PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-010909

(43)Date of publication of application: 19.01.1999

(51)Int.CI.

B41J 2/175

H04N 1/00 H04N 1/21

(21)Application number: 09-164750

(71)Applicant: CANON INC

(22)Date of filing:

20.06.1997

(72)Inventor: NAKANO HIROTSUGU

TERAJIMA HIDEYUKI YOKOYAMA MINORU

IWATA NAOHIRO

KAWASHIMA YOSHITOSHI

(54) RECORDER AND FACSIMILE EMPLOYING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a recorder in which the residual quantity of ink can be detected accurately and inexpensively regardless of fluctuation in the liquid level of ink, and a facsimile employing the recorder. SOLUTION: The recorder comprises a set of residual quantity of ink detecting section comprising a reflector disposed in an ink cartridge and a reflective photosensor disposed on the outside thereof. An ink cartridge 9 carried on a carriage 10 is subjected to a different acceleration when the carriage 10 reciprocates and the residual quantity of ink is detected at different timings where the ink in an ink tank exhibits a different liquid level, i.e., under conditions of acceleration, constant speed motion and deceleration.

LEGAL STATUS

[Date of request for examination]

29.06.2000

[Date of sending the examiner's decision of rejection]

12.07.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号

特開平11-10909

(43)公開日 平成11年(1989)1月19日

(51) Int.CL.	織別配与	P I		
B41J	2/175	B41J	3/04	102Z
H04N	1/00	H04N	1/00	C
	1/21		1/21	

審査請求 未請求 請求項の数13 OL (全 13 頁)

(21)出嘲曲号	物顧平8-164750	(71) 出廢人 000001007
		キヤノン株式会社
(22)出版日	平成9年(1997)6月20日	東京都大田区下丸子3丁目30番2号
		(72) 発明者 中野 裕嗣
		東京都大田区下丸子3丁目30番2号 キヤ
		ノン株式会社内
		(72) 発明者 寺峰 英之
		東京都大田区下丸子3丁目30番2号 キヤ
		ノン株式会社内
		(72) 発明者 横山 実
		東京都大田区下丸子8丁目30番2号 キヤ
		ノン株式会社内
		(74)代理人 非理士 大塚 康徳 (外2名)
		最終頁に続く

(54) [発明の名称] 記録装置及びその記録装置を用いたファクシミリ装置

(57)【要約】 (修正有)

【課題】 例えば、インク液面の動揺にも係わらず高精度で、かつ、安価にインク残量を検出することができる記録装置及びその記録装置を用いたファクシミリ装置を提供する。

【解決手段】 インクカートリッジ内に設けられた反射板とその外側に設けられる反射型フォトセンサとで構成される1セットのインク残量検出部を用い、キャリッジ10に搭載されたインクカートリッジ9が往復運動するときに、異なる加速度が、インクカートリッジにかかりインクタンク内のインクの液面が異なる標相を示すタイミング、即ち、加速運動中、等速運動中、減速運動中の夫々の条件下でインク残量を検出する。

(4)

【特許請求の範囲】

【語求項 1 】 記録ヘッドを移動させながらインクを吐出して記録媒体に記録を行なう記録装置であって、

1

前記記録ヘッドを往復移動させる定査手段と、

前記インクを貯摺し、前記記録へッドと一体となって前 記走査手段によって往復移動するインクタンクと.

前記インクタンク内のインク残費を検出するlセットの 検出手段と、

前記検出手段によるインク残置検出を、前記記録ヘッド とインクタンクの往復移動の運動中の異なる加速度条件 10 下で行うように制御する制御手段とを有することを特徴 とする記録装置。

【請求項2】 前記異なる加速度条件とは、前記往復移動における、前記記録へッドとインクタンクが加速中、減速中、或いは、等速移動中の条件を含むことを特徴とする請求項1に記載の記録装置。

【請求項3】 前記検出手段は、前記加速中、減速中、 或いは、等速移動中の夫々の条件でインク残量を検出す ることを特徴とする請求項2に記載の記録接置。

【語求項4】 前記加速中、減速中、或いは、等退移動 26 中の夫々の条件で検出されたインク残量検出結果を表示する表示手段をさらに有することを特徴とする語求項3 に記載の記録装置。

【語求項5】 前記表示手段はLCD或はLEDを含む ことを特徴とする請求項4に記載の記録装置。

【請求項6】 前記検出手段は、

発光索子と受光索子を備えた反射型センサと、

前記発光素子からの光を反射する反射板とを含み、

前記反射型センサと前記反射板は、前記発光素子の発光 方向と前記反射板による反射方向が前記走査手段による 30 前記記録ヘッドとインクタンクの往復移動方向になるよ うに、かつ、前記反射板の反射面が前記発光方向に対向 するように設けられ、

前記反射型センサは、前記インクタンクの側壁に接して、前記反射板は前記インクタンクの内部に設けられる ことを特徴とする請求項1 に記載の記録装置。

【請求項7】 前記検出手段による検出結果に従って、前記記録へッドによる記録を制御する記録制御手段をさらに有することを特徴とする請求項1に記載の記録接置。

【請求項8】 前記記録制御手段は、

前記記録ペッドによるインク吐出費を計数する計數手段と

前記計数結果と所定の関値とを比較する比較手段とを含 み

前記インクが残存しないことを判別されたとき。前記比較手段による比較結果に従って、前記記録ヘッドによる

るインク吐出時間を累積したり、前記インク残量後出の時間的間隔を計敷したり、記録された記録媒体の買数を 累積したり、或は、記録ドット数等を累積することを特 数とする請求項8に記載の記録装置。

【請求項10】 前記記録ヘッドは、熱エネルギーを利用してインクを吐出する記録ヘッドであって、インクに与える熱エネルギーを発生するための熱エネルギー変換体を備えていることを特徴とする請求項1に記載の記録 装置。

3 【請求項11】 請求項1に記載の記録装置を用いたファクシミリ装置であって。

通信回線を介して回像信号の送受信を行なう通信手段 と

前記画像信号を一時的に格納する記憶手段とを有することを特徴とするファクシミリ装置。

【語水項12】 前記記録制御手段は.

