Requested Patent

FR2054474A2

Title:

Abstracted Patent

FR2054474

Publication Date:

1971-04-23

Inventor(s):

Applicant(s):

INNOTHERA LAB SA (FR)

Application Number:

FR19690023303 19690709

Priority Number(s):

FR19690023303 19690709

IPC Classification:

A61K27/00; C07D27/00

Equivalents:

ABSTRACT:

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

No de publication :
(A nutiliser que pour le classement et les commandes de reproduction.)

.

2.054.474

(21) No d'enregistrement national : (A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes

autres correspondances avec (1.N.P.I.)

69.23303

DEMANDE DE CERTIFICAT D'ADDITION
 A UN BREVET D'INVENTION

1re PUBLICATION

(22) (41)	Date de dépôt Date de la mise à la disposition du public de la demande	9 juillet 1969, à 14 h 17 mn. B.O.P.I. — «Listes» n. 16 du 23-4-1971.
6 1	Classification internationale (Int. Cl.)	A 61 k//27//00 C 07 d 27/00.
71)	Déposant : Société Anonyme dite : IN	NOTHERA, résidant en France (Val-de-Marne).
74	Mandataire : Jean Casanova, Ingénieur-	Conseil.
54)	Médicament à base de dérivé de pyrrole).
72		Fernand Robba, René Henri Pierre Marcy et Denis
33 32 31	Jeanne Claude Duval. Priorité conventionnelle :	
		. •
0		
(61)	Références du brevet principal : Brevet	d'invention n. P.V. 161.664 du 2 août 1968.
	Certificat(s) d'addition antérieur(s) :	

Dans le brevet principal, il a été décrit un médicament comprenant, en tant que principe actif, un composé chimique, en l'espèce un des trois (carboxy-phényl)-1 méthyl-2 phényl-5 pyrroles.

La présente addition concerne des phényl-1 pyrroles portant aussi, dans les positions 2 et 5, un substituant de la classe des groupes méthyle et phényle; il s'agit ici des phényl-1 pyrroles répondant à la formule générale

-10

5

15

35

dans laquelle

R₁ et R₂ désignent chacun, indépendamment, un groupe méthyle ou un groupe phényle, méthyl phényle ou halogénophényle,

20 tandis que le noyau A représente

les symboles R_3 et R_4 ayant chacun, indépendamment, l'une des significations suivantes :

- hydrogène,
- halogène,

- groupe aliphatique inférieur, plus spécialement méthyle, éthyle ou propyle,

- hydroxy-méthyle ou β-hydroxy-éthyle,
- trifluorométhyle,
- acétyle,.

40 -hydroxy phényle, l'hydroxyle pouvant être éthérifié

5

15

20

25

30

en particulier par le méthanol, l'éthanol, un propanol ou un butanol,

- sulfonamide,
- carboxy méthyle,

- carboxyle, éventuellement salifié, estérifié ou amidifié,

l'un des symboles R_3 et R_4 pouvant aussi désigner H, à condition que l'autre ne représente pas COOH (composés du brevet principal) quand R_1 =CH $_3$ et R_2 =C $_6$ H $_5$ L

10 Le carboxyle peut être salifié par un métal alcalin ou par une base organique (sel d'addition) qui peut être, en particulier:

- a) une hydroxy amine telle que le N.N-diéthylamino éthanol ou l'amino isobutanol, la diéthanolamine, un amino propanol, un amino butanol, un amino pentanol ou un amino hexanol,
- b) une alcoxy amine telle que la γ -méthoxy n-propylamine ou l'amino-2 méthoxy-1 propane,
- c) un para-amino benzoate d'amino alkyle,
- d) une amino pyridine,
 - e) une amine cyclique, telle que la pyrrolidine, la pipéridine, la morpholine ou l'hexaméthylène imine, cette amine cyclique pouvant porter un substituant de la classe du méthyle, du β-hydroxy éthyle et du γ-hydroxy propyle,
 - f) une amine furannique telle que l' α -amino-méthyl furanne ou une amine tétrahydro-furannique telle que l' α -amino-méthyl tétrahydrofuranne ou
 - g) une amine aliphatique primaire telle que l'isopropyl amine ou secondaire telle que la diallyl amine.

Le carboxyle peut être estérifié par un alcanol inférieur tel que le méthanol, l'éthanol ou un propanol.

Sous sa forme amidifiée, le carboxyle peut répondre

35 à l'une des formules

40

dans lesquelles

5

40

R₅ représente H, CH₃ ou C₂H₅,

R₆ représente : a) un reste de benzène d'halogéno benzène, de méthoxy ben-

zène ou de nitro benzène,

- b) un cycle de furanne ou de nitro furanne,
- c) un cycle de thiophène ou de nitro thiophène ou

d) un cycle de pyridine, R, et R, représentent chacun -CH3 ou -CH3.

On peut préparer les nouveaux dérivés du pyrrole de la manière indiquée dans le brevet principal, c'est-à-dire par application de la méthode de KNORR-PAAL, donc par condens15 sation d'une Y -dicétone avec une amine primaire aromatique.

La γ -dicétone mise en jeu est soit l'hexane dione-2.5, soit la γ -céto valérophénone obtenue selon HELBERGER (Liebigs Annalen der Chemie, 1936, <u>522</u>, 274) par condensation du chlorure de lévulinyle sur du benzène, soit le dibenzoyl

20 éthane obtenu selon J.B. CONANT et R.E. LUTZ (Journal Am. Chem.Soc.1923, 45, 1303) par réduction du dibenzoyl éthylène. soit la para-bromo-phénacétylacétone, soit la para-méthyl-phénacétylacétone.

Les amines utilisées dans les condensations peuvent être:

- 25 1) des amines aromatiques halogénées,
 - les toluidines, les amino-éthyl benzènes et les aminopropyl benzènes,
 - 3) les hydroxy-méthyl-anilines et les β -hydroxy-éthyl anilines,
 - 4) les trifluorométhyl anilines,
- 30 5) les amino acétophénones,
 - 6) les aminophénols et leurs éthers méthylique, éthylique, propylique ou butylique,
 - 7) les aminobenzène sulfonamides,
 - 8) les acides aminophényl acétiques et
- 35 9) les acides amino benzoïques.

Quant aux esters méthyliques des carboxyphényl-1 méthyl-2 phényl-5 pyrroles on peut les synthétiser par action du diazo méthane sur les acides en solution dans de l'éther éthylique.

On peut en outre préparer :

5

20

- a) les hydrazides des carboxyphényl-1 méthyl-2 phényl-5 pyrroles par action de l'hydrazine sur les esters méthyliques correspondants;
- b) les sels alcalins des carboxyphényl-1 méthyl-2 phényl-5 pyrroles par chauffage des acides avec des hydroxydes alcalins et les sels de bases organiques par chauffage au reflux de solutions éthanoliques d'acides avec les bases organiques appropriées;
- c) les hydrazones du carboxyphényl-1 méthyl-2 phényl-5
 pyrroles par chauffage des hydrazides de ces acides avec
 des aldéhydes aromatiques, des cétones aromatiques, des
 aldéhydes thiophéniques, des cétones thiophéniques, des
 aldéhydes furanniques et des cétones thiophéniques;
- d) les amides à groupement CO-NH-T par condensation des

hydrazides des carboxyphényl-1 méthyl-2 phényl-5 pyrroles avec de l'hexane dione, du dibenzoyl éthane, de de la Y-céto valérophénone et des dérivés de substitution sur le cycle benzénique.

Les exemples suivants, non limitatifs, illustrent la fabrication.

EXEMPLE 1 :

Méta-carbométhoxy-phényl-1 méthyl-2 phényl-5 pyrrole.

25 Une solution de 3 g de méta-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole dans 200 ml d'éther éthylique est additionnée d'une solution de diazométhane dans 150 ml d'éther obtenue à partir de 12 g de nitroso méthyl urée. On agite pendant 2 heures à 0° puis on évapore jusqu'à siccité sous vide 30 et on recristallise le résidu dans de l'éthanol absolu. Cristaux blanc, F = 81° Rdt = 95 %.

EXEMPLE 2:

Hydrazide du méta-carboxyphényl-1 méthyl-2 phényl-5 pyrrole.

