*	
 Exercice 1	Voir correction —
DAGICICE I	VOII COLLECTION

Soient X et Y deux variables aléatoires réelles indépendantes telles que X suit la loi normale centrée réduite et U suit la loi uniforme sur $\{-1;1\}$. On pose Y=UX. Déterminer la loi de Y

- Exercice 2 — Voir correction —

(Loi de Laplace) Soit c > 0. On considère la fonction f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = \frac{c}{2} e^{-c|x|}$

- 1) Montrer que f est une densité d'une variable aléatoire réelle X.
- 2) Déterminer la fonction de répartition F de X
- 3) Montrer que X admet une espérance et la calculer.
- 4) Montrer que pour tout $n \in \mathbb{N}$, X admet un moment d'ordre n
- 5) En déduire que X admet une variance et la calculer.

Exercice 3 — Voir correction —

Soit c un réel strictement positif et f la fonction définie par $\forall x \in \mathbb{R}, F(x) = \begin{cases} x^{-4} & \text{si } x \notin [-1;1] \\ c & \text{si } x \in [-1;1] \end{cases}$

- 1) Déterminer l'unique valeur de c telle que f est la fonction de densité d'une variable aléatoire X.
- 2) Montrer que X admet une espérance et une variance et les calculer.
- 3) Déterminer l'ensemble des valeurs de $r \in \mathbb{N}^*$ telles que X admet un moment d'ordre r.

Exercice 4 — Voir correction —

Soient λ et μ deux réels strictement positifs. On considère deux variables aléatoires X et Y indépendantes telles que X suit une loi exponentielle de paramètre λ et Y suit une loi exponentielle de paramètre μ . On pose $Z = \min(X, Y)$.

- 1) Pour $x \in \mathbb{R}$, que vaut $\mathbb{P}(X > x)$?
- 2) Pour $x \geq 0$, que vaut $\mathbb{P}(Z > x)$?
- 3) Déterminer la loi de Z

Exercice 5 — Voir correction —

Soit Y une variable aléatoire suivant une loi exponentielle de paramètre $\lambda > 0$ et soit $L \in \mathbb{R}_+^*$. On s'intéresse à la variable aléatoire discrète X définie par $X = \left\lceil \frac{Y}{L} \right\rceil$ où $\left\lceil x \right\rceil$ désigne le plus petit entier k tel que $x \le k$ (partie entière supérieure).

- 1) Quel est l'ensemble des valeurs prises par X?
- 2) Montrer que X suit une loi géométrique dont on précisera les paramètres.
- 3) Peut on choisir L pour que X et Y ait la même espérance?

Exercice 6 — Voir correction —

(Loi de Cauchy) Soit $\alpha > 0$ et F la fonction définie sur \mathbb{R} par $F(x) = \alpha \cdot \arctan(x) + \frac{1}{2}$.

- 1) Montrer qu'il existe un unique réel $\alpha > 0$ tel que F est la fonction de répartition d'une variable aléatoire X. Préciser sa densité f.
- 2) Montrer que X n'admet ni espérance, ni variance.
- 3) Déterminer la loi de $Z = \frac{1}{X}$.

Exercice 7 — Voir correction —

(Oral ENS 2023) Soit X une variable aléatoire suivant une loi exponentielle de paramètre 2.

1) Calculer $\mathbb{P}(4X \leq X^2 + 3)$

2) Calculer $\mathbb{E}[\sin(X)]$ après avoir démontré son existence.

* * *
Exercice 8 — Voir correction —

Soit $t \in \mathbb{R}$ fixé. Soit (X_n) une suite de variables aléatoires indépendantes définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ qui suivent toutes la même loi telle que $\mathbb{E}[X_n] = V(X_n) = 1$.

Pour tout $n \in \mathbb{N}^*$, on pose $T_n = X_1 + X_2 + \cdots + X_n$.

- 1) Pour tout entier n > t, comparer les événements $(T_n < t)$ et $(|T_n n| \ge n t)$
- 2) Calculer $\mathbb{P}\left(\bigcap_{n=1}^{+\infty} (T_n < t)\right)$.

* * * *
Exercice 9 — Voir correction —

(Oral ENS 2023) On construit aléatoirement un intervalle de la manière suivante. On tire tout d'abord son milieu M selon une loi de Poisson de paramètre $\lambda > 0$. On tire ensuite la longueur totale L de l'intervalle, qui est indépendante de M et suit une loi exponentielle de paramètre $\mu > 0$. On note [X,Y] l'intervalle aléatoire ainsi produit.

- 1) Expliquer rapidement pour quoi $X=M-\frac{L}{2}$ et $Y=M+\frac{L}{2}$
- 2) a) Calculer les espérances $\mathbb{E}[X]$ et $\mathbb{E}[Y]$
 - b) Calculer les variance V(X) et V(Y)

On introduit Z la variable aléatoire qui vaut 1 quand X>0 et qui vaut 0 quand $X\leq 0$

- 3) Calculer $\mathbb{P}(Z=0)$. En déduire la loi de Z et son espérance.
- 4) Montrer que pour tous réels y et z, il y a au plus un choix de (λ, μ) qui vérifie $\mathbb{E}[Y] = y$ et $\mathbb{E}[Z] = z$.

