CMPE 12/L Practice Midterm

Fall 2017

Instructions:

- This practice exam is based off of a previous quarters midterm. Due to the rearrangement of the class certain sections were removed. This means the length is not necessarily representative of the given midterm.
- This exam is closed book and closed notes. You may NOT use a calculator.
- Do not remove the staple.
- Always show your work in the space provided. If you do not show your work, you will not be given full credit for that problem.
- Do not use extra paper.

- 1) [pts] Boolean Logic:
- a) (pts) Create a logic circuit (gates) for the following truth table:

A	В	\mathbf{C}	\mathbf{F}
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

b) (pts) Write the truth table for the following boolean circuit:

- 2) [pts] Binary Conversion
- a) (pts) Fill in the following table by converting the given number to the other bases. Assume that each number is 8 bits. If number is un-representable by given representation indicate this. Show your work!

Decimal	2's complement
	10110110
	11101010
	11111011
	10100111
37	
93	
2	
-8	

b) (pts) convert 431_5 to base 3.

c) (pts) convert 431_6 to base 4.

d) (pts) convert 321_4 to base 2.

- 3) [pts] Binary Arithmetic
- a) (pts) Perform the following arithmetic operations on the unsigned integers. Do **not** convert them to decimal first and **show your "carries"** between digits. Assume variable size is same as digits given. Indicate whether there is **overflow or no overflow**.

b) (pts) Perform the following arithmetic operations on the 2's complement integers. Do **not** convert them to decimal first and **show your "carries"** between digits. Indicate whether there is **overflow** or **no overflow**.

- 4) [pts] MIPS Architecture
- a) (pts) How many memory locations can the MIPS address?
- b) (pts) What is the register size of the MIPS?
- c) (pts) How many general purpose registers does the MIPS have and what are they named?

5) [pts] Binary Multiplication

Do not convert the numbers to unsigned form and flip the sign back after multiplication

- a) (pts) perform -3*-7 in 4 bit 2's complement
- a) (pts) perform 2*4 in 4 bit 2's complement
- a) (pts) perform -1*6 in 4 bit 2's complement
- a) (pts) perform 3*-5 in 4 bit 2's complement

- 6) [pts] Digital Logic
- a) (pts) Draw the gate level diagram for a 2-4 decoder, be sure to label your circuit.

c) (pts) Using only NAND gates, show the implementations for $\mathbf{OR},\,\mathbf{NOT},\,$ and \mathbf{AND} Logic functions.

7) [pts] MIPS Coding Small things such as pseudo-op translation and the like

7) [pts] MIPS Code Running

Given a basic code block, determine what values registers have at the end of it