

LaplacesDemon Examples

Byron Hall STATISTICAT, LLC

Abstract

The **LaplacesDemon** package in R enables Bayesian inference with any Bayesian model, provided the user specifies the likelihood. This vignette is a compendium of examples of how to specify different model forms.

Keywords: Bayesian, Bayesian Inference, Laplace's Demon, LaplacesDemon, R, STATISTI-CAT.

LaplacesDemon (Hall 2012), usually referred to as Laplace's Demon, is an R package that is available on CRAN (R Development Core Team 2011). A formal introduction to Laplace's Demon is provided in an accompanying vignette entitled "**LaplacesDemon** Tutorial", and an introduction to Bayesian inference is provided in the "Bayesian Inference" vignette.

The purpose of this document is to provide users of the **LaplacesDemon** package with examples of a variety of Bayesian methods. It is also a testament to the diverse applicability of **LaplacesDemon** to Bayesian inference.

To conserve space, the examples are not worked out in detail, and only the minimum of necessary materials is provided for using the various methodologies. Necessary materials include the form expressed in notation, data (which is often simulated), initial values, and the Model function. The provided data, initial values, and model specification may be copy/pasted into an R file and updated with the LaplacesDemon or (usually) LaplaceApproximation functions. Although many of these examples update quickly, some examples are computationally intensive.

Notation in this vignette follows these standards: Greek letters represent parameters, lower case letters represent indices, lower case bold face letters represent scalars or vectors, probability distributions are represented with calligraphic font, upper case letters represent index limits, and upper case bold face letters represent matrices.

This vignette will grow over time as examples of more methods become included. Contributed examples are welcome. Please send contributed examples or discovered errors in a similar format in an email to laplacesdemon@statisticat.com for review and testing. All accepted contributions are, of course, credited.

Contents

- ANCOVA 1
- ANOVA, One-Way 2
- ANOVA, Two-Way 3
- Approximate Bayesian Computation (ABC) 4
- ARCH-M(1,1) 5
- Autoregression, AR(1) 6
- Autoregressive Conditional Heteroskedasticity, ARCH(1,1) 7
- Autoregressive Moving Average, ARMA(1,1) 8
- Beta Regression 9
- Beta-Binomial 10
- Binary Logit 11
- Binary Log-Log Link Mixture 12
- Binary Probit 13
- Binomial Logit 14
- Binomial Probit 15
- Cluster Analysis 16
- Conditional Autoregression (CAR), Poisson 17
- Conditional Predictive Ordinate (CPO) 18
- Contingency Table 19
- Covariance Separation Strategy 20
- Discrete Choice, Conditional Logit 21
- Discrete Choice, Mixed Logit 22
- Discrete Choice, Multinomial Probit 23
- Distributed Lag, Koyck 24
- Dynamic Linear Model (DLM) 25
- Exponential Smoothing 26
- Factor Analysis, Approximate Dynamic (ADFA) 27

- Factor Analysis, Confirmatory (CFA) 28
- Factor Analysis, Dynamic (DFA) 29
- Factor Analysis, Exploratory (EFA) 30
- Factor Regression 31
- Gamma Regression 32
- GARCH(1,1) 33
- GARCH-M(1,1) 34
- Geographically Weighted Regression 35
- Inverse Gaussian Regression 36
- Kriging 37
- Kriging, Predictive Process 38
- Laplace Regression 39
- Linear Regression 40
- Linear Regression, Frequentist 41
- Linear Regression, Multilevel 42
- Linear Regression with Full Missingness 43
- Linear Regression with Missing Response 44
- LSTAR 45
- MANCOVA 46
- MANOVA 47
- Mixture Model, Finite 48
- Mixture Model, Poisson-Gamma 49
- Model Averaging 79
- Multinomial Logit 50
- Multinomial Logit, Nested 51
- Multinomial Probit 52
- Multivariate Binary Probit 53
- Multivariate Laplace Regression 54
- Multivariate Regression 55

- Negative Binomial Regression 56
- Normal, Multilevel 57
- Ordinal Logit 58
- Ordinal Probit 59
- Panel, Autoregressive Poisson 60
- Penalized Spline Regression 61
- Poisson Regression 62
- Poisson Regression, Overdispersed 49 56
- Polynomial Regression 63
- Proportional Hazards Regression, Weibull 64
- Revision, Normal 65
- Robust Regression 66
- Seemingly Unrelated Regression (SUR) 67
- Simultaneous Equations 68
- Space-Time, Dynamic 69
- Space-Time, Nonseparable 70
- Space-Time, Separable 71
- T-test 2
- Threshold Autoregression (TAR) 72
- TARCH(1) 73
- Variable Selection, BAL 78
- Variable Selection, SSVS 79
- Vector Autoregression, VAR(1) 80
- Weighted Regression 81
- Zero-Inflated Poisson (ZIP) 82

1. ANCOVA

This example is essentially the same as the two-way ANOVA (see section 3), except that a covariate $X_{,3}$ has been added, and its parameter is δ .

1.1. Form

$$\mathbf{y}_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{1}^{2})$$

$$\mu_{i} = \alpha + \beta[\mathbf{X}_{i,1}] + \gamma[\mathbf{X}_{i,2}] + \delta \mathbf{X}_{i,2}, \quad i = 1, \dots, N$$

$$\epsilon_{i} = \mathbf{y}_{i} - \mu_{i}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{j} \sim \mathcal{N}(0, \sigma_{2}^{2}), \quad j = 1, \dots, (J - 1)$$

$$\beta_{J} = -\sum_{j=1}^{J-1} \beta_{j}$$

$$\gamma_{k} \sim \mathcal{N}(0, \sigma_{3}^{2}), \quad k = 1, \dots, (K - 1)$$

$$\gamma_{K} = -\sum_{k=1}^{K-1} \gamma_{k}$$

$$\delta \sim \mathcal{N}(0, 1000)$$

$$\sigma_{m} \sim \mathcal{HC}(25), \quad m = 1, \dots, 3$$

1.2. Data

```
N <- 100
J <- 5 #Number of levels in factor (treatment) 1
K <- 3 #Number of levels in factor (treatment) 2
X \leftarrow \text{matrix}(\text{cbind}(\text{round}(\text{runif}(N,0.5,J+0.49)),\text{round}(\text{runif}(N,0.5,K+0.49)),
     runif(N,-2,2)), N, 3)
alpha <- runif(1,-1,1)
beta <- runif(J,-2,2)
beta[J] \leftarrow -sum(beta[1:(J-1)])
gamma \leftarrow runif(K,-2,2)
gamma[J] <- -sum(gamma[1:(K-1)])
delta <- runif(1,-2,2)
y \leftarrow alpha + beta[X[,1]] + gamma[X[,2]] + delta*X[,3] + rnorm(N,0,0.1)
mon.names <- c("LP", "beta[5]", "gamma[3]", "sigma[1]", "sigma[2]", "sigma[3]",
     "s.beta", "s.gamma", "s.epsilon")
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J-1), gamma=rep(0,K-1),
     delta=0, log.sigma=rep(0,3)))
MyData <- list(J=J, K=K, N=N, X=X, mon.names=mon.names,
     parm.names=parm.names, y=y)
```

1.3. Initial Values

```
Initial. Values <-c(0, rep(0, (J-1)), rep(0, (K-1)), 0, rep(log(1), 3))
```

1.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]</pre>
    beta <- rep(NA,Data$J)</pre>
    beta[1:(Data$J-1)] <- parm[2:Data$J]</pre>
    beta[J] <- -sum(beta[1:(Data$J-1)]) #Sum-to-zero constraint</pre>
     gamma <- rep(NA,Data$K)</pre>
    gamma[1:(Data$K-1)] <- parm[grep("gamma", Data$parm.names)]</pre>
     gamma[K] <- -sum(gamma[1:(Data$K-1)]) #Sum-to-zero constraint
     delta <- parm[grep("delta", Data$parm.names)]</pre>
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    beta.prior <- sum(dnorm(beta, 0, sigma[2], log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, sigma[3], log=TRUE))</pre>
     delta.prior <- dnormv(delta, 0, 1000, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- alpha + beta[Data$X[,1]] + gamma[Data$X[,2]] +</pre>
          delta*Data$X[,3]
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
     ### Variance Components
    s.beta <- sd(beta)
     s.gamma <- sd(gamma)
     s.epsilon <- sd(Data$y - mu)
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + gamma.prior + delta.prior +
          sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, beta[Data$J],</pre>
          gamma[Data$K], sigma, s.beta, s.gamma, s.epsilon), yhat=mu,
         parm=parm)
    return(Modelout)
```

2. ANOVA, One-Way

When J=2, this is a Bayesian form of a t-test.

2.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

 $\mu_i = \alpha + \beta[\mathbf{x}_i], \quad i = 1, \dots, N$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_j \sim \mathcal{N}(0, \sigma_2^2), \quad j = 1, \dots, (J - 1)$$

$$\beta_J = -\sum_{j=1}^{J-1} \beta_j$$

$$\sigma_{1:2} \sim \mathcal{HC}(25)$$

2.2. Data

2.3. Initial Values

```
Initial. Values \leftarrow c(0, rep(0, (J-1)), rep(log(1), 2))
```

2.4. Model

```
Model <- function(parm, Data)
    {
     ### Parameters
     alpha <- parm[1]
     beta <- rep(NA,Data$J)
     beta[1:(Data$J-1)] <- parm[2:Data$J]
     beta[J] <- -sum(beta[1:(Data$J-1)]) #Sum-to-zero constraint
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])
     ### Log(Prior Densities)
     alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
     beta.prior <- sum(dnorm(beta, 0, sigma[2], log=TRUE))
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))
     ### Log-Likelihood
     mu <- alpha + beta[Data$x]
     LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))
     ### Log-Posterior</pre>
```

3. ANOVA, Two-Way

In this representation, σ^m are the superpopulation variance components, s.beta and s.gamma are the finite-population within-variance components of the factors or treatments, and s.epsilon is the finite-population between-variance component.

3.1. Form

$$\mathbf{y}_{i} \sim \mathcal{N}(\mu_{i}, \sigma_{1}^{2})$$

$$\mu_{i} = \alpha + \beta[\mathbf{X}_{i,1}] + \gamma[\mathbf{X}_{i,2}], \quad i = 1, \dots, N$$

$$\epsilon_{i} = \mathbf{y}_{i} - \mu_{i}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{j} \sim \mathcal{N}(0, \sigma_{2}^{2}), \quad j = 1, \dots, (J - 1)$$

$$\beta_{J} = -\sum_{j=1}^{J-1} \beta_{j}$$

$$\gamma_{k} \sim \mathcal{N}(0, \sigma_{3}^{2}), \quad k = 1, \dots, (K - 1)$$

$$\gamma_{K} = -\sum_{k=1}^{K-1} \gamma_{k}$$

$$\sigma_{m} \sim \mathcal{HC}(25), \quad m = 1, \dots, 3$$

3.3. Initial Values

```
Initial. Values \leftarrow c(0, rep(0, (J-1)), rep(0, (K-1)), rep(log(1), 3))
```

3.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]</pre>
    beta <- rep(NA,Data$J)</pre>
    beta[1:(Data$J-1)] <- parm[2:Data$J]</pre>
    beta[J] <- -sum(beta[1:(Data$J-1)]) #Sum-to-zero constraint</pre>
     gamma <- rep(NA,Data$K)</pre>
     gamma[1:(Data$K-1)] <- parm[grep("gamma", Data$parm.names)]</pre>
    gamma[K] <- -sum(gamma[1:(Data$K-1)]) #Sum-to-zero constraint</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
    beta.prior <- sum(dnorm(beta, 0, sigma[2], log=TRUE))</pre>
    gamma.prior <- sum(dnorm(gamma, 0, sigma[3], log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- alpha + beta[Data$X[,1]] + gamma[Data$X[,2]]</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Variance Components
     s.beta <- sd(beta)
    s.gamma <- sd(gamma)
    s.epsilon <- sd(Data$y - mu)</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + gamma.prior +
          sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, beta[Data$J],</pre>
          gamma[Data$K], sigma, s.beta, s.gamma, s.epsilon), yhat=mu,
         parm=parm)
    return(Modelout)
    }
```

4. Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC), also called likelihood-free estimation, is not a statistical method, but a family of numerical approximation techniques in Bayesian inference. ABC is especially useful when evaluation of the likelihood, $p(\mathbf{y}|\Theta)$ is computationally prohibitive, or when suitable likelihoods are unavailable. The current example is the application of ABC in the context of linear regression. The log-likelihood is replaced with the negative sum of the distance between \mathbf{y} and \mathbf{y}^{rep} as the approximation of the log-likelihood. Distance reduces to the absolute difference. Although linear regression has an easily calculated likelihood, it is used as an example due to its generality. This example demonstrates how ABC may be estimated either with MCMC via the LaplacesDemon function or with Laplace Approximation via the LaplaceApproximation function. In this method, a tolerance (which is found often in ABC) does not need to be specified, and the logarithm of the unnormalized joint posterior density is maximized, as usual. The negative and summed distance, above, may be replaced with the negative and summed distance between summaries of the data, rather than the data itself, but this has not been desirable in testing.

4.1. Form

$$\mathbf{y} = \mu + \epsilon$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

4.2. Data

```
data(demonsnacks)
J <- ncol(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J)))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

4.3. Initial Values

```
Initial.Values <- c(rep(0,J))
4.4. Model

Model <- function(parm, Data)
    {
     ### Parameters
    beta <- parm[1:Data$J]</pre>
```

sigma <- exp(parm[Data\$J+1])</pre>

```
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
### Log-Likelihood Approximation
mu <- tcrossprod(Data$X, t(beta))
LL <- -sum(abs(Data$y - mu))
### Log-Posterior Approximation
LP <- LL + beta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
return(Modelout)
}</pre>
```

5. ARCH-M(1,1)

5.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1} + \delta \sigma_{t-1}^{2}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\delta \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \omega + \theta \epsilon_{T}^{2}$$

$$\sigma_{t}^{2} = \omega + \theta \epsilon_{t-1}^{2}$$

$$\omega < -\mathcal{HC}(25)$$

$$\theta \sim \mathcal{U}(0, 1)$$

```
 y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91, \\ 2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28, \\ 1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03, \\ -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02, \\ 0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36, \\ 1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70, \\ 0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83, \\ 0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24, \\ 0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40, \\ -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
```

```
0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha","phi","delta","log.omega","theta")</pre>
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
5.3. Initial Values
Initial. Values \leftarrow c(rep(0,3), rep(0.5,2))
5.4. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]; delta <- parm[3]</pre>
    omega <- exp(parm[4])</pre>
    parm[5] <- theta <- interval(parm[5], 1e-10, 1-1e-5)</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    delta.prior <- dnormv(delta, 0, 1000, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- dunif(theta, 0, 1, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    epsilon <- Data$y - mu
```

sigma2 <- c(omega, omega + theta*epsilon[-Data\$T]^2)</pre>

mu <- mu + delta*sigma2

6. Autoregression, AR(1)

6.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} = \alpha + \mu_{T+1}$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 1, \dots, (T+1)$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
```

```
-0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17)
T <- length(y)
mon.names <- c("LP", "sigma", "ynew")</pre>
parm.names <- c("alpha","phi","log.sigma")</pre>
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
6.3. Initial Values
Initial. Values \leftarrow c(rep(0,2), log(1))
6.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]; sigma <- exp(parm[3])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    ynew <- alpha + phi*Data$y[Data$T]</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + sigma.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,ynew),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
```

7. Autoregressive Conditional Heteroskedasticity, ARCH(1,1)

7.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \omega + \theta \epsilon_{T}^{2}$$

$$\sigma_{t}^{2} = \omega + \theta \epsilon_{t-1}^{2},$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta \sim \mathcal{U}(0, 1)$$

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
```

```
0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha","phi","log.omega","theta")</pre>
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
7.3. Initial Values
Initial. Values \leftarrow c(rep(0,2), rep(0.5,2))
7.4. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
     alpha <- parm[1]; phi <- parm[2]; omega <- exp(parm[3])</pre>
    parm[4] <- theta <- interval(parm[4], 1e-10, 1-1e-5)</pre>
                                                                    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- dunif(theta, 0, 1, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    ynew <- alpha + phi*Data$y[Data$T]</pre>
    epsilon <- Data$y - mu
    sigma2 <- c(omega, omega + theta*epsilon[-Data$T]^2)</pre>
    sigma2.new <- omega + theta*epsilon[Data$T]^2</pre>
    LL <- sum(dnormv(Data$y, mu, sigma2, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + omega.prior + theta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew,</pre>
         sigma2.new), yhat=mu, parm=parm)
```

8. Autoregressive Moving Average, ARMA(1,1)

8.1. Form

}

return(Modelout)

$$\mathbf{y}_t \sim \mathcal{N}(\mu_t, \sigma^2), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} = \alpha + \phi \mathbf{y}_T + \theta \epsilon_T$$

$$\mu_t = \alpha + \phi \mathbf{y}_{t-1} + \theta \epsilon_{t-1}$$

 $\epsilon_t = \mathbf{y}_t - \mu_t$ $\alpha \sim \mathcal{N}(0, 1000)$ $\phi \sim \mathcal{N}(0, 1000)$ $\sigma \sim \mathcal{HC}(25)$ $\theta \sim \mathcal{N}(0, 1000)$

8.2. Data

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17)
T <- length(y)
mon.names <- c("LP", "sigma", "ynew")</pre>
parm.names <- c("alpha", "phi", "sigma", "theta")</pre>
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
```

8.3. Initial Values

Initial. Values <- c(rep(0,2), 0, log(1))

8.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]; theta <- parm[3]</pre>
    sigma <- exp(parm[4])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    theta.prior <- dnormv(theta, 0, 1000, log=TRUE)
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
    epsilon <- Data$y - mu
    mu <- c(mu[1], mu[-1] + theta * epsilon[-Data$T])</pre>
    ynew <- alpha + phi*Data$y[Data$T] + theta*epsilon[Data$T]</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + sigma.prior + theta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma, ynew),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

9. Beta Regression

9.1. Form

$$\mathbf{y} \sim \mathcal{BETA}(a, b)$$

$$a = \mu \phi$$

$$b = (1 - \mu)\phi$$

$$\mu = \Phi(\beta_1 + \beta_2 \mathbf{x})$$

$$\beta_j \sim \mathcal{N}(0, 10), \quad j = 1, \dots, J$$

$$\phi \sim \mathcal{G}(1, 1)$$

where Φ is the normal CDF.

```
N \leftarrow 10
x <- runif(N)
y <- qbeta(0.5, pnorm(2-3*x)*4, (1-pnorm(2-3*x))*4)
```

```
mon.names <- "LP"
parm.names <- c("beta[1]","beta[2]","log.phi")</pre>
MyData <- list(x=x, y=y, mon.names=mon.names, parm.names=parm.names)
9.3. Initial Values
Initial. Values \leftarrow c(rep(0,2), log(0.01))
9.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:2]; phi <- exp(parm[3])
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 10, log=TRUE))</pre>
    phi.prior <- dgamma(phi, 1, 1, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- pnorm(beta[1] + beta[2]*Data$x)</pre>
    a <- mu * phi
    b <- (1-mu) * phi
    LL <- sum(dbeta(Data$y, a, b, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + phi.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)</pre>
```

10. Beta-Binomial

10.1. Form

}

return(Modelout)

$$\mathbf{y}_i \sim \mathcal{BIN}(\mathbf{n}_i, \pi_i), \quad i = 1, \dots, N$$

$$\pi_i \sim \mathcal{BETA}(\alpha, \beta) \in [0.001, 0.999]$$

```
N <- 20
n <- round(runif(N, 50, 100))
y <- round(runif(N, 1, 10))
mon.names <- "LP"
parm.names <- as.parm.names(list(pi=rep(0,N)))</pre>
```

MyData <- list(N=N, mon.names=mon.names, n=n, parm.names=parm.names, y=y)

10.3. Initial Values

```
Initial.Values <- c(rep(0.5,N))</pre>
```

10.4. Model

```
Model <- function(parm, Data)
    {
        ### Parameters
        pi <- interval(parm[1:Data$N], 0.001, 0.999)
        parm[1:Data$N] <- pi
        ### Log(Prior Densities)
        pi.prior <- sum(dbeta(pi, 1, 1, log=TRUE))
        ### Log-Likelihood
        LL <- sum(dbinom(Data$y, Data$n, pi, log=TRUE))
        yrep <- pi * Data$n
        ### Log-Posterior
        LP <- LL + pi.prior
        Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
        return(Modelout)
    }
}</pre>
```

11. Binary Logit

11.1. Form

$$\mathbf{y} \sim \mathcal{BERN}(\eta)$$

$$\eta = \frac{1}{1 + \exp(-\mu)}$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

```
data(demonsnacks)
J <- 3
y <- ifelse(demonsnacks$Calories <= 137, 0, 1)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"</pre>
```

```
parm.names <- as.parm.names(list(beta=rep(0,J)))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

11.3. Initial Values

```
Initial.Values <- rep(0,J)</pre>
```

11.4. Model

```
Model <- function(parm, Data)
    {
        ### Parameters
        beta <- parm[1:Data$J]
        ### Log(Prior Densities)
        beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
        ### Log-Likelihood
        mu <- tcrossprod(Data$X, t(beta))
        eta <- invlogit(mu)
        LL <- sum(dbern(Data$y, eta, log=TRUE))
        yrep <- ifelse(eta >= (sum(Data$y)/length(Data$y)),1,0)
        ### Log-Posterior
        LP <- LL + beta.prior
        Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
        return(Modelout)
    }
}</pre>
```

12. Binary Log-Log Link Mixture

A weighted mixture of the log-log and complementary log-log link functions is used, where α is the weight. Since the log-log and complementary log-log link functions are asymmetric (as opposed to the symmetric logit and probit link functions), it may be unknown *a priori* whether the log-log or complementary log-log will perform better.

12.1. Form

$$\mathbf{y} \sim \mathcal{BERN}(\eta)$$

$$\eta = \alpha \exp(-\exp(\mu)) + (1 - \alpha)(1 - \exp(-\exp(\mu)))$$

$$\mu = \mathbf{X}\beta$$

$$\alpha \sim \mathcal{U}(0, 1)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

```
12.2. Data
```

```
data(demonsnacks)
J <- 3
y <- ifelse(demonsnacks$Calories <= 30, 0, 1)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))</pre>
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- c("LP", "alpha")</pre>
parm.names <- as.parm.names(list(beta=rep(0,J), logit.alpha=0))</pre>
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)
12.3. Initial Values
Initial.Values <- c(rep(0,J), 0)</pre>
12.4. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    alpha <- invlogit(parm[Data$J+1])</pre>
    beta <- parm[1:Data$J]</pre>
    ### Log(Prior Densities)
    alpha.prior <- dunif(alpha, 0, 1, log=TRUE)</pre>
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    eta <- alpha*invloglog(mu) + (1-alpha)*invcloglog(mu)
    LL <- sum(dbern(Data$y, eta, log=TRUE))
    yrep <- ifelse(eta >= (sum(Data$y)/length(Data$y)),1,0)
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,alpha),</pre>
```

13. Binary Probit

13.1. Form

}

yhat=yrep, parm=parm)

return(Modelout)

$$\mathbf{y} \sim \mathcal{BERN}(\mathbf{p})$$

 $\mathbf{p} = \phi(\mu)$

```
\mu = \mathbf{X}\beta \in [-10, 10]
\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
```

where ϕ is the inverse CDF, and J=3.

13.2. Data

```
data(demonsnacks)
J <- 3
y <- ifelse(demonsnacks$Calories <= 137, 0, 1)
X <- cbind(1, as.matrix(demonsnacks[,c(7,8)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J)))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)

13.3. Initial Values
Initial.Values <- rep(0,J)</pre>
```

13.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$J]
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    mu <- interval(mu, -10, 10)
    p <- pnorm(mu)</pre>
    LL <- sum(dbern(Data$y, p, log=TRUE))</pre>
    yrep <- ifelse(p >= (sum(Data$y)/length(Data$y)),1,0)
    ### Log-Posterior
    LP <- LL + beta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
    return(Modelout)
    }
```

14. Binomial Logit

14.1. Form

$$\mathbf{y} \sim \mathcal{BIN}(\mathbf{p},\mathbf{n})$$

$$\mathbf{p} = \frac{1}{1 + \exp(-\mu)}$$
$$\mu = \beta_1 + \beta_2 \mathbf{x}$$
$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

14.2. Data

14.3. Initial Values

Initial.Values <- rep(0,J)</pre>

14.4. Model

```
Model <- function(parm, Data)
    {
        ### Parameters
        beta <- parm[1:Data$J]
        ### Log(Prior Densities)
        beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
        ### Log-Likelihood
        mu <- beta[1] + beta[2]*Data$x
        p <- invlogit(mu)
        LL <- sum(dbinom(Data$y, Data$n, p, log=TRUE))
        yrep <- p * Data$n
        ### Log-Posterior
        LP <- LL + beta.prior
        Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
        return(Modelout)
    }
}</pre>
```

15. Binomial Probit

15.1. Form

$$\mathbf{y} \sim \mathcal{BIN}(\mathbf{p}, \mathbf{n})$$

```
\mathbf{p} = \phi(\mu)
\mu = \beta_1 + \beta_2 \mathbf{x} \in [-10, 10]
\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
```

where ϕ is the inverse CDF, and J=2.

