Practical work: A simple geometric multigrid method with python

C. Boyet

Introduction

The aim of this practical work is to implement a really simple multigrid method for the 1D Poisson problem.

$$-u''(x) = f(x) \quad 0 < x < 1$$

$$u(0) = u(1) = 0$$

$$(1) \qquad \Omega_h \xrightarrow{\qquad \qquad } 0 \qquad h \qquad \qquad 1$$

$$x_0 \quad x_1 \qquad \qquad x_r$$

1 Technical information

You can work on your personal laptop, the only thing you need is python with the standard scientific libraries: numpy, scipy, matplotlib. If needed, you can use the virtual machine at https://rep.mines-paristech.fr/home.

1.1 Available documentation

This practical work make use of python packages, the documentation is online.

2 Required work

2.1 Model problem

1. Discretize problem (1) using classical finite differences with a constant length step h = 1/n (n being the number of segments). It leads to the linear system :

$$\mathbf{A}\mathbf{u} = \mathbf{f} \tag{2}$$

To fix the idea, we will use n = 64 in the following (but feel free to use a lower value for debugging).

2. Complete the laplace function in order to create the operator A.

2.2 Smoother

We recall that multigrid algorithm make use of stationary iterative methods such as smoothers.

- 1. The preconditioner for Jacobi over relaxation (JOR) is $M = \frac{1}{\omega} \text{diag}(A)$, $0 < \omega \le 1$ Complete the JOR function.
- 2. The preconditioner for Successive Over Relaxation (SOR) is $\mathbf{M} = \frac{1}{\omega} \operatorname{diag}(\mathbf{A}) \mathbf{E}$ where $(-\mathbf{E})$ is the strict lower triangular part of \mathbf{A} and $0 < \omega < 2$. Complete the SOR function.

Algorithm 1: Stationary iterative method

```
egin{aligned} 	ext{Initial guess } oldsymbol{u}_0 \ 	ext{for } i=0 \ to \ convergence \ 	ext{do} \ oldsymbol{v}_i = oldsymbol{f} - oldsymbol{A} oldsymbol{u}_i \ oldsymbol{z}_i = oldsymbol{M}^{-1} oldsymbol{r}_i \ oldsymbol{u}_{i+1} = oldsymbol{u}_i + oldsymbol{z}_i \ 	ext{end} \end{aligned}
```

- 3. The use of a null right-hand-side and a custom initial guess gives some insights about the convergence of the method. Can you explain why?
- 4. Plot few first approximate solutions with a high frequency initial guess $u_0(x) = \sin(k_h \pi x)$.
- 5. Do the same thing for a low frequency initial guess $u_0(x) = \sin(k_l \pi x)$ and draw some conclusions.

2.3 Restriction & prolongation

We consider the standard coarsening H = 2h.

Figure 1: Classical injection and linear interpolation operators

- 1. The classical restriction is injection. As described in Figure 1, with the injection operator I_h^{2h} , the value of a coarse node is directly the value of the corresponding fine node. Complete the injection function.
- 2. The classical prolongation is linear interpolation. Complete the interpolation function.

2.4 Two-grid algorithm

- 1. Complete the function tgcyc according to Algorithm 2 in order to get a working Two-grid cycle.
- 2. Replace the coarse grid solve by 3 iterations of smoothing. Is the convergence really affected?
- 3. Adapt tgcyc to get a V-cycle according to Algorithm 3.

Algorithm 2: Two-grid cycle $\boldsymbol{u}_{k+1}^h = TGCYC(\boldsymbol{u}_k^h, \boldsymbol{A}^h, \boldsymbol{f}^h, \nu_1, \nu_2)$

```
// Presmoothing
Compute \bar{u}_k^h by applying \nu_1(\geq 0) steps of the smoothing procedure to u_k^h:
   ar{oldsymbol{u}}_k^h = \operatorname{Smooth}^{\overset{	ext{\tiny $k$}}{}}(oldsymbol{u}_k^h, oldsymbol{A}^h, oldsymbol{f}^h)
// Coarse grid correction (CGC)
                                                ar{m{d}}_k^h = m{f}^h - m{A}^h ar{m{u}}_k^h
Compute the defect
Restrict the defect 
\bar{\boldsymbol{d}}_{k}^{H} = \boldsymbol{I}_{h}^{H} \bar{\boldsymbol{d}}_{k}^{h}

Solve on \Omega^{H} \boldsymbol{A}^{H} \hat{\boldsymbol{v}}_{k}^{H} = \bar{\boldsymbol{d}}_{k}^{H}
Interpolate the correction \hat{\boldsymbol{v}}_{k}^{h} = \boldsymbol{I}_{h}^{h} \hat{\boldsymbol{v}}_{k}^{H}
                                                                    oldsymbol{ar{u}}_{k,afterCGC}^h = ar{oldsymbol{u}}_k^h + \hat{oldsymbol{v}}_k^h
Update the approximation
// Postsmoothing
Compute u_{k+1}^h by applying \nu_2(\geq 0) steps of the smoothing procedure to u_{k,afterCGC}^h:
  oldsymbol{u}_{k+1}^h = \operatorname{Smooth}^{
u_2}(oldsymbol{u}_{k,afterCGC}^h, oldsymbol{A}^h, oldsymbol{f}^h)
```

```
Algorithm 3: Multigrid cycle \boldsymbol{u}_{k+1}^h = MGCYC(\ell, \boldsymbol{u}_k^\ell, \boldsymbol{A}^\ell, \boldsymbol{f}^\ell, \nu_1, \nu_2)
Apply \nu_1(\geq 0) presmoothing steps to \boldsymbol{u}_k^\ell: \bar{\boldsymbol{u}}_k^\ell = \operatorname{Smooth}^{\nu_1}(u_k^\ell, \boldsymbol{A}^\ell, \boldsymbol{f}^\ell)
     // Coarse grid correction (CGC)
    Compute the defect  \bar{d}_k^\ell = f^\ell - A^\ell \bar{u}_k^\ell  Restrict the defect  \bar{d}_k^{\ell-1} = I_\ell^{\ell-1} \bar{d}_k^\ell  // Compute an approx. sol. \hat{v}_k^{\ell-1} of the defect eq. on \Omega^{\ell-1} if \ell=1 then Use a direct solver  A^{\ell-1} \hat{v}_k^{\ell-1} = \bar{d}_k^{\ell-1} 
                Perform one grid cycle using the zero grid function as a first approximation
                   \hat{\boldsymbol{v}}_k^{\ell-1} = \text{MGCYC}(\ell-1, 0, \boldsymbol{A}^{\ell-1}, \boldsymbol{\bar{d}}_k^{\ell-1}, \nu_1, \nu_2)
     end
                                                                                       \hat{oldsymbol{v}}_k^\ell = I_{\ell-1}^\ell \hat{oldsymbol{v}}_k^{\ell-1}
     Interpolate the correction
    Update the approximation u_{k,afterCGC}^{\ell} = \bar{u}_{k}^{\ell} + \hat{v}_{k}^{\ell}
Apply \nu_{2}(\geq 0) postsmoothing steps to u_{k,afterCGC}^{\ell}: u_{k+1}^{\ell} = \text{Smooth}^{\nu_{2}}(u_{k,afterCGC}^{\ell}, \boldsymbol{A}^{\ell}, \boldsymbol{f}^{\ell})
```