МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.7.1 **Скин-эффект в полом цилиндре**

Б03-102 Куланов Александр

- **Цель работы:** исследование проникновения переменного магнитного поля в медный полый цилиндр.
- В работе используются: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

1 Теоретические сведения

В работе изучается Скин-эффект в длинном тонкостенном медном цилиндре, помещенном внутрь соленоида.

Теоретически такая задача сложнее, чем рассмотренный в п. 3.1 скин-эффект в полубесконечном пространстве: здесь требуется совместное решение уравнений скин-эффекта (уравнение диффузии поля) (7.22/23) в стенке цилиндра и квазистационарных уравнений поля в его полости.

Пусть цилиндр достаточно длинный, так что в нём можно пренебречь краевыми эффектами. В этом приближении магнитное поле Н всюду направлено по оси системы, а вихревое электрическое поле Е будет всюду перпендикулярно радиусу, то есть линии поля образуют соосные окружности. Все величины будем считать колеблющимися по гармоническому закону с некоторой частотой ω , задаваемой частотой колебания тока в соленоиде. Тогда для ненулевых компонент поля можно записать

$$H_z = H(r)e^{i\omega t}, E_{\phi} = E(r)e^{i\omega t}$$

где H(r) и E(r) — комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты E и B, поэтому функции непрерывны во всей исследуемой области.

Пусть длинный полый цилиндр имеет радиус а и толщину стенки h « а. Последнее условие позволяет для описания полля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным (аналогично полю внутри пустого соленоида): $H_z(r,t) = H_1 e^{i\omega t}$, где $H_1 = const$ — амплитуда поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции в интегральной форме:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{dH_z}{dt} \rightarrow E(r) = -\frac{1}{2} \mu_0 r \cdot i\omega H_1.$$

Отсюда получим связь амплитуд колебаний электрического и магнитного полей на внутренней границе цидиндра:

$$E_1 = -\frac{1}{2}i\omega a\mu_0 H_1 \tag{1}$$

Поле внутри тонкой стенки цилиндра («экрана») описывается уравнением скинэффекта (7.25) (уравнением диффузии поля) в плоской геометрии (рис. 2). Поместим начало отсчёта на внешнюю поверхность цилиндра и направим ось x к оси системы, и аналогично (7.26) запишем дифференциальное уравнение для комплексной амплитуды магнитного поля:

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu_0H\tag{2}$$

(для медного цилиндра можно положить $\mu \approx 1$).

Граничные условия для (2) зададим в виде

$$H(0) = H_0, \quad H(h) = H_1$$
 (3)

Здесь H_0 - амплитуда колебаний магнитного поля на внешней границе цилиндра. Её значение определяется только током в обмотке соленоида, и совпадает с полем внутри соленоида в отсутствие цилиндра. Величина H_1 также поддаётся непосредственному измерению - это азплитуда колебаний однородного поля внутри цилиндра. Поля H_0 и H_1 не являются независимыми - они связаны через решение уравнений поля вне проводника, т. е. внутри «экрана». Эта связь выражена соотношением (1). Решение (2) ищем в виде

$$H(x) = Ae^{\alpha x} + Be^{-\alpha x} \tag{4}$$

где A, B - определяемые из граничных условий константы,

$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}e^{i\pi/4} \tag{5}$$

- один из корней уравнения (7.28), δ - глубина скин-слоя (7.30). Заметим, что это решение немного отличается от (7.29): ранее мы использовали только один корень уравнения (7.28), однако здесь мы имеем дело уже не с полупространством, а с конечной областью в виде плоского слоя h, поэтому решение должно содержать оба корня.

Первое условие (3) даёт $A + B = H_0$, тто позволяет исключить A из (4):

$$H(x) = H_0 e^{-\alpha x} + 2B \sin \alpha x,$$

Выразим электрическое поле из закона Ампера (7.21), В одномерном случае

$$E(x) = \frac{1}{\sigma} \frac{dH}{dx} = \frac{\alpha}{\sigma} \left(-H_0 e^{-\alpha x} + 2B \operatorname{ch} \alpha x \right),$$

Делее полояим x=h, воспользуемся условием (1), и, исключив константу B получим после преобразований связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{\operatorname{ch} \alpha h + \frac{1}{2} \alpha a \operatorname{sh}(\alpha h)} \tag{6}$$

Рассмотрим предельшые случаи (6).

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta \gg h$. Тогда $|\alpha h| \ll 1$, поэтому сh $\alpha h \approx 1$, sh $\alpha h \approx \alpha h$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\hbar^2}} \tag{7}$$

Заметим, что величина ah/δ^2 в общем случае не мала, поскольку при $h\ll a$ возможна ситуањия $h\ll \delta\ll a$. Отношение модулей амплитуд здесь будет равио

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4} \left(ah\sigma\mu_0\omega\right)^2}} \tag{8}$$

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый равенством $\operatorname{tg} \psi = \frac{ah}{\delta^2}$.

2. При достаточно больших частотах толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $|\alpha h| \gg 1$ и $|\alpha a| \gg 1$, а также $\mathrm{sh}(\alpha h) \approx \mathrm{ch}(\alpha h) \approx \frac{1}{2}e^{\alpha h}$. Выражение (6) с учётом (5) переходит в

$$\frac{H_1}{H_0} = \frac{4}{\alpha a} e^{-\alpha h} = \frac{2\sqrt{2}\delta}{a} e^{-\frac{h}{\delta}} e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)} \tag{9}$$

Как видно из формулы (9), в этом пределе поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a}e^{-h/\delta}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{10}$$

2 Экспериментальная установка

Рис. 1: Схема установки

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 1. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3. Необходимые параметры соленоида, экрана и измерительной катушки указаны на установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое

пропорционально току, а на вход второго канала - напряжение с измерительной катушки. Измерение отношения амплитуд магнитного поля внутри и вне экрана. С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN \frac{dB_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t},$$

где SN - произведение площади витка на число витков измерительной катушки. Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SN\omega}{\sqrt{2}} \mu_0 |H_1|.$$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала $\nu = \omega/2\pi$:

$$|H_1| \propto \frac{U}{\nu}.$$

При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A:

$$|H_0| \propto I$$
.

Следовательно,

$$\frac{|H_1|}{|H_0|} = \text{const } \cdot \frac{U}{\nu I} \tag{11}$$

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана (коэффициент ослабления) может быть измерено по отношению $U/\nu I$ при разных частотах. Неизвестная константа в соотношении (11) может быть определена по измерениям при малых частотах $\nu \to 0$, когда согласно (8) $|H_1|/|H_0| \to 1$.

3 Обработка результатов