Tableaux de données

Les propriétés thermodynamiques de diverses substances à 298,15 K

Les substances sont sous une pression de 101,325 kPa*. En ce qui concerne les solutions aqueuses, les solutés ont une activité de un (≈1 mol/L).

	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	$\Delta G_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	S° $(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$
Aluminium			
Al(s)	0	0	28,3
$Al^{3+}(aq)$	- 531	-485	-321,7
AlCl ₃ (s)	-705,6	-630,1	109,3
$Al_2Cl_6(g)$	-1291	-1221	490
AlF ₃ (s)	-1504	-1425	66,48
$Al_2O_3(\alpha, solide)$	-1676	-1582	50,92
$Al(OH)_3(s)$	-1276	_	_
$Al_2(SO_4)_3(s)$	- 3441	- 3100	239
Argent			
Ag(s)	0	0	42,55
$Ag^{+}(aq)$	105,6	77,11	72,68
AgBr(s)	-100.4	-96,90	107
AgCl(s)	- 127,1	-109.8	96,2
AgI(s)	-61.84	-66,19	115
AgNO ₃ (s)	-124,4	-33.5	140.9
$Ag_2O(s)$	-31,0	-11,2	121
$Ag_2SO_4(s)$	-715,9	- 618,5	200,4
Azote			
N(g)	472,7	455,6	153,2
$N_2(g)$	0	0	191,5
$NF_3(g)$	-124,7	-83,2	260,7
$NH_3(g)$	-46,11	-16,48	192,3
NH ₃ (aq)	-80,29	-26,57	111,3
NH_4^+ (aq)	-132,5	-79,31	113,4
$NH_4Br(s)$	-270,8	- 175	113,0
NH ₄ Cl(s)	-314,4	-203,0	94,56
$NH_4F(s)$	-464,0	-348,8	71,96
NH ₄ HCO ₃ (s)	-849,4	-666,1	121
$NH_4I(s)$	-201,4	- 113	117
$NH_4NO_3(s)$	-365,6	-184,0	151,1

^{*} L'UICPA a adopté la pression standard de 1 bar (10^5 Pa). Les valeurs données ici sont pour 101,325 kPa, mais elles ne diffèrent pas de façon significative de celles données pour 1 bar. Par exemple, pour $CO_2(g)$, les valeurs de $\Delta H_{\rm f}^{\circ}$ et de $\Delta G_{\rm f}^{\circ}$ sont les mêmes à 101,325 kPa et à 1 bar; la valeur de $S^{\circ}=213,6$ J·mol $^{-1}$ ·K $^{-1}$ à 101,325 kPa, et 213,8 J·mol $^{-1}$ ·K $^{-1}$ à 1 bar.

Substances inorgan	iques (suite)		
	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	$\Delta G_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	S° (J·mol ⁻¹ ·K ⁻¹)
NH ₄ NO ₃ (aq)	- 339,9	- 190,7	259,8
$(NH_4)_2SO_4(s)$	-1181	- 901,9	220,1
$N_2H_4(g)$	95,40	159,3	238,4
$N_2H_4(1)$	50,63	149,2	121,2
NO(g)	90,25	86,57	210,6
$N_2O(g)$	82,05	104,2	219,7
$NO_2(g)$	33,18	51,30	240,0
$N_2O_4(g)$	9,16	97,82	304,2
$N_2O_4(1)$	- 19,6	97,40	209,2
$N_2O_5(g)$	11,3	115,1	355,7 146,4
$NO_3^-(aq)$	- 205,0 82,17	- 108,7 82,4	273,5
NOBr(g) NOCl(g)	51,71	66,07	261,6
NOCI(g)	31,/1	00,07	201,0
Baryum			
Ba(s)	0	0	62,3
Ba ²⁺ (aq)	-537,6	-560,8	9,6
BaCO ₃ (s)	- 1216	- 1138	112
BaCl ₂ (s)	-858,1	-810,4	123,7
$BaF_2(s)$	-1209	- 1159	96,40
BaO(s)	- 548,1	- 520,4	72,09
Ba(OH) ₂ (s)	- 946,0	- 859,4	107
$Ba(OH)_2 \cdot 8H_2O(s)$	- 3342	- 2793	427
BaSO ₄ (s)	- 1473	- 1362	132
Béryllium			
Be(s)	0	0	9,54
$BeCl_2(s)$	-496,2	-449,5	75,81
$BeF_2(s)$	-1027	- 979,5	53,35
BeO(s)	-608,4	- 579,1	13,77
Bismuth			
Bi(s)	0	0	56,74
BiCl ₃ (s)	-379	-315	177
$Bi_2O_3(s)$	- 573,9	-493,7	151
Bore			
B(s)	0	0	5,86
BCl ₃ (l)	-427,2	-387	206
$BF_3(g)$	- 1137	-1120,3	254,0
$B_2H_6(g)$	36	86,6	232,0
$B_2O_3(s)$	- 1273	- 1194	53,97
Brome			
Br(g)	111,9	82,43	174,9
Br ⁻ (aq)	- 121,6	- 104,0	82,4
$Br_2(g)$	30,91	3,14	245,4
$Br_2(l)$	0	0	152,2
BrCl(g)	14,6	-0.96	240,0
$BrF_3(g)$	-255,6	-229,5	292,4
$BrF_3(l)$	- 300,8	- 240,6	178,2
Cadmium			
Cd(s)	0	0	51,76
Cu(s)		- 77,61	-73,2
Cd(s) Cd ²⁺ (aq)	-75,90	- //,61	- 73,2
	- 75,90 - 391,5	-77,01 $-344,0$	115,3

Substances inorganiq	ues (suite)		
	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	$\Delta G_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	S° (J·mol ⁻¹ ·K ⁻¹)
Calcium			
Ca(s)	0	0	41,4
$Ca^{2+}(aq)$	-542,8	- 553,6	- 53,1
CaBr ₂ (s)	-682,8	- 663,6	130
CaCO ₃ (s)	- 1207	- 1128	88,70
$CaCl_2(s)$	- 795,8 - 1220	- 748,1 - 1167	105
$CaF_2(s)$ $CaH_2(s)$	- 1220 - 186	- 1107 - 147	68,87 42
$Ca(NO_3)_2(s)$	- 938,4	-743,2	193
CaO(s)	- 635,1	-604,0	39,75
$Ca(OH)_2(s)$	- 986,1	- 898,6	83,39
$Ca_3(PO_4)_2(s)$	-4121	-3885°	236
CaSO ₄ (s)	- 1434	- 1322	106,7
Carbone (voir aussi le t	ableau des substa	nces organiques)	
C(g)	716,7	671,3	158,0
C (diamant)	1,90	2,90	2,38
C (graphite)	0	0	5,74
CCl ₄ (g)	- 102,9	- 60,63	309,7
CCl ₄ (l)	- 135,4 308,9	- 65,27	216,2
$C_2N_2(g)$ CO(g)	- 110,5	297,2 - 137,2	242,3 197,6
$CO_2(g)$	- 393,5	-394,4	213,6
CO_3^{2-} (aq)	- 677,1	- 527,8	- 56,9
$C_3O_2(g)$	- 93,72	- 109,8	276,4
$C_3O_2(1)$	-117,3	-105,0	181,1
COCl ₂ (g)	-220,9	-206,8	283,8
COS(g)	-138,4	- 165,6	231,5
$CS_2(l)$	89,70	65,27	151,3
Chlore			
Cl(g)	121,7	105,7	165,1
Cl ⁻ (aq)	-167,2	- 131,2	56,5
$Cl_2(g)$	0	0	223,0
ClF ₃ (g)	- 163,2	- 123,0	281,5
$ClO_2(g)$	102,5	120,5	256,7
$\text{Cl}_2\text{O}(g)$	80,33	97,49	267,9
Chrome	0		22.55
Cr(s)	0	1052	23,66
$Cr_2O_3(s)$	- 1135 - 881,2	- 1053 - 727,8	81,17 50,21
CrO ₄ ²⁻ (aq) Cr ₂ O ₇ ²⁻ (aq)	- 881,2 - 1490	- 727,8 - 1301	261,9
Cobalt			
Co(s)	0	0	30,0
CoO(s)	- 237,9	- 214,2	52,97
$Co(OH)_2$ (solide rose)	- 539,7	-214,2 $-454,4$	79
Cuivre			
Cu(s)	0	0	33,15
Cu(s) Cu ²⁺ (aq)	64,77	65,49	- 99,6
CuCO ₃ •Cu(OH) ₂ (s)	- 1051	- 893,7	186
$Cu_2O(s)$	- 168,6	- 146,0	93,14
CuO(s)	- 157,3	- 129,7	42,63
$Cu(OH)_2(s)$	-450,2	- 373	108
$CuSO_4 \cdot 5H_2O(s)$	-2279,6	-1880,1	300,4

