M2 Informatique Réseaux

Multimédia et Qualité de Service

Cours 1: RTP

Timur FRIEDMAN

A propos du module

- Cinq cours
 - RTP
 - multicast
 - TCP Friendly
 - signalisation
 - Int Serv, Diff Serv, MPLS, et RSVP

Evaluation

- Not e
 - 60 % écrit
 - 40 % cont rôle cont inu
- Ecrit
 - examen (document s non aut or isés)
- Contrôle continu
 - quest ions en cours : 10 %
 - TDs: 30 %
 - papiers, normes discussion : 30 %
 - contribution au wiki : 30 %

Pour la semaine prochaine

- préparer les exercices du TD
 - sur le sit e www-rp.lip6.fr/~friedman à partir de demain
- lire le papier
 - Timer Reconsideration for Enhanced RTP Scalability
 - par Jonathan Rosenberg Henning Schulzrinne
 - Proc. I nf ocom 1998
- lire le RFC 3550
- visit er le Wiki
 - disponible à partir de demain
- préparer le prochain cours sur le multicast

Survol du module

- Basé sur des connaissances réseau
- en particulier : internet
- Revisit er les couches OSI suivant es :
- Application
- Transport
- Réseau
- Les voir sous l'optique du multimédia

Motivation

```
Internet : pas conçu pour multimédiaun réseau pour texte, données
```

- Depuis ...
- Web :images
- lecture en transit (*streaming*) audio et vidéo
- jeux interactifs
- voix sur IP(*VolP*): voix en temps réelle
- visioconf ér ence

Problématique

Internet : un réseau dit de « moindre effort » (best effort)

délais

pert es

déséquencement

duplicat as

- Applications multimédia : besoin de garanties
- e.g. Vol Pavec trop de délai ne fonctionne pas
- Est-ce qu'un seul réseau peut tout fournir ?

Couche application

- Le signalisation
- RTSP, SDP, H.323, SIP

Couche transport

- Confront er le congestion dans le réseau
- l'approche TCP-Amical (TCP-Friendly)
- DCCP/ TFRC
- l'approche Qualit é de service (QoS)
- Int Serv, Diff Serv, RSVP, MPLS
- (sur plusieurs couches, mais on en parle ici)
- Four nir les fonctionnalités temps réelle
- RTP/ RTCP

Couche réseau

- Diffusion à grande échelle : le multicast
- I GMP (prot ocole de bordure)
- DVMRP et PIM (prot ocoles de rout age)
- RMT (couche transport)

Plan du cours

- Introduction
- Communication en temps réel
- RTP
- Limitation de débit RTCP
- RTP et le temps réel

Introduction

- RTP est un protocole de transport dans l'Internet
 - Dans la couche 4, comme TCP, mais implémenté sur UDP
 - RFCs 3550 et 3551 (juillet 2003 RFCs originaux de 1996)
- RTP est pour les applications « temps réel »
 - Par exemple la téléphonie, le visioconférence
 - TCP n'est pas adapté pour ces applications
- RTP est conçu pour la communication multipoint
 - RTP marche sur le multicast
- RTP fournit un cadre aux applications
 - Il laisse beaucoup de fonctionnalité aux applications
 - Il fournit les outils nécessaires (e.g. estampilles temporelles)

Plan

- Introduction
- Communication en temps réel
 - Applications
 - Caractéristiques
 - Besoins
- RTP
- Limitation de débit RTCP
- RTP et le temps réel

Communications en temps réel

- Avertissement : une certaine idée du temps réel
 - Orientée audio et vidéo interactive
 - Pas le temps réel dans le sens technique
 - Pas « systèmes durs temps réel »
- Mieux compris en fonction d'exemples...

