Datatypes II

Outline

- Logical Operations on Bits
 - AND, OR, NOT, XOR, (NAND, NOR)
 - **→** Shift
- Other Representations
 - Bit vectors
 - 7 Hexadecimal
 - Octal
 - **A** ASCII
 - Floating Point

AND

AND	0	1
0		
1		

AND

AND	0	1
0	0	0
1	0	1

Truth Table

		A AND B
Α	В	A & B
		AB
0	0	
0	1	
1	0	
1	1	

Truth Table

		A AND B
Α	В	A & B
		AB
0	0	0
0	1	0
1	0	0
1	1	1

What is "Bitwise"?

- Traditional Boolean functions are defined on Boolean values (i.e. True and False)
- When we have two strings of bits, we often apply a Boolean function to pairs of respective bits in the two strings
- We refer to this operation on two arrays of bits as a "bitwise" operation
- So we might write 0110_2 AND $0011_2 = 0010_2$ meaning that we should apply the AND function to each pair of bits

Bitwise AND

0101 AND 0110

(5 & 6)

0101

0110

Α	В	A OR B A B A + B
		A + B
0	0	
0	1	
1	0	
1	1	

		A OR B
Α	В	A B A + B
		A + B
0	0	0
0	1	1
1	0	1
1	1	1

Bitwise OR

0101 OR 0110

(5 | 6)

0101

0110

NOT

	NOT A
A	~A
	A'
0	
1	

NOT

	NOT A
A	~A
	A'
0	1
1	0

Bitwise NOT (Complement)

NOT 0101

~5

0101

XOR

Α	В	A XOR B A ^ B
0	0	
0	1	
1	0	
1	1	

XOR

Α	В	A XOR B
		A ^ B
0	0	0
0	1	1
1	0	1
1	1	0

Bitwise XOR

0101 XOR 0110

5^6

0101

0110

NAND

Α	В	A NAND B ~(A & B)
0	0	
0	1	
1	0	
1	1	

NAND

А	В	A NAND B
A		~(A & B)
0	0	1
0	1	1
1	0	1
1	1	0

Bitwise NAND

0101 NAND 0110

No C/Java Operator

~(5 & 6)

0101

0110

NOR

Α	В	A NOR B ~(A B)
0	0	
0	1	
1	0	
1	1	

NOR

Α	В	A NOR B		
	D	~(A B)		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Bitwise NOR

0101 NOR 0110

No C Operator

~(5 | 6)

0101

0110

How Many?

How many two-argument boolean functions do you think there are?

→ How can you prove it?

Enumerate them!

All the Boolean Functions?

Р	Q	FALSE	P AND Q	~(P -> Q) P AND ~Q	Р	~(Q -> P) ~P AND Q	Q	P != Q P XOR Q	P OR Q
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Р	Q	P NOR Q	P == Q ~(P XOR Q)	~Q	Q -> P P OR ~Q	~P	P -> Q ~P OR Q	P NAND Q	TRUE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Left Shift

0111 Leftshift 10 7 << 2

Right Shift

Note Well

1101 Rightshift 10 13 >> 2

How would you negate in 2's-complement using bitwise operators and the plus operator?

How would you negate in 2's complement using bitwise operators and the plus operator?

Other Representations

Sometimes for reasons of space efficiency we can effectively store a group of booleans packed together in a single byte/word/etc.

So who's washed their hands!

Item 3 is false

- How do we manipulate the individual bits in the bit vector?
- Examples
 - **7** How do we set bit 6?
 - → How do we clear bit 2?
 - → How do we toggle a bit?
 - → How do we test a bit?

Tallying the Dwarfs

```
// all bits cleared to 0
\mathbf{w} = 0
   w = w \mid 0b10000000
                            // Doc
   w = w \mid 0b00100000
                            // Happy
   w = w \mid 0b00010000
                            // Sneezy
                           // Bashful
   w = w \mid 0b00001000
   w = w \mid 0b0000010
                            // Dopey
     Alternately,
   w = \sim 0
                            // all bits set to 1
                           // Sleepy
   W = W \& 0b101111111
   W = W \& 0b11111011
                            // Grumpy
               6 5 4 3 2 1 0
```

