# ECE 236B Convex Optimization (Notes)

Winter 2021, Instructor: Lieven Vandenberghe, TA: Xin Jiang, UCLA Notetaker: Zhiying Li

for review purpose only

# Contents

| 1 | Schur Complement |                                       | 2 |  |
|---|------------------|---------------------------------------|---|--|
| 2 | Cor              | nvex Sets                             | 2 |  |
| 3 | Convex Functions |                                       |   |  |
|   | 3.1              | Verifying the definition              | 2 |  |
|   | 3.2              | Restricting to an arbitrary line      | 3 |  |
|   | 3.3              | Hessian (second-order conditions)     | 4 |  |
|   | 3.4              | Operations preserving convxity        | 6 |  |
| 4 | Cor              | nvex Optimization Problems            | 8 |  |
|   | 4.1              | Equivalent problem                    | 8 |  |
|   | 4.2              | Robust QP                             | 8 |  |
|   | 4.3              | SOCP                                  | 8 |  |
|   | 4.4              |                                       | 8 |  |
|   | 4.5              |                                       | 8 |  |
| 5 | Duality          |                                       |   |  |
|   | 5.1              | Lagrange Dual                         | 8 |  |
|   | 5.2              | Two-way partition example             | 8 |  |
|   | 5.3              | Strong Duality and Slater's Condition | 8 |  |
|   | 5.4              | Optimality Conditions                 | 8 |  |
|   | 5.5              | Examples of Duality                   | 8 |  |
| 6 | Algorithms       |                                       | 8 |  |

## 1 Schur Complement

### 2 Convex Sets

There are not too many examples

### 3 Convex Functions

Commonly, the most important concept or a topic in this part is: **how to prove a function is a convex function?** And there are a lots of methods to prove the convexity of a function.

### 3.1 Verifying the definition

**Definition.** (convex function)  $f: \mathbf{R}^n \to \mathbf{R}$  is convex if

- 1. dom f is a convex set
- 2. (Jenson's inequality)  $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$  for all  $x, y \in \text{dom } f, \ 0 \le \theta \le 1$

#### remark.

- 1. Students tend to ignore the first requirement (dom f is a convex set).
- 2. (Alternative definition) Many machine learning textbooks (are lazy and) tend to use definition that only involves Jenson's inequality:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$
 for all  $x, y \in \text{dom } f, 0 \le \theta \le 1$ 

Their arguments tends to be: by writing  $f(\theta x + (1 - \theta)y)$ , it implicitly implies  $\theta x + (1 - \theta)y \in \text{dom } f$  for all  $x, y \in \text{dom } f$ , and hence dom f is a convex set.

3. **Useful Property**: Extended-value extension  $\tilde{f}$  of f:

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$

often simplifies notation:

$$\tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$
 for all  $x, y \in \text{dom } f$ ,  $0 \le \theta \le 1$ 

Practically, we rarely use this definition to prove complexity on non-trivial problem, because directly using defintion either makes most non-trivial cases too complicated, and we normally alternatively have some more advanced tools.

However, this definition would imply a trick of restricting to a arbitrary line:

#### 3.2 Restricting to an arbitrary line



As is illustrated by the graph above, we can check convexity of f by checking convexity of functions of one variable, making use of the following property:

 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if and only if the function  $g: \mathbf{R} \to \mathbf{R}$ 

$$g(t) = f(x + tv), \quad \text{dom } g = \{t \mid x + tv \in \text{dom } f\}$$

is convex (in t) for any  $x \in \text{dom } f$ ,  $v \in \mathbf{R}^n$ .

#### remark.

- 1. t does not have to be in dom f.
- 2. It reduces checking Jenson's inequality in high dimensional to 1-dimensional problem. So it's espeically useful for matrix functions (functions of eigenvalue, or eigen-function/ spectral function). Such as examples below:

**Example.**  $f(x) = \operatorname{tr} X^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i(X)}$ , with dom  $f = \mathbf{S}_{++}^n$  is convex.

