(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年9 月30 日 (30.09.2004)

(10) 国際公開番号 WO 2004/083184 A1

C07D 217/26, 403/06, 403/12. (51) 国際特許分類7: 491/113, A61K 31/472, 31/4741, A61P 43/00, 29/00, 35/00, 15/00, 15/08, 15/10, 15/14, 37/00, 5/48, 3/10, 3/02, 3/06, 17/00, 19/02, 19/08, 9/10, 7/02, 1/00, 13/10

(21) 国際出願番号:

PCT/JP2004/003496

(22) 国際出願日:

2004年3月16日(16.03.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-072709 2003年3月17日(17.03.2003)

(71) 出願人(米国を除く全ての指定国について): 武田薬品 工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒5410045 大阪府大阪市中央区道修町 四丁目 1 番 1 号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 伊藤 文雄(ITOH, Fumio) [JP/JP]; 〒3050821 茨城県つくば市春日1丁 目7-9-604 Ibaraki (JP). 日沼州司 (HINUMA, Shuji) [JP/JP]: 〒3050821 茨城県つくば市春日1丁 目 7 - 9 - 1 4 0 2 Ibaraki (JP). 神崎 直之 (KAN-ZAKI, Naoyuki) [JP/JP]; 〒5670867 大阪府茨木市大正 町2-15-203 Osaka (JP). 阪野 義広 (BANNO, Yoshihiro) [JP/JP]; 〒5650875 大阪府吹田市青山台3丁 目 1 - 2 0 4 Osaka (JP). 吉田 博美 (YOSHIDA, Hiromi) [JP/JP]; 〒3002741 茨城県結城郡石下町大字

国生 1 4 4 4 - 2 3 Ibaraki (JP). 松本 寛和 (MAT-SUMOTO, Hirokazu) [JP/JP]; 〒3050821 茨城県つく ば市春日2丁目35-10 Ibaraki (JP).

- (74) 代理人: 高橋 秀一, 外(TAKAHASHI, Shuichi et al.); 〒5320024 大阪府大阪市淀川区十三本町2丁目17番 8 5号 武田薬品工業株式会社大阪工場内 Osaka (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が 可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: RECEPTOR ANTAGONIST

(54) 発明の名称: 受容体拮抗剤

(57) Abstract: A compound represented by the formula (I) [wherein ring A represents an aromatic ring; X represents a bond, oxygen, NR4 (R4 represents hydrogen, a hydrocarbon group, or a heterocyclic group), or alkylene; R1 represents a hydrocarbon group or heterocyclic group; R2 represents -COYR5 (Y represents a bond, alkylene, oxygen, sulfur, or NR6 (R6 represents hydrogen, a hydrocarbon group, or a heterocyclic group) and R5 represents a hydrocarbon group or a heterocyclic group), hydrocarbon group, or heterocyclic group; and R³ represents a hydrocarbon group, heterocyclic group, optionally substituted hydroxy, optionally substituted amino, or -S(O)nR7 (R7 represents a hydrocarbon group or heterocyclic group and n is 0 to 2)], a salt of the compound, or a prodrug of either is useful as an agent for control-

(57) 要約:

$$\begin{array}{c|c}
\overrightarrow{R}^{1} \\
\nearrow & X \\
\nearrow & X
\end{array}$$
(1)

(式中、現Aは芳香環を、Xは結合手、O、NR⁴(R⁴は水素原子、炭化水素基または複素環基を示す)またはアルキレン基を、R¹は炭化水素基または複素環基を、R²は式-COYR⁵(Yは結合手、アルキレン基、O、SまたはNR⁶(R⁶は水素原子、炭化水素基または複素環基を示す)を、R⁵は炭化水素基または複素環基を示す)で表される基、炭化水素基または複素環基を、R³は炭化水素基、複素環基、置換されていてもよいヒドロキシ基、微換されていてもよいアミノ基または式-S(O)nR⁷(R⁷は炭化水素基または複素環基を、nは0~2を示す)で表される基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグはRFRP受容体機能調節剤として有用である。

明細書

受容体拮抗剂

5 技術分野

本発明は、鎮痛剤などの医薬として有用なイソキノリノン骨格を有するR FRP受容体機能調節剤に関する。

背景技術

15

10 RFRP-1、RFRP-2およびRFRP-3と呼ばれる分泌ペプチドお よび該分泌ペプチドが結合するG蛋白質共役型レセプター蛋白質OT7T02 2 (以下、RFRP受容体と略記する)が知られている(WO00/2944 1)。

RFRP-1、RFRP-2およびRFRP-3がプロラクチン分泌調節作用を有することが知られている(WO01 \angle 66134)。

RFRP-1がモルヒネの鎮痛作用を抑制することが知られている(Journal of Biological Chemistry, vol. 276, No. 40, p36961-36969, 2001)。

イソキノリン化合物がPDE V阻害作用、ACAT阻害作用、タキキニン拮抗作用(例、鎮痛作用)、抗痙攣作用、ジペプチジルペプチダーゼ(DPP)

1V阻害作用などを有することが知られているが(特開平10-298164、特開2000-72675、特開2000-72751、EP-481383、EP-566069、EP-585913、EP-634402、EP-652218、WO02/62764、Arch. Pharm., 324, 809-814(1991))、RFRP受容体に結合することは知られていなかった。

本発明は、RFRP受容体に対して優れた拮抗作用を有する合成化合物を提供することを目的とする。

発明の開示

本発明者らは、上記の課題を解決するために、鋭意研究を重ねた結果、イソキノリノン骨格を有する化合物またはその塩がその特異的な化学構造に基づいて、予想外にも優れたRFRP受容体拮抗作用を有しており、更に安定性等の医薬品としての物性においても優れた性質を有しており、鎮痛剤等として安全でかつ有用な医薬となることを見出し、これらの知見に基づいて本発明を完成した。

すなわち、本発明は、

(1)式

5

10

15

20

[式中、環Aは置換されていてもよい芳香環を、Xは結合手、O、NR⁴(R⁴は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R²は式一COYR⁵(Yは結合手、置換されていてもよいアルキレン基、O、SまたはNR⁶(R⁶は水素原子、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁵は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R³は置換されていてもよい炭化水素を関換されていてもよい複素環基を、R³は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有することを特徴とするRFRP受容体機能調節剤、

- (2) R3が置換されていてもよいヒドロキシ基である上記(1)記載の剤、
- 25 (3)式

$$\begin{array}{c|c}
 & R^1 \\
 & X \\
 & R^2
\end{array}$$
(11)

〔式中、環Bは置換されていてもよいベンゼン環を、他の記号は上記(1)記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する上記(1)記載の剤、

(4)式

5

10

$$\begin{array}{c|c}
O & R^8 \\
X & X
\end{array}$$

$$\begin{array}{c|c}
X & (111) \\
R^3 & O
\end{array}$$

〔式中、環Bは置換されていてもよいベンゼン環を、Zは結合手、置換されていてもよいアルキレン基、O、SまたはNR¹⁰(R¹⁰は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁸およびR⁹はそれぞれ置換されていてもよい分岐状の炭化水素基を、他の記号は上記(1)記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する上記(1)記載の剤、

(5)式

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

15 〔式中、環Bは置換されていてもよいベンゼン環を、R¹¹は置換されていても よいヒドロキシ基を示す。〕で表される化合物もしくはその塩またはそのプロ ドラッグを含有する上記(1)記載の剤、

- (6)鎮痛剤、他の鎮痛薬の鎮痛作用促進剤または他の鎮痛薬による耐性回避 剤である上記(1)記載の剤、
 - (7) プロラクチン分泌調節剤である上記(1)記載の剤、
- (8) 高プロラクチン血症、下垂体腺腫瘍、間脳腫瘍、月経異常、ストレス、 自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル(Chiari-Frommel)症候群、アルゴンツーデル・カスティロ(Argonz-del Castilo)症候群、フォーベス・アルブライト (Forbes-Albright)症候群、乳癌リンパ腫、シーハン症候群または精子形成異常の予防・治療剤である上記(1)記載の剤、
- 10 (9) 膵グルカゴン分泌抑制剤、血糖低下剤または尿生成抑制剤である上記(1)記載の剤、
 - (10)糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、頻尿、夜尿症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良または記憶学習障害の予防・治療剤である上記(1)記載の剤、
 - (11)膀胱収縮抑制剤である上記(1)記載の剤、
 - (12) 尿失禁、下部尿路疾患、過活動膀胱による切迫尿意、または過活動膀胱を伴った低緊張性膀胱の予防・治療剤である上記(1)記載の剤、

(13)式

$$\begin{array}{c|c}
 & R^{12} \\
 & X \\$$

20

25

15

〔式中、環Bは置換されていてもよいベンゼン環を、Xは結合手、O、 NR^4 (R^4 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または置換されていてもよいアルキレン基を、Zは結合手、置換されていてもよいアルキレン基、O、Sまたは NR^{10} (R^{10} は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、 R^{12} および R^{13} はそれぞれ置換されていてもよい C_3 以上の炭化水素基を

10

25

、R³は置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基または式ーS (O) nR^7 (R 7 は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは $0\sim2$ の整数を示す)で表される基を示す。〕で表される化合物またはその塩(ただし、6-フルオロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸tert-ブチルエステル、4-ブトキシ-6-フルオロ-2-ネオペンチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル、7-ペンジルオキシ-4-ヒドロキシ-2-イソ ブチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステルエステルなど6-ペンジルオキシ-4-ヒドロキシ-2-イソプチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステルなパーペンジルオキシ-4-ヒドロキシ-2-イソプチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステルを除く)、

- (14) Xがメチレン基である上記(13)記載の化合物、
- (15) ZがOである上記(13)記載の化合物、
- (16) R¹²がtert-プチル基である上記(13)記載の化合物、
- 15 (17) R¹³がtert-ブチル基である上記(13)記載の化合物、
 - (18) R³が置換されていてもよいヒドロキシ基である上記(13)記載の化合物、

(19)式

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

20 〔式中、環Bは置換されていてもよいベンゼン環を、 R^{11} は置換されていても よいヒドロキシ基を示す。〕で表される上記(13)記載の化合物、

(20) (i) 7-ブロモ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロイソキノリン-3-カルボン酸エチルエステル、(ii)8-ヒドロキシ-6-ネオペンチル-5-オキソ-5, 6-ジヒドロ[1, 3] ジオキソロ[4, 5-g] イソキノリン-7-カルボン酸エチルエステル、(iii)N- $\{2$ - $\{2$ - $\{1\}$ (メチル)アミノ $\{1\}$ (エチル $\{2\}$ - $\{1\}$) $\{2\}$ (ステル)アミノ $\{1\}$ (ステル $\{2\}$ - $\{1\}$) $\{2\}$ (ステル $\{2\}$) $\{1\}$ (ステル $\{2\}$ (ステル $\{2\}$) $\{1\}$ (ステル $\{2\}$

10

15

20

25

ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ3-イソキノリンカルボキサミド、(iv) 6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸メチルエステルもしくは(v) 6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸メチルエステル、またはその塩、

(21)上記(13)または上記(20)記載の化合物のプロドラッグ、

(22)上記(13)または上記(20)記載の化合物またはそのプロドラッグを含有してなる医薬、:

(23) RFRP関連病態またはRFRPが関与する疾患の予防・治療剤である上記(22) 記載の医薬、

(24) 哺乳動物に対して、式

【式中、環Aは置換されていてもよい芳香環を、Xは結合手、O、NR4(R4は水素原子、置換されていてもよい炭化水素基または置換されていてもよいアルキレン基を、R1は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R2は式ーCOYR5(Yは結合手、置換されていてもよいアルキレン基、O、SまたはNR6(R6は水素原子、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R5は置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基、置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R3は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R3は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R3は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R3に置換されていてもよい炭化水素基をで、CO)のR7に、CR7は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合

10

15

20

25

物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴と するRFRP受容体の機能調節方法、

(25) RFRP受容体機能調節剤を製造するための式

$$A \downarrow N X X$$

$$R^{2}$$

$$R^{3}$$

〔式中、環Aは置換されていてもよい芳香環を、Xは結合手、〇、NR⁴(R⁴は水素原子、置換されていてもよい炭化水素基または置換されていてもよい 複素環基を示す)または置換されていてもよいアルキレン基を、R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R²は式ーCOYR⁵(Yは結合手、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁵は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R³は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R³は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R¹は置換されていてもよい複素環基を、R¹は置換されていてもよい複素環基を、R¹は置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグの使用などに関するものである。さらに、本発明は、

(26) 環Aが置換基A群から選ばれる置換基で置換されていてもよい(i) 炭素数6ないし14の芳香族炭化水素環または(ii) 炭素原子以外に窒素原子、 硫黄原子及び酸素原子から選ばれる1または2種、1ないし4個のヘテロ原子 を含む5ないし14員の芳香族複素環で、

置換基A群が、

(i) ハロゲン原子、

- (ii) ニトロ基、
- (iii)シアノ基、
- (iv) 置換基B群〔ニトロ基、ヒドロキシ基、オキソ基、シアノ基、カルバモ イル基、モノーまたはジーC₁₋₆アルキルーカルバモイル基(該アルキル基はハ ロゲン原子、ヒドロキシ基、C₁₋₆アルコキシ基で置換されていてもよい)、モ 5 ノーまたはジーC₂₋₆アルケニルーカルバモイル基(該アルケニル基はハロゲン 原子、ヒドロキシ基、C1-6アルコキシ基で置換されていてもよい)、モノーま たはジーフェニルーカルバモイル基、モノーまたはジーベンジルーカルバモイ ル基、C₁₋₆アルコキシーカルボニルーカルバモイル基、C₁₋₆アルキルスルホ ニル-カルバモイル基、C₁₋₆アルコキシ-カルバモイル基、アミノ-カルバモ 10 イル基、モノーまたはジーC₁₋₆アルキルアミノーカルバモイル基、モノーまた はジーフェニルアミノーカルバモイル基、カルポキシル基、C₁₋₆アルコキシー カルポニル基、スルホ基、ハロゲン原子、ハロゲン化されていてもよい C_{1-6} アルコキシ基、ヒドロキシ基で置換されていてもよい C1-6アルコキシ基、カル ボキシル基で置換されていてもよい C1-6アルコキシ基、C1-6アルコキシーカ 15 ルボニル基で置換されていてもよい C1-6アルコキシ基、C1-6アルコキシー C 1-6アルコキシ基、 C_{1-6} アルコキシー C_{1-6} アルコキシー C_{1-6} アルコキシ基、 フェノキシ基、フェノキシーC₁₋₆アルキル基、フェノキシーC₁₋₆アルコキシ 基、C ₁₋₆アルキルカルポニル-オキシ基、カルバモイルオキシ基、モノ-また はジーC1-6アルキルーカルバモイルオキシ基、ハロゲン化されていてもよいフ 20 ェニル基、ハロゲン化されていてもよいフェニルーC1-6アルキル基、ハロゲン 化されていてもよいフェニルーC2-6アルケニル基、ハロゲン化されていてもよ いフェノキシ基、ピリジルオキシ基、C₃₋₁₀シクロアルキル基、C₃₋₁₀シクロ アルキルー C_{1-6} アルコキシ基、 C_{3-10} シクロアルキルー C_{1-6} アルキル基、ハ ロゲン化されていてもよい C_{1-6} アルキル基、ハロゲン化されていてもよい C_2 **25** _6アルケニル基、ハロゲン化されていてもよいC1-6アルキルチオ基、ヒドロキ シ基で置換されていてもよい С1-6アルキル基、ヒドロキシ基で置換されていて もよいC₁₋₆アルキルチオ基、メルカプト基、チオキソ基、ペンジルオキシ基(ハロゲン原子、カルボキシル基およびC₁₋₆アルコキシーカルボニル基から選ば

れる置換基で置換されていてもよい)またはベンジルチオ基(ハロゲン原子、 カルボキシル基およびC1-6アルコキシーカルボニル基から選ばれる置換基で 置換されていてもよい)、ハロゲン化されていてもよいフェニルチオ基、ピリ ジルチオ基、フェニルチオーC₁₋₆アルキル基、ピリジルチオーC₁₋₆アルキル 基、 ハロゲン化されていてもよい С 1-6アルキルスルフィニル基、フェニルス 5 ルフィニル基、フェニルスルフィニルーC1-6アルキル基、 ハロゲン化されて いてもよいC1-6アルキルスルホニル基、フェニルスルホニル基、フェニルスル ホニルーC1-6アルキル基、アミノ基、アミノスルホニル基、モノーまたはジー C₁₋₆アルキルアミノスルホニル基(該アルキル基はハロゲン原子、ヒドロキシ 基、C1-6アルコキシ基で置換されていてもよい)、C1-10アシルーアミノ基 10 (該C₁₋₁₀アシルはハロゲン原子、ヒドロキシ基、カルボキシル基で置換され ていてもよい)、ベンゾイルアミノ、 C_{1-6} アルキルスルホニルアミノ、 C_{6-1} 。アリールスルホニルアミノ、ベンジルオキシカルボニルアミノ、ハロゲン化さ れていてもよい C1-6 アルコキシカルポニルアミノ、カルバモイルアミノ基、モ ノーまたはジー C_{1-6} アルキルカルバモイルアミノ基、モノーまたはジー C_{1-6} 15 アルキルアミノ基(該アルキル基はハロゲン原子、ヒドロキシ基、C₁₋₆アルコ キシ基で置換されていてもよい)、モノーまたはジー C_{1-6} アルカノイルアミノ 基(該アルカノイル基はハロゲン原子、ヒドロキシ基、C₁₋₆アルコキシ基で置 換されていてもよい)、フェニルアミノ、ベンジルアミノ、C₁₋₆アルキル(C 7-16アラルキル)アミノ基、 C_{1-6} アルカノイル(C_{7-16} アラルキル)アミノ 20 基、4ないし6員環状アミノ基、4ないし6員環状アミノーカルボニル基、4 ないし6員環状アミノーカルポニルーオキシ基、4ないし6員環状アミノーカ ルボニルーアミノ基、4ないし6員環状アミノースルホニル基、4ないし6員 環状アミノー C_{1-6} アルキル基、 C_{1-6} アシル基(ハロゲン原子、カルボキシル 基およびC₁₋₆アルコキシーカルボニル基から選ばれる置換基で置換されてい 25 てもよい)、ベンゾイル基(ハロゲン原子、カルボキシル基およびC₁₋₆アルコ キシーカルポニル基から選ばれる置換基で置換されていてもよい)、ハロゲン 原子で置換されていてもよいベンゾイル基、酸素原子、硫黄原子および窒素原 子等から選ばれたヘテロ原子1ないし3種を少なくとも1個含む5ないし10

員複素環基(該複素環基は C_{1-6} アルキル基で置換されていてもよい)、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を少なくとも1個含む5ないし10員複素環ーカルポニル基(該複素環基は C_{1-6} アルキル基で置換されていてもよい)、ヒドロキシイミノ基、 C_{1-6} アルコキシイミノ基、アリール基、ハロゲン化されていてもよい直鎖状または分枝状の C_{1-4} アルキレンジオキシ基、ウレイド基および C_{1-6} アルキルーウレイド基)から選ばれる置換基で置換されていてもよい、直鎖状または分枝状の C_{1-15} アルキル基、 C_{3-10} シクロアルキル基、 C_{2-18} アルケニル基、 C_{3-10} シクロアルキル基、 C_{2-18} アルキニル基、 C_{3-10} シクロアルタニル基、 C_{1-15} アルキル基、 C_{2-18} アルキール基、 C_{2-18} アルキニル基、 C_{2-18} アルキール基、 C_{2-18} アルキニル基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルキール基、 C_{3-10} シクロアルキール基、 C_{3-10} シクロアルキール基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルキール基、 C_{3-10} シクロアルタニル基、 C_{3-10} シクロアルタニル

(v)置換基B群から選ばれる置換基で置換されていてもよい、酸素原子、硫 黄原子および窒素原子から選ばれたヘテロ原子1ないし3種を少なくとも1個 含む5ないし16員の芳香族複素環基、または飽和あるいは不飽和の非芳香族 複素環基(以下、置換されていてもよい複素環基)、

15 (vi)

5

10

20

- (a) 上記の置換されていてもよい炭化水素基、
- (b) R^ACO- 、 R^AOCO- 、 R^ASO_2- 、 R^ASO- または R^AOPO (O R^B)- (R^A は(a a) 水素原子、(b b) 上記の置換されていてもよい炭化水素基または(c c) 上記の置換されていてもよい複素環基を示し、 R^B は(a a) 水素原子または(b b) 上記の置換されていてもよい炭化水素基を示す)で表される基(以下、アシル基)、
 - (c)式 $-COOR^c$ (R^c は(a a)水素原子、(b b)上記の置換されていてもよい炭化水素基または(c c)上記の置換されていてもよい複素環基を示す)で表される基(以下、エステル化されていてもよいカルボキシル基)、

25 (d)

- (aa)上記の置換されていてもよい炭化水素基、
- (bb) 上記のアシル基、
- (cc)上記のエステル化されていてもよいカルポキシル基、
- (dd) C1-6アルキル基およびC6-14アリール基から選ばれる置換基1

- ~2個で置換されていてもよいカルバモイル基、
 - (ee) 上記の置換されていてもよい複素環基:

からなる群から選ばれる置換基で置換されていてもよいカルバモイル基(以下、置換されていてもよいカルバモイル基)、および

(e)上記の置換されていてもよい複素環基 からなる群から選ばれる置換基で置換されていてもよいヒドロキシ基(以下、 置換されていてもよいヒドロキシ基)、

(vii)

- (a) 上記の置換されていてもよい炭化水素基、
- 10 (b) 上記のアシル基、
 - (c)上記のエステル化されていてもよいカルボキシル基、...
 - (d) 上記の置換されていてもよいカルバモイル基、および
 - (e) 上記の置換されていてもよい複素環基

からなる群から選ばれる置換基で置換されていてもよいチオール基(以下、置 換されていてもよいチオール基)、

(viii)

15

25

- (a) 上記の置換されていてもよいヒドロキシ基、
- (b) 上記の置換されていてもよいアミノ基、
- (c) 上記の置換されていてもよい炭化水素基、および
- 20 (d) 上記の置換されていてもよい複素環基

からなる群から選ばれる置換基で置換されたスルフィニル基(以下、置換スルフィニル基)、

(ix)

- (a) 上記の置換されていてもよいヒドロキシ基、
- (b)上記の置換されていてもよいアミノ基、
 - (c) 上記の置換されていてもよい炭化水素基、および
 - (d) 上記の置換されていてもよい複素環基

からなる群から選ばれる置換基で置換されたスルホニル基(以下、置換スルホニル基)、

(x)

- (a) 上記の置換されていてもよい炭化水素基、
- (b) 上記のアシル基、
- (c) 上記のエステル化されていてもよいカルボキシル基、
- 5 (d) 上記の置換されていてもよいカルバモイル基、および
 - (e) 上記の置換されていてもよい複素環基

からなる群から選ばれる置換基で置換されていてもよいアミノ基(以下、置換されていてもよいアミノ基)、

- (xi) 上記のアシル基、
- 10 (xii) 上記の置換されていてもよいカルバモイル基、
 - (xiii) 上記のエステル化されていてもよいカルボキシル基、および
 - (xiv) C₁₋₃アルキレンジオキシ基からなる群で、

Xが(i)結合手、

- (ii) O,
- 15 (iii) NR⁴

(R⁴は

- (a) 水素原子、
- (b) 上記の置換されていてもよい炭化水素基、または
- (c) 上記の置換されていてもよい複素環基を示す)、または
- 20 (iv) 置換基Bから選ばれる置換基で置換されていてもよい C_{1-6} アルキレン基で、

R¹が

- (i)上記の置換されていてもよい炭化水素基、または
- (ii) 上記の置換されていてもよい複素環基で、

25 R²が

(i)式-COYR⁵

(Yは

- (a)結合手、
 - (b) 置換基Bから選ばれる置換基で置換されていてもよいC1-6アルキレン

基、

- (c) O,
- (d) S、または
- (e) NR⁶ (R⁶は
- 5 (aa) 水素原子、
 - (bb)上記の置換されていてもよい炭化水素基、または・
 - (cc) 上記の置換されていてもよい複素環基を示す)で、

R 5が

- (a) 上記の置換されていてもよい炭化水素基、または
- 10 (b) 上記の置換されていてもよい複素環基を示す) で表される基、
 - (ii) 上記の置換されていてもよい炭化水素基、または
 - (iii)上記の置換されていてもよい複素環基で、

R³が

- (i)上記の置換されていてもよい炭化水素基、
- 15 (ii) 上記の置換されていてもよい複素環基、
 - (iii) 上記の置換されていてもよいヒドロキシ基、
 - (iv) 上記の置換されていてもよいアミノ基、または
 - (v) 式-S(O) n R⁷

(R⁷は

- 20 (a) 上記の置換されていてもよい炭化水素基、または
 - (b) 上記の置換されていてもよい複素環基で、

nは0~2の整数示す)で表される基である上記(1)記載の剤、

(27) 環Bが置換基A群から選ばれる置換基で置換されていてもよいベンゼン環で、

25 Xが

- (i)結合手、
- (ii) O,
- (iii) NR⁴

(R⁴は

- (a) 水素原子、
- (b) 上記の置換されていてもよい炭化水素基、または
- (c) 上記の置換されていてもよい複素環基を示す)、または
- (iv) 置換基Bから選ばれる置換基で置換されていてもよいC₁₋₆アルキレン基

Zが

で、

5

- (i) 結合手、
- (ii) 置換基Bから選ばれる置換基で置換されていてもよい C_{1-6} アルキレン基
- 10 (iii) O,
 - (iv) S、または
 - $(v) NR^{10}$

(R¹⁰は

- (a) 水素原子、
- 15 (b) 上記の置換されていてもよい炭化水素基、または
 - (c) 上記の置換されていてもよい複素環基を示す)で、

 R^{12} および R^{13} がそれぞれ置換基Bから選ばれる置換基で置換されていてもよい、(i)直鎖状または分枝状の C_{3-15} アルキル基または(i i) C_{3-10} シクロアルキル基で、

- 20 R ³ が
 - (i)上記の置換されていてもよい炭化水素基、
 - (ii) 上記の置換されていてもよい複素環基、
 - (iii) 上記の置換されていてもよいヒドロキシ基、
 - (iv) 上記の置換されていてもよいアミノ基、または
- 25 (v) 式-S (O) n R⁷

(R⁷は

- (a)上記の置換されていてもよい炭化水素基、または
- (b) 上記の置換されていてもよい複素環基を、

nは0~2の整数を示す)で表される基である上記(13)記載の化合物

またはその塩などに関するものである。

図面の簡単な説明

図1はRFRP-1を無麻酔下のラットに静脈投与した際の血中グルコース濃度の変動を調べた結果を示す。図中、 $(-\bigcirc-)$ は生理食塩水投与群、 $(-\triangle-)$ はRFRP-1 1nmol/kg投与群および $(-\blacksquare-)$ はRFRP-1 10nmol/kg投与群の血中グルコース濃度を表す。値は平均値±標準偏差 $(mean\pm SE)$ (n=4)を示す。*は生理食塩水投与群に比べて、P値が0.05以下であることを示す。

図2はRFRP-1を無麻酔下のラットに静脈投与した際の血中グルカゴン濃度の変動を調べた結果を示す。図中、(-○-)は生理食塩水投与群、(-▲-)はRFRP-1 1nmo1/kg投与群および(-■-)はRFRP-1 10nmo1/kg投与群の血中グルカゴン濃度を表す。値は平均値±標準偏差(mean±SE)(n=4)を示す。**は生理食塩水投与群に比べて、P値が0.01以下であることを示す。

図3はRFRP-1を無麻酔下のラットに静脈投与した際の血中インスリン濃度の変動を調べた結果を示す。図中、(($-\bigcirc$ -)は生理食塩水投与群、(-- \triangle -)はRFRP-1 1nmol/kg投与群および(-- \blacksquare -)はRFRP-1 1nmol/kg投与群および(-- \blacksquare -)はRFRP-1 1nmol/kg投与群および(-- \blacksquare -)はRFRP-1 1nmol/kg投与群の血中インスリン濃度を表す。値は平均値±標準偏差(nean \pm SE)(n=4)を示す。

図4はRFRP-1 (◆) および生理食塩水 (○) を脳室内に投与した時の音手がかり試験におけるフリージングの割合を示す。縦軸は投与後1日目および2日目のそれぞれのフリージング (%) を平均値±標準誤差で示したものである。

25

20

発明を実施するための最良の形態

前記式中、環Aは置換されていてもよい芳香環を示す。

・環Aで示される芳香環としては、芳香族炭化水素環または芳香族複素環が用いられる。

芳香族炭化水素環としては、ベンゼン環、ナフタレン環などの炭素数 6 ない し1 4 の芳香族炭化水素環が用いられ、なかでもベンゼン環が好ましく用いられる。

芳香族複素環としては、例えば、炭素原子以外に窒素原子、硫黄原子及び酸 素原子から選ばれる1または2種、1ないし4個のヘテロ原子を含む5ないし 5 14員(単環、2環または3環式)、好ましくは5ないし10員、より好まし くは5または6員の芳香族複素環が用いられる。上記「5ないし14員(好ま しくは5ないし10員)の芳香族複素環」としては、例えば、チオフェン、フ ラン、オキサゾール、ベンゾ [b] チオフェン、ベンゾ [b] フラン、ベンズ イミダゾール、ベンズオキサゾール、ベンゾチアゾール、ベンズイソチアゾー 10 ル、ナフト[2,3-b]チオフェン、ピロール、イミダゾール、ピラゾール、 ピリジン、ピラジン、ピリミジン、ピリダジン、インドール、イソインドール、 **1H-インダゾール、プリン、4H-キノリジン、イソキノリン、キノリン、** フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、カルバ ゾール、β-カルボリン、フェナントリジン、アクリジン、フェナジン、チア 15 ゾール、イソチアゾール、フェノチアジン、イソオキサゾール、フラザン、フ ェノキサジンなどの芳香族複素環、またはこれらの環(好ましくは単環)が1 ないし複数個(好ましくは1または2個)の芳香環(例、ベンゼン環等)と縮 合して形成された環等が用いられる。なかでも、塩基性を持たない芳香族複素 環が好ましく、例えば、チオフェン、ベンゾ [b] チオフェン、ベンゾ [b] 20 フラン、ベンズオキサゾール、ベンゾチアゾール、ベンズイソチアゾール、ナ フト[2,3-b]チオフェン、フラン、インドール、カルバゾール、チアゾ ール、イソチアゾール、イソオキサゾールなどの芳香族複素環、またはこれら の環(好ましくは単環)が1ないし複数個(好ましくは1または2個)の塩基 性を持たない芳香環(例、ベンゼン環等)と縮合して形成された環などが用い 25 られ、特にチオフェンが好ましく用いられる。

環Bは置換されていてもよいベンゼン環を示す。

環Aまたは環Bが有していてもよい置換基としては、例えば、ハロゲン原子 (例えば、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、置換さ

20

れていてもよい炭化水素基、置換されていてもよい複素環基、置換されていて もよいヒドロキシ基、置換されていてもよいチオール基、置換スルフィニル基、 置換スルホニル基、置換されていてもよいアミノ基、アシル基、置換されてい てもよいカルバモイル基、エステル化されていてもよいカルボキシル基または C₁₋₃アルキレンジオキシ基(以下、置換基A群)などが挙げられる。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい 炭化水素基」の「炭化水素基」としては、例えばアルキル基、シクロアルキル 基、アルケニル基、シクロアルケニル基、アルキニル基、アラルキル基、アリ ール基などが挙げられる。

is「アルキル基」としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertープチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、トリデシル、テトラデシル、ペンタデシルなどの「直鎖状または分枝状の C_{1-15} アルキル基」など、好ましくは C_{1-8} アルキル基が用いられ、より好ましくは C_{1-6} アルキル基が用いられ、さらに好ましくは C_{1-4} アルキル基が用いられる。

該「シクロアルキル基」としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、アダマンチルなどの「 C_{3-10} シクロアルキル基」などが用いられ、より好ましくは C_{3-8} シクロアルキル基が用いられ、さらに好ましくは C_{5-7} シクロアルキル基が用いられる。

該「アルケニル基」としては、例えばピニル、アリル、イソプロペニル、3ープテニル、3ーオクテニル、9ーオクタデセニルなどの「 C_{2-1} 8アルケニル基」などが用いられ、より好ましくは C_{2-6} アルケニル基が用いられ、さらに好ましくは C_{2-4} アルケニル基が用いられる。

25 該「シクロアルケニル基」としては、例えばシクロプロペニル、シクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニルなどの「 C_{3-10} シクロアルケニル基」などが用いられ、より好ましくは C_{3-8} シクロアルケニル基が用いられ、さらに好ましくは C_{5-7} シクロアルケニル基が用いられる。

該「アルキニル基」としては、例えば、エチニル、1-プロピニル、プロパルギル、1-ブチニル、2-プチニル、1-ペンチニル、2-ペンチニル、3-ペンチニルなどの「 C_{2-8} アルキニル基」などが用いられ、より好ましくは C_{2-6} アルキニル基が用いられ、さらに好ましくは C_{2-4} アルキニル基が用いられる。

5 る。

10

15

20

25

該「アラルキル基」としては、 C_{7-16} アラルキル基などが用いられ、具体的には、例えばベンジル、フェネチル、3-フェニルプロピル、4-フェニルプチルなどのフェニル-C $_{1-6}$ アルキル基および、例えば(1-ナフチル)メチル、2-(1-ナフチル)エチル、2-(2-ナフチル)エチルなどのナフチル-C $_{1-6}$ アルキル基などが用いられる。

該「アリール基」としては、例えばフェニル、1-ナフチル、2-ナフチル、フェナントリル、アントリル (anthryl) などの芳香族単環式、2 環式または3 環式の C_{6-14} アリール基、ピフェニル基、トリル基などが用いられ、好ましくは、フェニル、ナフチルなどの C_{6-10} アリール基、より好ましくはフェニルが用いられる。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい 炭化水素基」における「炭化水素基」が有していてもよい置換基としては、例えば、(i)ニトロ基、(ii)ヒドロキシ基、オキソ基、(iii)シアノ基、(iv)カルバモイル基、(v)モノーまたはジー C_{1-6} アルキルーカルバモイル基(例えば、N-メチルカルバモイル、N-エチルカルバモイル、N、N-ジメチルカルバモイル、N 、N-ジメチルカルバモイル、N 、N-ジスチルカルバモイル、N 、N-ジスチルカルバモイル、N 、N-ジスチルカルバモイル、N 、N-ジスチルカルバモイルなど;該アルキル基はハロゲン原子、ヒドロキシ基、 C_{1-6} アルコキシ基などで置換されていてもよい)、モノーまたはジー C_{2-6} アルケニルーカルバモイル基(例えば、N-アリルカルバモイルなど;該アルケニル基はハロゲン原子、ヒドロキシ基、 C_{1-6} アルコキシ基などで置換されていてもよい)、モノーまたはジーフェニルーカルバモイル基、モノーまたはジーベンジルーカルバモイル基、N-1-6 アルコキシーカルバモイル基、N-1-6 アルコキシーカルバモイル基、N-1-6 アルキルアカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルドモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルキルアシーカルバモイル基、N-1-6 アルバモイル基、N-1-6 アルバモイル基、N-1-6 アルドモイル基、N-1-6 アルバモイル基、N-1-6 アルバモイル基、N-1-7 アルバモイル基、N-1-7 アルバモイル基、N-1-7 アルバモイル基、N-1-7 アルバモイル基、N-1-7 アルバモイル基、N-1-7 アルバエイル