15.2. Data

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$J]
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- beta[1] + beta[2]*Data$x</pre>
    mu <- interval(mu, -10, 10)
    p <- pnorm(mu)</pre>
    LL <- sum(dbinom(Data$y, Data$n, p, log=TRUE))
    yrep <- p * Data$n</pre>
    ### Log-Posterior
    LP <- LL + beta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep,
         parm=parm)
    return(Modelout)
    }
```

16. Cluster Analysis

This is a parametric model-based cluster analysis, also called a finite mixture model or latent class cluster analysis.

16.1. Form

$$\mathbf{Y}_{i,j} \sim \mathcal{N}(\mu_{\theta[i],j}, \sigma_{\theta[i]}^2), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\theta_i = \text{Max}(\mathbf{p}_{i,1:C})$$

$$\mathbf{p}_{i,c} = \frac{\delta_{i,c}}{\sum_{c=1}^{C} \delta_{i,c}}$$

$$\pi_{1:C} \sim \mathcal{D}(\alpha_{1:C})$$

$$\pi_c = \frac{\sum_{i=1}^{N} \delta_{i,c}}{\sum \delta}$$

$$\alpha_c = 1$$

$$\delta_{i,C} = 1$$

$$\delta_{i,C} = 1$$

$$\delta_{i,c} \sim \mathcal{N}(\log(\frac{1}{C}), 1000) \in [\exp(-10), \exp(10)], \quad c = 1, \dots, (C-1)$$

$$\mu_{c,j} \sim \mathcal{N}(0, \nu_j^2)$$

$$\sigma_c \sim \mathcal{HC}(25)$$

$$\nu_j \sim \mathcal{HC}(25)$$

```
C <- 3 #Number of clusters
alpha <- rep(1,C) #Prior probability of cluster proportion
# Create a Y matrix
n <- 100; N <- 15 #Full sample; model sample
J <- 5 #Number of predictor variables
cluster <- rcat(n, rep(1,C))</pre>
centers <- matrix(runif(C*J, 0, 10), C, J)</pre>
Y.Full <- matrix(0, n, J)
for (i in 1:n) {for (j in 1:J)
    {Y.Full[i,j] <- rnorm(1,centers[cluster[i],j],1)}}
mean.temp <- colMeans(Y.Full)</pre>
sigma.temp <- apply(Y.Full,2,sd)
centers.cs <- (centers - matrix(rep(mean.temp,C), C, J, byrow=TRUE)) /</pre>
     (2 * matrix(rep(sigma.temp,C), C, J, byrow=TRUE))
for (j in 1:J) {Y.Full[,j] <- scale(Y.Full[,j],2)}
#summary(Y.Full)
MySample <- sample(1:n, N)</pre>
Y <- Y.Full[MySample,]
mon.names <- c("LP", as.parm.names(list(nu=rep(0,J), pi=rep(0,C),</pre>
```

```
sigma=rep(0,C), theta=rep(0,N))))
parm.names <- as.parm.names(list(log.delta=matrix(0,N,C-1), mu=matrix(0,C,J),</pre>
    log.nu=rep(0,J), log.sigma=rep(0,C)))
\label{eq:myData} $$\operatorname{Iist}(C=C,\ J=J,\ N=N,\ Y=Y,\ alpha=alpha,\ mon.names=mon.names,
    parm.names=parm.names)
16.3. Initial Values
Initial. Values \leftarrow c(runif(N*(C-1),-1,1), rep(0,C*J), rep(0,J), rep(0,C))
16.4. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    delta <- interval(parm[grep("log.delta", Data$parm.names)], -10, 10)</pre>
    parm[grep("log.delta", Data$parm.names)] <- delta</pre>
    delta <- matrix(c(exp(delta), rep(1, Data$N)), Data$N, Data$C)</pre>
    mu <- matrix(parm[grep("mu", Data$parm.names)], Data$C, Data$J)</pre>
    nu <- exp(parm[grep("log.nu",Data$parm.names)])</pre>
    pi <- colSums(delta) / sum(delta)</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    delta.prior <- sum(dtrunc(delta, "norm", a=exp(-10), b=exp(10),
          mean=log(1/Data$C), sd=sqrt(1000), log=TRUE))
    mu.prior <- sum(dnorm(mu, 0, matrix(rep(nu,Data$C), Data$C,</pre>
         Data$J, byrow=TRUE), log=TRUE))
    nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
    pi.prior <- ddirichlet(pi, Data$alpha, log=TRUE)</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    p <- delta / rowSums(delta)</pre>
    theta <- max.col(p)
    LL <- sum(dnorm(Data$Y, mu[theta,], sigma[theta], log=TRUE))
    Yrep <- mu[theta,]</pre>
    ### Log-Posterior
    LP <- LL + delta.prior + mu.prior + nu.prior + pi.prior +
          sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,nu,pi,sigma,theta),</pre>
         yhat=Yrep, parm=parm)
    return(Modelout)
    }
```

17. Conditional Autoregression (CAR), Poisson

This CAR example is a slightly modified form of example 7.3 (Model A) in Congdon (2003). The Scottish lip cancer data also appears in the WinBUGS (Spiegelhalter, Thomas, Best, and Lunn 2003) examples and is a widely analyzed example. The data \mathbf{y} consists of counts for $i=1,\ldots,56$ counties in Scotland. A single predictor \mathbf{x} is provided. The errors, ϵ , are allowed to include spatial effects as smoothing by spatial effects from areal neighbors. The vector ϵ_{μ} is the mean of each area's error, and is a weighted average of errors in contiguous areas. Areal neighbors are indicated in adjacency matrix \mathbf{A} .

17.1. Form

$$\mathbf{y} \sim \mathcal{P}(\lambda)$$

$$\lambda = \exp(\log(\mathbf{E}) + \beta_1 + \beta_2 \mathbf{x} + \epsilon)$$

$$\epsilon \sim \mathcal{N}(\epsilon_{\mu}, \sigma^2)$$

$$\epsilon_{\mu[i]} = \rho \sum_{j=1}^{J} \mathbf{A}_{i,j} \epsilon_j, \quad i = 1, \dots, N$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\rho \sim \mathcal{U}(-1, 1)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
N <- 56 #Number of areas
NN <- 264 #Number of adjacent areas
y \leftarrow c(9,39,11,9,15,8,26,7,6,20,13,5,3,8,17,9,2,7,9,7,16,31,11,7,19,15,7,
     10,16,11,5,3,7,8,11,9,11,8,6,4,10,8,2,6,19,3,2,3,28,6,1,1,1,1,0,0)
E \leftarrow c(1.4,8.7,3.0,2.5,4.3,2.4,8.1,2.3,2.0,6.6,4.4,1.8,1.1,3.3,7.8,4.6,
     1.1, 4.2, 5.5, 4.4, 10.5, 22.7, 8.8, 5.6, 15.5, 12.5, 6.0, 9.0, 14.4, 10.2, 4.8,
    2.9,7.0,8.5,12.3,10.1,12.7,9.4,7.2,5.3,18.8,15.8,4.3,14.6,50.7,8.2,
     5.6,9.3,88.7,19.6,3.4,3.6,5.7,7.0,4.2,1.8) #Expected
7,7,10,10,7,24,10,7,7,0,10,1,16,0,1,16,16,0,1,7,1,1,0,1,1,0,1,1,16,10
A <- matrix(0, N, N)
A[1,c(5,9,11,19)] <-1 #Area 1 is adjacent to areas 5, 9, 11, and 19
A[2,c(7,10)] \leftarrow 1 \text{ #Area 2 is adjacent to areas 7 and 10}
A[3,c(6,12)] \leftarrow 1; A[4,c(18,20,28)] \leftarrow 1; A[5,c(1,11,12,13,19)] \leftarrow 1
A[6,c(3,8)] \leftarrow 1; A[7,c(2,10,13,16,17)] \leftarrow 1; A[8,6] \leftarrow 1
A[9,c(1,11,17,19,23,29)] \leftarrow 1; A[10,c(2,7,16,22)] \leftarrow 1
A[11,c(1,5,9,12)] \leftarrow 1; A[12,c(3,5,11)] \leftarrow 1; A[13,c(5,7,17,19)] \leftarrow 1
A[14,c(31,32,35)] \leftarrow 1; A[15,c(25,29,50)] \leftarrow 1
A[16,c(7,10,17,21,22,29)] \leftarrow 1; A[17,c(7,9,13,16,19,29)] \leftarrow 1
A[18,c(4,20,28,33,55,56)] \leftarrow 1; A[19,c(1,5,9,13,17)] \leftarrow 1
A[20,c(4,18,55)] \leftarrow 1; A[21,c(16,29,50)] \leftarrow 1; A[22,c(10,16)] \leftarrow 1
```

```
A[23,c(9,29,34,36,37,39)] \leftarrow 1; A[24,c(27,30,31,44,47,48,55,56)] \leftarrow 1
A[25,c(15,26,29)] \leftarrow 1; A[26,c(25,29,42,43)] \leftarrow 1
A[27,c(24,31,32,55)] \leftarrow 1; A[28,c(4,18,33,45)] \leftarrow 1
A[29,c(9,15,16,17,21,23,25,26,34,43,50)] <- 1
A[30,c(24,38,42,44,45,56)] \leftarrow 1; A[31,c(14,24,27,32,35,46,47)] \leftarrow 1
A[32,c(14,27,31,35)] \leftarrow 1; A[33,c(18,28,45,56)] \leftarrow 1
A[34,c(23,29,39,40,42,43,51,52,54)] \leftarrow 1; A[35,c(14,31,32,37,46)] \leftarrow 1
A[36,c(23,37,39,41)] \leftarrow 1; A[37,c(23,35,36,41,46)] \leftarrow 1
A[38,c(30,42,44,49,51,54)] \leftarrow 1; A[39,c(23,34,36,40,41)] \leftarrow 1
A[40,c(34,39,41,49,52)] <-1; A[41,c(36,37,39,40,46,49,53)] <-1
A[42,c(26,30,34,38,43,51)] \leftarrow 1; A[43,c(26,29,34,42)] \leftarrow 1
A[44,c(24,30,38,48,49)] \leftarrow 1; A[45,c(28,30,33,56)] \leftarrow 1
A[46,c(31,35,37,41,47,53)] \leftarrow 1; A[47,c(24,31,46,48,49,53)] \leftarrow 1
A[48,c(24,44,47,49)] \leftarrow 1; A[49,c(38,40,41,44,47,48,52,53,54)] \leftarrow 1
A[50,c(15,21,29)] \leftarrow 1; A[51,c(34,38,42,54)] \leftarrow 1
A[52,c(34,40,49,54)] \leftarrow 1; A[53,c(41,46,47,49)] \leftarrow 1
A[54,c(34,38,49,51,52)] \leftarrow 1; A[55,c(18,20,24,27,56)] \leftarrow 1
A[56,c(18,24,30,33,45,55)] <- 1
mon.names <- c("LP", "sigma")</pre>
\verb|parm.names| <- as.parm.names(list(beta=rep(0,2), epsilon=rep(0,N), rho=0, list(beta=rep(0,2), epsilon=rep(0,N), rho=0, list(beta=rep(0,2), epsilon=rep(0,N), rho=0, list(beta=rep(0,2), epsilon=rep(0,N), rho=0, list(beta=rep(0,2), epsilon=rep(0,N), rho=0, list(beta=rep(0,N), epsilon=rep(0,N), epsi
          log.sigma=0))
MyData <- list(A=A, E=E, N=N, mon.names=mon.names, parm.names=parm.names,
         x=x, y=y
17.3. Initial Values
Initial. Values \leftarrow c(rep(0,2), rep(0,N), 0, 0)
17.4. Model
Model <- function(parm, Data)</pre>
         {
         ### Parameters
         beta <- parm[1:2]
          epsilon <- parm[grep("epsilon", Data$parm.names)]</pre>
         rho <- interval(parm[grep("rho", Data$parm.names)], -1, 1)</pre>
         parm[grep("rho", Data$parm.names)] <- rho</pre>
         epsilon.mu <- rho * rowSums(epsilon * Data$A)</pre>
          sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
         ### Log(Prior Densities)
         beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
         epsilon.prior <- sum(dnorm(epsilon, epsilon.mu, sigma, log=TRUE))</pre>
         rho.prior <- dunif(rho, -1, 1, log=TRUE)</pre>
         sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
         ### Log-Likelihood
         lambda <- exp(log(Data$E) + beta[1] + beta[2]*Data$x/10 + epsilon)</pre>
         LL <- sum(dpois(Data$y, lambda, log=TRUE))</pre>
```

18. Conditional Predictive Ordinate

For a more complete introduction to the conditional predictive ordinate (CPO), see the vignette entitled "Bayesian Inference". Following is a brief guide to the applied use of CPO.

To include CPO in any model that is to be updated with MCMC, calculate and monitor the record-level inverse of the likelihood, $InvL_i$ for records i = 1, ..., N. CPO_i is the inverse of the posterior mean of $InvL_i$. The inverse CPO_i , or $ICPO_i$, is the posterior mean of $InvL_i$. ICPOs larger than 40 can be considered as possible outliers, and higher than 70 as extreme values.

Here, CPO is added to the linear regression example in section 40. In this data, record 6 is a possible outlier, and record 8 is an extreme value.

18.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

18.2. Data

```
data(demonsnacks)
J <- ncol(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- c("LP","sigma", as.parm.names(list(InvL=rep(0,N))))
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

18.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

18.4. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
    beta <- parm[1:Data$J]</pre>
     sigma <- exp(parm[Data$J+1])</pre>
     ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- dnorm(Data$y, mu, sigma, log=TRUE)
     InvL <- 1 / exp(LL)
    LL <- sum(LL)
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,InvL),
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

19. Contingency Table

The two-way contingency table, matrix \mathbf{Y} , can easily be extended to more dimensions. For this example, it is vectorized as y, and used like an ANOVA data set. Contingency table \mathbf{Y} has J rows and K columns. The cell counts are fit with Poisson regression, according to intercept α , main effects β_j for each row, main effects γ_k for each column, and interaction effects $\delta_{j,k}$ for dependence effects. An omnibus (all cells) test of independence is done by estimating two models (one with δ , and one without), and a large enough Bayes Factor indicates a violation of independence when the model with δ fits better than the model without δ . In an ANOVA-like style, main effects contrasts can be used to distinguish rows or groups of rows from each other, as well as with columns. Likewise, interaction effects contrasts can be used to test independence in groups of $\delta_{j,k}$ elements. Finally, single-cell interactions can be used to indicate violations of independence for a given cell, such as when zero is not within its 95% probability interval. Although a little different, this example is similar to a method presented by Albert (1997).

19.1. Form

$$\mathbf{Y}_{j,k} \sim \mathcal{P}(\lambda_{j,k}), \quad j = 1, \dots, J, \quad k = 1, \dots, K$$

$$\lambda_{j,k} = \exp(\alpha + \beta_j + \gamma_k + \delta_{j,k}), \quad j = 1, \dots, J, \quad k = 1, \dots, K$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_j \sim \mathcal{N}(0, \beta_\sigma^2), \quad j = 1, \dots, J$$

$$\beta_{\sigma} \sim \mathcal{HC}(25)$$

$$\gamma_{k} \sim \mathcal{N}(0, \gamma_{\sigma}^{2}), \quad k = 1, \dots, K$$

$$\gamma_{\sigma} \sim \mathcal{HC}(25)$$

$$\delta_{j,k} \sim \mathcal{N}(0, \delta_{\sigma}^{2})$$

$$\delta_{\sigma} \sim \mathcal{HC}(25)$$

19.2. Data

```
J <- 4 #Rows
K <- 4 #Columns
Y \leftarrow \text{matrix}(c(10,20,60,20, 40,30,10,40, 10,10,40,10, 40,50,1,40), J, K,
     dimnames=list(c("Chrysler", "Ford", "Foreign", "GM"),
     c("I-4","I-6","V-6","V-8")))
y <- as.vector(Y)
N <- length(y) #Cells
r \leftarrow rep(1:J, N/J)
c <- rep(1,K)
for (k in 2:K) \{c \leftarrow c(c, rep(k, K))\}
mon.names <- c("LP","beta.sigma","gamma.sigma","delta.sigma")</pre>
parm.names <- as.parm.names(list(alpha=0, beta=rep(0,J), gamma=rep(0,J),</pre>
     log.b.sigma=0, log.g.sigma=0, log.d.sigma=0,
    delta=matrix(0,J,K)))
MyData <- list(J=J, K=K, N=N, c=c, mon.names=mon.names,
    parm.names=parm.names, r=r, y=y)
19.3. Initial Values
Initial. Values \leftarrow c(0, rep(0,J), rep(0,K), rep(0,3), rep(0,J*K))
```

19.4. Model

```
gamma.sigma.prior <- dhalfcauchy(gamma.sigma, 25, log=TRUE)</pre>
delta.sigma.prior <- dhalfcauchy(delta.sigma, 25, log=TRUE)
### Log(Prior Densities)
alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
beta.prior <- sum(dnorm(beta, 0, beta.sigma, log=TRUE))</pre>
gamma.prior <- sum(dnorm(gamma, 0, gamma.sigma, log=TRUE))</pre>
delta.prior <- sum(dnorm(delta, 0, delta.sigma, log=TRUE))</pre>
### Log-Likelihood
lambda <- exp(alpha + beta[Data$r] + gamma[Data$c] +</pre>
    diag(delta[Data$r,Data$c]))
LL <- sum(dpois(Data$y, lambda, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + beta.sigma.prior +
    gamma.prior + gamma.sigma.prior + delta.prior +
    delta.sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, beta.sigma,
    gamma.sigma, delta.sigma), yhat=lambda, parm=parm)
return(Modelout)
}
```

20. Covariance Separation Strategy

A Seemingly Unrelated Regression (SUR) model is used to provide an example of a flexible way to estimate covariance or precision matrices with the "separation strategy" decomposition of Barnard, McCulloch, and Meng (2000). For more information on SUR models, see section 67.

The most common way of specifying a covariance matrix, such as for the multivariate normal distribution, may be with the conjugate inverse Wishart distribution. Alternatively, the conjugate Wishart distribution is often used for a precision matrix. The Wishart and inverse Wishart distributions, however, do not always perform well, due to only one parameter for variability, and usually in the case of small sample sizes or when its dimension approaches the sample size. There are several alternatives. This example decomposes a covariance matrix into a standard deviation vector and a correlation matrix, each of which are easy to understand (as opposed to setting priors on eigenvalues). A precision matrix may be decomposed similarly, though the separated components are interpreted differently.

Barnard et~al. (2000) prefer to update the covariance separation strategy with Gibbs sampling rather than Metropolis-Hastings, though the form presented here works well in testing with Adaptive Metropolis.

20.1. Form

$$\mathbf{Y}_{t,j} \sim \mathcal{N}_J(\mu_{t,j}, \Sigma), \quad t = 1, \dots, T; \quad j = 1, \dots, J$$

 $\mu_{t,1} = \alpha_1 + \alpha_2 \mathbf{X}_{t-1,1} + \alpha_3 \mathbf{X}_{t-1,2}, \quad t = 2, \dots, T$
 $\mu_{t,2} = \beta_1 + \beta_2 \mathbf{X}_{t-1,3} + \beta_3 \mathbf{X}_{t-1,4}, \quad t = 2, \dots, T$

$$\Sigma = \mathbf{SRS}$$

$$\alpha_k \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\beta_k \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\mathbf{R}_{i,j} \sim \mathcal{N}(\rho_{\mu}, \rho_{\sigma}^2), \quad \mathbf{R}_{i,j} \in [-1, 1], \quad i = 1, \dots, J$$

$$\mathbf{S} = \sigma \mathbf{I}_J$$

$$\rho_{\mu} \sim \mathcal{N}(0, 2), \quad \in [-1, 1]$$

$$\rho_{\sigma} \sim \mathcal{HC}(25), \quad \in (0, 1000]$$

$$\sigma_j \sim \mathcal{N}(\sigma_{\mu}, \sigma_{\sigma})$$

$$\sigma_{\mu} \sim \mathcal{HN}(1000), \quad \in (0, 1000]$$

$$\sigma_{\sigma} \sim \mathcal{HC}(25)$$

20.2. Data

```
T <- 20 #Time-periods
year <- c(1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,
    1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954)
IG <- c(33.1,45.0,77.2,44.6,48.1,74.4,113.0,91.9,61.3,56.8,93.6,159.9,
    147.2,146.3,98.3,93.5,135.2,157.3,179.5,189.6)
VG <- c(1170.6,2015.8,2803.3,2039.7,2256.2,2132.2,1834.1,1588.0,1749.4,
    1687.2,2007.7,2208.3,1656.7,1604.4,1431.8,1610.5,1819.4,2079.7,
    2371.6,2759.9)
CG <- c(97.8,104.4,118.0,156.2,172.6,186.6,220.9,287.8,319.9,321.3,319.6,
    346.0,456.4,543.4,618.3,647.4,671.3,726.1,800.3,888.9)
IW <- c(12.93,25.90,35.05,22.89,18.84,28.57,48.51,43.34,37.02,37.81,
    39.27,53.46,55.56,49.56,32.04,32.24,54.38,71.78,90.08,68.60)
VW <- c(191.5,516.0,729.0,560.4,519.9,628.5,537.1,561.2,617.2,626.7,
    737.2,760.5,581.4,662.3,583.8,635.2,723.8,864.1,1193.5,1188.9)
CW \leftarrow c(1.8, 0.8, 7.4, 18.1, 23.5, 26.5, 36.2, 60.8, 84.4, 91.2, 92.4, 86.0, 111.1,
    130.6,141.8,136.7,129.7,145.5,174.8,213.5)
J <- 2 #Number of dependent variables
Y <- matrix(c(IG,IW), T, J)
R \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,3), beta=rep(0,3),
    R=diag(J), rho.mu=0, rho.sigma=0, log.sigma=rep(0,J), sigma.mu=0,
    log.sig.sigma=0), uppertri=c(0,0,1,0,0,0,0,0)
MyData <- list(J=J, T=T, Y=Y, CG=CG, CW=CW, IG=IG, IW=IW, VG=VG,
    VW=VW, mon.names=mon.names, parm.names=parm.names)
```

20.3. Initial Values

```
Initial.Values \leftarrow c(rep(0,3), rep(0,3), upper.triangle(R, diag=TRUE), rep(0,2), rep(0,J), rep(1,2))
```

20.4. Model

```
Model <- function(parm, Data)</pre>
    ### Hyperparameters
    rho.mu <- interval(parm[grep("rho.mu", Data$parm.names)], -1, 1)</pre>
    parm[grep("rho.mu", Data$parm.names)] <- rho.mu</pre>
    rho.sigma <- interval(parm[grep("rho.sigma", Data$parm.names)],</pre>
          .Machine$double.eps, 1000)
    parm[grep("rho.sigma", Data$parm.names)] <- rho.sigma</pre>
    sigma.mu <- interval(parm[grep("sigma.mu", Data$parm.names)],</pre>
          .Machine$double.eps, 1000)
    parm[grep("sigma.mu", Data$parm.names)] <- sigma.mu</pre>
    sigma.sigma <- exp(parm[grep("log.sig.sigma", Data$parm.names)])</pre>
    ### Parameters
    alpha <- parm[1:3]
    beta <- parm[4:6]
    R <- as.parm.matrix(R, Data$J, parm, Data, a=-1, b=1)</pre>
    parm[grep("R", Data$parm.names)] <- upper.triangle(R, diag=TRUE)</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    S <- diag(Data$J); diag(S) <- sigma
    Sigma <- S %*% R %*% S
    ### Log(Hyperprior Densities)
    rho.mu.prior <- dtrunc(rho.mu, "norm", a=-1, b=1, mean=0, sd=2,
         log=TRUE)
    rho.sigma.prior <- dhalfcauchy(rho.sigma, 25, log=TRUE)</pre>
    sigma.mu.prior <- dhalfnorm(sigma.mu, 1000, log=TRUE)</pre>
    sigma.sigma.prior <- dhalfcauchy(sigma.sigma, 25, log=TRUE)</pre>
    ### Log(Prior Densities)
    alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    R.prior <- sum(dtrunc(upper.triangle(R, diag=TRUE), "norm",</pre>
         a=-1, b=1, mean=rho.mu, sd=rho.sigma, log=TRUE))
    sigma.prior <- sum(dnorm(sigma, sigma.mu, sigma.sigma, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- Data$Y
    mu[-1,1] \leftarrow alpha[1] + alpha[2]*Data$CG[-Data$T] +
         alpha[3]*Data$VG[-Data$T]
    mu[-1,2] \leftarrow beta[1] + beta[2]*Data$CW[-Data$T] +
         beta[3] *Data$VW[-Data$T]
    LL <- sum(dmvn(Data$Y[-1,], mu[-1,], Sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + R.prior + rho.mu.prior +
         rho.sigma.prior + sigma.prior + sigma.mu.prior +
         sigma.sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
```

}

21. Discrete Choice, Conditional Logit

21.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{p}_{i,1:J}), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\mathbf{p}_{i,j} = \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}$$

$$\phi = \exp(\mu)$$

$$\mu_{i,j} = \beta_{j,1:K} \mathbf{X}_{i,1:K} + \gamma \mathbf{Z}_{i,1:C} \in [-700, 700], \quad j = 1, \dots, (J-1)$$

$$\mu_{i,J} = \gamma \mathbf{Z}_{i,1:C}$$

$$\beta_{j,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\gamma_{c} \sim \mathcal{N}(0, 1000)$$

```
y \leftarrow x01 \leftarrow x02 \leftarrow z01 \leftarrow z02 \leftarrow c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] \leftarrow rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] \leftarrow rnorm(100, 35, 3.5)
x02[1:100] \leftarrow rnorm(100, 2.51, 0.25)
x02[101:200] \leftarrow rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
z01[1:100] <- 1
z01[101:200] <- 2
z01[201:300] <- 3
z02[1:100] <- 40
z02[101:200] <- 50
z02[201:300] <- 100
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of individual attributes (including the intercept)
C <- 2 #Number of choice-based attributes (intercept is not included)
X \leftarrow \text{matrix}(c(\text{rep}(1,N),x01,x02),N,K) \text{ #Design matrix of individual attrib.}
Z \leftarrow matrix(c(z01,z02),N,C) #Design matrix of choice-based attributes
mon.names <- "LP"
```

21.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,(J-1)*K), rep(0,C))
```

21.4. Model

```
Model <- function(parm, Data)</pre>
            ### Parameters
    beta <- matrix(parm[grep("beta", Data$parm.names)], Data$J-1, Data$K)</pre>
    gamma <- parm[grep("gamma", Data$parm.names)]</pre>
     ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    gamma.prior <- sum(dnormv(gamma, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(rep(tcrossprod(gamma, Data$Z), Data$J), Data$N, Data$J)</pre>
    mu[,-Data$J] <- mu[,-Data$J] + tcrossprod(Data$X, beta)</pre>
    mu <- interval(mu, -700, 700)
    phi <- exp(mu)
    p <- phi / rowSums(phi)</pre>
    LL <- sum(dcat(Data$y, p, log=TRUE))</pre>
    yrep <- max.col(p)</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + gamma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
    return(Modelout)
    }
```

22. Discrete Choice, Mixed Logit

$$\mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{p}_{i,1:J}), \quad i = 1, \dots, N$$

$$\mathbf{p}_{i,j} = \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}$$

$$\phi = \exp(\mu)$$

$$\mu_{i,j} = \beta_{j,1:K} \mathbf{X}_{i,1:K} + \gamma \mathbf{Z}_{i,1:C} \in [-700, 700], \quad j = 1, \dots, (J-1)$$

$$\mu_{i,J} = \gamma \mathbf{Z}_{i,1:C}$$

$$\beta_{j,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\gamma_c \sim \mathcal{N}(\zeta_{\mu[c]}, \zeta_{\sigma[c]}^2)$$

$$\zeta_{\mu[c]} \sim \mathcal{N}(0, 1000)$$

$$\zeta_{\sigma[c]} \sim \mathcal{HC}(25)$$

22.2. Data

```
y \leftarrow x01 \leftarrow x02 \leftarrow z01 \leftarrow z02 \leftarrow c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] \leftarrow rnorm(100, 35, 3.5)
x02[1:100] <- rnorm(100, 2.51, 0.25)
x02[101:200] \leftarrow rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
z01[1:100] <- 1
z01[101:200] <- 2
z01[201:300] <- 3
z02[1:100] <- 40
z02[101:200] <- 50
z02[201:300] <- 100
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of individual attributes (including the intercept)
C \leftarrow 2 #Number of choice-based attributes (intercept is not included)
X \leftarrow \text{matrix}(c(\text{rep}(1,N),x01,x02),N,K) \text{ #Design matrix of individual attrib.}
Z <- matrix(c(z01,z02),N,C) #Design matrix of choice-based attributes
mon.names <- c("LP", as.parm.names(list(zeta.sigma=rep(0,C))))</pre>
parm.names <- as.parm.names(list(beta=matrix(0,J-1,K), gamma=rep(0,C),</pre>
     zeta.mu=rep(0,C), log.zeta.sigma=rep(0,C)))
MyData <- list(C=C, J=J, K=K, N=N, X=X, Z=Z, mon.names=mon.names,
     parm.names=parm.names, y=y)
```

22.3. Initial Values

```
Initial. Values \leftarrow c(rep(0, (J-1)*K), rep(0,N*C), rep(0,C), rep(0,C))
```

```
zeta.mu <- parm[grep("zeta.mu", Data$parm.names)]</pre>
zeta.sigma <- exp(parm[grep("log.zeta.sigma", Data$parm.names)])</pre>
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
gamma.prior <- sum(dnorm(gamma, matrix(zeta.mu, Data$N, Data$C,
     byrow=TRUE), matrix(zeta.sigma, Data$N, Data$C, byrow=TRUE),
log=TRUE))
zeta.mu.prior <- sum(dnormv(zeta.mu, 0, 1000, log=TRUE))</pre>
zeta.sigma.prior <- sum(dhalfcauchy(zeta.sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(rep(rowSums(gamma * Data$Z),Data$J), Data$N, Data$J)</pre>
mu[,-Data$J] <- tcrossprod(Data$X, beta) + gamma * Data$Z</pre>
mu <- interval(mu, -700, 700)
phi <- exp(mu)
p <- phi / rowSums(phi)</pre>
LL <- sum(dcat(Data$y, p, log=TRUE))</pre>
yrep <- max.col(p)</pre>
### Log-Posterior
LP <- LL + beta.prior + gamma.prior + zeta.mu.prior + zeta.sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,zeta.sigma),</pre>
     yhat=yrep, parm=parm)
return(Modelout)
}
```

