RMSC5102 Simulation Methods for Risk Management Science and Finance

Tutorial Notes

Spring, 2020

LEUNG Man Fung, Heman

Contents

I) Probability and statistics	3
Discrete random variables	3
Binomial distribution	3
Poisson distribution	4
Continuous random variables	4
Uniform distribution	4
Normal distribution	5
Some remarks	5
II) Financial derivative	6
Forward	6
Option	6
Binomial tree	6
Black–Scholes–Merton model	6
III) Stochastic calculus	8
Brownian motion	8
Stochastic integral	8
IV) Simulation methods	10
Theoretical support	10
Standard Monte Carlo	10
Inverse transform	10
Rejection sampling	11
V) Variance reduction	12
Antithetic variables	12
Stratified sampling	12
Control variate	12

I) Probability and statistics

Discrete random variables

Random variables: numeric quantities that take different values with specified probabilities

Discrete random variable: a R.V. that takes value from a discrete set of numbers

Probability mass function: a pmf assigns a probability to each possible value x of the discrete random variable X, denoted by f(x) = P(X = x)

$$\sum_{i=1}^{n} f(x_i) = 1$$
 (total probability rule)

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the value x, denoted by $F(x) = P(X \le x)$

Expected value: $\mu = E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$ (the idea is "probability weighted average")

Variance: $\sigma^2 = Var(X) = \sum_{i=1}^n (x_i - \mu)^2 P(X = x_i)$ (the idea is "probability weighted distance from mean")

Alternatively
$$Var(X) = E(X^2) - [E(X)]^2$$

Translation/rescale: E(aX + b) = aE(X) + b, $Var(aX + b) = a^2Var(X)$

Linearity of expectation: $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$

Binomial distribution

Factorial: $n! = n \times (n-1) \times ... \times 1$, note that 0! = 1

Permutation (order is important): $P_k^n = \frac{n!}{(n-k)!}$

Combination (order is not important): $C_k^n = \frac{n!}{k!(n-k)!}$ also denoted as $\binom{n}{k}$

Binomial distribution: probability distribution on the number of successes X in n independent experiments, each experiment has a probability of success p, then $X \sim B(n, p)$

Pmf:
$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$
 for $x = 0, 1, 2, ..., n$

Mean: E(X) = np

Variance: Var(X) = np(1-p)

Poisson distribution

Poisson distribution: probability distribution on the number of occurrence X (usually of a rare event) over a period of time or space with rate λ , then $X \sim Po(\lambda)$. Useful in modelling jump

Pmf:
$$P(X = x) = \frac{e^{-\lambda}\mu^x}{x!}$$
 for $x = 0, 1, 2, ...$

Mean: $E(X) = \lambda$

Variance: $Var(X) = \lambda$

Continuous random variables

Continuous random variable: a R.V. that takes value over an interval of numbers

Probability density function: a pdf specifies the probability of the random variable falling within a particular range of values, denoted by f(x)

 $P(a \le X \le b) = \int_a^b f(x) dx$, which is the area under the curve from a to b

$$P(X = a) = \int_a^a f(x)dx = 0$$
 for all a

$$\int_{-\infty}^{\infty} f(x)dx = 1 \text{ (total probability rule)}$$

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the value x, denoted by $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$

$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$
 (by the fundamental theorem of calculus)

Expected value: $\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$ (the idea is "probability weighted average")

Variance: $\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$ (the idea is "probability weighted distance from mean")

Uniform distribution

Uniform distribution: if X follows uniform distribution on the interval [a,b], then it has the same probability density at any point in the interval and we denote it by $X \sim U(a,b)$. Basic R.V. in probability integral transform

Pdf:
$$f(x) = \frac{1}{b-a}$$
 for $a \le x \le b$, otherwise 0

Cdf:
$$F(x) = \int_a^x \frac{1}{b-a} dt = \left[\frac{t}{b-a}\right]_a^x = \frac{x-a}{b-a}$$
 for $a \le x \le b$

Mean:
$$E(X) = \frac{a+b}{2}$$

Variance: $Var(X) = \frac{(b-a)^2}{12}$

Normal distribution

Normal distribution: if X follows normal distribution with mean μ and variance σ^2 , then $X{\sim}N(\mu,\sigma^2)$. Often used to represent continuous random variable with unknown distributions

Pdf:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 for $-\infty < x < \infty$

