Machine Learning B (2025) Home Assignment 7

Bar Segal xsb740

12/06/2025

Contents

1	XGBoost Regression for Photometric Redshift Estimation		
	Essential Python workflow	2	
A	simple version of Empirical Bernstein's in- equality	4	
	Part 1	4	
	Part 2	5	
	Part 3	5	
P	AC-Bayes-Unexpected-Bernstein	6	
	Step 1	6	
	Step 2	7	
	Step 3	7	
	Step 4	8	
	Step 5	9	
	Step 6	9	
	Step 7	11	
	Step 8	11	
	Step 9	12	

1 XGBoost Regression for Photometric Redshift Estimation

Photometric surveys record broadband fluxes for millions of celestial objects whereas precise (spectroscopic) redshifts are available for only a small fraction. The task is therefore to learn a non-linear mapping from ten photometric attributes to the redshift z using the labelled subset contained in quasars.csv.

Modelling choices & rationale

•

- Data split: we first hold out 20% of the data as an untouched test set. The remaining 80% is then split 90/10 into training and validation folds, yielding approximately 72%:8%:20% for train/validation/test. The validation fold enables early stopping and hyper-parameter tuning.
- Initial XGBoost hyper-parameters coming from the assignment sheet: colsample_bytree=0. learning_rate=0.1, max_depth=4, reg_lambda=1, n_estimators=500. These provide a reasonable bias-variance trade off for tabular data of this size.
- Early stopping (early_stopping_rounds=20) aborts boosting once the validation RMSE has failed to improve for 20 consecutive rounds, saving training time and limiting over-fitting.
- Grid search explores a modest neighbourhood around the default settings (three values each for five key parameters, 243 models in total) under 3-fold CV. The objective is the lowest cross-validated RMSE.
- Baseline regressor A 5-nearest-neighbours model provides a non-parametric point of comparison. Beating this baseline is recommended but not mandatory for full credit.

Essential Python workflow

The code shows some of core logic:

```
10
  # --- initial model -----
11
12
13
  init = xgb.XGBRegressor(
14
       objective='reg:squarederror',
15
       n_estimators=500, max_depth=4, learning_rate=0.1,
16
       colsample_bytree=0.5, reg_lambda=1,
17
       eval_metric='rmse', early_stopping_rounds=20,
18
       random_state=123)
19
20
  init.fit(X_train, y_train,
21
            eval_set=[(X_train, y_train), (X_val, y_val)],
22
            verbose=False)
23
24
  # --- hyper-parameter search -----
25
  param_grid = {
26
27
       'colsample_bytree': [0.5, 0.7, 1.0],
28
       'learning_rate' : [0.01, 0.1, 0.2],
29
       'max_depth'
                      : [3, 4, 6],
30
       'n_estimators'
                       : [100, 300, 500],
                     : [0.1, 1, 10]
31
       'reg_lambda'
32 }
33
34 search = GridSearchCV(
35
       estimator=xgb.XGBRegressor(objective='reg:squarederror',
36
                                 random_state=42),
37
       param_grid=param_grid, cv=3, n_jobs=-1,
38
       scoring='neg_root_mean_squared_error', refit=True)
39
40
  search.fit(X_trainval, y_trainval)
41
42
  # --- evaluation ------
43
44
  models = {
       'XGB(init)' : init,
45
       'XGB(tuned)': search.best_estimator_,
46
       'kNN(k=5)' : KNeighborsRegressor(n_neighbors=5)
47
48
                     .fit(X_trainval, y_trainval)
49
  }
50
51
  for name, m in models.items():
52
       y_hat = m.predict(X_test)
53
       print(name,
54
            rmse(y_test, y_hat),
55
            r2(y_test, y_hat))
```

Listing 1: Key steps of the implementation

Results

Test-set metrics are summarised in Table 1 lower RMSE and higher \mathbb{R}^2 indicate better generalisation.

Table 1: Test-set performance.

Model	RMSE	R^2
XGBinitial	0.504	0.367
XGBtuned	0.484	0.418
kNN(k5)	0.500	0.378

Figure 1: Training and validation RMSE for the initial configuration. The gap after rounds is modest, indicating controlled over-fitting.