23. Discrete Choice, Multinomial Probit

$$\begin{aligned} \mathbf{Z}_{i,1:J} &\sim \mathcal{N}_{J}(\mu_{i,1:J}, \Sigma), \quad i = 1, \dots, N \\ \mathbf{Z}_{i,j} &\in \left\{ \begin{array}{ll} [0,10] & \text{if } \mathbf{y}_{i} = j \\ [-10,0] & \\ \mu_{1:N,j} &= \mathbf{X}\beta_{j,1:K} + \mathbf{W}\gamma[a,1:C] \\ \mathbf{a} &= \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{y}_{i} < J \\ 2 & \\ \end{array} \right. \\ \Sigma &\sim \mathcal{IW}_{J+1}(\mathbf{S}^{-1}), \quad \mathbf{S} &= \mathbf{I}_{J}, \quad \Sigma[1,1] = 1 \\ \beta_{j,k} &\sim \mathcal{N}(0,1000), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K \\ \beta_{J,k} &= -\sum_{j=1}^{J-1} \beta_{j,k} \\ \gamma_{1,1:C} &\sim \mathcal{N}(0,1000) \end{aligned}$$

$$\gamma_{2,c} = -\gamma_{1,c}, \quad c = 1, \dots, C$$

 $\mathbf{Z}_{i,j} \sim \mathcal{N}(0, 1000) \in [-10, 10]$

23.2. Data

Model <- function(parm, Data)</pre>

Parameters

```
y \leftarrow x1 \leftarrow x2 \leftarrow w1 \leftarrow w2 \leftarrow c(1:30)
y[1:10] <- 1
y[11:20] <- 2
y[21:30] <- 3
x1[1:10] <- rnorm(10, 25, 2.5)
x1[11:20] <- rnorm(10, 40, 4.0)
x1[21:30] <- rnorm(10, 35, 3.5)
x2[1:10] \leftarrow rnorm(10, 2.51, 0.25)
x2[11:20] \leftarrow rnorm(10, 2.01, 0.20)
x2[21:30] \leftarrow rnorm(10, 2.70, 0.27)
w1[1:10] <- 10
w1[11:20] <- 4
w1[21:30] <- 1
w2[1:10] <- 40
w2[11:20] <- 50
w2[21:30] <- 100
N <- length(y)
J <- length(unique(y)) #Number of categories in y</pre>
K \leftarrow 3 #Number of columns to be in design matrix X
S \leftarrow diag(J)
X <- matrix(c(rep(1,N),x1,x2),N,K)</pre>
C <- 2 #Number of choice-based attributes
W \leftarrow matrix(c(w1,w2),N,C) #Design matrix of choice-based attributes
mon.names <- "LP"
sigma.temp <- as.parm.names(list(Sigma=diag(J)), uppertri=1)</pre>
parm.names <- c(sigma.temp[2:length(sigma.temp)],</pre>
     as.parm.names(list(beta=matrix(0,(J-1),K), gamma=rep(0,C),
     Z=matrix(0,N,J)))
MyData <- list(J=J, K=K, N=N, S=S, W=W, X=X, mon.names=mon.names,
     parm.names=parm.names, y=y)
23.3. Initial Values
Initial.Values <- c(rep(0, length(upper.triangle(S, diag=TRUE)) - 1),</pre>
     rep(0,(J-1)*K), rep(0,C), rep(0,N*J))
23.4. Model
```

```
beta <- matrix(parm[grep("beta", Data$parm.names)], Data$J-1, Data$K)</pre>
beta <- rbind(beta, colSums(beta)*-1) #Sum to zero constraint
gamma <- parm[grep("gamma", Data$parm.names)]</pre>
gamma <- rbind(gamma, gamma*-1) #Sum to zero constraint
Sigma <- as.parm.matrix(Sigma, Data$J, parm, Data, restrict=TRUE)</pre>
parm[grep("Sigma", Data$parm.names)] <- upper.triangle(Sigma,</pre>
     diag=TRUE)[-1]
Z <- matrix(parm[grep("Z", Data$parm.names)], Data$N, Data$J)</pre>
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
gamma.prior <- sum(dnormv(gamma, 0, 1000, log=TRUE))</pre>
Sigma.prior <- dinvwishart(Sigma, Data$J+1, Data$S, log=TRUE)</pre>
Z.prior <- sum(dnormv(Z, 0, 1000, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(c(rep(tcrossprod(gamma[1,], Data$W),J),</pre>
     tcrossprod(gamma[2,], Data$W)),Data$N,Data$J)
mu <- mu + tcrossprod(Data$X, beta)</pre>
Y <- as.indicator.matrix(Data$y)</pre>
Z \leftarrow ifelse(Z > 10, 10, Z); Z \leftarrow ifelse({Y == 0} & {Z > 0}, 0, Z)
Z \leftarrow ifelse(Z \leftarrow -10, -10, Z); Z \leftarrow ifelse({Y == 1} & {Z < 0}, 0, Z)
parm[grep("Z", Data$parm.names)] <- as.vector(Z)</pre>
LL <- sum(dmvn(Z, mu, Sigma, log=TRUE))
yrep <- max.col(Z)</pre>
#eta <- exp(mu)</pre>
#p <- eta / rowSums(eta)</pre>
### Log-Posterior
LP <- LL + beta.prior + gamma.prior + Sigma.prior + Z.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
return(Modelout)
}
```

24. Distributed Lag, Koyck

This example applies Koyck or geometric distributed lags to k = 1, ..., K discrete events in covariate \mathbf{x} , transforming the covariate into a $N \times K$ matrix \mathbf{X} and creates a $N \times K$ lag matrix \mathbf{L} .

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu_t = \alpha + \phi \mathbf{y}_{t-1} + \sum_{k=1}^K \mathbf{X}_{t,k} \beta \lambda^{\mathbf{L}[t,k]}, \quad k = 1, \dots, K, \quad t = 2, \dots, T$$

$$\mu_{1} = \alpha + \sum_{k=1}^{K} \mathbf{X}_{1,k} \beta \lambda^{\mathbf{L}[1,k]}, \quad k = 1, \dots, K$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta \sim \mathcal{N}(0, 1000)$$

$$\lambda \sim \mathcal{U}(0, 1)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma \sim \mathcal{HC}(25)$$

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
   2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
   1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
   -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
   0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
   1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
   0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
   0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
   0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
   -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
   0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
   -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
   -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
   -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
   0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
   -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
   0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
   -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
   -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
   0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
   -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
   0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
   0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
   0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
   -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
   0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
   -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
   0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
```

24.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,2), 0.5, 0, log(1))
```

```
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    alpha <- parm[1]; beta <- parm[2]</pre>
    lambda <- interval(parm[3],0,1); parm[3] <- lambda</pre>
    phi <- parm[4]; sigma <- exp(parm[5])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    beta.prior <- dnormv(beta, 0, 1000, log=TRUE)</pre>
    lambda.prior <- dunif(lambda, 0, 1, log=TRUE)</pre>
    phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- c(alpha, alpha + phi*Data$y[-Data$T]) +</pre>
          rowSums(Data$X * beta * lambda^Data$L)
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + lambda.prior + phi.prior +
         sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
    }
```

25. Dynamic Linear Model (DLM)

The data is presented so that the time-series is subdivided into three sections: modeled $(t = 1, ..., T_m)$, one-step ahead forecast $(t = T_m + 1)$, and future forecast $[t = (T_m + 2), ..., T]$.

25.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{V}^{2}), \quad t = 1, \dots, T_{m}$$

$$\mathbf{y}_{t}^{new} \sim \mathcal{N}(\mu_{t}, \sigma_{V}^{2}), \quad t = (T_{m} + 1), \dots, T$$

$$\mu_{t} = \alpha + \mathbf{x}_{t}\beta_{t}, \quad t = 1, \dots, T$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\beta_{1} \sim \mathcal{N}(0, 1000)$$

$$\beta_{t} \sim \mathcal{N}(\beta_{t-1}, \sigma_{W}^{2}), \quad t = 2, \dots, T$$

$$\sigma_{V} \sim \mathcal{HC}(25)$$

$$\sigma_{W} \sim \mathcal{HC}(25)$$

25.2. Data

```
T <- 20
T.m <- 14
beta.orig <- x <- rep(0,T)
for (t in 2:T) {
  beta.orig[t] <- beta.orig[t-1] + rnorm(1,0,0.1)
  x[t] <- x[t-1] + rnorm(1,0,0.1)}
  y <- 10 + beta.orig*x + rnorm(T,0,0.1)
  y[(T.m+2):T] <- NA
  mon.names <- rep(NA, (T-T.m))
  for (i in 1:(T-T.m)) mon.names[i] <- paste("mu[",(T.m+i),"]", sep="")
  parm.names <- as.parm.names(list(alpha=0, beta=rep(0,T), log.beta.w.sigma=0, log.v.sigma=0))
MyData <- list(T=T, T.m=T.m, mon.names=mon.names, parm.names=parm.names, x=x, y=y)</pre>
```

25.3. Initial Values

```
Initial.Values <- rep(0,T+3)</pre>
```

```
Model <- function(parm, Data)
{
    ### Parameters</pre>
```

```
alpha <- parm[1]</pre>
beta <- parm[2:(Data$T+1)]</pre>
beta.w.sigma <- exp(parm[Data$T+2])</pre>
v.sigma <- exp(parm[Data$T+3])</pre>
### Log(Prior Densities)
alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)
beta.prior <- rep(0,Data$T)</pre>
beta.prior[1] <- dnormv(beta[1], 0, 1000, log=TRUE)</pre>
beta.prior[2:Data$T] <- dnorm(beta[2:Data$T], beta[1:(Data$T-1)],</pre>
    beta.w.sigma, log=TRUE)
beta.w.sigma.prior <- dhalfcauchy(beta.w.sigma, 25, log=TRUE)</pre>
v.sigma.prior <- dhalfcauchy(v.sigma, 25, log=TRUE)</pre>
### Log-Likelihood
mu <- alpha + beta*Data$x</pre>
LL <- sum(dnorm(Data$y[1:Data$T.m], mu[1:Data$T.m], v.sigma,
     log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + sum(beta.prior) + beta.w.sigma.prior +
    v.sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=mu[(Data$T.m+1):Data$T],</pre>
    yhat=mu, parm=parm)
return(Modelout)
}
```

26. Exponential Smoothing

26.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu_t = \alpha \mathbf{y}_{t-1} + (1 - \alpha)\mu_{t-1}, \quad t = 2, \dots, T$$

$$\alpha \sim \mathcal{U}(0, 1)$$

$$\sigma \sim \mathcal{HC}$$

```
T <- 10
y <- rep(0,T)
y[1] <- 0
for (t in 2:T) {y[t] <- y[t-1] + rnorm(1,0,0.1)}
mon.names <- c("LP", "sigma")
parm.names <- c("alpha","log.sigma")
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

26.3. Initial Values

```
Initial. Values \leftarrow c(0.5, log(1))
26.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- interval(parm[1], 0, 1); parm[1] <- alpha</pre>
     sigma <- exp(parm[2])</pre>
    ### Log(Prior Densities)
     alpha.prior <- dunif(alpha, 0, 1, log=TRUE)</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
     ### Log-Likelihood
    mu <- y
    mu[-1] <- alpha*Data$y[-1]</pre>
    mu[-1] <- mu[-1] + (1 - alpha) * mu[-Data$T]</pre>
    LL <- sum(dnorm(Data$y[-1], mu[-Data$T], sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma),</pre>
          yhat=mu, parm=parm)
    return(Modelout)
    }
```

27. Factor Analysis, Approximate Dynamic

The Approximate Dynamic Factor Analysis (ADFA) model has many names, including the approximate factor model and approximate dynamic factor model. An ADFA is a Dynamic Factor Analysis (DFA) in which the factor scores of the dynamic factors are approximated with principal components. This is a combination of principal components and common factor analysis, in which the factor loadings of common factors are estimated from the data and factor scores are estimated from principal components. This is a two-stage model: principal components are estimated in the first stage and a decision is made regarding how many principal components to retain, and ADFA is estimated in the second stage. For more information on DFA, see section 29.

$$\mathbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma_j^2), \quad t = 2, \dots, T, \quad j = 1, \dots, J$$

$$\mu_{t,j} = \mathbf{F}_{t-1, \Lambda}$$

$$\Lambda_{p,j} \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad j = 1, \dots, J$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, J$$

27.2. Data

}

```
T <- 10 #Number of time-periods
J <- 20 #Number of variables
P <- 5 #Number of approximate dynamic factors
Lambda <- matrix(runif(J*P,-1,1), P, J)</pre>
Sigma <- matrix(runif(P*P), P, P); diag(Sigma) <- runif(P)*5</pre>
Sigma <- as.symmetric.matrix(Sigma); Sigma <- as.positive.definite(Sigma)
F <- rmvn(T, rep(0,P), Sigma)
Y <- tcrossprod(F, t(Lambda))
PCA <- prcomp(Y, scale=TRUE)</pre>
F \leftarrow PCA$x[,1:P]
mon.names <- c("LP", paste("ynew[", 1:J, "]", sep=""))</pre>
parm.names <- as.parm.names(list(Lambda=matrix(0,P,J), log.sigma=rep(0,J)))</pre>
MyData <- list(F=F, J=J, P=P, T=T, Y=Y, mon.names=mon.names,
    parm.names=parm.names)
27.3. Initial Values
Initial.Values <- c(rep(0,P*J), rep(1,J))</pre>
27.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    Lambda <- matrix(parm[1:(Data$P*Data$J)], Data$P, Data$J)</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- rbind(rep(0, Data$J), tcrossprod(F[-Data$T,], t(Lambda)))</pre>
    ynew <- tcrossprod(F[Data$T,], t(Lambda))</pre>
    LL <- sum(dnorm(Data$Y, mu, matrix(sigma, Data$T, Data$J, byrow=TRUE),
    log=TRUE))
    ### Log-Posterior
    LP <- LL + Lambda.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew), yhat=mu,
    parm=parm)
    return(Modelout)
```

28. Factor Analysis, Confirmatory

Factor scores are in matrix \mathbf{F} , factor loadings for each variable are in vector λ , and \mathbf{f} is a vector that indicates which variable loads on which factor.

28.1. Form

$$\mathbf{Y}_{i,m} \sim \mathcal{N}(\mu_{i,m}, \sigma_m^2), \quad i = 1, \dots, N, \quad m = 1, \dots, M$$

$$\mu = \alpha^T + \mathbf{F}_{1:N,\mathbf{f}} \lambda^T$$

$$\mathbf{F}_{i,1:P} \sim \mathcal{N}_P(\gamma, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\alpha_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\lambda_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\sigma_m \sim \mathcal{HC}(25), \quad m = 1, \dots, M$$

$$\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_P$$

28.2. Data

```
data(swiss)
Y <- cbind(swiss$Agriculture, swiss$Examination, swiss$Education,
    swiss$Catholic, swiss$Infant.Mortality)
M <- ncol(Y) #Number of variables
N <- nrow(Y) #Number of records
P <- 3 #Number of factors
f \leftarrow c(1,3,2,2,1) #Indicator f for the factor for each variable m
gamma <- rep(0,P)</pre>
S \leftarrow diag(P)
mon.names <- "LP"
parm.names <- as.parm.names(list(F=matrix(0,N,P), lambda=rep(0,M),</pre>
    Omega=diag(P), alpha=rep(0,M), log.sigma=rep(0,M)),
    uppertri=c(0,0,1,0,0))
MyData <- list(M=M, N=N, P=P, S=S, Y=Y, f=f, gamma=gamma,
    mon.names=mon.names, parm.names=parm.names)
28.3. Initial Values
Initial.Values <- c(rep(0,N*P), rep(0,M), upper.triangle(S, diag=TRUE),</pre>
    rep(0,M), rep(0,M))
```

```
Model <- function(parm, Data)
{
    ### Parameters
    alpha <- parm[grep("alpha", Data$parm.names)]
    lambda <- parm[grep("lambda", Data$parm.names)]</pre>
```

```
sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
F <- matrix(parm[grep("F", Data$parm.names)], Data$N, Data$P)</pre>
Omega <- as.parm.matrix(Omega, Data$P, parm, Data)</pre>
parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
    diag=TRUE)
### Log(Prior Densities)
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
lambda.prior <- sum(dnormv(lambda, 0, 1000, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
Omega.prior <- dwishart(Omega, Data$N, Data$S, log=TRUE)</pre>
F.prior <- sum(dmvnp(F, Data$gamma, Omega, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(alpha, Data$N, Data$M, byrow=TRUE) + F[,Data$f] *</pre>
    matrix(lambda, Data$N, Data$M, byrow=TRUE)
LL <- sum(dnorm(Data$Y, mu, sigma, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + lambda.prior + sigma.prior + F.prior +
     Omega.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
return(Modelout)
}
```

29. Factor Analysis, Dynamic

The factor scores in **F** are dynamic with respect to time, and are estimated as in a dynamic linear model (DLM) with constant variance in the state vector. For more information on DLMs, see section 25. For more information on exploratory factor analysis, see section 30.

29.1. Form

$$\mathbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma_j^2), \quad t = 2, \dots, T, \quad j = 1, \dots, J$$

$$\mu_{2:T} = \mathbf{F}_{1:(T-1),\Lambda}$$

$$\mathbf{F}_{1,1:P} \sim \mathcal{N}_P(0, \Omega^{-1})$$

$$\mathbf{F}_{t,1:P} \sim \mathcal{N}_P(\mathbf{F}_{t-1,1:P}, \Omega^{-1}), \quad t = 2, \dots, T$$

$$\Lambda_{p,j} \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad j = 1, \dots, J$$

$$\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_P$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, J$$

```
T <- 10 #Number of time-periods
J <- 20 #Number of time-series
```

```
P <- 3 #Number of dynamic factors
Lambda <- matrix(runif(J*P,-1,1), P, J)</pre>
Sigma <- matrix(runif(P*P), P, P); diag(Sigma) <- runif(P)*5</pre>
Sigma <- as.symmetric.matrix(Sigma); Sigma <- as.positive.definite(Sigma)</pre>
F <- rmvn(T, rep(0,P), Sigma)
Y <- tcrossprod(F, t(Lambda))
S \leftarrow diag(P)
mon.names <- c("LP", paste("ynew[", 1:J, "]", sep=""))</pre>
parm.names <- as.parm.names(list(F=matrix(0,T,P), Omega=diag(P),</pre>
    Lambda=matrix(0,P,J), log.sigma=rep(0,J)), uppertri=c(0,1,0,0))
MyData <- list(J=J, P=P, S=S, T=T, Y=Y, mon.names=mon.names,
    parm.names=parm.names)
29.3. Initial Values
Initial.Values <- c(rep(0,T*P), S[upper.tri(S, diag=TRUE)], rep(0,P*J),</pre>
    rep(0,J))
29.4. Model
Model <- function(parm, Data)</pre>
    {
    ### Parameters
    F <- matrix(parm[1:(Data$T*Data$P)], Data$T, Data$P)</pre>
    Omega <- as.parm.matrix(Omega, Data$P, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- Omega[upper.tri(Omega,</pre>
         diag=TRUE)]
    Lambda <- matrix(parm[grep("Lambda", Data$parm.names)], Data$P, Data$J)</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    F.prior <- sum(dmvnp(F[1,], rep(0, Data$P), Omega, log=TRUE),
         dmvnp(F[-1,], F[-Data$T,], Omega, log=TRUE))
    Omega.prior <- dwishart(Omega, Data$P+1, Data$S, log=TRUE)</pre>
    Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- rbind(rep(0, Data$J), tcrossprod(F[-Data$T,], t(Lambda)))</pre>
    ynew <- tcrossprod(F[Data$T,], t(Lambda))</pre>
    LL <- sum(dnorm(Data$Y, mu, matrix(sigma, Data$T, Data$J, byrow=TRUE),
         log=TRUE))
    ### Log-Posterior
    LP <- LL + F.prior + Omega.prior + Lambda.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew), yhat=mu,
         parm=parm)
    return(Modelout)
```

}

30. Factor Analysis, Exploratory

Factor scores are in matrix \mathbf{F} and factor loadings are in matrix Λ .

30.1. Form

$$\mathbf{Y}_{i,m} \sim \mathcal{N}(\mu_{i,m}, \sigma_m^2), \quad i = 1, \dots, N, \quad m = 1, \dots, M$$

$$\mu = \alpha^T + \mathbf{F}\Lambda$$

$$\mathbf{F}_{i,1:P} \sim \mathcal{N}_P(\gamma, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\alpha_m \sim \mathcal{N}(0, 1000), \quad m = 1, \dots, M$$

$$\gamma_p = 0, \quad p = 1, \dots, P$$

$$\Lambda_{p,m} \sim \mathcal{N}(0, 1000), \quad p = 1, \dots, P, \quad m = 1, \dots, M$$

$$\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_P$$

$$\sigma_m \sim \mathcal{HC}(25), \quad m = 1, \dots, M$$

30.2. Data

```
M <- 10 #Number of variables
N <- 20 #Number of records
P <- 3 #Number of factors
alpha <- runif(M)*10</pre>
Lambda <- matrix(runif(M*P,-1,1), P, M)</pre>
Sigma <- matrix(runif(P*P), P, P); diag(Sigma) <- 1 + runif(P)*5
Sigma <- as.symmetric.matrix(Sigma); Sigma <- as.positive.definite(Sigma)</pre>
F <- rmvn(N, rep(0,P), Sigma)
Y <- matrix(alpha, N, M, byrow=TRUE) + tcrossprod(F, t(Lambda))
gamma \leftarrow rep(0,P)
S \leftarrow diag(P)
mon.names <- "LP"
parm.names <- as.parm.names(list(F=matrix(0,N,P), Lambda=matrix(0,P,M),</pre>
    Omega=diag(P), alpha=rep(0,M), log.sigma=rep(0,M)),
    uppertri=c(0,0,1,0,0))
MyData <- list(M=M, N=N, P=P, S=S, Y=Y, gamma=gamma, mon.names=mon.names,
    parm.names=parm.names)
```

30.3. Initial Values

```
Initial.Values <- c(rep(0,N*P), rep(0,P*M), upper.triangle(S, diag=TRUE),
    rep(0,M), rep(0,M))</pre>
```

30.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    F <- matrix(parm[grep("F", Data$parm.names)], Data$N, Data$P)
    Lambda <- matrix(parm[grep("Lambda", Data$parm.names)],</pre>
         Data$P, Data$M)
    Omega <- as.parm.matrix(Omega, Data$P, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
         diag=TRUE)
    alpha <- parm[grep("alpha", Data$parm.names)]</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    F.prior <- sum(dmvnp(F, Data$gamma, Omega, log=TRUE))</pre>
    Lambda.prior <- sum(dnormv(Lambda, 0, 1000, log=TRUE))</pre>
    Omega.prior <- dwishart(Omega, Data$N, Data$S, log=TRUE)</pre>
    alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(alpha, Data$N, Data$M, byrow=TRUE) +</pre>
         tcrossprod(F, t(Lambda))
    LL <- sum(dnorm(Data$Y, mu, matrix(sigma, Data$N, Data$M,
         byrow=TRUE), log=TRUE))
    ### Log-Posterior
    LP <- LL + F.prior + Lambda.prior + Omega.prior + alpha.prior +
                                                                                    sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
    }
```

31. Factor Regression

This example of factor regression is constrained to the case where the number of factors is equal to the number of independent variables (IVs) less the intercept. The purpose of this form of factor regression is to orthogonalize the IVs with respect to \mathbf{y} , rather than variable reduction. This method is the combination of confirmatory factor analysis in section 28 and linear regression in section 40.

$$\mathbf{y} \sim \mathcal{N}(\nu, \sigma_{J+1}^2)$$

$$\nu = \mu \beta$$

$$\mu_{i,1} = 1$$

$$\mu_{i,j+1} = \mu_{i,j}, \quad j = 1, \dots, J$$

$$\mathbf{X}_{i,j} \sim \mathcal{N}(\mu_{i,j}, \sigma_j^2), \quad i = 1, \dots, N, \quad j = 2, \dots, J$$

$$\mu_{i,j} = \alpha_j + \lambda_j \mathbf{F}_{i,j}, \quad i = 1, \dots, N, \quad j = 2, \dots, J$$

$$\mathbf{F}_{i,1:J} \sim \mathcal{N}_{J-1}(0, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\alpha_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\lambda_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, (J+1)$$

$$\Omega \sim \mathcal{W}_N(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_J$$

31.2. Data

31.3. Initial Values

```
Initial.Values <- c(rep(0,J), rep(0,J+1), rep(0,J), rep(0,J+1), rep(0,N*J), upper.triangle(S, diag=TRUE))
```

```
### Log(Prior Densities)
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
lambda.prior <- sum(dnormv(lambda, 0, 1000, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
Omega.prior <- dwishart(Omega, Data$N, Data$S, log=TRUE)</pre>
F.prior <- sum(dmvnp(F, rep(0,Data$J), Omega, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(alpha, Data$N, Data$J, byrow=TRUE) + F *</pre>
    matrix(lambda, Data$N, Data$J, byrow=TRUE)
nu <- tcrossprod(beta, cbind(rep(1,Data$N),mu))</pre>
LL <- sum(dnorm(Data$X, mu, matrix(sigma[1:Data$J], Data$N, Data$J,
    byrow=TRUE)), dnorm(Data$y, nu, sigma[Data$J+1], log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + lambda.prior + sigma.prior +
    F.prior + Omega.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=nu, parm=parm)
return(Modelout)
}
```

32. Gamma Regression

32.1. Form

$$\mathbf{y} \sim \mathcal{G}(\lambda \tau, \tau)$$

$$\lambda = \exp(\mathbf{X}\beta)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\tau \sim \mathcal{HC}(25)$$

32.3. Initial Values

```
Initial.Values <- c(rep(0,J), 1)</pre>
32.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[grep("beta", Data$parm.names)]</pre>
    tau <- exp(parm[grep("log.tau", Data$parm.names)])</pre>
    sigma2 <- 1/tau
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    tau.prior <- dhalfcauchy(tau, 25, log=TRUE)</pre>
    ### Log-Likelihood
    lambda <- exp(tcrossprod(Data$X, t(beta)))</pre>
    LL <- sum(dgamma(Data$y, tau*lambda, tau, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + tau.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma2), yhat=lambda,</pre>
         parm=parm)
    return(Modelout)
    }
```

