Generalized Linear Model

PSYC 573

University of Southern California March 22, 2022

Regression for Prediction

One outcome Y, one or more predictors X_1, X_2, \ldots

E.g.,

- ullet What will a student's college GPA be given an SAT score of x
- ullet How long will a person live if the person adopts diet x?
- What will the earth's global temperature be if the carbon emission level is x?

Keep These in Mind

- 1. Likelihood function is defined for the outcome Y
- 2. Prediction is probabilistic (i.e., uncertain) and contains error

Generalized Linear Models (GLM)

GLM

Three components:

- ullet Conditional distribution of Y
- Link function
- Linear predictor

Some Examples

Outcome type	Support	Distributions	Link
continuous	$[-\infty, \infty]$	Normal	Identity
count (fixed duration)	{0, 1,}	Poisson	Log
count (known # of trials)	{0, 1,, <i>N</i> }	Binomial	Logit
binary	{0, 1}	Bernoulli	Logit
ordinal	$\{0, 1, \ldots, K\}$	categorical	Logit
nominal	$oldsymbol{K}$ -vector of {0, 1}	categorical	Logit
multinomial	K -vector of {0, 1, \ldots , K }	categorical	Logit 6

/ 33

Mathematical Form (One Predictor)

$$egin{aligned} Y_i &\sim \mathrm{Dist}(\mu_i, au) \ g(\mu_i) &= \eta_i \ \eta_i &= eta_0 + eta_1 X_i \end{aligned}$$

- \mathbf{Dist} : conditional distribution of $Y \mid X$ (e.g., normal, Bernoulli, . . .)
 - \circ I.e., distribution of **prediction error**; not the marginal distribution of Y
- ullet μ_i : mean parameter for the ith observation
- η_i : linear predictor
- $g(\cdot)$: link function
- (τ : dispersion parameter)

Illustration

Next few slides contain example GLMs, with the same predictor $oldsymbol{X}$

```
num_obs \leftarrow 100
x \leftarrow runif(num_obs, min = 1, max = 5) # uniform x
beta0 \leftarrow 0.2; beta1 \leftarrow 0.5
```

Normal, Identity Link

aka linear regression

$$egin{aligned} Y_i &\sim N(\mu_i, \sigma) \ \mu_i &= \eta_i \ \eta_i &= eta_0 + eta_1 X_i \end{aligned}$$

Poisson, Log Link

aka poisson regression

$$Y_i \sim ext{Pois}(\mu_i) \ \log(\mu_i) = \eta_i \ \eta_i = eta_0 + eta_1 X_i$$

Bernoulli, Logit Link

aka binary logistic regression

$$Y_i \sim \mathrm{Bern}(\mu_i) \ \logigg(rac{\mu_i}{1-\mu_i}igg) = \eta_i \ \eta_i = eta_0 + eta_1 X_i$$

Binomial, Logit Link

aka binomial logistic regression

$$Y_i \sim ext{Bin}(N, \mu_i) \ \logigg(rac{\mu_i}{1-\mu_i}igg) = \eta_i \ \eta_i = eta_0 + eta_1 X_i$$

Remarks

Different link functions can be used

• E.g., identity link or probit link for Bernoulli variables

Linearity is a strong assumption

- ullet GLM can allow η and X to be nonlinearly related, as long as it's linear in the coefficients
 - \circ E.g., $\eta_i = eta_0 + eta_1 \log(X_i)$
 - $_{\circ}$ E.g., $\eta_{i}=eta_{0}+eta_{1}X_{i}+eta_{2}X_{i}^{2}$
 - \circ But not something like $\eta_i = eta_0 \log(eta_1 + x_i)$

Linear Regression

Many relations can be approximated as linear

But many relations cannot be approximated as linear

Example: "Bread and peace" model

Linear Regression Model

Model:

$$egin{aligned} ext{vote}_i &\sim N(\mu_i, \sigma) \ \mu_i &= eta_0 + eta_1 ext{growth}_i \end{aligned}$$

 σ : SD (margin) of prediction error

Prior:

$$egin{aligned} eta_0 &\sim N(45,10) \ eta_1 &\sim N(0,10) \ \sigma &\sim t_4^+(0,5) \end{aligned}$$

Stan brms brms results

```
data {
  int<lower=0> N; // number of observations
  vector[N] y; // outcome;
  vector[N] x; // predictor;
parameters {
  real beta0; // regression intercept
  real beta1; // regression coefficient
  real<lower=0> sigma; // SD of prediction error
model {
 // model
  y ~ normal(beta0 + beta1 * x, sigma);
 // prior
  beta0 ~ normal(45, 10);
  beta1 ~ normal(0, 10);
  sigma ~ student_t(4, 0, 5);
generated quantities {
  vector[N] y rep; // place holder
  for (n in 1:N)
   y_rep[n] = normal_rng(beta0 + beta1 * x[n], sigma);
```


Meaning of Coefficients

When growth = 0, ${
m vote} \sim N(eta_0,\sigma)$

When growth = 1, ${
m vote} \sim N(eta_0 + eta_1, \sigma)$

Posterior Predictive Check

The model fits a majority of the data, but not everyone. The biggest discrepancy is 1952.

