A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EE

Bookmark

Show all steps: ON

ON

Problem

Let G and H be groups. Suppose J is a normal subgroup of G and K is a normal subgroup of H. Show that the function f(x, y) = (Jx, Ky) is a homomorphism from $G \times H$ onto $(G/J) \times (H/K)$.

Step-by-step solution

Step 1 of 4

Suppose that G and H are two arbitrary groups. Also let J is a normal subgroup of G and K is a normal subgroup of H.

Consider a mapping $f: G \times H \rightarrow (G/J) \times (H/K)$ defined by

$$f(x, y) = (Jx, Ky)$$

Objective is to prove that f is an onto homomorphism from $G \times H$ to $(G/J) \times (H/K)$.

If G and H are two groups, a homomorphism from G to H is a function $f:G\to H$ such that for any two elements a,b in G,

$$f(ab) = f(a)f(b)$$

Comment

Step 2 of 4

Since let J is a normal subgroup of G, therefore the group G/J is defined. Also J_X is the coset of G/J for some $x \in G$.

Consider two typical elements $f(x_1, y_1)$, $f(x_2, y_2)$ of direct product group $G \times H$ such that $f(x_1, y_1) = (Jx_1, Ky_1)$ and $f(x_2, y_2) = (Jx_2, Ky_2)$. Then

$$f(x_1, y_1) \cdot f(x_2, y_2) = (Jx_1, Ky_1)(Jx_2, Ky_2)$$

$$= (Jx_1 \cdot Jx_2, Ky_1 \cdot Ky_2)$$

$$= (Jx_1x_2, Ky_1y_2)$$

$$= f(x_1x_2, y_1y_2)$$

The third equality is obtained from the property of cosets. Therefore, *f* is a homomorphism.

Comment

Step 3 of 4

The elements of quotient group G/J will be the cosets of the form Jx, where $x \in G$. Also the elements of quotient group H/K will be the cosets of the form Ky, where $y \in G$.

So, for every $(Jx, Ky) \in (G/J) \times (H/K)$ there corresponds $(x, y) \in G \times H$ such that f(x, y) = (Jx, Ky). This implies that function f is onto.

Comment

Step 4 of 4

Hence, the function f is a homomorphism from $G \times H$ onto $(G/J) \times (H/K)$.

Comment