DEVOIR À LA MAISON Nº 1

Problème 1 —

On note f la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \frac{\ln x}{\sqrt{x}}$$

On note \mathcal{C} la courbe représentative de f dans un repère orthonormé.

Partie I – Étude et courbe représentative de f

- 1. a. Justifier que f est dérivable sur \mathbb{R}_{+}^{*} .
 - b. Déterminer les variations de f.
 - c. Déterminer les limites de f en 0^+ et en $+\infty$.
- 2. On désigne par \mathcal{T} la tangente à \mathcal{C} au point d'abscisse 1.
 - a. Déterminer une équation de \mathcal{T} .
 - **b.** On désigne par g la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \ g(x) = f(x) - (x - 1)$$

Étudier le signe de g' sur \mathbb{R}_+^* .

- c. En déduire la position de la courbe \mathcal{C} par rapport à la droite \mathcal{T} .
- 3. Tracer la courbe C. On fera apparaître les différentes asymptotes, la droite C ainsi que la tangente horizontale.

Partie II – Étude de suites

Pour tout entier $n \ge 8$, on pose

$$u_n = f(8) + f(9) + \dots + f(n) = \sum_{k=8}^{n} f(k)$$

1. a. Soit k un entier supérieur ou égal à 8. Démontrer que

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) dt \leqslant f(k)$$

b. En déduire que pour tout entier $n \ge 8$,

$$u_{n+1} - f(8) \leqslant \int_{8}^{n+1} f(t) dt \leqslant u_n$$

c. Pour tout entier $n \ge 8$, on pose

$$I_n = \int_8^{n+1} f(t) dt$$

Calculer I_n à l'aide d'une intégration par parties.

d. En déduire la limite de la suite (u_n) .

2. Pour tout entier $n \ge 8$, on pose

$$v_n = u_n - I_n$$

a. Déterminer le sens de variation de (u_n) .

b. Montrer que la suite (v_n) est bornée.

c. Déterminer le sens de variation de (ν_n) .

d. Justifier que la suite (ν_n) converge et démontrer que sa limite l vérifie $0 \le l \le 0,74$.

EXERCICE 1.

Une urne contient quatre boules rouges et deux boules noires.

- 1. On effectue au hasard un tirage simultané et sans remise de deux boules de l'urne. On note X la variable aléatoire correspondant au nombre de boules noires obtenues.
 Déterminer la loi de X.
- 2. Après ce premier tirage, il reste donc quatre boules dans l'urne. On effectue à nouveau au hasard un tirage simultané et sans remise de deux boules de l'urne. On note Y le nombre de boules noires obtenues au second tirage.

3. Quelle est la probabilité d'avoir obtenu une seule boule noire au premier tirage sachant que l'on a tiré une seule boule noire au second tirage?

4. Déterminer la probabilité de l'événement suivant : «Il a fallu exactement deux tirages pour extraire les deux boules noires de l'urne».

EXERCICE 2.

1. Calculer les racines complexes z_1 et z_2 de l'équation

$$z^2 - \frac{1}{5}z + \frac{1}{10} = 0$$

 z_1 désignant la racine de partie imaginaire positive.

2. Justifier qu'il existe un unique réel $\theta \in \left[0,\frac{\pi}{2}\right[$ tel que $\tan\theta=3.$

3. Montrer que

$$z_1 = \frac{\cos \theta + i \sin \theta}{10 \cos \theta}$$
 et $z_2 = \frac{\cos \theta - i \sin \theta}{10 \cos \theta}$

4. On pose pour tout $n \in \mathbb{N}$,

Déterminer la loi de Y.

$$v_n = z_1^n + z_2^n$$

2

Montrer que ν_n est un nombre réel que l'on exprimera en fonction de n et θ .

5. Montrer que $10\cos\theta=\sqrt{10}$. En déduire que (ν_n) est convergente et déterminer sa limite.