

系统结构与网络安全研究所

计算机组成与设计

Computer Organization & Design

The Hardware/Software Interface

Chapter 3

Arithmetic for Computer

林 芃 Lin Peng

penglin@zju.edu.cn

Outline

- 3.1 Introduction
- 3.2 Signed and Unsigned Numbers
- 3.3 Addition, subtraction and ALU
- 3.4 Multiplication
- 3.5 Division
- **3.6** Floating point

3.1 Introduction

□ Computer words are composed of bits;

- thus one word is a vector of binary numbers
- there are 32bit/word or 64bits/word in RISC-V
- 32 bits contains four bytes

□ Generic Implementation

- use program counter (PC) to link to instruction address
- fetch the instruction from memory
- the instruction tells what needs to be done
- ALU will perform the specified arithmetic operations

Numbers and their representation

■ Number systems

 Radix based systems are dominating decimal, octal, binary,...

$$(N)_k = (A_{n-1}A_{n-2}A_{n-3}...A_1A_0 \cdot A_{-1}A_{-2}A...A_{-m+1}A_{-m})_k$$

MSD

$$n-1$$
 LSD

$$(\mathbf{N})_K = (\sum_{i=m}^{n} b_i \bullet k^i)_k$$

- b: value of the digit, k: radix, n: digits left of radix point, m: digits right of radix point
- Alternatives, e.g. Roman numbers (or Letter)
- □ Decimal $(k=10) \rightarrow used by humans$
- \square Binary (k=2) \rightarrow used by computers

Numbers and their representation

□ Representation

- ASCII text characters (External)
 - □ Great for printable symbols and numbers
 - □ Complex arithmetic (character wise)

```
\square "0" 48_{10}, 00110000_2, 0x30_{16}
```

"SPACE"
$$32_{10}$$
, 00100000_2 , $0x20_{16}$

 \square "!" 33_{10} , 00100001_2 , $0x21_{16}$

■ Binary number (Internal)

- Natural form of computers
- Requires formatting routines for I/O

Number types

- **■** Integer numbers, unsigned
 - Address calculations
 - Numbers that can only be positive
- **□** Signed numbers
 - Positive
 - Negative
- **□** Floating point numbers
 - numeric calculations
 - Different grades of precision
 - □ Singe precision (IEEE 574)
 - □ Double precision (IEEE 574)
 - Quadruple precision

Numbers

□ Binary numbers (base 2)

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0 1 2 3...2ⁿ-1

□ Of course it gets more complicated:

numbers are finite (overflow) fractions and real numbers negative numbers

■ How do we represent negative numbers?

i.e., which bit patterns will represent which numbers?

Do you Know?

- - Don't know!

(Do not know, is the right answer!)

- **□ Ah**, **Why?**
 - Because it has different meanings in different occasions
- **□** The possible meaning is
 - IP Address
 - Machine instructions
 - Values of a Binary number :
 - **□** Integer
 - **□** Fixed Point Number
 - **□** Floating Point Number

Computer uses binary numbers just like how we use decimal numbers

For binary integer

□ The following is a 4-bit binary integer, what does it mean?

1001₂

- Don't know! Do not know, is still the right answer!
- □ Ah, we still do not know?
- **□** Different representations have different meanings
 - Unsigned
 - Signed

$$1001_2 = 9_{10}$$

$$1001_2 = -1_{10}$$
 or -7_{10} ?

Signed Number Representations

Sign Magnitude:

000 = +0 001 = +1 010 = +2 011 = +3 100 = -0 101 = -1 110 = -2 111 = -3

Two's Complement

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3$
 $100 = -4$
 $101 = -3$
 $110 = -2$
 $111 = -1$

- **□** Which one is better? Why?
 - Issues: number of zeros, ease of operations

Outline

- 3.1 Introduction
- 3.2 Signed and Unsigned Numbers
- 3.3 Addition, subtraction and ALU
- 3.4 Multiplication
- 3.5 Division
- **3.6** Floating point

