Resumen de Conjuntos

Tomás Pitinari

Los conjuntos son representados con letras mayúsculas y los elementos que estos contienen (o no) con letras minusculas. Se indicara que dado un elemento x, entonces $x \in A$ si x pertenece a A y $x \notin A$ si este no pertenece a A.

Los elementos de un conjuntos, pueden ser denotados por extensión, nombrando uno por uno dentro de , o por comprensión, definiendo una ley que se cumpla para todos y solo para los elementos del conjunto.

Si C y D son dos conjuntos del \mathbb{U} , se dice que C es subconjunto de D, y se escribe $C\subseteq D$, si cada elemento de C pertenece a D también.

Si
$$C \subseteq D \to \forall x [x \in C \to x \in D]$$
.

Para Todos los subconjuntos:

$$C \subset D \to C \subseteq D$$
,

y si C y D son finitos:

$$\begin{array}{l} C \subseteq D \rightarrow |C| \leq |D| \\ C \subset D \rightarrow |C| < |D| \end{array}$$

Dos conjuntos C, D son iguales, y se simboliza C = D, si $C \subseteq D \land D \subseteq C$.

1 Teorema 1:

Sean $A, B, C \subseteq \mathbb{U}$:

- 1. Si $A \subseteq B$ y $B \subseteq C$, entonces $A \subseteq C$.
- 2. Si $A \subset B$ y $B \subseteq C$, entonces $A \subset C$.
- 3. Si $A \subseteq B$ y $B \subset C$, entonces $A \subset C$.
- 4. Si $A \subset B$ y $B \subset C$, entonces $A \subset C$.

El conjunto vacío es el conjuntos que no contiene elementos, y se denota $\emptyset o$. Se da que $|\emptyset| = 0$, pero $0 \neq \emptyset$ y $\emptyset \neq \emptyset$, ya que \emptyset es un conjunto con un elemento, el conjunto vacío.

2 Teorema 2:

Sea $A \subseteq \mathbb{U}$, entonces $\emptyset \subseteq A$ y si $A \neq \emptyset$, entonces $\emptyset \subset A$.

Sea $A \subseteq \mathbb{U}$, el conjunto potencia, se denota $\mathcal{P}(A)$, es la colección de todos los subconjuntos de A. Ejemplo, $A = 1, 2, 3, \mathcal{P}(A) = \emptyset, 1, 2, 3, 1, 2, 1, 3, 2, 3, A$.

Para $A, B \subseteq \mathbb{U}$ definimos lo siguiente:

- 1. $A \cup B$ (union de conjuntos) = $\{x | x \in A \lor x \in B\}$.
- 2. $A \cap B$ (intersección de conjuntos) = $\{x | x \in A \land x \in B\}$.
- 3. $A \triangle B$ (differencial simetrical de conjuntos) = $\{x | (x \in A \lor x \in B) \land x \notin A \cap B\} = \{x | x \in A \cup B \land x \notin A \cap B\}$.

Si dos conjuntos A y B son disjuntos, significa que $A \cap B = \emptyset$.

3 Teorema 3:

Si A y B son conjuntos disjuntos, entonces $A \cup B = A \triangle B$.

Sea $A \subseteq \mathbb{U}$, el complemento de A, se denota \overline{A} , es igual a $\{x | x \in \mathbb{U} \land x \notin A\}$.

Sean $A, B \subseteq \mathbb{U}$, el complemento de A en B, que se denota como B - A, esta dado por $\{x | x \in B \land x \notin A\}$.

4 Teorema 4:

Sean $A, B \subseteq \mathbb{U}$, las siguientes proposiciones son equivalentes:

- 1. $A \subseteq B$
- $2. \ A \cup B = B$
- 3. $A \cap B = A$
- 4. $\overline{B} \subseteq \overline{A}$

1)	$\overline{\overline{A}} = A$	Ley del doble complemento
2)	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	Leyes de morgan
,	$\overline{A \cap B} = \overline{A} \cup \overline{B}$, G
3)	$A \cup B = B \cup A$	Propiedades conmutativas
	$A \cap B = B \cap A$	
4)	$A \cup (B \cup A) = (A \cup B) \cup C$	Propiedades asociativas
	$A \cap (B \cap C) = (A \cap B) \cap C$	
5)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Propiedades distributivas
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
6)	$A \cup A = A$	Propiedades idempotentes
	$A \cap A = A$	
7)	$A \cup \emptyset = A$	Propiedades del neutro
	$A\cap \mathbb{U}$	
8)	$A\cup \overline{A}=\mathbb{U}$	Propiedades del inverso
	$A\cap \overline{A}=\emptyset$	
9)	$A \cup \mathbb{U} = \mathbb{U}$	Propiedades de dominación
	$A \cap \emptyset = \emptyset$	
10)	$A \cup (A \cap B) = A$	Propiedades de absorción
	$A \cap (A \cup B) = A$	

5 Teorema 5:

Sea s una proposición que trata de la igualdad de dos expresiones con conjuntos. Estas expresiones deben contener uno o más ocurrencias de conjuntos (como $A, \overline{A}, B, \overline{B}$, etc.), una o más ocurrencias de \emptyset y $\mathbb U$ y solamente los símbolos de las operaciones con conjuntos \cap y \cup . El dual de s, denotada como s^d , se obtiene de s al reemplazar cada ocurrencia de \emptyset y $\mathbb U$ entre si y cada ocurrencia de \cap y \cup entre si.(revisar teorema 3.5 del apunte por más detalles)

6 Teorema 6:

(Leyes de morgan generalizadas)

Sea I un conjunto de índices, donde para cada $i\epsilon I, A\subseteq \mathbb{U}$:

1.
$$\overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i}$$

$$2. \ \overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i}$$

Googlear diagramas de Venn

Ademas no esta agregado probabilidad, no se si entra