

PCT

WELTOORGANISATION

INTERNATIONALE ANMELDUNG VERÖFFENTLICHUNG
INTERNATIONALE ZUSAMMENARBEIT

WO 9603423A1
INTERNATIONALE VERÖFFENTLICHUNG (PCT)

(51) Internationale Patentklassifikation ⁶ :	A1	(11) Internationale Veröffentlichungsnummer: WO 96/03423
C07K 1/00, 1/04, 1/107, 14/16, 14/18, G01N 33/531, 33/74, C07K 1/13		(43) Internationales Veröffentlichungsdatum: 8. Februar 1996 (08.02.96)
(21) Internationales Aktenzeichen: PCT/EP95/02921		(81) Bestimmungsländer: AU, CA, CN, FI, JP, KR, NO, NZ, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 24. Juli 1995 (24.07.95)		
(30) Prioritätsdaten: P 44 26 276.0 25. Juli 1994 (25.07.94) DE P 44 30 973.2 31. August 1994 (31.08.94) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
(71) Anmelder (für alle Bestimmungsländer außer US): BOEHRINGER MANNHEIM GMBH [DE/DE]; Sandhofer Strasse 112-132, D-68305 Mannheim (DE).		
(72) Erfinder; und		
(73) Erfinder/Anmelder (nur für US): HÖSS, Eva [DE/DE]; Am Mühlberg 1A, D-82319 Starnberg (DE). SEIDEL, Christoph [DE/DE]; Ammerstrasse 39, D-82362 Weilheim (DE). WIENHUES, Ursula-Henrike [DE/DE]; Burgfriedenstrasse 8, D-82152 Krailling (DE). FAATZ, Elke [DE/DE]; Kramersstrasse 3, D-82396 Pöhl (DE). SCHMITT, Urban [DE/DE]; Waldstrasse 36, D-82386 Oberhausen (DE).		
(74) Anschrift: WEICKMANN, H. usw.; Kopernikusstrasse 9, D- 81679 München (DE).		

(54) Title: HAPten-MARKED PEPTIDES

(54) Bezeichnung: HAPten-MARKIERTE PEPTIDE

(57) Abstract

The invention concerns a method of producing hapten-marked peptides, characterized by the fact that (a) a peptide with the desired amino acid sequence is synthesised on a solid phase of amino acid derivatives whose reactive side groups are blocked by protective groups selected on primary amino side groups to ensure that they can be selectively split off; (b) protective groups are split off, producing at least one free primary amino group; (c) a hapten-active ester derivative is coupled to at least one free primary amino group of the peptide; and (d) where appropriate, remaining protective groups are split off. The hapten is selected from a group comprising sterines, gallic acids, sex hormones, corticoids, cardenolids, cardenolid-glycosides, bufadienolides, steroid-saponins and steroid alkaloids.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Herstellung von Hapten-markierten Peptiden, dadurch gekennzeichnet, daß man (a) ein Peptid mit der gewünschten Aminosäuresequenz an einer Festphase aus Aminosäurederivaten synthetisiert, deren reaktive Seitengruppen durch Schutzgruppen blockiert sind, wobei die Schutzgruppen an primären Aminoseitengruppen derart ausgewählt werden, daß sie gegebenenfalls selektiv abspaltbar sind, (b) eine Abspaltung von Schutzgruppen durchführt, wobei mindestens eine freie primäre Aminogruppe entsteht, (c) ein Hapten-Aktiveserderivat an die mindestens eine freie primäre Aminogruppe des Peptids kopelt, und (d) gegebenenfalls eine Abspaltung von noch verbleibenden Schutzgruppen durchführt, wobei das Hapten ausgewählt wird aus der Gruppe bestehend aus Sterinen, Gallensäuren, Sexualhormonen, Corticoiden, Cardenoliden, Cardenolid-Glycosiden, Bufadienoliden, Steroid-Saponinen und Steroidalkaloiden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Oesterreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BP	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Beira	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

- 1 -

Hapten-markierte Peptide

BESCHREIBUNG

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Hapten-markierten Peptiden, durch dieses Verfahren erhältliche Hapten-markierte Peptide sowie die Verwendung dieser Peptide in einem immunologischen Nachweisverfahren.

Der Nachweis von Immunglobulinen in Körperflüssigkeiten, insbesondere in Humanseren, wird zur Diagnostik von Infektionen mit Mikroorganismen, insbesondere Viren, wie etwa HIV, Hepatitis-Viren, etc. verwendet. Das Vorhandensein von spezifischen Immunglobulinen in der untersuchten Probe wird üblicherweise durch Reaktion mit einem oder mehreren Antigenen, die mit den spezifischen Immunglobulinen reagieren, nachgewiesen. Verfahren zur Bestimmung von spezifischen Immunglobulinen in der Probe-flüssigkeit müssen sensitiv, zuverlässig, einfach und schnell sein.

In den letzten Jahren wurden zunehmend Nachweissysteme auf Basis nicht-radioaktiver Markierungsgruppen entwickelt, bei denen das Vorhandensein eines Analyten, z.B. eines spezifischen Antikörpers, in der untersuchten Probe mit Hilfe optischer (z.B. Lumineszenz oder Fluoreszenz), NMR-aktiver oder Metall-präzipitierender Detektionssysteme bestimmt werden konnte.

EP-A-0 307 149 offenbart einen Immuntest für einen Antikörper, bei dem zwei rekombinante Polypeptide als Antigene verwendet werden, von denen eines an einer festen Phase immobilisiert ist, und das andere eine Markierungsgruppe trägt, wobei beide rekombinanten Antigene in unterschiedlichen Organismen exprimiert werden, um die Spezifität des Nachweises zu erhöhen.

EP-A-0 366 673 offenbart ein Verfahren zum Nachweis von Antikörpern in einer Probe, bei dem ein Antikörper durch

- 2 -

Reaktion mit einem gereinigten, markierten Antigen und dem gleichen gereinigten Antigen in einer Festphasen-gebundenen Form nachgewiesen wird. Als Antigen wird beispielsweise humanes IgG offenbart.

EP-A-0 386 713 beschreibt ein Verfahren zum Nachweis von Antikörpern gegen HIV unter Verwendung von zwei festen Trägern, wobei an beide festen Träger verschiedene HIV-Antigene immobilisiert werden, die jeweils mit einem Aliquot einer Probe und einem markierten HIV-Antigen in Kontakt gebracht werden, wobei das Vorhandensein von Antikörpern durch eine positive Reaktion in mindestens einem der Tests nachgewiesen wird. Als HIV-Antigene werden rekombinant hergestellte Polypeptide offenbart.

EP-A-0 507 586 beschreibt ein Verfahren zur Durchführung eines immunologischen Tests für ein spezifisches Immunglobulin, bei dem eine Probe mit zwei zur Bindung des Immunglobulins fähigen Antigenen in Kontakt gebracht wird, wobei das erste Antigen eine zur Bindung an einen festen Träger geeignete Gruppe trägt, und das zweite Antigen eine Markierungsgruppe trägt. Die Markierungsgruppe kann eine direkte Markierungsgruppe sein, z.B. ein Enzym, ein Chromogen, ein Metallteilchen, oder auch eine indirekte Markierungsgruppe, d.h. die am Antigen angebrachte Markierungsgruppe kann mit einem Rezeptor für die Markierungsgruppe, der wiederum eine signalerzeugende Gruppe trägt, reagieren. Als Beispiel für eine solche indirekte Markierungsgruppe wird ein Fluoresceinderivat genannt, dessen Rezeptor ein Antikörper ist, der wiederum mit einem Enzym gekoppelt ist. Als Antigene werden Polypeptide, wie etwa das Hepatitis B-Oberflächenantigen offenbart. In dieses Antigen werden durch Derivatisierung SH-Gruppen eingeführt, mit denen das Fluorescein gekoppelt wird.

EP-A-0 507 587 offenbart ein spezifisch zum Nachweis von IgM Antikörpern geeignetes Verfahren, bei dem die Probe mit einem markierten Antigen, das gegen den nachzuweisenden Antikörper gerichtet ist, und einem zweiten Antikörper, der ebenfalls

- 3 -

gegen den nachzuweisenden Antikörper gerichtet und an eine Festphase bindefähig ist, inkubiert wird.

Bei den aus dem Stand der Technik bekannten immunologischen Nachweisverfahren für Antikörper werden üblicherweise Polypeptid-Antigene verwendet, die meist durch rekombinante DNA-Methoden erzeugt wurden. Beim Einsatz derartiger Polypeptid-Antigene können jedoch Probleme auftreten. So können rekombinante Polypeptide oft nur in Form von Fusionspolypeptiden erzeugt werden, bei denen der Fusionsanteil zu falsch positiven Resultaten im Test führen kann. Weiterhin zeigen durch rekombinante Expression erzeugte Polypeptide oft eine nur geringe Stabilität in der Probelösung und neigen zu Aggregation. Ein weiterer Nachteil ist, daß oft keine selektive und reproduzierbare Einführung von Markierungsgruppen in solche Polypeptide möglich ist.

Überdies ist die Herstellung rekombinanter Polypeptidantigene mit hohen Kosten verbunden und es können große Schwankungen in der immunologischen Reaktivität bei verschiedenen Chargen rekombinanter Polypeptidantigene auftreten.