前記記録へッドによるインク吐出畳を計数する計数手段 と、

前記計数結果と所定の関値とを比較する比較手段とを含 の むととを特徴とする請求項11に記載のファクシミリ装 置。

【請求項13】 前記インクが残存しないことを判別されたとき、前記比較手段による比較結果に従って、前記記録へッドによる記録を停止し、前記受信画像信号を前記記憶手段に搭納するよう制御する記憶制御手段をさらに有することを特徴とする請求項12に記載のファクシミリ装置。

【発明の詳細な説明】

[0001]

5 【発明の届する技術分野】本発明は記録装置及びその記録装置を用いたファクシミリ装置に関し、特に、インクジェット方式に従って記録を行なう記録装置及びその記録装置を用いたファクシミリ装置に関する。

[0002]

【従来の技術】従来よりインクジェット方式に従って記録を行なう記録装置には、その装置に設けられたインクタンクのインク残置を検出するために種々の技術が用いられている。そのような技術には以下のようなものがある。

46 【0003】特開平2-102061号には、インクタンク内に設けられた反射板と反射型光センサによってインク無しを検知する技術が開示されている。また、特別 656-144184号には、インク液面の動揺がインク残重検出の結度を低下させることがないように、その対策として、インク無しの検知後、一定時間経過後にインク無しを報知する技術が開示されている。

[①①(4] また、インク残量の検出を多段階的に行う

【発明が解決しようとする課題】しかしながら上記従来例。特に、記録ヘッドとインクタンクとが一体化したインクカートリッジを用いて記録を行う装置の場合。記録ヘッドの往復運動とともにインクタンクも同時に勤くのでタンク内のインク液面が勤緩し、その結果、インク残費の検出結果も変動するという問題があった。

[0006]また、インク残量の検出を多段階的に行う場合には、そのための検出用センサを少なくとも二個以上設ける必要があったので、装置の部品点数が増加し、結果として装置全体の生産コストを増大させてしまうと 10 いう問題があった。その一方、多段階的にインク残量検出を行わなければ、いつインク残量がほとんどゼロの状態(ニアーエンド)になったかを正確に検出することができないので、その意味からも多形態的なインク残量の検出が求められていた。

[0007]本発明は上記従来例に鑑みてなされたもので、例えば、インク液面の勤緩にも係わらず高鏡度で、かつ、安価にインク残量を検出することができる記録装置及びその記録装置を用いたファクシミリ装置を提供することを目的としている。

[0008]

【課題を解決するための手段】上記目的を達成するため 本発明の記録装置は、以下のような構成からなる。

【①①①9】即ち、記録ヘッドを移動させながらインクを吐出して記録媒体に記録を行なう記録装置であって、前記記録ヘッドを往復移動させる定査手段と、前記インクを貯留し、前記記録ヘッドと一体となって前記走査手段によって往復移動するインクタンクと、前記インクタンク内のインク残費を検出する1セットの検出手段と、前記検出手段によるインク残費検出を、前記記録ヘッド 30とインクタンクの往復移動の運動中の異なる加速度条件下で行うように訓練する訓御手段とを育することを特徴とする記録装置を備える。

[①①1①]また他の発明によれば、上記の記録装置を用いたファクシミリ装置であって、通信回線を介して画像信号の送受信を行なう通信手段と、前記画像信号を一時的に格納する記憶手段とを有することを特徴とするファクシミリ装置を備える。

[0011]

【発明の実施の形態】以上の構成により本発明は、記録 40 ヘッドを移動させながらインクを吐出して記録媒体に記録を行なう際、インクを貯潤し記録ヘッドと一体となって往復移動するインクタンクのインク残置検出を、1 セットの検出手段を用いて、記録ヘッドとインクタンクの往復移動の運動中の異なる加速度条件下で行うように制御する。

【①①12】ここでいう異なる加速度条件とは、往復移

イング残費を検出する。

【①①13】また、これら加速中、減速中、或いは、等 速移動中の夫々の条件で検出されたインク残量検出結果 を一例えば、LCD或はLEDを用いて表示する。

【①①14】さて、上記の領出手段には、発光素子と受 光素子を備えた反射型センサと、発光素子からの光を反 射する反射板とを含み、これら反射型センサと反射板 は、発光素子の発光方向と反射板による反射方向が記録 ヘッドとインクタンクの往復移動方向になるように、か つ 反射板の反射面が発光方向に対向するように設けられ、その反射型センサは、インクタンクの側壁に接し て、反射板はインクタンクの内部に設けられる。

【①①15】さらに、その検出手段による検出結果に従って、記録ヘッドによる記録を制御する記録制御手段を設けてても良く、その記録制御手段には、記録ヘッドによるインク吐出量を計数する計数手段と、その計数結果と所定の関値とを比較する比較手段とを含み、インクが残存しないことを判別されたとき、その比較結果に従って、記録ヘッドによる記録の続行或いは停止を制御する20ようにしても良い。

[0016] そして、上記の計数手段において、さらに、記録動作によるインク吐出時間を累積したり、インク残量検出の時間的間隔を計数したり、記録された記録 媒体の頁数を累積したり、或は、記録ドット数等を累積しても良い。

【①①17】なお、上記の記録へっドは、熱エネルギーを利用してインクを吐出する記録へっドであって、インクに与える熱エネルギーを発生するための熱エネルギー変換体が備えてられている。

35 【①①18】また、上記説明したような動作をする記録 装置をファクシミリ装置に組み込んで使用することができる。

【()()19】以下添付図面を参照して本発明の好適な実施の形態について詳細に説明する。

【 () () 2 (() 】 <鉄置構成の説明(図 1 ~図 5) > ・機械的構成

図1は本発明の代表的な実施形態であるインクジェット 方式に従う記録部を備えたファクシミリ装置の機械的構 成を示す側断面図である。

(0)021】まず、ファクシミリ装置の記録部の構成について説明する。

【①①22】図4において、1は装置全体の主構造であるフレーム、2はフレーム1に固着されているASF(Auto Sheet Feeder:オート・シート・フィーダ)シャーンである。ASFシャーシ2は記録紙を複数枚搭載しておき記録時に一枚ずつ分離し記録部分に送り込むASF部の構造体である。また、3は中板、4は中板押圧

