28GHz POWDER Measurements

Spatial Consistency Modeling

Bharath Keshavamurthy

August 2023

1 Spatial Autocorrelation Coefficient

The small-scale spatial autocorrelation coefficient is a metric to characterize the coherence between the voltage amplitudes of received signals across variations in distances, alignment accuracies, and relative velocities.

1.1 Separation in Distance

The spatial autocorrelation coefficient ρ vis-à-vis a separation in distance Δd :

$$\rho(\Delta d) = \rho\Big(\mathbf{x}_{\mathrm{Tx}}, \|\mathbf{x}_{\mathrm{Rx}}(t') - \mathbf{x}_{\mathrm{Rx}}(t)\| = \Delta d, \ \phi(t') = \phi(t), \ v(t') = v(t)\Big), \text{ where}$$

- $\mathbf{x}_{\mathrm{Tx}}(t) = \mathbf{x}_{\mathrm{Tx}}, \forall t \text{ denotes the 3-D position vector of the Tx (fixed)};$
- $\mathbf{x}_{Rx}(t)$ and $\mathbf{x}_{Rx}(t')$ denote the Rx 3-D position vectors at times t and t', respectively, with Δd being the 3-D Euclidean distance between them;
- $\phi(t)$ and $\phi(t')$ are the absolute errors in alignment between Tx and Rx antennas (deviation from perfect alignment) at times t and t', respectively;
- v(t) and v(t') denote the relative velocities of the receiver with respect to the transmitter at times t and t', respectively; and
- The conditions $\phi(t')=\phi(t)$ and v(t')=v(t) ensure that while studying the signal coherence characteristics vis-à-vis a separation in distance Δd , other variables in our measurements (i.e., alignment and velocity) are unchanged.

Mathematically, this spatial autocorrelation coefficient $\rho(\Delta d)$ is given by

$$\frac{\mathbb{E}\left[\left(\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right)\right) \cdot \left(\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right)\right)\right]}{\sqrt{\mathbb{E}\left[\left\|\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right)\right\|^{2}\right]}\mathbb{E}\left[\left\|\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right)\right\|^{2}\right]}}$$

For a route \mathcal{R} , we define the terms employed in this equation as follows.

Tx configuration: $\mathcal{P}_{Tx}(t) = \mathcal{P}_{Tx}(t') = \{\mathbf{x}_{Tx}, \ \theta_{Tx}\}, \ \forall t, \ t' \in \mathcal{R};$

Rx configuration:
$$\mathcal{P}_{Rx}(t) = \left\{\mathbf{x}_{Rx}, \theta_{Rx}, v_{Rx}\right\}, \mathcal{P}_{Rx}(t') = \left\{\mathbf{x}_{Rx}^{'}, \theta_{Rx}^{'}, v_{Rx}^{'}\right\}, \ \forall t, t' \in \mathcal{R};$$

$$\textbf{Evaluation conditions E1:} \ \left\| \mathbf{x}_{\mathrm{Rx}}^{'} - \mathbf{x}_{\mathrm{Rx}} \right\| = \Delta d, \\ \phi(\theta_{\mathrm{Tx}}^{'}, \theta_{\mathrm{Rx}}^{'}) = \phi(\theta_{\mathrm{Tx}}, \theta_{\mathrm{Rx}}), \\ v_{\mathrm{Rx}}^{'} = v_{\mathrm{Rx}}. \\$$

Let N be the number of resolvable Multi-Path Components (MPCs) extracted via the SAGE algorithm at time t at Rx config $\mathcal{P}_{Rx}(t)$, with Tx config being $\mathcal{P}_{Tx}(t)$; and let A_i be the amplitude of the i^{th} MPC. Then,

Sample Mean of MPC amplitudes:
$$\mu(\mathcal{P}_{Tx}(t), \mathcal{P}_{Rx}(t)) = \frac{1}{N} \sum_{i=1}^{N} A_i$$
.

 $\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\right)$ denotes the vector of amplitudes of the MPCs extracted from the measurements collected at the receiver at time t when the Rx config is $\mathcal{P}_{\mathrm{Rx}}(t)$ and the Tx config is $\mathcal{P}_{\mathrm{Tx}}(t)$. Mathematically,

$$\mathbf{A}\Big(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\Big) = [A_1, A_2, \dots, A_N].$$

The expectation $\mathbb{E}[\cdot]$ in the above equation for $\rho(\Delta d)$ is taken over all Tx and Rx configs along the route \mathcal{R} that satisfy the evaluation conditions **E1**.

