Eksamensnoter

Ricardt Riis

19. januar 2023

Meningen med materialet er som disposition til mundtlig eksamen

Indhold

1	Fun	ktioner	2
2 Funktioner		ktioner	5
3	Funktioner		
	3.1	Giv en præsentation af en selvvalgt del af teorien for funktioner af to variable	8
	3.2	Adled formlen for hældningen af regressionslinjen ved mindste kvadraters metode	8
4	Diff	erential- og integralregning	8
5	Diff	erential- og integralregning	10
	5.1	Giv en præsentation af en selvvalgt del af teorien for differential- og integralregning	10
	5.2	Bevis mindst en regneregel for differentiation	10
6	Diff	erential- og integralregning	11
	6.1	Giv en præsentation af en selvvalgt del af teorien for differential-	11
	6.2	og integralregning	11 11
7	Differensligninger		11
	7.1	Giv en præsentation af en selvvalgt del af teorien for differenslig-	
	7.2	ninger	11 12
8	Bin	omial	12
	8.1	Giv en præsentation af selvvalgt del af teorien for sandsynlighedsregning med fokus på binomialfordelingen	12

9	Statistik	
	9.1 Giv en præsentation af en selvvalgt del af teorien for hypotesetest	12
10	10 Transformationer	
11	Vektorer	13
12	Vektorer	15
13	Annuiteter	15

Introduktion

I det følgende vil overskriften angive hvilket spørgsmål der svares på. Da det er bedst at svare på begge spørgsmål "samtidigt"eller i det mindste have en nogenlunde flydende overgang mellem de to spørgsmål, virker det gavnligst at beskrive spørgsmålene, og dernæst under *EN* overskrift besvare spørgsmålene. Bemærk desuden, at jeg kun har ringe forståelse af hvad Sætning og Definition betyder i streng matematisk konstekst.

1 Funktioner

- Giv en præsentation af en selvvalgt del af teorien for vektorfunktioner.
- 2. Brug vektorfunktioner til at bestemme de afledte af de trigonometriske funktioner.

Her kan man komme ind på følgende:

- Funktioner tager et input, og laver et output.
- For vektorfunktioner gælder at deres signatur er

$$\mathbb{R} \to \mathbb{R}^2$$
.

• Vektorfunktioner skrives

$$\vec{v}(t)$$
.

- t kaldes normalt parameterværdi.
- Præsenteres en vektorfunktion grafisk, benyttes en banekurve. Bemærk: En banekurve viser ikke alt ved en vektorfunktion. Fx. er banekurverne for $\begin{pmatrix} t^3 \\ t^3 \end{pmatrix}$ og $\begin{pmatrix} t \\ t \end{pmatrix}$ de samme.

• Den afledede af en vektorfunktion kan bestemmes således

$$\vec{v}'(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}' = \begin{pmatrix} x(t)' \\ y(t)' \end{pmatrix}$$

I det følgende vil afledte funktioner skrives således

$$\dot{\vec{v}}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}'$$

- Den afledede beskriver retningsvektoren for tangenten til en bestemt parameterværdi.
- Den afledede kaldes også hastighedsvektoren
- Dermed kan farten bestemmes ved længden af hastighedsvektoren

$$fart(\vec{v}) = \left| \dot{\vec{v}} \right|$$

• Se mere viden om vektorer i afsnit om vektorer.

Definition 1.1 (Cosinus, sinus og tangens): Cosinus, cos, sinus, sin, og tangens, tan, defineres ud fra enhedscirklen, der har radius 1.

Lemma 1.1 (Idiotformlen): $\cos^2 t + \sin^2 t = 1$

Definition 1.2:

$$\vec{r}(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

Sætning 1.1 (Afledte cosinus og sinus):

$$\cos' = -\sin$$

 $\sin' = \cos$

Bevis: Det ønskes at finde $\dot{\vec{r}}(t)$, da vi i så fald kan bevise sætning 1.1.

Det vides om \vec{r} at den bevæger sig langs enhedscirklens periferi. Dvs. at for hver omgang \vec{r} bevæger sig omkring periferien, har punktet som stedvektoren \vec{r} beskriver bevæget sig 2π . Da perioden for \vec{r} også er 2π ved vi om farten af \vec{r}

$$|\dot{\vec{r}}(t)| = 1.$$

Bemærk, at længden af \vec{r} også er 1 (jf. lemma 1.1).

