Clasificación de cultivos y cubiertas forestales de Navarra con Sentinel-1, Sentinel-2 y LiDAR

<u>Gabriel Bonifaz*</u>, Itxaso Aranguren, María González-Audícana, Jesús Álvarez-Mozos

*autor que presenta: gabriel.bonifaz@unavarra.es

Universidad Pública de Navarra, IS-FOOD (Instituto de innovación y sostenibilidad en la cadena alimentaria)

Introducción: Teledetección para la caracterización y mapeo de cultivos y bosques

- -La información sobre usos y cubiertas del suelo es una información geográfica de referencia, necesaria para una gestión adecuada del territorio.
- -En concreto el <u>mapeo de cultivos</u> permite realizar anualmente la estadística agraria, previsiones de cosecha, asegurar la seguridad alimentaria y es también una herramienta para la gestión de subsidios y ayudas (e.g., PAC).
- -En lo que respecta a los bosques, la <u>cartografía de especies forestales</u> resulta esencial para la realización de inventarios forestales, estudios medioambientales y de biodiversidad o el seguimiento de los gases de efecto invernadero y el cambio climático.

Introducción: Teledetección para la caracterización y mapeo de cultivos y bosques

- -La obtención de esta información mediante <u>trabajo de campo</u> es impensable a día de hoy, por eso es necesario desarrollar herramientas que permitan la obtención de estas capas de información de forma precisa y a la vez rápida y económica.
- -La teledetección es la fuente de datos idónea para este tipo de aplicaciones.
- -La <u>clasificación de imágenes</u> (supervisada o no supervisada) es una técnica de análisis consolidada para producir este tipo de información temática.

Introducción: Programa Copernicus

-El programa europeo <u>Copernicus</u>, y en concreto las misiones Sentinel, proporcionan datos potencialmente útiles para este tipo de aplicaciones, con una <u>resolución</u> espacial y temporal idónea para la mayoría de casos.

(Fuente: ESA)

Sentinel-1: radar en banda C

Interés: La <u>retrodispersión</u> en polarizaciones VV y VH depende de <u>características geométricas</u> (arquitectura del dosel, forma y tamaño de hojas, tallos, etc.) y <u>dieléctricas</u> (humedad) de las cubiertas.

Sentinel-2: sensor óptico multiespectral Interés: Mide la <u>reflectancia</u> en diferentes bandas espectrales, que depende de características de la vegetación como sus <u>pigmentos</u>, <u>estructura celular</u>, <u>contenido de humedad</u>, etc.

(Fuente: ESA)

Introducción: Programa Copernicus

- -<u>Tradicionalmente</u> la clasificación de cultivos y bosques se ha abordado principalmente a partir de imágenes adquiridas por <u>sensores ópticos</u>.
- -En las últimas décadas el uso de imágenes adquiridas por <u>sensores radar</u> para estas aplicaciones está aumentando.
- -Debido a la complementariedad de la información que ofrecen, resulta idóneo combinar ambos tipos de datos.

Cuenca de Pamplona, Sentinel-2

Cuenca de Pamplona, Sentinel-1

Objetivos

- -El <u>objetivo general</u> de esta ponencia es presentar <u>dos casos de estudio</u> en los que se han implementado distintas alternativas metodológicas que han permitido obtener <u>clasificaciones</u> precisas tanto en <u>bosques</u> como en <u>zonas cultivadas</u> de Navarra.
- -Como <u>objetivos específicos</u> se pueden mencionar los siguientes:
 - 1. Utilizar como información de partida datos libres (tanto como sea posible)
 - 2. Utilizar <u>herramientas abiertas</u> (tanto como sea posible)
 - 3. Evaluar la complementariedad de las distintas fuentes de información utilizada
 - 4. <u>Adaptar las metodologías a cada caso</u> atendiendo a sus particularidades y realizar una comparativa entre ambos casos de estudio

Caso de estudio 1: Clasificación de especies forestales. Particularidades

- -El Gobierno de Navarra realiza y mantiene desde 1995 el Mapa de Cultivos y Aprovechamientos de Navarra a escala 1/25.000.
- -La leyenda de especies forestales se agrupa en 3 niveles:

Nivel 1 (3 clases)	Nivel 2 (11 clases)	Nivel 3 (23 clases)
Frondosas	Haya, Quercus, Frondosas nobles, Otras frondosas	Carrasca, Chopo y álamo, Encina, Haya, Quejigo, R. Americano, R. Pedunculado, R. pubescente, Nobles, Minoritarias y mezcla
Coníferas	P. Carrasco, P. Laricio, P. Silvestre, Otras coníferas	Abeto, Alerce, P. Carrasco, P. Insignis, P. Laricio, P. Silvestre, Minoritarias y Mezcla
Mixtas	P. silvestre-Hayedo, P.silvestre-Robledal, Otras mezclas mixtas	Hayedo-Abetal, P. silvestre-Hayedo, P.silvestre-Robledal, Otras mezclas mixtas

Caso de estudio 1: Clasificación de especies forestales. Particularidades

- -El Mapa de Cultivos y Aprovechamientos se obtiene por fotointerpretación y trabajo de campo y se va actualizando, aunque sin una periodicidad fija (1, 2, 7 años).
- -De cara a este trabajo se contemplan dos posibles alternativas de actualización:
- 1-Anual: basada en coberturas anuales Sentinel-1 y Sentinel-2
- 2-Quinquenal-Decenal: basada en Sentinel-1, Sentinel-2 + LiDAR
- -Para este trabajo se procesa la <u>2ª cobertura del PNOA-LiDAR</u>, adquirida sobre Navarra en 2017 con una densidad de 14 p/m².
- -Se plantea una <u>clasificación por píxel</u>, tomando un píxel de 10x10m.

Procesamiento de los datos de partida

S-1 GRD

Python, SNAP

- 1. Eliminación del ruido térmico
- 2. Corrección de la órbita
- 3. Calibración β⁰
- 4. Filtrado del moteado
- 5. Corrección topográfica de β^0 a γ_{TF}^0
- 6. Ortorrectificación

Bandas (3) • VH • VV • VH/VV S-2 L2A

Python

- 1. Cobertura de nubes < 60%
- 2. Mosaicado: 4 cuadrículas
- 3. Remuestreo a 10m
- 4. Máscara de nubes (SCL de Sen2Cor)

Bandas (10)

- B2 (azul) B5 (Red Edge) B8 (NIR)
- B3 (verde) B6 (Red Edge) B8A (NIR2)
- B4 (rojo) B7 (Red Edge) B11 (SWIR)

• B12 (SWIR)

Índices de vegetación (3)

NBR • NDII • NDVI

LiDAR

LAStools, Python

- 1. Selección de clases: suelo y vegetación (baja, media v alta)
- 2. Eliminación de ruido
- 3. Nube de puntos de alturas relativas

Métricas (25)

- Elevación: media, std, oblicuidad, curtosis, cv, min., percentiles (25, 50, 75, 90, 95),
- Intensidad: media, std., cv, min., max.
- No puntos: fcc (3m), rangos de altura (de o a 35m)

QGIS, Python

- 1. Remuestreo a 10m
- 2. Unión de los .asc
- 3.MDT de 10x10 m
- 4. Mapa de pendientes
- 5. Mapa de orientaciones
- 6. Mapa Norte v Este

Variables topográficas (3)

MDT • Northness • Eastness

Percentil 95 de elevación

Modelo Digital del Terreno (MDT)

Composición RGB (VH,VV,VH/VV) julio de Sentinel-1 Composición RGB (B11,B08,B02) julio de Sentinel-2

Procesamiento de los datos de partida

Mapa de Cultivos y Aprovechamientos (MCA)

QGIS

- 1. Selección de masas forestales: coníferas, frondosas y mixtas
- 2. Eliminación de las masas susceptibles de cortas
- $3.\,\mathrm{Enmascarado}$ de: masas de agua y ríos, líneas eléctricas, zonas urbanas y redes de comunicación
- 4. Aplicación de un buffer de 5m para eliminar el efecto borde
- 5. Selección de masas > 1ha

 n° recintos
 sup. (ha)
 sup. media

 Frondosas
 8.789
 187.729
 21

 Coníferas
 6.431
 89.792
 14

 Mixto
 1.151
 12.567
 11

Generación de compuestos mensuales y estacionales de S-1 y S-2

- Falta de datos de píxeles (presencia de nubes)
- · Gran volumen de datos de entrada

