

XPT™ 650V IGBT GenX4™

IXXH110N65C4

Extreme Light Punch Through IGBT for 20-60 kHz Switching

V _{CES}	=	650V
C110	=	110A
V _{CE(sat)}	≤	2.35V
t fi(typ)	=	35ns

Symbol	Test Conditions	Maximum Ratings	
V _{CES}	T _J = 25°C to 175°C	650	V
V _{CGR}	T_J = 25°C to 175°C, R_{GE} = 1M Ω	650	V
$V_{\sf GES}$	Continuous	±20	V
V _{GEM}	Transient	±30	V
I _{C25}	T _c = 25°C (Chip Capability)	235	A
LRMS	Terminal Current Limit	160	Α
I _{C110}	$T_{c} = 110^{\circ}C$	110	Α
I _{CM}	$T_{c} = 25^{\circ}C, 1ms$	600	Α
SSOA	$V_{GF} = 15V, T_{VJ} = 150^{\circ}C, R_{G} = 2\Omega$	I _{CM} = 220	A
(RBSOA)	Clamped Inductive Load	$@V_{CE} \le V_{CES}$	
t _{sc}	$V_{GE} = 15V, V_{CE} = 360V, T_{J} = 150^{\circ}C$	10	μs
(SCSOA)	$R_{_{G}} = 10\Omega$, Non Repetitive		
P _c	T _c = 25°C	880	W
T		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque	1.13/10	Nm/lb.in.
Weight		6	g

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.	
BV _{CES}	$I_{c} = 250 \mu A, V_{GE} = 0 V$	650			V
V _{GE(th)}	$I_{\rm C}=4{\rm mA},V_{\rm CE}=V_{\rm GE}$	4.0		6.5	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$ $T_{J} = 150^{\circ}C$			10 500	μ Α μ Α
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{c} = 110A, V_{GE} = 15V, Note 1$ $T_{J} = 150^{\circ}C$		2.06 2.50	2.35	V

G = Gate C = Collector E = Emitter Tab = Collector

Features

- Optimized for 20-60kHz Switching
- Square RBSOA
- Avalanche Capability
- Short Circuit Capability
- International Standard Package

Advantages

- High Power Density
- 175°C Rated
- Extremely Rugged
- Low Gate Drive Requirement

Applications

- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- High Frequency Power Inverters

IXXH110N65C4

	I Test Conditions °C Unless Otherwise Specified)	Charac Min.	teristic V Typ.	alues Max.
g _{fs}	I _C = 60A, V _{CE} = 10V, Note 1	30	52	S
C _{ies})		5500	pF
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		267	pF
C _{res})		80	pF
Q _{g(on)})		167	nC
\mathbf{Q}_{qe}	$I_{c} = 110A, V_{GE} = 15V, V_{CE} = 0.5 \cdot V_{CE}$	CES	44	nC
Q _{gc}			63	nC
t _{d(on)})		30	ns
t _{ri}	Inductive load, T _J = 25°C		45	ns
E _{on}	$I_{c} = 55A, V_{GF} = 15V$		2.50	mJ
$\mathbf{t}_{d(off)}$	$V_{CE} = 400V, R_{G} = 2\Omega$		110	ns
t _{fi}	Note 2		35	ns
E _{off})		0.63	1.05 mJ
t _{d(on)}	1		26	ns
t _{ri}	Inductive load, T _J = 150°C		45	ns
E _{on}	$I_{\rm C} = 55A, V_{\rm GE} = 15V$		3.55	mJ
t _{d(off)}	$V_{CE} = 400V, R_{G} = 2\Omega$		120	ns
t _{fi}	Note 2		40	ns
E _{off})		0.90	mJ
R _{thJC}				0.17 °C/W
R _{thCS}			0.21	°C/W

ווווטון.	IVIIIIIIIIIELEI		IIICHES		
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A ₁	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b ₁	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
Е	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ØP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

Notes:

- 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

 $\label{eq:Fig. 12. Inductive Switching Energy Loss vs. } \textbf{Fig. 12. Inductive Switching Energy Loss vs.}$

Fig. 13. Inductive Switching Energy Loss vs.

Fig. 14. Inductive Switching Energy Loss vs.

Fig. 15. Inductive Turn-off Switching Times vs.

Fig. 16. Inductive Turn-off Switching Times vs.

Fig. 17. Inductive Turn-off Switching Times \boldsymbol{vs} .

IXXH110N65C4

Fig. 18. Inductive Turn-on Switching Times vs.

Gate Resistance

Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current

Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS: IXXH110N65C4