EPISTACY: A SAS program for detecting two-locus epistatic interactions using genetic marker information.

Version 2.0 Help Guide

J.B. Holland USDA-ARS Department of Crop Science North Carolina University Raleigh, NC 27695-7620 Phone: (919) 513-4198

Fax: (919) 515-7959 Email: james_holland@iastate.edu

and

H. Ingle The Bayer Corporation Clayton, NC

Original version note by J.B. Holland published in Journal of Heredity 1998 Volume 89 pp374-375.

Introduction

Epistatic interactions among genes can play an important role in their phenotypic expression, in genotypic variation in populations, and in response to natural and artificial selection. Detection and estimation of epistasis by traditional biometrical methods can be difficult, however. Estimation of genotypic values at many loci has become feasible with the advent of molecular marker technologies. Information from molecular marker studies can provide a direct method to estimate epistasis (Cheverud and Routman, 1995). Edwards et al. (1987) tested for epistatic interactions among all two-locus pairs assayed in their study, but only 20 marker loci were used. Damerval et al. (1994) tested for epistasis among all pairs of 109 loci and reported that many important epistatic interactions were detected even among loci that did not have significant main effects. Li et al. (1997) reported that epistatic interactions among quantitative trait loci (QTL) affecting grain yield components in rice were important, but most of these interactions would have remained undetected had not all possible (4,465) pairs of 95 random markers had not been tested for epistasis. Holland et al. (1997) tested all pairs of 561 loci for epistatic interactions and reported important epistatic interactions among QTL, particularly between pairs of loci in which at least one locus had no significant main effect. Therefore, by restricting tests for epistasis to loci which have significant main effects, it is likely that some important epistatic interactions will not be detected. Unfortunately, the number of possible two-way tests among n loci is n(n-1)/2. Thus, with data on 561 loci, Holland et al. (1997) had to perform 157,080 tests to search for epistasis among all possible pairs. A computer program is needed to perform systematically and efficiently the large number of tests that are required in some cases.

EPISTACY is a program designed to be implemented in SAS (SAS Institute, 1988) to perform all pairwise tests among any number of marker loci to detect epistatic interactions, to select those marker locus pairs that have detectable interactions at a chosen level of significance, and to print out genotypic means and interaction statistics associated with selected pairs. The output includes estimates of the error variance, the overall interaction variance, and the interaction partial R^2 for each selected pair. The partial R^2 statistic is computed as the interaction partial (Type III) sum of squares divided by the total sum of squares, and refers to the amount of phenotypic variance explained by the epistatic interaction after accounting for the main effects of the two loci considered (Holland et al., 1997). Users are expected to have some experience with SAS in order to input their data in a correct format and to modify some aspects of the program to suit their requirements. The program uses two macros, one nested in the other, to create pairs of loci to be used as independent class variables in analyses of variance implemented by SAS Proc GLM (SAS Institute, 1988). Each macro must be invoked n-1 times to test all possible pairs of n loci. Thus, users must write out 2(n-1) macro invocations as part of their modifications to the program. Properly used, the program will not make redundant tests.

Two basic versions of the program have been written: one designed for use with recombinant inbred (RI) line populations and one for F_2 populations. The RI program has the option to eliminate heterozygotes from the tests, such that only additive-by-additive forms of epistasis will contribute to the epistatic interaction variance. The F_2 program allows for partitioning of the interaction variance into

components due to additive-by-additive, additive-by-dominant, dominant-by-additive, and dominant-by-dominant form of epistasis through the use of contrast statements in Proc GLM. The program can be used to analyze other generations or mating designs, as well, but, in some cases, interpretation of results becomes more difficult. For example, if genotypic data are taken from F_2 individuals, and phenotypic data from self-fertilized progeny of the F_2 's, the additive-by-additive portion of epistasis can be interpreted easily, but the forms of epistasis involving dominance are less easily interpreted, because only half of the selfed progeny of a heterozygous individual will be heterozygous. In addition, if the F_2 program is used, the contrast statements will produce correct results only if all nine progeny classes exist in the data. Therefore, the contrast statements will produce correct results only if codominant markers are used.

The fact that the number of pairwise tests for epistasis increases proportionally to the square of the number of loci considered causes not only the technical difficulty of how to execute many tests, but also the problem of experiment-wise error rates. The issue of experiment-wise error rates in molecular marker studies is already complex (Churchill and Doerge, 1994). Bonferroni-style significance levels (Rawlings, 1988) will tend to be far too conservative, because of the dependencies among tests due to linkage. Permutation tests (Churchill and Doerge, 1994) could be applied to epistatic analyses, but probably would be excessively computationally intensive to be practical. A liberal, but reasonable, significance level for testing all possible pairwise interactions could be calculated by dividing the comparison-wise error rate by g(g-1)/2, where g is the number of linkage groups or chromosomes being studied. Users are encouraged to consider the issue of experiment-wise error rates before implementing the program.

A different computer program, "Epistat", also designed to analyze epistatic interactions among quantitative trait loci, has been published recently (Chase et al., 1997). EPISTACY differs from the program developed by Chase et al. (1997) in that it is designed to work in the SAS system; EPISTACY uses linear models and least squares statistics rather than the maximum likelihood methods employed by "Epistat"; and EPISTACY has the capability to analyze data from F_2 individuals and F_2 -derived lines as well as recombinant inbred lines and to test for dominant forms of epistasis, unlike "Epistat" that uses data only from homozygous loci.

The program was designed to run under PC-SAS, but also works on mainframe or Macintosh versions of SAS as well with minor modifications. There is a technical problem encountered running the program under Windows 95, but software is freely available from the SAS Institute to solve the problem, and instructions on obtaining the necessary software are included with the program. Copies of the program can be obtained from the author by sending a 3-1/2-inch diskette or an email to the author. Hard copies of the program are available on request from the author as well. Detailed instructions, including examples of data sets and modified programs and outputs will be distributed along with the program. One example program analyzes data from 150 maize F₂ progeny genotyped at 114 loci. This program required approximately 90 minutes of real time to run and accessed approximately 50 MB of hard drive memory when executed on a PC with 16 MB RAM, a 120 MHz

Pentium processor running SAS under Windows 3.1. The second example program analyzes data from 84 oat RI lines genotyped at 252 loci, and required approximately 7.5 hours to run and accessed 246 MB of hard drive memory on the same system.

Acknowledgements

Data from the maize F2 population used in the example program were kindly provided by D. Asmono and M. Lee, Iowa State University. Data from the oat RI population used in the example were kindly provided by W. Siripoonwiwat, L.S. O'Donoughue, D. Wesenberg, D.L. Hoffman, J.F. Barbosa-Neto, and M.E. Sorrells, Cornell University, DNA Landmarks, Inc., and USDA-ARS Small Grains Research Facility. The helpful comments of two anonymous reviewers were greatly appreciated.

