STOCK PRICE PREDICTION

RISHABH GUPTA(2014086) KUSHAGRA MAHAJAN(2014055)

INTRODUCTION

In this project, machine learning algorithms were used to predict the closing price of stocks of companies across various sectors (IT, Pharmaceutical ,Banking Industry).

Stock price prediction has always been one of the most challenging problems affecting the lives of millions of people around the world. Recently the problem has gained great popularity due to its unpredictable behaviour. This work is our attempt to explore the performance of some of the common techniques on stock datasets.

DATASETS

We explore three datasets taken from Quandl.com :- HDFC Bank, TCS, CIPLA Pharmaceuticals Pvt. Ltd.

The datasets provided stock values for the past 8 years (3000 samples).

- 80%(2400 samples) of the data was chosen for training.
- 10% of the training data(240 samples) were used for validation.
- 20% of the total data was used for testing.

FEATURE EXTRACTION

The original data had the following features: Opening, Highest, Lowest, Last, Closing prices, Total trade Quantity and Turnover.

The features used for Learning Model are given in Table-3.

EVALUATION METRICS

Mean Squared Error was used as an Evaluation Metrics for our Models.

PRE-PROCESSING

<u>Technique</u>	<u>Applied</u>	Remarks	
Normalization	YES	The Dataset was scaled between 0 and 1.	
PCA	NO	The number of features were not large.	
Missing Values Correction	YES	Taking average of surrounding values	

TECHNIQUES APPLIED

We have explored

- Simple Linear Regression
- Regularized Linear Regression(LASSO and RIDGE).

We have used <u>Cross Validation</u> Technique with <u>Grid Search</u>(over alpha and delta values) to hypertune the parameters(alpha and delta) and come up with the parameters which gives minimum MSE. We have compared both <u>Stochastic</u> and <u>Batch</u> <u>Gradient Descent</u> to train our model.

CHALLENGES

Finding out the appropriate features was a challenge. Lot of papers were consulted to come up with relevant features in stock market prediction .Some of the relevant works explored were:

- Feature Investigation by Hui Lin[1].
- Feature Selection for Stock Market Analysis by Yuqinq He, Kamaladdin Fataliyev, and Lipo Wang[2].

PROGRESS AND OBSERVATIONS

GRID SEARCH was applied with CROSS VALIDATION to find out the best value of parameters

Table-1: Best Value of Alpha and Delta by applying cross validation and grid search

Stock		Alpha	Delta	MSE
CIPLA	LASSO	0.05	0	0.033688
	RIDGE	0.05	0	0.3688
TCS	LASSO	0.1	0.1	0.00139
	RIDGE	0.10	0	0.00144
HDFC	LASSO	0.00005	0.01	0.00146
	RIDGE	0.00001	0	0.00188

Using them Best Value from table-1 across every stock, Stochastic and Batch Gradient Descent algorithm was applied.

Table-2: MSE corresponding to best parameters with Stochastic and Batch Gradient Descent

Stock	<u>Parameters</u>	Gradient	MSE
		<u>Descent</u>	
CIPLA	Alpha=0.05	Stochastic	0.002474
	Delta=0	Batch	0.002279
TCS	Alpha=0.1	Stochastic	0.001067
	Delta=0.1	Batch	0.001116
HDFC	Alpha=0.00005	Stochastic	0.001425
	Delta=0.01	Batch	0.001754

To explore and prove the importance of good feature selection we eliminated an important feature(NIFTY closing price) and recalculated the MSE.

Table-2: MSE comparison when NIFTY feature was removed.

<u>Stock</u>	Gradient Descent	MSE (With Nifty)	MSE (Without Nifty)
CIPLA	Stochastic	0.002474	0.0027
	Batch	0.002279	0.00248
TCS	Stochastic	0.001067	0.001198
	Batch	0.001116	0.001284
HDFC	Stochastic	0.001425	0.001465
	Batch	0.001754	0.001774

RESULTS

The Best Model corresponding to each stock is as follows:

STOCK	BEST MODEL		GRADIENT	MSE
			DESCENT	
CIPLA	Simple	Linear	Batch	0.001425
	Regression			
TCS	LASSO	Linear	Stochastic	0.001067
	Regression	on		
HDFC	LASSO	Linear	Stochastic	0.002279
BANK	Regression			

- We observe that the same model does not work across different stocks. Hence different stocks move differently with features and historical data.
- The stock Price of TCS is most predictable among the 3 stocks as it gives the least MSE.
- LASSO works better in situations where we need to find out the values of the parameters and perform feature selection.
 LASSO will select only one feature from a group of highly correlated features.
- The MSE values were found to be consistently higher when NIFTY feature was removed .This shows that the choice of features is an important determinant in good performance from the machine learning models.

REFERENCES

- https://www.quandl.com/data/NSE?ke
 yword=
- http://web.itu.edu.tr/~cataltepe/pdf/2
 011 ICMFECataltepe.pdf
- http://www.ntu.edu.sg/home/elpwang
 /PDF web/13 ICONIP.pdf

Table-3: Features used in our Learning Model.

Table-3 . Teatures used in our Learning Model.
Previous Day Closing Price
Same Day Opening Price
Previous Day Nifty Closing Price
10 Days Moving averages
15 Days Moving averages
20 Days Moving averages
40 Days Moving averages
10 Days Momentum
40 Days Momentum
Average Difference between Opening Price and
Closing Price (5 Days)
Average Difference between Opening Price and
Closing Price (10 Days)
Average Difference between Opening Price and
Closing Price (40 Days)
Average Difference between Highest Price and
Lowest Price (5 Days)
Average Difference between Highest Price and
Lowest Price (10 Days)
Average Difference between Highest Price and
Lowest Price (40 Days)
Volatility
Average Turnover for 10 Days