Unreachable statements

JLS §14.20: Conservative flow analysis at compile-time.

Static predicates:

 $reachable(\alpha) \iff$ the phrase at position α is reachable $normal(\alpha) \iff$ the phrase at position α can complete normally

Fact: $normal(\alpha)$ implies $reachable(\alpha)$.

Conditional compilation:

while (false) $^{\alpha}stm \implies reachable(\alpha) = False$ if (false) $^{\alpha}stm \implies reachable(\alpha) = True$

Constraints for method bodies:

reachable(firstPos) = Truenormal(firstPos) = False

Reachability constraints

lpha,	$normal(\alpha) \Leftrightarrow reachable(\alpha)$
$\alpha(\beta exp;)$	$normal(\alpha) \Leftrightarrow reachable(\alpha)$
$\alpha \{\beta_1 stm_1 \dots \beta_n stm_n\}$	
	$reachable(\beta_{i+1}) \Leftrightarrow normal(\beta_i),$
	$normal(\alpha) \Leftrightarrow normal(\beta_n)$
lpha if $(^{eta}exp)^{\ \gamma}stm_1$	$reachable(\gamma) \Leftrightarrow reachable(\alpha),$
else $^{\delta}stm_{2}$	$reachable(\delta) \Leftrightarrow reachable(\alpha),$
_	$normal(\alpha) \Leftrightarrow normal(\gamma) \lor normal(\delta)$
lpha while $(^{eta}exp)^{\ \gamma}stm$	$reachable(\gamma) \Leftrightarrow reachable(\alpha) \text{ and } \beta exp \text{ is}$
	not a constant expression with value $False$,
	$normal(\alpha) \Leftrightarrow reachable(\alpha)$ and βexp is not
	a constant expression with value $True$

Reachability constraints (continued)

^{lpha}lab : ^{eta}stm	$\begin{array}{c} reachable(\beta) \Leftrightarrow reachable(\alpha),\\ normal(\alpha) \Leftrightarrow normal(\beta) \text{ or there exists a reachable}\\ \text{statement break } lab \text{ inside } ^{\beta}stm \text{ that can exit } ^{\beta}stm \end{array}$
lpha break $lab;$	$\neg normal(\alpha)$
α continue lab ;	$\neg normal(\alpha)$
α return;	$\neg normal(\alpha)$
α return $\beta exp;$	$\neg normal(\alpha)$
α throw $\beta exp;$	$\neg normal(\alpha)$

Reachability constraints (continued)

```
^{lpha}try^{eta}block_t
                                              reachable(\beta) \Leftrightarrow reachable(\alpha),
                                              reachable(\gamma_i) \Leftrightarrow reachable(\alpha) and
  catch (E_1 x_1)^{\gamma_1} block_1
                                              E_i \not\preceq_{\operatorname{h}} E_j for 1 \leq j < i and block_t can
  catch (E_n x_n)^{\gamma_n} block_n
                                              throw an exception F with F \leq_{\mathrm{h}} E_i or
                                              E_i \preceq_{\operatorname{h}} F ,
                                              normal(\alpha) \Leftrightarrow normal(\beta) \lor
                                                 \bigvee normal(\gamma_i)
                                              1 \le i \le n
\alpha(\beta stm \text{ finally } \gamma block)
                                             | reachable(\beta) \Leftrightarrow reachable(\alpha),
                                              reachable(\gamma) \Leftrightarrow reachable(\alpha),
                                              normal(\alpha) \Leftrightarrow normal(\beta) \land normal(\gamma)
\alphasynchronized (\beta exp)
                                              reachable(\gamma) \Leftrightarrow reachable(\alpha),
                                              normal(\alpha) \Leftrightarrow normal(\gamma)
    \gamma_{stm}
```

"can exit" and "can throw"

Definition. An abruption at position α can exit stm, if for every substatement $\beta(\gamma s \text{ finally } \delta b)$ of stm such that α is in s the predicate $normal(\delta)$ is true.

Definition. A statement stm can throw an exception E, if one of the following conditions is true:

- $ullet E = ext{RuntimeException or } E = ext{Error}$
- stm contains a reachable statement α throw βexp such that $T(\beta) = E$, the exception E is not caught in stm and an abruption at position α can exit stm
- stm contains a reachable method invocation ${}^{\alpha}c/m(exps)$ such that E occurs in the throws clause of m in c, the exception E is not caught in stm and an abruption at position α can exit stm.

