Матан 3 семестр

Ilya Yaroshevskiy

16 марта 2021 г.

Оглавление

1	Лекция 1						
	1.1	Мульт	гииндекс	5			
	1.2	Дифф	реренцирование	5			
	1.3	Teope	ема (формула Тейлора)	6			
	1.4	Линей	іные отображения	6			
		1.4.1	Определение	6			
		1.4.2	Лемма				
		1.4.3	Теорема о пространстве линейных отображений				
2	Пек	кция 2		g			
-	2.1		ма лагранжа(для отображений)				
	2.2		a				
	2.3		ма об обратимости оператора близкого к обратимому				
	$\frac{2.3}{2.4}$	_					
	$\frac{2.4}{2.5}$	The state of the s					
	2.0	_	оемумы				
		$2.5.1 \\ 2.5.2$	Определение				
		-	Теорема Ферма				
		2.5.3	Квадратичная форма				
		2.5.4	Достаточное условие экстремума	12			
3	Лекция 3						
	3.1	Дифф	реоморфизмы	13			
		3.1.1	Определение	13			
		3.1.2	Лемма о почти локальной инъективности	13			
		3.1.3	Теорема о сохранении области	13			
		3.1.4	Теорема о гладкости обратного отображения	14			
		3.1.5	Теорема о локальной обратимости	15			
		3.1.6	Теорема о неявном отображении	15			
4	Лекция 4						
	4.1	Дифф	реоморфизмы	17			
		4.1.1	Теорема о неявном отображении(продолжение)				
		4.1.2	Определение				
		4.1.3	Определение				
		4.1.4	Теорема				
_	ш			0.1			
Э		кция 5		21			
	5.1		ообразия				
	- 0	5.1.1	Касательные пространства				
	5.2		сительный экстремум				
	5.3		циональные последовательности и ряды				
		5.3.1	Равномерная сходимость последовательности функций	23			
6	Лекция 6						
	6.1	Относ	сительный экстремум				
		6.1.1	Вариационные исчесления(Оффтоп)	26			
	6.2	Функт	циональные последовательности и ряды	26			
		6.2.1	Предельный переход под знаком интеграла	27			
		6.2.2	Равномерная сходимость функциональных рядов				

ГЛАВЛЕНИЕ

7	Лек	ция 7	2 9			
	7.1	Функциональные последовательности и ряды	29			
		7.1.1 Приложение равномерной сходимости для рядов	29			
	7.2	Криволинейный интеграл	30			
		7.2.1 Интеграл векторного поля по кусочно гладкому пути	30			
		7.2.2 Потенциальное поле	32			
0	П	0	33			
8		ция 8	აა 33			
	8.1	Потенциальные векторные поля				
	8.2	8.1.1 Локально потенциальные векторные поля	34 35			
	0.2	т авномерная сходимость функциональных рядов(продолжение)	90			
9	Лекция 9					
	9.1	Локально потенциальные векторные поля	39			
		9.1.1 Интеграл локально потенциального векторного поля по непрерывному пути .	39			
	9.2	Сходимость рядов	41			
	9.3	Степенные ряды	42			
10) Лекция 10 43					
	10.1	Гомотопия путей	43			
	10.2	Степенные ряды	45			
11	Лек	ция 11	47			
		Степенные ряды	47			
	11.1	11.1.1 Метод Абеля. Суммирование числовых рядов	48			
		11.1.2 Экспонента(комплексной переменной)	48			
	11.2	Теория меры	48			
	11.2	11.2.1 Системы множеств	48			
12	Пек	ция 12	51			
12		Экспонента	51			
	12.1	12.1.1 Замечания о тригонометрических функциях	51			
	19 9	Ряды Тейлора	52			
		Теория меры	52			
	12.0	12.3.1 Объем	53			
1.0	-	10				
13		ция 13	55			
		Ряды Тейлора	55			
	13.2	Теория меры	57			
		13.2.1 Mepa	57			
		13.2.2 Теорема о продолжении меры	59			
14		ция 14	61			
	14.1	Теория меры	61			
		14.1.1 Мера Лебеra	61			
15	Лек	ция 15	65			
		Mepa Jebera	65			
		15.1.1. Преобразования меры Лебега при слвигах и линейных отображениях	66			

Лекция 1

1.1 Мультииндекс

Обозначение.

$$(a_1 + a_2 + \dots + a_n)^m = \sum_{c_1=1}^m \sum_{c_2=1}^m \dots \sum_{c_n=1}^m a_{c_1} a_{c_2} \dots a_{c_n}$$
(1.1)

 $\alpha = (\alpha_1 \alpha_2 \dots \alpha_m)$ — мультииндекс

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_m \tag{1.2}$$

$$x \in \mathbb{R}^m \ x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m} \tag{1.3}$$

$$\alpha! = \alpha_1! \alpha_2! \dots \alpha_m! \tag{1.4}$$

$$f^{(\alpha)} = \frac{\partial^{|\alpha|} f}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}}$$
(1.5)

$$(1) = \sum_{\alpha: |\alpha| = r} \frac{r!}{\alpha!} a^{\alpha} \tag{1.6}$$

1.2 Дифференцирование

Лемма 1. $f:E\subset\mathbb{R}^m\to\mathbb{R}$ $f\in C^r(E)$ - r раз дифференцируема на E, $a\in E$ $h\in\mathbb{R}^m$ $\forall t\in[-1,1]$ $a+th\in E$ $\varphi(t):=f(a+th)$ Тогда npu $1\leq k\leq r$

$$\varphi^{(k)}(0) = \sum_{j:|j|=k} \frac{k!}{j!} h^j \frac{\partial^k f}{\partial x^j}(a)$$
(1.7)

Доказательство.

$$\varphi^{(k)}(t) = \sum_{i_1=1}^m \sum_{i_2=1}^m \cdots \sum_{i_r=1}^m \frac{\partial^r f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_r}} (a+th) \cdot h_{i_1} h_{i_2} \dots h_{i_3}$$

$$\tag{1.8}$$

Пример.
$$\varphi'(t) = \sum_{i=1}^m \underbrace{\frac{\partial f}{\partial x_i}(a+th)}_{\text{Производная в точке } a+th} \cdot h_i$$

Производная в точке
$$a+th$$

$$\varphi'' = \sum_{i=1}^m \sum_{i_2=1}^m \frac{\partial^2 f}{\partial x_i \partial x_{i_2}} (a+th) \cdot h_i h_{i_2}$$

$$\varphi''(0) = \frac{\partial^2 f}{\partial x_1^2} h_1^2 + \frac{\partial^2 f}{\partial x_2^2} h_2^2 + \dots + \frac{\partial^2 f}{\partial x_m^2} h_m^2 + 2(\frac{\partial^2 f}{\partial x_1 \partial x_2} h_1 h_2 + \frac{\partial^2 f}{\partial x_1 \partial x_3} h_1 h_3 + \dots)$$

6 ГЛАВА 1. ЛЕКЦИЯ 1

1.3 Теорема (формула Тейлора)

Теорема 1.3.1. $f\in C^{r+1}(E)$ $E\subset \mathbb{R}^m,\ f:E\to \mathbb{R},\ a\in E$ $x\in B(a,R)\subset E$ Тогда $\exists \theta\in (0,1)$

$$f(x) = \sum_{\alpha:0 \le |\alpha| \le r} \frac{f^{(\alpha)}(a)}{\alpha!} (x - a)^{\alpha} + \sum_{\alpha:|\alpha| = r+1} \frac{f^{(\alpha)}(a + \theta(x - a))}{\alpha!} (x - a)^{\alpha}$$

$$f(x) = \sum_{k=0}^{r} \left(\sum_{\substack{(\alpha_1 \dots \alpha_m): \alpha_i \geq 0 \\ \sum \alpha_1 = k}} \frac{1}{\alpha_1! \alpha_2! \dots \alpha_m!} \frac{\partial^k f(a)}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}} (x_1 - a_1)^{\alpha_1} \dots (x_m - a_m)^{\alpha_m}\right) +$$
аналогичный остаток

$$f(a+h) = \sum_{k=1}^r \sum_{\dots} \frac{1}{\alpha_1! \dots \alpha_m!} \frac{\partial^k f}{(\partial x_1)^{\alpha_1} \dots (\partial x_m)^{\alpha_m}} (a) h_1^{\alpha_1} \dots h_m^{\alpha_m} + \text{остаток}$$

Доказательство. $\varphi(t)=f(a+th),$ где h=x-a, $\varphi(0)=f(a),$ $\varphi(1)=f(x)$ Из леммы

$$\varphi(t) = \varphi(0) + \frac{\varphi'(0)}{1!}t + \dots + \frac{\varphi^{(r)}(0)}{r!}t^r + \frac{\varphi^{(r+1)}(\bar{t})}{(r+1)!}t^{r+1}$$
(1.9)

$$f(x) = f(a) + \sum_{k=1}^{r} \frac{1}{k!} \sum_{\alpha: |\alpha| = k} k! \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} + \sum_{\alpha: |\alpha| = r+1} \frac{f^{(\alpha)}(a + \theta(x - a))}{\alpha!} h^{\alpha}$$
(1.10)

однородный многочлен степени *k*

$$f(a+h) = \sum \frac{f^{(\alpha)}(a)}{\alpha!} h^{\alpha} + o(|h|^r)$$
(1.11)

Где однородный многочлен степени k это k -ый дифференциал функции f в точке a, обозначается $d^k f(a,h)$

$$f(x) = \sum_{k=1}^{r} \frac{d^k f(a,h)}{k!} + \frac{1}{(k+1)!} d^{k+1} f(a+\theta h, h)$$

Примечание. $d^2f = f_{x_1x_1}''(a)h_1^2 + f_{x_2x_2}''(a)h_2^2 + \dots + f_{x_mx_m}''(a)h_m^2 + 2\sum_{i < j} f_{x_ix_j}''(a)h_ih_j \ d^{k+1}f = d(d^kf)$ $df = f_{x_1}'h_1 + f_{x_2}'h_2 + \dots + f_{x_m}'h_m$ $d^2f = (f_{x_1x_1}''h_1 + f_{x_1x_2}''h_2 + \dots + f_{x_1x_m}''h_m)h_1 + (f_{x_2x_1}''h_1 + f_{x_2x_2}''h_2 + \dots + f_{x_2x_m}''h_m)h_2 + \dots$

1.4 Линейные отображения

1.4.1 Определение

Определение. $\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)$ - множество линейных отображений $\mathbb{R}^m \to \mathbb{R}^n$ - это линейное простарнство

$$A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n) \quad ||A|| \stackrel{\text{def}}{=} \sup_{x \in \mathbb{R}^m : |x| = 1} |Ax|$$

Примечание.

- 1. $\sup \leftrightarrow \max$, т.к. сфера компактна
- 2. $A=(a_{ij})\quad \|A\|\leq \sqrt{\sum a_{ij}^2}$ по Лемме об оценке нормы линейного отображения

3.
$$\forall x \in \mathbb{R}^m \quad |Ax| \leq \|A\| \cdot |x| \ x=0$$
 - тривиально $x \neq 0 \quad \tilde{x} = \frac{x}{|x|} \quad |Ax| = |A(|x| \cdot \tilde{x})| = \left||x| \cdot A\tilde{x}\right| = |x| \cdot |A\tilde{x}| \leq \|A\| \cdot |x|$

4. Если $\exists C>0: \quad \forall x\in \mathbb{R}^m |Ax|\leq C\cdot |x|,$ то $\|A\|\leq C$

Пример. 1. m = l = 1

A - линейный оператор - задается числом $a \ x \mapsto ax \ \|A\| = |a|$

2.
$$m = 1 l -$$
любое

$$A: \mathbb{R} \to \mathbb{R}^l \ A \leftrightarrow \begin{pmatrix} a_1 \\ \vdots \\ a_l \end{pmatrix} \ \|A\| = |a|$$

3.
$$m -$$
любое $l = 1$

$$A: \mathbb{R}^m \to \mathbb{R} \ A \leftrightarrow \vec{a}$$

$$x \mapsto (\vec{a}, x) \ \|A\| = \sup_{x \in \mathbb{R}^m: |x| = 1} |\langle \vec{a}, x \rangle| = |\vec{a}|$$

4.
$$m$$
 — любое l — любое $\|A\| = \sup_{x:|x|=1} |Ax| = :($

1.4.2 Лемма

Лемма 2. X,Y - линейные нормированные пространства $A \in \mathcal{L}(X,Y)$

- 1. A ограниченый оператор, т.е. ||A|| конечное
- 2. А непрерывен в нуле
- $3. \ A$ непрерывен всюду в X
- 4. А равномерно непрерывен

 $f:X\to Y$ - метрические пространства, равномерно непрерывно

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x, x_0: \rho(x, x_0) < \delta \quad \rho(f(x), f(x_0)) < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x_0, x_1: \ |x_1 - x_0| < \delta \quad |Ax_1 - Ax_2| < \varepsilon$$

Доказательство.

$$(4 \Rightarrow 3 \Rightarrow 2)$$
 очевидно

 $(2 \Rightarrow 1)$ непрерывность в нуле:

для
$$\varepsilon=1$$
 $\exists \delta: \forall x: |x-0|\leq \delta \quad |Ax-A\cdot 0|<1$ при $|x|=1\quad |Ax|=|A\frac{1}{\delta}(\delta\cdot x)|=\frac{1}{\delta}\cdot |A\cdot \delta x|\leq \frac{1}{\delta}$

(1
$$\Rightarrow$$
 4) $|Ax_1 - Ax_0| = |A(x_1 - x_0)| \le ||A|| \cdot |x_1 - x_0|$
 $\forall \varepsilon > 0 \ \exists \delta := \frac{\varepsilon}{||A||} \quad \forall x_1, x_0 \ |x_1 - x_0| < \delta \quad |Ax_1 - Ax_0| \le ||A|| \cdot |x_1 - x_0| < \varepsilon$

1.4.3 Теорема о пространстве линейных отображений

Теорема 1.4.1.

- 1. Отображение $A \to \|A\|$ в $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$ является нормой, т.е выполнятеся
 - (a) $||A|| \ge 0$, если $||A|| = 0 \Rightarrow A = 0_{m,n}$
 - (b) $\forall \lambda \in \mathbb{R} \quad ||\lambda A|| = |\lambda| \cdot ||A||$
 - (c) $||A + B|| \le ||A|| + ||B||$
- 2. $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n), B \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^k) \quad ||AB|| \le ||B|| \cdot ||A||$

Доказательство.

- 1. (a) $||A|| = \sup_{|x|=1} |Ax|$, очев
 - (b) очев
 - (c) $|(A+B)\cdot x| = |Ax+Bx| \le |Ax|+|Bx| \le (\|A\|+\|B\|)\cdot |x|$ по замечанию $3\|A+B\| \le \|A\|+\|B\|$
- 2. $|BAx| = |B \cdot (Ax)| \le ||B|| \cdot |Ax| \le ||B|| \cdot ||A|| \cdot |x|$ по замечанию 3

Примечание. в $\dim(X,Y)$

$$||A|| = \sup_{|x|=1} |Ax| = \sup_{|x| \le 1} |Ax| = \sup_{|x| < 1} |Ax| = \sup_{x \ne 0} \frac{|Ax|}{|x|} = \inf\{C \in \mathbb{R} : \forall x \ |Ax| \le C \cdot |x|\}$$

 Γ ЛАВА 1. ЛЕКЦИЯ 1

Лекция 2

$$||A|| = \sup_{|x|=1} |Ax|$$
$$|Ax| \le ||A|| \cdot |x|$$

2.1 Теорема лагранжа(для отображений)

Теорема 2.1.1.
$$F:E\subset\mathbb{R}^m\to\mathbb{R}^l$$
 дифф E $a,b\in E$ $\underline{\text{Тогда}}\ \exists c\in[a,b]\ c=a+\Theta(b-a)\ \Theta\in(0,1)$ $\overline{|F(b)-F(a)|}\leq\|F'(c)\|\cdot|b-a|$

Доказательство.
$$f(t) = F(a+t(b-a)), \ t \in \mathbb{R}$$
 $f'(t) = F'(a+t(b-a)) \cdot (b-a)$ Тогда $\exists \Theta \in [0,1]: \ |f(1)-f(0)| \leq |f'(\Theta)| \cdot |1-0|$ - это т. Лагранжа для векторнозначных функций т.е $|F(b)-F(a)| \leq |F'(a+\Theta(b-a)) \cdot (b-a)| \leq \|F'(\underbrace{a+\Theta(b-a)})\| \cdot |b-a|$

2.2 Лемма

Лемма 3.
$$\mathcal{L}m, m, \Omega_m = \{L \in \mathcal{L}_{m,m} : \exists L^{-1}\}, A \mapsto A^{-1} B \in \mathcal{L}_{m,m} \text{ Пусть } \exists c > 0 \ \forall x \in \mathbb{R}^m \ |Bx| \ge c|x|$$
 Тогда $B \in \Omega_m \ u \ \|B^{-1}\| \le \frac{1}{c}$

Доказательство. B - биекция(конечномерный эффект???), $\exists B^{-1}|Bx|\geq c|x|$ $x:=B^{-1}y$ $|y|\geq c\cdot |B^{-1}y|$ $|B^{-1}y\leq \frac{1}{c}|y|\Rightarrow \|B^{-1}\|\leq \frac{1}{c}$

Примечание.
$$A\in\Omega_m$$
 Тода $\exists c:|Ax|\geq c\cdot|x|$ $x=|A^{-1}Ax|\leq \|A^{-1}\|\cdot|Ax|$ $c:=\frac{1}{\|A^{-1}\|}$

2.3 Теорема об обратимости оператора близкого к обратимому

Теорема 2.3.1. $L \in \Omega_m$ $M \in \mathcal{L}_{m,m}$ $\|L - M\| < \frac{1}{\|L^{-1}\|}$ (M -близкий к L) $\underline{\text{Тогда}}$

- 1. $M \in \Omega_m$, т.е. Ω_m открытое множество в $\mathcal{L}_{m,m}$
- 2. $||M^{-1}|| \le \frac{1}{||L^{-1}||^{-1} ||L M||}$
- 3. $||L^{-1} M^{-1}|| \le \frac{||L^{-1}||}{||L^{-1}||^{-1} ||L M||} \cdot ||L M||$

Доказательство. $|a+b| \ge |a| - |b|$

1. $|Mx| = |Lx + (M-L)x| \ge |Lx| - |(M-L)x| \ge \frac{1}{\|L^{-1}\|} \cdot |x| - \|M-L\| \cdot |x| \ge (\|L^{-1}\|^{-1} - \|M-L\|) \cdot |x| \Rightarrow M$ - обратим(по Лемме) $L \in \Omega_m \Rightarrow \exists c = \frac{1}{\|L^{-1}\|} : |Lx| \ge c \cdot |x|$ (по замечанию к Лемме)

ГЛАВА 2. ЛЕКЦИЯ 2

2. Из пункта 1 $c = \|L^{-1}\|^{-1} - \|M - L\|$, тогда Лемма утверждает, что $\|M^{-1}\| \leq \frac{1}{\|L^{-1}\|^{-1} - \|M - L\|}$

$$\begin{array}{ll} 3. \ \ M^{-1} - L^{-1} = M^{-1}(L-M)L^{-1} \\ \|M^{-1} - L^{-1}\| \leq \|M^{-1}\| \cdot \|L - M\| \cdot \|L^{-1}\| \leq \frac{\|L^{-1}\|}{\|L^{-1}\| - 1 - \|L - M\|} \cdot \|L - M\| \end{array}$$

 Π римечание. $A\mapsto A^{-2}$ - непрерывное отображение $\Omega_m\to\Omega_m$ $B_k\to L\Rightarrow$ при больших k $B_k\in B(L,\frac{1}{\|L^{-1}\|})\Rightarrow B_k$ - обратимо $\|L^{-1}-B_k^{-1}\|\le \frac{\|L^1\|}{\|L^{-1}\|-\|B_k^{-1}\|}\cdot \|L-B_k\| \underset{k\to +\infty}{\to} 0$

2.4 Теорема о непрерывно диффернцируемых отображениях

$$F:E\subset\mathbb{R}^m o\mathbb{R}^l$$
 - дифф на E $F':E o\mathcal{L}_{m,l}$

Теорема 2.4.1. Пусть $F:E\subset\mathbb{R}^m\to\mathbb{R}^l$ - дифф на E Тогда эквивалентны:

- 1. $F \in C^1(E)$ т.е существуют все частные производные $\frac{\partial F_i}{\partial x_j}$ непрерывные на E
- 2. $F':E \to \mathcal{L}_{m,l}$ непрерывно т.е $\forall x \in E \ \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon,x) \ \forall \bar{x}: |\bar{x}-x| < \delta \quad \|F'(x)-F'(\bar{x})\| \leq \varepsilon$

Доказательство.

10

(1 \Rightarrow 2) матричные элементы $F'(x) - F'(\bar{x})$ - это $\frac{\partial F_i}{\partial x_j}(x) - \frac{\partial F_i}{\partial x_j}(\bar{x})$ $\|A\| \leq \sqrt{\sum \alpha_{i,j}^2}$ Берем $x, \varepsilon \; \exists \delta > 0 \; \forall \bar{x} \; \dots \; \frac{\partial F_i}{\partial x_j}(x) - \frac{\partial F_i}{\partial x_j}(\bar{x}) < \frac{\varepsilon}{\sqrt{ml}}$ - сразу для всех i, j $\|F'(x) - F'(\bar{x})\| < \sqrt{\sum_{i,j} \frac{\varepsilon^2}{ml}} = \varepsilon$

 $\begin{array}{l} (2\Rightarrow 1) \ \ \text{Проверяем непрывность в точке } x\\ \forall \varepsilon>0 \ \exists \delta>0 \ \forall \bar{x}: |x-\bar{x}|<\delta \quad \|F'(x)-F'(\bar{x})\|<\varepsilon\\ h=(0,0,\dots,0,\underbrace{1}_{j},0,\dots)\\ |F'(x)h-F'(\bar{x})h|\leq \|F'(x)-F'(\bar{x})\|\cdot\underbrace{|h|}_{1}<\varepsilon\\ |F'(x)h-F'(\bar{x})h|=\sqrt{\sum_{i=1}^{l}\left(\frac{\partial F_{i}}{\partial x_{j}}(x)-\frac{\partial F_{i}}{\partial x_{j}}(\bar{x})\right)^{2}}<\varepsilon\Rightarrow \forall i \ \left|\frac{\partial F_{i}}{\partial x_{j}}(x)-\frac{\partial F_{i}}{\partial x_{j}}(\bar{x})\right|<\varepsilon \end{array}$

2.5 Экстремумы

2.5.1 Определение

Определение. $f: E \subset \mathbb{R}^m \to \mathbb{R} \quad a \in E$ a - точка локального максимума: $\exists U(a) \subset E \ \forall x \in U(a) \ f(x) \leq f(a)$ (аналогично для минимума) экстремум - максимум или минимум

2.5.2 Теорема Ферма

Теорема 2.5.1. $f: E \subset \mathbb{R}^m \to \mathbb{R}$ $a \in \text{Int}E$ - точка экстремума, f - дифф в точке a <u>Тогда</u> $\forall u \in \mathbb{R}^m: |u|=1$ $\frac{\partial f}{\partial u}(a)=0$

Доказательство. Для $f|_{\text{прямая}(a,u)}$ точка a остается локальным экстремумом, выполняется одномерная теорема Ферма

2.5. ЭКСТРЕМУМЫ 11

Cледствие 2.5.1.1. Небходимое условие экстремума a - локальный экстремум $f \Rightarrow \frac{\partial f}{\partial x_1}(a), \ldots, \frac{\partial f}{\partial x_m}(a) =$

 $\mathit{Cnedcmeue}\ 2.5.1.2.$ теорема Ролля $f:E\subset\mathbb{R}^m o \mathbb{R}$

 $K \subset E$ - компакт f - дифф на $\mathrm{Int} K$; f - непрерывна на K

$$f|_{\partial K}=\mathrm{const}$$
 (на границе K)
 Тогда $\exists a\in\mathrm{Int}K\ f'(a)=(rac{\partial f}{\partial x_1}(a),\ldots,rac{\partial f}{\partial x_m}(a))=0$

Доказательство. По теореме Вейерштрасса f достигает минимального и максимального значения на компакте. Тогда:

- $f = \text{const Ha } K \Rightarrow f' \equiv 0$
- $\exists a \in \text{Int} K$ точка экстремума по Т. Ферма f'(a) = 0

Квадратичная форма 2.5.3

1. Определение

Определение.
$$Q: \mathbb{R}^m \to \mathbb{R}$$

$$Q(h) = \sum_{1 \leq i,j \leq m} a_{ij} h_i h_j$$

- Положительно определенная квадратичная фомра $\forall h \neq 0 \ Q(h) > 0$ Пример. $Q(h) = h_1^2 + h_2^2 + \cdots + h_m^2$
- Отрицательно определенная квадратичная фомра $\forall h \neq 0 \ Q(h) < 0$
- Пример. $Q(h) = h_1^2 - h_2^2$
- Полуопределенная (положительно опрделенная вырожденная) $\exists \bar{h} \neq 0 : Q(h) = 0$ Пример. $Q(h) = h_1^2$ Q((0, 1, 1, ...)) = 0
- 2. Лемма

Лемма 4.

