Bộ để 6

1.	Một k	im	loạ	i M	(thuộc	nh	óm I	A]	hoặc	II_A) C	háy	với	ngọr	ı lửa	màu	sáı	ng
	trăng,	ph	ån	ứng	chậm	với	nướ	сð	nhi	ệt đ	lộ	thườ	ng	và có	hiđi	roxit	rất	ít
	tan. M	Πà	•															

A. Li

B. Be

C. Mg

D. Ba.

2. Một hỗn hợp X gồm anken A, ankin B và H₂, 11,2 lít X (đktc) nung với Ni cho ra 4,48 lít (đktc) khí một chất duy nhất D có tỉ khối đối với không khí bằng 2. Xác định công thức phân tử của A, B và số mol của A, B trong 11,2 lít X.

A. C₄H₈ (0,1 mol), C₄H₆ (0,1 mol)

B. $C_3H_6(0,1 \text{ mol})$, $C_3H_4(0,1 \text{ mol})$

C. $C_3H_6(0,12 \text{ mol})$, $C_3H_4(0,18 \text{ mol})$

D. C_2H_4 (0,10 mol), C_2H_2 (0,12 mol)

- 3. Một hỗn hợp X gồm 2 muối có công thức chung là $C_4H_{11}NO_2$. Khi nung X với dung dịch NaOH thu được 14,92 gam hỗn hợp hơi Y gồm 2 chất hữu cơ (đều làm xanh giấy quỳ ẩm), tỉ khối của Y đối với H_2 là 18,65. Xác định công thức thu gọn và số mol của mỗi muối.
 - A. C₂H₅COONH₃CH₃ (0,22 mol); CH₃COONH₃-C₂H₅ (0,18 mol)
 - B. C₂H₅COONH₃CH₃ (0,20 mol); CH₃COONH₃-CH₃ (0,2 mol)
 - C. HCOONH₃C₃H₇ (0,18 mol); CH₃COONH₃-C₂H₅ (0,22 mol)
 - D. CH₃COONH₃CH₃ (0,12 mol); C₂H₅COONH₃-C₂H₅ (0,28 mol).
- 4. Cho m gam Zn vào 100 ml dung dịch chứa FeSO₄ 0,1 M và Fe₂(SO₄)₃ 0,2 M. Sau khi phản ứng kết thúc, thu được 1 chất rắn X hoàn toàn không tác dung với dung dịch NaOH nhưng X tác dụng với dung dịch H₂SO₄ loãng cho ra 0,896 lít khí H₂ (đktc). Giá trị của m là (Zn = 65, Fe = 56).

A. 3,8 g

B. 4,2 g

C. 4,5 g

D. 3,9 g.

5. Phát triển đúng là:

- A. Phản ứng giữa axit và rượu khi có H_2SO_4 đặc là phản ứng một chiều
- B. Tất cả các este phản ứng với dung dịch kiềm luôn được sản phẩm cuối cùng là muối và rượu
- C. Khi thủy phân chất béo luôn thu được $C_2H_4(OH)_2$
- D. Phản ứng thủy phân este trong môi trường axit là phản ứng thuận nghịch.

6.	Cho sơ đồ chuyến	ı hóa sau:								
	$\mathrm{C_3H_4C}$	O_2 + NaOH \rightarrow X	+ Y	•						
	$X + H_2SO_4 loãng \rightarrow Z + T$									
	Biết Y và Z đều cho phản ứng tráng gương, hai chất Y, Z tương ứng là:									
	A. HCHO, CH ₃ C	НО	В. НСНО, НС	СООН						
	C. CH ₃ CHO, HC	ООН	D. HCOONa,	СН₃СНО.						
7 .	Để trị phèn ở nô	ng thôn, người t	a dùng:							
	A. Thạch cao	B. Đá vôi	C. $Ca(OH)_2$	D. NaOH.						
8.	dung dịch B (chú	a HCl 0,1 M và	$H_2SO_4 \ 0,2 \ M).$	M và $NaAlO_2$ 0,3 M) và Thể tích V (ml) của dung yc kết tủa cực đại là:						
	A. 120 ml	B. 100 ml	C. 80 ml	D. 150 ml.						
9.	Một muối hữu cơ A có công thức phân tử là $C_5H_{14}N_2O_2$. Cho 0,1 mol A tác dụng với NaOH dư thu được 0,1 mol một amin B có tỉ khối hơi đối với H_2 bằng 15,5.									
	0,1 mol A tác dụ	0,1 mol A tác dụng với dung dịch HCl dư cho ra 2 muối mới C, D. Xác								
	định công thức ca	ấu tạo thu gọn c	ủa C, D và khối	lượng của C, D						
	A. CH_3-NH_3Cl (6	$(5,75 \text{ g}); C_2H_5 - C_1$	CH – COOH (13,	95 g)						
			$ m NH_3Cl$							
	B. C ₂ H ₅ NH ₃ Cl (7	B. $C_2H_5NH_3Cl$ (7,25 g); $CH_3 - CH - COOH$ (8,15 g)								
	NH₃Cl									
	C. CH ₃ -NH ₃ Cl (7,85 g); C ₂ H ₅ - CH - COOH (14,50 g) NH ₃ Cl									
	D. C ₂ H ₅ -NH ₃ Cl (CH – COOH (9,28 I NH ₃ Cl	8 g)						
10	. Có các dung dịcl	h riêng biệt sau	:							
	C ₆ H ₅ NH ₃ Cl, N	H ₂ -CH ₂ -CH ₂ -C	CH(NH ₂)–COOH,	ClH ₃ N-CH ₂ -COOH						
	HOOC-CH ₂ -C	H ₂ -CH(NH ₂)-C	COOH; H ₂ N-CH ₂	-COONa						
	Số lượng các du	ng dịch có pH <	7 là:							
	A. 2	B. 5	C. 4	D. 3.						

- A. 0,05 mol NaHCO₃, 0,15 mol Na₂CO₃
- B. 0,20 mol NaHCO₃, 0,18 mol Na₂CO₃
- C. 0,15 mol NaHCO₃, 0,12 mol Na₂CO₃
- D. 0,08 mol NaHCO₃, 0,15 mol Na₂CO₃.

12. Cho chuỗi biến hóa

$$C_3H_4 \xrightarrow[xt]{t,\,p} A \xrightarrow[H^*,\,t^0]{kMnO_4} B \xrightarrow[NaOH]{} D \xrightarrow[NaOH]{t^0} C_6H_6$$

Viết công thức cấu tạo thu gọn của A, B, D

- A. C₇H₈, C₆H₅COOH, C₆H₅COONa
- B. $C_6H_3(CH_3)_3$, $C_6H_5(COOH)_3$, $C_6H_5(COONa)_3$
- C. C_8H_{10} , $C_6H_4(COOH)_2$, $C_6H_4(COONa)_2$
- D. C₆H₈, C₆H₅COOH, C₆H₅COONa.
- 13. Cho chuỗi biến hóa:

A (khí) + B (khí)
$$\xrightarrow{p}$$
 C (khí) $\xrightarrow{O_2}$ D
$$\cdot \qquad \qquad \downarrow O_2$$

$$\cdot \qquad \qquad F + D \xleftarrow{H_2O} E$$

Biết rằng B là khí rất nhẹ và C có tính bazơ, xác định A, B, C, D, E, F

- A. N_2 , H_2 , NH_3 , NO, NO_2 , HNO_3
- B. P, H₂, PH₃, P₂O₃, P₂O₅, H₃PO₄
- C. S, H₂, H₂S, SO₂, SO₃, H₂SO₄
- D. Cl₂, H₂, HCl, Cl₂O, ClO₂, HClO₃.
- 14. Hợp chất \dot{X} có công thức phân tử là $C_4H_8O_2$, có bao nhiều đồng phân ứng với trường hợp \dot{X} cho phản ứng tráng gương và không tác dụng với $\dot{N}a$.
 - A. 1 B. 2 C. 3 D. 4.
- 15. Một hợp chất hữu cơ X có công thức phân tử $C_{10}H_{10}O_2$. Khi xà phòng hóa X thu được muối A và anđehit B. Xác định công thức cấu tạo thu gọn của X biết rằng khi nung A với NaOH, thu được một hiđrocacbon thơm còn B có tỉ khối hơi đối với không khí bằng 2.
 - A. C₆H₅COOCH₂-CH=CH₂

 B. C₆H₅-COOCH₂-CH₂-CH₃
 - C. $C_6H_5COOCH=CH_2$ D. $C_6H_5COOCH=CH-CH_3$.

16. Một hỗn hợp A gồm Mg và Al (tỉ lệ mol tương ứng là 3 : 2) và hỗn hợp B gồm CuO và Fe₂O₃ (tỉ lệ mol tương ứng là 3 : 2). Dùng hỗn hợp A để khử hỗn hợp B thành kim loại Fe và Cu. Phải dùng bao nhiều gam hỗn hợp A để phản ứng vừa đủ với 56 gam hỗn hợp B.

$$Mg = 24$$
, $Al = 27$, $Fe = 56$, $Cu = 64$

A. 14,8 g

B. 18,9 g

C. 12,6 g

D. 18,2 g.

17. Điều chế cao su Buna từ nguyên liệu đầu là glucozo

glucozo
$$\rightarrow$$
 C₂H₅OH \rightarrow C₄H₆ \rightarrow Cao su Buna

Giả sử 2 giai đoan đầu có hiệu suất là 80% (cho mỗi giai đoạn) và giai đoạn cuối có hiệu suất 100%, tính khối lượng glucozơ phải dùng để có được 10,8 kg cao su Buna.

