

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of Science in Applied Sciences Second Year - Semester I Examination – July/Augest 2023

MAA 2201 - Mathematical Method II

Time: Two (02) hour

Answer all questions

1.

a. Convert the Cartesian coordinates (-4, -1, 8) for the point into Cylindrical coordinates. (25 marks)

b. Convert the equation written in cylindrical coordinates, $4 \sin \theta - 2 \cos \theta = \frac{r}{2}$ into an equation in Cartesian coordinates. (25 marks)

c. Mark the point with spherical coordinates $(8, \frac{\pi}{3}, \frac{\pi}{6})$ and express its location in both rectangular and cylindrical coordinates. (30 marks)

d. Convert $x^2 + y^2 = 4x + z - 2$ written in Cartesian coordinates into an equation in Spherical coordinates. (20 marks)

2.

a. Show that the inverse Laplace transform of $\frac{a}{s^2+a^2}$ is $Sin\ at$. (10 marks)

b. Explain why $\frac{2}{(s^2+16)} + \frac{1}{(s^2+4)}$ is the inverse Laplace transform of *Sin 3t Cos t*.

(20 marks)

c. If L(f(t)) = F(s) then show that $L(e^{-at}f(t) = F(s+a))$, where a is a constant. Diduse that $L(e^{-t}\cosh 4t) = \frac{a}{(s+1)^2 - 16}$ (30 marks)

d. Using the Laplace transform find the solution for the following equation

$$y'' - 10 y' + 9y = 5t$$
, with initial values, $y(0) = -1$, $y'(0) = 2$

(40 marks)

3.

- a. Evaluate the integral $\oint_C z^2 dx + y dy + 2y dz$, where C is the intersection of the cylinder $x^2 + y^2 = 16$ and the plane z = 3 from (0, 4, 3) to (-4, 0, 3). (25 marks)
- **b.** Evaluate the line integral $\oint_C y^2 dx + x dy$, where C is the arc of the parabola $x = 4 y^2$ from (-5, -3) to (0, 2). (25 marks)
- c. Evaluate $\oint_C (3x 5y) dx + (x 6y) dy$, where C is the ellipse $\frac{x^2}{4} + y^2 = 1$ in the anticlockwise direction. Evaluate the integral by;
 - (i) Green's Theorem,
 - (ii) directly.

(25 marks)

- d. Using the divergence theorem, evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = (xy^2, yz^2, x^2y)$ and S is the sphere of radius 3 centered at origin. (25 marks)
- 4. The scale factors h_i , are defind by

$$h_i = \sqrt{\sum_{k=1}^n \left(\frac{\partial x_k}{\partial q_i}\right)^2},$$

where x_i is the Cartesian coordinates and q_k is the spherical coordinates.

a. Find h_1 , h_2 , and h_3 .

(40 marks)

b. Find the expression for $\nabla \varphi$ in spherical coordinates using the general form given below: (30 marks)

$$\nabla \varphi = \frac{1}{h_1} \frac{\partial \varphi}{\partial u_1} \bar{u}_1 + \frac{1}{h_2} \frac{\partial \varphi}{\partial u_2} \bar{u}_2 + \frac{1}{h_3} \frac{\partial \varphi}{\partial u_3} \bar{u}_3.$$

c. Find the Curl
$$F = \frac{1}{h_1 h_2 h_3} \begin{bmatrix} h_1 \overline{u}_1 & h_2 \overline{u}_2 & h_3 \overline{u}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 F_1 & h_2 F_2 & h_3 F_3 \end{bmatrix}$$
. (30 marks)