Das der vorliegenden Erfindung zugrundeliegende Problem war somit die Bereitstellung eines Verfahrens, bei dem auf einfache und effiziente Weise Antigene für immunologische Tests erzeugt werden können, wobei die Nachteile der aus dem Stand der Technik bekannten Antigene mindestens teilweise beseitigt werden. Weiterhin soll das Verfahren eine selektive und reproduzierbare Einführung von Markierungsgruppen in die Antigene ermöglichen.

Dieses Problem wird gelöst durch ein Verfahren zur Herstellung von Hapten-markierten Peptiden, welches dadurch gekennzeichnet ist,

daß man

(a) ein Peptid mit der gewünschten Aminosäuresequenz an einer Festphase aus Aminosäurederivaten synthetisiert, deren reaktive

- 4 -

Seitengruppen durch Schutzgruppen blockiert sind, wobei die Schutzgruppen an primären Aminoseitengruppen derart ausgewählt werden, daß sie gegebenenfalls selektiv abspaltbar sind,

- (b) eine Abspaltung von Schutzgruppen durchführt, wobei mindestens eine freie primäre Aminogruppe entsteht,
- (c) ein Hapten-Aktivester-derivat an die mindestens eine freie primäre Aminogruppe des Peptids koppelt, und
- (d) gegebenenfalls eine Abspaltung von noch verbleibenden Schutzgruppen durchführt, wobei das Hapten ausgewählt wird aus der Gruppe bestehend aus Sterinen, Gallensäuren, Sexualhormonen, Corticoiden, Cardenoliden, Cardenolid-Glycosiden, Bufadienoliden, Steroid-Sapogeninen und Steroidalkaloiden.

Die durch das erfindungsgemäße Verfahren hergestellten Peptide haben vorzugsweise eine Länge von maximal 50 Aminosäuren, besonders bevorzugt von maximal 30 Aminosäuren und eignen sich hervorragend für immunologische Nachweisverfahren, insbesondere zur Bestimmung von spezifischen Immunglobulinen. Überraschenderweise wurde festgestellt, daß die durch das erfindungsgemäße Verfahren hergestellten Peptide trotz der Anwesenheit von sperrigen Hapten-Markierungsgruppen eine hohe Affinität und Spezifität für die nachzuweisenden Immunglobuline besitzen.

Das erfindungsgemäße Verfahren ermöglicht die selektive Einführung von Hapten-Markierungsgruppen, sowohl bezüglich ihrer Lokalisierung als auch ihrer Anzahl. Bei der erfindungsgemäßen Peptidsynthese besteht nämlich die Möglichkeit, durch Verwendung bestimmter Schutzgruppen an primären Aminogruppen der eingesetzten Aminosäurederivate diejenigen Positionen des Peptids gezielt auszuwählen, die nach selektiver Schutzgruppenabspaltung zur Reaktion mit dem Hapten zur Verfügung stehen. Auf diese Weise wird eine bessere Reproduzierbarkeit und Sensitivität der Tests erreicht.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, daß durch die Verwendung von Peptid-Antigenen alle Antikörperklassen, wie etwa IgG, IgM, IgE und IgA, erkannt werden. Auch

-- 5 --

die Störanfälligkeit des Tests ist durch Verwendung definierter kleiner und stabiler Antigene, die nicht zur Aggregation neigen, geringer.

Die Haptene, die durch das erfindungsgemäße Verfahren an das Peptid gekoppelt werden, sind Moleküle mit einem Steroidgrundgerüst, die ausgewählt werden aus der Gruppe bestehend aus Sterinen, Gallensäuren, Sexualhormonen, Corticoiden, Cardenoliden, Cardenolid-Glycosiden, Bufadienoliden, Steroid-Sapogeninen und Steroidalkaloiden. Diese Haptene sind mit einem spezifischen Rezeptor bindefähig, z.B. mit Antikörpern oder Antikörperfragmenten, die gegen das Hapten gerichtet sind. Besonders bevorzugt wird das Hapten ausgewählt aus der Gruppe bestehend aus Cardenoliden und Cardenolid-Glycosiden. Vertreter dieser Stoffklassen sind Digoxigenin, Digitoxigenin, Gitoxigenin, Strophantidin, Digoxin, Digitoxin, Ditoxin und Strophanthin, wobei Digoxigenin und Digoxin besonders bevorzugt sind.

Bei dem erfindungsgemäßen Verfahren wird das Hapten-Aktivester-derivat an den Aminoterminus oder/und an freie primäre Amino-seitengruppen des Peptids gekoppelt. Der Begriff "Aktivester" im Sinne der vorliegenden Erfindung umfaßt aktivierte Estergruppen, die mit freien Aminogruppen von Peptiden unter solchen Bedingungen reagieren können, daß keine störenden Nebenreaktionen mit anderen reaktiven Gruppen des Peptids auftreten können. Vorzugsweise wird als Aktivesterderivat ein N-Hydroxysuccinimidester verwendet. Beispiele für geeignete Hapten-Aktiv sterderivate sind Digoxin-4'''-hemiglutarat-N-hydroxysuccinimidester, Digoxigenin-3-carboxymethylether-N-hydroxysuccinimidester, Digoxigenin-3-O-methylcarbonyl- ϵ -aminocapronsäure-N-hydroxysuccinimidester, Digoxigenin-3-hemisuccinat-N-hydroxysuccinimidester, Digitoxin-4'''-hemiglutarat-N-hydroxysuccinimidester und Digitoxigenin-3-hemisuccinat-N-hydroxysuccinimidester. Diese Haptenderivate sind von der Fa. Boehringer Mannheim GmbH (Mannheim, BRD) kommerziell erhältlich. Neben den N-Hydroxysuccinimidestern können auch analoge p-Nitrophenyl-,

- 6 -

Pentafluorphenyl-, Imidazolyl- oder N-Hydroxybenzotriazolylester verwendet werden.

Bei dem erfindungsgemäßen Verfahren wird das Peptid mit der gewünschten Aminosäuresequenz an einer Festphase, vorzugsweise mit einem kommerziellen Peptid-Synthesegerät (z.B. die Geräte A 431 oder A 433 von Applied Biosystems) hergestellt. Die Synthese erfolgt nach bekannten Methoden, vorzugsweise ausgehend vom Carboxyterminus des Peptids unter Verwendung von Aminosäurederivaten. Vorzugsweise werden Aminosäurederivate eingesetzt, deren für die Kupplung benötigte Amino-Endgruppe mit einem Fluorenylmethyloxycarbonyl (Fmoc)-Rest derivatisiert ist. Reaktive Seitengruppen der eingesetzten Aminosäuren enthalten Schutzgruppen, die nach Beendigung der Peptidsynthese ohne weiteres abspaltbar sind. Bevorzugte Beispiele hierfür sind Schutzgruppen, wie etwa Triphenylmethyl (Trt), t-Butylether (tBu), t-Butylester ($\text{O} \text{ tBu}$), tert.-Butoxycarbonyl (Boc) oder 2,2,5,7,8-Pentamethylchroman-6-sulfonyl (Pmc). Die Aminoseitenketten von Lysinresten oder anderen Aminosäurederivaten mit primären Aminoseitengruppen, die sich an Positionen des Peptids befinden, die später mit dem Hapten derivatisiert werden sollen, sind mit einer ersten Aminoschutzgruppe versehen, die so ausgewählt wird, daß sie quantitativ unter bestimmten Reaktionsbedingungen, z.B. in Anwesenheit von Säure, abspaltbar sind. Ein Beispiel für eine geeignete säurelabile Schutzgruppe ist Boc. Die Seitengruppen von Lysinresten oder anderen Aminosäureresten mit primären Aminoseitengruppen, an denen keine Kopplung eines Haptens gewünscht wird, sind mit einer zweiten Aminoschutzgruppe versehen, die so ausgewählt wird, daß sie unter den Bedingungen, bei denen die erste Schutzgruppe abspaltbar ist, selbst nicht abgespalten wird. Vorzugsweise ist die zweite Schutzgruppe auch unter denjenigen Bedingungen stabil, bei denen die Abspaltung des Peptids von der Festphase und die Abspaltung aller anderen Schutzgruppen erfolgt. Beispiel für solche zweiten Schutzgruppen sind säurestabile Schutzgruppen, wie etwa Phenylacetyl. Neben den 20 natürlichen Aminosäuren kann das Peptid auch artefizielle

- 7 -

Aminosäuren, wie etwa β -Alanin, γ -Aminobuttersäure, ϵ -Aminocapronsäure, Norleucin oder Ornithin enthalten. Diese artefiziellen Aminosäuren werden analog wie die natürlichen Aminosäuren für die Synthese in geschützter Form eingesetzt.

Nach Beendigung der Synthese erfolgt gegebenenfalls nach Freisetzung des Peptids von der Festphase eine Abspaltung von Schutzgruppen einschließlich der ersten Aminoschutzgruppen, die sich an den Positionen befinden, an denen die Kopplung des Haptens stattfinden soll. Dann wird das auf diese Weise erhaltene Produkt gereinigt, vorzugsweise durch HPLC. Anschließend erfolgt die Einführung der Hapten-Markierung durch Umsetzung des Peptids mit dem jeweils gewünschten Hapten-Aktivesterderivat, das mit freien primären Aminogruppen, d.h. mit der Amino-Endgruppe oder/und Aminoseitengruppen des Peptids, reagiert. Pro freie primäre Aminogruppe werden vorzugsweise 1,5 bis 2,5 Äquivalente Aktivester eingesetzt. Anschließend wird das Reaktionsprodukt aufgereinigt, vorzugsweise durch HPLC.

