

2022 HSC Mathematics Extension 1 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	С
2	А
3	D
4	А
5	В
6	В
7	С
8	D
9	D
10	В

Section II

Question 11 (a) (i)

Criteria	Marks
Provides correct answer	1

Sample answer:

Question 11 (a) (ii)

Criteria	Marks
Provides correct answer	1

Sample answer:

$$\underbrace{u \cdot y}_{=1} = 1 \times 2 + (-1) \times 1$$
$$= 1$$

Question 11 (b)

Criteria	Marks
Provides correct solution	3
Obtains correct integrand, or equivalent merit	2
Attempts to use the substitution, or equivalent merit	1

Sample answer:

$$\int_0^1 \frac{x}{\sqrt{x^2 + 4}} dx$$

$$= \int_0^1 \frac{2x}{2\sqrt{x^2 + 4}} dx$$

$$= \int_4^5 \frac{1}{2\sqrt{u}} du$$

$$= \left[\sqrt{u}\right]_4^5$$

$$= \sqrt{5} - 2$$

$$u = x^{2} + 4$$

$$du = 2x dx$$
when $x = 0$, $u = 4$
when $x = 1$, $u = 5$

Question 11 (c)

Criteria	Marks
Provides correct solution	2
Obtains a correct expression for one coefficient, or equivalent merit	1

Sample answer:

$$\left(1 - \frac{x}{2}\right)^8 = \dots + {8 \choose 2} \left(1\right)^6 \left(-\frac{x}{2}\right)^2 + {8 \choose 3} \left(1\right)^5 \left(-\frac{x}{2}\right)^3 + \dots$$
$$= \dots + 28 \times \frac{x^2}{4} + 56 \times \frac{-x^3}{8} + \dots$$
$$= \dots + 7x^2 - 7x^3 + \dots$$

 \therefore Coefficient of x^2 is 7.

And coefficient of x^3 is -7.

Question 11 (d)

Criteria	Marks
Provides correct solution	2
• Observes that $\underline{u} \cdot \underline{v} = 0$, or equivalent merit	1

Sample answer:

$$u = \begin{pmatrix} a \\ 2 \end{pmatrix}, \qquad v = \begin{pmatrix} a - 7 \\ 4a - 1 \end{pmatrix}$$

 \underline{u} and \underline{v} are perpendicular $: \underline{u} \cdot \underline{v} = 0$

That is
$$a(a-7) + 2(4a-1) = 0$$

 $a^2 - 7a + 8a - 2 = 0$
 $a^2 + a - 2 = 0$
 $(a+2)(a-1) = 0$
 $\therefore a = -2$ or 1

Question 11 (e)

Criteria	Marks
Provides correct solution	3
Finds correct argument, or equivalent merit	2
Finds the correct value of R, or equivalent merit	1

Sample answer:

$$\sqrt{3}\sin(x) - 3\cos(x) = R\sin(x + \alpha)$$
$$= R\sin x \cos \alpha + R\cos x \sin \alpha$$

$$\therefore R\sin\alpha = -3 \tag{1}$$

$$R\cos\alpha = \sqrt{3} \tag{2}$$

(1) ÷ (2):
$$\tan \alpha = \frac{-3}{\sqrt{3}}$$

 $= -\sqrt{3}$
 $\therefore \quad \alpha = -\frac{\pi}{3} \text{ or } \frac{2\pi}{3}$ (See unit circle)

Since $\cos \alpha > 0$ and $\sin \alpha < 0$

$$\alpha = -\frac{\pi}{3}$$

From (1)
$$R^2 \sin^2 \alpha = 9$$
 (3)

From (2)
$$R^2 \cos^2 \alpha = 3$$
 (4)

(3) + (4):
$$R^{2} \left(\sin^{2} \alpha + \cos^{2} \alpha \right) = 12$$
$$R^{2} = 12$$
$$R = 2\sqrt{3}$$

$$\therefore \sqrt{3}\sin(x) - 3\cos(x) = 2\sqrt{3}\sin\left(x - \frac{\pi}{3}\right)$$

Question 11 (f)

Criteria	Marks
Provides correct solution	3
Identifies the correct critical values, or equivalent merit	2
• Excludes $x=2$ OR attempts to deal with the denominator, or equivalent merit	1

Sample answer:

Solutions =
$$\left[\frac{5}{3}, 2\right)$$

Question 12 (a)