Substances inorg	aniques (suite)		
Jubstances morg			
	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	$\Delta G_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	S° $(J \cdot \text{mol}^{-1} \cdot K^{-1})$
Étain			
Sn (blanc)	0	0	51,55
Sn (gris)	- 2,1	0,1	44,14
SnCl ₄ (l) SnO(s)	- 511,3 - 286	- 440,2 - 257	259 56,5
$SnO_2(s)$	- 580,7	- 519,7	52,3
Fer			
Fe(s)	0	0	27,28
$Fe^{2+}(aq)$	- 89,1	- 78, 9 0	- 137,7
Fe^{3+} (aq)	- 48,5	- 4,7	- 315,9
FeCO ₃ (s)	- 740,6 - 399,5	- 666,7 - 334,1	92,88 142,3
FeCl ₃ (s) FeO(s)	- 399,3 - 272	- 354,1 - 251,5	60,75
$Fe_2O_3(s)$	-824,2	-742,2	87,40
$Fe_3O_4(s)$	- 1118	- 1015	146
$Fe(OH)_3(s)$	- 823,0	-696,6	107
Fluor			
F(g)	78,99	61,92	158,7
$F^{-}(aq)$	- 332,6 0	- 278,8	-13,8
F ₂ (g)	U	0	202,7
Hélium			
He(g)	0	0	126,0
Hydrogène			
H(g)	218,0	203,3	114,6
$H^+(aq)$	0	0	0
H ₂ (g) HBr(g)	- 36,40	$0 \\ -53,43$	130,6 198,6
HCl(g)	- 92,31	- 95,30	186,8
HCl(aq)	- 167,2	- 131,3	56,48
HCN(g)	135	125	201,7
HF(g)	-271,1	-273,2	173,7
HI(g)	26,48	1,72	206,5
$HNO_3(1)$	- 173,2	- 79,91	155,6
HNO ₃ (aq)	- 207,4	-113,3	146,4
$H_2O(g)$ $H_2O(l)$	-241.8 -285.8	- 228,6 - 237,2	188,7 69,91
$H_2O_2(g)$	- 285,8 - 136,1	-257,2 $-105,5$	232,9
$H_2O_2(g)$ $H_2O_2(l)$	- 187,8	-120,4	110
$H_2S(g)$	-20,63	-33,56	205,7
$H_2SO_4(1)$	-814,0	-690,1	156,9
$H_2SO_4(aq)$	- 909,3	− 744,6	20,08
Iode			
I(g)	106,8	70,28	180,7
I - (aq)	- 55,19	- 51,57	111,3
$I_2(g)$	62,44	19,36	260,6
$I_2(s)$	0	0	116,1
IBr(g)	40,84	3,72 - 5,44	258,7 247,4
ICl(g) ICl(l)	17,78 - 23,89	- 3,44 - 13,60	135,1
Lithium			
Li(s)	0	0	29,12
Li ⁺ (aq)	- 278,5	- 293,3	13,4
LiCl(s)	- 408,6	- 384,4 561,10	59,33
Li ₂ O(s)	- 597,94	- 561,18	37,57
LiOH(s)	- 484,9 - 483,1	- 439,0 - 381,1	42,80 90,0
LiNO ₃ (s)	- 403,1	- 301,1	90,0

Substances inorga	niques (suite)		
	$\Delta H_{ m f}^{\circ}$	$\Delta G_{ m f}^{\circ}$	S°
	$(kJ \cdot mol^{-1})$	$(kJ \cdot mol^{-1})$	$(J \cdot mol^{-1} \cdot K^{-1})$
Magnésium			
Mg(s)	0	0	32,69
Mg ²⁺ (aq) MgCl ₂ (s)	- 466,9 - 641,3	- 454,8 - 591,8	- 138,1 89,62
$MgCO_3(s)$	- 1096	- 1012	65,7
$MgF_2(s)$	- 1124	- 1071	57,24
MgO(s)	-601,7	-569,4	26,94
$Mg(OH)_2(s)$	-924,7	-833,9	63,18
$MgSO_4(s)$	- 1285	- 1171	91,6
Manganèse			
Mn(s)	0	0	32,0
$Mn^{2+}(aq)$	- 220,8	- 228,1	- 73,6
$MnO_2(s)$ $MnO_4^-(aq)$	- 520 - 541,4	- 465,2 - 447,2	53,05 191,2
νπο ₄ (aq)	341,4	447,2	191,2
Mercure	61 22	31,85	174,9
Hg(g) Hg(l)	61,32 0	31,85 0	76,02
HgO(s)	- 90 . 83	- 58,56	70,29
	,	20,20	,
Oxygène O(g)	249,2	231,7	160,9
$O_2(g)$	0	0	205,0
$O_3(g)$	142,7	163,2	238,8
OH (aq)	-230,0	- 157,2	-10,75
$OF_2(g)$	24,5	41,8	247,3
Phosphore			
P (α blanc)	0	0	41,1
P (rouge)	- 17,6	- 12,1	22,8
$P_4(g)$	58,9	24,5	279,9
PCl ₃ (g)	- 287,0 - 319,7	- 267,8 - 272,3	311,7 217,1
PCl ₃ (l) PCl ₅ (g)	- 374,9	-305,0	364,5
$PCl_5(s)$	- 443,5		_
$PH_3(g)$	5,4	13,4	210,1
$P_4O_{10}(s)$	-2984	-2698	228,9
$PO_4^{3-}(aq)$	- 1277	- 1019	− 222
Plomb			
Pb(s)	0	0	64,81
$Pb^{2+}(aq)$	- 1,7	- 24,43	10,5
$PbI_2(s)$ $PbO_2(s)$	- 175,5 - 277	- 173,6 - 217,4	174,8 68,6
$PbSO_4(s)$	- 919,9	-217,4 $-813,2$	148,6
Potassium			
K(g)	89,24	60,63	160,2
K(1)	2,28	0,26	71,46
K(s)	0	0	64,18
K ⁺ (aq) KBr(s)	- 252,4 - 393,8	-283,3 $-380,7$	102,5 95,90
KCN(s)	- 393,8 - 113	- 380,7 - 101,9	95,90 128,5
KCl(s)	- 436,7	-409,2	82,59
KClO ₃ (s)	- 397,7	- 296,3	143
KClO ₄ (s)	-432,8	-303,2	151,0
KF(s)	- 567,3	- 537,8	66,57
KI(s)	- 327,9 - 494,6	- 324,9 - 394,9	106,3 133,1
VNO(2)			1331
KNO ₃ (s) KOH(s)	·	·	· ·
KNO ₃ (s) KOH(s) KOH(aq)	- 494,6 - 424,8 - 482,4	- 379,1 - 440,5	78,87 91,63

Substances inorgani	ques (suite)		
	$\begin{array}{c} \boldsymbol{\Delta H_{\mathbf{f}}^{\circ}} \\ (\mathbf{kJ \cdot mol}^{-1}) \end{array}$	$\Delta G_{\mathbf{f}}^{\circ}$ $(k\mathbf{J}\cdot\mathbf{mol}^{-1})$	S° (J·mol ⁻¹ ·K ⁻¹)
Silicium			
Si(s)	0	0	18,8
$SiH_4(g)$	34	56,9	204,5
$Si_2H_6(g)$	80,3	127	272,5
SiO ₂ (quartz)	- 910,9	- 856,7	41,84
Sodium			
Na(g)	107,3	76,78	153,6
Na(l)	2,41	0,50	57,86
Na(s)	0	0	51,21
Na ⁺ (aq)	- 240,1 142,0	- 261,9 104,0	59,0 230,1
Na ₂ (g) NaBr(s)	- 361,1	- 349,0	86,82
$Na_2CO_3(s)$	- 1131	- 1044	135,0
NaHCO ₃ (s)	- 950,8	- 851,0	102
NaCl(s)	-411,1	-384,0	72,13
NaCl(aq)	-407,3	-393,1	115,5
NaClO ₃ (s)	-365,8	-262,3	123
NaClO ₄ (s)	- 383,3	- 254,9	142,3
NaF(s)	- 573,7	- 543,5	51,46
NaH(s)	- 56,27 - 287,8	- 33,5 286.1	40,02 98,53
NaI(s) NaNO ₃ (s)	- 287,8 - 467,9	- 286,1 - 367,1	116,5
$NaNO_3(aq)$	- 447,4	- 373,2	205,4
$Na_2O_2(s)$	- 510,9	- 447,7	94,98
NaOH(s)	-425,6	-379,5	64,48
NaOH(aq)	-469,2	-419,2	48,1
$NaH_2PO_4(s)$	− 1537	-1386	127,5
$Na_2HPO_4(s)$	- 1748	- 1608	150,5
$Na_3PO_4(s)$	- 1917	- 1789	173,8
NaHSO ₄ (s)	- 1125	- 992,9 1270	113
$Na_2SO_4(s)$ $Na_2SO_4(aq)$	- 1387 - 1390	- 1270 - 1268	149,6 138,1
$Na_2SO_4(aq)$ $Na_2SO_4\cdot 10H_2O(s)$	- 4327	- 3647	592,0
$Na_2S_2O_3(s)$	- 1123	- 1028	155
C C			
Soufre S (orthorhombique)	0	0	31,8
$S_8(g)$	102,3	49,16	430,2
$S_2Cl_2(g)$	- 18,4	-31.8	331,5
$SF_6(g)$	- 1209	- 1105	291,7
$SO_2(g)$	-296,8	-300,2	248,1
$SO_3(g)$	-395,7	-371,1	256,6
SO_4^{2-} (aq)	-909,3	-744,5	20,1
$S_2O_3^{2-}(aq)$	- 648,5	- 522,5	67
$SO_2Cl_2(g)$ $SO_2Cl_2(l)$	- 364,0 - 394,1	- 320,0 - 314	311,8 207
302C12(1)	- 394,1	- 314	207
Titane			
Ti(s)	0	0	30,6
TiCl ₄ (g)	- 763,2	- 726,8	355 252.2
TiCl ₄ (1) TiO ₂ (s)	- 804,2 - 944,7	- 737,2 - 889,5	252,3 50,33
1102(8)	7 11, /	– 007,J	50,55
Uranium			
U(s)	0	0	50,21
$UF_6(g)$	- 2147 2107	- 2064 2060	378
$UF_6(s)$ $UO_2(s)$	- 2197 - 1085	- 2069 - 1032	228 77,03
	- 1003	- 1032	77,05

Substances inorganiques (suite)				
	$\Delta H_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	$\Delta G_{\mathbf{f}}^{\circ}$ (kJ·mol ⁻¹)	\mathbf{S}° $(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	
Zinc				
Zn(s)	0	0	41,6	
$Zn^{2+}(aq)$	- 153,9	-147,1	-112,1	
$ZnCl_2(s)$	-415,1	-369,4	111,5	
ZnO(s)	-348,3	-318,3	43,64	

