

Identifikace modelu náhodného signálu

doc. Ing. Petr Blaha, PhD.

Princip spektrální estimace

Odhad modelu náhodného signálu Metoda nejmenších čtverců

Procesy AR

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Princip spektrální estimace

Odhad modelu náhodného signálu

Princip spektrální estimace Odhad modelu náhodného signálu

Metoda nejmenších čtverců

Procesy AR

Procesy MA

Procesy ARMA

- odhad spektra vstupního a výstupního signálu lze provést pomocí Fourierovy transformace
- výpočet přenosu

$$G(j\omega) = \frac{1}{k} \sum_{i=1}^{k} \frac{Y_i(j\omega)}{U_i(j\omega)}$$

- podíl dvou veličin s normálním rozložením má Cauchyho rozdělení
 - definiční integrály pro střední hodnotu a rozptyl divergují
- Fourierova transformace není příliš vhodná pro analýzu náhodných signálů
- částečným řešením je použití vhodného okna
 - okno je nutné volit na základě přibližné znalosti spektra

Metoda nejmenších čtverců

Princip spektrální estimace

Odhad modelu náhodného signálu

Metoda nejmenších čtverců

Procesy AR

Procesy MA

Procesy ARMA

- pokud je náhodný signál stacionární, jeho model je stabilní, s nulami uvnitř jednotkové kružnice
- metoda nejmenších čtverců negarantuje získání modelu s uvedenými vlastnostmi
- model diskrétního náhodného signálu ve většině případů nemůže odpovídat diskrétnímu ekvivalentu spojitého systému
- metody využívající vybělení chyby predikce nejsou jednorázové, vyžadují opakování výpočtu

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Procesy AR

Definice AR procesu

Princip spektrální estimace

Procesy AR

Definice AR procesu

Autokorelační metoda YW

Srovnání s IVM Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

AR - Auto Regressive

$$\sum_{k=0}^{p} a_p(k)x(n-k) = e(n)$$

Přenos v Z-transformaci

$$\frac{1}{A_p(z)} = \frac{X(z)}{E(z)}$$

Autokorelační metoda YW

Princip spektrální estimace

Procesy AR

Definice AR procesu

Autokorelační metoda YW

Srovnání s IVM Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Vyjdeme z diferenční rovnice $\sum_{k=0}^{p} a_p(k) x(n-k) = e(n)$ Střední hodnota

$$E\left\{\sum_{k=0}^{p} a_{p}(k)x(n-k)x(n-l)\right\} = E\left\{e(n)x(n-l)\right\}$$

pro l>0 dostaneme Yule-Walkerovu rovnost

$$\sum_{k=0}^{p} a_p(k) r_{xx}(l-k) = 0 \qquad r_{xx}(i) = E\{x(n)x(n+i)\}$$

za předpokladu $a_p(0)=1$, $r_{xx}(i)=r_{xx}(-i), l>0$ dostaneme

$$r_{xx}(l) = -a_p(1)r_{xx}(l-1) - a_p(2)r_{xx}(l-2) - \dots - a_p(p)r_{xx}(l-p)$$

Autokorelační metoda

Princip spektrální estimace

Procesy AR

Definice AR procesu

Autokorelační metoda YW

Srovnání s IVM Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Maticový zápis

$$\begin{pmatrix} r_{xx}(0) & r_{xx}(1) & \cdots & r_{xx}(p-1) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(p-2) \\ \vdots & \vdots & \cdots & \vdots \\ r_{xx}(p-1) & r_{xx}(p-2) & \cdots & r_{xx}(0) \end{pmatrix} \begin{pmatrix} a_p(1) \\ a_p(2) \\ \vdots \\ a_p(p) \end{pmatrix} = \begin{pmatrix} -r_{xx}(1) \\ -r_{xx}(2) \\ \vdots \\ -r_{xx}(p) \end{pmatrix}$$

$$oldsymbol{R}_poldsymbol{a}_p=-oldsymbol{r}_p$$

Parametry AR modelu lze vypočítat pomocí vztahu

$$oldsymbol{a}_p = -oldsymbol{R}_p^{-1} oldsymbol{r}_p$$

Vzorec vypadá jednoduše, ale jeho výpočet je pro velké p (které je často vyžadováno) časově náročný.

