

Filière SMP - Semestre 3

TD + Correction du Module Analyse 3

Professeur: ZINE EL-ABIDINE GUENNOUN

Département de Mathématiques

Filière : SMP

Module M19 : ANALYSE III

Série #1

Exercice I.

Résoudre dans \mathbb{C} , les équations suivantes :

$$a) \quad \frac{z-i}{z+i} = \frac{z+2}{z-3i}$$

b)
$$z + |z| = 8 + 4i$$

c)
$$iz^2 + 2\overline{z} + z - i = 0$$

Exercice II.

1) Exprimez sous forme algébrique et représenter dans le plan les nombres complexes $z(r,\theta)$ suivants :

a)
$$z = (2, -\frac{\pi}{3})$$
; b) $z = (4, \frac{5\pi}{6})$

b)
$$z = (4, \frac{5\pi}{6})$$

2) Mettre les nombres complexes suivants sous forme trigonométrique :

a)
$$z = -3 + 3i$$
; b) $z = \frac{2 + 3i}{5 + 4i}$

b)
$$z = \frac{2+3i}{5+4i}$$

Exercice III.

1) Calculer et représenter dans le plan les racines suivantes :

a)
$$z = \sqrt[4]{-4}$$

a)
$$z = \sqrt[4]{-4}$$
; b) $z = \sqrt[3]{3+4i}$

2) Déterminer et tracer l'ensemble M(z) du plan :

$$a) \quad \left| \frac{z-1}{z+1} \right| = 2$$

b)
$$\arg(\frac{z-i}{z+i}) = -\frac{\pi}{4} \mod \pi$$

c)
$$2 < |z - 1 - i| < 3$$

Exercice IV.

On considère le polynôme $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ à coéfficients dans \mathbb{C} . Montrer que si z_0 est une racine d'ordre α de P alors \overline{z}_0 est une racine d'ordre α de \overline{P} . \overline{P} étant le polynôme conjugué de P défini par :

$$\overline{P}(z) = \overline{a}_n z^n + \overline{a}_{n-1} z^{n-1} + \dots + \overline{a}_0$$

En déduire que si les coéfficients a_i sont réels alors \overline{z}_0 aussi est une racine d'ordre α de P.

Exercice V.

On considère la fonction complexe définie par :

$$f(z) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2} & \text{si} \quad z \neq 0\\ 0 & \text{si} \quad z = 0 \end{cases}$$

- a) Démontrer que la fonction f est continue en z=0
- b) Démontrer que la fonction f n'est pas dérivable en z=0
- c) Démontrer que la fonction f vérifie les conditions de Cauchy-Riemann en z=0
- d) Que peut-on conclure?

Exercice VI.

- a) Démontrer que la fonction $f(z) = \frac{1}{z}$ est dérivable pour tout $z \neq 0$ et déterminer la dérivée f'(z), en calculant directement $\lim_{\Delta z \to 0} \frac{f(z + \Delta z) f(z)}{\Delta z}$.
- b) Démontrer le même résultat, en utilisant les conditions de Cauchy-Riemann.

Exercice VII.

Démontrer que si une fonction complexe f est dérivable sur un domaine D et que le module |f(z)| est constant sur D alors la fonction f est aussi constante sur D.

Exercice VIII.

Soit f = u + iv une fonction complexe qui vérifie les conditions de Cauchy-Riemann, en coordonnées cartésiennes de z.

a) Si on considère la forme trigonométrique :

$$f(z) = U(r, \theta) + iV(r, \theta)$$
 $z = r(\cos(\theta) + i\sin(\theta))$

alors les conditions de Cauchy-Riemann sont exprimées par :

$$\frac{\partial U}{\partial r} = \frac{1}{r} \frac{\partial V}{\partial \theta} \ ; \qquad \quad \frac{\partial V}{\partial r} = -\frac{1}{r} \frac{\partial U}{\partial \theta}$$

b) En utilisant les coordonnées cartésiennes, démontrer que la fonction suivante :

$$f(z) = \ln(|z|) + iArg(z)$$

est dérivable en tout $z \in \mathbb{C} \setminus (]-\infty,0] \times \{0\}$). $\mathbb{C} \setminus (]-\infty,0] \times \{0\}$) est le plan complexe privé de la demi-droite $]-\infty,0] \times \{0\}$.

c) Démontrer le même résultat, en utilisant la forme trigonométrique :

$$f(z) = U(r,\theta) + iV(r,\theta)$$

Filière: SMP

Module M19: ANALYSE III

Série #2

Exercice I.

- 1) Déterminer si les fonctions suivantes sont harmoniques. Si oui déterminer leurs conjugées v(x,y),
 - a) u(x,y) = sin(x)cosh(y)
 - b) $u(x, y) = e^{-x} \sin(2y)$
- 2) Déterminer les fonctions conjuguées v(x,y) de la fonction $u(x,y) = x^3 3xy^2$, Exprimer la fonction u(x,y) + iv(x,y) en fonction de z.

Exercice II.

1) Démontrer que pour tout $z=x+iy\in\mathbb{C}$:

a)
$$\sin(z) = \sin(x) \cosh(y) + i \cos(x) \sinh(y)$$

b) $\cosh(z) = \cosh(x) \cos(y) + i \sinh(x) \sin(y)$

2) Déterminer dans $\mathbb C$ les valeurs suivantes sous la forme a+ib :

$$\cosh(2+i), \qquad \sinh(4-3i).$$

3) Résoudre dans $\mathbb C$ les équations suivantes:

a)
$$\sin(z) = 100$$
 b) $\cos(z) = 2i$ c) $e^z = 4 - 3i$

4)

a) Déterminer dans \mathbb{C} les valeurs suivantes :

$$\ln(-1); \quad \ln(-e); \quad \ln(4+3i); \quad \ln(e^{3i})$$

b) Démontrer l'égalité suivante dans \mathbb{C} :

$$Arc \cosh(z) = \ln(z + \sqrt{z^2 - 1})$$

Exercice III.

Donner l'équation paramétrique de la courbe d'équation cartésienne :

$$x^2 + y^2 = 4$$

Exercice IV.

Que représente les équations paramétriques suivantes ?

a)
$$(4 - 2t, -3 + 5t)$$
 $-1 < t < 2$
b) $(2\cos(t), 5\sin(t))$ $0 \le t \le \frac{3\pi}{4}$

Exercice V.

Déterminer l'équation de la tangente à la courbe d'équation :

$$\frac{(x)^2}{4} + y^2 = 1$$
 au point $P(\sqrt{2}, \frac{\sqrt{2}}{2})$.

Exercice VI.

- 1) Déterminer si le champ de vecteurs suivant dérive d'un potentiel f. Si oui, trouver f.

 - a) $F(x,y) = (x^3 y\sin(x))i + (y^3 \cos(x))j$. b) $F(x,y) = (2xArc\tan(y))i + (\frac{x^2}{1+y^2})j$.
- 2) Calculer l'intégrale curviligne le long de la courbe C indiquée:
- a) $\int_C yx^2 dx + (x+y)dy$, $C: y = -x^3$ de l'origine au point (1,-1).
- b) $\int_C 3xydx + (4x^2 3y)dy$, C: le segment reliant les points (0,3) à (3,9) et la parabole $y = x^2$ de(3,9) à (5,25).

Exercice VII.

a) Démontrer que le champ de vecteurs :

$$F(x,y,z) = (6xy^3 + 2z^2)i + 9x^2y^2j + (4xz + 1)k$$

dérive d'un potentiel f(x, y, z). Déterminer f.

- b) Calculer l'intégrale curviligne de F le long d'une courbe C lisse reliant les points (0,0,0) et (1,1,1).
- c) Vérifier ce résultat en calculant l'intégrale curviligne de F le long de la courbe C constituée par le segment reliant les points (0,0,0) à (1,0,0), le segment reliant les points (1,0,0) à (1,1,0) et le segment reliant les points (1,1,0) à (1,1,1).

Filière: SMP

Module M19: ANALYSE III

Série #3

Exercice I.

Donner l'équation paramétrique de la courbe suivante : |z-2+3i|=4

Exercice II.

Que représente les équations paramétriques suivantes :

a)
$$z(t) = 1 + i + e^{-\pi i t}$$
, $0 \le t \le 2$

b)
$$z(t) = 1 + 2t + 8it^2$$
, $-1 \le t \le 1$

Exercice III.

Calculer l'intégrale curviligne complexe le long de la courbe C indiquée :

a)
$$\int_C \overline{z} dz$$
, C est une partie de la parabole d'équation $y = x^2$ reliant le point $(-1+i)$ au point $(1+i)$.

b)
$$\int_C Im(z^2)dz$$
, C est le triangle de sommets $z = 0, 1, i$.

Exercice IV.

Calculer l'intégrale curviligne complexe le long de la courbe C indiquée:

a)
$$\oint_C Re(2z)dz$$

b)
$$\oint_C \frac{7z-6}{z^2-2z} dz$$

Exercice V.