Enthält das Peptid noch Aminogruppen, die mit einer zweiten Schutzgruppe, wie etwa Phenylacetyl, derivatisiert sind, so werden diese Schutzgruppen im letzten Schritt entfernt. Die Entfernung von Phenylacetylschutzgruppen kann beispielsweise enzymatisch mit immobilisierter oder löslicher Penicillin G-Amidase in wässriger Lösung mit organischem Solvensanteil bei Raumtemperatur erfolgen.

Enthalten die durch das erfindungsgemäße Verfahren hergestellten Peptide eine intramolekulare Disulfidbrücke, so kann die Peptidsequenz nach Beendigung der Synthese, aber vor Abspaltung der N-terminalen Fmoc-Schutzgruppe der letzten Aminosäure, z.B. mit Jod in Hexafluorisopropanol/Dichlormethan (Kamber und Hiskey in Gross E. und Meienhofer J., The Peptides, Academic Press, New York, 1981, Seiten 145 bis 147) an der Festphas oxidiert, und anschließend die N-terminalen Fmoc-Schutzgruppe abgespalten werden.

- 8 -

Vorzugsweise wird ein Peptid synthetisiert, das einen immunologisch reaktiven Epitopbereich, d.h. eine Antikörper-bindende Peptidsequenz, und einen Spacerbereich umfaßt. Vorzugsweise wird mindestens eine Hapten-Markierung in diesem Fall an den Spacerbereich gekoppelt. Peptide, bei denen die Markierung im Spacerbereich angeordnet ist, zeigen oft eine bessere Sensitivität in immunologischen Tests.

Der Spacerbereich, der vorzugsweise eine Länge von 1 bis 10 Aminosäuren aufweist, wirkt stabilisierend und löslichkeitsvermittelnd, da er vorzugweise Ladungen enthält oder/und Wasserstoffbrücken ausbilden kann. Außerdem kann er die Bindung von mehreren, z.B. hochmolekularen Rezeptoren an das Hapten-markierte Peptid sterisch erleichtern. Die Aminosäuren des Spacerbereichs werden vorzugsweise ausgewählt aus der Gruppe bestehend aus Glycin, β -Alanin, γ -Aminobuttersäure, ϵ -Aminocapronsäure, Lysin und Verbindungen der Strukturformel $\text{NH}_2\text{[}(\text{CH}_2)_n\text{O}]_x\text{CH}_2\text{-CH}_2\text{-COOH}$, worin n 2 oder 3 ist und x 1 bis 10 ist. Weiterhin enthält der Spacerbereich vorzugsweise mindestens teilweise artifizielle Aminosäurederivate. Der Spacerbereich ist vorzugsweise am Aminotermminus oder/und Carboxyterminus des Peptids angeordnet.

Durch das erfindungsgemäße Verfahren werden vorzugsweise Peptide synthetisiert, die einen Epitopbereich aus pathogenen Organismen, z.B. Bakterien, Viren und Protozoen, oder aus Autoimmun-Antigenen enthalten. Vorzugsweise stammt der immunologisch reaktive Epitopbereich aus viralen Antigenen, z.B. der Aminosäuresequenzen von HIV I, HIV II, HIV Subtyp O oder Hepatitis C-Virus (HCV).

Vorzugsweise werden HIV I-, HIVII- bzw. HIV Subtyp O-Epitope aus den Regionen gp32, gp41 und gp120 ausgewählt. HCV-Epitope werden vorzugsweise aus der Core/Env-Region oder den Nicht-Strukturprotein-Regionen NS3, NS4 oder NS5 ausgewählt.

- 9 -

Besonders bevorzugt wird der Epitopbereich von HIV I, HIV II- oder HIV Subtyp 0-Aminosäuresequenzen ausgewählt aus der Gruppe der Aminosäuresequenzen:

NNTRKSISIG	PGRAFYT	(I)	
NTTRSISIGP	GRAFYT	(II)	
IDIQEERRMR	IGPGMAWYS	(III)	
QARILAVERY	LKDQQLLGIW	GASG	(IV)
LGIWGCSGKL	ICTTAVPWNA	SWS	(V)
KDQQQLLGIWG	SSGKL	(VI)	
ALETLLQNQQ	LLSLW	(VII)	
LSLGCKGKL	V CYTS	(VIII)	
WGIRQLRRL	LALETLLQN	(IX) und	
QAQLNSWGCA	FRQVCHTTVP	WPNDSLX (X)	

oder Teilsequenzen davon, die eine Länge von mindestens 6 und vorzugsweise mindestens 8 Aminosäuren aufweisen.

Die Aminosäuresequenzen I bis III stammen aus der gp120-Region von HIVI, die Aminosäuresequenzen IV bis IX stammen aus der gp41-Region von HIVI und die Aminosäuresequenz X stammt aus der gp32-Region von HIV II. Die Aminosäuresequenzen I bis X sind weiterhin in den Sequenzprotokollen SEQ ID NO. 1 bis SEQ ID NO. 10 dargestellt. Die Sequenzen V, VIII und X enthalten jeweils 2 Cysteine, die vorzugsweise in Form einer Disulfidbrücke vorliegen. Vorzugsweise enthalten diese Sequenzen einen N- oder/und C-terminalen Spacer, wie oben definiert, der eine Hapten-Markierung, vorzugsweise eine Digoxigenin oder Digoxin, und besonders bevorzugt eine Digoxigenin-3-carboxymethylether-Markierung trägt. Gegebenenfalls können auch innerhalb des Epitopbereichs liegende Lysinreste in markierter Form vorliegen.

Der Epitopbereich von HCV-Aminosäuresequenzen wird vorzugsweise ausgewählt aus der Gruppe der Aminosäuresequenzen:

SRRFAQALPV	WARPD	(XI)
PQDVFKPGGG	QIVGGV	(XII)
EEASQHLPYI	EQ	(XIII)
QKALGLLQT		(XIV)

- 10 -

SRGNHVSPTH	YVPESDAA	(XV)
PQRKNKRNTN	RRPQDVKFPG	
GGQIVGVV		(XVI) und
AWYELTPAET	TVRLRAYMNT	PGLPV (XVII)

oder Teilsequenzen davon, die eine Länge von mindestens 6 und vorzugsweise mindestens 8 Aminosäuren aufweisen. Die Sequenz XI stammt aus der NS5-Region, die Sequenzen XII und XVI aus der Core Region, die Sequenzen XIII, XIV und XV aus der NS4 Region und die Sequenz XVII aus der NS3 Region von HCV. Die Aminosäuresequenzen XI bis XVII sind in den Sequenzprotokollen SEQ ID NO. 11 bis SEQ ID NO. 17 dargestellt. Vorzugsweise enthalten Peptide mit den oben genannten Epitopen zusätzlich einen Spacerbereich, der eine Hapten-Markierung trägt.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Hapten-markiertes Peptid, das eine Länge von maximal 50 und vorzugsweise maximal 30 Aminosäuren aufweist und am Aminoterminus oder/und an Aminoseitengruppen mit mindestens einem Hapten-Aktivesterderivat gekoppelt ist. Vorzugsweise ist das Hapten Digoxigenin oder Digoxin, und der Aktivester ein N-Hydroxysuccinimidester.

Das erfindungsgemäße Peptid umfaßt vorzugsweise einen immunologisch reaktiven Epitopbereich, der mit Antikörpern, z.B. aus Humanseren reagieren kann, und einen immunologisch nicht reaktiven Spacerbereich, wobei der Spacerbereich mindestens eine Haptenmarkierung trägt. Vorzugsweise ist der Spacerbereich am Aminoterminus des Peptids angeordnet, und hat eine Länge von 1 bis 10 Aminosäuren. Der Epitopbereich stammt vorzugsweise aus den Aminosäuresequenzen von HIV I, HIV II oder HCV einschließlich Varianten, z.B. Subtypen davon, z.B. HIV Subtyp O, und ist eine der Aminosäuresequenzen I bis XVII oder eine Teilsequenz davon.

Die vorliegende Erfindung betrifft auch die Verwendung von Hapten-markierten Peptiden als Antigene bei einem immunologischen Verfahren zur Bestimmung von spezifischen Antikörpern in

- 11 -

einer Probeflüssigkeit. Vorzugsweise werden solche Antikörper bestimmt, die auf eine Infektion durch Mikroorganismen, wie etwa Bakterien, Viren oder Protozoen, hinweisen. Besonders bevorzugt werden gegen Viren gerichtete Antikörper, z.B. gegen HIV oder Hepatitis-Viren gerichtete Antikörper bestimmt. Die Probeflüssigkeit ist vorzugsweise Serum, besonders bevorzugt humanes Serum. Weiterhin ist bevorzugt, daß die erfindungsgemäßen Hapten-markierten Peptide bei einem immunologischen Verfahren im Brückentestformat eingesetzt werden.