より図中時計回りに回転する記録紙分離ローラ、6は記録紙分離ローラ5のホームボジションを検出する透過型センサ(以下、ローラボジションセンサ)である。

[10023]なお、図1に示す中板3の位置は、駆動系の中板動作カム部(不図示)により図中反時計回りに回動させられている所で停止している待機状態の時に対応している。そのカムが外れている時は時計回りに回動し、記録紙分離ローラ5の外間に当接する。また、中板3の動作と記録紙分離ローラ5の切り欠き位置とは互いに同期している。

[0024] ?は駆動系(不図示)により図中反時計回りに回転する記録紙搬送ローラ、8は記録紙搬送ローラ 7の外園にバネ(不図示)により当接するように設けられた記録紙搬送コロである。記録紙搬送ローラ?と記録紙搬送コロ8とは互いの当接部分で記録紙を供持し、これを図中左方に搬送する(以下、この搬送方向を副走査方向という)。9はインクジェット方式に従う記録へッドとインクを貯摺するインクタンクとを一体的に内蔵した交換可能なタイプ(ディスポーザブルタイプ)のインクカートリッジ、10はインクカートリッジ9を着脱可能に取付けるキャリッジである。

[0025]さて、インクカートリッジ9の記録面は図中、インクカートリッジ9の下部にあり、図中債方向に複数のノズルが並んでヘッド記録面を形成している。記録動作時にはインクカートリッジ9をそのノズルの配列方向とは直行する方向(図面に垂直方向:以下、この方向を主定査方向という)に移動させ、それらのノズルから選択的にインクを吐出することにより複数のノズルによる記録幅分の領域に記録をすることが出来る。その後、記録用紙を記録幅分だけ副定査方向に搬送し、記録動作を繰り返すことにより記録紙上に記録が行なわれる(このような記録方式はマルチスキャン方式と呼ばれる)。

[0026] また、キャリッジ10には反射型フォトセンサによるインク残置検出センサが取付けられており、インクカートリッジ9内の残存インク量を検出している。このインク残置検出センサの検出方向は、おおよそ、インクカートリッジ9の往復走査方向と同じ方向であり、そのインク残置センサはキャリッジ10に取付けられているので、キャリッジ10の移動によってインクカートリッジ9とともに移動することは言うまでもない。なお、この点については詳細に後述する。

【0027】12、13は各々、キャリッジ10の主定 査方向への往復移動が円滑になされるように補助するガ イドレールであり、キャリッジ10はこれら2本のレー ル12、13に主定査方向に移動可能に取り付けられ、 駆動系(不図示)により往復移動する。14は記録ヘッ 排紙ローラ15に対し押圧部材(不図示)により付勢されており、排紙ローラ15と排紙コロ16との当接部に記録用紙を挟持しつつ記録用紙を排出する。17は記録紙カバーでありインクカートリッジ9を交換する時などのために下方を支点に関くような構成となっている。 【0028】次に、ファクシミリ装置の読取部の構成について説明する。

【① 0 2 9 】 2 0 は、駆動系(不図示)により図中反時 計回りに回転して、複数枚セットされた原稿を1枚ずつ 図中左方向へ搬送する読取分離ローラ、21は押圧部材 10 (不図示)により読取分離ローラ20に対し付勢され、 複数枚セットされた原稿を1枚ずつ分離するゴムのよう な摩擦力の高い特質でできている分離片、22は原稿に 描かれた画像を読み取ってその画像が表現する情報を電 気信号に変換する密着型ラインイメージセンサ(以下、 イメージセンサという)、23はCSバネ、24は駆動 系 (不図示) により図中時計回りに回転する白色のCS ローラである。 ここで、 CSバネ23はイメージセンサ 22をCSローラ24に対し押圧するように設けられて いる。また、CSローラ24はイメージセンサ22の読 み取り面全面に原稿を密着させること。原稿を図中左方 向に搬送させること、原稿読取のバックグランドとなる などの役割を持つ。

【0030】25は読取部及び操作パネル(後述)を交 続する標準体も兼ねたフレーム」に固着された原稿の下 面をガイドするための原稿ガイド、26は原稿ガイド2 5に固着され原稿の上面をガイドするための原稿ガイ ド、27は操作用スイッチを備えた操作基板、28は操 作基板27を固着し、それ自身が原稿ガイド25に固着 されている操作パネルである。

[0031]30は電源トランスやコンデンザなどで構成される電源部、31はプレーム1に取付けられ装置全体の動作を制御する電気副御基板である。電気副御基板31には、装置各部に振り分けられている電気素子や部品(イメージセンサ22、操作基板27、電源部30、インクカートリッジ9、各駆動モータ(不図示)」中ラボジションセンサ6、各センサ(不図示)」からの東線がすべて結線されている。なお、ここでは説明されていない読取部の各種センサや記録用紙有無を検出するセンサなどは、東線を介さず直接、電気副御基板31に発送されている。また、外部インタフェース(例えば、公衆電話回線網インタフェース、付属子電話インタフェース、バコンインタフェース)は全て電気副御基板31に結線されるよう構成されている。

【① ①32】図2はインクカートリッジ9の詳細な構成 を示す部分破断図である。図2において、11は反射型

図2はキャリッジ10が静止しており、これに搭載されるインクカートリッジ9も静止している状態を示している。従って、インク91の液面も動揺せず滑らかである。

7

【① 0 3 3 】また、図2から明らかなように、反射板9 3はインク容器底面付近に設けられ、かつ、その位置はフォトセンサ1 1が設置されているインクカートリッジ 壁面に近いところある。これは、フォトセンサ1 1近くに反射板9 3を設けることにより、インクが残存しない場合にフォトセンサ1 1が受光する反射光強度を強くし、インク残量検出に係わるS/N比を向上させるためである。この時、フォトセンサ1 1が設置されている側のインクカートリッジ側面と反射板9 3 との間隔(検出隙間)は、インクの衰面張力と、インクと壁及びインクを関係によりインクが確まらないような間隔(2~4 mm)とすることで正確な残量検知を達成する。

