Příklady pro cvičení 1. z IFJ: Formální jazyky a operace nad nimi

Příklad 1.

Vypište prvních 5 prvků následujících jazyků nad abecedou $\Sigma = \{a\}$ v uspořádání podle délky řetězce:

a) $L = \{a^{2^n} : n \ge 0 \}$ b) $L = \{a^n : n \text{ je prvočíslo}\}$ (Poznámka: 1 není prvočíslo)

Řešení:

- b) Jsou to řetězce: aa, aaa, aaaaa, aaaaaaa, aaaaaaaaaa

Příklad 2.

Vytvořte konkatenaci následujících jazyků:

- a) $\{aa, bb\}.\{aa, bb\}$
- b) $\{aa, bb\}.\{\epsilon\}$
- c) $\{aa, bb\}.\emptyset$

Řešení:

Konkatenace jazyků L_1 a L_2 je definována: $L_1.L_2 = \{xy: x \in L_1, y \in L_2\}$. Což neformálně znamená, že výsledný jazyk $L_1.L_2$ obsahuje všechny řetězce, které vzniknou spojením (= konkatencí) řetězců x a y, přičemž řetězec x je obsažen v jazyce L_1 a řetězec y je obsažen v jazyce L_2 .

a)
$$\{aa, bb\}.\{aa, bb\} = \{aaaa, aabb, bbaa, bbbb\}$$

b)
$$\{aa, bb\}.\{\varepsilon\} = \{aa\varepsilon, bb\varepsilon\} = \{aa, bb\}$$

c)
$$\{aa, bb\}.\emptyset = \emptyset$$

Konkatenace $\{aa, bb\}$. $\emptyset = \emptyset$, neboť podle definice musí tento jazyk obsahovat všechny řetězce tvaru xy, přičemž řetězec x je obsažen v jazyce $L_1 = \{aa, bb\}$ a řetězec y je obsažen v jazyce $L_2 = \emptyset$. Protože $L_2 = \emptyset$, nemůžeme najít žádný řetězec y, který by byl obsažen v tomto jazyce, tím spíše tedy nemůžeme ani vytvořit žádný řetězec xy. Konkatenace jazyků $\{aa, bb\}$ a \emptyset tedy neobsahuje žádný řetězec a proto $\{aa, bb\}$. $\emptyset = \emptyset$.

Příklad 3.

Vytvořte průnik jazyků $L_1 = \{a^{2n}: n \ge 1\}$ a $L_2 = \{a^{3n}: n \ge 1\}$.

Řešení:

• Jazyk L_1 obsahuje řetězce samých symbolů a, které jsou sudé délky:

$$L_1 = \{aa, aaaa, aaaaaaa, ...\}$$

• Jazyk L₂ obsahuje řetězce samých symbolů a, které mají délku dělitelnou číslem 3:

$$L_2 = \{aaa, aaaaaa, aaaaaaaaaa, ...\}$$

• Průnikem těchto dvou jazyků je tedy jazyk, jehož řetězce obsahují samé symboly *a*, a navíc mají sudou délku dělitelnou číslem 3, což znamená, že jejich délka je dělitelná číslem 6. Formálně můžeme tento jazyk zapsat jako:

$$L_1 \cap L_2 = \{a^{6n}: n \ge 1\}$$

Příklad 4.

Určete, zda doplněk jazyka $L = \{a^n : n \ge 2\}$ je jazyk konečný, pokud

- a) L je definován nad abecedou $\Sigma = \{a\}$
- b) L je definován nad abecedou $\Sigma = \{a, b\}$

Z obrázku je patrné, že $\overline{L} = \{\varepsilon, a\}$. \overline{L} obsahuje právě 2 řetězce, \overline{L} je tedy konečný jazyk.

Jazyk \overline{L} obsahuje všechny řetězce nad abecedou $\Sigma = \{a, b\}$, které nepatří do jazyka L. Zřejmě například libovolný řetězec, který obsahuje pouze symboly b, nepatří do jazyka L, tedy patří do jazyka \overline{L} . Již těchto řetězců je nekonečně mnoho, proto jazyk \overline{L} je nekonečný.

Příklad 5.

Určete výčtem prvků jazyk L^3 , pokud $L = \{aa, bb\}$.

Řešení:

Mocnina jazyka je rekurzivně definována: $L^0 = \{\epsilon\}$; $L^i = L.L^{i-1}$ pro všechna $i \ge 1$.