Srovnání s IVM

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM

Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

$$x(k) = -a_p(1)x(k-1) - \dots - a_p(p)x(k-p) + C(q^{-1})e(k)$$

$$\varphi^T(k) = (-y(k-1) - \dots - y(k-p))$$

$$z^T(k) = (-y(k-n_c) - \dots - y(k-p-n_c))$$

$$\theta^T(k) = (-a_p(1) - \dots - a_p(p))$$

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM

Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

$$\begin{pmatrix} r_{xx}(0) & r_{xx}(1) & \cdots & r_{xx}(p) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(p-1) \\ r_{xx}(2) & r_{xx}(1) & \cdots & r_{xx}(p-2) \\ \vdots & \vdots & \cdots & \vdots \\ r_{xx}(p) & r_{xx}(p-1) & \cdots & r_{xx}(0) \end{pmatrix} \begin{pmatrix} 1 \\ a_p(1) \\ a_p(2) \\ \vdots \\ a_p(p) \end{pmatrix} = \begin{pmatrix} V_p \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Matice nalevo je symetrická Toeplitzova matice a V_p je rozptyl šumu e(n). Předpokládejme, že máme řešení \boldsymbol{a}_p a chceme určit \boldsymbol{a}_{p+1} . Předchozí rovnice se rozšíří na

$$\begin{pmatrix} r_{xx}(0) & r_{xx}(1) & \cdots & r_{xx}(p) & r_{xx}(p+1) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(p-1) & r_{xx}(p) \\ r_{xx}(2) & r_{xx}(1) & \cdots & r_{xx}(p-2) & r_{xx}(p-1) \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}(p+1) & r_{xx}(p) & \cdots & r_{xx}(1) & r_{xx}(0) \end{pmatrix} \begin{pmatrix} 1 \\ a_p(1) \\ a_p(2) \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} V_p \\ 0 \\ 0 \\ \vdots \\ \alpha_p \end{pmatrix}$$

Poslední řádek definuje α_p . Pro symetrickou Toeplitzovu matici platí, že se dá napsat ve tvaru

Princip spektrální estimace

Procesy AR

Definice AR procesu
Autokorelační metoda
YW

Srovnání s IVM
Levinson Durbin
algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Předchozí dvě rovnice sečteme s tím, že druhou vynásobíme $\rho_p = - rac{lpha_p}{V_p}$

$$\mathbf{R}_{p+1} \begin{pmatrix} 1 \\ a_p(1) + \rho_p a_p(p) \\ a_p(2) + \rho_p a_p(p-1) \\ \vdots \\ \rho_p \end{pmatrix} = \begin{pmatrix} V_p + \rho_p \alpha_p \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM

Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Vektor na levé straně je vlastně

$$\begin{pmatrix} 1 \\ a_p(1) + \rho_p a_p(p) \\ a_p(2) + \rho_p a_p(p-1) \\ \vdots \\ \rho_p \end{pmatrix} = \begin{pmatrix} 1 \\ a_{p+1}(1) \\ a_{p+1}(2) \\ \vdots \\ a_{p+1}(p+1) \end{pmatrix}$$

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM

Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Odtud dostáváme rekurzivní vzorečky

$$\hat{a}_{p+1}(k) = \hat{a}_p(k) + \hat{\rho}_p \hat{a}_p(p - k + 1)$$

$$\hat{a}_{p+1}(p+1) = \hat{\rho}_p$$

$$V_{p+1} = V_p + \hat{\rho}_p \alpha_p$$

$$\hat{\rho}_p = \frac{-\alpha_p}{V_p}$$

$$\alpha_p = r_{xx}(p+1) + \sum_{k=1}^p \hat{a}_p(k)r_{xx}(p+1-k)$$

S počátečními podmínkami

$$V_1 = r_{xx}(0) - \frac{r_{xx}(1)^2}{r_{xx}(0)}$$

$$\hat{a}_1(1) = \frac{-r_{xx}(1)}{r_{xx}(0)}$$

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM

Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Jedna iterace rekurze vyžaduje 4p+2 sčítání a násobení a jedno dělení. Výpočet \hat{a}_{p+1} vyžaduje $2p^2$ operací. Autokorelační metoda vyžaduje naproti tomu počet operací úměrný p^3 .

Princip spektrální estimace

Procesy AR

Definice AR procesu Autokorelační metoda YW

Srovnání s IVM

Levinson Durbin algoritmus

Procesy MA

Procesy ARMA

Prostředky pro výpočet

Nevýhody autokorelačního algoritmu

- nutnost výpočtu inverze matice
- nelze snadno zvýšit řád modelu, nutno vše počítat znovu

Levinson Durbin algoritmus

- iterativní algoritmus
- v každém kroku je zvýšen řád modelu o 1

Princip spektrální estimace

Procesy AR

Procesy MA

Definice MA procesu

Teorémy

Durbinova metoda

Durbinův algoritmus

Procesy ARMA

Prostředky pro výpočet

Procesy MA

Definice MA procesu

Princip spektrální estimace

Procesy AR

Procesy MA

Definice MA procesu

Teorémy

Durbinova metoda

Durbinův algoritmus

Procesy ARMA

Prostředky pro výpočet

MA - Moving Average

$$x(n) = \sum_{k=0}^{q} b_q(k)e(n-k)$$

Přenos v Z-transformaci

$$B_q(z) = \frac{X(z)}{E(z)} = \sum_{k=0}^{q} b_q(k) z^{-k}$$

Teorémy

Princip spektrální estimace

Procesy AR

Procesy MA

Definice MA procesu

Teorémy

Durbinova metoda Durbinova algoritmus

Procesy ARMA

Prostředky pro výpočet

Wold - ARMA nebo AR systém s konečným řádem je ekvivalentní systému MA s nekonečným řádem.

