

北京大学信息管理系

Matlab软件与编程简介

03030910多媒体技术

W. B. Huang

Matlab软件与编程介绍

2

MATLAB

- □ MATLAB名称是由「矩阵实验室」(MATrix LABoratory)所合成,是由MathWorks公司于1984年推出的数学软件。
- □ MATLAB用于算法开发、数据可视化、数据分析、数值计算等 领域的标准程序语言。
- □ MATLAB早在1978年即已现身,当时是用Fortran撰写的免费软件,其作者是当时任教于新墨西哥大学的Cleve Moler教授。
 - Jack Little (又称为John Little)将MATLAB以C语言重写,并于1984年成立MathWorks公司,首次推出MATLAB商用版
- □ MATLAB是一个计算核心,围绕着这个计算核心,有许多针对不同应用所开发的应用程序,称为工具箱(Toolboxes)。
- □ Simulink专用于连续或离散时间的动态系统仿真。Simulink是一个模拟核心,围绕着这个核心所开发的应用程序称为方块集(Blocksets)。
- □ Stateflow则用于模拟有限状态机(Finite State Machines)或事件驱动系统(Event-driven Systems)。

MatLab外观

文件夹视窗

历史指令视窗

在线支持(demo)

- □ help:查询指令的用法(显示于命令窗口)。
 - ■例如:help mean
- □ doc:查询指令的用法(显示于在线支持窗口)
 - ■例如:doc mean
- □ lookfor:用来寻找未知的指令。找到所需的指令后,即可用help进一步找出其用法。
- □ helpwin或helpdesk:显示在线支持窗口(其效果等同于直接点选MATLAB命令窗口任务栏的图标)。

MatLab Help

离开MATLAB

- □在命令窗口内,键入exit指令。
- □ 在命令窗口内,键入quit指令。
- □直接关闭MATLAB的命令窗口。

简单代码

- □数学运算
 - y = (5*2+3.5)/5;
 - $z = y^2;$
- □结果
 - z = 7.2900
- □思考
 - □分号?
 - □"工作区"有什么变化?

变量命名规则与使用

- □ 第一个字符必需是英文,后面可以接字母、数字或是底线...。
- □最多只能有31个字符,MATLAB会忽略多余字母。
- □ MATLAB在使用变量时
 - □不需预先经过变量宣告(Variable Declaration)。
 - □所有数值变量均以默认的double数据型态(8个bytes)来储存。

M档案 (bintest.m)

- □若要一次执行大量的MATLAB指令,可将这些指令存放于一个扩展名为m的档案,并在 MATLAB指令提示号下键入此档案的主档名即 可。
 - □>> cd到档案存放的文件夹内
 - >> edit bintest.m

%编辑器

- □-----编辑-----
- □ >>bintest

加入批注

□ 若要加入批注(Comments),可以使用百分比符号(%)例如:

>> y = (5*2+3.5)/5; %将运算结果储存在变量y,但不用显示于屏幕 $>> z = y^2$ %将运算结果储存在变量z,并显示于屏幕 z = 7.2900

自创函式(myfunc.m)

- □ 为了延伸计算,可以增加自己的函式
 - □新创一个M档,并起名为xxx.m
 - □创建

function
$$v1 = xxx(v2, v3)$$

 $v1 = v2 + v3$;

- ■注:function的名称必须与M档的名称一致
- 使用 a = xxx(b,c)
- □则输出结果可为a=b+c

搜寻路径(工作路径?)

- □ 若要检视MATLAB已设定的搜寻路径,键入path 指令即可
- □ 若只要查询某一特定指令所在的搜寻路径,可用 which指令
- □要将目录加入MATLAB的搜寻路径,可使用 addpath指令

检视工作空间变量的其他方式

- □ 使用clear指令来清除或删除工作空间内的某一特定或所有变量,以避免内存的闲置与浪费。
- □ 不加任何选项(Options)时,save指令会将工作空间内的变量以二进制(Binary)的方式储存至扩展名为mat的档案
 - □ save:将工作空间的所有变量储存到名为matlab.mat的 二进制档案。
 - save filename:将工作空间所有变量储存到名为filename.mat 的二进制档案。
 - save filename x y z:将变数x、y、z储存到名为filename.mat 的二进制档案。
 - □ load filename:将filename.mat的二进制档案内的所有变量入录到工作空间。