Standard normal distribution: $Z \sim N(0,1)$

Cdf of standard normal: denoted as $\Phi(z) = P(Z \le z)$

$$P(a \le Z \le b) = P(Z \le b) - P(Z \le a) = \Phi(b) - \Phi(a)$$

$$\Phi(-z) = 1 - \Phi(z)$$
 by symmetric property

Percentile of standard normal: $\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$

Standardization: if $X \sim N(\mu, \sigma^2)$, then $\frac{X - \mu}{\sigma} \sim N(0, 1)$

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Some remarks

Variance of sum: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Tower rule of expectation: E(X) = E[E(X|Y)]

Law of total variance (EVE): Var(X) = E[Var(X|Y)] + Var[E(X|Y)]

Sum of poisson: if $X \sim Po(\lambda_1)$, $Y \sim Po(\lambda_2)$ independently, then $X + Y \sim Po(\lambda_1 + \lambda_2)$

Sum of normal: if $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ independently, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Square of standard normal: if $X \sim N(\mu, \sigma^2)$, the $Z^2 = \left[\frac{X-\mu}{\sigma}\right]^2 \sim \chi_1^2$

Sum of chi square: if $X \sim \chi_n^2$, $Y \sim \chi_m^2$, then $X + Y \sim \chi_{n+m}^2$

II) Financial derivative

Forward

Payoff: $S_t - K (long), K - S_t (short)$

Pricing: $f = S - Ke^{-r(T-t)}$, $F = Se^{r(T-t)}$

With known cash income: $f = S - I - Ke^{-r(T-t)}$, $F = (S-I)e^{r(T-t)}$, I = PV(income)

With known dividend yield: $f = Se^{-q(T-t)} - Ke^{-r(T-t)}$, $F = Se^{(r-q)(T-t)}$

Minimum variance hedge ratio: $h^* = \rho \times \frac{\sigma_S}{\sigma_F} \Rightarrow N_F^* = h^* \times N_A \ (since \ h = \frac{N_F}{N_S})$

Option

Upper bounds: $C_E \leq C_A \leq S$, $P_E \leq Ke^{-r(T-t)}$, $P_A \leq K$

Lower bounds: $max(S - Ke^{-r(T-t)}, 0) \le C_E \le C_A$, $max(Ke^{-r(T-t)} - S, 0) \le P_E \le P_A$

Put-call parity: $C_E - P_E = S - I - Ke^{-r(T-t)}$ (idea is call – put = forward)

Put call inequality: $S - K \le C_A - P_A \le S - Ke^{-r(T-t)}$

European-American relationship: $P_A > P_E$, $C_A = C_E$ (for non-dividend-paying)

Binomial tree

Risk neutral probability: $q=rac{e^{r\delta t}-d}{u-d}$, $u=e^{\sigma\sqrt{\delta t}}$, $d=u^{-1}=e^{-\sigma\sqrt{\delta t}}$

Pricing: $f = e^{-r\delta t}[qf_u + (1-q)f_d]$

Backward induction: start from payoff as terminal prices (American: take max between payoff and f)

Black-Scholes-Merton model

Black-Scholes equation: $\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} = rV$

Black-Scholes formula: $C(S_t, t) = \Phi(d_1)S_t - \Phi(d_2)Ke^{-r(T-t)}$,

$$\begin{split} P(S_t,t) &= Ke^{-r(T-t)} - \mathbf{S_t} + C(S_t,t) = \Phi(-d_2)Ke^{-r(T-t)} - \Phi(-d_1)S_t \\ \text{where } d_1 &= \frac{1}{\sigma\sqrt{T-t}} \Big[\ln\Big(\frac{S_t}{K}\Big) + \Big(r + \frac{\sigma^2}{2}\Big)(T-t)\Big], d_2 = d_1 - \sigma\sqrt{T-t} \end{split}$$

Implied volatility: the value of volatility when back-solving an option pricing model (such as BS) with current market price

III) Stochastic calculus

Brownian motion

Wiener process: W_t is called a Wiener process if the following holds

Stationary increment: $W_t - W_s \sim N(0, t - s)$

Independent increment: $W_{t_4} - W_{t_3} \perp W_{t_2} - W_{t_1}$

Starts at zero: $P(W_{t_0} = 0) = 1$

Properties: $Cov(W_s,W_t)=min(s,t)$, $[dW_t]^2=dt$ (quadratic variation), nowhere differentiable