Postupně tedy dostáváme:

- $\bullet \quad L^0 = \{ \epsilon \}$
- $L^1 = L \cdot L^0 = \{aa, bb\} \cdot \{\epsilon\} = \{aa, bb\}$
- $L^2 = L.L^1 = \{aa, bb\}.\{aa, bb\} = \{aaaa, aabb, bbaa, bbbb\}$
- $L^3 = L.L^2 = \{aa, bb\}.\{aaaa, aabb, bbaa, bbbb\} = \{aaaaaa, aaaabb, aabbaa, aabbbb, bbaaaa, bbaabb, bbbbaa, bbbbbb\}$

Příklad 6.

Určete počet všech jazyků nad abecedou $\Sigma = \{a, b\}$, jejichž iterací vznikne konečný jazyk.

Řešení:

- Iterace jazyka L, L^* , je definována: $L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^i \cup ... = \bigcup_{i=1}^{\infty} L^i$
- a) Uvažujme jazyk $L = \emptyset$: $L^0 = \{\varepsilon\}$ $L^{1} = L.L^{0} = \emptyset.\{\varepsilon\} = \emptyset$ $L^2 = L.L^1 = \varnothing . \varnothing = \varnothing$

$$L^{i} = L.L^{i-1} = \varnothing.\varnothing = \varnothing$$

 $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots = \{\varepsilon\} \cup \emptyset \cup \emptyset \cup \ldots \cup \emptyset \cup \ldots = \{\varepsilon\}$ Pro $L = \emptyset$ je $L^* = \{\epsilon\}$ a to je konečný jazyk.

(**Poznámka:** všimněte si, že $\emptyset^* = \{\varepsilon\}$ a nikoliv prázdný jazyk!)

- b) Uvažujme jazyk $L = \{\epsilon\}$:

 - $L^{0} = \{\varepsilon\}$ $L^{1} = L.L^{0} = \{\varepsilon\}.\{\varepsilon\} = \{\varepsilon\}$ $L^{2} = L.L^{1} = \{\varepsilon\}.\{\varepsilon\} = \{\varepsilon\}$

$$L^{i} = L.L^{i-1} = \{\varepsilon\}.\{\varepsilon\} = \{\varepsilon\}$$

$$L^* = L^0 \cup L^1 \cup L^2 \cup ... \cup L^i \cup ... = \{\epsilon\} \cup \{\epsilon\} \cup \{\epsilon\} \cup ... \cup \{\epsilon\} \cup ... = \{\epsilon\}$$

Pro $L = \{\epsilon\}$ je $L^* = \{\epsilon\}$ a to je konečný jazyk.

c) Uvažujme jakýkoliv jiný jazyk L nad abecedou $\Sigma = \{a, b\}$, který tedy obsahuje aspoň jeden neprázdný řetězec (označme jej x). Potom zřejmě L^* obsahuje řetězce $x^1, x^2, x^3, \dots, x^i, \dots$ kterých je nekonečně mnoho, proto L^* je **nekonečný jazyk**.

Závěr:

Nad abecedou $\Sigma = \{a, b\}$, existují pouze 2 jazyky jejichž iterací vznikne konečný jazyk a to: \emptyset , $\{\varepsilon\}$.

Příklad 7.

Pomocí operací nad konečnými jazyky popište následující jazyk nad abecedou $\Sigma = \{a, b, ..., z\}$: $L = \{baba, prababa, praprababa, prapraprababa, ... \}$

Řešení:

$$L = \{pra\}^*.\{baba\}$$

Příklad 8.

Pomocí operací nad konečnými jazyky popište jazyk L nad abecedou $\Sigma = \{0, 1, ..., 9, +, -\}$ obsahující řetězce reprezentující celá čísla bez přebytečných nul. Například: 100, +100, -100 jsou řetězce jazyka L, ale 001 není řetězec jazyka L, neboť obsahuje přebytečné nuly.

Řešení:

$$L = \{+, -, \varepsilon\}.\{1, 2, ..., 9\}.\{0, 1, 2, ..., 9\}^* \cup \{0\}$$

Pokud bychom uvažovali i –0 a +0 jako korektně zapsaná celá čísla, potom:

$$L = \{+, -, \varepsilon\}.\{1, 2, ..., 9\}.\{0, 1, 2, ..., 9\}^* \cup \{+, -, \varepsilon\}.\{0\}$$