TEORIJA PROMETA Ak. god. 2010./2011.

1. Međuispit

25. ožujka 2011.

Ime i prezime:	JMBAG:
koristiti nedopuštenim sredstvima. Ove su	neću od drugog primati niti drugome pružiti pomoć, te da se neću radnje teška povreda Kodeksa ponašanja te mogu uzrokovati i trajno m da mi zdravstveno stanje dozvoljava pisanje ove zadaće.
	Vlastoručni potpis:
Trajanje ispita: 60 minuta	

PITANJA

Odgovorite zaokruživanjem Da ili Ne. Točan odgovor donosi 2%.

- 1. Srednja vrijednost i varijanca Poissonove razdiobe ne moraju biti jednake. **Da Ne**
- 2. U teoriji prometa vrijedi: ako se dolasci korisnika ravnaju po Poissonovoj razdiobi međudolazno vrijeme se ravna po eksponencijalnoj. **Da Ne**
- 3. Uz pretpostavku o Poissonovim dolascima dva dolaska se mogu dogoditi tijekom vrlo malog vremenskog intervala. **Da Ne**
- 4. Brzina dolazaka uz Poissonovu razdiobu jednaka je srednjoj vrijednosti ekspnencijalne razdiobe međudolaznog vremena. **Da Ne**
- 5. Ako se dolasci ravnaju po Poissonovoj razdiobi tada će vremenski interval od pojave zadnjeg dolaska utjecati na vjerojatnost preostalog vremena do trenutka sljedećeg dolaska. **Da Ne**
- 6. Ako je vrijeme između uzastopnih dolazaka eksponencijalno tada je vrijeme između pojave svakog trećeg dolaska također eksponencijalno. **Da Ne**
- 7. Razdioba vremena čekanja je neovisna od discipline posluživanja kojom se selektiraju korisnici koji čekaju na posluživanje u redu čekanja. **Da Ne**
- 8. Za poslužiteljski sustav kod kojeg je ograničen maksimalni broj korisnika koji mogu pristupiti posluživanju treba očekivati da ima manje srednje vrijeme čekanja nego poslužiteljski sustav koji prihvaća sve pridošle korisnike. **Da Ne**
- 9. Kod poslužiteljskog sustava sa slučajnim dolascima korisnika srednje vrijeme čekanja tipičnog korisnika bit će manje ako se slučajno vrijeme posluživanja zamijeni s konstantnim vremenom posluživanja. **Da Ne**
- 10. Efektivna brzina dolaska poziva u poslužiteljski sustav nikad nije veća od brzine dolazaka iz samog izvora poziva. **Da Ne**
- 11. Ako znamo stacionarne vjerojatnosti broja korisnika u sustavu onda možemo izračunati sve osnovne mjere performansi poslužiteljskog sustava bez obzira na vrste razdioba koje opisuju dolaske i odlaske korisnika. **Da Ne**

- 12. U modelu posluživanja s jednim poslužiteljem stacionarno stanje je moguće dosegnuti nakon zadovoljavajuće dugog intervala samo ako je brzina dolazaka manja od brzine posluživanja osim kad je kapacitet spremnika (red čekanja) ograničen. **Da Ne**
- 13. U poslužiteljskom sustavu M/M/* izlaz (broj odlazaka) je Poissonov proces. **Da Ne**
- 14. Slučajni broj iz intervala [0, 1] može se pretvoriti u slučajni broj iz intervala [0, 100] množenjem s konstantom 100. **Da Ne**
- 15. Slučajni broj iz intervala [0, 1] može se koristiti za generiranje uzoraka (vrijednosti slučajne varijable) samo ako je uzorkovana razdioba ravnomjerna. **Da Ne**

NUMERIČKI ZADACI

Upišite ili zaokružite rezultat.

16. **[5%]** Korisnik dođe u sustav M/M/7/8 kad su svih sedam poslužitelja zauzeti. Kolika je vjerojatnost da će bit poslužen prije barem jednog od sedam korisnika koji se već poslužuju?

Rješenje:

17. **[5%]** Vrijeme između dolaska tramvaja na stanicu ispred FER-a ravna se po eksponencijalnoj razdiobi sa srednjom vrijednosti 10 minuta. Ako studenti dolaze na stanicu u slučajnom redosljedu koliko će tipični student prosječno čekati na tramvaj?

