UNCLASSIFIED

AD NUMBER

AD-487 543

NEW LIMITATION CHANGE

 \overline{TO}

DISTRIBUTION STATEMENT: A

Approved for public release; Distribution is unlimited.

LIMITATION CODE: 1

FROM No Prior DoD Distr Scty Cntrl St'mt Assgn'd

AUTHORITY

RADC via Ltr; Aug 27, 1973

THIS PAGE IS UNCLASSIFIED

407543

KUPK-TY-W-IN

POWER FLOW PROM A PLANIA NÁVING CÓMPLEX PLECYROACOUSTIC WAVE SUPEDÁNCE

> Rebot L. Gallows Hustonal Bronze of Standards

TECHNICAL REPORT NO. BADC-TR-64-33 Jone 1966

> This despute is subject to special seguet controls sub-cash transmitted to Suniga procuments or feedige approach only to code only with puter approach of RASC (RMLA), SLEPE, S.Y. 19448.

Roug Air Development Conter Research and Yorkmalogy Division Air Parce Bratons Command Outline Air Parce Both, How York

POWER FLOW FROM A PLASMA HAVING COMPLEX ELECTROACOUSTIC WAVE IMPEDANCE

Robert L. Gellews

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with princ approval of RADC (EMLI), GAFB, N.Y. 13440.

FOREWORD

This work comprises a special report on U.S. Air Force, Rome Air Development Center, Research and Technology Division, Griffiss Air Force Base, New York, Contract No. AF30(602)-3836, Project 5582, Task 558201, I.T.S.A. Project No. 5101421. The computations reported in this report were performed in part on an IBM-T090 computer and in part on a CDC-3600 computer.

Release of subject report to the general public is prohibited by the Strategic Trade Control Program, Mutual Defense Assistance Control List (revised 6 January 1965), published by the Department of State.

This technical report has been reviewed and is approved.

Approved:

Kenneth CStiphett.

Project Engineer EMATS/x 3445

Approved:

Cylef, Techniques strach

Furveillance & Control Division

Table of Contents

		Page
Foreword		. ii
List of Figures		. iv
Abstract		. 1
1. Introduction		. 1
2. Equations for the Unbe	ounded Homogeneous Plasma	. 2
3. The Electroacoustic C	complex Wave Impedance	. 5
4. Power Coupling at a P	lasma-Vacuum Boundary	. 10
5. Discussion	• • • • • • • • • • • • • • • • • • • •	. 19
6. Conclusions		. 21
7. Glossary		. 23
8. References		. 25
Figures		. 27

List of Figures

- Figure 1. Coordinate system showing the two media and illustrating the angles of incidence, reflection, and transmission.
- Figure 2. Real component of electroacoustic wave impedance. $v = 10^6 \text{ sec}^{-1}$.
- Figure 3. Imaginary component of electroacoustic wave impedance. $v = 10^5 \text{ sec}^{-1}$.
- Figure 4. Real component of electroacoustic wave impedance. $v = 10^7 \text{ sec}^{-1}$.
- Figure 5. Imaginary component of electroacoustic wave impedance. $v = 10^7 \text{ sec}^{-1}$.
- Figure 6. Dimensionless power conversion factor. $B_0 = 0$; $\phi_0 = 80^\circ$; $v = 10^8 \text{ sec}^{-1}$.
- Figure 7. Dimensionless power conversion factor. $B_0 = 0$; $\phi_0 = 80^\circ$: $v = 10^\circ$ acc⁻¹.
- Figure 8. Dimensionless power conversion factor. $B_0 = 0$; f = 1 kHz; $v = 10^6$ sec⁻¹.
- Figure 9. Dimensionless power conversion factor. $B_0 = 0$; f = 1 kHz; $v = 10^7$ sec⁻¹.
- Figure 16. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m²; $\phi_2 = 80^{\circ}$; $v = 10^{8}$ sec⁻¹.
- Figure 11. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m²; $\phi_0 = 80^\circ$; $v = 10^7$ sec⁻¹.
- Figure 12. Dimensionless power conversion factor. $R_0 = 5 \times 10^{-8}$ Wb/m²: f = 1 kHz: $v = 10^8$ sec⁻¹.
- Figure 13. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m²; f = 1 kHz; $v = 10^7$ sec⁻¹.

POWER FLOW FROM A PLASMA HAVING COMPLEX ELECTROACOUSTIC WAVE IMPEDANCE

Robert L. Gallawa

The complex electroacoustic wave impedance is examined and is related to power coupling at a plasmavacuum boundary via the plane wave solution of Maxwell's equations. The reactive component of impedance is found to be important at frequencies less than the plasma frequency, where it contributes a significant amount to power flow. Thus at those frequencies serious errors can be introduced by assuming that the electroacoustic power is made up of the powers in the incident and reflected waves only.

Key words: Electroacoustic, electromagnetic, impedance, plasma, power coupling, wave propagation.

1. Introduction

The problem of understanding the coupling mechanism which governs the conversion of electromagnetic energy at a plasma density discontinuity has received considerable attention in recent years. Work has been done on the problem of reflection from and transmission into a plasma half-space [Wait, 1966a, b; Hessel, et al., 1962; Kritz and Mintzer, 1960], as well as the reciprocal problem that is encountered when the wave is incident from the plasma onto the plasma-vacuum boundary [Field, 1956; Johler, 1964; Gallawa, 1965]. In the latter problem one may consider incident longitudinal (or transverse) waves onto the boundary, there being coupling to the transverse (or longitudinal) wave by the boundary. In particular an incident longitudinal wave generates reflected and transmitted transverse waves, as well as a reflected longitudinal wave. The

problem is complicated by coupling between the two types of waves if a magneto-static field permeates the region.

