

Data Driven Decision Making: Two-Sample Hypothesis Testing

GSBA 545, Fall 2021

Professor Dawn Porter

Two-Sample Hypothesis Testing

- Independent Samples
 - CI for Mean Differences & Hypothesis Testing with Difference D_0
- Paired Samples
 - CI for Paired Mean Differences & Hypothesis Testing with Difference D_0
- Proportion Differences
 - CI for Proportion Differences & Hypothesis Testing with Difference D_0
- A/B Testing Applications

Independent Samples: Intervals

Random samples are taken from two independent populations; we assume the variances are approximately equal: $\sigma_1^2 = \sigma_2^2 = \sigma^2$

Population 1:

mean μ_1 , unknown σ_1^2

- random sample of size n_1
- mean \bar{x}_1 & variance s_1^2

Population 2:

mean $\mu_{2,}$ unknown σ_2^2

- random sample of size n_2
- mean \bar{x}_2 & variance s_2^2

Pooled estimate of the standard error is:

$$se(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \times se(\bar{x}_1 - \bar{x}_2)$$

^{*} $t_{\alpha/2}$ is based on $n_1 + n_2 - 2$ degrees of freedom

Independent Samples: Calcium & BP

Assume that two populations of men (one taking extra calcium and one isn't) have normally distributed blood pressures and their population variances are equal. At $\alpha = 0.10$, does the calcium supplement correspond to a *change* in BP?

Population 1: Calcium supplement

Random sample of 10 men taking calcium yields blood pressure changes with:

- sample mean of -5.0
- sample variance of 76.444

Population 2: No calcium

Random sample of 11 men receiving a placebo yields blood pressure changes with:

- sample mean of 0.273
- sample variance of 34.818

To create the pooled standard error,

$$se(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{76.444}{10} + \frac{34.818}{11}} = 3.288$$

Independent Samples: Calcium & BP

Assume that two populations of men (one taking extra calcium and one isn't) have normally distributed blood pressures and their population variances are approximately equal. At $\alpha = 0.10$, does the calcium supplement correspond to a *change* in BP?

$$df = (n_1 + n_2 - 2) = (10 + 11 - 2) = 19$$
, so $t_{0.05, df=19} \rightarrow 1.729$
A 90% CI for $\mu_1 - \mu_2$ is :
$$[(\bar{x}_1 - \bar{x}_2) \pm t_{0.05} \times se(\bar{x}_1 - \bar{x}_2)] = [(-5 - 0.273) \pm 1.729(3.288)]$$

$$= [-5.273 \pm 5.685] = [-10.958, 0.412]$$

We can be 90% confident that the mean change in blood pressure by taking the calcium supplement is between -10.958 and 0.412 points.

On average, the difference is a decrease of 5.273 points.

Independent Samples: t- Statistic

- $D_0 = \mu_1 \mu_2$ is the claimed difference between population means
- D_0 varies depending on the context of the situation
- Often $D_0 = 0$, so H_0 means that there is no difference between the population means
- This is analyzed using a t distribution with $df = (n_1 + n_2 2)$

$$t = \frac{(\bar{x}_1 - \bar{x}_2 - D_0)}{se(\bar{x}_1 - \bar{x}_2)}$$

If the differences are fairly normal, we can reject H_0 : $\mu_d = D_0$ at the α level of significance if and only if the appropriate rejection point condition holds or, equivalently, if the corresponding p-value is less than α .

Example: Calcium & BP

Assume two populations of men (one taking extra calcium and one isn't) have normally distributed blood pressures and their population variances are equal.

Population 1: Calcium supplement

 $n_1 = 10$ men with BP changes of:

•
$$\bar{x}_1 = -5.0$$

•
$$s_1^2 = 76.444$$

Population 2: No calcium

 n_2 = 11 men with BP changes of:

•
$$\bar{x}_2 = 0.273$$

•
$$s_2^2 = 34.818$$

At $\alpha = 0.10$, does the calcium supplement correspond to a significant *decrease* in BP?

Two-Sample Testing: Calcium & BP

- 1. Determine **null and alternative hypotheses**.
- 2. Specify level of significance α .
- 3. Calculate **test statistic** value.
- 4. Determine critical value(s).
- 5. Decide whether to reject H_0 and interpret the statistical result.

1.
$$H_0: \mu_1 - \mu_2 \ge 0$$
 vs $H_a: \mu_1 - \mu_2 < 0$

2.
$$\alpha = 0.10$$

3.
$$t = \frac{(-5.0 - 0.273)}{\sqrt{\frac{76.444}{10} + \frac{34.818}{11}}} = -1.604$$

- 4. Reject H_0 if $t < t_{0.10,19} < -1.328$
- 5. Since t = -1.604 < -1.328, we can reject H_0 and conclude that taking calcium *does* correspond to a significant decrease in BP.

