

UNCLASSIFIED

AD 296 018

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

65-2-7
296 018

CATALOGED BY NASA
AS AD NO. 1

TECHNICAL MEMORANDUM 1107

DETERMINATION
OF
AVAILABLE STABILIZER
IN
AGED PROPELLANTS CONTAINING EITHER
DIPHENYLAMINE OR ETHYL CENTRALITE

BY

MILTON ROTH

COPY NO. 29 OF 67

FEBRUARY 1963

PICATINNY ARSENAL - DOVER, NEW JERSEY

TECHNICAL MEMORANDUM 1107
AMMUNITION GROUP

DETERMINATION
OF
AVAILABLE STABILIZER
IN
AGED PROPELLANTS
CONTAINING EITHER
DIPHENYLAMINE OR ETHYL CENTRALITE

BY

MILTON ROTH

FEBRUARY 1963

REVIEWED BY:

D. Katz
D. KATZ
Chief, Process
Engineering Laboratory

APPROVED BY:

J. J. Matt
J. J. MATT
Chief, Ammunition
Production & Maint.
Engineering Division

TABLE OF CONTENTS

	Page
INTRODUCTION	1
DISCUSSION OF RESULTS	3
CONCLUSIONS	4
PROCEDURE	4
DETERMINATION OF AVAILABLE STABILIZER CONTENT	5
DETERMINATION OF AVAILABLE DIPHENYLAMINE	5
DETERMINATION OF AVAILABLE ETHYL CENTRALITE	6
REFERENCES	7
APPENDICES	
A. Figures	A1-6
B. Tables	B1-10
TABLE OF DISTRIBUTION	i

ACKNOWLEDGEMENT

The author wishes to thank Mr. M.R. Younginer, of the Explosives and Propellants Laboratory, Feltman Research Laboratories, for preparing, distributing and analyzing the samples and standards used in the round robin. His assistance and cooperation have been of great benefit to the Panel and the chairman of this round robin.

INTRODUCTION

Since stabilizer content is considered an indication of safe storage life, the problem of determining the stabilizer content of aged propellants has been the object of considerable study. In general, stabilizers function by undergoing chemical reaction with propellant decomposition products. Therefore the analytical method must be able to distinguish between the original material and the products of reaction. A number of methods have been described to the Analytical Panel (References 1-5) and a preliminary evaluation of these methods (Reference 6) was conducted by several laboratories under a cooperative program.

Based on results from these screening tests, the Picatinny Arsenal spectrophotometric methods for available stabilizer and primary degradation products were selected for further study. The initial phase of this program was an attempt to standardize the necessary spectrophotometric factors. It was found that significant differences, in regard to the factors obtained, existed between laboratories. It was expected, however, that these differences would be cancelled in the analysis of samples if each laboratory used the factor appropriate to its spectrophotometer (Reference 7). Therefore, the Panel recommended that a round robin be conducted on aged propellants containing either diphenylamine (DPA) or ethyl centralite (EC).

The results of this round robin (Reference 8) were disappointing in regard to interlaboratory agreement. Inspection of data revealed that most of the laboratories had used the average of the spectrophotometric factors obtained from the previous round robin. In view of this defect, and the fact that a related round robin (Reference 9) further emphasized the importance of determining the factor concurrent with the analysis of samples, it was recommended that the round robin be repeated. For the repetition however, the method was limited to the determination of available stabilizer only, rather than to its components.

The following laboratories participated in this round robin:

1. Canadian Armaments Research & Development Establishment
Quebec, Canada
2. Frankford Arsenal
Philadelphia, Pennsylvania
3. Hercules Powder Company
(at)

- a. Allegany Ballistics Laboratory
Cumberland, Maryland
- b. Kenvil Plant
Kenvil, New Jersey
- c. Radford Arsenal
Radford, Virginia
- 4. Naval Propellants Plant
Indian Head, Maryland
- 5. Picatinny Arsenal
Dover, New Jersey

The required materials, distributed by Picatinny Arsenal, consisted of:

- 1. Diphenylamine and ethyl centralite for use as standards in determination of spectrophotometric factors.
- 2. Samples representing lots of propellant as shown below.

