Laborator/Seminar FLP Recapitularea Logicii propozitionale

Doua abordari:

- semantica;
- sintaxa.

Semantica - adevar, tautologie.

Sintaxa - teorema, o propozitie poate fi demonstrata.

⊨ pentru semantica

⊢ pentru sintaxa

 \mid = ϕ inseamna ϕ tautologie

 $|-\phi|$ inseamna ϕ demonstrabila sau ϕ teorema

In logica propozitionala, pentru a verifica daca o formula ϕ este tautologie, este suficient sa ii construim tabelul de adevar.

 $e: Var \rightarrow \{0, 1\}$

e+ : Form \rightarrow {0, 1} extinde functia e pe formule

$$e+(v) = e(v)$$

 $e+(p / q) = e+(p) / e+(q)$
 $e+(p \rightarrow q) + e+(p) \rightarrow e+(q)$

Ce inseamna ca ϕ este tautologie?

- are 1 pe toata coloana;

Ce inseamna ca ϕ este satisfiabila?

- are cel putin un 1 pe coloana.

Exercitiul 1: Aratati ca urmatoarea formula este o tautologie.

Cate variabile propozitionale am?

3 Cate linii am in tabelul de adevar? 2^3 = 8

v1	I	v2	I	v3		v1	\/	v2	I	Α	I	v1	\rightarrow	v3	I	v2	\rightarrow	v3	I	В		Α	\longleftrightarrow	В
	 I	 0	 I		 I		 ∩		 I	 1	. – - I		 1		 I		 1		 I	 1	 I		1	
	-		-	1	-				-		-		1		•				•		•		1	
0		1		0			1			0	I		1				0			0			1	
0		1		1	1		1			1	I						1			1			1	
1		0		0	1		1			0							1			0			1	
1		0		1			1			1	1		1				1			1			1	
1		1		0			1			0	1		0				0			0			1	
1		1		1			1			1	1		1				1			1			1	

Pe coloana A \longleftrightarrow B am obtinut doar 1, ceea ce inseamna ca formula A \longleftrightarrow B este o tautologie.

Exercitiul 2 - deductia naturala

a) (p /\ q) /\ r, s /\ t
$$\vdash$$
 q /\ s simbol sintactic

secvent

Demonstrez ca

este un secvent valid pentru

 $q / \ s$

asta inseamna

utilizand sistemul deductiei naturale.

Demonstratie:

```
(5) s
                                                    /\e1(2)
(6) q / s
                                                    /(i(4, 5))
b) p, \neg\neg(q /\ r) \vdash \neg\negp /\ r
(1) p
                                                    ipoteza
(2) \neg\neg(q / r)
                                                    ipoteza
(3) \neg \neg p
                                                    ¬¬i(1)
(4) q / r
                                                    ¬¬e(2)
(5) r
                                                    /\e2(4)
(6) \neg \neg p / r
                                                    /(i(3, 5))
c) p / q \rightarrow r \vdash p \rightarrow (q \rightarrow r)
(1) p /\ q \rightarrow r
                                                    ipoteza
(2) | p
                                                    asumptie
(3) \mid | q
                                                    asumptie
(4) \mid \mid p /   q
                                                    /(i(2, 3))
(5) | | r
                                                    \rightarrow e(1, 4)
(6) \mid q \rightarrow r
                                                    \rightarrowi(3-5)
(7) p \rightarrow (q \rightarrow r)
                                                    \rightarrowi(2-6)
d) p / (q / r) \vdash (p / q) / (p / r)
(1) p / (q / r)
                                                    ipoteza
(2) p
                                                    /\e1(1)
(3) q / r
                                                    /\e2(1)
(4) | q
                                                    asumptie
(5) \mid p \mid q
                                                    /(i(2, 4))
(6) | (p / q) / (p / r)
                                                    \/i1(5)
(7) | r
                                                    asumptie
(8) | p / r
                                                    /(i(2, 7))
(9) | (p /\ q) \/ (p /\ r)
                                                    /i2(8)
(10) (p / q) / (p / r)
                                                    e) p \rightarrow q, p \rightarrow ¬q \vdash ¬p
(1) p \rightarrow q
                                                    ipoteza
(2) p \rightarrow \neg q
                                                    ipoteza
(3) | p
                                                    asumptie
(4) \mid q
                                                    \rightarrow e(1, 3)
```

