FISEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Erratum

Erratum to "Primary Li-air cell development" [J. Power Sources 196 (3) (2011) 1498–1502]

Owen Crowther*, Benjamin Meyer, Michael Morgan, Mark Salomon**

MaxPower, Inc., 141 Christopher Lane, Harleysville, PA 19438, USA

The publisher regrets that in the original printing of the above article Table 1 was printed incorrectly. The correct Table 1 is as follows. The publisher would like to apologise for any inconvenience this may have caused to the authors of this article/(and) readers of the journal.

Table 1Theoretical specific energy and capacity comparisons for selected systems.

Metal-air and Li-ion systems (organic or aqueous electrolyte solution)	OCV (V)	Specific energy (Wh/kg)	Specific capacity (mAh/g)
$2\text{Li} + \frac{1}{2}\text{O}_2 \rightarrow \text{Li}_2\text{O} \text{ (aprotic organic sln)}$	2.913	11,248 ^a	3862
$\text{Li} + \frac{1}{2}\text{O}_2 \rightarrow \frac{1}{2}\text{Li}_2\text{O}_2$ (aprotic organic)	2.959	11,425 ^a	3862
$2\text{Li} + \frac{1}{2}\text{O}_2 + \text{H}_2\text{SO}_4 \Leftrightarrow \text{Li}_2\text{SO}_4 + \text{H}_2\text{O} \text{ (aqueous)}$	4.274	2046 ^a	479
$2\text{Li} + \frac{1}{2}\text{O}_2 + 2\text{HCl} \Leftrightarrow 2\text{LiCl} + \text{H}_2\text{O} \text{ (aqueous)}$	4.274	2640 ^a	616
$2\text{Li} + \frac{1}{2}\text{O}_2 + \text{H}_2\text{O} \Leftrightarrow 2\text{LiOH (aqueous)}$	3.446	5789 ^a	1681
$Zn + \frac{1}{2}O_2 \rightarrow ZnO$ (aqueous)	1.650	1353 ^a	820
$x6C + LiCoO_2 \Leftrightarrow xLiC_6 + Li_{1-x}CoO_2$ (organic)	\sim 4.2	420 ^b	139 ^b
$Li + H_2O$ (in seawater) \Leftrightarrow $LiOH + \frac{1}{2}H_2$	2.512	9701 ^c	3862 ^c

a The molecular mass of O₂ is not included in these calculations because O₂ is freely available from the atmosphere and therefore does not have to be stored in the battery or cell.

b Based on x = 0.5 in $Li_{1-x}CoO_2$.

^c The molecular mass of H₂O is not included since it is freely available from seawater (pH 8.2) and does not have to be stored in the battery or cell.

DOI of original article:10.1016/j.jpowsour.2010.08.061.

^{*} Corresponding author. Tel.: +1 215 256 4575x108; fax: +1 215 256 1674.

^{**} Corresponding author. Tel.: +1 215 256 4575x103; fax: +1 215 256 1674.