Course	18CSC201I	Course	DATA STRUCTURES AND ALGORITHMS	Course	-	Professional Core			P	С	1
Code	18CSC201)	Name		Category	٥	Projessional Core	3	0	2	4	

Pre-requisite Courses	Nil	Co-requisite Courses	Nil	Progressive Courses 18CSC204J
Course Offering	g Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil

Course Learning Rationale	The purpose of learning this course is to:		L	earni	ng				P	rogra	m L	earni	ng O	utco	nes (PLO)			
(CLR): The purpose of starting this course is to. CLR-1: Utilize the different data types; Utilize searching and sorting algorithms for data search						1	2	2	4	-	6	7	0	0	10	11	12	12	14	15
CLR-1: Utilize linked list in developin			1		3	0		nt c	4	3	0	/	0	2	10	11	12	13	14	13
CLR-3: Utilize stack and queues in pr				cy	ent	Knowledge		nen		4.						Finance				
CLR-4: Utilize tree data storage struct.			90	ienc	ner	Jw.	s	elopme		Usage	е			eam		ina	arning			
	test data search in graphs for real-time application development		nkin	. 2	ainm	Ž	lysi	evel	sign,	ū	ulture	&		Te2	on	8	arn			
	ata structures and its operations for real-time programming applications		hiń	Prof	Atta		naly	De)es	Tool	Cu	ent lity		&	cati	Mgt.	ĭ			
			L Jo	eq	pa	eric	В	ઝ	is, I ch		8	nmer		ual	HD		ong,	_	7	3
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:		Level o Bloom	Expect	Expect (%)	Engineering	Proble	Design	Analysis. Research	Moden	Society	Environm Sustainabil	Ethics	Individ Work	Communication	Project	e.	- OSd	PSO -	PSO –
CLO-1: Identify linear and non-linear	data structures. Create algorithms for searching and sorting		3	80	70	L	Н	-	Н	L	-	-	-	L	Ĺ	-	H	-	-	-
CLO-2: Create the different types of lin	CLO-2: Create the different types of linked lists and evaluate its operations				75	M	Н	L	M	L	-	-	-	M	L	-	Н	-	-	-
CLO-3: Construct stack and queue data structures and evaluate its operations				75	70	M	Н	M	Н	L	1	-	1	M	L	-	Н	-	-	-
CLO-4 : Create tree data structures and	evaluate its types and operations		3	85	80	M	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	-
CLO-5: Create graph data structure, evaluate its operations, implement algorithms to identify shortest path					75	Н	Н	M	Н	L	-	-	-	M	L	-	Н	-	-	-
CLO-6 : Construct the different data str	ructures and evaluate their types and operations		3	80	70	L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-

	ration nour)	15	15	15	15	15
0.4	SLO-1	Introduction-Basic Terminology	Array	Stack ADT	General Trees	Graph Terminology
S-1	SLO-2	Data Structures	Operations on Arrays – Insertion and Deletion	Stack Array Implementation	Tree Terminologies	Graph Traversal
	SLO-1	Data Structure Operations	Applications on Arrays	Stack Linked List Implementation	Tree Representation	Topological sorting
S-2	SLO-2	ADT	Multidimensional Arrays- Sparse Matrix	Applications of Stack- Infix to Postfix Conversion	Tree Traversal	Minimum spanning tree – Prims Algorithm
	SLO-1	Algorithms – Searching techniques	Linked List Implementation - Insertion	Applications of Stack- Postfix Evaluation	Binary Tree Representation	Minimum Spanning Tree - Kruskal's Algorithm
S-3	SLO-2	Complexity – Time , Space Trade off	Linked List- Deletion and Search	Applications of Stack- Balancing symbols	Expression Trees	Network flow problem
S 4-5	SLO-1	Lab 1: Implementation of Searching - Linear and Binary Search Techniques	Lab 4: Implementation of Array – Insertion, Deletion.	Lab 7 :Implementation of stack using array and Linked List	Lab 10: Implementation of Tree using array	Lab 13: Implementation of Graph using Array
S-6	SLO-1	Algorithms - Sorting	Applications of Linked List	Applications of Stack- Nested Function Calls	Binary Tree Traversal	Shortest Path Algorithm- Introduction
3-0	SLO-2	Complexity – Time , Space Trade off	Polynomial Arithmetic	Recursion concept using stack	Threaded Binary Tree	Shortest Path Algorithm: Dijkstra's Algorithm
S-7	SLO-1	Mathematical notations	Cursor Based Implementation — Methodology	Applications of Recursion:Tower of Hanoi	Binary Search Tree : Construction, Searching	Hashing: Hash functions - Introduction

