COFFF IC IFNT= 0.03967

```
ΑX
               UTAU
                          DELTA
                                      DELST
                                                   THETA
                                                               CF
                                                                           UE/UZ DELST +R
                                                                                                   ЭX
                                                                                                          HTR
8.0091%E 00 3.91546E 01 1.02245E-01 1.12257E-02 5.80113E-03 2.79906E-73 1.15480 5.11146E-01 2.223E-02
                                                                                                          0.9081
8.07135E 00 7.96610F 01 1.07300F-01 1.10752E-02 5.67115E-03 2.82070E-03 1.16365 5.10689E-01 5.555E-03
                                                                                                         __0.8966
8.05358E 00 4.01587F 01 1.04464E-01 1.09416E-02 5.54926E-03 2.84076E-03 1.17245 5.099*0E-01
                                                                                              5.555=-03
                                                                                                          0.8852
8-13111f 00 4-00892F 01 1-05264E-01 1-12013E-02 5-69001E-03 2-82317E-03 1-17382 5-05132E-01
                                                                                             1.9385-02
                                                                                                          Q. 8901
8.30805E 10 3.99904E 01 1.06902E-01 1.15599E-02 5.88058E-03 2.80156E-03 1.17518 4.96190E-01 1.938E-02
                                                                                                          0.8942
8.27501t 00 3.66348E 01 1.03729E-01 1.33724E-02 7.15085E-03 2.61171E-03 1.12383 4.66653E-01 1.659E-02
                                                                                                          0.9748
8.34138E 00 3.30(97F 01 1.0410)E-01 1.593/4E-02 8.77878E-03 2.37790E-03 1.07127 4.74489E-01 1.659E-02
                                                                                                          1.9566
8.39715F 30 2.96769F 31 1.06712E-01 1.91035E-02 1.06506E-02 2.12867E-03 1.02279 4.62764E-01 1.394E-02
                                                                                                          1-1377
8.45293F 00 2.60677F 01 1.11899E-01 2.36257E-02 1.21135E-02 1.83646E-03 0.97336 4.4990[F-01 1.394E-02
                                                                                                          1.2333
8.451 77F 00 0.0
                        4.24177F-02 2.34964E-02 5,25742E-03 0.0
                                                                         0.97438, 4.50168E-01 1.394E-02
                                                                                                          4.0000
8.452341 00 -1.14449E-01 4.26364E-02 2.36276E-02 5.28432E-03 -3.53424E-08 0.97407 4.50103E-01 1.447E-04
                                                                                                          4.0022
8.45293F 00 -2.73031F-01 4.28066E-Q2 2.37617E-02 5.29573E-03 -2.08717E-07 0.97377 4.50037E-01 1.447E-04
                                                                                                        4.0176
8.49910/ 00 -4.51343F 00 5.66293E-02 3.43410E-02 6.02680E-03 -5.61956E-05 0.96448 4.44314E-01 1.154E-02
                                                                                                          5 . 2751
8.54529F 00 -6.94170E 00 7.13699F-07 4.63711E-02 6.52384E-03 -1.32885E-04 0.96454 4.38172E-01 1.154E-02
                                                                                                          6.8209
8.58336F DO -8.17123F DO 8.43926E-02 5.74075E-02 6.93779E-03 -1.83294E-04 0.96658 4.32812F-01 9.521E-03
                                                                                                          8.1649
8.67145E 00 -9.16538E 00 9.89143E-02 7.04032E-02 7.30141E-03 -2.28984E-04 0.96964 4.28122E-01 9.5215-03 9.8242
8.65347F 02 -9.59041F 00 1.11220E-01 8.17484E-02 7.78156E-03 -2.49819E-04 0.97119 4.23494E-01 8.008E-03
                                                                                                         10.9271
8.68551E 00 -9.96322E 00 1.24609E-01 9.48239E-02 8.28063E-03 -2.68468E-04 0.97305 4.19531E-01 8.008E-03 12.1859
8-71414E 00 -1-01062F 01 1-36480E-01 1-06960E-01 8-89622E-03 -2-75839E-04 0-97365 4-15574E-01 7-1595-03
                                                                                                        12.9805
8-79279F 00 -1-00945F 01 1-98725E-01 1-20051E-01 9-77574E-03 -2-75092E-04 0-97383 4-11696E-01 7-159E-03 13-3537
8.7/137E 00 -1.01389E 01 1.60925E-01 1.34352E-01 1.05960E-02 -2.77301E-04 0.97417 4.09168E-01 7.147E-03 13.9341
8.79997F 00 -1.00524F 01 1.72157E-01 1.48655E-01 1.16629E-02 -2.72942E-04 0.97361 4.03677E-01 7.147E-03 14.0456
```

AX	DV	<u> 80 </u>	DELST	115 2147	UC/UZ	. Rw	OCL STAR		
	DK						DELST+R	<u>RD</u>	•
8.80797E 03	8.72789E-05	2.44131E-71	1.46329E-01	0.97112	1.56950	2.56631E-01	4.02959E-01	2.55000E-01	
8.432411 00	5.60873E-02	2.48248F-01	1-38094E-01	0 <u>-97118</u>	1, 56980	2+61687E-Q1	3-99781E-01	2.542035-01	
8.367987 00	1-12712E-01	2.50936E-01	1.2986 0 E-01	0.55968	1.55700	2.65558E-01	3.95417E-01	2.54636E-01	
8.90)905 01	1.71440E-01	2.53233F-01	1.21310E- <u>0</u> 1	0.94406	1.55199	2.69325E-01	3.90634E-01	2.5359AE-01	
8.43783E 00	2.27433E-01	2.54593E-01	1 • 131 75E - 01	0.92769	1.54839	2.72132E-01	3.85307E-01	2.52422E-01	
8 <u>-</u> 98040- 90	2.832 <u>22</u> E- <u>01</u>	2.55516E-01	1.05076E-01	0.91234	1.55287	2.74621E-01	3.79647E-01	2.50212E-01	
9.033985 00	3.37110E-01	2-560496-01	9.70934E-92	9-89913	1-56234	2.76732E-01	3.72825E-01	2.47565E-01	
9.074836 00	3.97761E-01	2.56336E-01	8.8094.7E-02_	0,88771	1.5/35 <u>7</u>	2.78895F-01	3.66989E-01	2.44917E-01	
9.12580E 00	4.55556E-01	2.56270E-Q1	7.94509E-02	0.88098	1.58345	2.80763E-01	3.60214E-01	2.4 2933E-01	
9.171615 00	5.07110E~01	_2.5 <u>5</u> 871E-01	7.16978E-Q2	0.87923	1.59067	2.82239E-01	3.53936E-01	2+41769E-01	_
9.309798 00	5.64014E-01	2.54891E-01	6.32061E-02	0.88501	1.59236	2.83260E-01	3.464665-01	2.42010F-01	
9,24798£ 00	5.97433E-01	2.53849E-01	5-8123 <u>0E-02</u>	0.89078	1.59442	2.84172E-01	3.42254E-01	2.42200E-01	
9.39264E 00	6-43473E-01	2.514 D8E-01	5.09957E-02	0.90208	1.59810	2-85488E-01	3.36484E-01	2.42628E-01	
9.79731E 00	6.77311E-01	2-48447E-01	4.56034E-02	0,91337	1-60037	2-86470E-01	3-32074E-01	2.432895-01	
9.49064F 00	7-07239E-01	2 4444 29E-01	4.05657E-02	0.92495	1.60334	2-871871-01	3.27953E-01	2.43933E-01	
9.58797E 00	7-31613E-01	2.39876F-01	3.63932E-92	0.93653	1.60553	2.88044E-01	3.24347E-D1	2-447986-71	
9.70397E 30	7.53637E-01	2.34113E-D1	3.21835E-02	0.94643	1.60788	2-88670E-01	3.20854F-01	2.45600E-01	
9,82597E 00	7.721 <u>59</u> E-01	2.27524E-Q1	2.848745-02	0.95624	1.60937	2.89088E-01	3-17571E-01	2.46704E-01	
9.98397E Q0	7.901996-01	2.14871E-01	2.45159F-02			2.89489E-01	3-14005F-01	2-47785F-31	

