Dessin d'un avion - Procédure détaillée Etude et conception avion SIAE - Tianjin

Nicolas PETEILH ENAC

3 décembre 2015

Numéro du groupe :
Noms des membres du groupe :
->
->
->
->
->
Choix des premiers paramètres, à partir des spécifications données dans l'énoncé
- Configuration avion :
- Mach de vol :
- Altitude de vol :
– Nombre de passagers :
- Rayon d'action :
Attention aux unités : $-\ W_0 \ {\rm est \ souvent \ exprimée \ en} \ lb. \ Il \ {\rm faut \ donc \ penser} \ {\rm \grave{a} \ faire} \ {\rm la \ conversion} \ :$
1kg = 2,2046lb
-le rayon d'action est souvent exprimé en $NM.$
1NM = 1852m

- des	longueurs	peuvent	$\hat{\mathrm{e}}\mathrm{tre}$	exprimées	$_{ m en}$	ft.
-------	-----------	---------	--------------------------------	-----------	------------	-----

$$1ft = 0,3048m$$

- dans la formule de Breguet-Leduc, TSFC est exprimé en kg/s/N.
- dans le document, W désigne le poids de l'avion et M sa masse.
- on note q la pression dynamique de l'écoulement donc $q=1/2\rho V^2$.

1 Première estimation de la masse

Soit M_0 la masse totale au décollage. Elle est exprimée en kg.

Rappel de l'équation de décompostion de la masse totale avion :

...

1.1 Calcul de $M_{Equipage}$

Description de la composition de l'équipage :

...

- Choix du nombre de PNT : ...
- Choix du nombre de PNC : ...

Masse à considérer par membre de l'équipage : ...

Après calcul:

$$M_{Equipage} = \dots$$

1.2 Calcul de M_{Utile}

Description de la composition de la charge utile :

Masse à considérer par passager : ...

Après calcul:

 $M_{Utile} = \dots$

1.3 Calcul de M_{Vide}

Rappel de l'équation permettant d'exprimer ${\cal M}_{Vide}$ en fonction de ${\cal M}_0$:

...

Comme M_0 n'est pas encore connue, garder cette relation pour la réutiliser plus tard (cf partie 1.5).

1.4 Calcul de $M_{Carburant}$

1.4.1 Définition du profil de la mission

Liste des segments d'une mission type (NOTA : l'attente potentielle en vol due au trafic aérien ou à la météo est comptabilisée dans les réserves) :

- Segment 1 : ...
- Segment 2:...
- Segment 3 : ...
- Segment 4 : ...
- Segment 5:...
- Segment 6: ...
- Segment 7:...

1.4.2 Calcul des ratio de masse pour chaque segment de la mission

Ratio des masses entre la fin et le début du segment : M_i/M_{i-1}

- Segment 1 : M_1/M_0 : ...
- Segment $2: M_2/M_1: ...$
- Segment $3: M_3/M_2: \dots$
- Segment $4: M_4/M_3: ...$
- Segment $5: M_5/M_4: ...$
- Segment $6: M_6/M_5: \dots$
- Segment $7: M_7/M_6: ...$

NOTA: Pour le ratio correspondant à la croisière (ou au survol):

Rappel de l'équation de Bréguet-Leduc correspondant à la croisière (ou au survol) :					
Pour les résultats suivants, si un graphique a été utilisé, le tracé est présenté en annex	сe				
– TSFC trouvé :					
$-S_{wet}/S_{ref}$ trouvé :					
$-(L/D)_{max}$ trouvé :					
-L/D utilisé :					
1.4.3 Calcul du ratio $M_{Carburant}/M_0$					
Rappel de la formule permettant de calculer $M_{Carburant}/M_0$:					
Après calcul : $\frac{M_{Carburant}}{M_0} = \dots$					
1.5 Première estimation de M_0					
Rappel de l'équation utilisée :					
•••					
Après calcul : $M_0 = \dots$					
2 Choix d'un profil aérodynamique					
Profil aérodynamique choisi :					
Explications:					
···					
Epaisseur relative (t/c) trouvée $(voir\ tracé\ sur\ le\ schéma\ en\ annexe)$:					

