Homework 2 (draft)

Problem 1

(a)

$$\therefore A, B \in S^n_+$$

$$\therefore \exists U \in R^{k \times n}, k = rank(B), B = U^T U$$

$$\therefore tr(AB) = tr(AU^TU) = tr(UAU^T) \ge 0$$
 with assumption $tr(AB) = tr(BA)$

let us proof $tr(AB) = tr(BA), \forall A, B \in S^n$:

let
$$A=(a_{ij})_{n\times n}, B=(b_{ij})_{n\times n}$$

$$tr(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji}$$

$$tr(BA) = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij} a_{ji}$$

we can rearrange the equation above and get tr(AB) = tr(BA)

(b)

First we proof
$$\mathcal{S}^n_+\subseteq igcap_{A\in\mathcal{S}^n_+}\{X\in\mathcal{S}^n: Aullet X\geq 0\}$$

$$:$$
 the result in (a), we have $\mathcal{S}^n_+ \subseteq \{X \in \mathcal{S}^n : A \bullet X \geq 0\}$

$$\therefore \bigcap_{A \in \mathcal{S}^n_+} \{X \in \mathcal{S}^n : A \bullet X \ge 0\} \supseteq \bigcap_{A \in \mathcal{S}^n_+} S^n_+ = S^n_+$$

then we proof
$$\mathcal{S}^n_+\supseteq\bigcap_{A\in\mathcal{S}^n_+}\{X\in\mathcal{S}^n:A\bullet X\geq 0\}$$

we only have to proof : $\forall X \not \in S^n_+, \exists A \in S^n_+, s.\, t.\, A \bullet X < 0$

$$\therefore X \notin S^n_{\perp}$$

$$\therefore \exists \mu \in R^n, s. t. \mu^T X \mu < 0$$

let
$$A = \mu \mu^T$$
 , we can get $tr(AX) = tr(\mu \mu^T X) = tr(\mu^T X \mu) < 0$

note that
$$A = \mu \mu^T$$
 because $\forall z \in R^n, z^T A z = z^T \mu \mu^T z = (\sum z_i u_i)^2 >= 0$

$$\therefore \forall X \notin S^n_+, X \notin \bigcap_{A \in S^n} \{X \in S^n : A \bullet X \ge 0\}$$

$$\therefore \mathcal{S}^n_+ \supseteq igcap_{A \in \mathcal{S}^n_+} \{X \in \mathcal{S}^n : A ullet X \ge 0\}$$

In summary,
$$\mathcal{S}^n_+ = \bigcap_{A \in \mathcal{S}^n} \left\{ X \in \mathcal{S}^n : A \bullet X \geq 0 \right\}$$

Problem 2

(a)

First let us proof f possesses Property C \Leftrightarrow $L_t=\{x\in\mathbb{R}^n:f(x)\leq t\}$ is compact for any $t\in\mathbb{R}$

① proof of \Rightarrow :

first let us show L_t is bounded, which means $\forall x \in L_t, \exists T \in \mathbb{R}, s.\, t.\, ||x||_2 < T$

Proof by contradiction:

assume L_t is not bounded, so there exists a sequence $\{x^k\}_{k\geq 0}\subseteq L_t, ||x^k||_2 o +\infty$

 $\because f$ possesses Property C

$$\therefore f(x^k) \to +\infty$$

However, with the limitation of $f(x) \leq t$, we can find $\{x^k\}_{k \geq 0} \subsetneq L_t$

Contradicting the assumption, thus L_t is bounded

then let us show L_t is close, which means $orall \{x^k\}_{k\geq 0}\subseteq L_t, \{x^k\} o x, x\in L_t$

 $\therefore f$ is a continuous function

$$\therefore \{f(x^k)\} \rightarrow f(x)$$

$$\because \{x^k\}_{k\geq 0}\subseteq L_t$$

$$\therefore \forall x^i \in \{x^k\}, f(x^i) \leq t$$

$$\therefore \{f(x^k)\} \to f(x) \le t$$

$$\therefore x \in L_t, L_t$$
 is close

In summary, L_t is compact

② proof of \Leftarrow :

Proof by contradiction:

assume f not possesses Property C, which means $\exists \{x^k\}_{k\geq 0}\subseteq \mathbb{R}, ||x^k||_2 \to +\infty, f(x^k)\leq T, T\in \mathbb{R}$ let t>T, then $\{x^k\}_{k\geq 0}\subseteq L_t$. However $||x^k||_2 \to +\infty$, thus L_t is not bounded.

Contradicting the assumption, thus f possesses Property C

In summary, f possesses Property C \Leftrightarrow $L_t = \{x \in \mathbb{R}^n : f(x) \leq t\}$ is compact for any $t \in \mathbb{R}$

Then let us proof f is continuous and possesses Property C, $\inf_{x \in \mathbb{R}^n} f(x)$ always has an optimal solution.

