```
Ввод [1]:
           import numpy as np
              import pandas as pd
              import matplotlib.pyplot as plt
              %matplotlib inline
              import seaborn as sns
Ввод [2]:
             | loan data = pd.read csv('C:\\Users\\hemfa\\Downloads\\Customers of Bank.
Ввод [3]:
           type (loan data)
     Out[3]: pandas.core.frame.DataFrame
Ввод [4]:
           loan data = pd.read csv('C:\\Users\\hemfa\\Downloads\\Customers of Bank.
             loan data.drop(columns=['ID'], axis=1, inplace=True)
             loan_data.rename(columns={"Experience": "Work_experience", "CCAvg": "Avg
                                 "Mortgage": "Mortgage value k", "Personal Loan": "Acc
                                 "ZIP Code": "ZIP Code", "Online": "Online transaction
             loan data['Total bank relationships'] = (loan data['Accepted personal lo
                                                       loan data['CreditCard'] + loan
             loan data.head()
```

Out[4]:

	Age	Work_experience	Income	ZIP_Code	Family	Avg_credit_card_monthly	Education	Mort
0	25	1	49	91107	4	1.6	1	
1	45	19	34	90089	3	1.5	1	
2	39	15	11	94720	1	1.0	1	
3	35	9	100	94112	1	2.7	2	
4	35	8	45	91330	4	1.0	2	
4								•

```
Ввод [5]: ▶ loan data.shape
```

Out[5]: (5000, 14)

```
Ввод [6]: № loan_data.describe()
```

Out[6]:

	Age	Work_experience	Income	ZIP_Code	Family	Avg_credit_card_r
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000
mean	45.338400	20.104600	73.774200	93152.503000	2.396400	1
std	11.463166	11.467954	46.033729	2121.852197	1.147663	1
min	23.000000	-3.000000	8.000000	9307.000000	1.000000	0
25%	35.000000	10.000000	39.000000	91911.000000	1.000000	0
50%	45.000000	20.000000	64.000000	93437.000000	2.000000	1
75%	55.000000	30.000000	98.000000	94608.000000	3.000000	2
max	67.000000	43.000000	224.000000	96651.000000	4.000000	10

avg age = 45, min and max = 23 and 67 avg income = \$73

Ввод [7]: ► loan_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 14 columns):

#	Column	Non-N	ull Count	Dtype			
0	Age	5000	non-null	int64			
1	Work_experience	5000	non-null	int64			
2	Income	5000	non-null	int64			
3	ZIP_Code	5000	non-null	int64			
4	Family	5000	non-null	int64			
5	Avg_credit_card_monthly	5000	non-null	float64			
6	Education	5000	non-null	int64			
7	Mortgage_value_k	5000	non-null	int64			
8	Accepted_personal_loan	5000	non-null	int64			
9	Securities Account	5000	non-null	int64			
10	CD Account	5000	non-null	int64			
11	Online_transactions	5000	non-null	int64			
12	CreditCard	5000	non-null	int64			
13	Total_bank_relationships	5000	non-null	int64			
4+110	d+vm = 0, $f(x) = f(x)$, $f(x) = f(x)$						

dtypes: float64(1), int64(13)
memory usage: 547.0 KB

localhost:8888/notebooks/Project_Analysis of Bank customers.ipynb#

```
Ввод [8]: 🔰 loan_data.isnull()
```

Out[8]:

	Age	Work_experience	Income	ZIP_Code	Family	Avg_credit_card_monthly	Education
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
4995	False	False	False	False	False	False	False
4996	False	False	False	False	False	False	False
4997	False	False	False	False	False	False	False
4998	False	False	False	False	False	False	False
4999	False	False	False	False	False	False	False

5000 rows × 14 columns

```
Ввод [9]:
           ▶ loan data.isnull().sum()
     Out[9]: Age
                                           0
              Work experience
                                           0
              Income
                                           0
              ZIP Code
                                           0
              Family
                                           0
              Avg_credit_card_monthly
              Education
                                           0
                                           0
              Mortgage value k
              Accepted personal loan
                                           0
              Securities Account
                                           0
              CD Account
              Online_transactions
                                           0
              CreditCard
              Total bank relationships
              dtype: int64
            neg Workexp = loan data.Work experience < 0
Ввод [10]:
               neg_Workexp.value_counts()
    Out[10]: False
                       4948
```

True

52

Name: Work experience, dtype: int64

```
Ввод [11]:
            | # loan data.abs(column = ['Work experience'], inplace=True)
               # loan data.loc[loan data.Work experience.abs(), inplace = True]
               # loan data.Work experience = abs(Work experience)
               # loan data.Work experience = loan data['Work experience'].abs()
               # loan data['Work experience']=loan data['Work experience'].abs()
               # loan data[loan data['Work experience'] < 0]['Work experience'].abs()</pre>
               loan data.Work experience = abs(loan data.Work experience)
Ввод [12]:
            | loan data[loan data['Work experience'] < 0]['Work experience'].count()
    Out[12]: 0
            loan data.Work experience = pd.to numeric(loan data.Work experience)
Ввод [13]:
            ▶ loan data.describe()
Ввод [14]:
```

