# Граф интернета

# Граф интернета



# Граф интернета



Схема интернета с сайта <u>internet-map.net</u>

# Граф интернета (ориентированный мультиграф)

- Вершины (V) сайты в интернете
- Дуги (Е) ссылки между сайтами
- Экспериментальные свойства графа интернета:
  - закон «шести рукопожатий»
  - ИСКЛЮЧИТЕЛЬНАЯ «разреженность» (если вершин у веб-графа n, то ребер у него не более mn с некоторым постоянным  $m \ge 1$ )
  - степенным законом распределения степеней вершин: #(n,d) = |{v: deg(v) = d}| / n ≈ c / d<sup>2.3</sup>

## Модель веб-графа

- Зная свойства «настоящего» интернета, можно создавать модели его разного размера.
  - тестировать алгоритмы обхода интернета роботами
  - выявлять спамовую активность

## Случайные веб-графы

- 1999, А. Л. Барабаши и Р. Альберт
  - Идея! Когда появляется новый сайт, он, скорее всего, «предпочитает» сослаться на те сайты, которые и без того уже многими цитированы. Более точно, вероятность, с которой новый сайт ставит ссылку на сайтпредшественник, пропорциональна (входящей) степени вершины вебграфа, отвечающей этому сайту.
- 2000, модель Боллобаша—Риордана
  - желание избавиться от очевидных проблем первой модели

#### модель Боллобаша-Риордана



Построим последовательность графов G(n, 1), а из них G(n, m).

## модель Боллобаша—Риордана. 1 этап

- *G*(1,1) это граф с одной вершиной и одной петлей (1, 1).
- Граф *G*(*n*,1) получим путем добавления к графу *G*(*n*-1,1) одной вершины (одного сайта) с «именем» *n* и одного ребра
  - с вероятностью 1/(2n-1) ссылка из n пойдет на само n
  - с вероятностью deg(v)/(2n-1) сайт n процитирует сайт v

## модель Боллобаша—Риордана. 2 этап

- Зафиксируем натуральное m ≥ 2. Рассмотрим найденный на первом этапе граф G(nm,1).
- Обозначим  $v_1$  группу из первых m его вершин, т.е. множество  $\{1, ..., m\}$ ;  $v_2$  следующую группу его вершин  $\{m+1, ..., 2m\}$  ...
- Схлопнем вершины из *G(nm,1)* в своего рода «метасайты», а все прежние ссылки сохраняем.

## Свойства модели

при m ≥ 2 и при любом ε > 0 с увеличением числа вершин графа G(n,m) всё ближе к единице становится вероятность того, что диаметр графа G(n,m) заключен в пределах (1 − ε)ln(n)/ln(ln(n)) ... (1 + ε)ln(n)/ln(ln(n))

• Е. Гречников (2011) доказал, что для всех m и d с ростом n всё ближе к единице становится вероятность того, что величина # (n, d), определенная на графе G(n,m), практически не отличается от величины  $c/d^3$ , где c зависит лишь от m.

#### Уточнение модели

- П. Бакли и Д. Остгуса
  - возьмем произвольное число a > 0
  - $-1/(2n-1) \rightarrow a/((a+1)n-1)$
  - $deg(v) / (2n-1) \rightarrow (deg(v) + a 1) / ((a+1)n 1)$
  - \* при а=1 имеем предыдущую модель
  - величина # (n, d), определенная на новой последовательности графов, становится почти наверняка приближенно равной с/d<sup>2+a</sup>

#### Модель копирования

• ИДЕЯ! когда появляется новый сайт, он либо цитирует какого-то «случайного» предшественника, либо копирует ссылки с некоторого сайта, чья тематика близка его автору. Идея призвана объяснить не только степенной закон, но и факт наличия в интернете плотных сообществ, участники которых объединены общими интересами.

#### Ссылки:

- http://elementy.ru/lib/431792
  - 1. А. М. Райгородский. Модели случайных графов. М: МЦНМО, 2011.
  - 2. *B. Bollobás*. Random Graphs, Second Edition. –
    Cambridge Univ. Press, 2001.
  - 3. E. A. Grechnikov. An estimate for the number of edges between vertices of given degrees in random graphs in the Bollobas—Riordan model. — Moscow Journal of Combinatorics and Number Theory, 1 (2011), №2, p. 40–73.

