

向量自回归模型(VAR)

与视频有微小区别, 但不影响视频学习

内容提要

- ·向量自回归(VAR)模型介绍
- 向量自回归模型的数学表达式
- 向量自回归模型的建模过程
- 向量自回归模型案例分析

完整课程请长按

向量自回归模型介绍

一般回归模型是事先明确被解释变量(如yt)和解

释变量(yx)。比如

一阶自回归模型

$$y_t = a_0 + a_1 y_{t-1} + \varepsilon_t$$

一元线性回归模型

$$y_t = b_0 + b_1 x_t + \varepsilon_t$$

自回归分布滞后模型 $y_t = a_0 + a_1 y_{t-1} + b_1 x_t + \varepsilon_t$

显然,上述模型均为单方程模型,且事先设定好解释 和被解释变量、以及它们之间的关系。

向量自回归模型介绍

若事先不能确定被解释变量和解释变量,很难确定模型形式的问题, 西姆斯(SIMS)于1980年提出了VAR(vector autoregression model)模型.

VAR模型不以经济理论为基础建立模型,而是在模型的每个方程中,被解释变量 y_t 对其滞后项 $y_{t-i}(i=1,2,\cdots)$ 进行回归,从而估计出 y_t 的动态关系,从而揭示出内生变量的变化受其自身的过去行为的影响.

向量自回归模型的数学表达式

二元VAR(p)模型是最简单的VAR模型,若p=1,

则二元VAR(1)模型形式为:

$$y_{1t} = a_{10} + a_{11}y_{1,t-1} + a_{12}y_{2,t-1} + \varepsilon_{1t}$$

$$y_{2t} = a_{20} + a_{21}y_{1,t-1} + a_{22}y_{2,t-1} + \varepsilon_{2t}$$

两个变量,滞后 一期的回归模型

当期被解释变量 滞后被解释变量

误差项

矩阵形式:
$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} a_{10} \\ a_{20} \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

$$\mathbf{y}_t = \mathbf{A}_0 + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{\varepsilon}_t$$

向量自回归模型的数学表达式

将VAR(1)模型扩展到VAR(p), 其矩阵形式:

$$\mathbf{y}_t = \mathbf{A}_0 + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{\varepsilon}_t$$

考虑包含解释变量的VAR(p)模型, 其矩阵形式:

$$\mathbf{y}_t = \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{B} \mathbf{x}_t + \mathbf{\varepsilon}_t$$

其中 y_i是k维内生变量, x_i是d维含常数的外生变量向量

$$\mathbf{A}_{i} = \begin{pmatrix} a_{11}^{(i)} & a_{12}^{(i)} & \cdots & a_{1k}^{(i)} \\ a_{21}^{(i)} & a_{22}^{(i)} & \cdots & a_{2k}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1}^{(i)} & a_{k2}^{(i)} & \cdots & a_{kk}^{(i)} \end{pmatrix} i = 1, 2 \cdots, p \qquad \mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1d} \\ b_{21} & b_{22} & \cdots & b_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{kd} \end{pmatrix}$$

向量自回归模型的数学表达式

VAR模型的特点:

- ●主要通过实际经济数据而非经济理论来确定经济系统的 动态结构;
- ●在建模过程中只需明确两个量:
 - 1.是所含自变量的个数k
 - 2.是自回归的最大滞后阶数p
- ●VAR模型需要大样本数据,一般n >50
- ●建立VAR模型的目的: 预测 、研究变量间的动态结构分析

向量自回归模型建模流程图

完整课程请长按下方二维码

向量自回归模型建模过程

一、变量平稳性检验

数据
$$\{x_t\}$$
 $\{x_t\}$ $\{x_t\}$ $\{x_t\}$ $\{x_t\}$

$$E(x_t) = \mu_t, \quad Var(x_t) < \infty$$

 $cov(x_t, x_s) = \gamma_{t-s}$

非平稳

平稳

常见的ADF检验。检验模型有三种,分别为:

(1)
$$\Delta y_t = \gamma y_{t-1} + \sum_{i=1}^p \Delta y_{t-i} + \varepsilon_i$$
--没有漂移项和时间趋势

(2)
$$\Delta y_t = a + \gamma y_{t-1} + \sum_{i=1}^p \beta_i \Delta y_{t-i} + \varepsilon_i$$
--有漂移项但没有时间趋势

