DCC639: Álgebra Linear Computacional

(Prazo para submissão: 06/08/2021 23:55)

Lista de Exercícios 04

Professores: Erickson, Fabricio e Renato

Política da Disciplina: Leia todas as instruções abaixo cuidadosamente antes de começar a resolver a lista, e antes de fazer a submissão.

- As questões podem ser discutidas entre até três alunos (conjuntos disjuntos). Os nomes dos colegas precisam ser incluídos na submissão.
- A submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.
- Todas as fontes de material precisam ser citadas. O código de conduta da UFMG será seguido à risca.

Problema 1: Considere o conjunto de dados abaixo com as notas de 5 estudantes em 4 disciplinas. Calcule a matriz de covariância. (Dica: Para saber se devemos usar $\frac{X^{\top}X}{n-1}$ ou $\frac{XX^{\top}}{n-1}$, lembre-se de que a matriz final deve ter ordem igual ao número de atributos.)

Estudante	GAAL	PDS1	Cálculo 1	ALC
1	90	80	60	95
2	65	75	90	70
3	40	90	60	55
4	80	60	59	75
5	60	100	80	80

Problema 2: Seja X um conjunto de dados já centralizado. Sabendo que $C_x = X^T X/(n-1)$ é a matriz de covariância de X, mostre, algebricamente, como o PCA de X pode ser obtido a partir de seu SVD.

Problema 3: Considere os pontos a seguir:

X	2.0	3.5	4.0	5.1	7.0
У	2.2	2.0	3.0	6.0	5.0

Usando o método dos quadrados mínimos, encontre os parâmetros da regressão linear simples $f(x) = \beta_0 + \beta_1 x$. Atenção: você não pode resolver esta questão usando uma função de biblioteca que retorne os coeficientes da regressão diretamente a partir de x e y.

Problema 4: Assinale V para verdadeiro ou F para falso e justifique:

- () Dado um conjunto de dados centralizado X, para obter uma representação de X em k dimensões via PCA, podemos utilizar o SVD truncado de X de posto k.
- () A direção da PC_1 de um conjunto de dados bidimensional, em que cada ponto i tem coordenadas (x_i, y_i) , é a mesma da reta f(x) obtida pela regressão linear dos dados.