Intégration et théorie

de la mesure

Espaces L^p

Question 1/10

$$L^p(\mu)$$

Réponse 1/10

$$\mathcal{L}^p/\sim \text{où } f \sim g \text{ ssi } f = g \text{ μ-pp}$$

Question 2/10

$$\mathcal{L}^p(\mu)$$

Réponse 2/10

$$\left\{ f: X \to \mathbb{R} \text{ mesurables, } \int |f|^p \, \mathrm{d}\mu < +\infty \right\}$$

$$\mathcal{L}^{\infty} = \left\{ f: X \to \mathbb{R} \text{ mesurables, } ||f||_{\infty} < +\infty \right\}$$

Question 3/10

Inégalité de Jensen

Réponse 3/10

Soit $I \subset \mathbb{R}$ un intervalle, μ une mesure de probabilités $(\mu(X) = 1 \text{ et } \mu \geqslant 0)$, si $\varphi \colon I \to \mathbb{R}$ est convexe et $f \colon X \to \mathbb{R}$ mesurable alors $\varphi\left(\int_{\mathbb{Y}} f \,\mathrm{d}\mu\right) \leqslant \int_{\mathbb{Y}} \varphi \circ f \,\mathrm{d}\mu$

Question 4/10

Densité des fonctions en escalier dans L^p

Réponse 4/10

Si $p \in [1, +\infty]$ alors les fonctions en escalier sont dense dans L^p

Question 5/10

Inégalité de Hölder

Réponse 5/10

Si
$$p \in [1, +\infty]$$
 et $p' = \frac{p}{p-1}$ alors pour f et g mesurables, $\int |fg| \le ||f||_{L^p} ||g||_{L^{p'}}$

Question 6/10

Structures des L^p

Réponse 6/10

$$L^p$$
 sont des espaces de Banach L^2 est un expace de Hilbert avec $\langle f,g\rangle=\int fg$

Question 7/10

Densité des fonctions lipschitziennes à support compact dans \mathcal{L}^p

Réponse 7/10

Si (X, d) est un espace métrique localement compact (pour tout $x \in X$, il existe O ouvert tel que $x \in O$ et \overline{O} est compact), séparable et μ de Radon (finie sur tout compact) et $p \in [1, +\infty[$ alors les fonctions lipschitziennes à support compact de L^p sont dense dans L^p

Question 8/10

$$\|f\|_{L^p}$$

Réponse 8/10

$$\left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} \operatorname{si} p \in \mathbb{N}^{*}$$
$$\|f\|_{L^{\infty}} = \inf \{c \geqslant 0, |f| \leqslant c \ \mu\text{-pp}\}$$

Question 9/10

Inégalité de Minkowski

Réponse 9/10

Si
$$f, g: X \to \mathbb{R}$$
 sont mesurables et $p \in [1, +\infty]$, alors $||f + g||_{L^p} \leqslant ||f||_{L^p} + ||g||_{L^p}$

Question 10/10

Densité des fonctions lipschitziennes dans L^p

Réponse 10/10

Si $p \in [1, +\infty[$ et μ est extérieurement régulière alors les fonctions lipschitziennes de L^p sont dense dans L^p