MA4702. Programación Lineal Mixta 2020.

Profesor: José Soto.

fcfm.pdf

Tarea 2.

Fecha entrega: Lunes 01 de Junio, 23:59. Por u-cursos.

Definiciones para esta tarea.

Sea $n \ge 2$ y $K_{n,n} = (V, E)$ el grafo bipartito simple y completo con n vértices por lado. Es decir, V se particiona en L y R, y todas las aristas con un vértice en L y uno en R están presentes en E. E se identifica con $L \times R$.

Sean $a \in \mathbb{R}^L_+$, $b \in \mathbb{R}^R_+$ vectores **estrictamente positivos** de capacidades en los vértices, con $a(L) = \sum_{v \in L} a_v = \sum_{v \in R} b_v = b(R)$. Llamamos polítopo de (a, b)-matching fraccional al conjunto

$$M_n = \{ x \in \mathbb{R}^E \colon x(\delta(v)) \le a_v, \forall v \in L; \ x(\delta(v)) \le b_v, \forall v \in R; \ x_e \ge 0, \forall e \in E \}$$

y llamamos (a,b)-matching fraccional a sus elementos. Notamos que si $A \in \mathbb{R}^{V \times E}$ es la matriz de vértice-arista incidencia de $K_{n,n}$, entonces $M_n = \{x \in \mathbb{R}_+^E \colon Ax \leq b\}$. Note que A tiene 2n filas y n^2 columnas.

Decimos además que un (a, b)-matching fraccional x es perfecto si x(E) = a(L) = b(R). El polítopo de (a, b)-transporte es el conjunto

$$T_n = \{ x \in M_n \colon x(E) = a(L) \}$$

de todos los (a,b)-matchings fraccionales perfectos. Es muy simple probar que $T_n \neq \emptyset$. Por ejemplo, podemos usar el siguiente algoritmo glotón para encontrar $x \in T_n$.

Algoritmo 1 Calcula $x \in T_n$

```
x \leftarrow 0 \in \mathbb{R}^{E} while x(E) < a(L) do Elegir \ell \in L, r \in R tal que x(\delta(\ell)) < a_{\ell} y x(\delta(r)) < b_{r}, x_{\ell,r} \leftarrow \min(a_{\ell} - x(\delta(\ell)), b_{r} - x(\delta(r))) end while return x
```

Ejercicios:

(b) [8 puntos] Demuestre que el Algoritmo 1 es correcto. En específico, solo debe demostrar que (i) si al principio de una iteración, x(E) < a(L) entonces existe el $\ell \in L, r \in R$ buscados por el algoritmo, (ii) muestre que el algoritmo termina en una cantidad finita de iteraciones y (iii) que cuando termina, devuelve lo buscado.

Solución:

Llamemos nivel de un vértice v a $x(\delta(v))$. Decimos que un vértice $\ell \in L$ (resp., $r \in R$) está ajustado si su nivel es a_{ℓ} (resp., si su nivel es b_r).

Probemos por inducción la parte (i) pedida y además las siguientes propiedades: $x \in M_n$; el valor de cada arista solo puede subir (por lo tanto los niveles solo pueden subir, y los vértices no se pueden desajustar); y en cada etapa se ajusta al menos un vértice.

Todo lo anterior es cierto al principio del algoritmo. Consideremos entonces a iteración j, sea x^j el valor de x al principio de dicha iteración y x^{j+1} el valor al final. Supongamos también que $x^j(E) < a(L)$. Si todos los vértices de L fueran ajustados, tendríamos $x^j(E) = \sum_{\ell \in L} x^j(\delta(\ell)) = \sum_{\ell \in L} a_\ell = a(L)$, luego debe haber un $\ell' \in L$ no ajustado, por lo tanto (como $x^j \in M_n$) se debe tener que $x^j(\delta(\ell')) < a_\ell$. De forma análoga se prueba que existe r' tal que $x^j(\delta(r)) < b_\ell$. (En particular, se prueba (i)). Sean ahora $\ell' \in L, r' \in R$ los vértices elegidos por el algoritmo en esta iteración y $e = (\ell', r')$ la única arista que cambia su valor. Como e no es incidente a vértices ajustados, tenemos $x_e^j = 0$, y luego $x_e^{j+1} = \min(a_{\ell'} - x^j(\delta(\ell')), b_{r'} - x^j(r')) > 0$. En palabras, la única arista que cambia de valor, lo hace aumentando su valor. Finalmente, se tiene:

