Lezione 13 - 28/10/2022

Notazione - definizione

Proposizione

Definizione - Sottogruppo generato

Proposizione

Definizione - Gruppo ciclico

Definzione - Ordine

Nota

Proposizione

Notazione - definizione

Sia G un **gruppo** e $g \in G$. Definiamo le **potenze** come segue

$$g^i = egin{cases} g^{i-1} \cdot g & ext{se } i > 0 \ e & ext{se } i = 0 \ (g^{-1})^{-i-1} \cdot g^{-1} & ext{se } i < 0 \end{cases}$$

Nota: è una definizione induttiva

Osservazione: in notazione additiva si ha

$$egin{aligned} g^i &
ightarrow ig \ g^{-i} &
ightarrow -ig \end{aligned}$$

Fare la **potenza** di un elemento x di un gruppo G equivale ad **iterare** a partire da x o da x^{-1} l'operazione del gruppo.

Proposizione

Se H,K sono **sottogruppi** di un gruppo G, anche $H\cap K$ lo è.

<u>Dimostrazione</u>: Per ipotesi

$$h_1h_2^{-1} \in H \quad orall h_1, h_2 \in H \; (1) \ k_1k_2^{-1} \in K \quad orall k_1, k_2 \in K \; (2)$$

Lezione 13 - 28/10/2022 1

Siano ora x, y elementi qualsiasi di $H \cap K$. Devo dimostrare che

$$xy^{-1} \in H \cap K$$

ma se $x,y\in H\cap K$, in particolare $x,y\in H$ quindi per (1) $xy^{-1}\in H$ e $x,y\in K$, quindi per (2) $xy^{-1}\in K$. Dunque $xy^{-1}\in H\cap K$.

Osservazione: L'enunciato vale per una qualsiasi famiglia di sottogruppi di ${\it G}$

$$lpha \in A \quad H_lpha \leq G \Longleftrightarrow igcap_{lpha \in A} H_lpha \leq G$$

Definizione - Sottogruppo generato

Sia G un gruppo e $X \leq G$. Si definisce sottogruppo generato da X l'insieme

$$< X> = \bigcap_{X \subseteq H \le G} H$$

Caso speciale (importante): $X=\{g\}$ allora

$$< g >= \{g^i : i \in \mathbb{Z}\}$$

e prende il nome di sottogruppo ciclico generato da g.

Proposizione

Sia $X=\{x_1,x_2,...\}\leq G$. Allora

$$0< x> = \{t_1 \cdot ... \cdot t_r : r \in \mathbb{N}, \ t_i \in X \ ext{oppure} \ t_i^{-1} \in X \}$$

 $\underline{\text{Idea}}$: per generare un gruppo a partire dagli elementi di X devo prendere **tutti i** possibili prodotti di elementi di X e dei loro inversi.

Esempio: in $\mathbb Z$

$$<2,3>=\{2s+3t:s,t\in \mathbb{Z}\}=\mathbb{Z}$$

Definizione - Gruppo ciclico

Un **gruppo** G si dice **ciclico** se $\exists g \in G : G = \langle g \rangle$.

Esempi:

2

1. $(\mathbb{Z},+)$ è **ciclico**, generato da 1

$$n = n \cdot 1$$

Nota: anche -1 genera $\mathbb Z$ e **nessun altro intero** lo genera.

2. $(\mathbb{Z}_n,+)$ è ciclico, generato da $ar{1}$

$$\bar{n} = n \cdot \bar{1}$$

Dimostreremo che \mathbb{Z}_n ha $\phi(n)$ generatori.

Esempio:

- \mathbb{Z}_6 ha $\phi(6)=\phi(3)\phi(2)=2$ generatori
- \mathbb{Z}_8 ha $\phi(8)=\phi(2^3)=2^3-2^2=8-4=4$ generatori. Verifica:

$$\begin{split} &<\bar{0}>=\{\bar{0}\}\\ &<\bar{1}>=\mathbb{Z}_{8}\\ &<\bar{2}>=\{\bar{2},\bar{4},\bar{6},\bar{0}\}\\ &<\bar{3}>=\{\bar{3},\bar{6},\bar{1},\bar{4},\bar{7},\bar{2},\bar{5},\bar{0}\}=\mathbb{Z}_{8}\\ &<\bar{4}>=\{\bar{4},\bar{0}\}\\ &<\bar{5}>=\{\bar{5},\bar{2},\bar{7},\bar{4},\bar{1},\bar{6},\bar{4},\bar{0}\}=\mathbb{Z}_{8}\\ &<\bar{6}>=\{\bar{6},\bar{4},\bar{2},\bar{0}\}\\ &<\bar{7}>=\{\bar{7},\bar{6},\bar{5},\bar{4},\bar{3},\bar{2},\bar{1},\bar{0}\}=\mathbb{Z}_{8} \end{split}$$

