Approximate Hyperparameter Marginalisation for Gaussian Processes

Anonymous Author(s)

Affiliation Address email

Abstract

Enter Abstract here

1 Introduction

2 Gaussian Processes

Gaussian processes (GPs) constitute a powerful method for performing Bayesian inference about functions using a limited set of observations [?]. A GP is defined as a distribution over the functions $f: \mathcal{X} \to \mathbb{R}$ such that the distribution over the possible function values on any finite set of \mathcal{X} is multivariate Gaussian. Given some arbitrary size n dataset, the observations $\mathbf{y} = \{y_1, ..., y_n\}$ could be viewed as a single point sampled from a n-variate Gaussian distribution and can be partnered with a GP.

A GP is completely defined by its first and second moments: a mean function $\mu: \mathcal{X} \to \mathbb{R}$ which describes the overall trend of the function, and a symmetric positive semidefinite covariance function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which describes how function values are correlated as a function of their locations in the domain. Given a function $f: \mathcal{X} \to \mathbb{R}$ and a set of input points $\mathbf{x} \subset \mathcal{X}$, the Gaussian process prior distribution over the function values $\mathbf{f} = f(\mathbf{x})$ is given by:

$$p(\mathbf{f}|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{f}; \mu(\mathbf{x}, \boldsymbol{\theta}), K(\mathbf{x}, \mathbf{x}, \boldsymbol{\theta}))$$
(1)

$$= \frac{1}{\sqrt{\det 2\pi K_{\mathbf{f}}}} \exp\left(-\frac{1}{2}(\mathbf{f} - \mu_{\mathbf{f}})^{\top} K_{\mathbf{f}}^{-1}(\mathbf{f} - \mu_{\mathbf{f}})\right)$$
(2)

where θ is a vector containing any parameters required by μ and K, and which form the *hyperparameters* of the model. There exists a wide variety of mean and covariance functions which can be chosen in order to reflect any prior knowledge available about the function of interest.

3 Approximate Hyperparameter Marginalisation

3.1 Proof of Positive Semi-Definiteness

A sum of kernels is itself a kernel, which by definition fulfils the necessary condition of positive semi-definiteness. Therefore:

$$K = \int k(\beta)p(\beta)d\beta \tag{3}$$

4 Experiments

- 5 Related Work
- 6 Conclusion

Acknowledgments

Do we have any? Aladdin / Orchid?

References

 C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press Cambridge, MA, USA, 2006.