

UiO Department of Mathematics
University of Oslo

Modeling Aircraft Movements Using Stochastic Hybrid Systems

STK4000 - Risk and Reliability Analysis (Exam)

Jonas Semprini Næss

April 29, 2024

Table of contents I

- 1 Overview and Introduction
- **2** Conceptual Model
- 3 Software Implementation
- 4 Analysis
- 5 Conclusion
- 6 References

Overview and Introduction

- What are we studying?
- Air Traffic Control (ATC)
- How are we approaching the problem?
 - Ordinary Differential Equations (ODE)
 - Stochastic Environments
 - Counting Processes

Table of contents I

- 1 Overview and Introduction
- **2** Conceptual Model
 - Airspace
 - Counting Process
 - Arrival and Depature points
 - Time of Arrival and Time of Depature
 - Queueing
 - Processed Agents
 - Aircraft Position Model
 - Risk Measures
 - Critical Distance
 - Limiting Fracton
- 3 Software Implementation

Table of contents II

- 4 Analysis
- 5 Conclusion
- 6 References

Conceptual Model

- A Airspace of interest
- \blacksquare {N(t)} Aircraft arrival process
- \blacksquare $(T_{a,i}, T_{d,i})$ Arrival and departure times of *i*th aircraft
- $T_{p,i} = T_{d,i} T_{a,i}$ Processing time of ith aircraft
- $lacktriangledown \left(oldsymbol{X}_{a,i}, oldsymbol{X}_{d,i} \right)$ Arrival and departure points of *i*th aircraft

Derived processes

- We denote the number of aircraft that arrived at time t by

$$N(t) = \sum_{i=0}^{\infty} I(T_{a,i} \leq t).$$

- Moreover, is it reasonable to address the number of processed aircraft at t. Which can be described as follows

$$M(t) = \sum_{i=0}^{\infty} I(T_{d,i} \leq t).$$

- We can view this model as a queueing system where aircraft are the clients arriving at times $T_{a,i}$ and the processing times are given by $T_{p,i} = T_{d,i} - T_{a,i}$. The queueing process, denoted $\{Q(t)\}$, represents the queue length over time, defined as

$$Q(t) = \sum_{i=1}^{\infty} I(T_{a,i} \le t < T_{d,i})$$

Where by observation we see that Q(t) = N(t) - M(t)

Aircraft Position Model

- The position of the *i*th aircraft at time *t* is represented as $x_i(t)$, where $i = 1, 2, \ldots$ Therefore, the trajectories of the *i*th aircraft are described by:

$$\left\{ oldsymbol{x}_{i}(t): T_{a,i} \leq t \leq T_{d,i} \right\}$$

- With boundary conditions:

$$oldsymbol{x}_i\left(T_{a,i}
ight) = oldsymbol{X}_{a,i} \ oldsymbol{x}_i\left(T_{d,i}
ight) = oldsymbol{X}_{d,i}$$

- Position expressed in terms of velocity:

-
$$oldsymbol{x}_i(t) = oldsymbol{X}_{a,i} + \int_{T_{a,i}}^t \dot{oldsymbol{x}}_i(u) du$$

- If we additionally assume constant velocity, and speed s_i , then we can express \dot{x}_i as:

$$\dot{oldsymbol{x}}_i(t) = rac{oldsymbol{X}_{d,i} - oldsymbol{X}_{a,i}}{\left\|oldsymbol{X}_{d,i} - oldsymbol{X}_{a,i}
ight\|} oldsymbol{s}_i$$

Risk Measures

- We define a risk event as the proximity of two or more aircraft in the air, determined by a critical distance C. At each time t, J(t) represents the index set of aircraft present in $\mathcal A$
- The minimum distance between aircrafts at time t:

$$D(t) = \min_{i,j \in J(t), i \neq j} \left\{ \left\| \boldsymbol{x}_i(t) - \boldsymbol{x}_j(t) \right\| \right\}$$

- We determine the Critical distance (C) (2.5 nautical miles [4,630 meters])
- The system is considered to be in a risky state (or at risk) at time t if: -