1.2 Separation in Alignment

The spatial autocorrelation coefficient ρ vis-à-vis a separation in alignment ϕ :

$$\rho(\Delta\phi) = \rho\left(\mathbf{x}_{\mathrm{Tx}}, \ \mathbf{x}_{\mathrm{Rx}}(t') = \mathbf{x}_{\mathrm{Rx}}(t), \ |\phi(t') - \phi(t)| = \Delta\phi, \ v(t') = v(t)\right), \text{ where}$$

- $\mathbf{x}_{\mathrm{Tx}}(t) = \mathbf{x}_{\mathrm{Tx}}, \forall t \text{ denotes the 3-D position vector of the Tx (fixed)};$
- $\mathbf{x}_{Rx}(t)$ and $\mathbf{x}_{Rx}(t')$ denote the 3-D position vectors of the Rx, at times t and t', respectively;
- $\phi(t)$ and $\phi(t')$ are the absolute errors in alignment between Tx and Rx antennas (deviation from perfect alignment) at times t and t', respectively, with $\Delta \phi$ being the difference in alignment accuracies between them;
- v(t) and v(t') denote the relative velocities of the receiver with respect to the transmitter at times t and t', respectively; and
- The conditions $\mathbf{x}_{\mathrm{Rx}}(t') = \mathbf{x}_{\mathrm{Rx}}(t)$ and v(t') = v(t) ensure that while studying the signal coherence characteristics vis-à-vis a separation in alignment $\Delta \phi$, other variables (i.e., distance and velocity) remain unchanged.

Mathematically, this spatial autocorrelation coefficient $\rho(\Delta\phi)$ is given by

$$\frac{\mathbb{E}\left[\left(\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right)\right) \cdot \left(\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right)\right)\right]}{\sqrt{\mathbb{E}\left[\left\|\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right)\right\|^{2}\right]}\mathbb{E}\left[\left\|\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right)\right\|^{2}\right]}}$$

For a route \mathcal{R} , we define the terms employed in this equation as follows.

Tx configuration: $\mathcal{P}_{Tx}(t) = \mathcal{P}_{Tx}(t') = \{\mathbf{x}_{Tx}, \ \theta_{Tx}\}, \ \forall t, \ t' \in \mathcal{R};$

$$\text{Rx configuration: } \mathcal{P}_{\text{Rx}}(t) = \left\{\mathbf{x}_{\text{Rx}}, \theta_{\text{Rx}}, v_{\text{Rx}}\right\}, \\ \mathcal{P}_{\text{Rx}}(t') = \left\{\mathbf{x}_{\text{Rx}}^{'}, \theta_{\text{Rx}}^{'}, v_{\text{Rx}}^{'}\right\}, \ \forall t, t' \in \mathcal{R};$$

$$\textbf{Evaluation conditions E2:} \ \ \mathbf{x}_{\mathrm{Rx}}^{'} = \mathbf{x}_{\mathrm{Rx}}, \ \left| \phi(\boldsymbol{\theta}_{\mathrm{Tx}}^{'}, \boldsymbol{\theta}_{\mathrm{Rx}}^{'}) - \phi(\boldsymbol{\theta}_{\mathrm{Tx}}, \boldsymbol{\theta}_{\mathrm{Rx}}) \right| = \Delta \phi, v_{\mathrm{Rx}}^{'} = v_{\mathrm{Rx}}.$$

Let N be the number of resolvable Multi-Path Components (MPCs) extracted via the SAGE algorithm at time t at Rx config $\mathcal{P}_{Rx}(t)$, with Tx config being $\mathcal{P}_{Tx}(t)$; and let A_i be the amplitude of the i^{th} MPC. Then,

Sample Mean of MPC amplitudes:
$$\mu\left(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\right) = \frac{1}{N} \sum_{i=1}^{N} A_{i}$$
.

 $\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\right)$ denotes the vector of amplitudes of the MPCs extracted from the measurements collected at the receiver at time t when the Rx config is $\mathcal{P}_{\mathrm{Rx}}(t)$ and the Tx config is $\mathcal{P}_{\mathrm{Tx}}(t)$. Mathematically,

$$\mathbf{A}\Big(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\Big) = [A_1, A_2, \dots, A_N].$$

The expectation $\mathbb{E}[\cdot]$ in the above equation for $\rho(\Delta d)$ is taken over all Tx and Rx configs along the route \mathcal{R} that satisfy the evaluation conditions **E2**.