Det vides om tangenter til punkter på en cirkel står ret på stedvektoren til punktet. Dermed gælder

$$\dot{\vec{r}} = \hat{\vec{r}}$$
.

Derfor

$$\dot{\vec{r}} = \begin{pmatrix} \cos \\ \sin \end{pmatrix} = \widehat{\begin{pmatrix} \cos \\ \sin \end{pmatrix}} = \hat{\vec{r}}$$
$$\begin{pmatrix} \cos' \\ \sin' \end{pmatrix} = \begin{pmatrix} -\sin \\ \cos \end{pmatrix}.$$

Da lighedstegnet gælder koordinatvis, er beviset gennemført.

Lemma 1.2 (Tangens): $tan = \frac{\sin}{\cos}$

Sætning 1.2 (Afledede tangens): $\tan' = \tan^2 + 1$

Bevis:

$$\tan' = \left(\frac{\sin}{\cos}\right)'$$

$$= \left(\sin \cdot \frac{1}{\cos}\right)'$$

$$= \cos \cdot \frac{1}{\cos} + \sin \cdot \left(\frac{1}{\cos}\right)'$$

$$= 1 + \sin \cdot \left(-\frac{1}{\cos^2}\right) \cdot (-\sin)$$

$$= 1 + \frac{\sin^2}{\cos^2}$$

$$= \tan^2 + 1$$

2 Funktioner

- 1. Giv en præsentation af en selvvalgt del af teorien for plus- og gangefølger.
- 2. Bevis at to gangefølger altid giver anledning til en potenssammenhæng.

Eksempel (Hvordan ville jeg gøre?):

Jeg ville forklare stoffet i følgende rækkefølge.

- \bullet Introducer hvad plusfølger og gangefølger er (definition 2.1 og 2.2). Gør herunder brug af figur 1
- \bullet Forklar sætning 2.4, evt. ved brug af figur 2
- Hvis der er mere tid til overs, bevis logaritmeregnereglerne i rækkefølgen sætning 2.3, 2.2 og 2.1.

Sætning 2.1 (Logaritme laver gange om til plus):

$$\log_A B \cdot C = \log_A B + \log_A C$$

Bevis:

$$\log_A B \cdot C = \log_A B + \log_A C \iff$$

Der opløftes i A for at potensregneregler kan benyttes

$$A^{\log_A B \cdot C} = A^{\log_A B + \log_A C}$$

Føromtalte potensregneregel benyttes

$$= A^{\log_A B} \cdot A^{\log_A C} \iff$$

 A^{\log_A} går ud

$$B \cdot C = B \cdot C$$

Sætning 2.2 (Logaritmeregneregel): $\log_A B^C = C \cdot \log_A B$

Bevis: Opløftning er det samme som gentagen gange

$$\log_A B^C = \log_A \underbrace{B \cdot B \cdot \cdot \cdot B}_{C \text{ gange}}$$

Jævnfør sætning 2.1 så kan man skrive

$$= \underbrace{\log_A B + \log_A B + \dots + \log_A B}_{C \text{ gange}}$$

Da der lægges sammen C gange, og gange er gentaget plus, så gælder

$$= C \cdot \log_A B$$

Sætning 2.3 (Logaritmeregneregel): $A^{\log_B C} = C^{\log_B A}$.

Bevis: Reglen opskrives

$$A^{\log_B C} = C^{\log_B A} \iff$$

Vi gør på en smart måde ingenting

$$B^{\log_B A^{\log_B C}} = B^{\log_B C^{\log_B A}} \iff$$

Ifølge sætning 2.2 så kan vi

$$B^{\log_B C \cdot \log_B A} = B^{\log_B A \cdot \log_B C}$$

Da der har været ensbetydende pile er beviset fuldført.

Definition 2.1 (Plusfølge): En plusfølge lægger altid et bestemt tal til for hvert skridt i følgen.

Definition 2.2 (Gangefølge): En gangefølge gange altid et bestemt tal for hvert skridt i følgen.

