

Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy

Simon Ging *

María A. Bravo *

Thomas Brox

Poster session

Halle B, Thu 9 May, 4:30 p.m. iclr.cc/virtual/2024/poster/19102

Vision-Language Models

Vision-language research requires understanding of vision and language

Vision-Language Models

Vision-language research requires understanding of vision and language

Captioning

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Vision-Language Models

Vision-language research requires understanding of vision and language

Visual Question Answering

How many dogs are in the image?

There are three dogs.

Captioning

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Vision-Language Models

Vision-language research requires understanding of vision and language

Captioning

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Visual Question Answering

How many dogs are in the image?

There are three dogs.

Visual Dialog

Where is the scene taking place?

The scene is taking place on a sandy beach with the **ocean** in the background.

Does the **ocean** have strong waves?

The waves in the ocean appear moderate, not particularly strong.

Vision-Language Models

Vision-language research requires understanding of vision and language

Visual Question Answering

How many dogs are in the image?

There are three dogs.

Visual Dialog

Where is the scene taking place?

The scene is taking place on a sandy beach with the **ocean** in the background.

Does the **ocean** have strong waves?

The waves in the ocean appear moderate, not particularly strong.

Make a short description of the image.

*

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Vision-Language Models

Vision-language research requires understanding of vision and language

The image shows a person sitting on a sandy beach, with three large dogs. The person is looking towards the sea.

Visual Question Answering

Challenges in evaluation of Open-ended VQA

Ambiguous object

What's this? (Label: Porcupine)

Model output: A tree with no leaves

Visual Question Answering

Challenges in evaluation of Open-ended VQA

Ambiguous object

What's this? (Label: Porcupine)

Model output: A tree with no leaves

Unknown label granularity

What's this? (*Label:* Newfoundland dog) *Model output:* A black dog standing in the water

Open-ended Visual Question Answering

oVQA benchmark

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Dataset: COCO Question: What's this? Label: elephant

Open-ended Visual Question Answering oVQA benchmark

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Dataset: COCO Question: What's this? Label: elephant

Actions

ICLR 2024

Dataset: ActivityNet

Question: What activity is this?

Label: playing drums

Open-ended Visual Question Answering oVQA benchmark

Objects

Dataset: ImageNet Question: What's this? Label: cougar

Dataset: COCO Question: What's this? Label: elephant

Actions

Dataset: ActivityNet
Question: What activity is this?
Label: playing drums

Attributes

Dataset: OVAD

Question: What is the position of the person?

ICLR 2024

Label: standing / upright / vertical

Visual guidance

What's this? Label: Porcupine

Model output: A tree with no leaves

Visual guidance

Model output: A tree with no leaves

Model output: A porcupine

Follow-up question

Label: Newfoundland dog

Follow-up question

Follow-up question

Choosing the correct metric for binary classification

Which is the maturity of the person? Label: Synonyms: { young, baby, child, kid } young "Exact match": Answer matches the label? child He's a kid.

Choosing the correct metric for binary classification

Which is the maturity of the person? Label: Synonyms: { young, baby, child, kid } young "Exact match": "Contains" metric: Answer matches the Any synonym is contained in the answer? label? child He's a kid.

Choosing the correct metric for multi-class classification

What's this?

Model output: a mountain lion

Label: cougar

ExactMatch: answer matches label exactly

Contains:
label is contained in answer

ClipMatch: most similar label in Clip text space

ClipM Top-5 similarities:

cougar (0.792) lion (0.682) snow leopard (0.636) lynx (0.527) leopard (0.511)

Sub-benchmarks

(COCO)

Object-oVQA Object-oVQA (ImageNet)

Classes

80 objects

1000 objects

Follow-up

Size

36,800 crops

50,000 images

Question ex.

What is in the image?

What is in the image?

Sub-benchmarks

(COCO)

Object-oVQA Object-oVQA Activity-oVQA (ImageNet) (ActivityNet)

Classes

Follow-up

Size

Question ex.

80 objects

36,800 crops

What is in the image?

1000 objects

50,000 images

What is in the image?

200 activities

7,700 frames

What is happening in the image?

Sub-benchmarks

(COCO)

(ImageNet)

(ActivityNet)

Object-oVQA Object-oVQA Activity-oVQA Attribute-oVQA (OVAD)

Classes

Follow-up

Size

Question ex.