(vi)カルボキシル基、(vii) C₁₋₆アルコキシーカルボニル基(例えば、メトキ シカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシ カルポニルなど)、(viii)スルホ基、(ix)ハロゲン原子(例えば、フッ素、塩・ 素、臭素、ヨウ素など)、(x)ハロゲン化されていてもよいC1-6アルコキシ基 (例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシなど)、ヒドロ 5 キシ基で置換されていてもよいC1-6アルコキシ基、カルボキシル基で置換され ていてもよい C₁₋₆アルコキシ基、 C₁₋₆アルコキシーカルポニル基で置換され ていてもよい C_{1-6} アルコキシ基、 C_{1-6} アルコキシー C_{1-6} アルコキシ基、 C_1 $_{-6}$ アルコキシー C_{1-6} アルコキシー C_{1-6} アルコキシ基、(xi)フェノキシ基、フ ェノキシーC₁₋₆アルキル基、フェノキシーC₁₋₆アルコキシ基、C₁₋₆アルキ 10 ルカルボニルーオキシ基、カルバモイルオキシ基、モノーまたはジーC₁₋₆アル キルーカルバモイルオキシ基、(xii)ハロゲン化されていてもよいフェニル基、 ハロゲン化されていてもよいフェニルーC1-6アルキル基、ハロゲン化されてい てもよいフェニルーC2-6アルケニル基、ハロゲン化されていてもよいフェノキ シ基(例えば、o-, m-またはp-クロロフェノキシ、o-, m-またはp 15 ープロモフェノキシなど)、ピリジルオキシ基、C₃₋₁₀シクロアルキル基、C₃ -10シクロアルキルー C_{1-6} アルコキシ基、 C_{3-10} シクロアルキルー C_{1-6} アル キル基、(xiii)ハロゲン化されていてもよいC1-6アルキル基(例えば、メチル 、エチル、プロピル、イソプロピル、ブチルなど)、ハロゲン化されていても よいC2-6アルケニル基(例えば、ビニル、アリル、2-ブテニル、3-ブテニ 20 ルなど)、ハロゲン化されていてもよいC,-6アルキルチオ基(例えば、メチル チオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-プチルチオな ど)、ヒドロキシ基で置換されていてもよいC1-6アルキル基、ヒドロキシ基で 置換されていてもよいC₁₋₆アルキルチオ基、(xiv)メルカプト基、チオキソ基、 (xv)ハロゲン原子、カルボキシル基およびC1-6アルコキシーカルボニル基から 25 選ばれる置換基でそれぞれ置換されていてもよいベンジルオキシ基またはベン ジルチオ基、(xvi)ハロゲン化されていてもよいフェニルチオ基、ピリジルチオ 基、フェニルチオーC₁₋₆アルキル基、ピリジルチオーC₁₋₆アルキル基、(xvii) ハロゲン化されていてもよいC,_。アルキルスルフィニル基(例えば、メチルス

ルフィニル、エチルスルフィニルなど)、フェニルスルフィニル基、フェニル スルフィニルーC₁₋₆アルキル基、(xviii) ハロゲン化されていてもよいC₁₋₆ アルキルスルホニル基(例えば、メチルスルホニル、エチルスルホニルなど)、 フェニルスルホニル基、フェニルスルホニルーC₁₋₆アルキル基、(xix)アミノ 基、アミノスルホニル基、モノーまたはジーC1-6アルキルアミノスルホニル基 5 (例えば、メチルアミノスルホニル、エチルアミノスルホニル、N, N-ジメ チルアミノスルホニル、N. N-ジエチルアミノスルホニルなど; 該アルキル 基はハロゲン原子、ヒドロキシ基、C1-6アルコキシ基などで置換されていても よい)、(xx) C_{1-10} アシルーアミノ基(例えば、 C_{1-6} アルカノイルアミノ(例、ホルミルアミノ、アセチルアミノ、トリフルオロアセチルアミノ、プロピ 10 オニルアミノ、ピバロイルアミノ等)、ベンゾイルアミノ、C₁₋₆アルキルスル ホニルアミノ(例、メタンスルホニルアミノ、トリフルオロメタンスルホニル アミノ等)、C₆₋₁₀アリールスルホニルアミノ(例、ペンゼンスルホニルアミ ノ、トルエンスルホニルアミノ等); C_{1-10} アシルはハロゲン原子、ヒドロキ シ基、カルボキシル基などで置換されていてもよい)、ベンジルオキシカルボ 15 ニルアミノ、ハロゲン化されていてもよい C_{1-6} アルコキシカルボニルアミノ、 カルバモイルアミノ基、モノーまたはジーC1-6アルキルカルバモイルアミノ基 、(xxi)モノーまたはジーC₁₋₆アルキルアミノ基(例えば、メチルアミノ、エ チルアミノ、ジメチルアミノ、ジエチルアミノなど;該アルキル基はハロゲン 原子、ヒドロキシ基、C1-6アルコキシ基などで置換されていてもよい)、モノ 20 -またはジ-C₁₋₆アルカノイルアミノ基(例えば、ホルミルアミノ、アセチル アミノなど: 該アルカノイル基はハロゲン原子、ヒドロキシ基、C1-6アルコキ シ基などで置換されていてもよい)、フェニルアミノ、ベンジルアミノ、C1-₆アルキル(C₇₋₁₆アラルキル)アミノ基(例、C₁₋₆アルキル(ペンジル)ア ミノ)、 C_{1-6} アルカノイル(C_{7-16} アラルキル)アミノ基(例、 C_{1-6} アルカ 25 ノイル (ベンジル) アミノ)、(xxii) 4ないし6員環状アミノ基(例えば、1 -アゼチジニル、1-ピロリジニル、ピペリジノ、モルホリノ、チオモルホリ ノ、1-ピペラジニルなど)、4ないし6員環状アミノーカルボニル基(例え ば、1-アゼチジニルカルボニル、1-ピロリジニルカルボニル、ピペリジノ

カルボニル、モルホリノカルボニル、チオモルホリノカルボニル、1-ピペラ ジニルカルボニルなど)、4ないし6員環状アミノーカルボニルーオキシ基(「例えば、1-ピロリジニルカルポニルオキシ、ピペリジノカルポニルオキシ、 モルホリノカルボニルオキシ、チオモルホリノカルボニルオキシ、1-ピペラ ジニルカルボニルオキシなど)、4ないし6員環状アミノーカルボニルーアミ 5 ノ基(例えば、1-ピロリジニルカルボニルアミノ、ピペリジノカルボニルア ミノ、モルホリノカルボニルアミノ、チオモルホリノカルボニルアミノ、1-ピペラジニルカルポニルアミノなど)、4ないし6員環状アミノースルホニル 基(例えば、1-ピロリジニルスルホニル、ピペリジノスルホニル、モルホリ ノスルホニル、チオモルホリノスルホニル、1 – ピペラジニルスルホニルなど 10)、4ないし6員環状アミノーC₁₋₆アルキル基、(xxiii)ハロゲン原子、カル ポキシル基およびC1-6アルコキシーカルボニル基から選ばれる置換基でそれ ぞれ置換されていてもよい C1-6アシル基 (例えば、ホルミル、アセチルなどの ハロゲン化されていてもよいC。こ。アルカノイルなど)またはベンゾイル基、 (xxiv)ハロゲン原子で置換されていてもよいベンゾイル基、(xxv)酸素原子、硫 15 黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1 ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは 1ないし2個)含む5ないし10員複素環基(例えば、2-または3-チエニ ル、2-または3-フリル、3-,4-または5-ピラゾリル、2-,4-ま たは5-チアゾリル、3-,4-または5-イソチアゾリル、2-,4-また 20 は5-オキサゾリル、1,2,3-または1,2,4-トリアゾリル、1H-または2H-テトラゾリル、2-, 3-または4-ピリジル、2-, 4-また は5-ピリミジル、3-または4-ピリダジニル、キノリル、イソキノリル、 インドリルなど;該複素環基はC1-6アルキル基などで置換されていてもよい) 、(xxvi)酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ない 25 し3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4 個、さらに好ましくは1ないし2個)含む5ないし10員複素環ーカルボニル 基(例えば、2-または3-チエニルカルボニル、2-または3-フリルカル ポニル、3-, 4-または5-ピラゾリルカルポニル、2-, 4-または5-

10

15

20

25

チアゾリルカルボニル、3ー, 4ーまたは5ーイソチアゾリルカルボニル、2ー, 4ーまたは5ーオキサゾリルカルボニル、1, 2, 3ーまたは1, 2, 4ートリアゾリルカルボニル、1Hーまたは2Hーテトラゾリルカルボニル、2ー, 3ーまたは4ーピリジルカルボニル、2ー, 4ーまたは5ーピリミジルカルボニル、3ーまたは4ーピリダジニルカルボニル、キノリルカルボニル、イソキノリルカルボニル、インドリルカルボニルなど;該複素環基はC₁₋₆アルキル基などで置換されていてもよい)、(xxvii)ヒドロキシイミノ基、C₁₋₆アルコキシイミノ基、アリール基(例えば、1ーまたは2ーナフチルなど)、(xxviii)ハロゲン化されていてもよい直鎖状または分枝状のC₁₋₄アルキレンジオキシ、基(例えば、メチレンジオキシ、エチレンジオキシ、プロピレンジオキシ、テトラフルオロエチレンジオキシ、エチレンジオキシ、プロピレンジオキシ、テトラフルオロエチレンジオキシなど)、(xxix)ウレイド基および(xxx)C₁₋₆アルキルーウレイド基(例えば、メチルウレイド、エチルウレイドなど)(以上、置換基B群)などが用いられる。該「炭化水素基」は、置換可能な位置に、これらの置換基を1ないし5個有していてもよく、2以上を有する場合、置換基は同一でも異なっていてもよい。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい 複素環基」の「複素環基」としては、例えば、環系を構成する原子(環原子) として、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ない し3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4 個、さらに好ましくは1ないし2個)含む5ないし16員の芳香族複素環基、 飽和あるいは不飽和の非芳香族複素環基(脂肪族複素環基)等が挙げられる。

該「芳香族複素環基」としては、例えばフリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、1,2,3ーオキサジアゾリル、1,2,4ーオキサジアゾリル、フラザニル、1,2,3ーチアジアゾリル、1,2,4ーチアジアゾリル、1,3,4ーチアジアゾリル、1,2,3ートリアゾリル、1,2,4ーチアジアゾリル、テトラゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル等の5または6員の芳香族単環式複素環基、および例えばベンゾフラニル、イソベンゾフラニル、ベンゾ〔b〕チエニル、イン

10

15

20

25

ドリル、イソインドリル、1H-インダゾリル、ベンズイミダゾリル、ベンゾ オキサゾリル、1,2-ベンゾイソオキサゾリル、ベンゾチアゾリル、ベンゾピ ラニル、1,2-ベンゾイソチアゾリル、1H-ベンゾトリアゾリル、キノリル 、イソキノリル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニ ル、ナフチリジニル、プリニル、ブテリジニル、カルバゾリル、α-カルボリ ニル、 β – カルボリニル、 γ – カルボリニル、アクリジニル、フェノキサジニ ル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、 フェナトリジニル、フェナトロリニル、インドリジニル、ピロロ〔1,2-b〕 ピリダジニル、ピラゾロ〔1,5-a〕 ピリジル、イミダゾ〔1,2-a〕 ピリ ジル、イミダゾ〔1,5-a〕ピリジル、イミダゾ〔1,2-b〕ピリダジニル、 イミダゾ〔1,2-a〕 ピリミジニル、1,2,4-トリアゾロ〔4,3-a〕 ピ リジル、1,2,4-トリアゾロ〔4,3-b〕ピリダジニル、ペンゾ〔1,2,5 〕チアジアゾリル、ベンゾ〔1,2,5〕オキサジアゾリル等の8~16員(好 ましくは、8~12員)の芳香族縮合複素環基(好ましくは、前記した5また は6員の芳香族単環式複素環基1~2個(好ましくは、1個)がペンゼン環1 ~2個(好ましくは、1個)と縮合した複素環または前記した5または6員の 芳香族単環式複素環基の同一または異なった複素環2~3個(好ましくは、2 個)が縮合した複素環、より好ましくは前記した5または6員の芳香族単環式 複素環基がベンゼン環と縮合した複素環)等が挙げられる。

該「非芳香族複素環基」としては、例えばオキシラニル、アゼチジニル、オキセタニル、チエタニル、ピロリジニル(好ましくは、1ーピロリジニル)、テトラヒドロフリル、チオラニル、ピペリジニル(好ましくは、1ーピペリジニルまたは4ーピペリジニル)、テトラヒドロピラニル、モルホリニル、チオモルホリニル、ピペラジニル、1ーアザビシクロ [2.2.2] オクトー3ーイル等の3~8員(好ましくは5~6員)の飽和あるいは不飽和(好ましくは飽和)の非芳香族単環式複素環基(脂肪族単環式複素環基)、2,3ージヒドロインドリル、1,3ージヒドロイソインドリル等のように前記した非芳香族単環式複素環基1~2個(好ましくは1個)と縮合した複素環基、前記した非芳香族単環式複素環基1~2個(好ましくは1個)と縮合した複素環基、前記した非芳香族単環式複素環基1~2個(好まし

10

15

20

25

くは1個)が前記した5ないし6員の芳香族単環式複素環基の複素環1~2個(好ましくは1個)と縮合した複素環基、あるいは1,2,3,4ーテトラヒドロキノリル、1,2,3,4ーテトラヒドロイソキノリルなどのように前記した芳香族単環式複素環基または芳香族縮合複素環基の一部または全部の二重結合が飽和した非芳香族複素環基等が挙げられる。

該「置換されていてもよい複素環基」における「複素環基」としては、5または6員の芳香族単環式複素環基などが好ましい。

該「複素環基」が有していてもよい置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」が有していてもよい置換基(置換基B群)と同様の数の同様な基などが用いられる。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよいアミノ基」、「置換されていてもよいヒドロキシ基」および「置換されていてもよいチオール基」としては、それぞれ、置換されていてもよい炭化水素基、アシル基、エステル化されていてもよいカルボキシル基、置換されていてもよいカルバモイル基または置換されていてもよい複素環基などの置換基を有していてもよい「アミノ基」、「ヒドロキシ基」および「チオール基」などが挙げられる。

該「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」と同様の基などが用いられる。また、該「置換されていてもよい炭化水素基」および該「置換されていてもよい複素環基」における置換基としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基(置換基 B群)と同様の数の同様な基などが用いられる。

該「アシル基」および「エステル化されていてもよいカルボキシル基」としては、それぞれ、後述の環Aが有していてもよい置換基としての「アシル基」

および「エステル化されていてもよいカルボキシル基」と同様の基などが用い られる。

該「置換されていてもよいカルバモイル基」としては、後述の環Aが有していてもよい置換基としての「置換されていてもよいカルバモイル基」と同様の基などが用いられる。

具体的には、環Aまたは環Bが有していてもよい置換基としての「置換され ていてもよいアミノ基」、「置換されていてもよいヒドロキシ基」および「置 換されていてもよいチオール基」としては、(i)ハロゲン原子(例えばフッ 素、塩素、臭素、ヨウ素等)、ハロゲン化されていてもよいC₁₋₆アルコキシ(例えばメトキシ、エトキシ、トリフルオロメトキシ、2,2,2-トリフルオ 10 ロエトキシ、トリクロロメトキシ、2,2,2-トリクロロエトキシ等)、置 換されていてもよいフェニル(好ましくは、ハロゲン化されていてもよいC1-6 アルキル基、ハロゲン化されていてもよいC1-6アルコキシ基、カルボキシル基 およびハロゲン原子から選ばれる置換基で置換されていてもよいフェニルなど) および5ないし10員複素環基(例、2-または3-チエニル、2-または 15 3-フリル、3-, 4-または5-ピラゾリル、2-, 4-または5-チアゾ リル、3-,4-または5-イソチアゾリル、2-,4-または5-オキサゾ リル、1, 2, 3-または1, 2, 4-トリアゾリル、1H-または2H-テ トラゾリル、2-、3-または4-ピリジル、2-、4-または5-ピリミジ ル、3-または4-ピリダジニル、キノリル、イソキノリル、インドリルなど 20 ;該複素環基はC₁₋₆アルキル基などで置換されていてもよい)から選ばれた置 換基で置換されていてもよい低級アルキル(例、メチル、エチル、プロピル、 イソプロピル、プチル、イソプチル、tertープチル、ペンチル、ヘキシル等の C_{1-6} アルキル等)、(ii)アシル(例えば C_{1-6} アルカノイル(例、ホルミル 、アセチル、プロピオニル、ピバロイル等)、ベンゾイル、C₁₋₆アルキルスル 25 ホニル(例、メタンスルホニル等)、ベンゼンスルホニル等)、ハロゲン化さ れていてもよいC,__6アルコキシカルボニル(例、メトキシカルボニル、エトキ シカルボニル、トリフルオロメトキシカルボニル、2,2,2ートリフルオロ エトキシカルボニル、トリクロロメトキシカルボニル、2,2,2-トリクロ

ロエトキシカルポニル等)、フェニルで置換されていてもよいC1-6アルコキシ カルボニル(例、ベンジルオキシカルボニル等)、置換されていてもよいカル バモイル基(例えば、カルバモイル、N-メチルカルパモイル、N, N-ジメチ ルカルバモイル、フェニルカルバモイル等の低級(C_{1-6})アルキル基、 C_{6-1} △アリール基(例、フェニル基)などの置換基1~2個で置換されていてもよい 5 カルバモイル基など)、(iii)複素環基(環Aが有していてもよい置換基とし ての「置換されていてもよい複素環基」における「複素環基」と同様の基など)、(iv)ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)、ハロゲン 化されていてもよいC1-6アルコキシ(例えばメトキシ、エトキシ、トリフルオ ロメトキシ、2, 2, 2-トリフルオロエトキシ、トリクロロメトキシ、2, 10 2, 2-トリクロロエトキシ等)、ハロゲン化されていてもよい C_{1-6} アルキル (例えばメチル、エチル、トリフルオロメチル、2,2,2ートリフルオロエ チル、トリクロロメチル、2,2,2-トリクロロエチル等)等の置換基で置 換されていてもよいアリール基(環Aが有していてもよい置換基としての「置 換されていてもよい炭化水素基」における「アリール基」と同様の基など)等 15 の置換基を有していてもよい「アミノ基」、「ヒドロキシ基」および「チオー ル基」などが好ましい例として挙げられる。また、N, N-ジ置換アミノにおけ る2個の置換基が窒素原子と一緒になって「環状アミノ基」を形成してもよく、 該「環状アミノ基」としては、例えば1-アゼチジニル、1-ピロリジニル、 ピペリジノ、モルホリノ、チオモルホリノ(硫黄原子は酸化されていてもよい 20)、1-ピペラジニルおよび4位に低級アルキル(例、メチル、エチル、プロ ピル、イソプロピル、ブチル、tert-ブチル、ペンチル、ヘキシル等のC1-6 アルキル等)、アラルキル(例、ベンジル、フェネチル等のC₇₋₁₀アラルキル 等)、アリール(例、フェニル、1-ナフチル、2-ナフチル等の C_{6-10} アリ ール等)、アシル(例、ホルミル、アセチル、ペンゾイル、メチルスルホニル、 25 ベンゼンスルホニル、エトキシカルボニル、ベンジルオキシカルボニル等)等 を有していてもよい1-ピペラジニル等の3~8員(好ましくは5~6員)の 環状アミノ基などが用いられる。

環Aまたは環Bが有していてもよい置換基としての「置換スルフィニル基」

10

15

20

25

および「置換スルホニル基」は、それぞれ「置換されていてもよいヒドロキシ 基」、「置換されていてもよいアミノ基」、「置換されていてもよい炭化水素 基」または「置換されていてもよい複素環基」などの置換基で置換されたスル フィニル基またはスルホニル基を表す。該「置換されていてもよい炭化水素基 」における「炭化水素基」としては、環Aが有していてもよい置換基としての 「置換されていてもよい炭化水素基」における「炭化水素基」と同様な基など が用いられる。該「置換されていてもよい複素環基」における「複素環基」と しては、環Aが有していてもよい置換基としての「置換されていてもよい複素 環基」における「複素環基」と同様な基などが用いられる。また「置換スルフ ィニル基」および「置換スルホニル基」の置換基であるヒドロキシ基およびア ミノ基に置換していてもよい置換基としては、それぞれ、環Aが有していても よい置換基としての「置換されていてもよいヒドロキシ基」における「ヒドロ キシ基」および「置換されていてもよいアミノ基」における「アミノ基」が有 していてもよい置換基と同様の基などが用いられ、好ましくは、例えば、C₁₋ $_{6}$ アルキル基、 C_{3-8} シクロアルキル基、 C_{2-4} アルケニル基、 C_{6-10} アリール 基、アシル基、アミノ基、複素環基(環Aが有していてもよい置換基としての 「置換されていてもよい複素環基」における「複素環基」と同様の基など)な どが挙げられる。また「置換スルフィニル基」および「置換スルホニル基」の 置換基である「置換されていてもよい炭化水素基」および「置換されていても よい複素環基」における置換基としては、環Aが有していてもよい置換基とし ての「置換されていてもよい炭化水素基」および「置換されていてもよい複素 環基」における置換基(置換基B群)と同様の基などが同様の数用いられる。

環Aまたは環Bが有していてもよい置換基としての「アシル基」としては、例えば R^ACOOH などのカルボン酸、例えば R^ASO_3H などのスルホン酸、例えば R^ASO_2H などのスルフィン酸、または、例えば R^AOPO (O R^B)OHなどのリン酸(R^A は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、 R^B は水素原子または置換されていてもよい炭化水素基を示す)などからOH基を除いて得られるアシル基が用いられ、具体的には R^ACO 、 R^AOCO 、 R^ASO_2 、 R^ASO 、 R^AOPO (O R^B) (式中

10

15

20

25

の記号は前記と同意義を示す) などが用いられる。

R^A(およびR^B)で示される「置換されていてもよい炭化水素基」における「炭化水素基」ならびに「置換されていてもよい複素環基」における「複素環基」としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」と同様の基などが用いられる。また、該「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基(置換基B群)と同様の基などが同様の数用いられる。

 $R^{A}COとしては、例えばホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、パレリル、イソバレリル、ピバロイル、ヘキサノイル、シクロプタンカルボニル、シクロヘキサンカルボニル、クロトニル、ベンゾイル、ニコチノイル、イソニコチノイル、トリフルオロアセチルなどが挙げられ、なかでも、アセチル、プロピオニル、プチリル、バレリルなどの<math>R^{A}$ が低級(C_{1-6})アルキル基である $R^{A}CO$ などがより好ましい。

 R^AOCO としては、例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、 $tert-プトキシカルボニルなどが挙げられ、なかでも、<math>tert-プトキシカルボニルなどのR^A$ が低級(C_{1-6})アルキル基である R^A OCOなどがより好ましい。

 R^4SO_2 の R^4 としては、例えばハロゲン化されていてもよい C_{1-6} アルキル基(例えば、メチル、トリフルオロメチルなど)、またはハロゲン原子、 C_{1-6} アルキルおよび C_{1-6} アルコキシから選ばれた置換基で置換されていてもよいフェニル基(例えば、フェニル、p-トリルなど)などが好ましい。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよいカルバモイル基」としては、無置換のカルバモイルのほか、N-モノ置換カルバモイルおよびN,N-ジ置換カルバモイルが挙げられる。

該「置換されていてもよいカルバモイル基」における「カルバモイル基」が 有していてもよい置換基としては、環Aが有していてもよい置換基としての「

10

15

20

25

置換されていてもよいアミノ基」の「アミノ基」の置換基と同様の基(「置換 されていてもよい炭化水素基」、「アシル基」、「エステル化されていてもよ いカルポキシル基」、「置換されていてもよいカルバモイル基」(好ましくは、 カルバモイル、N-メチルカルバモイル、N, N-ジメチルカルバモイル、フェ ニルカルバモイル等の低級(C₁₋₆)アルキル基、C₆₋₁₄アリール基(例、フ ェニル基)などの置換基1~2個で置換されていてもよいカルバモイル基など)、「置換されていてもよい複素環基」など)などが挙げられるが、前記「置 換されていてもよいアミノ基」を有する「カルバモイル基」(すなわち、「置 換されていてもよいカルバゾイル基」)、前記「置換されていてもよいヒドロ キシ基」を有する「カルバモイル基」(すなわち、「置換されていてもよいN ーヒドロキシカルバモイル基」) などであってもよい。また、N,Nージ置換カ ルバモイルにおける2個の置換基が窒素原子と一緒になって環状アミノを形成 してもよく、この様な場合の環状アミノカルボニルとしては、例えば1-アゼ チジニルカルボニル、1-ピロリジニルカルボニル、ピペリジノカルボニル、 モルホリノカルボニル、チオモルホリノカルボニル(硫黄原子は酸化されてい てもよい)、1-ピペラジニルカルポニルおよび4位に低級アルキル(例、メ チル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、ペンチル、 ヘキシル等のC1-6アルキル等)、アラルキル(例、ベンジル、フェネチル等の C₇₋₁₀アラルキル等)、アリール(例、フェニル、1-ナフチル、2-ナフチ ル等のC6-10アリール等)、アシル基(例、ホルミル、アセチル、ペンゾイル、 メトキシカルボニル、ベンジルオキシカルボニル、メチルスルホニル等)等を 有していてもよい1-ピペラジニルカルボニル等の3~8員(好ましくは5~ 6員)の環状アミノカルボニルなどが用いられる。

環Aまたは環Bが有していてもよい置換基としての「エステル化されていてもよいカルボキシル基」としては、式-COOR^c(R^cは水素原子または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基などが挙げられるが、なかでも、遊離のカルボキシル、低級アルコキシカルボニル、アリールオキシカルボニル、アラルキルオキシカルボニル、複素環オキシカルボニル、複素環メチルオキシカルボニル等が好ましく用いら

れる。

5

10

15

20

25

R^cで示される「置換されていてもよい炭化水素基」における「炭化水素基」ならびに「置換されていてもよい複素環基」における「複素環基」としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」と同様の基などが用いられる。また、該「炭化水素基」、「複素環基」が置換していてもよい置換基としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい炭水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」が有していてもよい置換基(置換基B群)と同様の基などが同様の数用いられる。

「低級アルコキシカルボニル」としては、例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソプトキシカルボニル、secープトキシカルボニル、tertープトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、ネオペンチルオキシカルボニル等の C_{1-6} アルコキシカルボニル等が挙げられ、中でもメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル等の C_{1-2} アルコキシカルボニル等が好ましい。

該「低級アルコキシカルボニル」は「低級アルコキシ」の「低級アルキル」 部分に置換基を有していてもよく、その置換基としては、環Aが有していても よい置換基としての「置換されていてもよい炭化水素基」における「炭化水素 基」が有していてもよい置換基として挙げた基(置換基B群)と同様の基など が同様な数用いられる。

「アリールオキシカルボニル」としては、例えばフェノキシカルボニル、1 ーナフトキシカルボニル、2ーナフトキシカルボニル等のC₇₋₁₂アリールオキシカルボニル等が好ましい。

「アラルキルオキシカルポニル」としては、例えばベンジルオキシカルボニル、フェネチルオキシカルボニル等の C_{7-15} アラルキルオキシカルボニル等(好ましくは、 C_{6-10} アリールー C_{1-6} アルコキシーカルボニルなど)が好ましい

10

15

20

25

「複素環オキシカルボニル」および「複素環メチルオキシカルボニル」における複素環としては、環Aが有していてもよい置換基としての「置換されていてもよい複素環基」における「複素環」と同様のものなどが用いられ、例えば、ピリジル、キノリル、インドリル、ピペリジニル、テトラヒドロピラニル等が好ましく用いられる。

該「アリールオキシカルボニル」、「アラルキルオキシカルボニル」および「複素環オキシカルボニル」はそれぞれ置換基を有していてもよく、それらの置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」が有していてもよい置換基として挙げた基(置換基B群)と同様の基などが同様な数用いられる。

環Aまたは環Bが有していてもよい置換基としての「C₁₋₃アルキレンジオキシ基」としては、メチレンジオキシ、エチレンジオキシなどが用いられる。

環Aまたは環Bが有していてもよい置換基としては、ハロゲン原子(例えば、 フッ素、塩素、臭素、ヨウ素など)、ハロゲン原子(例えば、フッ素など)で 置換されていてもよい C, -6アルキル基 (例えば、メチル、エチル、プロピル、 イソプロピル、ブチルなど)、C₁₋₆アルコキシ基、置換されていてもよいC₆₋ 14アリール基(好ましくは、ハロゲン化されていてもよいC1-6アルキル基、カ ルボキシル基およびハロゲン原子から選ばれる置換基で置換されていてもよい フェニルなど)、置換されていてもよいC7-16アラルキルオキシ基(好ましく は、ハロゲン化されていてもよいC1-6アルキル基、カルボキシル基およびハロ ゲン原子から選ばれる置換基で置換されていてもよいペンジルオキシなど)、 C₁₋₃アルキレンジオキシ基(例えば、メチレンジオキシ、エチレンジオキシな ど)などが好ましく用いられ、なかでもハロゲン原子(例えば、フッ素、塩素、 臭素、ヨウ素など)、ハロゲン原子(例えば、フッ素など)で置換されていて もよいC₁₋₆アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、 ブチルなど)、C₁₋₆アルコキシ基、置換されていてもよいC₇₋₁₆アラルキルオ キシ基(好ましくは、ハロゲン化されていてもよいC,-。アルキル基、カルボキ シル基およびハロゲン原子から選ばれる置換基で置換されていてもよいベンジ ルオキシなど)、C₁₋₃アルキレンジオキシ基(例えば、メチレンジオキシ、エ

10

15

チレンジオキシなど) などが好ましい。

これらの置換基は環Aまたは環B上の置換可能な位置に1ないし3個置換されていてもよく、2個以上を有する場合、置換基は同一でも異なっていてもよい。なかでも、1-イソキノリノン骨格において、6位または(および)7位に置換基を有する場合が好ましい。

前記式中、環Aまたは環Bとしては、式

$$R^{12}$$
 R^{13}
 R^{14}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{17}
 R^{16}
 R^{17}
 R^{16}
 R^{17}

(式中、 R^{12} は水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい C_{1-6} アルキル基、 C_{6-14} アリール基または C_{7-16} アラルキルオキシ基を、 R^{13} はハロゲン原子、ハロゲン原子で置換されていてもよい C_{1-6} アルキル基または C_{7-16} アラルキルオキシ基を、 R^{14} および R^{15} はそれぞれハロゲン原子または C_{7-16} アルコキシ基を、 R^{16} および R^{17} はそれぞれ C_{1-6} アルコキシ基を示す。)で表されるペンゼン環が好ましく用いられ、なかでも、式

(式中、 R^{12} は水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい C_{1-6} アルキル基、 C_{6-14} アリール基または C_{7-16} アラルキルオキシ基を、

10

15

20

25

 R^{13} はハロゲン原子、ハロゲン原子で置換されていてもよい C_{1-6} アルキル基または C_{7-16} アラルキルオキシ基を、 R^{14} および R^{15} はそれぞれハロゲン原子または C_{1-6} アルコキシ基を示す。)で表されるベンゼン環が好ましく用いられる。 R^{12} としては、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい C_{1-6} アルキル基または C_{7-16} アラルキルオキシ基が好ましい。

前記式中、Xは結合手、O、NR⁴(R⁴は水素原子または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または置換されていてもよいアルキレン基を示す。

R⁴で示される「置換されていてもよい炭化水素基」および「置換されていて もよい複素環基」としては、前記した環Aが有していてもよい置換基としての 「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基 」と同様のものが用いられる。

Xで示される「置換されていてもよいアルキレン基」の「アルキレン基」としては、例えば、メチレン、エチレン、プロピレンなどの C_{1-6} アルキレン基などが用いられ、なかでもメチレンが好ましい。

該「アルキレン基」の置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)と同様のものが用いられる。

Xとしては、置換されていてもよいアルキレン基が好ましく、なかでもメチレン、エチレン、プロピレンなどの C_{1-6} アルキレン基などが好ましく、特にメチレンが好ましい。

前記式中、R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。

R¹で示される「置換されていてもよい炭化水素基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

R¹で示される「置換されていてもよい複素環基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

15

20

25

該「炭化水素基」および該「複素環基」は、それぞれ置換可能な位置に、置換基を1ないし5個(好ましくは1ないし3個)有していてもよく、2個以上を有する場合、置換基は同一でも異なっていてもよい。

 R^1 としては、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{3-10} シクロアルキル基、置換されていてもよい C_{6-14} アリール基などが好ましい。

「置換されていてもよい C_{1-6} アルキル基」としては、例えば、ハロゲン原子 (例、フッ素など)、 C_{1-6} アルコキシーカルボニル(例、メトキシカルボニル、 ストキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニルな じ)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertープチルなど)が用いられ、なかでもイソプロピル、イソブチル、secーブチル、tertープチル などの分岐状の C_{3-6} アルキル基が好ましい。

「置換されていてもよい C_{3-10} シクロアルキル基」としては、例えば、ハロゲン化されていてもよい C_{1-6} アルキル基で置換されていてもよいシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、アダマンチルなどの C_{3-10} シクロアルキル基などが好ましい。

「置換されていてもよい C_{6-14} アリール基」としては、例えば、 C_{1-3} アルキレンジオキシ(例、メチレンジオキシ)で置換されていてもよい C_{6-14} アリール基(例、フェニル)などが用いられる。

前記式中、R²は式-COYR⁵(Yは結合手、置換されていてもよいアルキレン基、O、SまたはNR⁶(R⁶は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁵は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。

R²、R⁵またはR⁶で示される「置換されていてもよい炭化水素基」としては、環Aが有していてもよい置換基としての「置換基されていてもよい炭化水素基」と同様のものが用いられる。

R²、R⁵またはR⁶で示される「置換されていてもよい複素環基」としては、

15

環Aが有していてもよい置換基としての「置換基されていてもよい複素環基」 と同様のものが用いられる。

Yで示される「置換されていてもよいアルキレン基」の「アルキレン基」としては、例えば、メチレン、エチレン、プロピレンなどの C_{1-6} アルキレン基などが用いられ、なかでもメチレンが好ましい。