Applications typiques

- Voix sur IP (« VoIP »)
 - Téléphonie
- Visioconférence
 - Voix
 - Vidéo
 - Transparents
- Jeux interactives
 - Mises à jour de mouvement
 - Communication entre participants

Applications moins typiques

- Diffusion d'actualités
 - Données (par exemple à propos de la bourse)
- Moniteur à distance
 - Collection de données
- Control télémétrique
 - Données
 - Commandes
- RTP à été conçu plutôt pour audio et vidéo
 - (Mais pas exclusivement)

Caractéristiques

- Interactivité
 - Exemple : téléphonie
 - Communication dans deux sens
 - Exemple moins typique : vidéo sur demande
 - Seulement marche/arrêt, reculer, avancer, recherche
- Intolérance pour les délais
 - Exemple : vidéo
 - Une trame arrive > 500 ms en retard
 - Mieux jeter que d'utiliser

Caractéristiques bis

- Tolérance pour les pertes
 - Exemple : voix en paquets G.711 (sans redondance)
 - Perte de 1 % de trames négligeable en termes de qualité
 - Exemple : vidéo codé en MPEG
 - Perte de trames B est permis
 - Au moins que les trames I et P arrivent
 - Exemple moins typique : données de la bourse
- Communications multipoint
 - Exemple : visioconférence
 - Communications bidirectionnels sont un cas particulier

Besoins

- Horodatage des données
- Synchronisation des flux
- Résistance contre les pertes, duplicatas, mauvais ordre
- Identification de participants
- Surveillance de l'état de la connexion
- Contrôle de flux
- Contrôle de congestion
- Besoins avancés :
 - Support pour le transcodage de données
 - Sécurité de données

Horodatage des données

- l'Internet est un réseau « moindre effort »
 - Pas de garanties de délai
 - A la différence avec X.25, par exemple
 - X.25 garde les intervalles d'origine
- Contraintes temporelles pour la lecture
 - Chaque trame audio ou vidéo doit être lu à un moment précis
 - On jette les trames qui arrivent en retard
- Technique : mise en mémoire
 - Avec l'horodatage on récupère les intervalles d'origine

Horodatage exemple

la norme G.729 : trames de voix à 62,5 Hz

Synchronisation des flux

- Une applications peut avoir plusieurs flux
 - Audio
 - Vidéo
 - Transparents
- La lecture des flux doit être synchronisée
 - Si, par exemple, la voix n'est pas codée dans le vidéo
- Besoin d'établir l'équivalence entre :
 - L'horodatage de chaque flux
 - (Il peut être artificiellement régulier)
 - Le « temps de l'horloge murale »

Synchronisation exemple

d'après H. Schulzrinne

23

Résistance contre les pertes, etc.

- L'Internet est un réseau « moindre effort », donc :
 - Pertes des paquets
 - Duplicatas des paquets
 - Paquets qui arrivent dans le mauvais ordre
- Pour faire face aux pertes : la redondance
 - L'émetteur doit connaître le taux de pertes
 - Plus il y a de pertes, plus on ajoute de la redondance
- Pour faire face aux duplicatas, mauvais ordre :
 - Numéros de séquence
- Retransmissions?
 - Pas systématiquement (problème de délais)

Identification des participants

- Communications multipoint : plusieurs participants
 - Identification aux autres participants
 - Démultiplexage des flux
 - Destinés vers le même adresse, même numéro de port
- Moyens d'identification
 - Nom: M Dupont
 - Adresse courriel : m.dupont@online.fr
 - Nom logique de machine : dhcp-51.online.fr
 - Adresse IP / numéro de port : 135.227.61.57/24882
 - Autres ?

Surveillance de l'état de la connexion

- Paramètres génériques :
 - Le taux de pertes
 - La gigue (variance des délais)
- La connaissance de ces paramètres aide :
 - Les applications adaptatives
 - Ajouter de la redondance en fonction des pertes
 - Augmenter la mise en mémoire en fonction de la gigue
 - L'administrateur du réseau
 - Reconnaissance des failles

Contrôle de flux

- Chaque récepteur peut avoir plusieurs mémoires :
 - Pour l'audio
 - Pour le vidéo
- Dans les communications multipoints :
 - Le nombre peut être multiplié par le nombre d'émetteurs
- Comment signaler la mémoire disponible ?
 - Dans le TCP : fenêtre avertie
 - Dans le multi flux, multipoint c'est plus compliqué

