\sim Assignment 4 Computational Models Spring 2022 \sim

Saar Barak

Exercise 1

(a)

Definition I. for every $x \in \Sigma^*$

- If $x \in \mathcal{L}$, then there exists $c \in \Sigma^*$ such that V accept (x, c)
- If $x \notin \mathcal{L}$, then V rejects (x, c) for every $c \in \Sigma^*$

Definition II. for every $x \in \Sigma^*$

- If $x \in \mathcal{L}$, then there exists $c \in \Sigma^*$ such that V accept (x, c)
- If $x \notin \mathcal{L}$, then V does not accept (x, c) for every $c \in \Sigma^*$

 $\mathbf{I} \Rightarrow \mathbf{II}$ first property hold since its identical. and the second since when V reject $(x,c) \Rightarrow V$ does not accept (x,c).

 $\mathbf{II} \Rightarrow \mathbf{I}$ Let $V_{\mathbf{II}}$ define a verifier. to prove that for some \mathcal{L} exists a verifier by \mathbf{I} , its sufficient to prove that $\mathcal{L} \in \mathcal{RE}$. now lets define TM that run as follow.

Algorithm 1 $\mathcal{M}_{\mathcal{L}}$ on input x

```
Let c_1, c_2 \ldots denote lexicographic order for \forall c \in \Sigma^*
i \leftarrow 1
while i < \infty do
for j \leftarrow 1 to i do
simulate V_{\mathbf{II}}(x, c_j) for i steps
Accept if V_{\mathbf{II}}(x, c_j)
end for
end while
```

Let $x \in \mathcal{L}$ exists V s.t V accept $(x,c) \Rightarrow \mathcal{M}_{\mathcal{L}}$ halt and accept at some point. and If $x \notin \mathcal{L}$ then $\mathcal{M}_{\mathcal{L}}$ does not accept matter how many steps we run. Hence $L(\mathcal{M}_{\mathcal{L}}) = \mathcal{L}$

(b) Definition III

- If $x \in \mathcal{L}$, then there exists $c \in \Sigma^*$ such that V accept (x, c)
- If $x \notin \mathcal{L}$, then V rejects (x, c) for every $c \in \Sigma^*$
- V always halt

 $III \Rightarrow I$ is trivial, since its weaker condition.

¹Recitation 8 ex 3

 $\mathbf{I} \Rightarrow \mathbf{III}$ Let V define a verifier for some \mathcal{L} , same as above by $\mathbf{Def} \mathbf{1}$ its following that $\mathcal{L} \in \mathcal{RE}$, and let $M_{\mathcal{L}}$ define some TM that accept it. we can write the following:

$$\mathcal{L} = \{x : \exists c \text{ such that } (x, c) \in L(V)\}$$

where V has the property that given input (x,c), V reject any input if $x \notin \mathcal{L}$.

Algorithm 2 V_{III} on input (x,c)

If (x,c) is invalid input then Reject

Emulate in parallel $M_{\mathcal{L}}(x)$ and V(x,c)

Accept if $M_{\mathcal{L}}$ accept

Reject if V Reject

By the we define the verifier if $x \in \mathcal{L}$ $M_{\mathcal{L}}$ halt and accept. and if $x \notin \mathcal{L}$ then V reject any input i.e halt and reject. Hence V always halt

Exercise 2

Let $\mathcal{C} \subset \mathcal{RE}$ be such that $\emptyset \in C$. then

$$\mathcal{L}_{\mathcal{C}} = \{\langle M \rangle : M \text{ is a TM and } \mathcal{L}(M) \in \mathcal{C}\} \notin \mathcal{RE}$$

Since $\mathcal{C} \subset \mathcal{RE}$ then exist some $\mathcal{L}' \in \mathcal{RE}$ such that $\mathcal{L}' \notin \mathcal{C}$. Let $M_{\mathcal{L}'}$ denote TM that accept \mathcal{L}'