Kolmogorov - ARMA nebo MA systém s konečným řádem je ekvivalentní systému AR s nekonečným řádem.

Durbinova metoda

Princip spektrální estimace

Procesy AR

Procesy MA

Definice MA procesu

Teorémy

Durbinova metoda

Durbinův algoritmus

Procesy ARMA

Prostředky pro výpočet

MA systém q-tého řádu lze nahradit AR modelem p-tého řádu, kde p>>q

$$B_q(z) \approx \frac{1}{A_p(z)} = \frac{1}{\sum_{k=0}^q a_p(k) z^{-k}}$$

Platí rovněž

$$A_p(z) = \sum_{k=0}^{q} a_p(k) z^{-k} \approx \frac{1}{B_q(z)}$$

AR model $\frac{1}{B_q(z)}$ q-tého řádu může být považován za model procesu tvořeného řadou koeficientů $[a_p(0),a_p(1),\ldots,a_p(p)]$ "dlouhého" AR modelu $A_p(z)$.

Durbinův algoritmus

Princip spektrální estimace

Procesy AR

Procesy MA

Definice MA procesu

Teorémy

Durbinova metoda

Durbinův algoritmus

Procesy ARMA

- 1. Pomocí autokorelačního nebo Levinson Durbin algoritmu aplikovaného na změřená data x(n) určíme koeficienty AR modelu $a_p(k)\ p>>q$
- 2. Získané koeficienty $[a_p(0), a_p(1), ..., a_p(p)]$ považujeme za novou řadu dat, na kterou aplikujeme autokorelační metodu pro získání AR modelu. Koeficienty takto získaného modelu odpovídají koeficientům MA modelu původních dat $b_q(k)$.

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Definice ARMA procesu První Durbinova metoda Princip druhé Durbinovy metody

Prostředky pro výpočet

Procesy ARMA

Definice ARMA procesu

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Definice ARMA procesu

První Durbinova metoda Princip druhé Durbinovy metody

Prostředky pro výpočet

Kombinace AR a MA

$$\sum_{i=1}^{p} a_p(i)x(n-i) = \sum_{j=1}^{q} b_q(j)e(n-j)$$

Přenos v z-transformaci

$$\frac{B_q(z)}{A_p(z)} = \frac{X(z)}{E(z)}$$

První Durbinova metoda

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Definice ARMA procesu

První Durbinova metoda

Princip druhé Durbinovy metody

Prostředky pro výpočet

Podle Kolmogorovova teorému platí

$$\frac{B_q(z)}{A_p(z)} = \frac{1}{A_\infty(z)}$$

přibližně platí pro velké $\it l$

$$\frac{B_q(z)}{A_p(z)} \approx \frac{1}{A_l(z)}$$

Postup

- 1. Pomocí YW metody určíme AR model $\frac{1}{A_l(z)}$
- 2. Na základě vztahu $\hat{e}=A_l(z)x$ odhadneme signál na vstupu modelu
- 3. ARMA model určíme metodou nejmenších čtverců pro systém $A_p(z)x=B_q(z)\hat{e}$

Princip druhé Durbinovy metody

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Definice ARMA procesu

První Durbinova metoda Princip druhé Durbinovy metody

- 1. Vypočten "dlouhý" AR model $\frac{1}{A_l(z)}$ pomocí Durbinovy metody
- 2. Počáteční odhad AR části modelu pomocí první Durbinovy metody
- 3. Iterace

(a) Dělení
$$D^{j}(z)=rac{A_{l}(z)}{A^{j-1}(z)}$$

- (b) Výpočet MA modelu $B^j(z)$ z $D^j(z)$ pomocí Durbinova MA algoritmu
- (c) Pomocí MA modelu $B^j(z)w=x$ určíme hodnoty signálu w
- (d) Odhadneme AR model $A^j(z)$ pomocí YW algoritmu aplikovaného na řadu dat w(n)
- (e) Opakujeme dokud se řešení neustálí

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Prostředky pro výpočet

MATLAB Simulink ARMASA

MATLAB Simulink

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Prostředky pro výpočet

MATLAB Simulink

ARMASA

- Signal Processing Toolbox
- DSP Blockset

ARMASA

Princip spektrální estimace

Procesy AR

Procesy MA

Procesy ARMA

Prostředky pro výpočet

MATLAB Simulink

ARMASA

- volně šiřitelný Toolbox pro Matlab
- lze stáhnout z http://www.dcsc.tudelft.nl/Research/Software/index.html
- umožňuje výpočet jednotlivých typů modelů náhodných signálů (a tedy i výpočet spektra)
- automatická volba řádu modelu