Chapitre 10 — Vecteurs II

Savoir-faire 1

- $\hfill \square$ Représenter un vecteur dont on connait les coordonnées.
- □ Lire les coordonnées d'un vecteur.
- \square Calculer les coordonnées d'une somme de vecteurs, d'un produit d'un vecteur par un nombre réel.
- $\hfill \square$ Caractériser alignement et parallélisme par la colinéarité de vecteurs.
- $\hfill \square$ Résoudre des problèmes en utilisant la représentation la plus adaptée des vecteurs.

Définition 1

Soit O un point et deux vecteurs \vec{i} et \vec{j} dont les directions sont perpendiculaires et dont les normes sont égales à 1. On dit que (\vec{i}, \vec{j}) est une base orthonormée du plan et que $(O; \vec{i}, \vec{j})$ est un repère orthonormée du plan.

Définition 2

Dans une base (\vec{i}, \vec{j}) , soit \vec{u} un vecteur. Il existe un unique couple (x; y) tel que $\vec{u} = x\vec{i} + y\vec{j}$. x et y sont les coordonnées de \vec{u} dans la base (\vec{i}, \vec{j}) , notées $\begin{pmatrix} x \\ y \end{pmatrix}$.

Méthode: Lire les coordonnées d'un vecteur et construire un vecteur

- 1. Donner les coordonnées du vecteur \overrightarrow{u} sur le graphique ci-contre dans la base $(\overrightarrow{i},\overrightarrow{j})$.
- 2. Construire un vecteur \overrightarrow{v} de coordonnées $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

Propriété (Admise) 1: Coordonnées d'un vecteur

Dans un repère, soient A et B deux points ayant pour coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$: Le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$. On note $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Méthode: Déterminer les coordonnées d'un vecteur

Sur le graphique ci-contre, on a : A(1;3) et B(4;1). Les coordonnées du vecteur \overrightarrow{AB} sont donc $\begin{pmatrix} 4-1\\1-3 \end{pmatrix}$, soit $\overrightarrow{AB}\begin{pmatrix} 3\\-2 \end{pmatrix}$

Propriété (Admise) 2: Caractérisation analytique de l'égalité de deux vecteurs

Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées dans un repère du plan. Autrement dit, si les vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont égaux, alors x = x' et y = y'.

Exercices: 80-82 p.139, 83-89 p.140

Méthode: Montrer qu'un quadrilatère est un parallélogramme

Soient A(2;3), B(5;1), C(3;-2) et D(0;0). Montrer que ABCD est un parallélogramme.

- On calcule les coordonnées de \overrightarrow{AB} et de \overrightarrow{DC} .
- On vérifie qu'elles sont égales.

Méthode: Calculer les coordonnées d'un point à partir d'une égalité vectorielle

Soient A(9;2), B(-3;5) et C(1;4).

Déterminer les coordonnées du point D tel que $\overrightarrow{AD} = \overrightarrow{BC}$.

Définition 3

Dans un repère orthonormé (O, I, J), soit \vec{u} un vecteur de coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$. La norme du vecteur \vec{u} , notée $\|\vec{u}\|$, est

$$\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$$

Définition 4

Dans un repère orthonormé (O, I, J), soient $A(x_A; y_A)$ et $B(x_B; y_B)$. Alors :

$$\|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exemple 1

Soient A(2;3) et B(5;1). Alors $\|\overrightarrow{AB}\| = \sqrt{(5-2)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$

Propriété 1: Coordonnées de la somme de deux vecteurs

Dans un repère, si $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$, alors $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$

Démonstration 1

Dans un repère d'origine O, la translation de vecteur $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ associe au point

O le point M(x;y). La translation de vecteur $\overrightarrow{v}\begin{pmatrix} x'\\y' \end{pmatrix}$ associe au point M le point N. Alors, $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{ON}$.

Cherchons les coordonnées de N:

Les coordonnées de \overrightarrow{MN} sont $\begin{pmatrix} x_N - x \\ y_N - y \end{pmatrix}$. Or, $\overrightarrow{MN} = \overrightarrow{v}$, c'est-à-dire $x_N - x = x'$ et $y_N - y = y'$.

On en déduit que N a pour coordonnées (x+x';y+y'), d'où $\overrightarrow{u}+\overrightarrow{v}\begin{pmatrix} x+x'\\y+y' \end{pmatrix}$.

Exemple 2

Soient $\vec{u} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 10 \\ -8 \end{pmatrix}$, alors $\vec{u} + \vec{v} \begin{pmatrix} 7 \\ -3 \end{pmatrix}$

Méthode: Calculer les coordonnées d'une somme de vecteurs, du produit d'un vecteur par un réel

Soient $\vec{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$. Calculer les coordonnées de $\vec{u} + \vec{v} - 2\vec{w}$.

Exercices: 92–99 p.140

Définition 5: Déterminant de deux vecteurs

Soit $(\overrightarrow{i}, \overrightarrow{j})$ une base orthonormée et deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

On appelle **déterminant** de \vec{u} et \vec{v} dans la base (\vec{i}, \vec{j}) le nombre $det(\vec{u}, \vec{v}) = xy' - yx'$, noté également $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix}$

Propriété 2

Soit (\vec{i}, \vec{j}) une base orthonormée et deux vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}, \vec{v}) = 0$.

Démonstration au programme 1

- Supposons que \overrightarrow{u} et \overrightarrow{v} sont colinéaires.
 - Si l'un des deux vecteurs est nul (par exemple \vec{u}), alors $det(\vec{u}, \vec{v}) = 0 \times y' 0 \times x' = 0$
 - Sinon, il existe un nombre k tel que $\overrightarrow{v} = k\overrightarrow{x}$, soit x' = kx et y' = ky. Alors $det(\overrightarrow{u}, \overrightarrow{v}) = xy' yx' = x \times ky y \times kx = kxy kxy = 0$.
- Réciproquement, supposons que xy' yx' = 0. On a alors xy' = yx'.
 - Si l'un des vecteurs est nul, alors il est nécessairement colinéaire à l'autre.
 - Si les deux vecteurs sont non nuls, alors \vec{u} a au moins une coordonnée non nulle, par exemple x, donc $x \neq 0$. On pose alors $k = \frac{x'}{x}$, et on obtient que $xy' = yx' \iff y' = \frac{yx'}{x} \iff y' = ky$, car $x \neq 0$. Par conséquent, $\vec{v} = k\vec{u}$, et les vecteurs \vec{u} et \vec{v} sont colinéaires.

Méthode: Vérifier la colinéarité de deux vecteurs

Soient dans une base $\vec{u} \begin{pmatrix} 12 \\ -26 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 35 \\ -72 \end{pmatrix}$.

Exercices: 108–113 p.141

Méthode: Montrer que deux droites sont parallèles

Soient A(5;4), B(2;1), C(4,7) et D(-5;-2). Montrer que (AB) et (CD) sont parallèles.

Exercices: 115-117 p.141, 118-120 p.142