Außerdem betrifft die vorliegende Erfindung ein Verfahren zur immunologischen Bestimmung eines spezifischen Antikörpers in einer Probeflüssigkeit, welches dadurch gekennzeichnet ist, daß man die Probeflüssigkeit mit (a) einem ersten markierten Antigen, das gegen den zu bestimmenden Antikörper gerichtet ist und ein Hapten-markiertes Peptid, wie oben definiert, umfaßt, und (b) einem Rezeptor für das Hapten, der eine signalerzeugende Gruppe trägt, inkubiert und den Antikörper über eine Bindung mit dem Peptid nachweist. Vorzugsweise verwendet man als erstes Antigen ein mit Digoxin oder Digoxigenin markiertes Peptid, und als Rezeptor einen gegen Digoxigenin oder/und Digoxin gerichteten Antikörper. Der Begriff "Antikörper" soll in diesem Zusammenhang auch Antikörperfragmente, z.B. Fab-, Fab'-, F(ab),-, F(ab')₂-Fragmente oder andere z.B. gentechnologisch modifizierte Antikörperfragmente, umfassen. Der Rezeptor ist mit einer signalerzeugenden Gruppe, vorzugsweise einem Enzym, wie etwa Peroxidase, alkalische Phosphatase, β -Galactosidase, Urease oder Q- β -Replikase, gekoppelt. Die signalerzeugende Gruppe kann jedoch auch eine chromogene, radioaktive oder NMR-aktive Gruppe oder ein Metallpartikel (z.B. Gold) sein. Vorzugsweise ist die signalerzeugende Gruppe ein Enzym.

Das erfindungsgemäße immunologische Bestimmungsverfahren kann an sich nach jedem bekannten Testformat erfolgen, z.B. in einem homogenen Immunoassay mit einer einzigen Reaktionsphase oder in einem heterogenen Immunoassay mit mehr als einer Reaktionsphase. Vorzugsweise wird ein heterogenes Testformat verwendet,

- 12 -

bei dem das Vorhandensein des Antikörpers in Anwesenheit einer Festphase nachgewiesen wird. Eine Ausführungsform dieses Testformats ist das sogenannte Doppelantigen-Brückentestkonzept. Hierbei wird die Probeflüssigkeit in Gegenwart einer Festphase mit dem ersten Antigen und einem zweiten Antigen inkubiert, das gegen den zu bestimmenden Antikörper gerichtet ist und (a) an die Festphase gebunden ist, oder (b) in einer an die Festphase bindefähigen Form vorliegt. Der zu bestimmende Antikörper in der Probeflüssigkeit wird durch Bestimmung der Markierung in der Festphase oder/und in der flüssigen Phase nachgewiesen. Vorzugsweise ist das zweite Antigen mit Biotin markiert und ist an eine Festphase bindefähig, die mit Streptavidin oder Avidin beschichtet ist. Vorzugsweise verwendet man als zweites Antigen ein mit Biotin markiertes Peptid.

Die Testdurchführung beinhaltet vorzugsweise ein Mischen der Probeflüssigkeit mit dem ersten Antigen und dem festphasenseitigen zweiten Antigen, um einen markierten, immobilisierten Komplex aus erstem Antigen, Antikörper und festphasengebundenem zweiten Antigen zu erhalten. Gegenüber anderen Testformaten zum Nachweis von Antikörpern führt das Brückentestformat sowohl zu einer Verbesserung der Sensitivität, d.h. es werden alle Immunglobulinklassen, wie etwa IgG, IgM, IgA und IgE, erkannt, als auch der Spezifität, d.h. es wird die unspezifische Reaktivität verringert. Die Spezifität und Sensitivität des Doppelantigen-Brückentests kann weiterhin verbessert werden, wenn man eine Zweischritt-Testführung verwendet, bei der in einem ersten Schritt die Probeflüssigkeit mit dem ersten und dem zweiten Antigen vermischt, und anschließend der Rezeptor für die Haptenmarkierung des ersten Antigens, der die signalerzeugende Gruppe trägt, zugegeben wird.

Ein weiterer Vorteil des Doppelantigen-Brückentestformats, bei dem ein festphasenseitiges und ein Hapten-markiertes Peptid als Antigene eingesetzt werden, besteht in der Möglichkeit der Verringerung des Risikos einer falsch negativen Bewertung von

- 13 -

Proben, die einen hohen Titer des zu bestimmenden Antikörpers aufweisen, infolge des Hook-Effekts und zwar durch eine Erhöhung der Anzahl von Markierungsgruppen pro Peptid vorzugsweise auf 2 bis 10 Markierungsgruppen. Die Erhöhung der Anzahl von Haptenmarkierungsgruppen pro Peptid führt infolge der Amplifikation des Signals über den Rezeptor zur Verbesserung der Hook-Sensitivität gegenüber Testführungen mit direkt nachweisbaren Markierungsgruppen.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein Reagenz zur immunologischen Bestimmung eines spezifischen Antikörpers, das mindestens ein erfundungsgemäßes Hapten-markiertes, mit dem zu bestimmenden Antikörper reagierendes Peptid enthält. Wird das Reagenz in einem Doppelantigen-Brückentest verwendet, so enthält es vorzugsweise (a) das Hapten-markierte Peptid, (b) einen Rezeptor für das Hapten, der eine signalerzeugende Gruppe trägt, und (c) ein weiteres, mit dem zu bestimmenden Antikörper reagierendes Antigen, das an eine Festphase gebunden ist oder in einer an eine Festphase bindefähigen Form vorliegt. Das Hapten ist vorzugsweise ein Cardenolid oder Cardenolid-Glycosid, insbesondere Digoxin oder Digoxigenin, der Rezeptor für das Hapten ist vorzugsweise ein gegen das Hapten gerichteter Antikörper, die signalerzeugende Gruppe ist vorzugsweise ein Enzym, das weitere Antigen ist vorzugsweise biotinyliert und ist an eine mit Streptavidin oder Avidin beschichtete Festphase bindefähig.

Weiterhin wird die vorliegende Erfindung durch die nachfolgenden Beispiele und Sequenzprotokolle beschrieben.

Es zeigen

- SEQ ID NO. 1: die Aminosäuresequenz eines Epitops aus dem gp120-Bereich von HIV I;
SEQ ID NO. 2: die Aminosäuresequenz eines weiteren Epitops aus dem gp120-Bereich von HIV I;

- 14 -

- SEQ ID NO. 3: die Aminosäuresequenz eines weiteren Epitops aus dem gp120-Bereich von HIV I, Subtyp O;
- SEQ ID NO. 4: die Aminosäuresequenz des Epitops aus dem gp41-Bereich von HIV I;
- SEQ ID NO. 5: die Aminosäuresequenz eines weiteren Epitops aus dem gp41-Bereich von HIV I;
- SEQ ID NO. 6: die Aminosäuresequenz noch eines weiteren Epitops aus dem gp41-Bereich von HIV I;
- SEQ ID NO. 7: die Aminosäuresequenz eines Epitops aus dem gp41-Bereich von HIV I, Subtyp O;
- SEQ ID NO. 8: die Aminosäuresequenz eines weiteren Epitops aus dem gp41-Bereich von HIV I, Subtyp O;
- SEQ ID NO. 9: die Aminosäuresequenz noch eines weiteren Epitops aus dem gp41-Bereich von HIV I, Subtyp O;
- SEQ ID NO.10: die Aminosäuresequenz eines Epitops aus dem gp32-Bereich von HIV II;
- SEQ ID NO.11: die Aminosäuresequenz eines Epitops aus dem NS5-Bereich von HCV;
- SEQ ID NO.12: die Aminosäuresequenz eines Epitops aus dem Core-Bereich von HCV;
- SEQ ID NO.13: die Aminosäuresequenz eines Epitops aus dem NS4-Bereich von HCV;
- SEQ ID NO.14: die Aminosäuresequenz eines weiteren Epitops aus dem NS4-Bereich von HCV;
- SEQ ID NO.15: die Aminosäuresequenz noch eines weiteren Epitops aus dem NS4-Bereich von HCV;
- SEQ ID NO.16: die Aminosäuresequenz eines weiteren Epitops aus dem Core-Bereich von HCV; und
- SEQ ID NO.17: die Aminosäuresequenz eines Epitops aus dem NS3-Bereich von HCV.

