Instructor: Girish Varma IIIT Hyderabad

1 Linear Algebra Basics

1.1 Boolean Function Spaces

Let \mathbb{F}_2 be the field of two elements $\{0,1\}$ where addition is $\mod 2$ and multiplication is AND. \mathbb{F}_2^n is the n dimensional vector space over \mathbb{F}_2 consisting of n tuples of \mathbb{F}_2 . Let \mathcal{F} be the set of all functions with domain \mathbb{F}_2^n and codomain \mathbb{F}_2 . It is easy to verify that \mathcal{F} is a 2^n dimensional vector space over \mathbb{F}_2 with the natural scalar multiplication and vector addition ($\mod 2$). Assume $n \geq 2$.

a.) For any subset S of $\{1, \dots n\}$, let PARITY_S : $\mathbb{F}_2^n \to \mathbb{F}_2 \in \mathcal{F}$ be defined as:

$$PARITY_S(x) = \bigoplus_{i \in S} x_i.$$

For $S = \emptyset$, define PARITY_S(x) = 1 (constant 1 function). Show that the following set of 2^n parity functions are linearly dependent:

$$\{PARITY_S : S \subseteq \{1, \cdots, n\}\}$$

b.) For any subset *S* of $\{1, \dots n\}$, let $AND_S : \mathbb{F}_2^n \to \mathbb{F}_2 \in \mathcal{F}$ be defined as:

$$AND_S(x) = \bigwedge_{i \in S} x_i.$$

For $S = \emptyset$, define $AND_S(x) = 1$ (constant 1 function). Show that the following set of 2^n functions forms a basis for \mathcal{F} :

$$\{AND_S: S \subseteq \{1, \cdots, n\}\}$$

1.2 Infinite Dimensional Vector Spaces

- a.) Consider the set of all functions with domain \mathbb{R} and codomain \mathbb{R} as a vector space over \mathbb{R} . Define a set of basis functions. Are they countable or uncountable? If so why?
- b.) Consider \mathbb{R} as a vector space over the field \mathbb{Q} (rational numbers). Is there a basis set for the above vector space that is countable. (Remember countable and uncountable

1.3 Rank over different Fields

Let \mathbb{K} , \mathbb{F} be fields such that $\mathbb{F} \subset \mathbb{K}$ and the addition, multiplication operations in \mathbb{F} is the same as that in \mathbb{K} . For example \mathbb{K} can be \mathbb{R} and \mathbb{F} can be \mathbb{Q} (or \mathbb{C} , \mathbb{R} respectively). $\mathbb{F}^{n \times m}$ is the set of $n \times m$ matrices with entries in \mathbb{F} . For any matrix $M \in \mathbb{F}^{n \times m}$, we can define rank with respect to \mathbb{F} as well as \mathbb{K} . The rank with respect to \mathbb{K} denoted by $\mathrm{rank}_{\mathbb{K}}(M) = \dim(\mathrm{span}_{\mathbb{K}}(\mathrm{columns}(M)))$ where $\mathrm{span}_{\mathbb{K}}(S)$ denotes the vector space spanned by S by taking linear combinations with scalars from \mathbb{K} . Similarly we define $\mathrm{rank}_{\mathbb{F}}(M)$.

- a.) Show that for $M \in \mathbb{F}^{n \times m}$, $\operatorname{rank}_{\mathbb{F}}(M) = \operatorname{rank}_{\mathbb{K}}(M)$.
- b.) Given a binary matrix $M \in \{0,1\}^{m \times n}$, show that $\operatorname{rank}_{\mathbb{R}}(M) \geq \operatorname{rank}_{\mathbb{F}_2}(M)$. Note that addition and multiplication over \mathbb{F}_2 is different from \mathbb{R} . $\operatorname{rank}_{\mathbb{R}}$, $\operatorname{rank}_{\mathbb{F}_2}$ are defined as earlier with the respective definition of addition and multiplication in \mathbb{R} , \mathbb{F}_2 (ie normal arithmetic and mod 2 arithmetic).