向量与矩阵

□ MATLAB中的变量还可用来储存向量(Vectors)及矩阵 (Matrix),以进行各种运算,例如:

>> $s = [1 \ 3 \ 5 \ 2];$ %注意[]的使用,及各数字间的空白间隔 >> t = 2*s+1

t =

3 7 11 5

向量的处理

□ MATLAB亦可取出向量中的一个元素或一部份来 做运算,例如:

$$>> t(3) = 2$$

>> t(3) = 2 %将向量t的第三个元素更改为2

t =

$$>> t(6) = 10$$

>> t(6) = 10 %在向量t加入第六个元素,其值为10

t =

3 7 2 5 0 10

>> t(4) = [] %将向量t的第四个元素删除, []代表空集

t =

3 7 2 0 10

建立大小为mxn的矩阵(demo)

□建立矩阵,可在每一横列结尾加上分号(;), 例如:

>>A = [1 2 3 4; 5 6 7 8; 9 10 11 12];

>> A

A =

1 2 3 4

5 6 7 8

9 10 11 12

%建立3×4的矩阵A

%显示矩阵A的内容

mxn矩阵的处理(I)

□ >> A(2,3) = 5 %将矩阵A第二列、第三行的元素值,更改为5

$$A =$$

1 2 3 4

5 6 5 8

9 10 11 12

 \Box >> B = A(2,1:3)

□ %取出矩阵A的第二行、第一至第三列,并储存成矩阵B

$$B =$$

5 6 5

mxn矩阵的各种处理(II)

- $\square >> A = [A B']$
 - □ %将矩阵B转置后、再并入矩阵A

$$A =$$

- 1 2 3 4 5
- 5 6 5 8 6
- 9 10 11 12 5
- $\square >> A(:, 2) = []$
 - □ %删除矩阵A第二行(:代表所有横列,[]代表空矩阵)

A =

- 1 3 4 5
- 5 5 8 6
- 9 11 12 5

mxn矩阵的各种处理(III)

- $\supset > A = [A; 4321]$
 - □ %在原矩阵A中,加入第四列

$$A =$$

- 1 3 4 5
- 5 5 8 6
- 9 11 12 5
- 4 3 2 1
- $\supset > A([1 4], :) = []$
 - □ %删除第一、四列(:代表所有直行,[]是空矩阵)

$$A =$$

- 5 6 7 8
- 9 10 11 12

常用数学函数(mfunc.m)

- □ MATLAB是一个科学计算软件,因此可以支持 很多常用到的数学函数

 - □ y = abs(x)→ 取x的绝对值

 - $y = \sin(x)$ → 取x的正弦值

 - □ y = exp(x)→ 自然指数exp(x)

 - □ y = log(x)→ 自然对数ln(x)
- □ MATLAB也支持复数运算,通常以i代表单位虚 数
 - \square complex(a, b)

向量矩阵的运算(mfunc01.m)

- □有一些函数是特别针对向量而设计

 - □ y = min(x) → 向量x的极小值

 - □ y = max(x)→ 向量x的极大值

 - □ y = mean(x)→ 向量x的平均值

 - □ y = sum(x)→ 向量x的总和

 - □ y = sort(x)→ 向量x的排序

流程控制 (forLoop01.m)

- □ MATLAB提供重复循环(Loops)及条件判断 (Conditions)等程序流程控制(Flow Control) 的指令
 - □ for循环是最常用到的重复运算,其中循环变量会依 次取用每个行向量来进行运算,格式如下:

for 变数=向量 表达式;

end

x = zeros(1,6);for i = 1:6 x(i) = 1/i;end

流程控制(while01.m if01.m)

■ while循环(While-loop) while 条件式 表达式; end

```
x = zeros(1,6);

i = 1;

while i <= 6

x(i) = 1/i;

i = i+1;

end
```

