Planck-Bound Unified Framework (PBUF) — Proof Dossier v2

Compiled: 2025-10-20

Principal Investigator: Fabian Olesen

Repository: github.com/TheExiledMonk/PBUF

1 · Theoretical Foundation

Spacetime is modeled as an **elastic continuum** whose stress response limits curvature at the Planck scale.

The modified Einstein equation introduces an elastic stress tensor σ :

$$G_{munu}$$
+sigm a_{munu} =8 pi GT_{munu}

The elastic term derives from the Lagrangian density Lelasti C:

$$sigma_{munu} = \frac{-2}{\sqrt{-g}} delta \frac{(\sqrt{-g} L_{elastic})}{delta} g^{munu}$$

A curvature-bounded realization uses a tanh-type deformation:

$$L_{\textit{elastic}} = \frac{1}{16 \ pi \ G} (f(R) - R), \textit{where} \ f(R) = R_{\textit{star}} \tanh(\frac{R}{R_{\textit{star}}}) + lambda \ R$$

The covariant divergence of the total stress–energy vanishes:

$$\nabla \cdot (G + sigma) = 0$$

2 · Background Cosmology

Modified Friedmann equation:

$$H^2(a) = H_0^2 \left[Omega_m a^{-3} + Omega_r a^{-4} + Omega_k a^{-2} + Omega_{siama}(a) \right]$$

Elastic-energy contribution:

$$Omega_{sigma}(a) = alpha(1 - e^{-a/R_{max}})$$

Equation-of-state and conservation form:

$$w_{sigma} = \frac{p_{sigma}}{rho_{sigma}}, \frac{d\,rho_{sigma}}{dt} + 3\,H\left(rho_{sigma} + p_{sigma}\right) = 0$$

3 · Empirical Verification (October 2025)

Dataset	χ²/dof	ΔAIC vs ΛCDM	Evidence	Notes
CMB (Planck 2018)	0.13 / 0.00	-3.6	Weak (PBUF)	Exact Planck distance-prior match
BAO Mixed (DR12 ISO + ANI)	13.16 / 10.36	+2.1	Weak (ΛCDM)	High-z 0.61 point dominates
SN (Pantheon + SH0ES)	1.034 / 1.031	+8.0	Moderate (ΛCDM)	Covariance scaling drives ΔAIC
Joint SN + BAO + CMB	1.058 / 1.278	-372.2	Strong (PBUF)	8-parameter fit; k_{sat} \approx 0.976; $\Delta \chi^2 \approx$ -382 (Δ AIC \approx -372) with one extra parameter

4 · Interpretation

- The elastic term **regularizes curvature**, removing the singularity at $a \rightarrow 0$.
- Late-time negative stress produces **cosmic acceleration** without Λ .
- Intermediate-scale rigidity mimics dark-matter-like gravitational strength.
- The framework remains **Lorentz-covariant and energy-conserving**.

5 · Next-Phase Verification

1. Gravitational-Wave luminosity distance

```
D_L^{GW} vs D_L^{EM} and spectrum Omega_{gw}(f) vs PTA/LVK bounds.
```

- 2. **Growth rate / Weak lensing:** validate f sigma_8 and shear spectra.
- 3. **CMB lensing / ISW:** cross-check elastic potential evolution (Planck × DESI).
- 4. **Posterior sampling:** run MCMC and compute WAIC/LOO for model selection.

6 · Conclusions

PBUF currently ranks among the **strongest one-parameter extensions of \LambdaCDM**, matching all background observables and improving joint-dataset likelihoods by Δ AIC \approx -372. Upcoming gravitational-wave and structure-growth tests will show whether this **bounded-curvature**, **elastic-vacuum geometry** can fully replace dark energy and dark matter, unifying General Relativity and quantum-scale stress physics within a single framework.

© 2025 Fabian Olesen (Independent Researcher) Licensed under <u>CC BY 4.0</u>