基于物联网的中央空调管理系统研究与设计

梁靖松 石英 刘世博 文洋

1. 中南民族大学计算机科学学院 湖北武汉 430074;

2. 中南民族大学实验教学与工程训练中心、创新创业学院 湖北武汉 430074

摘要:针对楼宇内中央空调人工管理方式存在的诸多问题,基于物联网技术开发了一套中央空调管理系统,该系统采用中央空调集控网关将空调内机 接入中央空调管理平台;平台采用 C/S 架构、开发了云端服务程序和客户端 APP。用户通过 APP 软件可以监控空调内机工作状态、设定智能运行模式、查询故障信息、统计运行数据、实现了楼宇内中央空调信息化管理。实际应用表明、该系统工作稳定、可靠,可以有效提高中央空调管理效率和管理质量。

关键词: 物联网; 中央空调集控网关; 中央空调管理平台

0引言

中央空调具有环境舒适、节省空间、外型美观等优势,在楼宇内被广泛使用。目前、中央空调主要采用人工管理方式,需要人员现场查看环境信息、空调运行状态、然后通过遥控器或线控器现场控制空调工作状态。人工管理方式容易出现空调内机监控不及时,影响环境舒适度和造成电能浪费;空调内机工作模式冲突无法工作;空调内机出现故障,无法获知原因。同时,人工管理方式使得管理人员任务繁重。因此、设计一套中央空调管理系统具有很好的实用价值。

目前、现有的产品及相关研究 [1-5] 大多采用红外控制模块和电流传感器相结合的方式,实现了空调开关监测和工作状态控制,但不能获取空调工作模式、温度、风速以及故障等信息,无法实现中央空调闭环精准控制和故障定位,并且功能单一、扩展性较差。鉴于此,本文基于物联网技术设计了一套中央空调管理系统,由中央空调集控网关将空调内机接人管理平台,通过管理平台可以完成空调内机的添加、状态监控、智能控制、故障查询以及数据统计,进而实现楼宇内中央空调信息化管理,提升中央空调的管理效率和质量,减少空调管理人员的工作量。

1 系统整体方案

中央空调管理系统主要由网关设备、服务器端程序和客户端应用 程序构成。系统总体架构如图 1 所示。

图 1 中央空调管理系统总体架构

网关设备包括多个中央空调集控网关,向下通过总线与中央空调内机连接通信,向上通过以太网按照 TCP/IP 协议与服务器端程序进行数据传输;服务器端程序部署在华为云,负责中央空调集控网关设备管理、数据处理与存储以及客户端应用程序数据更新;客户端 APP软件作为中央空调管理交互界面。

中央空调管理系统主要功能包括: 账号管理、设备管理、内机监

控、智能控制和数据统计。系统功能框图如图 2 所示。

账号管理功能模块。可以添加、修改和删除账号。添加账号时可 设定账号为超级管理员、管理员和普通用户三个权限等级,并指定该 账号可监控内机的范围,实现中央空调的分级管理。超级管理员具有 所有功能权限;管理员具有除设备管理之外的所有功能权限;普通用 户具有除账户管理和设备管理之外的所有功能权限。

设备管理功能模块。可以添加、修改和删除中央空调内机,实现中央空调内机的动态管理,使系统具有很好的扩展性。

空调内机监控模块。可以监测空调内机工作状态包括: 开关状态、工作模式、设定的温度、风速、室内温度和内机故障信息; 可以控制空调内机工作状态包括: 开关机、工作模式、温度、风速。实现中央空调的闭环精准控制。

空调内机智能控制模块。可以设置空调内机智能运行模式:定时 运行模式和定温运行模式,无需管理人员进行操作,实现中央空调智 能化运行。

空调内机运行数据统计模块。可以查询空调内机开关时间和空调 内机运行时长,为管理人员决策提供数据支撑。

2 系统硬件设计

2.1 中央空调控制原理

中央空调系统通常是由主机和多台内机组成,主机与内机之间通过总线连接。内机中的通讯板通过红外接收器和总线接收用户指令,然后控制主机进入相应工作状态。红外方式为单向接收,无法获取到空调当前工作状态。本系统采用总线接入方式,由中央空调集控网关通过总线与内机连接,通过不同功能指令实现空调状态的监测与控制。