Figur 1: Forklaring af definitionerne

log_g(x) skridt

Sætning 2.4 (Gangefølge - Gangefølge): To gangefølger,

$$c \cdot Px^n \text{ og } d \cdot Py^n$$
,

giver altid anledning til en potenssammenhæng

$$y = \frac{d}{c^{\log_{\Pr_x} \Pr_y}} \cdot x^{\log_{\Pr_x} \Pr_y}.$$

Bemærk at $c^{\log_{\Pr_x} \Pr_y}$ er 1, hvis x-følgen starter ved 1.

y ønskes at kunne blive fundet ud fra vilkårlig x. Til det formål skal vi kende n.

$$x = c \cdot Px^n$$

Der divideres med c, log rho x tages

$$n = \log_{\mathbf{P}x} \frac{x}{c}$$

Denne n kan indsættes i udtrykket for y_n , så enhver y kan findes.

$$y = d \cdot P y^{\log_{Px} \frac{x}{c}}$$

Per sætning 2.2

$$= d \cdot \left(\frac{x}{c}\right)^{\log_{\Pr} \Pr}$$

Potensregneregel

$$= \frac{d}{c^{\log_{\Pr_x} \Pr_y}} \cdot x^{\log_{\Pr_x} \Pr_y}$$

Figur 2: En grafisk fremstilling af ovenstående

3 Funktioner

3.1 Giv en præsentation af en selvvalgt del af teorien for funktioner af to variable

- Maskiner, som en variabel
- Partiel afledning
- Stationære punkter.

3.2 Adled formlen for hældningen af regressionslinjen ved mindste kvadraters metode

- Opskriv KS
- Opskriv KS(a), KS'(a) = 0
- Vilkårligt punkt
- $\frac{\partial}{\partial a}KS(a,b), \frac{\partial}{\partial b}KS(a,b)$
- Sæt b lig nul.
- Vind

4 Differential- og integralregning

- 1. Giv en præsentation af en selvvalgt del af teorien for diskret analyse.
- 2. Bevis mindst en regneregel for diskret differentiation.
- I diskret analyse benyttes talfølger; i stedet for tal funktioner.
- For at gøre notationen af uendeligt lange talfølger nemmere, kan man benytte sig af funktionsnotation

$$f(x), x \in \mathbb{N}.$$

Eksempel 4.1 (Indeksering):

Hvis f defineres ved talfølgen 1, 3, 5, 4, 9, så vil

$$f(3) = 5,$$

og f(2.5) være udefineret.

• Der indføres desuden en anden potensfunktion

$$x^{\overline{n}} = \frac{x!}{(x-n)!}$$

Eksempel 4.2 (x i n-streg): $7^{\overline{4}} = 7 \cdot 6 \cdot 5 \cdot 4$.

• Det kaldes at differentiere når man trækker nabo-elementer fra hinanden

$$\Delta f: [2, 2, -1, 5].$$

• Det kan skrives med symboler

Definition 4.1 (Differentiation): $\Delta f(x) = f(x+1) - f(x)$.

• Man kan desuden definere integration

Definition 4.2 (Integration):

$$F(x_0) = \sum_{x_0} f(x_0) = \sum_{x_0}^{x_0} f(x)$$

• Det følger let at følgende gælder

Sætning 4.1 (Integralregningens hovedsætning):

$$\sum_{a}^{b} f(x) = F(b+1) - F(a)$$

Sætning 4.2 (Produktregel for differentiation):

$$\Delta(f \cdot g)(x) = \Delta f(x) \cdot g(x) + f(x+1) \cdot \Delta g(x)$$

Bevis:

$$\Delta(f \cdot g)(x) = \Delta(f(x) \cdot g(x))$$

$$= f(x+1) \cdot g(x+1) - f(x) \cdot g(x)$$

$$= f(x+1) \cdot (g(x) + \Delta g(x)) - (f(x+1) - \Delta f(x)) \cdot g(x)$$

$$= f(x+1) \cdot g(x) + f(x+1) \cdot \Delta g(x)$$

$$- f(x+1) \cdot g(x) + \Delta f(x) \cdot g(x)$$

$$= f(x+1) \cdot g(x) + f(x+1) \cdot \Delta g(x)$$

$$= f(x+1) \cdot g(x) + \Delta f(x) \cdot g(x)$$

$$= f(x+1) \cdot \Delta g(x) + \Delta f(x) \cdot g(x)$$

Sætning 4.3 (Differentiation af $x^{\overline{n}}$): Givet konstant n og variabel x gælder

$$\Delta x^{\overline{n}} = n \cdot x^{\overline{n-1}}.$$

Bevis:

$$\Delta x^{\overline{n}} = (x+1)^{\overline{n}} - x^{\overline{n}}$$
$$= (x+1) \cdot x^{\overline{n-1}} - x^{\overline{n-1}} \cdot (x - (n-1))$$