33. GARCH(1,1)

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \theta_{1} + \theta_{2}\epsilon_{T}^{2} + \theta_{3}\sigma_{T}^{2}$$

$$\sigma_{t}^{2} = \theta_{1} + \theta_{2}\epsilon_{t-1}^{2} + \theta_{3}\sigma_{t-1}^{2}$$

$$\theta_{k} = \frac{1}{1 + \exp(-\theta_{k})}, \quad k = 1, \dots, 3$$

$$\theta_{k} \sim \mathcal{N}(0, 1000) \in [-10, 10], \quad k = 1, \dots, 3$$

33.2. Data

```
y \leftarrow c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91,
    2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
    1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha","phi","logit.theta[1]","logit.theta[2]",</pre>
    "logit.theta[3]")
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
33.3. Initial Values
Initial. Values \leftarrow c(rep(0,2), rep(0,3))
```

```
Model <- function(parm, Data)
    {
     ### Parameters
     alpha <- parm[1]; phi <- parm[2]
     theta <- invlogit(interval(parm[grep("logit.theta",</pre>
```

```
Data$parm.names)], -10, 10))
parm[grep("logit.theta", Data$parm.names)] <- logit(theta)</pre>
### Log(Prior Densities)
alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>
theta.prior <- sum(dnormv(theta, 0, 1000, log=TRUE))
### Log-Likelihood
mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
ynew <- alpha + phi*Data$y[Data$T]</pre>
epsilon <- Data$y - mu
sigma2 <- c(theta[1], theta[1] + theta[2]*epsilon[-Data$T]^2)</pre>
sigma2[-1] \leftarrow sigma2[-1] + theta[3]*sigma2[-Data$T]
sigma2.new <- theta[1] + theta[2]*epsilon[Data$T]^2 +</pre>
    theta[3]*sigma2[Data$T]
LL <- sum(dnormv(Data$y, mu, sigma2, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + phi.prior + theta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, sigma2.new),
    yhat=mu, parm=parm)
return(Modelout)
}
```

34. GARCH-M(1,1)

34.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} \sim \mathcal{N}(\mu_{T+1}, \sigma_{new}^{2})$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1} + \delta \sigma_{t-1}^{2}, \quad t = 1, \dots, (T+1)$$

$$\epsilon_{t} = \mathbf{y}_{t} - \mu_{t}$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{N}(0, 1000)$$

$$\sigma_{new}^{2} = \omega + \theta_{1}\epsilon_{T}^{2} + \theta_{2}\sigma_{T}^{2}$$

$$\sigma_{t}^{2} = \omega + \theta_{1}\epsilon_{t-1}^{2} + \theta_{2}\sigma_{t-1}^{2}$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta_{k} \sim \mathcal{U}(0, 1), \quad k = 1, \dots, 2$$

```
y <- c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91, 2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28,
```

58

```
1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03,
    -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02,
    0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
    1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17)
T <- length(y)
mon.names <- c("LP", "ynew", "sigma2.new")</pre>
parm.names <- c("alpha","phi","delta","log.omega","theta[1]", "theta[2]")</pre>
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
34.3. Initial Values
Initial. Values \leftarrow c(rep(0,3), rep(0.5,3))
34.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1]; phi <- parm[2]; delta <- parm[3]</pre>
    omega <- exp(parm[4])</pre>
    parm[5:6] <- theta <- interval(parm[5:6], 1e-10, 1-1e-5)</pre>
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
```

phi.prior <- dnormv(phi, 0, 1000, log=TRUE)</pre>

```
delta.prior <- dnormv(delta, 0, 1000, log=TRUE)</pre>
omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
theta.prior <- sum(dunif(theta, 0, 1, log=TRUE))
### Log-Likelihood
mu <- c(alpha, alpha + phi*Data$y[-Data$T])</pre>
epsilon <- Data$y - mu
sigma2 <- c(omega, omega + theta[1]*epsilon[-Data$T]^2)</pre>
sigma2[-1] \leftarrow sigma2[-1] + theta[2]*sigma2[-Data$T]
sigma2.new <- omega + theta[1]*epsilon[Data$T]^2 +</pre>
    theta[2]*sigma2[Data$T]
mu <- mu + delta*sigma2
ynew <- alpha + phi*Data$y[Data$T] + delta*sigma2[Data$T]</pre>
LL <- sum(dnormv(Data$y, mu, sigma2, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + phi.prior + delta.prior + omega.prior +
    theta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, sigma2.new),
    yhat=mu, parm=parm)
return(Modelout)
```

35. Geographically Weighted Regression

35.1. Form

$$\mathbf{y}_{i,k} \sim \mathcal{N}(\mu_{i,k}, \tau_{i,k}^{-1}), \quad i = 1, \dots, N, \quad k = 1, \dots, N$$

$$\mu_{i,1:N} = \mathbf{X}\beta_{i,1:J}$$

$$\tau = \frac{1}{\sigma^2}\mathbf{w}\nu$$

$$\mathbf{w} = \frac{\exp(-0.5\mathbf{Z}^2)}{\mathbf{h}}$$

$$\alpha \sim \mathcal{U}(1.5, 100)$$

$$\beta_{i,j} \sim \mathcal{N}(0, 1000), \quad i = 1, \dots, N, \quad j = 1, \dots, J$$

$$\mathbf{h} \sim \mathcal{N}(0.1, 1000) \in [0.1, \infty]$$

$$\nu_{i,k} \sim \mathcal{G}(\alpha, 2), \quad i = 1, \dots, N, \quad k = 1, \dots, N$$

$$\sigma_i \sim \mathcal{HC}(25), \quad i = 1, \dots, N$$

```
crime <- c(18.802, 32.388, 38.426, 0.178, 15.726, 30.627, 50.732, 26.067, 48.585, 34.001, 36.869, 20.049, 19.146, 18.905, 27.823,
```

```
16.241, 0.224, 30.516, 33.705, 40.970, 52.794, 41.968, 39.175,
    53.711, 25.962, 22.541, 26.645, 29.028, 36.664, 42.445, 56.920,
    61.299, 60.750, 68.892, 38.298, 54.839, 56.706, 62.275, 46.716,
    57.066, 54.522, 43.962, 40.074, 23.974, 17.677, 14.306, 19.101,
    16.531, 16.492)
income <- c(21.232, 4.477, 11.337, 8.438, 19.531, 15.956, 11.252,
    16.029, 9.873, 13.598, 9.798, 21.155, 18.942, 22.207, 18.950,
    29.833, 31.070, 17.586, 11.709, 8.085, 10.822, 9.918, 12.814,
    11.107, 16.961, 18.796, 11.813, 14.135, 13.380, 17.017, 7.856,
    8.461, 8.681, 13.906, 14.236, 7.625, 10.048, 7.467, 9.549,
    9.963, 11.618, 13.185, 10.655, 14.948, 16.940, 18.739, 18.477,
    18.324, 25.873)
housing <- c(44.567, 33.200, 37.125, 75.000, 80.467, 26.350, 23.225,
    28.750, 18.000, 96.400, 41.750, 47.733, 40.300, 42.100, 42.500,
    61.950, 81.267, 52.600, 30.450, 20.300, 34.100, 23.600, 27.000,
    22.700, 33.500, 35.800, 26.800, 27.733, 25.700, 43.300, 22.850,
    17.900, 32.500, 22.500, 53.200, 18.800, 19.900, 19.700, 41.700,
    42.900, 30.600, 60.000, 19.975, 28.450, 31.800, 36.300, 39.600,
    76.100, 44.333)
easting <- c(35.62, 36.50, 36.71, 33.36, 38.80, 39.82, 40.01, 43.75,
    39.61, 47.61, 48.58, 49.61, 50.11, 51.24, 50.89, 48.44, 46.73,
    43.44, 43.37, 41.13, 43.95, 44.10, 43.70, 41.04, 43.23, 42.67,
    41.21, 39.32, 41.09, 38.3, 41.31, 39.36, 39.72, 38.29, 36.60,
    37.60, 37.13, 37.85, 35.95, 35.72, 35.76, 36.15, 34.08, 30.32,
    27.94, 27.27, 24.25, 25.47, 29.02)
northing <- c(42.38, 40.52, 38.71, 38.41, 44.07, 41.18, 38.00, 39.28,
    34.91, 36.42, 34.46, 32.65, 29.91, 27.80, 25.24, 27.93, 31.91,
    35.92, 33.46, 33.14, 31.61, 30.40, 29.18, 28.78, 27.31, 24.96,
    25.90, 25.85, 27.49, 28.82, 30.90, 32.88, 30.64, 30.35, 32.09,
    34.08, 36.12, 36.30, 36.40, 35.60, 34.66, 33.92, 30.42, 28.26,
    29.85, 28.21, 26.69, 25.71, 26.58)
N <- length(crime)</pre>
J <- 3 #Number of predictors, including the intercept
X <- matrix(c(rep(1,N), income, housing),N,J)</pre>
D <- as.matrix(dist(cbind(northing,easting), diag=TRUE, upper=TRUE))
Z <- D / sd(as.vector(D))</pre>
y \leftarrow matrix(0,N,N); for (i in 1:N) {for (k in 1:N) {y[i,k] <- crime[k]}}
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=0, beta=matrix(0,N,J), log.h=0,
    log.nu=matrix(0,N,N), log.sigma=rep(0,N)))
MyData <- list(J=J, N=N, X=X, Z=Z, latitude=northing, longitude=easting,
    mon.names=mon.names, parm.names=parm.names, y=y)
```

35.3. Initial Values

Initial. Values <-c(runif(1,1.5,100), rep(0,N*J), log(1), rep(0,N*N),

```
log(rep(100,N)))
35.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- interval(parm[1], 1.5, 100); parm[1] <- alpha</pre>
    beta <- matrix(parm[grep("beta", Data$parm.names)], Data$N, Data$J)</pre>
    h \leftarrow \exp(parm[2+(N*J)]) + 0.1
    nu <- exp(matrix(parm[grep("log.nu", Data$parm.names)],</pre>
          Data$N, Data$N))
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    alpha.prior <- dunif(alpha, 1.5, 100, log=TRUE)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    h.prior <- dtrunc(h, "normv", a=0.1, b=Inf, mean=0.1, var=1000,
          log=TRUE)
    nu.prior <- sum(dgamma(nu, alpha, 2, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    w \leftarrow \exp(-0.5 * Data$Z^2) / h
    tau <- (1/sigma^2) * w * nu
    mu <- tcrossprod(Data$X, beta)</pre>
    LL <- sum(dnormp(Data$y, mu, tau, log=TRUE))</pre>
    \#WSE \leftarrow w * nu * (Data$y - mu)^2; w.y \leftarrow w * nu * Data$y
    #WMSE <- rowMeans(WSE); y.w <- rowSums(w.y) / rowSums(w)</pre>
    \#LAR2 \leftarrow 1 - WMSE / sd(y.w)^2
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + h.prior + nu.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)</pre>
    return(Modelout)
    }
```

36. Inverse Gaussian Regression

$$\mathbf{y} \sim \mathcal{N}^{-1}(\mu, \lambda)$$

$$\mu = \exp(\mathbf{X}\beta) + C$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\lambda \sim \mathcal{HC}(25)$$

where C is a small constant, such as 1.0E-10.

```
36.2. Data
N <- 100
J <- 3 #Number of predictors, including the intercept
X \leftarrow matrix(1,N,J)
for (j \text{ in } 2:J) \{X[,j] \leftarrow rnorm(N,runif(1,-3,3),runif(1,0.1,1))\}
beta.orig <- runif(J,-3,3)</pre>
e < - rnorm(N, 0, 0.1)
y <- exp(tcrossprod(X, t(beta.orig)) + e)
mon.names <- c("LP","lambda")</pre>
parm.names <- as.parm.names(list(beta=rep(0,J), log.lambda=0))</pre>
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)
36.3. Initial Values
Initial.Values <- c(rep(0,J), log(1))</pre>
36.4. Model
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- parm[1:Data$J]</pre>
     lambda <- exp(parm[Data$J+1])</pre>
     ### Log(Prior Densities)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     lambda.prior <- dhalfcauchy(lambda, 25, log=TRUE)</pre>
     ### Log-Likelihood
     mu <- exp(tcrossprod(Data$X, t(beta))) + 1.0E-10</pre>
     LL <- sum(dinvgaussian(Data$y, mu, lambda, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior + lambda.prior</pre>
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,lambda), yhat=mu,
          parm=parm)
     return(Modelout)
```

37. Kriging

This is an example of universal kriging of \mathbf{y} given \mathbf{X} , regression effects β , and spatial effects ζ . Euclidean distance between spatial coordinates (longitude and latitude) is used for each of i = 1, ..., N records of \mathbf{y} . An additional record is created from the same data-generating process to compare the accuracy of interpolation. For the spatial component, ϕ is the rate of

spatial decay and κ is the scale. κ is often difficult to identify, so it is set to 1 (Gaussian), but may be allowed to vary up to 2 (Exponential). In practice, ϕ is also often difficult to identify. While Σ is spatial covariance, spatial correlation is $\rho = \exp(-\phi \mathbf{D})$. To extend this to a large data set, consider the predictive process kriging example in section 38.

37.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

$$\mu = \mathbf{X}\beta + \zeta$$

$$\mathbf{y}^{new} = \mathbf{X}\beta + \sum_{i=1}^{N} \left(\frac{\rho_i}{\sum \rho} \zeta_i\right)$$

$$\rho = \exp(-\phi \mathbf{D}^{new})^{\kappa}$$

$$\zeta \sim \mathcal{N}_N(\zeta_{\mu}, \Sigma)$$

$$\Sigma = \sigma_2^2 \exp(-\phi \mathbf{D})^{\kappa}$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\sigma_j \sim \mathcal{HC}(25) \in [1, \infty], \quad j = 1, \dots, 2$$

$$\phi \sim \mathcal{U}(1, 5)$$

$$\zeta_{\mu} = 0$$

$$\kappa = 1$$

```
N <- 20
longitude <- runif(N+1,0,100)</pre>
latitude <- runif(N+1,0,100)</pre>
D <- as.matrix(dist(cbind(longitude,latitude), diag=TRUE, upper=TRUE))</pre>
Sigma < -10000 * exp(-1.5 * D)
zeta <- as.vector(apply(rmvn(1000, rep(0,N+1), Sigma), 2, mean))</pre>
beta <- c(50,2)
X \leftarrow matrix(runif((N+1)*2,-2,2),(N+1),2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
y <- mu + zeta
longitude.new <- longitude[N+1]; latitude.new <- latitude[N+1]</pre>
Xnew <- X[N+1,]; ynew <- y[N+1]</pre>
longitude <- longitude[1:N]; latitude <- latitude[1:N]</pre>
X \leftarrow X[1:N,]; y \leftarrow y[1:N]
D <- as.matrix(dist(cbind(longitude,latitude), diag=TRUE, upper=TRUE))</pre>
D.new <- sqrt((longitude - longitude.new)^2 + (latitude - latitude.new)^2)</pre>
mon.names <- c("LP", "ynew")</pre>
parm.names <- as.parm.names(list(zeta=rep(0,N), beta=rep(0,2),
     sigma=rep(0,2), phi=0)
```

```
MyData <- list(D=D, D.new=D.new, N=N, X=X, Xnew=Xnew, latitude=latitude,
     longitude=longitude, mon.names=mon.names, parm.names=parm.names,
    y=y)
37.3. Initial Values
Initial. Values \leftarrow c(rep(0,N), rep(0,2), rep(1,2), 1)
37.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[grep("beta", Data$parm.names)]</pre>
    zeta <- parm[grep("zeta", Data$parm.names)]</pre>
    kappa <- 1
     sigma <- interval(parm[grep("sigma", Data$parm.names)], 1, Inf)</pre>
    phi <- interval(parm[grep("phi", Data$parm.names)], 1, 5)</pre>
    parm[grep("phi", Data$parm.names)] <- phi</pre>
    Sigma <- sigma[2] *sigma[2] * exp(-phi * Data$D)^kappa
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    zeta.prior <- dmvn(zeta, rep(0, Data$N), Sigma, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma - 1, 25, log=TRUE))</pre>
    phi.prior <- dunif(phi, 1, 5, log=TRUE)</pre>
    ### Interpolation
    rho <- exp(-phi * Data$D.new)^kappa</pre>
    ynew <- sum(beta * Data$Xnew) + sum(rho / sum(rho) * zeta)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta)) + zeta</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + zeta.prior + sigma.prior + phi.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

38. Kriging, Predictive Process

The first K of N records in \mathbf{y} are used as knots for the parent process, and the predictive process involves records $(K+1), \ldots, N$. For more information on kriging, see section 37.

$$\mu_{1:K} = \mathbf{X}_{1:K,1:J}\beta + \zeta$$

$$\mu_{(K+1):N} = \mathbf{X}_{(K+1):N,1:J}\beta + \sum_{p=1}^{N-K} \frac{\lambda_{p,1:K}}{\sum_{q=1}^{N-K} \lambda_{q,1:K}} \zeta^{T}$$

$$\lambda = \exp(-\phi \mathbf{D}_{P})^{\kappa}$$

$$\mathbf{y}^{new} = \mathbf{X}\beta + \sum_{k=1}^{K} (\frac{\rho_{k}}{\sum \rho} \zeta_{k})$$

$$\rho = \exp(-\phi \mathbf{D}^{new})^{\kappa}$$

$$\zeta \sim \mathcal{N}_{K}(0, \Sigma)$$

$$\Sigma = \sigma_{2}^{2} \exp(-\phi \mathbf{D})^{\kappa}$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\sigma_{j} \sim \mathcal{HC}(25), \quad j = 1, \dots, 2$$

$$\phi \sim N(0, 1000) \in [0, \infty]$$

$$\kappa = 1$$

```
N <- 100
K <- 30 #Number of knots
longitude <- runif(N+1,0,100)</pre>
latitude <- runif(N+1,0,100)</pre>
D <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))
Sigma < -10000 * exp(-1.5 * D)
zeta <- as.vector(apply(rmvn(1000, rep(0,N+1), Sigma), 2, mean))</pre>
beta <- c(50,2)
X \leftarrow matrix(runif((N+1)*2,-2,2),(N+1),2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
y <- mu + zeta
longitude.new <- longitude[N+1]; latitude.new <- latitude[N+1]</pre>
Xnew <- X[N+1,]; ynew <- y[N+1]</pre>
longitude <- longitude[1:N]; latitude <- latitude[1:N]</pre>
X \leftarrow X[1:N,]; y \leftarrow y[1:N]
D <- as.matrix(dist(cbind(longitude[1:K],latitude[1:K]), diag=TRUE,
     upper=TRUE))
D.P <- matrix(0, N-K, K)</pre>
for (i in (K+1):N) {
     D.P[K+1-i,] <- sqrt((longitude[1:K] - longitude[i])^2 +</pre>
          (latitude[1:K] - latitude[i])^2)}
D.new <- sqrt((longitude[1:K] - longitude.new)^2 +</pre>
     (latitude[1:K] - latitude.new)^2)
mon.names <- c("LP", "sigma[1]", "sigma[2]", "ynew")</pre>
parm.names <- as.parm.names(list(zeta=rep(0,K), beta=rep(0,2),</pre>
```

```
sigma=rep(0,2), log.phi=0))
MyData <- list(D=D, D.new=D.new, D.P=D.P, K=K, N=N, X=X, Xnew=Xnew,
    latitude=latitude, longitude=longitude,
    mon.names=mon.names, parm.names=parm.names, y=y)
38.3. Initial Values
Initial. Values \leftarrow c(rep(0,K), c(mean(y), 0), rep(0,2), log(1))
38.4. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- parm[grep("beta", Data$parm.names)]</pre>
    zeta <- parm[grep("zeta", Data$parm.names)]</pre>
    kappa <- 1
    sigma <- interval(parm[grep("sigma", Data$parm.names)], 0, Inf)</pre>
    parm[grep("sigma", Data$parm.names)] <- sigma</pre>
    phi <- exp(parm[grep("log.phi", Data$parm.names)])</pre>
    Sigma <- sigma[2]*sigma[2] * exp(-phi * Data$D)^kappa
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    zeta.prior <- dmvn(zeta, rep(0, Data$K), Sigma, log=TRUE)</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    phi.prior <- dunif(phi, 1, 5, log=TRUE)</pre>
    ### Interpolation
    rho <- exp(-phi * Data$D.new)^kappa</pre>
    ynew <- sum(beta * Data$Xnew) + sum(rho / sum(rho) * zeta)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    mu[1:Data$K] <- mu[1:Data$K] + zeta</pre>
    lambda <- exp(-phi * Data$D.P)^kappa</pre>
    mu[(Data$K+1):Data$N] <- mu[(Data$K+1):Data$N] +
         rowSums(lambda / rowSums(lambda) *
         matrix(zeta, Data$N - Data$K, Data$K, byrow=TRUE))
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + zeta.prior + sigma.prior + phi.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,ynew),</pre>
         yhat=mu, parm=parm)
```

return(Modelout)

}

39. Laplace Regression

This linear regression specifies that \mathbf{y} is Laplace-distributed, where it is usually Gaussian or normally-distributed. It has been claimed that it should be surprising that the normal distribution became the standard, when the Laplace distribution usually fits better and has wider tails (Kotz, Kozubowski, and Podgorski 2001). Another popular alternative is to use the t-distribution (see Robust Regression in section 66), though it is more computationally expensive to estimate, because it has three parameters. The Laplace distribution has only two parameters, location and scale like the normal distribution, and is computationally easier to fit. This example could be taken one step further, and the parameter vector β could be Laplace-distributed. Laplace's Demon recommends that users experiment with replacing the normal distribution with the Laplace distribution.

39.1. Form

$$\mathbf{y} \sim \mathcal{L}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

39.2. Data

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rlaplace(N,0,0.1)
y <- tcrossprod(X, t(beta)) + e
mon.names <- c("LP", "sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))
MyData <- list(J=J, X=X, mon.names, parm.names=parm.names, y=y)</pre>
```

39.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))
39.4. Model
Model <- function(parm, Data)
    {
     ### Parameters</pre>
```

sigma <- exp(parm[Data\$J+1])</pre>

beta <- parm[1:Data\$J]</pre>

```
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dlaplace(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma), yhat=mu, parm=parm)
return(Modelout)
}</pre>
```

40. Linear Regression

40.1. Form

68

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

40.2. Data

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rnorm(N,0,0.1)
y <- tcrossprod(X, t(beta)) + e
mon.names <- c("LP", "sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

40.3. Initial Values

```
Initial. Values <- c(rep(0,J), log(1))
```

```
Model <- function(parm, Data)
{</pre>
```

```
### Parameters
beta <- parm[1:Data$J]
sigma <- exp(parm[Data$J+1])
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
sigma.prior <- dgamma(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma), yhat=mu, parm=parm)
return(Modelout)
}</pre>
```

41. Linear Regression, Frequentist

By eliminating prior probabilities, a frequentist linear regression example is presented. Although frequentism is not endorsed here, the purpose of this example is to illustrate how the **LaplacesDemon** package can be used for Bayesian or frequentist inference.

41.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$
$$\mu = \mathbf{X}\beta$$

41.2. Data

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rnorm(N,0,0.1)
y <- tcrossprod(X, t(beta)) + e
mon.names <- c("LL", "sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

41.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

41.4. Model

42. Linear Regression, Multilevel

42.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\mu_{i} = \mathbf{X}\beta_{\mathbf{m}[i], 1:J}$$

$$\beta_{g,1:J} \sim \mathcal{N}_{J}(\gamma, \Omega^{-1}), \quad g = 1, \dots, G$$

$$\Omega \sim \mathcal{W}_{J+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{J}$$

$$\gamma_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

where **m** is a vector of length N, and each element indicates the multilevel group (g = 1, ..., G) for the associated record.

```
N <- 30
J <- 2 ### Number of predictors (including intercept)
G <- 2 ### Number of Multilevel Groups
X <- matrix(rnorm(N,0,1),N,J); X[,1] <- 1
Sigma <- matrix(runif(J*J,-1,1),J,J)
diag(Sigma) <- runif(J,1,5)
Sigma <- as.positive.definite(Sigma)
gamma <- runif(J,-1,1)
beta <- matrix(NA,G,J)
for (g in 1:G) {beta[g,] <- rmvn(1, gamma, Sigma)}
m <- rcat(N, rep(1,G)) ### Multilevel group indicator
y <- rowSums(beta[m,] * X) + rnorm(N,0,0.1)
S <- diag(J)</pre>
```

```
mon.names <- c("LP", "sigma")</pre>
parm.names <- as.parm.names(list(beta=matrix(0,G,J), log.sigma=0,</pre>
    gamma=rep(0,J), Omega=S), uppertri=c(0,0,0,1))
MyData <- list(G=G, J=J, N=N, S=S, X=X, m=m, mon.names=mon.names,
    parm.names=parm.names, y=y)
42.3. Initial. Values
Initial. Values \leftarrow c(rep(0,G*J), log(1), rep(0,J),
    upper.triangle(S, diag=TRUE))
42.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- matrix(parm[1:(Data$G * Data$J)], Data$G, Data$J)</pre>
     gamma <- parm[grep("gamma", Data$parm.names)]</pre>
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    Omega <- as.parm.matrix(Omega, Data$J, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
         diag=TRUE)
    ### Log(Prior Densities)
    Omega.prior <- dwishart(Omega, Data$J+1, Data$S, log=TRUE)</pre>
    beta.prior <- sum(dmvnp(beta, gamma, Omega, log=TRUE))</pre>
     gamma.prior <- sum(dnormv(gamma, 0, 100, log=TRUE))</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- rowSums(beta[Data$m,] * Data$X)</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + Omega.prior + beta.prior + gamma.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

43. Linear Regression with Full Missingness

With 'full missingness', there are missing values for both the response and at least one predictor. This is a minimal example, since there are missing values in only one of the predictors. Initial values do not need to be specified for missing values in a predictor, unless another predictor variable with missing values is used to predict the missing values of a predictor. More effort is involved in specifying a model with a missing predictor that is predicted by another missing predictor. The full likelihood approach to full missingness is excellent as long

as the model is identifiable. When it is not identifiable, then imputation may be done in a previous stage. In this example, X[,2] is the only predictor with missing values.

43.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$\mu_2 = \mathbf{X}\beta$$

$$\mathbf{X}_{1:N,2} \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

$$\mu_1 = \mathbf{X}_{1:N,(1,3:J)}\alpha$$

$$\alpha_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma_k \sim \mathcal{HC}(25), \quad k = 1, \dots, 2$$

43.2. Data

```
N <- 1000
J <- 5
X <- matrix(runif(N*J,-2,2),N,J)</pre>
X[,1] <- 1
alpha <- runif((J-1),-2,2)
X[,2] \leftarrow tcrossprod(X[,-2], t(alpha)) + rnorm(N,0,0.1)
beta \leftarrow runif(J,-2,2)
y <- tcrossprod(X, t(beta)) + rnorm(N,0,0.1)
y[sample(1:N, round(N*0.05))] <- NA
M <- ifelse(is.na(y), 1, 0)
X[sample(1:N, round(N*0.05)), 2] <- NA
mon.names <- c("LP", "sigma[1]", "sigma[2]")</pre>
parm.names <- as.parm.names(list(alpha=rep(0,J-1), beta=rep(0,J),</pre>
     log.sigma=rep(0,2))
MyData <- list(J=J, M=M, N=N, X=X, mon.names=mon.names, parm.names=parm.names,
    y=y)
```

43.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,(J-1)), rep(0,J), rep(0,2))
```

```
Model <- function(parm, Data)
{
    ### Parameters
    alpha <- parm[1:(Data$J-1)]
    beta <- parm[Data$J:(2*Data$J - 1)]</pre>
```

```
sigma <- exp(parm[(2*Data$J):(2*Data$J+1)])</pre>
### Log(Prior Densities)
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
### Log-Likelihood
mu1 <- tcrossprod(Data$X[,-2], t(alpha))</pre>
X.imputed <- Data$X</pre>
X.imputed[,2] <- ifelse(is.na(Data$X[,2]), mu1, Data$X[,2])</pre>
LL1 <- sum(dnorm(X.imputed[,2], mu1, sigma[1], log=TRUE))
mu2 <- tcrossprod(X.imputed, t(beta))</pre>
y.imputed <- ifelse(is.na(Data$y), mu2, Data$y)</pre>
LL2 <- sum((1-Data$M) * dnorm(y.imputed, mu2, sigma[2], log=TRUE))
### Log-Posterior
LP <- LL1 + LL2 + alpha.prior + beta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL2, Monitor=c(LP, sigma),</pre>
    yhat=mu2, parm=parm)
return(Modelout)
}
```

44. Linear Regression with Missing Response

Initial values do not need to be specified for missing values in this response, \mathbf{y} . Instead, at each iteration, missing values in \mathbf{y} are replaced with their estimate in μ .

44.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

```
data(demonsnacks)
N <- nrow(demonsnacks)
J <- ncol(demonsnacks)
y <- log(demonsnacks$Calories)
y[sample(1:N, round(N*0.05))] <- NA
M <- ifelse(is.na(y), 1, 0)
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- c("LP", "sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))</pre>
```

MyData <- list(J=J, M=M, X=X, mon.names=mon.names, parm.names=parm.names, y=y)

44.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

44.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$J]</pre>
    sigma <- exp(parm[Data$J+1])</pre>
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- dgamma(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    y.imputed <- ifelse(is.na(Data$y), mu, Data$y)</pre>
    LL <- sum((1-Data$M) * dnorm(y.imputed, mu, sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma),</pre>
          yhat=mu, parm=parm)
    return(Modelout)
    }
```

45. LSTAR

This is a Logistic Smooth-Threshold Autoregression (LSTAR), and is specified with a transition function that includes γ as the shape parameter, \mathbf{y} as the transition variable, θ as the location parameter, and d as the delay parameter.