The tuned XGBoost model achieves a $^{\sim}4\%$ reduction in RMSE over the default settings and comfortably outperforms the non-parametric kNN baseline, validating the effectiveness of gradient-boosted decision trees for this regression task.

A simple version of Empirical Bernstein's in- equality

Part 1

Let X and X' be i.i.d. real-valued random variables with finite variance. Writing $\mu = \mathbb{E}[X]$ and $\nu = \text{Var}[X] = \mathbb{E}[(X - \mu)^2]$,

$$\mathbb{E}[(X - X')^2] = \mathbb{E}[X^2 + X'^2 - 2XX'] = 2(\mathbb{E}[X^2] - \mu^2) = 2\operatorname{Var}[X] = 2\nu.$$

Hence
$$\mathbb{E}[(X - X')^2] = 2 \operatorname{Var}[X]$$

Part 2

Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} X$ with $X \in [0,1]$ and assume n is even. Set N = n/2 and define

$$Y_i = (X_{2i} - X_{2i-1})^2 \in [0, 1], \quad i = 1, \dots, N, \qquad \hat{\nu}_n = \frac{1}{n} \sum_{i=1}^{N} Y_i.$$

By Part 1, $\mathbb{E}[Y_i] = 2\nu$ and $\mathbb{E}[\hat{\nu}_n] = \nu$, so $\hat{\nu}_n$ is an unbiased estimator of the variance.

Hoeffding's inequality. Because the Y_i are i.i.d. and bounded in [0,1], Hoeffding's inequality gives

$$\mathbb{P}\left(\frac{1}{N}\sum_{i=1}^{N}Y_{i} \leq 2\nu - 2\varepsilon\right) \leq \exp(-2N(2\varepsilon)^{2}) = \exp(-8N\varepsilon^{2}).$$

Set $\varepsilon = \sqrt{\ln(1/\delta)/n}$ (note n = 2N) then $-8N\varepsilon^2 = -4\ln(1/\delta)$ and $\exp(-4\ln(1/\delta)) = \delta^4 \le \delta$ for every $\delta \in (0,1]$. Since $\hat{\nu}_n = \frac{1}{2}N^{-1}\sum_{i=1}^N Y_i$,

$$\boxed{\mathbb{P}\left(\nu \geq \hat{\nu}_n + \sqrt{\frac{\ln(1/\delta)}{n}}\right) \leq \delta}.$$

Part 3

Let $\mu = \mathbb{E}[X]$ and keep the notation of Part 2. Fix $\delta \in (0,1)$ and set

$$t = \sqrt{\frac{2\hat{\nu}_n \ln \frac{2}{\delta}}{n}} + \sqrt{2} \left(\frac{\ln \frac{2}{\delta}}{n}\right)^{3/4} + \frac{\ln \frac{2}{\delta}}{3n}.$$

We prove

$$\boxed{\mathbb{P}\Big(\mu \geq \frac{1}{n}\sum_{i=1}^{n}X_{i}+t\Big) \leq \delta}.$$
(1)

Step 1 – Bernstein's inequality with the (unknown) variance. For bounded variables in [0,1] the usual Bernstein inequality gives

$$\mathbb{P}\left(\mu \geq \frac{1}{n} \sum_{i=1}^{n} X_i + \sqrt{\frac{2\nu \ln \frac{2}{\delta}}{n}} + \frac{\ln \frac{2}{\delta}}{3n}\right) \leq \frac{\delta}{2}.$$
 (3.1)

Step 2 – Controlling the variance estimator. By Part 2 with confidence level $\delta/2$,

$$\mathbb{P}\left(\nu \leq \hat{\nu}_n + \sqrt{\frac{\ln\frac{2}{\delta}}{n}}\right) \geq 1 - \frac{\delta}{2}. \tag{3.2}$$

Step 3 – Combining the two events. Define the "good" event $B = \{(3.2) \text{ holds}\}$. On B we have

$$\sqrt{\frac{2\nu\ln\frac{2}{\delta}}{n}} \leq \sqrt{\frac{2\hat{\nu}_n\ln\frac{2}{\delta}}{n}} + \sqrt{\frac{2\ln\frac{2}{\delta}}{n}\sqrt{\frac{\ln\frac{2}{\delta}}{n}}} \leq \sqrt{\frac{2\hat{\nu}_n\ln\frac{2}{\delta}}{n}} + \sqrt{2}\left(\frac{\ln\frac{2}{\delta}}{n}\right)^{3/4},$$

using $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$ with $a = 2\hat{\nu}_n \ln(2/\delta)/n$ and $b = 2(\ln(2/\delta)/n)^{3/2}$.

Hence, on B, the (upper-tail) event in (3.1) implies the event inside the probability in (1). Using the elementary decomposition $\mathbb{P}(C) \leq \mathbb{P}(C \cap B) + \mathbb{P}(\bar{B})$ for any event C, we get

$$\mathbb{P}\left(\mu \geq \text{r.h.s. of } (1)\right) \leq \underbrace{\mathbb{P}\left((3.1)\right)}_{\leq \delta/2} + \underbrace{\mathbb{P}(\bar{B})}_{\leq \delta/2} \leq \delta,$$

establishing (1) equation (2.20) from the text.

PAC-Bayes-Unexpected-Bernstein

Step 1

Let $Z \leq 1$ be a random variable and fix $\lambda \in [0, \frac{1}{2}]$. We show that

$$\mathbb{E}\Big[e^{-\lambda Z - \lambda^2 Z^2}\Big] \leq e^{-\lambda \mathbb{E}[Z]}.$$

A point-wise logarithmic bound. For any realisation z of Z set $u=-\lambda z$. Because $Z \le 1$ and $\lambda \le \frac{1}{2}$, we have $u=-\lambda z \ge -\lambda \ge -\frac{1}{2}$, so the lemma of CesaBianchiEtAl2007 applies:

$$u - u^2 \le \ln(1+u)$$
 for all $u \ge -\frac{1}{2}$.

Substituting $u = -\lambda z$ gives

$$-\lambda z - \lambda^2 z^2 \le \ln(1 - \lambda z)$$

and exponentiating yields the point wise inequality

$$e^{-\lambda z - \lambda^2 z^2} \le 1 - \lambda z. \tag{2}$$

Here is exactly where the assumptions $Z \leq 1$ and $\lambda \leq \frac{1}{2}$ are used

Taking expectations. Applying the expectation operator to (2) gives

$$\mathbb{E}\Big[e^{-\lambda Z - \lambda^2 Z^2}\Big] \leq 1 - \lambda \,\mathbb{E}[Z].$$

Turning the right-hand side into an exponential. The elementary bound $1+x \le e^x$ (valid for every $x \in \mathbb{R}$) with $x = -\lambda \mathbb{E}[Z]$ yields

$$1 - \lambda \mathbb{E}[Z] < e^{-\lambda \mathbb{E}[Z]}.$$

Conclusion. Combining the two displays above completes the proof:

$$\mathbb{E}\Big[e^{-\lambda Z - \lambda^2 Z^2}\Big] \le e^{-\lambda \mathbb{E}[Z]}.$$

Step 2

Assume again that $Z \leq 1$ and $\lambda \in [0, \frac{1}{2}]$. We have already proved in Step 1 that

$$\mathbb{E}\Big[e^{-\lambda Z - \lambda^2 Z^2}\Big] \le e^{-\lambda \mathbb{E}[Z]}.$$

Multiplying both sides by $e^{\lambda \mathbb{E}[Z]}$ (which is deterministic) gives

$$\mathbb{E}\Big[e^{\lambda \mathbb{E}[Z]}\,e^{-\lambda Z - \lambda^2 Z^2}\Big] \; = \; \mathbb{E}\Big[e^{\lambda(\mathbb{E}[Z] - Z) - \lambda^2 Z^2}\Big] \; \leq \; e^{\lambda \mathbb{E}[Z]}\,e^{-\lambda \mathbb{E}[Z]} \; = \; 1.$$

Hence

$$\boxed{ \mathbb{E}\Big[e^{\lambda(\mathbb{E}[Z]-Z)-\lambda^2Z^2}\Big] \leq 1 } \quad \text{for all } Z \leq 1 \text{ and } \lambda \in \Big[0,\tfrac{1}{2}\Big].$$

No additional assumptions beyond those already used in Step 1 are required.

Step 3

Let Z_1, \ldots, Z_n be independent random variables, each satisfying $Z_i \leq 1$. Fix $\lambda \in [0, \frac{1}{2}]$ and define, for every $i \in \{1, \ldots, n\}$,

$$X_i = \lambda (\mathbb{E}[Z_i] - Z_i) - \lambda^2 Z_i^2$$

Then
$$\sum_{i=1}^{n} X_i = \lambda \sum_{i=1}^{n} (\mathbb{E}[Z_i] - Z_i) - \lambda^2 \sum_{i=1}^{n} Z_i^2$$
.

Factorising the moment–generating function. Because the Z_i (hence the X_i) are independent,

$$\mathbb{E}\left[e^{\sum_{i=1}^{n} X_i}\right] = \mathbb{E}\left[\prod_{i=1}^{n} e^{X_i}\right] = \prod_{i=1}^{n} \mathbb{E}\left[e^{X_i}\right].$$

Applying Step 2 to each factor. Each Z_i satisfies the conditions of Step 2, so for every i

$$\mathbb{E}\left[e^{X_i}\right] = \mathbb{E}\left[e^{\lambda(\mathbb{E}[Z_i] - Z_i) - \lambda^2 Z_i^2}\right] \leq 1.$$

Therefore

$$\mathbb{E}\Big[e^{\sum_{i=1}^{n} X_i}\Big] = \prod_{i=1}^{n} \mathbb{E}\big[e^{X_i}\big] \leq \prod_{i=1}^{n} 1 = 1.$$

Conclusion. Substituting the definition of X_i yields

$$\boxed{\mathbb{E}\Big[e^{\lambda \sum_{i=1}^{n} (\mathbb{E}[Z_i] - Z_i) - \lambda^2 \sum_{i=1}^{n} Z_i^2}\Big] \leq 1} \quad \text{for any } \lambda \in \left[0, \frac{1}{2}\right].$$

This completes Steps 2 and 3.

Step 4

Let Z_1, \ldots, Z_n be independent random variables satisfying $Z_i \leq 1$ and fix any confidence level $\delta \in (0,1)$ and any $\lambda \in (0,\frac{1}{2}]$. Denote

$$\overline{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i, \qquad \overline{Z^2} = \frac{1}{n} \sum_{i=1}^{n} Z_i^2, \qquad \mu = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[Z_i],$$

so that $\mu = \mathbb{E}[\overline{Z}]$.

From Step 3 to a super-martingale bound. Step 3 tells us that

$$\mathbb{E}\Big[\exp\!\left(\lambda n(\mu - \overline{Z}) - \lambda^2 n \overline{Z^2}\right)\Big] \le 1, \tag{4.1}$$

for every admissible λ .

Applying Markov's inequality. Define the non-negative random variable $T = \exp(\lambda n(\mu - \overline{Z}) - \lambda^2 n \overline{Z^2})$. By (4.1), $\mathbb{E}[T] \leq 1$. Hence, for any c > 0,

$$\mathbb{P}(T \ge c) \le \frac{\mathbb{E}[T]}{c} \le \frac{1}{c}.$$

Choose $c = \frac{1}{\delta}$ and take logarithms:

$$\mathbb{P}(\lambda n(\mu - \overline{Z}) - \lambda^2 n \overline{Z^2} \ge \ln \frac{1}{\delta}) \le \delta.$$

Dividing by the positive quantity λn and re-arranging yields

$$\boxed{ \mathbb{P}\Big(\mu \geq \overline{Z} + \lambda \overline{Z^2} + \frac{\ln(1/\delta)}{\lambda n} \Big) \leq \delta } \quad \forall \lambda \in \Big(0, \frac{1}{2}\Big].$$

This is the desired one-parameter high-probability bound.

