

Introduction to VLSI Circuits and Systems 積體電路概論

Chapter 07

Electronic Analysis of CMOS Logic Gates

賴秉樑

Dept. of Electronic Engineering
National Chin-Yi University of Technology
Fall 2007

- □ DC Characteristic of the CMOS Inverter
- Inverter Switching Characteristic
- Power Dissipation
- DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

The Inverter Circuit

- ☐ The CMOS inverter gives the basic for calculating the electrical characteristic of logic gates
 - » The conduction states of M_n and M_p is determined by input voltage V_{in}
 - » Two types of calculations: *DC analysis* and *transient* analysis

DC analysis

» Provide a direct mapping of the input to the output, such that to determine V_{out}

□ Transient analysis

» The input voltage is an explicit function of time $V_{in}(t)$ corresponding to a changing logic value

pFET:
$$V_{Tp} < 0$$

 $\beta_p = \kappa'_p \left(\frac{W}{L}\right)_p$

nFET:
$$V_{Tn} > 0$$

 $\beta_n = k'_n \left(\frac{W}{L}\right)_n$

Figure 7.1 The CMOS inverter circuit

DC Analysis of Inverter

- The DC characteristics of the inverter are portrayed in the *voltage transfer characteristic* (VTC), which is a plot of V_{out} as a function of V_{in}
 - » Simply, the output high voltage of the circuits as

$$V_{OH} = V_{DD}$$
 (7.1) $(V_{in} = 0)$

» The output low voltage

$$V_{OL} = 0 V$$
 (7.2) $(V_{in} = V_{DD})$

» The logic swing at the output is

$$V_L = V_{OH} - V_{OL} = V_{DD}$$
 (7.3) (full-rail output)

□ Since this is equal to the full value of the power supply, this is called a *full-rail output*

(a) Low input voltage

(b) High input voltage

Figure 7.2 V_{OH} and V_{OL} for the inverter

VTC of the Inverter

Starting with an input voltage of $V_{in} = 0$ V and then increasing it up to a value of $V_{in} = V_{DD}$

$$V_{GSn} = V_{in}$$

$$V_{SGp} = V_{DD} - V_{in}$$
(7.4)

» M_p goes into cutoff when

$$V_{in} = V_{DD} - |V_{Tp}| (7.5)$$

- » The logic 0 and 1 voltage ranges are defined by the changing slope of the VTC
 - > A logic 0 input voltage (input low voltage)

$$0 \le V_{in} \le V_{IL} \tag{7.6}$$

> A logic 1 input voltage (input high voltage)

$$V_{IH} \le V_{in} \le V_{DD} \tag{7.7}$$

» The voltage noise margins give a quantitative measure of how stable the inputs are with respect to coupled electromagnetic signal interface, there are

$$VNM_{H} = V_{OH} - V_{IH}$$

$$VNM_{L} = V_{IL} - V_{OL}$$
(7.8)

Figure 7.3 Voltage transfer curve for the NOT gate

Definition of Noise Margins

Midpoint Voltage V_M

$$I_{Dn} = I_{Dp}$$
 (Let $V_{in} = V_{out} = V_{M}$) (7.9)

$$V_{sat} = V_{GSn} - V_{Tn} = V_M - V_{Tn}$$
 (7.10)

$$V_{DSn} > V_{sat} = V_M - V_{Tn}$$
 (7.11)

$$\frac{\beta_n}{2} (V_{M-} V_{Tn})^2 = \frac{\beta_p}{2} (V_{DD} - V_M - |V_{Tp}|)^2$$
 (7.12)

$$\sqrt{\frac{\beta_n}{\beta_p}}(V_M - V_{Tn}) = V_{DD} - V_M - |V_{Tp}|$$
 (7.13)

$$V_{M} = \frac{V_{DD} - \left| V_{Tp} \right| + \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$
(7.14)