(h) Final viscous solution,

Figure 18. - Continued.

```
1.91449E 01 8.05512E-01 2.11370E-01 2.08<u>527E-</u>02 0.97162 1.61240 2.89753E-01 3.10606E-01 2.49187E-01
1.03687E 01
            8.21948E-91 2.00125F-01 1.64286F-02 0.97719 1.61358 2.90020F-01
                                                                              3.064495-01
                                                                                          2.508'1E-01
1.059205 01
            8-35f44F-01 1-88768F-01 1-22658E-02 0-98277 1-61466 2-90185E-01 3-02451E-01
                                                                                          2-527536-01
1.492798 51, 8.51917F-01 1.71002E-01 6.58318E-03
                                                 0.98724 1.61501
                                                                  2.90325F-01 2.96909F-01
                                                                                           2.55533E-01
            8.647741-01 1.529276-01 1.17062E-03
1.126396 01
                                                 0.99171
                                                         1.61534 2.90371E-01
                                                                              2.915425-01
                                                                                          2,586275-01
1.107 101 01
            8.81097F-01 1.25065F-01 -7.26258F-03 0.99189 1.61557 2.93418F-01
                                                                              2.831566-01
                                                                                          2.626016-01
1.239396 1
            9.22980E-01 8.81230E-02 -2.11589E-02 0.99208
                                                         1.61594 2.90461F-01
                                                                              2.693026-01
                                                                                          2.67433F-91
1.35039[ 01
            9.593557-01
                        2.224566-02 -4.322546-02 0.99396
                                                         1.61632 2.90506E-01
                                                                              2-47280E-01
1.462346 01
            9.45550E-01
                        0.0
                                    -5.01219E-02 0.99467
                                                         1.61632 2.90506E-01
                                                                              2-49384F-01
                                                                                          2.77994E-31
1.798350 01
            9.65550F-C1
                                    -5.01219E-02 0.99467 1.61632 2.90506E-01
                       0.0
                                                                              2-40384E-01
                                                                                         2.77991E-01
2.13433F 01 9.65550E-01 0.0
                                    -5.01219F-02 0.99457 1.61632 2.90506f-01 2.40384E-01 2.77994E-01
STATUS OF ITERATION
XMAX
            9.1258
DPMAX
          0.5501E-03
RBT
          0-25506 00
****ITFRATION FOR BOUNDARY LAYER/INVISCID FLOW EQUILIBRIUM CONVERGED.
****** SQUARED ERROR TOLERANCE
```

h) Concluded.

AEDC-TR-79-4

			JP = 56	
NU1 = 55	•	-		
x		•	×	R
^	. <u>.</u> V		0.000	. <u></u>
B.8000E	00 1.4565F	03	8.80000 00	2.5500E-01
8.8169F		-	8-8160E 00	2 • 5 H79E - 0 1
0.832 0 E (8.8320E 00	2.6214E-01
8 - 848 OF			8-848)E 00	2 - 651 2F - 01
8 -8640E			8.86400 00	2+6777E-01
8.8824F (* · * * _ * _ * * * * * * * * * * * *		# .B824E_00	2.7049E-01
6.9009E			8.9009F 00	2.72855-01
8.9194E			8.9194E QQ	2.7488E-01
8.9778E			8.9378E 00	2.76630-01
B.9594F (B +9594E 00	2.78386-01
			8.9809E 00	2.79850-01
R.9809E (9.0034E_00_	2-8107E-01
9.0024E 1			5.0240E NO	-2 • 8 20 9E - 0 1
9+0240F		· · · · · · · · · · · · · · · · · · ·	9.0494E 00	2.8305E-01
9.0494E (-		9.07490 00	2.83825-01
9.07496			9.1003£ 00_	2 - 8 4 4 4E - Q 1
9.1003E			9.1258E 00	2.8492E-01
9 <u>"1258</u> ⊬ <u>1</u>		· -· · · · · · · · · · · · · · · · · ·	9.1503E 00	2 <u>.8537E</u> -01_
9.1563E			9.1869E 00	2.8575E-01
9 1 86.95			9.2174E 00_	2 • 86 0 GE - 0 1
9.2174E (9.24805 00	2.8632F-01
9.2480- (· ·	ዓ•ጽሐካኝ <u>ት</u> ወር	2.8659E-Q1
9.2853E			9.32265 30	2.86865-01
9.3,226F (· · · · · · · · · · · · · · · · · · ·	2.3600E 90	2.8711E-01
9.36006 (9.3973E 00	2.8737E-01
9.3973E			9,4440E 00	2.8768E-01
9.4440F			9.4906E 00	2.8798E-01
9.4906		· · · · · · · · · · · · · · · · · · ·	9.53/36 00	2.8826E-01
9.5373E (9.5843E 00	2.98550-01
9.584 0 F (· ·	<u>9.6440E</u> 00	_2.8891E-01
9,-644 0 E I			9.7040E 0 0	2.89726-01
4.704et (9.7640E 00	2 • 895 IF-0 1
9.7640F			9.8240F. 00	2.8978E-01
9#824DF (•	9.9040E 00	2.90136-01
9.9040£ (_	5.9849E 00	2,9041F-01
9 • P 84 76 1	·	···· · ·- ·- ·- ·- ·- ·	1,0064E 01	2 • 9 06 55 - 9 1
1 # 0 0 0 4 E		03	1.0144E D1	2.9086F-01
1.01446		03	1.0256E 01	2-91156-01
1 •0 256E		03	1.0368E 01	2.9135E-01
1.0368E	01 1 ₄ 4264F	03	1.0480E 01	2.9151[-01
1 -04R0E		03	1.05928 01	7.9166F-01
1.05926	01 1.4281E	03	1.97695 01	2.91896-01
			· · · · · · ·	

(i) Final inviscid plume solution.

