(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 April 2001 (19.04.2001)

PCT

English

(10) International Publication Number WO 01/26459 A2

(51) International Patent Classification7: A01N

(21) International Application Number: PCT/US00/28141

(22) International Filing Date: 11 October 2000 (11.10.2000)

(26) Publication Language: English

(30) Priority Data:

(25) Filing Language:

 60/159,464
 12 October 1999 (12.10.1999)
 US

 60/164,132
 8 November 1999 (08.11.1999)
 US

 60/166,228
 17 November 1999 (17.11.1999)
 US

 60/197,899
 17 April 2000 (17.04.2000)
 US

 60/227,439
 22 August 2000 (22.08.2000)
 US

(71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94541 (US).

(71) Applicants and

(72) Inventors: RATCLIFFE, Oliver [GB/US]; 814 East 21st Street, Oakland, CA 94606 (US). HEARD, Jacqueline [US/US]; 810 Guildford Avenue, San Mateo, CA 94402 (US). SAMAHA, Raymond [US/US]; 2224 Albert Lane, Capitola, CA 95010 (US). CREELMAN, Robert [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). KEDDIE, James [US/US]; 54 McLellan Avenue, San Mateo, CA 94403 (US). JIANG, Cai-Zhong

[US/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). REUBER, Lynne [US/US]; 2000 Walnut Avenue, Fremont, CA 94538 (US). RIECHMANN, Jose, Luis [ES/US]; 115 Moss Avenue #308, Oakland, CA 94611 (US).

(74) Agent: GUERRERO, Karen; Mendel Biotechnology, Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/26459

(54) Title: FLOWERING TIME MODIFICATION

(57) Abstract: Recombinant polynucleotides and methods for modifying the flowering time of a plant are provided. Plants transformed with the recombinant polynucleotides may have flowering times that are accelerated, delayed or induced under specific conditions. Additionally, transformed plants may have altered vernalization requirements.

5

10

15

20

25

30

35

FLOWERING TIME MODIFICATION

The present invention claims priority in part from US Provisional Application Serial Nos. 60/159,464 filed October 12, 1999; 60/164,132 filed November 8, 1999; 60/166,228 filed November 17, 1999; 60/197,899 filed April 17, 2000; and Plant Trait Modification III, filed August 22, 2000.

FIELD OF THE INVENTION

This invention is in the field of plant molecular biology and relates to compositions and methods for modifying a plant's flowering time or vernalization requirements.

BACKGROUND OF THE INVENTION

In order to maximize reproductive success, plants have evolved complex mechanisms to ensure that flowering occurs under favorable conditions. Analysis of late flowering mutants and ecotypes in *Arabidopsis* has revealed that such mechanisms are based upon several genetic pathways which may contain 80 or more genes (Martinez-Zapater and Somerville, (1990) *Plant Physiol.* 92:770-776; Koornneef et al. (1991) *Mol. Gen. Genet.* 229:57-66; EM Meyerwitz and CR Somerville Eds (1994) *Arabidopsis* pp 403-433 Cold Spring Harbor Laboratory Press, New York). Together these loci co-ordinate flowering time with environmental variables (e.g. day-length, temperature, light quality, and nutrient availability) and with the developmental stage of the plant.

Arabidopsis flowers rapidly when grown under long day conditions of 16 hours or continuous light, but flowers much later under short day conditions of 8 or 10 hours light. Genes regulating this response constitute the photoperiod pathway and were identified by mutations that cause late flowering under long day conditions but which do not alter flowering in short day conditions. Examples from this group, which promote flowering in response to long days, include CONSTANS (CO), GIGANTEA (GI), FT, FWA, FE, FD, and FHA. A second group of genes, which includes LUMINIDEPENDENS (LD), FCA, FVE, FY, and FPA, form an autonomous pathway that is active under all day-length conditions. Mutants for this second class of genes flower later than wild type controls irrespective of the day length conditions (Koornneef et al. (1991) Mol. Gen. Genet. 229:57-66; EM Meyerwitz and CR Somerville Eds (1994) Arabidopsis pp 403-433 Cold Spring Harbor Laboratory Press, New York).

In addition to differing in their response to day-length, mutants from the photoperiod and autonomous pathways show—a—differential response to prolonged cold (vernalization) treatments (Vince-Prue, (1975) *Vernalization*. In Photoperiodism in Plants pp 263-291, McGraw Hill, London) Through a vernalization response, *Arabidopsis* ecotypes from Northern

5

10

15

20

25

30

35

latitudes, such as Stockholm, are adapted to flower in the spring following exposure to cold winter conditions. This avoids flowering in the late summer when seed maturation might be curtailed by the onset of winter conditions (Reeves and Coupland, (2000) *Curr. Opin. Plant Biol* 3:37-42). When these ecotypes are grown in the laboratory they flower late, but will flower much earlier if subjected to a cold period of 4-6 weeks during seed germination. In a comparable manner, mutants from the autonomous pathway exhibit a very marked reduction in flowering time when subjected to vernalization. In contrast, mutants from the photoperiod pathway only show a minor response to cold treatments (Chandler *et al.*, (1996) *Plant J.* 10:637-644; Koornneef *et al.*, (1998) *Genetics* 148:885-892). Thus, vernalization can overcome the requirement for the autonomous pathway conditions (Reeves and Coupland, (2000) *Curr. Opin. Plant Biol* 3:37-42).

Two Arabidopsis genes, FLOWERING LOCUS C, FLC (also known as FLOWERING LOCUS F, FLF) and FRIGIDA (FRI), act in conjunction to repress flowering in the absence of a vernalization treatment (Napp-Zinn, K. (1957) Indukt. Abstammungs. Verebungsl. 88:253-285; Napp-Zinn K. (1985) CRC Handbook of Flowering, Vol. 1, A. H. Halevy, pp 492-503; Clarke and Dean (1994) Mol. Gen. Genet. 248:81-89; Koornneef. et al., (1994) Plant Journal 6:911-919; Lee et al., (1994) Plant Journal 6:903-909.) Dominant functional alleles of FLC and FRI are found together in Northern European Arabidopsis ecotypes such as Pitztal and Stockholm. These ecotypes are extremely late flowering when non-vernalized. The widely used laboratory ecotype Columbia contains functional alleles at only one of these two loci and flower slightly later than strains such as Landsberg erecta which possess functional alleles of neither gene. The FRIGIDA protein sequence has not yet been published. However, the FLC gene has recently been cloned and shown to encode a MADS box protein (Sheldon C. et al., 1999, Plant Cell 11:445-458; Michaels S. and Amasino, R., 1999, Plant Cell 11:949-956). Dominant alleles and overexpression of FLC have been reported to delay flowering, while null flc mutants are early flowering (Lee et al., (1994) Plant J. 6:903-909; Michaels and Amasino, (1999) Plant Cell 11:949-956; Sheldon et al., (1999) Proc. Natl. Acad. Sci. 97:3753-3758). Thus, FLC acts to prevent premature flowering.

We have discovered transcription factors that regulate flowering time or vernalization requirements of plants. These transcription factors could therefore be useful to manipulate flowering characteristics of a plant.

SUMMARY OF THE INVENTION

In one aspect, the present invention relates to a transgenic plant comprising a recombinant polynucleotide. The recombinant polynucleotide comprises a nucleotide sequence encoding a polypeptide comprising at least 6 consecutive amino acids of a

5

10

15

20

25

30

35

sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28 but excluding SEQ ID No. 28, and the presence of the recombinant polynucleotide alters the flowering time or vernalization requirements of the transgenic plant when compared with the same trait of another plant lacking the recombinant polynucleotide.

In one embodiment, the nucleotide sequence encodes a polypeptide comprising a conserved domain such as 1) a localization domain, 2) an activation domain, 3) a repression domain, 4) an oligomerization domain or 5) a DNA binding domain of SEQ ID Nos. 2N, where N=1-28. In another embodiment, the recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28. In a further embodiment, the nucleotide sequence further comprises a promoter operably linked to the nucleotide sequence. The promoter may be a constitutive or inducible or tissue-active.

In a second aspect, the present invention relates to a method for altering a plant's flowering time or vernalization requirements. The method comprises (a) transforming a plant with a recombinant polynucleotide comprising a nucleotide sequence encoding a polypeptide comprising at least 6 consecutive amino acids of a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28; (b) selecting transformed plants; and (c) identifying a transformed plant with the desired trait.

In one embodiment, the nucleotide sequence encodes a polypeptide comprising a conserved domain such as 1) a localization domain, 2) an activation domain, 3) a repression domain, 4) an oligomerization domain or 5) a DNA binding domain domain of SEQ ID Nos. 2N, where N=1-28 but excluding SEQ ID No. 28. In another embodiment, the recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28. In a further embodiment, the nucleotide sequence further comprises a promoter operably linked to the nucleotide sequence. The promoter may be a constitutive or inducible or tissue-active.

In a third aspect, the present invention relates to another method for altering a plant trait associated with flowering time or the plant's vernalization requirements. The method comprises (a) transforming the plant with a recombinant polynucleotide comprising a nucleotide sequence comprising at least 18 consecutive nucleotides of a sequence selected from the group consisting of SEQ ID Nos. 2N-1, where N= 1-28 but excluding SEQ ID No. 27; and (b) selecting said transformed plant.

In yet another aspect, the present invention is yet another method for altering a plant's flowering time or vernalization requirements. The method comprises (a) providing a database sequence; (b) comparing the database sequence with a polypeptide selected from SEQ ID Nos. 2N, where N= 1-28; (c) selecting a database sequence that meets selected sequence

criteria; and (d) transforming said database sequence in the plant. Alternatively, the database sequence can be compared with a polynucleotide selected from SEQ ID Nos. 2N-1, where N= 1-28.

5

10

15

20

25

30

35

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 2 provides a table of sequences that are homologous to the sequences provided in the Sequence Listing. The table includes from left to right: the SEQ ID No., the internal code reference number, the unique Genbank sequence ID No. (NID), the probability that the comparison was generated by chance (P-value), and the species from which the homologous gene was identified.

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

A "recombinant polynucleotide" is a nucleotide sequence comprising a gene coding sequence or a fragment thereof (comprising at least 18 consecutive nucleotides, preferably at least 30 consecutive nucleotides, and more preferably at least 50 consecutive nucleotides). Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker or the like. The polynucleotide may comprise single stranded or double stranded DNA or RNA. The polynucleotide may comprise modified bases or a modified backbone. The polynucleotide may be genomic, a transcript (such as an mRNA) or a processed nucleotide sequence (such as a cDNA). The polynucleotide may comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide is comprised of a nucleotide sequence not found in nature or the polynucleotide is separated from nucleotide sequences with which it typically is in proximity or is next to nucleotide sequences with which it typically is not in proximity.

A "recombinant polypeptide" is a polypeptide derived from the translation of a recombinant polynucleotide or is more enriched in a cell than the polypeptide in its natural

5

10

15

20

25

30

35

state in a wild type cell, e.g. more than 5% enriched, more than 10% enriched or more than 20% enriched and is not the result of a natural response of a wild type plant or is separated from other components with which it is typically associated with in a cell.

A "transgenic plant" may refer to a plant that contains genetic material not normally found in a wild type plant of the same species, or in a naturally occurring variety or in a cultivar, and which has been introduced into the plant by human manipulation. A transgenic plant is a plant that may contain an expression vector or cassette. The expression cassette comprises a gene coding sequence and allows for the expression of the gene coding sequence. The expression cassette may be introduced into a plant by transformation or by breeding after transformation of a parent plant.

A transgenic plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells, protoplasts or any other plant material, and progeny thereof.

The phrase "altered expression" in reference to polynucleotide or polypeptide expression refers to an expression pattern in the transgenic plant that is different from the expression pattern in the wild type plant or a reference; for example, by expression in a cell type other than a cell type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern may be transient or stable, constitutive or inducible.

A "transcription factor" (TF) refers to a polynucleotide or polypeptide that controls the expression of a gene or genes either directly by binding to one or more nucleotide sequences associated with a gene coding sequence or indirectly by affecting the level or activity of other polypeptides that do bind directly or indirectly to one or more nucleotide sequences associated with a gene coding sequence. A TF, in this definition, includes any polypeptide that can activate or repress transcription of a single gene or a number of genes. This polypeptide group includes, but is not limited to, DNA binding proteins, protein kinases, protein phosphatases, GTP-binding proteins and receptors.

The transcription factor sequence may comprise a whole coding sequence or a fragment or domain of a coding sequence. A "fragment or domain", as referred to polypeptides, may be a portion of a polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner or to a similar extent as does the intact polypeptide. A fragment may comprise, for example, a DNA binding domain that binds to a specific DNA promoter region, an activation domain or a domain for protein-protein

5

10

15

20

25

30

35

interactions. Fragments may vary in size from as few as 6 amino acids to the length of the intact polypeptide, but are preferably at least 30 amino acids in length and more preferably at least 60 amino acids in length. In reference to a nucleotide sequence "a fragment" refers to any sequence of at least consecutive 18 nucleotides, preferably at least 30 nucleotides, more preferably at least 50, of any of the sequences provided herein.

Exemplary polynucleotides and polypeptides comprise a sequence provided in the Sequence Listing as SEQ ID No. 1: G157 (cDNA); SEQ ID No. 2: G157 (protein); SEQ ID No. 3: G859 (cDNA); SEQ ID No. 4: G859 (protein); SEQ ID No. 5: G859.1 (cDNA); SEQ ID No. 6: G859.1 (protein); SEQ ID No. 7: G859.2 (cDNA); SEQ ID No. 8: G859.2 (protein); SEQ ID No. 9: G1842 (cDNA); SEQ ID No. 10: G1842 (protein); SEQ ID No. 11: G1842.2 (cDNA); SEQ ID No. 12: G1842.2 (protein); SEQ ID No. 13: G1842.6 (cDNA); SEQ ID No. 14: G1842.6 (protein); SEQ ID No. 15: G1842.7 (cDNA); SEQ ID No. 16: G1842.7 (protein); SEQ ID No. 17: G1843 (cDNA); SEQ ID No. 18: G1843 (protein); SEQ ID No. 19: G1844 (cDNA); SEQ ID No. 20: G1844 (protein); SEQ ID No. 21: G1844.2 (cDNA); SEQ ID No. 22: G1844.2 (protein); SEQ ID No. 23: G861 (cDNA); SEQ ID No. 24: G861 (protein); SEQ ID No. 25: G861.1 (cDNA); SEQ ID No. 26: G861.1 (protein); SEQ ID No. 27: G1759 (cDNA); SEQ ID No. 28: G1759 (protein); SEQ ID No. 29: G192 (cDNA); SEQ ID No. 30: G192 (protein); SEQ ID No. 31: G234 (cDNA); SEQ ID No. 32: G234 (protein); SEQ ID No. 33: G361 (cDNA); SEQ ID No. 34: G361 (protein); SEQ ID No. 35: G486 (cDNA); SEQ ID No. 36: G486 (protein); SEQ ID No. 37: G748 (cDNA); SEQ ID No. 38: G748 (protein); SEQ ID No. 39: G994 (cDNA); SEQ ID No. 40: G994 (protein); SEQ ID No. 41: G1335 (cDNA); SEQ ID No. 42: G1335 (protein); SEQ ID No. 43: G562 (cDNA); SEQ ID No. 44: G562 (protein); SEQ ID No. 45: G736 (cDNA); SEQ ID No. 46: G736 (protein); SEQ ID No. 47: G1073 (cDNA); SEQ ID No. 48: G1073 (protein); SEQ ID No. 49: G1435 (cDNA); SEQ ID No. 50: G1435 (protein); SEQ ID No. 51: G180 (cDNA); SEQ ID No. 52: G180 (protein); SEQ ID No. 53: G592 (cDNA); SEQ ID No. 54: G592 (protein); SEQ ID No. 55: G208 (cDNA); and SEQ ID No. 56: G208 (protein).

A "conserved domain" refers to a polynucleotide or polypeptide fragment that is more conserved at a sequence level than other fragments when the polynucleotide or polypeptide is compared with homologous genes or proteins from other plants. The conserved domain may be 1) a localization domain, 2) an activation domain, 3) a repression domain, 4) a dimerization or oligomerization domain, 5) a DNA binding domain or any combination thereof. For MADS proteins, the conserved domain is typically a DNA-binding domain.

A nucleotide sequence is "operably linked" when it is placed into a functional relationship with another nucleotide sequence. For example, a promoter or enhancer is operably linked to a gene coding sequence if the presence of the promoter or enhancer increases the level of expression of the gene coding sequence.

5

10

15

20

25

30

35

"Trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. This characteristic may be visible to the human eye, such as seed or plant size, or be measured by biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes by employing Northerns, RT PCR, microarray gene expression assays or reporter gene expression systems or be measured by agricultural observations such as stress tolerance, yield or disease resistance.

"Trait modification" refers to a detectable difference in a characteristic in a transgenic plant with modified expression of a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. The trait modification may entail at least a 5% increase or decrease in an observed trait (difference), at least a 10% difference, at least a 20% difference, at least a 30%, at least a 50%, at least a 70%, at least a 100% or a greater difference. It is known that there may be a natural variation in the modified trait. Therefore, the trait modification observed entails a change in the normal distribution of the trait in transgenic plants compared with the distribution observed in wild type plant.

Trait modifications of particular interest include those to seed (embryo), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; enhanced resistance to microbial, fungal or viral diseases; resistance to nematodes, decreased herbicide sensitivity, enhanced tolerance of heavy metals (or enhanced ability to take up heavy metals), enhanced growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotypes that may be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids), glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that may be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that may be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

Of particular interest are traits relating to modified vernalization requirements or flowering time characteristics, such as changes in flowering time in response to day-length, in response to temperature, in response to light quality, nutrient availability, and development stage of the plant, and the like.

5

10

15

20

25

30

35

1. The Sequences

We have discovered particular plant transcription factors (TFs) that can be employed to modify the flowering time of a plant. Therefore, the flowering time of plants can be either decreased, increased, or made inducible under specific conditions using the TFs of this invention. Additionally, the transcription factors can be used to modify the vernalization requirements of the plant.

The plant transcription factors may belong to one of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) Biol. Chem. 379:633-646); the MYB transcription factor family (Martin and Paz-Ares, (1997) Trends Genet. 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) Biol. Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Duboule (1994) Guidebook to the Homeobox Genes. Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet. 1996 250:7-16); the NAM protein family (Souer et al. (1996) Cell 85:159-170); the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNAbinding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the Box P-binding protein (the BPF-1) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); the high mobility group (HMG) family (Bustin and Reeves (1996) Prog. Nucl. Acids Res. Mol. Biol. 54:35-100); the scarecrow (SCR) family (Di Laurenzio et al. (1996) Cell 86:423-433); the GF14 family (Wu et al. (1997) Plant Physiol. 114:1421-1431); the polycomb (PCOMB) family (Kennison (1995) Annu. Rev. Genet. 29:289-303); the teosinte branched (TEO) family (Luo et al. (1996) Nature 383:794-799; the ABI3 family (Giraudat et al. (1992) Plant Cell 4:1251-1261); the triple helix (TH) family (Dehesh et al. (1990) Science 250:1397-1399); the EIL family (Chao et al. (1997) Cell 89:1133-44); the AT-HOOK family (Reeves and Nissen (1990) Journal of Biological Chemistry 265:8573-8582); the S1FA family (Zhou et al. (1995) Nucleic Acids Res. 23:1165-1169); the bZIPT2 family (Lu and Ferl (1995) Plant Physiol. 109:723); the YABBY family (Bowman et al. (1999) Development 126:2387-96); the PAZ family (Bohmert et al. (1998)

8

EMBO J. 17:170-80); a family of miscellaneous (MISC) transcription factors including the DPBF family (Kim et al. (1997) *Plant J.* 11:1237-1251) and the SPF1 family (Ishiguro and Nakamura (1994) *Mol. Gen. Genet.* 244:563-571); the golden (GLD) family (Hall et al. (1998) *Plant Cell* 10:925-936), and the TUBBY family (Boggin et al, (1999) Science 286:2119-2125)

In particular, the TFs that we have discovered that are implicated in flowering time or vernalization include members of the MADS transcription factor family, the MYB family, the WRKY family, the HLH/MYC family, GLD family, AT-HOOK family, the CAAT family, the bZIP family, and members of zinc coordinating protein families (Z-Dof, Z-CLDSH and Z-CH2H2). In fact we have identified the first members of the WRKY, CAAT, bZIP, AT-HOOK and HLH/MYC families that are associated with flowering time modification in plants: G192 and G190 (WRKY), G486 (CAAT), G562 (bZIP), G1073 (AT-HOOK) and G592 (HLH/MYC).

The polynucleotides and polypeptides are provided in the Sequence Listing and are tabulated in Figure 1. Figure 1 identifies a SEQ ID No., its corresponding GID number, whether the sequence is a polynucleotide or a polypeptide sequence, and indicates the conserved domains. We have also identified domains or fragments derived from each of the sequences in the Sequence Listing. The fragments can be from any region of the sequence, can be of any length up to the length of the sequence, and can be as short as six residues for protein and 18 nucleotides for DNA. Exemplary fragments of the DNA sequences are as follows: 1-50, 51-100, 101-200, 201-218, 218-300, 301-450 and 450-600; and exemplary fragments of proteins are as follows 1-50, 51-100, 101-200, 201-206, 206-250, 251-300. For DNA sequences, the numbers may be measured from either 5' or 3' end of the DNA. For the protein sequences the fragment location is determined from the N-terminus or C-terminus of the protein and may include adjacent amino acid sequences, such as for example for SEQ ID No. 2 an additional 10, 20, 40, 60 or 100 amino acids in either N-terminal or C-terminal direction of the described fragments.

The identified polypeptide fragments may be linked to fragments or sequences derived from other transcription factors so as to generate additional novel sequences, such as by employing the methods described in Short, PCT publication WO9827230, entitled "Methods and Compositions for Polypeptide Engineering" or in Patten et al., PCT publication WO9923236, entitled "Method of DNA Shuffling" or in Minshull and Stemmer, US Patent No. 5,837,458. Alternatively, the identified fragment may be linked to a transcription activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. A common feature of some activation domains is that they are designed to form amphiphilic alpha helices with excess positive or negative charge (Giniger and Ptashne (1987) Nature 330:670-672, Gill and Ptashne (1987) Cell 51:121-126, Estruch et al (1994) Nucl. Acids Res. 22:3983-3989). Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al.

(1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, supra).

The isolated polynucleotides and polypeptides may be used to modify plant development, physiology or biochemistry such that the modified plants have a trait advantage over wild type plants. The identified polynucleotide fragments are also useful as nucleic acid probes and primers. A nucleic acid probe is useful in hybridization protocols, including protocols for microarray experiments. Primers may be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook et al., *Molecular Cloning. A Laboratory Manual*, Ed. 2, Cold Spring Harbor Laboratory Press, New York (1989) and Ausubel et al. (eds) *Current Protocols in Molecular Biology*, John Wiley & Sons (1998).

15

20

25

30

35

10

5

2. Identification of Homologous Sequences (Homologs)

Homologous sequences to those provided in the Sequence Listing derived from *Arabidopsis thaliana* or from other plants may be used to modify a plant trait. Homologous sequences may be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn, potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype may be changed include barley, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, sweet potato and beans. The homologs may also be derived from woody species, such pine, poplar and eucalyptus.

Substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) *Meth. Enzymol.* (1993) vol. 217, Academic Press). Amino acid substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are

5

10

15

20

25

30

35

made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure.

Substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions may be conservative with little effect on the function of the gene, for example by substituting alanines for serines, arginines for lysines, glutamate for aspartate and the like. The substitutions which are not conservative are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

Additionally, the term "homologous sequence" may encompass a polypeptide sequence that is modified by chemical or enzymatic means. The homologous sequence may be a sequence modified by lipids, sugars, peptides, organic or inorganic compounds, by the use of modified amino acids or the like. Protein modification techniques are illustrated in Ausubel et al. (eds) *Current Protocols in Molecular Biology*, John Wiley & Sons (1998).

Homologous sequences also may mean two sequences having a substantial percentage of sequence identity after alignment as determined by using sequence analysis programs for database searching and sequence alignment and comparison available, for example, from the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madision, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) may be searched. Alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window may be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous

positions. A description of the method is provided in Ausubel et al. (eds) (1999) *Current Protocols in Molecular Biology*, John Wiley & Sons.

5

10

15

20

25

30

35

Transcription factors that are homologs of the disclosed sequences will typically share at least 40% amino acid sequence identity. More closely related TFs may share at least 50%, 60%, 65%, 70%, 75% or 80% sequence identity with the disclosed sequences. Factors that are most closely related to the disclosed sequences share at least 85%, 90% or 95% sequence identity. At the nucleotide level, the sequences will typically share at least 40% nucleotide sequence identity, preferably at least 50%, 60%, 70% or 80% sequence identity, and more preferably 85%, 90%, 95% or 97% sequence identity. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein.

One way to identify whether two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Conditions for nucleic acid hybridization and calculation of stringencies can be found in Sambrook et al. (1989) *Molecular Cloning. A Laboratory Manual*, Ed. 2, Cold Spring Harbor Laboratory Press, New York and Tijssen (1993) *Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes* Part I, Elsevier, New York. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For detecting less closely related homologs washes may be performed at 50° C.

For conventional hybridization the hybridization probe is conjugated with a detectable label such as a radioactive label, and the probe is preferably of at least 20 nucleotides in length. As is well known in the art, increasing the length of hybridization probes tends to give enhanced specificity. The labeled probe derived from the *Arabidopsis* nucleotide sequence may be hybridized to a plant cDNA or genomic library and the hybridization signal detected using means known in the art. The hybridizing colony or plaque (depending on the type of library used) is then purified and the cloned sequence contained in that colony or plaque isolated and characterized. Homologs may also be identified by PCR-based techniques, such as inverse PCR or RACE, using degenerate primers. See Ausubel et al. (eds) (1998) *Current Protocols in Molecular Biology*, John Wiley & Sons.

TF homologs may alternatively be obtained by immunoscreening an expression library. With the provision herein of the disclosed TF nucleic acid sequences, the polypeptide may be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise

antibodies (monoclonal or polyclonal) specific for the TF. Antibodies may also be raised against synthetic peptides derived from TF amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone the TF homolog, using the methods described above. The selected cDNAs may be confirmed by sequencing and biological activity.

3. Altered Expression of Transcription Factors

10

15

5

Any of the identified sequences may be incorporated into a cassette or vector for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) *Methods for Plant Molecular Biology*, Academic Press, and Gelvin et al., (1990) *Plant Molecular Biology Manual*, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those disclosed by Herrera-Estrella, L., et al., (1983) *Nature* 303: 209, Bevan, M., *Nucl. Acids Res.* (1984) 12: 8711-8721, Klee, H. J., (1985) *Bio/Technology* 3: 637-642, for dicotyledonous plants. Ti-derived plasmids can be transferred into both monocotonous and docotyledonous species using Agrobacterium-mediated transformation (Ishida et al (1996) *Nat. Biotechnol.* 14:745-50; Barton et al. (1983) *Cell* 32:1033-1043).

20

Alternatively, non-Ti vectors can be used to transfer the DNA into plants and cells by using free DNA delivery techniques. Such methods may involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide wiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou, P., (1991) *Bio/Technology* 9: 957-962) and corn (Gordon-Kamm, W., (1990) *Plant Cell* 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks, T. et al., (1993) *Plant Physiol.* 102: 1077-1084; Vasil, V., (1993) *Bio/Technology* 10: 667-674; Wan, Y. and Lemeaux, P., (1994) *Plant Physiol.* 104: 37-48, and for *Agrobacterium*-mediated DNA transfer (Ishida et al., (1996) *Nature Biotech.* 14: 745-750).

30

25

Typically, plant transformation vectors include one or more cloned plant coding sequences (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

35

5

10

15

20

25

30

35

Examples of constitutive plant promoters which may be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al., (1985) Nature 313:810); the nopaline synthase promoter (An et al., (1988) Plant Physiol. 88:547); and the octopine synthase promoter (Fromm et al., (1989) Plant Cell 1: 977).

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of the TFs in plants, as illustrated by seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186; fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the 2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol. Biol. 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929). promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol. Biol. 37:977-988), flower-specific (Kaiser et al, (1995) Plant Mol. Biol. 28:231-243), pollen (Baerson et al. (1994) Plant Mol. Biol. 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol. Biol. 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al (1999) Plant Mol. Biol. 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinin-inducible promoter (Guevara-Garcia (1998) Plant Mol. Biol. 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol. Biol. 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley, et al. (1993) Plant Mol. Biol. 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al., (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen, (1991) Plant Cell 3: 997); wounding (e.g., wunl, Siebertz et al., (1989) Plant Cell 1: 961); pathogen resistance, and chemicals such as methyl jasmonate or salicylic acid.(Gatz et al., (1997) Plant Mol. Biol. 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at late seed development (Odell et al. (1994) Plant Physiol. 106:447-458).

Plant expression vectors may also include RNA processing signals that may be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors may include additional regulatory sequences from the 3'-untranslated region of plant genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

5

10

15

20

25

30

35

Finally, as noted above, plant expression vectors may also include dominant selectable marker genes to allow for the ready selection of transformants. Such genes include those encoding antibiotic resistance genes (e.g., resistance to hygromycin, kanamycin, bleomycin, G418, streptomycin or spectinomycin) and herbicide resistance genes (e.g., phosphinothricin acetyltransferase).