- 15 -

Beispiel 1

Herstellung von Hapten-markierten Peptiden

Die Hapten-markierten Peptide wurden mittels Fluorenylmethyl-oxy carbonyl-(Fmoc)-Festphasenpeptidsynthese an einem Batch-Peptidsynthesizer, z.B. von Applied Biosystems A431 oder A433, hergestellt. Dazu wurden jeweils 4.0 Äquivalente der in Tabelle 1 dargestellten Aminosäurederivate verwendet:

- 16 -

Tabelle 1:

A	Fmoc-Ala-OH
C	Fmoc-Cys(Trt)-OH
D	Fmoc-Asp(OtBu)-OH
E	Fmoc-Glu(OtBu)-OH
F	Fmoc-Phe-OH
G	Fmoc-Gly-OH
H	Fmoc-His(Trt)-OH
I	Fmoc-Ile-OH
K1	Fmoc-Lys(Phenylacetyl)-OH
K2	Fmoc-Lys(Boc)-OH
K3	Boc-Lys(Fmoc)-OH
L	Fmoc-Leu-OH
M	Fmoc-Met-OH
N	Fmoc-Asn(Trt)-OH
P	Fmoc-Pro-OH
Q	Fmoc-Gln(Trt)-OH
R	Fmoc-Arg(Pmc)-OH
S	Fmoc-Ser(tBu)-OH
T	Fmoc-Thr(tBu)-OH
U	Fmoc-βAlanin-OH
V	Fmoc-Val-OH
W	Fmoc-Trp-OH
Y	Fmoc-Tyr(tBu)-OH
Z	Fmoc-ε-Aminocapronsäure-OH
Nle	Fmoc-ε-Norleucin-OH
Abu	Fmoc-γ-Aminobuttersäure-OH

Das Lysin-Derivat K1 wurde für Positionen verwendet, an denen keine Haptensmarkierung eingeführt werden sollte. Das Lysin-Derivat K2 wurde für Positionen verwendet, an denen ein

- 17 -

Haptenmarkierung eingeführt werden sollte. Das Lysin-Derivat K3 wurde zur Kopplung der ϵ -Aminogruppe an das Peptid im Spacerbereich verwendet.

Die Aminosäuren oder Aminosäurederivate wurden in N-Methylpyrrolidon gelöst. Das Peptid wurde an 400-500 mg 4-(2',4'-Dimethoxyphenyl-Fmoc-Aminomethyl)-Phenoxy-Harz (Tetrahedron Letters 28 (1987), 2107) mit einer Beladung von 0,4-0,7 mmol/g aufgebaut (JACS 95 (1973), 1328). Die Kupplungsreaktionen wurden bezüglich des Fmoc-Aminosäurederivats mit 4 Äquivalenten Dicyclohexylcarbodiimid und 4 Äquivalenten N-Hydroxybenzotriazol in Dimethylformamid als Reaktionsmedium während 20 min durchgeführt. Nach jedem Syntheseschritt wurde die Fmoc-Gruppe mit 20%igem Piperidin in Dimethylformamid in 20 min abgespalten.

Bei Anwesenheit von Cysteinresten in der Peptidsequenz erfolgte unmittelbar nach Beendigung der Synthese eine Oxidation an der Festphase mit Jod in Hexafluorisopropanol/Dichlormethan.

Die Freisetzung des Peptids vom Syntheseharz und die Abspaltung der säurelabilen Schutzgruppen - mit Ausnahme der Phenylacetyl-schutzgruppe - erfolgte mit 20 ml Trifluoressigsäure, 0,5 ml Ethandithiol, 1 ml Thioanisol, 1,5 g Phenol und 1 ml Wasser in 40 min bei Raumtemperatur. Die Reaktionslösung wurde anschließend mit 300 ml gekühltem Diisopropylether versetzt und zur vollständigen Fällung des Peptids 40 min bei 0°C gehalten. Der Niederschlag wurde abfiltriert, mit Diisopropylether nachgewaschen, mit wenig 50 %-iger Essigsäure gelöst und lyophilisiert. Das erhaltene Rohmaterial wurde mittels präparativer HPLC an Delta-PAK RP C18-Material (Säule 50 x 300 mm, 100 Å, 15 μ) über einen entsprechenden Gradienten (Eluent A: Wasser, 0,1% Trifluoressigsäure, Eluent B: Acetonitril, 0,1% Trifluoressigsäure) in ca. 120 min. aufgereinigt. Die Identität des eluierten Materials wurde mittels Ionenspray-Massenspektrometrie geprüft.

- 18 -

Die Einführung der Hapten-, z.B. einer Digoxigenin- bzw. Digoxin-Markierung erfolgte über entsprechende Aktivester-Derivate und die freien Aminogruppen des Peptids in Lösung. Das zu derivatisierende Peptid wurde in einer Mischung aus DMSO und 0,1 M Kaliumphosphat-Puffer pH 8,5 gelöst. Anschließend wurden 2 Äquivalente Aktivester pro freie primäre Aminofunktion in wenig DMSO gelöst zugetropft und bei Raumtemperatur gerührt. Der Umsatz wurde über analytische HPLC verfolgt. Das Produkt wird mittels präparativer HPLC aufgereinigt.

Enthielt das Peptid noch mit Phenylacetyl geschützte Lysine, so wurde diese Schutzgruppe im letzten Schritt enzymatisch mit Penicillin-G-Amidase in wäßrigem Milieu mit organischem Solvens-Anteil bei Raumtemperatur abgespalten. Das Enzym wurde abgetrennt, z.B. durch Filtration, und das Peptid über präparative HPLC aufgereinigt. Die Identität des eluierten Materials wurde mittels Ionenspray-Massenspektrometrie geprüft.

Aus den Bereichen gp120, gp41 und gp32 von HIV I bzw. HIV II wurden unter Verwendung von Digoxigenin-3-carboxymethylether-N-hydroxysuccinimidester (Boehringer Mannheim GmbH, Mannheim, BRD) die in Tabelle 2 dargestellten Peptidverbindungen hergestellt.

- 19 -

Tabelle 2:

gp120	Digoxigenin-3-cme-UZU-NNTRKSISIGPGRAFY Digoxigenin-3-cme-UZ-NTTRSIISIGPGRAFY Digoxigenin-3-cme-UZU-IDIQEERRMRIGPGMAWYS
gp41/1	Digoxigenin-3-cme-UZU-AVERYLKDQQLLGIW Digoxigenin-3-cme-ZUZU-AVERYLKDQQLLGIW Digoxigenin-3-cme-UZ-QARILAVERYLKDQQLLGIWGASG Digoxigenin-3-cme-ZGGGG-QARILAVERYLKDQQLLGIWGASG Digoxigenin-3-cme-UZU-WGIRQLRARLLAETLLQN
gp41/2	Digoxigenin-3-cme-UZU-LGIWGCSGKLICTTAV LGIWGCSGK- (cme-3-Digoxigenin) -LICTTAV Digoxigenin-3-cme-UZU-LGIWGCSGK- (cme-3-Digoxigenin) - LICTTAV Digoxigenin-3-cme-ZU-GCSGKLICTTAVPWNASWS GCSGK- (cme-3-Digoxigenin) -LICTTAVPWNASWS GCSGKLICTTAVPWNASWSK (cme-3-Digoxigenin) G Digoxigenin-3-cme-UZU-LSLWGCKGKLVCYTS
gp41/3	Digoxigenin-3-cme-UZU-KDQQLLGIWGSSGKL
gp41/4	Digoxigenin-3-cme-UZU-ALETLLQNQLLSLW
gp32	Digoxigenin-3-cme-Z-NSWGCAFQVCHTT

Aus dem NS5-Bereich, dem NS4-Bereich und dem Core-Bereich von HCV wurden die in der folgenden Tabelle 3 dargestellten Peptide synthetisiert.

Tabelle 3:

NS5/1	Digoxigenin-3-cme-UZU-SRRFAQALPVWARPD
Core2	Digoxigenin-3-cme-U-PQDVKFPGGGQIVGGV
NS4/1	Digoxigenin-3-cme-UU-Nle-EEASQHLPYIEQ
NS4/2	Digoxigenin-3-cme-UU-QKALGLLQT
NS4/3	Digoxigenin-3-cme-UZU-SRGNHVSPTHYPESDAA
Core1	Digoxigenin-3-cme-UZU-KNKRNTNR
Core1+2	Digoxigenin-3-cme-U-PQRKNKRNTNRRPQDVKFPGGGQIVGVV
NS 3/1	Digoxigenin-3-cme-UZ-AWYELETPAETTVRLRAYMNTPGLPV

Die Herstellung Biotin-markierter Peptide erfolgte entweder N-terminal durch eine Derivatisierung am Harz (Biotin-Aktivester)

- 20 -

oder in die Sequenz über einen mit Biotin-ε-derivatisierten Lysinrest (Fmoc-Lys (Biotin)-OH).

Beispiel 2

Verbesserung von Spezifität und Sensitivität durch eine bevorzugte Testführung

Die Spezifität und Sensitivität eines Doppelantigen-Brücken-
tests unter Verwendung der erfindungsgemäßen Peptide kann auch
durch eine Testführung verbessert werden, bei der in einem
ersten Schritt die Probe, das Hapten-markierte Antigen und das
festphasenseitige Antigen vermischt und anschließend, vorzugs-
weise nach 1 bis 4 h, besonders bevorzugt nach 1,5 bis 2,5 h,
der Anti-Hapten-Antikörper zugesetzt wird.

Als Antigene wurden die HIV-Epitope gp41/1 und gp41/2 (Tabelle
2) verwendet.

