Gerber Out

内容提要

- PCB后处理
 - DFX要求
 - 丝印 (Silkscreen)
 - 工程标注
 - 输出光绘前的检查流程
- 光绘输出
 - 钻孔文件
 - CAM输出
 - 其他

PCB后处理——DFX要求

DFM、DFA、DFT、DFC...

PCB后处理——DFX要求

DFM、DFA、DFT、DFC...

丝印是PCB表面的文字说明,模糊、混乱、残缺的丝印可能造成严重的后果——器件焊反、调试不方便……

- 丝印调整
 - 字号参数设置

- 丝印调整
 - 统一字符编号(Change命令)

科通集团

- 丝印调整
 - 字号使用

```
通用位号字体丝印(mil单位)
字粗(Photo Width)/字高(Height)/字宽(Width)尺寸为:
4/25/20 (单板过密或局部过密);
5/30/25 (常规设计);
6/45/35 (单板密度很小)。
一般都统一使用5/30/25或者6/45/35,
局部比较密的可以局部使用4/25/20,
位号丝印的种类最多不能超过两种。
来自某板厂的推荐值
```

- 丝印方向

- 丝印设计常规要求
 - 不允许任何丝印上阻焊和焊盘且要保证适当距离
 - 丝印尽量避免压过孔(特别注意3、6、8.....)
 - 有极性和安装方向要求的器件要在丝印层标明
 - 如果因空间限制要删除部分丝印,要保证装配层有这些丝印
 - 丝印调整避开注意Mark点和ICT测试点
 - 器件脚标注意与相应脚对应,特别注意"1"脚标示
 - 板名和版本
 - 条形码

- 其他(光纤盘绕方向、波峰焊过板方向、安规静电&高压标记)

- 丝印重命名及反标
 - 器件编号重命名
 - · 器件附上Auto_Rename属性

- 丝印重命名及反标
 - 器件编号重命名
 - 器件附上Auto_Rename属性

- 丝印重命名及反标
 - 器件编号重命名
 - 参数设置

- 丝印重命名及反标
 - 器件编号重命名
 - 参数设置

7	
rename.log - i	己事本
8 文件(F) 编辑(E)	格式(O) 查看(V) 帮助(H)
3 OLD C831	NEW C123
3 OLD U26	NEW X9
	NEW X10
	NEW XXX5
oLD U22	
	NEW R145
1 OLD R154	
OLD R158	
OLD R149	
OLD R148	
	NEW R150
-3	NEW REF DE10
O III	NEW G6
OLD Y2	NEW G7
OLD C694	
OLD U28	
OLD R150	
JUD KIOI	NEW R152
OLD R153	NEW R153 NEW C125
OLD COSO	NEW CIZO

- 丝印重命名及反标
 - 反标回原理图
 - 编辑rename.log文件,去除多余信息,保存成OrCAD Capture识别的文件格式*.swp,

• 尺寸标注

- 尺寸标注
 - 设置参数

- 尺寸标注
 - 线性标注(Linear Dimension)

- 尺寸标注
 - 基准标注法(Datum Dimension)

- 尺寸标注
 - 其他和标注相关的命令

- 技术说明文档资料(Drill层相关标注)
 - 材料
 - 成品板厚度和允许公差
 - 表面处理工艺
 - 翘曲度
 - Solder Masker
 - 丝印

· 技术说明文档资料(Drill层相关标注)

Spell Made			Open Windows:	None	
Outline Profile.	Router	Bridge		V-cult	Stomp Hole
Inspections tandard:	1PC11	I PC 1 1 1		Gjb362A-96	Other
Compare With IPC File	Yes	N a			
Logo:	Required	Specified Pa	slilon 📗	Only Date Code	Not Appear
Logo: Via Technic		.5mm) must be fil	led(except ope	n soldermask viaj	By gerber
(unit mil)MIN track :	4	MIN spacing	4	MIN.hole:8	

Bow on	Twist Tolerance:<=0 75% Pressfit holes. The tolerance of	is+/-0.05mm
	Notes. TACKING dielectric thickness can be adjusted beween +/-2mil,but don,t less than 3 Smil;	
	Finspection is Gjb362A than don, t less than 4mil.)	
2. (ontrol Impedance (track width can be adjusted +/-0.5mil , but don,t less than 4mil.)	

