步驟一:觀察各點的鏡射重心連線。

利用鏡射矩陣得到鏡射三角形三點座標。

以 $P_1(x_1,y_1)$ 為例:

 $A_1 = (x_1 \cdot \cos 2\theta_1 + y_1 \cdot \sin 2\theta_1, -y_1 \cdot \cos 2\theta_1 + x_1 \cdot \sin 2\theta_1)$

 $B_1 = (x_1, 2k - y_1)$

 $C_1 = (x_1 \cdot \cos 2\theta_2 - y_1 \cdot \sin 2\theta_2, -y_1 \cdot \cos 2\theta_2 - x_1 \cdot \sin 2\theta_2)$

步驟二: $\overline{K_1A}$: $\overline{G_1A}$ 。

將鏡射三角形三點座標相加得到 $K_1 imes K_2 imes K_3$ 以 $P_1(x_1, y_1)$ 為例:

$$K_1 = (x_1 \cdot (1 + \cos 2\theta_1 + \cos 2\theta_2))$$

 $+y_1 \cdot (\sin 2\theta_1 - \sin 2\theta_2),$ $-y_1 \cdot (1 + \cos 2\theta_1 + \cos 2\theta_2)$

 $+x_1 \cdot (\sin 2\theta_2 - \sin 2\theta_2) + 2k$

步驟三:證明 $\Delta G_1 G_2 G_3$ 與 $\Delta P_1 P_2 P_3$ 相似 及求出其縮放倍率。

因 $\Delta K_1 K_2 K_3$ 與 $\Delta P_1 P_2 P_3$ 相似(對應邊成固定比例) 故 $\Delta G_1 G_2 G_3$ 與 $\Delta P_1 P_2 P_3$ 相似,且縮放倍率為

 $\sqrt{-3+4 \left[\cos^2\theta_1 + \cos^2\theta_2 + \cos^2(\theta_1 + \theta_2)\right]}$

3

將其整理成定理三,如下:

定理三:在對任意三角形鏡射的情況下, P_1 、 P_2 、 P_3 會分別對應到 G_1 、 G_2 、 G_3 ; $\Delta G_1 G_2 G_3$ 與 $\Delta P_1 P_2 P_3$ 相似,且 $\Delta G_1 G_2 G_3$ 邊長長度會分別是 $\Delta P_1 P_2 P_3$ 邊長的 $\frac{\sqrt{-3+4\left[\cos^2\theta_1+\cos^2\theta_2+\cos^2(\theta_1+\theta_2)\right]}}{3}$ 倍。

根據定理三,可知道對任意非正三角形鏡射重心連線形成三角形與原三角形相似,接著來討論鏡射外心的情況。

三、鏡射外心的特殊情況

經過觀察,我們發現了鏡射外心的三種特殊情況,如下:

表 2 鏡射外心的特殊情況

將其整理成定理四、定理五及定理六,如下:

定理四:當 P_1 落在 $L_1 imes L_2 imes L_3$ 上時,鏡射外心 O_1 分別會與 $L_1 imes L_2 imes L_3$ 的對角頂點C imes A imes B 重合。

定理五:當 P_1 落在 $t_A imes t_B imes t_C$ 上時,鏡射外心 O_1 會落在過切點且平行對邊的直線上。

定理六:當 $P_1 imes P_2$ 連線通過 ΔABC 一頂點時,鏡射外心 $O_1 imes O_2$ 連線也會通過該頂點。

接下來討論 01 移動軌跡為特定直線的情況。

四、P₁在特殊三角形的過頂點外接圓切線上移動之鏡射情況

表 3 P₁ 在特殊三角形的過頂點外接圓切線上移動的情況

將其整理成定理七及定理八,如下:

定理七:當 P_1 等腰直角三角形 $\triangle ABC$ 的外接圓切線 t_B 上移動時, O_1 的移動軌跡就會與 t_B 重合。

定理八:當 P_1 在正三角形 $\triangle ABC$ 的外接圓切線 $t_A \setminus t_B \setminus t_C$ 上移動時, O_1 的移動軌跡會與 $t_A \setminus t_B \setminus t_C$ 重合。