#### Graph 500 Benchmark

- **Graph500** (с 2010) рейтинг суперкомпьютеров, ориентированный на задачи класса <u>Data intensive</u>. 211 записи (июнь 2016)
  - Бенчмарк в большей степени нагружает коммуникационную подсистему компьютера, и не зависит от количества исполняемых в секунду операций над числами с плавающей запятой
  - состоит из двух вычислительно сложных частей:
    - в первой происходит генерация графа и его сжатие в разреженные структуры CSR или CSC (Compressed Sparse Row/Column)
    - во второй происходит параллельный BFS-поиск из 64 вершин графа, выбранных случайно

#### Постановка задачи

Problem class definitions and required storage for the edge list assuming 64-bit integers.

| Problem class     | Scale | Edge<br>factor | Approx.<br>storage size in<br>TB |  |
|-------------------|-------|----------------|----------------------------------|--|
| Toy (level 10)    | 26    | 16             | 0.0172                           |  |
| Mini (level 11)   | 29    | 16             | 0.1374                           |  |
| Small (level 12)  | 32    | 16             | 1.0995                           |  |
| Medium (level 13) | 36    | 16             | 17.5922                          |  |
| Large (level 14)  | 39    | 16             | 140.7375                         |  |
| Huge (level 15)   | 42    | 16             | 1125.8999                        |  |



#### Генерация графа и валидация

- Для проверки созданной версии в тесте существует валидация, которая проверяет корректность построенного дерева при поиске в ширину.
- Для этого при выполнении поиска заполняется специальный массив, в котором хранятся вершины-родители для каждой вершины в построенном дереве.
- Проверятся корректность только косвенно:
  - Вывод является деревом, не содержит циклов
  - Метки у вершин, соединенных ребром дерева, отличаются ровно на 1
  - Все ребра в выходных данных либо обеими вершинами в дереве и их метки отличаются не более чем на 1, либо обеими вершинами вне его
  - Вершина и ее родитель соединены ребром из входных данных

- При генерации графов в Graph500 используется генератор Кронекера, очень похожий на генератор графов типа Recursive MATrix (R-MAT), который в процессе работы использует матрицу смежности создаваемого графа.
- При добавлении каждой дуги матрица смежности NxN рекурсивно дробится до тех пор, пока не будет получена матрица из одного элемента — это и есть выбранная дуга. Такой процесс повторяется М раз.
- Матрица на каждом шаге такого рекурсивного процесса дробится на четыре равные части: A, B, C и D.
- Для каждой из этих частей изначально задана вероятность, с которой происходит выбор именно ее при добавлении новой дуги. По умолчанию вероятности выбора частей матрицы равны: P(A) = 0,57; P(B) = 0,19; P(C) = 0,19; P(D) = 1-(A+B+C) = 0,05.

#### June 2016

|  | No. | <u>Rank</u> | <u>Machine</u>                                                                       |            | Installation Site                                                  | Number of nodes | Number of cores | Problem scale | <u>GTEPS</u> |
|--|-----|-------------|--------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------|-----------------|-----------------|---------------|--------------|
|  | 1   | 1           | K computer (Fujitsu - Custo                                                          |            | RIKEN Advanced<br>Institute for<br>Computational<br>Science (AICS) | 82944           | 663552          | 40            | 38621.4      |
|  | 2   | 2           | Sunway TaihuLight (NRCPC<br>Sunway MPP)                                              | ; <b>-</b> | National<br>Supercomputing<br>Center in Wuxi                       | 40768           | 10 599 680      | 40            | 23755.7      |
|  | 3   | 3           | DOE/NNSA/LLNL Sequoia (<br>BlueGene/Q, Power BQC 1<br>GHz)                           | 6C 1 60    | Lawrence<br>Livermore<br>National<br>Laboratory                    | 98304           | 1572864         | 41            | 23751        |
|  | 4   | 4           | DOE/SC/Argonne National<br>Laboratory Mira (IBM -<br>BlueGene/Q, Power BQC 1<br>GHz) |            | Argonne<br>National<br>Laboratory                                  | 49152           | 786432          | 40            | 14982        |
|  | 5   | 5           | JUQUEEN (IBM - BlueGene<br>Power BQC 16C 1.60 GHz)                                   |            | Forschungszentr<br>um Juelich (FZJ)                                | 16384           | 262144          | 38            | 5848         |
|  | 6   | 6           | Fermi (IBM - BlueGene/Q,<br>BQC 16C 1.60 GHz)                                        | Power      | CINECA                                                             | 8192            | 131072          | 37            | 2567         |

#### Ссылки

- http://www.graph500.org
- http://www.graph500.org/referencecode

#### Задания

- [8 баллов] 1) на вашем ноутбуке запустить тест Graph500 (референс код), определить характеристики теста
- [10 баллов (или +5 к 1)] 2) на каком-либо кластере запустить параллельную версию теста
- [+5 баллов к 1)-2)] 3) определить параметры графа Кронекера (построив 1000+ случайных графов scale=12+): диаметр, среднее расстояние между вершинами в одной компоненте связности, построить гистограмму #(n, d), оценить вероятность быть связным
- [15 баллов] 4) реализовать алгоритм построения случайного вебграфа в модели Боллобаша—Риордана (различные n=4000+, m=10..16). Определить параметры графов в этой модели (описаны выше).