

Linear Regression Models

Segment 1 - Simple Linear Regression Model

Topic 3 – Ordinary Least Squares (OLS) Estimators and Estimates

Sudarsan N.S. Acharya (sudarsan.acharya@manipal.edu)

Topics

- 1. Estimator and Estimate
- 2. Interpreting OLS Estimators for a Continuous Predictor
- 3. Interpreting OLS Estimators for a Categorical Predictor
- 4. Properties of OLS estimators
- 5. Prediction Problem
- 6. Prediction Error
- 7. Summary

• Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 :

Estimator and Estimate

• Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size n

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size *n* but the samples are not identified yet.

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size *n* but the samples are not identified yet.
- Recall the OLS estimators of β_0 and β_1 :

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size n but the samples are not identified vet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta_1}\bar{X}_n$,

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size *n* but the samples are not identified yet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta_1}\bar{X}_n$, and $\hat{\beta_1} = \frac{S_{XY}}{S_{XX}}$.

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size *n* but the samples are not identified yet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta}_1 \bar{X}_n$, and $\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$.
- The OLS estimators are random variables because they depend on the dataset.

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size *n* but the samples are not identified yet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta_1}\bar{X}_n$, and $\hat{\beta_1} = \frac{S_{XY}}{S_{XX}}$.
- The OLS estimators are random variables because they depend on the dataset.
- Suppose we identify, say, n=32 samples;

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size n but the samples are not identified vet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta_1}\bar{X}_n$, and $\hat{\beta_1} = \frac{S_{XY}}{S_{XX}}$.
- The OLS estimators are random variables because they depend on the dataset.
- Suppose we identify, say, n=32 samples; then we have that dataset-specific estimates:

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size n but the samples are not identified vet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta_1}\bar{X}_n$, and $\hat{\beta_1} = \frac{S_{XY}}{S_{XX}}$.
- The OLS estimators are random variables because they depend on the dataset.
- Suppose we identify, say, n=32 samples; then we have that dataset-specific estimates: $\hat{\beta}_0 = \bar{y}_n - \hat{\beta}_1 \bar{x}_n$,

- Suppose that we want to build an SLRM for response Y and a single predictor predictor X_1 : $\hat{Y} = \beta_0 + \beta_1 X_1$.
- To that end, we want to use a randomly sampled dataset of size n but the samples are not identified vet.
- Recall the OLS estimators of β_0 and β_1 : $\hat{\beta_0} = \bar{Y}_n \hat{\beta_1}\bar{X}_n$, and $\hat{\beta_1} = \frac{S_{XY}}{S_{XX}}$.
- The OLS estimators are random variables because they depend on the dataset.
- Suppose we identify, say, n=32 samples; then we have that dataset-specific estimates: $\hat{\beta_0} = \bar{y}_n - \hat{\beta_1}\bar{x}_n$, and $\hat{\beta_1} = \frac{s_{xy}}{c}$.

 Suppose that we consider the mtcars dataset with mpg as the response and hp as the predictor.

- Suppose that we consider the mtcars dataset with mpq as the response and hp as the predictor.
- SLRM predicts $\widehat{mpq} = \hat{\beta}_0 + \hat{\beta}_1 hp$.

- Suppose that we consider the mtcars dataset with mpg as the response and hp as the predictor.
- SLRM predicts $\widehat{mpg} = \hat{\beta}_0 + \hat{\beta}_1 hp$.
- $\hat{\beta}_0$ is the predicted mpg when hp is 0.

- Suppose that we consider the mtcars dataset with mpg as the response and hp as the predictor.
- SLRM predicts $\widehat{mpg} = \hat{\beta}_0 + \hat{\beta}_1 hp$.
- $\hat{\beta}_0$ is the predicted mpg when hp is 0.
- What about $\hat{\beta}_1$?

- Suppose that we consider the mtcars dataset with mpg as the response and hp as the predictor.
- SLRM predicts $\widehat{mpg} = \hat{\beta}_0 + \hat{\beta}_1 hp$.
- $\hat{\beta}_0$ is the predicted mpg when hp is 0.
- What about $\hat{\beta_1}$? It is the change in the predicted mpg for a 1 unit increase in hp:

- Suppose that we consider the mtcars dataset with mpq as the response and hp as the predictor.
- SLRM predicts $\widehat{mpq} = \hat{\beta}_0 + \hat{\beta}_1 hp$.
- $\hat{\beta}_0$ is the predicted mpq when hp is 0.
- What about $\hat{\beta}_1$? It is the change in the predicted mpq for a 1 unit increase in hp:

$$\begin{cases} \widehat{mpg}_{\text{old}} &= \hat{\beta}_0 + \hat{\beta}_1 hp \\ \widehat{mpg}_{\text{new}} &= \hat{\beta}_0 + \hat{\beta}_1 \left(hp + 1 \right) \\ \end{cases} \Rightarrow \widehat{mpg}_{\text{new}} - \widehat{mpg}_{\text{old}} = \hat{\beta}_1.$$

 Suppose that in the mtcars dataset we add a new column called heavy with ves or no entries indicating whether a car is heavy or not.