Le coin des Khûbes

* * * * Exercice 10 — Voir correction —

Soit U une variable aléatoire suivant la loi uniforme sur l'intervalle [0,1]. Calculer

$$I = \int_0^1 \mathbb{E}(\max(x, U) dx \text{ et } J = \mathbb{E}\left(\int_0^1 \max(x, U) dx\right)$$

* * * *

Exercice 11 ———— Voir correction —

(Oral ENS 2024) Soit $n \ge 1$ un entier et soient X_1, \ldots, X_n des variables aléatoires réelles indépendantes, toutes de loi exponentielle de paramètre 1. Ainsi, pour tout $i \in \{1, \ldots, n\}$ et pour tout $t \in \mathbb{R}$, on a

$$P(X_i \le t) = \begin{cases} 0 & \text{si } t < 0, \\ 1 - e^{-t} & \text{si } t \ge 0. \end{cases}$$

On note $M_n = \max(X_1, \dots, X_n)$.

- 1) Déterminer la fonction de répartition de M_n , notée F_n , ainsi que sa densité, notée f_n .
- 2) Montrer, sans trop de calculs, que $\mathbb{E}[M_n] \leq n$.
- 3) Vérifier que $t(1 F_n(t))$ tend vers 0 quand t tend vers $+\infty$.
- 4) En déduire, après une intégration par parties, que

$$\mathbb{E}[M_n] = \int_0^{+\infty} (1 - F_n(t)) dt.$$

5) Montrer que

$$\mathbb{E}[M_n] = \int_0^1 \frac{1 - y^n}{1 - y} \, dy$$

et établir finalement que

$$\mathbb{E}[M_n] = \sum_{k=1}^n \frac{1}{k}.$$

(Oral ENS 2024) Dans tout cet exercice, α désigne un réel strictement positif fixé. Soit X une variable aléatoire réelle de densité f_{α} donnée par

$$f_{\alpha}(x) = \begin{cases} 0 & \text{si } x \in]-\infty, 1], \\ \frac{\alpha}{x^{\alpha+1}} & \text{si } x \in]1, +\infty[. \end{cases}$$

- 1) Calculer, pour tout réel t, la quantité P(X > t).
- 2) À quelle condition sur α la variable aléatoire X admet-elle une espérance finie? Lorsque cette condition est vérifiée, donner la valeur de $\mathbb{E}[X]$.
- 3) Pour tout réel x, on note $\lceil x \rceil$ l'unique entier k tel que $k-1 < x \le k$. Le nombre $\lceil x \rceil$ s'appelle la partie entière supérieure de x. Déterminer la loi de la variable aléatoire $Y = \lceil \ln(X) \rceil$.
- 4) Soient X_1, \ldots, X_n des variables aléatoires indépendantes et toutes de densité f_{α} . On pose

$$Y_n = \min(X_1, \dots, X_n).$$

Montrer que, pour tout $t \in \mathbb{R}$, la quantité $P(n(Y_n - 1) > t)$ converge, quand n tend vers $+\infty$, vers une limite que l'on déterminera.

Correction des exercice

Correction de l'exercice 1 : Pour déterminer la loi d'une variable à densité quelconque, il est souvent pertinent de s'intéresser à sa fonction de répartition. Notons F_Y la fonction de répartition de Y. Soit $x \in \mathbb{R}$, calculons $F_Y(x) = \mathbb{P}(Y \le x)$.

$$\begin{split} F_Y(x) &= \mathbb{P}(UX \le x) \\ &= \mathbb{P}(\{U=1\} \cap \{X \le x\} + \mathbb{P}(\{U=-1\} \cap \{X \ge -x\}) \\ &= \frac{1}{2}\mathbb{P}(X \le x) + \frac{1}{2}\mathbb{P}(X \ge -x) \end{split} \qquad \text{par incompatibilit\'e de ces deux \'ev\'enements} \\ &= \frac{1}{2}\mathbb{P}(X \le x) + \frac{1}{2}\mathbb{P}(X \ge -x) \end{aligned}$$

Pour la loi normale, il est important de retenir que $\mathbb{P}(X \leq x) = \mathbb{P}(X \geq -x)$. En effet, soit f la fonction de densité de X (qui est une fonction paire), alors par changement de variable u = -t on a :

$$\mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t = \int_{-x}^{+\infty} f(-u) \, \mathrm{d}u = \int_{-x}^{+\infty} f(u) \, \mathrm{d}u = \mathbb{P}(X \ge -x)$$

Ce raisonnement marche pour n'importe quelle fonction de densité f paire.

On en conclut finalement que $F_Y(x) = 2 \times \frac{1}{2} \mathbb{P}(X \le x) = F_X(x)$. Y a la même fonction de répartition que X donc Y suit la même loi que X.

Correction de l'exercice 2:

- 1) Pour qu'il existe X définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ telle que f est une densité de X, il suffit d'avoir
 - Pour tout $x \in \mathbb{R}$, f(x) > 0
 - f est continue sur \mathbb{R}
 - $\int_{-\infty}^{+\infty} f(t) dt$ converge et $\int_{-\infty}^{+\infty} f(t) dt = 1$

Dans le cas présent, on a bien $\forall x \in \mathbb{R}, \frac{c}{2} e^{-c|x|} \ge 0$ car $\forall x \in \mathbb{R}, e^x > 0$ et c > 0.

De plus, $x \mapsto -c|x|$ est continue sur \mathbb{R} et $x \mapsto e^x$ est continue sur \mathbb{R} donc par composition de fonctions continues f est continue.

