痛み予測のボラティリティと関連する前島の活動

Anterior insular cortex activity associated with volatility in pain prediction.

前川亮, 笹岡貴史, 吉野敦雄, 山脇成人

Toru Maekawa, Takafumi Sasaoka, Atsuo Yoshino, Shigeto Yamawaki

広島大学,脳・こころ・感性科学研究センター(Hiroshima University, BMK center)

Introduction

Volatility

In the reinforcement learning paradigm, volatility refers to the stability of the probability that a reward will be associated with a cue.

Stable conditions

Participants must adapt slowly to reduce the effects of noise and to achieve stable behavior.

Volatile conditions Participants should quickly adapt to continuous changes in the environment.

Stable ⇒ low learning rate Volatile ⇒ high learning rate

Behrens et al. (2007)

Rewards × volatility interaction revealed activation in the ACC (green)

Pain prediction

Pain perception ⇒ posterior insula Pain prediction ⇒ anterior insula

Purpose

To examine brain activity related to volatility when pain is used as a stimulus.

Methods

Conditions

- Cue
 - A (Gabor 0°)
- B (Gabor 90°)
- Heat stimuli
- Pain (48°C)
- Warm (35°C)
- Cue-stim probability ① $A \Rightarrow P:80\%$, W:20% $B \Rightarrow P:20\%$, W:80%② $A \Rightarrow P:20\%$, W:80% $B \Rightarrow P:80\%$, W:20%
- Volatility
 - Volatile: probabilities switched every 10 trials

Xu et al. (2021)

- Stable: same probability lasts for 20 trials
- Physiological measures
 - PPG, Blood pressure, EDA, respiration, pupil size
- Questionnaire
 - MAIA, BDI, BRS, BPQ, JPSS

Procedure

Learning model

Learning rate and subjective volatility of each participant were estimated from their prediction responses using Bayesian hierarchical estimation.

Volatility

$$x_1^{(t)} \sim Bernoulli\left(s\left(x_2^{(t)}\right)\right)$$

Response

$$s(x) \triangleq \frac{1}{1 + \exp(-x)}$$

 $x_2^{(t)} \sim N\left(x_2^{(t-1)}, exp\left(x_3^{(t)} + \omega_2\right)\right)$

Ref. Lawson et al., 2017

Probability of pain

Behavioral results

Subjective rating

Arousal (warm stimulation)

Valence (warm stimulation) Warm prediction > Pain prediction

Pain perception (pain stimulation) Warm prediction > Pain prediction

Pain prediction > warm prediction

Volatility model parameter estimation

Estimate volatility parameters $(x_2, x_3,$ ω_2, ω_3) for each participant based on prediction responses.

Correlations between other indicators

No significant correlation found between volatility parameters and emotion ratings, physiological measurements, and questionnaires

fMRI results

Activities associated with volatility analyzed by the parametric modulation

Discussion

- In the warm stimulus condition, valence was higher in warm predicted trials than in pain predicted trials.
- > Decreased free-energy was associated with better valence.

- Volatility estimates for the anticipatory period were associated with activity in the anterior insula.
- > Pain-related volatility is processed in anterior insula, not ACC.
- Negative correlations with volatility (positive correlations with stability) were associated with activity in the parahippocampal gyrus.
- > Parahippocampal plays important role in memory encoding and retrieval (Brian et al., 1997). > In stable condition, participants have a stronger encoding of cues that is later recalled.

Research funds: JST COI (grant nos. JPMJCE1311 and JPMJCA2208), JST Moonshot Research and Development Program (grant no. JPMJMS2296) Disclosure of Conflict of Interest: Authors have no COI with regard to the presentation