3 Analyse préliminaire de la voilure

Pour les résultats suivants, les schémas sont en annexe avec les tracés :

```
- Allongement A choisi : ...
- Flèche du bord d'attaque choisie : ...
 – Effilement (ou taper\ ratio\ \lambda) trouvé : ...
- Flèche au quart de corde trouvée : ...
- Vrillage choisi: ...
- Calage choisi: ...
- Position de l'aile choisie : ...
- Dièdre choisi : ...
- Extrémité de voilure choisie : ...
 Estimation du ratio poussée/poids T/W
   Méthode statistique
T/Wtrouvé : ...
   Méthode en fonction de la vitesse
Rappel de l'équation utilisée :
Après calcul, T/Wtrouvé : ...
   Méthode - meilleure efficacité en croisière
Rappel de l'équation utilisée pour calculer (T/W)_{croisire}:
Après calcul, (T/W)_{croisire} trouvé : ...
Rappel de l'équation utilisée pour calculer (T/W)_{dcollage}:
```

 $-W_{croisire}/W_{dcollage}$ trouvé : ...

```
-T_{maxcroisire}/T_{maxdcollage} trouvé : ...
```

- Réglage de la poussée en croisière utilisé : ...

Après calcul, $(T/W)_{dcollage}$ trouvé : ...

4.4 Bilan pour T/W

T/W choisi finalement : \dots

5 Estimation de la charge alaire

5.1 Vitesse de décrochage

Rappel de l'équation utilisée pour calculer $(M/S)_{decrochage}$:

...

– C_{Lmax} trouvé : ...

- $V_{decrochage}$ trouvé : ...

Après calcul, $(M/S)_{decrochage}$ trouvé : ...

Résulat exprimé en conditions au décollage : ...

5.2 Distance au décollage

Rappel de l'équation utilisée pour calculer $(M/S)_{decollage}$:

...

– C_{LTO} trouvé : ...

 $-\,$ Distance au décollage choisie : ...

- TOPtrouvé : ...

- Altitude maximale choisie pour le décollage : ...

Après calcul, $(M/S)_{decollage}$ trouvé : ...

5.3 Distance à l'atterrissage

```
Rappel de l'équation utilisée pour calculer (M/S)_{atterrissage}: ... -d_{\alpha} \text{ utilisé}: ... -\text{ Avion équipé de reverse?} \dots \text{Après calcul, } (M/S)_{atterrissage} \text{ trouvé}: ... \text{Résulat exprimé en conditions au décollage}: ...
```

5.4 Croisière

```
Rappel de l'équation utilisée pour calculer (M/S)_{croisiere}: ...
-q \ {\rm calcul\'e}: \dots
-C_{L0} \ {\rm utilis\'e}: \dots
-{\rm Coefficient d'efficacit\'e d'Oswald} \ e \ {\rm choisi}: \dots
{\rm Après \ calcul}, \ (M/S)_{croisiere} \ {\rm trouv\'e}: \dots
{\rm R\'esulat \ exprim\'e \ en \ conditions \ au \ d\'ecollage}: \dots
```

5.5 Choix de la charge alaire $(M/S)_{finale}$

```
Rappel de la règle pour choisir la M/S finale : ... (M/S)_{finale} \ {\rm trouv\'e}: \dots
```

6 Deuxième estimation de la masse M_0

6.1 Nouveau calcul de M_{Vide}

Rappel de la nouvelle équation permettant d'exprimer ${\cal M}_{Vide}$ en fonction de ${\cal M}_0$: ...

Valeurs utilisées pour les différents paramètres :

- Allongement A utilisé : ...