該「アルキレン基」の置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)と同様のものが用いられる。

R²としては、式-COYR⁵で表される基が好ましい。

10 Yとしては、OまたはNR⁶が好ましく、特にOが好ましい。

 R^6 としては、例えば、水素原子やメチル、エチルなどの C_{1-6} アルキル基が好ましい。

 R^5 としては、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{3-10} シクロアルキル基(好ましくは、 C_{3-8} シクロアルキル基)、置換されていてもよい C_{7-16} アラルキル基、置換されていてもよい複素環基などが好ましい。これら C_{1-6} アルキル基、 C_{3-10} シクロアルキル基、 C_{7-16} アラルキル基、複素環基が有していてもよい置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい置換基としては、環Aが有していてもよい置換基としてないでもよい置換基(置換基B群)と同様のものが用いられる。

「置換されていてもよい C_{1-6} アルキル基」としては、ハロゲン原子(例、フッ素など)、アミノ基、モノーまたはジー C_{1-6} アルキルアミノ基(例、ジメチルアミノ)、 C_{1-6} アルキル(C_{7-16} アラルキル)アミノ基(例、メチル(ベンジル)アミノ)、4ないし6員環状アミノ基(例えば、1-アゼチジニル、1-ピロリジニル、ピペリジノ、モルホリノ、チオモルホリノ、1-ピペラジニルなど、特に1-ピロリジニル)などから選ばれる置換基で置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、1-1のでも無置換の1-1のでは、1-1のでも無置換の1-1のでは、1-0のでは、1-1の

10

15

20

25

30

「置換されていてもよい C_{3-10} シクロアルキル基」としては、例えば、ハロゲン化されていてもよい C_{1-6} アルキル基で置換されていてもよいシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、アダマンチルなどが好ましく、なかでも C_{3-8} シクロアルキル基などが好ましく、特に C_{5-7} シクロアルキル基が好ましい。

「置換されていてもよい C_{7-16} アラルキル基」としては、例えば、ハロゲン原子で置換されていてもよい C_{1-6} アルキル(例、メチル、エチル、プロピルなど)などで置換されていてもよい C_{7-16} アラルキル基(例、ベンジル)が好ましい。

「置換されていてもよい複素環基」としては、例えば、1-アザビシクロ[2.2.2] オクト-3-イルなどが好ましい。

 R^5 としては、特にイソプチル、 \sec ープチル、tertープチルなどの分岐状の C_{3-6} アルキル基やアダマンチルなどの C_{3-10} シクロアルキル基が好ましく、とりわけイソプチル、 \sec ープチル、tertープチルなどの分岐状の C_{3-6} アルキル基が好ましい。

前記式中、 R^3 は置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基または式-S(O) nR^7 (R^7 は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは $0\sim2$ の整数を示す)で表される基を示す。

R³で示される「置換されていてもよい炭化水素基」、「置換されていてもよい複素環基」、「置換されていてもよいヒドロキシ基」および「置換されていてもよいアミノ基」としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」、「置換されていてもよい複素環基」、「置換されていてもよいとドロキシ基」および「置換されていてもよいアミノ基」と同様のものが用いられる。

R⁷で示される「置換されていてもよい炭化水素基」および「置換されていて もよい複素環基」としては、環Aが有していてもよい置換基としての「置換さ れていてもよい炭化水素基」および「置換されていてもよい複素環基」と同様 のものが用いられる。nは0~2の整数を示すが、なかでも0が好ましい。

R³としては、置換されていてもよいヒドロキシ基、置換されていてもよいア

ミノ基または置換されていてもよい炭化水素基などが好ましく、なかでも置換 されていてもよいヒドロキシ基が好ましい。

「置換されていてもよいヒドロキシ基」としては、置換されていてもよい炭 化水素基で置換されていてもよいヒドロキシ基が好ましい。具体的には、(i) ハロゲン原子(例、フッ素など)、C₁₋₆アルコキシーカルポニル(例、メト 5 キシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキ シカルボニルなど)、モノーまたはジーC,-gアルキルアミノ(例、ジメチルア ミノ)、4ないし6員環状アミノ基(例えば、1-アゼチジニル、1-ピロリ ジニル、ピペリジノ、モルホリノ、チオモルホリノ、1-ピペラジニルなど、 特に1-ピロリジニル)、酸素原子、硫黄原子および窒素原子等から選ばれた 10 ヘテロ原子1ないし3種を少なくとも1個含む5ないし16員の芳香族複素環 基(例えば、インドリル)などで置換されていてもよいC1-6アルキル基(例、 メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、secープチル 、tert-ブチルなど)、(ii) C₁₋₆アルキル基(例、メチル、エチル、プロピ ル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-プチルなど)な 15 どで置換されていてもよい C3-8シクロアルキル基(例、シクロプロピル、シク ロプチル、シクロペンチル、シクロヘキシル)、(iii)C₆₋₁₄アリール基(例 、フェニル)、(iv) C₇₋₁₆アラルキル基(例、ベンジル)、(v) R^{AA}SO 2- (R^{AA}はハロゲン化されていてもよいC₁₋₆アルキル基(例、メチル、トリ フルオロメチルなど)を示す)で表される基などから選ばれる置換基で置換さ 20 れていてもよいヒドロキシ基が好ましく用いられ、なかでも(i)ハロゲン原 子(例、フッ素など)、C1-4アルコキシーカルボニル(例、メトキシカルボニ ル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル など) などで置換されていてもよいC1-6アルキル基(例、メチル、エチル、プ ロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチルなど 25)、(ii) C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、 ブチル、イソブチル、secーブチル、tertーブチルなど)などで置換されていて もよいC3-3シクロアルキル基(例、シクロプロピル、シクロブチル、シクロペ ンチル、シクロヘキシル)、(iii)C₇₋₁₆アラルキル基(例、ペンジル)、(iv) $R^{AA}SO_2-(R^{AA}k)$ になっていてもよい C_{1-6} アルキル基(例、メチル、トリフルオロメチルなど)を示す)で表される基などから選ばれる置換基で置換されていてもよいヒドロキシ基が好ましく用いられる。「置換されていてもよいアミノ基」としては、アミノ基が好ましい。「置換されていてもよい炭化水素基」としては、フェニルなどの C_{6-14} アリール基が好ましい。

R³としては、特にヒドロキシ基が好ましい。

上記式(I)で表される化合物としては、例えば、

(1) 式

5

$$\begin{array}{c|c}
 & R^1 \\
 & X \\
 & R^2
\end{array}$$
(11)

10 〔式中、各記号は前記と同意義を示す。〕で表される化合物、

(2) 式

〔式中、Zは結合手、置換されていてもよいアルキレン基、O、Sまたは NR^1 0 (R^{10} は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、 R^8 および R^9 はそれぞれ置換されていてもよい分岐状の炭化水素基を、他の記号は前記と同意義を示す。〕で表される化合物、

(3)式

15

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

15

20

〔式中、R¹¹は置換されていてもよいヒドロキシ基を、環Bは前記と同意義を示す。〕で表される化合物などが好ましく用いられる。

Zは結合手、置換されていてもよいアルキレン基、O、SまたはNR¹⁰(R¹ ⁰は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を示す。

Zで示される「置換されていてもよいアルキレン基」のアルキレン基としては、例えば、メチレン、エチレン、プロピレンなどの C_{1-6} アルキレン基などが用いられ、なかでもメチレンが好ましい。

該「アルキレン基」の置換基としては、前記した環Aが有していてもよい置 10 換基としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)と同様のものが用いられる。

R¹⁰で示される「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」と同様のものが用いられる。

Zとしては、Oまたは NR^{10} が好ましい。 R^{10} としては、例えば、水素原子やメチル、エチルなどの C_{1-6} アルキル基が好ましく、特に水素原子が好ましい

なかでも、ZとしてはOまたはNHが好ましく、特にOが好ましい。

R[®]またはR[®]で示される「置換されていてもよい分岐状の炭化水素基」の「 分岐状の炭化水素基」としては、例えば、イソプロピル、イソプチル、secーブ チル、tertープチル、ネオペンチルなどの分岐状のC₃₋₆アルキル基、アダマン チル基などが用いられる。

なお、R⁸およびR⁹としては、嵩高い基であれば、「置換されていてもよい 25 分岐状の炭化水素基」に限定する必要はない。

「分岐状の炭化水素基」の置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)と同様のものが用いられるが、なかでもハロゲン原子(例、フッ素など)などが好ましい。

 R^8 または R^9 としては、イソプロピル、イソプチル、secーブチル、tertーブチルなどの無置換の分岐状の C_{3-6} アルキル基が好ましい。

R¹¹で示される「置換されていてもよいヒドロキシ基」としては、R³で示される「置換されていてもよいヒドロキシ基」と同様のものが用いられ、なかでも置換されていてもよい炭化水素基で置換されていてもよいヒドロキシ基が好ましい。

具体的には、(i)ハロゲン原子(例、フッ素など)、C₁₋₆アルコキシーカ ルボニル(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボ ニル、イソプロポキシカルボニルなど)、モノーまたはジーC₁₋₆アルキルアミ ノ(例、ジメチルアミノ)、4ないし6員環状アミノ基(例えば、1-アゼチ 10 ジニル、1-ピロリジニル、ピペリジノ、モルホリノ、チオモルホリノ、1-ピペラジニルなど、特に1-ピロリジニル)、酸素原子、硫黄原子および窒素 原子等から選ばれたヘテロ原子1ないし3種を少なくとも1個含む5ないし1 6員の芳香族複素環基(例えば、インドリル)などで置換されていてもよいC, -6アルキル基(例、メチル、エチル、プロピル、イソプロピル、プチル、イソ 15 プチル、secープチル、tertープチルなど)、(ii) C₁₋₆アルキル基(例、メ チル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、 tert-プチルなど)などで置換されていてもよいC3-8シクロアルキル基(例、 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル)、(iii) C_{6-14} アリール基(例、フェニル)、(iv) C_{7-16} アラルキル基(例、ベンジ 20 ル)、(v) R^{AA}SO₂-(R^{AA}はハロゲン化されていてもよいC₁₋₆アルキル 基(例、メチル、トリフルオロメチルなど)を示す)で表される基などから選 ばれる置換基で置換されていてもよいヒドロキシ基が好ましく用いられ、なか でも(i)ハロゲン原子(例、フッ素など)、C₁₋₆アルコキシーカルポニル(例、メトキシカルポニル、エトキシカルボニル、プロポキシカルボニル、イソ 25 プロポキシカルボニルなど)などで置換されていてもよいC1-6アルキル基(例 、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secーブチ ル、tertーブチルなど)、(ii)C₁₋₆アルキル基(例、メチル、エチル、プロ ピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルなど)

10

15

20

25

などで置換されていてもよい C_{3-8} シクロアルキル基(例、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル)、(i i i) C_{7-16} アラルキル基(例、ベンジル)、(i v) $R^{AA}SO_2$ —(R^{AA} はハロゲン化されていてもよい C_{1-6} アルキル基(例、メチル、トリフルオロメチルなど)を示す)で表される基などから選ばれる置換基で置換されていてもよいヒドロキシ基が好ましく用いられる。

R¹¹としては、特にヒドロキシ基が好ましい。

上記式(I)で表される化合物としては、具体的には、後述する参考例1~22または実施例1~28で製造される化合物などが好ましい。

上記式(I)で表される化合物のうち、式

$$\begin{array}{c|c}
 & R^{12} \\
 & X \\$$

〔式中、 R^{12} および R^{13} はそれぞれ置換されていてもよい C_3 以上の炭化水素基を、他の記号は前記と同意義を示す。〕で表される化合物(ただし、6-フルオロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸tert-プチルエステル、4-プトキシ-6-フルオロ-2-ネオペンチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル、7-ベンジルオキシ-4-ヒドロキシ-2-イソプチル-1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステルおよび6-ベンジルオキシ-4-ヒドロキシ-2-イソプチル-1-オキソー1、2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステルおよび1-ベンジルオキシー4-ヒドロキシー2-イソプチル-1-オキソー1、1-ジヒドロ-1-イソキノリンカルボン酸 tert-プチルエステルを除く)は新規な化合物である。

 R^{12} および R^{13} で示される「置換されていてもよい C_3 以上の炭化水素基」の「 C_3 以上の炭化水素基」としては、例えばプロピル、イソプロピル、シクロプロピル、ブチル、イソプチル、secープチル、tertープチル、ペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、トリデシル、テトラデシル、ペンタデシルなどの直鎖状または分枝状の C_{3-15} アルキル基やアダマンチルなどの C_{3-10} シクロアルキル基などが用いられ、なかでも

 C_{3-8} アルキル基が好ましく、さらには C_{3-6} アルキル基が好ましい。組み合わせとしては、 R^{12} が直鎖状または分枝状の C_{3-15} アルキル基または C_{3-10} シクロアルキル基で、 R^{13} で直鎖状または分枝状の C_{3-15} アルキル基の場合が好ましい。

また、「 C_3 以上の炭化水素基」としては、 C_3 以上の分岐状の炭化水素基が好ましく、例えば、イソプロピル、イソプチル、 \sec ープチル、tertープチル、ネオペンチルなどの分岐状の C_{3-6} アルキル基、アダマンチル基などが用いられ、特にtertープチルが好ましい。

「C₃以上の炭化水素基」の置換基としては、環Aが有していてもよい置換基 10 としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)と 同様のものが用いられるが、なかでもハロゲン原子(例、フッ素など)などが 好ましい。

 R^{12} または R^{13} としては、イソプロピル、イソブチル、secーブチル、tertープチルなどの無置換の分岐状の C_{3-6} アルキル基が好ましい。

15 Xとしてはメチレン基が好ましい。

Zとしては酸素原子が好ましい。

 R^{12} としては、イソプロピル、tert-ブチルまたはアダマンチルが好ましく、特にtert-ブチルが特に好ましい。

R¹³としては、tert-プチルが特に好ましい。

R³としては、前述した置換されていてもよいヒドロキシ基が好ましい。具体的には、(i)ハロゲン原子(例、フッ素など)、C₁₋₆アルコキシーカルボニル(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニルなど)、モノーまたはジーC₁₋₆アルキルアミノ(例、ジメチルアミノ)、4ないし6員環状アミノ基(例えば、1ーアゼチジニル、1ーピロリジニル、ピペリジノ、モルホリノ、チオモルホリノ、1ーピペラジニルなど、特に1ーピロリジニル)、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を少なくとも1個含む5ないし16員の芳香族複素環基(例えば、インドリル)などで置換されていてもよいC₁₋₆アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、

10

15

20

25

sec-プチル、tert-プチルなど)、(ii) C₁₋₆アルキル基(例、メチル、エ チル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブ チルなど) などで置換されていてもよいC3-8シクロアルキル基(例、シクロプ ロピル、シクロプチル、シクロペンチル、シクロヘキシル)、(iii)C₆₋₁₄ アリール基(例、フェニル)、(iv) C₇₋₁₆アラルキル基(例、ペンジル)、 $(v) R^{AA}SO_2 - (R^{AA} はハロゲン化されていてもよい<math>C_{1-6}$ アルキル基(例 、メチル、トリフルオロメチルなど)を示す)で表される基などから選ばれる 置換基で置換されていてもよいヒドロキシ基が好ましく、なかでも(i)ハロ ゲン原子(例、フッ素など)、C₁₋₆アルコキシーカルボニル(例、メトキシカ ルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカル ポニルなど) などで置換されていてもよい C1-6 アルキル基 (例、メチル、エチ ル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチ ルなど)、(ii) C₁₋₆アルキル基(例、メチル、エチル、プロピル、イソプロ ピル、ブチル、イソブチル、sec-ブチル、tert-ブチルなど)などで置換され ていてもよいC3-8シクロアルキル基(例、シクロプロピル、シクロプチル、シ クロペンチル、シクロヘキシル)、(iii)C₇₋₁₆アラルキル基(例、ペンジル)、(iv) $R^{AA}SO_2$ -(R^{AA} はハロゲン化されていてもよい C_{1-6} アルキル基 (例、メチル、トリフルオロメチルなど)を示す)で表される基などから選ば れる置換基で置換されていてもよいヒドロキシ基が好ましく、特にヒドロキシ 基が好ましい。

なかでも、化合物(III')としては、式

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

〔式中、各記号は前記と同意義を示す。〕で表される化合物が好ましく用いられる。

さらに、上記式(I)で表される化合物のうち、(i)7-プロモ-4-ヒドロキ

10

15

20

25

シー2ーネオペンチルー1ーオキソー1、2ージヒドロイソキノリンー3ーカルボン酸エチルエステルまたはその塩、(ii)8ーヒドロキシー6ーネオペンチルー5ーオキソー5、6ージヒドロ[1、3]ジオキソロ[4、5-g]イソキノリンー7ーカルボン酸エチルエステルまたはその塩、(iii) $N-\{2-[ベンジル(メチル)アミノ]エチル\}-6、7-ジクロロ-4-メトキシー2-ネオペンチルー1ーオキソー1、2-ジヒドロ3-イソキノリンカルボキサミドまたはその塩(特に、塩酸塩)、(iv)6、7-ジクロロー4-ヒドロキシー2-ネオペンチルー1ーオキソー1、2-ジヒドロ-3-イソキノリンカルボン酸メチルエステルまたはその塩、または(v)6、7-ジクロロー4-メトキシー2-ネオペンチルー1ーオキソー1、2-ジヒドロー3-イソキノリンカルボン酸メチルエステルまたはその塩、または(v)6、7-ジクロロー4-メトキシー2-ネオペンチルー1ーオキソー1、2-ジヒドロー3-イソキノリンカルボン酸メチルエステルまたはその塩も新規な化合物である。$

上記式(I)で表される化合物またはその塩〔以下、化合物(I)と称する ことがある〕のプロドラッグは、生体内における生理条件下で酵素や胃酸等に よる反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、還元、 加水分解等を起こして化合物(I)に変化する化合物、胃酸等により加水分解 などを起こして化合物(I)に変化する化合物をいう。化合物(I)のプロド ラッグとしては、化合物(I)のアミノ基がアシル化、アルキル化、りん酸化 された化合物(例えば、化合物(I)のアミノ基がエイコサノイル化、アラニ ル化、ペンチルアミノカルボニル化、(5-メチル-2-オキソ-1、3-ジ オキソラン-4-イル)メトキシカルポニル化、テトラヒドロフラニル化、ピ ロリジルメチル化、ピバロイルオキシメチル化、tertーブチル化された化 合物など)、化合物(I)の水酸基がアシル化、アルキル化、りん酸化、ほう 酸化された化合物(例えば、化合物(I)の水酸基がアセチル化、パルミトイ ル化、プロパノイル化、ピバロイル化、サクシニル化、フマリル化、アラニル 化、ジメチルアミノメチルカルポニル化された化合物など)、あるいは、化合 物(I)のカルボキシル基がエステル化、アミド化された化合物(例えば、化 合物(I)のカルボキシル基がエチルエステル化、フェニルエステル化、カル ボキシメチルエステル化、ジメチルアミノメチルエステル化、ピパロイルオキ シメチ、ルエステル化、エトキシカルポニルオキシエチルエステル化、フタリ ジルエステル化、(5-メチル-2-オキソ-1,3-ジオキソラン-4-イ

10

15

20

25

ル) メチルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、 メチルアミド化された化合物など)等が挙げられる。これらの化合物は自体公 知の方法によって化合物(I)から製造することができる。

また、化合物(I)のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような、生理的条件で化合物(I)に変化するものであってもよい。

化合物(I)の塩としては、例えば金属塩、アンモニウム塩、有機塩基との 塩、無機酸との塩、有機酸との塩、塩基性または酸性アミノ酸との塩等が挙げ られる。金属塩の好適な例としては、例えばナトリウム塩、カリウム塩等のア ルカリ金属塩:カルシウム塩、マグネシウム塩、バリウム塩等のアルカリ土類 金属塩:アルミニウム塩等が挙げられる。有機塩基との塩の好適な例としては、 例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、 シクロヘキシルアミン、ジシクロヘキシルアミン、N, N'-ジベンジルエチレ ンジアミン等との塩が挙げられる。無機酸との塩の好適な例としては、例えば 塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩 の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマ ル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタ ンスルホン酸、ペンゼンスルホン酸、p-トルエンスルホン酸等との塩が挙げ られる。塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジ ン、オルニチン等との塩が挙げられ、酸性アミノ酸との塩の好適な例としては、 例えばアスパラギン酸、グルタミン酸等との塩が挙げられる。

このうち、薬学的に許容し得る塩が好ましい。例えば、化合物内に酸性官能基を有する場合にはアルカリ金属塩(例、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例、カルシウム塩、マグネシウム塩、バリウム塩等)等の無機塩、アンモニウム塩等、また、化合物内に塩基性官能基を有する場合には、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等無機酸との塩、または酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸との塩が挙げられる。

化合物(I)の光学的に活性な形態が必要とされる場合、例えば、光学的に活性な出発物質を使用して、あるいは自体公知の方法を使用する該化合物のラセミ形態の分割によって得ることができる。

化合物(I) またはその塩は、例えば、特開平10-298164、特開2000-72675、特開2000-72751、EP-481383、EP-566069、EP-585913、EP-634402、EP-652218、WO02/62764などに記載の方法あるいはそれに準じる方法に従って製造することができる。

具体的には、化合物(I)またはその塩は、例えば、以下に示す方A~F法で製造することができる。以下の反応式に記載された各化合物は、反応を阻害しないのであれば、塩を形成していてもよく、かかる塩としては、化合物(I)の塩と同様なものが挙げられる。

方法A

方法C

方法D

$$A \downarrow 0 \downarrow 0 \downarrow X \downarrow R^{1}$$

$$L = R^{4}$$

$$(1e)$$

$$A \downarrow 0 \downarrow X \downarrow R^{1}$$

$$R^{2}$$

$$R^{3b} = 0R^{4}, SR^{4}$$

方法E

方法F

5

方法A

10

15

20

化合物(I)のR³が置換されていてもよい炭化水素基、置換されていてもよい芳香族複素環基、ヒドロキシ基、チオール基またはアミノ基である場合、式(IXa)(IXb)または(XX)

〔式中、 R^3 aは置換されていてもよい炭化水素基または置換されていてもよい 芳香族複素環基を、Tは〇、SまたはNHを、Wはイミダゾリル基、低級アルキルコキシ基または低級アルキルチオ基を示し、その他の記号は前記と同意義を示す。〕で表される化合物(I X a)、(I X b)または(X X)、あるいはそれらの塩を分子内環化させることによって化合物(I)の R^3 が置換されていてもよい炭化水素基または置換されていてもよい芳香族複素環基である化合物(I a)またはその塩、化合物(I) の R^3 がヒドロキシ基、チオール基またはアミノ基である化合物(I b1)またはその塩、あるいは化合物(I) の R^3 がアミノ基である化合物(I1 b1)またはその塩をそれぞれ製造することができる

本環化反応は化合物(IXa)あるいは(IXb)に塩基を作用させることにより行われる。

本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tertープタノール等のアルコール類、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ープチル等のエステル類、

10

15

20

例えばジクロロメタン、クロロホルム、四塩化炭素、トリクレン、1,2-ジクロロエタン等のハロゲン化炭化水素類、例えばn-ヘキサン、ベンゼン、トルエン等の炭化水素類、例えばホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

本反応では塩基として、例えば水素化カリウム、水素化ナトリウム等の水素化アルカリ金属類、例えばリチウムエトキシド、リチウムーtertープトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムーtertープトキシド等の炭素数1ないし6の金属アルコキシド類、例えば水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、例えばトリエチルアミン、トリ(nープロピル)アミン、トリ(nープチル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、アーコリジン、N,Nージメチルアニリン、Nーメチルピペリジン、Nーメチルピロリジン、Nーメチルモルホリン、1、5ージアザビシクロ[4.3.0]ノンー5ーエン、1,4ージアザビシクロ[2.2.2]オクタン、1,8ージアザビシクロ[5.4.0]ー7ーウンデセン等の有機アミン類、メチルリチウム、nープチロリチウム、secープチロリチウム、tertープチロリチウムなどの有機リチウム類、リチウムジイソプロピルアミド等のリチウムアミド類等が用いられる。

本反応では、化合物(IXa)、(IXb)あるいは(XX)1モルに対して塩基を約0.01ないし約100モル、好ましくは約0.1ないし約3モル用いる。

反応温度は約-80 ℃ないし約200 ℃、好ましくは約-20 ℃ないし約1 25 00 ℃である。

反応時間は化合物(IXa)、(IXb)あるいは(XX)、塩基触媒の種類、溶媒の種類、反応温度等により異なるが、通常約1分ないし約72時間、好ましくは約15分ないし約24時間である。

方法B

10

15

20

25

化合物(I)のR³が置換されていてもよい炭化水素基または置換されていて もよい芳香族複素環基である場合、式(X)

$$\begin{array}{c|c}
 & O \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

〔式中、R² はエステル化されていてもよいカルボキシル基を、R³ は置換されていてもよい炭化水素基または置換されていてもよい芳香族複素環基を示し、その他の記号は前記と同意義を示す。〕で表される化合物(X)またはその塩と式(X I)

 $H^{2}N-X-R^{1}$ (X I)

〔式中の記号は前記と同意義を示す。〕で表されるアミノ化合物(X I)またはその塩とを反応させた後、脱水させることによって、化合物(I)の R^3 が置換されていてもよい炭化水素基または置換されていてもよい芳香族複素環基である化合物(I c)またはその塩を製造することができる。

本反応は無溶媒または溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tertープタノール等のアルコール類、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ープチル等のエステル類、例えばジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、1,2ージクロロエタン等のハロゲン化炭化水素類、例えば n ーへキサン、ベンゼン、トルエン等の炭化水素類、例えばホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばアセトン、メチルエチルケトン、メチルイソプチルケトン等のケトン類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

15

20

25

本反応は塩基の存在下に行うのが好ましく、そのような塩基としては、例えば は炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、例えば トリエチルアミン、トリ (n-プロピル) アミン、トリ (n-プチル) アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、アーコリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、N-メチルモルホリン等のアミン類が用いられる。

本反応では、化合物(X)1モルに対して化合物(XI)を約1ないし約20モル、好ましくは約1ないし約5モル用いる。

反応温度は約-20℃ないし約150℃、好ましくは約10℃ないし約80 10 ℃である。

反応時間は化合物(X)または(XI)の種類、溶媒の種類、反応温度等により異なるが、通常約1分ないし約72時間、好ましくは約15分ないし約24時間である。

また、本反応の脱水工程は、条件によっては化合物(X)と化合物(XI) の反応のみで完了することもあるが、通常は酸を用いて脱水させる。かかる酸としては、例えば酢酸、トリフルオロ酢酸、メタンスルホン酸、pートルエンスルホン酸などの有機酸類、例えば塩酸、硫酸、硝酸、リン酸、臭化水素酸、過塩素酸などの鉱酸類、例えば塩化アルミニウム、塩化亜鉛、三フッ化ホウ素エーテラート、四塩化チタンなどのルイス酸類などが用いられる。

脱水工程に用いられる溶媒は反応を阻害しない溶媒が適宜選択され、このような溶媒は、化合物(X)と化合物(X I)の反応で用いる溶媒が用いられる。 反応温度は約-20 \mathbb{C} ないし約200 \mathbb{C} 、好ましくは約0 \mathbb{C} ないし約120 \mathbb{C} である。

反応時間は反応条件により異なるが、通常約1分ないし約72時間、好ましくは約15分ないし約15時間である。

方法C

化合物(I)のXが結合手またはアルキレン基である場合、式(XII)

10

15

20

25

$$\begin{array}{c|c}
 & 0 \\
 & NH \\
 & R^{2'}
\end{array}$$
(X11)

〔式中、 R^2 はエステル化されていてもよいカルボキシル基を、他の記号は前記と同意義を示す。〕で表わされる化合物(XII)と式(XIII) $L^4-X^1-R^1$ (XIII)

〔式中、 L^4 は脱離基(前記Lと同意義を示す)を、 X^1 は結合手またはアルキレン基を示す。〕で表される化合物(XIII)を反応させることにより、化合物(I)のXが結合手またはアルキレン基である化合物(I d)を製造することができる。

本法は化合物(XII)またはその塩を、化合物(XIII)またはその塩を用いてアルキル化反応することにより行われる。

本反応は一般に溶媒中、塩基の存在下に行われる。本反応に用いる塩基としては、例えば水素化カリウム、水素化ナトリウム等の水素化アルカリ金属類、例えばリチウムエトキシド、リチウム tertープトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウム tertープトキシド等の炭素数1ないし6の金属アルコキシド類、例えば水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等の無機塩基、例えばトリエチルアミン、トリ(nープロピル)アミン、トリ(nープチル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、アーコリジン、N、N・ジメチルアニリン、N・メチルピペリジン、N・メチルピロリジン、N・メチルモルホリン、1、5ージアザビシクロ[4.3.0]ノンー5ーエン、1、4ージアザビシクロ[2.2.2]オクタン、1、8ージアザビシクロ[5.4.0]ー7ーウンデセン等の有機アミン類、2-tert-ブチルイミノー2-ジエチルアミノー1、3-ジメチルーペルヒドロー1、3、2-ジアザホスホリンならびにその樹脂等が挙げられる。

また、かかる溶媒としては反応を阻害しない溶媒が適宜選択される。このような溶媒としては例えばメタノール、エタノール、プロパノール、イソプロパ

10

15

25

ノール、ブタノール、tertーブタノール等のアルコール類、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ーブチル等のエステル類、例えばジクロロメタン、クロロホルム、四塩化炭素、トリクレン、1,2ージクロロエタン等のハロゲン化炭化水素類、例えば n ー ヘキサン、ベンゼン、トルエン等の炭化水素類、例えばホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

本反応では、化合物(XII)1モルに対して化合物(XIII)約1ないし約5モル、好ましくは約1ないし約2モルを用いる。

反応温度は約-50 \mathbb{C} ないし約150 \mathbb{C} 、好ましくは約-20 \mathbb{C} ないし約10 \mathbb{C} である。

反応時間は化合物(XII)または(XIII)の種類、溶媒及び塩基の種類、反応温度等により異なるが、通常約1分間ないし約100時間、好ましくは約15分間ないし約48時間である。

方法D

化合物(I)の R^3 が置換されたヒドロキシ基または置換されたチオール基で 80 ある場合、式(Ie)

$$\begin{array}{c|c}
0 & X & R^1 \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

〔式中、 T^1 は酸素原子または硫黄原子を表し、その他の記号は前記と同意義を示す。〕で表される化合物(Ie)またはその塩と式(III)

$$L-R^4$$
 (III)

 $[L は 脱離基 (例、ハロゲン原子 (例、塩素、臭素、ヨウ素など) または式 R <math>^{L}-SO_{2}-O-$ (式中、 R^{L} はハロゲン原子で置換されていてもよい低級アルキ

ル基または置換されていてもよいフェニル基などを示す)で表される基など) またはヒドロキシ基を示し、R4は前記R3で示される「置換されていてもよい ヒドロキシ基または置換されたチオール基」におけるヒドロキシ基またはチオ ール基が有する置換基に相当する基を示す。〕で表される化合物またはその塩 とを反応させることによって化合物(I)を製造することができる。

方法D-1

5

15

20

Lがヒドロキシ基の場合、化合物(Ie)は、反応に影響を及ぼさない溶媒 中、光延反応によってアルキル化することができる。

本反応では溶媒として、トルエン、ベンゼン等の芳香族炭化水素類、N,N-ジ メチルホルムアミド、N.N-ジメチルアセトアミド、N-メチルピロリドン等の 10 カルボン酸アミド類、ジメチルスルホキシド等のスルホキシド類、アセトン、 メチルエチルケトン、メチルイソプチルケトン等のケトン類、その他アセトニ トリル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキ サン等の通常用いられる非プロトン性溶媒を用いることが出来る。なかでも、 テトラヒドロフランが好ましい。

光延反応においては試薬として、アゾジカルボン酸ジエチル、アゾジカルボ ン酸ジイソプロピル、アゾジカルボン酸ビスジメチルアミド等のアゾジカルボ ン酸類と、トリフェニルホスフィン、トリブチルホスフィン、トリメチルホス フィン等のホスフィン類の組合せが好んで用いられる。また、シアノメチレン トリブチルホスホラン等のホスホラン類を単独で用いることもできる。

本反応は、化合物(Ie)1モルに対してアルコール類1~3モル程度およ び光延反応試薬1~3モル程度を用い、テトラヒドロフラン中、通常0℃~溶 媒の沸点程度で5~40時間、好ましくは0℃~室温程度で1~20時間程度 行うのがよい。

方法D-2 25

Lが脱離基の場合、前記式中、R^Lで示される「ハロゲン原子で置換されてい てもよい低級アルキル基」における低級アルキル基としては、例えばメチル、 エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、tertーペンチル、1-エチ

10

15

20

25

ルプロピル、ヘキシル、イソヘキシル、1, 1 – ジメチルプチル、2, 2 – ジメチルプチル、3, 3 – ジメチルプチル、2 – エチルプチル等の C_{1-6} アルキル基が挙げられ、中でもメチル、エチル、プロピル、イソプロピル、プチル、イソプチル等の C_{1-4} アルキル基が好ましい。 R^L で示されるハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)で置換された低級アルキル基としては、例えばトリクロロメチル、トリフルオロメチル等が挙げられる。

 R^{L} で示される「置換されていてもよいフェニル基」における置換基としては、例えば低級アルキル基(例えばメチル、エチル、プロピル、イソプロピル、ブチル等)、低級アルコキシ基(例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ等の C_{1-6} アルコキシ基)、ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)、ニトロ基、シアノ基等が用いられる。

本反応はアルキル化反応であり、一般に反応に影響を及ぼさない溶媒中で塩 基存在下で行うことが出来る。

本反応では塩基として、例えば水素化カリウム、水素化ナトリウム等の水素化アルカリ金属類、例えばリチウムエトキシド、リチウムーtertープトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムーtertープトキシド等の炭素数1ないし6の金属アルコキシド類、例えば水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等の無機塩基、例えばトリエチルアミン、トリ(nープロピル)アミン、トリ(nープチル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、アーコリジン、N,Nージメチルアニリン、Nーメチルピペリジン、Nーメチルピロリジン、Nーメチルモルホリン、1,5ージアザビシクロ[4.3.0]ノンー5ーエン、1,4ージアザビシクロ[2.2.2]オクタン、1,8ージアザビシクロ[5.4.0]ー7ーウンデセン等の有機アミン類、2-tertープチルイミノ-2-ジエチルアミノ-1,3ージメチルーペルヒドロ-1,3,2-ジアザホスホリンならびにその樹脂等が用いられる。

. また本反応においては、反応促進剤としてヨウ化カリウムやヨウ化ナトリウム等のヨウ化物を添加することもできる。

25

本反応で用いる溶媒としては反応を阻害しない溶媒が適宜選択される。このような溶媒としては例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tertープタノール等のアルコール類、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ープチル等のエステル類、例えばジクロロメタン、クロロホルム、四塩化炭素、トリクレン、1,2ージクロロエタン等のハロゲン化炭化水素類、例えば n ーへキサン、ベンゼン、トルエン等の炭化水素類、例えばホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

本反応は、化合物(Ie)1モルに対して、アルキル化剤(III)1~3 モル程度、塩基1~3モル程度を用い、通常0℃~溶媒の沸点程度で $5\sim40$ 時間、好ましくは室温~100℃程度で $10\sim20$ 時間程度行うのがよい。 方法E

化合物(I)の R^3 が置換されたアミノ基である場合(環状アミノ基を含む)、式(I b^1)

$$\begin{array}{c|c}
0 & X & R^1 \\
\hline
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

20 〔式中の記号は前記と同意義を示す。〕で表される化合物(Ib^1)またはその 塩と式(V) (および(V^\prime))

$$L^{1}-R^{5}$$
 (V) ($L^{1}-R^{5}$, (V'))

〔式中、 L^1 は脱離基を示し、 R^5 および R^5 'はそれぞれ前記「置換されていてもよいアミノ基」におけるアミノ基が有する置換基に相当する基を示す。〕、もしくは式(VI)

 $L^{2}-R^{6}-L^{3}$ (VI)

15

20

25

〔式中、L²及びL³はそれぞれ脱離基を示し、R⁶はR³で示される環状アミノ基を形成しうる2価の基を示す。〕で表されるアルキル化剤もしくはアシル化剤またはその塩とを反応させることによって化合物(I)を製造することができる。

5 L¹、L²及びL³で示される脱離基としては、それぞれ前記Lで示される脱離基と同様の基などが用いられる。

本反応はアシル化反応もしくはアルキル化反応であり、一般に反応に影響を及ぼさない溶媒中で塩基存在下で行うことが出来る。本反応では塩基として、例えば水素化カリウム、水素化ナトリウム等の水素化アルカリ金属類、例えばリチウムエトキシド、リチウム tertーブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウム tertーブトキシド等の炭素数 1 ないし 6 の金属アルコキシド類、例えば水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等の無機塩基、例えばトリエチルアミン、トリ(nープロピル)アミン、トリ(nープチル)アミン、ジイソプロピルエチルアミン、シクロヘキシルジメチルアミン、ピリジン、ルチジン、アーコリジン、N,Nージメチルアニリン、Nーメチルピペリジン、Nーメチルピロリジン、Nーメチルモルホリン、1,5ージアザビシクロ [4.3.0] ノンー5ーエン、1,4ージアザビシクロ [2.2.2] オクタン、1,8ージアザビシクロ [5.4.0] -7ーウンデセン等の有機アミン類、2-tert-ブチルイミノ-2-ジエチルアミノ-1,3-ジメチルーペルヒドロ-1,3,2-ジアザホスホリンならびにその樹脂等が用いられる。

本反応で用いる溶媒としては、反応を阻害しない溶媒が適宜選択される。このような溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tertーブタノール等のアルコール類、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertーブチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ーブチル等のエステル類、例えばジクロロメタン、クロロホルム、四塩化炭素、トリクレン、1,2ージクロロエタン等のハロゲン化炭化水素類、例えば n ーへキサン、ベンゼン、トル

10

15

20

25

エン等の炭化水素類、例えばホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

化合物(Ib¹)に化合物(V)を反応させて化合物(I)を得る場合、反応は一段階もしくは二段階行い、二段階行う場合、一段階目と二段階目で用いる化合物(V)および(V')、塩基及び溶媒はそれぞれ同一でも異なってもよい。

本反応は化合物(I b¹)もしくは化合物(I g)1モルに対して、化合物(V)もしくは化合物(V')1~3モル程度、塩基1~3モル程度を用い、通常0℃~溶媒の沸点程度で5~40時間、好ましくは室温~100℃程度で10~20時間程度行うのがよい。

また、化合物(I b¹)に化合物(V I)を反応させて化合物(I)を得る場合、反応は、 L^2 及び L^3 の置換を一段階で進行させても二段階で進行させても良く、二段階で進行させる場合、用いる塩基及び溶媒はそれぞれ同一でも異なってもよい。

本反応は化合物(Ib^1)1モルに対して、化合物(VI)1~3モル程度、塩基2~4モル程度を用い、通常0℃~溶媒の沸点程度で5~40時間、好ましくは室温~100℃程度で10~20時間程度行うのがよい。また、二段階で進行させる場合、二段階目の反応は化合物(Ig')1モルに対して、塩基2~4モル程度を用い、通常0℃~溶媒の沸点程度で5~40時間、好ましくは室温~100℃程度で10~20時間程度行うのがよい。

また、方法Eに類する方法として、化合物(I)で R^3 が置換されていてもよいピロリルである化合物は、自体公知の方法(例えば、SYNTHETIC COMMUNICATION、1991年、21(15-16)、p.1567-1576 に示される方法)またはそれに準じた方法に従い、化合物(Ib^1)に酸もしくは塩基存在下2、5-ジメトキシテトラヒドロフラン誘導体を作用させて製造することが出来る。

、また、化合物(I)で R^3 が置換されていてもよいトリアゾリルである化合物は、自体公知の方法に従い、化合物(Ib^1)にI, 2-ピス[(ジメチルアミ

ノ) メチレン]ヒドラジンなどのヒドラジン類 (Journal of American Chemical Society, 1995年, 117(22), p.5951-5957 など) や[1,3,4]オキサジアゾール誘導体(Journal of Heterocyclic Chemistry, 1989年, 26(1), p. 225-230 など)を作用させて製造することが出来る。

5 方法F

15

20

化合物(I)のR³が置換されていてもよい炭化水素基、置換されていてもよい複素環基または置換されていてもよいアミノ基である場合、式(VII)

$$\begin{array}{c|c}
0 & X & R^1 \\
\hline
 & N & X & R^2 \\
\hline
 & OTf & & & & \\
\end{array}$$
(VII)

〔式中、OTfはトリフルオロメタンスルホニルオキシ基を、他の記号は前記 10 と同意義を示す。〕で表される化合物(VII)またはその塩と式(VIII)

$Q-R^{3c}$ (VIII)

〔式中、Qはクロスカップリング反応可能な原子団基(例えば、ホウ素、スズ、マグネシウム、亜鉛等で結合する原子団基、等)を表し、R³cは置換されていてもよい複素環基または置換されていてもよい炭化水素基を示す。〕で表される化合物(VIII)またはその塩、もしくは式(VIII)

NHR⁵R⁵' (VIII')

〔式中、R⁵及びR⁵'は、前記「置換されていてもよいアミノ基」におけるアミノ基が有していてもよい置換基に相当する基を示し、R⁵及びR⁵'は窒素原子と一緒になって環状アミノ基を形成していてもよい。〕で表されるアミノ化合物(VIII')またはその塩とを反応させて、化合物(I)を製造することができる。

本法は化合物 (VII) またはその塩と化合物 (VIII) またはその塩、 もしくはアミノ化合物 (VIII') またはその塩とを金属触媒存在下にクロ スカップリング反応 (例えば、鈴木カップリング反応、Heck反応、Sti 11eカップリング反応、Buchbaldのアミノ化反応等) させることに

10

15

20

25

より、化合物(I)を製造する。

本反応は通常塩基存在下に行い、塩基としては、例えば水素化ナトリウム、水酸 水素化カリウム、などの水素化アルカリ金属類、例えば水酸化リチウム、水酸 化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属類、水酸化マグネシウム、水酸化カルシウムなどの水酸化アルカリ土類金属類、炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属類、例えば炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸水素アルカリ金属などの無機塩基類、例えばナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド等の炭素数1ないし6の金属アルコキシド類、例えばトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、ピコリン、Nーメチルピロリジン、Nーメチルモルホリン、1,5ージアザビシクロ [4.3.0] ノンー5ーエン、1,4ージアザビシクロ [2.2.2] オクタン、1,8ージアザビシクロ [5.4.0] ー7ーウンデセンなどの有機塩基類、メチルリチウム、nープチロリチウム、secープチロリチウム、tertープチロリチウムなどの有機リチウム類、リチウムジイソプロピルアミド等のリチウムアミド類等が用いられる。

本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。このような溶媒としては例えばメタノール、エタノール、プロパノール、イソプロパノール、プタノール、tertープタノール等のアルコール類、例えばジオキサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ーブチル等のエステル類、例えばジクロロメタン、クロロホルム、四塩化炭素、トリクレン、1,2ージクロロエタン等のハロゲン化炭化水素類、例えば n ーへキサン、ベンゼン、トルエン等の炭化水素類、例えばホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

本クロスカップリング反応は、一般に金属触媒を用いて反応を促進させることができる。本反応では金属触媒として、さまざまな配位子を有する金属複合

体が用いられ、例えばパラジウム化合物 [例、パラジウムアセテート、テトラキス(トリフェニルホスフィン)パラジウム、塩化ビス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリエチルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウムー2,2'ービス(ジフェニルホスフィノ)ー1,1'ー ビナフチル、酢酸パラジウム(II) と1,1'ービス(ジフェニルホスフィノ)フェロセンの複合体など)、ニッケル化合物 [例、テトラキス(トリフェニルホスフィン)ニッケル、塩化ビス(トリフェニルホスフィン)ニッケル、塩化ビス(トリフェニルホスフィン)ニッケルなど)、ロジウム化合物 [例、塩化トリ(トリフェニルホスフィン)ロジウムなど)、コバルト化合物、白金化合物などが用いられるが、なかでも、パラジウムやニッケル化合物が好ましい。これらの触媒の使用量は化合物(VII)1モルに対して約1~0.00001モル、好ましくは約0.1~0.0001モルである。

本反応では、化合物(VII) 1モルに対して化合物(VIII)または化合物(VIII) 約0.8~10モル、好ましくは約0.9~2モル、および、塩基約1~約20モル、好ましくは約1~約5モルが用いられる。

反応温度は約-10℃~約250℃、好ましくは約0℃~約150℃である。 反応時間は化合物(VII)、化合物(VIII)もしくは化合物(VII I')、金属触媒、塩基または溶媒の種類、反応温度等により異なるが、通常 約1分間~約200時間、好ましくは約5分間~約100時間である。

20 方法G

15

化合物(I)の R^3 が式 $-SOR^7$ または $-SO_2R^7$ で表される基である式(Ii)

〔式中、R⁷は置換されていてもよい炭化水素基または置換されていてもよい複 素環基を、nは1ないし2を示し、その他の記号は前記と同意義を示す。〕で 表される化合物(Ii)は、前記した方法Eによって、もしくは、前記した方法

10

15

20

Dによって得られる式(Ij)

$$\begin{array}{c|c}
0 & X & R^1 \\
\hline
A & R^2 & \\
\hline
SR^7 & R^2
\end{array}$$

〔式中の他の記号は前記と同意義を示す。〕で表される化合物(Ij)を酸化することによって得られる。本酸化反応は、自体公知の方法またはそれに準ずる方法を用いることができ、例えば酸化剤を用いる方法等が用いられる。使用される酸化剤の好ましい例としては、例えば過酢酸、3-クロロ過安息香酸、メタ過ヨウ素酸ナトリウム、オキソン等の過酸化物等が挙げられる。通常、スルホキシド化する場合には1当量の酸化剤を用い、スルホン化する場合には2ないし5当量の酸化剤を用いることが好ましい。ただし、メタ過ヨウ素酸ナトリウムは、主にスルホキシド化反応の場合に用いられ、使用量も1当量以上用いることができる。

反応は、一般に溶媒中で行うのが有利である。使用される溶媒は、通常水、酢酸、例えばメタノール、エタノール、プロパノール等のアルコール類、例えばテトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類、アセトニトリル、例えばN,Nージメチルホルムアミドのアミド類、例えばジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類、およびこれらの混合溶媒、その他反応に悪影響を及ぼさない溶媒等が用いられる。反応は通常−20℃ないし120℃(好ましくは0℃ないし50℃)の温度範囲で行われる。反応時間は、通常10分間ないし48時間、好ましくは0.5時間ないし24時間である。

方法H

化合物(I)のR²がカルボキシル基である式(Ik)

10

15

20

$$\begin{array}{c|c}
 & 0 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

〔式中の記号は前記と同意義を示す。〕で表される化合物 (Ik) は、前記した 方法 $A\sim E$ によって得られる式 (Im)

$$\begin{array}{c|c}
O & & & \\
\hline
A & & & \\
\hline
R^3 & & & \\
\end{array}$$

$$\begin{array}{c}
COOR^7
\end{array}$$
(1m)

〔式中、 R^7 は置換されていてもよい低級(C_{1-6})アルキル基(例えばメチル、 エチル、プロピル、プチル、tert-プチル基等)を示し、その他の記号は前記と 同意義を示す。〕で表される化合物(Im)を加水分解することによって得られ る。本加水分解反応は、自体公知の方法またはそれに準ずる方法を用いること ができ、例えば酸による方法、塩基による方法、環元による方法、紫外光によ る方法、テトラブチルアンモニウムフルオリドによる方法、酢酸パラジウムに よる方法等が用いられる。酸による方法は主に t ープチルエステルの場合に用 いられ、使用される酸の好ましい例としては、例えばギ酸、トリフルオロ酢酸、 ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸:例えば塩酸、臭化水 素酸、硫酸等の無機酸等が挙げられる。塩基による方法は、通常低級アルキル エステルの場合に用いられ、使用される塩基の好ましい例としては、例えば水 酸化リチウム、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属、 水酸化マグネシウム、水酸化カルシウム等の水酸化アルカリ土類金属、炭酸ナ トリウム、炭酸カリウム等の炭酸アルカリ金属、炭酸マグネシウム、炭酸カル シウム等の炭酸アルカリ土類金属、炭酸水素ナトリウム、炭酸水素カリウム等 の炭酸水素アルカリ金属、酢酸ナトリウム、酢酸カリウム等の酢酸アルカリ金 属、リン酸カルシウム、リン酸マグネシウム等のリン酸アルカリ土類金属、リ ン酸水素二ナトリウム、リン酸水素二カリウム等のリン酸水素アルカリ金属な

10

15

20

25

らびにアンモニア水等の無機塩基等が挙げられる。還元による方法は、例えばベンジルオキシメチル、ベンジル、p-ニトロベンジル、ベンズヒドリル等で保護されたカルボキシル基等の脱保護に適用される。使用される還元法の好ましい例としては、亜鉛/酢酸による還元、接触還元等が挙げられる。紫外光による方法は、例えばo-ニトロベンジルで保護されたカルボキシル基の脱保護に用いられる。テトラブチルアンモニウムフルオリドによる方法は、例えば2-トリメチルシリルエチル等のシリルエーテル型エステルならびにシリルエステル類から保護基を除去し、カルボキシル基を得る方法として用いられる。酢酸パラジウムによる方法は、例えばアリルエステルから保護基を除去してカルボキシル基を得る方法として用いられる。

反応は、一般に溶媒中で行うのが有利である。使用される溶媒は、通常水、例えばメタノール、エタノール、プロパノール等のアルコール類、例えばテトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類、例えばN,Nージメチルホルムアミドのアミド類、例えばジメチルスルホキシド等のスルホキシド類等の非プロトン性の極性溶媒、およびこれらの混合溶媒、その他反応に悪影響を及ぼさない溶媒等が用いられる。液状の酸または塩基は溶媒としても使用できる。反応は通常−20℃ないし120℃(好ましくは0℃ないし100℃)の温度範囲で行われる。反応時間は、通常10分間ないし48時間、好ましくは0.5時間ないし24時間である。

また、このようにして得た化合物(Ik)を用い、化合物(Ik)のカルボキシル基を自体公知の方法またはそれに準ずる方法を用いて修飾することで様々な誘導体を製造することができる。

例えば、1) 化合物(Ik) をエステル化することにより、式(In)

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

〔式中、R®は置換基を有していてもよい炭化水素または置換基を有していても よい複素環基を示し、その他の記号は前記と同意義を示す。〕で表される化合 物(In)を製造することができる。

本エステル化反応は、自体公知の方法またはそれに準ずる方法を用いることができ、例えば、化合物(Ik)をR®-L5〔式中、L5は脱離基(前記Lと同意義を示す)を示し、その他の記号は前記と同意義を示す。〕で表される化合物と塩基存在下に反応させる方法、化合物(Ik)をR®-OHで表されるアルコール類と酸触媒存在下に反応させる方法、縮合剤〔例えばカルボジイミド類(DCC、WSC、DIC等)、りん酸誘導体(例えばシアノりん酸ジエチル、アジ化りん酸ジフェニル、BOP-CI等)等〕を用いて縮合する方法、あるいはトリフェニルホスフィンとアゾジカルボン酸ジエチル等の試薬を用いる光延反応、さらには化合物(Ik)の反応性誘導体(例えば、酸ハライド、活性エステル、酸アジド等)を塩基存在下にR®-OHで表されるアルコール類と反応させる方法等を用いることができる。

2)

化合物(Ik)をアミド化することにより、式(Ip)

15

20

25

5

10

〔式中、R⁹およびR¹⁰はそれぞれ水素原子、または前記R²で示される「置換されていてもよいカルバモイル基」におけるカルバモイル基が有していてもよい置換基に相当する基を示す。〕で表される化合物(Ip)を製造することができる。

本アミド化反応は、自体公知の方法またはそれに準ずる方法を用いることができ、例えば、化合物(Ik)とアミンに縮合剤〔例えばカルポジイミド類(DCC、WSC、DIC等)、りん酸誘導体(例えばシアノりん酸ジエチル、DPPA、BOP-C1等)等〕を作用させる方法、あるいは化合物(Ik)の反応性誘導体(例えば、酸ハライド、酸無水物、活性エステル、エステル、酸イミダゾリド、酸アジド等)をアミンと反応させる方法等を用いることができる。

方法I

10

15

20

25

化合物(I)のR¹、R²、R³および環Aが有する置換基において、その置換 基に変換可能な官能基(例えば、カルボキシル基、アミノ基、ヒドロキシ基、 カルボニル基、チオール基、エステル基、スルホ基、ハロゲン原子など)を有 する場合、自体公知の方法またはそれに準ずる方法によって官能基を変換する ことにより種々の化合物を製造することができる。

例えばカルボキシル基の場合、前記の方法Gで示したようなエステル化、還元、アミド化、保護されていてもよいアミノ基への変換等の反応により変換可能である。アミノ基の場合、例えばアミド化、スルホニル化、ニトロソ化、アルキル化、アリール化、イミド化等の反応により変換可能である。ヒドロキシ基の場合、エステル化、カルバモイル化、スルホニル化、アルキル化、アリール化、酸化、ハロゲン化等の反応により変換可能である。カルボニル基の場合、還元、酸化、イミノ化(オキシム化、ヒドラゾン化を含む)、(チオ)ケタール化、アルキリデン化、チオカルボニル化等の反応により変換可能である。チオール基の場合、アルキル化、酸化等の反応により変換可能である。エステル基の場合、アルキル化、酸化等の反応により変換可能である。スルホ基の場合、スルホンアミド化、還元等の反応により変換可能である。ハロゲン原子の場合、各種求核置換反応、各種カップリング反応等により変換可能である。

上述の製造方法Aないし下において用いられた原料化合物(IXa)、(IXb)、(XX), (VII), (X) および(XII) は、例えば以下に示すように自体公知の方法またはそれに準ずる方法によって製造することができる。

方法N

式(IXa)

$$\begin{array}{c|c}
0 & X - R^1 \\
\hline
 & R^2
\end{array}$$
(1Xa)

〔式中、記号は前記と同意義を示す。〕で表される化合物(IXa)またはその塩は、式(XXII)

$$\begin{array}{c|c}
 & CO_2H \\
\hline
 & R_3
\end{array}$$
(XXII)

〔式中の記号は前記と同意義を示す。〕で表される化合物(XXII)または その塩あるいはその反応性誘導体(例えば、酸ハライド、酸無水物、活性エス テル、エステル、酸イミダゾリド、酸アジド等)を式(XV)

$$R^{1}$$

5

10

〔式中、記号は前記と同意義を示す。〕で表される化合物(XV)またはその 塩と反応させることにより製造することができる。

本反応はアミド化反応であり、化合物(XXII)の反応性誘導体、反応条件、反応溶媒、反応時間等は、前記の方法H-3で説明した方法に準じて行われる。

方法I

式(IXb)

$$\begin{array}{c|c}
0 & X - R^1 \\
\hline
 & R^2
\end{array}$$
(1Xb)

〔式中の記号は前記と同意義を示す。〕で表されるアミド化合物(IXb)ま たはその塩は、例えば次に示す方法により製造できる。式 (XIV)

〔式中の記号は前記と同意義を示す。〕で表わされる化合物(XIV)または その塩あるいはその反応性誘導体(例えば、酸ハライド、酸無水物、活性エス テル、エステル、酸イミダゾリド、酸アジド等)を式(XV)

$$X - R^1$$
 $HN - R^2$
(XV)

〔式中、記号は前記と同意義を示す。〕で表される化合物(XV)またはその 塩とと反応させることにより製造することができる。

5 本反応はアミド化反応であり、化合物(XXII)の反応性誘導体、反応条件、反応溶媒、反応時間等は、前記の方法H-3で説明した方法に準じて行われる。

前記I法において用いられる化合物(IXb)でTが酸素原子である化合物(IXb²)は、下記J法にしたがって製造することもできる。

10 方法 J

15

式(XVII)

[式中の記号は前記と同意義を示す]で表される化合物(XVII)またはその塩と、式(XV)

$$X - R^1$$
 R^2
(XV)

〔式中、記号は前記と同意義を示す。〕で表わされる化合物(XV)またはその塩と反応させることにより、式(XVIII)

$$\begin{array}{c|c}
0 & X - R^1 \\
\hline
 & R^2 \\
\hline
 & CO_2H
\end{array}$$
(XVIII)

〔式中、記号は前記と同意義を示す。〕で表わされる化合物(XVIII)ま

10

15

20

たはその塩を製造することができる。

本反応は、常法に従い、反応に悪影響をおよぼさない溶媒中で行われる。

反応に影響をおよぼさない溶媒としては、例えば、クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;ベンゼン、トルエンなどの芳香族炭化水素類;テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類、酢酸エチルなどが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

化合物 (XV) の使用量は、化合物 (XVII) に対し、約1 \sim 約10モル 当量、好ましくは1 \sim 3モル当量である。

反応温度は、通常、-30 $^{\circ}$ $^{\circ}$

このようにして得られる化合物(XVIII)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

このようにして得られる化合物(XVIII)は、上記反応H-1に示す方法に従い化合物(IXb^2)へと導かれる。

方法K

式(XX)

$$\begin{array}{c|c}
0 & X - R^1 \\
\hline
R^2 & (XX)
\end{array}$$

〔式中、記号は前記と同意義を示す。〕で表される化合物(XX)またはその 塩は、例えば次に示す方法により製造できる。式(XIX)

で表わされる化合物(XIX)またはその塩あるいはその反応性誘導体(例え

ば、酸ハライド、酸無水物、活性エステル、エステル、酸イミダゾリド、酸アジド等)を式(XV)

$$HN = R^{1}$$

$$(XV)$$

〔式中、記号は前記と同意義を示す。〕で表わされる化合物 (XV) またはそ の塩と反応させることにより製造することができる。

本反応はアミド化反応であり、化合物 (XIX)の反応性誘導体、反応条件、 反応溶媒、反応時間等は、前記の方法H-3で説明した方法に準じて行われる。 方法L

式(X')

$$\begin{array}{c|c}
 & 0 \\
 & R^{2}
\end{array}$$

10

5

〔式中、R² はエステル化されていてもよいカルボキシル基を、他の記号は前記と同意義を示す。〕で表されるイソクマリン化合物(X)またはその塩は、例えば、次に示す方法、即ち、式(XXII)

$$\begin{array}{c|c}
 & CO_2H \\
\hline
 & R^3
\end{array}$$
(XXII)

15

(式中の記号は前記と同意義を示す。)で表わされる化合物(XXII)またはその塩と式(XXIII)

$$z = \begin{pmatrix} CO_2 R^{12} \\ CO_2 R^{12} \end{pmatrix}$$
 (XXIII)

〔式中、Zは脱離基(前期Lと同意義を示す。)を示し、 R^{12} は低級(C_{1-6}

)アルキル基(例えばメチル、エチル、プロピル、ブチル、tert-ブチル基等)を示す。〕で表される化合物(XXIII)またはその塩とを塩基存在下に反応させ、つづいて酸性条件下にて脱水ならびに脱炭酸させてイソクマリン化合物(X)の3位がカルボキシル基の化合物を製造することができる。また、所望によりそのカルボン酸をエステル化することにより3位エステル体を製造することができる。

方法M

5

式(XII)

$$\begin{array}{c|c}
 & O \\
 & NH \\
 & R^{2'}
\end{array}$$
(X11)

10 〔式中、R² はエステル化されていてもよいカルボキシル基を、他の記号は前記と同意義を示す。〕で表される化合物(X I I)またはその塩は、式(X')

$$\begin{array}{c|c}
 & 0 \\
 & R^{2}
\end{array}$$

〔式中、R² はエステル化されていてもよいカルボキシル基を、他の記号は前記と同意義を示す。〕で表される化合物(X')またはその塩とアンモニアを反応させた後、酸性条件下で脱水させることにより製造することができる。

式(VII)

方法〇

$$\begin{array}{c|c}
0 & X & R^1 \\
\hline
 & N & X^2 & R^2 \\
\hline
 & OTf
\end{array}$$

10

15

20

25

〔式中、記号は前記と同意義を示す。〕で表される化合物 (VII) またはその塩は、式 (II)

$$\begin{array}{c|c}
0 & X & R^1 \\
\hline
A & R^2 & \\
\hline
OH & R^2
\end{array}$$
(11)

〔式中の記号は前記と同意義を示す。〕で表される化合物(II)またはその塩を塩基存在下にトリフラート化試薬(例えば、トリフルオロメタンスルホン酸無水物、ビス(トリフルオロメタンスルホニル)アニリン等)と反応させることにより製造することができる。

本反応で用いる塩基としては、例えば水素化ナトリウム、水素化カリウム、などの水素化アルカリ金属類、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属類、水酸化マグネシウム、水酸化カルシウムなどの水酸化アルカリ土類金属類、炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ金属類、例えば炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸水素アルカリ金属などの無機塩基類、例えばナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド等の炭素数1ないし6の金属アルコキシド類、例えばトリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、ピコリン、Nーメチルピロリジン、Nーメチルモルホリン、1,5ージアザビシクロ[4.3.0]ノンー5ーエン、1,4ージアザビシクロ[2.2.2]オクタン、1,8ージアザビシクロ[5.4.0]ー7ーウンデセンなどの有機塩基類、メチルリチウム、nーブチルリチウム、secープチルリチウム、tertーブチルリチウムなどの有機リチウム類、リチウムジイソプロピルアミド等のリチウムアミド類が好んで用いられる。

本反応は一般に溶媒中で行われ、反応を阻害しない溶媒が適宜選択される。 このような溶媒としては例えばメタノール、エタノール、プロパノール、イソ プロパノール、ブタノール、tertーブタノール等のアルコール類、例えばジオ・ キサン、テトラヒドロフラン、ジエチルエーテル、tertープチルメチルエーテ ル、ジイソプロピルエーテル、エチレングリコールージメチルエーテル等のエ

10

15

20

25

ーテル類、例えばギ酸エチル、酢酸エチル、酢酸 n ーブチル等のエステル類、例えばジクロロメタン、クロロホルム、四塩化炭素、トリクレン、1,2ージクロロエタン等のハロゲン化炭化水素類、例えば n ー ヘキサン、ベンゼン、トルエン等の炭化水素類、例えばホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド類、例えばアセトニトリル、プロピオニトリル等のニトリル類等のほか、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホルアミド、水等が単独または混合溶媒として用いられる。

上述の製造方法AないしOにおいて用いられた原料化合物(XIV)、(XV)、(XVII)、(XIX)および(XXII)は市販品を購入するか、自体公知の方法またはそれに準ずる方法によって製造することができる。

前記本発明の各反応によって化合物が遊離の状態で得られる場合には、常法 に従って塩に変換してもよく、また塩として得られる場合には、常法に従って 遊離体またはその他の塩に変換することもできる。

また、前記した化合物(I)の製造法の各反応および原料化合物合成の各反 応において、原料化合物が置換基としてアミノ基,カルボキシル基,ヒドロキシ基を有する場合、これらの基にペプチド化学などで一般的に用いられるよう な保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除 去することにより目的化合物を得ることができる。

アミノ基の保護基としては、例えば、ホルミル、置換基を有していてもよい、 C_{1-6} アルキルカルボニル(例えば、アセチル、エチルカルボニルなど)、フェニルカルボニル、 C_{1-6} アルキルーオキシカルボニル(例えば、メトキシカルボニル、 C_{1-6} アルキルーオキシカルボニル(例えば、メトキシカルボニル、エトキシカルボニル、 C_{1-6} アルキルーオキシカルポニル(Boc)など)、アリルオキシカルボニル(Aloc)、フェニルオキシカルボニル、フルオレニルメチルオキシカルボニル(Fmoc)、 C_{7-10} アラルキルーカルボニル(例えば、ベンジルカルボニルなど)、 C_{7-10} アラルキルーオキシカルボニル(例えば、ベンジルオキシカルボニル(Z)など)、 C_{7-10} アラルキル(例えば、ベンジルなど)、トリチル、フタロイルまたはN,N-ジメチルアミノメチレンなどが用いられる。これらの置換基としては、フェニル基、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルーカルボニル(例え

ば、メチルカルボニル、エチルカルボニル、ブチルカルボニルなど)、ニトロ 基などが用いられ、置換基の数は1ないし3個程度である。

カルボキシル基の保護基としては、例えば、置換基を有していてもよい、 C_1 - $_6$ アルキル(例えば、メチル、エチル、 $_1$ - $_2$ ロピル、 $_2$ ビッ、アリル、ベンジル、フェニル、トリチルまたはトリアルキルシリルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、ホルミル、 C_{1-6} アルキルーカルボニル(例えば、アセチル、エチルカルボニル、ブチルカルボニルなど)、ニトロ基などが用いられ、置換基の数は $_1$ ないし $_2$ 個程度である。

10 ヒドロキシ基の保護基としては、例えば、置換基を有していてもよい、 C_{1-6} アルキル(例えば、メチル、エチル、n-プロピル、i-プロピル、n-プチル、tert-プチルなど)、 C_{7-10} アラルキル(例えば、ベンジルなど)、ホルミル、 C_{1-6} アルキルーカルボニル(例えば、アセチル、エチルカルボニルなど)、ベンゾイル、 C_{7-10} アラルキルーカルボニル(例えば、ベンジルカルボニルがど)、テトラヒドロピラニル、フラニルまたはシリルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキル(例えば、メチル、エチル、n-プロピルなど)、フェニル、 C_{7-10} アラルキル(例えば、ペンジルなど)、 C_{1-6} アルコキシ(例えば、メトキシ、エトキシ、n-プロポキシなど)、 C_{1-6} アルコキシ(例えば、メトキシ、エトキシ、n-プロポキシなど)、ニトロ基などが用いられ、20 置換基の数は 1 ないし 4 個程度である。

また、保護基の除去方法としては、それ自体公知またはそれに準じた方法が 用いられるが、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラ ジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウム フルオリド、酢酸パラジウムなどで処理する方法が用いられる。

25 このようにして得られる化合物(I)は、反応混合物から自体公知の手段、 例えば抽出、濃縮、中和、濾過、蒸留、再結晶、カラムクロマトグラフィー、 薄層クロマトグラフィー、分取用高速液体クロマトグラフィー(HPLC)、 中圧分取液体クロマトグラフィー(中圧分取LC)等の手段を用いることによ って、単離、精製することができる。

化合物(I)の塩は、それ自体公知の手段に従い、例えば化合物(I)が塩 基性化合物である場合には無機酸または有機酸を加えることによって、あるい は化合物(I)が酸性化合物である場合には有機塩基または無機塩基を加える ことによって製造することができる。

6 化合物(I)に光学異性体が存在し得る場合、これら個々の光学異性体及び それら混合物のいずれも当然本発明の範囲に包含されるものであり、所望によ りこれらの異性体をそれ自体公知の手段に従い光学分割したり、個別に製造す ることもできる。

また、化合物(I)は水和物であってもよく、水和物及び非水和物のいずれ 10 も本発明の範囲に包含されるものである。また、化合物(I)は同位元素(例、 ³H, ¹⁴C, ³⁵S, ¹²⁵Iなど)などで標識されていてもよい。

化合物(I)もしくはその塩またはそのプロドラッグ(以下、本発明の化合物(I)と略記する)を含有するRFRP受容体機能調節剤は、毒性が低く、かつ、副作用も少ないため、安全な医薬品として有用である。

15 RFRP受容体は、RFアミド構造を有するペプチド(例えば、WO00/29441号に記載のRFRP-1、RFRP-2、RFRP-3などのRFRP)が結合し得る受容体であり、例えば、WO00/29441号に記載されているG蛋白質共役型レセプター蛋白質OT7T022(例えば、配列番号:1で表されるアミノ酸配列を有するヒトRFRP受容体、配列番号:2で表されるアミノ酸配列を有するラットRFRP受容体)などが挙げられる。

機能調節とは、RFRP受容体の機能を阻害する作用(例えば、RFRP受容体拮抗作用、RFRP受容体アンタゴニスト作用)と促進する作用(例えば、RFRP受容体作動作用、RFRP受容体アゴニスト作用)の両方を指すが、本発明ではRFRP受容体の機能を阻害する作用、なかでもRFRP受容体アンタゴニスト作用がより好ましい。

RFRP受容体の機能調節作用、RFRP受容体アゴニスト作用、RFRP 受容体アンタゴニスト作用などは、WO00/29441号に記載されている RFRPとOT7T022との結合性を変化させる化合物のスクリーニング方 法などを用いて測定することができる。

10

15

20

25

本発明のRFRP受容体機能調節剤は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル、ヒト等)に対して、優れたRFRP受容体の機能調節作用、特にRFRP受容体拮抗作用(RFRP受容体アンタゴニスト作用)を示し、(経口)吸収性、(代謝)安定性等にも優れるため、RFアミド構造を有するペプチドRFRP関連病態またはRFRPが関与する疾患の予防・治療剤として有用である。

また、本発明のRFRP受容体機能調節剤は、鎮痛剤、他の鎮痛薬(例、モルヒネ、コデイン、ジヒドロコデイン、エチルモルヒネ、オキシコドン、ヘロインまたはその塩などのモルヒネ系の麻酔性鎮痛薬)の鎮痛作用促進剤、他の鎮痛薬(例、モルヒネ、コデイン、ジヒドロコデイン、エチルモルヒネ、オキシコドン、ヘロインまたはその塩などのモルヒネ系の麻酔性鎮痛薬)による耐性回避剤などとして有用である。

さらに、本発明のRFRP受容体機能調節剤は、プロラクチン分泌調節剤、 好ましくはプロラクチン分泌抑制剤としても有用であり、例えば、高プロラク チン血症、下垂体腺腫瘍、間脳腫瘍、月経異常、ストレス、自己免疫疾患、プ ロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、 キアリ・フロンメル(Chiari-Frommel)症候群、アルゴンツーデル・カスティロ (Argonz-del Castilo) 症候群、フォーペス・アルブライト(Forbes-Albright) 症候群、乳癌リンパ腫、シーハン症候群、精子形成異常などの予防・治療剤 として有用である。

