PEM

F. Troncana, sotto la supervisione del prof. R. Zunino

TBD

0.1 Nozioni fondamentali

Definizione 0.1: Categoria e dualità

Una categoria C è una struttura munita di due classi: ob C e hom C, dette rispettivamente oggetti (o elementi) e morfismi (o mappe o freccie) tali che

- Ogni morfismo $f \in \text{hom } \mathcal{C}$ abbia associati due oggetti $A, B \in \text{ob } \mathcal{C}$ detti rispettivamente **dominio** e **codominio** di f, che verrà indicato come $f : A \to B$.
- Per ogni coppia di morfismi $f:A\to B$ e $g:B\to C$ sia definita la loro **composizione**, ovvero un morfismo $g\circ f:A\to C$ (spesso indicato solo con gf).
- Per ogni oggetto $X \in \text{ob}\,\mathcal{C}$ esista un morfismo $\text{id}_X \in \text{hom}\,\mathcal{C}$ detto *identità* di X tale che per ogni morfismo $f: A \to B$ valga $\text{id}_B f = f \text{id}_A = f$.
- Per ogni terna di morfismi componibili $f, g, h \in \text{hom } \mathcal{C}$, valga h(gf) = (hg)f =: hgf, ovvero la composizione sia **associativa**.

Fissati due oggetti $A, B \in \text{ob } \mathcal{C}$ denoteremo con hom(A, B) o $\mathcal{C}(A, B)$ la collezione dei morfismi $A \to B$ di $\text{hom } \mathcal{C}$.

Per ogni categoria \mathcal{C} è definita la sua *duale* (o opposta) \mathcal{C}^{op} , i cui oggetti sono gli stessi di \mathcal{C} e i cui morfismi sono quelli di \mathcal{C} ma invertiti di direzione, ovvero ad ogni $f:A\to B$ in \mathcal{C} corrisponde un $f^{op}:B\to A$ in \mathcal{C}^{op} . Una categoria \mathcal{C} si dice:

- Piccola se la classe hom \mathcal{C} è un insieme.
- Grande se non è piccola.
- Localmente piccola se, una volta fissati due oggetti $X, Y \in \text{ob } \mathcal{C}$, la classe hom(X, Y) è un insieme.

Osservazione 0.1

Banalmente:

- Le identià sono uniche.
- La categoria duale è essenzialmente unica e vale $(\mathcal{C}^{op})^{op} = \mathcal{C}$.
- Dato che ob \mathcal{C} inietta sempre in hom \mathcal{C} con la mappa $X \mapsto \mathrm{id}_X$, in generale la classe degli oggetti di una categoria non è una buona misura della sua grandezza.

Dimostrazione

Dimostriamo solo l'ultimo punto con un esempio, gli altri sono banali. Sia V la categoria formata da un unico oggetto \bullet e la cui classe dei morfismi corrisponde alla classe dei cardinali, dove la composizione di due morfismi è data dalla loro somma come cardinali.

Da ora in avanti, assumeremo sempre che le nostre categorie siano almeno localmente piccole per evitare *troppi* problemi di fondazione (anche se come vedremo rimarranno delle grandi criticità)

Definizione 0.2: Sapori di morfismi

Sia \mathcal{C} una categoria e sia $f:A\to B$ un morfismo. Esso può dirsi:

• *Monomorfismo* (o monico o mono) se la precomposizione è iniettiva, ovvero per ogni coppia di morfismi $g_1, g_2 : C \to A$ vale $fg_1 = fg_2 \Rightarrow g_1 = g_2$.

- **Epimorfismo** (o epico o epi) se la postcomposizione è iniettiva, ovvero se per ogni coppia di morfismi $g_1, g_2 : B \to C$ vale $g_1 f = g_2 f \Rightarrow g_1 = g_2$.
- Endomorfismo (o endo) se A = B.
- **Sezione** (o split mono) se ha un'inversa sinistra, ovvero se esiste un morfismo $g: B \to A$ tale che $gf = \mathrm{id}_A$.
- Retrazione (o split epi) se ha un'inversa destra, ovvero se esiste un morfismo $g: B \to A$ tale che $fg = \mathrm{id}_B$.
- *Isomorfismo* (o iso) se ha un'inversa destra e sinistra. In particolare, $A \in B$ si dicono *isomorfi* (attraverso f) e li indicheremo con $f : A \cong_{\mathcal{C}} B$ omettendo usualmente $f \circ \mathcal{C}$.
- Automorfismo (o auto) se è iso e endo.

Osservazione 0.2

Valgono le seguenti:

- Le sezioni sono mono.
- Le retrazioni sono epi.
- \bullet iso \Leftrightarrow split mono + epi \Leftrightarrow mono + split epi \Rightarrow epi e mono,ma nell'ultimo caso non vale l'implicazione inversa.
- Tutte le inverse sono uniche quando esistono.
- Un mono è un epi nella categoria opposta e viceversa.

Dimostrazione

Forniamo solo due esempi di morfismi che sono epici e monici ma non isomorfismi (le altre verifiche sono assolutamente automatiche):

- Poniamoci nella categoria **Haus** degli spazi topologici di Hausdorff i cui morfismi sono le funzioni continue tra questi e consideriamo l'inclusione $\iota:[0,1]\cap\mathbb{Q}\hookrightarrow[0,1]$ (entrambi con la topologia euclidea); questa è chiaramente mono in quanto iniettiva, ed è epi in quanto una funzione continua in **Haus** è completamente determinata dal suo valore su un sottospazio denso, ma non è iso dato che non è suriettiva.
- Consideriamo la categoria

Dato che a destra o sinistra possiamo comporre solo con l'identità, f è sia mono che epi, ma non è iso in quanto non ha inversa.

Definizione 0.3: Funtore

Siano \mathcal{C} e \mathcal{D} due categorie. Un *funtore covariante* $F:\mathcal{C}\to\mathcal{D}$ consiste in due mappe $F:\mathsf{ob}\,\mathcal{C}\to\mathsf{ob}\,\mathcal{D}$ e $F:\mathsf{hom}\,\mathcal{C}\to\mathsf{hom}\,\mathcal{D}$ che rispettino la composizione, ovvero:

- Per ogni morfismo $f: X \to Y$ vale $Ff: FX \to FY$.
- Per ogni oggetto $X \in \text{ob } \mathcal{C}$ vale $F \operatorname{id}_X = \operatorname{id}_{FX}$.
- Per ogni coppia di morfismi componibili f, g in hom C vale F(gf) = FgFf.

Un funtore controvariante da C a D è un funtore covariante $F: C^{op} \to D$.

Un funtore si dice:

- **Fedele** se per ogni $X, Y \in \text{ob } \mathcal{C}$ la sua restrizione $F_{X,Y} : \mathcal{C}(X,Y) \to \mathcal{D}(FX,FY)$ è iniettiva.
- **Pieno** se per ogni $X, Y \in \text{ob } \mathcal{C}$ la sua restrizione $F_{X,Y} : \mathcal{C}(X,Y) \to \mathcal{D}(FX,FY)$ è suriettiva.
- Pienamente fedele se è pieno e fedele.
- Essenzialmente suriettivo sugli oggetti se per ogni oggetto $Y \in \mathcal{D}$ esiste un oggetto $X \in \mathcal{C}$ tale che $FX \cong_{\mathcal{D}} Y$

Proposizione 0.1

Sia $F:\mathcal{C}\to\mathcal{D}$ un funtore di qualsiasi varianza. Se $f:X\to Y$ è un isomorfismo, allora $Ff:FX\to FY$ è un isomorfismo

Se F è pienamente fedele, vale anche l'implicazione inversa.

Dimostrazione

La prima implicazione è banale, dunque assumiamo che F sia pienamente fedele e $g:FX\to FY$ sia un isomorfismo; dato che la mappa $\varphi:=F_{X,Y}:\mathcal{C}(X,Y)\to\mathcal{D}(FX,FY)$ è una biezione, esiste $f:X\to Y$ tale che $\varphi(f)=g$, dunque definiamo $f':=\varphi^{-1}(g^{-1})$. Dato che F è un funtore, vale

$$f'f=\varphi^{-1}(\varphi(f'f))=\varphi^{-1}(\varphi(f')\varphi(f))=\varphi^{-1}(g^{-1}g)=\varphi^{-1}(\mathrm{id}_{FX})=\mathrm{id}_X\ ,$$

Dimostrare che f' è anche l'inversa destra di f è assolutamente analogo, così come il caso controvariante.