Ene.	Feb.		Feb.		Feb.		Feb.		Feb.		Feb.		e. Feb.		ne. Feb.		Feb.		Feb.		Feb.		Feb.		Feb.		b. Mar.		Abr.		May		Jun.		Jul.		A	g.	Sept.		Oct.		Nov.		Dic.	
5 3	4	-	5	3	3	2	3	4	2	3	3	6	2	4	3	5	2	4	3	3	2	3																								
Invierno						Primavera						Verano					Otoño																													
14	14		6			8	3				8					15		7			10																									

Extracción de datos a nivel de pixel

- 16.371 parcelas \rightarrow malla de 10x10 \rightarrow ~25 M de centroides (~6 M de 20x20)
- Muestreo del 5% → ~320.900 muestras

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Selección de variables predictoras de diferentes sensores

- Fiabilidad: Nivel 1 > Nivel 2 > Nivel 3
- Bandas base: S-1,S-2 > S-2 > S-1 > LiDAR
- Añadir Topo como VP:
- ✓ Mejoras mayores en niveles más específicos

- Añadir LiDAR y Topo como VP:
 - ✓ Mejora la fiabilidad en todos los casos
 - ✓Mayor influencia en S-1 que en S-2

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Reducción en el número de variables predictoras mediante compuestos

- Reducción de 207 a 92 bandas
- Compuestos mensuales > estacionales
- Diferencia de fiabilidad entre compuestos:

Nivel 1 < Nivel 2 < Nivel 3

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Clasificación Nivel 1: 3 clases

Matriz de confusión

		Predicciones									
		Frondosas	Coníferas	Mixtas	Total						
	Frondosas	59432	2273	1494	63199						
Verdad terreno	Coníferas	1785	25948	1242	28975						
	Mezcla	1041	1551	1510	4102						
	Total	62258	29772	4246	96276						
Pr	recisión (%)	95,46	87,16	35,56							
ı	Recall (%)	94,04	89,55	36,81							
Fiabil	idad global (%)				90,25						

Importancia de variables predictoras (top 15)

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Clasificación Nivel 2: 11 clases

Matriz de confusión

							Pre	diccione	S					
				Fronde	osas			Coni	feras					
			1	2	3	4	5	6	7	8	9	10	11	Total
	1S	1	31469	718	5	1516	0	10	252	105	663	24	142	34904
	Frondosas	2	1014	16643	12	2543	436	258	486	120	104	396	51	22063
	рц	3	35	22	84	153	0	0	0	3	1	0	0	298
_	Ē	4	1218	761	11	3601	30	17	70	93	102	24	7	5934
Je Dic	Coníferas	5	0	186	1	11	6220	236	48	0	0	1	20	6723
teri		6	18	364	0	22	227	4498	415	58	5	34	45	5686
dad		7	194	669	0	36	101	610	11669	55	475	468	26	14303
Verdad terreno	ŏ	8	89	93	0	145	188	99	144	1468	14	5	18	2263
	ø	9	201	87	0	22	0	6	296	5	572	14	1	1204
	Mezcla	10	12	329	0	16	6	72	652	4	72	606	2	1771
	ž	11	86	178	0	40	138	150	89	68	12	17	349	1127
		Total	34336	20050	113	8105	7346	5956	14121	1979	2020	1589	661	96276
	P/	۹ (%)	91,65	83,01	74,34	44,43	84,67	75,52	82,64	74,18	28,32	38,14	52,80	
	UA	۱(%)	90,16	75,43	28,19	60,68	92,52	79,11	81,58	64,87	47,51	34,22	30,97	
	O	A (%)												80,17

Frondosas Coníferas Mixtas 1 Haya 5 Pino alepo 9 Pino silvestre-Hayedo 2 Quercus 6 Pino laricio 10 Pino silvestre-Robledal 3 Frondosas nobles 7 Pino silvestre 11 Otras mezclas mixtas 4 Otras frondosas 8 Otras coníferas

Importancia de variables predictoras (top 15)

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Clasificación Nivel 3: 23 clases