Enfin, $e^{-c|x|} = o\left(\frac{1}{x^2}\right)$ par croissance comparée donc $\int_{-\infty}^{+\infty} f(t) dt$ converge.

Pour tout x > 0, on a

$$\int_{-x}^{x} f(t) dt = \int_{-x}^{0} f(t) dt + \int_{0}^{x} f(t) dt$$

$$= \frac{c}{2} \int_{-x}^{0} e^{-c|t|} dt + \frac{c}{2} \int_{0}^{x} e^{-c|t|} dt$$

$$= \frac{c}{2} \int_{-x}^{0} e^{ct} dt + \frac{c}{2} \int_{0}^{x} e^{-ct} dt$$

$$= \frac{c}{2} \left[\frac{e^{ct}}{c} \right]_{-x}^{0} + \frac{c}{2} \left[-\frac{e^{-ct}}{c} \right]_{0}^{x}$$

$$= \frac{c}{2} \times \left(\frac{1}{c} - \frac{e^{-cx}}{c} - \frac{e^{-cx}}{c} + \frac{1}{c} \right)$$

$$= 1 - e^{-cx}$$

$$\xrightarrow{x \to +\infty} 1$$

donc $\int_{-\infty}^{+\infty} f(t) dt = 1$.

On en conclut qu'il existe une variable aléatoire X telle que f est une densité de X.

par définition

2) Soit F la fonction de répartition de X, on a

$$\forall x \in]-\infty; 0[, \quad F(x) = \mathbb{P}(X \le x)$$

$$= \int_{-\infty}^{x} \frac{c}{2} e^{-c|t|} dt$$

$$= \int_{-\infty}^{x} \frac{c}{2} e^{ct} dt$$

$$= \lim_{y \to -\infty} \int_{y}^{x} \frac{c}{2} e^{ct} dt$$

$$= \lim_{y \to -\infty} \left[\frac{e^{ct}}{2} \right]_{y}^{x}$$

$$= \lim_{y \to -\infty} \left(\frac{e^{cx} - e^{cy}}{2} \right)$$

$$= \frac{e^{cx}}{2}$$

$$\forall x \in]0; +\infty[, \quad F(x) = \mathbb{P}(X \le x)$$

$$= \mathbb{P}(X \le 0) + \mathbb{P}(0 \le X \le x)$$

$$= \frac{1}{2} + \int_0^x \frac{c}{2} e^{-ct} dt$$

$$= \frac{1}{2} + \left(\frac{1 - e^{-cx}}{2}\right)$$

$$= \frac{2 - e^{-cx}}{2}$$

3) X admet une espérance si et seulement si l'intégrale $\int_{-\infty}^{+\infty} |tf(t)| \, dt$ converge. Par parité de $t\mapsto |tf(t)|$, il suffit de montrer que $\int_0^{+\infty} |tf(t)| \, dt$ converge. On a $x\,\mathrm{e}^{-cx}=o(\frac{1}{x^2})$ lorsque $x\to +\infty$ par croissance comparée donc $\int_0^{+\infty} \frac{c}{2}\,\mathrm{e}^{-cx} \, dx$ converge. De plus, $t\mapsto tf(t)$ est impaire car f est paire, donc $\mathbb{E}[X]=0$. En effet, on a $\mathbb{E}[X]=\int_{-\infty}^{+\infty} tf(t) \, dt$. Pour tout $x\in\mathbb{R}$,

$$\int_{-x}^{x} tf(t) dt = \int_{-x}^{0} tf(t) dt + \int_{0}^{x} tf(t) dt$$

$$= -\int_{x}^{0} (-u)f(-u) du + \int_{0}^{x} tf(t) dt$$

$$= -\int_{0}^{x} uf(u) dt + \int_{0}^{x} tf(t) dt \qquad \text{car } f \text{ est paire}$$

$$= 0$$

Ainsi par passage à la limite lorsque $x \to +\infty$ on obtient $\mathbb{E}[X] = \int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = 0$.

- 4) Soit $n \in \mathbb{N}$. On a $\frac{c}{2}t^{n+2} e^{-ct} \xrightarrow[t \to +\infty]{} 0$ donc $\frac{c}{2}t^n e^{-ct} = o\left(\frac{1}{t^2}\right)$ l'intégrale $\int_0^{+\infty} \frac{c}{2}t^n e^{-c|t|} dt$ converge. De même, $\frac{c}{2}t^{n+2} e^{ct} = o\left(\frac{1}{t^2}\right)$ lorsque $t \to -\infty$ donc l'intégrale $\int_{-\infty}^0 \frac{c}{2}t^n e^{-c|t|} dt$ converge. Ainsi, X admet un moment d'ordre n pour tout $n \in \mathbb{N}$.
- 5) X admet un moment d'ordre 2 d'après la question précédente, donc X admet une variance. D'après le théorème de Koenig-Huygens, on a $V(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2 = \mathbb{E}[X^2]$ car $\mathbb{E}[X] = 0$.

