Duality geometrical intuition

Consider the vector space V and the basis (v_1, v_2, \ldots, v_n) for V.

The concept of basis $(\varphi_1, \varphi_2, \dots, \varphi_n)$ for the dual space V' is defined in 3.F in terms of the 1-0 properties: for $\varphi_i(v_j) = \delta_{ij}$, where δ_{ij} is the Dirac delta function (1 when i = j, and 0 otherwise).

Axler leaves the φ s only defined abstractly, as functionals $\mathcal{L}(V, \mathbf{F})$, where V is any abstract vector space. If we restrict out attention to the case $V = \mathbb{R}^n$ (or \mathbf{F}^n if you prefer), then we can gain some valuable intuition about the nature of the φ s.

As Isak pointed out, we can think of the φ s as function of the form:

$$\varphi(v) = \vec{a} \cdot v,$$

for some vector \vec{a} . In other words, each φ_i corresponds to some vector \vec{a}_i and applying φ_i to vector v is equivalent to computing the dot product $\vec{a} \cdot v$.

Geometrically speaking, the functions φ_i compute the distance from a plane passing through the origin that has normal vector \vec{a}_i , up to a constant factor related to $\|\vec{a}_i\|$.

Example 1: dual to the standard basis

Consider $V = \mathbb{R}^2$ and the standard basis for V that consists of

$$e_1 = (1,0)$$
 and $e_2 = (0,1)$.

The dual basis consists of the functionals

$$\varphi_1(v) = (1,0) \cdot v$$
 and $\varphi_2(v) = (0,1) \cdot v$,

which manifestly satisfy the 1-0 proprty $\varphi_i(e_i) = \delta_{ii}$.

Example 2: dual to a non-orthogonal basis

Consider again $V = \mathbb{R}^2$ and the basis for V that consisting of the vectors

$$v_1 = (2,0)$$
 and $v_2 = (1,1)$.

The dual basis consists of the functionals

$$\varphi_1(v) = (\frac{1}{2}, -\frac{1}{2}) \cdot v$$
 and $\varphi_2(v) = (0, 1) \cdot v$,

which we can verify satisfies the 1-0 property $\varphi_i(v_i) = \delta_{ij}$.

Credit David for providing the algorithm for finding the vectors \vec{a}_i needed to create the dual basis functionals φ_i . The algorithm is:

- 1. vertically stack vectors v_i into a matrix M $(M_{i;:} = v_i)$
- 2. find the inverse of M
- 3. read-off a_i s as the columns of M^{-1}

You can see SymPy code that implements the above steps for the vectors v_1 and v_2 here.

Understanding dual representations geometrically

Recall we said that the elements of the dual basis φ_i can be interpreted geometrically as functions that compute the distance to the plane passing through the origin with normal vector \vec{a}_i , up a scaling constant.

Let's revisit the two examples to see how this geometric intuition applies to them.

Example 1

Every vector $v \in V$ can be represented as a linear combination of the basis vectors e_1 and e_2 :

$$v = \alpha_1 e_1 + \alpha_2 e_2,$$

where the coefficients α_i correspond to the "how much of e_i is in \vec{v} " calculations.

Equivalently, the same vector v can be represented in terms of two coefficients β_1 and β_2 obtained by asking the questions "how far is \vec{v} from the planes with normal vector $\vec{a}_1 = (1,0)$ and $\vec{a}_2 = (0,1)$."

$$\beta_1 = \varphi_1(v) = \vec{a}_1 \cdot v$$
 and $\beta_2 = \varphi_2(v) = \vec{a}_2 \cdot v$.

In this case, we're dealing with the an orthonormal basis e_i , which leads to self-dual vectors \vec{a}_i , and the coefficients α_i and β_i are the same.

Example 2

Every vector $v \in V$ can be represented as a linear combination of the basis vectors v_1 and v_2 :

$$v = \alpha_1 v_1 + \alpha_2 v_2,$$

and we know that α_1 and α_2 are unique coefficients that make up the linear combination (since v_1 and v_2 are linearly independent). We can still interpret α_1 and α_2 as "how much of v_i is needed to get \vec{v} ".

Equivalently, the same vector v can be represented in terms of two coefficients β_1 and β_2 obtained by asking the questions "how far is \vec{v} from the planes with normal vector $\vec{a}_1 = (\frac{1}{2}, -\frac{1}{2})$ and $\vec{a}_2 = (0, 1)$."

$$\beta_1 = \varphi_1(v) = \vec{a}_1 \cdot v$$
 and $\beta_2 = \varphi_2(v) = \vec{a}_2 \cdot v$.

Caveat: the coefficients β_i are not actually equal to the distances from the plane φ_i as claimed above, but related by a constant. If we wanted a to have a representation in terms of actual, geometrical distances to the planes, we'd have to use the coefficients $\hat{\beta}_i$ defined as

$$\hat{\beta}_1 = \hat{a}_1 \cdot v \quad \text{and} \quad \hat{\beta}_2 = \hat{a}_2 \cdot v,$$

where $\hat{a}_i = \frac{\vec{a}_i}{\|\vec{a}_i\|}$ are unit-length vectors in the same direction as \vec{a}_i .

Since the real geometrical distances $\hat{\beta}_i$ and the outputs of the functionals φ_i are related by the constant $\|\vec{a}_i\|$ we allow ourselves to use "loose" language and refer to the coefficients β_i as distances, but keep in mind actual distances are $\beta_i = \beta_i / \|\vec{a}_i\|.$

Graphs of functionals

Another way to think about the functionals $\varphi_1: \mathbb{R}^2 \to \mathbb{R}$ and $\varphi_2: \mathbb{R}^2 \to \mathbb{R}$ is in terms of their "graph" in \mathbb{R}^3 .

The graph of the multivariable function $f: \mathbb{R}^2 \to \mathbb{R}$ consists of all points (x,y,f(x,y)) in \mathbb{R}^3 , for all possible $(x,y)\in\mathbb{R}^2$. In the case of the functions φ_1 and φ_2 , the graph are planes.

Isak pointed out the general notion that three points in \mathbb{R}^3 uniquely define a plane. He also observed that we can use the 1-0 property $\varphi_i(v_j) = \delta_{ij}$ to obtain the coordinates of three points contained in each φ_i , and hence we can find the plane associted with φ_i this way (in particular this shows the dual basis φ_1 and φ_2 is unique).

Specifically, we know that:

- $\varphi_1(v_1) = 1$, $\varphi_1(v_2) = 0$, and $\varphi_1(0) = 0$ $\varphi_2(v_1) = 0$, $\varphi_2(v_2) = 1$, and $\varphi_2(0) = 0$

The zero values tell us the graph of each φ_i intersects xy-plane on some line. The plane that corresponds to φ_1 some "twist" along the line 0 to v_i . The value $\varphi_i(v_i) = 1$ tells us how much to twist.