A reduction of TF expression in a transgenic plant to modify a plant trait may be obtained by introducing into plants antisense constructs based on the TF cDNA. For antisense suppression, the TF cDNA is arranged in reverse orientation relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length TF cDNA or gene, and need not be identical to the TF cDNA or a gene found in the plant type to be transformed. Generally, however, where the introduced sequence is of shorter length, a higher degree of homology to the native TF sequence will be needed for effective antisense suppression. Preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous TF gene in the plant cell. Suppression of endogenous TF gene expression can also be achieved using a ribozyme. Ribozymes are synthetic RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 to Cech and U.S. Patent No. 5.543.508 to Haselhoff. The inclusion of ribozyme sequences within antisense RNAs may be used to confer RNA cleaving activity on the antisense RNA, such that endogenous mRNA molecules that bind to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

Vectors in which RNA encoded by the TF cDNA (or variants thereof) is over-expressed may also be used to obtain co-suppression of the endogenous TF gene in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire TF cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous TF gene. However, as with antisense suppression, the suppressive efficiency will be enhanced as (1) the introduced sequence is lengthened and (2) the sequence similarity between the introduced sequence and the endogenous TF gene is increased.

Vectors expressing an untranslatable form of the TF mRNA may also be used to suppress the expression of endogenous TF activity to modify a trait. Methods for producing such constructs are described in U.S. Patent No. 5,583,021 to Dougherty et al. Preferably, such constructs are made by introducing a premature stop codon into the TF gene. Alternatively, a

5

10

15

20

25

30

35

plant trait may be modified by gene silencing using double-strand RNA (Sharp (1999) *Genes and Development* 13: 139-141). This approach, whereby a vector is prepared in which a cDNA or gene is arranged in duplicated fashion and is capable of generating upon expression a double stranded RNA molecule with a hairpin structure. This procedure has been used to modify gene activity in plants (Chuang and Meyerowitz (1999) *Proc. Natl. Acad. Sci.* 97:4985-9490).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of *Agrobacterium tumefaciens*. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a TF gene. Mutants containing a single mutation event at the desired gene may be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) *Methods in Arabidopsis Research*. World Scientific).

A plant trait may also be modified by using the cre-lox system (for example, as described in US Pat. No. 5,658,772). A plant genome may be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention may also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al., (1997) *Nature* 390 698-701, Kakimoto et al., (1996) *Science* 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant may be modified so as to increase transcription levels of a polynucleotide of the invention (See PCT Publications WO9606166 and WO 9853057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

The transgenic plant may also comprise the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

4. Transgenic Plants with Modified TF Expression

Once an expression cassette comprising a polynucleotide encoding a TF gene of this invention has been constructed, standard techniques may be used to introduce the polynucleotide into a plant in order to modify a trait of the plant. The plant may be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for *Leguminosae* (alfalfa, soybean, clover, etc.), *Umbelliferae* (carrot, celery, parsnip), *Cruciferae* (cabbage, radish, rapeseed, broccoli, etc.), *Curcurbitaceae*

5

10

15

20

25

30

35

(melons and cucumber), *Gramineae* (wheat, corn, rice, barley, millet, etc.), *Solanaceae* (potato, tomato, tobacco, peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) *Handbook of Plant Cell Culture –Crop Species.* Macmillan Publ. Co. Shimamoto et al. (1989) *Nature* 338:274-276; Fromm et al. (1990) *Bio/Technology* 8:833-839; and Vasil et al. (1990) *Bio/Technology* 8:429-434.

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods may include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and *Agrobacterium tumeficiens* mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait may be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention may be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

5. Commercial Applications of the Polynucleotides and Polypeptides

Specific applications for the genes of the present invention relate to their potential roles in plant flowering time or the vernalization response. Most modern crop varieties are the result of extensive breeding programs and many generations of backcrossing may be required

to introduce desired traits. Systems that accelerate flowering could have valuable applications in such programs since they allow much faster generation times. Additionally, in some instances, a faster generation time might allow additional harvests of a crop to be made within a given growing season. With the advent of transformation systems for tree species such as oil palm, aspen, pine and eucalyptus, forest biotechnology is a growing area of interest.

Also, in species such as sugarbeet where the vegetative parts of the plants constitute the crop and the reproductive tissues are discarded, it would be advantageous to delay or prevent flowering. Extending vegetative development could bring about large increases in yields.

10

15

5

Furthermore, by regulating the expression of flowering-time controlling genes, using inducible promoters, flowering could potentially be triggered as desired (for example, by application of a chemical inducer). This would allow, for example, flowering to be synchronized across a crop and facilitate more efficient harvesting. Such inducible systems could be used to tune the flowering of crop varieties to different latitudes. At present, species such as soybean and cotton are available as a series of maturity groups that are suitable for different latitudes on the basis of their flowering time (which is governed by day-length). A system in which flowering could be chemically controlled would allow a single high-yielding northern maturity group to be grown at any latitude. In southern regions such plants could be grown for longer, thereby increasing yields, before flowering was induced. In more northern areas, the induction would be used to ensure that the crop flowers prior to the first winter frosts. Currently, the existence of a series of maturity groups for different latitudes represents a major barrier to the introduction of new valuable traits.

20

25

For many crop species, high yielding winter-varieties can only be grown in temperate regions where the winter season is prolonged and cold enough to elicit a vernalization response. Altered expression of the genes of the invention could compensate for a vernalization treatment in late-flowering *Arabidopsis* ecotypes. Similar effects might be achieved in crop plants. Winter varieties of wheat, for instance, which over-express G157 (or the wheat ortholog) might then be grown in areas like Southern California which would otherwise be too warm to allow effective vernalization. A second application for this system is in cherry (*Prunus*). Locally grown cherries are unavailable in the early Californian spring since the winters are too warm for vernalization to occur.

30

A further application exists in strawberry (*Fragaria*). Strawberry has a well-defined perennial cycle of flower initiation, dormancy, chilling, crop growth and runner production. In temperate European countries, the plants flower in early spring, and fruit is produced in May or June. Following fruiting, runners are generated that carry plantlets which take root. The plants then remain dormant all through the late summer and autumn. Flowering cannot be repeated until the following spring after the plants have received a winter cold treatment. A

35

system, which bypasses this vernalization requirement, might permit a second autumn crop of strawberries to be harvested in addition to the spring crop.

Finally, in addition to the direct applications of the genes themselves, their regulatory regions could also be of value. If the promoters of these genes are responsive to low temperatures they could be incorporated into expression systems for regulation of genes that confer tolerance to freezing. Such genes would then be up regulated specifically at the time required, thereby minimizing any toxic effects that result from their constitutive expression.

6. Other Utility of the Polypeptide and Polynucleotides

5

10

15

20

25

30

35

A transcription factor coding provided by the present invention may also be used to identify exogenous or endogenous molecules that may affect expression of the transcription factors and may affect flowering time. These molecules may include organic or inorganic compounds.

For example, the method may entail first placing the molecule in contact with a plant or plant cell. The molecule may be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide may be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence may be detected by use of microarrays, Northerns or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) *Current Protocols in Molecular Biology*, John Wiley & Sons (1998). Such changes in the expression levels may be correlated with modified plant traits and thus identified molecules may be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

The transcription factors may also be employed to identify promoter sequences with which they may interact. After identifying a promoter sequence, interactions between the transcription factor and the promoter sequence may be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences may be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the TFs with their promoters (Bulyk et al. (1999) *Nature Biotechnology* 17:573-577).

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification may occur by covalent modification, such

as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any method suitable for detecting protein-protein interactions may be employed. Among the methods that may be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

5

10

15

20

25

The two-hybrid system detects protein interactions in vivo and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA, 88, 9578-9582 and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions may be preformed.

The following examples are intended to illustrate but not limit the present invention.

EXAMPLES

Methods

30

35

All experiments were performed using *Arabidopsis* of ecotype Columbia except where otherwise indicated. The Stockholm (CS6863) and Pitztal (CS6832) lines were supplied by the ABRC at Ohio State University. In all experiments, seeds were sterilized by a 2 minute ethanol treatment followed by 30 minutes in 30% bleach / 0.01% Tween and five washes in distilled water. Seeds were sown to MS agar in 0.1% agarose and stratified for 3-5 days at 4 °C, before transfer to growth rooms with a temperature of 20-25 °C. MS media was supplemented with 50mg/l kanamycin for selection of transformed plants. Plants were transplanted to soil after 7 days of growth on plates. For vernalization treatments, seeds were sown to MS agar plates, sealed with micropore tape, and placed in a 4°C cold room with low light levels for 6-8 weeks. The plates were then transferred to the growth rooms alongside plates containing freshly sown non-vernalized controls. Whole vegetative seedlings were harvested for gene expression analysis at 6 to 9 days after transfer. Rosette leaves were counted when a visible inflorescence of approximately 3 cm was apparent. Rosette and total

leaf number on the progeny stem are tightly correlated with the timing of flowering (Koornneef et al (1991) *Mol. Gen. Genet* 229:57-66.

Example I. Full Length Gene Identification and Cloning

5

10

15

20

25

30

35

For the following examples, G157 refers to SEQ ID Nos 1 and 2, G859 refers to SEQ ID Nos. 3-8, G1842 refers to SEQ ID Nos. 9-16, G1843 refers to SEQ ID Nos. 17 and 18, G1844 refers to SEQ ID Nos. 19-22, G861 refers to SEQ ID Nos. 23-26 and FLC or G1759 refers to SEQ ID Nos. 27, 28.

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the tblastn sequence analysis program using default parameters and a P-value cutoff threshold of –4 or –5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription factors.

For example, we identified a MADS box gene G157 within BAC F22K20 (GenBank accession AC002291) from Chromosome 1 that was predicted to encode a protein related to FLC. An 872bp cDNA clone for G157 was identified among clones isolated from a library derived from leaf mRNA. The encoded protein was 196 amino acids in length, and shared 62% overall amino acid sequence identity with FLC, and 82% identity within the MADS DNA binding domain.

G157 is also related to G859, G1842, G1843, and G1844 that map together as a tightly linked cluster, at the bottom of chromosome V, that occupies approximately 22 kb and spans three adjacent clones, MXK3, F15O5, and MQN23 (GenBank accession numbers AB019236, AB026633, and AB013395, respectively). G859, G1842, G1843, and G1844 are all arranged in the same orientation. G859, G1842, G1843, and G1844 were likely created by a duplication event; this could have allowed their divergence into different aspects of gene regulation. Their physical proximity suggests that they may act as a unit controlled via common regulatory elements.

The pair-wise comparisons of the 57 amino acid MADS domains of FLC, G157, G859, G1842, G1843, and G1844 are displayed in Table 1. The table shows percent amino acid sequence identity and, in parentheses, the sequence identity percentages when conservative amino acid substitutions are considered. The MADS domains of the proteins encoded by G859, G1842, G1843, and G1844 are highly conserved with those of FLC and G157: these proteins share from 75% to 91% of amino acid sequence identity, depending on the pair-wise comparison as shown below. When conservative amino substitutions are made, the MADS domains of these proteins are 88%-99% identical to each other (shown in parentheses).

Table 1 Percentage of amino acid identity in the MADS domain

	FLC (G1759)	G157	G859	G1842	G1843	G1844
FLC (G1759)	100%	82%(96%)	84%(94%)	77%(91%)	78%(99%)	75%(92%)
G157	-	100%	87%(95%)	89%(94%)	78%(95%)	78%(93%)
G859	-	-	100%	91%(94%)	77%(94%)	78%(92%)
G1842	-	-	-	100%	77%(91%	78%(88%)
G1843	-	-	-	-	100%	85%(92%)
G1844	-	-	-	-	-	100%

5

Amino acid residue 30 of FLC and by G157, G859, G1842, G1843, and G1844 is an acidic residue (E or D) whereas, in all other *Arabidopsis* MADS domain proteins so far identified, that position is occupied by a positively charged lysine residue. The crystal structure of the human SRF MADS domain bound to DNA has shown that lysine residue (which is also conserved in yeast MCM1 and human MEF2A proteins) to contact the phosphate backbone of the DNA target site (Pellegrini *et al.*, (1995) Nature 376:490-498). That amino acid difference could therefore confer DNA binding properties to FLC and by G157, G859, G1842, G1843, and G1844 distinct from other *Arabidopsis* MADS domain proteins. Therefore, MADS domain proteins with an acidic residue at position 30 may be particularly useful in modifying plant flowering time and vernalization response.

15

10

The transcripts from these genes were analyzed by 3' RACE (Rapid Amplification cDNA Ends) and corresponding cDNAs were isolated by RT-PCR from mixed samples of *Arabidopsis* tissue (Columbia ecotype). During this analysis, it was found that G859, G1842 and G1844 transcripts exist in multiple alternatively spliced forms.

20

Example II. Flowering Time Associated Genes

Reverse transcriptase PCR was done using gene specific primers within the coding region for each sequence identified. Where possible, the primers were designed near the 3' region of each coding sequence initially identified.

25

Total RNA was isolated from plant tissue tissue and extracted using CTAB. Once extracted total RNA was normalized in concentration across all the tissue types to ensure that the PCR reaction for each tissue received the same amount of cDNA template using the 28S band as reference. Poly A+ was purified using a modified protocol from the Qiagen Oligotex kit batch protocol. cDNA was synthesized using standard protocols. After the first strand cDNA synthesis, primers for Actin 2 were used to normalize the concentration of cDNA across the tissue types. Actin 2 is found to be constitutively expressed in fairly equal levels across the Arabidopsis tissue types.

30

For RT PCR, cDNA template was mixed with corresponding primers and Taq polymerase. Each reaction consisted of 0.2 ul cDNA template, 2ul 10X Tricine buffer, and

16.8 ul water, 5pmol Primer 1, 5pmol Primer 2, 0.3 ul Taq polymerase, 200uM dNTPs and 8.6 ul water.

The 96 well plate was covered with microfilm and set in the Thermocycler to start the following reaction cycle. Step1 93° C for 3 mins, Step 2 93° C for 30 sec, Step 3 60-65° C for 1 min, Step 4 72° C for 2 mins,. Steps 2, 3 and 4 were repeated for 20-35 cycles, Step 5 72° C for 5 mins and Step 6 4° C. The PCR plate was sometimes placed back in the thermocycler to amplify more products for 5-15 more cycles to identify genes that have very low expression. The reaction cycle was as follows: Step 2 93° C for 30 sec, Step 3 65° C for 1 min, and Step 4 72° C for 2 ins, repeated for 8 cycles, and Step 4 4° C.

Eight microliters of PCR product and 1.5 ul of loading dye were loaded on a 1.2% agarose gel for analysis between 21 and 36 cycles. Expression levels of specific transcripts were considered low if they were only detectable after 35 cycles of PCR. Expression levels were considered medium or high depending on the levels of transcript compared with observed transcript levels for actin2.

As an example, to assess G157 mRNA levels in G157 plants, PCR was carried out over 25 cycles using primers 5'-GGCATAACCCTTATCGGAGATTTGAAGC-3' (SEQ ID No. 57) and 5'-ACACAAACTCTGATCTTGTCTCCGAAGG-3' (SEQ ID No. 58). To assess mRNA levels in different tissues extracted from wild type plants, 25 or 30 cycles of PCR were performed using primers 5'-GCATAACCCTTATCGGAGATTTGAAGCCAT-3' (SEQ ID No. 59) and 5'-AACATTCCTCTCTCATCATCTGTTGCCAGC-3' (SEQ ID No. 60). PCR for FLC was performed either with primers 5'-AACGCTTAGTATCTCCGGCGACTTGAAC-3' (SEQ ID No. 51) and 5'-CTCACACGAATAAGGTACAAAGTTCATC-3' (SEQ ID No. 62) over 35 cycles, or 5'-TTAGTATCTCCGGCGACTTGAACCCAAACC-3' (SEQ ID No. 63) 5'-AGATTCTCAACAAGCTTCAACATGAGTTCG-3' (SEQ ID No. 64) over 30 cycles. Primer specificity was verified by sequencing RT-PCR products. Samples were standardized via 20-25 cycles of PCR with actin primers.

Example III. Construction of Expression Vectors

5

10

15

20

25

30

35

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) *Nucleic Acids Research* 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with Sall and Notl restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid

were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the *E. coli* strain DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l spectinomycin (Sigma).

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l spectinomycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

5

10

15

20

25

30

Example IV. Transformation of Agrobacterium with the Expression Vector

After the plasmid vector containing the gene was constructed, the vector was used to transform *Agrobacterium tumefaciens* cells expressing the gene products. The stock of *Agrobacterium tumefaciens* cells for transformation were made as described by Nagel et al. *FEMS Microbiol Letts* 67: 325-328 (1990). *Agrobacterium* strain GV3101 was grown in 250 ml LB medium (Sigma) overnight at 28°C with shaking until an absorbance (A_{600}) of 0.5-1.0 was reached. Cells were harvested by centrifugation at $4,000 \times g$ for 15 min at 4° C. Cells were then resuspended in 250 µl chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 µl chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 µl and 750 µl, respectively. Resuspended cells were then distributed into 40 µl aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. *FEMS Microbiol Letts* 67: 325-328 (1990). For each DNA construct to be transformed, 50-100 ng DNA (generally resuspended in 10 mM Tris-HCI, 1 mM EDTA, pH 8.0) was mixed with 40 µl of *Agrobacterium* cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 µF and 200 µF using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2-4 hours at 28° C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 µg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28° C. Single colonies were then picked and inoculated in fresh medium. The integrity of the plasmid construct was verified by PCR amplification and sequence analysis.

35

5

10

15

20

25

30

35

Example V. Transformation of *Arabidopsis* Plants with A*grobacterium tumefaciens* with Expression Vector

After transformation of *Agrobacterium tumefaciens* with plasmid vectors containing the gene, single *Agrobacterium* colonies were identified, propagated, and used to transform *Arabidopsis* plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l spectinomycin were inoculated with the colonies and grown at 28° C with shaking for 2 days until an absorbance (A_{600}) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1 X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μ M benzylamino purine (Sigma), 200 μ l/L Silwet L-77 (Lehle Seeds) until an absorbance (A_{600}) of 0.8 was reached.

Prior to transformation, *Arabidopsis thaliana* seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 μ E/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

The pots were then immersed upside down in the mixture of *Agrobacterium* infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

Example VI. Identification of Arabidopsis Primary Transformants

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H_2O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H_2O . The seeds were stored in the last wash water at 4° C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH

adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 µE/m²/sec) at 22-23° C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T₁ generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium). Primary transformants are self-crossed and progeny seeds (T2) collected. T2 progeny seeds were germinated on kanamycin as described above and kanamycin resistant seedlings were selected, transferred to soil and analyzed.

10

15

20

25

30

35

5

Example VII. Analysis of transgenic Arabidopsis plants

In a first experiment, G157 plants (ie plants expressing the G157 transgene) were grown in 12 hours light. 31 of 40 lines flowered earlier than control plants transformed with a control vector. Mean rosette leaf number of early T1 lines was 12.4+/-0.8 whereas control lines had 27+/-1.2 rosette leaves. 2 of 40 T1 plants flowered at the same time as controls and 7 of 40 lines were late flowering and produced visible inflorescences 2 to 3 weeks after wild type.

In further experiments, plants were grown under conditions of 24 hours light at 20-25 °C. Under these conditions, the non-transformed control plants produced a mean total of 14.3+/-0.7 leaves on the primary shoots prior to flower bud initiation. Flower buds were first visible on these plants at a mean of 21.1+/-0.5 days after sowing (error values represent standard error of the mean to which 95% confidence limits have been attached). For G859, 14/19 T1 plants were early flowering (mean leaf total of 6.4+/-0.7, flower buds visible at 12.9+/-0.7days after sowing), 3/19 were wild type, and 2/19 were slightly late flowering compared to wild type (mean total of 19 leaves, flower buds visible at 27 days). RT expression studies revealed that the late flowering individuals possessed the highest levels of transgene expression. These results strongly parallel those obtained for G157. For G1842, 7/10 T1 flowered early (mean total of 7.9+/-0.6 leaves, flower buds visible at 13.9+/-1.0 days), and 3/10 plants were wild type. Overexpression studies were also performed with cDNAs encoding shortened splice variants of G1842. For G1842.2 (encodes a 185 amino acid splice variant), 15/18 T1 plants flowered early (mean total of 6.9+/-0.9 leaves, flower buds visible at 14.5+/-0.6 days) and 3/18 were wild type. For G1842.6 (encodes a 77 amino acid splice variant), 8/10 T1 plants flowered early mean total of 6.8+/-1.6 leaves, flower buds visible at 13.9+/-0.9 days) and 2/10 were wild type. For G1842.7 (encodes a 118 amino acid splice variant) 8/10 T1 plants flowered early (accurate leaf counts not made) and 2/10 were wild type. Thus, the G1842 splice variants produced comparable effects to the full-length cDNA

5

10

15

20

25

30

35

clone when over-expressed. For G1843, 7/11 flowered early (mean total of 6.4+/-0.5 leaves, flower buds visible at 16.0+/-1.6 days) and 2/11 had a wild type flowering time. The G1843 T1 plants, however, were dwarfed and showed retarded development of some organs. This suggests that G1843 has unpredicted toxic effects when over-expressed. For G1844, 6/10 T1 plants flowered early (mean total of 6.8+/-1.7 leaves, flower buds visible at 14.7+/-1.3 days) and 4/10 plants were wild type. Overexpression studies were also performed with a cDNA encoding a shortened splice variant of G1844. For overexpression of G1844.2 (encodes a 184 amino acid splice variant), 6/19 T1 plants flowered early (mean total of 7.8+/-1.7 leaves, flower buds visible at 15.7+/-1.3 days) and 13/19 were wild type). The over-expression data for G859, G1842, G1843, and G1844 support the hypothesis that they have a role in the control of flowering time.

RT-PCR was performed on materials from G157 plants using G157 specific primers at approximately 25 cycles. The highest levels of G157 expression were detected in late flowering individual plants or in samples from pooled seedlings that contained late flowering individuals. Plants that showed only moderate or low levels of overexpression compared to wild type were slightly early flowering or normal.

To test whether an increase in G157 could affect flowering time in late flowering ecotypes of Arabidopsis, we overexpressed G157 in the late flowering ecotypes Stockholm and Piztal. In this experiment, 32 primary transformants from each ecotype were grown interspersed with controls under continuous light conditions. In both ecotypes, around 50% of the transformants flowered earlier than controls, and in some transformants the time to flowering was halved. As was observed with Columbia G157 plants, a minority of Pitztal and Stockholm transformants were clearly later flowering compared to controls.

A correlation between G157 transgene expression and flowering time was also observed in G157 Stockholm and Pitztal T1 plants. RT-PCR was performed with two early and two late flowering lines in each background. Again, the late flowering lines contained the higher levels of G157 expression. Thus, the factor appears to affect flowering time in a quantitative manner; a modest level of overexpression triggers early flowering, whereas a larger increase delays flowering.

In conclusion, over-expression of G157 or any of the related genes modifies flowering time in plants: a modest level of over-expression triggers early flowering, whereas a larger increase delays flowering.

Using similar or identical methodologies described in the examples above, further Arabidopsis genes were identified whose altered expression was correlated with delayed or accelerated flowering. These genes are tabulated in Table 2 with their Sequence Listing Nos., and their effects on flowering time.

Table 2. Further Arabidopsis genes for manipulating flowering time

5

10

15

20

SEQ ID Nos.	Gene	observations
23, 24	G861	early or late flowering
25, 26	G861.1	early or late flowering
29, 30	G192	late flowering
31, 32	G234	late flowering
33, 34	G361	late flowering
35, 36	G486	late flowering
37, 38	G748	late flowering
39, 40	G994	late flowering
41, 42	G1335	late flowering
43, 44	G562	late flowering
45, 46	G736	late flowering
47,48	G1073	late flowering
49, 50	G1435	late flowering
51, 52	G180	early flowering
53, 54	G592	early flowering
55, 56	G208	early flowering

The vernalization response was also investigated. Late flowering vernalization responsive ecotypes and mutants have high steady state levels of FLC transcript, which decrease during the promotion of flowering by vernalization (Michaels and Amasino, (1999) Plant Cell 11:949-956; Sheldon et al., (1999) Plant Cell 11:445-458; Sheldon et al., (2000) Proc. Natl. Acad. Sci. 97: 3735-3758). In contrast to FLC, G157 transcript levels show no consistent correlation with the vernalization response in the late flowering Stockholm and Pitztal ecotypes. Additionally we found that over-expression of G157 did not influence FLC levels. The effects of vernalization on expression of G861, G859, G1842, G1843, and G1844 were also examined. Germinating seeds of Columbia, Pitztal, Stockholm, constans-1, and fca-9 were vernalized on MS agar plates in a 4°C cold room for 8 weeks, and then transferred to a continuous light growth room. Total tissues from the vernalized seedlings, and freshly sown non-vernalized controls were harvested at 9 days after the transfer. RT-PCR was performed for FLC, G157, G859, G1842, G1843, G1844, and G861, and actin. Compared to FLC and G157, none of the genes showed a clear consistent decline upon vernalization in the five different sample sets. However, G1844 displayed a converse pattern of expression to FLC: G1844 levels consistently increased on vernalization. This is particularly significant as it directly implicates G1844 in control of the vernalization response. Thus G1844 likely activates

flowering and has an opposing role to FLC.

To explore whether overexpression of G157 produces comparable effects on vernalization, batches of wild type Pitztal and Stockholm seedlings were cold treated for 6 weeks at 4°C, then grown amongst a second selection of G157 T1 Pitztal, G157 T1 Stockholm and non-vernalized wild type plants. As expected, vernalization markedly and uniformly reduced flowering time in both Pitztal and Stockholm wild type plants. Amongst the G157 Stockholm lines, the earliest flowering T1 group (8/23 lines) was indistinguishable from vernalized plants. For Pitztal, however, the early flowering T1 plants were on average marginally later than the vernalized plants. Therefore, overexpression of G157 can substantially reduce the requirement for vernalization in late flowering ecotypes.

10

15

20

5

Additionally, we observed that the late flowering of G157 lines is independent of FLC expression and does not respond to vernalization. However, the late flowering G157 plants are responsive to photoperiod. In an experiment conducted under short day conditions of 8 hours of light, we obtained a number of G157 Columbia T1 plants that flowered up to a month later than wild type controls (data not shown). To confirm that the late flowering effects caused by G157 overexpression were independent of *FLC* transcription, we tested whether late flowering G157 Columbia plants were responsive to vernalization. No significant change in flowering time was noted: in continuous light conditions, vernalized T2 plants of line 4 had a total of 31.3 +/- 1.8 leaves compared to 30.1 +/- 1.3 when non-vernalized. Control *fca* plants verified that the treatment was effective: vernalized plants flowered after only 10.3 +/- 0.9 leaves compared to more than 40 leaves for the non-vernalized controls. Thus, the late flowering phenotype caused by G157 could not be overcome by vernalization, as would be expected if the delay occurred independently of changes in *FLC* expression

Example IX. Identification of Homologous Sequences

25

Homologs from plant species other than Arabidopsis were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) *J. Mol. Biol.* 215:403-410; and Altschul et al. (1997) *Nucl. Acid Res.* 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) *Proc. Natl. Acad. Sci. USA* 89: 10915-10919).

30

The entire NCBI Genbank database was filtered for sequences from all plants except Arabidopsis thaliana by selecting all entries in the NCBI Genbank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (Arabidopsis thaliana). These sequences were compared to sequences representing genes of SEQ IDs 1-56 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs 1-56, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6 x 10⁻⁴⁰. For up to ten

35

5

10

15

20

25

species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 2.

In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 2 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 54%-67%; SEQ ID Nos. 3,5,7: 37%-47%; SEQ ID Nos. 9,11,13,15: 54%-62%; SEQ ID No. 17: 62%-71%; SEQ ID Nos. 19, 21: 50%-67%; SEQ ID Nos. 23,25: 75%-91%; SEQ ID No. 27: 46%-69%; SEQ ID No. 29: 44%-90%; SEQ ID No. 31: 57-89%; SEQ ID No. 33: 37%-79%; SEQ ID No. 35: 50%-71%; SEQ ID No. 37: 39%-63%; SEQ ID No. 39: 58%-70%; SEQ ID No. 41: 45%-73%; SEQ ID No. 43: 42%-84%; SEQ ID No. 45: 47%-81%; SEQ ID No. 47: 31%-71%; SEQ ID No. 49: 40%-67%; SEQ ID No. 51: 69%-51%; SEQ ID No. 53: 43%-86%; and SEQ ID No. 55: 79%-89%.

Arabidopsis homologs of genes in Table 2 were also identified using BLAST. These genes are found in the following Arabidopsis BAC sequences, identified by their Genbank sequence NID numbers: 2827698 (G234 homolog), 3241917 (G748 homolog), 2618604 (G994 homolog), 6598548 (G1335 homolog), 7340331 (G736 homolog), 6523051 (G1435 homolog), 6598491 (G208 homolog) and 3172156 (G208 homolog).

All references (publications and patents) are incorporated herein by reference in their entirety for all purposes.