- (а) Q положительно определенная. $Tor \partial a \exists \gamma_O > 0 \ \forall h \ Q(h) \geq \gamma_O |h|^2$
- (b) $p:\mathbb{R}^m \to \mathbb{R}$ норма Тогда $\exists C_1, C_2 > 0 \ \forall x \ C_2 |x| \le p(x) \le C_1 |x|$

 \mathcal{A} оказательство. $S^{m-1}:=\{x\in\mathbb{R}^m:|x|=1\}$ — компакт \Rightarrow по Т. Вейерштрасса минимум и максимум достигаются

Для x = 0 оба утверждения очевидны. Пусть $x \neq 0$

(a)
$$\gamma_Q:=\min_{h\in S^{m-1}}Q(h)>0$$
 Тогда $Q(h)\geq \gamma_Q|h|^2,\,Q(h)=Q(|h|\cdot \frac{h}{|h|})=|h|^2\cdot Q(\frac{h}{|h|})\geq \gamma_Q\cdot |h|^2$

(b)
$$C_2 := \min_{x \in S^{m-1}} p(x)$$
 $C_1 := \max_{x \in S^{m-1}} p(x)$
$$p(x) = p(|x| \frac{x}{|x|}) = |x| p(\frac{x}{|x|}) \stackrel{\geq}{\leq} C_2 |x|$$
 Проверим, что $p(x)$ - непрерывная функция(для Т. Вейерштрасса), e_k — базисный вектор
$$p(x-y) = p(\sum_{x \in S^{m-1}} p(x) - y_k) \stackrel{\leq}{\leq} \sum_{x \in S^{m-1}} p(x)$$

$$p(x-y) = p(\sum_{k=1}^{m} (x_k - y_k)e_k) \le \sum p((x_k - y_k)e_k) = \sum |x_k - y_k|p(e_k) \le |x-y| \cdot M$$
 где $M = \sqrt{\sum p(e_k)^2}, |p(x) - p(y)| \le p(x-y)$

2.5.4 Достаточное условие экстремума

$$d^{2}f(a,h) = f_{x_{1}x_{1}}''(a)h_{1}^{2} + \dots + f_{x_{m}x_{m}}''h_{m}^{2} + 2\sum_{1 \leq i \leq j \leq m} f_{x_{i}x_{j}}''h_{i}h_{j}$$

$$f(x) = f(a) + df(a, x - a) + \frac{1}{2!}d^{2}f(a, x - a) + o(|x - a|^{2})$$

$$f(a + h) = f(a) + df(a, h) + \frac{1}{2!}d^{2}f(a + \theta h, h), \quad 0 \leq \theta \leq 1$$

1. Теорема о достаточном условии экстремума

Теорема 2.5.2. $f: E \subset \mathbb{R}^m \to \mathbb{R} \ a \in \mathrm{Int} E \quad \frac{\partial f}{\partial x_1}(a), \dots \frac{\partial f}{\partial x_m}(a) = 0, \ f \in C^2(E)$ $Q(h) := d^2 f(a,h)$, Тогда, если:

- ullet Q(h) положительно определено, то a точка локального минимума
- ullet Q(h) отрицательно определено, то a локальный максимум
- Q(h) незнакоопределено, то a не экстремум
- ullet Q(h) полож/отриц вырожденная недостаточно информации

Доказательство.

• Для положит. опр.
$$f(a+h) - f(a) = \frac{1}{2}d^2f(a+\theta h,h) = \\ = \frac{1}{2}\left(Q(h) + \left(\sum_{i=1}^m \left(\underbrace{f''_{x_ix_i}(a+\theta h) - f''_{x_ix_i}(a)}_{6.\text{M}}\right)\underbrace{h_i^2}_{\leq |h|^2} + 2\sum_{i < j} \left(\underbrace{f''_{x_ix_j}(a+\theta h) - f''_{x_ix_j}(a)}_{6.\text{M}}\right)\underbrace{h_ih_j}_{\leq |h|^2}\right)\right) \\ f(a+h) - f(a) \geq \frac{1}{2}(\gamma_Q|h|^2 - \frac{\gamma_Q}{2}|h|^2) \geq \frac{1}{4}\gamma_Q|h|^2 > 0$$

• Для отр. опр аналогично

• Докажем примером:
$$f(x_1,x_2,\dots)=x_1^2-x_2^4-x_3^4-\dots$$
 $f'_{x_1}(a)=0,$ $f'_{x_2}=0$ $\bar{f}(x_1,x_2,\dots)=x_1^2+x_2^4+x_3^4+\dots$ $d^2f(a,h)=2h_1^2,$ $d^2\bar{f}(a,h)=2h_1^2$ $a=(0,0,0,\dots)$ f - не имеет экстремума в точке a \bar{f} - имеет минимум в точке a

Примечание. Если f как в теореме, $d^2f(a,h)$ - положительно определенный вырожденный $\Rightarrow a$ - не точка локального максимума

Лекция 3

3.1 Диффеоморфизмы

3.1.1 Определение

Определение. Область - открытое связное множество

Определение. $F: \underbrace{O}_{\text{обл.}} \subset \mathbb{R}^m \to \mathbb{R}^m$ - диффеоморфизм если

- 1. F обратимо
- 2. F дифференцируеое
- 3. F^{-1} дифференцируемое

Примечание.
$$Id = F \circ F^{-1} = F^{-1} \circ F$$
 $E = F' \cdot (F^{-1})' = (F^{-1})' \cdot F'$
 $\forall x \det F'(x) \neq 0$

3.1.2 Лемма о почти локальной инъективности

Лемма 5.
$$F: O \subset \mathbb{R}^m \to \mathbb{R}^m$$
 - дифф. в $x_0 \in O$, $\det F'(x_0) \neq 0$ $\underline{Torda} \ \exists C > 0 \ \exists \delta > 0 \ \ \forall h \in B(0,\delta)$ $|F(x_0 + h) - F(x_0)| > C|h|$

Доказательство.
$$|h|=|A^{-1}\cdot Ah|\leq \|A^{-1}\|\cdot |Ah|$$
 $c|h|\leq |Ah|$, где $c=\frac{1}{\|A^{-1}\|}$ $F'(x)=F$

Если
$$F$$
 - линейное отображение $|F(x_0+h)-F(x_0)|=|F(h)|=|F'(x_0)h|\geq \frac{h}{|(F'(x_0))^{-1}|}$ $|F(x_0+h)-F(x_0)|=\big|F'(x_0)h+\underbrace{\alpha(h)\cdot|h|}_{6.\mathrm{M.}}\cdot|h|\big|\geq c|h|-\frac{c}{2}|h|=\frac{c}{2}|h|$ — работает в шаре

3.1.3 Теорема о сохранении области

Теорема 3.1.1.
$$F:O\subset\mathbb{R}^m\to\mathbb{R}$$
 - дифф $\forall x\in O \quad \det F'(x)\neq 0$ Тогда $F(O)$ - открыто

Примечание. O - связно, F - непрырвно $\Rightarrow F(O)$ - связно

Доказательство. $x_0 \in O \quad y_0 := F(x_0) \in F(O)$ Проверим, что y_0 - внутр точка F(O): По лемме $\exists c, \delta: \ \forall h \in \overline{B(0,\delta)} \quad |F(x_0+h) - F(x_0)| > C|h|$ В частности $F(x_0+h) \neq F(x_0)$, при $|h| = \delta$

$$r = \frac{1}{2} \operatorname{dist}(y_0, F(S(x_0, \delta))), \ \operatorname{dist}(A, B) := \inf_{\substack{a \in A \\ b \in B}} |a - b|$$
 (3.1)

Если $y \in B(y_0, r)$, то

$$\operatorname{dist}(y, F(S(x_0, \delta))) > r \tag{3.2}$$

Проверим, что $B(y_0, r) \subset F(O)$:

T.E. $\forall y \in B(y_0, r) \ \exists x \in B(x_0, \delta) \quad F(x) = y$

Рассмотрим функцию g(x) = |F(x) - y|, при $x \in \overline{B(x_0, \delta)}$

$$g(x_0) = |F(x_0) - y|^2 = |y_0 - y|^2 < r$$
(3.3)

при $x \in S(x_0, \delta): g(x) > r^2$, по $(2) \Rightarrow \min g$ не лежит на границе шара \Rightarrow он лежит внутри шара

$$g(x) = (F_1(x) - y_1)^2 + \dots + (F_m(x) - y_m)^2$$
(3.4)

$$\begin{cases} (\frac{\partial g}{\partial x_i} = 0) \\ 2(F_1(x) - y) \cdot F'_{x_1}(x) + \dots + 2(F_m(x) - y) \cdot F'_{x_1} = 0 \\ \vdots \\ 2(F_1(x) - y) \cdot F'_{x_m}(x) + \dots + 2(F_m(x) - y) \cdot F'_{x_m} = 0 \\ F'(x) \cdot 2(F(x) - y) = 0 \Rightarrow \forall x \det F' \neq 0 \Rightarrow F(x) - y = 0 \end{cases}$$

1. Следствие

Следствие 3.1.1.3. $F: O \subset \mathbb{R}^m \to \mathbb{R}^l$, l < m, дифф в $O, F \in C^1(O)$ $\operatorname{rg} F'(x) = l$, при всех $x \in O$ Тогда F(O) - открытое

Доказательство. Фиксируем x_0 . Пусть ранг $F'(x_0)$ реализуется на столбцах с 1 по l, т.е. $A:=\det(rac{\partial F_i}{\partial x_i})_{i,j=1...l}(x_0)
eq 0$ - и для близких точек

$$ilde{F}:O o\mathbb{R}^m$$
 $ilde{F}(x)=egin{pmatrix} \mathrm{Mcходныe}\ l\ \mathrm{координат} \ \hline & \hat{F}(x) \ & x_{l+1} \ & \vdots \ & x_m \end{pmatrix}$

 $\det \tilde{F}'(x) = \det A(x) \cdot \det E_{m-l} \neq 0$ в окрестности точки x_0 $ilde{F}|_{U(x_0)}$ - удовлетворяет теореме $\Rightarrow ilde{F}(U(x_0))$ - открыто в \mathbb{R}^m $F(U(x_0)) =$

3.1.4 Теорема о гладкости обратного отображения

 $C^r(O, \mathbb{R}^m)$

Теорема 3.1.2.
$$T \in \underbrace{C^r(O, \mathbb{R}^m)}_{O \subset \mathbb{R}^m}$$

Теорема 3.1.2. $T\in \underbrace{C^r(O,\mathbb{R}^m)}_{O\subset\mathbb{R}^m}$ T - обратимо, $\det T'(x)\neq 0$, при всех $x\in O$ $\underline{\text{Тогда}}\ T^{-1}\in C^r$ и $(T^{-1})'(y_0)=(T'(x_0))^{-1}$, где $y_0=T(x_0)$

Доказательство. индукция по r, база r=1

$$f:X o Y$$
 - непр $\Leftrightarrow orall B$ – откр $\subset Y$ $f^{-1}(B)$ – откр

 $S = T^{-1}, S$ - непрерывна по т. о сохранении области

 $T'(x_0) = A$ - невыроженый оператор

По лемме о почти локальной инъективноси

$$\exists C, \delta : \ \forall x \in B(x_0, \delta) \ |T(x) - T(x_0)| > C|x - x_0|$$
 (3.5)

Опр диффернцируемости:

$$T(x) - T(x_0) = A(x - x_0) + o(x) \cdot |x - x_0| \tag{3.6}$$

$$T(x) = y T(x_0) = y_0 x = S(y) x_0 = S(y_0)$$
(3.7)

B терминах y, S:

$$S(y) - S(y_0) = A^{-1}(y - y_0) - \underbrace{A^{-1}\omega(S(y)) \cdot |S(y) - S(y_0)|}_{\text{Проверим, что это } o(|y - y_0|)}$$
(3.8)

Пусть y близко к y_0 :

$$|x - x_0| = |S(y) - S(y_0)| < \delta \tag{3.9}$$

$$|A^{-1} \cdot o(S(y)) \cdot |S(y) - S(y_0)|| = |S(y) - S(y_0)| \cdot |A^{-1} \cdot \omega(S(y))| \le |S(y) - S(y_0)| \cdot |A^{-1} \cdot \omega(S(y))| \cdot |A^{-1} \cdot \omega(S(y))| \le |S(y) - S(y_0)| \cdot |A^{-1} \cdot \omega(S(y))| \cdot |A^{-1} \cdot \omega(S(y))| \cdot |A^{-1} \cdot \omega(S(y))| \le |S(y) - S(y_0)| \cdot |A^{-1} \cdot \omega(S(y))| \cdot |A^{-1} \cdot \omega(S$$

$$\leq |x - x_0| \cdot ||A^{-1}|| \cdot |\omega(S(y))| \leq \frac{1}{c} ||A^{-1}|| \cdot |y - y_0| \cdot |\omega(S(y))| \tag{3.10}$$

Гладкость $S: S'(y_0) = A^{-1}$

$$y \mapsto T^{-1}(y) = x \mapsto T'(x) = A \mapsto A^{-1}$$
 (3.11)

В (11) все шаги непрерывны $\Rightarrow S'$ — непрерывно

Переход $r \to r+1$

 $T \in C^{r+1}$ $T': O \to \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m)$ $T' \in C^r$

Проверим, что $S^{-1} \in C^{r+1}$:

$$y \underset{C^r}{\rightarrow} S(y) \underset{C^r}{\rightarrow} T'(x) \underset{C^{\infty}}{\rightarrow} (S^{-1})'$$
 (3.12)

3.1.5 Теорема о локальной обратимости

Теорема 3.1.3. $T \in C^r(O, \mathbb{R}^m)$ $x_0 \in O \det T'(x_0) \neq 0$ Тогда $\exists U(x_0) \ T|_U$ - диффеоморфизм

Доказательство.
$$F(x_0 + h) = F(x_0) + F'(x_0)h + o(h)$$

:
HETУ

Теорема 3.1.4. Формулировка в терминах системы уравнений

$$\begin{cases} f_1(x_1,\dots,x_m) = y_1 \\ f_2(x_1,\dots,x_m) = y_2 \\ \vdots \\ f_m(x_1,\dots,x_m) = y_m \\ \Pi \text{усть } (x^0,y^0) \text{ - ее решение } f \in C^r \\ \det F'(x^0) \neq 0 \qquad F = (f_1 \dots f_m) \end{cases}$$

Тогда $\exists U(y^0) \ \forall y \in U(y^0)$ система имеет решение и эти решения C^r -гладко зависят от y

3.1.6 Теорема о неявном отображении

Теорема 3.1.5.
$$F:O\subset\mathbb{R}^{m+n}\to\underbrace{\mathbb{R}^n}_{(x_1...y_n)}$$
 $F\in C^r$ $(a,b)\in O$ $F(a,b)=0$ Допустим $\det(\frac{\partial F_i}{\partial y_j}(a,b))_{i,j=1...n}\neq 0$ Тогда

1.
$$\exists P\subset\mathbb{R}^m\quad a\in P$$
 - откр. $\exists Q\subset\mathbb{R}^n\quad b\in Q$ - откр. $\exists !\Phi:P\to Q$ - C^r -гладкое такие что $\forall x\in P(a)\quad F(x,\Phi(x))=0$

$$2. \ \Phi'(x) = -\Big(F_y'(x,\Phi(x))\Big)^{-1} \cdot F_x'(x,\Phi(x))$$

```
Теорема 3.1.6. В терминах систем уранений
```

 $f_i \in C^r, \ (a,b) \ - \ \text{решение системы:}$ $\begin{cases} f_1(x_1,\dots,x_m,y_1,\dots,y_n) = 0 \\ f_2(x_1,\dots,x_m,y_1,\dots,y_n) = 0 \\ \vdots \\ f_n(x_1,\dots,x_m,y_1,\dots,y_n) = 0 \end{cases}$ Допустим $\det(\frac{\partial f_i}{\partial y_j}(a,b))_{i,j=1\dots n} \neq 0$ $\underbrace{\text{Тогда}}_{\text{такие что}} \ \exists U(a) \ - \ \text{откр.}, \ \exists ! \Phi$ $\underbrace{\text{такие что}}_{\forall x \in U(a)} \ (x,\Phi(x)) \ - \ \text{также решение системы} \end{cases}$

Лекция 4

4.1 Диффеоморфизмы

4.1.1 Теорема о неявном отображении (продолжение)

$$F' = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_m} & \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_n} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_m} & \frac{\partial F_n}{\partial y_1} & \cdots & \frac{\partial F_n}{\partial y_n} \end{pmatrix}$$

Доказательство.

Если 1) выполняется, то 2) очевидно: $F(x,\Phi(x)) = 0 \Rightarrow F_x'(x,\Phi(x)) + F_y'(x,\Phi(x)) \cdot \Phi'(x) = 0$

1.
$$\tilde{F}:O\to\mathbb{R}^{m+n}$$
 $(x,y)\mapsto (x,F(x,y))$ $\tilde{F}(a,b)=(a,0)$ $\tilde{F}'=\begin{pmatrix}E&0\\F'x&F'y\end{pmatrix}$, очевидно $\det \tilde{F}=0$ в (a,b) , значит $\exists U((a,b))$ $\tilde{F}|_{U((a,b))}$ - диффеоморфизм

- (a) $U = P_1 \times Q$ можно так считать
- (b) $V = \tilde{F}(U)$
- (c) \tilde{F} диффеоморфизм на $U\Rightarrow \exists \Psi=\tilde{F}^{-1}:V\to U$
- (d) \tilde{F} не меняет первые m координат $\Psi(u,v)=(u,H(u,v)),\,H:V\to\mathbb{R}^m$
- (e) Ось x и ось u идентичны p= ось $u=\mathbb{R}^m\times\{0\}^n\cap\underbrace{V}_{\text{открыто в }\mathbb{R}^{m+n}}\Rightarrow p$ открыто в R^m

(f)
$$\Phi(x)=H(x,0)$$
 $F(x,\Phi(x))=0$, при $x\in P$ $F\in C^r\Rightarrow \tilde{F}\in C^r\Rightarrow \Psi\in C^r\Rightarrow H\in C^r\Rightarrow \Phi\in C^r$

Единственность
$$x \in p \ y \in u \quad F(x,y) = 0$$

 $(x,y) = \Psi(\tilde{F}(x,y)) = \Psi(x,0) = (x,H(x,0)) = (x,\Phi(x))$

18 ГЛАВА 4. ЛЕКЦИЯ 4

4.1.2Определение

"поверхность- многообразие $M \subset \mathbb{R}^m \quad k \in \{1, \dots, m\}$

Определение. M - **простое** k-**мерное многообразие в** \mathbb{R}^m если оно гомеоморфно некоторому

т.е. $\exists \Phi : O \subset \mathbb{R}^k \to M$ - непрерывное, обратимое, Φ^{-1} - непрерывное, Φ - параметризация многообразия M

Определение

Определение. $M\subset\mathbb{R}^m$ - простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m $\exists \Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m \quad \Phi(O) = M \quad \Phi: O \to M$ - гомеоморфизм $\Phi \in C^r \quad \forall x \in O \quad {\rm rank} \ \Phi'(x) = k - {\rm максимально} \ {\rm возможное} \ {\rm значениe}$

Пример.

1. Полусфера в
$$\mathbb{R}^3=\{(x,y,z)\in\mathbb{R}^3|z=0,\ x^2+y^2+z^2=R^2\}$$
 $\Phi:(x,y)\mapsto (x,y,\sqrt{R^2-x^2-y^2})$ $\Phi:B(0,R)\subset\mathbb{R}^2\to\mathbb{R}^3$ $\Phi\in C^\infty(B(0,R),\mathbb{R}^3)$
$$\Phi'=\begin{pmatrix}1&0\\0&1\\\frac{-x}{\sqrt{R^2-x^2-y^2}}&\frac{-y}{\sqrt{R^2-x^2-y^2}}\end{pmatrix},\ \mathrm{rank}\ \Phi'=2$$

Аналогично график гладкой функции $(R^2 \to R)$ - простое двумерное многообразие

2. Цилиндр $\{(x,y,z)\in\mathbb{R}^3|x^2+y^2=R^2,\ z\in(0,h)\}$ $\Phi:[0,2\pi]\times(0,h)\to\mathbb{R}^3$ $(\varphi,z)\mapsto (R\cos\varphi,R\sin\varphi,z)$ - параметризация цилиндра без отрезка(боковой перпендикуляр) При $\varphi=0,\ \varphi=2\pi$ проблема $\exists \Phi: O \subset \mathbb{R}^2 \to M \subset \mathbb{R}^3$ откр., односвязно $(x,y) \mapsto (\frac{Rx}{\sqrt{x^2+y^2}}, \frac{Ry}{\sqrt{x^2+y^2}}, \sqrt{x^2+y^2-1})$

$$(x,y)\mapsto (rac{Rx}{\sqrt{x^2+y^2}},rac{Ry}{\sqrt{x^2+y^2}},\sqrt{x^2+y^2-1})$$
 $(x,y)\in$ открытое кольцо $1< x^2+y^2< (1+h)^2$

3. Сфера в \mathbb{R}^3 без . . .

$$\Phi: (0,2\pi) \times [-\frac{\pi}{2},\frac{\pi}{2}] \to R^3 \quad R \text{ - радиус}$$

$$(\varphi,\psi) \mapsto \begin{pmatrix} R\cos\varphi\cos\psi \\ R\sin\varphi\cos\psi \end{pmatrix} \text{ - сферические координаты в } \mathbb{R}^3$$

4.1.4 Теорема

Теорема 4.1.1. $M \subset \mathbb{R}^m$ $1 \le k < m$ $1 \le r \le \infty$ $p \in M$ Тогда эквивалентны:

- 1. $\exists U \subset \mathbb{R}^m$ окрестность точки p в \mathbb{R}^m : $M \cap U$ простое k-мерное многообразие класса C^r
- 2. $\exists \tilde{U} \subset \mathbb{R}^m$ окрестность точки p $f_1, f_2, \dots, f_{m-k} : \tilde{U} \to \mathbb{R}$, BCE $f \in C^r$ $x\in M\cap \tilde{U}\Leftrightarrow f_1(x)=f_2(x)=\cdots=0,$ при этом $\mathrm{grad}(f_1(p)),\ldots,\mathrm{grad}(f_{m-k}(p))$ - ЛНЗ

Доказательство.

$$1\Rightarrow 2$$
 Φ - параметризация : $\underbrace{O}_{(t_1,\dots,t_k)}\subset \mathbb{R}^k,\ \in C^r,\ p=\Phi(t^0)$ Φ' - матрица $m\times k$ rank $\Phi'(t^0)=k$ Пусть $\det(\frac{\partial \Phi_i}{\partial t_k})_{i,j=1\dots k}\neq 0$ $\mathbb{R}^m=\mathbb{R}^k\times\mathbb{R}^{m-k}$ $L:\mathbb{R}^m\to\mathbb{R}^k$ - проекция на первые k координат $((x_1,\dots,x_m)\mapsto (x_1,\dots,x_k))$

Тогда (
$$\underbrace{L\circ\Phi}_{(\varphi_1,\ldots,\varphi_k)})'(t^0)$$
 - невырожденный оператор

 $W(t^0)$ - окрестность точки t^0 , $L \circ \Phi : \mathbb{R}^k \to \mathbb{R}^k$

