экзамен по математическому анализ. Часть 3

Харитонцев-Беглов Сергей

26 марта 2022 г.

Содержание

Билет 01	1
Билет 02	1
Билет 03	2
Билет 04	2
Билет 05	3
Билет 06	4
Билет 07	5
Билет 08	6
Билет 09	7
Билет 10	7
Билет 11	8
Билет 12	9
Билет 13	10
Билет 14	10
Билет 15	10
Билет 16	11
Билет 17	13

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

Билет 18	14
Билет 19	15
Билет 20	15
Билет 21	17
Билет 22	19
Билет 23	20
Билет 24	21
Билет 25	22
Билет 26	22
Билет 27	22
Билет 28	22
Билет 29	22
Билет 30	22
Билет 31	23
Билет 32	23
Билет 33	23
Билет 34	23
Билет 35	23
Билет 36	23
Билет 37	23
Билет 38	23
Билет 39	23
Билет 40	23
Билет 41	23

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

Билет 42	24
Билет 43	24
Билет 44	24
Билет 45	24
Билет 46	24
Билет 47	24
Билет 48	24
Билет 49	24
Билет 50	24
Билет 51	24
Билет 52	24
Билет 53	25
Билет 54	25
Билет 55	25
Билет 56	25
Билет 57	25
Билет 58	25
Билет 59	25

Билет 01

Пусть \mathcal{F} — совокупность (множество) ограниченных плоских фигур.

Определение 1.1. Площадь: σ : \mathcal{F} → $[0; +\infty)$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c)$
- 2. (Аддитивность). $\forall E_1, E_2 \in \mathcal{F} : E_1 \cap E_2 = \emptyset \Rightarrow \sigma(E_1 \cup E_2) = \sigma(E_1) + \sigma(E_2)$

 ${\it C}$ войство ${\it M}$ онотонность площади. $\forall E, \widetilde{E} \colon E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}).$

Доказательство.
$$E = \widetilde{E} \cup (\widetilde{E} \setminus E) \Rightarrow \sigma(\widetilde{E}) = \sigma(E) + \sigma(\widetilde{E} \setminus E)$$
.

Определение 1.2. Псевдоплощадь: $\sigma: \mathcal{F} \to [0; +\infty]$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c),$
- 2. $\forall E, \widetilde{E} \in \mathcal{F} : E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}),$
- 3. Разобьем E вертикальной или горизонтальной прямой, в том числе теми прямыми, которые правее или левее E. Тогда $E = E_- \cup E_+, E_- \cap E_+ = \emptyset$ и $\sigma(E) = \sigma(E_-) + \sigma(E_+)$.

Свойства. 1. Подмножество вертикального или горизонтального отрезка имеет нулевую площадь.

2. В определении E_- и E_+ не важно куда относить точки из l.

Доказательство. Заметим, что
$$\sigma(E_- \cup (E \cap l)) = \sigma(E_- \setminus l) + \underbrace{\sigma(E \cap l)}_{=0} \Rightarrow$$
 вообще не имеет разницы куда относить точки из l .

Билет 02

Пример.

1.
$$\sigma_1(E) = \inf \left\{ \sum_{k=1}^n |P_k| \colon P_k - \text{прямоугольник}, \bigcup_{k=1}^n \supset E \right\}.$$

2.
$$\sigma_2(E)=\inf\bigg\{\sum_{k=1}^n|P_k|\colon P_k$$
 — прямоугольник, $\bigcup_{k=1}^\infty\supset E\bigg\}$.

Упражнение.

- 1. Доказать, что $\forall E \ \sigma_1(E) \geqslant \sigma_2(E)$.
- 2. $E = ([0,1] \cap \mathbb{Q}) \times ([0,1] \cap \mathbb{Q})$. Доказать, что $\sigma_1(E) = 1, \sigma_2(E) = 0$.

Теорема 2.1.

- 1. σ_1 квазиплощадь.
- 2. Если E' сдвиг E, то $\sigma_1(E) = \sigma_1(E')$.

Доказательство.

- 2. E' сдвиг E на вектор v. Пусть P_k покрытие $E\iff P'_k$ покрытие E'. $\sigma_1(E)=\inf\{\sum_{k=1}^n |P_k|\}=\inf\{\sum |P'_k|\}=\sigma_1(E')$.
- 1. \Rightarrow монотонность. Пусть есть $E \subset \widetilde{E}$. Тогда возьмем покрытие P_k для \widetilde{E} . $E \subset \widetilde{E} \subset \bigcup_{k=1}^n P_k$. А теперь заметим, что σ_1 inf, а значит $\sigma_1(E) \leqslant \sum |P_k| = \sigma_1(\widetilde{E})$.
- 1'. Докажем теперь аддитивность.

«
$$\leqslant$$
». $\sigma_1(E) = \sigma_1(E_-) + \sigma_1(E_+)$. Пусть P_k — покрытие E_- , Q_j — покрытие E_+ . $\bigcup_{k=1}^n P_k \cup \bigcup_{j=1}^m Q_j \supset E_i \cup E_+ = E$. А значит $\sigma_1(E) \leqslant \inf \left\{ \sum_{k=1}^n |P_k| + \sum_{j=1}^n |Q_j| \right\} = \inf \{ \sum |P_k| \} + \inf \{ \sum |Q_j| \} = \sigma_1(E_-) + \sigma(E_+)$. Заметим, Что переход с разделением инфинумов возможен, так как P и Q выбираются независимо.

- «»». Пусть P_k покрытие E. Тогда можно разбить $|P_k| = |P_k^-| + |P_k^+|$. $\sum |P_k| = \sum |P_k^-| + \sum |P_k^+|$. Заметим, что сумму $\geqslant \sigma \Rightarrow \sum |P_k| \geqslant \sigma(E_1) + \sigma(E_2) \Rightarrow \sigma(E) \geqslant \sigma(E_1) + \sigma(E_2)$.
- 1". Проверим, что сама площадь прямоугольника не сломалась: $\sigma_1([a,b]\times[c,d])=(b-a)(d-c)$. Заметим, что $\sigma_1(P)\leqslant |P|$.

Тогда посмотрим на P_k . Проведем прямые содержащие все стороны прямоугольников из разбиения. Заметим, что получили разбиение с суммой равной |P|. Тогда заметим, что некоторые части разбиения встречаются в P_k несколько раз. А значит выкинув все лишнее мы как раз получим |P|, а значит $\sigma_1(P) \geqslant |P|$.

Билет 03

Определение 3.1. Пусть $f:[a,b]\to\mathbb{R}$. Тогда $f_+,f_-:[a,b]\to[0;+\inf)$. Причем $f_+(x)=\max\{f(x),0\},\ f_-=\max\{-f(x),0\}$.

Cooucmea. 1. $f = f_{+} - f_{-}$.

- 2. $|f| = f_+ + f_-$
- 3. $f_+ = \frac{f+|f|}{2}$, $f_- = \frac{|f|-f}{2}$.
- 4. Если $f \in C([a,b])$, то $f_{\pm} \in C([a,b]).$

Определение 3.2. Пусть $f:[a,b] \rightarrow [0;\inf]$.

Тогда, подграфик $P_f([a;b])\coloneqq\{(x,y)\in\mathbb{R}^2\mid x\in[a,b],0\leqslant y\leqslant f(x)\}.$

Билет 04

Определение 4.1. $\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \sigma(P_{f_{+}}([a;b])) - \sigma(P_{f_{-}}([a;b])).$

Cooucmea. 1. $\int_{a}^{a} f = 0$.

$$2. \int_{a}^{b} = c(b-a)$$

Доказательство. По графику очевидно :)

3.
$$f \geqslant 0 \Rightarrow \int_{a}^{b} = \sigma(P_f)$$
.

4.
$$\int_{a}^{b} (-f) = -\int_{a}^{b} f$$
.

Доказательство. $(-f)_+ = \max\{-f,0\} = f_-$. $(-f)_- = \max\{f,0\} = f_+$. Откуда все и следует.

5.
$$f \geqslant 0 \land \int_{a}^{b} = 0 \land a < b \Rightarrow f = 0$$
.