Although the invention has been described with reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

Figure 1

SEQ ID No.	Gene	cDNA or	conserved doman
1	G157	cDNA	
2	G157	protein	2-57
3	G859	cDNA	
4	G859	protein	2-57
5	G859.1	cDNA	
6	G859.1	protein	2-57
7	G859.2	cDNA	
8	G859.2	protein	2-57
9	G1842	cDNA	
10	G1842	protein	2-57
11	G1842.2	cDNA	
12	G1842.2	protein	2-57
13	G1842.6	cDNA	
14	G1842.6	protein	2-57
15	G1842.7	cDNA	
16	G1842.7	protein	2-57
17	G1843	cDNA	2-01
18	G1843	protein	2-57
19	G1844	cDNA	2-01
20			2-57
	G1844	protein	2-57
21	G1844.2	cDNA	
22	G1844.2	protein	2-57
23	G861	cDNA	<u> </u>
24	G861	protein	2-57
25	G861.1	cDNA	
26	G861.1	protein	2-57
27	G1759	cDNA	
28	G1759	protein	2-57
29	G192	cDNA	
30	G192_	protein	128-185
31	G234	cDNA	
32	G234	protein	14-115
33	G361	cDNA	
34	G361_	protein	43-63
35	G486	cDNA	
36	G486	protein	5-66
37	G748	cDNA	
38	G748	protein	112-140
39	G994	cDNA	
40	G994	protein	14-123
41	G1335	cDNA	
42	G1335	protein	24-43, 131-144, 185-203
43	G562	cDNA	
44	G562	protein	253-315
45	G736	cDNA	
46	G736	protein	54-111
47	G1073	cDNA	
48	G1073	protein	33-42, 78-175
49	G1435	cDNA	
50	G1435	protein	146-194
51	G180	cDNA	
52	G180		118-174
53	G592	protein cDNA	110-174
			290-342
54	G592	protein ·	290-342
55	G208	cDNA	144 446
56	G208	protein	14-116

Figure 2A

Figure ZA				,
SEQ IDs	Gene Ids	Genbank NID	P-value	Species
1	G157	6530836	3.10E-22	Lycopersicon esculentum
1	G157	5606765	5.50E-14	Glycine max
1	G157	6826955	1.20E-13	Zea mays
1	G157	6536942	6.00E-13	Medicago truncatula
1	G157	8707754	1.40E-12	Hordeum vulgare
1	G157	2293891	1.40E-12	Petunia x hybrida
1	G157	19870	1.40E-12	Nicotiana tabacum
1	G157	7628118	3.70E-12	Gossypium arboreum
1	G157	5050220	3.80E-12	Gossypium hirsutum
1	G157	9414215	4.50E-12	Triticum aestivum
3,5,7	G859	6530836	1.40E-34	Lycopersicon esculentum
3,5,7	G859	5777903	4.70E-30	Malus domestica
3,5,7	G859	9367312	7.10E-30	Hordeum vulgare
3,5,7	G859	6467973	3.60E-29	Dendrobium grex Madame Thong-IN
3,5,7	G859	4204233	1.20E-28	Lolium temulentum
3,5,7	G859	939784	2.50E-28	Zea mays
3,5,7	G859	6651032	3.10E-28	Capsicum annuum
3,5,7	G859	1483227	4.60E-28	Betula pendula
3,5,7	G859	5295983	8.70E-28	Oryza sativa
3,5,7	G859	5070137	1.10E-27	Nicotiana sylvestris
9,11,13,15	G1842	6530836	5.90E-19	Lycopersicon esculentum
9,11,13,15	G1842	5606765	8.00E-15	Glycine max
9,11,13,15	G1842	6826955	1.20E-12	Zea mays
9,11,13,15	G1842	4979250	1.50E-11	Oryza sativa
9,11,13,15	G1842	6536942	1.50E-11	Medicago truncatula
9,11,13,15	G1842	7501504	4.00E-11	Gossypium arboreum
9,11,13,15	G1842	9444818	4.70E-11	Triticum aestivum
9,11,13,15	G1842	5859176	5.40E-11	Pinus taeda
9,11,13,15	G1842	5777905	6.80E-11	Malus domestica
9,11,13,15	G1842	6647105	6.80E-11	Mesembryanthemum crystallinum
17	G1843	8707754	6.60E-15	Hordeum vulgare
17	G1843	5606765	1.10E-14	Glycine max
17	G1843	4387730	1.50E-14	Lycopersicon esculentum
17	G1843	3646325	1.60E-14	Malus domestica
17	G1843	7625048	1.60E-14	Gossypium arboreum
17	G1843	5050220	1.80E-14	Gossypium hirsutum
17	G1843	9429009	3.00E-14	Triticum aestivum
17	G1843	7145381	6.30E-14	Zea mays
17	G1843	3824730	8.20E-14	Oryza sativa
17	G1843	4528048	2.30E-13	Citrus unshiu
19, 21	G1844	5606765	1.70E-14	Glycine max
19, 21	G1844	8707754	3.30E-13	Hordeum vulgare
19, 21	G1844	9429009	4.40E-13	Triticum aestivum
19, 21	G1844	4979250	1.00E-12	Oryza sativa
19, 21	G1844	7628118	1.10E-12	Gossypium arboreum
19, 21	G1844	5050220	1.20E-12	Gossypium hirsutum
19, 21	G1844	6530836	1.40E-12	Lycopersicon esculentum
19, 21	G1844	6918768	1.70E-12	Zea mays
19, 21	G1844	6536942	3.50E-12	Medicago truncatula
19, 21	G1844	2252481	3.70E-12	Ceratopteris richardii
23,25	G861	5601313	8.20E-49	Lycopersicon esculentum
23,25	G861	2735763	1.50E-37	Solanum tuberosum
	G861	6652755	5.40E-37	Paulownia kawakamii
23,25	10001	0002700	0.40⊏-37	r autowilla nawanai!!!!

Figure 2B

Figure 2B				
SEQ IDs	Gene Ids	Genbank NID	P-value	Species
23,25	G861	9367233	3.30E-33	Hordeum vulgare
23,25	G861	7672990	8.90E-29	Canavalia lineata
23,25	G861	3986688	5.20E-26	Cichorium intybus
23,25	G861	7552197	2.40E-25	Sorghum bicolor
23,25	G861	5295977	4.90E-24	Oryza sativa
23,25	G861	9194959	3.60E-19	Medicago truncatula
23,25	G861	3855425	4.40E-19	Populus tremula x Populus tremuloides
27	G1759	5606765	4.60E-16	Glycine max
27	G1759	7647685	4.10E-15	Lycopersicon esculentum
27	G1759	4979250	2.70E-14	Oryza sativa
27	G1759	8707754	6.30E-14	Hordeum vulgare
27	G1759	5777905	6.80E-14	Malus domestica
27	G1759	7626240	1.10E-13	Gossypium arboreum
27	G1759	5047371	1.10E-13	Gossypium hirsutum
27	G1759	6918768	1.20E-13	Zea mays
27	G1759	8574456	1.30E-13	Capsicum annuum
27	G1759	8216956	1.30E-13	Cucumis sativus
29	G192	7284340	3.60E-40	Glycine max
29	G192	7779802	1.10E-39	Lotus japonicus
29	G192	9361307	9.40E-28	Triticum aestivum
29	G192	7340336	8.10E-24	Oryza sativa
29	G192	6529152	4.70E-23	Lycopersicon esculentum
29	G192	7206269	2.90E-22	Medicago truncatula
29	G192	4886128	4.50E-15	Zea mays
29	G192	8706346	4.70E-13	Hordeum vulgare
29	G192	9302479	8.80E-13	Sorghum bicolor
29	G192	3326241	2.40E-12	Gossypium hirsutum
31	G234	9193243	7.50E-60	Medicago truncatula
31	G234	9264511	3.30E-57	Glycine max
31	G234	7412424	3.60E-49	Lycopersicon esculentum
31	G234	8335078	2.60E-48	Oryza sativa
31	G234	7218651	1.00E-42	Sorghum bicolor
31	G234	9364630	9.90E-40	Triticum aestivum
31	G234	6079814	5.10E-36	Gossypium arboreum
31	G234	9252441	5.40E-35	Solanum tuberosum
31	G234	5860031	1.00E-33	Pinus taeda
31	G234	5050757	2.60E-33	Gossypium hirsutum
33	G361	7561045	2.30E-21	Medicago truncatula
33	G361	9307604	1.20E-17	Sorghum bicolor
33	G361	4119050	1.70E-13	Oryza sativa
33	G361	8175037	7.30E-13	Hordeum vulgare
33	G361	8329902	5.30E-09	Mesembryanthemum crystallinum
33	G361	6534259	1.20E-08	Lycopersicon esculentum
33	G361	7283798	1.30E-08	Glycine max
33	G361	3854369	5.50E-08	Populus tremula x Populus tremuloides
33	G361	9365078	1.70E-07	Triticum aestivum
33	G361	5268965	0.00023	Zea mays
35	G486		3.10E-36	Glycine max
35		8172030	4.20E-29	Medicago truncatula
35	G486	9416562	6.40E-29	Triticum aestivum
35	G486		4.90E-28	Gossypium hirsutum
35 35		7628400	6.10E-28	Gossypium arboreum
	G486			
35	G486	7781090	2.10E-27	Lotus japonicus

Figure 2C

35 G486 22379 3.40E-27 Zea mays 35 G486 9441376 4.80E-27 Chlamydomonas reinhardtii 35 G486 7409616 1.30E-26 Lycopersicon esculentum 35 G486 8071558 1.40E-26 Solanum tuberosum 37 G748 853689 5.60E-87 Cucurbita maxima 37 G748 583689 5.60E-87 Cucurbita maxima 37 G748 588560 9.70E-46 Lycopersicon esculentum 37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 9191944 1.70E-31 Hordeum vulgare 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6029953 7.30E-21 Zea mays<	Figure 2C		1		1
35 G486 9441376 4.80E-27 Chlamydomonas reinhardtii 35 G486 7409616 1.30E-26 Lycopersicon esculentum 35 G488 8071558 1.40E-26 Solanum tuberosum 37 G748 853689 5.60E-87 Cucurbita maxima 37 G748 5888560 9.70E-46 Lycopersicon esculentum 37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 9190140 2.90E-31 Hordeum vulgare 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 9420953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago	SEQ IDs	Gene Ids	Genbank NID	P-value	Species
35 G486 7409616 1.30E-26 Lycopersicon esculentum 35 G486 8071558 1.40E-26 Solanum tuberosum 37 G748 853689 5.60E-87 Cucurbita maxima 37 G748 5888560 9.70E-46 Lycopersicon esculentum 37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 941957 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 7661750 5.60E-51 Medicago truncatula 39 G994 7561750 5.60E-51 Medicago trun	35	G486	22379	3.40E-27	Zea mays
35 G486 8071558 1.40E-26 Solanum tuberosum 37 G748 853689 5.60E-87 Cucurbita maxima 37 G748 5888560 9.70E-46 Lycopersicon esculentum 37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 7535776 4.00E-33 Sorghum bicolor 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 99293224 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 8020953 7.30E-21 Zea mays 39 G994 7651750 5.60E-51 Medicago truncatula 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 19452884 3.10E-50 Lycopersicon escu	35	G486	9441376	4.80E-27	Chlamydomonas reinhardtii
37 G748 853689 5.60E-87 Cucurbita maxima 37 G748 7242897 3.10E-59 Oryza sativa 37 G748 5888560 9.70E-46 Lycopersicon esculentum 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 9419494 1.70E-31 Medicago truncatula 37 G748 9419194 1.70E-31 Hordeum vulgare 37 G748 9410197 8.20E-29 Triticum aestivum 37 G748 9410197 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 1430845 3.10E-50 Zea mays 39 G994 14561750 5.60E-51 Medicago tr	35	G486	7409616	1.30E-26	Lycopersicon esculentum
37 G748 7242897 3.10E-59 Oryza sativa 37 G748 6841666 4.50E-38 Glycine max 37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 7535776 4.00E-33 Sorghum bicolor 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 125282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 726566 4.40E-44 Gossypium arboreum	35	G486	8071558	1.40E-26	Solanum tuberosum
37 G748 7242897 3.10E-59 Oryza sativa 37 G748 68341666 4.50E-38 Glycine max 37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 7535776 4.00E-33 Sorghum bicolor 37 G748 9410157 6.20E-29 Triticum aestivum 37 G748 9410157 6.20E-29 Triticum aestivum 37 G748 9410157 6.20E-29 Triticum aestivum 37 G748 942924 3.50E-25 Dendrobium grex Madame Thong-IN 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa	37	G748	853689	5.60E-87	Cucurbita maxima
37 G748 6341666 4.50E-38 Glycine max 37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 7535776 4.00E-33 Sorghum bicolor 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 6661291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 7526566 4.40E-44 Gossypium hirsutum 39 G994 72921339 4.50E-44 Gossypium hirsutu	37		7242897	3.10E-59	Oryza sativa
37 G748 9190140 2.90E-35 Medicago truncatula 37 G748 7535776 4.00E-33 Sorghum bicolor 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1495282 5.40E-49 Oryza sativa 39 G994 7263666 4.40E-44 Gossypium arboreum 39 G994 7262666 4.40E-44 Gossypium arboreum 39 G994 7290249 3.60E-43 Petunia x hybrida 41 G1335 159742 8.40E-63 Nicotiana sylvestris	37	G748	5888560	9.70E-46	Lycopersicon esculentum
37 G748 7535776 4.00E-33 Sorghum bicolor 37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 156844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1495282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 7690249 3.60E-43 Glycine max 39 G994 7590249 3.60E-43 Glycine max	37	G748	6341666	4.50E-38	Glycine max
37 G748 9419494 1.70E-31 Hordeum vulgare 37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 7626566 4.40E-44 Gossyplum abroreum 39 G994 7590249 3.60E-43 Glycine max 39 G994 7590249 3.60E-43 Petunia x hybrida 41 G1335 5398738 1.20E-59 Zea mays	37	G748	9190140	2.90E-35	Medicago truncatula
37 G748 9410157 8.20E-29 Triticum aestivum 37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 145282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 7590249 3.60E-43 Glycine max 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Glycine max 41 G1335 5398738 1.20E-59 Zea mays	37	G748	7535776	4.00E-33	Sorghum bicolor
37 G748 3929324 3.50E-25 Dendrobium grex Madame Thong-IN 37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 266566 4.40E-44 Gossypium arboreum 39 G994 2921339 4.50E-44 Gossypium hirsutum 39 G994 20562 6.30E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 5398738 1.20E-59 Zea mays	37	G748	9419494	1.70E-31	Hordeum vulgare
37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium hirsutum 39 G994 7626566 4.40E-44 Gossypium hirsutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 7590249 3.60E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum	37	G748	9410157	8.20E-29	Triticum aestivum
37 G748 6020953 7.30E-21 Zea mays 39 G994 6651291 1.50E-55 Pimpinella brachycarpa 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 7626566 4.40E-44 Gossypium brisutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 7590249 3.60E-43 Retunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum		G748		3.50E-25	Dendrobium grex Madame Thong-IN
39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 2951339 4.50E-44 Gossypium hirsutum 39 G994 29562 6.30E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare	37	G748	6020953	7.30E-21	Zea mays
39 G994 7561750 5.60E-51 Medicago truncatula 39 G994 5268844 2.10E-50 Zea mays 39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 12637 1.40E-46 Physcomitrella patens 39 G994 22637 1.40E-44 Gossypium arboreum 39 G994 7626566 4.40E-44 Gossypium hirsutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Glycine max 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 830366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare <	39	G994	6651291		Pimpinella brachycarpa
39 G994 1430845 3.10E-50 Lycopersicon esculentum 39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 77502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Sorghum bicolor		G994	7561750	5.60E-51	
39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 2921339 4.50E-44 Gossypium hirsutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 87721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Sorghum bicolor <td>39</td> <td>G994</td> <td>5268844</td> <td>2.10E-50</td> <td>Zea mays</td>	39	G994	5268844	2.10E-50	Zea mays
39 G994 1945282 5.40E-49 Oryza sativa 39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 2921339 4.50E-44 Gossypium hirsutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum <td>39</td> <td>G994</td> <td>1430845</td> <td>3.10E-50</td> <td>Lycopersicon esculentum</td>	39	G994	1430845	3.10E-50	Lycopersicon esculentum
39 G994 22637 1.40E-46 Physcomitrella patens 39 G994 7626566 4.40E-44 Gossypium arboreum 39 G994 2921339 4.50E-44 Gossypium hirsutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Sorghum bicolor	39	G994	1945282	5.40E-49	
39 G994 2921339 4.50E-44 Gossypium hirsutum 39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus	39	G994	22637		Physcomitrella patens
39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 7696628 8.00E-42 Pinus taeda 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus	39	G994	7626566	4.40E-44	Gossypium arboreum
39 G994 7590249 3.60E-43 Glycine max 39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus	39	G994	2921339		Gossypium hirsutum
39 G994 20562 6.30E-43 Petunia x hybrida 41 G1335 19742 8.40E-63 Nicotiana sylvestris 41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max	39	G994	7590249	3.60E-43	
41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 1399004 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 728627 4.50E-41 Nicotiana tabacum <td>39</td> <td>G994</td> <td>20562</td> <td>6.30E-43</td> <td></td>	39	G994	20562	6.30E-43	
41 G1335 5398738 1.20E-59 Zea mays 41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum <	41	G1335	19742	8.40E-63	Nicotiana sylvestris
41 G1335 9361467 1.40E-50 Triticum aestivum 41 G1335 8330366 1.60E-48 Mesembryanthemum crystallinum 41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum <td>41</td> <td>G1335</td> <td>5398738</td> <td>1.20E-59</td> <td></td>	41	G1335	5398738	1.20E-59	
41 G1335 8174823 7.50E-43 Hordeum vulgare 41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 7550978 3.30E-35 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum <td>41</td> <td>G1335</td> <td>9361467</td> <td>1.40E-50</td> <td></td>	41	G1335	9361467	1.40E-50	
41 G1335 6696628 8.00E-42 Pinus taeda 41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crys	41	G1335	8330366	1.60E-48	Mesembryanthemum crystallinum
41 G1335 7721100 1.20E-39 Lotus japonicus 41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crysta	41	G1335	8174823	7.50E-43	Hordeum vulgare
41 G1335 7502173 2.60E-37 Gossypium arboreum 41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	41	G1335	6696628	8.00E-42	Pinus taeda
41 G1335 1817176 5.60E-36 Pinus radiata 41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 832888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	41	G1335	7721100	1.20E-39	Lotus japonicus
41 G1335 7550978 3.30E-35 Sorghum bicolor 43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 832888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	41	G1335	7502173	2.60E-37	Gossypium arboreum
43 G562 1399004 6.60E-142 Brassica napus 43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 832888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	41	G1335	1817176	5.60E-36	Pinus radiata
43 G562 5381310 6.80E-53 Catharanthus roseus 43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 832888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	41	G1335	7550978	3.30E-35	Sorghum bicolor
43 G562 169958 3.80E-45 Glycine max 43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 832888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	43	G562	1399004	6.60E-142	Brassica napus
43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	43	G562	5381310	6.80E-53	Catharanthus roseus
43 G562 2879779 3.60E-43 Spinacia oleracea 43 G562 7565950 2.10E-41 Medicago truncatula 43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	43	G562	169958	3.80E-45	Glycine max
43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	43			3.60E-43	
43 G562 728627 4.50E-41 Nicotiana tabacum 43 G562 1155053 2.30E-40 Phaseolus vulgaris 43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum		G562	7565950	2.10E-41	
43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	43	G562	728627	4.50E-41	Nicotiana tabacum
43 G562 1498300 5.70E-40 Petroselinum crispum 43 G562 5046889 6.70E-34 Gossypium hirsutum 43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum			1155053	2.30E-40	Phaseolus vulgaris
43 G562 8328888 2.60E-25 Mesembryanthemum crystallinum 45 G736 7409627 1.40E-37 Lycopersicon esculentum	43	G562	1498300	5.70E-40	Petroselinum crispum
45 G736 7409627 1.40E-37 Lycopersicon esculentum	43	G562	5046889	6.70E-34	Gossypium hirsutum
	43	G562	8328888	2.60E-25	Mesembryanthemum crystallinum
45 G736 Q197391 5.60E-32 Medicago truncatula	45	G736	7409627	1.40E-37	Lycopersicon esculentum
45 0756 9197591 0.00E-52 Medicago trancatala	45	G736	9197391	5.60E-32	Medicago truncatula
45 G736 9419494 4.70E-27 Hordeum vulgare	45		9419494		
45 G736 7328718 1.30E-25 Oryza sativa					
45 G736 9410157 1.80E-25 Triticum aestivum					Triticum aestivum
45 G736 853689 5.20E-25 Cucurbita maxima					Cucurbita maxima
45 G736 7535776 6.60E-25 Sorghum bicolor					
45 G736 3929324 4.70E-21 Dendrobium grex Madame Thong-IN					
45 G736 2393774 9.60E-20 Zea mays					

Figure 2D

I igule 2D	I _	T	<u></u>	T
SEQ IDs	Gene Ids	Genbank NID	P-value	Species
45	G736	7624398	1.10E-19	Gossypium arboreum
47	G1073	7718401	2.20E-55	Medicago truncatula
47	G1073	6846994	2.50E-44	Glycine max
47	G1073	7615218	1.60E-42	Lotus japonicus
47	G1073	7333102	2.70E-34	Lycopersicon esculentum
47	G1073	9445090	3.40E-25	Triticum aestivum
47	G1073	9252370	2.20E-24	Solanum tuberosum
47	G1073	5042437	4.60E-21	Oryza sativa
47	G1073	7536402	5.30E-20	Sorghum bicolor
47	G1073	2213535	7.30E-19	Pisum sativum
47	G1073	7624850	2.10E-18	Gossypium arboreum
49	G1435	9203811	3.70E-37	Glycine max
49	G1435	9430136	4.10E-35	Lycopersicon esculentum
49	G1435	8904354	4.30E-32	Hordeum vulgare
49	G1435	5050706	3.30E-26	Gossypium hirsutum
49	G1435	7614196	6.40E-19	Lotus japonicus
49	G1435	7551484	1.00E-18	Sorghum bicolor
49	G1435	6916552	7.20E-12	Lycopersicon pennellii
49	G1435	2443007	5.50E-11	Oryza sativa
49	G1435	9255229	1.30E-10	Zea mays
49	G1435	7766737	2.80E-10	Medicago truncatula
51	G180	8468047	1.90E-35	Oryza sativa
51	G180	7559831	1.20E-24	Medicago truncatula
51	G180	5272716	9.90E-24	Lycopersicon esculentum
51	G180	9187621	3.30E-23	Solanum tuberosum
51	G180	6566312	1.30E-22	Glycine max
51	G180	9304207	1.30E-21	Sorghum bicolor
51	G180	7721184	1.30E-20	Lotus japonicus
51	G180	9444636	3.10E-19	Triticum aestivum
51	G180	3220212	5.20E-19	Gossypium hirsutum
51	G180	1159876	8.00E-19	Avena fatua
53	G592	7924069	7.10E-27	Glycine max
53	G592	5896650	1.10E-22	Lycopersicon esculentum
53	G592	6279773	1.10E-17	Lycopersicon pennellii
53	G592	9364330	1.20E-14	Triticum aestivum
53	G592	6166282	5.40E-14	Pinus taeda
53	G592	8367093	1.60E-12	Zea mays
53	G592	9301543	6.60E-11	Sorghum bicolor
53	G592	7562632	2.80E-10	Medicago truncatula
53	G592	702652	5.80E-05	Oryza sativa
53	G592	7322923	0.094	Lycopersicon hirsutum
55	G208	437326	2.80E-65	Gossypium hirsutum
55	G208	7765706	4.40E-64	Medicago truncatula
55	G208	5269878	5.80E-64	Lycopersicon esculentum
55 55	G208	19054	6.90E-63	Hordeum vulgare
55	G208	2605616	1.00E-62	Oryza sativa
55 55	G208	7626566	3.50E-62	Gossypium arboreum
55 55		6667606	4.10E-62	Glycine max
55	G208	517492		
	G208		1.80E-60	Zea mays
55 55	G208	9302672	2.40E-57	Sorghum bicolor
55	G208	5860031	1.30E-54	Pinus taeda

We Claim:

1. A transgenic plant comprising a recombinant polynucleotide comprising a nucleotide sequence encoding a polypeptide comprising at least 6 consecutive amino acids of a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28 but excluding SEQ ID No. 28, wherein said transgenic plant has (i) a modified flowering time compared with another plant lacking the recombinant polynucleotide or (ii) a modified vernalization requirement compared with another plant lacking the recombinant polynucleotide.

10

5

- 2. The transgenic plant of claim 1, wherein the nucleotide sequence encodes a polypeptide comprising a conserved domain selected from the group consisting of conserved domains of SEQ ID Nos. 2N, where N=1-28.
- 15 3. The transgenic plant of claim 1, wherein the recombinant polynucleotide further comprises a promoter operably linked to said nucleotide sequence.
 - 4. The transgenic plant of claim 3, wherein said promoter is constitutive or inducible or tissueactive.

20

5. The transgenic plant of claim 1, wherein said recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28.

25 6. A method for altering the flowering time or vernalization requirement of a plant, said method comprising (a) transforming a plant with a recombinant polynucleotide comprising a nucleotide sequence encoding a polypeptide comprising at least 6 consecutive amino acids of a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28 but excluding SEQ ID No. 28, (b) selecting said transformed plants; and (c) identifying a transformed plant having an altered flowering time. 30

The method of claim 6, wherein the nucleotide sequence encodes a polypeptide comprising a conserved domain selected from the group consisting of conserved domains of SEQ ID Nos. 2N, where N=1-28.

35

8. The method of claim 6, wherein the recombinant polynucleotide further comprises a promoter operably linked to said nucleotide sequence.

5

10

15

20

25

30

35

9. The method of claim 8, wherein said promoter is constitutive or inducible or tissue-active.

10. The method of claim 1, wherein said recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28.

- 11. A method for altering the flowering time or vernalization requirement of a plant, said method comprising (a) transforming the plant with a recombinant polynucleotide comprising a nucleotide sequence comprising at least 18 consecutive nucleotides of a sequence selected from the group consisting of SEQ ID Nos. 2N-1, where N= 1-28, but excluding SEQ ID No. 27; and (b) selecting said transformed plant.
- 12. The method of claim 11, wherein said recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28.
- 13. A method for altering a plant's flowering time or vernalization requirement, said method comprising (a) providing a database sequence; (b) comparing said database sequence with a polypeptide selected from SEQ ID Nos. 2N, where N= 1-28; (c) selecting a database sequence that meets selected sequence criteria; and (d) transforming said selected database sequence in the plant.
- 14. The method of claim 13, wherein said recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28.
- 15. A method for altering a plant's flowering time or vernalization requirement, said method comprising (a) providing a database sequence; (b) comparing said database sequence with a polynucleotide selected from SEQ ID Nos. 2N-1, where N= 1-28; (c) selecting a database sequence that meets selected sequence criteria; and (d) transforming said selected database sequence in the plant.
- 16. The method of claim 15, wherein said recombinant polynucleotide encodes a polypeptide comprising a conserved domain having greater than an 84% sequence identity to a sequence selected from the group consisting of SEQ ID Nos. 2N, where N=1-28.

