NEURONALE NETZE

Handschriftliche Zahlen erkennen

Jasper Gude

28. November 2023 Carl-Friedrich-Gauß-Gymnasium

Modellierung des Problems 2.1

Modellierung des Problems 2.2

2.3 Modellierung des Problems

3.1 Überführung auf eine Netzstruktur

28px × 28px

3.2 Überführung auf eine Netzstruktur

3.3 Überführung auf eine Netzstruktur

3.4 Überführung auf eine Netzstruktur

3.5 Überführung auf eine Netzstruktur

4.1 Gewichtungen setzen

Gewichtungen setzen 4.2

4.3 Gewichtungen setzen

4.4 Gewichtungen setzen

Linearkombination

$$w_0 x_0 + w_1 x_1 + \dots + w_n x_n - b$$

Sigmoidfunktion 0.5

6 Alles zusammen setzen

Aktivierungsfunktion

$$x_0^{(1)} = \sigma(w_0^{(0)}x_0 + w_1^{(0)}x_1 + \dots + w_n^{(0)}x_n - b)$$

Aktivierungsfunktion

$$x_0^{(1)} = \sigma(w_0^{(0)}x_0 + w_1^{(0)}x_1 + \dots + w_n^{(0)}x_n - b)$$

$$\begin{bmatrix} x_0^{(1)} \\ x_1^{(1)} \\ \vdots \\ x_n^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} x_0^{(0)} \\ x_1^{(0)} \\ \vdots \\ x_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} \right)$$

Aktivierungsfunktion

$$\vec{x^{(1)}} = \sigma(W\vec{x^{(0)}} + \vec{b})$$

$$\begin{bmatrix} x_0^{(1)} \\ x_1^{(1)} \\ \vdots \\ x_n^{(1)} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} x_0^{(0)} \\ x_1^{(0)} \\ \vdots \\ x_n^{(0)} \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} \right)$$

7 Aufbau eines Perzeptrons

Inputvektor \vec{x}

8 Übertragungsfunktion

Linearkombination

$$net = x_0w_0 + x_1w_1 + x_2w_2 + \ldots + x_nw_n$$
 oder

$$net = \sum_{i=0}^{n} x_i w_i$$

Inputvektor \vec{x}

9 Fehlerfunktion

Dataset

$$X = \left\{ (\vec{x_0}, y_0); (\vec{x_1}, y_1); (\vec{x_2}, y_2); (\dots, \dots); (\vec{x_n}, y_n) \right\}$$

Mean Squared Error

$$E = \frac{1}{2} \sum_{i=0}^{n} (y_i - o_i)^2$$

10 Dataset

$$X = \left\{ (\vec{x_0}, y_0); (\vec{x_1}, y_1); (\vec{x_2}, y_2); (\dots, \dots); (\vec{x_n}, y_n) \right\}$$

11 Ableitung der Aktivierungsfunktion

Ableitung der Sigmoidfunktion

$$\varphi'(x) = \frac{1}{1+e^{-x}} \cdot (1 + \frac{1}{1+e^{-x}})$$
 oder

$$\varphi'(x) = \varphi(x) \cdot (1 + \varphi(x))$$

12 Einschichtiges feedforward-Netz

Ausgabeschicht

13 Mehrschichtiges feedforward-Netz

14 Rekurrentes Netz

Ausgabeschicht

Jasper Gude

Hockenheim, 28. November 2023