En utilisant les formules de Cauchy, calculer l'intégrale curviligne complexe le long de la courbe Corientée positivement :

a)
$$\oint_C \frac{(1+2z)\cos(z)}{(2z-1)^2}dz$$
, C est la courbe d'équation $|z|=1$

b)
$$\oint_C \frac{e^{2z}}{z(z-2i)^2} dz$$
, $C = \Gamma_1 \cup \Gamma_2 \text{ avec } \Gamma_1 : |z-i| = 3 \text{ et } \Gamma_2 : |z| = 1$.

Exercice VI.

1) Déterminer la nature des séries numériques suivantes :

a)
$$\sum_{n=0}^{\infty} \left[2(\frac{1}{4})^n + 3(-\frac{1}{5})^n \right]$$
 b) $\sum_{n=1}^{\infty} \frac{n-5}{n+2}$

$$b) \sum_{n=1}^{\infty} \frac{n-5}{n+2}$$

2) En utilisant les tests de convergence, déterminer si les séries suivantes convergent ou divergent : a) $\sum_{n=1}^{\infty} \frac{n-3}{n^2+2}$ b) $\sum_{n=1}^{\infty} \frac{\arctan(n)}{n^2+1}$ c) $\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$

a)
$$\sum_{n=1}^{\infty} \frac{n-3}{n^2+2}$$

b)
$$\sum_{n=1}^{\infty} \frac{\arctan(n)}{n^2 + 1}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$$

3) Déterminer l'ensemble de convergence de la série suivante :

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x+3)^n}{n}$$

Exercice VII.

1) Déterminer si les séries complexes suivantes convergent ou divergent :

a)
$$\sum_{n=0}^{\infty} (\frac{10-15i}{n!})^n$$
 b) $\sum_{n=1}^{\infty} \frac{i^n}{n^2-2i}$ c) $\sum_{n=1}^{\infty} n^2 \frac{(i)^n}{3^n}$

b)
$$\sum_{n=1}^{\infty} \frac{i^n}{n^2 - 2i}$$

c)
$$\sum_{n=1}^{\infty} n^2 \frac{(i)^n}{3^n}$$

2) Déterminer l'ensemble de convergence de chacune des séries suivantes : a) $\sum_{n=1}^{\infty} \frac{(z+i)^n}{n^2}$ b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n}(n!)^2} z^{2n}$ c) $\sum_{n=1}^{\infty} \frac{(4)^n}{(1+i)^n} (z-5)^n$

$$a) \sum_{n=1}^{\infty} \frac{(z+i)^n}{n^2}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} z^{2n}$$

c)
$$\sum_{n=1}^{\infty} \frac{(4)^n}{(1+i)^n} (z-5)^n$$

Filière: SMP

Module M19: ANALYSE III

Série #4

Exercice I.

Déterminer la série de Laurent de centre z_0 des fonctions suivantes :

a)
$$f(z) = \frac{1}{z}$$
 avec $z_0 = 1$;

a)
$$f(z) = \frac{1}{z}$$
 avec $z_0 = 1$; b) $f(z) = z^3 \cosh(\frac{1}{z})$ avec $z_0 = 0$

Exercice II.

Déterminer les points singuliers des fonctions suivantes et leurs résidus :

a)
$$\frac{\cos(z)}{z^6}$$
;

b)
$$\frac{1}{\cos(z)}$$

Exercice III.

En utilisant les résidus, calculer les intégrales suivantes :

a)
$$\oint_{\Gamma_1} \frac{\sin(\pi z)}{z^4}$$
 avec $\Gamma_1: |z-i|=2;$

b)
$$\oint_{\Gamma_2} \frac{1 - 4z + 6z^2}{(z^2 + \frac{1}{4})(2 - z)}$$
 avec $\Gamma_2 : |z| = \frac{3}{2}$

Exercice IV

1. Déterminer le développement en série de \mathcal{F} ourier de la fonction périodique, de période 2π et représentée par le graphe suivant :

2. En déduire l'égalité suivante : $1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \frac{1}{9^4} + \dots = \frac{\pi^4}{96}$

Corrections

Filière : SMP

Module M19: ANALYSE III

Corrigé Série #1

Exercice I.

(I.a) Soit $z \in \mathbb{C} \setminus \{-i, 3i\}$ donc

$$\begin{array}{ll} \frac{z-i}{z+i} = \frac{z+2}{z-3i} & \Longleftrightarrow & (z-i)(z-3i) = (z+2)(z+i) \\ & \Longleftrightarrow & (2+5i)z = -3 - 2i \\ & \Longleftrightarrow & z = -\frac{16}{29} + \frac{11}{29}i. \end{array}$$

(I.b) Soit $z \in \mathbb{C}$ tel que z = x + iy avec $x, y \in \mathbb{R}$. Alors

$$\begin{aligned} z + |z| &= 8 + 4i &\iff x = 8 - |z| &\text{et} \quad y = 4\\ &\iff (x - 8)^2 = x^2 + y^2 &\text{et} \quad y = 4\\ &\iff x = 3 &\text{et} \quad y = 4\\ &\iff z = 3 + 4i. \end{aligned} \tag{$x < 8$}$$

(I.c) Soit $z = x + iy \in \mathbb{C}$ donc

$$\begin{split} iz^2 + 2\overline{z} + z - i &= 0 &\iff x(3 - 2y) + i(x^2 - y^2 - y - 1) = 0 \\ &\iff (x = 0 \text{ ou } y = \frac{3}{2}) \text{ et } x^2 - y^2 - y - 1 = 0 \\ &\iff (x = 0 \text{ et } y^2 + y + 1 = 0) \text{ ou } (y = \frac{3}{2} \text{ et } x^2 = \frac{19}{4}) \\ &\iff y = \frac{3}{2} \text{ et } x = \pm \frac{\sqrt{19}}{2}. \end{split}$$

La première proposition n'est pas vraie puisque l'équation $y^2 + y + 1 = 0$ n'a pas de solutions réelles. Par conséquent, les solutions de l'équation demandée sont

$$z = \pm \frac{\sqrt{19}}{2} + \frac{3}{2}i.$$

Exercice II.

(1.a) On a

$$z = \left(2, -\frac{\pi}{3}\right) = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = 2\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 1 - i\sqrt{3}.$$

Dans le plan complexe le point M(z) est représenté graphiquement par le vecteur \overrightarrow{OM} dans la figure suivante

(1.b) On a

$$z = \left(4, \frac{5\pi}{6}\right) = 4\left(\cos\left(\pi - \frac{\pi}{6}\right) + i\sin\left(\pi - \frac{\pi}{6}\right)\right) = 4\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -2\sqrt{3} + 2i.$$

Dans le plan complexe le point M(z) est représenté graphiquement par le vecteur \overrightarrow{OM} dans la figure suivante

(2.a) Soit z = -3 + 3i. Puisque $|z| = 3\sqrt{2}$ alors

$$z = 3\sqrt{2}\left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 3\sqrt{2}\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right) = \left(3\sqrt{2}, \frac{3\pi}{4}\right).$$

(2.b) On a
$$z = \frac{2+3i}{5+4i} = \frac{22}{41} + \frac{7}{41}i$$
, donc

$$|z| = \sqrt{\left(\frac{22}{41}\right)^2 + \left(\frac{7}{41}\right)^2} = \frac{\sqrt{533}}{41}$$
 et $\operatorname{Arg}(z) = \arctan\left(\frac{7}{22}\right)$,

d'où

$$z = \left(\frac{\sqrt{533}}{41}, \arctan\left(\frac{7}{22}\right)\right).$$

Exercice III.

(1.a) Cherchons les solutions de l'équation $z^4 = -4$ qui est équivalente à $\left(\frac{z}{\sqrt{2}}\right)^4 = -1$; Or les racines d'ordre 4 de -1 sont $e^{i\frac{2k+1}{4}\pi}$ avec k = 0, 1, 2, 3. D'où les solutions demandées sont

$$z_k = \sqrt{2}e^{i(2k+1)\frac{\pi}{4}}, \qquad k = 0, 1, 2, 3.$$

Explicitement, on a

$$z_0 = 1 + i$$
, $z_1 = -1 + i$, $z_2 = -1 - i$, $z_3 = 1 - i$.

