Exercise sheet 7

Linear Sigma model I.

Consider the Lagrangian

$$\mathscr{L} = \frac{1}{2} \left[(\partial_{\mu} \boldsymbol{\pi})^{2} + (\partial_{\mu} \sigma)^{2} \right] - \frac{1}{2} m^{2} (\boldsymbol{\pi}^{2} + \sigma^{2}) - \frac{\lambda}{4} (\boldsymbol{\pi}^{2} + \sigma^{2})^{2}.$$

[You may interpret the fields $\pi = (\pi_1, \pi_2, \pi_3)$ as pions with isospin 1, and σ as a sigma meson with isospin 0; the corresponding SU(2) symmetry has then the physical interpretation of isospin.]

a) Show that the Lagrangian $\mathcal L$ is invariant under the symmetry transformation

$$\Sigma \to \Sigma' = U\Sigma U^{\dagger} \,, \tag{1}$$

where

$$\Sigma \equiv \sigma + i \boldsymbol{\tau} \cdot \boldsymbol{\pi}$$
,

 $U = \exp(i\boldsymbol{\alpha} \cdot \boldsymbol{\tau}/2)$ and $\boldsymbol{\tau} = (\tau^1, \tau^2, \tau^3)$ are the Pauli matrices. Find the corresponding conserved Noether currents. [Hint: Calculate first $\Sigma \Sigma^{\dagger}$.]

b.) Give the Feynman rules (i.e. specify propagators and vertices in momentum space) for this Lagrangian.

Projection operators.

Show that the inverse of the matrix $A = \sum_i a_i P_i$, where the P_i are projection operators (i.e. $\sum_i P_i = 1$ and $P_i P_j = \delta_{ij} P_j$), is given by $A^{-1} = \sum_i a_i^{-1} P_i$.

Dirac representation.

Show that the γ matrices in the Dirac representation,

$$\gamma^{0} = 1 \otimes \tau_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
$$\gamma^{i} = \sigma^{i} \otimes i\tau_{2} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix},$$

where σ_i and τ_i are the Pauli matrices, \otimes denotes the tensor product, satisfy $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$.

Traces of gamma's.

Calculate

$$\operatorname{tr}[\phi b]$$
 $\operatorname{tr}[\phi b \phi d]$
 $\gamma^{\mu} d\gamma_{\mu}$

Solutions are discussed Monday, 04.03.19