Risk Measures (2)

- The limiting fraction of time where the system is in a state of risk:

$$\bar{R} = \lim_{t \to \infty} \frac{1}{t} \int_0^t \mathrm{I}(D(u) < C) du$$

- The asymptotic average minimum distance between two aircrafts in $\ensuremath{\mathcal{A}}$:

$$\bar{D} = \lim_{t \to \infty} \frac{1}{t} \int_0^t D(u) du$$

- The asymptotic average throughput:

$$\bar{M} = \lim_{t \to \infty} \frac{M(t)}{t}$$

- The asymptotic average processing time:

$$\bar{T}_{p} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} T_{p,i}$$

Table of contents I

- 1 Overview and Introduction
- **2** Conceptual Model
- 3 Software Implementation
 - Elements and Objects
- 4 Analysis
- 5 Conclusion
- 6 References

Software Implementation

- Handles both discrete and continuous events:
 - Generates aircraft (discrete events)
 - Updates aircraft positions (continuous events)
- Permits flexible update intervals for each aircraft:
 - Utilizes short intervals during periods prone to risk
 - Employs long intervals during safe periods

Table of contents I

- 1 Overview and Introduction
- **2** Conceptual Model
- **3** Software Implementation
- 4 Analysis
 - Airspace Capacity
 - Setup and Assumptions
 - Data Handling and Processing
 - Simulation results (Round 1)
 - Avoiding Risk Events
 - Trajectory Algorithm
 - Critical Distances
 - Simulation results (Round 2) improved?

Table of contents II

- 5 Conclusion
- 6 References

Setup and Assumptions

- We chose a counting process, $\{N(t)\}$, with i.i.d waiting times between arrivals sampled from a censored exponential distribution.
- These waiting times, denoted by W_1, W_2, \ldots , are determined as:

$$W_i = \max(\kappa, U_i), \quad i = 1, 2, \dots$$

- Here, U_1, U_2, \ldots are independent and identically exponentially distributed variables with mean $\mu = 90$ seconds.
- We also introduced the constant κ as a control parameter, controlling the flow of traffic into \mathcal{A} . In our simulations, κ varied from 10 to 50 seconds.

Data Handling and Processing

- All flights through \mathcal{A} are assumed to be either northbound or eastbound.
- The probability of a flight being northbound is the same as the probability of it being eastbound, which is $\frac{1}{2}$.
- For northbound flights, arrival points are randomly selected within the interval I_S along the southern border of A, and departure points within the interval I_N along the northern border.
- For eastbound flights, arrival points are randomly selected within the interval I_W along the western border of A, and departure points within the interval I_E along the eastern border.

Simulation results (Round 1)

κ	10	20	30	40	50
R	0.250	0.239	0.227	0.066	0.020
D	12,108	12,288	12,548	12,840	13,196
\bar{M}	0.660	0.650	0.632	0.611	0.588
$ar{\mathcal{T}}_{oldsymbol{ ho}}$	144	144	144	144	144

Figure: Estimated criticality and performance measures as a function of the control parameter κ .

Trajectory Algorithm

For each point of time t and for each $j \in J(t)$ do the following: STEP 1. Calculate the "ideal" velocity for the j th aircraft as:

$$\dot{\boldsymbol{x}}_{j}(t) = \frac{\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)}{\|\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)\|} \boldsymbol{s}_{j}.$$

Trajectory Algorithm

For each point of time t and for each $j \in J(t)$ do the following: STEP 1. Calculate the "ideal" velocity for the j th aircraft as:

$$\dot{\boldsymbol{x}}_{j}(t) = \frac{\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)}{\|\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)\|} s_{j}.$$

STEP 2. Find the nearest aircraft and adjust the trajectory if needed to avoid a risk event.