Det er vigtigt at indse hvorfor den sidste faktor er (x - (n - 1)).

$$= (x+1-x+(n-1)) \cdot x^{\overline{n-1}}$$
$$= n \cdot x^{\overline{n-1}}$$

5 Differential- og integralregning

- 5.1 Giv en præsentation af en selvvalgt del af teorien for differential- og integralregning
 - Sekanthældning
 - Grænseværdier
 - Tangenthældninger
- 5.2 Bevis mindst en regneregel for differentiation
 - Kædereglen
 - $(\ln x)'$
 - $(x^n)'$, hvor $n \in \mathbb{C}$

6 Differential- og integralregning

- 6.1 Giv en præsentation af en selvvalgt del af teorien for differential- og integralregning
 - Sekanthældning
 - Grænseværdier
 - Integraler
- 6.2 Redegør for sammenhængen mellem stamfunktion og areal
 - Bevis $\int_a^b f dx = F(b) F(a)$

Antag f kontinuert

Antag en arealfunktion for f, A(x), som finder areal mellem 0 og x. Ønskes nu arealet af et interval bestemt, kan man finde det ved

$$\int_{x_0}^x f(x)dx = A(x) - A(x_0)$$
 Overbevisende ved graf

Dette areal kan også estimeres ved f, som dog giver en mindre fejl, E

$$A(x) - A(x_0) = f(x_0) \cdot (x - x_0) + E$$

$$f(x_0) = \frac{A(x) - A(x_0)}{x - x_0} - \frac{E}{x - x_0}$$

$$= d_A(x) - \frac{E}{x - x_0}$$

Hvis det kan vises at $\frac{E}{x-x_0}$ går mod nul når x går mod x_0 , så er A'=f. Det vides om $\frac{E}{x-x_0}$

$$\frac{E}{x - x_0} \le \frac{(x - x_0) \cdot (f(x_0 + t_{max}) - f(x_0 + t_{min}))}{x - x_0}$$
$$= f(x_0 + t_{max}) - f(x_0 + t_{min})$$

• Herfra burde det være muligt at bevise færdig.

7 Differensligninger

- 7.1 Giv en præsentation af en selvvalgt del af teorien for differensligninger
 - Løsning er talfølge

- 7.2 Udled en løsningsformel til en selvvalgt type differensligning
 - Tal også noget om $\Delta f(x) = r \cdot f(x) + p$

8 Binomial

- 8.1 Giv en præsentation af selvvalgt del af teorien for sandsynlighedsregning med fokus på binomialfordelingen
 - Tæthedsfunktioner
 - Bernoulli
 - Binomialfordeling: Mange bernoulli
 - K(n,r)

$$K(n+1,r) = K(n,r-1) + K(n,r)$$

Løs K(n,r) ved at indse at der differentieres.

9 Statistik

- 9.1 Giv en præsentation af en selvvalgt del af teorien for hypotesetest
 - Nulhypotese
 - Hvornår er hvad rigtigt?
 - Bevis

$$P(p \in [\hat{p} \pm 2 \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}]) \approx 95\%$$

• Ved $\hat{p} = \frac{X}{n}$, og $X \in$

10 Transformationer

- Flytning (x, y)
- Strækning (x, y)
- $e^{-\frac{1}{2}x^2}$
- Tæthedsfunktioner
- Areal

- Skaler langs y.
- Strækning langs x, konsekvenser
- Middelværdi

11 Vektorer

- 1. Giv en præsentation af en selvvalgt del af teorien for vektorer.
- 2. Gør rede for skalarproduktet og måder at beregne dette på.
- Vektorer er abstrakte pile, man kan lægge dem sammen og trække fra. Vektoren starter ikke et bestemt sted
- Består af en længde og en retning

Sætning 11.1 (Skalarprodukt ved længder): En regneoperation der ganger to vektorer sammen og giver et tal, som givet tre vektorer af samme dimension \vec{a} , \vec{b} og \vec{c} opfylder

1.
$$\vec{c} \cdot (\vec{a} + \vec{b}) = \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}$$
,

2.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
, og

3.
$$\vec{a}^2 = |\vec{a}|^2$$
,

kan kun give

$$\vec{a} \cdot \vec{b} = \frac{|\vec{a} + \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2}{2}.$$

Operationen kaldes også prikprodukt.

