#### MODULE 3 PROJECT

### STATISTICAL STUDY ON NORTHWIND DB

**EXECUTIVE SUMMARY** 

## Research content. Statistical Hypotheses

#### A. Quantity - Discount

Does <u>DISCOUNT</u> amount have a significant effect on the <u>QUANTITY</u> of a product in an order?

#### **B. Sales - Discount**

Does **DISCOUNT** amount have a significant effect on the **CASH VALUE** (sales) of a product in an order?

### C. Shipper – Delivery

Does **SHIPPER** have a significant effect on the **DELAY** of product delivery in an order?

#### **D.** Discount predictors

What <u>FACTORS</u> have a significant effect on <u>DISCOUNT</u> levels?

#### E. DISCOUNT level classifier model

Is it possible to create a **CLASSIFIER** model on **DISCOUNT** level with robust level of prediction accuracy?

### A. QUANTITY - DISCOUNT (1/5)



Does <u>DISCOUNT</u> amount have a significant effect on the <u>QUANTITY</u> of a product in an order?

### A. QUANTITY - DISCOUNT (2/5)

#### Does **DISCOUNT** amount have a significant effect on the **QUANTITY** of a product in an order?



Product Quantities per Order less for Products without discounts

Visual analysis

Marginal increase of Product Quantities: 0% - 2% discount rates



Total Effect and Marginal Effect will be tested in statistical analysis

# A. QUANTITY - DISCOUNT (3/5)

Does <u>DISCOUNT</u> amount have a significant effect on the <u>QUANTITY</u> of a product in an order?

|             | Test Version 1: testing gross difference                                   | Test Version 2: testing marginal difference                                      |
|-------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|             | Ho: E{Quantity   no discount} = E{Quantity   discount}                     | Ho: E{Quantity   prev.discount} = E{Quantity   next.discount}                    |
| Methodology | Testing method: Welch-test (2-tail)                                        | Testing method: Welch-test (2-tail)                                              |
|             | <ul> <li>Loop: varying <u>discount groups</u> by discount level</li> </ul> | <ul> <li>Loop: varying <u>intra-discount groups</u> by discount level</li> </ul> |
|             |                                                                            |                                                                                  |
|             |                                                                            |                                                                                  |
|             |                                                                            |                                                                                  |

### A. QUANTITY - DISCOUNT (4/5)

#### Does **DISCOUNT** amount have a significant effect on the **QUANTITY** of a product in an order?

#### **Results**

#### **Any discount rate – affect on Product Volumes**

- P-values: <5% for all discount levels
- Test power: good for discount levels

# Positive marginal effect on Volumes – for 1%-10% discount rates

- P-values: <5% for discount levels in range 1%-10%
- Test power: good for discount level in range 1%-10%





### A. QUANTITY - DISCOUNT (5/5)

Does <u>DISCOUNT</u> amount have a significant effect on the <u>QUANTITY</u> of a product in an order?



#### **ISSUES:**

• Discounts on prices increases product quantities in an order, but only for 1%-10% range of discount levels.

#### **RECOMMENDATIONS:**

Use minimum discount rates (1%-10%) for product volumes improvement

### B. SALES – DISCOUNT (1/4)



Does <u>DISCOUNT</u> amount have a significant effect on the <u>CASH VALUE</u> (sales) of a product in an order?

### B. SALES – DISCOUNT (2/4)

Does <u>DISCOUNT</u> amount have a significant effect on the <u>CASH VALUE</u> (sales) of a product in an order?

|                  | Test Version 1: testing gross difference                                                                                                                                                                                      | Test Version 2: testing marginal difference                                                                                                                                                                               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ?<br>Methodology | <ul> <li>Ho: E{Quantity   no discount} = E{Quantity   discount}</li> <li>Testing method: Welch-test (2-tail)</li> <li>Loop: varying discount groups by discount level</li> <li>Sales – undiscounted original price</li> </ul> | <ul> <li>Ho: <u>E{Quantity   prev.discount}</u> = <u>E{Quantity   next.discount}</u></li> <li>Testing method: <u>Welch-test (2-tail)</u></li> <li>Loop: varying <u>intra-discount groups</u> by discount level</li> </ul> |
|                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                           |

### B. SALES – DISCOUNT (3/4)

#### Does **DISCOUNT** amount have a significant effect on the **CASH VALUE** (sales) of a product in an order?

# $\mathbb{I}^{\mathbb{I}}$

#### **Results**

#### **Any discount rate – affect on Product Sales**

- P-values: <5% for all discount levels
- Test power: good for discount levels

# Positive marginal effect on Sales – for 1%-5% discount rates

- P-values: <5% for discount levels in range 1%-5%
- Test power: good for discount level in range 1%-5%





### B. SALES – DISCOUNT (4/4)

Does **DISCOUNT** amount have a significant effect on the **CASH VALUE** (sales) of a product in an order?



#### **ISSUES:**

• Discounts on prices increases product Sales in an order, but only for 1%-5% range of discount levels.

#### **RECOMMENDATIONS:**

Use minimum discount rates (1%-5%) for sales volumes improvement

### C. DELAY – SHIPPERS (1/4)



Does <u>SHIPPER</u> have a significant effect on the <u>DELAY</u> of product delivery in an order?

