

Projet Big Data

Réalisé par le Groupe 3 composé de :

Issam Harchi
Roukayatou Omorou
Nacer MESSAOUI
Saba AZIRI

https://github.com/Rouk-Peace/ProjetDigi_Hadoop

Contexte

Equipe data ingénieur(e)s/analystes

Fromagerie Digi

Infos clients, produits commandés, points de fidélité, ...

Besoins: améliorer ses stratégies de fidélisation client et de ciblage des offres

Analyse du besoin client **Etude des données**

Source de données et format Volume de données Type de données

Besoins techniques

Hadoop HDFS HBase

Power BI

Python

Gestion de projet agile Répartition des tâches

Rouky & Issam

Partie Hbase Power BI Saba & Nacer

Livrables

HDFS MapReduce:

Fichier excel des Top 10 clients en fonction des filtres PDF de la répartition des objets commandés / client

HBase PowerBI

Visualisation de la fidélité des clients viz nombre d'objets commandés par année, avec top 5 objets

Viz géographique du prog de fidélité

Détails de la base de données Nosql

Base principal

Nbre lignes : 135 277

Nbre colonnes: 25

Base test

Nbre lignes: 1000

Nbre colonnes: 25

Fichier csv:

séparateur = , guillemets = " format de date = YYYY-MM-DD HH:MM:SS

Colonne	Description	Туре	
codcli	Code client	Numérique	
genrecli	Genre du client	Texte	
nomcli	Nom du client	Texte	
prenomcli	Prénom du client	Texte	
cpcli	Code postal du client	Numérique	
villecli	Ville du client	Texte	
codcde	Code de la commande	Numérique	
datcde	Date de la commande	Datetime	
timbrecli	Timbre du client	Numérique	
timbrecde	Timbre de la commande	Numérique	
Nbcolis	Nombre de colis	Numérique	
cheqcli	Chèque du client	Numérique	
barchive	Indicateur d'archivage	Numérique ou Booléen	
bstock	Indicateur de stock	Numérique ou Booléen	
codobj	Code de l'objet	Numérique	
qte	Quantité	Numérique	
Colis	Colis	Texte	
libobj	Libellé de l'objet	Texte	
Tailleobj	Taille de l'objet	Texte	
Poidsobj	Poids de l'objet	Numérique	
points	Points	Numérique	
indispobj	Disponibilité de l'objet	Numérique ou Booléen	
libcondit	Libellé de la condition	Texte	
prixcond	Prix de la condition	Numérique	
puobj	Prix unitaire de l'objet	Numérique	

11 colonnes avec valeurs nulles

Colonne	Valeurs nulles
genrecli	725
prenomcli	324
datcde	2
timbrecli	4
timbrecde	9
Nbcolis	8
cheqcli	43
qte	3
Colis	8
Tailleobj	86719
points	262

HDFS MapReduce

Objectif

Mettre en place une solution de traitement de données basée sur Hadoop HDFS, capable de filtrer et analyser les commandes clients sur une période donnée, afin d'identifier les 10 clients les plus fidèles. Cette analyse permet de visualiser la répartition des produits commandés par ces clients et d'exporter les résultats pour une prise de décision data driven.

Mapper:

Traite les données (format csv, Null, type de donnée, format de date)

Filtre les données selon les critères :années (2008 -2012), départements (53, 61,75 et 28)

Envoie les lignes (clé/valeur) au Reducer.

Reducer:

Calcule la fidélité des clients

Trie pour trouver les 10 plus fidèles.

Crée les graphes de répartition des produits commandés/client

job.sh

Hadoop jar streaming

Démo

- 1. Ouvrir Putty et filezilla et se connecter avec ses identifants env à la VM
- 2. Copier le dossier job_projetfromagerie(dataw_fro03.csv, job_projet.sh, mapper.py, reducer.py) dans filezilla
- 3. Dans le terminal putty, faire ls pour vérifier si le dossier à été bien copié dans la VM
- 4. ./start_docker_digi.sh
- 5. **cd jobprojetfromagerie** pour se déplacer dan le repertoire
- 6. **Is** pour verifier les fichiers du repertoire
- 7. docker cp job_projet.sh hadoop-master:/root
- 8. docker cp mapper_projet.sh hadoop-master:/root
- 9. docker cp reducer_projet.sh hadoop-master:/root
- 10. docker cp dataw_fro03.csv hadoop-master:/root
- 11. docker cp dataw_fro03_mini_1000.csv hadoop-master:/root
- 12. **cd**.. pour sortir du repertoire
- 13. ./lance_srv_slaves.sh
- 14. ./bash_hadoop_master.sh
- 15. Is
- 16. chmod 777 job_projet.sh
- 17. Is
- 18. ./job_projet.sh
- 19. Ensuite lancer le service web sur le port 9070 (http://node182955-env-1839015-etudiant-l10.sh1.hidora.com:11529/)
- 20. Lancer le web yarn sur le port 8088 (http://node182955-env-1839015-etudiant-l10.sh1.hidora.com:11531/)
- 21. Allez sur filezilla pour vérifier l'exportation des fichiers : /var/lib/docker/volumes/digi01/_data

