COMMON ENVELOPE SIMULATIONS IN PHANTOM

THOMAS REICHARDT

COLLABORATORS: ORSOLA DE MARCO, ROBERTO IACONI

WHAT IS THE COMMON ENVELOPE BINARY INTERACTION?

- Interaction reduces the orbital separation of binary systems.
- Necessary for formation of any system with an orbital separation shorter than past stellar radius.
- Cataclysmic variables, Type Ia SNe,
 X-ray binaries, gravitational wave
 sources, non-spherical PNe.

Various channels which go through common envelope interactions to form particular systems. Image credit: Ivanova et al. (2013)

CURRENT COMMON ENVELOPE SIMULATIONS

- In recent years, with the increase of computational power and the optimisation of codes, simulations have become ever better. An inexhaustive list of the more recent simulations are:
- SPH: SNSPH (Passy et al., 2012), Starsmasher (Nandez et al., 2014, 2015, 2016; Ivanova et al., 2015, 2016), and Phantom (Iaconi et al., 2017).
- Grid: FLASH (Ricker and Taam, 2010, 2012), Enzo (Staff et al., 2016a, b; Iaconi et al., 2017)
- Moving Mesh: AREPO (Ohlmann, 2016a, b).

+X

PHANTOM COMMON ENVELOPE SIMULATIONS

- Create a profile in 1D stellar evolution code, MESA (Paxton et al., 2010). Typically low mass RGB stars (\sim 0.88 M $_{\odot}$).
- Star is mapped into Phantom, and allowed to relax into equilibrium with damped velocities for several dynamical times.
- Point mass companion (typically 0.6 M_{\odot}) is placed into the system to model a main sequence star, and then the system is left to evolve.
- Typical resolutions: I \times 10⁵ to 2.3 \times 10⁶ SPH particles, global timesteps.

COMMON ENVELOPE SIMULATION

- Separation drops by ~90% over the course of the simulation (more than 60% of which is during the fast inspiral ~I year timescale).
- The entire envelope is not unbound, but instead is increasingly dragged into corotation.
- These simulations almost perfectly conserve energy and angular momentum.

COMMON ENVELOPE SIMULATION

- Separation drops by ~90% over the course of the simulation (more than 60% of which is during the fast inspiral ~I year timescale).
- The entire envelope is not unbound, but instead is increasingly dragged into corotation.
- These simulations almost perfectly conserve energy and angular momentum.

COMMON ENVELOPE SIMULATION

- Separation drops by ~90% over the course of the simulation (more than 60% of which is during the fast inspiral ~1 year timescale).
- The entire envelope is not unbound, but instead is increasingly dragged into corotation.
- These simulations almost perfectly conserve energy and angular momentum.

RESOLUTION TESTS

- Final orbital separation is largely unaffected.
- Amount of unbound material appears to reduce with increasing resolution.
- Higher resolution simulations appear to take longer to fall in.
- Simulations are thus converged in some areas, but not all.

PN FROM COMMON ENVELOPES

- After envelope ejection, central star (now a post-AGB star), releases a fast, tenuous wind in all directions.
- This wind more easily blasts through less dense regions: in this case, the poles.
- We would expect then to see bubbles form in the polar directions.
- Hot central star ionizes the resultant gas distribution, producing a bipolar planetary nebula.

PN FROM COMMON ENVELOPES

- Slice is approximately 3 years after the end of the fast in-spiral.
- Very distinct funnels of a much lower density (10-100 times less dense than surrounding material).
- Material is typically moving out at around 30 km s⁻¹, hence density will fall approximately 9 orders of magnitude in ~100-1000 years.

ASTROBEAR SIMULATIONS

- Density distribution from Phantom is mapped onto three nested grids (128³ cells, 128,000 R_{\odot} per side for the largest, 128³ cells, 8000 R_{\odot} per side for medium, and 192³ cells, 1500 R_{\odot} per side for the smallest), using Splash.
- Grids were then loaded into AstroBEAR (by Zhuo Chen), and the code was allowed to refine
 on two levels between each of the static grids. Total of 7 levels of refinement with AMR and
 nested grids.
- Central portion of the simulation is replaced with a sphere of radius 46.875 R_{\odot} , hence the binary no longer had to be simulated.
- Fast wind (300 km s⁻¹, 6.35 x 10^{-4} M_{\odot} yr⁻¹) is released from surface of the sphere, and hydrodynamically collimated to produce lobes.

RECOMBINATION ENERGY

- The addition of recombination energy into the equation of state can help unbind the envelope.
- MESA (Paxton et al., 2010) equation of state is tabulated, much more realistic than ideal equation of state, taking recombination into account along with other physical processes.
- The use of this equation of state has been primarily driven by Nandez et al. (2015).
- Map ionisation fractions to determine where recombination is occurring.

RECOMBINATION ENERGY

- The addition of recombination energy into the equation of state can help unbind the envelope.
- MESA (Paxton et al., 2010) equation of state is tabulated, much more realistic than ideal equation of state, taking recombination into account along with other physical processes.
- The use of this equation of state has been primarily driven by Nandez et al. (2015).
- Map ionisation fractions to determine where recombination is occurring.

RECOMBINATION ENERGY

- The addition of recombination energy into the equation of state can help unbind the envelope.
- MESA (Paxton et al., 2010) equation of state is tabulated, much more realistic than ideal equation of state, taking recombination into account along with other physical processes.
- The use of this equation of state has been primarily driven by Nandez et al. (2015).
- Map ionisation fractions to determine where recombination is occurring.

EQUATION OF STATE COMPARISON

- By using the MESA equation of state, we unbind the entire envelope in a very short period of time.
- In reality, recombination photons may be lost from the system, hence this should be treated as a maximal case.
- As the final separation is ~10% larger when using MESA EoS, the energy for unbinding is (not surprisingly) not coming from the orbit.

Simulations with 100 R_{\odot} initial separation are used here, as this is preliminary work, and 218 R_{\odot} initial separation simulations have not yet been run.

EQUATION OF STATE COMPARISON: EJECTA VELOCITIES

- After only I 000 days, MESA EoS simulation is already considerably more spread out.
- Ejecta velocities are larger approximately by a factor of two (~4 x 10⁶ cm s⁻¹ for ideal EoS, and ~8 x 10⁶ cm s⁻¹ for MESA EoS).
- The increase in ejecta velocities will more quickly lead to a diffuse gas distribution.

Velocities in cm/s.

EQUATION OF STATE COMPARISON: EJECTA VELOCITIES

- After only I 000 days, MESA EoS simulation is already considerably more spread out.
- Ejecta velocities are larger approximately by a factor of two (~4 x 10⁶ cm s⁻¹ for ideal EoS, and ~8 x 10⁶ cm s⁻¹ for MESA EoS).
- The increase in ejecta velocities will more quickly lead to a diffuse gas distribution.

Velocities in cm/s.

SUMMARY

- The common envelope interaction is fundamental to understanding a wide variety of astrophysical phenomena.
- Hydrodynamical simulations are striving to produce density distributions which may be useful for forming planetary nebula morphologies.
- Planetary nebula simulations are possible by blowing a diffuse wind (to mimic a post-AGB star) into the resultant gas distributions.
- Implementing MESA EoS gives more physically realistic simulations, and gives a more extended (and thus less dense) gas distribution.