

UNITED STATES PATENT AND TRADEMARK OFFICE

SP
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/042,935	01/09/2002	Yonglin Huang	15436.249.24.1.	4597
22913	7590	02/23/2005	EXAMINER	
WORKMAN NYDEGGER (F/K/A WORKMAN NYDEGGER & SEELEY) 60 EAST SOUTH TEMPLE 1000 EAGLE GATE TOWER SALT LAKE CITY, UT 84111			SONG, SARAH U	
		ART UNIT		PAPER NUMBER
				2874
DATE MAILED: 02/23/2005				

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/042,935	HUANG ET AL.	
	Examiner	Art Unit	
	Sarah Song	2874	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 26 October 2004.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 2-7 and 9-19 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 2-7 and 9-19 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on 09 January 2002 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date: _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date: _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on December 8, 2004 has been entered. Claims 1 and 8 have been canceled. Claims 2, 3, 5, 6, 9, 10, 12-15 have been amended. Claims 16-19 have been newly added. Claims 2-7 and 9-19 are pending.

Claim Objections

2. Claim 15 is objected to because of the following informalities: Examiner suggests insertion of —a—before “diameter” in line 7 of the claim. Appropriate correction is required.

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. **Claims 2-4, 9-11 and 14-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kato et al. ((*Optical Coupling Characteristics of Laser Diodes to Thermally Diffused Expanded Core Fiber Coupling Using an Aspheric Lens*, previously relied upon) in view of Papademetriou et al. (U.S. Patent Application Publication**

2001/0020164 previously relied upon) and Kawasaki et al. (U.S. Patent 5,594,825 previously cited by Applicant).

5. Regarding claims 3, 4, 10, 11, 14 and 15, Kato et al. discloses an optical device comprising a TEC optical fiber including a first core, wherein a diameter of the first core at a first end of the TEC optical fiber is larger than the diameter of the first core in an unexpanded portion of the TEC optical fiber; and a focusing lens (aspheric lens) configured to focus light into the first end of the TEC optical fiber such that a light spot created by the focused light on a surface of the first end of the TEC optical fiber has a light spot diameter that is larger than the diameter of the first core in the unexpanded portion of the TEC optical fiber. The optical device further comprises an active component, wherein the active component is a laser diode. See Figure 1.

6. Kato et al. discloses all of the limitations as discussed above, but does not specifically disclose the light spot diameter to be no larger than the diameter at the first end of the TEC optical fiber.

7. Papademetriou et al. discloses the benefits of coupling a light spot having a diameter less than that of the fiber core (paragraph [0040]). One of ordinary skill in the art would have recognized that the teaching of Papademetriou et al. would be applicable to any fiber, including TEC fibers, more specifically, applicable to coupling light into the input face of the TEC fiber. Therefore, it would have been obvious to one having ordinary skill in the art to keep the light spot diameter less than the core diameter at the first end (input end) of the fiber of Kato et al. One of ordinary skill in the art would have been motivated to make the modification in order to minimize energy losses as taught by Papademetriou et al.

8. Kato et al. also does not expressly disclose the dimensions of the fiber core, wherein the diameter of the first core at a first end of the TEC optical fiber is in a range from 20 μ to 50 μ and a diameter of the first core in an unexpanded portion of the TEC optical fiber is in a range from 6 μ to 11 μ .

9. Kawasaki et al. discloses TEC optical fibers having a MFD of the first core at a first end of the TEC optical fiber is in a range from 20 μ to 50 μ and a diameter of the first core in an unexpanded portion of the TEC optical fiber is in a range from 6 μ to 11 μ (column 3, lines 8-14). Although the expanded core diameter is not expressly disclosed, it appears that the physical core diameter would also be near the range of the MFD since MFD is proportional to expanded core diameters. It is noted that the ranges of Kawasaki et al. overlap the claimed ranges and therefore, render the claimed ranges obvious (MPEP 2144.05(I)). It would have been obvious to one having ordinary skill in the art at the time the invention was made to provide the TEC optical fiber of Kato et al. having the diameters as disclosed by Kato et al. since the dimensions disclosed by Kato et al. are disclosed as being effective for reducing power density at the coupling face of the fiber. Therefore, One or ordinary skill in the art would have been motivated to provide the fiber of Kato et al. having a diameter of the first core at a first end of the TEC optical fiber is in a range from 20 μ to 50 μ and a diameter of the first core in an unexpanded portion of the TEC optical fiber is in a range from 6 μ to 11 μ in order to prevent damage to the optical fiber end face as taught by Kawasaki et al.

