ECE353 Lectures

Hanhee Lee

January 28, 2025

Contents

1	Pro	logue
	1.1	Setup of Planning Problems
	1.2	Components of a Robotic System
		1.2.1 Overview (Robots, the Environment)
		1.2.2 Robot (Sensors, Actuators, the Brain)
		1.2.3 Brain (Tracker, Planner, Memory)
		1.2.4 Environment (Physics, State)
	1.3	Equations of a Robotic System
	1.0	1.3.1 Sensing
		1.3.2 Tracking
		1.3.3 Planning
		1.3.4 Acting
		1.3.5 Simulating
		1.5.5 Simulating
2	Sea	rch Algorithms
	2.1	Modifications to Search Algorithms:
	2.2	Setup
	$\frac{2.2}{2.3}$	Search Graphs
	$\frac{2.3}{2.4}$	Path Trees
	$\frac{2.4}{2.5}$	Search Algorithms
	$\frac{2.5}{2.6}$	Modifications to Search Algorithms
	2.0	
		2.6.2 Iterative Deepening
		2.6.3 Cost-Limiting
		2.6.4 Iterative-Inflating
		2.6.5 Intra-Path Cycle Checking
		2.6.6 Inter-Path Cycle Checking
	2.7	Informed Search Algorithms
		2.7.1 Estimated Cost
		2.7.2 Admissible
		2.7.3 Consistent
		2.7.4 Domination
		2.7.5 Combining Heuristics
		2.7.6 Anytime Search Algorithms
	2.8	Canonical Examples
3		nstraint Satisfaction Problems 2
		Setup of CSP
	3.2	Assignment
	3.3	Consistent
		3.3.1 Complete Assignment
		3.3.2 Partial Assignment
	3.4	
		3.4.1 Edge/Arc Consistent
	3.5	Setup of CSP

4	PAC Learning 4.1 Classification vs. Regression Problems 4.2 Feature Spaces 4.3 Feasibility of Learning 4.3.1 Probably Approximately Correct (PAC) Estimations 4.3.2 Hoeffding's Inequality 4.3.3 PAC Learning
5	Decision Trees 5.1 Decision Trees
	5.1.1 Structure
	5.2 Building a Decision Tree: The General Case

1 Prologue

Summary:

• This course will focus on planning

• Variables:

- State: $\mathbf{x}(t)$

- Action(s): $\mathbf{u}(t)$

– Measurement: $\mathbf{y}_k^{(i)}$

– Context: $\mathbf{z}_k^{(i)}$

– Old Context: $\mathbf{z}_{k-1}^{(i)}$

– Plan: $\mathbf{p}_k^{(i)}$ – (i): Ith agent

• Conversion to DT is necessary because robots are digitalized system and then converted back to CT for execution.

Setup of Planning Problems 1.1

Definition: In a planning problem, it is assumed that:

- ullet the environment is representable using a discrete set of states, ${\mathcal S}$
- for each state, $s \in \mathcal{S}$, each agent, i, has a discrete set of actions, $\mathcal{A}_i(s)$, with $\mathcal{A}(s) := \times_i \mathcal{A}_i(s)$ (joint action set)
- a move is any tuple, (s, a), where $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- a transition is any 3-tuple, (s, a, s'), where $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
 - the transition resulting from a move may be deterministic/stochastic
- $\operatorname{rwd}_i(s, a, s')$ is agent i's reward for the transition, (s, a, s')
- a path is any sequence of transitions of the form

$$p = \langle (s^{(0)}, a^{(1)}, s^{(1)}), (s^{(1)}, a^{(2)}, s^{(2)}), \dots \rangle$$

• each agent wants to realize a path that maximizes its own reward

Warning: A(s) is the joint action set of all agents at state s.

1.2 Components of a Robotic System

Summary:

Figure 1: Components of a Robotic System (Words)

Figure 2: Components of a Robotic System (Math)

1.2.1 Overview (Robots, the Environment)

Definition:

Figure 3: Overview (Robots, the Environment)

Notes:

 \bullet Environment \to previous actions + current state \to robot \to new action \to environment

1.2.2 Robot (Sensors, Actuators, the Brain)

Definition:

Figure 4: Robot (Sensors, Actuators, the Brain)

Notes:

- \bullet Measurements can be noisy and inaccurate if not a perfect sensor.
- Measurements go into the brain which can create a plan.

1.2.3 Brain (Tracker, Planner, Memory)

Definition:

Figure 5: Brain (Tracker, Planner, Memory)

Notes:

- The tracker takes in the measurements and old context and updates the context.
- The planner takes in the context and creates a plan.
- The memory stores the context.