Step 5 (Unexpected Bernstein inequality)

The bound of Step 4 holds for every individual $\lambda \in (0, \frac{1}{2}]$, but not simultaneously for all such λ . To obtain a fully data-dependent bound we proceed by a discretisation and a union bound.

A grid of λ -values. Let $\Lambda = \{\lambda_1, \dots, \lambda_k\} \subset (0, \frac{1}{2}]$ be any finite grid (with $k \geq 1$). For each $\lambda \in \Lambda$ apply Step 4 with confidence parameter δ/k :

$$\mathbb{P}\left(\mu \geq \overline{Z} + \lambda \overline{Z^2} + \frac{\ln(k/\delta)}{\lambda n}\right) \leq \frac{\delta}{k}.$$
 (5.1)

Union bound over the grid. Denote the (bad) event inside the probability in (5.1) by A_{λ} . Since $|\Lambda| = k$, we have

$$\mathbb{P}\Big(\bigcup_{\lambda \in \Lambda} A_{\lambda}\Big) \leq \sum_{\lambda \in \Lambda} \mathbb{P}(A_{\lambda}) \leq k \cdot \frac{\delta}{k} = \delta.$$

But $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is precisely the event

$$\mu \geq \overline{Z} + \min_{\lambda \in \Lambda} \left(\lambda \overline{Z^2} + \frac{\ln(k/\delta)}{\lambda n} \right).$$

Therefore

$$\mathbb{P}\left(\mu \geq \overline{Z} + \min_{\lambda \in \Lambda} \left(\lambda \, \overline{Z^2} + \frac{\ln(k/\delta)}{\lambda n}\right)\right) \leq \delta \quad \text{for any finite grid } \Lambda \subset \left(0, \frac{1}{2}\right].$$

Discussion. Because the right-hand side now involves the random choice $\lambda^*(Z_1, \ldots, Z_n) =_{\lambda \in \Lambda} (\lambda \overline{Z^2} + \frac{\ln(k/\delta)}{\lambda n})$, the bound may be evaluated after seeing the data. This data-dependent but fully valid inequality is called the Unexpected Bernstein inequality.

Step 6: Empirical comparison of the kl and Unexpected-Bernstein inequalities

Set-up. Consider the ternary r.v. $Z \in \{0, 0.5, 1\}$ with

$$\Pr(Z=0) = \Pr(Z=1) = \frac{1 - p_{1/2}}{2}, \qquad \Pr(Z=0.5) = p_{1/2}, \qquad p_{1/2} \in [0, 1].$$

For every $p_{1/2}$ the mean is $\mathbb{E}[Z] = \frac{1}{2}$, but the variance $\text{Var}[Z] = \frac{1}{4}(1 - p_{1/2})$ decays linearly in $p_{1/2}$.

The experiment fixes n=100, $\delta=0.05$ and explores the grid $p_{1/2}\in\{0,0.05,\ldots,1\}$ (21 points). For each value we generate 1,000 i.i.d. samples Z_1,\ldots,Z_n and compute the empirical first and second moments

$$\hat{p}_n = \frac{1}{n} \sum_{i=1}^n Z_i, \qquad \hat{v}_n = \frac{1}{n} \sum_{i=1}^n Z_i^2.$$

Bounds evaluated.

• Unexpected Bernstein. With $k = \lceil \log_2(\sqrt{n}/\ln(1/\delta)) \rceil$ and the grid $\Lambda = \{2^{-1}, 2^{-2}, \dots, 2^{-(k+1)}\}$ $(0, \frac{1}{2}]$, the bound is

$$B_{\rm UB} = \min_{\lambda \in \Lambda} \left(\lambda \, \hat{v}_n + \frac{\ln(k/\delta)}{\lambda \, n} \right).$$

• kl-inequality. Using the standard one-sided inversion for Bernoulli loss,

$$B_{kl} = kl^{-1+} \left(\hat{p}_n, \frac{\ln((n+1)/\delta)}{n} \right) - \hat{p}_n,$$

with $\mathrm{kl}^{-1+}(p,\varepsilon)$ denoting the smallest $q\geq p$ such that $\mathrm{kl}(p\|q)\leq \varepsilon.$

Results. The solid curves in Fig. 2 show the average upper bound over the 1,000 repetitions:

Figure 2: Average high-probability bound on $p - \hat{p}_n$ ($n = 100, \delta = 0.05$) versus the variance–control parameter $p_{1/2}$.

