Introduction to Machine Learning

Factor Analysis Models

Mingchen Gao

November 7, 2022

Outline

Contents

1	Late	ent Linear Models	1
2	Factor Analysis Models		2
	2.1	Marginalized Probabilities in Factor Models	2
	2.2	Interreting Latent Factors	3
	2.3	Issue of Unidentifiability with Factor Analysis Model	4
	2.4	Learning Factor Analysis Model Parameters	4
3	Ext	ending Factor Analysis	4

1 Latent Linear Models

Mixture Models

• One latent variable

$$z_i \in \{1, 2, \dots, K\}$$

$$P(z_i = k) = \pi_k$$

$$p(\mathbf{x}_i | \boldsymbol{\theta}) = \sum_{k=1}^K p(z_i = k) p_k(\mathbf{x}_i | \boldsymbol{\theta})$$

What if $\mathbf{z}_i \in \Re^L$?

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{z}_i | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$
$$p(\mathbf{x}_i | \boldsymbol{\theta}) = \int_{\mathbf{z}_i} \mathbf{p}(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i$$

2 Factor Analysis Models

- Assumption: \mathbf{x}_i is a multivariate Gaussian random variable
- Mean is a function of \mathbf{z}_i
- Covariance matrix is fixed

$$p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

- W is a $D \times L$ matrix (loading matrix)
- Ψ is a $D \times D$ covariance matrix
 - Assumed to be diagonal
- What does \mathbf{W} do? The role of the loading matrix is to convert the L length vector (\mathbf{z}_i) to a D length vector. This "transformed" vector is then added with another vector $\boldsymbol{\mu}$ and used as a mean. The actual observation \mathbf{x}_i is considered as a sample from a multivariate Gaussian with mean equal to the vector thus obtained and covariance matrix $\boldsymbol{\Psi}$.

2.1 Marginalized Probabilities in Factor Models

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \int_{\mathbf{z}_i} p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i$$
$$= \int_{\mathbf{z}_i} \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi}) \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) d\mathbf{z}_i$$
$$= \mathcal{N}(\mathbf{W}\boldsymbol{\mu}_0 + \boldsymbol{\mu}, \boldsymbol{\Psi} + \mathbf{W}\boldsymbol{\Sigma}_0 \mathbf{W}^{\top})$$

• Every \mathbf{x}_i is a multivariate distribution with same parameters!!

- What is the mean and covariance of \mathbf{x} ?
- Often μ_0 is set to $\mathbf{0}$ and $\Sigma_0 = \mathbf{I}$
- How many parameters needed to specify the covariance?

$$mean(\mathbf{x}) = \boldsymbol{\mu}$$
$$cov(\mathbf{x}) = \boldsymbol{\Psi} + \mathbf{W}\mathbf{W}^{\top}$$

- Original: D^2
- Factor analysis model: LD + D (remember Ψ is a diagonal matrix)

2.2 Interreting Latent Factors

- What is the original intent behind Latent Variable Models?
 - Richer models of $p(\mathbf{x})$
- \bullet But they can also be used as a lower dimensional representation of \mathbf{x} .
- Factor analysis model?
 - What is $p(\mathbf{z}_i|\mathbf{x}_i,\boldsymbol{\theta})$?

$$p(\mathbf{z}_i|\mathbf{x}_i, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{m}_i, \boldsymbol{\Sigma})$$

$$\boldsymbol{\Sigma} \triangleq (\boldsymbol{\Sigma}_0^{-1} + \mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} \mathbf{W})^{-1}$$

$$\mathbf{m}_i \triangleq \boldsymbol{\Sigma} (\mathbf{W}^{\top} \boldsymbol{\Psi}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) + \boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0)$$

The mixture models assume that every observed data point \mathbf{x}_i comes from a mixture component, z_i . So in some way, each multi-dimensional vector is represented as a discrete category.

- Each \mathbf{x}_i has a corresponding \mathbf{z}_i
- Each \mathbf{z}_i is a multivariate Gaussian random variable with mean \mathbf{m}_i (A $L \times 1$ vector)
- One can "embed" \mathbf{x}_i ($D \times 1$ vector) into a $L \times 1$ space

2.3 Issue of Unidentifiability with Factor Analysis Model

• Consider an orthogonal rotation matrix R

$$\mathbf{R}\mathbf{R}^\top = \mathbf{I}$$

- Let $\widehat{\mathbf{W}} = \mathbf{W}\mathbf{R}$
- The FA model with $\widehat{\mathbf{W}}$ will also have the same result, i.e., the pdf of observed \mathbf{x} will still be the same
- Thus FA model can have multiple solutions
- The predictive power of the model does not change
- But interreting latent factors can be an issue

2.4 Learning Factor Analysis Model Parameters

- FA model parameters: $\mathbf{W}, \boldsymbol{\Psi}, \boldsymbol{\mu}$
- A simple extension of the mixture model EM algorithm will work here

Factor Analysis - A Real World Example

- 2004 Cars Data
- Original 11 features
- Factor analysis results in 2 factors

3 Extending Factor Analysis

- If we use a non-gaussian distribution for $p(\mathbf{z}_i)$ we arrive at *Independent Component Analysis*.
- If $\Psi = \sigma^2 \mathbf{I}$ and \mathbf{W} is orthonormal \Rightarrow FA is equivalent to **Probabilistic Principal Components Analysis** (PPCA)
- If $\sigma^2 \to 0$, FA is equivalent to PCA
- What is PCA?

References

Murphy book Chapter 20.2

References