1.2.4 Environment (Physics, State)

Definition:

Figure 6: Environment (Physics, State)

1.3 Equations of a Robotic System

1.3.1 Sensing

Definition: Take a measurement:

$$\mathbf{y}^{(i)}(t) = \operatorname{sns}^{(i)}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Convert the measurement into a discrete-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{y}_k^{(i)} = \mathrm{dt}(\mathbf{y}^{(i)}(t), t, T^{(i)})$$

Figure 7: Sensing

1.3.2 Tracking

Definition: Track (update) the context:

$$\mathbf{z}_k^{(i)} = \operatorname{trk}^{(i)} \left(\mathbf{z}_{k-1}^{(i)}, \mathbf{y}_k^{(i)}, k \right)$$

Figure 8: Tracking

1.3.3 Planning

Definition: Make a plan:

Figure 9: Planning

1.3.4 Acting

Definition: Convert the plan into a continuous-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{p}(t) = \operatorname{ct}(\mathbf{p}_k^{(i)}, t, T^{(i)})$$

Execute the plan:

$$\mathbf{u}^{(i)}(t) = \cot^{(i)}(\mathbf{p}^{(i)}(t), t)$$

Figure 10: Acting

1.3.5 Simulating

Definition: Simulate the environment's response:

$$\dot{\mathbf{x}}(t) = \text{phy}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Figure 11: Simulating

2 Search Algorithms

Summary:

Alg. Halting Sound Complete Optimal Time Space

Choose $REMOVE(\cdot)$ so algo. exhibits the characteristics:

- Halting: Terminates after finitely many nodes explored | Sound: Returned (possibly NULL) soln. is correct
- Complete: Halting & sound when a non-NULL soln. exists | Opt.: Returns an opt. soln. when mult. exist
- Time: Minimizes nodes explored/expanded/exported | Space: Minimizes nodes simultaneously open

Choose REMOVE(·) so algo. exhibits the characteristics for as many path trees as possible.

- b ($b < \infty$): Branching factor (the maximum number of children a node can have)
- d: Depth (the length of the longest path), l^* : Length of the shortest solution
- c^* : Cost of the cheapest solution, ϵ : Cost of the cheapest edge

Uninformed Search Algorithms

BFS $d < \infty$, non-NULL always always constant cst b^{l^*} b^{l^*+1}

• Explores the least-recently expanded open node first.

DFS $d < \infty$ always $d < \infty$ never b^d bd

• Explores the most-recently expanded open node first.

IDDFS always always constant cst b^{l^*} bl^*

• Same as DFS but with iterative deepening.

CFS $d < \infty$, non-NULL yes $\epsilon > 0$ $\epsilon > 0$ $b^{c^*/\epsilon}$ $b^{c^*/\epsilon+1}$

• Explores the cheapest open node first.

Informed Search Algorithms

HFS $d < \infty$ never never - -

• Explores the node with the smallest hur-value first, ecst(p) = hur(p)

 \mathbf{A}^* hur admissible, $\epsilon > 0$ always hur admissible, $\epsilon > 0$ hur admissible, $\epsilon > 0$ $O\left(b^{c^*/\epsilon}\right)$ $O\left(b^{c^*/\epsilon+1}\right)$

• Explores the node with the smallest ecst-value first, $\operatorname{ecst}(p) = \operatorname{cst}(p) + \operatorname{hur}(p)$

 IIA^* always always always always b^{l^*} bl^*

• Same as A* but with iterative inflating on ecst.

 $\mathbf{W}\!\mathbf{A}^*$ - - - - - - - - -

- Same as A* but $\operatorname{ecst}(s) = \operatorname{wcst}(s) + (1 w)\operatorname{hur}(s) \text{ w}/w \in [0, 1]$
- w = 0: HFS, w = 0.5: A*, w = 1: CFS, iteratively increasing w from 0 to 1: anytime version of WA^*

2.1 Modifications to Search Algorithms:

Summary:

Modifications

Depth-Limiting

 \bullet Enforce a depth limit, $d_{\rm max},$ to any search algorithm.

Iterative-Deepening

• Iteratively increase the depth-limit to any search algorithm w/ depth-limiting.

Cost-Limiting

 \bullet Enforce a cost limit of $c_{\rm max}$ to any search algorithm.

Iterative Inflating

• Iteratively increase the cost limit, c_{max} , to any search algorithm w/ cost-limiting.

Intra-Path Cycle Checking

• Do not expand a path if it is cyclic.

Inter-Path Cycle Checking

• Do not expand a path if its destination is that of an explored path.

2.2 Setup

Definition: In a search problem, it is assumed that:

- There is only one agent (us).
- For each state, $s \in S$, we have a discrete set of actions, $\mathcal{A}(s)$.
- The transition resulting from a move, (s, a), is deterministic; the resulting state is tr(s, a).
- cst(s, a, tr(s, a)) is our cost for the transition, (s, a, tr(s, a)).
- We want to realize a path that minimizes our cost.

A search problem may have no solutions, in which case, we define the solution as NULL.

2.3 Search Graphs

Definition: In a search graph (a graph representing a search problem):

- S is defined by the vertices.
- \mathcal{G} is a subset of the vertices.
- $s^{(0)}$ is some vertex.
- $tr(\cdot, \cdot)$ and \mathcal{T} are defined by the edges.
- $cst(\cdot, \cdot, \cdot)$ is defined by the edge weights.

2.4 Path Trees

Definition: A search algorithm explores a tree of possible paths.

- In such a tree, each node represents the path from the root to itself.
 - The node may also include other info (such as the path's origin, cost, etc).