On ajoute une solution de 6 ml d'hydrate d'hydrazine dans 10 ml d'éthanol absolu à une solution de 5 g de métacarbométhoxy-phényl-1 méthyl-2 phényl-5 pyrrole dans 20 ml d'éthanol. Après repos d'une heure à la température ambiante, on chauffe au reflux pendant 30 heures. On essore après refloi-40 dissement et on recristallise dans de l'éthanol absolu. Cristaux

blancs. F = 158°. Rdt = 60 %.

EXEMPLE '3:

Sel de sodium du m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe pendant 30 minutes à l'ébullition une solution de 4 g d'hydroxyde de sodium et de 27,7 g de m-car-boxy-phényl-1 méthyl-2 phényl-5 pyrrole dans 90 ml d'eau. On essore après refroidissement et on concentre les eaux mères jusqu'à très faible volume pour obtenir un deuxième jet.

10 On recristallise dans de l'acétonitrile. Cristaux blancs, F = 315° - Rdt = 85 %.

EXEMPLE 4:

Sel d'addition d'éthanolamine au méta-carboxyphényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe à reflux pendant 2 heures une solution de 10 g de m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole et de 2,6 g d'éthanolamine dans 50 ml d'éthanol absolu. On concentre au demi-volume et on essore le précipité. Après lavage avec de l'éther éthylique, on le recristallise dans de l'éthanol

20 absolu. F = 150°, cristaux jaunes . Rdt = 85 %.

EXEMPLE 5:

Sel d'addition de morpholine au m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe à reflux pendant 2 heures une solution
25 de 10 g de m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole et de 3,3 g
de morpholine dans 60 ml d'éthanol absolu. On concentre au demivolume,on essore le précipité, on le lave à l'éther éthylique et en
le recristallise dans de l'acétonitrile. Cristaux jaunes .

 $F = 148^{\circ} \cdot Rdt = 85 \%$

30 EXEMPLE 6:

Sel d'addition de l'amino-2 méthyl-2 propanol-1 au m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe à reflux pendant 3 heures une solution

de 10 g de m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole 35 et de 3,5 g d'amino-2 méthyl-2 propanol-1 dans 60 ml d'éthanol absolu. On concentre au demi-volume, on essore le précipité

et on recristallise dans de l'éthanol. Cristaux jaunes.

 $F = 197^{\circ}$. Rdt = 85 %.

EXEMPLE 7:

Sel d'addition de la N-(:-hydroxy-éthyl) pipéridine au m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe à reflux pendant 3 heures une solution

de 4,7 g de N-(ß-hydroxy-éthyl) pipéridine de avec 10 g de m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole dans 100 ml d'éthanol absolu. On concentre au demi-volume, on essore le précipité, on le lave à l'éther éthylique et on le recristallise dans un mélange d'éthanol absolu et d'éther éthylique. Cristaux blancs.F = 137°. Rdt = 90 %. EXEMPLE 8:

Sel d'addition de $1^{\circ}\alpha$ -tétrahydro-furfurylamine au m-carboxy phényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe à reflux pendant 3 heures une solution de 3,6 g d'α-tétrahydrofurfurylamine et de 10 g de m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole dans 60 ml d'éthanol absolu. On concentre au demi-volume et on recristallise le précipité dans de l'éthanol absolu. Cristaux jaunes.F = 175°.

15 Rdt = 90 %.

EXEMPLE 9:

Para-N-carboxyméthyl-carboxamido-phényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe au reflux pendant 2 heures une solution 20 de 5 g de Y-cétovaléro phénone et de 5,3 g d'acide p-amino hippurique dans 200 ml d'éthanol. On verse dans 200 ml d'eau, on agite pendant 2 heures et on essore. Cristaux blancs. F = 174° (le composé peut cristalliser dans l'alcool éthylique à 50 %). Rdt = 60 %.

25 EXEMPLE 10:

N-(méthyl-2°phényl-5°pyrrolyl-1°) méta-carboxamidophényl-1 diméthyl-2.5 pyrrole.

On chauffe à reflux pendant 2 heures une solution de 5 g d'hydrazide du métacarboxy-phényl-1 diméthyl-2.5 pyrrole 30 et de 3,9 g de γ -céto valérophénone dans 60 ml d'éthanol absolu. On dilue avec 100 ml d'eau, on essore le précipité et on le sèche. Cristaux blancs. F = 182° (le composé peut cristalliser dans l'acétonitrile) Rdt = 80 %.

EXEMPLE 11:

M-nitro benzylidène hydrazide du m-carboxyphényl-1 méthyl-2 phényl-5 pyrrole.

On chauffe à reflux pendant 2 heures une solution de 3 g d'hydrazide du m-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole et de 3 g de m-nitro benzaldéhyde dans 50 ml d'éthanol 40 absolu. On essore après refroidissement, on lave à l'éther et on recristallise dans du méthyl-glycol. Cristaux jaunes.

 $F = 154^{\circ} \cdot Rdt = 55 \%$

EXEMPLF 12:

Méta-carboxy-phényl-1 diphényl-2,5 pyrrole.

On chauffe au reflux pendant 20 heures une solution

de 5 g de dibenzoyl-éthane et de 2,9 g d'acide méta-amino
benzoïque dans 60 ml d'éthanol absolu. On dilue avec 100 ml d'eau,
on essore et on recristallise dans l'acétonitrile. Cristaux
blancs. F = 260°. Rdt = 60 %.

EXEMPLE 13:

10

Méta-carboxy-phényl-1 méthyl-2 para-bromophényl-5 pyrrole.

On chauffe au reflux pendant 3 heures 7 g de p-bromophénacétyl acétone obtenue selon Rips et Coll., Journ. Org.
Chem. 25, 392 et 3,8 g d'acide m-amino benzoïque dans 60 ml
15 d'éthanol absolu. On évapore jusqu'à siccité sous vide, on
ajoute 50 ml d'eau au résidu et on essore. Cristaux jaunes.
F = 232° Rdt = 50 %. Le produit est cristallisable dans un mélange
de méthanol et d'acétonitrile (1 : 4).
EXEMPLE 14:

Méta-carboxy-phényl-1 méthyl-2 paratolyl-5 pyrrole.

On chauffe à reflux pendant 3 heures une solution
de 5 g de para-méthyl phénacétyl acétone et de 3,6 g d'acide
méta-amino benzoïque dans 60 ml d'éthanol absolu. On évapore
jusqu'à siccité sous vide, on ajoute 50 ml d'eau, on essore
et on recristallise dans l'acétonitrile. Cristaux jaunes.
F = 222°. Rdt = 55 %.

EXEMPLE 15:

Para-sulfamido-phényl-1 méthyl-2 phényl-5 pyrrole.
On chauffe au reflux pendant 2 heures une solution
30 de 3 g de β-céto-valéro-phénone et de 2,8 g de p.amino benzène sulfamide dans 30 ml d'éthanol. On concentre au demi-volume, on verse dans 100 ml d'eau et on essore le précipité. Cristaux blancs. F = 206°. Rdt = 75 %. Le produit est cristallisable dans l'alcool éthylique à 95 %.

35 EXEMPLE 16 :

Para- -- hydroxy-éthyl phényl-1 méthyl-2 phényl-5 pyrrole.

Un mélange de 10 g de γ -céto valérophénone et de 7,75 g de para- β -hydroxy-éthyl-aniline est chauffé pendant 40 20 minutes à 100°. On distille à 200° sous 10 mm de mercure.

5

Le distillat est recristallisé dans du cyclohexane. Cristaux : blancs. $F = 88^{\circ}$. Rdt = 70 %. : EXEMPLE 17 :

Méta-hydroxy para-méthyl phényl-1 diméthyl-2.5 pyrrole.

Un mélange de 10 g de γ -céto valérophénone et de 10,5 g de méta-hydroxy para-méthyl aniline est chauffé à 100° puis distillé sous 10 mm. On recueille la fraction passant entre 200° et 230° et on la recristallise dans du cyclohexane.

10 Cristaux blancs. F = 95° . Rdt = 50 %: EXEMPLE 18:

(Diméthoxy-3,5 phényl)-1 méthyl-2 phényl-5 pyrrole.

Un mélange de 10 g de γ -céto valérophénone et de
8,5 g de diméthoxy-3.5 aniline est chauffé à 100° puis distillé
15 sous 8 mm. On recueille la fraction passant entre 160 et 220°
et on la recristallise dans du cyclohexane. Cristaux blancs .
F = 103°. Rdt = 45 %.

EXEMPLE 19:

Para-chloro phényl-1 méthyl-2 phényl-5 pyrrole.