0b

means

base 2

Manipulating Bits

- Often we use a constant (a.k.a. **mask**) with a boolean function (four bit examples)
- \blacksquare CLEAR :: Identity: $wxyz_2 \& 1111_2 == wxyz_2$
 - So put a zero in any bit you want to clear
 - $= wxyz_2 & 1101_2 == wx0z_2$
- SET :: Identity: $wxyz_2 \mid 0000_2 == wxyz_2$
 - So put a one in any bit you want to set
 - $wxyz_2 | 0100_2 == w1yz_2$
- **TOGGLE:** $wxyz_2 ^ 1111_2 = w'x'y'z'_2$
 - So put a one in any bit you want to toggle
 - $\sqrt{2}$ wxyz₂ 1000 == w'xyz₂

More Manipulating Bits

- 7 To test a bit, clear all the rest
 - \Rightarrow wxyz₂ & 0010₂ == 00y0₂
 - Now you can test $00y0_2 == 0000_2$
- To put a 1 in any bit position n in a mask, shift left by n
 - $7 < 2 == 0100_2$
- To put a zero in position in a mask, put a one in that position and complement
 - **7** ~(1 << 2) == 1011₂
 - (creates as many leading ones as you need)

Question

We're using 32-bit unsigned binary representation for integers; what value would result from

$$12 = 1100_2$$

 $7 = 111_2$
 $63 = 111111_2$

$$1100_2 \mid 111_2$$

= 1111_2

B. 48

$$1111_2 ^ 111111_2 ^ C. 3$$

= 110000_2

D. **0**

$$110000_2 = 48$$

Today's Number: 16,384

You are given a 16-bit unsigned binary number, x. To test if bit 8 (numbered from right to left starting at 0) is 1, you could use

x & 0000000100000000₂!= 0

A.
$$^{\sim}x + 256 == ^{\sim}1$$

C.
$$x \& (1 << 8) != 0$$

Hexadecimal & Octal

Difficult

- Using binary numbers is both a blessing a curse!
 - One can examine directly any particular bit
 - Reading, writing, etc. prone to error

Solution

Turns out that mathematics has an answer for us

Group bits and assign a single digit to represent each group

How big should each group be?

Hint: Use a Base That's a Power of 2!

- Base 2³, a.k.a. Base 8, a.k.a. Octal!
 - \nearrow Use the digits 0 7 and group bits in 3s

Base 2	000	111	010	100	101
Base 8	0	7	2	4	5

- 15 bits in 5 octal digits!
- ▶ And it works backwards, too!

Base 8	6	4	3	0	2
Base 2	110	100	011	000	010

Use a Base That's a Power of 2!

- Base 2⁴, aka Base 16, aka Hexadecimal!
 - ✓ Use the digits 0 15 and group bits in 4s.
 - Oops! Digits 10-15! We'll just use A-F.

Base 2	1000	1111	0011	1100	0001
Base 16	8	F	3	С	1

- 7 10001111001111000001₂ = 8F3C1₁₆
- And it too works backwards:

Base 16	F	0	0	D	5
Base 2	1111	0000	0000	1101	0101

What is 111010001010100₂ in octal?

A. 75624₈

B. 07212₈

C. 74540₈

D. 72124₈

111 010 001 010 1002

7 2 1 2 4₈

What is 72124₈ in hexadecimal?

A. 7454₁₆

B. E8A8₁₆

C. 6343₁₆

D. 3A2A₁₆

7 2 1 2 48

111 010 001 010 100₂

 $0111\ 0100\ 0101\ 0100_2$

7 4 5 4₁₆

In Java (and C)

- Constant integers
 - **7** 456 is decimal
 - **0**456 is octal
 - **0x**456 is hexadecimal
 - **7 Ob**010101110 is sometimes used for binary, but is <u>not</u> standard in Java and C
- This notation often shows up instead of typographical subscripts!