Die Testbedingungen für den bevorzugten Zweischritt-Test waren
wie folgt:

- neutraler Kaliumphosphatpuffer 50mmol/l, pH 7,2, 0,2% Rinderserumalbumin (RSA), 0,2 % Natriumlaurylsulfat (SLS) - Detergenz
- Inkubationszeiten
 - Inkubation von Hapten-markiertem und fest-
phasenseitigem Antigen mit Serum: 120 min
 - Inkubation mit Konjugat aus Anti-
Digoxigenin-Antikörper und
Peroxidase (<Dig>-POD) 60 min
 - Inkubation mit 2,2'-Azino-di-
[3-ethylbenzylthiazolin-Sulfonat(6)]
(ABTS): 60 min
- Inkubationstemperatur: 25 °C
- bound/free-Trennung zwischen allen Inkubationsschritten

- 21 -

Die Testbedingungen für den alternativen Zweischritt-Test waren wie folgt:

- neutraler Kaliumphosphatpuffer 50 mmol/l, pH 7,2, 0,2 % RSA,
0,2 % SLS-Detergenz
- Inkubationszeiten
 - Inkubation von festphasenseitigem
Antigen mit Serum: 90 min
 - Inkubation mit Hapten-markiertem
Antigen und <Dig>-POD: 90 min
 - Inkubation mit ABTS: 60 min
- Inkubationstemperatur: 25 °C
- bound/free-Trennung zwischen allen Inkubationsschritten

Die Testbedingungen für den Einschritt-Test waren wie folgt:

- neutraler Kaliumphosphatpuffer 50 mmol/l, pH 7,2, 0,2 % RSA,
0,2 % SLS-Detergenz
- Inkubationszeiten
 - Inkubation beide Antigen mit Serum
und <Dig>-POD 120 min
 - Inkubation mit ABTS: 60 min
- Inkubationstemperatur: 25 °C
- bound/free-Trennung zwischen allen Inkubationsschritten

Die Ergebnisse des Tests sind in der Tabelle 4 dargestellt. Es ist zu erkennen, daß bei der bevorzugten Testführung eine viel höhere Signaldifferenzierung, d.h. ein Verhältnis der Meßsignale von positiven Proben zu negativen Proben, erreicht wird.

Tabelle 4

Probennummer	<u>Einschritt</u> <u>Testführung</u>	bevorzugte Zweischritt- Testführung	alternative Zweischritt- Testführung
		1. Mischen von Probe u. beiden spezifischen Antigenen 2. Zusatz von von Anti-Hapten-Anti-körper für die Nachweisreaktion	1. Mischen von Probe u. wandseitigem spezifischem Antigen 2. Zusatz von detektions-seitigem spezifischen Antigen und Anti-Hapten-Antikörper für die Nachweisreaktion
A) negative Proben	Signal in mE	Signal in mE	Signal in mE
1	19	7	7
2	21	12	9
3	17	6	5
4	19	5	7
5	18	4	8
6	28	7	16
7	20	10	9
8	21	7	11
9	18	10	7
10	19	11	8
11	17	8	9
12	19	12	7
13	22	7	7
14	20	5	17
15	24	40	8
16	19	10	7
17	20	4	8
18	23	6	8
19	20	8	7
20	16	11	7

- 23 -

B) positive Proben	Signal in mE	Signal in mE	Signal in mE
1	405	2401	3681
2	1080	4836	4931
3	158	1100	300
4	760	6210	2155
5	1094	3578	1835
6	452	2296	2954
7	163	1068	136
8	76	195	14
9	2405	7803	2671
10	293	3093	575
11	303	2430	42
12	37	132	11
13	19	9	9
14	63	218	11
15	74	297	15
16	60	253	16
17	86	509	17
18	106	1182	22
19	962	8782	338
20	815	7335	167

Beispiel 3

In einem Doppelantigen-Brückentest wurde ein erfindungsgemäßes Peptidantigen mit einem rekombinanten Polypeptidantigen verglichen. In einem erfindungsgemäßen Beispiel wurde das digoxigenylierte Peptidantigen gp41/2 (Tabelle 2) in Kombination mit einem biotinylierten Peptidantigen der gleichen Sequenz getestet. In einem Vergleichsbeispiel wurde ein digoxigenyliertes Polypeptidantigen rec. gp41 (Chang et al., Science 228 (1985), 93-96) in Kombination mit einem biotinylierten Polypeptidantigen der gleichen Sequenz getestet.

Die Ergebnisse des Tests sind in Tabelle 5 dargestellt. "NK" bedeutet negative Kontrolle, "PK" bedeutet positive Kontrolle. Der "cut-off" Index ist die Grenze zwischen positiver und negativer Bewertung eines Experiments. Er ist als $2 \times NK$ definiert. Aus Tabelle 5 ist ersichtlich, daß mit dem rekombinanten Polypeptidantigen praktisch keine Differenzierung zwischen negativen und positiven Proben möglich ist, während das Peptidantigen eine sehr gute Differenzierung erlaubt.

- 24 -

Tabelle 5

Probe (Verdünnung)	Peptid gp41-Bi/Dig		Peptid gp41-Bi/Dig		Peptid gp41-Bi/Dig
	rec.	Extinktion	rec.	cut-off Index	
NK	768	36	36	0,5	0,5
PK	3066	2094	2094	2,0	29,1
PK 1:2	2587	1410	1410	1,7	19,6
PK 1:4	1661	867	867	1,1	12,0
Positiv 1	1466	9999	9999	1,0	138,9
Positiv 2	197	9999	9999	0,3	138,9
Positiv 3	801	9999	9999	0,4	138,9
Positiv 4	1213	9999	9999	0,8	138,9
Positiv 5	952	8039	8039	0,6	111,7
Negativ 1	738	50	50	0,5	0,7
Negativ 2	769	39	39	0,5	0,6
Negativ 3	747	40	40	0,5	0,5

- 25 -

SEQUENZPROTOKOLL

(1) ALLGEMEINE INFORMATION:

(i) ANMELDER:

- (A) NAME: Boehringer Mannheim GmbH
- (B) STRASSE: Sandhofer Str. 116
- (C) ORT: Mannheim
- (E) LAND: Deutschland
- (F) POSTLEITZAHL: 68305

(ii) ANMELDETITEL: Hapten-markierte Peptide

(iii) ANZAHL DER SEQUENZEN: 17

(iv) COMPUTER-LESBARE FORM:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)

(2) INFORMATION ZU SEQ ID NO: 1:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 17 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Human immunodeficiency virus type 1

(viii) POSITION IM GENOM:

- (A) CHROMOSOM/SEGMENT: gp120

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

Asn Asn Thr Arg Lys Ser Ile Ser Ile Gly Pro Gly Arg Ala Phe Tyr
1 5 10 15

Thr

- 26 -

(2) INFORMATION ZU SEQ ID NO: 2:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 16 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 1

(viii) POSITION IM GENOM:

(A) CHROMOSOM/SEGMENT: gp120

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Asn	Thr	Thr	Arg
Ser	Ile	Ser	Ile
		Gly	Pro
			Gly
			Arg
			Ala
			Phe
			Tyr
			Thr

1

5

10

15

(2) INFORMATION ZU SEQ ID NO: 3:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 19 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 1

(B) STAMM: Subtype O

(viii) POSITION IM GENOM:

(A) CHROMOSOM/SEGMENT: gp120

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

Ile	Asp	Ile	Gln
Glu	Glu	Arg	Arg
		Met	Arg
			Ile
			Gly
			Pro
			Gly
			Met
			Ala

1

5

10

15

Trp Tyr Ser

- 27 -

(2) INFORMATION ZU SEQ ID NO: 4:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 24 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 1

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: gp41

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Gln Ala Arg Ile Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu
1 5 10 15

Leu Gly Ile Trp Gly Ala Ser Gly
20

(2) INFORMATION ZU SEQ ID NO: 5:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 23 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 1

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: gp41

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

Leu Gly Ile Trp Gly Cys Ser Gly Lys Leu Ile Cys Thr Thr Ala Val
1 5 10 15

Pro Trp Asn Ala Ser Trp Ser

20

- 28 -

(2) INFORMATION ZU SEQ ID NO: 6:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 15 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 1

(viii) POSITION IM GENOM:

(A) CHROMOSOM/SEGMENT: gp41

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Ser Ser Gly Lys Leu
1 5 10 15

(2) INFORMATION ZU SEQ ID NO: 7:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 15 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 1

(B) STAMM: Subtype O

(viii) POSITION IM GENOM:

(A) CHROMOSOM/SEGMENT: gp41

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln Leu Leu Ser Leu Trp
1 5 10 15

- 29 -

(2) INFORMATION ZU SEQ ID NO: 8:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 15 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Human immunodeficiency virus type 1
- (B) STAMM: Subtype O

(viii) POSITION IM GENOM:

- (A) CHROMOSOM/SEGMENT: gp41

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Leu Ser Leu Trp Gly Cys Lys Gly Lys Leu Val Cys Tyr Thr Ser
1 5 10 15

(2) INFORMATION ZU SEQ ID NO: 9:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 19 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

- (A) ORGANISMUS: Human immunodeficiency virus type 1
- (B) STAMM: Subtype O

(viii) POSITION IM GENOM:

- (A) CHROMOSOM/SEGMENT: gp41

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Trp Gly Ile Arg Gln Leu Arg Ala Arg Leu Leu Ala Leu Glu Thr Leu
1 5 10 15

Leu Gln Asn

- 30 -

(2) INFORMATION ZU SEQ ID NO: 10:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 27 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Human immunodeficiency virus type 2

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: gp32

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Gln Ala Gln Leu Asn Ser Trp Gly Cys Ala Phe Arg Gln Val Cys His
1 5 10 15

