Séries infinitas de Termos Constantes

Considere a sequência $\{a_n\}$

A sequência $\{s_n\}$, onde $s_n=a_1+a_2+\cdots+a_n=\sum_{k=1}^n a_k$ é chamada de sequência das somas parciais da sequência $\{a_n\}$. Definição

 $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{+\infty} a_n$ é chamada de série infinita. Os números $a_1, a_2, a_3 \dots a_n \dots$ são chamados de termos da série infinita. Os números $s_1, s_2, s_3 \dots s_n \dots$ são chamados de somas parciais da série infinita.

Definição

Dizemos que a série infinita $\sum_{n=1}^{+\infty} a_n$ é convergente se a sequência das somas parciais $\{s_n\}$ for convergente. Caso contrário, dizemos que a série $\sum_{n=1}^{+\infty} a_n$ é divergente.

Definição

Se a série $\sum_{n=1}^{+\infty} a_n$ for convergente, isto é, se existir um número S tal que $\lim_{n\to +\infty} s_n = S$, escrevemos $\sum_{n=1}^{+\infty} a_n = S$ e dizemos que S é a soma da série $\sum_{n=1}^{+\infty} a_n$.

Teorema

Se a série $\sum_{n=1}^{+\infty} a_n$ for convergente, então $\lim_{n\to+\infty} a_n = 0$

Exemplo:

Considerando a série $\sum_{n=1}^{+\infty} \frac{n}{n+1}$, vemos que $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{n}{n+1} \neq 0$. Portanto esta série é divergente.

Se a série $\sum_{n=1}^{+\infty} a_n$ for convergente e se $\{s_n\}$ é a sequência das somas parciais desta série. Então para todo $\in > 0$, existe um número N tal que se r > N e t > N temos $|s_r - s_t| < \in$.

Exemplo:

Considere a série $\sum_{n=1}^{+\infty} \frac{1}{n}$, a qual é chamada de série harmônica.

Temos
$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 e
$$s_{2n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

$$s_{2n} - s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}$$

De acordo com o teorema acima, se a série $\sum_{n=1}^{+\infty} \frac{1}{n}$ fosse convergente, deveríamos ter:

Dado \in > 0, existe N > 0, tal que se 2n > N e n > N, $|s_{2n} - s_n| < \in$.

Entretanto, tomando $\in = \frac{1}{2}$, isto não se verifica pois $s_{2n} - s_n > \frac{1}{2}$. Logo a série harmônica é divergente.

Definição

A série $\sum_{n=1}^{+\infty} ar^{n-1}$ é chamada de série geométrica.

Teorema

Se |r| < 1 série geométrica $\sum_{n=1}^{+\infty} ar^{n-1}$ converge e sua soma é $\frac{a}{1-r}$. Se Se $|r| \ge 1$ série geométrica $\sum_{n=1}^{+\infty} ar^{n-1}$ diverge.

Exemplos:

- 1. A série $\sum_{n=1}^{+\infty} \frac{7}{9^{n-1}}$ é uma série geométrica de razão $r = \frac{1}{9} < 1$ e portanto é convergente.
- 2. A série $\sum_{n=1}^{+\infty} 9^{n-1}$ é uma série geométrica de razão r=9>1 e portanto é divergente.

Teorema

Se $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são duas séries infinitas que diferem somente pelos seus m primeiros termos, isto é, $a_k = b_k$ se k > m, então ambas as séries convergem ou ambas as séries divergem.

Seja c é uma constante não nula.

- i) Se a série $\sum_{n=1}^{+\infty} a_n$ for convergente e sua soma for S, então a série $\sum_{n=1}^{+\infty} ca_n$ é convergente e sua soma é c.S
- ii) Se a série $\sum_{n=1}^{+\infty} a_n$ for divergente , então a série $\sum_{n=1}^{+\infty} ca_n$ também é divergente.

Teorema

Se $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ são duas séries infinitas convergentes cujas somas são respectivamente R e S, então

- i) $\sum_{n=1}^{+\infty} (a_n + b_n)$ é uma série convergente e sua soma é R + S.
- ii) $\sum_{n=1}^{+\infty} (a_n b_n)$ é uma série convergente e sua soma é R S.