ASCII

	Dec	Нx	Oct	Char		Dec	Нx	Oct	Char	Dec	Нx	Oct	Char	Dec	Нx	Oct	Char	
									SPACE	64	40	100	0	96	60	140	`	
					(start of heading)	33	21	041	!	65	41	101	A	97	61	141	а	
	2	2	002	STX	(start of text)	34	22	042	"	66	42	102	В	98	62	142	b	
	3	3	003	ETX	(end of text)	35	23	043	#	67	43	103	С	99	63	143	c	
	4	4	004	EOT	(end of transmission)	36	24	044	\$	68	44	104	D	100	64	144	d	
T T 71	5								\$		45	105	E	101	65	145	e	
Why	6				(acknowledge)	38	26	046	٤	70	46	106	F	102	66	146	f	
	7	- 7	007		(bell)				1	71	47	107	G	103	67	147	g	
two			010					050		72	48	110	H	104	68	150	h	
					(horizontal tab)				-			111		105				
codes?	10				(NL line feed, new line)									106			-	
					(vertical tab)				+					107				
	12				(NP form feed, new page)							114		108				
	13				(carriage return)							115		109				
					(shift out)	46	2 E	056	•			116		110				
			017		(shift in)							117		111				
								060				120		112			-	
					•				1					113			-	
									2					114				
	19	13	023	DC3	(device control 3)	51	33	063	3	83		123		115				
	20	14	024	DC4	(device control 4) (negative acknowledge)	52	34	064	4	84		124		116				Why
	21	15	025	NAK	(negative acknowledge)	53	35	065	5	85		125		117				Why
	22	16	026	SYN	(synchronous idle)	54	36	066	6	86		126		118				is
					(end of trans. block)							127		119				15
					(cancel)							130		120				this
									9			131		121			_	uns
					(substitute)	58	3 A	072	:	90		132		122				at
					(escape)	59	3 B	073	<i>‡</i>	91		133		123				ai
					(file separator)			074		92	5C	134		124				the
					(group separator)	61	3 D	075	=	93	5D	135	7	125			_	uic
					(record separator)													end?
	31	T.L.	037	ບສ	(unit separator)	63	5 F	077	?	95	10	137	-	127	/ F	177	ոբը	CIIU!

What about these?

Fun ASCII Facts

'A' =
$$65 = 41_{16} = 01000001$$

'a' =
$$97 = 61_{16} = 0110 0001$$

$$'0' = 48 = 30_{16} = 0011\ 0000$$

$$'1' = 49 = 31_{16} = 0011\ 0001$$

$$2' = 50 = 32_{16} = 0011\ 0010$$

. . .

$$9' = 57 = 39_{16} = 0011 \ 1001$$

Fun ASCII Facts

'A' =
$$65 = 41_{16} = 0100 0001$$

'a' =
$$97 = 61_{16} = 0110 0001$$

'A' +
$$32 = 61_{16} = 0110\ 0001 = 'a'$$

'B' +
$$32 = 62_{16} = 0110\ 0010 = 'b'$$

$$z' - 32 = 5A_{16} = 0101 1010 = 'Z'$$

$$5' - 0' = 5 = 0000 \ 0101 = 5$$

$$5 + '0' = 35_{16} = 0011 \ 0101 = '5'$$

Fun ASCII Facts

'A'
$$= 65 = 41_{16} = 0100\ 0001$$

Ctrl-A = SOH =
$$1 = 1_{16} = 0000 0001$$

. . .

'J' =
$$74 = 4A_{16} = 0100 \ 1010$$

$$Ctrl-J = LF = 10 = A_{16} = 0000 1010$$

. . .

'M' =
$$77 = 4D_{16} = 0100 1101$$

$$Ctrl-M = CR = 13 = D_{16} = 0000 1101$$

Question

```
7177428
                   Which of these also represents the value 717742<sub>8</sub>?
  = 111 001
    111 111
    100 010
                   A. 39FE2<sub>16</sub>
  = 111 001
    111 111
                   B. E7F88<sub>16</sub>
    100 010
  = 0011
                   C. 717742<sub>16</sub>
     1001
    1111
                   D. 8D5<sub>16</sub>
    1110
    0010
  = 39FE2_{16}
```

Question

$$'P' = 0x50$$

$$0x50 + 32$$

= $0x70$

$$0x50 + 0x20$$

= $0x70$

$$0x50 \mid 0x20$$

= $0x70$

$$0x70 = 'p'$$

If you are given an 8-bit number containing an ASCII representation of the letter 'P', which expression below will compute the ASCII representation of 'p'.

A.
$$'P' + 32$$

B.
$$'P' + 0x20$$

D. All of the above

Floating Point 7

Transcendental Numbers

- In 1897, a bill was proposed to the Indiana Legislature that set the value of π to exactly 3.2
- (To their credit they didn't consider it for long; it never came to a vote)
- **7** Can computers represent π correctly?
- **☼** Can we at least do better than 3.2?

Historically

- Initially hardware manufacturers used whatever they thought was appropriate given their market and/or technology required.
- IBM, DEC, CDC, Burroughs, Univac, NCR, Honeywell, GE, RCA, etc. each had their own formats and in fact multiple formats
- Typical implementations might range from 32 up to 128 bits. Common to find multiple formats available (i.e. float and double)
- 1985 IEEE published Floating Point Standard
 - ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point Arithmetic

Scientific Notation

How would you do it?

