Particle spectrograph

Wave operator and propagator

${\mathcal T}_{1^{^{-}}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2i\sqrt{2}k}{a_0(2+k^2)}$	$-\frac{ik(4+k^2)}{a_0(2+k^2)^2}$	$\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$	$-\frac{i\sqrt{5}k}{a_0(2+k^2)}$	$\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$	$-\frac{i\sqrt{\frac{2}{3}}k}{a_0(2+k^2)}$	$\frac{2k^2}{a_0(2+k^2)^2}$	
$\Delta_{1^{-}\alpha}^{\#6}$	0	0	0	0	$-\frac{k^2}{\sqrt{6} a_0 (2+k^2)}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2+3 k^2}}$	- √5 6 <i>a</i> 0	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	340	$i \sqrt{\frac{2}{3}} k$ $2 a_0 + a_0 k^2$	
$\Delta_{1^-}^{\#5}{}_{\alpha}$	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	$\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$\frac{-2+k^2}{3\sqrt{2} \ a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$\frac{2(17+14k^2+3k^4)}{3a_0(2+k^2)^2}$	$-\frac{\sqrt{2} (7+3k^2)}{3 a_0 (2+k^2)}$	$-\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$	
$\Delta_{1^-}^{\#4}{}_{\alpha}$	0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{1}{12 a_0}$	$\sqrt{\frac{5}{2}}$ $6a_0+3a_0k^2$	$-\frac{\sqrt{5}}{6a_0}$	$i \sqrt{\frac{5}{6}} k$ $2a_0 + a_0 k^2$	
$\Delta_{1}^{\#3}{}_{\alpha}$	0	0	0	$-\frac{2k^2}{\sqrt{3}a_0(2+k^2)}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{76+52k^2+3k^4}{12a_0(2+k^2)^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{-2+k^2}{3\sqrt{2}\ a_0(2+k^2)^2}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$	$-\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$	
$\Delta_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 (5+2 k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$-\frac{k^2}{\sqrt{6}(2a_0+a_0k^2)}$	$\frac{i k (4+k^2)}{a_0 (2+k^2)^2}$	
$\Delta_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	0	$\sqrt{\frac{2}{3}} k^2$ $2 a_0 + a_0 k^2$	0	$\frac{2 i \sqrt{2} k}{2 a_0 + a_0 k^2}$	
$\Delta_{1}^{\#3}{}_{+}\alpha\beta$	0	0	$\frac{4}{a_0}$	0	0	0	0	0	0	0	
$\Delta_{1}^{\#1}_{\alpha\beta} \; \Delta_{1}^{\#2}_{+\alpha\beta} \; \Delta_{1}^{\#3}_{+\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a_0}$	0	0	0	0	0	0	0	0	
$\Delta_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0	
	$\Delta_{1}^{\#1} + \alpha^{\beta}$	$\Delta_{1}^{#2} + \alpha^{\beta}$	$\Delta_1^{\#3} +^{\alpha\beta}$	$\Delta_{1}^{\#1} +^{\alpha}$	$\Delta_{1}^{#2} +^{\alpha}$	$\Delta_{1}^{#3} +^{\alpha}$	$\Delta_{1^{^{-}}}^{\#4} +^{\alpha}$	$\Delta_{1}^{\#5} +^{lpha}$	$\Delta_{1}^{\#6} +^{lpha}$	${\mathcal T}_{1}^{\#1} {\dagger}^{lpha}$	

40 a b	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							$\Gamma_{2}^{+} \alpha \beta$	$\Gamma_{2}^{+2} \alpha \beta$	$\Gamma_{2}^{+3} \alpha \beta$	$h_2^{++} \alpha \beta$	$\Gamma_{2}^{\#_{1}}\alpha\beta\chi$	$\Gamma_{2}^{\#2}$ α
ρχ Γ#1	י ו						$\Gamma_{2}^{\#1} \dagger^{\alpha\beta}$	<u>a₀</u> 4	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$\Delta_{3^{-}}^{\#1} +^{lpha eta \chi}$	$\Gamma_{3^{-}}^{#1} + \alpha \beta X$						$\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{a_0}{2}$	0	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
7							$\Gamma_{2}^{#3} \dagger^{\alpha\beta}$	0	0	<u>a₀</u> 4	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
0	0	0	0	0	0	$-\frac{2}{a_0}$	$h_{2+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	$\frac{72ik}{a_0(16+3k^2)^2}$	$\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	$a_0 (16+3k^2)^2$	$4 \sqrt{3} \\ 16 a_0 + 3 a_0 k^2$	$36k^2$ $a_0 (16+3k^2)^2$		$\Gamma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	<u>a₀</u> 4	0
2 i 1	72 j k a ₀ (16+3)	8 į k (19 a 0 (16-	7 <u>√2</u> k (: a ₀ (16+	$4 \sqrt{3}$ $16a_0 + 3a$	36 a ₀ (16-	0	$\Gamma_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	<u>a₀</u> 4
ı	, ,	1	4 j	,	1								

