Nono Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

23 de setembro de 2022

Sumário

1 Introdução

3.3

2	For	Formação de imagens			
	2.1	Análise de distância com imagens			
		nítidas			
		2.1.1 Teoria			
		2.1.2 Explicação			
		2.1.3 Amplificacao			
3	Tele	escopios			
	3.1	Diametro do laser			
	3.2	Telescopios Kepleriano e Galileano			

Representacoes

1 Introdução

Neste relatório, vamos discutir propriedades de lentes, e lentes em série.

Também discutiremos alguns circuitos retificadores com diodos.

Todos arquivos utilizados para criar este relatório, é o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/

2 Formação de imagens

Todos testes abaixo foram realizados com uma lente esférica de distância focal de 100mm.

2.1 Análise de distância com imagens nítidas

2.1.1 Teoria

$$\frac{1}{S} + \frac{1}{S'} = \frac{1}{f} \tag{1}$$

$$D = S + S' = Sf - \frac{Sf}{S - f}$$

$$\frac{dD}{dS} = 1 + \frac{f(S - f) - Sf}{(S - f)^2} = \frac{-f^2}{(s - f)^2} + 1 = 0$$

$$\frac{f^2}{(s - f)^2} = 1 \to \frac{f}{S - f} < 1 \to S = 2f$$

$$D_{min} = 2f + \frac{(2f)^2}{f} = 4f$$
(2)

2.1.2 Explicação

Podemos observar imagens nítidas com duas configurações diferentes de S e S'.

Este resultado vem diretamente das equações (1) e (2) acima.

Como podemos observar. O S e S' são comutativos e a distância mínima para termos imagens é de 4f. Ou seja. No nosso caso de 40cm

Com o espaço que temos para variar a posição do S e do S' na bancada, que é aproximadamente pouco mais de 40 centímetros. Nós teríamos no máximo duas imagens nítidas.

Com a imagem nítida medimos $S=15\pm 1cm$ e $S'=25\pm 1cm$ e $S'=25\pm 1cm$ e $S'=15\pm 1cm$

Que era de fato o resultado esperado, já que isto nos dá um S + S' = 40. E satisfaz a equação (1).

2.1.3 Amplificação

Medimos amplificações diferentes nas duas configurações de imagem nítida.

A imagem original tinha 0.7cm. E medimos imagens formadas de 1cm e 0.3cm

Tabela de dados

$S \pm 1cm$	$S' \pm 1cm$	$S + S' \pm 2cm$
15	23	38
17	19	36
19	18	37
21	17	38
23	15	38
25	15	40
27	14	41
29	14	43
31	13	44
33	13	46
35	13	48

diretamente das Distancia focal da lente

Grafico de D(S+S') por S Autor: Henrique Pedro da Silva

Fazendo $\sum_{i=1}^{11} \frac{D_n}{n} = 4f$.

Temos que $f_{experimental} = 10.2045$

 $\frac{\Delta f}{f}$ nos dá um erro de 2%

3 Telescopios

3.1 Diametro do laser

Obtivemos um diâmetro de $0.70\pm0.05mm$ sem amplificação das lentes. E de $5.40\pm0.05mm$ com as lentes.

Ou seja, uma amplificação de aproximadamente 8 vezes.

Projeção do laser na parede

A divergência com as lentes foi significantemente menor do que sem as lentes.

3.2 Telescopios Kepleriano e Galileano

Observamos em ambos telescópios uma amplificação da imagem.

O telescópio Galileano tem a vantagem de ter dimensão transversal menor. Ou seja, as suas lentes estão mais próximas uma da outra devido a distância focal de uma das lentes ser negativa. O telescópio Kepleriano tem a vantagem da imagem que o observador tenta ver ser formada mais próxima da lente do que no Galileano. Ou seja. O espaço "atrás" do telescópio para o observador é menor.

3.3 Representacoes