2.2 中央空调集控网关介绍

中央空调集控网关集成了多种品牌中央空调的控制协议,向下设有 HBS 总线空调接口、RSB 总线空调接口和 CAN 总线空调接口、一个空调系统内最多可挂载 16 台内机,具有很好的通用性和挂载能力;向上设有 RS-485 接口和 10/100M 以太网接口;供电电压为 DC9-24V。本系统中央空调集控网关向下采用 RSB 总线与格力四代空调内机连接;向上采用 10/100M 以太网接入中央空调管理平台;从内机获取 12V 供电电源。

3 系统软件设计

系统软件平台采用 C/S 架构, 其响应速度快, 可以充分利用客户端 PC 的处理能力, 减轻服务器的压。

系统软件平台架构如图 3 所示。

图 3 系统软件平台架构

后端采用 Java 语言和 JDK-17 工具包、基于 SpringBoot 和 Mybatis 框架,开发了用于与底层网关设备和前端 APP 通信的服务程序,使 用 MySOL 数据库,存储系统数据。服务程序采用多线程方式基于 Socket 技术实现与多个网关设备的通信、增强了系统并发性。通过定 时下发指令, 获取网关设备在线状态以及网关设备下空调内机相关信 息、并对信息数据进行处理、然后存入数据库。数据库创建多个数据 表,分别用于存储空调内机状态、详情信息、日志信息等,并对数据 表中经常使用的属性建立索引、所创建的数据表均符合第三范式。服 务程序向前端 APP 提供接口、并根据前端发送的请求、将系统数据 库中相应数据封装成 JSON 格式返回给前端。

前端采用 Vue3 和 Electron 跨平台框架以及 Vite 构建工具,开发 了 PC 端 APP 软件。前后端设计相应鉴权流程, 登录成功之后利用 Electron 内部 store 进行账号状态存储 token, 基于 token 辨别用户形态, 赋予不同角色所能拥有的设备管理功能,多窗口之间共享 store 状态, 实现通过因账号管理所触发的同一用户在不同操作窗口之间的功能; 单个窗口内使用 Vue 结合 Pinia 存储从后端获取的当前窗口相关状态, 对相关状态以列表或其他对应数据结构形式进行展示,并结合组件之 间的通信机制实现各控制功能模块;通过定时刷新和手动刷新机制, 向后端获取相关数据统计信息进行展示。客户端 APP 主要交互界面 如图4所示。

图 4 客户端 APP 交互界面

4 系统测试

本系统已在实际环境中进行了部署与测试,系统整体运行稳定: 账号管理、设备管理、内机监控、智能运行和数据统计功能测试正常。

5 总结

本文基于物联网技术架构设计的中央空调管理系统, 实现了中央 空调信息化管理,可以有效提升中央空调管理效率和管理质量,大幅 减少中央空调管理工作量。本系统与现有中央空调控制系统相比,可 以实现分级管理、闭环精准控制,同时具有更好的扩展性、通用性。

参考文献:

- [1] 侯丹,现代中央空调节能减排技术的应用研究[[]. 中国设备工 人用床 程,2023(10):223-225.
- [2] 李薇,杨庆华,赵玉萍,基于物联网技术的智慧实验室近远程 测控系统 []. 计算机测量与控制 ,2018,26(11):52-57+62.
- [1] [3] 李真, 彭辉丽, 孙伟华等, 实验室智能空调管理系统的设计 []]. 实验室研究与探索,2018,37(02):280-284+288.
- [4] 吴蓬勃,李学海,杨斐等,基于物联网的智能实验室研究与实 践 []]. 实验室研究与探索,2015,34(03):78-85.
- [5] 刘莎, 张方舒. 基于 LPWAN 的建筑物智能化空调能耗管理系 统设计 []]. 工业控制计算机,2019,32(10):69-70+72.