Matriz de confusión

												Р	rediccion	es											
						F	rondosa	s								Con	íferas					Mix	tas		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total
	1	491	1	45	2	1	165	0	0	2	84	0	0	0	5	7	0	9	0	1	0	0	0	0	813
	2	0	6999	14	165	1	0	0	43	0	45	0	283	94	0	0	166	2	0	0	0	8	36	25	7881
	3	56	47	31471	736	0	478	0	8	19	891	6	2	14	1	20	237	47	22	6	166	656	18	3	34904
	4	5	231	411	5422	0	84	0	165	15	284	3	18	57	1	3	187	4	0	1	0	75	227	11	7204
	5	0	4	0	3	56	3	0	0	0	4	0	3	1	1	0	0	2	0	0	0	0	0	0	77
	6	112	2	273	105	1	1980	0	1	25	366	3	1	5	15	10	1	3	0	1	0	0	0	0	2904
	7	0	0	0	1	0	0	26	0	0	58	0	4	0	0	0	0	0	0	0	0	0	0	0	89
	8	0	77	0	169	0	7	0	1170	0	12	0	26	43	0	1	7	0	0	0	0	0	17	5	1534
	9	20	1	93	85	0	111	0	0	266	157	0	2	0	3	0	1	2	0	0	0	3	0	0	744
2	10	178	616	1273	774	4	915	16	120	77	2536	6	70	40	22	14	98	24	1	5	0	107	43	18	6957
<u>e</u>	11	0	0	25	8	0	1	0	2	0	8	46	0	. 1	0	0	0	0	0	0	0	1	0	0	92
<u>e</u>	12	0	154	0	16	0	0	0	29	0	15	0	6206	219	1	0	52	0	0	4	0	0	1	26	6723
aq	13	1	176	19	86	0	19	0	88	0	23	0	248	4466	22	2	432	10	2	2	0	7	31	52	5686
<u>P</u>	14	4	0	3	1	0	27	0	0	0	26	0	0	17	207	5	1	6	0	0	0	0	0	0	297
Š	15	8	0	46	15	0	25	0	0	1	29	0	0	1	1	506	7	12	2	1	1	4	0	0	659
	16	0	321	181	346	0	2	0	16	0	44	0	125	626	5	5	11594	36	2	2	8	488	480	22	14303
	17	1	3	21	8	0	7	0	0	1	34	0	0	9	4	4	62	273	2	0	14	10	2	0	455
	18	1	2	5	2	0	2	0	0	0	10	0	30	7	6	0	1	8	273	3	0	0	0	3	353
	19	0	17	12	4	0	3	0	4	0	13	0	144	69	6	7	54	29	2	128	0	4	2	1	499
	20	0	0	57	0	0	0	0	0	0	0	0	0	0	0	0	9	25	0	0	158	2	1	0	252
	21	0	9	181	84	0	1	0	2	0	19	0	0	6	0	1	292	3	0	0	3	592	11	. 0	1204
	22	0	46	13	286	0	4	0	32	1	14	0	8	65	0	2	640	1	0	1	0	73	581	4	1771
	23	4	109	22	46	0	13	0	14	0	34	0	134	137	10	6	72	15	16	1	0	12	14	216	875
	Total	881	8815	34165	8364	63	3847	42	1694	407	4706	64	7304	5877	310	593	13913	511	322	156	350	2042	1464	386	96276
	PA	55,73	79,40	92,11	64,83	88,89	51,47	61,90	69,07	65,36	53,89	71,88	84,97	75,99	66,77	85,33	83,33	53,42	84,78	82,05	45,14	28,99	39,69	55,96	
	UA	60,39	88,81	90,16	75,26	72,73	68,18	29,21	76,27	35,75	36,45	50,00	92,31	78,54	69,70	76,78	81,06	60,00	77,34	25,65	62,70	49,17	32,81	24,69	
	OA																								78 57

Frondosas Coniferas Mixtas Roble americano Chopo y álamo 12 Pino alepo Abetos 20 Havedo-Abetal Quejigo 13 Pino laricio Coníferas minoritarias Pino silvestre-Hayedo Carrasca Pino silvestre-Robledal Haya Frondosas minoritarias 14 Pino insigne 19 Mezcla de coníferas Roble pubescente Mezcla de frondosas 15 Alerce Otras mezclas mixtas Frondosas nobles 16 Pino silvestre