20 Un mélange de 10 g de γ -céto valérophénone et de 7,2 g de para-chloraniline est chauffé à 100° puis distillé sous 20 mm. La fraction recueillie à 120° est recristallisée dans du cyclohexane. Cristaux blancs F = 106. Rdt = 60 %.

EXEMPLE 20:

25 (Dichloro-3,4 phényl)-1 méthyl-2 phényl-5 pyrrole.

Une solution de 5 g de γ-céto valérophénone et
de 4,5 g de dichloro-3,4 aniline dans 20 ml d'éthanol absolu
est chauffée au reflux pendant 2 heures. On verse dans 200 ml
d'eau avec agitation et on essore. Cristaux blancs.

30 F = 96° • Rdt = 85 %. Le produit est cristallisable dans l'éthanol absolu.

EXEMPLE 21:

EXEMPLE 22:

(Méta-trifluorométhyl phényl)-1 méthyl-2 phényl-5 pyrrole.

Une solution de 5 g de Y -céto valérophénone et de 5 4,3 g de méta-trifluoro aniline est chauffée au reflux pendant 3 heures dans 20 ml d'éthanol absolu. On verse sur 150 ml d'eau avec agitation mécanique et on extrait au chloroforme. Cristaux blancs. F = 96°. Rdt = 80 %. Le produit est cristalisable dans le cyclohexane.

10 EXEMPLE 23:

(Chloro-2 trifluorométhyl-5 phényl)-1 méthyl-2 phényl-5 pyrrole.

Un mélange de 10 g de 7-céto valérophénone et de 10 g de chloro-2 trifluorométhyl-5 aniline est chauffé pendant 15 15 minutes à 100° puis distillé à 180 - 190° sous 10 mm. Le distillat est recristallisé dans du cyclohexane. Cristaux blancs. F = 125°. Rdt = 80 %.

D'autres composés ont été préparés de la même manière que ceux des exemples précédents. Ils sont identifiés 20 par la signification des symboles R, R₁, R₂ de la formule

25

dans le tableau I qui suit, où apparaissent également deux des 30 3 composés du brevet principal et ceux des exemples précédents : dans ce tableau, alccol signifie "alcool éthylique"

(Voir tableau I page suivante)

TABLEAU I

~				<u> </u>	·	
R	R ₁	· R ₂	F	Rdt.	Solvant de cristallisa-tion	No
-CO ² H	CH ₃	CH ₃	146°	60 %	Alcool 95 %	1
	OН ₃) 197°·	95 %	Acétonitrile	2
-со₂н	CH ₃	id.	212°	95 %	Alcool 95 %	3
CO ² H',H ⁵ M-CH CH ³	CH ₃	id.	191°	80 %	Ethanol	4
€ CO ₂ CH ₃	CH ₃	id.	81°	95 %	Ethanol	5
-€	CH ₃	id.	104°	95 %	Ethanol	6
CONHNH2	CH ₃	id.	155°	90 %	Ethanol	7
CONEMH ²	CH ₃	id.	158°	60 %	Ethanol	8
-CONHNH2	CH ₃	id.	156°	95 %	Ethanol	9

TABLEAU I (suite	e)
------------------	----

R	R ₁	R ₂	F	Rdt. Solvant de l cristalli- sation	N°
CH ₂ CH=CH ₂ C	CH ₃		132° -	80 % Ethanol 1	10
CO2H, CH2OHCH2N	CH ₃	id.	135°	80 % Ethanol 1	11
CO ₂ H, CH ₃ CHCH ₂ OCH ₃	сн ₃	id.	155°	85 % Ethanol 1	12
-Co ₂ Na	CH ₃	id.	<i>3</i> 15°	95 % Acétoni- 1 trile	13
-€co ₂ k	CH ₃	id.	120°	60 % Acéto— 1 nitrile	14
CO ₂ H, H	CH ₃	id.	148°	85 % Acéto- 1 nitrile	15 ·
CH ₂ —OH	CH ₃	id.	150°	85 % Ethanol 1	16
- Со ₂ н, сн ₂ -он	CH ₃	id.	138°	90 % Ethanol 1	7

TABLEAU I (suite)

R R ₁ R ₂ F Rdt. Solvant de cristallisation H ₂ N CH ₃ CH ₃ CH ₃ 164° 80 % Méthanol 18 CO ₂ H, CH ₃ CH ₃ id. 168° 85 % Ethanol 19 CO ₂ H, CH ₃ CH ₃ id. 149° 90 % Ethanol 20 CO ₂ H, CH ₃ CH ₃ id. 197° 90 % Méthanol 21 CO ₂ H, CH ₃ CH ₃ id. 125° 60 % Ethanol 22 CO ₂ H, CO ₂ CH ₂ CH ₃ id. 188° 90 % Ethanol 22 CO ₃ H CH ₃ CH ₃ id. 188° 90 % Ethanol 25 CO ₄ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25 CO ₄ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25 CO ₄ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25 CO ₅ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25 CO ₆ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25 CO ₆ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25 CO ₆ H CH ₃ CH ₃ id. 153° 90 % Ethanol 25						<u> </u>	
CO2H, CH3 CH3 CH3 1d. 168° 85 % Ethanol 18 CO2H, CH3 CH3 CH3 1d. 149° 90 % Ethanol 20 CO2H, CH3 CH3 CH3 1d. 149° 90 % Méthanol 21 CO2H, CH3 CH3 CH3 1d. 125° 60 % Ethanol 22 CO2H, CO2(CH2)2N C2H5 CO3H, CH3 CH3 1d. 188° 90 % Ethanol 22 CO3H, CH3 CH3 1d. 188° 90 % Ethanol 22 CO3H, CH3 CH3 1d. 188° 90 % Ethanol 23 CO3H, CH3 1d. 188° 90 % Ethanol 23 CO3H, CH3 1d. 188° 90 % Ethanol 24 CO3H, CH3 1d. 188° 90 % Ethanol 25 CO3H, CH3 1d. 188° 80 % Ethanol 24 CO3H, CH3 1d. 188° 80 % Ethanol 25	R	R ₁	R ₂	Ŧ	Rat.	cristalli-	No
CO2H, OCH3 CH3 id. 149° 90 % Ethanol 20 CO2H, CH3-C-CH3 CH3 id. 197° 90 % Méthanol 21 CO2H, CH3-C-CH3 CH3 id. 125° 60 % Ethanol 22 CO2H, CO2(CH2)2NC2H5 CO3 id. 188° 90 % Ethanol 23 CH3 id. 153° 90 % Ethanol 25 CO3 CH3 id. 153° 90 % Ethanol 24 CO3 id. 153° 90 % Ethanol 24 CO3 id. 153° 90 % Ethanol 25	CO H CH2	ФН ₃		164°	80 %	Méthanol	18
CO ₂ H, CH ₃ —C-CH ₃ CH ₃ id. 197° 90 % Méthanol 21 CO ₂ H, CH ₃ —C-CH ₃ CH ₃ id. 125° 60 % Ethanol 22 CO ₂ H, CO ₂ (CH ₂) ₂ N C ₂ H ₅ CO ₂ (CH ₂) ₂ N C ₂ H ₅ CO ₂ H, CO ₂ (CH ₂) ₂ N C ₂ H ₅ CO ₂ H, CO ₂ (CH ₂) ₂ N C ₂ H ₅ CO ₂ H, CO ₂ H ₅ CO ₂ H, CH ₃ id. 188° 90 % Ethanol + Ether éthylique (50 : 50) CO ₂ H, CH ₃ id. 153° 90 % Ethanol + Ether éthylique (50 : 50) CO ₂ H, CH ₃ CH ₃ id. 88° 80 % Ethanol 25	МН ₂ (СН ₂) ₃ осн ₃	CH ₃	id.	168°	85 %	Ethanol	19 [°]
CO2H, CH3-C-CH3 CH3 id. 197° 90 % Méthanol 21 CH2OH CH2OH CH3 id. 125° 60 % Ethanol 22 CO2H, CO2(CH2)2N C2H5 CH3 id. 188° 90 % Ethanol + Ether éthylique (50 : 50) CH3 id. 153° 90 % Ethanol + Ether éthylique (50 : 50) CH3 id. 153° 90 % Ethanol + 24 CO0H, CH3 id. 153° 90 % Ethanol + 24 COOH, CH3 id. 88° 80 % Ethanol 25	CO ₂ H, H ₂ N CH ₃	сн ₃	id.	149°	· 90 %	Ethanol	20
CH ₃ id. 125° 60 % Ethanol 22 CO ₂ H, CO ₂ (CH ₂) ₂ N C ₂ H ₅ CH ₃ id. 188° 90 % Ethanol + Ether éthylique (50 : 50) CH ₃ id. 153° 90 % Ethanol + Ether éthylique (50 : 50) CH ₃ id. 153° 90 % Ethanol + 24 COOH, CH ₃ id. 88° 80 % Ethanol 25	со ₂ н, сн ₃ -с-сн ₃	CH ₃	id.	197°	90 %	Méthanol	21
CH ₃ id. 188° 90 % Ether éthylique (50 : 50) CH ₃ id. 153° 90 % Ethern éthylique (50 : 50) CH ₃ id. 153° 90 % Ethern éthylique (50 : 50) CH ₃ id. 88° 80 % Ethenol 25	Co ₂ H,	CH ₃ Se ^H 5	id.	125°	60 %	Ethanol	22
CH ₃ id. 153° 90% Ether éthylique (50 : 50) CH ₃ id. 153° 90% Ether éthylique (50 : 50) CH ₃ id. 88° 80% Ethenol 25		сн ₃	id.	1880	90 %	Ether	23
CH ₃ id. 88° 80 % Ethanol 25	COOH, (N)	CH ₃	id.	153°		Ether éthylique	24
		तम ₃	iđ.	 88°	80 %.	Ethanol	