Доказательство. От противного. $\exists c \in [a,b]: f(c) > 0$. Тогда, возьмем $\varepsilon \coloneqq \frac{f(c)}{2}, \delta$ из определения непрерывности в точке c. Если $x \in (c-\delta,c+\delta)$, то $f(x) \in (f(c)-\varepsilon,f(c)+\varepsilon) = (\frac{f(c)}{2};\frac{3f(c)}{2}) \Rightarrow f(x) \geqslant \frac{f(c)}{2}$ при $x \in (c-\delta;c+\delta) \Rightarrow P_f \supset [c-\frac{\delta}{2};c+\frac{\delta}{2}] \times [0;\frac{f(c)}{2}] \Rightarrow \int\limits_a^b f = \sigma(P_f) \geqslant \delta \cdot \frac{f(c)}{2} > 0$

Билет 05

Теорема 5.1 (Аддиктивность интеграла). Пусть $f:[a,b] \to \mathbb{R}, c \in [a,b]$.

Тогда
$$\int_{a}^{b} f = \sum_{a}^{c} f + \sum_{c}^{b} f$$
.

Доказательство. $\int_a^b f = \sigma(P_{f_+}([a,b])) - \sigma(P_{f_-}([a,b]))$. Разделим наш [a,b] вертикальной прямой x=c. Тогда можно воспользоваться свойством 3 из определения квазиплощади.

Теорема 5.2 (Монотонность интеграла). Пусть $f, g: [a, b] \to \mathbb{R}$ и $\forall x \in [a, b]: f(x) \leqslant g(x)$.

Тогда
$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$
.

Доказательство. $f_{+} = \max\{f, 0\} \leqslant \max\{g, 0\} = g_{+} \Rightarrow P_{f_{+}} \subset P_{g_{+}} \Rightarrow \sigma(P_{f_{+}}) \leqslant \sigma(P_{g_{+}}).$ $f_{-} = \max\{-f, 0\} \geqslant \max\{-g, 0\} = g_{-} \Rightarrow P_{f_{-}} \supset P_{g_{-}} \Rightarrow \sigma(P_{f_{-}}) \geqslant \sigma(P_{g_{-}}).$

Cnedcmeue. 1. $|\int_a^b f| \leqslant \int_a^b |f|$

2.
$$(b-a) \min_{x \in [a,b]} f(x) \leqslant \int_{a}^{b} f \leqslant (b-a) \max_{x \in [a,b]} f(x)$$
.

Доказательство. 1. $-|f| \leqslant f \leqslant |f| \Rightarrow \int\limits_a^b -|f| \leqslant \int\limits_a^b f \leqslant \int\limits_a^b |f| \Rightarrow |\int\limits_a^b f| \leqslant \int\limits_a^b |f|$

2.
$$m := \min f(x), M := \max f(x). \ m \leqslant f(x) \leqslant M \Rightarrow \int_a^b m \leqslant \int_a^b f \leqslant \int_a^b M.$$

Теорема 5.3 (Интегральная теорема о среднем). Пусть $f \in C([a,b])$.

Тогда
$$\exists c \in (a,b) : \int_a^b f = (b-a)f(c).$$

Доказательство. $m \coloneqq \min f = f(p), M \coloneqq \max f = f(q)$ (по теореме Вейерштрасса). Тогда $f(p) \leqslant \frac{1}{b-a} \int\limits_a^b f \leqslant f(q) \xrightarrow{\frac{\pi. \text{ B-K}}{B-a}} \exists c \colon f(c) = \frac{1}{b-a} \int\limits_a^b f.$

 $m{Onpedenenue 5.1.} \ I_f \coloneqq rac{1}{b-a} \int\limits_a^b f$ — среднее значения f на отрезке [a,b].

Билет 06

Определение 6.1. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным верхним пределом $\Phi(x):=\int\limits_a^x f$, где $x\in[a,b]$.

Определение 6.2. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным нижним пределом $\Psi(x)\coloneqq\int\limits_x^bf$, где $x\in[a,b]$.

Замечание. $\Phi(x) + \Psi(x) = \int\limits_a^b f.$

Теорема 6.1 (Теорема Барроу). Пусть $f \in C[a,b]$. Тогда $\Phi'(x) = f(x) \quad \forall x \in [a,b]$. То есть Φ первообразная функции f.

Доказательство. Надо доказать, что $\lim_{y\to x} \frac{\Phi(y)-\Phi(x)}{y-x} = f(x)$. Проверим для предела справа.

Тогда
$$\Phi(y) - \Phi(x) = \int_{0}^{y} f - \int_{0}^{x} f = \int_{0}^{y} f.$$

Тогда $\frac{\Phi(y)-\Phi(x)}{y-x}=\frac{1}{y-x}\int\limits_{x}^{y}f=f(c)$ для некоторого $c\in(x,y).$

Проверяем определение по Гейне. Берем $y_n > x$ и $y_n \to x$. Тогда $\frac{\Phi(y_n) - \Phi(x)}{y_n - x} = f(c_n)$, где $c_n \in (x, y_n), \ x < c_n < y_n \to x \Rightarrow c_n \to x \Rightarrow f(c_n) \to f(x)$.

Credemeue. $\Psi'(x) = -f(x) \quad \forall x \in [a, b].$

Глава #6 4 из 25 Автор: XБ

Доказательство.
$$\Psi(x) = \int_a^b f - \Phi(x) = C - \Phi(x) \Rightarrow \Psi' = (C - \Phi(x))' = -Phi'(x) = -f(x).$$

Теорема 6.2. Непрерывная на промежутке функция имеет первообразную.

Доказательство. $f: \langle a, b \rangle \to \mathbb{R}$.

Рассмотрим
$$F(x) := \begin{cases} \int\limits_{c}^{x} f & \text{при } x \geqslant c \\ -\int\limits_{x}^{c} f & \text{при } x \leqslant c \end{cases}$$
. Если $x > c$, то $F'(x) = f(x)$.

Теорема 6.3 (Формула Ньютона-Лейбница). $f:[a,b]\to\mathbb{R}$ и F – её первообразная. Тогда $\int\limits_a^b f=F(b)-F(a)$.

Доказательство. $\Phi(x) = \int_{a}^{x} f$ — первообразная и $F(x) = \Phi(x) + C$.

Тогда
$$F(b) - F(a) = (\Phi(b) + C) - (\Phi(a) + C) = \Phi(b) - \Phi(a) = \int_a^b f$$

Определение 6.3. $F \mid_{a}^{b} := F(b) - F(a)$

Билет 07

Теорема 7.1 (Линейность интеграла). $\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$.

Доказательство. F, G — первообразные для f, g.

Тогда $\alpha F + \beta G$ — первообразная для $\alpha f + \beta g$. Тогда воспользуемся формулой Ньютона-Лейбница:

$$\int_{a}^{b} \alpha f + \beta g = \alpha F + \beta G \mid_{a}^{b} = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a).$$

Теорема 7.2 (Формула интегрирования по частям). Пусть $f,g\in C^1[a,b]$.

Тогда
$$\int_a^b fg' = fg \mid_a^b - \int_a^b f'g$$
.

Доказательство. Докажем при помощи формулы Ньютона-Лейбница. Пусть H — первообразная f'g. Тогда fg - H — первообразная для fg'.

Проверим данный факт: (fg-H)'=f'g+fg'-f'g=fg'. А значит нам можно воспользоваться формулой Ньютона-Лейбница.

$$\int_{a}^{b} fg' = (fg - H) \mid_{a}^{b} = fg \mid_{a}^{b} - H \mid_{a}^{b} = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

 Γ лава #7 5 из 25 Автор: XБ

Замечание Соглашение. Если a>b, то $\int\limits_a^bf:=-\int\limits_b^af.$

Мотивация: Если F — первообразная, то $\int_a^b f = F \mid_a^b$.

Теорема 7.3 (Формула замены переменной). Пусть $f \in C[a,b], \varphi \colon [c,d] \to [a,b], \varphi \in C^1[c,d], p,q \in [c,d].$

Тогда
$$\int_a^b f(\varphi(t))\varphi'(t)dt = \int_{\varphi p}^{\varphi q} f(x)dx.$$

Доказательство. Пусть F — первообразная f. Тогда $\int\limits_{\varphi(p)}^{\varphi(q)} f(x) \mathrm{d}x = F\mid_{\varphi(p)}^{\varphi(q)} = F_0 \varphi\mid_p^q$, где $F_0 \varphi$ — первообразная для $f(\varphi(t)) \varphi'(t)$.

Проверим данные факты: $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi'(t)$.

