

The green was part of the part

ASST. COMMISSIONER FOR PATENTS Washington, D.C. 20231

Sir:

Transmitted herewith for filing is the patent application of

Inventor(s): Julie R. Korenberg

For: NUCLEIC ACID ENCODING DS-CAM PROTEINS AND PRODUCTS RELATED THERETO

Docket No.: P-CE 2817

Enclosed are:

X	4	sheets	of	drawing ((s),	1	cover	page,	1	abstract	page,	
	100 specification pages											

An assignment of the invention to _ application. A certified copy of a _

A combination declaration and power of attorney.

Sequence Listing.

Sequence Disk.

Request for Filing Application Under 37 CFR 1.53(a), (b) & (d).

Statement Under 37 CFR §1.821(f).

The filing fee has been calculated as shown below:

					Rate			Fee	
	Number Filed		Number Extra		Small Entity	Other Entity		Small Entity	Other Entity
Total Claims	30 - 20	=	10	×	\$11	\$22	=	\$	\$
Independent Claims	5 - 3	=	2	×	\$41	\$82	=	\$	\$
Multiple Dependent Claims Presented: _		\$135	\$270		\$	\$			
					BASIC FEE			\$395	\$790
					TOTAL FEE	}		\$	\$

		i		
	Please charge my Deposit Account No the of this sheet is enclosed.	e amount of \$. A dupli	cate copy
<u>x</u> _	The payment of the filing fee is to be deferred charge our deposit account.	until the Declaratio	on is filed	. Do not
	A check in the amount of \$ to cover to	he filing fee is end	closed.	
	The Commissioner is hereby authorized to classociated with this communication or credit a A duplicate copy of this sheet is en	any overpayment to I	the follow Deposit Acc	ing fees count No.
	Any additional filing fees required unde Any patent application processing fees u			
	The Commissioner is hereby authorized to charg the pendency of this application or credit as A duplicate copy of this sheet is en	ny overpayment to D	llowing fee Deposit Acc	es during count No.
	Any patent application processing fees umage of the issue fee set in 37 C.F.R. 1.18 at Allowance, pursuant to 37 C.F.R. 1.311(b) Any filing fees under 37 C.F.R. 1.16 for	t or before mailing).	g of the N	

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

"EXPRESS MAIL" MAILING LABEL NUMBER FM508280177US

DATE OF DEPOSIT

LIFEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED
WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST
OFFICE TO ADDRESSEE" SERVICE UNDER 37 C.F.R. 1.10 ON THE
DATE INDICATED ABOVE, AND IS ADERESSED TO: THE ASSISTANT
COMMISSIONER FOR PATENTS, WASHINGTON, D.C. 20231.

(TYPED OR, PRINTED NAME OR PERSON MAILING PAPER OR FEE)

MAILING PAPER OR FEE)

Respectfully submitted,

Robert T. Ramos

Registration No. 37,915 CAMPBELL & FLORES LLP 4370 La Jolla Village Drive Suite 700

San Diego, California 92122 619-535-9001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

REQUEST FOR FILING APPLICATION UNDER 37 CFR 1.53(a), (b) & (d)

The Asst. Commissioner for Patents Washington, D.C. 20231

Ref. No. P-CE 2817

Sir:

This is a Request for filing a new patent application entitled:

NUCLEIC ACID ENCODING DS-CAM PROTEINS AND PRODUCTS RELATED THERETO

without an Assignment or Oath/Declaration but for which is enclosed the following:

- Cover Page; [X]
- [X]
- Abstract _ 1 _ page(s);
 _100 _ pages of Specification (only spec. and claims);
 Specification in non-English language; [X]
- 30 numbered claim(s); and [X]
- [X] informal; [] formal; [] 11" 4 sheet(s) of drawings [X]
- Size: [X] A4 [] 14" [] 11"

 Verified Statement claiming Small Entity Status

 (37 CFR 1.9(f) and 1.27(d)) filed December 17, 1996. []
- This application is based on prior foreign application(s) [] filed in No.(s). ____ ___, respectively, and priority is hereby claimed therefrom.
- This application is a [] Continuation [] Divis [] Continuation-in-part of application serial no. [] Divisional [] _ filed
- This application is based on, and claims the benefit of, U.S. Provisional Application No. 60/029,322, filed October [X] 25, 1996, entitled NUCLEIC ACID ENCODING A NOVEL DS-CAM PROTEIN AND PRODUCTS RELATED THERETO.

This application is made by the following named inventor(s):

Julie R. Korenberg Inventor: 1. United States of America Citizenship: Los Angeles, California Residence: Post Office Address: 8125 Skyline Drive Los Angeles, CA 90046

Respectfully submitted,

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

"EXPRESS MAIL" MAILING LABEL NUMBER EMSUBARO199US

DATE OF DEPOSIT OCTOBER 23, 1797

I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL STRVICE "EXPRESS MAIL POST OFFICE TO ADDPECCE" SERVICE UNDER 37 C.F.R. 1.10 ON THE DATE INDICATED ADDVE. AND IS ADDRESSED TO: THE ASSISTANT COMMISSIONER FOR PATENTS, WACHINGTON, D.C. 20231.

(SYPED OR PRINTED NAME OR PERCON MAILING PAPER OR FEE)

h

Robert T. Ramos

Registration No. 37,915

CAMPBELL & FLORES LLP 4370 La Jolla Village Drive

Suite 700

San Diego, California 92122

(619) 535-9001

PATENT

Our Docket: P-CE 2817

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
Julie R. Korenberg

Serial No.: Unknown

Filed: October 23, 1997

For: NUCLEIC ACID ENCODING

DS-CAM PROTEINS AND

PRODUCTS RELATED THERETO

BOX SEQUENCE

Asst. Commissioner for Patents

Washington, D.C. 20231

Sir:

Group Art Unit: Unknown

Examiner: Unknown

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

"EXPRESS MAIL" MAILING LABEL NUMBER EM508280177465

DATE OF DEPOSIT. OCTOBER 23, 1997

I HEREBY CPOTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED SHATES POSTAL SERVICE "FYZAROS MAIL POST OFFICE IC ADDITIONE" SERVICE UNDER 37 C.F.R. 1.10 ON THE DATE PLYICETO TO VILLA AD IS ADERICSED TO: T.F.F. ASSISTANT COMMISSIONER FOR PATENTS, WASHINGTON, D.C. 20231.

(TYPED OR FRANCE) NAME OR PERSON MAILING PAPER OR FEE)

STATEMENT UNDER 37 C.F.R. § 1.821(f)

I hereby state that the content of the paper and computer readable copies of the Sequence Listing, submitted in accordance with 37 CFR § 1.821(c) and (e), respectively, are the same.

Date : October 23, 1997

CAMPBELL & FLORES LLP 4370 La Jolla Village Drive Suite 700

San Diego, California 92122

Respectfully submitted,

Robert T. Ramos

Registration No. 37,915 Telephone: (619) 535-9001

Facsimile: (619) 535-8949

CERTIFICATE	OΕ	MAHING	ρV	"EXPRESS	MAIL"
CERTIFICATE	UE	WIMILIIMG	-	EXTREMOS.	1411 (1 ***

"EXPRECS MAIL" MAILING LABEL NUMBER EM5082801774CS

DATE OF DEPOSIT.

IT ERICLY OFFITE THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE PAPER OR FEE IS DEING DEPOSITED WITH THE PAPER OF THE SERVICE UNDER 37 C.F.R. 1.10 ON THE PAPER OF TH

CTYPED OR FRINTED MAPER OR FEED

SIGNA OF PERSON MAILING APER OR FEE)

APPLICATION

for

UNITED STATES LETTERS PATENT

on

NUCLEIC ACID ENCODING DS-CAM PROTEINS AND PRODUCTS RELATED THERETO

by

Julie R. Korenberg

Sheets of Drawings: Four

Docket No.: P-CE 2817

Attorneys

CAMPBELL AND FLORES
4370 La Jolla Village Drive, Suite 700
San Diego, California 92122

30

NUCLEIC ACID ENCODING DS-CAM PROTEINS AND PRODUCTS RELATED THERETO

This is a non-provisional application based on, and claims the benefit of, U.S. Provisional Application No. 60/029,322 filed October 25, 1996, the content of which is incorporated herein by reference in its entirety.

ACKNOWLEDGMENT

This invention was made with Government support under Grant Numbers HL50025 and HD17449 awarded by the National Institutes of Health and DE-FG03-92ER61402 awarded by the Department of Energy. The Government has certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to nucleic acids and proteins encoded thereby. Invention nucleic acids encode a novel N-CAM member of the immunoglobulin superfamily of proteins. The invention also relates to methods for making and using such nucleic acids and proteins.

BACKGROUND OF THE INVENTION

Research spanning the last decade has significantly elucidated the molecular events attending cell-cell interactions in the body, especially those events involved in the movement and activation of cells in the immune system. See generally, Springer et al., Nature 346:425-434, 1990. Cell surface proteins, and especially the so-called Cellular Adhesion Molecules ("CAMs") have correspondingly been the subject of pharmaceutical research and development having as its goal intervening in the processes of leukocyte

extravasation to sites of inflammation and leukocyte movement to distinct target tissues. The isolation and characterization of cellular adhesion molecules, the cloning and expression of DNA sequences encoding such 5 molecules, and the development of therapeutic and diagnostic agents relevant to inflammatory process, viral infection and cancer metastasis have also been the subject of numerous U.S. and foreign applications for Letters Patent. See Edwards, Current Opinion in 10 Therapeutic Patents 1(11):1617-1630, 1991 and particularly the published "patent literature references" cited therein.

Numerous CAMs have been characterized to date.

See, for example, vascular adhesion molecule (VCAM-1) as

described in PCT WO 90/13300; platelet endothelial cell
adhesion molecule (PECAM-1) described in Newman et al.,

Science 247:1219-1222, 1990; and PCT WO 91/10683; and the
following U.S. Patents: 5,525,487; 5,235,049; 5,272,263;
5,489,233; 5,264,554; 5,318,890; 5,389,520; 5,519,008;

and the like.

There is substantial evidence that N-CAM and its relatives play an important part in neural development (Edelman and Crossin, "CELL ADHESION MOLECULES: Implications for a Molecular Histology", Ann. Rev. Biochem. 60:155-190, 1991; and Walsh and Doherty, Curr. Opinion in Cell Biol. 5:791-796, 1993). For example, antibodies directed against N-CAMs disturbed the normal growth pattern of nerve processes. N-CAM (locus 11q23.1) is expressed in large amounts in cells of the developing neural tube, but when neural crest cells dissociate from the neural tube and migrate away, they lose N-CAM, only to reexpress it later when they reaggregate to form a neural ganglion. In addition,

Rosenthal et al., (Nature Genet. 2:107-112, 1992)

reported that mutations in CAM-L1 (locus Xq28) cause
X-linked hydrocephalus, and Jouet et al., (Nature Genet.
7:402-407, 1994) showed that mutations in CAM L1 gene are
responsible for type 1 X-linked spastic paraplegia and
MASA syndrome which shows agenesis of the corpus
callosum. Therefore, there is a need in the art to
identify and isolate novel N-CAM members of the
immunoglobulin superfamily so that their role in neural
development and neural cell communication can be
determined.

Therefore, there continues to be a need in the art for the discovery of additional proteins participating in human cell-cell interactions and especially a need for information serving to specifically identify and characterize such proteins in terms of their amino acid sequence. Moreover, to the extent that such molecules might form the basis for the development of therapeutic and diagnostic agents, it is essential that the DNA encoding them be elucidated. The present invention satisfies this need and provides related advantages as well.

BRIEF DESCRIPTION OF THE INVENTION

In accordance with the present invention, there
25 are provided isolated nucleic acids encoding novel
mammalian N-CAM (neural-cell adhesion molecule) members
of the immunoglobulin superfamily of proteins, referred
to herein as Down Syndrome-Cell Adhesion Molecules
(DS-CAMs). Further provided are vectors containing
30 invention nucleic acids, probes that hybridize thereto,
host cells transformed therewith, antisense
oligonucleotides thereto and related compositions. The
nucleic acid molecules described herein can be

incorporated into a variety of recombinant expression systems known to those of skill in the art to readily produce isolated DS-CAM proteins. In addition, the nucleic acid molecules of the present invention are useful as probes for assaying for the presence and/or amount of a DS-CAM gene or mRNA transcript in a given sample. The nucleic acid molecules described herein, and oligonucleotide fragments thereof, are also useful as primers and/or templates in a PCR reaction for amplifying genes encoding DS-CAM proteins.

In accordance with the present invention, there are also provided isolated mammalian DS-CAM proteins. These proteins are useful, for example, in neural prosthetic devices used in entubulation methods of repairing (regenerating) damaged or severed peripheral nerves (see, e.g., U.S. Patent No. 4,955,892, incorporated herein by reference). In addition, these proteins, or fragments thereof, are useful as immunogens for producing anti-DS-CAM antibodies, or in therapeutic compositions containing such proteins and/or antibodies. Invention DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto. Also provided are transgenic non-human mammals that express the invention protein.

Antibodies that are immunoreactive with invention DS-CAM proteins are also provided. These antibodies are useful in diagnostic assays to determine levels of DS-CAM proteins present in a given sample, e.g., tissue samples, Western blots, and the like. The antibodies can also be used to purify DS-CAM proteins from crude cell extracts and the like. Moreover, these antibodies are considered therapeutically useful to counteract or supplement the biological effect of DS-CAMs in vivo.

Methods and diagnostic systems for determining the levels of DS-CAM protein in various tissue samples are also provided. These diagnostic methods can be used for monitoring the level of therapeutically administered DS-CAM protein or fragments thereof to facilitate the maintenance of therapeutically effective amounts. These diagnostic methods can also be used to diagnose physiological disorders that result from abnormal levels or abnormal structures of the DS-CAM protein.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a physical map of the localization of the DS-CAM gene to a region between D21S345 and D21S347 on chromosome 21. The locations of BAC clones (starting with numbers) and PAC clones

15 (starting with "P") are indicated by horizontal bars. An arrow head indicates a gap in the BAC and PAC contig. The location of the DS-CAM gene is indicated by a thick arrow.

