FISIKA

1

Merdeko Indonesia Jaya

Besaran Vektor

(Part 1)

Damar Wicaksono, S.T., M.Eng

Learning Objective

Mampu memahami dan menjelaskan konsep besaran vektor, menggambar vector, komponen-komponen vektor

Mampu memahami dan menjelaskan operasi penjumlahan dan pengurangan vektor

Mampu memahami dan menjelaskan operasi perkalian vektor

Course Material

SERI KULIAH FISIKA 1 - Besaran Vektor

Part 1

Konsep Vektor

Membahas konsep dasar besaran vektor

Damar Wicaksono, S.T., M.Eng

#Fisika1

Penggunaan Vektor

BASICS OF ELECTRIC FIELD

Besaran Fisis

Besaran yang hanya memiliki nilai (besar)

Besaran Fisis

Besaran yang memiliki nilai (besar)

Besaran yang memiliki nilai (besar) dan arah

"Vektor adalah besaran yang memiliki besar dan arah"

- Massa
- Volume
- Waktu
- Suhu
- Panjang
- Luas
- Kelajuan

- Perpindahan
- Kecepatan
- Percepatan
- Gaya
- Momentum
- Medan Magnet
- Medan Listrik
- Medan Gravitasi

Representasi Vektor

Penulisan besaran vektor menggunakan suatu notasi khusus.

Notasi Vektor: $A \rightarrow Huruf Tebal$

 $A \rightarrow Huruf Miring$

 $\overrightarrow{A} \rightarrow Pakai Tanda Panah di Atas$

P = Pangkal Vektor

Q = Ujung Vektor

Tanda Panah dan θ = arah vektor terhadap sumbu datar (x)

 $|\vec{A}| =$ Besar (Magnitudo) Vektor

Catatan Representasi Vektor

Dua Vektor dikatakan sama: jika

"Arah" dan "Besar" sama.

$$\overrightarrow{PQ} = \overrightarrow{AB}$$

 $\overrightarrow{PQ} \neq \overrightarrow{AB}$

Dua Vektor dikatakan tidak sama: jika,

1. Besar Sama, Arah Beda

2. Besar Tidak Sama, Arah Sama

3. Besar dan Arah Berbeda

#Fisika1

Komponen Vektor dan Vektor Satuan (2D)

Vektor dapat diuraikan menjadi komponen sumbu.

$$\vec{A} = A_x \hat{x} + A_y \hat{y}$$
 atau $\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath}$

Vektor \vec{A} adalah panjangnya A_x ke arah x (\hat{x}) ditambah panjangnya A_y ke arah y (\hat{y}) .

 \hat{x} atau \hat{i} dan \hat{y} atau \hat{j} adalah vektor satuan yang besarnya 1

Berapa besar nilai A_x dan A_y ?

 $\widehat{\boldsymbol{x}}$ atau $\widehat{\boldsymbol{\iota}}$ menyatakan arah sumbu \boldsymbol{x}

Konsep Trigonometri

$$\sin \theta = \frac{\text{sisi depan}}{\text{sisi miring}} = \frac{a}{c}$$

$$\cos \theta = \frac{\text{sisi samping}}{\text{sisi miring}} = \frac{b}{c}$$

$$\tan \theta = \frac{\text{sisi depan}}{\text{sisi samping}} = \frac{a}{b}$$

$$c^2 = a^2 + b^2$$
$$c = \sqrt{a^2 + b^2}$$

Tabel Trigonometri

	I					
~	0°	30°	45°	60°	90°	
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
sin α	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	
cosα	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	1 2	0	
tan α	0	$\frac{1}{\sqrt{3}}$	1	√3	td	
csc α	td	2	$\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	1	
sec α	1	$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	td	
cotα	td	√3	1	$\frac{\sqrt{3}}{3}$	0	

II			
120°	135°	150°	180°
$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1
-√3	-1	$-\frac{1}{\sqrt{3}}$	0
$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	td
-2	$-\sqrt{2}$	$-\frac{2}{3}\sqrt{3}$	-1
$-\frac{1}{\sqrt{3}}$	-1	-√3	td

III			
210°	225°	240°	270°
7π	5π	4π	3π
6	4	3	2
$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1
$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}$	0
$\frac{1}{\sqrt{3}}$	1	√3	td
-2	$-\sqrt{2}$	$-\frac{2}{3}\sqrt{3}$	-1
$-\frac{2}{3}\sqrt{3}$	$-\sqrt{2}$	-2	td
√3	1	$\frac{\sqrt{3}}{2}$	1