Тогда интеграл равен
$$\int\limits_{p}^{q}f(\varphi(t))\varphi'(t)\mathrm{d}t$$

Пример.

$$\int_0^{\frac{\pi}{2}} \frac{\sin 2t}{1 + \sin^4 t} dt. \tag{1}$$

Произведем замену $\varphi(t)=\sin^2t,\ f(x)=\frac{1}{1+x^2},\ \varphi'(t)=2\sin t\cos t=\sin 2t,\ \varphi(0)=0, \varphi(\frac{\pi}{2})=1$:

$$(1) = \int_0^{\frac{\pi}{2}} \frac{\varphi'(t)}{1 + (\varphi(t))^2} = \int_{\varphi(0)}^{\varphi(\frac{\pi}{2})} f(x) dx = \int_0^1 \frac{dx}{1 + x^2} = \operatorname{arctg} x \mid_0^1 = \frac{\pi}{4}.$$

Билет 08

Пример.
$$W_n \coloneqq \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n t dt = (1)$$

Где
$$x = \frac{\pi}{2} - t =: \varphi(t), \ \varphi'(t) = -1, \sin(\frac{\pi}{2} - t) = \cos t.$$

Тогда (1) =
$$-\int\limits_0^{\frac{\pi}{2}}\sin^n\varphi(t)\cdot\varphi(t)\mathrm{d}t=-\int\limits_{\frac{\pi}{2}}^0\sin^nx\mathrm{d}x$$

Частные случаи $W_0 = \frac{\pi}{2}$, $W_1 = \int\limits_0^{\frac{\pi}{2}} \sin x \mathrm{d}x = -\cos |_0^{\frac{\pi}{2}} = 1$

Общее решение: $W_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x \cdot (\cos x)' dx =$. Воспользовались тем, что $\sin x = -(\cos x)', \ f'(x) = (n-1)\sin^{n-2} x \cdot \cos x$.

Тогда получаем:

$$= -\left(\underbrace{\sin^{n-1}x \cdot \cos x}_{=0} \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (n-1)\sin^{n-2}x \underbrace{\cos^{2}x}_{=1-\sin^{2}x} dx\right) =$$

$$= (n-1)\left(\int_{0}^{\frac{\pi}{2}} \sin^{n-2}x dx - \int_{0}^{\frac{\pi}{2}} \sin^{n}x dx\right) = (n-1)(W_{n-2} - W_{n}).$$

Посчитаем для четных: $W_{2n}=\frac{2n-1}{2n}\cdot W_{2n-2}=\frac{2n-1}{2n}\cdot \frac{2n-3}{2n-2}W_{2n-4}=\ldots=\frac{(2n-1)!!}{(2n)!!}\frac{\pi}{2}$, где k!! произведение натуральных чисел той же четности, что и k и $\leqslant k$.

Для нечетных:
$$W_{2n+1} = \frac{2n}{2n+1}W_{2n-1} = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1}W_{2n-3} = \dots = \frac{(2n)!!}{(2n+1)!!}W_1 = \frac{(2n)!!}{(2n+1)!!}$$

Билет 09

Теорема 9.1 (Формула Валлиса).

$$\lim_{n \to \inf} \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}}.$$

Доказательство. $\sin^n x \geqslant \sin^{n+1} x$ на $[0, \frac{\pi}{2}]$. Тогда $W_n = \int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x \geqslant \int_0^{\frac{\pi}{2}} \sin^{n+1} x \mathrm{d}x = W_{n+1}$.

Заметим, что $W_{2n+2}\leqslant W_{2n+1}\leqslant W_{2n}\iff \frac{\pi}{2}\frac{(2n+1)!!}{(2n+2)!!}\leqslant \frac{(2n)!!}{(2n+1)!!}\leqslant \frac{\pi}{2}\frac{(2n-1)!!}{(2n)!!}$. Поделим на $\frac{(2n-1)!!}{(2n)!!}$:

$$\frac{\pi}{2} \frac{2n+1}{2n+2} \leqslant \frac{((2n)!!)^2}{(2n+1)((2n-1)!!)^2} \leqslant \frac{\pi}{2} \implies \lim \left(\frac{(2n)!!}{\sqrt{(2n+1)(2n-1)!!}}\right)^2 = \frac{\pi}{2}.$$

Следствие.

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{4^n}{\sqrt{\pi n}}.$$

Доказательство. Заметим, что $(2n)! = (2n)!! \cdot (2n-1)!!$, а $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n) = 2^n \cdot n!$. Тогда подставим в Сшку:

$$\binom{2n}{n} = \frac{(2n)!!(2n-1)!!}{\frac{(2n)!!}{2^n}\frac{(2n)!!}{2^n}} = 4^n \cdot \frac{(2n-1)!!}{(2n)!!}.$$

При этом из Валлиса, заметим, что $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n+1} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n} = \sqrt{\pi n}$. А значит все сойдется.

Билет 10

Глава #10 7 из 25 Aвтор: XБ

Теорема 10.1 (Формула Тейлора (с остатком в интегральной форме)). Пусть $f \in C^n[a,b]$, $x, x_0 \in [a, b]$. Тогда:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Доказательство. Индукция по n:

- База. n = 0, $f(x) = f(x_0) + \int_{x_0}^x f'(t) dt = f(x_0) + f \mid_{x_0}^x$
- Переход. $n \to n+1$.
- Доказательство. $f(x) = T_n(x) + \frac{1}{n!} \int_{x_0}^x \underbrace{(x-t)^n}_{c'} \underbrace{f^{(n+1)}(t)}_{f} dt$. Проинтегрируем интеграл по частям. $g(t) = \frac{1}{n+1} - (x-t)^{n+1}$. Подставим: $\int_{x_0}^x (x-t)^n f^{(n+1)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+2)}(t) \cdot f^{(n+2)}(t) + \frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+$ $\underbrace{\frac{1}{n+1}(x-x_0)^{n+1}f^{(n+1)}(x_0)}_{\text{новый член Тейлора!}} + \int_{x_0}^x \frac{1}{n+1}(x-t)^{n+1} \cdot f^{(n+2)}(t) \mathrm{d}t$

Билет 11

Пример.

$$H_j := \frac{1}{j!} \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j \cos x \mathrm{d}x. \tag{2}$$

Свойство 1. $0 < H_j \leqslant \frac{1}{j} \left(\frac{\pi}{2}\right)^{2j} \int_{2}^{\frac{\pi}{2}} \cos x dx = \frac{\left(\frac{\pi}{2}\right)^{2j}}{j!}.$

Свойство 2. $\forall c>0\colon c^j\cdot H_j\xrightarrow{j\to\inf}0.\ 0< c^jH_j\leqslant \frac{\left(\frac{\pi}{2}\right)^{2j}\cdot c^j}{j!}=\frac{\left(\frac{\pi^2}{4}c\right)^j}{j!}\to 0.$ Свойство 3. $H_0=1,\ H_1=2\ (ynpa)$ нение). Свойство 4. $H_j=(4j-2)H_{j-1}-\pi^2H_{j-2},\ \text{при } j\geqslant 2.$

Доказательство.

$$j!H_j = \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j (\sin x)' dx$$
 (3)

Глава #11 8 из 25 Автор: ХБ

Заметим, что
$$\left(\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^j\right)'=j\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}\cdot(-2x).$$
 Тогда:

$$(3) = \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^j \sin x}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx =$$

$$= 2j \left(\underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-2} x^2 \cos x dx \right)$$

$$= 2j \left((j-1)! H_{j-1} - 2(j-1) \left(\frac{\pi}{2}\right)^2 \cdot (j-2)! H_{j-2} + 2(j-1)(j-1)! H_{j-1}\right).$$

Откуда с легкостью получаем $j!H_j=2j!H_{j-1}-\pi^2j!H_{j-2}+4(j-1)j!H_{j-1}\iff H_j=(4j-2)H_{j-1}-\pi^2H_{j-2}.$

Свойство 5. Существует многочлен P_n с целыми коэффициентами степени $\leqslant n$, такой что $H_j = P_j(\pi^2)$.

Доказательство.
$$P_0 \equiv 1, P_1 \equiv 2, P_n(x) = (4n-2)P_{n-1}(x) - xP_{n-2}(x).$$

Теорема 11.1 (Ламберта, доказательство: Эрмит). Числа π и π^2 иррациональные.

Доказательство. От противного. Пусть π^2 — рационально. Тогда пусть $\pi^2 = \frac{m}{n}$. Тогда $H_j = P_j(\frac{m}{n}) = \frac{\text{пелое число}}{n^j} > 0$.

$$n^j H_j =$$
 целое число $>0 \Rightarrow n^j H_j \xrightarrow{j \to +\inf} 0$, но $n^j H_j \geqslant 1$.

