3.5.1 Cardinality (number of elements) in a Cartesian product

If A has n elements and B has p elements, $A \times B$ has np elements.

Examples:

1.
$$\#(A) = 3$$
 $A = \{1, 3, 7\}$
 $\#(B) = 2$ $B = \{1, 5\}$
 $\#(A \times B) = 3 \times 2 = 6$

2. Both A and B are infinite sets, so $A \times B$ is infinite as well.

Remark: We can define Cartesian products of any length, **e.g.** $A \times A \times B \times A$, $B \times A \times B \times A \times B$, etc. If all sets are finite, the number of elements is the product of the numbers of elements of each factor. If #(A) = 3 and #(B) = 2 as above, $\#(A \times B \times A) = 3 \times 2 \times 3 = 18$ and $\#(B \times A \times B) = 2 \times 3 \times 2 = 12$.

4 Relations

Task: Define subsets of Cartesian products with certain properties. Understand the predicates " = " (equality) and other predicates in predicate logic in a more abstract light.

Start with x = y. The elements x is some notation R to y (equality in this case). We can also denote it as xRy or $(x,y) \in E$

Let x, y in \mathbb{R} , then $E = \{(x, x) \mid x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}$.

The "diagonal" in $\mathbb{R} \times \mathbb{R}$ gives exactly the elements equal to each other.

More generally:

Definition: Let A, B be sets. A subset of the Cartesian product $A \times B$ is called a relation between A and B. A subset of the Cartesian product $A \times A$ is called a relation on A.

Remark: Note how general this definition is. To make it useful for understanding predicates, we will need to introduce key properties relations can satisfy.

Example: $A = \{1, 3, 7\}$ $B = \{1, 2, 5\}$

We can define a relation S on $A \times B$ by $S = \{(1,1), (1,5), (3,2)\}$. This means 1S1, 1S5 and 3S2 and no other ordered pairs in $A \times B$ satisfy S.

Remark: The relations we defined involve 2 elements, so they are often called binary relations in the literature.

4.1 Equivalence Relations

Task: Define the most useful kind of relation.

Definition: A relation R on a set A is called

- 1. reflexive iff (if and only if) $\forall x \in A, xRx$
- 2. symmetric iff $\forall x, y \in A, xRy \rightarrow yRx$
- 3. <u>transitive</u> iff $\forall x, y, z \in A, xRy \land yRz \rightarrow xRz$

An equivalence relation on A is a relation that is reflexive, symmetric, and transitive.

Notation: Instead of xRy, an equivalence relation is often denoted by $x\equiv y$ or $x\sim y$.

Examples:

- 1. "=" equality is an equivalence relation.
 - (a) x = x reflexive
 - (b) $x = y \Rightarrow y = x$ symmetric
 - (c) $x = y \land y = z \Rightarrow x = z$ transitive
- 2. $A = \mathbb{N}$

 $x \equiv y \mod 3$ is an equivalence relation. $x \equiv y \mod 3$ means x-y=3m for some $m \in \mathbb{Z}$, **i.e.** x and y have the same remainder when divided by 3. The set of all possible remainders is $\{0,1,2\}$

NB: In correct logic notation, $x \equiv y \mod 3$ if $\exists m \in \mathbb{Z} \ s.t. \ x-y=3m$

- (a) $x \equiv x \mod 3$ since $x x = 0 = 3 \times 0 \rightarrow$ reflexive
- (b) $x\equiv y \mod 3 \Rightarrow y\equiv x \mod 3$ because $x\equiv y \mod 3$ means x-y=3m for some $m\in\mathbb{Z} \Rightarrow y-x=-3m=3\times (-m) \Rightarrow y\equiv x \mod 3 \rightarrow \text{symmetric}$
- (c) Assume $x \equiv y \mod 3$ and $y \equiv z \mod 3$ $x \equiv y \mod 3 \Rightarrow \exists m \in \mathbb{Z} \text{ s.t. } x y = 3m \Rightarrow y = x 3m$ $y \equiv z \mod 3 \Rightarrow \exists p \in \mathbb{Z} \text{ s.t. } y z = 3p \Rightarrow y = z + 3p$ Therefore, $x 3m = z + 3p \Leftrightarrow x z = 3p + 3m = 3(p + m)$ Since $p, m \in \mathbb{Z}, p + m \in \mathbb{Z} \Rightarrow x \equiv z \mod 3 \Rightarrow \text{transitive}$.
- 3. Let $f:A\to A$ be any function on a non-empty set A. We define the relation $R=\{(x,y)\mid f(x)=f(y)\}$
 - (a) $\forall x \in A, f(x) = f(x) \Rightarrow (x, x) \in R \rightarrow \text{reflexive}$
 - (b) If $(x, y) \in R$, then $f(x) = f(y) \Rightarrow f(y) = f(x)$, i.e. $(y, x) \in R \rightarrow$ symmetric
 - (c) If $(x, y) \in R$ and $(y, z) \in R$, then f(x) = f(y) and f(y) = f(z), which by the transitivity of equality implies f(x) = f(z), i.e. $(x, z) \in R$ as needed, so R is transitive as well. f(x) can be e^x , $\sin x$, |x|, etc.