

Finite Element Simulation For Mechanical Design

FE Analysis of the structure of a machine tool:

Beam elements

A. Bernasconi

Introduction

Introduction

Simplified model

Simplified model

Dimensions of the simplified model

Dimensions of the simplified model

SECTION A-A

NB: Remove fillet radiuses

SECTION B-B

Parts to be modeled

Position of the center of mass and spindle nose

Two cutting forces are applied to the spindle nose

Stiffness of the carriage and mandrel are not considered Stiffness of guideways and cross slide are neglected Stiffness of the splindle is neglected F1 = 500 N

Perpendicular to the crosshead

F2 = 600 N

Parallel to the crosshead

Simplifications:

Forces are supposed to be applied to spindle nose, neglecting the stiffness of the tool and of the coupling between tool and spindle

Beam model

Wire parts need to be buildt

Geometry of the wire features forms a sort of backbone of the structure

FE beam model

Forces are applied to a reference point (RP)

RP is connected to the crosshead using a rigid kinematic coupling

FE beam model: results

Stiffness method with vertical load Vertical load is applied for validation purposes only

Angle of twist per unit length

$$\tau(\mathbf{r}) = \mathbf{G} \cdot \mathbf{\gamma} = \mathbf{G} \cdot \mathbf{\phi}' \cdot \mathbf{r} \equiv \mathbf{G} \cdot \mathbf{D} \cdot \mathbf{r}$$

$$M_{X} \equiv \int_{0}^{r} \tau(r) \cdot dA \cdot r = G \cdot \phi' \int_{0}^{r} r^{2} \cdot dA = G \cdot J_{p} \cdot \phi'$$

This downwant is مانفلتانا by Andrea Bernasconi to the students of the course Finite Element Simulation for Mechanical Design for personal use onl

 $\tau_{\text{max}} = G \cdot r_{\text{a}} \cdot \phi' = \frac{M_{\text{x}} \cdot r_{\text{a}}}{J_{\text{t}}}$

$$\tau_{\max} = G \cdot r_a \cdot \phi' = \frac{T \cdot r_a}{J_t}$$

τ –	$M_{x} \cdot r_{a}$	τ. –	$\underline{M_x \cdot r_i}$	
max –	J_t ,	mın –	J_t	,

$$J_t \equiv J_p = \frac{\pi}{2} \left(r_a^4 - r_i^4 \right)$$

$$\mathbf{T}_{t} \equiv \mathbf{J}_{p} = 2 \, \boldsymbol{\pi} \cdot \mathbf{r}_{m}^{3} \cdot \mathbf{t} \left[1 + \left(\frac{\mathbf{t}}{2 \, \mathbf{r}_{m}} \right)^{2} \right] \approx 2 \, \boldsymbol{\pi} \cdot \mathbf{r}_{m}^{3} \cdot \mathbf{t},$$

$$J_t \equiv J_p = 2 \; \pi \cdot r_m^3 \cdot t \left[1 + \left(\frac{t}{2 \; r_m} \right)^2 \right] \approx 2 \; \pi \cdot r_m^3 \cdot t, \qquad J_t = \frac{1}{3} \, t^3 \cdot b \; \left\{ 1 - \frac{192}{\pi^5} \cdot \frac{t}{b} \left[\tanh \left(\frac{\pi \cdot b}{2 \; t} \right) + \frac{1}{243} \tanh \left(\frac{3\pi \cdot b}{2 \; t} \right) \right] \right\} \approx \frac{1}{3} \zeta_1 \cdot t^3 \cdot b$$

 $\tau_{xy} << \tau_{xz} = \tau_{max}$

20

q, shear flow; $q = \tau$ (s) t(s)

Open, thin walled cross sections

Open, thin walled cross sections

$$\phi' = \frac{M_X}{G \cdot J_f}$$

$$J_{t} = \frac{1}{3}t^{3} \cdot b \left\{ 1 - \frac{192}{\pi^{5}} \cdot \frac{t}{b} \left[\tanh\left(\frac{\pi \cdot b}{2 t}\right) + \frac{1}{243} \tanh\left(\frac{3\pi \cdot b}{2 t}\right) \right] \right\} \approx \frac{1}{3}\zeta_{1} \cdot t^{3} \cdot b$$

b/t	1	1,5	2	3	4	5	6	8	10	∞
ζ_1	0,424	0,588	0,687	0,789	0,843	0,875	0,897	0,920	0,938	1
ζ_2	0,625	0,664	0,737	0,801	0,845	0,873	0,894	0,919	0,936	1

