LSTMs & GRUs

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- RNN Memory Problem
- LSTM Cells
- GRU Cells
- Stacked RNNs
- Bidirectional RNNs
- RNNs in Keras

Simple RNN

Challenges of Simple RNNs

Limited memory

- Input at step t only affects output up to step t+n for small n
- Influence of previous inputs decays over successive steps

- Long sequences (with many steps)
 need networks with longer memory to model
 - High-fidelity audio, long text documents, etc.

Challenges of Simple RNNs

Techniques to increase RNN memory

Hand-designed recurrent "cells"

Reservoir networks

- "Forget" network & gate determine which indices of long-term memory to keep
 - Output of sigmoid activation acts like a Boolean mask on the long-term memory vector

• "Main" network processes current step & short-term memory

 "Input" network & gate determine which indices of main network output should be added to long-term memory

• **Update** long-term memory vector

 "Output" network & gate determine which indices of updated long-term memory vector should be the cell's primary output → used as the current step prediction label and/or the new short-term memory vector

Figure & animations from Michael Phi

 "Reset" network & gate determine which indices of combined memory vector should be included in main network input

• "Main" network processes current step & selected memory values

 "Update" network & gate determine which indices of main network output should be stored in combined memory vector. The previous memory values at those indices are cleared

RNN Architectures

Single-Unit LSTM or GRU Network

Unrolled in time

Stacked LSTMs & GRUs

Unrolled in time

Lee, et al. 2018

Bidirectional LSTMs & GRUs

Unrolled in time

RNNs in Keras

RNN.ipynb

Questions?