Preprocessing Data for Machine Learning

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Sarah Guido Senior Data Scientist

What is data preprocessing?

- Beyond cleaning and exploratory data analysis
- Prepping data for modeling
- Modeling in Python requires numerical input

Refresher on Pandas basics

```
import pandas as pd
hiking = pd.read_json("datasets/hiking.json")
print(hiking.head())
```

	Accessible	Difficulty	Length	Limited_Access
0	Υ	None	0.8 miles	N
1	N	Easy	1.0 mile	N
2	N	Easy	0.75 miles	N
3	N	Easy	0.5 miles	N
4	N	Easy	0.5 miles	N

Refresher on Pandas basics

print(hiking.columns)

print(hiking.dtypes)

```
Accessible
                  object
Difficulty
                  object
Length
                  object
Limited_Access
                  object
Location
                  object
                  object
Name
Other_Details
                  object
Park_Name
                  object
Prop_ID
                  object
                  float64
lat
                 float64
lon
dtype: object
```

Refresher on Pandas basics

print(wine.describe())

	Туре	Alcohol		Alcalinity of ash
count	178.000000	178.000000		178.000000
mean	1.938202	13.000618		19.494944
std	0.775035	0.811827		3.339564
min	1.000000	11.030000	• • •	10.600000
25%	1.000000	12.362500	• • •	17.200000
50%	2.000000	13.050000	• • •	19.500000
75%	3.000000	13.677500	• • •	21.500000
max	3.000000	14.830000	•••	30.000000


```
A B C
0 1.0 NaN 2.0
1 4.0 7.0 3.0
2 7.0 NaN NaN
3 NaN 7.0 NaN
4 5.0 9.0 7.0
```

```
print(df.dropna())
```

```
A B C
1 4.0 7.0 3.0
4 5.0 9.0 7.0
```

print(df)

```
A B C
0 1.0 NaN 2.0
1 4.0 7.0 3.0
2 7.0 NaN NaN
3 NaN 7.0 NaN
4 5.0 9.0 7.0
```

```
print(df.drop([1, 2, 3]))
```

```
A B C
0 1.0 NaN 2.0
4 5.0 9.0 7.0
```

print(df)

```
print(df)
```

```
A B C
0 1.0 NaN 2.0
1 4.0 7.0 3.0
2 7.0 NaN NaN
3 NaN 7.0 NaN
4 5.0 9.0 7.0
```

```
print(df.drop("A", axis=1))
```

```
B C
0 NaN 2.0
1 7.0 3.0
2 NaN NaN
3 7.0 NaN
4 9.0 7.0
```

```
Print(df)

A B C

0 1.0 NaN 2.0

1 4.0 7.0 3.0
```

7.0 NaN NaN

NaN 7.0 NaN

4 5.0 9.0 7.0

```
print(df[df["B"] == 7])
```

```
A B C
1 4.0 7.0 3.0
3 NaN 7.0 NaN
```

```
A B C
0 1.0 NaN 2.0
1 4.0 7.0 3.0
2 7.0 NaN NaN
3 NaN 7.0 NaN
4 5.0 9.0 7.0
```

```
A B C
1 4.0 7.0 3.0
3 NaN 7.0 NaN
4 5.0 9.0 7.0
```

print(df[df["B"].notnull()])

```
print(df["B"].isnull().sum()
```

2

print(df)

Let's practice!

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Working With Data Types

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Sarah Guido
Senior Data Scientist

Why are types important?

print(volunteer.dtypes)

opportunity_id	int64		
content_id	int64		
vol_requests	int64		
summary	object		
is_priority	object		
category_id	float64		

- object: string/mixed types
- int64: integer
- float64: float
- datetime64 (or timedelta):

datetime

Converting column types

```
print(df)

A B C
A int64
B object
1 2 string2 2.0
2 3 string3 3.0

A int64
B object
C object
dtype: object
```

Converting column types

```
print(df)
```

```
A B C
0 1 string 1.0
1 2 string2 2.0
2 3 string3 3.0
```

```
df["C"] = df["C"].astype("float"
print(df.dtypes)
```

```
A int64
B object
C float64
dtype: object
```

Let's practice!

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Training and Test Sets

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Sarah Guido Senior Data Scientist

Splitting up your dataset

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)
```

```
X_train y_train
    1.0
             n
    4.0
    5.0
         n
   6.0
X_test y_test
   9.0
  1.0
  4.0
```


Stratified sampling

- 100 samples, 80 class 1 and 20 class 2
- Training set: 75 samples, 60 class 1 and 15 class 2
- Test set: 25 samples, 20 class 1 and 5 class 2

Stratified sampling

```
# Total "labels" counts
y["labels"].value_counts()
```

```
class1 80
class2 20
Name: labels, dtype: int64
```

```
X_train, X_test, y_train, y_test = train_test_split(X,y, stratify=y)
```

Stratified sampling

y_train["labels"].value_counts()

```
class1 60
class2 15
Name: labels, dtype: int64

class1 20
class2 5
Name: labels, dtype: int64
```

y_test["labels"].value_counts()

Let's practice!

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