TABLEAU I (suite)

R	R ₁	R ₂	F	Rdt.	Solvant de cristalli- sation	N°
СН ₂ -СН ₂ -ОН	CH ³		137°	90 %	Ethanol + Ether éthylique (50:50)	26
N(C ₂ H ₅) ₂ СН ₂ СООН, СН ₂ −ОН	сн ₃	id.	118°	90 %	Ethanol	27
COOH, CH2 NH2	сн ₃	. id.	164°	90 %	Ethanol	28
COOH CH ₂ NH ₂	CH ₃	id.	.175°	90 %	Ethanol	29
CH2 CH2 OH	OH ₃	iđ.	138°	85 %	Ethanol + Ether (50:50)	. 30
CO ₂ H, NH ₂ (CH ₂) ₃ OH	CH ₃	id.	192°	85 %	Ethanol	31
СО ₂ H, МЕ ₂ (СН ₂) ₅ ОН	CH ₃	id.	175°	90 %	Ethanol	32
CO ₂ H, NH ₂ (CH ₂) ₆ OH	сн ₃	id.	122°	90 %	Ethanol	33
CO2H, CH3CHOH-CH2NH2	CH ₃	id.	178°	85 %	Ethanol	34

TABLEAU I (suite)

R	R ₁	R ₂	P	Rdt. Solvant de N° cristalli-sation
CO ₂ H, C ₂ H ₅ CH CH ₂ OH	CH ₃		170°	80 % Alcool à 95% 35
CH ₃ CH ₂ OH-C-CH ₂ OH	CH ₃	id.	196°	90 % id. 36
CONHCH ₂ COOH	CH ₃	id.	174°	60 % Alcool à 50% 37
-CH ₂ co ₂ H	CH ₃	iđ.	184°	60 % Acéto- 38 nitrile
CH ₃ CH ₃	CH3.	id.	219°	75 % Acéto- 39 nitrile
CH ₃ Conh N C ₆ H ₅	CH3	id.	206°	Acétonitrile + 40 65 % Méthanol (50 : 50)
CH ₃ L C ₆ H ₅	CH ₃	сн ₃	182°	80 % Acéto- 41 nitrile
CONHN=CH-C1	CH ₃	CH ₃ .	220°	Acéto- 80 % nitrile + 42 Méthanol (50 : 50)
CONHN=CH-()-C1	CH ₃		256°	Méthyl- 55 % glycol 43

TABLEAU I (suite)

R	R ₁	R ₂	P	Rdt.	Solvant de cristalli-sation	No
CONHN=CH-()NO ₂	CH ₃		245°	,60 %	Héthyl- glycol	44
CONHN=CH-()	снз	id.	154°	55 %	Méthyl- glycol	45
CONHN=CH-\N	CH ₃	id.	215°	60 %	Méthyl- glycol	· 46
CONHU-CH NO 2	CH ₃	id.	180°	60 %	Ethanol	47
CONHN=CH NO2	CH ₃	id.	194°	55 %	Méthyl- glycol	48
CONHN=C CH ₃	CH ₃	îd.	208°	70 %	Méthyl- glycol	49
CONHN=C CH ₃ CH ₃	.ch ₃	· id.	156°	50 % ·	Méthyl- glycol	50
CONHN=CH O NO 2	CH ₃	id.	270°	60 %	Alcool à 95 %	51

TABLEAU I (suite)

R	R ₁	R ₂	F	Rdt.	Solvant de cristalli-sation	Ио
CH ₃	CH ₃		196°	40%.	Acétonitrile	52
со ² н	СH ₃	CH ₃	225.	55%	Acétonitrile	53
-Co ² H	сн ₃	Br	232°	50%	Acétonitrile + Méthanol (50 : 50)	54
СООН	СН ₃	CH ₃	208°	70%	Acétonitrile	55
-Co ₂ H			260°	60%	Acétonitrile	56
C1-()-CO ₂ H	CH ₃	CH ₃	168°	40%	Acétonitrile	57
-СH ₂ соон	CH ₃	CH ₃	100°	70%	Cyclohexane	58
-(Z) _{CO2} CH ₃	CH ₃ -	CH ₃	E ₃ = 125°	90%		59
CONHUH2	CH ₃	CH3	98°	85%	Ethanol	60
-CO ² CH ³	CH ₃	СП ₃	88°	90%	Ethanol	61

TABLEAU I (suite)

R .	R ₁	R ₂	F	Rdt. S	olvant de ristallisation	No
CONHNH ⁵	сн ₃	CH ₃	148°	85 %	Alcool à 95 %	62
≥02m ⁵	CH ₃	CH ₃	110°	75 %	Alcool à 95 %	63
SO ₂ NH ₂	сн ₃	CH ₃	151°	45 %	Benzène	64
SO ₂ NH ₂	CH ₃		136°	60 %	Alcool à 80 %	65.
SO ₂ NH ₂	CH ₃	id.	206°	75 %	id.	66
-()-CH ₂ CH ₃	CH ₃	id.	76°	70 %	Cyclohexane	67
-{}сн ⁵ сн ⁵ он	CH ₃	id.	88°	70 %	id.	68
€ oc4H ⁹	CH ₃	id.	80°	50 %	id.	69
OH CH ³	CH ₃	сн ₃	95°	50 %	id.	70
OH OH	CH ₃		142°	60 %	Cyclohexane + Méthanol	71
OCH ₃	CH ₃	id.	103°	45 %	Cyclohexane .	72

TABLEAU I (suite)

R	R ₁	R ₂ .	F	Rat.	Solvant de cristallisation	No
-COCH ₃	CH ₃		6 7°	60%	Cyclohexane	73
-C>cocH ₃	CH ³	id.	96°	45%	id.	74
-C1	CH ₃	id.	.53°	55%	id.	75
-C)-C1	CH ₃	id.	106°	60%	id.	76
C1 - C1	CH ₃	id.	96°	55%	1d.	77
C1 C1	CH ₃	id.	96°	85%	Ethanol	78
C1 C1	CH ₃	id.	132°	80%	Cyclohexane	79
-{	CH ₃	id.	126°	80%	id.	80
←	CH ₃	id.	140°.	40%	id.	81
CF ₃	снз	id.	96°	80%	id.	82
CI -CF3	CH ₃	id.	125°	80%	id.	83

TABLEAU I (suite et fin)

R.	R ₁ R ₂	P		Solvant de cristallisation	No
-{		197 °	70%	Acide acétique	84
- <u>(</u>	id. id.	229°	75%	id.	85
Br	id. id.	218°	70%	id•	86
CH ₃	id, id.	212°	85%	id.	87
CH ₃	id. id.	144°	80%	Alcool à 96%	88
c1-<->-c1	id. id.	183°	70%	Acide acétique	89
Br Br	id. id.	210°	80%	id.	90

Les dérivés de pyrrole définis ci-dessus ont fait l'objet d'une étude pharmacologique mettant en évidence des propriétés analgésiques et antiinflammatoires.