【① 034】また、このように反射板93が設けられても、反射板93の左右の空間は別体の窓みではなく、反射板は中央のみで実際のインクが貯摺される空間は反射 20板の脇にて互いに連通している。この構成によりフォトセンサ11と反射板93の間で検知される液面はインクカートリッジ内の液面と同じく変化する。また、この構成に限らず反射板の底部に追通する穴を設けて反射板の両側の液面が等しくなるよう構成しても良い。

【① 035】さて、フォトセンサ11は、インク91がインクカートリッジ9に充填されているとき、インク91はフォトセンサ11からの光を退るためフォトセンサで反射板93からの反射光をほとんど捉えることはできず、フォトセンサ11からの出力電流はほとんどゼロとなる。これに対して、インクカートリッジ9にインク無い時、反射板93からの反射光をフォトセンサ11は捉え、その結果、フォトセンサ11はその反射光強度に従った電流を出力する。

【①①36】・電気的模成

図3は図1に機械的構成を示したファクシミリ装置の電気的構成を示すプロック図である。図3において、101はマイクロプロセッサなどから構成されるCPU、102はCPU101が実行する制御プログラムや処理プログラムを格納するROM、103はファクシミリ送受 40信のための画像データやコピー処理のために読み込まれた画像データを格納するための記録領域やCPU101が副御プログラムや処理プログラムを実行するときの作業領域として用いられるRAM、104は電源部30からの電源供給がなくとも情報を記憶保持できるようにバックアップ電源を備えたDRAMやSRAM103、或いは、EEPROMなどで構成される不揮発性メモリで

コードに従ってキャラクタバターンを発生するキャラクタジェネレータ(CG)、106は図1で説明した構成の記録部、107は図1で説明した構成の読取部、108はモデム(MODEM)、109は機制御ユニット(NCU)、110は電話回線、111は電話機、112は図1で説明した操作基板27の操作パネル28の一部で構成される操作部、113は図1で説明した操作基板27の操作パネル28の一部で構成されしてDやLE Dなどを備えた表示部である。

[0038] そして、CPU101は、ROM102、RAM103、不揮発性メモリ104、CG105、記録部106、読み取り部107、モデム108、NCU109、操作部112、及び、表示部113を制御する。

【0039】さて、RAM103は、読取部107によ って読み取られた2値化画像データ或いは記録部106 に記録される2個化画像データを格納すると共に、モデ ム108によって変調されNCU109を介して電話回 湖110に出力する符号化画像データと、電話回線11 ①を介して受信したアナログ画像信号をNCU109及 びモデム部108を介して復調して得られる符号化画像 データを格納する。また、不揮発性メモリ104は、電 **源供給の有無に係わらず保存しておくべきデータ(例え** は短縮ダイヤル番号など)を格納する。CG105はC PUI()」の制御に基づき必要に応じて入力されたコー ドに対応するキャラクタバターンデータを発生する。 【① 0.4.0】記録部 1.0.6の電気系は DMA コントロー ラーインクジェット方式に従う記録ヘッド、CMOSロ ジックICなどから構成され、CPU101の制御によ ってRAM103に格納されている画像データを取り出 して記録出力する。一方、読取部107の電気系はDM Aコントローラ、画像処理IC、イメージセンサ、CM OSロジックICなどから構成され、CPU101の制

うになっている。
【0041】モデム108は、G3/G2モデムとこれらのモデムに接続されたクロック発生回路などから構成され、CPU1の1の制御に基づいてRAM103に格納されている符号化送信データを変調して、NCU109を介して受信するアナログ回像信号をNCU109を介して入力し、その信号を復調して符号化受信データを得してれたRAM103に格納する。NCU109は、

御に基づいてイメージセンサ(CS)22から読み取っ

た画像データを2値化し、その2値化データを順次、R

AM103に出力する。なお、読取部107に対する原

稿のセット状態は、原稿の搬送路に設けられたフォトセンサを用いた原稿検出部 (不図示) により検出できるよ

(ნ)

10

検出回路を有し、呼出信号が検出されたときは若信信号をCPU101へ送る。

9

【0042】電話級111は、ファクシミリ慈園本体と一体化された電話機であり、ハンドセット及びスピーチネットワーク、ダイヤラ、テンキーやワンタッチキーなどから構成されている。操作部112は、回像送信/受信などをスタートさせるキー、送受信時におけるファクシミリ回像の解像度をファイン、標準などに切り換える解像度選択キー、自動受信等の操作モードを指定するモード選択キー、ダイヤリング用のテンキーやワンタッチキーなどから構成されている。表示部113は、時刻表示用の7セグメントLCDと、各種モードを表示する絵文字しCDと、5×7ドット(1文字)×1行分の表示を行うことができるドットで1リックスしCDとを組み合わせたしCDモジュールと、LEDなどから構成されている。

【① ① 4 3 】次に、記録部 1 0 6 に設けられるインク残 置後出部の電気的機成について説明する。

[① ① 4.4] 図4はインク残量検出部の電気的構成を示すプロック図である。

【0045】図4において、151はフォトセンサ11 からの出力電流強度に従った電圧に変換する電流/電圧 変換部、152はノイズの除去とインク液面の揺れによ る出力電圧変動を抑えるために機能する平滑回路プロッ ク. 153はA/D変換部. 154はCPU101から の制御信号に従って後述の切り替え信号を電流/電圧変 換部151に与える出力ポート部、155は各種センサ の出力を入力してその信号をCPU101に出力する入 カポート部、156はイングカートリッジ9がキャリッ ジ10に装着されているかどうかを検出するカートリッ ジ脱着検出センサである。なお、電流/電圧変換部15 1は、外部 (ととではCPU101) からの切り替え信 号により電流/電圧変換の比率を変えることができ、A **/D変換部153の出力はCPU101に入力される。** 【①①46】図5は電流/電圧変換部151の詳細な機 成を示すプロック図である。図5から明らかなように、 イングカートリッジ9にインクが有る時はフォトセンサ 1.1からの出力は小さいので「Low"レベルの信号が A/D変換部153へ入力され、一方。インクカートリ ッジ9にイングが無いの時はフォトセンザ11からの出 力は大きいので"目! レベルの信号がA/D変換部1 53へ入力される。また、出力ポート部154からのO N/OFF信号に従ってスイッチ157が開閉(ON/ OFF) される。ここで、スイッチ157が閉じる(О N) すると抵抗が並列に接続されるためA/D変換部1 53への入力電圧はスイッチ157が開いた (OFF) 時より小さくなる。