10. Additionally, Kawasaki et al. further discloses light having an optical power that is large enough that contaminants or irregularities at the first end would have caused damaged to the

optical end face if the light spot diameter were to have been the same as the diameter of the first core in the unexpanded portion of the TEC fiber (see column 1, lines 55-60).

11. Furthermore, Kato et al. and Kawasaki et al. do not expressly disclose a dielectric coating. However, dielectric coatings are well known in the art for providing on fiber end faces for reducing undesirable reflection at the coupling faces. Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide the dielectric coating on the end face of Kato et al. to prevent undesired reflections at the end face, as was known in the art.

12. Resultantly, the advantage afforded by the modification of Kato et al. in view of Papademetriou et al. and Kawasaki et al. would also be recognized in the fiber end face having the dielectric coating.

13. The method claims would also be obvious as setting forth requisite steps.

14. Regarding claims 2 and 9, Kato et al. does not specifically disclose the optical fiber comprising an optical fiber pigtail that is permanently affixed to the optical device. Laser diode packages comprising optical fiber pigtails are well known in the art. It would have been obvious to one having ordinary skill in the art to provide the optical device of Kato et al. with an optical fiber pigtail that is permanently affixed to the optical device to prevent misalignment and inadvertent coupling losses between the laser diode and the optical fiber.

15. Regarding claims 16 and 18, Kato et al., Papademetriou et al. and Kawasaki et al. do not expressly disclose the optical power to be at least 1W. However, Kawasaki et al. does disclose prior art fibers exhibiting damage at optical powers of about 100mW (column 1, lines 55-60). Kawasaki et al. further discloses the modified fiber having the expanded core to have a decrease

in power density of about a factor of 10, as compared to the power density of a standard fiber (column 3, lines 39-43). Therefore, one of ordinary skill in the art would have recognized that the expanded core fiber would be able to handle optical powers of about 10 times greater than that of the prior art (i.e. 10 X 100mW), which is approximately 1W. Thus the claimed optical power would have been obvious to one having ordinary skill in the art as being close to the optical power handling capability as reasonably deduced from the prior art.

16. Regarding claims 17 and 19, the prior art does not expressly disclose the light spot diameter to be at least 20 μ . However, Kawasaki et al. clearly provides the means to provide a larger light spot diameter in order to reduce optical power density, and Papademetriou et al. clearly provides that the light spot diameter be no larger than the core diameter in order to minimize losses. Therefore, since Kawasaki et al. discloses expanded cores of greater than about 20 μ , it would have been obvious to one having ordinary skill in the art to provide the light spot of at least 20 μ in diameter in order to minimize optical power density, while also minimizing losses.

17. **Claims 5-7 and 12-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Cheng (U.S. Patent 5,825,950 previously relied upon) in view of Papademetriou et al. and Kawasaki et al.**

18. Regarding claims 5-7 and 12-15, Cheng discloses an optical device comprising a TEC optical fiber 144a including a first core, wherein a diameter of the first core at a first end of the TEC optical fiber is larger than the diameter of the first core in an unexpanded portion of the TEC optical fiber; and a focusing lens 138 configured to focus light into the first end of the TEC optical fiber. The device further comprises a passive component 140 configured to process the

light and output the light to the focusing lens 138. The optical device further comprises an additional TEC optical fiber 132 that includes a second core, wherein a diameter of the second core at a first end of the additional TEC optical fiber is larger than the diameter of the second core in an unexpanded portion of the additional TEC optical fiber, and wherein the additional TEC optical fiber is configured to input the light into the optical device from the first end of the additional TEC optical fiber. See column 5, lines 54-60.

