

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

. 00056

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Mecánica de Fluidos

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto	114055	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al participante los conocimientos para comprender y resolver fenómenos relacionados con el comportamiento de los fluidos, así como su aplicación en procesos y sistemas industriales.

TEMAS Y SUBTEMAS

1. Conceptos básicos y propiedades de los fluidos.

- 1.1. Importancia de las dimensiones y de las unidades (S.I. y Sistema inglés).
 - 1.1.1. Exactitud, precisión y dígitos significativos.
- 1.2. Definición de fluido, áreas de aplicación de los fluidos y concepto de medio continuo.
- 1.3. Propiedades en la que interviene la masa o el peso de fluido.
- 1.4. Propiedades que incluyen el flujo de calor.
- 1.5. Viscosidad.
- 1.6. Elasticidad.
- 1.7. Tensión superficial.
- 1.8. Presión de vapor.

2. Estática de fluidos.

- 2.1. Presión.
- 2.2. Variación de la presión con respecto a la altura.
- 2.3. Mediciones de presión.
- 2.4. Fuerzas hidrostáticas sobre superficies planas.
- 2.5. Fuerzas hidrostáticas sobre superficies curvas.
- 2.6. Fluidos en movimiento de cuerpos rígidos.

3. Cinemática de fluidos.

- 3.1. Descripción Lagrangiana y Euleriana.
- 3.2. Campo de velocidades y campo de aceleraciones.
- 3.3. Concepto de derivada material.
- 3.4. Definiciones de tipos de flujo.
 - 3.4.1. Flujo laminar y turbulento; de régimen permanente y no permanente; uniforme y no uniforme; rotacional e irrotacional; unidimensional, bidimensional y tridimensional.
- 3.5. Campos de fluido: Líneas de corriente, trayectorias y tubos de flujo.
- 3.6. Propiedades cinemáticas fundamentales.
 - 3.6.1. Razón de traslación.
 - 3.6.2. Razón de rotación.
 - 3.6.3. Razón de deformación lineal.
 - 3.6.4. Razón de deformación por esfuerzo cortante.
 - 3.6.5. Vorticidad, rotacionalidad e irrotacionalidad.
- 3.7. Teorema de transporte de Reynolds (Ecuación Del volumen de control).
 - 3.7.1. Conceptos de sistema y volumen de control.
 - 3.7.2. Ecuación del Teorema de Transporte de Reynolds y aplicaciones.
 - 3.7.3. Relación entre la derivada material y Teorema de Transporte de Reynolds.

4. Ecuación de la conservación de la masa, de Bernoulli y de energía.

- 4.1. Conservación de la masa, ecuación de continuidad.
- 4.2. Definición de gasto masa, gasto peso y gasto volumétrico.
- 4.3. Energía mecánica y eficiencia.
- 4.4. Ecuación de Bernoulli.
 - 4.4.1. Líneas de gradiente hidráulico y líneas de energía.
 - 4.4.2. Aplicaciones de la Ecuación de Bernoulli.

ACADEMICA

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Industrial

00057

PROGRAMA DE ESTUDIOS

- 4.5. Ecuación general de la energía.
 - 4.5.1. Transferencia de energía por calor.
 - 4.5.2. Transferencia de energía por trabajo.
 - 4.5.3. Análisis de energía para flujos estacionarios.

5. Principios de cantidad de movimiento.

- 5.1. Ecuación de cantidad movimiento.
- 5.2. Aplicaciones de la ecuación de la cantidad de movimiento.
- 5.3. Ecuación de cantidad de movimiento angular.

6. Análisis dimensional y semejanza.

- 6.1. Dimensiones y unidades.
- 6.2. Homogeneidad dimensional.
- 6.3. Análisis dimensional y similitud.
- 6.4. El método de repetición de variables y el teorema Pi de Buckingham.

7. Turbomáguinas.

- 7.1. Turbinas hidráulicas.
- 7.2. Bombas hidráulicas.

ACTIVIDADES DE APRENDIZAJE

Las sesiones serán dirigidas por el profesor, quien utilizará medios de apoyo didácticos visuales e impresos, a través de la interacción con los estudiantes.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso, el profesor indicará el procedimiento de evaluación que comprende tres exámenes parciales que tendrán una equivalencia del 50% y un examen ordinario equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Mecánica de fluidos. Fundamentos y aplicaciones. Çengel, Y. & Cimbala, J. Mc Graw Hill/Interamericana, 2006.
- 2. Mecánica de fluidos. Mott, R. L. Pearson Educación, 2006.
- A Brief Introduction to Fluid Mechanics. Young, D. F., Munson, B. R., Okilshi, T. H., Huebsch, W.W. John Wiley & Sons,
- 4. Mecánica de Fluidos, Streeter, Víctor L., Wylie, E. Benjamín y Bedford, Keit W., McGraw Hill Interamricana S. A., Colombia, Novena Edición, 2003.

Libros de Consulta:

- Mechanics of Fluids, Publisher: Routledge, Massey, Bernard F., Eighth Edition, 2006.
- Applied Fluid Mechanics, Mott, Robert L., Ed. Prentice Hall Inc., Sixth Edition, 2005.
- Mechanics of Fluids, Shames, Irving H., McGraw Hill Science, Fourth Edition, 2002.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero mecánico, Ing. Químico o área afín, con experiencia en la docencia y en todo tipo de modelado y aprovechamiento de fluidos, preferentemente con maestría.

Vo. Bo.

DR. IGNACIO HERNANDEZ CASTILLO JEFE DE CARRERA

> JEFATURA DE CARRERA MIGENIERÍA INDUSTRIAL

Autorizó

DR. AGUSTIN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO
VICE-RECTORIA