【①①48】<装置の記録動作の説明>

·機械的動作

原稿のコピーやファクシミリ回像信号の受信により記録動作が必要になると、駆動系(不図示)の回転により記録紙分離ローラ5が時計回りに回転すると共にその駆動系の一部であるカムの働きによって中板3の押し下げが無くなり、バネ4の押圧により中板3が回動しASF部に搭載された複数枚の記録用紙の一番上の記録用紙が記録紙分離ローラ5に当接する。更に、記録紙分離ローラ5が回転すると一番上の記録用紙だけが左下方に搬送される。その繰り出された紙は記録紙搬送ローラ7と記録紙送コロ8の当接部へ導かれる。この間、用紙先端位置検出センサ(不図示)により記録用紙の先端位置が検出され、この検出結果に基づいてその後の記録用紙搬送置が算出される。

[0049] 記録紙鍛送ローラ7と記録紙鍛送コロ8とので構成されるローラ対に使持された記録用紙は更に左方に搬送される。この時、記録紙分能ローラ5のローラ回転速度が記録紙鍛送ローラ7のそれより若干速く設定されているため、記録紙分能ローラ5と記録用紙との間の摩擦力は、記録紙鍛送ローラ7の搬送力に対し負荷にならない。更に、記録用紙が鍛送されると、その記録用紙は記録排紙ローラ15と排紙コロ16とで構成されるローラ対にも使持される。このローラ対の用紙送り速度は、記録紙鍛送ローラ7のそれより速いが、その撥送力は記録紙鍛送ローラ7のそれより非常に小さいため、記録用紙の鍛送量は記録紙搬送ローラ7により決定され、かつ、記録用紙は軽く張られた状態となる。

[0050]記録紙分離ローラ5が一回転し、ローラボジションセンサ6が記録紙分離ローラ5のホームボジションを検知すると一旦回転を停止する。この直前に、カム(不図示)により中板3は待機状態の時のように再び押し下げられる。その後、記録紙鍛送ローラ7と記録紙鉄紙ローラ14の回転を選転させ、用紙先端位置検出センサによる記録用紙の先端検出時点から計数していた用紙送り置に応じて、記録用紙を逆方向に鍛送させ、記録用紙先繼が記録ヘッドの記録位置にくるよう頭出しを行う。

【0051】そして、キャリッジ10を主定査方向に定査しながら記録すべき回像データに応じてノズルから選択的にインクを吐出して記録を行う。キャリッジ10が主走査方向に1回の定査(往路定査)を終了すると、その復路定査時に記録紙銀送ローラ7と記録紙銀紙ローラ15を正転(反時計回り)させ、所定量(記録ヘッドの記録幅分)だけ記録用紙を左方向に扱送する。その後、再び、キャリッジ10を主走査方向に走査(往路走査)しノズルから選択的にインクを吐出させ記録を行う。こ

紙一枚分の記録動作を終了する。

(1) 052] 記録用紙複數枚分の記録をする時は、以上の動作を繰り返す。

【()()53】·記錄制御(図6~図1())

次に、図6に示すフローチャートを参照して、CPU1 01とインク残量検出部とが連動して実行するインク残 置に従う記録制御について説明する。本実施形態のファ クシミリ装置では、ファクシミリ回像信号受信や、画像 原稿のコピー指示により記録が必要になると、以下に示 す処理が実行される。

【① 054】(1)記録制御の概要(図6~図7) ことで説明しているような装置では、インク残量検出の ためのセンサとして、反射型フォトセンサを用いるため 太陽光や強いスポットライトなどの強い迷光がその受光 部に入射すると誤動作になる問題が生じる。

[0055] 装置の構造上、記録部106には記録用紙を装置外に排出するために開口部が必ずある。インクジェット方式を用いて記録を行なう場合、記録後、その記録用紙の記録面に装置のガイド等が接触するとその記録画像がかすれたりする等の記録劣化を引き起こす問題が20生じるため、記録後は直ちに記録用紙を装置外に排出する方が望ましい。従って、記録ヘッドから排出口(即ち、開口部)までの距離は短いことが望ましい。一方、記録ヘッド近傍には、既に、説明したようにインク残置検出部が設けられているため、開口部から入射する迷光がフォトセンサ11の受光部に入りやすくなる。

[0056] さらに装置の構造上、インクジェット方式の記録を行なう記録部では、図1を参照して説明したように、インクを上方から下方に吐出して記録を行ない、記録用紙は水平方向に鍛送する構成が一般的であるため、記録用紙排出口よりインクカートリッジ9は組対的に上方に位置する、即ち、フォトセンサ11も記録用紙が入ることは少なく、例えば、装置を設置する机や装置から排出した記録用紙からの反射光のみが問題となる。しかし、このような室内光はその強度が弱いので、インク残量検出における誤認識を引き起こす要因とはならない。

[()()57] 従って、問題となるのは太陽光であり、特に、入射角の小さい、斜光、つまり、朝、夕の短い時間 (例えば、1時間)に入射する太陽光である。

[10058]従って、以下に説明する処理では、このような太陽光の入射によって引き起こされる誤認識に対処する記録制御が含まれている。

【0.059】まず、ステップS1では、インクが残存しているかどうかインク残量検出部における検出結果を用いて調べる。ここで、インクが残存していると判定され

詳細は後述する。

【0060】次にステップS2では、不揮発性メモリ1 ①4に設定されたインク吐出量カウンタ(以下、カウン タという) のカウント値(CNT)をリセットする。 こ のカウンタは、インクが残存していないと判断された場 台に、その判断がなされた以後の記録動作においてイン ク吐出骨をカウントをするために用いられるものであ り、インクが残存している場合には用いられることはな いので、ここで、その値がリセットされる。ステップS 10 3では記録動作(ここでは、記録ヘッドの主定査方向へ の1 走査によって実行される記録ヘッドの記録帽分の記 録を指す〉が実行され、記録用紙に記録が行なわれる。 【① 06 1 】さらに、ステップS4ではカウンタでイン ク吐出量を計数する。ことでは、1記録動作当たり実際 にインク吐出が発生する画素数(以下、これを記録ドッ トという)を計数する。そして、ステップS5では一連 の記録動作が終了したかどうかを調べる。ここで、記録 動作終了と判定されれば処理は終了し、記録動作続行と 判定されれば処理はステップSlに戻り、上述の動作を 繰り返す。