Figure 2 shows the predicted amino acid
sequence of the human DS-CAM1 protein corresponding to
SEQ ID NO:2 and a schematic structure. IG:
Immunoglobulin type-C2 domain. FbN: Fibronectin type III
domain. The bold Cs in the amino acid sequence indicates
Cysteine residues forming disulfide bonds in the Ig-like
type-C2 domains. The bold NXS and NXT in the amino acid
sequence correspond to potential N-glycosylation sites.

Figure 3 shows a partial genomic structure of DS-CAM1 and a deletion contained in DS-CAM2 cDNA clones (clones pDS-CAM-18 and pDS-CAM-52). The deletion boundary sequence (GC-AG) suggests an unusual alternative splicing. The horizontal bar represents

genomic sequence containing exons of DS-CAM-42. Exons are indicated by open boxes. Exon-intron boundaries are defined by a comparison of the cDNA sequence of pDS-CAM-42 and genomic sequence determined from a BAC clone.

Figure 4 shows a schematic comparison of neuronal Ig superfamily members. Ig-like type C-2 domains, fibronectin type III domains and transmembrane domains are indicated. MAG: myelin-associated

10 glycoprotein, N-CAM: neural cell adhesion molecule, BIG-1: brain-derived immunoglobulin (Ig) superfamily molecule-1, DCC: deleted in colorectal carcinoma.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there are provided isolated nucleic acids, which encode novel 15 mammalian members of the DS-CAM family of proteins, and fragments thereof. The phrase "DS-CAM" refers to substantially pure native DS-CAM protein, or recombinantly produced proteins, including naturally 20 occurring allelic variants thereof encoded by mRNA generated by alternative splicing of a primary transcript, such as DS-CAM1 (SEQ ID NO:2) and DS-CAM2 (SEQ ID NO:11) disclosed herein, and further including fragments thereof which retain at least one native biological activity, such as immunogenicity. aspect, invention DS-CAM proteins, such as DS-CAM1, are cell-surface glycoproteins that are mobile in the plane Invention DS-CAM1 proteins contain of the membrane. extra- and intra-cellular domains that transduce information from the outside of the cell to the cytoplasm 30 and the nucleus, thereby determining cell function. another aspect, invention DS-CAM proteins, such as DS-CAM2, are non-membrane bound, soluble proteins.

In one aspect of the invention DS-CAM proteins are further characterized as comprising at least 7
Immunoglobulin-like (Ig-like) domains homologous to the immunoglobulin superfamily and 6 type III fibronectin
5 repeats (see, e.g., Edelman and Crossin, "CELL ADHESION MOLECULES: Implications for a Molecular Histology", Ann. Rev. Biochem., 60:155-190, 1991; and Walsh and Doherty, Curr. Opinion in Cell Biol., 5:791-796, 1993; each of which is incorporated herein by reference in its
10 entirety). In another aspect of the invention, DS-CAM proteins are those proteins comprising at least 8, preferably at least 9 Ig-like domains, with at least 10 Ig-like domains being especially preferred.

As used herein, "Ig-like domains", or

grammatical variations thereof, refers to the well known
repeats that are common among Cell Adhesion Molecules
(CAMs) (see, e.g., Figure 1A at p. 158 of Edelman and
Crossin, supra, 1991; and Walsh and Doherty, supra, 1993;
each of which is incorporated herein by reference in its
entirety).

The phrase "type III fibronectin repeats",

"fibronectin repeats," or grammatical variations thereof,
refers to the well known repeats that are common among
Cell Adhesion Molecules (CAMs) (see, e.g., Figure 1A at
p. 158 of Edelman and Crossin, supra, 1991; and Walsh and
Doherty, supra, 1993; each of which is incorporated
herein by reference in its entirety).

The invention DS-CAM proteins define a novel sub-class of the Ig (immunoglobulin) superfamily with highest homologies to the neural cell adhesion molecules including BIG-1 (Yoshihara et al., Neuron 13:415-426, 1994), CAM-L1 (Moos et al., Nature 334:701-703, 1988), DCC (Fearon et al., Science 247:49-56, 1990), neogenin

(Lane et al., Genomics 35:456-465, 1996), and contactin (Ranscht, <u>J. Cell Bio</u>. **107**:1561-1573, 1988) (Figure 4). It has been found that the structure of invention DS-CAM proteins is unique within the neural immunoglobulin superfamily, and is distinctive due to the number of Ig-like type C2 and fibronectin III domains (10 and 6 respectively) and from the interruption of the fourth and fifth fibronectin domains by a 10th C2 domain, the functional significance of which may be of interest. 10 novel structure of DS-CAM and its expression throughout the nervous system during differentiation suggest interesting roles for the neural CAM in neural development and function. The location of DS-CAM in a region critical for DS neurocognitive phenotypes provides 15 a human model in which to test the significance of these roles for cognitive function.

The neural Ig-superfamily members play critical roles in neural development and function and have been implicated in cell migration and sorting, axon guidance and fasciculation, formation of neural connections, and 20 in synaptic plasticity (Edelman and Crossin, supra, 1991; Walsh and Doherty, supra, 1993; Tessier-Lavigne et al., Science 274:1123-1133, 1996; Shuster et al., Neuron 17:641-654, 1996; Shuster et al., Neuron 17:655-657, 1996). These activities are mediated by the homophilic 25 or heterophilic binding properties of Ig-superfamily members (Mauro et al., <u>J. Cell Bio</u>. **119**:191-202, 1992 and Milev et al., <u>J. Biol. Chem</u>. **271**:15716-15723, 1996), the binding of Ig-superfamily proteins to extracellular matrix proteins (Grumet et al., Cell Adhesion Comm. 30 1:177-190, 1993; Taira et al., Neuron 12:861-872, 1994; and Zisch et al., <u>J. Cell Bio</u>. **119**:203-213, 1992), and the binding to smaller diffusible chemorepellents or chemoattractants, for example, DCC and netrin (Keino-Masu et al., <u>Cell</u> **87**:175-185, 1996).

25

The specificity of DS-CAM expression for the central nervous system and the timing of its expression to the period of neurite outgrowth in both the central and peripheral nervous systems, indicates a role for DS-CAM in early development and differentiation (Examples 4 and 5). Early in development when, with the exception of neural crest precursors, expression is clearly absent from regions that contain dividing neuroepithelial precursors such as the ependymal layer of the neural tube and the ventricular zone of the brain (Altman and Bayer, Atlas of Prenatal Rat Brain Development, CRC Press, Ann Arbor, MI, 1995). In the embryo, differentiated neurons express DS-CAM when they have finished migrating to their proper positions within the neuroepithelium, during neurite outgrowth. 15

Neural crest cells may express DS-CAM while they are migrating. At 15.5 and 16.5 days pc, most of the neural crest derived tissues have some expression, although not all have finished migration. The continued expression of DS-CAM in the myenteric plexus after 15.5-20 16.5 dpc is due to the neural crest cells that have stopped dividing, although others are in the cell cycle. Approximately 50% of myenteric ganglia neurons arise after birth and DS-CAM may be expressed later in this subset. At later stages, the data suggest that DS-CAM is down regulated in the neural crest derivatives such as the myenteric ganglia and ganglia of the pancreas. DS-CAM expression in tissues derived from the neural crest is of interest with respect to the high level The tissue surrounding detected in the umbilical cord. the umbilical artery and vein is derived from the neural crest and functions in coordinating the cardiovascular changes occurring at birth. The expression detected in the fetal liver and branchial arches is also derived from neural crest related to the ductus venosus and ultimately the ductus arteriosus and cardiac outflow tracts, respectively.

DS-CAM expression continues post-natally, in the differentiating regions of the newborn brain, such as, the septum and inferior colliculus, and in the adult in regions associated with plasticity, such as, the olfactory bulb and hippocampus. When combined with the evidence for involvement of the Ig superfamily in determining synaptic strength (Mayford et al., Science 256:638-644, 1992)), the continued expression supports a 10 role for DS-CAM in remodeling, learning and memory. expression pattern and the role of dendritic connections in cell body maintenance indicate that an increase in DS-CAM expression in DS brain is responsible in part for the abnormalities of dendritic structure and decreased 15 intersections seen at four months post-natal in DS individuals.

Alternatively spliced variants of CAMs have distinct roles in different parts of the brain, as demonstrated for closely related Ig-superfamily members, such as, NCAM (Cunningham et al., Science 236:799-806, 1987 and Figarella-Branger et al., <u>J. Neuropathol. Exp.</u> Neurol. 51:12-23, 1992). The differential expression of alternatively spliced DS-CAM transcripts encoding DS-CAM1 (SEQ ID NO:2) and DS-CAM2 (SEQ ID NO:11) has likewise 25 been observed in various parts of the human adult brain. For example, it has been found that DS-CAM clones encoding DS-CAM2 contain a small deletion relative to DS-CAM1, which deletion contains the transmembrane domain (Example 3 and Figure 3) and results in a stop codon 36 30 The results of RT-PCR (Example 5) bp downstream. indicated that all RNAs tested from various human tissues expressed both the DS-CAM1 and DS-CAM2 transcripts and that the PCR products generated the sequence and size predicted for the appropriate form. The proximal and

distal borders of the deletion are located within neighboring exons and reveal variant consensus splice site sequences (Jackson, <u>Nuc. Acid Res</u>. 19:3795-3798, 1991) with further surrounding homology to the U1 spliceosome RNA.

From Northern analyses (Example 4) a minimum of three distinct transcripts are recognized by a probe for the transmembrane domain. From cDNA sequence analyses (Example 5) two forms of the DS-CAM protein are deduced, one that generates a transmembrane adhesion molecule and a second that is deleted for the transmembrane domain, thereby generating a molecule that is transported to the This mode of generating extracellular matrix. extracellular and membrane bound forms of CAMs is in surprising contrast to the GPI (glycosylphosphatidylinositol) linkage used by most CAMs, and would provide a way of generating longer range homophilic interactions between cells and the extracellular matrix, which may be significant for cell migration. 20

The DS-CAM gene was isolated (as described in the Examples hereinafter) by using the BAC contig on 21q22.2-q22.3 covering the region between D21S55 and MX1 (Hubert et al., <u>Genomics</u> **41**:218-226, 1997). The gene spans a minimum of 900 kb, estimated by summing the size 25 of BACs and PACs that are non-overlapping and covered by the DS-CAM gene (Figure 1). The DS-CAM gene covers a gap in all physical maps of this region. From hybridization experiments indicating no signal of the complete cDNA to 30 BAC 277G10 covering 210 kb, a 5' intron is at least this size, similar to the first intron of the DCC gene (Cho et al., Genomics 19:525-531, 1994). Alternatively, other alternative transcripts can contain exons located in this BAC. The gene spans the boundary of bands

21q22.2 and q22.3, a Giemsa-dark and Giemsa-light band, respectively. The location of the gene for PEP19, a small 634 bp gene with large introns within the same band 21q22.2 (Cabin et al., <u>Somat. Cell Mol. Genet</u>. **22**:167-175, 1996) suggests a general structure of genes in G-bands having large introns.

The nucleic acid molecules described herein are useful for producing invention DS-CAM proteins, when such nucleic acids are incorporated into a variety of protein expression systems known to those of skill in the art. In addition, such nucleic acid molecules or fragments thereof can be labeled with a readily detectable substituent and used as hybridization probes for assaying for the presence and/or amount of a DS-CAM gene or mRNA transcript in a given sample. The nucleic acid molecules described herein, and fragments thereof, are also useful as primers and/or templates in a PCR reaction for amplifying genes encoding the invention protein described herein.

The term "nucleic acid" (also referred to as 20 polynucleotides) encompasses ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), probes, oligonucleotides, and primers. DNA can be either complementary DNA (cDNA) or genomic DNA, e.g. a gene encoding a DS-CAM protein. One means of isolating a nucleic acid encoding a DS-CAM 25 polypeptide is to probe a mammalian genomic library with a natural or artificially designed DNA probe using methods well known in the art. DNA probes derived from the DS-CAM gene are particularly useful for this purpose. DNA and cDNA molecules that encode DS-CAM polypeptides can be used to obtain complementary genomic DNA, cDNA or RNA from mammalian (e.g., human, mouse, rat, rabbit, pig, and the like), or other animal sources, or to isolate related cDNA or genomic clones by the screening of cDNA 35 or genomic libraries, by methods described in more detail below. Examples of nucleic acids are RNA, cDNA, or isolated genomic DNA encoding a DS-CAM polypeptide. Such nucleic acids may include, but are not limited to, nucleic acids having substantially the same nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, or at least nucleotides 453-6185 set forth in SEQ ID NO:1, or nucleotides 453-5168 set forth in SEQ ID NO:10.

Use of the terms "isolated" and/or "purified"

in the present specification and claims as a modifier of DNA, RNA, polypeptides or proteins means that the DNA, RNA, polypeptides or proteins so designated have been produced in such form by the hand of man, and thus are separated from their native in vivo cellular environment.

As a result of this human intervention, the recombinant DNAs, RNAs, polypeptides and proteins of the invention are useful in ways described herein that the DNAs, RNAs, polypeptides or proteins as they naturally occur are not.

As used herein, "mammalian" refers to the
variety of species from which the invention DS-CAM
protein is derived, e.g., human, rat, mouse, rabbit,
monkey, baboon, bovine, porcine, ovine, canine, feline,
and the like. A preferred DS-CAM protein herein, is
human DS-CAM.

In one embodiment of the present invention, cDNAs encoding the invention DS-CAM proteins disclosed herein include substantially the same nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, or SEQ ID NO:10. Preferred cDNA molecules encoding the invention proteins include the same nucleotide sequence as nucleotides 453-6185 set forth in SEQ ID NO:1, or nucleotides 453-5168 set forth in SEQ ID NO:10.

As employed herein, the term "substantially the same nucleotide sequence" refers to DNA having sufficient identity to the reference polynucleotide, such that it will hybridize to the reference nucleotide under moderately stringent hybridization conditions. embodiment, DNA having substantially the same nucleotide sequence as the reference nucleotide sequence encodes substantially the same amino acid sequence as that set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9, 10 or a larger amino acid sequence including SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9. In another embodiment, DNA having "substantially the same nucleotide sequence" as the reference nucleotide sequence has at least 60% 15 identity with respect to the reference nucleotide sequence. DNA having at least 70%, more preferably at least 90%, yet more preferably at least 95%, identity to the reference nucleotide sequence is preferred.

