MA1521

AY22/23 Sem 2

github.com/gerteck

Adapted from github.com/jovyntls

01. FUNCTIONS & LIMITS

Rules of Limits

- 1. $\lim_{x \to a} (f \pm g)(x) = L \pm L'$
- 2. $\lim_{x \to a} (fg)(x) = LL'$
- 3. $\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{L'}$, provided $L' \neq 0$
- 4. $\lim_{x \to \infty} kf(x) = kL$ for any real number k.

02. DIFFERENTIATION

extreme values:

- f'(x) = 0
- f'(x) does not exist
- end points of the domain of f

parametric differentiaton: $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dx}}$

Differentiation Techniques

f(x)	f'(x)
$\tan x$	$\sec^2 x$
$\csc x$	$-\csc x \cot x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$a^{f(x)}$	$\ln a \cdot f'(x) a^{f(x)}$
$\log_a f(x)$	$\log_a e \cdot \frac{f'(x)}{f(x)}$
$\sin^{-1} f(x)$	$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\cos^{-1} f(x)$	$-\frac{f'(x)}{\sqrt{1-[f(x)]^2}}, f(x) < 1$
$\tan^{-1} f(x)$	$\frac{f'(x)}{1+[f(x)]^2}$
$\cot^{-1} f(x)$	$-rac{f'(x)}{1+[f(x)]^2}$
$\sec^{-1} f(x)$	$\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$
$\csc^{-1} f(x)$	$-\frac{f'(x)}{ f(x) \sqrt{[f(x)]^2-1}}$

L'Hopital's Rule

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

- for indeterminate forms $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$, cannot directly substitute x = a.
- for other forms: convert to $(\frac{0}{0} \text{ or } \frac{\infty}{\infty})$ then apply L'Hopital's
- for exponents: use \ln , then sub into $e^{f(x)}$

03. INTEGRATION

Integration Techniques

f(x)	$\int f(x)$
$\tan x$	$\ln(\sec x), x < \frac{\pi}{2}$
$\cot x$	$\ln(\sin x), 0 < x < \pi$
$\csc x$	$-\ln(\csc x + \cot x), 0 < x < \pi$
$\sec x$	$\ln(\sec x + \tan x), x < \frac{\pi}{2}$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1}(\frac{x}{a})$
$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right)$, $ x < a$
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a}\ln(\frac{x-a}{x+a}), x>a$
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln(\frac{x+a}{x-a}), x < a$
a^x	$\frac{a^x}{\ln a}$

19.
$$\int \frac{1}{\sqrt{(x+b)^2+a^2}} dx = \ln \left| (x+b) + \sqrt{(x+b)^2+a^2} \right| + C$$

20.
$$\int \frac{1}{\sqrt{(x+b)^2 - a^2}} dx = \ln \left| (x+b) + \sqrt{(x+b)^2 - a^2} \right| + C$$

21.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

22.
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

substitution: $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$ by parts: $\int uv' dx = uv - \int u'v dx$

Volume of Revolution

about x-axis:

- (with hollow area) $V = \pi \int_a^b [f(x)]^2 [g(x)]^2 dx$
- (about line y = k) $V = \pi \int_{-k}^{b} [f(x) k]^2 dx$

04. SERIES

Geometric Series

sum (divergent)
$$\frac{\underline{a(1-r^n)}}{1-r}$$

sum (convergent)

Power Series

power series about
$$x = 0$$

$$\sum_{n=0}^\infty c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots$$
 power series about $x=a$ (a is the centre of the power

series) $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots$

Taylor series

$$\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k$$
MacLaurin series:
$$f(x) = \sum_{k=0}^{\infty} f^k(0) d^k$$

 $f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n$ Taylor polynomial of f at a:

$$P_n(x) = \sum_{k=0}^{n} \frac{f^k(a)}{k!} (x - a)^k$$

Radius of Convergence

power series converges where $\lim_{n\to\infty} \left|\frac{u_{n+1}}{u_n}\right| < 1$

converge at	R	$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right $
x = a	0	∞
(x-h,x+h)	$h, \frac{1}{N}$	$N \cdot x-a $
all x	∞	0

