COMP47460 Tutorial

Evaluation

Aonghus Lawlor Deepak Anjwani

School of Computer Science Autumn 2019

Tutorial Q1

- The contingency table below shows the evaluation results for a binary classifier applied to a set of 768 test examples, which are annotated with the class labels (A, B). From this table calculate:
 - a) The precision score for both of the classes.
 - b) The recall score for both of the classes.
 - c) The F1-measure score for both of the classes.
 - d) The overall classification accuracy for all the data.

Predicte	ed Class		
Α	В		
407	93	Α	Real
108	160	В	Class

Tutorial Q1(a,b)

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN} = Sensitivity$$

Note: These measures are always relative to one class!

Predicted Class

А	В		
407	93	Α	Real
108	160	В	Class

Class	Precision	Recall
A	407/(407+108) = 0.79	407/(407+93) = 0.814
В	160/(93+160) = 0.632	160/(108+160) = 0.597

Tutorial Q1(c)

• F1-Measure: harmonic mean of precision and recall

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Also relative to one class!

Class	Precision	Recall	F1
A	407/(407+108)	407/(407+93)	(2*0.79*0.814)/(0.79+0.814)
	= 0.79	= 0.814	= 0.802
В	160/(93+160)	160/(108+160)	(2*0.632*0.597)/(0.632+0.597)
	= 0.632	= 0.597	= 0.614

Tutorial Q1(d)

Accuracy: Number of predictions correct / all predictions

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Predicted Class

		_	
А	В		
407	93	Α	Real
108	160	В	Class

Accuracy score is relative to the overall dataset, often reported as a percentage.

OVERALL ACCURACY:

$$(407+160)/(407+93+108+160)$$

= 73.8281%

Tutorial Q2

 The table below shows the true classes for 12 example emails, which are labelled as "spam" or "non-spam". The table also reports the labels predicted by three different binary classifiers

Example	True Class Label	KNN Prediction	J48 Prediction	SVM Prediction
1	spam	spam	spam	spam
2	non-spam	non-spam	spam	non-spam
3	spam	non-spam	non-spam	spam
4	non-spam	non-spam	non-spam	non-spam
5	spam	spam	spam	spam
6	non-spam	non-spam	non-spam	non-spam
7	non-spam	spam	spam	non-spam
8	non-spam	non-spam	spam	spam
9	spam	spam	non-spam	spam
10	spam	spam	non-spam	non-spam
11	spam	non-spam	non-spam	spam
12	spam	spam	spam	spam

Tutorial Q2 (a,b)

Example	True Class Label	KNN Prediction	J48 Prediction	SVM Prediction
1	spam	spam	spam	spam
2	non-spam	non-spam	spam	non-spam
3	spam	non-spam	non-spam	spam
4	non-spam	non-spam	non-spam	non-spam
5	spam	spam	spam	spam
6	non-spam	non-spam	non-spam	non-spam
7	non-spam	spam	spam	non-spam
8	non-spam	non-spam	spam	spam
9	spam	spam	non-spam	spam
10	spam	spam	non-spam	non-spam
11	spam	non-spam	non-spam	spam
12	spam	spam	spam	spam

#Correct	9/12	5/12	10/12	
Accuracy	75%	41.7%	83.3%	

"Spam"	TP	5	3	6
	FP	1	3	1
	Precision	5/6 = 0.833	3/6 = 0.5	6/7 = 0.857

Overall Accuracy:

Number of predictions correct / all predictions

Precision for spam:

Number of correct spam predictions / all predictions of spam

SVM classifier is most accurate

SVM classifier has highest precision for spam

Tutorial Q3

 The table below shows the number of correct and incorrect predictions made by an image classifier during a 10-fold cross validation experiment, where the goal was to classify 500 images into one of three categories: {cats, dogs, people}.

Fold	Class: Cats		Class: Dogs		Class: People	
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect
1	82	68	82	68	164	36
2	81	69	102	48	176	24
3	99	51	97	53	160	40
4	81	69	102	48	148	52
5	94	56	99	51	148	52
6	97	53	91	59	162	38
7	81	69	94	56	148	52
8	76	74	79	71	181	19
9	76	74	97	53	160	40
10	96	54	79	71	179	21

Tutorial Q3(a)

a) What is the overall accuracy of the classifier based on the cross-validation results?

Fold	Class: Cats		Class: Dogs		Class: People		
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect	Accuracy
1	82	68	82	68	164	36	65.6%
2	81	69	102	48	176	24	71.8%
3	99	51	97	53	160	40	71.2%
4	81	69	102	48	148	52	66.2%
5	94	56	99	51	148	52	68.2%
6	97	53	91	59	162	38	70.0%
7	81	69	94	56	148	52	64.6%
8	76	74	79	71	181	19	67.2%
9	76	74	97	53	160	40	66.6%
10	96	54	79	71	179	21	70.8%
Mean							68.2%

Fold 1: (82+82+164)/(82+68+82+68+164+36) = 65.6% accuracy for fold ...

Overall: (65.6% + 71.8% + 71.2% + 66.2% + 68.2% + 70.0% + 64.6% + 67.2% + 66.6% + 70.8%)/10 = 68.2%

Tutorial Q3(b)

b) What conclusion might be draw about the different classes in the data, based on the results above?

Fold	Class: Cats		Class: Dogs		Class: People		
	Correct	Incorrect	Correct	Incorrect	Correct	Incorrect	Accuracy
1	82	68	82	68	164	36	65.6%
2	81	69	102	48	176	24	71.8%
3	99	51	97	53	160	40	71.2%
4	81	69	102	48	148	52	66.2%
5	94	56	99	51	148	52	68.2%
6	97	53	91	59	162	38	70.0%
7	81	69	94	56	148	52	64.6%
8	76	74	79	71	181	19	67.2%
9	76	74	97	53	160	40	66.6%
10	96	54	79	71	179	21	70.8%
Mean	86.3	63.7	92.2	57.8	162.6	37.4	68.2%
Class Acc.	57.5%		61.5%		81.3%		

→ High accuracy for class "People", low accuracy for "Cats" and "Dogs". Suggests system is poor at distinguishing between these classes.

Tutorial Q3(c)

c) Would "leave-one-out cross validation" be an appropriate evaluation strategy on this dataset? Justify your answer.

Dataset has n=500 examples. So leave-one-out would require running 500 experiments where 1 example is left out each time. May be computationally intractable to do this, so k-fold cross validation might be more suitable.