Finite-dimensional linear transformations

Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be linear.

- a. If L is injective, prove that L is surjective.
- b. If L is surjective, prove that L is injective.

Now suppose the rangespace of L is a subset of its nullspace.

- c. Compute spec *L*.
- d. Given any matrix representation $A_L \in \mathbb{R}^{n \times n}$ of L, compute $\det(sI A_L)$.

Matrix representations

Let $L: U \to U$ be linear and dim U = n.

Suppose there exists $b \in U$ such that the vectors in $B = \{b, Lb, L^2b, \dots, L^{n-1}b\}$ are linearly independent.

a. Obtain the matrix representation of L with respect to the basis B.

Suppose that $\lambda \in \mathbb{C}$ and $V = \{v_j\}_{j=1}^n$ is a basis for U such that $Lv_1 = \lambda v_1$ and $Lv_k = \lambda v_k + v_{k-1}$ for all $k \in \{2, ..., n\}$.

b. Obtain the matrix representation of L with respect to the basis V.

Suppose that $\operatorname{rank} L = n$, so that there exists $\Gamma: U \to U$ such that $L \circ \Gamma = \Gamma \circ L = \operatorname{id}$ where $\operatorname{id}: U \to U$ is the *identity operator* defined for all $u \in U$ by $\operatorname{id}(u) = u$.

c. Show that, in any basis for U, the matrix representation of L is the inverse of the matrix representation of Γ .

Vector fields and their flows

Let $\phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be the flow for $\dot{x} = f(x)$ where $f : \mathbb{R}^n \to \mathbb{R}^n$. Given $t \in \mathbb{R}$, let $\phi_t : \mathbb{R}^n \to \mathbb{R}^n$ be defined for all $x \in \mathbb{R}^n$ by $\phi_t(x) = \phi(t, x)$.

- a. If f is linear, prove that ϕ_t is linear.
- a. If ϕ_t is linear, prove that f is linear.

Induced norm

Given $t \in \mathbb{R}$, let $S_t : \mathbb{R}^{\mathbb{R}} \to \mathbb{R}$ be defined for all signals $x \in \mathbb{R}^{\mathbb{R}}$ by $S_t(x) = x(t)$.

Prove or provide a counterexample.

- a. S_t is linear.
- b. The induced norm of $||S_t||$ is finite. (Use $||x|| = \int_{-\infty}^{\infty} |x(s)| ds$ for signals $x \in \mathbb{R}^{\mathbb{R}}$ and |a| for scalars $a \in \mathbb{R}$.)

State transition matrix

Suppose the differentiable function $P: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{n \times n}$ is such that $\forall a, b, c \in \mathbb{R}: P(c, b)P(b, a) = P(c, a)$ and P(a, a) = I (the $n \times n$ identity matrix).

- a. Prove that P(a,b) is invertible and $P(a,b)^{-1} = P(b,a)$ for all $(a,b) \in \mathbb{R} \times \mathbb{R}$.
- b. Write $D_b P(a, b)$ in terms of P(a, b) and $D_a P(a, b)$.

Linear time-varying systems

Let $\Phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{n \times n}$ be the state transition matrix and $\phi: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be the flow for the (CLTV) system

$$\dot{x} = A(t)x$$
.

- a. Given $(s, x) \in \mathbb{R} \times \mathbb{R}^n$, write $\phi(s, x)$ in terms of x and Φ .
- b. Is it possible to have $\phi(s, x) = 0$ for $x \neq 0$?

Now let $\tilde{\Phi}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{n \times n}$ be the state transition matrix and $\tilde{\phi}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be the flow for the (CLTV) system

$$\dot{\tilde{x}} = A(t)\tilde{x} + \phi(t, x).$$

- c. What is the relationship between Φ and $\tilde{\Phi}$?
- d. Given $(s, x, \tilde{x}) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$, write $\tilde{\phi}(s, \tilde{x})$ in terms of s, x, \tilde{x} , and Φ .
- e. Given $x \neq 0$, determine $\tilde{x} \neq 0$ such that $\tilde{\phi}(s, \tilde{x}) = 0$.