

Il conjunto de los números reales

IR: Conjunto de los números reales.

Sistemo de los números regles.

Sistema de números reales.

El sistema de los números reales es un conjunto denotado por l'A en el vual estan definidas dos operaciones + y · paira cada par de elementos a, b & R. Estas operaciones son llamadas Suma y multiplicación respectivamente y estan definidas de tal manera que, para cada para de elementos a, b ∈ B, existen únicos elementos a+b y a·b & B para los cuales se satisfacen los siguientes axiomas (llamados axiomas de campo) para todos los elementos a, b, C & P.

C1. Cerradura: Para cualesquiera a, b∈ IR, Se comple

i) a+b e B y ii) a·b e B

C2. Conmutatividad: Para cualesquiero a, b \in IR, se satisfacen:

C3.- Asociatividad: Para todo a,b, c ∈ R, Se verifican:

i) (a+b)+c = a+(b+c) ii) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

C4. Existencia de elemento neutro:

i) Existe O en B lal que para todo a E R,

0 + 0 = 0 + 0 = 0

ii) Existe $1 \in \mathbb{R}$, differente de 0 tal que para todo $a \in \mathbb{R}$, $a \cdot 1 = 1 \cdot a = a$ / Neutro multiplicativo

C5.- Existencia de inversos:

- i) Para todo $\alpha \in \mathbb{R}$, existe $\alpha_1 \in \mathbb{R}$ tal que $\alpha + \alpha_1 = 0$
- ii) Para cada $a \in \mathbb{R}$ con $a \neq 0$, existe $a_2 \in \mathbb{R}$ talque $a \cdot a_2 = 1$

C6. Distributividad de la multiplicación en respecto a la suma:

Sean $a,b,c \in \mathbb{R}$ números reales arbitrarios, entonces Se Satisfacen: a=2, b=3, c=1

i) Distributividad por la izquierda 2(3+1) = 8

 $a \cdot (b+c) = a \cdot b + a \cdot c$ $2 \cdot 3 + 2 \cdot 1 = 6 + 2$

ii) Distributividad por la derecha:

 $(b+c)\cdot a = b\cdot a + c\cdot a$ $2\mathcal{X} + 3\mathcal{X} = (2+3)\mathcal{X}$

Por la tanta, el conjunto IR de los números reales junto con las operaciones de Suma + y producto como ya las conocemos es un campo llamado Sistema de los números reales.

29/Julio/2024

Sean $x,y,z\in\mathbb{R}$. Establezca cual o cuales axiomas de los números reales justifican cada una de las siguientes igualdades:

1.
$$(6+8)x = x(6+8)$$
 Completivided parts

Distributividad por

2.
$$(x+3)y+2=(x\cdot y+3\cdot y)+2$$
 ly derector

3.
$$(3+5)+2=3+(5+2)$$

4.
$$(2+3)+5=2+(3+5)$$
 Asociativided pan La Sma.

5.
$$[(1)(2)](3) = [(2)(1)](3)$$

6.
$$(x+y)+3=(y+x)+3$$
 Connotatividad para Lusing

7.
$$(1+2)(-3) = 1(-3) + 2(-3)$$

8.
$$[(w+3)2]z = [2(w+3)]z$$

9.
$$(-13+z)(2)+7=[z+(-13)](2)+7$$

10.
$$(a-b)+[-(a-b)]=0$$
 / Exstencia de inversos para Ju Suma.

11.
$$(3+4)(5+2) = (3+4)5 + (3+4)2$$
 // Distributive ded for $\frac{1}{3}$ // Provendo

12.
$$x(y+0)+z=xy+z$$
 Oistributividad Por Lu ita

13.
$$(x+2) + [-(x+2)] = 0$$
 $\chi(y + 0) + \xi = (xy + x \cdot 0) + \xi$

14.
$$2(x+y)=2x+2y$$
 $= (x,y)+$

$$(x+y) \cdot 2 = x+y\cdot 2 = x\cdot y + 3$$

$$x = 1, y = 1 1+1\cdot 2$$

$$(1+1)\cdot 2 = 1+2$$

La relación de igualdad a parece en el Sistema de los números reales. La relación "a = b" Significa que "a = b" Significa que se estan usando Simbolos diferentes para representar el mismo elemento. Además, la relación de igualdad Satisface las Siguientes propiedades: Sean $a,b,c \in \mathbb{R}$,

J3) Si a+c denota al número real que resulta de Sumar a y c y a·c denota al número real que resulta de multiplicar a y c, entonces a=b implica que:

i)
$$a+c=b+c$$
 , y ii) $a\cdot c=b\cdot c$.

Propiedades de la igualdad

Sean a, b, c e lh "Si y sollo si"

$$0+5=8+5$$
 $0=8$

$$(1) \quad 0 = b \quad \Leftrightarrow \quad 0 + C = b + C$$

2)
$$a = b \iff a \cdot c = b \cdot c$$
. $a \cdot 2 = 10$
= 5°2

Conservencias de las propiedades de los números reales Teorema: [dey de la cancelarion para la suma y el producto] i) Si a, b, c e Pr y a+c=b+c, emtorces a=b. ii) Si a,b,c EB con c +0 y a.c=b.c, ent. a=b. Dem. @ Por hip. Sabemos que? Q+C=b+CComo CEBL, por axioma (C6) existe CIEB 19. $C + C_1 = 0$ (2) Por propiedades de le ignaldadé 6+(C+(1) $Q+(C+C_1) = (Q+C_1) + C_1 = (b+C_1) + C_1$ Por asociatividad y propiedades de la igualdad $0 + (c + c_1) = (a + c_1) + c_1 = (b + c_1) + c_2 = b + (c + c_1)$

$$((+(1) = (0+c)+(1 = (b+c)+(2$$

Como 0 & el neulro aditivo, se tiene que: