

ABSTRACT

Improvements Relating To Quantum Cryptography

5 A method of establishing a shared secret random cryptographic key between a
sender and a recipient using a quantum communications channel is described. The
method comprises: generating a plurality of random quantum states of a quantum
entity, each random state being defined by a randomly selected one of a first plurality
of bases in Hilbert space, transmitting the plurality of random quantum states of the
10 quantum entity via the quantum channel to a recipient, measuring the quantum state of
each of the received quantum states of the quantum entity with respect to a randomly
selected one of a second plurality of bases in Hilbert space, transmitting to the
recipient composition information describing a subset of the plurality of random
quantum states, analysing the received composition information and the measured
15 quantum states corresponding to the subset to derive a first statistical distribution
describing the subset of transmitted quantum states and a second statistical
distribution describing the corresponding measured quantum states, establishing the
level of confidence in the validity of the plurality of transmitted random quantum
states by verifying that the first and second statistical distributions are sufficiently
20 similar, deriving a first binary string and a second binary string, correlated to the first
binary string, respectively from the transmitted and received plurality of quantum
states not in the subset, and carrying out a reconciliation of the second binary string to
the first binary string by using error correction techniques to establish the shared
secret random cryptographic key from the first and second binary strings.

25