

Artificial Intelligence (CS-401)

CLUSTERING-K MEANS

Dr. Fahad Sherwani (Assistant Professor – FAST NUCES)

PhD in Artificial Intelligence

Universiti Tun Hussein Onn Malaysia

fahad.sherwani@nu.edu.pk

Clustering:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
 - Group emails or search results
 - Customer shopping patterns
 - Regions of images
- Useful when don't know what you're looking for
- But: can get gibberish

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small Euclidean distance (squared)

$$dist(x, y) = ||x - y||$$
 $\frac{2}{2}$

 Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered

Clustering algorithms

- Partition algorithms (Flat)
 - K-means
 - Mixture of Gaussian
 - Spectral Clustering

- · Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive

Clustering examples

Image segmentation

Goal: Break up the image into meaningful or perceptually similar regions

Clustering examples

Clustering gene expression data

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Shown here for *K*=2

Iterative Step 1

 Assign data points to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

Repeat until convergence

Properties of K--meansalgorithm

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - Assign data points to closest cluster center O(KN) time
 - 2. Change the cluster center to the average of its assigned points

O(N)

Example: K-Means for Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Original

Example: K-Means for Segmentation

K=2

K=3

Original

Example: K-Means for Segmentation

8%

17%

$$k = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}$$

 $k = 2$

$$k = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}$$

 $k = 2$

$$m_1 = 4$$
 $m_2 = 12$

$$k_1 = \{2, 3, 4\}$$
 $k_2 = \{10, 11, 12, 20, 25, 36\}$

$$k = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}$$

 $k = 2$

$$m_1 = \frac{108}{6} = 18$$
 $m_1 = \frac{108}{6}$

$$k = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}$$

 $k = 2$

$$K_1 = \begin{cases} 2,3,4,10,11, & K_2 = \begin{cases} 20,25,30 \end{cases} \end{cases}$$

$$k = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}$$

 $k = 2$

$$m_1 = 7$$
 $m_2 = 25$

$$m_1 = 7$$
 $m_2 = 25$

	Height	weight
(I) -	185	72
2	170	56
3	168	60
3	179	68
(3)	182	72
6	188	77
1	180	71
3	180	70
3	183	84
0	180	88
(1)	180	67
@	177	76

Euclidean Distance

O = Observed C = Centeroid

	Height	weight
1) -	185	72
2	170	56
3	168	60
3	179	68
(3)	182	72
6	188	77
(£)	180	71
3	180	70
3	183	84
0	180	88
(11)	180	67
(2)	177	76

EDfor 3-	PK1-P [(162-185)2+(60-72)2
	20.80 PK2-V J(168-170)2+(60-56)2
	= 4.48

	Height	weight
1) -	185	72
2	170	56
3	168	60
3	179	68
3	182	72
6	188	77
(180	71
3	180	70
3	183	84
0	180	88
(11)	180	67
(2)	177	76

	Height	weight
1) -	185	72
2	170	56
3	168	60
3	179	68
3	182	72
6	188	77
(£)	180	71
3	180	70
3	183	84
0	180	88
(1)	180	67
(2)	177	76

E.Dfor
$$-b K_1 = \sqrt{(179-185)^2+(68-72)^2}$$

= (6.32)
 $-b K_2 = \sqrt{(179-169)^2+(68-58)^2}$
= 14.14

$$K_{1} \rightarrow \{1,4,5,6,7,8,9,10,11,12\}$$
 $K_{2} \rightarrow \{2,3\}$