Se a série $\sum_{n=1}^{+\infty} a_n$ for convergente e a série $\sum_{n=1}^{+\infty} b_n$ for divergente, então a série $\sum_{n=1}^{+\infty} (a_n + b_n)$ é divergente.

Séries infinitas de termos positivos

Teorema

Uma série infinita de temos positivos é convergente se e somente se sua sequência de somas parciais tiver um limitante superior.

Teorema (Teste da comparação)

Seja $\sum_{n=1}^{+\infty} a_n$ uma série de termos positivos

- i) Se $\sum_{n=1}^{+\infty} b_n$ for uma série de temos positivos convergente e se $a_n \le b_n$ para todo inteiro positivo n, então $\sum_{n=1}^{+\infty} a_n$ também é convergente.
- ii) Se $\sum_{n=1}^{+\infty} c_n$ for uma série de temos positivos divergente e se $a_n \ge c_n$ para todo inteiro positivo n, então $\sum_{n=1}^{+\infty} a_n$ também é divergente.

Exemplo:

Verifique se a série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}+3}$ é convergente ou divergente.

Solução:

A série $\sum_{n=1}^{+\infty}\frac{5}{7^{n-1}}$ é a série geométrica, de razão $r=\frac{1}{7}$. Como |r|<1 esta série converge.

Cosiderando $a_n = \frac{5}{7^{n-1}+3}$ e $b_n = \frac{5}{7^{n-1}}$, temos $a_n = \frac{5}{7^{n-1}+3} < \frac{5}{7^{n-1}} = b_n$, isto é $a_n < b_n$.

Então , como a série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}}$ convege, a série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}+3}$ também converge.

Teorema (Teste da comparação com limite)

Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries de termos positivos.

- i) Se $\lim_{n\to +\infty} \frac{a_n}{b_n} = c > 0$, então ambas convergem ou ambas divergem.
- ii) Se $\lim_{n\to +\infty} \frac{a_n}{b_n} = 0$, e $\sum_{n=1}^{+\infty} b_n$ converge, então $\sum_{n=1}^{+\infty} a_n$ também converge.
- iii) Se $\lim_{n\to +\infty} \frac{a_n}{b_n} = +\infty$, e $\sum_{n=1}^{+\infty} b_n$ diverge, então $\sum_{n=1}^{+\infty} a_n$ também diverge.

Exemplo:

Verifique se a série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}+3}$ é convergente ou divergente. Solução:

A série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}}$ é a série geométrica, de razão $r=\frac{1}{7}$. Como |r|<1 esta série converge.

Cosiderando
$$a_n=\frac{5}{7^{n-1}+3}$$
 e $b_n=\frac{5}{7^{n-1}}$, temos $\lim_{n\to+\infty}\frac{a_n}{b_n}=$

$$\lim_{n \to +\infty} \frac{\frac{5}{7^{n-1}+3}}{\frac{5}{7^{n-1}}} = \lim_{n \to +\infty} \frac{7^{n-1}}{7^{n-1}+3} = \lim_{n \to +\infty} \frac{1}{1 + \frac{1}{7^{n-1}}} = 1 > 0.$$

Então , como a série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}}$ convege, a série $\sum_{n=1}^{+\infty} \frac{5}{7^{n-1}+3}$ também converge.

Se $\sum_{n=1}^{+\infty} a_n$ for uma série convergente de termos positivos, seus termos podem ser agrupados de qualquer forma e a série resultante continua convergente e com a mesma soma que a série original.

De fato, se agruparmos a série $\sum_{n=1}^{+\infty} a_n$ da qualquer forma, por exemplo $a_1+(a_2+a_3)+(a_4+a_s+a_6)+\cdots$ para formar uma nova série $\sum_{n=1}^{+\infty} b_n$. Cada soma parcial t_m desta nova série será uma soma parcial da série anterior. Portanto quando m tende para infinito n também tende a infinito. Assim, se $\lim_{n\to +\infty} s_n = S$, então $\lim_{m\to +\infty} t_m = S$.

diverge.

Se $\sum_{n=1}^{+\infty} a_n$ for uma série convergente de termos positivos. Se rearranjarmos seus termos de qualquer forma, a série resultante continua convergente e com a mesma soma que a série original.

