Rechnerorganisation

Jonas Milkovits

Last Edited: 8. Mai 2020

Inhaltsverzeichnis

1	Ein	führung
	1.1	Begrifflichkeiten und Grundlagen
	1.2	Streifzug durch die Geschichte
	1.3	Ethik in der Informatik
2	Ein	führung in die maschinennahe Programmierung
	2.1	Begrifflichkeiten und Grundlagen
	2.2	Phasen der Übersetzung
	2.3	Ausführung eines Programms im Rechnersystem
	2.4	Befehle eines Rechnersystems
	2.5	Registersatz
	2.6	Adressierung des Speichers, Lesen und Schreiben auf Speicher
	2.7	Kontrollstrukturen in Assembler

1 Einführung

1.1 Begrifflichkeiten und Grundlagen

• Abstraktion

- Wichtiges und zentrales Konzept der Informatik
- Verstecken unnötiger Details (für spezielle Aufgabe unnötig)

• Schichtenmodell

- Untere Schicht erbringt Dienstleistungen für höhere Schicht
- Obere Schicht nutzt Dienste der niedrigeren Schicht
- Eindeutige Schnittstellen zwischen den Schichten
- Vorteile:
 - Austauschbarkeit einzelner Schichten
 - Nur Kenntnis der bearbeitenden Schicht notwendig
- Nachteile:
 - ggf. geringere Leistungsfähigkeit des Systems

• Grundbegriffe

- Computer:
 - Datenverarbeitungssystem
 - Funktionseinheit zur Verarbeitung und Aufbewahrung von Daten
 - Auch Rechner, Informationsverarbeitungssystem, Rechnersystem,...
 - Steuerung eines Rechnersystems folgt über ladbares Programm (Maschinenbefehle)
- Grundfunktionen, die ein Rechner ausführt
 - Verarbeitung von Daten (Rechnen, logische Verknüpfungen,...)
 - Speichern von Daten (Ablegen, Wiederauffinden, Löschen)
 - Umformen von Daten (Sortieren, Packen, Entpacken)
 - Kommunizieren (Mit Benutzer, mit anderen Rechnersystemen)

• Komponenten eines Rechnersystems

- Prozessor
 - Zentraleinheit, Central Processing Unit (CPU)
 - Ausführung von Programmen
- Speicher
 - Enthält Programme und Daten (Speichersystem)
- Kommunikation
 - Transfer von Informationen zwischen Speicher und Prozessor
 - Kommunikation mit der Außenwelt (Ein-/Ausgabesystem)

• Nähere Informationen zum Speicher

- Explizite Nutzung des Speichersystem
 - Internet Prozessorspeicher/Register
 - schnelle Register zur temporären Speicherung von Daten/Befehlen
 - · direkter Zugriff durch Maschinenbefehle
 - Technologie: Halbleiter ICs
 - Hauptspeicher
 - relativ großer und schneller Speicher für Programme/Daten
 - direkter Zugriff durch Maschinenbefehle
 - Technologie: Halbleiter ICs
 - Sekundärspeicher
 - großer, aber langsamer Speicher für permanente Speicherung
 - indirekter Zugriff über E/A-Programme (Daten \rightarrow Hauptspeicher)
 - Technologie: Halbleiter ICs, Magnetplatten, optische Laufwerke
 - z.B.: Festplatte
- Implizite (transparente) Nutzung
 - Für das Maschinenprogramm transparent
 - bestimmte Register auf dem Prozessor
 - · Cache-Speicher

• Speicherorganisation: Big-Endian und Little-Endian

E	3ig	-Ei	ndi	ian	L	ittle	e-E	nc	liar				
	,	By Adre	/te- ess	е	Wort Adresse	,	Byte- Adresse						
	С	D	Е	F	С	F	Е	D	С				
	8	8 9 A B			8	В	Α	9	8				
	4 5 6 7				4	7	6	5	4				
	0	1	2	3	0	3	2	1	0				
N	MSE	3		LSE	3 1	MSI	3		LSB				