MBI-0021.txt SEQUENCE LISTING

<110> Ratcliffe, Oliver Heard, Jacqueline Samaha, Raymond Creelman, Robert Keddie, James Jiang, Cai-zhong Reuber, Lynne Riechmann, Jose Luis	
<120> Flowering Time Modification	
<130> MBI-0021	
<150> US 60/159,464 <151> 1999-10-12	
<150> US 60/166,228 <151> 1999-11-17	
<150> US 60/197,899 <151> 2000-04-17	
<150> Plant Trait Modification III <151> 2000-08-22	
<150> US 60/164,132 <151> 1999-11-08	
<160> 64	
<170> PatentIn version 3.0	
<210> 1 <211> 883 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (31)(621) <223> G157	
<pre><400> 1 gggcataacc cttatcggag atttgaagcc atg gga aga aga aaa atc gag atc</pre>	54
aag cga atc gag aac aaa agc agt cga caa gtc act ttc tcc aaa cga Lys Arg Ile Glu Asn Lys Ser Ser Arg Gln Val Thr Phe Ser Lys Arg 10 15 20	02
cgc aat ggt ctc atc gac aaa gct cga caa ctt tcg att ctc tgt gaa Arg Asn Gly Leu Ile Asp Lys Ala Arg Gln Leu Ser Ile Leu Cys Glu 30 35 40	50
tcc tcc gtc gct gtc gtc gta tct gcc tcc gga aaa ctc tat gac Ser Ser Val Ala Val Val Val Ser Ala Ser Gly Lys Leu Tyr Asp 45 50 55	98
tot too too ggt gac gac att too aag atc att gat ogt tat gaa ata 24 Page 1	46

Ser	Ser	Ser	Gly 60	Asp	Asp	Ile	Ser	Lys 65			l.tx: Asp		Tyr 70	Glu	Ile	
														att Ile		294
														aag Lys		342
gaa Glu 105	gaa Glu	cca Pro	aat Asn	gtc Val	gat Asp 110	aat Asn	gta Val	agt Ser	gta Val	gat Asp 115	tct Ser	cta Leu	att Ile	tct Ser	ctg Leu 120	390
														aag Lys 135		438
														aaa Lys		486
														aat Asn		534
														agc Ser		582
					gag Glu 190							tag	ccad	cato	cat	631
caa	egget	ga g	gtttt	caco	ct ta	aact	caaa	gco	tgat	tca	taat	taag	jag a	ataa	atttg	691
tata	attat	aa a	aago	tgtg	gt aa	tcto	aaac	ctt	ttat	ctt	ccto	tagt	gt g	gaat	ttaag	751
gtca	aaaa	aga a	aacc	gagaa	aa gt	atgg	gatca	gtg	gttgt	acc	tcct	tage	gag a	caac	gatcag	811
agt	tgtg	gtg t	ttgt	gtct	g aa	itgta	cgga	ttg	gatt	ttt	aaag	gttgt	gc t	ttct	ttctt	871
caaa	aaaa	aa a	ıa													883

<210> 2 <211> 196 <212> PRT <213> Arabidopsis thaliana

<400> 2

Met Gly Arg Arg Lys Ile Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser

Arg Gln Val Thr Phe Ser Lys Arg Arg Asn Gly Leu Ile Asp Lys Ala 20 25 30

Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Val Ala Val Val Val

Page 2

Ser	Ala 50	Ser	Gly	Lys	Leu	Tyr 55	Asp	Ser	Ser	Ser	Gly 60	Asp	Asp	Ile	Ser		
Lys 65	Ile	Ile	Asp	Arg	Tyr 70	Glu	Ile	Gln	His	Ala 75	Asp	Glu	Leu	Arg	Ala 80		
Leu	Asp	Leu	Glu	Glu 85	Lys	Ile	Gln	Asn	Tyr 90	Leu	Pro	His	Lys	Glu 95	Leu		
Leu	Glu	Thr	Val 100	Gln	Ser	Lys	Leu	Glu 105	Glu	Pro	Asn	Val	Asp 110	Asn	Val		
Ser	Val	Asp 115	Ser	Leu	Ile	Ser	Leu 120	Glu	Glu	Gln	Leu	Glu 125	Thr	Ala	Leu		
Ser	Val 130	Ser	Arg	Ala	Arg	Lys 135	Ala	Glu	Leu	Met	Met 140	Glu	Tyr	Ile	Glu		
Ser 145	Leu	Lys	Glu	Lys	Glu 150	Lys	Leu	Leu	Arg	Glu 155	Glu	Asn	Gln	Val	Leu 160		
Ala	Ser	Gln	Met	Gly 165	Lys	Asn	Thr	Leu	Leu 170	Ala	Thr	Asp	Asp	Glu 175	Arg		
Gly	Met	Phe	Pro 180	Gly	Ser	Ser	Ser	Gly 185	Asn	Lys	Ile	Pro	Glu 190	Thr	Leu		
Pro	Leu	Leu 195	Asn														
<210 <211 <212 <213	> 1 > [.196 NA rabi	.dops	is t	hali	.ana											
<220 <221 <222 <223	> C > (DS 132) 859	(5	69)													
<400 aaaa			agag	agag	га фа	gaga	.gaga	gaq	agag	aga	qaaa	.cqaa	.ga a	ıaaaa	ıaaaga	6	0
					_										atcgg	12	0
agga	agaa	.gc c	atg Met 1	ggt Gly	aga Arg	aaa Lys	aaa Lys 5	gtc Val	gag Glu	atc Ile	aag Lys	cga Arg	ato Ile	gag Glu	aac Asn	17	0
aaa	agt	agt	cga	caa	gtc	act	ttc	tcc		cga age	cgc 3	aat	ggt	ctc	atc	21	.8

MBI-0021.txt Lys Ser Ser Arg Gln Val Thr Phe Ser Lys Arg Arg Asn Gly Leu Ile 15 20 25	
gag aaa gct cga caa ctt tca att ctc tgt gaa tct tcc atc gct gtt Glu Lys Ala Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile Ala Val 30 35 40 45	266
ctc gtc gtc tcc ggc tcc gga aaa ctc tac aag tct gcc tcc ggt gac Leu Val Val Ser Gly Ser Gly Lys Leu Tyr Lys Ser Ala Ser Gly Asp 50 55 60	314
aac atg tca aag atc att gat cgt tac gaa ata cat cat gct gat gaa Asn Met Ser Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala Asp Glu 65 70 75	362
ctt gaa gcc tta gat ctt gca gaa aaa act cgg aat tat ctg cca ctc Leu Glu Ala Leu Asp Leu Ala Glu Lys Thr Arg Asn Tyr Leu Pro Leu 80 85 90	410
aaa gag tta cta gaa ata gtc caa agg tta gca caa aga cac ttt tat Lys Glu Leu Leu Glu Ile Val Gln Arg Leu Ala Gln Arg His Phe Tyr 95 100 105	458
ctc cct ctt ctt ctg atg aaa aat act ttt ttt ttt ctt ttc ttt tgg Leu Pro Leu Leu Met Lys Asn Thr Phe Phe Phe Leu Phe Phe Trp 110 115 120 125	506
cga att atg aat aca gca agc ttg aag aat caa atg tcg ata atg caa Arg Ile Met Asn Thr Ala Ser Leu Lys Asn Gln Met Ser Ile Met Gln 130 135 140	554
gtg tgg ata ctt taa tttctctgga ggaacagctc gagactgctc tgtccgtaac Val Trp Ile Leu 145	609
tagagctagg aagacagaac taatgatggg ggaagtgaag tcccttcaaa aaacgcatgt	669
caaagatcat tgatcgttat gaaatacatc atgctgatga acttaaagcc ttagatcttg	729
cagaaaaaat toggaattat ottooacaca aggagttact agaaatagto caaagattot	789
ctaatatcta tggaggaaca gctcgagact gctctgtcag taattagagc taagaagaca	849
gaactaatga tggaggatat gaagtcactt caagaaaggg agaagttgct gatagaagag	909
aaccagattc tggctagcca ggtggggaag aagacgtttc tggttataga aggtgacaga	969
ggaatgtcat gggaaaatgg ctccggcaac aaagtacggg agactcttcc gctgctcaag	1029
taatcaccat catcaacggc tgagctttca ccttaaactt acagcctgat tcagaagttt	1089
ttacaaattt gtaaattata aaaagettea taataatete aaeettttta tetteetege	1149
gccaatgtgg aaattaaggt aaaccaaaaa aaaaaaaaa aaaaaaa	1196

<210> 4 <211> 145 <212> PRT <213> Arabidopsis thaliana

<400> 4

Met 1	Gly	Arg	Lys	Lys 5	Val	Glu	Ile	Lys		_	l.txt Glu		Lys	Ser 15	Ser	
Arg	Gln	Val	Thr 20	Phe	Ser	Lys	Arg	Arg 25	Asn	Gly	Leu	Ile	Glu 30	Lys	Ala	
Arg	Gln	Leu 35	Ser	Ile	Leu	Cys	Glu 40	Ser	Ser	Ile	Ala	Val 45	Leu	Val	Val	
Ser	Gly 50	Ser	Gly	Lys	Leu	Tyr 55	Lys	Ser	Ala	Ser	Gly 60	Asp	Asn	Met	Ser	
Lys 65	Ile	Ile	Asp	Arg	Tyr 70	Glu	Ile	His	His	Ala 75	Asp	Glu	Leu	Glu	Ala 80	
Leu	Asp	Leu	Ala	Glu 85	Lys	Thr	Arg	Asn	Tyr 90	Leu	Pro	Leu	Lys	Glu 95	Leu	
Leu	Glu	Ile	Val 100	Gln	Arg	Leu	Ala	Gln 105	Arg	His	Phe	Tyr	Leu 110	Pro	Leu	
Leu	Leu	Met 115	Lys	Asn	Thr	Phe	Phe 120	Phe	Leu	Phe	Phe	Trp 125	Arg	Ile	Met	
Asn	Thr 130	Ala	Ser	Leu	Lys	Asn 135	Gln	Met	Ser	Ile	Met 140	Gln	Val	Trp	Ile	
Leu 145																
<210 <211 <212 <213	l> 9 2> I	972 DNA	.dops	is t	hali	.ana										
<220 <221 <222 <223	L> (DS (132) 8859.	(5 1	69)												
<400 aaaa			gagag	ıagaç	ja ga	ıgaga	gaga	gag	ıagag	jaga	gaaa	cgaa	ıga a	aaaa	ıaaaga	60
agca	aaaa	ac a	ıttgt	gggt	c to	cggt	gatt	agg	atca	aat	tagg	gcac	ca ç	gcctt	atcgg	120
agga	ıagaa	igc c	atg Met 1	ggt Gly	aga Arg	aaa Lys	aaa Lys 5	gtc Val	gag Glu	g ato Ile	aag Lys	cga Arc 10	ato JIle	gag Glu	g aac i Asn	170
									Lys		cgc Arg 25 5					218

MBI-0021.txt

gag aaa gct cga caa ctt tca att ctc tgt gaa tct tcc atc gct gtt Glu Lys Ala Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile Ala Val 30 35 40 45	266
ctc gtc gtc tcc ggc tcc gga aaa ctc tac aag tct gcc tcc ggt gac Leu Val Val Ser Gly Ser Gly Lys Leu Tyr Lys Ser Ala Ser Gly Asp 50 55 60	314
aac atg tca aag atc att gat cgt tac gaa ata cat cat gct gat gaa Asn Met Ser Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala Asp Glu 65 70 75	362
ctt gaa gcc tta gat ctt gca gaa aaa act cgg aat tat ctg cca ctc Leu Glu Ala Leu Asp Leu Ala Glu Lys Thr Arg Asn Tyr Leu Pro Leu 80 85 90	410
aaa gag tta cta gaa ata gtc caa agg tta gca caa aga cac ttt tat Lys Glu Leu Leu Glu Ile Val Gln Arg Leu Ala Gln Arg His Phe Tyr 95 100 105	458
ctc cct ctt ctt ctg atg aaa aat act ttt ttt ttt ctt ttc ttt tgg Leu Pro Leu Leu Met Lys Asn Thr Phe Phe Phe Leu Phe Phe Trp 110 115 120 125	506
cga att atg aat aca gca agc ttg aag aat caa atg tcg ata atg caa Arg Ile Met Asn Thr Ala Ser Leu Lys Asn Gln Met Ser Ile Met Gln 130 135 140	554
gtg tgg ata ctt taa tttctctgga ggaacagctc gagactgctc tgtccgtaac Val Trp Ile Leu 145	609
tagagctagg aagacagaac taatgatggg ggaagtgaag tcccttcaaa aaacggagaa	669
cttgctgaga gaagagaacc agactttggc tagccaggtg gggaagaaga cgtttctggt	729
tatagaaggt gacagaggaa tgtcatggga aaatggctcc ggcaacaaag tacgggagac	789
tottoogotg otcaagtaat caccatoato aacggotgag otttoacott aaacttacag	849
cctgattcag aagtttttac aaatttgtaa attataaaaa gcttcataat aatctcaacc	909
tttttatctt cctcgcgcca atgtggaaat taaggtaaac caaaaaaaaa aaaaaaaaa	969
aaa	972

<210> 6 <211> 145 <212> PRT <213> Arabidopsis thaliana

<400> 6

Met Gly Arg Lys Lys Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser 1 5 10 15

Arg Gln Val Thr Phe Ser Lys Arg Arg Asn Gly Leu Ile Glu Lys Ala 20 25 30

Arg Gln Leu Se 35	er Ile Leu Cys	MBI-0 Glu Ser Ser I 40	021.txt le Ala Val Leu 45	Val Val
Ser Gly Ser Gl 50	ly Lys Leu Tyr 55	Lys Ser Ala S	er Gly Asp Asn 60	Met Ser
Lys Ile Ile As	sp Arg Tyr Glu 70	Ile His His A		Glu Ala 80
Leu Asp Leu Al	la Glu Lys Thr 85	Arg Asn Tyr Lo	eu Pro Leu Lys	Glu Leu 95
Leu Glu Ile Va 10	_	Ala Gln Arg H	s Phe Tyr Leu 110	Pro Leu
Leu Leu Met Ly 115	s Asn Thr Phe	Phe Phe Leu Pl	ne Phe Trp Arg 125	Ile Met
Asn Thr Ala Se	er Leu Lys Asn 135	Gln Met Ser I	e Met Gln Val	Trp Ile
Leu 145				
<210> 7 <211> 1036 <212> DNA <213> Arabido	opsis thaliana			
<220> <221> CDS <222> (162) <223> G859.2	(752)			
<400> 7 gatttgtcat ttt	ttgtcta gccaa	aaaaa aaaaaaaa	ıa aggagagaga g	gagagaga 60
gagagaga gaa	acgaaga aaaaa	aaaga agcaaaaa	ıc attgtgggtc t	ccggtgatt 120
aggatcaaat tag	gggcacca gcctt	atcgg aggaagaag	gc c atg ggt ag Met Gly Ar 1	
gtc gag atc aa Val Glu Ile Ly	ng cga atc gag 's Arg Ile Glu 10	aac aaa agt ag Asn Lys Ser Se 15	rt cga caa gtc r Arg Gln Val	act ttc 224 Thr Phe 20
	g Asn Gly Leu	atc gag aaa go Ile Glu Lys Al 30		
ctc tgt gaa tc Leu Cys Glu Se 40		45		

MBI-0021.txt

	tac Tyr 55															368
tac Tyr 70	gaa Glu	ata Ile	cat His	cat His	gct Ala 75	gat Asp	gaa Glu	ctt Leu	gaa Glu	gcc Ala 80	tta Leu	gat Asp	ctt Leu	gca Ala	gaa Glu 85	416
	act Thr															464
	aag Lys															512
	tct Ser															560
agg Arg	aag Lys 135	aca Thr	gaa Glu	cta Leu	atg Met	atg Met 140	gly ggg	gaa Glu	gtg Val	aag Lys	tcc Ser 145	ctt Leu	caa Gln	aaa Lys	acg Thr	608
gag Glu 150	aac Asn	ttg Leu	ctg Leu	aga Arg	gaa Glu 155	gag Glu	aac Asn	cag Gln	act Thr	ttg Leu 160	gct Ala	agc Ser	cag Gln	gtg Val	999 165	656
aag Lys	aag Lys	acg Thr	ttt Phe	ctg Leu 170	gtt Val	ata Ile	gaa Glu	ggt Gly	gac Asp 175	aga Arg	gga Gly	atg Met	tca Ser	tgg Trp 180	gaa Glu	704
aat Asn	ggc Gly	tcc Ser	ggc Gly 185	aac Asn	aaa Lys	gta Val	cgg Arg	gag Glu 190	act Thr	ctt Leu	ccg Pro	ctg Leu	ctc Leu 195	aag Lys	taa	752
tca	ccato	cat o	caaco	ggctg	ga go	ctttc	cacct	taa	aactt	aca	gcct	gatt	ca g	gaagt	tttta	812
caa	atttg	gta a	aatta	ataaa	aa ag	gctto	cataa	a taa	atcto	caac	cttt	ttat	ct t	cct	egegee	872
aat	gtgga	aaa t	taag	ggtta	aa aa	ataa	aata	a aaa	acaga	agc	tcat	gcga	aaa g	gaatt	gtaaa	932
acta	aagat	caa a	agcta	atagt	a ga	atctt	tatt	gta	acctt	cgt	agad	gata	ata a	agatt	tattc	992
gtg	gttt	gt o	cttco	cct	en aa	aaaa	aaaa	a aaa	aaaa	aaa	aaaa	a				1036

<210> 8 <211> 196 <212> PRT <213> Arabidopsis thaliana

<400> 8

Met Gly Arg Lys Lys Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser

Arg Gln Val Thr Phe Ser Lys Arg Arg Asn Gly Leu Ile Glu Lys Ala 20 25 30

MBI-0021.txt Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile Ala Val Leu Val Val 40 Ser Gly Ser Gly Lys Leu Tyr Lys Ser Ala Ser Gly Asp Asn Met Ser Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala Asp Glu Leu Glu Ala Leu Asp Leu Ala Glu Lys Thr Arg Asn Tyr Leu Pro Leu Lys Glu Leu Leu Glu Ile Val Gln Ser Lys Leu Glu Glu Ser Asn Val Asp Asn Ala Ser Val Asp Thr Leu Ile Ser Leu Glu Glu Gln Leu Glu Thr Ala Leu 115 Ser Val Thr Arg Ala Arg Lys Thr Glu Leu Met Met Gly Glu Val Lys 130 Ser Leu Gln Lys Thr Glu Asn Leu Leu Arg Glu Glu Asn Gln Thr Leu Ala Ser Gln Val Gly Lys Lys Thr Phe Leu Val Ile Glu Gly Asp Arg Gly Met Ser Trp Glu Asn Gly Ser Gly Asn Lys Val Arg Glu Thr Leu Pro Leu Leu Lys 195 <210> 9 <211> 1059 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (219)..(809) <222> <223> G1842 <400> 9 actattacat gcctcttcct cgcttcaaaa cggcaccgtt tccacttgtt attatttttc 60 tototatogt otaacaaaaa aaaaaactga ottgggattt tttttcattt gtotagooca 120 aaagaagaag atagaaacga agaaaaaaag caaacacatt ttgggtcccc ggtggttagg 180 236 atcaaattag ggcacaaacc ttatcggaga aagaagcc atg gga aga aga aaa gtc Page 9

MBI-0021.txt Met Gly Arg Arg Lys Val 1 5

										1		_	_	5	•	
gag Glu	atc Ile	aag Lys	cga Arg 10	atc Ile	gag Glu	aac Asn	aaa Lys	agc Ser 15	agt Ser	cga Arg	caa Gln	gtc Val	act Thr 20	ttc Phe	tcc Ser	284
aaa Lys .	cga Arg	cgc Arg 25	aaa Lys	ggt Gly	ctc Leu	atc Ile	gaa Glu 30	aaa Lys	gct Ala	cga Arg	caa Gln	ctt Leu 35	tca Ser	att Ile	ctc Leu	332
tgt (380
tac Tyr 55																428
gaa Glu																476
att (cgg Arg	aat .Asn	tat Tyr 90	ctt Leu	cca Pro	cac His	aag Lys	gag Glu 95	tta Leu	cta Leu	gaa Glu	ata Ile	gtc Val 100	caa Gln	agc Ser	524
aag Lys :	ctt Leu	gaa Glu 105	gaa Glu	tca Ser	aat Asn	gtc Val	gat Asp 110	aat Asn	gta Val	agt Ser	gta Val	gat Asp 115	tct Ser	cta Leu	ata Ile	572
tct i																620
aag i Lys ' 135	aca Thr	gaa Glu	cta Leu	atg Met	atg Met 140	gag Glu	gat Asp	atg Met	aag Lys	tca Ser 145	ctt Leu	caa Gln	gaa Glu	agg Arg	gag Glu 150	668
aag Lys I	ttg Leu	ctg Leu	ata Ile	gaa Glu 155	gag Glu	aac Asn	cag Gln	att Ile	ctg Leu 160	gct Ala	agc Ser	cag Gln	gtg Val	999 Gly 165	aag Lys	716
aag i																764
ggc f	tcc Ser	ggc Gly 185	aac Asn	aaa Lys	gta Val	Pro	gag Glu 190	Thr	ctt Leu	tcg Ser	ctg Leu	ctc Leu 195	aag Lys	taa		809
tcac	cato	at o	caaco	gcto	ga go	tttc	cacca	a taa	actt	tact	caca	igcct	ga t	tcag	gaagct	869
ttta	caaa	at t	gtaa	aatta	at aa	aaag	gctgo	ata	ataa	atct	caac	cttt	tt a	atctt	cctcg	929
cgcca	aatg	gtg g	gaaat	aaag	gg ta	aaac	caaaa	a cga	agct	ctt	ttct	ttta	atg d	gaaa	igaatt	989
gtaa	aact	aa g	gataa	agct	a co	gato	ctttc	g ttg	gtaco	ctta	gtag	gacaa	aat a	atcag	gagttc	1049
ttgt	gctt	gt														1059

<210> 10

MBI-0021.txt

<211> 196 <212> PRT <213> Arabidopsis thaliana

<400> 10

Met Gly Arg Arg Lys Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser

Arg Gln Val Thr Phe Ser Lys Arg Lys Gly Leu Ile Glu Lys Ala

Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile Ala Val Val Ala Val

Ser Gly Ser Gly Lys Leu Tyr Asp Ser Ala Ser Gly Asp Asn Met Ser

Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala Asp Glu Leu Lys Ala

Leu Asp Leu Ala Glu Lys Ile Arg Asn Tyr Leu Pro His Lys Glu Leu

Leu Glu Ile Val Gln Ser Lys Leu Glu Glu Ser Asn Val Asp Asn Val

Ser Val Asp Ser Leu Ile Ser Met Glu Glu Gln Leu Glu Thr Ala Leu

Ser Val Ile Arg Ala Lys Lys Thr Glu Leu Met Met Glu Asp Met Lys

Ser Leu Gln Glu Arg Glu Lys Leu Leu Ile Glu Glu Asn Gln Ile Leu 145

Ala Ser Gln Val Gly Lys Lys Thr Phe Leu Val Ile Glu Gly Asp Arg

Gly Met Ser Arg Glu Asn Gly Ser Gly Asn Lys Val Pro Glu Thr Leu

Ser Leu Leu Lys 195

<210> 11

880 <211>

<212> DNA

<213> Arabidopsis thaliana

Page 11

MBI-0021.txt

<220>
<221> CDS
<222> (79)..(636)
<223> G1842.2

<400> 11 agaaaaaaaq caaacacatt ttgggtcccc ggtggttagg atcaaattag ggcacaaacc 60 ttatcggaga aagaagcc atg gga aga aga aaa gtc gag atc aag cga atc Met Gly Arg Arg Lys Val Glu Ile Lys Arg Ile 111 gag aac aaa agc agt cga caa gtc act ttc tcc aaa cga cgc aaa ggt Glu Asn Lys Ser Ser Arg Gln Val Thr Phe Ser Lys Arg Arg Lys Gly 159 207 ctc atc gaa aaa gct cga caa ctt tca att ctc tgt gaa tct tcc atc Leu Ile Glu Lys Ala Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile 3.0 255 get gtt gtc gcc gtc tcc ggt tcc gga aaa ctc tac gac tct gcc tcc Āla Val Val Āla Val Ser Gly Ser Gly Lys Leu Tyr Āsp Ser Ala Ser ggt gac aac atg tca aag atc att gat cgt tat gaa ata cat cat gct 303 Gly Asp Asn Met Ser Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala gat gaa ctt aaa gcc tta gat ctt gca gaa aaa att cgg aat tat ctt 351 Asp Glu Leu Lys Ala Leu Asp Leu Ala Glu Lys Ile Arg Asn Tyr Leu 85 cca cac aag gag tta cta gaa ata gtc caa agt gta gat tct cta ata 399 Pro His Lys Glu Leu Leu Glu Ile Val Gln Ser Val Asp Ser Leu Ile 95 100 tct atg gag gaa cag ctc gag act gct ctg tca gta att aga gct aag 447 Ser Met Glu Glu Gln Leu Glu Thr Ala Leu Ser Val Ile Arg Ala Lys 110 115 aag aca gaa cta atg atg gag gat atg aag tca ctt caa gaa agg gag Lys Thr Glu Leu Met Met Glu Asp Met Lys Ser Leu Gln Glu Arg Glu 495 130 aag ttg ctg ata gaa gag aac cag att ctg gct agc cag gtg ggg aag 543 Lys Leu Leu Ile Glu Glu Asn Gln Ile Leu Ala Ser Gln Val Gly Lys 150 145 591 aag acg ttt ctg gtt ata gaa ggt gac aga gga atg tca cgg gaa aat Lys Thr Phe Leu Val Ile Glu Gly Asp Arg Gly Met Ser Arg Glu Asn 165 ggc tcc ggc aac aaa gta ccg gag act ctt tcg ctg ctc aag taa 636. Gly Ser Gly Asn Lys Val Pro Glu Thr Leu Ser Leu Leu Lys 180 696 tcaccatcat caacqqctqa qctttcacca taaacttact cacagcctga ttcagaagct tttacaaaat tgtaaattat aaaaagctgc ataataatct caaccttttt atcttcctcg 756 cqccaatgtg gaaataaagg taaaacaaaa cgaagctctt ttcttttatg cgaaagaatt 816

MBI-0021.txt

880

gtaaaactaa gataaagcta ccgatctttg ttgtacctta gtagacaaat atcagagttc 876

ttgt

<210> 12 <211> 185

<212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Gly Arg Arg Lys Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser

Arg Gln Val Thr Phe Ser Lys Arg Lys Gly Leu Ile Glu Lys Ala

Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile Ala Val Val Ala Val

Ser Gly Ser Gly Lys Leu Tyr Asp Ser Ala Ser Gly Asp Asn Met Ser

Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala Asp Glu Leu Lys Ala

Leu Asp Leu Ala Glu Lys Ile Arg Asn Tyr Leu Pro His Lys Glu Leu

Leu Glu Ile Val Gln Ser Val Asp Ser Leu Ile Ser Met Glu Gln Gln

Leu Glu Thr Ala Leu Ser Val Ile Arg Ala Lys Lys Thr Glu Leu Met

Met Glu Asp Met Lys Ser Leu Gln Glu Arg Glu Lys Leu Leu Ile Glu

Glu Asn Gln Ile Leu Ala Ser Gln Val Gly Lys Lys Thr Phe Leu Val

Ile Glu Gly Asp Arg Gly Met Ser Arg Glu Asn Gly Ser Gly Asn Lys

Val Pro Glu Thr Leu Ser Leu Leu Lys

<210> 13

<211> 978

<212> DNA

Page 13

MBI-0021.txt

<213> Arabidopsis thaliana	
<220> <221> CDS <222> (219)(452) <223> G1842.6	
<400> 13 actattacat gcctcttcct cgcttcaaaa cggcaccgtt tccacttgtt attattttc	60
tctctatcgt ctaacaaaaa aaaaaactga cttgggattt tttttcattt gtctagccca	120
aaagaagaag atagaaacga agaaaaaaag caaacacatt ttgggtcccc ggtggttagg	180
atcaaattag ggcacaaacc ttatcggaga aagaagcc atg gga aga aga aaa gtc Met Gly Arg Arg Lys Val 1 5	236
gag atc aag cga atc gag aac aaa agc agt cga caa gtc act ttc tcc Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser Arg Gln Val Thr Phe Ser 10 15 20	284
aaa cga cgc aaa ggt ctc atc gaa aaa gct cga caa ctt tca att ctc Lys Arg Arg Lys Gly Leu Ile Glu Lys Ala Arg Gln Leu Ser Ile Leu 25 30 35	332
tgt gaa tct tcc atc gct gtt gtc gcc gtc tcc ggt tcc gga aaa ctc Cys Glu Ser Ser Ile Ala Val Val Ala Val Ser Gly Ser Gly Lys Leu 40 45 50	380
tac gac tct gcc tcc ggt gac aag atc ttg cag aaa aaa ttc gga att Tyr Asp Ser Ala Ser Gly Asp Lys Ile Leu Gln Lys Lys Phe Gly Ile 55 60 65 70	428
atc ttc cac aca agg agt tac tag aaatagtcca aagattctct aatatctatg Ile Phe His Thr Arg Ser Tyr 75	482
gaggaacagc tcgagactgc tctgtcagta attagagcta agaagacaga actaatgatg	542
gaggatatga agtcacttca agaaagggag aagttgctga tagaagagaa ccagattctg	602
gctagccagg tggggaagaa gacgtttctg gttatagaag gtgacagagg aatgtcacgg	662
gaaaatggct ccggcaacaa agtaccggag actetttege tgetcaagta atcaccatca	722
tcaacggctg agctttcacc ataaacttac tcacagcctg attcagaagc ttttacaaaa	782
ttgtaaatta taaaaagctg cataataatc tcaacctttt tatcttcctc gcgccaatgt	842
ggaaataaag gtaaaacaaa acgaagctet tttettttat gegaaagaat tgtaaaaeta	902
agataaagct accgatcttt gttgtacctt agtagacaaa tatcagagtt cttgtgcttg	962
aaaaaaaaa aaaaaa	978
<210> 14	

<211> 77 <212> PRT <213> Arabidopsis thaliana

MBI-0021.txt <400> 14 Met Gly Arg Arg Lys Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser Arg Gln Val Thr Phe Ser Lys Arg Lys Gly Leu Ile Glu Lys Ala Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile Ala Val Val Ala Val Ser Gly Ser Gly Lys Leu Tyr Asp Ser Ala Ser Gly Asp Lys Ile Leu 55 Gln Lys Lys Phe Gly Ile Ile Phe His Thr Arg Ser Tyr <210> 15 <211> 876 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (80)..(436) <223> G1842.7 <400> 15 cagaaaaaaa gcaaacacat tttgggtccc cggtggttag gatcaaatta gggcacaaac 60 cttatcggag aaagaagcc atg gga aga aga aaa gtc gag atc aag cga atc 112 Met Gly Arg Arg Lys Val Glu Ile Lys Arg Ile 160 gag aac aaa agc agt cga caa gtc act ttc tcc aaa cga cgc aaa ggt Glu Asn Lys Ser Ser Arg Gln Val Thr Phe Ser Lys Arg Arg Lys Gly 15 20 ctc atc gaa aaa gct cga caa ctt tca att ctc tgt gaa tct tcc atc 208 Leu Ile Glu Lys Ala Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Ile 256 get gtt gtc gcc gtc tcc ggt tcc gga aaa ctc tac gac tct gcc tcc Ala Val Val Ala Val Ser Gly Ser Gly Lys Leu Tyr Asp Ser Ala Ser 50 304 ggt gac aac atg tca aag atc att gat cgt tat gaa ata cat cat gct Gly Asp Asn Met Ser Lys Ile Ile Asp Arg Tyr Glu Ile His His Ala

cca cac aag gag tta cta gaa ata gtc caa aga ttc tct aat atc tat Pro His Lys Glu Leu Glu Ile Val Gln Arg Phe Ser Asn Ile Tyr 95 100 105

