Introduction to Nonlinear Optimization I

Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University

September 1, 2020

_					
•	١ı	ıt	п	n	\sim

- Topics that I expect you to already know
- 2 Introduction to nonlinear unconstrained optimization

 - Smooth problem exampleStructured non-smooth example
- Summary

Notes			
lotes			

Calculus

- derivatives
- gradients
- Jacobians
- Hessians
- Taylor's expansion

Real Analysis

- sequences (subsequences, boundedness, accumulation points, etc.)
- continuity and limits

Linear Algebra

- vectors and vector norms
- matrices and matrix norms
- matrix properties, e.g., symmetric, positive (semi) definite, (non)singular, etc.
- determinants, eigenvalues, and eigenvectors
- matrix factorizations

The basic problem

$$\mathop{\mathrm{minimize}}_{x \in \mathbb{R}^n} ize \ f(x)$$

- objective function $f: \mathbb{R}^n \to \mathbb{R}$
- may maximize f by minimizing the function $\widehat{f}(x) := -f(x)$

Definition (global minimizer)

The vector x^* is a global minimizer if

$$f(x^*) \le f(x)$$
 for all $x \in \mathbb{R}^n$

Definition (local minimizer)

The vector x^* is a local minimizer if

$$f(x^*) \leq f(x)$$
 for all x satisfying $||x - x^*|| \leq \varepsilon$ for some $\varepsilon > 0$

Definition (strict local minimizer)

The vector x^* is a strict local minimizer if

$$f(x^*) < f(x)$$
 for all $x \neq x^*$ satisfying $\|x - x^*\|_2 \leq \varepsilon$ for some $\varepsilon > 0$

Notes

Notes			

The basic problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x)$$

Notation

- gradient $g(x) := \nabla f(x) \in \mathbb{R}^n$
- Hessian $H(x) := \nabla^2 f(x) \in \mathbb{R}^{n \times n}$
- we will always assume that *f* is a continuous function
- we will study when
 - ▶ *f* is once or twice continuously differentiable (smooth optimization)
 - ▶ *f* is non-differentiable but with structure (structured non-smooth optimization)
 - ▶ n is small, medium, and large
- we will not study
 - derivatives of f are too expensive or unavailable (derivative free optimization)
 - integer programming, i.e., optimization where (some) variables are required to take integer values (Combinatorial Optimization EN.553.766)
 - computing a global minimizer (Introduction to Convexity EN.553.465/665, Convex Optimization EN.553.765, Stochastic Search and Optimization EN.553.763)

Data fitting example

January 1801: asteroid Ceres is discovered, but in Autumn 1801 it "disappeared". Gauss considers an elliptic orbit instead of a circular orbit

circular orbit
$$x^2+y^2=r^2$$
 for some $r>0$ elliptic (conic section) orbit $\alpha x^2+\beta y^2+\gamma xy=1$ for some $\alpha,\beta,$ and γ

How did he do it?

• used a collection of N previous location measurements

$$(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$$

• found the "best" ellipse by computing

$$(lpha^*,eta^*,\gamma^*) = \mathop{
m argmin}_{lpha,eta,\gamma} \ \ \sum_{i=1}^N (lpha x_i^2 + eta y_i^2 + \gamma x_i y_i - 1)^2$$

looked for Ceres along the ellipse defined by

$$\alpha^* x^2 + \beta^* y^2 + \gamma^* xy = 1$$

• the objective function $f(\alpha, \beta, \gamma) = \sum_{i=1}^{N} (\alpha x_i^2 + \beta y_i^2 + \gamma x_i y_i - 1)^2$ is nonlinear and twice continuously differentiable

Notes			
Notes			

Notoo

Speech recognition (multi-class regression)

- Number of classes $N_c \approx 100$ (basic units of sound)
- Number of features $N_f \approx 10$ thousand (coefficients in the mathematical representation of a digital sample of sound)
- Number of parameters ≈ 1 million (# classes \times # features)
- Number of data points $N_d \approx 10$ billion and growing (size of data)
- Compute w* as solution to

where

$$f(w) := -\sum_{i=1}^{N_d} \log \left(\frac{\exp(w_{y_i}^T x_i)}{\sum_{j=1}^{N_c} \exp(w_j^T x_i)} \right)$$

• Predicted probability of new input \hat{x} being in class k is

$$p(y = k | x = \hat{x}) = \frac{\exp(w_k^{*T} \hat{x})}{\sum_{j=1}^{N_c} \exp(w_j^{*T} \hat{x})}$$

- Major challenges
 - $f(w) + \lambda ||w||_1$ is nonlinear
 - ▶ $||w||_1$ is non-smooth when $w_i = 0$ for some i (structured non-smooth) ▶ $\nabla f(w)$ is very expensive! Must sum up 10 billion gradients

Unconstrained optimization problems may

- be convex or nonconvex, but typically nonlinear.
- have an objective function that is twice continuously differentiable, once continuously differentiable, structurally non-smooth, non-smooth
- contain continuous and/or discrete variables
- vary in size
 - ▶ small scale $\approx 1 100$ variables
 - medium scale $\approx 10^3$ variables
 - ▶ large scale $\approx 10^4 10^5$ variables
 - very large scale $> 10^6$ variables
 - infinite dimensional

We may be interested in

- a local solution or global solution
- the minimum value of the objective function and/or the minimizer
- finding multiple distinct minimizers
- the lowest value of the objective given time constraints or limits on the number of allowed evaluations of the objective function

Notes			
Notes			
lotes			
Notes			
lotes			
lotes			
Notes			
Notes			
lotes			
lotes			
Notes			