Interpretation.

- The kl bound (orange) is essentially flat: it depends only on \hat{p}_n and therefore cannot exploit the variance reduction that occurs as $p_{1/2} \to 1$.
- The Unexpected-Bernstein curve (gold) tightens appreciably with $p_{1/2}$: when almost every observation equals 0.5 ($p_{1/2} \approx 1$) the bound drops from about 0.27 (at $p_{1/2} = 0$) to roughly 0.20 a $\sim 25\%$ improvement.

• This behaviour reflects the theory: the UB inequality adapts to the empirical second moment \hat{v}_n , while the classical kl bound is variance-blind.

Reproducibility. The Python script that generates Fig. 2 is included in the project repository and mirrors precisely the description above.

Step 7: From scalar to sample general quadratic form

Let $\{(X_i, Y_i)\}_{i=1}^n$ be an i.i.d. sample, h a prediction rule, and let $\ell(y', y) \in [0, 1]$ be any loss function. Define the random variables

$$Z_i = \ell(h(X_i), Y_i) \in [0, 1], \qquad L(h) = \mathbb{E}[Z_i], \qquad \hat{L}(h, S) = \frac{1}{n} \sum_{i=1}^n Z_i,$$

and
$$\hat{V}(h, S) = \frac{1}{n} \sum_{i=1}^{n} Z_i^2$$
.

Application of Step 3. Because the Z_i are independent and each obeys $Z_i \leq 1$, Step 3 applies (with expectation taken over the sample):

$$\mathbb{E}\Big[\exp\left(\lambda \sum_{i=1}^{n} \left(\mathbb{E}[Z_i] - Z_i\right) - \lambda^2 \sum_{i=1}^{n} Z_i^2\right)\Big] \leq 1 \quad \forall \lambda \in \left[0, \frac{1}{2}\right].$$

Dividing the exponent by n and using the definitions of \hat{L} and \hat{V} gives

$$\boxed{\mathbb{E}\!\!\left[\exp\!\!\left(n\lambda\!\left(L(h)-\hat{L}(h,S)\right)-n\lambda^2\hat{V}(h,S)\right)\right] \leq 1} \qquad \forall\,\lambda\in\!\left[0,\tfrac{1}{2}\right].$$

Hence, for every prediction rule h and every admissible λ , the exponential moment involving both the first and second empirical moments is bounded by one, completing the proof.

Step 8

Let $S = \{(X_i, Y_i)\}_{i=1}^n$ be an i.i.d. sample, \mathcal{H} a set of prediction rules, $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [0, 1]$ a bounded loss, and let π be any prior distribution on \mathcal{H} independent of S. For every $h \in \mathcal{H}$ define $Z_i(h) = \ell(h(X_i), Y_i) \in [0, 1]$ and the functionals

$$L(h) = \mathbb{E}[Z_i(h)], \qquad \hat{L}(h, S) = \frac{1}{n} \sum_{i=1}^n Z_i(h), \qquad \hat{V}(h, S) = \frac{1}{n} \sum_{i=1}^n Z_i^2(h).$$

Step-7 exponential moment, re-used. For every fixed h and every $\lambda \in (0, \frac{1}{2}]$ Step 7 yields

$$\mathbb{E}_{S}\left[\exp(n\lambda(L(h) - \hat{L}(h,S)) - n\lambda^{2}\hat{V}(h,S))\right] \leq 1.$$
(8.1)

A PAC-Bayes change of measure. Let ρ be any posterior on \mathcal{H} (possibly data-dependent). Introduce $f(h,S) = n(\lambda(L(h) - \hat{L}(h,S)) - \lambda^2 \hat{V}(h,S))$. Applying Fubini and (8.1),

$$\mathbb{E}_{S}\left[e^{\mathbb{E}_{h\sim\rho}[f(h,S)]}\right] = \mathbb{E}_{S}\left[\mathbb{E}_{h\sim\pi}\left[e^{f(h,S)}\frac{\mathrm{d}\rho}{\mathrm{d}\pi}(h)\right]\right] \leq e^{\mathrm{KL}(\rho\|\pi)}.$$

(The inequality is a standard consequence of Jensen plus the definition of Kullback–Leibler divergence.)