Substances organ	niques			
Formule	Nom	$\Delta H_{\mathrm{f}}^{\circ}$ (kJ/mol)	$\Delta G_{\mathbf{f}}^{\circ}$ (kJ/mol)	S° (J/mol⋅K)
CH ₄ (g)	Méthane(g)	- 74,81	- 50,75	186,2
$C_2H_2(g)$	Acétylène(g)	226,7	209,2	200,8
$C_2H_4(g)$	Éthylène(g)	52,26	68,12	219,4
$C_2H_6(g)$	Éthane(g)	-84,68	-32,89	229,5
$C_3H_8(g)$	Propane(g)	-103,8	-23,56	270,2
$C_4H_{10}(g)$	Butane(g)	-125,7	-17,15	310,1
$C_6H_6(g)$	Benzène(g)	82,93	129,7	269,2
$C_6H_6(1)$	Benzène(l)	48,99	124,4	173,3
$C_6H_{12}(g)$	Cyclohexane(g)	-123,1	31,8	298,2
$C_6H_{12}(1)$	Cyclohexane(l)	-156,2	26,7	204,3
$C_{10}H_8(g)$	Naphthalène(g)	149	223,6	335,6
$C_{10}H_8(s)$	Naphthalène(s)	75,3	201,0	166,9
$CH_2O(g)$	Formaldéhyde(g)	-117,0	-110,0	218,7
CH ₃ OH(g)	Méthanol(g)	-200,7	-162,0	239,7
CH ₃ OH(1)	Méthanol(l)	-238,7	-166,4	126,8
CH ₃ CHO(g)	Acétaldéhyde(g)	-166,1	-133,4	246,4
CH ₃ CHO(1)	Acétaldéhyde(1)	-191,8	-128,3	160,4
$CH_3CH_2OH(g)$	Éthanol(g)	-234,4	-167,9	282,6
CH ₃ CH ₂ OH(1)	Éthanol(l)	-277,7	-174,9	160,7
$C_6H_5OH(s)$	Phénol(s)	-165,0	-50,42	144,0
$(CH_3)_2CO(g)$	Acétone(g)	-216,6	-153,1	294,9
$(CH_3)_2CO(1)$	Acétone(1)	-247,6	-155,7	200,4
CH ₃ COOH(g)	Acide acétique(g)	-432,3	-374,0	282,5
CH ₃ COOH(1)	Acide acétique(l)	-484,1	-389,9	159,8
CH ₃ COOH(aq)	Acide acétique(aq)	-488,3	-396,6	178,7
$C_6H_5COOH(s)$	Acide benzoïque(s)	-385,1	-245,3	167,6
$CH_3NH_2(g)$	Méthylamine(g)	-23,0	32,3	242,6
$C_6H_5NH_2(g)$	Aniline(g)	86,86	166,7	319,2
$C_6H_5NH_2(1)$	Aniline(l)	31,6	149,1	191,3
$C_6H_{12}O_6(s)$	Glucose(s)	-1273,3	-910,4	212,1

C.2 Les constantes d'équilibre

Constantes d'ionisation d'acides faibles à 25 °C Nom de l'acide Formule $K_{\rm a}$ $_{\mathbf{p}}K_{\mathbf{a}}$ 1.8×10^{-5} Acide acétique CH₃CO₂H 4,74 CH₂CHCO₂H 5.5×10^{-5} 4,26 Acide acrylique 6.0×10^{-3} 2,22 Acide arsénique H₃AsO₄ H₂AsO₄⁻ HAsO₄²⁻ 1.0×10^{-7} 7,00 $3,2 \times 10^{-12}$ 11,49 $6,6 \times 10^{-10}$ Acide arsénieux H₃AsO₃ 9,18 $6,3 \times 10^{-5}$ $C_6H_5CO_2H$ 4,20 Acide benzoïque 1.3×10^{-3} CH_2BrCO_2H 2,89 Acide bromoacétique