85

gat gaa ctt aaa gcc tta gat ctt gca gaa aaa att cgg aat tat ctt

Asp Glu Leu Lys Ala Leu Asp Leu Ala Glu Lys Ile Arg Asn Tyr Leu

80

Page 15

352

400

									MBI	-002	1.tx	t		•			
	a gga / Gly										tag	agc	taag	aag	•	1	446
aca	agaac	taa	tgate	ggag	ga t	atga	agtc	a ct	tcaa	gaaa	ggg	agaa	gtt	gctg	ataga	a	506
ga	gaacc	aga	ttct	ggct	ag c	cagg	tggg	g aa	gaag	acgt	ttc	tggt	tat	agaa	ggtga	C	566
aga	aggaa	tgt	cacg	ggaa	aa t	ggct	ccgg	c aa	caaa	gtac	cgg	agac	tct	ttcg	ctgct	c	626
aaq	gtaat	cac	catc	atca	ac g	gctg	agct	t tc	acca	taaa	ctta	actc	aca	gcct	gattc	a	686
gaa	agctt	tta (caaa	attg	ta a	atta	taaa	a ag	ctgc	ataa	taa	tctc	aac	cttt	ttatc	t	746
tc	ctcgc	gcc .	aatg	tgga	aa ta	aaag	gtaa	a ac	aaaa	cgaa	gct	cttt	tct	ttta	tgcga	a	806
aga	attg	taa .	aacta	aaga	ta a	agcta	accga	a tc	tttg	ttgt	acci	ttag	tag	acaa	atatca	a	866
gag	gttcti	tgt															876
<23 <23	L1> :	16 118 PRT Arab	idop:	sis	thal:	iana											
<40	00>	16															
Met 1	Gly	Arg	Arg	Lys 5	Val	Glu	Ile	Lys	Arg 10	Ile	Glu	Asn	Lys	Ser 15	Ser		
Arg	g Gln	Val	Thr 20	Phe	Ser	Lys	Arg	Arg 25	Lys	Gly	Leu	Ile	Glu 30	Lys	Ala		
Arg	g Gln	Leu 35	Ser	Ile	Leu	Cys	Glu 40	Ser	Ser	Ile	Ala	Val 45	Val	Ala	Val		
Sei	Gly 50	Ser	Gly	Lys	Leu	Tyr 55	Asp	Ser	Ala	Ser	Gly 60	Asp	Asn	Met	Ser		
Lу: 65	: Ile	Ile	Asp	Arg	Tyr 70	Glu	Ile	His	His	Ala 75	Asp	Glu	Leu	Lys	Ala 80		
Let	ı Asp	Leu	Ala	Glu 85	Lys	Ile	Arg	Asn	Tyr 90	Leu	Pro	His	Lys	Glu 95	Leu		
Leı	ı Glu	Ile	Val 100	Gln	Arg	Phe	Ser	Asn 105	Ile	Tyr	Gly	Gly	Thr 110	Ala	Arg		
Asp	Cys	Ser 115	Val	Ser	Asn												

<210> 17 <211> 818

								MBI	-002	1.tx	t					
<212> <213>																
<220><221><222><222><223>	CDS (51) G184		53)													
<400>	17							•								
cagaca		aatc	aaati	ta g	gtcag	gaag	a ati	tagt	cgga	gaaa	aaca	1	atg q Met (1			56
aga ag Arg Ar																104
gtt ac Val Th 20	r Phe															152
ctc to Leu Se 35																200
acc gg Thr Gl																248
ctc ag Leu Se	t cgt r Arg	tat Tyr 70	gaa Glu	tta Leu	gaa Glu	cag Gln	gct Ala 75	gat Asp	gat Asp	ctt Leu	aaa Lys	acc Thr 80	ttg Leu	gat Asp		296
cta ga Leu Gl																344
aca at Thr Il 10	e Gln	tgc Cys	aag Lys	att Ile	gaa Glu 105	gaa Glu	gcg Ala	aaa Lys	agc Ser	gat Asp 110	aat Asn	gta Val	agt Ser	ata Ile		392
gat tg Asp Cy 115	t cta s Leu	aag Lys	tcc Ser	ctg Leu 120	gaa Glu	gag Glu	cag Gln	ctc Leu	aag Lys 125	act Thr	gct Ala	ctg Leu	tct Ser	gta Val 130		440
act ag Thr Ar	a gct g Ala	agg Arg	aag Lys 135	aca Thr	gaa Glu	cta Leu	atg Met	atg Met 140	gag Glu	ctt Leu	gtg Val	aag Lys	acc Thr 145	cat His		488
caa ga Gln Gl	g aag u Lys	gag Glu 150	aag Lys	ctg Leu	ctg Leu	aga Arg	gag Glu 155	gag Glu	aac Asn	cag Gln	agt Ser	ttg Leu 160	act Thr	aac Asn		536
cag ct Gln Le	t ata u Ile 165	aag Lys	atg Met	gly ggg	aag Lys	atg Met 170	aag Lys	aag Lys	tct Ser	gtg Val	gaa Glu 175	gca Ala	gag Glu	gat Asp		584
gca ag Ala Ar 18	g Ăla															632
act ct	c ctg	ctt	ctc	aag	taa	ccad	ccato		caaco age	-	ga tt	cgaa	aaaat	=		683

MBI-0021.txt

743 803 818

Thr Leu Leu Leu Lys 195 200
aaaaattgta aaaattatga tttgtagttc ataaggaaag ctacatactg tatgttaaaa
atcctcttct tececetget aeggaaaagt catecaagga gatgcateaa ataaagtaat
tgatttttat tgtta
<210> 18 <211> 200 <212> PRT <213> Arabidopsis thaliana
<400> 18
Met Gly Arg Arg Lys Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser 1 5 10 15
Arg Gln Val Thr Phe Cys Lys Arg Arg Asn Gly Leu Met Glu Lys Ala 20 25 30
Arg Gln Leu Ser Ile Leu Cys Glu Ser Ser Val Ala Leu Ile Ile Ile 35 40 45
Ser Ala Thr Gly Arg Leu Tyr Ser Phe Ser Ser Gly Asp Ser Met Ala 50 60
Lys Ile Leu Ser Arg Tyr Glu Leu Glu Gln Ala Asp Asp Leu Lys Thr 65 70 75 80
Leu Asp Leu Glu Glu Lys Thr Leu Asn Tyr Leu Ser His Lys Glu Leu 85 90 95
Leu Glu Thr Ile Gln Cys Lys Ile Glu Glu Ala Lys Ser Asp Asn Val 100 105 110
Ser Ile Asp Cys Leu Lys Ser Leu Glu Glu Gln Leu Lys Thr Ala Leu 115 120 125
Ser Val Thr Arg Ala Arg Lys Thr Glu Leu Met Met Glu Leu Val Lys 130 135 140
Thr His Gln Glu Lys Glu Lys Leu Leu Arg Glu Glu Asn Gln Ser Leu 145 150 155 160
Thr Asn Gln Leu Ile Lys Met Gly Lys Met Lys Lys Ser Val Glu Ala 165 170 175
Glu Asp Ala Arg Ala Met Ser Pro Glu Ser Ser Ser Asp Asn Lys Pro 180 185 190 Page 18

Pro Glu Thr Leu Leu Leu Lys 195 200	
<210> 19 <211> 834 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (39)(635) <223> G1844	
<400> 19 agaaattagg ggattagatg tgtcggaaga gtgaagcc atg gga aga aga aga gta Met Gly Arg Arg Val 1 5	56
gag atc aaa cga att gag aac aaa agc agt aga caa gtc act ttc tgt Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser Arg Gln Val Thr Phe Cys 10 15 20	104
aag aga cga aat ggt ctc atg gag aaa gct cgt caa ctc tca att ctc Lys Arg Arg Asn Gly Leu Met Glu Lys Ala Arg Gln Leu Ser Ile Leu 25 30 35	152
tgt gga tcc tcc gtc gct ctt ttc atc gtc tct tcc acc ggc aaa ctc Cys Gly Ser Ser Val Ala Leu Phe Ile Val Ser Ser Thr Gly Lys Leu 40 45 50	200
tac aac tcc tcc tcc ggc gac agc atg gcc aag atc atc agt cgt ttt Tyr Asn Ser Ser Ser Gly Asp Ser Met Ala Lys Ile Ile Ser Arg Phe 55 60 65 70	248
aaa ata caa caa gct gat gat cct gaa acc ttg gat ctt gaa gac aaa Lys Ile Gln Gln Ala Asp Asp Pro Glu Thr Leu Asp Leu Glu Asp Lys 75 80 85	296
act cag gat tat ctt tca cac aag gag tta cta gaa ata gtt caa aga Thr Gln Asp Tyr Leu Ser His Lys Glu Leu Leu Glu Ile Val Gln Arg 90 95 100	344
aag att gaa gaa gca aaa ggg gat aat gta agt ata gaa tct cta att Lys Ile Glu Glu Ala Lys Gly Asp Asn Val Ser Ile Glu Ser Leu Ile 105 110 115	392
tcc atg gaa gag cag ctc aag agt gct ctg tct gta att aga gct agg Ser Met Glu Glu Gln Leu Lys Ser Ala Leu Ser Val Ile Arg Ala Arg 120 125 130	440
aag aca gag tta ttg atg gag ctt gtg aag aac ctt cag gat aag gag Lys Thr Glu Leu Leu Met Glu Leu Val Lys Asn Leu Gln Asp Lys Glu 135 140 145 150	488
aag ttg ctg aaa gaa aag aac aag gtt cta gct agc gag gtg ggg aag Lys Leu Leu Lys Glu Lys Asn Lys Val Leu Ala Ser Glu Val Gly Lys 155 160 165	536
ctg aag aaa att ttg gaa aca ggg gat gaa aga gca gta atg tca ccg Page 19	584

															101/0	
Leu	Lys	Lys	Ile 170	Leu	Glu	Thr	Gly	Asp 175			l.txi Ala		Met 180	Ser	Pro	
gaa Glu	aat Asn	agc Ser 185	tct Ser	ggc Gly	cac His	agc Ser	cca Pro 190	ccg Pro	gag Glu	act Thr	ctc Leu	ccg Pro 195	ctt Leu	ctc Leu	aag Lys	
taa	cca	ccaat	tca 1	tcaad	egget	g at	tttt	tcato	c ato	cctg	attc	aaaa	aaag	gta		
aaaa	aaaat	ttc a	atgt	gtaaa	aa at	cata	aaaga	a ago	ctaca	atgt	ttta	aaaat	taa 1	tctt	ctcccc	
ctgo	catao	cgg a	ataaa	attta	at aç	gacca	aaaa	a tat	taat	gttt	tcc	ctcaa	aat a	aagat	catcga	
cctt	tgt	gtt a	accti	tggaa	ag a	cagga	atca									
<210 <211 <212 <213	L> : 2> :	20 198 PRT Arab:	ídops	sis t	:hal:	iana					•				Tr.	
<400)> 2	20														
Met 1	Gly	Arg	Arg	Arg 5	Val	Glu	Ile	Lys	Arg 10	Ile	Glu	Asn	Lys	Ser 15	Ser	
Arg	Gln	Val	Thr 20	Phe	Cys	Lys	Arg	Arg 25	Asn	Gly	Leu	Met	Glu 30	Lys	Ala	
Arg	Gln	Leu 35	Ser	Ile	Leu	Cys	Gly 40	Ser	Ser	Val	Ala	Leu 45	Phe	Ile	Val	
Ser	Ser 50	Thr	Gly	Lys	Leu	Tyr 55	Asn	Ser	Ser	Ser	Gly 60	Asp	Ser	Met	Ala	
Lys 65	Ile	Ile	Ser	Arg	Phe 70	Lys	Ile	Gln	Gln	Ala 75	Asp	Asp	Pro	Glu	Thr 80	
Leu	Asp	Leu	Glu	_	-	Thr		_	Tyr 90	Leu	Ser	His	Lys	Glu 95	Leu	
Leu	Glu	Ile	Val 100	Gln	Arg	Lys	Ile	Glu 105	Glu	Ala	Lys	Gly	Asp 110	Asn	Val	
Ser	Ile	Glu 115	Ser	Leu	Ile	Ser	Met 120	Glu	Glu	Gln	Leu	Lys 125	Ser	Ala	Leu	
Ser	Val 130	Ile	Arg	Ala	Arg	Lys 135	Thr	Glu	Leu	Leu	Met 140	Glu	Leu	Val	Lys	

Page 20

Asn Leu Gln Asp Lys Glu Lys Leu Leu Lys Glu Lys Asn Lys Val Leu 145 150 155 160

MBI-0021.txt

Ala Ser Glu Val Gly Lys Leu Lys Lys Ile Leu Glu Thr Gly Asp Glu 165 170 Arg Ala Val Met Ser Pro Glu Asn Ser Ser Gly His Ser Pro Pro Glu 185 Thr Leu Pro Leu Leu Lys 195 <210> 21 <211> 753 <211> /53 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(555) <223> G1844.2 <400> 21 atg gga aga aga aga gta gag atc aaa cga att gag aac aaa agc agt 48 Met Gly Arg Arg Arg Val Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser aga caa gtc act ttc tgt aag aga cga aat ggt ctc atg gag aaa gct 96 Arg Gln Val Thr Phe Cys Lys Arg Arg Asn Gly Leu Met Glu Lys Ala cgt caa ctc tca att ctc tgt gga tcc tcc gtc gct ctt ttc atc gtc 144 Arg Gln Leu Ser Ile Leu Cys Gly Ser Ser Val Ala Leu Phe Ile Val tot toe ace gge aaa ete tae aac toe tee tee gge gae age atg gee 192 Ser Ser Thr Gly Lys Leu Tyr Asn Ser Ser Ser Gly Asp Ser Met Ala aag atc atc agt cgt ttt aaa ata caa caa gct gat gat cct gaa acc 240 Lys Ile Ile Ser Arg Phe Lys Ile Gln Gln Ala Asp Asp Pro Glu Thr ttg gat ctt gaa gac aaa act cag gat tat ctt tca cac aag gag tta 288 Leu Asp Leu Glu Asp Lys Thr Gln Asp Tyr Leu Ser His Lys Glu Leu cta gaa ata gtt caa aga aag att gaa gaa gca aaa ggg gat aat gta 336 Leu Glu Ile Val Gln Arg Lys Ile Glu Glu Ala Lys Gly Asp Asn Val 100 agt ata gaa tot ota att too atg gaa gag cag oto aag agt got otg 384 Ser Ile Glu Ser Leu Ile Ser Met Glu Glu Gln Leu Lys Ser Ala Leu 432 tct gta att aga gct agg aag aca gag tta ttg atg gag ctt gtg aag Ser Val Ile Arg Ala Arg Lys Thr Glu Leu Leu Met Glu Leu Val Lys 135 aac ctt cag gat aag gtg ggg aag ctg aag aaa att ttg gaa aca ggg Asn Leu Gln Asp Lys Val Gly Lys Leu Lys Lys Ile Leu Glu Thr Gly 480 150 155 Page 21

									MBI	-002	1.tx	t				
										Ser					cca Pro	528
				Pro	ctt Leu				cca	ccaa	tca	tcaa	cggc	tg		575
att	tttc	atc	atcc	tgat	tc a	aaaa	aggt	a aa	aaaa	attc	atg	tgta	aaa	atca	taaaga	635
agc	taca	tgt	ttta	aaat	cc t	cttc	tccc	c ct	gcat	acgg	ata	aatt	tat	agac	caaaaa	695
tat	aatg	ttt	taca	tcaa	at a	agat	atcg	a cc	tttg	tgtt	acc	ttgg	aag	acag	gatc	753
<21 <21 <21 <21	1> 2>	22 184 PRT Arab	idop	sis	thal	iana										
<40	0 >	22														
Met 1	Gly	Arg	Arg	Arg 5	Val	Glu	Ile	Lys	Arg 10	Ile	Glu	Asn	Lys	Ser 15	Ser	
Arg	Gln	Val	Thr 20	Phe	Cys	Lys	Arg	Arg 25	Asn	Gly	Leu	Met	Glu 30	Lys	Ala	
Arg	Gln	Leu 35	Ser	Ile	Leu	Cys	Gly 40	Ser	Ser	Val	Ala	Leu 45	Phe	Ile	Val	
Ser	Ser 50	Thr	Gly	Lys	Leu	Tyr 55	'Asn	Ser	Ser	Ser	Gly 60	Asp	Ser	Met	Ala	
Lys 65	Ile	Ile	Ser	Arg	Phe 70	Lys	Ile	Gln	Gln	Ala 75	Asp	Asp	Pro	Glu	Thr 80	
Leu	Asp	Leu	Glu	Asp 85	Lys	Thr	Gln	Asp	Tyr 90	Leu	Ser	His	Lys	Glu 95	Leu	
Leu	Glu	Ile	Val 100	Gln	Arg	Lys	Ile	Glu 105	Glu	Ala	Lys	Gly	Asp 110	Asn	Val	
Ser	Ile	Glu 115	Ser	Leu	Ile	Ser	Met 120	Glu	Glu	Gln	Leu	Lys 125	Ser	Ala	Leu	
Ser	Val 130	Ile	Arg	Ala	Arg	Lys 135	Thr	Glu	Leu	Leu	Met 140	Glu	Leu	Val	Lys	
Asn 145	Leu	Gln	Asp	Lys	Val 150	Gly	Lys	Leu	Lys	Lys 155	Ile	Leu	Glu	Thr	Gly 160	

MBI-0021.txt

Asp Glu Arg Ala Val Met Ser Pro Glu Asn Ser Ser Gly His Ser Pro 165 170 175

Pro Glu Thr Leu Pro Leu Lys

<210> 23 <211> 1134 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (158)..(880) <223> G861 <400> 23 60 120 atcttgatcc atcaaaatca atcccgttct cgaaagatcc attaaaatca aaacctaagc 175 tetetetett gettetaggg tttttttgtt egttgtg atg geg aga gaa aag att Met Ala Arg Glu Lys Ile cag atc agg aag atc gac aac gca acg gcg aga caa gtg acg ttt tcg Gln Ile Arg Lys Ile Asp Asn Ala Thr Ala Arg Gln Val Thr Phe Ser 223 aaa cga aga aga ggg ctt ttc aag aaa gct gaa gaa ctc tcc gtt ctc 271 Lys Arg Arg Gly Leu Phe Lys Lys Ala Glu Glu Leu Ser Val Leu tgc gac gcc gat gtc gct ctc atc atc ttc tct tcc acc gga aaa ctg 319 Cys Asp Ala Asp Val Ala Leu Ile Ile Phe Ser Ser Thr Gly Lys Leu ttc gag ttc tgt agc tcc agc atg aag gaa gtc cta gag agg cat aac 367 Phe Glu Phe Cys Ser Ser Ser Met Lys Glu Val Leu Glu Arg His Asn ttg cag tca aag aac ttg gag aag ctt gat cag cca tct ctt gag tta 415 Leu Gln Ser Lys Asn Leu Glu Lys Leu Asp Gln Pro Ser Leu Glu Leu cag ctg gtt gag aac agt gat cac gcc cga atg agt aaa gaa att gcg Gln Leu Val Glu Asn Ser Asp His Ala Arg Met Ser Lys Glu Ile Ala gac aag agc cac cga cta agg caa atg aga gga gag gaa ctt caa gga 511 Asp Lys Ser His Arg Leu Arg Gln Met Arg Gly Glu Glu Leu Gln Gly 559 ctt gac att gaa gag ctt cag cag cta gag aag gcc ctt gaa act ggt Leu Asp Ile Glu Glu Leu Gln Gln Leu Glu Lys Ala Leu Glu Thr Gly 125 ttg acg cgt gtg att gaa aca aag agt gac aag att atg agt gag atc 607 Leu Thr Arg Val Ile Glu Thr Lys Ser Asp Lys Ile Met Ser Glu Ile 140 145 Page 23

									MBI.	-002	1.txi	C				
agc Ser	gaa Glu	ctt Leu	cag Gln	aaa Lys 155	aag Lys	gga Gly	atg Met	caa Gln	ttg Leu 160	atg Met	gat Asp	gag Glu	aac Asn	aag Lys 165	cgg Arg	655
											aac Asn					703
											ggt Gly					751
aac Asn	gct Ala 200	gct Ala	gtg Val	tac Tyr	gag Glu	gaa Glu 205	gga Gly	cag Gln	tcg Ser	tcg Ser	gag Glu 210	tct Ser	att Ile	act Thr	aac Asn	799
gcc Ala 215	gga Gly	aac Asn	tct Ser	acc Thr	gga Gly 220	gcg Ala	cct Pro	gtt Val	gac Asp	tcc Ser 225	gag Glu	agc Ser	tcc Ser	gac Asp	act Thr 230	847
					tta Leu					tag	agat	ggaa	aca a	attca	aagaa	900
gttg	gatgg	gag t	gagg	gagag	gt aa	atgta	aato	c ttt	ttaa	actc	ggta	agtaa	aca a	agaga	acaatg	960
tcta	agta	agt g	gaatt	ctca	aa at	gttt	gtgt	aag	gtttc	ctgc	ctat	ggaa	aga g	ggctt	tcatt	1020
ttta	tgat	tt t	cact	atgt	a to	gatct	ctct	tca	actgo	att	tcts	ggtta	agt a	acgo	gcttgt	1080
caco	gata	aaa c	ctttc	ctcgt	ct at	ggaa	aagtt	aga	aataa	aaaa	aaaa	aaaa	aaa a	aaaa		1134
<210 <211 <212 <213	.> 2 !> I !> I		idops	sis t	:hali	lana										
<400		24	4.7	_				_	_		_			ml	7.7 -	
Met 1	Ala	Arg	Glu	Lys 5	Ile	GIn	Ile	Arg	Lys 10	lle	Asp	Asn	Ala	Thr 15	Ala	
Arg	Gln	Val	Thr 20	Phe	Ser	Lys	Arg	Arg 25	Arg	Gly	Leu	Phe	Lys 30	Lys	Ala	
Glu	Glu	Leu 35	Ser	Val	Leu	Cys	Asp 40	Ala	Asp	Val	Ala	Leu 45	Ile	Ile	Phe	
Ser	Ser 50	Thr	Gly	Lys	Leu	Phe 55	Glu	Phe	Cys	Ser	Ser 60	Ser	Met	Lys	Glu	
Val 65	Leu _.	Glu	Arg	His	Asn 70	Leu	Gln	Ser	Lys	Asn 75	Leu	Glu	Lys	Leu	Asp 80	
Gln	Pro	Ser	Leu	Glu 85	Leu	Gln	Leu	Val	90	Asn age	Ser 24	Asp	His	Ala 95	Arg	

Met	Ser	Lys	Glu 100	Ile	Ala	Asp	Lys	Ser 105	His	Arg	Leu	Arg	Gln 110	Met	Arg	
Gly	Glu	Glu 115	Leu	Gln	Gly	Leu	Asp 120	Ile	Glu	Glu	Leu	Gln 125	Gln	Leu	Glu	
Lys	Ala 130	Leu	Glu	Thr	Gly	Leu 135	Thr	Arg	Val	Ile	Glu 140	Thr	Lys	Ser	Asp	
Lys 145	Ile	Met	Ser	Glu	Ile 150	Ser	Glu	Leu	Gln	Lys 155	Lys	Gly	Met	Gln	Leu 160	
Met	Asp	Glu	Asn	Lys 165	Arg	Leu	Arg	Gln	Gln 170	Gly	Thr	Gln	Leu	Thr 175	Glu	
Glu	Asn	Glu	Arg 180	Leu	Gly	Met	Gln	Ile 185	Cys	Asn	Asn	Val	His 190	Ala	His	
Gly	Gly	Ala 195	Glu	Ser	Glu	Asn	Ala 200	Ala	Val	Tyr	Glu	Glu 205	Gly	Gln	Ser	
Ser	Glu 210	Ser	Ile	Thr	Asn	Ala 215	Gly	Asn	Ser	Thr	Gly 220	Ala	Pro	Val	Asp	
Ser 225	Glu	Ser	Ser	Asp	Thr 230	Ser	Leu	Arg	Leu	Gly 235	Leu	Pro	Tyr	Gly	Gly 240	
<210 <211 <212 <213	L> 1 2> I	25 1552 NA Arabi	dops	sis t	hali	.ana										
<220 <221 <221 <223	L> C 2> (DS (193) 8861.	(8 1	325)												
<400 att	-	:5 :tc t	cnca	aaat	t ta	itttc	ctct	ggc	ttct	tct	tcct	cctc	ect c	cato	ctcttc	60
tctt	tact	ct c	tctt	taat	c at	ctct	catt	ctt	gaat	ctt	gato	cato	caa a	atca	atccc	120
gtto	ctcga	aa g	gatco	atta	ıa aa	ıtcaa	aacc	: taa	gcto	tct	ctct	tgct	tc t	aggg	jtttt	180
ttgt	tcgt	tg t	g at Me 1	g go t Al	g ag a Ar	ga ga g Gl	a aa u Ly 5	ıg at 's Il	t ca .e Gl	ıg at .n Il	c ag e Ar	gg aa g Ly 10	s Il	c ga .e As	ac aac sp Asn	231
			aga Arg						Lys		Arg 25					279

										002.		_				
aag Lys 30	aaa Lys	gct Ala	gaa Glu	gaa Glu	ctc Leu 35	tcc Ser	gtt Val	ctc Leu	tgc Cys	gac Asp 40	gcc Ala	gat Asp	gtc Val	gct Ala	ctc Leu 45	327
atc Ile	atc Ile	ttc Phe	tct Ser	tcc Ser 50	acc Thr	gga Gly	aaa Lys	ctg Leu	ttc Phe 55	gag Glu	ttc Phe	tgt Cys	agc Ser	tcc Ser 60	agc Ser	375
atg Met	aag Lys	gaa Glu	gtc Val 65	cta Leu	gag Glu	agg Arg	cat His	aac Asn 70	ttg Leu	cag Gln	tca Ser	aag Lys	aac Asn 75	ttg. Leu	gag Glu	423
aag Lys	ctt Leu	gat Asp 80	cag Gln	cca Pro	tct Ser	ctt Leu	gag Glu 85	tta Leu	cag Gln	ctg Leu	gtt Val	gag Glu 90	aac Asn	agt Ser	gat Asp	471
								gcg Ala								519
caa Gln 110	atg Met	aga Arg	gga Gly	gag Glu	gaa Glu 115	ctt Leu	caa Gln	gga Gly	ctt Leu	gac Asp 120	att Ile	gaa Glu	gag Glu	ctt Leu	cag Gln 125	567
cag Gln	cta Leu	gag Glu	aag Lys	gcc Ala 130	ctt Leu	gaa Glu	act Thr	ggt Gly	ttg Leu 135	acg Thr	cgt Arg	gtg Val	att Ile	gaa Glu 140	aca Thr	615
aag Lys	agt Ser	gac Asp	aag Lys 145	att Ile	atg Met	agt Ser	gag Glu	atc Ile 150	agc Ser	gaa Glu	ctt Leu	cag Gln	aaa Lys 155	aag Lys	gga Gly	663
atg Met	caa Gln	ttg Leu 160	atg Met	gat Asp	gag Glu	aac Asn	aag Lys 165	cgg Arg	ttg Leu	agg Arg	cag Gln	caa Gln 170	gta Val	tgt Cys	gtc Val	711
tta Leu	ccc Pro 175	tct Ser	ctg Leu	ttg Leu	ata Ile	aca Thr 180	aat Asn	ccc Pro	ttt Phe	ctt Leu	ttg Leu 185	tct Ser	acc Thr	att Ile	aac Asn	759
gta Val 190	cac His	act Thr	cct Pro	aaa Lys	ttt Phe 195	aat Asn	ccc Pro	cag Gln	ttg Leu	tct Ser 200	aca Thr	aca Thr	cat His	atg Met	ttt Phe 205	807
		act Thr			taa	atga	aataa	aac o	aagt	gata	at ag	gegeg	gattt	Ξ.		855
aaaa	atgt	ct t	taaa	acta	aa ag	ggtaa	accat	gta	igcta	agtt	agto	ctcta	agg g	gtcct	agagg	915
tcta	cgaç	gtg t	gcat	gcat	g ga	atttg	ggtgd	gtt	tttt	ctt	tttc	catct	tc a	atttt	gtttt	975
ttga	aaca	ag g	gaaco	cataa	aa co	gaata	atata	a tct	aatt	ctt	gttt	gata	ata t	agtt	tggtc	1035
gagg	gctto	cat g	gtcaa	agatt	t go	ctcat	tcgt	agt	tagt	tga	tcto	ctaga	aga a	atto	caaaac	1095
acat	ggtg	gcc a	ectaa	aaaa	ca ca	aaaat	gcaa	a ata	ctta	agct	agag	gaact	ta a	atgat	atgtt	1155
ttgt	ctt	gat t	tttg	gcago	gg aa	acgca	acta	a acç	gaag	gaga	acga	agcga	act t	ggca	atgcaa	1215
atat	gtaa	ica a	atgto	gcato	gc ac	cacgo	gtggt	gct	gaat	cgg	agaa	acgct	gc t	gtgt	acgag	1275

1552

			MBI-0023	l.txt		
gaaggacagt	cgtcggagtc	tattactaac	gccggaaact	ctaccggagc	gcctgttgac	1335
tccgagagct	ccgacacttc	ccttaggctc	ggcttaccgt	atggtggtta	gagatggaac	1395
aattcaaaga	agttgatgga	gtgaggagag	taatgtaaat	ctttttaact	cggtagtaac	1455
aagagacaat	gtctaagtag	tgaattctca	aatgtttgtg	taagtttctg	cctatggaag	1515

aggettteat ttttatgatt aaaaaaaaa aaaaaaa <210> 26 <211> 210 <212> PRT <213> Arabidopsis thaliana <400> 26 Met Ala Arg Glu Lys Ile Gln Ile Arg Lys Ile Asp Asn Ala Thr Ala Arg Gln Val Thr Phe Ser Lys Arg Arg Arg Gly Leu Phe Lys Lys Ala Glu Glu Leu Ser Val Leu Cys Asp Ala Asp Val Ala Leu Ile Ile Phe Ser Ser Thr Gly Lys Leu Phe Glu Phe Cys Ser Ser Ser Met Lys Glu Val Leu Glu Arg His Asn Leu Gln Ser Lys Asn Leu Glu Lys Leu Asp Gln Pro Ser Leu Glu Leu Gln Leu Val Glu Asn Ser Asp His Ala Arg 85 90 Met Ser Lys Glu Ile Ala Asp Lys Ser His Arg Leu Arg Gln Met Arg Gly Glu Glu Leu Gln Gly Leu Asp Ile Glu Glu Leu Gln Gln Leu Glu Lys Ala Leu Glu Thr Gly Leu Thr Arg Val Ile Glu Thr Lys Ser Asp Lys Ile Met Ser Glu Ile Ser Glu Leu Gln Lys Lys Gly Met Gln Leu Met Asp Glu Asn Lys Arg Leu Arg Gln Gln Val Cys Val Leu Pro Ser