Addition & subtraction

 \square Adding bit by bit, carries \rightarrow next digit

0000 0111	7 ₁₀
+ 0000 0110	6_{10}
0000 1101	13 ₁₀

■ Subtraction

- Directly
- Addition of 2's complement

0000 0111	7 ₁₀
- 0000 0110	6_{10}
0000 0001	1 ₁₀

Overflow

■ The sum of two numbers can exceed any representation

- The difference of two numbers can exceed any representation
- 2's complement: Numbers change sign and size

Overflow conditions

□ General overflow conditions

Operation	Operand A	Operand B	Result overflow
A+B	≧0	≧0	<0 (01)
A+B	<0	<0	≧0 <i>(10)</i>
A-B	≧0	<0	<0 (01)
A-B	<0	≧0	≧0 (10)

□ Reaction on overflow

- Ignore ?
- Reaction from the OS
- Signaling to application (Python,...)

Double sign-bits

Overflow process

- **□** Hardware detection in the ALU
 - Generation of an exception (interrupt)
- Save the instruction address (not PC) in special register EPC
- **□** Jump to specific routine in OS
 - Correct & return to program
 - Return to program with error code
 - Abort program

Constructing an ALU

- **■** Two methods constitute the ALU
 - Modular design (e.g. add extensions to support add)
 - Sharable logic with "select"
- **■** Step by step:
 - build a single bit ALU
 - and expand it to the desired width
- **□** First function:
 - logic AND and OR

■ Second function

- Arithmetic
 - A half adder to A full adder

$$Sum = a b + a b$$

Accepts a carry in

Sum =
$$a \oplus b \oplus C_{ln}$$

$$C_{Out} = b C_{In} + a C_{In} + ab$$

A full adder

- Accepts a carry in
- □ Sum = $A \oplus B \oplus Carry_{In}$
- $\Box Carry_{Out} = B Carry_{In} + A Carry_{In} + A B$

	Inputs		Outputs		Commonto	
Α	В	Carry _{In}	Carry _{Out}	Sum	Comments	
0	0	0	0	0	0+0+0=00	
0	0	1	0	1	0+0+1=01	
0	1	0	0	1	0+1+0=01	
0	1	1	1	0	0+1+1=10	
1	0	0	0	1	1+0+0=01	
1	0	1	1	0	1+0+1=10	
1	1	0	1	0	1+1+0=10	
1	1	1	1	1	1+1+1=11	

Full adder Logic circuit

□ Full adder in 2-level design

1 bit ALU

- - AND
 - OR
 - ADD
- □ Cell

Cascade Element

Extended 1 bit ALU-- Subtraction

■ Subtraction

- **a b**
- Inverting b
- 1st CarryIn= 1

Extended 1 bit ALU-- comparison

□ Functions

- AND
- OR
- Add
- Subtract

■ Missing: comparison

- slt rd,rs,rt
- If rs < rt, rd=1, else rd=0
- All bits = 0 except the least significant
- Subtraction (rs rt), if the result is negative → rs < rt
- Use of sign bit as indicator

■ Most significant bit

Set for comparison

Overflow detect

□ Cell

Cascade Element significant bit

Last

Operation	Operand A	Operand B	Result	overflow
A+B	≧0	≧0	<0	(01)
A+B	<0	<0	≧0	(10)
A-B	≧0	<0	<0	(01)
A-B	<0	≧0	≧0	(10)

Complete ALU

- Input
 - A、B
- Control lines
 - Binvert
 - Operation
 - Carry in
- Output
 - Result
 - Overflow
- □ Slow, but simple
 - Inputs parallel
 - Carry is cascaded
 - □ Ripple carry adder

Complete ALU —with Zero detector

□ Add a Zero detector

ALU symbol & Control

■ Symbol of the ALU Alu Operation

Control: Function table

ALU Control Lines	Function
000	And
001	Or
010	Add
110	Sub
111	Set on less than
100	nor
101	srl
011	xor