Билет 12

Определение 12.1. $f: E \subset \mathbb{R} \to \mathbb{R}$ равномерно непрерывна на E, если $\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in E$: $|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Определение 12.2. f непрерывна во всех точках из E: $\forall x \in E \forall \varepsilon > 0 \exists \delta > 0 \forall y \in E \colon |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Пример. $\sin x$ и $\cos x$ равномерно непрерывны на \mathbb{R} .

$$|\sin x - \sin y| \leqslant |x - y| \Rightarrow \delta = \varepsilon$$
 подходит. $|\cos x - \cos y| \leqslant |x - y|$.

Пример. $f(x) = x^2$ не является равномерно непрерывной на \mathbb{R} . Рассмотрим $\varepsilon = 1$, никакое $\delta > 0$ не подходит. x и $x + \frac{\delta}{2}$. $f(x + \frac{\delta}{2}) - f(x) = (x + \frac{\delta}{2})^2 - x^2 = \ldots = \delta x + \frac{\delta^2}{4} > \delta x$. При $x = \frac{1}{\delta}$ противоречие.

Теорема 12.1 (Теорема Кантора). Пусть $f \in C[a,b]$, тогда f равномерно непрерывна на [a,b].

Доказательство. Берем $\varepsilon>0$ и предположим, что $\delta=\frac{1}{n}$ не подходит, то есть $\exists x_n,y_n\in[a,b]$: $|x_n-y_n|<\frac{1}{n}$ и по теореме Больцано-Вейерштрасса у последовательности x_n есть сходящаяся последовательность $x_{n_k}\to c$, то есть $\lim x_{n_k}=c\in[a,b]$.

Глава #12 9 из 25 Автор: XБ

$$\underbrace{x_{n_k} - \frac{1}{n_k}}_{\to c} < y_{n_k} < \underbrace{x_{n_k} + \frac{1}{n_k}}_{\to c} \implies \lim y_{n_k} = c. \text{ Но } f \text{ непрерывна в точке } c \implies f(x_{n_k}) = f(c) = \lim f(y_{n_k}) \implies \lim (f(x_{n_k}) - f(y_{n_k})) = 0, \text{ но } |f(x_{n_k}) - f(y_{n_k})| \geqslant \varepsilon.$$

Замечание. Для интервала или полуинтервала неверно. $f(x) = \frac{1}{x}$ на (0;1]. Докажем, что нет равномерной непрерывностью на (0;1].

Пусть $\varepsilon = 1$ и $\delta > 0$. Пусть $0 < x < \delta, \ y = \frac{x}{2}, \ |x-y| = \frac{x}{2} < \delta.$ Тогда $f(y) - f(x) = \frac{2}{x} - \frac{1}{x} = \frac{1}{x} > 1$.

Билет 13

Определение 13.1. Пусть $f: E \subset \mathbb{R} \to \mathbb{R}$.

Тогда $\omega_f(\delta)\coloneqq \sup\{|f(x)-f(y)|\mid \forall x,y\in E, |x-y|\leqslant \delta\}$ — модуль непрерывности f.

Coo*i*cmea. 1. $\omega_f(0) = 0$,

- 2. $|f(x) f(y)| \le \omega_f(|x y|)$.
- 3. $\omega_f \uparrow$.
- 4. Если f липшицева функция с константой L, то $\omega_f(\delta) \leqslant L\delta$. В частности, если $|f'(x)| \leqslant L \quad \forall x \in \langle a,b \rangle$.
- 5. f равномерно непрерывна на $E \iff \omega_f$ непрерывна в нуле $\iff \lim_{\delta \to 0+} \omega_f(\delta) = 0.$

Доказательство. • $1 \to 2$. $\forall \varepsilon > 0 \gamma > 0 \forall x, y \in E : |x - y| < \gamma \implies |f(x) - f(y)| < \varepsilon$. Возьмем $\delta < \gamma$. Тогда $|x - y| \leqslant \delta \implies |x - y| < \gamma \implies |f(x) - f(y)| < \varepsilon \implies \sup \leqslant \varepsilon$.

- 2 \rightarrow 1. Из $\lim_{\delta \to 0+} \omega_f(\delta) = 0$. Возьмем $\gamma > 0$: $|f(x) f(y)| \leqslant \omega_f(\delta) < \varepsilon \ \forall \delta \gamma, \ \forall x, y \in E$: $|x y| \leqslant \delta$.
- 6. $f \in C[a,b] \iff \omega_f$ непрерывен в нуле $\iff \lim \omega_f(\delta) = 0.$

Доказательство. Для функции на отрезке равномерная непрерывность \iff непрерывность.

Билет 14

Билет 15

Определение 15.1. Пусть есть [a,b]. Тогда дробление (разбиение, пунктир) отрезка: набор точек: $x_0 = a < x_1 < x_2 < \ldots < x_n = b$.

 Γ лава #15 10 из 25 Автор: XБ

Определение 15.2. Ранг дробления: $\max_{k=1,2,...,n} (x_k - x_{k-1}) \eqqcolon |\tau|, \ \tau = (x_0, x_1, \ldots, x_n)$

Определение 15.3. Оснащение дробления — набор точек $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, такой что $\xi_k \in [x_{k-1}, x_k]$.

Определение 15.4. Интегральная сумма (сумма Римана) $S(f, \tau, \xi) := \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}),$

По факту просто сумма прямоугольников под графиком рисунок принял ислам очень жаль.

Билет 16

Теорема 16.1 (Теорема об интегральных суммах). Пусть $f \in C[a,b]$,

тогда
$$\left|\int\limits_a^b -S(f,\tau,\xi)\right| \leqslant (b-a)\omega_f(|\tau|).$$

Доказательство.

$$\Delta := \int_{a}^{b} f - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(t) dt - \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(\xi_{k}) dt = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(t) - f(\xi_{k})) dt.$$

$$|\Delta| \leq \sum |\int \dots| \leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leq \sum_{k=1}^{n} (x_k - x_{k-1}) \omega_f(|\tau|) = (b-a)\omega_f(|\tau|).$$

$$\int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leqslant \int_{x_{k-1}}^{x_k} \omega_f(|\tau|) dt = (x_k - x_{k-1}) \omega_f(|\tau|)..$$

Следствие. $\forall \varepsilon>0 \exists \delta>0 \forall$ дробления ранга $\leqslant \delta \ \forall$ оснащения $|\int\limits_a^b -S(f,\tau,\xi)<\varepsilon|$

Следствие. Если τ_n последовательность дроблений, ранг которых $\to 0$, то $S(f, \tau_n, \xi_n) \to \int\limits_a^b f$.

Пример. $S_p(n) := 1^p + 2^p + \ldots + n^p$. Посчитаем $\lim_{n \to \infty} \frac{S_p(n)}{n^{p+1}}$.

Возьмем
$$fL[0,1] \to \mathbb{R}$$
 $f(t) = t^p \frac{S_p(n)}{n^{p+1}} = \frac{1}{n} \cdot \sum_{k=1}^n \left(\frac{k}{n}\right)^p = S(f,\tau,\xi)$, где $x_k = \xi_k = \frac{k}{n}$.

Тогда
$$\lim \frac{S_p(n)}{n^{p+1}} = \int_0^1 t^p dt = \frac{t^{p+1}}{p+1} \Big|_{t=0}^{t=1} = \frac{1}{p+1}$$

Определение 16.1. Пусть $f:[a,b]\to\mathbb{R}$, тогда f интегрируема по Риману, если $\exists I\in\mathbb{R}\forall\varepsilon>0$ $\exists\delta>0$ дробление ранги $<\delta$ его оснащение $|S(f,\tau,\xi)-I|<\varepsilon$.

$$I$$
 — интеграл по Риману $\int\limits_a^b f$.

