Computação Gráfica

Iluminação

Pipeline de Visualização

 $P' = Projection \times View \times Model \times P$

Motivação

Imagens mais realistas:

- Projeções perspectivas.
- ► Efeitos de iluminação natural às superfícies visíveis.

Motivação

Modelos de iluminação:

Apenas a malha (*Wireframe*)

Cor Uniforme

Luz Ambiente +Reflexão Difusa

Luz Ambiente +Reflexão Difusa +Reflexão Especular

Fontes de Luz

Qualquer objeto que emite energia brilhante é uma fonte de luz e contribui para os efeitos de luz dos outros objetos na cena. Características das fontes de luz:

- Posição.
- Cor.
- Direção

Modelos de Iluminação:

- Aproximações (muito simplificadas) das leis físicas sobre efeito de luz em objetos.
- Modelo→Simplificação da Realidade (custo computacional).

Fontes de Luz

Exemplo do mundo real:

- Sol (luz branca: combinação de muitas cores) ilumina uma superfície.
- A superfície absorve algumas cores e reflete outras.
- Para nós, a cor da superfície é a cor refletida e visível aos nossos olhos.

Fontes de Luz

Exemplo do mundo real:

- ➤ Sol (luz branca: combinação de muitas cores) ilumina uma superfície.
- A superfície absorve algumas cores e reflete outras.
- Para nós, a cor da superfície é a cor refletida e visível aos nossos olhos.

Em um simples modelo de iluminação:

Luz (branca) RGB (1.0,1.0,1.0).

Objeto RGB (1.0,0.5,0.31).

Objeto×Luz RGB (1.0,0.5,0.31).

Luz Ambiente

- Define um nível de brilho geral para a cena.
- Cada superfície (de algum objeto) irá refletir luz conforme suas propriedades.
- O nível de Luz Ambiente em uma cena é definido por um parâmetro de intensidade I_a (um valor escalar entre [0, 1]).

Reflexão Difusa

- A quantidade de luz incidente depende da orientação da superfície relativa à direção da luz.
- ightharpoonup É necessário considerar o ângulo de incidência heta entre a direção da luz incidente e a normal da superfície.

Reflexão Difusa

Conforme o ângulo de incidência aumenta, a iluminação a partir da fonte de luz diminui.

$$\cos \theta = N \cdot L$$

L é o vetor unitário que representa a direção da luz e N o vetor normal (dos vértices) da superfície.

Uma superfície somente será iluminada quando $0^\circ \le \theta \le 90^\circ$. Quando $\cos \theta < 0$, a luz estará atrás da superfície.

Reflexão Difusa

O vetor unitário L é calculado usando as posições da superfície P_{surf} e da fonte de luz P_{source} :

$$L = \frac{P_{\text{source}} - P_{\text{surf}}}{|P_{\text{source}} - P_{\text{surf}}|}$$

N é um vetor perpendicular à superfície. Um vértice só não forma superfície, portanto N pode ser calculado considerando a superfície local formada por vértices vizinhos.

$$I_{\mathrm{diff}} = egin{cases} k_a I_a + k_d I_l \left(N \cdot L
ight), & \mathrm{se} \ N \cdot L > 0 \ k_a I_a, & \mathrm{se} \ N \cdot L \leq 0 \end{cases}$$

- $ightharpoonup k_a$ e k_d são escalares [0, 1] que definem propriedades da superfície.
 - $ightharpoonup k_a$ é o coeficiente de reflexão ambiente (quanto maior k_a , mais reflexão).
 - $ightharpoonup k_d$ é o coeficiente de Reflexão Difusa (fração da luz incidente a ser refletida/espalhada na superfície).
 - Assume que toda a superfície é um refletor difuso ideal (Lambertiniano), ou seja, uniforme em todas as direções, ou perfeitamente difusa.

Luz Ambiente + Reflexão Difusa:

- \triangleright k_a e k_d são escalares [0, 1] que definem propriedades da superfície.
- $ightharpoonup I_a$ determina a intensidade da luz ambiente, escalar entre [0,1].