ALU Hardware Code

dmodule

```
module alu(A, B, ALU_operation, res, zero, overflow);
  input [31:0] A, B;
                                                            How do you write
 input [2:0] ALU operation;
                                                       with overflow code?
  output [31:0] res;
 output zero, overflow;
  wire [31:0] res and, res or, res add, res sub, res nor, res slt;
 reg [31:0] res;
  parameter one = 32'h00000001, zero_0 = 32'h00000000;
    assign res and = A\&B;
                                            What is the difference The
    assign res or = A|B;
                                              codes in the Synthesize?
    assign res add = A+B;
    assign res sub = A-B;
    assign res slt =(A < B)? one : zero 0;
                                                always @ (A or B or ALU_operation)
    always @ (A or B or ALU operation)
                                                          case (ALU_operation)
          case (ALU operation)
                                                                     3'b000: res=A&B:
          3'b000: res=res and;
                                                                     3'b001: res=A|B;
          3'b001: res=res or;
                                                                     3'b010: res=A+B:
          3'b010: res=res add;
                                                                     3'b110: res=A-B;
          3'b110: res=res sub;
          3'b100: res=\sim(A | B);
                                                                     3'b100: res=\sim(A \mid B);
          3'b111: res=res slt;
                                                3'b111: res=(A < B)? one: zero_0;
          default: res=32'hx;
                                                           default: res=32'hx:
          endcase
                                                     endcase
    assign zero = (res==0)? 1: 0;
```

Speed considerations

- □ Previously used: ripple carry adder
- **□** Delay for the sum: two units

Speed considerations

- **□** Delay of one adder
 - 2 time units
- □ Total delay for stages: 2n unit delays
- Not appropriate for high speed application

Fast adders

- □ All functions can be represented in 2-level logic.
- □ But:
 - The number of inputs of the gates would drastically rise
- **□** Target:

Optimum between speed and size

Fast adders

- □ Carry look-ahead adder
 - Calculating the carries before the sum is ready
- □ Carry skip adder
 - Accelerating the carry calculation by skipping some blocks
- **□** Carry select adder
 - Calculate two results and use the correct one
- □ ...

Carry Lookahead Adder (CLA)

- Given Stage *i* from a Full Adder, we know that there will be a carry generated when $A_i = B_i = "1"$, whether or not there is a carry-in
- Alternately, there will be a carry propagated if the "half-sum" is "1" and a carry-in, C_i occurs, then $C_{i+1}=1$
- □ These two signal conditions are called
 - *generate*, denoted as G_i
 - propagate, denoted as P_i

Addition formula in CLA

- **□** In the ripple carry adder:
 - \blacksquare G_i , P_i , and S_i are local to each cell of the adder
 - lacksquare C_i is also local each cell
- □ In the carry look ahead adder, in order to reduce the length of the carry chain, Ci is changed to a more global function spanning multiple cells
- \square Defining the equations for the Full Adder in term of the P_i and G_i :

$$P_i = A_i \oplus B_i$$

$$S_i = P_i \oplus C_i$$

$$G_i = A_i B_i$$

$$C_{i+1} = G_i + P_i C_i$$

Carry Lookahead Development

- \square C_{i+1} can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- \square Beginning at the cell 0 with carry in C_0 :

$$\begin{split} &C_1 = G_0 + P_0 \ C_0 \\ &C_2 = G_1 + P_1 \ C_1 = \ G_1 + P_1 (G_0 + P_0 \ C_0) \\ &= G_1 + P_1 G_0 + P_1 P_0 \ C_0 \\ &C_3 = G_2 + P_2 \ C_2 = \ G_2 + P_2 (G_1 + P_1 G_0 + P_1 P_0 \ C_0) \\ &= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 \ C_0 \\ &C_4 = G_3 + P_3 \ C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 \\ &+ P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 \ C_0 \end{split}$$