References

Chase K, Adler FR, and Lark KG. 1997. Epistat: a computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet. 94:724-730.

Cheverud JM and Routman EJ, 1995. Epistasis and its contribution to genetic variance components. Genetics 139:1455-1461.

Churchill GA, and Doerge RW, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963-971.

Damerval C, Maurice A, Josse JM, and de Vienne D, 1994. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289-301.

Edwards MD, Stuber CW, and Wendel JF, 1987. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. numbers, genomic distribution and types of gene action. Genetics 116:113-125.

Holland JB, Moser HS, O'Donoughue LS, and Lee M, 1997. QTLs and epistasis associated with vernalization responses in oat. Crop Sci. 37:1309-1414.

Li, Z, Pinson SRM, Park WD, Paterson AH, and Stansel JW. 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453-465.

Rawlings, JO, 1988. Applied regression analysis:a research tool. Wadsworth and Brooks/Cole, Pacific Grove, CA.

SAS Institute Inc., 1988. SAS/STATTM User's Guide, Release 6.03 Edition. SAS Institute Inc. Cary, NC.

What's new in Version 2.0?

Version 2.0 was modified to eliminate the need to write out each locus name in each of two macro invocations. Instead, the two macros that executed the analysis in the original program have been replaced with a single macro that will analyze all pairs of marker loci. The new program is more efficient as well, because most of the data set manipulations are conducted only on the "significant" results. The new version requires the user to have a list of all of the marker locus names. The new program will read this list and use it to generate locus pairs in the analysis macro. Finally, the new program is written to read in data from open Excel spreadsheets. This may be easier for many users, and if not, the old data input statements can be used to read from text files.

Known Bugs

Problems running EPISTACY with SAS version 8.0

SAS version 8.0 introduced an "enhanced" editor that highlights SAS programs with colored fonts to ease debugging. Unfortunately, there is a bug with this editor: when code is embedded in a macro, the program returns to the regular editor rather than the enhanced editor after the macro loops. So, the program quits after one macro loop. SAS technical help says they are aware of the problem and will fix it in future versions of SAS. Until then, the problem is avoided by simply running the program from the regular editor. On the SAS menu, choose "View" then "Program Editor", then open the program file and run it from that window.

Problems Running EPISTACY Under Windows 95

EPISTACY works optimally under Windows 3.1 and Windows 98, but encounters a technical difficulty with memory allocation when run under Windows 95. The problem occurs with all SAS programs that use more than 500-600 macro loops, as do the example programs written for EPISTACY. The following information was provided by The SAS Institute:

SAS Note: D134

Title: SAS bug causes Windows 95 to hang in macros that loop enough times

Keywords: SYS.SYS BASE D0090627 DAV JAN97 V6-SYS.SYS-D134 UNOTE SHIP D134

6.11 WIN95 6.12 WIN95

BUG WINDOWS 95 HANG MACROS LOOP ENOUGH TIMES WNC CLOSE MEMORY LEAK

INSUFFICIENT IML SCL

PRODUCT: BASE DIVISION: PC SYSTEMS PRIORITY: N/A

MODULE :SYS.SYS SUPPORT: CATES, M. BUGID: D0090627

SHIP :Y STATUS: USAGE NOTE

Repeated invocations of the SAS System under Microsoft Windows 95 will result in a memory leak that will cause the system to malfunction. It has been determined that about 600 invocations of the SAS System in interactive mode or about 2000 invocations in non-interactive mode will reproduce this problem. In addition, any macro code which loops sufficient times (our tests show 500-600 would be enough) will also reproduce the problem.

SAS will bring up a blank dialog box with a close button on it. Pressing the close button will clear the dialog box and end the SAS session. No other applications will start up, you will get an "insufficient memory" error message. You will also not be able to restart the PC from the Start button, you will have to cold boot.

Large IML loops have also encountered this problem.

We have a fix that can be downloaded from the SAS Institute, Inc. web site. Location is: http://www.sas.com/techsup/download/pc/fiberfix.exe This is a self-contained explodable file. Put it in a subdirectory by itself and double click on it. Readme.txt file contains password.

The "fiberfix" program provided by The SAS Institute has solved the memory leak problems for all EPISTACY programs that I have attempted to run under Windows 95.

Problems Running EPISTACY as a Batch Job Under UNIX or Other Mainframe Systems

Note that unless the command "option nosource nonotes" is used at the beginning of an EPISTACY program which is to be run as a batch job on a mainframe system, the "log" file produced by the program will become too large and cause the program to exit without successfully completing execution. The command 'dm "log; clear" that is suggested for use under a Windows or Macintosh operating system will be ineffective at suppressing the log file produced by a batch program.

A problem with use of the "options nosource nonotes" command is that it eliminates all error messages that are normally printed to the log file. If there are errors in the program, this will make troubleshooting the program exceedingly difficult. It is recommended that users begin by running sample programs with only a small subset of all of the marker loci to be analyzed ultimately and allow the log file to be printed as usual. Users can also set the selection criterion for the probability level much higher than is to be used ultimately, so that the program output can be checked on a subset of the markers. Under these conditions, troubleshooting the program and the output is made much easier. Once the user is confidant that the program is executing as desired, the options "nosource" and "nonotes" can be used at the beginning of the program to suppress the log file, the probability criterion can be set at the appropriate level, and the full set of marker loci can be included in the macro invocations to test all possible pairs of loci.

Examples of Program Modifications and Sample Data Sets

Example 1: F2Example.sas

Data Files

We have Version 2.0 set up to read data in from an open Excel spreadsheet. This requires a few changes in the infile statement that was traditionally used to read data from text files. Also, we assume that the spreadsheets are organized such that progeny or lines are listed in different rows of the first column, and genotypic and phenotypic data listed in following columns. This is different from the format used for the MAPMAKER/QTL program. The data for both example programs were originally set-up in the MAPMAKER format and had to be altered. The original file with the maize F_2 data, for example, appeared as:

```
data type F2 intercross
150 125 63
#Dwi Asmono's F2 and F2:3 data set, Mo17H99 crosses (file \...\mapnew5.raw).
НАНААНВИНААНАНАНАННИНВИНВИНАННАННИВИНВИАААНИНИНААВВВИААААНААННА
АВИННАННАННАВИНАНАНВИННИНАННИВВАННАННИННИННИВВИНАНВВИНИНВВИНИНВВИНИНАНВАННАНАН
*UMC164
НАННВНВ
...etc...
*ISU149
ACAACCC
*PLHT
      190 240 215 195 210 210
                           215 210
                                  230 215
                                         210
   225 225 240 220 215 245 240 225 225 175 215
                                         225
   215 170 240 210 210 215 205 185 240
                                  205 235
                                         230
   200
...etc...
   235 235 220 245 210 210 240 210 190
```

To convert this into a form suitable for SAS, the data were imported into a spreadsheet program and each progeny was represented by a single column. This data matrix data was transposed in the spreadsheet program, and a new column containing the F_2 progeny identification numbers was added. Some of the marker loci in the original data (eg., ISU149) were dominant loci. The data from these dominant loci were eliminated from the data set because codominant loci are required to test for epistasis in the F_2 generation.