A. 12,812 kg

B. 14,375 kg C. 15,210 kg D. 16,520 kg.

18. Cho sơ đồ chuyển hóa $CH_4 \rightarrow C_2H_2 \rightarrow C_2H_3Cl \rightarrow PVC$. Để tổng hợp 250 kg PVC theo sơ đồ trên cần V(m³) khí thiên nhiên (đktc), giá trị của V là (biết CH₄ chiếm 80% thể tích khí thiên nhiên, hiệu suất của cả quá trình là 50%)

A. 358,4

B. 448,0

C. 286,7

D. 224,0.

19. Tinh chế propin có lẫn một ít propen và propan có thể dùng

A. nước Br₂, Zn

B. KMnO₄, nước Br₂

C. AgNO₃/NH₃, HCl

D. KMnO₄, H₂SO₄.

20. H_2 thường là chất khử. Trong các phản ứng sau, chọn các phản ứng với H₂ là chất oxi hóa

1) $H_2 + \text{FeO} \xrightarrow{t^0} \text{Fe} + H_2\text{O}$

2) $H_2 + Ca \rightarrow CaH_2$

3) $H_2 + Cl_2 \rightarrow 2HCl$

4) $H_2 + 2Na \rightarrow 2NaH$

5) $H_2 + C_2H_4 \rightarrow C_2H_6$

A. 2, 5

B. 3, 4

C. 1, 5

D. 2, 4.

21. Cho biết các phản ứng xảy ra sau:

$$2\text{FeBr}_2 + \text{Br}_2 \rightarrow 2\text{FeBr}_3$$

 $2\text{NaBr} + \text{Cl}_2 \rightarrow 2\text{NaCl} + \text{Br}_2$

Phát biểu **đúng** là:

A. Tính khử của Cl- mạnh hơn Br-

B. Tính oxi hóa của Br₂ mạnh hơn của Cl₂

C. Tính khử cửa Br manh hơn của Fe²⁺

D. Tính oxi hóa của Cl₂ mạnh hơn của Fe³⁺.

mol của A, B. A. C_3H_8 (0,2 mol), C_4H_{10} (0,3 mol) B. C_2H_6 (0,3 mol), C_3H_8 (0,2 mol) C. C₂H₆ (0,4 mol), C₃H₈ (0,1 mol) D. CH_4 (0,2 mol), C_2H_6 (0,3 mol). 23. Sắp dung dịch các chất 1) Na₂CO₃ 2) NaCH₃COO 3) NH₄CH₃COO 4) NH₄Cl

22. Một hỗn hợp X gồm 2 ankan A, B đồng đẳng kế tiếp. Crackinh 11,2 l (đktc) hỗn hợp X thu được 22,4 l hỗn hợp Y (đktc) gồm ankan, anken, H₂, tỉ khối của Y đối với H₂ là 8,2. Xác định công thức phân tử và số

theo thứ tự pH tăng dần.

C.3 < 4 < 2 < 124. Cho chuỗi biến hóa.

 $C_7H_8 \xrightarrow{HNO_3(1:1)} X \xrightarrow{Zn,HCl} Y \xrightarrow{HONO} Z + N_2$ X, Y, Z là hỗn hợp các chất hữu cơ. Thành phần chủ yếu của Z là:

B. 4 < 1 < 2 < 3

D. 2 < 1 < 4 < 3.

D. 3.

A. o-cresol, p-cresol B. o-cresol, m-cresol C. o-metylanilin, p-metylanilin

A. 4 < 3 < 2 < 1

D. axit o-phtalic, axit p-phtalic. 25. Cho tất cả các đồng phân mạch hở, có cùng công thức phân tử C₂H₄O₂

tác dụng với Na, NaOH, NaHCO₃, số phản ứng xảy ra là: A. 2 B. 5 C. 4 26. Cho 38,4 gam Cu vào 2 lít dung dịch H₂SO₄ 1 M thêm 17 gam NaNO₃.

Tính V (lít) khí NO (đktc) thoát ra. Phải thêm bao nhiều gam NaNO₃ hoặc bao nhiều lít H₂SO₄ 1 M để Cu

tan hét? Cu = 64, Na = 23A. 3,36 l, 17 gam

B. 4,48 l, 8,5 gam

C. 4,48 l, 17 gam D. 3,36 l, 8,5 gam. 27. Cho 150 ml dung dịch NaOH 0,5 M vào 100 ml dung dịch chứa HCl 0,5 M và H₃PO₄ 0,2 M. Tính nồng độ mol của các muối có trong dung dịch cuối.

A. $C_{\text{NaCl}} = 0.20 \text{ M}$; $C_{\text{NaH,PO}} = 0.06 \text{ M}$; $C_{\text{Na,HPO}} = 0.02 \text{ M}$ B. $C_{\text{NaCl}} = 0.18 \text{ M}$; $C_{\text{NaH,PO}} = 0.06 \text{ M}$; $C_{\text{Na,HPO}} = 0.03 \text{ M}$ C. $C_{\text{NaCl}} = 0.22 \text{ M}$; $C_{\text{NaH,PO}} = 0.05 \text{ M}$; $C_{\text{Na,HPO}} = 0.02 \text{ M}$

D. $C_{NaCl} = 0.25 \text{ M}$; $C_{NaH_2PO_4} = 0.07 \text{ M}$; $C_{Na_2HPO_4} = 0.02 \text{ M}$.

30. Một anđehit X khi bị oxi hóa cho ra axit B với $\frac{m_A}{m_B} = \frac{29}{45}$. Xác định công thức cấu tạo thu gọn của X và khối lượng Ag thu được khi cho 0,1 mol X tác dụng với AgNO₃ trong NH₃ (dư) Ag = 108 A. CH₃CHO, 21,6 g B. HCHO, 43,2 g C. C₂H₅CHO, 21,6 g D. OHC-CHO, 43,2 g. **31.** Đề thi ĐH, CĐ khối B (2007) Cho m gam một ancol no đơn chức X qua bình đưng CuO (dư) nung nóng. Sau khi phản ứng hoàn toàn, khối lương chất rắn trong bình giảm 0,32 gam. Hỗn hợp hơi thu được có tỉ khối đối với hiđro là 15,5. Giá trị của m là: C. 0,64 g D. 0,46 g. A. 0,92 g B. 0,32 g 32. Trong các phản ứng sau: 1) NaHSO₄ + NaHCO₃ \rightarrow 2) NaHSO₄ + Ca(OH)₂ \rightarrow 3) NaHCO₃ + Ca(OH)₂ \rightarrow 4) $(NH_4)_2CO_3 + Ba(OH)_2 \rightarrow$ những phản ứng nào có thể xảy ra? A. Cå 4 B. Chỉ có 2, 3 C. 2, 3, 4 D. 1, 2, 3. 33. Nung hỗn hợp nitrat 1) $Fe(NO_3)_3$, $Cu(NO_3)_2$ 2) NaNO₃, KNO₃ 3) AgNO₃, $Zn(NO_3)_2$ 4) $Mn(NO_3)_2$, $Zn(NO_3)_2$

28. Tính nồng độ mol của H⁺ trong dung dịch H_2SO_4 0,1 M biết ở nấc 1, axit phân li hoàn toàn, ở nấc 2 có phản ứng cân bằng với $K_{a2} = 10^{-2}$.

29. Cho 2 dung dich: dung dich A chứa Na₂CO₃ 0,1 M và K₃PO₄ 0,1 M, dung

Phải dùng bao nhiều lít dung dịch A để kết tủa hết Ba²⁺ và Pb²⁺ chứa trong 100 ml dung dịch B. Tính khối lượng kết tủa thu được. Ba = 137,

C. 0,168 M

B. 0,18 l, 9,218 g

D. 0,16 l, 9,120 g.

D. 0.184 M.

B. 0,1712 M

dịch B chứa Ba(NO₃) 0,15 M và Pb(NO₃)₂ 0,20 M.