さらに、本発明のRFRP受容体機能調節剤は、例えば、筋疾患、副腎機能障害、痙攣、攻撃性行動、歩行異常、体温上昇、白血球数減少、血小板数減少、自発行動量の増加または筋力低下などの予防・治療・改善剤として有用である。

さらに、本発明のRFRP受容体機能調節剤は、男性ホルモン分泌調節剤、 好ましくは男性ホルモン分泌阻害剤(男性ホルモン分泌抑制剤)として有用で ある。具体的には、本発明のRFRP受容体機能調節剤は、例えば、男性性腺 機能不全、造精機能障害に伴う男子不妊症、再生不良性貧血、骨髄線維症、腎 性貧血、末期女性性器癌の疼痛緩和、乳癌(例、手術不能乳癌)、乳腺症、乳 腺腫瘍、女性化乳房などの予防・治療剤として有用である。

10

15

20

25

さらに、本発明のRFRP受容体機能調節剤は、例えば、膵グルカゴン分泌 抑制剤、血糖低下剤、尿生成抑制剤、記憶学習低下抑制剤(記憶低下抑制剤) として有用であり、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、 糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、頻尿、夜尿症、高脂血症、 性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、 記憶学習障害などの予防・治療剤として有用である。

さらに、本発明のRFRP受容体機能調節剤は、例えば、膀胱収縮抑制剤として有用であり、例えば、尿失禁、下部尿路疾患、過活動膀胱による切迫尿意、頻尿、過活動膀胱を伴った低緊張性膀胱などの予防・治療剤として有用である。

特に、本発明のRFRP受容体機能調節剤は、鎮痛剤、記憶学習障害の予防・治療剤として有用である。

本発明の化合物(I)を上記各疾患に適用する際には、それら疾患に通常用いられる薬剤または治療法と適宜併用することが可能である。

さらに、本発明の化合物(I)を上記各疾患に適用する際に、生物製剤(例: 抗体、ワクチン製剤など)と併用することも可能であり、また、遺伝子治療法な どと組み合わせて、併用療法として適用することも可能である。

本発明の化合物(I)はそのままあるいは薬理学的に許容される担体を配合し、経口的または非経口的に投与することができる。

本発明のRFRP受容体機能調節剤は、経口投与する場合の剤形としては、 例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、 カプセル剤(ソフトカプセル剤、マイクロカプセル剤を含む)、シロップ剤、 乳剤、懸濁剤等が挙げられ、また、非経口投与する場合の剤形としては、例え ば注射剤、注入剤、点滴剤、坐剤等が挙げられる。また、適当な基剤(例、酪 酸の重合体、グリコール酸の重合体、酪酸-グリコール酸の共重合体、酪酸の重 合体とグリコール酸の重合体との混合物、ポリグリセロール脂肪酸エステル等)と組み合わせ徐放性製剤とすることも有効である。

本発明製剤中の本発明の化合物(I)の含有量は、製剤の形態に応じて相違するが、通常、製剤全体に対して約0.01ないし100重量%、好ましくは約2ないし85重量%、さらに好ましくは約5ないし70重量%である。

25

本発明の化合物(I)を上記の剤形に製造する方法としては、当該分野で一般的に用いられている公知の製造方法を適用することができる。また、上記の剤形に製造する場合には、必要に応じて、その剤形に製する際に製剤分野において通常用いられる賦形剤、結合剤、崩壊剤、滑沢剤、甘味剤、界面活性剤、

5 懸濁化剤、乳化剤等を適宜、適量含有させて製造することができる。

例えば、本発明の化合物(I)を錠剤に製する場合には、賦形剤、結合剤、 崩壊剤、滑沢剤等を含有させて製造することができ、丸剤及び顆粒剤に製する 場合には、賦形剤、結合剤、崩壊剤等を含有させて製造することができる。ま た、散剤及びカプセル剤に製する場合には賦形剤等を、シロップ剤に製する場 合には甘味剤等を、乳剤または懸濁剤に製する場合には懸濁化剤、界面活性剤、 乳化剤等を含有させて製造することができる。

賦形剤の例としては、乳糖、白糖、ブドウ糖、でんぷん、蔗糖、微結晶セルロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム、硫酸カルシウム等が挙げられる。

15 結合剤の例としては、5ないし10重量%デンプンのり液、10ないし20 重量%アラビアゴム液またはゼラチン液、1ないし5重量%トラガント液、カ ルポキシメチルセルロース液、アルギン酸ナトリウム液、グリセリン等が挙げ られる。

崩壊剤の例としては、でんぷん、炭酸カルシウム等が挙げられる。

20 滑沢剤の例としては、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム、精製タルク等が挙げられる。

甘味剤の例としては、ブドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン、単シロップ等が挙げられる。

界面活性剤の例としては、ラウリル硫酸ナトリウム、ポリソルベート80、 ソルピタンモノ脂肪酸エステル、ステアリン酸ポリオキシル40等が挙げられ る。

懸濁化剤の例としては、アラビアゴム、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウム、メチルセルロース、ベントナイト等が挙げられる。

10

15

20

25

乳化剤の例としては、アラビアゴム、トラガント、ゼラチン、ポリソルベート80等が挙げられる。

更に、本発明の化合物(I)を上記の剤形に製造する場合には、所望により、 精製分野において通常用いられる着色剤、保存剤、芳香剤、矯味剤、安定剤、 粘稠剤等を適量、適量添加することができる。

本発明のRFRP受容体機能調節剤は、安定かつ低毒性で安全に使用することができる。その1日の投与量は患者の状態や体重、化合物の種類、投与経路等によって異なるが、例えば、鎮痛目的で患者に経口投与する場合には、成人(体重約60kg)1日当りの投与量は有効成分(本発明の化合物(I))として約1ないし1000mg、好ましくは約3ないし300mg、さらに好ましくは約10ないし200mgであり、これらを1回または2ないし3回に分けて投与することができる。

本発明の化合物(I)を非経口的に投与する場合は、通常、液剤(例えば注 射剤)の形で投与する。その1回投与量は投与対象、対象臓器、症状、投与方 法などによっても異なるが、例えば注射剤の形にして、通常体重1kgあたり 約0.01mg~約100mg、好ましくは約0.01~約50mg、より好 ましくは約0.01~約20mgを静脈注射により投与するのが好都合である。 注射剤としては、静脈注射剤のほか、皮下注射剤、皮内注射剤、筋肉注射剤、 点滴注射剤などが含まれ、また持続性製剤としては、イオントフォレシス経皮 剤などが含まれる。かかる注射剤は自体公知の方法、すなわち、本発明の化合 物(I)を無菌の水性液もしくは油性液に溶解、懸濁または乳化することによ って調製される。注射用の水性液としては生理食塩水、ブドウ糖やその他の補 助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナト リウムなど)などがあげられ、適当な溶解補助剤、例えばアルコール(例えば エタノール)、ポリアルコール(例えばプロピレングリコール、ポリエチレン グリコール)、非イオン性界面活性剤(例えばポリソルベート80、HCO-50) などと併用してもよい。油性液としては、ゴマ油、大豆油などがあげら れ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどと併用して もよい。また、緩衝剤(例えば、リン酸緩衝液、酢酸ナトリウム緩衝液)、無

25

痛化剤(例えば、塩化ペンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルプミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)などと配合してもよい。調製された注射液は、通常、アンプルに充填される。

本発明の化合物(I)と併用し得る薬物(以下、併用薬物と略記する場合が 5 ある)としては、例えば、他の糖尿病治療剤、糖尿病性合併症治療剤、高脂血 症治療剤、降圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤、免疫調節薬、 抗炎症薬、抗血栓剤、骨粗鬆症治療剤、抗菌薬、抗真菌薬、抗原虫薬、抗生物 質、鎮咳・去たん薬、鎮静薬、麻酔薬、抗潰瘍薬、精神安定薬、抗精神病薬、 抗腫瘍薬、筋弛緩薬、抗てんかん薬、抗うつ薬、抗アレルギー薬、強心薬、抗 10 不整脈薬、血管拡張薬、血管収縮薬、麻薬拮抗薬、ビタミン薬、ビタミン誘導 体、抗喘息薬、抗痴呆薬、頻尿・尿失禁治療薬、排尿困難治療剤、アトピー性 皮膚炎治療薬、アレルギー性鼻炎治療薬、昇圧薬、エンドトキシン拮抗薬ある いは抗体、シグナル伝達阻害薬、炎症性メディエーター作用抑制薬、炎症性メ ディエーター作用抑制抗体、抗炎症性メディエーター作用抑制薬、抗炎症性メ 15 ディエーター作用抑制抗体などが挙げられる。具体的には、以下のものが挙げ られる。

他の糖尿病治療剤としては、インスリン製剤(例、ウシ、ブタの膵臓から抽出された動物インスリン製剤;大腸菌、イーストを用い、遺伝子工学的に合成したヒトインスリン製剤;インスリン亜鉛;プロタミンインスリン亜鉛;インスリンのフラグメントまたは誘導体(例、INS-1等)、経口インスリン製剤など)、インスリン感受性増強剤(例、ピオグリタゾンまたはその塩(好ましくは塩酸塩)、トログリタゾン、ロシグリタゾンまたはその塩(好ましくはマレイン酸塩)、レグリキサン(Reglixane)(JTT-501)、ネトグリタゾン (Netoglitazone)(MCC-555)、YM-440、GI-262570、KRP-297、FK-614、CS-011、 (γE) - γ -[[[4-[(5-メチル-2-フェニル-4-オキサゾリル)メトキシ]フェニル]メトキシ]イミノ]ベンゼンブタン酸等、W099/58510 に記載の化合物(例えば(E)-4-[4-(5-メチル-2-フェニル-4-オキサゾリルメトキシ)ベンジルオキシイミノ]-4-フェニル酪酸)、W001/38325

10

15

20

25

に記載の化合物、テサグリタザール(Tesaglitazar)(AZ-242)、ラガグリタザール(Ragaglitazar)(NN-622)、BMS-298585、ONO-5816、BM-13-1258、LM-4156、MBX-102、LY-519818、MX-6054、LY-510929、バラグリタゾン

(Balaglitazone) (NN-2344)、T-131 またはその塩、THR-0921) 、αーグルコシダ ーゼ阻害剤(例、ボグリボース、アカルボース、ミグリトール、エミグリテー ト等)、ピグアナイド剤(例、フェンホルミン、メトホルミン、プホルミン等)、 インスリン分泌促進剤「スルホニルウレア剤(例、トルブタミド、グリベンク ラミド、グリクラジド、クロルプロパミド、トラザミド、アセトヘキサミド、 グリクロピラミド、グリメピリド等)、レパグリニド、セナグリニド、ミチグ リニドまたはそのカルシウム塩水和物、ナテグリニド等]、GLP-1受容体 アゴニスト [例、GLP-1、GLP-1MR 剤、NN-2211、AC-2993 (exendin-4)、BIM-51077、 Aib(8,35)hGLP-1(7,37)NH,、CJC-1131 等]、ジペプチジルペプチダーゼ I V阻 害剤(例、NVP-DPP-278、PT-100、P32/98、P93/01、 NVP-DPP-728、LAF237、TS-021 等)、β3アゴニスト(例、CL-316243、 SR-58611-A, UL-TG-307, AJ-9677, AZ4014 0等)、アミリンアゴニスト(例、プラムリンチド等)、ホスホチロシンホス ファターゼ阻害剤(例、バナジン酸等)、糖新生阻害剤(例、グリコーゲンホ スホリラーゼ阻害剤、グルコースー6ーホスファターゼ阻害剤、グルカゴン拮 抗剤等)、SGLT (sodium-glucose cotransporter) 阻害剤(例、T-10 95等)、 11β ーヒドロキシステロイドデヒドロゲナーゼ阻害薬(例、BVT-3498 等)、アジポネクチンまたはその作動薬、IKK 阻害薬(例、AS-2868等)、レプ チン抵抗性改善薬、ソマトスタチン受容体作動薬(W001/25228、W003/42204 記 載の化合物、W098/44921、W098/45285、W099/22735 記載の化合物等)、グルコ キナーゼ活性化薬 (例、Ro-28-1675) 等が挙げられる。

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例、トルレスタット、エパルレスタット、ゼナレスタット、ゾポルレスタット、フィダレスタット(SNK-860)、ミナルレスタット(ARI-509)、CT-112等)、神経栄養因子およびその増加薬(例、NGF、NT-3、BDNF、W001/14372に記載のニューロトロフィン産生・分泌促進剤(例えば4-(4-クロ

20

25

ロフェニル)-2-(2-メチル-1-イミダゾリル)-5-[3-(2-メチルフェノキシ)プロピル]オキサゾールなど)等)、プロテインキナーゼC(PKC)阻害薬(例、LY-333531等)、AGE阻害剤(例、ALT-945、ピマゲジン、ピラトキサチン、N-フェナシルチアゾリウムブロミド(ALT-766)、EXO-226、ALT-711、ピリドリン(Pyridorin)、ピリドキサミン等)、活性酸素消去薬(例、チオクト酸等)、脳血管拡張剤(例、チオプリド等)、ソマトスタチン受容体作動薬(BIM23190)、アポトーシスシグナルレギュレーティングキナーゼ-1(ASK-1)阻害薬等が挙げられる。

高脂血治療剤としては、コレステロール合成阻害剤であるスタチン系化合物 (例、プラバスタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、セリバスタチンまたはそれらの塩(例、ナトリウム塩等)等)、スクアレン合成酵素阻害剤(例、W097/10224に記載の化合物、例えばNー[[(3R,5S)-1-(3-アセトキシ-2,2-ジメチルプロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]アセチル]ピペリジン-4-酢酸など)、フィブラート系化合物(例、ベザフィブラート、クロフィブラート、シムフィブラート、クリノフィブラート等)、抗酸化剤(例、リポ酸、プロプコール)等が挙げられる。

降圧剤としては、アンジオテンシン変換酵素阻害剤(例、カプトプリル、エナラプリル、デラプリル等)、アンジオテンシン II 拮抗剤(例、ロサルタン、カンデサルタン シレキセチル、エプロサルタン、バルサルタン、テルミサルタン、イルベサルタン、タソサルタン、1-[[2'-(2,5-ジヒドロ-5-オキソ-4H-1,2,4-オキサジアゾール-3-イル)ビフェニル-4-イル]メチル]-2-エトキシー1H-ペンズイミダゾール-7-カルボン酸等)、カルシウム拮抗剤(例、マニジピン、ニフェジピン、アムロジピン、エホニジピン、ニカルジピン等)、クロニジン等が挙げられる。

抗肥満剤としては、例えば中枢性抗肥満薬(例、デキスフェンフルアミン、フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジンドール、フェニルプロパノールアミン、クロベンゾレックス; MCH 受容体拮抗薬(例、SB-568849; SNAP-7941; W001/82925 および

20

25

W001/87834 に含まれる化合物等); ニューロペプチド Y 拮抗薬(例、CP-422935等); カンナビノイド受容体拮抗薬(例、SR-141716、SR-147778等); グレリン拮抗薬; 11β ーヒドロキシステロイドデヒドロゲナーゼ阻害薬(例、BVT-3498等)、膵リパーゼ阻害薬(例、オルリスタット、ATL-962等)、 β 3アゴニスト(例、CL-316243、SR-58611-A、UL-TG-307、AJ-9677、AZ40140等)、ペプチド性食欲抑制薬(例、レプチン、CNTF(毛様体神経栄養因子)等)、コレシストキニンアゴニスト(例、リンチトリプト、FPL-15849等)、摂食抑制薬(例、P-57等)等が挙げられる。

10 利尿剤としては、例えばキサンチン誘導体(例、サリチル酸ナトリウムテオプロミン、サリチル酸カルシウムテオプロミン等)、チアジド系製剤(例、エチアジド、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロフルメチアジド、ベンジルヒドロクロロチアジド、ペンフルチジド、ポリチアジド、メチクロチアジド等)、抗アルドステロン製剤(例、スピロノラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤(例、アセタゾラミド等)、クロルベンゼンスルホンアミド系製剤(例、クロルタリドン、メフルシド、インダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブメタニド、フロセミド等が挙げられる。

化学療法剤としては、例えばアルキル化剤(例、サイクロフォスファミド、 イフォスファミド等)、代謝拮抗剤(例、メソトレキセート、5-フルオロウ ラシル等)、抗癌性抗生物質(例、マイトマイシン、アドリアマイシン等)、 植物由来抗癌剤(例、ビンクリスチン、ビンデシン、タキソール等)、シスプ ラチン、カルボプラチン、エトポキシドなどが挙げられる。なかでも5-フル オロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ましい。

免疫療法剤としては、例えば微生物または細菌成分 (例、ムラミルジペプチド誘導体、ピシバニール等)、免疫増強活性のある多糖類 (例、レンチナン、シゾフィラン、クレスチン等)、遺伝子工学的手法で得られるサイトカイン (例、インターフェロン、インターロイキン (IL)等)、コロニー刺激因子 (例、顆粒球コロニー刺激因子、エリスロポエチン等)などが挙げられ、なかでも I

20

25

L-1、IL-2、IL-12などのインターロイキン類が好ましい。 抗炎症薬としては、例えばアスピリン、アセトアミノフェン、インドメタシ

ンなどの非ステロイド抗炎症薬等が挙げられる。

抗血栓剤としては、例えばヘパリン(例、ヘパリンナトリウム、ヘパリンカルシウム、ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン(例、ワルファリンカリウムなど)、抗トロンビン薬(例、アルガトロバン(aragatroban)など)、血栓溶解薬(例、ウロキナーゼ(urokinase)、チソキナーゼ(tisokinase)、アルテプラーゼ(alteplase)、ナテプラーゼ(nateplase)、モンテプラーゼ(monteplase)、パミテプラーゼ(pamiteplase)など)、血小板凝集抑制薬(例、塩酸チクロピジン(ticlopidine hydrochloride)、シロスタゾール(cilostazol)、イコサペント酸エチル、ベラプロストナトリウム(beraprost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride)など)などが挙げられる。

骨粗鬆症治療剤としては、例えばアルファカルシドール (alfacalcidol)、カルシトリオール (calcitriol)、エルカトニン (elcatonin)、サケカルシトニン (calcitonin salmon)、エストリオール (estriol)、イプリフラボン (ipriflavone)、パミドロン酸ニナトリウム (pamidronate disodium)、アレンドロン酸ナトリウム水和物 (alendronate sodium hydrate)、インカドロン酸ニナトリウム (incadronate disodium) 等が挙げられる。

ビタミン薬としては、例えばビタミン B1、ビタミン B12 等が挙げられる。 抗痴呆剤としては、例えばタクリン(tacrine)、ドネペジル(donepezil)、 リバスチグミン(rivastigmine)、ガランタミン(galantamine)等が挙げられ る。

頻尿・尿失禁治療薬としては、例えば塩酸フラボキサート(flavoxate hydrochloride)、塩酸オキシブチニン(oxybutynin hydrochloride)、塩酸プロピペリン(propiverine hydrochloride)等が挙げられる。

排尿困難治療剤としては、アセチルコリンエステラーゼ阻害薬(例、ジスチグミン)等が挙げられる。

さらに、動物モデルや臨床で悪液質改善作用が認められている薬剤、すなわ

20

ち、シクロオキシゲナーゼ阻害剤(例、インドメタシン等)〔キャンサー・リサーチ(Cancer Research)、第49巻、5935~5939頁、1989年〕、プロゲステロン誘導体(例、メゲステロールアセテート)〔ジャーナル・オブ・クリニカル・オンコロジー(Journal of Clinical Oncology)、第12巻、213~225頁、1994年〕、糖質ステロイド(例、デキサメサゾン等)、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤(文献はいずれも上記と同様)、脂肪代謝改善剤(例、エイコサペンタエン酸等)〔プリティシュ・ジャーナル・オブ・キャンサー(British Journal of Cancer)、第68巻、314~318頁、1993年〕、成長ホルモン、IGF-1、あるいは悪液質を誘導する因子であるTNF-α、LIF、IL-6、オンコスタチンMに対する抗体なども本発明の化合物(I)と併用することができる。

さらに、糖化阻害剤(例、ALT-711等)、神経再生促進薬(例、Y-128、VX853、prosaptide等)、抗うつ薬(例、デシプラミン、アミトリプチリン、イミプラミン)、抗てんかん薬(例、ラモトリジン、トリレプタル(Trileptal)、ケプラ(Keppra)、ゾネグラン(Zonegran)、プレギャバリン(Pregabalin)、ハーコセライド(Harkoseride)、カルバマゼピン)、抗不整脈薬(例、メキシレチン)、アセチルコリン受容体リガンド(例、ABT-594)、エンドセリン受容体拮抗薬(例、ABT-627)、モノアミン取り込み阻害薬(例、トラマドル)、麻薬性鎮痛薬(例、モルヒネ)、GABA 受容体作動薬(例、ギャバペンチン、ギャバペンチンMR剤)、 α2 受容体作動薬(例、クロニジン)、局所鎮痛薬(例、カプサイシン)、抗不安薬(例、ベンゾチアゼピン)、ホスホジエステラーゼ阻害薬(例、シルデナフィル)、ドーパミン受容体作動薬(例、アポモルフィン)なども本発明の化合物(I)と併用することができる。

本発明の化合物(I)と併用薬物とを組み合わせることにより、

- 25 (1)本発明の化合物(I)または併用薬物を単独で投与する場合に比べて、 その投与量を軽減することができる、
 - (2) 患者の症状(軽症、重症など)に応じて、本発明の化合物(I)と併用する薬物を選択することができる、
 - (3) 本発明の化合物(I) と作用機序が異なる併用薬物を選択することによ

10

15

20

25

- り、治療期間を長く設定することができる、
- (4) 本発明の化合物(I) と作用機序が異なる併用薬物を選択することにより、治療効果の持続を図ることができる。
- (5) 本発明の化合物(I)と併用薬物とを併用することにより、相乗効果が得られる、などの優れた効果を得ることができる。

以下、本発明の化合物(I)と併用薬物を併用して使用することを「本発明の併用剤」と称する。

本発明の併用剤の使用に際しては、本発明の化合物(I)と併用薬物の投与時期は限定されず、本発明の化合物(I)と併用薬物とを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。併用薬物の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することができる。

本発明の併用剤の投与形態は、特に限定されず、投与時に、本発明の化合物 (I)と併用薬物とが組み合わされていればよい。このような投与形態としては、例えば、(1)本発明の化合物(I)と併用薬物とを同時に製剤化して得られる単一の製剤の投与、(2)本発明の化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)本発明の化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4)本発明の化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、(5)本発明の化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発明の化合物(I);併用薬物の順序での投与、あるいは逆の順序での投与)などが挙げられる。

本発明の併用剤は、毒性が低く、例えば、本発明の化合物(I)または(および)上記併用薬物を自体公知の方法に従って、薬理学的に許容される担体と混合して医薬組成物、例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、散剤、顆粒剤、カプセル剤、(ソフトカプセルを含む)、液剤、注射剤、坐剤、徐放剤等とした後に、経口的又は非経口的(例、局所、直腸、静脈投与等)に安全に投与することができる。注射剤は、静脈内、筋肉内、皮下または臓器内

10

15

25

投与あるいは直接病巣に投与することができる。

本発明の併用剤の製造に用いられてもよい薬理学的に許容される担体としては、前記した本発明の医薬の製造に用いられてもよい薬理学的に許容される担体と同様のものがあげられる。また、更に必要に応じ、前記した本発明の医薬の製造に用いられてもよい防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤等の添加物を適宜、適量用いることもできる。

本発明の併用剤における本発明の化合物(I)と併用薬物との配合比は、投 与対象、投与ルート、疾患等により適宜選択することができる。

例えば、本発明の併用剤における本発明の化合物(I)の含有量は、製剤の 形態によって相違するが、通常製剤全体に対して約0.01ないし100重量%、 好ましくは約0.1ないし50重量%、さらに好ましくは約0.5ないし20 重量%程度である。

本発明の併用剤における併用薬物の含有量は、製剤の形態によって相違するが、通常製剤全体に対して約0.01ないし90重量%、好ましくは約0.1ないし50重量%、さらに好ましくは約0.5ないし20重量%程度である。

本発明の併用剤における担体等の添加剤の含有量は、製剤の形態によって相違するが、通常製剤全体に対して約1ないし99.99重量%、好ましくは約10ないし90重量%程度である。

また、本発明の化合物(I)および併用薬物をそれぞれ別々に製剤化する場 20 合も同様の含有量でよい。

これらの製剤は、製剤工程において通常一般に用いられる自体公知の方法に より製造することができる。

例えば、本発明の化合物(I)または併用薬物は、分散剤(例、ツイーン(Tween) 80(アトラスパウダー社製、米国)、HC060(日光ケミカルズ製)、ポリエ チレングリコール、カルボキシメチルセルロース、アルギン酸ナトリウム、ヒ ドロキシプロピルメチルセルロース、デキストリンなど)、安定化剤(例、アスコルビン酸、ピロ亜硫酸ナトリウム等)、界面活性剤(例、ポリソルベート 80、マクロゴール等)、可溶剤(例、グリセリン、エタノール等)、緩衝剤 (例、リン酸及びそのアルカリ金属塩、クエン酸及びそのアルカリ金属塩等)、

10

15

20

25

等張化剤(例、塩化ナトリウム、塩化カリウム、マンニトール、ソルビトール、ブドウ糖等)、pH調節剤(例、塩酸、水酸化ナトリウム等)、保存剤(例、パラオキシ安息香酸エチル、安息香酸、メチルパラベン、プロピルパラベン、ベンジルアルコール等)、溶解剤(例、濃グリセリン、メグルミン等)、溶解補助剤(例、プロピレングリコール、白糖等)、無痛化剤(例、ブドウ糖、ベンジルアルコール等)などと共に水性注射剤に、あるいはオリーブ油、ゴマ油、綿実油、コーン油などの植物油、プロピレングリコールなどの溶解補助剤に溶解、懸濁あるいは乳化して油性注射剤に成形し、注射剤とすることができる。

また、自体公知の方法に従い、本発明の化合物(I)または併用薬物に、例 えば、賦形剤(例、乳糖、白糖、デンプンなど)、崩壊剤(例、デンプン、炭 酸カルシウムなど)、結合剤(例、デンプン、アラビアゴム、カルボキシメチ ルセルロース、ポリビニールピロリドン、ヒドロキシプロピルセルロースなど) 又は滑沢剤(例、タルク、ステアリン酸マグネシウム、ポリエチレングリコー ル 6000など)などを添加して圧縮成形し、次いで必要により、味のマス キング、腸溶性あるいは持続性の目的のため自体公知の方法でコーティングす ることにより経口投与製剤とすることができる。コーティングに用いられるコ ーティング剤としては、例えば、ヒドロキシプロピルメチルセルロース、エチ ルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、 ポリオキシエチレングリコール、ツイーン 80、プルロニック F68、セ ルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタレ ート、ヒドロキシメチルセルロースアセテートサクシネート、オイドラギット (ローム社製、ドイツ、メタアクリル酸・アクリル酸共重合) および色素(例、 ベンガラ, 二酸化チタン等) などが用いられる。経口投与用製剤は速放性製剤、 徐放性製剤のいずれであってもよい。

さらに、自体公知の方法に従い、本発明の化合物(I)または併用薬物を、油性基剤、水性基剤または水性ゲル基剤と混合することにより、油性又は水性の固状、半固状あるいは液状の坐剤とすることができる。上記油性基剤としては、例えば、高級脂肪酸のグリセリド〔例、カカオ脂、ウイテプゾル類(ダイナマイトノーベル社製、ドイツ)など〕、中級脂肪酸〔例、ミグリオール類(ダ

15

25

イナマイトノーベル社製,ドイツ)など〕、あるいは植物油(例、ゴマ油、大豆油、綿実油など)などが挙げられる。また、水性基剤としては、例えばポリエチレングリコール類、プロピレングリコールなどが挙げられる。水性ゲル基剤としては、例えば天然ガム類、セルロース誘導体、ビニール重合体、アクリル酸重合体などが挙げられる。

上記徐放性製剤としては、徐放性マイクロカプセル剤などが挙げられる。該徐放性マイクロカプセル剤は、自体公知の方法、例えば、下記〔2〕に示す方法にしたがって製造される。

本発明の化合物(I)は、固形製剤(例、散剤、顆粒剤、錠剤、カプセル剤) 10 などの経口投与用製剤に成型するか、坐剤などの直腸投与用製剤に成型するの が好ましい。特に経口投与用製剤が好ましい。

併用薬物は、薬物の種類に応じて上記した剤形とすることができる。

以下に、〔1〕本発明の化合物(I)または併用薬物の注射剤およびその調製、〔2〕本発明の化合物(I)または併用薬物の徐放性製剤又は速放性製剤およびその調製、〔3〕本発明の化合物(I)または併用薬物の舌下錠、バッカル又は口腔内速崩壊剤およびその調製について具体的に示す。

[1] 注射剤およびその調製

本発明の化合物(I)または併用薬物を水に溶解してなる注射剤が好ましい。 該注射剤には安息香酸塩又は/およびサリチル酸塩を含有させてもよい。

20 該注射剤は、本発明の化合物(I)または併用薬物と所望により安息香酸塩 又は/およびサリチル酸塩の双方を水に溶解することにより得られる。

上記安息香酸、サリチル酸の塩としては、例えばナトリウム、カリウムなどのアルカリ金属塩、カルシウム、マグネシウムなどのアルカリ土類金属塩、アンモニウム塩、メグルミン塩、その他トロメタモールなどの有機酸塩などが挙げられる。

注射剤中の本発明の化合物 (I) または併用薬物の濃度は $0.5\sim50$ w/ v%、好ましくは $3\sim20$ w/ v%程度である。また安息香酸塩又は/および サリチル酸塩の濃度は $0.5\sim50$ w/ v%、好ましくは $3\sim20$ w/ v%程度である。

また、本注射剤には一般に注射剤に使用される添加剤、例えば安定化剤(例、アスコルピン酸、ピロ亜硫酸ナトリウム等)、界面活性剤(例、ポリソルベート80、マクロゴール等)、可溶剤(例、グリセリン、エタノール等)、緩衝剤(例、リン酸及びそのアルカリ金属塩、クエン酸及びそのアルカリ金属塩等)、5等張化剤(例、塩化ナトリウム、塩化カリウム等)、分散剤(例、ヒドロキシプロピルメチルセルロース、デキストリン)、pH調節剤(例、塩酸、水酸化ナトリウム等)、保存剤(例、パラオキシ安息香酸エチル、安息香酸等)、溶解剤(例、濃グリセリン、メグルミン等)、溶解補助剤(例、プロピレングリコール、白糖等)、無痛化剤(例、プドウ糖、ベンジルアルコール等)などを適宜配合することができる。これらの添加剤は一般に注射剤に通常用いられる割合で配合される。

注射剤は、pH調節剤の添加により、 $pH2\sim12$ 好ましくは $pH2.5\sim8.0$ に調整するのがよい。

注射剤は本発明の化合物(I)または併用薬物と所望により安息香酸塩又は /およびサリチル酸塩の双方を、また必要により上記添加剤を水に溶解するこ とにより得られる。これらの溶解はどのような順序で行ってもよく、従来の注 射剤の製法と同様に適宜行うことができる。

注射用水溶液は加温するのがよく、また通常の注射剤と同様にたとえば濾過 滅菌、高圧加熱滅菌などを行うことにより注射剤として供することができる。

20 注射用水溶液は、例えば100~121℃の条件で5~30分高圧加熱滅菌 するのがよい。

さらに多回分割投与製剤として使用できるように、溶液の抗菌性を付与した 製剤としてもよい。

[2] 徐放性製剤又は速放性製剤およびその調製

25 本発明の化合物(I)または併用薬物を含んでなる核を所望により水不溶性物質や膨潤性ポリマーなどの被膜剤で被覆してなる徐放性製剤が好ましい。例えば、1日1回投与型の経口投与用徐放性製剤が好ましい。

. 被膜剤に用いられる水不溶性物質としては、例えばエチルセルロース、ブチルセルロースなどのセルロースエーテル類、セルロースアセテート、セルロー

10

15

20

25

スプロピオネートなどのセルロースエステル類、ポリビニルアセテート、ポリ ビニルプチレートなどのポリビニルエステル類、アクリル酸/メタクリル酸共 重合体、メチルメタクリレート共重合体、エトキシエチルメタクリレート/シ ンナモエチルメタクリレート/アミノアルキルメタクリレート共重合体、ポリ アクリル酸、ポリメタクリル酸、メタクリル酸アルキルアミド共重合体、ポリ (メタクリル酸メチル)、ポリメタクリレート、ポリメタクリルアミド、アミ ノアルキルメタクリレート共重合体、ポリ(メタクリル酸アンヒドリド)、グ リシジルメタクリレート共重合体、とりわけオイドラギットRS-100、R L-100, RS-30D, RL-30D, RL-PO, RS-PO (アクリ ル酸エチル・メタアクリル酸メチル・メタアクリル酸塩化トリメチル・アンモ ニウムエチル共重合体)、オイドラギットNE-30D(メタアクリル酸メチ ル・アクリル酸エチル共重合体)などのオイドラギット類(ローム・ファーマ 社)などのアクリル酸系ポリマー、硬化ヒマシ油(例、ラプリーワックス(フ ロイント産業)など)などの硬化油、カルナバワックス、脂肪酸グリセリンエ ステル、パラフィンなどのワックス類、ポリグリセリン脂肪酸エステル等が挙 げられる。

膨潤性ポリマーとしては、酸性の解離基を有し、pH依存性の膨潤を示すポリマーが好ましく、胃内のような酸性領域では膨潤が少なく、小腸や大腸などの中性領域で膨潤が大きくなる酸性の解離基を有するポリマーが好ましい。

このような酸性の解離基を有し、p H依存性の膨潤を示すポリマーとしては、例えばカーボマー(Carbomer)934P、940、941、974P、980、1342等、ポリカーボフィル(polycarbophil)、カルシウムポリカボーフィル(carcium polycarbophil)(前記はいずれもBFグッドリッチ社製)、ハイビスワコー103、104、105、304(いずれも和光純薬(株)製)などの架橋型ポリアクリル酸重合体が挙げられる。

徐放性製剤に用いられる被膜剤は親水性物質をさらに含んでいてもよい。

該親水性物質としては、例えばプルラン、デキストリン、アルギン酸アルカリ金属塩などの硫酸基を有していてもよい多糖類、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナ

10

20

25

トリウムなどのヒドロキシアルキル基又はカルポキシアルキル基を有する多糖類、メチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールなどが挙げられる。

