Algebraic geometry 1 Exercise sheet 11

Solutions by: Eric Rudolph and David Čadež

12. Januar 2024

Exercise 3.

1. Since k is algebraically closed, the only irreducible polynomials $f \in k[x,y]$ are of degree 1.

Hence, we can write

$$f_r = l_1 \dots l_r,$$

where $l_i \in k[x, y]$ is of degree 1. From the assumption that f_r is homogenous it follows that the l_i are homogenous.

Therefore, we can write

$$Z = V(f_r) = V(l_1 \dots l_r) = \cup_i V(l_i)$$

and since $V(l_i)$ is a line through the origin, Z can be written as the finite union of lines through the origin.

2. We first want to prove that $\dim(\mathcal{O}_{X,(x,y)}) = 1$ for all r. The prime ideals p in this ring fulfil $(f) \subset p \subset (x,y)$. Remember that we can write down these prime ideals explicitly as in "What do primes of k[x,y] look like". From this the claim follows.

We know that $\dim_k(m_{\mathcal{O}_{X,(x,y)}}/m_{\mathcal{O}_{X,(x,y)}}^2)$ is the number of generators of $m_{\mathcal{O}_{X,(x,y)}}$.

Now if r=1, then we can write f=g(x,y)x+h(x,y)y and w.l.o.g. we have g(0,0)=1, meaning that it is invertible (after localizing). Therefore f=x+h(x,y)y, so $y\mid x$ meaning (x,y)=(y) On the other hand, if r>1, then $x\nmid y$ and $y\nmid x$ meaning that m is no principal ideal showing that X is singular at zero in this case. (This can be seen by writing f as $f=x^2h_1(x,y)+xyh_2(x,y)+y^2h_3(x,y)$).

3. By part two of this exercise, all the schemes have a singular point at the origin. I don't know why they do not have singular points anywhere else.