This invention also encompasses nucleic acids 20 which differ from the nucleic acids shown in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10 but which have the same phenotype. Phenotypically similar nucleic acids are also referred to as "functionally equivalent nucleic acids". As used herein, the phrase 25 "functionally equivalent nucleic acids" encompasses nucleic acids characterized by slight and nonconsequential sequence variations that will function in substantially the same manner to produce the same protein product(s) as the nucleic acids disclosed herein. 30 particular, functionally equivalent nucleic acids encode polypeptides that are the same as those disclosed herein or that have conservative amino acid variations, or that encode larger polypeptides that includes SEQ ID NO:2 or 35 SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9. For example, conservative

15

20

25

variations include substitution of a non-polar residue with another non-polar residue, or substitution of a charged residue with a similarly charged residue. These variations include those recognized by skilled artisans as those that do not substantially alter the tertiary structure of the protein.

Further provided are nucleic acids encoding DS-CAM polypeptides that, by virtue of the degeneracy of the genetic code, do not necessarily hybridize to the invention nucleic acids under specified hybridization conditions. Preferred nucleic acids encoding the invention polypeptides are comprised of nucleotides that encode substantially the same amino acid sequences set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9.

Thus, an exemplary nucleic acid encoding an invention DS-CAM protein may be selected from:

- (a) DNA encoding the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9,
- (b) DNA that hybridizes to the DNA of (a) under moderately stringent conditions, wherein said DNA encodes biologically active DS-CAM, or
- (c) DNA degenerate with respect to either(a) or (b) above, wherein said DNA encodesbiologically active DS-CAM.

Hybridization refers to the binding of complementary strands of nucleic acid (i.e., sense:antisense strands or probe:target-DNA) to each other through hydrogen bonds, similar to the bonds that naturally occur in chromosomal DNA. Stringency levels used to hybridize a given probe with target-DNA can be readily varied by those of skill in the art.

20

The phrase "stringent hybridization" is used herein to refer to conditions under which polynucleic acid hybrids are stable. As known to those of skill in the art, the stability of hybrids is reflected in the melting temperature (T_m) of the hybrids. In general, the stability of a hybrid is a function of sodium ion concentration and temperature. Typically, the hybridization reaction is performed under conditions of lower stringency, followed by washes of varying, but higher, stringency. Reference to hybridization stringency relates to such washing conditions.

As used herein, the phrase "moderately stringent hybridization" refers to conditions that permit target-DNA to bind a complementary nucleic acid that has 15 about 60% identity, preferably about 75% identity, more preferably about 85% identity to the target DNA; with greater than about 90% identity to target-DNA being especially preferred. Preferably, moderately stringent conditions are conditions equivalent to hybridization in 50% formamide, 5X Denhardt's solution, 5X SSPE, 0.2% SDS at 42°C, followed by washing in 0.2% SSPE, 0.2% SDS, at 65°C.

The phrase "high stringency hybridization" refers to conditions that permit hybridization of only those nucleic acid sequences that form stable hybrids in 0.018M NaCl at 65°C (i.e., if a hybrid is not stable in 0.018M NaCl at 65°C, it will not be stable under high stringency conditions, as contemplated herein). High stringency conditions can be provided, for example, by hybridization in 50% formamide, 5X Denhardt's solution, 5% SSPE, 0.2% SDS at 42°C, followed by washing in 0.1% SSPE, and 0.1% SDS at 65°C.

The phrase "low stringency hybridization" refers to conditions equivalent to hybridization in 10%

formamide, 5X Denhardt's solution, 6X SSPE, 0.2% SDS at 42°C, followed by washing in 1X SSPE, 0.2% SDS, at 50°C. Denhardt's solution and SSPE (see, e.g., Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989) are well known to those of skill in the art as are other suitable hybridization buffers.

As used herein, the term "degenerate" refers to codons that differ in at least one nucleotide from a reference nucleic acid, e.g., SEQ ID NO:1, but encode the same amino acids as the reference nucleic acid. For example, codons specified by the triplets "UCU", "UCC", "UCA", and "UCG" are degenerate with respect to each other since all four of these codons encode the amino acid serine.

Preferred nucleic acids encoding the invention polypeptide(s) hybridize under moderately stringent, preferably high stringency, conditions to substantially the entire sequence, or in certain embodiments substantial portions (i.e., typically at least 15-30 nucleotides) of the nucleic acid sequence set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10.

The invention nucleic acids can be produced by a variety of methods well-known in the art, e.g., the methods described herein, employing PCR amplification using oligonucleotide primers from various regions of SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9,

30 SEQ ID NO:10, and the like.

In accordance with a further embodiment of the present invention, optionally labeled DS-CAM-encoding cDNAs, or fragments thereof, can be employed to probe library(ies) (e.g., cDNA, genomic, and the like) for

additional nucleic acid sequences encoding novel mammalian DS-CAM proteins. As described in Example 3, construction of mammalian cDNA libraries, preferably a human trisomy 21 fetal brain cDNA library, is well-known in the art. Screening of such a cDNA library is initially carried out under low-stringency conditions, which comprise a temperature of less than about 42°C, a formamide concentration of less than about 50%, and a moderate to low salt concentration.

Presently preferred probe-based screening 10 conditions comprise a temperature of about 37°C, a formamide concentration of about 20%, and a salt concentration of about 5X standard saline citrate (SSC; 20X SSC contains 3M sodium chloride, 0.3M sodium citrate, 15 pH 7.0). Such conditions will allow the identification of sequences which have a substantial degree of similarity with the probe sequence, without requiring perfect homology. The phrase "substantial similarity" refers to sequences which share at least 50% homology. Preferably, hybridization conditions will be selected 20 which allow the identification of sequences having at least 70% homology with the probe, while discriminating against sequences which have a lower degree of homology with the probe. As a result, nucleic acids having 25 substantially the same nucleotide sequence as nucleotides 453-6185 set forth in SEQ ID NO:1, or nucleotides 453-5168 set forth in SEQ ID NO:10, SEQ ID NO:7, SEQ ID NO:8, or SEQ ID NO:9 are obtained.

As used herein, a nucleic acid "probe" is 30 single-stranded DNA or RNA, or analogs thereof, that has a sequence of nucleotides that includes at least 14, at least 20, at least 50, at least 100, at least 200, at least 300, at least 400, or at least 500 contiguous bases that are the same as (or the complement of) any 35 contiguous bases set forth in any of SEQ ID NO:1,

15

SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10. Preferred regions from which to construct probes include 5' and/or 3' coding regions of SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10. In addition, 5 the entire cDNA encoding region of an invention DS-CAM protein, or the entire sequence corresponding to SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10, may be used as a probe. Probes may be labeled by methods well-known in the art, as described hereinafter, and used in various diagnostic kits.

As used herein, the terms "label" and "indicating means" in their various grammatical forms refer to single atoms and molecules that are either directly or indirectly involved in the production of a detectable signal. Any label or indicating means can be linked to invention nucleic acid probes, expressed proteins, polypeptide fragments, or antibody molecules. These atoms or molecules can be used alone or in conjunction with additional reagents. Such labels are 20 themselves well-known in clinical diagnostic chemistry.

The labeling means can be a fluorescent labeling agent that chemically binds to antibodies or antigens without denaturation to form a fluorochrome (dye) that is a useful immunofluorescent tracer. description of immunofluorescent analytic techniques is found in DeLuca, "Immunofluorescence Analysis", in Antibody As a Tool, Marchalonis et al., eds., John Wiley & Sons, Ltd., pp. 189-231, 1982, which is incorporated herein by reference.

In one embodiment, the indicating group is an 30 enzyme, such as horseradish peroxidase (HRP), glucose oxidase, and the like. In another embodiment, radioactive elements are employed labeling agents. linking of a label to a substrate, i.e., labeling of

nucleic acid probes, antibodies, polypeptides, and proteins, is well known in the art. For instance, an invention antibody can be labeled by metabolic incorporation of radiolabeled amino acids provided in the 5 culture medium. See, for example, Galfre et al., Meth. Enzymol. 73:3-46, 1981. Conventional means of protein conjugation or coupling by activated functional groups are particularly applicable. See, for example, Aurameas et al., <u>Scand. J. Immunol</u>. **8(7)**:7-23, 1978; Rodwell et al., Biotech. 3:889-894, 1984; and U.S. Patent No. 4,493,795.

In accordance with another embodiment of the present invention, there are provided isolated mammalian DS-CAM proteins (preferably human), polypeptides, and 15 fragments thereof encoded by invention nucleic acid. Preferably, DS-CAM proteins referred to herein, are those polypeptides specifically recognized by an antibody that also specifically recognizes a DS-CAM protein including the sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9. Invention isolated DS-CAM proteins are free of cellular components and/or contaminants normally associated with a native in vivo environment.

The invention DS-CAM proteins are further characterized as being primarily expressed in fetal brain 25 and not expressed in fetal lung or fetal liver. example, the results of Northern analysis (described in Example 4) using human fetal tissues showed that 8.5 kb and 7.6 kb transcripts are expressed only in fetal brain and not expressed in fetal lung, fetal liver and fetal 30 Northern blot analyses of adult tissues revealed differential expression of three alternative transcripts of 9.7 kb, 8.5 kb and 7.6 kb in different substructures of the brain. The 9.7 kb transcript is 35 highly expressed in the substantia nigra, moderately

expressed in the amygdala and hippocampus, and less expressed in the whole brain. A similar pattern is observed by using a PCR product spanning the 191 bp deletion found in DS-CAM-18 and DS-CAM-52. The placenta shows faint bands, and the sizes are smaller than those in brain. In skeletal muscle, a faint band (6.5 kb) is detected.

The results of RT-PCR (Example 5) demonstrated expression of human DS-CAM mRNA in fetal and adult brain, in fetal kidney, as well as in a breast carcinoma cell line mRNA. Thus, splice variant cDNA transcripts encoding a DS-CAM family of proteins are clearly contemplated by the present invention.

The region of chromosome locus 21q22.2 from which DS-CAM is derived is part of the candidate region 15 for holoprosencephaly type I (HPE1). In addition, some patients with this region hemizygously deleted show abnormalities of the corpus callosum and schizencephaly. Therefore, DS-CAM is contemplated as the gene, which when defective, deleted or present as a duplication, is 20 responsible for holoprosencephaly, agenesis of the corpus callosum and/or structural defects of the brain. addition, DS-CAM may also be responsible for several phenotypes of Down Syndrome including mental retardation as well as, more specifically, the abnormal dendritic structure observed in Down Syndrome. Additional roles for DS-CAM were further evaluated by database homology searches using BLAST X/N and TIGR database analyses. Results of these searches indicate that DS-CAM shows moderate homology to N-CAM-1 (Cunningham et al., Science, 30 236:799-806, 1987) and to DCC (Fearon et al., Science, 247:49-56, 1990).

Presently preferred DS-CAM proteins of the invention include amino acid sequences that are

substantially the same as the protein sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9, as well as biologically active, modified forms thereof. Those of skill in the art will recognize that numerous residues of the above-described sequences can be substituted with other, chemically, sterically and/or electronically similar residues without substantially altering the biological activity of the resulting receptor species. In addition, larger or smaller polypeptide sequences containing substantially the same sequence as SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM

coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9,

therein (e.g., splice variants) are contemplated.

15

10

As employed herein, the term "substantially the same amino acid sequence" refers to amino acid sequences having at least about 50%, preferably at least about 60%, more preferably at least about 70% identity with respect to the reference amino acid sequence, and retaining 20 comparable functional and biological activity characteristic of the protein defined by the reference amino acid sequence. In another embodiment of the invention, preferred invention proteins having "substantially the same amino acid sequence" will have at 25 least about 80%, more preferably 90% amino acid identity with respect to the reference amino acid sequence; with greater than about 95% amino acid sequence identity being especially preferred. It is recognized, however, that polypeptides (or nucleic acids referred to hereinbefore) containing less than the described levels of sequence identity arising as splice variants or that are modified by conservative amino acid substitutions, or by substitution of degenerate codons are also encompassed within the scope of the present invention.

The term "biologically active" or "functional", when used herein as a modifier of invention DS-CAM protein(s), or polypeptide fragment thereof, refers to a polypeptide that exhibits functional characteristics similar to DS-CAM. For example, one biological activity of DS-CAM is the ability to act as an immunogen for the production of polyclonal and monoclonal antibodies that Thus, an invention nucleic bind specifically to DS-CAM. acid encoding DS-CAM will encode a polypeptide specifically recognized by an antibody that also 10 specifically recognizes the DS-CAM protein including the sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9. Such activity may be assayed by any method 15 known to those of skill in the art. For example, a test-polypeptide encoded by a DS-CAM cDNA can be used to produce antibodies, which are then assayed for their ability to bind to the protein including the sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM 20 coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9. If the antibody binds to the test-polypeptide and the protein including the sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9 with substantially the same affinity, then the polypeptide 25

The invention DS-CAM proteins can be isolated by a variety of methods well-known in the art, e.g., the methods described herein, the recombinant expression systems described herein, precipitation, gel filtration, ion-exchange, reverse-phase and affinity chromatography, and the like. Other well-known methods are described in Deutscher et al., Guide to Protein Purification: Methods in Enzymology 182 (Academic Press, 1990), which is incorporated herein by reference. Alternatively, the

isolated polypeptides of the present invention can be

possesses the requisite biological activity.

obtained using well-known recombinant methods as described, for example, in Sambrook et al., <u>supra.</u>, 1989).

An example of the means for preparing the invention polypeptide(s) is to express nucleic acids encoding the DS-CAM in a suitable host cell, such as a bacterial cell, a yeast cell, an amphibian cell (i.e., oocyte), or a mammalian cell, using methods well known in the art, and recovering the expressed polypeptide, again using well-known methods. Invention polypeptides can be 10 isolated directly from cells that have been transformed with expression vectors as described below herein. invention polypeptide, biologically active fragments, and functional equivalents thereof can also be produced by 15 chemical synthesis. For example, synthetic polypeptides can be produced using Applied Biosystems, Inc. Model 430A or 431A automatic peptide synthesizer (Foster City, CA) employing the chemistry provided by the manufacturer.

The present invention also provides compositions containing an acceptable carrier and any of 20 an isolated, purified DS-CAM polypeptide, an active fragment thereof, or a purified, mature protein and active fragments thereof, alone or in combination with each other. These polypeptides or proteins can be recombinantly derived, chemically synthesized or purified 25 from native sources. As used herein, the term "acceptable carrier" encompasses any of the standard pharmaceutical carriers, such as phosphate buffered saline solution, water and emulsions such as an oil/water or water/oil emulsion, and various types of wetting 30 agents.

Also provided are antisense oligonucleotides having a sequence capable of binding specifically with any portion of an mRNA that encodes DS-CAM polypeptides

so as to prevent translation of the mRNA. The antisense oligonucleotide may have a sequence capable of binding specifically with any portion of the sequence of the cDNA encoding DS-CAM polypeptides. As used herein, the phrase "binding specifically" encompasses the ability of a nucleic acid sequence to recognize a complementary nucleic acid sequence and to form double-helical segments therewith via the formation of hydrogen bonds between the complementary base pairs. An example of an antisense oligonucleotide is an antisense oligonucleotide comprising chemical analogs of nucleotides.

Compositions comprising an amount of the antisense oligonucleotide, described above, effective to reduce expression of DS-CAM polypeptides by passing 15 through a cell membrane and binding specifically with mRNA encoding DS-CAM polypeptides so as to prevent translation and an acceptable hydrophobic carrier capable of passing through a cell membrane are also provided herein. Suitable hydrophobic carriers are described, for 20 example, in U.S. Patent Nos. 5,334,761; 4,889,953; 4,897,355, and the like. The acceptable hydrophobic carrier capable of passing through cell membranes may also comprise a structure which binds to a receptor specific for a selected cell type and is thereby taken up by cells of the selected cell type. The structure may be part of a protein known to bind to a cell-type specific receptor.

Antisense oligonucleotide compositions are useful to inhibit translation of mRNA encoding invention polypeptides. Synthetic oligonucleotides, or other antisense chemical structures are designed to bind to mRNA encoding DS-CAM polypeptides and inhibit translation of mRNA and are useful as compositions to inhibit expression of DS-CAM associated genes in a tissue sample or in a subject.

In accordance with another embodiment of the invention, kits for detecting mutations, duplications, deletions, rearrangements and aneuploidies in chromosome 21 at locus q22.2 comprising at least one invention probe or antisense nucleotide.

The present invention provides means to modulate levels of expression of DS-CAM polypeptides by employing synthetic antisense oligonucleotide compositions (hereinafter SAOC) which inhibit translation of mRNA encoding these polypeptides. Synthetic 10 oligonucleotides, or other antisense chemical structures designed to recognize and selectively bind to mRNA, are constructed to be complementary to portions of the DS-CAM coding strand or nucleotide sequences shown in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or 15 SEQ ID NO:10. The SAOC is designed to be stable in the blood stream for administration to a subject by injection, or in laboratory cell culture conditions. SAOC is designed to be capable of passing through the 20 cell membrane in order to enter the cytoplasm of the cell by virtue of physical and chemical properties of the SAOC which render it capable of passing through cell membranes, for example, by designing small, hydrophobic SAOC chemical structures, or by virtue of specific transport systems in the cell which recognize and 25 transport the SAOC into the cell. In addition, the SAOC can be designed for administration only to certain selected cell populations by targeting the SAOC to be recognized by specific cellular uptake mechanisms which bind and take up the SAOC only within select cell

For example, the SAOC may be designed to bind to a receptor found only in a certain cell type, as discussed <u>supra</u>. The SAOC is also designed to recognize and selectively bind to target mRNA sequence, which may

populations.

20

25

correspond to a sequence contained within the sequence shown in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, The SAOC is designed to SEO ID NO:9 or SEQ ID NO:10. inactivate target mRNA sequence by either binding thereto 5 and inducing degradation of the mRNA by, for example, RNase I digestion, or inhibiting translation of mRNA target sequence by interfering with the binding of translation-regulating factors or ribosomes, or inclusion of other chemical structures, such as ribozyme sequences 10 or reactive chemical groups which either degrade or chemically modify the target mRNA. SAOCs have been shown to be capable of such properties when directed against mRNA targets (see Cohen et al., TIBS 10:435, 1989 and Weintraub, Sci. American January 1990, pp.40; both incorporated herein by reference).

In accordance with yet another embodiment of the present invention, there is provided a method for the recombinant production of invention DS-CAM protein(s) by expressing the above-described nucleic acid sequences in suitable host cells. Recombinant DNA expression systems that are suitable to produce DS-CAM proteins described herein are well-known in the art. For example, the above-described nucleotide sequences can be incorporated into vectors for further manipulation. As used herein, vector (or plasmid) refers to discrete elements that are used to introduce heterologous DNA into cells for either expression or replication thereof.

Suitable expression vectors are well-known in the art, and include vectors capable of expressing DNA operatively linked to a regulatory sequence, such as a promoter region that is capable of regulating expression Thus, an expression vector refers to a of such DNA. recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in 35

expression of the inserted DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.

As used herein, a promoter region refers to a segment of DNA that controls transcription of DNA to which it is operatively linked. The promoter region includes specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of RNA polymerase. These sequences may be cis acting or may be responsive to 15 trans acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated. Exemplary promoters contemplated for use in the practice of the present invention include the SV40 early promoter, the cytomegalovirus (CMV) promoter, the 20 mouse mammary tumor virus (MMTV) steroid-inducible promoter, Moloney murine leukemia virus (MMLV) promoter, and the like.

refers to the functional relationship of DNA with
regulatory and effector nucleotide sequences, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences. For example, operative linkage of DNA to a promoter refers to the physical and functional relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA.

As used herein, expression refers to the process well-known to those of skill in the art by which polynucleic acids are transcribed into mRNA and translated into peptides or proteins and, optionally thereafter, modified post-translationally. If the invention nucleic acid is derived from genomic DNA, expression may, if an appropriate eukaryotic host cell or organism is selected, include splicing of the mRNA.

Prokaryotic transformation vectors are

well-known in the art and include pBluescript and phage
Lambda ZAP vectors (STRATAGENE, San Diego, CA), and the
like. Other suitable vectors and promoters are disclosed
in detail in U.S. Patent No. 4,798,885, issued January
17, 1989, the disclosure of which is incorporated herein
by reference in its entirety.

Other suitable vectors for transformation of E. coli cells include the pET expression vectors (Novagen, see U.S patent 4,952,496), e.g., pET11a, which contains the T7 promoter, T7 terminator, the inducible E. coli lac operator, and the lac repressor gene; and pET 12a-c, which contain the T7 promoter, T7 terminator, and the E. coli ompT secretion signal. Another suitable vector is the pIN-IIIompA2 (see Duffaud et al., Meth. in Enzymology, 153:492-507, 1987), which contains the lpp promoter, the lacUV5 promoter operator, the ompA secretion signal, and the lac repressor gene.

Exemplary, eukaryotic transformation vectors, include the cloned bovine papilloma virus genome, the cloned genomes of the murine retroviruses, and eukaryotic cassettes, such as the pSV-2 gpt system (described by Mulligan and Berg, Nature 277:108-114, 1979) the Okayama-Berg cloning system (Mol. Cell Biol. 2:161-170, 1982), and the expression cloning vector described by

Genetics Institute (<u>Science</u> 228:810-815, 1985), are available which provide substantial assurance of at least some expression of the protein of interest in the transformed eukaryotic cell line.

Particularly preferred base vectors which contain regulatory elements that can be linked to the invention DS-CAM-encoding DNAs for transfection of mammalian cells are cytomegalovirus (CMV) promoter-based vectors such as pcDNA1 (Invitrogen, San Diego, CA), MMTV promoter-based vectors such as pMAMNeo (Clontech, Palo Alto, CA) and pMSG (Pharmacia, Piscataway, NJ), and SV40 promoter-based vectors such as pSVβ (Clontech, Palo Alto, CA).

In accordance with another embodiment of the

present invention, there are provided "recombinant cells"
containing the nucleic acid molecules (i.e., DNA or mRNA)
of the present invention. Methods of transforming
suitable host cells, preferably bacterial cells, and more
preferably E. coli cells, as well as methods applicable
for culturing said cells containing a gene encoding a
heterologous protein, are generally known in the art.
See, for example, Sambrook et al., supra, 1989.

Exemplary methods of transformation include, e.g., transformation employing plasmids, viral, or bacterial phage vectors, transfection, electroporation, lipofection, and the like. The heterologous DNA can optionally include sequences which allow for its extrachromosomal maintenance, or said heterologous DNA can be caused to integrate into the genome of the host (as an alternative means to ensure stable maintenance in the host).

Host organisms contemplated for use in the practice of the present invention include those organisms

in which recombinant production of heterologous proteins has been carried out. Exemplary cells for introducing DNA include cells of mammalian origin (e.g., COS cells, mouse L cells, Chinese hamster ovary (CHO) cells, human 5 embryonic kidney (HEK) cells, African green monkey cells and other such cells known to those of skill in the art), amphibian cells (e.g., Xenopus laevis oöcytes), yeast cells (e.g., Saccharomyces cerevisiae, Candida tropicalis, Hansenula polymorpha and P. pastoris; see, 10 e.g., U.S. Patent Nos. 4,882,279, 4,837,148, 4,929,555 and 4,855,231), bacteria (e.g., *E. coli*), and the like.

In one embodiment, nucleic acids encoding the invention DS-CAM proteins can be delivered into mammalian cells, either in vivo or in vitro using suitable viral 15 vectors well-known in the art. Suitable retroviral vectors, designed specifically for in vivo "gene therapy" methods, are described, for example, in WIPO publications WO 9205266 and WO 9214829, which provide a description of methods for efficiently introducing nucleic acids into human cells in vivo. In addition, where it is desirable to limit or reduce the in vivo expression of the invention DS-CAM, the introduction of the antisense strand of the invention nucleic acid is contemplated.

In accordance with yet another embodiment of the present invention, there are provided anti-DS-CAM 25 antibodies having specific reactivity with DS-CAM polypeptides of the present invention. Active fragments of antibodies are encompassed within the definition of "antibody". Invention antibodies can be produced by 30 methods known in the art using invention polypeptides, proteins or portions thereof as antigens. For example, polyclonal and monoclonal antibodies can be produced by methods well known in the art, as described, for example, in Harlow and Lane, Antibodies: A Laboratory Manual (Cold

Spring Harbor Laboratory, 1988), which is incorporated herein by reference. Invention polypeptides can be used immunogens in generating such antibodies. Alternatively, synthetic peptides can be prepared (using 5 commercially available synthesizers) and used as immunogens. Amino acid sequences can be analyzed by methods well known in the art to determine whether they encode hydrophobic or hydrophilic domains of the corresponding polypeptide. Altered antibodies such as chimeric, humanized, CDR-grafted or bifunctional 10 antibodies can also be produced by methods well known in the art. Such antibodies can also be produced by hybridoma, chemical synthesis or recombinant methods described, for example, in Sambrook et al., supra, 1989; and Harlow and Lane, supra, 1988. Both anti-peptide and 15 anti-fusion protein antibodies can be used. (see, for example, Bahouth et al., Trends Pharmacol. Sci. 12:338 1991; Ausubel et al., Current Protocols in Molecular Biology (John Wiley and Sons, NY 1989) which are incorporated herein by reference). 20

Antibody so produced can be used, inter alia, in diagnostic methods and systems to detect the level of DS-CAM protein present in a mammalian, preferably human, body sample, such as tissue or vascular fluid. antibodies can also be used for the immunoaffinity or affinity chromatography purification of the invention In addition, methods are contemplated DS-CAM protein. herein for detecting the presence of DS-CAM polypeptides on the surface of a cell comprising contacting the cell with an antibody that specifically binds to DS-CAM polypeptides, under conditions permitting binding of the antibody to the polypeptides, detecting the presence of the antibody bound to the cell, and thereby detecting the presence of invention polypeptides on the surface of the cell. With respect to the detection of such

polypeptides, the antibodies can be used for <u>in vitro</u> diagnostic or <u>in vivo</u> imaging methods.

Immunological procedures useful for in vitro detection of target DS-CAM polypeptides in a sample include immunoassays that employ a detectable antibody. Such immunoassays include, for example, ELISA, Pandex microfluorimetric assay, agglutination assays, flow cytometry, serum diagnostic assays and immunohistochemical staining procedures which are well known in the art. An antibody can be made detectable by various means well known in the art. For example, a detectable marker can be directly or indirectly attached to the antibody. Useful markers include, for example, radionucleotides, enzymes, fluorogens, chromogens and chemiluminescent labels.

Invention anti-DS-CAM antibodies are contemplated for use herein to modulate the activity of the DS-CAM polypeptide in living animals, in humans, or in biological tissues or fluids isolated therefrom. Accordingly, compositions comprising a carrier and an 20 amount of an antibody having specificity for DS-CAM polypeptides effective to block naturally occurring ligands or other DS-CAM-binding proteins from binding to invention DS-CAM polypeptides are contemplated herein. For example, a monoclonal antibody directed to an epitope 25 of DS-CAM polypeptide molecules present on the surface of a cell and having an amino acid sequence substantially the same as an amino acid sequence for a cell surface epitope of a DS-CAM polypeptide including the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:11, or the 30 DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9, can be useful for this purpose.

The present invention further provides transgenic non-human mammals that are capable of

20

25

expressing exogenous nucleic acids encoding DS-CAM polypeptides. As employed herein, the phrase "exogenous nucleic acid" refers to nucleic acid sequence which is not native to the host, or which is present in the host in other than its native environment (e.g., as part of a genetically engineered DNA construct).

Also provided are transgenic non-human mammals capable of expressing nucleic acids encoding DS-CAM polypeptides so mutated as to be incapable of normal activity, i.e., do not express native DS-CAM. present invention also provides transgenic non-human mammals having a genome comprising antisense nucleic acids complementary to nucleic acids encoding DS-CAM polypeptides, placed so as to be transcribed into antisense mRNA complementary to mRNA encoding DS-CAM polypeptides, which hybridizes to the mRNA and, thereby, reduces the translation thereof. The nucleic acid may additionally comprise an inducible promoter and/or tissue specific regulatory elements, so that expression can be induced, or restricted to specific cell types. of nucleic acids are DNA or cDNA having a coding sequence substantially the same as the coding sequence shown in SEQ ID NO:1. An example of a non-human transgenic mammal is a transgenic mouse. Examples of tissue specificitydetermining elements are the metallothionein promoter and the L7 promoter.