徐放性製剤の被膜剤における水不溶性物質の含有率は約30ないし約90% (w/w)、好ましくは約35ないし約80% (w/w)、さらに好ましくは約40ないし75% (w/w)、膨潤性ポリマーの含有率は約3ないし約30% (w/w)、好ましくは約3ないし約15%(w/w)である。被膜剤は親水性物質をさらに含んでいてもよく、その場合被膜剤における親水性物質の含有率は約50%(w/w)以下、好ましくは約5~約40%(w/w)、さらに好ましくは約5~約35%(w/w)である。ここで上記%(w/w)は被膜剤液から溶媒(例、水、メタノール、エタノール等の低級アルコール等)を除いた被膜剤組成物に対する重量%を示す。

徐放性製剤は、以下に例示するように薬物を含む核を調製し、次いで得られた核を、水不溶性物質や膨潤性ポリマーなどを加熱溶解あるいは溶媒に溶解又は分散させた被膜剤液で被覆することにより製造される。

15 I. 薬剤を含む核の調製。

被膜剤で被覆される薬物を含む核(以下、単に核と称することがある)の形態は特に制限されないが、好ましくは顆粒あるいは細粒などの粒子状に形成される。

核が顆粒又は細粒の場合、その平均粒子径は、好ましくは約150ないし2, 000μ m、さらに好ましくは約500ないし約 $1,400\mu$ mである。

核の調製は通常の製造方法で実施することができる。例えば、薬物に適当な 賦形剤、結合剤、崩壊剤、滑沢剤、安定化剤等を混合し、湿式押し出し造粒法、 流動層造粒法などにより調製する。

核の薬物含量は、約0.5ないし約9.5%(w/w)、好ましくは約5.0ないし約8.0%(w/w)、さらに好ましくは約3.0ないし約7.0%(w/w)である。

核に含まれる賦形剤としては、例えば白糖、乳糖、マンニトール、グルコースなどの糖類、澱粉、結晶セルロース、リン酸カルシウム、コーンスターチなどが用いられる。中でも、結晶セルロース、コーンスターチが好ましい。

結合剤としては、例えばポリビニルアルコール、ヒドロキシプロピルセルロ

10

15

20

25

ース、ポリエチレングリコール、ポリビニルピロリドン、プルロニックF68、アラビアゴム、ゼラチン、澱粉などが用いられる。崩壊剤としては、例えばカルボキシメチルセルロースカルシウム(ECG505)、クロスカルメロースナトリウム(Ac-Di-Sol)、架橋型ポリビニルピロリドン(クロスポビドン)、低置換度ヒドロキシプロピルセルロース(L-HPC)などが用いられる。中でも、ヒドロキシプロピルセルロース、ポリビニルピロリドン、低置換度ヒドロキシプロピルセルロースが好ましい。滑沢剤、凝集防止剤としては例えばタルク、ステアリン酸マグネシウムおよびその無機塩、また潤滑剤としてポリエチレングリコールなどが用いられる。安定化剤としては酒石酸、クエン酸、コハク酸、フマル酸、マレイン酸などの酸が用いられる。

核は上記製造法以外にも、例えば核の中心となる不活性担体粒子上に水、低級アルコール(例、メタノール、エタノールなど)等の適当な溶媒に溶解した結合剤をスプレーしながら、薬物あるいはこれと賦形剤、滑沢剤などとの混合物を少量づつ添加して行なう転動造粒法、パンコーティング法、流動層コーティング法や溶融造粒法によっても調製することができる。不活性担体粒子としては、例えば白糖、乳糖、澱粉、結晶セルロース、ワックス類で製造されたものが使用でき、その平均粒子径は約100μmないし約1,500μmであるものが好ましい。

核に含まれる薬物と被膜剤とを分離するために、防護剤で核の表面を被覆してもよい。防護剤としては、例えば前記親水性物質や、水不溶性物質等が用いられる。防護剤は、好ましくはポリエチレングリコールやヒドロキシアルキル基又はカルボキシアルキル基を有する多糖類、より好ましくはヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロースが用いられる。該防護剤には安定化剤として酒石酸、クエン酸、コハク酸、フマル酸、マレイン酸等の酸や、タルクなどの滑沢剤を含んでいてもよい。防護剤を用いる場合、その被覆量は核に対して約1ないし約15%(w/w)、好ましくは約1ないし約10%(w/w)、さらに好ましくは約2ないし約8%(w/w)である。

. 防護剤は通常のコーティング法により被覆することができ、具体的には、防 護剤を例えば流動層コーティング法、パンコーティング法等により核にスプレ

10

15

20

ーコーティングすることで被覆することができる。

II. 核の被膜剤による被覆

前記Iで得られた核を、前記水不溶性物質及び p H依存性の膨潤性ポリマー、 および親水性物質を加熱溶解あるいは溶媒に溶解又は分散させた被膜剤液によ り被覆することにより徐放性製剤が製造される。

核の被膜剤液による被覆方法として、例えば噴霧コーティングする方法など が挙げられる。

被膜剤液中の水不溶性物質、膨潤性ポリマー又は親水性物質の組成比は、被 膜中の各成分の含有率がそれぞれ前記含有率となるように適宜選ばれる。

被膜剤の被覆量は、核(防護剤の被覆量を含まない)に対して約1ないし約90%(w/w)、好ましくは約5ないし約50%(w/w)、さらに好ましくは約5ないし35%(w/w)である。

被膜剤液の溶媒としては水又は有機溶媒を単独であるいは両者の混液を用いることができる。混液を用いる際の水と有機溶媒との混合比(水/有機溶媒:重量比)は、1ないし100%の範囲で変化させることができ、好ましくは1ないし約30%である。該有機溶媒としては、水不溶性物質を溶解するものであれば特に限定されないが、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、n-プチルアルコール等の低級アルコール、アセトンなどの低級アルカノン、アセトニトリル、クロロホルム、メチレンクロライドなどが用いられる。このうち低級アルコールが好ましく、エチルアルコール、イソプロピルアルコールが特に好ましい。水及び水と有機溶媒との混液が被膜剤の溶媒として好ましく用いられる。この時、必要であれば被膜剤液中に被膜剤液安定化のために酒石酸、クエン酸、コハク酸、フマル酸、マレイン酸などの酸を加えてもよい。

25 噴霧コーティングにより被覆する場合の操作は通常のコーティング法により 実施することができ、具体的には、被膜剤液を例えば流動層コーティング法、 パンコーティング法等により核にスプレーコーティングすることで実施するこ とができる。この時必要であれば、タルク、酸化チタン、ステアリン酸マグネ シウム、ステアリン酸カルシウム、軽質無水ケイ酸などを滑沢剤として、グリ

10

15

20

25

セリン脂肪酸エステル、硬化ヒマシ油、クエン酸トリエチル、セチルアルコール、ステアリルアルコールなどを可塑剤として添加してもよい。

被膜剤による被膜後、必要に応じてタルクなどの帯電防止剤を混合してもよい。

速放性製剤は、液状(溶液、懸濁液、乳化物など)であっても固形状(粒子状、 丸剤、錠剤など)であってもよい。速放性製剤としては、経口投与剤、注射剤 など非経口投与剤が用いられるが、経口投与剤が好ましい。

速放性製剤は、通常、活性成分である薬物に加えて、製剤分野で慣用される担体、添加剤や賦形剤(以下、賦形剤と略称することがある)を含んでいてもよい。用いられる賦形剤は、製剤賦形剤として常用される賦形剤であれば特に限定されない。例えば経口固形製剤用の賦形剤としては、乳糖、デンプン、コーンスターチ、結晶セルロース(旭化成(株)製、アビセルPH101など)、粉糖、グラニュウ糖、マンニトール、軽質無水ケイ酸、炭酸マグネシウム、炭酸カルシウム、Lーシステインなどが挙げられ、好ましくはコーンスターチおよびマンニトールなどが挙げられる。これらの賦形剤は一種又は二種以上を組み合わせて使用できる。賦形剤の含有量は速放性製剤全量に対して、例えば約4.5~約99.4 w/w%、好ましくは約20~約98.5 w/w%、さらに好ましくは約30~約97 w/w%である。

速放性製剤における薬物の含量は、速放性製剤全量に対して、約0.5~約95%、好ましくは約1~約60%の範囲から適宜選択することができる。

速放性製剤が経口固型製剤の場合、通常上記成分に加えて、崩壊剤を含有する。このような崩壊剤としては、例えばカルボキシメチルセルロースカルシウム(五徳薬品製、ECG-505)、クロスカルメロースナトリウム(例えば、旭化成(株)製、アクジゾル)、クロスポピドン(例えば、BASF社製、コリドンCL)、低置換度ヒドロキシプロピルセルロース(信越化学(株))、カルボキシメチルスターチ(松谷化学(株)、カルボキシメチルスターチナトリウム(木村産業製、エキスプロタブ)、部分α化デンプン(旭化成(株)製、PCS)などが用いられ、例えば水と接触して吸水、膨潤、あるいは核を構成している有効成分と賦形剤との間にチャネルを作るなどにより顆粒を崩壊させるも

25

のを用いることができる。これらの崩壊剤は、一種又は二種以上を組み合わせて使用できる。崩壊剤の配合量は、用いる薬物の種類や配合量、放出性の製剤設計などにより適宜選択されるが、速放性製剤全量に対して、例えば約0.0 5~約30w/w%、好ましくは約0.5~約15w/w%である。

速放性製剤が経口固型製剤である場合、経口固型製剤の場合には上記の組成 5 に加えて、所望により固型製剤において慣用の添加剤をさらに含んでいてもよ い。このような添加剤としては、例えば結合剤(例えば、ショ糖、ゼラチン、 アラビアゴム末、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロ キシプロピルメチルセルロース、カルボキシメチルセルロース、ポリビニルピ ロリドン、プルラン、デキストリンなど)、滑沢剤(例えば、ポリエチレングリ 10 コール、ステアリン酸マグネシウム、タルク、軽質無水ケイ酸(例えば、アエ ロジル(日本アエロジル))、界面活性剤(例えば、アルキル硫酸ナトリウムな どのアニオン系界面活性剤、ポリオキシエチレン脂肪酸エステルおよびポリオ キシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヒマシ油誘導体 等の非イオン系界面活性剤など)、着色剤(例えば、タール系色素、カラメル、 15 ベンガラ、酸化チタン、リボフラビン類)、必要ならば、矯味剤(例えば、甘味 剤、香料など)、吸着剤、防腐剤、湿潤剤、帯電防止剤などが用いられる。また、 安定化剤として酒石酸、クエン酸、コハク酸、フマル酸などの有機酸を加えて もよい。

上記結合剤としては、ヒドロキシプロピルセルロース、ポリエチレングリコールおよびポリビニルピロリドンなどが好ましく用いられる。

速放性製剤は、通常の製剤の製造技術に基づき、前記各成分を混合し、必要により、さらに練合し、成型することにより調製することができる。上記混合は、一般に用いられる方法、例えば、混合、練合などにより行われる。具体的には、例えば速放性製剤を粒子状に形成する場合、前記徐放性製剤の核の調製法と同様の手法により、バーチカルグラニュレーター、万能練合機(畑鉄工所製)、流動層造粒機FD-5S (パウレック社製)等を用いて混合しその後、湿式押し出し造粒法、流動層造粒法などにより造粒することにより調製することができる。

25

このようにして得られた速放性製剤と徐放性製剤とは、そのままあるいは適宜、製剤賦形剤等と共に常法により別々に製剤化後、同時あるいは任意の投与間隔を挟んで組み合わせて投与する製剤としてもよく、また両者をそのままあるいは適宜、製剤賦形剤等と共に一つの経口投与製剤(例、顆粒剤、細粒剤、錠剤、カプセル等)に製剤化してもよい。両製剤を顆粒あるいは細粒に製して、

- 5 錠剤、カプセル等)に製剤化してもよい。両製剤を顆粒あるいは細粒に製して、 同一のカプセル等に充填して経口投与用製剤としてもよい。
 - 〔3〕舌下錠、バッカル又は口腔内速崩壊剤およびその調製 舌下錠、バッカル製剤、口腔内速崩壊剤は錠剤などの固形製剤であってもよいし、口腔粘膜貼付錠(フィルム)であってもよい。
- 10 舌下錠、バッカル又は口腔内速崩壊剤としては、本発明の化合物(I)または併用薬物と賦形剤とを含有する製剤が好ましい。また、滑沢剤、等張化剤、親水性担体、水分散性ポリマー、安定化剤などの補助剤を含有していてもよい。また、吸収を容易にし、生体内利用率を高めるためにβーシクロデキストリン又はβーシクロデキストリン誘導体(例、ヒドロキシプロピルーβーシクロデキストリンなど)などを含有していてもよい。

上記賦形剤としては、乳糖、白糖、D-マンニトール、デンプン、結晶セルロース、軽質無水ケイ酸などが挙げられる。滑沢剤としてはステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカなどが挙げられ、特に、ステアリン酸マグネシウムやコロイドシリカが好ましい。等張化剤としては塩化ナトリウム、グルコース、フルクトース、マンニトール、ソルビトール、ラクトース、サッカロース、グリセリン、尿素などが挙げられ、特にマンニトールが好ましい。親水性担体としては結晶セルロース、エチルセルロース、架橋性ポリビニルピロリドン、軽質無水珪酸、珪酸、リン酸ニカルシウム、炭酸カルシウムなどの膨潤性親水性担体が挙げられ、特に結晶セルロース(例、微結晶セルロースなど)が好ましい。水分散性ポリマーとしてはガム(例、トラガカントガム、アカシアガム、グアーガム)、アルギン酸塩(例、アルギン酸ナトリウム)、セルロース誘導体(例、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、、ヒドロキシプロピルメチルセルロース)、ゼラチン、水溶性デンプン、ポリア

10

15

20

25

クリル酸(例、カーボマー)、ポリメタクリル酸、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、ポリカーボフィル、アスコルビン酸パルミチン酸塩などが挙げられ、ヒドロキシプロピルメチルセルロース、ポリアクリル酸、アルギン酸塩、ゼラチン、カルボキシメチルセルロース、ポリビニルピロリドン、ポリエチレングリコールなどが好ましい。特にヒドロキシプロピルメチルセルロースが好ましい。安定化剤としては、システイン、チオソルビトール、酒石酸、クエン酸、炭酸ナトリウム、アスコルビン酸、グリシン、亜硫酸ナトリウムなどが挙げられ、特に、クエン酸やアスコルビン酸が好ましい。

舌下錠、バッカル又は口腔内速崩壊剤は、本発明の化合物(I) または併用薬物と賦形剤とを自体公知の方法により混合することにより製造することができる。さらに、所望により上記した滑沢剤、等張化剤、親水性担体、水分散性ポリマー、安定化剤、着色剤、甘味剤、防腐剤などの補助剤を混合してもよい。上記成分を同時に若しくは時間差をおいて混合した後、加圧打錠成形することにより舌下錠、バッカル錠又は口腔内速崩壊錠が得られる。適度な硬度を得るため、打錠成形の過程の前後において必要に応じ水やアルコールなどの溶媒を用いて加湿・湿潤させ、成形後、乾燥させて製造してもよい。

粘膜貼付錠(フィルム)に成型する場合は、本発明の化合物(I)または併用薬物および上記した水分散性ポリマー(好ましくは、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース)、賦形剤などを水などの溶媒に溶解させ、得られる溶液を流延させて(cast)フィルムとする。さらに、可塑剤、安定剤、酸化防止剤、保存剤、着色剤、緩衝剤、甘味剤などの添加物を加えてもよい。フィルムに適度の弾性を与えるためポリエチレングリコールやプロピレングリコールなどのグリコール類を含有させたり、口腔の粘膜ライニングへのフィルムの接着を高めるため生物接着性ポリマー(例、ポリカルボフィル、カルボポール)を含有させてもよい。流延は、非接着性表面に溶液を注ぎ、ドクターブレードなどの塗布用具で均一な厚さ(好ましくは10~1000ミクロン程度)にそれを広げ、次いで溶液を乾燥してフィルムを形成することにより達成される。このように形成されたフィルムは室温若しくは加温下乾

25

燥させ、所望の表面積に切断すればよい。

好ましい口腔内速崩壊剤としては、本発明の化合物(I)または併用薬物と、本発明の化合物(I)または併用薬物とは不活性である水溶性若しくは水拡散性キャリヤーとの網状体からなる固体状の急速拡散投与剤が挙げられる。該網状体は、本発明の化合物(I)または併用薬物を適当な溶媒に溶解した溶液とから構成されている固体状の該組成物から溶媒を昇華することによって得られる。

該口腔内速崩壊剤の組成物中には、本発明の化合物(I)または併用薬物に加えて、マトリックス形成剤と二次成分とを含んでいるのが好ましい。

10 該マトリックス形成剤としてはゼラチン類、デキストリン類ならびに大豆、小麦ならびにオオバコ (psyllium) 種子蛋白などの動物性蛋白類若しくは植物性タンパク類;アラビアゴム、グアーガム、寒天ならびにキサンタンなどのゴム質物質;多糖類;アルギン酸類;カルボキシメチルセルロース類;カラゲナン類;デキストラン類;ペクチン類;ポリビニルピロリドンなどの合成ポリマー類;ゼラチンーアラビアゴムコンプレックスなどから誘導される物質が含まれる。さらに、マンニトール、デキストロース、ラクトース、ガラクトースならびにトレハロースなどの糖類;シクロデキストリンなどの環状糖類;リン酸ナトリウム、塩化ナトリウムならびにケイ酸アルミニウムなどの無機塩類;グリシン、Lーアラニン、Lーアスパラギン酸、Lーグルタミン酸、Lーヒドロシキプロリン、Lーイソロイシン、LーロイシンならびにLーフェニルアラニンなどの炭素原子数が2から12までのアミノ酸などが含まれる。

マトリックス形成剤は、その1種若しくはそれ以上を、固形化の前に、溶液 又は懸濁液中に導入することができる。かかるマトリックス形成剤は、界面活 性剤に加えて存在していてもよく、また界面活性剤が排除されて存在していて もよい。マトリックス形成剤はそのマトリックスを形成することに加えて、本 発明の化合物(I)または併用薬物の拡散状態をその溶液又は懸濁液中に維持 する助けをすることができる。

. 保存剤、酸化防止剤、界面活性剤、増粘剤、着色剤、pH調整剤、香味料、 甘味料若しくは食味マスキング剤などの二次成分を組成物中に含有していてよ

10

15

20

25

い。適当な着色剤としては、赤色、黒色ならびに黄色酸化鉄類およびエリス・アンド・エベラールド社のFD&Cブルー2号ならびにFD&Cレッド40号などのFD&C染料が挙げられる。適当な香味料には、ミント、ラスベリー、甘草、オレンジ、レモン、グレープフルーツ、カラメル、バニラ、チェリーならびにグレープフレーバーおよびこれらを組合せたものが含まれる。適当なPH調整剤には、クエン酸、酒石酸、リン酸、塩酸およびマレイン酸が含まれる。適当な甘味料としてはアスパルテーム、アセスルフェームKならびにタウマチンなどが含まれる。適当な食味マスキング剤としては、重炭酸ナトリウム、イオン交換樹脂、シクロデキストリン包接化合物、吸着質物質ならびにマイクロカプセル化アポモルフィンが含まれる。

製剤には通常約0.1~約50重量%、好ましくは約0.1~約30重量%の本発明の化合物(I)または併用薬物を含み、約1分~約60分の間、好ましくは約1分~約15分の間、より好ましくは約2分~約5分の間に(水に)本発明の化合物(I)または併用薬物の90%以上を溶解させることが可能な製剤(上記、舌下錠、バッカルなど)や、口腔内に入れられて1ないし60秒以内に、好ましくは1ないし30秒以内に、さらに好ましくは1ないし10秒以内に崩壊する口腔内速崩壊剤が好ましい。

上記賦形剤の製剤全体に対する含有量は、約10~約99重量%、好ましくは約30~約90重量%である。βーシクロデキストリン又はβーシクロデキストリン誘導体の製剤全体に対する含有量は0~約30重量%である。滑沢剤の製剤全体に対する含有量は、約0.01~約10重量%、好ましくは約1~約5重量%である。等張化剤の製剤全体に対する含有量は、約0.1~約90重量%、好ましくは、約10~約70重量%である。親水性担体の製剤全体に対する含有量は約0.1~約50重量%、好ましくは約10~約30重量%である。水分散性ポリマーの製剤全体に対する含有量は、約0.1~約30重量%、好ましくは約10~約25重量%である。安定化剤の製剤全体に対する含有量は約0.1~約10重量%、好ましくは約1~約5重量%である。上記製剤はさらに、着色剤、甘味剤、防腐剤などの添加剤を必要に応じ含有していてもよい。

20

25

本発明の併用剤の投与量は、本発明の化合物(I)の種類、年齢、体重、症状、剤形、投与方法、投与期間などにより異なるが、例えば、糖尿病患者(成人、体重約60kg)一人あたり、通常、本発明の化合物(I)および併用薬物として、それぞれ1日約0.01~約1000mg/kg、好ましくは約0.01~約100mg/kg、より好ましくは約0.1~約100mg/kg、とりわけ約0.1~約50mg/kgを、なかでも約1.5~約30mg/kgを1日1回から数回に分けて静脈投与される。もちろん、前記したように投与量は種々の条件で変動するので、前記投与量より少ない量で十分な場合もあり、また範囲を超えて投与する必要のある場合もある。

10 併用薬物は、副作用が問題とならない範囲でどのような量を設定することも可能である。併用薬物としての一日投与量は、症状の程度、投与対象の年齢、性別、体重、感受性差、投与の時期、間隔、医薬製剤の性質、調剤、種類、有効成分の種類などによって異なり、特に限定されないが、薬物の量として通常、たとえば経口投与で哺乳動物1kg体重あたり約0.001~2000mg、好ましくは約0.01~500mg、さらに好ましくは、約0.1~100mg程度であり、これを通常1日1~4回に分けて投与する。

本発明の併用剤を投与するに際しては、本発明の化合物(I)と併用薬物とを同時期に投与してもよいが、併用薬物を先に投与した後、本発明の化合物(I)を投与してもよいし、本発明の化合物(I)を先に投与し、その後で併用薬物を投与してもよい。時間差をおいて投与する場合、時間差は投与する有効成分、剤形、投与方法により異なるが、例えば、併用薬物を先に投与する場合、併用薬物を投与した後1分~3日以内、好ましくは10分~1日以内、より好ましくは15分~1時間以内に本発明の化合物(I)を投与する方法が挙げられる。本発明の化合物(I)を先に投与する場合、本発明の化合物(I)を投与した後、1分~1日以内、好ましくは10分~6時間以内、より好ましくは15分から1時間以内に併用薬物を投与する方法が挙げられる。

好ましい投与方法としては、例えば、経口投与製剤に製形された併用薬物約 $0.001\sim200$ mg/kgを経口投与し、約15分後に経口投与製剤に製形された本発明の化合物(I) 約 $0.005\sim100$ mg/kgを1日量として

経口投与する。

実施例

5

10

15

25

本発明はさらに下記の参考例、実施例、製剤例及び試験例で詳しく説明されるが、これらの例は単なる実例であって本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。

参考例、実施例のカラムクロマトグラフィーにおける溶出はTLC(Thin Layer Chromatography, 薄層クロマトグラフィー)による観察下に行なわれた。 TLC観察においては、TLCプレートとしてメルク(Merck)社製の60F254または富士シリシア化学社製のNHを、展開溶媒としてはカラムクロマトグラフィーで溶出溶媒として用いられた溶媒を、検出法としてUV検出器を採用した。カラム用シリカゲルは同じくメルク社製のキーゼルゲル60(70ないし230メッシュ)またはキーゼルゲル60(230ないし400メッシュ)を用いた。NMRスペクトルは内部又は外部基準としてテトラメチルシランを用いてパリアンGemini 200型、バリアンMercury300型またはブルッカDPX-300型スペクトロメーターで測定し、化学シフトを8値で、カップリング定数をHzで示した。IRスペクトルは島津FTIR-8200型スペクトロメーターで測定した。

参考例、実施例において、HPLCは以下の条件により測定し、純度等を決定し 20 た。

測定機器:島津製作所 LC-10Avpシステム (特記なき場合) またはアジレント 1100システム

カラム: CAPSEL PAK C18UG120 S-3 μm, 2.0 X 50mm

溶媒:A液; 0.1% トリフルオロ酢酸 含有水、

B液; 0.1% トリフルオロ酢酸 含有アセトニトリル

グラジエントサイクル: (A法): 0.00分(A液/B液=90/10), 2.00分(A液/B液=5/95), 2.75分(A液/B液=5/95), 2.76分(A液/B液=90/10), 3.45分(A液/B液=90/10)、または(B法): 0.00分(A液/B液=90/10), 4.00分(A液/B液=5/95), 5.50分(A液/B液=5/95), 5.51分(A液/B液=90/10), 8.00分

(A液/B液=90/10)

注入量:10 μ 1、流速:0.5 ml/min、検出法:UV 220nm 参考例、実施例において、マススペクトル (MS) は以下の条件により測定した。

- 測定機器:マイクロマス社 プラットフォームII、ウオーターズ社 ZQ、ウオーターズ社 ZMD、または日本電子株式会社 JMS-AX505W
 イオン化法:大気圧化学イオン化法(Atmospheric Pressure Chemical Ionization: APCI)、電子衝撃イオン化法(Electron Spray Ionization: ESI)、または高速原子衝突イオン化法(Fast Atom Bombardment: FAB)
- 10 参考例、実施例における化合物の精製はカラムクロマトグラフィーの他、以下に記した分取HPLC機器あるいは中圧分取LC機器を用いた。
 - 1) 分取HPLC機器: ギルソン社ハイスループット精製システムカラム: YMC Combiprep ODS-A S-5 μ m, 50 X 20 mm

溶媒:A液; 0.1% トリフルオロ酢酸 含有水、

B液; 0.1% トリフルオロ酢酸 含有アセトニトリル
グラジエントサイクル: 0.00分(A液/B液=90/10), 1.20分(A液/B液=90/10)
), 4.75分(A液/B液=0/100), 7.30分(A液/B液=0/100), 7.40分(A液/B液=90/10)
, 7.50分(A液/B液=90/10)

流速:25 ml/min、検出法:UV 220nm

20 2) 中圧分取LC機器:モリテックス社ハイスループット精製システム(purif 8) カラム:山善株式会社 HI-FLASH™ COLUMN(シリカゲル:40μm、60Å)、26 x 100 mmまたは20 x 65 mm

流速:20 ml/分

25

検出法:UV 254nm 混合溶媒において()内に示した数値は各溶媒の容量混合比である。また溶液における%は溶液100ml中のg数を表わす。

また参考例、実施例中の記号は次のような意味である。

s :シングレット (singlet)

. d : ダブレット (doublet)

t : トリプレット(triplet)

q :クワルテット (quartet)

dd : ダブルダブレット (double doublet)

m :マルチプレット (multiplet)

br : プロード (broad)

5 brs :プロード シングレット (broad singlet)

J : カップリング定数 (coupling constant)

CDCl。: 重クロロホルム

DMSO-d。: 重ジメチルスルホキシド

'H-NMR :プロトン核磁気共鳴

10 WSC :水溶性カルボジイミド

THF : テトラヒドロフラン

DMF :ジメチルホルムアミド

DMSO:ジメチルスルホキシド

本明細書において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該

分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとす

る。

15

DNA : デオキシリボ核酸

20 c D N A : 相補的デオキシリボ核酸

A : アデニン

T: チミン

G : グアニン

C:シトシン

25 Gly : グリシン

Ala:アラニン

Val :バリン・

. Leu:ロイシン

Ile: イソロイシン

Ser :セリン

Thr : スレオニン

Cys :システイン

Met:メチオニン

5 Glu : グルタミン酸

Asp:アスパラギン酸

Lys :リジン

Arg:アルギニン

His: ヒスチジン

10 Phe : フェニルアラニン

Tyr : チロシン

Trp : トリプトファン

Pro :プロリン

Asn : アスパラギン

15 Gln : グルタミン

本明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

ヒト型RFRP受容体(OT7T022)のアミノ酸配列を示す。

〔配列番号:2〕

20 ラット型RFRP受容体(OT7T022)のアミノ酸配列を示す。

〔配列番号:3〕

ヒトRFRPのアミノ酸配列を示す。

実施例

25 参考例 1

6-フルオロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキ ノリンカルボン酸エチルエステルおよび7-フルオロ-4-ヒドロキシ-2-ネオペン チル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸エチルエステル WO 02/62764の実施例1(1)記載の方法により表題化合物を得た

参考例2

4-プトキシ-6-フルオロ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノ リンカルボン酸エチルエステル

5 WO 02/62764の実施例1(2)記載の方法により表題化合物を得た

参考例3

0

4-プトキシ-7-フルオロ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノ リンカルボン酸エチルエステル

10 WO 02/62764の実施例2(1)記載の方法により表題化合物を得た

参考例4

6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソ キノリンカルボン酸エチルエステル

15 WO 02/62764の実施例27(1)記載の方法により表題化合物を得た。

参考例5

6,7-ジクロロ-2-(3-エトキシ-3-オキソプロピル)-4-ヒドロキシ-1-オキソ -1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル

20 WO 02/62764の実施例35(1)記載の方法により表題化合物を得た。

参考例6

4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸エチルエステル

25 WO 02/62764の実施例46(1)記載の方法により表題化合物を得た。

参考例7

4-ヒドロキシ-7-メチル-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルポン酸エチルエステル

WO 02/62764の実施例50(1)記載の方法により表題化合物を得た。

参考例8

5

15

20

25

4-ヒドロキシ-6-メチル-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノ リンカルボン酸エチルエステル

WO 02/62764の実施例51 (1) 記載の方法により表題化合物を得た。

参考例9

4-ヒドロキシ-2-ネオペンチル-1-オキソ-7-トリフルオロメチル-1, 2-ジヒドロ 10 -3-イソキノリンカルボン酸エチルエステル

WO 02/62764の実施例52(1)記載の方法により表題化合物を得た。

参考例10

4-ヒドロキシ-2-ネオペンチル-1-オキソ-6-トリフルオロメチル-1, 2-ジヒドロ -3-イソキノリンカルボン酸エチルエステル

WO 02/62764の実施例53(1)記載の方法により表題化合物を得た。

参考例11

4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロベンゾ[g]イソキノリン-3-カルボン酸 エチルエステル

WO 02/62764の実施例56(1)記載の方法により表題化合物を得た。

参考例12

4-プトキシ-6-フルオロ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル

WO 02/62764の実施例57(2)記載の方法により表題化合物を得た。

参考例13

6-ベンジルオキシ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-

イソキノリンカルボン酸エチルエステル

WO 02/62764の実施例58(1)記載の方法により表題化合物を得た。

参考例14

5 7-ベンジルオキシ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルポン酸エチルエステル

WO 02/62764の実施例63(1)記載の方法により表題化合物を得た。

参考例15

10 5,6-ジメトキシ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イ ソキノリンカルボン酸エチルエステル

WO 02/62764の実施例69(2)記載の方法により表題化合物を得た。

参考例16

15 6,7-ジメトキシ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イ ソキノリンカルボン酸エチルエステル

WO 02/62764の実施例70(2)記載の方法により表題化合物を得た。

参考例17

20 4-ヒドロキシ-6-ネオペンチル-7-オキソ-6, 7-ジヒドロチエノ [2, 3-c] ピリジン -5-カルボン酸 エチルエステル

WO 02/62764の実施例71(2)記載の方法により表題化合物を得た。

参考例18

4-ヒドロキシ-6-ネオペンチル-7-オキソ-6, 7-ジヒドロチエノ[3, 2-c] ピリジン-5-カルボン酸 エチルエステル

WO 02/62764の実施例72(2)記載の方法により表題化合物を得た。

参考例19

6-プロモ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノ リンカルポン酸エチルエステル

WO 02/62764の実施例83(1)記載の方法により表題化合物を得た。

5 参考例20

7-フルオロ-4-ヒドロキシ-2-イソブチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸エチルエステルおよび6-フルオロ-4-ヒドロキシ-2-イソブチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸エチルエステル

WO 02/62764の実施例150(1)記載の方法により表題化合物を 得た。

参考例21

10

15

20

2-シクロプロピルメチル-7-フルオロ-4-ヒドロキシ-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸エチルエステルおよび2-シクロプロピルメチル-6-フルオロ-4-ヒドロキシ-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸エチルエステル

WO 02/62764の実施例149(1)記載の方法により表題化合物を 得た。

参考例22

7-ベンジルオキシ-4-ヒドロキシ-2-イソプチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステルおよび6-ベンジルオキシ-4-ヒドロキシ-2-イソプチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル

WO 02/62764の実施例161(1)記載の方法により表題化合物を 得た。

25 実施例1

7-フルオロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸tert-ブチルエステル

. 4-フルオロフタル酸無水物(6.59 g)のメタノール(100 mL) 懸濁溶液に28 %ナトリウムメチラート溶液(15 ml) を添加し、室温で1時間撹拌した。反応

液を1規定塩酸 (150 mL) に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をアセトニトリル (200 mL) に溶解し、2-(ネオペンチルアミノ)酢酸tert-ブチルエステル(11.66 g) と1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩 (14.3 g) と1-ヒドロキシペンゾトリアゾール (7.87 g) を添加し、室温で15時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をテトラヒドロフラン(200 ml) に溶解して0℃でカリウムtert-ブトキシド (6.48 g) を添加した。その混合物を室温で1時間撹拌した。反応液を1規定塩酸 (150 ml) に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製して、洗に溶出する成分を濃縮し、無色結晶の表題化合物(2.0 g)を得た。

¹H-NMR (CDCl₃) δ: 0.86 (9H, s), 1.65 (9H, s), 4.55 (2H, br), 7.45 (1H, m), 8.04-20 (2H, m), 10.88 (1H, s).

実施例2

20

6-フルオロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキ ノリンカルボン酸tert-プチルエステル

実施例1のシリカゲルカラムクロマトグラフィーでの精製において、後に溶出する成分を濃縮して、無色結晶の表題化合物 (3.85 g)を得た。

 1 H-NMR (CDCl₃) δ : 0.86 (9H, s), 1.65 (9H, s), 4.57 (2H, br), 7.34 (1H, dt, J=8.8, 2.5 Hz), 7.74 (1H, dd, J=9.2, 2.5 Hz), 8.46 (1H, dd, J=8.8, 5.5 Hz), 10.67 (1H, s).

