به نام خدا

آزمایش شماره 1: کنترل تدریجی سرعت و تغییر جهت موتور DC با استفاده از PWM

نام درس : ریزپردازنده

نام استاد : استاد عباسی

اعضای گروه: مبینا فاخته و تارا قاسمی

ابزار مورد نیاز

1. موتور DC (آرمیچر)

درایور موتور L298

3. میکروکنترلر

4. منبع تغذیه موتور

5 سيمهاى اتصال

هدف آزمایش

1. تغییر تدریجی سرعت موتور DC با استفاده از سیگنال.PWM

2. تغییر جهت چرخش موتور با استفاده از درایور موتور.

شرح آزمایش

در این آزمایش، موتور DC توسط Arduino و در ایور موتور کنترل می شود. با استفاده از سیگنال PWM ، سرعت موتور به صورت تدریجی از صفر تا حداکثر مقدار تغییر میکند و سپس جهت چرخش آن تغییر داده می شود. این فر آیند شامل دو مرحله است:

- 1. چرخش موتور در یک جهت با افزایش تدریجی سرعت.
 - 2. تغییر جهت موتور و تکرار افزایش تدریجی سرعت.

کد ما به شرح زیر است:

```
void setup() {
 pinMode(9 , OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(10, OUTPUT);
void loop() {
 for (int i = 0; i < 256; i++){
  digitalWrite(9, HIGH);
  digitalWrite(8, LOW);
  digitalWrite(10, i);
  delay(20);}
 delay(50);
 for (int i = 0; i < 256; i++){
  digitalWrite(9, LOW);
  digitalWrite(8, HIGH);
  digitalWrite(10, i);
  delay(20); }
 delay(50);
```

توضیح کد

: Void (setup) .1

- پینهای $\mathbf{9}$ و $\mathbf{8}$ به عنوان خروجی تنظیم شدهاند تا جهت چرخش موتور را مشخص کنند.
- پین 10 برای تولید سیگنال PWM و کنترل سرعت موتور به عنوان خروجی تعریف شده است.

: Void (loop) .2

。 مرحله اول:

- پین 9 به حالت HIGH و پین 8 به حالت LOW تنظیم می شود تا موتور در جهت اول بچرخد.
- مقدار سیگنال PWM روی پین 10 به صورت تدریجی از 0 تا 255 افزایش مییابد، که سرعت موتور را به تدریج افزایش میدهد.

。 مرحله دوم:

- . جهت چرخش موتور با تنظیم پین 9 به LOW و پین 8 به HIGH تغییر میکند.
- سیگنال PWM دوباره از 0 تا 255 افزایش مییابد، و موتور در جهت معکوس سرعت میگیرد.
 - در هر دو مرحله، یک تأخیر کوچک برای روانتر شدن تغییر سرعت اعمال می شود.

شماتیک:

توضيح شماتيك:

در اینجا همینطور که میبینید یک آرمیچر داریم که دو پایه آن به پایه , OUT1 CUT1 در درایور موتور متصل شده است

و یک منبع تغذیه 12 ولتی داریم که سر مثبت آن به 12۷ در درایور موتور و سر منفی آن به زمین در درایور موتور متصل است و همینطور از سر GND در درایور موتور به GND در ایور موتور به GND در برد آردوینو هم وصل شده و همینطور پایه های ۱۸ در درایور موتور به ترتیب به پایه های 8 و 9 و 10 در برد آردوینو وصل شده اند.

نتيجهگيرى

این آزمایش نشان میدهد که با استفاده از PWM میتوان به طور دقیق سرعت موتور DC را کنترل کرد و با تغییر وضعیت پینهای در ایور موتور، جهت چرخش آن را تغییر داد. همچنین افز ایش تدریجی سرعت موتور باعث کاهش فشار ناگهانی روی سیستم مکانیکی میشود.