11.3 a

11.4 Sei c > 0, und $f, g : \mathbb{R} \to \mathbb{R}$ seien zweimal stetig differenzierbar. Zeige: Die Funktion $u : \mathbb{R}^2 \to \mathbb{R}$, u(t, x) := f(x + ct) + g(x - ct) ist eine Lösung der Wellengleichung

$$\frac{\partial^2}{\partial t^2}u(t,x) = c^2 \cdot \frac{\partial^2}{\partial x^2}u(t,x)$$

- 11.5 Bestimme Lage und Art der lokalen Extrema folgender Funktionen:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := xy^2 4xy + x^2$
 - (b) $g:(0,\pi)\times(0,\pi)\to\mathbb{R}, g(x,y):-\sin(x)+\sin(y)+\sin(x+y)$
- 11.6 (a) Berechne die Jacobi-Matrix der Abbildungen (Polar- bzw. Kugelkoordinaten)
 - i. $F: \mathbb{R}^2 \to \mathbb{R}^2, F(r,\varphi) := (r\cos(\varphi), r\sin(\varphi))^T$
 - ii. $G: \mathbb{R}^3 \to \mathbb{R}^3, G(r, \theta, \varphi) := (r\cos(\theta)\cos(\varphi), r\cos(\theta)\sin(\varphi), r\sin(\theta))^T$