<u>Lot No.</u>	<u>Type</u>	<u>Stabilizer</u>	<u>Nominal Cont. %</u>	<u>Year of Mfg.</u>
SUN-19243	M6	DPA	1.0	1945
RAD-60310	M10	DPA	1.0	1954
OKLA-29220	IMR	DPA	0.7	1945
RAD-60326	M2	EC	0.6	1954
RAD-38145	T238	EC	6.0	1956
RAD-34616	M17	EC	1.5	1954

Instructions and data sheets were also sent to all participating laboratories. In this report the data has been statistically analyzed, a number of conclusions have been drawn and actions are being taken to fully use the method.

DISCUSSION OF RESULTS

Tables I-IV are a compilation of the results submitted by the cooperating laboratories. Table V and VI summarize this data for the standards and samples, respectively. Table VII is a summary of the reported working and elapsed times.

To evaluate the data quantitatively, statistical analyses were made. First, the absorptivity values reported for the standards were subjected to an analysis-of-variance. From this analysis (Table VIII) it is seen that the averages vary more than would be expected from chance alone. Thus, the laboratories do have significant differences between the reported averages. These deviations can be attributed to the materials, the method, the analysts or the instruments. In all probability, however, the instruments are the principal cause of the disagreement since the materials (DPA and EC) were too carefully purified and mixed and the method is too straightforward (weighing, dissolving and diluting) to cause any confusion.

In Table IX and X, similar statistical analyses of the propellant results are given using the instrumental factors determined concurrently with the sample analyses. The statistical analyses indicate that with the exception of Lot 60326, of six investigated, the averages do not differ more than would be expected from chance alone. The DPA-stabilized propellants give results which are reproducible between laboratories, within the 95% level of confidence, while the EC propellants are within the 99% level.

The results obtained with the samples show much better agreement between laboratories than do the results obtained with the standards. This finding confirms the hypothesis stated earlier -- that the instruments used in the various laboratories are not standardized. A similar finding was evidenced in the round robin for determining admixtures of DPA and EC (Reference 9).

The data from each laboratory was plotted in Figure 1 to illustrate the variability in absorptivity. Then the graph was divided into four quadrants -- by horizontal and vertical lines drawn through the overall average obtained for DPA and EC. The pattern of points will be circular if only chance errors are present (Reference 10). A pattern in which the points form a long, narrow oval, as in Figure 1, indicates that nearly all the laboratories are departing from the standard conditions. The location of point four and six indicates that these laboratories have particular need for standardizing their spectrophotometers.

Despite the interlaboratory variability found with the determination of absorptivities, the sample results are considered to be in agreement. This is particularly true with the DPA-stabilized propellants. Somewhat greater

variability is exhibited in the case of the EC-stabilized propellants, but only Lot 60326 significantly exceeds the variability due to chance. However, this sample has such a low EC content and the results show such good reproducibility, that the statistical test measure of significance is considered impractical (Referenc 11). The total spread of results on Lot 60326 was about 0.2%, which is well within the reproducibility of the method.

CONCLUSIONS

1. The spectrophotometric method for the determination of available stabilizer content (as DPA or EC) is suitable for inclusion in the MIL-STD-286A (Propellants, Solid: Sampling, Examination and Testing) and Panel Handbook. The speed and simplicity of the method make it suitable for newly manufactured as well as aged propellants.
2. The spectrophotometers used in the participating laboratories differ significantly in their response to the same material. Standardization of response would greatly simplify writing of specifications.