Pb = 207, P = 31, C = 12

A. 0,14 lít, 8,365 g

C. 0,20 lít, 8,524 g

Hỗn hợp nitrat nào sau khi nung cho ra chất rắn.

- (I) tan hết trong nước
- (II) không tan trong nước nhưng tan trong dung dịch H_2SO_4 loãng
- (III) không tan trong nước và trong dung dịch H₂SO₄ loãng
- A. (I) 1,2; (II) 4; (III) 3,4
- B. (I): 2; (II) 1, 3 (III); 4
- C. (I) 2; (II) 1, 4; (III): 3
- D. (I) 2; (II) 1 (III): 3,4.
- 34. Hỗn hợp X gồm 2 chất hữu cơ A, B đơn chức mạch hở có cùng công thức phân tử C₄H₈O₂. 0,3 mol hỗn hợp X tác dụng với NaOH (vừa đủ) cho ra một chất rắn Y và 0,2 mol chất Z có tỉ khối hơi đối với H₂ bằng 23. Xác định công thức cấu tạo thu gọn của A, B và khối lượng chất rắn Y.
 - A. C₂H₅COOCH₃, C₃H₇COOH, 28,6 g
 - B. CH₃COOC₂H₅, C₃H₇COOH, 26,8 g
 - C. C₂H₅COOCH₃, C₃H₇COOH, 24,82 g
 - D. CH₃COOC₂H₅, C₃H₇COOH, 27,4 g.
- 35. Trong các phản ứng sau, phản ứng nào cho ra Al(OH)3 kết tủa
 - 1) $Al_2(SO_4)_3 + NH_4OH$
 - 2) $Al_2(SO_4)_3$ + dung dịch $CH_3-NH_2 \rightarrow$
 - 3) $Al_2(SO_4)_3 + Na_2CO_3 \rightarrow$
 - 4) $Al_2(SO_4)_3 + Na_2S \rightarrow$
 - A. Cả 4 phản ứng

B. 1, 2

C. 1, 2, 3

- D. 1, 3.
- **36.** Cho $E_{Cl_2/2Cl^-}^0$ = +1,39 V, $E_{Br_2/2Br^-}^0$ = +1,09 V

$$E^{0}_{{\rm I}_{2}/2{\rm I}^{-}}= +0.54~V,~E^{0}_{{\rm Fe}^{3*}/{\rm Fe}^{2*}}= +0.77~V$$

Trong các phản ứng sau, phản ứng nào có được

- 1) $2\text{FeBr}_2 + \text{Br}_2 \rightarrow 2\text{FeBr}_3$
- 2) $2\text{FeI}_2 + \text{I}_2 \rightarrow 2\text{FeI}_3$
- 3) $FeSO_4 + I_2 \rightarrow Fe^{3+} + I^-$
- 4) $2\text{FeBr}_2 + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3 + 2\text{Br}_2$
- A. 1, 2
- B. 1, 3
- C. 1, 4
- D. 3, 4.

- **37.** Chọn phát biểu sai
 - 1) H của OH trong phenol linh động nhờ ảnh hưởng của vòng C_6H_5
 - 2) Sản phẩm hiđrô hóa của phenol cũng tác dụng với NaOH
 - 3) Phenol giống rươu có thể bi este hóa bởi CH₃COOH

	1) Fe + Fe	$(SO_4)_3 \rightarrow 3FeSO_4$							
	2) MnO ₄ -	$+ \operatorname{Cl}_2 \xrightarrow{\operatorname{H}^+} \operatorname{Mn}^{2+} +$	Cl-						
	3) $KI + I_2$								
		$Al_2O_3 \rightarrow 4Al + 3Z$	SnO						
	A. 1, 2	B. 2, 3	C. 2, 4	D. 3, 4.					
39.	hidrocacbo	the second secon	ing trùng hợp đ	oị tách nước, A cho ra lể cho ra một polime thô					
	A. benzyleta	anol	B. 2–phen	yletanol					
	C. etylphen	ol	D. đimetyl	phenol.					
40.	cùng 1 chu	kỳ, có tỉ lệ mol tho ra $4,48$ lít H_2	tương ứng $2:1$	nhóm II _B , A, B nằm tro . 11,8 gam X tan hết tro nh A, B và khối lượng n	ng				
	•	Na = 23, Mg	= 24, K = 39, C	Ca = 40					
	A. K (7,8 g)	, Ca (4 g) .	В. К (3,9 g	g), Ca (7,9 g)					
	C. Na (4,6 g	g), Mg (7,2 g)	D. Na (5,8	g), Mg (6,0 g).					
41.	X là este no của CH ₃ COOH. Đốt cháy 0,1 mol X và hấp thụ hết sản phẩm cháy trong bình đựng dung dịch Ca(OH) ₂ . Có kết tủa và khối lượng dung dịch giảm 15,2 gam. Xác định công thức cấu tạo thu gọn và khối lượng m của X.								
	A. CH ₃ COO	C_2H_5 ; 8,8 g	B. CH ₃ CO	OCH ₃ ; 17,6 g					
	C. CH ₃ COO	C ₃ H ₇ ; 17,6 g	D. CH ₃ CO	OC_2H_5 ; 35,2 g.					
42 .	Cho chuỗi bi	ến hóa							
	Axit picric -	$\xrightarrow{\text{Fe, HCl}} \text{B} \xrightarrow{\text{NaOH}} \text{C}$	$\stackrel{\text{HONO}}{\longrightarrow} D + N_2$	-					
	Tính khối lư	ơng axit picric bi	ết thể tích N_2 (đktc) là 6,72 lít					
	A. 25,4 g	B. 23,8 g	C. 22,9 g	D. 21,8 g.					
43.	chỉ có tính l	hất $ m N_2,~NH_3;~NO$ khử (II), có cả $2~t$, (II) $ m NO_2,$ (III) $ m N_2$	ính chất oxi hó:	nào chỉ có tính oxi hóa (a và khử (III)	(I),				
	, 23. 1 (1114O3)	, (11) 14O ₂ , (111) 14	2, 11113						
				1	39				

4) Phenol cho phản ứng thế dễ hơn benzen nhờ ảnh hưởng của nhóm

C. 3, 4

D. 2, 3.

-OH lên gốc -C₆H₅

38. Chọn các phản ứng không thể xảy ra

A. 1, 3

B. 2, 4

- B. I (HNO₃), II (N₂, NO₂), III (NH₃)
- C. I (HNO₃), II (NH₃), III (N₂, NO₂)
- D. I (HNO₃, NO₂), II (N₂), III (NH₃).
- 44. Từ quặng boxit, người ta điều chế Al qua quy trình sau:

quặng
$$\xrightarrow{NaOH}$$
 A $\xrightarrow{nu\acute{o}c}$ B \downarrow $\xrightarrow{t^0}$ C \xrightarrow{dpnc} Al

Tính khối lượng quặng boxit tiêu thụ trong 1 giờ biết rằng trong 1 giờ sản xuất được 540 kg Al. Quặng chứa 80% Al₂O₃, hiệu suất của cả quy trình là 80% và tính cường độ I (Al = 27).

A. 1120 kg; 1200 kA

B. 1080 kg; 1428 kA

C. 1072 kg, 1318 kA

- D. 1593,75 kg; 1608,33 kA.
- 45. Một hợp chất vòng X có công thức phân tử là C_5H_8 . 6,8 gam X có thể cộng 4,48 lít H_2 (đktc). Công thức cấu tạo của X là:

- 46. Quặng dùng để sản xuất sắt là
 - A. boxit B. galen
- C. hematit
- D. pirit sắt.
- 47. Một hỗn hợp X gồm 2 hiđrocacbon vòng A, B có cùng số mol, cùng số nguyên tử C, số nguyên tử H của B lớn gấp đôi số nguyên tử H của A. 0,2 mol X đốt cháy cho ra 1,2 mol CO₂ và 0,9 mol H₂O, 0,2 mol X cộng 0,3 mol H₂. Gọi tên A, B.
 - A. Benzen, xiclohexan hoặc metylxyclopentan
 - B. Benzen, etilxycloputan
 - C. Toluen, xicloheptan
 - D. Benzen, trimetylxiclopropan.
- 48. Hỗn hợp X chứa Na₂O, NH₄Cl, NaHCO₃ và BaCl₂, số mol mỗi chất đều bằng nhau. Cho hỗn hợp X vào nước (dư), đun nóng. Dung dịch thu được chứa
 - A. NaCl, NaOH; BaCl₂

- B. NaCl, NaOH .
- C. NaCl, NaHCO₃, NH₄Cl, BaCl₂
- D. NaCl.

