

Análisis del Impacto de la Vacunación COVID-19 en Chile: Perspectivas sobre la Dinámica Pandémica

Profesor Guía:

Mauricio René Herrera Marin

Autores:

Ricardo Angel Miranda Araya

Sebastián Enrique Danker Galdames

Contexto

La pandemia del COVID-19, causada por el virus SARS-CoV-2, ha tenido un impacto profundo y sin precedentes en todo el precedentes en todo el mundo desde su aparición a finales de 2019. Esta crisis sanitaria global ha afectado a casi todos lo a casi todos los aspectos de la vida diaria, desde la salud y la economía hasta la interacción social y la educación. educación.

Plantamiento del Problema

El estudio "Evaluación de la efectividad de la vacunación COVID-19 en Chile" (enero 2021 - julio 2022) es vital para entender la función real de las vacunas COVID-19 y su impacto en la salud pública.

Hipótesis

La campaña de vacunación contra el COVID-19 fue efectiva en combatir el virus y disminuir su contagio en Chile.

Objetivo General

Examinar el impacto de la campaña de vacunación masiva contra el COVID-19 el Chile para demostrar su efectividad como herramienta clave en la lucha contra la pandemia, fortalecer la confianza pública en las vacunas y proporcionar datos valiosos para la toma de decisiones informadas por parte de las autoridades sanitarias, contribuyendo a una perspectiva clara sobre el avance hacia la recuperación y normalidad post-pandémica.

Objetivos Específicos

Analizar la correlación entre la tasa de vacunación y la incidencia de casos, hospitalizaciones y muertes por COVID-19: COVID-19: Recopilar y analizar datos para determinar cómo las cómo las tasas de vacunación se relacionan con las tendencias tendencias en los indicadores claves de la pandemia, particularmente en diferentes regiones y grupos demográficos. demográficos.

Objetivos Específicos

Evaluar la efectividad de diferentes tipos de vacunas administradas en Chile: Comparar la efectividad de las distintas vacunas utilizadas en Chile, considerando la respuesta inmunitaria, la duración de la protección y la eficacia contra diversas variantes del virus.

Objetivos Específicos

Analizar la correlación entre la tasa de vacunación y la incidencia de casos, hospitalizaciones y muertes por COVID-19: COVID-19: Recopilar y analizar datos para determinar cómo las cómo las tasas de vacunación se relacionan con las tendencias tendencias en los indicadores claves de la pandemia, particularmente en diferentes regiones y grupos demográficos. demográficos.

Hoja de Ruta

We get it. Sometimes you just need bullet points. We promise not to judge.

Introducción:

- Contexto del estudio: Breve descripción del contexto de la pandemia COVID-19 en Chile.
 en Chile.
- Objetivo de la tesis: Qué buscas investigar o demostrar.
- Relevancia del estudio: Por qué es importante este estudio.

Marco Teórico:

- Revisión de literatura relevante: Estudios anteriores o teorías relacionadas con la vacunación y la dinámica pandémica.
- Conceptos clave: Definiciones de términos técnicos o específicos del área.

Metodología:

- Diseño del estudio: Descripción del enfoque metodológico (cuantitativo, cualitativo, mixto).
 cualitativo, mixto).
- Datos y fuentes: De dónde se obtuvieron los datos, cómo se recopilaron.
- Herramientas y técnicas de análisis: Software, modelos estadísticos o de machine learning machine learning utilizados.

Resultados

- Presentación de los hallazgos principales: Gráficos, tablas y figuras.
- Análisis e interpretación de los resultados: Qué significan estos datos en el contexto de tu investigación.

• Discusión:

- Comparación con estudios previos: Cómo tus hallazgos se alinean o difieren de investigaciones anteriores.
- Implicaciones: Impacto o relevancia de tus resultados en el campo de la Data Science y la salud pública.
- Limitaciones: Cualquier limitación en tu estudio.

Conclusiones:

- Resumen de los hallazgos principales.
- Conclusiones derivadas de tu análisis.
- Recomendaciones para futuras investigaciones.

Referencias/Bibliografía

Citas de todos los recursos y trabajos de investigación mencionados.

Contexto del estudio

Respuesta inicial:

Marzo-Abril 2020: Implementación de cuarentenas y cierre de fronteras.

Evolución

A lo largo del 2020 y 2021: Varias olas de contagio, ajustes en la política de salud pública.

Estrategia de vacunación:

Diciembre 2020: Inicio de la campaña de vacunación contra contra COVID-19.

Impacto de la vacunación:

Mediados de 2021: Evidencia de reducción en casos graves y hospitalizaciones debido a la vacunación.

Relevancia del Estudio

Salud Pública

Aportar conocimientos clave para futuras estrategias de vacunación y manejo de pandemias.

Toma de decisiones

Informar a los responsables políticos sobre las prácticas efectivas en el control de enfermedades infecciosas.