There were many columns of genotypic data, so the data were split into two parts, each containing

about half of the marker data on all progeny. The data are included as two different sheets, MAIZEF2A and MAIZEF2B, within the same Excel spreadsheet, "MaizeF2Data.xls" The data appear as:

PROG	UMC94	UMC164	UMC157	NPI234	UMC13	P1	NPI429	NPI236
	1	НН	Α	Α	Α	Α	Н	В
	2	A A	Α	Н	Н	Н	Н	Α
	3	НН	Α	Α	Н	Н	Н	В
etc								

A third sheet was made in this same file ("MaizeF2Data.xls"), containing the names of all of the loci to be tested. It is called "MaizeLoci" and is simply a column listing all of the loci to be tested (order does not matter here):

UMC94 UMC164 UMC157 NPI234 UMC13 P1 NPI429 etc...

Program Modification

"F2Example.sas" was written by modifying the more general "EPIF2.sas" program in the way outlined here. Since the data are not in a single file, two "infile" statements are used in the program "EPIF2.sas". Because the genotypic data are in an alphabetical format, the "input" commands must declare the marker loci as alphabetic data, using the "\$" symbol. Also, since SAS does not accept variable names including the "." symbol, the letter "z" was substituted for the "." in the names of such loci in the "input" statements. For example, notice that "BNL6.32" was written as "BNL6z32" in the first input statement. The data from the two files are input into separate data sets, which are then merged into a single data set, named "all". Also note that the directory specified in the "infile" commands should be altered to match the directory that the data files are in. The program modifications begin with the following commands to read in the list of locus names ("locname") and to determine the total number of loci to be tested ("nummark"):

```
data loci;
FILENAME ALLLOCI DDE "EXCEL|[MaizeF2Data.xls]MaizeLoci!R1C1:R114C1";
INFILE ALLLOCI NOTAB DLM= '09'X DSD MISSOVER lrec1 = 10240;
input locname $;
N=_n_;
call symput ('nummark', trim(left(N)));
```

```
run;
proc sort data=loci;
by locname;
run;
```

Next, the program creates global variable names for each locus that can be processed in the analysis macro:

```
data a;
set loci;
by locname;
if first.locname then do;
i+1;
put locname= ;
ii=left(put(i,3.));
call symput ('genmark'||ii, trim(upcase(locname)));
end;
run;
```

Next, the first half of the data are read in from the sheet called "MAIZEF2A" in the file called "MaizeData.xls". Note that the file must be OPEN in excel for this method of inputting to work. For other data sets, one simply changes the designation of the rows and columns to read from. In this case, we read from Row 2, Column 1 to Row 151, Column 65, "R2C1:R151C65," of the designated sheet ("MaizeF2A") in the designated file ("MaizeData.xls"):

```
data one;
```

```
FILENAME one DDE "EXCEL | [MaizeData.xls]MaizeF2a!R2C1:R151C65";
INFILE one NOTAB DLM= '09'X DSD MISSOVER lrec1 = 10240;
input PROG UMC94 $ UMC164 $ UMC157 $ NPI234 $ UMC13 $ P1 $ NPI429 $ NPI236 $
UMC37 $ PANXX2z3 $ ISU018 $ ISU019A $ ISU006 $ UMC86A $ BNL6z32 $ UMC53 $
UMC78 $ UMC131 $ UMC98A $ UMC4 $ BNL8z44B $ BNL8z15 $ UMC121 $ BNL8z35 $
UMC26 $ BNL3z18 $ Sh2 $ UMC123 $ PIO20713 $ BNL5z46 $ Bt2 $ NPI292 $ PIO10z25
$ UMC111 $ UMC86B $ BNL6z25 $ UMC72 $ UMC27 $ BNL10z06 $ Bt1 $ BNL10z12 $
ISU019B $ UMC51 $ UMC68 $ NPI235 $ UMC65 $ PL1 $ UMC21 $ NPI280 $ UMC62 $
AGP1 $ BNL15z40 $ UMC98B $ UMC110 $ BNL7z61 $ BNL8z39 $ BNL8z44A $ UMC35 $
BNL9z11 $ UMC103 $ BNL9z08 $ UMC48 $ NPI268 $ UMC7 $;
```

```
data two;
```

```
FILENAME two DDE "EXCEL | [MaizeData.xls]MaizeF2b!R2C1:R151C65";
INFILE two NOTAB DLM= '09'X DSD MISSOVER lrecl = 10240;
input PROG C1 $ BNL3z06 $ UMC153 $ BNL8z17 $ BNL14z28 $ NPI209 $ UMC64 $
ISU005 $ ISU012 $ NPI287 $ ISU049 $ ISU040 $ ISU064 $ ISU104 $ ISU141 $
ISU169 $ ISU98 $ ISU119 $ ISU150 $ ISU133 $ ISU115 $ ISU036 $ ISU069 $ ISU109
$ ISU120 $ ISU139 $ ISU116 $ ISU074 $ ISU152 $ ISU124 $ ISU136A $ ISU136B $
ISU032 $ ISU088 $ ISU045 $ ISU048 $ ISU075 $ ISU147 $ ISU138 $ ISU093 $ ISU058
$ ISU047 $ ISU046 $ ISU100 $ ISU053 $ ISU021 $ ISU132A $ ISU132B $ ISU168A $
```

data all; merge one two; by prog; proc print;

The "proc print" command should print out the combined data set to the "output" screen as follows:

```
Р
              Α
                 Т
                            N B
           N N
              NISIUN
                            LNUN
                                  Ν
                                    U
                        U U
           PPUXSUSMLUUMM
                            8 L M L U L
    UMMPU
   PMCCIM
           IIMXUOUC6MMCCUZ8C8M3
           4 2 C 2 O 1 O 8 Z C C 1 9 M 4 Z 1 Z C Z S 1
  R C 1 1 2 C
  0 9 6 5 3 1 P 2 3 3 Z 1 9 0 6 3 5 7 3 8 C 4 1 2 3 2 1 H 2
  G 4 4 7 4 3 1 9 6 7 3 8 A 6 A 2 3 8 1 A 4 B 5 1 5 6 8 2 3
  2 2 A A A H H H H A A A A A A A A A H H H H H H A A H H H
  4 A A A B H H H B B B B H H H
                      нанвининин
  5 A A A A A A A B B B B B B B A A A A H H H A A H B A
... etc...
         ΙI
                            III
  IIIIIISSIIIIIIIIIIIIIISSSU
  1 1 1 0 1 1 3 3 0 0 0 0 0 1 1 0 0 0 0 1 0 0 3 3 6 1 L
B 2 3 1 7 5 2 6 6 3 8 4 4 7 4 3 9 5 4 4 0 5 2 2 2 8 6
  0 9 6 4 2 4 A B 2 8 5 8 5 7 8 3 8 7 6 0 3 1 A B A 5
H B B A A B H B A H
                    A A A
147 A A H
                         H H B A H B B 240
150 B B B H H H B B H B H H H B B H B H H H H H H A H H 215
```

Following this is the macro ("f2") that conducts the analysis and sorts the outputs. A few modifications to this macro may be necessary. In this example, we used the "A", "B", "H" notation for genotypic classes, whereas the original program assumes the notation 0, 1, 2 is used. This requires two changes within the "f2" macro.

