PS5841

Data Science in Finance & Insurance

Front Matter

Yubo Wang

Autumn 2021

School Stuff

Calendar

First class9/9 (Thu)

Midterm 10/19 (Tue)

No classes 11/2 (Tue) 11/25 (Thu)

– Project 12/7, 12/9

Last class 12/9 (Thu)

– Final 12/16 (Thu) 1:10pm-4pm

Class Folder

Class Folder

- $\ \, egin{pmatrix} 1 \ \, ext{Log into CU email} \ \, ext{with your UNI} \end{matrix}$
- 2 Go to drive.google.com
- ③Go to"shared with me"
- 4 Go toClassFolder-DataSci-Fall2021

- 1) Log into CU email with your UNI
- 2)Then go to https://tinyurl.com/ds2021fall

Course Stuff

- TA
 - Weizhi Hou: wh2484
- Office hour
- Project
- Grading

Group Project (1)

- Who minimum 3 and maximum 4 people per team
 - Get to know your peers
 - Build on each other's strengths
- What issues in finance or insurance
- Why justify its merit for you and your audience
- How
 - Find/Construct the relevant data set
 - Apply the tools and approaches discussed in the course to appropriately analyze the data to shed light on your questions
 - Educate the class with your informative and lively presentation!
 - Writeup
- When see the next page

Group Project (2)

- Keep the dates
 - Project proposal due week 8 (10/28)
 - Draft writeup due week 12 (11/28)
 - Project presentation week 14 (12/07, 12/09)
 - Final writeup due at Final (TBA)

Book Stuff

Matthes, Python Crash Course,
 2nd ed, No Starch Press.

 McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython, 2nd ed., O'Reilly Media.

Book Stuff (2)

 James, Witten, Hastie &
 Tibshirani, An Introduction to
 Statistical Learning, with
 Applications in R, Springer. Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction
to Statistical
Learning
with Applications in R

 Goodfellow, Bengio and Courville, Deep Learning, MIT Press.

Computing Environment

- Tools
 - Python, and virtual environments
 - -R
 - Spreadsheets
- Modes
 - Terminal
 - Editor and IDLE(e.g. spyder)
 - Jupyter-notebook

Scope

Coverage

- Supervised learning
 - Regression
 - Classification
- Unsupervised learning
 - Dimension reduction
 - Clustering
- ML methods
 - Regularization
 - Dimension reduction
 - Ensemble learning

Supervised Learning

- Supervised learning
 - learn to predict Y from X, in essence by estimating p(Y|X)
 - Regression: predict quantitative values from input

$$f: \mathbb{R}^p \to \mathbb{R}$$

Classification: specify to which of the categories input belongs

$$f: \mathbb{R}^n \to \{1, \dots, k\}$$

Unsupervised Learning

- Unsupervised learning
 - Learn about X, in essence by estimating p(X)

Important Pieces

- Training Set
- Model
- Model Space
- Validation Set
- Test Set

Bias & Variance

Data generating scheme

$$y = f(x) + \epsilon$$

• Let (x_0, y_0) be an observation point in the test set, and τ the training set space

$$\begin{split} E_{\tau}[(y_0 - \hat{y}_0)^2] \\ &= \sigma_{\epsilon}^2 + [E_{\tau}(\hat{y}_0) - f(x_0)]^2 + E_{\tau}\{[\hat{y}_0 - E_{\tau}(\hat{y}_0)]^2\} \\ &= \sigma_{\epsilon}^2 + bias_{\tau}^2(\hat{y}_0) + Var_{\tau}(\hat{y}_0) \\ \end{split}$$
 where $\hat{y}_0 = \hat{f}(x_0)$

An Example

Black: true f X

Orange: liner regression

Blue: less flexible smoothing spline

Green: more flexible smoothing spline

Trade-Off Between Bias vs Variance

That was

