AstraZeneca Al Challenge

Team Name : CodingBeginner

Name: Rohith Srinivaas M

(SHA008208)

IIT Madras

JigSaw Unintended Bias in Toxicity Classification

- Objective : Rate the toxicity in a given data instance
- Target prediction is a fraction denoting the toxicity level in the comment thereby classifying it as a positive or negative comment.
- Subtype attributes for toxicity:
 - Severe_toxicity
 - Obscene
 - Threat
 - Insult
 - Identity_attack
 - sexual_explicit

Exploratory Data Analysis (EDA)

- Pandas profiler was used for quick EDA of the dataset.
- Important observations are given below:
 - **target** is highly correlated with **insult** with $\rho = 0.928206624$.
 - The overlap between white and black identity comments is high.
 - A large number of comments about the **Jewish** identity is toxic towards the **Muslim** identity

Approaches

- Using Logistic Regression
 - Using ELI5 to understand bias.
- Using textCNN
 - Using LIME to understand bias.

Metrics

- SubGroup AUC :
 - only to the examples that mention the specific identity subgroup
 - A low value in this metric means the model does a poor job of distinguishing between toxic and non-toxic comments that mention the identity.
- BPSN (Background Positive, Subgroup Negative) AUC :
 - To the non-toxic examples that mention the identity and the toxic examples that do not
 - A low value in this metric means that the model confuses non-toxic examples that mention the identity with toxic examples that do not, likely meaning that the model predicts higher toxicity scores than it should for non-toxic examples mentioning the identity.

Metrics

- BNSP (Background Negative, Subgroup Positive) AUC :
 - To the toxic examples that mention the identity and the non-toxic examples that do not.
 - A low value here means that the model confuses toxic examples that mention the identity with non-toxic examples that do not, likely meaning that the model predicts lower toxicity scores than it should for toxic examples mentioning the identity.

Results and Discussion

- Using Logistic Regression
 - Used TweetTokenizer from nltk package with Tfidvectorizer to get the word-vector.
 - Performed Logistic Regression with the obtained word-vector with class = 1 for target >= 0.5 and vice versa
 - Used ELI5 for model interpretation:

Results and Discussion

- Using TextCNN
 - One of the important hyperparameters in textCNN is the sequence length.

	Number of words	Sequence length	score
0	50000	150	0.9073
2	100000	150	0.9096
1	50000	300	0.9142
3	100000	300	0.9175

y=0 (probability 1.000, score -8.223) top features

Contribution? Feature
+7.550 Highlighted in text (sum)
+0.673 <BIAS>

they stood was that not enough? now, can we please put this to bed? stop the crying and move on < sheesh >

Improvements

 Using pretrained Word Embeddings like BERT, FastText, Glove to predict the toxicity and then use weighted sum of these vectors (with subgroup bias) to get the meta word-vector with minimum bias which can be used for further classification.

Thank You