Constantes d'ionisation d'acides faibles à 25 °C

Acide butanoïque CH3CH2CH2CO2H 1.5 × 10 ⁻⁵ 4,82 Acide carbonique H2CO3 4.4 × 10 ⁻⁷ 6.36 HCO3 4.7 × 10 ⁻¹¹ 10.33 Acide chioreax HCIO2 1,1 × 10 ⁻² 1,96 Acide chioreacétique CH,CICO3H 1,4 × 10 ⁻³ 2,88 Acide citrique HO,CCH2COH(CO3H)CH2CO3 1,7 × 10 ⁻⁵ 4,77 HO3 CCH2COH(CO3H)CH2CO3 1,7 × 10 ⁻⁵ 4,77 HO3 Acide cyanhydrique HCN 3,5 × 10 ⁻³ 3,46 Acide dichloroacétique HCN 3,5 × 10 ⁻³ 3,46 Acide dichloroacétique CHC1 ₂ CO ₂ H 5,5 × 10 ⁻² 1,26 Acide fluoroacétique CHC1 ₂ CO ₂ H 2,6 × 10 ⁻³ 2,59 Acide fluoroacétique HO2H 1,8 × 10 ⁻⁴ 3,74 Acide fluoroacétique HCO3 1,8 × 10 ⁻⁴ 3,74 Acide fluoroacétique HO3 1,8 × 10 ⁻⁴ 3,74 Acide hydrazoïque HN3 1,9 × 10 ⁻⁵ 4,72 Acide hydracoïque HOC1	Nom de l'acide	Formule	K_{a}	_P K _a
Acide carbonique H,CO ₃	Acide butanoïque	CH ₃ CH ₂ CH ₂ CO ₂ H	$1,5 \times 10^{-5}$	4,82
HCO ₂				6,36
Acide chloreux Acide chloreux Acide chloroacétique Acide citrique HO₂CCH₂COH(CO₃H)CH₂CO₃H Acide citrique HO₃CCH₃COH(CO₃H)CH₂CO₃H Acide citrique HO₃CCH₃COH(CO₃H)CH₂CO₃H Acide cyanhydrique Acide cyanhydrique Acide dichloroacétique Acide dichloroacétique Acide dichloroacétique Acide fluorhydrique HF Acide fluoroacétique Acide hydrazoique HOS Acide hypointreux HOCl 2,9 × 10 ⁻⁸ 8,60 Acide hypointreux HON=NOH Acide iodique HO3 Acide iodique HO3 Acide malonique HO3 Acide phénylacétique HO3 Acide phénylacétique Acide phénylacétique Acide phosphorique HpQ₂CC1,CQ₂H Acide phosphorique Acide phosphorique HpQ₂ Acide phosphorique HpQ₂ Acide phosphorique Acide propanoïque Acide sélénique Acide sélénique HpQ₃ Acide sélénique HpSo₃ Acide selénique HpSo₃ Acide sulfhydrique HpSo₃ Acide sulfhydrique HpSo₃ Acide sulfhydrique HpSo₃ Acide sulfureux HpSo₃ Acide sulfurque HpSo₃ Acide sulfurque HpSo₄ Acide sulfurqu	•	HCO ₃ -	4.7×10^{-11}	10,33
Acide chloroacétique Acide citrique HO ₂ CCH ₂ COH(CO ₂ H)CH ₂ CO ₂ T HO ₃ CCH ₂ COH(CO ₂ H)CH ₂ CO ₂ HO ₃ CCH ₂ COH(CO ₂ H)CH ₂ CO ₂ HO ₃ CCH ₂ COH(CO ₂ H)CH ₂ CO ₂ HO ₃ CCH ₂ COH(CO ₂ H)CH ₂ CO ₂ Acide cyanhydrique Acide cyanhydrique HCN Acide dichloroacétique Acide fluorohydrique Acide fluoroacétique Acide fluoroacétique Acide hydrazoïque HCO ₂ H Acide hypotromeux Acide hypotromeux HOBr Acide hypopioneux HOBR Acide hypopioneu	Acide chloreux			
Acide citrique	Acide chloroacétique			
HO_3CCH_2COH(CO_2H)CH_2CO_2^- 1,7 × 10^-5 4,77 HO_3CCH_3COH(CO_2) CH_2CO_2^- 4,0 × 10^-7 6,40 Acide cyanique HCN 3,5 × 10^-4 3,46 Acide dichloroacétique HOCN 3,5 × 10^-4 3,46 Acide fluoroacétique HOCN 3,5 × 10^-4 3,46 Acide fluoroacétique HF 6,6 × 10^-3 2,59 Acide fluoroacétique HCO_2H 1,8 × 10^-4 3,74 Acide hydrazoïque HN ₃ 1,9 × 10^-5 4,72 Acide hypobromeux HOBr 2,5 × 10^-9 8,60 Acide hypobromeux HOBr 2,5 × 10^-9 8,60 Acide hypoideux HOI 2,9 × 10^-8 7,54 Acide hypoideux HOI 2,3 × 10^-11 10,64 Acide hypointreux HON=NOH 8,9 × 10^-8 7,05 HON=NOT 4,10 × 10^-1 11,40 Acide iodique HIO ₃ 1,6 × 10^-1 0,80 Acide iodiacetique CH ₃ ICO ₂ H 1,5 × 10^-3 2,82 HO ₃ CCH ₂ CO ₂ F 2,0 × 10^-6 5,70 Acide malonique HO ₂ CCH ₂ CO ₂ H 5,3 × 10^-5 4,28 Acide phénylacétique H ₉ CCC ₂ H 5,3 × 10^-5 4,28 Acide phosphorique H ₉ PO ₄ 7,1 × 10^-3 2,15 H ₂ PO ₄ 4,2 × 10^-13 12,38 Acide propanoïque CH ₃ CO ₂ H 4,9 × 10^-5 4,31 Acide pyrophosphorique H ₃ PO ₃ 3,7 × 10^-2 1,43 H ₂ PO ₃ 4,4 × 10^-3 2,35 × 10^-5 4,28 Acide pyrophosphorique H ₃ PO ₃ 3,7 × 10^-2 1,43 H ₂ PO ₃ 4,4 × 10^-3 2,35 × 10^-5 H ₂ PO ₃ 5,6 × 10^-10 9,25 Acide séléniqua H ₃ SO ₃ 2,3 × 10^-3 2,64 HSeO ₃ 5,4 × 10^-9 8,27 Acide sélénique H ₃ SO ₃ 1,3 × 10^-6 5,64 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 7,00 HS 1,10 × 10^-7 1,00 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 1,00 HS Acide fort HSO ₄ 1,1 × 10^-7 1,00 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 1,00 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 1,00 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 1,00 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 1,00 Acide sulfurique H ₃ SO ₃ 1,3 × 10^-7 1,00 Acide sulfurique H ₃ SO ₄ 1,1 × 10^-7 1,00 Acide sulfurique				3,13
Acide cyanhydrique Acide cyanhydrique HON Acide de dichloroacétique Acide dichloroacétique Acide fluorhydrique Acide fluorhydrique Acide fluoroacétique Acide fluoroacétique Acide fluoroacétique Acide fluoroacétique Acide fluoroacétique Acide fluoroacétique BF Acide fluoroacétique HCO ₂ H Acide hydrazoïque Acide hydrazoïque HN3 Acide hypobromeux HOBr Acide hypochloreux HOBr Acide hypochloreux HOCl Acide hypochloreux HOCl Acide hypochloreux HOCl Acide hypointeux HON=NOH Acide iodique HIO3 Acide iodoacétique CH ₂ ICO ₂ H Acide malonique HO ₂ CCH ₂ CO ₂ H Acide malonique HO ₂ CCH ₂ CO ₂ H Acide malonique HO ₂ CCH ₂ CO ₂ H Acide phosphoreux HOCl Acide phénylacétique Acide phosphorique HO ₂ CCO ₂ H Acide phosphorique H ₃ PO ₃ Acide phosphorique H ₃ PO ₃ Acide phosphorique H ₃ PO ₃ Acide propanoïque Acide propanoïque CH ₃ CO ₂ H Acide phosphorique H ₃ PO ₃ Acide propanoïque Acide propanoïque Acide propanoïque H ₃ PO ₃ Acide propanoïque Acide propanoïque Acide propanoïque H ₃ PO ₃ Acide propanoïque Acide propanoïque Acide propanoïque H ₃ PO ₃ Acide propanoïque Acide propanoïque H ₃ PO ₃ Acide propanoïque Acide propanoïque Acide propanoïque H ₃ PO ₃ Acide propanoïque Acide propanoïque Acide propanoïque H ₃ PO ₃ Acide sélénique H ₃ PO ₃ Acide sélénique H ₃ SeO ₃ Acide sélénique H ₃ SeO ₄ Acide silfureux H ₃ SeO ₃ Acide silfureux H ₃ SeO ₃ Acide silfureux H ₃ SeO ₃ Acide soll fort H ₃ SeO ₃ Acide soll fort H ₃ SeO ₄ Acide sulfurique H ₃ SO ₃ Acide soll fort H ₃ SeO ₄ Acide sulfurique H ₃ SO ₃ Acide fort H ₃ SO ₄ Acide sulfurique H ₃ SO ₄ Ac	1			
Acide cyanhydrique HCN 6,2 × 10 ⁻¹⁰ 9,21 Acide dichoroacetique CHCl ₂ CO ₂ H 3,5 × 10 ⁻² 1,26 Acide fluorhydrique HF 6,6 × 10 ⁻⁴ 3,18 Acide fluoroacetique CH ₂ FCO ₂ H 2,6 × 10 ⁻³ 2,59 Acide formique HCO ₂ H 1,8 × 10 ⁻⁴ 3,74 Acide hydrazoïque HN3 1,9 × 10 ⁻⁵ 4,72 Acide hypobromeux HOBr 2,5 × 10 ⁻⁹ 8,60 Acide hypobromeux HOCl 2,9 × 10 ⁻⁸ 7,54 Acide hypointreux HOCl 2,9 × 10 ⁻⁸ 7,54 Acide hypointreux HOCl 2,9 × 10 ⁻⁸ 7,54 Acide hypointreux HON-NOH 8,9 × 10 ⁻⁸ 7,05 Acide hypointreux HON-NOH 8,9 × 10 ⁻⁸ 7,05 Acide iodique HIO3 1,6 × 10 ⁻¹ 0,80 Acide iodique HO3 1,6 × 10 ⁻¹ 1,40 Acide iodique HO,2CCQ-H 1,5 × 10 ⁻² 1,43 Acide mitreux HNO2 7,2 × 10 ⁻⁴ <t< td=""><td></td><td></td><td></td><td></td></t<>				
Acide dichloroacétique CHCl ₂ CO ₂ H 5,5 × 10 ⁻² 1,26 Acide dichloroacétique HF 6,6 × 10 ⁻³ 3,18 Acide fluoroacétique CHC ₂ FCO ₂ H 2,6 × 10 ⁻³ 2,59 Acide fluoroacétique HCO ₃ H 1,8 × 10 ⁻⁴ 3,74 Acide hydrazoïque HCO ₃ H 1,8 × 10 ⁻⁴ 3,74 Acide hydrazoïque HN ₃ 1,9 × 10 ⁻⁵ 4,72 Acide hypobromeux HOBr 2,5 × 10 ⁻⁹ 8,60 Acide hypochloreux HOCl 2,9 × 10 ⁻⁸ 7,54 Acide hypoiodeux HOI 2,3 × 10 ⁻¹¹ 10,64 Acide hypointreux HON=NOH 8,9 × 10 ⁻⁸ 7,05 HON=NO ⁻ 4,10 × 10 ⁻¹² 11,40 Acide iodique HIO ₃ 1,6 × 10 ⁻¹ 0,80 Acide iodoacétique CH ₂ ICO ₃ H 6,7 × 10 ⁻⁴ 3,17 Acide malonique HO ₂ CCH ₂ CO ₂ H 1,5 × 10 ⁻³ 2,82 HO ₂ CCH ₂ CO ₂ H 1,5 × 10 ⁻³ 2,82 HO ₂ CCH ₂ CO ₂ H 1,5 × 10 ⁻³ 3,282 Acide nitreux HNO ₂ 7,2 × 10 ⁻⁶ 5,70 Acide oxalique HO ₂ CCO ₂ H 5,4 × 10 ⁻² 1,27 HO ₂ CCO ₂ H 5,4 × 10 ⁻² 1,27 HO ₂ CCO ₂ H 4,9 × 10 ⁻⁵ 4,31 Acide phósphorique H ₃ PO ₄ 7,1 × 10 ⁻³ 2,15 H ₂ PO ₄ 6,3 × 10 ⁻⁵ 4,28 Acide phosphorique H ₃ PO ₄ 7,1 × 10 ⁻³ 2,15 H ₂ PO ₄ 6,3 × 10 ⁻⁵ 4,28 Acide propanoïque CH ₃ CO ₃ H 4,2 × 10 ⁻¹³ 12,38 Acide propanoïque H ₃ PO ₃ 3,7 × 10 ⁻² 1,43 H ₃ PO ₃ 3,7 × 10 ⁻² 1,43 H ₃ PO ₃ 3,7 × 10 ⁻² 1,43 H ₃ PO ₃ 3,7 × 10 ⁻² 1,52 H ₃ PO ₃ 3,7 × 10 ⁻² 1,52 Acide sélénhydrique H ₃ SeO ₃ 2,3 × 10 ⁻³ 2,64 Acide sélénieux H ₃ SeO ₃ 2,3 × 10 ⁻³ 2,64 Acide sélénique H ₃ SeO ₃ 2,3 × 10 ⁻³ 2,64 Acide sulfurique H ₂ SO ₃ 1,3 × 10 ⁻⁵ 7,00 HS 1,0 × 10 ⁻¹¹ 11,0 Acide sulfurique H ₂ SO ₃ 1,3 × 10 ⁻⁷ 7,00 HS 1,0 × 10 ⁻¹⁹ 19,0 Acide sulfurique H ₃ SO ₃ 1,3 × 10 ⁻⁷ 7,00 HS 1,0 × 10 ⁻¹⁹ 19,0 Acide sulfurique H ₃ SO ₃ 1,3 × 10 ⁻⁷ 7,00 Acide sulfurique H ₃ SO ₄ 1,3 × 10 ⁻⁷ 7,00 Acide sulfurique H ₃ SO ₄ 1,3 × 10 ⁻⁷ 7,00 Acide sulfurique H ₃ SO ₄ 1,3 × 10 ⁻⁷ 7,00 Acide tellurhydrique H ₃ SO ₄ 1,3 × 10 ⁻⁷ 7,00 Acide tellurhydrique H ₃ SO ₄ 1,3 × 10 ⁻⁷ 1,3 6,2 × 10 ⁻⁷ 7,00 Acide tellurhydrique H ₃ SO ₄ 1,3 × 10 ⁻⁷ 1,3 6,2 × 10 ⁻⁷ 1,3 10 ⁻⁷	Acide cyanhydrique			