Criteria	Marks
Provides correct drawing	2
Shows one correct slope	1

Sample answer:

At
$$P(-1, 1)$$

$$\frac{dy}{dx} = \frac{-1 - 2}{1 + 1} = -\frac{3}{2} = -\frac{0.75}{0.5}$$

At
$$Q(1, 1)$$

$$\frac{dy}{dx} = \frac{1-2}{1+1} = -\frac{1}{2} = -\frac{0.5}{1}$$

At
$$R(2, 1)$$

$$\frac{dy}{dx} = \frac{2-2}{4+1} = 0$$

Question 12 (b)

Criteria	Marks
Provides correct solution	2
Attempts to use the pigeonhole principle, or equivalent merit	1

Sample answer:

$$\frac{\text{Number of players above limit}}{\text{Number of teams}} = \frac{41}{13} > 3$$

: Using the Pigeonhole principle, at least one team has more than 3 players above limit. At least one team will be penalised.

Question 12 (c)

Criteria	Marks
Provides correct solution	3
Finds the slope of the tangent, or equivalent merit	2
Attempts to find the derivative of x arctan x, or equivalent merit	1

Sample answer:

$$y = x \tan^{-1}(x)$$

$$y' = x \times \frac{1}{1+x^2} + \tan^{-1}(x) \times 1$$

$$= \frac{x}{1+x^2} + \tan^{-1}(x)$$
At $\left(1, \frac{\pi}{4}\right)$ $y' = \frac{1}{2} + \tan^{-1}(1)$

$$= \frac{1}{2} + \frac{\pi}{4}$$

 $=\frac{\pi+2}{4}$

Equation of tangent

$$y - \frac{\pi}{4} = \left(\frac{\pi + 2}{4}\right) \left(x - 1\right)$$

$$4y - \pi = (\pi + 2)(x - 1)$$

$$4y = (\pi + 2)x - \pi - 2 + \pi$$

$$4y = (\pi + 2)x - 2$$

$$\therefore y = \frac{(\pi + 2)}{4}x - \frac{1}{2}$$

Question 12 (d) (i)

Criteria	Marks
Provides correct solution	3
- Integrates to obtain ${\cal T}$ as a function involving an exponential function, or equivalent merit	2
Separates the variables in the differential equation, or equivalent merit	1

Sample answer:

$$\frac{dT}{dt} = k \left(T - T_1 \right)$$

Note that as $t \to +\infty$, $\frac{dT}{dt} \to 0$ and T approaches room temperature so T_1 = room temperature = 12.

Also T decreases with time, so $T - T_1 > 0$.

$$\frac{dT}{T-12} = kdt$$
 (separate variables)

$$ln(T-12) = kt + c$$
 where c is a constant

$$T - 12 = Ae^{kt}$$
 where $A = e^c$

$$T = 12 + Ae^{kt}$$

When
$$t = 0$$
: $92 = 12 + A$ so $A = 80$

When
$$t = 5$$
:
$$76 = 12 + 80e^{5k}$$
$$e^{5k} = \frac{4}{5}$$
$$5k = \ln\left(\frac{4}{5}\right)$$
$$k = \frac{1}{5}\ln\left(\frac{4}{5}\right)$$

Finally
$$T = 12 + 80e^{\frac{1}{5}\ln(\frac{4}{5})t}$$
 for $t \ge 0$.

Question 12 (d) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

For
$$T = 57$$

$$57 = 12 + 80e^{\frac{1}{5}\ln\left(\frac{4}{5}\right)t}$$

$$e^{\frac{1}{5}\ln\left(\frac{4}{5}\right)t} = \frac{57 - 12}{80} = \frac{9}{16}$$

$$\frac{1}{5}\ln\left(\frac{4}{5}\right)t = \ln\left(\frac{9}{16}\right)$$

$$t = \frac{5\ln\left(\frac{9}{16}\right)}{\ln\left(\frac{4}{5}\right)} = 12.89... \approx 13 \text{ minutes}$$

The coffee will reach a temperature of 57°C after about 13 minutes.

Question 12 (e)

Criteria	Marks
Provides correct solution	2
Attempts to use result associated with the binomial distribution, or equivalent merit	1

Sample answer:

Let p be the proportion of red balls and n the number of trials.