Group Carry Lookahead Logic

- Last slide show shows the implementation of these equations for four bits. This could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.
- Instead, the concept is extended another level by considering group generate (G_{0-3}) and group propagate (P_{0-3}) functions:

$$G_{0-3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 P_0 G_0$$

 $P_{0-3} = P_3 P_2 P_1 P_0$

□ Using these two equations:

$$C_4 = G_{0-3} + P_{0-3}C_0$$

□ Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition

A plumbing analogy

Extended Example: 16 carry lookahead adder

$$\begin{array}{lll} C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0 & = G_{0\sim3} + P_{0\sim3}C_0 \\ C_8 = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 + P_7P_6P_5P_4C_4 & = G_{4\sim7} + P_{4\sim7}C_4 \\ C_{12} = G_{11} + P_{11}G_{10} + P_{11}P_{10}G_9 + P_{11}P_{10}P_9G_8 + P_{11}P_{10}P_9P_8C_8 & = G_{8\sim11} + P_{8\sim11}C_8 \\ C_{16} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}G_{12} + P_{15}P_{14}P_{13}P_{12}C_{12} & = G_{12\sim15} + P_{12\sim15}C_{12} \\ = G_{12\sim15} + P_{12\sim15}(G_{8\sim11} + P_{8\sim11}(G_{4\sim7} + P_{4\sim7}(G_{0\sim3} + P_{0\sim3}C_0))) & \\ C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0 & \\ G_{0\sim3} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 & \\ G_{4\sim7} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{12} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{13} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{14} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6G_5 + P_7P_6G_5 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6G_5 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5 & \\ C_{15} = G_7 + P_7G_6 + P_7P_6G_5$$

$$\mathbf{G}_{8\sim11} = \mathbf{G}_{11} + \mathbf{P}_{11}\mathbf{G}_{10} + \mathbf{P}_{11}\mathbf{P}_{1}\mathbf{0}\mathbf{G}_{9} + \mathbf{P}_{11}\mathbf{P}_{10}\mathbf{P}_{9}\mathbf{G}_{8}$$

$$G_{12\sim15} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}G_{12}$$

$$P_{0\sim 3} = P_3 P_2 P_1 P_0$$

$$P_{4\sim7} = P_7 P_6 P_5 P_4$$

$$P_{8\sim11} = P_{11} P_{10} P_9 P_8$$

$$P_{12\sim15} = P_{15} P_{14} P_{13} P_{12}$$

Carry skip adder

- Accelerating the carry by skipping the interior blocks
- Optimal speed with no-equal distribution of block length

Carry select adder (CSA)

Carry select adder

□ Carry selection by nibbles

3.4 Multiplication

■ Binary multiplicationMultiplicand × Multiplier1000 × 1001

- **■** Look at current bit position
 - If multiplier is 1
 - then add multiplicand
 - □ Else add 0
 - shift multiplicand left by 1 bit

				1	0	0	0
			×	1	0	0	1
				1	0	0	0
			0	0	0	0	
		0	0	0	0		
+	1	0	0	0			
1	0	0	1	0	0	0	0

Multiplier V1 – Logic Diagram

- □ 64 bits: multiplier
- 128 bits: multiplicand, product, ALU

Multiplier V1--Algorithmic rule

- □ Requires 64 iterations
 - Addition
 - Shift
 - Comparison
- □ Almost 200 cycles
- □ Very big, Too slow!

Multiplier V2

- Real addition is performed only with 64 bits
- Least significant bits of the product don't change
- New idea:
 - Don't shift the multiplicand
 - Instead, shift the product
 - Shift the multiplier
- ALU reduced to 64 bits!

		1	0	0	0
	×	1	0	0	1
		1	0	0	0
	0	0	0	0	
0	0	0	0		
0	0	0			
0	0	1	0	0	0

Multiplier V2-- Logic Diagram

- □ Diagram of the V2 multiplier
- Only left half of product register is changed

Multiplier V2----Algorithmic rule

- Addition performed only on left half of product register
- **□** Shift of product register