Série p ou série híper harmônica $\sum_{n=1}^{+\infty} \frac{1}{n^p}$

Se p=1, temos a série harmônica que, como sabemos, diverge. Se p<1, $n^p< n$ e daí $\frac{1}{n^p}>\frac{1}{n}$. Como $\sum_{n=1}^{+\infty}\frac{1}{n}$ diverge, $\sum_{n=1}^{+\infty}\frac{1}{n^p}$ também

Se p > 1, agrupamos a série $\sum_{n=1}^{+\infty} \frac{1}{np}$, da seguinte forma:

$$\frac{1}{1^p} + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right) + \left(\frac{1}{8^p} + \frac{1}{9^p} + \dots + \frac{1}{15^p}\right) + \dots$$

Cada termo desta série é menor que o termo correspondente na série

$$\frac{1}{1^{p}} + \left(\frac{1}{2^{p}} + \frac{1}{2^{p}}\right) + \left(\frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}}\right) + \left(\frac{1}{8^{p}} + \frac{1}{8^{p}} + \dots + \frac{1}{8^{p}}\right) + \dots$$

$$= \frac{1}{1^{p}} + \frac{2}{2^{p}} + \frac{4}{4^{p}} + \frac{8}{8^{p}} + \dots = \sum_{n=1}^{+\infty} \frac{2^{n-1}}{(2^{n-1})^{p}}, \text{ que é uma série geométrica}$$
de razão $\frac{2}{2^{p}} = \frac{1}{2^{p-1}} < 1$, que converge.

Portanto $\sum_{n=1}^{+\infty} \frac{1}{np}$, também converge.

A série p é muito usada no teste da comparação.

Teorema (Teste da integral)

Seja f uma função contínua, decrescente e com valores positivo para todo $x \ge 1$. Então a série infinita $\sum_{n=1}^{+\infty} f(n)$ será convergente se a integral imprópria $\int_{1}^{+\infty} f(x) dx$ existir e será divergente se $\lim_{n \to +\infty} \int_{1}^{b} f(x) dx = +\infty$.

Exemplo:

Verifique se a série $\sum_{n=1}^{+\infty} ne^{-n}$ é convergente ou divergente. Solução:

Seja $f(x) = xe^{-x}$

Temos $f'(x) = e^{-x} - xe^{-x} = e^{-x}(1-x) < 0$, para todo x > 1.

Então f é função contínua, decrescente e com valores positivo para todo $x \ge 1$.

Podemos então, aplicar o teste da integral.

$$\int xe^{-x} dx = -e^{-x}(x+1) + c$$

$$\int_{1}^{+\infty} xe^{-x} dx = \lim_{b \to +\infty} \int_{1}^{b} xe^{-x} dx = \lim_{b \to +\infty} [-e^{-x}(x+1)]_{1}^{b} = \lim_{b \to +\infty} [-e^{-b}(b+1) + 2e^{-1}] = \lim_{b \to +\infty} \left[-\frac{(b+1)}{e^{b}} + \frac{2}{e} \right]$$

$$\lim_{b \to +\infty} \left[-\frac{(b+1)}{e^{b}} \right] = \lim_{b \to +\infty} \left[-\frac{1}{e^{b}} \right] = 0$$

Então

$$\lim_{b \to +\infty} \left[-\frac{(b+1)}{e^b} + \frac{2}{e} \right] = \frac{2}{e}$$

Portanto a série $\sum_{n=1}^{+\infty} ne^{-n}$ é convergente.

Séries Alternadas

Definição

Se $a_n > 0$ para todo inteiro positivo n, então as séries $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ e $\sum_{n=1}^{+\infty} (-1)^n a_n$ são chamadas de séries alternadas.

Exemplo:

A série $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n}$ é uma série alternada.

Teorema (Teste para séries alternadas)

Considere a série alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} a_n$ ou $\sum_{n=1}^{+\infty} (-1)^n a_n$, onde $a_n > 0$ e $a_{n+1} < a_n$, para todo inteiro positivo n. Se $\lim_{n \to +\infty} a_n = 0$, a série alternada converge

Exemplo:

Mostre que a série alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n}$ é convergente. Solução:

Temos
$$a_n = \frac{1}{n} > 0$$
. Como $\frac{1}{n+1} < \frac{1}{n}$, temos $a_{n+1} < a_n$.

