Lateral control

- Define the geometry of the lateral control problem, including heading and cross track errors
- Design a geometric steering controller to track a straight line segment
- Identify the limits of geometric controllers as wheel slip increases
- Explore options for dynamic control, including model predictive control

REFERENCES

Control Theory: https://www.youtube.com/watch?v=lBC1nEq0_nk

Vehicle model

- Vehicle (bicycle) model & parameters
 - o All states variables and inputs defined relative to the centre of front axle

Controller error terms

- o Heading error
 - Component of velocity perpendicular to trajectory divided by ICR radius

Heading error

- Heading error
 - Component of velocity perpendicular to trajectory divided by ICR radius

Crosstrack error

- Crosstrack error (e):
 - Distance from center of front axle to the closest point on path

Supplementary Reading: Introduction to Lateral Vehicle Control

To learn more about the lateral control of autonomous vehicles, read the article below:

J. Jiang and A. Astolfi, "Lateral Control of an Autonomous Vehicle," in IEEE Transactions on Intelligent Vehicles, vol. 3, no. 2, pp. 228-237, June 2018. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8286943&isnumber=8363076

To compute the minimum distance to a curved path defined by a spline:

Wang, H., Kearney, J., & Atkinson, K. (2002, June). Robust and efficient computation of the closest point on a spline curve. In Proceedings of the 5th International Conference on Curves and Surfaces (pp. 397-406). URL:

http://homepage.divms.uiowa.edu/~kearney/pubs/CurvesAndSurfaces ClosestPoint.pdf

Geometric path tracking controllers

- One of the most popular classes of path tracking in robotics and autonomous vehicle
 - Exploits geometric relationship between the vehicle and the path resulting in compact control law solutions to the path tracking problem
 - Use of reference point on path to measure error of the vehicle, can be ahead of the vehicle

Pure pursuit controllers

 Pure pursuit method consists of geometrically calculating the trajectory curvature

Connect the centre of rear axle location to a target point on

the path ahead of the vehicle

Pure pursuit controllers

- Steering angle determined by target point location and angle between the vehicle's heading direction and lookahead direction.
- From the law of sines:

$$\frac{l_d}{\sin 2\alpha} = \frac{R}{\sin \left(\frac{\pi}{2} - \alpha\right)}$$

$$\frac{l_d}{2\sin \alpha \cos \alpha} = \frac{R}{\cos(\alpha)}$$

$$\frac{l_d}{\sin \alpha} = 2R$$

$$\kappa = \frac{1}{\pi} = \frac{2\sin \alpha}{\sin \alpha}$$
 Path curvature

Steering angle to follow the arc

$$\kappa = \frac{2\sin\alpha}{l_d} \qquad \delta = \tan^{-1}\kappa L$$

$$\delta = \tan^{-1}\left(\frac{2L\sin\alpha}{l_d}\right)$$

Curvature K is proportional to cross-track error {e}

Crosstrack error (e) is defined here as the lateral distance between the heading vector and the target point so:

$$\sin \alpha = \frac{e}{l_d}$$

$$\kappa = \frac{2 \sin \alpha}{l_d}$$

$$\kappa = \frac{2}{l_d^2} e$$

Steering angle delta for pure pursuit controller

• Lookahead l_d is assigned as a linear function of vehicle speed: $l_d = Kv_f$

$$\delta = \tan^{-1}\left(\frac{2L\sin\alpha}{l_d}\right) \qquad \kappa = \frac{2}{l_d^2}e$$

$$\delta = \tan^{-1}\left(\frac{2L\sin\alpha}{K_{dd}v_f}\right)$$
Forward velocity

Stanley controller

- Stanley method is the path tracking approach used by Stanford University's Darpa Grand Challenge team
 - Uses the center of the front axle as a reference point
 - Look at both the error in heading and the error in position relative to the closest point on the path
 - Define an intuitive steering law to
 - Correct heading error
 - Correct position error
 - Obey max steering angle bounds

Stanley heading control

Combine three requirements:

 Steer to align heading with desired heading (proportional to heading error)

$$\delta(t) = \psi(t)$$

- Steer to eliminate crosstrack error
 - Essentially proportional to error
 - Inversely proportional to speed
 - Limit effect for large errors with inverse tan
 - Gain k determined experimentally

$$\delta(t) = \tan^{-1}\left(\frac{ke(t)}{v_f(t)}\right)$$

Maximum and minimum steering angles

$$\delta(t) \in [\delta_{min}, \delta_{max}]$$

Stanley control law

Stanley Control Law

$$\delta(t) = \psi(t) + \tan^{-1}\left(\frac{ke(t)}{v_f(t)}\right), \quad \delta(t) \in [\delta_{min}, \delta_{max}]$$

- For large heading error, steer in opposite direction
 - o The larger the heading error, the larger the steering correction
 - o Fixed at limit beyond maximum steering angle, assuming no crosstrack error $v_{f \bullet}$

Stanley control law (2)

For larger positive crosstrack error

$$\tan^{-1}\left(\frac{ke(t)}{v_f(t)}\right) \approx \frac{\pi}{2} \rightarrow \delta(t) \approx \psi(t) + \frac{\pi}{2}$$

- As heading changes due to steering angle, the heading correction counteracts the crosstrack correction, and drives the steering angle back to zero
- The vehicle approaches the path, crosstrack error drops, and steering command starts to correct heading alignment.

