Theorem 1 (The unit element is unique). Let G be a group and \star its binary operation. Suppose that $e_1, e_2 \in G$ are both units elements. Then, $e_1 = e_2$.

Theorem 2 (Cancellation Law). For every group G and $a, b, c \in G$ that satisfy ab = ac, we have b = c.

Theorem 3 (The inverse of a group element is unique). Let G be a group and let $a \in G$. If b and c are inverses of a, then b = c.

Theorem 4 (The order of a k-cycle is k.).

Theorem 5 (Disjoint cycles commute.).

Theorem 6 (Basic facts about homomorphisms). Let $\phi: G \to H$ be a homomorphism. Then

- 1. $\phi(1_G) = 1_H$ (the identity of G is mapped to the identity of H).
- 2. $\phi(x^{-1}) = \phi(x)^{-1}$ for all $x \in G$.

Theorem 7 (Image of a homomorphism is a subgroup). Let $\phi: G \to H$ be a homomorphism. Then $Im(\phi) = \{\phi(g) | g \in G\} \leq H$.

Theorem 8 (Kernel of a homomorphism is a subgroup). Let $\phi : G \to H$ be a homomorphism. Then $\ker(\phi) \leq G$. That is, the kernel of ϕ is a subgroup of G.

Theorem 9 (All left cosets of H have the same size). Let $H \leq G$ be groups and let $a \in G$. Then |[a]| = |aH| = |H|

Theorem 10 (Lagrange). Let G be a finite group and let $H \leq G$. Then |H| divides |G|.

Theorem 11 (Equivalent conditions to be a normal subgroup). Let $N \leq G$. Then $N \subseteq G$ if one of the following holds:

- 1. $\forall g \in G, gN = Ng$
- $2. \ \forall g \in G, \, gNg^{-1} = N$
- 3. $\forall g \in G, gNg^{-1} \subseteq N$
- 4. $\forall g \in G \text{ and } \forall n \in N, gng^{-1} \in N$

Theorem 12 (The kernel of a Homomorphism is a Normal Subgroup). Let $\phi: G \to H$ be homomorphism. Then $\ker(\phi) \subseteq G$.

Theorem 13 (Every cyclic group is isomorphic to either \mathbb{Z} or to $\mathbb{Z}/n\mathbb{Z}$ for some $n \geq 1$.). For every group H for which there exists an $x \in H$ such that $H = \langle x \rangle$, there exists a bijective homomorphism (i.e. an isomorphism) $\phi: H \to C$ where $C = \mathbb{Z}$ or $C = \mathbb{Z}/n\mathbb{Z}$ for some $n \geq 1$.

Theorem 14 (Subgroups of cylic group). Let G be a finite cyclic group of order n. For every m|n (m that divides n) there exists a unique subgroup H of G with |H| = m. Furthermore, H is cyclic.

Theorem 15 (Important Identity for Dihedral Groups). $\rho \epsilon = \epsilon \rho^{-1}$.

Theorem 16. $\rho^i \epsilon = \epsilon \rho^{-i}$

Theorem 17. In the above definition, G/N is a group.

Theorem 18 (The First Isomorphism Theorem). If $\phi: G \to H$ is a homomorphism of groups, then $G/\ker(\phi) \cong Im\phi$.

Theorem 19 (The Second or Diamond Isomorphism Theorem). Let $H \leq G$ and $K \leq G$. Then $HK/K \cong H/H \cap K$.

Theorem 20 (The stabilizer of a group element is a subgroup). $G_x \leq G$

Theorem 21 (Orbit-Stabilizer Theorem). There is a bijection

$$f: G/G_x \to O_x \tag{1}$$

In words, there is a bijection between the collection of all cosets of the stabilizer and the orbit. In particular,

$$[G:G_x] = |O_x| \tag{2}$$

(Recall we defined $|G/G_x|$ to be $[G:G_x]$).

Theorem 22 (Action transitive iff one orbit). An action is transitive if and only if there exists an $x \in X$ such that $O_x = X$. That is, all elements of X have the same equivalence class.

Theorem 23 (Burnside). Let G act on X. Suppose that G, X are finite. Then,

$$N = \# \text{ of orbits (equivalence classes)} = \frac{1}{|G|} \sum_{g \in G} |X^g|$$
 (3)

Theorem 24 (Multiplication module n is a group). $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group.

Theorem 25 (Fermat's Little Theorem). For a prime number p and $1 \le x \le p-1$, we have $x^{p-1}-1$ is divisible by p.

Theorem 26. Let $p \neq q$ be odd primes. Then

$$(\mathbb{Z}/pq\mathbb{Z})^{\times} \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \times (\mathbb{Z}/q\mathbb{Z})^{\times} \tag{4}$$

Theorem 27. If $\lambda: G \to S_n$ is a homomorphism, we can define an action of G on $\{1, \ldots, n\}$ by

$$g(i) = \lambda(g)(i) \tag{5}$$

Theorem 28. Under the above assumptions: λ is injective if and only if the action of G on X (which we can think of as $\{1, \ldots, n\}$) is faithful.