$$x^{j+1}(\delta(\ell')) = x^{j}(\delta(\ell')) - x_e^{j} + x_e^{j+1} \le x^{j}(\delta(\ell')) - 0 + a_{\ell'} - x^{j}(\delta(\ell')) = a_{\ell'}$$
$$x^{j+1}(\delta(r')) = x^{j}(\delta(r')) - x_e^{j} + x_e^{j+1} \le x^{j}(\delta(r')) - 0 + b_{r'} - x^{j}(\delta(r')) = b_{r'}$$

y en alguna de las dos líneas hay igualdad. Todo esto implica que los niveles de los vértices se mantienen bajo sus cotas (i.e., $x^i \in M_n$) y que al menos uno de ℓ' o r' se ajusta. Finalmente las aristas f que no son incidentes a vértices ajustados al final de la iteración, tampoco lo eran al principio, y luego $x_f^{j+1} = x_f^j = 0$. Esto concluye la demostración de todas las propiedades.

En la demostración arriba probamos (i). La propiedad (ii) se tiene pues en cada iteración al menos un vértice se ajusta, y por lo tanto no pueden haber más de |L| + |R| iteraciones antes que $x(E) \ge a(L)$, y la parte (iii) es directa pues apenas $x(E) \ge a(L)$, el hecho que $x \in M_n$ garantiza que x(E) = a(L) y luego $x \in T_n$.

(c) [4 puntos] Concluya que para todo $(\ell, r) \in E$ existe $x \in T_n$ con $x_{\ell,r} > 0$.

Solución:

Basta notar que la arista elegida por el algoritmo en la primera iteración es arbitraria (esto es pues para todo (ℓ, r) , $0 < a_{\ell}$ y $0 < b_{r}$). Luego si obligamos al algoritmo a elegir la arista (ℓ, r) tendremos que al final de la primera iteración $x_{\ell,r} = \min(a_{\ell}, b_{r}) > 0$ y luego al final del algoritmo, $x_{\ell,r} > 0$.

(d) [8 puntos] Demuestre que $\dim(M_n) = |E| = n^2$.

Solución:

Demostrar que dim $(M_n) = |E| = n^2$ equivale a demostrar que el poliedro es de dimensión completa, para esto basta demostrar que $\exists x \in M_n$, $\operatorname{act}(x) = \emptyset$. Sea $\epsilon > 0$ suficientemente pequeño, por ejemplo $\epsilon < \min\{a_1, \ldots, a_L, b_1, \ldots, b_R\}$, como todos los coeficientes son estrictamente positivos este coeficiente existe, luego, sea $x_{l,r} = \frac{\epsilon}{n} \ \forall l \in L, r \in R$, luego se tiene que $x_{l,r} > 0 \ \forall (l,r) \in E$ y que $x(\delta(l)) = \sum_{r \in R} x_{l,r} = \epsilon < a_l \ \forall l \in L \land x(\delta(r)) = \sum_{l \in L} x_{l,r} = \epsilon < b_r \ \forall r \in R$, se concluye que x no tienen ninguna restricción activa y pertenece a M_n , por tanto, M_n tiene dimensión completa.

Alternativamente, tome $\epsilon < \min\{a_1, \dots, a_L, b_1, \dots, b_R\}$, y llame para cada $e \in E$, χ^e al vector canónico que vale 1 en la coordenada e. Es fácil ver que todos los vectores de $B = \{\epsilon \chi^e : e \in E\}$ están en M_n y son linealmente independientes y luego $B \cup \{0\}$ es una familia de |E| + 1 vectores afínmente independiente, lo que prueba que M_n tiene dimensión |E|.

(e) [4 puntos] Pruebe que para todo $e \in E$, la desigualdad válida $x_e \ge 0$ induce una faceta de M_n .

Solución:

Sea $F_e = \{x \in M_n | x_e = 0\}$, luego F_e es faceta si la restricción e es irredundante, en efecto, si eliminamos la restricción podemos escoger un x tal que $x_e = -1$ y $x_{l,r} = \frac{\epsilon}{n} \, \forall (l,r) \in E \setminus \{e\}$, con el mismo ϵ de la parte anterior, luego se tiene que x satisface todas las restricciones de M_n con excepción de $x_e \geq 0$, por ende, la región factible cambia al eliminar la restricción, se concluye que e es irredundante.

Alternativamente, sea C = [A, I] la matriz de todas las restricciones de M_n (A las de capacacidad y I las de no negatividad), como una faceta cumple $\dim(F) = \dim(P) - 1$ y la dimensión de una cara de M_n cumple $\dim(F) = |E| - \operatorname{rango}(C_{\operatorname{act}(F)})$, solo necesitamos demostrar que el $\operatorname{rango}(C_{\operatorname{act}(F_e)}) = \operatorname{rango}(C_{\operatorname{act}(P)}) + 1 = 1$, esto puede demostrarse fácilmente si existe un $x \in F_e$ tal que $\operatorname{act}(x) = \operatorname{act}(P) \cup \{e\} = \{e\}$, basta con tomar un x tal que $x_e = 0$ y $x_{l,r} = \frac{e}{n} \ \forall (l,r) \in E \setminus \{e\}$.