Expected number of red balls =
$$np = 4 \times \frac{3}{10}$$

Expected number of green balls =
$$n(1-p) = 4 \times \frac{7}{10}$$

Expected score =
$$10 \times 4 \times \frac{3}{10} - 5 \times 4 \times \frac{7}{10} = 12 - 14 = -2$$
.

Answers could include:

- The expected score if you pick one ball is $\frac{3 \times 10 + 7 \times (-5)}{10} = -0.5$.
- It is the same for every one of the 4 balls since the balls are replaced so the expected score for the game is $4 \times (-0.5) = -2$.

Question 12 (f)

Criteria	Marks
Provides correct proof	3
Proves the inductive step, or equivalent merit	2
Establishes the base case, or equivalent merit	1

Sample answer:

METHOD 1

Let
$$a_n = 15^n + 6^{2n+1}$$

Base case: n = 0

$$a_0 = 1 + 6 = 7$$
 is divisible by 7

so the property holds for n = 0

Assume a_k is divisible by 7

$$a_k = 15^k + 6^{2k+1} = 7M$$
, for some integer M.

Prove true for a_{k+1} .

= RHS

$$a_{k+1} = 15^{k+1} + 6^{2k+3} = 7Q$$
, for some integer Q.

$$LHS = 15(15^{k}) + 6^{2k+3}$$

$$= 15(7M - 6^{2k+1}) + 6^{2} \times 6^{2k+1}$$
 (from assumption)
$$= 105M - 15 \times 6^{2k+1} + 36 \times 6^{2k+1}$$

$$= 105M + 21 \times 6^{2k+1}$$

$$= 7(15M + 3 \times 6^{2k+1})$$

$$= 7Q$$

This proves, using mathematical induction, that for all integers $n \ge 0$, $15^n + 6^{2n+1}$ is divisible by 7.

Answers could include:

METHOD 2

Let
$$a_n = 15^n + 6^{2n+1}$$

Base case: n = 0

$$a_0 = 1 + 6 = 7$$
 is divisible by 7

so the property holds for n = 0

Assume a_k is divisible by 7

$$a_{k+1} = 15^{k+1} + 6^{2k+3}$$
$$= 15(15^k) + 6^{2k+3}$$

Substituting $15^k = a_k - 6^{2k+1}$

$$\begin{aligned} a_{k+1} &= 15 \left(a_k - 6^{2k+1} \right) + 6^{2k+3} \\ &= 15 a_k + 6^{2k+1} \left(-15 + 36 \right) \\ &= 15 a_k + 21 \times 6^{2k+1} \end{aligned}$$

 a_k and 21 are both divisible by 7

so a_{k+1} is also divisible by 7

This proves, using mathematical induction, that for all integers $n \ge 0$, $15^n + 6^{2n+1}$ is divisible by 7.

Question 13 (a)

Criteria	Marks
Provides correct solution	3
• Attempts to find the dot product of \overrightarrow{BH} and \overrightarrow{CA} in terms of \underline{a} , \underline{b} and \underline{c} , or equivalent merit	2
• Write \overrightarrow{BH} or \overrightarrow{CA} in terms of \underline{a} , \underline{b} and \underline{c} , or equivalent merit	1

Sample answer:

We have
$$\overrightarrow{BH} = h - b = a + c$$
, while $\overrightarrow{CA} = a - c$. Hence

$$\overrightarrow{BH} \cdot \overrightarrow{CA} = (\underline{a} + \underline{c}) \cdot (\underline{a} - \underline{c})$$

$$= \underline{a} \cdot \underline{a} - \underline{a} \cdot \underline{c} + \underline{c} \cdot \underline{a} - \underline{c} \cdot \underline{c}$$

$$= \underline{a} \cdot \underline{a} - \underline{c} \cdot \underline{c}$$

$$= |\underline{a}|^2 - |\underline{c}|^2$$

= 0 (as the lengths of \underline{a} and \underline{c} are equal, as they are radii of a circle)

Hence, the two vectors are perpendicular.

Answers could include:

We may observe that $\underline{a} + \underline{c}$ and $\underline{a} - \underline{c}$ form the diagonals of a rhombus, as \underline{a} and \underline{c} have equal length. The diagonals of a rhombus are perpendicular and so \overline{BH} and \overline{CA} are perpendicular.

