Name: Santos, Tristan Neal U. Course and Section: CPE32S9 Date of Submission: 02-07-2024 Instructor: Engr. Roman Richard

In this assignment, you are task to build a multilayer perceptron model. The following are the requirements:

- · Choose any dataset
- Explain the problem you are trying to solve
- · Create your own model
- · Evaluate the accuracy of your model

#Import and Choose a Dataset import numpy as np import pandas as pd

from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Double-click (or enter) to edit

#Display the Dataset to showcase the output and set the head to 10 so the result would reach from 0-9
winedf = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Emtech2/csv/WineQT.csv')
winedf.head(10)

f	ixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	Id	\blacksquare
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	0	ıl.
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	1	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	2	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	3	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	4	
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5	5	
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5	6	
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7	7	
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7	8	
9	6.7	0.58	0.08	1.8	0.097	15.0	65.0	0.9959	3.28	0.54	9.2	5	10	

winedf.describe().transpose()

	count	mean	std	min	25%	50%	75%	max	
fixed acidity	1143.0	8.311111	1.747595	4.60000	7.10000	7.90000	9.100000	15.90000	ıl.
volatile acidity	1143.0	0.531339	0.179633	0.12000	0.39250	0.52000	0.640000	1.58000	
citric acid	1143.0	0.268364	0.196686	0.00000	0.09000	0.25000	0.420000	1.00000	
residual sugar	1143.0	2.532152	1.355917	0.90000	1.90000	2.20000	2.600000	15.50000	
chlorides	1143.0	0.086933	0.047267	0.01200	0.07000	0.07900	0.090000	0.61100	
free sulfur dioxide	1143.0	15.615486	10.250486	1.00000	7.00000	13.00000	21.000000	68.00000	
total sulfur dioxide	1143.0	45.914698	32.782130	6.00000	21.00000	37.00000	61.000000	289.00000	
density	1143.0	0.996730	0.001925	0.99007	0.99557	0.99668	0.997845	1.00369	
pH	1143.0	3.311015	0.156664	2.74000	3.20500	3.31000	3.400000	4.01000	
sulphates	1143.0	0.657708	0.170399	0.33000	0.55000	0.62000	0.730000	2.00000	
alcohol	1143.0	10.442111	1.082196	8.40000	9.50000	10.20000	11.100000	14.90000	
quality	1143.0	5.657043	0.805824	3.00000	5.00000	6.00000	6.000000	8.00000	
Id	1143.0	804.969379	463.997116	0.00000	411.00000	794.00000	1209.500000	1597.00000	

```
print(winedf.head())
print(winedf['quality'].unique())
```

winedf.describe(include = 'all')

```
fixed acidity volatile acidity citric acid residual sugar chlorides \
           7.4
                           0.70
                                       0.00
                                                       1.9
                                                                0.076
           7.8
                           0.88
                                                                0.098
1
                                       0.00
                                                       2.6
2
           7.8
                           0.76
                                       0.04
                                                       2.3
                                                                0.092
3
          11.2
                           0.28
                                       0.56
                                                       1.9
                                                               0.075
           7.4
                           0.70
                                       0.00
                                                       1.9
                                                                0.076
  free sulfur dioxide total sulfur dioxide density
                                                     pH sulphates \
                                           0.9978 3.51
                11.0
1
                25.0
                                     67.0
                                           0.9968 3.20
                                                             0.68
2
                15.0
                                     54.0
                                           0.9970 3.26
                                                             0.65
                17.0
                                    60.0
3
                                           0.9980 3.16
                                                             0.58
                11.0
                                     34.0 0.9978 3.51
                                                             0.56
  alcohol quality Id
                5 0
      9.4
      9.8
                5 1
2
      9.8
                5 2
      9.8
                6 3
      9.4
                5 4
[5 6 7 4 8 3]
```

