II Università di Roma, Tor Vergata Dipartimento d'Ingegneria Civile e Ingegneria Informatica LM in Ingegneria dell'Informazione e dell'Automazione Complementi di Probabilità e Statistica - Advanced Statistics Instructors: Roberto Monte & Massimo Regoli Final Test - 2020-02-12 - Probability

Problem 1 The scrutiny of group of 100,000 randomly chosen male people in the age 40-79 in UK during 2013-2015 reveals the following table of average lung cancer incidence

	smoker	$not\ smoker$	total
$lung\ cancer$	10,395	7,407	17,802
not lung cancer	50,078	32,120	82,198
	60,473	39,527	100,000

Write Ω for the sample space consisting of these 100,000 people and write S [resp. C] for the subsets of Ω consisting of the smokers [the people affected by lung canger]. Let $1_S: \Omega \to \{0,1\}$ and $1_C: \Omega \to \{0,1\}$ the indicator functions of the events S and C respectively.

- 1. Determine the joint distribution of the random vector $(1_S, 1_C)$ and the marginal distributions of the random variables 1_S and 1_C .
- 2. Are the random variables 1_S and 1_C independent?
- 3. What is the probability that a randomly chosen person in Ω is affected by lung cancer, given that he is a smoker?
- 4. What is the probability that a randomly chosen person in Ω is a smoker, given that he is affected by lung cancer?
- 5. Check the validity of the total probability formula for P(S) and the Bayes Formula for $P(C \mid S)$.

Solution.

Problem 2 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ be a probability space, let $(\mathbb{R}, \mathcal{B}(\mathbb{R})) \equiv \mathbb{R}$ be the Euclidean real line endowed with the Borel σ -algebra, and let X be a uniformly distributed random variable on Ω with states in the interval (-1,1). In symbols $X \sim Unif(-1,1)$. Consider the function $g: \mathbb{R} \to \mathbb{R}$ given by

$$g(x) \stackrel{def}{=} x^2, \quad \forall x \in \mathbb{R}.$$

1. Can you state that the function $Y: \Omega \to \mathbb{R}$ given by

$$Y(\omega) \stackrel{def}{=} g(X(\omega)), \quad \forall \omega \in \Omega.$$

is a real random variable on Ω ?

- 2. Can you compute the distribution function $F_Y : \mathbb{R} \to \mathbb{R}_+$ of $Y : \Omega \to \mathbb{R}$?
- 3. Is Y absolutely continuous?
- 4. Are the first and second order moments of Y finite?
- 5. If the first and second order moments of Y are finite, can you compute $\mathbf{E}[Y]$ and $\mathbf{D}^{2}[Y]$?

Solution.

Problem 3 Let U, V real random variables on a probability space Ω such that such that $U \sim V \sim N(0,1)$, the vector (U,V) is Gaussian, and $Corr(U,V) \equiv \rho < 1$. Consider the real random variables

$$X \stackrel{def}{=} U - \rho V$$
 and $Y \stackrel{def}{=} \sqrt{1 - \rho} V$.

- 1. Can you prove that the vector (X,Y) Gaussian?
- 2. Are the random variables X and Y independent?
- 3. Compute the distributions of X and Y;
- 4. Compute $\mathbf{E}[X^2Y^2]$, $\mathbf{E}[XY^3]$, $\mathbf{E}[Y^4]$.
- 5. Compute $\mathbf{E} \left[U^2 V^2 \right]$.

Solution.

Problem 4 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ a probability space and let B_1 and B_2 be standard Bernoulli random variables on Ω . In symbols, $B_k \sim Ber(1/2)$, for k = 1, 2. Assume that B_1 and B_2 are independent and set

$$X \stackrel{\text{def}}{=} B_1 + B_2, \quad Y \stackrel{\text{def}}{=} B_1 \cdot B_2$$

- 1. Compute $\mathbf{E}[B_k \mid X]$ and $\mathbf{E}[B_k \mid Y]$ for k = 1, 2.
- 2. Are the random variables $\mathbf{E}[B_1 \mid X]$ and $\mathbf{E}[B_2 \mid X]$ uncorrelated? Are they independent?
- 3. Are the random variables $\mathbf{E}[B_1 \mid Y]$ and $\mathbf{E}[B_2 \mid Y]$ uncorrelated? Are they independent?
- 4. Compute $\mathbf{E}[X \mid Y]$ and $\mathbf{E}[Y \mid X]$.
- 5. Are the random variables $\mathbf{E}[X \mid Y]$ and $\mathbf{E}[Y \mid X]$ uncorrelated? Are they independent?
- 6. Compute $\mathbf{E}[X^2 \mid Y]$ and $\mathbf{E}[Y^2 \mid X]$.

Solution.

Problem 5 Let $\theta > 0$ and let X be a real random variable which is uniformly distributed in the interval $[0,\theta]$, in symbols $X \sim U(0,\theta)$. Let X_1,\ldots,X_n a simple random sample of size $n \geq 1$ drawn from X and let $(\check{X}_n)_{n\geq 1}$ be the sequence of real random variables given by

$$\check{X}_n \stackrel{def}{=} \max \{X_1, \dots, X_n\}, \quad \forall n \ge 1.$$

- 1. Prove that the sequence $(\check{X}_n)_{n\geq 1}$ converges in distribution to the Dirac random variable concentrated in θ .
- 2. Prove directly that the sequence $(\check{X}_n)_{n\geq 1}$ converges in probability to $Y \sim Dir(\theta)$.
- 3. Prove directly that the sequence $(\check{X}_n)_{n\geq 1}$ converges in mean to $Y \sim Dir(\theta)$.
- 4. Prove that the sequence $(\check{X}_n)_{n\geq 1}$ converges in square mean to $Y \sim Dir(\theta)$.
- 5. Does $(\check{X}_n)_{n\geq 1}$ converge almost surely to $Y \sim Dir(\theta)$?

Hint: Determine the distribution function of \check{X}_n and exploit it.

Solution.