Leu Leu Ile Thr Asn Pro Phe Leu Leu Ser Thr Ile Asn Val His Thr Page 27

165

MBI-0021.txt 180 185 190

Pro Lys Phe Asn Pro Gln Leu Ser Thr Thr His Met Phe Asp His Thr 195 200 200

Val Arg 210	
<210> 27 <211> 943 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (110)(700) <223> G1759	
<400> 27 cgagaaaagg aaaaaaaaa atagaaagag aaaacgctta gtatctccgg cgacttgaac	60
ccaaacctga ggatcaaatt agggcacaaa gccctctcgg agagaagcc atg gga aga Met Gly Arg 1	118
aaa aaa cta gaa atc aag cga att gag aac aaa agt agc cga caa gtc Lys Lys Leu Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser Arg Gln Val 5 10 15	166
acc ttc tcc aaa cgt cgc aac ggt ctc atc gag aaa gct cgt cag ctt Thr Phe Ser Lys Arg Arg Asn Gly Leu Ile Glu Lys Ala Arg Gln Leu 20 25 30 35	214
tct gtt ctc tgt gac gca tcc gtc gct ctt ctc gtc gtc tcc gcc tcc Ser Val Leu Cys Asp Ala Ser Val Ala Leu Leu Val Val Ser Ala Ser 40 45 50	262
ggc aag ctc tac agc ttc tcc tcc ggc gat aac ctg gtc aag atc ctt Gly Lys Leu Tyr Ser Phe Ser Ser Gly Asp Asn Leu Val Lys Ile Leu 55 60 65	310
gat cga tat ggg aaa cag cat gct gat gat ctt aaa gcc ttg gat cat Asp Arg Tyr Gly Lys Gln His Ala Asp Asp Leu Lys Ala Leu Asp His 70 75 80	358
cag tca aaa gct ctg aac tat ggt tca cac tat gag cta ctt gaa ctt Gln Ser Lys Ala Leu Asn Tyr Gly Ser His Tyr Glu Leu Leu Glu Leu 85 90 95	406
gtg gat agc aag ctt gtg gga tca aat gtc aaa aat gtg agt atc gat Val Asp Ser Lys Leu Val Gly Ser Asn Val Lys Asn Val Ser Ile Asp 100 115	454
gct ctt gtt caa ctg gag gaa cac ctt gag act gcc ctc tcc gtg act Ala Leu Val Gln Leu Glu Glu His Leu Glu Thr Ala Leu Ser Val Thr 120 125 130	502
aga gcc aag aag acc gaa ctc atg ttg aag ctt gtt gag aat ctt aaa Arg Ala Lys Lys Thr Glu Leu Met Leu Lys Leu Val Glu Asn Leu Lys Page 28	550

MBI-0021.txt 135 140 145	
gaa aag gag aaa atg ctg aaa gaa gag aac cag gtt ttg gct agc cag Glu Lys Glu Lys Met Leu Lys Glu Glu Asn Gln Val Leu Ala Ser Gln 150 155 160	598
atg gag aat aat cat cat gtg gga gca gaa gct gag atg gag atg tca Met Glu Asn Asn His His Val Gly Ala Glu Ala Glu Met Glu Met Ser 165 170 175	646
cct gct gga caa atc tcc gac aat ctt ccg gtg act ctc cca cta ctt Pro Ala Gly Gln Ile Ser Asp Asn Leu Pro Val Thr Leu Pro Leu Leu 180 185 190 195	694
aat tag ccaccttaaa tcggcggttg aaatcaaaat ccaaaacata tataattatg Asn	750
aagaaaaaaa aaataagata tgtaattatt ccgctgataa gggcgagcgt ttgtatatct	810
taatactctc tctttggcca agagactttg tgtgtgatac ttaagtagac ggaactaagt	870
caatactatc tgttttaaga caaaaggttg atgaactttg taccttattc gtgtgagaaa	930
aaaaaaaaa aaa	943
<210> 28 <211> 196 <212> PRT <213> Arabidopsis thaliana	
<400> 28	
Met Gly Arg Lys Lys Leu Glu Ile Lys Arg Ile Glu Asn Lys Ser Ser 1 10 15	

Arg Gln Val Thr Phe Ser Lys Arg Arg Asn Gly Leu Ile Glu Lys Ala 20 25 30

Arg Gln Leu Ser Val Leu Cys Asp Ala Ser Val Ala Leu Leu Val Val 35 40 45

Ser Ala Ser Gly Lys Leu Tyr Ser Phe Ser Ser Gly Asp Asn Leu Val50 55 60

Lys Ile Leu Asp Arg Tyr Gly Lys Gln His Ala Asp Asp Leu Lys Ala 65 70 75 80

Leu Asp His Gln Ser Lys Ala Leu Asn Tyr Gly Ser His Tyr Glu Leu 85 90 95

Leu Glu Leu Val Asp Ser Lys Leu Val Gly Ser Asn Val Lys Asn Val 100 105 110

Ser Ile Asp Ala Leu Val Gln Leu Glu Glu His Leu Glu Thr Ala Leu Page 29 MBI-0021.txt 115 120 125

Ser Val Thr Arg Ala Lys Lys Thr Glu Leu Met Leu Lys Leu Val Glu Asn Leu Lys Glu Lys Glu Lys Met Leu Lys Glu Glu Asn Gln Val Leu Ala Ser Gln Met Glu Asn Asn His His Val Gly Ala Glu Ala Glu Met 165 Glu Met Ser Pro Ala Gly Gln Ile Ser Asp Asn Leu Pro Val Thr Leu 185 Pro Leu Leu Asn 195 <210> 29 <211> 1171 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (63)..(959) <223> G192 <400> 29 cttttttctc ttctctcctc agagattcga agctttttgt ctcccctgag taaccaaatt 60 107 ca atg gcc gac gat tgg gat ctc cac gcc gta gtc aga ggc tgc tca Met Ala Asp Asp Trp Asp Leu His Ala Val Val Arg Gly Cys Ser 10 gcc gta agc tca tca gct act acc acc gta tat tcc ccc ggc gtt tca Ala Val Ser Ser Ser Ala Thr Thr Thr Val Tyr Ser Pro Gly Val Ser 155 tot cac aca aac cot ata tto acc gto gga cga caa agt aat goo gto 203 Ser His Thr Asn Pro Ile Phe Thr Val Gly Arg Gln Ser Asn Ala Val tcc ttc gga gag att cga gat ctc tac aca ccg ttc aca caa gaa tct 251 Ser Phe Gly Glu Ile Arg Asp Leu Tyr Thr Pro Phe Thr Gln Glu Ser 55 gtc gtc tct tcg ttt tct tgt ata aac tac cca gaa gaa cct aga aag 299 Val Val Ser Ser Phe Ser Cys Ile Asn Tyr Pro Glu Glu Pro Arg Lys 347 cca cag aac cag aaa cgt cct ctt tct ctc tct gct tct tcc ggt agc Pro Gln Asn Gln Lys Arg Pro Leu Ser Leu Ser Ala Ser Ser Gly Ser 90 80 gtc act agc aaa ccc agt ggc tcc aat acc tct aga tct aaa aga aga 395 Val Thr Ser Lys Pro Ser Gly Ser Asn Thr Ser Arg Ser Lys Arg Arg

Page 30

	100	MBI- 105	0021.txt	110
Lys Ile Gln H	at aag aaa gtg is Lys Lys Val 15	tgc cat gta Cys His Val 120	gca gca gaa gct Ala Ala Glu Ala 125	tta aac 443 Leu Asn
tcc gat gtc to Ser Asp Val Ti 130	gg gca tgg cga rp Ala Trp Arg	aag tac gga Lys Tyr Gly 135	cag aaa ccc atc Gln Lys Pro Ile 140	aaa ggt 491 Lys Gly
tca cca tat co Ser Pro Tyr Pr 145	ca aga gga tac ro Arg Gly Tyr 150	Tyr Arg Cys	agt aca tca aaa Ser Thr Ser Lys 155	ggt tgt 539 Gly Cys
tta gcc cgt aa Leu Ala Arg Ly 160	aa caa gtg gag ys Gln Val Glu 165	cga aat aga Arg Asn Arg	tcc gac ccg aag Ser Asp Pro Lys 170	atg ttt 587 Met Phe 175
atc gtc act ta Ile Val Thr Ty	ac acg gcg gag yr Thr Ala Glu 180	cat aat cat His Asn His 185	cca gct ccg aca Pro Ala Pro Thr	cac cgt 635 His Arg 190
Asn Ser Leu Al			cca tcc gat caa Pro Ser Asp Gln 205	
agt aaa tct co Ser Lys Ser Pi 210	eg acg acc act ro Thr Thr Thr	att gct act Ile Ala Thr 215	tat tca tcg tct Tyr Ser Ser Ser 220	ccg gtg 731 Pro Val
act tca gcc ga Thr Ser Ala As 225	ac gaa ttt gtt sp Glu Phe Val 230	Leu Pro Val	gag gat cat cta Glu Asp His Leu 235	gcg gtg 779 Ala Val
gga gat ctt ga Gly Asp Leu As 240	ac gga gaa gaa sp Gly Glu Glu 245	Asp Leu Leu	tct ttg tcg gat Ser Leu Ser Asp 250	acg gtg 827 Thr Val 255
			gaa ttc gca gcc Glu Phe Ala Ala	
Ser Phe Ser G	gg aac tcg gct ly Asn Ser Ala 75	ccg gcg agt Pro Ala Ser 280	ttt gat ctc tct Phe Asp Leu Ser 285	tgg gtt 923 Trp Val
gtg aac agt go Val Asn Ser Al 290	cc gcc act acc la Ala Thr Thr	acc gga gga Thr Gly Gly 295	ata tga ttagatta Ile	acg 969
acggcttaga ata	actcttat tagga	cagat ttatagg	att aaggaattat t	ctcggagca 1029
tatgtaaaaa tag	ggataaaa gaaaa	tgttc tttgtta	ctt tttttcgggt t	ttcttccta 1089
ttgtttctaa aca	atcttaga aaaaa	tttaa ttgtata	ttc cttaagctcg a	tacatcttg 1149
ttttaaaaaa aaa	aaaaaaa aa			1171

<210> 30 <211> 298 <212> PRT <213> Arabidopsis thaliana

MBI-0021.txt

<400> 30

Met Ala Asp Asp Trp Asp Leu His Ala Val Val Arg Gly Cys Ser Ala 1 10 15

Val Ser Ser Ser Ala Thr Thr Val Tyr Ser Pro Gly Val Ser Ser 20 25 30

His Thr Asn Pro Ile Phe Thr Val Gly Arg Gln Ser Asn Ala Val Ser 35 40 45

Phe Gly Glu Ile Arg Asp Leu Tyr Thr Pro Phe Thr Gln Glu Ser Val 50 60

Val Ser Ser Phe Ser Cys Ile Asn Tyr Pro Glu Glu Pro Arg Lys Pro 65 70 75 80

Gln Asn Gln Lys Arg Pro Leu Ser Leu Ser Ala Ser Ser Gly Ser Val $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Thr Ser Lys Pro Ser Gly Ser Asn Thr Ser Arg Ser Lys Arg Lys
100 105 110

Ile Gln His Lys Lys Val Cys His Val Ala Ala Glu Ala Leu Asn Ser 115 120 125

Asp Val Trp Ala Trp Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly Ser 130 135 140

Pro Tyr Pro Arg Gly Tyr Tyr Arg Cys Ser Thr Ser Lys Gly Cys Leu 145 150 155 160

Ala Arg Lys Gln Val Glu Arg Asn Arg Ser Asp Pro Lys Met Phe Ile 165 170 175

Val Thr Tyr Thr Ala Glu His Asn His Pro Ala Pro Thr His Arg Asn 180 185 190

Ser Leu Ala Gly Ser Thr Arg Gln Lys Pro Ser Asp Gln Gln Thr Ser 195 200 205

Lys Ser Pro Thr Thr Thr Ile Ala Thr Tyr Ser Ser Ser Pro Val Thr 210 220

Ser Ala Asp Glu Phe Val Leu Pro Val Glu Asp His Leu Ala Val Gly 225 230 235 240

Page 32

MBI-0021.txt Asp Leu Asp Gly Glu Glu Asp Leu Leu Ser Leu Ser Asp Thr Val Val 245 250 255	
Ser Asp Asp Phe Phe Asp Gly Leu Glu Glu Phe Ala Ala Gly Asp Ser 260 265 270	
Phe Ser Gly Asn Ser Ala Pro Ala Ser Phe Asp Leu Ser Trp Val Val 275 280 285	
Asn Ser Ala Ala Thr Thr Gly Gly Ile 290 295	
<210> 31 <211> 1139 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (106)(1032) <223> G234	
<400> 31 cacaacatca tacccaccaa catatataat cttgatcata gagagataaa cagaggccgo	60
tatcaagaac aagactaaga acaagacttc actaggagta caagt atg gga aga gca Met Gly Arg Ala	
1	ı
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu 5 10 15 20	165
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu	
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu 5 10 15 20 gaa gat gca aaa ctc aaa tct tac att gaa aat agt ggc acc gga ggc Glu Asp Ala Lys Leu Lys Ser Tyr Ile Glu Asn Ser Gly Thr Gly Gly	165
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu 15 20 gaa gat gca aaa ctc aaa tct tac att gaa aat agt ggc acc gga ggc Glu Asp Ala Lys Leu Lys Ser Tyr Ile Glu Asn Ser Gly Thr Gly Gly 30 aat tgg atc gct ttg cct caa aag att ggt tta aag aga tgt gga aag Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Lys Arg Cys Gly Lys	165 213
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu 20 gaa gat gca aaa ctc aaa tct tac att gaa aat agt ggc acc gga ggc Glu Asp Ala Lys Leu Lys Ser Tyr Ile Glu Asn Ser Gly Thr Gly Gly 35 aat tgg atc gct ttg cct caa aag att ggt tta aag aga tgt gga aag Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Lys Arg Cys Gly Lys 50 agt tgc agg ctg agg tgg ctt aac tat ctt aga cca aac atc aaa cat Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asn Ile Lys His	165 213 261
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu 20 gaa gat gca aaa ctc aaa tct tac att gaa aat agt ggc acc gga ggc Glu Asp Ala Lys Leu Lys Ser Tyr Ile Glu Asn Ser Gly Thr Gly Gly 35 aat tgg atc gct ttg cct caa aag att ggt tta aag aga tgt gga aag Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Lys Arg Cys Gly Lys 50 agt tgc agg ctg agg tgg ctt aac tat ctt aga cca aac atc aaa cat Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asn Ile Lys His Gly Gly Gly Phe Ser Glu Glu Glu Glu Glu Asn Ile Ile Cys Ser Leu Tyr Leu	165 213 261 309
ccg tgt tgt gac aaa gca aac gtg aag aaa ggg cct tgg tct cct gag pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro Trp Ser Pro Glu 20 gaa gat gca aaa ctc aaa tct tac att gaa aat agt ggc acc gga ggc Glu Asp Ala Lys Leu Lys Ser Tyr Ile Glu Asn Ser Gly Thr Gly Gly 30 aat tgg atc gct ttg cct caa aag att ggt tta aag aga tgt ggc acg Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Lys Arg Cys Gly Lys 40 agt tgc agg ctg agg tgg ctt aac tat ctt aga cca aac atc aaa cat Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asn Ile Lys His Gly Gly Phe Ser Glu Glu Glu Glu Asn Ile Ile Cys Ser Leu Tyr Leu Tyr Leu Arg Thr Leu Tyr Tyr Leu Tyr Tyr Leu Tyr Tyr Tyr Leu Tyr Tyr Tyr Leu Tyr	165 213 261 309 357

Leu	Ile	Asn	Lys 120	Gln	Arg	Lys	Glu	Leu 125			l.txi Ala		Met 130	Glu	Gln	
caa Gln	gag Glu	atg Met 135	atg Met	gtg Val	atg Met	atg Met	aag Lys 140	aga Arg	caa Gln	cac His	caa Gln	caa Gln 145	caa Gln	caa Gln	atc Ile	549
											atg Met 160					597
											ttc Phe					645
											tgc Cys					693
tgg Trp	tca Ser	aga Arg	tcg Ser 200	aag Lys	atc Ile	aag Lys	aac Asn	tgg Trp 205	aga Arg	aaa Lys	caa Gln	acc Thr	tca Ser 210	tca Ser	tca Ser	741
											tct Ser					789
ttg Leu	tta Leu 230	gat Asp	cct Pro	aat Asn	cat His	aac Asn 235	cac His	tta Leu	gga Gly	tca Ser	gga Gly 240	gag Glu	ggt Gly	ttc Phe	tcc Ser	837
											cca Pro					885
agt Ser	aat Asn	gat Asp	aat Asn	cag Gln 265	tgg Trp	ttc Phe	Gly 999	aat Asn	ttc Phe 270	cag Gln	gcc Ala	gaa Glu	acc Thr	gta Val 275	aac Asn	933
											gat Asp					981
agt Ser	tgg Trp	gaa Glu 295	gac Asp	ata Ile	agc Ser	tct Ser	ctt Leu 300	gtt Val	tat Tyr	tct Ser	gat Asp	tca Ser 305	aag Lys	caa Gln	ttt Phe	1029
ttt taattataat aatatattat tottaagatg aaacgtacat cattattatt 1082 Phe																
aattgggggt acgtaacgta tatatggaat aacgatctag tttgtttaaa tttaaaa 1139															1139	
<211 <212	<210> 32 <211> 309 <212> PRT <213> Arabidopsis thaliana															
<400)> 3	32														
36-4	~1	7	7.7.	Dage	Circ	Circ	7 ~~	T	777	7	7727	T 170	Tira	C137	Dro	

Met Gly Arg Ala Pro Cys Cys Asp Lys Ala Asn Val Lys Lys Gly Pro 1 5 Page 34

MBI-0021.txt

Page 35

Trp Ser Pro Glu Glu Asp Ala Lys Leu Lys Ser Tyr Ile Glu Asn Ser Gly Thr Gly Gly Asn Trp Ile Ala Leu Pro Gln Lys Ile Gly Leu Lys Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Leu Asn Tyr Leu Arg Pro Asn Ile Lys His Gly Gly Phe Ser Glu Glu Glu Asn Ile Ile Cys Ser Leu Tyr Leu Thr Ile Gly Ser Arg Trp Ser Ile Ile Ala Ala Gln Leu Pro Gly Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr Arg Leu Lys Lys Leu Ile Asn Lys Gln Arg Lys Glu Leu Gln Glu Ala Cys Met Glu Gln Glu Met Met Val Met Met Lys Arg Gln His Gln Gln Gln Gln Ile Gln Thr Ser Phe Met Met Arg Gln Asp Gln Thr Met 155 Phe Thr Trp Pro Leu His His Asn Val Gln Val Pro Ala Leu Phe 165 Arg Ile Lys Pro Thr Arg Phe Ala Thr Lys Lys Met Leu Ser Gln Cys 180 185 Ser Ser Arg Thr Trp Ser Arg Ser Lys Ile Lys Asn Trp Arg Lys Gln Thr Ser Ser Ser Arg Phe Asn Asp Asn Ala Phe Asp His Leu Ser Phe Ser Gln Leu Leu Asp Pro Asn His Asn His Leu Gly Ser Gly Glu Gly Phe Ser Met Asn Ser Ile Leu Ser Ala Asn Thr Asn Ser Pro Leu Leu Asn Thr Ser Asn Asp Asn Gln Trp Phe Gly Asn Phe Gln Ala

MBI-0021.txt 260 265 270

Glu Thr Val Asn Leu Phe Ser Gly Ala Ser Thr Ser Thr Ser Ala Asp 275 280 285

Gln Ser Thr Ile Ser Trp Glu Asp Ile Ser Ser Leu Val Tyr Ser Asp 290 295 300

Ser Lys Gln Phe Phe

<210> 33 <211> 922 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (54)..(647) <223> G361

<400> 33
tetgtetete tetetetett tgtaaatata catatataga taageteaca tat atg 56
Met
1

gcg act gaa aca tct tct ttg aag ctc ttc ggt ata aac cta ctt gaa 104 Ala Thr Glu Thr Ser Ser Leu Lys Leu Phe Gly Ile Asn Leu Leu Glu 5 10 15

acg acg tcg gtt caa aac cag tca tcg gaa cca aga ccc gga tcc gga
Thr Thr Ser Val Gln Asn Gln Ser Ser Glu Pro Arg Pro Gly Ser Gly
20 25 30

tca gga tcc gag tca cgt aag tac gag tgt caa tac tgt tgt aga gag
Ser Gly Ser Glu Ser Arg Lys Tyr Glu Cys Gln Tyr Cys Cys Arg Glu
35 40 45

ttt gct aac tct caa gct ctt ggt ggt cac caa aac gct cac aag aaa 248
Phe Ala Asn Ser Gln Ala Leu Gly Gly His Gln Asn Ala His Lys Lys
50 60 65

gag cgt cag ctt ctt aaa cgt gca cag atg tta gct act cgt ggt ttg
Glu Arg Gln Leu Leu Lys Arg Ala Gln Met Leu Ala Thr Arg Gly Leu
70 75 80

cca cgt cat cat aat ttt cac cct cat acc aat ccg ctt ctc tcc gcc 344
Pro Arg His His Asn Phe His Pro His Thr Asn Pro Leu Leu Ser Ala
85 90 95

ttc gcg ccg ctg cct cac ctc ctc tct cag ccg cat cct ccg ccg cat

Phe Ala Pro Leu Pro His Leu Leu Ser Gln Pro His Pro Pro Pro His

100

110

atg atg ctc tct cct tct tct tcg agt tct aag tgg ctt tac ggt gaa 440
Met Met Leu Ser Pro Ser Ser Ser Ser Lys Trp Leu Tyr Gly Glu
115 120 125

cac atg tcg tca His Met Ser Ser 130	caa aac gcc gtt ggg Gln Asn Ala Val Gly 135	MBI-0021.txt tac ttt cat ggt Tyr Phe His Gly 140	gga agg gga Gly Arg Gly 145
ctt tac gga ggt Leu Tyr Gly Gly	ggc atg gag tct atg Gly Met Glu Ser Met 150	gcc gga gaa gta Ala Gly Glu Val 155	aag act cat Lys Thr His 160
ggt ggt tct ttg Gly Gly Ser Leu 165	ccg gag atg agg agg Pro Glu Met Arg Arg 170	ttc gcc gga gat Phe Ala Gly Asp	agt gat cgg Ser Asp Arg 175
	aag tta gag aat ggt Lys Leu Glu Asn Gly 185		
agc ctt ggg cca Ser Leu Gly Pro 195	tga atgattataa tttt	ggccca gtaaagatct	gtaaaatact
actaggattt catt	tttata gagtatgttt tt	ttccttaa tttcggtt	ga aattggtgaa
tatttttatc tctt	acttac caaatctcat at	ttctatgt atgcgttt	gc tttcactttt
tttttttata taat	tcttct tgtaaaaaat gca	aatgtgag ttttcttc	cc tatcattctg
tcaagctttg gttc	aattat ttagtaatcg aa	taatatag gaatagtg	rtt gaaag
<210> 34 <211> 197 <212> PRT <213> Arabidop	sis thaliana		
<400> 34			
Met Ala Thr Glu 1	Thr Ser Ser Leu Lys 5	Leu Phe Gly Ile 10	Asn Leu Leu 15
Glu Thr Thr Ser 20	Val Gln Asn Gln Ser 25	Ser Glu Pro Arg	Pro Gly Ser 30
Gly Ser Gly Ser 35	Glu Ser Arg Lys Tyr 40	Glu Cys Gln Tyr 45	Cys Cys Arg
Glu Phe Ala Asn 50	Ser Gln Ala Leu Gly 55	Gly His Gln Asn 60	Ala His Lys
Lys Glu Arg Gln 65	Leu Leu Lys Arg Ala 70	Gln Met Leu Ala 75	Thr Arg Gly 80
Leu Pro Arg His	His Asn Phe His Pro 85	His Thr Asn Pro	Leu Leu Ser 95
Ala Phe Ala Pro	Leu Pro His Leu Leu 105	Ser Gln Pro His	Pro Pro Pro 110

115		Pro Ser	Ser Ser 120	Ser Ser	Lys Trp 125		yr Gly	
Glu His Met 130	Ser Ser	Gln Asn 135		Gly Tyr	Phe His 140	Gly G	ly Arg	
Gly Leu Tyr 145	Gly Gly	Gly Met	Glu Ser	Met Ala 155		Val L	ys Thr 160	
His Gly Gly	Ser Leu 165		Met Arg	Arg Phe 170	Ala Gly		er Asp 75	
Arg Ser Ser	Gly Ile 180	Lys Leu	Glu Asn 185		Gly Leu	Asp L 190	eu His	
Leu Ser Leu 195	-							
<210> 35 <211> 420 <212> DNA <213> Arab	idopsis	thaliana						
<220> <221> CDS <222> (1). <223> G486	. (420)							
<400> 35 atg aca gac Met Thr Asp 1							rg Leu	48
	240 040							
atg aag caa Met Lys Gln								96
	Ile Leu 20 caa gaa	Pro Ser	Asn Ala 25 aca gag	Lys Ile	Ser Lys	Glu A 30 gtt a	la Lys	96 144
Met Lys Gln caa aca gtt Gln Thr Val	lle Leu 20 caa gaa Gln Glu gag aag	Pro Ser tgt gca Cys Ala tgc cac	Asn Ala 25 aca gag Thr Glu 40 agg gag	ttc ata Phe Ile	ser Lys agc ttt ser Phe 45 aag acg	Glu A 30 gtt a Val Ti	la Lys ca tgc hr Cys at gga	
Met Lys Gln caa aca gtt Gln Thr Val 35 gaa gca tca Glu Ala Ser	Ile Leu 20 caa gaa Gln Glu gag aag Glu Lys	tgt gca Cys Ala tgc cac Cys His 55 gct ctc	Asn Ala 25 aca gag Thr Glu 40 agg gag Arg Glu agc act	ttc ata Phe Ile aat cgg Asn Arg ctc ggc	agc ttt Ser Phe 45 aag acg Lys Thr 60	Glu A. 30 gtt ac Val Tl gtg ac Val A. aac tc	la Lys ca tgc hr Cys at gga sn Gly at gct	144
Met Lys Gln caa aca gtt Gln Thr Val 35 gaa gca tca Glu Ala Ser 50 gac gac atc Asp Asp Ile	Ile Leu 20 caa gaa Gln Glu gag aag Glu Lys tgg tgg Trp Trp ggt agg	tgt gca Cys Ala tgc cac Cys His 55 gct ctc Ala Leu 70 cat ctt	Asn Ala 25 aca gag Thr Glu 40 agg gag Arg Glu agc act Ser Thr	ttc ata Phe Ile aat cgg Asn Arg ctc ggc Leu Gly 75 tac cgt	Ser Lys agc ttt Ser Phe 45 aag acg Lys Thr 60 ctc gat Leu Asp	gtt ac Val Ti gtg ac Val Ac Asn Ty	ca tgchr Cys at ggasn Gly at gctyr Ala 80 ga gaa	144 192

PCT/US00/28141 WO 01/26459

> MBI-0021.txt 105 100

acc aac act aga agt gat gta cag aac caa tcg aca aaa ttt att aga Thr Asn Thr Arg Ser Asp Val Gln Asn Gln Ser Thr Lys Phe Ile Arg 384 125 120

gtt gtt gag aag gga agc agc tcc tcg gcc cgt tga Val Val Glu Lys Gly Ser Ser Ser Ala Arg 420 135

<210> 36 <211> 139 <212> PRT

<213> Arabidopsis thaliana

<400> 36

Met Thr Asp Glu Asp Arg Leu Leu Pro Ile Ala Asn Val Gly Arg Leu

Met Lys Gln Ile Leu Pro Ser Asn Ala Lys Ile Ser Lys Glu Ala Lys

Gln Thr Val Gln Glu Cys Ala Thr Glu Phe Ile Ser Phe Val Thr Cys

Glu Ala Ser Glu Lys Cys His Arg Glu Asn Arg Lys Thr Val Asn Gly

Asp Asp Ile Trp Trp Ala Leu Ser Thr Leu Gly Leu Asp Asn Tyr Ala

Asp Ala Val Gly Arg His Leu His Lys Tyr Arg Glu Ala Glu Arg Glu

Arg Thr Glu His Asn Lys Gly Ser Asn Asp Ser Gly Asn Glu Lys Glu 100

Thr Asn Thr Arg Ser Asp Val Gln Asn Gln Ser Thr Lys Phe Ile Arg 125 120

Val Val Glu Lys Gly Ser Ser Ser Ala Arg 135

<210> 37 <211> 1707

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (98)..(1444)