First, the macro computes four contrasts for specific forms of two-locus epistasis: additive-by-additive (AxA), additive-by-dominant (AxD), dominant-by-additive (DxA), and dominant-by-dominant (DxD) interactions. In order to compute the contrasts correctly, one must know the order in which SAS lists the two-locus genotypes. The general program assumes that the genotypes were coded using the 0,1,2

notation, in which case the nine genotypic means would be listed by SAS in the order: (0-0), (0-1), (0-2), (1-0), (1-1), (1-2), (2-0), (2-1), (2-2). If allelic notation is used, this can be written as: $A_{11}B_{11}$, $A_{11}B_{12}$, $A_{12}B_{11}$, $A_{12}B_{12}$, $A_{12}B_{12}$, $A_{22}B_{11}$, $A_{22}B_{12}$, $A_{22}B_{22}$

In this example, however, the A,B,H notation was used, and SAS orders the genotypic class means as: $A_{11}B_{11}$ (A-A), $A_{11}B_{22}$ (A-B), $A_{11}B_{12}$ (A-H), $A_{22}B_{11}$ (B-A), $A_{22}B_{22}$ (B-B), $A_{22}B_{12}$ (B-H), $A_{12}B_{11}$ (H-A), $A_{12}B_{22}$ (H-B), $A_{12}B_{12}$ (H-H). Therefore, the order of the coefficients in the contrast statement must be changed to reflect this:

```
contrast "AxA" &m1*&m2 1 -1 0 -1 1 0 0 0 0;

contrast "AxD" &m1*&m2 1 1 -2 -1 -1 2 0 0 0;

contrast "DxA" &m1*&m2 1 -1 0 1 -1 0 -2 2 0;

contrast "DxD" &m1*&m2 1 1 -2 1 1 -2 -2 -2 4;
```

Also note that it is a good idea to keep the zero's at the end of these contrast lists, even though they are not required by SAS to compute the contrast. The reason is that it is possible that all nine genotypes may not be represented for some locus pairs. In such cases, the order of the genotypic means may change, and the contrast coefficients will be incorrect. By keeping all of the zero's, SAS expects nine different means, and if all nine are not present, it will not compute the contrast. Having no contrast calculated is preferable to having incorrect contrasts computed.

Second, we need to change the coding for the two-locus genotype means in the macro:

```
data geno1; set means; if geno1 = "A" and geno2 = "A"; geno00 = lsmean; proc
sort; by locus1 locus2;
data geno2; set means; if geno1 = "A" and geno2 = "H"; geno01 = lsmean; proc
sort; by locus1 locus2;
data geno3; set means; if geno1 = "A" and geno2 = "B"; geno02 = lsmean; proc
sort; by locus1 locus2;
data geno4; set means; if geno1 = "H" and geno2 = "A"; geno10 = lsmean; proc
sort; by locus1 locus2;
data geno5; set means; if geno1 = "H" and geno2 = "H"; geno11 = lsmean; proc
sort; by locus1 locus2;
data geno6; set means; if geno1 = "H" and geno2 = "B"; geno12 = lsmean; proc
sort; by locus1 locus2;
data geno7; set means; if geno1 = "B" and geno2 = "A"; geno20 = lsmean; proc
sort; by locus1 locus2;
data geno8; set means; if geno1 = "B" and geno2 = "H"; geno21= 1smean; proc
sort; by locus1 locus2;
data geno9; set means; if geno1 = "B" and geno2 = "B"; geno22 = lsmean; proc
sort; by locus1 locus2;
data allgeno; merge geno1 geno2 geno3 geno4 geno5 geno6 geno7
geno8 geno9; by locus1 locus2;
rename _name_ = trait; drop stderr lsmean geno1 geno2;
```

To invoke the macro that will do the analyses, one must specify the trait (dependant variable) to be analyzed, and also the threshold probability value (alpha) that is used to declare an interaction significant. The program deletes results from all locus pairs that are not significant at the end of each invocation of the "var1" macro. The user is responsible for determining an appropriate alpha level for their situation. In general, however, testing of more locus pairs should require a more conservative (lower) threshold probability value. In this example, we want to analyze the trait called "PLHT" and use a threshold p-value of P=0.001, so we invoke the "f2" macro with this command:

%f2(plht, 0.001);

Program Output

The output from the program will include the results of the "proc print" statement on the complete data set, already discussed, and the following statistics:

OBS	LOCUS1 L	OCUS2 TI	RAIT DFER	R SSERR	DFINT	SSINT H	FINT PRO	BINT
1 2			LHT 126 LHT 138		4 4			35077 52748
OBS	SSMOD	SSAXA	FAXA	PROBAXA S	SAXD	FAXD PRO	BAXD SSD	XA
1 2			0.48383 4.18433			0.032558 0.8 0.012752 0.9	35710 5355 91026 446	
OBS	FDXA	PROBDXA	SSDXD	FDXD	PROBD	XD SSTOTAI	DARTR2	GENO00
1 2	21.2235 1.8894	0.00001 0.17150	7.18 4752.49		0.8662			200.714 223.947
OBS	GENO01	GENO02	GENO10	GENO11	GENO?	12 GENO20	GENO21	GENO22
1 2	218.667 226.000	230.000 191.667	220.217 225.227	218.690 212.935	214.16		217.000 223.125	235.000 203.684