Itô's process: X_t is an Itô's process if it is solution to the following stochastic differential equation

$$\begin{cases}
dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t \\
X_0 = a
\end{cases}$$

Where $\mu(t, X_t)$ is known as the drift function and $\sigma(t, X_t)$ is known as the volatility function. You may think $dX_t \approx X_{t+\delta t} - X_t$ and $dt \approx \delta t$ (useful in simulation)

Stochastic integral

Definition:
$$\int_0^T f(s, W_s) dW_s = \lim_{\delta(\pi) \to 0} \sum_{j=0}^{N(\pi)-1} f(t_j, W_{t_j}) (W_{t_{j+1}} - W_{t_j})$$

Itô's lemma:
$$df(t, X_t) = \left[\frac{\partial f}{\partial t} + \mu(t, X_t) \frac{\partial f}{\partial x} + \frac{1}{2}\sigma^2(t, X_t) \frac{\partial^2 f}{\partial x^2}\right] dt + \sigma(t, X_t) \frac{\partial f}{\partial x} dW_t$$

Geometric Brownian motion: $dS_t = rS_t dt + \sigma S_t dW_t \Rightarrow S_t = S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)t + \sigma W_t}$

Consequently,
$$S_{t+\delta t} = S_t e^{\left(r - \frac{1}{2}\sigma^2\right)\delta t + \sigma\sqrt{\delta t}Z}$$
 where $Z \sim N(0,1)$

Finding stochastic integral: "guess" the function such that it will contain the integrand in its SDE. Use Itô's lemma to find SDE of the guess and then integrate both sides

Solving SDE: "guess" a solution and use Itô's lemma to verify that the solution satisfies the SDE (the following table is borrowed from Prof. Yau Chun Yip's notes on Stochastic Calculus)

Name	SDE	Solution (X_t)
Ornstein-Uhlenbeck(OU) process	$dX_t = -\alpha X_t dt + \sigma dW_t$	$ce^{-\alpha t} + \sigma e^{-\alpha t} \int_0^t e^{\alpha s} dW_s$
Mean reverting OU	$dX_t = (m - \alpha X_t)dt + \sigma dW_t$	$\frac{m}{\alpha} + \left(c - \frac{m}{\alpha}\right)e^{-\alpha t} + \sigma \int_0^t e^{\alpha(s-t)}dW_s$
Geometric Brownian motion	$dX_t = aX_t dt + bX_t dW_t$	$ce^{(a-b^2/2)t+bW_t}$
Brownian bridge	$dX_t = \frac{b - X_t}{1 - t} dt + dW_t$	$a(1-t)+bt+(1-t)\int_0^t \frac{dW_s}{1-s}$
	$dX_t = \left(\sqrt{1 + X_t^2} + \frac{1}{2}X_t\right)dt + \sqrt{1 + X_t^2}dW_t$	$\sinh(c+t+W_t)$
	$dX_t = X_t^3 dt + X_t^2 dW_t$	$\frac{1}{c-W_t}$
	$dX_t = -\frac{1}{2}X_t dt + \sqrt{1 - X_t^2} dW_t$	$\sin(c+W_t)$
	$dX_t = -\frac{1}{1+t}X_tdt + \frac{1}{1+t}dW_t$	$(c+W_t)/(1+t)$
	$dX_t = rdt + \alpha X_t dW_t$	$ce^{\alpha W_t - \frac{1}{2}\alpha^2 t} + r \int_0^t e^{\alpha (W_t - W_s) - \frac{1}{2}\alpha^2 (t - s)} ds$

Integrating factor: add e^{rt} to both sides of a SDE (target: cancel some terms)

Martingale property:
$$\mathbb{E}\left[\int_0^T f(t, W_t) dW_t \, \Big| \mathcal{F}_s\right] = \int_0^s f(t, W_t) dW_t$$

In particular,
$$\mathbb{E}\left(\int_0^T f(t, W_t) dW_t\right) = 0$$

Itô isometry:
$$\mathbb{E}\left[\left(\int_0^T f(t,W_t)dW_t\right)^2\right] = \int_0^T E[f(t,W_t)^2]dt$$

Similarly,
$$\mathbb{E}\left[\left(\int_0^T f(t, W_t) dW_t\right) \left(\int_0^T g(t, W_t) dW_t\right)\right] = \int_0^T \mathbb{E}[f(t, W_t) g(t, W_t)] dt$$

