

FACULTY: School of Computing Science, SIT, UoG STUDENT: Lim Jing Chuan Jonathan(2300923) Ong Jia En, Darryl (2301402), Felix Chang (2301105), Ryan Oh Tian Guan (2300916), Chew Liang Zhi (2300948), James **Gonzales (2301136)**

Smart Plant Monitoring System

1. Abstract:

The **Smart Plant Monitoring System** leverages Raspberry Pi devices equipped with sensors and motors, coupled with MQTT protocol for seamless communication. This system offers users an intuitive Web Dashboard for efficient plant care management.

Monitor Conditions:

- Soil Moisture Level.
- 2. UV Level.
- 3. Temperature & Humidity Level.

DashBoard Features:

- Real-time insights into plant environment.
- 2. Perform action such as watering & lighting control.
- Convenient user interface for task execution.

2. Objective:

- 1. Provides users with a Web Dashboard using Node-RED to monitor their plants & enable them to perform actions.
- 2. Have 2x Paho-MQTT Client (Mosquitto Broker) Raspberry Pis equipped with sensors & motors respectively to monitor the plants & perform actions such as automated watering and light intensity controller.
- 3. Have 1x MQTT Server (Mosquitto & Node-Red) Raspberry Pi to receive & display the data on the Dashboard & send actions to Client.

4. Connection Circuit Layout:

Client A

Client B

5. Network Diagram:

3. Methodology:

To make this project flexible & scalable, four major parts of IoT Technology are applied.

They are as followed:

- **Sensors & Microcontroller**
- 2. Gateway & Network
- **Management Service**
- 4. Application

Sensors & Microprocessor		Gateway & Network	Management Service	Application
1.	Raspberry Pi connected via LAN for easy IoT node setup.	Python handle gateway functions,	MQTT for Device Communication.	1. Smart Agriculture. 2. Urban/Rural
2.	Efficient resource usage & scalable architecture.	processing MQTT data. 2. JSON is utilized for	2. Z-score for Sensor Data Collection.	2. Urban/Rural farming.
3.	Sensors:	formatting the data for the Node-Red Dashboard.	GPIO pins for Device Control.	3. Crop Monitoring & Management.
•	Soil Moisture: for	MQTT ensures	4. Multi-Threading	4. Precision
•	watering. Relay: high-power	seamless data forwarding from collection to Node-Red.	for Thread Management.	Farming.
	device control. ADC: precise analog	Collection to Node-Red.	5. Exceptions for Error Handling.	
٠	Temp & Humidity: ambient condition monitoring.		6. Data Processing: outlier detection & sensor data	A to the
•	UV Light: intensity detection.	python	conversion.	OF THE SE
•	RGB LEDs: simulates plant growth lighting.	MQTTI 040		

6. Resources:

3x Raspberry Pi 4 Model B, 1x Router, Online documentation for Paho-MQTT, Mosquitto Broker & Node-RED,4x Sensors (UV Light, Temperature & Humidity, Ultrasonic, Moisture), 1x Motors (Submersible Water Pump), 3x LEDs (Light Intensity controller), Electrical Components (Breadboard, Jumper Wires, Resistors, ADC, etc.)

7. Conclusion:

Currently 3 Pis have been deployed with 2 as client and 1 as server. Cost price is about \$50 SGD for the sensor modules excluding the Pis.

Future expansion for this project is shown below:

- Adding live feed features.
- Explore integrating it with Amazon Alexa, SQLite3, Azure Al.
- Explore integrating it with LoRa.

8. References:

[1]M. Ghavami, "Development of Internet of Things based smart multi-sensors system for early prediction of plant growth," mspace.lib.umanitoba.ca, May 2022 https://mspace.lib.umanitoba.ca/items/50d315e2-20b6-485a-954d-695a4107cede [2]S. Balyan, H. Jangir, S. N. Tripathi, A. Tripathi, T. Jhang, and P. Pandey, "Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture," Sustainability, vol. 16, no. 2, p. 475, Jan. 2024, doi: https://doi.org/10.3390/su16020475. [3]G. Journals, "IoT Based Agriculture and Transportation Surveillance," www.academia.edu, May 22, 2018.

https://www.academia.edu/36632828/IoT Based Agriculture and Transportation Surveilla nce?email work card=view-paper

