

7 – Protocols

Marian Marinov CEO of 1H Ltd. mm@1h.com

Borislav Varadinov System Administrator bobi [at] itp.bg

- ARP/RARP
- ICMP
- UDP
- TCP
- TCP Congestion
- SCTP
- DCCP
- DNS

Type of requests - Unicast

Type of requests - Broadcast

Type of requests - Multicast

- Address resolution
 - Forward
 - Reverse
- ARP
 - Probe
 - Proxy
 - Mediation
 - Stuffing

- Address resolution
 - Forward (what is the MAC of this machine)

	Request		ARP hea	ader			
0	7	7	1	5			31
	Hardwa	re type		Р	rotocol type	0x0800	
	Hardware address length	Protocol add	dress length	1 - req	Opcode	2 - reply	
	08:11:96:03:B	2:28	Source	hardware a	address		
	192.168.2.254	,	Source	protocol ac	ddress		
	FF:FF:FF:FF:	FF:FF	Destina	tion hardw	vare address		
	192.168.2.58		Destina	tion proto	coladdress		

- Address resolution
 - Forward (what is the MAC of this machine)

	Reply		ARP hea	ader	
0	7	7	1	5	31
	Hardwa	re type		Protocol type	
	Hardware address length	Protocol ad	dress length	Opcode	
	40:b3:95:80:c	5:aa	Source	hardware address	
	192.168.2.58		Source	protocol address	
	08:11:96:03:b	2:28	Destina	tion hardware address	
	192.168.2.254	,	Destina	tion protocol address	

- Address resolution
 - Reverse (what is the IP of this machine)

	Request		ARP hea	ader	
0	7		1	.5	31
	Hardwa	re type		Protocol type	
	Hardware address length	Protocol add	dress length	Opcode	
	08:11:96:03:B	2:28	Source	hardware address	
	192.168.2.254		Source	protocol address	
	40:b3:95:80:c	5:aa	Destina	ation hardware address	
	0.0.0.0		Destina	ation protocol address	

- Address resolution
 - Reverse (what is the IP of this machine)

	Reply		ARP hea	ader	
0	7	7	1	5	31
	Hardwa	re type		Protocol type	
	Hardware address length	Protocol ad	dress length	Opcode	
	40:b3:95:80:c	5:aa	Source	hardware address	
	192.168.2.58		Source	protocol address	
	08:11:96:03:B	2:28	Destina	tion hardware address	
	192.168.2.254	,	Destina	tion protocol address	

How it actually looks

```
15:12:43.772954 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.2.58 tell 192.168.2.254, length 28 15:12:43.962834 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.2.58 is-at 40:b3:95:80:c5:aa, length 46
```

- ARP probe
- ARP proxy
- ARP mediation
- ARP stuffing

ICMP Header

RFC 792 Outlines the ICMP Protocol

Internet Control Message Protocol - ICMP

- ICMP types
 - o Echo replay
 - 1,2 Reserved
 - 3 Destination unreachable
 - 8 Echo request
 - 9-TTL Exceeded
 - 30 Traceroute

Internet Control Message Protocol - ICMP

- Type codes
- 11 Time to live exceeded
 - 0 in transit
 - 1 in reassembly
- 3 Destination unreachable
 - 0 network unreachable
 - 1 host unreachable
 - 2 protocol unreachable
 - 3 port unreachable
 - 6 network unknown
 - 7 host unknown
 - 9 network prohibited
 - 10 host prohibited

Protocol Encapsolation

Layer 4/5

Layer 3

Layer 2

Ethernet Header

Ethernet payload

Ethernet payload

User Datagram Protocol - UDP

UDP (RFC768 Jon Postel 1980)

User Datagram Protocol - UDP

Dated 12:59 PM 07/01/2010

UDP Header – RFC 768

Common UDP Well-Known Ports

Port	Description
7	Echo
19	Chargen
37	Time
53	Domain
67	Bootps (DHCP)
68	Bootpc (DHCP)
69	Tftp
137	Netbios-ns

Port	Description
138	Netbios-dgm
161	Snmp
162	Snmp-trap
500	Isakmp
514	Syslog
520	Rip
33434	Traceroute

Length

The number of bytes in the entire datagram, including the header; minimum value = 8

Checksum

Calculated using a pseudo header that includes the IP source and destination addresses, protocol and UDP length, UDP header and data.