Action Taken:

1. The spectrophotometric method for determination of available stabilizer is being coordinated with the military services for inclusion in MIL-STD-286A.
2. A round robin designed to standardize spectrophotometers will be proposed at the next Panel meeting.
3. Propellants that show red fumes in less than 20 days (when stored at 65, 5° F) are being analyzed for available stabilizer content to establish a quantitative relationship between storage stability and stabilizer content.

PROCEDURE

Diphenylamine

Accurately weigh 50 mg. of standard DPA and transfer to a 500-ml. volumetric flask. Dissolve in and dilute to volume with 95% ethanol. Transfer 1, 2, 4 and 5-ml. aliquots to separate 100-ml. volumetric flasks and dilute to volume with ethanol. Measure the absorbance of the solutions at 285 m μ using a Beckman DU spectrophotometer, or equivalent, with ethanol in the reference cell. Calculate the absorptivity from the ratio:

$$a = A/c$$

where:

a = Absorptivity

A = Absorbance of standard (corrected for cell differences)

c = Concentration of standard, mg/100 ml

Ethyl Centralite

Accurately weigh 100 mg of the standard EC and transfer to a 500-ml. volumetric flask. Dissolve in and dilute to volume with 95% ethanol. Transfer 3, 5, 8 and 10-ml. aliquots of this solution to separate 100-ml flasks and dilute to volume with ethanol. Measure the absorbance of these solutions at 247 m μ using a Beckman DU spectrophotometer, or equivalent, with ethanol in the reference cell. Calculate the absorptivity in the same manner as for DPA.

DETERMINATION OF AVAILABLE STABILIZER CONTENT

Separation by Steam Distillation

Place an accurately weighed 5-gm portion of sample (1 gm. if the nominal stabilizer content is more than 1% DPA or 2% EC) in the 1-liter balloon flask in a steam distillation apparatus similar to that in Figure 2. Add 200 ml of 15% NaOH to the flask and steam distill at the rate of 7-9 ml/min until 400 \pm 25 ml. of distillate is collected. Start the distillation with the tip of the adapter just below the surface of 50 ml. of ethanol in the receiver. Upon completion of the distillation, wash the condenser and adapter with ethanol, collecting the washings in the receiver. Transfer the contents of the receiver quantitatively to a 1,000-ml volumetric flask with the aid of ethanol, cool to room temperature and dilute to volume with this solvent. From this stock solution take aliquots as directed for the determination of available DPA or EC.

DETERMINATION OF AVAILABLE DIPHENYLAMINE (DPA)

From the stock solution transfer a 20-ml. aliquot to a 100-ml. volumetric flask and dilute to volume with ethanol. Determine the absorbance of the solution at 285 m μ using ethanol in the reference cell. Calculate the available DPA content as:

$$\text{Available DPA, \%} = \frac{A}{aW} 100$$

where:

A = Absorbance of solution at 285 m μ .

W = Wt of sample in final aliquot, mg.

a = Absorptivity of DPA at 285 m μ .

DETERMINATION OF AVAILABLE ETHYL CENTRALITE (EC)

From the stock solution transfer a 20-ml aliquot to a 100-ml volumetric flask and dilute to the mark with ethanol. Determine the absorbance of the solution at 247 m μ using ethanol in the reference cell.

Calculate the EC content as:

$$\text{EC, \%} = \frac{A}{aW} 100$$

where:

a = Absorptivity of EC at 247 m μ .

A = Absorbance of sample at 247 m μ .

W = Weight of sample in final aliquot, mg.

