Natural Language Processing

Complex AI Systems

Asmaa Elbadrawy PhD, Lecturer IFT Program, ASU

Humans use language to represent knowledge (ideas) and communicate them to others.

Human language is called Natural Language (English, Spanish, etc.) as opposed to computer languages, which are called Formal Languages (first order logic, programming, etc.)

Why Computers need to process Natural Languages

- Communicate with humans
- Build KB's from human writings (learn)
- Advance scientific understanding of language and how humans use then.

Natural Language Processing (NLP) has many applications.

Classifying news articles and web pages to facilitate searching.

Features in document classification							
Category: psychology	Category: nutrition	Category: sports					
Depression	Calories	Reps					
Anxiety	Protein	Tension					
Syndrome	Diet	Overload					
Mental	Fat	Exercise					
Thought	Carbs	Abs					
		altexsoft software r&d engineering					

Source: https://www.altexsoft.com/blog/document-classific ation/

Auto-Translation.

Source: https://www.nytimes.com/2013/05/02/technology/personaltech/the-utility-and-drawbacks-of-translation-apps.html

Suggesting spelling & grammar corrections.

Source: https://www.nytimes.com/2015/01/09/style/when-autocorrect-goes-wrong-and-so-so-right.htm

Suggesting spelling & grammar corrections.

We need a language model that can tell which word is likely to come next in a sentence.

Language Models: Bag-of-Words

Represent a set of documents using the collection (bag) of words contained in all of them.

Document represented as a set of words

Class Label

1. Stocks rallied on Monday, with major indexes gaining 1% as optimism persisted over the first quarter earnings season.

Business

2. Heavy rain continued to pound much of the east coast on Monday, with flood warnings issued in New York City and other locations.

Weather

- The words appearing in each document represent its features!
- Build a dataset in which each document has a class label.
- Train a model (DT, Deep Learning, etc.) to classify a document based on its words.

Language Models: N-Grams

While some words can be common among different subjects, some phrases (that consist of n consecutive words) are more specific to one subject.

Quarter

This is a common word in economics and in sports!

We can use a sequence of 4 words instead of a single word

First quarter earnings report

More specific to business

Fourth quarter touchdown passes

More specific to sports

This 4-word sequence is called an n-gram (4-gram).

The n-gram model can tell us if a phrase/short sentence is likely a correct English phrase.

A black cat.

Is likely proper English because it appears in many training examples.

Black cat a.

Is likely not proper English because it appears in zero training examples.

Language Models: Part-of-Speech Tagging

A native English speaker can directly say that "a black cat" is sound because it follows a familiar pattern

(article-adjective-noun)

but "Black cat a" does not follow any familiar pattern.

A black cat.

Black cat a.

If we can tag words with their POS, then define sound sentence patterns, this can help us identify proper sentences in a more generic way without having to have an example of each possible sentence in our data corpus.

A black cat.

Black cat a.

This is similar to building a KB of language rules. More sophisticated language models consider the grammar rules.

POS Tags

Tag	Word	Description	Tag	Word	Description
CC	and	Coordinating conjunction	PRP\$	your	Possessive pronoun
CD	three	Cardinal number	RB	quickly	Adverb
DT	the	Determiner	RBR	quicker	Adverb, comparative
EX	there	Existential there	RBS	quickest	Adverb, superlative
FW	per se	Foreign word	RP	off	Particle
IN	of	Preposition	SYM	+	Symbol
JJ	purple	Adjective	TO	to	to
JJR	better	Adjective, comparative	UH	eureka	Interjection
JJS	best	Adjective, superlative	VB	talk	Verb, base form
LS	1	List item marker	VBD	talked	Verb, past tense
MD	should	Modal	VBG	talking	Verb, gerund
NN	kitten	Noun, singular or mass	VBN	talked	Verb, past participle
NNS	kittens	Noun, plural	VBP	talk	Verb, non-3rd-sing
NNP	Ali	Proper noun, singular	VBZ	talks	Verb, 3rd-sing
NNPS	Fords	Proper noun, plural	WDT	which	Wh-determiner
PDT	all	Predeterminer	WP	who	Wh-pronoun
POS	's	Possessive ending	WP\$	whose	Possessive wh-pronoun
PRP	you	Personal pronoun	WRB	where	Wh-adverb
\$	\$	Dollar sign	#	#	Pound sign
"	•	Left quote	,,	,	Right quote
(]	Left parenthesis)]	Right parenthesis
,	,	Comma		!	Sentence end
:	;	Mid-sentence punctuation			

Fig 23.1, Russell & Norvig's Textbook

Considering POS and familiar sentence patterns is similar to building a KB of language rules. More sophisticated language models consider grammar rules.

This approach can facilitate tasks such as auto translation.

English <adjective then noun> Spanish <noun then adjective>