数值分析与计算软件

第9课

刘帆

南京大学工程管理学院

2020年4月20日

■ 在科学研究和工程计算当中,经常需要考察两个变量与之间的函数 关系。

- 在科学研究和工程计算当中,经常需要考察两个变量与之间的函数 关系。
- 通常,从问题的实际背景和理论分析可知,这种函数关系 *y* = *f*(*x*) 在某个区间 (*a*, *b*) 上是存在的,但往往不知道其具体的解析表达式,只能通过观察、测量或实验得到一些离散点上的函数值。

2/32

- 在科学研究和工程计算当中,经常需要考察两个变量与之间的函数 关系。
- 通常,从问题的实际背景和理论分析可知,这种函数关系 *y* = *f*(*x*) 在某个区间 (*a*, *b*) 上是存在的,但往往不知道其具体的解析表达式,只能通过观察、测量或实验得到一些离散点上的函数值。
- 此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简单函数,近似替代原来的函数。

■ 这种用较简单的函数来近似复杂函数的问题,就是函数逼近问题。

- 这种用较简单的函数来近似复杂函数的问题,就是函数逼近问题。
- 曲线拟合和函数插值是数值分析中常用的两种函数逼近方法。
 - ▶ 曲线拟合:要求构造一个简单函数,它表示的曲线与所有给定的数据 点在整体上相合的比较好。
 - 函数插值:要求简单函数表示的曲线通过所有给定的数据点。

定义

设函数 y = f(x) 定义在区间 (a,b) 上, $x_0, x_1, ..., x_n$ 是 (a,b) 上已知的 n+1 个互异点,且已知这些点处的函数值 $y_i = f(x_i), i=0,1,2,...,n$ 。若存在一个简单的函数 P(x),使得

$$P(x_i) = y_i, i = 0, 1, 2, ..., n$$
 (1)

则称 P(x) 为 f(x) 的插值函数,f(x) 称为被插函数,点 $x_0, x_1, ..., x_n$ 称为插值节点,包含插值节点的区间 (a,b) 称为插值区间,公式 (1) 称为插值条件,求 P(x) 的方法称为插值法。

■ 从几何上看,插值法就是寻求一条曲线 y = P(x) ,使它通过平面上给定 n+1 个点 (x_i, y_i) , i=0,1,2,...,n。

■ 插值可以应用在动画产业中。

■ 插值可以应用在地理测绘中。

10.03

■ 若 *P*(*x*) 是次数不超过 n 的多项式,则称 *P*(*x*) 为插值多项式,相应的插值方法称为多项式插值。

- 若 P(x) 是次数不超过 n 的多项式,则称 P(x) 为插值多项式,相应的插值方法称为多项式插值。
- 类似地,有三角多项式插值,有理函数插值,以及样条插值等问题。

- 若 P(x) 是次数不超过 n 的多项式,则称 P(x) 为插值多项式,相应的插值方法称为多项式插值。
- 类似地,有三角多项式插值,有理函数插值,以及样条插值等问题。
- 本课程仅涉及多项式插值,相关的插值方法包括拉格朗日插值法、 牛顿插值法、埃尔米特插值法、样条插值和分段低次插值。

定义

设函数 y = f(x) 定义在区间 (a,b) 上, $x_0, x_1, ..., x_n$ 是 (a,b) 上已知的 n+1 个互异点,且已知这些点处的函数值 $y_i = f(x_i), i=0,1,2,...,n$ 。多

项式插值就是求次数不超过 n的多项式

$$P(x) = c_0 + c_1 x + \dots + c_n x^n$$
 (2)

使得 $P(x_i) = y_i, i = 0, 1, 2, ..., n_o$

定理

满足上述定义的多项式 P(x) 存在且唯一。

定理

满足上述定义的多项式 P(x) 存在且唯一。

证明:略 (利用 Vandermonde 行列式性质)。

2.1 Lagrange 插值基函数

定义

设 $I_k(x)$ 是 n 次多项式,在插值节点 $x_0, x_1, ..., x_n$ 上满足

$$I_k(x_i) = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}, k, i = 0, 1, 2, ..., n$$
 (3)

则称 $, l_k(x)$ 为节点 $x_0, x_1, ..., x_n$ 上的 n 次插值基函数。

2.1 Lagrange 插值基函数

定义

设 $I_k(x)$ 是 n 次多项式,在插值节点 $x_0, x_1, ..., x_n$ 上满足

$$I_{k}(x_{i}) = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}, k, i = 0, 1, 2, ..., n$$
 (3)