Paired Samples: Intervals

When the same units are used for both processes.

- Ex: using same people for 'before' and 'after' treatments
- Eliminates differences between sampled groups
- Only need to test differences between results

 $\mu_d = \mu_1 - \mu_2$, where μ_1 and μ_2 are means from two populations

- \bar{d} is the mean of the differences between pairs of values
- s_d is the standard deviation of the sample of paired differences

If the differences are fairly normally distributed, then a CI for μ_d is:

$$\left[\bar{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}\right]$$
 with $n-1$ degrees of freedom.

^{*} If population σ values are known, a Z-based interval can be used instead.

Paired Samples: Repair Costs

7 damaged cars are assessed for repairs by two different garages.

Garage 1:

•
$$\bar{x}_1 = $932.90$$

Garage 2:

•
$$\bar{x}_2 = $1012.90$$

Differences:

- $\bar{d} = 932.9 1012.9 = -80$
- $s_d^2 = 2533.11$
- $s_d = 50.33$

 $t_{0.025, df=6}$ = 2.447. A 95% CI for μ_d with n-1 = 6 degrees of freedom is:

$$\left[\bar{d} \pm t_{\alpha/2} \frac{s_{\rm d}}{\sqrt{n}}\right] \rightarrow \left[-80 \pm 2.447 \frac{50.33}{\sqrt{7}}\right] \rightarrow \left[-126.55, -33.45\right]$$

- We are 95% sure that the mean difference of repair cost estimates is between -\$126.55 and -\$33.45.
- The mean of estimates at Garage 1 is between \$126.55 and \$33.45 less than that of Garage 2.

Paired Samples: t- Statistic

- $D_0 = \mu_1 \mu_2$ is the claimed difference between population means
- D_0 varies depending on the context of the situation
- Often $D_0 = 0$, so H_0 means that there is no difference between the population means
- This is analyzed using a t distribution with df = (n-1)

$$t = \frac{\bar{d} - D_0}{s_{\rm d} / \sqrt{n}}$$

If the differences are fairly normal, we can reject H_0 : $\mu_d = D_0$ at the α level of significance if and only if the appropriate rejection point condition holds or, equivalently, if the corresponding p-value is less than α .

^{*} If population σ values are known, a Z-test can be used instead.

Paired Samples: Rejections

Δ	lte	rn	a:	ti	VP
/ \			u	C I	v C

Reject
$$H_0$$
 if:

$$H_{\rm a}: \mu_{\rm d} > D_{\rm 0}$$

$$t > t_{\alpha}$$

Area to the right of t

$$H_a$$
: $\mu_d < D_C$

$$t < -t_{\alpha}$$

Area to the left of –t

$$H_a$$
: $\mu_d \neq D_0$

$$H_a$$
: $\mu_d < D_0$ $t < -t_\alpha$ H_a : $\mu_d \neq D_0$ $|t| > t_{\alpha/2}$ *

Twice the area to the right of |t|

where t_{α} , $t_{\alpha/2}$, and p-values are based on (n-1) degrees of freedom

Paired Samples: Repair Costs

Assume 7 damaged cars are assessed for repairs by two different garages to compare the costs of repairs. Garage 1 asserts that it is less expensive.

Garage 1:

•
$$\bar{x}_1 = $932.90$$

Garage 2:

•
$$\bar{x}_2 = $1012.90$$

Differences:

•
$$\bar{d} = 932.9 - 1012.9 = -80$$

•
$$s_d^2 = 2533.11$$

•
$$s_d = 50.33$$

Is there enough evidence at α = 0.05 to believe the claim of Garage 1?

Paired Samples: Repair Costs

- 1. Determine **null and alternative hypotheses**.
- 2. Specify level of **significance** α .
- 3. Calculate **test statistic** value.
- 4. Determine **critical value(s)**.
- 5. Decide whether to reject H_0 and interpret the statistical result.

1.
$$H_0: \mu_1 - \mu_2 \ge 0$$
 vs $H_a: \mu_1 - \mu_2 < 0$

2.
$$\alpha = 0.05$$

3.
$$t = \frac{\bar{d} - D_0}{s_d / \sqrt{n}} = \frac{-80 - 0}{50.33 / \sqrt{7}} = -4.2053$$

4. Reject
$$H_0$$
 if $t < t_{0.05,6} = -1.943$

5. Since t = -4.2053 < -1.943, we can reject H_0 and conclude the mean repair cost at Garage 1 is less than Garage 2.

^{*} From JMP, for t = -4.2053, the p-value is 0.003, indicating very strong evidence that μ_1 is actually less than μ_2 .

