Studienkolleg TU Berlin 17.10.2024

Übungsblatt 2 Informatik Grundkurs 382

1. Addieren, bzw substrahieren Sie die folgenden Binärzahlen:

101010	110011	1011011	1011011	111000111
+ 110110	+ 111001	+ 1101101	- 1001101	- 101101101
1100000	1101100	11001000	1110	1011010
1100000	1101100	11001000	1110	1011010

2. Sie haben in einem Computerspiel 1.632\$. Mit einem Hex-Editor betrachten Sie nun das gespeicherte Spiel:

	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	0f
00000000	02	ff	00	00	00	01	01	11	a1	10	aa	00	01	02	11	31
00000010	68	0b	a9	4e	8d	48	b4	51	17	00	00	6b	28	67	ae	5f
00000020	72	06	0f	5c	cf	7e	ee	b3	30	e8	19	38	68	13	93	8b
00000030	01	00	60	06	00	00	1d	bb	21	00	00	cd	5f	с4	00	00
00000040	16	7a	89	09	94	68	ad	74	74	05	ff	f8	f6	25	d7	73

a) Wo ist der Geldbetrag gespeichert¹?

Kreisen Sie die entsprechende Stelle ein oder geben Sie die Adresse an:

Bytes 32-33

b) Sie hätten in dem Spiel gerne 1.000.000\$, hexadezimal ist das f4240. Wie bearbeiten Sie diese Datei um Millionär(in) zu werden? Welche Probleme könnten dabei auftreten?

schreibe 40 42 0f an die Adressen 32, 33, 34. Es könnte sein dass die Zahl nur 16 bit hat und Byte 34 nicht dazugehört.

3. Stellen sie die folgenden negativen Dezimalzahlen im 8-bit Zweierkomplement dar in dem Sie zunächst den Betrag als 8-bit-Binärzahl darstellen und dann das Zweierkomplement berechnen.

a) -65: Die Zahl 65 ist 01000001 als 8-bit Binärzahl. -65 ist also 10111111
b) -96: Die Zahl 96 ist 01100000 als 8-bit Binärzahl. -96 ist also 10100000

c) -128: Die Zahl128ist 10000000 als 8-bit Binärzahl. -128ist also 10000000

4. Sie speichern ihr Lieblingslied auf dem Computer als unkomprimierte .wav-Datei.

Das Lied geht 3 Minuten. Sie digitalisieren es mit einer 44,1kHz Abtastrate, 16 Bit pro Sample (Bit-Tiefe), und in Stereo (zwei Kanäle).

Da sie es einem Freund per Email schicken wollen, komprimieren Sie es dann als .mp3-Datei mit 128kbps Bitrate. Das bedeutet eine Sekunde benötigt 128000 Bit Speicherplatz.

a) Wieviel Byte Speicherplatz benötigt die .wav-Datei? 31752000

b) Wieviel Byte Speicherplatz benötigt die .mp3-Datei? 2880000

c) Wie groß ist die Kompressionsrate (in %)? 90,9%

¹Achtung, sie benutzen einen PC, der Zahlen im little endian Format speichert