 $L \circ \Phi : W \to V \subset \mathbb{R}^k$ - диффеоморфизм

Множество $\Phi(W)$ - это график отображения $H:V\to\mathbb{R}^{m-k}$

Пусть $\Psi = (L \circ \Phi)^{-1} : V \to W$

Берем $x' \in V$, тогда $(x', H(x')) = \Phi(\Psi(x'))$, т.е. $H \in C^r$

Множество $\Phi(W)$ - открытое в $M \Rightarrow \Phi(W) = M \cap \tilde{U}$, где \tilde{U} - открытое множество в \mathbb{R}^m

Можно считать, что $\tilde{U} \subset U \times \mathbb{R}^{m-k}$

Пусть $f_j: \tilde{U}\mathbb{R}$ $f_j(x) = H_j(L(x)) - x_{k+j}$

Тогда $x \in M \cap \tilde{U} = \Phi(W) \Leftrightarrow \forall j: \ f_j(x) :$

Тогда
$$x \in M \cap U = \Phi(W) \Leftrightarrow \forall j : f_j(x) = 0$$

$$\begin{pmatrix} \operatorname{grad} f_1(p) \\ \vdots \\ \operatorname{grad} f_{m-k}(p) \end{pmatrix} = \begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \dots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \dots & 0 \\ \frac{\partial H_2}{\partial x_1} & \dots & \frac{\partial H_2}{\partial x_k} & 0 & -1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial H_{m-k}}{\partial x_1} & \dots & \frac{\partial H_{m-k}}{\partial x_k} & 0 & 0 & \dots & -1 \end{pmatrix}$$

$$2\Rightarrow 1 \ F=(f_1,\ldots,f_{m-k})$$

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m-k}}{\partial x_1} & \cdots & \frac{\partial f_{m-k}}{\partial x_m} \end{pmatrix}$$
 - матрица $m-k\times m$
 Градиенты ЛНЗ \Rightarrow ранг матрицы равен $m-k$, он достигается на последних $m-k$ столбцах $\det(\frac{\partial f_i}{\partial x_j})_{i,j=1...m-k}\neq 0$

$$F(x_1, \dots, x_k, x_{k+1}, \dots, x_m) = 0, \quad x \in \tilde{U}$$

По теореме о неявном отображении $\exists P$ - окрестность (x_1,\ldots,x_k) в \mathbb{R}^m $\exists Q$ - окр (x_{k+1},\ldots,x_m) в $\mathbb{R}^{m-\bar{k}}$

$$\exists H: P \to Q \quad H \in C^r \quad F(x', H(x')) = 0, \quad x' \in P$$

Тогда $\Phi: P \to \mathbb{R}^m \quad (x_1, \dots, x_k) \mapsto (x_1, \dots, x_k, H_1(x_1', \dots, x_k'), H_2, \dots, H_{m-k})$ - параметризация мноогбразия

 Φ - гомеоморфизм P и $M\cap \tilde{U},\,\Phi^{-1}$ - практически проекция

1. Следсвтие о двух параметризациях

 $Cnedcmeue\ 4.1.1.4.\ M\subset\mathbb{R}^m$ - k-мерное C^k -гладкое многообразие $p\in M$

 \exists две парметризации $\Phi_1: O_1 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_1(\hat{t^0}) = 0$ $\Phi_2: O_2 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_2(s^0) = 0$

$$\Phi_2: O_2 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_2(s^0) = 0$$

Тогда \exists диффеоморфизм $\Theta: O_1 \to O_2$, что $\Phi_1 = \Phi_2 \circ \Theta$

Доказательство. Чатсный случай. Пусть для Φ_1 , Φ_2 , rank $\Phi'_1(t^0)$, rank $\Phi'_2(s^0)$ достигаются на первых k столбцах

Тогда
$$\Phi_1 = \Phi_2 \circ \underbrace{(L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1)}$$

Тогда
$$\Phi_1 = \Phi_2 \circ \underbrace{(L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1)}_{\Theta - \text{искомый диффеоморфизм}}$$

$$\Phi_1 = \Phi_2 \circ (\Phi_2 \circ L_2)^{-1} \circ (L_2 \circ L_1^{-1}) \circ (L_1 \circ \Phi_1)$$

$$L_2 \circ L_1^{-1} = L_2 \circ \Phi_1 \circ (L_1 \circ \Phi_1)^{-1} \in C^r$$

Невырожденность не доказана, поэтому то, что это диффеоморфизм не доказано

Лекция 5

5.1 Многообразия

Лемма 6. $\Phi:O\subset\mathbb{R}^k\to\mathbb{R}^m$ C^r -гладкое - парметризация мноогбразия $U(p)\cap M$, где $p\in M,\,M$ гладкое k-мерное многообразие, $\Phi(t^0) = p$

Тогда образ $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$ есть k-мерное линейное подпространство в \mathbb{R}^m . Оно не зависит от

Доказательство. rank $\Phi'(t^0) = k$

Если взять другую параметризацию Φ_1 $\Phi = \Phi_1 \circ \Psi$

 $\Phi' = \Phi_1' \cdot \Psi \quad \Psi'(t^0)$ - невырожденный оператор

Касательные пространства

Определение. $\Phi'(t^0)$ — касательное пространство к M в точке p

Обозначение. T_pM

 Π ример. M - окружность в \mathbb{R}^2

$$\Phi: t \mapsto (\cos t, \sin t)^T \quad t^0 = \frac{\pi}{4}$$

$$\Phi'(t^0) = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})^T$$

$$h \in \mathbb{R} \mapsto \begin{pmatrix} \frac{2}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} h$$

Примечание. $v \in T_p M$. Тогда \exists путь $\gamma_v : [-\varepsilon, \varepsilon] \to M$, такой что $\gamma(0) = p, \ \gamma'(0) = v$

Доказательство. $u := (\Phi'(t^0))^{-1}(v)$

$$\tilde{\gamma}_v(s) := t^0 + s \cdot u, \quad s \in [-\varepsilon, \varepsilon]$$

$$\gamma_n(s) := \Phi(\tilde{\gamma}_n(s))$$

$$\gamma_v(s) := \Phi(\tilde{\gamma}_v(s))
\gamma_v'(0) = \Phi'(\underbrace{\tilde{\gamma}_v(0)}_{t^0}) \cdot u = v$$

 Π римечание. Пусть $\gamma:[-arepsilon,arepsilon] o M,\ \gamma(0)=p$ - гладкий путь Тогда $\gamma'(0) \in T_pM$

Доказательство.
$$\gamma(s) = (\Phi \circ \Psi \circ L)(\gamma(s))$$
 $\gamma' = \Phi' \cdot \Psi' \cdot L' \cdot \gamma'(s) \in T_pM$

Примечание. Афинное подпространство $\{p+v,\ v\in T_pM\}$ - называется афинным касательным

 $f:O\subset\mathbb{R}^m o\mathbb{R}$ - гладкая, y=f(x) - поверхность в \mathbb{R}^{m+1} (x,y)

<u>Тогда</u> (афииная) касательная плоскость в (a,b) задается уравнением $y-b=f_{x_1}'(a)(x_1-a_1)+$ $\overline{f'_{x_2}(a)}(x_2-a_2)+\cdots+f'_{x_m}(a)(x_m-a_m)$

```
Определение. f: O \subset \mathbb{R}^{m+n} \to \mathbb{R} \quad \Phi: O \to \mathbb{R}^n
M_{\Phi} \subset O := \{x | \Phi(x) = 0\}
x_0 \in M_{\Phi}, r.e. \Phi(x_0) = 0
x_0 - точка локального относительного \max, \min, строгого \max, строгого \min
Если \exists U(x_0) \subset \mathbb{R}^{m+n}
\forall x \in U \cap M_{\Phi} (т.е. \Phi(x) = 0) f(x_0) \geq f(x) (для максимума)
т.е. x_0 - локальный экстремум f|_{M_{\Phi}}
Уравнения \Phi(x) = 0 - уравнения связи
```

Как можно решать эту задачу

 $(x_1 \ldots x_{m+n}) \leftrightarrow (x,y) \quad a = (a_x, a_y)$

 $\exists \varphi : U(a_x) \to V(a_y) : \Phi(x, \varphi(x)) = 0$

Если $\operatorname{rank}\Phi'(x_0)=n$, выполнено условие теоремы о неявном отображении

 $\det \frac{\partial \Phi}{\partial u}(a) = 0$ По теореме о неявном отображении $\exists U(a_x) \; \exists V(a_y)$

```
Теорема 5.2.1 (Необходиое условие относительно экстремума). f:O\subset\mathbb{R}^{m+n}\to\mathbb{R} \Phi:O\to\mathbb{R}^n -
гладкое в O
a \in O \Phi(a) = 0 - точка относительного экстремума, \operatorname{rank}\Phi'(a) = n
Тогда \exists \lambda = (\lambda_1 \ldots \lambda_n) \in \mathbb{R}^n
 \int f'(a) - \lambda \cdot \Phi'(a) = 0 \quad \in \mathbb{R}^{m+n}
 \Phi(a) = 0
В координатах:
   f'_{x_1}(a) - \lambda_1(\Phi_1)'_{x_1} - \lambda_2(\Phi_2)'_{x_1} - \dots - \lambda_m(\Phi_n)'_{x_1} = 0
  f'_{x_{m+n}}(a) - \lambda_1(\Phi_1)'_{x_{m+n}} - \lambda_2(\Phi_2)'_{x_{m+n}} - \dots - \lambda_m(\Phi_n)'_{x_{m+n}} = 0

\Phi_1(a) = 0
 \Phi_n(a) = 0
Неизветсные: a_1, \ldots, a_{m+n} \quad \lambda_1, \ldots, \lambda_n
Доказательство. Пусть ранг реализуется на столбцах x_{m+1}, \ldots, x_{m+n}, обозначим y_1 = x_{m+1}, \ldots, y_m =
```

отображение $x \mapsto (x, \varphi(x))$ есть параметризация $M_{\varphi} \cap (U(a_x) \times V(a_y))$

a - точка относительного локального экстремума $\Rightarrow a_x$ - точка локального экстремума функции $g(x) = f(x, \varphi(x))$

Необходимое условие экстремума:

$$(f_x' + f_y' \cdot \varphi_x')(a_x) = 0 \tag{5.1}$$

 $\Phi(x, \varphi(x)) = 0$

 $\Phi_x' + \Phi_y' \cdot \varphi_x' = 0$ - в точке (a_x, a_y)

$$\forall \lambda \in \mathbb{R}^m \quad \lambda \cdot \Phi_x' + \lambda \cdot \Phi_y' \varphi_x'(a_x) = 0 \tag{5.2}$$

$$(5.1) + (5.2): f'_x + \lambda \Phi'_x + (f'_y + \lambda \Phi'_y)\varphi'_x = 0$$

Пусть
$$\lambda = -f'_y(\Phi'_y(a_x, a_y))^{-1}$$

$$\begin{array}{l} \text{(5.1)} + \text{(5.2): } f_x' + \lambda \Phi_x' + (f_y' + \lambda \Phi_y') \varphi_x' = 0 \\ \text{Пусть } \lambda = -f_y' (\Phi_y' (a_x, a_y))^{-1} \\ \text{Тогда } f_y' + \lambda \Phi_y' = 0 \text{ и } f_x' + \lambda \Phi_x' = 0 \text{(из (5.1)} + \text{(5.2)}) \end{array}$$

Определение. $G:=f-\lambda_1\Phi_1-\lambda_2\Phi_2-\cdots-\lambda_n\Phi_n$ - Функция Лагранжа

 $\lambda_1, \dots, \lambda_n$ - множители Лагранжа

$$\lambda_1,\dots,\lambda_n$$
 - множители лагра $\begin{cases} G'=0 \\ \Phi=0 \end{cases}$ - то что в теореме

 $\Pi pumep. \ A = (a_{ii})$ - симметричная вещественная матрица

 $f(x) = \langle Ax, x \rangle, \quad x \in \mathbb{R}^m$ - квадратичная форма

$$f(x)=\langle Ax,x\rangle,\quad x\in\mathbb{R}^m$$
 - квадратичная форма Найти $\max f(x),\ x\in S^{m-1}$ - существует по теореме Вейрештрасса $G(x)=\sum_{i,j=1}^m a_{ij}x_ix_j-\lambda(\sum_{i=1}^m x_i^2-1)$

 $\Phi'=(2x_1,\ 2x_2,\ \dots,\ 2x_m)^T,$ на сфере $\mathrm{rank}\Phi'=1$

$$G'_{x_k} = \sum_{j=1}^m a_{kj}x_j - 2\lambda x_k$$
 $k = 1 \dots m$, T.e. $Ax = \lambda x$

 λ - собственное число A, x - собственный вектор

$$f(x) = \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda |x|^2 = \lambda$$

Теорема 5.2.2. $A \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$.

Тогда $||A|| = \max\{\sqrt{\lambda}|\lambda - \text{собственное число оператора } A^T A\}$

$$\langle Ax, y \rangle = \langle x, A^T y \rangle$$

$$\overline{\langle Ax, y \rangle} = \langle x, A^T y \rangle \langle A^T Ax, x \rangle = \langle Ax, Ax \rangle \ge 0$$

Доказательство.
$$x \in S^{m-1}$$
 $|Ax|^2 = \langle Ax, Ax \rangle = \langle \underbrace{A^TA}_{\text{симм.}} x, x \rangle \qquad (A^TA)^T = A^TA$ $\max |Ax|^2 = \max \langle A^TAx, x \rangle = \lambda_{\max}$

5.3 Функциональные последовательности и ряды

Равномерная сходимость последовательности функций

Определение. Последовательность функций

$$\mathbb{N} \to \mathcal{F} \quad n \mapsto f_n$$

$$\mathcal{F}:\{f|\underbrace{X}_{\text{м.п.}}\to\mathbb{R}\}$$

Пусть $E\subset X$

$$\Pi_{VCTF} \stackrel{\text{M.II.}}{E} \subset X$$

Определение. Последовательность f_n сходится поточечно к f на множестве $E, \forall x \in E$ $f_n(x) \to$

 $\forall x \in E \ \forall \varepsilon > 0 \ \exists N \ \forall n > N \ |f_n(x) - f(x)| < \varepsilon$

Пример.
$$f_n: \mathbb{R}_+ \to \mathbb{R}$$
 $f_n(x) = \frac{x^n}{n}$

Тогда
$$E=[0,1]$$
 $f_n(x) \rightarrow 0$

Если $E \cap (1, +\infty) \neq \emptyset$ то нет поточечной сходимости ни к какой функции

Пример.
$$f_n(x) = \frac{n^{\alpha}x}{1+n^2x^2}$$
 $x \in [0,1]$ $0 < \alpha < 2$ Ясно, что $\forall \alpha$ $f_n(x) \to \nvdash$ поточечно на $[0,1]$
$$\max_{x \in [0,1]} \frac{n^{\alpha}x}{1+n^2x^2} = n^{\alpha} \cdot \max \frac{x}{1+n^2x^2} = n^{\alpha} \cdot \frac{1}{2n} = \frac{1}{2}n^{\alpha} - 1$$

Определение. f_n равномерно сходится к f на $E \subset X$ если $M_n := \sup_{x \in E} |f_n(x) - f(x)| \xrightarrow{n \to +\infty} 0$ $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; 0 \leq M_n < \varepsilon, \; \text{т.e.} \; \forall x \in E \; |f_n(x) - f(x)| < \varepsilon$

Обозначение. $f_n \underset{E}{\rightrightarrows} f$

Примечание. $x_0 \in E$ $f_n \rightrightarrows f$ Тогда $f_n(x_0) \to f(x_0)$ равномерная сходимость $\stackrel{E}{\Rightarrow}$ поточечная сходимость к тому же пределу

Примечание. $E_0 \subset E$ $f_n \underset{E}{\rightrightarrows} f \Rightarrow f_n \underset{E_0}{\rightrightarrows} f$

Пример.
$$f_n(x)=\frac{n^{\alpha}x}{1+n^2x^2}$$
 $E=[\frac{1}{10},1]$ Тогда $f_n\rightrightarrows {\mathcal V}$

Тогда
$$f_n \rightrightarrows \not\vdash f = 0$$
 $\sup_{x \in [\frac{1}{10}, 1]} \frac{n^{\alpha}x}{1 + n^2x^2} \le \frac{n^{\alpha}}{1 + \frac{1}{100}n^2} \to 0$

Примечание. $\mathcal{F} = \{f|X \to \mathbb{R} - \text{ограничены}\}$

Тогда $\rho_X(f_1,f_2):=\sup_{x\in X}|f_1(x)-f_2(x)|$ - метрика в $\mathcal{F}(\mbox{Чебышевское растояние})$

1.
$$\rho(f_1, f_2) \geq 0$$

2.
$$\rho(f_1, f_2) = 0 \Leftrightarrow f_1 = f_2$$

3.
$$\rho(f_1, f_2) = \rho(f_2, f_1)$$

4.
$$\rho(f_1, f_2) \le \rho(f_1, f_3) + \rho(f_3, f_2)$$

Доказательство. Берем
$$\varepsilon > 0 \; \exists x : \rho(f_1, f_2) - \varepsilon = \sup |f_1 - f_2| - \varepsilon < |f_1(x) - f_2(x)| \le |f_1(x) - f_3(x)| + |f_3(x) - f_2(x)| \le \rho(f_1, f_2) + \rho(f_3, f_2)$$

 Πp имечание. $f_n \underset{E}{\Longrightarrow} f \quad f_n \to f$ по метрике ρ_E

Примечание. $E=E_1\cap E_2$ $f_n\underset{E_1}{\rightrightarrows} f$ и $f_n\underset{E_2}{\rightrightarrows} f\Rightarrow f_n\underset{E}{\rightrightarrows} f$

Доказательство.
$$M_n^{(1)} \to 0$$
 $M_n^{(2)} \to 0$ $\max(M_n^{(1)}, M_n^{(2)}) \to 0$

Лекция 6

6.1 Относительный экстремум

```
\begin{split} f: E \subset \mathbb{R}^{m+n} &\to R \\ \Phi: E \to \mathbb{R}^n \quad \Phi \in C^1 \\ a \in e \quad \Phi(a) = 0 \\ \mathrm{rank}\Phi'(a) = n \quad \det(\frac{\partial \Phi_i}{\partial x_j})_{i,j=1...n} \neq 0 \\ a \text{ - относительный экстремум} \\ \mathrm{Тогда} \ \exists (\lambda_1, \ldots, \lambda_n) = \lambda \\ f'(a) - \Phi'(a) = 0 \\ \begin{cases} f'(a) - \lambda \Phi'(a) = 0 \\ \Phi(a) = 0 \end{cases} \end{split}
```

Теорема 6.1.1 (О достаточном условии экстремума). Пусть выполнено условие для точки a $\forall h=(h_x,h_y)\in\mathbb{R}^{m+n}$: если $\Phi'(a)h=0(n$ уранений с m+n неизвестными) То можно выразить $h_y=\Psi(h_x)$ (решим линейную систему) Рассмторим квадратичную форму $Q(h_x)=d^2G(a,(h_x,\Psi(h_x)))$, где G - функция Лагранжа Q - это сужение d^2G на касательное пространство T_aM_Φ Тогда:

- 1. Q положительно опр. $\Rightarrow a$ точка минимума
- 2. Q отрицательно опр. $\Rightarrow a$ точка максимума
- 3. Q неопределена \Rightarrow нет экстремума
- 4. $Q \ge 0$ вырождена \Rightarrow информации недостаточно

Доказательство.

$$\underbrace{f(a+h)}_{a+h\in M_{\Phi}} - f(a) = G(a+h) - G(a) = \underbrace{dG(a,h)}_{0} + \frac{1}{2}d^{2}G(a,h) + o(|h|^{2}) = \frac{1}{2}d^{2}G(a,\tilde{h}) + o(|\tilde{h}|^{2}) > 0$$

Очень неточное доказательство

Пример.
$$f = x^2z^2 + y^3 - 12x - 9y - 4z$$

 $\Phi(x, y, z) = xyz - 6$
 $a = (1, 2, 3)$ $\lambda = 1$

Найдем тип экстремума

1.
$$a$$
 - подозрительная точка ?
$$G=x^2z^2+y^3-12x-9y-4z-(xyz-6)$$
 $G_x'=0$ $2xz^2-12-yz=0$ $G_y'=0$ $3y^2-9-xz=0$ $G_z'=0$ $2x^2z-4-xy=0$

2. $d^2G = 2z^2dx^2 + 2x^2dz^2 + Gydy^2 + 2(4xz - y)dxdz - 2xdydz - 2zdxdy$ Подставим $a d^2G(a) = 18dx^2 + 2dz^2 + 12dy^2 + 20dxdz - 2dydz - 6dxdy$ Нужно найти знак выражения $d^2G(a)$, если (dx,dy,dz) удовлетворяет соотношению $d\Phi=0$ yzdx + xzdy + xydz = 0 в точке a Gdx + 3dy + 2dz = 0 $dz = -3dx - \frac{3}{2}dy$ $d^2G|_{d\Phi=0} = 18dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) - 6dxdy = 12dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) - 6dxdy = 12dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) - 6dxdy = 12dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) - 6dxdy = 12dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) - 6dxdy = 12dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) - 6dxdy = 12dx^2 + 2(3dx + \frac{3}{2}dy)^2 + 12dy^2 - 10dx(6dx + 3dy) + dy(6dx + 3dy) +$ $=-24dx^{2}+19.5dy^{2}+\dots dxdy$ - Нет экстремума, т.к. форма не определена(при $dx=1,\ dy=1$ $0 d^2G < 0$, а при dx = 0, $dy = 1 d^2G > 0$)

Вариационные исчесления(Оффтоп)

$$f \in C^1([a,b])$$
 $F(f) = \int_a^b x f(x) dx + f(a) \to \max$

6.2Функциональные последовательности и ряды

 $f_n \to f$ - поточечно на E $f, f_n : E \subset X \to R$ $f_n \rightrightarrows f$ на E $\forall x \in E \ \forall \varepsilon > 0 \ \exists N \ \forall n > N \quad |f_n(x) - f(x)| < \varepsilon$ $M_n \sup_{x \in F} |f_n - f| \xrightarrow[n \to +\infty]{} 0$ $ho(f_n,f)=\sup|f_n(x)-f(x)$ - метрика в $\mathcal{F}=\{f|E o\mathbb{R},\;f- ext{orp.}\},$ в C([a,b]) - непрерывные функции на [a,b]

Теорема 6.2.1 (Стокса-Зайдля). $f_n, f: X \to \mathbb{R}$ (X - метр. пр-во) $x_0 \in X$ f_n - непрерывно в x_0

Тогда f - непрерывно в x_0

26

Доказательство. $|f(x)-f(x_0)| \leq |f(x)-f_n(x)|+|f(x)-f_n(x_0)|+|f_n(x_0)-f(x_0)|$ (неравенство треугольника) - верно $\forall x \ \forall n$

 $f_n \underset{X}{\Rightarrow} f: \forall \varepsilon>0 \; \exists N \; \forall n>N \; \sup_X |f_n-f|< rac{\varepsilon}{3}$ Берем $\forall \varepsilon>0$, возьмем любой n, для которого выполнено предыдущее утверждение, тогда крайние модули из неравенства $<\frac{\varepsilon}{3}$

Теперь для этого n подберем $U(x_0): \forall x \in U(x_0) |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$ $|f(x) - f(x_0)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$

Примечание. То же верно если $f_n, f: X \to Y$, где Y - метрическое пространство(в частности \mathbb{R}^m)

Примечание. То же верно, если X - топологическое пространство

Следствие 6.2.1.5. $f_n(X), f_n \rightrightarrows f$ Тогда $f \in C(X)$

Примечание. В теореме достаточно требовать $f_n \rightrightarrows f$ на некоторой окрестности $W(x_0)$ В следствии достаточно требовать локальную равномерную сходимость $\forall x \in X \; \exists W(x) \; f_n \Rightarrow f \; \text{Ha} \; W(x)$

Пример. $f_n(x) = x^n$ X = (0,1) $f_n(x) \to 0$ поточечно на X $f_n \not \equiv 0$

Ho есть локальная равномерная сходимость $\forall x \in (0,1) \ W(x) = (\alpha,\beta),$ где $0 < \alpha < x < \beta < 1$ $\sup_{x\in(\alpha,\beta)}|f_n(x)-f(x)|=\sup_{x\in(\alpha,\beta)}x^n=\beta^n\xrightarrow[n\to+\infty]{}0$ и предельная функция Тогда $f_n \rightrightarrows g$ на (α, β) : непрерывна

Теорема 6.2.2. X - компактное $\rho(f_1,f_2)=\sup_{x\in X} |f_1(x)-f_2(x)|,$ где $f_1,f_2\in C(X)$