$$J_t \approx \frac{1}{3} \cdot t^3 \cdot b$$

Shape does not matter, only the number and the length of each member

$$M_x = \sum_{i=1}^3 M_{xi} = \sum_{i=1}^3 q_i \cdot 2 \; \dot{A}_i \; . \qquad \text{Equilibrium}$$

$$\phi_1' = \phi_2' = \phi_3' = \phi'$$

Compatibility

If there were only qi

$$M_{xi} = G \cdot J_{t_i} \cdot \phi' = G \frac{4 \dot{A_i}^2}{\left(\oint \frac{ds}{t(s)} \right)_i} \phi' = q_i \cdot 2 \dot{A_i} \qquad q_i \cdot \left(\oint \frac{ds}{t(s)} \right)_i = 2 \dot{A_i} \cdot G \cdot \phi' .$$

$$q_i\int\limits_A^B\!\frac{ds}{t} + \left(q_i-q_{i-1}\right)\!\int\limits_B^C\!\frac{ds}{t} + q_i\int\limits_C^D\!\frac{ds}{t} + \!\left(q_i-q_{i+1}\right)\!\int\limits_D^A\!\frac{ds}{t} = 2\stackrel{\cdot}{A}_i\cdot G\cdot \phi'\ .$$

$$-\frac{q_{i-1}}{G\cdot \phi'}\int\limits_{B}^{C}\frac{ds}{t}+\frac{q_{i}}{G\cdot \phi'}\left(\phi\frac{ds}{t}\right)_{i}\\ -\frac{q_{i+1}}{G\cdot \phi'}\int\limits_{D}^{A}\frac{ds}{t}=2\stackrel{\cdot}{A}_{i} \ . \qquad \qquad u_{i}=\frac{q_{i}}{G\cdot \phi'}$$

$$a_{i,L} = \int_{B}^{C} \frac{ds}{t}$$

$$a_{i,Z} = \left(\oint \frac{ds}{t} \right)$$

$$a_{i,R} = \int_{D}^{A} \frac{ds}{t}$$

For symmetric sections:

$$a_{i,R} = a_{i+1,L}$$

$$\mathbf{a}_{i,\mathrm{L}} = \mathbf{a}_{i-1,\mathrm{R}}$$

$$\begin{aligned} -a_{i,L} \cdot u_{i-1} + a_{i,Z} \cdot u_i - a_{i,R} \cdot u_{i+1} &= 2 \ \dot{A}_i & (i = 1, 2, 3) \,. \\ \\ a_{1,Z} \cdot u_1 - a_{1,R} \cdot u_2 &= 2 \ \dot{A}_1 \\ \\ -a_{2,L} \cdot u_1 + a_{2,Z} \cdot u_2 - a_{2,R} \cdot u_3 &= 2 \ \dot{A}_2 \\ \\ -a_{3,L} \cdot u_2 + a_{3,Z} \cdot u_3 &= 2 \ \dot{A}_3 \end{aligned}$$

$$q_i = (G \cdot \phi') \cdot u_i \,.$$

Wall thickness t is uniform

$$T = M_1 + M_2 = GJ_t\phi'$$

$$T = q_1 2bh + q_2 2bh$$

$$q_1\left(\frac{2b+h}{t}\right) + q_1\frac{h}{t} - q_2\frac{h}{t} = 2 \ bh \ G \ \phi'$$

$$-q_1 \frac{h}{t} + q_2 \left(\frac{2b+h}{t}\right) + q_2 \frac{h}{t} = 2 \ bh \ G\phi'$$

$$q_1 = q_2$$

$$q_1 = \frac{2 bh G\phi'}{(2b-1)^2}$$

$$q_1 = \frac{2 b h G \varphi}{\left(\frac{2b+h}{t}\right)}$$

$$T=2$$

$$2\frac{2 bh G\phi'}{\left(\frac{2b+h}{t}\right)} 2bh$$

$$J_t = \frac{8b^2h^2t}{2b+h}$$

In this case, due to the double thickness of the central web, there is a slight change in J_t

$$J_t = \frac{16 \ b^2 h^2 t}{4b + h}$$

An equivalence can be applied to section B only if in-plane vertical loads are applied

$$J_t = \frac{16 \, b^2 h^2 t}{4b + h}$$

Same
$$J_x$$

Same J_t
Different J_y