Calculons $\mathbb{E}[X^2]$ par intégrations par parties successives :

$$\begin{split} \mathbb{E}[X^2] &= \int_{-\infty}^{+\infty} \frac{c}{2} t^2 \, \mathrm{e}^{-c|t|} \, \mathrm{d}t \\ &= 2 \times \frac{c}{2} \int_0^{+\infty} t^2 \, \mathrm{e}^{-c|t|} \, \mathrm{d}t \\ &= c \lim_{x \to +\infty} \int_0^x t^2 \, \mathrm{e}^{-ct} \, \mathrm{d}t \\ &= c \lim_{x \to +\infty} \left(\left[-\frac{t^2 \, \mathrm{e}^{-ct}}{c} \right]_0^x + \int_0^x \frac{2t \, \mathrm{e}^{-ct}}{c} \, \mathrm{d}t \right) \\ &= c \lim_{x \to +\infty} \left(-\frac{x^2 \, \mathrm{e}^{-cx}}{c} + \left[-\frac{2t \, \mathrm{e}^{-ct}}{c^2} \right]_0^x + \int_0^x \frac{2 \, \mathrm{e}^{-ct}}{c^2} \, \mathrm{d}t \right) \\ &= c \lim_{x \to +\infty} \left(-\frac{x^2 \, \mathrm{e}^{-cx}}{c} - \frac{2x \, \mathrm{e}^{-cx}}{c^2} + \left[-\frac{2 \, \mathrm{e}^{-ct}}{c^3} \right]_0^x \right) \\ &= c \lim_{x \to +\infty} \left(-\frac{x^2 \, \mathrm{e}^{-cx}}{c} - \frac{2x \, \mathrm{e}^{-cx}}{c^2} + \frac{2 - 2 \, \mathrm{e}^{-cx}}{c^3} \right) \\ &= \frac{2}{c^2} \end{split}$$

par parité de l'intégrande

par croissances comparée et opérations de limites. Finalement, $V(X)=\frac{2}{c^2}$

Correction de l'exercice 4 :

- 1) Pour $x \ge 0$, on a $\mathbb{P}(X > x) = 1 \mathbb{P}(X \le x) = 1 (1 e^{-\lambda x}) = e^{-\lambda x}$ Pour x < 0, on a $\mathbb{P}(X > 0) = 1$ car X est à valeurs dans \mathbb{R}_+ .
- 2) Pour $x \ge 0$, on a $\mathbb{P}(Z > x) = \mathbb{P}(\{X > x\} \cap \{Y > x\}) = \mathbb{P}(X > x) \times \mathbb{P}(Y > x)$ par indépendance de X et Y. En effet, Z > x si et seulement si $\min(X, Y) > x$ donc si et seulement si X > x et Y > x. Ainsi, $\mathbb{P}(Z > x) = e^{-\lambda x} e^{-\mu x} = e^{-(\lambda + \mu)x}$.
- 3) Pour tout $x \in \mathbb{R}$, si x > 0 on a $\mathbb{P}(Z \le x) = 1 \mathbb{P}(Z > x) = 1 \mathrm{e}^{-(\lambda + \mu)x}$ et si x < 0 on a $\mathbb{P}(Z \le x) = 0$ car Z est à valeurs dans \mathbb{R}_+ .

On reconnait la fonction de répartition d'une loi exponentielle de paramètre $\lambda + \mu$ donc Z suit une loi exponentielle de paramètre $\lambda + \mu$.

Correction de l'exercice 5 :

- 1) Y est à valeurs dans \mathbb{R}_+^* donc X est à valeurs dans \mathbb{N}^* .
- 2) Pour tout $k \in \mathbb{N}$ on a :

$$\mathbb{P}(X = k) = \mathbb{P}(Y \in]k - 1; k]) = \mathbb{P}(Y \in](k - 1)L; kL]) = \int_{(k - 1)L}^{kL} \lambda e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_{(k - 1)L}^{kL} = e^{-\lambda (k - 1)L} - e^{-\lambda kL}$$

Pour $k \in \mathbb{N}$, on a donc $\mathbb{P}(X = k) = (e^{-\lambda L})^{k-1} - (e^{-\lambda L})^k = (e^{-\lambda L})^{k-1}(1 - e^{-\lambda L}) = (e^{-\lambda L})^{k-1}(1 - e^{-\lambda L})$ Ainsi, X suit une loi géométrique de paramètre $1 - e^{-\lambda L}$.

3) $\mathbb{E}[X] = \frac{1}{1 - e^{-\lambda L}}$ car X suit une loi géométrique de paramètre $1 - e^{-\lambda L}$.

 $\mathbb{E}[Y] = \frac{1}{\lambda}$ car Y suit une loi exponentielle de paramètre λ .

On cherche donc s'il existe un réel L > 0 tel que $\frac{1}{1 - e^{-\lambda L}} = \frac{1}{\lambda}$.

$$\frac{1}{1 - \mathrm{e}^{-\lambda L}} = \frac{1}{\lambda} \Longleftrightarrow 1 - \mathrm{e}^{-\lambda L} = \lambda \Longleftrightarrow \mathrm{e}^{-\lambda L} = 1 - \lambda.$$

Si $\lambda \geq 1$, cette équation n'a pas de solution.

Si $\lambda \in [0; 1[$, cette équation admet pour unique solution $L = -\frac{\ln(1-\lambda)}{\lambda}$

Correction de l'exercice 6 :

1)

2)

3) Soit $Z = \frac{1}{X}$, notons F_Z la fonction de répartition de Z.