2.5 Search Algorithms

Definition: All search algorithms follow the template below:

 \bullet $\langle \rangle$ is the empty path, and 0 is the cost of the empty path.

```
procedure SEARCH(\mathcal{O})

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow Remove(\mathcal{O})

if \mathsf{DST}(n) \in \mathcal{G} then

return n

for n' \in \mathsf{CHL}(n) do

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCH(\mathcal{O})

procedure SEARCH(\mathcal{O})

the search algorithm failed to find a path to a goal by "explore" a node n

the search algorithm found a path to a goal by "expand" n and "export" its children

procedure SEARCH(\mathcal{O})
```

- Explore: Remove a node from the open set.
- Exapnd: Generate the children of the node.
- Export: Add the children to the open set.

Warning: The key difference is in the order that $Remove(\cdot)$ removes nodes.

2.6 Modifications to Search Algorithms

2.6.1 Depth-Limiting

```
Definition:
   procedure SEARCHDL(\mathcal{O}, d_{\text{max}}):
          if \mathcal{O}=\emptyset then
                 return NULL

    b the search algorithm failed to find a path to a goal

          n \leftarrow \mathtt{REMOVE}(\mathcal{O})
                                                                                                                                                     \triangleright "explore" a node, n
          if \mathtt{dst}(n) \in \mathcal{G} then
                 {\tt return}\ n
                                                                                                                \, \triangleright \, the search algorithm found a path to a goal
          for n' \in \operatorname{chl}(n) do
                                                                                                                           \triangleright "expand" n and "export" its children
                  if len(n') \leq d_{\max} then
                                                                                                                                        \triangleright unless the child is too long
                         \mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
           SEARCHDL (\mathcal{O}, d_{\text{max}})
```

2.6.2 Iterative Deepening

Warning: Increasing d_{max} can be done in different ways.

2.6.3 Cost-Limiting

```
Definition:
   procedure SEARCHCL(\mathcal{O}, c_{\text{max}}):
           if \mathcal{O}=\emptyset then
                                                                                                    \,\triangleright\, the search algorithm failed to find a path to a goal
                 return NULL
          n \leftarrow \mathtt{REMOVE}(\mathcal{O})
                                                                                                                                                         \triangleright "explore" a node, n
           if \mathtt{dst}(n) \in \mathcal{G} then
                 {\tt return}\ n
                                                                                                                   \triangleright the search algorithm found a path to a goal
                                                                                                                              \triangleright "expand" n and "export" its children
           for n' \in \operatorname{chl}(n) do
                  if \operatorname{cst}(n') \leq c_{\max} then
                                                                                                                                   \triangleright unless the child is too expensive
                          \mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
           SEARCHCL(\mathcal{O}, c_{\text{max}})
```

2.6.4 Iterative-Inflating

Warning: Increasing c_{max} can be done in different ways.

2.6.5 Intra-Path Cycle Checking

2.6.6 Inter-Path Cycle Checking

SEARCH(\mathcal{O} , \mathcal{C})

```
Definition:
   procedure SEARCH(\mathcal{O}, \mathcal{C}):
          if \mathcal{O}=\emptyset then
                  return NULL
          n \leftarrow \mathtt{REMOVE}(\mathcal{O})
           \mathcal{C} \leftarrow \mathcal{C} \cup \{n\}
                                                                                                                                                \triangleright add n to the closed set
           if \mathtt{dst}(n) \in \mathcal{G} then
                  {\tt return}\ n
           for n'\in \operatorname{chl}(n) do
                                                                                                                           if n' \notin \mathcal{C} then

    □ unless the child's destination is closed

                         \mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
           SEARCH(\mathcal{O}, \mathcal{C})
and then call the algorithm as follows:
_{1}|\mathcal{O}\leftarrow\{(\langle\rangle,0)\}
   C \leftarrow \emptyset
                                                                                                                             ▷ initialize a set of closed vertices
```

2.7 Informed Search Algorithms

2.7.1 Estimated Cost

Definition: $ecst(\cdot)$: estimate of the total cost to a goal given a path, p, based on:

- cst(p): Cost of path p
- hur: $S \to \mathbb{R}_+$: Estimate of the extra cost needed to get to a goal from dst(p)
 - hur(s) estimates the cost to get to \mathcal{G} from s and hur(p) means hur(dst(p)).

2.7.2 Admissible

Definition: A heuristic, $hur(\cdot)$, is said to be **admissible** if

$$hur(s) \le hur^*(s)$$

for all $s \in \mathcal{S}$ and

$$hur(s) = 0$$

for all $s \in \mathcal{G}$.

2.7.3 Consistent

Definition: A heuristic, $hur(\cdot)$, is said to be **consistent** if

$$\underbrace{\operatorname{hur}(s) - \operatorname{hur}(\operatorname{tr}(s,a))}_{\text{estimated cost of the transition }(s,a,\operatorname{tr}(s,a))} \leq \underbrace{\operatorname{cst}(s,a,\operatorname{tr}(s,a))}_{\text{true cost of the transition, }(s,a,\operatorname{tr}(s,a))}$$

for all $s \in \mathcal{S}$, and $a \in \mathcal{A}(s)$, and

$$hur(s) = 0$$

for all $s \in \mathcal{G}$.

