Symbiotic Organisms Search

Winter 2021

Partial Courtesy of Dr. Doddy Prayogo

Basics of Symbiotic organisms search

- Introduced by Cheng and Prayogo in 2014
- Optimize continuous or real value problems
- Stochastic, population-based search
- Requires no algorithmic parameters

Cheng, M.-Y and Prayogo, D. (2014), "Symbiotic Organisms Search: A new metaheuristic optimization", Computers & Structures, 139, pp. 98–112.

http://140.118.5.112:85/SOS/

Dr. Prayogo

Prof. Cheng

Concepts (1)

- SOS iteratively a population of candidate solutions to promising areas in the search space in the process of seeking the optimal global solution.
- New solution generation is governed by imitating the biological interaction between two organisms in the ecosystem (symbiosis).
- Three phases that resemble the real-world biological interaction model are introduced: mutualism phase, commensalism phase, and parasitism phase.

Concepts (2)

Symbiosis

Natural organisms rarely live in isolation. Many of them rely on other species. Some may depend on another for its survival. This interaction is known as symbiosis.

	-	0	+
-	Competition		
0	Amensalism	Neutralism	
+	Parasitism	Commensalism	Mutualism

- = is being harmed, 0 = neutral, + = get benefit

Concepts (3)

Mutualism

Symbiotic relationship between organisms of different species when both benefit from the interaction.

- Example:
- Bee and Flower
- Rhinocero and oxpeckers

Concepts (4)

Commensalism

Symbiotic relationship between organisms of different species when one benefits but the other is neutral (unaffected).

- Example
- Clownfish and Sea Anemone
- Remora and Shark

Concepts (5)

Parasitism

Symbiotic relationship between organisms of different species when one benefits but the other is harmed.

- Example
- Cuckoo and other birds
- Malaria parasite and human

Flowchart

Initialization

- The initial population (ecosystem) is chosen randomly if nothing is known about the system.
- Assume a uniform probability distribution for all random decisions unless otherwise stated.
- It is usually required to have lower and upper bounds for every decision variables (organisms)

Mutualism

The mutualism symbiosis between organism i and organism j ($j \neq i$) is modeled as follows

```
X_{i, new} = X_{i, old} + rand[0,1] * (X_{best} - BF1 * Mutual Vector)
X_{j, new} = X_{j, old} + rand[0,1] * (X_{best} - BF2 * Mutual Vector)
where

Mutual Vector = mean (X_{i, old} + X_{j, old})
BF1 (Benefit Factor of organism i)= random value either 1 or 2
BF2 (Benefit Factor of organism j)= random value either 1 or 2
X_{i, old} = Old solution of Organism i
X_{j, old} = Old solution of Organism j
X_{i, new} = New solution of Organism i after mutualism interaction
X_{i, new} = New solution of Organism j after mutualism interaction
```

Commensalism

The commensalism symbiosis between organism i and organism j ($j \neq i$) as follows

$$X_{i, new} = X_{i, old} + rand[-1,1] * (X_{best} - X_{j, old})$$

Where:

 $X_{i, old}$ = Old solution of Organism i

 $X_{i, old}$ = Old solution of Organism j

 $X_{i, new}$ = New solution of Organism *i* after mutualism interaction

Greedy rule

• For both Mutualism and Commensalism, organisms are updated only if their new fitness is better than their pre-interaction fitness.

Parasitism

- Organism X_i is selected randomly from the ecosystem and serves as a host to the **Parasite_Vector**.
- Parasite_Vector is created in the search space by duplicating organism $\mathbf{X_i}$, then modifying the randomly selected dimensions using a random number.
- Parasite_Vector tries to replace X_i in the ecosystem.
- Both organisms are then evaluated to measure their fitness.
- If **Parasite_Vector** has a better fitness value, it will kill organism X_j and assume its position in the ecosystem.
- If the fitness value of X_j is better, X_j will have immunity from the parasite and the **Parasite_Vector** will no longer live in that ecosystem.

Loop

- Mutualism, Commensalism, and Parasitism continue until a stopping criterion is reached
- Stopping criterion
 - Number of iterations
 - Convergence
 - Computation time

Parameter setup

- The ecosystem size may be set between 20 to 50, according to the original paper.
- No algorithmic parameters (such as CR and MR for GA; w, c₁, c₂ for PSO)

Example (1)

- 2D Sphere function
- Minimize Σx^2

Example (2)

Initialization

Random location of organisms

```
X1 = [19, 75] \sim F(X1) (Fitness) =
                                      5896
X2 = [41, 22] \sim F(X2) (Fitness) =
                                      2165
X3 = [-40,30] \sim F(X3) (Fitness) =
                                      2500
X4 = [-10, -4] \sim F(X4) (Fitness) =
                                      116
X5 = [44, -51] \sim F(X5) (Fitness) =
                                      4537
X6 = [83, -30] \sim F(X6) (Fitness) =
                                      7789
X7 = [-22, -84] \sim F(X7) (Fitness) =
                                      7540
X8 = [-87, -79] \sim F(X8) (Fitness) =
                                      13810
```

Example (3)

Mutualism


```
Organism i \sim X1 = [19, 75],

F(X1) = 5896

Organism j \sim X2 = [41, 22],

F(X2) = 2165

MutualVector = Average (X1old + X2old)

= [30, 48.5]
```

```
Xinew= Xiold + rand[0,1] * (Xbest - BF1 * MutualVector)

X1new= [19, 75] + [0.83, 0.37]*([-10,-4] - 1*[30, 48.5]

= [19, 75] + [-33.2, -19.4]

= [-14.2, 55.6]

F(X1new) = 3290 better than F(X1old)
```

Xjnew= Xjold + rand[0,1] * (Xbest - BF2 * MutualVector)

X2new= [41, 22] + [0.07 0.21]*([-10,-4] - 2*[30, 48.5])

= [41, 22] + [-4.9, -21.2]

= [36.1, 0.8]

F(X2new) = 1304 better than F(X2old)

Application of Computational Intelligence in Engineering

Example (4)

Commensalism


```
F(X1) = 3290
X1= [-14.2, 55.6]
X3= [-40,30]
                F(X3) = 2500
```

```
Xinew= Xiold + rand[-1,1] * (Xbest -Xj)
X1new= [-14.2, 55.6] + [0.13, 0.87]
*([-10,-4] -[-40, 30])
     = [-14.2, 55.6] + [3.9, -29.58]
     = [-10.3, 26.0]
F(X1new) = 783 better than F(X1old)
```

Example (5)

Parasitism

$$X1 = [-10.3, 26]$$
 $F(X1) = 783$

$$X8 = [-87, -79]$$
 $F(X8) = 13810$

Parasite Vector = Xi mutated in a random dimension (1st dimension here)

ParasiteVector (PV) = [30, 26]

F(PV) = 1576 better than F(X8)

X8 will be vanished, PV will replace it as the new X8.

SOS Applications (1)

Benchmark functions

Benchmark functions

- SOS was compared with other algorithms using the result of 30 runs for every problem
- SOS found the global optimum value for 22 of the 26 functions and outperformed all the other algorithms (GA, PSO, DE).
- SOS was the only algorithm able to solve Dixon-Price and produced the best result of all on the exceptionally difficult Rosenbrock

SOS Applications (2)

• Structural engineering design optimizations

Conclusions

- SOS is simple and easy to program
- Suitable for continuous/real-valued domains
- No algorithmic parameters to adjust
- May be disadvantageous when the evaluation of objective function is time-consuming: it takes more than one evaluations per organism at each iteration
- Need some adjustments for solving discrete problems