(3)
$$\Delta y_t = a + \delta t + \gamma y_{t-1} + \sum_{i=1}^p \beta_i \Delta y_{t-i} + \varepsilon_i$$
--有漂移项和时间趋势

	Augmented Dickey-Fuller Unit Root Tests								
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F		
(1) Zero Mean	0	-164.793	0.0001	-9.37	<.0001				
	1	-150.214	0.0001	-8.61	<.0001				
(2) Single Mean	0	-455.904	0.0001	-17.24	<.0001	148.58	0.0010		
	1	-594.464	0.0001	-17.15	<.0001	147.04	0.0010		
(3) Trend	0	-456.223	0.0001	-17.23	<.0001	148.50	0.0010		
	1	-595.050	0.0001	-17.14	<.0001	146.97	0.0010		

表中Tau的P值 <0.05, 说明三种检 验模型下变量均平 稳。否则非平稳。

理程请长按下方二维

向量自回归模型建模过程

二、协整关系检验

协整关系: 简单的说就是变量自身非平稳,但其线性组合却是平稳的,这种组合反映了变量之间长期稳定的比

例关系。

变量x和y均为非平稳序列,但变化趋势相似, 且y-x是平稳的,因此x和y具有协整关系。

向量自回归模型建模过程

二、协整关系检验

常见的有两种检验方法:

(1) 特征根迹(trace)检验

(2) 最大特征值(max)检验

			表	特征根迹检验结果		
		Со	integration	Rank Test Using T	race	
H0: Rank=r	H1: Rank≥r	Eigenvalue	Trace	5% Critical Value	Drift in ECM	Drift in Process
0	0	0.1937	36.1683	29.38	Constant	Linear
1	1	0.0851	11.8399	15.34		
2	2	0.0157	1.7908	3, 84		

当r=0时, trace=36.1683>29.38;而r=1时trace=11.8399<15.34, 说明变量间存在协整关系,个数是一个。

向量自回归模型建模过程

三、VAR(p)模型最优滞后阶数的确定

一般采用AIC、SBC等信息准则采用多种方法进行综合判

断。

AIC信息准则

$$AIC = \log\left[\frac{1}{n}\sum_{t=1}^{n}\hat{\varepsilon}_{t}^{2}\right] + \frac{2p}{n}$$

SBC信息准则

$$SBC = \log \left[\frac{1}{n} \sum_{t=1}^{n} \hat{\varepsilon}_{t}^{2} \right] + \frac{p}{n} \log n$$

判别标准:在p的取值范围 内,选择使AIC、SBS最小 的p值为最优

p=2为最优

Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2	22.98003 175.5519 195.7592 199.9654	NA 276.0825 33.67880*	7.75E-05 8.34E-08 4.93E-08*	-0.951430 -7.788187 -8.321867*	-0.827311 -7.291710 -7.453032*	-0.905935 -7.606208 -8.003404*

向量自回归模型建模过程

四、估计VAR模型的参数

VAR模型可采用最小二乘或极大似然法进行估计。

五、VAR模型的检验

(1) 模型稳定性检验

$$\mathbf{y}_t = \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{B} \mathbf{x}_t + \mathbf{\varepsilon}_t$$

模型稳定的充要条件为:

$$|\Phi(L) - \lambda E| = 0$$
 的根都在单位圆内。

(2) 残差检验,同多元回归,不赘述

VAR模型是稳定的

2010年上海世博会是首次在中国举办的世界博览会。从1851 年伦敦开始, 世博会正日益成为各国人民交流历史文化、展示科 技成果、体现合作精神、展望未来发展的重要舞台。以1990-2008年的可能受世博会影响的我国8个指标数据定量分析2010年 上海世博会的影响力。数据见下表

x₁—GDP总量,

 x_6 —城镇就业人数,

 x_2 —出口贸易额, x_7 —市场化程度,

 x_3 —城镇投资总量,

 x_{s} —城镇水平,

 x_4 —国外游客人数,

 x_5 —利率。

案例分析-数据

年	城镇就业人数	出口贸易额	城镇总投资额	国外游客
份	万人	亿元	亿元	万人
1990	17041	1510.2	6767.2	174.73
1991	17465	1700.6	8542.5	263.30
1992	17861	2026.6	10317.8	355.60
1993	18262	2577.4	12093.1	438.60
1994	18653	3496.2	13868.4	500.30
1995	19040	4283.0	15643.7	588.67
1996	19922	4838.9	17567.2	674.43
1997	20781	5160.3	19194.2	742.80
1998	21616	5425.1	22491.4	710.77
1999	22412	5854.0	23732.0	843.23
2000	23151	6280.0	26221.8	1016.04
2001	23940	6859.6	30001.2	1122.64
2002	24780	7702.8	35488.8	1343.95
2003	25639	8472.2	45811.7	1140.29
2004	26476	9421.6	59028.2	1693.25
2005	27331	10493.0	75095.1	2025.51
2006	28310	11759.5	93368.7	2221.03
2007	29350	13785.8	117464.5	2610.97
2008	30210	14306.9	148738.3	2432.53