12

[0062]さて、処理はステップS6において、インクが残存しないととが判別された時刻(T0)から図7のプローチャートに示すような時間監視を開始する。この処理は、CPU101で図6に示す記録制御処理を並行して実行される。以下、その時間監視処理を図7を参照して説明する。

【0063】まず、ステップS11では、時刻T0かちの経過時間が所定の時間になったかどうかを調べる。つまり、上述のように太陽光の入射は朝夕の特定時間帯の30 みに発生するはずであるので、所定の時間が経過すれば、その入射はなくなっていると予想されるので、このような処理を行なうのである。ここで、所定の時間が経過したことが判断されると、処理はステップS12に追み、再度、インク残費の輸出を行なう。

[10064] ここで、再びインクが残存しないと判断されれば、時間監視はそのまま終了する。これに対して、インクが残存すると判断されれば、処理はステップS13に進み、カウンタのカウント値(CNT)をリセットし、時間監視の処理を終了する。このように、遂光が入射時間は一日のうちの一部であるとの考えに基づき、インクが残存しないと判別された時刻(T0)から所定時間の経過後に再び、インク残置検出を行なうことで、迷光の入射に伴うインク残量検出の誤認識を防止している。

【①①65】ステップS6で時間監視の処理を開始した 後、処理はステップS7において、カートリッジ脱者セ ンサ156による検出結果に基づいて、新たなインクカ

ートリッジ脱着検出用の接点を設けをンサの役目を果たすようにしても良い。ここで、新たなインクカートリッジが装着されたと判断された場合には、処理はステップS8に進み、現在実行している時間監視を停止する。なぜなら、新たに装着されたインクカートリッジにはインクが充填されていることが期待されるので、インク残費の再検出処理は不要と考えられるからである。その後、処理はステップS2に戻る。これに対して、インクカートリッジの交換がなかった場合には、処理はステップS9に進む。

13

【① 0 6 6】ただ、予期しない電源切断などによってインクカートリッジ交換があったかどうかが判別できない場合には強制的に記録動作を停止するような制御を行なう。ステップS9ではインク吐出窒。即ち、カウンタのカウンタ値(CNT)と所定の関値(n)とを比較する。ここで、CNT<nであれば処理はステップS3に造み、一方、CNT≥nであれば処理は終了する。

[0067] インク残置検知部では、液体のインクの残置を直接検出しているので、図2に示したように、インクカートリッジの構造上、インクが残存していないことを検知していても、実際には少置のインクが残存しているし、スポンジ92にもインクは含まれているため、依然として記録は可能である。従って、記録可能な量を多くするためには、インクが残存していないことが検出された後も記録制作が可能であるように記録制御をする必要がある(延命副御)。この制御は、特に、本実施形態のような交換可能なディスポーザブルタイプのインクカートリッジを用いる装置の場合不可欠である。

[0068] そのため、所定の関値(n)は、インク残 置検知部がインクが残存しないことを検知した時のインクの残置を測定しておくことによって決定される値である。また、その値はインク残置検知錯度のバラツキ、装置設置環境の温度変動等によるインク吐出置のバラツキ、記録ペッド毎の製品品質差によるインク吐出量のバラツキ、記録バターンや記録履歴によるインク吐出量のバラツキ、記録バターンや記録履歴によるインク吐出置で化等を考慮し、どんな場合でも記録可能な値となるように設定される。又、吐出性能を維持するためのインク予値吐出やボンブによる吐出口(ノズル口)からの吸引動作(回復動作)を記録部106が値えている場合には、その時のインク吐出置や吸引インク量を計数し、所定の関値(n)の決定にフィードバックしてもよい。

【① 069】さて、記録処理停止の処理は本実施形態の特徴と直接関係ないが、通常は記録処理を停止すべきと 判定された時点で記録が行なわれている記録用紙の頁は 完全には記録ができていないと考えて、その頁の先頭か 6. 例えば、ファクシミリ画像信号受信中であれば、受 信データをメモリの中に整えるという代行受信に切り換 のタイミングで記録ができるように対処する必要がある からでる。

【① ① 7 ①】とのような記録停止の処理は、図6 に示すフローチャートによれば、即時停止になっているが、現在記録中の頁は無条件にその記録処理を続行させ、その頁の記録が終了した時点でその処理を終了するように記録制御しても良い。

[0071] とれに対して、コピー動作に伴う記録動作を行う時はユーザが装置のある場所にいて記録状態をユーザ自身が判断できるため、上述のようなファクシミリ画像受信の時の処理とは異なり、例えば、インクが残存しない旨を表示部!13にメッセージ表示してユーザに警告するのみに留め、その記録用紙の最後まで記録を行ない、その後の対処はユーザの判断に任せるようにすることもできる。

【0072】しかし、いづれにしても、本装置はファクシミリ受信動作とコピー動作の2つの記録動作が可能であり、その動作がいつ発生するかは予め定まっている訳ではないので、常に、ファクシミリ受信動作が発生することを考慮すれば、インク残置検知、インク吐出量の計数、インク吐出量と所定の関値との比較処理は常に必要であり、インク吐出量が所定置を越えたことが判別されると、速やかに、ユーザに警告を促すようにしている。【0073】(2)インク残置検出の詳細(図8~図10)

インク残量は、前述のようにインクカートリッジ内部に 設置された反射板93とフォトセンサ11を用いて、フォトセンサ11から発光され反射板93で反射され再びフォトセンサ11で受光された反射光強度から検出される。さて、図2にも示したように、フォトセンサ11と反射板93はともにキャリッジ10の往復移動方向(主走査方向)に添って設けられ、そのセンサ受光面や反射面は主走査方向に対して垂直になるように配されている

[0074] 図8はキャリッジ10が移動するときの移動速度変化を示す図である。特に、図8は記録ヘッドが記録動作を実行する場合。即ち、キャリッジ10が往路を査をする場合(この方向を順方向という)を示している。インクカートリッジ9を搭載したキャリッジ10の移動速度は、図8に示すように順方向に定査する場合、点A→点B→点C→点Dと変化する。

