

LF-MMI training and decoding in k2 (Part I)

Fangjun Kuang

June 22, 2021

Contents

Introduction

Introduction

- Will describe LF-MMI training and decoding using k2
- For the decoding part
 - ► 1-best decoding
 - n-best decoding
 - (n-gram) LM rescoring
- ▶ LF-MMI training shares many things in common with CTC training
 - We first describe CTC training

All happens in the framework of finite state machines

Introduction

- Will describe LF-MMI training and decoding using k2
- For the decoding part in Part II in the next meeting
 - 1-best decoding
 - n-best decoding
 - (n-gram) LM rescoring
- LF-MMI training shares many things in common with CTC training
 - We first describe CTC training

All happens in the framework of finite state machines

- Part I (this Part) focuses on training
- ► Part II is about decoding

Introduction (Continued)

All happens in the framework of finite state machines

Connectionist Temporal Classifi Sequence Data with Rec	
Alex Graves ¹	ALEX-ÜIDSIA.C
Santiago Fernández ¹	SANTIAGO@IDSIA.C
Faustino Gomez ¹	TINOBIDSIA.C
Jürgen Schmidhuber ^{1,2}	JUERGENÜIDSIA.C
¹ Istituto Dalle Molle di Studi sull'Intelligenza Artificiale	(IDSIA), Galleria 2, 6928 Manno-Lugano, Switzerlan
² Technische Universität München (TUM), Boltzmannst	

(a) CTC was first proposed in this paper

This gives us the following rules for initialisation

$$egin{aligned} & lpha_1(1) = y_b^1 \ & lpha_1(2) = y_{\mathbf{l}_1}^1 \ & lpha_1(s) = 0, \; \forall s > 2 \end{aligned}$$

and recursion

$$\alpha_t(s) = \begin{cases} \bar{\alpha}_t(s)y_{l_s'}^t & \text{if } I_s' = b \text{ or } I_{s-2}' = I_s' \\ (\bar{\alpha}_t(s) + \alpha_{t-1}(s-2))y_{l_s'}^t & \text{otherwise} \end{cases}$$
where
$$\bar{\alpha}_t(s) \stackrel{\text{def}}{=} \alpha_{t-1}(s) + \alpha_{t-1}(s-1). \quad (7)$$

(b) Equations used in CTC (extracted from the above paper)

Introduction (Continued)

All happens in the framework of finite state machines

(a) CTC was first proposed in this paper

(b) We replace them with FSA operations

Contents

CTC Training

CTC Training

- ► In CTC training, we need to
 - Merge repeated contiguous symbols and drop blanks within a sequence

► Sum the probabilities of all correct sequences

CTC Training (Continued)

- In the following, we show how to
 - Merge repeated contiguous symbols
 - Find all the correct sequences
 - Compute the sum of the probabilities of all the correct sequences

in k2 through FSA operations

CTC Topology

(a) ctc_topo that merges repeated contiguous symbols (Φ is the input blank sybmol)

Input: Z Z O O O Ф Ф O O

Output: $Z \in O \in \epsilon \in \epsilon \cap \epsilon$

time	cur_state	next_state	input	output
0	0	1	Z	Z
1	1	1	Z	ϵ
2	1	2	0	0
3	2	2	0	ϵ
4	2	2	0	ϵ
5	2	0	Ф	ϵ
6	0	0	Φ	ϵ
7	0	2	0	0
8	2	2	0	ϵ
9	2	3	EOF	accepted

CTC Topology (Continued)

- (a) ctc_topo that merges repeated contiguous symbols (Φ is the input blank sybmol.).
- Input: Z Ф Ф 0 0 Ф Ф 0 Ф
- ► Output: Z ε ε Ο ε ε ε Ο ε

time	cur_state	next_state	input	output
0	0	1	Z	Z
1	1	0	Φ	ϵ
2	0	0	Φ	ϵ
3	0	2	0	0
4	2	2	0	ϵ
5	2	0	Φ	ϵ
6	0	0	Φ	ϵ
7	0	2	0	0
8	2	0	Φ	ϵ
9	0	3	EOF	accepted