The reschanism by which a compression (longitudinal) wave establishes an electromagnetic wave at a boundary is now fairly well understood. The problem of power conversion introduces an insight which is not readily available when work is restricted to the wave magnitudes. The purpose of this paper is to study the coupling at a plasma-vacuum boundary by introducing the complex intrinsic wave impedance. The reactive component thereof will be shown to contribute to power transmitted by virtue of an interaction of incident and reflected waves. The problem is believed to be particularly important in view of the recent work by Chen [1965] in which he showed that a space vehicle illuminated by an electromagnetic wave can excite an electroacoustic wave which may enhance the radar return considerably.

2. Equations for the Unbounded Homogeneous Plasma

To introduce important concepts and equations consideration is given first to the case of an unbounded homogeneous plasma. The medium will be taken to be a one-component, uniform electron fluid; i. e. heavy ionic motion will be neglected. Collisions between electrons and neutral particles will be accounted for by introducing a constant collision frequency, v. In addition finite compressibility will be considered. The wave magnitudes to be introduced will be assumed to be very small,

permitting the use of linearized hydrodynamic equations [Oster, 1960], which are given by

$$mn_{\bullet} \left(v + \frac{\partial}{\partial t}\right) \vec{V} = n_{\bullet} \bullet \vec{E} - \nabla p$$
, (1)

$$u^2 mn_* \nabla \cdot \nabla = \frac{\partial p}{\partial t}$$
, (2)

$$\nabla \times \overline{\Sigma} = -\mu_0 \frac{\partial \overline{H}}{\partial t}.$$
 (3)

$$\nabla \times \tilde{H} = \varepsilon_{+} \frac{\partial \tilde{\Sigma}}{\partial t} + n_{+} \varepsilon \, \tilde{V} \,, \tag{4}$$

where e and m are the charge and mass of the electron, respectively; u_0 and t_0 are the permeability and permittivity of free space, respectively; u is the speed of sound in the electron gas, $u^2 \cong \gamma \frac{RT}{m}$, $K = Boltsmann^*s$ constant, T = absolute temperature; p is the deviation of the electron pressure from the mean, and V is the mean electron velocity; n_0 is the constant electron number density; V is the ratio of specific heats; \tilde{E} and \tilde{H} are, as usual, the electric and magnetic fields. For now the steady magnetic induction is assumed to be zero; that additional generality can be introduced by replacing \tilde{E} by $\tilde{E} + \tilde{V} \times \tilde{B}$ in (1). Without loss of generality a time factor $\exp(ixt)$ will subsequently be assumed and suppressed. The value of $\frac{u}{c}$, where c is the velocity of light, is taken to be 10^{-3} throughout this paper. This corresponds to a temperature of about 10^4 degrees Kelvin.

It is convenient to study the propagation parameters by splitting E into longitudinal and transverse components [Hessel and Shmoys, 1961; Hessel, Marchvitz, and Shmoys, 1962; Chen, 1964; Field, 1956].

Thus let

$$\tilde{\mathbf{E}} = \tilde{\mathbf{E}}_{L} + \tilde{\mathbf{E}}_{T}, \tag{5}$$

where

$$\nabla \times \tilde{\mathbf{E}}_{i} = 0, \tag{6}$$

$$\nabla \cdot \bar{\mathbf{E}}_{t} = 0. \tag{7}$$

Then by (2), (4), and (7),

$$\nabla \cdot \hat{\mathbf{E}}_{\mathbf{t}} = \frac{\mathbf{e}}{\mathbf{u}^2 \mathbf{c}_{\mathbf{s}} \mathbf{m}} \mathbf{p}. \tag{8}$$

In addition,

$$\nabla \times \tilde{\mathbf{E}}_{\tau} = -i\omega u_{\bullet} \tilde{\mathbf{H}}. \tag{9}$$

From these equations, it is evident that \overline{E}_t is in the direction of propagation (and hence is longitudinal) while \overline{E}_t is entirely transverse to the direction of propagation. Clearly there is no magnetic field associated with the longitudinal wave.

There is no difficulty to show $\{Gal^2awa, i \neq b=i \text{ the pertinent equations satisfied by } \overline{E}_t$ and p, as

$$\mathcal{T}^{2} \tilde{\mathbf{E}}_{1} + \frac{\omega^{2}}{c^{2}} \left[1 - \frac{1}{\omega(\mathbf{V} + i\omega)} \right] \tilde{\mathbf{E}}_{1} = 0 , \qquad (10)$$

$$\nabla^{2} p + \frac{w^{2}}{u^{2}} \left[1 - \frac{w^{2}}{w^{2}} - i \frac{v}{w} \right] p = 0 \quad , \tag{11}$$

where the (angular) plasma frequency is given by

$$u_{p} = \left[\frac{n_{0}e^{\theta}}{m\epsilon_{0}}\right]^{\frac{1}{2}}$$

The usual Cartesian coordinate interpretation of the ∇^2 operator is applicable in (10). The pressure wave has an associated longitudinal electric field by virtue of (8).

The waves defined by (10) and (11) have propagation constants $k_{\rm f}$ and $k_{\rm L}$ given respectively by

$$k_r = \frac{\omega}{c} \left[1 - i \frac{\omega_s^2}{\omega(v + i\omega)} \right]^{\frac{1}{2}} = R$$
, (12)

$$h_{L} = \frac{w}{u} \left[1 - \frac{w_{0}^{2}}{u^{2}} - i \frac{v}{u} \right]^{\frac{1}{2}} = R \frac{c}{u} \left(1 - i \frac{v}{u} \right)^{\frac{1}{2}} = R \frac{v}{u} . \tag{13}$$

where

$$v = \left[\frac{v + i\omega}{i\omega\omega_0}\right]^{\frac{1}{2}}.$$
 (14)

The square roots are to be chosen so that Im $k_1 < 0$ and Im $k_k < 0$.