Тогда пространство C(X) - полное метрическое пространство

Примечание. $x_n \to a$ в $(X, \rho) \Rightarrow x_n$ - фунд. $\forall \varepsilon \exists N \ \forall n, m > M \quad \rho(x_n, x_m) < \varepsilon$ X - полное, если каждая фундаментальная последовательность сходится

Доказательство. f_n - фунд. в $C(X) \Rightarrow \forall x_0 \in X$ вещ. последовательность $(f_n(x_0))$ - фундаментальна \Rightarrow

$$f_n$$
 - фунд. \Rightarrow

$$\forall \varepsilon > 0 \; \exists N \; \forall n, m > N \; \forall x \in X \quad |f_n(x) - f_m(x)| < \varepsilon \tag{6.1}$$

 $\Rightarrow \exists \lim_{n \to +\infty} f_n(x) =: f(x_0) \quad f$ - поточечный предел f_n

Проверим: $f_n \rightrightarrows f, f \in C(X)$

В (6.1) перейдем к пределу при $m \to +\infty$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in X \quad |f_n(x) - f(x)| \le \varepsilon$$
, т.е. $f_n \Rightarrow f$ на X и тогда $f \in C(X)$

Cледствие 6.2.2.6. (\mathcal{F}, ρ) - полное

Примечание. (x_n) - последовательность в полном метричеком пространстве X, x_n - сходится $\Leftrightarrow x_n$ - фундаментальна

 $f:X\to Y,\,Y$ - полно, $f(x)\xrightarrow[x\to a]{}L\Leftrightarrow$ Критерий Больциано-Коши, т.е.

$$\forall \varepsilon > 0 \ \exists U(a) \ \forall x_1, x_2 \in \dot{U}(a) \quad \rho(f(x_1), f(x_2)) < \varepsilon$$

Примечание. (Критерий Коши для равномерной сходимости)

 $B \subset C(X)$ $f_n \to f$, т.е. $f_n \rightrightarrows f$ на $X \Leftrightarrow$ фундаментальности:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \forall x \quad |f_n(x) - f_m(x)| < \varepsilon \ (A)$$

 $\sup_{x \in X} |f_n - f| < \varepsilon$

(B)
$$\Rightarrow$$
 (A), (A) $\Rightarrow \sup_{x \in X} |f_n - f| \le \varepsilon$

(А) ⇔ (В) с оговоркой

6.2.1 Предельный переход под знаком интеграла

Hе теорема $f_n \to f \Rightarrow \int_a^b f_n \to \int_a^b f$

Пример. [a,b] = [0,1] $f_n(x) = nx^{n-1}(1-x^n) \xrightarrow[n \to +\infty]{} f(x) \equiv 0$

$$\int_{0}^{B} f_{n} = \int_{0}^{1} nx^{n-1} (1 - x^{n}) dx = \int_{0}^{1} (1 - y) dy = \frac{1}{2} \qquad \int_{0}^{1} f(x) = 0$$

Теорема 2. $f_n, f \in C([a,b])$ $f_n \rightrightarrows f$ на [a,b]

Тогда
$$\int_a^b f_n \to \int_a^b f$$

Доказательство.
$$\left|\int_a^b f_n - \int_a^b f\right| \leq \int_a^b |f_n - f| \leq \sup_{[a,b]} |f_n - f| \cdot (b-a) = \rho(f_n,f) \cdot (b-a) \to 0$$

Cледствие 6.2.2.7 (Правило Лейбница). $f: \underbrace{[a,b]}_{x} imes \underbrace{[c,d]}_{y} o \mathbb{R} \quad f, f'_y$ - непрерывна на [a,b] imes [c,d]

$$\Phi(y) = \int_{a}^{b} f(x, y) dx \quad y \in [c, d]$$

Тогда Φ - дифф. на [c,d] и $\Phi'(y) = \int_a^b f_y'(x,y)dx$

Доказательство.
$$\frac{\Phi(y+\frac{1}{n})-\Phi(y)}{\frac{1}{n}}=\int_{a}^{b}\frac{f(x,y+\frac{1}{n})-f(x,y)}{\frac{1}{n}}dx \overset{\text{т. Лагранжа}}{=}\int_{a}^{b}\underbrace{f'_{y}(x,y+\frac{\Theta}{n})}_{}dx$$

 $\mathit{Утв.}\ f_n(x,y) \underset{x \to +\infty}{\Longrightarrow} f_y'(x,y)$ на $x \in [a,b],$ а y считаем фиксированным — по теореме Кантора о равномерной непрерывности

равномерной непрерывности $\forall \varepsilon > 0 \; \exists N: \frac{1}{N} < \delta(\varepsilon)$ — из теоремы Кантора $\forall n > N \; \forall x \in [a,b] \; |f_t'(x,y+\frac{\delta}{n})-f_y'(x,y)| < \varepsilon$

Таким образом
$$\frac{\Phi(y+\frac{1}{n})-\Phi(y)}{\frac{1}{n}} \to \int_a^b f_y'(x,y)dx = \Phi'(y)$$

28 ГЛАВА 6. ЛЕКЦИЯ 6

Теорема 3 (О предельном переходе под знаком производной). $f_n \in C^1(\langle a,b \rangle), \quad f_n \to f$ поточечно,

$$f'_n
ightharpoonup \varphi$$
 на $\langle a,b \rangle$ $\overline{\text{Тогда}} \ f \in C^1(\langle a,b \rangle)$ и $f' \equiv \varphi$ на $\langle a,b \rangle$ $f_n \xrightarrow[n \to +\infty]{} f$ \downarrow \downarrow $f'_n \Rightarrow \varphi$

$$\lim_{n \to +\infty} (f'_n(x)) = (\lim_{n \to +\infty} f_n(x))'$$

Доказательство. $x_0, x_1 \in \langle a, b \rangle$ $f'_n \rightrightarrows \varphi$ на $[a, b] \xrightarrow{\mathrm{T.2}} \int_{x_0}^{x_1} f'_n \to \int_{x_0}^{x_1} \varphi$, т.е.

$$\begin{cases} f_n(x_1) - f_n(x_0) \xrightarrow[n \to +\infty]{} \int_{x_0}^{x_1} \varphi \\ f_n(x_1) - f_n(x_0) \to f(x_1) - f(x_0) \end{cases}$$

Итак
$$\forall x_0, x_1 \in \langle a, b \rangle$$
 $f(x_1) - f(x_0) = \int_{x_0}^{x_1} \varphi$

$$\underbrace{f_n'}_{\text{непр}}\varphi\Rightarrow \begin{cases} f-\text{первообразная }\varphi\\ \varphi-\text{непрерывная} \end{cases} \Rightarrow f'=\varphi$$

Равномерная сходимость функциональных рядов

Определение. $u_n:X \to \mathbb{R}(\mathbb{R}^m)$ $\sum u_n(x)$ сходится поточечно(к сумме S(x)) на X $S_N(x) := \sum_{n=0}^N u_n(x) \quad S_N(x) o S(x)$ поточечно на X

Определение. $\sum_{n=0}^{+\infty} u_n(x)$ сходится к S(x) равномерно на $E \subset X$: $S_N \underset{N \to +\infty}{\Longrightarrow} S$ на E

 Π римечание. $\sum u_n(x)$ равномерно сходится $\Rightarrow \sum u_n(x)$ - поточечно сходится к той же сумме $\sup_{x \in E} |S_N - S| \xrightarrow[N \to +\infty]{} 0 \Rightarrow \forall x_0 \in E: \ |S_N(x_0) - S(x_0)| \leq \sup_{x \in E} |S_N - S| \to 0$

Примечание. Остаток ряда: $R_N(x) = \sum_{n=N+1}^{+\infty} u_n(x)$ $S(x) = S_N(x) + R_N(x)$

Ряд равномерно сходится на $E \Leftrightarrow R_N \rightrightarrows 0$ на E

$$\sup_{x \in E} |S - S_N| = \sup_{x \in E} R_N$$

Примечание. (Необходимое условие равномерной сходимости)

$$\sum u_n(x)$$
 - равномерно сходится на $E \Rightarrow u_n(x) \underset{n \to +\infty}{\Rightarrow} 0$

Доказательство. $u_n = R_{n-1} - R_n \Rightarrow 0$

$$\Pi$$
ример. $u_n(x)=rac{1}{n}\quad u_n(x)
ightrightarrow 0 \quad \sum rac{1}{n}$ - расходится

Лекция 7

Функциональные последовательности и ряды

$$u_n:X\to Y$$
, где Y - нормированное пространство $S_n\rightrightarrows S$ на E $M_n:=\sup_{x\in E}|S_n(x)-S|\xrightarrow[n\to+\infty]{}0$

Определение.
$$\forall \varepsilon > 0 \ \exists N \ \forall n,m > N \ \forall x \in E \quad |S_n(x) - S_m(x)| < \varepsilon$$
 $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \quad |u_{n+1}(x) + u_{n+2}(x) + \dots + u_{n+p}(x)| < \varepsilon$

Примечание. Отрицание критерия Больциано-Коши $\exists > 0 \ \forall N \ n > N \ \exists p \in \mathbb{N} \ \exists x \in E \ |u_{n+1}(x) + u_{n+1}(x)|$ $|u_{n+2}(x) + \cdots + u_{n+p}(x)| \ge \varepsilon$

$$\Pi p$$
имер. $\sum x^n \quad x \in (0,1)$ нет равномерной сходимотсти $\exists \varepsilon = \frac{1}{10} \ \forall N \ \exists n > N - \text{любое} > 100 \ \exists p = 1 \ \exists x = 1 - \frac{1}{n+1} \quad |u_{n+1}(x)| \ge \varepsilon, \text{ r.e. } (1 - \frac{1}{n+1})^{n+1} = \frac{1}{e} > \frac{1}{10}$

Теорема 7.1.1 (признак Вейерштрасса).
$$\sum u_n(x)$$
 $x \in X$

Теорема 7.1.1 (признак Вейерштрасса).
$$\sum u_n(x) \quad x \in X$$
 Пусть $\exists C_n$ - вещественная последовательность, $\begin{cases} u_n(x) \leq C_n \\ \sum C_n - \text{сходится} \end{cases}$

Тогда $\sum u_n(x)$ равномерно сходится на E

Доказательство.
$$|u_{n+1}(x)+\cdots+u_{n+p}(x)|\leq C_{n+1}+\cdots+C_{n+p}$$
 - Тривиально $\sum C_n$ - сходится \Rightarrow удовлетворяет критерию Больциано-Коши: $\forall \varepsilon>0\ \exists N\ \forall n>N\ \forall p\in\mathbb{N}\ \forall x\in E\ C_{n+1}+\cdots+C_{n+p}<\varepsilon$

Тогда
$$\sum u_n(x)$$
 удовлетворяет критерию Больциано-Коши равномерной сходимости

Пример.
$$\sum_{n=1}^{+\infty} \frac{x}{1+n^2x^2}, \ x \in \mathbb{R}$$

$$C_n:=\sup_{x\in\mathbb{R}}\left|\frac{x}{1+n^2x^2}\right|=\frac{1}{2n},$$
 ряд $\sum\frac{1}{2n}$ расходится, значит признак Вейерштрасса не применим

Пример.
$$\sum \frac{x}{1+x^2n^2}$$
 $x \in [\frac{1}{2020}, 2020]$

$$\begin{split} & \textit{Пример. } \sum \frac{x}{1+x^2n^2} \quad x \in [\frac{1}{2020}, 2020] \\ & C_n := \sup \frac{x}{1+x^2n^2} \leq \frac{2020}{1+\frac{1}{2020} \cdot n^2} \underset{n \to +\infty}{\simeq} \frac{c}{n^2}, \sum C_n \text{ - сходится} \Rightarrow \text{ есть равномерная сходимость} \end{split}$$

Приложение равномерной сходимости для рядов

Теорема 1' (Стокса, Зайдля для рядов).
$$u_n: \underbrace{X}_{\text{метр. пр.}} \to \underbrace{Y}_{\text{норм. пр.}} x_0 \in X \ u_n$$
 - непрерывно в x_0 Пусть $\sum u_n(x)$ - равномерно сходится на $X, S(x) := \sum u_n(x)$

Пусть
$$\sum u_n(x)$$
 - равномерно сходится на $X,$ $S(x):=\sum u_n(x)$ Тогда $S(x)$ - непрерывна в x_0

Доказательство. по теореме 1(Стокса, Зайдля).
$$S_n(x) \rightrightarrows S(x), S_n(x)$$
 непрерывна в $x_0 \Rightarrow S(x)$ непрывна в x_0

Примечание. Достаточно, чтобы была равномерная сходимость $\sum u_n$ на $U(x_0)$

Примечание. $u_n \in C(x), \sum u_n$ - равномерно сходится на $X \Rightarrow S(x) \in C(X)$

ГЛАВА 7. ЛЕКЦИЯ 7

Теорема 2' (о почленном интегрировании ряда). $u_n:[a,b]\to\mathbb{R}$, непрерывные на [a,b]

Пусть
$$\sum_{n=0}^{+\infty} u_n$$
 - равномерно сходится на $[a,b],$ $S(x)=\sum u_n(x)$

Тогда
$$\int_a^b S(x)dx = \sum_{n=0}^{+\infty} \int_a^b u_n(x)$$

S(x) - непрерывно на [a,b] по теореме 1' \Rightarrow можно интегрировать

Доказательство. По теореме 2
$$S_n \rightrightarrows S$$
 на $[a,b] \sum_{k=0}^n \int_a^b u_k = \int_a^b S_n dx \to \int_a^b S(x) dx$

 Π ример. $\sum (-1)^n x^n$ - равномерно сходится при $|x| \leq q < 1$ по признаку Вейершрасса: $|(-1)^n x^n| \leq q$

$$\sum_{n=0}^{+\infty} (-1)^n x^n = \frac{1}{1+x}$$
 - сумма прогресии

$$\ln(1+t) = \sum_{n=0}^{+\infty} (-1)^n \cdot \frac{t^{n+1}}{n+1} = \sum_{k=1}^{+\infty} (-1)^{k+1} \cdot \frac{t^k}{k}$$
 — верно при $t \in [-q,q]$ для любого $q: 0 < q < 1$, т.е

верно при $t\in(-1,1),$ при t=1 $\sum -\frac{1}{k}$ - расходится

 $t \to 1$ ряд $\sum (-1)^k rac{t^k}{k}$ равномерно сходится на [0,1], слагаемые непрерывны в $t_0=1 \stackrel{\text{т. 1}}{\Longrightarrow}$ Сумма ряда непрерывна в точке $t_0=1$

по "секретному" приложению признака Лейбница

но секретному приложению признака Лейоница
$$\forall t \ \frac{t^k}{k} \text{ - монотонна по } k \ | \sum_{k=N}^{+\infty} (-1)^{k+1} \frac{t^k}{k} | \leq |\frac{t^N}{N}| \leq \frac{1}{N} \to 0 \text{ — это и есть утверждение о равномерной сходимости ряда}$$

7.2Криволинейный интеграл

7.2.1Интеграл векторного поля по кусочно гладкому пути

Определение. Путь $-\gamma:[a,b] \to \mathbb{R}^m$ - непрерывно

 $\gamma(a)$ - начало пути, $\gamma(b)$ - конец пути

 $\gamma([a,b])$ - носитель пути

Если $\gamma(a) = \gamma(b), \gamma$ — замкнутый путь(петля)

Если γ - гладкий или кусочно гладкий, $\gamma'(t)$ - вектор скорости

$$\gamma(t) = (\gamma_1(t), \ \gamma_2(t), \ \dots, \ \gamma_m(t)) \ \gamma' = (\gamma'_1, \ \dots, \ \gamma'_m)$$

 $\gamma(t)=(\gamma_1(t),\ \gamma_2(t),\ \dots,\ \gamma_m(t))$ $\gamma'=(\gamma_1',\ \dots,\ \gamma_m')$ Длина гладкого пути $l(\gamma)=\int_a^b|\gamma'(t)|dt$

Определение. Путь γ - кусочно гладкий

 $a = t_0 < t_1 < \dots < t_n = b$

 γ - дифф. на $(t_k, t_{k+1}) \ \forall k, \ 0 \le k \le n-1$

 \exists односторонние производные в точках t_i

можно считать $\gamma|_{[t_{k-1},t_k]}$ - гладкое отображение

Определение. Векторное поле: $V:E\subset\mathbb{R}^m\to\mathbb{R}^m$ - непрерывное

 $\forall x \in E \quad V(x) \in \mathbb{R}^m$ - вектор приложенный к точке x

Определение (Интеграл векторного поля по кусочно гладкому пути).

$$I(V,\gamma) = \int_a^b \langle V(\gamma(t)), \gamma'(t) \rangle dt = \int_a^b \sum_{i=1}^m V_i(\gamma(t)) \cdot \gamma_i'(t) dt = \int_a^b V_1 d\gamma_1 + V_2 d\gamma_2 + \dots + V_m d\gamma_m$$

Используется обозначение $I(V,\gamma)=\int_{\mathbb{R}}V_1dx_1+\cdots+V_mdx_m$ — аналогично последнему выражению

Второе выражение в равенстве запишем так: $\sum_{k=1}^{n} \langle V(\gamma(\xi_k)), \gamma'(\xi_k) \rangle \cdot (t_k - t_{k-1})$, где ξ_k - точки осна-

щения

$$=\sum \underbrace{\langle V(\gamma(\xi_k)), \frac{\gamma'(\xi_k)}{|\gamma'(\xi_k)|} \rangle}_{\text{пройденный путь}} \underbrace{\langle V(\gamma(\xi_k)), \frac{\gamma'(\xi_k)}{|\gamma'(\xi_k)|} \rangle}_{\text{пройденный путь}}$$

Теорема 7.2.1.

1. Линейность интгрела по полю:

$$\forall \alpha, \beta \in \mathbb{R} \ \forall U, V$$
 - векторных полей $I(\alpha U + \beta V, \gamma) = \alpha I(U, \gamma) + \beta I(V, \gamma)$

Доказательство. Из определения (первый двух выражений в равенстве)

2. Аддитивность интеграла при дроблении пути:

$$\gamma:[a,b] \to \mathbb{R}^m$$
 $c \in [a,b]$ $\gamma^1 = \gamma|_{[a,c]}$ $\gamma^2 = \gamma|_{[c,b]}$ Тогда $I(V,\gamma) = I(V,\gamma^1) + I(V,\gamma^2)$

Доказательство. По аддитивности интеграла(первый двух выражений в равенстве)

3. Замена параметра

$$\varphi:[p,q] \to [a,b] \ \varphi \in C^1 \ \varphi(p)=a, \ \varphi(q)=b \ \gamma:[a,b] \to \mathbb{R}^m \ \tilde{\gamma}=\gamma\circ \varphi$$
 Тогда $I(V,\gamma)=I(V,\tilde{\gamma})$ - это замена переменных в интеграле

Доказательство. $I(V, \tilde{\gamma}) =$

$$=\int_{p}^{q}\langle V(\gamma(\varphi(S))),\underbrace{\tilde{\gamma}'(S)}_{\gamma'(\varphi(S))\cdot\varphi'(S)}\rangle ds = \int_{p}^{q}\langle V(\gamma(\varphi(S))),\gamma'(\varphi(S))\rangle \cdot \varphi'(s) ds \underset{t:=\varphi(s)}{=}\underbrace{\int_{a}^{b}\langle V(\gamma(t)),\gamma'(t)\rangle dt}_{I(V,\gamma)}$$

Примечание. По теореме о двух параметризациях

 $\gamma:[a,b]\to\mathbb{R}^m$ - параметризация гладкого одномерного многообразия (простое)

$$ilde{z}:[p,q] o\mathbb{R}^m$$
 диффеоморфизм $arphi:[p,q] o[a,b]$ $ilde{\gamma}=\gamma\circarphi$

4. Объединение носителей

$$\gamma^1 : [a, b] \to \mathbb{R}^m \quad \gamma^2 : [c, d] \to \mathbb{R}^m \quad \gamma^1(b) = \gamma^2(c)$$

Зададим новый путь
$$\gamma=\gamma^2\gamma^1:[a,b+d-c]\to\mathbb{R}^m$$
 $\gamma(t)=\left[\begin{array}{cc} \gamma^1(t) &,t\in[a,b]\\ \gamma^2(t+c-b) &,t\in[b,b+d-c] \end{array}\right]$

В точке b излом. Если $\gamma^1,\ \gamma^2$ - кусочно гладкие, то γ - кусочно гладкий

Тогда $I(V, \gamma^2 \gamma^1) = I(V, \gamma^1) + I(V, \gamma^2)$

Доказательство.
$$I(V,\gamma) = \int_a^{b+d-c} \cdots = \int_a^b \cdots + \underbrace{\int_b^{b+d-c}}_{\text{замена }\tau=t-b+c} = I(V,\gamma^1) + \int_c^d \langle V(\gamma^2(\tau)), (\gamma^2)'(\tau) \rangle d\tau = I(V,\gamma^1)$$

При замене:
$$\gamma(t) = \gamma^2(t+c-b) = \gamma^2(\tau)$$
 $\gamma'(t) = (\gamma^2)'(t+c-b) = (\gamma^2)'(\tau)$

5. Противоположный путь

$$\gamma:[a,b]\to\mathbb{R}^m\quad \gamma^-:[a,b]\to\mathbb{R}^m\quad \gamma^-(t)=\gamma(a+b-t)$$
 - противоположный путь Тогда $I(V,\gamma)=-I(V,\gamma^-)$

Доказательство. $I(V, \gamma^{-}) =$

$$=\int_a^b \langle V(\gamma(a+b-\tau)), -\gamma'(a+b-\tau) \rangle d\tau \underset{t=a+b-\tau}{=} = \int_a^b \langle V(\gamma(t)), -\gamma'(t) \rangle \cdot (-dt) = -I(V,\gamma)$$
 При замене $(\gamma^-)'(\tau) = -\gamma(a+b-\tau)$

6. Оценка интеграла векторного поля по пути

$$|I(V,\gamma)| \leq \max_{x} |V(x)| \cdot l(\gamma)$$
, где $L = \gamma([a,b])$ - носитель пути

$$\int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt \leq \int_{a}^{b} |\langle V(\gamma(t)), \gamma'(t) \rangle| dt \leq \int_{a}^{b} |V(\gamma(t))| \cdot |\gamma'(t)| dt \leq \max_{x \in L} |V(x)| \cdot \underbrace{\int_{a}^{b} |\gamma'(t)| dt}_{l(\gamma)}$$

Можем писать \max , т.к. V - непрерывна, L - компакт(путь непрерывен, образ замкнутого отрезка под действием непрерывного отображения(носитель) компакт)

32

7.2.2Потенциальное поле

Определение. $V: \underbrace{O}_{\text{область}} \subset \mathbb{R}^m \to \mathbb{R}^m$ - в поле

V - потенциально, если оно имеет потенциал $\exists \quad f \in C^1(O): \quad \operatorname{grad} f = V$ в области O

Теорема 7.2.2. (обобщеная формула Ньютона-Лейбница)

 $V:O\subset\mathbb{R}^M\to\mathbb{R}^m$, потенциально, f — потенциал V

$$\gamma: [a,b] \to O \quad \gamma(a) = A, \ \gamma(b) = B$$

Тогда
$$I(V,\gamma) = \int_{\gamma} \sum v_k dx_k = f(B) - f(A)$$

Доказательство.