Question 13 (b)

Criteria	Marks
Provides correct solution	3
• Obtains primitive in terms of $\sin(2kx)$, or equivalent merit	2
• Finds an integral expression for the volume of the solid in terms of $\sin(kx)$, or equivalent merit	1

 $\cos 2\theta = 1 - 2\sin^2 \theta$

 $\therefore \sin^2(kx) = \frac{1}{2}(1 - \cos 2kx)$

 $\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$

Sample answer:

$$y = (k+1)\sin(kx)$$

$$V = \pi \int_0^{\frac{\pi}{2k}} (k+1)^2 \sin^2(kx) \cdot dx$$

$$=\pi(k+1)^2\int_0^{\frac{\pi}{2k}}\frac{1-\cos 2kx}{2}\cdot dx$$

$$=\frac{\pi (k+1)^2}{2} \int_0^{\frac{\pi}{2k}} 1 - \cos 2kx \cdot dx$$

$$=\frac{\pi(k+1)^2}{2}\left[x-\frac{\sin 2kx}{2k}\right]_0^{\frac{\pi}{2k}}$$

$$=\frac{\pi(k+1)^2}{2}\left(\frac{\pi}{2k}-\frac{\sin\pi}{2k}\right)$$

$$=\frac{\pi^2(k+1)^2}{4k}$$

For
$$V = \pi^2$$
,

$$\frac{(k+1)^2}{4k} = 1$$

$$\therefore k = 1$$
 (by inspection)

Or solve
$$k^2 + 2k + 1 = 4k$$

$$(k-1)^2 = 0$$

$$k = 1$$

Question 13 (c)

Criteria	Marks
Provides correct solution	2
• Finds a value of x where $g(f(x)) \neq x$	1

Sample answer:

The domain of
$$g(f(x))$$
 is \mathbb{R} .
 $g(f(x)) = \arcsin(\sin x)$

If g is the inverse function of f, then g(f(x)) is equal to x for all x in the domain of g(f(x)) by definition of an inverse function.

Let
$$x = \frac{3\pi}{4}$$

 $\arcsin\left(\sin\frac{3\pi}{4}\right) = \frac{\pi}{4}$, see unit circle above
So for $x = \frac{3\pi}{4}$, $\arcsin(\sin x) \neq x$

So it is not true that g(f(x)) = x for all x in the domain g(f(x)). So, g is NOT the inverse of f.

Question 13 (d)

Criteria	Marks
Provides correct solution	3
• Evaluates $P'(\alpha) + P'(\beta) + P'(\gamma)$, or equivalent merit	2
• Writes $\alpha^2+\beta^2+\gamma^2$ in term of $\alpha+\beta+\gamma$ and so on OR Defines $P(x)$ and evaluates $P'(\alpha)$ OR Equivalent merit	1

Sample answer:

$$\alpha^{2} + \beta^{2} + \gamma^{2} = 85$$

$$P'(\alpha) + P'(\beta) + P'(\gamma) = 87$$
Let $P(x) = x^{3} + ax^{2} + bx + c$
Then $a = -(\alpha + \beta + \gamma)$
 $b = \alpha\beta + \beta\gamma + \gamma\alpha$
 $c = -\alpha\beta\gamma$

$$P'(x) = 3x^{2} + 2ax + b$$

$$P'(\alpha) + P'(\beta) + P'(\gamma)$$

$$P'(\alpha) + P'(\beta) + P'(\gamma)$$

$$= 3(\alpha^2 + \beta^2 + \gamma^2) + 2a(\alpha + \beta + \gamma) + 3b$$

$$= 3(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha + \beta + \gamma)^2 + 3(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$= 3(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha^2 + \beta^2 + \gamma^2) - 4(\alpha\beta + \beta\gamma + \gamma\alpha) + 3(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$= \alpha^2 + \beta^2 + \gamma^2 - (\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$87 = 85 - (\alpha\beta + \beta\gamma + \gamma\alpha)$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = 85 - 87$$
$$= -2$$

Question 13 (e) (i)

Criteria	Marks
Provides correct solution	2
Introduces a suitable normal approximation, or equivalent merit	1

Sample answer:

METHOD 1

Let \hat{p} be the proportion of chocolate bars which weigh <u>less</u> than 150 g.

$$\mathcal{P} = P(\hat{p} \ge 0.5)$$

Approximate \hat{p} by a normal distribution with the same mean as \hat{p} and the same standard deviation as \hat{p} .

$$E(\hat{p}) = 0.2$$

$$\sigma(\hat{p}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.2 \times 0.8}{16}} = 0.1$$

$$\mathcal{P} = P\left(\frac{\hat{p} - 0.2}{0.1} \ge \frac{0.5 - 0.2}{0.1}\right)$$
$$\approx P(Z \ge 3)$$

where Z follows a standard normal distribution.