- Schemata für Nummerierung von Bytes in einem Wort
- Big-Endian: Bytes werden vom höchstwertigen Ende gezählt
- Little-Endian: Bytes werden vom niederstwertigen Ende gezählt

1.2 Streifzug durch die Geschichte

• Übersicht über die geschichtliche Entwicklung mit wichtigsten Meilensteinen

Bezeichnung	Technik und Anwendung	Zeit
Abakus,	mechanische Hilfsmittel	bis ca.
Zahlenstäbchen	zum Rechnen	18. Jahrhundert
mechanische	mechanische Apparate zum Rechnen	1623 - ca. 1960
Rechenmaschinen		
elektronische	elektronische Rechenanlagen zum	seit 1944
Rechenanlagen	Lösen von numerischen Problemen	
Datenverarbeitungs-	Rechner kann Texte und Bilder	seit ca. 1955
anlage	bearbeiten	
Informations-	Rechner lernt, Bilder und Sprache	seit 1968
verarbeitungssystem	zu erkennen (KI)	

• Fünf Rechnergenerationen im Überblick:

Generation	Zeitdauer (ca.)	Technologie	Operationen/sec
1	1946 - 1954	Vakuumröhren	40000
2	1955 - 1964	Transistor	200000
3	1965 - 1971	Small und medium scale	1000000
		integration (SSI, MSI)	
4	1972 - 1977	Large scale integration (LSI)	10000000
5	1978 - ????	Very large scale integration (VLSI)	100000000

• Rechner im elektronischen Zeitalter

- 1954: Entwicklung der Programmiersprache Fortran
- 1955: Erster Transistorrechner
- 1957: Entwicklung Magnetplattenspeicher, Erste Betriebssysteme für Großrechner
- 1968: Erster Taschenrechner
- 1971: Erster Mikroprozessor
- 1981: Erster IBM PC, Beginn des PC-Zeitalters

1.3 Ethik in der Informatik

- Ethik in der Informatik
 - Ethik: Bewertung menschlichen Handelns
 - Verbindung zur Informatik: Anwendung von Rechnern für kriegisches Handelns
 - Dual-Use-Problematik: Verwendbarkeit von Rechnern für zivile als auch militärische Zwecke
- Digitale Souveränität
 - Souveränität: Fähigkeit zur Selbstbestimmung (Eigenständigkeit, Unabhängigkeit)
 - Digitale Souveränität: Souveränität im digitalen Raum

2 Einführung in die maschinennahe Programmierung

2.1 Begrifflichkeiten und Grundlagen

- Allgemein
 - Architektur / Programmiermodell
 - Programmierersicht auf Rechnersystem
 - Definiert durch Maschinenbefehle und Operanden
 - Mikroarchitektur
 - Hardware-Implementierung der Architektur

• Programmierparadigmen

- Synonyme: Denkmuster, Musterbeispiel
- Bezeichnet in der Informatik ein übergeordnetes Prinzip
- Dieses Prinzip ist für eine ganze Teildisziplin typisch
- Manifestiert sich an Beispielen, keine konkrete Formulierung
- Maschinensprache (Assembler) ist ein primitives Paradigma

• Programmiermodell

- Bei höheren Programmiersprachen:
 - Grundlegende Eigenschaften einer Programmiersprache
- Bei maschinennaher Programmierung:
 - Bezeichnet dort den Registersatz eines Prozessors
 - Registersatz besteht aus:
 - Register, die durch Programme angesprochen werden können
 - Liste aller verfügbaren Befehle (**Befehlssatz**)
 - \bullet Register, die prozessorintern verwendet werden (IP/PC) zählen nicht zum Registersatz
 - IC: Instruction Pointer
 - PC: Program Counter