1.
$$\gamma$$
 - гладкий $\Phi(t)=f(\gamma(t))$, $\Phi'=\frac{\partial f}{\partial x_1}(\gamma(t))\cdot\gamma_1(t)+\cdots+\frac{\partial f}{\partial x_m}(\gamma(t))\cdot\gamma_m'(t)$ Учитывая что $\operatorname{grad} f=(\frac{\partial f}{\partial x_1},\ \dots,\ \frac{\partial f}{\partial x_m})=V$
$$\int_{\gamma}\sum u_k dx_k=\int_a^b\Phi'(t)dt=\Phi(b)-\Phi(a)=f(b)-f(a)$$

2. γ - кусочно гладкий $a=t_0 < t_1 < \dots < t_n = v \quad \gamma|_{[t_{k-1},t_k]}$

$$\int_{\gamma} \sum u_n dx_k = \sum_{k=1}^n \int_{t_{k-1}}^{t^k} \langle V(\gamma(t)), \gamma'(t) \rangle dt = \sum_{n=1}^n f(\gamma(t_k)) - f(\gamma(t_{k-1})) = f(\gamma(t_n)) - f(\gamma(t_0)) = f(\beta(t_n)) - f(\gamma(t_n)) = f(\gamma(t_n)) - f(\gamma(t_n)) - f(\gamma(t_n)) - f(\gamma(t_n)) = f(\gamma(t_n)) - f(\gamma$$

Последняя сумма является телескопической

ГЛАВА 7. ЛЕКЦИЯ 7

Лекция 8

8.1 Потенциальные векторные поля

$$\int_{\gamma} \sum V_i dx_i = F(\gamma(b)) - F(\gamma(a))$$

Определение. Интеграл V не зависит от пути в области O: $\forall A,B\in O\ \forall \gamma^1,\gamma^2$ - кусочно гладкие пути из A в B $\int_{\gamma^1} \sum V_i dx_i = \int_{\gamma^2} \sum V_i dx_i$

Теорема 8.1.1 (характеризация потенциальных векторных полей в терминах интегралов). V - векторное поле в области O. Тогда эквивалентны:

- 1. V потенциально
- 2. $\int_{\gamma} \sum V_i dx_i$ не зависит от пути в области O
- 3. $\forall \gamma$ кусочно гладкого, замкнутого в O $\int_{\gamma} \sum V_i dx_i = 0$

Доказательство.

- 1 \Rightarrow 2: обобщенная формула Ньютона-Лейбница
- 2 \Rightarrow 3: γ петля: $[a,b] \to O$ $\gamma(a) = \gamma(b) = A$ Рассмторим простой птуь $\tilde{\gamma}: [a,b] \to O$ $\gamma(t) = A$ по свойству 2 $\int_{\gamma} = \int_{\tilde{\gamma}} = 0 (= \int \langle V, \underbrace{\gamma'}_{0} \rangle dt)$
- $3\Rightarrow 2$: γ_1,γ_2 пути с общим началом и концом

 $\gamma:=\gamma_2^-\gamma_1$ - кусочно гладкая петля $0=\int_\gamma=\int_{\gamma_1}+\int_{\gamma_2}=\int_{\gamma_1}-\int_{\gamma_2}$

 Γ ЛАВА 8. ЛЕКЦИЯ 8

• $2\Rightarrow 1$: Фиксируем $A\in O$ $\forall x\in O$ выберем кусочно гладкий путь γ_x , который ведет из A в x $f(x):=\int_{\gamma_x}\sum V_idx_i$ - проверим что это потенциал Достаточно проверить $\frac{\partial f}{\partial x_1}=V_1$ в O Фиксируем $x\in O$

$$\begin{array}{l} \gamma_0(t) = x + the_1 \quad , t \in [0,1] \\ \gamma_0'(t) = (h,0,\dots,0) = he_1 \\ f(x+he_1) - f(x) = \int_{\gamma_{x+he_1}} - \int_{\gamma_x} = \int_{\gamma_0\gamma_x} - \int_{\gamma_x} = \int_{\gamma_0} = \int_0^1 V_1(\gamma_0(t)) \cdot hdt = \\ = h \cdot V_1(x_1 + ch, x_2, \dots, x_n) \\ \text{Таким образом } \frac{f(x+he_1) - f(x)}{h} \xrightarrow[h \to 0]{} V_1(x) \end{array}$$

8.1.1 Локально потенциальные векторные поля

Лемма 7. V - гладкое, потенциальное в O <u>Тогда</u> $\forall x \in O \ \forall k, j \quad \frac{\partial V_k}{\partial x_j} = \frac{\partial V_j}{\partial x_k}$

Доказательство.
$$\cdots = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

Теорема 8.1.2 (лемма Пуанкаре). $O \in \mathbb{R}^m$ - выпуклая область $V: O \to \mathbb{R}^m$ - векторное поле V - удовлетворяет условиям леммы(V - гладкое) Тогда V - потенциальное

Доказательство. Фиксируем $A \in O$ $\forall x \in O \ \gamma_x(t) := A + t \cdot (x-a) \quad , t \in [0,1]$

 $\gamma_x'(t) = x - A$ - постоянный вектор

$$f(x) := \int_{\gamma_x} \sum V_i dx_i = \int_0^1 \sum_{k=1}^m V_k (A + t(x - A)) \cdot (x_k - A_k) dt$$

Проверим, что f - потенциал

Проверим, что
$$j$$
 - потенциал
$$\frac{\partial f}{\partial x_j}(x) = \langle \text{правило Лейбница} \rangle = \int_0^1 V_j(A + t(x-A)) + \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t(x_k - A_k) dt = \sum_{k=1}^m \frac{\partial V_k}{\partial x_j}(\dots) \cdot t($$

$$= \int_0^1 (tV_j(A + t(x - A))_t'dt) = t \cdot V_j(A + t(x - A)) \Big|_{t=0}^{t=1} = V_j(x)$$

Примечание. Это же доказательство проходит для "звездных областей

Существует точка из которой видны все остальные

Определение. V - локально потенциальное векторное поле в O, если $\forall x \in O \ \exists U(x) \ V$ потенциально в U(x)

Следствие 8.1.2.8 (лемма Пуанкаре). $O \subset \mathbb{R}^m$ - любая область $V \in C^1(O)$, удовлетворяет Лемме 1 Тогда V - локально потенциально

8.2 Равномерная сходимость функциональных рядов (продолжение)

Теорема 3' (о дифференцировании ряда по параметру). $u_n \in C^1(\langle a, b \rangle)$ Путсть:

- 1. $\sum u_n(x) = S(x)$ поточенчная сходимость
- 2. $\sum u'_n(x) = \varphi(x)$ равномерно сходится на $\langle a, b \rangle$

Тогда:

- 1. $S(x) \in C^1(\langle a, b \rangle)$
- 2. $S' = \varphi$ на $\langle a, b \rangle$

т.е
$$(\sum u_n(x))' = \sum u'_n(x)$$

Доказательство.

- $f_n \to f$ поточечно
- $f'_n \Rightarrow f$

Тогда $f' = \varphi, f \in C^1$

- $S_n \to S$ поточечно
- $S'_n \Longrightarrow \varphi$

Пример. Формула Вейерштрасса:

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \cdot \prod_{k=1}^{+\infty} (1 + \frac{x}{k})e^{\frac{x}{k}}$$

, где γ - постоянная Эйлера

$$-\ln \Gamma(x) = \ln x + \gamma x + \sum_{l=1}^{+} (\ln(1 + \frac{x}{k}) - \frac{x}{k})$$

фиксируем x_0 $u_k'(x) = \frac{1}{1+\frac{x}{k}} \cdot \frac{1}{k} - \frac{1}{k} = \frac{1}{x+k} - \frac{1}{k} = \frac{-x}{(x+k)k}$

Пусть $M>x_0$ Тогда

$$\left| \frac{-x}{(x+k)k} \right| \leq \frac{M}{k^2}$$
, при $x \in (0,M)$

 $\sum \frac{M}{k^2}$ - сходится Тогда $\sum \frac{-x}{(x+k)k}$ равномерно сходится на (0,M)

Значит $\ln \Gamma(x) \in C^1(0,M) \Rightarrow \Gamma \in C^1(0,M)$

Примечание. Фактически теорема устанавливает, что $\sum u_n'(x)$ - непрерывна

Примечание (к примеру).

$$-\frac{\Gamma'(x)}{\Gamma(x)} = \frac{1}{x} + \gamma - \sum_{k=1}^{+\infty} \frac{x}{(x+k)k}$$

$$\Gamma'(x) = -\Gamma(x) \cdot (\frac{1}{x} + \gamma - \sum \dots)$$

$$\Gamma''(x) = \dots$$
(8.1)

Получается, что $\Gamma \in C^{\infty}(0, +\infty)$

Теорема 4' (о почленном переходе в суммах). $u_n: E \subset X \to \mathbb{R}, \quad x_0$ - предельная точка E

- 1. $\forall n \; \exists \;$ конечный $\lim_{x \to x_0} u_n(x) = a_n$
- 2. $\sum u_n(x)$ равномерно сходится на E

Тогда:

36

- 1. $\sum a_n$ сходится
- 2. $\sum a_n = \lim_{x \to x_0} \sum_{n=1}^{+\infty} u_n(x)$

$$\lim_{x \to x_0} \sum_{n=0}^{+\infty} u_n(x) = \sum_{n=0}^{+\infty} (\lim_{x \to x_0} u_n(x))$$
(8.2)

Доказательство.

1. $\sum a_n$ - сходится

 $\overline{x_n}$ - фундаментальная $\forall arepsilon \; \exists N \; \forall m,n>N \quad |x_m-x_m|<arepsilon$

$$S_n(x) = \sum_{k=0}^n u_k(x), \quad S_n^a = \sum_{k=1}^n a_k$$
 (8.3)

Проверим, что S_n^a - фундаментальная

$$|S_{n+p}^a - S_n^a| \le |S_{n+p}^a - S_{n+p}(x)| + |S_{n+p}(x) - S_n(x)| + |S_n(x) - S_n^a|$$
(8.4)

Из равномерной сходимости $\sum u_n(x): \forall \varepsilon \; \exists N \; \forall n > N \; \forall p \in \mathbb{N} \; \forall x \in E \; |S_{n+p}(x) - S_n(x)| < \varepsilon$ Это критерий Больциано-Коши для равномерной сходимости

Зададим ε , по N выберем n, n+p и возьмем x близко к x_0 :

$$|S_{n+p}^a - S_{n+p}(x)| < \frac{\varepsilon}{3} \tag{8.5}$$

$$|S_n^a - S_n(x)| < \frac{\varepsilon}{3} \tag{8.6}$$

Тогда выполнено (4), т.е. $|S^a_{n+p}-S^a_n|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$ Это фундаментальность последовательности $S^a_n\Rightarrow\sum a_n$ - сходится

 $2. \sum_{n=1}^{\infty} a_n = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x)$ Сводим к теореме Стокса-Зайдля:

$$\tilde{u}_n(x) = \begin{bmatrix} u_n(x) & x \in E \setminus \{x_0\} \\ a_n & x = x_0 \end{bmatrix}$$
 (8.7)

— задана на $E \cup \{x_0\}$, непрерывна в x_0 (переход $(8) \to (9)$)

 $\sum \tilde{u_n}(x)$ - равномерно сходится на $E \cup \{x_0\} \Rightarrow$ сумма ряда непрерывна в x_0

$$\lim_{x \to x_0} \sum u_n(x) = \lim_{x \to x_0} \sum \tilde{u}_n(x) = \tag{8.8}$$

$$=\sum \tilde{u}_n(x_0) = \sum a_n \tag{8.9}$$

$$\sup_{x} \left| \sum_{k=n}^{+\infty} \tilde{u}_k(x) \right| \le \sup_{x \in E \setminus \{x_0\}} \left| \sum_{k=n}^{+\infty} u_k(x) \right| + \left| \sum_{k=1}^{+\infty} a_k \right|$$
 (8.10)

В (10) в правой части оба слагаемых $\xrightarrow[n \to +\infty]{} 0$ отсюда равномерная сходимость ряда $\sum \tilde{u}_n(x)$

Примечание. Теорема 4' верна для случая, когда $u_n: E\subset X\to Y$, где Y - полное нормированное пространство

Теорема 4 (о перестановке двух предельных переходов). $f_n: E\subset X\to \mathbb{R},\ x_0$ - предельная точка E

Пусть:

1.
$$f_n(x) \underset{n \to +\infty}{\Longrightarrow} S(x)$$
 на E

2.
$$f_n(x) \xrightarrow[x \to x_0]{} A_n$$

Тогда:

1.
$$\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$$

$$2. S(x) \xrightarrow[x \to x_0]{} A$$

$$\begin{array}{ccc}
f_n(x) & \xrightarrow{n \to +\infty} S(x) \\
x \to x_0 \downarrow & & \downarrow x \to x_0 \\
A_n & \xrightarrow{-n \to +\infty} A
\end{array}$$

Доказательство. $u_1=f_1, \ldots, u_k=f_k-f_{k-1},\ldots$ Тогда $f_n=u_1+u_2+\cdots+u_n$ $a_1=A_1, \ldots, a_k=A_k-A_{k-1},\ldots, A_n=a_1+a_2+\cdots+a_n$ В этих обозначениях: $\sum u_k(x)$ — равномерно сходится к сумме S(x)

 $u_n(x)\xrightarrow[x\to x_0]{}a_k$ Тогда по т. 4' $\sum_{k=1}^n a_k=A_n$ — имеет конечный предел, при $n\to +\infty$ $\sum a_k$ - $cxo\partial umcs$

$$\lim_{x \to x_0} \sum u_k(x) = \lim_{x \to x_0} S(x) = \sum a_k = A$$
 (8.11)

Примечание. Здесь можно было бы вместо n рассматривать "непрерывный параметр" t $f_n(x) \leftrightarrow f(x,t)$

$$n \to +\infty \leftrightarrow t \to t_0$$

$$f_nS$$
 на $E \leftrightarrow f(x,t)[t \to t_0]S(x)$ — при $x \in E$ $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall t: t \neq t_0, \; |t-t_0| < \delta \; \forall x \in E \quad |f(x,t)-S(x)| < \varepsilon$

Лекция 9

9.1 Локально потенциальные векторные поля

9.1.1 Интеграл локально потенциального векторного поля по непрерывному пути

Лемма 8 (о гусенице). $\gamma:[a,b] \to \underset{om\kappa.\ Mh.}{O} \subset \mathbb{R}^m$ — непрерывное $\underline{Tor\partial a}\ \exists \partial poблениe \ a=t_0 < t_1 < t_2 < \cdots < t_n = b$ $\underline{u}\ \exists\ uapu\ B_1,\ \ldots,\ B_n \subset O$ $\gamma[t_{k_1},t_l] \subset B_k$

Доказательство. $\forall c \in [a,b]$ возьмем $B_c := B(\gamma(c), r_c \atop \text{произвол!!}) \subset O$

$$\tilde{\alpha}_c := \inf\{\alpha \in [a, b] | \gamma[\alpha, c] \subset B_c\}$$

$$\tilde{\beta}_c := \sup \{ \alpha \in [a, b] | \gamma[c, \beta] \subset B_c \}$$

Возьмем (α_c, β_c) : $\tilde{\alpha}_c < \alpha_c < c < \beta_c < \tilde{\beta}_c$

Таким образом $c\mapsto (\alpha_c,\beta_c)$ — открытое покрытие [a,b]

Для случая c=a или c=b вместо (α_c,β_c) берем $[a,\beta_a),\ (\alpha_b,b]$

[a,b] — компактен \Rightarrow [a,b] \subset $\bigcup_{\text{кон.}}(\alpha_c,\beta_c)$, н.у.о ни один интервал не накрывается целиком остальными $\forall (\alpha_c,\beta_c) \; \exists d_c$ — принадлежащая "только этому"интервалу

Точка
$$t_k$$
 выбирается на отрезке (d_k,d_{k+1}) и $t_k\in(\alpha_k,\beta_k)\cap(\alpha_{k+1},\beta_{k+1})$ $\gamma([t_{k-1},t_l])=\gamma(\alpha_k,\beta_k)\subset B_k$

 Πp имечание. $\forall \delta>0$ мы можем требовать чтобы все $r_k<\delta$

 ${\it Примечание.}\ {\it B}\ {\it силу}\ {\it формулы}\ "произвол!!" можно требовать, чтобы шары <math>{\it B_c}\ {\it удовлетворяли}\ {\it ло-}$ кальному условию

 $\mathit{Пример}.$ Пусть V — локально потенциальное векторное поле в O мы можем требовать, чтобы во всех шарах B_c существовал потенциал V.

Назовем в этом случае набор $\{B_k\}$ — V - гусеница

Определение. V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$

 $\gamma, ilde{\gamma}: [a,b] o O$ называются **похожими** (V - похожими) если у них есть общая V - гусеница $\exists t_0 = a < t_1 < t_2 < \dots < t_n = v \quad \exists$ шары $B_k \subset O$

$$\gamma[t_{k-1}, t_k] \subset B_k, \ \tilde{\gamma}[t_{k-1}, t_k] \subset B_k$$

Cледствие 9.1.0.9. V — локально потенциальное векторное поле

Тогда любой путь V - похож на ломаную

Лемма 9 (о равенстве интегралов локально потенциального векторного поля по похожим путям).

V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$

$$\gamma, \tilde{\gamma}: [a,b] \to O - V$$
 - похожие, кусочно гладкие, $\gamma(a) = \tilde{\gamma}(a), \ \gamma(b) = \tilde{\gamma}(b)$
Тогда $\int_{\gamma} \sum V_i dx_i = \int_{\tilde{\gamma}} \sum V_i dx_i$

Доказательство. Берем общую V - гусеницу

Пусть f_k - потенциал V в шаре B_k

$$a = t_0 < t_1 < \dots < t_n = b$$

Поправим потенциал(прибавим константы)

$$f_k((t_k)) = f_{k+1}(\gamma(t_k))$$
 при $k = 1, 2, \dots, n$

Тогда

40

$$\int_{\gamma} \sum V_i dx_i = \sum \int_{[t_{k-1}, t_k]} \dots \xrightarrow{\text{обобиц. ф-ла H.-Л.}} \sum f_k(\gamma(t_k)) - f_k(\gamma(t_{k-1})) =$$

$$= \text{"телесопическая} - f_n(\gamma(b)) - f_1(\gamma(a)) \tag{9.2}$$

$$= "телесопическая - f_n(\gamma(b)) - f_1(\gamma(a))$$
(9.2)

Для $\tilde{\gamma}$ воспользуемся свойством: $f_k\Big|_{B_k\cap B_{k+1}}=f_{k+1}\Big|_{B_k\cap B_{k+1}}$ и тогда аналогично $\int_{\tilde{\gamma}}\sum V_idx_i=f_n(\tilde{\gamma}(b))-f_n(\tilde{\gamma}(a))$

 Π римечание. Вместо " $\gamma(a)=\tilde{\gamma}(a),\ \gamma(b)=\tilde{\gamma}(b)$ "можно взять условие " $\gamma,\tilde{\gamma}$ - петли, т.е. $\gamma(a)=$ $\gamma(b),\ \tilde{\gamma}(a)=\tilde{\gamma}(b),$ и вообще говоря $\gamma(a)\neq \tilde{\gamma}(a)$ "Тогда утверждение Леммы 2 тоже верно

Лемма 10. $\gamma:[a,b]\to O$ - непрерывный, V - локально потенциальное векторное поле в O $Tor\partial a \; \exists \delta > 0 \; \; Ecnu \; \tilde{\gamma}, \tilde{\tilde{\gamma}}: [a,b] \to O \; makobu, \; что \; \forall t \in [a,b] \; \; |\gamma(t) - \tilde{\gamma}(t)| < \delta, \; |\gamma(t) - \tilde{\tilde{\gamma}}(t)| < \delta$ $\overline{mo\ ilde{\gamma}}\ u\ ilde{ ilde{\gamma}}\ (u\ \gamma) - V$ - похожи

Доказательство. Берем V - гусеницу для γ

 δ_k - окрестнось множества $\gamma[t_{k-1},t_[k]]$

 $\forall k \; \exists \delta_k > 0 : \; (\delta_k \; \text{- окрестность } \gamma[t_{k-1}, t_k]) \subset B_k$

 δ - окрестность множества A: $\{x\mid \exists a\in A\ \rho(a,x)<\delta\}=\bigcup_{a\in A}B(a,\delta)$ Следует их компактности: пусть $B_k = B(w, r)$

 $t \in [\gamma_{k-1}, \gamma_k] \mapsto \rho(\gamma(t), w)$ - непрерывная функция \Rightarrow достигает max

$$\rho(\gamma(t), w) \le r_0 < r \quad \delta_k := \frac{r - r_0}{2}$$

 $\delta := \min(\delta_1, \dots, \delta_k)$

Определение. Интеграл локально потенциального векторного поля V по непрерывному пути γ

Возьмем $\delta > 0$ из Леммы 3

Пусть $\tilde{\gamma}-\delta$ - близкий кусочно гладкий путь, т.е. $\forall t \ |\gamma(t)-\tilde{\gamma}(t)|<\delta$

Полагаем: $I(V, \gamma) = I(V, \tilde{\gamma})$

Следует из Леммы 3 и Леммы 2

9.2Сходимость рядов

$$f_n
ightharpoonup f$$
 на E $\forall \varepsilon > 0 \; \exists V(\infty) \; \forall n \in V(\infty) \; \forall x \in E \quad |f_n(x) - f(x)| < \varepsilon$ $f(x,y) \xrightarrow[x \to x_0]{} g(y)$ на множестве $E(\text{т.e.}$ для $y \in E)$ $\forall \varepsilon > 0 \; \exists V(x_0) \; \forall x \in \dot{V}(x_0) \; \forall t \in E|f(x,y) - g(y)| < \varepsilon$

Теорема 4.

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$
(9.3)

Если один из предельных переходов равномерный

Теорема 9.2.1 (признак Дирихле). $\sum a_n(x)b_n(x)$ — вещественный ряд, $x \in X$ Пусть:

- 1. Частичные суммы ряда $\sum a_n$ равномерно ограничены $\exists C_a \ \forall N \ \forall x \in X \quad |\sum_{k=1}^n a_k(x)| \leq C_a$
- 2. $\forall x$ последовательность $b_n(x)$ монотонна по n и $b_n(x) \Longrightarrow 0$ на X

Тогда ряд $\sum a_n(x)b_n(x)$ рвномерно сходится на XДля числовых рядов: $\sum a_n b_n$

- 1. частичные суммы a_n ограничены
- $2. \ b_n \to 0, \ b_n$ монотонна

Тогда $\sum a_n b_n$ - сходится

Доказательство.

$$\sum_{k=M}^{N} a_k b_k = A_N b_N - A_{M-1} b_{M-1} + \sum_{k=M}^{N-1} A_k (b_k - b_{k+1}), \text{ где } A_k = \sum_{i=1}^{k} a_i$$
 (9.4)

преобразование Абеля(суммирование по частям)

$$\left| \sum_{k=M}^{N} a_k(x) b_k(x) \right| \leq C_a \cdot |b_M| + C_a \cdot |b_{M-1}| + \sum_{k=M}^{N-1} C_a \cdot |b_k - b_{k+1}| \leq C_a (|b_N(x)| + |b_{M-1}(x)| + \sum_{k=1}^{N-1} |b_k - b_{k+1}|) \leq C_a \cdot |b_M| + C_a \cdot |b_M| +$$

$$\leq C_a(2|b_N(x)| + |b_{M-1}(x)| + |b_M(x)|) \tag{9.6}$$

Переход (5) \rightarrow (6): в сумме все разности одного знака \Rightarrow "телескопическая"и равна $\pm (b_M - b_N)$

Пережод (с) $X \in X$ (с) $X \in X$ (b) $X \in X$ (г) $X \in$ мерной сходимости ряда

Пример.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} \quad x \in \mathbb{R} \tag{9.7}$$

1. f(x) — непрерывная функция на \mathbb{R} ?

$$\left|\frac{\sin nx}{n^2}\right| \leq \frac{1}{n^2} \quad \sum \frac{1}{n^2}$$

Теорема Стокса-Зайдля $\left|\frac{\sin nx}{n^2}\right| \leq \frac{1}{n^2} \quad \sum \frac{1}{n^2}$ По признаку Вейерштрасса ряд равномерно сходится на $\mathbb{R} \Rightarrow f$ — непрерывна на \mathbb{R}

2. f — дифференцируема?