■ if— else— end if 条件式 表达式; else 表达式; end

```
y = [0 \ 3 \ 4 \ 1 \ 6];
for i = 1:length(y)
  if rem(y(i), 2) == 0
  fprintf('y(%g) = %g is even.\n', i, y(i));
  else
  fprintf('y(%g) = %g is odd.\n', i, y(i));
  end
end
```

switch-case-otherwise条件指令(switch01.m)

MATLAB在第五版开始支持switch-case-otherwise的多向条件指令,其使用语法如下:

```
switch expression
        case value(1)
statement(1)
case value(2)
statement(2)
case value(n-1)
statement(n-1)
otherwise
statement(n)
end
```

```
for month = 1:12
    switch month
        case \{3, 4, 5\}
             season = 'Spring';
        case \{6, 7, 8\}
             season = 'Summer';
        case {9, 10, 11}
             season = 'Autumn':
        case \{12, 1, 2\}
             season = 'Winter';
        otherwise
             season = 'None':
    end
    fprintf('Month %d ===> %s.\n',
month, season);
end
```

□ 在上述语法中,expression为一数值或字符串,当其值和value(k)相等时,
MATLAB即执行statement(k)并跳出switch指令。若expression不等于value(k),
k=1, 2, ..., n-1,则MATLAB会执行statement(n)并跳出switch指令。

26

二维平面绘图

基本的绘图指令(plotxy01.m)

- □ plot:最基本的绘图指令
- □对x坐标及相对应的y坐标进行作图

```
x = linspace(0, 2*pi, 100); %在0到2π间,等分取100个点
y = sin(x); %计算x的正弦函数值
plot(x, y); %进行二维平面描点作图
```


-1.5 L

Plot基本绘图-2(plotxy02.m)

Plot基本绘图-3(plotxy03.m)

- □只给定一个矩阵y
 - □对矩阵y的每一个向量(Column Vector)作图

```
      y = peaks;
      %产生一个49x49的矩阵

      plot(y);
      %对矩阵y的每一个向量作图
```


peaks指令产生一个49×49的矩阵, 代表二维函数的值 plot(y)直接画出49条直线

Plot基本绘图-4(plotxy04.m)

□ Z是一个复数向量或矩阵

- plot(z)将
- □ z的实部(即real(z))
- □ 虚部(即imag(z))当成x坐标和y坐标来作图
- 其效果等于plot(real(z), imag(z))

x = randn(30); %产生30×30的随机数(正规分布)矩阵 z = eig(x); %计算x的「固有值」(或称「特征值」) plot(z, 'o') grid on %画出网格线

Plot基本绘图-5(plotxy05.m)

□ Semilogx指令

□使X轴为对数刻度,对正弦函数作图

x = 1inspace(0, 8*pi); %在0到8 π 间,等分取100个点

semilogx(x, sin(x)); %使x轴为对数刻度,并对其正弦函数作图

► X轴为对数刻度

基本二维绘图指令

指令	说明
Plot	x轴和y轴均为线性刻度(Linear Scale)
loglog	x轴和y轴均为对数刻度(Logarithmic Scale)
semilogx	X轴为对数刻度,Y轴为线性刻度
semilogy	X轴为线性刻度,Y轴为对数刻度
plotyy	画出两个刻度不同的Y轴

图轴控制(plotxy06.m)

□同时画出四个图于一个窗口中

```
      x = 0:0.1:4*pi;

      subplot(2, 2, 1); plot(x, sin(x));
      %此为左上角图形

      subplot(2, 2, 2); plot(x, cos(x));
      %此为右上角图形

      subplot(2, 2, 3); plot(x, sin(x).*exp(-x/5));
      %此为左下角图形

      subplot(2, 2, 4); plot(x, x.^2);
      %此为右下角图形
```


其他平面绘图范例(plotxy07.m)

□ 将10000个由randn产生的正规分布之随机数分成25堆

x = randn(10000, 1); %产生10000个正规分布随机数

hist(x, 25); %绘出直方图,显示x资料的分布情

%况和统计特性,数字25代表资料依

%大小分堆的堆数,即是指方图内长条

%的个数

set(findobj(gca, 'type', 'patch'), 'edgecolor', 'w');