则称 $l_k(x)$ 为节点 $x_0, x_1, ..., x_n$ 上的 n 次插值基函数。

通过构造法,可以求得

$$I_k(x) = \prod_{i=0}^n \frac{x - x_i}{x_k - x_i}, k = 0, 1, ..., n$$
 (4)

2.2 Lagrange 插值基函数

■ $l_0(x), l_1(x), ..., l_n(x)$ 构成不超过 n 次多项式集合的一组基。

2.2 Lagrange 插值基函数

- $l_0(x), l_1(x), ..., l_n(x)$ 构成不超过 n 次多项式集合的一组基。
- l₀(x), l₁(x), ..., l_n(x) 只与插值节点有关, 和 f(x) 的值无关。

2.2 Lagrange 插值基函数

- $l_0(x), l_1(x), ..., l_n(x)$ 构成不超过 n 次多项式集合的一组基。
- l₀(x), l₁(x), ..., l_n(x) 只与插值节点有关, 和 f(x) 的值无关。
- 引入函数 $w_{n+1}(x) = (x x_0)(x x_1) \cdots (x x_n)$,则拉格朗日插值 基函数可以表示为

$$I_k(x) = \frac{W_{n+1}(x)}{(x - x_k)W'_{n+1}(x_k)}, k = 0, 1, ..., n$$
 (5)

2.2 Lagrange 插值

定义

构造 $I_k(x)$ 的线性组合 $L_n(x)$,

$$L_{n}(x) = \sum_{k=0}^{n} y_{k} I_{k}(x) = \sum_{k=0}^{n} y_{k} \frac{w_{n+1}(x)}{(x - x_{k}) w'_{n+1}(x_{k})}$$
 (6)

称 Ln(x) 为 f(x) 的拉格朗日插值多项式。

■ 已知函数 y = f(x) 在 $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$ 处的值分 别为 $y_0 = 3$, $y_1 = 1$, $y_2 = 1$, $y_3 = 6$, 据此构造拉格朗日插值多项 式并求 f(0.5) 的近似值。

■ 已知函数 y = f(x) 在 $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$ 处的值分别为 $y_0 = 3$, $y_1 = 1$, $y_2 = 1$, $y_3 = 6$, 据此构造拉格朗日插值多项式并求 f(0.5) 的近似值。

解: 有之前的定义可以构造

$$L_3(x) = y_0 I_0(x) + y_1 I_1(x) + y_2 I_2(x) + y_3 I_3(x)$$

$$= 3 * \frac{(x+1)(x-0)(x-1)}{(-2+1)(-2-0)(-2-1)} + 1 * \frac{(x+2)(x-0)(x-1)}{(-1+2)(-1-0)(-1-1)}$$

$$+ 1 * \frac{(x+2)(x+1)(x-1)}{(0+2)(0+1)(0-1)} + 6 * \frac{(x+2)(x+1)(x-0)}{(1+2)(1+1)(1-0)}$$

$$= 0.5x^3 + 2.5x^2 + 2x + 1$$

定义

设插值多项式 Ln(x) 是对函数 f(x) 的一个近似, 其阶段误差为

$$R_{n}(x) = f(x) - L_{n}(x) \tag{7}$$

又称插值余项。

定理

设 $f^{(n)}(x)$ 在 (a,b) 上连续, $f^{(n+1)}(x)$ 在 (a,b) 内存在,那么,对任何 $x \in (a,b)$,插值余项

$$R_{n}(x) = f(x) - L_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} w_{n+1}(x)$$
 (8)

其中, $\xi \in (a,b)$ 且依赖于 x, $w_{n+1}(x) = (x - x_0) \cdots (x - x_n)$.

■ 公式 (8) 的余项表达式仅在 f(x) 存在高阶导数的情况下才可以使用,且通常无法确认 ξ 在 (a,b) 内的具体位置。

- 公式 (8) 的余项表达式仅在 f(x) 存在高阶导数的情况下才可以使用,且通常无法确认 ξ 在 (a,b) 内的具体位置。
- 如果可以确定 $f^{(n+1)}(x)$ 的绝对值在区间 (a,b) 内的一个上界 M_{n+1} ,即对任意的 $x \in (a,b)$, $|f^{(n+1)}(x)| \leq M_{n+1}$,则有如下的插值余项估计式

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |w_{n+1}(x)|$$
 (9)

■ 已给 cos0.5 = 0.87758, cos0.6 = 0.82534, cos0.7 = 0.76484, 用二次插值计算 cos 0.55 的近似值并估计截断误差。

