

ANDRIZ Hydro

Recent Developments in Pump Turbines

HydroVision Charlotte July 27 – 30, 2010, USA Dr. Manfred Sallaberger Andritz Hydro Zurich, Switzerland

Drivers of the Pumped Storage upswing

Market Requirements

- Grid stability
 - more wind power
 - more bottle necks
 - risk of black outs
- Trading in the electricity market
 - short term peaking
 - value of reserve capacity
- Ancillary services
 - Compensate the non-dispatchabel renewables (wind, solar)

Development of Technology

- Regulating possibility also in pumping mode
 - Variable speed
 - Hydraulic short circuit
- Reliability and smooth operating behavior also with challenging operation of units
 - frequent start-stops
 - rapid load changes

HydroVision Charlotte, July 27-30, 2010

Challenges to Pump Turbines Optimized perfomance characteristics Wide head range - Power input/output Low submergence - High efficiency - minimize civil costs Cope with frequency variation **Avoid cavitation damage** Structural inegrity shall Smooth and stable operation - ensure service life - Static and dynamic loads **Extended operation range Dynamic operation** - Low part load operation - Frequent mode changes **High reliability** - Quick load changes - even with frequent load changes - Short time for synchronization **Ongoing Research in Pump Turbines**

Research on Unsteady Phenomena in Pump-turbines

- Draft tube vortex in turbine part load operation
 - Increased pressure fluctuations in draft tube
 - Rough operation of pump-turbine
- Low part load operation
 - Aeration admits extension of operation range
 - Deatailed investigation ongoing
- Stability with synchronization in turbine operation
 - Fluctuation of torque and speed of unit
 - Long duration for Synchronization

Research on Unsteady Phenomena in Pump-turbines

- Pump-stability at high head
 - Drop of head-flow characteristics at high heads
 - Unstable operation or start-up possible
- Rotor stator Interaction
 - Unsteady pressure load on runner and stationary components
 - Rough operation of pump turbine

HydroVision Charlotte, July 27-30, 2010

Hintermuhr

- Customer: Salzburg AG, Austria
- Runner outlet diameter D1 = 1870 mm
- Head range 455 m 517 m
- Max power 71.5 MW
- Speed n = 1000 rpm
- Specific speed 126

- 1 Pump Turbine
- Motor Generator
- Governer
- 1 Butterfly valve
- 1 spherical valve
- Existing cavern for two Pelton units
- Guide vanes and labyrinth rings coated with tungsten carbide SXH70

Structural Integrity Static Analysis

- Load case 1: Pump operation at maximum head (Pu-Hmax)
- Load case 2: Pump operation at minimum head (Pu-Hmin)
- Load case 3: Turbine operation at maximum head (Tu-Hmax)
- Load case 4: Runaway, i.e. speed no load, centrifugal load without torque

HydroVision Charlotte, July 27-30, 2010

Pressure Modes

Time - Frequency Domain: Amplitudes

Structural Integrity Dynamic Analysis

- Dynamic blade load from unsteady CFD
- FE analysis for specific frequencies (Harmonic response)

Time for 1 Runner Revolution

Distribution of Principle Stress

Structural Integrity Modal Analyis

Node diameter 3 counter phase mode between hub and shroud

- Natural frequency of runner including added mass effect of water and casing or walls
- Natural frequency of critical mode needs sufficient offset from exciting frequency
- First 10 natural frequencies investigated

HydroVision Charlotte, July 27-30, 2010

Vianden M11

Customer: Societe Electrique de l'Our

Extension of existing pumped storage plant from 1.1 MW to 1.3 MW

- Runner Diameter D1 4286 mm
- Head range H 269.4 m 294.6 m
- Max power P 200.4 MW
- Speed n 333.33 rpm
- Specific speed nsq 156

- 1 Pump Turbine
- 1 Motor/Generator, governer
- 1 Spherical valve
- Draft tube gate
- Single guide vane servo motors
- Mechanical synchronization of guide vane openings by synchronization ring
- Hydraulically pre-stressed guide vane bearings

Vianden M11

- Hydraulically pre-stressed guide vane bearings
- > Easy to install
- **Easy to adjust**
- > Already tested in pump turbine rehab
- > Applicable for replacement of existing conventional bearings

HydroVision Charlotte, July 27-30, 2010

Baixo Sabor Montante

- Customer: EDP, Portugal
- Runner Diameter D1 4112 mm
- Head range H 68.8 m 104.6 m
- Max power P 76.9 MW
- Speed n 214.29 rpm
- Specific speed nsq 212

- 2 Pump Turbines
- Motor/Generator
- Governer
- Ancillary equipment
- Hydraulic steel structures
- Wide head variation
- Equipped with ring gate

HydroVision Charlotte, July 27-30, 2010

Hydro

Baixo Sabor Jusante

- Customer: EDP, Portugal
- Runner Diameter D1 3948 mm
- Head range H 26.2 m 35.2 m
- Max power P 17.8 MW
- Speed n 150 rpm
- Specific speed nsq 264

- 2 Pump Turbines
- Motor/Generator
- Governer
- Ancillary equipment
- Hydraulic steel structures
- Wide head variation

Successful designs of Pump turbines

Projekt	Head [m]	Power [MW]	Runner diameter [mm]	Speed [rpm]	Country	Status
Zarnowiec	127.5	187.6	6008	166.67	Poland	In Operation
Tongbai	288.8	306.0	4802	300	China	In Operation
Lang Ya Shan	152.9	165.7	4700	230.77	China	In Operation
Nestil	1065.7	141.2	2263	600	Switzerland	In Operation
Yixing	420	262	4394	375	China	In Operation
Hintermuhr	517.0	71.9	1870	1000	Austria	In Operation
Feldsee	547.8	72.7	1919	1000	Austria	In Operation

Baixo Sabor Montante	104.6	76.9	4112	214.29	Portugal	Hydraulic Design
Baixo Sabor Jusante	35.2	17.9	3948	150	Portugal	Hydraulic Design
Vianden M11	294.6	200.4	4286	333.33	Luxembourg	Hydraulic Design

HydroVision Charlotte, July 27-30, 2010

Continuous development of technology

- Unsteady flow simulation
- Structural analysis, static and dynamic
- Rotor Stator interaction

Application of modern technology in hydraulic and mechanical design provide

- High reliability
- Quick load changes
- Extension of operation range
- Resistance against erosion

Continuous experience in projects

- Wide range of application
- Innovative solutions

ANDRITZ Hydro is well prepared for the challenges in pumped storage

