

Inductive Anomaly Detection with Missing Value

E14051350 吳岱桀

Anomaly Detection

Binary or Multi-class classification:

Classify the data as normal vs anomaly or normal vs different classes of anomaly

Imbalanced Problem:

Anomaly data is rare in the real life e.g. Medical, Fraud

Core Method

Data Matrix with Missing Values

	F_1	F_2	F_3	F_4
01	0.3	0.5	NA	0.1
O_2	NA	NA	0.6	0.2
O_3	0.3	NA	NA	0.5

Y
y_1
y_2
?

Tal	L		4		
I a	D U	lar	OJ	Gra	

$$INIT(v) = \begin{cases} 1 & v \in \mathcal{V}_D \\ ONEHOT & v \in \mathcal{V}_F \end{cases}$$

Core Method

Used as an **Imputation Method**.

It shows that predict the label with embedding directly is better than predict after imputation

Embedding

$$\mathbf{n}_v^{(l)} = \mathrm{AGG}_l\Big(\sigma(\mathbf{P}^{(l)} \cdot \mathrm{CONCAT}(\mathbf{h}_v^{(l-1)}, \mathbf{e}_{uv}^{(l-1)}) \mid \forall u \in \mathcal{N}(v, \mathcal{E}_{drop}))\Big)$$

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

$$\mathbf{h}_v^{(l)} = \sigma(\mathbf{Q}^{(l)} \cdot \text{Concat}(\mathbf{h}_v^{(l-1)}, \mathbf{n}_v^{(l)}))$$

$$\mathbf{e}_{uv}^{(l)} = \sigma(\mathbf{W}^{(l)} \cdot \text{Concat}(\mathbf{e}_{uv}^{(l-1)}, \mathbf{h}_u^{(l)}, \mathbf{h}_v^{(l)}))$$

Anomaly Detection >

How to detect?

(1) Node Classification

Use node embedding to predict whether it's anomaly or not

(2) Reconstruction Error

Use embedding to reconstruct adjacency matrix and node feature

Reconstruction Error

Anomaly Detection >>

(1) Node Classification

$$\hat{\mathbf{Y}}_u = \mathbf{O}_{node}(\hat{\mathbf{D}}_{u\cdot})$$

(2) Reconstruction Error → Link Prediction

$$\mathbf{O}_{edge}(\mathsf{Concat}(\mathbf{h}_u^{(L)},\mathbf{h}_v^{(L)})) \rightarrow \widehat{A}$$

$$\mathbf{E}rror = \|A - \widehat{A}\|_{F}$$

Previous Research >>>

Previous Research >>>

Result(F1 Score) >>>

5 fold test result without missing value

Method	Dataset				
	Arrhythmia	Thyroid	KDD	KDDRev	
OC-SVM	45.8	38.9	79.5	83.2	
LOF	50	52.7	83.8	81.6	
IForest	51.4	63	90.7	87.7	
Classification(Ours)	51.7	69.7	92.4	93.5	
Reconstruction Error(Ours)	51.3	65	91.3	93	

Improvement

Better Embedding

(1) One Class/ Semi-supervised?

Learn better embedding that can make classifier have clear decision boundary

(2) Can GAN helps?

Helps the to learn better embedding using prior distribution

Semi-supervised >>

Anomaly Score:

$$a(v_n) := \|\mathbf{h}_n - \mathbf{c}\|^2$$

Hypersphere Loss(using normal only)

$$\mathcal{L}_{\text{nor}}(\theta) := \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} a(v_n) = \frac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} \|\mathbf{h}_n - \mathbf{c}\|^2$$

To Do List **Future Work**

Differential Approximation of AUC

$$\mathcal{R}_{AUC}(\theta) := \frac{1}{|\mathcal{A}||\mathcal{N}|} \sum_{n \in \mathcal{A}} \sum_{m \in \mathcal{N}} f(a(v_n) - a(v_m))$$

$$\mathcal{L}(\theta) := \mathcal{L}_{nor}(\theta) - \lambda \mathcal{R}_{AUC}(\theta)$$

GANomaly

"GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training"

GAN for graph

GAN for graph >>>

Semi-supervised + GAN

To Do List & Future Work

Different Combination of Framework

0

Ablation & Missing Ratio Study

0

Few-shot & Meta-learning

E14051350 吳岱桀 • • •