3. The Electroacoustic Complex Wave Impedance

The complex wave impedance for electromagnetic waves has been used recently [Barlow, 1963] to illustrate power transmission under

standing-wave conditions. Concentration here is on the extension of that concept to include longitudinal waves. To define the necessary impedance break \overline{V} into components:

$$\nabla \cdot \nabla_{i} + \nabla_{i}$$
.

where \overline{V}_i and \overline{V}_r are associated with the longitudinal and transverse waves respectively. In fact, it is convenient to let

$$mn_{\bullet} (v+in) \widetilde{V}_{i} = n_{\bullet} e \widetilde{E}_{i} - \nabla p_{i}$$
 (15)

$$mn_{\bullet} (v+is) \overline{V}_{1} = n_{\bullet} e \overline{\Sigma}_{1}. \tag{16}$$

If p. \overline{V}_{i} and \overline{E}_{i} are taken to be plane waves, varying as $\exp(-ik_{i}x)$, the intrinsic impedance of the electroacoustic (longitudinal) wave can be defined as

$$\hat{\mathbf{Z}} = \frac{\mathbf{V}_{i}}{\mathbf{P}} \quad . \tag{17}$$

where V_{i} is the x directed component of \overline{V}_{i} . In the case of a pure longitudinal wave, there will be no other components of \overline{V} . In particular, we may take

$$\overline{E}_{i} = \overline{a}_{i} E_{ai} \exp(-ik_{i} x) , \qquad (18)$$

$$p = -ik_{L} \frac{u^{2}m\epsilon_{o}}{\epsilon} E_{oL} \exp(-ik_{L}x) , \qquad (19)$$

$$\overline{V}_{L} = \overline{a}_{z} \frac{(-i \pm \varepsilon_{z})}{n_{z} \cdot e} E_{z} \exp(-ik_{L} \times) . \qquad (20)$$

Then,

$$\hat{Z} = \frac{\hat{Z}_{\bullet}}{\sqrt{1 - (\frac{\sum_{i}}{2})^{2} - i \frac{V}{2}}} . \tag{21}$$

where

$$\hat{Z}_{\bullet} = \frac{1}{\rho_{\bullet} u} .$$

$$\rho_* = n_* m$$
.

In the case of a collisionless nonionised gas, the impedance reduces to that of the usual acoustic wave [Morse, 1948; Moore, 1960]. In the case of a pure transverse wave, the corresponding expression for impedance is [Barlow, 1963]

$$Z = \frac{Z_*}{\sqrt{1 - h - ih \frac{v}{a}}}$$
 (22)

where

$$Z = \sqrt{\frac{\mu_n}{\epsilon_n}}$$
,

$$h = \frac{a_0^2}{a^2 + \sqrt{a}} .$$

In this case, the impedance is associated with the electromagnetic wave.

Barlow has treated the ramifications of this impedance extensively, and

so attention will be restricted here to the treatment of longitudinal wave propagation.

In the case of a pressure wave impinging on a density discontinuity, the total wave will be made up of an incident and a reflected component; that is

where the superscripts + and - refer to the incident and reflected components, respectively. Associated with these waves are the corresponding $V_{i_{i_1}}^+$, $V_{i_{i_2}}^-$. Thus, for example,

$$p^+ = -ik_i \frac{u^0 m \epsilon_a}{a} E_{ai} \exp(-ik_i x)$$
,

$$p^{-} = -ik_{\xi} \frac{u^{2}me_{e}}{e} E_{\xi}, \exp(ik_{\xi}x) .$$

$$V_i^+ = \frac{-i\alpha \epsilon_a}{n_i a} E_{ij} \exp(-ik_i x)$$

$$V_i = \frac{i\sigma \epsilon_s}{n_i\sigma} E_i$$
, exp(ik, x).

In these expressions, V_t^+ and V_t^- are components in the positive x direction. Clearly,

$$\hat{Z} = \frac{V_1^+}{p^+} = -\frac{V_1^-}{p^-}.$$

The expressions for V_L and p have been related to the corresponding electric fields. E_{Lr} is the reflected longitudinal electric field.

In order to establish meaningful power relations, it is convenient to examine the Poynting vector associated with these waves. If attention is restricted to the longitudinal waves, we have

$$P = \frac{1}{2} \operatorname{Re} \left[p V_{i}^{\bullet} \right] = \frac{1}{2} \operatorname{Re} \left[p^{+} (V_{i}^{+})^{\bullet} + p^{-} (V_{i}^{-})^{\bullet} + p^{+} (V_{i}^{-})^{\bullet} + p^{-} (V_{i}^{+})^{\bullet} \right] , \qquad (23)$$

where Re indicates the real part and the asterisk denotes complex conjugate. By introducing the reflection coefficient, p.

$$\rho = \frac{p}{p}, \quad \frac{E_{i,t}}{E_{i,t}},$$

(23) becomes

$$P = \frac{1}{3} \left\{ |p^{+}|^{3} \left[\hat{R} (1 - |p|^{2}) + 2\hat{X} |p| \sin \Phi \right] \right\} , \qquad (24)$$

at x=0, the plane of density discontinuity. The terms introduced in (24) are defined as follows:

$$\hat{Z} = \hat{R} + i \hat{X} , \qquad (25)$$

$$\rho = |\rho| \exp(i \Psi) . \tag{26}$$

The first term in (24) clearly represents the difference between the powers carried by the two oppositely directed waves acting independently. The second term represents an interaction between the storage fields of the oppositely directed waves. The latter term is zero if either the impedance, $\hat{\mathbf{Z}}_i$, or reflection coefficient, ρ_i , is real.

Equation (24) shows the inadequacy of calculating power by neglecting the interaction between incident and reflected fields. In some instances the error introduced is negligible, but in general is nonzero.

4. Power Coupling at a Plasma-Vacuum Boundary

An analysis analogous to that carried out above may be made for a longitudinal wave incident on a boundary at oblique incidence. In that case a directional impedance may be defined which is dependent on the angle of incidence and the characteristics of the medium. If consideration is then given to the flow of power across a boundary, an expression similar to (24) can be obtained.

In establishing the equations for the latter study, a magnetostatic field may be included and set equal to zero if conditions dictate.

