Digitalna vezja UL, FRI

Vaja 12, MIPS procesor

MIPS – podatkovne poti (enojni cikel)

Pomnilnik:

- Ukazni
- Podatkovni

Literatura: Computer Organization and Design, 3rd edition, 2005

http://dcsuop.blogspot.com/2013/02/computer-organization-and-design-3rd-ed.html

Procesor MIPS: ukazi

Aritmetično-logični ukazi (R-tip):

Add Unsigned

addu

$$R[RD]=R[RS] + R[RT]$$

 $0/2I_{H}$

OP	RS	RT	RD	shamt	Funct.
6	5	5	5	5	6

Pomnilni ukazi (I-tip):

Load Word

lw

R[RT]=M[R[RS]+SgnExtlmm]

 23_{H}

OP	RS	RT	immediate
6	5	5	16

Pogojna vejitev (I-tip):

Branch on not equal

bne

if(R[RS] != R[RT])

 5_{H}

OP	RS	RT	immediate
6	5	5	16

RTL jezik ('Register Transfer Language')

ZAPIS: je določen kot: Dst <= Src ali Src in operacija Primeri:

- Vpis v samostojen register (IR, PC):
 - IR <= Pom[PC]</p>
 - PC <= PC+ 4</p>
- Branje iz registra in vpis v register (Registrski niz):
 - ► A(RDI) <= Reg[IR(25-21)] (data out <= address)</p>
 - \triangleright B(RD2) <= Reg[IR(20-16)]
 - \triangleright B <= SgnExt[IR(15-0)] (ALE in <= data out)
 - Reg[IR(I5-II)] <= ALEizh (data in <= data out)</pre>
 - Reg[IR(20-16)] <= Pom[ALEizh]</p>
- Določanje izhoda ALE:
 - ALEizh <= A(RDI)+SgnExt[IR(I5-0)]</p>
- Zapis pogojev:
 - if(A-B==0) then PC <= ALEizh</p>

R- tip: Add Unsigned

Ime Add Unsigned

Mnemonik addu

Format R

Operacija R[rd] = R[rs] + R[rt]

OPCODE/FUNCT 0/21_H

	ОР	RS	RT	RD	Pomik	FUN.	
31	26	25 2°	1 20 16	6 15 11	10 6	5	0

Opis: 0000 00ss ssst tttt dddd d000 0010 0001

Zapis ukaza: OP RD, RS, RT

Zbirnik: addu \$t9, \$t10, \$t11

0000 0001 0010 1011 0101 0000 0010 0001

addu \$t9, \$t10, \$11

Podatkovne poti - gradniki

Naslavljanje registrov RS in RT, podatki na ALE

RS: $A(RD1) \le Reg[IR(25-21)]$ RT: $B(RD2) \le Reg[IR(20-16)]$

Seštevanje, naslavljanje registra RD in vpis rezultata

RS: $A(RD1) \le Reg[IR(25-21)]$

RT: $B(RD2) \le Reg[IR(20-16)]$

ALEizh <= A + B

RD: $Reg[IR(15-11)] \leftarrow ALEizh$

I- tip: Load Word

Ime Load Word

Mnemonik Id

Format I

Operacija R[rt] = M[R[rs] + SignExtImm]

OPCODE 23_H

	OP	RS		RT	•	immediate					
31	26	25	21	20	16	15	11	10	6	5	0

Opis: 1000 I ss ssst tttt iiii iiii iiii iiii

SignExtImm: { 16 {immediate[15]}, immediate }

Zapis ukaza: OP rt, Imm(rs)

Zbirnik: lw \$t9, 100(\$t10)

1000 1101 0100 1001 0000 0000 0110 0100

SignExtImm: 0000 0000 0000 0000 0000 0110 0100

lw \$t9, 100(\$t10)

Izvorni register: R10

Izračun naslova: ALEizh <= A + B(SgnExt(IR(15-0)))

Branje iz pomnilnika, naslov 105 in vpis podatka v register R9

Podatkovne poti - gradniki

Naslavljanje registra RS, SgnExtImm, podatki na ALE

RS: $A(RD1) \le Reg[IR(25-21)]$ $B(SgnExt) \le IR(15-0)$

Naslavljanje registra RT, seštevanje in naslavljanje pomnilnika, podatki v register RT

RS: $A(RD1) \le Reg[IR(25-21)]$

 $B(SgnExt) \le IR(15-0)$

ALEizh = A + B

RT: $Reg[IR(20-16)] \leftarrow Pom[ALEizh]$

I- tip: Branch on not Equal

Ime Branch on not Equal

Mnemonik bne

Format I

Operacija if (R[rs] != R[rt]), PC = PC + 4 + BrAddr

OPCODE 5_H

	OP	RS	R	Т	immediate			
31	26	25	21 20	16	15	11 10	6 5	0

Opis: 0001 01ss ssst tttt iiii iiii iiii iiii

BrAddr: { I4 {immediate[I5]}, immediate, 00 }

Zapis ukaza: OP rs, rt, Imm

Zbirnik: bne \$t10, \$t9, 25

0001 0101 0100 1001 0000 0000 0001 1001

BrAddr: 0000 0000 0000 0000 0000 0001 1001

bne \$t10, \$t9, 25

Strojni ukaz:

Podatkovne poti - gradniki

Naslavljanje registrov RS, RT, BrAddr, podatki na ALE in seštevalnik

Postavitev zastavice Z, izračun vejitvenega naslova in vpis v PC if Z=0

Procesor MIPS: dostava

Procesor MIPS: R-tip (addu)

Procesor MIPS: addu + I-tip (lw)

Procesor MIPS: addu + lw + I-tip (bne)

Procesor MIPS: addu + lw + bne

Procesor MIPS - krmilni signali

```
MXB: SrcB (1 signal)
                                              MXBr: Br (Isignal)
                                                 0: PC+4
  0: RD2
   I: SgnExt
                                                 I: Br Addr
MXW: Dst (1 signal)
                                              ALF:
  0: IR[20-16]
                                                 ALEop (2 signala)
   1: IR[15-11]
                                                  00: R-tip(IR(5-0)) + ALEf
MXD: RegW (1 signal)
                                                  01: seštevanje (lw)
  0: ALEO
                                                  10: odštevanje (bne)
   I:RD
Registerski niz:
                                                  ALEf: (3 signali)
  R-RW (1 signal)
                                                   000: X+Y.
  0: ni vpisa v register
                                                   001:X+1.
   1: vpis v register
                                                   010: X-Y.
Podatkovni pomnilnik:
                                                   011: X*Y
  P-RW (1 signal)
                                                   100: X/Y.
  0 - PW
                                                   101: << X -pomik levo,
   1 - PR
                                                   110: X>> -pomik desno
```

Krmilna enota za ALE

```
(IR(31-26)) - ALEop<sub>1</sub>, ALEop<sub>0</sub> – določena na osnovi operacijske kode 000000 - addu
IR(5-0) – aritmetično/logična funkcija za ukaze R-tip
21H = 100001 - addu
100011 - lw
000101 - bne
```

	Ukaz	IR(31-26)	Operacija	ALE operacija	ALEop (2)	IR(5-0) funkcija	ALE (3) $f_2 f_1 f_0$
R- tip	addu	000000	Seštevanje	ADD	00	100001	000
I-tip	lw	100011	Naloži besedo	ADD	01	xxxxx	000
I-tip	bne	000101	Primerjava	SUB	10	XXXXXX	010

ALE – kontrolni signali:

Ukaz	ALEop ₁	ALEop ₀	IR ₅	IR ₄	IR ₃	IR ₂	IR ₁	IR ₀	f ₂	f ₁	f_0
addu	0	0	1	0	0	0	0	1	0	0	0
lw	0	1	X	Х	X	X	X	X	0	0	0
bne	1	0	X	Х	X	X	X	X	0	1	0

Minimizacija funkcij za krmiljenje ALE:

$$f_2 = 0$$

 $f_1 = ALEop_1.~ALEop_0$
 $f_0 = 0$

Krmilna enota – krmilni signali (ROM)

Ukaz	IR ₃₁ IR ₃₀ IR ₂₉ IR ₂₈ IR ₂₇ IR ₂₆	Src B	Dst	Reg W	R- RW	P- RW	Br	ALE op1	ALE op0
		7	6	5	4	3	2	1	0
addu	000000	0	1	1	1	1	0	0	0
lw	100011	1	0	0	1	1	0	0	1
bne	000101	Х	Х	X	0	1	1	1	0

Naslov ROM	IR ₃₁ IR ₃₀ IR ₂₉ IR ₂₈ IR ₂₇ IR ₂₆	SrcB	Dst	Reg W	R- RW	P-RW	Br	ALE op1	ALE op0	ROM podatek
		7	6	5	4	3	2	1	0	
00	000000	0	1	1	1	1	0	0	0	78
23	100011	1	0	0	1	1	0	0	1	99
05	000101	x=0	x=0	x=0	0	1	1	1	0	0E

Procesor MIPS (shema)

Testiranje vezja – preveriti delovanje

Testni program (zbirnik)

Preveri spodnji testni program.

```
#Pomnilnik
                                             # 0: 2
#Test SC
                                            # I:3
# R-tip: addu
# I-tip: lw, bne
                                             start:
                                                 lw $1,0($24)
# Registri:
                                             enak:
\# R2 = 0 \times 2
                                                 bne $2,$1, razlicen
\# R5 = 0 \times I
                                                 addu $2, $6, $5
\# R6 = 0 \times 2
                                                 addu $10, $8, $9
\# R8= 0×5
                                                 bne $2,$1, enak
\# R9= 0×5
                                             razlicen:
\# R24 = 0 \times 0
                                                 lw $2, I ($24)
```