<223> G748

<400> ccacgc	37 gtcc	gcac	tctc	cc a	aatc	tata	t ta	ttta	acaa	caa	aaaa	aaa	atca	cagaga	60
cataga	gaga	agaa	gacg	ga a	caga	ggct	c ca	aaaa						t aga r Arg	115
gat cc Asp Pr															163
ttt ga Phe Gl															211
ggc gg Gly Gl 40															259
aag aa Lys As 55															307
gaa ac Glu Th	c ttg r Leu	gac Asp	aaa Lys 75	gag Glu	gaa Glu	gcg Ala	aca Thr	tca Ser 80	act Thr	gat Asp	cag Gln	ata Ile	gag Glu 85	agt Ser	355
agt ga Ser As															403
cta aa Leu Ly															451
gag ac Glu Th	Lys														499
cat tt His Pho 135															547
agg aa Arg Asi															595
tct car Ser Hi	tac Tyr	cgt Arg 170	cac His	atc Ile	act Thr	att Ile	tcc Ser 175	gag Glu	gct Ala	ctt Leu	gag Glu	gct Ala 180	gcg Ala	agg Arg	643
ctt gad Leu Asj															691
gaa gc Glu Ala 20	Gln														739
cta caa Leu Gli	a gaa 1 Glu	gat Asp	caa Gln	aag Lys	gtc Val	tca Ser	aac Asn	Gly	gct Ala age	Arg	aac Asn	agg Arg	ttt Phe	cac His	787

215					220				MBI	-002 225	1.tx	t			230	
gly	tta Leu	gcg Ala	gat Asp	caa Gln 235	cgg Arg	ctt Leu	gta Val	gct Ala	cgg Arg 240	gta Val	gag Glu	aat Asn	gga Gly	gat Asp 245	gat Asp	835
		agc Ser														883
		aga Arg 265														931
aac Asn	aac Asn 280	aac Asn	aat Asn	aac Asn	atg Met	aat Asn 285	ggt Gly	tat Tyr	gct Ala	tgc Cys	atc Ile 290	cca Pro	ggt Gly	gtt Val	cca Pro	979
		tac Tyr														1027
		ggg Gly														1075
		ccg Pro														1123
aca Thr	aac Asn	tct Ser 345	ccg Pro	act Thr	ctc Leu	gga Gly	aag Lys 350	cat His	ccg Pro	aga Arg	gat Asp	gaa Glu 355	gga Gly	tca Ser	tcg Ser	1171
		gac Asp														1219
		aaa Lys														1267
tcg Ser	ata Ile	tgg Trp	aca Thr	aca Thr 395	ttg Leu	gga Gly	atc Ile	aag Lys	aac Asn 400	gag Glu	gcg Ala	atg Met	tgc Cys	aaa Lys 405	gcc Ala	1315
ggt Gly	ggt Gly	atg Met	ttc Phe 410	aaa Lys	999 Gly	ttt Phe	gat Asp	cat His 415	aag Lys	aca Thr	aag Lys	atg Met	tat Tyr 420	aac Asn	aac Asn	1363
gac Asp	aaa Lys	gct Ala 425	gag Glu	aac Asn	tcc Ser	cct Pro	gtt Val 430	ctt Leu	tct Ser	gct Ala	aac Asn	cct Pro 435	gct Ala	gct Ala	cta Leu	1411
		tca Ser								tag	agtt	cacat	at g	gtata	ıtgtat	1464
atat	gtat	ga t	tgat	tgta	at gt	ataç	gatga	a tac	tgga	agaa	tgat	gagt	tt t	tgag	gaatca	1524
aact	cttt	tc t	tctt	tcta	ag to	gatto	gcctt	tat	tcct	tta	cato	gtttt	gg t	tctc	tgtac	1584
acta	tttg	gat t	taco	etttt	t ta	acttt	cttt	ctt		tgt age		gaaat	gt t	ggaa	ıgataa	1644

MBI-0021.txt

cattaatggt aaaaagttgg tgtggaccgt tgttgcgttg gcatttcaaa aaaaaaaaa 1707 aaa <210> 38 <211> 448 <212> PRT <213> Arabidopsis thaliana <400> 38 Met Met Met Glu Thr Arg Asp Pro Ala Ile Lys Leu Phe Gly Met Lys Ile Pro Phe Pro Ser Val Phe Glu Ser Ala Val Thr Val Glu Asp Asp Glu Glu Asp Asp Trp Ser Gly Gly Asp Asp Lys Ser Pro Glu Lys Val Thr Pro Glu Leu Ser Asp Lys Asn Asn Asn Asn Cys Asn Asp Asn Ser 55 Phe Asn Asn Ser Lys Pro Glu Thr Leu Asp Lys Glu Glu Ala Thr Ser Thr Asp Gln Ile Glu Ser Ser Asp Thr Pro Glu Asp Asn Gln Gln Thr Thr Pro Asp Gly Lys Thr Leu Lys Lys Pro Thr Lys Ile Leu Pro Cys Pro Arg Cys Lys Ser Met Glu Thr Lys Phe Cys Tyr Tyr Asn Asn Tyr Asn Ile Asn Gln Pro Arg His Phe Cys Lys Ala Cys Gln Arg Tyr Trp Thr Ala Gly Gly Thr Met Arg Asn Val Pro Val Gly Ala Gly Arg Arg 145 Lys Asn Lys Ser Ser Ser Ser His Tyr Arg His Ile Thr Ile Ser Glu Ala Leu Glu Ala Ala Arg Leu Asp Pro Gly Leu Gln Ala Asn Thr Arg Val Leu Ser Phe Gly Leu Glu Ala Gln Gln His Val Ala Ala Pro Page 42

PCT/US00/28141 WO 01/26459

Met	Thr 210	Pro	Val	Met	Lys	Leu 215	Gln	Glu	Asp	Gln	Lys 220	Val	Ser	Asn	Gly
Ala 225	Arg	Asn	Arg	Phe	His 230	Gly	Leu	Ala	Asp	Gln 235	Arg	Leu	Val	Ala	Arg 240
Val	Glu	Asn	Gly	Asp 245	Asp	Cys	Ser	Ser	Gly 250	Ser	Ser	Val	Thr	Thr 255	Ser
Asn	Asn	His	Ser 260	Val	Asp	Glu	Ser	Arg 265	Ala	Gln	Ser	Gly	Ser 270	Val	Val
Glu	Ala	Gln 275	Met	Asn	Asn	Asn	Asn 280	Asn	Asn	Asn	Met	Asn 285	Gly	Tyr	Ala
Cys	Ile 290	Pro	Gly	Val	Pro	Trp 295	Pro	Tyr	Thr	Trp	Asn 300	Pro	Ala	Met	Pro
Pro 305	Pro	Gly	Phe	Tyr	Pro 310	Pro	Pro	Gly	Tyr	Pro 315	Met	Pro	Phe	Tyr	Pro 320
Tyr	Trp	Thr	Ile	Pro 325	Met	Leu	Pro	Pro	His 330	Gln	Ser	Ser	Ser	Pro 335	Ile
Ser	Gln	Lys	Cys 340	Ser	Asn	Thr	Asn	Ser 345	Pro	Thr	Leu	Gly	Lys 350	His	Pro
Arg	Asp	Glu 355	Gly	Ser	Ser	Lys	Lys 360	Asp	Asn	Glu	Thr	Glu 365	Arg	Lys	Gln
Lys	Ala 370	Gly	Cys	Val	Leu	Val 375	Pro	Lys	Thr	Leu	Arg 380	Ile	Asp	Asp	Pro
Asn 385	Glu	Ala	Ala	Lys	Ser 390	Ser	Ile	Trp	Thr	Thr 395	Leu	Gly	Ile	Lys	Asn 400
Glu	Ala	Met	Cys	Lys 405	Ala	Gly	Gly	Met	Phe 410	Lys	Gly	Phe	Asp	His 415	Lys
Thr	Lys	Met	Tyr 420	Asn	Asn	Asp	Lys	Ala 425	Glu	Asn	Ser	Pro	Val 430	Leu	Ser
Ala	Asn	Pro 435	Ala	Ala	Leu	Ser	Arg 440	Ser	His	Asn	Phe	His 445	Glu	Gln	Ile
<210)> 3	9							_		4.3				

						MBI	-002	1.tx	t				
<212> D	1095 DNA Arabidop	sis tha	liana										
<222> (CDS (180)(3994	917)											
<400> 3 tgtatata	39 ata gtta	gttagt	tgaga	taaa	c tt	ggtta	acca	ctt	ttgt	gtg (gtct	ttcttt	60
ttctttt	ct ccat	tttcca	tttat	cgac	c cc	ttggg	gtgt	agci	taati	tac	tttc	gcgatt	120
ttcaaatc	ca ataa	agtttt	aattt	gatg	a ag	cttti	ttt	aaa	ccata	ata a	atata	aaata	179
atg ggt Met Gly 1	ggt cgt Gly Arg	aaa co Lys Pr 5	a tgt o Cys	tgt Cys	gat Asp	gag Glu 10	gtt Val	gga Gly	tta Leu	aga Arg	aag Lys 15	ggt Gly	227
cca tgg Pro Trp													275
cgt ggc Arg Gly	aac tgc Asn Cys 35	ggt gg Gly Gl	t ggt y Gly	gga Gly 40	gga Gly	gga Gly	tgg Trp	tgc Cys	tgg Trp 45	aga Arg	gac Asp	gtg Val	323
cca aaa Pro Lys 50	ctg gcg Leu Ala	ggg ct Gly Le	a agg u Arg 55	agg Arg	tgt Cys	ggc Gly	aaa Lys	agt Ser 60	tgc Cys	cgt Arg	ctc Leu	cgg Arg	371
tgg act Trp Thr 65													419
gaa gaa Glu Glu	atc caa Ile Gln	cta gt Leu Va 85	c att l Ile	gat Asp	ctt Leu	cat His 90	gct Ala	cgc Arg	ctt Leu	ggc Gly	aat Asn 95	aga Arg	467
tgg tcg Trp Ser													515
aaa aat Lys Asn													563
att gat Ile Asp 130													611
gag gaa Glu Glu 145	acg ata Thr Ile	ttg gt Leu Va 15	l Asn	gat Asp	cca Pro	aag Lys	cct Pro 155	ctg Leu	tct Ser	gag Glu	acc Thr	gag Glu 160	659
gta tct Val Ser	gtt gct Val Ala	ttg aa Leu Ly 165	g aat s Asn	gac Asp	acg Thr	tca Ser 170	gca Ala	gtg Val	tta Leu	tca Ser	gga Gly 175	aat Asn	707
cta aac Leu Asn	caa ttg Gln Leu	gct ga Ala As	c gtg p Val	gac Asp	ggt Gly	Asp	gat Asp age	Gln	ccg Pro	tgg Trp	agc Ser	ttt Phe	755

MBI-0021.txt 185 180 190

cta atg gaa aat gac gaa gga ggt ggc gac gcc gcc gga gag ctt Leu Met Glu Asn Asp Glu Gly Gly Gly Asp Ala Ala Gly Glu Leu 195 200 205	803
acg atg cta ttg tcc ggt gac att acg tca tca tgt tct tct tcg tca Thr Met Leu Leu Ser Gly Asp Ile Thr Ser Ser Cys Ser Ser Ser Ser 210 215 220	851
tct ttg tgg atg aag tat gga gaa ttc gga tac gaa gat tta gaa ctt Ser Leu Trp Met Lys Tyr Gly Glu Phe Gly Tyr Glu Asp Leu Glu Leu 225 230 235 240	899
gga tgt ttc gat gtt tag agattcaagt atgtttaatt aggccgtagg Gly Cys Phe Asp Val 245	947
ttgattaatc ataaggttca ttgacttcat tctagaattg tgtagttgga ccagtataaa	1007
gaatcaaagt tatgaaacat tgtaatttga tttccaaatt aatctaatga ataaatgtgc	1067
tttgcaaaaa aaaaaaaaa aaaaaaaa	1095

<210> 40 <211> 245

<212> PRT

<213> Arabidopsis thaliana

<400> 40

Met Gly Gly Arg Lys Pro Cys Cys Asp Glu Val Gly Leu Arg Lys Gly

Pro Trp Thr Val Glu Glu Asp Gly Lys Leu Val Asp Phe Leu Arg Ala

Arg Gly Asn Cys Gly Gly Gly Gly Gly Trp Cys Trp Arg Asp Val 35 40 45

Pro Lys Leu Ala Gly Leu Arg Arg Cys Gly Lys Ser Cys Arg Leu Arg

Trp Thr Asn Tyr Leu Arg Pro Asp Leu Lys Arg Gly Leu Phe Thr Glu

Glu Glu Ile Gln Leu Val Ile Asp Leu His Ala Arg Leu Gly Asn Arg

Trp Ser Lys Ile Ala Val Glu Leu Pro Gly Arg Thr Asp Asn Asp Ile

Lys Asn Tyr Trp Asn Thr His Ile Lys Arg Lys Leu Ile Arg Met Gly

PCT/US00/28141 WO 01/26459

	MBI-0021.txt
Ile Asp Pro Asn Thr His Arg Arg Phe 130 135	e Asp Gln Gln Lys Val Asn Glu 140
Glu Glu Thr Ile Leu Val Asn Asp Pro 145 150	Lys Pro Leu Ser Glu Thr Glu 155 160
Val Ser Val Ala Leu Lys Asn Asp Thr 165	Ser Ala Val Leu Ser Gly Asn 170 175
Leu Asn Gln Leu Ala Asp Val Asp Gly 180 185	
Leu Met Glu Asn Asp Glu Gly Gly Gly 195 200	Gly Asp Ala Ala Gly Glu Leu 205
Thr Met Leu Leu Ser Gly Asp Ile Thr 210 215	Ser Ser Cys Ser Ser Ser Ser 220
Ser Leu Trp Met Lys Tyr Gly Glu Phe 225 230	e Gly Tyr Glu Asp Leu Glu Leu 235 240
Gly Cys Phe Asp Val 245	
<210> 41 <211> 965 <212> DNA <213> Arabididopsis thaliana	
<220> <221> CDS <222> (56)(667) <223> G1335	
<400> 41 tttttttta aaagatttag agagaaaagt ga	gttattaa gagattccaa tcaaa atg 58 Met 1
agc gga gac aac ggc ggt ggt gag agg Ser Gly Asp Asn Gly Gly Gly Glu Arg 5 10	
ttt gat acc cag aag ggt ttc ggc ttc Phe Asp Thr Gln Lys Gly Phe Gly Phe 20 25	atc act cct gac gac ggt ggc 154 Elle Thr Pro Asp Asp Gly Gly 30
gac gat ctc ttc gtt cac cag tcc tcc Asp Asp Leu Phe Val His Gln Ser Ser 35 40	
agc ctc gct gcc gaa gaa gcc gta gag Ser Leu Ala Ala Glu Glu Ala Val Glu	ttc gag gtt gag atc gac aac 250 Phe Glu Val Glu Ile Asp Asn Page 46

WO 01/26459	PCT/US00/28141
-------------	----------------

MBI-0021.txt 50 55 60 65	
aac aac cgt ccc aag gcc atc gat gtt tct gga ccc gac ggc gct ccc Asn Asn Arg Pro Lys Ala Ile Asp Val Ser Gly Pro Asp Gly Ala Pro 70 75 80	298
gtc caa gga aac agc ggt ggt ggt tca tct ggc gga cgc ggc ggt ttc Val Gln Gly Asn Ser Gly Gly Gly Ser Ser Gly Gly Arg Gly Gly Phe 85 90 95	346
ggt gga gga aga ggt gga cgc gga tct gga ggt gga tac ggc ggt Gly Gly Gly Arg Gly Gly Arg Gly Ser Gly Gly Gly Tyr Gly Gly 100 105 110	394
ggc ggt ggt gga tac gga gga aga ggt ggt ggt cga gga ggc agc Gly Gly Gly Tyr Gly Gly Arg Gly Gly Gly Arg Gly Gly Ser 115 120 125	442
gac tgc tac aag tgt ggt gag ccc ggt cac atg gcg aga gac tgt tct Asp Cys Tyr Lys Cys Gly Glu Pro Gly His Met Ala Arg Asp Cys Ser 130 135 140 145	490
gaa ggc ggt gga ggt tac gga ggc ggc ggt ggc tac gga ggt gga Glu Gly Gly Gly Tyr Gly Gly Gly Gly Gly Tyr Gly Gly 150 155 160	538
ggc gga tac ggc gga ggt ggt ggt tac gga ggt ggc cgt gga Gly Gly Tyr Gly Gly Gly Gly Gly Tyr Gly Gly Gly Arg Gly 165 170 175	586
ggt ggt ggc ggg gga agc tgc tac agc tgt ggc gag tcg gga cat Gly Gly Gly Gly Ser Cys Tyr Ser Cys Gly Glu Ser Gly His 180 185 190	634
ttc gcc agg gat tgc acc agc ggt gga cgt taa aaccaacgcc ggttacgcgg Phe Ala Arg Asp Cys Thr Ser Gly Gly Arg 195 200	687
tggagaagag tgagttggtt atctcacaag tgatcggttc tttctcccgc cgccttctat	747
ctctctatta tccacttttt gcttattatg atggatctct atctttgtta gttggttttt	807
tettgatggt tteggattag gaetettett ttggttttge taettatggt tggttttatt	867
tatggtactt gtgatatggg tgaaatgctc tacttgttgc tctgtttcaa gtgttcataa	927
tatgcgaaca aatattctgg gttttgtttc aaaaaaaa	965

<210> 42 <211> 203

<212> PRT

<213> Arabididopsis thaliana

<400> 42

Met Ser Gly Asp Asn Gly Gly Gly Glu Arg Arg Lys Gly Ser Val Lys 1 $$ 5 $$ 10 $$ 15

Trp Phe Asp Thr Gln Lys Gly Phe Gly Phe Ile Thr Pro Asp Asp Gly 20 25 30

MBI-0021.txt

Gly Asp Asp Leu Phe Val His Gln Ser Ser Ile Arg Ser Glu Gly Phe Arg Ser Leu Ala Ala Glu Glu Ala Val Glu Phe Glu Val Glu Ile Asp Asn Asn Asn Arg Pro Lys Ala Ile Asp Val Ser Gly Pro Asp Gly Ala Pro Val Gln Gly Asn Ser Gly Gly Gly Ser Ser Gly Gly Arg Gly Gly Phe Gly Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Tyr Gly Gly Gly Gly Gly Tyr Gly Gly Arg Gly Gly Gly Arg Gly Gly Ser Asp Cys Tyr Lys Cys Gly Glu Pro Gly His Met Ala Arg Asp Cys Ser Glu Gly Gly Gly Tyr Gly Gly Gly Gly Gly Tyr Gly Gly 145 160 Gly Gly Gly Gly Gly Gly Gly Gly Tyr Gly Gly Gly Arg Gly Gly Gly Gly Gly Gly Ser Cys Tyr Ser Cys Gly Glu Ser Gly 185 His Phe Ala Arg Asp Cys Thr Ser Gly Gly Arg 195 <210> 43 <211> 1554 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (137)..(1285) <222> <223> G562 <400> 43 atttgaattt ctgggtttct ctctgtttaa gcttcttctt cttcatcttc tgcttacgtt 60 tcttcttcaa ggagctttcg gattcttgta gaaagagtca ttgttctctt gagtgggaaa 120 ccttgaaacc attcct atg gga aat agc agc gag gaa cca aag cct cct acc Met Gly Asn Ser Ser Glu Glu Pro Lys Pro Pro Thr 172 Page 48

								5	MBI	-002	1.tx	t	1	^		
				1				5					1	U		
aaa Lys	tca Ser	gat Asp 15	aaa Lys	cca Pro	tct Ser	tca Ser	ccc Pro 20	ccg Pro	gtg Val	gat Asp	caa Gln	aca Thr 25	aat Asn	gtt Val	cat His	220
gtc Val	tac Tyr 30	cct Pro	gat Asp	tgg Trp	gca Ala	gct Ala 35	atg Met	cag Gln	gca Ala	tat Tyr	tat Tyr 40	ggt Gly	cca Pro	aga Arg	gta Val	268
			cct Pro													316
			tac Tyr													364
			gct Ala 80													412
			ccc Pro													460
tta Leu	aca Thr 110	act Thr	ccg Pro	gly ggg	acg Thr	ctt Leu 115	ttg Leu	agc Ser	atc Ile	gac Asp	act Thr 120	cct Pro	act Thr	aaa Lys	tct Ser	508
			aca Thr													556
			atg Met													604
			cga Arg 160													652
			gly aaa													700
			gga Gly													748
			cat His													796
			gga Gly													844
			ttc Phe 240													892
tgg	ctt	cag	aac	gag	aga	gaa	ctg	aaa		gag age		agg	aaa	cag	tct	940

MBI-0021.txt Trp Leu Gln Asn Glu Arg Glu Leu Lys Arg Glu Arg Arg Lys Gln Ser 255 260 265	
aat aga gaa tot got aga agg toa aga tta agg aaa cag goo gag aca Asn Arg Glu Ser Ala Arg Arg Ser Arg Leu Arg Lys Gln Ala Glu Thr 270 275 280	988
gaa gaa ctt gct agg aaa gtg gaa gcc ttg aca gcc gaa aac atg gca Glu Glu Leu Ala Arg Lys Val Glu Ala Leu Thr Ala Glu Asn Met Ala 285 290 295 300	1036
tta aga tct gaa cta aac caa ctt aat gag aaa tct gat aaa cta aga Leu Arg Ser Glu Leu Asn Gln Leu Asn Glu Lys Ser Asp Lys Leu Arg 305 310 315	1084
gga gca aat gca acc ttg ttg gac aaa ctg aaa tgc tcg gaa ccc gaa Gly Ala Asn Ala Thr Leu Leu Asp Lys Leu Lys Cys Ser Glu Pro Glu 320 325 330	1132
aag aga gtc ccc gca aat atg ttg tct aga gtt aag aac tca gga gct Lys Arg Val Pro Ala Asn Met Leu Ser Arg Val Lys Asn Ser Gly Ala 335 340 345	1180
gga gat aag aac aag aac caa gga gac aat gat tot aac tot aca agc Gly Asp Lys Asn Lys Asn Gln Gly Asp Asn Asp Ser Asn Ser Thr Ser 350 355 360	1228
aaa ttc cat caa ctg ctc gat acg aag cct cga gct aaa gca gta gct Lys Phe His Gln Leu Leu Asp Thr Lys Pro Arg Ala Lys Ala Val Ala 365 370 380	1276
gca ggc tga atcgatggta attcatgtcg atttctactt aatttgtcga Ala Gly	1325
cataaacaaa qaaaataagt gctactaatt tcagaaaaac ttgatagata gatagtatag	1385
tagagagaga gagagagaga gaggtgtgat gattattgat ctataaattt tcggagagag	
agagggagaa agagaaactt ttcctccaga tgaaaatttg gtgttatggt ttgttactgt	1505
taatatagag aggettttet ttttttataa aatggettee tttgttgea	1554
<210> 44 <211> 382	
<212> PRT <213> Arabidopsis thaliana	
<400> 44	
Met Gly Asn Ser Ser Glu Glu Pro Lys Pro Pro Thr Lys Ser Asp Lys 1 10 15	
Pro Ser Ser Pro Pro Val Asp Gln Thr Asn Val His Val Tyr Pro Asp 20 25 30	

Trp Ala Ala Met Gln Ala Tyr Tyr Gly Pro Arg Val Ala Met Pro Pro 35

Tyr Tyr Asn Ser Ala Met Ala Ala Ser Gly His Pro Pro Pro Tyr 50

Met Trp Asn Pro Gln His Met Met Ser Pro Ser Gly Ala Pro Tyr Ala 65

Ala Val Tyr Pro His Gly Gly Gly Val Tyr Ala His Pro Gly Ile Pro 90

Met Gly Ser Leu Pro Gln Gly Gln Lys Asp Pro Pro Leu Thr Thr Pro 105

Gly Thr Leu Leu Ser Ile Asp Thr Pro Thr Lys Ser Thr Gly Asn Thr 115

Asp Asn Gly Leu Met Lys Lys Leu Lys Glu Phe Asp Gly Leu Ala Met 130

Ser Leu Cly Asp Gly Asp Pro Gly Asp Asp Gly Lis Lys Arg

Ser Leu Gly Asn Gly Asn Pro Glu Asn Gly Ala Asp Glu His Lys Arg 145 150 155 160

Ser Arg Asn Ser Ser Glu Thr Asp Gly Ser Thr Asp Gly Ser Asp Gly 165 170 175

Asn Thr Thr Gly Ala Asp Glu Pro Lys Leu Lys Arg Ser Arg Glu Gly 180 185 190

Thr Pro Thr Lys Asp Gly Lys Gln Leu Val Gln Ala Ser Ser Phe His 195 200 205

Ser Val Ser Pro Ser Ser Gly Asp Thr Gly Val Lys Leu Ile Gln Gly 210 215 220

Ser Gly Ala Ile Leu Ser Pro Gly Val Ser Ala Asn Ser Asn Pro Phe 225 230 235

Met Ser Gln Ser Leu Ala Met Val Pro Pro Glu Thr Trp Leu Gln Asn 245 250 255

Glu Arg Glu Leu Lys Arg Glu Arg Arg Lys Gln Ser Asn Arg Glu Ser 260 265 270

Ala Arg Arg Ser Arg Leu Arg Lys Gln Ala Glu Thr Glu Glu Leu Ala 275 280 285

Arg Lys Val Glu Ala Leu Thr Ala Glu Asn Met Ala Leu Arg Ser Glu 290 295 300

Page 51

Leu 305	Asn	Gln	Leu	Asn	Glu 310	Lys	Ser	Asp	Lys	Leu 315	Arg	Gly	Ala	Asn	Ala 320	
Thr	Leu	Leu	Asp	Lys 325	Leu	Lys	Cys	Ser	Glu 330	Pro	Glu	Lys	Arg	Val 335	Pro	
Ala	Asn	Met	Leu 340	Ser	Arg	Val	Lys	Asn 345	Ser	Gly	Ala	Gly	Asp 350	Lys	Asn	
Lys	Asn	Gln 355	Gly	Asp	Asn	Asp	Ser 360	Asn	Ser	Thr	Ser	Lys 365	Phe	His	Gln	
Leu	Leu 370	Asp	Thr	Lys	Pro	Arg 375	Ala	Lys	Ala	Val	Ala 380	Ala	Gly			
<210 <211 <212 <213	L> 5 2> I	15 513 ONA Arab:	idops	∍is t	chal:	iana										
<220 <221 <222 <223	l> (2>	CDS (1). 3736	. (51	3)												· .
<400 atg Met 1	gcg	15 act Thr	caa Gln	gat Asp 5	tct Ser	caa Gln	gly aaa	att Ile	aaa Lys 10	ctc Leu	ttt Phe	ggc Gly	aaa Lys	act Thr 15	att Ile	48
gca Ala	ttt Phe	aac Asn	act Thr 20	cga Arg	aca Thr	ata Ile	aaa Lys	aat Asn 25	gaa Glu	gaa Glu	gag Glu	aca Thr	cac His 30	ccg Pro	ccg Pro	96
								aga Arg								144
acg Thr	gcc Ala 50	gag Glu	aag Lys	cgt Arg	ccg Pro	gat Asp 55	aag Lys	atc Ile	ata Ile	gca Ala	tgt Cys 60	cca Pro	aga Arg	tgc Cys	aag Lys	192
agc Ser 65	atg Met	gag Glu	aca Thr	aag Lys	ttc Phe 70	tgt Cys	tac Tyr	ttc Phe	aac Asn	aac Asn 75	tac Tyr	aac Asn	ggt Gly	aat Asn	cag Gln 80	240
								cac His								288
								gcc Ala 105								336
								ctt Leu	Gly		Gly					384

115		MBI	-0021.txt 125	
			gag gag tgg cag Glu Glu Trp Gln 140	
			gat ttt ccc atg Asp Phe Pro Met 155	
	ac tcc gac ggt Tyr Ser Asp Gly 165			513
<210> 46 <211> 170 <212> PRT <213> Arabid	lopsis thaliana			
<400> 46				
Met Ala Thr G 1	Gln Asp Ser Gln 5	Gly Ile Lys 10	Leu Phe Gly Lys	Thr Ile 15
	Thr Arg Thr Ile	Lys Asn Glu 25	Glu Glu Thr His	Pro Pro
Glu Gln Glu A 35	ala Thr Ile Ala	Val Arg Ser 40	Ser Ser Ser Ser 45	Asp Leu
Thr Ala Glu L 50	ys Arg Pro Asp 55	Lys Ile Ile	Ala Cys Pro Arg 60	Cys Lys
Ser Met Glu T 65	Thr Lys Phe Cys 70	Tyr Phe Asn	Asn Tyr Asn Gly 75	Asn Gln 80
Pro Arg His P	Phe Cys Lys Gly 85	Cys His Arg 90	Tyr Trp Thr Ala	Gly Gly 95
	asn Val Pro Val	Gly Ala Gly 105	Arg Arg Lys Ser	Lys Pro
Pro Gly Arg V 115	al Val Val Gly	Met Leu Gly 120	Asp Gly Asn Gly 125	Val Arg
Gln Val Glu L 130	eu Ile Asn Gly 135	Leu Leu Val	Glu Glu Trp Gln 140	His Ala
Ala Ala Ala A 145	ala His Gly Ser 150	Phe Arg His	Asp Phe Pro Met 155	Lys Arg 160