Contribución académica

Enriquecer el campo de la Data Science situaciones de crisis sanitaria.

Impacto social

Mejorar la comprensión pública sobre la aplicada a la salud, demostrando su valor en importancia de la vacunación y las medidas de medidas de salud pública.

Marco Teórico

"Evaluación de la efectividad de la vacuna contra la COVID-19 en Chile" - OMS

- importancia de estudios observacionales
- Eficacia vs Efectividad

"Evaluación de la efectividad de la vacunación COVID-19 en Chile"- Minsal de Chile

Se centra en la efectividad de diferentes vacunas para prevenir la Infección Respiratoria Aguda Grave (IRAG)

"Estudios sobre la eficacia de la vacuna".-CDC

inmunidad colectiva, la importancia de las campañas de vacunación masiva

- Limpieza y Preprocesamiento de Datos
- El Análisis Exploratorio de Datos (EDA)
- Modelado y Análisis Estadístico

- -Descenso general en casos y severidad con la vacunación.
- -Picos coincidentes en los tres estados de vacunación
- -Protección significativa con la vacunación completa.

-Variabilidad entre Grupos de Edad.

-Picos y Valles.

-Tendencias a lo Largo del Tiempo.

aults and res

Metodología

Modelo de Regresión Lineal Inicial

Resultados

Modelo de Regresión Lineal Inicial

Evaluación de Heterocedasticidad

SVM (Máquinas de Vectores de Soporte)

```
# Predicciones y evaluación para SVM
y_pred_svr = svr_model.predict(X_test)
mse_svr = mean_squared_error(y_test, y_pred_svr)
r2_svr = r2_score(y_test, y_pred_svr)
mse_svr, r2_svr
```

(205916832.7547748, -0.3574726290150094)

- MSE (Error Cuadrático Medio): 205,916,832.75
- R² (Coeficiente de Determinación): -0.357

Bosque Aleatorio (Random Forest_en inglés)

```
# Predicciones y evaluación para Random Forest
y_pred_rf = rf_model.predict(X_test)
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)
mse_rf, r2_rf
```

(16053273.707225002, 0.894171450812882)

- MSE (Error Cuadrático Medio): 16053273.71
- R² (Coeficiente de Determinación): 0.894

Random Forest con Validación Cruzada

```
cv_scores_rf = cross_val_score(rf_model, X, y, cv=5, scoring='r2')

y_pred_rf_full = rf_model.predict(X)
residuos_rf = y - y_pred_rf_full

feature_importance_rf = rf_model.feature_importances_

cv_scores_rf, feature_importance_rf, np.mean(cv_scores_rf),
np.std(cv_scores_rf)
```


Control Sintetico

```
pre_vaccination =
incidencia_df[incidencia_df['semana_epidemiologica'] < '2021-26']
post_vaccination =
incidencia_df[incidencia_df['semana_epidemiologica'] >= '2021-26']
avg_pre_vaccination =
np.mean(pre_vaccination['principal_component'])
weights = np.ones(len(pre_vaccination)) / len(pre_vaccination)
synthetic_control_pre = np.dot(weights,
pre_vaccination['principal_component'])
actual_post_vaccination =
np.mean(post_vaccination['principal_component'])
difference = actual_post_vaccination - synthetic_control_pre
(avg_pre_vaccination, synthetic_control_pre, actual_post_vaccination,
difference)
```

(2.1980914555686684, 2.198091455568669, -1.077495811553269, -3.2755872671219377)

Anova one-way

```
F-Statistic P-Value confirmados 3.320765 3.273742e-03 hospi 2.146214 4.708083e-02 uci 9.607057 5.707128e-10 def 0.701493 6.485518e-01
```

Implementación de Modelos Más Avanzados: Ante las restricciones observadas en el modelo lineal, se optó por la optó por la utilización de modelos estadísticos más sofisticados, tales como Máquinas de Vectores de Soporte (SVM) y Soporte (SVM) y Bosques Aleatorios (Random Forest). Estos modelos ofrecieron una mayor capacidad para manejar la para manejar la complejidad y las características no lineales de los datos.

Evaluación de Modelos: El análisis reveló que el modelo de Random Forest superaba en rendimiento al modelo SVM, evidenciado por un valor de R² más elevado y un menor error cuadrático medio (MSE). Se realizó también una validación cruzada del modelo de Random Forest, cuyos resultados no alcanzaron un nivel de satisfacción plena.

Análisis de Control Sintético: En un esfuerzo por abordar la cuestión de causalidad, se intentó llevar a cabo un análisis cabo un análisis de control sintético. Sin embargo, este análisis se enfrentó a la limitación significativa de no disponer no disponer de datos correspondientes al período previo al inicio de las campañas de vacunación contra COVID-19. Por COVID-19. Por consiguiente, se efectuó un análisis de control sintético simplificado, que no logró demostrar de forma demostrar de forma concluyente la causalidad.