	SLO-2	Asymptotic notations-Big O, Omega	Cursor Based Implementation	Queue ADT	Binary Search Tree: Insertion and Deletion	Hashing: Hash functions
	SLO-1	Asymptotic notations - Theta	Circular Linked List	Queue Implementation using array	AVLTrees: Rotations	Hashing: Collision avoidance
S-8	SLO-2	Mathematical functions	Circular Linked List - Implementation	Queue Implementation using Linked List	AVL Tree: Insertions	Hashing: Separate chaining
	SLO-1	Lah 2: Implementation of sorting Techniques –	Lab 5: Implementation of Linked List -	Lah 8: Implementation of Queue using Array	Lab 11:	Lab 14 :Implementation of Shortest path
S 9-10	SLO-2	Insertion sort and Bubble Sort Techniques	Cursor Based Implementation	and linked list	Implementation of BST using linked list	Algorithm
S-11	SLO-1	Data Structures and its Types	Applications of Circular List -Joseph Problem	Circular Queue	B-Trees Constructions	Open Addressing
5-11	SLO-2	Linear and Non-Linear Data Structures	Doubly Linked List	Implementation of Circular Queue	B-Trees Search	Linear Probing
0.42	SLO-1	1D, 2D Array Initialization using Pointers	Doubly Linked List Insertion	Applications of Queue	B-Trees Deletions	Quadratic probing
S-12	SLO-2	1D, 2D Array Accessing usingPointers	Doubly Linked List Insertion variations	Double ended queue	Splay Trees	Double Hashing
0.42	SLO-1	Declaring Structure and accessing	Doubly Linked List Deletion	Priority Queue	Red Black Trees	Rehashing
S-13	SLO-2	Declaring Arrays of Structures and accessing	Doubly Linked List Search	Priority Queue - Applications	Red Black Trees Insertion	Extensible Hashing
S 14-15	SLO-1 SLO-2	Lab 3: Implement Structures using Pointers	Lab 6: Implementation of Doubly linked List	Lab 9: Applications of Stack, Queue	Lab 12:Implementation of B-Trees	Lab 15 :Implementation of Minimal Spanning Tree

	1. Seymour Lipschutz, Data Structures with C, McGraw Hill, 2014
Learning	2. R.F.Gilherg, B.A.Forouzan, Data Structures, 2 nd ed., Thomson India, 2005
Resources	3. A.V.Aho, J.E Hopcroft , J.D.Ullman, Data structures and Algorithms, Pearson Education, 2003
	4. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed., Pearson Education, 2015

- 5. Reema Thareja, Data Structures Using C, 1st ed., Oxford Higher Education, 2011
- 6. Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms 3rd ed., The MIT Press Cambridge, 2014

Learning Asse	essment												
	Bloom's			Contin	uous Learning Ass	sessment (50% wei	ightage)			E' 1E			
	Level of	CLA -	1 (10%)	CLA – 2 (15%)		CLA -	3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
LCVCI I	Understand	2070	2070	1570	1370	1570	1570	1570	1570	1570	1570		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
LCVCI Z	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
LCVCI J	Create	1070	1070	1570	1570	1570	1570	1570	1570	1570	1570		
	Total	100) %	100	100 %		100 %		0 %	-			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr. Nagaveer, CEO, Campus Corporate Connect,nagaveer@campuscorporateconnect.com	1. Dr. Srinivasa Rao Bakshi, IITM, Chennai, shakshi@iitm.ac.in	1. Mr. K. Venkatesh, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Ramesh Babu, N , nrhabu@iitm.ac.in	2. Dr.Subalalitha C.N, SRMIST
	3. Dr.Noor Mahammad, IIITDM, Kancheepuram,noor@iiitdm.ac.in	3. Ms. Ferni Ukrit, SRMIST