The equation satisfied by E is [Gallawa, 1965]

$$\nabla \times B \times \widetilde{E} - x^{2}\widetilde{E} - \frac{u^{2}}{\sqrt{2}} \nabla \nabla \cdot \widetilde{E} + \frac{iem_{2}}{\sqrt{2}} \widetilde{E} \times \widetilde{E}$$

$$+ \frac{m_{2}}{(1+iem_{2})} (\nabla \times \nabla \times \widetilde{E}) \times \widetilde{E} = 0 \quad . \tag{27}$$

The angular electron gyrofrequency, $a_0 = -eB_0/m$, has been introduced, where $\overline{B} = \overline{a} B_0$ is the magnetic induction vector and \overline{a} is a unit vector.

The dispersion relation can be obtained by assuming a plane-wave solution which is proportional to $\exp(-ik,\hbar \cdot \bar{r})$, where \bar{h} is a unit vector in the direction of propagation and \bar{r} is the vector to the variable point of interest. Under these conditions,

and (25) reduces to

$$\bar{n} \left(\bar{n} \cdot \tilde{E} \right) \left[-k^2 + k^2 \frac{u^2}{v^2} \right] + \tilde{E} \left[k^2 - \kappa^2 \right]$$

$$+ \tilde{E} \times \tilde{a} \left[\frac{i \omega n_a}{v^2} + \frac{k^2 n_a}{v_{tim}} \right] - \left(\bar{n} \cdot \tilde{E} \right) \left(\bar{n} \times \tilde{a} \right) \frac{k^2 n_a}{v_{tim}} = 0. \tag{28}$$

This equation is quite complex when considered in its most general form. A tractable form can be deduced by restricting attention to the case whereby \bar{a} is perpendicular to \bar{n} and is such that $\bar{n} \times \bar{a} = \bar{t}$. Then \bar{n} , \bar{a} , \bar{t} form a right-handed triad and the basis of a rectangular coordinate system. Then

and (25) reduces to three simultaneous equations:

$$E_{a}\left[k^{2}\frac{u^{2}}{v^{2}}-k^{2}\right]-E_{c}\left[\frac{im\theta_{d}}{v^{2}}+\frac{\theta_{c}k^{2}}{v_{c}im}\right]=0,$$
 (28a)

$$E_{A} \{k^{2} - \kappa^{2}\} = 0,$$
 (28b)

$$E_{\alpha} \left[\frac{-i\theta \theta_{\alpha}}{v^2} \right] - E_{\alpha} \left[k^2 - \kappa^2 \right] \approx 0.$$
 (28c)

If the magnetostatic field vanishes the medium can support three waves, each propagating independently. In general, however, E_a and E_t are coupled and purely transverse or longitudinal waves cannot be supported.

The set of equations (28a) and (28c) leads to solutions for k by equating the determinant of the coefficients to zero. This leads to

$$k^{2} = \frac{n^{2} + n^{2} \frac{u^{2}}{v^{2}} - \frac{i \cos \frac{n}{2}}{v^{2}(v + i \sin)}}{2 \frac{u^{2}}{v^{2}}}$$

$$\frac{\sqrt{\left(-\mu^2-\mu^2\frac{u^2}{v^2}+i\frac{2m_0^2}{v^2(v+iz)}\right)^2-4\frac{u^2}{v^2}\left(\mu^4-\frac{m^2m_1^2}{v^4}\right)}}{2\frac{u^2}{v^2}}$$
, (29)

where the upper sign is associated with the quasi-longitudinal wave (k_i) and the lower sign with the quasi-transverse wave (k_i) .

The way in which the complex directional impedance contributes to power coupling at a density discontinuity can be studied by examining the mechanism of reflection and transmission at a boundary. Here the boundary is taken as a plane surface, separating vacuum and plasma half-spaces. Attention is restricted to the case of coupling from an

electroacoustic (longitudinal or quasi-longitudinal) wave. In order to do this, a longitudinal wave is assumed to be incident on the boundary from the plasma (see fig. 1). Thus it is supposed that the incident wave is

$$\tilde{\mathbf{E}}_{i,1} = \mathbf{E}_{i,1} \left[\tilde{\mathbf{a}}_{i,1} \cos \theta + \tilde{\mathbf{a}}_{i,2} \sin \theta \right]$$

+ R (-
$$\bar{a}_{x} \sin \theta + \bar{a}_{z} \cos \theta$$
) exp [- $ik_{L} (x \cos \theta + z \sin \theta)$], (30)

where

$$R = \frac{-i\pi m_{s}}{\sqrt{3} \left(k_{s}^{2} - n^{3}\right)}.$$
 (31)

The reflected quasi-longitudinal and quasi-transverse waves are, respectively,

$$\hat{\mathbf{E}}_{i, +} = \mathbf{E}_{i, +} \left[-\hat{\mathbf{a}}_{i, +} \cos \theta + \hat{\mathbf{a}}_{i, +} \sin \theta \right]$$

+ R (-
$$\tilde{a}_{x} \sin \theta$$
 - $\tilde{a}_{z} \cos \theta$)] exp [- ik_{t} (-x cos θ + z sin θ)] (32)
 \tilde{E}_{t} , = E_{t} , [- $\tilde{a}_{z} \sin \theta_{1}$ - $\tilde{a}_{z} \cos \theta_{1}$

+ T (-
$$\tilde{a}_{x}$$
 cos Φ_{1} + \tilde{a}_{1} sin Φ_{1}) exp [- $ik_{r_{1}}$ (- x cos Φ_{1} + z sin Φ_{2})], (33)

where

$$T = \frac{(k_1^2 - x^2) v^2}{-im\theta_0}.$$
 (34)

The transmitted wave is

$$\widetilde{\mathbf{E}}_{11} = \mathbf{E}_{11} \left[\mathbf{I}_{2} \sin \phi_{2} - \mathbf{I}_{3} \cos \phi_{3} \right] \exp \left[-i k_{12} (x \cos \phi_{2} + z \sin \phi_{3}) \right], \tag{35}$$

where θ and ψ are used in association with longitudinal and transverse waves, respectively. The subscript 1 or 2 is used to designate plasma or vacuum, respectively.