• Verfeinerung des Rechensystems

• CPU/Prozessor: führt die im Hauptspeicher abgelegten Befehle aus

• ALU/Arithmethic Logical Unit: Ausführung der Operationen

• PC/Program Counter: Verweis auf nächsten Maschinenbefehl im Hauptspeicher

• Register: Schneller Speicher für Operanden

• Hauptspeicher: Speichert Befehle und Daten

• Bus Interface: Verbinden der einzelnen Komponenten

• Assembler

- Programmieren in der Sprache des Computers
 - Maschinenbefehle: Einzelnes Wort
 - Befehlssatz: Gesamtes Vokabular
- Befehle geben Art der Operation und ihre Operanden an
- Zwei Darstellungen:
 - Assemblersprache: Für Menschen lesbare Schreibweise für Instruktionen
 - Maschinensprache: maschinenlesbares Format (1 und 0)

\bullet ARM-Architektur - Hier verwendetes Rechnersystem

- z.B. verwendet bei Raspberry Pi
- ARM: Acorn RISC Machines / Advanced RISC Machines
- Große Verbreitung heutzutage in Smartphones

2.2 Phasen der Übersetzung

• Beispielhaftes C-Programm:

```
#include <stdio.h> /* Standard Input/Output */ /* Header-Datei*/
int main() {
printf("Hello World\n");
return 0;
}
```

- C-Programm an sich für den Menschen verständlich
- Übersetzung in Maschinenbefehle für Ausführung auf dem Rechnersystem:

• 1. Phase (Preprocessor)

- Aufbereitung durch Ausführung von Direktiven (Code mit #)
- z.B.: Bearbeiten von #include <stdio.h>
 - Lesen des Inhalts der Datei stdio.h
 - Kopieren des Inhalts in die Programmdatei
- Ausgabe: C-Programm mit der Endung .i

• 2. Phase (Compiler)

• Übersetzt C-Programm hello.i in Assemblerprogramm hello.s

• 3. Phase (Assembler)

- Übersetzt hello.s in Maschinensprache
- Ergebnis ist das Objekt-Programm hello.o

• 4. Phase (Linker)

- Zusammenfügen verschiedener Module
 - Code von printf exisitert bereits als print.o-Datei
- Linker kombiniert hello.o und printf.o zu ausführbarem Programm
- Ausgabe des Bindevorgangs: ausführbare hello-Objektdatei

2.3 Ausführung eines Programms im Rechnersystem

- Ausgangspunkt
 - Ausführbares Objektprogramm hello auf der Festplatte
 - Starten der Ausführung des Programms unter Nutzung der Shell
- Ablauf:
 - Shell liegt Zeichen des Kommandos ins Register
 - Speichert den Inhalt dann im Hauptspeicher aber

• Schrittweises Kopieren der Befehle/Daten von Festplatte in Hauptspeicher

• Ausführen der Maschinenbefehle des hello-Programms

2.4 Befehle eines Rechnersystems

- Wieviele Befehle und was für Befehle soll ein Rechnersystem haben?
- Viele komplexe Befehle:
 - CISC-Maschinen (Complex Instruction Set Computer)
 - Befehlsausführung direkt im Speicher möglich
 - Verwendet von Intel-Architektur
- Weitgehend identische Ausführungszeit der Befehle
 - RISC-Maschinen (Reduce Instruction Set Computer)
 - Ermöglicht effizientes Pipeling
 - Werden auch als Load/Store-Architekturen bezeichnet (Nur Ausführung im Register)
 - Verwendet von ARM-Architektur
- Jedoch viele Befehle, die jeder Prozessor hat (AND, OR, NOT,...)
- Unterschiedliche Befehlsformate:
 - Erlauben Flexibilität
 - z.B. add und sub mit drei Registern als Operanden
 - z.B. 1dr und str verwenden zwei Register und Konstante
 - Anzahl an Formaten sollte jedoch klein sein
 - Hardware weniger aufwendig
 - Erlaubt evtl. höhere Verarbeitungsgeschwindigkeit
- Interner Aufbau eines Rechners hat viele Freiheitsgrade
- Diese Struktur hat erheblichen Einfluss auf die Leistungsfähigkeit eines Rechnersystems
- n-Adressmaschinen
 - Einteilung nach der Anzahl der Operanden in einem Maschinenbefehl
 - 2-Adressmaschine (Intel Architektur)
 - 3-Adressmaschine (ARM Architektur)