This output indicates that only two locus pairs showed significant interaction at the threshold level, P=0.001. The first two columns indicate the loci involved in the interaction. The first interaction listed here is between "BT1" and "BNL8.39". The trait "PLHT" (plant height) is indicated next. This is followed by the degrees of freedom for the error variance estimate, "DFERR"; the sum of squares for the error variance estimate, "SSERR"; the degrees of freedom for the interaction, "DFINT"; the sum of squares for the interaction, "SSINT"; the F-value for the interaction, "FINT"; and the probability value for the interaction, "PROBINT". It is this last variable that determines whether or not a locus pair will

be retained in the output. Note that the "PROBINT" of both locus pairs in the output are less than 0.001. The output columns continue on another line, with the sum of squares for the full model, both locus main effects plus their interaction, "SSMOD"; the sum of squares for the additive by additive epistatic contrast, "SSAXA"; the F-value for the AxA contrast, "FAXA"; the P-value for the AxA contrast, "PROBAXA"; the sum of squares, F-value, and P-value for the additive by dominant contrast, "SSAXD", "FAXD", and "PROBAXD"; the sum of squares, F-value, and P-value for the dominant by additive contrast, "SSDXA", "FDXA", and "PROBDXA"; and the sum of squares, F-value, and P-value for the dominant by dominant contrast, "SSDXD", "FDXD", and "PROBDXD". The total sums of squares, model plus error, "SSTOTAL" are listed next, followed by the partial R² value, which is the partial sums of squares for the interaction divided by the total sums of squares, "PARTR2". Finally, the nine genotypic class means are listed: "GENO00", corresponding to the genotype A-A, "GENO01", corresponding to the genotype A-H, etc.

Interpretation of the Output

Interpretation of the form of the epistatic interaction detected by the program can be aided by the results of the contrasts and by the genotypic means printed in the output. First, notice that although the four contrasts used are orthogonal if there are equal numbers of genotypes in each class, this condition is not expected to be met, and the contrasts are not, in fact, orthogonal for that reason. For example, the sum of squares for the first interaction, between "BT1" and "BNL8.39" was 5651.90. The sum of the four contrast sums of squares, however, was 122.09 + 8.22 + 5355.67 + 7.18 = 5493.16.

The first interaction is significant because of dominant by additive epistasis. The DxA contrast was the only one significant for that locus pair, and its sum of squares is much greater than those for any other contrast. Dominant by additive epistasis implies that the expression of dominance at the first locus is affected by the homozygous genotype at the second locus. The dominance of the first locus can be estimated from the genotypic means printed to see how it was affected by the second locus. For those genotypes homozygous for the "A" allele at locus BNL8.39, dominance at the BT1 locus can be estimated as GENO10 - (GENO00 + GENO20)/2 = 220.217 - (200.714 + 195.714)/2 = 22.0. This estimate is in the overdominance range. Dominance at the BT1 locus can be estimated for those genotypes homozygous for the "B" allele at BNL8.39 as GENO12 - (GENO02 + GENO22)/2 = 214.167 - (230.000 + 235.000)/2 = -18.3. This estimate is in the underdominant range. Thus, the expression of dominance at the BT1 locus changes from strongly overdominant to strongly underdominant, depending upon the homozygous genotype at the BNL8.39 locus, which is the cause of the significant dominant by additive contrast.

The second interaction, between UMC78 and UMC98A, seems due in small part to additive by additive epistasis (PROBAXA = 0.04), and in large part to dominant by dominant epistasis, because the sum of squares due to dominant by dominant epistasis is by far the largest of the contrasts, and the probability value is 0.00002. Dominant by dominant epistasis implies that the expression of dominance at the first locus is affected by the heterozygote at the second locus. Dominance at UMC78 for

genotypes heterozygous at UMC98A can be estimated as: GENO11 - (GENO01 + GENO21)/2 = 212.935 - (226.000 + 223.125)/2 = -11.6. This can be compared to the average of dominance estimated at each of the homozygous genotypes at UMC98A: {[GENO10 - (GENO00 + GENO20)/2] + [GENO12 - (GENO02 + GENO22)/2]}/2 = {[225.227 - (191.667 + 208.333)/2] + 218.750 - [(191.667 + 203.684)]}/2 = (25.2 + 21.1)/2 = 23.2. Thus, UMC78 is associated with overdominance for plant height when UMC98A is homozygous for either allele, but it is associated with underdominance when UMC98A is heterozygous. This is the cause of the significant dominant by dominant contrast.

Example 2: EPISTACY.OAT

Data Files

The data for this example come from Siripoonwiwat, W., L.S. O'Donoughue, D.Wesenberg, D.L. Hoffman, J.F. Barbosa-Neto, and M.E. Sorrells. 1996. Chromosomal regions associated with quantitative traits in oat. J. Quantitative Trait Loci 2, Article 3.

http://probe.nalusda.gov:8000/otherdocs/jqtl/. The data can be downloaded from the World Wide Web by accessing the "Grain Genes" map data page:

"http://wheat.pw.usda.gov:80/ggpages/newggmaps.html"

After eliminating the header rows, the genotypic data appear as:

The phenotypic data are in a separate file, and appear as:

```
^GPI93 64.09 67.14 59.99 63.41 57.03 64.01 63.94 62.77 69.99 66.36 64.15 ... 
^GPI94 66.06 70.02 67.78 68.25 59.93 62.00 67.40 61.20 70.79 63.82 63.91 ... 
^GPI95 76.76 78.48 75.36 77.58 73.12 74.18 72.02 74.30 73.69 75.94 73.18 ... 
...etc... 
^YDI95 2730.61 2748.96 2819.17 3111.37 3082.00 3120.99 3021.06 2865.12 ...
```

As in the previous example, the original data files were imported into a spreadsheet program where each RIL was represented by a single column. This matrix of genotypic data was transposed in the spreadsheet program and a new column containing the RIL identification numbers was added. The phenotypic data were also imported into a spreadsheet file.

Again, the data set was very large, so it was split into five sheets of marker data ("RFLPA," "RFLPB," "RFLPC," "RFLPD," and "RFLPE") plus one sheet of phenotypic data ("Traits") within the spreadsheet file called "RILExampleData.xls".

Program Modification

"ExampleRI.sas" was written by modifying the more general ""EPIRIL.sas" program in the way outlined here. Since the data are not in a single file, six "infile" statements are used in the program. The data from the six files are input into separate data sets, which are then combined into a single data set, named "all" using the "merge" command. Also note that the directory specified in the "infile" commands should be altered to match the directory that the data files are in. The program modifications begin with the following commands:

data rflpa; infile "C:\rflpa.dat" missover;
input ril avn3 BCD1049 BCD1108 BCD1117 BCD115A
BCD1160 BCD1184 BCD1186 BCD1230B BCD1235 BCD1237 BCD1250 BCD1261A
BCD1265 BCD127 BCD1270 BCD1280A BCD1307 BCD1338A BCD1380A BCD1405
BCD1407 BCD1532A BCD1532B BCD1555 BCD1580 BCD1643A BCD1660 BCD1695
BCD1716A BCD1716B BCD1734 BCD1779 BCD1797A BCD1797C BCD1802 BCD1823A
BCD1829B BCD1851C BCD1856 BCD1860 BCD1871 BCD1872A BCD1872B BCD1876
BCD1882B BCD1882C BCD1897A BCD1931 BCD1950A BCD1950B;
if ril = "." then delete; proc print;