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mu_{t} = \pi_{t}(\alpha_{1} + \phi_{1}\mathbf{y}_{t-1}) + (1 - \pi_{t})(\alpha_{2} + \phi_{2}\mathbf{y}_{t-1}), \quad t = 2, \dots, T$$

$$\pi_{t} = \frac{1}{1 + \exp(-(\gamma(\mathbf{y}_{t-d} - \theta)))}$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000) \in [\mathbf{y}_{min}, \mathbf{y}_{max}], \quad j = 1, \dots, 2$$

$$\phi_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\gamma \sim \mathcal{HC}(25)$$

```
\theta \sim \mathcal{U}(\mathbf{y}_{min}, \mathbf{y}_{max})
\pi_1 \sim \mathcal{U}(0.001, 0.999)
\sigma \sim \mathcal{HC}(25)
```

45.2. Data

```
y \leftarrow c(26.73, 26.75, 26.24, 25.94, 27.40, 26.14, 23.99, 23.08, 22.55,
    20.64, 23.28, 24.92, 25.07, 26.53, 28.14, 30.10, 27.43, 27.24,
    23.96, 25.85, 26.76, 26.05, 26.79, 26.69, 29.89, 29.09, 23.84,
    24.87, 24.47, 22.85, 22.05, 22.82, 22.99, 21.60, 20.32, 20.80,
    19.78, 19.87, 18.78, 19.64, 20.00, 21.51, 21.49, 21.96, 22.58,
    21.22, 22.34, 22.76, 18.37, 17.50, 17.55, 12.14, 4.76, 3.75,
    2.05, 2.69, 3.85, 4.72, 5.00, 3.31, 3.02, 3.15, 2.50,
    3.33, 3.95, 4.00, 3.86, 3.87, 3.51, 3.19, 2.39, 2.33,
    2.57, 2.80, 2.43, 2.43, 2.10, 2.31, 2.21, 2.11, 2.10,
    1.70, 1.35, 1.83, 1.55, 1.63, 1.91, 2.14, 2.41, 2.06,
    1.87, 2.11, 2.28, 2.26, 2.03, 2.06, 2.08, 1.91, 1.95,
    1.56, 1.44, 1.60, 1.77, 1.77, 1.95, 2.01, 1.65, 1.87,
    2.01, 1.84, 1.94, 1.93, 1.93, 1.75, 1.73, 1.80, 1.74,
    1.80, 1.75, 1.67, 1.60, 1.61, 1.55, 1.56, 1.57, 1.55,
    1.56, 1.57, 1.69, 1.66, 1.74, 1.64, 1.65, 1.62, 1.54,
    1.58, 1.49, 1.41, 1.42, 1.37, 1.45, 1.31, 1.37, 1.26,
    1.35, 1.41, 1.29, 1.28, 1.23, 1.08, 1.03, 1.00, 1.04,
    1.04, 0.92, 0.96, 0.90, 0.85, 0.78, 0.73, 0.59, 0.54,
    0.53, 0.41, 0.46, 0.52, 0.42, 0.42, 0.43, 0.43, 0.35,
    0.35, 0.35, 0.42, 0.41, 0.41, 0.50, 0.83, 0.96, 1.38,
    1.62, 1.26, 1.48, 1.39, 1.20, 1.10, 1.02, 0.95, 1.00,
    1.07, 1.14, 1.14, 1.10, 1.05, 1.08, 1.16, 1.42, 1.52,
    1.60, 1.69, 1.62, 1.29, 1.46, 1.43, 1.50, 1.46, 1.40,
    1.34, 1.41, 1.38, 1.38, 1.46, 1.73, 1.84, 1.95, 2.01,
    1.90, 1.81, 1.60, 1.84, 1.72, 1.83, 1.81, 1.78, 1.80,
    1.70, 1.70, 1.66, 1.67, 1.69, 1.66, 1.56, 1.47, 1.64,
    1.71, 1.66, 1.65, 1.60, 1.61, 1.61, 1.53, 1.48, 1.40,
    1.47, 1.53, 1.39, 1.41, 1.42, 1.46, 1.46, 1.33, 1.16)
T <- length(y)
mon.names <- c("LP", "sigma", "ynew", paste("pi[", 1:T, "]", sep=""),
    "pi.new")
parm.names <- as.parm.names(list(alpha=rep(0,2), phi=rep(0,2), log.gamma=0,</pre>
    theta=0, pi=0, log.sigma=0))
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
```

45.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,4), log(1), mean(y), 0.5, log(1))
```

45.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    parm[1:2] <- alpha <- interval(parm[1:2], min(Data$y), max(Data$y))</pre>
    parm[3:4] <- phi <- interval(parm[3:4], -1, 1)
    gamma <- exp(parm[5])</pre>
    parm[6] <- theta <- interval(parm[6], min(Data$y), max(Data$y))</pre>
    pi <- interval(parm[7], 0.001, 0.999); parm[7] <- pi
    sigma <- exp(parm[8])</pre>
    ### Log(Prior Densities)
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    phi.prior <- sum(dnorm(phi, 0, 1000, log=TRUE))</pre>
    gamma.prior <- dhalfcauchy(gamma, 25, log=TRUE)</pre>
    theta.prior <- dunif(theta, min(Data$y), max(Data$y), log=TRUE)
    pi.prior <- dunif(pi, 0.001, 0.999, log=TRUE)</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    ### Log-Likelihood
    pi \leftarrow c(pi, 1 / (1 + exp(-(gamma*(Data$y[-Data$T]-theta)))))
    pi.new <- 1 / (1 + exp(-(gamma*(Data$y[Data$T]-theta))))</pre>
    mu <- pi * c(alpha[1], alpha[1] + phi[1]*Data$y[-Data$T]) +</pre>
          (1-pi) * c(alpha[2], alpha[2] + phi[2]*Data$y[-Data$T])
    ynew <- pi.new * (alpha[1] + phi[1]*Data$y[Data$T]) +</pre>
         (1-pi.new) * (alpha[2] + phi[2]*Data$y[Data$T])
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + gamma.prior + theta.prior +
         pi.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,ynew,pi,pi.new),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

46. MANCOVA

Since this is a multivariate extension of ANCOVA, please see the ANCOVA example in section 1 for a univariate introduction.

$$\mathbf{Y}_{i,1:J} \sim \mathcal{N}_K(\mu_{i,1:J}, \Sigma), \quad i = 1, \dots, N$$

$$\mu_{i,k} = \alpha_k + \beta_{k,\mathbf{X}[i,1]} + \gamma_{k,\mathbf{X}[i,1]} + \mathbf{X}_{1:N,3:(C+J)} \delta_{k,1:C}$$

$$\epsilon_{i,k} = \mathbf{Y}_{i,k} - \mu_{i,k}$$

$$\alpha_k \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\beta_{k,l} \sim \mathcal{N}(0, \sigma_1^2), \quad l = 1, \dots, (L-1)$$

$$\beta_{1:K,L} = -\sum_{l=1}^{L-1} \beta_{1:K,l}$$

$$\gamma_{k,m} \sim \mathcal{N}(0, \sigma_2^2), \quad m = 1, \dots, (M-1)$$

$$\gamma_{1:K,M} = -\sum_{m=1}^{M-1} \beta_{1:K,m}$$

$$\delta_{k,c} \sim \mathcal{N}(0, 1000)$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K$$

$$\Sigma = \Omega^{-1}$$

$$\sigma_{1:J} \sim \mathcal{HC}(25)$$

```
C <- 2 #Number of covariates
J <- 2 #Number of factors (treatments)
K <- 3 #Number of endogenous (dependent) variables
L <- 4 #Number of levels in factor (treatment) 1
M <- 5 #Number of levels in factor (treatment) 2
N <- 100
X <- matrix(cbind(round(runif(N, 0.5, L+0.49)),round(runif(N,0.5,M+0.49)),</pre>
    runif(C*N,0,1)), N, J + C)
alpha <- runif(K,-1,1)
beta <- matrix(runif(K*L,-2,2), K, L)
beta[,L] <- -rowSums(beta[,-L])</pre>
gamma <- matrix(runif(K*M,-2,2), K, M)</pre>
gamma[,M] <- -rowSums(gamma[,-M])</pre>
delta <- matrix(runif(K*C), K, C)</pre>
Y <- matrix(NA,N,K)
for (k in 1:K) {
    Y[,k] \leftarrow alpha[k] + beta[k,X[,1]] + gamma[k,X[,2]] +
    tcrossprod(delta[k,], X[,-c(1,2)]) + rnorm(1,0,0.1)
S \leftarrow diag(K)
mon.names <- c("LP", "s.o.beta", "s.o.gamma", "s.o.epsilon",
    as.parm.names(list(s.beta=rep(0,K), s.gamma=rep(0,K),
    s.epsilon=rep(0,K))))
parm.names <- as.parm.names(list(alpha=rep(0,K), beta=matrix(0,K,(L-1)),</pre>
    gamma=matrix(0,K,(M-1)), delta=matrix(0,K,C), Omega=diag(K),
    log.sigma=rep(0,2)), uppertri=c(0,0,0,0,1,0))
MyData <- list(C=C, J=J, K=K, L=L, M=M, N=N, S=S, X=X, Y=Y,
    mon.names=mon.names, parm.names=parm.names)
```

46.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,K), rep(0,K*(L-1)), rep(0,K*(M-1)),
     rep(0,C*K), upper.triangle(S, diag=TRUE), rep(0,2))
46.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[grep("alpha", Data$parm.names)]</pre>
    beta <- matrix(c(parm[grep("beta", Data$parm.names)], rep(0,K)),</pre>
    Data$K, Data$L)
    beta[,L] <- -rowSums(beta[,-L])</pre>
     gamma <- matrix(c(parm[grep("gamma", Data$parm.names)], rep(0,K)),</pre>
          Data$K, Data$M)
    gamma[,M] <- -rowSums(gamma[,-M])</pre>
    delta <- matrix(parm[grep("delta", Data$parm.names)], Data$K, Data$C)</pre>
    Omega <- as.parm.matrix(Omega, Data$K, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
          diag=TRUE)
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
     ### Log(Prior Densities)
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnorm(beta, 0, sigma[1], log=TRUE))</pre>
     gamma.prior <- sum(dnorm(gamma, 0, sigma[2], log=TRUE))</pre>
    delta.prior <- sum(dnormv(delta, 0, 1000, log=TRUE))</pre>
    Omega.prior <- dwishart(Omega, Data$K+1, Data$S, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(0,Data$N,Data$K)</pre>
    for (k in 1:K) {
         mu[,k] \leftarrow alpha[k] + beta[k,Data$X[,1]] + gamma[k,Data$X[,2]] +
          tcrossprod(Data$X[,-c(1,2)], t(delta[k,]))}
    LL <- sum(dmvnp(Data$Y, mu, Omega, log=TRUE))
    ### Variance Components, Omnibus
    s.o.beta <- sd(as.vector(beta))</pre>
     s.o.gamma <- sd(as.vector(gamma))</pre>
     s.o.epsilon <- sd(as.vector(Data$Y - mu))</pre>
    ### Variance Components, Univariate
    s.beta <- apply(beta,1,sd)</pre>
    s.gamma <- apply(gamma,1,sd)</pre>
    s.epsilon <- apply(Data$Y - mu,2,sd)</pre>
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + gamma.prior + delta.prior +
          Omega.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, s.o.beta, s.o.gamma,
```

```
s.o.epsilon, s.beta, s.gamma, s.epsilon), yhat=mu, parm=parm)
return(Modelout)
}
```

47. MANOVA

Since this is a multivariate extension of ANOVA, please see the two-way ANOVA example in section 3 for a univariate introduction.

47.1. Form

$$\mathbf{Y}_{i,1:J} \sim \mathcal{N}_{K}(\mu_{i,1:J}, \Omega^{-1}), \quad i = 1, \dots, N$$

$$\mu_{i,k} = \alpha_{k} + \beta_{k,\mathbf{X}[i,1]} + \gamma_{k,\mathbf{X}[i,1]}$$

$$\epsilon_{i,k} = \mathbf{Y}_{i,k} - \mu_{i,k}$$

$$\alpha_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\beta_{k,l} \sim \mathcal{N}(0, \sigma_{1}^{2}), \quad l = 1, \dots, (L-1)$$

$$\beta_{1:K,L} = -\sum_{l=1}^{L-1} \beta_{1:K,l}$$

$$\gamma_{k,m} \sim \mathcal{N}(0, \sigma_{2}^{2}), \quad m = 1, \dots, (M-1)$$

$$\gamma_{1:K,M} = -\sum_{m=1}^{M-1} \beta_{1:K,m}$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{K}$$

$$\sigma_{1:J} \sim \mathcal{HC}(25)$$

```
for (k in 1:K) {
     Y[,k] \leftarrow alpha[k] + beta[k,X[,1]] + gamma[k,X[,2]] + rnorm(1,0,0.1)
S \leftarrow diag(K)
mon.names <- c("LP", "s.o.beta", "s.o.gamma", "s.o.epsilon",
     as.parm.names(list(s.beta=rep(0,K), s.gamma=rep(0,K),
     s.epsilon=rep(0,K))))
parm.names <- as.parm.names(list(alpha=rep(0,K), beta=matrix(0,K,(L-1)),</pre>
     gamma=matrix(0,K,(M-1)), Omega=diag(K), log.sigma=rep(0,2)),
    uppertri=c(0,0,0,1,0))
MyData <- list(J=J, K=K, L=L, M=M, N=N, S=S, X=X, Y=Y,
     mon.names=mon.names, parm.names=parm.names)
47.3. Initial Values
Initial. Values \leftarrow c(rep(0,K), rep(0,K*(L-1)), rep(0,K*(M-1)),
     upper.triangle(S, diag=TRUE), rep(0,2))
47.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[grep("alpha", Data$parm.names)]</pre>
    beta <- matrix(c(parm[grep("beta", Data$parm.names)], rep(0,K)),</pre>
         Data$K, Data$L)
    beta[,L] <- -rowSums(beta[,-L])</pre>
     gamma <- matrix(c(parm[grep("gamma", Data$parm.names)], rep(0,K)),</pre>
         Data$K, Data$M)
     gamma[,M] <- -rowSums(gamma[,-M])</pre>
    Omega <- as.parm.matrix(Omega, Data$K, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
         diag=TRUE)
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnorm(beta, 0, sigma[1], log=TRUE))</pre>
     gamma.prior <- sum(dnorm(gamma, 0, sigma[2], log=TRUE))</pre>
    Omega.prior <- dwishart(Omega, Data$K+1, Data$S, log=TRUE)</pre>
     sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(0,Data$N,Data$K)</pre>
    for (k in 1:K) {
         mu[,k] <- alpha[k] + beta[k,Data$X[,1]] + gamma[k,Data$X[,2]]}</pre>
    LL <- sum(dmvnp(Data$Y, mu, Omega, log=TRUE))
    ### Variance Components, Omnibus
     s.o.beta <- sd(as.vector(beta))</pre>
```

48. Mixture Model, Finite

This finite mixture model (FMM) imposes a multilevel structure on each of the J regression effects in β , so that mixture components share a common residual variance, ν_j . Identifiability is gained at the expense of some shrinkage.

$$\mathbf{y} \sim \mathcal{N}(\mu_{1:N,m}, \sigma^2)$$

$$\mu_{1:N,m} = \mathbf{X}\beta_{m,1:J}, \quad m = 1, \dots, M$$

$$\beta_{m,j} \sim \mathcal{N}(0, \nu_j^2), \quad j = 1, \dots, J$$

$$\nu_j \sim \mathcal{HC}(25)$$

$$\sigma \sim \mathcal{HC}(25)$$

$$\pi_{1:M} \sim \mathcal{D}(\alpha_{1:M})$$

$$\pi_m = \frac{\sum_{i=1}^N \delta_{i,m}}{\sum \delta}$$

$$\mathbf{p}_{i,m} = \frac{\delta_{i,m}}{\sum_{m=1}^M \delta_{i,m}}$$

$$\delta_{i,m} = \exp(\mathbf{X}\delta_{i,m}), \quad m = 1, \dots, (M-1)$$

$$\delta_{1:N,M} = 1$$

$$\delta_{i,m} \sim \mathcal{N}(0, 1000) \in [-10, 10], \quad m = 1, \dots, (M-1)$$

$$\alpha_m = 1$$

```
M <- 2 #Number of mixtures
alpha <- rep(1,M) #Prior probability of mixing probabilities
data(demonsnacks)
N <- nrow(demonsnacks)</pre>
J <- ncol(demonsnacks)</pre>
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))</pre>
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}</pre>
mon.names <- c("LP", as.parm.names(list(pi=rep(0,M), sigma=0)))</pre>
parm.names <- as.parm.names(list(beta=matrix(0,M,J), log.nu=rep(0,J),</pre>
    log.delta=matrix(0,N,M-1), log.sigma=0))
MyData <- list(J=J, M=M, N=N, X=X, alpha=alpha, mon.names=mon.names,
    parm.names=parm.names, y=y)
48.3. Initial Values
Initial. Values \leftarrow c(runif(M*J), rep(0,J), runif(N*(M-1),-1,1), 0)
48.4. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- matrix(parm[grep("beta", Data$parm.names)], Data$M, Data$J)</pre>
    delta <- interval(parm[grep("log.delta", Data$parm.names)], -10, 10)</pre>
    parm[grep("log.delta", Data$parm.names)] <- delta</pre>
    delta <- matrix(c(exp(delta), rep(1, Data$N)), Data$N, Data$M)</pre>
    pi <- colSums(delta) / sum(delta)</pre>
    nu <- exp(parm[grep("log.nu", Data$parm.names)])</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    beta.prior <- sum(dnorm(beta, 0, matrix(rep(nu, Data$M), Data$M,
         Data$J, byrow=TRUE), log=TRUE))
    delta.prior <- sum(dtrunc(delta, "norm", a=exp(-10), b=exp(10),
         mean=log(1/Data$M), sd=sqrt(1000), log=TRUE))
    pi.prior <- ddirichlet(pi, Data$alpha, log=TRUE)</pre>
    nu.prior <- sum(dhalfcauchy(nu, 25, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    p <- delta / rowSums(delta)</pre>
    mu <- tcrossprod(Data$X, beta)</pre>
    p <- max.col(p)</pre>
    mu <- diag(mu[,p])</pre>
    LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))</pre>
    ### Log-Posterior
```

```
LP <- LL + beta.prior + delta.prior + pi.prior + nu.prior +
    sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,pi,sigma),
        yhat=mu, parm=parm)
return(Modelout)
}</pre>
```

49. Mixture Model, Poisson-Gamma

49.1. Form

$$\mathbf{y} \sim \mathcal{P}(\lambda)$$

$$\lambda \sim \mathcal{G}(\alpha \mu, \alpha)$$

$$\mu = \exp(\mathbf{X}\beta)$$

$$\alpha \sim \mathcal{HC}(25)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

49.2. Data

49.3. Initial Values

Parameters

```
Initial.Values <- c(0, rep(0,J), rep(0,N))

49.4. Model

Model <- function(parm, Data)
    {
     ### Hyperparameters
     alpha <- exp(parm[grep("log.alpha", Data$parm.names)])</pre>
```

beta <- parm[grep("beta", Data\$parm.names)]</pre>

```
lambda <- exp(parm[grep("log.lambda", Data$parm.names)])
mu <- exp(tcrossprod(Data$X, t(beta)))
### Log(Hyperprior Densities)
alpha.prior <- dhalfcauchy(alpha, 25, log=TRUE)
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
lambda.prior <- sum(dgamma(lambda, alpha*mu, alpha, log=TRUE))
### Log-Likelihood
LL <- sum(dpois(Data$y, lambda, log=TRUE))
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + lambda.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=lambda, parm=parm)
return(Modelout)
}</pre>
```

50. Multinomial Logit

50.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{p}_{i,1:J}), \quad i = 1, \dots, N$$

$$\mathbf{p}_{i,j} = \frac{\phi_{i,j}}{\sum_{j=1}^{J} \phi_{i,j}}, \quad \sum_{j=1}^{J} \mathbf{p}_{i,j} = 1$$

$$\phi = \exp(\mu)$$

$$\mu_{i,J} = 0, \quad i = 1, \dots, N$$

$$\mu_{i,j} = \mathbf{X}_{i,1:K} \beta_{j,1:K} \in [-700, 700], \quad j = 1, \dots, (J-1)$$

$$\beta_{i,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K$$

```
y <- x01 <- x02 <- c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] <- rnorm(100, 35, 3.5)
x02[1:100] <- rnorm(100, 2.51, 0.25)
x02[101:200] <- rnorm(100, 2.01, 0.20)
x02[201:300] <- rnorm(100, 2.70, 0.27)
N <- length(y)
```

50.3. Initial Values

```
Initial.Values <- c(rep(0,(J-1)*K))</pre>
```

50.4. Model

```
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- matrix(parm, Data$J-1, Data$K)</pre>
     ### Log(Prior Densities)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- matrix(0,Data$N,Data$J)</pre>
     mu[,-Data$K] <- tcrossprod(Data$X, beta)</pre>
     mu <- interval(mu, -700, 700)
     phi <- exp(mu)
     p <- phi / rowSums(phi)</pre>
     LL <- sum(dcat(Data$y, p, log=TRUE))</pre>
     yrep <- max.col(p)</pre>
     ### Log-Posterior
     LP <- LL + beta.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
     return(Modelout)
     }
```

51. Multinomial Logit, Nested

$$\mathbf{y}_{i} \sim \mathcal{CAT}(\mathbf{P}_{i,1:J}), \quad i = 1, \dots, N$$

$$\mathbf{P}_{1:N,1} = \frac{\mathbf{R}}{\mathbf{R} + \exp(\alpha \mathbf{I})}$$

$$\mathbf{P}_{1:N,2} = \frac{(1 - \mathbf{P}_{1:N,1})\mathbf{S}_{1:N,1}}{\mathbf{V}}$$

$$\mathbf{P}_{1:N,3} = \frac{(1 - \mathbf{P}_{1:N,1})\mathbf{S}_{1:N,2}}{\mathbf{V}}$$

$$\mathbf{R}_{1:N} = \exp(\mu_{1:N,1})$$

$$\mathbf{S}_{1:N,1:2} = \exp(\mu_{1:N,2:3})$$

$$\mathbf{I} = \log(\mathbf{V})$$

$$\mathbf{V}_{i} = \sum_{k=1}^{K} \mathbf{S}_{i,k}, \quad i = 1, \dots, N$$

$$\mu_{1:N,1} = \mathbf{X}\iota \in [-700, 700]$$

$$\mu_{1:N,2} = \mathbf{X}\beta_{2,1:K} \in [-700, 700]$$

$$\iota = \alpha\beta_{1,1:K}$$

$$\alpha \sim \mathcal{EXP}(1) \in [0, 2]$$

$$\beta_{i,k} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, (J-1) \quad k = 1, \dots, K$$

where there are J=3 categories of $\mathbf{y}, K=3$ predictors, \mathbf{R} is the non-nested alternative, \mathbf{S} is the nested alternative, \mathbf{V} is the observed utility in the nest, α is effectively 1 - correlation and has a truncated exponential distribution, and ι is a vector of regression effects for the isolated alternative after α is taken into account. The third alternative is the reference category.