TCP (RFC793 Jon Postel 1981)

Dated 1:00 PM 07/01/2010

TCP Header – RFC 793

- TCP (RFC793 Jon Postel 1981)
 - Session establishment and tear-down
 - Window procedure
 - Slow start and congestion avoidance (Van Jacobson 1988)
 - Fast open
 - Syn cookies

Three way handshake

Transmission Datagram Protocol - TCP TCP Fast open

Connection Close

TCP Congestion

http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm

TCP Congestion

- > Slow start
- Congestion avoidance
- > Fast retransmit
- > Fast Recovery

TCP Congestion – Slow start

- > The initial window size is initialized to one MSS
- ➤ Each time a packet is ACKed the congestion window i increased
- > When the ssthresh is reached, the next phase starts

TCP Congestion – Congestion avoidance

➤ In this phase window size is increased linearly until timeout occurs or duplicate ACK is received

TCP Congestion – Fast retransmit

➤ If more then 3 ACKs are received for the same segment the sender has to send that particular segment even be its timer has expired

TCP Congestion – Fast Recovery

In this phase window size is decreased to ssthresh rate then the smaller initial value and increase its size line

http://histrory.visualland.net/tcp_fast_recovery.html

TCP Congestion Avoidance - Problems

- Slow-start assumes that unacknowledged segments a due to network congestion, which is usually NOT the cin wireless networks, where dropped packets are main because of poor data link quality.
- The slow-start protocol performs badly for short-lived connections, because it actually slows down the transmission of data.
- ➤ It is possible to trick the congestion avoidance algorito to think that the pipe is full and slow down all connectoriginating from that machine.

TCP Keepalive

- The keepalive packets are packets which contain no sent at regular interval to confirm that this connection alive
- ➤ Keepalive time is the duration between two keepalive transmissions in idle condition. TCP keepalive period required to be configurable and by default is set to no than 2 hours.
- ➤ Keepalive interval is the duration between two succe keepalive retransmissions, if acknowledgement to the previous keepalive transmission is not received. Usual around 75 seconds.
- > Keepalive retry is the number of retransmissions to be sent out before declaring that remote end is not available.

Datagram Congestion Control Protocol

> Basically DCCP is UDP with congestion control mechan

It features

- > Unreliable flows of datagrams
- > Reliable handshakes for connection setup and teardow
- > Negotiation of a suitable congestion control mechanism
- > Acknowledgment mechanisms communicating packet l
- > Path Maximum Transmission Unit (PMTU) discovery
- > RFC4340

DCCP header (x = 1)

If X is 1 the Sequence Number field is 48 bits long

Telerik Academy

If X is 0 the Sequence Number field is 24 bits long

Data Offset - the offset from the start of the packet's DCCP header to t start of its application data area

CCVal - Defines the congestion control algorithm used

CCVal = 2 - TCP like congestion avoidance

CCVal = 3 - TCP friendly congestion avoidance

CsCov - Checksum Coverage determines the parts of the packet that are covered by the Checksum field.