Les techniques mises en oeuvre sont celles qui ont été décrites dans le brevet principal. En plus dans la recherche de l'activité anti-inflammatoire, on a produit des granulomes expérimentaux au moyen de carragénine, comme, il est décrit ci-après.

L'injection sous-cutanée de 0,5 ml d'une solution de carragénine à 2 % dans la région dorsale chez le rat provoque la formation d'un tissu de granulation au lieu d'injection.
L'intensité de la réaction tissulaire est évaluée par pesée du granulome immédiatement après le prélèvement d'une part et après

5

dessiccation d'autre part. La recherche de propriétés anti-inflamatoirespar ce type de technique a été effectuée, à titre d'exemple, avec le méta-carboxy phényl-1 méthyl-2 phényl-5 pyrrole selon le protocole suivant:

Le dérivé pyrrolique est administré par voie digestive en même temps que l'on injecte la solution de carragénire (JourJ). Une nouvelle dose de ce dérivé est administrée 4 heures après. Les animaux sont sacrifiés après 24 heures (JourJ+1), les granulomes sont disséqués et pesés immédiatement après le prélèvement. Ils sont ensuite plongés dans l'acétone pendant 48 heures puis

O Ils sont ensuite plongés dans l'acétone pendant 48 heures puis desséchés à l'étuve jusqu'à poids constant.

Les résultats sont consignés dans les tableaux II à VI pour l'épreuve à la phényl paraquinone (souris), VII à XI pour celle de l'oedème à la carragénine (rat), XII pour celle 15 de l'oedème au kaolin, XIII pour celle de l'oedème au dextran et XIV pour celle du granulome à la carragénine (rat).

(voir tableaux pages suivantes)

TABLEAU II

R₂ 15 1 2 R₁

Phényl paraquinone (souris)

-Les dérivés pyrroliques et l'amidopyrine ont été administrés 30 mn avant la phényl-paraquinone (P.P.Q); 0,25 ml par souris (I.P.) en sol. à 0,02 g/100 ml.

*:Syndrome douloureux provoqué par l'injection intrapéritonéale de phényl paraquinone.

**: Seule l'amidopyrine a été administrée sous forme de solution.

• •								
R	R ₁	R ₂	Nbre d'ani- maux traités	Doses en mg/kg	Voie	Conc. g/100ml de susp.	Pourcent préduction nombre of pour cha tervalle (t) exp	on du de S.D [%] aque in- e de temp
							5 <t₫0< td=""><td>10∕4∕15</td></t₫0<>	10∕4∕15
00H	-сн ₃	-сн ₃	10	200	PO	2	66	61
COOH	-сн ₃	-сн ₃	10	300	PO	3	65	65
COOH	-сн ₃	-сн ₃	10	100	РО	2	66	57
ООН	-сн ₃		10	100	IΡ	1	34	49
-(- сн ₃	id.	10 .	100	IP	1	34	45
ССООН	-сн ₃	id.	10	100	РО	2	26	37
COOH	-сн ₃	-{	10 10	100 200	PO PO	2 2	77 100	59 91
-(1)	- СН ₃	-{/	10 10	100	PO PO	2 2	87 100	79 5 9
COOH	<u> </u>	<u>-</u> (2)	10	300	PO	3	52	49
								52

α.			٠	TABLEAU		III			
R ₂		Le méta-carl administrés IP Sol.	Phényl paraquinone (souris) Le méta-carboxyphényl-1-méthyl-2 phényl-5 pyrrole et l'amidopyrine ont été administrés 30 mn avant la phényl paraquinone (P.P.Q.) - 0,25 ml par souris IP Sol. : 0,02 g/100 ml.	Phényl paraquinone (souris) ényl-1-méthyl-2 phényl-5 pyr avant la phényl paraquinone g/100 ml.	ne (s phényl paraq	ouris) —5 pyrrol uinone (F	le et l'am	idopyrine or O,25 ml par	nt été souris -
	α <u>τ</u>	22	Nbre d'ani- maux traités	}	Voie	Conc. g/100 ml.	100 ml.	Pourcentage de rédu	Pourcentage de réduction
				mg/kg		Sol.	•dsng	chaque inte temps (t) e	chaque intervalle de temps (t) exprimé en mn
	-						-	5 <t<10< td=""><td>10<t<15< td=""></t<15<></td></t<10<>	10 <t<15< td=""></t<15<>
			10	25	IP	0,25	ı	44	55
		1	.10	30	ПР	0,25	1	11	55
	-CH		10	52	8	0,25		15	46
HOBO			10	. 50	PO	0,25	3	41	45
Amidopyrine			10	50	В	0,50	1	99	52
			10	100	다	1	-	. 48	96
-7соон	ž Š		10	200#	PÒ	3	ļ	83	77
Amidopyrine			10	50k#	PO	02'0	.1	70	89

* S.D. : Syndrome douloureux provoqué par l'injection intrapéritonéale de PPQ.

: L'amidopyrine et le dérivé du pyrrole ont été administrés 60 mn avant la PPQ.

Phényl paraquinone (souris) Les dérivés pyrroliques et l'amidopyrine ont été administrés par la voie orale 30 mn avant la P.P.Q ; 0,25 ml par souris (1.p.) en sol. à 0,02 g/100 ml.	R, R ₂ Nombre Doses Conc. Pourcentage de réduction d'anţmaux en g/100 ml de du nombre de S.D.* pour traités mg/kg susp. chaque intervalle de temps (t) exprimé en mn 5 <t<10 10<t<15<="" th=""><th>-CH3 () 10 161 1,61 73 37</th><th>-CH3 1d. 10 1,70 93 79</th><th>CH3 -CH3 1d. 10 181 11,81 75 61</th><th>-сн₂он -сн₃ 1d. 10 183 1,83 97° 80</th><th>ну-снуон -сн₃ 1d. 10 198 1,98 84 64</th><th>!3 сн₂он -сн₃ 3d, 10 198 1,98 89 70 !3</th></t<10>	-CH3 () 10 161 1,61 73 37	-CH3 1d. 10 1,70 93 79	CH3 -CH3 1d. 10 181 11,81 75 61	-сн ₂ он -сн ₃ 1d. 10 183 1,83 97° 80	ну-снуон -сн ₃ 1d. 10 198 1,98 84 64	!3 сн ₂ он -сн ₃ 3d, 10 198 1,98 89 70 !3
	er.	CH3	-CH3	န် မာ	ć.	-	

_
(suite)
Ξ.
2
>
×
ш
H
m
4
Ŀ

ec	œ	æ ^Q	Nombre Doses d'animaux en traités mg/kg	ss Cono. n g/100ml kg susp.	Pourcentag de du nombre chaque int temps (t)	Pourcentage de réduction du nombre de S.D.* pour chaque intervalle de temps (t) exprimé en mn
H5C2 C00H, N-CH2-CH2OH	-GF3		10 213	3 2,13	82	80 : 10 : 10 : 10 : 10 : 10 : 10 : 10 :
CH2-CH-CH2 COOH , HN CH2-CH-CH2	-0H3	1d.	10 202	2,02	62	12
Соон, ну съ съ он со съ	-CH ₃	.td.	10413	4,13	16	35
COOH, H2N-CH-CH2CH3	-CH3	1d.	10 180	1,80	2	32
CH3	-CH3	. td.	. 10 198	98.1	69	& £
COOH, H2N-CH2-CHOH-CH3	EHO-	. pţ	10 191	1,91	. 79	ន្ត

		TABI	LEAU IV	(suite)	~		
æ	я. -	^Σ ν	Nombre d'animaux traités	Doses en mg/kg	Conc. g/100ml de susp.	Pourcentage de réduction du nombre de S.D * pour chaque intervalle de temps (t) exprimé en mn 5 <t<10 10<t<15<="" td=""><td>iction pour le in mn</td></t<10>	iction pour le in mn
соон , н ₂ и-(сн ₂) ₂ -сн ₂ он	-CH3		10	191	1,91	57	છ
ξης 4 - (ch2) - ch2 αH3	EH2-	1d.	10	198	1,98	ຜ ^{່.} ຜາ.	21
() соон, н ₂ и-(сн ₂), -сн ₂ он	ch3	1d•	10	206	2,06	39	43 6
	сн ₃	fd •	10	213	2,13	74.	58
42 H2N-CH2 1	-CH ₃	1d.	10	28	2,0	F	48
H2N-CH2-COOH, H2N-CH2-CO	-CH3	1d.		28	2,0	. 8 8	2

		TABLE	AUTV ((sulte)			
P C	œ	ጜለ	Nombre d'animaum traités	Doses mg/Rg	Conc. g/100 ml de eusp.	Pourcentage du nombre de chaque intertemps (t) ex	de réduction S.D * pour valle de primé en mn 10 <t< 5< th=""></t< 5<>
COOH,	EH.		10	201	2,01	T	30
HIN HOOD	EH2-	id.	10	**** 392	3,92	74	.:
COOH,	eHo-	id.	10	200	2,20	68	. 07
o HNOOD,	-CH3	1d.	10	197	1,97	.84	70
HOODH, HEND	-OH3	id.	. ot	203	2,83	79	22
H2 N CH3	දි	td.	t 0	288	2,08	98	5 6

j.