MacLaurin Series

$$\begin{aligned} & \text{For } -\infty < x < \infty \\ & \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \\ & \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \\ & e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ & \text{For } -1 < x < 1 \\ & \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \\ & \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \\ & \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \\ & \ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} \\ & \tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n} \\ & \frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} (-1)^{n-1} n x^{n-1} \\ & \frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1} \\ & \frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=1}^{\infty} n (n-1) x^{n-2} \end{aligned}$$

Differentiation/Integration

 $(1+x)^k = \sum_{n=0}^{n-2} {n \choose n} x^n$

For
$$f(x) = \sum\limits_{n=0}^{\infty} c_n (x-a)^n$$
 and $a-h < x < a+h$, differentiation of power series:

 $= 1 + kx + \frac{k(k-1)}{2!}x^2 + \dots$

$$f'(x) = \sum_{n=0}^{\infty} nc_n (x-a)^{n-1}$$

$$\int f(x)dx = \sum_{0}^{\infty} c_n \frac{(x-1)^{n+1}}{n+1} + c$$

if $R = \infty$, f(x) can be integrated to $\int_0^1 f(x)dx$

05. VECTORS

unit vector,
$$\hat{m p}=rac{m p}{|m p|}$$

ratio theorem $p = \frac{\mu a + \lambda b}{\lambda + \mu}$

midpoint theorem

Dot (Scalar) product

$$\begin{aligned} \boldsymbol{a} \cdot \boldsymbol{b} &= |\boldsymbol{a}||\boldsymbol{b}|\cos\theta \\ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3 \\ \boldsymbol{a} \perp \boldsymbol{b} \Rightarrow \boldsymbol{a} \cdot \boldsymbol{b} &= 0 \\ \boldsymbol{a} \parallel \boldsymbol{b} \Rightarrow \boldsymbol{a} \cdot \boldsymbol{b} &= |\boldsymbol{a}||\boldsymbol{b}| \end{aligned} \qquad \begin{aligned} \boldsymbol{a} \cdot \boldsymbol{b} &> 0 : \boldsymbol{a} \text{ is acute} \\ \boldsymbol{a} \cdot \boldsymbol{b} &> 0 : \boldsymbol{a} \text{ is obtuse} \end{aligned}$$

Cross (Vector) product

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \hat{\mathbf{n}}$$

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -(a_1 b_3 - a_3 b_1) \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a} \perp \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}|$$

$$\mathbf{a} \parallel \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = 0$$

$$\mathbf{a} \parallel \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = 0$$

$$\mathbf{a} \parallel \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = 0$$

Projection

Sphere: Normal Vector: Passes through centre of sphere

Planes

Equation of a Plane

n is a perpendicular to the plane; A is a point on the plane.

- parametric: $r = a + \lambda b + \mu c$
- scalar product: $r \cdot n = a \cdot n$
- standard form: $\mathbf{r} \cdot \hat{\mathbf{n}} = d$
- cartesian: ax + by + cz = p

Length of projection of \boldsymbol{a} on $\boldsymbol{n} = |\boldsymbol{a} \cdot \hat{\boldsymbol{n}}| = \perp$ from O to π

Distance from a point to a plane

Shortest distance from a point $S(x_0, y_0, z_0)$ to a plane $\Pi: ax + by + c = d$ is given by: $\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$

06. PARTIAL DIFFERENTIATION

Partial Derivatives

For f(x, y), (some function of 2 variables)

first-order partial derivatives:
$$f_x = \frac{d}{dx} f(x,y) \qquad \Big| \qquad f_y = \frac{d}{dy} f(x,y)$$
 second-order partial derivatives:

$$f_{xx} = (f_x)_x = \frac{d}{dx} f_x$$

$$f_{yy} = (f_y)_y = \frac{d}{dy} f_y$$

$$f_{yx} = (f_y)_x = \frac{d}{dx} f_y$$

$$f_{yx} = (f_y)_x = \frac{d}{dx} f_y$$

Chain Rule

$$\begin{aligned} & \text{For } z(t) = f(x(t), y(t)), \\ & \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} \\ & \text{For } z(s,t) = f\left(x(s,t), y(s,t)\right), \\ & \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\ & \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \end{aligned}$$

Directional Derivatives

The directional derivative of f at (a, b) in the direction of unit vector $\hat{\boldsymbol{u}} = u_1 \boldsymbol{i} + u_2 \boldsymbol{j}$ is

$$\begin{aligned} D_u f(a,b) &= f_x(a,b) \cdot u_1 + f_y(a,b) \cdot u_2 \\ D_u f(a,b) &= \nabla f(a,b) \cdot \hat{\boldsymbol{u}} \\ \text{(gradient vector . unit direction)} \end{aligned}$$

