Least Squares

Practical Linear Algebra | Lecture 7

Problem Setup

$$y = Ax$$

$$A \in \mathbb{R}^{m \times n}$$

- For a given y, we want to solve for x
- ullet If A is square and invertible, we can solve for x exactly, where $x=A^{-1}y$
- Interpretation: same number of equations and unknowns, and all equations are unique

Problem Setup

$$y = Ax$$

$$A \in \mathbb{R}^{m \times n}$$

- In real life, we rarely have the same number of equations and unknowns
- ullet Instead, we often have more equations than unknowns (m>n)
- In general, we can't satisfy all equations simultaneously
- The next best thing we can do is to try to satisfy all equations as closely as possible

Residuals

- How do we measure closeness?
- ullet Each element of Ax should be close to each corresponding element of y
- For a specific value of x, the residual vector y-Ax represents how closely each equation is satisfied
- If we square each element of the residual vector and sum them, we get a single number that represents how closely all equations are satisfied
- We call this number the residual sum of squares (RSS)

Least Squares

- Idea: Let's choose $\,x$ to minimize the RSS
- This is the method of least squares

Geometric Interpretation

- Recall the definition of $\mathbf{range}(A)$
- \bullet Ax is the set of all possible output vectors it forms a linear subspace
- In general, $y \notin \mathbf{range}(A)$
- ullet The next best thing we can do is the find the vector Ax that is closest to y in terms of distance
- ullet The distance between the vector $\,y\,$ and $\,Ax\,$ is just the norm of $\,y-Ax\,$
- ullet Geometrically, we can just project $\,y\,$ onto the subspace Ax

 $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$

Closed-Form Solution

• Let's actually calculate x_{ls}

$$||y - Ax||^2 = (y - Ax)^T (y - Ax)$$
$$= (y^T - x^T A^T)(y - Ax)$$
$$= y^T y - 2y^T Ax + x^T A^T Ax$$

Closed-Form Solution

ullet Take the gradient with respect to x and set it to zero

$$\nabla_{x} ||y - Ax||^{2} = \nabla_{x} (y^{T}y - 2y^{T}Ax + x^{T}A^{T}Ax)$$

$$= \nabla_{x} (y^{T}y) - \nabla_{x} (2y^{T}Ax) + \nabla_{x} (x^{T}A^{T}Ax)$$

$$= 0 - 2A^{T}y + 2A^{T}Ax = 0$$

$$\Rightarrow A^T A x = A^T y$$
 the normal equation

Pseudoinverse

• Fact: If A is skinny and full rank, then A^TA is invertible (proof left to you)

where $A^{\dagger} \equiv (A^T A)^{-1} A^T$ is the pseudoinverse of A

$$A^TAx = A^Ty$$

$$x = (A^TA)^{-1}A^Ty$$

$$x_{ls} = A^\dagger y$$
 AKA Moore-Penrose inverse

Projection Matrix

• Note that $\hat{y} \equiv Ax_{ls}$ is the vector in $\mathbf{range}(A)$ that is closest to y

$$\hat{y} = Ax_{ls} = A(A^T A)^{-1} A^T y$$

$$\hat{y} = AA^{\dagger} y$$

- ullet We call AA^\dagger the projection matrix because it projects y onto $\overline{{f range}(A)}$
- Also known as the hat matrix because it puts a hat on y

Next Time

- Statistical interpretation of least squares
- Applications of least squares