Luz ambiente representa uma fonte de luz distante e não é necessário especificar uma posição de sua fonte. Tentamos simular um efeito de iluminação produzido pela luz refletida de várias superfícies.

Luz Ambiente + Reflexão Difusa:

- $ightharpoonup k_a$ e k_d são escalares [0, 1] que definem propriedades da superfície.
- $ightharpoonup I_a$ determina a intensidade da luz ambiente, escalar entre [0,1].
- $ightharpoonup I_l$ determina a intensidade da luz puntual, escalar entre [0,1].

Uma fonte de luz puntual é onidirecional. Pode ser definida por meio de uma posição, da cor da luz, um vetor de direção, e um limite angular $\cos \theta = N \cdot L$.

- $ightharpoonup k_q$ e k_d são escalares [0, 1] que definem propriedades da superfície.
- $ightharpoonup I_a$ determina a intensidade da luz ambiente, escalar entre [0, 1].
- $ightharpoonup I_l$ determina a intensidade da luz puntual, escalar entre [0,1].
- N é a normal (vetor unitário perpendicular à superfície).

- $ightharpoonup k_a$ e k_d são escalares [0,1] que definem propriedades da superfície.
- ► *I_a* determina a intensidade da luz ambiente, escalar entre [0, 1].
- $ightharpoonup I_l$ determina a intensidade da luz puntual, escalar entre [0,1].
- N é a normal (vetor unitário perpendicular à superfície).
- L é a direção da luz puntual (vetor unitário com a direção).

$$L = \frac{P_{\text{source}} - P_{\text{surf}}}{|P_{\text{source}} - P_{\text{surf}}|}$$

- $ightharpoonup k_a$ e k_d são escalares [0, 1] que definem propriedades da superfície.
- ► *I_a* determina a intensidade da luz ambiente, escalar entre [0, 1].
- $ightharpoonup I_l$ determina a intensidade da luz puntual, escalar entre [0, 1].
- ▶ *N* é a normal (vetor unitário perpendicular à superfície).
- L é a direção da luz puntual (vetor unitário com a direção).
- $ightharpoonup N \cdot L$ retorna o cosseno do ângulo entre vetores N e L, $\cos \theta = N \cdot L$.
- Se $N \cdot L \le 0$, então a superfície não é atingida pela luz puntual, somente pela luz ambiente (significa que está fora do limite angular).

Reflexão Especular

A Reflexão Especular em superfície brilhante representa a reflexão da luz incidente em uma área concentrada ao redor de um ângulo de Reflexão Especular:

Reflexão Especular

A Reflexão Especular em superfície brilhante representa a reflexão da luz incidente em uma área concentrada ao redor de um ângulo de Reflexão Especular:

- ightharpoonup O ângulo de Reflexão Especular θ é igual ao ângulo de incidência da luz, oposto à normal da superfície N.
- O vetor unitário *R* representa a direção da Reflexão Especular.
- O vetor unitário L aponta na direção da fonte de luz puntual.
- O vetor unitário V aponta na direção do "visualizador".

Campo de Reflexão Especular

- Superfícies brilhantes tem um campo menor de Reflexão Especular.
- ► Superfícies foscas tem um campo maior de Reflexão Especular.

- ► O Modelo de Gouraud interpola as cores nos vértices de cada face para obter a resultante para aquela face.
- Suaviza as transições entre as faces, melhorando a aparência do objeto.
- Como apenas considera as cores nos vértices que definem cada polígono, tem um custo computacional baixo, sendo o principal método utilizado para iluminação complexa durante muito tempo.
- Entretanto, suaviza algumas faces que deveriam ser mantidas, e não capta as variações da reflexão especular sobre a superfície, pois é calculado usando somente os vértices.

Os passos para a aplicação do Modelo de Gouraud são:

1. Determinar o normal *N* em cada vértice do polígono a partir da resultante entre os normais dos polígonos aos quais este vértice pertence.

