Bayes Theorem links the degree of belief in a proposition before and after accounting for evidence. The P(H), prior, is the initial degree of belief of H. P(H|E), the posterior, is the updated segment belief having accounted for E. P(E|H), the quotient is the amount of support E contributes to H.

- 3. This question is concerned with the Naïve Bayes classifier.
 - a) Write down the **Bayes' theorem** and explain briefly what it means. (5 marks)
 - b) Refer to the data contained in the following table:

Magazine	Watch	Credit Card	Sex	Life Insurance	
Promotion	Promotion	Insurance	Sex	Promotion	
Yes	No	No	Male	No	
Yes	Yes	Yes	Female	Yes	
No	No	No	Male	Yes	
Yes	Yes	Yes	Male	Yes	
Yes	No	No	Female	Yes	
No	No	No	Female	No	
Yes	Yes	Yes	Male	Yes	
No	No	No	Male	No	
Yes	No	Yes	Male	No	
Yes	Yes	No	Female	No	

Copy the table presented below to your answer book. Fill in the counts and probabilities in the table. The output attribute is '*life insurance promotion*'. (5 marks)

	Magazine Promotion		Watch Promotion		Credit Card Insurance		Sex		
Life Insurance Promotion	Yes	No	Yes	No	Yes	No	Male	Female	
Counts									
Yes									
No									
Probabilities									
Yes									
No									

(question continues on next page...)

CS3440 Data Mining

(Question 3 continued...)

c) Use the completed table in Part (b) together with the Naïve Bayes classifier to determine the value of life insurance promotion for the following instance:

Magazine Promotion = Yes Watch Promotion = Yes Credit Card Insurance = Yes Sex = Female Life Insurance Promotion = ?

(9 marks)

d) Repeat Part (c), but assume that the gender of the customer is unknown.

(4 marks)

e) Comment on the results obtained in Part (c) and Part (d).

(2 marks)