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that mpg is the response and that heavy is the predictor.

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that mpg is the response and that heavy is the predictor.
- As there are 2 levels (*yes, no*) for the categorical variable *heavy*,

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that mpg is the response and that heavy is the predictor.
- As there are 2 levels (yes, no) for the categorical variable heavy, 1 new dummy variable called heavyyes is created.

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that *mpg* is the response and that *heavy* is the predictor.
- As there are 2 levels (yes, no) for the categorical variable heavy, 1 new dummy variable called heavyyes is created.
- Note that the level no is the reference level per alphabetical order;

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that *mpg* is the response and that *heavy* is the predictor.
- As there are 2 levels (yes, no) for the categorical variable heavy, 1 new dummy variable called heavyyes is created.
- Note that the level *no* is the reference level per alphabetical order; that is, *heavyyes* is equal to 0 if car is <u>not</u> heavy and 1 if it is.

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that *mpg* is the response and that *heavy* is the predictor.
- As there are 2 levels (yes, no) for the categorical variable heavy, 1 new dummy variable called heavyyes is created.
- Note that the level *no* is the reference level per alphabetical order; that is, *heavyyes* is equal to 0 if car is <u>not</u> heavy and 1 if it is.
- The SLRM is $\widehat{mpg} = \hat{\beta}_0 + \hat{\beta}_1 heavyyes$.

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that *mpg* is the response and that *heavy* is the predictor.
- As there are 2 levels (yes, no) for the categorical variable heavy, 1 new dummy variable called heavyyes is created.
- Note that the level *no* is the reference level per alphabetical order; that is, *heavyyes* is equal to 0 if car is <u>not</u> heavy and 1 if it is.
- The SLRM is $\widehat{mpg} = \hat{\beta_0} + \hat{\beta_1} heavyyes$.
- $\hat{\beta}_0$ is the average mpg of the not heavy cars (reference level).

- Suppose that in the mtcars dataset we add a new column called heavy with yes or no entries indicating whether a car is heavy or not.
- Suppose that *mpg* is the response and that *heavy* is the predictor.
- As there are 2 levels (yes, no) for the categorical variable heavy, 1 new dummy variable called heavyyes is created.
- Note that the level *no* is the reference level per alphabetical order; that is, *heavyyes* is equal to 0 if car is <u>not</u> heavy and 1 if it is.
- The SLRM is $\widehat{mpg} = \hat{\beta_0} + \hat{\beta_1} heavyyes$.
- $\hat{\beta}_0$ is the average mpg of the not heavy cars (reference level).
- $\hat{\beta}_1$ is the difference between the average mpg of the heavy cars and the average mpg of the not heavy cars (reference level).

• $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively:

Properties of OLS estimators

• $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$:

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.
- Variance of $\hat{\beta_0}$ and $\hat{\beta_1}$:

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.
- Variance of \hat{eta}_0 and \hat{eta}_1 : $Var[\hat{eta}_0] = \sigma^2\left(rac{1}{n} + rac{ar{x}_n^2}{s_{xx}}
 ight)$,

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.
- Variance of $\hat{\beta_0}$ and $\hat{\beta_1}$: $Var[\hat{\beta_0}] = \sigma^2\left(\frac{1}{n} + \frac{\bar{x}_n^2}{s_{xx}}\right)$, and $Var[\hat{\beta_1}] = \frac{\sigma^2}{s_{xx}}$.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.
- Variance of $\hat{\beta_0}$ and $\hat{\beta_1}$: $Var[\hat{\beta_0}] = \sigma^2\left(\frac{1}{n} + \frac{\bar{x}_n^2}{s_{xx}}\right)$, and $Var[\hat{\beta_1}] = \frac{\sigma^2}{s_{xx}}$.
- σ^2 is typically unknown:

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.
- Variance of $\hat{\beta_0}$ and $\hat{\beta_1}$: $Var[\hat{\beta_0}] = \sigma^2\left(\frac{1}{n} + \frac{\bar{x}_n^2}{s_{xx}}\right)$, and $Var[\hat{\beta_1}] = \frac{\sigma^2}{s_{xx}}$.
- σ^2 is typically unknown: use the in-sample approximation $\sigma^2 \approx \frac{1}{n-2} \sum_{i=1}^n (y^{(i)} \hat{y}^{(i)})^2$.