Figure 18. - Continued.

Þ
Ш
O
ဂ္
Ĥ
D
N
9
4

2.9201F-01 1.07600 01 1.09285 01 1.4296F. 03 1.10966 01 2.92136-01 1.0928E 01 1.4298E 03 1.1264E 01 1.109CF 01 1.4306E 03 2.9225E-01 1.1544E 01 2.9245E-01 1.1264F 01 1.4314E 03 1.4328€ 03 1.1824E 01 2.9245E-01 1.1544F 01 1.2104 01 _1_4328E 03 2.9245E-01 1.18245 01 1.43288 03 1.2384E 01 2.9245E-01 1.2104F 01 1.2944E 01 2.9245E-01 1.2384E 01 1.4328E 03 1.2944E 01 1.4328E 03 1.3504E 01 2.9245E-01 1.40645 01 1.3504F 01 1.4328F 03 2.9245E-01 1.4624E 01 2.9245E-01 1.4328F 03 1.4064E 01 1,63045 71 1.4f24E 01 1.4328E 03 2.92456-01 1.7984E 01 2.9245E-01 1.6304E D1 1.432HE 03 1.7984F 01 1.4328F C3 1.9663F Q1 2.9245E-01 AEDC-TR-79-4

NASA CONFIGURATION 1 (BLANK CARD) RESTARTING ITERATION SCHEME AFTER ITERATIONS FOR RUN 1 0 0 600 0

Figure 19.- Input data for restart.

Figure 20. - Two-dimensional configuration for boundary-layer calculation.

18.0

0.0

```
ALBER TEST CASE
  TWO-DIMENSIONAL BOUNDARY LAYER CALCULATION
  SPECIFYING VELOCITY DISTRIBUTION FROM X=0
 0
                  0
            0
                        0
 1
            0
                  0
                        2,
                              0
       0
             . 7325
 1.4
 1
       0
                        2
                              0
                                    0
            0
22
           9750.
 0.0
           9480.
 1.0
           9400.
 2.0
 3.0
           8500.
 4.0
           8650.
 5.0
           9750.
 6.0
          11650.
 7.0
          12980.
 8.0
          14200.
          15480.
 9.0
10.0
          16100.
10.25
          14800.
10.75
          13400.
11.0
          12600.
11.50
          12100.
12.0
          11150.
13.0
          10900.
14.0
          10800.
15.0
           10300.
16.0
           9900.
17.0
           9800.
18.0
           10200.
                                   .99
                                              0.0
                                                        0.0
                                                                   0.0
                                                                              0.0
 1:0
0:0
           15.0
15.0
                     585.0
                      -5.0
                                  0.0
                                              0.0
                                                        0.0
                                                                   0.0
.00233
           .065
19
 0.0
             0.0
 1.0
             0.0
 2.0
             0.0
 3.0
             0.0
 4.0
             0.25
             0.50
 5.0
             0.70
 6.0
 7.0
             0.85
             0.98
 B. 0
 9.0
             1.0
10.0
             0.98
             0.85
11.0
             0.70
12.0
13.0
             0.50
14.0
             0.25
15.0
             0.0
16.0
             0.0
17.0
             0.0
```

(a) Input for case with ue specified.

Figure 21.- Input data for two-dimensional boundary-layer calculation.

	ALBER TEST CASE TWO-DIMENSIONAL BOUNDARY LAYER CALCULATION SPECIFYING DELST DISTRIBUTION FROM X=10.75												
				BUTI	ON FROM	M X=10.75							
0	0	0 0	0	_									
1	0	00	2	0				•					
1.4	_	.7325	_		_								
2	0	0 0	2	0	0								
13													
10.0		.03											
10.25		.05											
10.75		.07											
11.0		.083											
11.5 12.0		.112 .148											
13.0		. 314											
14.0		.435											
14.5		.460											
15.0		.440											
16.0		.306											
17.0		.230											
18.0		.190											
1.0		15.0	585.0		.99	0.0	0.0	0.0	0.0				
10.75		18.0	-5.0		0.0	0.0	0.0	0.0					
.0007	7												
13400		-2820.											
19													
0.0		0.0											
1.0		0.0											
2.0		0.0											
3.0		0.0											
4.0		0.25											
5.0		0.50											
6.0		0.70											
7.0 8.0		0.85 0.98											
9.0		1.0		•									
10.0		0.98											
11.0		0.85											
12.0		0.70											
13.0		0.50											
14.0		0.25											
15.0		0.0											
16.0		0.0											
17.0		0.0											
18.0		0.0											

(b) Input data for case with δ^* specified.

Figure 21.- Concluded.

