MH1812 – Additional Exercises for Final Examination 2

Note: the final exam may or may not be related with the questions here.

NTU, AY15/16 S2 April 2016

- Q1: Let p be a prime number, set $A = \{1, 2, ..., p-1\}$, and function $f: A \to A$ defined by the rule " $f(x) = b \cdot x \mod p$ ",
 - A) prove f is one-to-one correspondence for any $b \in A$.
 - B) prove there exists a number $c \in A$ such that $b \cdot c = 1 \mod p$.
 - C) prove $f^{-1}(x) = c \cdot x \mod p$.
 - D) when p = 5 and b = 2, find c.
 - E) Let $d \in A$ and function $g(x) = d \cdot x \mod p$, prove $f \circ g$ is also one-to-one correspondence.
- Q2: Let p and q be logics, prove $(p \land \neg q) \lor (p \land q) \equiv p$ with both logical equivalence and truth table.
- Q3: Let p and q be sets, prove set identity $(p \cap \overline{q}) \cup (p \cap q) = p$.
- Q4: Prove by mathematical induction that $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$, for all integers $n \geq 1$.
- Q5: Let \mathbb{N} be the set of positive integers, and | be the "divisibility" relation, i.e., x | y means x divides y (in other words, y is multiple of x) for any $x, y \in \mathbb{N}$. Prove | is a partial order on \mathbb{N} .
- Q6: Let set $A = \{1, 2, \dots, 2016\}$
 - A) How many numbers in A are multiple of 3?
 - B) How many numbers in A are multiple of 5?
 - C) How many numbers in A are multiple of 3 and 5?
 - D) How many numbers in A are multiple of 3, but not multiple of 5?
- Q7: Let set $A = \{a, b, c, d\}$, and relation R defined on A as $\{(a, a), (a, b), (c, d)\}$, find $R^{-1} \circ R$, and determine whether it is reflexive.