REFERENCES

1. M. A. Laccetti, M. R. Younginer and M. Roth, Spectrophotometric Method for the Simultaneous Determination of Actual EC and Its Primary Degradation Products in Propellants, Picatinny Arsenal General Laboratory Section Rpt. No. 57-HI-519, 21 March 1957.
2. M. A. Laccetti, and M. R. Younginer, Improvement of the Spectrophotometric Method for Analysis of Diphenylamine and Its Primary Degradation Products, Picatinny Arsenal General Laboratory Section Report No. 58-HI-648, 12 June 1958.
3. M. A. Lacetti and M.R. Younginer, Colorimetric Determination of Available DPA by Diazo Coupling, Picatinny Arsenal Technical Memo No GL-4-59, April 1959.
4. M. Roth, M.A. Laccetti and M.R. Younginer, Abridged Spectrophotometric Method for Determination of Available Stabilizer and Application to Prediction Safe Life of Propellants, Picatinny Arsenal Technical Memorandum No. GL-8-59, June 1959.
5. J. Meyers, Determination of Total Nitrosamine Content in Propellants and Determination of Effective Stabilizer Content in DPA Stabilized Propellant (Spectrophotometric Method), CARDE letter to M. Roth Reply No. CARDE 193-60/761-6, 3 September 1958.
6. M. A. Laccetti and M. Roth, Evaluation of Methods for the Analysis of DPA, EC and Some of Their Degradation Products, Picatinny Arsenal Technical Memorandum GL-6-59, June 1959.
7. M. Roth, Interlaboratory Determination of Spectrophotometric Factors for DPA, EC and Their Primary Degradation Products, Picatinny Arsenal Technical Memorandum ACS-2-60, May 1960.
8. M. Roth, JANAF-PACSP Round Robin No. 21, Determination of Available Stabilizer in Aged Propellants containing Either DPA or EC, Picatinny Arsenal Laboratory Report No. AL-P-3-62, February 1962.
9. M. Roth, JANAF-PACSP Results of the Evaluation of the Picatinny Spectrophotometric Method for the Determination of Admixtures of DPA and EC in Propellants, Picatinny Arsenal Analytical Chemistry Section Report No. AEP-344-62.

10. W.J. Youden, Materials Research and Standards, p. 862-867, November 1961.
11. R.H. Pierson and E.A. Fay, Anal. Chem. 31, 25A, 1959 .

10. W.J. Youden, Materials Research and Standards, p. 862-867, November 1961.
11. R.H. Pierson and E.A. Fay, Anal. Chem. 31, 25A, 1959 .

APPENDICES

APPENDIX A

FIGURES

Figure 1. Comparison Of Absorptivities Of Spectral Standards

Figure 2. Steam Distillation Apparatus

Figure 3. Data Sheet

Data Sheet - R.R. 21

Name of Lab:

Code No.

<u>Determination of Absorptivity of Spectrophotometric Standards</u>		
<u>Measurement</u>	<u>DPA</u>	<u>EC</u>
<u>Melting Range, °C</u>	<u>Pre-Assay</u>	<u>Post-Assay</u>
Concentration of Standard, mg/500 ml		
Absorbance of Solutions, A		
Aliquot A		
Aliquot B		
Aliquot C		
Aliquot D		
Absorptivity, A/c*		
Aliquot A		
Aliquot B		
Aliquot C		
Aliquot D		

$$\bar{x}_s \quad \bar{x}_{DPA} \quad \bar{x}_{EC}$$

*c = mg/100 ml in aliquot.

Data Sheet - R.R. 21

Name of Lab:

Code No.:

Determination of Available NPA

<u>Lot No.</u>	<u>Sample Wt. g.</u>	<u>Run No.</u>	<u>Absorbance</u>	<u>DPA, %</u>	<u>Rejected Values*</u>
SUN 19243					

RAD 60310

~~1~~ ~~2~~ ~~3~~

ORLA 29220

~~1~~ ~~2~~ ~~3~~

~~1~~ ~~2~~ ~~3~~

*List the values rejected by the Q-test on the same line as its replacement value.

Figure 4. Data Sheet

<u>Name of Lab:</u>	<u>Data Sheet - R.R. 21</u>	<u>Code No.:</u>			
<u>Determination of Available EC</u>					
<u>Lot No.</u>	<u>Sample Wt.g:</u>	<u>Run No.</u>	<u>Absorbance</u>	<u>E.C.E</u>	<u>Rejected Values*</u>
RAD 60326					

RAD 38145

RAD 34616

*List the values rejected by the Q-test on the same line as its replacement value.

