Feature Based Customer Opinion Mining - A Modern Approach

Undergraduate: Norbert Eke

Supervisor: Dr. Jeffrey Andrews

Collaborator: Dr. Abdallah Mohamed

1. Background

Intro to Feature Based Opinion Mining

Feature based Opinion Mining

Feature: characteristic or aspect of product

Opinion: subjective statement, belief

Opinion mining: detection of patterns among opinions

Feature based Opinion Mining

Digital_camera_1:

Picture quality:

Positive: 253 <individual opinion phrases>

Negative: 6 <individual opinion phrases>

Size:

...

Positive: 134 <individual opinion phrases>

Negative: 10 <individual opinion phrases>

Why should you care about customer reviews?

• 91% of consumers regularly or occasionally read online reviews (Bonelli, 2016)

• 84% of people trust online reviews as much as a personal recommendation (Bonelli, 2016)

Research Problem

- Large number of reviews
 - 26,380 reviews posted every minute by Yelp users (Shrestha, 2016)

- No one reads all the reviews
 - 88% of consumers form an opinion by reading up to 10 reviews (Shrestha, 2016)

 Need a way to interpret the content of the reviews, without reading them all

Opinion Phrases

The touch screen was good.

Feature

Descriptor

- Opinion Phrases: <feature, descriptor> word pairs
 - E.g. <screen, blurry> , <display, poor>

Main research goal: Design a technique to identify opinion phrases

Word Embeddings

Male-Female

- High dimensional vector representation of each word
- Used to reconstruct linguistic context of words
- Capture semantic similarity between words

2. Techniques Designed

Relation Vectors and Machine Learning

Feature - Descriptor Relation Vector

 Convert words into vectors using Word Embeddings

Relation Vector:
 Relationship
 between feature
 and descriptor

Feature-Descriptor Relation Vector Classification Model

- Training Data: Labelled real and non-real Relation Vectors
 - Real: delicious meal
 - Non-real: table meal

 Model finds real Relation Vectors at around 80 % accuracy

Natural Language Processing Techniques Used

Feature Extraction

Dependency Parsing

Feature - Feature Dependency Word Linkage

- Linkage: Create a relation vector between each feature and all of its word dependencies
- Linkage finds 75-85 %
 of the feature
 descriptor word pairs

Feature - Descriptor Relation Vector Filtering

Relation Vector filtering:
 Use the classification model to filter out all the non-real relation vectors produced by the linkage

Opinion Polarity & Opinion Feature Breakdown

Digital_camera_1:

Picture quality:

Positive: 253 <individual opinion phrases>

Negative: 6 <individual opinion phrases>

Size:

Positive: 134 <individual opinion phrases>

Negative: 10 <individual opinion phrases>

...

Results

 Technique has been tested on labelled benchmark data sets

Performance measured in percentage accuracy

Data set Techniques	Computer dataset (331 opinions)	Hotel dataset (131 opinions)
Opinion Linkage Version 1	36%	40%
Opinion Filtering Version 1	42%	45.3%
Opinion Linkage Version 4	72.8%	73.8%
Opinion Filtering Version 4	78.1%	76.1%
Opinion Linkage Version 7	85%	93%
Opinion Filtering Version 7	80%	78.4%

Demo of the technique: Features Extracted

review ID	Review	feature extracted
1	Bright , vivid , clean lines , wide viewing_angle , and best of all great price !	lines
1	Bright , vivid , clean lines , wide viewing_angle , and best of all great price !	viewing_angle
1	Bright , vivid , clean lines , wide viewing_angle , and best of all great price! price	
2	The monitor works very well with a sharp and bright display.	monitor
2	The monitor works very well with a sharp and bright display.	display
3	The images are vivid and crisp , the text and fonts are very clear. fonts	
3	The images are vivid and crisp , the text and fonts are very clear .	text
3	The images are vivid and crisp , the text and fonts are very clear .	images

Demo of the technique: Feature Dependency Linkages

Bright, vivid, clean lines, wide viewing_angle, and best of all great price!

The **monitor** works very well with a sharp and bright **display**.

The **images** are vivid and crisp, the **text** and **fonts** are very clear.

Linkages for viewing angle: viewing angle - lines viewing angle - Bright viewing angle - vivid viewing angle - clean viewing angle - wide viewing angle - best Linkages for price: price - best price - great Linkages for monitor: monitor - works Linkages for fonts: fonts - text

```
Linkages for lines:
lines - Bright
lines - vivid
lines - clean
lines - viewing angle
lines - wide
lines - best
Linkages for display:
display - works
display - sharp
display - bright
Linkages for text:
text - clear
text - fonts
```

Demo of the technique: Feature Descriptor Filtering

Bright, vivid, clean lines, wide viewing_angle, and best of all great price!

The **monitor** works very well with a sharp and bright **display**.

The **images** are vivid and crisp, the **text** and **fonts** are very clear.

Linkages for lines:	Linkages for viewing_angle
lines - vivid	viewing_angle_vivid
lines - clean	viewing_angle_clean
lines - wide	viewing_angle_wide
lines - best	viewing_angle_best
Linkages for display:	Linkages for price:
display - sharp	price - best
display - bright	price - great
Linkages for text:	Linkages for monitor:
text - clear	monitor - works

Demo of the technique: Feature based Opinion Mining System

Product Name:Computer
Feature: lines
Positive opinions:
clean lines
best lines
vivid lines
wide lines

Feature: viewing_angle
Positive opinions:
vivid viewing_angle
clean viewing_angle
wide viewing_angle
best viewing_angle

Feature: text

Neutral opinions:

clear text

Product Name:Computer
Feature: display
Positive opinions:
bright display
Neutral opinions:
sharp display

Feature: images

Neutral opinions:

vivid images

Feature: price
Positive opinions:
best price
great price

References

- Slide 4, 15 Feature Based Opinion Mining image:
 Hu, Minqing, and Bing Liu. "Mining opinion features in customer reviews." AAAI.
 Vol. 4, No. 4, 2004.
- Statistics from slide 5-6: Shrestha, Khusbu . "50 Stats You Need to Know About Online Reviews." Vendasta.
 N.p., 29 August 2016. Web. 11 June 2017.
- Bonelli, Sherry. "Local Consumer Review Survey 2016 | The Impact Of Online Reviews." BrightLocal, Bright Little Light Ltd, 2016. Accessed 28 Aug. 2017.
- Slide 8 Word Embeddings image:
 NSS. "Word Vectors." An Intuitive Understanding of Word Embeddings: From
 Count Vectors to Word2Vec, ANALYTICS VIDHYA , 4 June 2017, Accessed 21 Aug. 2017.
- Slide 12 Feature Extraction image:
 Bird, StevenJul, et al. "Figure 5.1: Location Detection by Simple Lookup for a News

 Story." Extracting Information from Text, Natural Language Toolkit, 1 July 2015,
 www.nltk.org/book/ch07.html#fig-locations. Accessed 21 Aug. 2017.
 - Slide 12 Dependency Parsing image:
 Darari, Fariz. "Dependency Parsing." Slideshare, 30 Jan. 2013,
 www.slideshare.net/fadirra/architecture-16258993. Accessed 21 Aug. 2017.

Acknowledgements

Dr. Jeffrey Andrews, Statistics

Dr. Abdallah Mohamed, Computer Science

Irving K. Barber School of Arts and Sciences

Undergraduate Research Program

Fellow Students and Researchers

THANK YOU!

Any questions?

