

Okrag o przecina bok AB trójkata ABC w punktach P_1 , P_2 , bok BC w punktach R_1 i R_2 oraz bok AC w punktach S_1 i S_2 . Proste prostopadle do ABprzechodzące przez P_1 i P_2 oznaczamy odpowiednio k_1 i k_2 , prostopadłe do BC przechodzące przez R_1 i R_2 oznaczamy l_1 i l_2 , zaś prostopadłe do ACprzechodzące przez S_1 i S_2 oznaczamy m_1 i m_2 . Wykaż, że jeśli proste $k_1,\,l_1$ i m_1 przecinają się w jednym punkcie, to proste k_2 , l_2 i m_2 również przecinają się w jednym punkcie.

Wykazać, że w dowolnym trójkącie $R \geq 2r$, gdzie R jest promień okręgu opisanego na trójkacie ABC i r - promień okręgu wpisanego w trójkat ABC.

Wykazać, ze w dowolnym trójkącie
$$R \ge 2r$$
, gdzie R jest promień okręgu opisanego na trójkącie ABC i r - promień okręgu wpisanego w trójkąt ABC .

$$P = \frac{abc}{4R} = P$$

$$P$$