Figure 5. Data Sheet

Remarks

Time Required, hrs/sample

DPA

EC

Submitted By:

Title:

Date:

Figure 6. Data Sheet

APPENDIX B

TABLES

TABLE I
RESULTS OBTAINED FROM DPA STANDARD

LAB. NO.	MELTING RANGE, °C		CONC. STD, MG/500ML		ABSORPTIVITY	
	Pre-Assay	Post-Assay	Pre-Assay	Post-Assay	Pre-Assay	Post Assay
1	52.9-53.4	52.9-53.4	54.2	50.0	1.242 1.259 1.245 <u>1.247</u> <u>1.251</u>	1.225 1.225 1.220 <u>1.232</u> <u>1.226</u>
					0.01	s 0.01
					\bar{X} 1.24	
3	53.0-53.4	53.0-53.4	48.7	48.7	1.253 1.232 1.206 <u>1.198</u> <u>1.222</u>	1.222 1.222 1.222 <u>1.210</u> <u>1.215</u>
					0.024	s 0.006
					\bar{X} 1.22	
4	52.5	52.0	50.0	50.8	1.26 1.28 1.26 <u>1.27</u> <u>1.27</u>	1.26 1.25 1.24 <u>1.26</u> <u>1.25</u>
					0.01	s 0.01
					\bar{X} 1.26	

TABLE I (CONT'D)

LAB. NO.	MELTING RANGE, °C	CONC. STD. MG/500ML		ABSORPTIVITY	
		Pre-Assay	Post-Assay	Pre-Assay	Post Assay
5	53.0	50.0		1.18 1.18 1.18 <u>1.16</u> <u>1.18</u>	1.19 1.19 1.18 1.17 1.18
				0.012	s 0.010
				\bar{x}	\bar{x} 1.18
6	52.9-53.4	49.6		1.126 1.123 1.123 <u>1.124</u> <u>1.124</u>	1.126 1.120 1.123 <u>1.123</u> 0.002
				s	s 0.009
				\bar{x}	\bar{x} 1.12
7	53.6-53.9	50.7	49.7	1.203 1.203 1.193 <u>1.192</u> <u>1.198</u>	1.197 1.197 1.197 1.197 <u>1.197</u>
				s	s 0.000
				\bar{x}	\bar{x} 1.20
8	53.1	50		1.15	1.15
				1.19	1.19
				1.20	1.20
				<u>1.20</u>	<u>1.20</u>
				0.02	s 0.02
				\bar{x}	\bar{x} 1.19

TABLE II

RESULTS OBTAINED FROM EC STANDARD

LAB. NO	MELTING RANGE, °C		CONC. STD., MG/500ML		ABSORPTIVITY	
	Pre-Assay	Post-Assay	Pre-Assay	Post-Assay	Pre-Assay	Post-Assay
1	72.6-72.65	72.6-72.65	101.2	100	0.331	0.325
					0.329	0.333
					0.329	0.325
					0.330	0.328
					<u>0.330</u>	<u>0.328</u>
					<u>X</u>	<u>X</u>
					0.001	s
					0.005	
						<u><u>X</u></u> 0.329
3	72.0-72.2	72.0-72.2	77.0	78.0	0.340	0.331
					0.330	0.336
					0.322	0.333
					0.329	0.354
					<u>0.330</u>	<u>X</u>
					0.007	s
					0.002	
						<u><u>X</u></u> 0.332
4	72.0	71.8	1000.0	1006.0	0.353	0.338
					0.334	0.341
					0.337	0.336
					0.337	0.335
					<u>0.340</u>	<u>X</u>
					0.009	s
					0.003	
						<u><u>X</u></u> 0.339

TABLE II (CONT'D)

