

Akademia Górniczo-Hutnicza w Krakowie Wydział Informatyki, Elektroniki i Telekomunikacji

Raport z projektu Title

Autor: Łukasz Przystupa

Kierunek studiów: Elektronika i Telekomunikacja

Zadanie 1:

Narysuj i omów podstawowe układy pracy detektorów światła (IR, widzialnego, UV) opartych na fotodiodach:

Charakterystyka prądowo napięciowa diody

- 1. Dioda w kierunku zaporowym zachowuje się jako fotodioda.
- 2. Dioda w kierunku przewodzenia to panel

Zadanie 2:

Wymień i omów podstawowe parametry detektorów światła.

- czułość
- długość fali
- prąd ciemny
- szum własny
- zakres pracy
- czas narastania
- wzmocnienie
- zależności temperaturowe

Zadanie 3:

Wymień i omów podstawowe parametry czujników temperatury

- zakres pomiarowy zakres temperatur jakie mogą być poprawnie mierzone za pomocą danego czujnika
- dokładność różnica między temperaturą rzeczywistą a zmierzoną
- rozdzielczość najmniejsza zmiana zauważona przez czujnik
- czas odpowiedzi czas jaki czujnik potrzebuje aby ustalić wartość mierzoną

Zadanie 4:

Narysuj i omów podstawowe układy pracy mierników temperatury opartych o termopary.

Termopara to czujnik temperatury zbudowany z dwóch różnych metali połączonych ze sobą w punkcie pomiarowym (punkt gorący). Po drugiej stronie czujnika (zimne złącze) powstaje napięcie termoelektryczne proporcjonalne do różnicy temperatur.

Zadanie 5:

Wymień i omów podstawowe parametry czujników przyśpieszenia

Zadanie 6:

Wymień i omów podstawowe parametry czujników przesunięcia kątowego (żyroskopów)

- zakres pomiarowy
- czułość
- rozdzielczość
- dokładność
- powtarzalność
- offset
- pasmo przenoszenia
- oś pomiaru

Zadanie 7:

Narysuj i omów podstawowe układy pracy mierników prądu

Dla zakresu:

- \bullet nA uA mA
- mA 3A
- 10mA 100A (500A)

Zadanie 8:

Omów narażenia środowiskowe wpływające na działanie podzespołów i układów elektronicznych

- 1. Temperatura
 - dryft napięcia półprzewodników
 - zmiany pojemności i/lub rezystancji
 - skrócenie żywotności elementu
- 2. Wilgotność
 - prąd upływu
 - $\bullet\,$ korozja styków i wyprowadzeń
 - zwarcia w obwodzie
- 3. Pył i brud
 - problemy z chłodzeniem
- 4. Środki chemiczne
 - przebicia, zwarcia,
 - niszczenie obudów
- 5. Wibracje i wstrząsy
 - pęknięcia, uszkodzenia struktur scalonych
 - zwiększenie rezystancji połączeń (np. lutów)
- 6. Promieniowanie elektromagnetyczne:
 - zaburzenia w pracy układów
 - zmiany w pamięciach trwałych
 - przegrzewanie się urządzeń
- 7. Wyładowania ESD
 - zniszczenie elementów
 - obniżenie żywotności
- 8. Ciśnienie pracy
 - błędne odczyty
 - obniżenie żywotności

Zadanie 9:

