МГТУ им. Н.Э. Баумана

Дисциплина: Архитектура ЭВМ Лабораторный практикум №2 по теме: «Исследование дешифраторов»

Работу выполнила: студентка группы ИУ7-45

Овчинникова Анастасия

Работу проверила:

Крыгина Т.Д.

Цель работы — изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов.

1. Дешифратор DC 2 - 4.

Линейный дешифратор строится в соответствии с системой функцией (1) и представляет собой 2^n конъюнкторов или логических элементов (ЛЭ) ИЛИ-НЕ с n-входами каждый при отсутствии стробирования и c(n+1) входами - при его наличии. Линейный дешифратор на три входа работает в соответствии с таблицей истинности (табл. 2)

Таблица 2 Таблица истинности дешифратора DC 3-8

	Bxc	оды		Выходы								
EN	A_2	A_1	A_0	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	
0	×	×	×	0	0	0	0	0	0	0	0	
1	0	0	0	1	0	0	0	0	0	0	0	
1	0	0	1	0	1	0	0	0	0	0	0	
1	0	1	0	0	0	1	0	0	0	0	0	
1	0	1	1	0	0	0	1	0	0	0	0	
1	1	0	0	0	0	0	0	1	0	0	0	
1	1	0	1	0	0	0	0	0	1	0	0	
1	1	1	0	0	0	0	0	0	0	1	0	
1	1	1	1	0	0	0	0	0	0	0	1	

Схема

В данном дешифраторе каждый набор входных сигналов преобразуется в сигнал 1 на соответствующем выходе. При этом на остальных выходах действуют сигналы 0. Такой дешифратор называется дешифратором с прямыми выходами.

Таблица состояний данного дешифратора:

EN	A_0	A_1	F_0	F_1	F ₂	F_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

2. Дешифратор DC 3 - 8.

Входы				Выходы							
EN	A ₂	\mathbf{A}_1	A ₀	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	×	×	×	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

3. При построении дешифратора на элементах И-НЕ реализуется система функций:

$$F_{j} = \overline{EN \cdot m_{j}} = \overline{EN} \vee M_{j}, \ j = \overline{0.7}.$$

Такой дешифратор называется дешифратором с инверсными выходами. Пример: дешифратор 74LS155 двухвходный

Временная диаграмма

Bxc	ды	Выходы						
A	В	Y_0	\mathbf{Y}_1	Y_2	Y_3			
0	0	0	1	1	1			
0	1	1	1	0	1			
1	0	1	0	1	1			
1	1	1	1	1	0			

4. Трехвходный инверсный дешифратор

	Входы		Выходы								
С	В	Α	1Y0	1Y1	1Y2	1Y3	2Y0	2Y1	2Y2	2Y3	
0	0	0	1	1	1	1	0	1	1	1	
0	0	1	1	1	1	1	1	0	1	1	
0	1	0	1	1	1	1	1	1	0	1	
0	1	1	1	1	1	1	1	1	1	0	
1	0	0	0	1	1	1	1	1	1	1	
1	0	1	1	0	1	1	1	1	1	1	
1	1	0	1	1	0	1	1	1	1	1	
1	1	1	1	1	1	0	1	1	1	1	

5. Дешифратор 74LS138 трехвходный

	Входы		Выходы									
С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7		
0	0	0	0	1	1	1	1	1	1	1		
0	0	1	1	0	1	1	1	1	1	1		
0	1	0	1	1	0	1	1	1	1	1		
0	1	1	1	1	1	0	1	1	1	1		
1	0	0	1	1	1	1	0	1	1	1		
1	0	1	1	1	1	1	1	0	1	1		
1	1	0	1	1	1	1	1	1	0	1		
1	1	1	1	1	1	1	1	1	1	0		