υZ	Z	9-90272E	0
REZ	=	J.02426E	0
MIT	-	3-274435-	-0

ΑX	UTAU	DELTA	DELST	THE TA	CF	UE/UZ	DELST+R	ОX	HTR
J.0	3.32242E 02	3.90140E-01	6.52716E-02	3+68389E-02	2.33000E-03	0.98458	6.52716E-02	0.0	1.1853
5.00000E-01	3.213105 02	3.998C3E-01	6.93925E-02	3.91283E-02	2.24705E-03	0.97097	6.93925E-02	1-250E-01	1.2071
1.J0500E 00	3.10535E 02	4 - 104 71E-01	7.37869E-02	4-15399E-02	2-16527E-03	0.95731	7.37869E-C2	1.250E-01	1.2288
1.503000 00	3.08182E 02	4.201 19E-01	7.555400-02	4.25883E-02	2.15244E-03	0.95328	7.55540E-02	1.250E-01	1.2293
2.000000 00	3.05&loE 02	4.298 C8E-J1	7.73537E-02	4.36547E-02	2.13935E-03	0.94923	7.73537E-02	1 -250E-01	1.2300
2-50000E 00	2.67468E 02	4.51458E-01	9.40342E-02	5-19691E-02	1-82001E-03	0.90409	9.40342E-02	1-250E-01	1.3310
3.00000E 00	2.25962F 02	4.854C8E-01	1-18051E-01	6-25757E-02	1.45358E-03	0.85835	1.18051E-01	1.250E-01	1.4640
4.50000E 00	2.38377E 02	4.91889E-01	1.12308E-01	6.08659E-02	1.58704L-03	0.86593	2.37JOBE-01	1-250E-01	1.4072
4.00000£ 00	2.490946 02	4.98767E-01	1-07677E-01	5.93432E-02	1.70071E-03	0.87350	3.57677E-01	1.250E-01	1.3613
4-50000E 00	3.00004E 02	4.87966E-01	8-40418E-02	4.810356-02	2.15565E-03	0.92949	4.59042E-01	1.250E-01	1.2059
5.00(0)E 00	3.431946 02	4.89869E-01	6.94349E-02	3.98973E-02	2.48613E-03	0.98458	5.69435E-01	1-250E-01	1.0984
5.500 QOE 00	4,12184E 02	5-12687E-01	5.25996F - 02	2 88568E-02	2.90462E-03	1.08214	6.52600E-01	1-250E-01	0.9467
6.33303E 00	4.72248E 02	5.79759E-01	4.32235E-02	2-119695-02	3.15095E-03	1.17044	7.43223E-01	1.250E-01	0.8087
6.50C DUE 00	5.10831C 02	6.99677E-01	3.95237E-02	1.65049E-02	3.23355E-03	1.24456	8.14524E-0L	1-250E-01	0.6903
7.00300E 00	5.46276E 02	4.73384E-01	3.81249E-02	1.73663E-02	3.26948E-03	1.31075	8.88125E-01	1.250E-01	0.8184
7-500006 60	5.84737£ 02	5.41189E-01	3-61652E-02	1.45727E-02	3.34613E-03	1.37327	9.51165E-01	1-250E-01	0.7332
8.0000JE 00	6.15961E 02	7-38021E-01	3.61176E-02	I.10344E-02	3.33669E-03	1.43395	1.01612E 00	1.250E-01	0.5954
8.50000E 00	6.6J13BE 02	3.24366E-01	3.25074E-02	1.35469E-02	3.45291E-03	1.49974	1.02251E 00	1.250E-01	0.8748
9.700000 00	7.08463L C2	3.51455E-01	3-19577E-02	1-22138E-02	3-54016E-03	1.56321	1.03196E 00	1.250E-01	0.8211
9.500 00E 00	7 .28881E 02	J.56577E-01	3.252262-02	1.20838E-02	3.55447E-03	1.59481	1.02252E 00	1.2506-01	0.8153
1-00000E 01	7.49256L 02	3.609 C2E-01	3.31672E-02	1 -1 99 008-02	3-56767E-03	1.62581	1-01317E 00	1-250E-01	0.8107
1.35000E 01	5.69590E C2	1.97371E-01	3.510456-02	1-62790E-02	2.89740E-03	1.42514	9+50104E-01	1.250E-01	1.1481
1.100 OJE 01	4.026441 02	2.01346E-01	5 • 12561E-02	2.384866-02	1.90670E-03	1.27238	9.01256E-01	1.250E-01	1-4164
1.150 OOE OL	3.53120E 02	2.17810E-31	6.C1654E-02	2.76050E-02	1.61324E-03	1.22188	8.35165E-01	1-250E-01	t -5065
1.20C00E 01	2.34226E 02	2.564936-01	8,96149E-02	3-67189E-02	8-57211E-04	1-12595	7.89615E-01	1 • 250E-01	1.8657
1.25003E 31	2.49992E 02	2.71578E~01	8.92057E-D2	3.83132E-02	1-00182E-03	1.11336	6.89206E-01	1-250E-01	1.7627
1.300000 01	2.57452E 02	2.87398E-01	9.05402E-02	4 - 0 0555E-02	1.09042E-03	1-10071	5.90540E-01	1-250E-0L	1.7029
1.350 DDE CL	2.71775E 02	3.00251E-01	8.91909E-02	4.08723E-02	1.22784E-03	1.09566	4-64191E-01	1-250E-01	1.6243
1.400 OJE 01	2.81560E 02	3.13199E-01	8.E7628E-02	4 • 1 72 75E - 02	1.33169E-03	1.09061	3.38763E-01	1.250E-01	1.5686
1-45000E 01	2.629032 02	3.34089E-01	9.75644E-02	4.54369E-02	1.22371E-03	1-06547	2-225645-01	1 - 250E-01	1.6110
1.59300E CI	2.43585£ 02	3.57543E-01	1.C7992E-01	4+96323E-02	1-10873E-03	1.04012	1.07992E-01	1-250E-01	1.6616

(a) Output from case with u_e specified.

Pigure 22.- Output from two-dimensional boundary-layer calculation.

υZ

1.80000E 01

RE/

= 9.90272F 03

= J.02420E 05

2.3417oE 02

6.0J411E-01

1.09125

1.90000E-01

1.250E-01

1-6961

AΚ UTAU DELTA DELST THETA CF YE/UZ DELST+R HTR 1.075008 01 2.7585JE 02 1.78872E-01 7.0000E-02 2.49773E-02 7.71981E-04 1.35316 9.52503E-01 0.0 1.9901 1.3875DE 01 2.46572E 02 1-88664E-01 7.64999E-02 2.64890E-02 1-33210 9-42750E-01 6.40700E-04 3-125E-02 2-0924 1.13000+ 01 2.219726 02 1.988216-01 8-299998-02 2.79512E-02 5.37044E-04 1.31357 9.330008-01 3-125t-02 2.1881 1.150000 01 1.46280E 02 2.45658E+Q1 1.12030E-01 3.39078E-02 2.60983E-04 1.25296 8.87000E-01 1.250E-01 2.5641 1.200000 01 9.16353E 01 3.04655F-01 1.48000E-01 4.03923E-02 1.12095E-04 1.20558 8.48003E-01 1.250E-01 2.9561 1.25JOJE 01 -8.25830E 00 4-2396[E-01 2.31000€-01 4.799950-02 -9.756786-07 1.17132 8.31000E-01 1.250E-01 4.0823 1.30)UJE 01 -5.42523E 01 5.44706E-01 3.140C0E-01 5.3615/E-02 -4.33315E-05 1 - 15562 8-14000E-01 1.250E-01 5.1393 1.35000E 31 -6.56214E D1 6.38768E-01 3.74500E-01 5.95115E-02 -6.51881E-05 1.14165 7-49500E-01 1-250E-01 5-6144 1.40300 01 -7.71282E 01 7-29138E-01 4.35000E-01 6.35875E-02 -9.13034E-05 1.13480 6.85000E-01 1.250E-01 6.2043 4.600006-01 1.450000 01 -7.18564E 01 7 - 76348E-01 4-92785E-02 -B-11766E-05 1-12291 5.85000E+01 1-250E-01 6.0171 1.50JUOF 01 -4.45844E 01 7.73524E-01 4.40000E-01 7.83358E-02 -3.26269E-05 1-10182 4.40 BOOE-01 1.250E-01 4.9922 1.55000c 01 2.002288 01 7.156GJf-01 3.730C0E-01 8-69420E-02 6.88464E-06 1.08002 3.73009E-01 1 . 250E - 01 3.7074 1.600001 01 0.58124E-31 8.27965E 01 3. C6000E-01 9.05431E-02 1.20372E-04 1.06939 3.060008-01 1.250E-01 2.8259 1.650000 01 1.25859E 02 6.346771-01 2.68000E-01 9.15319E~02 2.80038E-04 1.06617 2.68000E-01 1-250E-01 2.3887 1.73000E 31 1.728948 02 6.126176-01 2.300002-01 8.942168-02 5.21237E-04 1.07271 2.30000E-01 1.2501-01 2.0342 1.750001.01 2.028410 02 0.08530E-U1 2-10000E-01 8.76884E-02 7.08257E-04 1.07886 2.13000E-01 1.250E-01 1.8524