https://colab.research.google.com/drive/1F7BINOCXiPNVMj_KByT3WeKSDRyVlhqL#scrollTo=JIE3IT-3sMqC&printMode=true

```
fixed
                         volatile
                                        citric
                                                    residual
                                                                             free sulfur
                                                                                           total sulfur
                                                                chlorides
                                                                                                              density
                                                                                                                                рН
                                                                                                                                      sulphates
                                                                                                                                                     alcohol
                                                                                                                                                                   quality
                                                                                                                                                                                     Ιd
           acidity
                          acidity
                                          acid
                                                       sugar
                                                                                 dioxide
                                                                                                 dioxide
       1143.000000
                     1143.000000 1143.000000
                                                 1143.000000
                                                              1143.000000
                                                                             1143.000000
                                                                                             1143.000000 1143.000000 1143.000000
                                                                                                                                    1143.000000
                                                                                                                                                 1143.000000 1143.000000 1143.000000
count
                         0.531339
                                      0.268364
                                                    2.532152
                                                                 0.086933
                                                                               15.615486
                                                                                               45.914698
                                                                                                                          3.311015
                                                                                                                                        0.657708
                                                                                                                                                                  5.657043
mean
          8.311111
                                                                                                             0.996730
                                                                                                                                                    10.442111
                                                                                                                                                                             804.969379
          1.747595
                         0.179633
                                      0.196686
                                                    1.355917
                                                                 0.047267
                                                                               10.250486
                                                                                               32.782130
                                                                                                             0.001925
                                                                                                                          0.156664
                                                                                                                                       0.170399
                                                                                                                                                     1.082196
                                                                                                                                                                  0.805824
                                                                                                                                                                             463.997116
 std
          4.600000
                         0.120000
                                      0.000000
                                                    0.900000
                                                                 0.012000
                                                                                                6.000000
                                                                                                                                       0.330000
min
                                                                                1.000000
                                                                                                             0.990070
                                                                                                                          2.740000
                                                                                                                                                     8.400000
                                                                                                                                                                  3.000000
                                                                                                                                                                               0.000000
25%
          7.100000
                         0.392500
                                      0.090000
                                                    1.900000
                                                                 0.070000
                                                                                7.000000
                                                                                               21.000000
                                                                                                             0.995570
                                                                                                                          3.205000
                                                                                                                                       0.550000
                                                                                                                                                     9.500000
                                                                                                                                                                  5.000000
                                                                                                                                                                             411.000000
50%
                         0.520000
                                      0.250000
                                                                 0.079000
                                                                                                                                       0.620000
          7.900000
                                                    2.200000
                                                                                13.000000
                                                                                               37.000000
                                                                                                             0.996680
                                                                                                                          3.310000
                                                                                                                                                    10.200000
                                                                                                                                                                  6.000000
                                                                                                                                                                             794.000000
75%
          9.100000
                         0.640000
                                      0.420000
                                                    2.600000
                                                                 0.090000
                                                                               21.000000
                                                                                               61.000000
                                                                                                             0.997845
                                                                                                                          3.400000
                                                                                                                                       0.730000
                                                                                                                                                    11.100000
                                                                                                                                                                  6.000000 1209.500000
max
         15.900000
                         1.580000
                                      1.000000
                                                   15.500000
                                                                 0.611000
                                                                               68.000000
                                                                                              289.000000
                                                                                                             1.003690
                                                                                                                          4.010000
                                                                                                                                       2.000000
                                                                                                                                                    14.900000
                                                                                                                                                                  8.000000 1597.000000
```

```
x = winedf.drop(['Id', 'quality'], axis=1)
y = winedf['quality']
print(x.head())
print(y.head())
        fixed acidity volatile acidity citric acid residual sugar chlorides \
     0
                  7.4
                                   0.70
                                                0.00
                                                                 1.9
                                                                          0.076
     1
                  7.8
                                   0.88
                                                0.00
                                                                 2.6
                                                                          0.098
     2
                  7.8
                                   0.76
                                                0.04
                                                                 2.3
                                                                          0.092
     3
                 11.2
                                   0.28
                                                0.56
                                                                 1.9
                                                                          0.075
                  7.4
                                   0.70
                                                0.00
                                                                 1.9
                                                                          0.076
        free sulfur dioxide total sulfur dioxide density
                                                              pH sulphates \
     0
                       11.0
                                             34.0
                                                    0.9978 3.51
                                                                       0.56
     1
                       25.0
                                             67.0
                                                    0.9968 3.20
                                                                       0.68
     2
                       15.0
                                             54.0
                                                    0.9970 3.26
                                                                       0.65
                       17.0
                                                    0.9980 3.16
                                                                       0.58
     3
                                             60.0
                       11.0
                                                    0.9978 3.51
                                                                       0.56
     4
                                             34.0
        alcohol
     a
            9.4
            9.8
     2
            9.8
     3
            9.8
            9.4
          5
     0
     1
          5
     2
          5
     3
          6
     4
          5
     Name: quality, dtype: int64
#Split Database/Dataset to Train and Test
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
print(x_train.shape)
print(y train.shape)
     (800, 11)
     (800,)
```

```
#Train the Model
mlp = MLPClassifier(hidden_layer_sizes=(3,2), max_iter=1000, activation='relu')
mlp.fit(x_train,y_train)
```

```
MLPClassifier
MLPClassifier(hidden_layer_sizes=(3, 2), max_iter=1000)
```

```
#Testing
pred = mlp.predict(x_test)
pred
```

#The array signifies the predicted quality scores from each sample in the test set. #The score array is the result from the wine quality class

```
6, 5, 6, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 5,
      5, 5, 6, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6,
      5, 6, 5, 5, 6, 5, 5, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6,
      6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 5, 5, 5, 5, 6, 6, 5, 6, 6, 5,
      6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 5, 6, 5, 6,
      6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 5, 6, 5, 6, 6,
      6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 5,
      6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5,
      6, 5, 6, 6, 6, 6, 5, 6, 5, 6, 6, 5, 6, 6, 6, 5, 6, 6, 5, 6,
      5, 6, 6, 6, 6, 5, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 5, 6,
      6, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 6, 5, 6, 5, 5,
      6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 5, 6,
      5, 6, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6,
      6, 5, 5, 5, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 5, 5,
      6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
```

#Model Evaluation

#The arrays display is based from its number quality on the dataset used with different number of samples #As it showcase 0 with other different numbers. confusion_matrix(y_test,pred)

#This output will showcase the precision, recall, f1-score, support and its accuracy, macro avg, and weighted avg.
#From its accuracy, it has a 0.48% precise results wheter this is correct or not while the macro avg is at 017 and lastly weighted avg is 0.43 with the support of 343.
print(classification_report(y_test, pred, zero_division=1))

support	f1-score	recall	precision	
3	0.00	0.00	1.00	3
12	0.00	0.00	1.00	4
140	0.49	0.44	0.56	5
141	0.55	0.73	0.44	6

7	1.00	0.00	0.00	44
8	1.00	0.00	0.00	3
accuracy			0.48	343
macro avg	0.83	0.19	0.17	343
weighted avg	0.59	0.48	0.43	343

Conclusion:

From the experienced of this activity, I have a good understanding about how we build and Apply Multilayer Perceptron on the csv dataset. This lesson is similar from the previous lessons since it also involves about using datasets with a different result depending on the code, but this one we also used from the previous lesson with the train test split but the difference here is that we used the classification report and mlp commands that also feature the results of its accuracy of the dataset.