Visual Geometry Group

Karen

Department of Engineering Science, University of Oxford

Very Deep Convolutional Networks for Large-Scale Visual Recognition

Computer Vision

Carnegie Mellon University (Kris Kitani)

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman+

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen, az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3×3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

VGG-16

VGG-16

VGG-16

Emerging 'rule of thumb'

Convolutions all standardized to 3 x 3

Convolutions always followed by ReLU

Stack several convolutions at the same resolution

Downsample by 2, increase channels by 2

No local response normalization

AlexNet Conv (11,4) + ReLU ResNorm (5) MaxPoo (3,2) Conv (5,1) + ReLU VGG networks mirror ResNorm (5) MaxPool (3,2) Conv (3,1) + ReLU Conv (3,1) + ReLU Conv (3,1) + ReLU the basic structure of MaxPool (3,2) **AlexNet** 227 14 14 256 384 384 4096 4096 VGG-1/6 Conv (3,1) + ReLU + MaxPool(2,2) Conv (3,1) + ReLU + MaxPool(2,2) Conv (3,1) + ReLU Conv (3,1) + ReLU Conv (3,1) + ReLU Conv (3,1) + ReLU 224 56 56 14 14 14 112 56 28 28 28 512 512 512 512 256 512 128 256 256 128 4096 4096 'CONV1'

Decision function is more discriminative.

Decision function is more discriminative.

Two linear functions

$$b \cdot (a \cdot x)$$

Same as just one linear function

Two non-linear functions

$$F(b \cdot F(a \cdot x))$$

Can capture more complex decision boundary

Decision function is more discriminative.

Two linear functions

$$b \cdot (a \cdot x)$$

Same as just one linear function

Two non-linear functions

$$F(b \cdot F(a \cdot x))$$

Can capture more complex decision boundary

Decrease number of parameters.

Decision function is more discriminative.

Two linear functions

$$b \cdot (a \cdot x)$$

Same as just one linear function

Two non-linear functions

$$F(b \cdot F(a \cdot x))$$

Can capture more complex decision boundary

Decrease number of parameters.

Three layer 3 x 3 x C convolution has

$$3 \cdot 3^2 \cdot c = 27 \cdot c$$

parameters.

Decision function is more discriminative.

Two linear functions

$$b \cdot (a \cdot x)$$

Same as just one linear function

Two non-linear functions

$$F(b \cdot F(a \cdot x))$$

Can capture more complex decision boundary

Decrease number of parameters.

Three layer 3 x 3 x C convolution has

$$3 \cdot 3^2 \cdot c = 27 \cdot c$$
 parameters.

One layer 7 x 7 x C convolution has

$$7^2 \cdot c = 49 \cdot c$$
 parameters.

VGG-16

6 different VGG networks in the paper

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
		max	pool		,		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	.pool				
		FC-	4096				
FC-4096							
FC-1000							
soft-max							

A can be trained from scratch

		0 11 0					
<u> </u>	ConvNet Configuration						
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
		max	.pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
	i		conv1-512	conv3-512	conv3-512		
	1				conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	.pool				
	FC-4096						
	FC-4096						
	FC-1000						
	soft-max						

ConvNet Configuration					
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	nput (224×224 RGB image)				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
		maxpool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
	maxpool				
FC-4096					
	FC-4096				
	FC-1000				
		soft-	-max		

These cannot be trained from scratch

What would you do?

Use A to initialize bigger networks

		ConvNet Configuration				
A	A-LRN	В	С	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
		nput (224 × 224 RGB image)				
conv3-64	com/2 64	conv3-64	conv3-64	conv3-64	conv3-64	
		conv3-64	conv3-64	conv3-64	conv3-64	
		max	pool			
conv3-128	100	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
		max	pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256		conv3-256	conv3-256	conv3-256	conv3-256	
l T			conv1-256	conv3-256	conv3-256	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	2.514	conv3-512	conv3-512	conv3-512	conv3-512	
l ,			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
	conv3-512		conv3-512	conv3-512	conv3-512	
conv3-512		conv3-512	conv3-512	conv3-512	conv3-512	
I T	_		conv1-512	conv3-512	conv3-512	
					conv3-512	
		maxpool				
		FC-4096				
		FC-4096				
		FC-1000				
		soft-max				

What would you do?

Tricks for Training VGG

Pre-training

Data augmentation (multi-crops, flips, color, scale)

Dropout

SGD with momentum

VGG Testing Details

- Convert model to fully convolutional network.
 Generates a pixel-wise heat maps with channels equal to number of classes
 (no need to sample multiple crops like AlexNet)
- Average pool final output to obtain class score
- Hack! Softmax class posteriors of original and flipped images averaged

VGG Results

Single VGG Network (ILSVRC 2012)

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
E	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

Multiple VGG Networks (ILSVRC 2012)

Table 6: Multiple ConvNet fusion results.

r						
Combined ConvNet models		Error				
		top-5 val	top-5 test			
ILSVRC submission						
(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)						
(C/256/224,256,288), (C/384/352,384,416)	24.7	7.5	7.3			
(E/256/224,256,288), (E/384/352,384,416)						
post-submission						
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), dense eval.	24.0	7.1	7.0			
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop	23.9	7.2	-			
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop & dense eval.	23.7	6.8	6.8			

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted as "VGG". Only the results obtained without outside training data are reported.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.	.9
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.	.7
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

Important Concepts

Emerging 'rule of thumb'

Convolutions all standardized to 3 x 3

Convolutions always followed by ReLU

Stack several convolutions at the same resolution

Downsample by 2, increase channels by 2

No local response normalization

Training Tricks

Initialize bottom layers with smaller network

Dropout is important

Data augmentation is important