1. D'Angelo 2.2. Prove the Cauchy-Schwarz inequality in \mathbb{R}^n by writing $||x||^2 ||y||^2 - |\langle x, y \rangle|^2$ as a sum of squares. Give the analogous proof in \mathbb{C}^n .

Solution:

For $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$, the inequality is equivalent to

$$\left(\sum_{j=1}^n x_j^2\right) \left(\sum_{k=1}^n y_k^2\right) - \left(\sum_{j=1}^n x_j y_j\right)^2 \ge 0.$$

We prove the following identity by induction.

$$\left(\sum_{j=1}^{n} x_j^2\right) \left(\sum_{k=1}^{n} y_k^2\right) - \left(\sum_{j=1}^{n} x_j y_j\right)^2 \stackrel{*}{=} \sum_{k=1}^{n-1} \sum_{j=1}^{k} (x_k y_i - y_k x_i)^2.$$

In the case n = 1, it is clear that both the left and right hand side of the identity are 0. Observe

$$\left(\sum_{j=1}^{n+1} x_j^2\right) \left(\sum_{k=1}^{n+1} y_k^2\right) = \left(\sum_{j=1}^n x_j^2 + x_{n+1}^2\right) \left(\sum_{k=1}^n y_k^2 + y_{n+1}^2\right) \\
= \sum_{j=1}^n x_j^2 \sum_{k=1}^n y_k^2 + x_{n+1}^2 \sum_{k=1}^n y_k^2 + y_{n+1}^2 \sum_{j=1}^n x_j^2 + x_{n+1}^2 y_{n+1}^2,$$

and

$$\left(\sum_{j=1}^{n+1} x_j y_j\right)^2 = \left(\sum_{j=1}^n x_j y_j\right)^2 + 2x_{n+1} y_{n+1} \sum_{j=1}^n x_j y_j + x_{n+1}^2 y_{n+1}^2.$$

Subtracting these quantities and invoking the induction hypothesis, the left hand side of * is

$$\stackrel{*}{=} \left(\sum_{k=1}^{n-1} \sum_{j=1}^{k} (x_k y_i - y_k x_i)^2 \right) + x_{n+1}^2 \sum_{k=1}^{n} y_k^2 - 2x_{n+1} y_{n+1} \sum_{j=1}^{n} x_j y_j + y_{n+1}^2 \sum_{j=1}^{n} x_j^2 \right)
= \left(\sum_{k=1}^{n-1} \sum_{j=1}^{k} (x_k y_i - y_k x_i)^2 \right) + \sum_{j=1}^{n} (x_{n+1} y_j)^2 - 2x_{n+1} y_{n+1} x_j y_j + (y_{n+1} x_j)^2
= \left(\sum_{k=1}^{n-1} \sum_{j=1}^{k} (x_k y_i - y_k x_i)^2 \right) + \sum_{j=1}^{n} (x_{n+1} y_j - y_{n+1} x_j)^2
= \sum_{k=1}^{n} \sum_{j=1}^{k} (x_k y_i - y_k x_i)^2.$$

The analogous proof in \mathbb{C}^n would be to prove the similarly indexed identity $\sum |x_j|^2 \sum |y_k|^2 - |\sum x_j y_j| = \sum \sum |x_k y_i - y_k x_i|^2$ in a completely analogous fashion, only differing by writing $|\sum x_j y_j|^2 = \sum x_j y_j \sum \overline{x}_j \overline{y}_j$, and factoring a similar expression.

2. D'Angelo 2.23. Prove the Cauchy-Schwarz inequality in \mathbb{R}^n using Lagrange multipliers.

Solution:

For y=0, it is clear that $||x|| ||y|| = 0 = \langle x,y \rangle$, so consider the case where ||y|| > 0. For $z = \frac{y}{||y||}$, consider the function $g_x : \mathbb{R}^n \to \mathbb{R}$ by $g_x(z) = \langle x,z \rangle$. Note that ||z|| = 1. We now solve the optimization problem:

maximize
$$g_x(z)$$
 subject to $f(z) := ||z||^2 = 1$;

by Lagrange multipliers. That is, a solution z^* satisfies

$$\nabla g_x(z^*) = -\lambda \nabla f(z^*) \iff x_i = -2\lambda z_i^*$$

for all $i = 1 \dots n$. So a solution z^* has coordinates satisfying $z_i^* = \frac{-x_i}{2\lambda}$. For z^* to satisfy the constraint $f(z^*) = 1$,

$$1 = \sum_{i=0}^{n} (z_i^*)^2 = \sum_{i=1}^{n} \frac{x_i^2}{4\lambda^2} \iff \lambda = \pm \frac{1}{2} \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Since $\{f(z)\}$ is compact, and g_x is continuous on this set, we have that g_x attains a maximum and minimum there, hence the two points classified above give the global maximum and minimum. So

$$|\langle x, z \rangle| = |g_x(z)| \le |g_x(z^*)| = \left| \left(\sum_{i=1}^n x_i \frac{-x_i}{2\lambda} \right) \right| = \left(\sum_{i=1}^n x_i^2 \right)^{1/2} = ||x||.$$

Substituting $z = \frac{y}{\|y\|}$ and multiplying both sides by $\|y\|$ yields the desired inequality.