Nurse staffing strategies for enhanced patient care

Matthew Bain

2024-03-22

abstract I analyze a medical staffing dataset and identify avenues to improve work satisfaction among nurses and the quality of care provided at United States medical institutions.

Table of contents

0.1 Imports	1
0.1 Imports 1 0.2 The dataset 2	2
0.2.a Load the data	2
0.2.b Inspect the data	2
0.2.c Group the features	5
0.2.d Clean the data	7
0.3 Explore the dataset	7
0.3.a Visualize distributions	7
0.3.b Visualize relationships	7
0.3.c Compare groups	
0.4 Feature engineer	
0.4.a Join geographical data	9
0.4.b Join seasonal data	9
0.5 Analyze geography	9
0.6 Analyze seasonality	9
0.7 Model	0
0.8 Extra visualizations	0
0.8.a Sparklines	0
0.9 SQL	0
0.10 Archive	1
Bibliography	1

[...]

0.1 Imports

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from great_tables import GT
from pandas.plotting import scatter_matrix

from src.stylesheet import customize_plots
from src.inspection import make_df, display, display2
```

0.2 The dataset

0.2.a Load the data

We begin by exploring the data to get to know the features and patterns on which we will base our analysis.

```
if 'data' not in locals():
    data = pd.read_csv(
        "../data/raw/PBJ_Daily_Nurse_Staffing_Q1_2024.zip",
        encoding='ISO-8859-1',
        low_memory=False
    )
else:
    print("data loaded.")
```

0.2.b Inspect the data

```
data.sample(5)
```

```
NAME
                 TY -TY - Dat&cenDON N ctrNA ethA ctr NA-NA-NA-
               NAMEFIPS
                                                   tıtının entrum ctr
                              sus
     20508PINORTIME York 312022Q2401258 8.00 ... 0.0159.7259.750.0 0.00 0.00 0.0 0.00 0.0 0.0
         NBÆRWICK
         CLE
       HEALTH
          &
  481867
         RE-
        HAB
         AT
          N
       BERWICK
     1555265AMDRD-IN Mar-102022Q2403193 8.95 ... 0.062.5462.54 0.0 0.00 0.00 0.00 0.00 0.0
        CARDOTEE tin
  333320
       STRATE-
        GIES
     1653&OLELMAIAHoward $2024 Q2402235 7.50 ... 0.0 47.2547.25 0.0 0.00 0.00 0.0 9.25 9.25 0.0
        NIAL.
  386166 MANOR
         OF
        ELMA
     DENSSARRE
         AT
  980747WYOMING
         VAL-
         LEY,
         THE
     145984DHXOKIHL Cook 31202402403172 7.25 ... 7.5113.2513.250.0 15.2515.25 0.0 0.00 0.00 0.0
       NORTH
        SHORE
  304194
         RE-
        HAB
          &
        HCC
    data.info(memory usage=False)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1330966 entries, 0 to 1330965
Data columns (total 33 columns):
    Column
                        Non-Null Count
                                            Dtype
    -----
                         _____
---
                                             ----
0
     PROVNUM
                      1330966 non-null object
1330966 non-null object
                        1330966 non-null object
 1
     PROVNAME
2
    CITY
                       1330966 non-null object
                        1330966 non-null object
 3
    STATE
    COUNTY_NAME 1330966 non-null object COUNTY_FIPS 1330966 non-null int64
 4
 5
 6
    CY_Qtr
                       1330966 non-null object
                      1330966 non-null int64
7
    WorkDate
 8
                       1330966 non-null int64
   MDScensus
 9
    Hrs RNDON
                        1330966 non-null float64
 10 Hrs RNDON emp
                        1330966 non-null float64
 11 Hrs RNDON ctr
                        1330966 non-null float64
 12 Hrs RNadmin
                        1330966 non-null float64
 13 Hrs RNadmin emp
                        1330966 non-null float64
 14 Hrs RNadmin ctr
                        1330966 non-null float64
 15 Hrs RN
                        1330966 non-null float64
 16 Hrs RN emp
                        1330966 non-null float64
                        1330966 non-null float64
 17 Hrs RN ctr
 18 Hrs LPNadmin
                        1330966 non-null float64
 19 Hrs LPNadmin emp 1330966 non-null float64
 20 Hrs_LPNadmin_ctr 1330966 non-null float64
21 Hrs_LrN
22 Hrs_LPN_emp 1330966 non-null float64
23 Hrs_LPN_ctr 1330966 non-null float64
24 Urs_CNA 1330966 non-null float64
 21 Hrs LPN
                        1330966 non-null float64
                       1330966 non-null float64
 25 Hrs CNA emp
 26 Hrs_CNA_ctr
                        1330966 non-null float64
 27 Hrs NAtrn
                       1330966 non-null float64
28 Hrs_NAtrn_emp 1330966 non-null float64
29 Hrs_NAtrn_ctr 1330966 non-null float64
30 Hrs_MedAide 1330966 non-null float64
                        1330966 non-null float64
 31 Hrs_MedAide_emp
 32 Hrs MedAide ctr
                        1330966 non-null float64
dtypes: float64(24), int64(3), object(6)
```