80 objects

36,800 crops

What is in the image?

1000 objects

50,000 images

What is in the image?

200 activities

7,700 frames

What is happening in the image?

117 attributes

14,300 crops

What is the position of the person?

Vision-Language Models

Multi-purpose VLM

Make a short description of the image.

The image shows a person sitting on a sandy beach, with three large dogs.

- BLIP-2 FlanT5 XL
- BLIP-2 OPT

Finetuned Visual Question Answering models

How many dogs are in the image?

*

There are three dogs.

- BLIP
- X2-VLM

Dialog and instruction models

Where is the scene taking place?

The scene is taking place on a sandy beach with the **ocean** in the background.

Does the **ocean** have strong waves?

The waves in the ocean appear moderate, not particularly strong.

- LLaVA
- InstructBlip

Model results

Qualitative Examples

Objects (ImageNet)

correct answer wrong answer

Question: What's this?

Label: Dalmatian

BLIP-2 OPT *output*: it's a dalmatian

LLaVA *output*: The image features a large black and white dog laying down on the floor, possibly on a carpet.

Follow-up Question: What type of dog is this? LLaVA output: The dog in the image is a Dalmatian.

Qualitative Examples

Objects (ImageNet)

correct answer wrong answer

Question: What's this?

Label: Dalmatian

BLIP-2 OPT *output*: it's a dalmatian

LLaVA *output*: The image features a large black and white dog laying down on the floor, possibly on a carpet.

Follow-up Question: What type of dog is this? LLaVA output: The dog in the image is a Dalmatian.

Attributes (OVAD)

Question: How many people are present in the

image?

Label: individual / one / single / 1 / sole / alone

BLIPvqa output: one

BLIP-2 OPT output: None. InstructBLIP T5 output: 2

LLaVA *output*: There are two people present in

the image.

 X^2 -VLM_{vqa} L *output*: one

Metrics

User study

What type of donut is on the top right?

Label: chocolate iced glazed

2000 model predictions evaluated.

Metrics

User study

What type of donut is on the top right?

Label: chocolate iced glazed

Metric *	Pearson Corr
GPT-4 _{10-shot}	0.972
Llama2 _{5-shot}	0.919
Cont	0.906
EM	0.525
LERC	0.827
ROUGE	0.717

^{*} More metrics in the paper

2000 model predictions evaluated.

Metrics

User study

- **LLMs** perform outperforms classical metrics
- Contains metric outperforms learned metrics and translation metrics

What are the vegetables to the left of the bowl that is to the left of the cookies?

Label: carrots

Output	Label	EM	Cont	LLaMA-2	GPT-4
carrots	carrots	1.00	1.00	1.00	1.00
The vegetables to the left of the bowl are carrots and green beans.	carrots	0.00	1.00	1.00	0.25

Metric *	Pearson Corr
GPT-4 _{10-shot} Llama2 _{5-shot}	0.972 0.919
Cont EM	0.906 0.525
LERC ROUGE	0.827 0.717

^{*} More metrics in the paper

Contributions

oVQA: A new benchmark for diagnosing Text-VLM performance in an open-ended VQA setup

- Remove ambiguities
- Ask follow-up questions

Contributions

oVQA: A new benchmark for diagnosing Text-VLM performance in an open-ended VQA setup

- Remove ambiguities
- Ask follow-up questions
- Use provably strong metrics

oVQA benchmark **Objects** Dataset: VQAv2 Question: Where is the cat? Dataset: ImageNet Question: What's this? Question: What's this? Label: on desk (x4), desk (x3), center of picture, Label: cougar Label: elephant at home, on table Actions **Attributes** Question: What is the spoon made of? Question: What activity is this? Question: What is the position of the person? Label: playing drums Label: standing / upright / vertical

Contributions

oVQA benchmark

Question: Where is the cat?

Question: What is the spoon made of?

at home, on table

Label: on desk (x4), desk (x3), center of picture,

oVQA: A new benchmark for diagnosing Text-VLM performance in an open-ended VQA setup

- Remove ambiguities
- Ask follow-up questions
- Use provably strong metrics

Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy

Simon Ging *

María A. Bravo *

Thomas Brox

Poster session

Halle B, Thu 9 May, 4:30 p.m. iclr.cc/virtual/2024/poster/19102

