K Nearest Neighbors

Now, lets look into what is K Nearest Neighbors.

Lets say you are doing a classification for iris flower dataset.

Here we have a pic of Versicolor flower which is one of the 3 types

and based on the sepal width amd height u can actually figure out which of the three flowers categories it is in.

So, we are classifying an irish flower into one of the 3 classes :

- 1. Setosa
- 2. Versicolor
- 3. Virginica

You can plot sepal width and height in this kind of 2D scatter plot to figure out which class it belongs to

Now, lets say u have build a model and u have a new data point

data point which class it belongs to and using \boldsymbol{KNN} you want to figure it out,

By loking at the graph itself, u can get an idea that this has to be blue color which is **Virginica** cuz it is more near to that Cluster and **KNN** Works just like that.

In **KNN** u first figure out what is the value of **K** and u can figure out the value of **K** by trial and error, there is no specific rule to it, usually people use **5** but u can change it.

So here lets say we use **K=3** and this means we need to figure out the most nearby 3 data points

datapoints using the euclidean distance, which is just a simple distance between those two points (big yellow and blue point) are those 3 points (the 3 blue points) and since these 3 are **Virginica** then our yellow data points is also **Virginica**

Neighbors Algorithm is super simple, You figure out the most nearby **K** datapoint and whichever datapoint category those data points belong, then our datapoint will also belong to that Category.

Lets say our **K=10** and u figure out the most nearby 10 datapoints

So here we have 7

Virginica and 3 Versicolor, u just take the Highest number which is 7 means Virginica

about **K=20**, well then we will have a problem because your total number of data point in **Virginica** class are very less so now it is misclassifying this yellow datapoint, saying that it is **Versicolor**

rule is u figureout the most nearby K data point and u take the maximum count, So here K is 20 and the max datapoint which are near is **Versicolor** which is 11.

Well, this will be wrong cuz we know the Yellow datapoint is actually **Virginica** so you have to carefully chose the value of **K** that is not very high nor very low.

One thing we will like to clarify is that here we had only 2 features which is sepel width and height but **KNN** works equally if there are more than two features, we know that there could be n number of features and **KNN** will just work fine

Coding Part

```
In [1]: import pandas as pd
   from sklearn.datasets import load_iris
In [2]: data = load iris()
```

Making our data into a Dataframe

```
In [4]: df = pd.DataFrame(data.data, columns=data.feature_names)
    df.head()
```

Out[4]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

Appending target column to our dataframe

```
In [7]: df['target'] = data.target
    df.head()
Out[7]:
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
          0
                            5.1
                                              3.5
                                                                                   0.2
                                                                                             0
                            4.9
                                              3.0
                                                                                   0.2
                                                                                             0
          1
                                                                 1.4
                                                                                   0.2
          2
                            4.7
                                                                 1.3
                                                                                             0
          3
                                                                                   0.2
                            4.6
                                              3.1
                                                                 1.5
                                                                                             0
          4
                            5.0
                                              3.6
                                                                 1.4
                                                                                   0.2
                                                                                             0
```

Viewing the dataframe with each specific flower classes

In [10]:	df[d	f.target == 1].	head()			
Out[10]:	5	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	50	7.0	3.2	4.7	1.4	1
	51	6.4	3.2	4.5	1.5	1
	52	6.9	3.1	4.9	1.5	1
	53	5.5	2.3	4.0	1.3	1
	54	6.5	2.8	4.6	1.5	1
In [11]:	df[d	f.target == 2].	head()			
Out[11]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	100	6.3	3.3	6.0	2.5	2
	101	5.8	2.7	5.1	1.9	2
	102	7.1	3.0	5.9	2.1	2
	103	6.3	2.9	5.6	1.8	2
	104	6.5	3.0	5.8	2.2	2
in [13]:	df[d	f.target == 0].	head()			
ut[13]:	se	epal length (cm) s	epal width (cm) p	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
In [14]:	df.s	hape				

Split data into 3 dataframe for each flower class

Out[14]: (150, 5)

```
In [15]: df0 = df[:50]
    df1 = df[50:100]
    df2 = df[100:]
```

Plotting Sepal width and height

```
import matplotlib.pyplot as plt
plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'], color="green", marker="+")
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'], color="blue")
plt.xlabel('sepal length (cm)')
plt.ylabel('sepal width (cm)')
```

Out[23]: Text(0, 0.5, 'sepal width (cm)')

Train Test splitting

```
In [37]: from sklearn.model_selection import train_test_split
    X = df.drop(['target'], axis=1)
    y = df.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

In [38]: len(X_train)

Out[38]: 120

In [39]: len(X_test)

Out[39]: 30
```

KNN Algorithm

You can try using different value of **K** to get a better performance, u can use **gridSearchCV** or **K fold cross validation** to figure out the best value of **K**

Confusion Matrix

Classification Report

Print classification report for precesion, recall and f1-score for each classes

```
In [51]: from sklearn.metrics import classification_report
    print(classification_report(y_test, predict))
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	7
1	0.92	0.92	0.92	13
2	0.90	0.90	0.90	10
accuracy			0.93	30
macro avg	0.94	0.94	0.94	30
weighted avg	0.93	0.93	0.93	30

Search codebasics Precision recall video to understand what is it

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js