RSA and Digital Signatures

Schedule for today

Recap

More on RSA

- 1. Making RSA IND-CPA/IND-CCA secure
- 2. Hybrid encryption

Digital Signatures

- 1. What are Digital Signatures?
- 2. Formalizing security
- 3. Simple RSA signatures and why they are not secure
- 4. The RSA-FDH signature scheme
- 5. Proving RSA-FDH secure

What we did last time

Public Key Encryption

True or false?

Public Key Encryption allows <u>any two parties</u> to confidentially communicate with each other, without knowing anything about each other.

Security of PKE

True or False?

IND-CPA is the strongest security notion for Public Key encryption schemes we know of.

Defining security of PKE — IND-CPA

Defining security of PKE — IND-CCA

RSA

Which statement/statements is/are true?

RSA is secure if

- 1. It is hard to compute e'th roots modulo a biprime N.
- 2. It is hard to compute e'th powers modulo a biprime N.
- 3. It is hard to factor a number N into its prime factors.

More about RSA

The RSA cryptosystem

Key Generation

- 1. Find two large primes p, q and e with $\gcd(e, (p-1) \cdot (q-1)) = 1$
- 2. Compute $N = p \cdot q$
- 3. Find d such that $d \cdot e = 1 \mod (p-1)(q-1)$

C

Compute $c = m^e \mod N$

Not IND-CPA/IND-CCA secure

Compute $m = c^d \mod N$

Core of the problem for IND-CPA: no randomness

As many messages as ciphertexts, encryption/decryption is bijection

Solving the IND-CPA problem

Core of problem for IND-CCA: Malleable ciphertexts

In RSA we can change ciphertexts such that their plaintexts change in a predictable way

Solving the IND-CCA problem

RSA-OAEP

Let
$$k = 8 \cdot \lfloor \log_8 N \rfloor$$
 and $k_0, k_1 > 128, n = k - k_0 - k_1$

Messages $m \in \{0,1\}^n$ Hash functions $G: \{0,1\}^{k_0} \to \{0,1\}^{n+k_1}$, $H: \{0,1\}^{n+k_1} \to \{0,1\}^{k_0}$

Encryption for *m*, *N*, *e*:

- 1. Sample random bit string $R \in \{0,1\}^{k_0}$
- 2. Compute $A = [(m|0^{k_1}) \oplus G(R), R \oplus H((m|0^{k_1}) \oplus G(R))]$
- 3. Set $c = A^e \mod N$

Decrypt RSA-OAEP

```
Messages m \in \{0,1\}^n
Hash functions G: \{0,1\}^{k_0} \to \{0,1\}^{n+k_1}, H: \{0,1\}^{n+k_1} \to \{0,1\}^{k_0}
```

Format:
$$[(m|0^{k_1}) \oplus G(R), R \oplus H((m|0^{k_1}) \oplus G(R))]$$

Decryption for c, N, d:

- 1. Compute $A' = c^d \mod N$ and check if $A' < 2^k$
- 2. Let $A' = [B_0, B_1]$ and compute $R' = H(B_0) \oplus B_1$
- 3. Compute $m' = B_0 \oplus G(R')$. If m' ends with k_1 0s then recover m

Why RSA-OAEP works

Messages $m \in \{0,1\}^n$

Hash functions G: $\{0,1\}^{k_0} \to \{0,1\}^{n+k_1}$, $H: \{0,1\}^{n+k_1} \to \{0,1\}^{k_0}$

Format:
$$A = [(m|0^{k_1}) \oplus G(R), R \oplus H((m|0^{k_1}) \oplus G(R))]$$

IND-CPA: every choice of R, m gives different A (2^{k_0} many)

Why RSA-OAEP works

Messages $m \in \{0,1\}^n$

Hash functions G: $\{0,1\}^{k_0} \to \{0,1\}^{n+k_1}$, $H: \{0,1\}^{n+k_1} \to \{0,1\}^{k_0}$

Format:
$$A = [(m|0^{k_1}) \oplus G(R), R \oplus H((m|0^{k_1}) \oplus G(R))]$$

Changing 1 bit in m or *R* creates entirely different block

Related messages don't have an algebraic relation!

Hybrid encryption

AES vs. RSA on a modern AMD Ryzen 9 5950X from 2020. 16 cores but we only use 1.

AES-128

- 1. It takes around 16 cycles per byte (https://bench.cr.yp.to/results-stream.html) to encrypt/decrypt AES-128. For a whole ciphertext of 16 bytes, that is around 256 cycles.
- 2. The processor runs at 3.400 MHz, i.e. it performs 3.400.000.000 cycles per second.
- 3. One core can approximately encrypt/decrypt 13.300.000 ciphertexts per second.

RSA w/ 2048 bit keys

- 1. Encryption with small exponent: ≈ 12.000 cycles
- 2. Decryption: $\approx 2.400.000$ cycles

(from https://bench.cr.yp.to/results-kem.html)

Hybrid encryption (key encapsulation)

Use PKE scheme Enc^{Pub} , Dec^{Pub} together with SKE scheme Enc^{Sym} , Dec^{Sym}

- 1. Recover $k \leftarrow Dec^{Pub}(c_1, sk)$.
- 2. Decrypt $m \leftarrow Dec^{Sym}(c_2, k)$.

2. Compute $c_1 \leftarrow Enc^{Pub}(k, pk)$.

Choose symmetric key k.

3. Compute $c_2 \leftarrow Enc^{Sym}(m, k)$.

Digital Signatures

Digital Signatures

Use cases of digital signatures

• ``digital'' equivalent of signing a contract (NemID/MitID)

Building authenticated channels over insecure network

Software integrity

Transactions in cryptocurrencies

Defining Security

MACs for public key setting!

Unforgeability:

No adversary with vk and message/signature pairs m_1, σ_1, \dots should be able to make new m, σ

EUF-CMA for Signatures

Signatures from RSA: the wrong way

Signing key: secret *d*

Verification key: N, e

Counterexample 1

Generate signature on ``random'' message:

- 1. Let pk = (N, e)
- 2. Fix a random element $\sigma \in Z_N^*$
- 3. Compute $m = \sigma^e \mod N$

 (m, σ) is valid by construction

Counterexample 2 – Inspired by Homework 2

We want to forge a signature on m

- 1. Choose $m_1 \in Z_N^*$, compute $m_2 \leftarrow \frac{m}{m_1} \mod N$
- 2. Ask EUF-CMA oracle to compute $\sigma_1 \leftarrow Sign(m_1, sk), \sigma_2 \leftarrow Sign(m_2, sk)$
- 3. Then $\sigma = \sigma_1 \cdot \sigma_2 = m_1^d \cdot m_2^d = m^d$ is a valid signature on m!

Digital Signatures using RSA: RSA-FDH

Signing key: secret *d*

Verification key N, e

Cryptographic hash $H: \{0,1\}^* \to Z_N^*$

Verify m, σ :

Check that $H(m) = \sigma^e \mod N$

Any RSA instance for encryption can also be used for signing!

EUF-CMA security

Recap from Problem Sheet 5: the Random Oracle Model

Looking at EUF-CMA

What we prove

Assuming *H* is a random oracle. Then given the RSA problem is hard (Problem Sheet 6), RSA-FDH is EUF-CMA secure.

RSA Challenger

 $(pk, sk) \leftarrow KG()$ $c \in Z_N^*$

Win if Enc(m, pk) = c

m

Carsten Baum

32

Summary

When using RSA, use RSA-OAEP to make it IND-CCA secure (16.2.1 in the book)

Hybrid encryption for long messages

Digital signatures

RSA signatures using RSA-FDH