Commencé le	mardi 12 septembre 2023, 09:57
État	Terminé
Terminé le	mardi 12 septembre 2023, 10:02
Temps mis	4 min 59 s
Note	10,00 sur 10,00 (100 %)
Question 1	
Question 1 Correct	
Correct	

[FR] Par définition inductive, les langages rationnels sont stables par (plusieurs bonnes réponses possibles) :

Cette question vaut 2 points.

[EN] By inductive definition, rational languages are stable by (there may be multiple correct answers):

This question is worth 2 points.

Veuillez choisir au moins une réponse.

a. Intersection. *Intersection.*

☑ b. Étoile de Kleene. ✓
Kleene's star.

c. Complémentation.

☑ d. Concaténation. ✓Concatenation.

☑ e. Union. ✓
Union

Quels sont les opérateurs utilisés dans la définition inductive ? What are the operators used in the inductive definition?

Les réponses correctes sont :

Union.

Union,

Concaténation.

Concatenation.,

Étoile de Kleene.

Kleene's star.

Question 2	
Correct	
Note de 1,00 sur 1,00	
[FR] Soit L un langage ne contenant pas ε . Est-ce que $\varepsilon \in L^*$?	
[EN] Let L be a language that does not contain ε . Does $\varepsilon \in L^*$?	
Veuillez choisir une réponse.	
⊚ a. Vrai. ✓	
True.	
Ob. Faux.	
False.	
Oui, en concaténant 0 mots dans L .	
Yes, if we concatenate 0 words in $L.$	
La réponse correcte est :	
Vrai. True.	
Tiuc.	
Question 3 Correct	
Note de 1,00 sur 1,00	
[FR] Soit L un langage ne contenant pas ε . Est-ce que $\varepsilon \in L^+$?	
[EN] Let L be a language that does not contain ε . Does $\varepsilon \in L^+$?	
[EN] Let L be a language that does not contain E. Does E \(\in L\):	
Veuillez choisir une réponse.	
○ a. Vrai.	
True.	
b. Faux. ✓ False.	
ı aıst.	
Il faut au moins concatener un mot dans ${\cal L}.$	
We need to concatenate at least one word in L .	

La réponse correcte est :

Faux. False.

Question 4

Correct

Note de 3,00 sur 3,00

[FR] Cochez les propriétés valides dans la liste suivante :

Cette question vaut 3 points.

[EN] Check the true propositions in the following list:

This question is worth 3 points.

Veuillez choisir au moins une réponse.

- \square a. $\varepsilon \emptyset \equiv \varepsilon$
- ightharpoonup c. $(ef)^*e \equiv e(fe)^* \checkmark$
- ightharpoonup d. $e^+ \equiv ee^* \checkmark$
- \blacksquare e. $\varepsilon^* \equiv \emptyset^* \checkmark$
- \blacksquare f. $ef \equiv fe$
- \square g. $e\varepsilon \equiv \varepsilon$
- ightharpoonup h. $e+f\equiv f+e$
- \blacksquare i. $(e+f)^* \equiv (ef)^*$
- j. $e\emptyset \equiv e$

Relisez votre cours et testez les propriétés sur des exemples simples. Read your class notes and test the properties on simple examples.

Les réponses correctes sont :

$$\varepsilon^* \equiv \emptyset^*$$

 $e + f \equiv f + e$

 $e^+ \equiv e e^*$

 $(ef)^*e \equiv e(fe)^*$

 $(e+f)^* \equiv (e^*f^*)^*$

Question 5

Correct

Note de 1,00 sur 1,00

[FR] L'ensemble des mots sur l'alphabet $\{a,b\}$ contenant un nombre pair de a peut être exprimé par l'expression régulière suivante :

[EN] The set of all words on the alphabet $\{a,b\}$ containing an even number of a can be recognized by the following regular expression:

Veuillez choisir une réponse.

- \bigcirc a. $(ab^*a)^*$
- b. $b^*ab^*ab^*$
- \bigcirc c. $(b^*ab^*ab^*)^* \checkmark$
- \bigcirc d. $(a+b)^*a(a+b)^*a(a+b)^*$

Testez sur des exemples simples votre réponse. Test your answer on simple examples.

La réponse correcte est :

 $(b^*ab^*ab^*)^*$

Question 6

Correct

Note de 1,00 sur 1,00

[FR] L'ensemble des mots sur l'alphabet $\{a,b,c\}$ contenant deux ou trois c peut être exprimé par l'expression régulière suivante :

[EN] The set of all words on the alphabet $\{a,b,c\}$ containing two or three c can be recognized by the following regular expression:

Veuillez choisir une réponse.

- a. $\sqrt{(a+b)^* c (a+b)^* c (a+b)^* c (a+b)^*}$
- o c. $\sum (a+b+c)^{*} c (a+b+c)^{*} c (a+b+c)^{*} c (a+b+c)^{*}$
- od. $\sum_{c} (a + b)^* c (a + b)^* (c + \text{varepsilon})$

arepsilon est très utile pour créer des choix optionnels.

arepsilon allows one to design optional choices.

La réponse correcte est :

<u>(a + b)^* c (a + b)^* c (a + b)^* (c + \varepsilon) (a + b)^*</u>

Question 7

Correct

Note de 1,00 sur 1,00

[FR] L'ensemble des mots sur l'alphabet $\{a,b,c\}$ n'ayant pas bc comme facteur peut être exprimé par l'expression régulière suivante :

[EN] The set of all words on the alphabet $\{a,b,c\}$ that do not admit bc as a factor can be recognized by the following regular expression:

Veuillez choisir une réponse.

- \bigcirc a. $(a+b+c)^*(ba)^*(cb)^*$
- \bigcirc b. $((a+b)^*c^*a)^*c^*b^*$
- \bigcirc c. $(a+b+c^*)^*c^?$
- \bigcirc d. $(a + b^*a + c)^*b^*$

Notez qu'un $\,b\,$ doit être suivi de $\,a\,$, $\,b\,$, ou rien. Note that a $\,b\,$ should be followed by $\,a\,$, $\,b\,$, or nothing.

La réponse correcte est :

$$(a+b^*a+c)^*b^*$$