# **Capacity Planning**

Dr Feryal Erhun fe251@cam.ac.uk

## **Recap of Last Lecture**

- A number of rules (e.g., SPT, EDD and Moore's Algorithm) and heuristics (e.g., MDD) can be used for single machine scheduling
- Johnson's Rules is to minimise makespan when in a two machine flowshop
- Push systems schedule and issue orders centrally. MRP systems are computerised systems to support push scheduling
- In a pull system, processes are triggered by a replenishment signal, such as the kanban cards in a JIT scheduling
- Assembly line balancing involves grouping assembly tasks into workstations with as equal as possible workloads at each
- Layout is contingent on variety and volume

## **Some Key Questions**

- How much can a given production operation make
  - ➤ Theoretically?
  - ➤ Practically?
- How does product mix affect capacity?
- How does changing demand influence capacity?
- How can capacity/demand tradeoffs be assessed?

What is Capacity?

## What is Capacity?

The capacity of an operation is the maximum level of valueadded activity over a period of time that the process can achieve under normal operating conditions (Slack *et al.*)

- Air-conditioner plant Number of units per week (output)
- Brewery Litres of beer produced per month (output)
- Steel Mill Tonnes per hour (output)
- Electricity company Megawatts of electricity generated (output)
- Hospital Number of beds available (input)
- Theatre Number of seats (input)
- University Number of students (input)

... but capacity is also influenced by demand

## **Example: Calculating Capacity**

- An AC factory produces three different models of AC units: the deluxe, the standard and the economy
- The deluxe model can be assembled in 1.5 hours, the standard in 1 hour, and the economy in 0.5 hours
- The assembly area in the factory has 800 staff hours of assembly time available each week
- What is the aggregate production capacity of the factory if the demand for deluxe, standard and economy units is in the ratio 2:3:2?
- What is the capacity if the ratio is 1:2:4?

## **Example: Capacity Calculation**

- Roughly: capacity = hours available / hours per unit
- For ratio 2:3:2, 7 units take
  - $\triangleright$  2 x 1.5 + 3 x 1 + 2 x .5 = 7 hrs [per 7 units] = 1 hrs/unit
  - ➤ Capacity = 800/1 = 800 units
- For ratio 1:2:4, 7 units take
  - $\triangleright$  1 x 1.5 + 2 x 1 + 4 x .5 = 5.5 hrs [per 7 units] = 5.5/7 hrs/unit
  - $\triangleright$  Capacity = 800/5.5 x 7 = 1018 units
- Hence mix affects capacity
  - ... But this is theoretical capacity only ...

## **Related Capacity Definitions**

- Capacity: The capacity of an operation is the maximum level of value-added activity over a period of time that the process can achieve under normal operating conditions (Slack et al.)
- Utilization: Measure of the number or % of hours worked by equipment, line, staff, etc. (Hill)
- Efficiency: Comparing actual output to the level of output expected (Hill)
- Capacity Planning: The task of setting the effective capacity of the operation so that it can respond to demand

## **Challenges for Capacity Planning**

- Capacity is a soft, malleable constraint
- Capacity is like "black art"; it depends on everything
- Capacity frictions: leadtimes, lumpiness, fixed costs
- Capacity requires large and irreversible investment
- Capacity decisions can be political
- Measuring and valuing capacity shortfall is not obvious
- Capacity investment involves long-run planning under uncertainty
  - Arguably the greatest challenge for capacity strategy

## **Capacity Decisions**

- Sizing: How much capacity to invest in?
- Timing: When to increase or reduce resources?
- Type: What kinds of resources are best?
- Location: Where should resources be located?

