Autômatos Celulares

História, Definição e Implementação

Lucas Pacheco

lucaspacheco@alunos.utfpr.edu.br

O que é um Autômato Celular?

- Matematicamente: classe de sistemas determinísticos discretos
- Composto por células, malha, vizinhança e um conjunto de regras
- Através de uma entrada, o autômato evolui
- Seu uso vai desde simulações biológicas até a criação de músicas

História

- 1948 John von Neumann em busca de um modelo reducionista de evolução biológica
- 1970 John Horton Conway cria o jogo da vida
- Jogo reproduz alterações e mudanças em grupos de seres vivos
- Estado inicial define sua evolução
- 1983 Wolfram legitima como um campo de pesquisa

Definição Formal

- L uma grade regular (os elementos de L são chamados de células)
- S um conjunto finito de estados
- N um conjunto finito, (de tamanho n = |N|) de vizinhança, tal que $\forall c \in N$, $\forall r \in L: r+c \in L$
- $f:S \rightarrow S$

Elementos de um Autômato Celular

- Célula
- Grade ou Malha
- Vizinhança
- Regras

Células

- Definidas por estados
- Autômatos mais simples utilizam de estados binários (0 ou 1)
- Podem ser de formas variadas

Triangular

Quadrangular

Hexagonal

Grade ou Malha

- Conjunto de células
- Nele está contido todas as células de n-dimensões

Vizinhança

- Células vizinhas a uma célula principal
- As células vizinhas se encontram no tempo t enquanto a célula principal em t + 1

Regras

- Em um Autômato Celular Unidimensional com dois estados previstos e com vizinhança de tamanho 3, temos 8 padrões (2³ = 8)
- Com isso conseguimos 256 regras possíveis (28 = 256)

rule 30

rule 90

Referências

Mitchell, M. (1996). Computation in cellular automata: A selected review. Nonstandard Computation, 95-140.

Toffoli T. (1984), Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in Modelling Physics, Physica 10D, 117-127

Sarkar, P. (2000). A brief history of cellular automata. Acm computing surveys (csur), 32(1), 80-107.

Castro, M. L. A., de Oliveira Castro, R. (2015). Autômatos celulares: implementações de von Neumann, Conway e Wolfram. Revista de Ciências Exatas e Tecnologia, 3(3), 89-106.