Animal model systems which elucidate the physiological and behavioral roles of DS-CAM polypeptides are also provided, and are produced by creating

transgenic animals in which the expression of the DS-CAM polypeptide is altered using a variety of techniques. Examples of such techniques include the insertion of normal or mutant versions of nucleic acids encoding a DS-CAM polypeptide by microinjection, retroviral infection or other means well known to those skilled in

the art, into appropriate fertilized embryos to produce a transgenic animal. See, for example, Hogan et al.,

Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory, 1986).

Also contemplated herein, is the use of 5 homologous recombination of mutant or normal versions of DS-CAM genes with the native gene locus in transgenic animals, to alter the regulation of expression or the structure of DS-CAM polypeptides (see, Capecchi et al., 10 <u>Science</u> **244**:1288, 1989; Zimmer et al., <u>Nature</u> **338**:150, 1989; which are incorporated herein by reference). Homologous recombination techniques are well known in the art. Homologous recombination replaces the native (endogenous) gene with a recombinant or mutated gene to produce an animal that cannot express native (endogenous) 15 protein but can express, for example, a mutated protein which results in altered expression of DS-CAM polypeptides.

In contrast to homologous recombination, microinjection adds genes to the host genome, without 20 removing host genes. Microinjection can produce a transgenic animal that is capable of expressing both endogenous and exogenous DS-CAM protein. promoters can be linked to the coding region of nucleic acids to provide a means to regulate expression of the 25 transgene. Tissue specific regulatory elements can be linked to the coding region to permit tissue-specific expression of the transgene. Transgenic animal model systems are useful for in vivo screening of compounds for identification of specific ligands, i.e., agonists and 30 antagonists, which activate or inhibit protein responses.

Invention nucleic acids, oligonucleotides (including antisense), vectors containing same, transformed host cells, polypeptides and combinations

thereof, as well as antibodies of the present invention, can be used to screen compounds in vitro to determine whether a compound functions as a potential agonist or antagonist to invention polypeptides. These in vitro screening assays provide information regarding the function and activity of invention polypeptides, which can lead to the identification and design of compounds that are capable of specific interaction with one or more types of polypeptides, peptides or proteins.

In accordance with still another embodiment of the present invention, there is provided a method for identifying compounds which bind to DS-CAM polypeptides. The invention proteins may be employed in a competitive binding assay. Such an assay can accommodate the rapid screening of a large number of compounds to determine which compounds, if any, are capable of binding to DS-CAM proteins. Subsequently, more detailed assays can be carried out with those compounds found to bind, to further determine whether such compounds act as modulators, agonists or antagonists of invention proteins.

Another application of the binding assay of the invention is the assay of test samples (e.g., biological fluids) for the presence or absence of DS-CAM. Thus, for example, serum from a patient displaying symptoms thought to be related to over- or under-production of DS-CAM can be assayed to determine if the observed symptoms are indeed caused by over- or under-production of DS-CAM.

In another embodiment of the invention, there
is provided a bioassay for identifying compounds which
modulate the activity of invention DS-CAM polypeptides.
According to this method, invention polypeptides are
contacted with an "unknown" or test substance (in the
presence of a reporter gene construct when antagonist

activity is tested), the activity of the polypeptide is monitored subsequent to the contact with the "unknown" or test substance, and those substances which cause the reporter gene construct to be expressed are identified as functional ligands for DS-CAM polypeptides.

In accordance with another embodiment of the present invention, transformed host cells that recombinantly express invention polypeptides can be contacted with a test compound, and the modulating effect(s) thereof can then be evaluated by comparing the DS-CAM-mediated response (e.g., via reporter gene expression) in the presence and absence of test compound, or by comparing the response of test cells or control cells (i.e., cells that do not express DS-CAM polypeptides), to the presence of the compound.

As used herein, a compound or a signal that "modulates the activity" of invention polypeptides refers to a compound or a signal that alters the activity of DS-CAM polypeptides so that the activity of the invention polypeptide is different in the presence of the compound or signal than in the absence of the compound or signal. In particular, such compounds or signals include agonists and antagonists. An agonist encompasses a compound or a signal that activates DS-CAM protein expression. Alternatively, an antagonist includes a compound or signal that interferes with DS-CAM protein expression. Typically, the effect of an antagonist is observed as a blocking of agonist-induced protein activation. Antagonists include competitive and non-competitive antagonists. A competitive antagonist (or competitive 30 blocker) interacts with or near the site specific for agonist binding. A non-competitive antagonist or blocker inactivates the function of the polypeptide by interacting with a site other than the agonist

interaction site.

35

As understood by those of skill in the art, assay methods for identifying compounds that modulate DS-CAM activity generally require comparison to a One type of a "control" is a cell or culture 5 that is treated substantially the same as the test cell or test culture exposed to the compound, with the distinction that the "control" cell or culture is not exposed to the compound. For example, in methods that use voltage clamp electrophysiological procedures, the same cell can be tested in the presence or absence of 10 compound, by merely changing the external solution bathing the cell. Another type of "control" cell or culture may be a cell or culture that is identical to the transfected cells, with the exception that the "control" cell or culture do not express native proteins. 15 Accordingly, the response of the transfected cell to compound is compared to the response (or lack thereof) of the "control" cell or culture to the same compound under the same reaction conditions.

Since it is well-known that CAMs interact with 20 extracellular ligands, it is contemplated that invention DS-CAM proteins interact with extracellular ligands. another embodiment of the present invention, it is contemplated that invention DS-CAM proteins act specifically in concert or in competition with other 25 Thus, the present invention contemplates various bioassays for identifying ligands for invention DS-CAM In addition, the present invention proteins. contemplates an assay measuring the effect of co-expressing during development either normal or defective invention DS-CAMs with other CAMs known in the art to assess the resulting phenotype.

In one embodiment of the present invention,
there is provided a bioassay for evaluating whether test
compounds are capable of acting as agonists comprises:

		3 3
	(a)	culturing cells containing:
		DNA which expresses DS-CAM
		protein(s) or functional modified
		forms thereof, and
5		DNA encoding a reporter protein,
		wherein said DNA is operatively
		linked to a DS-CAM responsive
		transcription element;
		wherein said culturing is carried out in
10		the presence of at least one compound
		whose ability to induce signal
		transduction activity of DS-CAM protein is
		sought to be determined, and thereafter
	(b)	monitoring said cells for expression of
15		said reporter protein.
		nother embodiment of the present invention,
		for evaluating whether test compounds are
	_	ing as antagonists for DS-CAM protein(s) of
		or functional modified forms of said
20		n(s), comprises:
	(a)	culturing cells containing:
		DNA which expresses DS-CAM
		protein(s), or functional modified
		forms thereof, and
25		DNA encoding a reporter protein,
		wherein said DNA is operatively
		linked to a DS-CAM responsive
		transcription element
		wherein said culturing is carried out in
30		the presence of:
		increasing concentrations of at
		least one compound whose ability to
		inhibit signal transduction activity
		of DS-CAM protein(s) is sought to be

determined, and

10

15

20

25

30

a fixed concentration of at least one agonist for DS-CAM protein(s), or functional modified forms thereof; and thereafter

(b) monitoring in said cells the level of expression of said reporter protein as a function of the concentration of said compound, thereby indicating the ability of said compound to inhibit signal transduction activity.

In step (a) of the above-described antagonist bioassay, culturing may also be carried out in the presence of:

fixed concentrations of at least one compound whose ability to inhibit signal transduction activity of DS-CAM protein(s) is sought to be determined, and an increasing concentration of at least one agonist for DS-CAM protein(s), or functional modified forms thereof.

In yet another embodiment of the present invention, it is contemplated that invention DS-CAM proteins mediate signal transduction through the modulation of adenylate cyclase. For example, when a DS-CAM ligand binds to DS-CAM, adenylate cyclase causes an elevation in the level of intracellular cAMP. Accordingly, in one embodiment of the present invention, the bioassay for evaluating whether test compounds are capable of acting as agonists or antagonists comprises:

(a) culturing cells containing:

DNA which expresses DS-CAM protein(s) or functional modified forms thereof,

wherein said culturing is carried out in the presence of at least one compound whose ability to modulate signal transduction activity of DS-CAM protein is sought to be determined, and thereafter

(b) monitoring said cells for either an increase or decrease in the level of intracellular cAMP.

Methods well-known in the art that measure
intracellular levels of cAMP, or measure cyclase
activity, can be employed in binding assays described
herein to identify agonists and antagonists of the
DS-CAM. For example, because activation of some CAMs
results in decreases or increases in cAMP, assays that
measure intracellular cAMP levels can be used to evaluate
recombinant DS-CAMs expressed in mammalian host cells.

As used herein, "ability to modulate signal transduction activity of DS-CAM protein" refers to a compound that has the ability to either induce (agonist) or inhibit (antagonist) signal transduction activity of the DS-CAM protein.

Each of the invention bioassays (e.g., those described herein, and the like), can be conducted as competitive assays by co-expressing one or more members of the CAM immunoglobulin superfamily of proteins known in the art, such as N-CAMs, along with invention DS-CAMs. In addition, one or more members of the CAM immunoglobulin superfamily of proteins known in the art can be co-expressed with invention DS-CAMs to evaluate the agonistic or antagonistic effect on signal transduction of the non-DS-CAM members acting in concert with invention DS-CAMS.

25

In yet another embodiment of the present invention, the activation of DS-CAM polypeptides can be modulated by contacting the polypeptides with an effective amount of at least one compound identified by 5 the above-described bioassays.

Members of the N-CAM superfamily of immunoglobulins have previously been implicated in For example, various alterations of N-CAM levels have been seen in degenerative disease, developmental defects, and toxic conditions. Increases in the levels of N-CAM in the cerebrospinal fluid of patients with multiple sclerosis have been observed to parallel their clinical improvement (Massaro et al., Ital. J. Neurol. Sci. Suppl. 6:85-88, 1987). Levels of N-CAM were reported to be elevated in the amniotic fluid of mothers carrying fetuses with neural tube defects (Ibsen et al., <u>J. Neurochem</u>. **41**:363-366, 1983). many such defects are likely to be due to mechanical aberrations rather than genetic defects, confirmation of these results would provide a new diagnostic component for prenatal testing. Another provocative finding relates to observations on the stimulation of Golgi sialyltransferases by lead (Breen and Regan, <u>Development</u> 104:147-154, 1988; and Cookman et al., <u>J. Neurochem</u>. 49:399-403, 1987). Exposure to lead chloride markedly stimulated sialyltransferase activity from postnatal days This time is coincident with the 16 to 30 in rate. period when N-CAM normally becomes less sialylated. exposure to lead at critical developmental periods would 30 presumably lead to more highly sialylated, less adhesive, forms of N-CAM: this prevention of E-A conversion could have significant effects on neural development. conversion itself has been found to be delayed in the

mouse mutant staggerer (Edelman and Chuong, Proc. Natl.

Acad. Sci. USA, 79:7036-7042, 1982) in conjunction with the connectivity changes associated with the mutation.

The location and expression of DS-CAM in the Down Syndrome (DS) phenotype is supported by the studies 5 of patients with partial trisomy 21. A subset of the DS features, including the typical facial appearance and mental retardation, were suggested by duplication of band 21q22 only (Niebuhr, <u>Humangenetik</u> 21:99-101, 1974). Other studies mapped those features and congenital heart 10 disease to the region 21q22.2-q22.3 and between D21S267 and MX1/MX2 (Korenberg et al., Am. J. Hum. Genet. 50:294-302, 1992 and Korenberg et al., Proc. Natl. Acad. Sci. USA 91:4997-5001, 1994), a region of about 4 Mb that contains DS-CAM. The Ts65Dn mouse model of DS contains 15 the region of MMU16 (Pgk1-ps1 to MX1/2) that includes DS-CAM and reveals some of the neurobehaviourial features of DS (Reeves et al., Nature Genet. 11:177-183, 1995 and Holtzman et al., Proc. Natl. Acad. Sci. USA 93:13333-13338, 1996).

Close to 6% of DS individuals have
Hirschsprung's disease (HSCR) (Garver et al., Clin.
Genet. 28:503-5-8, 1985) and more than 10% of all HSCR is
associated with DS (Passarge, New Eng. J. Med. 276:138143, 1967). A modifier region of HSCR on chromosome
25 21q22 (D21S259 - D21S156) has been reported in non-DS
HSCR (Puffenberger et al., Hum. Mol. Genet. 3:1217-1225,
1994). The DS-CAM gene maps within this small region.
The expression of DS-CAM in the neural crest derived
enteric plexus of the gut was detected by mouse tissue in
30 situ hybridization (Example 7). The function of the DSCAM protein as a neural cell adhesion molecule and the
association of this region of chromosome 21 with HSCR,
indicate that DS-CAM can play a role in the migration of

the cranial neural crest that populate this region.
Thus, DS-CAM overexpression is responsible for the chromosome 21 association in non-DS HSCR and for the HSCR seen in DS.

Mutations in the molecule CAM-L1, a molecule more similar to DS-CAM than to N-CAM (Figure 4), have established roles in human disease. The result in X-linked hydrocephalus (Rosenthal et al., Nature Genet. 2:107-112, 1992), type 1 X-linked spastic paraplegia and the MASA syndrome (including mental retardation, aphasia, shuffling gait, adducted thumb and agenesis of the corpus callosum) (Jouet et al., Nature Genet. 7:402-407, 1994). The perturbation of development by the aneuploid expression of CAM-L1 supports a role for the aneuploid expression of DS-CAM in the causation of developmental and neurological abnormalities.

In accordance with another embodiment of the present invention, there are provided methods for diagnosing DS-CAM associated disease, such as mental retardation, holoprosencephaly, agenesis of the corpus callosum, or schizencephaly, said method comprising:

detecting, in said subject, a genomic or transcribed mRNA sequence including SEQ ID NO:1 or SEQ ID NO:10, or fragments thereof.

25 Preferably, the DS-CAM nucleic acids detected in accordance with the invention diagnostic methods are either mutated in one form or another (such as point mutations, deletions, and the like), or are overexpressed relative to levels of DS-CAM expression in healthy

30 non-diseased individuals.