Roble pedunculado

Importancia de variables predictoras (top 15)

MAPAS OBTENIDOS

Política Agraria Común (PAC)

- La Comisión Europea aprobó una modificación de la PAC que, entre otros aspectos, <u>recomienda el uso de</u> <u>datos derivados de imágenes</u> Sentinel o similares
- Con esto se pretende verificar <u>el cultivo declarado</u> para una parcela específica

Clasificación por recinto

- La metodología <u>OBIA</u> (Object-Based Image Analysis) que analiza los datos agregándolos en <u>objetos</u> significativos basados en sus atributos
- Lo cual es posible a través del Sistema de Identificación de Parcelas de Cultivo (SIGPAC), que permite utilizar información de parcelas agrícolas reales.

Caso de estudio 2: Clasificación de cultivos. Particularidades

Declaraciones e Inspecciones

 Los datos de campo fueron obtenidos de la base de datos del Departamento de Agricultura del Gobierno de Navarra, que contienen los polígonos del las <u>declaraciones</u> (255120) e <u>inspecciones</u> (22446) PAC del año 2017.

Leyenda de Cultivos

- Entre 147-150 cultivos/usos del suelo diferente
- Se propone <u>agrupar los distintos cultivos</u> en base a criterios de:
 - Similitud fenológica
 - · Características morfológicas

Parcelas pequeñas e irregulares

 Sistemas agrícolas con una alta presencia de parcelas pequeñas presentan bajas fiabilidades en modelos de clasificación

	DECLARACIONES INSPECCION								
CULTIVO	Nº de parcelas	Área (ha)	Área (%)	Área promedio (ha)	Nº de parcelas	Área (ha)	Área (%)	Área promedio (ha)	
ALFALFA	3917	3601,2	1,34	0,9	286	316,1	1,44	1,1	
ALMENDROS	3549	1606,1	0,6	0,5	191	133,9	0,61	0,7	
ARROZ	813	1438,2	0,53	1,8	120	180,2	0,82	1,5	
AVENA	6446	9053,8	3,37	1,4	458	612,2	2,79	1,3	
BARBECHO	27553	23840,2	8,87	0,9	2669	1952,7	8,9	0,7	
CEBADA	38005	50194,9	18,67	1,3	3825	5031,1	22,94	1,3	
COLZA	1991	2952,9	1,1	1,5	311	367,5	1,68	1,2	
ESPÁRRAGOS	1153	828,4	0,31	0,7	93	70,3	0,32	0,8	
FRUTALES	3959	1469,8	0,55	0,4	218	64,0	0,29	0,3	
GIRASOL	1064	2214,2	0,82	2,1	158	328,5	1,5	2,1	
GUISANTE	1964	3266,7	1,22	1,7	320	525,2	2,39	1,6	
HABAS	1421	1723,8	0,64	1,2	197	291,5	1,33	1,5	
MAÍZ	6587	10483,1	3,9	1,6	592	905,6	4,13	1,5	
MEZCLAS CON CEREAL	675	715,0	0,27	1,1	86	128,1	0,58	1,5	
OLIVAR	11192	3369,5	1,25	0,3	920	210,2	0,96	0,2	
PASTOS ARBOLADOS	2440	4397,6	1,64	1,8	317	716,9	3,27	2,3	
PASTOS ARBUSTIVOS	35844	38154,4	14,19	1,1	4669	2713,4	12,37	0,6	
PASTOS HERBÁCEOS	48978	37262,7	13,86	0,8	2708	2266,1	10,33	0,8	
SUPERFICIES FORESTALES	8208	13168,3	4,9	1,6	34	26,8	0,12	0,8	
TOMATE	680	1281,6	0,48	1,9	43	98,6	0,45	2,3	
TRIGO	34117	45075,5	16,77	1,3	3013	3803,9	17,34	1,3	
VEZA	2045	2102,6	0,78	1,0	364	391,8	1,79	1,1	
VIÑA	12519	10647,2	3,96	0,9	854	800,2	3,65	0,9	
TOTAL	255120	268847,7	100	27,5	22446	21934,8	100	27,4	