Prediction

Predicted vote share when growth = 2: $ilde{y} \mid y \sim N(eta_0 + eta_1 imes 2, \sigma)$

```
pp_growth_eq_2 		 posterior_predict(m1_brm,
    newdata = list(growth = 2)
)
```


Probability of incumbent's vote share > 50% = 0.713

Table

	Model 1
b_Intercept	46.20 [42.76, 49.75]
b_growth	3.03 [1.56, 4.56]
sigma	3.88 [2.56, 5.51]
Num.Obs.	16
ELPD	-46.1
ELPD s.e.	3.6
LOOIC	92.3
LOOIC s.e.	7.2
WAIC	92.1
RMSE	24.97

Diagnostics

Linearity (functional form)


```
pp_check(m_lin, type = "intervals", x = "
geom_smooth(aes(x = x, y = y), se = FAL
```


Residual Plots

pp_check(m_lin_norm, ndraws = 100, bw = "

pp_check(m_lin_norm, type = "error_scatte")

Prediction vs. Explanation

Is personal income growth a reason a candidate/party got more vote share?

If so, what is the mechanism?

If not, what is responsible for the association?

Additional Notes

Outlier: use $Y_i \sim t_
u(\mu_i,\sigma)$

Nonconstant σ

ullet One option is $\log(\sigma_i)=eta_0^s+eta_1^sX_i$

Check whether linearity holds

• Other options: splines, quadratic, log transform (i.e., lognormal model), etc

Poisson Regression

- count: The seizure count between two visits
- Trt: Either 0 or 1 indicating if the patient received anticonvulsant therapy

$$egin{aligned} ext{count}_i &\sim ext{Pois}(\mu_i) \ \log(\mu_i) &= \eta_i \ \eta_i &= eta_0 + eta_1 ext{Trt}_i \end{aligned}$$

Poisson with log link

Predicted seizure rate = $\exp(\beta_0 + \beta_1) = \exp(\beta_0) \exp(\beta_1)$ for Trt = 1; $\exp(\beta_0)$ for Trt = 0

 eta_1 = mean difference in **log** rate of seizure; $\exp(eta_1)$ = ratio in rate of seizure

```
m2 \leftarrow brm(count \sim Trt, data = epilepsv4,
          family = poisson(link = "log"))
   Family: poisson
>#
    Links: mu = log
>#
># Formula: count ~ Trt
     Data: epilepsy4 (Number of observations: 59)
>#
    Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
>#
           total post-warmup draws = 4000
>#
>#
># Population-Level Effects:
>#
            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                2.07
                          0.07 1.95
                                            2.20 1.00
                                                          3759
                                                                   2833
># Intercept
               -0.17 0.10 -0.36
># Trt1
                                            0.01 1.00
                                                          3082
                                                                   2363
>#
># Draws were sampled using sampling(NUTS). For each parameter, Bulk ESS
># and Tail ESS are effective sample size measures, and Rhat is the potential
># scale reduction factor on split chains (at convergence, Rhat = 1).
```

Poisson with identity link

In this case, with one binary predictor, the link does not matter to the fit

$$egin{aligned} ext{count}_i &\sim ext{Pois}(\mu_i) \ \mu_i &= \eta_i \ \eta_i &= eta_0 + eta_1 ext{Trt}_i \end{aligned}$$

 β_1 = mean difference in the rate of seizure in two weeks

```
m3 ← brm(count ~ Trt, data = epilepsy4,
family = poisson(link = "identity"))
```

	log link	identity link	
b_Intercept	2.07	7.97	
	[1.95, 2.20]	[6.94, 8.96]	
b_Trt1	-0.17	-1.25	
	[-0.35, 0.02]	[-2.58, 0.16]	
Num.Obs.	59	59	
ELPD	-343.1	-345.1	
ELPD s.e.	93.8	95.7	
LOOIC	686.2	690.2	
LOOIC s.e.	187.7	191.3	
WAIC	688.5	687.8	
RMSE	10.50	10.53	