Contrôle de congestion

- Le contrôle de congestion dans l'Internet :
 - TCP
 - Un contrôle de bout en bout
- Problèmes avec le TCP pour le temps réel :
 - TCP est monolithique :
 - Contrôle de congestion
 - Fiabilité par retransmissions
 - TCP existe exclusivement en version unicast
- Si on veut se dispenser de TCP
 - Il est conseillé d'être amicale avec TCP (« TCP-friendly »)
 - On doit connaître les délais et les taux de pertes

Transcodage

- Des situations difficiles :
 - Un récepteur derrière un lien à débit faible
 - Un récepteur qui ne peut pas décoder un format donné
 - Un récepteur derrière un pare-feux
- On peut transcoder l'audio, le vidéo :
 - Éliminer le stéréo, diminuer la qualité
 - Rendre les images plus petites
 - Changer de formats
- On peut combiner les flux
- On peut changer les numéros de port

Sécurité

- Authentification des participants
- Autorisation des participants
- Intégrité de données
- Confidentialité de données

Plan

- Introduction
- Communication en temps réel
- RTP
 - Pourquoi un autre protocole de transport ?
 - Séparation données/contrôle
 - Profiles différentes pour applications différentes
 - Les paquets RTP
 - Les paquets RTCP
- Limitation de débit RTCP
- RTP et le temps réel

Pourquoi un autre protocole de transport ?

- Pourquoi pas TCP ?
 - TCP exige la fiabilité à 100%
 - TCP favorise la fiabilité au dépens des délais
 - TCP existe seulement en version unicast
- Pourquoi pas UDP ?
 - UDP fournit peu d'outils :
 - Les numéros de port pour le démultiplexage
 - Un checksum
- RTP est adapté aux besoins du temps réel
- RTP est léger et flexible

Séparation données/contrôle

- RTP consiste en deux protocoles :
 - RTP pour l'acheminement de données
 - RTCP pour échanger les messages de contrôle
- Les différences avec TCP :
 - Chaque paquet TCP contient des champs de contrôle :
 - Acquittements, taille de la fenêtre, etc.
 - Solution adapté pour une boucle de contrôle étroite
 - RTP fonctionne en multipoint
 - RTP n'exige pas la fiabilité à 100%
- Deux numéros de ports voisins
 - Par exemple : données port 12040, contrôle port 12041

Différentes profiles

- Un solution n'est pas adapté à toutes les applications
 - Par exemple il existe plusieurs codecs audio
 - Chaque codec à son propre horodatage
 - Les codecs vidéo ont encore d'autres horodatages
- RTP (RFC 3550) fournit un cadre
- Les « profiles » (RFC 3551) fournissent les détails
 - Quelques profiles audio :
 - GSM, PCMA, G.722
 - Quelques profiles vidéo :
 - JPEG, H.261, MPEG 1 et MPEG 2

Les paquets RTP

Χ

```
0
                                            sequence number
                                timestamp
               synchronization source (SSRC) identifier
                                  data
  : version
   : padding (at end of data)
   : extension (after the header)
CC : CSRC count(additional sources)
   : marker (profile specific)
PT : packet type
```

A propos des paquets RTP

- Un format simple, principalement :
 - Identificateur de source (SSRC)
 - Type de paquet (PT)
 - Numéro de séquence
 - Estampille temporelle
 - Données
- Longueur et numéro de port dans l'en-tête UDP
- Peu de surcharge
 - Douze octets d'en-tête (par rapport à 20 pour TCP)
 - Possibilité d'ajouter des extensions

SSRC: synchronization source identifier

- Identifiant d'un flux de paquets
 - A chaque SSRC correspond :
 - Une espace de numéros de séquence
 - Une espace temporelle
 - Une application peut avoir plusieurs SSRCs
 - Par exemple : un pour l'audio, un pour le vidéo
- Globalement unique
 - $2^{32} = 4.3 \times 10^9$ valeurs possibles
 - Choisi à l'aléatoire
 - Algorithme de détection de collisions