案例分析-数据

年	利率	GDP总量	市场化程度	城镇化水平
份 -	%	亿元	万/人	%
1990	1.8	18667.82	699.75	22.01
1991	1.8	21781.50	812.96	22.79
1992	3.2	26923.48	938.29	23.43
1993	3.2	35333.92	1051.50	24.58
1994	3.2	48197.86	1357.10	25.72
1995	2.0	60793.73	1702.40	26.86
1996	1.7	71176.59	2024.20	27.89
1997	1.4	78973.04	2208.20	28.29
1998	1.4	84402.28	2336.70	28.42
1999	1.0	89677.05	2475.20	28.32
2000	1.0	99214.55	2694.70	28.44
2001	1.0	109655.17	2945.70	28.61
2002	0.7	120332.69	3184.90	28.72
2003	0.7	135822.76	3558.00	29.32
2004	0.7	159878.34	4163.00	30.72
2005	0.7	183217.40	5153.00	31.96
2006	0.7	211923.50	5828.00	33.35
2007	0.7	257305.60	6769.00	34.47
2008	0.7	300670.00	7983.00	35.63


```
data EXPO;
 input x1 x2 x3 x4 x5 x6 x7 x8@@;
cards;
```

18667.82 1510.2 6767.2 174.73 1.8 17041 699.75 22.01 21781.5 1700.6 8542.5 263.3 1.8 17465 812.96 22.79

26923.48 2026.6 10317.8 355.6 3.2 17861 938.29 23.43 35333.92 2577.4 12093.1 438.6 3.2 18262 1051.5 24.58 48197.86 3496.2 13868.4 500.3 3.2 18653 1357.1 25.72

run;

data LEXPO;

set EXPO;

y1=log(x1); y2=log(x2); ...y8=log(x8);

run;

输入数据, 数据名为EXPO

对x1∽x8取对数,以消 除趋势的变化和多重共 线性, 新数据名为 LEXPO

```
proc arima data=LEXPO;
 identify var=y1 stationarity=(adf=3);
 identify var=y8 stationarity=(adf=3);
run;
```

平稳性检验-ADF检验

adf=3表示检验模 型是滞后3阶

proc arima data=LEXPO;

identify var=y1(1) stationarity=(adf=3);

run;

一阶差分非平稳时,

做二阶差分

y1(1)表示y1的一 阶差分, y1(1,1)表 示y1的二阶差分

identify var=y1(1,1) stationarity=(adf=3);

run;

```
proc varmax data=LEXPO;
model y1-y8/minic=(type=aic p=2 q=0)
        print=(diagnose roots)
       cointtest=(johansen=(type=trace));
       output lead=5;
```

根据AIC信息最小准则, 在p=0,1时确定p的最 优值。并在最优p值的 条件下,估计VAR模

显示模型的特征根 其他检验, 判断模 型的稳定性和拟合 效果

协整检验

向前5步预测

案例分析-结果

y1的ADF检验结果

		Augmented	Dickey-Fulle	er Unit Roo	t Tests		
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	$Pr \succ F$
Zero Mean Single Mean Trend	0 1 2 3 0 1 2 3 0 1 2 3 3	0.2423 0.2250 0.1901 0.1687 -0.7031 -1.2466 -0.7542 -0.2903 -3.3435 -17.5570 -20.0156 -598.055	0.7269 0.7225 0.7120 0.7046 0.8974 0.8454 0.8914 0.9257 0.9025 0.0247 0.0057	8.78 1.03 1.87 1.84 -1.96 -1.28 -1.19 -0.39 -1.86 -5.85 -4.06	0.9999 0.9126 0.9800 0.9783 0.2994 0.6112 0.6513 0.8885 0.6348 0.0011 0.0287	55.62 1.59 2.88 1.76 3.19 17.66 8.97 16.03	0.0010 0.6823 0.3858 0.6442 0.5746 0.0010 0.0211 0.0010

