VLSI Design Verification and Testing

Test Economics and Product Quality

Mohammad Tehranipoor
Electrical and Computer Engineering Department
University of Connecticut

Overview

- Basics of cost analysis
- Economics of DFT
- VLSI chip Yield
- VLSI defects clustered and unclustured
- Yield equations
- Defect, Yield, and Coverage
- Parameter estimation

There are several types of costs:

• Fixed cost

Example: Costs of running a car

Variable cost

Total costAverage cost

Fixed cost

Economics

2

Motivation

- Impact of testing or not testing on the cost of final product
 - □ Study basics of economics
 - □ How testing related to the product
 - How lack of testing can affect the quality and the product cost

Total cost

20 cents/mile (

Purchase price of car

Variable cost 20 cents/mile Gasoline,

maintenance, repairs \$25,000 + 0.2*x* For traveling

Average cost $\frac{25,000}{-25,000}$ x miles Average cost $\frac{25,000}{-25,000}$

Basics of cost analysis

,

Simple Cost Analysis

Case 1: 10,000 miles/yr, \$12,500 resale value after 5 years Average cost = $$\frac{25,000 - 12,500}{50,000} + 0.2 = 45 \text{ cents/mile}$

Case 2: 10,000 miles/yr, \$6,250 resale value after 10 years

Average cost = $\$\frac{25,000 - 6,250}{100,000} + 0.2 = 38.75$ cents/mile

Case 3: 10,000 miles/yr, \$0 resale value after 20 years

Average cost = $\$\frac{25,000 - 0}{200,000}$ + 0.2 = 32.5 cents/mile

Cost Analysis Graph

40,000

25,000

Fixed cost

20,000

Fixed cost

Average cost

Miles Driven

Production

- Inputs to production (x-cost): Labor, land, capital, enterprise, energy (x may include both fixed and variable costs)
- Production output product as a function of input Q = f(x)
- Average product: product per unit input Q/
- Marginal product dQ / dx

Benefit-Cost Analysis

- Benefits:
 - Savings in manufacturing costs (capital and operational) and time, reduced wastage, automation, etc.
- Costs:
 - Extra hardware, training of personnel, etc.
- Benefit/cost ratio

Economics of Design for Testability (DFT)

- Consider life-cycle cost; DFT on chip may impact the costs at board and system levels.
- Weigh costs against benefits
 - Cost examples: reduced yield due to area overhead, yield loss due to non-functional
 - Benefit examples: Reduced ATE cost due to self-test, inexpensive alternatives to burn-in test, increased fault/defect coverage

Benefits and Costs of DFT

Level	Design and test	Fabri- cation	Manuf. N Test	laintenance test	Diagnosis and repair	Service interruption
Chips	+/-	+	-			
Boards	+/-	+	-		-	
System	+/-	+	-	-	-	-

- + Cost increase
- Cost saving +/- Cost increase may balance cost reduction

VLSI Chip Yield

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process.
- A chip with no manufacturing defect is called a good
- Fraction (or percentage) of good chips produced in a manufacturing process is called the *yield*. Yield is denoted by symbol Y.
- Cost of a chip:

Cost of fabricating and testing a wafer Yield x Number of chip sites on the wafer

Good chips on the wafer

VLSI Defects Good chips Faulty chips **Defects** Wafer **Unclustered defects** Clustered defects (VLSI) Wafer yield = 12/22 = 0.55Wafer yield = 17/22 = 0.77

Yield Equation

- Chip area (A)
- Three parameters:
 - Fault density, f = average number of stuck-at faults per unit chip area
 - Fault clustering parameter, β
 - Stuck-at fault coverage, T
- Yield equation:

$$Y(T) = (1 + TAf/\beta)^{-\beta}$$

Assuming that tests with 100% fault coverage (T=1.0) remove all faulty chips,

$$Y = Y(1) = (1 + Af/\beta)^{-\beta}$$

Defect, Yield, and Coverage

- ${\it Defect\ level\ (DL)}$ is the ratio of faulty chips among the chips that pass tests.
 - Aka Escape
- DL is measured as parts per million (ppm).
 - Defective parts per million (DPPM)
- DL is a measure of the effectiveness of tests.
- DL is a quantitative measure of the manufactured product quality. For commercial VLSI chips a DL greater than 500 ppm is considered unacceptable.

Determination of DL

- From field return data:
 - Chips failing in the field are returned to the manufacturer. The number of returned chips normalized to one million chips shipped is the DL.
- From test data:
 - Fault coverage of tests and chip fallout rate are analyzed.
 A modified yield model is fitted to the fallout data to estimate the DL.
 - $\hfill \square$ Chip fallout: Fraction of chips failing up to a vector in the

15

Defect Level

$$DL(T) = \frac{Y(T) - Y(1)}{Y(T)}$$

$$= 1 - \frac{(\beta + TAf)^{\beta}}{(\beta + Af)^{\beta}}$$

Where T is the fault coverage of tests, Af is the average number of faults on the chip of area A, β is the fault clustering parameter. Af and β are determined by test data analysis.

Defect Level (2)

An alternative equation relating DL, Yield, and fault-coverage, in case of unclustered random defects is:

$$DL(T) = 1 - Y^{1-T}$$

Where T is the fault coverage of tests.

Note that Y is the ratios of the "devices tested good" to the "total number of devices tested or fabricated/manufactured"

Example: SEMATECH Chip

- "Bus interface controller ASIC" fabricated and tested at IBM, Burlington, Vermont
- 116,000 equivalent (2-input NAND) gates
- 304-pin package, 249 I/O
- Clock: 40MHz, some parts 50MHz
- 0.45μ CMOS, 3.3V, 9.4mm x 8.8mm area
- Full scan, 99.79% fault coverage
- Advantest 3381 ATE
- Data obtained courtesy of Phil Nigh (IBM)

Economics — impact at higher levels An example to demonstrate the impact of defects at system level Probability an IC is "bad" - p_{bad} A board uses n such ICs Probability of the board being "good" = (1-p_{bad})ⁿ Consider a board with 40 devices and Y = 0.75, T = 0.9 Now consider the case when T is increased to 0.99 while keeping the Yield same as 75%

Summary

- VLSI yield depends on two process parameters, fault density (f) and clustering parameter (β)
 Yield drops as chip area increases; low yield means
- high cost
- Fault coverage measures the test quality
- Defect level (DL) or reject ratio is a measure of chip
- DL can be determined by an analysis of test data
- For high quality: DL < 500 ppm, fault coverage ~ 99%
- DL and Yield have a major impact on the cost and quality at higher level