In accordance with another embodiment of the present invention, there are provided diagnostic systems,

preferably in kit form, comprising at least one invention nucleic acid in a suitable packaging material. diagnostic nucleic acids are derived from the DS-CAM-encoding nucleic acids described herein. 5 embodiment, for example, the diagnostic nucleic acids are derived from SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10. Invention diagnostic systems are useful for assaying for the presence or absence of nucleic acid encoding DS-CAM in either genomic 10 DNA or in transcribed nucleic acid (such as mRNA or cDNA) encoding DS-CAM.

A suitable diagnostic system includes at least one invention nucleic acid, preferably two or more invention nucleic acids, as a separately packaged chemical reagent(s) in an amount sufficient for at least 15 one assay. Instructions for use of the packaged reagent are also typically included. Those of skill in the art can readily incorporate invention nucleic probes and/or primers into kit form in combination with appropriate buffers and solutions for the practice of the invention methods as described herein.

As employed herein, the phrase "packaging material" refers to one or more physical structures used to house the contents of the kit, such as invention nucleic acid probes or primers, and the like. packaging material is constructed by well known methods, preferably to provide a sterile, contaminant-free environment. The packaging material has a label which indicates that the invention nucleic acids can be used for detecting a particular sequence encoding DS-CAM 30 including the nucleotide sequence set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10, thereby diagnosing the presence of, or a predisposition for, holoprosencephaly, agenesis of the corpus callosum, or for several phenotypes of Down 35

Syndrome including mental retardation, and the like. In addition, the packaging material contains instructions indicating how the materials within the kit are employed both to detect a particular sequence and diagnose the presence of, or a predisposition for, holoprosencephaly, agenesis of the corpus callosum, or for several phenotypes of Down syndrome including mental retardation, and the like.

The packaging materials employed herein in

relation to diagnostic systems are those customarily

utilized in nucleic acid-based diagnostic systems. As

used herein, the term "package" refers to a solid matrix

or material such as glass, plastic, paper, foil, and the

like, capable of holding within fixed limits an isolated

nucleic acid, oligonucleotide, or primer of the present

invention. Thus, for example, a package can be a glass

vial used to contain milligram quantities of a

contemplated nucleic acid, oligonucleotide or primer, or

it can be a microtiter plate well to which microgram

quantities of a contemplated nucleic acid probe have been

operatively affixed.

"Instructions for use" typically include a tangible expression describing the reagent concentration or at least one assay method parameter, such as the relative amounts of reagent and sample to be admixed, maintenance time periods for reagent/sample admixtures, temperature, buffer conditions, and the like.

All U.S. patents and all publications mentioned herein are incorporated in their entirety by reference thereto. The invention will now be described in greater detail by reference to the following non-limiting examples.

Materials and Methods

Unless otherwise stated, the present invention was performed using standard procedures, as described, for example in Maniatis et al., Molecular Cloning:

5 A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1982; Sambrook et al., supra, 1989; Davis et al., Basic Methods in Molecular Biology, Elsevier Science Publishing, Inc., New York, USA, 1986; or Methods in Enzymology: Guide to Molecular Cloning Techniques Vol. 152, S. L. Berger and A. R. Kimmerl Eds., Academic Press Inc., San Diego, USA, 1987.

Libraries.

Construction of Bacterial Artificial Chromosome

(BAC) library. BAC library construction of total human genomic DNA was performed as described in Shizuya et al., Proc. Natl. Acad. Sci. USA 89:8794-8797, 1992; and Hubert et al., Genomics 41:218-226, 1997. Yeast artificial chromosome (YAC) clones were obtained from the CEPH mega-YAC library and grown under standard conditions (Cohen et al., Nature 366:689-701 1993).

P1 artificial chromosome (PAC) library

construction. A 3X human PAC library, designated RPCI-1

(Ioannou et al., Hum. Genet. 219-220, 1994) was

25 constructed as described (Ioannou et al., Nat. Genet.

6:84-89, 1994). The library was arrayed in 384 well

dishes. Subsequently, STSs generated by sequencing of clones using vector primers were used as hybridization probes to gridded colony filters of the PAC library.

30 YAC DNA preparation. YAC clones were grown in selective media, pelleted and resuspended in 3 ml 0.9 M sorbitol, 0.1M EDTA pH 7.5, then incubated with 100 U of

lytocase (Sigma, St. Louis, MO) at 37°C for 1 hour. After centrifugation for 5 minutes at 5,000 rpm pellets were resuspended in 3 ml 50 mM Tris pH 7.45, 20 mM EDTA 0.3ml 10% SDS was added and the mixture was incubated at 65°C for 30 minutes. One ml of 5 M potassium acetate was added and tubes were left on ice for 1 hour, then centrifuged at 10,000 rpm for 10 minutes. Supernatant was precipitated in 2 volumes of ethanol and pelleted at 6,000 rpm for 15 minutes. Pellets were resuspended in TE, treated with RNase and reextracted with phenol-chloroform.

Analysis by fluorescence in situ hybridization PAC or BAC clones were biotinylated by 15 nicktranslation in the presence of biotin-14-dATP using the BioNick Labeling Kit (Gibco-BRL). FISH was performed essentially as described (Korenberg et al., Cytogenet. Cell Genet. 69:196-200, 1995). Briefly, 400 ng of probe DNA was mixed with 8 ng of human Cot 1 DNA (Gibco-BRL) 20 and 2 μg of sonicated salmon sperm DNA in order to suppress possible background produced from repetitive human sequences as well as yeast sequences in the probe. The probes were denatured at 75°C, preannealed at 37°C for one hour, and applied to denatured chromosome slides prepared from normal male lymphocytes (Korenberg et al., 25 supra, 1995). Post-hybridization washes were performed at 40°C in 2X SSC/50% formamide followed by washes in 1X SSC at 50°C. Hybridized DNAs were detected with avidin-conjugated fluorescent isothiocyanate (Vector Laboratories). One amplification was performed by using 30 biotinylated anti-avidin. For distinguishing chromosome subbands precisely, a reverse banding technique was used, which was achieved by chromomycin A3 and distamycin A double staining (Korenberg et al., supra, 1995). 35 color images were captured by using a Photometrics

Cooled-CCD camera and BDS image analysis software (Oncor Imaging, Inc.).

Southern blot analysis. Gel electrophoresis of DNA was carried out on 0.8% agarose gels in 1X TBE.

5 Transfer of nucleic acids to Nybond N+ nylon membrane (Amersham) was performed according to the manufacturer's instruction. Probes were labeled using RadPrime Labeling System (BRL). Hybridization was carried out at 42°C for 16 hours in 50% formamide, 5X SSPE, 5X Denhardt's 0.1% SDS, 100 mg/ml denatured salmon sperm DNA. The filters were washed once in 1x SSC, 0.1% SDS at room temperature for 20 minutes, and twice in 0.1X SSC, 0.1% SDS for 20 minutes at 65°C. The blots were exposed onto X-ray film (Kodak, X-OMAT-AR).

clones were inoculated into 500 ml of LB/kanamycin and grown overnight. BAC clones were inoculated into 500 ml of LB/chloramphenicol and grown overnight. DNAs were isolated using QIAGEN columns according to the vendors protocol with one additional phenol/chloroform/isoamylalcohol extraction followed by one additional chloroform/isoamylalcohol extraction. Clones were sequenced using the Gibco-BRL cycle sequencing kit with standard T7 and SP6 primers.

25 EXAMPLE 1

Construction of BAC Contig

To provide stable clones for gene isolation and sequencing initiatives in the D21S55 to MX1 region, contigs were constructed using Bacterial Artificial

30 Chromosomes (BACs) and P1 Artificial Chromosomes (PACs).

BAC library construction of total human genomic DNA was performed as described (Shiyuza et al., supra, 1992; Kim

15

20

et al., <u>Genomics</u> **34**:213-218, 1996). A BAC library was screened using several YACs spanning the region; a PAC library (Iannou et al., <u>Nature Genet</u>. **6**:84-89, 1994) was screened using radiolabeled STS PCR products and whole BACs in gap filling initiatives.

The location of these BAC and PAC clones was confirmed by fluorescence in situ hybridization (FISH). Clone to clone Southerns using 24 new STSs (generated from direct sequencing of BAC and PAC ends) along with 35 pre-existing STSs were used to show overlaps between BACs The STS density over the intervals covered in BACs and PACs was 1 STS every 60 kb, and 79% of the clones were positive for 2 or more STSs. Approximately 3.5Mb of the 4-5Mb D21S55 to MX1 interval is covered in 85 BACs and 25 PACs representing 4-fold coverage within the contigs (Hubert et al., Genomics 41:218-226, 1997). The minimal contig sizes as determined by counting only non-overlapping clones are: 1100 kb, 900 kb, 510 kb, 380 Insert size of BAC clones was measured by kb and 270 kb. running pulse-field gel electrophoresis after digesting DNA with NotI.

EXAMPLE 2

Direct cDNA Selection

A modified direct cDNA selection technique

(Yamakawa et al., Hum. Mol. Genet. 4:709-716, 1995;

Yamakawa et al., Cytogenet. Cell Genet. 74:140-145, 1996)

was applied to BAC-423A5, BAC-430F1, BAC-628H2, BAC-371H8

and PAC-31P10 (Figure 1) by using cDNA from trisomy 21

human fetal brain, and the selected fragments were then

subcloned into a plasmid vector.

Total RNA was isolated from 14 week trisomy 21 fetal brain using TRI region $^{\text{TM}}$ (Molecular Research Center, Poly (A) * RNA was isolated using Poly (A) Quick® mRNA isolation kit (STRATAGENE). Double stranded cDNA was synthesized using SuperScript $^{\text{TM}}$ Choice System (GIBCO BRL) from 5 μg trisomy 21 fetal brain poly (A) $^+$ RNA using 1 μg oligo (dT)₁₅ or 0.1 μg random hexamer. The entire synthesis reaction was purified by Gene Clean $^{\circ}$ II kit (BIO101, Inc.) and then kinased. Sau3AI linker was attached to the cDNA which was subsequently digested with 10 The reaction was purified using Gene Clean. MboI linker was attached to the cDNA and the reaction purified by Gene Clean (Morgan et al., supra, 1992). synthesized product was amplified by PCR using one strand of MboI linker (5'CCTGATGCTCGAGTGAATTC3') (SEQ ID NO:4) as a primer. PCR cycling conditions were 40 cycles of 94°C/15 seconds, 60°C/23 seconds, 72°C/2 minutes in a 100 μl of 1x PCR buffer (Promega), 3 mM MgCl $_2$, 5.0 units of Taq polymerase (Promega), 2 $\mu \rm M$ primer and 0.2 mM dNTPs.

Nineteen BAC DNAs (total 2.5 μg) and 2 PAC DNAs 20 between the region ETS2 and MX1 were prepared using QIAGEN plasmid kit and were biotinylated using Nick Translation Kit and biotin-16-dUTP (Boehringer 3 μg of heat denatured PCR amplified cDNA Manneheim). was annealed with 3 $\mu \mathrm{g}$ of heat denatured COT1 DNA (BRL) 25 in $100\mu l$ hybridization buffer (750 mM NaC1, 50 mM $NaPO_4(pH7.2)$, 5 mM EDTA, 5X Denhardt's, 0.05% SDS and 50% formamide) at 42°C for two hours. After prehybridization, 1.2 μg of heat denatured biotinylated BAC DNA was added and incubated at 42°C for 16 hours. cDNA-BAC DNA hybrids were precipitated with EtOH and dissolved in 60 μ l of 10 mM Tris-HCl (pH 8.0), 1 mM EDTA. After addition of 40 μ l 5 M NaC1, the DNA was incubated with magnetic beads (Dynabeads M-280, Dynal) at 25°C for 1 hour with gentle rotating to allow attachment of the DNA to the magnetic beads. The beads were then washed

twice by pipetting in 400 μ l of 2X SSC, setting in magnet holder (MPC-E_{TM}, Dynal) for 30 seconds and removing the supernatant. Four additional washes were performed in 0.2X SSC at 68°C for 10 minutes each with transfer of the beads to new tubes at each wash. cDNAs were eluted in 100μ l of distilled water for 10 minutes at 80°C with occasional mixing. The eluted cDNAs were amplified by PCR as described above. After twice repeating the selection procedure using magnetic beads, amplified cDNAs were digested with EcoRI and subcloned into pBlueScript KS+ (STRATAGENE). Insert DNAs were isolated from the subclones, and were analyzed by Southern hybridization and DNA sequencing.

The direct cDNA selection procedure using 19
15 BACs and 2 PACs between ETS2 and MX1 generated a total of
145 unique cDNA fragments. Genbank and TIGR homology
searches using FASTA revealed matches to ETS2, HMG14,
PEP19, a Na K ATPase, Titan ESTs, MX1 region ESTs, and 14
ESTs of unknown function. A cDNA library from a trisomy
20 21 fetal brain at 14 weeks gestation was screened using
one of these unique cDNA fragments labeled "E51"
(SEO ID NO:3).

EXAMPLE 3

Isolation of human DS-CAM cDNA using cDNA Library Screening

A trisomy 21 human fetal brain (14 weeks of age) cDNA library was constructed using ZAP-cDNA[®] synthesis kit (STRATAGENE) which generates a unidirectional cDNA library. Briefly, double- stranded cDNA was synthesized from 5 μg trisomy 21 fetal brain poly(A)⁺ RNA using a hybrid oligo(dT)-XhoI linker primer with 5-methyl dCTP. An EcoRI linker was attached to the cDNA which was subsequently digested with EcoRI and XhoI,

and then cloned into UNI-ZAP XR vector (STRATAGENE). The library was packaged using Gigapack® II Gold packaging extract. The titer of the original library was 1.1 x 106 p.f.u./package. The library was amplified once. A blue-white color assay indicated that 99% of the clones had inserts.

Screening of the trisomy 21 fetal brain cDNA library was performed using one of the 145 unique cDNA fragments labeled "E51" (SEQ ID NO:3) prepared as described above. Phages were plated to an average density of 1 x 10⁵ per 175 cm² plate. Plaque lifts of 20 plates (2 x 10⁶ phages) were made using duplicated nylon membranes (Hybond-N+; Amersham). Hybridized membranes were washed to final stringency of 0.2X SSC, 0.1X SDS at 65°C. The filters were exposed overnight onto X-ray film.

