

CSSE2010/CSSE7201 Lecture 6

Sequential Circuits 1 Shift Registers

School of Information Technology and Electrical Engineering
The University of Queensland

Outline

- Admin
- Sequential circuits
- Shift registers

Admin

- ✓ Quiz 2 is due this week Friday (12-Mar) 4pm
- Labs 6 and 7 for next week (week 4) has preparation tasks which should be attempted before coming to the labs.

Reminder Memory element: D Flip Flop

- **D** is input
- **Q** is output
- CLK (clock) is control input
- How does it work?
 - Q copies the value of D (and remembers it) whenever CLK goes from 0 to 1 (rising edge)
- ☐ Only D Flip flops are discussed in this course
- □ Optional asynchronous SET and CLR inputs to set and clear the output Q even outside clock edges. The SET and CLR inputs are typically active-low.
- ☐ Using D flip flops one can design sequential circuits e.g. counters

Combinational vs. Sequential Circuits

- Combinational Circuits (last week and earlier)
 - Logic gates only (no flip-flops)
 - Output is uniquely determined by the inputs
 - i.e. you'll always get the same output for a given set of inputs
 - Example:

- Sequential Circuits
 - Include flip-flops
 - Output determined by current inputs and current state (values in the flip-flops)
 - Output can change when clock 'ticks'

Sequential Circuits

- State = value stored in flip-flops
- There is a notion of present state and next state
- Output depends on input and state
 - Or sometimes just the state
- Next state depends on inputs and state

Synchronous Sequential Circuit

- Storage elements (flip-flops) can only change at discrete instants of time
- Assume
 - We have a clock signal:

- Output of storage elements change only on the edges of control signal
 - (compare with logic gates whose output changes whenever the input changes)

In a synchronous sequential circuit, all the sequential elements share a common clock signal. i.e., they are synchronised to a common clock.

Registers

- A register is a group of flip-flops
 - n-bit register consists of n flipflops capable of storing n bits
- Example
 - 4-bit register
- A register is a sequential circuit without any combinational logic
- Registers are used to store binary information (data/instructions) inside a processor

Shift Register

- A shift register is a register which is capable of shifting its binary information in one or service both directions
- Example:

Serial \Leftrightarrow **Parallel Conversion**

 Shift registers can be used to do serial to parallel conversion (and vice-versa) (Figure to be drawn in class) Q

Parallel to Serial and Serial to Parallel

Short Break

Stand up and stretch

Exercise: Bidirectonal shift register

 Using same multiplexer concept, draw a 3-bit shift register which allows data to be shifted in either direction

Hint: consider this element, where DIRN will be 0 for left

shift, 1 for right shift

You have 2 minutes

Exercise: Bidirectonal shift register

Using same multiplexer concept, draw a 3-bit shift
 register which allows data to be shifted in either direction

Universal Shift Register

8-bit Wide Shift Register

Multiple bits shifted at a time

Example 4-stage 8-bit queue:

Lab 06 Preparation Task - to be discussed in class

2-digit lock/unlock circuit: User inputs two decimal digital (4 bits each) AB in serial and the circuit should \checkmark match the two input digits with a code (say CD) and unlock if the input matches with the code (i.e. AB=CD).

Lab 06 Preparation Task - to be discussed in class

Reminders

- Quiz 2 due Friday 4pm
 - Lab 6/7 preparation tasks for next week