Design and Analysis of Algorithm

Lecture-26: Graph Algorithms

Contents

- (1) Topological Sorting
- 2 Max Flow Graph

Introduction

Topological sort algorithm takes a directed graph and returns an array of the nodes where each node appears *before* all the nodes it points to.

Topological Sort : 7 6 5 4 3 2 1 0

Example

Since node 1 points to nodes 2 and 3, node 1 appears before them in the ordering. And, since nodes 2 and 3 both point to node 4, they appear before it in the ordering.

Cyclic Graphs

The cycle creates an impossible set of constraints—B has to be before and after D in the ordering.

As a rule, cyclic graphs don't have valid topological orderings.

Topological Sorting Algo

First node in the topological ordering is the node that doesn't have any incoming directed edges; it must have an indegree of zero.

Topological Sorting Algo

Once a node is added to the topological ordering, we can take the node, and its outgoing edges, out of the graph.

- 1.Identify a node with no incoming edges.
- 2.Add that node to the ordering.
- 3. Remove it from the graph.
- 4.Repeat.

Questions

- Q1. Topological sort of a Directed Acyclic graph is?
 - a) Always unique
 - b) Always Not unique
 - c) Sometimes unique and sometimes not unique
 - d) Always unique if graph has even number of vertices
- Q2. Topological sort can be implemented by?
 - a) Using Depth First Search
 - b) Using Breadth First Search
 - c) Using Depth and Breadth First Search
 - d) Using level ordered search

Ford-Fulkerson algorithm is a greedy approach for calculating the maximum possible flow in a network or a graph.

A term, flow network, is used to describe a network of vertices and edges with a source (S) and a sink (T). Each vertex, except S and T, can receive and send an equal amount of stuff through it. S can only send and T can only receive stuff.

Network (G)

Flow = 0

Residual Graph (G_R)

Path 1: $S-C-D-B-T \longrightarrow Flow = Flow + 7$

Path 2:
$$S - C - D - T \longrightarrow Flow = Flow + 1$$

Path 3:
$$S - A - B - T \rightarrow Flow = Flow + 5$$

Path 4:
$$S-A-C-D-T \longrightarrow Flow = Flow + 2$$

No More Paths Left Max Flow = 15