Using known values

So
$$\mathcal{P} = P(Z \ge 3) = 0.15\% = 0.0015$$

Alternatively using the table of values for the normal distribution, we get the more precise value of $\mathcal{P} = 0.13\% = 0.0013$

Answers could include:

METHOD 2

Let \hat{p} be the proportion of bars in a sample of 16 bars which weigh <u>more</u> than 150 g.

$$\mathcal{P} = P(\hat{p} < 0.5)$$

(If 50% or more of the bars weigh less than 150 g, the remaining ones weigh 150 g or more.)

$$E(\hat{p}) = 0.8$$

$$\sigma(\hat{p}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.2 \times 0.8}{16}} = 0.1$$

$$\mathcal{P} = P(\hat{p} < 0.5)$$

$$= P\left(\frac{\hat{p} - 0.8}{0.1} < \frac{0.5 - 0.8}{0.1}\right)$$

$$\approx P(Z < -3)$$

When we approximate \hat{p} by a normal distribution.

$$\mathcal{P} \simeq P(Z < -3) \approx \frac{0.3\%}{2} = 0.15\%$$
 using known values

(and $\mathcal{P} = 0.13\%$ using the table of normal values)

METHOD 3: (Using counts rather than proportion, without continuity correction)

Let X be the <u>number</u> of chocolate bars in a sample of 16 which weigh <u>less</u> than 150 g.

$$\mathcal{P} = P(X \ge 8)$$

X follows a binomial distribution Bin(n, p) = Bin(16, 0.2), assuming the factory manager's claim is correct.

$$E(X) = np = 16 \times 0.2 = 3.2$$

 $\sigma(X) = \sqrt{np(1-p)} = \sqrt{16 \times 0.2 \times 0.8} = 1.6$

$$\mathcal{P} = P(X \ge 8)$$

$$= P\left(\frac{X - 3.2}{1.6} \ge \frac{8 - 3.2}{1.6}\right)$$

$$\approx P(Z \ge 3)$$

If we approximate X by a normal distribution (without the continuity correction) we get

 $\mathcal{P} \approx P(Z \ge 3)$ where Z follows a standard normal distribution

So $\mathcal{P} \approx 0.15\%$ using known values

METHOD 4: (Using counts and the continuity correction.)

Same *X* as method 3.

We approximate X by a normal distribution Y with the same mean and standard deviation as X.

$$\mathcal{P} = P(X \ge 8)$$
$$= P(Y > 7.5)$$

$$\mathcal{P} = P\left(\frac{Y - 3.2}{1.6} > \frac{7.5 - 3.2}{1.6}\right)$$

 $\approx P(Z > 2.6875)$

where Z is a standard normal

 $=1-P(Z \le 2.6875)$

using the nearest value from the table

 $\approx 1 - 0.9964$

= 0.0036

=0.36%

Question 13 (e) (ii)

Criteria	Marks
Provides correct explanation	1

Sample answer:

The number of items checked may not be large enough to assume the data is normally distributed.

Question 14 (a)

Criteria	Marks
Provides correct solution	4
• Evaluates the constant of integration to find a correct equation for $\ln y $	3
Obtains correct primitive, or equivalent merit	2
Separates the variables in the differential equation, or equivalent merit	1

Sample answer:

Sample answer.

$$(x-2)\frac{dy}{dx} = xy \text{ and } (0,1)$$

$$\int \frac{1}{y} dy = \int \frac{x}{x-2} dx$$

$$\ln|y| = \int 1 + \frac{2}{x-2} dx$$

$$= x + 2\ln|x-2| + C$$

$$= \ln|x-2|^2 + x + C$$

$$\ln\left(\frac{|y|}{(x-2)^2}\right) = x + C$$

$$\frac{|y|}{(x-2)^2} = e^{x+C}$$

$$|y| = e^{x+C}(x-2)^2$$

$$y = ke^x(x-2)^2 \quad \text{where } k = \pm e^C$$

When
$$x = 0$$
, $y = 1$ $\therefore k = \frac{1}{4}$
 $y = \frac{1}{4}e^{x}(x-2)^{2}$