(7.9)
$$\frac{\beta_n}{\beta_p} = \frac{\kappa'_n \left(\frac{W}{L}\right)_n}{\kappa'_p \left(\frac{W}{L}\right)_p}$$
 (7.15)

$$\frac{\kappa'_n}{\kappa'_p} \approx 2 \text{ to } 3 \tag{7.16}$$

$$\frac{\kappa'_n}{\kappa'_p} = \frac{\mu_n}{\mu_p} = \gamma \tag{7.17}$$

Symmetrical inverter principle

$$V_{M} = \frac{1}{2}V_{DD} \tag{7.18}$$

$$\frac{\beta_n}{\beta_p} = \left(\frac{\frac{1}{2}V_{DD} - |V_{Tp}|}{\frac{1}{2}V_{DD} - V_{Tn}}\right)^2 \tag{7.19}$$

$$\beta_n = \beta_p \tag{7.20}$$

Figure 7.4 Inverter voltage for V_M calculation

VTC Variation

In Figure 7.5(a), the pFET has a width of about W_p $2W_n$

$$V_M = (V_{DD}/2)$$

In Figure 7.5(b), the pFET has a width of about W_p W_n

$$> V_M < (V_{DD}/2)$$

At the physical level, the relative device sizes contained in the ratio $\binom{n}{p}$ determine the switching points

Figure 7.5 Comparison of the layouts

Figure 7.6 Dependence of VM on the device ratio

Introduction to VLSI Circuits and Systems, NCUT 2007

- □ DC Characteristic of the CMOS Inverter
- ☐ Inverter Switching Characteristic
- Power Dissipation
- DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

Switching Characteristic

- ☐ High-speed digital system design requires that logic gates introduce a minimum amount of time delay when the inputs change
 - » The output 1-to-0 transition introduces a *fall time* delay of t_f
 - » The output 0-to-1 transition introduces a *rise time* delay of t_r
- ☐ The rise time and fall time can be calculated by analyzing the electronic transitions of the circuits
 - » parasitic resistance
 - » parasitic capacitances of the transistors

Figure 7.7 General switching waveforms

RC Model of Inverter

■ Both FETs can be replaced by their switch equivalents, which results in the simplified RC model

» Given the aspect ratios
$$\left(\frac{W}{L}\right)_n$$
 and $\left(\frac{W}{L}\right)_p$

$$R_{n} = \frac{1}{\beta_{n}(V_{DD} - V_{Tn})}$$

$$R_{p} = \frac{1}{\beta_{p}(V_{DD} - |V_{Tp}|)}$$
(7.28)

» Finding the capacitance C_{Dn} and C_{Dp} at the output node

$$C_{Dn} = C_{GSn} + C_{DBn} = \frac{1}{2} C_{ox} L' W_{n+} C_{jn} A_n + C_{jswn} P_n$$

$$C_{Dp} = C_{GSp} + C_{DBp} = \frac{1}{2} C_{ox} L' W_{p+} C_{jp} A_{pp} + C_{jswp} P_p$$
(7.29)

☐ It is significant that increasing the channel width of a FET increases the parasitic capacitance values

(a) FET circuit

(b) RC switch model equivalent

Figure 7.8 RC switch model equivalent for the CMOS inverter

Fan-out (FO)

- The fan-out gates act as a *load* to the driving circuit because of their *input* capacitance C_{in}
 - » Therefore, the total input capacitance is (Figure 7.9(a))

$$C_{in} = C_{Gv} + C_{Gn} (7.30)$$

» In Figure 7.9(b), the external load capacitance C_L is

$$C_L = 3C_{in} \tag{7.31}$$

☐ In Figure 7.10 where the total output capacitance is defined as

$$C_{out} = C_{FET} + C_L \tag{7.32}$$

$$C_{FET} = C_{Dn} + C_{Dp}$$
 (7.33)

Figure 7.9 Input capacitance and load effects

(a) External load

(b) Complete switch model

Figure 7.10 Evolution of the inverter switching model

Fall Time Calculation

- Initially, $V_{out}(0) = V_{DD}$, and $V_{in} = 0$ V and is switched to $V_{in} = V_{DD}$ at time t = 0; we time shift this event to occur at t = 0
 - » The current leaving the capacitor is

$$i = -C_{out} \frac{dV_{out}}{dt} = \frac{V_{out}}{R_n}$$
 (7.42)