49. Tính hiệu suất phản ứng este hóa biết rằng nếu khi đầu dùng 3 mol CH_3COOH và 3 mol C_2H_5OH khi đến cân bằng thu được 2 mol este và 2 mol H_2O . Nếu bắt đầu bằng 1 mol CH_3COOH phải dùng bao nhiêu mol C_2H_5OH để hiệu suất phản ứng este hóa là 80%

A. 75%; 1,5 mol

B. 66,67%; 1,6 mol

C. 68%; 1,4 mol

D. 72%; 1,25 mol.

50. Crackinh hoàn toàn 17,6 gam propan thu được hỗn hợp X gồm 2 hiđrocacbon. Cho X qua 2 lít nước Br₂. Khí thu được khi qua khỏi bình Br₂ có tỉ khối đối với CH₄ bằng 1,15. Tính nồng độ mol của dung dịch Br₂.
A. 0,12 M
B. 0,15 M
C. 0,18 M
D. 0,16 M.

ĐÁP ÁN BỘ ĐỀ 6

1. Hidroxit nhóm I_A đều tan trong nước. Hidroxit rất ít tan vậy M thuộc nhóm II_A

 $Loai\ D)\ Ba$ vì Ba phản ứng nhanh với nước ở nhiệt độ thường và có $Ba(OH)_2$ tan khá

Loại A) Li vì Li thuộc nhóm IA

Chọn Mg vì Mg cháy với ngọn lửa sáng trắng, tác dụng chậm với nước ở nhiệt độ thường và $Mg(OH)_2$ rất ít tan.

Chọn đáp án C.

2. Gọi $a = n_A$, $b = n_B$ và $c = n_{H_2}$ $a + b + c = \frac{11,2}{22A} = 0,5 \text{ mol}$ (1)

Sau phản ứng chỉ còn 1 khí duy nhất (ankan) vậy A, B có cùng số cacbon và A, B, C đã phản ứng hết. Số mol H_2 bằng độ giảm số mol.

$$C_nH_{2n} + H_2 \rightarrow C_nH_{2n+2}$$
a a a
$$C_nH_{2n-2} + 2H_2 \rightarrow C_nH_{2n+2}$$
b 2b b

$$n_{ankan} = a + b = \frac{4.48}{22.4} = 0.2 \text{ mol}$$
 (2)

$$n_{H_2} = c = a + 2b = 0.5 - 0.2 = 0.3$$
 (3)

(1), (2), (3)
$$\rightarrow$$
 a = b = 0,1 mol c = 0,3 mol

Chon đáp án A.

Vây amin đầu là

$$0,3$$
 mol

 $M_D = 2 \times 29 = 58 = 14n + 2 \rightarrow n = 4$

Vây A là C_4H_8 (0,1 mol), B là C_4H_6 (0,1 mol)

3. Hỗn hợp Y gồm 2 amin (đều có tính bazơ)

 $\overline{M}_{V} = 2.18.65 = 37.3$

CH₃-NH₂ và amin sau là C₂H₅-NH₂

Công thức của muối tương ứng là C₂H₅COONH₃-CH₃ CH₃COONH₃-C₂H₅

Tổng số mol amin = $\frac{14,92}{37.3}$ = 0,4 mol

C₂H₅COONH₃CH₃ (0,22 mol CH₃COONH₃C₂H₅ (0,18 mol)

4. Do $E^{0}_{Fe^{3+}/Fe^{2+}} > E^{0}_{Fe^{2+}/Fe}$, Zn khử Fe^{3+}

 $Z_{n} + 2Fe^{3+} \rightarrow Z_{n}^{2+} + 2Fe^{2+}$ $Zn + Fe^{2+} \rightarrow Fe + Zn^{2+}$

 $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2\uparrow$

 $n_{Fe} = n_{H_2} = \frac{0.896}{22.4} = 0.04 \text{ mol}$

 $n_{E_0^{3+}} = 2.0, 1.0, 2 = 0,04 \text{ mol}$

Thành phần hỗn hợp X

Chon đáp án A.

142

a + b = 0,4 $\begin{cases} a = 0,22 \text{ mol} \\ b = 0,18 \text{ mol} \end{cases}$

cho ra Fe2+, sau đó Zn mới khử Fe2+ thành Fe.

Amin có công thức tổng quát C₅H_{25,3}N

chất rắn X không chứa Zn dư vì X hoàn toàn không tác dụng với dung

dịch NaOH mà chỉ tác dụng với H₂SO₄ loãng. Vậy X chỉ chứa Fe

 $14\,\bar{n} + 17 = 37.3 \rightarrow \bar{n} = \frac{20.3}{14} = 1.45$

Chọn đáp án D.

- 5. A. Phản ứng axit + rượu $\stackrel{\text{H}^*}{\longleftarrow}$ este + nước là phản ứng thuận nghịch. Không đúng
 - B. Este + kiềm thường cho ra muối và rượu nhưng nếu rượu ấy là một enol (-OH gắn vào C có 1 nối đôi C = C) thì enol chuyển thành một anđehit. *Không đúng*

TD: CH₃COOCH=CH₂ + NaOH → CH₃COONa + CH₃CHO

- C. Không đúng. Sự thủy phân chất béo cho ra glixerol C₃H₅(OH)₃
- D. Đúng

Este +
$$H_2O \rightleftharpoons Axit + ruou$$

Chọn đáp án D.

6.
$$C_3H_4O_2 + NaOH \rightarrow X + Y$$

X là muối Na và Y là 1 anđehit X xuất phát từ 1 enol. Enol có tối thiểu 2 cacbon CH_2 =CH-OH biến thành CH_3 -CHO. Với 3C, axit là HCOOH vây este $C_3H_4O_2$ là HCOOCH = CH_2

HCOOCH=CH₂ + NaOH
$$\rightarrow$$
 HCOONa + CH₃CHO
(X) (Y)

2HCOONa + H₂SO₄ \rightarrow 2HCOOH + Na₂SO₄
(Z) (T)

HCOOH cho được phản ứng tráng gương

Chọn đáp án C.

7. Phèn gồm chủ yếu $Al_2(SO_4)_3$ và H_2SO_4 tự do. Để trị phèn, chất được dùng phải có tính bazơ, kết tủa được Al^{3+} (dưới dạng $Al(OH)_3$, kết tủa SO_4^{2-} và phải rẻ tiền:

Đó là Ca(OH)₂

$$Al^{3+} + 3OH^{-} \rightarrow Al(OH)_{3} \downarrow$$

 $SO_{4}^{2-} + Ca^{2+} \rightarrow CaSO_{4} \downarrow$

Loại A: Thạch cao CaSO₄ vì không kết tủa được Al³⁺ và SO₄-

Loại B: Đá vôi CaCO₃ vì CaCO₃ chỉ loại được H₂SO₄ tự do

$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 \downarrow + CO_2 \uparrow + H_2O$$

Nhưng CaCO₃ không loại được Al³⁺

Loại D: NaOH vì NaOH đầu tiên, chỉ loại được H₂SO₄ tự do, dễ hòa tan trở lại Al(OH)₃ nếu dùng dư.

Chọn đáp án C.

8. Khi thêm H^+ vào dung dịch chứa NaOH và NaAlO2, đầu tiên H^+ phản ứng với NaOH

$$H^+ + OH^- \rightarrow H_2O$$

Hết OH^- , H^+ mới phản ứng với $NaAlO_2$ khi đó mới bắt đầu có kết tủa. Kết tủa cực đại khi $Al(OH)_3$ vừa kết tủa hết. Nếu thêm tiếp HCl, $Al(OH)_3$ tan trở lại.

Vậy để có kết tủa cực đại thì ta phải có

$$H^{+} + OH^{-} \rightarrow H_{2}O$$

 $H^{+} + AlO_{2}^{-} + H_{2}O \rightarrow Al(OH)_{3} \downarrow$
 $n_{H^{+}} = n_{OH^{-}} + n_{AlO_{2}^{-}} = 0,1(0,3+0,3) = 0,06 \text{ mol}$

1 lít dung dịch B chứa

$$n_{H^{+}} = 0.1 + 2 \times 0.2 \rightarrow 0.5 \text{ mol } H^{+}$$

$$\downarrow \qquad \qquad \downarrow$$

$$HCl \qquad H_{2}SO_{4}$$

Thể tích dung dịch B phải dùng:

$$\frac{0.06}{0.5}$$
 = 0.12 lít hay 120 ml

Chọn đáp án A.

