Species	CFF	Mg	qWg	Brain Mass	Light levels
Ambystoma tigrinums	30 ^{e,s,1}	10.78^{28}	0.00016^{28}	NA	L
Anguilla anguilla	$14^{b,s,2}$	71.1^{28}	0.00013^{28}	NA	L
Anolis cristatellus	$70^{e,o,3}$	6.0^{29}	0.00089^{29}	NA	Н
Asio flammeus	$70^{e,o,4}$	406.0^{30}	0.0032^{28}	5.45^{69}	Н
Bubo virginianus	45 ^{e,s,5}	1450.0^{31}	0.0036^{28}	13.7^{70}	L
Canis lupus familiaris	$80^{b,s,6}$	13900.0^{32}	0.00183^{28}	80.0^{71}	Н
Carassius auratus	$67.2^{e,o,7}$	10.8^{33}	0.00013^{28}	0.01^{71}	Н
Carcharhinus acronotus	$18^{e,o,8}$	14491.0^8	0.00114^{56} *	NA	L
Caretta caretta	40 ^{e,s,9}	135000.0^{34}	0.00008^{57}	2.7^{40}	Н
Cavia porcellus	50 ^{e,s,10}	629.0^{35}	0.00306^{35}	3.8^{72}	L
Chelonia mydas	40 ^{e,s,9}	128000.0^{36}	0.00025^{36}	8.6^{71}	Н
Columba livia	$100^{e,s,4}$	315.0^{37}	0.0045^{28}	2.3^{70}	Н
Dermochelys coriacea	$15^{e,s,11}$	354000.0^{38}	0.00043^{58}	30.0^{73}	Н
Felis catus	55 ^{e,s,12}	3054.4^{32}	0.00394^{59}	28.4^{71}	L
Gallus gallus domesticus	87 ^{b,o,13}	2710.0^{39}	0.0022^{28}	3.6^{74}	Н
Gekko gecko	20 ^{e,s,14}	54.8 ⁴⁰	0.00034^{28}	0.2^{75}	L
Homo sapiens	$60^{b,0,15}$	67100.0^{41}	0.00117^{60}	1300.0^{76}	Н
Iguana iguana	80 ^{e,s,14}	750.0^{42}	0.00029^{28}	0.61^{75}	Н
Macaca mulatta	95 ^{b,o,16}	7710.0^{43}	0.00205^{61}	91.7^{71}	Н
Melopsittacus undulatus	74.7 ^{b,s,17}	33.6^{28}	0.01204^{28}	1.5^{70}	Н
Negaprion brevirostris	37 ^{e,s,18}	92987.0^{44}	0.00053^{62} *	NA	L
Oncorhynchus mykiss	27 ^{b,s,19}	4000.0^{45}	0.00041^{28}	0.5^{71}	L
Oryzias latipes	$37.2^{e,s,20}$	0.21^{20}	0.00072^{28}	0.01^{77}	L
Pagophilus groenlandicus	32.7 ^{b,s,12}	119600.0^{46}	0.00211^{63}	228.5^{78}	L
Raja erinacea	$30^{e,0,22}$	500.0_{40}^{47}	0.00024^{47}	2.32^{71}	L
Rattus norvegicus	39 ^{e,0,23}	237.0^{48}	0.00679^{48}	2.3^{79}	L
Spermophilus lateralis	$120^{e,o,10}$	215.5^{49}	0.00335^{64}	3.6^{80}	Н
Sphenodon punctatus	45.6 ^{b,s,24}	353.75^{50}	0.00017^{28}	NA	L
Sphyrna lewini	$27.3^{e,o,8}$	$1893.0^{8,51}$	0.0010^{65} *	60.0^{77}	L
Sturnus vulgaris	100 ^{e,s,25}	75.0^{28}	0.012^{28}	1.9^{74}	Н
Tamias amoenus	100 ^{e,o,10}	51.91 ⁵²	0.00937^{66}	1.98^{80}	Н
Tamiasciurus hudsonicus	$60^{\text{e,o,10}}$	215^{35}	0.00735^{67}	4.0^{80}	Н
Thunnus albacares	80 ^{e,s,26}	$45349.0^{53,54}$	0.00158^{68} *	6.24^{77}	Н
Tupaia glis * Indicates species with aWa estimated	90 ^{b,o,27}	142.0 ⁵⁵	0.00424 ⁵⁵	3.4 ⁷⁹	<u>H</u>

^{*} Indicates species with qWg estimated from swimming speeds extrapolated to zero (see Methods in main text). CFF = Critical flicker fusion (CFF), Mg = body mass (grams), qWg = Temperature corrected (25°C) mass specific resting metabolic rate (Wg⁻¹), Light levels, H= High, L = Low. NA = No data available for species. Superscript indicates type of measurement, e = electroretinogram, b = behavioural experiments, o = optimum methodology, s = suboptimum methodology and numbers refer to data references; (1) Crevier & Meister (1998); (2) Adrian & Matthews (1926); (3) Fleishman et al. (1995); (4) Bornshein & Tansley (1961); (5) Ault & House (1987); (6) Coile et al. (1989); (7) Hanyu & Ali (1963); (8) McComb et al. (2010); (9) Levenson et al. (2004); (10) Tansley et al. (1961); (11) Eckert et al. (2006); (12) Loop & Berkeley (1975); (13) Lisney et al. (2011); (14) Meneghini & Hamasaki (1967); (15) Brundrett (1974); (16) Shumake et al. (1968); (17) Ginsburg & Nilsson (1971); (18) Gruber (1969); (19) Carvalho et al. (2004); (20) Carvalho et al. (2002); (21) Bernholz & Matthews (1975); (22) Green & Siegel (1975); (23) Williams et al. (1985); (24) Woo et al. (2009); (25) Greenwood et al. (2004); (26) Southwood et al. (2008); (27) Callahan & Petry (1999); (28) Makarieva et al. (2008); (29) Rogowitz (1996); (30) Graber (1962); (31) Ganey et al. (1993); (32) Kendall et al. (1982); (33) Hughes et al. (1977); (34) Duermit (2007); (35) Arends & McNab (2001); (36) Jackson & Prange (1979); (37) Terres (1980); (38) Georges & Fossette (2006); (39) Winchester (1940); (40) Hurlburt (1996); (41) Holloway (1980); (42) Howland et al. (2004); (43) Schwartz & Kemnitz (1992); (44) Allyn (1947); (45) Ridolfi (2006); (46) Stewart & and Lavigne (1984); (47) Hove & Moss (1997); (48) Hart (1971); (49) McKeever (1964); (50) Herrel et al. (2010); (51) Letourneur et al. (1998); (52) Sheppard (1968); (53) Collette & Nauen (1983); (54) Duarte-Neto & Lessa (2004); (55) Bradley & Hudson (2003); (56) Carlson (1999); (57) Lutz et al. (1989). (58) Paladino et al. (1996); (59) Eisenberg (1981); (60) Elgar & Harvey (1987); (61) Bruhn (1934); (62) Bushnell et al. (1989); (63) McNab (1986); (64) Hudson et al. (1972); (65) Lowe (2001); (66) Jones & Wang (1976); (67) Pauls (1981); (68) Dewar & Graham (1994); (69) Garamszegi et al. (2002); (70) Iwaniuk & Nelson (2002); (71)