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , respectively: $E[\hat{\beta}_0] = \beta_0$ and $E[\hat{\beta}_1] = \beta_1$.
- In the linear approximation $Y^{(i)} = \beta_0 + \beta_1 X_1^{(i)} + \varepsilon^{(i)}$, recall the assumptions about the random error term $\varepsilon^{(i)}$: zero mean, constant variance = σ^2 , and uncorrelated across the samples.
- Variance of $\hat{\beta_0}$ and $\hat{\beta_1}$: $Var[\hat{\beta_0}] = \sigma^2\left(\frac{1}{n} + \frac{\bar{x}_n^2}{s_{xx}}\right)$, and $Var[\hat{\beta_1}] = \frac{\sigma^2}{s_{xx}}$.
- σ^2 is typically unknown: use the in-sample approximation $\sigma^2 \approx \frac{1}{n-2} \sum_{i=1}^n (y^{(i)} \hat{y}^{(i)})^2$.
- Recall that the summation term is the RSS.

• Let $x_1^{(i)}$ and $y^{(i)}$ represent the *i*th sample's predictor and response values in a dataset with, say, n samples.

- Let $x_1^{(i)}$ and $y^{(i)}$ represent the *i*th sample's predictor and response values in a dataset with, say, n samples.
- The true population relationship is given by $Y=f(X)+\varepsilon$ for an unknown function f.

- Let $x_1^{(i)}$ and $y^{(i)}$ represent the *i*th sample's predictor and response values in a dataset with, say, n samples.
- The true population relationship is given by $Y=f(X)+\varepsilon$ for an unknown function f.
- The prediction problem is to build an approximation \hat{f} of f using the dataset such that

- Let $x_1^{(i)}$ and $y^{(i)}$ represent the *i*th sample's predictor and response values in a dataset with, say, n samples.
- The true population relationship is given by $Y=f(X)+\varepsilon$ for an unknown function f.
- The prediction problem is to build an approximation \hat{f} of f using the dataset such that for a new predictor value X from the population, the *prediction error* between $\hat{f}(X)$ and the corresponding response value Y is minimized.

• How do we measure the prediction error?

- How do we measure the prediction error?
- For regression, we have, for example,

- How do we measure the prediction error?
- ullet For regression, we have, for example, squared error $\left(Y-\hat{f}(X)
 ight)^2$,

- How do we measure the prediction error?
- ullet For regression, we have, for example, squared error $\left(Y-\hat{f}(X)\right)^2$, and absolute deviation $\left|Y-\hat{f}(X)\right|$.

- How do we measure the prediction error?
- For regression, we have, for example, squared error $\left(Y \hat{f}(X)\right)^2$, and absolute deviation $\left|Y \hat{f}(X)\right|$.
- We will use the squared error as the measure of prediction error.

- How do we measure the prediction error?
- For regression, we have, for example, squared error $\left(Y \hat{f}(X)\right)^2$, and absolute deviation $\left|Y \hat{f}(X)\right|$.
- We will use the squared error as the measure of prediction error.
- How do we build a good "fitted" model?

- How do we measure the prediction error?
- For regression, we have, for example, squared error $\left(Y \hat{f}(X)\right)^2$, and absolute deviation $\left|Y \hat{f}(X)\right|$.
- We will use the squared error as the measure of prediction error.
- How do we build a good "fitted" model? Minimizes the prediction error on *unseen* data.

- How do we measure the prediction error?
- For regression, we have, for example, squared error $(Y \hat{f}(X))^2$, and absolute deviation $\left|Y-\hat{f}(X)\right|$.
- We will use the squared error as the measure of prediction error.
- How do we build a good "fitted" model? Minimizes the prediction error on unseen data.
- Train-validation-test split of data.

• Interpreted OLS estimators for continuous and categorical predictors.

- Interpreted OLS estimators for continuous and categorical predictors.
- Described the properties of OLS estimators.

- Interpreted OLS estimators for continuous and categorical predictors.
- Described the properties of OLS estimators.
- Described the prediction problem and interpreted the prediction error.