La représentation graphique des points M_k d'affixes z_k est donnée par le carré

(1.b) On a $z = \sqrt[3]{3+4i}$ et comme $3+4i=5e^{i\arctan(\frac{4}{3})}$ alors les racines d'ordre 3 de 3+4i sont

$$z_k = \sqrt[3]{5}e^{i\frac{\arctan(\frac{4}{3})}{3} + i\frac{2k\pi}{3}}, \qquad k = 0, 1, 2.$$

Les points M_k d'affixes z_k (k=0,1,2.) sont les sommets d'un triangle équilatéral inscrit au cercle de centre O et de rayon $\sqrt[3]{5}$ (voir la figure ci-dessous)

(2.a) Soit $z \in \mathbb{C}$ tel que $\left|\frac{z-1}{z+1}\right| = 2$. Remarquez que $z = \pm 1$ ne vérifient pas cette équation! Alors

$$\left| \frac{z-1}{z+1} \right| = 2 \iff |z-1|^2 = 4|z+1|^2.$$

Posons z=x+iy où $x,y\in\mathbb{R}$ on trouve

$$|z-1|^2 = 4|z+1|^2 \Longleftrightarrow \left(x+\frac{5}{3}\right)^2 + y^2 = \left(\frac{4}{3}\right)^2$$

qui représente le cercle du centre $\Omega\left(-\frac{5}{3},0\right)$ et de rayon $R=\frac{4}{3}.$

(2.b) Soit $z \in \mathbb{C} \setminus \{\pm i\}$ alors on a

$$\arg\left(\frac{z-i}{z+i}\right) \equiv -\frac{\pi}{4} \mod \pi \Longleftrightarrow 2\arg\left(\frac{z-i}{z+i}\right) \equiv -\frac{\pi}{2} \mod 2\pi,$$

et puisque $2 \arg(w) = \arg(w^2) \mod 2\pi$ pour tout $w \in \mathbb{C}^*$ alors

$$\arg\left(\frac{z-i}{z+i}\right) \equiv -\frac{\pi}{4} \mod \pi \iff \arg\left(\left(\frac{z-i}{z+i}\right)^2\right) \equiv -\frac{\pi}{2} \mod 2\pi$$

$$\iff \left(\frac{z-i}{z+i}\right)^2 \in i\mathbb{R}_-^*$$

$$\iff \operatorname{Re}\left[\left(\frac{z-i}{z+i}\right)^2\right] = 0 \quad \text{et} \quad \operatorname{Im}\left[\left(\frac{z-i}{z+i}\right)^2\right] < 0.$$

Posons z = x + iy, alors

$$\frac{z-i}{z+i} = \frac{x^2+y^2-1}{x^2+(y+1)^2} + i\frac{-2x}{x^2+(y+1)^2} = X+iY,$$

donc

$$Re\left[\left(\frac{z-i}{z+i}\right)^{2}\right] = 0 \quad \text{et} \quad Im\left[\left(\frac{z-i}{z+i}\right)^{2}\right] < 0 \quad \Longleftrightarrow \quad X^{2} - Y^{2} = 0 \quad \text{et} \quad XY < 0$$

$$\iff \quad X = -Y \neq 0$$

$$\iff \quad (x-1)^{2} + y^{2} = 2 \quad \text{et} \quad (x,y) \neq (0,\pm 1).$$

Donc l'ensemble des points M(z) tel que

$$\arg\left(\frac{z-i}{z+i}\right) \equiv -\frac{\pi}{4} \mod \pi$$

est le cercle Γ_1 du centre (1,0) et de rayon $\sqrt{2}$ privé des points $(0,\pm 1)$ (voir la figure suivante).

(2.c) Soit $z = x + iy \in \mathbb{C}$, alors

$$2 < |z - 1 - i| < 3 \iff 4 < (x - 1)^2 + (y - 1)^2 < 9 \iff \begin{cases} (x - 1)^2 + (y - 1)^2 > 4\\ (x - 1)^2 + (y - 1)^2 < 9 \end{cases}$$

donc M(z) est la couronne ouverte limitée par les cercles Γ_2 et Γ_3 de centre commun (1,1) et de rayons 2 et 3, respectivement (voir la figure).

Exercice IV.

On a pour tout $z \in \mathbb{C}$

$$\overline{P}(\overline{z}) = \overline{a_n} \overline{z}^n + \overline{a_{n-1}} \overline{z}^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} \overline{z^n} + \overline{a_{n-1}} z^{n-1} + \dots + \overline{a_0}$$

$$= \overline{a_n} z^n + a_{n-1} z^{n-1} + \dots + a_0$$

$$= \overline{P(z)}.$$

Donc si z_0 est une racine d'ordre α de P alors il existe un polynôme Q de degré $n-\alpha$ (remarquez que n est le degré de P) tel que $Q(z_0) \neq 0$ et

$$P(z) = (z - z_0)^{\alpha} Q(z).$$

Par conséquent

$$\overline{P}(z) = \overline{(\overline{z} - z_0)^{\alpha} Q(\overline{z})} = (z - \overline{z_0})^{\alpha} \overline{Q(\overline{z})},$$

d'où $\overline{z_0}$ est une racine d'ordre α de \overline{P} ; notez que $\underline{Q}(z_0) \neq 0$ équivalent à $\overline{Q}(z_0) \neq 0$.

De plus, si les coefficients (a_i) sont réels alors $\overline{P} = P$. Par conséquent si z_0 est une racine d'ordre α de P alors $\overline{z_0}$ est aussi une racine d'ordre α de P et on écrit dans ce cas

$$P(z) = (z - z_0)^{\alpha} (z - \overline{z_0})^{\alpha} R(z),$$

où R est un polynôme de degré $n-2\alpha$ tel que $R(z_0)\neq 0$ et $R(\overline{z_0})\neq 0$.

Exercice V.

Soit f une fonction complexe définie par

$$f(z) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2} & \text{si} \quad z \neq 0\\ 0 & \text{si} \quad z = 0 \end{cases}$$

a) Montrons que f est continue en 0. On a

$$|f(z)|^2 = 2\frac{x^6 + y^6}{(x^2 + y^2)^2} \le 2\frac{(x^2 + y^2)^3}{(x^2 + y^2)^2} \le 2|z|^2$$

d'où

$$0<|f(z)|\leq \sqrt{2}|z|.$$

Puisque

$$\lim_{z\to 0}0=\lim_{z\to 0}\sqrt{2}|z|=0$$

alors

$$\lim_{z \to 0} f(z) = 0.$$

D'où f est continue en 0.

b) Soit $z \neq 0$ alors

$$\frac{f(z) - f(0)}{z - 0} = \left(\frac{x^3 - y^3}{x^2 + y^2} + i\frac{x^3 + y^3}{x^2 + y^2}\right) \frac{1}{x + iy} = \frac{(x^3 - y^3) + i(x^3 + y^3)}{(x^2 + y^2)^2} (x - iy).$$

Posons y=tx pour un réel t, donc

$$\lim_{z \to 0} \frac{f(z)}{z} = \frac{(1 - t^3) + i(1 + t^3)}{(1 + t^2)^2} (1 - it).$$

Et puisque les limites sont différentes sur des chemins différents (e.g. y = tx) alors f n'est pas dérivable en 0.

c) Soient u et v, respectivement, les fonctions partie réelle et partie imaginaire de la fonction complexe f. C'est à dire

$$u(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases} \quad \text{et} \quad v(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

Donc on a

$$\frac{\partial u}{\partial x}(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x^3} = 1 \quad \text{et} \quad \frac{\partial u}{\partial y}(0,0) = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y - 0} = \lim_{y \to 0} -\frac{y^3}{y^3} = -1$$

aussi

$$\frac{\partial v}{\partial x}(0,0) = \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x^3} = 1 \quad \text{et} \quad \frac{\partial v}{\partial y}(0,0) = \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y - 0} = \lim_{y \to 0} \frac{y^3}{y^3} = 1.$$

D'où

$$\frac{\partial u}{\partial x}(0,0) = \frac{\partial v}{\partial y}(0,0)$$
 et $\frac{\partial u}{\partial y}(0,0) = -\frac{\partial v}{\partial x}(0,0)$

ce qui montre que f vérifie les conditions de Cauchy-Riemann en 0.

d) On conclut que la réciproque du théorème des conditions de Cauchy-Riemann n'est pas vraie en général.

Exercice VI.

Soit $f(z) = \frac{1}{z}$ pour tout nombre complexe z non nul.

a) On a

$$\lim_{\Delta z \to 0} \frac{f(z+\Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{-1}{z(z+\Delta z)} = -\frac{1}{z^2} \in \mathbb{C}$$

ce qui montre que f est dérivable sur \mathbb{C}^* et

$$f'(z) = -\frac{1}{z^2}.$$

b) On pose $z = x + iy \in \mathbb{C}^*$, alors

$$f(z) = \frac{1}{x + iy} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} = u(x, y) + iv(x, y).$$

Donc il est clair que u et v sont de classe C^1 sur $\mathbb{R}^2 \setminus \{0,0\}$ donc les dérivées partielles sont continues en tout point de l'ouvert $\mathbb{R}^2 \setminus \{0,0\}$. De plus, on a

$$\frac{\partial u}{\partial x}(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial v}{\partial y}(x,y)$$

et

$$\frac{\partial u}{\partial y}(x,y) = -\frac{2xy}{(x^2+y^2)^2} = -\frac{\partial v}{\partial x}(x,y).$$

Par conséquent, les conditions de Cauchy-Riemann sont vérifiées et d'après la réciproque du théorème des conditions de Cauchy-Riemann, f est dérivable en tout point $z \neq 0$ et

$$f'(z) = \frac{\partial f}{\partial x}(z) = \frac{\partial u}{\partial x}(x, y) + i\frac{\partial v}{\partial x}(x, y) = -\frac{(\overline{z})^2}{(z\overline{z})^2} = -\frac{1}{z^2}$$

Exercice VII.