	_
	fin)
	4
	(suite
	2
	>
•	⋖
	ندز
•	H
	ø
	4
	•

* S.D.,: Syndrome douloureux provoqué par l'injection intrapéritonéale de PPQ.

r Seule l'amidopyrine a été administrée sous forme de solution. REMARQUE

Les dérivés pyrroliques ont été administrés à une dose correspondant à 150 mg/de méta-carboxyphényl-1 méthyl-2 phényl-5 pyrrole, exception faite des dérivés marqués de *** où la dose équivaut à 300 mg/kg de ce même dérivé.

TABLEAU V

R₂-5 1 2 R₁

Phényl paraquinone (souris)

Les dérivés pyrroliques et l'amidopyrine ont été administrés par la voie orale 30 mm avant la P.P.Q; 0,25 ml par souris (i.p) en sol. à 0,02 g/100 ml.

R	R ₁	R ₂	Nombre d'ani- maux traités	Doses en mg/kg	Conc. g/100ml de susp.	Pourcentag duction du de S.D.* p que interv temps (t) en m	nombre our cha- alle de exprimé
			-			5 < t < 10	10445
Сомнен со н	-сн ₃	-{_``	10	200	, 2	-66	56
SO ₂ NH ₂	-сн ₃	-СH ₃	10	200	2	38	56
OH	-сн ₃		10	100	2	50	43
			10	100	2	63	58
OH OH	-сн ₃	id.	10	200	2	97 .	99
-{	-сн ₃	id.	10	100	2	42 ` `	37
<u>~</u> _>сң ₂ сң ₂ он	-сн ₃	id.	10 .	100	2.	· 66	53
ch3	-cн ₃	id.	1.0	100	2	30	35
Amidopyrine			10	50	жж 0,5	58	38

* S.D.: Syndrome douloureux provoqué par l'injection intrapéritonéale PPQ.

** Seule l'amidopyrine a été administrée sous forme de solution.

TABLEAU VI

Phényl paraquinone (souris)

Les dérivés pyrroliques et l'amidopyrine ont été administrés par la voie orale 30 mm avant la P.P.Q ; 0,25 ml par souris (i.p) en sol. à 0,02 g/100 ml.

	:		d'ani- maux traités	en mg/kg	g/100ml de susp.	duction de S.D. que int temps (ntage de rén n du nombre n du nombre n pour cha- cervalle de t) exprimé n mn
						5 < t<10	10≪±≪15
A Par	-сн ₃		10	300	3	58	55
CF ₃	-сн ₃	id.	10	200	2	46	30
-{coccH³	-сн ₃	-сн ₃	10	200	2	11	24
-COCCH3	-сн ₃		10	300	3	23	15
-Cocch³	-сн ₃	id.	10	300	3	64	57
-Continue	-сн ₃	id.	10	300	3	57	29
-()CONHNH2	-сн3	id.	10	100 200-	1.2	75 82	43 79
CONH-W	-сңз	id.	10	300	3	45	31
снз		· ·	• :	٠		· ·	
Amidopyrine	•		10	50	** 0,5	<i>7</i> 3	26

³ S_oD_o: Syndrome douloureux provoqué par l'injection intrapéritonéale de PPQ_o

[:] Seule l'amidopyrine a été administrée sous forme de solution.

TABLEAU VII

Carragénine (rat)

Les dérivés pyrroliques et la phénylbutazone ont été administrés 60 minutes avant la carragénine.

R	R ₁	R ₂	Nombre d'ani- maux traités	en mg/kg	g/100t	Pourcenta nl de rédu d'oedème 3h	ction
COOH	-сн ₃	- СН ₃	6	500	5 .	26,5	29,5
СООН	-сн ₃	: -сн ₃	5	300	3	9,7	9,4
COOH	-сн _з	-сн ₃	4	200	2	16,4	18,4
COOH	- сн ₃	-	7	1000	10	3Ò,0	28,2
COOH	-сн ₃	id.	7	1 000	10	35,6	39,9
COOH	-сн ₃	. id.	6	300	3	27,7	22,8
СООН	-СН3	<u>()</u>	-Br	300	3	54,0	58,9
-COOH	-сн ₃	-(_)-c	H ₃ 6	300	3	45,2	47,0
COOH	←	-(_)	6	500	5	8,7	7,2
Phénylbutazone			6 6	60 100	1	69,9 59,4	67,8 57,4

TABLEAU VIII

Carragénine (rat)

Le méta-carboxyphényl- 1-méthyl-2-phényl-5 pyrrole et la phénylbutazone ont été administrés par la voie orale 60 mm avant l'agent inflammatoire.

Nom du produit	Nombre d'animaux	Doses	Conc. g/100 ml de	Pourcentage réduction d'	moyen de oedème après
	traités	en mg/kg	suspension	3 heures	5 heures
	7	50.	0,5	10,8	9,4
. •	6		1,5	59,3	57,7
méta-carboxy-	6			60,3	60,9
phény1-1 méthy1-2	6			48,9	36,9
phény1-5	6	200	2	59,1	43,5
pyrrole ,	6	· · · · · · · · · · · · · · · · · · ·	-	40,9	40,9
	6			45,2	54,0
	6			44,8	38,2
	6	300	. 3	48,5	44 ,2
	6	300	3	47,1	60,0
	5	60	1	59,4	57,8
Phénylbutazone	. 6°	80	1	57,8	53,8

:	
•	
ă	
A U	•
ш	
B L	
∢.	
-	
•	
	•

	noyen de oedème après 5 heures	57,1	49,7	31,8	36,9	39,0
oie orale	Pourcentage moyen de réduction d'oedème après '3 heures 5 heure	57,4	49,5	34,3	33,4	36,8
és par Ia	Conc. g/100ml de susp.	2,15	2,27	2,42	2,44	. 20
Ministr	Doses en mg/kg	215	227	. 242.	244	28.
(rat) ont été ac igénine.	Nombre d'ani- maux traités	; • 9 ,	9	· · · · · · · · · · · · · · · · · · ·	9	: : vo
Carragénine (rat) rroliques ont été int la carragénine	₆ 0		1d.	10.	1d.	1d.
Carragénine (rat) Les dérivés pyrroliques ont été administrém par la voie orale 60 minutes avant la carragénine.	œ. :	EH3-	· ch ³	-CH3	- CH ₃	CH ³
R2 12 12 R1 L6	oc.	COONA	COOK	COOH , H ₂ N - CH CH ₃	но ^с но-сно-сно	H3C N-CH2-CH2 OH

_
suite
ă
A U
L E
m
T A

&	œ_	ጜሪ	Nombre d'animaux traités	Doses en mg/kg	Conc. g/100ml de susp.	Pourcentage moyen de réduction d'oedème a 3 heures 5 heur	Pourcentage moyen de réduction d'oedème après 3 heures 5 heures
рнз Н2 N-с-сн2 он соон , сн3	£ E		000	222	222	37,5 77,9 43,1	34,9 68,8 43,8
(2) 13,62 N-CH2 CH2 OH	-CH ₃	td.	ه	284	2,84	57,8	57,9
COOH , CH2CH2 HN	-сн ³	id.	, 0	270	2,70	50,1	16,4
HN CH2-CH2 OH CH2-CH2 OH	-CH ₃	id.	v 0	276	2,76	18,2	18,9
H2 H	-С н з	£d.	. v o	253	2,53	17,4	22,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ੂ ਪੂਜੇ	1d.	9	264	2,64	55,5	44,7
COOH, H2N-CH2-CHOH-CH3	-cH ₃	1d.	vo	234	2,54	49,4	47,1