2.7.4 Domination

Definition: If hur_1 and hur_2 are admissible, then:

• hur₁ strongly dominates hur₂ if for all $s \in \mathcal{S} \setminus \mathcal{G}$:

$$hur_1(s) > hur_2(s)$$

• hur₁ weakly dominates hur₂ if for all $s \in \mathcal{S}$:

$$hur_1(s) \ge hur_2(s)$$

and for some $s \in \mathcal{S}$:

$$hur_1(s) > hur_2(s)$$

2.7.5 Combining Heuristics

Definition: If $\{\operatorname{hur}_k(\cdot)\}_k$ are admissible (resp. consistent), then $\max_k\{\operatorname{hur}_k\}(\cdot)$ is also admissible (resp. consistent).

Definition: If $hur_{max} \equiv max\{hur_1, hur_2\}$, then if hur_k is consistent:

$$\operatorname{hur}_k(s) - \operatorname{hur}_k(\operatorname{tr}(s,a)) \le \operatorname{cst}(s,a,\operatorname{tr}(s,a))$$

$$\operatorname{hur_{max}}(s) = \operatorname{hur_{max}}(\operatorname{tr}(s, a)) - \operatorname{cst}^*(s, a, \operatorname{tr}(s, a))$$

2.7.6 Anytime Search Algorithms

Definition: An **anytime algorithm** finds a solution quickly (even if it is sub-optimal), and then iteratively improves it (if time permits).

2.8 Canonical Examples

Process: How to setup a search problem?

- 1. Givne a search graph, we need to define the following:
 - S: set of vertices
 - \mathcal{G} : goal states (subset of \mathcal{S})
 - $s^{(0)}$: initial state
 - \mathcal{T} : set of edges (defined by $\operatorname{tr}(\cdot,\cdot)$)
 - $-\operatorname{tr}(\cdot,\cdot)$: transition function
 - $cst(\cdot, \cdot, \cdot)$: cost function (defined by edge weights)

Example:

Figure 12

Figure 13

Example:

His energy consumption for a given step depends on the terrain transition.

Figure 14

Figure 15

- $S = \{0, \dots, 4\}^2$ $G = \left\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$ $s^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Process: How to setup a path tree? 1. Start at $s^{(0)}$

- 2. Choose a path until you reach a goal state.
- 3. Repeat until you have found all paths (probably infinite).

Example: 6 Figure 16

Figure 17

Process: When to use each algorithm?

- 1. Find properties needed for the problem and match them to the characteristics of the algorithm.
- 2. Choose the algorithm that best matches the properties.
 - BFS:
 - DFS:
 - IDDFS:
 - CFS:
 - A*:

Example:

Example:

Figure 18

Process: BFS

- 1. Start at s_0
- 2. Expand all neighboring nodes of the current node and add them to the open set (queue).
- 3. Remove the current node from the open set and mark it as visited.
- 4. Repeat steps 2 and 3 until the goal state is reached or the open set is empty.

Example: BFS

Path	Open Set
	$\{A\}$
A	$\{B, C, D\}$
AB	$\{C, D, E\}$
ABC	$\{D, E\}$
ABCD	$\{E\}$
ABCDE	{}

Process: DFS

- 1. Start at s_0 (initial state).
- 2. Push the initial node onto the stack.
- 3. Pop a node from the stack and expand it.
- 4. Push all unvisited children of the current node onto the stack.
- 5. Repeat steps 3 and 4 until the goal state is reached or the stack is empty.

Example: DFS

Path	Open Set
	$\{A\}$
A	$\{B,C,D\}$
AD	$\{B,C,E\}$
ADE	$\{C,B\}$

Process: IDDFS

- 1. Start with a depth limit of 0.
- 2. Perform Depth-First Search (DFS) up to the current depth limit.
- 3. If the goal state is not reached and there are unexplored nodes, increment the depth limit and repeat step 2.
- 4. Continue until the goal state is found or all nodes are explored.

Example: IDDFS

Depth	Path	Open Set
0		$\{A\}$
0	A	{}
1	A	$\{B, C, D\}$
1	AB	$\{C,D\}$
1	AC	$\{D\}$
1	AD	{}
2	AD	$\{E\}$
2	ADE	{}

Process: CFS

- 1. Start at s_0 (initial state).
- 2. Initialize the open set (priority queue) with the initial state and its cost.
- 3. Remove the node with the lowest cost from the open set.
- 4. Expand the node and add all unvisited neighbors to the open set with their cumulative costs.
- 5. Repeat steps 3 and 4 until the goal state is reached or the open set is empty.

Example: CFS

Path	Open Set
A AB ABC $ABCE$	$ \begin{array}{l} \{A \mid 0\} \\ \{AB \mid 2, \ AC \mid 4, \ AD \mid 6\} \\ \{AC \mid 4, \ AD \mid 6, \ ABC \mid 3\} \\ \{AC \mid 4, \ AD \mid 6, \ ABCE \mid 5, \ ABCD \mid 6\} \\ \{AC \mid 4, \ AD \mid 6, \ ABCD \mid 6\} \end{array} $

Warning:

• How to perform shortcut?