· 技术说明文档资料(Drill层相关标注)

· 技术说明文档资料(Drill层相关标注)

2 1 1 2 2 2 2					
SINGLE	TRACE IM	PEDANCE (CONTROL		
WIDTH (ml.)	TAPEDANCE (ohm)	PPECISION	rel røyer	PEMARK.	
5.5	50	+7-10%	12/17	A	
6.2	50	+7-10%	12/15		
5.4	50	47-10%	15/17		
DIFFERENTIAL TRACE IMPEDANCE CONTROL					
WODTH (MILL)	IMPEDANCE (ann)	PREC1570N	ref tayer	REMARK	
5 5/11	81	+7-10%	L2	d	
4.0/8.0	100	47-10%	12717		
5.9/7.5	90	+7-10%	LZ		
6 2/12 4	₽4	+/-10%	12715		
5.5/7	90	47-10%	12715		
	5.5 6.2 5.6 1FFERENT WIDTH (MILL) 5 5/11 4.0/8.0 5.0/7.5 6 2/12 4	5.5 50 5.6 50 5.6 50 5.6 50 5.6 50 6.2 50 6.	5.5 50 -/-10% 5.5 50 -/-10% 5.5 50 -/-10% 5.6 50 -/-10% 5.7 10% 5.8 50 -/-10% 6.2 50 -/-10% 5.5 50 -/-10% 6.2 7.2 4 94 -/-10%	5.5 50 -/-10% 12/15 5.6 50 -/-10% 15/17 5.6 50 -/-10% 15/17 5.6 50 -/-10% 15/17	

- · 基于Check List的检查
 - 出光绘文件之前一般要经过严格的检查流程,每个公司都有自己的Check List,包括了原理图、PCB设计、生产等环节的要求。
- Display Status检查

- 报表检查
 - Component Report

科通集团

- 报表检查
 - Component Report

- 报表检查
 - Unconnected Pins

科通集团

- 报表检查
 - Dangling Lines、Via and Antenna Report

- 报表检查
 - Summary Drawing Report

- 报表检查
 - Summary Drawing Report (续上表)

参数设置

- Allegro生产的钻孔信息主要集中在Manufacture_NC菜单

钻孔单位和精度。 要与PCB设计的单位一致。 对于公制单位的PCB钻孔 精度需要提高到2.5。

• 生成钻孔表

• 生成钻孔表

- · 生成钻孔表 (NC-Router)
 - NC-Router功能对铣刀加工的异形孔支持更好

• 钻孔文件生成

____ DEMO_10_10-1-8.drl

2012-10-10 10:33 DRL 文件

59 KB

ncdrill.log

2012-10-10 10:33

文本文档

4 KB

光绘输出——CAM输出

- 层命名及层的内容
 - 布线层

- 平面层

光绘输出——CAM输出

- 层命名及层的内容
 - 钻孔层

- 装配层

- 层命名及层的内容
 - 钢网层

- 丝印层

- 层命名及层的内容
 - 阻焊层

- 光绘文件格式
 - Gerber6x00即为RS-274-D:D码格式
 - GerberRS274X:X码格式,其中包括了D码的光圈参数和光绘图形信息,无需另外的D码光圈文件。若PCB设计中采用了真实的Flash器件,需要在光绘中反映出Flash的效果则选择此项。

· Artwork光绘设置

· Artwork光绘设置

Artwork光绘设置

· Artwork光绘设置

art_ape	er.txt - ì∂	事本						X
文件(F)	编辑(E)	格式(O)	查看(V)	帮助(H)			
INPUT	-UNI1	rs	INC	HES				-
WHEEL		1						
CIRCL			6	_		D10		
CIRCL	_		9	_		D11		
CIRCL			7	_		D12		
CIRCL			114. 1	-		D13	00	
FLASH D14		ruzk	30W2R	90		0. 000	00	
CIRCL	R		90. 5	5		D15		
CIRCL	_		98. 4	_		D16		
CIRCL	_		7			D17		
FLASH		FC1R	70W2R	- 30		0.000	00	
D18								
CIRCL	E		7	7		D19		
CIRCL	E	12	22. 0 4	7		D20		
FLASH		FC2R	50W3R	10		0.000	00	
D21								
CIRCL	E	9	98. 42	5		D22		
CIRCL			06. 29	_		D23		
SQUAR	E	12	22. 04	7	0.00000			
D24								
SQUAR	E	,	98. 42	5	0.00000			
D25								-

- · Artwork光绘设置
 - 光绘范围(Photoplot outline)

Design Parameter Editor

Setup Shape Logic Place FlowPlan Route Analyze Manufa Design Parameters... Application Mode Grids... Change Drawing Origin Cross-section... Unused Pads Suppression... Embedded Layer Setup... Subclasses... Materials... B/B Via Definitions Enable On-Line DRC ✓ Enable Datatips Constraints Property Definitions... Define Lists... Package Keepin Areas Outlines Package Keepout Package Height SI Design Setup... SI Design Audit... Route Keepin Route Keepout Datatip Customization... Wire Keepout User Preferences... Via Keepout Shape Keepout Probe Keepout Gloss Keepout Photoplot Outline inno\2012-10-10\PCB

如果设定Photoplot outline,对Artwork旋转、镜像时,将以Photoplot outline的中心为基准点,如果不设定,就以Extents的原点为基准点。

- · Valor检查所需文件
 - Valor是通过光绘文件和网表文件(IPC356)来进行检查

· SMT所需坐标文件

· 打印PDF

· 打印PDF (新版功能)

科通集团

· 打印PDF (新版功能)

Q&A

- Q&A
- Summary

Thank you!

Oct 10, 2012

By: Ausben Du

ausbendu@comtech.com.cn