- (T/W_0) utilisé : ...

- (M_0/S) utilisé : ...

- M_{max} utilisé : ...

- a utilisé : ...

- b utilisé : ...

- C_1 utilisé : ...

- C_2 utilisé : ...

- C_3 utilisé : ...

- C_4 utilisé : ...

 $-C_5$ utilisé : ...

Comme précédemment, garder cette relation pour la réutiliser ci-après.

6.2 Nouveau calcul de $M_{Carburant}$

6.2.1 Définition du profil de la mission

La mission reste-t-elle la même? ...

6.2.2 Nouveau calcul des ratio de masse pour chaque segment de la mission

Ratio des masses entre la fin et le début du segment : M_i/M_{i-1}

- Segment M_1/M_0 : ...
- Segment $M_2/M_1:...$
- Segment $M_3/M_2:...$
- Segment M_4/M_3 : ...
- Segment M_5/M_4 : ...
- Segment M_6/M_5 : ...
- Segment M_7/M_6 : ...

NOTA1 : Pour le ratio correspondant à la montée : Rappel de la nouvelle formule à utiliser : NOTA2 : Pour le ratio correspondant à la croisière (ou au survol) : Rappel de la nouvelle relation à utiliser pour le calcul de L/D: ... Valeurs utilisées pour les différents paramètres : - q : ... $- C_{D0} : ...$ -(W/S):...- Allongement A:...- Coefficient d'efficacité d'OS wald $e:\dots$ 6.2.3 Nouveau calcul du ratio $M_{Carburant}/M_0$ Rappel de la formule permettant de calculer $M_{Carburant}/M_0$: Après calcul: $\left(\frac{M_{Carburant}}{M_0}\right)_{nouveau} = \dots$ Deuxième estimation de M_0 6.3Rappel de l'équation utilisée : Après calcul: $M_{0nouveau} = \dots$ Comparaison avec la première estimation de la masse :

7 Estimation de la longueur et du diamètre du fuselage

7.1 Méthode 1 : estimation empirique

Rappel de l'équation permettant d'estimer la longueur du fuselage :
•••
Valeurs utilisées pour les différents paramètres :
- Coefficient A (ATTENTION : ici A ne représente pas l'allongement de l'aile) :
– Coefficient $C:$
Après calcul, la longueur du fuselageest estimée à :
$L_{fuse lage} =$
Rappel de la définition de l' $allongement\ du\ fuselage$:
···
Valeur de l'allongement du fuselage choisie :
Après calcul, le diamètre du fuselage est estimé à :
$D_{fuse lage} = \dots$
7.2 Méthode 2 : estimation à partir du nombre de passager maximal - $Facultative$
Si cette partie est traitée, les calculs sont présentés en annexe.
Longueur du fuselage trouvée :
Diamètre du fuselage trouvée :

8 Premier dessin de la voilure

Rappel des valeurs utilisées dans les calculs suivants :

- $M_0 : ...$
- $-M_0/S_{ref}:...$
- $-T_{max}/W_0:...$

Calcul des dimensions de voilure :

_	Surface de référence de la voilure S_{ref} :
	– Equation pour calculer S_{ref} :
	$-S_{ref}$ trouvé :
_	Envergure de la voilure b :
	- Equation pour calculer b :
	···
	$-\ b\ { m trouv\'e}$:
_	Longueur de la corde à l'emplanture $C_{emplanture}$:
	– Equation pour calculer $C_{emplanture}$:
	•••
	$-C_{emplanture}$ trouvé :
_	Longueur de la corde au saumon C_{saumon} :
	– Equation pour calculer C_{saumon} :
	···
	$-C_{saumon}$ trouvé :
_	Longueur de la corde aérodynamique moyenne ${\cal C}{\cal A}{\cal M}$:
	- Equation pour calculer CAM :
	···
	-CAM trouvé :
_	Positionnement de la corde aérodynamique moyenne par rapport au point du bord d'at taque de la voilure situé sur l'axe longitudinale de l'avion X_{CAM} :
	– Equation pour calculer X_{CAM} :
	···
	$-X_{CAM}$ trouvé :

Choix de la position de la voilure par rapport au fuselage = position $X_{Voilure}$ du point du bord d'attaque de la voilure situé sur l'axe longitudinale de l'avion.

