İSTANBUL TEKNIK ÜNIVERSITESI, MATEMATIK BÖLÜMÜ Kismi Türevli Diferansiyel Denklemler için Sayisal Analız I

Ödev I

Haydar Altuğ Yıldırım

509161108

October 10, 2016

 $u_1 = sin(x)$ ve $u_2 = e^{x^2}$ denklemlerinin x = 1 noktasındaki analitik ve sayısal(ileri, geri ve merkezi farklar için) değerlerini bulunuz, hata oranlarını ve hangi mertebede olduklarını hesaplayınız.

u_1	ileri farklar					ge	ri farklar		merkezi farklar			
Δx	analitik	sayısal	hata(%)	p (ε)	analitik	sayısal	hata(%)	p (ε)	analitik	sayısal	hata(%)	p (ε)
0.1	0.5403	0.4973	7.9585	-0.9008	0.5403	0.5814	7.6068	-0.8812	0.5403	0.5393	0.1665	0.7783
0.05	0.5403	0.519	3.9422	-0.4579	0.5403	0.5611	3.8497	-0.4499	0.5403	0.54	5.5524E-2	0.9650
0.01	0.5403	0.536	0.7958	4.9583E-2	0.5403	0.5444	0.7773	5.4692E-2	0.5403	0.5402	1.8508E-2	0.8663
5E-3	0.5403	0.5381	0.4071	0.1695	0.5403	0.5423	0.3886	0.1783	0.5403	0.5403	0	
1E-3	0.5403	0.5397	9.2541E-2	0.3445	0.5403	0.5406	7.4032E-2	0.3768	0.5403	0.5403	0	

Table 0.1: $u_1 = sin(x)$ hesapları

u_2	ileri farklar				geri farklar				merkezi farklar			
Δ x	analitik	sayısal	hata(%)	p (ε)	analitik	sayısal	hata(%)	$p(\varepsilon)$	analitik	sayısal	hata(%)	p (ε)
0.1	5.4364	6.352	16.8398	-1.2263	5.4364	4.7037	13.4792	-1.1296	5.4364	5.5278	1.6793	-0.2251
0.05	5.4364	5.868	7.937	-0.6914	5.4364	5.0503	7.1019	-0.6543	5.4364	5.4592	0.4175	0.2915
0.01	5.4364	5.5191	1.5175	-9.0567E-2	5.4364	5.3559	1.4825	-8.5507E-2	5.4364	5.4374	1.6554E-2	0.8905
5E-3	5.4364	5.4775	0.7541	5.3252E-2	5.4364	5.395	0.7449	5.5568E-2	5.4364	5.4367	3.6788E-3	1.0579
1E-3	5.4364	5.4447	0.1508	0.2738	5.4364	5.4283	0.1489	0.2756	5.4364	5.4364	0	

Table 0.2: $u_2 = e^{x^2}$ hesapları

 $p(\varepsilon)$ değerleri asağıdaki förmüller kullanılarak türetildi;

$$Error \approx \Delta x \tag{0.1}$$

$$E = C(\Delta x)^{p} \tag{0.2}$$

$$log(E) \approx log(C(\Delta x)^{p}) \tag{0.3}$$

$$\approx log(C) + log((\Delta x)^{p}) \tag{0.4}$$

$$log(E) \approx log(C) + p * log(\Delta x) \tag{0.5}$$

$$p = log(E)/log(\Delta x) \tag{0.6}$$

log(E) ve $log(\Delta x)$ değerlerinin çizilmiş grafikleri ve hesaplanmiş eğim değerleri ;