Revised 4-bit example with V2

■ Multiplicand x multiplier: 0001 x 0111

Multiplicand:	0001		
Multiplier:×	0111		
_	00000000		#Initial value for the product
1	00010000	_	#After adding 0001, Multiplier=1
	00001000	0	#After shifting right the product one bit
	0001		
2	00011000		#After adding 0001, Multiplier=1
	00001100	0	#After shifting right the product one bit
	0001		#After adding 0001, Multiplier=1
3	00011100		
	00001110	0	#After shifting right the product one bit
	0000		
4	00001110		#After adding 0000, Multiplier=0
	00000111	0	#After shifting right the product one bit

Multiplier V3

- **□** Further optimization
- At the initial state the product register contains only '0'
- □ The lower 64 bits are simply shifted out
- **■** Idea: use these lower 64 bits for the multiplier

								_		($\overline{}$	multiplier 💛
0	0	0	1	0	0	0	0	o	0	0		manipher
0	0	0	1	1	0	0	0	0				
0	0	0	1	1	1	0	0	0	0			
0	0	0	0	1	1	1	0	0	0	0		
0	0	0	0	0	1	1	1	0	0	0	0	

Multiplier V3 Logic Diagram

Multiplier V3--Algorithmic rule

- Set product register to '0'
- Load lower bits of product register with multiplier
- Test least significant bit of product register

Example with V3

Multiplicand x multiplier: 0001 x 0111

Multiplicand: Multiplier:×	0001 0111	Shift	
	00000111	out	#Initial value for the product
1	00010111	_	#After adding 0001, Multiplier=1
	00001011	1	#After shifting right the product one bit
	0001		
2	00011011		#After adding 0001, Multiplier=1
	00001101	1	#After shifting right the product one bit
	0001		#After adding 0001, Multiplier=1
3	00011101		
	00001110	1	#After shifting right the product one bit
	0000		
4	00001110		#After adding 0001, Multiplier=0
	00000111	0	#After shifting right the product one bit

Signed multiplication

□ Basic approach:

- Store the signs of the operands
- Convert signed numbers to unsigned numbers (most significant bit (MSB) = 0)
- Perform multiplication
- If sign bits of operands are equal sign bit = 0, else sign bit = 1

■ Improved method:

Booth's Algorithm

Assumption: addition and subtraction are available

Principle -- Decomposable multiplication

 \square Assumes: $Z=y\times 101111100$ Z=y(10000000+1111100+100-100) $=y(1\times2^{7}+1000000-100)$ $=v(1\times 2^7+1\times 2^6-2^2)$ = $\mathbf{y}(1\times 2^7 + 1\times 2^6 + 0\times 2^5 + 0\times 2^4 + 0\times 2^3 + 0\times 2^2 + 0\times 2^1 + 0\times 2^0 - 1\times 2^2)$ = $y(1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 - 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0)$ = $y \times 2^7 + y \times 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 - y \times 2^2 + 0 \times 2^1 + 0 \times 2^0$ add Only shift sub shift 0100

Booth's Algorithm

□ Idea: If you have a sequence of '1's

- subtract at first '1' in multiplier
- shift for the sequence of '1's
- add where prior step had last '1'

□ Result:

- Possibly less additions and more shifts
- Faster, if shifts are faster than additions

Example for Booth's Algorithm

■ Logic required identifying the run

straight		Booth	
0010 * 0110		0010 * 0110	
0000	shift	0000	shift
0010	add	0010	sub
0010	add	0000	shift
0000	shift	0010	add
00001100		00001100	

Booth's Algorithm rule

□ Analysis of two consecutive bits

	Current	last	Explanation	Example
	1	0	Beginning	000011110000
	1	1	middle of '1'	000011110000
	0	1	End	000 <mark>01</mark> 1110000
□ Action	0	0	Middle of '0'	000011110000

10	subtract multiplicand from left
1 1	no arithmetic operation-shift
0 1	add multiplicand to left half
0 0	no arithmetic operation-shift

- \Box Bit₋₁ = '0'
- **□** Arithmetic shift right:
 - keeps the leftmost bit constant
 - no change of sign bit !

