CSDS 455: Homework 10

Shaochen (Henry) ZHONG, sxz517

Due and submitted on 09/28/2020 Fall 2020, Dr. Connamacher

I have discussed with Yige Sun for this assignment.

Problem 1

Let n be the number of vertex, e be edges, and f be faces. The base case would be n = 1 since it is just a dot, there will be e = 0 and f = 0, thus satisfies n - e + f = 2.

Now assume it is true for $n = k_1$, $e = k_2$, and $f = k_3$. The first case would be to add one edge without any extra vertex. An edge among two existed vertices would slice a face into two face, thus we have $e' = k_2 + 1$, $f' = k_3 + 1$, and v' = v. Where v' - e' + f' = 2 still holds.

The other case would be to to add one extra vertex and one edge. In this case no extra face will be added and we have $e' = k_2 + 1$, $v' = k_1 + 1$, $f' = k_3$, where v' - e' + f' = 2 still holds.

Since a planar graph is connected, the only way too way we can add on it is to add an edge, or an edge with and a vertex (a path). The above too cases have shown the Eular Formular holds for both cases, thus by induction the statement is proven.

Problem 2

By observation we know that for any planar graph with f = 1, such graph must be a tree and therefore must have a vertex v with d(v) < 6.

For any planar graph G with f > 1, such graph must be $e \ge 3$ as otherwise there will not be a finite face. In those cases we may observe $\sum E(f) = 2e$ where $E(f_i)$ is the number of edges of face f_i , and $\sum E(f)$ represents sum of number of edges of every face in a planar graph. We know this statement is true as by counting every faces, we will eventually count each edge twice. Also, as we noticed perviously, each face will have at least 3 edges, there must also be $\sum E(f) \ge 3f$

Combine the above two findings of $\sum E(f) \ge 3f$ and $\sum E(f) = 2e$, we have $2e \ge 3f$. We may apply this to the Eular Formular:

$$f = 2 - n + e \le \frac{2}{3}e$$
$$\frac{1}{3}e \le n - 2$$
$$e \le 3n - 6$$

Since we know that each edge will have two vertices, there must be d(G) = 2e. Substitute this finding into the above equation, we have:

$$e \le 3n - 6$$
$$d(G) \le 6n - 12$$
$$\frac{d(G)}{n} \le 6 - \frac{12}{n}$$

 $\frac{d(G)}{n} \le 6 - \frac{12}{n}$ suggests the average degree per vertex in G is less than 6, which implies there will be aleast one vertex v in V(G) where $d(v) \le 6$.

We have proven the statement to be true for all possible cases.

Problem 3

 $I \ have \ consulted \ https://math.stackexchange.com/questions/764566 \ and \ http://www.su18.eecs70. \\ org/static/slides/lec-5-handout.pdf \ for \ this \ problem.$

Although being an *iff* question, we will only need to prove one direction as the dual graph of G is G* and so does vice versa.

Let T be the spanning tree of G, and let T^* be a subgraph of G^* consisting edges of G^* that are corresponding to the edges of G not in T.

Known that |E(T)| = |V(G)| - 1, thus there must be $|E(T^*)| = |E(G)| - (|V(G)| - 1)$. By Euler's formula there must be 2 - |V(G)| + |E(G)| faces in G; since we know that a face in G corresponds to a vertex in G^* , we have:

$$|V(G^*)| = 2 - |V(G)| + |E(G)|$$

$$= |E(G)| - |V(G)| + 2$$

$$|E(T^*)| = |E(G)| - (|V(G)| - 1)$$

$$= |E(G)| - |V(G)| + 1$$

$$= |V(G^*)| - 1$$

Now we have shown that $|E(T^*)| = |V(G^*)| - 1$. To show that T^* is a spanning tree of G^* , we need to show that T^* is an acyclic, connected subgraph of G^* that consists every vertices of G^* .

Proof. Cycle-Cut Duality: An edge cut in G^* is a cycle in G.

A vertex in G^* corresponds to a face in G. This suggests if we can perform an edge cut to disjoint one or couple vertices $\in V(G^*)$ from G^* , the removed edges in G^* will correspond to some faces enclosing edges in G. Since we know that a face is always enclosed by a cycle of edges, a cut in G^* is a cycle in G.

Promoting this conclusion known that G is the dual of G* and vise versa, a cycle in G also corresponds a cut in G*.

