Formale Systeme
Example Test 2, to be discussed in the Q&A Session on January 25, 2019

Task 1. (20 points) Define the following notions:

- A relation R is transitive.
- \bullet A relation R is an equivalence.
- A function f is surjective.
- |A| < |B| for two sets A and B.

Task 2. (20 points) Let X and Y be nonempty sets and $f: X \to Y$ a function. Consider the relation $\ker f \subseteq X \times X$ defined by

$$(x_1, x_2) \in \ker f \quad \Leftrightarrow \quad f(x_1) = f(x_2).$$

Then $\ker f$ is an equivalence relation (you need not prove this).

For $X = Y = \{a, b, c\}$ and $f: X \to Y$ given by f(a) = a, f(b) = b, f(c) = bgive the equivalence classes of $\ker f$.

Prove that $\ker f = \Delta_X$ if and only if f is injective.

Task 3. (20 points) Let $\Sigma = \{0,1\}$ and consider the prefix relation \leq on Σ^* defined by

$$u \leq v \quad \Leftrightarrow \quad \exists w \in \Sigma^*. \, v = uw.$$

Prove that \leq is a partial order.

Task 4. (20 points) Prove that $\aleph_0 + 3 = \aleph_0$ by constructing a suitable bijection.

Task 5. (20 points) Construct a DFA for the language

$$L = L_1 \cup L_2$$

where $L_1 = (a \cup b)^* ab$ and $L_2 = (aa \cup ab)^*$.