# SoC 2023: Competitive Programming

## Week-2: Sorting, Searching, and Number Theory

### Mentor: Virendra Kabra

### Summer 2023

## Contents

| 1 | Sorting           |  |  |  |  |  |  |  |
|---|-------------------|--|--|--|--|--|--|--|
|   | 1.1 C++           |  |  |  |  |  |  |  |
|   | 1.2 Algorithms    |  |  |  |  |  |  |  |
|   | 1.3 Examples      |  |  |  |  |  |  |  |
| 2 | Binary Search     |  |  |  |  |  |  |  |
|   | 2.1 Introduction  |  |  |  |  |  |  |  |
|   | 2.2 Examples      |  |  |  |  |  |  |  |
| 3 | Number Theory     |  |  |  |  |  |  |  |
|   | 3.1 Factors       |  |  |  |  |  |  |  |
|   | 3.2 Combinatorics |  |  |  |  |  |  |  |
| 4 | Todos             |  |  |  |  |  |  |  |

### 1 Sorting

#### 1.1 C++

- To sort vectors or strings, use sort from the STL. References: GFG, cplusplus.com.
- For n items, number of operations is  $O(n \log n)$ .
- To sort a vector of custom structs, use a comparator function. Example in file.

### 1.2 Algorithms

- Comparison-based: Bubblesort  $O(n^2)$ , Mergesort  $O(n \log n)$ , Quicksort average  $O(n \log n)$ , worst  $O(n^2)$
- Counting sort: If all elements are in an interval of size O(n), maintain a frequency array or unordered\_map, and finally list elements in order. Complexity O(n).

#### 1.3 Examples

- Find number of unique elements in an array.  $O(n \log n)$  with sorting or set, O(n) with unordered\_set.
- Interval scheduling. Given a list of intervals with respective start and end times, report the maximum number of non-overlapping intervals.



Here,  $\{B,C\}$  or  $\{D,C\}$  are optimal.  $\{A,C\}$  is not valid, while  $\{A\}$  is sub-optimal.

A "greedy" solution: always choose the next interval with smallest finish time (this requires sorting). The algorithm is greedy in the sense of local optimization. It is also globally optimal: for any schedule that you pick, we can replace the first interval with an interval that ends earlier and repeat the process.

• Find the maximum number of overlapping intervals: Sort all start and end times in a single vector, with information if it is start/end. Iterate over and maintain a counter: +1 for start, -1 for end. Max counter value is the answer.

### 2 Binary Search

#### 2.1 Introduction

• Search for an element in a **sorted** array. Search range halves in every iteration, so going from space of size n to that of size 1 takes  $O(\log_2 n)$  iterations.



• Code in file.

### 2.2 Examples

• Find the maximum value in a unimodal array. Use the interval-halving idea with a different condition.



### • Painters' Partition Problem

We have to paint n boards of lengths  $\{A_1, A_2, \ldots, A_n\}$ . k painters are available and each takes 1 unit time to paint 1 unit of board. Find the minimum time to get the job done under the constraint that any painter will only paint continuous sections of boards.

Example: Lengths  $\{9, 4, 7, 10, 5\}$  with k = 3. Allocations  $\{9\}, \{4, 7\}, \{10, 5\}$  and  $\{9, 4\}, \{7\}, \{10, 5\}$  are optimal, while  $\{9, 4\}, \{7, 10\}, \{5\}$  isn't.

Maximum time taken by any painter is the answer. Assuming any number of painters, an initial range on this is  $\left[\max_i A_i, \sum_i A_i\right]$  - with n and 1 painters respectively.

A number t is a candidate answer if we can assign contiguous segments to  $\leq k$  painters, each of length  $\leq t$ . If t works, then any number  $\geq t$  works. So, we have an array like the following

| Ca | ndidate | max A <sub>i</sub> | 2 | 3 |   | answer |   | $\sum A_i$ |
|----|---------|--------------------|---|---|---|--------|---|------------|
| V  | Vorks?  | N                  | N | N | N | Y      | Y | Y          |

Candidates are sorted, so we can use binary search. To check if a candidate works, need to iterate over the array in O(n). The overall complexity is  $O(n \log(\sum A_i - \max A_i))$ .

Code in file. We can start with a much larger initial interval such as  $[0, INT\_MAX]$ ; idea remains the same.

### 3 Number Theory

#### 3.1 Factors

- Factors of a number n: Iterate from 1 to  $\sqrt{n}$ . If n%i == 0, then i and n/i are factors.
- $\bullet$  Primes: Sieve of Eratosthenes. For example, we need primes from L to R. Check the reference for a simple implementation.



• Prime decomposition of n: Use the sieve to get primes in  $[2, \sqrt{n}]$  and test with each prime. Implementation.

#### 3.2 Combinatorics

- Modular arithmetic:  $a \equiv (a\%m) \pmod{m}$ . m is usually a large prime to ease later calculations.
- Binary exponentiation:  $a^b \pmod{m}$  in  $O(\log_2 b)$ . Code in file.
- Inverse Modulo: With Euler's Totient function  $\phi$ ,  $a^{\phi(m)} \equiv 1 \pmod{m}$ . For prime m, this is  $a^{m-1} \equiv 1 \pmod{m}$ . Further, if  $\gcd(a,m) = 1$ , we get  $a^{m-2} \equiv a^{-1} \pmod{m}$ . So  $a^{-1} \pmod{m}$  is equivalent to  $a^{m-2}\%m$  use binary exponentiation.
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ . Modulo prime m, we use precomputed factorials and inverse modulo.
- Resources: Binary Exponentiation, Modular Inverse, Binomial Coefficients

### 4 Todos

- First 5 problems from CSES (Sorting and Searching)
- Codeforces: 1612C, 1613C, 1610C