The boundary conditions used to determine the amplitudes are continuous (zero) normal electron velocity and continuous tangential electric and magnetic fields.

Using (8) and (15), expressions for p and \overline{V}_L can be obtained in terms of the electric field. Expressions for the directional impedance may then be defined in terms of these expressions. To do so, superscript + or - will be attached to designate incident and reflected waves, respectively. Thus, with the magnetostatic field taken to be zero,

$$p^{+} = \frac{-ik_{i} u^{2} m \epsilon_{i}}{\epsilon} E_{ei} \exp[-ik_{i} (x \cos \theta + z \sin \theta)] , \qquad (36)$$

$$p^{-} = \frac{-ik_{i}u^{2} m c_{0}}{e} E_{i}, \exp[-ik_{i}(-x \cos \theta + x \sin \theta)],$$
 (37)

$$\overline{V}_{L}^{+} = \frac{-i\pi C_{+}}{n_{0}e} E_{0L}[\overline{a}_{L} \cos \theta + \overline{a}_{L} \sin \theta] \exp[-ik_{L}(x \cos \theta + z \sin \theta)] ,$$
(38)

$$\overline{V}_{i} = \frac{-i\pi c}{n_{e}} E_{i, f} \left[-a_{i} \cos \theta + a_{i} \sin \theta\right] \exp\left[-ik_{i}(-x \cos \theta + x \sin \theta)\right] .$$
(39)

The reflection coefficient may be defined as before:

$$\rho = \frac{\mathbf{p}^{-}}{\mathbf{p}^{+}} \quad \frac{\mathbf{E}_{i,r}}{\mathbf{E}_{0,i}} \quad . \tag{40}$$

Directional electroacoustic wave impedance may then be defined in a method analogous to that previously discussed. Thus, we take

$$\hat{Z} = \frac{V_{11}^{+}}{P^{+}} = -\frac{V_{11}^{-}}{P^{-}} , \qquad (41)$$

where

$$\overline{V}_{t}^{+} = \overline{a}_{x} \ V_{xt}^{+} + \overline{a}_{x} \ V_{xt}^{+} \quad , \quad$$

$$\overline{V}_{i}^{*} = \overline{\mathbf{x}}_{i} \ \mathbf{V}_{i,i}^{*} + \overline{\mathbf{x}}_{i} \ \mathbf{V}_{i,i}^{*} \quad .$$

Then the directional impedance, \hat{Z}_{i} , is given by

$$\hat{Z}_{1} = \frac{\hat{Z}_{1} \cos \theta}{\sqrt{1 - \frac{\alpha_{1}}{a^{2}} - i \, V/\varpi}} = \hat{Z} \cos \theta$$
 (42)

The time-average x-component of the Poynting vector associated with the electroacoustic wave then becomes

$$P_{x} = \frac{1}{3} |p^{+}|^{3} \left\{ \hat{R}_{x} (1 - |p|^{3}) + 2 \hat{X}_{x} e^{+ \frac{2}{3}x} (\alpha \sin \gamma x + \beta \cos \gamma x) \right\} , \quad (43)$$

where

$$\hat{Z}_{x} = \hat{R}_{x} + i \hat{X}_{x} ,$$

Equation (43), which is valid for $x \le 0$, illustrates that the Poynting vector has an exponentially decaying standing wave component. This component of the vector is established by the reactive component of the directional impedance. At x = 0, (43) becomes

$$P_{x} = \frac{1}{2} |p^{+}|^{n} \left\{ \hat{R}_{x} (1 - |\rho|^{2}) + 2 \hat{X}_{x} \beta \right\} , \qquad (44)$$

which is entirely analogous to (24) with directional impedance replacing impedance.

Attention has been, up to now, restricted to the power flow due to the electroacoustic wave. A contribution due to the electromagnetic waves will also be present. If a magnetostatic field permeates the region, an electromagnetic wave necessarily accompanies the electroacoustic wave. In any case a reflected and a transmitted electromagnetic wave are generated at the boundary, as in (30)-(35).

The power flow described in (24) and (44) is quite analogous to that described by Barlow [1963] for the transverse electromagnetic waves.

In order to describe the power coupling mechanism at the boundary, we choose here to examine the magnitudes of the Poynting vectors in the vacuum and that associated with the incident wave. The ratio of the former to the latter will be termed the power conversion factor (see figs. 6 - 13). With this definition, the power conversion factor is not physically meaningful except that it illustrates phenomena specifically related to the complex electroacoustic wave impedance. In particular, it is evident from figure 6 that the interaction of the incident and reflected waves is significant at the lower frequencies, where the last term in (44) predominates. For example, if $u_p >> u$, v >> u are both satisfied and in addition $(u_p^2/uv) >> 1$, it is not difficult to show that (see (44))

$$\frac{2\dot{X}_1\beta}{\dot{R}_1} = 8 \frac{\dot{u}}{c} \frac{\dot{u}_1}{\dot{v}} \frac{\sin^2 \dot{v}_2}{\cos \dot{v}_2} .$$

This exceeds unity when ϕ_0 exceeds about 80° and $(w_0/v) > 20$ (u/c is 10^{-8} throughout).

The power conversion factor, as herein defined, is useful in illustrating the effects of a complex wave impedance; at the same time, it is somewhat superficial because it attempts to separate power contained in the incident wave from the total incident power when in fact the interaction of the incident and reflected waves precludes this separation. There is, then, a distinct difference between the power in the incident wave and the total incident power. Indeed, the total incident electroacoustic power can be considerably greater than the power contained in the incident wave (see fig. 6). Thus, for the electroacoustic mode, the total power through a given cross-section may be obtained by integrating the power density, as given in (44). With the normalization chosen here, attention is restricted to an examination of the power density in the vacuum due to an incident longitudinal wave maintained at unity magnitude ($E_m = 1$).