• Konstanten in Befehlen (intermediates)

- Direkt im Befehl untergebebracht \rightarrow Direktwerte
- Benötigen kein eigenes Register oder Speicherzugriff
- Direktwert ist Zweierkomplementzahl, die 12 Bit breit ist
- Bitbreite der Direktwertzahl vom Befehl abhängig
 - Befehle haben immer 32 Bit
 - Registeradressen werden mit 4 Bit kodiert
 - Übrigbleibende Bits für Direktwert

2.5 Registersatz

R0	
R1	
R2	• R0: Verwendet für Rückgabe von Werten an die Shell
R3	
R4	• R1-R12: General Purpose Register
R5	
R6	• R13: Stack Pointer (sp)
R7	
R8	• R14: Link Register (lr)
R9	
R10	• R15: Program Counter (pc)
R11	
R12	• Current Processor Status Register (CPSR)
R13 (sp)	
R14 (lr)	
R15 (pc)	
(A/C)PSR	
. , .,	

• Current Processor Status Register

• Enthält unter anderem die Statusflags

31	30	29	28	27	26 25	24	23 22 21	20	19 18 17 1	16 15	14 13	12 1	1 10	9	8	7	6	5	4	3	2	1	0
N	Z	С	٧	Q	IT	J		IL	GE		IT [7:2]		Е	Α	1	F	Т	М		M [3	3:0]	

- Werden oft für Vergleiche (b,beq,...) verwendet
- N (Negative): Wird verwendet um zu zeigen, dass Ergebnis negativ ist
- Z (Zero): Wird verwendet um zu zeigen, dass Ergebnis 0 ist
- C (Carry): Zeigt, dass Carry-Bit besteht
- V (OverFlow): Zeigt, dass Overflow geschehen ist
- Namen können je nach Prozessor stark variieren

2.6 Adressierung des Speichers, Lesen und Schreiben auf Speicher

• Allgemeine Verwendung von Registerspeicher

- Meist zuviele Daten für die Register
- Kombination des Registers und Hauptspeichers zum Halten von Daten
- Speichern von häufig verwendeten Daten in Registern (Schleifenvariable)

• Wort- und Byte-Adressierung von Daten im Speicher

- Byte-adressiert: (ARM)
 - Jedes Byte hat eine eindeutige Adresse (Zugriff auf jedes Byte möglich)
 - Ein Wort (hier 32Bit) besteht aus 4 Bytes (32 Bits)
 - Wortbreite ist von der Architektur abhängig
 - Wortadressen sind immer Vielfache von 4 (Offset von 4)

Wort- Adresse	-	_	/te- ess		Wort Adresse	t Adresse Daten							
					•				•				
С	F	Е	D	С	000000C	4 0	F	3	0	7	8	8	Wort 3
8	B A 9 8		8	8000000	0 1	Е	Е	2	8	4	2	Wort 2	
4	7	6	5	4	0000004	F 2	F	1	Α	С	0	7	Wort 1
0	3	2	1	0	00000000	A E	C	D	Ε	F	7	8	Wort 0
MSB LSB						Wortbreite = 4 Bytes							es

• Rechts wird ein Byte mit zwei Hexawerten dargestellt (AB: 1011 1010)