3. $(\mathbb{R}\setminus\{0\},\cdot)\geq\{\pm 1\}\cong \mathbb{Z}_2$ (\cong è il simbolo che indica un **isomorfismo**). Sia

$$\phi: \{\pm 1\} \to \mathbb{Z}_2$$

$$1 \mapsto \bar{0}$$

$$-1 \mapsto \bar{1}$$

Si ha che

$$egin{aligned} \phi(1\cdot 1) &= \phi(1) + \phi(1) = ar{0} + ar{0} \ \phi(1\cdot (-1)) &= \phi(1) + \phi(-1) = ar{0} + ar{1} = ar{1} \ \phi((-1)\cdot (-1)) &= \phi(-1) + \phi(-1) = ar{1} + ar{1} = ar{0} \end{aligned}$$

Definzione - Ordine

L'ordine di $g \in G$, denotato con o(g), è il **minimo intero positivo**, se esiste, tale che

$$g^n = e$$

se tale n non esiste, si pone $o(g) = +\infty$.

Osservazione: in altri termini

$$o(g) = | < g > |$$

in particolare G è ciclico se e solo se esiste $g \in G$, con o(g) = |G|

Osservazione: se G è ciclico, allora è abeliano. Infatti, se $G=< g>, \ x,y\in G$

$$x=g^i,\ y=g^j \ xy=g^ig^j=g^{i+j}=g^{j+i}=g^jg^i=yx$$

Il viceversa non è vero.

Esempio:
$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(\bar{0}, \bar{0}), (\bar{1}, \bar{0}), (\bar{0}, \bar{1}), (\bar{1}, \bar{1})\}$$

$$<(\bar{0}, \bar{0}) > = \{(\bar{0}, \bar{0})\}$$

$$<(\bar{1}, \bar{0}) > = \{(\bar{1}, \bar{0}), (\bar{0}, \bar{0})\}$$

$$<(\bar{0}, \bar{1}) > = \{(\bar{0}, \bar{1}), (\bar{0}, \bar{0})\}$$

$$<(\bar{1}, \bar{1}) > = \{(\bar{1}, \bar{1}), (\bar{0}, \bar{0})\}$$

Quindi tutti gli elmento diversi da $e=\{(\bar{0},\bar{0})\}$ hanno ordine 2, quindi nessuno di essi ha ordine 4 e quindi il **gruppo non è ciclico**.

Il gruppo è chiaramente abeliano, ma non è ciclico.

Nota

Lezione 13 - 28/10/2022 4

Il gruppo $\mathbb{Z}_2 \times \mathbb{Z}_2$ è isomorfo al cosiddetto gruppo di Klein, delle simmetrie di un rettangolo con non è un quadrato:

$$V = \{Id, \phi_x, \phi_y, \phi_o\} \ \phi_x(x,y) = (x,-y) \ \phi_y(x,y) = (-x,y) \ \phi_o(x,y) = (-x,-y)$$

Osservazione: abbiamo due gruppi di ordine 4 non isomorfi \mathbb{Z}_4 e V: il primo è ciclico mentre il secondo non è ciclico.

Proposizione

Sia G un **gruppo** e $g\in G$. Se $o(g)=+\infty$, allora $g^h\neq g^k$ per $h\neq k$. Se invece o(g)=n allora

$$< g > = \{e, g, ..., g^{n-1}\}$$

e $g^h = g^k$ sse $h \equiv k \mod n$.

 ${ t \underline{\sf Dimostrazione}}$: Supponiamo $o(g) = +\infty$ e $g^h = g^k$. Allora

$$g^{h-k}=e\Rightarrow h-k=0\Rightarrow h=k$$

Se o(g)=n, per definizione $e,g,...,g^{n-1}$ sono **elementi distinti del sottogruppo** < g> (se fosse $g^i=g^j,\ 1\leq i\leq j< n$ avremmo $g^{i-j}=e$ con i-j< n contro la definzione di o(g)).

Dunque basta vedere che ogni potenza di g è nella lista $\{e,g,...,g^{n-1}\}$.

Consideriamo $g^s, \; s \in \mathbb{Z}$; $s = qn + r \quad 0 \leq r < n$

$$g^s = g^{qn+r} = g^{qn}g^r = (g^n)^q g^r = e^q g^r = eg^r = g^r \quad 0 \le r \le n-1$$

Lezione 13 - 28/10/2022

5

Supponiamo ora $g^h=g^k$

$$g^{h-k}=e$$
 $h-k=q'n+r'$ $0\leq r'\leq n-1$ $g^{h-k}=g^{q'n+r'}=g^{r'}\Rightarrow r'=0$

ovvero h-k=q'n ovvero $h\equiv k \mod n$.

Viceversa, $h \equiv k \mod n, \ h = k + tn$

$$g^h=g^{k+tn}=g^kg^{tn}=g^k(g^n)^t=g^ke^t=g^ke=g^k$$

Lezione 13 - 28/10/2022 6