Identification of 62 clones were made out of 2 x 10⁶ clones in the original library. Eighteen of these positive phage clones were converted to plasmids, and their DNAs were isolated. These cDNAs were independently numbered as separate DS-CAM (Down Syndrome Cell Adhesion Molecule) clones. The length of the inserts of these clones ranged from 2.4 kb to 6.6 kb. Exon trapping (Buckler et al., Proc. Natl. Acad. Sci. USA 88:4005-4009, 1991; Church et al., Nature Genet. 6:98-105, 1994) was also used to isolate cDNAs in the BAC and PAC contig. With this approach, three exons identified from BAC-539E7 and one from BAC-430F1 were found to identify the same sequences as those isolated by cDNA selection.

Sequence analysis of one of the clones, labeled DS-CAM-42, revealed a 6110 bp DNA sequence which contained a large ORF (5687 bp) as well as 3'-UTR sequence (423 bp), but the 5'UTR and start codon were not located in clone DS-CAM-42. To characterize the 5' end,

two further clones, DS-CAM-18 of 6.5 kb and DS-CAM-52 of 6.6 kb were characterized. Sequence analyses of these clones close to the 5' end overlap with sequence at the 5' end of DS-CAM-42. However, DS-CAM-18 extends 416 bp farther 5', and DS-CAM-52 extends 494 bp farther 5' than DS-CAM-42. The extra 494 bp sequence extends the ORF by 43 bp at the 5' end and contains a start codon. Two stop codons occur 330 bp and 427 bp upstream of the start The 494 bp of additional 5' sequence found in DS-CAM-52 combined with DS-CAM-42 (6604 bp) yield a 10 consensus cDNA that encodes one isoform of the invention protein labeled DS-CAM1. The DS-CAM1 cDNA contains an open reading frame of 5730 bp (SEQ ID NO:1) coding for a 1910 amino acid protein (SEQ ID NO:2; approximately 211 15 kilodaltons), flanked by 452 bp of 5'-UTR and 422 bp of The 5'-UTR is highly GC rich (81% GC over 452 3'-UTR. bp) and contains 13 MspI sites, as well as 72 CG and 93 GC dinucleotide pairs.

The DS-CAM1 protein contains an extracellular component at the N-terminus consisting of nine tandemly 20 repeated Ig-like C2 type domains and a tenth Ig-like C2 domain located between domains four and five of an array of six repeated fibronectin type III domains (Figure 2). Each Ig-like C2 domain consists of approximately 100 amino acids with a pair of conserved cysteines separated 25 by 49-56 residues. A single transmembrane domain of 22 amino acids was defined by using the TMBASE program (Hoffmann and Stoffel, Biol. Chem. Hoppe-Seyler 374:166, The remaining 294 amino acids at the C-terminus 30 corresponding to the cytoplasmic domain have partial homologies to the mouse M-phase inducer phosphatase 2 (Kakizuka et al., <u>Genes Dev</u>. **6:**578-590, 1992) in two regions, one with 34% identity and 52% similarity over 46 bp and a second with 38% identity and 52% similarity over 21 bp. The homolog of Drosophila glass gene (O'Neill et al., Proc. Natl. Acad. Sci. USA 92:6557-6561, 1995) with

30% identity and 52% similarity over 42 bp, and the mouse delta opioid receptor (Evans et al., Science 258:1952-1955, 1992) with 43% identity and 60% similarity over 30 The putative protein contains 16 potential N-glycosylation sites.

A homology search of the predicted amino acid sequence of the 5730 bp open reading frame of DS-CAM1 (SEQ ID NO:1) to genes registered in the Genbank and the EMBL databases was conducted by using the BLAST-P program 10 (Altschul et al., <u>J. Mol. Biol</u>. **215**:403-410, 1990). predicted amino acid sequence revealed homologies to multiple proteins (Figure 4) including CAM-L1 (Moos et al., Nature 334:701-703, 1988), BIG-1 (brain-derived immunoglobulin (Ig) superfamily molecule-1) (Yoshihara et al., Neuron 13:415-426, 1994), DCC (deleted in colon cancer) (Fearon et al., Science 247:49-56, 1990), and revealed DS-CAM as defining a novel class of the immunoglobulin (Iq) superfamily. Homology searches with sequences of Ig type-C2 domains and fibronectin type-III 20 domains of the most highly related Ig-superfamily members (CAM-L1, DCC, and axonin-1) were conducted by using the FASTA program (Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444-2448, 1988).

In addition, a splice variant cDNA sequence encoding a non-membrane bound isoform of DS-CAM1, 25 referred to herein as DS-CAM2, is provided herein. human DS-CAM cDNA clones (DS-CAM-18 and DS-CAM-52) were found to contain identical deletions of 191 bp that occur in neighboring exons and that delete bp 5133 to 5323 of 30 the SEQ ID NO:1 cDNA sequence encoding DS-CAM1 (Figure The resulting splice variant transcript encoding DS-CAM2 (SEQ ID NO:10) is deleted for the entire transmembrane domain that is encoded by the more 3' of these exons. Further, the deletion changes the reading

frame and creates a stop codon 36 bp downstream of the deletion resulting in a soluble extracellular protein of 1571 amino acids (SEQ ID NO:11). The distal border of the resulting deletion contains the canonical AG of the RNA splicing consensus acceptor site. The proximal border contains a variant of the donor splice site consensus sequence (Jackson, Nucl. Acids Res. 19:3795-3798, 1991).

To confirm that the DS-CAM cDNA originated from 10 the BACs and PACs in the Down syndrome region and to determine the genomic size of DS-CAM, the longest DS-CAM cDNA clones (DS-CAM-42; 6.1 kb, DS-CAM-18; 6.5 kb, DS-CAM-52; 6.6 kb) were hybridized to Southern blots containing the BAC and PAC clone contig (Figure 1). DS-CAM-42, 18 and 52 hybridized to BACs 423A5, 430F1, 15 628H2, 539E7, 371H8, 825E1, 593D1, 261F12, 30E4, 385B7, 388F4, and to PACs 31P10, 58D10. BACs 816F6, 116E8, 720G4, 619H8 were only positive for DS-CAM-18 and DS-CAM-52 but negative for DS-CAM-42. All other BACs shown in Figure 1 were negative. These results indicate 20 that the DS-CAM gene spans 900 kb-1200 kb genomic DNA and covers a gap in this BAC and PAC contig indicated by an arrowhead as well as in the available YAC contigs (Korenberg et al., Genome Res. 5:427-443, 1995; Gardiner et al., <u>Somat. Cell Mol. Genet</u>. **21**:399-414, 1995). 25 DS-CAM cDNA sequences were confirmed to originate from these BACs and PACs by direct sequencing of the BACs and

The map position of DS-CAM on chromosome

30 21q22.2-22.3 was confirmed by using clone DS-CAM-42 as a
probe for fluorescence in-situ hybridization. Two
independent experiments were performed and over 100
metaphase cells were evaluated. Signals were clearly
seen on two chromatids of at least one chromosome in 85%

PACs as templates using cDNA sequence-specific primers.

of cells. There were no other double signal sites seen in greater than 1% of cells.

EXAMPLE 4

Northern Blot Analysis Of Human DS-CAM Expression

Inserts containing DS-CAM cDNA were excised 5 from the base vector by digestion with XhoI and EcoRI. After labeling using the random priming method (RadPrime Labeling System; GIBCO BRL), followed by purification using G-50 Sephadex columns (Quick Spin Column; Boehringer Mannheim), the fragments were used a probes 10 for Northern hybridization using Multiple Tissue Northern Blot (Clontech). A Northern blot assay was conducted using DS-CAM cDNA as a probe in various fetal and adult tissues including heart, brain, placenta, lung, liver, 15 skeletal muscle, kidney, and pancreas. Northern hybridization was performed by following the manufacturer's instructions. The hybridized membrane was washed at a final stringency of 0.1% SSC and 0.1% SDS at The filter was exposed to X-ray film (Kodak X-OMAT AR) at -70° C for 1-5 days. 20

The results of Northern analysis using human fetal tissues showed that 8.5 kb and 7.6 kb transcripts are expressed only in fetal brain and not expressed in fetal lung, fetal liver and fetal kidney. In adult tissues, three transcripts of 9.7 kb, 8.5 kb, and 7.6 kb are present in the brain. Placenta shows faint bands, and the sizes are similar to those in brain. In skeletal muscle, a faint smaller band (6.5 kb) is detected. In multiple parts of the adult human brain, transcripts of 9.7 kb, 8.5 kb and 7.6 kb are differentially expressed. The 9.7 kb transcript is highly expressed in the substantia nigra, moderately expressed in amygdala and hippocampus, and less expressed in the whole brain. A

similar pattern is obtained using a PCR product which spans the 191 bp deletion found in clones DS-CAM-18 and DS-CAM-52 encoding the splice variant sequence corresponding to DS-CAM2. Thus, splice variant cDNA transcripts encoding a DS-CAM family of proteins are clearly contemplated by the present invention.

EXAMPLE 5

RT-PCR Assays Of Human DS-CAM Expression

Reverse-transcriptase polymerase chain reaction

(RT-PCR) assays verses cDNA libraries of various human tissues were conducted using primers numbered B9-131F (SEQ ID NO:5) and B9-131R (SEQ ID NO:6). The results demonstrated expression of human DS-CAM mRNA in fetal and adult brain, and fetal kidney. In addition, a breast carcinoma cell line showed expression of human DS-CAM mRNA.

The cDNAs from 13 independent human fetal and adult sources were analyzed by PCR using primer pairs that flanked the alternatively spliced region that 20 results in a 191 base pair deletion of nucleotides 5133-5323 of the DS-CAM1 cDNA set forth in SEQ ID NO:1. primers were designed to generate products of different sizes for each of the two alternatively spliced 25 transcripts: 536 bp corresponding to the non-deleted DS-CAM-1 transcript and 345 bp corresponding to the deleted DS-CAM2 transcripts. The analyses included adult samples from amygdala (24 years), skeletal muscle (36 years) and three independent lymphoblastoid cell lines. Fetal samples included whole brain of a trisomy 21 fetus (14 weeks), four from whole brain (4.5-13 weeks), one from temporal lobe (28 weeks) and two from heart (4.5 and The results indicate that all fetal and adult samples produced two bands corresponding to PCR products

10

of the predicted sizes which indicates the expression of two alternatively spliced transcripts.

EXAMPLE 6

Isolation of mouse DS-CAM cDNA clones

A mouse brain cDNA library was prepared from 19 week old female C57 Black/6 mice in the Uni-ZAP XR Vector (STRATAGENE). The cDNAs were oligo-dT primed and cloned unidirectionally into the EcoRI and XhoI sites of the The average insert size is 1.0 kb. The library was screened using a human DS-CAM cDNA clone as a probe. Two partial mouse DS-CAM cDNA clones were isolated and sequenced. The combined nucleotide sequences of these clones are set forth in SEQ ID NO:7, SEQ ID NO:8 and SEQ ID NO:9, and were found to represent the 5', middle and 3' portions, respectively, of cDNA encoding a mouse 15 DS-CAM.

EXAMPLE 7

Hybridization analysis of DS-CAM cDNA in mouse tissues

BALB/c and C57BL/6 \times DBA/2 embryos, fetuses and postnatal brains were fixed and embedded as described in detail in Lyons et al., (<u>J. Neurosci</u>. **15**:5727-5738, 1995). Embryos were fixed in 4% paraformaldehyde in phosphate buffered saline (PBS) overnight, dehydrated and infiltrated with paraffin. Five to seven micron serial sections were mounted on gelatinized slides. sections were mounted/slide, deparaffinized in xylene, rehydrated and post-fixed. The sections were digested with proteinase K, post-fixed, treated with tri-ethanolamine/acetic anhydride, washed and dehydrated. cRNA probes were prepared from DS-CAM-M-14. The plasmid was linearized with XbaI and T7 polymerase was used to

generate the antisense cRNA. The plasmid was linearized with KpnI and T3 polymerase was used to generate the sense control cRNA. The cRNA transcripts were synthesized according to manufacturer's conditions

5 (STRATAGENE) and labeled with 35S-UTP (>1000 Ci/mmol; Amersham). cRNA transcripts larger than 100 nucleotides were subjected to alkali hydrolysis to give a mean size of 70 bases for efficient hybridization.

Sections were hybridized overnight at 52°C in 50% deionized formamide, 0.3M NaCl, 20 mM Tris-HCl pH 10 7.4, 5 mM EDTA, 10 mM NaPO4, 10% dextran sulfate, 1x Denhardt's, 50 μ g/ml total yeast RNA, and 50-75,000 $\text{cpm}/\mu l^{35}\text{S-labeled cRNA}$ probe. The tissue was subjected to stringent washing at 65°C in 50% formamide, 2X SSC, 10 mM DTT and washed in PBS before treatment with 20 μ g/ml 15 RNase A at 37°C for 30 minutes. Following washes in 2X SSC and 0.1X SSC for 10 minutes at 37°C, the slides were dehydrated and dipped in Kodak NTB-2 nuclear track emulsion and exposed for 2-3 weeks in light-tight boxes 20 with desiccant at 4°C. Photographic development was carried out in Kodak D-19. Slides were counterstained lightly with toluidine blue and analyzed using both light- and darkfield optics of a Zeiss Axiophot microscope. Sense control cRNA probes (identical to the 25 mRNAs) always gave background levels of hybridization signal. Embryonic structures were identified with the help of the following atlases: Rugh (The Mouse: Its Reproduction and Development. Oxford Univ. Press, Oxford, UK, 1990), Kaufman (The Atlas of Mouse Development.

Tissue in situ hybridization analysis was performed using a mouse cDNA as a probe on sections of normal mouse embryos from days 8.5-17.5 post coitum (pc) as well as in newborn, two weeks and adult brains as

30 Acad. Press, New York, NY, 1992), and Altman and Bayer

(supra, 1995).

described above. The results indicate that there is no detectable expression of DS-CAM at 8.5 days pc. At 9.5 days pc, expression was detected in the neuroepithelium. Low levels of expression were detected within the branchial arches, suggestive of migrating neural crest cells. At 10.5 days pc, the trigeminal ganglia (neural crest derived) begin to express the transcript and expression within the branchial arches was more evident.