 Γ ЛАВА 9. ЛЕКЦИЯ 9

9.3 Степенные ряды

$$B(r_0,r)\subset\mathbb{C}$$
 - открытый круг $\sum_{n=1}^{+\infty}a_n(z-z_0)^n$, где $z_0\in\mathbb{C},\ a_n\in\mathbb{C},\ z$ — переменная $\in\mathbb{C}$

Теорема 9.3.1 (о круге сходимости степенного ряды). $\sum a_n(z-z_0)^n$ - степенной ряд Тогда выполняется ровно один из трех случаев:

- 1. Ряд сходится при всех $z \in \mathbb{C}$
- 2. Ряд сходится только при $z=z_0$
- 3. $\exists R \in (0, +\infty)$: при:
 - $|z-z_0| < R$ ряд сходится
 - $|z z_0| > R$ ряд расходится

Доказательство. Признак Коши: $\sum a_n - \lim \sqrt[n]{|a_n|} = r$

- r < 1 ряд сходится
- r > 1 ряд расходится

$$\sum a_n (z - z_0)^n \lim_{n \to \infty} \sqrt[n]{|a_n| \cdot |z - z_0|^n} = \lim_{n \to \infty} \sqrt[n]{|a_n| \cdot |z - z_0|} = |z - z_0| \cdot \lim_{n \to \infty} \sqrt[n]{|a_n|}$$
(9.8)

- $\lim \sqrt[n]{|a_n|} = 0$ тогда r = 0 и есть (абсолютная) сходимость при всех z
- $\lim \sqrt[n]{|a_n|} = +\infty$ тогда $r = +\infty$ при $z \neq z_0$ А при $z = z_0$ ряд очевидно сходится
- $\lim \sqrt[n]{|a_n|} \neq 0, +\infty$ $|z z_0| \cdot \lim \sqrt[n]{|a_n|} < 1 \Leftrightarrow |z z_0| < \frac{1}{\lim \sqrt[n]{|a_n|}} \xrightarrow{\text{def}} R$
 - 1. $|z z_0| < R$ ряд сходится абсолютно
 - 2. $|z-z_0|>R$ ряд расходится, т.к. слагаемые $\not\to 0$

Определение (степенной ряд). $z_0, a, z \in \mathbb{C}$ $\sum_{\text{степенной ряд}} a_n (z-z_0)^n$ число $R = \frac{1}{\lim \sqrt[n]{|a_n|}}$ — называется формула Адамара

радиусом сходимости степенного ряда

Лекция 10

10.1 Гомотопия путей

Определение (Гомотопия двух путей). $\gamma_0, \gamma_1: [a,b] \to O \subset \mathbb{R}^m$ — непрерывны $\Gamma: [a,b] \times [0,1]$ - непрерывное, такое что: $\Gamma(\cdot,0) = \gamma_0, \ \Gamma(\cdot,1) = \gamma_1$

• Гомотопия связанная, если $\gamma_0(a)=\gamma_1(a),\ \gamma_0(b)=\gamma_1(b),\ \forall u\in[0,1]\quad \Gamma(a,u)=\gamma_0(a),\ \Gamma(b,u)=\gamma_0(b)$

• Гомотопия петельная $\gamma_0(a)=\gamma_0(b), \gamma_1(a)=\gamma_1(b)$ $\forall u\in [0,1] \quad \Gamma(a,u)=\Gamma(b,u)$

Теорема 10.1.1. V - локально потенциальное векторное поле в $O \subset \mathbb{R}^m$ γ_0, γ_1 — связанно гомотопные пути $\underline{\text{Тогда}} \int_{\gamma_0} V_i dx_0 = \int_{\gamma_1} \sum V_i dx_i$

Примечание. То же самое выполнено для петельных гомотопий

Доказательство. $\gamma_u(t) := \Gamma(t,u), \ t \in [a,b] \ u \in [0,1]$ $\Phi(u) = \int_{\gamma_u} \sum V_i dx_i$ Проверим: Φ - локально постоянна $\forall u_0 \in [0,1] \ \exists W(u_0) : \forall u \in W(u_0) \cap [0,1] \ \Phi(u) = \Phi(u_0)$ Γ - непрерывна на $[a,b] \times [0,1]$ - компакт $\Rightarrow \Gamma$ - равномерно непрерывна $\forall \delta > 0 \ \exists \sigma > 0 \ \forall t,t' \ |t-t'| < \sigma \ \forall u,u' \ |u-u'| < \sigma \ |\Gamma(t,u) - \Gamma(t',u')| < \frac{\delta}{2}$ Лемма $3 \ \gamma : [a,b] \to O$

П

Тогда $\exists \delta > 0$ со свойством Если $\tilde{\gamma}, \tilde{\tilde{\gamma}}$ — близки к γ T.e. $\forall t \in [a, b]$

- $|\tilde{\gamma}(t) \gamma(t)| < \delta$
- $|\tilde{\tilde{\gamma}} \gamma(t)| < \delta$

то $\gamma, \tilde{\gamma}, \tilde{\tilde{\gamma}} - V$ - похожие

Возьмем параметр δ из Леммы 3 для пути γ_{u_0}

Если $|u-u_0|<\sigma$ $|\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2}$, при $t\in[a,b]$, т.е. γ_u и γ_{u_0} — похожи по Лемме 3 Построим кусочно гладкий путь $\tilde{\gamma}_{u_0}$ $\frac{\delta}{4}$ - близкий к γ_{u_0} $\forall t\in[a,b]$ $|\gamma_{u_0}(t)-\tilde{\gamma}_{u_0}|<\frac{\delta}{4}$

и кусочно гладкий путь
$$\tilde{\gamma}_u$$
 $\frac{\delta}{4}$ - близкий к γ_u Тогда $\tilde{\gamma}_{u_0}$ и $\tilde{\gamma}_u - \delta$ - близкие к γ_{u_0} э они V - похожие \Rightarrow
$$\Rightarrow \int_{\gamma_u} \sum V_i dx_i \xrightarrow{\det} \int_{\tilde{\gamma}_u} \dots = \int_{\tilde{\gamma}_{u_0}} \dots \xrightarrow{\det} \int_{\gamma_{u_0}} \dots$$
 т.е. $\Phi(u) = \Phi(u_0)$, при $|u - u_0| < \delta$

Определение. Область $O \subset \mathbb{R}^m$ - называется **односвязной** если в ней любой замкнутый путь гомотопен постоянному пути

Примечание. Выпуклая облать — одновязна

Примечание. Гомеоморфный образ однозвязного множества односвязный

 $\Phi:O o O'$ — гомеоморфизм, γ - петля в O', Φ^{-1} — петля в O

 $\Gamma:[a,b]\to [0,1]\to O$ - гомотопия $\Phi^{-1}(\gamma)$ и постоянного пути $\tilde{\gamma}\equiv A$

 $\Phi \circ \Gamma$ — гомотопия γ с постоянным путем $\Phi(A)$

Теорема 10.1.2. $O \subset \mathbb{R}^m$ — односвязная область

V — локально потенциальное векторное поле в O

Тогда V — потенциальное в O

Доказательство. Теорема. Эквивалентны:

- 1. V потенциальное
- 2. ...
- 3. \forall кусочно гладкой петли γ : $\int_{\gamma} \sum V_i dx_i = 0$

$$V$$
 - локально постояно, γ_0 — кусочно гладкая петля, тогда γ_0 гомотопна постоянному пути $\gamma_1 \Rightarrow \int_{\gamma_0} = \int_{\gamma_1} = \int_a^b \langle V(\gamma_1|t|), \underbrace{\gamma_1'(t)} \rangle dt = 0 \Rightarrow V$ — потенциально

Следствие 10.1.2.10. Теорема Пуанкаре верна в односвязной области Дифференциальный критерий:

$$\frac{\partial V_i}{\partial x_i} = \frac{\partial V_j}{\partial x_i} \tag{10.1}$$

Лемма Пуанкаре: $(10.1) \Rightarrow V$ — локально потенциально

Теорема 10.1.3 (о веревочке).

- $O = \mathbb{R}^2 \setminus \{(0,0)\}$
- $\gamma:[0,2\pi]\to O$ $t \mapsto (\cos t, \sin t)$

Тогда эта петля не стягиваема

Доказательство.

$$V(x,y)=(rac{-y}{x^2+y^2},rac{x}{x^2+y^2})$$
 — векторное поле в \mathbb{R}^2

Проверим что $\frac{\partial V_1}{\partial y} = \frac{\partial V_2}{\partial x}$:

$$\frac{\partial V_1}{\partial y} = \frac{-(x^2 + y^2) + 2y^2}{(x^2 + y^2)^2}, \quad \frac{\partial V_2}{\partial x} = \frac{(x^2 + y^2) - 2x^2}{(x^2 + y^2)^2}$$
(10.2)

Равенство частных производных выполняется если $(x,y) \neq (0,0) \Rightarrow V$ — локально потенциально При этом

$$\int_{\gamma} \sum V_i dx_i = \int_0^{2\pi} \left(\frac{-\sin t}{\cos^2 t + \sin^2 t} \cdot (-\sin t) + \frac{\cos t}{\cos^2 t + \sin^2 t} \cdot \cos t \right) dt = \int_0^{2\pi} 1 dt = 2\pi$$
 (10.3)

 $(3) \Rightarrow$ петля не стягиваема(Если бы была стягиваема, то интеграл изначально должен был быть равен 0, т.к. интеграл при гомотопиях не меняется), а поле V — не потенциально

10.2 Степенные ряды

Теорема 10.2.1 (о равномерной сходимости и непрерывности степенного ряда). $\sum a_n(z-z_0)^n \quad 0 < R \le +\infty$

- 1. $\forall r: \ 0 < r < R$ Ряд сходится равномерно в шаре $\overline{B(z_0,r)}$
- 2. $f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$ непрерывна в $B(z_0,R)$

Доказательство.

- 1. Если 0 < r < R, то при $z = z_0 + r$ ряд абсолютно сходится (по теореме о радиусе сходимости), т.е. $\sum |a_n| \cdot r^n$ конечна признак Вейрештрасса:
 - при $|z z_0 \le r|$ $|a_n(z z_0)^n| \le |a_n| \cdot r^n$
 - $\sum |a_n|r^n$ конечна

 \Rightarrow есть равномерная сходимость на $\overline{B(z_0,r)}$

2. Следует из 1. и теоремы Стокса-Зайдля Если z удовлетворяет $|z-z_0| < R \Rightarrow \exists r_0 < R \quad z \in B(z_0,r_0)$ На $B(z_0,r_0)$ есть равномерная сходимость $\Rightarrow f$ — непрерывна в z

Определение. $f: \mathbb{C} \to \mathbb{C}$ Произвдоная:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \tag{10.4}$$

Примечание. $f(z_0 + h) = f(z_0) + f'(z_0)h + o(|h|)$

Лемма 11. $w,w_0 \in \mathbb{C}, \ |w| < r, \ |w_0| < r$ Тогда $|w^n - w_0^n| \leq n \cdot r^{n-1} \cdot |w - w_0|, \ n \in \mathbb{N}$

Доказательство.
$$w^n - w_0^n = (w - w_0)(w^{n-1} + \underbrace{w^{n-2}w_0}_{\text{по модулю} \le r^{n-1}} + \dots + w_0^{n-1})$$

Теорема 10.2.2 (о дифференцируемости степенного ряды).

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n \quad 0 < R < +\infty \quad f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (10.5)

$$\sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1} \tag{10.6}$$

Тогда:

- 1. Радиус сходимости ряда (10.6) равен R
- 2. $\forall z \in B(z_0, R) \exists f'(z) \text{ и } f'(z) = (10.6)$

Доказательство.

1. По формуле Адамара $R=\frac{1}{\lim \sqrt[n]{a_n}}$ Ряд (10.6) сходится при каком-то $z\Leftrightarrow \sum na_n(z-z_0)^n$ — сходится Смторим на частичные суммы

$$\frac{1}{\lim \sqrt[n]{na_n}} = \frac{1}{1 \cdot \lim \sqrt[n]{a_n}} = R \tag{10.7}$$

2. $a \in B(z_0, R), \exists x < R, a \in B(z_0, r)$ $a = z_0 + w_0, |w_0| < r$ $z = z_0 + w, |w| < r$

$$\frac{f(z) - f(a)}{z - a} = \sum_{n=0}^{+\infty} a_n \cdot \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} a_n \cdot \frac{w^n - w_0^n}{w - w_0}$$
(10.8)

Последнее выражение по модулю по Лемме $\leq n \cdot r^{n-1} \cdot |a_n|$, ряд $\sum n r^{n-1} |a_n|$ — сходится по 1., т.е. ряд (10.8) равномерно сходится в круге $z \in B(z_0, r)$

$$\lim \frac{f(z) - f(a)}{z - a} = \sum_{n=1}^{+\infty} a_n \cdot \lim \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum n a_n (a - z_0)^{n-1}$$
 (10.9)

Лекция 11

11.1 Степенные ряды

$$f(z) = \sum a_n (z - z_0)^n \quad |z - z_0| < R$$
(11.1)

$$f'(z) = \sum na_n(z - z_0)^{n-1} \quad |z - z_0 < R|$$
(11.2)

Следствие 11.1.0.11. $f = \sum a_n (z - z_0)^n, \ 0 < R < +\infty$

Тогда $f \in C^{\infty}(B(z_0, R))$ и все производные можно найти почленным дифференцированием

Теорема 11.1.1 (из ТФКП). f - комплексно дифференцируема в z_0

Тогда $f = \sum a_n (z-z_0)^n \ R =$ рассстояние от z_0 до ближайшей особой точки функции

Следствие 11.1.1.12. $f(x) \sum_{n=0}^{+\infty} a_n (x-x_0)^n, \ a_n, x_0, x \in \mathbb{R}$ Тогда:

- 1. $\sum \frac{a_n}{n+1} (x-x_0)^{n+1}$ тот же радиус сходимости
- 2. $\int_{x_0}^x f(t)dt = \sum_{n=1}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$ 3a Me vanue. $\int f(x)dx = \sum_{n=1}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1} + \text{const}$

Доказательство.

- 1. Продифференцируем ряд $\sum \frac{a_n}{n+1}(x-x_0)^{n+1}$. По теореме он имеет тотже радиус сходимости что и ряд $\sum a_n(z-z_0)^n$
- 2. Мы можем вычислить производные левой и правой части, они совпадают, при $x=x_0$ ясно что константа нулевая \Rightarrow левая и правая части равны

Пример.

$$f(x) = \operatorname{arcctg} x$$

Продифференцируем:

$$f' = \frac{-1}{1+x^2} = -1+x^2-x^4+\dots$$

Проинтегрируем:

$$\operatorname{arcctg} x = C - x + \frac{x^3}{3} - \frac{x^5}{5} + \dots$$

Находим C подставляя x=0 $\operatorname{arcctg} 0=\frac{\pi}{2},$ итого:

$$\mathrm{arcctg} = \frac{\pi}{2} - x + \frac{x^3}{3} + \frac{x^5}{5}$$

47

11.1.1 Метод Абеля. Суммирование числовых рядов

Теорема 11.1.2 (Абеля). $\sum_{n=0}^{+\infty} C_n$ — сходящийся $C_n \in \mathbb{C}$ $f(x) = \sum_{n=0}^{\infty} C_n x^n$, $n \geq 1$, n < 1 < 1 Тогда $\lim_{x \to 1} f(x) = \sum_{n = 0}^{\infty} C_n$

признак Абеля $\sum a_n(x)b_n(x) \ a_n \in \mathbb{C} \ b_n \in \mathbb{R}$

- 1. $\sum a_n(x)$ равномерно сходится на $\langle \alpha, \beta \rangle$
- 2. $\forall x\ b_n(x)$ монотонна по n $b_n(x)$ равномерно ограничена $\exists C_b: \ \forall n\ \forall x \quad |b_n(x)| \leq C_b$

Тогда ряд сходится

Доказательство. Ряд $\sum C_n x^n$ равномерно сходится на [0,1] по признаку Абеля $a_n(x) := C_n \quad b_n(x) := x^n \Rightarrow$ этот ряд сходится Функции $C_n x^n$ — непрерывны на $[0,1] \Rightarrow$ (по т. Стокса-Зайдля) $\sum C_n x^n$ — непрервны на [0,1]

Следствие 11.1.2.13. $\sum a_n = A$, $\sum b_n = B$, $C_n = a_0b_n + a_1b_{n-1} + \cdots + a_nb_0$ Пусть $\sum C_n = C$ Тогда $C = A \cdot B$

Доказательство. $f(x) = \sum a_n x^n \quad g(x) = b_n x^n \quad h(x) = \sum c_n x^n \quad x \in [0,1]$ x < 1 Есть абсолютная сходимость $a_n, b_n \Rightarrow$ можно перемножать: f(x)g(x) = h(x), тогда при переход в пределе $x \to 1 - 0 \Rightarrow A \cdot B = C$

11.1.2 Экспонента(комплексной переменной)

Определение. $\sum \frac{z^n}{n!}$ $A=\infty$ $\exp(z):=\sum_{n=0}^{+\infty}\frac{z^n}{n!}$ Свойства:

- 1. $\exp(0) = 1$
- 2. $\exp'(z) = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{k=0}^{+\infty} \frac{z^k}{k!} = \exp(z)$
- 3. f_0 показательная функция, удовлетворяет f(x+y)=f(x)f(y) $\lim_{x\to 0}\frac{f_0(x)-1}{x}=1$ $f_0(x):=\exp(x)$ $\lim_{x\to 0}\frac{\exp(x)-1}{x}=\exp'(0)=1$
- 4. $\overline{\exp(z)} = \exp(\overline{z})$

Доказательство. $\overline{w_1 + w_2} = \overline{w_1} + \overline{w_2}$

Потому что коэффицент вещественный:

$$\overline{\sum_{n=0}^{N} \frac{z^n}{n!}} = \sum_{n=0}^{N} \frac{(\overline{z})^n}{n!}$$
(11.3)

Теорема 11.1.3. $\forall z, w \in \mathbb{C}$, тогда $\exp(z+w) = \exp(z) \exp(w)$

11.2 Теория меры

11.2.1 Системы множеств

Обозначение. A_i — множества, попарно не пересекаются $\leftrightarrow A_i$ — дизьюнкты(dis) $\bigsqcup_i A_i$ — дизьюнктное объедиение

Определение. X — множество, 2^X — система всевозможных подмножеств в X $\mathcal{P} \subset 2^X$ — полукольцо елси:

11.2. ТЕОРИЯ МЕРЫ

49

1. $\emptyset \in \mathcal{P}$

2.
$$\forall A, B \in \mathcal{P} \quad A \cap B \in \mathcal{P}$$

3.
$$\forall A,A'\in\mathcal{P}$$
 \exists конечное $B_1,\dots,B_2\in\mathcal{P}$ – дизьюнктны $A\setminus A'=\bigsqcup_{i=1}^n B_i$

 $\Pi puмер. \ 2^X — полукольцо$

 Π ример. $X = \mathbb{R}^2$ \mathcal{P} — ограниченые подмножества(в том числе \emptyset)

$$[a,b) = \{x \in \mathbb{R}^m | \forall i \ x_i \in [a_i,b_i)\}$$

 Π ример. \mathcal{P}^m — множество ячеек в \mathbb{R}^m Утверждается, что \mathcal{P}^m — полукольцо

Доказательство. m=2

- 1. очев
- 2. $A\cap B=[a,a')\cap [b,b')=\{(x_1,x_2)\in \mathbb{R}^m\big| \forall i=1,2 \ \max(a_i,b_i)\leq x_i<\min(a_i',b_i')\}$ т.е. пересечние очевидно тоже ячейка

 $3. \ A \setminus A' = \bigsqcup_{i=1}^{n} B_i$

Заштрихованная ячейка — A', большая ячейка — A в \mathbb{R}^m 3^m-1 часть

Пример.
$$A = \{1,2,3,4,5,6\}$$
 $\forall i \ A_i = A$
$$X = \bigoplus_{i=1}^{+\infty} A_i = \{(a_1,a_2,\dots) | \forall i \ a_i \in A_i\}$$
 Обозначим $\sigma - \begin{pmatrix} i_1 & i_2 & \dots & i_k \\ \alpha_1 & \alpha_2 & \dots & \alpha_k \end{pmatrix} : k \in \mathbb{N} \quad \forall l: \ 1 \leq l \leq k \quad \alpha_l \in A_{i_l}$ $\mathcal{P} = \{X_\sigma\}_\sigma, \ X_\sigma = \{a \in X \big| a_{i_1} = \alpha_1, \dots, a_{i_k} = \alpha_k\}$ Утверждение: $\mathcal{P} -$ полукольцо

Доказательство.

1.
$$\emptyset = X$$
, $\sigma = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

2.
$$\sigma, \sigma' \quad X_{\sigma} \cap X_{\sigma'} = X_{\sigma \cup \sigma'}$$

3.
$$X_{\sigma} \setminus X_{\sigma'}$$

Примечание. Свойства:

1. Как показывают примеры:

(a)
$$A \subset \mathcal{P} \not\Rightarrow A^C = X \setminus A \in \mathcal{P}$$

(b)
$$A, B \in \mathcal{P} \not\Rightarrow$$

- $A \cup B \in \mathcal{P}$
- $A \setminus B \in \mathcal{P}$
- $A \land B = (A \setminus B) \cup (B \setminus A)$
- 2. Модернизируем 3-е свойство полукольца: $A, \quad A_1, \dots, A_n \in \mathcal{P}$ Тогда $A \setminus (A_1 \cup A_2 \cup \dots \cup A_n)$ представима в виде дизъюнктного объединения элементов \mathcal{P}

Доказательство. Индукция по
 п. База n=1 — аксиома 3 полукольца Переход:

$$A \setminus (A_1 \cup \dots \cup A_n) = (A \setminus (A_1 \cup \dots \cup A_n)) \setminus A_n =$$

$$= (\bigsqcup_{i=1}^k B_i) \setminus A_n = \bigsqcup_{i=1}^k (B_i \setminus A_n) = \bigsqcup_{i=1}^k \bigsqcup_{j=1}^{L_i} D_{ij}$$

Определение. $\mathfrak{A} \subset 2^X$ — алгебра подмножеств в X:

- 1. $\forall A, B \in \mathfrak{A} \quad A \setminus B \in$
- $2. X \in$

Свойства

1.
$$\emptyset = X \setminus X \in \mathfrak{A}$$

2.
$$A \cap B = A \setminus (A \setminus B) \in \mathfrak{A}$$

3.
$$A^C = X \setminus A \in \mathfrak{A}$$

4.
$$A \cup B \in \mathfrak{A}$$
, потому что $(A \cup B)^C = A^C \cap B^C$

5.
$$A_1,\ldots,A_n\in\mathfrak{A}\Rightarrow igcup_{i=1}^n A_i,\ \bigcap_{i=1}^n A_i\in\mathcal{A}$$
— по индукции

6. Всякая алгебра есть полукольцо, обратное не верно

Лекция 12

12.1 Экспонента

Теорема 12.1.1. $\exp(z+w) = \exp(z) \cdot \exp(w)$

Доказательство.

$$\exp(z) \cdot \exp(w) = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \cdot \sum_{n=0}^{+\infty} \frac{w^n}{n!} = \sum_{n=0}^{+\infty} c_n$$
 (12.1)

, где
$$c_n = \frac{1}{n!} \sum_{k=0}^n \frac{z^k}{k!} \cdot \frac{w^{n-k}}{(n-k)!} \cdot n! = \frac{(z+w)^n}{n!}$$
 (12.2)

$$\sum c_n = \sum \frac{(z+w)^n}{n!} = \exp(z+w)$$
(12.3)

Cnedcmeue 12.1.1.14. $\forall z \in \mathbb{C} \quad \exp(z) \neq 0$

12.1.1 Замечания о тригонометрических функциях

Пусть $\exp(ix) = \cos(x) + i\sin(x), \ x \in \mathbb{R}$ Тогда $\exp(-ix) = \cos(x) - i\sin(x)$

$$Cos(x) = \frac{\exp(ix) + \exp(-ix)}{2} \quad Sin(x) = \frac{\exp(ix) - \exp(-iz)}{2i}$$
 (12.4)

Следовательно:

$$Cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \quad Sin(x) = x - \frac{x^3}{3!} + \dots$$
 (12.5)

Пусть $T(x) = \exp(ix)$ Тогда T(x+y) = T(x)T(y)

$$Cos(x+y) + iSin(x+y) = (Cos(x) + iSin(x))(Cos(y) + iSin(y))$$
(12.6)

Cos(x + y) = Cos(x)Cos(y) - Sin(x)Sin(y)Sin(x + y) = Cos(x)Sin(y) + Sin(x)Cos(y)

$$|T(x)|^2 = T(x) \cdot \overline{T(x)} = \exp(ix) \cdot \exp(-ix) = \exp(0) = 1$$
 (12.7)

т.е. $(\cos(x), \sin(x))$ — точка на единичной окружности T' = iT, т.е. $x \mapsto T(x)$ — движение по единичной окружности с единичным вектором скорости, вектор скорости \bot радуис-вектору

12.2 Ряды Тейлора

Все вещественно

Определение. f — разлагается в степенной ряд в окрестности x_0 если: $\exists \varepsilon > 0 \ \exists C_n$ — вещественная последовательность

$$\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \ f(x) = \sum_{n=0}^{+\infty} C_n (x - x_0)^n$$
 (12.8)