Лемма. $f \in C^2[\alpha, \beta]$. Тогда

$$\int_{a}^{b} f(t)dt - \frac{f(\alpha) + f(\beta)}{2}(\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)dt.$$

Доказательство. Пусть $\gamma \coloneqq \frac{\alpha + \beta}{2}$. Тогда:

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{\beta} f(t)(t-\gamma)'dt = f(t)(t-\gamma) \Big|_{t=\alpha}^{t=\beta} - \int_{\alpha}^{\beta} f'(t)(t-\gamma)dt.$$

Заметим, что $f(t)(t-\gamma)\mid_{t=\alpha}^{t=\beta}=f(\beta)(\beta-\gamma)-f(\alpha)(\alpha-\gamma)=\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$. Продолжим:

левая часть
$$= -\int_{\alpha}^{\beta} f'(t)(t-\gamma) \mathrm{d}t = \frac{1}{2} \int_{\alpha}^{\beta} f'(t)((t-\alpha)(\beta-t))' \mathrm{d}t =$$
$$= \frac{1}{2} f'(t)(t-\alpha)(\beta-t) \mid_{t=\alpha}^{t=\beta} -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t-\alpha)(\beta-t) \mathrm{d}t.$$

Переход к $((t-\alpha)(\beta-t))'$:

$$((t - \alpha)(\beta - t))' = (-t^2 - (\alpha + \beta)t - \alpha\beta)' = -2t + (\alpha + \beta) = -2(t - \gamma).$$

Замечание. Бла-бла-бла.

Теорема 16.2 (Оценка погрешности в формуле трапеций). Пусть $f \in C^2[a,b]$.

Тогда:

$$\left| \int_{a}^{b} f(t) dt - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leq \frac{|\tau|^2}{8} \int_{a}^{b} |f''|$$

Доказательство. $\Delta \coloneqq \int\limits_a^b - \sum \ldots = \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k} - \sum\limits_{k=1}^n \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1})$

$$|\Delta| \leqslant \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} -\frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| = \frac{1}{2} \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f''(t) (t - x_{k-1}) (x_k - t) dt \right|.$$

Тогда вспомним, что $(t-x_{k-1})(x_k-t) \leqslant \left(\frac{x_k-x_{k-1}}{2}\right)^2 \leqslant \frac{|\tau|^2}{4} \leqslant \frac{1}{2} \sum_{k=1}^n \int_{x_{k-1}}^{x_k} |f''(t)| \cdot \frac{|\tau|^2}{4} dt = \frac{|\tau|^2}{8} \sum_{x_{k-1}}^{x_k} |f''| = \frac{|\tau|^2}{8} \cdot \int_{a}^{b} |f''|$

Замечание. Пусть разбиение на n равных отрезков $x_k - x_{k-1} = \frac{b-a}{n} = |\tau|$:

$$\sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} = \frac{b-a}{n} (f(x_k)) + \frac{f(x_k)}{2} + \sum_{k=1}^{n-1} f(x_k) + \frac{f(x_k)}{2} + \dots$$

Замечание. Возьмем разбиение на равные отрезки и $\xi_k = x_k$:

$$S(f, \tau, \xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \frac{b - a}{n} \sum_{k=1}^{n} f(x_k).$$

Билет 17

Лемма. $f \in C^2[\alpha, \beta]$. Тогда

$$\int_{a}^{b} f(t)dt - \frac{f(\alpha) + f(\beta)}{2}(\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)dt.$$

Доказательство. Пусть $\gamma \coloneqq \frac{\alpha+\beta}{2}$. Тогда:

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{\beta} f(t)(t-\gamma)'dt = f(t)(t-\gamma) \Big|_{t=\alpha}^{t=\beta} - \int_{\alpha}^{\beta} f'(t)(t-\gamma)dt.$$

Заметим, что $f(t)(t-\gamma)|_{t=\alpha}^{t=\beta}=f(\beta)(\beta-\gamma)-f(\alpha)(\alpha-\gamma)=\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$. Продолжим:

левая часть
$$= -\int_{\alpha}^{\beta} f'(t)(t-\gamma) \mathrm{d}t = \frac{1}{2} \int_{\alpha}^{\beta} f'(t)((t-\alpha)(\beta-t))' \mathrm{d}t =$$
$$= \frac{1}{2} f'(t)(t-\alpha)(\beta-t) \mid_{t=\alpha}^{t=\beta} -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t-\alpha)(\beta-t) \mathrm{d}t.$$

Переход к $((t-\alpha)(\beta-t))'$:

$$((t - \alpha)(\beta - t))' = (-t^2 - (\alpha + \beta)t - \alpha\beta)' = -2t + (\alpha + \beta) = -2(t - \gamma).$$

Замечание. Бла-бла-бла.

Теорема 17.1 (Оценка погрешности в формуле трапеций). Пусть $f \in C^2[a,b]$.

Тогда:

$$\left| \int_{a}^{b} f(t) dt - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leq \frac{|\tau|^2}{8} \int_{a}^{b} |f''|$$

Доказательство. $\Delta \coloneqq \int_a^b - \sum \ldots = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} - \sum_{k=1}^n \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1})$

$$|\Delta| \leqslant \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} -\frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| = \frac{1}{2} \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f''(t) (t - x_{k-1}) (x_k - t) dt \right|.$$

Тогда вспомним, что $(t-x_{k-1})(x_k-t)\leqslant \left(\frac{x_k-x_{k-1}}{2}\right)^2\leqslant \frac{|\tau|^2}{4}\leqslant \frac{1}{2}\sum_{k=1}^n\int\limits_{x_{k-1}}^{x_k}|f''(t)|\cdot \frac{|\tau|^2}{4}\mathrm{d}t=\frac{|\tau|^2}{8}\sum\int\limits_{x_{k-1}}^{x_k}|f''|=1$

$$\frac{| au|^2}{8} \cdot \int\limits_a^b |f''|$$

Глава #17 13 из 25 Автор: XБ

Замечание. Пусть разбиение на n равных отрезков $x_k - x_{k-1} = \frac{b-a}{n} = |\tau|$:

$$\sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} = \frac{b-a}{n} (f(x_k)) + \sum_{k=1}^{n-1} f(x_k) + \frac{f(x_k)}{2} (f(x_k)) = \frac{b-a}{n} (f(x_k)) + \frac{f($$

Замечание. Возьмем разбиение на равные отрезки и $\xi_k = x_k$:

$$S(f, \tau, \xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \frac{b - a}{n} \sum_{k=1}^{n} f(x_k).$$

Теорема 17.2 (формула Эйлера-Маклорена). Пусть $f \in C^2[m,n]$, тогда

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Доказательство. Подставим $\alpha = k$ и $\beta = k+1$ в лемму:

$$\int_{k}^{k+1} f(t)dt = \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)(t-k)(k+1-t)dt =$$

$$= \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)\{t\}(1-\{t\})dt.$$

Дальше суммируем по k от m до n-1:

$$\int_{m}^{n} f(t)dt = \sum_{k=m}^{n-1} \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Заметим, что $\sum\limits_{k=m}^{n-1} rac{f(k)+f(k+1)}{2} = rac{f(m)+f(n)}{2} + \sum\limits_{k=m+1}^{n-1} f(k)$. И тогда:

$$\sum_{k=-m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Билет 18

Пример. $S_p(n) = 1^p + 2^p + \ldots + n^p$, $f(t) = t^p$, m = 1, $f''(t) = p(p-1)t^{p-2}$.

$$S_p(n) = \frac{1+n^p}{2} + \int_1^n t^p dt + \frac{1}{2} \int_1^n p(p-1)t^{p-2} \{t\} (1 - \{t\}) dt.$$

При
$$p \in (-1,1)$$
 $\int_1^n t^p dt = \frac{t^{p+1}}{p+1} \Big|_1^n = \frac{n^{p+1}}{p+1} - \frac{1}{p+1} = \frac{n^{p+1}}{p+1} + \mathcal{O}(1).$

$$\int_{1}^{n} t^{p-2} \underbrace{\{t\}(1-\{t\})}_{\leqslant \frac{1}{2}} \mathrm{d}t \leqslant \frac{1}{4} \int_{1}^{n} t^{p-2} \mathrm{d}t = \frac{1}{4} \cdot \frac{t^{p-1}}{p-1} \mid_{1}^{n} = \frac{1}{4} \cdot \frac{n^{p-1}-1}{p-1} = \mathcal{O}(1)..$$

To есть $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(1)$

При
$$p > 1$$
 $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(n^{p-1}).$

 $+ \ldots + n^p$, $f(t) = t^p$, m = 1, $f''(t) = n(n-1)t^{p-2}$.