Position choisie $X_{Voilure}$: ...

9 Choix et dessin d'un empennage

Description de l'empennage choisi : ... Rappel de l'hypothèse sur son positionnement par rapport au fuselage :

9.1 Empennage horizontal

Calcul des dimensions de l'empennage horizontal :

- Coefficient d'empennage horizontal C_{HT} : Rappel de la définition de C_{HT} :

 - C_{HT} choisi : ...
- Allongement de l'empennage horizontal ${\cal A}_{HT}$:
 - $-A_{HT}$ choisi : ...
- Effilement de l'empennage horizontal λ_{HT} choisi : ...
- Flèche du bord d'attaque de l'empennage horizontal choisie : ...

Description de la méthode utilisée pour calculer, pour l'empennage horizontal :

- la surface S_{HT} ,
- l'envergure b_{HT} ,
- -la corde à l'emplanture $C_{emplanture\,HT},$ et
- la corde au saumon $C_{saumon\,HT}$.

...

...

```
Après calcul:
   - Surface S_{HT}: ...
   - Envergure b_{HT}: ...
    – Longueur de la corde à l'emplanture C_{emplanture\,HT} : ...
   – Longueur de la corde au saumon C_{saumon\,HT}: ...
   - Longueur de la corde aérodynamique moyenne CAM_{HT}: ...
   - Positionnement du bord d'attaque de la corde aérodynamique moyenne de l'empennage
     horizontal par rapport au point du bord d'attaque de l'empennage horizontal situé sur
     l'axe longitudinal de l'avion X_{CAM_{HT}}: ...
   - Distance entre le quart de la corde aérodynamique moyenne de la voilure et celle de l'em-
     pennage horizontal L_{HT}: ...
9.2
       Empennage vertical
   Calcul des dimensions de l'empennage vertical :
   – Coefficient d'empennage vertical C_{VT} :
     -Rappel de la définition de {\cal C}_{VT} :
     -C_{VT} choisi : ...
   - Allongement de l'empennage vertical A_{VT}:
     -A_{VT} choisi : ...
   – Effilement de l'empennage vertical \lambda_{VT} choisi : ...
   - Flèche du bord d'attaque de l'empennage vertical choisie : ...
   Description de la méthode utilisée pour calculer, pour l'empennage vertical :
```

- la surface S_{VT} , - l'envergure b_{VT} ,

- la corde à l'emplanture $C_{emplanture_{VT}}$, et

– la corde au saumon $C_{saumonVT}$.

... Après calcul: $- Surface <math>S_{VT}: ...$ $- Envergure b_{VT}: ...$ $- Longueur de la corde à l'emplanture <math>C_{emplanture_{VT}}: ...$ $- Longueur de la corde au saumon <math>C_{saumon_{VT}}: ...$ $- Longueur de la corde aérodynamique moyenne <math>CAM_{VT}: ...$ - Positionnement du bord d'attaque de la corde aérodynamique moyenne de la corde aérodynamique de la corde aérodynamique de la corde aérodynam

- Positionnement du bord d'attaque de la corde aérodynamique moyenne de l'empennage vertical par rapport au point du bord d'attaque de l'empennage vertical situé sur l'axe longitudinal de l'avion $X_{CAM_{VT}}:\dots$
- Distance entre le quart de la corde aérodynamique moyenne de la voilure et celle de l'empennage vertical $L_{VT}:\dots$

10 Dessin de l'avion

Joindre le dessin de l'avion en annexe.

11 Comparaison avec l'avion de référence

...

...