问题 A: [Easy I] Crazy Plan

时间限制: 2 Sec 内存限制: 2 MB 提交: 966 解决: 228 [提交][状态][讨论版]

题目描述

The $\mathbf{1}^{st}$ day, he will get on 1 problem solved.

The 2^{nd} day, he will get on 3 problems solved.

The 3^{rd} day, he will get on 6 problems solved.

...

The n^{th} day, he will get on n(n+1)/2 problems solved.

 ${\bf Neko}$ wants to know how many problems he will solve after K days.

输入

The first line contains a single integer $T(1 \le T \le 1.1 * 10^6)$ —— the number of test case.

The 2^{nd} line to the $(T+1)^{th}$ line, each line contains a single integer $K(1 \le K \le 10^6)$ —— the number of days.

输出

Print the number of problems **Neko** solved. Each test case for one line.

样例输入

3 1 2 3

样例输出

1 4 10

问题 B: [Easy II] Nearest Price

时间限制: 2 Sec 内存限制: 128 MB 提交: 1224 解决: 214 [提交][状态][讨论版]

题目描述

Neko likes to eat fish recently. There are various kinds of fish in the market and **Neko** has X dollars. If the market happens to have a fish with a price of X, **Neko** will say "**Meow**". Otherwise, **Neko** will buy the most expensive fish which he can afford and say the change. (If **Neko** can't afford any fish, he will come back directly and say the money he has.)

Neko will go to the market with X dollars for T days. X may change everyday but the kinds of fish in the market will never change.

输入

The first line contains a single integer $T(1 \le T \le 10^6)$ — the number of the days when **Neko** needs to buy fish. The second line contains a single integer $N(1 \le N \le 10^6)$ — denoting there are/is N kind(s) of fish in the market. The third line contains T integers $x_1, x_2, x_3, \ldots, x_T(1 \le x_i \le 10^9, 1 \le i \le T)$ — the money **Neko** has for each day. The fourth line contains N integers $p_1, p_2, p_3, \ldots, p_N(1 \le p_i \le 10^9, 1 \le i \le N)$ which are the prices of the fish in the

It is guaranteed that prices are in ascending order.

输出

For each day, print only one line for what Neko said.

样例输入

2 2 1 3 2 3

样例输出

1 Meow

问题 C: [Median I] Factorial Magic

时间限制: 1 Sec 内存限制: 128 MB 提交: 1020 解决: 209 [提交][状态][讨论版]

题目描述

Neko is a freshman at SUSTech and he is good at fractorial problems. He wants to challenge you to see if you can solve the following problem: Caculate the value of $((n!)!)!(mod\ m)$.

输入

There is only one line contains two integers $n, m, (0 \le n \le 10^9, 1 \le m \le 10^9)$.

输出

Print the value of ((n!)!)!(mod m).

样例输入

1 2019

样例输出

1

问题 D: [Median II] Two-Product

时间限制: 1 Sec 内存限制: 128 MB 提交: 1596 解决: 187 [提交][状态][讨论版]

题目描述

Neko thinks the two-sum problem is easy for you, so he tests you by a new problem —— the two-product problem.

Given an array of integers, $a_1, a_2, a_3, \ldots, a_N$, and an integer M. Please output the number of pairs $(a_i, a_j), i < j$, such that $a_i * a_j = M$.

输入

The first line contains a single integer $N(1 \le N \le 10^6)$ —— the length of the array.

The second line contains a single integer $M(-10^{18} \le M \le 10^{18})$ —— the specific target.

The third line contains N integers $a_1, a_2, a_3, \ldots, a_N(-10^9 \le a_i \le 10^9, 1 \le i \le N)$ —— an array of integers.

It is guaranteed that the array is sorted in ascending order.

输出

For each specific target, print only one line for the number of a numbers pairs (a_i, a_j) satisfying $a_i * a_j = M$.

样例输入

```
9
4
-4 -4 -2 -1 0 1 2 2 4
```

样例输出

3

提示

Duplicate pairs (a_i, a_j) count only once!

问题 E: [Hard] Catch Neko

时间限制: 1 Sec 内存限制: 128 MB 提交: 852 解决: 86 [提交](状态](讨论版)

题目描述

Neko is running away! **Eve** wants to catch him. At first, **Eve** is standing at the point with coordinates (x_1, y_1) , while **Neko** is standing at the point with coordinates (x_2, y_2) . For every minute, **Eve** can choose to go up, down, left, or right with 1 unit distance. For instance, if she is at (x, y) now, she can go to (x, y + 1), (x, y - 1), (x - 1, y) or (x + 1, y).

Eve noticed that **Neko** also moves 1 unit distance every minute, but he only moves according to a sequence periodically. The sequence only contains 'U','D','L','R', denoting that Neko moves up, down, left, right respectively.

Eve is now wondering how many minutes she needs at least to catch Neko.

输入

The first line contains two integers $x_1,y_1(0 \le x_1,y_1 \le 10^9)$ —— the initial coordinate of **Eve**.

The second line contains two integers $x_2,y_2(0 \le x_2,y_2 \le 10^9)$ —— the initial coordinate of **Neko**.

It is guaranteed that the initial coordinates and destination point coordinates are different.

The third line contains a single integer $N(1 \le N \le 10^5)$ —— the length of the sequence S.

The fourth line contains the string S itself, consisting only four letters U,D,L,R.

输出

Please output the minimum minutes Eve needs to catch Neko. If she can not catch Neko forever, please output -1.

样例输入

```
0 0
4 6
3
DDD
```

样例输出

提示

Eve can choose not to move at every minute.

问题 F: [Bonus] Suffix Zero

时间限制: 3 Sec 内存限制: 128 MB 提交: 893 解决: 215 [提交][状态][讨论版]

题目描述

Neko thinks math is interesting but he has got stuck at a math problem, so he asks you for help.

Find the number of consecutive zeros at the end of n! (in decimal representation).

输入

The first line contains a single integer $T(1 \le T \le 10^6)$ —— the number of test case.

The 2^{nd} line to the $(n+1)^{th}$ line, each line contains a single integer $n(0 \le n \le 10^{18})$.

输出

Print the number of consecutive zeros at the end of n!.

样例输入

```
3
5
3
10
```

样例输出

```
1
0
2
```

提示

For the third case, 10! = 3628800, which have 2 consecutive zeros at the end.