1.90000E-01 8.43694E-02 9.19959E-04

NASA DATA COMPARISON -CONFIGURATION 1 JET SIMULATED WITH A SOLID STING BOATTAIL L/D = 0.80 0 0 700 0 1 -1 0 0 1 0 1.4 0.9 98 0,0 0.0 0.1 0.025013 0.2 0.050026 0.075038 0.3 0.4 0.100051 0.5 0.125064 0.6 0.150077 0.7 0.175090 0.8 0.200102 0.9 0.225115 1.0 0.250128 0.275141 1,1 1.2 0.300154 1.3 0.325166 0.350179 1.4 0.375192 1.5 1.6 0.400205 1.7 0.425218 1.8 0.450230 1.9 0.473630 0.489760 2.0 2, 1 0,498366 0.500000 2.2 2.3 0.500000 2.5 0.500000 3.0 0.500000 0.500000 3.5 4.0 0.500000 5.0 0.500000 0.500000 6.0 0.500000 7.0 7.5 0.500000 8.0 0.500000 8,025 0.499781 8.05 0.499125 8.075 0.498030 0.496496 8.1 8.125 0.494521 8.15 0.492104 8.175 0.489241 0.485931 8.2 8.225 0.482171 8.25 0.477956

(a) First 50 cards.

Figure 23.- Input data for inviscid calculation.

```
8.275
           0.473282
 8.3
           0.468146
 8.325
           0.462542
 8.35
           0.456463
 8.375
           0.449905
 8.4
           0.442859
 8.425
           0.435319
 8.45
           0.427277
 8.475
           0.418722
 8.5
           0.409646
 8.525
           0.400037
 8.55
           0.389885
 8,575
           0.379176
 8,6
           0.367897
 8,625
           0.356032
 8.65
           0.343565
 8.675
           0.330479
 8.7
           0.316753
 8.725
           0.302368
 8.75
           0.287298
 8.775
           0.271518
 8.8
           0.255000
 8.81
           0.255000
 8.82
           0.255000
 8.83
           0.255000
 8.84
           0.255000
 8.85
           0.255000
 8.86
           0.255000
 8.87
           0.255000
 8.88
           0.255000
 8.89
           0.255000
 8.9
           0.255000
 8.92
           0.255000
 8,94
           0,255000
 8.96
           0.255000
 8.98
          0.255000
 9.0
          0.255000
 9.025
          0.255000
 9.05
          0.255000
 9.075
          0.255000
 9.1
          0.255000
 9.15
          0.255000
 9.2
          0.255000
 9.3
          0.255000
 9.4
          0.255000
 9.5
          0.255000
 9.7
          0.255000
 9.9
          0.255000
10.1
          0.255000
10.3
          0.255000
```

(b) Next 50 cards.

Figure 23. - Continued.

```
10.5
         0.255000
10.8
         0.255000
11.2
         0.255000
11,6
         0.255000
12.0
         0.255000
61
      31
          0
                0
                     0
                             0.0
                                       8.8
                                               1.0
                                                       8.0
0.0
         0.0
                    0.0
 F
```

(c) Remaining 7 cards.

Figure 23.- Concluded.

 NORHAL	CHOMD*	STR	тсн	FOR	ALF=	1.300	
٠	AN		G			GH	
1	0.251 Œ	00	0.0		•	3.7725	E-04
2	0.1617E	03	0 - 15	45E	-03 (0.4607	t-03
3	0.6339E	02	0.76	66 BE -	-03 4	1.1365	E-02
4	480 66 • 0	92	0 - 19	X:4E-	-02	0-2900	E-02
5	0.2391E	02	0.36	336E-	-02	0.5148	E-02
6	041720E	02	0.64	60E-	-02 (3-61B3	E-02
7	0-1303E	02	0.99	DSE-	-02 (1.1267	E-01
8	0.1022E	62	0.14	24E-	-01 (1687	E-01
9	0.8215E	01	0-19	151E-	-01 (. 2 26 5	E-01
10	0.6729E	91	0.25	79E-	-01 (2947	E-Ol
11	0.5588E	01	0.33	11 4E -	-01 (3738	E-01
12	0.4690E	01	0.41	16 LE-	-01 I	.464	E-OL
13	0.396Æ	01	0-51	26E-	-01	5670	E-01
14	0.3377E	01	0.62	21 5E ·	-01 (0.6824	E-01
15	0.2866E	01	0.74	33E-	-OL (0.8110	E-Q1
16	0.24748	01	0.87	78 7 E-	-OL (9535	E-01
17	0.2123E	01	0.10)26E	00 (0.1110	E 00
LB	0.1822E	01	0.11	93E	00 (1 262	E 00
19	0 - 156 LE	01	0.13	172E	00 (0.1470	E 00
20	0.1334E	01	0.15	38 6	00 (0.1674	E 00
21	0.1135E	01	0-13	40E	00 (.1895	E 00
22	0.9585E	90	0.20	LOE	00 0	2134	E 00
23	0.802 CE	00	0.22	25 <i>8</i> E	00 () • 2 J9 H	E 00
24	0.662JE	00	0.25	524E	00 (2667	E 00
25	0.5371E	00	0.28	11 OE	00 6	2963	E 00
26	0 •4 245E	00	0.31	16E	00 6	.328 a	E OO
21	0.3227E	00	0.34	43E	00 (3617	E 00
28	0.2304E	00	0.37	92E	00 6	.3977	E 00
29	0 • 1 465E	00	0.41	63E	00 0	-4 36 Q	E 00
30	0.7000E-	-01	0.45	5 8E	00 0	-4 76 7	E 00
31	0 -1198E-	-06	0.49	76E	00 (-5198	E 00

(a) Normal coordinates.

Figure 24. - Output for inviscid calculation.