In the plasma, the time average Poynting vector is [Chen, 1964; Field, 1956]

$$\overline{S}_{w} = \frac{1}{2} \operatorname{Re} \left[\overline{E} \times \overline{H}^{+} + p \overline{V}^{+} \right] , \qquad (45)$$

where Re indicates the real part, and the asterisk specifies the complex conjugate. Using (2), (3), and (4), along with the assumed field variation, the Poynting vector for the incident quasi-longitudinal wave becomes

$$\widetilde{S}_{a,v} = \frac{|E_{a,v}|^2}{2\omega\mu_o} |R|^2 \left[\widetilde{a}_a \operatorname{Re} \left(k_i^{\bullet} \cos \theta \right) - \widetilde{a}_a \operatorname{Re} \left(k_i^{\bullet} \sin \theta \right) \right] \\
+ \frac{|E_{a,v}|^2}{2\omega\mu_o} \left[\widetilde{a}_a \operatorname{Re} \left(R^{\bullet} k_i^{\bullet} \sin \theta \right) - \widetilde{a}_a \operatorname{Re} \left(R^{\bullet} k_i^{\bullet} \cos \theta \right) \right] \\
- \frac{u^2}{m_o^2} \frac{|E_{a,v}|^2}{2} \left[\widetilde{a}_a \operatorname{Re} \left(-k_i \omega \varepsilon_o (\cos \theta)^{\bullet} \right) + \widetilde{a}_a \operatorname{Re} \left(-k_i \omega \varepsilon_o (\sin \theta)^{\bullet} \right) \right] \\
+ \widetilde{a}_a \operatorname{Re} \left(\frac{k_i R^{\bullet} (\sin \theta)^{\bullet}}{\omega\mu_o} \left\{ - \left(k_i^{\bullet} \right)^{\bullet} + \omega^{\bullet} \mu_o \varepsilon_o \right\} \right) \\
+ \widetilde{a}_a \operatorname{Re} \left(\frac{k_i R^{\bullet} (\cos \theta)^{\bullet}}{\omega\mu_o} \left\{ \left(k_i^{\bullet} \right)^{\bullet} - \omega^{\bullet} \mu_o \varepsilon_o \right\} \right) \right] \tag{46}$$

In the vacuum

$$|\overline{S}_{a,j}| = |\frac{1}{2} \operatorname{Re} \overline{E} \times \overline{H}| = \frac{1}{2} \left| \frac{E_{i,j}}{E_{a,j}} \right|^{2} |E_{a,j}|^{2} \frac{k_{i,a}}{\omega \mu_{a}}$$
 (47)

In the absence of a magnetostatic field, (46) reduces to

$$\overline{S}_{a,v} = \frac{mS_a u^2}{m_s^2} \frac{|E_{a,v}|^2}{2} \left[\overline{S}_x \operatorname{Re} \left(k_c (\cos \theta)^2 \right) + \overline{S}_a \operatorname{Re} \left(k_c (\sin \theta)^2 \right) \right] . (48)$$

5. Discussion

The electroscoustic wave impedance is generally complex unless collisions are neglected. The associated x-directed component of the Poynting vector at the boundary is therefore made up of two parts. The first part consists of the difference in the magnitudes of the forward and

backward traveling waves. The second part is due to the interaction of the reactive components. Conceivably, the latter portion of the Poynting component can exceed the former, if the imaginary parts of the various terms are of sufficient magnitude. This is generally the case for $a < a_n$.

The imaginary part of the wave impedance exceeds or is less than the real part depending on whether $w < w_p$ or $w > w_p$. At $w = w_p$, the two components are equal. The manner in which the imaginary part changes with frequency for $w > w_p$ depends on the electron density and the collision frequency. For the higher collision frequencies, the imaginary and real parts of the impedance tend to remain almost equal for $w > w_p$. For lower collision frequencies, this tendency does not prevail, and the imaginary part drops off quite rapidly with frequency for frequencies greater than the plasma frequency. These factors are illustrated graphically in figures 2 - 5. The value of $\frac{u}{c}$, where c is the velocity of light, is taken to be 10^{-3} throughout. This corresponds to a temperature of about 10^4 degrees Kelvin.

The variation of the power conversion factor, as earlier defined, is given in figures 6-13. For $v=10^8$ the power conversion factor exceeds unity for frequencies somewhat less than the plasma frequency. This is not surprising in view of the earlier discussion. The curves are parametric in electron density and are given as functions of frequency and (real) angle Φ_0 . The results are given for the case of zero

magnetostatic field (figs. 6 - 9) and also (figs. 10 - 13) for the case of a magnetostatic field having a magnitude of 5 × 10⁻⁸ Webers/m² (0. 5 Gauss). In the latter case there is necessarily a nonzero (transverse) electromagnetic field associated with the incident wave. There will therefore be a wave interaction of the type described by Barlow [1963] as well. This interaction will be due to the complex wave impedance seen by that wave. The graphs showing the E-field conversion factor corresponding to figures 6 - 13 have been given in an earlier report [Gallawa, 1965].

6. Conclusions

The results presented in this paper indicate that the reactive component of the wave impedance, as seen by an electroacoustic wave, may play an important role in the power coupling at a plasma-vacuum boundary. The results show that the storage fields of oppositely directed waves may interact to produce a significant flow of power.

Thus, the total flow of power may differ appreciably from that due to the incident and reflected waves acting independently. This is generally the case for frequencies less than the plasma frequency.

An important question which remains to be answered pertains to the effectiveness of the boundary as a power coupling device for the two modes of incident waves; i.e., one should examine the effectiveness for incident electromagnetic and electroacoustic waves. Because of

the importance of the complex wave impedance, it is probable that one mode provides more power flow across the boundary than the other for the same incident power. This possibility has its corollary in the problem of evanescent fields in hollow metallic guides. In that case Bariow [1963] found that the E mode can provide a much larger flow of power than the H mode for the same applied field and terminal impedance. The question as it applied to plane waves in a plasma will be examined in a future report.