Soit D un domaine et f(z) = u(x,y) + iv(x,y) une fonction dérivable sur D telle que |f(z)| est constante. Donc, la dérivabilité de f montre que les fonctions u et v sont de classe C^1 (ses dérivées partielles existent et sont continues) et vérifient les conditions de Cauchy-Riemann, c'est à dire

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \tag{1}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \tag{2}$$

Puisque $|f|^2$ est constante (car |f| est constante) alors on a

$$\left\{ \begin{array}{lll} \frac{\partial |f|^2}{\partial x} & = & 0 \\ \frac{\partial |f|^2}{\partial y} & = & 0 \end{array} \right. \implies \left\{ \begin{array}{lll} \frac{\partial}{\partial x} \left(u^2 + v^2 \right) & = & 0 \\ \frac{\partial}{\partial y} \left(u^2 + v^2 \right) & = & 0 \end{array} \right. \implies \left\{ \begin{array}{lll} u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} & = & 0 \\ u \frac{\partial u}{\partial y} + v \frac{\partial v}{\partial y} & = & 0 \end{array} \right.$$

En remplaçant dans la première équation par (2) et la deuxième par (1) on obtient,

$$\begin{cases} u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} &= 0 \\ u \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial x} &= 0 \end{cases} \Longrightarrow \begin{cases} u^2 \frac{\partial u}{\partial x} - uv \frac{\partial u}{\partial y} &= 0 \\ vu \frac{\partial u}{\partial y} + v^2 \frac{\partial u}{\partial x} &= 0 \end{cases} \Longrightarrow (u^2 + v^2) \frac{\partial u}{\partial x} = 0.$$

Donc, si $u^2 + v^2 = 0$ c'est à dire si $|f|^2 = 0$ alors f(z) = 0 pour tout $z \in D$ et par conséquent f est constante (ce qui montre le résultat souhaité). Cependant, si $\frac{\partial u}{\partial x} = 0$ alors $\frac{\partial u}{\partial y} = 0$ et par conséquent uest constante. En utilisant (1) et (2) on prouve que v est constante et on conclut que f est constante.

Exercice VIII.

On considère la forme trigonométrique suivante

$$f(z) = U(r, \theta) + iV(r, \theta)$$
 avec $z = r(\cos(\theta) + i\sin(\theta))$

a) On vérifie que les conditions de Cauchy-Riemann en coordonnées polaires s'expriment par

$$\frac{\partial U}{\partial r} = \frac{1}{r} \frac{\partial V}{\partial \theta}$$
 et $\frac{\partial V}{\partial r} = -\frac{1}{r} \frac{\partial U}{\partial \theta}$

On ponse $x = r\cos(\theta)$ et $y = r\sin(\theta)$. Soient

$$u(x,y) = U(r,\theta)$$
 et $v(x,y) = V(r,\theta)$

En utilisant la règle de la chaîne on a

$$\frac{\partial U}{\partial r} = \frac{\partial U}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial U}{\partial y} \frac{\partial y}{\partial r} = \cos(\theta) \frac{\partial u}{\partial x} + \sin(\theta) \frac{\partial u}{\partial y}$$

et

$$\frac{\partial V}{\partial \theta} = \frac{\partial V}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial V}{\partial y} \frac{\partial y}{\partial \theta} = -r \sin(\theta) \frac{\partial v}{\partial x} + r \cos(\theta) \frac{\partial v}{\partial y}.$$

Puisque les conditions de Cauchy-Riemann sont vérifiées alors

$$\frac{\partial V}{\partial \theta} = -r\sin(\theta)\left(-\frac{\partial u}{\partial y}\right) + r\cos(\theta)\frac{\partial u}{\partial x} = r\left(\cos(\theta)\frac{\partial u}{\partial x} + \sin(\theta)\frac{\partial u}{\partial y}\right) = r\frac{\partial U}{\partial r}.$$

De même on a

$$\frac{\partial V}{\partial r} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r} = \cos(\theta) \frac{\partial v}{\partial x} + \sin(\theta) \frac{\partial v}{\partial y}$$

 et

$$\frac{\partial U}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -r \left(\sin(\theta) \frac{\partial v}{\partial y} + \cos(\theta) \frac{\partial v}{\partial x} \right) = -r \frac{\partial V}{\partial r}.$$

b) On pose $\Omega = \mathbb{C} \setminus (-\infty, 0] \times \{0\}$. Démontrons que la fonction f définie par $f(z) = \ln |z| + i \operatorname{Arg}(z)$ est dérivable en tout point $z \in \Omega$.

On a démontré dans le cours (voir **Conséquence 3.3.1**) que pour tout $z = x + iy \in \Omega$ que

$$\operatorname{Arg}(z) = 2\arctan\left(\frac{y}{x+|z|}\right) = 2\arctan\left(\frac{y}{x+\sqrt{x^2+y^2}}\right).$$

Donc pour tout $z=x+iy\in\Omega,\,f$ peut être écrite sous sa forme cartésienne par

$$\begin{array}{lcl} f(z) & = & \frac{1}{2} \ln \left(x^2 + y^2 \right) & + & i \, 2 \arctan \left(\frac{y}{x + \sqrt{x^2 + y^2}} \right) \\ & = & u(x,y) & + & i \, v(x,y). \end{array}$$

Comme u et v sont composées des fonctions de classe C^1 sur $\Omega' = \mathbb{R}^2 \setminus (-\infty, 0] \times \{0\}$ alors u et v ont des dérivées partielles continues; par conséquent, il suffit de démontrer que cettes dérivées partielles vérifient les conditions de Cauchy-Riemann. Donc d'une part on a

$$\frac{\partial u}{\partial x}(x,y) = \frac{x}{x^2 + y^2}$$
 et $\frac{\partial u}{\partial y}(x,y) = \frac{y}{x^2 + y^2}$

et d'une autre part

$$\frac{\partial v}{\partial x} = -2y \frac{\frac{1 + \frac{x}{\sqrt{x^2 + y^2}}}{(x + \sqrt{x^2 + y^2})^2}}{1 + \left(\frac{y}{x + \sqrt{x^2 + y^2}}\right)^2} = \frac{-2y}{\sqrt{x^2 + y^2}} \frac{x + \sqrt{x^2 + y^2}}{\left(x + \sqrt{x^2 + y^2}\right)^2 + y^2} = \frac{-y}{\sqrt{x^2 + y^2}} \frac{x + \sqrt{x^2 + y^2}}{x^2 + y^2 + x\sqrt{x^2 + y^2}}$$

et puisque $x^2+y^2+x\sqrt{x^2+y^2}=\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}+x\right)$ alors on déduit la première condition de Cauchy-Riemann

$$\frac{\partial v}{\partial x}(x,y) = -\frac{y}{x^2 + y^2} = -\frac{\partial u}{\partial y}(x,y).$$

Aussi

$$\frac{\partial v}{\partial y} = 2\frac{\frac{x + \sqrt{x^2 + y^2} - \frac{y^2}{\sqrt{x^2 + y^2}}}{(x + \sqrt{x^2 + y^2})^2}}{1 + \left(\frac{y}{x + \sqrt{x^2 + y^2}}\right)^2} = 2\frac{\frac{x\sqrt{x^2 + y^2} + x^2}{\sqrt{x^2 + y^2}}}{(x + \sqrt{x^2 + y^2})^2 + y^2} = \frac{x}{\sqrt{x^2 + y^2}} \frac{x + \sqrt{x^2 + y^2}}{x^2 + y^2 + x\sqrt{x^2 + y^2}} = \frac{x}{x^2 + y^2}$$

D'où la deuxième condition de Cauchy-Riemann

$$\frac{\partial v}{\partial u}(x,y) = \frac{\partial u}{\partial x}(x,y).$$

On conclut que f est dérivable en tout point de Ω .

c) Posons $z = r(\cos(\theta) + i\sin(\theta))$ pour tout $(r, \theta) \in W = \mathbb{R}_+^* \times] - \pi, \pi[$, alors on a

$$f(z) = \ln(r) + i\theta = U(r, \theta) + iV(r, \theta).$$

Donc il est clair que U et V sont de classe C^1 sur W, en plus

$$\frac{\partial U}{\partial r} = \frac{1}{r} = \frac{1}{r} \frac{\partial V}{\partial \theta} \qquad \text{et} \qquad \frac{\partial V}{\partial r} = 0 = -\frac{1}{r} \frac{\partial U}{\partial \theta}.$$

On déduit la dérivabilité de f en tout point $(r, \theta) \in W$.

Filière : SMP

Module M19 : ANALYSE III

Corrigé Série #2

On rappelle que l'opérateur Laplacien d'une fonction $f: \mathbb{R}^2 \mapsto \mathbb{R}$ de classe C^2 est défini par

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

On dit f est harmonique si $\Delta f = 0$.