■ 已给 cos0.5 = 0.87758, cos0.6 = 0.82534, cos0.7 = 0.76484, 用二次插值计算 cos 0.55 的近似值并估计截断误差。

解:用拉格朗日插值,易得到 $cos0.55 \approx 0.85249$ 。

■ 已给 cos0.5 = 0.87758, cos0.6 = 0.82534, cos0.7 = 0.76484, 用二次插值计算 cos 0.55 的近似值并估计截断误差。

解:用拉格朗日插值,易得到 cos0.55 \approx 0.85249。

由公式(8)可得二次插值的截断误差满足

$$|R_2(x)| \leq \frac{M_3}{3!} |w_3(x)|$$

其中 $M_3 = \max_{x_0 \le x \le x_2 | f'''(x) |} = sinx_2 \approx 0.6443$ 。于是可得

$$|R_2(0.55)| \le 1/6 * 0.6443 * |(0.55 - 0.5)(0.55 - 0.6)(0.55 - 0.7)|$$

 $< 4.0269 * 10^{-5}$

2.4 拉格朗日插值法的优缺点

■ 拉格朗日插值法利用插值基函数直接表示出了插值多项式,格式整 齐规范,结构紧凑,便于理解记忆和理论分析。

2.4 拉格朗日插值法的优缺点

- 拉格朗日插值法利用插值基函数直接表示出了插值多项式,格式整 齐规范,结构紧凑,便于理解记忆和理论分析。
- 但是当节点增加时,希望构造更高次的插值函数时,所有的基函数 都要重新计算,不太方便。

3.1 差商

定义

给定函数 f(x) 在 (a,b) 上 n+1 个互异节点 $x_0, x_1, ..., x_n$ 处的函数值 $f(x_i), i=0,1,2,...,n$ 称

$$f(x_i, x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$
 (10)

为 f(x) 关于点 x_i 及 x_i 的一阶差商;

$$f(x_i, x_j, x_k) = \frac{f(x_i, x_j) - f(x_j, x_k)}{x_i - x_k}$$
(11)

为 f(x) 关于点 x_i 、 x_i 及 x_k 的二阶差商。

3.1 差商

定义

类似的, 定义

$$f(x_0,x_1,x_2,...,x_k) = \frac{f(x_0,x_1,x_2,...,x_{k-1}) - f(x_1,x_2,x_3,...,x_k)}{x_0 - x_k}$$
 (12)

为 f(x) 的k <u>阶差商</u>。

3.2 牛顿插值公式

■ 差商可以用差商表进行计算。

■ 差商可以用差商表进行计算。

节点	函数值	一阶差商	二阶差商	三阶差商	四阶差商
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f[x_0, x_1]$			
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f(x_3)$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
x_4	$f(x_4)$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, x_2, x_3, x_4]$
:	:	:	:	:	:

■ 将 x 看做是区间 (a, b) 上的一点,根据差商的定义,可得

- 将 x 看做是区间 (a, b) 上的一点,根据差商的定义,可得
- $f(x) = f(x_0) + f(x, x_0)(x x_0)$

- 将 x 看做是区间 (a, b) 上的一点,根据差商的定义,可得
- $f(x) = f(x_0) + f(x, x_0)(x x_0)$
- $f(x, x_0) = f(x_0, x_1) + f(x, x_0, x_1)(x x_1)$

- 将 x 看做是区间 (a, b) 上的一点,根据差商的定义,可得
- $f(x) = f(x_0) + f(x, x_0)(x x_0)$
- $f(x, x_0) = f(x_0, x_1) + f(x, x_0, x_1)(x x_1)$
-

- 将 x 看做是区间 (a, b) 上的一点,根据差商的定义,可得
- $f(x) = f(x_0) + f(x, x_0)(x x_0)$
- $f(x, x_0) = f(x_0, x_1) + f(x, x_0, x_1)(x x_1)$
-
- $f(x,x_0,x_1,...,x_{n-1}) = f(x_0,x_1,...,x_n) + f(x,x_0,x_1,...,x_n)(x-x_n)$

■ 依次将后一项代入前一项,可以得到

$$f(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \cdots$$

$$+ f(x_0, x_1, ..., x_n)(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

$$+ f(x, x_0, x_1, ..., x_n)(x - x_0)(x - x_1) \cdots (x - x_n)$$
(13)