» The differential equation for the discharge events

$$V_{out}(t) = V_{DD}e^{-\frac{t}{\tau_n}}, where \tau_n = R_n C_{out}$$
 (7.43, 44)

$$\Rightarrow t = \tau_n \ln \left(\frac{V_{DD}}{V_{out}} \right) \tag{7.45}$$

$$t_f = t_y - t_x$$

$$= \tau_n \ln \left(\frac{V_{DD}}{0.1 V_{DD}} \right) - \tau_n \ln \left(\frac{V_{DD}}{0.9 V_{DD}} \right)$$

$$= \tau_n \ln(9)$$
(7.46)

$$\Rightarrow t_f \approx 2.2\tau_n \quad (t_{HL} = t_f) \tag{7.48, 49}$$

(a) Discharge circuit

(b) Output waveform

Figure 7.12 Discharge circuit for the fall time calculation

The Rise Time

- Initially, $V_{out}(0) = 0$ V, and $V_{in} = V_{DD}$ and is switched to $V_{in} = 0$ V at t = 0; we time shift this event to occur at t = 0
 - » The charge current is given by

$$i = C_{out} \frac{dV_{out}}{dt} = \frac{V_{DD} - V_{out}}{R_p}$$
 (7.50)

» The differential equation for the charge events

$$V_{out}(t) = V_{DD} \left[1 - e^{-\frac{t}{\tau_p}} \right], where \tau_p = R_p C_{out}$$
 (7.51, 52)

$$t_r = t_v - t_u \tag{7.53}$$

$$\Rightarrow t_r = \ln(9)\tau_p \approx 2.2\tau_p \tag{7.54}$$

$$\Rightarrow f_{\text{max}} = \frac{1}{t_{HL} + t_{LH}} = \frac{1}{t_r + t_f}$$
 (7.55)

 \Box f_{max} is the largest frequency that can be applied to the gate and still allow the output to settle to a definable state

(a) Charge circuit

(b) Output waveform

Figure 7.13 Rise time calculation

Propagation Delay (1/2)

The propagation delay time t_p is often used to estimate the "reaction" delay time from input to output

$$t_p = \frac{\left(t_{pf} + t_{pr}\right)}{2} \tag{7.64}$$

» t_{pf} is the output fall time from the maximum level to the "50%" voltage line, i.e., from V_{DD} to $(V_{DD}/2)$

$$t_{pf} = \ln(2)\tau_n \tag{7.65}$$

» t_{pr} is the propagation rise time from 0 V to $(V_{DD}/2)$

$$t_{pr} = \ln(2)\tau_p \tag{7.65}$$

$$\Rightarrow t_p \approx 0.35 \left(\tau_n + \tau_p\right) \qquad (7.66)$$

☐ Commonly used in basic logic simulation programs because does not provide detailed information on the rise and fall times as individual quantities

Figure 7.14 Propagation time definitions

Propagation Delay (2/2)

☐ The rise and fall time equations provide the basic for high-speed CMOS design

$$C_{out} = C_{FET} + C_L \tag{7.67}$$

Case II: When C_L 0

$$\Rightarrow t_r \approx 2.2R_p(C_{FET} + C_L)$$

$$\Rightarrow t_f \approx 2.2R_n(C_{FET} + C_L)$$
(7.68)

$$\alpha_p = 2.2R_p = \frac{2.2}{\beta_p (V_{DD} - |V_{Tp}|)}$$
 (7.71)

$$\beta_p = \kappa_p \left(\frac{W}{L} \right)_p$$

Case I: When
$$C_L = 0$$
,

(7.70)
$$\beta_n = \kappa_n' \left(\frac{W}{L} \right) \tag{7.73}$$

Figure 7.15 General behavior of the rise and fall time

Delay Definitions

- □ DC Characteristic of the CMOS Inverter
- Inverter Switching Characteristic
- □ Power Dissipation
- □ DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- Transmission Gates and Pass Transistors

Power Dissipation (1/2)

The current I_{DD} flowing from the power supply to ground gives a dissipated power of

$$P = V_{DD}I_{DD}$$
 (7.85)

