Deep-learning avec {torch} aide-mémoire

crchvision luz

NTO {torch} est basé sur PyTorch, un environnement de Deep-learning utilisé à grande échelle par les chercheurs.

{torch} profite de l'accélération matérielle de la carte GPU avec une interface conviviale, et couvre un grand nombre de cas d'usage, et pas seulement d'apprentissage profond, grâce à sa flexibilité et l'accès possible à l'interface de bas-niveau.

Il est au centre d'un écosystem de paquets logiciels prévus pour l'interface avec des types de donnée spécifiques comme {torchaudio} pour les données temporelles, {torchvision} pour les images, et {tabnet} pour les données tabulaires. Enfin {luz} offre une interface de programmation de plus haut niveau.

https://torch.mlverse.org/

https://mlverse.shinyapps.io/torch-tour/

INSTALLATION

Le package {torch} s'appuie sur la librairie C++ libtorch. Les prérequis s'installent entièrement depuis R

https://torch.mlverse.org/docs/articles/installation.html

```
install.packages("torch")
library(torch)
                          Voir?install_torch
install_torch()
                          pour les instructions
                              avec GPU
```

La manipulation des modèles

DEFINIR UN MODULE NN dense ← nn_module("couche_dense_sans_biais", initialize = function(in_f, out_f) { self\$w ← nn_parameter(torch_randn(in_f, out_f)) forward = function(x) { torch_mm(x, self\$w)

Crée un nn module nommé couche_dense_sans_biais

ASSEMBLER DES MODULES EN RESEAU

 $model \leftarrow dense(4, 3)$

Instancie un réseau avec une seule couche

model ← nn_sequential(dense(4,3), nn_relu(), nn_dropout(0.4), dense(3,1), nn_sigmoid())

Instancie un réseau avec une sequence de couches

ENTRAINER UN MODÈLE

model\$train() Active la mise a jour des gradients with_enable_grad({ y_pred ← model(trainset) loss \leftarrow (y_pred - y)\$pow(2)\$mean() loss\$backward()

Code détaillé de la boucle d'entrainement (alternatif)

EVALUER UN MODEL

model\$eval() with_no_grad({ model(validationset) Passe d'inférence du modèle sans mise à jour de gradient

OPTIMISATION

optim_sgd()

Optimiseur de descente de gradient stochastique

optim_adam() Optimiseur ADAM

Hinge

nn_l1_loss()

FONCTION DE COÛT POUR LA CLASSIFICATION

nn_cross_entropy_loss() nn_bce_loss() nn_bce_with_logits_loss() (Binaire) fonction de coût d'entropie croisée nn_nll_loss() Fonction de coût de log-vraissemblance négative nn_margin_ranking_loss() nn_hinge_embedding_loss() nn_multi_margin_loss() nn_multilabel_margin_loss() (Multinomial) (multi etiquette) fonction de coût de

FONCTION DE COÛT POUR LA REGRESSION

Fonction de coût L1 nn_mse_loss() MSE loss nn_ctc_loss() Connectionist Temporal Classification loss nn_cosine_embedding_loss() Fonction de coût de plongement cosinus nn_kl_div_loss() Fonction de coût de divergence de Kullback-Leibler nn_poisson_nll_loss() Fonction de coût de log-vraissemblance negative de Poisson

OTHER MODEL OPERATIONS

summary() Résume le modèle

torch_save(); torch_load() enregistre/ restaure le modèle dans un fichier

load_state_dict()

Restaure un modèle enregistré depuis python

Couches de réseaux de neurones

COUCHE PRINCIPALES

nn_linear() Ajoute une couche de transformation linéaire à une entrée

nn_bilinear() à deux entrées

nn_sigmoid(), nn_relu()

nn_dropout()

nn_dropout2d() nn_dropout3d() Applique une élimination de connexions à l'entrée

nn_batch_norm1d() nn_batch_norm2d() nn_batch_norm3d()

