Отчёт по лабораторной работе №16

Задачи оптимизации. Модель двух стратегий обслуживания

Козлов Всеволод Павлович НФИбд-02-22

Содержание

1	Цель работы								
2	Задание	6							
3	and the second of the second o	7							
	3.1 Постановка задачи								
	3.2 Построение модели	7							
	3.3 Оптимизация модели двух стратегий обслуживания	11							
4	Выводы	17							

Список иллюстраций

3.1	Прибывающие автомобили образуют две очереди и обсл. соот-	
	ветств. пропускными пунктами	8
3.2	Отчет. Прибывающие автомобили образуют две очереди и обсл.	
	соответств. пропускными пунктами	9
3.3	Прибывающие автомобили образуют одну очередь и обсл. освобо-	
	дившимися пропускными пунктами	9
3.4	Отчет. Прибывающие автомобили образуют одну очередь и обсл.	
	освободившимися пропускными пунктами	10
3.5	Модель с одним пунктам	11
3.6	Отчет. Модель с одним пунктам	12
3.7	Модель с тремя пунктами	12
3.8	Отчет. Модель для первой стратегии с 3 пропускными пунктами .	13
3.9	Модель с четырьмя пунктам	13
3.10	Отчет. Модель с четырьмя пунктам	14
3.11	Модель для второй стратегии с 3 пропускными пунктами	14
3.12	Отчет. Модель для второй стратегии с 3 пропускными пунктами .	15
3.13	Модель для второй стратегии с 4 пропускными пунктами	15
3.14	Отчет. Модель для второй стратегии с 4 пропускными пунктами .	16

Список таблиц

3.1	Сравнение стратегий	{#tbl:strategy}:																1	0	
-----	---------------------	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего

времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами (рис. 3.1).

```
СЕМЕКАТЕ (ЕХРОПентіаl(1,0,1.75)); прибитие автомобилей TEST LE ($Other1, ($Other2, Obs1 2; длина оч. 1<= длине оч. 2 TEST E ($Other1, ($Other2, Obs1 1; длина оч. 1<= длине оч. 2 TEST E ($Other1, ($Other2, Obs1 1; длина оч. 1= длине оч. 2 TRANSFER 0.5, Obs1 1, Obs1 2; длини очередей равни; выбираем произв. пункт пропуска 1 Obs1 1 (Овет Станти пункта 1 Obs1 1 (Овет Станти пункта 1 Obs1 1 (Овет Станти пункта 1 Овет Станти пункта 2 Овет Станти пунк
```

Рис. 3.1: Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Отчет. Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами (рис. 3.2).

	START	TIME	EN	TIME	BLOCKS	FACILITIES	STORAGES	
	0	.000	100	80.000	18	2	0	
	NAM				ALUE			
	OBSL 1				E 000			
	OBSL 2				1.000			
	OTHER1			1000	0.000			
	OTHER2				1.000			
	PUNKT1				3.000			
	PUNKT2				2.000			
				1000				
LABEL			DI CON BURN			ST CURRENT C	AUDIE DESERV	
LABEL		LOC	BLOCK TYP					
		1	GENERATE		5053	0	0	
		2	TEST		5853 4162	0		
		3	TEST					
		4	IMANSFER		2431	0 387	0	
BSL_1		5	QUEUE		2928	387	0	
		6	TEST TRANSFER QUEUE SEIZE DEPART		2541 2541	0	0	
		7	DEPART		2541			
		8	ADVANCE RELEASE		2541	1		
					2540	0		
		10	TERMINATE QUEUE		2540	0	0	
BSL_2		11			2925			
		12	SEIZE		2537	0	0	
		13	DEPART ADVANCE		2537	0	0	
		14	ADVANCE		2537	1	0	
		15	RELEASE TERMINATE		2536	0	0	
		16	TERMINATE		2536	0		
		17	GENERATE TERMINATE		1	0		
		18	TERMINATE		1	0	0	
ACILITY		ENTRIES	UTIL	AVE. TIM	E AVAIL	. OWNER PEND	INTER RETRY	DELAY
PUNKT2		2537	0.996	3.9	57 1	5078 0	0 0	388
PUNKT1		2541	0.997	3.9	55 1	5079 0	0 0	387
HEHE		MAY C	ONT FREEV	FNTRY (O) AUF C	ONT AUF TIM	E AVE. (-0)	DETDY
UEUE OTHER1		393	387 2928	12	187.0	98 644.10	7 646.758	
OTHERS		292	300 2920	12	107.0	4 644 92	3 647.479	
O. III.R.		233	200 2925	12	207.1.	., 044.02	5 047.475	
EC XN	PRI	BDT	ASSE	1 CURRE	NT NEX	PARAMETER	VALUE	
5855	0	10081.	102 5855	0	1			
5855 5079	0	10083.	517 5079	8	9			
5078	0	10083.	808 5078 000 5856					

Рис. 3.2: Отчет. Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами (рис. 3.3).