		TAI	BLEAU	IX (suite)	¢е)		
œ	œ÷	_Б С	Nombre d'animaux traités	Doses en mg/kg	Conc. g/100ml de susp.	Pourcentage moyen de réduction d'oedème après 3 heures 5 heures	oyen de edème après 5 heures
-{ н ₂ N-(сн ₂) ₂ -сн ₂ он	EHO-		9	254	.2,54	63,6	6,29
() H2N-(CH2)2-CH20CH3	, H	fd.	v	264	2,5	34,6	16,0
H2N-(CH2)4-CH2OH	≖CH ₃	. 1d.	9	274	2,74	19,7	21,8
-(-CH3	. 1d.	9	284	2,84	51,5	47,7
42 H2N-CH2 (-)	-CH ₃	1d•	v	271	2,71	45,0	47,8
(\ cooh, H₂N-cH₂-Co	CH ₃	14.	9	273	2,73	15,0	16,4
- сн ₂ -сн ₂ он	-CH ₃	1d.	9	267	2,67	39,6	39,6
-()-соон, (сн ₂ -сн ₂ он	. 5	1d.	Ó	233	2,93	52,0	52,3

BAD ORIGINAL

fin)
a a
suite
×
>
×
m
L,
Ü L
L,
ABL

œ	84	R ₂	R2 Nombre Doses. 2 d'enimaux en traités md/kd	Doses.	Conc. g/100ml	Pourcentage moyen de réduction d'oedème après 3 heures 5 heures	oyen de edème après 5 heures
HIV COOH,	CH ₃		9	263	2,63	36,7	39,5
WH HOO2	-CH ₃ 1d.	1d.	9	271	2,71	946	18,0
H ₂ N CH ₃	-CH ³	1d.	vo	278	2,78	20,1	16,8
H ₂ N -(-) -co ₂ -(cH ₂) ₂ N -(2H ₃ - Co ₂ H ₃ - Co ₂ H ₃	ج ق	1d.	. vo	353	3,53	16,5	0 8

Les dérivés pyrroliques ont été administrés à une dose correspondant à 200 mg/kg de méta-carboxyphényl-1-méthyl-2-phényl-5-pyrrole.

TABLEAU X

Carragénine (rat)

Les dérivés pyrroliques et la phénylbutazone ont été administrés par la voie orale 60 minutes avant la carragénine.

R	R ₁	R ₂	Nombre d'animaux traités	en	$\alpha/100m1$	Pourcenta de réduct d'oedème	ion
					. <u>.</u>	3 heures	5 heures
-CONHCH2CO2H	сн3	⟨ ``	6	200`	2	20,6	27,9
\sim	-сн ₃	-снз	. 6	500	5	29,5	20,0
- ⟨□⟩	-СН ₃	-{<_\}	6	300	3	19,1	21,9
OH ,		· ·	6 .	500	. 5	41,3	38,0
OH .	-сн ₃	id.	 6 ··	300	3	23,0	25,0
-CT)-OH	-сн ₃	id.	6	500	5	28,5	32,2
-СН ₂ СН ₂ ОН	-сн3	id.	6	500	5	22,2	22,4
сн _з	-сн ₃	id.	6	500	5	- 16,0	15,0
					• -	•	
Phény lbutazone			6 5 6	60 60 60	1 1 1	41,7 69,9 45,7	39,7 67,8 48,6
				· ·	<u> </u>		

R Carragénine (rat)

Les dérivés pyrroliques et la phénylbutazone ont été administrés par la voie orale 60 minutes avant la carragénine.

R	. R ₁	R ₂	Nombre d'animaux traités	en	Conc. g/100ml	moyen d	le
	•		crarces	шу/ку	de sosb	d'oede après	ius Tou
•	٠					3 h	5 h
Br	-сн ₃	-{_`	6	. 300	3	26,3	31,7
CE ₃	-сн _з	îd.	6	500	5	12,2	10,3
-√	-сн ₃	-сн ₃	6	500	5.	15,5	16,1
-Соссн3	-сн ₃		6	500	5	27,2	29,3
COOCH3	-сн ₃	id.	6	500	5	9,5	25,7
CONHNH	-сн ₃	id.	6	300	3	9,0	15,0
-CONHNH2	-сн ₃	id.	6	300	.3	59,5	59,0
<u>-</u> /	<u>.</u>		6	300	3	63,1	67,6
CH ₃ CH ₃	-сн ₃	id.	. 6	500	5	9,2	12,0
Phénylbutazone			6	60	1	55,5	55,5

XII
A U
<u>ы</u>
I A B

œ			TAB	LEAU	XII		•		
R ₂ 1 2 R ₁	* E 80.00	Les dérivés à 200 mg/kg	kaolin pyrroliques de méta-cark	n (rat ont été boxyphén	Kaolin (rat ; vole orale) pyrroliques ont été administrés à de méta-carboxyphényl-1 méthyl-2 p	à une dose correspondant 2 phényl-5 pyrrole.	orrespon Trole.	dant	
я 1		72 22	Nombre d'animaux traités	Doses en mg/kg	Conc. g/100ml de suspension	Pourcentage moyen de réduction d'oedème après 1h 3h 5h 2	ge moyen après 3h	de réduc 5h	tion 24h
			. ω	50	1	2,4	28,8	24,1	30,1
(Ę	. co co	88	-0	27,6	37,0 33,1	33,5 17,0	22,0
HOOD	E E		ω ω ω	7 5 6 6 7 5 6 6 7 5 6 6 7 6 7 6 7 6 7 6	- 44	18,5	41,3 38,1 49,5	36,4 26,8 49,7	74 44
			ထတ	300 300 300 300	01 m	11	40,3 64,2	36,6 60,1	
€ cooh, h2N-ch2-ch2 on	-CH3	1d.	9	244*	2,44		62,2	61,3	•
Н ₃ Суси, н ₃ Суси, си ₂ он	HO HO	fd.	v .	263*	2,63	.	74,9	7,69	, · 1
сн ₃ Соон, н ₂ м-с-н ₂ он сн ₃	ਨੂੰ	1d.	•	22 *	2,04	1	80°0 .	77,3	ı
€) (COOH, NO	-CH3	fd.	·vo	263#	2,63		6,83	1,29	1
Phénylbutazone			œ	125	1,25	ı	37,0	34,1	ı

TABLEAU XIII

Dextran (rat ; voie orale)

Le m/ta-carboxy-phényl-1-méthyl-2 phényl-5 pyrrole a été administré 60 mm avant l'agent inflammatoire.

Nom du produit	Nombre d'animaux traités	Doses en mg/kg	Conc. g/100 m de suspension	· re	duction	age moyen on d'oedème 2 heures	après
Méta- carboxy phényl-1	8	300	3	· 2	21,6	· · ·	13,9
méthyl-2 phényl-5 pyrrole	. 8 .	500	5		36,4	38,0	-
•		. •	•				

TABLEAU XIV

Granulome à la carragénine rat (voie orale)

T	RAITEMEN	T	. :		· .	_
Nom du produit	nistrées	onc.g/100 ml de uspension	Nombre de rats	Poids moyen des rats	Poids moy granulome grammes	
	au jour o		:	en g.	au jour J.+1	après dessica- tion
Carboxy- méthyl- cellulose (sol. à 0,3%)	2 x 5 ml/kg soit 10 ml/kg	0,30	6	230		0,240
Phényl- butazone	2 x 125 mg/kg soit 250 mg/kg	2,50	5 . ,	226	1,904	0,185
Delta- hydro- curtisone	2 x 6 mg/kg soit 12 mg/kg	0,12	6	230	2,445	0,359
Méta- carboxy phényl-1 méthyl-2 phényl-5 pyrrole	2 x 250 mg/kg soit 500 mg/kg	5,00	6	230	1,340	0,138

TABLEAU XIV (suite ot fin)

2054474

T.RA	ITEMENT		Nombre				
Nom du . produit	Doses adminis- trées au jour	Conc. g/100ml	de rats	moyen des rats	granulon	nes en	
	J	suspension		en g.	Au jour J+1	Après dessica- tion	
Carboxy- méthyl- cellulose (sol.à 0,3%)	2 x 5 ml/kg seit 10 ml/kg	0,30	6	238	2,575	0,255	
Phényl- butazone	2 x 125 mg/kg soit 250 mg/kg	2,50	6	240	1,489	0,157	
Delta- hydro- cortisone	2 x 10 mg/kg soit 20 mg/kg	0,20	6	240	1,549	C,175	
Méta- carboxy phényl-1 méthyl-2 phényl-5 pyrrole	2 x 300 mg/kg soit 600 mg/kg	5,00	6	242	1,586	0,159	

La toxicité aigue des composés du pyrrole a été déterminée par voie orale chez la souris. Le calcul de la DL-50 a été effectué selon la méthode de Miller et Tainter (Proc. Soc, Exptl. Biol. Med. 1944 - 57- 261, 264).

