PadhAl: MP Neuron & Perceptron

One Fourth Labs

Perceptron Learning - Why it works?

What is the intuition behind the Perceptron learning algorithm

- 1. $W = [W_1, W_2, ... W_n]$
- 2. $X = [x_1, x_2, ... x_n]$
- 3. Cos $\theta = w.x/||w||x||$, here the numerator can be replaced with $\sum w_i x_i$
 - a. The denominator is always positive
 - b. Therefore $Cos \theta \propto \sum w_i x_i$
 - c. As θ ranges from 0 to 180°, $\cos \theta$ ranges from 1 to -1
 - d. If $\cos \theta > 0$, it is an acute angle
 - e. If $\cos \theta < 0$, it is an obtuse angle
- 4. For $x \in P$, if w.x < 0, then it means that the angle(α) between this x and the current w is greater than 90°, but we want α < 90°)
 - a. What happens to the new angle α_{new} when $w_{new} = w + x$
 - b. $Cos\alpha_{new} \propto w_{new}^T x$
 - c. $\propto (w+x)^T x$
 - d. $\propto w^T x + x^T x (always + ve)$
 - e. $\propto \cos \alpha + x^T x \text{(some +ve value)}$
 - f. This means that the cosine is going to increase, which leads to decrease of α
- 5. For $x \in N$, if w.x > 0, then it means that the angle(α) between this x and the current w is less than 90°, but we want $\alpha > 90$ °)
 - a. What happens to the new angle α_{new} when $w_{new} = w x$
 - b. $Cos\alpha_{new} \propto w_{new}^{T} x$
 - c. $\propto (w-x)^T x$
 - d. $\propto w^T x x^T x (always + ve)$
 - e. $\propto \cos \alpha x^T x \text{(some +ve value)}$
 - f. This means that the cosine is going to decrease, which leads to increase of α