Process: HFS

- 1. Start at s_0 (initial state).
- 2. Initialize the open set with the initial state and its heuristic value.
- 3. Remove the node with the lowest heuristic value from the open set.
- 4. Expand the node and add all unvisited neighbors to the open set with their heuristic values.
- 5. Repeat steps 3 and 4 until the goal state is reached or the open set is empty.

Example: HFS

Path	Open Set	
	$\{A \mid 3\}$	
A	$\{AB \mid 2, AC \mid 1, AD \mid 1\}$	
AC	$\{AB \mid 2, AD \mid 1, ACE \mid 0\}$	
ACE	$\{AB \mid 2, AD \mid 1\}$	

Process: A*

- 1. Start at s_0
- 2. Choose path in open set that gives lowest $\operatorname{esct}(p) = \operatorname{cst}(p) + \operatorname{hur}(p)$.
- 3. Expand and export children onto open set.
- 4. Repeat until goal state is reached.

Example: A^*

Path	Open Set
	$\{A \mid 3\}$
A	$\{AB \mid 2+2, AC \mid 4+1, AD \mid 6+1\}$
AB	$\{AC \mid 5, AD \mid 7, ABC \mid 3+1, ABA \text{ intra}\}$
ABC	$\{AC \mid 5, AD \mid 7, ABCD \mid 6+1, ABCE \mid 5+0\}$
AC	$\{AD \mid 7, ABCD \mid 7, ABCE \mid 5, ACD \mid 7+1, ACE \mid 6+0\}$
ABCE	$\{AD \mid 7, \ ABCD \mid 7, \ ACD \mid 8, \ ACE \mid 6\}$

Example: IIA*

Example: WA*

Process: How to Prove Consistent/Admissible Given a Search Graph?

Admissible:

- 1. Given hur(s) and search graph with cst(s, a, tr(s, a)) or rwd(s, a, tr(s, a)). If consistent, then it is admissible.
- 2. Check $\forall s \in \mathcal{G}$, hur(s) = 0. If not, then it is not admissible.
- 3. For each $s \in \mathcal{S}$, calculate hur*(s) (i.e. actual cost of optimal soln.) using the search graph.
 - (a) Start at s and choose path that gives the lowest cost or highest reward to $s \in \mathcal{G}$.
- 4. Check if $\operatorname{hur}(s) \leq \operatorname{hur}^*(s) \ \forall s \in \mathcal{S}$. If not, then it is not admissible.
- 5. Repeat $\forall s \in \mathcal{S}$.
- 6. If all are true, then it is admissible.

Consistent:

- 1. Given hur(s) and search graph with cst(s, a, tr(s, a)) or rwd(s, a, tr(s, a)).
- 2. Check $\forall s \in \mathcal{G}$, hur(s) = 0. If not, then it is not consistent.
- 3. For each $s \in \mathcal{S}$, calculate hur(s) hur(tr(s, a)).
 - (a) check if it is $\leq \operatorname{cst}(s, a, \operatorname{tr}(s, a))$ or $\geq \operatorname{rwd}(s, a, \operatorname{tr}(s, a))$. If not, then it is not consistent.
 - (b) Repeat $\forall a \in \mathcal{A}(s)$
- 4. Repeat $\forall s \in \mathcal{S}$.
- 5. If all are true, then it is consistent.

Warning: Be careful of bidirectional edges be for consistency you need compute the cost of the heuristic edge in both directions.

Example:

Figure 19: Jungle $(s^{(0)})$, Desert, Swamp, Mountain, Plains (Goal)

Admissible:

- 1. s =Plains: hur(Plains) = 0
- 2. s = Jungle: hur(Jungle) = $3 \le hur^*(Jungle) = 2 + 1 + 2 = 5$
- 3. s =**Desert:** $hur(Desert) = 2 \le hur^*(Desert) = 1 + 2$
- 4. $s = \mathbf{Swamp}$: $\operatorname{hur}(\operatorname{Swamp}) = 1 \le \operatorname{hur}^*(\operatorname{Swamp}) = 2$
- 5. $s = Mountain: hur(Mountain) = 1 \le hur^*(Mountain) = 1$
- 6. Therefore, it is admissible.

Consistent:

- 1. s =Plains: hur(Plains) = 0
- 2. s =Jungle:
 - (a) $hur(Jungle) hur(Desert) = 3 2 = 1 \le cst(Jungle, \cdot, Desert) = 2$
 - (b) $hur(Jungle) hur(Swamp) = 3 1 = 2 \le cst(Jungle, \cdot, Swamp) = 4$
 - (c) $hur(Jungle) hur(Mountain) = 3 1 = 2 \le cst(Jungle, \cdot, Mountain) = 6$
- 3. s =**Desert:**
 - (a) $hur(Desert) hur(Jungle) = 2 3 = -1 \le cst(Desert, \cdot, Jungle) = 2$
 - (b) $hur(Desert) hur(Swamp) = 2 1 = 1 \le cst(Desert, \cdot, Swamp) = 1$
- 4. $s = \mathbf{Swamp}$:
 - (a) $hur(Swamp) hur(Mountain) = 1 1 = 0 \le cst(Swamp, \cdot, Mountain) = 3$

- (b) $hur(Swamp) hur(Plains) = 1 0 = 1 \le cst(Swamp, \cdot, Plains) = 2$
- 5. s = Mountain:
 - (a) $hur(Mountain) hur(Jungle) = 1 3 = -2 \le cst(Mountain, \cdot, Desert) = 6$
 - (b) $\operatorname{hur}(\operatorname{Mountain}) \operatorname{hur}(\operatorname{Plains}) = 1 0 = 1 \le \operatorname{cst}(\operatorname{Mountain}, \cdot, \operatorname{Plains}) = 1$
- 6. Therefore, it is consistent.

Process: How to Design Heuristic via Problem Relaxation?

- 1. Make an assumption to simplify the problem as a relaxed problem.
- 2. Find the cost of the optimal solution of the relaxed problem, $\operatorname{cst}_{\operatorname{rel}}(s)$.
- 3. HOW TO FIND THE COST OF THE OPTIMAL SOLUTION?

Example:

Figure 20

3 Constraint Satisfaction Problems

3.1 Setup of CSP

Definition: A constraint satisfaction problem (CSP) consists of:

- a set of variables, \mathcal{V} , where the domain of $V \in \mathcal{V}$ is dom(V)
- a set of **constraints**, C, where the scope of $C \in C$ is $scp(C) \subseteq V$

3.2 Assignment

Definition: An **assignment** is a set of pairs, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}$, where $v\in \text{dom}(V)$, and $\tilde{\mathcal{V}}\subseteq\mathcal{V}$. It is **complete** if $\tilde{\mathcal{V}}=\mathcal{V}$, and **partial** otherwise.

3.3 Consistent

3.3.1 Complete Assignment

Definition: A complete assignment, A, is **consistent** if it satisfies every constraint \mathcal{C} with $scp(\mathcal{C}) \subseteq \tilde{\mathcal{V}}$.

Warning: A solution to a CSP is any complete and consistent assignment.

3.3.2 Partial Assignment

Definition: A (possibly partial) assignment, $\{(V, v)\}_{V \in \tilde{\mathcal{V}}}$, is **consistent** if it satisfies every constraint, $C \in \mathcal{C}$ such that $\text{scp}(C) \subseteq \tilde{\mathcal{V}}$.

3.4 k-Consistent

Definition: A CSP is k-consistent if for any consistent assignment of k-1 variables, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}$, and any k^{th} variable, V', there is a value, $v'\in \text{dom}(V')$, so the assignment, $\{(V,v)\}_{V\in\tilde{\mathcal{V}}}\cup \{(V',v')\}$ is consistent.

3.4.1 Edge/Arc Consistent

Definition: 2-consistent.

3.5 Setup of CSP

Example:

Figure 21

For our example, the variables could be:

Figure 22

For our example, the constraints could be: $\frac{8 \leq 2 +2 +2 +2 +3 \leq 10}{\operatorname{scp}(4) = \{0, 1, 1, 1, 1\}}$ $\vdots \frac{3 \leq 0 + 2 \leq 4}{\operatorname{scp}(4) = \{0, 1, 1, 1\}}$ $\vdots \frac{2 \leq 0 + 1 +2 \leq 5}{\operatorname{scp}(4) = \{0, 1, 1, 2\}}$ $\vdots \frac{1 \leq 1 \leq 2}{\operatorname{scp}(4) = \{1, 1, 1, 2\}}$ $\vdots \frac{1 \leq 1 \leq 2}{\operatorname{scp}(4) = \{1, 1, 1, 2\}}$

Figure 23

Process: How to build a hyper-graph?

1. Circle the variables that appear in constraint $C_i \, \forall i$.

Example:

Figure 24

Process: How to build a path tree?

Example:

Figure 25

Figure 26

Process: How to determine a solution to a CSP?

1.

Example:

$$\left\{ \left(\textcircled{3},2\right) ,\left(\textcircled{3},1\right) ,\left(\textcircled{3},1\right) ,\left(\textcircled{4},0\right) ,\left(\textcircled{3},1\right) \right\}$$

Figure 27

Process: How to check *k*-Consistency?

- 1. Given \mathcal{V} w/ dom $(V) = \{v_1, \dots, v_{|\text{dom}(V)|}\}\ \forall V \in \mathcal{V}$ and \mathcal{C} w/ scp $(C) = \{V_1, \dots, V_{|\text{scp}(C)|}\}\ \forall C \in \mathcal{C}$.
- 2. Remove all constraints that have k+1 or more variables.
- 3. For each $C \in \mathcal{C}$, do the following:
 - (a) For each $V \in \operatorname{scp}(C)$, do the following:
 - i. For each $v \in \text{dom}(V)$, do the following:
 - Fix V to v.
 - For the other $V \in \operatorname{scp}(C)$, check if the constraint is satisfied by trying all combinations (need only one).
 - **Key:** If there is one combination that doesn't satisfy the constraint, then the CSP is not k-consistent.
- 4. If all constraints are satisfied, then the CSP is k-consistent.

Process: How to Enforce *k*-Consistency?