Les toxicités sont généralement très faibles. Les différents résultats obtenus avec des dérivés typiques du pyrrole choisis à titre d'exemples sont donnés dans le tableau XV. Parmi ces dérivés, l'hydrazide de l'ortho-carboxyphényl-? méthyl-2 phényl-5 pyrrole et l'hydrazide du méta-carboxyphényl-1 diméthyl-2,5 pyrrole sont plus toxiques.

TABLEAU XV

Détermination de la toxicité aigué chez la souris par voie orale

لسنسا				-			·
R	R ₁	R ₂	Doses en mg/kg	Conc. g/100ml de sus- pension	maux	Après Pourcentage de mortalité	48 heures DL 50 en mg/kg + 2 S √2N ⁷
СООН	-сн ₃	-сн ₃	845 1098 1427 1855 2411	10 10 10 10 10	5 5 5 5 5	20 40 40 60 60	1600 ± 360
C1 ————————————————————————————————————	-сн ₃	-сн ₃	650 845 1098 1427 1855	10 10 10 10 10	5 5 5 5 5	0 20 40 80 100	1130 ± 89
соон	-CH ₃	-{_>	650 845 1098 1427 1855	10 10 10 10 10	10 10 10 10 5	0 10 20 50 100	1330 ± 122
СССОН	-CH ₃	ď°	845 1098 1427 1855	10 10 10 10	10 10 10 10	0 20 20 20 50	1850 + 122
COCH, H ₂ N-CH ₂ -CH ₂ OH	-CH3.	ď°	500 1000 1500	5 5 5	5 5 5 ,	20 40 60	~_1250
H ₃ C N-CH ₂ -CH ₂ OH	-сн ₃	ď°	500 1000 1500	5 5 5	5 5 5	0 0 20	> 1500
	-CH ₃	ďº	500 1000 1500	5 5 5	5 5 5	0 0 0	> 1500
сн ³							·

TABLEAU XV

R	R	R ₂	Doses en mg/kg	Conc. g/100ml de sus- pension	maux		DL 50 en mg/kg + 2 S
COOH,	-сн ₃	-(2)	500 1000 1500	5 5 5	5 5 5	0 40 60	≃ 1300
∕С> с∞он	-CH ₃	d°	845 1098 1427 1855	10 10 10 10	10 10 10 10	0 0 10 30	> 1855
CH ³ —COOH	-СH _З	ď°	1098 1427 1855 2411	10 10 10 10	5 5 5 5	0 2 0 20 80	1840 <u>+</u> 234
-COOH	-сн ₃	br	1098 1427 1855 2411	10 10 10	5 5 5 5	0 0 0 20	> 2411
-00NH-CH ₂ -000H	-CH3	- -	500 650 845 1098	5 5 5 5	5 5 5 5	0 0 0	> 1098
-So ₂ NH ₂	-CH ₃	-cH ³	1098 1427 1855 2411	10 10 10 10	5 5 5 5	0 0 0	> 2411
но	-сн ₃	(_)	1098 1427 1855 2411	10 10 10 10	5 5 5 5	0 0 20 0	> 2411
	-CH ₃	ď°	1098 1427 1855 2411	10 10 10 10	5 5 5 5	0 0 0	>2411
-{	-CH ₃	ď°	1098 1427 1855 2411	10 - 10 10 10	5 5 5 5	0 0 0 0	-> 2411

TABLEAU (avite of fiz)

R	. A,	Ē.	Doses en mg/kg	Conc. g/!OOml de sus- pension	Membre d'ani- maux par lota	benzee-	ng/kg
, -{C}-2x	-Ch ₃	()	1098 1427 1855 2411	†0 10 10 10	5 5 5 5	0 0 0	> 24??
CO-NH-NH ²	-СН _З	Чc	650 845 1098	10 10 30	5 5 5	80 80 100	< 650
-C)	-CH ₃	-CH ₃	139 200 .	2,5 2,5	10 5	50 100	139 <u>+</u> 18
-CONH-NH ₂	-CH ₃	-(_)	1098 1427 1855 2411	10 10 10 10	5 5 5 5	0 0 0 20	> 2411

Les indications thérapeutiques comprennent, comme pour les composés du brevet principal, le traitement des manifestations algiques et inflammatoires sous leurs différentes formes et leurs différentes localisations et la présentation est la même, l'unité de prise pouvant contenir de 50 à 600 mg de substance active; la préologie quotidienne est, de préférence de 200 à 1000 mg de substance active.

REVENDICATIONS

1.- Phényl-1 pyrrole répondant à la formule

générale

5

R₂ R₁

10

15

dans laquelle

R₁ et R₂

désignent chacun, indépendamment, un groupe méthyle ou un groupe phényle, méthyl phényle ou halogénophényle,

tandis que le noyau A représente

20
$$R_4$$
 R_3 R_4 R_4 R_3 R_4 R_4 R_5 R_4 R_5 R_6 R_7 R_8 R_9 R

les symboles \mathbf{R}_3 et \mathbf{R}_4 ayant chacun, indépendamment, l'une des significations suivantes :

30

- hydrogène,
- halogène,
- groupe aliphatique inférieur, plus spécialement méthyle, éthyle ou propyle,
- hydroxy-méthyle ou β-hydroxy-éthyle,

35

- trifluorométhyle,
- acétyle,
- hydroxy phényle, l'hydroxyle pouvant être éthérifié en particulier par le méthanol, l'éthanol, un propanol ou un butanol.

40

- sulfonamide,

15

25

- carboxy méthyle,
- carboxyle, éventuellement salifié, estérifié ou amidifié,

1 un des symboles R_3 et R_4 pouvantaussi désigner H, à condi-5 tion que l'autre ne représente pas COOH (composés du brevet principal) quand $R_1 = CH_3$ et $R_2 = C_6H_5$.

2.- Phényl-1 pyrrole selon la revendication 1, dans lequel le carboxyle que représente R₃ ou R₄ est salifié par un métal alcalin ou par une base organique (sel d'addition) qui peut être, 10 en particulier:

- a) une hydroxy amine telle que le N.N-diéthylamino éthanol ou l'amino isobutanol, la diéthanolamine, un amino propanol, un amino butanol, un amino pentanol ou un amino hexanol,
- b) une alcoxy amine telle que la β-méthoxy n-propylamine ou l'amino-2 méthoxy-1 propane,
- c) un para amino benzoate d'amino alkyle,
- d) une amino pyridine,
- e) une amine cyclique, telle que la pyrrolidine, la pipéridine, la morpholine ou l'hexaméthylène imine, cette amine cyclique pouvant porter un substituant de la classe du méthyle, du β-hydroxy éthyle et du γ-hydroxy propyle,
 - f) une amine furannique telle que l'α-amino-méthyl furanne ou une amine tétrahydro-furannique telle que l'α-amino-méthyl tétrahydrofuranne ou
 - g) une amine aliphatique primaire telle sur l'isopropyl amine ou secondaire telle que la diallyl
- 30 3.- Phényl-1 pyrrole selon la revendication 1, dans lequel le carboxyle que représente R₃ ou R₄ est estérifié par un alcanol inférieur tel que le méthanol, l'éthanol ou un propanol.
 - 4.- Phényl-1 pyrrole selon la revendication 1, dans lequel le carboxyle amidifié que représente R_3 ou R_4 répond à

35 l'une des formules

dans lesquelles

40 R₅ représente H, CH₃ ou C₂H₅,

5

R₆ représente : a) un reste de benzène, d'halogénobenzène, de méthoxy-benzène ou de nitro benzène,

b) un cycle de furanne ou de nitro furanne,

c) un cycle de thiophène ou de nitro thiophène ou

d) un cycle de pyridine,

R₇ et R₈ représentent chacun -CH₃ ou -(1)

5.- Médicament comprenant, en tant que principe actif, un ou plusieurs des composés revendiqués sous 1 à 4.

6.- Médicament destiné, en particulier, au traitement des manifestations algiques et inflammatoires, ce médicament comprenant du méta-carboxy-phényl-1 méthyl-2 phényl-5 pyrrole.