

二声道 AB 类耳机放大器

概述

ETK4800 是一颗采用 CMOS 技术的二声道 AB 类耳机放大器,是利用 AB 推挽(push-pull)方式来设计的。最大输出功率为 290mW。ETK4800 主要应用于便携式音响领域。

功能特点

● 工作电压

单电源供电: 2V~6V 双电源供电: ±1.0V~3.5V

高性噪比: 100dB
 高转换比: 5V/μs
 低失真度: -65dB
 电源抗纹波能力强

● 在10%的失真情况下输出功率

 8Ω 290mW 16Ω 190mW

- 低功耗
- 极宽的工作温度范围
- 无转换开/关声
- SOP8 或 DIP8 封装

管脚排列图

管脚说明

名称	序号	描述
OUTA	1	输出端 A
INAN	2	反相输入端 A
INAP	3	输入端 A
GND	4	接地端
INBP	5	输入端 B
INBN	6	反相输入端 B
OUTB	7	输出端 B
VDD	8	电源端

功能框图

ETK4800

极限参数

名称	符号	最小值	最大值	单位
工作电压	$V_{ m DD}$	0	7	V
输出短路延时时间	T _{SC(O)}	0	20	S
工作环境温度	T_{amb}	-40	+85	${\mathbb C}$
最大节点温度	T_{J}	0	150	${\mathbb C}$
存储温度	T_{stg}	-65	+150	${\mathbb C}$

电参数(Tamb=25℃,f_{IN}=1kHz)

名称	符号	最小值	典型值	最大值	单位	测试条件		
电源	V_{DD}	2.0		6.0	V			
VDD=5V								
提供电流	I_{DD}		2.5		mA	无负载		
输入偏电压	V _{I(OS)}		5	50	mV			
总失真+性噪比	(THD+N)/S		0.1 0.05		%	Po=200mW, R_L =8 Ω , f=1kHz Po=120mW, R_L =16 Ω , f=1kHz		
信噪比	S/N		210 140		mW	(THD+N)/S=0.2%, f=1kHz R_L =8 Ω R_L =16 Ω		
输出功率	P _O		290 190		mW	(THD+N)/S=10%, f=1kHz $R_L=8\Omega$ $R_L=16\Omega$		
电源抗纹波能力	PSRR		55		dB	C _B =2.2μF; VRIPPLE=200mVrms, F=120Hz		
噪音等级	VN		20		rms	$R_L=8\Omega$		
VDD=3V								
提供电流	I_{DD}	_	2.2	_	mA	无负载		
输入偏电压	V _{I(OS)}	_	5	50	mV			
总失真+性噪比	(THD+N)/S		0.1 0.05		%	Po=50mW, R_L =8 Ω , f=1kHz Po=40mW, R_L =16 Ω , f=1kHz		
输出功率	P _O		60 45		mW	(THD+N)/S=0.2%, f=1kHz R_L =8 Ω R_L =16 Ω		
输出功率	P _O		90 65		mW	(THD+N)/S=10%, f=1kHz R_L =8 Ω R_L =16 Ω		

参考应用线路图

*: 此电路仅供参考。