The rules of definite assignment (JLS §16)

$$x \in before(\alpha)$$

The variable x is definitely assigned before the evaluation of the statement or expression at position α .

$$x \in after(\alpha)$$

The variable x is definitely assigned after the statement or expression at position α when this statement or expression completes normally.

$$x \in true(\alpha)$$

The variable x is definitely assigned after the evaluation of the expression at position α when this expression evaluates to true.

$$x \in false(\alpha)$$

The variable x is definitely assigned after the evaluation of the expression at position α when this expression evaluates to false.

$$x \in vars(\alpha)$$

The position α is in the scope of the local variable, formal parameter or catch parameter x.

Definite assignment for boolean expressions

lpha true	$true(\alpha) = before(\alpha), false(\alpha) = vars(\alpha)$
lpha false	$true(\alpha) = vars(\alpha), false(\alpha) = before(\alpha)$
$\alpha(! \beta e)$	$\begin{array}{c} before(\beta) = before(\alpha), \\ true(\alpha) = false(\beta), false(\alpha) = true(\beta) \end{array}$
	$true(\alpha) = false(\beta)$, $false(\alpha) = true(\beta)$
$\alpha(\beta e_0? \gamma e_1: \delta e_2)$	$\begin{array}{l} before(\beta) = before(\alpha), \\ before(\gamma) = true(\beta), \ before(\delta) = false(\beta), \\ true(\alpha) = true(\gamma) \cap true(\delta), \\ false(\alpha) = false(\gamma) \cap false(\delta) \end{array}$
	$before(\gamma) = true(\beta), before(\delta) = false(\beta),$
	$true(\alpha) = true(\gamma) \cap true(\delta),$
	$false(\alpha) = false(\gamma) \cap false(\delta)$

Constraint: $T(\alpha) = boolean$

Constraint: $after(\alpha) = true(\alpha) \cap false(\alpha)$

Definite assignment for boolean expressions (continued)

$$\begin{array}{ll}
\alpha(\beta e_1 \&\& \gamma e_2) & before(\beta) = before(\alpha), \ before(\gamma) = true(\beta), \\
true(\alpha) = true(\gamma), \ false(\alpha) = false(\beta) \cap false(\gamma)
\end{array}$$

$$\begin{array}{ll}
\alpha(\beta e_1 | | \gamma e_2) & before(\beta) = before(\alpha), \ before(\gamma) = false(\beta), \\
true(\alpha) = true(\beta) \cap true(\gamma), \ false(\alpha) = false(\gamma)
\end{array}$$

Constraint: If $T(\alpha) = \text{boolean}$ and αexp is of a different kind, then $true(\alpha) = after(\alpha)$ and $false(\alpha) = after(\alpha)$.

Definite assignment for arbitrary expressions

^{lpha}loc	$after(\alpha) = before(\alpha), loc \in before(\alpha)$
αlit	$after(\alpha) = before(\alpha)$
$\alpha(loc = \beta e)$	$before(\beta) = before(\alpha), loc \in vars(\alpha),$
	$after(\alpha) = after(\beta) \cup \{loc\}$
$\overline{\alpha(\beta e_0? \gamma e_1: \delta e_2)}$	$before(\beta) = before(\alpha), before(\gamma) = true(\beta),$
	$\begin{array}{l} \textit{before}(\delta) = \textit{false}(\beta), \\ \textit{after}(\alpha) = \textit{after}(\gamma) \cap \textit{after}(\delta) \end{array}$
	$after(\alpha) = after(\gamma) \cap after(\delta)$
$\alpha c.f$	$after(\alpha) = before(\alpha)$

Definite assignment for arbitrary expressions

Constraints for an expression ${}^{\alpha}exp$ with direct subexpressions ${}^{\beta_1}exp_1, \ldots, {}^{\beta_n}exp_n$:

- \bullet before $(\beta_1) = before(\alpha)$,
- before $(\beta_{i+1}) = after(\beta_i)$ for i = 1, ..., n-1,
- $after(\alpha) = after(\beta_n)$.

The direct subexpressions of an expression

Expression at position α	Direct subexpressions of α
$\alpha (uop \beta exp)$	βexp
$^{\alpha}(^{\beta}exp_1\ bop\ ^{\gamma}exp_2)$	$ig ^{eta}exp_{1}$, $^{\gamma}exp_{2}$
$\alpha(c.f = \beta exp)$	βexp
$\alpha(\beta_1 exp_1, \dots, \beta_n exp_n)$	$\beta_1 exp_1, \dots, \beta_n exp_n$
$^{lpha}(c.m^{eta}(exps))$	$oxed{eta(exps)}$