CTC Training (Continued)

- In the following, we show how to
 - ► Merge repeated contiguous symbols ✓
 - Find all the correct sequences
 - ▶ Compute the sum of the probabilities of all the correct sequences

in k2 through FSA operations

CTC Training (Continued)

- In the following, we show how to
 - ► Merge repeated contiguous symbols ✓
 - Find all the correct sequences
 - ▶ Compute the sum of the probabilities of all the correct sequences

in k2 through FSA operations

Find All Correct Sequences

First, let us introduce a lexicon to constrain the possible paths

(a) Lexicon L that converts input sequence Z 0 0 to Z00.

(b) ctc_topo_L, the composition of ctc_topo and L (A path in it is always correct, i.e., transduces to Z00; It also merges repeated contiguous symbols!)

- Second, convert the neural network output to an FSA.
 - Assume there are five frames

```
nnet_output = torch.tensor(
    [[0.1, 0.2, 0.7],
    [0.3, 0.4, 0.3],
    [0.8, 0.1, 0.1],
    [0.2, 0.2, 0.6],
    [0.9, 0.08, 0.02],
    ]).requires_grad_(True)
```

The first frame contains (0.1, 0.2, 0.7). Suppose 0.1 is the probability of the blank Φ , 0.2 the probability of symbol Z, and 0.7 the probability of symbol 0

(a) Convert the output of frame 1 to a DenseFsa

- Second, convert the neural network output to an FSA.
 - Assume there are five frames

```
nnet_output = torch.tensor(
   [[0.1, 0.2, 0.7],
   [0.3, 0.4, 0.3],
   [0.8, 0.1, 0.1],
   [0.2, 0.2, 0.6],
   [0.9, 0.08, 0.02],
   ]).requires_grad_(True)
```

The first frame contains (0.1, 0.2, 0.7). Suppose 0.1 is the probability of the blank Φ , 0.2 the probability of symbol Z, and 0.7 the probability of symbol 0

(a) Convert the output of frames 1–2 to a DenseFsa

- Second, convert the neural network output to an FSA.
 - Assume there are five frames

```
nnet_output = torch.tensor(
   [[0.1, 0.2, 0.7],
   [0.3, 0.4, 0.3],
   [0.8, 0.1, 0.1],
   [0.2, 0.2, 0.6],
   [0.9, 0.08, 0.02],
]).requires_grad_(True)
```

The first frame contains (0.1, 0.2, 0.7). Suppose 0.1 is the probability of the blank Φ , 0.2 the probability of symbol Z, and 0.7 the probability of symbol 0

(a) Convert the output of frames 1-3 to a DenseFsa

- Second, convert the neural network output to an FSA.
 - Assume there are five frames

```
nnet_output = torch.tensor(
   [[0.1, 0.2, 0.7],
   [0.3, 0.4, 0.3],
   [0.8, 0.1, 0.1],
   [0.2, 0.2, 0.6],
   [0.9, 0.08, 0.02],
   ]).requires_grad_(True)
```

The first frame contains (0.1, 0.2, 0.7). Suppose 0.1 is the probability of the blank Φ , 0.2 the probability of symbol Z, and 0.7 the probability of symbol 0

(a) Convert the output of frames 1-4 to a DenseFsa

- Second, convert the neural network output to an FSA.
 - Assume there are five frames

```
nnet_output = torch.tensor(
   [[0.1, 0.2, 0.7],
   [0.3, 0.4, 0.3],
   [0.8, 0.1, 0.1],
   [0.2, 0.2, 0.6],
   [0.9, 0.08, 0.02],
   ]).requires_grad_(True)
```

The first frame contains (0.1, 0.2, 0.7). Suppose 0.1 is the probability of the blank Φ , 0.2 the probability of symbol Z, and 0.7 the probability of symbol 0