LAB. NO.	MELTING RANGE, °C Pre-Assay	CONC. STD., MG/500ML Post-Assay	ABSORPTIVITY	
			Pre-Assay	Post-Assay
5	72.5	100	0.326 0.325 0.325 <u>0.325</u> 0.001	0.326 0.321 0.321 <u>0.324</u> s 0.002
			\bar{X} 0.324	
6	71.8-72.3	101.7	0.302 0.309 0.295 <u>0.293</u> 0.007	0.302 0.309 0.295 <u>0.294</u> s 0.007
			\bar{X} 0.324	
7	72-73	1010.0	1002.0	0.333 0.333 0.333 <u>0.331</u> 0.001
				0.333 0.335 0.327 <u>0.326</u> s 0.004
			\bar{X} 0.331	

TABLE II (CONT'D)

LAB. NO.	MELTING RANGE, °C	CONC. STD., MG /500ML		ABSORPTIVITY	
		Pre-Assay	Post-Assay	Pre-Assay	Post-Assay
8	72.5	100		0.325 0.321 0.326 <u>0.329</u> <u>0.325</u>	0.331 0.320 0.325 0.330 <u>0.327</u>
				0.003	s 0.005
					\bar{x} 0.326

TABLE III
DETERMINATION OF AVAILABLE DPA

LOT NO.	LAB NO.	AVAILABLE DPA, %						8
		1	3	4	5	6	7	
SUN 19243	0.57	0.58	0.56	0.56	0.60	0.60	0.59	0.59
	0.56	0.60	0.55	0.56	0.65	0.61	0.58	0.58
	0.57	0.57	0.56	0.56	0.62	0.62	0.58	0.58
	0.54	0.60	0.56	0.56	0.62	0.62	0.58	0.58
	0.56	0.59	0.56	0.56	0.62	0.61	0.58	0.58
	\bar{X} s	0.01	0.02	0.01	0.00	0.03	0.01	0.005
RAD 60310	0.75	0.79	0.78	0.75	0.80	0.78	0.82	0.82
	0.76	0.78	0.73	0.75	0.80	0.79	0.83	0.83
	0.75	0.78	0.75	0.74	0.81	0.79	0.83	0.83
	0.74	0.78	0.75	0.74	0.78	0.77	0.83	0.83
	\bar{X} s	0.01	0.01	0.02	0.01	0.02	0.01	0.002
OKLA 29220	0.24	0.24	0.23	0.25	0.29	0.24	0.25	0.25
	0.22	0.24	0.23	0.25	0.28	0.25	0.26	0.26
	0.22	0.25	0.23	0.24	0.28	0.25	0.25	0.25
	0.24	0.24	0.23	0.24	0.24	0.24	0.24	0.25
	\bar{X} s	0.01	0.01	0.00	0.01	0.02	0.01	0.004

TABLE IV
DETERMINATION OF AVAILABLE EC

LOT NO.	LAB NO.	AVAILABLE EC, %					
		1	3	4	5	6	7
RAD 60326	0.51	0.69	0.54	0.59	0.69	0.59	0.63
	0.51	0.64	0.55	0.58	0.71	0.59	0.63
	0.50	0.69	0.53	0.57	0.67	0.59	0.62
	0.52	0.67	0.54	0.57	0.72	0.59	0.62
	\bar{X}	0.51	0.67	0.54	0.58	0.70	0.59
	s	0.01	0.05	0.01	0.01	0.06	0.00
RAD 38145	5.83	6.22	5.44	5.07	5.51	5.82	6.00
	5.94	6.11	5.40	5.07	6.10	5.84	6.01
	5.81	6.15	5.41	5.05	5.75	5.85	6.03
	5.86	6.33	5.47	5.05	6.59	5.96	5.98
	\bar{X}	5.86	6.20	5.43	5.06	5.99	5.87
	s	0.06	0.10	0.03	0.01	0.43	0.06
RAD 34616	1.28	1.59	1.09	1.25	1.50	1.55	1.46
	1.25	1.52	1.11	1.25	1.41	1.65	1.21
	1.27	1.46	1.10	1.26	1.63	1.44	1.53
	1.32	1.54	1.10	1.26	1.48	1.68	1.33
	\bar{X}	1.28	1.53	1.10	1.26	1.50	1.58
	s	0.06	0.05	0.01	0.01	0.09	0.11

