De Cifris Trends in Cryptographic Protocols

University of Trento and De Componendis Cifris

October 2023

Sigma Protocols

Michele Ciampi

The University of Edinburgh

michele.ciampi@ed.ac.uk

Sigma protocols

• Completeness

a'

• Honest Verifier Zero-Knowledge

ر'

 $\mathcal{HVZKSim}(X) \Longrightarrow$

z'

Thm: X $P_{\Sigma}(X, \mathbf{W}) \qquad V_{\Sigma}(X)$ $= \qquad \qquad c$ Z

• Special Soundness

 \mathbf{x} , $(\mathbf{a} \in \mathbf{Z})$ \mathbf{x} , $(\mathbf{a} \in \mathbf{Z}')$ \mathbf{w} : $(\mathbf{x}, \mathbf{w}) \in \mathbf{R}$

Sigma protocol for Discrete Logarithm

Let G be a group of order q, with generator g

$$y \leftarrow Z_q$$
 (G,g,x) \rightarrow y'

$x = a_{\lambda}$

Schnorr protocol

Accept iff gz=axc

$$g^z = g^{r+cy}$$

$$g^z=g^{r+cy}$$
 $ax^c=g^rg^{yc}=g^{r+cy}$

Special-soundness

$$\begin{cases} z=r+cy & c\neq c' \\ z'=r+c'y \end{cases}$$

Let G be a group of order q, with generator g

Schnorr protocol

Accept iff g^z=ax^c

$$c \iff Z_q$$
$$z \iff Z_q$$
$$a=g^z/x^c$$

$$a=g^z/x^c$$

Michele Ciampi The University of Edinburgh

HVZK

x=(g, h, u,v)

Is a DH tuple if

Let G be a group of order q, with generators g and h

HVZK

Exactly the same as the one for the Dlog protocol

OR-Composition

$$\Sigma = (P_{\Sigma}, V_{\Sigma})$$

$$\frac{\mathcal{H}VZK^{1}_{sim}(x_{1}) \longrightarrow a_{1},C_{1},Z_{1}}{a_{0}} \longleftrightarrow P_{\Sigma_{0}}(x_{0},W_{0}) \longrightarrow C$$

$$c_{0} \leftarrow c \oplus c_{1} \qquad \longleftarrow C$$

$$V_{\Sigma_0}(x_0,a_0,c_0,z_0)=1$$

and
 $V_{\Sigma_1}(x_1,a_1,c_1,z_1)=1$
and
 $c=c_0\bigoplus c_1$

Michele Ciampi The University of Edinburgh

 $z_0 \leftarrow P_{\Sigma_0}(x_0, w_0, c_0)$

OR-Composition

X0 Or X1

Special Soundness

W0,W1

AND-Composition

$$\Sigma = (P_{\Sigma}, V_{\Sigma})$$

$$a_{0} \leftarrow P_{\Sigma_{0}}(x_{0}, w_{0})$$

$$a_{1} \leftarrow P_{\Sigma_{1}}(x_{1}, w_{1})$$

$$z_{0} \leftarrow P_{\Sigma_{0}}(x_{0}, w_{0}, c)$$

$$z_{1} \leftarrow P_{\Sigma_{0}}(x_{1}, w_{1}, c)$$

$$z_{0} \leftarrow P_{\Sigma_{0}}(x_{1}, w_{1}, c)$$

$$V_{\Sigma_0}(x_0,a_0,\mathbf{c},z_0)=1$$

and
 $V_{\Sigma_1}(x_1,a_1,\mathbf{c},z_1)=1$

AND-Composition

X0 AND X1

Special Soundness

ao
$$\leftarrow$$
 P $\Sigma_0(x_0, w_0)$

$$a \vdash P_{\Sigma_1}(x_1, W_1)$$

$$z_0 \leftarrow P_{\Sigma_0}(x_0, W_0, C)$$

$$z \mapsto P_{\Sigma_0}(x_1, W_1, C)$$

$$V_{\Sigma_0}(x_0,a_0,\mathbf{c},z_0)=I$$
 $V_{\Sigma_0}(x_0,a_0,\mathbf{c}',z'_0)=I$

$$\nabla_{\Sigma_1(\times 1,a_1,c,z_1)} = \Gamma \quad \nabla_{\Sigma_1(\times 1,a_1,c',z'_1)} = \Gamma$$

 $c \neq c'$ and s-soundness of Σ_0 and Σ_1

W0,W1

Commitments from Sigma-Protocols

Commitment scheme

- Hiding
- Binding
 ∄ dec', m', with m≠m' s.t.
 Decommit(com, m, dec)=1 and
 Decommit(com, m', dec')=1

Michele Ciampi The University of Edinburgh

Instance-dependent commitment scheme NP-Language L

- if $x \in L$ Hiding
- If x ∉ L Binding
 ∄ dec', m', with m≠m' s.t.

Decommit(x, com, m, dec)=1 and Decommit(x, com, m', dec')=1

Commitments from Sigma-Protocols

$$SHVZKsim(\mathbf{x},C) \rightarrow a, Z$$

m'
$$\neq$$
m $\forall \Sigma(\mathbf{x}, \mathbf{com}, \mathbf{m}, \mathbf{dec}) \rightarrow \mathbf{1}$ $\forall \Sigma(\mathbf{x}, \mathbf{com}, \mathbf{m}', \mathbf{dec'}) \rightarrow \mathbf{1}$

s-soundness of Σ

w: witness for x

Commitments from Sigma-Protocols

Hiding $(x \in L)$

com, dec

$$a \leftarrow P_{\Sigma}(x, \mathbf{w})$$

By contradiction b=b'

Z1

$$SHVZK_{sim}(\mathbf{x},m_0) \longrightarrow$$

$$z \leftarrow P_{\Sigma}(x, \mathbf{w}, \mathbf{m}_0)$$

$$\leftarrow SHVZKsim(\mathbf{x}, m_1)$$

Conclusions

- Sigma protocols exist for a variety of NP languages
- Practical efficiency
- Building blocks for efficient zero-knowledge protocols
 - Interactive
 - Non-interactive (Fiat-Shamir Transform)

De Componendis Cifris

https:/www.decifris.it

Reference: On Sigma-Protocols. Ivan Damgaard. https://www.cs.au.dk/~ivan/Sigma.pdf