La fonction de répartition de X est $F_X: x \mapsto \int_{-\infty}^x \frac{1}{\pi(1+t^2)} dt = \frac{\arctan(x)}{\pi} + \frac{1}{2}$. Soit x > 0 un réel :

$$F_Z(x) = \mathbb{P}(Z \le x)$$

$$= \mathbb{P}\left(\frac{1}{X} \le x\right)$$

$$= \mathbb{P}(X < 0) + \mathbb{P}\left(\{X > 0\} \cap \left\{\frac{1}{X} \le x\right\}\right)$$

$$= \mathbb{P}(X < 0) + \mathbb{P}(X \ge \frac{1}{x})$$

$$= F_X(0) + (1 - F_X(1/x))$$

$$= \frac{1}{2} + 1 - \left(\frac{\arctan(1/x)}{\pi} + \frac{1}{2}\right)$$

$$= 1 - \frac{\arctan(1/x)}{\pi}$$

Si $x=0,\,F_Z(x)=\mathbb{P}(Z\leq 0)=\mathbb{P}(\frac{1}{X}\leq 0)=\mathbb{P}(X\leq 0)=\frac{1}{2}$ Si x<0, on a

$$F_Z(x) = \mathbb{P}(Z \le x)$$

$$= \mathbb{P}\left(\frac{1}{X} \le x\right)$$

$$= \mathbb{P}\left(\frac{1}{x} \le X < 0\right)$$

$$= F_X(0) - F_X(1/x)$$

$$= \frac{1}{2} - \left(\frac{\arctan(1/x)}{\pi} + \frac{1}{2}\right)$$

$$= -\frac{\arctan(1/x)}{\pi}$$

Finalement, F_Z est définie par $F_Z(x) = \left\{ \begin{array}{ll} 1 - \dfrac{\arctan(1/x)}{\pi} & \text{ si } x > 0 \\ & \dfrac{1}{2} & \text{ si } x = 0 \\ & -\dfrac{\arctan(1/x)}{\pi} & \text{ si } x < 0 \end{array} \right.$

 F_Z est dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$, donc partout sauf en un point, et $\forall x\in\mathbb{R}^*,F_Z'(x)=\frac{1}{x^2}\times\frac{\arctan'(1/x)}{\pi}=\frac{1}{\pi x^2}\frac{1}{1+(1/x)^2}=\frac{1}{\pi(1+x^2)}=f(x)$

Puisque $F'_Z(x) = F'_X(x) = f(x)$ en tout point sauf un on en conclut que f est une fonction de densité de Z, Z suit la même loi que X.

Correction de l'exercice 7 :

- 1) Pour tout réel $x, 4x \le x^2 + 3 \Longleftrightarrow x^2 + 3 4x \ge 0 \Longleftrightarrow (x-4)(x+1) \ge 0 \Longleftrightarrow x \in]-\infty; -1[\cup]4; +\infty[$. On en déduit que $\mathbb{P}(4X \le X^2 + 3) = \mathbb{P}(X \le -1) + \mathbb{P}(X \ge 4) = \mathbb{P}(X \ge 4) = \int_4^{+\infty} 2 \, \mathrm{e}^{-2x} \, \mathrm{d}x = \mathrm{e}^{-8}.$
- 2) Il faut montrer que l'intégrale $\int_0^{+\infty} |\sin(x)| 2 e^{-2x} dx$ converge. Or, $\forall x \in \mathbb{R}_+$, $|\sin(x)| \le 1$ donc $\forall x \in \mathbb{R}_+$, $0 \le |\sin(x)| 2 e^{-2x} \le 2 e^{-2x}$. La fonction $x \mapsto 2 e^{-2x}$ est la densité de X donc $\int_0^{+\infty} f(x) dx$ converge donc $\int_0^{+\infty} |\sin(x)| 2 e^{-2x} dx$ converge.

Pour tout réel A > 0, on a :

$$\int_0^A 2\sin(x) e^{-2x} dx = \left[-2\cos(x) e^{-2x} \right]_0^A + \int_0^A 4\cos(x) e^{-2x} dx$$

$$= -2\cos(A) e^{-2A} + 2 + \left[4\sin(x) e^{-2x} dx \right]_0^A - \int_0^A 8\sin(x) e^{-2x} dx$$

$$= 2 - 2\cos(A) e^{-2A} + 4\sin(A) e^{-2A} - 0 - 4 \int_0^A 2sin(x) e^{-2x} dx$$

De plus, $\lim_{A\to +\infty}\cos(A)\,\mathrm{e}^{-2A}=0$ et $\lim_{A\to +\infty}\sin(A)\,\mathrm{e}^{-2A}=0$ car $|\cos(A)\,\mathrm{e}^{-2A}|\le \mathrm{e}^{-2A}$ et $|\sin(A)\,\mathrm{e}^{-2A}|\le \mathrm{e}^{-2A}$. En notant $I=\int_0^{+\infty}2\sin(x)\,\mathrm{e}^{-2x}\,\mathrm{d}x$, on obtient en passant à la limite lorsque $A\to +\infty$ de chaque côté de l'égalité :

$$I = 2 - 4I$$

d'où 5I = 2 et finalement $I = \frac{2}{5} = 0, 4$.

