Calcul Différentiel

1. Fonction dérivable en a

(a) Une fonction f est **dérivable** en a si la limite :

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$$
 existe et si elle est finie.

- (b) La valeur de cette limite est notée $\mathbf{f}'(\mathbf{a})$ ou $\frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{a})$.
- (c) La valeur f'(a) est le **coefficient directeur** de la droite tangente à la courbe au point d'abscisse a.
- 2. Equation de la droite tangente à la courbe représentative de la fonction f au point de la courbe d'abscisse a et de coordonnées (a;f(a)) est :

$$y = f'(a)(x - a) + f(a).$$

$$y$$

$$f(a)$$

$$i$$

$$i$$

$$f(a) = \tan \alpha = \frac{\overline{NP}}{MP}$$

Equation de la tangente en M(a : f(a)): y = f'(a)(x - a) + f(a)

Calcul différentiel 107

3. La différentielle df_a au point d'abscisse a est l'application liénaire définie par :

$$df_a: \mathbb{R} \to \mathbb{R}$$

$$h \mapsto f'(a).h$$

4. Dérivées des fonctions usuelles

Fonction f	Ensemble de Définition de f	Ensemble de Dérivation de f	Fonction dérivée f'
f(x) = ax + b	R	R	f'(x) = a
$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R}^*$			$f'(x) = \alpha \times x^{\alpha - 1}$
$f(x)=x^n,\;n\in\mathbb{N}^*$	R	R	$f'(x) = n \times x^{n-1}$
$f(x) = \frac{1}{x^n}, n \in \mathbb{N}^*$	R*	R*	$f'(x) = \frac{-n}{x^{n+1}}$
$f(x) = \sqrt{x}$	[0; +∞[]0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = e^x$	R	R	$f'(x) = e^x$
$f(x) = \ln(x)$]0; +∞[]0; +∞[$f'(x) = \frac{1}{x}$
$f(x) = \sin(x)$	R	R	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	R	R	$f'(x) = -\sin(x)$
$f(x) = \tan(x)$	$\bigcup_{k} \left[-\frac{\pi}{2} + k\pi; +\frac{\pi}{2} + k\pi \right]$	$\bigcup_{k}] - \frac{\pi}{2} + k\pi; + \frac{\pi}{2} + k\pi[$	$f'(x) = 1 + [\tan(x)]^2 = \frac{1}{[\cos(x)]^2}$

5. Règles de dérivation

(a) u et v deux fonctions :

$$(ku)' = ku'$$
; $(u+v)' = u'+v'$; $(uv)' = u'v+uv'$.

(b) Si v ne s'annule pas sur I, alors $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables sur I et :

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$$
 et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

108 CALCUL DIFFÉRENTIEL

- 6. Cas général des fonctions composées
- (a) Fonction composée $f = v \circ u$ est définie par

$$f(x) = v \circ u(x) = v (u(x)).$$

(b) Dérivée de la fonction composée $f = v \circ u$:

$$f'(x) = v'(u(x)) \times u'(x).$$

7. Tableau des dérivées de fonctions composées

Fonction f	Ensemble de Définition de f	Ensemble de Dérivation de f	Fonction dérivée f'
$f(x) = k \times u(x), k \in \mathbb{R}$	I	I	$f'(x) = k \times u'(x)$
f(x) = u(x) + v(x)	I	I	f'(x) = u'(x) + v'(x)
$f(x) = \ln(u(x))$	I	$\{x\in I/u(x)\neq 0\}$	$f'(x) = \frac{u'(x)}{u(x)}$
$f(x) = \exp(u(x))$	I	I	$f'(x) = u'(x) \exp(u(x))$
$f(x) = u(x) \times v(x)$	I	I	$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$
$f(x) = \frac{u(x)}{v(x)}$	$\{x\in I/v(x)\neq 0\}$	$\{x\in I/v(x)\neq 0\}$	$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2}$
$f(x) = [u(x)]^{\alpha}, \ \alpha \in \mathbb{R}^*$	I		$f'(x) = \alpha \times [u(x)]^{\alpha-1} \times u'(x)$
$f(x) = \frac{1}{u(x)}$	$\{x\in I/u(x)\neq 0\}$	$\{x\in I/u(x)\neq 0\}$	$f'(x) = -\frac{u'(x)}{[u(x)]^2}$
$f(x) = \sqrt{u(x)}$	$\{x\in I/u(x)\geq 0\}$	$\{x\in I/u(x)>0\}$	$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$
f(x) = u(ax + b)	$\{x \in I/ax + b \in \mathcal{D}_u\}$	$\{x\in I/ax+b\in \mathcal{E}.\ \mathrm{Der.}\ \mathcal{u}\}$	$f'(x) = a \times u'(ax + b)$
$f(x) = u \circ v(x)$	$\{x \in I/v(x) \in \mathcal{D}_u\}$	$\{x \in I/v(x) \in E. Der. u\}$	$f'(x) = (u' \circ v)(x) \times v'$ $= u'[v(x)] \times v'(x)$

CALCUL DIFFÉRENTIEL 109

8. Monotonie (croissante, décroissante) et dérivée première d'une fonction

$$f$$
 croissante sur I \iff $f'(x) \ge 0$, pour tout $x \in I$ f décroissante sur I \iff $f'(x) \le 0$, pour tout $x \in I$

9. Convexité-concavité et dérivée seconde d'une fonction

pour tout
$$x \in I$$
, $f^{(2)}(x) \ge 0 \iff$ la fonction est **convexe**
pour tout $x \in I$, $f^{(2)}(x) < 0 \iff$ la fonction est **concave**.

- Point d'inflexion : point d'une courbe où il y a un changement de convexitéconcavité.
- 11. Primitive d'une fonction f: toute fonction F telle que F'(x) = f(x).
- 12. Egalité à une constante près de deux primitives d'une même fonction :
 - (a) Si F et G sont deux primitives de f alors

$$F(x) = G(x) + k \qquad k \in \mathbb{R}$$

- 13. Formule fondamentale du calcul intégral
 - (a) Soit f une fonction continue sur un intervalle I = [a; b]:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

où F est une primitive de f sur I.