 Π римечание. Тогда $f \in C^{\infty}(x_0 - \varepsilon, x_0 + \varepsilon)$ по следствию

Теорема 12.2.1 (единственности). f — разлагается в сепенной ряд в окресности x_0 Тогда разложение единственно

Доказательство. выполняется (12.8)

$$c_0 = f(x_0), \quad f'(x) = \sum_{n=1}^{+\infty} nC_n(x - x_0)^{n-1}$$
 (12.9)

$$c_1 = f'(x_0), \quad f''(x) = \dots$$
 (12.10)

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1)C_n(x-x_0)^{n-k}$$
(12.11)

$$c_k = \frac{f^{(k)}(x_0)}{k!} \tag{12.12}$$

Определение. Ряд Тейлора функции f в точке x_0 — формальный ряд $\sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$

 Π римечание. Ряд Тейлора может оказаться сходящимся только в точке x_0

Примечание. Ряд Тейлора может сходится не туда

Пример.
$$f(x)=\begin{cases} e^{\frac{-1}{x^2}} &, x\neq 0 \\ 0 &, x=0 \end{cases}$$
. Тогда $f\in C^\infty(\mathbb{R})$

при x=0 $\forall n \ f^{(n)}(0)=0$ — мы это доказывали \Rightarrow Ряд Тейлора в $x_0=0$ тождественно равен нулю

12.3 Теория меры

Определение. σ - алгебра $\mathfrak{A}\subset 2^X$

2.
$$A_1, A_2, \dots \in \mathfrak{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$$

12.3. ТЕОРИЯ МЕРЫ 53

Примечание. $A_1,A_2,\dots\in\mathfrak{A}$ Тогда $\bigcap_{i=1}^\infty A_i\in\mathfrak{A}$

$$X\setminus \bigcap_{i=1}^{\infty}A_i=\bigcup_{i=1}^{\infty}(X\setminus A_i)$$

 Π римечание. $E\in\mathfrak{A}_{\sigma ext{-алгебра}}$ Тогда $\mathfrak{A}_E:=\{A\in\mathfrak{A}\big|A\subset R\}-\sigma$ - алгебра подмножеств множества E

Пример. 2^X

 Π ример. X - бесконечное множество $\mathfrak A=$ не более чем счетные множества и их дополнения Аналогично примеру 2 для алгебр

 $\Pi pumep. \ X = \mathbb{R}^2 \ \mathfrak{A}$ — ограниченое множество и их дополнение — не σ -алгебра

12.3.1 Объем

Определение. $\mu:\mathcal{P}\atop_{\text{полукольцо}}\to\overline{\mathbb{R}}$ — аддитивная функция множества, если:

- 1. μ не должна принимать значение $\pm \infty$ одновременно(если принимает одно на каком либо множестве, не должно принимать другое на любом другом множестве)
- 2. $\mu(\emptyset) = 0$
- 3. $\forall A_1,\ldots,A_n\in\mathcal{P}$ дизъюнктны. Если $A=\bigsqcup A_i\in\mathcal{P},$ то $\mu(A)=\sum_{i=1}^n\mu(A_i)$

Определение. $\mu: \mathcal{P} \to \mathbb{R}$ — объем, если $\mu \geq 0$ и μ — аддитивная

Примечание. Если $X \in \mathcal{P}, \ \mu(X) < +\infty$, то говорят, что μ — конечный объем

Примечание. μ — задано на \mathfrak{A} : свойство 3 можно заменить на 3'

3'.
$$\forall A, B \in \mathfrak{A}, \ A \cap B = \emptyset \quad \mu(A \cup B) = \mu(A) = \mu(B)$$

Обозначение. $\mu(A) = \mu A$

 Π ример. \mathcal{P}^1 — ячейки в \mathbb{R} , $\mu[a,b)=b-a,\ b\geq a$

$$a = x_0 < x_1 < \dots < x_n = b$$

$$[a, b) = \bigsqcup_{i=1}^{n} [x_{i-1}, x_i)$$

$$\sum_{i=1}^{n} \mu[x_{i-1}, x_i] = \sum_{i=1}^{n} (x_i - x_{i-1}) \xrightarrow[\text{телескоп.}]{\text{телескоп.}} x_n - x_0 = b - a = \mu[a, b)$$

 Π ример. Классический объем в \mathbb{R}^m $\mu:\mathcal{P}^m o \mathbb{R}$

$$\mu[a,b) = \prod_{i=1}^{m} (b_i - a_i)$$

 μ не является конечным объемом

Определение. $A \subset B \Rightarrow \mu A \leq \mu B$ — монотонность объема

Теорема 12.3.1 (о свойствах объема). $\mu: \mathcal{P} \to \overline{\mathbb{R}}$ — объем Тогда он имеет свойства:

Уиленная монотонность
$$\forall A, \underbrace{A_1, A_2, \dots, A_n}_{\text{дизъюнктны}} \in \mathcal{P} \quad \bigsqcup_{i=1}^n A_i \subset A \quad \sum_{i=1}^n \mu A_i \leq \mu A$$

2. Конечная полуаддитивность

$$\forall A, A_1, A_2, \dots, A_n \in \mathcal{P} \quad A \subset \bigcup_{i=1}^n A_i \quad \mu A \leq \sum_{i=1}^n \mu A_i$$

3. $\forall A, B \in \mathcal{P}$ пусть еще известно: $A \setminus B \in \mathcal{P}, \ \mu B$ — конечный Тогда $\mu(A \setminus B) \ge \mu A - \mu B$

Примечание.

• в пунктах 1 и 2 не предполагается, что $\bigcup A_i \in P$

• в пункте 3 если \mathcal{P} — алгебра то условие $A \setminus B \in P$ можно убрать(оно выполняется автоматически)

Доказательство.

- 1. Усиление аксиомы 3 из определения полукольца: $A\setminus (\bigcup_{i=1}^n A_i)=\bigcup_{l=1}^S B_l$ доказано ранее таким образом $A=(\bigsqcup A_i)\cup (\bigsqcup B_l)$ дизъюнктное объединение конечного числа множеств $\mu A=\sum \mu A_i+\sum B_l\geq \sum \mu A_i$
- 2. объем \Rightarrow конечная полуаддитивность

$$A \subset \bigcup_{\text{KOH.}} A_k \mu A \le \sum \mu A_k \quad (A, A_1, \dots, A_n \in \mathcal{P})$$
 (12.13)

$$B_k := A \cap A_k \in \mathcal{P} \quad A = \bigcup_{\mathbf{ron}} B_k \tag{12.14}$$

Сделаем эти множества дизъюнктными

$$C_1 := B_1, \dots, C_k := B_k \setminus (\bigcup_{i=1}^{k-1} B_i) \quad A = \bigsqcup_{\text{post}} C_k$$

$$(12.15)$$

Но эти C_k вообще говоря $\notin \mathcal{P}$

$$C_k = B_k \setminus (\bigcup_{i=1}^{k-1} B_i) = \bigsqcup_i D_{kj}, \ D_{kj} \in \mathcal{P}$$

$$(12.16)$$

Тогда:

$$A = \bigsqcup_{k,j} D_{kj} \qquad \mu A = \sum \mu D_{kj} \tag{12.17}$$

При этом $\forall k$:

$$\sum_{i} \mu D_{kj} = \mu C_k \le \mu A_k \tag{12.18}$$

Неравенство в (18) в силу монотонности объема (п.1 теоремы). Итого

$$\mu A = \sum_{k} \sum_{j} \mu D_{kj} = \sum_{j} \mu C_k \le \sum_{j} \mu A_k \tag{12.19}$$

3. (a) $B \subset A$ $A = B \sqcup (A \setminus B)$ $\mu A = \mu B + \mu (A \setminus B)$

(b)
$$B \not\subset A$$
 $A \setminus B = A \setminus \underbrace{(A \cap B)}_{\in \mathcal{P}}$ $\mu(A \setminus B) \xrightarrow{\text{(a)}} \mu A - \mu(A \cap B) \underset{\text{MOHOT.}}{\geq} \mu A - \mu B$

Лекция 13

13.1 Ряды Тейлора

Пример.

$$e^x = \sum_{n=0}^{+\infty} \quad x \in \mathbb{R} \tag{13.1}$$

$$\sin x = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} \quad x \in \mathbb{R}$$
 (13.2)

$$\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} \quad x \in \mathbb{R}$$
 (13.3)

$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n \quad x \in (-1,1)$$
 (13.4)

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n} \quad x \in (-1,1)$$
(13.5)

$$\arctan x = \sum (-1)^{n-1} \frac{x^{2n-1}}{2n-1} \quad x \in (-1,1)$$
(13.6)

Теорема 13.1.1. $\forall \sigma \in \mathbb{R} \ \forall x \in (-1,1)$ $(1+x)^{\sigma} = 1 + \sigma x + \frac{\sigma(\sigma-1)}{2}x^2 + \dots$

Доказательство. при |x| < 1 ряд сходится по ризнаку Деламбера

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(\sigma - n)x}{n+1} \right| \xrightarrow[n \to +\infty]{} |x| < 1 \tag{13.7}$$

Обозначим сумму ряда через S(x)

Наблюдение: $S'(x)(1+x) = \sigma S(x)$

$$\sum a_n \leftrightarrow \sum a_n x^n = f(x) \tag{13.8}$$

$$\sum a_n n x^{n-1} = f'(x) \tag{13.9}$$

$$S'(x) = \dots + \frac{\sigma(\sigma - 1)\dots(\sigma - n)}{n!}x^n + \dots$$
 (13.10)

$$S(x) = \dots + \frac{\sigma(\sigma - 1)\dots(\sigma - n + 1)}{n!}x^n$$
(13.11)

$$(1+x)S' = \dots + \left(\frac{\sigma(\sigma-1)\dots(\sigma-n)}{n!} + \frac{\sigma(\sigma-1)\dots(\sigma-n+1)}{n!} \cdot n\right)x^n + \dots = (13.12)$$

$$= \dots + \frac{\sigma(\sigma-1)\dots(\sigma-n+1)}{n!} \cdot \sigma x^n + \dots$$
 (13.13)

$$f(x) = \frac{S(x)}{(1+x)^{\sigma}} \quad f'(x) = \frac{S' \cdot (1+x)^{\sigma} - \sigma(1+x)^{\sigma-1} \cdot S}{(1+x)^{2\sigma}} = 0 \Rightarrow f = \text{const } f(0) = 1 \Rightarrow f \equiv 1$$

Cледствие 13.1.1.15.

$$\arcsin x = \sum \frac{(2n-1)!!}{(2n)!!} \cdot \frac{(x^{2n+1})}{2n+1}$$
 (13.14)

Доказательство.

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} {\sigma \choose n} (-x^2)^n \Big|_{\sigma=-\frac{1}{2}} = \sum_{n=0}^{+\infty} \frac{(2n-1)!!}{(2n)!!} x^{2n}$$
(13.15)

последнее выражение при n=0 равно 1, и тогда (14): $\arcsin x = x + \dots$ $\arcsin x = \mathrm{const} + \mathrm{нужный}$ ряд, при x := 0 $\mathrm{const} = 0$

Cледствие 13.1.1.16.

$$\sum_{n=m}^{+\infty} n(n-1)\dots(n-m+1) \cdot t^{n-m} = \frac{m!}{(1-t)^{m+1}} \quad |t| < 1$$
 (13.16)

Доказательство.

$$\sum_{n=0}^{+\infty} t^n = \frac{1}{1-t} \tag{13.17}$$

дифференцируем m раз

Теорема 13.1.2. $f \in C^{\infty}(x_0 - h, x_0 + h)$

f — раскладывается в ряд Тейлора в окрестности $x_0 \Leftrightarrow \exists \delta, C, A>0 \ \forall n \ \forall x: |x-x_0|<\delta \quad |f^{(n)}(x)|< C\cdot A^n\cdot n!$

Доказательство.

(⇐) формула Тейлора:

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n)}(c)}{n!} (x - x_0)^n$$
 (13.18)

$$\left| \frac{f^{(n)}()}{n!} (x - x_0)^n \right| \le C \cdot |A(x - x_0)|^n \xrightarrow[n \to +\infty]{} 0 \tag{13.19}$$

Разложение имеет место при $|x-x_0| < \min(\delta, \frac{1}{4})$

(⇒)

$$f(x) = \sum \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
(13.20)

Возьмем $x_1 \neq x_0$, для которого это верно

 \bullet при $x=x_0$, ряд сходится \Rightarrow слагаемые $\to 0 \Rightarrow$ ограничены

$$\left| \frac{f^{(n)}(x_0)}{n!} (x_1 - x_0)^n \right| \le C_1 \Leftrightarrow |f^{(n)}(x_0)| \le C_1 n! B^n | \tag{13.21}$$

, где $B = \frac{1}{|x_1 - x_0|}$

 $f^{(m)}(x) = \sum \frac{f^{(n)}(x_0)}{n!} n(n-1) \dots (n-m+1)(x-x_0)^{n-m} =$ (13.22)

$$= \sum_{n=m}^{+\infty} \frac{f^{(n)}}{(n-m)!} (x-x_0)^{n-m}$$
 (13.23)

Пусть $|x - x_0| < \frac{1}{2B}$

$$|f^{(n)}(x)| \le \sum \left| \frac{f^{(n)}(x_0)}{(n-m)!} | (x-x_0)^{n-m} \right| \le \sum \frac{C_1 n! B^n}{(n-m)!} =$$
 (13.24)

13.2. ТЕОРИЯ МЕРЫ 57

$$= C_1 B^m \sum_{n=1}^{\infty} \frac{n!}{(n-m)!} \cdot \underbrace{(B|x-x_0|)^{n-m}}_{\leq \frac{1}{2}} \underbrace{\frac{C_1 B^n m!}{(1-\underbrace{B|x-x_0|})^{m+1}}}_{\leq \frac{1}{2}}$$
(13.25)

$$< C_1 2^{m+1} B^m m! = \underbrace{(2C_1)}_{C} \cdot \underbrace{(2B)}_{A}^m m!$$
 (13.26)

Эта оценк выполнятется при $|x - x_0| < \delta = \frac{1}{2B}$

13.2 Теория меры

13.2.1 Mepa

Определение. $\mu:\mathcal{P}_{\prod/\kappa} o\overline{\mathbb{R}}$ — мера, если μ — объем и μ — счетно аддитивна: $\forall A,A_1,\dots\in\mathcal{P}$

$$A = \bigsqcup_{i=1}^{+\infty} A_i \qquad \mu A = \sum_{i=1}^{+\infty} \mu A_i$$

Примечание. $(a_{\omega})_{\omega \in \Omega}$ — счетное множество чисел(т.е. Ω — счетно) $\forall \omega \ a_{\omega} \geq 0$ Тогда определена:

$$\sum_{\omega \in \Omega} a_{\omega} = \sup(\sum_{\text{\tiny KOH.}} a_{\omega}) \tag{13.27}$$

Значит можно счетную аддитивность понимать обобщеноо:

$$A = \bigsqcup_{\text{FOR}} A_{\omega} \Rightarrow \mu A = \sum \mu A_{\omega} \quad (A, A_{\omega} \in \mathcal{P})$$
 (13.28)

Примечание. Счетная аддитивность не следует из конечной аддитивности

 Π ример. $X=\mathbb{R}^2$ $\mathcal{P}=$ ограниченые множества и их дополнения $\mu A=egin{cases} 0 &, A-\text{orp.} \\ 1 &, A^C-\text{orp.} \end{cases}$

$$\mu A = \begin{cases} 0 & , A - \text{orp.} \\ 1 & , A^C - \text{orp.} \end{cases}$$

 \mathbb{R}^2 = "лист в клетку = $\bigcup_{\text{счетное}}$ клеток = \bigsqcup ячеек $\stackrel{\text{обозн.}}{=}$ $\bigsqcup A_i$ $\mu(\mathbb{R}^2)=1$ $\sum \mu A_i=0$ Это не мера

Пример. X — (бесконечное) множество

 a_1, a_2, a_3, \ldots — набор попарно различных точек

 h_1, h_2, h_3, \ldots — положительные числа

Для $A \subset X$

$$\mu A := \sum_{k: a_k \in A} h_k \tag{13.29}$$

Счетная аддитивность $\mu \Leftrightarrow$ Теорема о группировке слагаемых

 μ — дискретная мера

Теорема 1. $\mu: \mathcal{P}_{\pi/\kappa} \to \overline{\mathbb{R}}$ — объем

Тогла эквивалентны:

- 1. μ мера, т.е. μ счетно аддитивна
- 2. μ счетно полу-аддитивна: $A,A_1,A_2,\dots\in\mathcal{P}$ $A\subset\bigcup A_i\Rightarrow\mu A\leq\sum\mu A_i$

Доказательство.

 $(1 \Rightarrow 2)$ Как в предыдущей теореме(доказательство п.2) в формклах 15, 17, 19 вместо конечных объединений и сумм надо рассматривать счетные

$$(2\Rightarrow 1)$$
 $A=\bigsqcup_{i=1}^{+\infty}A_i$ проверим $\mu A=\sum \mu A_i$:

$$\forall N \quad A \supset \bigsqcup_{i=1}^{N} A_i \quad \mu A \ge \sum_{i=1}^{N} \mu A_i \tag{13.30}$$

$$A \subset \bigcup A_i \quad \mu A \le \sum \mu A_i \tag{13.31}$$

Тогда $\mu A = \sum \mu A_i$

Следствие 13.2.0.17. $A\in\mathcal{P}$ $A_n\in\mathcal{P}: A\in A_n, \ \mu A_n=0,$ при этом μ — мера Тогда $\mu A=0$

Доказательство.
$$\mu A \leq \sum \mu A_i = 0$$

Теорема 2. $\mathfrak A$ — алгебра, $\mu:\mathfrak A\to\overline{\mathbb R}$ — объем Тогда эквивалентны:

- 1. μ мера
- 2. μ непрерывна снизу: $A, A_1, A_2, \dots \in \mathfrak{A}$ $A_1 \subset A_2 \subset A_3 \subset \dots$

$$A = \bigcup_{i=1}^{+\infty} A_i \Rightarrow \mu A = \lim_{i \to +\infty} \mu A_i$$
 (13.32)

Доказательство. нет(см доказательство Т. 3)

Теорема 3. $\mathfrak A$ — алгебра $\mu:\mathfrak A\to\mathbb R$ — конечный объем Тогда эквивалентны:

- 1. μ мера, т.е. счетно аддитивная функцяи множества
- 2. μ непрерывна сверху: $A, A_1, A_2, \dots \in \mathfrak{A}$ $A_1 \supset A_2 \supset \dots \quad A = \bigcap A_i \Rightarrow \mu A = \lim \mu A_i$

$$x=\mathbb{R}\quad A_k=[k,+\infty]\quad\bigcap A_k=\emptyset=A\quad \mu A=0\ \mu a_k=+\infty$$
 μ — мера Лебега в R^2

Доказательство.

$$(1 \Rightarrow 2) B_k = A_k \setminus A_{k+1} \quad A_1 = \bigsqcup B_k \sqcup A$$

$$\underbrace{\mu A_1}_{\text{кон.}} = \sum_{\text{⇒cx.}} \mu B_k + \mu A$$

$$A_n = \bigsqcup_{k \ge n} B_k \sqcup A \quad \mu A_n = \sum_{k \ge n} \mu B_k + \mu A \xrightarrow[n \to +\infty]{} \mu A \tag{13.33}$$

 $(2\Rightarrow 1)$ Дана непрерывность сверху. Воспользуемся ей для случая $A=\emptyset$ Проверяем счетную аддитивность: $C=\bigsqcup C_i \stackrel{?}{\Rightarrow} \mu C=\sum \mu C_i$

$$A_k := \bigsqcup_{i=k+1}^{\infty} C_i \tag{13.34}$$

Тогда:

$$A_k \in \mathfrak{A}: \ A_k = C \setminus \bigsqcup_{i=1}^k C_i \tag{13.35}$$

последнее выражение содержит конечное число операций

$$A_1 \supset A_2 \supset \dots, \bigcap A_k = \emptyset \Rightarrow \mu A_k \xrightarrow[k \to +\infty]{} 0$$

$$C = \bigsqcup_{i=1}^{k} C_i \sqcup A_k \quad \mu C = \sum_{i=1}^{k} \mu C_i + \mu A_k \xrightarrow[k \to +\infty]{} \sum \mu C_i$$
 (13.36)

13.2. ТЕОРИЯ МЕРЫ 59

13.2.2 Теорема о продолжении меры

Определение. $\mu:\mathcal{P}\to\overline{\mathbb{R}}$ — мера σ - конечна, если: $\exists A_1,A_2,\dots\in\mathcal{P}:\ X=\bigcup A_i,\ \mu A_i<+\infty$

 Π ример. $X=\mathbb{R}^m,\; \mathcal{P}=\mathcal{P}^m$ — полукольцо ячеек μ — класичекий объем, μ — σ -конечный объем $\mathbb{R}^m=\bigcup \mathrm{Ky6}(0,2R)=\bigcup$ целочисленных единичных ячеек

Определение. $\mu:\mathcal{P}\to\overline{\mathbb{R}}$ — мера μ — полная, если $\forall A\in\mathcal{P}$ $\mu A=0$ $\forall B\subset A$ выолняется $B\in\mathcal{P}$ и (тогда автоматически) $\mu B=0$ Совместное свойство μ и \mathcal{P}

Определение. Пространство с мерой — это тройка $(X)_{\text{множество}}$, $\mathfrak{A}_{\sigma\text{-алгебра}}$, μ $\mathfrak{A} \subset 2^X$

Лекция 14

14.1 Теория меры

Определение. $\mu_0:\mathcal{P}_0 o\overline{\mathbb{R}}\quad\mathcal{P}_0\subset\mathcal{P}\quad \mu:\mathcal{P} o\mathbb{R}$ продолжает $u_0\quad \mu\Big|_{\mathcal{P}_0}=\mu_0$

Теорема 14.1.1 (о Лебеговском продлжении меры). \mathcal{P}_0 — полукольцо подмножеств пространства $X, \, \mu_0 : \mathcal{P}_0 \to \overline{\mathbb{R}} - \sigma$ -конечная мера

Тогда $\exists \ \sigma$ -алгебра $\mathfrak{A}\supset \mathcal{P}_0,\ \exists \mu$ — мера на \mathfrak{A} :

- 1. μ продолжение μ_0 на \mathfrak{A}
- 2. μ полная мера
- 3. Если $\tilde{\mu}$ полная мера на σ -алгебре $\tilde{\mathfrak{A}}$ и $\tilde{\mu}$ продолжение μ_0 , то $\tilde{\mathfrak{A}} \supset \mathfrak{A}$ и при этом $\tilde{\mu}$ продолжение меры μ : $\tilde{\mu}\Big|_{\mathfrak{A}} = \mu$
- 4. Если \mathcal{P} полукольцо: $\mathcal{P}_0 \subset \mathcal{P} \subset \mathfrak{A}$, мера ν продолжение μ_0 на \mathcal{P} Тогда $\forall A \in \mathcal{P}$ $\nu(A) = \mu(A)$

5.

$$\forall A \in \mathfrak{A} \quad \mu A = \inf\{\sum \mu P_k : P_k \in \mathcal{P} | A \subset \bigcup_{k=1}^{+\infty} P_k\}$$
 (14.1)

Доказательство. нет

$$orall \mu^\star = \inf\{\dots\} \quad \mu^\star s^X o \overline{\mathbb{R}}$$
 — не аддитивна $A \subset \bigcup A_k \quad \mu^\star A \le \sum \mu^\star A_k$

Следствие 14.1.1.18. $A \in \mathfrak{A}, \ \mu A < +\infty, \ \forall \varepsilon > 0, \ \exists P_k \in \mathcal{P}: \ A \subset \bigcup P_k \quad \mu A < \sum \mu P_k < \mu A + \varepsilon$

14.1.1 Мера Лебега

Теорема 14.1.2. $\mu: \mathcal{P}^m \to \mathbb{R}$ — классический объем в \mathbb{R}^m Тогда μ — σ -конечная мера

Доказательство. σ -конечность очевидна

Проверим, что μ — счетно адддитивна, для этого достаточно проверить счетную полуаддитивность $P = [a,b), \ P_n = [a_n,b_n) \ P \subset \bigcup P_n$, проверить $\mu P \leq \sum \mu P_n$

 $P = \emptyset \Rightarrow$ утверждение тривиально

 $P \neq \emptyset$ Фиксируем $\varepsilon > 0$. Чуть уменьшим координаты вектора b: $[a,b'] \subset [a,b)$ и $\mu P - \mu[a,b') < \varepsilon$ Уменьшим слегка координаты векторов a_n :

- $(a'_n, b_n) \supset [a_n, b_n]$ $\mu[a'_n, b_n) \mu[a_n, b_n) < \frac{\varepsilon}{2^n}$
- $[a,b'] \subset \bigcup (a'_n,b_n) \Rightarrow \exists$ конечное подпокрытие: $[a,b'] \subset \bigcup_{n=1}^N (a'_n,b_n) \Rightarrow [a,b') \subset \bigcup_{n=1}^N [a'_n,b_n)$

Тогда

$$\mu[a, b') \le \sum_{1 \le n \le N} \mu[a'_n, b_n)$$
 (14.2)

$$\mu P - \varepsilon \le \sum_{n=1}^{N} (\mu P_n + \frac{\varepsilon}{2^n}) \tag{14.3}$$

$$\mu P - \varepsilon \le \sum_{n=1}^{+\infty} \mu P_n + \varepsilon \tag{14.4}$$

Определение. Мера Лебега в \mathbb{R}^m — Лебеговское продолжение классического объема образует σ -алгебру \mathfrak{M}^m , на которой задана мера Лебега — множества измеримые по Лебегу

Обозначение. Мера Лебега — λ или λ_m

Свойства меры Лебега

- 1. (a) A_1,A_2,\ldots измеримые $\Rightarrow A_1\cup A_2,A_1\cap A_2$ измеримые $A_1\cup A_2\cup A_3\cup\ldots,\ A_1\cap A_2\cap A_3\cap\ldots$ измеримые
 - (b) $\forall n \ \lambda A_n = 0 \Rightarrow \lambda(\bigcup A_n) = 0$
 - (c) $\lambda A=0,\ B\subset A\Rightarrow B$ измеримо, $\lambda B=0$

 Π ример. $\mathbb{Q} \subset \mathbb{R}$ — измеримо, $\lambda_1 \mathbb{Q} = 0$

Доказательство. $\forall x \in R \quad \{x\} = \bigcap_n [x, x + \frac{1}{n}]$

$$0 \le \lambda\{x\} \le \lambda \left[x, x + \frac{1}{n}\right] = \frac{1}{n} \Rightarrow \lambda\{x\} = 0 \tag{14.5}$$

 \mathbb{Q} — счетное объединение одноточечных множеств

2. \mathfrak{M}^{m} содержит все открытые и замкнцтые множества

Лемма 12.