» Since V_{DD} is assumed to be a constant

$$P = P_{DC} + P_{dvn}$$
 (7.86)

Where P_{DC} is the DC term and P_{dyn} is due to dynamic switching events

» DC contribution

$$P_{DC} = V_{DD}I_{DDO}$$
 (7.87)

Where I_{DDQ} is leakage current

- Leakage current is very small, therefore, the value of P_{DC} is thus quite small
 - » However, leakage power on today is critical for low-power Design

Figure 7.16 Origin of power dissipation calculation

Figure 7.17 DC current flow

Power Dissipation (2/2)

□ Dynamic power dissipation P_{dyn}

$$f = \frac{1}{T}$$
 (7.88)

» P_{dyn} arises from the observation that a complete cycle effectively creates a path for current to flow from the power supply to ground

$$Q_{e} = C_{out} V_{DD} \qquad (7.89)$$

The average power dissipation over a single cycle with a period T is

$$P_{av} = V_{DD}I_{DD} = V_{DD} \left(\frac{Q_e}{T}\right)$$
 (7.90)

$$\Rightarrow P_{sw} = C_{out} V_{DD}^{2} f \tag{7.91}$$

$$P = V_{DD}I_{DDQ} + C_{out}V_{DD}^{2}f \qquad (7.92)$$

DC term dynamic power term

(b) Charge

(c) Discharge

Figure 7.18 Circuit for finding the transient power dissipation

- □ DC Characteristic of the CMOS Inverter
- □ Inverter Switching Characteristic
- Power Dissipation
- □ DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

NAND Analysis (1/2)

Figure 7.19 NAND2 logic circuit

Figure 7.20 NAND 2 VTC analysis

Figure 7.21 Layout of NAND2 for V_M calculation

- (a) Separate transistors
- (b) Single equivalent FET

Figure 7.22 Simplification of the series-connected nFETs

Introduction to VLSI Circuits and Systems, NCUT 2007

NAND Analysis (2/2)

Find V_M for the case of simultaneous switching, where the nFET and pFET transconductance are $\binom{n}{2}$ and $\binom{2}{n}$

$$\frac{(\beta_n/2)}{2}(V_M - V_{T_n})^2 = \frac{(2\beta_p)}{2}(V_{DD} - V_M - |V_{T_p}|)^2$$
 (7.93)

$$V_{M} = \frac{V_{DD} - |V_{Tp}| + \frac{1}{2} \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}}{1 + \frac{1}{2} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$
(7.94)

$$V_{M} = \frac{V_{DD} - |V_{Tp}| + \frac{1}{N} \sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{Tn}}{1 + \frac{1}{N} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$
(7.95)

(a) Separate transistors

(b) Single equivalent FET

Figure 7.23 Simplification of the series-connected nFETs

Figure 7.24 Simplified VM circuit for the NAND2 gate

NOR Analysis

$$\frac{(2\beta_n)}{2}(V_M - V_{Tn})^2 = \frac{(\beta_p / 2)}{2}(V_{DD} - V_M - |V_{Tp}|)^2$$
 (7.96)

$$V_{M} = \frac{V_{DD} - |V_{Tp}| + 2\sqrt{\frac{\beta_{n}}{\beta_{p}}}V_{Tn}}{1 + 2\sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$
(7.97)

$$V_{M} = \frac{V_{DD} - |V_{Tp}| + N\sqrt{\frac{\beta_{n}}{\beta_{p}}}V_{Tn}}{1 + N\sqrt{\frac{\beta_{n}}{\beta_{p}}}}$$
(7.98)

$$P_{DC} = V_{DD}I_{DDO} \tag{7.99}$$

$$P_{sw} = C_{out} V_{DD}^{2} f_{gate} {(7.100)}$$

Figure 7.25 NOR2 circuit

Figure 7.27 NOR23 VM calculation

(a) Transition table

(b) VTC family

Figure 7.26 NOR 2 VTC analysis

- DC Characteristic of the CMOS Inverter
- Inverter Switching Characteristic
- Power Dissipation
- DC Characteristic: NAND and NOR Gates
- □ NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