- geometric meaning: $D_u f(a, b)$ is the gradient of the tangent at (a, b) to curve C on a surface z = f(x, y)
 - rate of change of f(x, y) at (a, b) in the direction of u

Gradient Vector

The **gradient** at f(x, y) is the vector $\nabla f = f_x \mathbf{i} + f_y \mathbf{j} = (f_x, f_y)$

In Direction of u:

$$D_u f(a, b) = \nabla f(a, b) \cdot \hat{\boldsymbol{u}}$$

= $|\nabla f(a, b)| \cos \theta$

- f increases most rapidly in the direction $\nabla f(a,b)$
- f decreases most rapidly in the direction $-\nabla f(a,b)$
- largest possible value of $D_u f(a,b) = |\nabla f(a,b)|$
- (occurs in the same direction as (f_x, f_y))

Physical Meaning

Suppose a point p moves a small distance Δt along a unit vector $\hat{\boldsymbol{u}}$ to a new point \boldsymbol{q} .

increment in f, $\Delta f \approx D_u f(\mathbf{p})(\Delta t)$

Maximum & Minimum Values

f(x,y) has a **local maximum** at (a,b) if $f(x,y) \leq f(a,b)$ for all points (x, y) near (a, b). f(x,y) has a **local minimum** at (a,b) if f(x,y) > f(a,b)for all points (x, y) near (a, b).

Critical Points

- $f_x(a,b)$ or $f_y(a,b)$ does not exist; OR
- $f_x(a,b) = 0$ and $f_y(a,b) = 0$
 - $f_x(0,b) \le 0$ maximum point along the x axis
- $f_u(a,0) > 0$ minimum point along the y axis

Saddle Points

• $f_x(a,b) = 0, f_y(a,b) = 0$

· neither a local minimum nor a local maximum

Second Derivative Test

Where $f_x(a,b) = 0$ and $f_y(a,b) = 0$.

Discriminant D:

07. DOUBLE INTEGRALS

Let ΔA_i be the area of R_i and (x_i, y_i) be a point on R_i . Let f(x, y) be a function of two variables. The **double** integral of f over R is

$$\iint_{R} f(x,y)dA = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}, y_{i}) \Delta A_{i}$$

Geometric Meaning

 $\iint_{B} f(x,y)dA$ is the volume under the surface z=f(x,y) and above the xy-plane over the region R.

Properties of Double Integrals

- 1. $\iint_{\mathcal{B}} (f(x,y) + g(x,y)) dA$ $=\iint_R f(x,y)dA + \iint_R g(x,y)dA$
- 2. $\iint_R cf(x,y)dA = c\iint_R f(x,y)dA$, where c is a
- 3. If $f(x,y) \geq g(x,y)$ for all $(x,y) \in \mathbb{R}$, then
- $\iint_R f(x,y)dA \geq \iint_R g(x,y)dA$ 4. If $R=R1\cup R2,\,R1$ and R2 do not overlap, then $\iint_{B} f(x,y)dA = \iint_{B_1} f(x,y)dA + \iint_{B_2} f(x,y)dA$
- 5. The area of R,
- $A(R)=\iint_R dA=\iint_R 1dA$ 6. If $m\leq f(x,y)\leq M$ for all $(x,y)\in R$, then
- $mA(R) \le \iint_R f(x,y) dA \le MA(R)$

Rectangular Regions

For a rectangular region R in the xy-plane, a < x < b, c < y < d

$$\iint_{R} f(x,y)dA = \int_{c}^{d} \left[\int_{a}^{b} f(x,y)dx \right] dy$$
$$= \int_{a}^{b} \left[\int_{c}^{d} f(x,y)dy \right] dx$$

If
$$f(x,y) = g(x)h(y)$$
, then
$$\iint_{\mathcal{B}} g(x)h(y)dA = \left(\int_{-a}^{b} g(x)dx\right)\left(\int_{-a}^{d} h(y)dy\right)$$