Binary Floating Point Representation

- Same basic idea as scientific notation
- Modifications and improvements based on a long history: IEEE-754 standard
 - Precise representation at the bit level
 - Precise behavior of arithmetic operations
 - Efficiency (Space & Time)
 - Additional requirements
 - Special values: not-a-number, +/-infinity, etc.
 - Correct rounding
 - Sortable without FP hardware

IEEE-754

IEEE-754

So how can we represent 0?

Can be written...

0	000	0000 0000	000000000	000000000		
S	exp	ponent mar	ntissa (sig	nificand)		
g n						
		E == 0	0 < E < 255	E == 255		
M==	0	0	Powers of Two	∞		
M!=0		Non-normalized typically underflow	Ordinary Old Numbers	Not A Number		

0	000	0000 0000	000000000	000000000		
s	exp	ponent man	ntissa (sig	nificand)		
g n	- \ - - - - - - - - -					
		E == 0	0 < E < 255	E == 255		
M==(0	0	Powers of Two	∞		
M!=()	Non-normalized typically underflow	Ordinary Old Numbers	Not A Number		

Perhaps Some Automation?

https://www.h-schmidt.net/FloatConverter/IEEE754.html

		IE	EE 754 C	onverter (JavaScript), V0.22			
	Sign	Expon	ent	Mantissa			
Value:	-1	2-126 (deno	rmalized)	0.0 (denormalized)			
Encoded as: Binary:	1	0			00000		
You	entered		-o		_		
Val	ue actually	stored in float:	-0				
Erro	or due to c	onversion:	0				
Bin	ary Repres	sentation	10000000000	000000000000000000	_		
Hex	xadecimal	Representation	0x80000000				

[0	000	00000	000	000000000000000000000000000000000000000					
	S	exp	ponent	man	ntissa	(sig	nif	icaı	nd)	
	(-	-1) ^s	2 E-	127	*	1.	M			
•		E == 0			0 < E <	255	E == 255			
M=	M==0		0		Power of Two	'S		∞		
M!=0		Non-norma typicall underflo	У	Ordina Old Numbe		N	Not A Iumbe	er		

1 11111111 00100010001001010101010 = NaN

0	0000000	000000000000000000000000000000000000000						
S	exponent	mantissa (significand)						
j g n	(-1) ^s	* 2 E-127 * 1.M						

	E == 0	0 < E < 255	E == 255
M==0	0	Powers of Two	8
M!=0	Non-normalized typically underflow	Ordinary Old Numbers	Not A Number

Not a Number (NaN)

- Suppose A is a floating point number set to NaN
- A!= B is *true*, when B is another floating point number, NaN, infinity, or anything
- Interestingly A!= A is true as well
 - Not equal to itself
- Also, if A or B is NaN, the following are always false:

$$A < B, A > B, A == B$$

0	0000000	000000000000000000000000000000000000000						
S	exponent	mantissa (significand	.)					
j g n	(-1) ^s	* 2 E-127 * 1.1	ľ					

	E == 0	0 < E < 255	E == 255
M==0	0	Powers of Two	80
M!=0	Non-normalized typically underflow	Ordinary Old Numbers	Not A Number

0	0000000		000000000000000000000000000000000000000					
S	exponent		mantissa (significand)					
i g n	(-	-1) ^s	*	2 E-127	* 1.M			
	E == 0			0 < E < 255	E == 255			
M==0		0		Powers of Two	∞			
M!=0		Non-normalized typically underflow		Ordinary Old Numbers	Not A Number			

Edge case for tiny numbers: E==0 is special, so 2⁻¹²⁶ is smallest exponent; we use underflow case for anything smaller, like 2⁻¹²⁷; note when E==0 it's computed as if E==1

0 00000			0000000000				_			= 2 ⁽⁻	
	0	000	00000	000	0000	00000	000	0000	000	000	
	S	exp	exponent mantissa (significand)								
	g (-1) ^S * 2 ^{E-127} * 1.M									•	
E == 0 0 < E < 255 E == 255											
$M==0 \qquad 0 \qquad \begin{array}{c c} Powers \\ of \\ Two \end{array} \qquad \infty$											
M!	=()	Non-norm typical underfl	ly		Ordinary Old Iumbers		N	Not A Jumbe	er	

