IBM Datascience Capstone Project

Predicting the severity of accidents in Seattle City

Content

- Introduction
- Methods
 - Data Analysis and Wrangling
 - ML Algorithms
- Results
- Discussion and Conclusion

Introduction

- Predicting the severity of car accidents -

- Interested Stakeholders:
 - First Aid Organizations
 - Public Authorities
 - Infrastructural Planning
 - Navigation System Developers
 - Self Driving Car development

- The Dataset
 - Describes the severity in 4 steps (property damage to fatality)
 - Location: Seattle City

Methods

- Data Preperation -

- Statistical and Graphical analysis
- Drop unnecessary columns
- Drop rows with NaN values
- One-Hot-Encoding in order to obtain categorical features
- ▶ Balance Data by dropping ½ of category '1' rows
- Note: only categorical features => no normalization
- Further, the data has been split into Training and Test set

	SEVERITYCODE	ADDRTYPE_Block	ADDRTYPE_Intersection	WEATHER_Blowing Sand/Dirt	WEATHER_Clear	WEATHER_Fog/Smog/Smoke	WEATHER_Overcast	WI CI
1	1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	1	0
3	1	1	0	0	1	0	0	0
5	1	0	1	0	1	0	0	0
6	1	0	1	0	0	0	0	0

5 rows x 26 columns

Methods

- ML algorithms -

- K-nearest Neighbour Classifier
 - ► Change k number of nearest neighbours 1-20, 50,100, 300
- Support Vector Machine (SVM)
 - Change Kernel 'linear', 'polynomial', 'rbf'
- Decision Tree Classifier
 - Change criterion for split 'gini', 'entropy'
- Logistic Regression Classifier
 - Change regularization parameter C

Results

- K-Nearest Neighbours -

Accuracy-	-score	for 50 near	est neigh	hbors is 0.	582808847329617	1
		precision	recall	f1-score	support	
	1	0.58	0.64	0.61	11230	
	2	0.59	0.53	0.56	11014	
micro	avg	0.58	0.58	0.58	22244	
macro	avg	0.58	0.58	0.58	22244	
weighted	avg	0.58	0.58	0.58	22244	

Accuracy-	-score	e for 300 nea	arest nei	ghbors is	0.5876191332494156
noodraoy	DOOL	precision		f1-score	
	1	0.58	0.63	0.61	11230
	2	0.59	0.54	0.56	11014
micro	avg	0.59	0.59	0.59	22244
macro	avg	0.59	0.59	0.59	22244
weighted	avσ	0.59	0.59	0.59	22244

Best performance: k=300 with accuracy 0.5876

Results - SVM -

•			"1:"	i- 0 5024:	104400100702	Accuracy-	-scor	e for Kernel	"poly" i	s 0.5935982	2736917821
Accuracy	-scor	e for Kernel precision		15 0.5934. f1-score	support			precision	recall	f1-score	support
	1	0.58	0.70	0.64	11230		1	0.58	0.70	0.64	11230
	2	0.61	0.48	0.54	11014		2	0.61	0.48	0.54	11014
micro	avg	0.59	0.59	0.59	22244	micro	avg	0.59	0.59	0.59	22244
macro	avg	0.60	0.59	0.59	22244	macro	avg	0.60	0.59	0.59	22244
weighted	avg	0.60	0.59	0.59	22244	weighted	avg	0.60	0.59	0.59	22244

Accuracy-	score	e for Kernel	"rbf" is	0.59341844	99190793
		precision	recall	f1-score	support
	1	0.58	0.70	0.64	11230
	2	0.61	0.48	0.54	11014
micro	avg	0.59	0.59	0.59	22244
macro	-	0.60	0.59	0.59	22244
weighted	avg	0.60	0.59	0.59	22244

The accuracy is almost independent of the used kernel

Results

- Decision Tree Classifier -

Best performing model over all:

Accuracy-score for criterion "gini" is 0.9							
	preci	sion	recall	f1-score	support		
	1	1.00	0.80	0.89	5		
	2	0.83	1.00	0.91	5		
micro av	va	0.90	0.90	0.90	10		
macro av	_	0.92	0.90	0.90	10		
weighted av	vg	0.92	0.90	0.90	10		

Accuracy-	-score	e for criteri		opy" is 0.8 f1-score	support
	1	0.80	0.80	0.80	5
	2	0.80	0.80	0.80	5
		0.00	0.00	0.00	1.0
micro	avg	0.80	0.80	0.80	10
macro	avg	0.80	0.80	0.80	10
weighted	avg	0.80	0.80	0.80	10

Best performance: criterion 'gini' with accuracy 0.9

Results - Logistic Regression-

Accuracy-	-score	e for Regular precision		Parameter f1-score	"0.5" is 0.8 support
	1	0.80	0.80	0.80	5
	2	0.80	0.80	0.80	5
micro	avg	0.80	0.80	0.80	10
macro	avg	0.80	0.80	0.80	10
weighted	avg	0.80	0.80	0.80	10

Accuracy-		for Regular precision		Parameter f1-score	"0.001" is support	0.6
	1	0.57	0.80	0.67	5	
	2	0.67	0.40	0.50	5	
micro	avg	0.60	0.60	0.60	10	
macro	avg	0.62	0.60	0.58	10	
weighted	avg	0.62	0.60	0.58	10	

Discussion and Conclusion

- SVM and KNN are probably overfitting training data
 - Could be addressed as a next step
- Simple, computatinally cheap algorithms might just be accurate enough
- X, Y, and Datetime should be included in future step to improve prediction
- Potentially get larger dataset, if 'learning curve' plots indicate that such would improve model performance
- Best performing Model overall: Decision Tree with criterion 'gini', acc. 0.9