*Proof.* Consider  $X \in \mathbf{S}_{++}^n$ , and t > 0, and  $V \in \mathbf{R}^n$  such that  $X + tV \in \mathbf{S}_{++}^n$ , we want to show that  $g(t) = \operatorname{tr}(X + tV)^{-1}$  is convex.

We use the fact that  $X \in \mathbf{S}_{++}^n \implies X = X^{1/2}X^{1/2}$ , then

$$\begin{split} g(t) &= \operatorname{tr}(X+tV)^{-1} = \operatorname{tr}(X^{1/2}X^{1/2}+tV)^{-1} \\ &= \operatorname{tr}\left[X^{1/2}\left(I+tX^{-1/2}VX^{-1/2}\right)X^{1/2}\right]^{-1} \\ &= \operatorname{tr}\left[X^{-1/2}\left(I+tX^{-1/2}VX^{-1/2}\right)^{-1}X^{-1/2}\right] \\ &= \operatorname{tr}\left[X^{-1}\left(I+tX^{-1/2}VX^{-1/2}\right)^{-1}\right] \end{split}$$

Since  $X+tV\in \mathbf{S}^n_{++}$  and  $X\in \mathbf{S}^n_{++}$ , these implies  $V\in \mathbf{S}^n$ . Then,  $X^{-1/2}VX^{-1/2}\in \mathbf{S}^n$ . Then we can apply eigen-decomposition:  $X^{-1/2}VX^{-1/2}=Q\Lambda Q^T$ , then

$$g(t) = \operatorname{tr}(X + tV)^{-1} = \operatorname{tr}\left[X^{-1}\left(I + tQ\Lambda Q^{T}\right)^{-1}\right]$$
$$= \operatorname{tr}\left[X^{-1}Q\left(I + t\Lambda\right)^{-1}Q^{T}\right]$$
$$= \operatorname{tr}\left[Q^{T}X^{-1}Q\left(I + t\Lambda\right)^{-1}\right]$$

If we let  $Y = Q^T X^{-1}Q$ , then notice  $Y \in \mathbf{S}_{++}^n$ . Also notice Y and  $(I + t\Lambda)$  are diagnol matrix.

$$g(t) = \operatorname{tr}(X + tV)^{-1} = \operatorname{tr}\left[Y(I + t\Lambda)^{-1}\right]$$
$$= \sum_{i=1}^{n} \frac{Y_{ii}}{1 + t\lambda_i}$$

Since  $Y \in \mathbf{S}_{++}^n$  and diagnal, then  $Y_{ii} > 0$  for all i.

Since  $X + tV \in \mathbf{S}_{++}^n$  and  $X + tV = X^{1/2} \left(I + tX^{-1/2}VX^{-1/2}\right) X^{1/2}$  and  $X^{1/2} \in \mathbf{S}_{++}^n$ , then we have  $\left(I + tX^{-1/2}VX^{-1/2}\right) \succ 0$ , hence  $1 + t\lambda_i > 0$  for all i. Therefore, g(t) is a convex function. And this proves  $\operatorname{tr} X^{-1}$  is convex.

**Example.**  $f(x) = \log \det X = \sum_{i=1}^{n} \log \lambda_i(X)$ , with dom  $f = \mathbf{S}_{++}^n$  is concave.

Proof.

$$\begin{split} g(t) &= \log \det(X + tV) = \log \det \left( X^{1/2} \left( I + tX^{-1/2}VX^{-1/2} \right) X^{1/2} \right) \\ &= \log \left[ \det \left( X^{1/2} \right) \det \left( I + tX^{-1/2}VX^{-1/2} \right) \det \left( X^{1/2} \right) \right] \\ &= \log \left[ \det X \det \left( I + tX^{-1/2}VX^{-1/2} \right) \right] \\ &= \log \det X + \log \det \left( I + tX^{-1/2}VX^{-1/2} \right) \end{split}$$