Exercice I.

1.a Soit $u(x,y) = \sin(x)\cosh(y)$ donc u est de classe \mathbb{C}^2 sur \mathbb{R}^2 et

$$\frac{\partial^2 u}{\partial x^2}(x,y) = -\sin(x)\cosh(y) \qquad \text{et} \qquad \frac{\partial^2 u}{\partial y^2}(x,y) = \sin(x)\cosh(y)$$

donc $\Delta u = 0$ ce qui montre que u est harmonique. Soit $v : \mathbb{R}^2 \to \mathbb{R}$ une conjuguée de u alors les dérivées partielles de u et v vérifient les conditions de Cauchy-Riemann, c'est à dire

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

En intégrant l'équation à gauche par rapport à y on trouve

$$v(x, y) = \cos(x)\sinh(y) + h(x)$$

où h est une fonction numérique de classe C^1 . L'autre condition de Cauchy-Riemann nous montre que

$$\sin(x)\sinh(y) = \sin(x)\sinh(y) + h'(x)$$

Donc h'(x) = 0 et par conséquent h est constante. D'où les fonctions conjuguées de u sont

$$v(x, y) = \cos(x)\sinh(y) + c$$
 $(c \in \mathbb{R}).$

1.b Soit $u(x,y) = e^{-x} \sin(2y)$ donc u est de classe C^2 sur \mathbb{R}^2 et

$$\frac{\partial^2 u}{\partial x^2}(x,y) = e^{-x}\sin(2y) = u \qquad \text{et} \qquad \frac{\partial^2 u}{\partial y^2}(x,y) = -4e^{-x}\sin(2y) = -4u.$$

Alors $\Delta u = -3u \neq 0$ d'où u n'est pas harmonique.

2.a Soit $u(x,y) = x^3 - 3xy^2$ donc u est de classe C^2 sur \mathbb{R}^2 et

$$\frac{\partial^2 u}{\partial x^2}(x,y) = 6x \qquad \text{et} \qquad \frac{\partial^2 u}{\partial y^2}(x,y) = -6x.$$

Alors $\Delta u=0$ d'où u est harmonique. Soit v une fonction conjuguée de u, alors la première condition de Cauchy-Riemann nous donne

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 = \frac{\partial v}{\partial y}$$

On intègre par rapport à y on trouve

$$v(x,y) = -y^3 + 3yx^2 + h(x),$$

où h est une fonction numérique de classe C^1 sur \mathbb{R} . La deuxième condition de Cauchy-Riemann nous donne

$$\frac{\partial u}{\partial y} = -6xy = -\frac{\partial v}{\partial x} = -6xy - h'(x).$$

On déduit que h'(x) = 0 donc h est constante sur \mathbb{R} et par conséquent les fonctions conjuguées de u sont

$$v(x,y) = -y^3 + 3yx^2 + c \qquad (c \in \mathbb{R}).$$

Soit f(z) = u(x, y) + iv(x, y) avec z = x + iy alors

$$f(z) = x^3 - 3xy^2 + 3iyx^2 - iy^3 + ic = x^3 + 3x(iy)^2 + 3(iy)x^2 + (iy)^3 + ic$$

donc

$$f(z) = (x + iy)^3 + ic = z^3 + ic$$
 $(c \in \mathbb{R}).$

Exercice II.

1.a. Soit z = x + iy un nombre complexe. On sait que

$$e^{iz} = e^{ix}e^{-y} = e^{-y}(\cos(x) + i\sin(x))$$
 et $e^{-iz} = e^{-ix}e^{y} = e^{y}(\cos(x) - i\sin(x))$.

Donc

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} = i\cos(x)\frac{e^y - e^{-y}}{2} + \sin(x)\frac{e^y + e^{-y}}{2}$$

c'est à dire

$$\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y).$$

1.b. De la même manière et puisque $\cosh(z) = \frac{e^z + e^{-z}}{2}$ on démontre que

$$\cosh(z) = \cosh(x)\cos(y) + i\sinh(x)\sin(y).$$

2. D'après la question précédente, $\cosh(2+i) = \cosh(2)\cos(1) + i\sinh(2)\sin(1) \approx 2.0326 + i3.0515$. De même, puisque $\sinh(iz) = i\sin(z)$ alors

$$\sinh(4-3i) = \sinh(-i(3+4i)) = -\sin(3+4i) = -\sin(3)\cosh(4) - i\cos(3)\sinh(4) \approx -27.0142 - 3.8532i$$
.

3.a. On a $\sin(z) = 100$ est équivalent à $\sin(x)\cosh(y) + i\cos(x)\sinh(y) = 100$ donc

$$\begin{cases} \cos(x)\sinh(y) = 0\\ \sin(x)\cosh(y) = 100 \end{cases} \iff \begin{cases} \cos(x) = 0 \text{ ou } \sinh(y) = 0\\ \sin(x)\cosh(y) = 100 \end{cases} \iff \begin{cases} x \equiv \frac{\pi}{2} \mod \pi \text{ ou } y = 0\\ \sin(x)\cosh(y) = 100 \end{cases}$$

Ce qui est équivalent à

$$\begin{cases} x = \frac{\pi}{2} + k\pi \\ (-1)^k \cosh(y) = 100 \end{cases} \quad \text{ou} \quad \begin{cases} y = 0 \\ \sin(x) = 100 \end{cases}$$

Or le deuxième système ne peut pas être vérifié (car $-1 \le \sin(x) \le 1$ pour tout $x \in \mathbb{R}$). Et puisque $\cosh(y) \ge 1$ sur \mathbb{R} alors

$$\sin(x+iy) = 100 \Longleftrightarrow x = \frac{\pi}{2} \mod 2\pi \qquad \text{et} \qquad y = \operatorname{arccosh}(100) = \ln\left(100 + 3\sqrt{1111}\right).$$

3.b. On a $\cos(z) = 2i$ implique $z = \arccos(2i) = -i \ln(2i \pm i\sqrt{5}) = \mp i \ln(\sqrt{5} \pm 2) \pm \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$.

$$z = \frac{\pi}{2} + 2k\pi - i\ln\left(\sqrt{5} + 2\right)$$
 ou $z = -\frac{\pi}{2} + 2k\pi + i\ln\left(\sqrt{5} - 2\right)$.

Réciproquement, les solutions vérifient bien l'équation.

3.c. On a $e^z = 4 - 3i$ implique $z = \ln(4 - 3i) = \ln|4 - 3i| - i\arctan\left(\frac{3}{4}\right) + 2ik\pi$ avec $k \in \mathbb{Z}$. Donc

$$z = \ln(5) - i \arctan\left(\frac{3}{4}\right) + 2ik\pi \qquad (k \in \mathbb{Z}).$$

4.a.

•
$$\ln(-1) = \ln\left(e^{(2k+1)i\pi}\right) = (2k+1)i\pi$$
 • $\ln(-e) = \ln\left(e^{(2k+1)i\pi+1}\right) = 1 + (2k+1)i\pi$.

•
$$\ln(4+3i) = \ln(5) + i\arctan\left(\frac{3}{4}\right) + 2ki\pi$$
 • $\ln\left(e^{3i}\right) = 3i + 2ik\pi = (2k\pi + 3)i$.

Avec $k \in \mathbb{Z}$.

4.b. Montrons que pour tout $x \ge 1$

$$\operatorname{Arccosh}(x) = \ln\left(x + \sqrt{x^2 - 1}\right),\,$$

où Arccosh désigne la fonction réciproque de la fonction cosh. Il est connu que cosh est inversible de \mathbb{R}_+ à valeurs dans $[1, +\infty)$. Soient alors $x \in [1, +\infty)$ et $y \in \mathbb{R}_+$ donc

$$\operatorname{Arccosh}(x) = y \iff \cosh(y) = x \iff e^y + e^{-y} = 2x \iff e^{2y} - 2xe^y + 1 = 0.$$

L'équation $Y^2 - 2xY + 1 = 0$ admette comme solutions, pour tout $x \ge 1$,

$$Y = x + \sqrt{x^2 - 1}$$
 ou $Y = x - \sqrt{x^2 - 1}$

et comme $Y \ge 1$ pour tout $x \ge 1$ alors la solution possible est $Y = x + \sqrt{x^2 - 1}$, c'est à dire

$$\operatorname{Arccosh}(x) = \ln\left(x + \sqrt{x^2 - 1}\right).$$

Soient $z, w \in \mathbb{C}$ tels que $\operatorname{Arccosh}(z) = w$ alors $z = \cosh(w) = \frac{e^w + e - w}{2}$. Donc

$$w = \ln\left(z \pm \sqrt{z^2 - 1}\right).$$

Et puisque la restriction de Arccosh sur \mathbb{R} est Arccosh $(x) = \ln (x + \sqrt{x^2 - 1})$ alors

$$\operatorname{Arccosh}(z) = \ln\left(z + \sqrt{z^2 - 1}\right).$$

Exercice III.

