Part I

Introduction

An Overview (week 1)

Information Systems

- 1. Functions in models Are always computable Can always be represented as data On be constrained by axioms 2. Interpretation relationships
 - Relate constants to real-world entities Are uniquely defined

Are always computable

1.2Data Management

- 1. What is not specified in the data definition language? The structure of a relational table The query of user A constraint on a relational table 2. Logical data independence means
- An abstract data type is implemented using different data structures
 - A new view is computed without changing an existing database schema
 - O A model can be represented in different data modelling formalisms

1.3 Data Management Tasks

- 1. Which is wrong? An index structure Is created as part of physical database design Is selected during query optimization Accelerates search queries Accelerates tuple insertion 2. Persistence means that
- - A change of a transaction on a database is never lost after it is completed
 - The state of a database is independent of the lifetime of a program
 - The same logical database can be stored in different ways on a storage medium

Information Management 1.4

1. Grouping Twitter users according to their interest by analyzing the content of their tweets is

\bigcirc A r	etrieval	task
----------------	----------	------

- A data mining task
- An evaluation task
- A monitoring task

Distributed Information Systems 1.5

1.	Creating a web portal for comparing product prices		
	(primarily) a problem of		
	 Distributed data management 		
	 Heterogeneous data integration 		
	 Collaboration among autonomous systems 		

Distributed Data Management

 When you open a Web page with an embedded Twitter str the communication model used by Twitter is 		
O Push, unicast and conditional		
O Pull, multicast and ad-hoc		
O Push, multicast and ad-hoc		
 Pull, unicast and conditional 		

1.7 Heterogeneity

- 1. Creating a web portal for comparing product prices requires to address Syntactic heterogeneity Semantic heterogeneity ○ Both 2. An ontology is a
 - Sdatabase () database schema O data model O data modeling formalism model

1.8 Autonomy

1. Trust is A quality of information A quality of a user A quality of the relationship among user and A quality of the relationship among users

Part II Storage

Distributed Data 2 Management

2.1Schema Fragmentation

Relational Databases

- 1. At which phase of the database lifecycle is fragmentation performed?
 - At database design time

	O I "M .: I" D I 000000
During distributed query processing	○ Location = "Munich", Budget > 200000
Ouring updates to a distributed database	Cocation = "Munich", Location = "Bangalore"
2. The reconstruction property expresses that	\bigcirc Location = "Paris", Budget ≤ 200000
 In case of a node failure the data can be recovered from a fragment from another node 	None of those
The original data can be fully recovered from the	4. Which is true for MinFrag algorithm?
fragments	The output is independent of the order of the input
 Every data value of the original data can be found in at least one fragment 	 It produces a monotonically increasing set of predicates
	○ It always terminates
2.1.2 Primary Horizontal Fragmentation (week	 All of the above statements are true
2)1. Example: application A1 accesses	5. When deriving a horizontal fragmentation for relation ${\cal S}$ from a horizontally fragmented relation ${\cal R}$
Fragment F1: with frequency 3	\bigcirc Some primary key attribute in R must be a foreign
2. Fragment F2: with frequency 1	key in S O Some primary key attribute in S must be a foreign
	key in R
A1 accesses the whole relation with frequency	Both are required
Missing	2.2 Graph Databases (week 3)
figure graph	2.2.1 Semi-structured Data
	1. Semi-structured data
	○ Is always schema-less
	Always embeds schema information into the data
	Must always be hierarchically structured
\bigcirc 13/7	○ Can never be indexed
O 4/7	2. Why is XML a document model?
O 14/7	It supports application-specific markup
2. Consider the access frequencies below: How many horizontal	 It supports domain-specific schemas
fragments would a minimal and complete fragmentation have?	It has a serialized representation
	○ It uses HTML tags
Missing	2.2.2 Graph Data Model
figure table	
	 In a graph database There is a unique root node
	Each node has a unique identifier
	Data values in leaf nodes are unique
	The labels of edges leaving a node are different
\bigcirc 3	There is a unique path from the root to each leaf
○ 3○ 4	
O 6	 The simulation relationship is a relation Among nodes in the data and schema graph
<u> </u>	Among edges in the data and schema graph
3. Which of the following sets of simple predicates is complete?	
	Among sets of nodes in the data and schema graph Among sets of edges in the data and schema graph
Missing	3. Which is true?
figure table	\bigcirc For each labelled edge in S a corresponding edge in
	D can be identified
	\bigcirc For each root node in S a corresponding root node D can be identified
	\bigcirc For each leaf node in D a corresponding typed node in S can be identified