```
data.describe().round(1)
# display(Markdown(data.describe().to_markdown()))
```

COUNWork-MF3-IRN-IRN-RNrs_IRrs_IRrs_IRrs_RN Hzls_PCN-Ars_ICrs_CHrs_Hlrs_NMhskA-Adddenipe_ctr TY_DateSceDDON_DON_ctrNad-Nad-NadFIPS sus minimemin ctr tumnerium ctr

0.2.c Group the features

```
df = data.loc[:, [
    "STATE",
    "COUNTY_NAME", "COUNTY_FIPS",
    "CITY",
    "PROVNAME", "PROVNUM",
    # "MDScensus"
]].value_counts()
df.to_frame()
# GT(df.reset_index().head(n=5))
```

count

STATE	COUNTY NAME	COUNTY FIPS	CITY	PROVNAME	PROVNUM	
AK	Anchorage	20	ANCHOR- AGE	PRESTIGE CARE & RE- HAB CEN- TER OF AN- CHORAGE	025025	91
ОН	Allen	3	LIMA	LIMA CON- VALESCENT HOME	366297	91
				SHAWNEE MANOR	365361	91
				SPRINGS OF LIMA THE	366464	91
				SPRINGVIEW MANOR	366221	91
IN	Tippecanoe	157	WEST LAFAYETTE	HERITAGE HEALTH- CARE	155402	91
				INDIANA VETERANS HOME	155787	91
				UNIVER- SITY PLACE HEALTH CENTER AND AS- SISTED LIV- ING	155725	91
				WEST- MINSTER VILLAGE - WEST LAFAYETTE	155177	91
WY	Weston	45	NEWCAS- TLE	WESTON COUNTY HEALTH SERVICES	535023	91
			6			

```
display2(
    "data['STATE'].value_counts()",
    "data['COUNTY_NAME'].value_counts()",
    "data['CITY'].value_counts()",
    "data['PROVNAME'].value_counts()",
    "data['MDScensus'].value_counts()",
    width="340px",
    globs=globals()
)
```

```
<IPython.core.display.HTML object>
```

```
data[["CY_Qtr", "WorkDate", "MDScensus"]]
```

	CY_Qtr	WorkDate	MDScensus
0	2024Q1	20240101	50
1	2024Q1	20240102	49
2	2024Q1	20240103	49
3	2024Q1	20240104	50
4	2024Q1	20240105	51
1330961	2024Q1	20240327	81
1330962	2024Q1	20240328	83
1330963	2024Q1	20240329	85
1330964	2024Q1	20240330	82
1330965	2024Q1	20240331	82

0.2.d Clean the data

0.3 Explore the dataset

0.3.a Visualize distributions

0.3.b Visualize relationships

```
attributes = ["Hrs_RN", "Hrs_LPN_ctr", "Hrs_CNA", "Hrs_NAtrn", "Hrs_MedAide"]
n = len(attributes)

fig, axs = plt.subplots(n, n, figsize=(8, 8))
scatter_matrix(
```

```
data[attributes].sample(200),
    ax=axs, alpha=.7,
    hist_kwds=dict(bins=15, linewidth=0)
)
fig.align_ylabels(axs[:, 0])
fig.align_xlabels(axs[-1, :])
for ax in axs.flatten():
    ax.tick_params(axis='both', which='both', length=3.5)

# save_fig("scatter_matrix_plot")
plt.show()
```


Figure 1: Scatter matrix of nursing worker working hours

0.3.c Compare groups

- 0.4 Feature engineer
- 0.4.a Join geographical data
- 0.4.b Join seasonal data
- 0.5 Analyze geography
- 0.6 Analyze seasonality

0.7 Model

0.8 Extra visualizations

0.8.a Sparklines

```
# TODO: pivot on day

data_pivoted = data.pivot_table(
    index="STATE",
    columns="WorkDate",
    values="Hrs_RN",
    aggfunc='mean'
)

# Resetting the index for easier column access
# data_pivoted.reset_index(inplace=True)
data_pivoted.head()
```

STATE

```
# (
# GT(data_pivoted, rowname_col="STATE")
# .fmt_nanoplot(
# columns=data_pivoted.columns[1:],
# reference_line="mean",
# reference_area=["min", "q1"]
# )
# .fmt_nanoplot(
# columns=data_pivoted.columns[1:],
# plot_type="bar",
# reference_line="max",
# reference_area=["max", "median"]
# )
# )
```

0.9 SQL

0.10 Archive

Bibliography