On a

$$x^2 + y^2 = 4 \Longleftrightarrow \left(\frac{x}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 1.$$

Donc l'équation paramétrique est donnée par

$$x = 2\cos(t)$$
 et $y = 2\sin(t)$ $t \in [0, 2\pi]$.

Exercice IV.

(a) Soit $t \in (-1,2)$ et posons x(t) = 4 - 2t et y(t) = -3 + 5t. Donc on remplace $t = \frac{4-x}{2}$ dans y et on trouve

$$y = -\frac{5}{2}x + 7$$

qui est l'équation paramétrique d'un segment ouvert [AB] d'extrémités $A\left(x(-1),y(-1)\right)$ et $B\left(x(2),y(2)\right)$.

(b) Soit $0 < t < \frac{3\pi}{4}$ et posons $x(t) = 2\cos(t)$ et $y(t) = 5\sin(t)$ donc on a

$$\left(\frac{x}{2}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$$

qui est une équation paramétrique d'une ellipse et comme $0 < t < \frac{3\pi}{4}$ alors la courbe demandée est une partie de l'ellipse.

Exercice V.

L'équation paramétrique de la courbe d'équation $\left(\frac{x}{2}\right)^2+y^2=1$ est donnée par

$$\begin{cases} x = 2\cos(t) \\ y = \sin(t) \end{cases}$$

donc le vecteur directeur de la tangente (T) au point $(x(t_0), y(t_0))$ (à l'instant t_0) est défini par

$$\vec{u}(t_0) = (x'(t_0), y'(t_0)) = (-2\sin(t_0), \cos(t_0)).$$

En particulier, le point $P\left(\sqrt{2}, \frac{\sqrt{2}}{2}\right)$ est correspond à l'instant $t_0 = \frac{\pi}{4}$. En effet,

$$x(t_0) = \sqrt{2} \Leftrightarrow \cos(t_0) = \frac{\sqrt{2}}{2}$$

et

$$y(t_0) = \frac{\sqrt{2}}{2} \Leftrightarrow \sin(t_0) = \frac{\sqrt{2}}{2}.$$

Donc

$$M\left(x(t),y(t)\right)\in (T)\Longleftrightarrow\overrightarrow{PM}=t\overrightarrow{u}(t_0)\Longleftrightarrow \begin{cases} x(t)=\sqrt{2}-\sqrt{2}t\\ y(t)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}t \end{cases}$$

Exercice VI.

On rappelle qu'un champ de vecteurs F=(M,N) tel que $M,N:\mathbb{R}^2\to\mathbb{R}$ sont de classe C^1 , dérive d'un potentiel $f:\mathbb{R}^2\to\mathbb{R}$ si

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}.$$

On a alors $\nabla f = F$ ce qui est équivalent à

$$\frac{\partial f}{\partial x} = M$$
 et $\frac{\partial f}{\partial y} = N$.

1.a. Soit $F(x,y) = (x^3 - y\sin(x), y^3 - \cos(x)) = (M,N)$ alors M et N sont de classe C^1 sur \mathbb{R}^2 mais

$$\frac{\partial M}{\partial y} = -\sin(x) \neq \sin(x) = \frac{\partial N}{\partial x}$$

alors F ne dérive pas d'un potentiel.

1.b. Soit F = (M, N) avec $M(x, y) = 2x \arctan(y)$ et $N(x, y) = \frac{x^2}{1 + y^2}$. Alors M et N sont bien de classe C^1 sur \mathbb{R}^2 et on a

$$\frac{\partial M}{\partial y} = \frac{2x}{1+y^2} = \frac{\partial N}{\partial x},$$

donc F dérive d'un potentiel f. Et on a d'une part

$$\frac{\partial f}{\partial x} = M(x, y) = 2x \arctan(y) \Longrightarrow f(x, y) = x^2 \arctan(y) + h(y)$$

où h est une fonction numérique de classe C^1 , donc

$$\frac{\partial f}{\partial y} = \frac{x^2}{1+y^2} + h'(y).$$

Et d'une autre part

$$\frac{\partial f}{\partial y} = N(x, y) = \frac{x^2}{1 + y^2}.$$

On déduit que h'(y) = 0 donc h est constante et par conséquent

$$f(x,y) = x^2 \arctan(y) + \text{cte.}$$

2.a. On pose $M(x,y) = yx^2$ et N(x,y) = x + y. Notez que le champ F(M,N) ne dérive pas d'un potentiel (à vérifier). Alors soit la paramétrisation de la courbe C

$$\begin{cases} x(t) = t \\ y(t) = -t^3 \end{cases} \qquad t \in [0, 1]$$

donc

$$M(x,y) = -t^5$$
, $N(x,y) = t - t^3$, $dx = dt$, et $dy = -3t^2 dt$

et

$$\int_C \left(M(x,y) dx + N(x,y) dy \right) = \int_0^1 \left(-t^5 - 3t^2 (t - t^3) \right) dt = \int_0^1 \left(2t^5 - 3t^3 \right) dt = -\frac{5}{12}.$$

2.b. On pose M(x,y) = 3xy et $N(x,y) = 4x^2 - 3y$. On considère, après la vérification que le champ F = (M, N) ne dérive pas d'un potentiel, les paramétrisations suivantes

$$\Gamma_1: \begin{cases} x(t) = t \\ y(t) = 3 + 2t \end{cases}$$
 et $\Gamma_2: \begin{cases} x(t) = t \\ y(t) = t^2 \end{cases}$ $t \in [3, 5].$

Donc

$$\int_{\Gamma_1 \cup \Gamma_2} \left(M(x, y) dx + N(x, y) dy \right) = \int_0^3 (14t^2 - 3t - 18) dt + \int_3^5 5t^2 dt = 738.5$$

Exercice VII.

On rappelle qu'un champ de vecteurs F=(M,N,R) tel que M,N et R sont de classe C^1 dérive d'un potentiel f si

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}, \qquad \frac{\partial M}{\partial z} = \frac{\partial R}{\partial x}, \quad \text{et} \quad \frac{\partial N}{\partial z} = \frac{\partial R}{\partial y}.$$

et on a $\nabla f = F$, c'est à dire

$$\frac{\partial f}{\partial x} = M, \qquad \frac{\partial f}{\partial y} = N, \quad \text{et} \quad \frac{\partial f}{\partial z} = R.$$

a) Soit F = (M, N, R) avec $M(x, y, z) = 6xy^3 + 2z^2$, $N(x, y, z) = 9x^2y^2$ et R(x, y, z) = 4xz + 1. Donc les fonctions M, N et R sont de classe C^1 (des polynômes) et on a

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = 18xy^2,$$
 $\frac{\partial M}{\partial z} = \frac{\partial R}{\partial x} = 4z,$ et $\frac{\partial N}{\partial z} = \frac{\partial R}{\partial y} = 0.$

donc F dérive d'un potentiel f. On a

$$\frac{\partial f}{\partial x}(x, y, z) = M(x, y, z) = 6xy^3 + 2z^2$$

donc

$$f(x, y, z) = 3x^2y^3 + 2z^2x + h(y, z)$$

où h est une fonction de classe C^1 sur \mathbb{R}^2 . Or

$$\frac{\partial f}{\partial y}(x,y,z) = N(x,y,z) \Longleftrightarrow 9x^2y^2 + \frac{\partial h}{\partial y}(y,z) = 9x^2y^2$$

alors

$$\frac{\partial h}{\partial y}(y,z) = 0$$

ce qui implique

$$h(y,z) = g(z)$$

où g est une fonction numérique de classe C^1 sur $\mathbb R.$ Puisque

$$\frac{\partial f}{\partial z}(x, y, z) = R(x, y, z) \Longleftrightarrow 4zx + g'(z) = 4xz + 1$$

alors

$$q'(z) = 1$$

ce qui implique

$$g(z) = z + \text{cte.}$$

Par conséquent

$$f(x, y, z) = 3x^2y^3 + 2z^2x + z + \text{cte.}$$

b) Puisque F dérive d'un potentiel f et C est une courbe lisse reliant les points (0,0,0) et (1,1,1) alors

$$\int_C (M(x,y,z)dx + N(x,y,z)dy + R(x,y,z)dz) = f(1,1,1) - f(0,0,0) = 6.$$

c) Soient les points O(0,0,0), A(1,0,0), B(1,1,0) et D(1,1,1) donc

$$\int_{C} = \int_{[OA] \cup [AB] \cup [BD]} = \int_{[OA]} + \int_{[AB]} + \int_{[BD]}.$$

Or les paramétrisations des segments sont données par

$$[OA]: \begin{cases} x=t \\ y=0 \\ z=0 \end{cases}$$
 $[AB]: \begin{cases} x=1 \\ y=t \\ z=0 \end{cases}$ $[BD]: \begin{cases} x=1 \\ y=1 \\ z=t \end{cases}$

Donc

$$\int_{[OA]} (M(x,y,z)dx + N(x,y,z)dy + R(x,y,z)dz) = 0,$$

$$\int_{[AB]} (M(x,y,z)dx + N(x,y,z)dy + R(x,y,z)dz) = \int_0^1 9t^2dt = 3$$

$$\operatorname{et}$$

$$\int_{[BD]} (M(x,y,z)dx + N(x,y,z)dy + R(x,y,z)dz) = \int_0^1 (4t+1) = 3.$$

Par conséquent

$$\int_C (M(x, y, z)dx + N(x, y, z)dy + R(x, y, z)dz) = 3 + 3 = 6.$$

Filière : SMP

Module M19 : ANALYSE III

Corrigé Série #3

Exercice I.