Acide dichloroacétique Acide fluorhydrique HF $6.6 \times 10^{-4} = 1.26$ Acide fluoroacétique CH ₂ FCO ₂ H $2.6 \times 10^{-3} = 2.59$ Acide formique HCO ₂ H $1.8 \times 10^{-4} = 3.74$ Acide hydrazoïque HN ₃ $1.9 \times 10^{-5} = 4.72$ Acide hypobromeux HOBr $2.5 \times 10^{-9} = 8.60$ Acide hypochloreux HOCl $2.9 \times 10^{-8} = 7.54$ Acide hypointeux HOCl $2.3 \times 10^{-11} = 10.64$ Acide hypointeux HON=NOH $8.9 \times 10^{-8} = 7.54$ Acide hypointeux HON=NOH $8.9 \times 10^{-8} = 7.54$ Acide iodique HIO ₃ $1.6 \times 10^{-1} = 0.80$ Acide iodique HO ₃ $1.6 \times 10^{-1} = 0.80$ Acide malonique HO ₂ CCH ₂ CO ₂ H $1.5 \times 10^{-3} = 2.82$ HO ₂ CCH ₂ CO ₂ T $2.0 \times 10^{-6} = 5.70$ Acide intreux HNO ₂ $7.2 \times 10^{-4} = 3.17$ Acide oxalique HO ₂ CCH ₂ CO ₂ T $1.5 \times 10^{-3} = 2.82$ Acide phosphorique HO ₂ CCO ₃ H $1.5 \times 10^{-3} = 2.82$ Acide phosphorique HO ₄ CCO ₂ H $1.5 \times 10^{-3} = 2.82$ Acide phosphorique HO ₄ CCO ₂ H $1.5 \times 10^{-3} = 2.82$ Acide phosphorique HO ₄ CCO ₂ H $1.5 \times 10^{-3} = 2.82$ Acide phosphorique HO ₂ CCO ₂ H $1.5 \times 10^{-3} = 2.82$ Acide phosphorique HO ₂ CCO ₂ H $1.5 \times 10^{-3} = 2.127$ Acide phosphorique H ₃ PO ₄ $1.10 \times 10^{-1} = 1.27$ Acide phosphorique H ₃ PO ₄ $1.10 \times 10^{-1} = 1.27$ Acide phosphorique H ₃ PO ₄ $1.10 \times 10^{-1} = 1.27$ Acide phosphorique H ₃ PO ₃ $1.10 \times 10^{-1} = 1.23$ Acide phosphorique H ₃ PO ₃ $1.10 \times 10^{-1} = 1.23$ Acide phosphorique H ₃ PO ₃ $1.10 \times 10^{-1} = 1.23$ Acide phosphorique H ₃ PO ₃ $1.10 \times 10^{-1} = 1.23$ Acide sélénhydrique H ₃ PO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ PO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ PO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ SeO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ SeO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ SeO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ SeO ₃ $1.10 \times 10^{-1} = 1.11$ Acide sélénieux H ₃ SeO ₃ $1.10 \times 10^{-1} = 1.11$ Acide silfurique H ₃ SeO ₄ acide fort HSeO ₄ $1.10 \times 10^{-1} = 1.10$ Acide sulfurique H ₃ SO ₄ acide fort HSO ₄ $1.10 \times 10^{-1} = 1.10$ Acide sulfurique H ₃ SO ₄ acide fort HSO ₄ 1.10×1		HOCN		
Acide fluoroacétique CH2FCO2H 2.6 × 10 ⁻³ 2.59 Acide formique HCO2H 1.8 × 10 ⁻⁴ 3.74 Acide hydrazoïque HN3 1.9 × 10 ⁻⁵ 4.72 Acide hypobromeux HOBr 2.5 × 10 ⁻⁹ 8.60 Acide hypobromeux HOC1 2.9 × 10 ⁻⁸ 7.54 Acide hypobromeux HOOI 2.3 × 10 ⁻¹¹ 10,64 Acide hyponitreux HON=NOH 8.9 × 10 ⁻⁸ 7.05 HON=NO 4.10 × 10 ⁻¹² 11,40 Acide iodique HIO3 1.6 × 10 ⁻¹ 3.17 Acide iodique HIO3 1.6 × 10 ⁻¹ 3.282 Acide intreux HON2CH2CO2T 2.0 × 10 ⁻⁶ 5.70 Acide nitreux HNO2 7.2 × 10 ⁻⁶ 5.70 Acide phénylacétique HO2CCO2H 5.3 × 10 ⁻⁵ 4.28 Acide phénylacétique H3PO4 7.1 × 10 ⁻³ 2.15 H3PO4 7.1 × 10 ⁻³ 3.15 Acide phosphorique H3PO4 7.1 × 10 ⁻³ 2.15 H3PO4 7.1 × 10 ⁻³ 3.2 × 12.38 Acide propanoïque CH3CO2H 7.1 × 10 ⁻³ 4.21 Acide phosphorique H3PO4 7.1 × 10 ⁻³ 2.15 H3PO5 1.3 × 10 ⁻⁵ 4.28 Acide propanoïque H3PO5 1.3 × 10 ⁻⁵ 4.28 Acide propanoïque H3PO5 1.3 × 10 ⁻⁵ 4.28 Acide propanoïque H3PO6 1.3 × 10 ⁻⁵ 4.28 Acide sélénieux H3PO3 3.7 × 10 ⁻² 1.238 Acide sélénieux H3PO3 3.7 × 10 ⁻² 1.238 Acide sélénieux H3PO3 3.7 × 10 ⁻² 1.52 H3P2O7 3.0 × 10 ⁻⁵ 6.68 Acide sélénieux H3SeO3 2.3 × 10 ⁻⁵ 1.5 × 4.89 Acide sélénieux H3SeO3 2.3 × 10 ⁻⁵ 1.5 × 6.6 × 10 ⁻¹⁰ 9.25 Acide sélénieux H3SeO3 2.3 × 10 ⁻⁵ 1.5 × 6.6 × 10 ⁻¹⁰ 9.25 Acide sélénieux H3SeO3 2.3 × 10 ⁻⁵ 1.6 × 6.60 Acide succinique H2SeO4 acide fort HSeO4 1.3 × 10 ⁻⁷ 7.00 Acide sulfurique H3SO3 1.3 × 10 ⁻⁷ 7.00 Acide sulfurique H3SO3 1.3 × 10 ⁻⁷ 7.00 Acide sulfurique H3SO4 acide fort HSeO4 1.3 × 10 ⁻⁷ 7.00 Acide sulfurique H3SO3 1.3 × 10 ⁻⁷ 7.00 Acide sulfurique H3SO4 1.3 × 10 ⁻⁷ 7.00		CHCl ₂ CO ₂ H		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HF	6.6×10^{-4}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide fluoroacétique	CH ₂ FCO ₂ H	$2,6 \times 10^{-3}$	2,59
Acide hydrazoïque HN3				
Acide hypobromeux Acide hypochloreux HOCl Acide hypochloreux HOI Acide hypoideux HOI Acide hypoideux HON=NOH BE SP \$10^{-8}\$ 7,54 Acide hypoideux HON=NOH Acide hypointreux HON=NOH Acide iodique HIO3 Acide iodique HIO4 Acide iodique HIO5 Acide iodoacétique CH2ICO2H Acide malonique HO2CCH2CO2T Acide nitreux HNO2 Acide oxalique HO2CCO2H Acide phósphorique H3PO4 Acide phósphorique H3PO4 Acide phósphorique H3PO4 Acide phósphorique H3PO3 Acide phósphorique Acide propanoíque H4PO7 Acide sélénique H2SeO4 Acide sélénique H2SeO4 Acide sulfurique H2SeO4 Acide sulfurique H2SO4 Acide tellurhydrique			1.9×10^{-5}	
Acide hypochloreux				
Acide hypoiodeux				
Acide hyponitreux HON=NOH HON=NO		HOI		
Acide iodique HIO_3 1.6×10^{-12} 0.80 Acide iodoacétique CH_2ICO_2H $6,7 \times 10^{-4}$ 3.17 Acide malonique $HO_2CCH_2CO_2H$ 1.5×10^{-3} 2.82 $HO_2CCH_2CO_2H$ 1.5×10^{-3} 2.82 $HO_2CCH_2CO_2H$ 1.5×10^{-3} 3.14 Acide nitreux HNO_2 7.2×10^{-4} 3.14 Acide oxalique HO_2CCO_2H 5.4×10^{-2} 1.27 HO_2CCO_2H 5.3×10^{-5} 4.28 Acide phénylacétique H_2PO_4 H_2P		HON=NOH		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	HON=NO ⁻		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide iodique			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide nitreux			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	HO ₂ CCO ₂ -H		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide phénylacétique			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HPO_4^{2-}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide phosphoreux			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$2,1 \times 10^{-7}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide propanoïque		1.3×10^{-5}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide pyrophosphorique		3.0×10^{-2}	1,52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$4,4 \times 10^{-3}$	2,36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$H_2P_2O_7^{2-}$	2.5×10^{-7}	6,60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$5,6 \times 10^{-10}$	9,25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide sélénhydrique	H_2Se	1.3×10^{-4}	3,89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HSe ⁻	$1,0 \times 10^{-11}$	11,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide sélénieux	H_2SeO_3	2.3×10^{-3}	2,64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				8,27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide sélénique	H_2SeO_4 acide to	fort	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HSeO ₄	$2,2 \times 10^{-2}$	1,66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide succinique	HO ₂ CCH ₂ CH ₂ CO ₂ H	6.2×10^{-5}	4,21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HO ₂ CCH ₂ CH ₂ CO ₂ ⁻	2.3×10^{-6}	5,64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acide sulfhydrique	H_2S		7,00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		HS^-	1.0×10^{-19}	19,0
	Acide sulfureux	H_2SO_3	1.3×10^{-2}	1,89
${ m HSO_4}^- \ { m HSO_4}^- \ { m 1,1} \times { m 10}^{-2} \ { m 1,96}$ Acide tellurhydrique ${ m H_2Te} \ { m 2,3} \times { m 10}^{-3} \ { m 2,64}$		HSO ₃ ⁻	6.2×10^{-8}	7,21
Acide tellurhydrique H_2 Te 2,3×10 ⁻³ 2,64	Acide sulfurique	H_2SO_4 acide to	fort	
Acide tellurhydrique H_2 Te 2.3×10^{-3} 2,64		$\mathrm{HSO_4}^-$	$1,1 \times 10^{-2}$	
	Acide tellurhydrique	H_2 Te		2,64
HTe^{-} 1,6 × 10 ⁻¹¹ 10,80	-	HTe^-	$1,6 \times 10^{-11}$	
Acide trichloroacétique CCl_3CO_2H $3,0 \times 10^{-1}$ $0,52$	Acide trichloroacétique	CCl ₃ CO ₂ H	3.0×10^{-1}	0,52
Peroxyde d'hydrogène H_2O_2 $2,2 \times 10^{-12}$ $11,66$	Peroxyde d'hydrogène	H_2O_2		11,66
Phénol C_6H_5OH $1,0 \times 10^{-10}$ $10,00$		C ₆ H ₅ OH		10,00
Thiophénol C_6H_5SH $3,2\times10^{-7}$ 6,49	Thiophénol	C ₆ H ₅ SH	$3,2 \times 10^{-7}$	6,49