Product rule: $d(X_tY_t) = X_tdY_t + Y_tdX_t + d[\sigma(t, X_t)W_t, \overline{\sigma}(t, Y_t)\overline{W}_t]$

IV) Simulation methods

Theoretical support

Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i$

Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

Law of large numbers (WLLN): Let $X_1, ..., X_n$ be i.i.d. random variables with mean θ and variance σ^2 , then for any given $\epsilon > 0$, $P(|\bar{X}_n - \theta| > \epsilon) \to 0$ as $n \to \infty$

Central limit theorem (CLT, Lindeberg–Lévy): Let X_1, \ldots, X_n be i.i.d. random variables with mean θ and finite variance σ^2 , then $\bar{X}_n \stackrel{d}{\to} N\left(\theta, \frac{\sigma^2}{n}\right)$ as $n \to \infty$

Standard Monte Carlo

Idea: take average of independent replications/scenarios of the reality/future Algorithm:

- 1) Generate random variable X_i
- 2) Calculate $h_i = h(X_i)$, where h is the target function
- 3) Repeat 1 and 2 for n times
- 4) $\hat{\theta} = \frac{1}{n} \sum_{j=1}^{n} h_j$ (remember to do discounting if necessary)

Inverse transform

Idea: if we know $X \sim F_X$ (i.e. the cdf), we can generate X out of uniform random numbers Algorithm (discrete):

- 1) Generate $U \sim Uniform(0,1)$
- 2) $X = x_j$ if $\sum_{i=0}^{j-1} p_i \le U < \sum_{i=0}^{j} p_i$

Algorithm (continuous):

- 1) Generate $U \sim Uniform(0,1)$
- 2) $X = F_X^{-1}(U)$ assuming the inverse exists

Rejection sampling

Idea: if we can simulate $Y \sim G_Y$ easily, we can use the proportional distribution as a basis to simulate X with pdf f(x)

Algorithm:

- 1) Find $c = \max_{y} \frac{f(y)}{g(y)}$
- 2) Generate Y_i from a density g: $U_1 \sim Uniform(0,1) \Rightarrow Y_i = G^{-1}(U_1)$
- 3) Generate $U_2 \sim Uniform(0,1)$
- 4) If $U_2 \leq \frac{1}{c} \cdot \frac{f(Y_i)}{g(Y_i)}$, set $X_i = Y_i$, otherwise return to 2

Number of iterations needed: $N \sim Geo\left(\frac{1}{c}\right) \Rightarrow E(N) = c$

V) Variance reduction

Antithetic variables

Idea: if we are able to generate negatively correlated underlying random variables, the estimator can have lower variance as compared with independent samples. This requires the target function h(x) to be monotone

Algorithm:

- 1) Generate $U \sim U(0,1)$
- 2) Set $X_i = F^{-1}(U), Y_i = F^{-1}(1 U)$ (note: want X, Y same distribution but negative correlation)
- 3) Repeat 1 and 2 for n times
- 4) $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} [h(X_i) + h(Y_i)]$

Useful corollary: if h(x) is monotone, then $Cov(h(U), h(1-U)) \le 0$ where $U \sim U(0,1)$

Stratified sampling

Idea: if we have information about grouping in the population, then we may use conditional mean (mean of subgroup) as the sample from the population

Algorithm:

- 1) Generate $V_{i,j} = \frac{1}{B}(U_{i,j} + i 1)$ where $U_{i,j} \sim U(0,1)$ for $i = 1, ..., B; j = 1, ..., N_B$
- 2) Set $X_{i,j} = F^{-1}(V_{i,j})$
- 3) $\hat{\theta} = \frac{1}{B \times N_B} \sum_{j=1}^{N_B} \left[h(X_{1,j}) + h(X_{2,j}) + \dots + h(X_{B,j}) \right]$ (average over subsamples and bins, remember to adjust for conditional probability)

Control variate

Idea: if we combine the estimate of our target unknown quantity with estimates of some known quantities, we can exploit the known information

Algorithm:

- 1) Find μ_Y for Y with a known distribution (or estimate μ_Y via pilot simulation)
- 2) Generate X_i, Y_i for i = 1, ..., n
- 3) Compute \bar{X} , \bar{Y} , σ_{XY} , σ_{Y}^{2}

4)
$$\hat{\theta} = \bar{X} - \frac{\sigma_{XY}}{\sigma_Y^2} (\bar{Y} - \mu_Y)$$