1	5	x.	Y	THET		THETB	AK	F
	•							
1	U.O	0.0	0.0	9.9000E	02	0-9000E 02	0.2743E-04	0.23815 00
2	0.7030E-01	0.68206-01	0.1706E-01	0.1404E		0-1404E 02		0-2350E 00
3	0.14246 70	0.1382C 00	U.3456E-D1	0.1404E	02	0-1404E Q		0.2264E 00
4	0.51830 00	0.2116E 00	0.5293E-01	0.1404E	02	0-1404E 02		0.2134E 00
5	0.2992E 00	0.2903E 00	0.72600-01	0.1404E	02 02	0-1404E 02 0-1404E 02		0.19775 00
6	0.3873E 00	0.3757E 00 0.4696E 00	0.93981-01 0,1175E 00	0.1404E	02	0.14045 02		0-1809E 00
ė	0.5908£ 00	3.5732£ 00	0-1434E 00		02	0-14045 02		0-1484E 00
9	0.70915 00	1.0879F 00	0-1721E 00		02	0-1404E 02		0-1340E 00
1 D	0.840@E 00	0-8149E 00	0.2038E 00	0.1404E	02	0-1404E 02		0.1211E 00
t 1	0.9846E 00	0.95526 00	D.2389E 00		02	0-1404E 02		0-1099E 00
12	0-1144E 01	0-1110- 01	0.2775E CO		02	0-1404E 02		0-1000E 00
13 14	0-13185 01 0-15085 01	0.1279E 01	0-J198E 00 0-3659E 00	0.1404E	02	0.1404E 02		0-9156E-01
15	0.17146 01	0.1662E 01	0.4158E 00		02	0.1404E 02		0-8426E-01 0-7800E-01
16	0.1935E 01	J. 1876E 01	0.4689E 00	0.1251E		0+1251E 02		0-7265E-01
17	0.2172E 01	0.2112E 01	0.4989E 00	0.2243E		0-2243E 01		0.6809E-01
18	0.2425E 01	0.23LSE 01	0.5000E CO	0.0			-0.4900E-02	0.64226-01
19	0.2691E U1	0.2631E 01	0.50006 00	0.0		0-2473E-02		0.6046E-01
20 21	0.2971E 01 0.3263E 01	0.2911E 01 0.3203E 01	0.5000€ 00 0.5000E 00	0.0			-0-54 35E-04	0.5821E-QL
55	0.3263E 01	0.35066 01	0.5000E 00	0.0		0.62856-03	-0.1585E-03	0.5599E-01 0.6419E-01
23	0.3878E 01	0.38182 01	0.5000E 00	0.0			-D-5328E-06	0.5279E-QL
24	0.4197E 01	0.4137E 01	0.5000E 00	0-0			-0.3248E-04	0-51786-01
25	0.452IE 01	0.4461E 91	0.50 00 E 00	0.0		0.4920E-03	0.2546E-04	0.5114E-01
26	0.4848E 01	0.4788E 01	0.5000E 00	0.0		-0.5324F-03		Q+5087E-Q1
27	0.5175E 01	0.51150 01	0.5000E 00	0.0		-0.23785-02		0 -5098E- 0 1
28 29	0-55015 J1 0-582 <i>2</i> E 01	0.5441E 01 0.5762E 01	0.5000E 00	0.0 0.0			-0.1216E-03 -0.2990E-03	0-5148E-01
30	046136E Q1	0.6076E 01	0.5000E 00	0.0			-0.2767E-03	0.5242E-01 0.5383E-01
31	0.6440E 01	0.0380£ Q1	0.5001E 00	0.0		0.8029E-02		0.5579E-01
32	046742E 01	Ç.6672€ QL	0.5001E 00	0.0		-0.2662E-02		0.5840E-01
٤٤	0-7010E 01	0-0320E 01	9.5000E 00	0-0		-0-22039-01		0-6179E-01
34	0.7271E 01	0-/21 IE 01	0-4999E 00	0+0			-0.2769E-02	0.6614E-01
35 36	0.7513E 01	0.7454E 01 0.7676E 01	0.4999E 00	0.0 0.0		0.5385E-Q1 0.8941E-01	-0.7781E-02	0.7172E-01
37	0.7936E Q1	0.7J76E 01	0.5004E 00	0.0		-Q-7667E-01	0-6040E-02 0-2291E-01	0.7888E-01 0.8812E-01
36	0.B114E 01	0.8054E DI	0.4590E CO	0.0		-0-2152E 01	0.6643E DD	0-1001E 00
49	0.8269E 01	0.8209E 01	0.4847E 00	Q+D		-0.8398E OL	0.7227E 00	0.1159E 00
40	0-8401E 01	0.8341E 01	0.4586t DD	0.0		-0.1383E 02	0.7626E 00	0.1368E 00
41	0.8513E 01	0.8453E 01	0.4263E 00	0.0		-0.1848E 02		0.1042E QQ
42 43	0.8605F. Q1 0.8681E 01	0.J545E 01 0.J621E 01	0.3918E 00	0.0		-0.2244E 02 -0.2579E 02		0.1992E 00
44	0.8745E 01	0.8086E C1	0.3248E 00	0.0		-042871E 02	0.966UE 00 0.944ZE 00	0.2404E 00 0.2793E 00
45	0.8803E OL	0.874JE 01	0.2916E 00	0.0			-0.1939E 01	0.2977E 00
46	0.8860E 01	3.8800E 91	0.2550E 00	0.0			-0.6596E 02	0-2790E 00
4 F	0.8924E 01	0.8864E 01	0.2550E 00	0.0		0-1355E-03	-0.1205E-01	0-2431E 00
48	0.8998E 01	0.8938E 01	0.25500 00	0.0			-0.2950E-05	0-2096E 00
49 50	0.9084E 01 0.9186E 01	0,9024E 01 0,9126E 01	0.2550E 00 0.2550E 00	0+0			-0422366-07	0-1786E 00
51	0-91095 01	0-9248E 01	0.2550E 00	0•0 0•0		-0.5914E-10 -0.4389E-11	0-1232E-09 0-6637E-L1	0.1401E 00
52	C.4457E 01	0.9397E 01	0.2550E 00	0.0		0.2231E-11	0.1034E-11	0-1004E 00
53	0.9044E 01	0.9584E 01	0.2550£ 00	0.0		_	-0.1016E-12	0.7937E-01
54	0.9684E 01	0.4824E 01	0.2550E 00	0.0		-0.5846E-13	3.1246E-13	0-6076E-01
55	0-1020E 02	0.1014E 02	0.2550€ 00	0.0		0.4784E-14	0.3016E-14	0.4464E-01
56	0.1065E D2	J-1059E 02	0.255Œ 00	D.O		0.1875E-15	0-1476E-15	0.3100E-01
57	0-1132E 02	0.11265 02	0.2550E 00	0.0		0.48J4E-16	0.11786-16	0-1984E-01
54 59	0.1244E 02 0.1468E 02	0.1238E 02 0.1462E D2	0.2550E 00	0.0 0.0		0.0	0.0	0-1116E-01
60	0.21405 02	0.2134E 02	0.2550E 00	0.0		0+0 0+0	0.0	0.4961E-02 0.1240E-02
61	0-1000E 31	0.1000E 31	0.2550E 00	0.0		0.0	0.0	0.1000E-29
								· · · · · · · · · · · · · · · · · · ·

(b) Tangential coordinates.

Figure 24.- Continued.