Theorem 29 (Cayley). Let G be a group of order n. Then, there exists an injective homomorphism $\phi: G \to S_n$.

Theorem 30. If |G| = n, then G is isomorphic to a subgroup of S_n . Indeed $\phi: G \to Im(\phi) \subset S_n$.

Theorem 31 (Cardinality of set of fixed points of action of set on p-group equals cardinality of set mod p). Let G be a p-group that acts on a finite set X. Let $X^G = \bigcap_{g \in G} X^g$ where $X^g = \{x \in X | gx = x\}$, that is those $x \in X$ such that for all $g \in G$, gx = x. Then p divides $|X| - |X^G|$, that is

$$|X^G| \equiv |X| \pmod{p} \tag{6}$$

Theorem 32 (A p-group has a non-trivial center). Let G be a p-group. Then $Z(G) \neq \{1\}$. In words, there has to be a non-trivial element of the group that commutes with everything else.

Corollary 1 (Group of order p^2 abelian). Let p be a prime number and let G be a group of order p^2 . Then G is abelian.

Theorem 33 (Cauchy). Let G be a finite group and suppose that p|G| for some prime p. Then there exists an element of order p in G.

Theorem 34 (Correspondence Theorem). Let G, H be groups, and let $\phi : G \to H$ be a group homomorphism. Then there exists a correspondence (i.e. a bijection)

{Subgroups K of G containing $\ker \phi$ } \iff {Subgroups L of H contained in $Im(\phi)$ }

given by $K \mapsto \phi(K)$ and $L \mapsto \phi^{-1}(L)$. In addition, let K_1 and K_2 be subgroups of G containing $\ker(\phi)$ and L_1 and L_2 subgroups L of H contained in $Im(\phi)$.

1.
$$K_1 \leq K_2 \implies \phi(K_1) \leq \phi(K_2)$$

2.
$$L_1 \leq L_2 \implies \phi^{-1}(L_1) \leq \phi^{-1}(L_2)$$

and

1.
$$K_1 \leq K_2 \implies [K_2 : K_1] = [\phi(K_2) : \phi(K_1)]$$

2.
$$L_1 \leq L_2 \implies [L_2 : L_1] = [\phi(L_2) : \phi(L_1)]$$

Theorem 35 (Corollary of Correspondence Theorem). Let G be a group and let $N \leq G$. Then the subgroups of G/N are all of the form R/N for some $N \leq R \leq G$. Moreover,

$$[G:R] = [G/N:R/N] \tag{7}$$

Theorem 36 (Sylow's Theorem). Let p be a prime number, let G be a finite group, and let p^n be the largest power of p that divides |G|. Then G contains a subgroup P of order p^n . P is called a p-Sylow subgroup of G.

Theorem 37 (p-Sylow subgroups are conjugate). Let G be a finite group and let P, Q be p-Sylow subgroups of G. Then there exists $g \in G$ such that $gPg^{-1} = Q$.

Corollary 2 (p-Sylow subgroup unique if and only if normal subgroup.). Let G be a finite group and let P be a p-Sylow subgroup of G. Then P is a unique p-Sylow subgroup if and only if $P \subseteq G$.

Theorem 38 (Sylow's Theorem (General)). Let G be a finite group and p a prime. Suppose that p^r divides |G|. Then G has a subgroup H of order p^r . Moreover, every subgroup of order p^r is contained in a Sylow subgroup.

Theorem 39 $(0 \cdot a = 0)$.

$$0 \cdot a = (0+0) \cdot a$$
 (0 additive identity)
= $0 \cdot a + 0 \cdot a$ (distributivity)

Then cancellation gives $0 = 0 \cdot a$.

Theorem 40 $(-a = (-1) \cdot a)$. We want to show that $(-1) \cdot a$ is the additive inverse of a. To that end

$$a + (-1) \cdot a = 1 \cdot a + (-1) \cdot a$$
 (1 multiplicative identity)
= $(1 + -1) \cdot a$ (distributivity)
= $0 \cdot a$
= 0

Theorem 41 (Homomorphism of rings injective injective if and only its kernel is trivial). Suppose ϕ is a homomorphism of rings. Then ϕ is injective if and only if $\ker(\phi) = \{0\}$.

Theorem 42 (Field has only 2 ideals: the trivial ideal and the field itself.). If R is a field, then its ideals are R and $\{0\}$.

Theorem 43 (There are only 2 ideals in $M_{n\times n}(\mathbb{R})$).

Theorem 44 (Kernel of homomorphism of rings is an ideal of the ring which is the domain of the homomorphism). Suppose A, B are rings and let $\phi: A \to B$ be a ring homomorphism. Then $\ker(\phi)$ is an ideal of A.

Theorem 45 (Ideal is an additive normal subgroup). Suppose A is a ring and I is an ideal of A. Then I is an additive normal subgroup A.

Theorem 46. Suppose $\phi: A \to A/I$ is a homomorphism of rings where $\phi(a) = I + a$. Then

$$\ker(\phi) = I \tag{8}$$