(f) [8 puntos] Demuestre que T_n es una cara de M_n , que aff $(T_n) = \{x \in \mathbb{R}^E : Ax = b\}$ y que $T_n = \{x \in \mathbb{R}^E_+, Ax = b\}$ Solución:

 T_n es un cara de M_n si la desigualdad $x(E) \leq a(L)$ es valida para M_n , en efecto, $x(E) = \sum_{l \in L} x(\delta(l)) \leq \sum_{l \in L} a_l = a(L)$ la segunda desigualdad viene de $x(\delta(l)) \leq a_l \ \forall l \in L$. Por otro lado, x(E) = a(L) ssi $x(\delta(l)) = a_l \forall l \in L \land x(\delta(r)) = b_r \forall r \in R$, luego $T_n = \{x \in \mathbb{R}_+^E | x(\delta(l)) = a_l \ \forall l \in L, x(\delta(r)) = b_r \ \forall r \in R\} = \{x \in \mathbb{R}_+^E | Ax = b\}$. Para concluir que aff $(T_n) = \{x \in \mathbb{R}_+^E : Ax = b\}$ solo basta probar que las desigualdades $x_e \geq 0$ no son activas en T_n . Esto sale de la parte (c).

(g) [12 puntos] Pruebe que $\dim(T_n) = (n-1)^2$. Indicación: Calcule exactamente el rango de A.

Solución:

La matriz A de 2n filas y n^2 columnas y el vector b que se mencionan en el enunciado para describir M_n se pueden escribir de la siguiente forma:

donde $\vec{1}$ es un vector fila de dimensión n, y I es una matriz identidad de n filas y n columnas, las columnas de A representan los nodos R, con ciclicidad cada n columnas, en cambio las n primeras filas hacen referencia a los nodos de L y las n últimas a los nodos de R.

Se tiene que $\dim(T_n) = \dim(\operatorname{aff}(T_n)) = n^2 - \operatorname{rango}(A)$, por lo que basta demostrar que $\operatorname{rango}(A) = 2n - 1$, ya que $n^2 - 2n + 1 = (n - 1)^2$. Como A es una matriz de 2n filas y n^2 columnas su rango es a lo más 2n, por ende, probaremos primero que su rango no es 2n y luego que si eliminamos un vector fila la matriz resultante tiene 2n - 1 filas l.i.

Para demostrar que el rango de A no es 2n basta considerar la siguiente combinación lineal $\sum_{i=1}^{n} a_i - \sum_{i=n+1}^{2n} a_i = 1 - 1 = 0$ (sumar las primeras n filas y restar las últimas n), como existe una combinación lineal no nula de las filas de A que da 0 se tiene que las 2n filas no son l.i.

Para demostrar que el rango de A=2n-1 eliminaremos la primera fila de la matriz, luego sea $x=\sum_{i=1}^{2n-1}\lambda_ia_{i+1}$ la combinación lineal del resto de fila, demostraremos que para que x=0 se debe cumplir $\lambda=0$, notar que:

$$\begin{aligned} x_1 &= \lambda_n, x_2 = \lambda_{n+1}, \dots x_n = \lambda_{2n-1} \\ x_{n+1} &= \lambda_1 + \lambda_n, x_{n+2} = \lambda_1 + \lambda_{n+1}, \dots x_{2n} = \lambda_1 + \lambda_{2n-1} \\ &\vdots \\ x_{n^2-n+1} &= \lambda_{n-1} + \lambda_n, x_{n^2-n} = \lambda_{n-1} + \lambda_{n+1}, \dots, x_{n^2} = \lambda_{n-1} + \lambda_{2n-1}, \end{aligned}$$

luego $x_1 = \ldots = x_n = 0$ si $\lambda_n = \ldots = \lambda_{2n-1} = 0$, luego $x_{n+1} = \ldots = x_{2n} = \lambda_1 = 0$ si $\lambda_1 = 0, \ldots, x_{n^2-n+1} = \ldots = x_{n^2} = \lambda_{n-1}$ son 0 si $\lambda_{n-1} = 0$.

(h) [4 puntos] Sea $x \in T_n$. Argumente que x es vértice de T_n si y solo si no existe $y \in \mathbb{R}^E$, $y \neq 0$, y $\delta \in \mathbb{R}$, $\delta > 0$ tal que $x + \varepsilon y \in T_n$ para todo $\varepsilon \in \mathbb{R}$ con $|\varepsilon| < \delta$.

