Práctica 1

Luis Fernando Yang Fong Baeza

18-II-2017

Nombre del Alumno: <u>Lezama Hernández María Ximena</u>
Datos de la Computadora:
■ Computadora:
Fabricante: Intel Corp. Modelo: Intel(R) Core(TM) i5-5257U CPU @ 2.70GHz
• Procesador:
Fabricante: Intel Corp. Modelo: 2 x Intel Core i5-5257U
Frecuencia: <u>2.70GHz</u> No. de Núclos: <u>2</u>
Arquitectura: x86_64, Haswell
■ Capacidad de Memoria:
RAM: <u>16 GB</u> Cachés de procesadores: <u>3 MB</u>
■ Disco Duro:
Capacidad: <u>12 GB</u> Tipo: <u>VMware Virtual S</u>
Velocidad: 5400 RPM
■ Sistema Operativo:
Distribución de Linux: <u>Ubuntu 16.10</u>
Versión del $kernel$: 4.8.0-27-generic (x86_64)

Resultados de la batería de pruebas PTS (Phoronix Test Suite)

Nombre de la Prueba	Resultado
GZIP Compression	17.76 seg
DCRAW	67.95 seg
FLAC Audio Encoding	9.22 seg
GNUPG	16.34 seg
REDIS	800778.12 peticiones/seg
Timed MAFFT Alignment	14.17 seg
Timed MrBayes Analysis	39.80 seg
Timed MPlayer Compilation	150.72 seg
Timed PHP Compilation	98.12 seg

Nom	bro dol	Alumno	González	Chávoz	María	Fornance	10
1100H	bre der	A IIIIIIIIO:	CTOHZAIEZ	Unavez	maria	гегнано	17

Datos de la Computadora:

■ Computadora:

Fabricante: Hewlett-Packard Modelo: HP Omen 15-5001LA

■ Procesador:

Fabricante: Intel Modelo: Core i7 4710HQ

Frecuencia: 2.5Ghz Turbo 3.5 Ghz No. de Núclos: 4

Arquitectura: x86_64, Haswell

• Capacidad de Memoria:

RAM: <u>16 GB</u> Cachés de procesadores: <u>6 MB SmartCache</u>

■ Disco Duro:

Capacidad: <u>256GB</u> Tipo: Estado Sólido (SSD)

Velocidad: 5400 RPM

• Sistema Operativo:

Distribución de Linux: Ubuntu 16.04.1

Versión del kernel: 4.4.0-31-generic (x64_64)

Resultados de la batería de pruebas PTS (Phoronix Test Suite)

Nombre de la Prueba	Resultado
GZIP Compression	15.94 seg
DCRAW	74.51 seg
FLAC Audio Encoding	9.02 seg
GNUPG	14.76 seg
REDIS	1331640.08 peticiones/seg
Timed MAFFT Alignment	6.54 seg
Timed MrBayes Analysis	27.71 seg
Timed MPlayer Compilation	63.59 seg
Timed PHP Compilation	37.57 seg

Nombre del Alumno: <u>Fong Baeza Luis Fernando Yang</u>
Datos de la Computadora:
■ Computadora:
Fabricante: Toshiba Modelo: Satellite S45
■ Procesador:
Fabricante: Intel Modelo: Core i5
Frecuencia: <u>1.6GHz</u> No. de Núclos: <u>4</u>
Arquitectura: Haswell, x86_64
■ Capacidad de Memoria:
RAM: <u>6 GB</u> Cachés de procesadores: <u>3 MB</u>
■ Disco Duro:
Capacidad: <u>750 GB</u> Tipo:
Velocidad: 5400 RPM
 Sistema Operativo:
Distribución de Linux: Fedora 25
Versión del $kernel$: 4.4.0-31-generic (x64_64)

Resultados de la batería de pruebas PTS ($Phoronix\ Test\ Suite$)

Nombre de la Prueba	Resultado
GZIP Compression	16.64 seg
DCRAW	71.25 seg
FLAC Audio Encoding	10.23 seg
GNUPG	21.58 seg
REDIS	1130019.22 peticiones/seg
Timed MAFFT Alignment	13.46
Timed MrBayes Analysis	46.37 seg
Timed MPlayer Compilation	143.80 seg
Timed PHP Compilation	106.65 seg

Nombro	dol Alumno	Concha	Vázquez Migu	ruol
nore	e dei Alumno:	Concna	vazquez mig	7

Datos de la Computadora:

■ Computadora: No es de marca, sino ensamblada. Los fabricantes y el modelo de la tarjeta madre son:

Fabricante: Gigabyte Technology Co., Ltd. Modelo: <u>Z97P-D3</u>

■ Procesador:

Fabricante: Intel Modelo: Core i7-4790

Frecuencia: 4.00 GHz No. de Núclos: 8

Arquitectura: x86_64

• Capacidad de Memoria:

RAM: 24 GB Cachés de procesadores: 3 GB

■ Disco Duro:

Capacidad: 2000GB Tipo: HDD

Velocidad: 7200 RPM

■ Sistema Operativo:

Distribución de *Linux*: Ubuntu 16.04.1

Versión del kernel: 4.4.0-31-generic (x64_64)

Resultados de la batería de pruebas PTS (Phoronix Test Suite)

Nombre de la Prueba	Resultado
GZIP Compression	10.22 seg
DCRAW	46.20 seg
FLAC Audio Encoding	5.60 seg
GNUPG	13.22 seg
REDIS	2257804.73 peticiones/seg
Timed MAFFT Alignment	4.72 seg
Timed MrBayes Analysis	16.25
Timed MPlayer Compilation	40.34 seg
Timed PHP Compilation	22.95 seg

Prueba	C_{Ximena}	C_{Fer}	C_{Fong}	C_{Miguel}	Media
GZIP	17.76s	15.94s	16.64s	10.22s	14.44212s
DCRAW	67.95s	74.51s	71.25s	46.20s	62.6784s
FLAC AE	9.22s	9.02s	10.23s	5.60s	8.0702s
GNUPG	10.34s	14.76s	21.58s	13.22s	13.9643s
REDIS	800778.12 p/s	1331640 p/s	1130019 p/s	2257804 p/s	1380060.51 p/s
TIMED MAAFT Al.	14.17s	6.54s	13.46s	4.72s	7.8487s
Timed MrBayes An.	39.80s	27.71s	46.37s	16.25s	27.7166
Timed MPlayer Comp.	150.72s	63.59s	143.80s	40.34s	73.9317s
Timed PHP Compilation	98.12s	37.57s	106.65s	22.95s	44.5643

Ejercicios

- 1. Identificar qué pruebas miden el tiempo de respuesta y cuales miden el rendimiento.
- R= La única prueba que mide el rendimiento es REDIS puesto que tiene una medida de tipo HIB (Higher Is Better) en la que mientras más peiticiones atienda la computadora al servidor, mejor rendimiento tiene dicha computadora.
- 2. Usando la medida de tendencia central adecuada y tu reporte de resultados, calcula la medida de rendimiento y la medida de tiempo de respuesta.
- R = Pruebas que usan la media aritmética:

Nombre de la Prueba	Tiempo de Respuesta
GZIP Compression	16.64seg
DCRAW	71.25seg
FLAC Audio Encoding	10.23 seg
GNUPG	21.58seg
Timed MAFFT Alignment	13.46seg
Timed MrBayes Analysis	46.37 seg
Timed MPlayer Compilation	143.80seg
Timed PHP Compilation	106.05 seg

Para la prueba REDIS, simplemente se usa la meida aritmética para los 5 casos con un resultado de 1130019 peticiones/seg.

- 3. Una vez que tengas los resultados, fija tu computadora como computadora de referencia, calcula los tiempos normalizados y obtén la medida de tendencia central adecuada de cada una de las computadoras. Agrega los resultados obtenidos a tu reporte.
- R = Basta con que veamos cuántas veces supera una computadora a la otra, haciendo divisiones:

Prueba	Comp A	Comp B	Comp C
GZIP	1.06	0.95	0.61
DCRAW	0.95	1.04	0.64
FLAC AE	0.90	0.88	0.54
GNUPG	0.47	0.68	0.61
REDIS	0.70	1.17	1.99
MAAFT	1.05	0.48	0.35
MrBayes	0.85	0.59	0.35
MPlayer.	1.04	0.44	0.28
PHP	0.92	0.35	0.21

4. Plantea un caso de uso para una computadora, de acuerdo a los requerimientos del usuario pondera los resultados de las pruebas y obten la medida de desempeño de cada una de las computadoras de tu equipo. Agrega el caso de uso y los resultados obtenidos a tu reporte.

R = Un usuario quiere mandar por correo varios archivos con diferentes extensiones (.java, .py, etc.) pero el correo no le deja mandar código fuente, además en dicho correo quiere mandar ciertos archivos WAV pero en formato FLAC. El remitente del correo es un amigo biólogo suyo que quiere saber cómo alinear secuencias de piruvato descarboxilasa y además realizar un análisis bayesiano, y no conforme con eso, quiere saber un tiempo estimado que tardaría en realizar cada una de esas tareas.

Claramente tenemos que las pruebas que quiere este usuario son: GZIP Compression, FLAC Audio Encoding, MAAFT y MrBayes Analisis, como es el tiempo total, todas valen lo mismo en cuanto a prioridades, entonces tenemos que el tiempo que tardará el usuario es:

$$(16.62^{*}.25)+(10.23^{*}.25)+(13.46^{*}.25)+(46.37^{*}.25)=21.67$$
s aproximadamente.

Preguntas:

- 1. Para la prueba GZIP compresion tenemos que: La computadora A es 1.06 veces más rápida que la computadora R debido a que la frecuencia del reloj es más rápida. Para la prueba DCRAW tenemos que la computadora B es 1.04 veces más rapida que la computadora R puesto que está diseñada para procesar imágenes mucho más rápido. Para la prueba FLAC AE tenemos que la computadora C es 1.8 veces más rápida que la computadora R puesto que está diseñada para un mejor manejo de audio, más eficiente. Para la prueba GNUPG tenemos que la computadora R es 0.47 veces más lenta que la computadora A, puesto que de igual manera, el reloj lleva una frecuencia mayor. Para la prueba MAAFT tenemos que la computadora A es más 1.05 veces más rápida que la computadora R.
- 2. Para la única prueba de rendimiento tenemos que la computadora C es 1.99 veces más rápida que la computadora R.
- 3. Mejor desempeño/Peor desempeño:

GZIP:(Comp A, Comp C)

DCRAW:(Comp B, Comp C)

FLAC AE: (Comp R, Comp C)

^{*}Llamaremos a la computadora de referencia Comp R

GNUPG: (Comp R, Comp A)

REDIS: (Comp C, Comp A)

MAAFT: (Comp A, Comp C)

MrBayes: (Comp R, Comp C)

MPlayer: (Comp A, Comp C)

Build PHP: (Comp R, Comp C)

- 4. Para el caso de uso del usuario es la computadora que más le conviene es la computadora que se usó como referencia o la computadora A, puesto que ambas tienen el mejor desempeño en 2 de las 4 pruebas.
- 5. La frecuencia con la que corren los relojes de las diferentes computadoras y los núcleos de los procesadores.