Trajectory Algorithm

For each point of time t and for each $j \in J(t)$ do the following: STEP 1. Calculate the "ideal" velocity for the j th aircraft as:

$$\dot{\boldsymbol{x}}_{j}(t) = \frac{\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)}{\|\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)\|} \boldsymbol{s}_{j}.$$

STEP 2. Find the nearest aircraft and adjust the trajectory if needed to avoid a risk event.

STEP 3a. If no action is needed, use the ideal velocity in the interval [t, t+dt), and update the position: $\mathbf{x}_j(t+dt) = \mathbf{x}_j(t) + \dot{\mathbf{x}}_jdt$

Trajectory Algorithm

For each point of time t and for each $j \in J(t)$ do the following: STEP 1. Calculate the "ideal" velocity for the *i* th aircraft as:

$$\dot{\boldsymbol{x}}_{j}(t) = \frac{\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)}{\|\boldsymbol{X}_{d,j} - \boldsymbol{x}_{j}(t)\|} \boldsymbol{s}_{j}.$$

STEP 2. Find the nearest aircraft and adjust the trajectory if needed to avoid a risk event.

STEP 3a. If no action is needed, use the ideal velocity in the interval [t, t + dt), and update the position: $\mathbf{x}_i(t + dt) = \mathbf{x}_i(t) + \dot{\mathbf{x}}_i dt$

STEP 3b. If an action is needed, make a "turn". That is, replace the ideal velocity by:

$$\dot{\boldsymbol{x}}_{j}'(t) = \Lambda \dot{\boldsymbol{x}}_{j}(t)$$

in the interval [t, t + dt) where Λ is the 3 \times 3 horizontal rotation matrix.

Trajectory Algorithm cont.

- To further specify the algorithm:
 - We need a criterion for when an action is needed.
 - 2 We must determine matrix Λ based on relative positions and velocities of two aircraft.
- To do this:
 - Consider *j*th aircraft a_i at time t_0 .
 - Assume a_k is the closest aircraft to a_i .
 - Focus on relative positions and velocities of a_j as seen from a_k , denoted $\mathbf{x}_{j,k}(t)$ and $\dot{\mathbf{x}}_{j,k}(t)$.

Where $\mathbf{x}_{i,k}(t)$ and $\dot{\mathbf{x}}_{i,k}(t)$ are expressed as follows:

$$\mathbf{x}_{j,k}(t) = \mathbf{x}_j(t) - \mathbf{x}_k(t)$$

$$\dot{\boldsymbol{x}}_{i,k}(t) = \dot{\boldsymbol{x}}_i(t) - \dot{\boldsymbol{x}}_k(t)$$

Trajectory Algorithm cont.

- Distance between a_k and a_j at time t_0 : $\|\mathbf{x}_{j,k}(t_0)\|$.
- If large, no trajectory modification for a_i is needed.
- Alert distance C_A introduced to manage this, set > C to avoid risk events.
- In simulations, C_A set to twice C (5 nautical miles or 9, 260 meters).

Trajectory Algorithm cont.

Case: $\| x_{j,k}(t_0) \| \le C_A$

- Determine if aircrafts get closer or further apart over time.
- Consider distance $\Delta(t) = ||\mathbf{x}_{j,k}(t)||$.
- Assuming no action:

$$\mathbf{x}_{j,k}(t) = \mathbf{x}_{j,k}(t_0) + \dot{\mathbf{x}}_{j,k}(t_0)(t-t_0)$$

■ Find time t_1 when $\Delta(t)$ is minimized:

$$t_1 = t_0 - \frac{\mathbf{x}_{j,k}(t_0)^T \dot{\mathbf{x}}_{j,k}(t_0)}{\dot{\mathbf{x}}_{j,k}(t_0)^T \dot{\mathbf{x}}_{j,k}(t_0)}$$

Trajectory Algorithm cont.