D	C
к	Constantes d'ionisation de bases faibles à 25 °C

Nom de la base	Formule	K_{b}	$\mathbf{p}K_{\mathbf{b}}$
Ammoniac	NH ₃	1.8×10^{-5}	4,74
Aniline	$C_6H_5NH_2$	7.4×10^{-10}	9,13
Codéine	$C_{18}H_{21}O_3N$	8.9×10^{-7}	6,05
Diéthylamine	$(CH_3CH_2)_2NH$	6.9×10^{-4}	3,16
Diméthylamine	$(CH_3)_2NH$	5.9×10^{-4}	3,23
Éthylamine	CH ₃ CH ₂ NH ₂	4.3×10^{-4}	3,37
Hydrazine	NH_2NH_2	8.5×10^{-7}	6,07
	$NH_2NH_3^+$	8.9×10^{-16}	15,05
Hydroxylamine	NH_2OH	$9,1 \times 10^{-9}$	8,04
Isoquinoléine	C_9H_7N	2.5×10^{-9}	8,60
Méthylamine	CH ₃ NH ₂	4.2×10^{-4}	3,38
Morphine	$C_{17}H_{19}O_3N$	$7,4 \times 10^{-7}$	6,13
Pipéridine	$C_5H_{10}NH$	1.3×10^{-3}	2,89
Pyridine	C_5H_5N	1.5×10^{-9}	8,82
Quinoléine	C_9H_7N	6.3×10^{-10}	9,20
Triéthanolamine	(HOCH ₂ CH ₂) ₃ N	5.8×10^{-7}	6,24
Triéthylamine	$(CH_3CH_2)_3N$	$5,2 \times 10^{-4}$	3,28
Triméthylamine	$(CH_3)_3N$	6.3×10^{-5}	4,20

C. Constantes du produit de solu	bilité*	
Nom de l'acide	Formule	$K_{ m ps}$
Aluminium		
Hydroxyde d'aluminium	$Al(OH)_3$	1.3×10^{-33}
Phosphate d'aluminium	$\mathrm{AlPO_4}$	6.3×10^{-19}
Argent		
Acétate d'argent	CH₃COOAg	$2,0 \times 10^{-3}$
Arséniate d'argent	Ag_3AsO_4	$1,0 \times 10^{-22}$
Azoture d'argent	AgN_3	2.8×10^{-9}
Bromure d'argent	AgBr	$5,0 \times 10^{-13}$
Chlorure d'argent	AgCl	1.8×10^{-10}
Chromate d'argent	Ag_2CrO_4	1.1×10^{-12}
Cyanure d'argent	AgCN	$1,2 \times 10^{-16}$
Iodate d'argent	$AgIO_3$	3.0×10^{-8}
Iodure d'argent	AgI	8.5×10^{-17}
Nitrite d'argent	$AgNO_2$	6.0×10^{-4}
Sulfate d'argent	$\mathrm{Ag_2SO_4}$	1.4×10^{-5}
Sulfure d'argent**	Ag_2S	6.0×10^{-51}
Sulfite d'argent	Ag_2SO_3	1.5×10^{-14}
Thiocyanate d'argent	AgSCN	1.0×10^{-12}
Baryum		
Carbonate de baryum	BaCO ₃	$5,1 \times 10^{-9}$
Chromate de baryum	BaCrO_4	$1,2 \times 10^{-10}$
Fluorure de baryum	BaF_2	1.0×10^{-6}
Hydroxyde de baryum	$Ba(OH)_2$	$5,0 \times 10^{-3}$
Sulfate de baryum	BaSO ₄	$1,1 \times 10^{-10}$
Sulfite de baryum	BaSO ₃	$8,0 \times 10^{-7}$
Thiosulfate de baryum	BaS_2O_3	$1,6 \times 10^{-5}$
Bismuthyle		
Chlorure de bismuthyle	BiOCl	1.8×10^{-31}
Hydroxyde de bismuthyle	BiOOH	4.0×10^{-10}
Cadmium		
Carbonate de cadmium	$CdCO_3$	$5,2 \times 10^{-12}$
Hydroxyde de cadmium	$Cd(OH)_2$	2.5×10^{-14}
Sulfure de cadmium**	CdS	8.0×10^{-28}

Les données ont été mesurées à diverses températures se situant autour de la température ambiante, de 18 à 25 °C.

** Pour un équilibre de solubilité du type $MS(s) + H_2O \Longrightarrow M^{2+}(aq) + HS^-(aq) + OH^-(aq)$.

Constantes du produit de solubilité* (suite)

Nom de l'acide	Formule	$K_{ m ps}$
Calcium		
Carbonate de calcium Chromate de calcium	$CaCO_3$ $CaCrO_4$	$2.8 \times 10^{-9} \\ 7.1 \times 10^{-4}$
Fluorure de calcium	CaF ₂	5.3×10^{-9}
Hydrogénophosphate de calcium	CaHPO ₄	1.0×10^{-7}
Hydroxyde de calcium	Ca(OH) ₂	5.5×10^{-6}
Oxalate de calcium	CaC_2O_4	2.7×10^{-9}
Phosphate de calcium	$Ca_3(PO_4)_2$	$2,0 \times 10^{-29}$
Sulfate de calcium	$CaSO_4$	$9,1 \times 10^{-6}$
Sulfite de calcium	CaSO ₃	6.8×10^{-8}
Chrome		
Hydroxyde de chrome(II)	$Cr(OH)_2$	2.0×10^{-16}
Hydroxyde de chrome(III)	$Cr(OH)_3$	6.3×10^{-31}
Cobalt		40
Carbonate de cobalt(II)	$CoCO_3$	1.4×10^{-13}
Hydroxyde de cobalt(II)	$Co(OH)_2$	1.6×10^{-15}
Hydroxyde de cobalt(III)	$Co(OH)_3$	$1,6 \times 10^{-44}$
Cuivre		
Chlorure de cuivre(I)	CuCl	$1,2 \times 10^{-6}$
Cyanure de cuivre(I)	CuCN	$3,2 \times 10^{-20}$
Iodure de cuivre(I)	CuI	1.1×10^{-12}
Arséniate de cuivre(II)	$Cu_3(AsO_4)_2$	7.6×10^{-36}
Carbonate de cuivre(II)	$CuCO_3$	1.4×10^{-10}
Chromate de cuivre(II)	CuCrO ₄	3.6×10^{-6}
Ferrocyanure de cuivre(II)	$Cu_2[Fe(CN)_6]$	1.3×10^{-16}
Hydroxyde de cuivre(II)	Cu(OH) ₂	2.2×10^{-20}
Sulfure de cuivre(II)**	CuS	6.0×10^{-37}
Étain		20
Hydroxyde d'étain(II)	$Sn(OH)_2$	1.4×10^{-28}
Sulfure d'étain(II)**	SnS	1.0×10^{-26}
Fer		
Carbonate de fer(II)	$FeCO_3$	3.2×10^{-11}
Hydroxyde de fer(II)	$Fe(OH)_2$	8.0×10^{-16}
Sulfure de fer(II)**	FeS	6.0×10^{-19}
Arséniate de fer(III)	FeAsO ₄	5.7×10^{-21}
Ferrocyanure de fer(III)	$Fe_4[Fe(CN)_6]_3$	3.3×10^{-41}
Hydroxyde de fer(III)	$Fe(OH)_3$	4.0×10^{-38}
Phosphate de fer(III)	FePO ₄	1.3×10^{-22}
Lithium		
Carbonate de lithium	Li ₂ CO ₃	2.5×10^{-2}
Fluorure de lithium	LiF	3.8×10^{-3}
Phosphate de lithium	Li_3PO_4	3.2×10^{-9}
Magnésium		
Phosphate d'ammonium		
et de magnésium	$MgNH_4PO_4$	2.5×10^{-13}
Carbonate de magnésium	$MgCO_3$	3.5×10^{-8}
Fluorure de magnésium	MgF_2	3.7×10^{-8}
Hydroxyde de magnésium	$Mg(OH)_2$	1.8×10^{-11}
Phosphate de magnésium	$Mg_3(PO_4)_2$	1.0×10^{-25}
Manganèse		
Carbonate de manganèse(II)	$MnCO_3$	1.8×10^{-11}
Hydroxyde de manganèse(II)	$Mn(OH)_2$	1.9×10^{-13}
Sulfure de manganèse(II)**	MnS	3.0×10^{-14}

^{*} Les données ont été mesurées à diverses températures se situant autour de la température ambiante, de 18 à 25 °C. ** Pour un équilibre de solubilité du type $MS(s) + H_2O \Longrightarrow M^{2+}(aq) + HS^-(aq) + OH^-(aq)$.