Leu Arg Cys Tyr Ser Asp Gly Gln Ser Cys
Page 53

MBI-0021.txt 165 170

<210 <211 <212 <213	1> 9 2> I 3> 2	17 974 ONA Arabi	idops	sis t	hali	iana										
<221 <221 <221	L> (2>	CDS (62) 31073		74)												
<400		17 acc t	geet	ctac	ca ga	agaco	ctgaa	a gat	tcca	agaa	ccc	cacct	ga t	caaa	aataa	60
										lu Ā					cc act ir Thr	109
														tcc Ser		157
														ccc Pro		205
cct Pro	ccg Pro 50	acg Thr	att Ile	ata Ile	act Thr	aga Arg 55	gat Asp	agt Ser	cct Pro	aac Asn	gtc Val 60	ctt Leu	aga Arg	tca Ser	cac His	253
gtt Val 65	ctt Leu	gaa Glu	gtc Val	acc Thr	tcc Ser 70	ggt Gly	tcg Ser	gac Asp	ata Ile	tcc Ser 75	gag Glu	gca Ala	gtc Val	tcc Ser	acc Thr 80	301
tac Tyr	gcc Ala	act Thr	cgt Arg	cgc Arg 85	ggc Gly	tgc Cys	gly	gtt Val	tgc Cys 90	att Ile	ata Ile	agc Ser	gly	acg Thr 95	ggt Gly	349
gcg Ala	gtc Val	act Thr	aac Asn 100	gtc Val	acg Thr	ata Ile	cgg Arg	caa Gln 105	cct Pro	gcg Ala	gct Ala	ccg Pro	gct Ala 110	ggt Gly	gga Gly	397
ggt Gly	gtg Val	att Ile 115	acc Thr	ctg Leu	cat His	ggt Gly	cgg Arg 120	ttt Phe	gac Asp	att Ile	ttġ Leu	tct Ser 125	ttg Leu	acc Thr	ggt Gly	445
act Thr	gcg Ala 130	ctt Leu	cca Pro	ccg Pro	cct Pro	gca Ala 135	cca Pro	ccg Pro	gga Gly	gca Ala	gga Gly 140	ggt Gly	ttg Leu	acg Thr	gtg Val	493
tat Tyr 145	cta Leu	gcc Ala	gga Gly	ggt Gly	caa Gln 150	gga Gly	caa Gln	gtt Val	gta Val	gga Gly 155	Gly ggg	aat Asn	gtg Val	gct Ala	ggt Gly 160	541
tcg Ser	tta Leu	att Ile	gct Ala	tcg Ser 165	gga Gly	ccg Pro	gta Val	gtg Val	ttg Leu 170	atg Met	gct Ala	gct Ala	tct Ser	ttt Phe 175	gca Ala	589
aac Asn	gca Ala	gtt Val	tat Tyr	gat Asp	agg Arg	tta Leu	ccg Pro	att Ile	Glu	gag Glu age	Glu	gaa Glu	acc Thr	cca Pro	ccg Pro	637

			180					185	MBI-	-0023	l.txt	-	190		
				ggg ggg											
tcg Ser	gag Glu 210	gtt Val	acg Thr	gly ggg	agt Ser	ggg Gly 215	gcc Ala	cag Gln	gcg Ala	tgt Cys	gag Glu 220	tca Ser	aac Asn	ctc Leu	caa Gln
ggt Gly 225	gga Gly	aat Asn	ggt Gly	gga Gly	gga Gly 230	ggt Gly	gtt Val	gct Ala	ttc Phe	tac Tyr 235	aat Asn	ctt Leu	gga Gly	atg Met	aat Asn 240
				caa Gln 245											
ggt Gly	agc Ser	gga Gly	gga Gly 260	ggt Gly	ggt Gly	ggc Gly	ggt Gly	gcg Ala 265	act Thr	aga Arg	ccc Pro	gcg Ala	ttt Phe 270	tag	
agtt	ttag	gcg t	tttg	ggtga	ac ac	cctt	tgt	gc	gtttg	gcgt	gttt	gaco	ctc a	aaact	actag
gcta	actaç	gct a	atago	eggtt	g cg	gaaat	gcga	a ata	attag	gtt					
<210 <211 <212 <213	l> 2 2> I	18 270 PRT Arabi	idops	sis t	chali	iana					,				
<400)> 4	18													
			Asn	Arg 5	Ser	Glu	Ala	Asp	Glu 10	Ala	Lys	Ala	Glu	Thr 15	Thr
Met 1	Glu	Leu		_					10					15	
Met 1 Pro	Glu Thr	Leu Gly	Gly 20	5	Thr	Ser	Ser	Ala 25	10 Thr	Ala	Ser	Gly	Ser 30	15 Ser	Ser
Met 1 Pro Gly	Glu Thr Arg	Leu Gly Arg 35	Gly 20 Pro	5 Ala	Thr	Ser Arg	Ser Pro 40	Ala 25 Ala	10 Thr Gly	Ala Ser	Ser Lys	Gly Asn 45	Ser 30 Lys	15 Ser Pro	Ser Lys
Met 1 Pro Gly Pro	Glu Thr Arg	Leu Gly Arg 35 Thr	Gly 20 Pro	5 Ala Arg	Thr Gly Thr	Ser Arg Arg	Ser Pro 40	Ala 25 Ala Ser	Thr Gly Pro	Ala Ser Asn	Ser Lys Val	Gly Asn 45 Leu	Ser 30 Lys Arg	Ser Pro	Ser Lys His
Met 1 Pro Gly Pro Val 65	Glu Thr Arg Pro 50	Leu Gly Arg 35 Thr	Gly 20 Pro Ile Val	Ala Arg	Thr Gly Thr	Ser Arg Arg 55 Gly	Pro 40 Asp	Ala 25 Ala Ser	Thr Gly Pro	Ala Ser Asn Ser 75	Ser Lys Val 60 Glu	Gly Asn 45 Leu Ala	Ser 30 Lys Arg	ser Pro Ser	Ser Lys His Thr
Met 1 Pro Gly Pro Val 65	Glu Thr Arg Pro 50 Leu Ala	Leu Gly Arg 35 Thr	Gly 20 Pro Ile Val	Ala Arg Ile Thr	Thr Gly Thr Ser 70	Ser Arg Arg 55 Gly Cys	Pro 40 Asp Ser	Ala 25 Ala Ser Asp	Thr Gly Pro Ile Cys 90	Ala Ser Asn Ser 75	Ser Lys Val 60 Glu	Gly Asn 45 Leu Ala	Ser 30 Lys Arg Val	Ser Pro Ser Thr	Ser Lys His Thr 80

MBI-0021.txt 120 115 125

Thr Ala Leu Pro Pro Pro Ala Pro Pro Gly Ala Gly Gly Leu Thr Val

Tyr Leu Ala Gly Gly Gln Gly Gln Val Val Gly Gly Asn Val Ala Gly

Ser Leu Ile Ala Ser Gly Pro Val Val Leu Met Ala Ala Ser Phe Ala 165 170

Asn Ala Val Tyr Asp Arg Leu Pro Ile Glu Glu Glu Glu Thr Pro Pro

Pro Arg Thr Thr Gly Val Gln Gln Gln Pro Glu Ala Ser Gln Ser

Ser Glu Val Thr Gly Ser Gly Ala Gln Ala Cys Glu Ser Asn Leu Gln

Gly Gly Asn Gly Gly Gly Val Ala Phe Tyr Asn Leu Gly Met Asn

Met Asn Asn Phe Gln Phe Ser Gly Gly Asp Ile Tyr Gly Met Ser Gly

Gly Ser Gly Gly Gly Gly Gly Ala Thr Arg Pro Ala Phe

<210> 49

<211> 1281

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

(8)..(904) <222>

<223> G1435

<400> 49

gtgaaac atg ggg aag gaa gtt atg gtg agc gat tac ggt gac gac gac Met Gly Lys Glu Val Met Val Ser Asp Tyr Gly Asp Asp Asp 49

gga gaa gac gcc ggc ggc gat gaa tat agg att ccg gaa tgg gaa GĬy Glu Āsp Āla GĪy GĪy GĪy Āsp Glu Tyr Arg Ile Pro Glu Trp Glu

145 att ggt tta ccc aac gga gat gat ttg act ccg tta tct caa tat cta Ile Gly Leu Pro Asn Gly Asp Asp Leu Thr Pro Leu Ser Gln Tyr Leu 35 40 45

97

					gcg Ala				agc	atg		cca				193
					gtc Val											241
ttg Leu	aga Arg 80	agc Ser	agt Ser	acc Thr	aat Asn	gct Ala 85	tcg Ser	tct Ser	gtg Val	atg Met	gag Glu 90	gag Glu	gtc Val	gtg Val	gat Asp	289
					gtt Val 100											337
					gca Ala											385
					gaa Glu											433
					ccg Pro											481
					aaa Lys											529
atg Met 175	aac Asn	gtg Val	gaa Glu	gga Gly	ctt Leu 180	act Thr	cgt Arg	gag Glu	aac Asn	gtt Val 185	gcg Ala	tct Ser	cat His	ttg Leu	cag Gln 190	577
aaa Lys	tat Tyr	agg Arg	ctt Leu	tac Tyr 195	ctt Leu	aaa Lys	cgg Arg	att Ile	caa Gln 200	gga Gly	ttg Leu	acg Thr	acg Thr	gaa Glu 205	gaa Glu	625
gat Asp	cct Pro	tat Tyr	tcg Ser 210	tcg Ser	tcg Ser	gat Asp	cag Gln	ctc Leu 215	ttc Phe	tct Ser	tca Ser	acg Thr	ccg Pro 220	gtt Val	cct Pro	673
					gac Asp											721
ccg Pro	gtt Val 240	ccg Pro	gtt Val	ccg Pro	tcg Ser	atg Met 245	gtg Val	cct Pro	att Ile	cca Pro	ggc Gly 250	tat Tyr	gly gga	aat Asn	caa Gln	769
atg Met 255	ggt Gly	atg Met	caa Gln	gga Gly	tat Tyr 260	tat Tyr	caa Gln	cag Gln	tat Tyr	agt Ser 265	aac Asn	cat His	ggc Gly	aat Asn	gaa Glu 270	817
					atg Met											865
					ggt Gly				Asn		Lys	taa	atgg	gatct	ta:	914

MBI-0021.txt

aaggtctata	atttgctcta	cagagagata	ctggttcttg	gcttatggtt	tattttccca	974
cttcatgagg	ttgttgtgac	ttttaattct	ccatgttttc	cacacaagtc	tttattgcct	1034
ttgtatagaa	aatgatttcg	agaaaatcac	tgggaagctt	ggtattgttg	gaggatgaag	1094
ccttctatga	atgatttagt	ttcctactgt	ctccattctt	tatgaggtaa	taaagccttc	1154
ttttgctcat	cgcttgtagt	cttcttaaat	tcaagacagc	gtcacatgtt	tgttcggtta	1214
tgttaattgt	ttctttcttt	ggataatgaa	gatagcatca	ggtctcatgt	ctcctcactt	1274
tgataaa						1281

<210> 50 <211> 298 <212> PRT <213> Arabidopsis thaliana

<400> 50

Met Gly Lys Glu Val Met Val Ser Asp Tyr Gly Asp Asp Gly Glu 1 5 10 15

Asp Ala Gly Gly Asp Glu Tyr Arg Ile Pro Glu Trp Glu Ile Gly 20 25 30

Leu Pro Asn Gly Asp Asp Leu Thr Pro Leu Ser Gln Tyr Leu Val Pro 35 40 45

Ser Ile Leu Ala Leu Ala Phe Ser Met Ile Pro Glu Arg Ser Arg Thr 50 60

Ile His Asp Val Asn Arg Ala Ser Gln Ile Thr Leu Ser Ser Leu Arg 65 70 75 80

Ser Ser Thr Asn Ala Ser Ser Val Met Glu Glu Val Val Asp Arg Val 85 90 95

Glu Ser Ser Val Pro Gly Ser Asp Pro Lys Lys Gln Lys Lys Ser Asp 100 105 110

Gly Glu Ala Ala Ala Val Glu Asp Ser Thr Ala Glu Glu Gly Asp $115 \\ 120 \\ 125$

Ser Gly Pro Glu Asp Ala Ser Gly Lys Thr Ser Lys Arg Pro Arg Leu 130 135 140

Val Trp Thr Pro Gln Leu His Lys Arg Phe Val Asp Val Val Ala His 145 150 155 160

MBI-0021.txt Leu Gly Ile Lys Asn Ala Val Pro Lys Thr Ile Met Gln Leu Met Asn 165 170 175	
Val Glu Gly Leu Thr Arg Glu Asn Val Ala Ser His Leu Gln Lys Tyr 180 185 190	
Arg Leu Tyr Leu Lys Arg Ile Gln Gly Leu Thr Thr Glu Glu Asp Pro 195 200 205	
Tyr Ser Ser Ser Asp Gln Leu Phe Ser Ser Thr Pro Val Pro Pro Gln 210 215 220	
Ser Phe Gln Asp Gly Gly Gly Ser Asn Gly Lys Leu Gly Val Pro Val 225 230 235 240	
Pro Val Pro Ser Met Val Pro Ile Pro Gly Tyr Gly Asn Gln Met Gly 245 250 255	
Met Gln Gly Tyr Tyr Gln Gln Tyr Ser Asn His Gly Asn Glu Ser Asn 260 265 270	
Gln Tyr Met Met Gln Gln Asn Lys Phe Gly Thr Met Val Thr Tyr Pro 275 280 285	
Ser Val Gly Gly Asp Val Asn Asp Lys 290 295	
<210> 51 <211> 837 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (54)(629) <223> G180	
<400> 51 gtaattacga tctacaacaa gtgacatcgt cgtcgacgac gattcaagag aat atg Met 1	56
aac ttc ctc gtt cct ttt gaa gaa acc aat gtc tta acc ttt ttc tct Asn Phe Leu Val Pro Phe Glu Glu Thr Asn Val Leu Thr Phe Phe Ser 5 10 15	104
tct tct tct tcc tct tct ctt tct tct tct	152
tct tcc tcc act act act cat gca cct cta ggg ttt tct aat aat Ser Ser Ser Thr Thr Thr Thr His Ala Pro Leu Gly Phe Ser Asn Asn 35 40 45 Page 59	200

MBI-0021.txt

			gga Gly													248
			gga Gly													296
			aat Asn 85													344
agg Arg	agg Arg	aaa Lys 100	cta Leu	aga Arg	gag Glu	cca Pro	aga Arg 105	ttc Phe	tgt Cys	ttc Phe	caa Gln	acc Thr 110	aaa Lys	agc Ser	gat Asp	392
			ctt Leu													440
			aac Asn													488
aac Asn	aac Asn	tgt Cys	agg Arg	gtg Val 150	aaa Lys	aag Lys	aga Arg	gtg Val	gag Glu 155	cga Arg	cta Leu	tcg Ser	gaa Glu	gat Asp 160	tgt Cys	536
			att Ile 165													584
gat Asp	gac Asp	tcc Ser 180	act Thr	tct Ser	cct Pro	gac Asp	cat His 185	gat Asp	tgt Cys	ctc Leu	tct Ser	tcc Ser 190	ttt Phe	taa		629
cato	ctctt	tc t	tatat	atc	a ta	atata	agaca	a gtt	atat	gtg	caca	atata	aga t	gtgt	gatat	689
atto	gcata	att t	gata	attgo	ca to	gtgtt	ttt	c aag	gagta	atgt	cato	cagat	gt t	tatgo	catata	749
ttct	tgad	ctt ç	gttg	cttat	a gt	atac	catat	gta	aataa	atat	atat	tgad	cat t	ggta	agttca	809
ttt	ctgtt	ca a	aacaa	aaaa	aa aa	aaaa	aaa									837

<210> 52 <211> 191 <212> PRT <213> Arabidopsis thaliana

<400> 52

Met Asn Phe Leu Val Pro Phe Glu Glu Thr Asn Val Leu Thr Phe Phe 10

Ser Ser Ser Ser Ser Ser Leu Ser Ser Pro Ser Phe Pro Ile His 25

Asn Ser Ser Ser Thr Thr Thr His Ala Pro Leu Gly Phe Ser Asn 35 45 Page 60

Asn Leu Gln Gly Gly Pro Leu Gly Ser Lys Val Val Asn Asp Asp 50 55 60	
Gln Glu Asn Phe Gly Gly Gly Thr Asn Asn Asp Ala His Ser Asn Ser 65 70 75 80	
Trp Trp Arg Ser Asn Ser Gly Ser Gly Asp Met Lys Asn Lys Val Lys 85 90 95	
Ile Arg Arg Lys Leu Arg Glu Pro Arg Phe Cys Phe Gln Thr Lys Ser 100 105 110	
Asp Val Asp Val Leu Asp Asp Gly Tyr Lys Trp Arg Lys Tyr Gly Gln 115 120 125	
Lys Val Val Lys Asn Ser Leu His Pro Arg Ser Tyr Tyr Arg Cys Thr 130 135 140	
His Asn Asn Cys Arg Val Lys Lys Arg Val Glu Arg Leu Ser Glu Asp 145 150 155 160	
Cys Arg Met Val Ile Thr Thr Tyr Glu Gly Arg His Asn His Ile Pro 165 170 175	
Ser Asp Asp Ser Thr Ser Pro Asp His Asp Cys Leu Ser Ser Phe 180 185 190	
<210> 53 <211> 1413 <212> DNA <213> Arabidopsis thaliana	·
<220> <221> CDS <222> (121)(1200) <223> G592	
<400> 53 aagctattaa gatttggttt totacaaatt tgttottoot gaaacgtoac gagacagago	60
ttacaagaag agaaaacaga ggaaatttcg ttgcattttt tttacatatt gattcgatta	120
atg gat tca aat aat cat ctc tac gac ccg aat ccc acc ggg tcg ggt Met Asp Ser Asn Asn His Leu Tyr Asp Pro Asn Pro Thr Gly Ser Gly 1 5 . 10 15	168
ctt ctt cgt ttt aga tca gct ccg agc tct gtt ctc gcc gct ttt gtt Leu Leu Arg Phe Arg Ser Ala Pro Ser Ser Val Leu Ala Ala Phe Val 20 25 30	216
gac gac gac aag att ggt ttc gac tcc gat agg ttg ctt tca aga ttc Page 61	264

Asp	Asp	Asp 35	Lys	Ile	Gly	Phe	Asp 40	Ser			l.txi Leu		Ser	Arg	Phe		
					gtt Val												312
gat Asp 65	aag Lys	tct Ser	ccg Pro	gtt Val	tcg Ser 70	tta Leu	acg Thr	aac Asn	acc Thr	tct Ser 75	gtt Val	tca Ser	tac Tyr	gcc Ala	gcc Ala 80		360
					ccg Pro												408
ccg Pro	ccg Pro	cat His	tac Tyr 100	ccg Pro	agg Arg	cag Gln	agt Ser	aaa Lys 105	G1A 888	ata Ile	atg Met	aac Asn	tcg Ser 110	gtt Val	ggt Gly		456
ttg Leu	gat Asp	cag Gln 115	ttt Phe	ctc Leu	ggt Gly	atc Ile	aat Asn 120	aat Asn	cat His	cac His	acc Thr	aaa Lys 125	cca Pro	gtt Val	gaa Glu		504
					caa Gln												552
					ggt Gly 150											ı	600
					agt Ser												648
					agg Arg											1	696
					ccc Pro											,	744
					att Ile											•	792
gag Glu 225	gac Asp	gat Asp	gga Gly	aaa Lys	ttg Leu 230	ttt Phe	ctc Leu	gga Gly	gct Ala	cag Gln 235	aac Asn	gga Gly	gag Glu	tcc Ser	999 Gly 240	;	840
					ctg Leu											;	888
					atg Met											:	936
					aaa Lys											:	984

Page 62

cct cga agc atc gct gaa cgg gta aga aga acg cgg ata agc gag cga Pro Arg Ser Ile Ala Glu Arg Val Arg Arg Thr Arg Ile Ser Glu Arg 290 295 300	1032
atg agg aag tta caa gag ctt gtt cct aac atg gac aag caa acc aac Met Arg Lys Leu Gln Glu Leu Val Pro Asn Met Asp Lys Gln Thr Asn 305 310 315 320	1080
act tcg gat atg ttg gat tta gct gtg gat tac atc aaa gat tta caa Thr Ser Asp Met Leu Asp Leu Ala Val Asp Tyr Ile Lys Asp Leu Gln 325 330 335	1128
aga cag tat aag att tta aac gac aac aga gct aac tgt aag tgt atg Arg Gln Tyr Lys Ile Leu Asn Asp Asn Arg Ala Asn Cys Lys Cys Met 340 345 350	1176
aac aag gag aag aag tca ata tag ggcgcaacaa agtgtgtagt agataggact Asn Lys Glu Lys Lys Ser Ile 355	1230
aaaaagcagg gagaaggaca agaaagaaac aatgtcatgt ctgaatattt tttagccgaa	1290
acagaccaaa ttgtctatgt aagctctcga gaaaagcatc tgcttccaac aaaattctaa	1350
gtaataaaat agtactcgat ttgttcttat ttcattatta caatgcagaa tctactaatc	1410
aaa	1413
<210> 54 <211> 359	
<212> PRT <213> Arabidopsis thaliana	
<213> Arabidopsis thaliana	
<213> Arabidopsis thaliana <400> 54 Met Asp Ser Asn Asn His Leu Tyr Asp Pro Asn Pro Thr Gly Ser Gly	
<213> Arabidopsis thaliana <400> 54 Met Asp Ser Asn Asn His Leu Tyr Asp Pro Asn Pro Thr Gly Ser Gly 1 5 10 15 Leu Leu Arg Phe Arg Ser Ala Pro Ser Ser Val Leu Ala Ala Phe Val	
<pre><213> Arabidopsis thaliana <400> 54 Met Asp Ser Asn Asn His Leu Tyr Asp Pro Asn Pro Thr Gly Ser Gly 1</pre>	
<pre><213> Arabidopsis thaliana <400> 54 Met Asp Ser Asn Asn His Leu Tyr Asp Pro Asn Pro Thr Gly Ser Gly 1</pre>	
<pre><213> Arabidopsis thaliana <400> 54 Met Asp Ser Asn Asn His Leu Tyr Asp Pro Asn Pro Thr Gly Ser Gly 1</pre>	

MBI-0021.txt

Leu Asp Gln Phe Leu Gly Ile Asn Asn His His Thr Lys Pro Val Glu Ser Asn Leu Leu Arg Gln Ser Ser Pro Ala Gly Met Phe Thr Asn Leu Ser Asp Gln Asn Gly Tyr Gly Ser Met Arg Asn Leu Met Asn Tyr Glu Glu Asp Glu Glu Ser Pro Ser Asn Ser Asn Gly Leu Arg Arg His Cys Ser Leu Ser Ser Arg Pro Pro Ser Ser Leu Gly Met Leu Ser Gln Ile Pro Glu Ile Ala Pro Glu Thr Asn Phe Pro Tyr Ser His Trp Asn 200 Asp Pro Ser Ser Phe Ile Asp Asn Leu Ser Ser Leu Lys Arg Glu Ala 215 Glu Asp Asp Gly Lys Leu Phe Leu Gly Ala Gln Asn Gly Glu Ser Gly 230 Asn Arg Met Gln Leu Leu Ser His His Leu Ser Leu Pro Lys Ser Ser Ser Thr Ala Ser Asp Met Val Ser Val Asp Lys Tyr Leu Gln Leu Gln 260 Asp Ser Val Pro Cys Lys Ile Arg Ala Lys Arg Gly Cys Ala Thr His 280 Pro Arg Ser Ile Ala Glu Arg Val Arg Arg Thr Arg Ile Ser Glu Arg 295 300 Met Arg Lys Leu Gln Glu Leu Val Pro Asn Met Asp Lys Gln Thr Asn 315 320 Thr Ser Asp Met Leu Asp Leu Ala Val Asp Tyr Ile Lys Asp Leu Gln 330 Arg Gln Tyr Lys Ile Leu Asn Asp Asn Arg Ala Asn Cys Lys Cys Met 345

Asn Lys Glu Lys Lys Ser Ile

<210 <211 <211 <213	1> 764 .2> DNA															
<222 <222	<220> <221> CDS <222> (15)(725) <223> G208															
<400 ctto		55 att (cacc	atg Met 1	gga Gly	aga Arg	tct Ser	cct Pro 5	tgt Cys	tgt Cys	gaa Glu	aaa Lys	gct Ala 10	cac His	aca Thr	50
		gga Gly 15														98
		aat Asn														146
gga Gly 45	ttg Leu	ttg Leu	cgt Arg	tgt Cys	ggt Gly 50	aaa Lys	agt Ser	tgt Cys	aga Arg	ttg Leu 55	aga Arg	tgg Trp	att Ile	aat Asn	tac Tyr 60	194
		cct Pro														242
		atc Ile														290
gct Ala	gga Gly	aga Arg 95	tta Leu	cca Pro	gga Gly	aga Arg	aca Thr 100	gat Asp	aac Asn	gaa Glu	ata Ile	aag Lys 105	aat Asn	tat Tyr	tgg Trp	338
		cat His														386
		cgt Arg														434
gtt Val	cct Pro	att Ile	caa Gln	aac Asn 145	gat Asp	gcc Ala	gtt Val	gag Glu	tat Tyr 150	tct Ser	ttt Phe	tcc Ser	aat Asn	tta Leu 155	gcc Ala	482
		ccg Pro														530
		acg Thr 175														578
agt	gat	aat	tca	gga	cat	ata	aag	ctg		ttg age		tta	act	ctt	3 33	626

Ser		Asn	Ser	Gly	His		Lys	Leu					Thr	Leu	Gly
ttt	190 gga	tcc	tgg	tcg	ggt	195 egg	ata	gtc	gga	gtc	āāa 500	tca	tcg	gct	gat
Phe 205	Gly	Ser	Trp	Ser	Gly 210	Arg	Ile	Val	Gly	Val 215	Gly	Ser	Ser	Ala	Asp 220
					gac Asp										
taa	taa	tttgi	tca a	aaaa	aatco	cc aa	aaaa	atgg	g tt	tgtt	aaa				
<210 <211 <212 <213	-> : !> :	56 236 PRT Arab:	idops	si⁄s 1	thal:	iana									
<400)> !	56													
Met 1	Gly	Arg	Ser	Pro 5.	Cys	Cys	Glu	Lys	Ala 10	His	Thr	Asn	Lys	Gly 15	Ala
Trp	Thr	Lys	Glu 20	Glu	Asp	Gln	Arg	Leu 25	Val	Asp	Tyr	Ile	Arg 30	Asn	His
Gly	Glu	Gly 35	Cys	Trp	Arg	Ser	Leu 40	Pro	Lys	Ser	Ala	Gly 45	Leu	Leu	Arg
Cys	Gly 50	Lys	Ser	Cys	Arg	Leu 55	Arg	Trp	Ile	Asn	Tyr 60	Leu	Arg	Pro	Asp
Leu 65	Lys	Arg	Gly	Asn	Phe 70	Thr	Asp	Asp	Glu	Asp 75	Gln	Ile	Ile	Ile	Lys 80
Leu	His	Ser	Leu	Leu 85	Gly	Asn	Lys	Trp	Ser 90	Leu	Ile	Ala	Gly	Arg 95	Leu
Pro	Gly		Thr 100		Asn							Asn			Ile
Lys	Arg	Lys 115	Leu	Leu	Ser	His	Gly 120	Ile	Asp	Pro	Gln	Thr 125	His	Arg	Gln
Ile	Asn 130	Glu	Ser	Lys	Thr	Val 135	Ser	Ser	Gln	Val	Val 140	Val	Pro	Ile	Gln
Asn 145	Asp	Ala	Val	Glu	Tyr 150	Ser	Phe	Ser	Asn	Leu 155	Ala	Val	Lys	Pro	Lys 160
Thr	Glu	Asn	Ser	Ser 165	Asp	Asn	Gly	Ala	170	Thr age		Gly	Thr	Thr 175	Thr

MBI-0021.txt

Asp Glu Asp Leu Arg Gln Asn Gly Glu Cys Tyr Tyr Ser Asp Asn Ser 190 Gly His Ile Lys Leu Asn Leu Asp Leu Thr Leu Gly Phe Gly Ser Trp 200 Ser Gly Arg Ile Val Gly Val Gly Ser Ser Ala Asp Ser Lys Pro Trp Cys Asp Pro Val Met Glu Ala Arg Leu Ser Leu Leu 230 <210> 57 <211> 28 <212> DNA <213> synthetic oligonucleotide <220> <221> misc_feature <222> ()..() <223> 025908 <400> 57 28 ggcataaccc ttatcggaga tttgaagc <210> 58 <211> 28 <212> DNA <213> synthetic oligonucleotide <220> <221> misc_feature <222> $() \dots \overline{()}$ <223> 025910 <400> 58 28 acacaaactc tgatcttgtc tccgaagg <210> 59 <211> 30 <212> DNA <213> synthetic oligonucleotide <220> <221> misc_feature <222> ()..() <223> O28990 <400> 59 30 gcataaccct tatcggagat ttgaagccat

MBI-0021.txt <210> 60 <211> 30 <212> DNA <213> synthetic oligonucleotide <220> <221> misc_feature <222> ()..() <223> 028991 <400> 60 30 aacattcctc tctcatcatc tgttgccagc <210> 61 <211> 28 <212> DNA <213> synthetic oligonucleotide <221> misc_feature <222> ()..() <223> 025907 <400> 61 28 aacgcttagt atctccggcg acttgaac <210> 62 <211> 28 <212> DNA <213> synthetic oligonucleotide <220> <221> misc_feature <222> ()..() <223> 025909 <400> 62 28 ctcacacgaa taaggtacaa agttcatc <210> 63 <211> 30 <212> DNA <213> synthetic oligonucleotide <400> 63 30 ttagtatctc cggcgacttg aacccaaacc <210> 64 <211> 30 <212> DNA <213> synthetic oligonucleotide

Page 68

<220>

<222>

<221> misc_feature

()..()

<223> 028985

MBI-0021.txt

<400> 64 agattctcaa caagcttcaa catgagttcg

30