Checksum - DCCP header checksum

Type - DCCP packet type

X - Extended Sequence Numbers (may be 0 or 1)

DCCP header

All currently defined packet types except DCCP-Request and DCCP-Data carry an Acknowledgment Number Subheader

```
When X=1, its format is:
                          Acknowledgment Number
         Reserved
                              (high bits)
  Acknowledgment Number (low bits)
  When X=0, only the low 24 bits of the Acknowledgment Number are
transmitted, giving the Acknowledgment Number Subheader this format:
   Reserved
                  Acknowledgment Number (low bits)
```


DCCP packet types

```
Meaning
Type
       DCCP-Request
  0
       DCCP-Response
       DCCP-Data
 3
       DCCP-Ack
       DCCP-DataAck
       DCCP-CloseReq
  6
       DCCP-Close
       DCCP-Reset
       DCCP-Sync
 8
       DCCP-SyncAck
10-15
       Reserved
```


Multihoming

Stream Control Transmission Protocol

- ➤ Multihoming support in which one or both endpoints of a connection can consist of more than one IP address, enabling transparent fail-over between redundant network paths.
- > Delivery of chunks within independent streams eliminate unnecessary head-of-line blocking
- > Path selection and monitoring
- > Validation and acknowledgment mechanisms protect against flooding attacks and provide notification of duplicated or missing data chunks.
- > Improved error detection suitable for Ethernet jumbo frames.

Stream Control Transmission Protocol

RFC4960

Stream Control Transmission Protocol

RFC4960

IP & Domain allocation

- > IANA www.iana.org
 - > Number resources
 - > IP Addresses
 - > Autonomous System (AS)
 - Protocol number assignments
 - > Domain assignments
 - > Root zone management
 - gTLD database
 - > .int and .arpa domains
- > IP registrars
 - > ARIN, LACNIC, Africa, APNIC, RIPE

RIPE NCC

AfriNIC

APNIC

LACNIC

ARIN

IP & Domain allocation

- Regional Internet Registrar(RIR)
- Local Internet Registrar(LIR)
- > There are two types of IP addresses that can be reque
 - Provider dependent
 - > These you get from your ISP
 - Provider independent
 - You get them from the local LIR or the regional RIF
 - > These allocations can not be smaller then /24 netwo
- > Autonomous System (AS)
 - Used for the BGP routing protocol
 - Aggregated IP route announcements are made from to them
 - > The corner stone of the Internet routing
 - > Look at http://www.youtube.com/watch?v=oK-lgjJhC

Domain Name System - DNS

Everything was 'hosts':

```
127.0.0.1
                   localhost
192.168.0.174
                 store1
192.168.0.238
                 store2
192.168.0.244
                 store3
192.168.155.2
                 operations
192.168.155.149 zimbra 0. site ground.com
193.107.36.190
                   sapport.bg www.sapport.bg
8.8.8.8
                   ns.google.com
89.25.120.31
                   google.com
89.25.120.24
                   www.google.com
```

Linux: /etc/hosts

Windows: C:\Windows\System32\drivers\etc\hosts

Domain Name Space

- Internet Corporation For Assigned Names and Number
 - > IANA is now part of it
 - > Handles ccTLDs
 - > Handles gTLDs
 - > Handles the Root zone
- > Country level domains
 - bg, .co.za, .co.uk, .edu.us
- > Top-level domains
 - > .com, .net, .org, .edu, .gov, .mil
 - > .biz, .name, .info
- > Instances of J and L root servers are hosted in Sofia

- > Internet Corporation For Assigned Names and Number
 - > IANA is now part of it
 - > Handles ccTLDs
 - > Handles gTLDs
 - > Handles the Root zone
- > Internationalized domain name (IDN)
 - > Domain names are encoded using Punycode
 - **>** .ru = .pф
 - \triangleright We are expecting soon .bg = .6r
- Country level domains
 - > .bg, .co.za, .co.uk, .edu.us
- > Top-level domains
 - > .com, .net, .org, .edu, .gov, .mil
 - biz, .name, .info

- > Name servers
 - > Authoritative only
 - > Recursive
 - > Authoritative + recursive

www.google.com

- > .in-addr.arpa
- .ip6.arpa Local NameServer TLD Name Servers INTERNET NS1-4.GOOGLE.COM

DNS - Resolving

Default service port TCP/UDP: 53

DNS - Resolving

- > Forward resolving
 - > Host/FQDN to IP
- > Reverse resolving
 - > IP to Host

- > Reverse resolver delegation
 - > RIR -> LIR -> Local ISP -> YOU

DNS

Response Code

DNS Parameters
Query / Response

Z

Reserved; set to 0 (The DNS Evil bit)