Stanley controller error dynamics

 The error dynamics when not at maximum steering angle are:

$$\begin{split} \dot{e}(t) &= -v_f(t)\sin(\psi(t) - \delta(t)) = -v_f(t)\sin\left(\tan^{-1}\left(\frac{ke(t)}{v_f(t)}\right)\right) \\ &= \frac{-ke(t)}{\sqrt{1 + \left(\frac{ke(t)}{v_f}\right)^2}} \end{split}$$

For small crosstrack errors, leads to exponential decay characteristics

$$\dot{e}(t) \approx -ke(t)$$

Stanley controller adjustment

- Low speed operation
 - Inverse speed can cause numerical instability
 - Add softening constant to controller

$$\delta(t) = \psi(t) + \tan^{-1} \left(\frac{ke(t)}{k_s + v_f(t)} \right)$$

- Extra damping on heading
 - Becomes an issue at higher speeds in real vehicle
- Steer into constant radius curves
 - Improves tracking on curves by adding a feedforward term on heading

Supplementary Reading: Geometric Lateral Control - Stanley

To learn more about the Stanley Control, check out the PDF listed below:

Snider, J. M., "Automatic Steering Methods for Autonomous Automobile Path Tracking", Robotics Institute, Carnegie Mellon University, Pittsburg (February 2009).

https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf.

Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf

PDF File

You can also read the original paper by Der. Hoffmann et al. in the PDF below:

Hoffmann, G. et al., "Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing", Stanford University, (2007). http://ai.stanford.edu/~qabeh/papers/hoffmann_stanley_control07.pdf

MPC

- Model predictive control (MPC)
 - Numerically solving an optimization problem at each time step
 - Receding horizon approach
- Advantages of MPC
 - Straightforward formulation
 - Explicitly handles constraints
 - Applicable to linear or nonlinear models

- Disadvantages of MPC
 - Computationally expensive

MPC

Receding Horizon Control Algorithm

- Pick receding horizon length (T)
- o For each time step, t
- \circ Set initial state to predicted state, x_t
 - Perform optimization over finite horizon t to T while traveling from X_{t-1} to X_t
 - Apply first control command, u_p from optimization at time t

MPC structure

Linear MPC formulation

· Linear time-invariant discrete time model:

$$x_{t+1} = Ax_t + Bu_t$$

MPC seeks to find control policy U

$$U = \{u_{t|t}, u_{t+1|t}, u_{t+2|t}, \dots\}$$

Objective function - regulation:

$$J(x(t), U) = \sum_{i=t}^{t+T-1} x_{j|t}^T Q x_{j|t} + u_{j|t}^T R u_{j|t}$$

Objective function - tracking:

$$\delta x_{j|t} = x_{j|t,des} - x_{j|t}$$

$$J(x(t), U) = \sum_{j=t}^{t+T-1} \delta x_{j|t}^T Q \delta x_{j|t} + u_{j|t}^T R u_{j|t}$$

Linear MPC Solution

· Unconstrained, finite horizon, discrete time problem formulation:

$$\min_{U \triangleq \{u_{t|t}, u_{t+1|t}, \dots\}} J(x(t), U) = x_{t+T|t}^{T} Q_{f} x_{t+T|t} + \sum_{j=t}^{t+T-1} x_{j|t}^{T} Q x_{j|t} + u_{j|t}^{T} R u_{j|t}$$

$$s.t. \qquad x_{j+1|t} = A x_{t|t} + B u_{t|t}, \qquad t \leq j \leq t+T-1$$

- Linear quadratic regulator, provides a closed form solution
 - o Full state feedback: $u_t = -Kx_t$
 - Control gain K is a matrix
 - Refer to supplemental materials

(Non) Linear MPC formulation

· Constrained (non)linear finite horizon discrete time case

$$\min_{U \triangleq \{u_{t|t}, u_{t+1|t}, \dots\}} J(x(t), U) = \sum_{j=t}^{t+T} C(x_{j|t}, u_{j|t})$$
s.t. $x_{j+1|t} = f(x_{j|t}, u_{j|t}), \qquad t \leq j \leq t+T-1$

$$x_{min} \leq x_{j+1|t} \leq x_{max}, \qquad t \leq j \leq t+T-1$$

$$u_{min} \leq u_{j|t} \leq u_{max}, \qquad t \leq j \leq t+T-1$$

$$g(x_{j|t}, u_{j|t}) \leq 0, \qquad t \leq j \leq t+T-1$$

$$h(x_{i|t}, u_{i|t}) = 0, \qquad t \leq j \leq t+T-1$$

No closed form solution, must be solved numerically

MPC for lateral control

MPC for lateral control

- Cost Function Minimize
 - Deviation from desired trajectory
 - Minimization of control command magnitude
- Constraints Subject to
 - Longitudinal and lateral dynamic models
 - Tire force limits
- Can incorporate low level controller, adding constraints for:
 - Engine map
 - Full dynamic vehicle model
 - Actuator models
 - Tire force models

Supplementary Reading: Advanced Steering Control - MPC

To learn more about Model Predictive Control (MPC) for vehicle control, read the ar below:

Falcone, P. et al., "Predictive Active Steering Control for Autonomous Vehicle Systems", IEEE (2007). https://ieeexplore.ieee.org/document/4162483