а

\bigcirc For each node in S a unique path reaching it from a root node can be identified	 The top k documents of A will contain more relevant documents than the top k documents of B
4. If there exists a uniquely defined simulation relationship among a graph database ${\cal D}$ and a schema graph ${\cal S}$	\bigcirc A will recall more documents above a given similarity threshold than B
 The data and schema graph are simulation equivalent 	Relevant documents in A will have higher similarity
 Ambiguous classification cannot occur 	values than in B
 Multiple classification cannot occur 	
5. If schema graph S_1 subsumes S_2	3.1.2 Text-based Information Retrieval
\bigcirc Every graph database corresponding to S_1	1. Full-text retrieval means that
corresponds also to S_2	○ The document text is grammatically deeply analyzed
\bigcirc S_2 simulates S_1	for indexing
\bigcirc S_1 has fewer nodes than S_2	○ The complete vocabulary of a language is used to
2.2.3 Schema Extraction	extract index terms
1. Which is wrong? In a dataguide	 All words of a text are considered as potential index terms
 Every path in the data graph occurs only once 	 All grammatical variations of a word are indexed
O Every node in the data graph occurs only in one data	
guide node	2. The term-document matrix indicates
 Every data guide node has a unique set of nodes 	 How many relevant terms a document contains
 A leaf node in the data graph corresponds always to a leaf node in the data guide 	How relevant a term is for a given document
2. In a non-deterministic schema graph	 How often a relevant term occurs in a document collection
 Every node of the data graph occurs exactly once 	
 Every path of the data graph occurs at most once 	 Which relevant terms are occurring in a document collection
 Every label of an outgoing edge of a node in the 	2. Let the guery be represented by the following vectors: (1, 0, 1)
schema graph is unique	3. Let the query be represented by the following vectors: (1, 0, -1) (0, -1, 1); the document by the vector (1, 0, 1)
Part III	 Matches the query because it matches the first query vector
a 1	Matches the query because it matches the second
Search	query vector
	Opes not match the query because it does not match
3 Information Retrieval and	the first query vector
Data Mining	 Does not match the query because it does not match the second query vector
3.1 Information Retrieval (week 4)	4. Which is right? The term frequency is normalized
	\bigcirc By the maximal frequency of a term in the document
3.1.1 Information Retrieval1. A retrieval model attempts to model	 By the maximal frequency of a term in the document collection
The interface by which a user is accessing information	 By the maximal frequency of a term in the vocabulary
 The importance a user gives to a piece of information 	
 The formal correctness of a query formulation by user 	 By the maximal term frequency of any document in the collection
○ All of the above	
2. If the top 100 documents contain 50 relevant documents	5. The inverse document frequency of a term can increase
○ The precision of the system at 50 is 0.5	 By adding the term to a document that contains the term
The precision of the system at 100 is 0.5	 By adding a document to a document collection that
○ The recall of the system is 0.5	does not contain the term
None of the above	By removing a document from the document
3. If retrieval system A has a higher precision than system B	collection that does not contain the term
 The top k documents of A will have higher similarity values than the top k documents of B 	 By adding a document to a document collection that contains the term

Advanced Retrieval Models (week 3.2 5)