[TERAT ON	NU.	1
-------------	-----	---

ΙT	DPMAX	ΙD	טנ	XAHR		ŧa.	JR	ISUB	1 SUP		RA VG	RF 1	QF3	NS	SEC/CYC
1	0-402E-01	45	31	0.312E	02	1	31			0	0.150E QQ	1.400	0.100	a	0.203
2	0. 24 JE - 0 1	44	31	0.162E	02	46	31	. 1		0	0.119E 00	1.400	0.100	3	0.213
3	0.202E-01	44	31	0.115E	02	45	31	. 1		٥	0.104E 00	1.400	0-100	2	0.210
4	Q-173E-01	44	31	0.112E	32	46	31	1		D	0.977E-01	1.400	0-100	5	0.207
5	0.1536-01	44	31	0-102E	02	46	31	1	l (0	0.941E-01	1.400	0-100	10	0.200
6	0-145E-01	43	31	0.95BE	01	46	31	1		0	0 - 91 SE -0 I	1.400	0-100	14	0-190
7	0.1J4E-01	4.3	41	0.404E	01	46	31	1		D	0.824E-01	1.400	0-100	15	0.203
- 6	0-1236-01	42	31	0.856E	C1	46	- 51			0	0.78yÉ-01	1.400	0-100	18	0.207
9	0.117F-01	42	31	J.415E	91	46	31			•	0.756E-01	1.400	0-100	21	0.213
20	0-10JE-01	4.2	3 (0./79E	01	46	31	. 1		0	0.766E-01	1.400	0.100	25	0.207
Ł 1	0.8/0E-02	42	. J L	0.749E	01	46	31		. +	0	0.752E-01	1.400	0-100	28	0.200
12	0.796E-02	45	31	0.723E	01	46	31			0	0.697E-01	L +400	0.100	33	0.207
13	0.7842-02	45	31	J./03E	01	46	31	1		0	0-676E-01	1.400	0-100	37	0.213
14	0.795h-02	4.2	29	0.688E	01	46	31	. 1		0	0.667E-01	1.400	0.100	39	0.193
15	0.797E-02	42	31	0.076E	01	96	31	. 1	(0	0.690E-01	L-403	0.100	47	9-213
10	0.752E-02	43	31	0.060E	01	46	31			D	0.679E-01	1.400	0.100	51	0.210
17	0.695F-02	44	11	9.638E	01	46	31	. 1		0	0.637E-01	1.400	9. LOD	57	0.213
16	0.6666-02	40	1 ک	0.618E	01	46	31	1	. 4	D	0.6105-01	1-400	0.100	-61	9 . 200
17	0.051E-02	45	31	0.004E	01	46	31	. 1		٥	0.599E-01	1-400	0.100	70	0.210
20	0.639E-02	45	31	0.591E	01	46	31	1	. (Ď	0.60LE-01	1-400	0.100	75	0.200

RMAX= 0.59E 01, COVR= 0.33E-01

(c) Iteration history.

Figure 24. - Continued.

AEDC-TR-79-4

ITERATION NO. 1 PLUT OF CP AT LOUAL XI-INCHEMENTS

١,	ХÜ	ΥŒ	+4	25	(P
•	70	,,,		4.5	CF
1	0.0	0.0	0.0	0.0	1.2142
2	0.008	0.017	0.409	1-007	-0-0148
3	-	0.335	0.632	0.728	0.5159
٠		0.053	0.550	0.798	0.3901
5		0.073	0.725	0.826	394 د. 0
٥		0.394	0.740	0.841	0.3097
7		0-117	C+751	0.853	0.2881
8		0.143	0.761	0.862	0.2699
9		0.172	0.769	0.871	0.2528
10	0.015 0.955	0.204 0.239	0.77d 0.788	0.890	0.2354 0.2166
12		0.278	0.799	2.901	0.1950
13	1-279	0.120	0.815	0.915	0.1684
14	3-463	0.356	U-8J2	0.934	0.1318
15		0-416	7.869	0.570	0.0591
16	1.478	0.469	1.054		-0.2858
17	2.112	0.499	1.211		-0.5516
18	2.365	0.500	1-052		-0.2829
19	2.631	0.500	0.926		-0.0501
20	2.911	J. 50U	0.917		-0.0319
21	J.20J	0.500	3-911		-0.0208
22	3.506	0.500	J. 907	1.007	-0-0140
23	3.614	0.500	0.905		-0.0097
24	4.137	0.500	0-904		-0.0068
25	4-461	0.500	0.903		-0-0050
26	4.788	0.530	0.902		-0.0037
27	5.115	0.500	0.301		-0.0028
28	5.441	0.500	0.901		-0.0022
	5.762	0.500	0.901		-0.0020
J0	6.076 6.380	9-500 0-500	0.901 0.932		-0.0024
32	0.672	0.500	0.932		-0.0036 -0.0058
33	6.950	0.500	0.905		-0.0058 -0.0088
34	7.211	C-500	0.905		-0.0134
35	7.454	0.500	0.913		-0.0134
36	7.676	0.50D	0.929		-0-0244
37	7.876	0.500	0.974		-0-1402
38	8.054	0.499	1.096		-0.3592
39	8.209	0.495	1.247		-0.6482
40	8.341	0.459	1.345		-0.7521
41	8.453	0. 426	1.346		-0.7530
42	8.546	0.392	1.141		-0.4362
4.3	8.021	8ct.0	0.899	0.899	0.0022
44	8.080	0.325	Q. 758	0.754	0.2741
+5	8.743	0.292	0.561	0.558	0.6460
40	8-800	0.255	0-438	0.505	0.8515
47	8.864	0.255	0.450	0.528	0.8326
46	6.938	0.255	0.559	0.650	0.6484
4 Y	9.024	0.255	0.739	0.735	0.5035
51	9.120 9.120	0.255	0.702	0.802	0.3837
52	9.248	0.255	0.754	0.855	0.2631
53	4.397 4.584	0.255 0.255	0.797	0.899	0-1996
54	9.824	0.255	C. 831	0.933	0.1323
55	10.144	0.255	C. 658	0.959 0.978	0.0809
55	10.592	0.255			
57	11.204	0.255	C.889	0.989 0.986	0.0216 0.0088
58	12.384	0.255	0.899	0.999	0.0028
59	14.624	0.255	C. 476	1.000	0.0066
60	21.343	0.255	2.920	1.000	0.0000
	****	0.255	3.900	1.000	0.0

TOTAL BUDY GRAS COEFFICIENT= 0.21993

AFTERBODY DWAG CUEFFICIENT= 0.16222

(d) Tabulated solution and plot of C_p . Figure 24.~ Concluded.