Again, let  $X^{-1/2}VX^{-1/2} \in \mathbf{S}^n$ , and by eigen-decomposition,  $X^{-1/2}VX^{-1/2} = Q\Lambda Q^T$ , then

$$g(t) = \log \det X + \log \det \left[ Q(I + t\Lambda) Q^T \right]$$

$$= \log \det X + \log \det (I + t\Lambda)$$

$$= \log \det X + \log \prod_{i=1}^{n} (1 + t\lambda_i)$$

$$= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$$

Since  $X + tV \in \mathbf{S}_{++}^n$  and  $X + tV = X^{1/2} \left(I + tX^{-1/2}VX^{-1/2}\right) X^{1/2}$  and  $X^{1/2} \in \mathbf{S}_{++}^n$ , then we have  $\left(I + tX^{-1/2}VX^{-1/2}\right) \succ 0$ , hence  $1 + t\lambda_i > 0$  for all i. Therefore, g(t) is a concave function. And this proves  $\log \det X$  is concave.

#### 3.3 Hessian (second-order conditions)

(second-order conditions) f is convex if and only if

- 1. f is twice differentiable
- 2. dom f is a convex set
- 3.  $\nabla^2 f(x) \succ 0$  for all  $x \in \text{dom } f$

remark.

1. "dom f being convex set" is a condition that cannot be ignore.

Counterexample:  $f(x) = \frac{1}{x^2}$ , dom  $f = \{x \in \mathbf{R} \mid x \neq 0\}$ . The Hessian  $f''(x) = \frac{6}{x^4}$  for all  $x \in \text{dom } f$ . However, dom f is not convex.



- 2. Need to be differentiable, counterexample: f(x) = |x|
- 3. This method is useful for:
  - Trivial cases: scalar functions,  $\nabla^2 f \in \mathbf{S}^2$ , etc
    - Quadratic function:  $f(x) = (1/2)x^T P x + q^T x + r$  (with  $P \in \mathbf{S}^n$ )

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$$

convex if  $P \ge 0$ 

- Least squares objective:  $f(x) = ||Ax - b||_2^2$ 

$$\nabla f(x) = 2A^T (Ax - b), \quad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

- Quadratic-over-linear function:  $f(x,y) = x^2/y$ 

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[ \begin{array}{c} y \\ -x \end{array} \right] \left[ \begin{array}{c} y \\ -x \end{array} \right]^T \geq 0$$

convex for y > 0

- "cyclicly symmetric" cases:
  - Log-sum-exp function:  $f(x) = \log \sum_{k=1}^{n} \exp x_k$
  - Geometric mean:  $f(x) = \left(\prod_{k=1}^{n} x_k\right)^{1/n}$
- 4. Although we can prove convexity by the first-order condition, in practice, we mostly use First-Order Condition as a property.

(first-order conditions) f is convex if and only if

- (a) f is differentiable
- (b) dom f is a convex set
- (c)  $f(y) \ge f(x) + \nabla f(x)^T (y x)$  for all  $x \in \text{dom } f$

#### 3.4 Operations preserving convxity

#### 3.4.1 Nonnegative weighted sum

If  $f_i$  for i = 1, ..., m is convex, and  $\alpha_i \ge 0$  for i = 1, ..., m, then  $f = \sum_{i=1}^m \alpha_i f_i$  is convex.

#### 3.4.2 Composition with affine mapping

f(Ax + b) is convex if f is convex.

remark.

1. If matrix  $A = [a_1, a_2, \dots, a_n]$ , then this is a affine mapping of  $x = (x_1, x_2, \dots, x_n)$ . i.e.

$$Ax + b = x_1a_1 + x_2a_2 + \dots + x_na_n + b$$

2. This property can be more general, in the way that the affine mapping can also be with respect to matrix  $A_i, B \in \mathbf{S}^m$  (or  $\mathbf{R}^{p \times q}$  or signals in general):

$$A(x) + B = x_1 A_1 + x_2 A_2 + \dots + x_n A_n + B$$

Notice, in this case g(x) = f(A(x) + B), the functions  $f : \mathbf{S}^m \to \mathbf{R}$ , and  $g : \mathbf{R}^n \to \mathbf{R}$ .