(5) |
$$\neg q$$
 $\rightarrow e(2, 3)$
(6) | \bot $\neg e(4,5)$
(7) $\neg p$ $\neg i(3-6)$

Exercitiul 3

Sa se demonstreze urmatoarele reguli in deductia naturala:

modus tollens

reductio ad absurdum

a) p
$$\rightarrow$$
 q, \neg q \vdash \neg p

$(1) p \rightarrow q$	ipoteza
(2) ¬q	ipoteza
(3) p	asumptie
(4) q	$\rightarrow e(1, 3)$
(5) ⊥	¬e(2, 4)
(6) ¬p	¬i(3-5)

b)
$$\neg p \rightarrow \bot \vdash p$$

Exercitiul 4

Fie n \geqslant 1 si ϕ 1, ..., ϕ n, ϕ formule. Demonstrati ca

$$|-\phi 1 - \phi 1 - (\phi 2 - (\dots - (\phi n \rightarrow \phi) \dots))$$

atunci

$$\varphi$$
1, φ 2, ..., φ n $\vdash \varphi$.

Solutie:

Adaugam, pe rand, ϕ 1, ϕ 2, ..., ϕ n ca secventi valizi si aplicam mereu regula de \rightarrow e.

Pasul 1: adaug ϕ 1 ca secvent valid.

(1) φ1 ipoteza Pas1

(2)
$$\phi 1 \rightarrow (\phi 2 \rightarrow (\dots \rightarrow \phi) \dots))$$
 ipoteza

(3)
$$(\phi 2 \rightarrow (\dots \rightarrow (\phi n \rightarrow \phi) \dots))$$
 $\rightarrow e(1, 2)$

asta inseamna ca

$$\phi$$
1 |- ϕ 2 -> (... -> (ϕ n $\rightarrow \phi$) ...)

Pasul 2: adaug ϕ 2 ca sevent valid ...

Dupa n-1 pasi, obtin ca

$$\phi$$
1, ϕ 2, ϕ 3, ..., ϕ (n-1) \vdash ϕ n \rightarrow ϕ

Il adaug pe ϕ n ca secvent valid

(1) φn ipoteza Pas n

(2) $\phi n \rightarrow \phi$ ipoteza

Si obtin ca

$$\phi$$
1, ϕ 2, ..., ϕ n $\vdash \phi$

Exercitiul 5

Sa se scrie reguli de introducere si eliminare a echivalentei logice in deductia naturala.

$$\longleftrightarrow$$
i \longleftrightarrow e

$$p \leftrightarrow q \sim (p \rightarrow q) / (q \rightarrow p)$$

Exercitiul 6

- (i1) Toti scriitorii care inteleg natura umana sunt intelepti.
- (i2) Un scriitor care este poet adevarat poate trezi sentimente puternice.
- (i3) Shakespeare este scriitorul care a scris "Hamlet".
- (i4) Un scriitor care trezeste sentimente puternice intelege natura umana.
- (i5) Numai un poet adevarat putea scrie "Hamlet".

Shakespeare este intelept.

Solutie:

$$p / q \rightarrow r \sim p \rightarrow (q \rightarrow r)$$

- (i1) Scriitor /\ NaturaUmana → Intelept
- (i2) Scriitor \rightarrow (PoetAdevarat \rightarrow SentimentePuternice)
- (i3) Shakespeare → Scriitor /\ Hamlet
- (i4) Scriitor \rightarrow (SentimentePuternice \rightarrow NaturaUmana)
- (i5) Hamlet → PoetAdevarat
- (c) Shakespeare → Intelept

(11) Poet \rightarrow SP	→e(8, 2)
(12) Poet	→e(9, 5)
(13) SP	→e(11, 12)
(14) HN	→e(10, 13)
(15) W /\ HN	/\i(8, 14)
(16) C	→e(1, 15)
$(17) S \rightarrow C$	