Por outro lado

 $\lim_{n\to +\infty} a_n = \lim_{n\to +\infty} \frac{1}{n} = 0$. Assim a série alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n}$ é convergente.

Convergência absoluta e convergência condicional

Definição

Dizemos que a serie infinita $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente se a série $\sum_{n=1}^{+\infty} |a_n|$ for convergente

Exemplo:

A série $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{4}{5^{n-1}}$ é absolutamente convergente, pois a série $\sum_{n=1}^{+\infty} \left| (-1)^{n+1} \frac{4}{5^{n-1}} \right| = \sum_{n=1}^{+\infty} \frac{4}{5^{n-1}}$ é convergente, já que é uma série geométrica de razão $r = \frac{1}{5} < 1$

Definição

Uma série que é convergente mas não é absolutamente convergente é denominada condicionalmente convergente.

Exemplo:

Como vimos, série alternada $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n}$ é convergente, entretanto a série $\sum_{n=1}^{+\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{+\infty} \frac{1}{n}$ é divergente. Portanto a série $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n}$ é condicionalmente convergente.

Teorema

Se a série infinita $\sum_{n=1}^{+\infty} a_n$ for absolutamente convergente, ela será convergente e $|\sum_{n=1}^{+\infty} a_n| \leq \sum_{n=1}^{+\infty} |a_n|$

Teorema (Teste da razão)

Seja $\sum_{n=1}^{+\infty} a_n$ uma série infinita para a qual $a_n \neq 0$. Então

- i) Se $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- ii) Se $\lim_{n\to +\infty} \left|\frac{a_{n+1}}{a_n}\right| = L > 1$, ou se $\lim_{n\to +\infty} \left|\frac{a_{n+1}}{a_n}\right| = +\infty$, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- iii) Se $\lim_{n\to+\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$, então nenhuma conclusão quanto a convergência ou divergência pode ser tirada do teste.

Exemplos:

1. Verifique se a série $\sum_{n=1}^{+\infty} \frac{n}{5^{n-1}}$ é convergente ou divergente Solução:

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \left| \frac{\frac{n+1}{5^n}}{\frac{n}{5^{n-1}}} \right| = \lim_{n \to +\infty} \frac{n+1}{5n} = \frac{1}{5} < 1$$

Logo a série $\sum_{n=1}^{+\infty} \frac{n}{5^{n-1}}$ é convergente.

2. Verifique se a série $\sum_{n=1}^{+\infty} \frac{5^{n-1}}{n}$ é convergente ou divergente Solução:

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \left| \frac{\frac{5^n}{n+1}}{\frac{5^{n-1}}{n}} \right| = \lim_{n \to +\infty} \frac{5n}{n+1} = 5 > 1$$
Logo a série $\sum_{n=1}^{+\infty} \frac{5^{n-1}}{n}$ é divergente

Teorema (Teste da raiz)

Seja $\sum_{n=1}^{+\infty} a_n$ uma série infinita para a qual $a_n \neq 0$. Então

- i) Se $\lim_{n\to +\infty} \sqrt[n]{|a_n|} = L < 1$, então a série $\sum_{n=1}^{+\infty} a_n$ é absolutamente convergente.
- ii) Se $\lim_{n\to +\infty} \sqrt[n]{|a_n|} = L > 1$, ou se $\lim_{n\to +\infty} \sqrt[n]{a_n} = +\infty$, então a série $\sum_{n=1}^{+\infty} a_n$ é divergente.
- iii) Se $\lim_{n\to +\infty} \sqrt[n]{|a_n|} = 1$, enão nenhuma conclusão quanto a convergência ou divergência pode ser tirada do teste.

Exemplo:

Verifique se a série $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n^n}$ é convergente ou divergente

Solução:

Se
$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \sqrt[n]{|(-1)^{n+1} \frac{1}{n^n}|} = \lim_{n \to +\infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to +\infty} \frac{1}{n} = 0 < 1.$$

Logo, a série $\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{1}{n^n}$ é absolutamente convergente e portanto é convergente.