NAND Switching Times (1/2)

□ Figure 7.28

$$C_{out} = C_{FFT} + C_L$$
 (7. 101)

$$C_{FET} = C_{Dn} + 2C_{Dn} ag{7. 102}$$

$$R_{P} = \frac{1}{\beta_{p} (V_{DD} - |V_{Tp}|)}, \quad R_{n} = \frac{1}{\beta_{n} (V_{DD} - V_{Tn})}$$
 (7. 103)

□ Figure 7.29 (a)

$$V_{out}(t) = V_{DD}[1 - e^{-t/\tau_p}]$$
 (7. 104)

where
$$\tau_p = R_p C_{out}$$
 (7. 105)

$$t_r \approx 2.2\tau_p \tag{7.106}$$

$$t_r = t_0 + \alpha_0 C_L \tag{7.107}$$

$$t_0 = 2.2R_p C_{FET} (7.108)$$

$$\alpha_0 = 2.2R_p \tag{7.109}$$

Figure 7.28 NAND2 circuit for transient calculations

(a) Charge circuit

(b) Discharge circuit

Figure 7.29 NAND2 subcircuits for estimating rise and fall times
Introduction to VLSI Circuits and Systems, NCUT 2007

NAND Switching Times (2/2)

$$V_{out}(t) = V_{DD}e^{-t/\tau_n}$$

$$\tau_n = R_n (2C_{out} + C_X)$$

(7. 120 from 7.111)

$$\tau_n = C_{out}(R_n + R_n) + C_X R_n$$

$$C_{eff} = 2C_{out} + C_X$$

$$\tau_n = \tau_{n1} + \tau_{n2}$$

(7.111)

$$\tau_n = C_{out}(2R_n) + C_X R_n$$

(7.122)

where
$$\tau_{n1} = C_{out}(R_n + R_n)$$
 (7. 1)

$$\tau_{n2} = C_X R_n$$

$$t_f \approx 2.2 \tau_n$$

$$t_f \approx 2.2[(C_{FET} + C_L)(2R_n) + C_X R_n]$$
 (**

$$t_f = t_1 + \alpha_1 C_L$$

$$t_1 = 2.2R_n(2C_{FET} + C_X)$$

$$\alpha_1 = 4.4R_n \tag{7.119}$$

(b) Discharge circuit

NOR Switching Times (1/2)

□ Figure 7.30

$$C_{out} = C_{FET} + C_L$$
 (7. 123)

$$C_{FET} = 2C_{Dn} + C_{Dp} ag{7. 124}$$

☐ Figure 7.31 (a)

$$V_{out}(t) = V_{DD}e^{-t/\tau_n}$$
 (7. 125)

$$\tau_n = R_n C_{out} \tag{7. 126}$$

$$t_f \approx 2.2\tau_n \tag{7. 127}$$

$$t_f = t_1 + \alpha_1 C_L (7.128)$$

$$t_1 = 2.2R_n C_{FET} (7.129)$$

$$\alpha_1 = 2.2R_n \tag{7.130}$$

Figure 7.30 NOR2 circuit for switch time calculations

(a) Discharge circuit

(b) Charge circuit

Figure 7.31 Subcircuits for the NOR2 transient calculations
Introduction to VLSI Circuits and Systems, NCUT 2007

NOR Switching Times (2/2)

☐ Figure 7.31 (b)

$$V_{out}(t) = V_{DD}[1 - e^{-t/\tau_p}]$$
 (7. 131)

$$\tau_1 = C_{out}(R_p + R_p) \tag{7.132}$$

$$\tau_2 = C_{\nu} R_{\rho} \tag{7.133}$$

$$\tau_{p} = \tau_{1} + \tau_{2}$$

$$= C_{out}(2R_{p}) + C_{y}R_{p}$$
(7. 134)

$$t_r = 2.2\tau_p (7.135)$$

$$t_r = t_0 + \alpha_0 C_L \tag{7.136}$$

where
$$t_0 = 2.2R_p (2C_{FET} + C_v)$$
 (7. 137)

$$\alpha_0 = 4.4R_p (7.138)$$

(b) Charge circuit

- DC Characteristic of the CMOS Inverter
- Inverter Switching Characteristic
- Power Dissipation
- DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- ☐ Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