1.4 Help Alice & Bob Communicate

Alice and Bob needs to compute a known function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$. They know the function beforehand and can agree upon a plan. Later Bob will go to Mars. Then both of them will be given some $x,y \in \{0,1\}^n$ (not known beforehand) respectively and Alice will be allowed to sent a message to Bob. Alice will have access to only x, Bob will have access to only y and they do not know the other persons input. Every bit of message Alice communicates is expensive. After getting Alice's message Bob should be able to find out f(x,y).

Let $M \in \{0,1\}^{2^n \times 2^n}$ (binary matrix) be defined as $M_{i,j} = f(\text{bin}(i), \text{bin}(j))$, where bin(i) is the n bit binary representation of i ($0 \le i, j < 2^n$). Can you design a protocol for them such that Alice only needs to sent $\text{rank}_{\mathbb{F}_2}(M)$ bits of communication?

2.1 Random Walks submit

Consider an undirected graph G = (V, E) without any isolated vertices, where V is a set of n nodes and

$$E \subseteq \{\{a,b\} : a \neq b \text{ and } a,b \in V\}$$

is a set of edges. The random walk matrix of G is a matrix M defined by

$$M_{a,b} = \begin{cases} 1/d_b \text{ if } \{a,b\} \in E \\ 0 \text{ otherwise} \end{cases} \text{ where } a,b \in V \text{ and } d_b = |\{\{a,b\} \in E : a \in V\}|$$

 d_b is called the degree of the vertex b.

a.) Show that if λ is a real eigenvalue ($\in \mathbb{R}$) of M then $-1 \le \lambda \le 1$.

to work.

Hint 1 Need to use the facts that a.) eigenvalues of M = eigenvalues of M^T b.) columns of M sum upto 1. Consider an eigenvector v of v of v of v of v of the proof which has the highest absolute value. This coordinate is going to be crucial for the proof

- b.) Show that the column vector v defined by $v_a = d_a / (\sum_{b \in V} d_b)$, $\forall a \in V$ is an eigenvector of M with eigenvalue 1. That is Mv = v, for any graph G.
- c.) Show that the maximal number of linearly independent eigenvectors with eigenvalue 1 is equal to the number of connected components in *G*.
- d.) Show that -1 is an eigenvalue of M if and only if G is a bipartite graph.

·suo14sənb

Hint 2 Try to show that LHS \Rightarrow RHS and RHS \Rightarrow LHS separately for the last two

2.2 Polynomials

submit

Let \mathcal{P}_n be the set of polynomials (on one variable) of degree less than n. As you know $p \in \mathcal{P}_n$, can be written as a linear combination of the standard monomial basis as follows $p = \sum_{d=0}^{n-1} p_d x^d$, where p_d 's are coordinates with respect to this basis.

a.) For any polynomial $q \in \mathcal{P}_n$ (having coordinates $q_0, \dots q_{n-1}$ in standard monomial basis), define the function $T_q : \mathcal{P}_n \to \mathcal{P}_{2n-1}$, which maps $p \mapsto q \times p$ (ie. polynomial

multiplication). Is T_q a linear transformation? If so what is the matrix of the transformation in the standard monomial basis ie $\{1, x, x^2, x^3, \dots, x^{n-1}\}$? Give the formula for each entry of the matrix for general n, in the standard monomial basis.

b.) Let n=4. Consider the change of basis, which maps the dth standard basis to the column vector $[1, \omega^d, \omega^{2 \cdot d}, \omega^{3 \cdot d}]$, where $\omega = e^{i \cdot \frac{2\pi}{4}}$ (a complex number; $i = \sqrt{-1}$). What is the matrix of T_q with respect to this basis? What is the change of basis matrix for changing coordinates from this new basis back to the standard monomial basis?