9. A chứa 2 N. Với NaOH cho ra amin B, với HCl cho ra 2 muối C, D vậy A là muối tạo ra từ một amino axit và amin B

$$M_B = 2 \times 15,5 = 31$$

B có công thức $C_nH_{2n+3}N \rightarrow M_B = 14n + 17 = 31$

$$n = 1$$
, amin B là $CH_3 - NH_2$

A có 5 cacbon, B có 1 cacbon vậy amino axit có 4 cacbon. Công thức của amino axit là $\rm C_2H_5$ – $\rm CH$ – $\rm COOH$ và công thức của A là

$$C_2H_5 - CH - COOH_3N - CH_3$$

$$NH_2$$

$$C_2H_5 - CH - COOH_3N - CH_3 + HCl \rightarrow C_2H_5 - CH - COOH$$

$$NH_2 \qquad \qquad NH_3Cl \quad (C)$$

$$+ CH_3-NH_3Cl$$

 $m_C = 0.1.139.5 = 13.95 g$

 $m_D = 0.1.67.5 = 6.75 g$

Chon đáp án A.

(D)

 $\begin{array}{c} \mathbf{H_2N-CH_2-CH_2-CH-COOH} \\ \mathbf{NH_2} \end{array}$ có 2 nhóm amino (bazơ) và 1 nhóm -COOH (axit) vậy A.A này có tính

bazo, pH > 7. ClH₃N-CH₂-COOH: muối của axit mạnh HCl và 1 amino axit trung tính nên muối có tính axit pH < 7.

HOOC-CH₂-CH₂-CH(NH₂)COOH: A.A có 2 -COOH (axit) và 1 nhóm $-NH_2$ (bazo) nên A.A có tính axit, pH < 7.

H₂N-CH₂-COONa: muối của 1 A.A trung tính H₂N-CH₂-COOH và bazo manh NaOH nên muối có tính bazo, pH < 7 Có 3 chất có pH < 7.

Chọn đáp án D. 11. Khi thêm HCl vào dung dịch chứa NaHCO₃ và Na₂CO₃, đầu tiên có phán ứng

(1) $Na_2CO_3 + HCl \rightarrow NaHCO_3 + NaCl$ Bắt đầu sủi bot (CO2) khi vữa chấm dứt giai đoạn này. Sau đó

(2) NaHCO₃ + HCl \rightarrow NaCl + CO₂ \uparrow + H₂O Hết sủi bot khi vừa hết NaHCO₃.

 $x = n_{Na_2CO_3}$, $y = n_{NaHCO_3}$

Theo phương trình (1)

 $x = n_{Na_2CO_3} = n_{HCl} = 0.3.0.5 = 0.15 \text{ mol}$ $V_2 = 0.7 \text{ lit} \rightarrow n_{HCl} = 0.7.05 = 0.35 \text{ mol}$

$$n_{HCl}$$
 dùng riêng cho (2)
 $0.35 - 0.15 = 0.20$ mol

$$0.35 - 0.15 = 0.20 \text{ mol}$$

 $n_{NaHCO_2} = x + y = 0.20 \rightarrow y = 0.05 \text{ mol}$

Chọn đáp án A.

12. Chất cuối cùng là C₆H₆ vậy A trùng hợp cho ra 1 hiđrocacbon thơm

$$3CH_3-C \equiv C-H \rightarrow CH_3$$

$$CH_3 \qquad COOH$$

$$CH_3 \qquad COOH$$

$$CH_3 \qquad COOH$$

$$COOH \qquad COONa$$

$$COONa \qquad COONa$$

$$COONa \qquad COONa$$

$$COONa \qquad COONa$$

+ 3NaOH $\stackrel{t^0}{\longrightarrow}$ 3Na₂CO₃ + \bigcirc + 3H₂O

13. C có tính bazơ vậy C là NH3, (B) là H2

COONa

$$N_2 + 3H_2 \rightarrow 2NH_3 (C)$$
(A) (B)

$$2NH_3 + O_2 \xrightarrow{Pt} 2NO + 3H_2O$$

 (\mathbf{D})

$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$

 (\mathbf{E})

 $3NO_2 + H_2O \rightarrow NO + 2HNO_3$ (**F**)

Chọn đáp án A.

14. $C_4H_8O_2$ kém 2 H so với hợp chất no $C_4H_{10}O_2$ vậy X có 1 liên kết π ứng với 1 chức anđehit (cho phản ứng tráng gương), O còn lại không thể thuộc chức rượu (vì sẽ có phản ứng với Na), vậy O còn lại thuộc chức ete.

Có thể có 3 đồng phân CH₃-CH₂-O-CH₂-CHO

Chọn đáp án C.

15. X là este của 1 axit thơm và 1 rượu không bền (enol) biến thành anđehit.

$$d_{B_{KK}} = 2 \rightarrow M_B = 2.29 = 58$$

B có công thức
$$C_nH_{2n}O \rightarrow M_B = 14n + 16 = 58$$

 $n = 3$

Công thức cấu tạo thu gọn của X là:

 $C_6H_5COONa + NaOH \xrightarrow{t^0} Na_2CO_3 + C_6H_6$

Chon đáp án D.

16. Lấy 5 mol hỗn hợp B gồm 3 mol CuO và 2 mol Fe₂O₃. Khối lượng của 5 mol này là:

$$3.80 + 2.160 = 240 + 320 = 560 \text{ g}$$

Vây 56 g hỗn hợp B ứng với 0,3 mọl CuO và 0,2 mọl Fe_2O_3 .

$$Cu^{2+} + 2e \rightarrow Cu$$

0,3 0,6
2Fe³⁺ + 6 \overline{e} → 2Fe
0,4 1,2

Để khử hết 56 g hỗn hợp B cần 1,8 mol electron.

5 mol hỗn hợp A gồm 3 mol Mg và 2 mol Al

Mg và Al phản ứng hết thì sẽ nhường một số mol electron là

$$Mg - 2e \rightarrow Mg^{2+}$$

$$\begin{array}{cccc}
3 & 6 \\
Al & \rightarrow & 3e \rightarrow & Al^{3+}
\end{array}$$

$$\begin{array}{ccc} Al & \rightarrow & 3e \rightarrow & Al^{3+} \\ 2 & & 6 \end{array}$$

5 mol hỗn hợp A nhường 12 mol electron. Để có được 1,8 mol electron cần để khử 56 g hỗn hợp B, số mol hỗn hợp A phải dùng:

$$\frac{5 \times 1.8}{12} = 0.75 \text{ mol}$$

Trong đó có 0,45 mol Mg và 0,3 mol Al $m_A = 0,45.24 + 0,3.27 = 18,9 g.$

Chọn đáp án B.

17. $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$

$$x = 0.8.2x$$
 $2C_2H_5OH \rightarrow C_4H_6 \rightarrow (C_4H_6)_x$
 $1.6x = 0.4.1.6x = 0.4.1.6x$

1 kmol C_4H_6 có khối lương 48 + 6 = 54 kg

10,8 kg cao su Buna ứng với

$$\frac{10.8}{54}$$
 = 0.2 kmol C₄H₆

$$0.4.1.6x = 0.2 \rightarrow x = 0.3125 \text{ kmol}$$

 $m_{C.H.OH} = 0.3125.46 = 14.375 \text{ kg}.$

Chọn đáp án B.

18.
$$2CH_4 \rightarrow C_2H_2 + 3H_2$$

$$C_2H_2$$
 + $HCl \rightarrow C_2H_3Cl \rightarrow (C_2H_3Cl)_n$

$$250 \text{ kg } C_2H_3Cl \text{ \'ung v\'oi}$$

$$\frac{250}{62,5} = 4 \text{ kmol } C_2H_5Cl$$

$$\frac{4 \times 2}{0.5}$$
 = 16 kmol hay 16.22,4 m³

Thể tích khí thiên nhiên

$$\frac{16.22,4}{0,8} = 448 \text{ m}^3$$

Chọn đáp án B.

19. Propin CH₃-CH≡CH, Propen CH₃-CH=CH₂

Propan CH₃-CH₂-CH₃

Để tách propin ra khỏi hỗn hợp, dùng AgNO₃/NH₃

$$2CH_3-C\equiv CH + Ag_2O \xrightarrow{NH_3} 2CH_3-C\equiv Ag\downarrow + H_2O$$

$$CH_3-C=C-Ag + HCl \rightarrow CH_3-C=CH^\uparrow + AgCl$$

Chọn đáp án C.

20. Để H_2 là chất oxi hóa thì số oxi hóa của H phải giảm từ 0 xuống -1Đó là trường hợp

Phản ứng 2) $H_2 + Ca^0 \rightarrow Ca^{2+} + 2H^-$

Phản ứng 4) $H_2^0 + 2Na^0 \rightarrow 2Na^+H^-$

Trong phản ứng 1, 3 số oxi của H từ 0 lên +1.

Chọn đáp án D. 21.

 $2FeBr_2 + Br_2 \rightarrow 2FeBr_3$

Br từ số oxi hóa 0 xuống -1 còn Fe²⁺ lên Fe³⁺. Br₂ cho ra Fe³⁺ vậy Br₂

có tính oxi hóa mạnh hơn Fe3+ $2NaBr + Cl_2 \rightarrow 2NaCl + Br_2$

Cl2 oxi hóa Br thành Br2 vậy Cl2 có tính oxi hóa mạnh hơn Br2 tức là

Cl₂ có tính oxi hóa mạnh hơn Fe³⁺. Chọn đáp án D.