- (a) $O \subset \mathbb{R}^m$ открыто $\underline{Torda}\ O = \coprod Q_i$, где Q_i ячейки с рациональными координатами(можно считать Q_i кубические ячейки, двоичные рациональные координаты)
- (b) Можно считать, что $\overline{Q_i} \subset O$
- (c) E измеримо, $\lambda E=0$ Тогда $\forall \varepsilon>0$ — $E\subset\bigcup Q_i:\ Q_i$ — кубическая ячейка и $\sum \lambda Q_i<\varepsilon$

Примечание.
$$\forall \varepsilon > 0 \quad \exists (B_i) - \text{шары: } E \subset \bigcup B_i, \ \sum \lambda B_i < \varepsilon$$
 $Q(x, \frac{R}{\sqrt{m}}) \subset B(x, R) \subset Q(x, R)$
$$\left(\frac{2R}{\sqrt{m}}\right)^m \leq \lambda B \leq \lambda Q(x, R) = (2R)^m$$

Доказательство.

(a) $\forall x \in O$, пусть Q(x) — какая-то ячейка с рациональными координатами, $Q(x) \subset O$ (можно потребовать $Q(x) \subset O$; Q — куб; двоично рациональные координаты) $O = \bigcup_{x \in O} Q(x)$ — здесь не более чем счетное множество различных ячеек $\Rightarrow O = \bigcup_{i=1}^{\infty} Q(x_i)$ — сделаем ячейки дизъюнктными

$$Q_1 := Q(x_1) \quad Q(x_2) \setminus Q(x_1) \stackrel{\text{\tiny CB-BO II/K}}{=} \bigsqcup D_j$$
 (14.6)

Переобозначим D_j как Q_2,Q_3,\ldots,Q_k

$$Q(x_3) \setminus (\bigsqcup_{i=1}^k Q_i) = \bigsqcup P_l \tag{14.7}$$

14.1. ТЕОРИЯ МЕРЫ

переобозначим P_l , как Q_{k+1}, \ldots, Q_s и так далее.

Можно считать что координаты всех ячеек двоично рациональны

 $\mathbf{B} \coprod Q_i$ — можно подразбить эти ячейки, чтобы они стали кубическими

 $[a_i,b_i)$ — двоично рациональные координаты. $\frac{1}{2^l}$ — самый крупный знаенатель

 $[a_i,b_i]$ — конечное объединение кубических ячеек со стороной $\frac{1}{2^l}$

- (b) уже доказано
- (с) Следует из теоремы о Лебеговском продолжении(п. 5) orall arepsilon > 0 \exists ячейки $P_k \quad E \subset P_k \quad 0 = \lambda E \leq \sum \lambda P_k \leq arepsilon$ $\exists \tilde{P}_k$ — двоично рациональные ячейки: $P_k \subset \tilde{P}_k$ $0 = \lambda E \leq \sum \lambda_k \tilde{P}_k \leq 2 \varepsilon$

Можно разбить P_k на конечное число кубов

Определение. \mathfrak{B} — **борелевская** σ **-алгебра** (в \mathbb{R}^m или в метрическом пространстве) минимальная σ -алгебра, которая содержит все открытые множества $\mathfrak{M}^m\supset \mathfrak{B}$

 Π ример. Канторово множество в \mathbb{R} — последовательность множетсв вида: $K_0 = [0,1]$ $K_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$ $K_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{3}] \cup [\frac{8}{9},1]$

 $\mathfrak{K} = \bigcap K_i$ — измеримо $\lambda \mathfrak{K} = 0$

$$\lambda(K_i) = (\frac{2}{3})^i$$

 $\mathfrak{K} = \{x \in [0,1] | x$ можно записать в троичной системе использую только цифры 0 и $2\}$ При этом \mathfrak{K} — континуум

 \mathfrak{K} — замкнутое

3. \exists неизмеримые по Лебегу множества (т.е. не принадлежат \mathfrak{M})

 Π ример. $x, y \in \mathbb{R}$ $x \sim y$ если $x - y \in \mathbb{Q}$

 $\mathbb{R}|_{\mathbb{R}}=A-$ из каждого класса эквивалентности взяли по одной точке. Можно считать $A\subset [0,1]$ Очевидно, что:

$$\bigsqcup_{q \in \mathbb{O}} (A+q) = \mathbb{R} \tag{14.8}$$

63

$$[0,1] \stackrel{(1*)}{\subset} \bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (A+q) \stackrel{(2*)}{\subset} [-1,2]$$
 (14.9)

Верно ли что A измеримо? т.е. $A \in \mathfrak{M}^1$?

Допустим, что да: очевидно $\forall q \ \lambda A = \lambda (A+q)$ (по п.5 Т. о продолжении меры)

из
$$(1^*)$$
: $\lambda[0,1] = 1 \le \sum_q \lambda(A+q) = \sum_q \lambda(A) \Rightarrow \lambda A > 0$
из (2^*) : $\lambda((A+q)) = \sum_q \lambda A \le \lambda[-1,2] = 3 \Rightarrow \lambda A = 0$
Противрочно $\Rightarrow A$ — но изморимо

из
$$(2^*)$$
: $\lambda((A+q)) = \sum_{\alpha} \lambda A \leq \lambda[-1,2] = 3 \Rightarrow \lambda A = 0$

Противречие $\Rightarrow A$ — не измеримо

- $4. A \in \mathfrak{M}$
 - A ограничено $\Rightarrow \lambda A < +\infty$
 - A- открыто $\Rightarrow \lambda A > 0-$ из леммы
 - $\lambda A = 0 \Rightarrow A$ не имеет внутренних точек
- 5. $A \in \mathfrak{M}^m$ измеримое множество

Тогда $\forall \varepsilon > 0$:

- \exists открытое $G_{\varepsilon} \supset A : \lambda(G_{\varepsilon} \setminus A) < \varepsilon$
- \exists замкнутое $F_{\varepsilon} \subset A : \lambda(A \setminus F_{\varepsilon}) < \varepsilon$

Доказательство. (a) λA — конечная

$$\lambda A = \inf\{\sum \lambda P_i | A \subset \bigcup P_i, P_i \in \mathcal{P}\}\$$

 $\forall \varepsilon > 0 \exists P_i \quad \lambda A \leq \sum \lambda P_i \leq \lambda A + \varepsilon, \ A \subset \bigcup P_i$

Чуть увеличим эти $P_i = [a_i, b_i) \rightarrow (a'_i, b_i) \subset [a'_i, b_i)$

$$\lambda[a_i', b_i) \le \lambda P_i + \frac{\varepsilon}{2^i} \tag{14.10}$$

$$A \subset \underbrace{\bigcup (a'_i, b_i)}_{G_{2\varepsilon}} \subset \bigcup [a_i, b_i) \tag{14.11}$$

$$\lambda A \le \lambda G_{2\varepsilon} \le \sum \lambda [a_i', b_i) \le \sum \lambda (P_i + \frac{\varepsilon}{2^i}) \le \lambda A + 2\varepsilon$$
 (14.12)

(b) $\lambda A = +\infty$ используем σ -конечность

$$\mathbb{R}^m = \bigsqcup_{j=1}^{+\infty} Q_j \tag{14.13}$$

 $\exists G_{arepsilon,j}$ — открытое $(A \cup Q_j) \subset G_{arepsilon,j}$

$$\lambda(G_{\varepsilon,j} \setminus (A \cup Q_j)) < \frac{\varepsilon}{2^j} \tag{14.14}$$

$$A = \left| \begin{array}{c} (A \cup Qj) \subset \bigcup G_{\varepsilon,j} = G_{\varepsilon} \end{array} \right. \tag{14.15}$$

$$\lambda(G_{\varepsilon} \setminus A) \le \sum \lambda(G_{\varepsilon,j} \setminus (A \cup Q_j)) \le \varepsilon \tag{14.16}$$

$$G_{\varepsilon} \setminus A \subset \bigcup_{j} (G_{\varepsilon,j} \setminus (A \cup Q_j))$$
 (14.17)

(c) Для F_{ε} переходим к дополнению A^{C} — для него подбираем G_{ε}

$$A^C \subset G_{\varepsilon} \tag{14.18}$$

$$A \supset (G_{\varepsilon})^C =: F_{\varepsilon} \tag{14.19}$$

$$G_{\varepsilon} \setminus A^C = A \setminus (G_{\varepsilon})^C \tag{14.20}$$

$$\lambda(G_{\varepsilon} \setminus A^C) < \varepsilon \Rightarrow \lambda(A \setminus F_{\varepsilon}) < \varepsilon \tag{14.21}$$

Лекция 15

15.1 Мера Лебега

Следствие 15.1.0.19. $\forall A \in \mathfrak{M}^m \quad \exists B, C$ — борелевские $B \subset A \subset C$ $\lambda(C \setminus A) = 0, \ \lambda(A \setminus B) = 0$

Доказательство.

$$C := \bigcap_{n=1}^{+\infty} G_{\frac{1}{n}} \tag{15.1}$$

$$B \subset \bigcup_{n=1}^{+\infty} F_{\frac{1}{n}} \tag{15.2}$$

Cледствие 15.1.0.20. $\forall A\subset \mathfrak{M}^m\ \exists B, \mathcal{N}-B$ - борелевское, $\mathcal{N}\in \mathfrak{M}^m,\ \lambda\mathcal{N}=0$ $A = B \cup \mathcal{N}$

Доказательство. B — из следствия $1, \mathcal{N} := A \setminus B$

 Π римечание. Обозначим |X| — мощность множества X

$$\forall X \quad |2^X| > |X|$$

$$X = \mathbb{R}^m \mid 2^{\mathbb{R}^m} \mid > \text{континуум}$$

 $orall X |2^X|>|X| \ X=\mathbb{R}^m \ |2^{\mathbb{R}^m}|>$ континуум $\mathfrak{B}\subset 2^{R^m}$ — борелевская σ -алгебра, $|\mathfrak{B}|=$ континуум

 $|M^m| >$ континуума

 \mathfrak{K} — канторово множество. $|\mathfrak{K}| =$ континуум, $\lambda \mathfrak{K} = 0$

 $\forall D \subset \mathfrak{K} D \in \mathfrak{M}^m, \ \lambda D = 0$ (полнота λ)

$$2^{\mathfrak{K}}\subset M^m$$

Следствие 15.1.0.21. $\forall A \in \mathfrak{M}^m$

$$\lambda A = \inf_{\substack{G: A \subset G \\ G - \text{ otkp.}}} \lambda(G) = \sup_{\substack{F: F \subset A \\ F - \text{ замкн.}}} \lambda(F) = \sup_{\substack{K: K \subset A \\ K - \text{ компакт.}}} \lambda(K)$$
(15.3)

Доказательство. (*) следует из σ -конечности

$$\mathbb{R}^m = \bigcup_{n=1}^{+\infty} Q(0,n) \tag{15.4}$$

$$Q(a,R) = \sum_{i=1}^{n} [a_i - R, a_i + R]$$

$$\lambda(A \cap Q(0,n)) \to \lambda A$$
 — по непрерывности снизу (15.5)

Определение. Свойства из следствия 3 называются регулярностью меры Лебега

15.1.1 Преобразования меры Лебега при сдвигах и линейных отображениях

Лемма 13. $(X', \mathfrak{A}', \mu') - пространство с мерой <math>(X, \mathfrak{A}', \mu')$

 (X,\mathfrak{A},\cdot) — "заготовка" пространства

 $T: X \to X'$ — биекция; $\forall A \in \mathfrak{A} \ TA \in \mathfrak{A}' \ (T\emptyset \stackrel{def}{=\!=\!=\!=} \emptyset)$

Положим $\mu A = \mu'(TA)$

Tог $\partial a \ \mu \ - \ Mepa$

Доказательство. Проверим счетную аддитивность:

$$A = \bigsqcup A_i \quad \mu A = \mu'(TA) = \mu'(\bigsqcup TA_i) = \sum \mu'(TA_i) \stackrel{\text{def}}{=} \sum \mu A_i$$
 (15.6)

Примечание. $T: X \to X'$ — произвольное отображение, $T\mathfrak{A}$ вообще говоря не алгебра $T^{-1}(\mathfrak{A}')$ — всегда σ -алгебра(если исходное σ -алгебра)

Лемма 14. $T: \mathbb{R}^m \to \mathbb{R}^n$ — непрерывное

Пусть $\forall E \in \mathfrak{M}^m: \ \lambda E = 0 \ выполняется \ \lambda(TE) = 0$

Tог $\partial a \ \forall A \in \mathfrak{M}^m \quad TA \in \mathfrak{M}^n$

Доказательство.

$$A = \bigcup_{j=1}^{+\infty} K_j \cup \mathcal{N}$$
 (15.7)

, где K_j — компактное множество, $\lambda(\mathcal{N})=0$

$$TA = \bigcup_{j=1}^{+\infty} \underbrace{TK_j}_{\text{KOMII.}} \cup \underbrace{T\mathcal{N}}_{\lambda(T\mathcal{N})=0}$$
(15.8)

 TK_j — компактно, как образ компакта при непрерывном отображении

$$(8) \Rightarrow TA$$
 — измеримо

Пример. Канторова лестница

$$f(x) = \begin{vmatrix} \frac{1}{2} & x \in \Delta \setminus \mathfrak{K}_1 \\ \frac{1}{4} & x \in \Delta_0 \setminus \mathfrak{K}_2 \\ \frac{3}{4} & x \in \Delta_1 \setminus \mathfrak{K}_3 \\ \vdots & & \\ \sup f(t) & t \le x, \ t \notin \mathfrak{K} \end{vmatrix}$$

, где
$$\Delta = [0,1], \ \Delta_0 = [0,\frac{1}{3}], \ \Delta_1 = [\frac{2}{3},1], \ \Delta_{00} = [0,\frac{1}{9}], \ \Delta_{01} = [\frac{2}{9},\frac{1}{3}], \ldots,$$
 а $\mathfrak{K}_0 = \Delta, \ \mathfrak{K}_1 = \Delta_0 \cup \Delta_1, \ \mathfrak{K}_2 = \Delta_0 \cup \Delta_{10} \cup \Delta_{10} \cup \Delta_{11}, \quad \mathfrak{K}_i = \bigcup_{\varepsilon_1,\ldots,\varepsilon_n \in \{0,1\}} \Delta_{\varepsilon_0\ldots\varepsilon_n}$

 $f([0,1]\setminus\mathfrak{K})$ — счетное = множество двоично рациональных чисел из [0,1] $\lambda f([0,1]\setminus\mathfrak{K})=0$

 $\lambda f(\mathfrak{K})=1$, т.к. $\forall y\in [0,1]\ \exists x:\ f(x)=y$, при этом f — непрерывна, т.к. образом функции является весь промежуток

Тогда пусть $E \subset [0,1] \not\in \mathfrak{M}^m$

15.1. МЕРА ЛЕБЕГА 67

 $f^{-1}(E)$ = подиножество множества \mathfrak{K} ∪ промежутки прообраза двоично рациональных точек из E — измеримо, т.к. $\lambda \mathfrak{K} = 0$

Еще наблюдение $x \notin \mathfrak{K} \Rightarrow f$ — дифференцируема в x и f' = 0

Теорема 15.1.1. $O \subset \mathbb{R}^m$ — открытое, $\Phi: O \to \mathbb{R}^m$, $\Phi \in C^1(O)$ Тогда $\forall A \subset O, \ A \in \mathfrak{M}^m$ — $\Phi(A) \in \mathfrak{M}^m$

Доказательство. Достаточно проверить свойство: $\lambda E=0 \Rightarrow \lambda \Phi(E)=0$ $\lambda E=0 \Leftrightarrow \forall \varepsilon>0 \; \exists \; \text{тары} \; B_i: \; E\subset \bigsqcup_{i=1}^{+\infty} B_i \; \sum \lambda B_i<\varepsilon$

- (⇒) из Т. о лебеговском продолжении меры
- (⇐) используем полноту меры Лебега
 - 1. $E \subset \underset{\text{ячейка}}{P} \subset \overline{P} \subset O, \ \lambda E = 0$

$$L := \max_{x \in \overline{P}} \|\Phi'(x)\| \tag{15.9}$$

Тогда $\forall x,y \in P \quad |\Phi(x) - \Phi(y)| \leq L|x-y|$ — неравенство Лагранжа

$$\Phi(B(x_0, r)) \subset B(\Phi(x_0), Lr) \subset Q(\Phi(x_0), Lr)$$
(15.10)

$$Q(x_0, \frac{r}{\sqrt{m}}) \subset B(x_0, r) \Rightarrow \left(\frac{2r}{\sqrt{m}}\right)^m < \lambda B(x_0, r)$$
(15.11)

$$\Phi(E) \subset \bigcup \Phi(B_i) \subset \bigcup B(y_i, Lr) \subset \bigcup Q(y_i, Lr)$$
(15.12)

$$\sum \lambda \Phi(B_i) < \sum \lambda Q(y_i, Lr_i) = \sum (2Lr_i)^m = L^m \sum (2r_i)^m$$
(15.13)

$$E \subset \bigcup B_i \quad \sum \lambda B_i < \varepsilon \Rightarrow \sum \left(\frac{2r_i}{\sqrt{m}}\right)^m < \varepsilon \Rightarrow \sum (2r_i)^m < \varepsilon(\sqrt{m})^m$$
 (15.14)

$$\sum \lambda B(y_i, Lr) < L^m \sum (2r_i)^m < \varepsilon(\sqrt{m}L)^m$$
(15.15)

, где $B_i = B(x_i, r_i), \ y_i = \Phi(x_i)$

2. $E\subset O$ — произвольное, $\lambda E=0$ $O=\bigsqcup Q_i$, где Q_i — кубические ячейки, $Q_i\subset \overline{Q_i}\subset O$ $E=\bigsqcup (E\cap Q_i)$ по п.1 $\lambda(\Phi(E\cap Q_i))=0$ $\Phi(E)=\bigcup \Phi(E\cap Q_i)\Rightarrow \lambda\Phi(E)=0$

Следствие 15.1.1.22. λ — инвариантна относительно сдвигов(и \mathfrak{M}^m тоже инвариантна) т.е. $\forall a \in \mathbb{R}^m \colon \forall A \in \mathfrak{M}^m \quad A + a \in \mathfrak{M}^m$ и $\lambda A = \lambda (A + a)$

Доказательство. $\Phi: x\mapsto x+a$ $\Phi\in C^1(R^m)$ по теореме $\Rightarrow A+a\in\mathfrak{M}^m,$ $\lambda A=\lambda(A+a)$ следует из теоремы о лебеговском продолжении: $A\subset\bigcup P_k\Leftrightarrow A+a\subset\bigcup(P_k+a)$ очевидно, что для ячейки при сдвиге $\lambda P_k=\lambda(P_k+a)$

очевидно, что для ячейки при сдвиге
$$\lambda P_k = \lambda (P_k + a)$$

 $\Rightarrow \lambda A = \inf(\sum \lambda P_k) = \inf(\sum (P_k + a)) = \lambda (A + a)$

Теорема 15.1.2. μ — мера на \mathfrak{M}^m :

- 1. μ инвариантна относительно сдвига $\forall a \in \mathbb{R}^m \ \forall E \in \mathfrak{M}^m \ \mu(E+a) = \mu E$
- 2. Для любого ограниченого множества $E \in \mathfrak{M}^m \quad \mu(E) < +\infty$

Примечание. $\mu A := \lambda_1 A$, если $\exists y_0 \quad A \subset \{(x,y_0) | x \in \mathbb{R}\}$

Доказательство. Нет

Посмотрим как мера μ задается на рациональных ячейках

В \mathbb{R}^2 Q_1 — единичная квадратная ячейка $\mu Q_1 = V$

$$Q_2$$
 — ячейки со стороной 2 $\mu Q_2=4V$ $\mu Q_n=n^2V$ $\mu Q_{\frac{1}{n}}=\frac{1}{n^2}V$ На $\mathcal{P}^m\mu$ пропорциональна $\lambda,\ k=V$

Теорема 15.1.3 (инвариантность меры Лебега относительно линейных ортогональных преобразований). $T: \mathbb{R}^m \to \mathbb{R}^m$ — ортогональное преобразование

 $\underline{\text{Тогда}} \; \forall A \in \mathfrak{M}^m$

- 1. $TA \in \mathfrak{M}^m$
- 2. $\lambda(TA) = \lambda A$

Доказательство.

- 1. $T \in C^1$ поэтому измеримость сохраняется
- 2. $\mu A:=\lambda(TA),\ \mu$ мера на \mathfrak{M}^m по Лемме 1, при этом μ инвариантна относительно сдвигов $\mu(A+a)=\lambda(T(A+a))=\lambda(TA+Ta)=\lambda(TA)=\lambda A$ ограничена \Rightarrow TA ограничена \Rightarrow $\mu A<+\infty$

по теореме $\lambda(TA) = k \cdot \lambda A$

Найдем k: возьмем шар B,TB= шар того же радиуса $=B+x_0,$ таким образом $\mu B=\lambda(TB)=\lambda(B+x_0)=\lambda B\Rightarrow k=1$

 $\it Cnedcmeue~15.1.3.23.~\lambda (прямоугольного параллелепипеда) =$ произведению сторон

Cледствие 15.1.3.24. Любое собственное линейное подпространство в \mathbb{R}^m имеет меру 0

Доказательство. Достаточно доказать, что $\lambda\{x\big|x_m=0\}=0$ $\{x\big|x_m=0\}\simeq\mathbb{R}^{m-1}=\bigsqcup_{i}Q_i$ — единичные кубы $L\subset\bigsqcup Q_i\times[-\frac{\varepsilon}{2^i},\frac{\varepsilon}{2^i}]$ $\lambda_{\mathfrak{M}}(Q_i\times[-\frac{\varepsilon}{2^i},\frac{\varepsilon}{2^i}])=\frac{2\varepsilon}{2^i}$