Solución:

- (\Rightarrow) Sea x vertice y asumamos que existe y que garantiza (h), además sea $u=x+\varepsilon y$ y $v=x-\varepsilon y$, luego se cumple que u/2+v/2=x, es decir, x se puede escribir como una combinación convexa de $u,v\in T_n\setminus\{x\}$, lo que es una contradicción ya que x es vertice, por tanto, no existe el y que garantiza (h).
- (\Leftarrow) Demostraremos que si x no es un vertice entonces existe y garantiza (h). Como x no es vertice existen $u, v \in T_n \setminus \{x\}, \lambda \in (0, 1)$ tal que $x = \lambda u + (1 \lambda)v$, es decir, x esta en el segmento que une u con v, sea y = u v, luego $x + \varepsilon y = \lambda u + (1 \lambda)v + \epsilon(u v) = (\lambda + \varepsilon)u + (1 \lambda \varepsilon)v$, para que la expresión sea una combinación convexa y así se garantice la pertenencia al poliedro se debe cumplir que $\lambda + \varepsilon \in (0, 1)$, para que esta condición se cumpla ε debe satisfacer $|\varepsilon| < \min\{\lambda, 1 \lambda\} = \delta$.
- (i) [12 puntos] Sea $x \in T_n$. Demuestre que x es un vértice de T_n si y solo si su soporte $S_x = \{(i, j) : x_{i,j} > 0\}$ es un bosque (un grafo sin ciclos) en $K_{n,n}$. Puede usar si lo desea la siguiente ruta:
 - (i.1) Pruebe que si S_x tiene un ciclo C, entonces puede usar este ciclo para construir el vector y de (h), y concluya una dirección.
 - (i.2) Pruebe que si x no es vértice puede usar el vector y que garantiza (h) para encontrar un ciclo C en S_x , y concluir la otra dirección. Solución

Supongamos que S_x tiene un ciclo (y como el grafo es bipartito debe tener largo par), $C = \{e_1, \dots, e_{2n}\}$ donde las aristas se enumeran de acuerdo al ciclo. Llame $y \in \mathbb{R}^E$ al vector tal que $y(e_i) = 1$ si i es par, $y(e_i) = -1$ si i es impar, e y(e) = 0 si e no está en el ciclo. Como los signos alternan $y(\delta(v)) = 0$ para todo $v \in V$. Sea $\delta = \min_{e \in S_x} x_e$ el menor valor positivo del soporte de x. Es fácil ver que para todo ε con $|\varepsilon| < \delta$ se tiene que $x + \varepsilon y \ge 0$. Por otro lado para todo $v \in V$, $(x + \varepsilon y)(\delta(v)) = x(\delta(v)) + \varepsilon y(\delta(v)) = x(\delta(v))$. En particular $(x + \varepsilon y)(\delta(\ell)) = a_\ell$ para todo $\ell \in L$ y $(x + \varepsilon y)(\delta(r)) = b_r$ para todo $r \in R$ por lo que $(x + \varepsilon y) \in T_n$. Esto quiere decir que y satisface las condiciones de la parte h y por lo tanto x no es vértice.

Para probar la otra dirección, supongamos que x no es vértice y luego existe un vector y y un escalar δ tal que $(x+\varepsilon y)\in T_n$ para todo ε con $|\varepsilon|<\delta$. Como esto es cierto para ε positivo o negativo, concluimos que si $x_e=0$ entonces $y_e=0$ (de otra forma $(x+\varepsilon y)_e$ podría ser negativo), sigue que S_y está incluido en S_x . Note que para todo $\ell\in L$, $y(\delta(\ell))=(x+\varepsilon y)(\delta(\ell))-\varepsilon(\delta(\ell))=a_\ell-a_\ell=0$. Similarmente para $r\in R$, $y(\delta(r))=b_r-b_r=0$. Es decir, para todo $v\in L\cup R$, $y(\delta(v))=0$. Esto implica que el grado de v en el grafo $(L\cup R,S_y)$ no puede ser 1 (pues si $\delta_{S_v}(v)=\{f\}$, entonces $0=y(\delta(v))=\sum_{e\in\delta_{S_y}(v)}y_e=y_f)$. Pero entonces S_y no tiene vértices de grado 1. Como $S_y\neq\emptyset$, debemos tener que S_y no es un bosque (la única forma que un bosque no tenga hojas, es que no tenga aristas) y luego S_y debe tener un ciclo. Como $S_y\subseteq S_x$ tenemos que S_x tiene un ciclo.