22. $M_Y = 2 \times 8,2 = 16,4$ 1 mol Y có khối lượng 16,4 gam

0,5 mol X (11,2 l) có cùng khối lượng với 1 mol Y vậy khối lượng

0,5 mol X là 16,4 gam $\overline{M}_{x} = \frac{16,4}{0.5} = 32,8$

a + b = 0.5

 $14\,\bar{n} + 2 = 32.8 \rightarrow \bar{n} = 2.2$

Vậy A là C₂H₆ và B là C₃H₈ $a = n_A$, $b = n_B$

30a + 44b = 16.4 $(1), (2) \Rightarrow a = 0.4 \text{ mol } C_2H_6$ (1)

(2)

 $b = 0.1 \text{ mol } C_3H_8$

Chọn đáp án C. 23. 4) NH₄Cl: muối của 1 axit mạnh và bazơ yếu nên NH₄Cl có tính axit,

Gọi

pH < 7

3) NH₄CH₃COO muối của 1 axit yếu CH₃COOH và bazơ yếu NH₄OH nên muối gần như trung tính pH ≈ 7

2) CH₃COONa và 1) Na₂CO₃ đều là muối phát xuất từ bazơ mạnh NaOH và axit yếu CH₃COOH và H₂CO₃ nên cả 2 muối này đều có tính bazơ,

pH > 7 nhưng do CH₃COOH có tính axit manh hơn H_2CO_3 , muối

149

CH₃COONa có tính bazơ yếu hơn Na₂CO₃, pH dung dịch CH₃COONa thấp hơn Na₂CO₃.

Thứ tự 4 < 3 < 2 < 1

Chọn đáp án A.

24. C_7H_8 là toluen C_6H_5 - CH_3

Do gốc -CH₃ cho electron nên -CH₃ hướng nhóm -NO₂ vào vị trí *octo* hay *para*

H mới sinh (Zn + HCl) khử NO₂ thành -NH₂

Với HNO_2 , $NH_2 \rightarrow OH$

$$CH_3 \qquad CH_3 \\ OH \qquad + N_2 + H_2O$$

$$CH_3 \qquad CH_3 \\ OH \qquad + N_2 + H_2O$$

$$OH \qquad + N_2 + H_2O$$

$$OH \qquad + N_2 + H_2O$$

Z chứa o-cresol và p-cresol.

Chọn đáp án A.

25. Với C₂H₄O₂ có 3 đồng phân

CH₃COOH phản ứng với Na, NaOH và NaHCO₃ HCOOCH₃ cho phản ứng xà phòng hóa với NaOH

CH₂(OH)-CHO phản ứng với Na Có 5 phản ứng

Chọn đáp án B.

26.

27.

$$n_{Cu} = \frac{38,4}{64} = 0,6 \text{ mol}$$

$$n_{NaNO_3} = \frac{17}{85} = 0.2 \text{ mol}$$

$$n_{H^+} = 2 \times 2 \times 1 = 4 \text{ mol}$$

$$3\text{Cu} + 2\text{NO}_3^- + 8\text{H}^+ \rightarrow 3\text{Cu}^{2+} + 2\text{NO} + 4\text{H}_2\text{O}$$

Với 0,6 mol Cu, cần 0,4 mol NO_3^- và 1,6 mol H^+ . Thiếu NO_3^- , ta tính số mol NO theo NO_3^-

0,2 mol $NO_3^- \rightarrow 0,2$ mol NO

$$V_{NO} = 0.2.22.4 = 4.48 l$$

Để Cu (0,6 mol) tan hết cần thêm 0,2 mol NO_3^- hay 17 gam $NaNO_3$. Không phải thêm H_2SO_4 vì đã dư H^+ (4 > 1,6)

Không phai thêm H_2SO_4 vì đã dữ H' (4 > 1,6

Chọn đáp án C.

$$n_{\text{NaOH}} = 0.15.0.5 = 0.075 \text{ mol}$$

 $n_{\text{HCl}} = 0.1.0.5 = 0.05 \text{ mol}$

$$n_{\text{H}_2\text{PO}_2} = 0.1.0.2 = 0.02 \text{ mol}$$

HCl là axit mạnh, H₃PO₄ là axit yếu nên NaOH phản ứng với HCl

trước rồi sau đó mới đến H₃PO₄

$$HCl + NaOH \rightarrow NaCl + H_2O$$

Còn lại 0.075 - 0.05 = 0.025 mol NaOH dùng để phản ứng với H_3PO_4 Để chỉ có được NaH_2PO_4 cần 0.02 mol NaOH còn để chỉ có được NaH_2PO_4 cần 0.04 mol NaOH

Na₂HPO₄ cần 0,04 mol NaOH

0.02 < 0.025 < 0.04 vậy được 2 muối $\rm NaH_2PO_4$ và $\rm Na_2HPO_4$

Chọn đáp án A.

28. Nếu H_2SO_4 phân li hoàn toàn cho cả 2 nấc, $[H^+] = 0,2$ M nhưng do ở nấc 2, H_2SO_4 chỉ phân li 1 phần, $[H^+] < 0,2$ M

$$\vec{O} \text{ nác 2}$$
 $\begin{array}{ccccc}
0,1 & 0,1 & 0,1 \\
\text{HSO}_{4}^{-} & \rightleftharpoons & \text{H}^{+} & + & \text{SO}_{4}^{2-} \\
0,1-x & x & x
\end{array}$

 $H_2SO_4 \rightarrow H^+ + HSO_4^-$

$$K_{a2} = \frac{[H^+][SO_4^{2-}]}{0.1 - v}$$

Với
$$[H^+] = [H^+]_{\text{nác } 1} + [H^+]_{\text{nác } 2} = 0,1 + x$$

$$\frac{[H^+][SO_4^{2-}]}{[HSO_1^-]} = \frac{(0,1+x)x}{0,1-x} = 0,01$$

$$\frac{\text{[HSO}_{4}^{-}]}{\text{[HSO}_{4}^{-}]} = \frac{0.01 - x}{0.1 - x} = 0.001$$

$$x^{2} + 0.1x = 0.001 - 0.01x$$

$$x^2 + 0.11x - 0.001 = 0 \rightarrow x = 0.0712 M$$

Nồng độ chung của H⁺ cho cả 2 nấc 0.1 + 0.0712 = 0.1712 M

$$0.1 + 0.0712 = 0.1712 \text{ M}$$

Chon đáp án B.

29. 100 ml dung dịch B chứa

$$n_{Ba^2} = 0,1.0,15 = 0,015 \text{ mol}$$

$$n_{Pb^{2+}} = 0,1.0,2 = 0,02 \text{ mol}$$

1 lít dung dich A chứa

$$n_{CO_{2}^{2-}} = 0.1 \text{ mol}; \ n_{PO_{2}^{3-}} = 0.1 \text{ mol}$$

A và B phản ứng với nhau vùa đủ khi tổng số điện tích dương của B = |tổng số điện tích âm của A|

Tổng số điện tích dương của B

$$2(0.015 + 0.02) = 0.07$$

|Tổng số điện tích âm của A| = 0.07

Tổng số điện tích âm trong 1 lít dung dịch A

$$0,1.2 + 0,1.3 = 0,5$$
 $\downarrow \qquad \qquad \downarrow$
 $CO_3^{2-} PO_4^{3-}$

Thể tích dung dịch A phải dùng = $\frac{0.07}{0.5}$ = 0.14 lít

Khối lượng chung của các kết tủa:

$$\begin{split} \mathbf{m}_{\mathrm{Ba}^{2+}} + \ \mathbf{m}_{\mathrm{Pb}^{2+}} + \ \mathbf{m}_{\mathrm{CO}_{3}^{2-}} + \ \mathbf{m}_{\mathrm{PO}_{4}^{3-}} \\ &= 0.015.137 + 0.02.207 + 0.14(0.1.60 + 0.1.95) = 8.365 \ \mathrm{g} \\ Chon \ d\acute{a}p \ \acute{a}n \ A. \end{split}$$

30. Xét trường hợp tổng quát A chứa n chức anđehít R(CHO)', Khi bị oxi

hóa cho ra axit R(COOH),

$$\frac{m_A}{m_B} = \frac{R + 29n}{R + 45n} = \frac{29}{45}$$

Chỉ có được kết qủa này khi R = 0, n chỉ có thể bằng 2 vì gốc -CHO có hóa trị 1.

Vậy A là CHO-CHO. 0,1 mol A cho ra 0,4 mol Ag hay 0,4.108 = 43,2 g Ag.