Thr Thr Val Pro Trp Pro Asn Asp Ser Leu Thr
20 25

(2) INFORMATION ZU SEQ ID NO: 11:

(i) SEQUENZ CHARAKTERISTIKA:

- (A) LÄNGE: 15 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: NSS

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Ser Arg Arg Phe Ala Gln Ala Leu Pro Val Trp Ala Arg Pro Asp
1 5 10 15

- 31 -

(2) INFORMATION ZU SEQ ID NO: 12:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 16 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: Core

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val
1 5 10 15

(2) INFORMATION ZU SEQ ID NO: 13:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 12 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: NS4

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

Glu Glu Ala Ser Gln His Leu Pro Tyr Ile Glu Gln
1 5 10

- 32 -

(2) INFORMATION ZU SEQ-ID NO: 14:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 9 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C Virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM/SEGMENT: NS4

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

Gln Lys Ala Leu Gly Leu Leu Gln Thr

1 5

(2) INFORMATION ZU SEQ ID NO: 15:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 18 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C Virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM/SEGMENT: NS4

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu Ser Asp

1 5

10

15

Ala Ala

- 33 -

(2) INFORMATION ZU SEQ ID NO: 16:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 28 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C Virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: Core

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

Pro Gln Arg Lys Asn Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val
1 5 10 15

Lys Phe Pro Gly Gly Gln Ile Val Gly Val Val
20 25

(2) INFORMATION ZU SEQ ID NO: 17:

(i) SEQUENZ CHARAKTERISTIKA:

(A) LÄNGE: 25 Aminosäuren

(B) ART: Aminosäure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(iii) HYPOTHETISCH: NEIN

(vi) URSPRÜNGLICHE HERKUNFT:

(A) ORGANISMUS: Hepatitis C Virus

(viii) POSITION IM GENOM:

(A) CHROMOSOM SEGMENT: NS3

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Thr Val Arg Leu Arg Ala
1 5 10 15

Tyr Met Asn Thr Pro Gly Leu Pro Val
20 25

PATENTANSPRÜCHE

1. Verfahren zur Herstellung von Hapten-markierten Peptiden,
dadurch gekennzeichnet,
daß man
 - (a) ein Peptid mit der gewünschten Aminosäuresequenz an einer Festphase aus Aminosäurederivaten synthetisiert, deren reaktive Seitengruppen durch Schutzgruppen blockiert sind, wobei die Schutzgruppen an primären Aminoseitengruppen derart ausgewählt werden, daß sie gegebenenfalls selektiv abspaltbar sind,
 - (b) eine Abspaltung von Schutzgruppen durchführt, wobei mindestens eine freie primäre Aminogruppe entsteht,
 - (c) ein Hapten-Aktivesterderivat an die mindestens eine freie primäre Aminogruppe des Peptids koppelt, und
 - (d) gegebenenfalls eine Abspaltung von noch verbleibenden Schutzgruppen durchführt,wobei das Hapten ausgewählt wird aus der Gruppe bestehend aus Sterinen, Gallensäuren, Sexualhormonen, Corticoiden, Cardenoliden, Cardenolid-Glycosiden, Bufadienoliden, Steroid-Sapogeninen und Steroidalkaloiden.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß das Hapten ausgewählt wird aus der Gruppe bestehend aus Cardenoliden und Cardenolid-Glycosiden.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
daß das Hapten ausgewählt wird aus der Gruppe bestehend aus Digoxigenin, Digitoxigenin, Gitoxigenin, Strophantidin, Digoxin, Digitoxin, Ditoxin und Strophantin.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet,

- 35 -

daß man Digoxigenin oder Digoxin als Hapten verwendet.

5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß man an Positionen des Peptids, an denen eine Kopp-
lung des Haptens erfolgen soll, ein Aminosäurederivat
mit einer ersten Schutzgruppe für die Aminoseitenkette
verwendet, die unter bestimmten Reaktionsbedingungen
quantitativ abspaltbar ist, und daß man an Positionen
des Peptids, an denen keine Kopplung des Haptens erfol-
gen soll, ein Aminosäurederivat mit einer zweiten
Schutzgruppe für die Aminoseitenkette verwendet, die
unter den Reaktionsbedingungen, bei denen die erste
Schutzgruppe abgespalten wird, selbst nicht abspaltbar
ist.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
daß man eine erste säurelabile Schutzgruppe und eine
zweite säurestabile Schutzgruppe verwendet.
7. Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß man als Aktivesterderivat einen N-Hydroxysuc-
cinimidester verwendet.
8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß man ein Peptid synthetisiert, das einen immunolo-
gisch reaktiven Epitopbereich und einen Spacerbereich
umfaßt, wobei mindestens eine Hapten-Markierung an den
Spacerbereich gekoppelt wird.
9. Verfahren nach Anspruch 8,
dadurch gekennzeichnet,
daß der Spacerbereich eine Länge von 1 bis 10 Aminosäu-
ren aufweist.

- 36 -

10. Verfahren nach Anspruch 8 oder 9,
dadurch gekennzeichnet,
daß ein Spacerbereich am Amino- oder/und Carboxyterminus des Peptids angeordnet ist.
11. Verfahren nach einem der Ansprüche 8 bis 10,
dadurch gekennzeichnet,
daß der Spacerbereich Aminosäuren enthält, die Ladungen aufweisen oder/und Wasserstoffbrücken ausbilden können.
12. Verfahren nach einem der Anprüche 8 bis 11,
dadurch gekennzeichnet,
daß die Aminosäuren des Spacers ausgewählt werden aus der Gruppe bestehend aus Glycin, β -Alanin, γ -Aminobuttersäure, ϵ -Aminocapronsäure, Lysin und Verbindungen der Strukturformel $\text{NH}_2\text{-}[(\text{CH}_2)_n\text{-O}]_x\text{-CH}_2\text{-CH}_2\text{-COOH}$, worin n 2 oder 3 ist und x 1 bis 10 ist.
13. Verfahren nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet,
daß man ein Peptid synthetisiert, das einen Epitopbereich aus den Aminosäuresequenzen von HIV I, HIV II oder HCV enthält.
14. Verfahren nach Anspruch 13,
dadurch gekennzeichnet,
daß der Epitopbereich ausgewählt wird aus der Gruppe der HIV I- oder HIV II-Aminosäuresequenzen

NNTRKSISIG	PGRAYFT	(I)	
NTTRSISIGP	GRAFYT	(II)	
IDIQEERRMR	IGPGMAWYS	(III)	
QARILAVERY	LKDQQQLLGIW	GASG	(IV)
LGIWGCSGKL	ICTTAVPWNA	SWS	(V)
KDQQQLLGIWG	SSGKL		(VI)
ALETLLQNQQ	LLSLW		(VII)

- 37 -

LSLWGCKGKL	VCYTS	(VIII).
WGIRQLRARL	LALETLLQN	(IX) und
QAQLNSWGCA	FRQVCHTTVP	WPNDSLT (X)

oder Teilsequenzen davon, die eine Länge von mindestens 6 Aminosäuren aufweisen.

15. Verfahren nach Anspruch 13,
dadurch gekennzeichnet,
daß der Epitopbereich ausgewählt wird aus der Gruppe
der HCV-Aminosäuresequenzen

SRRFAQALPV	WARPD	(XI)
PQDVVKFPGGG	QIVGGV	(XII)
EEASQHLPYI	EQ	(XIII)
QKALGLLQT		(XIV)
SRGNHVSPTH	YVPESDAA	(XV)
PQRKNKRNTN	RRPQDVKFPG	
GGQIVGVV		(XVI) und
AWYELTPAET	TVRLRAYMNT	PGLPV (XVII)

oder Teilsequenzen davon, die eine Länge von mindestens 6 Aminosäuren aufweisen.

16. Hapten-markiertes Peptid, das eine Länge von maximal 50 Aminosäuren aufweist und am Aminoterminus oder/und an Aminoseitengruppen mit mindestens einem Hapten-Aktivesterderivat gekoppelt ist, wobei das Hapten ausgewählt ist aus der Gruppe bestehend aus Sterinen, Gallensäuren, Sexualhormonen, Corticoiden, Cardenoliden, Cardenolid-Glycosiden, Bufadienoliden, Steroid-Sapogeninen und Steroidalkaloiden.
17. Peptid nach Anspruch 16,
dadurch gekennzeichnet,
daß das Hapten Digoxigenin oder Digoxin ist.

- 38 -

18. Peptid nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
daß das Peptid einen immunologisch reaktiven Epitopbereich und einen Spacerbereich umfaßt, wobei der Spacerbereich mindestens eine Hapten-Markierung trägt.
19. Peptid nach Anspruch 18,
dadurch gekennzeichnet,
daß ein Spacerbereich am Amino- oder/und Carboxyterminus des Peptids angeordnet ist.
20. Peptid nach einem der Ansprüche 16 bis 19,
dadurch gekennzeichnet,
daß der Epitopbereich aus den Aminosäuresequenzen von
HIV I, HIV II oder HCV stammt.
21. Peptid nach Anspruch 20,
dadurch gekennzeichnet,
daß der Epitopbereich ausgewählt ist aus der Gruppe der
HIV I oder HIV II-Aminosäuresequenzen

NNTRKSISIG	PGRAFY	T	(I)
NTTRSISIGP	GRAFY	T	(II)
IDIQEERRMR	IGPGMAWYS		(III)
QARILAVERY	LKDQQQLLG	IW GASG	(IV)
LGIWGCSGKL	ICTTAVPWNA	SWS	(V)
KDQQQLLG	SSGKL		(VI)
ALETLLQNQQ	LLSLW		(VII)
LSLWGCKGKL	V CYTS		(VIII)
WGIROQLRRL	LALETLLQN		(IX) und
QAQLNSWGCA	FRQVCHTTVP	WPNDST	(X)

oder Teilsequenzen davon, die eine Länge von mindestens 6 Aminosäuren aufweisen.