Рис. 3.3: Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами (рис. 3.4).

Рис. 3.4: Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Составим таблицу по полученной статистике

Таблица 3.1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1	стратегия 2			
	пункт 1	пункт 2	в целом		
Поступило автомобилей	2928	2925	5853	5719	
Обслужено автомобилей	2540	2536	5076	5049	
Коэффициент загрузки	0,997	0,996	0,9965	1	
Максимальная длина	393	393	786	668	
очереди					
Средняя длина очереди	187,098	187,114	374,212	344,466	
Среднее время ожидания	644,107	644,823	644,465	607,138	

Анализ результатов моделирования двух систем показывает, что первая модель способна обработать большее количество автомобилей. Однако стоит отметить, что во второй модели разница между числом поступивших и обслуженных машин меньше, что свидетельствует о более эффективной работе системы. Кроме того, коэффициент загрузки для второй модели достигает 1, что означает полное использование всех пропускных пунктов без простоев. Также показатели, связанные

с длиной очередей и временем ожидания, во второй стратегии оказались ниже. Это позволяет считать вторую стратегию более предпочтительной.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели под следующие критерии:

- коэффициента загрузки прпускных пунктов принадлежат интервалу [0.5;
 0.95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктам будет следующей (рис. 3.5).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
QUEUE Other;
SEIZE punkt; занятие пункта 1
DEPART Other;
ADVANCE 4,3;
RELEASE punkt;
TERMINATE;
GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 3.5: Модель с одним пунктам

Отчет. Модель с одним пунктам (рис. 3.6).

```
| COUNT | COUN
```

Рис. 3.6: Отчет. Модель с одним пунктам

Здесь модель не проходит ни по одному из критериев, тк коэфиициенты загрузки, размер очереди и среднее время ожидания больше.

Модель для первой стратегии с 3 пропускными пунктами (рис. 3.7).

Рис. 3.7: Модель с тремя пунктами

Отчет. Модель для первой стратегии с 3 пропускными пунктами (рис. 3.8).

Рис. 3.8: Отчет. Модель для первой стратегии с 3 пропускными пунктами

Здесь сред кол-во автомобилей в очереди меньше 3 и коэффициента загрузки в нужном диапазоне. Однако сред время ожидания больше 4.

Модель для первой стратегии с 4 пропускными пунктами (рис. 3.9).

Рис. 3.9: Модель с четырьмя пунктам

Отчет. Модель для первой стратегии с 4 пропускными пунктами (рис. 3.10).

Рис. 3.10: Отчет. Модель с четырьмя пунктам

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

Модель для второй стратегии с 3 пропускными пунктами (рис. 3.11).

Рис. 3.11: Модель для второй стратегии с 3 пропускными пунктами

Отчет. Модель для второй стратегии с 3 пропускными пунктами (рис. 3.12).

Рис. 3.12: Отчет. Модель для второй стратегии с 3 пропускными пунктами

Все критерии выполняются => модель оптимальна.

Модель для второй стратегии с 4 пропускными пунктами (рис. 3.13).

Рис. 3.13: Модель для второй стратегии с 4 пропускными пунктами

Отчет. Модель для второй стратегии с 4 пропускными пунктами (рис. 3.14).

Рис. 3.14: Отчет. Модель для второй стратегии с 4 пропускными пунктами

В данной ситуации все критерии соблюдены, при этом время ожидания и среднее количество автомобилей оказываются ниже, чем во втором варианте стратегии с тремя пунктами. Однако уровень загрузки также снижается, что говорит о возможной избыточности четвёртого пункта пропуска.

Таким образом, на основе проведённого анализа можно заключить, что оптимальное количество пропускных пунктов составляет три при втором типе обслуживания и четыре при первом.

4 Выводы

Реализовал с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.