(a) Convert the output of frames 1-5 to a DenseFsa

- Second, convert the neural network output to an FSA.
 - Assume there are five frames

```
nnet_output = torch.tensor(
    [[0.1, 0.2, 0.7],
    [0.3, 0.4, 0.3],
    [0.8, 0.1, 0.1],
    [0.2, 0.2, 0.6],
    [0.9, 0.08, 0.02],
]).requires_grad_(True)
```

The first frame contains (0.1, 0.2, 0.7). Suppose 0.1 is the probability of the blank Φ , 0.2 the probability of symbol Z, and 0.7 the probability of symbol 0

- (a) Convert the output of frames 1-5 to a DenseFsa in log space
- ► HINT: $\log(0.1) = -2.3$, $\log(0.2) = -1.61$, $\log(0.7) = -0.36$

- (c) The decoding lattice, the result of intersect(ctc_topo_L, DenseFsa).
- ► The decoding lattice contains all the correct paths (sequences).

CTC Training (Continued)

- In the following, we show how to
 - ► Merge repeated contiguous symbols ✓
 - ► Find all the correct sequences ✓
 - Compute the sum of the probabilities of all the correct sequences

in k2 through FSA operations

CTC Training (Continued)

- In the following, we show how to
 - ► Merge repeated contiguous symbols ✓
 - ► Find all the correct sequences ✓
 - Compute the sum of the probabilities of all the correct sequences
 - Also known as total scores

in k2 through FSA operations

Compute Total Scores

- ► Compute the sum of the probabilities of all the correct sequences
 - Using the decoding lattice via the forward algorithm in log-semiring

- (a) The decoding lattice, the result of intersect(ctc_topo_L, DenseFsa).
- ▶ Note the decoding lattice is topologically sorted
 - ▶ If not, k2.top sort() can ensure that

state	forward_score	description
0	0	score of start state is always 0

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	

mi

Compute Total Scores (Continued)

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add

- $\log_{add}(a, b) = \log(e^a + e^b)$

state	forward_score	description
0	0 -2.3	score of start state is always 0
2	-2.3 -1.61	
3 4	-2.12 -2.81	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add $-1.61 - 1.2$

- $\log_{a} \operatorname{add}(a, b) = \log(e^{a} + e^{b})$

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2

- $\log_{add}(a, b, c) = \log_{add}(\log_{add}(a, b), c) = \log(e^{a} + e^{b} + e^{c})$

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$

- $\log_{add}(a, b) = \log(e^{a} + e^{b})$

state	forward_score	description
0 1	0 -2.3	score of start state is always 0
2	-1.61 -2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92}) \log_add$
4 5	-2.81 -2.81	-1.61 - 1.2 $-1.61 - 1.2$
6 7	-3.73 -3.03	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3}) -2.81 - 0.22$

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$
7	-3.03	-2.81 - 0.22
8	-4.24	$\log(e^{-3.73-1.61} + e^{-3.03-1.61})$

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$
7	-3.03	-2.81 - 0.22
8	-4.24	$\log(e^{-3.73-1.61}+e^{-3.03-1.61})$
9	-3.54	-3.03 - 0.51

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	•
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$
7	-3.03	-2.81 - 0.22
8	-4.24	$\log(e^{-3.73-1.61} + e^{-3.03-1.61})$
9	-3.54	-3.03 - 0.51
10	-7.05	$\log(e^{-4.24-3.91} + e^{-3.54-3.91})$

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$
7	-3.03	-2.81 - 0.22
8	-4.24	$\log(e^{-3.73-1.61} + e^{-3.03-1.61})$
9	-3.54	-3.03 - 0.51
10	-7.05	$\log(e^{-4.24-3.91} + e^{-3.54-3.91})$
11	-3.65	-3.54 - 0.11

Compute Total Scores (Continued)

a) The decoding lattice, the result of intersect(ctc_topo_L, DenseFsa).

