Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

CIRCUITOS DIGITALES AVANZADOS

Practica 2 (Parte 2) Circuito Secuenciales de los Modelos Moore y Mealy

Docente: Lara Camacho Evangelina

Alumno:

Gómez Cárdenas Emmanuel Alberto 1261509

18/MAR/2020

Gómez Cárdenas Emmanuel Alberto

INDICE

OBJETIVO	3
EQUIPO	
FUNDAMENTO TEORICO	
DESARROLLO	
Modelo Mealy	
Diagrama de estados (Entrada/Salida)	
Tabla 1. Asignación de estados.	
Tabla 2. Transición de estados	
Mapas de Karnaugh	
Circuito implementado en Logisim	
CONCLUSIONES	

OBJETIVO

Diseñar y construir circuitos detectores de secuencia modelos Moore y Mealy utilizando flipflops D.

EQUIPO

Computadora personal con el software Logisim.

FUNDAMENTO TEORICO

Continuando con la definición de máquinas de estado (autómatas finitos deterministas) presentada en la Práctica 1, además de la función de transición δ , existe la función de salida ω que puede ser de dos tipos:

- Modelo Mealy: $z = \omega$ (r, a).
- Modelo Moore: $z = \omega(r)$.

Sea r un estado de Q y sea a un símbolo del alfabeto Σ . Si el autómata es Mealy y está en el estado r y lee el símbolo a, entonces la salida es $z = \omega$ (r, a). Si el autómata es Moore y está en el estado r, entonces la salida es $z = \omega(r)$.

Al implementar la máquina de estados, la función de salida ω es una función combinacional que depende del estado actual y si es tipo Mealy también depende de la entrada. La Fig. 1 muestra los bloques funcionales de una máquina de estados. En una máquina Moore, la salida ${\bf z}$ solo depende del estado actual ${\bf r}$, en una Mealy, ${\bf z}$ también depende de la entrada ${\bf a}$.

DESARROLLO

Diseñe un detector de secuencia con una entrada X y dos salidas, Z1 y Z2, que detecte la aparición de las secuencias 11011 y 11001 en la entrada. La salida Z1 es 1 cada vez que se recibe la secuencia 11011, mientras que la salida Z2 es 1 cada vez que 11001 es recibida. El detector debe ser con traslape. Utilice flip-flops D en su diseño.

Diseñe el detector de secuencia descrito como una máquina de estados modelo Mealy.

Modelo Mealy

Diagrama de estados (Entrada/Salida)

Tabla 1. Asignación de estados.

Estado	q2q1q0		q2q1q0	
S0	000			
S1	001			
S2	010			
S3	011			
S4	100			
S5	101			

Tabla 2. Transición de estados.

Estado actual		SIGUIENTE ESTADO ESTADO / SALIDA	
NUMERICO	BINARIO	X= 0	X=1
S0	000	000/0	001/0
S1	001	000/0	010/0
S2	010	011/0	010/0
S3	011	100/0	101/0
S4	100	000/0	001/1
S5	101	000/0	010/1
S6	110	000/0	00/0
S7	111	000/0	000/0

Mapas de Karnaugh

Las Ecuaciones obtenidas con los mapas son:

Para los flip-flops

D0 (S2, S1, S0, X) = S1'S0'X + S2'S1S0'X' + S2'S1S0X

D1 (S2, S1, S0, X) = S1'S0X + S2'S1S0' + S1S0'X D2 (S2, S1, S0, X) = S2'S1S0

Para las salidas

Z0 (S2, S1, S0, X) = S2S1'S0XZ1 (S2, S1, S0, X) = S2S1'S0'X

Circuito implementado en Logisim

Nos hemos tomado la libertad de agregarle un latch a cada salida de esta manera los leds permanecerán encendidos durante todo un ciclo de reloj.

CONCLUSIONES

Gómez Cárdenas Emmanuel Alberto:

Esta práctica nos ayudó a comprender una vez más las diferencias y entre los modelos Mealy y Moore, de esta manera aprendimos a diferenciar los ventajas y desventajas de cada uno dependiendo del contexto en el que se encuentran.

LABORATORIO DE CIRCUITOS DIGITALES