22. Peptid nach Anspruch 20,

- 39 -

dadurch gekennzeichnet,
daß der Epitopbereich ausgewählt ist aus der Gruppe der
HCV-Aminosäuresequenzen

SRRFAQALPV	WARPD	(XI)
PQDVKFPGGG	QIVGGV	(XII)
EEASQHLPYI	EQ	(XIII)
QKALGLLQT		(XIV)
SRGNHVSPTH	YVPESDAA	(XV)
PQRKNKRNTN	RRPQDVKFPG	
GGQIVGVV		(XVI) und
AWYELTPAET	TVRLRAYMNT	PGLPV (XVII)

oder Teilsequenzen davon, die eine Länge von mindestens 6 Aminosäuren aufweisen.

23. Verwendung von Hapten-markierten Peptiden, die durch ein Verfahren nach einem der Ansprüche 1 bis 15 hergestellt wurden, oder von Peptiden nach einem der Ansprüche 16 bis 22 als Antigene bei einem immunologischen Verfahren zur Bestimmung von spezifischen Antikörpern in einer Probeflüssigkeit.
24. Verwendung nach Anspruch ~~Verfahren nach einem Binükkonkurrenzverfahren~~.
25. Verfahren zur immunologischen Bestimmung eines spezifischen Antikörpers in einer Probeflüssigkeit dadurch gekennzeichnet,
daß man die Probeflüssigkeit mit
 - (a) einem ersten markierten Antigen, das gegen den zu bestimmenden Antikörper gerichtet ist und ein Hapten-markiertes Peptid, das durch ein Verfahren nach einem der Ansprüche 1 bis 15 hergestellt wurde, oder ein Peptid nach einem der Ansprüche 16 bis 22 umfaßt, und
 - (b) einem Rezeptor für das Hapten, der eine signalerzeugende Gruppe trägt,

- 40 -

inkubiert und den Antikörper über eine Bindung mit dem Peptid nachweist.

26. Verfahren nach Anspruch 25,
dadurch gekennzeichnet,
daß man als erstes Antigen ein mit Digoxin oder Digoxigenin markiertes Peptid und als Rezeptor einen gegen Digoxigenin oder/und Digoxin gerichteten Antikörper verwendet.
27. Verfahren nach Anspruch 25 oder 26,
dadurch gekennzeichnet,
daß man die Probeflüssigkeit in Gegenwart einer Festphase mit dem ersten Antigen und einem zweiten Antigen inkubiert, das gegen den zu bestimmenden Antikörper gerichtet ist und
 - (a) an die Festphase gebunden ist oder
 - (b) in einer an die Festphase bindefähigen Form vorliegt, und den zu bestimmenden Antikörper durch Bestimmung der Markierung in der Festphase oder/und in der flüssigen Phase nachweist.
28. Verfahren nach Anspruch 27,
dadurch gekennzeichnet,
daß man als zweites Antigen ein mit Biotin markiertes Antigen und eine Festphase, die mit Streptavidin oder Avidin beschichtet ist, verwendet.
29. Verfahren nach Anspruch 28,
dadurch gekennzeichnet,
daß man als zweites Antigen ein mit Biotin markiertes Peptid verwendet.
30. Verfahren nach einem der Ansprüche 27 bis 29,
dadurch gekennzeichnet,

- 41 -

daß man die Probeflüssigkeit mit dem ersten und dem zweiten Antigen vermischt und anschließend den Rezeptor für das Hapten des ersten Antigens zusetzt.

31. Reagenz zur immunologischen Bestimmung eines spezifischen Antikörpers,
dadurch gekennzeichnet,
daß es mindestens ein Hapten-markiertes, mit dem zu bestimmenden Antikörper reagierendes Peptid, das durch ein Verfahren nach einem der Ansprüche 1 bis 15 hergestellt wurde, oder ein Hapten-markiertes, mit dem zu bestimmenden Antikörper reagierendes Peptid nach einem der Ansprüche 16 bis 22 enthält.
32. Reagenz nach Anspruch 31,
dadurch gekennzeichnet,
daß es
 - (a) das Hapten-markierte, mit dem zu bestimmenden Antikörper reagierende Peptid,
 - (b) einen Rezeptor für das Hapten, der eine signalerzeugende Gruppe trägt, und
 - (c) ein weiteres, mit dem zu bestimmenden Antikörper reagierendes Antigen, das an eine Festphase gebunden ist oder in einer an eine Festphase bindefähige Form vorliegt,
enthält.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 95/02921

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 6 C07K1/00	C07K1/04	C07K1/107	C07K14/16	C07K14/18	
	G01N33/531	G01N33/74	C07K1/13		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP,A,0 117 648 (BOOTS-CELLTECH) 5 September 1984 see the whole document idem	16-19
Y	EP,A,0 218 347 (HSC RES. DEV. CORP.) 15 April 1987 see the whole document	1-8, 25-27
Y	US,A,5 087 561 (ROSENBLATT ET AL.) 11 February 1992 see column 4, line 14 - column 4, line 50	1-8, 25-27
T	DE,A,44 02 756 (BOEHRINGER MANNHEIM) 3 August 1995 see page 3, column 40 - page 3, column 65	1-32
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*'Z' document member of the same patent family

1

Date of the actual completion of the international search

22 November 1995

Date of mailing of the international search report

21.12.95

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patenttaan 2
NL - 2200 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+ 31-70) 340-3016

Authorized officer

Masturzo, P

INTERNATIONAL SEARCH REPORT

Interr'l Application No
PCT/EP 95/02921

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO,A,93 18054 (N V. INNOGENETICS) 16 September 1993 see the whole document -----	1-8, 25-27

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP 95/02921

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0117648	05-09-84	GB-A, B AU-B- AU-B- GB-A, B JP-A- US-A-	2135773 559576 2356584 2157698 59170769 4716109
EP-A-0218347	15-04-87	US-A-	4767720
US-A-5087561	11-02-92	NONE	
DE-A-4402756	03-08-95	WO-A-	9520764
WO-A-9318054	16-09-93	BR-A- CA-A- EP-A- JP-T-	9305435 2102301 0589004 6505806
			27-12-94 07-09-93 30-03-94 30-06-94

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 95/02921

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
IPK 6 C07K1/00	C07K1/04	C07K1/107	C07K14/16	C07K14/18	
GO1N33/531	GO1N33/74	C07K1/13			

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestpräzisierung (Klassifikationssystem und Klassifikationsymbole)
IPK 6 C07K GO1N

Recherchierte aber nicht zum Mindestpräzisierung gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEBEHNE UNTERLAGEN

Kategorie	Detaillierung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Ansprech Nr.
X	EP,A,0 117 648 (BOOTS-CELLTECH) 5. September 1984 siehe das ganze Dokument	16-19
Y	idem	1-8, 25-27
Y	EP,A,0 218 347 (HSC RES. DEV. CORP.) 15. April 1987 siehe das ganze Dokument	1-8, 25-27
Y	US,A,5 087 561 (ROSENBLATT ET AL.) 11. Februar 1992 siehe Spalte 4, Zeile 14 - Spalte 4, Zeile 50	1-8, 25-27
	---	-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *' A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *' E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *' L' Veröffentlichung, die gezeigt ist, einen Prioritätsanspruch zweifelhaft erweisen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Rechercenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *' O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *' P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

*' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

*' X' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfundenseher Tätigkeit beruhend betrachtet werden

*' Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfundenseher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

*' &' Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche

Abschlussdatum des internationalen Rechercenberichts

22. November 1995

21.12.95

Name und Postanschrift der internationale Rechercenbehörde
Europäisches Patentamt, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl
Fax (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Masturzo, P

INTERNATIONALER RECHERCHENBERICHT

Interr. wiles Aktenzeichen
PCT/EP 95/02921

C/(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
T	DE,A,44 02 756 (BOEHRINGER MANNHEIM) 3. August 1995 siehe Seite 3, Spalte 40 - Seite 3, Spalte 65 ---	1-32
Y	WO,A,93 18054 (N V INNOGENETICS) 16. September 1993 siehe das ganze Dokument -----	1-8, 25-27

1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 95/02921

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP-A-0117648	05-09-84	GB-A, B AU-B- AU-B- GB-A, B JP-A- US-A-	2135773 559576 2356584 2157698 59170769 4716109
EP-A-0218347	15-04-87	US-A-	4767720
US-A-5087561	11-02-92	KEINE	
DE-A-4402756	03-08-95	WO-A-	9520764
WO-A-9318054	16-09-93	BR-A- CA-A- EP-A- JP-T-	9305435 2102301 0589004 6505806