Rješenje:

- 18. [5%] Pretpostavimo da su u sustavu M/M/1 parametri λ i μ udvostručeni.
 - (a) Koliki je srednji broj korisnika u sustavu?

Nepromienien Prepolovljen Udvostručen

(b) Koliko je srednje vrijeme boravka korisnika u sustavu?

Nepromjenjeno Prepolovljeno Udvostručeno

(c) Kako se promijenila razdioba stacionarnih vjerojatnosti?

Nepromjenjena Prepolovljena Udvostručena

- 19. **[15%]** U jednom čuvenom kafiću pokraj FER-a u vrijeme intenzivne nastave pive se poslužuju sukladno Poissonovom zakonu sa srednjom brzinom 30 boca pive sat.
 - (a) Izračunajte vjerojatnost da je točno 60 piva naručeno između 10 i 12 sati.
 - (b) Izračunajte srednju vrijednost i standardnu devijaciju broja naručenih piva između 9 i 13 sati.
 - (c) Izračunajte vjerojatnost da je vrijeme između dviju uzastopnih narudžbi pive između 1 i 3 minute.

Rješenje:

- (a)
- (b)
- (c)

20.	 [15%] Vrijeme između dolaska dva autobusa slijedi eksponencijalnu razdiobu sa srednjom vrijednosti 60 minuta. (a) Kolika je vjerojatnost da će točno četiri autobusa doći u iduća 2 sata? (b) Kolika je vjerojatnost da će barem dva autobusa doći u iduća 2 sata? (c) Kolika je vjerojatnost da niti jedan autobus neće doći u iduća 2 sata? (d) Ako je upravo došao jedan autobus kolika je vjerojatnost da je on došao između 30 i 90 minuta prije nego će doći sljedeći autobus?
	Rješenje:
	(a)
	(b)
	(c)
	(d)
21.	 [15%] U mojoj sobi postoje dvije žarulje. Prosječni životni vijek žarulje je 22 dana (eksponencijalna razdioba). Kad neka žarulja izgori potrebno mi je prosječno dva dana (eksponencijalna razdioba) da ju zamijenim. (a) Formulirajte model rađanja i umiranja s tri stanja i napišite jednadžbe ravnoteže. (b) Odredite dio vremena kad obje žarulje svjetle. (c) Odredite dio vremena kad niti jedna žarulja ne svjetli.
	Rješenje:

- (a) Kolika je vjerojatnost da je poslužitelj zauzet?
- (b) Koliko prosječno automobila čeka u redu? (Automobil koji se upravo poslužuje ne smatra se da je u redu čekanja.)
- (c) Koliko prosječno korisnik boravi u sustavu (uključuje i vrijeme posluživanja)?
- (d) Koliko će prosječno korisnika biti posluženo u jednom satu?

_	•	eš	^	-	•	•	
-	ı		•			т	-

(a)

(a)

(b)

(c)

- (b)
- (c)
- (d)

Korisne formule:

$$\sum_{n=0}^{N} x^{n} = \frac{1 - x^{N+1}}{1 - x}, \quad \text{za svaki } x \neq 1; \qquad \sum_{n=0}^{\infty} x^{n} = \frac{1}{1 - x}, \quad \text{za } |x| < 1$$

Poissonova razdioba: $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, ...$

Erlang-B:
$$B(c,a) = p_c = \frac{a^c}{c!} \left[\sum_{k=0}^c \frac{a^k}{k!} \right]^{-1}, \quad a = \frac{\lambda}{\mu}$$

Erlang-C:
$$C(c,a) = P_Q = \sum_{n=c}^{\infty} p_n = \frac{a^c}{(c-1)!(c-a)} p_0, \quad p_0 = \left[\sum_{k=0}^{c-1} \frac{a^k}{k!} + \frac{a^c}{(c-1)!(c-a)}\right]^{-1}, \quad 0 \le a < c$$

M/M/1:
$$T = \frac{N}{\lambda} = \frac{1}{\mu - \lambda}$$
, $N_Q = \lambda W = \frac{\rho^2}{1 - \rho}$, $\rho = \lambda/\mu$