Applique une normalisation par batch aux paramètres

COUCHES DE CONVOLUTION

nn_conv1d() 1D, e.g. convolution temporelle

nn_conv_transpose2d() convolution 2D transposée (déconvolution)

nn_conv2d() 2D, e.g. convolution spatiale sur les images

nn_conv_transpose3d() convolution 3D transposée (déconvolution) nn_conv3d() 3D, e.g. convolution spatiale sur les volumes

nnf_pad() Couche de remplissage avec des zero

COUCHES D'ACTIVATION

nn_leaky_relu() Activation lineaire rectifiée avec fuite

Activation lineaire rectifiée avec limitation à 6

nn_rrelu()

Activation lineaire rectifiée avec fuite, aléatoire

nn_elu(), nn_selu() Activation lineaire exponentielle, idem mise a l'échelle

COUCHES D'EXTRACTION

nn_max_pool1d() nn_max_pool2d() nn_max_pool3d()

Extraction des maximum de 1D à 3D

nn_avg_pool1d() nn_avg_pool2d() nn_avg_pool3d()

Extraction des moyennes de 1D à 3D nn_adaptive_max_pool1d()

Extraction adaptative des maximum nn_adaptive_avg_pool1d()

nn_adaptive_avg_pool2d() nn_adaptive_avg_pool3d()

Extraction adaptative des moyennes

COUCHES RÉCURENTES

nn_rnn() Reseau récurent de noeuds entièrement connectés avec sortie réinjectée à l'entrée

nn_gru()

Unité récurrente à porte- Cho et al

nn_lstm()

Unité à mémoire longue-courte - Hochreiter 1997

Manipulation des tenseurs

CRÉATION DE TENSEUR

tt <- torch_rand(4,3,2) distrib. uniforme

tt ← **torch_randn(4,3,2**) distrib. normale unitaire

 $tt \leftarrow torch_randint(1,7,c(4,3,2))$ distrib. uniforme d'entiers dans [1,7) Création d'un tenseur de la dimension voulue.

$tt \leftarrow torch_ones(4,3,2)$ torch_ones_like(a)

Création d'un tenseur unitaire de la dimension voulue ou de la dimension de 'a'. Voire torch_zeros, torch_full, torch_arange,...

tt\$ndim tt\$dtype tt\$shape [1] 3 torch_Float tt\$requires_grad tt\$device [1] FALSE torch_device(type='cpu') Dimension et attributes d'un tenseur

tt\$stride() Saut de valeurs nécessaire entre [1] 6 2 1 deux dimensions du tenseur

tt ← torch_tensor(a, dtype=torch_float(), device= "cuda") a ← as.matrix(tt\$to(device="cpu")

Copie une matrice 'a' de R dans un tenseur de reels en GPU et vice-versa

EXTRACTION DE VALEURS

tt[1:2, -2:-1,] Extrait un tenseur 3D tt[5:N, -2:-1, ..]

Extrait un tenseur 3D ou plus, N le 'dernier'

tt[1:2, -2:-1, 1:1]

tt[1:2, -2:-1, 1, keep=TRUE] Extrait un tenseur 3D en conservant la dimension unitaire.

tt[1:2, -2:-1, 1]

La dimension unitaire est supprimée par défaut.

tt[tt > 3.1]

Filtrage booléen (le résultat est plat)

CONCATENATION DE TENSEURS

torch_stack() Pile de tenseurs

Assemble les tenseurs

Découpe en sections de taille n

OPÉRATION SUR LES DIMENSIONS

tt\$unsqueeze(1) torch_unsqueeze(tt,1) Ajoute une premiere dimension unitaire à

torch_squeeze(t,1) tt\$squeeze(1) Supprime la premiere dimension unitaire

\$view() torch_reshape() Change les dimensions du tenseur (potentiellement) sans Avec copie ou

torch_flatten() aplatit le tenseur

torch_transpose()

torch_movedim(c(1,2)) Inverse la dimension 1 avec 2

torch_movedim(c(1,2,3), c(3,1,2)) deplace dim 1 en 3, dim 2 en 1, dim 3 en 2 torch_permute(c(3,1,2)) Idem uniquement sur la base de la destination

torch_flip(1) retourne les valeurs de la dim 1

torch_flip(2)

des deux dim

OPÉRATION SUR LES VALEURS DU TENSEUR

Operations entre deux tenseurs

\$pow(2), \$log(), \$exp(), \$abs(), \$floor(), \$round(), \$cos(), \$fmod(3), \$fmax(1), \$fmin(3) torch_clamp(tt, min=0.1, max=0.7) Operations sur chaque élément