Procesamiento de los datos de partida

Estratificación Comarcas Agrarias Navarra

Declaraciones PAC Navarra

QGIS

- 1. Generar fichero de declaraciones e inspecciones por comarca agraria
 - Condiciones climatológicas diferentes
 - Ciclos fenológicos y de desarrollo distinto para los mismos cultivos
- 2. Aplicar buffer interior de 5 m a todas las parcelas

Clasificación de cultivos y cubiertas forestales de Navarra con Sentinel-1, Sentinel-2 y LiDAR

Clasificación de cultivos y cubiertas forestales de Navarra con Sentinel-1, Sentinel-2 y LiDAR

Caso de estudio 2: Clasificación de cultivos. Resultados

CLASIFICACIÓN MEDIANTE RANDOM FOREST: NAVARRA

Resultados Comarcas agrarias Navarra

CLASIFICACIÓN MEDIANTE RANDOM FOREST: NAVARRA

Resultados Comarcas agrarias Navarra

Caso de estudio 2: Clasificación de cultivos. Resultados

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Evaluación de variables predictoras

Caso de estudio 2: Clasificación de cultivos. Particularidades

CLASIFICACIÓN MEDIANTE RANDOM FOREST

Resultados Comarca Agraria VI

Conclusiones

Caso de estudio 1: Clasificación de especies forestales

- Las bandas de los meses de <u>abril (B11)</u>, de <u>verano (Red Edge, NIR, NDVI, NDII)</u>, de <u>diciembre (NBR)</u> y el <u>MDT</u> fueron las <u>variables predictoras más importantes</u> en cuanto a separabilidad e importancia de variables.
- Reducir el número de variables predictoras (<u>de mensuales a estacionales</u>) supuso una <u>reducción</u> <u>de la fiabilidad</u> de los modelos.
- El <u>MDT</u> y las métricas <u>LiDAR</u> cobraron mayor <u>importancia</u> como variables predictoras a medida que las agrupaciones de especies a clasificar fueron más homogéneas (<u>Nivel 3</u>).

Caso de estudio 2: Clasificación de cultivos

- <u>Añadir</u> datos de <u>Sentinel-1</u> como variables predictoras genera <u>mejores resultados</u> en todos los modelos, especialmente en las comarcas al norte de Navarra donde la presencia de nubes es alta.
- El índice NDVI fue una variable predictora importante en el entrenamiento de los modelos de todas las comarcas agrarias.
- Se puede mejorar la clasificación de <u>parcelas pequeñas</u> mediante su <u>integración con parcelas vecinas</u> en las que se ha declarado el <u>mismo cultivo</u>.

Conclusiones

Conclusiones generales

- Es posible generar <u>mapas temáticos</u> de <u>especies forestales</u> y de <u>cultivos</u> con una <u>alta fiabilidad</u> (~80%) a partir de imágenes del programa <u>Copernicus</u> distribuidas libremente.
- El procesado e implementación de estas técnicas se puede abordar mediante herramientas libres.
- Combinar datos procedentes de diferentes sensores mejora la clasificación.

Agradecimientos:

Proyecto **ReSAg** (Remote sensing for a Sustainable Agriculture) Programa Estatal de I+D+i orientada a los Retos de la Sociedad 2019 PID2019-107386RB-I00

Proyecto **forestOBS** (Herramientas de gestión forestal basadas en tecnologías de observación de la tierra)

Ayudas para realizar proyectos de I+D 2021. Modalidad de transferencia

Conclusiones

Conclusiones generales

- Es posible generar <u>mapas temáticos</u> de <u>especies forestales</u> y de <u>cultivos</u> con una <u>alta fiabilidad</u> (~80%) a partir de imágenes del programa <u>Copernicus</u> distribuidas libremente.
- El procesado e implementación de estas técnicas se puede abordar mediante herramientas libres.
- Combinar datos procedentes de diferentes sensores mejora la clasificación.

gràcies per la seva atenció!!

Agradecimientos:

Proyecto **ReSAg** (Remote sensing for a Sustainable Agriculture) Programa Estatal de I+D+i orientada a los Retos de la Sociedad 2019 PID2019-107386RB-I00

Proyecto **forestOBS** (Herramientas de gestión forestal basadas en tecnologías de observación de la tierra)

Ayudas para realizar proyectos de I+D 2021. Modalidad de transferencia