7. Glossary

 $\alpha_a^2/(x^2+\sqrt{2})$ mass of an electron electron number density time velocity vector electronic charge electric field vector E electric field magnitude ā static magnetic flux density vector Ĥ magnetic field vector thermodynamic perturbation pressure speed of sound in electron gas **J-1** a term defined in equation (14) a term defined in equation (31) real part of electroacoustic wave impedance â imaginary part of electroacoustic wave impedance ż $\hat{R} + i \hat{X}$ Z, acoustic wave impedance a term defined in equation (34) n, E, m, t unit vectors

T	vector to a variable point
k	wave number
c	velocity of light
exp	exponential function
z, y, z	the Cartesian coordinate variables
ν	collision frequency
μ.	permeability of space
c.	permittivity of space
•	radian frequency
•	plasma frequency
••	electron cyclotron frequency
R	a term defined in equation (12)
η	index of refraction
8	direction angles associated with electroacoustic waves
Φ	direction angles associated with (transverse) electro- magnetic waves
Pv	volume mass density
P	reflection coefficient
_	observation of a

8. References

- Barlow, H. E. M. (1963), Power transmitted by a medium of complex wave impedance, Proc. IEE (London) 110, No. 12, 2174-2176.
- Chen, Kun-Mu (1964), Interaction of a radiating source with a plasma, Proc. IEE (London) 111, No. 10, 1668-1678.
- Chen, Kun-Mu (1965), Electroacoustic waves excited by a space vehicle in ionized atmosphere and its effect on radar return, Radio Sci. J. Res. NBS 69D, No. 2, 235-241.
- Field, G. B. (1956), Radiation by plasma oscillations, Astrophys. J. 124, No. 3, 555-570.
- Gallawa, R. L. (1965), The propagation of waves across a magnetoplasma-vacuum boundary, NBS Report No. 8794.
- Hessel, A., N. Marcuvitz, and J. Shmoys (1962), Scattering and guided waves at an interface between air and a compressible plasma, IEEE Trans. on Antennas and Propagation AP-10, No. 1, 48-54.
- Hessel, A., and J. Shmoys (1961), Excitation of plasma waves by a dipole in a homogeneous isotropic plasma, Polytechnic Institute of Brooklyn, Proc. of the Symposium on Electromagnetics and Fluid Dynamics of Gaseous Plasma (polytechnic Press, distributed by Interscience Publishers, New York, N.Y.).
- Johler, J. R. (1964), Audio and sub-audio frequency EM waves propagated from spherical plasma sources excited by acoustic perturbations, NBS Report No. 8433.
- Kritz, A. H., and D. Mintzer (1960), Propagation of plane waves across a density discontinuity, Phys. Rev. <u>117</u>, No. 2, 382-386.
- Moore, R. K. (1960), Traveling wave engineering (McGraw-Hill Book Company, New York).
- Morse, P. M. (1948), Vibration and Sound (McGraw-Hill Book Company, New York).
- Outer, L. (1960), Linearized theory of plasma oscillations, Rev. Mod. Phys. 32, No. 1, 141-168.

- Wait, J. R. (1964a), Radiation from sources immersed in a compressible plasma media, Can. J. Phys. 42, 1760-1780.
- Wait, J. R. (1964b), On the theory of reflection of electromagnetic waves from the interface between a compressible magnetoplasma and a dielectric, Radio Sci. J. Res. NBS 68D, No. 11, 1187-1191.

Figure 1. Coordinate system showing the two media and illustrating the angles of incidence, reflection, and transmission.

Figure 2. Real component of electroacoustic wave impedance. $v = 10^8 \text{ sec}^{-1}$

Figure 3. Imaginary component of electroacoustic wave impedance. $V = 10^8 \text{ sec}^{-1}$

Figure 4. Real component of electroacoustic wave impedance. $v = 10^7 \text{ sec}^{-1}$

Figure 5. Imaginary component of electroacoustic wave impedance. $v = 10^7 \text{ sec}^{-1}$.

Figure 6. Dimensionless power conversion factor. $B_0 = 0$; $C_0 = 80^\circ$; $v = 10^8$ sec⁻¹

Figure 7. Dimensionless power conversion factor. $B_0 = 0$; $\phi_0 = 80^\circ$; $v = 10^7$ sec⁻¹.

Figure 8. Dimensionless power conversion factor. $B_0 = 0$; f = 1 kHz; $v = 10^8 \text{ sec}^{-1}$

Figure 9. Dimensionless power conversion factor. $B_0 = 0$; f = 1 kHz; $v = 10^7 \text{ sec}^{-1}$.

Figure 10. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m²; $\phi_0 = 80^\circ$; $\nu = 10^5$ sec⁻¹.

Figure 11. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m²; $\phi_0 = 80^\circ$; $\nu = 10^7$ sec⁻¹.

Figure 12. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m⁸; f = 1 kHz; $v = 10^8$ sec⁻¹.

Figure 13. Dimensionless power conversion factor. $B_0 = 5 \times 10^{-8}$ Wb/m⁸; f = 1 kHz; $v = 10^7$ sec⁻¹.