Question 14 (b)

Criteria	Marks
Provides correct solution	3
Uses an appropriate vector method to obtain a suitable inequality, or equivalent merit	2
• Writes $\underline{u} - \lambda \underline{v}$ as a sum of vectors parallel and perpendicular to \underline{v} , or equivalent merit	1

Sample answer:

METHOD 1

Let λ be a real number.

$$\begin{aligned} |\vec{u} - \lambda \vec{v}|^2 &= |\vec{u} - \lambda_0 \vec{v} + \lambda_0 \vec{v} - \lambda \vec{v}|^2 \\ &= |(\vec{u} - \lambda_0 \vec{v}) + (\lambda_0 - \lambda) \vec{v}|^2 \\ &= [(\vec{u} - \lambda_0 \vec{v}) + (\lambda_0 - \lambda) \vec{v}]^2 \\ &= [(\vec{u} - \lambda_0 \vec{v}) + (\lambda_0 - \lambda) \vec{v}] \cdot [(\vec{u} - \lambda_0 \vec{v}) + (\lambda_0 - \lambda) \vec{v}] \\ &= |\vec{u} - \lambda_0 \vec{v}|^2 + |(\lambda_0 - \lambda) \vec{v}|^2 + 0 + 0 \end{aligned}$$

$$\left| \left(\lambda_0 - \lambda \right) \vec{v} \right|^2 \ge 0$$

Therefore $|\vec{u} - \lambda \vec{v}|^2 \ge |\vec{u} - \lambda_0 \vec{v}|^2$,

So
$$|\vec{u} - \lambda \vec{v}| \ge |\vec{u} - \lambda_0 \vec{v}|$$
.

Hence $|\vec{u} - \lambda \vec{v}|$ is smallest when it equals $|\vec{u} - \lambda_0 \vec{v}|$, and so is smallest when $\lambda = \lambda_0$.

Answers could include:

METHOD 2

Let $\lambda \in \mathbb{R}$.

Let *O* be a point in the plane.

Let A, B and C be the points defined by

$$\overrightarrow{OA} = \lambda \overrightarrow{v}$$

$$\overrightarrow{OB} = \overrightarrow{u}$$

$$\overrightarrow{OC} = \overrightarrow{p}$$

Because \vec{p} is the projection of \vec{u} onto \vec{v} , the triangle ABC has a right angle at C.

In any right-angled triangle the length of the hypotenuse is greater than or equal to the length of any of the sides

so
$$\left| \overrightarrow{AB} \right| \ge \left| \overrightarrow{BC} \right|$$

That is
$$|\vec{u} - \lambda \vec{v}| \ge |\vec{u} - \lambda_0 \vec{v}|$$
.

Hence $|\vec{u} - \lambda \vec{v}|$ is smallest when it equals $|\vec{u} - \lambda_0 \vec{v}|$, and so is smallest when $\lambda = \lambda_0$.

Question 14 (c)

Criteria	Marks
Provides correct solution	4
ullet Finds an expression for d in terms of the maximum range, or equivalent merit	3
Finds maximum range, or equivalent merit	2
Attempts to find the time of flight of projectile, or equivalent merit	1

Sample answer:

For the player to hit the target there must be a time t_1 where the positions of the target and of the projectile coincide:

$$\begin{cases} 2ut_1\cos\theta = d + ut_1 & \text{(i)} \\ 2ut_1\sin\theta = \frac{g}{2}t_1^2 & \text{(ii)} \end{cases}$$

By (i)
$$t_1 = \frac{d}{2u\cos\theta - u}$$

 t_1 is not 0, so dividing (ii) by t_1 yields

$$2u\sin\theta = \frac{g}{2}t_1\tag{iii}$$

Substitute in t_1 in (iii):

$$2u\sin\theta = \frac{g}{2} \left(\frac{d}{2u\cos\theta - u} \right)$$
$$d = \frac{2u\sin\theta \left(u \times (2\cos\theta - 1) \right) \times 2}{g}$$
$$d = \frac{4u^2}{g}\sin\theta (2\cos\theta - 1)$$

Maximum range:

It occurs at time t_2 and corresponds to $2ut_2\sin\theta - \frac{g}{2}t_2^2 = 0$.

$$t_2 \neq 0$$
 so $2u\sin\theta - \frac{g}{2}t_2 = 0$
$$t_2 = \frac{4u\sin\theta}{g}$$

The range is
$$2ut_2 \cos \theta = \frac{8u^2}{g} \sin \theta \cos \theta$$
$$= \frac{4u^2}{g} \sin 2\theta$$

This is maximum when $\sin 2\theta$ is maximum, that is when $\sin 2\theta = 1$.

