### ALEATOIRE - Cours 1 - séance 2

Expérience aléatoire - Evénements aléatoires

### Expérience aléatoire et Espace d'états

**Définition:** On appelle **expérience aléatoire** une expérience  $\mathcal{E}$  qui, reproduite dans des conditions identiques, peut conduire à plusieurs résultats possibles, et dont on ne peut prévoir le résultat par avance.

**Définition:** L'espace de tous les résultats possibles de l'expérience est appelé **espace d'états**. Il est noté  $\Omega$ .

Un résultat possible de l'expérience est noté classiquement  $\omega.$  Ainsi,  $\omega \in \Omega.$ 

- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:
- On envoie une fléchette sur une cible circulaire de 30 cm de
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure:  $\Omega = [0, 1]$ .
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre:  $\Omega = \{(x, y), \sqrt{x^2 + y^2} \le 15\}.$
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure:  $\Omega = [0, 1]$ .
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre:  $\Omega = \{(x, y), \sqrt{x^2 + y^2} \le 15\}.$
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure: Ω = [0, 1].
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre: Ω = {(x, y), √x² + y² ≤ 15}.
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure:  $\Omega = [0, 1]$ .
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre:  $\Omega = \{(x, y), \sqrt{x^2 + y^2} \le 15\}.$
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure:  $\Omega = [0, 1]$ .
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre:  $\Omega = \{(x, y), \sqrt{x^2 + y^2} \le 15\}.$
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure:  $\Omega = [0, 1]$ .
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre: Ω = {(x, y), √x² + y² ≤ 15}.
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure: Ω = [0, 1].
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre: Ω = {(x, y), √x² + y² ≤ 15}.
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



- On lance une pièce:  $\Omega = \{P, F\}$ , assimilé à  $\Omega = \{0, 1\}$ .
- On lance un dé:  $\Omega = \{1, 2, 3, 4, 5, 6\}$ .
- Génotype d'un individu:  $\Omega = \{AA, Aa, aa\}$ .
- On étudie *n* individus:  $\Omega = \{AA, Aa, aa\}^n$ .
- Romeo attend Juliette qui lui a promis d'arriver entre minuit et une heure:  $\Omega = [0, 1]$ .
- On étudie la durée de vie d'une bactérie:  $\Omega = [0, +\infty[$ .
- On étudie la durée d'une communication téléphonique:  $\Omega = [0, +\infty[$ .
- On envoie une fléchette sur une cible circulaire de 30 cm de diamètre: Ω = {(x, y), √x² + y² ≤ 15}.
- Cours d'un actif financier sur un intervalle de temps  $[t_1, t_2]$ :  $\Omega = C([t_1, t_2], \mathbb{R}_+)$ .



Ces exemples sont très différents.

Nous allons néanmoins construire un modèle théorique qui va permettre de les englober tous.

Ce modèle sera forcément très abstrait.

## Quelle information pouvons-nous tirer de l'expérience?

Exemple: Le jeu de fléchettes



On s'intéresse à la chance de tomber dans une des couronnes ou un des secteurs de la cible.

Les résultats du jeu peuvent se décrire à l'aide de parties du disque.

Pas la température de la pièce!!



### Evénements aléatoires

#### Définition

On appelle **événement aléatoire** (associé à l'expérience  $\mathcal{E}$ ) un sous-ensemble de  $\Omega$  dont on peut dire au vu de l'expérience s'il est réalisé ou non.

Un événement aléatoire A est donc une partie de  $\Omega$ .

### **Exemples:**

- $\Omega = \{0, 1\}$ . "La pièce tombe sur Pile":  $A = \{0\}$ .
- $\Omega = \{0,1\}^n$ ,  $\omega = (\omega_1,...,\omega_n)$ . "Le nombre de Faces est supérieur au nombre de Piles":  $A = \{\omega \in \Omega, \sum_{i=1}^n \omega_i \geq \frac{n}{2}\}$ .
- "Juliette se fait attendre moins d'1/4 d'heure": A = [0, 1/4].

Ainsi, un événement aléatoire est représenté par l'ensemble des résultats pour lesquels il est réalisé.

On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés:  $A \cap B$
- A ou B sont réalisés: A ∪ B
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- A et B sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: Ø est l'événement impossible.



On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés:  $A \cap B$
- A ou B sont réalisés: A ∪ B
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- A et B sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: Ø est l'événement impossible.



On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés:  $A \cap B$
- A ou B sont réalisés:  $A \cup B$
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- *A* et *B* sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: Ø est l'événement impossible.



On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés: A ∩ B
- A ou B sont réalisés: A ∪ B
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- *A* et *B* sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: Ø est l'événement impossible.



On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés:  $A \cap B$
- A ou B sont réalisés:  $A \cup B$
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- A et B sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: Ø est l'événement impossible.



On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés:  $A \cap B$
- A ou B sont réalisés: A ∪ B
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- *A* et *B* sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: Ø est l'événement impossible.



On peut effectuer des opérations ensemblistes sur les événements, avec l'interprétation suivante.

- A n'est pas réalisé: A<sup>c</sup>
- A et B sont réalisés:  $A \cap B$
- A ou B sont réalisés: A ∪ B
- A réalisé  $\Rightarrow$  B réalisé:  $A \subset B$ .
- *A* et *B* sont incompatibles:  $A \cap B = \emptyset$ .
- toujours vrai:  $\Omega$  est l'événement certain (tous les résultats de l'expérience prennent leurs valeurs dans  $\Omega$ ).
- Jamais vrai: ∅ est l'événement impossible.



On note  $\mathcal A$  l'ensemble de tous les événements. Il modélise **l'information** que l'on peut obtenir à partir des résultats de l'expérience.

On peut avoir (mais pas toujours, on verra pourquoi plus loin),  $\mathcal{A} = \mathcal{P}(\Omega)$ , ensemble de toutes les parties de  $\Omega$ .

### Remarque

Pour que la modélisation soit cohérente avec l'intuition, A doit être **stable** par les opérations ensemblistes:

si  $A, B \in \mathcal{A}$ , alors on doit avoir  $A \cap B \in \mathcal{A}$ ,  $A \cup B \in \mathcal{A}$ ,  $A^c \in \mathcal{A}$ , mais aussi  $\Omega \in \mathcal{A}$ ,  $\emptyset \in \mathcal{A}$ .

### Jeu de fléchettes



Quelle est la chance de tomber dans le disque central rouge?