## **Managing Capacity Sizing Drivers**



- Average demand
- Volatility
- Separate planning from other uses
- Volatility
- Standard loss
- Shortage penalty
- Waiting cost
- Holding cost

# Cost

- Discount horizon and rate
- Marginal cost of:
  - Capacity
  - Subcontracting
  - Overtime/Temp
  - Spot-market buying

Theoretical vs. Actual Capacity

## Theoretical vs. Actual Capacity

- Theoretical capacity is the maximum possible output rate, whereas the actual capacity is a realistic estimate of the achievable output rate
- The main difficulties which inhibit perfect utilisation of a manufacturing system, i.e., which restrict the capacity are:

| MANAGE   | <ul><li>Lost Time (Planned)</li><li>Setup times</li><li>Switchover delays</li></ul>                                                                | Imbalances •Bottlenecks •Imbalances in task times                                                                                                                                                                                                                               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MITIGATE | <ul> <li>Lost Time (Unplanned)</li> <li>Breakdowns</li> <li>Co-ordination conflicts (of equipment and labour)</li> <li>Supply shortages</li> </ul> | <ul> <li>Reduced Yield</li> <li>Quality problems</li> <li>Variable Conditions</li> <li>Variability in process times causing a build up of inventory</li> <li>Variability in raw material arrivals</li> <li>Variability in order arrivals</li> <li>Unplanned downtime</li> </ul> |

## **Bottlenecks**

- Capacity is always restricted by the slowest task, which is called the bottleneck
- When capacity at each stage is not balanced, the capacity of the total system is limited by that of the bottleneck stage



## **Set-up Times**

### Set-up is

- > any action required to prepare a machine to accomplish an operation
- > required when type/size/colour of part being worked on is changed

# **Example: Understanding the effect of setup times on capacity & bottlenecks**

- A factory has four machines A, B, C and D
- Product 1 follows the route A-B-D and product 2 follows the route A-C-D
- Production is organised so that whenever a batch of product 1 is made, an identical sized batch of product 2 is always made immediately afterwards
- Data on process times and setup times are in the table below

| Machine | Process time (seconds) | Setup time (seconds) |  |
|---------|------------------------|----------------------|--|
| Α       | 20                     | 600                  |  |
| В       | 50                     | 1000                 |  |
| С       | 70                     | 300                  |  |
| D       | 30                     | 400                  |  |

 What is the long-run average capacity of the process assuming a batch size of 10 and 100?

## Solution for Example (Batch Size = 10)



|                                                          | A (one batch of each product) | В    | С    | D (one batch of each product) |
|----------------------------------------------------------|-------------------------------|------|------|-------------------------------|
| No. products to process for one batch of each product    | 20                            | 10   | 10   | 20                            |
| Setup time                                               | 1200                          | 1000 | 300  | 800                           |
| Run time                                                 | 400                           | 500  | 700  | 600                           |
| Time for one batch of 10 of each product                 | 1600                          | 1500 | 1000 | 1400                          |
| Average time for one pair of products                    | 160                           |      |      |                               |
| Capacity in "no of pairs (one of each product) per hour" | 22.5                          |      |      |                               |

## Solution for Example (Batch Size = 100)



|                                                          | A (one batch of each product) | В    | С    | D (one batch<br>of each<br>product) |
|----------------------------------------------------------|-------------------------------|------|------|-------------------------------------|
| No. products to process for one batch of each product    | 200                           | 100  | 100  | 200                                 |
| Setup time                                               | 1200                          | 1000 | 300  | 800                                 |
| Run time                                                 | 4000                          | 5000 | 7000 | 6000                                |
| Time for one batch of 10 of each product                 | 5200                          | 6000 | 7300 | 6800                                |
| Average time for one pair of products                    |                               |      | 73   |                                     |
| Capacity in "no of pairs (one of each product) per hour" |                               |      | 49.3 |                                     |

## Impact of Reducing Set-up Times

- Smaller batch sizes become economical
- Reduced cost of setup labour required
- Increase production capacity [on bottlenecks]
- Reduce scale of potential quality problems, and hence waste

