Lineær algebra noter - Indre produkt

Lukas Peter Jørgensen, 201206057, DA4 24. juni 2014

Indhold

1	\mathbf{Dis}	position
2	Not	ter
	2.1	Reelt indre produkt
	2.2	Norm og ortogonalitet
	2.3	Theorem 5.4.1
	2.4	Projektion
	2.5	Theorem 5.4.2

2 Noter

1. TBD

2.1 Reelt indre produkt

Et indre produkt på vektorrummet V er en operation på V der tildeler et reelt tal til ethvert par af vektorer. Det skrives således: $\langle x,y\rangle$ Der gælder følgende regler:

- 1. $\langle x, x \rangle \geq 0$ med lighed hvis og kun hvis x = 0.
- 2. $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in V$
- 3. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle, \forall x, y, z \in V \quad \land \quad \alpha, \beta \in \mathbb{F}$

Et vektorrum med et indre produkt kaldes et indre produktrum. Som eksempel har \mathbb{R}^n det indre produkt defineret som $\langle x,y\rangle=y^Tx$.

Det indre produkt for komplekse tal er defineret som:

$$\langle u, v \rangle = \sum_{i=1}^{n} \bar{u_i} v_i$$

Desuden gælder der for \mathbb{C}^n at: $\langle u,v\rangle=\langle v,u\rangle$. \mathbb{C}^n har det indre produkt defineret som $\langle x,y\rangle=y^Hx$

2.2 Norm og ortogonalitet

Længden, eller norm, af $v \in V$ hvor V er et indre produktrum er:

$$||v|| = \sqrt{\langle v, v \rangle}$$

To vektorer v og u er ortogonale såfremt $\langle v, u \rangle = 0$

2.3 Theorem 5.4.1

(**Pythagoras**) Hvis u og v er ortogonale ($\langle u, v \rangle = 0$) i et inder produktrum V så gælder der:

$$||u + v||^2 = ||u||^2 + ||v||^2$$

$$\begin{aligned} \|u+v\|^2 &= \langle u+v, u+v \rangle \\ &= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \end{aligned} = \|u\|^2 + \|v\|^2$$

Altså gælder Pythagoras' lov for et givent indre produktrum.

2.4 Projektion

 $V \subseteq \mathbb{C}$ er et indreproduktrum.

Hvis $u, v \in V$, $v \neq 0$ så er skalarprojektionen af u på v:

$$\alpha = \frac{\langle u, v \rangle}{\|v\|}$$

Vektor projektionen er:

$$p = \alpha \left(\frac{1}{\|v\|} v \right) = \frac{\langle u, v \rangle}{\langle v, v \rangle} v$$

2.5 Theorem 5.4.2

Hvis u og v er tilfældige vektorer i et indre produktrum V, så gælder der:

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Lighed iff u og v er lin. afh.

Lemma. Egenskaber for projektionsvektorer

 $u, v \in V$ og p er projektionen u på v så gælder der:

- 1. u p og p er ortogonale $(\langle u p, p \rangle = 0)$.
- 2. u = p iff $u = \alpha v$

Bevis for theoremet

Hvis v = 0, så er det trivielt at se, at:

$$|\langle u, v \rangle| = 0 = ||u|| \cdot ||v||$$

Hvis $v \neq 0$, lader vip være en vektor projektion af u på v. Siden p er ortogonal til u-p (lemma 1.), så følger det af Pythagoras at:

$$||p||^2 + ||u - p||^2 = ||u - p + p||^2 = ||u||^2$$

Derved får vi:

$$\frac{\langle u, v \rangle^2}{\|v\|^2} = \|p\|^2 = \|u\|^2 - \|u - p\|^2$$

Vi kan gange $\|v\|^2$ ind for at få $\langle u,v\rangle^2$ og får så:

$$\langle u, v \rangle^2 = ||u||^2 ||v||^2 - ||u - p||^2 ||v||^2 \le ||u||^2 ||v||^2$$

Da vi ved at $||u-p||^2||v||^2$ er positivt da det er i anden. Vi får så til sidst:

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

Hvor lighed kun er gældenden når u=p fordi så bliver $||u-p||^2=0$. Det følger så af lemmaet at ligheden gælder hvis v=0 eller $u=\alpha v$ altså hvis de er lineært afhængige.