TABLE I. RELATION BETWEEN EXTERNAL DATA SETS AND INPUT/OUTPUT LOGICAL UNIT NUMBERS

Data File	Logical Unit		
(fig. 16)	Input	Output	
1	14	9	
2	13	8	
3	12	2	
4	15	10	
5	11	3	

TABLE II. BASIC INPUT DATA

ITEM NO.	VARIABLES	FORMAT	
1	TITLE (Three cards)	20A4	
2	NRSTRT, NPRINT, N3, ILIM, IITER	515	
	If NRSTRT \neq 0 and N3 \neq 0, skip to item 12		
	If NRSTRT ≠ 0 and N3 ≠ 0 stop. No further input is necessary		
3	LPROG,N1,N2,IBL,IUNIT,MIT	615	
4	GAM, AMINF		
	If LPROG = 1 skip to item 13		
5	IXY	15	
	If IXY = 0, skip next card	15	
6	XO,YO (IXY cards)	2F10.0	
7	IMAX, JMAX, MHALF, KLOSE, LREADP	515	
8	DNDZO,XIXM,XM,DSDXIM,XBT,DMAX,XZNEW	7F10.0	
9	PLUMIN	L5	
	If PLUMIN = FALSE, skip next card		
10	GAMAP, PTPPFS, AMP, THETAP, TTP, GMP, DELCZ	7F10.0	
	If LPROG = -1, skip remaining cards		
11	LSEP	L5	
	If LSEP = FALSE, skip next card		
12	XSEP, THETS	2F10.0	
9	If NRSTRT ≠ 0 stop. No further input is necessary		

TABLE II. (Concluded)

ITEM NO.	VARIABLES	FORMAT
13	IOPT,K,LVAR1,LSHAPE,LIC,LDSTAR,LSHPBL	715
	If LPROG ≠ 1 or if LPROG = 1 and both IOPT = 1 and LVAR1 = 2, skip items 14 and 15	
14	NVAR	15
15	XVAR, VAR	2F10.0
16	EL, PT, TT, TWONTT, VISC, RGAS, SCON, DFACT	8F10.0
17	XZ, RLEN, XT, DXP, HLIM	5F10.0
1	If LSHAPE ≠ 0, skip next card	
	If LIC = 1, input CFCl and DELTAl	
Ì	If LIC = 2, input CFCl and DELST1	
18	CFC1,DELTA1 (or DELST1)	2F10.0
	If IOPT = 1, skip next card	
19	UE1, DUEDX	2f10.0
	<pre>If LSHPBL = 0 and LPROG = 0, skip items 20 and 21</pre>	
20	NR	1615
21	XRP,RL	2F10.0
		İ
		_]

TABLE III. SUMMARY OF INPUT DATA FOR RESTARTING

ITEM NO.	VARIABLES	FORMAT
1	TITLE (Three cards)	20A4
2	NRSTRT, NPRINT, N3, ILIM, IITER	515
,	<pre>If N3 = 0 stop. No further cards are necessary</pre>	
3	XSEP, THETS	2F10.0

NOMENCLATURE

cross sectional area of inviscid plume

Α

K

 $\overline{\mathbf{x}}$

 A nj coefficients in equations (47), (48), (54), (56), (60), (116) and (124) coefficients in equations (124) and (125) A* cross sectional area at a sonic throat speed of sound a coefficients in equations (61) to (63) a_{nj} coefficients in equations (47), (48), (54), (56), (116), Bn and (126). coefficients in equations (61), (62) and (64) bn C Chapman-Rubesin parameter, equation (31) C_C parameter defined by equation (82) skin-friction coefficient C_{f} specific heat at constant pressure Cp D factor in mixing layer temperature profile, equation (81) f weighting function defined by equation (39) Gn integral functions defined by equations (49) and (123) acceleration of gravity g H_{i} transformed shape factor, equation (66) integral functions defined by equations (50) and (58) In J conversion factor used in equations (33) and (35) integral functions defined by equations (51), (52), and Jn (59)

entrainment fraction, equation (74)

factor defined by equation (53)

u,v

NOMENCLATURE (Continued)

k factor in equations (8) and (9) L reference length Mach number М Mach number function $\frac{1}{2}(\gamma-1)M^2$ m functions defined by equations (120) to (122) Pn pressure р velocity in inviscid exhaust plume, equation (11) α^{p} R gas constant \mathbb{R}_{n} functions defined by equations (117) to (119) radius r S temperature function, equations (17) and (84) temperature function at nozzle exit, equation (80) Sn temperature function in fully developed mixing layer, Ss equation (83) rms error of boundary-layer-edge velocity, equation (5) s rate of change of s with θ_{c} , equation (6) se rate of change of s with x_s , equation (7) sx T temperature constant in Sutherland's viscosity relation, equation (31) T_ factor in transformed boundary-layer equations, equation t (26) U,V transformed velocity components, equations (28) to (30) wake velocity factor, equation (40) ប្ត friction velocity, equation (41) U_T velocity components of physical flow field, figure 4

NOMENCLATURE (Continued)

- u velocity function at nozzle exit, equations (75) and (76)
- us velocity function in fully developed mixing layer, equations (77) and (78)
- ũ, ỹ transformed velocity components, equations (22) and (23)
- X,Y transformed coordinates, equations (28) to (30)
- x,y coordinates of physical flow field, figure 4
- $\mathbf{x}_{_{\mathrm{D}}}$ axial location of minimum $\mathbf{u}_{_{\mathbf{e}}}$ downstream of boattail
- x_s axial location of separation point
- \tilde{x}, \tilde{y} transformed coordinates, equations (18) and (19)
- y coordinate of logarithmic part of boundary layer, equation (42)
- α damping factor for viscid-inviscid iterations, equation (4)
- eddy-viscosity factor, equations (15), (16), (43), and
 (45)
- β_{π} $\,$ value of β for fully turbulent flow
- β_{t} value of β in transition zone between laminar and turbulent flow
- γ ratio of specific heats
- δ boundary layer thickness
- thickness of nozzle internal boundary layer or thickness of inner part of mixing layer
- δ : transformed boundary layer thickness
- value of δ for external boundary layer at nozzle exit
- boundary layer displacement thickness, $\int_{0}^{\infty} (1 \frac{\rho u}{\rho_{e} u_{e}}) \frac{r}{r_{w}} dy$

NOMENCLATURE (Concluded)

- δ_{k}^{*} boundary layer displacement thickness, $\int_{0}^{\delta} (1 \frac{u}{u_{e}}) dy$
- ε eddy viscosity for mixing layer, equation (86)
- $\overline{\epsilon}$ constant in eddy viscosity of mixing layer, equation (86)
- θ_s angle of separated displacement surface with the axis, equation (2)
- κ factor in transition region eddy viscosity, equation (46)
- μ molecular viscosity
- ν μ/ρ
- ρ density
- τ shear stress

SUBSCRIPTS

- c refers to inviscid core, inner edge of mixing layer
- e refers to boundary layer or mixing layer external edge
- I refers to inviscid flow
- o refers to free stream reference conditions
- t refers to stagnation conditions
- V refers to viscous flow
- w refers to the solid surface or the inviscid plume boundary
- x,y denotes differentiation with respect to x, or y

SUPERSCRIPT

denotes differentiation with respect to y/δ