تاریخ: ۲ اردیبهشت ۱۴۰۰

امتحان میان ترم درس جبر خطی کاربردی

مدت امتحان: ٣ ساعت

8

γ,

۱. فرض کنید

 $Q = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 7 & 6 & 9 & 9 \\ 1 & 6 & 6 & 9 \\ 7 & 6 & 7 & 9 \end{pmatrix}.$

رتبه (رنک) و پوچی ماتریس Q و یک پایه برای فضای سطری Q و یک پایه برای هسته Q پیدا کنید. (کلیه جزيبات محاسبات را بنويسيد.) مطريك ر رستر لا لرامل رحمرها 7 نره

- در نظر بگیرید، همچنین پایه $T(f) = \int_{\circ}^{x} f(t) \, dt$ را بصورت $T: \mathbb{R}_{\mathsf{T}}[x] o \mathbb{R}_{\mathsf{T}}[x]$ در نظر بگیرید، را در نظر بگیرید. $\mathbb{R}_{\mathsf{r}}[x]$ را در نظر بگیرید. $\mathcal{B}_{\mathsf{r}}=(\mathsf{1},x,x^{\mathsf{r}},x^{\mathsf{r}})$ و $\mathbb{R}_{\mathsf{r}}[x]$ را در نظر بگیرید. $(\cdot m \mid k \mid k \mid k \mid k \mid k$ فضای برداری همه چندجملهایهای از درجه حداکثر $\mathbb{R}_k[x]$
 - $ig(oldsymbol{arphi}ig)$ الفig) ماتریس نمایش T در این پایهها یعنی $[T]_{\mathcal{B}_{ar{\gamma}},\mathcal{B}_{ar{\gamma}}}$ را بدست آورید.
- T را بدست آورید. (نک) و پوچی (v) را بدست آورید. یک پایه $b
 eq \circ$ الف) فرض کنید $\mathbf{v}=[a,b,c]^t\in\mathbb{R}^r$ یک بردار دلخواه باشد که $\mathbf{v}=[a,b,c]^t\in\mathbb{R}^r$ یک پایه $\mathbf{v}=[a,b,c]$
- برای \mathbb{R}^{r} است. ب) فرض کنید $\mathcal{B}=(\mathbf{i},\mathbf{j},\mathbf{k})$ باشد، ماتریس تبدیل پایه از پایه قدیمی \mathcal{B} به پایه جدید \mathcal{B} برعکس را بدست آورید.
- ج) می دانیم که مختصات دوران نقطه $u=[u_{1},u_{7},u_{7}]^{t}$ حول محور z (بردار u) به اندازه زاویه θ در جهت uمثلثاتی از رابطه u'=Ru مثلثاتی از رابطه

 $R = \begin{pmatrix} \cos \theta & -\sin \theta & \circ \\ \sin \theta & \cos \theta & \circ \\ & & & & \end{pmatrix}.$

با کمک (v) ماتریس دوران حول بردار $au^{ au}$ با کمک $v=[a,b,c]^t\in\mathbb{R}^{ au}$ به اندازه زاویه au را بدست آورید.

۴. فرض کنید V فضای برداری همه توابع حقیقی پیوسته روی بازه [-1,1] باشد که با ضرب داخلی زیر مجهز شده است،

 $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x) dx.$

را زیرفضای تولید شده توسط توابع ۱ $v_1=x$ ، $v_2=x$ و $v_3=v_5$ در نظر بگیرید. با کمک الگوریتم Wگرام-اشمیت یک پایه اورتونرمال برای W بدست آورید.

ه نورن کنید $W_{ au}$ در راستای $W_{ au}$ در راستای $W_{ au}$ در راستای $W_{ au}$ در نظر بگیرید (یعنی $\mathbb{R}^n=W_{ au}\oplus W_{ au}$ برای هر W_{T} داریم Px تصویر x روی W_{T} در راستای W_{T} است). ثابت کنید

$$R(P) = N(I - P) = W_{r}$$
, $R(I - P) = N(P) = W_{r}$.