3.2.1 Latent Semantic Inc	dexing		figure	graph	
In vector space retrieval each row corresponds to	\prime of the matrix M^T				
		-			
			authority vector	r(0,0,1) ; hub vector $(1,1,0)$	
○ A query result			authority vector	(0,0,2) ; hub vector $(2,2,0)$	
2 Applying SVD to a term-docume	nt matrix M Fach concept is		authority vector	$r\left(0,0,1 ight)$; hub vector $\left(rac{1}{2},rac{1}{2},0 ight)$	
Applying SVD to a term-document matrix \mathbf{M} . Each concept is represented			authority vector	$r\left(0,0,2 ight)$; hub vector $\left(1,1,0 ight)$	
○ As a singular value				()	
As a linear combination	n of terms of the vocabulary	3.2.4	Inverted Files	(week 6)	
○ As a linear combination	n of documents in the	1. A po	osting indicates		
document collection				of a term in the vocabulary	
 As a least square appro 	oximation of the matrix M			of a term in a document	
3. The number of term vectors in th	ne SVD for LSI		<u> </u>	of a term in a document	
 Is smaller than the nun 	 Is smaller than the number of rows in the matrix M 			ns occurring in a document	
_	nber of rows in the matrix M	When indexing a document collection main space requirement is implied by	_	the	
\bigcirc Is larger than the numb	ber of rows in the matrix M		○ The access stru	cture	
4. A query transformed into the con	cept space for LSI has		The vocabulary		
• •	$\bigcirc s$ components (number of singular values)		○ The index file		
\bigcirc m components (size of	- ,		○ The postings fil	e	
•	\bigcirc <i>m</i> components (number of documents)	3. Usin	g a trie in index const		
on components (number	or documents)		Helps to quickly before	y find words that have been seen	
3.2.2 User Relevance Fee			Helps to quickly before	y decide whether a word has not see	en
 Can documents which do not cor original query receive a positive s relevance feedback? 			Helps to maintageseen in the doc	ain the lexicographic order of words uments	
○ No			○ All of the above	9	
Yes, independent of the	e values eta and γ		ntaining the order of o	document identifiers when partitioni	ing
\bigcirc Yes, but only if $\beta > 0$				erging approach for single node	
\bigcirc Yes, but only if $\gamma>0$			machines		
			○ In the map-redu	uce approach for parallel clusters	
3.2.3 Link-based Rank	king		○ In both		
	_		In neither of the	e two	
2. A positive random jump value for	•	3.2.5	D:-4-:141 D	.4	
a random walker can le outgoing edges	 a random walker can leave the node even without outgoing edges 		Distributed Re		on±
a random walker can re	a random walker can reach the node multiple times			gorithm for a query with three differe p documents, the algorithm will sca	
even without outgoing			○ 2 different lists		

O 2 different lists

○ 3 different lists

 \bigcirc k different lists

lists

it depends how many rounds are taken

2. Once k documents have been identified that occur in all of the

3. Given the graph below and an initial hub vector of (1,1,1). The hub-authority ranking will result in the following

incoming edges

 \bigcirc none of the above

O a random walker can reach the node even without

	\bigcirc These are the top- k documents	 Frequent items 		
	\bigcirc The top- k documents are among the documents seen	○ Rare items		
	so far	O Does not matter		
	\bigcirc The search has to continue in round-robin till the top- k documents are identified	5. With the square root rule for replica allocation : given two items that are accessed with probabilities $p_1 > p_2$ that are		
	\bigcirc Other documents have to be searched to complete the top- k list	replicated r_1 and r_2 times. Which is always true ? $\bigcirc \ r_1 < r_2$		
		$\bigcirc r_1/r_1 < r_2/r_2$		
4	Peer-2-Peer Search	$\bigcirc r_1 - p_1 < r_2 - p_2$		
4. :	1 Peer-2-Peer Systems	4.1.3 Hierarchical P2P Overlay Networks		
4.1	.1 P2P Systems and Resource Location	Credits		
1.	Which resource is in Napster not shared in a P2P approach ?	Cicuits		
	○ File storage	Quiz questions were taken from the lecture notes of Prof. Kar		
	○ File metadata storage	Aberer.		
	Network bandwidth			
	○ Content rights			
2.	"Churn" refers to the fact that in a peer-to-peer system :			
	Peers constantly join and leave the network			
	Peers constantly add and remove resources			
	Peers constantly search for resources			
3	An "overlay network" supports :			
٥.	Efficient routing to a given IP address			
	Efficient routing to the location of a resource			
	identifier			
	Efficient exchange of large files			
	Efficient messaging in centralized social network			
4.1	v			
1.	In an unstructured overlay network (such as Gnutella) a peer receiving a "peer discovery" message (ping)			
	 Responds by sending a message to the originator of the message 			
	 Responds by replying to the last forwarder of the message 			
	\bigcirc Responds by sending a message to all its neighbors			
2.	If the largest city in the world has 16 Mio inhabitants, the second largest 11.3 Mio inhabitants, the third largest 9.2 Mio, the fourth largest 8.0 Mio, and so on, then this is			
	A Powerlaw distribution			
	A Zipf distribution			
	None of the two			
3.	Assume that in a country the size of cities follows a powerlaw distribution with exponent 2. A city of 16 Mio inhabitants has probability of $^1/_{256}$ to occur. Then a city of 8 Mio inhabitants is			
	Twice as probable			
	Four times as probable			
	○ Eight times as probable			
4.	Expanding ring search is particularly suitable to locate			

4

4.1

4.1.1

4.1.2 1. In