y1的ADF检验p>0.05, 表明y1非平稳,同样y1 的一阶差分也非平稳, 二阶差分ADF检验 p<0.05,说明二阶差分 后数据是平稳的

y1的二阶差分ADF检验结果

		Augmented	Dickey-Fulle	er Unit Roo	t Tests		
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0 1 2 3	-9.5906 -18.1390 -18.0905 -126.908	0.0185 0.0002 0.0002 0.0001	-2.63 -3.03 -2.33 -2.57	0.0119 0.0050 0.0231 0.0142		
Single Mean	0 1 2 3	-9.5001 -18.2343 -19.4117 -151.182	0.0911 0.0013 0.0005 0.0001	-2.53 -2.98 -2.40 -2.42	0.1281 0.0598 0.1585 0.1559	3.36 4.64 3.08 2.99	0.2761 0.0754 0.3398 0.3611
Trend	0 1 2 3	-9.6839 -17.9310 -25.6536 63.9533	0.3247 0.0143 <.0001 0.9999	-2.49 -3.09 -3.36 -2.61	0.3278 0.1437 0.0965 0.2828	3.12 4.86 5.96 4.06	0.5877 0.2826 0.0980 0.4239

y1的ADF检验p>0.05, 表明y1 非平稳,同样y1的一阶差分也 非平稳,二阶差分ADF检验 p<0.05,说明二阶差分后数据 是平稳的

案例分析-结果

协整检验结果

H0: Rank=r	H1: Rank>r	Eigenvalue	Trace	5% Critical Value	Drift in ECM
0	0	0.9992	416.3833	165.73	Constant
1	1	0.9978	286.8857	132.00	
2	2	0.9523	176.6834	101.84	
3	3	0.9234	121.9210	75.74	
4	4	0.8647	75.6866	53.42	
5	5	0.6280	39.6834	34.80	
6	6	0.5110	21.8860	19.99	
7	7	0.3938	9.0095	9.13	

说明对数序列中存 在7个协整关系,表 明变量可做VAR模 型

Drift

Process

Constar

AIC结果

Minimum Information Criterion Based on AIC Lag MA 0 AR 0 -30.31012 AR 1 -59.74563 显然一阶自回归的AIC值比0阶的小, 因此,接下来建立 VAR(1)模型

完整课程请长按下方二维码

案例分析-结果

Model Parameter Estimates

Equation	Parameter	Estimate	Standard Error	t Value	Pr > [t]	Variable
у1	CONST1	-3.99348	7.38141	-0.54	0.6016	1
	AR1_1_1	-0.08763	0.82807	-0.11	0.9180	y1(t-1)
	AR1_1_2	1.10830	0.72427	1.53	0.1603	y2(t-1)
	AR1_1_3	0.27614	0.10578	2.61	0.0282	y3(t-1)
	AR1_1_4	0.13911	0.06554	2.12	0.0628	y4(t-1)
	AR1_1_5	0.09173	0.05507	1.67	0.1301	y5(t-1)
	AR1_1_6	0.52563	0.79879	0.66	0.5270	y6(t-1)
	AR1_1_7	-0.54880	0.27318	-2.01	0.0755	y7(t-1)
0	AR1_1_8	0.65071	1.11970 11.62472	0.58 -0.30	0.5754	y8(t-1)
у2	CONST2 AR1_2_1	-3.47673 -0.00977	1.30410	-0.30 -0.01	0.7717 0.9942	v1(t-1)
	AR1_2_1 AR1_2_2	1.11021	1.14063	0.97	0.3558	y2(t-1)
	AR1_2_3	0.15182	0.16659	0.91	0.3859	y3(t-1)
	AR1_2_4	0.16648	0.10331	1.61	0.1412	y4(t-1)
	AR1_2_5	0.10450	0.08673	1.20	0.2590	v5(t-1)
	AR1 2 6	0.50688	1.25799	0.40	0.6964	y6(t-1)
	AR1_2_7	-0.51543	0.43021	-1.20	0.2615	ý7(t-1)
	AR1_2_8	-0.29944	1.76338	-0.17	0.8689	y8(t-1)
у3	CONST3	6.87254	11.97341	0.57	0.5800	1
,,,	AR1_3_1	-0.46678	1.34321	-0.35	0.7362	ý1(t-1)
	AR1_3_2	0.50356	1.17484	0.43	0.6783	y2(t-1)
	AR1_3_3	1.29580	0.17158	7.55	0.0001	v3(t-1)
	AR1_3_4	0.03742	0.10631	0.35	0.7330	y4(t-1)
	AR1 <u>_</u> 3_5	-0.10512	0.08933	-1.18	0.2695	y5(t-1)
	AR1_3_6	-0.48836	1.29572	-0.38	0.7150	y6(t-1)
	AR1_3_7	-0.07985	0.44312	-0.18	0.8610	y7(t-1)
	AR1_3_8	-1.04297	1.81627	-0.57	0.5799	y8(t-1)
у4	CONST4	24.47723	35.98495	0.68	0.5135	1
	AR1_4_1	3.65815	4.03690	0.91	0.3885	y1(t-1)
	AR1_4_2	-2.84625	3.53087	-0.81	0.4410	y2(t-1)
	AR1_4_3	0.62222	0.51567	1.21	0.2583	y3(t-1)
	AR1_4_4	0.01752	0.31950	0.05	0.9575	y4(t-1)
	AR1_4_5	0.05241	0.26848	0.20	0.8496	y5(t-1)
	AR1_4_6	-2.24736	3.89417	-0.58	0.5780	y6(t-1)
	AR1_4_7	0.77411	1.33175	0.58	0.5753	y7(t-1)
-	AR1_4_8	-7.36428	5.45863	-1.35	0.2103	y8(t-1)

