Contrôle Non Destructif par courants de Foucault: optimisation des capteurs à double fonction.

Hasnae Bassou

12641

Santé prévention

Contexte:

- Le contrôle non destructif (CND):
 - o intérêt et domaines d'utilisation

Différentes techniques du CND:

Ultrasons

Ressuage

Magnétoscopie

Radiologie

Techniques:	Avantages:	Inconvénients:
Ultrasons	•souplesse d'utilisation •détection précise dans l'épaisseur	•difficile sur faibles épaisseurs •influence de l'état de surface
Magnétoscopie	•appréciation de la longueur des défauts •rapidité	 impossibilité de détecter les défauts en profondeur(>2 mm) génération de champs magnétiques intenses
Ressuage	économiquerapidebonne sensibilité aux défauts enfouis	 produits inflammables , volatils et nocifs déchets liquides rejetés à l'égout
Radiologie	 rapidité des résultats (15 min environ) numérisation possible avec un traitement d'image 	•investissement important •règles de sécurité rigoureuses et contraignantes
Courants de Foucault	•détection des défauts faiblement enfouis (quelques	•essentiellement sur métaux •ne détecte pas les défauts de

millimètres) forte profondeur •pas de produits couplants

CND par courants de Foucault:

•en surface (fissure): longueur minimale **0,2 mm**, largeur **1 mm**

•en profondeur: **8mm** pour des défauts importants (de l'ordre de 5mm x 5mm)

profondeur de pénétration des CF : 1 à 3,5 mm

Dans l'étude de Frédéric Thollon [1] (1995) :

un défaut 5 mm x 5 mm a pu être détecté à **20 mm** de profondeur dans de l'aluminium)

Problématique:

Quelles améliorations possibles sur cette méthode afin de pouvoir détecter les défauts en profondeur ?

Plan:

 Validation de la technique du CND par courants de Foucault.

II. Etude de l'influence des paramètres du dispositif expérimental sur la détection des défauts enfouis.

Technique du CND par courants de Foucault:

- Explication du fonctionnement
- capteurs à double fonction:

L'impédance de la bobine en l'absence de la plaque:

$$Z = R + jL\omega$$

L'impédance de la bobine en présence de la plaque:

$$\underline{Z} = (R + \delta R) + j\omega(L - \delta L)$$

Dispositif expérimental:

Montage à détection synchrone : détection de la partie réelle de l'impédance: Convertisseur Multiplieur Multimètre courant tension détection de la partie imaginaire de l'impédance: Convertisseur <u>Z</u> Déphaseur Multiplieur courant tension Multimètre

Schéma complet:

Protocole expérimental:

Plaque métallique avec des défauts de différents diamètres

Détection de la partie réelle:

■ En l'absence de défauts: R= 2,57Ω

 $2,95 \pm 0,08$

 $2,80 \pm 0,09$

 $2,82 \pm 0,08$

 $3,07 \pm 0,07$

 $3,00 \pm 0,06$

R+ δ R (en Ω)

Plaque horizontale

 $2,82 \pm 0,04$

 $2,65 \pm 0,10$

2,76 ± 0,05

 $2,60 \pm 0,06$

 $2,60 \pm 0,05$

13

	■ En présence de défauts:	
Diamètre du défaut d (en mm)	R+ δR (en Ω) Plaque verticale	

5,5

7

9

11

12,5

Plaque verticale:

Plaque horizontale:

Détection de la partie imaginaire:

■ En l'absence de défauts: L= 15,97 H

■ En présence de défauts:		
Diamètre du défaut d (en mm)	L-δL (en H) Plaque verticale	L-δL (en H) Plaque horizontale
5,5	15,80 ± 0,04	15,42 ± 0,11
7	15,88 ± 0,02	15,30 ± 0,10

9

11

12,5

15,95 ± 0,05

 $15,89 \pm 0,04$

16,04 ± 0,05

15,52 ± 0,08

15,29 ± 0,07

 $15,22 \pm 0,07$

Plaque verticale:

Plaque horizontale:

Comment augmenter la sensibilité du capteur?

On utilise le capteur sur deux noyaux de fer en les écartant d'une distance d:

Partie réelle:

 $R + \delta R (en \Omega)$

 $3,57 \pm 0,11$

 $3,50 \pm 0,11$

 $3,38 \pm 0,06$

 $3,51 \pm 0,07$

Distance d'entre les deux novaux (en cm)

3

3,5

4

4,5

Distance d'entre les deux noyaux (en cin)	RT OR (ell 12)
0	3,43 ± 0,15
0,5	3,35 ± 0,07
1	3,33 ± 0,11
1,5	3,35 ± 0,08
2	3,41 ± 0,10
2,5	3,47 ± 0,06

La résistance en fonction de la distance entre les deux noyaux

Partie imaginaire:

Distance d entre les deux noyaux (en cm)	L-δL (en H)
0	17,43 ± 0,10
0,5	17,44 ± 0,04
1	17,30 ± 0,05
1,5	17,32 ± 0,07
2	17,30 ± 0,06
2,5	17,21 ± 0,07
3	17,20 ± 0,05
3,5	17,05 ± 0,06
4	17,01 ± 0,07
4,5	17,04 ± 0,08

L'inductance en fonction de la distance entre les deux noyaux

Conclusion

Merci pour votre attention

Annexe 1: circuits électriques

Annexe 2: étude de l'influence de la profondeur

Mesure de $Re(\underline{Z})$ et $Im(\underline{Z})$ en changeant la position de la plaque avec défaut (plaque 2):

•Sur la partie réelle de Z :

Re(<u>Z</u>) avec plaques sans défaut (en Ω)	Re(\underline{Z}) avec plaque 2 en dernière position (en Ω)
2,01	1,96 ± 0,06

Re(<u>Z</u>) avec plaques sans défaut (en Ω)	Re(\underline{Z}) avec plaque 2 en deuxième position (en Ω)
2,51	2,49 ± 0,06

•Sur la partie imaginaire de **Z** :

Im(<u>Z</u>) avec plaques sans défaut (en H)	Im(<u>Z</u>) avec une plaque 2 en dernière position (en H)
16,19	16,09 ± 0,03

Im(<u>Z</u>) avec plaques sans défaut (en H)	Im(<u>Z</u>) avec plaque 2 en deuxième position (en H)
15,96	15,71 ± 0,08

Annexe 3: code python pour le traçage des courbes

```
from matplotlib import pyplot as plt
   import numpy as np
   x=np.array([0,0.5,1,1.5,2,2.5,3,3.5,4,4.5])#x est la distance ou le diamètre
   y=np.array([3.43,3.35,3.33,3.35,3.41,3.47,3.57,3.50,3.38,3.51])#y est soit R ou L
   yerr=np.array([0.15,0.07,0.11,0.08,0.10,0.06,0.12,0.11,0.06,0.07])#yerr est l'incertitude
   fig,ax=plt.subplots(figsize=(10,4))
   plt.errorbar(x, y,xerr, yerr,fmt='ob', label='both limits (default)')
   ax.set xlabel('Distance (cm)',fontsize='18')
   ax.set ylabel('Resistance ($\Omega$)',fontsize='18')
10
plt.xticks(fontsize='14')
12 plt.yticks(fontsize='14')
13
   ax.plot()
  ax.grid()
14
```

Bibliographie:

[1] Frédéric Thollon: Conception et optimisation de capteurs à courants de Foucault pour la détection de défauts profonds dans des matériaux amagnétiques: https://tel.archives-ouvertes.fr/tel-00140036/document