Analysis of Complex Logic Gates

$$f = \overline{x \cdot (y + z)}$$

(7.142)

$$\tau_p = R_p C_p + 2R_p C_{out}$$

$$\left(\frac{W}{L}\right)_{nx} = \left(\frac{W}{L}\right)_{ny} = \left(\frac{W}{L}\right)_{nz}$$

$$t_r = t_0 + \alpha_0 C_L$$

$$C_{out} = C_{FET} + C_L \tag{7.143}$$

$$t_0 = 2.2R_p (C_p + 2C_{FET})$$

$$\tau_{n} = R_{n}C_{n} + 2R_{n}C_{out} \tag{7.144}$$

$$\alpha_0 = 2.2R_p$$

$$t_f = 2.2\tau_n$$

= $2.2R_n[C_n + 2(C_{FET} + C_L)]$ (7. 145)
= $t_1 + \alpha_1 C_L$

where
$$t_1 = 2.2R_n(C_n + 2C_{FET})$$
 (7. 146)

$$\alpha_1 = 2.2R_n \tag{7.147}$$

$$\left(\frac{W}{L}\right)_{\text{max}} = \left(\frac{W}{L}\right)_{\text{max}} = \left(\frac{W}{L}\right)_{\text{max}} \tag{7.148}$$

Figure 7.32 Complex logic gate circuit

Introduction to VLSI Circuits and Systems, NCUT 2007

Power Dissipation

Power dissipation in a simple inverter

$$P = V_{DD}I_{DDO} + C_{out}V_{DD}^{2}f (7.153)$$

■ We introduce the *activity coefficient a* that represents the probability that an output $0 \rightarrow 1$ transition takes place during one period

A	В	$\overline{A+B}$	$\overline{A \cdot B}$
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	0

Figure 7.33 Truth tables for determining activity coefficients

$$P_{dyn} = aC_{out}V_{DD}^{2}f$$
 (7. 154) $a_{NAND2} = \left(\frac{3}{4}\right)\left(\frac{1}{4}\right) = \frac{3}{16}$ (7. 158)

$$P_{dyn} = \sum_{i=1}^{N} a_i C_i V_i V_{DD} f$$
 (7. 155) $a_{NOR3} = \frac{7}{64} = a_{NAND3}$ (7. 159)

$$a = p_0 p_1$$
 (7. 156) $a_{XNOR2} = \frac{1}{4} = a_{XOR2}$ (7. 160)

$$a_{NOR2} = \left(\frac{3}{4}\right)\left(\frac{1}{4}\right) = \frac{3}{16}$$
 (7. 157)

- □ DC Characteristic of the CMOS Inverter
- □ Inverter Switching Characteristic
- Power Dissipation
- □ DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

Gate Design for Transient Performance (1/2)

$$\beta = k' \left(\frac{W}{L}\right)$$
 (Inverter reference starting) $\frac{1}{\beta_n (V_{DD} - V_{Tn})} = \frac{2}{\beta_N (V_{DD} - V_{Tn})}$

$$R_{p} = \frac{1}{\beta_{p}(V_{DD} - |V_{Tp}|)}, \quad R_{n} = \frac{1}{\beta_{n}(V_{DD} - V_{Tn})} \qquad \beta_{N} = 2\beta_{n}$$

$$\beta_n = \beta_p$$

$$\left(\frac{W}{L}\right)_p = r\left(\frac{W}{L}\right)_n$$

where
$$r = \frac{k_n}{k_p}$$

 $\beta_P = \beta_p$ (NAND2 vs Inverter)

$$R = R_N + R_N$$

where
$$R_N = \frac{1}{\beta_N (V_{DD} - V_{Tn})}$$

$$R = R_n = 2R_N$$

$$\frac{1}{\beta_{n}(V_{DD} - V_{Tn})} = \frac{2}{\beta_{N}(V_{DD} - V_{Tn})}$$

$$\beta_N = 2\beta_n$$

$$\left(\frac{W}{L}\right)_{N} = 2\left(\frac{W}{L}\right)_{n}$$

$$\beta_N = \beta_n$$
 (NOR2 vs Inverter)