基金项目: 国家级大学生创新创业训练计划项目 (202310524020);中南民族大学实验室技改项目(SYYJ2023002); 产学合作协同育人项目(202102581007)。

作者简介:梁靖松(2004-),男,湖南湘西,学士,主要研究方向: 软件开发

上接第29页

和记录。同时, 测试过程中应使用专业的测试设备和工具, 确保测试 结果的准确性和可靠性。在测试过程中,测试人员需关注设备的各项 性能指标, 如信号传输质量、响应速度、稳定性等, 并与机务前的数 据进行对比, 以评估机务效果。对于发现的问题或异常, 应及时记录 并报告, 以便进行进一步的检查和处理。其次, 为了保障测试的全面 性,测试工作不仅包括静态测试,还应包括动态测试。静态测试主要 关注设备的静态参数和性能,而动态测试则模拟实际飞行环境,对设 备在实际工作状态下的性能进行评估。在测试工作完成后,测试人员 需编写详细的测试报告,对测试过程和结果进行汇总和分析。报告应 客观、准确地反映设备的性能状况, 为后续的机务工作提供重要参考。

三、保障航空电子设备机务工作质量的措施

(一)建立完善的机务管理体系

建立完善的机务管理体系是保障航空电子设备机务工作质量的关 键要点。具体工作的落实有以下几个要点。首先, 需制定详细的机务 管理规章制度, 明确机务流程、标准与要求, 确保机务机务工作有章 可循、规范操作。其次,建立机务质量监控机制,定期对机务工作进 行检查和评估,及时发现问题并进行整改,确保机务质量持续提升。 同时,加强机务人员的培训与管理,提升他们的专业技能和责任意识, 确保机务工作的高效执行[4]。此外,建立机务机务信息管理系统,实 现机务机务数据的收集、分析和共享,为机务决策提供有力支持。最 后,加强与航空器制造商、供应商等外部单位的沟通与协作,共同推 进航空电子设备机务工作的改进与创新。 通过以上措施的实施, 可以 建立完善的机务管理体系,为航空电子设备机务工作质量的提升提供 坚实保障。

(二)加强机务人员培训教育

加强机务人员培训教育是保障航空电子设备机务工作质量的重要

举措。首先,要制定全面的培训计划,包括培训内容、训练方式等。 确保机务人员能够系统地掌握机务知识和技能。其次,注重实践操作, 通过模拟机务场景、案例分析等方式提高机务人员的实际操作能力。 同时,加强机务人员的安全意识教育,引导相关工作人员深刻认识到 机务工作的重要性,提高安全意识和防范能力。再次,还应当定期组 织机务人员参加专业技能培训和学术交流活动,了解最新的机务技术 和理念,不断提升自身的专业水平。最后,建立完善的培训考核机制, 对机务人员的培训成果进行评估和反馈,确保培训效果达到预期目标。 通过这些措施的实施,可以有效加强机务人员的培训教育,提升机务 工作的质量和效率。

四、结束语

分析可知航空电子设备有不同的类型机务工作,对于整个航空器 的试飞工作都会产生重要的影响,需要结合不同的设备运用科学的机 务方法,把握机务工作的要点,为通过机务提高航空电子设备的应用 性能, 提升其试飞工作稳定性提供支持。

参考文献:

- [1] 姜汇洋, 航空器仪表电子设备机务管理分析 []]. 飞机设计, 2023, 43 (05): 77-80.
- [2] 李翔宇, 航空电子设备机务中静电危害及防护措施探讨 []] 科 技资讯, 2023, 21 (01): 89-92.
- [3] 金城, 楚至濮. 航空电子设备机务的静电防护措施 [1]. 中 「科 技论坛 (中英阿文), 2020, (05): 55-56.
- [4] 刘文评,曹博. 飞机机务中电子设备静电防护分析 []]. 电子世 界, 2020, (07): 196.

作者简介: 车相吴, 1999年8月16日, 甘肃庆阳, 助理工程师, 试飞保障,中国飞行试验研究院