0	0000000	000000000000000000000000000000000000000						
S	exponent	mantissa (significand)						
j g n	(-1) ^s	* 2 E-127 * 1.M						

	E == 0	0 < E < 255	E == 255
M==0	0	Powers of Two	∞
M!=0	Non-normalized typically underflow	Ordinary Old Numbers	Not A Number

$E = 10001110_2 = 128+8+4+2 = 142$

142 - 127 = 15

В. 32768

A. 0

M = 0

C. +Infinity

 1_2 followed by 23 zeros = 1

D. 2¹⁴²

 $1 * 2^{15}$ = 32768

	E == 0	0 < E < 255	E == 255
M==0	0	Powers of Two	∞
M!=0	Non-normalized typically underflow	Ordinary Old Numbers	Not A Number

```
1 11111111 00100010001001010101010 = NaN
(Smallest positive value)
1 1111111 00000000000000000000 = -Infinity
```

What's Up Here!

```
#include <stdio.h>
int main()
      float f;
      int i = 1234567897;
      int j;
      f = i;
      j = (int)f;
      printf("i = %d f = %f j = %d\n", i, f, j);
      return 0;
$ ./demo
i = 1234567897 f = 1234567936.000000 j = 1234567936
```

Reality

IEEE-754 Double

Special Cases

63	3 62	52	51				0	
0	000	00000	000	000000	0000	0000	000000	
S	exp	ponent	mar	mantissa (significand)				
j g n	(-	-1) ^s	*	1.M	*	2	E-1023	
•	J	E ==	0	0 <e< 2<="" th=""><th>2047</th><th>E=</th><th>== 2047</th></e<>	2047	E=	== 2047	
M==	M==0 0			Powers of Two		∞		
M!=0		Non-normalized typically underflow		Ordinary Old Numbers		Not A Number		

Double (64 bits)

Better?

```
#include <stdio.h>
int main()
      double d;
      int i = 1234567897;
      int j;
      d = i;
      j = (int)d;
      printf("i = %d d = %f j = %d\n", i, d, j);
      return 0;
$ ./demo
i = 1234567897 d = 1234567897.000000 j = 1234567897
```

Comparing FP Numbers

- The layout of the representation allows certain operations (like >) to be performed with no conversion
- Compare:

$$3.67 \times 10^{14} = 0 \times 57 = 841 = 0$$

$$2.89 \times 10^{16} = 0 \times 5 \text{ acd} 58 \text{ cb}$$

Notice the exponent bits come first in the representation, so an integer comparison can work if the numbers are the same sign

Comparing Two FP Numbers

- If either is NaN, the comparison is defined as "unordered" (all comparisons to it except != are false)
- **◄** If either is -0.0, replace with +0.0
- If the signs (high bit) are different, the positive number is bigger
- ∇ompare the remaining bits as integers to get <, ==, or >
- If the signs are both negative reverse the comparison result

FP Comparison

```
A 0 10111000 11001010 11001010 1100101 = 2.58277016531e+17
B 0 10111000 11101010 11001010 1100101 = 2.76291415041e+17
|B| > |A|
```

- Treat as 31-bit unsigned whole numbers
 - → Without the sign bits (bit 31)
- And compare the two magnitudes bit by bit, left to right until you find different values
- Both are positive, so B>A

What do you need to know?

- Given the 6-case chart of FP numbers, be able to
 - 7 Know what each case means and recognize encoded FP numbers that fit each case
 - Know that in the 32-bit form the exponent is biased by 127
 - From an encoded FP number, be able to show its value in the form of M * 2^E
 - Be able to compare encoded FP numbers for <,>,==,!=
- Understand
 - Converting decimal FP to IEEE-754 and vice versa
 - Precision issues in converting between integer and FP representations

Given these four IEEE-754 representations, which are the largest and smallest?