 $\inf_{x\in\mathbb{R}^n}f(x)$ always has an optimal solution, which means we can find a $x_0\in\mathbb{R}^n s.\,t.\,orall x\in R^n, f(x)\geq f(x_0)$

 $\because f$ is continuous and possesses Property C, thus we can find a infimum c, which is the max c_i satisfy $f(x) \geq c_i$

then we only need to show that exist $x_0 \in \mathbb{R}^n, s.\, t.\, f(x_0) = c$

let t=c+1 , L_t is compact and c is also infimum of L_t

with the definition of infimum and continuous, $\exists \{x^k\}_{k\geq 0} \subseteq L_t, \{f(x^k)\} \to c, \{x^k\} \to x_0$

 $\therefore L_t$ is compact

$$\therefore x_0 \in L_t \subseteq R^n$$

Thus we can always find an optimal solution x_0

(b)

No.

assume
$$f(0)<+\infty$$
, let $A=0^{m imes n}$, thus $orall x\in\mathbb{R}^n, g(x)\equiv f(0)<\infty, g$ not possesses Property C.

Problem 3

(a)

$$orall x,y\in K^\circ, lpha,eta\in R^+$$
, let $z=lpha x+eta y$ $orall u\in K, z^Tu=(lpha x+eta y)^Tx=lpha x^Tu+eta y^Tu\le 0$ $\therefore z\in K^\circ, K^\circ$ is a convex cone

(b)

First we know that,
$$z^* = \prod_K (x) \Leftrightarrow z^* \in K, (z-z^*)^T (x-z^*) \leq 0, orall z \in K$$

① proof of \Rightarrow :

With the property above, we have $z^*\in K$, then let us show that $(x-z^*)^Tz^*=0$ assume $(x-z^*)^Tz^*\neq 0$, let $t=x-z^*, z^*=x-t$ $\therefore t^Tz^*\neq 0$

$$\therefore t = \alpha z^* + z$$
, where $lpha
eq 0, z^*
eq 0, z^T z^* = 0$ and $t^T z^* = lpha(z^*)^T z^*$

by the definition of closed convex cone and $z^* \neq 0, \alpha \neq 0$, we can find a

$$z^o = (1 - sign(\alpha)min(\alpha, 1))z^* \in K, ||x - z^o|| = (1 - sign(\alpha)min(\alpha, 1))|\alpha|||z^*||_2^2 + ||z||_2^2 < ||x - z^*||_2^2 + ||x - z^*||_2^2$$

so that $\,z^*
eq \prod_K(x)$, contradicting the assumption, thus $(x-z^*)^T z^* = 0$

last let us shat that $x-z^*\in K^o$

$$\therefore (x-z^*)^T z^* = 0$$
 and $(z-z^*)^T (x-z^*) \leq 0, \forall z \in K$

$$\therefore z^T(x-z^*) = (x-z^*)^T z \le 0, \forall z \in K$$

by the definition of K^o , we get $x-z^*\in K^o$

② proof of \Leftarrow :

$$\because x-z^*\in K^o$$
 and $(x-z^*)^Tz^*=0$

$$\therefore (z-z^*)^T(x-z^*) \leq 0, \forall z \in K$$

so that, we get
$$z^* \in K, (z-z^*)^T(x-z^*) \leq 0, orall z \in K \Rightarrow z^* = \prod_K (x)$$

In summary,
$$z^* = \prod_K (x) \Leftrightarrow z^* \in K, x-z^* \in K^o, (x-z^*)^T z^* = 0$$

(c)

Using the result in (b), we only need to show that $z^* = \prod_K (x), x-z^* = \prod_{K^o} (x)$

what's more, we only need to show that

$$K = \{\omega \in \mathbb{R}^n : \omega^T x \leq 0, \forall x \in K^o\}, K^o = \{\omega \in \mathbb{R}^n : \omega^T x \leq 0, \forall x \in K\}, K \subseteq \mathbb{R}^n \text{ be a closed convex cone } x \in \mathbb{R}^n : \omega^T x \leq 0, \forall x \in K^o\}$$

$$x : x^T\omega = \omega^T x$$
, so that $K = \{\omega \in \mathbb{R}^n : \omega^T x \leq 0, \forall x \in K^o\}$ is true obviously by definition

Using the result in (b):

$$x-z^* \in K^o, x-(x-z^*)=x \in K, (x-(x-z^*))^T(x-z^*)=x^T(x-z^*)=(x-z^*)^Tx=0 \Rightarrow x-z^*=\prod_{K^o}(x)$$
 In summary, $x=\prod_{K^o}(x)+\prod_{K^o}(x)$

Problem 4

(a)