Homotopy Level Two Computing

by Sven Nilsen, 2022

In this paper I extend the functional complete NAND gate to homotopy level 2.

The NAND^[1] gate has the property that it is functional complete. It means that any Boolean expression can be re-expressed by an equivalent expression utilizing only NAND operations.

In the paper "Path Semantical Qubit" [2], I introduced the `qubit/~` operator for use in Path Semantics [3]. The `qubit/~` operator has the following invariant:

With this operator, one can express path semantical quality, aquality, contravariant quality and homotopy equivalence of higher homotopy levels^[4]. In classical logic, the `qubit` operator generates a new random proposition that depends on the argument for a single case (synchronized per case).

It turns out that there is a 4-valued logic^[5] which has the following property:

This 4-valued logic can be thought of as truncating or folding homotopy levels to level 2.

The truth table for the extended NAND gate to this 4-valued logic is the following:

A	В	NAND(A, B)
00	00	01
00	01	01
00	10	01
00	11	01
01	00	01
01	01	00
01	10	11
01	11	10
10	00	01
10	01	11
10	10	11
10	11	01
11	00	01
11	01	10
11	10	01
11	11	10

Using NAND gates only, the extended NAND gate can be constructed as following:

```
\begin{aligned} & nand_2 := \backslash (a:[bool;\,2],\,b:[bool;\,2]) = [\\ & a_0 \mathrel{\overline{\wedge}} b_0,\\ & (\neg a_1 \mathrel{\wedge} b_1 \mathrel{\wedge} a_0) \mathrel{\vee} (a_1 \mathrel{\wedge} \neg b_1 \mathrel{\wedge} b_0) \mathrel{\vee} (a_1 \mathrel{\wedge} b_1 \mathrel{\wedge} (a_0 == b_0)) \\ & ] \end{aligned}
```

Where the operations \neg , \wedge , \vee , == are defined using $\bar{\Lambda} (NAND)$:

```
\neg a := (a \overline{\wedge} a)

(a \wedge b) := \neg (a \overline{\wedge} b)

(a \vee b) := (\neg a \overline{\wedge} \neg b)

(a == b) := (a \wedge b) \vee (\neg a \wedge \neg b)
```

Here is a definition that describes the full wiring using only NAND (plus NOT for brevity):

```
\begin{aligned} & nand_2 := \backslash (a:[bool;\,2],\,b:[bool;\,2]) = [\\ & a_0 \mathrel{\overline{\wedge}} b_0,\\ & \lnot ((\lnot (\lnot a_1 \mathrel{\overline{\wedge}} a_0) \mathrel{\overline{\wedge}} b_1) \mathrel{\overline{\wedge}} (\lnot (\lnot b_1 \mathrel{\overline{\wedge}} a_1) \mathrel{\overline{\wedge}} b_0)) \mathrel{\overline{\wedge}} (((a_0 \mathrel{\overline{\wedge}} b_0) \mathrel{\overline{\wedge}} (\lnot a_0 \mathrel{\overline{\wedge}} \lnot b_0)) \mathrel{\overline{\wedge}} \lnot (a_1 \mathrel{\overline{\wedge}} b_1)),\\ ] \end{aligned}
```

Here is a visual representation (a_1 , a_0 , b_1 , b_0 are inputs and c_1 , c_0 are outputs):

Using the extended NAND gate, one can bootstrap into homotopy level two computing by overloading the notation for logic using this 4-value logic instead. The construction of gates works in the same way as before, except that the extended NAND gate is used instead of the ordinary NAND gate.

The `qubit` gate can be defined using a pseudo-random synchronized `rbit` operation:

Notice that these operations are based on the extended NAND gate.

The `rbit` operation returns `0` or `1` randomly, but stays fixed for each computational cycle.

References:

- [1] "NAND logic"
 Wikipedia
 https://en.wikipedia.org/wiki/NAND_logic
- [2] "Path Semantical Qubit"
 Sven Nilsen, 2022
 https://github.com/advancedresearch/path semantics/blob/master/papers-wip2/path-semantical-qubit.pdf
- [3] "Path Semantics"
 AdvancedResearch
 https://github.com/advancedresearch/path_semantics
- [4] "PSQ Path Semantical Quantum Propositional Logic"
 AdvancedResearch Summary page on Path Semantical Quality
 https://advancedresearch.github.io/quality/summary.html#psq---path-semantical-quantum-propositional-logic
- [5] "Four-valued logic"
 Wikipedia
 https://en.wikipedia.org/wiki/Four-valued_logic