Indépendance de la couche inférieure

- Le SSRC est indépendant de l'adresse machine
 - RTP fonctionne sur IPv4, IPv6, ou d'autres protocoles
- On sépare les couches réseau et transport

PT: packet type

PT	encoding name	media type	clock rate (Hz)	channels
0	PCMU	A	8000	1
2	G726-32	A	8000	1
3	GSM	A	8000	1
5	DVI4	A	8000	1
6	DVI4	A	16000	1
7	LPC	A	8000	1
8	PCMA	A	8000	1
9	G722	A	8000	1
10	L16	A	44100	2
11	L16	A	44100	1
12	QCELP	A	8000	1
14	MPA	A	90000	?
15	G728	A	8000	1
16	DVI4	A	11025	1
17	DVI4	A	22050	1
18	G729	A	8000	1
25	CelB	V	90000	
26	JPEG	V	90000	
28	nv	V	90000	
31	H261	V	90000	
32	MPV	V	90000	
96-127	dynamic	?		

Numéro de séquence

- Permet de reconstruire l'ordre de paquets
 - Mais aucun mécanisme de retransmission
 - Simplement un support pour l'application
- Deux octets : 2¹⁶ = 65 536 numéros possibles
 - Une espace de numéros par SSRC
 - Numéro initial choisi à l'aléatoire
 - Facilite la confidentialité par l'encryption
 - Augmente par 1 même si l'horloge n'avance pas

Estampille temporelle

- Essentielle pour la lecture des paquets
 - Sert aussi à calculer la gigue
- Les unités sont dépendants de l'application
- Quatre octets: $2^{32} = 4.3 \times 10^9$ valeurs possibles
 - Une espace de valeurs par SSRC
 - Valeur initiale choisie à l'aléatoire
 - Facilite la confidentialité par l'encryption
 - Augmente dans une manière régulière
 - N'augmente pas s'il s'agit d'une même trame

Les paquets RTCP

 ∇

```
0
  |V=2|P|SC=n
                                     length
                    SSRC of receiver
                information regarding SSRC 1
  information regarding SSRC 2
                information regarding SSRC n
 : version
  : padding (at end of data)
SC : source count
PT : packet type
```

A propos des paquets RTCP

- Un cadre pour des rapports :
 - Identificateur de récepteur (SSRC)
 - Type de paquet (PT)
 - Longueur de paquet
 - Il peut y avoir plusieurs paquets par paquet UDP
 - Nombre de sources
 - Un rapport par source
- Plusieurs genres de rapport possibles
 - Receiver Report (RR), Sender Report (SR), autres

Les rapports RR: Receiver Report

PT: 201

A propos des rapports RR

- Information sur chaque source (SSRC) :
 - Numéro de séquence
 - Pertes
 - Depuis le dernier rapport (en pourcentage)
 - Depuis le début (en nombre brut)
 - Information concernant le RTT
 - ■RTT = « round trip time »
 - Temps aller-retour depuis la source
 - Ne demande pas de réponse immédiat
 - Gigue

Le calcul du RTT

$$RTT = (t_{S2} - LSR) - DLSR$$

Le calcul de la gigue

Les rapports SR : Sender Report

PT: 200

Cet information va entre l'en-tête et les rapports RR

A propos des rapports SR

- Estampilles temporelles NTP
 - Temps de l'horloge murale
 - NTP = « Network Time Protocol »
 - Secondes depuis 0h UTC le 1 janvier 1900
 - ■32 premiers bits indiquent le nombre de secondes
 - 32 derniers bits indiquent la portion d'une seconde
- Estampille temporelle RTP
 - Le temps équivalent en unités de l'application
- Nombre de paquets, d'octets depuis le début

Les rapports SDES : Source Description

PT: 202

Information descriptif à propos de la source

Exemples des rapports SDES

- CNAME : doe@sleepy.megacorp.com
 - Nom constant à travers des SSRCs
- NAME: John Doe, Bit Recycler, Megacorp
- EMAIL: John.Doe@megacorp.com
- PHONE: +1 908 555 1212
- LOC: Murray Hill, New Jersey
- TOOL: videot ool 1.2
- NOTE : « ligne occupée »
- PRIV : usage privé