C. Constantes du produit de solubilité* (suite)			
Nom de l'acide		Formule	$K_{ m ps}$
Mercure Bromure de mer Chlorure de mer Iodure de mercu	cure(I)	$egin{array}{l} Hg_2Br_2 \ Hg_2Cl_2 \ Hg_3I_2 \end{array}$	$5,6 \times 10^{-23}$ $1,3 \times 10^{-18}$ $4,5 \times 10^{-29}$
Sulfure de merc	ure(II)**	HgS	$2,0 \times 10^{-53}$
Nickel Carbonate de nie Hydroxyde de n	· /	NiCO ₃ Ni(OH) ₂	$6,6 \times 10^{-9} \\ 2,0 \times 10^{-15}$
Plomb			
Arséniate de plo Azoture de plon Bromure de plo Carbonate de plo Chlorure de plo Chromate de plo Fluorure de plon Hydroxyde de p Iodure de plom Sulfate de plom Sulfate de plom	nb(II) mb(II) omb(II) omb(II) omb(II) omb(II) omb(II) omb(II) lomb(II) b(II) b(II)	Pb ₃ (AsO ₄) ₂ Pb(N ₃) ₂ PbBr ₂ PbCO ₃ PbCl ₂ PbCrO ₄ PbF ₂ Pb(OH) ₂ PbI ₂ PbSO ₄ PbS	$4,0 \times 10^{-36}$ $2,5 \times 10^{-9}$ $4,0 \times 10^{-5}$ $7,4 \times 10^{-14}$ $1,6 \times 10^{-5}$ $2,8 \times 10^{-13}$ $2,7 \times 10^{-8}$ $1,2 \times 10^{-15}$ $7,1 \times 10^{-9}$ $1,6 \times 10^{-8}$ $3,0 \times 10^{-28}$
Scandium			
Fluorure de scar Hydroxyde de s		ScF ₃ Sc(OH) ₃	$4.2 \times 10^{-18} \\ 8.0 \times 10^{-31}$
Strontium Carbonate de str Chromate de str Fluorure de stro Sulfate de stront	ontium ntium	SrCO ₃ SrCrO ₄ SrF ₂ SrSO ₄	$ \begin{array}{c} 1.1 \times 10^{-10} \\ 2.2 \times 10^{-5} \\ 2.5 \times 10^{-9} \\ 3.2 \times 10^{-7} \end{array} $
Thallium			
Bromure de thal Chlorure de thal Iodure de thalliu Hydroxyde de tl	lium(I) um(I)	TIBr TICl TII TI(OH) ₃	$3,4 \times 10^{-6}$ $1,7 \times 10^{-4}$ $6,5 \times 10^{-8}$ $6,3 \times 10^{-46}$
Zinc Carbonate de zin Hydroxyde de z Oxalate de zinc Phosphate de zinc Sulfure de zinc*	inc	$ZnCO_3$ $Zn(OH)_2$ ZnC_2O_4 $Zn_3(PO_4)_2$ ZnS	$1,4 \times 10^{-11}$ $1,2 \times 10^{-17}$ $2,7 \times 10^{-8}$ $9,0 \times 10^{-33}$ $2,0 \times 10^{-25}$

D.	Constantes de formation d'ions complexes	
Fo	ormule	$K_{ m f}$
[A	$Ag(CN)_2$	5.6×10^{18}
	$Ag(EDTA)]^{3-}$	2.1×10^{7}
	$Ag(en)_2$] ⁺	5.0×10^{7}
[A	$Ag(NH_3)_2]^+$	$1,6 \times 10^{7}$
	$Ag(SCN)_4]^{3-}$	$1,2 \times 10^{10}$
[A	$Ag(S_2O_3)_2]^{3-}$	1.7×10^{13}
	Al(EDTA)]	1.3×10^{16}
[A	$Al(OH)_4]^-$	1.1×10^{33}
[A	$Al(ox)_3$] ³⁻	2.0×10^{16}
[C	$Cd(CN)_4]^{2-}$	6.0×10^{18}
[C	$Cd(en)_3$] ²⁺	$1,2 \times 10^{12}$

Les données ont été mesurées à diverses températures se situant autour de la température ambiante, de 18 à 25 °C.

** Pour un équilibre de solubilité du type $MS(s) + H_2O \Longrightarrow M^{2+}(aq) + HS^-(aq) + OH^-(aq)$.

D. Constantes de formation d'ions complexes

•	
Formule	$K_{ m f}$
$[Cd(NH_3)_4]^{2+}$	$1,3 \times 10^7$
$[Co(EDTA)]^{2-}$	2.0×10^{16}
$[\operatorname{Co}(\operatorname{en})_3]^{2^+}$	8.7×10^{13}
$[Co(NH_3)_6]^{2+}$	1.3×10^{5}
$[Co(ox)_3]^{4-}$	5.0×10^9
$[\text{Co(SCN)}_4]^{2-}$	1.0×10^{3}
[Co(EDTA)]	10^{36}
$[\mathrm{Co}(\mathrm{en})_3]^{3+}$	4.9×10^{48}
$[\text{Co(NH}_3)_6]^{3+}$	$4,5 \times 10^{33}$
$[\text{Co(ox)}_3]^{3-}$	10^{20}
[Cr(EDTA)]	10^{23}
[Cr(OH) ₄]	8.0×10^{29}
[CuCl ₃] ²⁻	5.0×10^{5}
$[Cu(CN)_4]^{3-}$	2.0×10^{30}
$[Cu(EDTA)]^{2-}$	5.0×10^{18}
$[Cu(en)_2]^{2+}$	1.0×10^{20}
$[Cu(NH_3)_4]^{2+}$	1.1×10^{13}
$\left[\operatorname{Cu(ox)}_{2}\right]^{2^{-}}$	3.0×10^{8}
[Fe(CN) ₆] ⁴⁻	10^{37}
[Fe(EDTA)] ²⁻	$2,1 \times 10^{14}$
$[Fe(en)_3]^{2+}$	5.0×10^9
$[Fe(ox)_3]^{4-}$	1.7×10^{5}
$[Fe(CN)_6]^{3-}$	10^{42}
[Fe(EDTA)]	1.7×10^{24}
$[Fe(ox)_3]^{3-}$	2.0×10^{20}
$[Fe(SCN)]^{2+}$	8.9×10^{2}
$[HgCl_4]^{2-}$	$1,2 \times 10^{15}$
$[\mathrm{Hg}(\mathrm{CN})_4]^{2^-}$	3.0×10^{41}
$[Hg(EDTA)]^{2-}$	6.3×10^{21}
$[\mathrm{Hg(en)}_2]^{2+}$	2.0×10^{23}
$[{\rm HgI_4}]^{2-}$	6.8×10^{29}
$[Hg(ox)_2]^{2-}$	9.5×10^{6}
$[Ni(CN)_4]^{2-}$	2.0×10^{31}
$[Ni(EDTA)]^{2-}$	3.6×10^{18}
$[Ni(en)_3]^{2+}$	2.1×10^{18}
[Ni(NH3)6]2+	$5,5 \times 10^{8}$
$[Ni(ox)_3]^{4-}$	3.0×10^{8}
$[PbCl_3]^-$	$2,4 \times 10^{1}$
$[Pb(EDTA)]^{2-}$	2.0×10^{18}
$[PbI_4]^{2-}$	3.0×10^4
$[Pb(OH)_3]^-$	3.8×10^{14}
$[Pb(ox)_2]^{2-}$	3.5×10^6
$[Pb(S_2O_3)_3]^{4-}$	$2,2 \times 10^{6}$
$[PtCl_4]^{2-}$	1.0×10^{16}
$[Pt(NH_3)_6]^{2+}$	2.0×10^{35}
$[Zn(CN)_4]^{2-}$	1.0×10^{18}
$[Zn(EDTA)]^{2-}$	3.0×10^{16}
$[Zn(en)_3]^{2+}$	1.3×10^{14}
$[Zn(NH_3)_4]^{2+}$	4.1×10^8
$[Zn(OH)_4]^{2-}$	4.6×10^{17}
$\left[\operatorname{Zn}(\operatorname{ox})_{3}\right]^{4-}$	$1,4 \times 10^8$