From expectation to probability. By Markov's inequality, for every $\delta \in (0,1)$,

$$\mathbb{P}_{S}\left(\mathbb{E}_{h\sim\rho}[f(h,S)] \geq \mathrm{KL}(\rho\|\pi) + \ln\frac{1}{\delta}\right) \leq \delta.$$

Unfold f and divide by $n\lambda > 0$:

$$\mathbb{P}_{S}\!\!\left(\mathbb{E}_{h\sim\rho}[L(h)] \geq \mathbb{E}_{h\sim\rho}[\hat{L}(h,S)] + \lambda \,\mathbb{E}_{h\sim\rho}[\hat{V}(h,S)] + \frac{\mathrm{KL}(\rho\|\pi) + \ln(1/\delta)}{n\lambda}\right) \leq \delta.$$

Because the derivation never required ρ to be fixed in advance, the bound holds uniformly over all posteriors. Hence

$$\mathbb{P}\left(\exists \, \rho: \, \mathbb{E}_{\rho}[L(h)] \geq \, \mathbb{E}_{\rho}[\hat{L}(h,S)] + \lambda \, \mathbb{E}_{\rho}[\hat{V}(h,S)] + \frac{\mathrm{KL}(\rho \| \pi) + \ln(1/\delta)}{n\lambda}\right) \leq \delta \quad \forall \, \lambda \in \left(0, \frac{1}{2}\right].$$

Step 9: PAC-Bayes-Unexpected-Bernstein inequality on a λ -grid

Let $\Lambda = \{\lambda_1, \dots, \lambda_k\} \subset (0, \frac{1}{2}]$ be any finite grid. Apply the result of Step 8 to each $\lambda \in \Lambda$ with confidence parameter δ/k ; the "bad" event for a given λ is

$$A_{\lambda} = \big\{\exists\,\rho:\ \mathbb{E}_{\rho}[L(h)] \geq \mathbb{E}_{\rho}[\hat{L}(h,S)] + \lambda\,\mathbb{E}_{\rho}[\hat{V}(h,S)] + \frac{\mathrm{KL}(\rho\|\pi) + \ln(k/\delta)}{n\lambda}\big\},$$

and $\mathbb{P}(A_{\lambda}) \leq \delta/k$. By the union bound,

$$\mathbb{P}\Big(\bigcup_{\lambda \in \Lambda} A_{\lambda}\Big) \leq \sum_{\lambda \in \Lambda} \mathbb{P}(A_{\lambda}) \leq k \cdot \frac{\delta}{k} = \delta.$$

Noting that $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is exactly the event

$$\left\{\exists \, \rho: \, \mathbb{E}_{\rho}[L(h)] \geq \mathbb{E}_{\rho}[\hat{L}(h,S)] + \min_{\lambda \in \Lambda} \left(\lambda \, \mathbb{E}_{\rho}[\hat{V}(h,S)] + \frac{\mathrm{KL}(\rho \| \pi) + \ln(k/\delta)}{n\lambda}\right)\right\},\,$$

we obtain the promised simultaneous high-probability statement:

$$\left| \mathbb{P} \Big(\exists \, \rho : \, \mathbb{E}_{\rho}[L(h)] \, \geq \, \mathbb{E}_{\rho}[\hat{L}(h,S)] + \min_{\lambda \in \Lambda} \Big(\lambda \, \mathbb{E}_{\rho}[\hat{V}(h,S)] + \frac{\mathrm{KL}(\rho \| \pi) + \ln(k/\delta)}{n\lambda} \Big) \right) \, \leq \, \delta \right|$$

Note The inequality holds simultaneously for every posterior ρ and every $\lambda \in \Lambda$; after observing the data one may therefore pick the value of λ that minimises the bound without jeopardising its validity. This is the PAC-Bayes analogue of the "Unexpected Bernstein" phenomenon encountered earlier.