2.3 Invarience of Eigenvalues

submit

- a.) Let $M \in \mathbb{R}^{n \times n}$. We can define eigenvalues from the left and the right as follows. λ is left eigenvalue of M iff there exists a nonzero row vector v, such that $vM = \lambda v$. Similarly λ is a right eigenvalue of M iff there exists a nonzero column vector v, such that $Mv = \lambda v$.
 - Show that the set of left eigenvalues and right eigenvalues of any matrix are equal.
 - Are the left and right eigenvectors (similarly defined) the same (by taking transpose)?
- b.) Let M, M' be matrices corresponding to the same linear operator $T: V \to V$ (V is a n dimensional vector space over some field) with respect to different basis. Also assume that T is a rank n operator and M has n eigenvalues $\lambda_1, \dots, \lambda_n$.
 - Show that set of eigenvalues of M is equal to the set of eigenvalues of M'.
 - Show that $det(M) = det(M') = \prod_{i=1}^{n} \lambda_i$.
 - Define trace of a matrix, as the sum of diagonal entries. ie trace(M) = $\sum_{j=1}^{n} M_{jj}$. Show that trace(M) = trace(M') = $\sum_{i=1}^{n} \lambda_i$.

3.1 An Orthonomal Basis for Boolean Functions

Consider the set of functions with domain $\{+1, -1\}^n$ and range \mathbb{R} . Observe that it is a vector space over \mathbb{R} of dimension 2^n . Consider the inner product and norm defined by

$$\langle f, g \rangle = \frac{1}{2^n} \sum_{x \in \{+1, -1\}^n} f(x)g(x)$$
 and $||f|| = \sqrt{\langle f, f \rangle}$.

a.) Define the following set of functions,

$$\{\chi_S\}_{S\subseteq\{1,\cdots,n\}}$$
 where $\chi_S(x)=\prod_{i\in S}x_i$.

For $S = \emptyset$, χ_S is the constant 1 function. Show that these functions form an orthonormal basis under the inner product defined.

b.) Let f be any function in this space with range $\{+1, -1\}$ such that

$$f = \sum_{S \subseteq \{1, \dots, n\}} \widehat{f}_S \chi_S$$
 where $\forall S \subseteq \{1, \dots, n\}, \widehat{f}_S \in \mathbb{R}$

That is $(\widehat{f}_S)_{S\subseteq\{1,\cdots,n\}}$ are the coordinates with respect to the χ_S basis. Show that

$$\sum_{S\subseteq\{1,\cdots,n\}}(\widehat{f}_S)^2=1.$$

3.2

Question 5, Review Problems 14.7, page 274 in [CDTW].

3.3

Question 14, Review Problems 14.7, page 276 in [CDTW].

4 Deep Quiz 2

4.1 Fixed Points

Let *M* be a matrix given by

$$\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \qquad \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$

Given any vector $v(0) = \begin{pmatrix} x(0) \\ y(0) \end{pmatrix}$, we can create an infinite sequence of vectors $v(1), v(2), \cdots$ by using the rule

$$v(t+1) = Mv(t)$$
 for all natural numbers t

a.) Find all vectors v(0) such that

$$v(0) = v(1) = v(2) = v(3) = \cdots$$

b.) Find all vectors v(0), such that $v(0), v(1), v(2), v(3), \cdots$, belongs to a 1 dimensional subspace.

4.2 Commuting Matrices

Let A, B be commuting matrices of dimension $n \times n$ (ie AB = BA) and suppose A is diagonalizable with n distinct eigenvalues.

- a.) Show that of v is an eigenvector of A with eigenvalue λ , then Bv is also an eigenvector of A with eigenvalue λ .
- b.) Show that if v is an eigenvector of A, the v is also an eigenvector of B. Should the eigenvalues be the same?
- c.) Explain why the above implies that there is a single change of basis such that A, B are both diagonal in the same basis.

4.3 Decomposition

a.) Let Q be an $n \times n$ orthonormal matrix (columns form an orthonormal basis). For any vectors $v, u \in \mathbb{R}^n$, show that

$$u \cdot v = (Qu) \cdot (Qv)$$
 (dot product)

b.) Let $\{u_1, \dots u_n\}$ be column vectors $\in \mathbb{R}^n$ (ie $n \times 1$ dimensional) that are orthonormal. Suppose $M \in \mathbb{R}^{n \times n}$ ($n \times n$ dimensional matrix) defined by:

$$M = \sum_{i=1}^{n} \alpha_i u_i u_i^T$$
 where α_i are scalars.

Note that $u_i u_i^T$ are $n \times n$ dimensional. What are the eigenvectors and eigenvalues of M? (need to explain why)