C.3 Les potentiels standard d'électrodes (réduction) à 25 °C

Potentiels standard d'électrode (réduction) à 25 °C	
Demi-réaction de réduction	$E^{\circ}(V)$
$F_2(g) + 2 e^- \rightarrow 2 F^-(aq)$	+ 2,866
$OF_2(g) + 2 H^+ (aq) + 4 e^- \rightarrow H_2O(1) + 2 F^- (aq)$	+ 2,1
$O_3(g) + 2 H^+(aq) + 2 e^- \rightarrow O_2(g) + H_2O(1)$	+ 2,075
$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq)$	+ 2,01
$Ag^{2+}(aq) + e^{-} \rightarrow Ag^{+}(aq)$	+ 1,98
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \rightarrow 2 H_2O(l)$ $MnO_4^-(aq) + 4 H^+(aq) + 3 e^- \rightarrow MnO_2(s) + 2 H_2O(l)$	+ 1,763 + 1,70
$PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O(1)$	+ 1,70
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+ 1,52
$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \rightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+ 1,51
$2 \text{ BrO}_3^-(\text{aq}) + 12 \text{ H}^+(\text{aq}) + 10 \text{ e}^- \rightarrow \text{Br}_2(\text{l}) + 6 \text{ H}_2(\text{O}(\text{l}))$	+ 1,478
$PbO_2(s) + 4 H^+(aq) + 2 e^- \rightarrow Pb^{2+}(aq) + 2 H_2O(1)$	+ 1,455
$ClO_3^-(aq) + 6 H^+(aq) + 6 e^- \rightarrow Cl^-(aq) + 3 H_2O(l)$	+ 1,450
$Au^{3+}(aq) + 2e^{-} \rightarrow Au^{+}(aq)$	+ 1,36
$\text{Cl}_2(g) + 2 \text{e}^- \rightarrow 2 \text{Cl}^-(aq)$	+ 1,358
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14 \text{ H}^+(\text{aq}) + 6 \text{ e}^- \rightarrow 2 \text{ Cr}^{3+}(\text{aq}) + 7 \text{ H}_2\text{O}(1)$	+1,33
$MnO_2(s) + 4 H^+(aq) + 2 e^- \rightarrow Mn^{2+}(aq) + 2 H_2O(1)$	+1,23
$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(1)$	+1,229
$2 IO_3^-(aq) + 12 H^+(aq) + 10 e^- \rightarrow I_2(s) + 6 H_2O(l)$	+1,20
$ClO_4^-(aq) + 2 H^+(aq) + 2 e^- \rightarrow ClO_3^-(aq) + H_2O(1)$	+ 1,19
$ClO_3^-(aq) + 2 H^+(aq) + e^- \rightarrow ClO_2(g) + H_2O(l)$	+ 1,175
$NO_2(g) + H^+(aq) + e^- \rightarrow HNO_2(aq)$	+ 1,07
$Br_2(1) + 2e^- \rightarrow 2Br^-(aq)$	+ 1,065
$NO_2(g) + 2 H^+(aq) + 2 e^- \rightarrow NO(g) + H_2O(1)$	+ 1,03
$[AuCl_4]^-(aq) + 3 e^- \rightarrow Au(s) + 4 Cl^-(aq)$ $VO_2^+(aq) + 2 H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O(l)$	+ 1,002 + 1,000
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \rightarrow NO(g) + 2 H_2O(1)$	+ 0,956
$Cu^{2+}(aq) + \Gamma(aq) + e^{-} \rightarrow CuI(s)$	+ 0,86
$Hg^{2+}(aq) + 2e^{-} \rightarrow Hg(1)$	+ 0,854
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+ 0,800
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+ 0,771
$O_2(g) + 2 H^+(aq) + 2 e^- \rightarrow H_2O_2(aq)$	+0,695
$2 \operatorname{HgCl}_{2}(\operatorname{aq}) + 2 \operatorname{e}^{-} \to \operatorname{Hg}_{2}\operatorname{Cl}_{2}(\operatorname{s}) + 2 \operatorname{Cl}^{-}(\operatorname{aq})$	+0,63
$MnO_4^-(aq) + e^- \rightarrow MnO_4^{2-}(aq)$	+0,56
$I_2(s) + 2 e^- \rightarrow 2 I^-(aq)$	+0,535
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+ 0,520
$H_2SO_3(aq) + 4 H^+(aq) + 4 e^- \rightarrow S(s) + 3 H_2O(l)$	+ 0,449
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+ 0,340
$C_2N_2(g) + 2 H^+(aq) + 2 e^- \rightarrow 2 HCN(aq)$	+ 0,37
$[Fe(CN)_6]^{3-}(aq) + e^- \rightarrow [Fe(CN)_6]^{4-}(aq)$ $VO^{2+}(aq) + 2 H^+(aq) + e^- \rightarrow V^{3+}(aq) + H_2O(l)$	+ 0,361 + 0,337
$PbO_2(s) + 2 H^+(aq) + 2 e^- \rightarrow PbO(s) + H_2O(l)$	+0,337 +0,28
$H_{g_2}Cl_2(s) + 2e^- \rightarrow 2H_g(l) + 2Cl^-(aq)$	+ 0,267
$HAsO_2(aq) + 3 H^+(aq) + 3 e^- \rightarrow As(s) + 2 H_2O(1)$	+ 0,240
$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$	+0,222
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \rightarrow 2 H_2O(1) + SO_2(g)$	+ 0,17
$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$	+0,159
$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$	+0,154
$S(s) + 2H^{+}(aq) + 2e^{-} \rightarrow H_{2}S(g)$	+0,14
$AgBr(s) + e^{-} \rightarrow Ag(s) + Br^{-}(aq)$	+0,071
$2 \text{ H}^{+}(\text{aq}) + 2 \text{ e}^{-} \rightarrow \text{H}_{2}(\text{g})$	0
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0,125
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \to \operatorname{Sn}(s)$	-0,137
$AgI(s) + e^{-} \rightarrow Ag(s) + I^{-}(aq)$	-0,152
$V^{3+}(aq) + e^- \rightarrow V^{2+}(aq)$	- 0,255
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	- 0,257
$H_3PO_4(aq) + 2 H^+(aq) + 2 e^- \rightarrow H_3PO_3(aq) + H_2O(1)$	-0,276
$\text{Co}^{2^{+}}(\text{aq}) + 2 \text{ e}^{-} \rightarrow \text{Co}(\text{s})$ $\text{PbSO}_{4}(\text{s}) + 2 \text{ e}^{-} \rightarrow \text{Pb}(\text{s}) + \text{SO}_{4}^{2^{-}}(\text{aq})$	- 0,277 - 0,356
$Cd^{2+}(aq) + 2e^- \rightarrow Cd(s)$	-0,330 -0,403
$Cr^{3+}(aq) + e^{-} \rightarrow Cr^{2+}(aq)$	-0,403 -0,424
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0,424

Potentiels standard d'électrode (réduction) à 25 °C (suite)	
Demi-réaction de réduction	$\boldsymbol{\mathit{E}}^{\circ}\left(V\right)$
$2 \text{ CO}_2(g) + 2 \text{ H}^+(aq) + 2 \text{ e}^- \rightarrow \text{H}_2\text{C}_2\text{O}_4(aq)$	- 0,49
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0,763
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0,90
$Mn^{2+}(aq) + 2 e^- \rightarrow Mn(s)$	-1,18
$Ti^{2+}(aq) + 2 e^- \rightarrow Ti(s)$	-1,63
$U^{3+}(aq) + 3 e^{-} \rightarrow U(s)$	-1,66
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1,676
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2,356
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2,713
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2,84
$Sr^{2+}(aq) + 2e^{-} \rightarrow Sr(s)$	-2,89
$Ba^{2+}(aq) + 2 e^{-} \rightarrow Ba(s)$	-2,92
$Cs^+(aq) + e^- \rightarrow Cs(s)$	-2,923
$K^+(aq) + e^- \rightarrow K(s)$	-2,924
$Rb^+(aq) + e^- \rightarrow Rb(s)$	-2,924
$Li^+(aq) + e^- \rightarrow Li(s)$	-3,040
Solution basique	
$O_3(g) + H_2O(1) + 2 e^- \rightarrow O_2(g) + 2 OH^-(aq)$	+ 1,246
$ClO^{-}(aq) + H_2O(l) + 2 e^{-} \rightarrow Cl^{-}(aq) + 2 OH^{-}(aq)$	+0,890
$HO_2^-(aq) + H_2O(1) + 2 e^- \rightarrow 3 OH^-(aq)$	+0,88
$BrO^{-}(aq) + H_2O(l) + 2 e^{-} \rightarrow Br^{-}(aq) + 2 OH^{-}(aq)$	+0,766
$ClO_3^-(aq) + 3 H_2O(l) + 6 e^- \rightarrow Cl^-(aq) + 6 OH^-(aq)$	+0,622
$2 \text{ AgO}(s) + \text{H}_2\text{O}(1) + 2 \text{ e}^- \rightarrow \text{Ag}_2\text{O}(s) + 2 \text{ OH}^-(\text{aq})$	+0,604
$MnO_4^-(aq) + 2 H_2O(1) + 3 e^- \rightarrow MnO_2(s) + 4 OH^-(aq)$	+0,60
$BrO_3^-(aq) + 3 H_2O(l) + 6 e^- \rightarrow Br^-(aq) + 6 OH^-(aq)$	+0,584
$Ni(OH)_3(s) + e^- \rightarrow Ni(OH)_2(s) + OH^-(aq)$	+0,48
$2 \text{ BrO}^{-}(aq) + 2 \text{ H}_2\text{O}(1) + 2 \text{ e}^{-} \rightarrow \text{Br}_2(1) + 4 \text{ OH}^{-}(aq)$	+0,455
$2 \text{ IO}^{-}(\text{aq}) + 2 \text{ H}_{2}\text{O}(1) + 2 \text{ e}^{-} \rightarrow \text{I}_{2}(\text{s}) + 4 \text{ OH}^{-}(\text{aq})$	+0,42
$O_2(g) + 2 H_2O(1) + 4 e^- \rightarrow 4 OH^-(aq)$	+0,401
$Ag_2O(s) + H_2O(1) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq)$	+0,342
$Co(OH)_3(s) + e^- \rightarrow Co(OH)_2(s) + OH^-(aq)$	+0,17
$NO_3^-(aq) + H_2O(1) + 2 e^- \rightarrow NO_2^-(aq) + 2 OH^-(aq)$	+0,01
$CrO_4^{2-}(aq) + 4 H_2O(1) + 3 e^- \rightarrow [Cr(OH)_3](aq) + 5 OH^-(aq)$	-0.13
$HPbO_2^-(aq) + H_2O(1) + 2 e^- \rightarrow Pb(s) + 3 OH^-(aq)$	-0,54
$HCHO(aq) + 2 H_2O(1) + 2 e^- \rightarrow CH_3OH(aq) + 2 OH^-(aq)$	-0,59
$SO_3^{2-}(aq) + 3 H_2O(1) + 4 e^- \rightarrow S(s) + 6 OH^-(aq)$	-0,66
$AsO_4^{3-}(aq) + 2 H_2O(1) + 2 e^- \rightarrow AsO_2^{-}(aq) + 4 OH^{-}(aq)$	-0,67
$AsO_2^-(aq) + 2 H_2O(1) + 3 e^- \rightarrow As(s) + 4 OH^-(aq)$	-0,68
$2 H_2O(1) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$	-0,828
$OCN^{-}(aq) + H_2O(1) + 2 e^{-} \rightarrow CN^{-}(aq) + 2 OH^{-}(aq)$	-0,97
$As(s) + 3 H_2O(1) + 3 e^- \rightarrow AsH_3(g) + 3 OH^-(aq)$	-1,21
$[Zn(OH)_4]^{2^-}(aq) + 2e^- \rightarrow Zn(s) + 4OH^-(aq)$	-1,285
$Sb(s) + 3 H_2O(1) + 3 e^- \rightarrow SbH_3(g) + 3 OH^-(aq)$	-1,338
$Al(OH)_4^-(aq) + 3 e^- \rightarrow Al(s) + 4 OH^-(aq)$	-2,310
$Mg(OH)_2(s) + 2 e^- \rightarrow Mg(s) + 2 OH^-(aq)$	-2,687