1 Prodotti

Ci sono (almeno) tre definizioni (quasi) equivalenti del prodotto in una categoria. La prima

1.1 Proprietà universale

Definizione 1.1: Prodotto tramite proprietà universale

Sia ${\mathcal C}$ una categoria e siano $X,Y\in {\rm ob}\,{\mathcal C}$ due oggetti.

Si dice **prodotto** di X e Y in \mathcal{C} un oggetto $X \times Y$ munito di due morfismi $\pi_X : X \times Y \to X$ e $\pi_Y : X \times Y \to Y$ detti **proiezioni** tali che per ogni oggetto Z e ogni coppia di morfismi $f : Z \to X$ e $g : Z \to Y$ esista un unico morfismo $f \times g : Z \to X \times Y$ tale che il seguente diagramma commuti:

1.2 Categoria dei coni

Definizione 1.2: Cono

Sia $\mathcal C$ una categoria e sia J un diagramma commutativo in $\mathcal C.$

Si dice **cono** su J un oggetto $C \in \mathcal{C}$ con una collezione di morfismi $\{\rho_j : C \to j\}_{j \in J}$ tale che per ogni morfismo $f : X \to Y$ in J, il seguente diagramma commuti:

La collezione dei coni su un diagramma J e dei morfismi tra loro forma una categoria, detta Cone(J): i suoi oggetti sono i coni $(C, \{\rho_j\}_{j\in J})$ e i suoi morfismi sono definiti da

$$hom((C, \{\rho_j\}_{j \in J}), (C', \{\rho_j'\}_{j \in J})) = \{m : C \to C' : \forall j \in J, \rho_j = \rho_j' m\}$$

Questi sono detti morfismi *medianti*.

Definizione 1.3: Prodotto tramite coni

Sia \mathcal{C} una categoria e siano $X, Y \in \text{ob } \mathcal{C}$ due oggetti. Si dice **prodotto** di X e Y l'oggetto $X \times Y$ di \mathcal{C} tale che $(X \times Y, \{\pi_X, \pi_Y\})$ sia l'oggetto iniziale di **Cone** $(\{X, Y\})$, ovvero della categoria dei coni sul diagramma discreto X, Y.

1.3 Aggiunzioni

Prima di dare la prossima definizione, osserviamo che questa catena di biezioni è verificata (e naturale in $A, B \in C$)

$$\underbrace{\frac{\hom_{\mathcal{C}}(A,B\times C)}{\mathcal{C}^{\mathsf{op}}\times\mathcal{C}\times\mathcal{C}\to\mathsf{Set}}}\cong_{\mathsf{Set}} \hom_{\mathcal{C}}(A,B)\times \hom_{\mathcal{C}}(A,C)$$

$$\cong_{\mathsf{Set}} \hom_{\mathcal{C}^2}((A,A),(B,C))$$

$$\cong_{\mathsf{Set}} \hom_{\mathcal{C}^2}(\Delta A,(B,C))$$

Dove $\Delta: \mathcal{C} \to \mathcal{C}^2$ è il funtore diagonale, che manda un oggetto A nell'oggetto (A,A) e un morfismo f nel morfismo (f,f): abbiamo ottenuto dunque che $\hom_{\mathcal{C}}(A,B\times C)\cong_{\mathbf{Set}} \hom(\Delta A,(B,C))$, ovvero che interpretando il prodotto come un funtore $\times: \mathcal{C}^2 \to \mathcal{C}$ questo è aggiunto destro al funtore diagonale, ovvero $\Delta \dashv \times$, quindi definiamo

Definizione 1.4: Prodotto III

Sia \mathcal{C} una categoria e siano $X,Y\in \text{ob }\mathcal{C}$ due oggetti. Si dice **prodotto** di X e Y l'immagine della coppia $(X,Y)\in \text{ob }\mathcal{C}^2$ attraverso un funtore Π aggiunto destro al funtore Δ .

Prima di procedere con questa definizione però dobbiamo dimostrare alcune cosine: innanzitutto ci serve che il prodotto sia almeno essenzialmente unico

Lemma 1.1: Essenziale unicità degli aggiunti

Siano \mathcal{C}, \mathcal{D} due categorie e siano $F: \mathcal{C} \to \mathcal{D}$ e $G_1, G_2: \mathcal{D} \to \mathcal{C}$ funtori tali che $F \dashv G_1$ e $F \dashv G_2$ oppure $G_1 \dashv F$ e $G_2 \dashv F$.

Allora $G_1 \cong G_2$.

Dimostrazione