Distributed Training with Model Parallel

Mengzhou Xia, Alex Wettig

11/09/2023

Questions

- 1. What do we care about with distributed training and performance? What happens under the hood with FSDP?
- 2. What hardware setup do I need for different distributed training strategies? What are the caveats?
- 3. What are the various efficient finetuning optimizations? What are the tradeoffs?
- 4. What open-source codebases can I use right now? What are the pros and cons?

Basics of distributed training

- LLM training involves large model (10B+) and dataset (1T+ tokens) sizes.
- Maximize **throughput** for efficient training (tokens/s)
- LLMs demand substantial GPU vRAM for model weights and optimizer states.
 - a. Weights: N * 2 bytes
 - b. Gradients: N * 2 bytes
 - c. Adam optimizer states: N * 12 bytes (copies of parameters, momentum and variance)

e.g., Falcon 40B * (2 + 2 + 12) = 720GB, 9 A100 at least

Naive Model Parallelism (MP)

- Vertically slices the model.
- Different layers on different GPUs. Example: 12-layer model on 3 GPUs.

• Naive MP: waiting for the previous GPUs to process the data

Model Parallelism (MP)

- Vertically slices the model.
- Different layers on different GPUs. Example: 12-layer model on 3 GPUs.

• Naive MP: waiting for the previous GPUs to process the data

Model Parallelism (MP)

- Pipeline Parallelism (PP):
 - a. Overlaps computation for micro-batches.
 - b. Like a computer architecture pipeline.
 - c. Enables efficient training across multiple accelerators.

Tensor Parallelism (TP)

- GPUs process slices of a tensor.
- Model horizontally sliced across GPU workers.
- Each GPU processes the same data batch.
- Computes activations for their portion.
- Exchanges needed parts.
- Computes gradients for their slice of weights.

FSDP - Fully-Sharded Data Parallel

- FSDP Unit Vertically splitting (layers)
- Sharding Horizontally splitting
 - Store FSDP parameters on FlatParameter
 - Split FlatParameter on multiple processes

Figure 3: Full Sharding Across 16 GPUs

FSDP - Fully-Sharded Data Parallel

- All-Gather per FSDP-unit
 - Before forward
 - Before backward
- You can do this asynchronously across layers
- No activation are exchanged!

A FSDP-Unit

Sharding

All-Gather [Before both forward / Backward]

Node4

 W_4

Free Peer Shards After Usage

FSDP - Fully-Sharded Data Parallel

- Reduce-Scatter
 - All nodes have the same weights
 - But have different gradients

A FSDP-Unit

All-Gather [Before both forward / Backward]

Loss.backward()

Reduce-Scatter

How can you use FSDP?

- Supported by transformers!
- By adding fsdp config to the TrainingArguments
- Simplest setup:
 - o -- fsdp
 - -- full_shard auto_wrap
- More setups:
 - o <u>Torch FSDP interface</u>
 - Huggingface Accelerator setup
 - Pytorch lightning

Efficient Fine-tuning

- Mixed Precision (BF16, FP16), supported by Huggingface
- Parameter-efficient finetuning, supported by <u>PEFT</u>
 - Only finetune additional parameters, eventually merged into the main model
 - Saves the memory for optimization states for the freezing parameters
- Flash Attention: fast, memory-efficient and exact!
 - Supported by huggingface on Llama and Falcon, through use_flash_attention=True to AutoModel
- Gradient Checkpointing
 - o reduce memory consumption by only retaining a subset of intermediate activations, and recomputing the rest as needed, slows down by 20%
- Quantization
 - Post training quantization: <u>LLM.int8()</u>, <u>GPTQ</u>
 - Load_in_8bit supported by huggingface's from_pretrained interface
 - Quantization-aware training: <u>QLoRA</u>