```
In [1]: from fastai import *
        from fastai.vision.all import *
In [2]: path = Path();path
Out[2]: Path('.')
In [3]: |path.ls()
Out[3]: (#9) [Path('.ipynb_checkpoints'),Path('label.txt'),Path('label_rename.
        txt'),Path('PDD271 sample.ipynb'),Path('Sample'),Path('Sample.zip'),Pa
        th('test list.txt'),Path('train list.txt'),Path('validate list.txt')]
In [4]: label file = (path/'label.txt')
In [5]: with open(label_file) as file:
            lines = file.readlines()
        coding dict = \{int(x[-4:-1]):x[:-5] \text{ for } x \text{ in lines}\}
        coding dict
Out[5]: {100: 'Pumpkin virus disease',
          101: 'Pumpkin powdery mildew',
          102: 'Pumpkin downy mildew',
          103: 'Leaf Mustard Healthy',
          104: 'Sunflower bacterial leaf spot',
          105: 'Sunflower Black Spot',
          106: 'Chinese cabbage gray spot',
          107: 'Chinese cabbage anthracnose',
          108: 'Chinese cabbage blight',
          109: 'Chinese cabbage virus disease',
          110: 'White spot disease of Chinese cabbage',
          111: 'Bacterial brown spot disease of Chinese cabbage',
          112: 'Chinese cabbage bacterial black spot',
          113: 'Magnesium deficiency in Chinese cabbage',
          114: 'Chinese cabbage poisoning',
          115: 'Chinese cabbage downy mildew',
          116: 'Chinese cabbage black spot',
          117: 'Chinese cabbage black rot',
          118: 'Soybean leaf blight',
In [6]: | def directory_files(dirct: Path) -> list:
            Lf = []
            if dirct.is dir():
                 for d in dirct.iterdir():
                     Lf.extend(directory files(d))
            else:
                 Lf.append(str(dirct))
             return Lf
```

```
In [7]: fname = directory_files(path/'Sample')
In [10]: labels = [coding_dict[int(Path(x).parent.name)] for x in fname]; labels
            wilcut yettow tour beigne ,
           'Wheat yellow leaf blight',
           'Hawthorn leaf spot',
           'Hawthorn leaf spot',
           'Hawthorn leaf spot',
           'Hawthorn leaf spot',
           'Hawthorn leaf spot'
           'Hawthorn leaf spot',
           'Hawthorn rust',
           . . . ]
In [11]: len(fname)==len(labels)
```

Out[11]: True

```
In [12]: df = pd.DataFrame()
    df['fname'] = fname
    df['labels']= labels
    df
```

Out[12]:

	fname	labels
0	Sample/100/DSC05819.JPG	Pumpkin virus disease
1	Sample/100/DSC05982.JPG	Pumpkin virus disease
2	Sample/100/DSC06018.JPG	Pumpkin virus disease
3	Sample/100/DSC06024.JPG	Pumpkin virus disease
4	Sample/100/DSC06040.JPG	Pumpkin virus disease
10160	Sample/370/DSC01268.JPG	Cucumber black spot
10161	Sample/370/DSC01489.JPG	Cucumber black spot
10162	Sample/370/DSC01512.JPG	Cucumber black spot
10163	Sample/370/DSC01536.JPG	Cucumber black spot
10164	Sample/370/DSC01686.JPG	Cucumber black spot

10165 rows × 2 columns

Create a datablock

In [17]: |dls.show_batch()

Sweet Potato Healthy Leaf
Radish black spot
Radish shrunken virus disease

Magnesium deficiency in sweet potanticsh shrunken virus disease
Radish black spot

In [19]: learn = cnn_learner(dls, resnet50, metrics=accuracy)

/home/akmal/anaconda3/envs/fastai/lib/python3.9/site-packages/torch/n n/functional.py:718: UserWarning: Named tensors and all their associat ed APIs are an experimental feature and subject to change. Please do n ot use them for anything important until they are released as stable. (Triggered internally at /opt/conda/conda-bld/pytorch_1623448255797/w ork/c10/core/TensorImpl.h:1156.)

return torch.max_pool2d(input, kernel_size, stride, padding, dilatio
n, ceil mode)

In [20]: learn.lr_find()

/cache/fun/fastai/fastai/fastai/callback/schedule.py:270: UserWarning: color is redundantly defined by the 'color' keyword argument and the f mt string "ro" (-> color='r'). The keyword argument will take preceden ce.

ax.plot(val, idx, 'ro', label=nm, c=color)

Out[20]: SuggestedLRs(valley=0.0004786300996784121)

In [21]: learn.fine_tune(5)

epoch	train_loss	valid_loss	accuracy	time
0	1.825670	1.469818	0.725529	00:31
epoch	train_loss	valid_loss	accuracy	time
0	1.321742	1.122570	0.764388	00:38
1	1.103199	1.015752	0.773733	00:38
2	0.744163	0.698069	0.841613	00:38
3	0.406617	0.544702	0.870143	00:38
4	0.234577	0.525607	0.875062	00:38

In [36]: learn.show_results()


```
In [34]: interp = Interpretation.from_learner(learn)
interp.plot_top_losses(9)
```

Prediction/Actual/Loss/Probability

Leek hail damage/Sorghum p&vpeerapoltat24so0t956weet potato Beabut9s6ab/Re@dut brown spot / 9.38 / 0.77

Cotton eye spot/CottoRadisalithmosacifc/v9rB3 diseasserMadrispleishrvinkaadivierased/seasse/Strawberry brown spot / 8.81 / 0.96

Leek hail damage/Bacterial red strippenophisianasia usa disamasia (திரிரிற்கு அடிக்கு) முன்ற முக்கு முக்கு முன்ற முக்கு முன்ற முக்கு முன்ற முக்கு முன்ற முக்கு முன்ற முக்கு முன்ற முக்கு முக்


```
In [35]: interp.plot_top_losses??
```

In []: