

Mahindra University, Hyderabad

École Centrale School of Engineering Minor-II Examinations

Program: B. Tech.

Branch: CM Year: II Subject: Number Thoery & Cryptography (MA2209)

Start Time: 02:00 PM

Semester: II

Max. Marks: 20

Date: 15/04/2025

Time Duration: 1.5 Hours

Instructions:

1) There are 4 questions, all of which are compulsory.

2) Justify your answer wherever required.

3) You can earn up to 2 additional marks beyond the full score by solving Question 4(b).

Course outcomes (COs)

Upon successful completion of the course students will

- CO 1: Understand the number theoretic foundations of modern cryptography.
- CO 2: Learn about RSA cryptosystem, its implementation and security considerations. Learn different algorithms for primality testing and integer factorization.
- CO 3: Understand the discrete logarithm problem, different algorithms for solving it, and learn about the ElGamal Cryptosystem.
- CO 4: Understand the mathematical foundations of elliptic curves and their applications in cryptography such as El-Gamal cryptosystems based on elliptic curves.
- CO 5: Learn about different Signature Schemes such as RSA and Elgamal.

Q.No.	Questions	Marks	CO	BL	PO	PI
Q.140.						Code
1	 (a) Evaluate the Jacobi symbol (7411/9283). (b) Define Euler pseudo prime. (c) State Solovay-Strassen algorithm. 	2+2+2	CO1, CO2	L1, L3	PO1	1.1.1
2	Using Shank's algorithm solve the following discrete logarithm problem: $2^x \equiv 5 \mod 61.$ OR State and prove Euler's Criterion for quadratic residue modulo p , where p is a prime.	5	CO3/CO1	L3/L2	PO1	1.1.2

No.	Questions	Marks	CO	BL	PO	
3	 Alice and Bob agree to use the prime p = 67 and the primitive root g = 7 for the communications using the ElGamal public key cryptosystem. Bob chooses a = 12 as his private key. (a) What is the value of his public key A? (b) Alice encrypts the message m = 12 using the ephemeral key k = 3. What is the ciphertext (c₁, c₂) that Alice sends to Bob? (c) Verify that Bob gets back the original message m = 12 from the ciphertext (c₁, c₂) using his private key. OR Suppose that p is a prime and α ∈ Z_p*. Prove that α is a primitive element modulo p if and only if α^{(p-1)/q} ≠ 1 mod p for all primes q dividing p - 1. 		CO3	L3/L2	P01	1.1.2
4	 (a) Let p be an odd prime and let g be a primitive root modulo p. Prove that a has a square root modulo p (i.e. there exists b such that b² ≡ a mod p) if and only if its discrete logarithm log_g(a) modulo p is even. (b) Let p be a prime satisfying p ≡ 3 mod 4. Let a be an integer such that a has a square root modulo p. Use (a to prove that b = a^{(p+1)/4} mod p is a square root of a. 	1.5+2.5	CO1	L3	P01	1.3.1

Bloom's Level wise Marks Distribution

BL - Bloom's Taxonomy Levels:

1 - Remembering, 2 - Understanding, 3 - Applying, 4 - Analysing, 5 - Evaluating, 6 - Creating

CO - Course Outcomes

PO - Program Outcomes

PI Code - Performance Indicator Code