data rflpb;infile "C:\rflpb.dat" missover;
input ril BCD1968B BCD1968C
BCD269 BCD327 BCD342A BCD421A BCD454 BCD808A BCD897 BCD907 BCD961
BCD978 CD01081 CD01090C CD01091 CD01092 CD01168A CD01174A CD01192A
CD01192B CD01196 CD01199A CD0122 CD01238 CD01242 CD01246A CD01281
CD01313 CD01319A CD01319B CD01321A CD01326 CD01328 CD01340 CD01342
CD01345 CD01358 CD01378A CD01378B CD01380 CD01388 CD01396 CD01402A
CD01403A CD01403B CD01407B CD01414B CD01419 CD01423B CD01428A CD01428B
CD01430;if ril = "." then delete; proc print;

data rflpc;infile "C:\rflpc.dat" missover;
input ril CD01433 CD01435B CD01435C CD01436C CD01437B CD01445A CD01445B
CD01454 CD01464 CD01466 CD01467A CD01471 CD01495 CD01509A CD01509C
CD01510 CD01523A CD01523B CD0187 CD0189 CD0220 CD0278 CD0304 CD0309A
CD0346B CD0348B CD0370 CD0373 CD0393D CD0395A CD0405 CD0412A CD0414
CD0420B CD0457A CD0460A CD0460B CD0480 CD0482A CD0482C CD0482D
CD0484A CD0539B CD054 CD0542 CD0549A CD057A CD057C CD057D CD0580
CD0585B CD058A CD058B CD058C CD0590A CD0590B CD0595;
if ril = "." then delete; proc print;

data rflpd;infile "C:\rflpd.dat" missover;
input ril CD0608A CD0618A CD0638 CD0665A CD0673A
CD0708A CD0708B CD0718B CD0770B CD0772 CD0780 CD0795A CD0795B CD082
CD0942 CD0962A CD0962B ISU0563B ISU0582A ISU0582B ISU1146A ISU1163
ISU1247A ISU1254B ISU1372B ISU1450 ISU1463 ISU1543A ISU1651 ISU1736
ISU1755B ISU1774A ISU1874A ISU1900A ISU1900B ISU1958B ISU1961 ISU2013
ISU2124A ISU2192A ISU2287 KSUA1 OG49 PTA71A PTB17 PX5 R209A R221
SAD1 UMN101 UMN106;if ril = "." then delete; proc print;

data rflpe; infile "C:\rflpe.dat" missover;

input ril umn107A umn107B umn109 umn114 umn128 umn13
umn133B umn162 umn202 umn207A umn214A umn214B umn23 umn287 umn339A
umn339B umn341A umn361 umn363A umn364A umn388 umn407 umn409 umn41
umn420 umn433 umn498A umn498B umn5004 umn5047 umn706B umn815B umn826
umn856A wg110B wg110C wg466 wg605 wg645 wg719A wg719B;
if ril = "." then delete; proc print;

data allrflp; merge rflpa rflpb rflpc rflpd rflpe; by ril;

data traits; infile "c:\traits.dat" missover firstobs=2; input ril hda92 hda93 hda94 hda95 hdi93 hdi94 hdi95;

data all; merge allrflp traits; by ril;
proc print;

The "proc print" command should print out the combined data set to the "output" screen as follows:

										В				В				В		В	В			В	В	
			В	В	В	В	В	В	В	С	В	В	В	С	В		В	С	В	С	С	В	В	С	С	В
			С	С	С	С	С	С	С	D	С	С	С	D	С	В	С	D	С	D	D	С	С	D	D	С
			D	D	D	D	D	D	D	1	D	D	D	1	D	С	D	1	D	1	1	D	D	1	1	D
		Α	1	1	1	1	1	1	1	2	1	1	1	2	1	D	1	2	1	3	3	1	1	5	5	1
0	R	V	0	1	1	1	1	1	1	3	2	2	2	6	2	1	2	8	3	3	8	4	4	3	3	5
В	I	N	4	0	1	5	6	8	8	0	3	3	5	1	6	2	7	0	0	8	0	0	0	2	2	5
S	L	3	9	8	7	Α	0	4	6	В	5	7	0	Α	5	7	0	Α	7	Α	Α	5	7	Α	В	5
1	1	3	3	1	1	1	1	1	3	1	1	1	3	3	3	3	3	3	1	3	3	1	3	1	1	3
2	2	3	1	1	1	3	3	1	1	3	1	1	3	3	1	3	1	1	3	1	3	3	1	3	1	3
3	3	0	3	3	1	1	3	3	3	1	3	3	1	1	3	1	1	2	3	3	1	1	3	3	1	3
4	4	3	3	3	1	1	1	3	1	1	1	3	3	3	1	1	3	3	1	1	1	1	1	1	3	3
5	5	3	1	1	3	1	1	3	1	1	1	1	1	3	1	1	1	1	1	3	1	0	3	1	1	1

...etc...

```
U U U U U U U
  M M M M M U M W
                          W W
  N N N N N N N M N G G W W W G G H H H H H H H H A 4 5 5 7 8 N 8 1 1 G G G 7 7 D D D D D
                                                          H
                                                           D
0 9 9 0 0 0 1 8 5 1 1 4 6 6 1 1 A A A
                                                     I
                                                          I
                                                                I
B 8 8 0 4 6 5 2 6 0 0 6 0 4 9 9 9
                                         9
                                               9
                                                     9
                                                           9
S A B 4 7 B B 6 A B C 6 5 5 A B 2
                                                     3
                                    3
                                               5
81 0 0 0 0 0 0 0 1 3 3 3 1 1 3 60.67 63.70 53.67 61.33 60.00 55.67
82 0 0 0 0 0 0 0 1 1 1 1 1 1 58.33 63.33 68.70 60.33 61.67 65.00 61.67
83 1 1 3 3 3 3 3 1 3 3 1 3 3 1 3 3 60.00 63.67 69.00 59.33 61.67 62.67 60.00
84 1 3 3 1 1 1 1 1 3 3 1 1 3 1 3 62.33 65.00 71.30 60.00 61.33 65.00 62.00
```

Note that the genotypic data in the original files were coded 0 = no data, 1 = homozygous for allele of parent 1, 2 = heterozygous, 3 = homozygous for allele of second parent, which is different from the 0,1,2 notation used by the general program. One way to change this to eliminate missing genotypes

from the analysis is transform the data into the notation used by the program for each pair of loci, as they are named by the program. Therefore, we use a macro called "transform", to update the data set called "all" to fit the notation used by the program.