The maximum range is $\frac{4u^2}{g}$.

Find the maximum value of $\sin\theta(2\cos\theta - 1)$ for θ in $\left(0, \frac{\pi}{2}\right)$. $\sin\theta(2\cos\theta - 1) = \sin 2\theta - \sin \theta$

Let
$$f$$
 be the function defined on $\left(0, \frac{\pi}{2}\right)$

by
$$f(\theta) = \sin 2\theta - \sin \theta$$

$$f'(\theta) = 2\cos 2\theta - \cos \theta$$

$$= 2(2\cos^2\theta - 1) - \cos\theta$$

Let $X = \cos \theta$

$$f'(\theta) = 2(2X^2 - 1) - X = 4X^2 - X - 2$$

$$\Delta = b^2 - 4ac = 1 - 4(-8) = 33$$

$$X_1 = \frac{1 - \sqrt{33}}{8}$$
 and $X_2 = \frac{1 + \sqrt{33}}{8}$

$$\approx -0.59$$
 ≈ 0.84

$$f'(\theta) \ge 0$$
 if $0 \le X \le X_2$

$$f'(\theta) \le 0$$
 if $X_2 \le X \le 1$

So $f(\theta)$ is maximum when $X = X_2$

That is
$$\cos \theta = \frac{1 + \sqrt{33}}{8}$$

With $0 < \theta < \frac{\pi}{2}$, that means $\theta \approx 0.5678$ which corresponds to $\sin 2\theta - \sin \theta = 0.3690... \approx 37\%$.

$$d = \frac{4u^2}{g} \times \sin\theta (2\cos\theta - 1)$$

$$\max_{\text{range}} \leq 37\%$$

So *d* must be less than 37% of the maximum range.

Question 14 (d)

Criteria	Marks
Provides correct solution	4
- Obtains a quadratic inequality in N , where N is the number of tickets sold, or equivalent merit	3
Uses a normal approximation to find an expression for the probability, or equivalent merit	2
• Writes a probability statement similar to $P(X > 350) \le 0.01$, where X is the number of passengers who turn up, or equivalent merit	1

Sample answer:

METHOD 1:

Let *n* be the number of tickets sold for a 350-seat flight ($n \ge 350$).

Let X be the number of passengers showing up on a 350-seat flight $X \sim Bin(n, 0.95)$.

The management's decision can be written as:

$$P(X > 350) \le 0.01$$

or

$$P(X \le 350) \ge 0.99$$

Find *n* such that $P(X \le 350) = 0.99$.

Approximating *X* by the appropriate normal random variable *Y*, without continuity correction, the condition $P(X \le 350) \ge 0.99$ can be rewritten.

$$P(Y \le 350) \ge 0.99$$
.

Need to find *n* such that $P(Y \ge 350) = 0.99$

This becomes

$$P\left(\frac{Y - 0.95n}{\sqrt{n \times 0.95 \times 0.05}} < \frac{350 - 0.95n}{\sqrt{n \times 0.95 \times 0.05}}\right) = 0.99$$

This happens if

$$\frac{350 - 0.95n}{\sqrt{0.95 \times 0.05n}} \simeq 2.33$$

$$350 - 0.95n = 2.33\sqrt{0.95 \times 0.05n}$$

Let
$$x = \sqrt{n}$$

$$0.95x^2 + 2.33\sqrt{0.95 \times 0.05}x - 350 = 0$$

$$x = \sqrt{n} = \frac{-2.33\sqrt{0.95 \times 0.05} \pm \sqrt{(2.33)^2 \times 0.95 \times 0.05 + 4 \times 0.95 \times 350}}{2 \times 0.95}$$

$$\sqrt{n} \approx 18.93$$
$$n \approx 358.30$$

So n = 358 (359 would result in getting too many passengers more than 1% of the time)

Given the management's decision, the optimal number of tickets sold on a 350-seat flight is 358.

Answers could include:

METHOD 2: (with continuity correction)

X, Y and n defined as before.