Os passos para a aplicação do Modelo de Gouraud são:

- 1. Determinar o normal *N* em cada vértice do polígono a partir da resultante entre os normais dos polígonos aos quais este vértice pertence.
- 2. Usar N e L para calcular a intensidade I em cada vértice do polígono.

Os passos para a aplicação do Modelo de Gouraud são:

- 1. Determinar o normal *N* em cada vértice do polígono a partir da resultante entre os normais dos polígonos aos quais este vértice pertence.
- 2. Usar N e L para calcular a intensidade I em cada vértice do polígono.
- 3. Usar interpolação bilinear para calcular a intensidade *l* em cada pixel no qual o polígono visível é projetado.

Os passos para a aplicação do Modelo de Gouraud são:

- 1. Determinar o normal *N* em cada vértice do polígono a partir da resultante entre os normais dos polígonos aos quais este vértice pertence.
- 2. Usar N e L para calcular a intensidade I em cada vértice do polígono.
- 3. Usar interpolação bilinear para calcular a intensidade *I* em cada pixel no qual o polígono visível é projetado.
- 4. Desenhar o pixel de acordo com a cor determinada.

- Aplica os efeitos da reflexão difusa e especular sobre o objeto sem cálculos complexos.
- Implementado no shader de vértices, tem uma execução muito eficiente.
- Por depender apenas das cores nos vértices para calcular os pixeis de cada fragmento, dá uma aparência mais uniforme às superfícies.
- Conforme o poder de processamento gráfico foi aumentando, foi sendo substituído por modelos que atuam no shader de fragmentos.

Modelo de Blinn-Phong

Modelo de Phong

- ▶ O Modelo de Phong define a intensidade da reflexão especular proporcional a $\cos^{n_s} \phi$, com $0^{\circ} \le \phi \le 90^{\circ}$.
- O expoente de reflexão especular *n*_s é determinado pelo tipo de superfície:
 - \triangleright Superfícies brilhantes apresentam valores altos de n_s (100 ou mais).
 - ▶ Para refletores perfeitos, $n_s \to \infty$.
- Em um refletor ideal (espelho perfeito), a luz incidente é refletida somente na direção de reflexão especular, e será visível somente quando V e R coincidirem ($\phi = 0^{\circ}$).

Modelo de Phong

$$I_{l, \mathsf{spec}} = egin{cases} k_{s} I_{l} \left(V \cdot R \right)^{n_{s}}, & \mathsf{se} \ V \cdot R > 0 \ 0, & \mathsf{se} \ V \cdot R \leq 0 \end{cases}$$

- k_s é o coeficiente de reflexão especular.
- $ightharpoonup n_s$ é o expoente de reflexão especular.
- ightharpoonup cos $\phi = V \cdot R$ (V e R são vetores unitários).

Modelo de Phong

De forma que o vetor de reflexão especular é obtido fazendo (Lei de Snell):

$$R = N\cos\theta + N\cos\theta - L = N2\cos\theta - L = N(2N \cdot L) - L$$

O vetor *V* é calculado usando a posição da superfície e a posição de visão (câmera) da mesma forma como o vetor *L* foi obtido:

$$V = \frac{P_{\text{view}} - P_{\text{surf}}}{|P_{\text{view}} - P_{\text{surf}}|}$$

Modelo de Blinn-Phong

Uma simplificação do modelo de Phong é obtida usando o vetor intermediário H entre L e V:

$$H = \frac{L + V}{|L + V|}$$

Modelo de Blinn-Phong

- Para superfícies não planares, $N \cdot H$ requer menos cálculos do que $V \cdot R$ porque o cálculo do vetor R em cada ponto da superfície envolve o vetor N.
- Se a posição de visão e a fonte de luz forem distantes da superfície, *V* e *L* são constantes, então *H* é constante para todos os pontos da superfície.
- ► H é a direção da superfície que produzirá a reflexão especular máxima na direção de visão.
- Se $N \cdot H$ for usado no lugar de $V \cdot R$, troca-se o cálculo de $\cos \phi$ pelo de $\cos \alpha$.