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$\log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$
7	-3.03	-2.81 - 0.22
8	-4.24	$\log(e^{-3.73-1.61} + e^{-3.03-1.61})$
9	-3.54	-3.03 - 0.51
10	-7.05	$\log(e^{-4.24-3.91} + e^{-3.54-3.91})$
11	-3.65	-3.54 - 0.11
12	-3.62	$\log(e^{-7.05} + e^{-3.65})$

Compute Total Scores (Continued)

a) The decoding lattice, the result of intersect(ctc_topo_L, DenseFsa).

state	forward_score	description
0	0	score of start state is always 0
1	-2.3	
2	-1.61	
3	-2.12	$\log(e^{-2.3-0.92} + e^{-1.61-0.92})$ log_add
4	-2.81	-1.61 - 1.2
5	-2.81	-1.61 - 1.2
6	-3.73	$log(e^{-2.12-2.3} + e^{-2.81-2.3} + e^{-2.81-2.3})$
7	-3.03	-2.81 - 0.22
8	-4.24	$\log(e^{-3.73-1.61} + e^{-3.03-1.61})$
9	-3.54	-3.03 - 0.51
10	-7.05	$\log(e^{-4.24-3.91} + e^{-3.54-3.91})$
11	-3.65	-3.54 - 0.11
12	-3.62	$\log(e^{-7.05} + e^{-3.65})$

- ► The forward_score of the final state (i.e, state 12), is the total score of the lattice
 - That is, the log of the sum of probabilities of all correct paths (sequences)

Compute Total Scores (Continued)

- k2 provides
 - ▶ k2.Fsa.get forward scores()
 - k2.Fsa.get_total_scores()
- for log-semiring as well as tropical semiring, in a differentiable manner

(a) Examples of k2.Fsa.get_forward_scores() and k2.Fsa.get_total_scores()

(HINT: It supports autograd.)

CTC Training (Continued)

- In the following, we show how to
 - ► Merge repeated contiguous symbols ✓
 - ► Find all the correct sequences ✓
 - ► Compute the sum of the probabilities of all the correct sequences ✓

in k2 through FSA operations

- The objective function of CTC training is
 - ► To maximize lats.get_tot_scores(log_semiring=True)
- Super easy in PyTorch

(a) See https://github.com/k2-fsa/snowfall/blob/master/egs/librispeech/asr/simple_v1/ctc_train.py#L121

CTC Training (Summary)

(a) CTC training using FSA operations with k2

(b) No need to know the above equations

ctc topo Notes

The topology to merge repeated contiguous symbols is not unique.

(a) Standard ctc_topo

- Assume there are n tokens
 - ▶ The number of arcs in the above topology is $\mathcal{O}(n^2)$, i.e., quadratic in n
 - NOTE: There are no epsilon transitions
 - NOTE: It is deterministic

The topology to merge repeated contiguous symbols is not unique.

- (a) ctc_topo from EESEN https://github.com/srvk/eesen
- Assume there are n tokens
 - ▶ The number of arcs in the above topology is $\mathcal{O}(n)$, i.e., linear in n
 - ► NOTE: There are lots of epsilon transitions
 - ▶ NOTE: It is deterministic

► The topology to merge repeated contiguous symbols is not unique.

- (a) ctc_topo_modified from Daniel Povey https://github.com/k2-fsa/k2/issues/746
- Assume there are n tokens
 - ▶ The number of arcs in the above topology is $\mathcal{O}(n)$, i.e., linear in n
 - NOTE: There are no epsilon transitions
 - ► NOTE: It is non-deterministic.

The topology to merge repeated contiguous symbols is not unique.

- (a) ctc_topo_modified from Daniel Povey https://github.com/k2-fsa/k2/issues/746
- Assume there are n tokens
 - ▶ The number of arcs in the above topology is $\mathcal{O}(n)$, i.e., linear in n
 - NOTE: There are no epsilon transitions
 - NOTE: It is non-deterministic.
 - CAUTION: No mandatory blanks between consecutive repeated symbols
 - See next page for an example

Fangjun Kuang

23 / 37

- (b) k2.compose(ctc_topo_modified, L)
- ▶ In (a), there is a state 4, indicating a blank separating the two consecutive symbols 0 in the transcript Z 0 0
- In (b), there are no such mandatory blanks
- TODO: We have not compared the WER between ctc_topo and ctc_topo_modified

Contents

LF-MMI Training

LF-MMI Training

- ▶ LF-MMI training reuses the same FSA operations from CTC training
 - Differs only in numbers/types of FSA.