実施例3

25 6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソ キノリンカルボン酸tert-ブチルエステル

4,5-ジクロロフタル酸無水物 (5.0 g) 、2-(ネオペンチルアミノ)酢酸tert-ブチルエステル (4.64 g) およびトリエチルアミン (4.66 g) のテトラヒドロフラン (100 ml) 溶液を室温で15時間撹拌した。反応液を水に注ぎ、酢酸エ

10

15

20

チルで抽出した。 抽出液を10%クエン酸水溶液およびプラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をアセトン (50 ml) およびN,N-ジメチルホルムアミド (5 ml) に溶解し、炭酸カリウム (3.18 g) とヨウ化メチル (6.4 g) を添加した。その混合物を室温で15時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をテトラヒドロフラン(100 ml) に溶解して0℃でカリウムtert-ブトキシド (2.58 g) を添加した。その混合物を室温で1時間撹拌した。反応液を10%クエン酸水溶液(150 ml) に注ぎ、析出した結晶をろ取し、水およびメタノールで洗浄して表題化合物 (6.4 g) を得た。

 1 H-NMR (CDCl₃) δ : 0.85 (9H, s), 1.65 (9H, s), 4.45 (2H, br), 8.20 (1H, s), 8.51 (1H, s), 10.71 (1H, s).

実施例4

4-プトキシ-6, 7-ジクロロ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキ ノリンカルボン酸tert-プチルエステル

6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル (399 mg) と1-ブタノール (180 mg) とトリフェニルホスフィン (390 mg) のテトラヒドロフラン (20 ml) 溶液にアゾジカルボン酸ジエチル (260 mg)を添加し、その混合物を室温で15時間撹拌した。反応液を減圧下濃縮し、残留物をシリカゲルカラムクロマトグラフィーで精製して無色結晶の表題化合物 (310 mg)を得た。

¹H-NMR (CDCl₃) δ : 0.95 (9H, s), 1.02 (3H, t, J=7.3 Hz), 1.55 (2H, m), 1.62 (9H, s), 1.81 (2H, m), 3.95 (2H, t, J=6.7 Hz), 4.00 (2H, br), 7.80 (1H, s), 8.49 (1H, s).

25 実施例 5

6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸tert-プチルエステル

6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル (399 mg) と炭酸カリウム (138

mg)のDMF (20 ml) 溶液にヨウ化メチル (420 mg)を添加し、その混合物を室 温で15時間撹拌した。反応液を水に注ぎ、エーテルで抽出した。抽出液を1規 定水酸化ナトリウム水溶液、水およびプラインで順次洗浄後、無水硫酸マグネ シウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフ ィーで精製して無色結晶の表題化合物 (300 mg)を得た。

 $^{1}H-NMR$ (CDC1₂) δ : 0.96 (9H, s), 1.64 (9H, s), 3.87 (3H, s), 4.03 (2H, br), 7.84 (1H. s). 8.50 (1H. s).

実施例6

5

10

15

25

4-ベンジルオキシ-6,7-ジクロロ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸tert-ブチルエステル

6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イ ソキノリンカルボン酸 tert-ブチルエステル(300 mg)とベンジルアルコール (97 mg) とトリフェニルホスフィン (157 mg) のテトラヒドロフラン (4 ml) 溶 液にアゾジカルポン酸ジエチル (157 mg)を添加し、その混合物を室温で15時 間撹拌した。反応液を減圧下濃縮し、残留物をシリカゲルカラムクロマトグラ フィーで精製して無色結晶の表題化合物 (90 mg)を得た。

 $^{1}H-NMR(CDC1_{\circ})$ $\delta:0.98(9H, s), 1.56(9H, s), 4.04(2H, br), 5.04(2H, 2H),$ 7.32-7.49 (m, 5H), 7.75 (1H, s), 8.50 (1H, s).

実施例7

6.7-ジクロロ-2-ネオペンチル-1-オキソ-4-トリフルオロメタンスルホニルオ 20 キシ-1,2-ジヒドロ-3-イソキノリンカルボン酸tert-ブチルエステル

6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1.2-ジヒドロ-3-イ ソキノリンカルボン酸 tert-プチルエステル (2.5 g) とピリジン (2.5 g) の 塩化メチレン溶液(90ml)に、-78℃撹拌下、トリフルオロメタンスルホン 酸無水物 (1.9g) を加え、5分間撹拌した。0℃にてさらに1時間撹拌した後、 反応液を飽和炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで抽出した。抽出 液を1規定塩酸、飽和炭酸水素ナトリウム水溶液、水およびプラインで順次洗 浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をヘキサン/酢 酸エチルより再結晶することにより、白色結晶の標題化合物(2.5 g)を得た。

¹H-NMR (CDC1₃) δ : 0.92 (9H, s), 1.64 (9H, s), 4.17 (2H, br), 7.85 (1H, s), 8.50 (1H, s).

実施例8

5

6,7-ジクロロ-2-ネオペンチル-1-オキソ-4-フェニル-1,2-ジヒドロ-3-イソキ ノリンカルボン酸tert-ブチルエステル

ジムロート付のナスフラスコに入った6,7-ジクロロ-2-ネオペンチル-1-オキソ-4-トリフルオロメタンスルホニルオキシ-1,2-ジヒドロ-3-イソキノリンカルボン酸tert-プチルエステル(430 mg)、フェニルボロン酸(118 mg)、テトラキス(トリフェニルホスフィン)パラジウム(94 mg)、ジメトキシエタン(12 ml)、および2規定炭酸ナトリウム水容液(3 ml)の混合物を真空ラインで脱気し、アルゴンにより置換し、100℃で15時間撹拌した。反応液を冷却後、セライトにてろ過し、ろ液を酢酸エチルで抽出した。抽出液を水とプラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製して無色結晶の表題化合物(100 mg)を得た。

 1 H-NMR (CDC1₃) δ : 0.99 (9H, s), 1.15 (9H, s), 4.11 (2H, br), 7.13 (1H, s), 7.25-7.35 (2H, m), 7.42-7.49 (3H, m), 8.55 (1H, s).

実施例9

6,7-ジクロロ-4-(2-エトキシ-2-オキソエトキシ)-2-ネオペンチル-1-オキソ
-1,2-ジヒドロイソキノリン-3-カルボン酸 tert-ブチルエステル
6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロイソキノ
リン-3-カルボン酸 tert-ブチルエステル(4.00 g, 10.0 mmol)、炭酸カリウム
(2.07 g, 15.0 mmol)、ブロモ酢酸エチル(1.7 ml, 15.0 mmol)およびN,N-ジメ
チルホルムアミド(30 mL)の混合物を、室温で3時間撹拌した。反応液を水に
25 注ぎ、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネ
シウムで乾燥後、減圧下溶媒を留去した。残留物をシリカゲルクロマトグラフ
ィーで精製して、無色油状物の表題化合物(4.51 g, 収率95%)を得た。
「H-NMR(CDC1。) δ: 0.95 (9H, s), 1.36 (3H, t, J = 7.1 H2), 1.65 (9H, s),

4.03 (2H, br), 4.34 (2H, q, J = 7.1 Hz), 4.59 (2H, s), 8.02 (1H, s), 8.49

(1H, s).

実施例10

7-プロモ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロイソキノリン -3-カルボン酸エチルエステル

4-プロモフタル酸無水物 (22.70 g, 100 mmol) のテトラヒドロフラン(200 mL) 5 溶液に2-(ネオペンチルアミノ)酢酸エチルエステル (20.79 g, 120 mnol) を添 加し、室温で1時間攪拌した。反応液を水に注ぎ、1規定塩酸で酸性とし、酢酸 エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾 燥後、減圧下溶媒を留去した。残留物をN,N-ジメチルホルムアミド (200 mL)に 溶解し、炭酸カリウム (13.82 g, 100 mmol) およびヨウ化エチル(9.6 ml, 120 10 mmol)を添加し、室温で2時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出 した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃 縮した。残留物をエタノール(200 mL)に溶解して20%ナトリウムエトキシ ド-エタノール溶液 (68.10 g, 200 mmol) を添加した。その混合物を室温で1 時間撹拌した。反応液を1規定塩酸(150 ml)に注ぎ、酢酸エチルで抽出した。 15 抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。 残留物をシリカゲルカラムクロマトグラフィーで精製して、先に溶出する成分 を濃縮し、無色結晶の表題化合物(12.07 g. 31.6%)を得た。

融点 103.5-104℃

20 元素分析値 C₁₂H₂₀NO₄Brとして

理論值: C, 53.42; H, 5.27; N, 3.66.

実測値: C, 53.66; H, 5.27; N, 3.66.

¹H-NMR (CDCl₃) δ : 0.84 (9H, s), 1.47 (3H, t, J=7.2 Hz), 4.48 (2H, q, J=7.2 Hz), 4.54 (2H, br), 7.85 (1H, dd, J=2.0, 8.6 Hz), 8.01 (1H, d, J=8.6 Hz), 8.60 (1H, d, J=8.6 Hz),

25 8.60 (1H, d, J=2.0 Hz), 10.80 (1H, s).

実施例11

8-ヒドロキシ-6-ネオペンチル-5-オキソ-5, 6-ジヒドロ[1, 3] ジオキソロ [4, 5-g] イソキノリン-7-カルボン酸エチルエステル

(1) 6-プロモ-1,3-ペングジオキソール-5-カルバルデヒド (22.90 g, 100

10

15

mmol) とオルトギ酸トリメチル (109 ml, 1000 mmol) およびパラトルエンスル ホン酸一水和物 (0.95 g, 5 mmol)のメタノール (30 mL)溶液を1時間加熱還流 した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄 し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残留物とN.N.N' ,N'-テトラメチルエチレンジアミン(14.5 ml, 96 mmol)をテトラヒドロフラン (200 mL)に溶解し、-78℃でn-プチルリチウムのヘキサン溶液(60 ml, 96 mmol)を1時間かけて適下した。適下終了後、二酸化炭素雰囲気下、-78℃で 1時間攪拌した。得られた混合物を1規定塩酸にあけ、室温で1時間攪拌した。 反応液を水 に注ぎ、酢酸エチルで抽出した。抽出液をプラインで洗浄後、無水 硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をN,N-ジメチルホルムア ミド (100 mL)に溶解し、炭酸カリウム (6.91 g, 50 mmol) およびヨウ化エチ ル(4.8 ml, 60 mmol)を添加し、室温で3時間撹拌した。反応液を水に注ぎ、酢 酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾 燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製 して、6-ホルミル-1、3-ペンゾジオキソール-5-カルボン酸エチルエステル (2.12 g, 12%) の結晶を得た。

¹H-NMR (CDCl₃) δ : 1.42 (3H, t, J=7.2 Hz), 4.41 (2H, q, J=7.2 Hz), 6.12 (2H, s), 7.39 (1H, s), 7.43 (1H, s), 10.55 (1H, s).

(2) 6-ホルミル-1,3-ベンゾジオキソール-5-カルボン酸エチルエステル (2.22 g, 10 mmol) とリン酸二水素ナトリウム (1.44 g, 12 mmol) と2-メチル-2-ブテン (4.7 ml, 44 mmol) のtert-ブタノール (20 mL) とテトラヒドロフラン (20 mL) と水 (10 mL) 溶液を室温で10分間撹拌した。得られた混合物に、亜塩素酸ナトリウム (3.07 g, 34 mmol) を添加し、室温で2時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液をプラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮して、6-(エトキシカルボニル)-1,3-ベンゾジオキソール-5-カルボン酸 (2.11 g, 88%) の油状物を得た。6-(エトキシカルボニル)-1,3-ベンゾジオキソール-5-カルボン酸 (2.11 g, 8.9 mmol) をテトラヒドロフラン (20 mL)溶解し、オキサリルクロリド (1.1 ml, 12 mmol) とN,N-ジメチルホルムアミド (2 drops)を添加し、室温で1時間攪拌した。溶媒を減圧

下濃縮して、残留物をテトラヒドロフラン (20 mL)溶解した。得られた溶液を2-(ネオペンチルアミノ)酢酸エチルエステル (2.60 g, 15 mmol)のN,N-ジメチルアセタミド (20 mL)溶液にゆっくりと適下し、適下終了後、室温で1時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をエタノール (50 mL) に溶解して 2 0 %ナトリウムエトキシド-エタノール溶液 (6.81 g, 20 mmol)を添加した。その混合物を室温で1時間撹拌した。反応液を1規定塩酸 (20 ml) に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製して、無色油状物の表題化合物 (3.11 g, 89%)を得た。「H-NMR (CDC1₃) δ:0.84 (9H, s), 1.46 (3H, t, J=7.2 Hz), 4.46 (2H, q, J=7.2 Hz), 4.52 (2H, br), 6.14 (2H, s), 7.48 (1H, s), 7.81 (1H, s), 10.92 (1H,

実施例12

s).

15 2-(1-アダマンチルメチル)-6,7-ジクロロ-4-ヒドロキシ-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル

4,5-ジクロロフタル酸無水物 (680 mg) と 2-[(1-アダマンチルメチル)アミノ] 酢酸 tert-プチルエステル (880 mg) から、実施例 3 と同様にして、淡黄色結晶の表題化合物 (390 mg) を得た。

¹H-NMR (CDCl₃) δ : 1.25-1.70 (21H, m), 1.86-1.92 (3H, m), 4.08 (1H, br), 4.74 (1H, 8.21 (1H, s), 8.51 (1H, s), 10.66 (1H, s).

実施例13

25

6,7-ジクロロ-2-ネオペンチル-1-オキソ-4-[2-(1-ピロリジニル)エトキシ]-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル シュウ酸 塩

実施例3で得た 6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル (200 mg) と 1-(2-クロロエチル)ピロリジン 塩酸塩 (102 mg) のDMF (6.0 ml) 溶液に炭酸カリウム (346 mg) を添加し、その混合物を 70℃で15時間撹拌した。反応液を

10

15

水に注ぎ、酢酸エチルで抽出した。抽出液を水およびブラインで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製して、6,7-ジクロロ-2-ネオペンチル-1-オキソ-4-[2-(1-ピロリジニル)エトキシ]-1,2-ジヒドロ-3-イソキノリンカルボン酸tert-ブチルエステルを油状物として得た。この油状物の酢酸エチル溶液(5.0 ml)に、シュウ酸(25 mg)の2-プロパノール(3.0 ml)溶液を加え、その混合物を室温で5分間撹拌した。析出した結晶をろ取し、酢酸エチルおよび2-プロパノールで洗浄して、白色結晶の表題化合物(120 mg)を得た。

フリー体: 'H-NMR (CDCl₃) る: 0.95 (9H, s), 1.62 (9H, s), 1.82-1.95 (2H, m), 2.58-2.70 (2H, m), 2.89 (2H, t, J=5.4 Hz), 4.01 (2H, br), 4.07 (2H, t, J=5.4 Hz), 8.20 (1H, s), 8.48 (1H, s).

実施例14

6,7-ジクロロ-4-[3-(ジメチルアミノ)プロポキシ]-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル シュウ酸塩

実施例3で得た 6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル (200 mg) と 3-ジメチルアミノプロピルクロリド 塩酸塩 (95 mg) から、実施例13と同様にして、白色結晶の表題化合物 (70 mg) を得た。

フリー体: 'H-NMR (CDC1₃) δ: 0.95 (9H, s), 1.63 (9H, s), 1.92-2.02 (2H, m), 2.31 (6H, s), 2.52-2.58 (2H, m), 3.95-4.08 (4H, m), 8.15 (1H, s), 8.48 (1H, s).

実施例15

2-(1-アダマンチルメチル)-6,7-ジクロロ-4-メトキシ-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル

25 実施例 1 2 で得た 2-(1-アダマンチルメチル)-6,7-ジクロロ-4-ヒドロキシ-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル (300 mg) から、実施例 5 と同様にして、無色結晶の表題化合物 (90 mg) を得た。 !H-NMR (CDCl₃) δ:1.50-1.80 (21H, m), 1.89-2.00 (3H, m), 3.78-4.00 (5H, m), 7.84 (1H, s), 8.50 (1H, s).

実施例16

5

N-(tert-プチル)-6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボキサミド

- (1) 実施例5で得た 6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル (360 mg) とトリフルオロ酢酸 (6.0 ml) の混合物を室温で15時間攪拌した。反応液を減圧下濃縮後、残留物をジエチルエーテルより再結晶することにより、白色結晶の 6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 (40 mg) を得た。
- 10 ${}^{1}\text{H-NMR}$ (DMS0-d₆) δ : 0.89 (9H, s), 3.83 (3H, s), 4.01 (2H, br), 8.01 (1H, s), 8.37 (1H, s).
- (2) 6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸(190 mg) とDMF(20 mg)のTHF(4.0 ml)溶液に、0℃でオキサリルクロリド(43 mg)を添加し、室温で2時間攪拌した。反応液を減圧下濃縮後、残留物を塩化メチレン(3.0 ml)に溶解し、その溶液にtert-ブチルアミン(39 mg)とピリジン(126 mg)を添加した。その混合物を室温で15時間攪拌後、反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を1規定塩酸水溶液、水およびプラインで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製して、

 $^{1}\text{H-NMR}(\text{CDCl}_{3})$ $\delta: 0.93 (9\text{H, s}), 1.51 (9\text{H, s}), 3.78 (3\text{H, s}), 4.20 (2\text{H, bs}), 6.43 (1\text{H, bs}), 7.77 (1\text{H, s}), 8.40 (1\text{H, s}).$

実施例17

25

4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル

フタル酸無水物 (740 mg) と 2-(ネオペンチルアミノ)酢酸 tert-ブチルエステル (1.00 g) から、実施例 3 と同様にして、無色結晶の表題化合物 (90 mg) を得た。

¹H-NMR (CDCl₃) δ : 0.87 (9H, s), 1.65 (9H, s), 4.48 (2H, br), 7.59-7.75 (2H,

m), 8.13 (1H, d, J=8.0 Hz), 8.45 (1H, d, J=7.8 Hz).

実施例18

5

10

6,7-ジクロロ-4-[2-(ジメチルアミノ)エトキシ]-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル シュウ酸塩 実施例3で得た6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル(200 mg)と2-ジメチルアミノエチルクロリド塩酸塩(86 mg)から、実施例13と同様にして、白色結晶の表題化合物(96 mg)を合成した。

フリー体: 'H-NMR (CDC1₃) δ: 0.95 (9H, s), 1.62 (9H, s), 2.38 (6H, s), 2.70-2.74 (2H, m), 4.01 (2H, br), 4.02-4.07 (2H, m), 8.19 (1H, s), 8.48 (1H, s).

実施例19

N-{2-[ベンジル(メチル)アミノ]エチル}-6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ3-イソキノリンカルボキサミド 塩酸塩

実施例16(1)で得た6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ 15 -1,2-ジヒドロ-3-イソキノリンカルポン酸(170 mg)、1-ヒドロキシベンゾト リアゾール (76 mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド 塩酸塩(107 mg)、およびトリエチルアミン(95 mg)のDMF(5.0 ml)溶液に、 N-ペンジル-N-メチル-1,2-エタンジアミン(92 mg)を添加し、室温で15時間 反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水とブライ 20 攪拌した。 ンで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物を シリカゲルカラムクロマトグラフィーで精製して無色油状物の N-{2-[ベンジル (メチル)アミノ]エチル}-6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ -1, 2-ジヒドロ 3-イソキノリンカルボキサミドを得た。この油状物の塩化メチレ ン溶液 (3.0 ml) に、1規定エーテル性塩酸 (0.5 ml) を加え、室温で 5 分間 25 撹拌した。反応液を減圧下濃縮し、得られた残さを酢酸エチルとヘキサンを用 いて結晶化させて、淡黄色結晶の表題化合物 (23 mg)を得た。

¹H-NMR (DMSO-d₆) δ : 0.86 (9H; s), 2.78 (3H, d, J=4.4 Hz), 3.12-3.30 (2H, m), 3.52-3.83 (5H, m), 3.92 (2H, s), 4.30-4.52 (2H, m), 7.43-7.60 (5H, m),

8.01 (1H, s), 8.37 (1H, s), 9.20 (1H, brs), 10.00 (1H, brs). 実施例 2 0

N-{3-[ベンジル(メチル)アミノ]プロピル}-6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1、2-ジヒドロ3-イソキノリンカルボキサミド 塩酸塩

実施例16(1)で得た6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソー1,2-ジヒドロ-3-イソキノリンカルボン酸(170 mg)と N-ペンジル-N-メチルー1,3-プロパンジアミン(100 mg)から、実施例19と同様にして、淡黄色結晶の表題化合物(36 mg)を得た。

¹H-NMR (DMSO-d₆) δ: 0.87 (9H, s), 1.90-2.08 (2H, m), 2.69 (3H, d, J=4.6 Hz),

2.93-3.35 (4H, m), 3.69 (3H, s), 3.94 (2H, s), 4.20-4.46 (2H, m), 7.43-7.60 (5H, m), 7.99 (1H, s), 8.37 (1H, s), 9.02 (1H, bs), 10.00 (1H, brs).

実施例 2 1

6,7-ジクロロ-N-[3-(ジメチルアミノ)プロピル]-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ3-イソキノリンカルボキサミド 塩酸塩

実施例16(1)で得た6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸(220 mg)とN,N-ジメチル-1,3-プロパンジアミン(75 mg)から、実施例19と同様にして、淡黄色結晶の表題化合物(26 mg)を得た。

¹H-NMR (DMSO-d₆) δ : 0.88 (9H, s), 1.86-2.00 (2H, m), 2.78 (6H, s), 3.07-3.17 (2H, m), 3.22-3.45 (2H, m), 3.74 (3H, s), 3.96 (2H, br), 8.01 (1H, s), 8.38 (1H, s), 9.04 (1H, brs), 9.96 (1H, brs).

実施例22

20

6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-N-[3-(1-ピロリジニル) プロピル]-1,2-ジヒドロ-3-イソキノリンカルボキサミド 塩酸塩

実施例16(1)で得た6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソー1,2-ジヒドロ-3-イソキノリンカルボン酸(220 mg)と1-(3-アミノプロピル)ピロリジン(94 mg)から、実施例19と同様にして、淡黄色結晶の表題化合物(40 mg)を得た。

 $^{1}H-NMR$ (DMSO-d₆) δ : 0.89 (9H, s), 1.85-2.08 (6H, m), 2.93-3.07 (2H, m),

3.14-3.26 (2H, m), 3.30-3.42 (2H, m), 3.50-3.62 (2H, m), 3.74 (3H, s), 3.96 (2H, br), 8.01 (1H, s), 8.38 (1H, s), 9.04 (1H, brs), 10.03 (1H, brs). 実施例 2 3

4-アミノ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル

2-シアノ安息香酸(1.00g)、1-ヒドロキシベンゾトリアゾール(1.10g)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(1.60g)、およびトリエチルアミン(1.00g)のDMF(10ml)/アセトニトリル(20ml)溶液に、2-(ネオペンチルアミノ)酢酸 tert-プチルエステル(1.40g)を添加し、

2温で20時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水とプラインで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルカラムクロマトグラフィーで精製して無色油状物を得た。この油状物のTHF(20 ml)溶液に、0℃でカリウム tert-プトキシド(115 mg)を添加し、その混合物を室温で1時間撹拌した。反応液を10%クエン酸水溶液(150 ml)に注ぎ、酢酸エチルで抽出した。抽出液を水とプラインで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物をシリカゲルクロマトグラフィーで精製した後、酢酸エチルとヘキサンを用いて結晶化して、淡黄色結晶の表題化合物(50 mg)を得た。

¹H-NMR (CDCl₃) δ : 0.86 (9H, s), 1.61 (9H, s), 4.40 (2H, br), 5.07 (2H, brs), 7.59-7.90 (3H, m), 8.52 (1H, d, J=7.9 Hz).

実施例 2 4

20

25

6,7-ジクロロ-4-(1H-インドール-2-イルメトキシ)-2-ネオペンチル-1-オキソ -1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-プチルエステル

実施例 3 で得た 6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル (375 mg) とインドール-2-カルビノール (152 mg) から、実施例 4 と同様にして、淡黄色結晶の表題化合物 (75 mg) を得た。

¹H-NMR (CDCl₃) δ : 0.98 (9H, s), 1.62 (9H, s), 4.06 (2H, br), 5.22 (2H, brs), 6.57 (1H, s), 7.10-7.25 (2H, m), 7.39 (1H, d, J=8.1 Hz), 7.62 (1H, d, J=7.7

Hz), 7.85 (1H, s), 8.50 (1H, s), 8.82 (1H, brs). 実施例 2.5

N-(1-アザビシクロ[2.2.2]オクト-3-イル)-6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボキサミド 塩酸塩

実施例16(1)で得た6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソー1,2-ジヒドロ-3-イソキノリンカルポン酸(210 mg)と3-アミノキヌクリジン2塩酸塩(141 mg)から、実施例19と同様にして、淡黄色結晶の表題化合物(35 mg)を得た。

'H-NMR (DMSO-d₆) δ: 0.89 (9H, s), 1.70-2.20 (4H, m), 2.90-3.02 (2H, m), 3.12-3.30 (3H, m), 3.66-3.78 (4H, m), 3.82-4.12 (2H, m), 4.38 (2H, br), 8.04 (1H, s), 8.39 (1H, s), 9.32 (1H, d, J=6.9 Hz), 9.61 (1H, brs). 実施例 2.6

6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソ キノリンカルポン酸メチルエステル

4,5-ジクロロフタル酸無水物(27.1 g)、2-(ネオペンチルアミノ)酢酸メチルエステル(23.6 g) およびトリエチルアミン(25.3 g) のテトラヒドロフラン(120 ml) 溶液を室温で3日間撹拌した。反応液を減圧下濃縮後、1 規定塩酸水溶液に注ぎ、酢酸エチルで抽出した。抽出液をブラインで洗浄後、減圧下濃縮し、残留物を酢酸エチルとヘキサンを用いて結晶化して、橙色結晶を得た。
 20 この結晶のDMF(100 ml)溶液に、炭酸カリウム(15.8 g) とヨウ化メチル

(10.8 g) を添加し、その混合物を室温で15時間撹拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水とブラインで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残留物を酢酸エチルとヘキサンを用いて結晶化して、淡橙色結晶を得た。この結晶のTHF(200 ml)溶液に、28%ナトリウムメトキシド/メタノール溶液(10.0 g)を0℃で添加し、その混合物を室温で30分間撹拌した。 反応液を1規定塩酸水溶液に注ぎ、酢酸エチルで抽出した。 抽出液を水とブラインで順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。 残留物を酢酸エチルとヘキサンを用いて結晶化して、白色結晶の表題化合物(5.47 g)を得た。

 1 H-NMR (CDC1₃) δ : 0.83 (9H, s), 4.02 (3H, s), 4.70 (2H, br), 8.23 (1H, s), 8.53 (1H, s), 10.65 (1H, s).

実施例27

5

6,7-ジクロロ-4-(1H-インドール-3-イルメトキシ)-2-ネオペンチル-1-オキソ -1.2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル

実施例3で得た6,7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル(350 mg) とインドール-3-カルビノール(154 mg)から、実施例4と同様にして、黄色結晶の表題化合物(60 mg)を得た。

実施例28

15 6,7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1,2-ジヒドロ-3-イソキ ノリンカルボン酸メチルエステル

実施例 2 6 で得た 6, 7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸メチルエステル(2.00 g)とヨウ化メチル(1.59 g)から、実施例 5 と同様にして、無色結晶の表題化合物(250 mg)を得た。

 1 H-NMR (CDC1₃) δ : 0.92 (9H, s), 3.87 (3H, s), 3.98 (3H, s), 4.06 (2H, br), 7.86 (1H, s), 8.52 (1H, s).

製剤例1

20

本発明における式(I)で表される化合物またはその塩を有効成分として含 25 有するRFRP受容体機能調節剤は、例えば次のような処方によって製造する ことができる。

- 1. カプセル剤
- (1) 実施例1で得られた化合物 40mg
- (2) ラクトース 70mg

(3) 微結晶セルロース 9 m g

(4) ステアリン酸マグネシウム 1 mg

1カプセル 120mg

(1)、(2)と(3)および(4)の1/2を混和した後、顆粒化する。これに残りの(4)を加えて全体をゼラチンカプセルに封入する。

2. 錠剤

(1) 実施例1で得られた化合物 40mg

(2) ラクトース 58mg

(3) コーンスターチ 18mg

10 (4) 微結晶セルロース 3.5 mg

(5)ステアリン酸マグネシウム 0.5mg

1錠 120mg

(1)、(2)、(3)、(4)の2/3および(5)の1/2を混和した後、 顆粒化する。残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型す る。

製剤例2

15

20

日局注射用蒸留水50m1に実施例1で得られた化合物50mgを溶解した後、日局注射用蒸留水を加えて100m1とする。この溶液を滅菌条件下でろ過し、次にこの溶液1m1ずつを取り、滅菌条件下、注射用バイアルに充填し、凍結乾燥して密閉する。

試験例1 ヒト型OT7T022発現CHO細胞を用いた試験化合物の結合阻 害活性評価

(1) ヒト型RFRP-3のヨード標識体(Y-RFRP-3)の作成 ヒト型OT7T022発現CHO細胞に対して内因性ヒト型RFRP-3(hRFRP-3-28)と同等の結合阻害活性を有するhRFRP-3-8(配列: Val-Pro-Asn-Leu-Pro-Gln-Arg-Pheamide)のN末端にTyr残基を付加したペプチド(Y-RFRP-3) (配列: Tyr-Val-Pro-Asn-Leu-Pro-Gln-Arg -Phe-amide) (0.1mM) 20μ1と蒸留水10μ1を混合、そ

10

こにラクトペルオキシダーゼ液(シグマ、 $10\mu g/mL$ に0.1M HEP ES-NaOH、pH7.0を用いて調製) $20\mu 1$ 、Idoine-125(アマシャム、IMS-30、74MBq) $10\mu 1$ 、0.005% 過酸化水素(和光純薬) $20\mu 1$ を順次混合、室温で10分静置した後、0.1% TFA-水 $600\mu 1$ を添加して逆相HPLCにて分離、ラベル化されたもののピークを分取して、等量の結合実験用バッファー(50mM TrisHC 1(pH7.5), 0.1% BSA, 5mM EDTA, 0.5mM PM SF, $20\mu g/mL$ leupeptin, $0.1\mu g/mL$ pepstatin A, $4\mu/mL$ E-64)を添加し、直ちに氷上に保管した。一部を1/100希釈して γ -カウンターで放射活性を測定し、残りの標品は分注して-30℃にて保存した。

(2)結合阻害活性評価

96ウェルマイクロプレートに反応パッファー(50mM Tris-HC 1,5mM EDTA,0.1% BSA,0.5mM PMSF,20μg /ml leupeptin,0.1μg/ml pepstatin A,4μg/ml E-64,10mM MgCl₂, pH7.5)で希釈した1μg膜画分、化合物および¹²⁵ Iにてラベル化したY-RFRP-3を100p Mになるように添加し、室温で1.5時間反応させた。非特異的な結合の測定には、さらに非標識のY-RFRP-3を100p Mになるように添加した。 次に、セルハーベスター(パーキンエルマー)を使用して反応液を濾過することで膜画分をユニフィルターGF/C(パーキンエルマー)に移し、冷却した50mM Trisバッファー(pH7.5)で5回洗浄した。フィルターを乾燥後、マイクロシンチ0(パッカード)をフィルターに加え、トップカウント(パッカード)で放射活性を計測した。

25ヒト型OT7T022に対する試験化合物の結合阻害活性(IC50値)を〔表1〕に示す。

〔表1〕

試験化合物 I C₅₀値 参考例12 <1μM 実施例 $1 < 1 \mu M$

実施例 3 < 1 μ M

実施例10 <1μΜ

これより、本発明の化合物 (I) は優れたRFRP受容体拮抗作用を有する ことがわかる。

試験例2 ヒト型〇T7T022発現CH〇細胞を用いたcAMP産生抑制試験系での化合物のアンタゴニスト活性試験

試料化合物のアンタゴニスト活性を、ヒト型OT7T022を発現させたC HO細胞の細胞内 c AMP産生抑制試験系で測定した。 c AMP産生抑制試験 では、アッセイバッファーとしてHanks' balanced salt 10 solution (ギブコ) に20mM HEPES pH7.4、0.1% ウシ血清アルプミン、0.2mM 3-isobuty1-1-methy1 xanthine(シグマ)添加したものを用いた。試料化合物は、アッセイ バッファーで、終濃度10⁻⁵M、10⁻⁶M、10⁻⁷M、10⁻⁸M、10⁻¹⁰M となる様調製した。アゴニスト:ヒト型RFRP-3-8(Val-Pro-15 Asn-Leu-Pro-Gln-Arg-Phe-amide) は、40n M (終濃度20nM) に、フォルスコリンを4 μ M (終濃度2 μ M) 添加した アッセイバッファーで希釈した。ヒト型OT7T022発現CHO細胞を96 穴プレートに4X104個/wellで継代し、37℃、5%CO₂、95%a 20 irで一日培養した。一日培養したプレートは、アッセイバッファー(150 μ1) で2回洗浄後30分、37℃、100%airで30分培養した。アッ セイバッファー(150μ1)で2回洗浄後、試料化合物溶液50μ1、次い でアゴニスト+フォルスコリン溶液50μ1を添加して、よく攪拌した後30 分、37℃、100%airで30分培養した。細胞内cAMP量は、cAM P-Screen™ System (ABI) を用い、本キットのプロトコル 25 に従い測定した。

試験化合物のアンタゴニスト活性を〔表2〕に示す。

.〔表 2〕

実施例 $1 < 5 \mu M$

WO 2004/083184 PCT/JP2004/003496

実施例 3 < 5 μ M

5

10

15

20

これより、本発明の化合物(I)は優れたRFRP受容体拮抗作用を有することがわかる。

試験例3 ラット型OT7T022発現CHO細胞を用いた試験化合物の結合 阻害活性評価

(1) ラット型OT7T022発現CHO細胞膜画分の調製

ラット型OT7T022発現CHO細胞を培養したフラスコを5mM EDTA/PBSで洗浄、5mM EDTA/PBSで細胞を剥がし、遠心して細胞を回収、25mLの 膜画分調製用バッファー(50mM Tris-HC1, pH7.5、5mM EDTA、0.5mM PMSF(和光純薬社製)、 20μ g/mL leupeptin(ペプチド研究所製)、 0.1μ g/mL pepstatinA(ペプチド研究所製)、 4μ g/mL E-64(ペプチド研究所製))に懸濁、ポリトロンを用い氷上でホモジナイズした(12,000rpm、 $15秒\times3$ 回)。これを、高速冷却遠心機にて4 で、1,000g、10分遠心し、上清を回収した。沈殿に25mLの膜画分調製用バッファーを加え、同様の操作で上清を回収した。これら上清をまとめ、セルストレーナーにかけた後、超遠心機用チューブに分注し、4 で、100,000g、1 時間遠心した。ペレットを少量の膜画分調製用バッファーに懸濁し、テフロン(登録商標)ホモジナイザーを用いて懸濁した後、一部を用いて蛋白量を測定し、残りを分注して-80 でにて保存した。

(2) ラット型OT7T022発現CHO細胞膜画分に対する試料化合物の結合阻害実験

アッセイ用バッファー (50mM Tris-HC1, pH7. 5、5mM EDTA、0.5mM PMSF、 20μg/mL leupeptin、 25 0.1μg/mL pepstatinA、4μg/mL E-64、0.1% ウシ血清アルプミン、10mM MgC1₂)を用いて、ラット型OT7T 022発現CHO細胞の膜画分は終濃度0.75μg/well、Y-RFR P-3ヨード標識体は終濃度100pMとなるよう希釈した。試料化合物は、10-2M又は10-3Mのストック溶液を、終濃度が10-5M、10-6M、10