Autres rapports RTCP

- BYE
 - Pour terminer une session RTP
- APP
 - Spécifique à l'application
- XR (RFC 3611)
 - Rapports détaillés de pertes et de délais
 - Métriques VoIP
- Proposé :
 - Acquittements pour RTP en unicast

Plan

- Introduction
- Communication en temps réel
- RTP
- Limitation de débit RTCP
- RTP et le temps réel

Problème de résistance au facteur d'échelle

Débit RTP = 10 Kbps

Débit RTCP = 0,5 Kbps

Débit RTP = 10 Kbps

Débit RTCP = 2,5 Kbps ? X Débit RTCP = 0,5 Kbps

Un algorithme distribué

Soit :

- $d = d\acute{e}bit RTP (connu par tout le monde)$
- $d' = d\acute{e}bit RTCP = 0.05 d$
- d'' = débit RTCP des récepteurs = 0,75 d'
- n = nombre de récepteurs (estimé)
- T = taille moyenne des paquets RTCP (estimée)
- f = fréquence cible d'émission = d'' / nT
- Délai entre émission de paquets RTCP :
 - Choisi à l'aléatoire entre 0,5/f et 1,5/f

Estimation du nombre de récepteurs

- Chaque participant compte les participants
 - Arrivé d'un SR : compte une source
 - Arrivé d'un RR : compte un récepteur
- S'il s'agit d'un nouveau participant
 - Il n'a pas encore eu le temps de compter
 - Il attend une intervalle minimale

Plan

- Introduction
- Communication en temps réel
- RTP
- Limitation de débit RTCP
- RTP et le temps réel

Rappel des besoins

- Horodatage des données
- Synchronisation des flux
- Résistance contre les pertes, duplicatas, mauvais ordre
- Identification de participants
- Surveillance de l'état de la connexion
- Contrôle de flux
- Contrôle de congestion
- Besoins avancés :
 - Support pour le transcodage de données
 - Sécurité de données

Horodatage

- Estampille temporelle RTP
 - Spécifique à l'application
 - Pour la lecture des données

Synchronisation des flux

- Estampille temporelle NTP
 - Temps de l'horloge murale
 - Coordination entre les estampilles d'applications

Résistance contre les pertes, etc.

- Récolte d'informations :
 - Numéro de séquence RTP
 - Taux de pertes
 - Nombre de paquets perdus
- Pas de mécanisme intégré
 - A l'application de réagir
 - Chaque application à ses propres besoins
 - Exemple : redondance audio
 - Exemple : protection de trames I en MPEG

Identification de participants

- CNAME
 - Exemple: doe@sleepy.megacorp.com
 - Unique et constant à travers les flux
- SSRC
 - Numéro unique par participant par flux
- Informations SDES
 - Informations supplémentaires

Surveillance de l'état de la connexion

- Les RR
 - Pertes depuis le dernier rapport
 - Pertes depuis le début
 - Information concernant le RTT
 - Gigue
- D'autres rapports
 - Les XR : information détaillé sur pertes, délais, métriques VoIP

Contrôle de flux

- Données RTP
 - Pas de mécanismes de contrôle de flux
- Rapports RTCP
 - Mécanisme de limitation du débit des rapports
 - Typiquement à 5% du débit des données RTP

Contrôle de congestion

- Pas de mécanisme dans l'RTP
- RTCP fourni des informations
 - Taux de pertes, par exemple
 - Ils peuvent être utilisés par une application

Support pour le transcodage de données

- RTP permet de mélanger les flux
 - Plusieurs SSRCs attachés à un flux mélangé
- Les détails dépendent de l'application

Sécurité de données

- RTP est compatible avec la sécurité
 - Numéro de séquence initialisé à une valeur aléatoire
 - Pareil pour l'estampille temporel
- L'encryption n'est pas encore dans le norme
 - Un sujet de travail actuel