■ 依次将后一项代入前一项,可以得到

$$f(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \cdots$$

$$+ f(x_0, x_1, ..., x_n)(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

$$+ f(x, x_0, x_1, ..., x_n)(x - x_0)(x - x_1) \cdots (x - x_n)$$
(13)

■ 该式前 n+1 项只用到了已知的 n+1 个节点及节点处函数值。

■ 记公式 (13) 为

$$f(x) = N_n(x) + R_n(x) \tag{14}$$

其中,

$$N_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \cdots$$

$$+ f(x_0, x_1, ..., x_n)(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$
(15)

 $R_n(x) = f(x, x_0, x_1, ..., x_n)(x - x_0)(x - x_1) \cdots (x - x_n)$ (16)

■ 与拉格朗日多项式相同, $N_n(x)$ 是满足同一插值条件的插值多项式, $N_n(x) = L_n(x)$ 。

- 与拉格朗日多项式相同, $N_n(x)$ 是满足同一插值条件的插值多项式, $N_n(x) = L_n(x)$ 。
- 区别在于其构造方法不同,导致表示形式不同。

- 与拉格朗日多项式相同, $N_n(x)$ 是满足同一插值条件的插值多项式, $N_n(x) = L_n(x)$ 。
- 区别在于其构造方法不同,导致表示形式不同。
- 拉格朗日插值多项式是用拉格朗日插值基函的线性组合表示。

- 与拉格朗日多项式相同, $N_n(x)$ 是满足同一插值条件的插值多项式, $N_n(x) = L_n(x)$ 。
- 区别在于其构造方法不同,导致表示形式不同。
- 拉格朗日插值多项式是用拉格朗日插值基函的线性组合表示。
- 牛顿插值多项式是用 $1, x x_0, (x x_0)(x x_1), \dots, (x x_0)(x x_1) \dots (x x_{n-1})$ 的线性组合来表示。

■ 若已经利用节点 $x_0, x_1, ..., x_n$ 构造出了 n 次牛顿插值公式 $N_n(x)$,

- 若已经利用节点 $x_0, x_1, ..., x_n$ 构造出了 n 次牛顿插值公式 $N_n(x)$,
- 当增加一个节点 X_{n+1} 时,用全部节点构造 n+1 次插值公式 $N_{n+1}(x)$,只需要在 $N_n(x)$ 的基础上再加一项得到,即

$$N_{n+1}(x) = N_n(x) + f(x_0, x_1, ..., x_n, x_{n+1})(x - x_0)(x - x_1) \cdots (x - x_n)$$
(17)

这样的方式在应用中比较方便,当增加节点时,原来计算的结果可以继续使用,避免大量重复工作。

例 3

■ 给出 *f*(*x*) 的函数值表,求 2 次和 3 次牛顿插值多项式,并计算 *f*(0.9) 的近似值。

■ 给出 *f*(*x*) 的函数值表,求 2 次和 3 次牛顿插值多项式,并计算 *f*(0.9) 的近似值。

x_k	$f(x_k)$	一阶	二阶	三阶
-2	<u>17</u>			
0	1	<u>-8</u>		
1	2	1	<u>3</u>	
2	19	17	8	<u>1.25</u>

■ 取节点-2,0,1,得到二次牛顿插值多项式为

$$N_2(x) = f(-2) + f(-2,0)(x+2) + f(-2,0,1)(x+2)(x-0)$$

= 17 - 8(x+2) + 3(x+2)x

■ 取节点-2,0,1,得到二次牛顿插值多项式为

$$N_2(x) = f(-2) + f(-2,0)(x+2) + f(-2,0,1)(x+2)(x-0)$$

= 17 - 8(x+2) + 3(x+2)x

■ $f(0.9) \approx N_2(0.9) = 1.63$.

■ 取节点-2,0,1,2, 计算三次牛顿插值多项式, 只需要在 N₂(x) 的基础上加上

$$f(-2,0,1,2)(x+2)(x-0)(x-1)$$

■ 取节点-2,0,1,2, 计算三次牛顿插值多项式, 只需要在 N₂(x) 的基础上加上

$$f(-2,0,1,2)(x+2)(x-0)(x-1)$$

■ 此时,

$$f(0.9) \approx N_3(0.9) = 1.63 + 1.25(0.9 + 2)0.9(0.9 - 1) = 1.30375$$

内容

■ 插值的概念。

内容

- 插值的概念。
- 拉格朗日插值法。

内容

- 插值的概念。
- 拉格朗日插值法。
- 牛顿插值法。

谢谢!

A&Q