95.		
- 27	MA	
- 8	¥υ	

CEVAP ANAHTAR

NOT:

Lütfen Girdiğiniz grubu işaretleyiniz:

I. Öğr: A() B() II.Öğr: A() B()

ENDÜSTRİ MÜH. FİZİK II ARASINAVI

10.04.2013 Süre **75** dakikadır. Tüm sorular eşit ağırlıklıdır.

1) q_1 =+Q , q_2 =-2Q ve q_3 =+Q yükleri şekildeki gibi bir karenin köşelerine yerleştirilmişlerdir. (a) P noktasındaki elektrik alanı bulunuz. (10P). (b) P noktasındaki elektrik potansiyeli bulunuz (10P). (c) P noktasına sonsuzdan Q yükü getirmek için yapılması gereken işi bulunuz (5P). Cevaplarınızı k, Q ve L cinsinden yazınız.

(a) ①
$$|\vec{E}_{i}| = k \frac{q_{i}}{L^{2}} = k \frac{Q}{L^{2}} = E$$

$$|\vec{E}_{\tau}| = |\vec{E}_{i}| + |\vec{E}_{2}| + |\vec{E}_{3}|$$

$$|\vec{E}_{\tau}| = |\vec{E}_{i}| + |\vec{E}_{2}| + |\vec{E}_{3}|
(c)
$$\coprod_{P} = 9_{4}V_{P} = \emptyset. (2-12) \underbrace{\mathbb{Q}^{2}}_{\mathbb{Q}} = (2-12) \underbrace{\mathbb{Q}^{2}}_{\mathbb{Q}}$$

(4)

2)) a yarıçaplı yalıtkan kürenin hacminde +Q yükü düzgün dağılmıştır. a yarıçaplı küre ile eşmerkezli iç yarıçapı b dış yarıçapı c olan <u>iletken</u> küresel kabuk –Q net yüküne sahiptir. (i) r<a (5P) (ii) a<r<b (5P) (iii) b<r<c (5P) (iv) r>c bölgelerindeki elektrik alanın büyüklüğünü bulunuz (5P). Cevabınızı verilenler cinsinden yazınız. (v) Bu sistemde yük depolanıp depolanmayacağını kısaca açıklayınız (5P).

kısaca açıklayınız (5P).

(i)
$$r < q$$
 için (1 bölgesi)

$$\oint \vec{E}_1 d\vec{A} = \frac{q_{iq}}{\epsilon_0} = \frac{\varphi_{r_0}^3}{\epsilon_0} = \vec{E}_1 \cdot q_{1r}^2 = \frac{q_{iq}}{q_{3}^3}$$

$$\vec{E}_1 = k \underbrace{Q_r}_{q_3} \hat{r}_2$$

$$\vec{Q}$$

$$\vec{Q}$$

(ii) (2 bolgosi)
$$9 < r < b$$
 (iv) $f = \frac{Q}{2} = \frac{Q}{2$

ii) (3 bdsoi) b\oint \vec{E}_3 \cdot d\vec{A} = \frac{Q_{14}}{E_0} = \frac{Q}{E_0} = 0 \implies \vec{E}_2 = \frac{Q}{F^2} \hat{\Gamma} (5) (4 bdsoi) c\oint \vec{E}_3 \cdot d\vec{A} = \frac{Q_{14}}{E_0} = \frac{Q}{E_0} = 0 \implies \vec{E}_3 = 0 (ilathonin iqi) (5)
$$\vec{E}_4 \cdot d\vec{A} = \frac{Q_{14}}{E_0} = \frac{Q}{E_0} = 0 \implies \vec{E}_4 = 0$$
 (5) Bu sistende with the single si

Not: Birim hotas, -1 pundir.

3) Sekilde ilk hızı $V_0=6.5\times10^6$ m/s olan bir elektron bir Katot ışını tüpünün saptırma levhalarının orta yerinden eksen boyunca fırlatılıyor. Levhalar arasındaki düzgün elektrik alanın büyüklüğü E=1.1x10³ Volt/m'dir ve yukarıya doğrudur. (a) Elektron levhalar arasındayken üzerindeki kuvvetin büyüklük ve yönü nedir? (b) (a) sıkkındaki kuvvet uygulandığında elektronun ivmesinin büyüklüğü ve yönü ne olur?⁷ (c) Levhaların sonuna vardığında elektron eksenin ne kadar altındadır? 6 (d) Floresan ekranı S'ye eksenden ne kadar aşağıda yurur? (25 P) (q_e=1.6x10⁻¹⁹ C alınız ve Yerçekimini ihmal ediniz)

d=2cm v_0 12 cm-Vo= 6,5.10 mls E = 1,1.103 WH

 $d = 2 cm = 2.10^{-2} m$ 9=6.10-2 m b=12.10-2 m

Elektron negatif yoklo oll.d. elektron negatif yoklo oll.d. yerdodir ve büyoklogo Fe= 9. E=1,6,10,1,103 "= 1,76.10 N

Fret = m a d= de = (-17610 m)) a =-1,93,10" m/s2 1 @ 6P/ (3) $V_{ex} = a/t \Rightarrow t = \frac{Q}{V_{ex}} = \frac{6.0.10}{6510^{+6}} = 0.9210^{\circ} s$ Bu solede y elserinde aldigi mesagraje y dosek; [Voy=0]

(3) $\vec{y} = \frac{1}{2}\vec{a} \cdot t^2 = \frac{1}{2} \cdot 1.93 \cdot 10^{114} \cdot (0.92)^2 \cdot 10^{16} = 8.22 \cdot 10^{16} = 0.822 \text{ cm}$

(d) Plakalordon cikhkton sonra

e'na hichin kuvvet etmiyecejerinden

Ox = Oy = O'dir. S ekranina

vons somoni (ti) bulabilini z

ti = 12.10² = 1.85.10⁸ s (3)

Hizm y-blesseni(Ahizminda) Vy=at= 1,9310 19210 = 1,782.10 m/s 2 Y1 = Vayt = 1,782.10 1.85.10 = 0,0329 m = 3,29 cm 2

Ilk gikis noktasinden itibaren 5 ekaning gelisine kudenki sorogte y'de gligi y=y+y1=0,822+3,29=4,11cm

4) Şekilde verilen devrede, $C_1 = C_2 = C_3 = 6 \mu F$ ve $V_{ab} = 3 V$ 'tur. (a) S anahtárı 1 konumuna getirildiğinde, kondansatörlerin yüklerini bulunuz (8P). (b) İlk durumda kondansatör yüklendiği gibi S anahtarı 2 konumuna getirilirse üç kondansatörün yükleri ve potansiyel farkları ne olur (10P). (c) Anahtar 1 ve 2 konumunda iken sistemde depolanan toplam enerjileri bulunuz ve karşılaştırınız (7P).

Q= C, Vab = 6.10.3=18 µC

 $V_{ab}' = \frac{Q_T}{C_{ex}} = \frac{18}{9} = 2 \text{ Voit } \text{ } \text{?}$ Her koldaki pot fork. 2 Volt old.dog. $q_{is} = C_1 V_{qh}^1 = 6.2 = 12 \mu C$ 925 = C2 V25 = 6.1= 6 MC

935 = C3 V1 = 61 = 6 MC

(c) Ilk dorvada (3) [1= 101 Vab = 13.10.3 = 27.10.1 Sen durunds (3) [] = 1 Co2 Vol = 1 9.10. 2 = 18.10 1 $\int_{0}^{2} \frac{1}{1000} = \frac{1}{1$