Correction de l'exercice 8 :

- 1) Si $T_n < t$ alors $-T_n > -t$ donc $n T_n > n t$. Puisque $T_n < t < n$, on a $|T_n n| = n T_n$. Ainsi, on a $(T_n < t) \subset (|T_n n| \ge n t)$.
- 2) Pour tout k > t, on a $\bigcap_{n=1}^{+\infty} (T_n < t) \subset (T_k < t) \subset (|T_k k| \ge k t)$ donc $\mathbb{P}\left(\bigcap_{n=1}^{+\infty} (T_n < t)\right) \le \mathbb{P}(|T_k k| \ge k t)$. Or $\mathbb{E}[T_k] = \sum_{i=1}^k \mathbb{E}[X_i] = k$ et $V(T_k) = \sum_{i=1}^k V(X_i) = k$ par indépendance des (X_i) . Ainsi, d'après le théorème de Bienaymé-Tchebychev, $\mathbb{P}(|T_k k| \ge k t) \le \frac{V(T_k)}{(k t)^2} \le \frac{k}{(k t)^2}$. Or $\frac{k}{(k t)^2} \sim \frac{k}{k^2} \xrightarrow[k \to +\infty]{} 0$.

Puisque quel que soit k on a $\mathbb{P}\left(\bigcap_{n=1}^{+\infty}(T_n < t)\right) \le \frac{k}{(k-t)^2}$ et que le membre de droite tend vers 0 lorsque k tend vers

 $+\infty$, cela implique que $\forall \varepsilon > 0$ on a $\mathbb{P}\left(\bigcap_{n=1}^{+\infty} (T_n < t)\right) \le \varepsilon$ donc $\mathbb{P}\left(\bigcap_{n=1}^{+\infty} (T_n < t)\right) = 0$.

Correction de l'exercice 9:

- 1) Si M est le milieu de l'intervalle [X,Y] et que L est sa longueur, alors $M=\frac{X+Y}{2}$ et L=Y-X donc $\left\{ \begin{array}{cc} 2M&=&X+Y\\ L&=&Y-X \end{array} \right.$ En sommant ces deux lignes on obtient 2Y=2M+L donc $Y=M+\frac{L}{2}$ et en les soustrayant on obtient 2X=2M-L donc $X=M-\frac{L}{2}$.
- 2) a) Par linéarité de l'espérance, $\mathbb{E}[X] = \mathbb{E}[M] \frac{1}{2}\mathbb{E}[L] = \lambda \frac{1}{2\mu}$ et $\mathbb{E}[Y] = \mathbb{E}[M] + \frac{1}{2}\mathbb{E}[L] = \lambda + \frac{1}{2\mu}$.
 - b) M et $-\frac{L}{2}$ sont indépendantes d'après le lemme des coalitions, donc $V(X) = V(M) + V\left(-\frac{L}{2}\right) = V(M) + \frac{1}{4}V(L) = \lambda + \frac{1}{4\mu^2}$

De même, $V(Y)=V(M)+V\left(\frac{1}{2}L\right)=V(M)+\frac{1}{4}V(L)=\lambda+\frac{1}{4\mu^2}.$

3) $\mathbb{P}(Z=0) = \mathbb{P}(X \le 0) = \mathbb{P}\left(M - \frac{L}{2} \le 0\right) = \mathbb{P}(L \ge 2M)$

On appliquant la formule des probabilités totales au système complet d'événements $(M=k)_{k\in\mathbb{N}}$ on obtient :

$$\begin{split} \mathbb{P}(L \geq 2M) &= \sum_{k=0}^{+\infty} \mathbb{P}(L \geq 2M, M = k) \\ &= \sum_{k=0}^{+\infty} \mathbb{P}(M = k) \times \mathbb{P}(L \geq 2M | M = k) \end{split}$$

$$= \sum_{k=0}^{+\infty} \mathbb{P}(M=k)\mathbb{P}(L \ge 2k)$$

$$= \sum_{k=0}^{+\infty} e^{-\lambda} \frac{\lambda^k}{k!} e^{-2k\mu}$$

$$= e^{-\lambda} \sum_{k=0}^{+\infty} \frac{(\lambda e^{-2\mu})^k}{k!}$$

$$= e^{-\lambda} e^{\lambda e^{-2\mu}}$$

$$= e^{\lambda(e^{-2\mu} - 1)}$$

On en déduit que Z suit une loi de Bernoulli de paramètre $p=1-\mathrm{e}^{\lambda(\mathrm{e}^{-2\mu}-1)},$ donc $\mathbb{E}[Z]=p=1-\mathrm{e}^{\lambda(\mathrm{e}^{-2\mu}-1)}.$

4) Soient y et z deux réels. Le système $\left\{ \begin{array}{ccc} \mathbb{E}[Y] & = & y \\ \mathbb{E}[Z] & = & z \end{array} \right. \text{ est équivalent au système } \left\{ \begin{array}{ccc} \lambda + \frac{1}{2\mu} & = & y \\ 1 - \mathrm{e}^{\lambda(\mathrm{e}^{-2\mu} - 1)} & = & z \end{array} \right. .$

Puisque $\mu > 0$ et $\lambda > 0$, on a $0 < e^{\lambda(e^{-2\mu}-1)} < 1$, donc ce système n'a pas de solution si $z \notin]0;1[$. Si $z \in]0;1[$, la deuxième équation est équivalente à $\lambda(e^{-2\mu}-1) = \ln(1-z)$.