**Example.** We know  $f(Z) = -\log \det Z$  is convex on  $\mathbf{S}_{++}^m$ . Then,

$$g(x) = f(A(x) + A_0)$$
  
=  $-\log \det (x_1 A_1 + x_2 A_2 + \dots + x_n A_n + A_0)$ 

is a convex function with dom  $g = \{x \in \mathbf{R}^n \mid x_1 A_1 + x_2 A_2 + \dots + x_n A_n + A_0 \succ 0\}.$ 

#### 3.4.3 Pointwise maximum

if  $f_1, \ldots, f_m$  are convex, then  $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$  is convex

**Example 1.** (piecewise-linear function):  $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$  is convex

**Example 2.** (sum of r largest components of  $x \in \mathbf{R}^n$ ):

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex  $(x_{[i]})$  is i th largest component of x)

*Proof.* 
$$f(x) = \max \{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

**Example 3.** (general form of Example 2.): If  $\alpha_1 \geqslant \alpha_2 \geqslant \cdots \geqslant \alpha_r$ , then

$$f(x) = \alpha_1 x_{[1]} + \alpha_2 x_{[2]} + \dots + \alpha_r x_{[r]}$$

is convex  $(x_{[i]})$  is i th largest component of x)

#### 3.4.4 Pointwise supremum

If f(x,y) is convex in x for each  $y \in \mathcal{A}$ , then  $g(x) = \sup_{y \in \mathcal{A}} f(x,y)$  is convex.

remark.

- 1.  $\mathcal{A}$  does not have to be convex.
- 2. f(x,y) does not have to be jointly convex in (x,y). f(x,y) only has to be convex for x when given y.

#### 3.4.5 Composition rule

(Composition with scalar functions) composition of  $g: \mathbf{R}^n \to \mathbf{R}$  and  $h: \mathbf{R} \to \mathbf{R}$ :

$$f(x) = h(g(x))$$

f is convex if

- g convex, h convex,  $\tilde{h}$  nondecreasing
- g concave, h convex,  $\tilde{h}$  nonincreasing

remark.

(Vector composition) composition of  $g: \mathbb{R}^n \to \mathbb{R}^k$  and  $h: \mathbb{R}^k \to \mathbb{R}$ :

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if

- $g_i$  convex, h convex,  $\tilde{h}$  nondecreasing in each argument
- $g_i$  concave, h convex,  $\tilde{h}$  nonincreasing in each argument

remark.

#### 3.4.6 Minimization

If f(x,y) is convex in (x,y) and C is a convex set, then  $g(x) = \inf_{y \in C} f(x,y)$  is convex.

remark.

### 3.4.7 Persepective

The perspective of a function  $f: \mathbf{R}^n \to \mathbf{R}$  is the function  $g: \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$ 

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$$

g is convex if f is convex

#### remark.

### 3.4.8 Epigraph

Epigraph of  $f: \mathbf{R}^n \to \mathbf{R}$   $\operatorname{epi} f = \left\{ (x,t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \leq t \right\}$  f is convex if and only if epi f is a convex set

#### remark.

# 4 Convex Optimization Problems

- 4.1 Equivalent problem
- 4.2 Robust QP
- 4.3 SOCP
- 4.4 Geometric Programing
- 4.5 SDP

# 5 Duality

- 5.1 Lagrange Dual
- 5.2 Two-way partition example
- 5.3 Strong Duality and Slater's Condition
- 5.3.1 Geometric Interpretation
- 5.4 Optimality Conditions
- 5.5 Examples of Duality
- 5.5.1 Example 1. Summation of r largest elements
- 5.5.2 Example 2. Duality and SDPs
- 5.5.3 Example 3. Exact Penalty

# 6 Algorithms

- 6.1 Unconstrained Minimization
- 6.2 Minimization with Equality Constraints
- 6.3 Interior Point Method