```
Started on Monday, 19 October 2020, 3:29 PM
State Finished
Completed on Monday, 19 October 2020, 4:06 PM
Time taken 37 mins 32 secs
Grade 4.00 out of 4.00 (100%)
```

```
Question 1
Correct
Mark 1.00 out of 1.00
```

Use o módulo Python math para inicializar as variáveis x1, x2, x3 com os fatoriais de 30, 40 e 50, respetivamente.

For example:

Test	Result
print(x1)	265252859812191058636308480000000

Answer: (penalty regime: 0 %)

```
1  |import math
2  |
3  | x1 = math.factorial(30)
4  | x2 = math.factorial(40)
5  | x3 = math.factorial(50)
```

	Test	Expected	Got
~	print(x1)	265252859812191058636308480000000	265252859812191058636308480000000
~	print(x2)	815915283247897734345611269596115894272000000000	8159152832478977343456112695961158
~	print(x3)	30414093201713378043612608166064768844377641568960512000000000000	3041409320171337804361260816606476

Passed all tests! ✔

Correct

Marks for this submission: 1.00/1.00.

Question 2
Correct
Mark 1.00 out of 1.00

Releia o exercício de conversão de graus Fahrenheit para Celsius. Aqui pretendemos fazer o inverso. Lendo o input do utilizador que nos dá uma temperatura em graus Celsius, queremos inicializar a variável **grausFahrenheit** com o valor da conversão para graus Fahrenheit.

Repare que a função input devolve o valor introduzido pelo utilizador numa *string.* Por esse motivo é necessária a sua conversão para um valor apropriado. No nosso caso queremos converter o valor recebido para um *float*.

For example:

Test	Input	Result
print(grausFahrenheit)	0	32.0

Answer: (penalty regime: 0 %)

Reset answer

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00

```
Question 3
Correct
Mark 1.00 out of 1.00
```

Dados os lados a,b,c de um triângulo, calcular e imprimir o co-seno do ângulo A, de acordo com a figura.

Imprima a sua resposta com três casas decimais. Use a formatação **{:5.3f}** para fazer print do resultado. dica: ler a página da Wikipedia sobre a <u>Lei dos cossenos</u>

For example:

Input	Result
3 4 5	0.800
3.1 5.9 7.33	0.913

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1  | a = float(input())  # terei de fazer alguma conversão de valores?
2  | b = float(input())
3  | c = float(input())
4  |
5  | cosA = (-a**2 + b**2 + c**2) / (2*b * c)
6  | print('{0:.3f}'.format(cosA))
```

Input Expected Got 0.800 0.800 0.800 0.800 10 0.913 0.913 5.9 7.33 10 0.500 0.500 10 10 0.950 0.950 10 19

Passed all tests! ✔

Correct

Marks for this submission: 1.00/1.00.

```
Question 4
Correct
Mark 1.00 out of 1.00
```

Dada a altura e o raio da base de um cilindro e de um cone, calcule e imprima os respetivos volumes, bem como o ratio entre os seus volumes. Para tal defina as variáveis volumeCilindro, volumeCone, e ratio.

Imprima os resultados com quatro casas decimais.

For example:

Ir	nput	Result	
10	-	3141.5927 1047.1976 3.0000	

Answer: (penalty regime: 0 %)

Reset answer

```
import math
def volCilindro(r, h):
    return math.pi * r**2 * h

h = float(input())
r = float(input())

volumeCilindro = volCilindro(r, h)
volumeCone = volumeCilindro / 3
ratio = volumeCilindro / volumeCone
print('{0:.4f}\n{1:.4f}\n{2:.4f}'.format(volumeCilindro, volumeCone, ratio))
```

Passed all tests! ✔

Correct

Marks for this submission: 1.00/1.00.

NEXT ACTIVITY
Capítulo 4 - Condicionais e Recursão