全国青少年信息学奥林匹克联赛

提高组(复赛)模拟赛

2019 年 9 月 1 日 8:30 - 12:00

一、题目概况

中文题目名称	Dove 的疑惑	捉迷藏	Cicada 的序列
英文题目与子目录名	math	hide	sequence
可执行文件名	math	hide	sequence
输入文件名	math.in	hide.in	sequence.in
输出文件名	math.out	hide.out	sequence.out
每个测试点时限	1 秒	1.5 秒	1 秒
内存上限	256MB	256MB	512MB
测试点数目	20	20	20
每个测试点分值	5	5	5
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统

二、提交源程序程序名

对于 C++ 语言	.срр	.срр	.срр
对于 C 语言	.с	.с	.с

三、优化开关

对于 C++ 语言	-02 -std=c++11	-02 -std=c++11	-02 -std=c++11
对于 C 语言	-02 -std=c11	-02 -std=c11	-02 -std=c11

四、评测说明

- 1. 所有题目的时限是在CPU: Intel i5-7360U (4) @ 2.30GHz的运行条件下给出,数据制作以及标算的编写是在OS: macOS Mojave 10.14.5 18F132 x86_64中进行,所有程序均采用GCC@9.1.0进行编译。
- 2. 保证每道题目标算的运行时间不超过给定时限的 60%。
- 3. 本场比赛的所有题目均支持 C++11, 并且开启 02 优化。

1 Dove 的疑惑

(math.cpp/c)

1.1 问题描述

Dove 喜爱研究数学问题,最近 Dove 在学习「中国剩余定理」,其中一般会给出 n 个同余方程:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
...
 $x \equiv a_n \pmod{m_n}$

 $a \equiv b \pmod{c}$ 表示 a 除以 c 的余数与 b 除以 c 的余数相等。

与中国剩余定理相关的题目一般会转化成给定 $\{a\}$, $\{m\}$, 保证 $0 \le a_i < m_i$ 。要求找到一个x 使得其满足所有的同余方程。

现在 Dove 想知道,对于一组确定的 $\{m\}$,有多少种 $\{a\}$ 的取值方式,是无法找到对应的 x 满足所有的同余方程。

1.2 输入

第一行一个整数 n, 表示同余方程组的数量。接下来一行 n 个整数,第 i 个整数为 m_i 的值。

1.3 输出

一行一个整数,表示不满足条件的 {a} 的数量。

1.4 样例

sample/math*.in
sample/math*.out

1.5 约定和数据范围

对于全部测试点,保证 $n \le 10^5$, $\prod_{i=1}^n m_i \le 10^{18}$, $1 \le m_i \le 10^{18}$ 。

测试点	n	$\prod_{i=1}^{n} m_i$	特殊性质
1,2,3,4	≤ 10		保证 m _i 均为质数
5,6,7	≤ 10	≤ 10 ³	
8,9,10	≤ 10 ²	≤ 10 ³	
11,12,13	≤ 10 ³	≤ 10 ³	
14,15,16		≤ 10 ⁵	
17,18,19,20			

2 捉迷藏

(hide.cpp/c)

2.1 问题描述

除了算法竞赛, Cicada 和 Dove 最喜欢的活动还是捉迷藏。

Cicada 和 Dove 所在的社区有 n 个躲藏点,第 i 个躲藏点的编号为 i,总共有 n-1 条路径连接着这些躲藏点,形成一个**树**的结构。每个躲藏点有一盏灯,且最开始每盏灯的开关 状态是已知的。

在一次游戏中,Dove 从躲藏点 u 出发寻找 Cicada。Dove 怕黑,到达一个躲藏点时如果这个位置的灯是关闭的,那么 Dove 会把这个位置的灯打开。任意一个位置 Dove 都可以访问多次,但是每一个位置最多只会开一次灯。Dove 讨厌奇数,**所以一次游戏中 Dove 只会打开偶数栈灯**。

特别的,如果 Dove 从一个位置出发后无法打开偶数栈灯,那么我们认为其访问的躲藏点数为 0。

为了取得游戏的胜利,Cicada 需要评估 Dove 从每躲藏点出发最多能访问到的躲藏点的数量。因为 Cicada 还要学文化课,所以这个任务就交给你了。

2.2 输入

一行一个整数 n,表示躲藏点的数量。

接下来一行 n 个整数,第 i 个数 $a_i \in \{0,1\}$ 表示第 i 个躲藏点灯的状态,如果 $a_i = 0$,表示灯是关闭的。如果 $a_i = 1$,则表示灯是开启的。

接下来 n-1 行, 每行两个整数 u,v, 表示 u,v 之间存在一条路径。

2.3 输出

输出 n 行,第 i 行表示 Dove 从 i 出发能访问到的最多的躲藏点的数量。

2.4 样例

sample/hide*.in
sample/hide*.out

2.5 约定和数据范围

对于所有测试点, 保证 $n \le 10^6$ 。

测试点	n	$\left(\sum_{i=1}^{n} [a_i = 0] \bmod 2\right)$	特殊性质
1,2,3	≤ 20		
4,5	≤ 500		
6,7,8	≤ 1000	= 0	
9,10,11	≤ 1000		
12,13,14	≤ 10 ⁵	= 0	
15,16,17,18	≤ 10 ⁵		保证树的直径不超过 $2 \times \log n$ 。
19,20,21	≤ 10 ⁵		
22,23	≤ 5 × 10 ⁵		保证树的直径不超过 $2 \times \log n$ 。
24,25	≤ 10 ⁶		

注: 本题数据规模较大, 请慎重选择 IO 方式。

3 Cicada 的序列

(sequence.cpp/c)

3.1 问题描述

Cicada 有一个长度为 n 的序列,序列中第 i 个数的值为 a_i 。对于该序列的一个**连续 子序列** a_l , a_{l+1} , ..., a_r 来说,其带给 Cicada 的愉悦度为 a_l mod a_{l+1} mod a_{l+2} ... mod a_r 。其中 $a \mod b$ 表示 a 除以 b 后的**余数**。

现在 Cicada 想知道,这个序列的**所有连续子序列**能给他带来的愉悦度的**和**是多少。

3.2 输入

第一行为一个正整数 n, 表示序列的长度。接下来一行 n 个正整数, 第 i 数为 a_i 。

3.3 输出

一行一个整数,表示这个序列的所有连续子序列能给他带来的愉悦度的和。

3.4 样例

sample/sequence*.in
sample/sequence*.out

3.5 约定和数据范围

对于所有的测试点,保证 $n \le 3 \times 10^5$, $a_i \le 10^9$ 。

测试点	n	a _i	特殊性质
1,2,3	≤ 100	≤ 50	
4,5,6	≤ 5000	≤ 10 ⁵	
7,8,9	≤ 10 ⁵	≤ 100	保证 a_i 是随机数列
10,11		≤ 100	保证 a; 是随机数列
12,13,14			保证 a_i 是不递减数列
15,16,17			保证 a_i 是不递增数列
18,19,20			