Example with negative numbers

 \square 2 * (-3) = -6

 \square 0010 * 1101 = 1111 1010

iteration	step	Multiplicand	product
0	Initial Values	0010	0000 1101 0
1	1.c:10→Prod=Prod-Mcand	0010	1110 11 <i>01</i> 0
'	2: shift right Product	0010	1111 01101
	1.b:01→Prod=Prod+Mcand	0010	0001 01 <i>10</i> 1
2	2: shift right Product	0010	0000 10110
2	1.c:10→Prod=Prod-Mcand	0010	1110 10 <i>11</i> 0
3	2: shift right Product	0010	1111 010 1 1
4	1.d: 11 → <i>no operation</i>	0010	1111 0101 1
4	2: shift right Product	0010	1111 1010 1

	step	Multiplicand	product
0	Initial Values	01101	00000 1010 <u>1 0</u>
1	1.c:10→Prod=Prod-Mcand	01101	10011 10101 0
1	2: shift right Product	01101	11001 1101 <u>0 1</u>
	1.b:01→Prod=Prod+Mcand	01101	00110 11010 1
2	2: shift right Product	01101	00011 0110 <u>1 0</u>
	1.c:10→Prod=Prod-Mcand	01101	10110 01101 0
3	2: shift right Product	01101	11011 0011 <u>0 1</u>
	1.d:01→Prod=Prod+Mcand	01101	01000 00110 1
4	2: shift right Product	01101	00100 0001 <u>1 0</u>
	1.e:10→Prod=Prod-Mcand	01101	10111 00011 0
	2: shift right Product	01101	11011 10001 1

Faster Multiplication

□ Unrolls the loop

RISC-V Multiplication

□ Four multiply instructions:

- mul: multiply
 - □ Gives the lower 64 bits of the product
- mulh: multiply high
 - □ Gives the upper 64 bits of the product, assuming the operands are signed
- mulhu: multiply high unsigned
 - □ Gives the upper 64 bits of the product, assuming the operands are unsigned
- mulhsu: multiply high signed/unsigned
 - □ Gives the upper 64 bits of the product, assuming one operand is signed and the other unsigned
- Use mulh result to check for 64-bit overflow

3.5 Division

- □ Check for 0 divisor
- **■** Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - □ 0 bit in quotient, bring down next dividend bit
- **□** Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- **□** Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield *n*-bit quotient and remainder

Division V1 --Logic Diagram

- At first, the divisor is in the left half of the divisor register
- Shift right the divisor register each step

Algorithm V 1

□ Each step:

- Subtract divisor
- Depending on Result
 - □ Leave or
 - □ Restore
- Depending on Result
 - Write '1' or
 - Write '0'

Example 7/2 for Division V1

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	1110 0111
1	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	1111 0111
2	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	1111 1111
3	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem $\geq 0 \implies$ SLL Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem $\geq 0 \Rightarrow$ SLL Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Two questions

- 1. Why should the divisor be shifted right one bit each time?
- 2. Why should the divisor be placed in the **left half** of the divisor register.

Modified Division

- Reduction of Divisor and ALU width by half
- Shifting of the remainder
- Saving 1 iteration
- Remainder register keeps quotient No quotient register required

- **□** One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Algorithm V3

- Much the same than the last one
- Except change of register usage

Example 7/2 for Division V3Well known numbers: 0000 0111/0010

iteration	step	Divisor	Remainder
	Initial Values	0010	0000 0111
0	Shift Rem left 1	0010	0000 1110
1	1.Rem=Rem-Div	0010	1110 1110
1	2b: Rem<0 →+Div,sll R,R ₀ =0	0010	0001 110 <i>0</i> [*]
	1.Rem=Rem-Div	0010	1111 1100
2	2b: Rem<0 →+Div,sll R,R ₀ =0	0010	0011 1000
2	1.Rem=Rem-Div	0010	0001 1000
3	2a: Rem>0 →sll R,R ₀ =1	0010	0011 0001
4	1.Rem=Rem-Div	0010	9001 0001
4	2a: Rem>0 →sll R,R ₀ =1	0010	0010 0011
	Shift left half of Rem right 1		0001 0011