USC Marshall School of Business (PollEv.com/dawnporter025)

Population Proportions

Testing for a difference in proportions between populations.

Population 1:

- sample size n_1
- sample proportion \hat{p}_1 in category of interest
- $n_1 \hat{p}_1 \ge 5$, $n_1 (1 \hat{p}_1) \ge 5$

Population 2:

- sample size n_2
- sample proportion \hat{p}_2 in category of interest
- $n_2 \hat{p}_2 \ge 5$, $n_2 (1 \hat{p}_2) \ge 5$

<u>Differences: $\hat{p}_1 - \hat{p}_2$ </u>

- Assume n_1 and n_2 are large
- Difference is approximately normal

Pooled estimate of the standard error is:

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Proportions: Z-statistic

Used when difference between population proportions are approximately normal and sample sizes are large enough.

Confidence Interval:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \times se(\hat{p}_1 - \hat{p}_2)$$

Test Statistic:

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - D_0}{se(\hat{p}_1 - \hat{p}_2)}$$

 $D_0 = p_1 - p_2$ is the claimed or hypothesized difference between the population proportions.

Proportions: Rejections

Alternative

Reject H₀ if:

$$H_a$$
: $p_1 - p_2 > D_0$

$$z > z_{\alpha}$$

$$H_{a}: p_{1} - p_{2} < D_{0}$$

$$|z| > z_{\alpha/2}^*$$

 H_a : $p_1 - p_2 > D_0$ $z > z_\alpha$ Area to the right of z H_a : $p_1 - p_2 < D_0$ $z < -z_\alpha$ Area to the left of -z H_a : $p_1 - p_2 \neq D_0$ $|z| > z_{\alpha/2}^*$ Twice the area to the Twice the area to the right of |z|

^{*} either $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$

Proportion Cl: Liver Transplants

Assume two hospitals routinely perform liver transplants. What is a 95% CI for the difference in the fatality rate between the two?

Hospital 1:

Hospital 2:

- $n_1 = 100, x_1 = 77$ $\hat{p}_1 = \frac{77}{100} = 0.77$ $n_1 = 200, x_1 = 120$ $\hat{p}_2 = \frac{120}{200} = 0.60$

Pooled standard error:

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{0.77(0.23)}{100} + \frac{0.6(0.4)}{200}} = 0.0545$$

A 95% CI for $p_1 - p_2$ is :

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \times se(\hat{p}_1 - \hat{p}_2) = [(0.77 - 0.60) \pm 1.96(0.0545)]$$

= $[0.17 \pm 0.1068] = [0.0632, 0.2768]$

- We are 95% sure that the true proportion difference between the hospitals is between 6.32% and 27.68%
- The population fatality rate for Hospital 1 is between 6.32% and 27.68% higher than that of Hospital 2.

Proportion Testing: Liver Transplants

Assume two hospitals routinely perform liver transplants and Hospital 2 asserts that their patients have a *significantly lower* fatality rate. At a 5% significance level, do you believe the claim?

Hospital 1:

- $n_1 = 100, x_1 = 77$
- $\hat{p}_1 = \frac{77}{100} = 0.77$

Hospital 2:

- $n_1 = 200, x_1 = 120$
- $\hat{p}_2 = \frac{120}{200} = 0.60$

Pooled standard error:

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{0.77(0.23)}{100} + \frac{0.6(0.4)}{200}} = 0.0545$$

Proportion Testing: Liver Transplants

- 1. Determine **null and alternative hypotheses.**
- 2. Specify level of **significance** α .
- 3. Calculate **test statistic** value.
- 4. Determine critical value(s).
- 5. Decide whether to reject H_0 and interpret the statistical result.

1.
$$H_0: p_1 - p_2 \le 0 \text{ vs } H_a: p_1 - p_2 > 0$$

2.
$$\alpha = 0.05$$

3.
$$z = \frac{(0.77 - 0.60) - 0}{\sqrt{\frac{0.77(0.23)}{100} + \frac{0.60(0.40)}{200}}} = 3.1193$$

4. Reject
$$H_0$$
 if $z > z_{0.05} = 1.645$

5. Since z = 3.1193 > 1.645, we can **reject** H_0 and conclude Hospital 2 does have a lower rate.