Query / Nesponse		Response Code		
0	Query	0	No error	
1	Response	1	Format error	
		2	Server failure	
Opcode		3	Non-existent domain (NXDOMAIN)	
0	Standard Query (QUERY)	4	Query type not implemented	
1	Inverse Query (IQUERY)	5	Query refused	
2	Server Status Request (STATUS)		161750FCN88N593	
		QDCOUNT	No. of entries in the Question Section	
AA	1 = Authoritative Answer	ANCOUNT	No. of resource records in Answer Section	
TC	1 = TrunCation	NSCOUNT	No. of name server resource records in Authority Section	
RD	1 = Recursion Desired	ARCOUNT	No. of resource records in Additional Information Section.	
RA	1 = Recursion Available			

TYPE

DNS Resource records

value and meaning

Α	1 a host address
NS	2 an authoritative name server
CNAME	5 the canonical name for an alias
SOA	6 start of a zone of authority
WKS	11 a well known service description
PTR	12 a domain name pointer
HINFO	13 host information
MINFO	14 mailbox or mail list information
MX	15 mail exchange
TXT	16 text strings
AXFR	252 A request for a transfer of an entire zone

RFC1035

```
DNS Resource records
Telerik Academy
kar-do.cc. 86400 IN SOA ns1.ex1.com.
  mm.yuhu.biz.
    2013013106
                ;Serial Number
                ;refresh
    86400
    7200
                ;retry
    3600000
               ;expire
    86400
                ; minimum
kar-do.cc.
                             ns1.ex1.com.
            IN
                     NS
kar-do.cc. IN
                     NS
                             ns2.ex1.com.
kar-do.cc. IN
                     Α
                             134.154.23.12
localhost IN
                     Α
                             127.0.0.1
                             0 mail.kar-do.cc.
kar-do.cc.
            IN
                     MX
                             mail.yuhu.biz.
            IN
                     CNAME
mail
                             134.154.23.12
             IN
                     Α
WWW
                     Α
                             134.142.65.81
             IN
WWW
kar-do.cc.
             IN
                     TXT
         "v=spf1 +a +mx +ip4:134.154.23.12 ?all"
```


Send Mail Transport Protocol - SMTP

Telerik Academy	
S: 220 smtp.example.com ESMTP Postfix	Send
C: HELO relay.example.org	Mail
S: 250 Hello relay.example.org, I am glad to meet you	IVIdii
C: MAIL FROM: bob@example.org>	Transport
S: 250 Ok	
C: RCPT TO: <alice@example.com></alice@example.com>	Protocol
S: 250 Ok	
C: RCPT TO: <theboss@example.com></theboss@example.com>	
S: 250 Ok	SMTF
C: DATA	
S: 354 End data with <er><lf>.<er><lf></lf></er></lf></er>	
C: From: "Bob Example" <bob@example.org></bob@example.org>	
C: To: "Alice Example" <alice@example.com></alice@example.com>	
C: Cc: theboss@example.com	
C: Date: Tue, 15 January 2008 16:02:43 -0500	
C: Subject: Test message	
C:	
C: Hello Alice.	
C: This is a test message with 5 header fields and 4 lines in the r	message body.
C: Your friend,	
C: Bob	
C : •	
S: 250 Ok: queued as 12345	
C: QUIT	

HTTP

➤ In this phase window size is increased linearly until timeout occurs or duplicate ACK is received

Beer time Telerik Academy

Free Trainings @ Telerik Academy

- Operating Systems @ Telerik Academy
- http://telerikacademy.com/Courses/Courses/Details/35
- Telerik Software Academy
 - academy.telerik.com
- Telerik Academy @ Facebook
 - facebook.com/TelerikAcademy
- Telerik Software Academy Forums
 - forums.academy.telerik.com