51.2. Data

```
y \leftarrow x01 \leftarrow x02 \leftarrow c(1:300)
y[1:100] <- 1
y[101:200] <- 2
y[201:300] <- 3
x01[1:100] <- rnorm(100, 25, 2.5)
x01[101:200] <- rnorm(100, 40, 4.0)
x01[201:300] <- rnorm(100, 35, 3.5)
x02[1:100] \leftarrow rnorm(100, 2.51, 0.25)
x02[101:200] <- rnorm(100, 2.01, 0.20)
x02[201:300] \leftarrow rnorm(100, 2.70, 0.27)
N <- length(y)
J <- 3 #Number of categories in y
K <- 3 #Number of predictors (including the intercept)
X \leftarrow \text{matrix}(c(\text{rep}(1,N),x01,x02),N,K)
mon.names <- c("LP", as.parm.names(list(iota=rep(0,K))))</pre>
parm.names <- as.parm.names(list(alpha=0, beta=matrix(0,J-1,K)))</pre>
MyData <- list(J=J, K=K, N=N, X=X, mon.names=mon.names,
     parm.names=parm.names, y=y)
```

51.3. Initial Values

```
Initial. Values <- c(0.5, rep(0.1, (J-1)*K))
```

87

51.4. Model

```
Model <- function(parm, Data)</pre>
     ### Hyperparameters
     alpha.rate <- 1
     ### Parameters
     alpha <- interval(parm[1],0,2); parm[1] <- alpha</pre>
     beta <- matrix(parm[grep("beta", Data$parm.names)], Data$J-1, Data$K)</pre>
     ### Log(Prior Densities)
     alpha.prior <- dtrunc(alpha, "exp", a=0, b=2, rate=alpha.rate,</pre>
          log=TRUE)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- P <- matrix(0,Data$N,Data$J)</pre>
     iota <- alpha * beta[1,]
     mu[,1] <- tcrossprod(Data$X, t(iota))</pre>
     mu[,2] <- tcrossprod(Data$X, t(beta[2,]))</pre>
     mu <- interval(mu, -700, 700)</pre>
     R \leftarrow \exp(mu[,1])
     S \leftarrow \exp(mu[,-1])
     V <- rowSums(S)</pre>
     I \leftarrow log(V)
     P[,1] \leftarrow R / (R + exp(alpha*I))
     P[,2] \leftarrow (1 - P[,1]) * S[,1] / V
     P[,3] \leftarrow (1 - P[,1]) * S[,2] / V
     LL <- sum(dcat(Data$y, P, log=TRUE))</pre>
     yrep <- max.col(P)</pre>
     ### Log-Posterior
     LP <- LL + alpha.prior + beta.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,iota), yhat=yrep,
          parm=parm)
     return(Modelout)
     }
```

52. Multinomial Probit

In this form of MNP, the β parameters are sum-to-zero constraints in the reference category, and covariance matrix Σ includes all J categories of \mathbf{y} .

$$\mathbf{Z}_{i,1:J} \sim \mathcal{N}_J(\mu_{i,1:J}, \Sigma), \quad i = 1, \dots, N$$

$$\mathbf{Z}_{i,j} \in \begin{cases} [0,10] & \text{if } \mathbf{y}_i = j \\ [-10,0] & \text{otherwise} \end{cases}$$

$$\mu_{1:N,j} = \mathbf{X}\beta_{j,1:K}$$

$$\Sigma \sim \mathcal{IW}_{J+1}(\mathbf{S}^{-1}), \quad \mathbf{S} = \mathbf{I}_{J}, \quad \Sigma[1,1] = 1$$

$$\beta_{j,k} \sim \mathcal{N}(0,1000), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K$$

$$\beta_{J,k} = -\sum_{j=1}^{J-1} \beta_{j,k}$$

$$\mathbf{Z}_{i,j} \sim \mathcal{N}(0,1000) \in [-10,10]$$

52.2. Data

```
y <- x1 <- x2 <- c(1:30)
y[1:10] <- 1
y[11:20] \leftarrow 2
y[21:30] < -3
x1[1:10] <- rnorm(10, 25, 2.5)
x1[11:20] \leftarrow rnorm(10, 40, 4.0)
x1[21:30] \leftarrow rnorm(10, 35, 3.5)
x2[1:10] \leftarrow rnorm(10, 2.51, 0.25)
x2[11:20] \leftarrow rnorm(10, 2.01, 0.20)
x2[21:30] \leftarrow rnorm(10, 2.70, 0.27)
N <- length(y)
J <- 3 #Number of categories in y
K \leftarrow 3 #Number of columns to be in design matrix X
S \leftarrow diag(J)
X <- matrix(c(rep(1,N),x1,x2),N,K)</pre>
mon.names <- "LP"
sigma.temp <- as.parm.names(list(Sigma=diag(J)), uppertri=1)</pre>
parm.names <- c(sigma.temp[2:length(sigma.temp)],</pre>
     as.parm.names(list(beta=matrix(0,(J-1),K), Z=matrix(0,N,J))))
MyData <- list(J=J, K=K, N=N, S=S, X=X, mon.names=mon.names,
     parm.names=parm.names, y=y)
```

52.3. Initial Values

```
Initial.Values <- c(rep(0, length(upper.triangle(S, diag=TRUE)) - 1), rep(0,(J-1)*K), rep(0,N*J))
```

52.4. Model

```
Model <- function(parm, Data)
{
    ### Parameters
    beta <- matrix(parm[grep("beta", Data$parm.names)], Data$J-1, Data$K)</pre>
```

```
beta <- rbind(beta, colSums(beta)*-1) #Sum to zero constraint
Sigma <- as.parm.matrix(Sigma, Data$J, parm, Data, restrict=TRUE)</pre>
parm[grep("Sigma", Data$parm.names)] <- upper.triangle(Sigma,</pre>
     diag=TRUE)[-1]
Z <- matrix(parm[grep("Z", Data$parm.names)], Data$N, Data$J)</pre>
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
Sigma.prior <- dinvwishart(Sigma, Data$J+1, Data$S, log=TRUE)</pre>
Z.prior <- sum(dnormv(Z, 0, 1000, log=TRUE))</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, beta)</pre>
Y <- as.indicator.matrix(Data$y)</pre>
Z \leftarrow ifelse(Z > 10, 10, Z); Z \leftarrow ifelse({Y == 0} & {Z > 0}, 0, Z)
Z \leftarrow ifelse(Z \leftarrow -10, -10, Z); Z \leftarrow ifelse({Y == 1} & {Z < 0}, 0, Z)
parm[grep("Z", Data$parm.names)] <- as.vector(Z)</pre>
LL <- sum(dmvn(Z, mu, Sigma, log=TRUE))
yrep <- max.col(Z)</pre>
#eta <- exp(mu)</pre>
#p <- eta / rowSums(eta)</pre>
### Log-Posterior
LP <- LL + beta.prior + Sigma.prior + Z.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
return(Modelout)
}
```

53. Multivariate Binary Probit

$$\mathbf{Z}_{i,1:J} \sim \mathcal{N}_{J}(\mu_{i,1:J}, \Sigma), \quad i = 1, \dots, N$$

$$\mathbf{Z}_{i,j} \in \begin{cases} [0,10] & \text{if } \mathbf{y}_{i} = j \\ [-10,0] & \end{cases}$$

$$\mu_{1:N,j} = \mathbf{X}\beta_{j,1:K}$$

$$\Sigma \sim \mathcal{IW}_{J+1}(\mathbf{S}^{-1}), \quad \mathbf{S} = \mathbf{I}_{J}, \quad \Sigma[1,1] = 1$$

$$\beta_{j,k} \sim \mathcal{N}(0,1000), \quad j = 1, \dots, (J-1), \quad k = 1, \dots, K$$

$$\beta_{J,k} = -\sum_{j=1}^{J-1} \beta_{j,k}$$

$$\mathbf{Z}_{i,j} \sim \mathcal{N}(0,1000) \in [-10,10]$$

```
53.2. Data
N <- 30
J <- 3 #Number of binary dependent variables
K \leftarrow 3 #Number of columns to be in design matrix X
Y <- matrix(round(runif(N*J)),N,J)</pre>
X <- matrix(1,N, K)</pre>
for (k \text{ in } 2:K) \{X[,k] \leftarrow rnorm(N, runif(1,-3,3), runif(1,0.1,3))\}
S \leftarrow diag(J)
mon.names <- "LP"
sigma.temp <- as.parm.names(list(Sigma=diag(J)), uppertri=1)</pre>
parm.names <- c(sigma.temp[2:length(sigma.temp)],</pre>
     as.parm.names(list(beta=matrix(0,(J-1),K), Z=matrix(0,N,J))))
MyData <- list(J=J, K=K, N=N, S=S, X=X, Y=Y, mon.names=mon.names,
     parm.names=parm.names)
53.3. Initial Values
Initial.Values <- c(rep(0, length(upper.triangle(S, diag=TRUE)) - 1),</pre>
     rep(0,(J-1)*K), rep(0,N*J))
53.4. Model
Model <- function(parm, Data)</pre>
     ### Parameters
     beta <- matrix(parm[grep("beta", Data$parm.names)], Data$J-1, Data$K)
     beta <- rbind(beta, colSums(beta)*-1) #Sum to zero constraint
     Sigma <- as.parm.matrix(Sigma, Data$J, parm, Data, restrict=TRUE)</pre>
     parm[grep("Sigma", Data$parm.names)] <- upper.triangle(Sigma,</pre>
          diag=TRUE)[-1]
     Z <- matrix(parm[grep("Z", Data$parm.names)], Data$N, Data$J)</pre>
     ### Log(Prior Densities)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     Sigma.prior <- dinvwishart(Sigma, Data$J+1, Data$S, log=TRUE)</pre>
     Z.prior <- sum(dnormv(Z, 0, 1000, log=TRUE))</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, beta)</pre>
     Z \leftarrow ifelse(Z > 10, 10, Z)
     Z \leftarrow ifelse({Data}Y == 0) & {Z > 0}, 0, Z)
     Z \leftarrow ifelse(Z \leftarrow -10, -10, Z)
     Z \leftarrow ifelse({Data$Y == 1} & {Z < 0}, 0, Z)
     parm[grep("Z", Data$parm.names)] <- as.vector(Z)</pre>
     LL <- sum(dmvn(Z, mu, Sigma, log=TRUE))
     yrep \leftarrow ifelse(Z >= 0, 1, 0)
     ### Log-Posterior
     LP <- LL + beta.prior + Sigma.prior + Z.prior
```

```
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
return(Modelout)
}</pre>
```

54. Multivariate Laplace Regression

54.1. Form

$$\mathbf{Y}_{i,k} \sim \mathcal{L}_K(\mu_{i,k}, \Sigma), \quad i = 1, \dots, N; \quad k = 1, \dots, K$$

$$\mu_{i,k} = \mathbf{X}_{1:N,k} \beta_{k,1:J}$$

$$\Sigma = \Omega^{-1}$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K$$

$$\beta_{k,j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

54.2. Data

54.3. Initial Values

```
Initial.Values <- c(rep(0,J*K), upper.triangle(S, diag=TRUE))</pre>
```

54.4. Data

```
Model <- function(parm, Data)
{
    ### Parameters
    beta <- matrix(parm[grep("beta", Data$parm.names)], Data$K, Data$J)</pre>
```

55. Multivariate Regression

55.1. Form

$$\mathbf{Y}_{i,k} \sim \mathcal{N}_K(\mu_{i,k}, \Omega^{-1}), \quad i = 1, \dots, N; \quad k = 1, \dots, K$$

$$\mu_{i,k} = \mathbf{X}_{1:N,k} \beta_{k,1:J}$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_K$$

$$\beta_{k,j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

55.3. Initial Values

```
Initial.Values <- c(rep(0,J*K), upper.triangle(S, diag=TRUE))</pre>
55.4. Data
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- matrix(parm[grep("beta", Data$parm.names)], Data$K, Data$J)</pre>
    Omega <- as.parm.matrix(Omega, Data$K, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
         diag=TRUE)
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    Omega.prior <- dwishart(Omega, Data$K+1, Data$S, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, beta)</pre>
    LL <- sum(dmvnp(Data$Y, mu, Omega, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + Omega.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
    }
```

56. Negative Binomial Regression

This example was contributed by Jim Robison-Cox.

56.1. Form

$$\mathbf{y} \sim \mathcal{NB}(\mu, \kappa)$$

$$p = \frac{\kappa}{\kappa + \mu}$$

$$\mu = \exp(\mathbf{X}\beta)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\kappa \sim \mathcal{HC}(25) \in (0, \infty]$$

```
N <- 100 J <- 5 #Number of predictors, including the intercept kappa.orig <- 2 beta.orig <- runif(J,-2,2)
```

```
X <- matrix(runif(J*N,-2, 2), N, J); X[,1] <- 1</pre>
mu <- exp(tcrossprod(X, t(beta.orig)) + rnorm(N))</pre>
p <- kappa.orig / (kappa.orig + mu)</pre>
y <- rnbinom(N, size=kappa.orig, mu=mu)
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J), kappa=0))</pre>
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)
56.3. Initial Values
Initial.Values <- c(rep(0, J), 1)</pre>
56.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$J]</pre>
    parm[Data$J + 1] <- kappa <- interval(parm[Data$J + 1],</pre>
          .Machine$double.xmin, Inf)
    mu <- exp(tcrossprod(Data$X, t(beta)))</pre>
    p <- kappa / (kappa + mu)
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    kappa.prior <- dhalfcauchy(kappa, 25, log=TRUE)</pre>
    ### Log-Likelihood
    LL <- sum(dnbinom(Data$y, mu=mu, size=kappa, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + kappa.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
    }
```

57. Normal, Multilevel

This is Gelman's school example (Gelman, Carlin, Stern, and Rubin 2004). Note that **LaplacesDemon** is slower to converge than WinBUGS through the **R2WinBUGS** package (Gelman 2011), an R package on CRAN. This example is very sensitive to the prior distributions. The recommended, default, half-Cauchy priors with scale 25 on scale parameters overwhelms the likelihood, so uniform priors are used.

$$\mathbf{y}_j \sim \mathcal{N}(\theta_j, \sigma_j^2), \quad j = 1, \dots, J$$

95

$$\theta_j \sim \mathcal{N}(\theta_\mu, \theta_\sigma^2)$$
 $\theta_\mu \sim \mathcal{N}(0, 1000000)$
 $\theta_{\sigma[j]} \sim \mathcal{N}(0, 1000)$
 $\sigma \sim \mathcal{U}(0, 1000)$

57.2. Data

```
J <- 8
y <- c(28.4, 7.9, -2.8, 6.8, -0.6, 0.6, 18.0, 12.2)
sd <- c(14.9, 10.2, 16.3, 11.0, 9.4, 11.4, 10.4, 17.6)
mon.names <- "LP"
parm.names <- as.parm.names(list(theta=rep(0,J), theta.mu=0, theta.sigma=0))
MyData <- list(J=J, mon.names=mon.names, parm.names=parm.names, sd=sd, y=y)</pre>
```

57.3. Initial Values

```
Initial.Values <- c(rep(mean(y), J), mean(y), 1)</pre>
```

57.4. Model

```
Model <- function(parm, Data)</pre>
    {
    ### Hyperparameters
    theta.mu <- parm[Data$J+1]
    theta.sigma <- interval(parm[Data$J+2], .Machine$double.eps, Inf)
    parm[Data$J+2] <- theta.sigma
    ### Parameters
    theta <- parm[1:Data$J]</pre>
    ### Log(Hyperprior Densities)
    theta.mu.prior <- dnormp(theta.mu, 0, 1.0E-6, log=TRUE)
    theta.sigma.prior <- dunif(theta.sigma, 0, 1000, log=TRUE)
    ### Log(Prior Densities)
    theta.prior <- sum(dnorm(theta, theta.mu, theta.sigma, log=TRUE))
    sigma.prior <- sum(dunif(Data$sd, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    LL <- sum(dnorm(Data$y, theta, Data$sd, log=TRUE))
    ### Log-Posterior
    LP <- LL + theta.prior + theta.mu.prior + theta.sigma.prior +
         sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=theta, parm=parm)
    return(Modelout)
    }
```

58. Ordinal Logit

58.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(P_{i,1:J})$$

$$P_{,J} = 1 - Q_{,(J-1)}$$

$$P_{,j} = Q_{,j} - Q_{,(j-1)}, \quad j = 2, \dots, (J-1)$$

$$P_{,1} = Q_{,1}$$

$$Q = \frac{1}{1 + \exp(\mu)}$$

$$\mu_{,j} = \delta_{j} + \mathbf{X}\beta, \quad \in [-5, 5]$$

$$\beta_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\delta_{j} \sim \mathcal{N}(0, 1000) \in [(j-1), j], \quad j = 1, \dots, (J-1)$$

58.2. Data

```
data(demonsnacks)
N <- nrow(demonsnacks)
J <- 3 #Number of categories in y
K <- ncol(demonsnacks) #Number of columns in design matrix X
y <- log(demonsnacks$Calories)
y <- ifelse(y < 4.5669, 1, ifelse(y > 5.5268, 3, 2)) #Discretize
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (k in 2:K) {X[,k] <- CenterScale(X[,k])}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,K), delta=rep(0,J-1)))
MyData <- list(J=J, K=K, N=N, X=X, mon.names=mon.names,
parm.names=parm.names, y=y)</pre>
```

58.3. Initial Values

```
Initial.Values <- c(rep(0,K), seq(from=-1, to=1, len=(J-1)))</pre>
```

58.4. Model

```
parm[-(1:Data$K)] <- delta</pre>
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
delta.prior <- sum(dnormv(delta, 0, 1000, log=TRUE))</pre>
### Log-Likelihood
mu <- matrix(delta, Data$N, Data$J-1, byrow=TRUE) +</pre>
    matrix(tcrossprod(Data$X, t(beta)), Data$N, Data$J-1)
mu <- interval(mu, -5, 5)
P <- Q <- invlogit(mu)
P[,-1] \leftarrow Q[,-1] - Q[,-(Data$J-1)]
P <- cbind(P, 1 - Q[,(Data$J-1)])</pre>
LL <- sum(dcat(Data$y, P, log=TRUE))</pre>
yrep <- max.col(P)</pre>
### Log-Posterior
LP <- LL + beta.prior + delta.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
return(Modelout)
}
```

59. Ordinal Probit

59.1. Form

$$\mathbf{y}_{i} \sim \mathcal{CAT}(P_{i,1:J})$$

$$P_{,J} = 1 - Q_{,(J-1)}$$

$$P_{,j} = Q_{,j} - Q_{,(j-1)}, \quad j = 2, \dots, (J-1)$$

$$P_{,1} = Q_{,1}$$

$$Q = \phi(\mu)$$

$$\mu_{,j} = \delta_{j} + \mathbf{X}\beta, \quad \in [-5, 5]$$

$$\beta_{k} \sim \mathcal{N}(0, 1000), \quad k = 1, \dots, K$$

$$\delta_{j} \sim \mathcal{N}(0, 1000) \in [(j-1), j], \quad j = 1, \dots, (J-1)$$

```
data(demonsnacks)
N <- nrow(demonsnacks)
J <- 3 #Number of categories in y
K <- ncol(demonsnacks) #Number of columns in design matrix X
y <- log(demonsnacks$Calories)
y <- ifelse(y < 4.5669, 1, ifelse(y > 5.5268, 3, 2)) #Discretize
```

```
X <- cbind(1, as.matrix(demonstracks[,c(1,3:10)]))</pre>
for (k in 2:K) \{X[,k] \leftarrow CenterScale(X[,k])\}
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,K), delta=rep(0,J-1)))</pre>
MyData <- list(J=J, K=K, N=N, X=X, mon.names=mon.names,
parm.names=parm.names, y=y)
59.3. Initial Values
Initial.Values <- c(rep(0,K), seq(from=-1, to=1, len=(J-1)))</pre>
59.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$K]
    delta <- parm[-(1:Data$K)]</pre>
    delta[-1] <- ifelse(delta[-1] < delta[-length(delta)],</pre>
          delta[-length(delta)], delta[-1])
    parm[-(1:Data$K)] <- delta</pre>
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    delta.prior <- sum(dnormv(delta, 0, 1000, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(delta, Data$N, Data$J-1, byrow=TRUE) +</pre>
         matrix(tcrossprod(Data$X, t(beta)), Data$N, Data$J-1)
    mu <- interval(mu, -5, 5)</pre>
    P <- Q <- pnorm(mu)
    P[,-1] \leftarrow Q[,-1] - Q[,-(Data$J-1)]
    P \leftarrow cbind(P, 1 - Q[,(Data$J-1)])
    LL <- sum(dcat(Data$y, P, log=TRUE))</pre>
    yrep <- max.col(P)</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + delta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=yrep, parm=parm)
    return(Modelout)
    }
```

60. Panel, Autoregressive Poisson

60.1. Form

$$\mathbf{Y} \sim \mathcal{P}(\Lambda)$$

$$\Lambda_{1:N,1} = \exp(\alpha + \beta \mathbf{x})$$

$$\Lambda_{1:N,t} = \exp(\alpha + \beta \mathbf{x} + \rho \log(\mathbf{Y}_{1:N,t-1})), \quad t = 2, \dots, T$$

$$\alpha_i \sim \mathcal{N}(\alpha_{\mu}, \alpha_{\sigma}^2), \quad i = 1, \dots, N$$

$$\alpha_{\mu} \sim \mathcal{N}(0, 1000)$$

$$\alpha_{\sigma} \sim \mathcal{HC}(25)$$

$$\beta \sim \mathcal{N}(0, 1000)$$

$$\rho \sim \mathcal{N}(0, 1000)$$

60.2. Data

```
N <- 10
T <- 10
alpha <- rnorm(N,2,0.5)
rho <- 0.5
beta <- 0.5
x <- runif(N,0,1)
Y <- matrix(NA,N,T)
Y[,1] <- exp(alpha + beta*x)
for (t in 2:T) {Y[,t] <- exp(alpha + beta*x + rho*log(Y[,t-1]))}
Y <- round(Y)
mon.names <- c("LP","alpha.sigma")
parm.names <- as.parm.names(list(alpha=rep(0,N), alpha.mu=0, log.alpha.sigma=0, beta=0, rho=0))
MyData <- list(N=N, T=T, Y=Y, mon.names=mon.names, parm.names=parm.names, x=x)</pre>
```

60.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,N), 0, log(1), 0, 0)
```

60.4. Model

```
Model <- function(parm, Data)
  {
    ### Hyperparameters
    alpha.mu <- parm[Data$N+1]
    alpha.sigma <- exp(parm[Data$N+2])
    ### Parameters
    alpha <- parm[1:Data$N]</pre>
```

```
beta <- parm[grep("beta", Data$parm.names)]</pre>
rho <- parm[grep("rho", Data$parm.names)]</pre>
### Log(Hyperprior Densities)
alpha.mu.prior <- dnormv(alpha.mu, 0, 1000, log=TRUE)
alpha.sigma.prior <- dhalfcauchy(alpha.sigma, 25, log=TRUE)
### Log(Prior Densities)
alpha.prior <- sum(dnorm(alpha, alpha.mu, alpha.sigma, log=TRUE))
beta.prior <- dnormv(beta, 0, 1000, log=TRUE)
rho.prior <- dnormv(rho, 0, 1000, log=TRUE)</pre>
### Log-Likelihood
Lambda <- Data$Y
Lambda[,1] <- exp(alpha + beta*x)</pre>
Lambda[,2:Data$T] <- exp(alpha + beta*Data$x +
    rho*log(Data$Y[,1:(Data$T-1)]))
LL <- sum(dpois(Data$Y, Lambda, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + alpha.mu.prior + alpha.sigma.prior +
    beta.prior + rho.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,alpha.sigma),</pre>
    yhat=Lambda, parm=parm)
return(Modelout)
}
```

61. Penalized Spline Regression

This example is adapted from Crainiceanu, Ruppert, and Wand (2005). The user specifies the degree D of polynomials and the number K of knots. Regression effects β regard the polynomial in design matrix \mathbf{X} , and γ regard the splines in design matrix \mathbf{S} .

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma_1^2)$$

$$\mu = \mathbf{X}\beta + \mathbf{S}\gamma$$

$$\mathbf{S}_{i,k} = \begin{cases} (\mathbf{x}_i - k)^D & \text{if } \mathbf{S}_{i,k} > 0 \\ 0 & \end{cases}$$

$$\mathbf{X}_{i,d} = \mathbf{x}_i^{d-1}, \quad d = 2, \dots, (D+1)$$

$$\mathbf{X}_{i,1} = 1$$

$$\beta_d \sim \mathcal{N}(0, 1000), \quad d = 1, \dots, (D+1)$$

$$\gamma_k \sim \mathcal{N}(0, \sigma_2^2), \quad k = 1, \dots, K$$

$$\sigma_j \sim \mathcal{HC}(25), \quad j = 1, \dots, 2$$

```
61.2. Data
N <- 100
x < -1:N
y \leftarrow \sin(2*pi*x/N) + runif(N,-1,1)
K <- 10 #Number of knots
D <- 2 #Degree of polynomial
x <- CenterScale(x)
k <- as.vector(quantile(x, probs=(1:K / (K+1))))</pre>
X <- cbind(rep(1,N), matrix(x, N, D)^matrix(1:D, N, D, byrow=TRUE))
S <- matrix(x, N, K) - matrix(k, N, K, byrow=TRUE)
S \leftarrow ifelse(S > 0, S, 0); S \leftarrow S^D
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,D+1), gamma=rep(0,K),</pre>
    log.sigma=rep(0,2))
MyData <- list(N=N, S=S, X=X, mon.names=mon.names, parm.names=parm.names,
    y=y)
61.3. Initial Values
Initial. Values \leftarrow c(rep(0,D+1), rep(0,K), c(1,1))
61.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[grep("beta", Data$parm.names)]</pre>
     gamma <- parm[grep("gamma", Data$parm.names)]</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     gamma.prior <- sum(dnorm(gamma, 0, sigma[2], log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta)) + tcrossprod(Data$S, t(gamma))</pre>
    LL <- sum(dnorm(Data$y, mu, sigma[1], log=TRUE))</pre>
    ### Log-Posterior
    LP <- LL + beta.prior + gamma.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
    }
```

62. Poisson Regression

62.1. Form

```
\mathbf{y} \sim \mathcal{P}(\lambda)
\lambda = \exp(\mathbf{X}\beta)
\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
```

62.2. Data

```
N <- 10000
J <- 5
X <- matrix(runif(N*J,-2,2),N,J); X[,1] <- 1
beta <- runif(J,-2,2)
y <- round(exp(tcrossprod(X, t(beta))))
mon.names <- "LP"
parm.names <- as.parm.names(list(beta=rep(0,J)))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

62.3. Initial Values

```
Initial.Values <- rep(0,J)</pre>
```

62.4. Model

63. Polynomial Regression

In this univariate example, the degree of the polynomial is specified as D. For a more robust extension to estimating nonlinear relationships between \mathbf{y} and \mathbf{x} , see penalized spline regression in section 61.

63.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\mathbf{X}_{i,d} = \mathbf{x}_i^{d-1}, \quad d = 1, \dots, (D+1)$$

$$\mathbf{X}_{i,1} = 1$$

$$\beta_d \sim \mathcal{N}(0, 1000), \quad d = 1, \dots, (D+1)$$

$$\sigma \sim \mathcal{HC}(25)$$

63.2. Data

63.3. Initial Values

```
Initial.Values <- c(rep(0,D+1), log(1))</pre>
```

63.4. Model

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- parm[grep("beta", Data$parm.names)]
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])
     ### Log(Prior Densities)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
     ### Log-Likelihood
     X <- matrix(Data$x, Data$N, Data$D)
     for (d in 2:Data$D) {X[,d] <- X[,d]^d}
     X <- cbind(1,X)
     mu <- tcrossprod(X, t(beta))
     LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
     ### Log-Posterior
     LP <- LL + beta.prior + sigma.prior</pre>
```

```
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
return(Modelout)
}</pre>
```

64. Proportional Hazards Regression, Weibull

Although the dependent variable is usually denoted as \mathbf{t} in survival analysis, it is denoted here as \mathbf{y} so Laplace's Demon recognizes it as a dependent variable for posterior predictive checks. This example does not support censoring, but it will be included soon.

64.1. Form

$$\mathbf{y}_i \sim \mathcal{WEIB}(\gamma, \mu_i), \quad i = 1, \dots, N$$

$$\mu = \exp(\mathbf{X}\beta)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\gamma \sim \mathcal{G}(1, 0.001)$$

64.2. Data

64.3. Initial Values

```
Initial.Values <- c(rep(0,J), log(1))</pre>
```

64.4. Model

```
Model <- function(parm, Data)
    {
     ### Parameters
     beta <- parm[1:Data$J]
     gamma <- exp(parm[Data$J+1])
     ### Log(Prior Densities)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
```

65. Revision, Normal

This example provides both an analytic solution and numerical approximation of the revision of a normal distribution. Given a normal prior distribution (α) and data distribution (β) , the posterior (γ) is the revised normal distribution. This is an introductory example of Bayesian inference, and allows the user to experiment numerical approximation, such as with MCMC in LaplacesDemon. Note that, regardless of the data sample size N in this example, Laplace Approximation is inappropriate due to asymptotics since the data (β) is perceived by the algorithm as a single datum rather than a collection of data. MCMC, on the other hand, is biased only by the effective number of samples taken of the posterior.

65.1. Form

$$\alpha \sim \mathcal{N}(0, 10)$$
$$\beta \sim \mathcal{N}(1, 2)$$
$$\gamma = \frac{\alpha_{\sigma}^{-2}\alpha + N\beta_{\sigma}^{-2}\beta}{\alpha_{\sigma}^{-2} + N\beta_{\sigma}^{-2}}$$

65.2. Data

N <- 10

```
mon.names <- c("LP", "gamma")</pre>
parm.names <- c("alpha","beta")</pre>
MyData <- list(N=N, mon.names=mon.names, parm.names=parm.names)</pre>
65.3. Initial Values
Initial. Values \leftarrow c(0,0)
65.4. Model
Model <- function(parm, Data)</pre>
    ### Hyperparameters
    alpha.mu <- 0
    alpha.sigma <- 10
    beta.mu <- 1
    beta.sigma <- 2
    ### Parameters
    alpha <- parm[1]
    beta <- parm[2]
    ### Log(Prior Densities)
    alpha.prior <- dnorm(alpha, alpha.mu, alpha.sigma, log=TRUE)</pre>
    ### Log-Likelihood Density
    LL <- dnorm(beta, beta.mu, beta.sigma, log=TRUE)
    ### Posterior
    gamma <- (alpha.sigma^-2 * alpha + N * beta.sigma^-2 * beta) /</pre>
         (alpha.sigma^-2 + N * beta.sigma^-2)
    ### Log(Posterior Density)
    LP <- LL + alpha.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,gamma), yhat=LL,
         parm=parm)
    return(Modelout)
```

66. Robust Regression

By replacing the normal distribution with the Student t distribution, linear regression is often called robust regression. As an alternative approach to robust regression, consider Laplace regression (see section 39).

$$\mathbf{y} \sim \mathbf{t}(\mu, \sigma^2, \nu)$$
$$\mu = \mathbf{X}\beta$$

```
\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J
\sigma \sim \mathcal{HC}(25)
\nu \sim \mathcal{HC}(25)
```

66.2. Data

```
N <- 10000
J <- 5
X <- matrix(1,N,J)
for (j in 2:J) {X[,j] <- rnorm(N,runif(1,-3,3),runif(1,0.1,1))}
beta <- runif(J,-3,3)
e <- rnorm(N,0,0.1)
y <- tcrossprod(X, t(beta)) + e
mon.names <- c("LP", "sigma", "nu")
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0, log.nu=0))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

66.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,J), log(1), log(2))
```

66.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    beta <- parm[1:Data$J]</pre>
     sigma <- exp(parm[Data$J+1])</pre>
    nu <- exp(parm[Data$J+2])</pre>
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
    nu.prior <- dhalfcauchy(nu, 25, log=TRUE)
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- sum(dst(Data$y, mu, sigma, nu, log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + sigma.prior + nu.prior</pre>
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,nu), yhat=mu,
         parm=parm)
    return(Modelout)
    }
```

67. Seemingly Unrelated Regression (SUR)

The following data was used by Zellner (1962) when introducing the Seemingly Unrelated Regression methodology. This model uses the conjugate Wishart distribution for precision in a multivariate normal distribution. See section 20 for a non-Wishart alternative that is more flexible and converges much faster.