General Regions

Type I: Integrate against complicated y first

lower/upper bounds: $g_1(x) \le y \le g_2(x)$

> left/right bounds: $a \le x \le b$

The region R is given by

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x,y)dy \right] dx$$

Type II: Integrate against complicated x first

lower/upper bounds: $c \le y \le d$

left/right bounds: $h_1(y) \le x \le h_2(y)$

The region R is given by $\iint_{R} f(x,y)dA = \int_{0}^{d} \left[\int_{h_{1}(x)}^{h_{2}(y)} f(x,y)dx \right] dy$

Polar Coordinates

 $x = r \cos \theta$ $y = r \sin \theta$ Hence, $x^2 + y^2 = r^2$ $dxdy \Rightarrow rdrd\theta$

$$\Delta A \approx (r\Delta\theta)(\Delta r)$$
$$= r\Delta r\Delta\theta$$
$$dA = rdrd\theta$$

The region R is given by

$$R: a \leq r \leq b, \ \alpha \leq \theta \leq \beta$$

$$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r \ dr d\theta$$

Where,
$$D = \{(r, \theta) \mid 0 \le \theta \le ..., 0 \le r \le ...\}$$

Applications

Volume

Suppose D is a solid under the surface of z = f(x, y)over a plane region R

Volume of
$$D = \iint_R f(x, y) dA$$

Surface Area

For area S of that portion of the surface z = f(x, y)that projects onto R,

$$S = \iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$

08. ORDINARY DIFFERENTIAL **EQUATIONS**

- general solution: solution containing arbitrary constants
- · particular solution: gives specific values to arbitrary
- the general solution of the n-th order DE will have narbitrary constants

Separable Equations (dx/dy separable)

A first-order DE is separable if it can be written in the form M(x) - N(y)y' = 0 or M(x)dx = N(y)dy

Reductions to Separable Form

form	rec change of variable
$y' = g(\frac{y}{x})$	$ set v = \frac{y}{x} \\ \Rightarrow y' = v + xv' $
y' = f(ax + by + c) $\Rightarrow y' = \frac{ax + by + c}{\alpha x + \beta y + \gamma}$	
Standard Form: $y' + P(x)y = Q(x)$	$R = e^{\int P dx}$ $\Rightarrow y = \frac{1}{R} \int RQ dx$
Bernoulli Equation: $y' + P(x)y = Q(x)y^n$	set $z = y^{1-n}$ sub z and z' obtain eqn $\Rightarrow y' = \frac{y^n}{1-n}z'$ $R = e^{\int P dz}$
	$\Rightarrow z = \frac{1}{R} \int RQdx$

Population Models

N - number; B - birth rate; t - time; D - death rate

Logistic Model
$$N = \frac{N_{t=\infty}}{1 + (N_{t=\infty} - 1) - Bt}$$

Malthus Model $N(t) = N_0 e^{kt}$ where k = B - D

Common Scenarios: Uranium decays into Thorium

amount of uranium, $U(t) = U_0 e^{-k_U t}$

$$\frac{dU}{dt} = -k_U U$$
amount of thorium,

 $T(t) = \frac{k_U U_0}{k_T - k_U} (e^{-k_U t} - e^{-k_T t})$ $\frac{d\vec{T}}{dt} = k_U U - k_T T$

decay rate constant, $k = \frac{\ln 2}{t_{1/2}}$

ratio of thorium to uranium, $\frac{k_U}{t}$ $(1 - e^{-(k_T - k_U)t})$

Cooling/Heating

Radioactive decay

 $Q(t) = Q_0 e^{-kt}$

Falling objects (N2L)

Resistance = bv^2 $m\frac{dv}{dt} = mg - bv^2$ Let $k = \sqrt{\frac{mg}{h}}$

 $\Rightarrow \frac{1}{v^2 - k^2} dv = -\frac{b}{m} dt$

Resistive medium Resistance = kv

 $m\frac{dv}{dt} = mg - kv$ $v' + \frac{k}{m}v = g$ (linear)

 $\frac{dT}{dt} = k(T - T_{env})$

 $\frac{1}{T - T_{env}} dT = kdt$

Concentration of salt in liquid

Let R = rate of flow (in and out), Q = total amount of salt, V = total volume, C_{in} = concentration of inflow

Rate of flow,
$$\frac{dQ}{dt} = RC_{in} - \frac{R}{V}Q$$

 $\Rightarrow Q' + \frac{R}{V}Q = RC_{in}$