【0075】即ち、点A→点Bはホームポジションに位置しているキャリッジ10が静止状態から所定の加速度で加速を始め、その移動速度が所定の速度(X)に達して等速移動に移るまでの加速部である。点B→点Cは等速(X)でキャリッジ10が移動しながら記録を行なう等速部である。点C→点Dは、記録を終了した記録へっ

【①①76】また、キャリッジの復略走査(この方向を逆方向という)では、インクカートリッジ9を搭載したギャリッジ10の移動速度は、図8を参照して考えれば、(1)点D→点Cでは順方向の走査が終了した後の静止位置から所定の加速度で加速し、(2)点C→点Bではその速度が所定の速度に達した所で等速運動に移り、(3)その後、点B→点Aで再び所定の負の加速度で減速し、最後にキャリッジ10がホームボジションに達した時に速度がゼロになって、キャリッジ10は停止する。

15

【① ① 7 7 】 このようにキャリッジ 1 ①が移動するため、インクカートリッジ 9 に加速度(慢性力)が働く。つまり、順方向の移動(往路走査)における加速時では、インクカートリッジ 9 のインク液面は図 9 に示すようになる。一方、順方向の移動(往路走査)における加速時では、インクカートリッジ 9 のインク液面は図 1 ① に示すようになる。なお、キャリッジ 1 ① が等速移動中や静止状態にあるときは、インクカートリッジ 9 に加速度が働かないので、イ 20ンクカートリッジ 9 のインク液面は図 2 に示すようになる。

【0078】とのようにインクカートリッジ9のインク 液面(正確にはフォトセンサ11が設置されている側の インクカートリッジ側面と反射板93との隙間)の状態 はキャリッジ10の移動により各々変化する。

【0079】従って、たとえ残存インク量が同じであってもインク液面の変化によって、あるタイミングではインクが残存しないと判定されたり、或いは、別のタイミングではインクは残存していると判定されることがある。言い換えると、インク液面の変化によって、見かけ上インクが残存していないと判定されたり、インクが残存していないのにインクが残存していると判定されることがある。

【0080】ころしたことを踏まえ、この実施形態では 次の副御を行なう。

[0081]即ち、キャリッジ10の移動を監視しながら上記3つの状態失々のときにインク残費検出を行ない。キャリッジ10の移動状態によるインク液面の変化を考慮したインク残費検出を行なう。例えば、少なくと 40も1回のキャリッジ走査で出現する3つの状態失々に対応した検出結果。或は、所定時間の間(複数回走査の間)3つの状態失々を時間積分して得られる平均的な検出結果を表示部113のLCDにメッセージ表示したり、或いは、特定のLEDを点灯させる装置利用者の注意を促す。

【0082】インク残量検出のタイミングとする上記3

るキャリッジモータの駆動と関連させることで適切なタイミングでインク残量検出を行うことができる。特に、キャリッジの駆動源としてパルスモータを用いる場合には、キャリッジの加速、減速等の切り換え時をインク残量検出のタイミングを得る基準とすることができる。 【0083】このようにして得られた結果は、ステップS1のインク残量検出の制定に用いられる。

【① 084】また、このようにして得られた結果は、一定量の残存インクに対して、図9に示す状態にインクタンクがあるとき、見かけ上最もインク残置が多いように検知され(過大評価)、図10に示す状態にインクタンクがあるとき、見かけ上最もインク残量が少ないように検知される(過小評価)。従って、例えば、図9に示す状態から得られるインク残量結果は、インクタンクに残存するインクが、本当にゼロに近い状態を示す指標として用いることができる。従って、この状態に基づいて、表示部113のLCDにニアーエンドの状態を示すメッセージ表示したり、或いは、特定のLEDを点灯させて装置利用者の注意を促すことができる。

20 【0085】従って以上説明した実施形態に従えば、1 つのインクセンサを用いながらもキャリッジの移動に伴 う異なる加速度によって引き起こされるインク液面の状態変化を考慮し、液面が同じ状態でインク残量検出を行 なうことにより、実質的に多段階的なインク残量検出を 行うことができる。また、特定のインク液面に注目した インク残量検出を行うことによりインクタンクに残存す るインクが本当にゼロに近い状態(ニアーエンド)を正 確に検出することができる。これによって、インク残量 を賭まえたより舗密な記録制御を実行することができ 30 る。

【① 0 8 6 】さらに、上記のような記録制御に加えて、インク吐出に用いた時間、インク残量検出の時間的間隔。記録頁数、記録ドット数等をカウント案補することにより装置の使用状態を把握し、この情報に基づいた装置制御を行なうこともできる。例えば、毎回のインク吐出時間を記憶しておき、インクが残存しないことが検出されれば、補算インク吐出時間に基づいて、その後インクが完全になくなるまでの時間を予想し、これをユーザにメッセージで通知する等の表示制御も可能となる。

【① 0 8 7 】以上の実施形態では、特にインクジェット 記録方式の中でも、インク吐出を行わせるために利用されるエネルギーとして熱エネルギーを発生する手段(例えば電気熱変換体やレーザ光等)を備え、前記熱エネルギーによりインクの状態変化を生起させる方式を用いることで記録の高密度化、高鏡細化が連成できる。

【0088】その代表的な構成や原理については、例えば、米国特許第4723129号明細書、同第4740

が、特に、オンデマンド型の場合には、液体(インク)が保持されているシートや液路に対応して配置されている電気熱変換体に、記録情報に対応していて腹膀胱を越える急速な温度上昇を与える少なくとも1つの駆動信号を印加することによって、電気熱変換体に熱エネルギーを発生せしめ、記録ヘッドの熱作用面に腹沸騰を生じさせて、結果的にこの駆動信号に1対1で対応した液体(インク)内の気泡を形成できるので有効である。この気泡の成長、収縮により吐出用関口を介して液体(インク)を吐出させて、少なくとも1つの滴を形成する。この駆動信号をバルス形状をすると、即時適切に気泡の成長収縮が行われるので、特に応答性に優れた液体(インク)の吐出が達成でき、より好ましい。