The direct subexpressions of an expression

Expression at position α	Direct subexpressions of α
$\alpha(\beta exp \text{ instanceof } c)$	βexp
${}^{\alpha}((c)^{\beta}exp)$	βexp
$\alpha(\beta exp.c/f)$	βexp
$\alpha(\beta exp_1.c/f = \gamma exp_2)$	$raket{eta exp_1$, ${}^{\gamma} exp_2$
$^{lpha}(^{eta}exp.c/m^{\gamma}(exps))$	βexp , $\gamma (exps)$
lpha new $c.c/m^{eta}(exps)$	$\beta(exps)$
$^{\alpha}(^{\beta}exp_{1}[^{\gamma}exp_{2}])$	$raketige^eta exp_1$, γexp_2
${}^{\alpha}({}^{\beta}exp_1[{}^{\gamma}exp_2] = {}^{\delta}exp_3)$	$^{eta}exp_{1}$, $^{\gamma}exp_{2}$, $^{\delta}exp_{3}$
$^{\alpha}(\operatorname{new} A[^{\beta_1}exp_1]\dots[^{\beta_n}exp_n][]\dots[])$	$\beta_1 exp_1, \ldots, \beta_n exp_n$

Definite assignment for statements

lpha ,	$after(\alpha) = before(\alpha)$
$\alpha(\beta exp;)$	$before(\beta) = before(\alpha), after(\alpha) = after(\beta)$
$\alpha \{\beta_1 stm_1 \dots \beta_n stm_n\}$	$before(\beta_1) = before(\alpha),$
	$before(\beta_{i+1}) = after(\beta_i) \text{ for } i = 1, \dots, n-1,$
	$after(\alpha) = after(\beta_n) \cap vars(\alpha)$
lpha if $(^{eta}exp)^{\ \gamma}stm_1$	$before(\beta) = before(\alpha),$
else $^{\delta}stm_{2}$	$before(\gamma) = true(\beta), before(\delta) = false(\beta),$
	$after(\alpha) = after(\gamma) \cap after(\delta)$
lpha while $(^{eta}exp)^{\ \gamma}stm$	$before(\beta) = before(\alpha), before(\gamma) = true(\beta),$
	$after(\alpha) = false(\beta)$

Definite assignment for statements (continued)

^{lpha}lab : ^{eta}stm	$before(\beta) = before(\alpha),$
	$after(\alpha) = after(\beta) \cap break(\beta, lab)$
lpha break $lab;$	$after(\alpha) = vars(\alpha)$
α continue lab ;	$after(\alpha) = vars(\alpha)$
α return;	$after(\alpha) = vars(\alpha)$
α return $\beta exp;$	$before(\beta) = before(\alpha), after(\alpha) = vars(\alpha)$
α throw $\beta exp;$	$before(\beta) = before(\alpha), after(\alpha) = vars(\alpha)$

Definition: $x \in break(\alpha, lab) : \iff$

- x is in $before(\beta)$ for each statement β break lab inside the statement at position α that can exit α and
- x is in $after(\beta)$ for each statement $\beta(s)$ finally b inside α such that s contains a break lab that can exit α .

Definite assignment for statements (continued)

```
\alphatry \beta block_t
                                              before(\beta) = before(\alpha),
  \mathsf{catch}\ (E_1\,x_1)^{\,\gamma_1}block_1\ |\ \textit{before}(\gamma_i) = \textit{before}(\alpha) \cup \{x_i\},
                                              after(\alpha) = after(\beta) \cap \bigcap_{1 \le i \le n} after(\gamma_i)
  catch (E_n x_n)^{\gamma_n} block_n
\alpha(\beta stm \text{ finally } \gamma block) | before(\beta) = before(\alpha),
                                              before(\gamma) = before(\alpha),
                                               after(\alpha) = \{x \in after(\beta) \mid
                                              there is no x = exp in \gamma block \} \cup after(\gamma)
\alpha synchronized (\beta exp) before(\beta) = before(\alpha),
                                              \frac{before}{\alpha}(\gamma) = after(\beta),
after(\alpha) = after(\gamma)
    \gamma_{stm}
```

Run-time compatible

Definition. $A \sqsubseteq B :\iff$ one of the following conditions is true:

- lacksquare A and B are primitive types and A=B
- luellet A and B are reference types and $A \preceq B$

Lemma:

- $\blacksquare A \sqsubseteq A.$
- If $A \sqsubseteq B$ and $B \sqsubseteq C$, then $A \sqsubseteq C$.
- If $A \sqsubseteq B$ and $B \sqsubseteq A$, then A = B.
- $\blacksquare A[] \sqsubseteq B[] \Leftrightarrow A \sqsubseteq B.$

Definition. f is a frame in state n of thread q, iff one of the following conditions is true:

- $\bullet f = (meth_n^q, restbody_n^q, pos_n^q, locals_n^q)$
- ullet f is an element of $frames_n^q$

Reference is used in a state

Definition. A reference ref is used in state n, iff one of the following conditions is true:

- there exists a field c/f such that $globals_n(c/f) = ref$
- there exists an r and a field c/f such that $getField_n(r,c/f)=ref$
- there exists an r and an $i \in \mathbb{N}$ such that $getElement_n(r, i) = ref$
- there exists a frame $(_, restbody^*, _, locals^*)$ in state n of a thread q and one of the following conditions is true:
 - -there exists a variable loc such that $locals^*(loc) = ref$
 - —there exists a position α such that $restbody^*/\alpha = ref$
 - -there exists a position α such that $restbody^*/\alpha = Return(ref)$
 - -there exists a position α such that $restbody^*/\alpha = Exc(ref)$

Theorem: Java is type safe

Theorem. Assume that $(meth^*, restbody^*, pos^*, locals^*)$ is a frame in state n of thread q. Then the following invariants are satisfied:

- (def1) $before(pos^*) \subseteq dom(locals^*)$.
- (def2) If $restbody^*/pos^*$ is normal, then $after(pos^*) \subseteq dom(locals^*)$.
- (def3) If $restbody^*/pos^* = True$, then $true(pos^*) \subseteq dom(locals^*)$.
- **(def4)** If $restbody^*/pos^* = False$, then $false(pos^*) \subseteq dom(locals^*)$.
- (def5) If $restbody^*/pos^* = Break(l)$, then $break(pos^*, l) \subseteq dom(locals^*)$.
- (def6) If the frame is not the current frame of q and $body(meth^*)/pos^*$ is a method invocation then $after(pos^*) \subseteq dom(locals^*)$.
- (reach) $reachable(pos^*)$.

- (norm) If $restbody^*/\alpha = Norm$, then $normal(\alpha)$.
- (val) If $restbody^*/\alpha$ is a value of type B, then $B \sqsubseteq T(\alpha)$, where $T(\alpha)$ is the compile-time type of position α in $body(meth^*)$.
- (undef) The constant undef does not occur in $restbody^*$.
- (loc1) If $x \in dom(locals^*)$, then $locals^*(x) \in Val$.
- (loc2) If pos^* is in the scope of a local variable declaration of a variable x of type A and $x \in dom(locals^*)$, then $locals^*(x)$ is a value of type $B \sqsubseteq A$.
- (loc3) If pos^* is in the scope of a formal parameter x of type A, then $locals^*(x)$ is a value of type $B \sqsubseteq A$.
- (loc4) If pos^* is in the scope of a catch parameter x of type E, then $locals^*(x)$ is a value of type $F \leq_h E$.
- (loc5) If pos^* is in class A and pos^* is in the body of an instance method or in the body of a constructor, then $locals^*(\mathtt{this})$ is a value of type $B \preceq_h A$.

- (abr1) If $restbody^*/\alpha = Break(l)$, then α is in a statement with label l and $body(meth^*)/\alpha$ contains a reachable break lab which can exit $body(meth^*)/\alpha$.
- (abr2) If $restbody^*/\alpha = Continue(l)$, then α is in a while statement with label l.
- (abr3) If $restbody^*/\alpha = Return$, then α is in the body of a method with return type void.
- (abr4) If $restbody^*/\alpha = Return(v)$, then α is in the body of a method with return type A and v is a value of type $B \sqsubseteq A$.
- (abr5) If $restbody^*/\alpha = Exc(ref)$, then classOf(ref) = E, $E \preceq_{\rm h}$ Throwable, E is allowed at position α and $body(meth^*)/\alpha$ can throw an exception F such that $E \preceq_{\rm h} F$.

Assume that $(_, restbody^*, \beta, _)$ is the parent frame of $(c/m, _, _, locals^*)$ in state n of thread q. Then the dynamic method invocation chain has the following properties:

- (chain1) If the return type of c/m is A and $A \neq void$, then $\mathcal{T}(\beta) = A$.
- (chain2) If E occurs in the throws clause of c/m, then E is allowed at position β .
- (chain3) If c/m is a constructor and $restbody^*/\beta = ref.c/m(_)$, then $locals^*(\texttt{this}) = ref$.

The following global invariants are true in state n:

- **(global)** If c/f is a static field of declared type A, then $globals_n(c/f)$ is a value of type $B \sqsubseteq A$.
- (ref) If a reference ref is used in state n, then $ref \in dom(heap_n)$.
- (object1) If $heap_n(ref) = Object(c, fields)$, then c is a non abstract class and dom(fields) = instanceFields(c).
- **(object2)** If $heap_n(ref) = Object(_, fields)$, fields(f) = v and f is of declared type A, then v is a value of type $B \sqsubseteq A$.
- (array) If $heap_n(ref) = Array(A, elems)$ and elems(i) = v, then v is a value of type $B \sqsubseteq A$.