ВЕСЕЛОВ Антон Игоревич

ОБРАБОТКА ВИДЕОИНФОРМАЦИИ В СИСТЕМАХ СЖАТИЯ, ОСНОВАННЫХ НА ПРИНЦИПАХ КОДИРОВАНИЯ ЗАВИСИМЫХ ИСТОЧНИКОВ

Специальность 05.12.13 – Системы, сети и устройства телекоммуникаций

Научный руководитель: д-р. техн. наук, доцент

Тюрликов Андрей Михайлович

Актуальность работы

Кодирование зависимых источников в задаче сжатия видеоинформации

Совместное кодирование и декодирование:

- общепринятый подход;
- стандарты MPEG-х и H.26х;
- высокая сложность кодера.

Кодирование с дополнительной информацией на декодере:

- снижение сложности обработки на передатчике видео;
- в теории отсутствие проигрыша по сравнению с совместным кодированием и декодированием;
- на практике наблюдается проигрыш по степени сжатия в сравнении с существующими стандартными кодеками.

Цель, объект и предмет исследования

- **Цель работы:** повышение степени сжатия без ухудшения качества восстановления видеоданных в кодеках, основанных на принципах кодирования зависимых источников с дополнительной информацией на декодере, за счет усовершенствования существующих и разработки новых способов обработки данных на стороне декодера.
- Объектом исследования является система сжатия видеоданных, основанная на принципах кодирования зависимых источников с дополнительной информацией на декодере.
- Предмет исследования составляет процесс восстановления промежуточных кадров на стороне декодера.

Кодирование зависимых источников с дополнительной информацией на декодере

- (1) A. Wyner and J. Ziv, "The Rate-Distortion Function for Source Coding with Side Information at the Decoder", *IEEE Transactions on Information Theory*, vol. IT-22, no. 1, pp. 1-10, January 1976
- (2) D. Slepian and K. Wolf, "Noiseless Coding of Correlated Information Sources", *IEEE Transactions on Information Theory*, vol. IT-19, no. 1, pp. 471-480, July 1973

Применение распределенного кодирования для сжатия видео

Ошибка межкадрового предсказания (correlation noise):

$$n = x - y$$
.

Задачи диссертационной работы

- 1. Исследовать типовые методы сжатия видеоданных, основанные на принципах распределенного кодирования источников.
- 2. Исследовать способы формирования дополнительной информации на стороне декодера.
- 3. Предложить новый алгоритм генерации дополнительной информации, учитывающий особенности входных данных.
- 4. Исследовать статистические характеристики ошибок межкадрового предсказания, возникающих при генерации дополнительной информации.
- 5. Разработать модель ошибок предсказания промежуточных кадров на стороне декодера.
- 6. Предложить алгоритм оценки параметров ошибок межкадрового предсказания.

Структура диссертационной работы

Раздел 1	 Основные определения и обозначения. Модель системы распределенного кодирования. Основные факторы, влияющие на степень сжатия в системе распределенного кодирования. 	
Раздел 2	 Модель истинного движения объектов в видеопоследовательности. Анализ базового алгоритма генерации дополнительной информации. Описание разработанного алгоритма генерации дополнительной информации. 	
Раздел 3	 Анализ базового алгоритма оценки параметров ошибок межкадрового предсказания. Модель виртуального канала. Описание разработанного алгоритма оценки параметров ошибок межкадрового предсказания. 	
Раздел 4	 Сравнительный анализ разработанных алгоритмов. Метод сравнения алгоритмов генерации дополнительной информации. 	7

Классификация методов распределенного кодирования источников видеоинформации

Основные модули базовой модели DISCOVER

Разработка алгоритма межкадрового предсказания

37.35

27,66

36,89

25.13

HALL

SOCCER

наложение статичных

регионов

конец

Модель кодека для сравнения алгоритмов межкадрового предсказания

Результаты сравнения алгоритмов межкадрового предсказания

1500

Ошибки межкадрового предсказания в распределенном кодировании

Базовый алгоритм оценки параметров ошибок межкадрового предсказания

 $n_i^{(b)}$ — реализация случайной величины $N_i^{(b)} {\sim} \mathrm{Lap}({lpha_i}^{(b)}$, 0)

Оценка масштаба:

$$lpha_i^{(b)} = egin{cases} \sqrt{rac{2}{\sigma_b^2}}, \text{если } \left(d_i^{(b)}
ight)^2 \leq \sigma_b^2 & \frac{10}{15} \\ \hline \frac{2}{\left(d_i^{(b)}
ight)^2}, \text{иначе} & \frac{30}{35} \\ \hline \end{pmatrix}$$

Не учитывается в алгоритме

Идея модифицированного алгоритма.