VAR(1)模型 参数估计结果, 比较多,这里 截取一部分

案例分析-结果

 $/\ln x_1 (-1)^n$

 $\ln x_2 (-1)$

 $\ln x_3 (-1)$

 $\ln x_4 (-1)$

 $\ln x_5 (-1)$

 $\ln x_6 (-1)$

 $\ln x_7 (-1)$

 $\ln x_8 (-1)$

Model Parameter Estimates

	Model Parameter Estimates							
Equation	Parameter	Estimate	Standard Error	t Value	Pr > [t]	Variable		
у1	CONST1 AR1_1_1 AR1_1_2 AR1_1_3 AR1_1_4 AR1_1_5 AR1_1_6 AR1_1_6 AR1_1_7 AR1_1_8	-3.99348 -0.08763 1.10830 0.27614 0.13911 0.09173 0.52563 -0.54880 0.65071	7.38141 0.82807 0.72427 0.10578 0.06554 0.05507 0.79879 0.27318 1.11970	-0.54 -0.11 1.53 2.61 2.12 1.67 0.66 -2.01	0.6016 0.9180 0.1603 0.0282 0.0628 0.1301 0.5270 0.0755 0.5754	1 y1(t-1) y2(t-1) y3(t-1) y4(t-1) y5(t-1) y6(t-1) y7(t-1) y8(t-1)		
у2	CONST2 AR1_2_1 AR1_2_2 AR1_2_3 AR1_2_4 AR1_2_5 AR1_2_6 AR1_2_7 AR1_2_7	-3.47673 -0.00977 1.11021 0.15182 0.16648 0.10450 0.50688 -0.51543 -0.29944	11.62472 1.30410 1.14063 0.16659 0.10321 0.08673 1.25799 0.43021 1.76338	-0.30 -0.01 0.97 0.91 1.61 1.20 0.40 -1.20	0.7717 0.9942 0.3558 0.3859 0.1412 0.2590 0.6964 0.2615 0.8689	y1(t-1) y2(t-1) y2(t-1) y3(t-1) y4(t-1) y5(t-1) y6(t-1) y7(t-1) y8(t-1)		