Chọn đáp án D.

31. $R-CH_2OH + [O] \rightarrow R-CHO + H_2O$

Độ giảm khối lượng của CuO là khối lượng oxi phản ứng

$$n_0 = \frac{0.32}{16} = 0.02 \text{ mol}$$

Vậy có 0,02 mol RCH2OH bị oxi hóa cho ra 0,02 mol R–CHO và 0,02 mol $\rm H_2O$

$$\overline{M}_{h\delta n h q p} = \frac{0.02(M_{RCHO} + 18)}{0.04} = 2.15,5 = 31$$

$$M_{RCHO} + 18 = 62$$

R + 29 + 18 = 62 \rightarrow R = 15

R là CH₃ và ancol là CH₃-CH₂OH

 $m_{ancol} = 0.02.46 = 0.92 g$

Chọn đáp án A.

32. 1) NaHSO₄ + NaHCO₃ \rightarrow HSO₄ có tính axit khá mạnh nên *phản ứng* với HCO3 lưỡng tính $NaHSO_4 + NaHCO_3 \rightarrow Na_2SO_4 + CO_2 \uparrow + H_2O$

2) NaHSO₄ + Ca(OH)₂ có phản ứng vì HSO₄ có tính axit

 $2NaHSO_4 + Ca(OH)_2 \rightarrow CaSO_4 + Na_2SO_4 + 2H_2O$

3) NaHCO₃ + Ca(OH)₂ có phản ứng vì HCO₃ lưỡng tính $2NaHCO_3 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + Na_2CO_3 + 2H_2O$

4) (NH₄)₂CO₃ + Ba(OH)₂ có phản ứng vì NH₄OH là bazơ yếu $(NH_4)_2CO_3 + Ba(OH)_2 \rightarrow BaCO_3 \downarrow + 2NH_3 + 2H_2O$ Cả 4 phản ứng đều có được.

Chọn đáp án A. **33.** 1) $2\text{Fe}(\text{NO}_3)_3 \xrightarrow{t^0} \text{Fe}_2\text{O}_3 + 6\text{NO}_2 + \frac{2}{3}\text{O}_2$

 $Cu(NO_3)_2 \stackrel{t^0}{\longrightarrow} CuO + 2NO_2 + \frac{1}{2}O_2$

 Fe_2O_3 và CuO không tan trong nước nhưng tan trong dung dịch H₂SO₄ loãng

2) NaNO₃ $\xrightarrow{t^0}$ NaNO₂ + $\frac{1}{2}$ O₂ $KNO_3 \stackrel{t^0}{\longrightarrow} KNO_2 + \frac{1}{2}O_2$

NaNO3 và KNO2 tan trong nước

3) AgNO₃ $\stackrel{t^0}{\longrightarrow}$ Ag + NO₂ + $\frac{1}{2}$ O₂ Ag không tan trong nước và trong H₂SO₄ loãng

4) $Mn(NO_3)_2 \xrightarrow{t^0} MnO_2 + 2NO + O_2$

 $Zn(NO_3)_2 \xrightarrow{t^0} ZnO + 2NO_2 + \frac{1}{2}O_2$

 $MnO_2 + H_2SO_4 \rightarrow MnSO_4 (tan) + H_2O + \frac{1}{2}O_2$

 $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$

(I) 2, (II) 1,4 (III) 3

Chọn đáp án C.

34. Với công thức $C_4H_8O_2$. Với 2 oxi và 1 liên kết π , phản ứng với dung dịch NaOH, A, B có thể là este hay axit

A là este R-COOR' + NaOH \rightarrow RCOONa + R'OH

(Z) là R'OH có M = 2.23 = 46

 $M=R'+17=46 \rightarrow R'=29 \rightarrow R'OH$ là C_2H_5OH và este A có công thức là $CH_3COOC_2H_5$

B là axit C₃H₇-COOH

Số mol $n_A = n_{C_2H_5OH} = 0.2 \text{ mol}$

$$n_B = n_{C_0H_0COOH} = 0.3 - 0.1 = 0.2 \text{ mol}$$

Chất rắn Y gồm 0,2 mol CH₃COONa và 0,1 mol C₃H₇COONa $m_Y = 0,2.82 + 0,1.110 = 27,4 \text{ gam}.$

Chọn đáp án D.

- **35.** 1) $Al_2(SO_4)_3 + 6NH_4OH \rightarrow 2Al(OH)_3 \downarrow + (NH_4)_2SO_4$
 - 2) $Al_2(SO_4)_3 + 6CH_3NH_2 + 6H_2O \rightarrow 2Al(OH)_3 \downarrow + 3(CH_3NH_3)_2SO_4$
 - 3) Với Na₂CO₃ do muối Al₂(CO₃)₃ bị thủy phân, cũng có Al(OH)₃ ↓
 - 4) Tương tự với Na₂S, Al₂S₃ bị thủy phân cho ra Al(OH)₃ kết tủa.

Cả 4 phản ứng đều cho kết tủa Al(OH)₃

Chọn đáp án A.

- **36.** 1) $2\text{FeBr}_2 + \text{Br}_2 \rightarrow 2\text{FeBr}_3$ có được vì $E^0_{\text{Br}_2/2\text{Br}^-} > E^0_{\text{Fe}^{3+}/\text{Fe}^{2+}}$ nên Br_2 oxi hóa được $\rightarrow \text{Fe}^{2+}$ thành Fe^{3+}
 - 2) $2\text{FeI}_2 + \text{I}_2 \rightarrow 2\text{FeI}_3$ không có được vì $\text{E}^0_{\text{I}_2/2\text{I}} < \text{E}^0_{\text{Fe}^{3+}/\text{Fe}^{2+}}$, I_2 không thể oxi hóa Fe^{2+} thành Fe^{3+}
 - 3) FeSO₄ + I₂ \rightarrow Fe³⁺ + I⁻ $kh\hat{o}ng$ $c\acute{o}$ $du\phi c$ vì $E^0_{I_2/2I^-} < E^0_{Fe^{3+}/Fe^{2+}}$, I₂ $kh\hat{o}ng$ thể oxi hóa Fe²⁺ thành Fe³⁺
 - 4) $2FeBr_2 + 3Cl_2 \rightarrow 2FeCl_3 + 2Br_2$ có được vì $E^0_{Cl_2/Cl^-} > E^0_{Br_2/2Br^-} > E^0_{Fe^{3+}/Fe^{2+}}$ nên Cl_2 có thể oxi hóa Fe^{2+} thành Fe^{3+} và $2Br^-$ thành Br_2 1,4 có được

Chọn đáp án C.

- 37. 1) Đúng vì vòng $-C_6H_5$ hút electron làm H của OH dễ tách ra hơn.
 - 2) Sai vì

Sản phẩm hiđro hóa của phenol là rượu nên không tác dụng với NaOH.

- 3) **Sai** phenol gần axit hơn rượu nên không thể este hóa phenol bằng CH₃COOH. Muốn este hóa phenol cần dùng anhiđrit axetic (CH₃CO)₂O vừa có tính axit, vừa hút nước.
- 4) Đúng nhóm -OH cho electron vào nhân benzen làm cho phản ứng thế dễ hơn.
 2, 3 sai

Chon đáp án D.

38. 1) Fe + Fe₂(SO₄)₃ \rightarrow 3FeSO₄

Phản ứng này có được do $E^0_{Fe^{2+}/Fe} < E^0_{Fe^{3+}/Fe^{2+}}$ Fe có thể khử Fe^{3+} thành Fe^{2+} .

2) $MnO_4^- + Cl_2 \xrightarrow{H^+} Mn^{2+} + Cl^-$

Không thể có phản ứng này vì Mn và Cl đều giảm số oxi hóa.

3) KI + $I_2 \rightarrow KI_3$ có được đó là phản ứng

$$I^- + I - I \rightarrow [I - I - I]^-$$

- 4) $3Zn + Al_2O_3 \rightarrow 4Al + 3ZnO$ không thể có được vì Zn có tính khử yếu hơn Al nên Zn không thể khử Al_2O_3
 - 2, 4 không có được

Chọn đáp án C.

39. 1 mol A đốt cháy cho ra 8 mol CO2 vậy phân tử A chứa 8 cacbon.

A chứa nhân thơm vậy A có nhánh có 2 C. Nhánh này chứa 1 nhóm -OH để khi tách nước cho ra liên kết C=C

A có công thức cấu tạo là:

$$\begin{array}{ccc}
CH=CH_2 & (CH-CH_2)_n \\
n \bigcirc & \rightarrow & \bigcirc \\
styren & polistyren
\end{array}$$

A có thể xem như chất dẫn xuất của CH_3-CH_2OH với 1 H ở C_2 thay bằng C_6H_5 nên A có tên là 2-phenyletanol.