TABLE V
SUMMARY OF RESULTS ON STANDARDS

LAB	AVAILABLE DPA, %	AVAILABLE EC, %
1	1.24	0.329
3	1.22	0.332
4	1.26	0.339
5	1.18	0.324
6	1.12	0.300
7	1.20	0.331
8	1.19	0.326
\bar{x}	1.20	0.326

TABLE VI
SUMMARY OF RESULTS ON SAMPLES

LAB	SUN 19243	AVAILABLE DPA, %	OKLA 29220	AVAILABLE EC, %
1	0.56	0.75	0.23	5.86
3	0.59	0.78	0.24	6.20
4	0.56	0.75	0.23	5.43
5	0.56	0.75	0.25	5.06
6	0.62	0.80	0.28	5.99
7	0.61	0.78	0.25	5.87
8	0.58	0.83	0.25	6.01
\bar{x}	0.58	0.78	0.25	5.77
s	0.025	0.03	0.02	0.38

TABLE VII
TIME REQUIRED FOR ANALYSES

LAB NO.	WORKING TIME, HOURS		ELAPSED TIME, HOURS	
	DPA	EC	DPA	EC
1	0.75	0.75	2	2
3	0.75	0.75	---	---
4	0.75	0.75	2.25	2.25
5	---	---	2.25	2.40
6	1	1	7	7
7	0.6	0.6	2.2	2.2
8	1	1	3	3

TABLE VIII

ANALYSIS-OF-VARIANCE TABLE FOR DPA AND EC ABSORPTIVITIES

SOURCE OF VARIATION	MEAN SQUARE		F-RATIO*	
	DPA	EC	DPA	EC
Between Labs	0.0142	0.000867	15.8	2.89
Within Labs	0.0009	0.0003		

*Critical F-ratios: $F_{0.95} (6,49) = 2.3$
 $F_{0.99} (6,49) = 3.2$

TABLE IX
ANALYSIS-OF-VARIANCE TABLE FOR DPA PROPELLANTS

SOURCE OF VARIATION	MEAN SQUARE		F - RATIO*						
	Between Labs.	Within Labs.	1.9243 0.0025	60310 0.0031	29220 0.0012	1.9243 1.47	60310 2.58	29220 1.50	
Between Labs.		0.0017		0.0012		0.0008			
Within Labs.									

*Critical F-ratios: $F_{0.95}(6, 21) = 2.57$
 $F_{0.99}(6, 21) = 3.81$

SOURCE OF VARIATION	MEAN SQUARE		F - RATIO*						
	Between Labs.	Within Labs.	60326 0.01847	38145 0.0044	34616 0.2033	60326 4.25	38145 3.05	34616 2.85	
Between Labs.		0.6191		0.1198		0.1198			
Within Labs.		0.0421							

*Critical F-ratios: $F_{0.95}(6, 21) = 2.57$
 $F_{0.99}(6, 21) = 3.81$

TABLE OF DISTRIBUTION

TABLE OF DISTRIBUTION

	Copy Number
1. Commanding Officer Picatinny Arsenal Dover, New Jersey ATTN: SMUPA-VA6 SMUPA-DB SMUPA-DC7, Mr. A. Sokol SMUPA-I SMUPA-IA SMUPA-IO SMUPA-G SMUPA-DX1 SMUPA-DX3 SMUPA-NR2	1-5 6 7 8 9 10 11-12 13-14 15-16 17-18
2. Commanding General U.S. Army Materiel Command Washington 25, D.C. ATTN: AMCRD	19
3. Commander Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia ATTN: TIPDR	20-29
4. Commanding Officer Frankford Arsenal Bridge & Tacony Streets Philadelphia 37, Pennsylvania ATTN: Materials Engineer Division	30-31
5. Chief, Bureau of Ordnance Navy Department Washington 25, D.C. ATTN: AD3, Technical Library	32
6. Commanding General Ammunition Procurement and Supply Agency Joliet, Illinois ATTN: SMUAP-AM SMUAP-AI SMUAP-AIDA	33 34 35