VAR(1)的数学模型为

$$\begin{pmatrix} \ln x_1 \\ \ln x_2 \\ \ln x_3 \\ \ln x_4 \\ \ln x_5 \\ \ln x_6 \\ \ln x_7 \\ \ln x_8 \end{pmatrix} = \begin{pmatrix} -3.99348 \\ -3.47673 \\ 6.87254 \\ 24.47723 \\ 46.27416 \\ 3.20423 \\ 6.86491 \\ 6.26436 \end{pmatrix} + \begin{pmatrix} -0.08763 & 1.1083 & 0.27614 & 0.13911 & 0.09173 & 0.52563 & -0.5488 & 0.65071 \\ -0.00977 & 1.11021 & 0.15182 & 0.6648 & 0.1045 & 0.50688 & -0.51543 & -0.29944 \\ -0.46678 & 0.50356 & 1.2958 & 0.03742 & -0.10512 & -0.48836 & -0.07985 & -1.04297 \\ 3.65815 & -2.844625 & 0.6222 & 0.01752 & 0.05241 & -2.24736 & 0.77411 & -7.36428 \\ 2.77865 & -3.3204 & 0.99786 & 0.99428 & -0.16516 & -5.69042 & -2.02655 & 2.04889 \\ 0.14816 & -0.13692 & 0.01014 & -0.00113 & -0.01839 & 0.65068 & 0.08616 & -0.28134 \\ 0.48062 & 0.27612 & 0.57303 & 0.02361 & -0.10867 & -1.03287 & -0.38518 & 0.17485 \\ 0.02525 & 0.07046 & 007592 & -0.01255 & -0.00257 & -0.60842 & 0.01213 & 0.14776 \end{pmatrix}$$

案例分析-结果

稳定性检验

VAR(1)模型的所有特征值都在单位圆内,所以模型是稳定的。

单方程显著性检验

The VARMAX Procedure

Univariate Model ANOVA Diagnostics

Variable	R-Square	Standard Deviation	F Value	Pr > F
y1	0.9995	0.02269	2277.70	<.0001
y2	0.9983	0.03573	642.61	<.0001
y3	0.9990	0.03680	1145.63	<.0001
y4	0.9860	0.11061	79.01	<.0001
y5	0.9726	0.13063	39.98	<.0001
y6	0.9998	0.00344	5821.84	<.0001
y7	0.9994	0.02271	1836.92	<.0001
y8	0.9987	0.00598	890.08	<.0001

伴随概率 P<0.0001,说明8 个方程均显著。

完整课程请长按下方二维码

案例分析-结果

						
			Standard			
Variable	Obs	Forecast	Error	95% Confiden	nce Limits	
у1	20	12.66326	0.02269	12.61879	12.70773	
	21 22	12.82020 12.97730	0.05583 0.07199	12.71077 12.83620	12.92963 13.11839	
	23	13.13766	0.07133	12.97943	13.29589	
	24	13.28811	0.08414	13.12319	13.45302	
у2	20 21	9.61981 9.73849	0.03573 0.06542	9.54977 9.61028	9.69	
	22	9.87995	0.08367	9.71595	10. VA	R(1)模型的
	23	10.01781	0.09344	9.83466	10.	
v3	24 20	10.14368 12.08295	0.09720 0.03680	9.95318 12.01082	10. 12. 8 1	`变量的5个
yo	21	12.25110	0.06028	12.13296	12.	文主日ルー
	22	12.39615	0.08066	12.23807	12. 系而;	则值
	23 24	12.56918 12.72999	0.09543 0.10493	12.38213 12.52432		V.) I D
y4	20	8.37238	0.10433	8.15558	12.93 8.589	
-	21	8.21628	0.13796	7.94589	8/	
y4	22	8.48172	0.14616	8.19525	6819	
y4	23	8.57823	0.14768	8.28878 /	8.86769	
y5	24 20	8.75365 -0.33951	0.14937 0.13063	8.46089 -0.5955	9.04642 -0.08347	
	21 22	-0.09402 -0.35331	0.15902 0.19748	-0.40 -0.40	0.21765 0.03375	
	23	-0.28579	0.21349	0424	0.13265	
v6	24 20	-0.49149 10.36263	0.23838 0.00344	0.95871 10.35589	-0.02427 10.36937	
,,	21	10.39426	0.00527	10.38393	10.40458	
	22 23	10.42169 10.45266	0.00660	10.40859 10.43647	10.43479 10.46886	
у7	24 20	10.48486 9.12593	0.0963 0.02271	10.46598 9.08142	10.50373 9.17045	
y 1	21	9.17972	0.03233	9.11636	9.24307	
	22 23	9.30185 9.46311	0.05235 0.06224	9.19926 9.34112	9.40445 9.58509	
y8	24 20	9∰58267 3.61581	0.06588 0.00598	9.45356 3.60408	9.71179 3.62753	
yo	21	3.62343	0.00930	3.60521	3.64165	
	22 L 23	3.64920 3.67458	0.01436 0.01715	3.62105 3.64097	3.67735 3.70820	
	24	3.70426	0.01873	3.66756	3.74096	

Forecasts