Пример. $H_n := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. $m = 1, f(t) = \frac{1}{t}, f''(t) = \frac{2}{t^3}$.

$$H_n = \frac{1 + \frac{1}{n}}{2} + \int_1^n \frac{\mathrm{d}t}{t} + \frac{1}{2} \int_1^n \frac{2}{t^3} \{t\} (1 - \{t\}) \mathrm{d}t$$

Откуда получаем $(a_n := \int_1^n \frac{\{t\}(1-\{t\})}{t^3})$:

$$H_n = \ln n + \frac{1}{2} + \frac{1}{2n} + a_n.$$

Заметим, что $a_{n+1}=a_n+\int\limits_n^{n+1} \frac{\{t\}(1-\{t\})}{t^3}\mathrm{d}t>a_n$. То есть $a_n\uparrow$. Причем $a_b\leqslant \int\limits_1^n \frac{\mathrm{d}t}{t^3}=-\frac{1}{2^2}\mid_1^n=\frac{1}{2}-\frac{1}{2n^2}<\frac{1}{2}$.

А значит a_n имеет предел, а значит $a_n = a + o(1)$.

Вывод: $H_n = \ln n + \gamma + o(1)$, где $\gamma \approx 0.5772156649$ — постоянная Эйлера.

Замечание. $H_n = \ln n + \gamma + \frac{1}{2n} + \mathcal{O}(\frac{1}{n^2}).$

Билет 19

Пример Формула Стирлинга. $m=1, f(t)=\ln t, f''(t)=-\frac{1}{t^2}.$

$$\ln n! = \sum_{k=1}^{n} \ln k = \underbrace{\frac{\ln 1 + \ln n}{2}}_{=\frac{1}{2} \ln n} + \underbrace{\int_{1}^{n} \ln t dt}_{t-t|_{1}^{n} = n \ln n - n + 1} - \underbrace{\frac{1}{2} \int_{1}^{n} \frac{\{t\}(1 - \{t\})}{t^{2}} dt}_{:=b_{n}}.$$

Посмотрим на b_n :

$$b_n \leqslant \frac{1}{2} \int_1^n \frac{\mathrm{d}t}{t^2} = \frac{1}{2} (-\frac{1}{t}) \mid_1^n = \frac{1}{2} (1 - \frac{1}{n}) < \frac{1}{2} \implies b_n = b + o(1)..$$

А значит $\ln n! = n \ln n - n + \frac{1}{2} \ln n + (1-b) + o(1)$. $n! = n^n e^{-n} \sqrt{n} e^{1-b} e^{o(1)} \sim n^n e^{-n} \sqrt{n} C$.

Вспомним (из следствия формулы Валлиса): $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$. А еще знаем, что $\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{(2n)^{2n}e^{-2n}\sqrt{2n}C}{(n^ne^{-n}\sqrt{n}C)^2} = \frac{4^n\sqrt{2}}{\sqrt{n}C}$.

Тогда получаем, что $\frac{4^n}{\sqrt{\pi n}} \sim \frac{4^n \sqrt{2}}{\sqrt{nC}} \implies C \sim \frac{4^n \sqrt{2}}{\sqrt{n}} \cdot \frac{\sqrt{\pi n}}{4^n} = \sqrt{2\pi}$.

Итоговый результат:

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

 $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + o(1).$

Замечание. $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + \mathcal{O}(\frac{1}{n}).$

Билет 20

Определение 20.1. Пусть $-\infty < a < b \leqslant +\infty$ и $f \in C[a,b)$.

Тогда определим $\int_{a}^{b} f := \lim_{B \to b-} \int_{a}^{B} f$.

Если $-\infty \leqslant a < b < +\infty, f \in C(a,b],$ тогда $\int\limits_{-a}^b f := \lim\limits_{A \to a+} \int\limits_A^b f.$

Замечание. Если $b < +\infty$ и $f \in C[a,b]$, то определение не дает ничего нового:

$$\int_{a}^{b} f = \lim_{B \to b} f$$

$$\left| \int_{a}^{b} f - \int_{a}^{B} f \right| \leqslant M(b - B) \to 0.$$

Пример. 1. $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{y \to +\infty} \int\limits_{a}^{y} \frac{\mathrm{d}x}{x^{p}} = \lim_{\substack{y \to +\infty \\ \text{при } p \neq 1}} -\frac{1}{(p-1)x^{p-1}} \mid_{x=1}^{x=y} = \frac{1}{p-1} - \lim_{\substack{y \to +\infty \\ y \to +\infty}} \frac{1}{(p-1)y^{p-1}} = \frac{1}{p-1} \text{ при } p > 1,$ при p < 1 получаем $+\infty$, а при p = 1 $\lim_{\substack{y \to +\infty \\ y \to +\infty}} \ln x \mid_{1}^{y} = \lim_{\substack{y \to +\infty \\ y \to +\infty}} \ln y = +\infty$

 $2. \int\limits_0^1 \frac{\mathrm{d}x}{x^p} = \lim\limits_{y \to 0+} \int\limits_y^1 \frac{\mathrm{d}x}{x^p} = \lim\limits_{y \to 0+} -\frac{1}{(p-1)x^{p-1}} \mid_{x=y}^{x=1} = -\frac{1}{p-1} + \lim\limits_{y \to 0+} = \frac{y^{1-p}}{p-1} = \frac{1}{1-p} \text{ при } p < 1, \text{ при } p > 1$ получаем $+\infty$, а вот при $p = 1 \lim\limits_{y \to 0+} \ln x \mid_y^1 = \lim\limits_{y \to 0+} -\ln y = +\infty.$

То есть, при $p < 1 \int_{0}^{1} \frac{\mathrm{d}x}{x^{p}} = \frac{1}{1-p},$

при $p \geqslant 1 \int_{0}^{1} \frac{\mathrm{d}x}{x^{p}} = +\infty.$

Замечание. Если $f\in C[a,b)$ и F его первообразная, то $\int\limits_a^b f=\lim\limits_{B\to b-}F(B)-F(a).$

Если $f \in C[a,b)$ и F его первообразная, то $\int\limits_a^b f = F(b) - \lim\limits_{A \to a+} F(A).$

Доказательство. Очевидно по формуле Ньютона-Лейбница.

Определение 20.2. $F \mid_a^b := \lim_{B \to b^-} F(B) - F(a)$.

Определение 20.3. $\int\limits_a^{\to b} f$ сходится, если $\lim B$ его определении существует и конечен.

Теорема 20.1 (Критерий Коши). Пусть $-\infty < a < b \leqslant +\infty, \ f \in C[a,b)$.

Тогда $\int\limits_a^b f$ сходится $\iff \forall \varepsilon \exists c \in (a,b) \colon \forall A,B \in (c,b) \ \left| \int\limits_A^B f \right| < \varepsilon.$

Замечание. 1. Если $b=+\infty$ это означает, что $\forall arepsilon\exists c>a \forall A,B>c\colon \left|\int\limits_A^B f\right|<arepsilon.$

2. Если $b<+\infty$ это означает, что $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta;b)$: $\left|\int\limits_A^B f\right|<\varepsilon.$

Доказательство. Для $b < +\infty$.

- "⇒" $\int\limits_a^b f$ сходится \implies \exists конечный $\lim\limits_{B \to b-} \int\limits_a^B f =: g(B).$ $\forall \varepsilon > 0 \exists \delta > 0 \ \ \forall B \in (b-\delta,b) \quad |g(B)-I| < \frac{\varepsilon}{2} \\ \forall A \in (b-\delta,b) \quad |g(A)-I| < \frac{\varepsilon}{2} \implies |g(B)-g(A)| \leqslant |g(B)-I| + |I-g(A)| < \varepsilon$
- " \Leftarrow " $\int\limits_a^B f=:g(B).$ $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta,b): |g(B)-g(A)|<\varepsilon \ \text{это условие из критерия Коши для}\lim_{B\to b^-}g(B).$

Замечание. Если существует $A_n, B_n \in [a,b)$: $\lim A_n = \lim B_n = b$: $\int\limits_{A_n}^{B_n} f \not\to 0$, то $\int\limits_a^b f$ расходится.

Доказательство. Возьмем A_{n_k} и $B_{n_k}\colon |\int\limits_{A_{n_k}}^{B_{n_k}} f| \to C > 0 \implies |\int\limits_{A_{n_k}}^{B_{n_k}} f| > \frac{C}{2}$ при больших k. Но это противоречит критерию Коши.