Bevis:

$$\begin{split} (\vec{a} + \vec{b})^2 &= (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) \\ &= (\vec{a} + \vec{b}) \cdot \vec{a} + (\vec{a} + \vec{b}) \cdot \vec{b} \\ &= \vec{a} \cdot (\vec{a} + \vec{b}) + \vec{b} \cdot (\vec{a} + \vec{b}) \\ &= \vec{a}^2 + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b}^2 \\ &= \vec{a}^2 + 2 \cdot \vec{a} \cdot \vec{b} + \vec{b}^2 \end{split}$$

Der omarrangeres

$$\begin{split} \vec{a} \cdot \vec{b} &= \frac{(\vec{a} + \vec{b})^2 - \vec{a}^{\,2} - \vec{b}^{\,2}}{2} \\ &= \frac{|\vec{a} + \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2}{2} \end{split}$$

Sætning 11.2 (Skalarprodukt ved dekomposanering af vektorer): Givet to vektorer \vec{a} og \vec{b} , som kan dekomposaneres til $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ og $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, så gælder

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2.$$

Bevis:

$$\begin{split} \vec{a} \cdot \vec{b} &= \frac{|\vec{a} + \vec{b}|^2 - |\vec{a}|^2 - |\vec{b}|^2}{2} \\ &= \frac{(\vec{a} + \vec{b})_1^2 + (\vec{a} + \vec{b})_2^2 - (\vec{a}_1^2 + \vec{a}_2^2) - (\vec{b}_1^2 + \vec{b}_2^2)}{2} \\ &= \frac{(\vec{a}_1 + \vec{b}_1)^2 + (\vec{a}_2 + \vec{b}_2)^2 - (\vec{a}_1^2 + \vec{a}_2^2) - (\vec{b}_1^2 + \vec{b}_2^2)}{2} \\ &= \frac{\vec{a}_1^2 + 2 \cdot \vec{a}_1 \cdot \vec{b}_1 + \vec{b}_1^2 + \vec{a}_2^2 + 2 \cdot \vec{a}_2 \cdot \vec{b}_2 + \vec{b}_2^2 - (\vec{a}_1^2 + \vec{a}_2^2) - (\vec{b}_1^2 + \vec{b}_2^2)}{2} \\ &= \frac{2 \cdot \vec{a}_1 \cdot \vec{b}_1 + 2 \cdot \vec{a}_2 \cdot \vec{b}_2}{2} \\ &= \vec{a}_1 \cdot \vec{b}_1 + \vec{a}_2 \cdot \vec{b}_2 \end{split}$$

Sætning 11.3 (Skalarprodukt ved vinkel): Givet to vektorer \vec{a} og \vec{b} , og vinklen mellem disse v, gælder

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos v.$$

Bevis: Det er givet, at cosinusrelationen gælder

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma.$$

Der konstrueres en trekant så c^2 er $|\vec{a}+\vec{b}|^2$ og a^2 er $|\vec{a}|^2$ og b^2 er $|\vec{b}^2|.$

I denne trekant vil γ være givet ved 180 – v. Dvs. at udtrykket for $|\vec{a}+\vec{b}|^2$ kan indsættes i sætning 11.1. Da fås

$$\vec{a} \cdot \vec{b} = \frac{|\vec{a}|^2 + |\vec{b}|^2 - 2 \cdot |\vec{a}| \cdot |\vec{b}| \cdot \cos(180 - v) - |\vec{a}|^2 - |\vec{b}|^2}{2}$$

$$= \frac{-2 \cdot |\vec{a}| \cdot |\vec{b}| \cdot \cos(180 - v)}{2}$$

$$= -|\vec{a}| \cdot |\vec{b}| \cdot \cos(180 - v)$$

$$= |\vec{a}| \cdot |\vec{b}| \cdot \cos v.$$

12 Vektorer

- 1. Giv en præsentation af en selvvalgt del af teorien for vektorer.
- 2. Bevis projektionsformlen og gør rede for, hvordan den kan bruges i forbindelse med regression eller afstand mellem punkt og linje.
- Kør ovenstående
- Bevis projektionsformlen
- Afstand mellem punkt og linje (mums)
- Regression hvis der er tid

13 Annuiteter

• Tænkning kræves