2) Let
$$(x_1, y_1)$$
, $(x_2, y_2) \in S$ and $0 \leqslant 1 \leqslant 1$

Let (x_0, y_1) be the conver conb. of (x_1, y_1) and (x_2, y_2)
 $\lambda^2(x_1^2 + y_1^2) \leqslant 4\lambda^2 \rightarrow \lambda^2 x_1^2 + \lambda^2 y_1^2 \leqslant 4\lambda^2$

A

 $(1-\lambda)^2(x_2^2 + y_2^2) \leqslant 4(1-\lambda)^2(1-\lambda)^2 x_2^2 + (1-\lambda^2)y_2^2 \leqslant 4(1-\lambda)^2$
 $(x_1 - x_2)^2 \geqslant 0 \Rightarrow 2x_1 x_2 \leqslant x_1^2 + x_2^2$
 $2x_1(1-\lambda)x_1 x_2 \leqslant 3(1-\lambda)(x_1^2 + x_2^2)$
 $2y_1 y_2 \leqslant y_1^2 + y_2^2$
 $2x_1(1-\lambda)x_1 y_2 \leqslant \lambda(1-\lambda)(y_1^2 + y_2^2)$
 $2x_1(1-\lambda)x_2 + 2x_1(1-\lambda)(y_1^2 + y_2^2)$
 $2x_1(1-\lambda)x_2 + 2x_1(1-\lambda)(x_1^2 + x_2^2)$
 $2x_1(1-\lambda)x_2 + 2x_1(1-\lambda)(x_1^2 + x_2^2)$

Summing inequalities
$$A_1B_1C_1$$
:
$$\lambda^2 \chi_1^2 + 2\lambda (1-\lambda) \chi_1 \chi_2 + (1-\lambda) \chi_2^2 + \lambda^2 y_1 + 2\lambda (1-\lambda) y_1 y_2 + (1-\lambda)^2 y_2 \leq (\lambda^2 + 8\lambda (1-\lambda))^2 + (\lambda^2 + 4(1-\lambda))^2 \leq (\lambda^2 + 8\lambda (1-\lambda))^2 + (\lambda^2 + 4(1-\lambda))^2 +$$

 $\chi_3^2 + \chi_3^2 \leq 4$

X > 1 also. convex. Intersection of two convex sets is

3

LfRo: Max $2x,+x_2$ S.t $x_1+x_2 \le 5$ $3x_1-x_2 \le 6$ $x_1,x_2 \ge 0$

LPR1: MAX $2x_1+x_2$ St $x_1+x_2 \leq 5$ $3x_1-x_2 \leq 6$ $x_2 \leq 2$ $x_1, x_2 \geq 0$

	χ	X	2 S	S	2	RHS	
₹	- 2	-	1 0		0	0	
s,	1	1	1		0	5	
S2	(3) -1			1	6	\rightarrow
Z	0	-5/3	1 0	2/3		4	
S,	0	4/3) 1	-1/3		3 -	>
7,	1	-1/3	0	1/2		2	
工	0	0	5/4	1/4		31/4	
72	0	1	3/4			9/4	
χ_{l}	1	0	1/4			1/4	

Dual	Si	nples	· ·				
	χ_{ι}		S,	52	S3	RHS	
王	9	0	5/4	1/4	0	31/4	
χ_2	6	(3/4	-1/4	0	9/4	Not
χ_{l}	(0	1/4	1/4	р	11/4	Cononica
53	0	1	0	0	1	2	forr
7	0	0	5/4	1/4	0	21/4	
82	0	1	2/4	-1/4	0	9/4	
	1	0	1/4	1/4	0	11/4	
So	D	0	(-3/4	1/4	1	-1/4	>
2	0	D	6	3	5/3	22/3	
×2	0	1	0	0	1	2	
X		0	0	1/3	1/2	8/3	
5,	6	0	1	-1/3	-4/2	1/3	

LPRo:

Max
$$x+2y$$

S.t $x-y \leq 3/4$
 $x-y \geq 1/2$
 $x+3 \leq 3$

BBB tree:

$$\begin{array}{c}
C = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\
C = \begin{pmatrix} 1 \\ 2$$

B&B tree:

$$UB = 4$$

$$LB = -$$

$$Inc. = -$$

$$Sol = \frac{1}{(x,y)^* = (\frac{7}{4}, \frac{5}{4})}$$

$$\frac{1}{2} \frac{1}{4} RR = 17/4$$

$$X \le 1$$

$$LPR_2:$$

$$LB = -$$

$$(x,y)^* = (1,1/2)$$

$$LPR_2:$$

No integer solution exists => 1P infeasible

D.V.S:
$$x_i$$
: $\begin{cases} 1 & \text{if item } i \text{ is selected } i=1,2/3,4 \\ \text{BIP: max} \quad 3x_1 + 8x_2 + 3x_3 + 7x_4 \\ \text{S.+} \quad 3x_1 + 5x_2 + 2x_3 + 4x_4 \leq 6 \\ x_i \in \{0,13\} \quad \forall i \in \{1,2,3,4\} \end{cases}$
LPRo: max $5x_1 + 8x_2 + 3x_3 + 7x_4$

$$5.+ 3x_1 + 5x_2 + 3x_3 + 7x_4$$
 $5.+ 3x_1 + 5x_2 + 2x_3 + 4x_4 \le 6$

0 = x; = 1 \ti \(\{ \frac{1}{2}, 3, 4 \}

the LP relevation of Knopsack problem can be solved by a gready heuristic which takes items in their non-decreasing order of profit weight as capacity allows. The last taken item's corresponding dec. var. may get assigned a fractional value.

Hems
$$\frac{9i/wi}{5/3} = 1.6$$
 $\frac{8}{5} = 1.6$
 $\frac{3}{7/4} = 1.75$

Favored order: 4, 1, 2, 3

Solution of LPRo: Item: 4 1 2 3
$$\frac{\chi_i}{\text{cop}}$$
: 1 $\frac{2}{3}$ 0 0 $\frac{\chi_i}{\text{cop}}$: 2 0 0 0

B&B tree:
$$UB=10$$
 $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$ $X_{LPRo}^{*}=(2/3,0,0,0,1)$

Sol of LPR1:
$$x_1=0$$
 Items: $4 2 3$
 $x_2: 1 2/5 0 2*=51/5$
Left C_0 : $2 0 0$

Sol of LPR2: $x_1=1$ Items: $1 4 2 3$
 $x_2: 1 3/4 0 0 2*=41/5$
 C_0 : $3 0 0 0$

BEB trae: C_0 : C_0

LPR3:
$$x_1=0$$
 Items: 4 3
 $x_1=0$ $x_1=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_1=0$ $x_2=0$ $x_1=0$ $x_$

LPR4:
$$x_1=0$$
 Items: 2 4 3
 $x_2=1$ x_i : 1 1/4 0 $z^*=\frac{33}{4}$
Left cop: 1 0 0

LPR5:
$$\chi_{1}=1$$
 [tems: 1 2 3 $\chi_{1}=0$ $\chi_{1}=1$ 1 3/5 0 $\chi_{2}=\frac{49}{5}$ left cop: 3 0 0

LPR6:
$$x_1 = 1$$
 Infearible

- Could stop when solution of LPR3 were found.