 $-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$

 $-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$

 $\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$

 $\Delta_{0}^{\#3}$ †

 $\Delta_{0}^{\#1}$

 $\Delta_{0}^{\#1}\,\dagger$

 $\Delta_{0}^{#2}$ †

 $\frac{32(13+3k^2)}{3a_0(16+3k^2)^2}$

 $-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$

 $-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$

 $\Delta_{0}^{#4}$ †

 $\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$

 $\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$

 $\mathcal{T}_{0}^{\#2}$ †

Source constraints/gauge generators							
SO(3) irreps	Multiplicities						
$2\mathcal{T}_{0^{+}}^{\#2} - ik\Delta_{0^{+}}^{\#2} == 0$	1						
$\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$	1						
$6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	3						
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	3						
Total constraints:	8						

$h_{1^-}^{\#1}$	0	0	0	$-\frac{i a_0 k}{4 \sqrt{2}}$	0	$\frac{i a_0 k}{4 \sqrt{6}}$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0
$\Gamma_{1}^{\#6}{}_{\alpha}$	0	0	0	0	0	$-\frac{a_0}{6}$	$-\frac{\sqrt{5} a_0}{6}$	$\frac{a_0}{6\sqrt{2}}$	$\frac{5a_0}{12}$	$-\frac{i a_0 k}{4 \sqrt{6}}$
$\Gamma_{1}^{\#5}{}_{\alpha}$	0	0	0	0	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	3 3	$\frac{a_0}{6\sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$
$\Gamma_{1}^{\#4}$	0	0	0	0	0	$\sqrt{5} a_0$	3 3	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	$-\frac{\sqrt{5} a_0}{6}$	$\frac{1}{4}\overline{i}\sqrt{\frac{5}{6}}a_0k$
$\Gamma_{1^{-}}^{\#3}$	0	0	0	0	0	$-\frac{a_0}{3}$	$\sqrt{5} a_0$	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{a_0}{6}$	$-\frac{ia_0k}{4\sqrt{6}}$
$\Gamma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{a_0}{4}$	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$
$\Gamma_1^{\#3}$	0	0	$\frac{a_0}{4}$	0	0	0	0	0	0	0
$\Gamma_1^{\#_+^2}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_1^{\#1}$	$-\frac{a_0}{4}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0
	$\Gamma_1^{\#1} + \alpha^{\beta}$	$\Gamma_1^{\#2} + \alpha \beta$	$\Gamma_1^{#3} + \alpha \beta$	$\Gamma_1^{\#1} + ^{lpha}$	$\Gamma_1^{\#2} + \alpha$	$\Gamma_{1}^{\#3} + ^{\alpha}$	$\Gamma_1^{\#4} + ^{lpha}$	$\Gamma_1^{\#5} + ^{\alpha}$	$\Gamma_1^{\#6} + ^{lpha}$	$h_1^{\#1} +^{lpha}$

Q	uadratic (free) action
S	$C_{F} == \iiint (\frac{1}{4})$
($(2 a_0 \Gamma_{\alpha}^{\alpha\beta} \Gamma_{\beta\chi}^{\chi} + 4 h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} (-2 a_0 \Gamma_{\beta\chi\alpha} + 4 \Delta_{\alpha\beta\chi}) - a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} +$
C	$a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} - 2 a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + 2 a_0 h_{\beta\chi} \partial^{\chi} \Gamma_{\alpha}^{\alpha\beta}))[t, \chi, y, z] dz dy dx dt$

$\Gamma_{0^{\text{-}}}^{\#1}$	0	0	0	0	0	0	$-\frac{a_0}{2}$
$h_0^{#2}$	0	0	$-\frac{1}{4}$ ia_0k	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0	0
$h_0^{\#1}$	$-\frac{i a_0 k}{2 \sqrt{2}}$	0	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{ia_0k}{4\sqrt{6}}$	0	0	0
L #4	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	$\frac{a_0}{2}$	$\frac{i a_0 k}{4 \sqrt{6}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	0
Γ ₀ +	0	$\frac{a_0}{2}$	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4}$	0
Γ#2 0+	0	0	$\frac{a_0}{2}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
$\Gamma_0^{\#1}$	$-\frac{a_0}{2}$	0	0	0	$\frac{i a_0 k}{2 \sqrt{2}}$	0	0
	$\Gamma_{0}^{\#1}$ \dagger	Γ ₀ ^{#2} †	Γ ₀ + +	Γ ₀ ^{#4} †	$h_0^{#1} +$	$h_0^{#2} +$	$\Gamma_{0}^{\#1}$ \dagger

	$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\Delta_{2}^{\#2}{}_{\alpha\beta}$	$\Delta_{2}^{\#3}_{\alpha\beta}$	${\mathcal T}^{\sharp 1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}_{\alpha\beta\chi}$	$\Delta_{2^{-}\alpha\beta\chi}^{\#2}$
$\Delta_{2}^{#1} \dagger^{\alpha\beta}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3}}a_0$	$\frac{4i\sqrt{2}}{a_0k}$	0	0
$\Delta_{2}^{#2} \dagger^{\alpha\beta}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8}{3a_0}$	$-\frac{2\sqrt{2}}{3a_0}$	$-\frac{4i}{\sqrt{3} a_0 k}$	0	0
$\Delta_{2}^{\#3} \dagger^{\alpha\beta}$	$\frac{4}{\sqrt{3} a_0}$	$-\frac{2\sqrt{2}}{3a_0}$	<u>8</u> 3 <i>a</i> ₀	$-\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$	0	0
$\mathcal{T}_{2}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{4i\sqrt{2}}{a_0k}$	$\frac{4i}{\sqrt{3} a_0 k}$	$\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0}$

Massive and massless spectra

Unitarity conditions