- $t_1 > t_0$ if and only if: $\mathbf{x}_{j,k}(t_0)^T \dot{\mathbf{x}}_{j,k}(t_0) < 0$.
- By inserting the expression for t_1 into the equation for $\mathbf{x}_{j,k}(t)$, we find the position where a_i is closest to a_k :

$$\mathbf{x}_{j,k}(t_1) = \mathbf{x}_{j,k}(t_0) - \dot{\mathbf{x}}_{j,k}(t_0) \frac{\mathbf{x}_{j,k}(t_0)^T \dot{\mathbf{x}}_{j,k}(t_0)}{\dot{\mathbf{x}}_{j,k}(t_0)^T \dot{\mathbf{x}}_{j,k}(t_0)}$$

- If $t_1 > t_0$ and $\Delta(t_1) \leq C$, action is needed to avoid a risk event.
- lacktriangle Our approach involves making a "turn" by rotating the velocity vectors by λ radians.
- To determine λ , we introduce the normal vector to the relative position vector, $\mathbf{y}_{j,k}(t_0)$, obtained by rotating $\mathbf{x}_{j,k}(t_0)$ counterclockwise by $\pi/2$ radians.

Trajectory Algorithm cont.

Case 1: $\dot{\mathbf{x}}_{j,k}(t_0)^T \dot{\mathbf{y}}_{j,k}(t_0) > 0$

Case 2: $\dot{x}_{i,k}(t_0)^T \dot{y}_{i,k}(t_0) < 0$

Case 3: $\dot{\mathbf{x}}_{j,k}(t_0)^T \dot{\mathbf{y}}_{j,k}(t_0) = 0$

Figure: Rotating the relative velocity

Simulation results (Round 2)

- Plot left: Trajectories of two flights
- **Plot right**: Distance (meters) between flights as a function of time

Simulation results (Round 2)

κ	10	20	30	40	50
R	0.480	0.477	0.472	0.006	0.000
D	8,558	8,672	8,813	12,881	13,223
$ar{M}$	0.652	0.641	0.624	0.610	0.586
$ar{T}_{ ho}$	219	221	224	145	144

Simulation results (Round 2)

κ	10	20	30	40	50
R	0.480	0.477	0.472	0.006	0.000
$ar{D}$	8,558	8,672	8,813	12,881	13,223
\bar{M}	0.652	0.641	0.624	0.610	0.586
$ar{T}_{ ho}$	219	221	224	145	144
κ	10	20	30	40	50
R	0.250	0.239	0.227	0.066	0.020
D	12,108	12,288	12,548	12,840	13,196
\bar{M}	0.660	0.650	0.632	0.611	0.588
\bar{T}_p	144	144	144	144	144

- Plot left: Average minimum flight distances (meters) as functions of time for $\kappa = 10$ (lower curve) and $\kappa = 50$ (upper curve)
- **Plot right**: Average processing times as functions of time for $\kappa = 10$ (lower curve) and $\kappa = 50$ (upper curve)

Table of contents I

- 1 Overview and Introduction
- 2 Conceptual Model
- 3 Software Implementation
- 4 Analysis
- 5 Conclusion
- 6 References

Summary

- We have demonstrated how to create hybrid simulation models for aircraft paths in a random environment.
- 2 Examined two related concerns with the model:
 - Organizing the arrival process
 - Preventing situations/events of risk by adjusting paths dynamically
- It's essential to study both issues together within a unified model.
- 4 Future work:
 - Enhancing and refining the models and algorithms
 - Modeling smoother aircraft movements (in three dimensions)
 - Incorporating other random factors such as weather

References I

A.M. Bayen, R.L. Raffard, and C.J. Tomlin.

Adjoint-based control of a new eulerian network model of air traffic flow.

IEEE Transactions on Control Systems Technology, 14(5):804–818, 2006.

Mikhail Bernadsky, Raman Sharykin, and Rajeev Alur. Structured modeling of concurrent stochastic hybrid systems.

In Yassine Lakhnech and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 309–324, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

William Glover and John Lygeros.

A stochastic hybrid model for air traffic control simulation. volume 2993, pages 372-386, 03 2004.

References II

Tak-Kuen Koo, Yi Ma, George Pappas, and Claire Tomlin. Smartatms: A simulator for air traffic management systems, 01 1997.

UiO **Department of Mathematics**University of Oslo