Soit $z \in]0;1[$ et supposons que (λ,μ) est une solution du système. Alors $\lambda=y-\frac{1}{2\mu}$ donc la deuxième ligne donne $\left(y-\frac{1}{2\mu}\right)\left(\mathrm{e}^{-2\mu}-1\right)=\ln(1-z).$ Puisque $\ln(1-z)<0$ et $\mathrm{e}^{-2\mu}-1<0$, on a nécessairement $y-\frac{1}{2\mu}>0$ donc $\mu>\max\left(0,\frac{1}{2y}\right).$

En posant $f(\mu) = \left(y - \frac{1}{2\mu}\right)\left(e^{-2\mu} - 1\right)$ on obtient $f'(\mu) = \underbrace{\frac{1}{2\mu^2}\left(e^{-2\mu} - 1\right)}_{<0} - \underbrace{\left(2y - \frac{1}{\mu}\right)}_{<0}\underbrace{e^{-2\mu}}_{>0}$ d'où l'on déduit que

 $f'(\mu) < 0$ donc f est strictement décroissante sur $\left[\max\left(0, \frac{1}{2y}\right); +\infty \right[$. L'équation $f(\mu) = \ln(1-z)$ admet donc au plus une solution μ , donc il existe au plus une solution (λ, μ) puisque $\lambda = y - \frac{1}{2\mu}$.

Correction de l'exercice 10 : Soit $x \in [0,1]$ un réel fixé. Pour tout $t \in [0,1]$, posons $\varphi_x(t) = \max(x,t) = \begin{cases} x & \text{si } t \leq x \\ t & \text{si } t > x \end{cases}$. φ_x est une fonction continue à valeurs dans [0,1].

Si on note f la fonction de densité de U, l'intégrale $\int_{-\infty}^{+\infty} |\varphi_x(t)| f(t) dt$ converge car f est nulle en dehors de [0,1]. D'après le théorème de transfert on a donc :

$$\forall x \in [0, 1], \quad \mathbb{E}(\max(x, U)) = \int_0^1 \varphi_x(t) f(t) dt$$

$$= \int_0^1 \varphi_x(t) dt$$

$$= \int_0^x x dt + \int_x^1 t dt$$

$$= x^2 + \frac{1^2 - x^2}{2}$$

$$= \frac{1 + x^2}{2}$$

donc

$$\int_{0}^{1} \mathbb{E}(\max(x, U)) dx = \int_{0}^{1} \frac{1 + x^{2}}{2} dx$$
$$= \frac{1}{2} + \frac{1}{6}$$

$$=\frac{2}{3}$$

Intéressons-nous à la variable aléatoire $V = \int_0^1 \max(x, U) dx$. Pour tout $t \in [0, 1]$ on a :

$$\int_0^1 \max(x, t) dx = \int_0^1 \varphi_x(t) dx$$
$$= \int_0^t t dx + \int_t^1 x dx$$
$$= t^2 + \frac{1 - t^2}{2}$$
$$= \frac{1 + t^2}{2}$$

 $\text{donc } V = \frac{1+U^2}{2}, \text{ ainsi } \mathbb{E}(V) = \mathbb{E}\left(\frac{1+U^2}{2}\right) = \frac{1}{2}(1+\mathbb{E}(U^2)) \text{ et } \mathbb{E}(U^2) = V(U) + \mathbb{E}(U)^2 \text{ (d'après la formule de Koenig-Huygens) donc } \mathbb{E}(U^2) = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}.$ Correction de l'exercice 11 :

1) Pour tout
$$x \in \mathbb{R}$$
, $P(M_n \le x) = \begin{cases} 0 & \text{si } x \le 0 \\ \mathbb{P}(X_1 \le x, X_2 \le x, \dots, X_n \le x) & \text{si } x \le 0 \end{cases}$
Par indépendance des (X_i) :

$$\forall x \ge 0$$
, $\mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x)^n = (1 - e^{-x})^n$

 F_n est dérivable sur $]-\infty;0[$ et sur $]0,+\infty[$ et

$$\forall x \in]-\infty; 0[, \quad F_n'(x) = 0$$

$$\forall x \in]0; +\infty[, F'_n(x) = n e^{-x} (1 - e^{-x})^{n-1}$$

donc M_n admet une densité f_n définie par

$$\forall x \in \mathbb{R}, \quad f_n(x) = \begin{cases} n e^{-x} (1 - e^{-x})^{n-1} & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

- 2) On a d'abord $x^3 f_n(x) \underset{x \to +\infty}{\sim} nx^3 e^{-x} \xrightarrow[x \to +\infty]{} 0$ par croissance comparée donc $x f_n(x) = o\left(\frac{1}{x^2}\right)$ donc par comparaison avec une intégrale de Riemann convergente on montre que M_n admet une espérance. Pour tout $x \ge 0$ on a $0 \le 1 e^{-x} \le 1$ donc $0 \le nx e^{-x} (1 e^{-x})^{n-1} \le nx e^{-x}$. On a donc $\int_0^{+\infty} x f_n(x) dx \le \int_0^{+\infty} nx e^{-x} = n \int_0^{+\infty} x e^{-x} dx = n$ (calcul classique).
- 3) Pour tout $t \ge 0$, $t(1 F_n(t)) = t \int_t^{+\infty} f_n(x) dx \le \int_t^{+\infty} x f_n(x) dx$ et comme $\int_0^{+\infty} x f_n(x) dx$ converge on a $\lim_{t \to +\infty} \int_t^{+\infty} x f_n(x) dx$ 0.