$$\frac{1}{\beta_p(V_{DD} - |V_{Tp}|)} = \frac{2}{\beta_P(V_{DD} - |V_{Tp}|)} \bullet \bigcirc \beta_P \bullet \bigcirc \beta_P = \beta_p$$

$$\beta_P = 2\beta_p$$

$$\left(\frac{W}{L}\right)_p = 2\left(\frac{W}{L}\right)_p$$

(a) Inverter

Figure 7.34 Relative FET sizing

Gate Design for Transient Performance (2/2)

■ Extend to large chains as Figure 7.35

$$\beta_N = 3\beta_n, \, \beta_P = \beta_p \tag{7.177}$$

$$\left(\frac{W}{L}\right)_{N} = 3\left(\frac{W}{L}\right)_{n}, \left(\frac{W}{L}\right)_{P} = \left(\frac{W}{L}\right)_{P}$$
 (7. 178)

$$\beta_N = \beta_n, \, \beta_P = 3\beta_p \tag{7.179}$$

$$\left(\frac{W}{L}\right)_{N} = \left(\frac{W}{L}\right)_{n}, \left(\frac{W}{L}\right)_{P} = 3\left(\frac{W}{L}\right)_{p} \tag{7.180}$$

□ Figure 7.36

$$f = \overline{(a \cdot b + c \cdot d) \cdot x} \tag{7.181}$$

$$\beta_N = 3\beta_n = \beta_{N1} \tag{7.182}$$

$$\beta_P = 2\beta_p \tag{7.183}$$

$$\beta_{P1} = \beta_p \tag{7.184}$$

$$\beta_{P1} = \beta_P = 2\beta_P \tag{7.185}$$

Figure 7.35 Sizing for 3-input gates

Figure 7.36 Sizing of a complex logic gate

Introduction to VLSI Circuits and Systems, NCUT 2007

- □ DC Characteristic of the CMOS Inverter
- □ Inverter Switching Characteristic
- Power Dissipation
- DC Characteristic: NAND and NOR Gates
- NAND and NOR Transient Response
- Analysis of Complex Logic Gates
- ☐ Gate Design for Transient Performance
- ☐ Transmission Gates and Pass Transistors

Transmission Gates

$$R_{TG} = \max(R_n, R_p)$$
 (7. 186)

$$C_{in} = C_{S,n} + C_{D,p} (7.187)$$

 \square Large ratio of (W/L) decrease the resistance, but a large W implies large capacitances

(a) Circuit

(b) RC model

Figure 7.37 Transmission gate modeling

Pass Transistor

- □ Pass FETs can be used in place of transmission gates in most circuits
 - » Less area and wiring, but cannot pass the entire voltage range

$$V_{out}(t) = V_{max} \left(\frac{t/2\tau_n}{1 + t/2\tau_n} \right)$$
 (7. 188) $t_f = \ln(19)\tau_n \approx 2.94\tau_n$ (7. 195)

where
$$V_{\text{max}} = V_{DD} - V_{Tr}$$
 (7. 189) $t_r \approx 6t_f$ (7. 196)

$$\lim_{t \to \infty} V_{out}(t) = V_{max}$$
 (7. 190) $t_r = 2.94\tau_p$ (7. 197)

$$\tau_{p} = R_{p}C_{out}$$
 (7. 191) where $\tau_{p} = R_{p}C_{out}$ (7. 198)

$$t_r = 18\tau_n$$
 (7. 192) $V_{\min} = |V_{Tp}|$ (7. 199)

$$V_{out}(t) = V_{\text{max}}\left(\frac{2e^{-(t/\tau_n)}}{1 + e^{-(t/\tau_n)}}\right) \quad (7. 193) \qquad t_f = 18\tau_p \tag{7. 200}$$

$$\lim_{t \to \infty} V_{out}(t) = 0 {(7.194)}$$

Figure 7.38 nFET pass transistor

Figure 7.39 Voltage waveforms for a nFET pass transistor