\$eq(), \$ge(), \$le() Comparaison sur chaque élément

\$to(dtype = torch_long()) Transformation des types

\$sum(dim=1), \$mean(), \$max() Fonctions d'agrégation sur un tenseur \$amax()

torch_repeat_interleave() Répétition d'un tenseur n fois

rchvision rchaudio luz torch

UN MODELE DE RECONNAISANCE D'IMAGE SUR MNI

Mon premier modèle avec {torch}

Modèles pré-entraînés

Les modèles pré-entraînés sont des réseaux d'architecture classiques mis à disposition avec leurs paramètres pré-entraînés. On peut les utiliser pour une prediction directe, une extraction de vecteur de plongement, ou l'entraînement fin.

MODÈLES R NATIFS

library(torchvision) resnet34 ← model_resnet34(pretrained=TRUE) Modèles de classification d'image Resnet

resnet34_headless \leftarrow nn_prune_head(resnet34, 1) Élagage de la dernière couche d'un modèle

IMPORT DE MODÈLES PYTORCH

{torchvisionlib} permet d'importer un modèle PyTorch sans avoir à en recoller les modules nn en R. On le fait en deux étapes:

1- Dans python, instancier, scripter, et sauvegarder: import torch import torchvision

model = torchvision.models.segmentation. fcn_resnet50(pretrained = True) model.eval()

scripted_model = torch.jit.script(model) torch.jit.save(scripted_model, "fcn_resnet50.pt")

2- charger le fichier de modèle dans R: library(torchvisionlib) model ← torch::jit_load("fcn_resnet50.pt")

Résolution de problème

HELPERS

with_detect_anomaly()

Fournit une vue interne du comportement du nn_module()

Callbacks

An callback est une ensemble de fonction à appliquer à un moment précis de la boucle d'entraînement du modèle.

Ils permettent par exemple une vue des états interne ou une collecte de statistiques sur le modele au cours de l'entraînement

```
# Datasets d'images MNIST
library(torchvision)
train_ds ← mnist_dataset( root = " ~/.cache",
   download = TRUE,
   transform = torchvision::transform_to_tensor
test_ds ← mnist_dataset( root = " ~/.cache",
   train = FALSE,
   transform = torchvision::transform_to_tensor
train_dl ← dataloader(train_ds, batch_size = 32,
   shuffle = TRUE)
test_dl ← dataloader(test_ds, batch_size = 32)
# definition du modèle et de ses couches
net ← nn module(
 "Net",
 initialize = function() {
  self$fc1 \leftarrow nn_linear(784, 128)
  self$fc2 \leftarrow nn_linear(128, 10)
 forward = function(x) {
  x %>% torch_flatten(start_dim = 2) %>%
   self$fc1() %>% nnf_relu() %>%
   self$fc2() %>% nnf_log_softmax(dim = 1)
model \leftarrow net()
# definition de l'optimizer
optimizer ← optim_sgd(model$parameters, lr = 0.01)
# boucle d'entraînement (fit)
for (epoch in 1:10) {
 train_losses \leftarrow c()
 test_losses \leftarrow c()
 for (b in enumerate(train_dl)) {
  optimizer$zero_grad()
  output ← model(b[[1]]$to(device = device))
```

loss ← nnf_nll_loss(output, b[[2]]\$to(device = device))

loss ← nnf_nll_loss(output, b[[2]]\$to(device = device))

train_losses ← c(train_losses, loss\$item())

output \leftarrow model(b[[1]]\$to(device = device))

test_losses \leftarrow c(test_losses, loss\$item())

loss\$backward()

optimizer\$step()

model\$eval()

model\$train()

for (b in enumerate(test_dl)) {