ECE5463: Introduction to Robotics

Lecture Note 5: Velocity of a Rigid Body

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

Introduction

• For a moving particle with coordinate $p(t) \in \mathbb{R}^3$ at time t, its (linear) velocity is simply $\dot{p}(t)$

• A moving rigid body consists of infinitely many particles, all of which may have different velocities. What is the velocity of the rigid body?

• Let T(t) represent the configuration of a moving rigid body at time t. A point p on the rigid body with (homogeneous) coordinate $\tilde{p}_b(t)$ and $\tilde{p}_s(t)$ in body and space frames:

$$\tilde{p}_b(t) \equiv \tilde{p}_b, \quad \tilde{p}_s(t) = T(t)\tilde{p}_b$$

Introduction

 \bullet Velocity of p is $\frac{d}{dt} \tilde{p}_s(t) = \dot{T}(t) p_b$

- $\dot{T}(t)$ is not a good representation of the velocity of rigid body
 - There can be 12 nonzero entries for \dot{T} .

- May change over time even when the body is under a constant velocity motion (constant rotation + constant linear motion)

Our goal is to find effective ways to represent the rigid body velocity.

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

5 / 24

Illustrating Example

- **Question:** Given the orientation R(t) of a rotating frame as a function of time t, what is the angular velocity?
- We start with an example for which we know the answer, then we generalize to obtain a formal answer
- **Example:** Suppose $\{b\}$ starts with an initial orientation R(0) and rotates about $\hat{\mathbf{x}}$ at unit constant speed (i.e. we know the angular velocity at time t>0 is $\omega=(1,0,0)^T$), where

$$R(0) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad Rot(\hat{\mathbf{x}}; \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} \\ 0 & s_{\theta} & c_{\theta} \end{bmatrix}$$

Consider a point p rigidly attached to frame $\{b\}$ with coordinates $p_s(t)$ and $p_b(t)$ in $\{s\}$ and $\{b\}$ frames.

Illustrating Example (Continued)

•
$$p_s(t) = R(t)p_b \Rightarrow \dot{p}_s(t) = \dot{R}(t)p_b$$

• Since we know the motion in this example, we must have $\dot{p}_s(t)=\omega\times p_s(t)$, where $\omega=(1,0,0)$

• Conclusion:

Properties of Rotation Matrices

• **Property:** For any $\omega \in \mathbb{R}^3$ and $R \in SO(3)$, we have

$$R[\omega]R^T = [Rw]$$

• **Property:** Let $R(t) \in SO(3)$ be differentiable in t, then $\dot{R}(t)R^{-1}(t)$ and $R^{-1}(t)\dot{R}(t)$ are both skew symmetric, i.e. they are in so(3).

Rotational Velocity Representation

• Rotational Velocity in space frame: Let $R_{sb}(t)$ be the orientation of a rotating frame $\{b\}$ at time t. Then the (instantaneous) angular velocity vector w of frame $\{b\}$ is given by

$$[\omega_s] = \dot{R}_{sb} R_{sb}^{-1}$$

where ω_s is the {s}-frame coordinate of w.

- Note the angular velocity w is a free vector, which can be represented in different frames.
- ullet Its coordinates ω_c and ω_d in frames $\{c\}$ and $\{d\}$ satisfy

$$\omega_c = R_{cd}\omega_d$$

Rotational Velocity in Body Frame

- Rotational velocity in body frame: Consider the same set up as the previous slide where $R_{sb}(t)$ is the orientation of the rotating frame $\{b\}$.
 - ω_b denotes the body-frame representation of w, i.e. $\omega_b=R_{bs}(t)\omega_s=R_{sb}^{-1}(t)\omega_s$

$$\Rightarrow [\omega_b] = R_{sb}^{-1} \dot{R}_{sb}$$

- Note: ω_b is NOT the angular velocity relative to a moving frame. It is rather the velocity relative to the *stationary* frame that is instantaneously coincident with the rotating body frame.

Example of Rotational Velocity

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

Change of Reference Frame for Twist

• Given two frames {c} and {d} with T=(R,p) representing the configuration of {d} relative to {c}. The same rigid body motion can be represented in {c} or in {d} using the twist $\mathcal{V}_c=(\omega_c,v_c)$ or $\mathcal{V}_d=(\omega_d,v_d)$, respectively. How do these two twists relate to each other?

Change of Reference Frame for Twist (Continued)

$$\bullet \Rightarrow \left[\begin{array}{c} \omega_c \\ v_c \end{array} \right] = \left[\begin{array}{cc} R & 0 \\ [p]R & R \end{array} \right] \left[\begin{array}{c} \omega_d \\ v_d \end{array} \right]$$

Adjoint Map

• Given $T=(R,p)\in SE(3)$, its adjoint representation (adjoint map) $[\mathrm{Ad}_T]$ is

$$[\mathrm{Ad}_T] = \left[\begin{array}{cc} R & 0 \\ [p]R & R \end{array} \right]$$

• Adjoint map changes reference frames for twist vector. If T is configuration of $\{d\}$ relative to $\{c\}$, then the twists \mathcal{V}_c and V_d in two frames are related by

$$V_c = [\mathrm{Ad}_T]V_d$$
 or equilvalently $[\mathcal{V}_c] = T[V_d]T^{-1}$

• Properties of Adjoint:

- Given $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\omega, v)$, we have

$$[\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}]\mathcal{V} = [\mathrm{Ad}_{T_1T_2}]\mathcal{V}$$

- For any $T \in SE(3)$,

$$[\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T^{-1}}]$$

Example: Change reference frame for twist

Two frames {a} and {b} and configuration of {b} relative to {a} is $T=(R,p_0)$ with

$$R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad p_0 = (0, 2, 0)$$

Example: Change reference frame for Twist (Continued)

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

Derivation of Spatial Velocity of a Rigid Body

- Question: Given configuration $T_{sb}(t) = (R_{sb}(t), p_{sb}(t))$ of a moving rigid body, how to represent/find the velocity of the rigid body?
- Similar to the rotational velocity, we consider a point q attached to the body and derive its differential equation in {s} frame.

$$q_s(t) = R_{sb}(t)q_b + p_{sb}(t) \implies \dot{q}_s(t) = \omega_s \times q_s(t) + v_s$$

Spatial Twist and Body Twist

• Given $T_{sb}(t) = (R(t), p(t))$. Spatial velocity in space frame (called **spatial twist**) is given by

$$\mathcal{V}_s = (\omega_s, v_s), \text{ with } [\omega_s] = \dot{R}R^T, v_s = \dot{p} + \omega_s \times (-p)$$

• Change reference frame to body frame will lead to body twist:

$$\mathcal{V}_b = (\omega_b, v_b) = [\mathrm{Ad}_{T_{bs}}]\mathcal{V}_s, \text{ where } [\omega_b] = R^T \dot{R}, v_b = R^T \dot{p}$$

Spatial Twist and Body Twist: Interpretations

- ω_b and ω_s is the angular velocity expressed in {b} and {s}, respectively.
- v_b is the linear velocity of the origin of $\{b\}$ expressed in $\{b\}$; v_s is the linear velocity of the origin of $\{s\}$ expressed in $\{s\}$

Example of Spatial/Body Twist I

Example of Spatial/Body Twist II

$$r_s = (2, -1, 0), r_b = (2, -1.4, 0), w=2 \text{ rad/s}$$

$$T_{sb} = \left[\begin{array}{cccc} -1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0.4 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

More Discussions

24 / 24