67.1. Form

$$\mathbf{Y}_{t,k} \sim \mathcal{N}_{K}(\mu_{t,k}, \Omega^{-1}), \quad t = 1, \dots, T; \quad k = 1, \dots, K$$

$$\mu_{1,t} = \alpha_{1} + \alpha_{2} \mathbf{X}_{t-1,1} + \alpha_{3} \mathbf{X}_{t-1,2}, \quad t = 2, \dots, T$$

$$\mu_{2,t} = \beta_{1} + \beta_{2} \mathbf{X}_{t-1,3} + \beta_{3} \mathbf{X}_{t-1,4}, \quad t = 2, \dots, T$$

$$\Omega \sim \mathcal{W}_{K+1}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{K}$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

where J=3, K=2, and T=20.

```
T <- 20 #Time-periods
year <- c(1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,
    1947, 1948, 1949, 1950, 1951, 1952, 1953, 1954)
IG <- c(33.1,45.0,77.2,44.6,48.1,74.4,113.0,91.9,61.3,56.8,93.6,159.9,
    147.2,146.3,98.3,93.5,135.2,157.3,179.5,189.6)
VG <- c(1170.6,2015.8,2803.3,2039.7,2256.2,2132.2,1834.1,1588.0,1749.4,
    1687.2,2007.7,2208.3,1656.7,1604.4,1431.8,1610.5,1819.4,2079.7,
    2371.6,2759.9)
CG <- c(97.8,104.4,118.0,156.2,172.6,186.6,220.9,287.8,319.9,321.3,319.6,
    346.0,456.4,543.4,618.3,647.4,671.3,726.1,800.3,888.9)
IW <- c(12.93,25.90,35.05,22.89,18.84,28.57,48.51,43.34,37.02,37.81,
    39.27,53.46,55.56,49.56,32.04,32.24,54.38,71.78,90.08,68.60)
VW <- c(191.5,516.0,729.0,560.4,519.9,628.5,537.1,561.2,617.2,626.7,
    737.2,760.5,581.4,662.3,583.8,635.2,723.8,864.1,1193.5,1188.9)
CW <- c(1.8,0.8,7.4,18.1,23.5,26.5,36.2,60.8,84.4,91.2,92.4,86.0,111.1,
    130.6,141.8,136.7,129.7,145.5,174.8,213.5)
J <- 2 #Number of dependent variables
Y <- matrix(c(IG,IW), T, J)
S \leftarrow diag(J)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,3), beta=rep(0,3),</pre>
    Omega=diag(2)), uppertri=c(0,0,1))
MyData <- list(J=J, S=S, T=T, Y=Y, CG=CG, CW=CW, IG=IG, IW=IW, VG=VG,
    VW=VW, mon.names=mon.names, parm.names=parm.names)
```

67.3. Initial Values

```
Initial.Values <- c(rep(0,3), rep(0,3), upper.triangle(S, diag=TRUE))</pre>
67.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[1:3]
    beta <- parm[4:6]
    Omega <- as.parm.matrix(Omega, Data$J, parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
         diag=TRUE)
    ### Log(Prior Densities)
    alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    Omega.prior <- dwishart(Omega, Data$J+1, Data$S, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- Data$Y
    mu[-1,1] \leftarrow alpha[1] + alpha[2]*Data$CG[-Data$T] +
         alpha[3] *Data$VG[-Data$T]
    mu[-1,2] \leftarrow beta[1] + beta[2]*Data$CW[-Data$T] +
         beta[3]*Data$VW[-Data$T]
    LL <- sum(dmvnp(Data$Y[-1,], mu[-1,], Omega, log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + beta.prior + Omega.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
    return(Modelout)
    }
```

68. Simultaneous Equations

This example of simultaneous equations uses Klein's Model I (Kleine 1950) regarding economic fluctations in the United States in 1920-1941 (\mathbf{N} =22). Usually, this example is modeled with 3-stage least squares (3SLS), excluding the uncertainty from multiple stages. By constraining each element in the instrumental variables matrix $\nu \in [-10, 10]$, this example estimates the model without resorting to stages. The dependent variable is matrix \mathbf{Y} , in which $\mathbf{Y}_{1,1:N}$ is \mathbf{C} or Consumption, $\mathbf{Y}_{2,1:N}$ is \mathbf{I} or Investment, and $\mathbf{Y}_{3,1:N}$ is $\mathbf{W}\mathbf{p}$ or Private Wages. Here is a data dictionary:

```
A = Time Trend measured as years from 1931
C = Consumption
G = Government Nonwage Spending
I = Investment
K = Capital Stock
P = Private (Corporate) Profits
```

T = Indirect Business Taxes Plus Neg Exports

Wg = Government Wage Bill

Wp = Private Wages

X = Equilibrium Demand (GNP)

See Kleine (1950) for more information.

68.1. Form

$$\mathbf{Y} \sim \mathcal{N}_{3}(\mu, \Omega^{-1})$$

$$\mu_{1,1} = \alpha_{1} + \alpha_{2}\nu_{1,1} + \alpha_{4}\nu_{2,1}$$

$$\mu_{1,i} = \alpha_{1} + \alpha_{2}\nu_{1,i} + \alpha_{3}\mathbf{P}_{i-1} + \alpha_{4}\nu_{2,i}, \quad i = 2, \dots, N$$

$$\mu_{2,1} = \beta_{1} + \beta_{2}\nu_{1,1} + \beta_{4}\mathbf{K}_{1}$$

$$\mu_{2,i} = \beta_{1} + \beta_{2}\nu_{1,i} + \beta_{3}\mathbf{P}_{i-1} + \beta_{4}\mathbf{K}_{i}, \quad i = 2, \dots, N$$

$$\mu_{3,1} = \gamma_{1} + \gamma_{2}\nu_{3,1} + \gamma_{4}\mathbf{A}_{1}$$

$$\mu_{3,i} = \gamma_{1} + \gamma_{2}\nu_{3,i} + \gamma_{3}\mathbf{X}_{i-1} + \gamma_{4}\mathbf{A}_{i}, \quad i = 2, \dots, N$$

$$\mathbf{Z}_{j,i} \sim \mathcal{N}(\nu_{j,i}, \sigma_{j}^{2}), \quad j = 1, \dots, 3$$

$$\nu_{j,1} = \pi_{j,1} + \pi_{j,3}\mathbf{K}_{1} + \pi_{j,5}\mathbf{A}_{1} + \pi_{j,6}\mathbf{T}_{1} + \pi_{j,7}\mathbf{G}_{1}, \quad j = 1, \dots, 3$$

$$\nu_{j,i} = \pi_{j,1} + \pi_{j,2}\mathbf{P}_{i-1} + \pi_{j,3}\mathbf{K}_{i} + \pi_{j,4}\mathbf{X}_{i-1} + \pi_{j,5}\mathbf{A}_{i} + \pi_{j,6}\mathbf{T}_{1} + \pi\mathbf{G}_{i}, \quad i = 1, \dots, N, \quad j = 1, \dots, 3$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\beta_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\gamma_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\gamma_{j} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 4$$

$$\pi_{j,i} \sim \mathcal{N}(0, 1000) \in [-10, 10], \quad j = 1, \dots, 3, \quad i = 1, \dots, N$$

$$\sigma_{j} \sim \mathcal{H}\mathcal{C}(25), \quad j = 1, \dots, 3$$

$$\Omega \sim \mathcal{W}_{4}(\mathbf{S}), \quad \mathbf{S} = \mathbf{I}_{3}$$

68.2. Data

N <- 22

 $A \leftarrow c(-11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$

- C <- c(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7)
- $G \leftarrow c(2.4,3.9,3.2,2.8,3.5,3.3,3.3,4,4.2,4.1,5.2,5.9,4.9,3.7,4,4.4,2.9,4.3,5.3,6.6,7.4,13.8)$
- $I \leftarrow c(2.7,-0.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,2.1,2,\\ -1.9,1.3,3.3,4.9)$
- K <- c(180.1,182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
 216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,201.2,204.5)</pre>
- P <- c(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,7,11.2, 12.3,14,17.6,17.3,15.3,19,21.1,23.5)

```
T \leftarrow c(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,8.3,6.7,
     7.4,8.9,9.6,11.6)
Wg \leftarrow c(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,7.4,
    6.7, 7.7, 7.8, 8, 8.5
Wp \leftarrow c(28.8, 25.5, 29.3, 34.1, 33.9, 35.4, 37.4, 37.9, 39.2, 41.3, 37.9, 34.5, 29, 28.5,
     30.6,33.2,36.8,41,38.2,41.6,45,53.3)
X \leftarrow c(44.9, 45.6, 50.1, 57.2, 57.1, 61, 64, 64.4, 64.5, 67, 61.2, 53.4, 44.3, 45.1,
    49.7,54.4,62.7,65,60.9,69.5,75.7,88.4)
year <- c(1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,</pre>
     1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941)
Y <- matrix(c(C,I,Wp),3,N, byrow=TRUE)
Z <- matrix(c(P, Wp+Wg, X), 3, N, byrow=TRUE)</pre>
S <- diag(nrow(Y))</pre>
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,4), beta=rep(0,4),
     gamma=rep(0,4), pi=matrix(0,3,7), log.sigma=rep(0,3),
    Omega=diag(3)), uppertri=c(0,0,0,0,0,1))
MyData <- list(A=A, C=C, G=G, I=I, K=K, N=N, P=P, S=S, T=T, Wg=Wg, Wp=Wp,
    X=X, Y=Y, Z=Z, mon.names=mon.names, parm.names=parm.names)
68.3. Initial Values
Initial. Values \leftarrow c(rep(0,4), rep(0,4), rep(0,4), rep(0,3*7), rep(0,3),
     upper.triangle(S, diag=TRUE))
68.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1:4]; beta <- parm[5:8]; gamma <- parm[9:12]</pre>
    pi <- matrix(interval(parm[grep("pi", Data$parm.names)],-10,10), 3, 7)</pre>
    parm[grep("pi", Data$parm.names)] <- as.vector(pi)</pre>
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    Omega <- as.parm.matrix(Omega, nrow(Data$S), parm, Data)</pre>
    parm[grep("Omega", Data$parm.names)] <- upper.triangle(Omega,</pre>
         diag=TRUE)
    ### Log(Prior Densities)
     alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
    gamma.prior <- sum(dnormv(gamma, 0, 1000, log=TRUE))</pre>
    pi.prior <- sum(dnormv(pi, 0, 1000, log=TRUE))</pre>
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    Omega.prior <- dwishart(Omega, nrow(Data$S)+1, Data$S, log=TRUE)</pre>
    ### Log-Likelihood
    mu <- nu <- matrix(0,3,Data$N)</pre>
```

```
for (i in 1:3) {
    nu[i,1] <- pi[i,1] + pi[i,3]*Data$K[1] + pi[i,5]*Data$A[1] +</pre>
         pi[i,6]*Data$T[1] + pi[i,7]*Data$G[1]
    nu[i,-1] <- pi[i,1] + pi[i,2]*Data$P[-Data$N] +</pre>
         pi[i,3]*Data$K[-1] + pi[i,4]*Data$X[-Data$N] +
         pi[i,5]*Data$A[-1] + pi[i,6]*Data$T[-1] +
         pi[i,7]*Data$G[-1]}
LL <- sum(dnorm(Data$Z, nu, matrix(sigma, 3, Data$N), log=TRUE))
mu[1,1] <- alpha[1] + alpha[2]*nu[1,1] + alpha[4]*nu[2,1]
mu[1,-1] \leftarrow alpha[1] + alpha[2]*nu[1,-1] +
    alpha[3]*Data$P[-Data$N] + alpha[4]*nu[2,-1]
mu[2,1] \leftarrow beta[1] + beta[2]*nu[1,1] + beta[4]*Data$K[1]
mu[2,-1] \leftarrow beta[1] + beta[2]*nu[1,-1] +
    beta[3]*Data$P[-Data$N] + beta[4]*Data$K[-1]
mu[3,1] <- gamma[1] + gamma[2]*nu[3,1] + gamma[4]*Data$A[1]</pre>
mu[3,-1] <- gamma[1] + gamma[2]*nu[3,-1] +
    gamma[3]*Data$X[-Data$N] + gamma[4]*Data$A[-1]
LL2 <- sum(dmvnp(t(Data$Y), t(mu), Omega, log=TRUE))
if(!is.nan(LL2)) LL <- LL + LL2
### Log-Posterior
LP <- LL + alpha.prior + beta.prior + gamma.prior + pi.prior +
    sigma.prior + Omega.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP, yhat=mu, parm=parm)
return(Modelout)
}
```

69. Space-Time, Dynamic

This approach to space-time or spatiotemporal modeling applies kriging to a stationary spatial component for points in space $s=1,\ldots,S$ first at time t=1, where space is continuous and time is discrete. Vector ζ contains these spatial effects. Next, SSM (State-Space Model) or DLM (Dynamic Linear Model) components are applied to the spatial parameters $(\phi, \kappa, \text{ and }\lambda)$ and regression effects (β) . These parameters are allowed to vary dynamically with time $t=2,\ldots,T$, and the resulting spatial process is estimated for each of these time-periods. When time is discrete, a dynamic space-time process can be applied. The matrix Θ contains the dynamically varying stationary spatial effects, or space-time effects. Spatial coordinates are given in longitude and latitude for $s=1,\ldots,S$ points in space and measurements are taken across discrete time-periods $t=1,\ldots,T$ for $\mathbf{Y}_{s,t}$. The dependent variable is also a function of design matrix \mathbf{X} (which may also be dynamic, but is static in this example) and dynamic regression effects matrix $\beta_{1:J,1:T}$. For more information on kriging, see section 37. For more information on state-space or a DLM, see section 25. To extend this to a large spatial data set, consider incorporating the predictive process kriging example in section 38.

69.1. Form

$$\mathbf{Y}_{s,t} \sim \mathcal{N}(\mu_{s,t}, \sigma_1^2), \quad s = 1, \dots, S, \quad t = 1, \dots, T$$

$$\mu_{s,t} = \mathbf{X}_{s,1:J}\beta_{1:J,t} + \Theta_{s,t}$$

$$\Theta_{s,t} = \frac{\sum_{s,s,t}}{\sum_{r=1}^{S} \sum_{r,s,t}} \Theta_{s,t-1}, \quad s = 1, \dots, S, \quad t = 2, \dots, T$$

$$\Theta_{s,1} = \zeta_s$$

$$\zeta \sim \mathcal{N}_S(0, \Sigma_{1:S,1:S,1})$$

$$\Sigma_{1:S,1:S,t} = \lambda_t^2 \exp(-\phi_t \mathbf{D})^{\kappa[t]}$$

$$\sigma_1 \sim \mathcal{HC}(25)$$

$$\beta_{j,1} \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\beta_{1,t} \sim \mathcal{N}(\beta_{1,t-1}, \sigma_2^2), \quad t = 2, \dots, T$$

$$\beta_{2,t} \sim \mathcal{N}(\beta_{2,t-1}, \sigma_3^2), \quad t = 2, \dots, T$$

$$\phi_1 \sim \mathcal{H}\mathcal{N}(1000)$$

$$\phi_t \sim \mathcal{N}(\phi_{t-1}, \sigma_4^2) \in [0, \infty], \quad t = 2, \dots, T$$

$$\kappa_1 \sim \mathcal{H}\mathcal{N}(1000)$$

$$\kappa_t \sim \mathcal{N}(\kappa_{t-1}, \sigma_5^2) \in [0, \infty], \quad t = 2, \dots, T$$

$$\lambda_1 \sim \mathcal{H}\mathcal{N}(1000)$$

$$\lambda_t \sim \mathcal{N}(\lambda_{t-1}, \sigma_6^2) \in [0, \infty], \quad t = 2, \dots, T$$

69.2. Data

```
S <- 20
T <- 10
longitude <- runif(S,0,100)</pre>
latitude <- runif(S,0,100)</pre>
D <- as.matrix(dist(cbind(longitude, latitude), diag=TRUE, upper=TRUE))
beta <- matrix(c(50,2), 2, T)
phi <- rep(1,T); kappa <- rep(1.5,T); lambda <- rep(10000,T)
for (t in 2:T) {
    beta[1,t-1] \leftarrow beta[1,t-1] + rnorm(1,0,1)
    beta[2,t-1] \leftarrow beta[2,t-1] + rnorm(1,0,0.1)
    phi[t] \leftarrow phi[t-1] + rnorm(1,0,0.1)
    if(phi[t] < 0.001) phi[t] <- 0.001
    kappa[t] \leftarrow kappa[t-1] + rnorm(1,0,0.1)
    lambda[t] <- lambda[t-1] + rnorm(1,0,1000)
Sigma <- array(0, dim=c(S,S,T))</pre>
for (t in 1:T) {
    Sigma[ , ,t] <- lambda[t] * exp(-phi[t] * D)^kappa[t]}</pre>
```

```
zeta <- as.vector(apply(rmvn(1000, rep(0,S), Sigma[ , ,1]), 2, mean))</pre>
Theta <- matrix(zeta,S,T)</pre>
for (t in 2:T) {for (s in 1:S) {
     Theta[,t] \leftarrow sum(Sigma[,s,t] / sum(Sigma[,s,t]) * Theta[,t-1]) \} 
X \leftarrow matrix(runif(S*2,-2,2),S,2); X[,1] \leftarrow 1
mu <- tcrossprod(X, t(beta))</pre>
Y \leftarrow mu + Theta + matrix(rnorm(S*T,0,0.1),S,T)
mon.names <- c("LP", as.parm.names(list(sigma=rep(0,6))))</pre>
parm.names <- as.parm.names(list(zeta=rep(0,S), beta=matrix(0,2,T),</pre>
     log.phi=rep(0,T), log.kappa=rep(0,T), log.lambda=rep(0,T),
     log.sigma=rep(0,6))
MyData <- list(D=D, S=S, T=T, X=X, Y=Y, latitude=latitude, longitude=longitude,
     mon.names=mon.names, parm.names=parm.names)
69.3. Initial Values
Initial. Values \leftarrow c(rep(0,S), rep(c(mean(Y),0),T), log(rep(1,T)),
     log(rep(1,T)), rep(1,T), log(rep(1,6)))
69.4. Model
Model <- function(parm, Data)</pre>
     {
    ### Parameters
    beta <- matrix(parm[grep("beta", Data$parm.names)], 2, Data$T)</pre>
     zeta <- parm[grep("zeta", Data$parm.names)]</pre>
    phi <- exp(parm[grep("log.phi", Data$parm.names)])</pre>
    kappa <- exp(parm[grep("log.kappa", Data$parm.names)])</pre>
    lambda <- exp(parm[grep("log.lambda", Data$parm.names)])</pre>
     sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    Sigma <- array(0, dim=c(Data$S, Data$T))</pre>
     for (t in 1:Data$T) {
         Sigma[ , ,t] <- lambda[t]^2 * exp(-phi[t] * Data$D)^kappa[t]}</pre>
    ### Log(Prior Densities)
    beta.prior <- sum(dnormv(beta[,1], 0, 1000, log=TRUE),</pre>
         dnorm(beta[,-1], beta[,-Data$T], matrix(sigma[2:3], 2,
         Data$T-1), log=TRUE))
     zeta.prior <- dmvn(zeta, rep(0,Data$S), Sigma[ , , 1], log=TRUE)</pre>
    phi.prior <- sum(dhalfnorm(phi[1], sqrt(1000), log=TRUE),</pre>
         dtrunc(phi[-1], "norm", a=0, b=Inf, mean=phi[-Data$T],
         sd=sigma[4], log=TRUE))
    kappa.prior <- sum(dhalfnorm(kappa[1], sqrt(1000), log=TRUE),</pre>
         dtrunc(kappa[-1], "norm", a=0, b=Inf, mean=kappa[-Data$T],
         sd=sigma[5], log=TRUE))
     lambda.prior <- sum(dhalfnorm(lambda[1], sqrt(1000), log=TRUE),</pre>
         dtrunc(lambda[-1], "norm", a=0, b=Inf, mean=lambda[-Data$T],
```

```
sd=sigma[6], log=TRUE))
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- tcrossprod(Data$X, t(beta))</pre>
    Theta <- matrix(zeta, Data$S, Data$T)
    for (t in 2:Data$T) {
         for (s in 1:Data$S) {
              \label{eq:continuous_sigma} Theta[,t] <- Sigma[,s,t] / sum(Sigma[,s,t]) * Theta[,t-1]\} \}
    mu <- mu + Theta
    LL <- sum(dnorm(Data$Y, mu, sigma[1], log=TRUE))
    ### Log-Posterior
    LP <- LL + beta.prior + zeta.prior + sum(phi.prior) +
         sum(kappa.prior) + sum(lambda.prior) + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, sigma),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
}
```

70. Space-Time, Nonseparable

This approach to space-time or spatiotemporal modeling applies kriging both to the stationary spatial and temporal components, where space is continuous and time is discrete. Matrix Ξ contains the space-time effects. Spatial coordinates are given in longitude and latitude for s = 1, ..., S points in space and measurements are taken across time-periods t = 1, ..., T for $\mathbf{Y}_{s,t}$. The dependent variable is also a function of design matrix \mathbf{X} and regression effects vector β . For more information on kriging, see section 37. This example uses a nonseparable, stationary covariance function in which space and time are separable only when $\psi = 0$. To extend this to a large space-time data set, consider incorporating the predictive process kriging example in section 38.

70.1. Form

$$\mathbf{Y}_{s,t} \sim \mathcal{N}(\mu_{s,t}, \sigma_1^2), \quad s = 1, \dots, S, \quad t = 1, \dots, T$$

$$\mu = \mathbf{X}\beta + \Xi$$

$$\Xi \sim \mathcal{N}_{ST}(\Xi_{\mu}, \Sigma)$$

$$\Sigma = \sigma_2^2 \exp\left(-\frac{\mathbf{D}_S}{\phi_1}^{\kappa} - \frac{\mathbf{D}_T}{\phi_2}^{\lambda} - \psi \frac{\mathbf{D}_S}{\phi_1}^{\kappa} \frac{\mathbf{D}_T}{\phi_2}^{\lambda}\right)$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\phi_k \sim \mathcal{U}(1, 5), \quad k = 1, \dots, 2$$

$$\sigma_k \sim \mathcal{HC}(25), \quad k = 1, \dots, 2$$

$$\psi \sim \mathcal{HC}(25)$$

$$\Xi_{\mu} = 0$$

$$\kappa = 1, \quad \lambda = 1$$

```
70.2. Data
```

```
S <- 10
T <- 5
longitude <- runif(S,0,100)</pre>
latitude <- runif(S,0,100)</pre>
D.S <- as.matrix(dist(cbind(rep(longitude,T),rep(latitude,T)), diag=TRUE,</pre>
    upper=TRUE))
D.T <- as.matrix(dist(cbind(rep(1:T,each=S),rep(1:T,each=S)), diag=TRUE,
    upper=TRUE))
Sigma \leftarrow 10000 * exp(-D.S/3 - D.T/2 - 0.2*(D.S/3)*(D.T/2))
Xi <- as.vector(apply(rmvn(1000, rep(0,S*T), Sigma), 2, mean))</pre>
Xi <- matrix(Xi,S,T)</pre>
beta <- c(50,2)
X \leftarrow matrix(runif(S*2,-2,2),S,2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
Y \leftarrow mu + Xi
mon.names <- c("LP", "psi", "sigma[1]", "sigma[2]")</pre>
parm.names <- as.parm.names(list(Xi=matrix(0,S,T), beta=rep(0,2),</pre>
     phi=rep(0,2), log.sigma=rep(0,2), log.psi=0))
MyData <- list(D.S=D.S, D.T=D.T, S=S, T=T, X=X, Y=Y, latitude=latitude,
     longitude=longitude, mon.names=mon.names, parm.names=parm.names)
70.3. Initial Values
```

```
Initial. Values \leftarrow c(rep(0,S*T), mean(Y), 0, rep(1,2), rep(0,2), 0)
```

70.4. Model

```
psi*(Data$D.S / phi[1])^kappa * (Data$D.T / phi[2])^lambda)
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
Xi.prior <- dmvn(Xi, Xi.mu, Sigma, log=TRUE)</pre>
sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
phi.prior <- sum(dunif(phi, 1, 5, log=TRUE))</pre>
psi.prior <- dhalfcauchy(psi, 25, log=TRUE)</pre>
### Log-Likelihood
Xi <- matrix(Xi, Data$S, Data$T)</pre>
mu <- as.vector(tcrossprod(Data$X, t(beta))) + Xi</pre>
LL <- sum(dnorm(Data$Y, mu, sigma[1], log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + Xi.prior + sigma.prior + phi.prior + psi.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,psi,sigma),</pre>
     yhat=mu, parm=parm)
return(Modelout)
}
```

71. Space-Time, Separable

This introductory approach to space-time or spatiotemporal modeling applies kriging both to the stationary spatial and temporal components, where space is continuous and time is discrete. Vector ζ contains the spatial effects and vector θ contains the temporal effects. Spatial coordinates are given in longitude and latitude for s = 1, ..., S points in space and measurements are taken across time-periods t = 1, ..., T for $\mathbf{Y}_{s,t}$. The dependent variable is also a function of design matrix \mathbf{X} and regression effects vector β . For more information on kriging, see section 37. This example uses separable space-time covariances, which is more convenient but usually less appropriate than a nonseparable covariance function. To extend this to a large space-time data set, consider incorporating the predictive process kriging example in section 38.