Signed division

- Keep the signs in mind for Dividend and Remainder
 - $(+7) \div (+2) = +3$ Remainder = +1
 - \rightarrow 7 = 3 \times 2 + (+1) = 6 + 1
 - $(-7) \div (+2) = -3$ Remainder = -1
 - \rightarrow -7 = -3 \times 2 + (-1) = -6 1
 - $(+7) \div (-2) = -3$ Remainder = +1
 - $(-7) \div (-2) = +3$ Remainder = -1
- □ One 64 bit register : Hi & Lo
 - Hi: Remainder, Lo: Quotient
- ☐ Instructions: div, divu
- \square Divide by $0 \longrightarrow \text{overflow}$: Check by software

Faster Division

- □ Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- ☐ Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps

RISC-V Division

□ Four instructions:

- div, rem: signed divide, remainder
- divu, remu: unsigned divide, remainder

□ Overflow and division-by-zero don't produce errors

- Just return defined results
- Faster for the common case of no error

3.6 Floating point numbers

□ Reasoning

- Larger number range than integer range
- Fractions
- Numbers like e (2.71828) and π (3.14159265....)

□ Representation

- Sign
- Significand
- Exponent
- More bits for significand: more accuracy
- More bits for exponent: increases the range

Floating point numbers

- **□** Form
 - Arbitrary 363.4 10³⁴
 - Normalised 3.634 10³⁶
- **□** Binary notation
 - Normalised 1.xxxxxx 2^{yyyyy}
- Standardised format IEEE 754
 - Single precision 8 bit exp, 23 bit significand
 - Double precision 11 bit exp, 52 bit significand
- **■** Both formats are supported by RISC-V

Single precision

31	30	23	22		0	
S	expone	nt	fraction			

1 bit 23 bits 23 bits

Double precision

31	30	20	19	0	
S	exponen	t	fraction		
1bit 11 bits			20 bits		
31	fra	ction	(continued)	0	

IEEE 754 standard

□ Leading '1' bit of significand is implicit

 \rightarrow saves one bit

■ Exponent is biased:

00...000 smallest exponent

11...111 biggest exponent

- Bias 127 for single precision
- Bias 1023 for double precision
- Summary:

(-1)^{sign} • (1 + significand) • 2^{exponent - bias}

Example

- Show the binary representation of -0.75 in IEEE single precision format
- Decimal representation: $-0.75 = -3/4 = -3/2^2$
- Binary representation: $-0.11 = -1.1 \cdot 2^{-1}$
- Floating point
 - \bullet (-1)^{sign} \bullet (1 + fraction) \bullet 2^{exponent bias}
 - $(-1)^{sign} = -1$, so Sign = 1
 - 1+ fraction = 1.1,so Significand=.1

exponent -127 = -1, so Exponent = (-1 + 127) = 126

Single precision

31	30	23	22		0	
1	0111	1110	100 0000 0000 0000 0000			
4 1 14	0.1	14	-	00 1 14	-	

1 bit 8 bits 23 bits

Double precision

	31	30		20	19				0
	1	011 1111 1110			1000 0000 0000 0000 0000				
•	1bit	11 bits			20 bits				
	0000	0000	0000	0 0	000	0000	0000	0000	0000

Single-Precision Range

- **Exponents 00000000 and 111111111 reserved**
- **□** Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

□ Largest value

- exponent: 111111110 \Rightarrow actual exponent = 254 - 127 = +127
- Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- □ Exponents 0000...00 and 1111...11 reserved
- **□** Smallest value
 - Exponent: 00000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

□ Largest value

- Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

□ Relative precision

- All fraction bits are significant
- Single: approx 2⁻²³
 - Equivalent to $23 \times log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Limitations

□ Overflow:

The number is too big to be represented

□ Underflow:

The number is too small to be represented

Infinities and NaNs

- \square Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- **□** Exponent = 111...1, Fraction \neq 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - \blacksquare e.g., 0.0 / 0.0

Floating point addition

- Alignment
- □ The proper digits have to be added
- Addition of significands
- Normalisation of the result
- Rounding
- Example in decimal

system precision 4 digits

What is $9.999 \cdot 10^1 + 1.610 \cdot 10^{-1}$?