%将长条图的边缘设定成白色

图像的显式读写

imread及imwrite支持的格式

影像文件格式	扩展名	相关字符串
微软窗口的Bitmap	bmp	'bmp'
阶层式数据格式 (Hierarchical Data Format)	hdf	'hdf'
Joint Photographic Expert Group	jpg或jpeg	'jpg'或 'jpeg'
微软窗口的Paintbrush	рсх	'pcx'
可移植网络图形格式 (Portable Network Graphics)	png	'png'
标记式影像文件格式 (Tagged Image File Format)	tiff	'tif'或 'tiff'
X窗口倾印 (X Windows Dump)	xwd	'xwd'
图形交换格式 (Graphic Interchange Format) (第六版才支援)	gif	ʻgif'

图像的读取与写入(imp.m & imcp.m)

- □ imread指令可用于读取图像文件案。
- □ imwrite则可用于写入图像文件案。
 - A = imread('mypic.jpg');

```
pic = imread('Lighthouse.jpg'); % read image
picg = rgb2gray(pic);
picd = double(picg)/255; % translate uint8 into double image format
```

imwrite(A, 'mypic.jpg', 'jpg');

picuint8 = uint8(round(picd*255)); % translate double into uint8 image format imwrite(picuint8,'pictest.jpg','jpg');

- You should get used to converting to double
 - after you load an image and converting to uint8 before you write an image.

8-bit ←→double

- □ 欲将双精准的全彩影像转作uint8数据型态,可输入如下:
 - >> RGB8 = uint8(round(RGB*255));
- □ 其中RGB64为双精准的全彩影像数据,而RGB8则是unit8的8-bit影像数据。反之,若欲进行反转换,可输入如下:
 - \square >> RGB64 = double(RGB8)/255;
- □ uint8数据型态亦可用于全彩影像数据,此时每一像素的原色(R,G或B)范围为0至255间的整数,而不再是0至1的实数。

imfinfo指令

- □ imfinfo指令可传回图像文件案的各项信息,例如:
 - □ info1=imfinfo('simulinkteam.jpg')
 - info2=imfinfo('sbtree.gif')
- □ 对于不同的文件格式,imfinfo传回的信息项目 可能有所不同。

imread指令

- □ imread指令可以读取上述格式的图像文件案,并进行必要之转换,如下:
 - □对于强度影像,imread将资料以uint8的矩阵(大小为mxn)传回。
 - □对于索引影像,imread将资料以uint8的矩阵(大小为mxn)传回,并同时传回一个双精准的色盘矩阵,其每个元素值介于[0,1]。
 - □对于全彩矩阵,imread将资料以uint8的矩阵(大小为mxnx3)传回。

影像类别及型态关系表

	数据型态	
影像类别	双精准(Double)	uint8
索引影像 (Indexed Images)	影像矩阵大小:mxn	影像矩阵大小:mxn
	影像数据范围:介于[1, k]的整数	影像数据范围:介于[0, k-1]的整数
	色盘矩阵大小:kx3	色盘矩阵大小:kx3
	色盘数据范围:介于[0, 1]的实数	色盘数据范围:介于[0, 1]的实数
	影像显示指令:image	影像显示指令:image (注:k的值不大于256)
强度影像 (Intensity Images)	影像矩阵大小: mxn	影像矩阵大小: mxn
	影像数据范围:任意实数(但通常是[0,1])	影像数据范围:介于[0, 255]的整数
	色盘矩阵大小:kx3	色盘矩阵大小:kx3
	色盘数据范围:介于[0, 1]的实数	色盘数据范围:介于[0, 1]的实数
	影像显示指令:imagesc (色盘通常是灰阶)	影像显示指令:imagesc (色盘通常是灰阶)
全彩影像 (Truecolor Images)	影像矩阵大小: mxnx3	影像矩阵大小: mxnx3
	影像数据范围:介于[0,1]的实数	影像数据范围:介于[0, 255]的整数
	影像显示指令:image	影像显示指令:image

问题与讨论