Soit z = x + iy un nombre complexe, on a

 $|z-2+3i| = 4 \iff |x+iy-2+3i| = 4 \iff |(x-2)+i(y+3)|^2 = 4^2 \iff (x-2)^2 + (y+3)^2 = 16.$

qui est l'équation du cercle C((2,-3);4). Donc

$$\left(\frac{x-2}{4}\right)^2 + \left(\frac{y+3}{4}\right)^2 = 1 \Longleftrightarrow \begin{cases} \frac{(x-2)}{4} = \cos(t) \\ \frac{(y+3)}{4} = \sin(t) \end{cases} \qquad t \in [0, 2\pi]$$

D'où

$$C: \begin{cases} x(t) = 2 + 4\cos t \\ y(t) = -3 + 4\sin t \end{cases} \qquad t \in [0, 2\pi]$$

Exercice II.

a) Soit z(t) = x(t) + iy(t) pour tout $t \in [0, 2]$ alors

$$z(t) = 1 + i + \cos(\pi t) - i\sin(\pi t) \Longleftrightarrow \begin{cases} x(t) = 1 + \cos(\pi t) \\ y(t) = 1 - \sin(\pi t) \end{cases}, \quad t \in [0, 2] \Longleftrightarrow (x - 1)^2 + (y - 1)^2 = 1,$$

qui représente l'équation du cercle C((1,2);1).

b) On pose z(t) = x(t) + iy(t), pour tout $t \in [-1, 1]$, alors

$$z(t) = 1 + 2t + 8it^2 \Longleftrightarrow \begin{cases} x(t) = 1 + 2t \\ y(t) = 8t^2 \end{cases} \Longleftrightarrow \begin{cases} t = \frac{x-1}{2} \\ y = 8t^2 \end{cases} \Longleftrightarrow y = 2(x-1)^2,$$

qui représente l'équation de parabole limitée par les points A(-1,8) et B(3,8).

Exercice III.

a) Soit z(t) = x(t) + iy(t) donc $\overline{z(t)} = x(t) - iy(t)$ et dz(t) = z'(t)dt = (x'(t) + iy'(t))dt. On considère une paramétrisation de la courbe C donnée par

$$\begin{cases} x(t) = t \\ y(t) = t^2 \end{cases} \quad t \in [-1, 1].$$

Alors

$$\int_{C} \bar{z}dz = \int_{-1}^{1} (t - it^{2}) (1 + 2it)dt = \int_{-1}^{1} (2t^{3} + it^{2} + t)dt = \frac{2}{3}i.$$

Remarque. Notez que la fonction $f(z) = \bar{z}$ n'est pas holomorphe (voir le cours).

b) Soit z(t) = x(t) + iy(t) alors $Im(z^2) = 2x(t)y(t)$ et dz = z'dt = (x' + iy')dt. la courbe C est le triangle de sommets O(0,0), A(1,0) et B(0,1); alors

$$\int_C Im(z^2) dz = \int_{[OA]} Im(z^2) dz + \int_{[AB]} Im(z^2) dz + \int_{[BO]} Im(z^2) dz$$

Or

$$[OA]: \begin{cases} x(t) = t \\ y(t) = 0 \end{cases}, \quad [AB]: \begin{cases} x(t) = 1 - t \\ y(t) = t \end{cases}, \quad \text{et} \quad [BO]: \begin{cases} x(t) = 0 \\ y(t) = t \end{cases} \quad t \in [0, 1]$$

D'où

$$\int_{[OA]} Im(z^2) dz = \int_{[BO]} Im(z^2) dz = 0 \quad \text{et} \quad \int_{[AB]} Im(z^2) dz = 2(-1+i) \int_0^1 t(1-t) dt = \frac{-1+i}{3}.$$

Par conséquent,

$$\int_C Im(z^2)dz = \frac{-1+i}{3}.$$

Exercice IV.

a) La fonction f(z) = Re(2z) n'est pas holomorphe. Donc

$$\oint_C f(z)dz = \int_{-1}^1 f(x)dx + \int_0^{\pi} f(e^{it}) ie^{it}dt$$

Or

$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} 2xdx = 0$$

et

$$\int_0^{\pi} f(e^{it}) i e^{it} dt = i \int_0^{\pi} (2\cos^2(t) + i\sin(2t)) dt = i \int_0^{\pi} (\cos(2t) + 1 + i\sin(2t)) dt = i\pi.$$

Donc

$$\oint_C f(z)dz = i\pi.$$

b) La fonction $f(z) = \frac{7z-6}{z^2-2z}$ a deux pôles simples 0 et 2 situés dans le contour fermé C; donc d'après le théorème des résidus on a

$$\oint_C f(z)dz = 2\pi i \left(Res(f,0) + Res(f,2)\right)$$

Or

$$Res(f,0) = \lim_{z \to 0} zf(z) = 3$$
 et $Res(f,0) = \lim_{z \to 2} (z-2)f(z) = 4$.

Donc

$$\oint_C f(z)dz = 14i\pi.$$

Exercice V.

a) Soit $f(z) = \frac{1}{4}(1+2z)\cos(z)$ et C le cercle unité alors f est holomorphe sur et à l'intérieur de C. Donc, puisque $z_0 = \frac{1}{2}$ est à l'intérieur de C alors d'après le théorème de Cauchy

$$f'\left(\frac{1}{2}\right) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{\left(z - \frac{1}{2}\right)} dz;$$

c'est à dire

$$\oint \frac{(1+2z)\cos(z)}{(2z-1)^2}dz = 2\pi i f'\left(\frac{1}{2}\right) = i\pi\cos\left(\frac{1}{2}\right) - i\pi\sin\left(\frac{1}{2}\right).$$

b) Il est clair que la couronne à l'intérieur de $C = \Gamma_1 \cup \Gamma_2$ n'est pas simplement connexe! ou aussi, la courbe C n'est pas lisse par morceaux. Alors on ajoute un segment [AB] (voir la figure) pour que la courbe soit lisse par morceaux (et d'intérieur simplement connexe).

On a alors,

$$\oint_{[AB]\cup\Gamma_1\cup[BA]\cup\Gamma_2} = \oint_{C\cup[AB]\cup[BA]} = \oint_C + \int_{AB} + \int_{[BA]} = \oint_C.$$

Or puisque $C'=[AB]\cup\Gamma_1\cup[BA]\cup\Gamma_2$ est un contour lisse par morceaux et entouré un domaine simplement connexe et puisque la fonction $f(z)=\frac{e^{2z}}{z}$ est holomorphe dans C' alors d'après le théorème de Cauchy on a

$$\oint_{C'} \frac{f(z)}{(z-2i)^2} dz = 2i\pi f'(2i) = \frac{(4+i)e^{4i}}{2}\pi.$$

D'où

$$\oint_C \frac{e^{2z}}{z(z-2i)^2} dz = \frac{(4+i)e^{4i}}{2} \pi.$$

Exercice VI.

1.a. Puisque $\left|\frac{1}{4}\right| < 1$ et $\left|-\frac{1}{5}\right| < 1$ alors

$$\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n \quad \text{et} \quad \sum_{n=0}^{\infty} \left(-\frac{1}{5}\right)^n \qquad \text{convergent}$$

et par conséquent, la série

$$\sum_{n=0}^{\infty} \left(2\left(\frac{1}{4}\right)^n + 3\sum_{n=0}^{\infty} \left(-\frac{1}{5}\right)^n \right) = 2\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n + 3\sum_{n=0}^{\infty} \left(-\frac{1}{5}\right)^n$$

est convergente. En plus

$$\sum_{n=0}^{\infty} \left(2 \left(\frac{1}{4} \right)^n + 3 \sum_{n=0}^{\infty} \left(-\frac{1}{5} \right)^n \right) = \frac{31}{6}.$$

- **1.b.** Puisque $\lim_{n \to +\infty} \frac{n-5}{n+2} = 1 \neq 0$ alors, la série $\sum_{n=0}^{+\infty} \frac{n-5}{n+2}$ diverge.
- **2.a.** Soit $u_n = \frac{n-3}{n^2+2}$ pour $n \in \mathbb{N}^*$. Puisque $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ et que $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge alos la série $\sum_{n=1}^{\infty} u_n$ est divergente.
- **2.b.** Soit $f(x) = \frac{\arctan(x)}{x^2 + 1}$ alors puisque f est positive et décroissante alors la série $\sum_{n=1}^{\infty} f(n)$ et l'intégrale $\int_{1}^{+\infty} f(x)dx$ ont la même nature. Et puisque

$$\int_{1}^{+\infty} f(x)dx = \left[\frac{1}{2}\arctan^{2}(x)\right]_{1}^{+\infty} = \frac{3\pi^{2}}{32} \quad \text{converge}$$

alors la série $\sum_{n=1}^{\infty} \frac{\arctan(n)}{n^2 + 1}$ est convergente.