In addition, an important issue that must be considered when analyzing recombinant inbred data is what to do with heterozygous genotypes. Heterozygous genotypes in recombinant inbred line populations are not necessarily informative as to gene action. The reason is that phenotypic data are collected on progeny developed from self-fertilization for one or more generations from a recombinant inbred parent. While the plant that gave rise to the line may have been heterozygous at some loci, the level of heterozygosity in the progeny tested will be lower. Therefore, the progeny may not express dominance at any detectable level. Interpretation of epistatic contrasts involving dominance is difficult in this case. Therefore, such contrasts are not recommended for RIL populations.

Therefore, for the analysis of recombinant inbred lines, one has two options:

- 1) Analyze all of the data for the two markers, including heterozygotes. From this analysis, the interaction sums of squares may have some contribution due to interactions between homozygous genotypes at one locus and heterozygous genotypes (presumably heterogenous lines) at the second locus.
- 2) Eliminate all of the heterozygotes from the analysis, in which case the estimated interaction variance is solely composed of additive by additive epistasis due to interactions among homozygous genotypes at the loci involved.

This example implements the second option. The data set is updated so that heterozygous marker loci are replaced with missing data points. This is also accomplished using the "transform" macro. This macro can be used to make other kinds of data transformations as needed.

Once these data transformations are accomplished, the "ri" macro can be invoked to perform the epistasis analysis. As with the "f2" macro, the user must define the trait trait to be analyzed and the desired threshold p-value. For this example, we analyze trait "hda92" with a p-value of P=0.001:

%ri(hda92, 0.001);

Program Output

The output from the program will include the results of the "proc print" statement on the complete data set, already discussed, and the following statistics:

OBS	LOCUS1	LOCUS2	TRAIT	DFERR	SSERR	DFINT	SSINT	FINT	PROBINT
1	BCD1265	WG645	HDA92	73	1238.98	1	229.708	13.5343	.00044517
	BCD1280A		HDA92	69	990.47	1		14.6902	.00027647
	BCD1280A		HDA92	56	866.93	1		12.3088	.00089688
4	BCD1338A	BCD1779	HDA92	72	940.42	1	228.284	17.4779	.00008073
5	BCD1338A	CD01342	HDA92	71	949.39	1	239.307	17.8966	.00006855
6	BCD1338A	CD01454	HDA92	65	829.36	1	319.539	25.0436	.00000453
7	BCD1532A	UMN13	HDA92	47	794.57	1		12.5113	.00092208
8	BCD1695	UMN420	HDA92	63	1115.46	1	245.292	13.8538	.00042358
9	BCD1802	UMN23	HDA92	66	1162.08	1	229.637	13.0422	.00058814
10	BCD1851C	CD0370	HDA92	69	1209.75	1	213.265	12.1639	.00085247
11	BCD1851C	UMN5047	HDA92	62	1061.90	1	316.019	18.4511	.00006251
12	BCD1851C	WG605	HDA92	74	1352.98	1	232.705	12.7275	.00063645
13	BCD1856	ISU1254B	HDA92	58	998.17	1	290.399	16.8739	.00012694
14	BCD1856	ISU1736	HDA92	59	1061.34	1	257.503	14.3146	.00036371
15	BCD1871	CD01509A	HDA92	61	1071.79	1	242.319	13.7914	.00044483
16	BCD1882C	CD0370	HDA92	69	1126.90	1	296.463	18.1525	.00006331
17	BCD1931	CD01509C	HDA92	72	1286.34	1	225.752	12.6360	.00067297
18	BCD1950A	ISU1254B	HDA92	62	1067.85	1	250.093	14.5205	.00032105
19	BCD1968B	UMN41	HDA92	59	1001.54	1	220.237	12.9740	.00064899
20	BCD269	CDO58A	HDA92	63	967.33	1	200.892	13.0837	.00059371
21	BCD327	CD01199A	HDA92	64	1087.05	1	206.739	12.1718	.00088330
22	BCD897	UMN856A	HDA92	54	919.90	1	214.711	12.6039	.00080680
23	CDO1168A	UMN41	HDA92	62	1062.05	1	205.789	12.0136	.00096468
24	CD01199A	UMN214A	HDA92	76	1321.53	1	249.476	14.3471	.00030209
25	CD01199A		HDA92	65	1153.94	1	250.739	14.1238	.00036872
	CD01238	R221	HDA92	58	928.40	1		12.4447	.00082723
27	CD01328	ISU1254B	HDA92	62	1044.84	1		16.3275	.00014944
28	CD01328	ISU1900A	HDA92	62	962.50	1	222.813	14.3526	.00034510
OBS	SSMOD	SSTOTAL	PAF	RTR2	GENO00	GEI	1002	GENO20	GENO22
1	300.125	1539.10	0.14	1925	59.5330	61.3	1900 6	3.8335	58.5431
2	462.990	1453.46	0.14	4508	60.4167	59.0	0183 5	9.2381	64.8336
3	403.031	1269.96	0.15	5004	60.4236	58.	7882 5	9.7100	65.5333
4	243.558	1183.97	0.19	9281	62.5089	58.5	5243 5	8.5554	61.6311
5	251.487	1200.87	0.19	9928	63.9700	59.0	0957 5	8.6316	61.2217
6	338.769	1168.13	0.27	7355	63.7857	58.	7065 5	8.5361	62.2213
7	259.684	1054.26	0.20	0063	58.4158	64.2	2300 63	1.4163	58.9680
8	303.404	1418.87	0.17	7288	61.7772	59.9	9800 5'	7.9113	63.7847
9	299.537	1461.61	0.15	5711	61.0165	59.5	5896 5	9.5333	65.9256