19. Cheng discloses all of the limitations as discussed above, but does not specifically disclose the light spot diameter to be no larger than the diameter at the first end of the TEC optical fiber.

20. Papademetriou et al. discloses the benefits of coupling a light spot having a diameter less than that of the fiber core (paragraph [0040]). One of ordinary skill in the art would have recognized that the teaching of Papademetriou et al. would be applicable to any fiber, including TEC fibers, more specifically, applicable to coupling light into the input face of the TEC fiber. Therefore, it would have been obvious to one having ordinary skill in the art to keep the light spot diameter less than the core diameter at the first end (input end) of the fiber of Kato et al. One of ordinary skill in the art would have been motivated to make the modification in order to minimize energy losses as taught by Papademetriou et al.

21. Cheng also does not expressly disclose the dimensions of the fiber core, wherein the diameter of the first core at a first end of the TEC optical fiber is in a range from 20 μ to 50 μ and a diameter of the first core in an unexpanded portion of the TEC optical fiber is in a range from 6 μ to 11 μ and wherein the light spot created by the focused light on a surface of the first end of

the TEC optical fiber has a light spot diameter that is larger than the diameter of the first core in the unexpanded portion of the TEC optical fiber.

22. Kawasaki et al. discloses TEC optical fibers having a MFD of the first core at a first end of the TEC optical fiber is in a range from 20μ to 50μ and a diameter of the first core in an unexpanded portion of the TEC optical fiber is in a range from 6μ to 11μ (column 3, lines 8-14). Although the expanded core diameter is not expressly disclosed, it appears that the physical core diameter would also be near the range of the MFD since MFD is proportional to expanded core diameters. It is noted that the ranges of Kawasaki et al. overlap the claimed ranges and therefore, render the claimed ranges obvious (MPEP 2144.05(I)). It would have been obvious to one having ordinary skill in the art at the time the invention was made to provide the TEC optical fiber of Kato et al. having the diameters as disclosed by Kato et al. since the dimensions disclosed by Kato et al. are disclosed as being effective for reducing power density at the coupling face of the fiber. It is noted that the reduced power density is a result of the light spot diameter being larger than the diameter of the core in an unexpanded portion of the TEC fiber. Therefore, one of ordinary skill in the art would have been motivated to provide the fiber of Kato et al. having a diameter of the first core at a first end of the TEC optical fiber is in a range from 20μ to 50μ and a diameter of the first core in an unexpanded portion of the TEC optical fiber is in a range from 6μ to 11μ , and the light spot diameter larger than the diameter of the core in an unexpanded portion of the TEC fiber in order to prevent damage to the optical fiber end face as taught by Kawasaki et al.

23. Additionally, Kawasaki et al. further discloses light having an optical power that is large enough that contaminants or irregularities at the first end would have caused damage to the

optical end face if the light spot diameter were to have been the same as the diameter of the first core in the unexpanded portion of the TEC fiber (see column 1, lines 55-60).

24. Furthermore, Cheng and Kawasaki et al. do not expressly disclose a dielectric coating. However, dielectric coatings are well known in the art for providing on fiber end faces for reducing undesirable reflection at the coupling faces. Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to provide the dielectric coating on the end face of Kato et al. to prevent undesired reflections at the end face, as was known in the art.

25. Resultantly, the advantage afforded by the modification of Cheng in view of Papademetriou et al. and Kawasaki et al. would also be recognized in the fiber end face having the dielectric coating.

26. The method claims would also be obvious as setting forth requisite steps.

Response to Arguments

27. Applicant's arguments with respect to claims 2-7 and 9-19 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sarah Song whose telephone number is 571-272-2359. The examiner can normally be reached on M-Th 7:30am - 6:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Rodney Bovernick can be reached on 571-272-2344. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Art Unit: 2874

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Sarah Song
Patent Examiner
Group Art Unit 2874