# COMBINING FINITE ELEMENT METHODS AND NEURAL NETWORKS TO

SOLVE ELLIPTIC PROBLEM ON COMPLEX 2D GEOMETRIES

Hélène BARUCQ<sup>3</sup>, Michel DUPREZ<sup>1</sup>, Florian FAUCHER<sup>3</sup>, Emmanuel FRANCK<sup>2</sup>, **Frédérique LECOURTIER**<sup>1</sup>, Vanessa LLERAS<sup>4</sup>, Victor MICHEL-DANSAC<sup>2</sup>, and Nicolas VICTORION<sup>3</sup>



#### Scientific context

Create real-time digital twins of an organ (e.g. liver)

No mesh, so easy to go

on complex geometry!

 $(\mathscr{P}^+)$ 

Current Objective: Develop hybrid finite element / neural network methods.

quick + parameterized accurate

<sup>1</sup> Mimesis team, INRIA Nancy grand Est, Icube <sup>2</sup> Macaron team, INRIA Nancy grand Est, IRMA <sup>3</sup> Makutu team, INRIA Bordeaux, TotalEnergies <sup>4</sup> Montpellier University



**ONLINE** Get PINNs Correct prediction prediction with FEM 1 Geometry - 1 Force

**Problem considered:** Poisson problem with Dirichlet boundary conditions (BC).

### How to deal with complex geometry in PINNs?

### $\phi > 0$ $\phi = 0$ $\phi < 0$

Approach by levelset. [SS22]

#### Advantages:

- → Sample is easy in this case.
- → Allow to impose in hard the BC (no BC loss) :

$$u_{\theta}(X) = \phi(X) w_{\theta}(X) + g(X)$$

with  $\phi$  a levelset function and  $w_{\theta}$  a NN.

Levelset considered. A regularized Signed Distance Function (SDF).

#### Theorem 1: Eikonal equation.

If we have a boundary domain  $\Gamma$ , the SDF is solution to:

$$\begin{cases} ||\nabla \phi(X)|| = 1, \ X \in \mathcal{O} \\ \phi(X) = 0, \ X \in \Gamma \\ \nabla \phi(X) = n, \ X \in \Gamma \end{cases}$$

with  $\mathcal{O}$  a box which contains  $\Omega$  completely and n the exterior normal to  $\Gamma$ .

How to do that? with a PINNs [CD23], by adding the following regularization term

#### **Results** - Complex geometry



#### Poisson problem on Cat.

- $\rightarrow$  Taking f = 1 (non parametric) and homogeneous Dirichlet BC (g = 0).
- $\rightarrow$  Looking for  $u_{\theta} = \phi w_{\theta}$  with  $\phi$  the levelset learned.







### How can we improve PINNs prediction?

Using FEM-type methods

**Additive approach.** Considering  $u_{\theta}$  as the prediction of our PINNs for the Poisson problem, the correction problem consists in writing the solution as

 $\tilde{u} = u_{\theta} + \tilde{C}$ 

and searching  $\tilde{C}:\Omega\to\mathbb{R}^d$  such that

$$\begin{cases} -\Delta \tilde{C} = \tilde{f}, & \text{in } \Omega, \\ \tilde{C} = 0, & \text{on } \Gamma, \end{cases}$$

with  $\tilde{f} = f + \Delta u_{\theta}$ .

## **Results** - Improve prediction



*Remark*: We note N the number of nodes in each direction of the square (Total:  $N^2$ ).

Considering a set of  $n_p = 50$  parameters :  $\{(\mu_1^{(1)}, \mu_2^{(1)}), \dots, (\mu_1^{(n_p)}, \mu_2^{(n_p)})\}$ .

 ${f mean} {f std}$ 

#### Poisson problem on Square.

- $\rightarrow$  Considering homogeneous Dirichlet BC (g=0) and  $\Omega=[-0.5\pi,0.5\pi]^2$ .
- $\rightarrow$  Analytical levelset function :  $\phi(x, y) = (x 0.5\pi)(x + 0.5\pi)(y 0.5\pi)(y + 0.5\pi)$
- → Analytical solution :

$$u_{ex}(x,y) = \exp\left(-\frac{(x-\mu_1)^2 + (y-\mu_2)^2}{2}\right)\sin(2x)\sin(2y)$$

with  $\mu_1, \mu_2 \in [-0.5, 0.5]$  (**parametric**).

### **Theoretical results.** Considering $u_{\theta}$ as the prediction of our PINNs.

#### Theorem 2: [Lec+ss]

We denote u the solution of the Poisson problem and  $u_h$  the discrete solution of the correction problem ( $\mathscr{P}^+$ ) with  $V_h$  a  $\mathbb{P}_k$  Lagrange space. Thus

$$||u - u_h||_0 \lesssim \frac{|u - u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} h^{k+1} |u|_{H^{k+1}}$$

*Remark*: The constant  $C_{gain}$  shows that the closer the prior is to the solution, the lower the error constant associated with the method.

#### **Time/error ratio.** Training time for PINNs : $t_{PINNs} \approx 240s$ .

Gains on PINNs

 $\mathbf{max}$ 

Gains on error using additive approach.

→ At a given precision, how long does each method take to solve 1 problem?

23.21

|           | N   |     | time (s)         |                  |
|-----------|-----|-----|------------------|------------------|
| Precision | FEM | Add | FEM              | Add              |
| -1e - 3   | 120 | 8   | 43               | 0.24             |
| 1e - 4    | 373 | 25  | 423.89           | 1.93             |
|           |     |     | t <sub>FEM</sub> | t <sub>Add</sub> |

 $\min$ 

131.18

#### $\rightarrow$ How many parameters $n_p$ to make our method faster than FEM?

Total time of Additive approach: Total time of FEM:

Gains on FEM

max

362.09

mean

269.4

262.12

 $Tot_{FEM} = n_p t_{FEM}$ 

 $Tot_{Add} = t_{PINNs} + n_p t_{Add}$ 

Let's suppose we want to achieve an **error of** 1e-3.

$$Tot_{Add} < Tot_{FEM} \implies n_p > \frac{t_{PINNs}}{t_{FEM} - t_{Add}} \approx 5.61 \implies n_p = 6$$

[Lec+ss] Lecourtier et al. "Enhanced finite element methods using neural networks". In: (in progress).

[RPK19] Raissi, Perdikaris, and Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: Journal of Computational Physics (2019).

[SS22] Sukumar and Srivastava. "Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks". In: Computer Methods in Applied Mechanics and Engineering (2022).

<sup>[</sup>CD23] Clémot and Digne. "Neural skeleton: Implicit neural representation away from the surface". In: Computers and Graphics (2023).