# Solution for Example (Batch Size = 10) with 50% Reduction in Set-up Times



|                                                          | A (one batch of each product) | В    | С   | D (one batch<br>of each<br>product) |
|----------------------------------------------------------|-------------------------------|------|-----|-------------------------------------|
| No. products to process for one batch of each product    | 20                            | 10   | 10  | 20                                  |
| Setup time                                               | 600                           | 500  | 150 | 400                                 |
| Run time                                                 | 400                           | 500  | 700 | 600                                 |
| Time for one batch of 10 of each product                 | 1000                          | 1000 | 850 | 1000                                |
| Average time for one pair of products                    | 100                           |      |     |                                     |
| Capacity in "no of pairs (one of each product) per hour" | 36                            |      |     |                                     |

### **Breakdowns**

- Assume that a process with 100 workstations is making 1000 products, and that each process has a probability of 1/1000th of breaking down at any given time:
  - P(completing a product) = (1-P(breakdown))100
  - P(completing a product) = (1-0.001)100
  - P(completing a product) = 0.999100
  - P(completing a product) = 0.905
- Thus 9.5% of production will be delayed or even lost if it is assumed that the products are wasted as a result of breakdown
- Hence the importance of breakdown free production and routine maintenance
- The effect is exaggerated if a new setup is required after an interruption [a similar but more compounded analysis applies for defective parts]

# Theoretical vs. Actual Capacity: Loss of Capacity



# Theoretical vs. Actual Capacity: Overall Equipment Effectiveness



Overall Equipment Effectiveness (OEE) =  $AR \times PR \times QR$ 

# Capacity Planning and Control

## **Ideal Demand**

- Ideal demand is smooth and predictable:
  - > Total demand = maximum output capacity of resources
  - ➤ Any changes are perfectly forecast in sufficient time to allow capacity change
- But ...
  - > Real demand is usually not predictable
  - ➤ Demand has peaks lunchtime/Saturday/summer, etc.
  - > Demand varies through product life cycle & competition

Long, medium, short term capacity planning challenges!

## **Capacity Planning and Control**



## **Long-term Capacity Planning**

### Three basic strategies



#### (a) Capacity lead

- Sufficient capacity to meet demand
- Capacity cushion
- Low impact of start-up problems
- Low utilisation
- Risk of over-capacity
- · Early capital spending

#### (b) Capacity lag

- · Sufficient demand for full working capacity
- No over-capacity risk
- · Capital spending is delayed
- · Insufficient capacity to meet demand
- · High impact of start-up problems
- · No capacity cushion

(c) Smoothing with inventory

## **Medium-term Capacity Planning**

- There are three options available for coping with variations in demand:
  - Level capacity plan: processing capacity is set at a uniform level throughout the planning period, regardless of the fluctuations in forecast demand
  - Chase demand plan: attempts to match capacity closely to the varying levels of forecast demand
  - Demand management: change demand to suit capacity

## **Level Capacity Plan**









## **Level Capacity Plan**

#### Capacity at uniform level throughout the planning period

- Same number of staff operate the same processes
- Finished goods transferred to inventory in anticipation of sales at later time
- Suitable for non-perishable goods

#### **Advantages:**

- Stable employment patterns
- High process utilisation
- High productivity with low unit costs

#### **Disadvantages:**

- Considerable inventory costs
- Decision-making: what to produce for inventory vs immediate sale
- High over/under utilisation levels for service operations

## **Chase Demand Plan**









## **Adjusting Capacity**

#### **Common methods**

- Overtime and idle time
- Varying the size of the workforce (hire and fire)
- Using part-time staff
- Subcontracting

#### **Trade-offs**

- Inventory cost vs. cost of changing capacity
- Flexibility vs. quality
- Customer satisfaction vs. employee satisfaction

## **Demand Management**



## **Short-term Capacity Planning**

- Manage order mix
- Schedule downtime appropriately
- Overtime planning
- Outsource

•

# Queueing Modelling

# **Example of Queues!**

| Operation        | Arrivals of in a queue | Processed or served by |  |
|------------------|------------------------|------------------------|--|
|                  |                        |                        |  |
| Car Paint Plant  | Mercedes               | Paint Station          |  |
| Supermarket      | Shoppers               | Checkouts              |  |
| Aircraft Landing | Aircraft               | Flight controller      |  |
| Packet Switching | Data Packets           | Switches               |  |





#### **Discussion**

- How are queues and capacity related?
- Who cares about queues?
- Who cares about capacity?

