* אלגברה לינארית $^-$ סיכום

יונתן אוחיון

2017 בדצמבר 31

פעולה בינארית על קבוצה

Aפעולה בינארית א על קבוצה A הינה כלל התאמה שמתאים לכל זוג סדור א יבר ב $(a,b)\in A\times A$ איבר ב $*:A\times A\to A$ יותר: $*:A\times A\to A$

שאלה

תהי * פעולה על $\mathbb R$ המוגדרת כך: a*b=ab-1. בדוק האם הפעולה מקיימת את תכונות החלופיות הקיבוציות.

פתרון

a*b=ab-1 נראה שהפעולה מקיימת את תכונת החילופיות. יהיו $a,b\in A$ והיו החילופיות את תכונת מקיימת את מכיוון ש $a*b=b*a \Longleftrightarrow ba-1=ab-1 \Longleftrightarrow ba=ab$ ולכן א חילופית. b*a=ba-1 נראה שהפעולה לא מקיימת את תכונת הקיבוציות בעזרת דוגמה נגדית:

$$(1*2)*3 = (2-1)*3 = 1*3 = 2$$

 $1*(2*3) = 1*(6-1) = 1*5 = 4$
 $2 \neq 4 \Longrightarrow (1*2)*3 \neq 1*(2*3)$

ולכן * לא קיבוצית כנדרש.

הקדמה לשדות – חבורות

תהי G קבוצה ו+ פעולה עליה. הזוג (G,+) ייקרא חבורה אם G ייקרא התכונות הבאות:

- $a*b\in G$ מתקיים $a,b\in G$ סגירות: לכל
- a*(b*c)=(a*b)*c מתקיים $a,b,c\in G$ לכל a*(b*c)=(a*b)*c מתקיים •
- a*e=e*a=a מתקיים $a\in G$ כך שלכל $e\in G$ פיים איבר ניטרלי: קיים
 - a*b=b*a=eכך ש
 $b\in G$ קיים מכל לכל לכל הופכי: לכל סלים איבר הופכי

בנוסף, (G,+) תיקרא חבורה אבלית/חילופית אם היא חבורה המקיימת את תכונת החילופיות, כלומר a*b=b*a מתקיים $a,b\in G$

^{*}מבוסס על השיעורים של ד"ר אסף שרון מסמסטר 2017ג בקמפוס רמת אביב

שדות

הגדרה

תהי להבאות שדה אם התכונות על F נגיד שהשלשה ($F,+_F,\cdot_F$) נקראת שדה אם התכונות הבאות פעולות על להיימות:

- $.0_F$ או 0ם חבורה אבלית עם איבר ניטרלי חבורה ($F,+_F$) חבורה \bullet
- $.1_{\digamma}$ או ב אם המסומן ניטרלי עם איבר אבלית חבורה ($\digamma,\cdot_{\digamma})$ האוג •
- $a\cdot_F(b+_Fc)=(a\cdot_Fb)+_F(a\cdot_Fc)$ (פילוג): פילוג) הדיסטריבוטת את תכונת את את את הפעולות מקיימות (Scalar) איבר בשדה נקרא סקלר (Scalar).

דוגמאות

. עם פעולות הרגילות הרגילות שדה. עם פעולות העם וות ועם אולות הן הרגילות הע $(\mathbb{Q},+,\cdot)$ ו וות השלשות

שדות סופיים

יהי את הפעולות הבאות: גדיר את מספר (גדיר את מספר $\mathbb{Z}_p = \{0, \dots, p-1\}$ נגדיר את מספר ראשוני.

- $a+_pb=a$ $\underset{\mod p}{+}b=p$ ב בa+b שארית החילוק של
 - $a\cdot_p b=a$ $\displaystyle \cdot_{\mod p} b=p$ ב ab שארית החילוק של

. מסתבר שהשלשה תכונות מקיימת מקיימת השדה מסתבר שהשלשה ($\mathbb{Z}_p, +_p, \cdot_p$)

שדות סופיים – כדאי לזכור

$$(p-1)^{-1} = p-1$$
 .1

$$2^{-1}=rac{p+1}{2}$$
 , $p\geq 2$ כאשר.

:אם
$$a^{-1} = b$$
 אז .3

$$b^{-1} = a$$
 (א)

$$(-a)^{-1} = -b$$
 (2)

$$(-b)^{-1} = -a$$
 (3)

ח־יות

הגדרה

כך: אניה) סדורה היא רשימה של nאיברים היא סדורה סדורה אניה) הירח מקבוצה אניה) היא רשימה אניה

$$(a_1, a_2, a_3, \ldots, a_n)$$

האיבר של a_i מופיע במקום הi של n-יה מכונה הרכיב הi שלה ומסומן כך: a_i אין צורך להקיף בסוגריים ח־יה של איבר אחד, שכן היא איבר בודד מA. נסמן את אוסף כל הn-יות באורך k מעל בסוגריים n-יה של איבר אחד, שכן היא איבר בודד מA

שוויון ח־יות

: מתקיימים הבאים התנאים ורק אם ורק אם (b_1,\dots,b_m) שווה ל a_1,\dots,a_n) שווה לח־יה שהn

- n=m .1
- $\forall 1 \leq i \leq n, a_i = b_i$.2

חיבור ח־יות