- 1. Given \mathcal{V} w/ dom $(V) = \{v_1, \dots, v_{|\text{dom}(V)|}\}\ \forall V \in \mathcal{V}$ and \mathcal{C} w/ scp $(C) = \{V_1, \dots, V_{|\text{scp}(C)|}\}\ \forall C \in \mathcal{C}$.
- 2. Remove all constraints that have k+1 or more variables.
- 3. **Pre-pruning:** For each remaining $C \in \mathcal{C}$, do the following:
 - (a) For each $V \in \operatorname{scp}(C)$, do the following:
 - i. For each $v \in \text{dom}(V)$, do the following:
 - Fix V to v.
 - For the other $V \in scp(C)$, check if the constraint is satisfied by trying all combinations (need only one).
 - **Key:** If the constraint is not satisfied, then remove the value from dom(V).
- 4. If you had to remove any values from dom(V), then check with the other constraints.
- 5. **Pruning:** Every constraint is satisfied.

Example:

•
$$V = \{ \begin{subarray}{ll} \begin{subarray}{ll}$$

Figure 28

• dom
$$(\)$$
 = $\{1, 2, 3\}$
• dom $(\)$ = $\{2, 3, 4\}$
• dom $(\)$ = $\{1, 2, 4\}$

Figure 29: Pre-pruning. Since only one constraint, it is also pruning.

Example: Different ways to formulate the CSP problem.

- How can you formulate the CSP problem in a different way? Can I get a specific example?
 - The domain could be set to everything, then set the constraints later.
- What is the constraint graph showing? Grouping the variables
- How do you check consistency in a CSP?
- Why can you use any search algorithm when you formulate this as a search problem?
- What does a node contain? A node contans a path.
 - How does that match the example on slide 10. It does.
- Why is formulalting a CSP problem as a search problem a bad idea? B/c you have to search through all possible combinations, but if you find a constraint then you can prune the search space.
 - A lot easier to see if there is a solution or not. But in a search problem, you see if there's a solution and how to get to it.

Learning Problems

4 PAC Learning

Definition: Assume that there is some (unknown) relationship,

$$f: \mathcal{X} \to \mathcal{Y} \text{ s.t. } x \mapsto_f y$$

- \mathcal{X} : Input Space
- \mathcal{Y} : Output Space (i.e. Information we desire about input)

Find $h: \mathcal{X} \to \mathcal{Y}$ (hypothesis) s.t. $h \approx f$, given some data about f:

$$\mathcal{D} = \left\{ \left(x^{(i)}, y_i \right), x^{(i)} \in \mathcal{X}, y_i = f\left(x^{(i)} \right) \in \mathcal{Y}, i = 1 \dots N \right\}$$

- $\operatorname{in}(\mathcal{D}) = \{x \text{ s.t. } (x, y) \in \mathcal{D}\}$
- out(\mathcal{D}) = {y s.t. $(x, y) \in \mathcal{D}$ }

4.1 Classification vs. Regression Problems

Definition:

- Classification Problems: $\mathcal{X} \subseteq \mathbb{R}^M$ and $\mathcal{Y} \subseteq \mathbb{N}$
- Regression Problems: $\mathcal{X} \subseteq \mathbb{R}^M$ and $\mathcal{Y} \subseteq \mathbb{R}$

4.2 Feature Spaces

Definition: It is often easier to learn relationships from high-level features (instead of the raw input).

4.3 Feasibility of Learning

Motivation: More than one function (hypothesis) may be consistent with the data.

Notes: So it may appear that finding the correct one should be impossible.

4.3.1 Probably Approximately Correct (PAC) Estimations

Example: Take N i.i.d. samples (i.e. take out a ball from an urn, record its color, and put it back in).

• $\nu \to \mu$ (empirical distribution \to true distribution) as $N \to \infty$

4.3.2 Hoeffding's Inequality

Definition: Let μ denote the probability of an event, and ν denote its relative frequency in a sample size N. Then, for any $\epsilon > 0$,

$$P(|\nu - \mu| > \epsilon) \le 2e^{-2\epsilon^2 N} \tag{1}$$

- ν : Relative frequency in the sample (known)
- μ : Probability of drawing a blue ball (unknown)
- $N \to \infty$: $\nu \to \mu$
- ϵ : How close we want ν to be to μ
- $\epsilon \to 0$: Probability will be 1
- $\epsilon \to \infty$: $\nu \to \mu$
- $\mu \approx \nu$: μ is probably approximately equal to nu.

Warning: We can approximate the true distribution with high probability by taking a large enough sample size, NOT guaranteeing that we can find the true distribution.

• Don't need to know where this theorem comes from.

Consider determining the class of a randomly chosen target point. If we ask a K-ary question about the points in \mathcal{D}

4.3.3 PAC Learning

5 Decision Trees

5.1 Decision Trees

Motivation: A simple model used for classification problems.

We want to find the minimum # of condition vertices (or questions) needed to "sufficiently discriminate" (identify the class of every point in \mathcal{D}).

5.1.1 Structure

Definition: Each vertex in a decision tree is either:

- 1. A **condition vertex**: a vertex that sorts points based on a question.
- 2. A decision vertex: a vertex that assigns all points a specific class.