- **2.c.** Soit $v_n \frac{n!}{n^{100}}$ pour $n \in \mathbb{N}^*$. Puisque $\lim_{n \to +\infty} \frac{v_{n+1}}{v_n} = +\infty > 1$ alors la série $\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$ est divergente.
- **3.** On pose $a_n \frac{(-1)^n}{n}$ pour $n \in \mathbb{N}^*$, alors puisque $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ alors la série $\sum_{n=1}^{\infty} a_n (x+3)^n$ converge si |x+3| < 1, c'est à dire, si $x \in]-4,-2[$.

Pour x = -2 on a $\sum_{n=1}^{\infty} a_n (x+3)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ qui est une série alternée donc est convergente.

Pour x = -4 on a $\sum_{n=1}^{\infty} a_n (x+3)^n = \sum_{n=1}^{\infty} \frac{1}{n}$ qui est la série harmonique donc divergente.

On conclut que la série $\sum_{n=1}^{\infty} a_n(x+3)^n$ converge si $x \in]-4,2]$.

Exercice VII.

1.a. On pose $u_n = \left(\frac{10 - 15i}{n!}\right)^n$ alors puisque

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = |10 - 15i| \lim_{n \to \infty} \left| \frac{n!^n}{(n+1)!^{n+1}} \right| = |10 - 15i| \lim_{n \to \infty} \frac{1}{(n+1)!(n+1)^n} = 0 < 1.$$

Donc la série $\sum_{n=0}^{\infty} \left(\frac{10-15i}{n!}\right)^n$ est convergente.

1.b. On a pour tout $n \ge 1$

$$0 < \left| \frac{i^n}{n^2 - 2i} \right| = \frac{1}{\sqrt{n^4 + 4}} \le \frac{1}{n^2}.$$

Et puisque la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ est convergente alors la série $\sum_{n=1}^{\infty} \frac{i^n}{n^2-2i}$ est convergente.

- **1.c.** On pose $v_n = n^2 \left(\frac{i}{3}\right)^n$ pour $n \in \mathbb{N}$. Puisque $\lim_{n \to \infty} \left| \frac{v_{n+1}}{v_n} \right| = \frac{1}{3} < 1$ alors la série $\sum_{n=0}^{\infty} v_n$ est convergente.
- **2.a.** Soit $a_n = \frac{1}{n^2}$ pour tout $n \in \mathbb{N}^*$ alors puisque $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ alors la série $\sum_{n=1}^{\infty} a_n (z+i)^n$ converge si |z+i| < 1; c'est à dire, si z est dans le disque ouvert du centre (0,-1) et de rayon 1. Mais, si $z+i=e^{it}$ pour $t \in \mathbb{R}$ alors

$$\sum_{n=1}^{\infty} a_n (z+i)^n = \sum_{n=1}^{\infty} \frac{e^{int}}{n^2}$$

Or,

$$\left| \sum_{n=1}^{\infty} \frac{e^{int}}{n^2} \right| \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \quad \text{qui est convergente.}$$

alors $\sum_{n=1}^{\infty} \frac{e^{int}}{n^2}$ est convergente pour tout $t \in \mathbb{R}$. Et par conséquent la série $\sum_{n=1}^{\infty} \frac{(z+i)^n}{n^2}$ converge si $|z+i| \leq 1$; c'est à dire, si z appartient au disque fermé de centre (0,-1) et de rayon 1.

2.b. Soit $b_n = \frac{(-1)^n}{2^{2n}n!^2}$ alors on a

$$\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \frac{2^{2n} n!^2}{2^{2n+2} (n+1)!^2} = \lim_{n \to \infty} \frac{1}{4(n+1)^2} = 0.$$

Alors la série $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} n!^2} z^{2n}$ est convergente pour tout $z \in \mathbb{C}$.

2.c. On a

$$\sum_{n=0}^{\infty} \frac{4^n}{(1+i)^n} (z-5)^n = \sum_{n=0}^{\infty} \left(\frac{4(z-5)}{1+i}\right)^n$$

qui converge si

$$\left| \frac{4(z-5)}{1+i} \right| < 1$$

c'est à dire, si $|z-5| < \frac{\sqrt{2}}{4}$.

Filière: SMP

Module M19: ANALYSE III

Corrigé Série #4

Exercice I.

a) Si |z-1| < 1 alors $\frac{1}{z} = \frac{1}{1 - (1-z)} = \sum_{n=0}^{\infty} (-1)^n (z-1)^n$. Et si |z-1| > 1 alors $\frac{1}{z} = \frac{1}{1 - (1-z)} = \frac{1}{z-1} \frac{1}{1 - \frac{1}{1-z}} = \sum_{n=0}^{\infty} (-1)^n (z-1)^{-n-1}$.

b) On sait que pour tout $w \in \mathbb{C}$ on a $\cosh(w) = \sum_{n=0}^{\infty} \frac{w^{2n}}{(2n)!}$. Donc,

$$z^{3} \cosh\left(\frac{1}{z}\right) = z^{3} \sum_{n=0}^{\infty} \frac{1}{(2n)! z^{n}} = z^{3} + \frac{1}{2}z^{2} + \frac{1}{24}z + \sum_{n=0}^{\infty} \frac{1}{(2n+6)!} z^{-n}.$$

Exercice II.

a) On sait que pour tout $z \in \mathbb{C}$ on a $\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ donc

$$\frac{\cos(z)}{z^6} = \frac{1}{z^6} - \frac{1}{2z^4} + \frac{1}{24z^2} + \sum_{n=3}^{\infty} \frac{(-1)^n z^{2n-6}}{(2n)!}.$$

Alors le seul point singulier est 0 qui est un pôle d'ordre 6 et son résidu égale à 0.

b) Les points singuliers de la fonction $z \mapsto \frac{1}{\cos(z)}$ sont $z_k = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$. Notez que les z_k sont des pôles simples de résidus égaux à $\frac{1}{\sin(z_k)} = (-1)^k$.

Exercice III.

a) On a

$$f(z) = \frac{\sin(\pi z)}{z^4} = \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!} z^{2n-3} = \frac{\pi}{z^3} - \frac{\pi^3}{6z} + \sum_{n=2}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!} z^{2n-3}$$

Donc f a un seul pôle d'ordre 3 en z=0 de résidu égal à $-\frac{\pi^3}{6}$. Alors

$$\oint_{\Gamma_1} f(z)dz = -\frac{\pi^4}{3}i.$$

b) La fonction $g(z) = \frac{1 - 4z + 6z^2}{\left(z^2 + \frac{1}{4}\right)(2 - z)}$ admette deux pôles $\pm \frac{i}{2}$ situés à l'intérieur de la courbe fermé Γ_2 . Donc

$$Res\left(g,\frac{i}{2}\right) = \lim_{z \to \frac{i}{2}} \left(z - \frac{i}{2}\right)g(z) = -1 = Res\left(g, -\frac{i}{2}\right) = \lim_{z \to -\frac{i}{2}} \left(z + \frac{i}{2}\right)g(z).$$

D'où

$$\oint_{\Gamma_2} g(z)dz = -4i\pi.$$

Exercice IV.

1) Puisque la fonction est 2π -périodique et paire alors sa série de Fourier est donnée par

$$f(x) = a_0 + \sum_{n=0}^{\infty} a_n \cos(nx)$$

pour tout $x \in]-\pi,\pi[$, avec

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx = \frac{1}{\pi} \int_{0}^{\pi} (\pi - x)dx = \frac{\pi}{2}.$$

 Et

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) \cos(nx) dx = \frac{2}{\pi} \frac{1 - (-1)^n}{n^2}.$$

Donc

$$a_{2k} = 0$$
 et $a_{2k+1} = \frac{4}{\pi} \frac{1}{(2k+1)^2}$.

Par conséquent,

$$f(x) = \frac{\pi}{2} + \frac{16}{\pi^2} \sum_{k=0}^{\infty} \frac{\cos((2k+1)x)}{(2k+1)^2}.$$

2) En appliquant l'égalité de Parseval (notez que f est continue par morceaux) on trouve

$$\frac{1}{\pi} \int_0^{\pi} (\pi - x)^2 dx = \frac{\pi^2}{4} + \frac{8}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^4},$$

d'où

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^2}{8} \left(\frac{\pi^2}{3} - \frac{\pi^2}{4} \right) = \frac{\pi^4}{96}.$$