Par comparaison on en conclut que $\lim_{t\to +\infty} t(1-F_n(t)) = 0$.

4) Soit A > 0. Comme $F_n - 1$ est une primitive de f_n on peut écrire :

$$\int_0^A x f_n(x) dx = [x(F_n(x) - 1)]_0^A - \int_0^A (F_n(x) - 1) dx$$
$$= -A(1 - F_n(A)) + \int_0^A (1 - F_n(x)) dx$$

 $\mathbb{E}(M_n)$ existe donc le membre de gauche converge lorsque $A\to +\infty$, et $\lim_{A\to +\infty}A(1-F_n(A))=0$,on en conclut que $\int_0^A(1-F_n(x))\,\mathrm{d}x$ admet une limite aussi et par passage à la limite dans l'égalité ci-dessus :

$$\mathbb{E}(M_n) = \int_0^{+\infty} (1 - F_n(x)) \, \mathrm{d}x$$

5) En posant le changement de variable $u = 1 - e^{-t}$ on a $du = e^{-t} dt$ donc $dt = \frac{du}{1-u}$ et on peut écrire :

$$\int_0^{+\infty} (1 - F_n(t)) dt = \int_0^{+\infty} (1 - (1 - e^{-t})^n) dt$$
$$= \int_0^1 \frac{1 - u^n}{1 - u} du$$

Finalement, comme pour tout $u \in [0,1[$ on a $\frac{1-u^n}{1-u} = \sum_{k=0}^{n-1} u^k$ on peut écrire :

$$\int_0^1 \frac{1-u^n}{1-u} \, \mathrm{d}u = \int_0^1 \sum_{k=0}^{n-1} u^k \, \mathrm{d}u$$

$$= \sum_{k=0}^{n-1} \int_0^1 u^k \, \mathrm{d}u$$
par linéarité de l'intégrale
$$= \sum_{k=0}^{n-1} \frac{1}{k+1}$$

$$= \sum_{k=1}^n \frac{1}{k}$$

d'où $\mathbb{E}(M_n) = \sum_{k=1}^n \frac{1}{k}$.

Correction de l'exercice 12:

1) Soit $t \in \mathbb{R}$. Si $t \geq 1$ on a :

$$\mathbb{P}(X > t) = \int_{t}^{+\infty} f_{\alpha}(x) dx$$
$$= \left[-x^{-\alpha} \right]_{t}^{+\infty}$$
$$= t^{-\alpha}$$

Ainsi on a, pour tout
$$t \in \mathbb{R}$$
, $\mathbb{P}(X > t) = \begin{cases} \frac{1}{t^{\alpha}} & \text{si } t \geq 1\\ 1 & \text{si } t < 1 \end{cases}$

2) X admet une espérance finie si et seulement si l'intégrale $\int_1^{+\infty} x f_{\alpha}(x) dx$ converge. Or $x f_{\alpha}(x) = \frac{\alpha}{x^{\alpha}}$ donc cette intégrale converge si et seulement si $\alpha > 1$.

Si $\alpha > 1$ on a :

$$\mathbb{E}(X) = \int_{1}^{+\infty} \frac{\alpha}{x^{\alpha}} dx$$
$$= \left[\frac{\alpha x^{-\alpha+1}}{-\alpha+1} \right]_{1}^{+\infty}$$
$$= \frac{\alpha}{\alpha - 1}$$

3) Y est à valeurs entière donc c'est une variable aléatoire réelle discrète à valeurs dans \mathbb{N}^* . Pour $k \in \mathbb{N}^*$ on a :

$$\mathbb{P}(Y = k) = \mathbb{P}(k - 1 < \ln(X) \le k)$$

$$= \mathbb{P}(e^{k-1} < X < e^k)$$

$$= \int_{e^{k-1}}^{e^k} \frac{\alpha}{x^{\alpha+1}} dx$$

$$= \left[-x^{-\alpha} \right]_{e^{k-1}}^{e^k}$$

$$= e^{-\alpha(k-1)} - e^{-\alpha k}$$

$$= (e^{-\alpha})^{k-1} (1 - e^{-\alpha})$$

$$= p(1-p)^{k-1}$$

en posant $p=1-\mathrm{e}^{-\alpha}.$ On reconnait une loi géométrique de paramètre $1-\mathrm{e}^{-\alpha}.$

4) Par un calcul direct:

$$\mathbb{P}(n(Y_n - 1) > t) = \mathbb{P}\left(Y_n > \frac{t}{n} + 1\right)$$

$$= \mathbb{P}\left(X_1 > \frac{t}{n} + 1, \dots X_n > \frac{t}{n} + 1\right)$$

$$= \mathbb{P}\left(X_1 > \frac{t}{n} + 1\right)^n$$

$$= \left(\left(1 + \frac{t}{n}\right)^{-\alpha}\right)^n$$

$$= \left(\exp\left(-\alpha n \ln\left(1 + \frac{t}{n}\right)\right)\right)$$

Or
$$\ln\left(1+\frac{t}{n}\right) \underset{n\to+\infty}{\sim} \frac{t}{n}$$
 donc $\lim_{n\to+\infty} -\alpha n \ln\left(1+\frac{t}{n}\right) = -\alpha t$ d'où par composition :
$$\lim_{n\to+\infty} \mathbb{P}(n(Y_n-1)) = \mathrm{e}^{-\alpha t}$$