#### Components of a Queuing System



Distribution of inter-arrival times



Distribution of service times



Input/Arrival process



Service process/ server





Output

## Balancing Capacity and Demand: Key Issues

- Unacceptable queueing times vs. unacceptably low utilisation of servers/machines [capacity] – trade-off
- Affect of variation in inter-arrival and service/processing times – capacity and demand rarely match
- It is important to be able to predict the expected waiting times and average utilisation of a processing system

#### **Analysis of Queues**

- What is the average time an order [or a customer!] spends
  - ➤ in the system?
  - ➤ in the queue?
- What is the average length of the queue?
- What is the average resource utilisation?
- When is it justified to increase resources?





Let  $\rho = \lambda/\mu$ 

Let  $p_i$  = probability of i orders being in the system after reaching equilibrium. Then at equilibrium –  $p_i$  not changing:

 $\mu p_1 = \lambda p_0 \text{ or } p_1 = \rho p_0 \text{ for Node 0}$  Hence  $p_2 = \rho p_1 \text{ for Node 1.}$  Then  $p_3 = \rho p_2 \text{ for Node 2.} \dots$ 

So  $p_2 = \rho^2 p_{0,}$   $p_3 = \rho^3 p_0$  and we can generalise this to:  $p_{N+1} = \rho p_N = \rho^{N+1} p_0$ 

Noting that  $p_0 + p_1 + p_2 + \dots + p_i + \dots = 1$ Then  $p_0[1 + \rho + \rho^2 + \rho^3 + \dots + \rho^i] = 1 \implies p_0/(1 - \rho) = 1$ Hence, we have  $p_0 = 1 - \rho$  and  $p_i = \rho^i(1 - \rho)$ 



Average number of customers in the system, *N*:

$$N = \sum_{i=0}^{\infty} i p_i = \sum_{i=0}^{\infty} i \rho^i (1 - \rho) = \frac{\rho}{1 - \rho}$$

Average queue length,  $N_q$ :

$$N_q = \sum_{i=1}^{\infty} (i-1)p_i = \frac{\rho}{1-\rho} - (1-p_0) = \frac{\rho}{1-\rho} - \rho = \frac{\rho^2}{1-\rho}$$



| ρ - Arrival rate /<br>service rate | N – number of customers in system | N <sub>q</sub> – number of<br>customers in queue |
|------------------------------------|-----------------------------------|--------------------------------------------------|
| 0.1                                | 0.11                              | 0.011                                            |
| 0.5                                | 1                                 | 0.5                                              |
| 0.8                                | 4                                 | 3.2                                              |
| 0.9                                | 9                                 | 8.1                                              |



Average time customers spend in the system, *W*:

From Little's Law: N= λW

$$W = \frac{\rho}{(1-\rho)\lambda} = \frac{1}{\mu(1-\rho)}$$

Average waiting time,  $W_a$ :

$$W_q = W - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}$$

Server utilisation:  $\rho = \lambda/\mu$ 

$$\rho = \lambda/\mu$$

#### Using a Queueing Model

Can expand analysis to other cases ...

### Multi queue/Multi channel Single queue/Multi channel 8888 8888 8888 8888

#### Multi stage











#### **Takeaways from Today**

Capacity can be effected by various operational variables, and need to be managed strategically

# **Operations Management**

Dr Feryal Erhun fe251@cam.ac.uk