Out[14]:

	Age	Work_experience	Income	ZIP_Code	Family	Avg_credit_card_r
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000
mean	45.338400	20.134600	73.774200	93152.503000	2.396400	1
std	11.463166	11.415189	46.033729	2121.852197	1.147663	1
min	23.000000	0.000000	8.000000	9307.000000	1.000000	0
25%	35.000000	10.000000	39.000000	91911.000000	1.000000	0
50%	45.000000	20.000000	64.000000	93437.000000	2.000000	1
75%	55.000000	30.000000	98.000000	94608.000000	3.000000	2
max	67.000000	43.000000	224.000000	96651.000000	4.000000	10
4						•

min work_experience is 0 contrary to the previous data of -3

```
quantitivecor = ['Age', 'Education', 'Income', 'Income', 'Avg credit ca
Ввод [15]:
              experience Grid = sns.PairGrid(loan data, y vars = 'Work experience', x
              experience Grid.map(sns.regplot)
```

Out[15]: <seaborn.axisgrid.PairGrid at 0x214ddc30130>

The higher the age and education level, the longer work experience. This means bank can offer loans to the elder customers with advanced professional experience.

Ввод [16]: def summary(values): values min = loan data[values].min() values max = loan data[values].max() q1 = loan data[values].quantile(0.25) q2 = loan data[values].quantile(0.50) q3 = loan data[values].quantile(0.75) print(f'5 Point Summary of {values.capitalize()} Attribute:\n' f'{values.capitalize()}(min) : {values min}\n' $: \{q1\} \n'$ f'q2(Median) $: \{q2\} \n'$ f'q3 $: \{q3\} \n'$ f'{values.capitalize()}(max) : {values max}') fig = plt.figure(figsize=(16, 10)) plt.subplots adjust(hspace = 0.6) sns.set_palette('pastel') plt.subplot(221) ax1 = sns.distplot(loan data[values], color = 'r') plt.title(f'{values.capitalize()} Distribution') plt.subplot(222) ax2 = sns.violinplot(loan data[values], palette = 'Accent', split = plt.title(f'{values.capitalize()} Violinplot') plt.subplot(223) ax2 = sns.boxplot(loan data[values], palette = 'cool', width=0.7, 1 plt.title(f'{values.capitalize()} Boxplot') plt.subplot(224) ax3 = sns.kdeplot(loan data[values], cumulative=True) plt.title(f'{values.capitalize()} Cumulative Density Distribution') plt.show()

Ввод [17]:

■ summary('Age')

5 Point Summary of Age Attribute:

Age(min) : 23

q1 : 35.0 q2(Median) : 45.0 q3 : 55.0

Age (max): 67

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecat ed function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

Ввод [18]:

```
▶ | summary('Work_experience')
```

5 Point Summary of Work experience Attribute:

Work_experience(min) : 0

q1 : 10.0 q2 (Median) : 20.0 q3 : 30.0 Work experience (max) : 43

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecat ed function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

The experience is normally distributed

Ввод [19]:

```
▶ summary('Income')
```

5 Point Summary of Income Attribute:

Income(min) : 8

q1 : 39.0 q2(Median) : 64.0 q3 : 98.0

Income (max): 224

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecat ed function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argum ent will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(


```
Ввод [20]: # sns.distplot(loan_data['Income'], color = 'red')
# plt.title('Income')

income=loan_data['Income'].value_counts().head(30)
ax=income.plot.bar(width=0.5,color="indigo")
plt.xlabel("Income in Dollar")
plt.ylabel("Count")
for i, j in income.reset_index().iterrows():
    ax.text(i, j.Income + 1.5, j.Income, color='blue',rotation=90)
```


The distribution is higher than normal, which is positive

```
Ввод [21]: sns.countplot(loan_data['Family'])
plt.title('Family size')
```

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages
\seaborn_decorators.py:36: FutureWarning: Pass the following variable
as a keyword arg: x. From version 0.12, the only valid positional argum
ent will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Out[21]: Text(0.5, 1.0, 'Family size')

Most of the customers have family member of 1. Customers with family size of 3 are comparatively less.

```
Ввод [22]: sns.distplot(loan_data['Avg_credit_card_monthly'])
plt.title('Average monthly spending on credit cards')
```

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages
\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecat
ed function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar flex
ibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[22]: Text(0.5, 1.0, 'Average monthly spending on credit cards')

Most of the customers average monthly spending on credit cards is between 0 to2000. There are very few customers whose monthly spending is between 8000-10000.

```
Ввод [23]: sns.countplot(loan_data['Education'])
plt.title('Education levels')
```

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages
\seaborn_decorators.py:36: FutureWarning: Pass the following variable
as a keyword arg: x. From version 0.12, the only valid positional argum
ent will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Out[23]: Text(0.5, 1.0, 'Education levels')

1 = Undergraduate, 2 = Graduate, 3 = Advanced/Professional. Majority of customers has only undergraduate degree.

```
Ввод [24]:  
loan_data_cc = loan_data['CreditCard']
loan_data_cc = loan_data_cc.astype({'CreditCard': 'float64'})
sns.distplot(loan_data_cc)
```

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages \seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecat ed function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[24]: <AxesSubplot:xlabel='CreditCard', ylabel='Density'>

Those who do not own credit card are half as many as credit card holders.

```
Ввод [25]: sns.distplot(loan_data['Total_bank_relationships'])
plt.title('Total_bank_relationships')
```

c:\users\hemfa\appdata\local\programs\python\python38\lib\site-packages
\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecat
ed function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar flex
ibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[25]: Text(0.5, 1.0, 'Total bank relationships')

According to the graph most of the customers use only one service of the bank and no one uses 4 services.

