

Introduction to R Day 1

Sereina Herzog

Institute for Medical Informatics, Statistics and Documentation Medical University of Graz

29.01.2025

29.01.2025

2

Course Aim

- ► Introduction to R using RStudio
 - ► How to use R and RStudio
- Project structure
 - ► Using R as an example
- Data visualization with R
 - Using ggplot for typical plots
- ► Report generation using Rmarkdown
 - ► Advantage of avoiding "copy & paste"
 - Reproducible reports

⇒ Help for self-help

29.01.2025

Course Content - Introduction R (Day 1)

- ► Introduction to R using RStudio
- Project structure
- ► Data visualization with R

29.01.2025

Data visualization

Source: www.googleplussuomi.com

Purpose

- Exploring and presenting data in form of graphs
- ► Summarizing data reduction (mean, variance, median etc.)
- ► Presenting data in form of tables and/or graphs

Summarizing data (graphs)

Visualize data in graphs

- ► Bar chart
- ► Histogram
- ► Box-and-whisker plot
- ► Time series plot
- Scatterplot
- **.**..

When to use what

(graphs & scales)

Idea of data cleaning

- Check data using
 - Key figures (e.g. median)
 - ► Graphs (e.g. histogram)
- Data quality
 - consult original source (e.g. patient health record, lab journal)
- Plausibility

R & RStudio

What is R and RStudio?

- ► R: The R Project for Statistical Computing Link R project
 - ▶ is an open-source programming languages
 - works with R packages

What is R and RStudio?

- ► R: The R Project for Statistical Computing ► Link R project
 - is an open-source programming languages
 - works with R packages
- RStudio
 - ▶ is an integrated development environment (IDE)
 - specifically designed for working with the R programming language
 - has a user-friendly interface
 - ▶ has code editing features
 - code completion feature
 - syntax-highlighting editor

RStudio - Interface

RStudio - Getting started

- ► Open RStudio
- ► Work through 'Day 1 Exercise 1' (together)

Data types and structures in R

- Data types
 - character
 - numeric (real or decimal)
 - integer
 - logical
 - complex
- Data structures
 - ▶ atomic vector (i.e. only holds data of a single data type)
 - ▶ list
 - matrix
 - data frame
 - factors
 - **.** . . .

Examine features in R

- Examine features
 - class() what kind of object is it (high-level)?
 - typeof() what is the object's data type (low-level)?
 - length() how long is it? What about two dimensional objects?
 - attributes() does it have any metadata?
 - ▶ ..

Example examing features (I)

```
x <- "dataset"
typeof(x)

## [1] "character"
attributes(x)</pre>
## NULL
```


Example examing features (II)

```
y <- 1:10
## [1] 1 2 3 4 5 6 7 8 9 10
typeof(y)
## [1] "integer"
length(y)
## [1] 10
```

R & RStudio 29.01.2025 17

Example examing features (III)

```
z \leftarrow as.numeric(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
z
## [1] 1 2 3 4 5 6 7 8 9 10
class(z)
## [1] "numeric"
typeof(z)
## [1] "double"
```


Folder structure and R projects in RStudio

Suggestion how to structure your project folder

- ▶ project1
 - ► literature
 - reports
 - **•** ...
 - R

Suggestion how to structure your project folder

- ▶ project1
 - ► literature
 - reports
 - **▶** ...
 - ▶ R
 - orig
 - Rdata
 - Rmarkdown
 - ► Routput
 - Rfiles

Suggestion how to structure your project folder

- ▶ project1
 - ► literature
 - reports
 - **▶** ...
 - ▶ R
 - orig
 - Rdata
 - Rmarkdown
 - ► Routput
 - Rfiles

Hint: never touch the original data!

Idea: set path at the beginning of your file with syntax related to your R folder and everything else relative to that.

```
path <- "C:/myname/work/project1/R"
setwd(path)</pre>
```


Idea: set path at the beginning of your file with syntax related to your R folder and everything else relative to that.

```
path <- "C:/myname/work/project1/R"
setwd(path)</pre>
```

For example, data example0.csv is in your Rdata folder

```
library(readr)
dat <- read_csv(file = "Rdata/example0.csv")</pre>
```


Idea: set path at the beginning of your file with syntax related to your R folder and everything else relative to that.

```
path <- "C:/myname/work/project1/R"
setwd(path)</pre>
```

For example, data example0.csv is in your Rdata folder

```
library(readr)
dat <- read_csv(file = "Rdata/example0.csv")</pre>
```

OR: use 'R project' option!