Nom	Prénom	épartemen	Ville	Objet	Quantité	Fidélité totale
verrier	paulette	61	athis val de rouvre	tete de menagere	35	3800
verrier	paulette	61	athis val de rouvre	montre	2	
verrier	paulette	61	athis val de rouvre	points bonus fidelite	7	
verrier	paulette	61	athis val de rouvre	carte publicitaire	5	
verrier	paulette	61	athis val de rouvre	flyer	1	
dallet	nathalie	61	st germain du corbeis	serviette + gant	3	
dallet	nathalie	61	st germain du corbeis	points bonus fidelite	6	3220
dallet	nathalie	61	st germain du corbeis	carte publicitaire	4	
dallet	nathalie	61	st germain du corbeis	cle usb	1	
dallet	nathalie	61	st germain du corbeis	points flyer	1	
dallet	nathalie	61	st germain du corbeis	collecteur	10	
dallet	nathalie	61	st germain du corbeis	montre	9	
dallet	nathalie	61	st germain du corbeis	drap de bain	3	
dallet	nathalie	61	st germain du corbeis	flyer	1	
dallet	nathalie	61	st germain du corbeis	t-shirt blanc	20	
dallet	nathalie	61	st germain du corbeis	convertisseur	3	
ousseau	claude	53	crennes sur fraubee	tete de menagere	18	
ousseau	claude	53	crennes sur fraubee	points bonus fidelite	6	3110
ousseau	claude	53	crennes sur fraubee	carte publicitaire	4	
ousseau	claude	53	crennes sur fraubee	points flyer	1	
ousseau	claude	53	crennes sur fraubee	pelle a tarte	5	
ousseau	claude	53	crennes sur fraubee	couverts a salade	4	

Répartition des objets commandés pour Verrier Paulette

Hadoop & Hbase (Étapes)

5. Configuration et Lancement des Services Thrift pour HBase Lancer les Services Thrift :./services_hbase_thrift.sh Vérifier les Services Thrift :jps
6. Gestion des Tables HBase hbase shell create 'BigFromagerie', 'cf'` list describe 'BigFromagerie'` put 'BigFromagerie', '1', 'cf:codcli', '001'` can 'BigFromagerie'` disable 'BigFromagerie'` disable 'BigFromagerie'`
7. Importer les Données L docker cp ./dataw_fro03.csv hadoop-master:/root/BigFromagerie.csv` L J.

Votre passeport pour l'emploi numérique

Hadoop & Hbase (cmd)

Hbase & Odbc

2.Sélectionner Cdata OBDC Driver

4. Configurer Dsn Basic

ODBC est un connecteur permettre PowerBl et HBASE de communiquer Pour accéder les données stockées dans la table Hbase

3. Procéder à la configuration HbaseProjet

5. Configurer Data Model: HBASE DIGI

4. Configuration Dsn Basic

6. Vérification des tables

Hbase et Power BI (driver ODBC) En ouvrant PowerBI, nous allons exploiter les données dans la table HBASE en utilisant l'API ODBC.

1.Ouvrir Power BI Obtenir les données Saisir ODBC dans la barre de recherche

3.Les bases de données Hbase s'affichent

2.Sélectionner HBASE DIGI

4.Sélectionner la base que vous voulez charger et cliquer sur Transformer les données

Power BI: Nettoyage données

- Renommer et structurer les données
- Renommer les colonnes et les tables
 - Réorganiser les colonnes
- Supprimer les colonnes ou les lignes inutiles
 - Gestion des doublons
 - Modifier les erreurs : valeurs aberrantes (Date)
- Remplacer les valeurs négatifs par o (Points)
 - Ajouter une table Date et Département
 - Créer les tables de faits et dimensions
 - Faire le modèle en flocon

Nombre de lignes après nettoyage : 134 821

Power BI: Vue du modèle

Power BI: Dashboard

- Voir la fidélité des clients sur selon l'intervalle de dates,
- Voir le nombre d'objets commandés par année et les 5 meilleurs (Palmarès),
- Voir les départements les plus représentatifs du programme de fidélité de la fromagerie (Palmarès).

CONCLUSION

Le projet de traitement des données de la fromagerie à l'aide de Hadoop a permis de mettre en place un processus efficace de traitement de données massives via un workflow de type MapReduce.

Ce processus a non seulement permis de nettoyer et filtrer les données, mais aussi d'extraire des informations pertinentes sur la fidélité des clients, les objets commandés, et les départements les plus actifs. Les résultats obtenus offrent une vue claire de la relation entre les commandes et les clients, ainsi que des indicateurs importants pour le suivi des activités de fidélité.

Perspectives d'amélioration

- Connexion à une base de données NoSQL : Une prochaine étape serait d'intégrer HBase pour un stockage persistant et plus rapide des données, facilitant l'accès direct aux informations extraites.
- Automatisation des Jobs Hadoop : Programmer les jobs Hadoop à intervalles réguliers, ou sur événement, permettrait de traiter les nouvelles données de manière continue, sans intervention manuelle.
- **Mise en place de Data Streaming**: Pour améliorer encore l'efficacité et la rapidité du traitement des données, la mise en œuvre du streaming avec Apache Kafka ou Flink pourrait être envisagée. Cela permettrait de traiter les données en temps réel et d'alimenter des tableaux de bord dynamiques avec Power BI ou ELK.
- Amélioration du tableau de bord : Enrichir les visualisations des données avec Power BI ou d'autres outils de reporting pourrait offrir une vue plus interactive et détaillée sur l'évolution des comportements clients et des ventes.