 $^{-7}$ M、 10^{-8} M、 10^{-10} M、 10^{-11} Mとなるようアッセイ用バッファーで希釈した。非特異的結合用として終濃度 10^{-5} Mの 10^{-5} Mの 10^{-5} R の 10^{-5} Mの 10^{-5} R の 10^{-5} R の 10^{-5} R の 10^{-5} R で 10^{-5} R の 10^{-5} R で 10^{-5}

〔表3〕

15 試験化合物 I C 50 值

実施例 $1 < 1 \mu M$

実施例 3 < 1 u M

これより、本発明の化合物(I)はラット型RFRP受容体に対しても優れた結合作用を有することがわかる。

20 試験例4 RFRPの血糖上昇作用

RFRPとして、配列番号: 3で表わされるアミノ酸配列の第56番目 (Ser) ~第92番目 (Phe) のアミノ酸配列からなるヒトRFRP-1 (37アミノ酸) を用いた。以下、このペプチドをRFRP-1と略記する。

RFRP-1の末梢投与による血糖値に及ぼす影響を検討するため、自由行 動下採血用の手術を行った。成熟Wistar系雄性ラット(手術時体重310~350g)をペントバルビタール50mg/kgの腹腔内投与にて麻酔した。解剖用パッドの上に背位に固定し、左側の頚静脈を露出させた。ポリエチレンチュープSP35(内径0.5mm、外径0.9mm、夏目製作所)を約30cmの長さに切り、200単位/m1のヘパリン含有生理食塩水で満たし

10

15

20

25

た後、頚静脈に約4.5cm挿入し固定した。チューブのもう一端は背側の皮下を通して頚部(背側)より露出させた。

術後一晩待ってから、RFRP-1投与前に用量1m1のツベルクリン用注射筒と25ゲージ注射針(いずれもテルモ社)を用いて300 μ 1の血液を採取した。血液凝固を防止するため、注射筒には予め3mg/m1 EDTAを含む300KIU/m1 aprotinin溶液を3 μ 1入れておいた。大塚生理食塩水またはRFRP-1((株)ペプチド研究所) (17,80,170nmol))の1mL生理食塩水溶解液をチューブより1mL/Kgで静脈投与した。静脈投与の開始時点から0、5、15、30、60分後に頚静脈より300 μ 1ずつ採血した。採血した血液は微量高速冷却遠心機(MR-150、トミー精工)を用いて遠心(13,000 rpm、5分間)し、上清(血漿)を回収した。血中グルコース濃度は、フジドライケム3500(FUJIFILM社)を用いて測定した。図1に示すごとくRFRP-1 10nmol/kg投与群は生理食塩水投与群に比し、静脈投与5分および15分後に有意な(p<0.05,n=4)血中グルコース濃度の上昇作用を示した。試験例5 RFRPの膵グルカゴン分泌促進作用

RFRP-1の血中グルコース濃度上昇作用についてそのメカニズムを検討するため、血中グルコース濃度に変動を与えるホルモンとして知られている血中グルカゴンおよびインスリン濃度に対するRFRP-1の影響について検討した。成熟Wistar系雄性ラット(手術時体重310~350g)に対し自由行動下採血用の手術を行った。術後一晩待ってから、RFRP-1投与前に用量1m1のツベルクリン用注射筒と25ゲージ注射針(いずれもテルモ社)を用いて300 μ 1の血液を採取した。血液凝固を防止するため、注射筒には予め3mg/m1 EDTAを含む300KIU/m1 aprotinin溶液を3 μ 1入れておいた。大塚生理食塩水またはRFRP-1の生理食塩水溶解液(80nmol/mL)をチューブより1mL/Kgで静脈投与した。静脈投与の開始時点から1、3、5、15分後に頚静脈より300 μ 1ずつ採血した。採血した血液は微量高速冷却遠心機(MR-150、トミー精工)を用いて遠心(13,000rpm、5分間)し、上清(血漿)を回収した。血

10

中グルカゴン濃度はグルカゴンキット「第一」(第一ラジオアイソトープ研究所)、血中インスリン濃度はラットインスリン [125 I]、アッセイシステム(Amersham Biosciences)を用いて測定した。図2に示すごとくRFRP-1投与群は生理食塩水投与群に比し、投与2分後で有意(p <0.01)な血中グルカゴン濃度の上昇が認められ、投与5分後においても有意(P<0.01)な上昇は持続した。一方、血中インスリン濃度はRFRP-1投与による変動は認められなかった(図3)。これらの結果およびRFRP-1投与群では、血中グルカゴン濃度の上昇の後に血中グルコース濃度の上昇が見られることから、RFRP-1静脈投与による血中グルコース濃度の上昇作用は、RFRP-1によるグルカゴン分泌刺激によって引き起こされるものと考えられた。

試験例6 RFRPの記憶消去促進作用

RFRP神経が扁桃体に投射していることから、RFRPの扁桃体依存性 の記憶・学習能力への関与を検討するため、RFRP-1の脳室内投与によ る音手がかり試験(cued fear conditioning)での 15 影響を検討した。成熟Wistar系雄性ラット(手術時体重280~32 0g)をペントバルビタール50mg/kgの腹腔内投与にて麻酔し、ラッ ト脳定位固定装置に固定した。切歯用バーはインターオーラルラインから3. 3 mm低くした。頭蓋骨を露出し、脳室内にガイドカニューレAG-12(内 径0.4mm、外径0.5mm、エイコム)を埋め込むために歯科用ドリル 20 を用いて骨に穴を開けた。また、その周囲4箇所にアンカービスを埋めた。 ステンレス製ガイドカニューレ、AG-12を、その先端が側脳室の上部に 位置するように挿入した。定位座標は、PaxinosとWatson(1 986) のアトラスに従い、プレグマより、AP:-0.8mm、L:1. 5 mm、H: 4. 5 mmとした。ガイドカニューレは瞬間接着剤と歯科用セ 25 メントおよびアンカービスで頭蓋骨に固定した。ガイドカニューレにはステ ンレス製ダミーカニューレ、AD-12(外径0.35mm、エイコム社) を挿入し、キャプナイト(エイコム社)で固定した。術後、ラットは個別の ケージで飼育した。回復期間を術後1週間とし、その間十分ハンドリングを

行った。

音手がかり試験は、まずトレーニングセッションとしてラットをショックチャ ンパーに入れ2分間馴化した後、30秒間の音刺激を与えた直後に電気刺激2. 5mAを2秒間与え28秒間の休息を与えるサイクルを5回繰り返した(計5 分間)。試験後、2分間チャンバー内に放置した後、元のケージに戻した。次に 5 テストセッションとして上記トレーニングの24時間後(1日目)および48 時間後(2日目)に、ラットをトレーニング時と同じチャンバーに入れて30 秒間の音刺激を5回トレーニング時と同じタイミングで与え、チャンバーに入 れてから5分間の行動を観察した。行動解析は、解析ソフトFreezeFr ame (Actimetric社)を用いて行った。音刺激により変化率15 10 以下の行動が観察された場合をフリージングと定義した。 RFRP-1 (3 n mo1) および生理食塩水(大塚製薬)をトレーニング前後およびテスト前に 脳室内へ投与した。実験匹数は、各群とも12匹づつで行った。本試験の条件 として、実験室に試験動物を連れてくる際の道順を毎回変更し、実験動物は実 験を行う部屋と別の部屋に待機させた。図4に示すごとくRFRP-1投与群 15 は生理食塩水投与群に比し、フリージングの割合が2日目において顕著に低下 した(生理食塩水投与群;46.5%、RFRP投与群;35.5%)。これら の結果から、RFRP-1は記憶消去促進作用を示すことが分かった。

20 産業上の利用可能性

25

本発明の化合物(I)もしくはその塩またはそのプロドラッグは、優れた RFRP受容体機能調節作用を有し、優れた経口吸収性を示すことから、安 全かつ有効な医薬として、鎮痛剤、モルヒネ等の鎮痛作用促進剤、モルヒネ 等による耐性回避剤、プロラクチン分泌調節剤、膵グルカゴン分泌抑制剤、 血糖低下剤、尿生成抑制剤、膀胱収縮抑制剤などとして用いられる。

10

15

20

請求の範囲

〔式中、環Aは置換されていてもよい芳香環を、Xは結合手、O、NR4(R4 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または置換されていてもよいアルキレン基を、R1は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R2は式一CO YR5 (Yは結合手、置換されていてもよいアルキレン基、O、SまたはNR6 (R6は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R5は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R3は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R3は置換されていてもよい炭化水素をまたは置換されていてもよい炭化水素基または置換されていてもよい炭化水素素、置換されていてもよい炭化水素素をは置換されていてもよい炭化水素素をは置換されていてもよい炭化水素素をは置換されていてもよい炭化水素素をは置換されていてもよい炭化水素素をは置換されていてもよい炭化水素素をは置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有することを特徴とするRFRP受容体機能調節剤。

2. R³が置換されていてもよいヒドロキシ基である請求項1記載の剤。

3. 式

$$\begin{array}{c|c}
 & R^1 \\
 & X \\
 & R^2
\end{array}$$
(11)

[式中、環Bは置換されていてもよいベンゼン環を、他の記号は請求項1記載

と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグ を含有する請求項1記載の剤。

4. 式

5 〔式中、環Bは置換されていてもよいベンゼン環を、Zは結合手、置換されていてもよいアルキレン基、O、SまたはNR¹⁰ (R¹⁰は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁸およびR⁹はそれぞれ置換されていてもよい分岐状の炭化水素基を、他の記号は請求項1記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する請求項1記載の剤。

5. 式

15

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

〔式中、環Bは置換されていてもよいペンゼン環を、R¹¹は置換されていてもよいヒドロキシ基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する請求項1記載の剤。

- 6. 鎮痛剤、他の鎮痛薬の鎮痛作用促進剤または他の鎮痛薬による耐性回避剤である請求項1記載の剤。
- 7. プロラクチン分泌調節剤である請求項1記載の剤。
- 8. 高プロラクチン血症、下垂体腺腫瘍、間脳腫瘍、月経異常、ストレス、自 20 己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、 末端肥大症、キアリ・フロンメル (Chiari-Frommel) 症候群、アルゴンツ-デル

- ・カスティロ(Argonz-del Castilo)症候群、フォーベス・アルプライト(Forbes-Albright)症候群、乳癌リンパ腫、シーハン症候群または精子形成異常の予防・治療剤である請求項1記載の剤。
- 9. 膵グルカゴン分泌抑制剤、血糖低下剤または尿生成抑制剤である請求項1 記載の剤。
 - 10.糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、頻尿、夜尿症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良または記憶学習障害の予防・治療剤である請求項1記載の剤。
- 10 11. 膀胱収縮抑制剤である請求項1記載の剤。
 - 12. 尿失禁、下部尿路疾患、過活動膀胱による切迫尿意、または過活動膀胱を伴った低緊張性膀胱の予防・治療剤である請求項1記載の剤。

13. 式

$$\begin{array}{c|c}
O & R^{12} \\
X & X \\
X & Z \\
R^{13}
\end{array}$$
(III')

15 〔式中、環Bは置換されていてもよいペンゼン環を、Xは結合手、O、NR⁴(R⁴は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または置換されていてもよいアルキレン基を、Zは結合手、置換されていてもよいアルキレン基、O、SまたはNR¹0(R¹0は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R¹²およびR¹³はそれぞれ置換されていてもよいC₃以上の炭化水素基を、R³は置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいヒドロキシ基、置換されていてもよいアミノ基または式ーS(O) nR¹(R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合物またはその塩(ただし、6-フルオロ-4-ヒドロキシ-2-ネオペンチルー1-オキソ-1、2-ジヒドロ-3-イソキノリンカルボン酸tert-ブチルエステル、4-

ブトキシ-6-フルオロ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステル、7-ペンジルオキシ-4-ヒドロキシ-2-イソブチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステルおよび6-ペンジルオキシ-4-ヒドロキシ-2-イソブチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸 tert-ブチルエステルを除く)。

- 14. Xがメチレン基である請求項13記載の化合物。
- 15. Zが酸素原子である請求項13記載の化合物。
- 16. R¹²がtert-ブチル基である請求項13記載の化合物。
- 17. R¹³がtert-ブチル基である請求項13記載の化合物。
- 10 18. R^3 が置換されていてもよいヒドロキシ基である請求項13記載の化合物

19. 式

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

〔式中、環Bは置換されていてもよいペンゼン環を、R¹¹は置換されていても 15 よいヒドロキシ基を示す。〕で表される請求項13記載の化合物。

20. (i) 7-プロモ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロイソキノリン-3-カルボン酸エチルエステル、 (ii) 8-ヒドロキシ-6-ネオペンチル-5-オキソ-5, 6-ジヒドロ[1, 3] ジオキソロ[4, 5-g] イソキノリン-7-カルボン酸エチルエステル、 (iii) N-{2-[ベンジル(メチル)アミノ] エチル}-6, 7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ 3-イソキノリンカルボキサミド、 (iv) 6, 7-ジクロロ-4-ヒドロキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸メチルエステルもしくは(v)6, 7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸メチルエステルもしくは(v)6, 7-ジクロロ-4-メトキシ-2-ネオペンチル-1-オキソ-1, 2-ジヒドロ-3-イソキノリンカルボン酸メチルエステル、またはその塩。

25 21. 請求項13または請求項20記載の化合物のプロドラッグ。

15

- 22. 請求項13または請求項20記載の化合物またはそのプロドラッグを含有してなる医薬。
- 23. RFRP関連病態またはRFRPが関与する疾患の予防・治療剤である。 請求項22記載の医薬。
- 5 24. 哺乳動物に対して、式

〔式中、環Aは置換されていてもよい芳香環を、Xは結合手、〇、NR⁴(R⁴は水素原子、置換されていてもよい炭化水素基または置換されていてもよいアルキレン基を、R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R²は式ーCOYR⁵(Yは結合手、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁵は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R³は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R³は置換されていてもよい炭化水素基、置換されていてもよい複素環基を、R³は置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とするRFRP受容体の機能調節方法。

25. RFRP受容体機能調節剤を製造するための式

10

15

「式中、環Aは置換されていてもよい芳香環を、Xは結合手、O、NR⁴(R⁴は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または置換されていてもよいアルキレン基を、R¹は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、R²は式ーCOYR⁵(Yは結合手、置換されていてもよいアルキレン基、O、SまたはNR⁶(R⁶は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R⁵は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい皮化水素基または置換されていてもよい炭化水素基または置換されていてもよい皮化水素基または置換されていてもよい複素環基を、nは0~2の整数を示す)で表される基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグの使用。

図 1

図 2

図 3

図 4

1/6

SEQUENCE LISTING

<110)> Ta	ikeda	ch e	emica	ıl Ir	idus t	ries	, Lt	d.						
<120	> RF	RP F	lecep	otor	Anta	igon i	st								
<130	> 31	63WC)0P												
<150)> JE	200	3-72	2709											
<151	> 20	003-0	3-17	7											
<160	> 3														
<210	> 1														
<211	> 43	30													
<212	2> PF	RT													
<213	3> H1	ıman													
<220)>														
<400)> 1														
Met	Glu	Gly	Glu	Pro	Ser	Gln	Pro	Pro	Asn	Ser	Ser	Trp	Pro	Leu	Ser
1				5					10					15	
Gln	Asn	Gly	Thr	Asn	Thr	Glu	Ala	Thr	Pro	Ala	Thr	Asn	Leu	Thr	Phe
			20					25					30		
Ser	Ser	Tyr	Tyr	Gln	His	Thr	Ser	Pro	Val	Ala	Ala	Met	Phe	Ile	Val
		35					40					45			
Ala	Tyr	Ala	Leu	Ile	Phe	Leu	Leu	Cys	Met	Val	Gly	Asn	Thr	Leu	Val
	50					55					60				
Cys	Phe	Ile	Val	Leu	Lys	Asn	Arg	His	Met	His	Thr	Val	Thr	Asn	Met
;					70					75					80
Phe	Ile	Leu	Asn	Leu	Ala	Val	Ser	Asp	Leu	Leu	Val	Gly	Ile	Phe	Cys
				85					90					95	
Met	Pro	Thr	Thr	Leu	Val	Asp	Asn	Leu	Ile	Thr	Gly	Trp	Pro	Phe	Asp
			100					105					110		
Asn	Ala	Thr	Cys	Lys	Met	Ser	Gly	Leu	Val	Gln	Gly	Met	Ser	Val	Ser

		115					120					125			
Ala	Ser	Val	Phe	Thr	Leu	Val	Ala	Ile	Ala	Val	Glu	Arg	Phe	Arg	Cys
	130					135					140				
Ile	Val	His	Pro	Phe	Arg	Glu	Lys	Leu	Thr	Leu	Arg	Lys	Ala	Leu	Val
145					150					155					160
Thr	Ile	Ala	Val	Ile	Trp	Ala	Leu	Ala	Leu	Leu	Ile	Met	Cys	Pro	Ser
				165					170	:				175	
Ala	Val	Thr	Leu	Thr	Val	Thr	Arg	Glu	Glu	His	His	Phe	Met	Val	Asp
	•		180					185					190		
Ala	Arg	Asn	Arg	Ser	Tyr	Pro	Leu	Tyr	Ser	Cys	Trp	Glu	Ala	Trp	Pro
		195					200					205			
Glu	Lys	Gly	Met	Arg	Arg	Val	Tyr	Thr	Thr	Val	Leu	Phe	Ser	His	Ile
	210					215					220				
Tyr	Leu	Ala	Pro	Leu	Ala	Leu	Ile	Val	Val	Met	Tyr	Ala	Arg	Ile	Ala
225					230					235					240
Arg	Lys	Leu	Cys	Gln	Ala	Pro	Gly	Pro	Ala	Pro	Gly	Gly	Glu	Glu	Ala
				245					250					255	
Ala	Asp	Pro	Arg	Ala	Ser	Arg	Arg	Arg	Ala	Arg	Val	Val	His	Met	Leu
			260					265					270		
Val	Met	Val	Ala	Leu	Phe	Phe	Thr	Leu	Ser	Trp	Leu	Pro	Leu	Trp	Ala
		275					280					285			
Leu	Leu	Leu	Leu	Ile	Asp	Tyr	Gly	Gln	Leu	Ser	Ala	Pro	Gln	Leu	His
	290					295			, ,		300				
Leu	Val	Thr	Val	Tyr	Ala	Phe	Pro	Phe	Ala	His	Trp	Leu	Ala	Phe	Phe
305					310					315					320
Asn	Ser	Ser	Ala	Asn	Pro	Ile	Ile	Tyr	Gly	Tyr	Phe	Asn	Glu	Asn	Phe
	•			325					330					335	
Arg	Arg	Gly	Phe	Gln	Ala	Ala	Phe	Arg	Ala	Arg	Leu	Cys	Pro	Arg	Pro

			340					345					350		
Ser	Gly	Ser	His	Lys	Glu	Ala	Tyr	Ser	Glu	Arg	Pro	Gly	Gly	Leu	Leu
		355					360					365			
His	Arg	Arg	Val	Phe	Val	Val	Val	Arg	Pro	Ser	Asp	Ser	Gly	Leu	Pro
	370					375					380				
Ser	Glu	Ser	Gly	Pro	Ser	Ser	Gly	Ala	Pro	Arg	Pro	Gly	Arg	Leu	Pro
385					390					395					400
Leu	Arg	Asn	Gly	Arg	Val	Ala	His	His	Gly	Leu	Pro	Arg	Glu	Gly	Pro
				405					410					415	
Gly	Cys	Ser	His	Leu	Pro	Leu	Thr	Ile	Pro	Ala	Trp	Asp	Ile		
			420					425					430		
<210	0> 2														
<21	1> 48	32													
<212	2> PI	RT													
<213	3> Ra	ı t													
<400)> 2														
Met	Glu	Ala	Glu	Pro	Ser	Gln	Pro	Pro	Asn	Gly	Ser	Trp	Pro	Leu	Gly
				5					10					15	
Gln	Asn	Gly	Ser	Asp	Val	Glu	Thr	Ser	Met	Ala	Thr	Ser	Leu	Thr	Phe
			20					25					30		
Ser	Ser	Tyr	Tyr	Gln	His	Ser	Ser	Pro	Val	Ala	Ala	Met	Phe	Ile	Ala
		35					40					45			
''a	Tyr	Val	Leu	Ile	Phe	Leu	Leu	Cys	Met	Val	Gly	Asn	Thr	Leu	Val
	50					55					60				
Cys	Phe	Ile	Val	Leu	Lys	Asn	Arg	His	Met	Arg	Thr	Val	Thr	Asn	Met
65					70					75					80
Phe	I·l e	Leu	Asn	Leu	Ala	Val	Ser	Asp	Leu	Leu	Val	Gly	Ile	Phe	Cys
				85					90					95	

Met	Pro	Thr	Thr	Leu	Val	Asp	Asn	Leu	Ile	Thr	Gly	Trp	Pro	Phe	Asp
	٠		100					105					110		
Asn	Ala	Thr	Cys	Lys	Met	Ser	Gly	Leu	Val	Gln	Gly	Met	Ser	Val	Ser
		115					120					125			
Ala	Ser	Val	Phe	Thr	Leu	Val	Ala	Ile	Ala	Val	Glu	Arg	Phe	Arg	Cys
	130					1.35					140				
Ile	Val	His	Pro	Phe	Arg	Glu	Lys	Leu	Thr	Leu	Arg	Lys	Ala	Leu	Phe
145					150					155					160
Thr	Ile	Ala	Val	Ile	Trp	Ala	Leu	Ala	Leu	Leu	Ile	Met	Cys	Pro	Ser
				165					170					175	
Ala	Val	Thr	Leu	Thr	Val	Thr	Arg	Glu	Glu	Нis	His	Phe	Met	Leu	Asp
			180					185					190		
Ala	Arg	Asn	Arg	Ser	Tyr	Pro	Leu	Tyr	Ser	Cys	Trp	Glu	Ala	Trp	Pro
		195					200					205			
Glu	Lys	Gly	Met	Arg	Lys	Val	Tyr	Thr	Ala	Val	Leu	Phe	Ala	His	Ile
	210					215					220				
Tyr	Leu	Val	Pro	Leu	Ala	Leu	Ile	Val	Val	Met	Tyr	Val	Arg	Ile	Ala
225					230					235					240
Arg	Lys	Leu	Cys	Gln	Ala	Pro	Gly	Pro	Ala	Arg	Asp	Thr	Glu	Glu	Ala
				245					250					255	
Val	Ala	Glu	Gly	Gly	Arg	Thr	Ser	Arg	Arg	Arg	Ala	Arg	. Val	Val	His
			260	1				265					270	ı	
M∩t	Leu	Val	Met	Val	Ala	Leu	Phe	Phe	Thr	Leu	Ser	Trp	Leu	Pro	Leu
		275					280					285	;		
Trp	Val	Leu	Leu	Leu	Leu	Ile	Asp	Tyr	G _. 1 y	Glu	Leu	Ser	Glu	Leu	Gln
	290)				295					300)			
Leu	His	Leu	Let	Ser	Val	Tyr	Ala	Phe	Pro	Leu	ı Ala	His	Trp	Leu	Ala
305					310					315	i				320

Phe	Phe	His	Ser	Ser	Ala	Asn	Pro	Ile	He	Tyr	Gly	Tyr	Phe	Asn	Glu
				325					330					335	
Asn	Phe	Arg	Arg	Gly	Phe	Gln	Ala	Ala	Phe	Arg	Ala	Gln	Leu	Cys	Trp
			340					345					350		
Pro	Pro	Trp	Ala	Ala	His	Lys	Gln	Ala	Tyr	Ser	Glu	Arg	Pro	Asn	Arg
		355					360					365			
Leu	Leu	Arg	Arg	Arg	Val	Val	Val	Asp	Val	Gln	Pro	Ser	Asp	Ser	Gly
	370					375					380				
Leu	Pro	Ser	Glu	Ser	Gly	Pro	Ser	Ser	Gly	Val	Pro	Gly	Pro	Gly	Arg
385					390					395					400
Leu	Pro	Leu	Arg	Asn	Gly	Arg	Val	Ala	His	Gln	Asp	Gly	Pro	Gly	Glu
				405					410					415	
Gly	Pro	Gly	Cys	Asn	His	Met	Pro	Leu	Thr	Ile	Pro	Ala	Trp	Asn	Ile
			420		•			425					430		
<210)> 3														
<21 1	1> 18	30													
<212	2> PI	RT													
<213	3> Hı	ıman													
<400)> 3														
Met	Glu	Ile	Ile	Ser	Ser	Lys	Leu	Phe	Ile	Leu	Leu	Thr	Leu-	Ala	Thr
1				5		-			10					15	
Ser	Ser	Leu	Leu	Thr	Ser	Asn	Ile	Phe	Cys	Ala	Asp	Glu	Leu	Val	Met
			20					25					30		
Ser	Asn	Leu	His	Ser	Lys	Glu	Asn	Tyr	Asp	Lys	Tyr	Ser	Glu	Pro	Arg
		35				-	40					45			
Gly	Tyr	Pro	Lys	Gly	Glu	Arg	Ser	Leu	Asn	Phe	Glu	Glu	Leu	Lys	Asp
	50					55					60				
Trp	Gly	Pro	Lys	Asn	Val	Ile	Lys	Met	Ser	Thr	Pro	Ala	Val	Asn	Lvs

WO 2004/083184 PCT/JP2004/003496

6/6

65					70					75					80
Met	Pro	His	Ser	Phe	Ala	Asn	Leu	Pro	Leu	Arg	Phe	.Gly	Arg	Asn	Val
				85				٠	90					95	
Gln	Glu	Glu	Arg	Ser	Ala	Gly	Ala	Thr	Ala	Asn	Leu	Pro	Leu	Arg	Ser
			100					105					110		•
Gly	Arg	Asn	Met	Glu	Val	Ser	Leu	Val	Arg	Arg	Val	Pro	Asn	Leu	Pro
		115					120			:		125			
Gln	Arg	Phe	Gly	Arg	Thr	Thr	Thr	Ala	Lys	Ser	Val	Cys	Arg	Met	Leu
	130					135					140				
Ser	Asp	Leu	Cys	Gln	Gly	Ser	Met	His	Ser	Pro	Cys	Ala	Asn	Asp	Leu
145					150					155					160
Phe	Tyr	Ser	Met	Thr	Cys	Gln	His	Gln	Glu	Ile	Gln	Asn	Pro	Asp	Gln
				165					170					175	
Lys	Gln	Ser	Arg												
			180												

International application No.
PCT/JP2004/003496

A. CLASSIFIC Int.C1 ⁷	ATION OF SUBJECT MATTER C07D217/26, 403/06, 403/12, 4 A61P43/00, 29/00, 35/00, 15/0 3/10, 3/02, 3/06, 17/00, 19/0	0, 15/08, 15/10, 15/14,	37/00, 5/48,
According to Inte	ernational Patent Classification (IPC) or to both national		./00, 13/10
B. FIELDS SE.			•
	entation searched (classification system followed by cla		'4741
int.Cl	C07D217/26, 403/06, 403/12, 4 A61P43/00, 29/00, 35/00, 15/0		
·	3/10, 3/02, 3/06, 17/00, 19/0		
Documentation s	earched other than minimum documentation to the exter	nt that such documents are included in the	fields searched
			•
Electronic data b CAPLUS EMBASE	ase consulted during the international search (name of d (STN), CAOLD (STN), REGISTRY (STN (STN)	lata base and, where practicable, search ter), MEDLINE (STN), BIOSIS	ms used) (STN),
C. DOCUMEN	TS CONSIDERED TO BE RELEVANT	,	
Category*	Citation of document, with indication, where ap	-	Relevant to claim No.
х	JP 8-301849 A (Takeda Chemical 19 November, 1996 (19.11.96), Full text; particularly, Clais [0113] to [0115] (Family: none)		1-3,6,9-14, 16,18,21-23, 25
х	JP 8-337583 A (Takeda Chemic 24 December, 1996 (24.12.96), Full text; particularly, Clai [0190] to [0192] (Family: none)	1,3,4,6, 9-14,16,17, 21-23,25	
			·
	cuments are listed in the continuation of Box C.	See patent family annex.	
"A" document d	gories of cited documents: efining the general state of the art which is not considered	"T" later document published after the inte date and not in conflict with the applica	tion but cited to understand
•	icular relevance cation or patent but published on or after the international	the principle or theory underlying the ir "X" document of particular relevance; the c	
filing date	rhich may throw doubts on priority claim(s) or which is	considered novel or cannot be considered step when the document is taken alone	
cited to esta	bilsh the publication date of another citation or other on the publication date of another citation or other on (as specified)	"Y" document of particular relevance; the c	
"O" document re	ferring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	documents, such combination
	ublished prior to the international filing date but later than late claimed	"&" document member of the same patent f	
	l completion of the international search	Date of mailing of the international search	
14 May	2004 (14.05.04)	01 June, 2004 (01.0	6.04)
	g address of the ISA/ se Patent Office	Authorized officer	
_		Telephone No.	
Form PCT/ISA/21	0 (second sheet) (January 2004)	1 100phone 140.	

International application No. PCT/JP2004/003496

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. X Claims becaus Claim 2 and thus	l search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Nos.: 24 e they relate to subject matter not required to be searched by this Authority, namely: 4 pertains to a method for treatment of the human body by therapy relates to a subject matter for which this International Searching y is not required to search.
2. Claims because extent	Nos.: they relate to parts of the international application that do not comply with the prescribed requirements to such an that no meaningful international search can be carried out, specifically:
3. Claims because	Nos.: e they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
. []	al Searching Authority found multiple inventions in this international application, as follows:
claims.	equired additional search fees were timely paid by the applicant, this international search report covers all searchable
any add	archable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of itional fee.
	some of the required additional search fees were timely paid by the applicant, this international search report covers ose claims for which fees were paid, specifically claims Nos.:
	tired additional search fees were timely paid by the applicant. Consequently, this international search report is d to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Prot	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP2004/003496

Catarania	DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X X	Transport of document, with indication, where appropriate, of the relevant passages JP 8-67678 A (Takeda Chemical Industries, Ltd.), 12 March, 1996 (12.03.96), Full text, particularly, Claims; Par. No. [0055] & EP 652218 A1 & US 5585385 A & AU 9477738 A & NO 9404252 A & CA 2135440 A & FI 9405281 A & BR 9404403 A & TW 263498 A & BR 9501976 A & NZ 264887 A & CN 1107476 A & NZ 272711 A	1,3,6,9-14, 16,21-23,25
x	JP 10-298164 A (Tanabe Seiyaku Co., Ltd.), 10 November, 1998 (10.11.98), Full text; particularly, Claims; Par. Nos. [0067], [0068] & WO 98/38168 A1 & AU 9862300 A	1,3,4,7-10, 13-17,21-23, · 25
x	JP 2000-72675 A (Tanabe Seiyaku Co., Ltd.), 07 March, 2000 (07.03.00), Full text, particularly, Claims; Par. Nos. [0073], [0074] (Family: none)	1,3,4,7-10, 13-17,21-23, 25
A	WO 02/062764 A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.), 15 August, 2002 (15.08.02), Full text & JP 2003-238566 A & EP 1355886 A1 & US 2004/0082607 A1 & NO 200303385 A & KR 2003074774 A & AU 2002230126 A	1-23,25
A	WO 01/66134 Al (Takeda Chemical Industries, Ltd.), 13 September, 2001 (13.09.01), Full text & JP 2002-233386 A & EP 1262190 Al & AU 200136099 A	1-23,25

International application No.

PCT/JP2004/003496

<With respect to subject matter for search>

The term "prodrug" used in claims 1-12, 21-23, and 25 is unclear as to what structure is implied, even when the statements in the description are investigated. This term hence makes the scope of the compounds of the invention unclear.

In this international search report, a search was hence made through prior art documents with respect to the compounds specified in the description.

発明の属する分野の分類(国際特許分類(IPC))

Int. C1' C07D217/26, 403/06, 403/12, 491/113, A61K31/472, 31/4741, A61P43/00, 29/00, 35/00, 15/00, 15/08, 15/10, 15/14, 37/00, 5/48, 3/10, 3/02, 3/06, 17/00, 19/02, 19/08, 9/10, 7/02, 1/00, 13/10

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C07D217/26, 403/06, 403/12, 491/113, A61K31/472, 31/4741, A61P43/00, 29/00, 35/00, 15/00, 15/08, 15/10, 15/14, 37/00, 5/48, 3/10, 3/02, 3/06, 17/00, 19/02, 19/08, 9/10, 7/02, 1/00, 13/10

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN), CAOLD (STN), REGISTRY (STN), MEDLINE (STN), BIOSIS (STN), EMBASE (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 8-301849 A (武田薬品工業株式会社) 1996.11.19, 全文、特に、特許請求の範囲、[0113]-[0115]段落 (ファミリーなし)	1-3, 6, 9-14, 16, 18, 21-23, 25
X	JP 8-337583 A (武田薬品工業株式会社) 1996.12.24, 全文、特に、特許請求の範囲、[0190]-[0192]段落 (ファミリーなし)	1, 3, 4, 6, 9-14, 16, 17, 21-23, 25
	·	

x C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

14.05.2004

国際調査報告の発送日

01. 6. 2004

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

新留素子

2939 4 P

電話番号 03-3581-1101 内線 3490

C (続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 8-67678 A (武田薬品工業株式会社) 全文、特に、特許請求の範囲、[0055]段 & EP 652218 A1 & US 5585385 A & AU 94 & CA 2135440 A & FI 9405281 A & BR 94 & BR 9501976 A & NZ 264887 A & CN 110	落 177738 A & NO 9404252 A 104403 A & TW 263498 A	1, 3, 6, 9-14, 16, 21-23, 25
X	JP 10-298164 A(田辺製薬株式会社)199 全文、特に、特許請求の範囲、[0067]、 & WO 98/38168 A1 & AU 9862300 A		1, 3, 4, 7–10, 13–17, 21–23, 25
X	JP 2000-72675 A(田辺製薬株式会社)20 全文、特に、特許請求の範囲、[0073]、 (ファミリーなし)		1, 3, 4, 7–10, 13–17, 21–23, 25
A	WO 02/062764 A1 (TAKEDA CHEMICAL INDU 2002.08.15, 全文 & JP 2003-238566 A & EP 1355886 A1 & & NO 200303385 A & KR 2003074774 A &	US 2004/0082607 A1	1-23, 25
A	WO 01/66134 A1 (武田薬品工業株式会社) & JP 2002-233386 A & EP 1262190 A1 &		1-23, 25

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. x 請求の範囲 24 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲24は、治療による人体の処置方法に関するものであって、この国際調査 機関が調査をすることを要しない対象に係るものである。
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. □ 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
\cdot
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.
追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

<調査の対象について>

請求の範囲1-12, 21-23, 25に記載された「プロドラッグ」なる文言は、明細書の記載を検討しても、如何なる構造のものまでを包含するものなのか明確であるとはいえないから、本願発明化合物の範囲を不明確にするものである。

よって、この国際調査報告では、明細書に具体的に記載された化合物に基づいて先行技術文献調査を行った。