

AMENDMENTS TO THE CLAIMS:

The following Listing of Claims replaces all previous claims and listings of claims in the application:

LISTING OF CLAIMS:

- 1-11. (Canceled)
12. (Currently Amended) A system for tracking multiple targets using distributed linear sensor arrays, comprising:
 - a plurality of arrays of sensors for receiving signals from a target;
 - a receiver for receiving signals received by the plurality of sensor arrays;
 - an analog/digital converter for converting the signals received from the sensor arrays to a digital format, if signals are received in an analog format;
 - a digital storage device for storing the digitized data from the sensor arrays; and
 - a computer system for retrieving the stored digitized data from the plurality of sensor arrays and processing the data through the use of a composite Hough transform to determine a track of the target.
13. (Currently Amended) A system for tracking multiple targets using distributed linear sensor arrays, comprising:
 - one or more arrays of sensors for receiving signals from a target;
 - means for receiving signals received by the plurality of sensor arrays;
 - means for converting the signals received from the sensor arrays to a digital format, if required;

means for storing the digitized data from the sensor arrays; and
a computer system for retrieving the stored digitized data from the sensor arrays and
processing the data through the use of a composite Hough transform to determine a track of
the target.

14. (Previously Presented) A system, as in Claim 13, wherein the sensors for receiving
signals from a target are acoustic sensors.

15. (Previously Presented) A system, as in Claim 13, wherein the sensors for receiving
signals from a target are electromagnetic sensors.

16. (Previously Presented) A system, as in Claim 13, wherein the sensors for receiving
signals from a target are optic sensors.

17. (Previously Presented) A system, as in Claim 13, wherein the receiver is an acoustic
receiver.

18. (Previously Presented) A system, as in Claim 13, wherein the receiver is an sonar
signal receiver.

19. (Previously Presented) A system, as in Claim 13, wherein the means for converting the signals received from the sensor arrays to a digital format, if required, is an analog-to-digital converter.

20. (Previously Presented) A system, as in Claim 13, wherein the means for storing the digitized data from the sensor arrays is a computer.

21. (Currently Amended) A computer system for processing digitized data to determine the track of a target comprising[[;]]:

a data storage device;

a computer for retrieving data from the data storage device, computing a hypothesis reference track relative to a primary sensor array[[;]], and for computing a hypothesis hypothesis reference track relative to the a second sensor array;

said computer calculating an associated delay curve in a primary correlogram for the primary sensor array;

said computer calculating an associated delay curve in a secondary correlogram for a secondary array;

said computer accumulating data for the reference track by simultaneously integrating a series of pixel values along the appropriate delay curve in the primary and secondary correlograms;

said computer storing the accumulated pixel values in composite Hough space[[;]] and thresholding the accumulated pixel values to detect the track.

22. (Currently Amended) A computer system for processing digitized data to determine the track of a target comprising[[:]]:

 a data storage device; and

 a computer for retrieving data from the data storage device and

 hypothesizing a track with track parameters values (θ_1 , v, D, t_{01});

 generating a corresponding template delay curve in a primary correlogram;

 performing integration along the template delay curve in the primary correlogram;

 computing a delay curve parameter (θ_2 , v/ D, t_{02}) for a secondary array based on geometric constraints;

 generating a corresponding template delay curve in a secondary correlogram based on the delay curve parameter (θ_2 , v/ D, t_{02});

 performing integration along the template delay curve in the secondary correlogram and storing integrated values;

 computing a delay curve parameter (θ_{2m} , v/D_{2m}, t_{02m}) for the secondary array based on geometric constraints;

 generating a corresponding template delay curve in the secondary correlogram;

 combining the integrated values and storing it in the corresponding composite Hough space; and

 thresholding the accumulated pixel values to detect the track.

23. (New) A method of processing data from at least two sensor arrays to determine the track of a target comprising:

computing a hypothesis reference track relative to a primary sensor array;

computing a hypothesis reference track relative to a second sensor array;

calculating an associated delay curve in a primary correlogram for the primary sensor array;

calculating an associated delay curve in a secondary correlogram for a secondary array;

accumulating data for the reference track by integrating a series of pixel values along the appropriate delay curve in the primary and secondary correlograms;

storing the accumulated pixel values in composite Hough space; and

thresholding the accumulated pixel values to detect the track.