A. Dividing Orange

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

One day Ms Swan bought an orange in a shop. The orange consisted of $n \cdot k$ segments, numbered with integers from 1 to $n \cdot k$.

There were k children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the i-th $(1 \le i \le k)$ child wrote the number a_i $(1 \le a_i \le n \cdot k)$. All numbers a_i accidentally turned out to be different.

Now the children wonder, how to divide the orange so as to meet these conditions:

- each child gets exactly *n* orange segments;
- the *i*-th child gets the segment with number a_i for sure;
- · no segment goes to two children simultaneously.

Help the children, divide the orange and fulfill the requirements, described above.

Input

The first line contains two integers n, k ($1 \le n$, $k \le 30$). The second line contains k space-separated integers $a_1, a_2, ..., a_k$ ($1 \le a_i \le n \cdot k$), where a_i is the number of the orange segment that the i-th child would like to get.

It is guaranteed that all numbers a_i are distinct.

Output

Print exactly $n \cdot k$ distinct integers. The first n integers represent the indexes of the segments the first child will get, the second n integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces.

You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.

Examples

input	
2 2 4 1	
output	
2 4	
1 3	

input	
3 1 2	
output	
3 2 1	