R project

- ► An R project
 - is a way to organize files and folders related to a specific analysis or project
 - easy to switch different projects
 - the working directory is the project's root folder

R project

- ► An R project
 - is a way to organize files and folders related to a specific analysis or project
 - easy to switch different projects
 - the working directory is the project's root folder

TO DO - Create folder structure

- 1) Generate following folder structure
- ► Course Introduction R
 - 0_slides
 - ▶ 1_exercises
 - ▶ ..
 - ▶ R
 - orig
 - ► Rdata
 - ► Rfiles
 - Killes
 - Rmarkdown
 - Routput

TO DO - Create R project

- 2) Generate a 'R project' (together)
- ightharpoonup File ightharpoonup New Project... ightharpoonup Existing Directory

R files

R files

- ► An R file (.R) is
 - ► a script written in R
 - contains code that can be executed within the R software environment

RStudio - Interface with open script

R file - Getting started

- Switch to RStudio
- ► Work through 'Day 1 Exercise 2' (together)

Data visualization with ggplot

Data visualization with ggplot 29.01.2025 29

Example - Iris

A famous iris data set gives the measurements in centimeters of the variables

- sepal length
- sepal width
- petal length
- petal width

for 50 flowers from each of 3 species of iris (Iris setosa, versicolor, and virginica).

Iris Virginica

Data visualization with ggplot 29.01.2025 30

Example - Iris

- powerful data visualization package in R
 - ▶ wide range of high-quality plots and graphics
 - provides a consistent syntax
 - ► a layered approach to building plots

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - ▶ a layered approach to building plots
- consists of three main components:

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - ▶ a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized
 - aesthetics (aes)
 - b define how variables are mapped to visual properties (e.g., x-axis, y-axis, color)

- powerful data visualization package in R
 - wide range of high-quality plots and graphics
 - provides a consistent syntax
 - a layered approach to building plots
- consists of three main components:
 - data
 - represents the dataset being visualized
 - aesthetics (aes)
 - define how variables are mapped to visual properties (e.g., x-axis, y-axis, color)
 - geometric objects (geom)
 - determine the type of plot (e.g., points, lines, bars)

Example - Iris

Example - Iris: including species as colour

Example - Iris: increase point size

Example - Iris: adding title

Example - Iris: using another geom

ggplot - Getting started

- ► Work through 'Day 1 Exercise 3'
- ► Switch to RStudio
- ► Open Rmd file: day1_ex3_ggplot_vYYYYMMDD.R
 - ▶ is on GitHub

Saving ggplots

```
plot_iris <-
    ggplot(data = iris,
        aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
        geom_point() +
        theme_bw()

ggsave(filename = "../Routputs/example_iris.png", plot = plot_iris,
        units = "cm", width = 12, height = 7)</pre>
```


Saving ggplots

```
plot_iris <-
    ggplot(data = iris,
        aes(x = Sepal.Length, y = Sepal.Width, colour = Species)) +
        geom_point() +
        theme_bw()

ggsave(filename = "../Routputs/example_iris.png", plot = plot_iris,
        units = "cm", width = 12, height = 7)</pre>
```

- ► Try to save your last plot in the 'Day 1 Exercise 3'
 - test different formats and values for width/height

Links

Links (I)

- ► Introduction to R
 - R for Data Science (https://r4ds.hadley.nz/)
- ► Plots using ggplot
 - Overview with further links to course material: https://ggplot2.tidyverse.org/
- Display tables using flextable
 - ► flextable bool https://ardata-fr.github.io/flextable-book/
 - ► Function references https://davidgohel.github.io/flextable/reference/index.html
- knit_child()
 - ► link (https://bookdown.org/yihui/rmarkdown-cookbook/child-document.html)

Links (II)

- ▶ Download R
 - CRAN (https://cran.r-project.org/)
- ► Download RStudio
 - ► RStudio Desktop (https://posit.co/download/rstudio-desktop/)