Number of customers who did not accept the Loan offer: 4520 (90.40%)

Ввод [27]: | loan_acceptance_count = pd.DataFrame(loan_data['Accepted_personal_loan' loan_acceptance_count.columns = ['Labels', 'Accepted_personal_loan'] loan_acceptance_count

Out[27]:

	Labels	Accepted_personal_loan
0	0	4520
1	1	480

```
Ввод [28]:
            ▶ pie labels = loan acceptance count['Labels']
               pie labels = ['Not Accepted' if i == 0 else 'Accepted' for i in pie labels
               pie loan data = loan acceptance count['Accepted personal loan']
               explode = (0, 0.15)
               fig, ax = plt.subplots(figsize = (12, 6))
               \{\} = qw
               def func(pct, allvalues):
                   absolute = int(np.round(pct / 100.*np.sum(allvalues)))
                   return "{:.1f}%\n({:d})".format(pct, absolute)
               ax.pie(pie loan data,
                      autopct = lambda pct: func(pct, pie loan data),
                      labels = pie labels,
                      explode = explode,
                      startangle = 50,
                      wedgeprops = wp)
               plt.title('Acceptance of Personal Loans', size=15)
```

Out[28]: Text(0.5, 1.0, 'Acceptance of Personal Loans')

Acceptance of Personal Loans


```
Ввод [29]: sns.displot(x ='Education', data = loan_data, hue = 'Accepted_personal_plt.title('Influence of education on loan acceptance')
```

Out[29]: Text(0.5, 1.0, 'Influence of education on loan acceptance')

There is a slight influence of education on loan acceptance, as most of the customers with undergraduate degree did not accept the offered loan. However, the majority of customers who accepted the loans holds advanced degree level.

```
Ввод [30]: ▶ sns.boxplot( x ='Education', y='Income', hue='Accepted_personal_loan',
```

Out[30]: <AxesSubplot:xlabel='Education', ylabel='Income'>

Customers who accepted the loans had the same income level, in spite of those who did not accept.

```
Ввод [31]: \triangleright sns.boxplot(x='CreditCard', y = 'Mortgage_value_k', hue = 'Accepted_per
```

Out[31]: <AxesSubplot:xlabel='CreditCard', ylabel='Mortgage_value_k'>

The customers who have accepted the offered loans have higher mortgage debt and hold credit cards.

Ввод [32]: ▶ loan_data.corr()

Out[32]:

	Age	Work_experience	Income	ZIP_Code	Family	Avg_credit
Age	1.000000	0.993991	-0.055269	-0.029216	-0.046418	
Work_experience	0.993991	1.000000	-0.046876	-0.028936	-0.051851	
Income	-0.055269	-0.046876	1.000000	-0.016410	-0.157501	
ZIP_Code	-0.029216	-0.028936	-0.016410	1.000000	0.011778	
Family	-0.046418	-0.051851	-0.157501	0.011778	1.000000	
Avg_credit_card_monthly	-0.052012	-0.049738	0.645984	-0.004061	-0.109275	
Education	0.041334	0.013919	-0.187524	-0.017377	0.064929	
Mortgage_value_k	-0.012539	-0.011097	0.206806	0.007383	-0.020445	
Accepted_personal_loan	-0.007726	-0.008304	0.502462	0.000107	0.061367	
Securities Account	-0.000436	-0.000989	-0.002616	0.004704	0.019994	
CD Account	0.008043	0.009735	0.169738	0.019972	0.014110	
Online_transactions	0.013702	0.014051	0.014206	0.016990	0.010354	
CreditCard	0.007681	0.008851	-0.002385	0.007691	0.011588	
Total_bank_relationships	0.009792	0.010249	0.191907	0.016682	0.043307	
4						>

```
Ввод [33]: ▶ plt.figure(figsize = (15, 8))
plt.title('Correlation of factors', y=1, size=15)
sns.heatmap(loan_data.corr(), annot = True, fmt='.2f')
```

Out[33]: <AxesSubplot:title={'center':'Correlation of factors'}>

The correlation matrix illustrated high correlation between customers' income and their average monthly spending on credit cards. Obviously there is the highest correlation between age and work experience of customers. Interestingly, there is a strong correlation relationship between the users of total bank services and credit card holders, suggesting that if the bank focuses on credit card holders and attracts perpective customers using cc, it can increase the number of customers and turn them lenders.

```
Ввод []: ▶
```