• Lesen aus byte-adressiertem Speicher

- Lesen geschieht durch Ladebefehle (Transportbefehl)
- Befehlsname: load word (ldr)
- Alternative für Bytes statt Wörtern: ldrb
- Adressarithmethik:
 - Adressen werden relativ zu Register angegeben
 - Basisadresse (startet bei Wort 9) plus Distanz (offset)
 - Adresse = (r5 (Basis) + 8 (offset))
- Beispiel 1:
 - Lese Datenwort von Speicheradresse (r5+8) und schreibe es in Register r7 mov r5,#0 /* Transportbefehl, schreibt Konstante 0 in r5 */
 ldr r7, [r5,#8] /* r7: Zielregister / [r5,#8] Quelle */
 - r7 enthält das Datenwort der Speicheradresse r5+8
- Beispiel 2:
 - Lesen Datenwort 3 (Speicheradresse 0xC (12er Offset)) nach r7
 - (Einschub: Ox sagt dem Compiler, dass das Folgende eine Hexzahl ist)

 mov r5,#0 /* Schreibt Konstante 0 in r5 */

 ldr r7, [r5, #0xC] /* Lädt den Wert (r5+12) in r7 */
 - Nach Abarbeiten des Befehls hat r7 den Wert 0x40F30788

• Schreiben in byte-adressierten Speicher

- Schreiben geschieht durch Speicherbefehle (Transportbefehl)
- Befehlsname: store word (str)
- Alternative für Bytes statt Wörtern: strb
- Beispiel:
 - Schreibe den Wert aus r9 in Speicherwort 5

```
mov r1,#0 /* Speichert Konstante 0 in r1 */
mov r9,#42 /* Speichert Konstante 42 in r9 */
str r9, [r1,#0x14] /* Schreibt Wert des 5. Wortes von r1 in r9 */
• #0x14: 14_{16} = 0001 \ 0100_2 = 20_{10} \ (5.\text{tes Wort})
```

2.7 Kontrollstrukturen in Assembler

• Statusbits

- Die Wichtigsten:
 - CF (CarryFlag)
 - ZF (ZeroFlag)
 - SF (SignFlag)
 - OF (OverflowFlag)
- Verwendung:
 - Vergleiche (cmp)
 - Gleichheit
- Unterschiede zwischen Carry und Overflow
 - Overflow: Ergebnis passt nicht in maximale darstellbare Werte (z.B. +8 bei 4 Bit im ZK)
 - Carry: Ergebnis passt nicht in Bitbreite (+5 1 = +4)
 - Sign: Vorzeichen negativ

• Sprünge / Verzweigungen

- Änderung der Ausführungsreihenfolge von Befehlen
- Unbedingte Sprünge
 - Werden immer ausgeführt
 - b target /* Springt von branch zu target */
- Bedingte Sprünge
 - Sprünge abhängig von Bedingung
 - beq target /* Ein Beispiel, eq für equal */
- Label
 - Label sind Namen für Adressen im Programm
 - Name muss unterschiedlich von Maschinenbefehlen (Mnemonics) sein
 - Label müssen mit einem Doppelpunkt abgeschlossen werden
 - Werden zur Markierung von Stellen für Sprünge verwendet (target)

• Bedingte Sprünge

- Weitere Bedingungen:
 - beq: Equal / Gleichheit
 - bne: Not Equal / Ungleichheit
 - bge: Greater / Größer

• ble: Less / Kleiner

• if-Anweisung

• if/else-Anweisung

• while-Schleifen

```
/* r0 = pow; r1 = x */
mov r0,#1
mov r1,#0
                /* Label für Schleife*/
WHILE:
cmp r0,#128
               /* Abbruchbedingung: Falls equal Z = 1 */
beg DONE
               /* Sprung aus Schleife */
lsl r0,r0,#1
               /* Linksshift um 1 Bit / Schleifencode */
add r1,r1,#1
               /* x = x + 1 / Schleifencode */
b WHILE
               /* Fortführen der Schleife */
DONE:
. . .
```

• for-Schleifen

```
/* r0 = i; r1 = sum */
mov r1,#0
mov r0,#0
FOR:
                /* Label für Schleife */
                /* Abbruchbedingung: Falls i größer als 10 ist */
cmp r0,#10
bge DONE
                /* sum = sum + i */
add r1,r1,r0
                /* i = i + 1 */
add r0,r0,#1
b FOR
                /* Fortführen der Schleife */
DONE:
. . .
```