10	213.909	1423.65	0.14	980	65.9340	59.5	5948 5	9.7060	61.8000
11	340.569	1402.46	0.22	533	67.2783	59.5	5005 5	9.9867	62.5755
12	237.176	1590.16	0.14	634	64.2340	59.4	1924 5	9.5660	62.2941
13	351.998	1350.17	0.21	508	60.0227	62.7	7107 6	3.0544	57.0479
14	332.594	1393.93	0.18	473	60.1193	62.1	.959 6	3.1100	57.0479
15	280.708	1352.50	0.17	916	58.7594	64.4	100 6	51.8937	59.7333
16	296.758	1423.65	0.20	824	66.6660	59.3	3617 5	59.5596	62.2105
	226.591	1512.93	0.14		62.0132	58.8		59.2313	63.1785
	318.930	1386.78	0.18		60.6000	62.3		3.4660	57.4000
	289.297	1290.84	0.17		63.2805	59.8		6.6667	61.1107
	230.816	1198.14	0.16		59.4318	61.3		52.3679	57.3069
	357.539	1444.59	0.14		60.0413	59.4		50.4926	68.0550
	334.296	1254.20	0.17		58.6844	64.6		51.5882	59.2857
	236.191	1298.24	0.15		62.9330	59.5		57.4078	61.5333
	312.505	1634.03	0.15		60.4164	60.8		57.3333	59.2900
	303.067	1457.01	0.17		61.1964	59.6		59.0283	65.8144
	376.201	1304.60	0.15		61.9989	71.6		52.0850	58.9643
	341.942	1386.78	0.19		60.4211	62.7		3.4994	57.6471
	325.201	1287.70	0.17		60.3830	61.8		3.0695	57.0447
20	323.201	1207.70	0.17	303	00.3030	01.0		03.0000	37.0447
OBC	LOCUS1	LOCUS2	TRAIT :	חמששת	SSERR	DFINT	SSINT	FINT	PROBINT
Cao	LOCUSI	LOCUSZ	IKAII .	DFERK	SSEKK	DEINI	SSINI	LINI	PROBLINI
20	CD01345	CD0348B	HDA92	72	1269.93	1	225 080	12 7616	.00063565
	CD01343	ISU1254B			1001.90				.00003303
	CD01388	ISU1234B ISU1736		62		1		2 19.4987	.00004108
	CD01388		HDA92	61	1107.26	1		12.1324	.00052284
		ISU1900A		62	972.41	1		3 13.4674	.00030670
	CD01407B	ISU1900B		60	979.41	1		2 15.3706	
		CDO708B	HDA92	67 61	964.41	1		2 11.9654	.00094696
	CD01433	UMN287	HDA92	61	808.89	1		3 16.4781	.00014243
	CD01433	UMN856A	HDA92	53	776.77	1		14.6152	.00034867
	CDO348B	R221	HDA92	59	983.44	1		5 15.2723	.00024249
	CD0370	UMN388	HDA92	56	948.17	1		5 15.0349	.00027966
	CDO414	UMN409	HDA92	62	1053.46	1		12.0331	.00095623
	CDO482D	UMN815B	HDA92	54	880.88	1		12.1979	.00096255
	ISU1254B		HDA92	61	1035.96	1		2 15.6541	.00020091
	ISU1736	UMN409	HDA92	60	1092.88	1		12.2259	.00089345
	R209A	UMN407	HDA92	61	1136.50	1		12.1790	.00090383
	UMN23	UMN815B	HDA92	61	1036.38	1			.00050467
	UMN388	UMN5047	HDA92	63	1086.05	1			.00018844
46	UMN388	WG605	HDA92	61	1140.42	1	227.808	3 12.1852	.00090133
OBS	SSMOD	SSTOTAL	PAR'	TR2	GENO00	GEN	1002	GENO20	GENO22
	233.019	1502.95	0.14		58.9165	62.6		52.7295	59.5340
	384.885	1386.78	0.22		60.2594	62.8		3.4894	57.2919
	315.429	1422.69	0.15		60.5236	62.0		3.2028	57.2893
	315.292	1287.70	0.16	403	60.5395	61.8		33.0361	57.0447
33	262.972	1242.38	0.20	195	61.7368	59.8		8.8329	65.7143
34	236.407	1200.82	0.14	343	60.8744	59.1	452 5	9.3706	63.9757
35	555.452	1364.35	0.16	016	59.7177	59.2	2447 6	0.2046	67.4545
36	444.101	1220.87	0.17	545	60.4914	59.4	1255 6	50.1900	67.1518

37	342.238	1325.68	0.19203	63.9987	57.9474	60.2547	62.3617
38	263.903	1212.07	0.21003	67.7500	60.0450	59.4505	62.0471
39	335.795	1389.25	0.14717	61.1250	62.9600	62.3335	57.1250
40	376.765	1257.65	0.15822	60.1773	59.3846	58.9622	65.6667
41	344.094	1380.05	0.19264	60.5968	62.9012	62.9521	57.1113
42	322.923	1415.81	0.15729	60.8235	62.9781	62.2353	56.9050
43	286.452	1422.95	0.15946	60.2694	61.7675	63.3956	57.3331
44	380.891	1417.27	0.16185	60.6663	60.1176	59.0600	66.3340
45	299.112	1385.16	0.19592	67.0550	59.5243	60.2971	62.2775
46	239.205	1379.62	0.16512	64.8522	59.2941	60.0367	62.6108

The output from the RIL analysis is simpler because it includes no contrasts and only four genotypic means, corresponding to the homozygous two locus genotypes. More interactions were detected at the P=0.001 threshold level in this experiment compared to the maize experiment. Recall that, in this case, 252 loci were tested in 31,626 combinations compared to the 6,441 pairs tested in the previous experiment. So, some of the increase in interactions detected may be due simply to performing more tests.

The output lists the two loci involved in each interaction, the trait considered, the degrees of freedom of the estimate of error variance "DFERR", the sum of squares of the error estimate "SSERR", and the degrees of freedom for the interaction, "DFINT". Notice that the DFINT for all pairs is 1 in this case. This is because heterozygous genotypes were not considered in the model, and this allows only one degree of freedom for the interaction. In this case, the interaction statistics are equivalent to those of the single degree of freedom contrast for additive by additive epistasis discussed in the previous example. DFINT is followed in the output by the sum of squares, F-value, and P-value of the interaction, "SSINT", "FINT", and "PROBINT". On the next line, the sum of squares due to the full model - locus main effects plus interaction- "SSMOD", and the total sum of squares, "SSTOTAL", are listed. This is followed by the partial R² of the interaction (interaction partial sum of squares divided by the total sum of squares), "PARTR2". Finally, the four homozygous two-locus genotypic means are listed, "GENO00", "GENO02", "GENO22".

Interpretation of the Output

The interpretation of these additive by additive epistatic interactions is often simpler than interpretation of dominant forms of epistasis. For example, the interaction with the highest partial R^2 value was the interaction of BCD1338A and CDO1454 (observation 6), with a partial R^2 of 0.27. This value is interpreted to mean that the interaction alone accounted for 27% of the total genotypic variation after the main effects of BCD1338A and CDO1454 have been accounted for. Additive by additive epistasis implies that the additive effect at one locus is affected by the homozygous state of the second locus. The additive effect of BCD1338A in combination with the "0" genotype at CDO1454 can be estimated as (GENO00 - GENO20)/2 = (63.7857 - 58.5361) = 2.62. The additive effect of BCD1338A in combination with the "2" genotype at CDO1454 can be estimated as (GENO02 -

GENO22)/2 = (58.7065 - 62.2213)/2 = -1.76. Thus, the additive effect of BCD1338A is positive in combination with one homozygote at CDO1454 and negative in combination with the other.

Analyzing other traits with the ExampleRI.sas program

This can be accomplished by simply changing the trait named in the "ri" macro invocation, as follows. The only rule is that the macro invocations be placed after the macro definition (the piece of code that starts with "%macro ri(trait, pvalue);").:

```
%ri(hda93, 0.001);
%ri(hda94, 0.001);
%ri(hda95, 0.001);
%ri(hdi93, 0.001);
%ri(hdi94, 0.001);
%ri(hdi95, 0.001);
```