TABLE OF DISTRIBUTION (CONT'D)

	Copy Number
7. Commanding Officer Radford Arsenal Radford, Virginia ATTN: Mr. J. Horvath	36-37
8. Director Ordnance Materials Research Office Watertown Arsenal Watertown, Massachusetts	38
9. Commanding Officer Diamond Ordnance Fuze Laboratory Connecticut & Van Ness Avenues Washington 25, D.C.	39-40
10. Armour Research Foundation Building 61-7 Joliet Arsenal Elwood, Illinois ATTN: R. Remaly	41-42
11. Atlantic Research Corporation Shirley Highway at Edsall Road Alexandria, Virginia ATTN: Mr. B.W. Black	43
12. E.I. duPont deNemours & Co. Carney Point Process Laboratory P.O. Box 152 Penns Grove, New Jersey ATTN: Mr. C.I. Johnson	44
13. Commander Air Force Flight Test Center Edwards Air Force Base, California ATTN: FTRSC Lt. H.V. Bankaitis	45

TABLE OF DISTRIBUTION (CONT'D)

	Copy Number
14. Allegany Ballistics Laboratory P.O. Box 210 Cumberland, Maryland ATTN: Mr. W.E. Kight	46
15. Hercules Powder Company Kenvil, New Jersey ATTN: H.A. Read	47
16 National Research Corporation 70 Memorial Drive Cambridge 42, Massachusetts ATTN: Dr. J.H. Atkins	48
17. Commanding Officer U.S. Naval Ordnance Laboratory White Oak, Silver Spring, Maryland ATTN: Dr. J.M. Rosen	49
18. Commanding Officer U.S. Naval Propellant Plant Indian Head, Maryland ATTN: Mr. H.L. Stalcup Dr. Mae Fauth	50 51
19. Headquarters Ogden Air Material Area Hill Air Force Base, Utah ATTN: Mr. Neal M. Hansen	52
20. Olin Mathieson Chemical Corporation P.O. Box 508 Marion, Illinois ATTN: Mr. R.J. Thiede	53
21. Commanding General U.S. Army Missile Command Redstone Arsenal Huntsville, Alabama	54

TABLE OF DISTRIBUTION (CONT'D)

	Copy Number
22. Sandia Corporation P.O. Box 5800 Albuquerque, New Mexico ATTN: Mr. R.J. Buxton, Code 1625	55
23. Stanford Research Institute Poulter Laboratories Menlo Park, California ATTN: Dr. R.F. Muraca Dr. Eugene Burns	56 57
24. Commanding Officer U.S. Naval Ammunition & Net Depot Seal Beach, California ATTN: QE Laboratory, Technical Library	58
25. Commanding Officer U.S. Army Chemical Corps Engineering Group Army Chemical Center, Maryland ATTN: CMLEN-WSS-R, Mr. Charles G. Hain	59
26. Defence Research Member Canadian Joint Staff (W) 2450 Massachusetts Avenue, N.W. Washington 8, D.C.	60-63
27. British Defence Staff British Embassy 3100 Massachusetts Avenue, N.W. Washington 8, D.C. ATTN: Scientific Information Officer	64
28. Chemical Propulsion Information Agency The Johns Hopkins University Applied Physics Laboratory 8621 Georgia Ave Silver Spring, Maryland ATTN: Mr. S.S. Miller	65-67