A) benzyletanol sai vì gốc benzyl là C_6H_5 – CH_2

Chọn đáp án B.

40. Gọi a =
$$n_A$$
; b = n_B với a = $2b$

$$A + H_2O \rightarrow AOH + \frac{1}{2}H_2$$

2b b
$$B + 2H_2O \rightarrow B(OH)_2 + H_2$$

$$n_{H_2} = 2b = \frac{4,48}{22.4} = 0,2$$

$$b = 0.1 \text{ mol}; a = 0.2 \text{ mol}$$

$$\overline{M}_{A,B} = \frac{11,2}{0,3} = 39,3$$

$$m_K = 0.2.39 = 7.8 g$$

$$m_{Ca} = 0.1.40 = 4 g$$

Chọn đáp án A.

41. X este no có công thức tổng quát
$$C_nH_{2n}O_2$$

$$C_nH_{2n}O_2 \xrightarrow[rt]{O_2} nCO_2 + nH_2O$$

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$

Dung dịch $Ca(OH)_2$ nhận CO_2 , H_2O và mất $CaCO_3$ nên độ giảm khối lượng của dung dịch

$$\Delta m = m_{CaCO_3} - (m_{CO_2} + m_{H_2O}) = 0.1n(100 - 44 - 18) = 15.2$$

$$n = 4 \rightarrow X$$
 có công thức là $CH_3COOC_2H_5$

$$\Pi = 4 \rightarrow X \text{ co cong that is } G1_3 COOC_2$$

và $m_X = 88 \times 0.1 = 8.8 g$ Chọn đáp án A.

42. Axit picric là trinitrophenol

 $n_{N_2} = \frac{6,72}{22.4} = 0,3 \text{ mol}, n_{axit picric} = 0,1 \text{ mol}$

$$m_{\text{axit picric}} = 0,1.229 = 22,9 \text{ g}$$

$$m_{\text{axit picric}} = 0.1.229 = 22.9$$

Chọn đáp án C.

trung gian trong $N_2(O)$ và NO_2 (+4)

- 43. Số oxi hóa của N cực đại trong HNO_3 (+5), cực tiểu trong NH_3 (-3),
 - (I) chỉ có tính oxi hóa HNO₃ (II) chỉ có tínhkhử NH₃
 - (III) có cả 2 tính chất (N₂, NO₂)
 - Chọn đáp án C.

Quặng
$$\xrightarrow{\text{NaOH}}$$
 NaAlO₂ $\xrightarrow{\text{H}_2\text{O}}$ Al(OH)₃ \downarrow $\xrightarrow{\text{t}^0}$ Al₂O₃ $\xrightarrow{\text{dpnc}}$ 2Al + $\frac{3}{2}$ O₂ \uparrow

(A) (B) (C)

Với hiệu suất 80%, khối lượng Al_2O_3 cần:

$$\frac{540.102}{54 \times 0.8} = 1275 \text{ kg}$$

Khối lượng quặng boxit

$$\frac{1275 \times 100}{80} = 1593,75 \text{ kg}$$

Cường độ I

$$m_{Al} = 540 = \frac{27}{3} \times \frac{It}{96500}$$
 (I: KA)

Với t = 3600 s; I = 1608,33 KAChọn đáp án D.

45.
$$n_X = \frac{6.8}{68} = 0.1 \text{ mol}$$

$$n_{H_2} = \frac{4.48}{22.4} = 0.2 \text{ mol}$$

X cộng H₂ theo tỉ lệ mol 1:2 Xiclohexan chỉ cộng H₂ khi vòng chứa tối đa 4C

Loai 3 vì sau khi cộng 1H2 ta được xiclopentan bền không cộng

thêm được H_2 . Loai 2 vì metylxiclobutan chỉ cộng được 1H₂. Chon 1 và 4 vì vòng 3, 4 cạnh có thể cộng H₂ và nối đôi C=C cộng thêm 1 H₂

1, 4 đúng

Chọn đáp án D.

46. Quặng để sản xuất sắt là hematit Fe₂O₃ Boxit là quặng Al_2O_3 dùng để sản xuất Al, galen là quặng của chì.

Pirit sắt FeS₂ không phải dùng để sản xuất Fe mà để dùng để tạo SO₂ từ đó sản xuất H₂SO₄.

Chọn đáp án C.

47. 0,2 mol X đốt cháy cho ra 1,2 mol CO2 Vậy A, B đều chứa 6C

0,2 mol X chứa 0,1 mol A; 0,1 mol B

Gọi n số nguyên tử H trong A, 2n số nguyên tử H trong B. Khi dốt cháy

0,1 mol A
$$\rightarrow \frac{0,1n}{2}$$
 mol H₂O

$$0.1 \text{ mol B} \rightarrow \frac{0.2\text{n}}{2} \text{ mol H}_2\text{O}$$

$$n_{H_2O} = \frac{0.1n + 0.2n}{2} = 0.9$$

 $3n = 18 \rightarrow n = 6$

Vậy A là C_6H_6 và B là C_6H_{12} 0,2 mol X cộng 0,6 mol H₂, vậy chỉ có C₆H₆ cộng H₂ còn B không cộng

được H_2 . B là xilclohexan hay metylxiclopentan

Loại B vì etyl xiclobutan cộng được H_2 Loại D vì trimetyl xiclopropan cộng H₂

Chọn đáp án A.

Na₂O + H₂O
$$\rightarrow$$
 2NaOH
1 2
NaOH + NH₄Cl $\xrightarrow{\iota^0}$ NaCl + NH₃ \uparrow + H₂O

48. Giả sử số mol mỗi chất là 1 mol

1 1 NaOH + NaHCO₃ → Na₂CO₃ + H₂O

$$\begin{array}{ccc}
1 & 1 & 1 \\
\operatorname{Na_2CO_3} + \operatorname{BaCl_2} \to \operatorname{BaCO_3} \downarrow + 2\operatorname{NaCl} \\
1 & 1
\end{array}$$

Dung dịch thu được chỉ chứa NaCl Chọn đáp án D.

49.
$$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$$

Ban đầu 3 -2 -2

Cân bằng 1 1 2 2

Trong 3 mol axit hay rượu có 2 mol phản ứng, vậy hiệu suất phản ứng là:
$$\frac{2 \times 100}{3} = 66,67\%$$

Hằng số cân bằng

$$K = \frac{[este][nuớc]}{[axit][ruợu]} = \frac{2.2}{1.1} = 4$$
Nếu bắt đầu bằng 1 mol axit, để có hiệu suất 80% phải có 0,8 mol axit

phản ứng với 0,8 mol rượu cho ra 0,8 mol este và 0,8 mol nước. Nếu x là số mol C₂H₅OH khi đầu $CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$

Ban đầu 1 x 0 0
$$-0.8$$
 -0.8 $+0.8$ $+0.8$ Cân bằng 0.2 $x - 0.8$ 0.8 0.8

$$x - 0.8 = \frac{0.64}{0.8} = 0.8$$

 $x = 1.6 \text{ mol } C_2H_5OH$

Chọn đáp án B.

160

50.
$$n_{propan} = \frac{17.6}{44} = 0.4 \text{ mol}$$

$$C_3H_{10} \rightarrow CH_4 + C_2H_4$$

$$0.4 \qquad 0.4 \qquad 0.4$$

Khi qua nước Br_2 , một phần hoặc toàn thể C_2H_4 bị giữ lại. Khí ra khỏi bình Br_2 có thể chỉ gồm CH_4 hoặc $CH_4 + 1$ phần C_2H_4 dư

$$\overline{M} = 16.1,15 = 18,4 \text{ vậy Y gồm } CH_4 + C_2H_4$$

Giả sử hỗn hợp chứa 0,4 mol CH₄ và x mol C₂H₄

$$\overline{M}_{hh} = \frac{0.4.16 + 28x}{0.4 + x} = 18.4$$

$$x = 0,1 \text{ mol}$$

Vậy có 0.4 - 0.1 = 0.3 mol C_2H_4 bị giữ lại khi qua bình Br_2 .

$$C_2H_4$$
 + $Br_2 \rightarrow C_2H_4Br_2$
0,3 0,3
 $C_{Br_2} = \frac{0,3}{2} = 0,15 \text{ M}$

Chọn đáp án B.

BỘ ĐỀ 6

1. C	2. A	3. A	4. D	5. D	6. C	7. C
8. A	9. A	10. D	11. A	12. A	13. A	14. C
15. D	16. B	17. B	18. B	19. C	20. D	21. D
22. C	23. A	24. A	25. B	26. C	27. A	28. B
29. A	30. D	31. A	32. A	33. C	34. D	35. A
36. C	37. D	38. C	39. B	40. A	41. A	42. C
43. C	44. D	45. D	46. C	47. A	48. D	49. B
50. B						