The bigram P

The bigram FSA: P

(a) The bigram FSA: P

The bigram P

The bigram FSA: P

- (a) The bigram FSA: P
- ► The scores on every arc are learnable parameters
 - ▶ They are trained together with the neural networks

The bigram P

The bigram FSA: P

(a) The bigram FSA: P

CAUTION:

- Number of arcs is $\mathcal{O}(n^2)$, i.e., quadratic in n
- \triangleright Where *n* is the number tokens

The Numerator Graph

k2.compose(ctc_topo, P)

(a) ctc_topo_P = k2.compose(ctc_topo, P)

- (b) num_graph = k2.compose(ctc_topo_P,L)
- CAUTION: Arc scores are not 0s in practice

The Denominator Graph

- (a) ctc_topo_P = k2.compose(ctc_topo, P)
- ctc_topo_P is the denominator graph, den_graph
- ► CAUTION: Arc scores are not 0s in practice

The Numerator Lattice

- (a) num_lats = k2.intersect(num_graph, dense_fsa)
- ► It is identical to the decoding lattice in CTC training when the scores of P are all 0s

The Denominator Lattice

- (a) den_lats = k2.intersect(den_graph, dense_fsa)
- ► HINT: num_lats is a subgraph of den_lats
 - ▶ That is, den_lats contains all the paths that are in num_lats
 - den_lats also contains extra paths that are not present in num_lats

Objective Function of LF-MMI Training

- ► To maximize num_scores den_scores
 - num_scores = num_lats.get_tot_scores(log_semiring=True)
 - den_scores = den_lats.get_tot_scores(log_semiring=True)

Objective Function of LF-MMI Training

- To maximize num scores den scores
 - num_scores = num_lats.get_tot_scores(log_semiring=True)
 - den_scores = den_lats.get_tot_scores(log_semiring=True)

```
num = k2.intersect dense(num. dense fsa vec. 10.0)
         den = k2.intersect_dense(den, dense_fsa_vec, 10.0)
          num tot scores = num.get tot scores(
130
              log_semiring=True,
              use_double_scores=True)
          den tot scores = den.get tot scores(
              log semiring=True,
134
              use double scores=True)
          tot_scores = num_tot_scores - den_scale * den_tot_scores
             optimizer.zero grad()
             (-tot_score).backward()
```

(a) See https://github.com/k2-fsa/snowfall/blob/master/egs/aishell/asr/simple v1/mmi bigram train.pv#L126 LF-MMI training and decoding in k2(Part I)

32 / 37

Objective Function of LF-MMI Training (Continue)

- To maximize num scores den scores
 - num scores = num_lats.get_tot_scores(log_semiring=True)
 - den_scores = den_lats.get_tot_scores(log_semiring=True)
- Explanation:
 - num_scores: It is the log of the sum of all correct paths
 - den_scores: It is the log of the sum of all possible paths
 - num scores is always less than den scores
 - Aim to
 - Increase the probabilities of correct paths
 - Decrease the probabilities of incorrect paths

LF-MMI Training Summary

- ctc_topo
- ► The bigram LM P
- The lexicon L
- num_graph
- den_graph
- num_lats
- den_lats
- get_tot_scores in log-semiring

▶ NOTE

- k2 is a very generic framework supporting FSA operations, in a differentiable manner
- ▶ We don't specify the underlying neural network model
 - You can use any types of network you like

Contents

summary

Summary

- This talk has covered
 - How to implement CTC training and LF-MMI training
 - with FSA operations in k2
- Some terms
 - ctc_topo
 - ► The bigram LM P
 - ► The lexicon L
 - num_graph
 - den_graph
 - num_lats
 - den lats
 - get_tot_scores
 - ► log-semiring
 - decoding lattice

Thank you!