Билет 21

Свойства несобственных интегралов. 1. Аддитивность. Пусть $f \in C[a,b), \ c \in (a,b).$ Если $\int\limits_a^b f$ сходятся, то $\int\limits_a^b f$ сходятся и $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f.$

- 2. Если $\int\limits_a^b f$ сходится, то $\lim\limits_{c \to b-} \int\limits_c^b f = 0$
- 3. Линейность $\alpha, \beta \in \mathbb{R}$ и $\int\limits_a^b f$ и $\int\limits_a^b g$ сходятся. Тогда $\int\limits_a^b (\alpha f + \beta g)$ сходится и $\int\limits_a^b (\alpha f + \beta g) = \alpha \int\limits_a^b f + \beta \int\limits_a^b g$.
- 4. Монотонность. Пусть $\int\limits_a^b f$ и $\int\limits_a^b g$ существует в \overline{R} и $f\leqslant g$ на [a,b). Тогда $\int\limits_a^b f\leqslant \int\limits_a^b g$.
- 5. Интегрирование по частям. $f,g \in C^1[a;b) \implies \int_a^b fg' = fg \mid_a^b \int_a^b f'g$.
- 6. Замена переменных. $\varphi \colon [\alpha,\beta) \to [a,b), \ \varphi \in C^1[\alpha,\beta)$ и $\exists \lim_{\gamma \to \beta^-} \varphi(\gamma) =: \varphi(\beta^-)$ и $f \in C[a,b)$. Тогда $\int\limits_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \mathrm{d}t = \int\limits_{\varphi(\alpha)}^{\varphi(\beta^-)} f(x) \mathrm{d}x$. «Если существует один из \int , то существует второй и они равны»

Глава #21 17 из 25 Aвтор: XБ

Доказательство. 1. $\int_a^b f = \lim_{B \to b^-} F(B) - F(a) \implies \lim_{B \to b^-} F(B)$ существует и конечный $\implies \int_c^b = \lim_{B \to b^-} F(b) - F(c) - \text{сходится}.$

$$\int_{a}^{b} = \lim F(B) - F(a) = \lim F(B) - F(c) + F(c) - F(a) = \int_{c}^{b} f + \int_{a}^{c} f.$$

2.
$$\int_{a}^{b} f = \int_{a}^{b} f - \int_{a}^{c} f \to \int_{a}^{b} f - \int_{a}^{b} f = 0$$

$$3. \int_{a}^{b} (\alpha f + \beta g) = \lim_{B \to b^{-}} \int_{a}^{B} (\alpha f + \beta g) = \lim_{B \to b^{-}} (\alpha \int_{a}^{B} f + \beta \int_{a}^{B} g) = \alpha \lim_{B \to b^{-}} \int_{a}^{B} f + \beta \lim_{B \to b^{-}} \int_{a}^{B} g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

- 4. $\int_{a}^{B} f \leqslant \int_{a}^{B} g$ (монотонность интеграла), а дальше предельный переход.
- 5. a < B < b. $\int_{a}^{B} fg' = fg \mid_{a}^{B} \int_{a}^{B} f'g$ и переход к пределу.
- 6. $F(y) \coloneqq \int_{\varphi(\alpha)}^{y} f(x) \mathrm{d}x, \ \Phi(\gamma) \coloneqq \int_{\alpha}^{\gamma} f(\varphi(t)) \varphi'(t) \mathrm{d}t.$ Знаем, что $F(\varphi(\gamma)) = \Phi(\gamma)$ при $\alpha < \gamma < \beta$.

Пусть существует правый \int , то есть $\exists \lim_{y \to \varphi\beta^-} F(y)$. Возьмем $\gamma_n \nearrow \beta \implies \varphi(\gamma_n) \to \varphi(\beta^-) \implies$

$$\Phi(\gamma_n) = F(\varphi(\gamma_n)) \to \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(x) dx$$
. При этом $\Phi(\gamma_n) \to \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$.

Пусть существует левый \int , то есть $\exists \lim_{\gamma \to \beta-} \Phi(\gamma)$. Докажем, что \exists правый \int . При $\varphi(\beta-) < b$ нечего доказывать.

Пусть $\varphi(\beta-)=b$. Тогда возьмем $b_n\nearrow b$. Можно считать, что $b_n\in [\varphi(\alpha),b)$. Тогда $\exists \gamma_n\in [\alpha,\beta)\colon \varphi(\gamma_n)=b_n$. Докажем, что $\gamma_n\to\beta$. Пусть это не так. Тогда найдется $\gamma_{n_k}\to\widetilde{\beta}<\beta\Longrightarrow \varphi(\gamma_{n_k})\to \varphi(\widetilde{\beta})< b$ по непрерывности в $\widetilde{\beta}$. Противоречие.

Итак,
$$\gamma_n \to \beta$$
, $F(b_n) = F(\varphi(\gamma_n)) = \Phi(\gamma_n) \to \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$.

Замечание ко второму свойству. 1. Если $\int\limits_a^b f$ сходится, а $\int\limits_a^b g$ расхоидится, то $\int\limits_a^b (f+g)$ расходится. Доказательство от противного, путь интеграл сходится, то $g=(f+g)-f \implies \int\limits_a^b g$ сходится.

2. Если $\int\limits_a^b f$ и $\int\limits_a^b g$ расходятся, то $\int\limits_a^b (f+g)$ может сходиться. $\int\limits_1^{+\infty} \frac{\mathrm{d}x}{x}$ и $\int\limits_1^{+\infty} -\frac{\mathrm{d}x}{x}$ расходятся.

Замечание к шестому свойству. $\int\limits_a^b f(x)\mathrm{d}x$. Сделаем замену $x=b-\frac{1}{t}=\varphi(t),\ \varphi'(t)=\frac{1}{t^2}, \varphi(\alpha)=a, \alpha=\frac{1}{b-a}$.

Тогда
$$\int_a^b f(x) dx = \int_{\frac{1}{b-a}}^{+\infty} f(b-\frac{1}{t}) \frac{1}{t^2} dt$$
.

Определение 21.1. Пусть f непрерывен на (a,b) за исключением точек $c_1 < c_2 < \ldots < c_n$.

 $\int_{a}^{b} f$ сходится, если сходятся интегралы по все маленьким отрезкам (содержащих только одну выколотую точку).

Билет 22

Теорема 22.1. Пусть $f \in C[a, b)$ и $f \geqslant 0$.

Тогда $\int\limits_a^b f$ сходится $\iff F(y) \coloneqq \int\limits_a^y f$ ограничена сверху.

Доказательство. $f\geqslant 0\implies F$ монотонно возрастает. $\int\limits_a^b f$ сходится \iff \exists конечный $\lim\limits_{y\to b^-}F(y)\iff F$ ограничена сверху.

Замечание. $f\in C[a;b), f\geqslant 0.$ $\int\limits_a^b f$ расходящийся означает, что $\int\limits_a^b f=+\infty.$

Следствие Признак сравнения. $f,h\in C[a,b),\,f,g\geqslant 0$ и $f\leqslant g.$

- 1. Если $\int_a^b g$ сходится, то $\int_a^b f$ сходится.
- 2. Если $\int_a^b f$ расходится, то $\int_a^b g$ расходится.

Доказательство. $F(y)\coloneqq\int\limits_a^y f$ и $G(y)\coloneqq\int\limits_a^y g.$

- 1. Пусть $\int\limits_a^b g$ сходящийся \implies G(y) ограничена, но $F(y)\leqslant G(y)$ \implies F(y) ограничена $\implies \int\limits_a^b f$ сходящаяся.
- 2. От противного.

Замечание. 1. Неравенство $f \leqslant g$ нужно лишь для аргументов близких к b.

- 2. Неравенство $f\leqslant g$ можно заменить на $f=\mathcal{O}(g)$. $f=\mathcal{O}(g)\implies f\leqslant cg.\int\limits_a^b g\ \text{сходящийся}\ \Longrightarrow\int\limits_a^b cg\ \text{сходящийся}\ \Longrightarrow\int\limits_a^b f\ -\ \text{сходящийся}.$
- 3. Если $f=\mathcal{O}(\frac{1}{x^{1+\varepsilon}})$ для $\varepsilon>0,$ то $\int\limits_a^{+\infty}f-$ сходящийся. $g(x)=\frac{1}{x^{1+\varepsilon}}$ и можно считать, что $a\geqslant 1\int\limits_a^{+\infty}g(x)\mathrm{d}x-$ сходящийся.

Следствие. $f, g \in C[a, b), f, g \geqslant 0$ и $f(x) \sim g(x), x \to b-$. Тогда $\int_a^b f$ и $\int_a^b g$ ведут себя одинаково (либо оба сходятся, либо оба расходятся).