17

【① ① 8 9 】 とのパルス形状の駆動信号としては、米国特許第4463359号明細書、同第4345262号明細書に記載されているようなものが適している。なお、上記熱作用面の温度上昇率に関する発明の米国特許第4313124号明細書に記載されている条件を採用すると、さらに優れた記録を行うことができる。

[① 090] 記録ヘッドの構成としては、上述の各明細 20 書に開示されているような吐出口、液路、電気熱変換体 の組み合わせ構成(直線状液流路または直角液流路)の 他に熱作用面が屈曲する領域に配置されている構成を関 示する米国特許第4558333号明細書、米国特許第 44596(1)号明細書を用いた構成でも良い。加え て 複数の電気熱変換体に対して、共通するスロットを 電気熱変換体の吐出部とする構成を開示する特開昭59 -123670号公銀や熱エネルギーの圧力波を吸収す る開口を吐出部に対応させる構成を開示する特開昭59 - 138461号公報に基づいた機成としても良い。 【①①91】加えて、装置本体に装着されることで、装 置本体との電気的な接続や装置本体からのインクの供給 が可能になる交換自在のチップタイプの記録へッド、あ るいは記録ヘッド自体に一体的にインクタンクが設けら れたカートリッジタイプの記録へっドを用いてもよい。 [①092]また、以上の実施例の記録装置の構成に、 記録ヘッドに対しての回復手段、予備的な領助手段等を 付加することは記録動作を一層安定にできるので好きし いものである。とれらを具体的に挙げれば、記録ヘッド に対してのキャッピング手段、クリーニング手段、加圧 あるいは吸引手段、電気熱変換体あるいはこれとは別の 加熱素子あるいはこれらの組み合わせによる予備加熱手

【①①93】さらに、記録装置の記録モードとしては黒色等の主流色のみの記録モードだけではなく、記録ヘッドを一体的に構成するか複数個の組み合わせによってで

段を設けることや、記録とは別の吐出を行う予備吐出モ

ードを設けることなどがある。

【①①94】以上説明した実施例においては、インクが 液体であることを前提として説明しているが、室温やそれ以下で固化するインクであっても、室温で軟化もしく は液化するものを用いても良く、あるいはインクジェット方式ではインク自体を30°C以上70°C以下の範 図内で温度調整を行ってインクの粘性を安定吐出範圍に あるように温度制御するものが一般的であるから、使用 記録信号付与時にインクが遊状をなすものであればよい。

【()()95】加えて、荷極的に熱エネルギーによる昇温 をインクの固形状態から液体状態への状態変化のエネル ギーとして使用せしめることで満極的に防止するため、 またはインクの蒸発を防止するため、放置状態で固化し 加熱によって液化するインクを用いても良い。いずれに しても熱エネルギーの記録信号に応じた付与によってイ ングが液化し、液状イングが吐出されるものや、記録媒 体に到達する時点では既に固化し始めるもの等のよう な。熱エネルギーの付与によって初めて液化する性質の インクを使用する場合も本発明は適用可能である。この ような場合イングは、特開昭54-56847号公報あ るいは特別昭60-71260号公報に記載されるよう な。多孔質シート凹部または貫通孔に液状または固形物 として保持された状態で、電気熱変換体に対して対向す るような形態としてもよい。本発明においては、上述し た各インクに対して最も有効なものは、上述した膜沸騰 方式を実行するものである。

【0097】尚、本発明は、複数の機器から構成されるシステムに適用しても良いし、1つの機器から成る装置に適用しても良い。また、本発明はシステム或は装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。この場合、本発明に係るプログラムを格納した記憶媒体が本発明を構成することになる。そして、該記憶媒体からそのプログラムをシステム或は装置に読み出すことによって、そのシステム或は装置が、予め定められた仕方で動作する。

[0098]

【発明の効果】以上説明したように本発明によれば、記録へッドを移動させながらインクを吐出して記録媒体に記録を行なう際、インクを貯留し記録へッドと一体となって往復移動するインクタンクのインク残置検出を、1セットの検出手段を用いて、記録へッドとインクタンクの往復移動の運動中の異なる加速度条件下で行うので、

[0099]

【図面の簡単な説明】

【図1】本発明の代表的な実施形態であるインクジェット方式に従う記録部を備えたファクシミリ装置の機械的 構成を示す側断面図である。

19

【図2】インクカートリッジ9の詳細な構成を示す部分 破断図である。

【図3】図1に機械的構成を示したファクシミリ装置の 電気的構成を示すブロック図である。

【図4】インク乗量検出部の電気的構成を示すブロック 図である。

【図5】電流/電圧変換部151の詳細な構成を示すブロック図である。

【図6】インク残費に従う記録制御処理の概要を示すフローチャートである。

【図7】時間監視によるインク残置再検出制御を示すフローチャートである。

*【図8】キャリッジの移動速度の変化を示す図である。 【図9】キャリッジ加速/減速中におけるインクカート

リッジ9内のインク液面の状態を示す図である。

【図10】キャリッジ加速/減速中におけるインクカートリッジ9内のインク液面の状態を示す図である。 【符号の説明】

נבשמלה בי ויו

1 スレーム

7 記録紙鍛送ローラ

9 インクカートリッジ

10 キャリッジ

11 反射型フォトセンサ

12,13 レール

15 記録紙排紙ローラ

31 制御基板

151 電流/電圧変換部

153 A/D変換部

[図1] 【図2】 主直在方向 [図3] CPU 102-ROM 经存款 RAM 108 点应数 不採業後メモリ 104 MODEM 105 CC BEST AVAILABLE COPY **沿**汗伤

7/21/200

特闘平11-10909

(12)

[図4]

 $http://www4.ipdl.jpo.go.jp/tjcontenttrns.ipdl?N0000=21\&N0400=image/gif\&N0401=/NSAPITMP/web04... \end{7/21/200}.$

(13)

特闘平11-10909

[図10]

フロントページの続き

(72)発明者 岩田 直宏 東京都大田区下丸子3丁目30香2号 キヤ ノン株式会社内 (72)発明者 川島 俊寿 東京都大田区下丸子3丁目30番2号 キャ ノン株式会社内

BEST AVAILABLE COPY