A. #1 is largest, #2 is smallest

- B. #2 is largest, #4 is smallest
- C. #3 is largest, #1 is smallest
- D. #4 is largest, #2 is smallest

Bitwise Review

- Can only be applied to integral operands
- that is, char, short, int and long
- (signed or unsigned)

```
& Bitwise AND
```

```
Bitwise OR
```

^ Bitwise XOR

<< Shift Left

>> Shift Right

~ 1's Complement (Inversion)

Bitwise Questions

```
1 & 3
1 & 2
   0
x << -2 Legal?
   No!
x << 2 Write it another way?
   x * 4
What does right shifting do to signed vars?
   depends
x = x \& \sim 077
 Clears last six bits of x to zero!
```

Shifting Integers Right

```
int main() {
      printf("%10s %10s %10s %10s %10s %10s\n", "Dec", "Hex",
             "arith", "arith", "logical", "logical");
      printf("%10s %10s %10s %10s %10s \n", "", "",
             ">> 1 dec", ">> 1 hex", ">> 1 dec", ">> 1 hex");
      for (int i = 10; i > -10; i--) {
             printf("%10d %10x %10d %10x %10d %10x\n",
                    i, i, i >> 1, i >> 1,
                   (unsigned) i >> 1, (unsigned) i >> 1);
```

Shifting Two's-Complement Integers Right

	Dec	Hex	arith	arith	logical	logical
The footbook of the desired of the second of			>> 1 dec	>> 1 hex	>> 1 dec	>> 1 hex
This fact is shown in the output of the	10	a	5	5	5	5
code, for non-negative numbers, we	9	9	4	4	4	4
get the same result when we use	8	8	4	4	4	Д
either >> or >>> as shown in the first	_	7			_	2
11 rows in the output. However, when	_	1	3	3	3	3
we divide negative numbers, we need		6	3	3	3	3
to be sure that we are using the	5	5	2	2	2	2
arithmetic right shift >> so that the	4	4	2	2	2	2
compiler knows to interpret the	3	3	1	1	1	1
dividend as a signed number and	2	2	1	1	1	1
yield the correct results. If we use the	1	1	0	0	0	0
logical right shift >>> with the	0	0	0	0	0	0
intention to divide negative numbers,	-1	ffffffff	-1		2147483647	7fffffff
the compiler will assume those			_			-
numbers to be unsigned and will just	-2	fffffffe	-1			7fffffff
treat the sign bit as a normal bit and	-3	fffffffd	-2	fffffffe	2147483646	7ffffffe
thus will not give you the result that	-4	fffffffc	-2	fffffffe	2147483646	7ffffffe
you would expect. This is shown in	-5	fffffffb	-3	fffffffd	2147483645	7ffffffd
rows 12 - 20 in the output of the code.	-6	fffffffa	-3	fffffffd	2147483645	7ffffffd
	-7	fffffff9	-4	fffffffc	2147483644	7ffffffc
	-8	fffffff8	-4	fffffffc	2147483644	7ffffffc
	-9	fffffff7	-5	fffffffb	2147483643	7ffffffb

Bitwise Questions

```
Why is x = x \& \sim 077 better than x = x \& 0177700
```

Why is $x = x & \sim 077$ better than x = x & 0177700

```
1010101010101010
X
   = 000000000111111
\sim 077 = 11111111111000000
x = 101010101010101
\sim 077 = 1111111111000000
        101010101000000
```

Why is $x = x & \sim 077$ better than x = x & 0177700

 $\mathbf{x} = 10101010101010$

077 = 000000000111111

101010101000000

But what if the word size is bigger than 16 bits?

Why is $x = x & \sim 077$ better than x = x & 0177700

Why is $x = x \& \sim 077$ better than x = x & 0177700

0000000000000001010101010000000

Bitwise Questions

```
What does this do? (x \gg (p+1-n)) & \sim (\sim 0 << n);
```

What does this do? $(x >> (p+1-n)) \& \sim (\sim 0 << n);$

```
P=15, N=3
  332222222221111111111
  10987654321098765432109876543210
x = 001010101010010101010110101010101
(x >> (p+1-n)) ==> (x >> (15+1-3))
                  (x >> 13)
  0000000000000010101010010010101
~0
  1111111111111111111111111111111111
\sim 0 << n => \sim 0 << 3
  111111111111111111111111111111111000
             ~(~0 << 3)
  000000000000000000000000000111
```

Bitwise Questions

```
Why is x = x \& \sim 077 better than
       x = x & 0177700
First one is independent of word length
(no extra cost...evaluated at compile time)
What does this do?
     (x >> (p+1-n)) & \sim (\sim 0 << n);
/* getbits: get n bits from position p */
unsigned getbits (unsigned x, int p, int n)
  return (x >> (p+1-n)) & \sim (\sim 0 << n);
```

Questions?

- Logical Operations on Bits
 - AND, OR, NOT, XOR, (NAND, NOR)
 - Shift
- Other Representations
 - Bit vectors
 - 7 Hexadecimal
 - Octal
 - **7** ASCII
 - Floating Point
- Bitwise review