- 1. Разбить множество ошибок в полосе на подмножества.
- 2. Проанализировать каждое подмножество независимо.

14

Модифицированный алгоритм оценки параметров ошибок межкадрового предсказания

Сравнение алгоритмов оценки параметров ошибок межкадрового предсказания

Сравнение алгоритмов анализа ошибок межкадрового предсказания (реальные значения ошибок)

Модель ошибок межкадрового предсказания

- Определение 1. Будем называть множество случайных величин $N^{(b)} = \{N_1^{(b)}, N_2^{(b)}, ..., N_m^{(b)}\}$ полем ошибок.
- Определение 2. Будем называть множество случайных величин $\mathbf{A}^{(b)} = \{A_1^{(b)}, A_2^{(b)}, \dots, A_m^{(b)}\}$, где $\mathbf{A}_j^{(b)} \in \{1,2,\dots,k^{(b)}\}$, полем распределений.

Допущение. $A^{(b)}$ — *Марковское случайное поле.*

$$\boldsymbol{\alpha}^{(b)^*} = \arg \max_{\boldsymbol{\alpha} \in \{1,2,\dots,k^{(b)}\}^m} p(\boldsymbol{\alpha}) \prod_{i=1}^m p\left(\hat{n}_i^{(b)} \middle| \alpha_i\right)$$

Результаты сравнения с аналогами

Внедрение результатов

- В учебном процессе кафедры инфокоммуникационных информационных систем ГУАП
 - Курс «Мультимедиа технологии»
 - Курс «Цифровая обработка изображений»
- ЗАО «Интел A/O» в проекте «Разработка цепочки фильтров постобработки видеоданных»
 - Алгоритм поиска истинного движения в видеопоследовательностях
 - Алгоритм определения статичных регионов в видеопоследовательностях
 - Иерархический алгоритм временной интерполяции кадров

Положения, выносимые на защиту

- 1. Алгоритм межкадрового предсказания для кодеков видеоинформации, основанных на принципах кодирования зависимых источников с дополнительной информацией на декодере, позволяющий уменьшить по сравнению с существующими алгоритмами число ошибок предсказания за счет использования временной интерполяции с учетом истинного движения объектов.
- 2. Модель кодека без обратной связи, позволяющая производить сравнение алгоритмов межкадрового предсказания в системах кодирования зависимых источников видеоинформации с дополнительной информацией на декодере.
- 3. Модифицированный алгоритм оценки параметров ошибок межкадрового предсказания в спектральной области, который за счет учета неоднородности ошибок в полосе частот позволяет уменьшить битовые затраты на восстановление промежуточного кадра.
- 4. Модель ошибок межкадрового предсказания, основанная на Марковских случайных полях, которая позволяет учитывать пространственную зависимость между ошибками в полосе частот.

Критерий Бьёнтегаарда (BD-Rate)

1. Кривые «скорость-искажение» аппроксимируются полиномами третьей степени:

$$\log_2 R(D) = w_3 D^3 + w_2 D^2 + w_1 D + w_0$$

2. Разница между кривыми оценивается как

$$\Delta R = M \left[rac{R_2(D) - R_1(D)}{R_1(D)}
ight] pprox 10^{rac{1}{D_h - D_l} \int_{D_l}^{D_h} (\log_2 R_2(D) - \log_2 R_1(D)) dD}$$
, где $D_l = \max(\min(D_{1,1}, D_{1,2}, \ldots, D_{1,N}), \min(D_{2,1}, D_{2,2}, \ldots, D_{2,N})),$ $D_h = \min(\max(D_{1,1}, D_{1,2}, \ldots, D_{1,N}), \max(D_{2,1}, D_{2,2}, \ldots, D_{2,N})).$