BLANK PAGE

PAGASALLIA

Second Cites In the			
Miller Co	ATTACA BATA - BA		
(Program American Control of Control of Linear and Madella 1 (Actual Control of Act 1977) (Control of Linear Control of Linear Control of Linear Control of Control	-	からない はいかん かんかん かんかん かんかん かんかん かんかん かんかん かんか	·····································
Institute for Telecommunication Science	e and Auronam		* \$65.40.40 \$ 6.500.015.51000
Faut respect al Science Services Administ		T. W.Z. I bear	
Battonet Eurom of Stondards		** ****	•
Anni Ant Calerate Citi		<u> </u>	
Power Flow From a Planna Havine Complet	r Klactrocowal	IC , NAS	Incedence
T OTAC SEPTION DISTRICT PROPERTY OF PROPERTY OF THE PROPERTY OF THE PARTY OF THE PA			
Special Technical Perort			
A de tració de la casa destaca de la casa de			
Gellava, Pobert L., Dr.			
I RESERVE	10 1014, 00 00 C	4665	75 00 00 5400
June 1966	17		14
50 (5m*18167 68 68/M) 1 mg	-	45441 ma	·
AF2U(602)-3836	XBS Percet		
6 PRG/847 M6	1		
5582			
. TASK: 338201	65 ames 650001		
	Sept unbest		
•	"ADC-17-66	-323	
18 AVAILABILITY AMETATION INSTICES			
This document is subject to special ex	port controls	and soci	transmittal to foreis
governments or foreign nationals may b	w made raly wi	th prior	r approval of PADC
(1911), (1912), 1.1. 13/10.			
n geography neves RADC Project Engineer	to tremething the		mer at Coater (L*175)
Kenneth C. Stiefvator, PMTS. I-3445	Techniques	Branch	mr Course (E .uts)
retained of percentage trained	Suffe Han	A CUM	tri bivioles
	Cafellas C.	10.7	13441
13 AGETEACT			
The employ electrocounts were to			ni ta miani ta
The couples electrocountle wave in	•	_	_
never ecupling at a planta-vocum bou			
"Immedia" erustions. The resettive em	•		
nor; out of frequencies less than the			
a significant mount to power flow,			
em be introduced by ensuming that th		ile nave	T IN PAGE UP TO THE
powers in the incident and reflected	LEADS ONTA		
DD ::::: 1473		87,000	Treelally

DOCLASSITION

eresty Classification

4	1,00	Care A		LANGE (F		Frank C	
		••		••		••	
Electroncoustic Electronagnetic Impedance Plasma Pener coupling Uave propagation							

INSTRUCTIONS

- 5. GREGITATURG ACTIVITY: Since the name and agrees of the contractor, unbecampater, granton, Department of Defector activity to other organization (compares author) including the sense.
- 3a REPORT SECURITY CLARRYTCATION: Ease the overell necurity chandration of the most. Indicate whether "Reserved Date" to included. Marking to be in accordance with appropriate occurity regulations.
- 24. GROUP: Assemble desagnating to aporthed in Dall Desertion 5200. 10 and Armed Forces Industrial Manual. Enter the group author: Also, when applicable, show that optional markings have been used for Group 3 and Group 4 on outher-sted.
- 2. REPORT TITLE: Same the complate expect table in all capital letters. Tribes in > 1 cases should be uncleasabled. If a meaningful table cases, he astered undest elementation, show table characteristics in all capitals in parrechases ammodulately f-disoring the table.
- A. BESCHIFTIVE NOTES. If appropriate, eater the type of expert, e.g., interes, progress, natural, extend, or final. Gove the inclusive dates when a specific reporting period in
- S. AUTHORIS: Erner the name(a) of author(a) on theren on or an the report. Enter lest name, first came, modific tellini. If malitary, above resit and by with of corrects. The name of the principal a their is an absolute tenumin requirement.
- (REPORT BATE. Enter the date of the report on day, month, year, or month, year. It more than one date appears on the report, use rute of publication.
- 7a. YOTAL MUNCHER OF PAGES: The total page count chiesel fellow cornel pageastion procedures, i.e., order the number of pagea containing information.
- 76 NUMBER OF REFERENCES. Enter the total number of orderences a sted in the report.
- So. CONTRACT OR GRANT NUMBER: If appropriate, eases the applicable number of the contract or grant under which the report was written.
- th. &. & &c. PHOJECT MUMBER: Enter the appropriate military department identification, duth no project number, subproject number, system numbers, tesk market, etc.
- So. ORIGINATOR'S REPORT MUNICIPAL Reservice educial report number by others the determinent will be interested and a retrailed by the originalizing artistips. This number thesi be unappe to that report.
- 46 OTHER REPORT INDIBIRED: If the report has been enoughed any other report members (online by the originates or by the spencer), also enter the number(s).

a see that the second of

16. AVAR-AMELITY/LIMITATION MOTICES: Better any lanitations on further descriptanties of the toport, other than then improved by ecounity electricity resear, using electrical equipments each es:

- (D) "Qualified requestors may obtate copies of thes report from DOC."
- (2) "Foruge entrangement and decomments of this report by BBC in our againment."
- (3) "E. S. Government agencies may obtain copies of this report descrip from DDC. Other qual-fied DDC users shall request through
- (4) "U. S. military agrantos may obtain capars of this separt directly from BDG. Other qualified users that repost through
- (5) "All destribution of this report in committee. Qualided DBC stem shall require through

If the report has been formated to the Office of Tuchescal Services, Department of Commerce, for sole to the public, tedcate this flut and exter the proce, if bearm.

- 11. SCHOLDSSTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Ease the name of the departmental project office or Infrastry spaceuring (paring fee) the research and development. Include address.
- 13 ABSTRACT: Bater on electricit groung a basel and factual sommery of the discussion indication of the report, even though it may also appear electricis in the body of the technical report of additional appears in sequence, a communical above that he attended.

It is highly dissible that the abstract of classified aspects be unclassified. Each prospe_{th} of the electric thall and soth an indicates of the enthusy accounty classification of the inferences in the prospect, represented to (TI), (SL (CL or (F))

There is no function on the length of the abstract. However, the suggested length as 0 on 150 to 225 words.

14 REY SCREE: Esy weets are technically accommended terms or short phrease that characteristic a capaci and may be used an index entires for cataloging the separt. Bey made must be extented as that as accounty classification in required. Identifiers, each as equipment model designation, tode mean, military propert code some, propagator locates, may be used as bey words but will be followed by an indication of inclinaci custon. The assegnment of lashs, rates, and wrights in optional

PECLASSICIED.

بسائه درمانها

Security Classification

DATE FILMED 10-21-66