Доказательство. $f \sim g \implies f = \varphi \cdot g$, где $\varphi(x) \xrightarrow{x \to b-} 1 \implies$ в окрестности $b \stackrel{1}{\underline{\i}} \leqslant \varphi \leqslant 2 \implies f \leqslant 2g \land g \leqslant 2f$ в окрестности $b \implies$ из сходимости интеграла g следует сходимость $f \land$ наоборот.

Билет 23

Определение 23.1. $f \in C[a,b)$. $\int_{a}^{b} f$ абсолютно сходится, если $\int_{a}^{b} |f|$ сходится.

Теорема 23.1. $\int_a^b f$ сходится абсолютно $\int_a^b f$ сходится.

Доказательство. $f = f_{+} - f_{-}, |f| = f_{+} + f_{-}. |f| \geqslant f_{\pm} \geqslant 0$. Если $\int_{a}^{b} f$ сходится абсолютно $\Longrightarrow \int_{a}^{b} f$ сходится $\int_{a}^{b} f_{\pm}$ сходится $\Longrightarrow \int_{a}^{b} f = \int_{a}^{b} f_{+} - \int_{a}^{b} f_{-}$ сходящийся.

Теорема 23.2 (Признак Дирихле). $f, g \in C[a, +\infty)$. Если

- 1. f имеет ограниченную на $[a, +\infty]$ первообразную, то есть $\left|\int_a^y f(x) dx\right| \leqslant K \quad \forall y$.
- 2. q монотонна.
- $3. \lim_{x \to +\infty} g(x) = 0$

, то $\int\limits_{a}^{+\infty}f(x)g(x)\mathrm{d}x$ сходится.

Доказательство. Только для случая $g \in C^1[a; +\infty)$.

Надо доказать, что \exists конечный $\lim_{y \to +\infty} \int\limits_a^y f(x)g(x)\mathrm{d}x, \ F(y) \coloneqq \int\limits_a^y f(x)\mathrm{d}x.$

$$\int_{a}^{y} f(x)g(x)dx = \int_{a}^{y} F'(x)g(x)dx = F(x)g(x) \mid_{a}^{y} - \int_{a}^{y} F(x)g'(x)dx = F(y)g(y) - \int_{a}^{y} F(x)g'(x)dx$$

 $\lim_{y\to +\infty} F(y)g(y)=0$ — произведение бесконечно малой и ограниченной функции.

 $\int\limits_a^y F(x)g'(x)\mathrm{d}x$ имеет конечный lim, то есть $\int\limits_a^{+\infty} F(x)g'(x)\mathrm{d}x$ сходится.

Докажем, что он абсолютно сходится. $\int\limits_a^{+\infty}|F(x)||g'(x)|\mathrm{d}x,\;|F(x)||g'(x)|\leqslant K|g'(x)|=Kg'(x).$ $\int_a^{+\infty}g'(x)\mathrm{d}x=g\mid_a^{+\infty}=\lim_{y\to+\infty}g(y)-g(a)=-g(a)\implies\text{сходящийся.}$

Теорема 23.3 (Признае Абеля). $f,g\in C[a,+\infty]$, Если

- 1. $\int_{a}^{+\infty} f(x) dx$ сходится,
- 2. g монотонна,
- 3. q ограничена

Тогда $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. $2) + 3) \implies \exists l \in \mathbb{R} \coloneqq \lim_{x \to +\infty} g(x).$

Пусть $\widetilde{g}(x)\coloneqq g(x)-l\implies \lim_{x\to +\infty}\widetilde{g}(x)=0$ и \widetilde{g} монотонна.

Пусть $F(x) \coloneqq \int\limits_a^x f(t) \mathrm{d}t$. 1) \iff существует конечный предел $\lim_{x \to +\infty} F(x)$.

Тогда f и \widetilde{g} удовлетворяют условиям признака Дирихле $\Longrightarrow \int\limits_a^{+\infty} f(x)\widetilde{g}(x)\mathrm{d}x$ — сходится. Тогда:

$$\int_{a}^{+\infty} = \int_{a}^{+\infty} f(\widetilde{g} + l) = \int_{a}^{+\infty} f\widetilde{g} + l \int_{a}^{+\infty} f.$$

Где $\int\limits_a^{+\infty}f\widetilde{g}$ сходится по доказанному, а $\int\limits_a^{+\infty}f$ — по условию.

Билет 24

Утверждение 24.1. f — периодическая функция с периодом T. Тогда $\int_{a}^{a+T} f = \int_{b}^{b+T} f$

Доказательство. Картинка:

Добавить картинку. Альтернатива: посмотреть доски Храброва/пнуть меня.

$$\int_{a}^{a+kT} f = \int_{b-(k-1)T}^{a+T} f. \int_{a+kT}^{b+T} f = \int_{a+T}^{b-(k-1)T} f$$

Следствие. $f,g \in C[a;+\infty), f$ — периодическая с периодом T, g монотонная и $\int\limits_a^{+\infty} g(x) \mathrm{d}x$ расходится.

Тогда
$$\int\limits_{a}^{+\infty}fg$$
 сходится $\iff \int\limits_{a}^{a+T}f=0.$

Доказательство. \Leftarrow . $F(x) = \int\limits_a^x f$ — периодична с периодом T: $F(x+T) = \int\limits_a^{x+T} f = \int\limits_a^x f + \int\limits_x^{x+T} f = F(x)$. F — непрерывна и периодична \Longrightarrow ограничена \Longrightarrow $\int\limits_a^{+\infty} fg$ сходится по признаку Дирихле.

 \Rightarrow . Пусть $\int\limits_a^{a+T}f=:K
eq 0.$ $\widetilde{f}(x)=:f(x)-rac{K}{T}$ — периодична с периодом T. Тогда $\int\limits_a^{a+T}\widetilde{f}=\int\limits_a^{a+T}(f-rac{K}{T})=K-T\cdotrac{K}{T}=0$ \Longrightarrow $\int\limits_a^{+\infty}\widetilde{f}g$ сходится.

Тогда $\int\limits_a^{+\infty}fg=\int\limits_a^{+\infty}(\widetilde{f}+\frac{K}{T})g=\int\limits_a^{+\infty}\widetilde{f}g+\frac{K}{T}\int\limits_a^{+\infty}g\implies\int\limits_a^{+\infty}fg$ расходится как сумма сходящегося и расходящегося.

Пример. Рассмотрим $\int_{a}^{+\infty} \frac{\sin x}{x^{p}} dx.$

- 1. p>1 интеграл сходится абсолютно: $|\sin x|\leqslant 1 \implies \left|\frac{\sin x}{x^p}\right|\leqslant \frac{1}{x^p}$, а значит $\int\limits_a^{+\infty}\frac{\mathrm{d}x}{x^p}$ сходящийся.
- $2. \ 0 интеграл сходящийся, но не абсолютно. <math display="block">\int\limits_a^{+\infty} \frac{\mathrm{d}x}{x^p} \mathrm{расходится}, \ \frac{1}{x^p} \searrow 0. \ g(x) \coloneqq \frac{1}{x^p}, f(x) = \sin x. \int\limits_0^{2\pi} \sin x \mathrm{d}x = 0 \implies \int_1^{+\infty} \frac{\sin x}{x^p} \mathrm{d}x$ сходящийся.

Если взять $f(x) = |\sin x|$, то интеграл по периоду равен 4. Значит исходный интеграл расходится.

3. $p \leqslant 0$ интеграл расходится.

$$a_n \coloneqq \frac{\pi}{6} + 2\pi n, b_n \coloneqq \frac{5\pi}{6} + 2\pi n.$$
 Тогда $\int_{a_n}^{b_n} \frac{\sin x}{x^p} dx \geqslant \frac{1}{2} \int_{a_n}^{b_n} \frac{dx}{x^p} \geqslant \frac{1}{2} \int_{a_n}^{b_n} = \frac{b_n - a_n}{2} = \frac{\pi}{3}.$

Билет 25

Билет 26

Билет 27

Билет 28

Билет 29

- Билет 30
- Билет 31
- Билет 32
- Билет 33
- Билет 34
- Билет 35
- Билет 36
- Билет 37
- Билет 38
- Билет 39
- Билет 40

- Билет 41
- Билет 42
- Билет 43
- Билет 44
- Билет 45
- Билет 46
- Билет 47
- Билет 48
- Билет 49
- Билет 50
- Билет 51

- Билет 52
- Билет 53
- Билет 54
- Билет 55
- Билет 56
- Билет 57
- Билет 58
- Билет 59