Approximate the binomial *X* by the appropriate normal random variable *Y*, with continuity correction.

$$P(Y < 350.5) \ge 0.99$$
 (i)

$$E(Y) = E(X) = n \times 0.95$$

$$Var(Y) = n \times 0.95 \times 0.05$$

(i) becomes

$$P\left(\frac{Y - 0.95n}{\sqrt{n \times 0.95 \times 0.05}} < \frac{350.5 - 0.95n}{\sqrt{n \times 0.95 \times 0.05}}\right) = 0.99$$

Using the normal distribution table

$$\frac{350.5 - 0.95n}{\sqrt{0.95 \times 0.05n}} \simeq 2.33$$

$$350.5 - 0.95n = 2.33\sqrt{0.95 \times 0.05} \times \sqrt{n}$$

Let
$$x = \sqrt{n}$$

$$0.95x^2 + 2.33\sqrt{0.95 \times 0.05}x - 350.5 = 0$$

$$\Delta = b^2 - 4ac = 0.95 \times 0.05 \times (2.33)^2 - 4 \times 0.95 \times (-350.5)$$

$$\approx 1332.158$$

$$x = \sqrt{n} = \frac{-2.33\sqrt{0.95 \times 0.05} + \sqrt{1332.158}}{2 \times 0.95}$$

(Can ignore the negative solution since $x = \sqrt{n} > 0$.)

$$\sqrt{n} \approx 18.94$$

$$n \simeq 358.8$$

n = 358 (359 would result in getting too many passengers more than 1% of the time)

2022 HSC Mathematics Extension 1 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	ME-T1 Inverse Trigonometric Functions	ME11-3
2	1	ME-F1 Further Work with Functions	ME11-1
3	1	ME-F2 Polynomials	ME11-2
4	1	ME-F1 Further Work with Functions	ME11-1
5	1	ME-F1 Further Work with Functions	ME11-2
6	1	ME-V1 Introduction to Vectors	ME12-2
7	1	ME-A1 Working with Combinatorics	ME11-5
8	1	ME-V1 Introduction to Vectors	ME12-2
9	1	ME-C2 Further Calculus Skills	ME12-1
10	1	ME-C3 Applications of Calculus	ME12-4

Section II

Question	Marks	Content	Syllabus outcomes
11 (a) (i)	1	ME-V1 Introduction to Vectors	ME12-2
11 (a) (ii)	1	ME-V1 Introduction to Vectors	ME12-2
11 (b)	3	ME-C2 Further Calculus Skills	ME12-1
11 (c)	2	ME-A1 Working with Combinatorics	ME11-5
11 (d)	2	ME-V1 Introduction to Vectors	ME12-2
11 (e)	3	ME-T3 Trigonometric Equations	ME12-3
11 (f)	3	ME-F1 Further Work with Functions	ME11-1
12 (a)	2	ME-C3 Applications of Calculus	ME12-1
12 (b)	2	ME-A1 Working with Combinatorics	ME11-5
12 (c)	3	ME-C2 Further Calculus Skills	ME12-1
12 (d) (i)	3	ME-C3 Applications of Calculus	ME11-4, ME12-4
12 (d) (ii)	1	ME-C1 Rate of Change	ME11-4
12 (e)	2	ME-S1 The Binomial Distribution	ME12-5
12 (f)	3	ME-P1 Proof by Mathematical Induction	ME12-1
13 (a)	3	ME-V1 Introduction to Vectors	ME12-2

Question	Marks	Content	Syllabus outcomes
13 (b)	3	ME-C3 Applications of Calculus	ME12-4
13 (c)	2	ME-T1 Inverse Trigonometric Functions	ME11-1
13 (d)	3	ME-F2 Polynomials	ME11-1
13 (e) (i)	2	ME-S1 The Binomial Distribution	ME12-5, ME12-7
13 (e) (ii)	1	ME-S1 The Binomial Distribution	ME12-5, ME12-7
14 (a)	4	ME-C3 Applications of Calculus	ME12-4
14 (b)	3	ME-V1 Introduction to Vectors	ME12-2, ME12-7
14 (c)	4	ME-V1 Introduction to Vectors	ME12-2, ME12-3
		ME-C3 Applications of Calculus	IVIL IZ Z, IVIL IZ-U
14 (d)	4	ME-S1 The Binomial Distribution	ME12-5, ME12-7
		ME-S1 The Binomial Distribution	IVIL 12 O, IVIL 12-1