71.1. Form

$$\mathbf{Y}_{s,t} \sim \mathcal{N}(\mu_{s,t}, \sigma_1^2), \quad s = 1, \dots, S, \quad t = 1, \dots, T$$

$$\mu_{s,t} = \mathbf{X}_{s,1:J}\beta + \zeta_s + \Theta_{s,t}$$

$$\Theta_{s,1:T} = \theta$$

$$\theta \sim \mathcal{N}_N(\theta_\mu, \Sigma_T)$$

$$\Sigma_T = \sigma_3^2 \exp(-\phi_2 \mathbf{D}_T)^{\lambda}$$

$$\zeta \sim \mathcal{N}_N(\zeta_\mu, \Sigma_S)$$

$$\Sigma_S = \sigma_2^2 \exp(-\phi_1 \mathbf{D}_S)^{\kappa}$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, 2$$

$$\sigma_k \sim \mathcal{HC}(25), \quad k = 1, \dots, 3$$

$$\phi_k \sim \mathcal{U}(1,5), \quad k = 1, \dots, 2$$

$$\zeta_\mu = 0$$

$$\theta_\mu = 0$$

$$\kappa = 1, \quad \lambda = 1$$

71.2. Data

```
S <- 20
T <- 10
longitude <- runif(S,0,100)</pre>
latitude <- runif(S,0,100)</pre>
D.S <- as.matrix(dist(cbind(longitude,latitude), diag=TRUE, upper=TRUE))</pre>
Sigma.S \leftarrow 10000 * exp(-1.5 * D.S)
zeta <- as.vector(apply(rmvn(1000, rep(0,S), Sigma.S), 2, mean))</pre>
D.T <- as.matrix(dist(cbind(c(1:T),c(1:T)), diag=TRUE, upper=TRUE))</pre>
Sigma.T <- 10000 * exp(-3 * D.T)
theta <- as.vector(apply(rmvn(1000, rep(0,T), Sigma.T), 2, mean))
Theta <- matrix(theta,S,T,byrow=TRUE)</pre>
beta <- c(50,2)
X \leftarrow matrix(runif(S*2,-2,2),S,2); X[,1] \leftarrow 1
mu <- as.vector(tcrossprod(X, t(beta)))</pre>
Y <- mu + zeta + Theta + matrix(rnorm(S*T,0,0.1),S,T)
mon.names <- c("LP", "sigma[1]", "sigma[2]", "sigma[3]")</pre>
parm.names <- as.parm.names(list(zeta=rep(0,S), theta=rep(0,T),
    beta=rep(0,2), phi=rep(0,2), log.sigma=rep(0,3)))
MyData <- list(D.S=D.S, D.T=D.T, S=S, T=T, X=X, Y=Y, latitude=latitude,
     longitude=longitude, mon.names=mon.names, parm.names=parm.names)
```

71.3. Initial Values

```
Initial. Values <-c(rep(0,S), rep(0,T), rep(0,2), rep(1,2), rep(0,3))
```

71.4. Model

```
Model <- function(parm, Data)
    {
    ### Hyperparameters
    zeta.mu <- rep(0,Data$S)
    theta.mu <- rep(0,Data$T)
    ### Parameters
    beta <- parm[grep("beta", Data$parm.names)]
    zeta <- parm[grep("zeta", Data$parm.names)]
    theta <- parm[grep("theta", Data$parm.names)]
    kappa <- 1; lambda <- 1
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
```

```
phi <- interval(parm[grep("phi", Data$parm.names)], 1, 5)</pre>
parm[grep("phi", Data$parm.names)] <- phi</pre>
Sigma.S <- sigma[2]^2 * exp(-phi[1] * Data$D.S)^kappa
Sigma.T <- sigma[3]^2 * exp(-phi[2] * Data$D.T)^lambda
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
zeta.prior <- dmvn(zeta, zeta.mu, Sigma.S, log=TRUE)</pre>
theta.prior <- dmvn(theta, theta.mu, Sigma.T, log=TRUE)
sigma.prior <- sum(dhalfcauchy(25, log=TRUE))</pre>
phi.prior <- sum(dunif(phi, 1, 5, log=TRUE))</pre>
### Log-Likelihood
Theta <- matrix(theta, Data$S, Data$T, byrow=TRUE)</pre>
mu <- as.vector(tcrossprod(Data$X, t(beta))) + zeta + Theta</pre>
LL <- sum(dnorm(Data$Y, mu, sigma[1], log=TRUE))</pre>
### Log-Posterior
LP <- LL + beta.prior + zeta.prior + theta.prior + sigma.prior +
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma),</pre>
    yhat=mu, parm=parm)
return(Modelout)
}
```

72. Threshold Autoregression (TAR)

72.1. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\nu_{t}, \sigma^{2}), \quad t = 1, \dots, T$$

$$\mathbf{y}^{new} = \alpha_{2} + \phi_{2}\mathbf{y}_{T}$$

$$\nu_{t} = \begin{cases} \alpha_{1} + \phi_{1}\mathbf{y}_{t-1}, & t = 1, \dots, T & \text{if } t \geq \theta \\ \alpha_{2} + \phi_{2}\mathbf{y}_{t-1}, & t = 1, \dots, T & \text{if } t < \theta \end{cases}$$

$$\alpha_{j} \sim \mathcal{N}(0, 1000) \in [-1, 1], \quad j = 1, \dots, 2$$

$$\phi_{j} \sim \mathcal{N}(0, 1000), \in [-1, 1], \quad j = 1, \dots, 2$$

$$\theta \sim \mathcal{U}(2, T - 1)$$

$$\sigma \sim \mathcal{HC}(25)$$

72.2. Data

```
y <- c(0.02, -0.51, -0.30, 1.46, -1.26, -2.15, -0.91, -0.53, -1.91, 2.64, 1.64, 0.15, 1.46, 1.61, 1.96, -2.67, -0.19, -3.28, 1.89, 0.91, -0.71, 0.74, -0.10, 3.20, -0.80, -5.25, 1.03, -0.40, -1.62, -0.80, 0.77, 0.17, -1.39, -1.28, 0.48, -1.02, 0.09, -1.09, 0.86, 0.36, 1.51, -0.02, 0.47, 0.62, -1.36,
```

```
1.12, 0.42, -4.39, -0.87, 0.05, -5.41, -7.38, -1.01, -1.70,
    0.64, 1.16, 0.87, 0.28, -1.69, -0.29, 0.13, -0.65, 0.83,
    0.62, 0.05, -0.14, 0.01, -0.36, -0.32, -0.80, -0.06, 0.24,
    0.23, -0.37, 0.00, -0.33, 0.21, -0.10, -0.10, -0.01, -0.40,
    -0.35, 0.48, -0.28, 0.08, 0.28, 0.23, 0.27, -0.35, -0.19,
    0.24, 0.17, -0.02, -0.23, 0.03, 0.02, -0.17, 0.04, -0.39,
    -0.12, 0.16, 0.17, 0.00, 0.18, 0.06, -0.36, 0.22, 0.14,
    -0.17, 0.10, -0.01, 0.00, -0.18, -0.02, 0.07, -0.06, 0.06,
    -0.05, -0.08, -0.07, 0.01, -0.06, 0.01, 0.01, -0.02, 0.01,
    0.01, 0.12, -0.03, 0.08, -0.10, 0.01, -0.03, -0.08, 0.04,
    -0.09, -0.08, 0.01, -0.05, 0.08, -0.14, 0.06, -0.11, 0.09,
    0.06, -0.12, -0.01, -0.05, -0.15, -0.05, -0.03, 0.04, 0.00,
    -0.12, 0.04, -0.06, -0.05, -0.07, -0.05, -0.14, -0.05, -0.01,
    -0.12, 0.05, 0.06, -0.10, 0.00, 0.01, 0.00, -0.08, 0.00,
    0.00, 0.07, -0.01, 0.00, 0.09, 0.33, 0.13, 0.42, 0.24,
    -0.36, 0.22, -0.09, -0.19, -0.10, -0.08, -0.07, 0.05, 0.07,
    0.07, 0.00, -0.04, -0.05, 0.03, 0.08, 0.26, 0.10, 0.08,
    0.09, -0.07, -0.33, 0.17, -0.03, 0.07, -0.04, -0.06, -0.06,
    0.07, -0.03, 0.00, 0.08, 0.27, 0.11, 0.11, 0.06, -0.11,
    -0.09, -0.21, 0.24, -0.12, 0.11, -0.02, -0.03, 0.02, -0.10,
    0.00, -0.04, 0.01, 0.02, -0.03, -0.10, -0.09, 0.17, 0.07,
    -0.05, -0.01, -0.05, 0.01, 0.00, -0.08, -0.05, -0.08, 0.07,
    0.06, -0.14, 0.02, 0.01, 0.04, 0.00, -0.13, -0.17
T <- length(y)
mon.names <- c("LP", "sigma", "ynew")</pre>
parm.names <- as.parm.names(list(alpha=rep(0,2), phi=rep(0,2), theta=0,</pre>
    log.sigma=0))
MyData <- list(T=T, mon.names=mon.names, parm.names=parm.names, y=y)
72.3. Initial Values
Initial. Values \leftarrow c(rep(0,4), T/2, log(1))
72.4. Model
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- interval(parm[1:2], -1, 1); parm[1:2] <- alpha
    phi <- interval(parm[3:4], -1, 1); parm[3:4] <- phi
    theta <- interval(parm[5], 2, Data$T-1); parm[5] <- theta
    sigma <- exp(parm[6])</pre>
    ### Log(Prior Densities)
    alpha.prior <- sum(dtrunc(alpha, "norm", a=-1, b=1, mean=0,
         sd=sqrt(1000), log=TRUE))
    phi.prior <- sum(dtrunc(phi, "norm", a=-1, b=1, mean=0,
```

```
sd=sqrt(1000), log=TRUE))
alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
phi.prior <- sum(dnormv(phi, 0, 1000, log=TRUE))</pre>
theta.prior <- dunif(theta, 2, Data$T-1, log=TRUE)</pre>
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)
### Log-Likelihood
mu <- matrix(0, Data$T, 2)</pre>
mu[,1] \leftarrow c(alpha[1], alpha[1] + phi[1]*Data$y[-Data$T])
mu[,2] <- c(alpha[2], alpha[2] + phi[2]*Data$y[-Data$T])</pre>
nu <- ifelse(1:Data$T < theta, mu[,1], mu[,2])</pre>
ynew <- alpha[2] + phi[2]*Data$y[Data$T]</pre>
LL <- sum(dnorm(Data$y, nu, sigma, log=TRUE))</pre>
### Log-Posterior
LP <- LL + alpha.prior + phi.prior + theta.prior + sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma,ynew),</pre>
     yhat=nu, parm=parm)
return(Modelout)
}
```

73. TARCH(1)

In this TARCH example, there are two regimes, one for positive residuals in the previous time-period, and the other for negative. The TARCH parameters are the θ vector.

74. Form

$$\mathbf{y}_{t} \sim \mathcal{N}(\mu_{t}, \sigma_{t}^{2}), \quad t = 2, \dots, T$$

$$\sigma_{t}^{2} = \omega + \theta_{1}\delta_{t-1}\epsilon_{t-1}^{2} + \theta_{2}(1 - \delta_{t-1})\epsilon_{t-1}^{2}, \quad t = 2, \dots, T$$

$$\delta_{t} = \begin{cases} 1 & \text{if } \epsilon_{t} > 0 \\ 0 & \\ \epsilon = \mathbf{y} - \mu \end{cases}$$

$$\mu_{t} = \alpha + \phi \mathbf{y}_{t-1}, \quad t = 2, \dots, T$$

$$\alpha \sim \mathcal{N}(0, 1000)$$

$$\phi \sim \mathcal{U}(-1, 1)$$

$$\omega \sim \mathcal{HC}(25)$$

$$\theta_{j} \sim \mathcal{U}(0, 1), \quad j = 1, \dots, 2$$

75. Data

```
T <- 20
phi <- 0.8
```

76. Initial Values

Initial. Values \leftarrow c(0, 0, 1, 0.5, 0.5)

77. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
     alpha <- parm[1]
    parm[2] <- phi <- interval(parm[2], -1, 1)</pre>
    omega <- exp(parm[3])</pre>
    parm[4:5] <- theta <- interval(parm[4:5], 0.001, 0.999)
    ### Log(Prior Densities)
    alpha.prior <- dnormv(alpha, 0, 1000, log=TRUE)</pre>
    phi.prior <- dunif(phi, -1, 1, log=TRUE)</pre>
    omega.prior <- dhalfcauchy(omega, 25, log=TRUE)</pre>
    theta.prior <- sum(dunif(theta, 0, 1, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- alpha + c(0, Data$y[-Data$T]) * phi</pre>
    ynew <- alpha + Data$y[Data$T] * phi</pre>
    epsilon <- Data$y - mu
    delta \leftarrow (epsilon > 0) * 1
     sigma2 <- omega + theta[1] * c(0,delta[-Data$T]) *</pre>
         c(0, epsilon[-Data$T]^2)
    sigma2[-1] \leftarrow sigma2[-1] + theta[2] * (1 - delta[-Data$T]) *
         epsilon[-Data$T]^2
     sigma2.new <- omega + theta[1] * delta[Data$T] * epsilon[Data$T]^2 +
         theta[2] * (1 - delta[Data$T]) * epsilon[Data$T]^2
    LL <- sum(dnormv(Data$y[-1], mu[-1], sigma2[-1], log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + phi.prior + omega.prior + theta.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP, ynew, sigma2.new),</pre>
         yhat=mu, parm=parm)
    return(Modelout)
    }
```

78. Variable Selection, BAL

This approach to variable selection is one of several forms of the Bayesian Adaptive Lasso (BAL). The lasso applies shrinkage to exchangeable scale parameters, γ , for the regression effects, β .

78.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, \gamma_j), \quad j = 1, \dots, J$$

$$\gamma_j \sim \mathcal{G}^{-1}(\delta, \tau)$$

$$\delta \sim \mathcal{HC}(25)$$

$$\tau \sim \mathcal{HC}(25)$$

$$\sigma \sim \mathcal{HC}(25)$$

78.2. Data

```
data(demonsnacks)
J <- ncol(demonsnacks)
y <- log(demonsnacks$Calories)
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))
for (j in 2:J) {X[,j] <- CenterScale(X[,j])}
mon.names <- c("LP","sigma")
parm.names <- as.parm.names(list(beta=rep(0,J), log.gamma=rep(0,J), log.delta=0, log.tau=0, log.sigma=0))
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, y=y)</pre>
```

78.3. Initial Values

```
Initial.Values <- c(rep(0,J), rep(0,J), rep(1,3))

78.4. Model
```

```
Model <- function(parm, Data)
    {
     ### Hyperhyperparameters
     delta <- exp(parm[2*Data$J+1])
     tau <- exp(parm[2*Data$J+2])
     ### Hyperparameters</pre>
```

```
gamma <- exp(parm[Data$J+1:Data$J])</pre>
### Parameters
beta <- parm[1:Data$J]</pre>
sigma <- exp(parm[2*Data$J+3])</pre>
### Log(Hyperhyperprior Densities)
delta.prior <- dhalfcauchy(delta, 25, log=TRUE)</pre>
tau.prior <- dhalfcauchy(tau, 25, log=TRUE)</pre>
### Log(Hyperprior Densities)
gamma.prior <- sum(dinvgamma(gamma, delta, tau, log=TRUE))</pre>
### Log(Prior Densities)
beta.prior <- sum(dnormv(beta, 0, gamma, log=TRUE))</pre>
sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
### Log-Likelihood
mu <- tcrossprod(Data$X, t(beta))</pre>
LL <- sum(dnorm(Data$y, mu, sigma, log=TRUE))
### Log-Posterior
LP <- LL + beta.prior + gamma.prior + delta.prior + tau.prior +
     sigma.prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma), yhat=mu,
     parm=parm)
return(Modelout)
}
```

79. Variable Selection, SSVS

This example uses a modified form of the random-effects (or global adaptation) Stochastic Search Variable Selection (SSVS) algorithm presented in O'Hara and Sillanpaa (2009), which selects variables according to practical significance rather than statistical significance. Here, SSVS is applied to linear regression, though this method is widely applicable. For J variables, each regression effects vector β_j is conditional on γ_j , a binary inclusion variable. Each β_j is a discrete mixture distribution with respect to $\gamma_j = 0$ or $\gamma_j = 1$, with precision 100 or $\beta_{\sigma} = 0.1$, respectively. As with other representations of SSVS, these precisions may require tuning.

With other representations of SSVS, each γ_j is Bernoulli-distributed, though this would be problematic in Laplace's Demon, because γ_j would be in the list of parameters (rather than monitors), and would not be stationary due to switching behavior. To keep γ in the monitors, an uninformative normal density is placed on each prior δ_j , with mean 1/J for J variables and variance 1000. Each δ_j is transformed with the inverse logit and rounded to γ_j . Note that $\lfloor x + 0.5 \rfloor$ means to round x. The prior for δ can be manipulated to influence sparseness.

When the goal is to select the best model, each $\mathbf{X}_{1:N,j}$ is retained for a future run when the posterior mean of $\gamma_j \geq 0.5$. When the goal is model-averaging, the results of this model may be used directly, which would please L. J. Savage, who said that "models should be as big as an elephant" (Draper 1995).

79.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\mu = \mathbf{X}\beta$$

$$(\beta_{j}|\gamma_{j}) \sim (1 - \gamma_{j})\mathcal{N}(0, 0.01) + \gamma_{j}\mathcal{N}(0, \beta_{\sigma}^{2}) \quad j = 1, \dots, J$$

$$\beta_{\sigma} \sim \mathcal{HC}(25)$$

$$\gamma_{j} = \lfloor \frac{1}{1 + \exp(-\delta_{j})} + 0.5 \rfloor, \quad j = 1, \dots, J$$

$$\delta_{j} \sim \mathcal{N}(0, 10) \in [-100, 100], \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

79.2. Data

79.3. Initial Values

```
Initial. Values \leftarrow c(rep(0,J), rep(0,J), log(1), log(1))
```

79.4. Model

```
Model <- function(parm, Data)
    {
     ### Hyperparameters
     beta.sigma <- exp(parm[grep("log.beta.sigma", Data$parm.names)])
     ### Parameters
     beta <- parm[1:Data$J]
     delta <- interval(parm[grep("delta", Data$parm.names)],-100,100)
     parm[grep("delta", Data$parm.names)] <- delta
        gamma <- round(invlogit(delta))
     beta.sigma <- ifelse(gamma == 0, 0.1, beta.sigma)
        sigma <- exp(parm[grep("log.sigma", Data$parm.names)])
     ### Log(Hyperprior Densities)
     beta.sigma.prior <- sum(dhalfcauchy(beta.sigma, 25, log=TRUE))
     ### Log(Prior Densities)</pre>
```

80. Vector Autoregression, VAR(1)

80.1. Form

$$\mathbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma_j^2), \quad t = 1, \dots, T, \quad j = 1, \dots, J$$

$$\mu_{t,j} = \alpha_j + \Phi_{1:J,j} \mathbf{Y}_{t-1,j}$$

$$\mathbf{y}_j^{new} = \alpha_j + \Phi_{1:J,j} \mathbf{Y}_{T,j}$$

$$\alpha_j \sim \mathcal{N}(0, 1000)$$

$$\sigma_j \sim \mathcal{HC}(25)$$

$$\Phi_{i,k} \sim \mathcal{N}(0, 1000), \quad i = 1, \dots, J, \quad k = 1, \dots, J$$

80.2. Data

```
T <- 100
J <- 3
Y <- matrix(0,T,J)
for (j in 1:J) {for (t in 2:T) {
        Y[t,j] <- Y[t-1,j] + rnorm(1,0,0.1)}}
mon.names <- c("LP", as.parm.names(list(ynew=rep(0,J))))
parm.names <- as.parm.names(list(alpha=rep(0,J), Phi=matrix(0,J,J),
        log.sigma=rep(0,J)))
MyData <- list(J=J, T=T, Y=Y, mon.names=mon.names, parm.names=parm.names)</pre>
```

80.3. Initial Values

```
Initial.Values <- c(colMeans(Y), rep(0,J*J), rep(log(1),J))</pre>
```

80.4. Model

```
Model <- function(parm, Data)</pre>
    ### Parameters
    alpha <- parm[1:Data$J]</pre>
    Phi <- matrix(parm[grep("Phi", Data$parm.names)], Data$J, Data$J)
    sigma <- exp(parm[grep("log.sigma", Data$parm.names)])</pre>
    ### Log(Prior Densities)
    alpha.prior <- sum(dnormv(alpha, 0, 1000, log=TRUE))</pre>
    Phi.prior <- sum(dnormv(Phi, 0, 1000, log=TRUE))
    sigma.prior <- sum(dhalfcauchy(sigma, 25, log=TRUE))</pre>
    ### Log-Likelihood
    mu <- matrix(alpha,Data$T,Data$J,byrow=TRUE)</pre>
         mu[-1,] <- mu[-1,] + tcrossprod(Data$Y[-Data$T,], Phi)</pre>
    ynew <- alpha + as.vector(crossprod(Phi, Data$Y[Data$T,]))</pre>
    LL <- sum(dnorm(Data$Y, mu,
         matrix(sigma,Data$T,Data$J,byrow=TRUE), log=TRUE))
    ### Log-Posterior
    LP <- LL + alpha.prior + Phi.prior + sigma.prior
    Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,ynew), yhat=mu,
         parm=parm)
    return(Modelout)
    }
```

81. Weighted Regression

It is easy enough to apply record-level weights to the likelihood. Here, weights are applied to the linear regression example in section 40.

81.1. Form

$$\mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathbf{X}\beta$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J$$

$$\sigma \sim \mathcal{HC}(25)$$

81.2. Data

```
data(demonsnacks)
N <- nrow(demonsnacks)
J <- ncol(demonsnacks)
y <- log(demonsnacks$Calories)</pre>
```

```
X <- cbind(1, as.matrix(demonsnacks[,c(1,3:10)]))</pre>
for (j in 2:J) \{X[,j] \leftarrow CenterScale(X[,j])\}
w \leftarrow c(rep(1,5), 0.2, 1, 0.01, rep(1,31))
w \leftarrow w * (sum(w) / N)
mon.names <- c("LP", "sigma")</pre>
parm.names <- as.parm.names(list(beta=rep(0,J), log.sigma=0))</pre>
MyData <- list(J=J, X=X, mon.names=mon.names, parm.names=parm.names, w=w,
     y=y)
81.3. Initial Values
Initial.Values <- c(rep(0,J), log(1))</pre>
81.4. Model
Model <- function(parm, Data)</pre>
    {
     ### Parameters
     beta <- parm[1:Data$J]</pre>
     sigma <- exp(parm[Data$J+1])</pre>
     ### Log(Prior Densities)
     beta.prior <- sum(dnormv(beta, 0, 1000, log=TRUE))</pre>
     sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE)</pre>
     ### Log-Likelihood
     mu <- tcrossprod(Data$X, t(beta))</pre>
    LL <- sum(w * dnorm(Data$y, mu, sigma, log=TRUE))</pre>
     ### Log-Posterior
     LP <- LL + beta.prior + sigma.prior
     Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,sigma), yhat=mu,</pre>
          parm=parm)
     return(Modelout)
```

82. Zero-Inflated Poisson (ZIP)

82.1. Form

}

$$\mathbf{y} \sim \mathcal{P}(\Lambda_{1:N,2})$$
 $\mathbf{z} \sim \mathcal{BERN}(\Lambda_{1:N,1})$ $\mathbf{z}_i = \left\{egin{array}{l} 1 & ext{if } \mathbf{y}_i = 0 \\ 0 & \end{array}
ight.$

$$\Lambda_{i,2} = \begin{cases} 0 & \text{if } \Lambda_{i,1} \ge 0.5 \\ \Lambda_{1:N,1} = \frac{1}{1 + \exp(-\mathbf{X}_1 \alpha)} \\ \Lambda_{1:N,2} = \exp(\mathbf{X}_2 \beta) \end{cases}$$

$$\alpha_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J_1$$

$$\beta_j \sim \mathcal{N}(0, 1000), \quad j = 1, \dots, J_2$$

82.2. Data

```
N <- 1000
J1 <- 4
J2 <- 3
X1 <- matrix(runif(N*J1,-2,2),N,J1); X1[,1] <- 1
X2 <- matrix(runif(N*J2,-2,2),N,J2); X2[,1] <- 1
alpha <- runif(J1,-1,1)
beta <- runif(J2,-1,1)
p <- invlogit(tcrossprod(X1, t(alpha)) + rnorm(N,0,0.1))
mu <- round(exp(tcrossprod(X2, t(beta)) + rnorm(N,0,0.1)))
y <- ifelse(p > 0.5, 0, mu)
z <- ifelse(y == 0, 1, 0)
mon.names <- "LP"
parm.names <- as.parm.names(list(alpha=rep(0,J1), beta=rep(0,J2)))
MyData <- list(J1=J1, J2=J2, N=N, X1=X1, X2=X2, mon.names=mon.names, parm.names=parm.names, y=y, z=z)</pre>
```

82.3. Initial Values

```
Initial.Values <- rep(0,J1+J2)</pre>
```

82.4. Model

```
Model <- function(parm, Data)
    {
    ### Parameters
    parm[1:Data$J1] <- alpha <- interval(parm[1:Data$J1], -5, 5)
    beta <- parm[Data$J1+1:Data$J2]
    parm[Data$J1+1:Data$J2] <- beta
    ### Log(Prior Densities)
    alpha.prior <- sum(dnormv(alpha, 0, 5, log=TRUE))
    beta.prior <- sum(dnormv(beta, 0, 5, log=TRUE))
    ### Log-Likelihood
    Lambda <- matrix(NA, Data$N, 2)
    Lambda[,1] <- invlogit(tcrossprod(Data$X1, t(alpha)))
    Lambda[,2] <- exp(tcrossprod(Data$X2, t(beta)))</pre>
```

References

- Albert J (1997). "Bayesian Testing and Estimation of Association in a Two-Way Contingency Table." *Journal of the American Statistical Association*, **92**(438), 685–693.
- Barnard J, McCulloch R, Meng X (2000). "Modeling Covariance Matrices in Terms of Standard Deviations and Correlations, with Application to Shrinkage." *Statistica Sinica*, **10**, 1281–1311.
- Congdon P (2003). Applied Bayesian Modelling. John Wiley & Sons, West Sussex, England.
- Crainiceanu C, Ruppert D, Wand M (2005). "Bayesian Analysis for Penalized Spline Regression Using WinBUGS." *Journal of Statistical Software*, **14**(14), 1–24.
- Draper D (1995). "Assessment and Propagation of Model Uncertainty." *Journal of the Royal Statistical Society*, **B 57**(1), 45–97.
- Gelman A (2011). R2WinBUGS: Running WinBUGS and OpenBUGS from R / S-PLUS. R package version 2.1-18, URL http://cran.r-project.org/web/packages/R2WinBUGS/index.html.
- Gelman A, Carlin J, Stern H, Rubin D (2004). Bayesian Data Analysis. 2nd edition. Chapman & Hall, Boca Raton, FL.
- Hall B (2012). *LaplacesDemon:* Software for Bayesian Inference. R package version 12.03.05, URL http://cran.r-project.org/web/packages/LaplacesDemon/index.html.
- Kleine L (1950). Economic Fluctuations in the United States 1921-1940. John Wiley & Sons, New York, New York.
- Kotz S, Kozubowski T, Podgorski K (2001). The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkauser, Boston.
- O'Hara R, Sillanpaa M (2009). "A Review of Bayesian Variable Selection Methods: What, How and Which." *Journal of Bayesian Analysis*, **4**(1), 85–118.

- R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Spiegelhalter D, Thomas A, Best N, Lunn D (2003). WinBUGS User Manual, Version 1.4. MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public Health, Imperial College School of Medicine, UK. http://www.mrc-bsu.cam.ac.uk/bugs.

Zellner A (1962). "An Efficient Method of Estimating Seemingly Unrelated Regression Equations and Tests for Aggregation Bias." *Journal of the American Statistical Association*, **57**, 348–368.

Affiliation:

Byron Hall STATISTICAT, LLC Farmington, CT

E-mail: laplacesdemon@statisticat.com

URL: http://www.statisticat.com/laplacesdemon.html