We first show that T^* is acyclic. This can be conclude by observating the fact that T is connected, which implies V(G) - T is have no edge cut of G. Thus, by the lemma, there no cycle in T^* and T^* is therefore acyclic.

We also know that T^* , being acyclic subgraph of G^* with $|V(G^*)| - 1$ edges, must also be connected. Since after the first vertex of T^* , every edge of it will bring in an extra vertex, and there are only $|V(G^*)|$ vertices in G^* – which will all be included in T^* .

Knowing that T^* is an connected, acyclic subgraph of G^* with $|V(G^*)|$ vertices. We have proven that T^* is a spanning tree of G^* .

Problem 4

Assume a minimum 2-connected graph G with f = 2 (which is a triangle), we know the dual of G, G^* will also be 2-connected – as the G^* in this case only has two vertices each with degree of 3. So obviously removing one vertex won't be able to make this G^* disconnected. So the base case is trivially true.

Proceed to do induction on number of faces, assume that it is also true for a 2-connected graph G_k with f = k. There are two ways we may have a 2-connected G_{k+1} with f = k + 1.

First we simply add an edge between the existing vertices of G_k , this will split a face x in G_k into x_1 and x_2 in G_{k+1} . This G_{k+1} must be 2-connected since G_k is 2-connected, and there is no way that adding an edge (or edges) may result a decrease in vertex-connectivity.

The second case will be to connect (or "merge") a 1-face component to G_k to make G_{k+1} with k+1 faces. To keep G_{k+1} 2-connected, this new component with a face denotes x_1 must share at least 2 vertices with G_k (a.k.a. adding a path between 2 vertices of G_k); as otherwise if only 1 vertex is shared, we may simply remove this shared vertex and G_{k+1} will be disconnected.

With the two shared vertices, this new face x_1 will be "neighbered" with an existed face in G_k (call that face x'), and this new face x_1 will be inside another face x in G_k (and this face x is now splited into faces x_1 and x_2 in G_{k+1}).

So two cases are essentially the same as it is about a path (which can be an edge) splitting a face x in G_k into two faces x_1 and x_2 in G_{k+1} . We denotes the vertices representing these faces in respective G^* s as v_x , v_{x_1} , and v_{x_2} .

The G_{k+1}^* in this case will be $G_k^* - \{v_x\}$ but with new edges to and between v_{x_1} and v_{x_2} . Known that G_k^* is 2-connected, which means $G_k^* - \{v_x\}$ must still be connected. So as long as v_{x_1} and/or

 v_{x_2} won't be disconnected from the rest of the G_{k+1}^* with one vertex removed, we have shown G_{k+1}^* to be 2-connected.

Since v_x must be 2-connected in G_k^* , it must be at least connected to two distinct vertices v_y and v_z (as otherwise if v_x is just connected to one other vertex, removal of this vertex will make G_k^* disconnected). When splitting x into x_1 and x_2 , we are either splitting an enclosed face x into two enclosed faces x_1 and x_2 ; or we are splitting infinite face x into an enclosed face x_1 and an infinite face x_2 (W.L.O.G).

In the first case, the connections between v_x to v_y and v_z in G_k^* must be inherited by v_{x_1} , v_{x_2} in G_{k+1}^* . As the faces x_1 and x_2 together inherite the enclosed edges of x. We know that there must be edge $v_{x_1}v_{x_2}$ in G_{k+1}^* , and all other edges coming out of v_{x_1} , v_{x_2} are connected to at least two distinct vertices v_y and v_z . Therefore v_{x_1} , v_{x_2} are not going to be disconnected from the rest of the G_{k+1}^* with one vertex removed. Because W.L.O.G, if we remove v_y there will still be a path of $v_z \to v_{x_1} \to v_{x_2}$ (so does removing v_z). If we remove v_{x_1} or v_{x_2} , the leftover one is still connected to v_y or v_z .

In the second case we will have v_{x_1} connected to v'_x (as face x shares an edge with x'). There will still be an edge of $v_{x_1}v_{x_2}$, and there will be v_{x_2} to the vertex representing the infinite faces (call it v_i). Removing any of these mentioned vertices will still leave v_{x_1} , v_{x_2} connected to the rest of the G^*_{k+1} .

Since we have shown that for a 2-connected planar graph G with any number of faces, its dual graph G^* will also be 2-connected under all possible cases, we have proven the statement by induction.