Combinando Reflexão Especular e Difusa

Para uma única fonte de luz puntual, podemos modelar a combinação das reflexões difusa e especular como:

$$I = I_{\text{diff}} + I_{\text{spec}} = (k_a I_a + k_d I_l (N \cdot L)) + k_s I_l (N \cdot H)^{n_s}$$

Combinando Reflexão Especular e Difusa

- ▶ Quando $N \cdot L \le 0$, o objeto será iluminado apenas pela luz ambiente.
- ▶ Quando $N \cdot H \le 0$, não existirá reflexão especular.

Múltiplas Fontes de Luz

É possível usar a quantidade de fontes de luz que se desejar, bastando somar as contribuições de reflexão difusa e especular de cada fonte:

$$I = I_{\text{amb}} + \sum_{l=1}^{n} \left[I_{l,\text{diff}} + I_{l,\text{spec}} \right] = k_{a}I_{a} + \sum_{l=1}^{n} I_{l} \left[k_{d} (N \cdot L) + k_{s} (N \cdot H)^{n_{s}} \right]$$

Coeficientes de Reflexão no RGB

- No modelo de Phong, os coeficientes são constantes.
- ► Para cores RGB, as intensidades são modeladas com vetores de 3 elementos que designam os componentes vermelho, verde, e azul:

$$I_l = \left(I_{l_R}, I_{l_G}, I_{l_B}\right)$$

Coeficientes de Reflexão no RGB

Similarmente, os coeficientes de reflexão são também especificados para as 3 componentes de cor:

$$k_a = (k_{a_R}, k_{a_G}, k_{a_B})$$

 $k_d = (k_{d_R}, k_{d_G}, k_{d_B})$
 $k_s = (k_{s_R}, k_{s_G}, k_{s_B})$

 Coeficiente por componente facilita a modelagem do material da superfície (mais realismo).

Material de base para a aula I

- ► Hughes, J. F., Van Dam, A., Foley, J. D., McGuire, M., Feiner, S. K., & Sklar, D. F. (2014). Computer graphics: principles and practice. Terceira Edição. Pearson Education.
- ► LearnOpenGl. Basic Lighting.

 https://learnopengl.com/Lighting/Basic-Lighting. Acesso em Abril/2020.
- ➤ Computação Gráfica: Aula 10. Slides de Ricardo M. Marcacini. Disciplina SCC0250/0650, ICMC/USP, 2021.
- Computação Gráfica: Rendering. Slides de Rosane Minghim. Disciplina SCC0250/0650, ICMC/USP, 2018.

Material de base para a aula II

- ► Imagens do Modelo de Gouraud: https://www.geeksforgeeks.org/gouraud-shading-in-computer-graphics/. Acesso em Maio/2023.
- Colaboração do monitor Matheus da Silva Araújo (Discord: Matheus Araujo#6468).

Exercícios

Exercícios I

Para a resolução dos exercícios, use o dia de seu nascimento como D e o mês como M.

- 1. Considere um objeto Lambertiniano com coeficiente de reflexão ambiente $k_a = \frac{D}{40}$ e uma intensidade de luz ambiente $l_a = 0.8$. Calcule a intensidade da luz ambiente refletida pelo objeto.
- 2. Complemente o modelo de iluminação do exercício anterior utilizando o coeficiente de reflexão difusa $k_d=\frac{M}{15}$, a intensidade da luz puntual $I_l=0.75$, e um ângulo $0\leq\theta\leq\frac{\pi}{2}$ a seu critério. Determine a intensidade da luz ambiente somada à reflexão difusa.

Exercícios II

3. Adeque o exercício anterior ao modelo de Blinn-Phong tomando o coeficiente de reflexão especular $k_s = \frac{M}{D+20}$, o expoente de reflexão especular $n_s = M \cdot D$, e um ângulo $0 \le \alpha \le \frac{\pi}{2}$ à vontade. Obtenha o valor da intensidade total entre iluminação ambiente, reflexão difusa, e reflexão especular.