IV				
300°	315°	330°	360°	
5π	7π	11π	2π	
3	4	6	Zn	
$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}$	0	
$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	
-√3	-1	$-\frac{1}{\sqrt{3}}$	0	
$-\frac{2}{3}\sqrt{3}$	$-\sqrt{2}$	-2	td	
2	$\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	-1	
$-\frac{1}{\sqrt{3}}$	-1	-√3	td	

Besar Nilai Vektor (2D)

Berapa besar nilai A_x dan A_y ?

$$\sin \theta = \frac{\text{sisi depan}}{\text{sisi miring}} = \frac{a}{c}$$

$$\cos \theta = \frac{\text{sisi samping}}{\text{sisi miring}} = \frac{b}{c}$$

$$\tan \theta = \frac{\text{sisi depan}}{\text{sisi samping}} = \frac{a}{b}$$

Komponen dalam sumbu y

$$\sin \theta = \frac{A_y}{|\vec{A}|} \implies A_y = |\vec{A}| \sin \theta$$

Komponen dalam sumbu x

$$\cos \theta = \frac{A_x}{|\vec{A}|} \implies A_x = |\vec{A}| \cos \theta$$

Arah Vektor \overrightarrow{A} (terhadap sumbu x positif):

$$\tan \theta = \frac{A_y}{A_x}$$
 $\theta = \arctan = \frac{R_y}{R_x}$

Maka besar nilai vektor $|\overrightarrow{A}|$

$$\left| \overrightarrow{A} \right|^2 = A_x^2 + A_y^2$$

$$|\overrightarrow{A}| = \sqrt{{A_x}^2 + {A_y}^2}$$

Latihan 1 – Sudut Vektor

Carilah besarnya sudut (θ) dari setiap vektor berikut:

Latihan 2 – Komponen Vektor

Carilah nilai komponen-komponen vektor dari setiap vektor berikut:

Latihan 3 – Magnitudo & Arah Vektor

Gambarlah vektor dalam koordinat kartesian dan hitunglah magnitude dan arahnya!

- a) Vektor $\vec{A} = (-3, 1)$
- b) Vektor $\vec{B} = (7, 3)$
- c) Vektor $\vec{C} = (1, 4)$
- d) Vektor $\vec{D} = (-3, -7)$

Komponen Vektor dan Vektor Satuan (3D)

Vektor dapat diuraikan menjadi komponen sumbu.

$$\vec{Q} = Q_x \hat{x} + Q_y \hat{y} + Q_y \hat{z}$$

$$\vec{Q} = Q_x \hat{\imath} + Q_y \hat{\jmath} + Q_y \hat{k}$$

atau

Maka besar nilai vektor
$$|\vec{Q}|$$

$$|\vec{Q}|^2 = Q_x^2 + Q_y^2 + Q_z^2$$

Latihan 4 – Magnitudo Vektor Bidang 3D

Gambarlah vektor dalam koordinat kartesian dan hitunglah magnitude!

- a) Vektor $\vec{A} = (-3, 1, -5)$
- b) Vektor $\vec{B} = (7, -2, 3)$
- c) Vektor $\vec{C} = (1, 4, -5)$
- d) Vektor $\vec{D} = (-3, -7, 9)$

SERI KULIAH FISIKA 1 - Besaran Vektor

Part 1

Operasi Vektor Penjumlahan

Mempelajari cara menjumlahkan dan mengurangi besaran vektor

Metode Penjumlahan & Pengurangan Vektor

Metode Grafis: Segitiga

Penjumlahan

$$\vec{R} = \vec{A} + \vec{B}$$

$$= \vec{A} + \vec{B}$$
 $\vec{R} = \vec{B} + \vec{A}$

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

Metode Grafis: Segitiga

Pengurangan

$$\vec{R} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

$$\vec{R} = \vec{B} - \vec{A} = \vec{B} + (-\vec{A})$$

$$\vec{A} - \vec{B} = -(\vec{B} - \vec{A})$$

Metode Grafis: Jajar Genjang

Penjumlahan

Metode Grafis: Jajar Genjang

Pengurangan

$$\vec{R} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

$$\vec{R} = \vec{B} - \vec{A} = \vec{B} + (-\vec{A})$$

$$\vec{A} - \vec{B} = -(\vec{B} - \vec{A})$$

Metode Poligon

Latihan 5 – Penjumlahan Vektor

Lakukan operasi penjumlahan pada vektor-vektor di bawah ini menggunakan metode segitiga dan jajar genjang, kemudian lakukan operasi pengurangan menggunakan metode yang sama