1.3 Separation in Velocity

The spatial autocorrelation coefficient ρ vis-à-vis a separation in velocity v:

$$\rho(\Delta v) = \rho\Big(\mathbf{x}_{\mathrm{Tx}}, \ \mathbf{x}_{\mathrm{Rx}}(t') = \mathbf{x}_{\mathrm{Rx}}(t), \ \phi(t') = \phi(t), \ |v(t') - v(t)| = \Delta v\Big), \text{ where}$$

- $\mathbf{x}_{\mathrm{Tx}}(t) = \mathbf{x}_{\mathrm{Tx}}, \forall t \text{ denotes the 3-D position vector of the Tx (fixed)};$
- $\mathbf{x}_{Rx}(t)$ and $\mathbf{x}_{Rx}(t')$ denote the 3-D position vectors of the Rx, at times t and t', respectively;
- $\phi(t)$ and $\phi(t')$ are the absolute errors in alignment between Tx and Rx antennas (deviation from perfect alignment) at times t and t', respectively;

- v(t) and v(t') denote the relative velocities of the receiver with respect to the transmitter at times t and t', respectively, with Δv being the difference in Rx velocities to get to positions $\mathbf{x}_{\mathrm{Rx}}(t)$ and $\mathbf{x}_{\mathrm{Rx}}(t')$; and
- The conditions $\mathbf{x}_{\mathrm{Rx}}(t') = \mathbf{x}_{\mathrm{Rx}}(t)$ and $\phi(t') = \phi(t)$ ensure that while the signal coherence characteristics vis-à-vis a separation in velocity Δv are being studied, other variables (i.e., distance and alignment) remain unchanged.

Mathematically, this spatial autocorrelation coefficient $\rho(\Delta v)$ is given by

$$\frac{\mathbb{E}\left[\left(\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right)\right) \cdot \left(\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right)\right)\right]}{\sqrt{\mathbb{E}\left[\left\|\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t),\mathcal{P}_{\mathrm{Rx}}(t)\right)\right\|^{2}\right]}\mathbb{E}\left[\left\|\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right) - \mu\left(\mathcal{P}_{\mathrm{Tx}}(t'),\mathcal{P}_{\mathrm{Rx}}(t')\right)\right\|^{2}\right]}$$

For a route \mathcal{R} , we define the terms employed in this equation as follows.

Tx configuration: $\mathcal{P}_{Tx}(t) = \mathcal{P}_{Tx}(t') = \{\mathbf{x}_{Tx}, \ \theta_{Tx}\}, \ \forall t, \ t' \in \mathcal{R};$

Rx configuration:
$$\mathcal{P}_{Rx}(t) = \{\mathbf{x}_{Rx}, \theta_{Rx}, v_{Rx}\}, \mathcal{P}_{Rx}(t') = \{\mathbf{x}_{Rx}^{'}, \theta_{Rx}^{'}, v_{Rx}^{'}\}, \ \forall t, t' \in \mathcal{R};$$

$$\textbf{Evaluation conditions E3:} \ \ \mathbf{x}_{\mathrm{Rx}}^{'} = \mathbf{x}_{\mathrm{Rx}}, \\ \phi(\theta_{\mathrm{Tx}}^{'}, \theta_{\mathrm{Rx}}^{'}) = \phi(\theta_{\mathrm{Tx}}, \theta_{\mathrm{Rx}}), \\ \left|v_{\mathrm{Rx}}^{'} - v_{\mathrm{Rx}}\right| = \Delta v.$$

Let N be the number of resolvable Multi-Path Components (MPCs) extracted via the SAGE algorithm at time t at Rx config $\mathcal{P}_{Rx}(t)$, with Tx config being $\mathcal{P}_{Tx}(t)$; and let A_i be the amplitude of the i^{th} MPC. Then,

Sample Mean of MPC amplitudes:
$$\mu\left(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\right) = \frac{1}{N} \sum_{i=1}^{N} A_{i}$$
.

 $\mathbf{A}\left(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\right)$ denotes the vector of amplitudes of the MPCs extracted from the measurements collected at the receiver at time t when the Rx config is $\mathcal{P}_{\mathrm{Rx}}(t)$ and the Tx config is $\mathcal{P}_{\mathrm{Tx}}(t)$. Mathematically,

$$\mathbf{A}\Big(\mathcal{P}_{\mathrm{Tx}}(t), \mathcal{P}_{\mathrm{Rx}}(t)\Big) = [A_1, A_2, \dots, A_N].$$

The expectation $\mathbb{E}[\cdot]$ in the above equation for $\rho(\Delta d)$ is taken over all Tx and Rx configs along the route \mathcal{R} that satisfy the evaluation conditions **E3**.

The plots obtained from these evaluations are shown in Figs. 1, 2, and 3.

Figure 1: $\rho(\Delta d)$ vs (log-scale) Separation in Distance Δd (in m).

Figure 2: $\rho(\Delta\phi)$ vs (log-scale) Separation in Alignment Accuracy $\Delta\phi$ (in deg).

Figure 3: $\rho(\Delta v)$ vs (log-scale) Separation in Velocity Δv (in m/s).