### C. DELAY – SHIPPERS (2/4)

Does **SHIPPER** have a significant effect on the **DELAY** of product delivery in an order?

|                  | Test Version 1: Multiple AB-testing                                                                                            | Test Version 2: ANOVA model          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| ?<br>Methodology | • <b>Delay</b> = ShippedDate – RequiredDate                                                                                    | • Formula: <b>Delay ~ C(Shipper)</b> |
|                  | <ul> <li>Ho: <u>E{Delay   Shipper 1} = E{Delay   Shipper 2}</u></li> <li>Testing method: <u>Welch-test (2-tail)</u></li> </ul> |                                      |
|                  | <ul> <li>Loop: varying in all combinations of groups by<br/>shipper pairs</li> </ul>                                           |                                      |
|                  |                                                                                                                                |                                      |

### C. DELAY – SHIPPERS (3/4)

#### Does **SHIPPER** have a significant effect on the **DELAY** of product delivery in an order?

#### **Multiple AB-testing:**

- No significant difference between shippers for delay
- P-values: <5% for 3 AB-tests (0,10 0,55)
- Test power: weak for all 3 AB-tests (0.09 0.34)

## اامال

#### Results

#### **ANOVA-model**

- No significant difference between shippers for delay
- P-value (F-stat) = 0,27

### C. DELAY - SHIPPERS (4/4)

Does **SHIPPER** have a significant effect on the **DELAY** of product delivery in an order?



#### **ISSUES:**

There is no significant effect of shipper on level of shipping delay

#### **RECOMMENDATIONS:**

Analyze and compare shipping tariffs for all shippers with same service quality

### D. DISCOUNT PREDICTORS (1/4)



Are there any significant <u>PREDICTORS</u> for <u>DISCOUNT</u> rate?

### D. DISCOUNT PREDICTORS (2/4)

#### Are there any significant <u>Predictors</u> for <u>Discount</u> rate?

|                  | Candidates for testing                                                                                                 | Testing parameters                                                                                                                                                                                                                                                    |
|------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ?<br>Methodology | <ul> <li>Not-ordered product in Stock</li> <li>Product Category (only ANOVA)</li> <li>Supplier (only ANOVA)</li> </ul> | <ul> <li>Methodology:         <ul> <li>Single AB-test – for 2-class predictor</li> <li>ANOVA – for multi-class predictor</li> </ul> </li> <li>Ho: E{Discount   Factor = A} = E{Discount   Factor = B}</li> <li>Statistics for AB-test: Welch-test (2-tail)</li> </ul> |

### D. DISCOUNT PREDICTORS (3/4)

Are there any significant <u>Predictors</u> for <u>Discount</u> rate?

# $\mathbb{I}^{\mathbb{I}}$

#### Results

No significant predictors for Discount level:

- Not-ordered product in Stock:
  - p-value (AB) = 0.14
  - p-value (F-stat) = 0.75
- **Product Category:** p-value (F-stat) = 0,15
- **Product Supplier:** p-value (F-stat) = 0,06 (weak significance)

### D. DISCOUNT PREDICTORS (4/4)

Are there any significant <u>Predictors</u> for <u>Discount</u> rate?



#### **ISSUES:**

There are no Predictors with significant relationship with Discount rate

#### **RECOMMENDATIONS:**

Continue to analyze possible Discount rate factors

## E. DISCOUNT CLASSIFIER (1/4)



Is it possible to create robust **CLASSIFIER MODEL** for **DISCOUNT** rate?

### E. DISCOUNT CLASSIFIER (2/4)

Is it possible to create robust classifier model for discount rate?

#### **Model Parameters**

- Model type: Naïve Bayes Classifier
- Target: **Discount class**
- Model options:
  - **2-class** (discounted vs no-discounted)
  - **6-class** (no-discount, 1-5, 5-10, 10-15, 15-20, 20+)
- Model predictors:
  - Product Price (before discount)
  - Quantity
  - Supplier



### E. DISCOUNT CLASSIFIER (3/4)

Is it possible to create robust classifier model for discount rate?



#### Results

#### Classifier model accuracy: moderate level

- 2-class model: accuracy score ~ 61%
- 6-class model: accuracy score ~ 60%

### E. DISCOUNT CLASSIFIER (4/4)

Is it possible to create robust classifier model for discount rate?



#### **ISSUES:**

Accuracy level of classification model is low on given factors (~60%)

#### **RECOMMENDATIONS:**

Continue to analyze possible predictors for discount rate

### **Business Recommendations**

- 1. Use discounts on product in small range (1%-10%) for increasing volumes of product sales
- 2. Use discounts on product in smaller range (1%-5%) for increasing gross revenues of product sales
- 3. Shipping services for all shippers are similar, so check and compare shippers' tariffs on inequality
- 4. Discount rate for a product could be predicted, but with low level of accuracy

### **Future Work**

1. Analyze and test other predictors for Sales and Volumes

2. Find and understand significant factors on Discount volumes

3. Based on above, create classifier model on Discount rates

# APPENDIX

# A1. Original price VS Discounted price



### A2. Avg. Discount per Unordered product portion



# A3. Avg. Discount per product category