Warning:

- More condition vertices improve discrimination.
- Less condition vertices improve generalization.

5.2 Building a Decision Tree: The General Case

Motivation: Suppose points do not necessarily belong to a unique class.

In the context of decision trees:

- X is the class of a randomly chosen target point.
- Y is the answer to a K-ary question for X.

Maximize IG(X|Y) (i.e. choose the question to maximize the information gained).

5.2.1 Entropy, Conditional Entropy, and Information Gain

Definition: The **entropy** of a random variable X (in K-its) is defined as

$$H(X) = -\sum_{\forall x \in X} p_X(x) \log_K(p_X(x)).$$

The **conditional entropy** of a random variable, X, given a random variable Y, is

$$H(X|Y) = -\sum_{\forall y \in Y} \sum_{\forall x \in X} p_{X|Y}(x|y) \log_K(p_{X|Y}(x|y)).$$

The **information gain** from Y is:

$$IG(X|Y) = H(X) - H(X|Y).$$

Warning:

There are ∞ many potential questions, but there are only finite many ways to split the dataset.

Process:

- 1. Calculate H(X) (i.e. entropy before the split).
- 2. Calculate H(X|Y) (i.e. entropy after the split).
 - (a) Calculate entropy for each subset of X based on the question, Y.
 - (b) Calculate the weighted average of the entropies.
- 3. Calculate IG(X|Y) = H(X) H(X|Y).

Example:

Figure 30

Example: 2-Ary Question

- 1. **Given:** $X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_1 \le 3 \\ 0, & \text{if } x_1 > 3 \end{cases}$ (Yes)
- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split

i.
$$H(X_{\text{left}}) = \frac{3}{5} \log_2 \left(\frac{5}{3}\right) + \frac{2}{5} \log_2 \left(\frac{5}{2}\right)$$

ii.
$$H(X_{\text{right}}) = \frac{2}{5} \log_2 \left(\frac{5}{2}\right) + \frac{3}{5} \log_2 \left(\frac{5}{3}\right)$$
.

iii. Weighted Avg. Entropy:
$$H(X|Y) = \frac{5}{10}H(X_{\text{left}}) + \frac{5}{10}H(X_{\text{right}})$$

(c) IG(X|Y) = H(X) - H(X|Y)

Example: 2-Ary Question

- 1. **Given:** $X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_2 \le 3 \\ 0, & \text{if } x_2 > 3 \end{cases}$ (Yes)
- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:
 - (a) Entropy before the split: $H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3}\right) + \frac{2}{10} \log_2 \left(\frac{10}{2}\right) + \frac{5}{10} \log_2 \left(\frac{10}{5}\right)$
 - (b) Entropy after the split:

$$\begin{split} \text{i. } & H(X_{\text{top}}) = \frac{3}{3} \log_2 \left(\frac{3}{3} \right) \\ & \text{ii. } & H(X_{\text{bottom}}) = \frac{3}{5} \log_2 \left(\frac{5}{3} \right) + \frac{2}{5} \log_2 \left(\frac{5}{2} \right) + \frac{2}{5} \log_2 \left(\frac{5}{2} \right). \\ & \text{iii. Weighted Avg. Entropy: } & H(X|Y) = \frac{3}{10} H(X_{\text{top}}) + \frac{7}{10} H(X_{\text{bottom}}) \\ & \text{(c) } & IG(X|Y) = H(X) - H(X|Y) \end{split}$$

Example: 3-Ary Question

1. **Given:**
$$X = \{0, 1, 2\}, Y = \begin{cases} 1, & \text{if } x_1 \leq 3 \text{ and } x_2 \leq 3 \\ 2, & \text{if } x_1 \leq 3 \text{ and } x_2 > 3 \\ 3, & \text{if } x_1 > 3 \end{cases}$$

- 2. **Problem:** IG(X|Y) = ?
- 3. Solution:

(a) Entropy before the split:
$$H(X) = \frac{3}{10} \log_2 \left(\frac{10}{3} \right) + \frac{2}{10} \log_2 \left(\frac{10}{2} \right) + \frac{5}{10} \log_2 \left(\frac{10}{5} \right)$$

(b) Entropy after the split:

i.
$$H(X_1) = \frac{3}{3}\log_2\left(\frac{3}{3}\right)$$

ii. $H(X_2) = \frac{2}{2}\log_2\left(\frac{2}{2}\right)$
iii. $H(X_3) = \frac{2}{5}\log_2\left(\frac{5}{2}\right) + \frac{3}{5}\log_2\left(\frac{5}{3}\right)$
iv. $H(X|Y) = \frac{3}{10}H(X_1) + \frac{2}{10}H(X_2) + \frac{5}{10}H(X_3)$
(c) $IG(X|Y) = H(X) - H(X|Y)$

Example: Decision Tree

- 1. **Given:** $X = \{0, 1, 2\}$
- 2. **Problem:** Draw a decision tree using binary conditions of the form, $x_i \leq k$, where $i \in \{1, 2\}$ and $k \in \mathbb{Z}$, that maximizes the information gained at each level.
- 3. Solution:

(a)