Example for Decimal

□ Aligning the two numbers

$$9.999 \cdot 10^{1}$$

 $0.01610 \cdot 10^{1} \rightarrow 0.016 \cdot 10^{1}$ Truncation

Addition

■ Normalisation

```
1.0015 \cdot 10^2
```

Rounding

$$1.002 \cdot 10^2$$

Algorithm

- Normalize Significands
- Add Significands
- Normalize the sum
- Over/underflow
- Rounding
- Normalization

Example y=0.5+(-0.4375) in binary

- \square 0.5₁₀ = 1.000₂ × 2⁻¹
- \square -0.4375₁₀=-1.110₂×2⁻²
- Step1:The fraction with lesser exponent is shifted right until matches $-1.110_2 \times 2^{-2} \rightarrow -0.111_2 \times 2^{-1}$
- **Step2: Add the significands**

$$1.000_{2} \times 2^{-1}$$
+) - 0.111₂ × 2⁻¹

$$0.001_{2} \times 2^{-1}$$

- Step3: Normalize the sum and checking for overflow or underflow $0.001_2 \times 2^{-1} \rightarrow 0.010_2 \times 2^{-2} \rightarrow 0.100_2 \times 2^{-3} \rightarrow 1.000_2 \times 2^{-4}$
- Step4: Round the sum $1.000_2 \times 2^{-4} = 0.0625_{10}$

Algorithm

Multiplication

□ Composition of number from different parts

→ separate handling

$$(s1 \cdot 2^{e1}) \cdot (s2 \cdot 2^{e2}) = (s1 \cdot s2) \cdot 2^{e1+e2}$$

Example

$$0\ 10000011$$
 $000\ 0000\ 0000\ 0000\ 0000\ 0000 = 1 \times 2^4$

- Both significands are $1 \rightarrow \text{product} = 1 \rightarrow \text{Sign} = 1$
- \square Add the exponents, bias = 127

10000010

+10000011

110000101

Correction: 110000101-01111111=10000110=134=127+3+4

■ The result: $1\ 10000110\ 000\ 0000\ 0000\ 0000\ 0000\ 0000 = -1\ \times\ 2^7$

Multiplication

- Add exponents
- Multiply the significands
- Normalise
- Over- underflow
- Rounding
- □ Sign

Data Flow

Division-- Brief

- Subtraction of exponents
- □ Division of the significands
- Normalisation
- Rounding
- □ Sign

Accurate Arithmetic

- **□ IEEE Std 754 specifies additional rounding control**
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- **■** Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- □ Trade-off between hardware complexity, performance, and market requirements

Accurate Arithmetic

- **□ Guard:** the first of two extra bits.
- **Round:** method to make the immediate floating-point result fit the floating-point format.
- □ Units in the last place(ulp): The number of bits in error in the least significant bits of the significant between the actual number and the number that can be represented.

$$+ \frac{0.0256_{\text{ten}}}{2.3656_{\text{ten}}}$$

$$+ \frac{2.34_{\text{ter}}}{0.02_{\text{ter}}} + \frac{2.36_{\text{ter}}}{2.36_{\text{ter}}}$$

Round to nearest even

- **□** Rounding modes:
 - Always round up (to 正无穷)
 - Always round down(to 负无穷)
 - Truncate
 - Round to nearest even
- □ Rounding to nearest even (Keep LSB to 0 when extra bits are 100)

```
0101010100 | 011 ->
                        0101010100
                                     (+0)
0101010101 | 011 ->
                        0101010101
                                     (+0)
0101010100 | 100 ->
                        0101010100
                                     (+0, keep LSB to 0)
0101010101 | 100 ->
                                     (+1, keep LSB to 0)
                        0101010110
0101010100 | 101 ->
                        0101010101
                                     (+1)
0101010101 | 101 ->
                        0101010110
                                     (+1)
```


精度: 0.5ulp

Homework

□ 3.7, 3.20, 3.26, 3.27, 3.32

OEND