Expression at 11.5 days pc was abundant throughout the brain. The transcript was found within the regions of the nervous system that differentiate earliest during development (Altman and Bayer, supra, In the brain, this includes the ventral-most regions, such as the thalamus and medulla. expression was detected within the olfactory epithelium. 15 Expression within the neural tube begins in two areas: the ventrolateral (corresponding to the areas in which the motor neurons differentiate) and the lateral gray columns (that later form commissural neurons) (Leber et 20 al., <u>J Neurosci</u>. **15**:1236-1248, 1990). The dorsal root ganglia (neural crest derived) expressed the transcript at 11.5 days pc. The trigeminal ganglia show higher levels at 11.5 days pc than they did at 10.5 days. Migrating neural crest can be seen within the maxilla, the mandibular arch, and in the developing qut. 25 was observed within the mesenchyme surrounding the umbilical vein and artery.

At 12.5 days pc, expression was more extensive than at 11.5 days pc. More of the nervous system

30 exhibits expression of the transcript, including a larger portion of midbrain, the pontine areas, the basal ganglia and the outermost layer of cortex. Neurons in this layer have undergone mitosis in the subependymal layer of the cortex and migrated into the mantle layer of the cerebral

cortex as differentiated cells (Smart et al., <u>J. Comp.</u> <u>Neurol</u>. **116**:325-347, 1961).

At 13.5 days pc, expression was seen throughout most of the brain. The outermost layer of the gut also 5 appears to be expressing at this stage; these cells are neural crest derived and form the myenteric ganglia. At 15.5 and 16.5 days pc, most of the neural crest derived neural structures have some expression. For example, the regions of the snout that will develop into the sensory structures at the base of the vibrissae, the pancreatic ganglia, the heart ganglion, the enteric nervous system, and the sympathetic trunk all express the transcript.

There is no expression within the umbilicus at this stage. Two non-neuronal structures express this 15 gene, the gonad and the annulus fibrosus of the intervertebral disk. The olfactory bulb exhibits signal both in the granule cells and within the tufted mitral Within the newborn brain, the transcript was expressed most extensively within the differentiating regions such as the septal area, olfactory bulb, inferior colliculus and hippocampus. In the adult brain, the gene was expressed in many areas including amygdala, cortex, hippocampus and thalamus. In the adult cerebellum the transcripts were detected in the Purkinje cell layer and in the deep cerebellar nuclei. 25

While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.

Summary of Sequences

- SEQ ID NO:1 is the nucleic acid sequence (and the deduced amino acid sequence) of cDNA encoding a novel human DS-CAM1 protein of the present invention.
- 5 SEQ ID NO:2 is the deduced amino acid sequence of a human DS-CAM1 protein of the present invention.
 - SEQ ID NO:3 is the cDNA probe (labeled "E51") used to isolate cDNA encoding human DS-CAM.
 - SEQ ID NO:4 is an MboI linker sequence.
- SEQ ID NO:5 is a primer labeled B9-131F used in the RT-PCR assay described in Example 5.
 - SEQ ID NO:6 is a primer labeled B9-131R used in the RT-PCR assay described in Example 5.
- SEQ ID NO:7 is the 5' region of a partial mouse-derived cDNA clone encoding an invention DS-CAM protein.
 - SEQ ID NO:8 is the middle region of a partial mouse-derived cDNA clone encoding an invention DS-CAM protein.
- SEQ ID NO:9 is the 3' region of a partial mouse-derived cDNA clone encoding an invention DS-CAM protein.
 - SEQ ID NO:10 is the nucleic acid sequence (and the deduced amino acid sequence) of cDNA encoding a novel human DS-CAM2 protein of the present invention.
- SEQ ID NO:11 is the deduced amino acid sequence of a human DS-CAM2 protein of the present invention, which is a splice variant of DS-CAM1 (SEQ ID NO:2).

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (I) APPLICANT: Korenberg, Julie R.
 - (ii) TITLE OF INVENTION: NUCLEIC ACID ENCODING DS-CAM PROTEINS AND PRODUCTS RELATED THERETO
 - (iii) NUMBER OF SEQUENCES: 11
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Campbell and Flores
 - (B) STREET: 4370 La Jolla Village Drive, Suite 700
 - (C) CITY: San Diego
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP:92122
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/029,322
 - (B) FILING DATE: 25-OCT-1996
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Ramos, Robert T.
 - (B) REGISTRATION NUMBER: 37,915
 - (C) REFERENCE/DOCKET NUMBER: P-CE 2817
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 619-535-9001
 - (B) TELEFAX: 619-535-8949
- (2) INFORMATION FOR SEQ ID NO:1:
 - (I) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6604 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 453..6185

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	-					1101										
TGACT	'GAGC	C C	GGAG	CACG	G CA	AAGAI	rgag	CCT	GCCC	GCC (CGCC!	rgcto	GC C	rgga:	rgcgg	60
AGGGT	'GAGC	G C	rggco	GCAC	G GGZ	AGGC(CGCT	GGC'	TGCG	CAT	TCTG	GGCG	CC GZ	AGTG	CCCGG	120
GATGA	GCT	CA CO	GCCC	GCGT	C TG	CGGC:	rctc	TCC.	ACCT	GCC	GACC'	IGCC(GG G	GGCC	CACTG	180
AGCTG	ACG(GC G	CACC'	rggg	C TC	CGGC	CGCA	GCG	TGGG	GCG	CGGC	GCCC	GG G	AGCA	GGTGT	240
GCAGG	SAGC	GC A	GCGC	GCGG	C GA	GCGC	AGCC	CTC	GCTC	CGG	AGCC	CGGC	CG C	GCCG	CGTGC	300
CCGGG	GCGG	CT A	GGCA	GCGG	C GG	CGGC	GGCG	GCG	GGCG	GCG	GGCG	GGCG	GC G	GCCC	CCGGG	360
CAGGI	rgcc	GA G	CGGC	GAGC	g ga	GCCG	GGCC	GGG	CGGA	GCG	CGGG	GGGC	GA G	GCCG	GCGCG	420
TCGCT	rcgc	GG G	AGGC	CGGG	G AG	CGGC.	AGGG	GC	ATG Met 1	TGG Trp	ATA Ile	CTG .	GCT Ala 5	CTC Leu	TCC Ser	473
TTG T	TTC Phe	CAG . Gln 10	AGC Ser	TTC Phe	GCG Ala	AAT Asn	GTT Val 15	TTC Phe	AGT Ser	GAA Glu	GAC Asp	CTA Leu 20	CAC His	TCC Ser	AGC Ser	521
CTC ! Leu !	TAC Tyr 25	TTT Phe	GTC Val	AAT Asn	GCA Ala	TCT Ser 30	CTG Leu	CAA Gln	GAG Glu	GTA Val	GTG Val 35	TTT Phe	GCC Ala	AGC Ser	ACC Thr	569
ACG (Thr 40	GGG Gly	ACT Thr	CTG Leu	GTG Val	CCC Pro 45	TGC Cys	CCC Pro	GCA Ala	GCA Ala	GGC Gly 50	ATC Ile	CCT Pro	CCT Pro	GTG Val	ACT Thr 55	617
CTC . Leu .	AGA Arg	TGG Trp	TAC Tyr	CTA Leu 60	GCC Ala	ACG Thr	GGC Gly	GAG Glu	GAG Glu 65	ATC Ile	TAC Tyr	GAT Asp	GTC Val	CCC Pro 70	GGG Gly	665
ATC Ile	CGC Arg	CAC His	GTC Val 75	CAC His	CCC Pro	AAC Asn	GGC Gly	ACT Thr 80	CTC Leu	CAA Gln	ATT Ile	TTC Phe	CCC Pro 85	TTC Phe	CCT Pro	713
CCT Pro	TCA Ser	AGC Ser 90	TTC Phe	AGT Ser	ACC Thr	TTA Leu	ATC Ile 95	CAT His	GAT Asp	AAT Asn	ACT Thr	TAT Tyr 100	TAT Tyr	TGC Cys	ACA Thr	761
GCT Ala	GAA Glu 105	AAT Asn	CCT Pro	TCA Ser	GGG Gly	AAA Lys 110	ATT Ile	AGA Arg	AGT Ser	CAG Gln	GAT Asp 115	GTC Val	CAC His	ATC Ile	AAG Lys	809
GCT Ala 120	GTT Val	TTA Leu	CGG Arg	GAG Glu	CCC Pro 125	TAT Tyr	ACA Thr	GTC Val	CGT Arg	GTG Val 130	GAG Glu	GAC Asp	CAG Gln	AAA Lys	ACC Thr 135	857
ATG Met	AGA Arg	GGC Gly	AAT Asn	GTT Val 140	Ala	GTC Val	TTC Phe	AAG Lys	TGC Cys 145	lle	ATC Ile	CCC Pro	TCC Ser	TCG Ser 150	Val	905
GAG Glu	GCG Ala	TAC Tyr	ATC Ile 155	ACT Thr	GTC Val	GTC Val	TCA Ser	TGG Trp 160	G Lu	AAA Lys	GAC Asp	ACT Thr	GTT Val 165	ser	CTT Leu	953
GTC Val	TCA Ser	GGA Gly 170	Ser	AGA Arg	TTT Phe	CTC Leu	ATC Ile 175	Thr	TCC Ser	ACG Thr	G GGA Gly	GCC Ala 180	ьеч	TAT Tyr	ATT : Ile	1001

			GAT Asp 190					1049
			GAG Glu					1097
			AAC Asn					1145
			GCT Ala					1193
			CCA Pro					1241
			AGG Arg 270					1289
			TCG Ser					1337
			GCT Ala					1385
			ATC Ile					1433
			TCC Ser					1481
			AAT Asn 350					1529
			AAC Asn					1577
			GCA Ala					1625
			GTG Val					1673
			AGT Ser					1721
			GTG Val 430					1769

		GAC Asp 445							1817
		TCG Ser							1865
		CGG Arg							1913
		GTC Val							1961
		CCA Pro						;	2009
	 	 TGT Cys 525	 	 	 	 	 	:	2057
		TCT Ser						:	2105
		GGA Gly						:	2153
		TAC Tyr						2	2201
		GTC Val						2	2249
		CCA Pro 605						2	2297
		TCA Ser						2	2345
		ATC Ile						2	2393
		TCC Ser						2	2441
		TGC Cys						2	2489
		ATT Ile 685						2	2537

CGG Arg								:	2585
GCT Ala								:	2633
GCT Ala								:	2681
GTT Val 745								:	2729
AGT Ser								2	2777
AGC Ser								2	2825
TAT Tyr								2	2873
TGC Cys								2	2921
GAC Asp 825								2	2969
GAG Glu								3	3017
AGA Arg								3	3065
GAG Glu								3	3113
CCC Pro								3	3161
TGG Trp 905								3	3209
GAA Glu								3	3257
GAT Asp								3	3305

CCT Pro	TCC Ser	TCC Ser	ACC Thr 955	TAC Tyr	AGC . Ser	ATC Ile	CGC Arg	ATG Met 960	TAC Tyr	GCC Ala	AAG Lys	AAC Asn	CGG Arg 965	ATT Ile	GGC Gly	3353
AAG Lys	AGC Ser	GAG Glu 970	CCC Pro	AGC Ser	AAC Asn	GAG Glu	CTC Leu 975	ACC Thr	ATC Ile	ACG Thr	GCG Ala	GAC Asp 980	GAG Glu	GCA Ala	GCT Ala	3401
CCT Pro	GAT Asp 985	GGT Gly	CCA Pro	CCT Pro	CAG Gln	GAA Glu 990	GTT Val	CAC His	CTG Leu	GAG Glu	CCT Pro 995	ATA Ile	TCA Ser	TCT Ser	CAG Gln	3449
AGC Ser 1000	Ile	AGG Arg	GTC Val	ACA Thr	TGG Trp 1005	Lys	GCT Ala	CCC Pro	AAG Lys	AAA Lys 1010	HlS	TTG Leu	CAA Gln	AAT Asn	GGG Gly 1015	3497
ATT Ile	ATC Ile	CGT Arg	GGC Gly	TAC Tyr 1020	CAA Gln)	ATA Ile	GGT Gly	TAC Tyr	CGA Arg 102	G⊥u	TAC Tyr	AGC Ser	ACT Thr	GGG Gly 103	GTA	3545
AAC Asn	TTC Phe	CAA Gln	TTC Phe 103	Asn	ATT Ile	ATC Ile	AGT Ser	GTC Val 104	Asp	ACC Thr	AGC Ser	GGG Gly	GAC Asp 104	Pet	GAG Glu	3593
GTT Val	TAC Tyr	ACC Thr 105	Leu	GAC Asp	AAC Asn	CTG Leu	AAT Asn 105	Lys	TTC Phe	ACT Thr	CAG Gln	TAC Tyr 106	GTÀ	CTG Leu	GTG Val	3641
GTG Val	CAG Gln 106	Ala	TGT Cys	AAC Asn	CGG Arg	GCC Ala 107	Gly	ACG Thr	GGG Gly	CCT Pro	TCT Ser 107	ser	CAG Gln	GAA Glu	ATC Ile	3689
ATC Ile 108	Thr	ACC Thr	ACT Thr	CTC Leu	GAG Glu 108	Asp	GTG Val	CCC Pro	AGT Ser	TAC Tyr 109	Pro	CCC Pro	GAA Glu	AAT Asn	GTC Val 1095	3737
CAA Gln	GCC Ala	ATA Ile	GCA Ala	ACA Thr 110	Ser	CCA Pro	GAA Glu	AGC Ser	ATA Ile 110	Ser	ATA	TCC Ser	TGG Trp	TCC Ser 111	ACA Thr	3785
CTT Leu	TCC Ser	AAG Lys	GAA Glu 111	Ala	TTG Leu	AAT Asn	GGA Gly	ATT	e Leu	CAG Gln	GGG Gly	TTC Phe	AGA Arg 112	Val	ATT Ile	3833
TAC Tyr	TGG Trp	GCC Ala	a Asn	CTC Leu	ATG Met	GAC Asp	GGA Gly 113	, G⊥τ	CTC Leu	GGT Gly	GAG Glu	ATI 1116 114	: гуз	AAC Asr	ATC lle	3881
ACC Thr	ACC Thr 114	Thi	A CAG	CCI Pro	TCA Ser	CTG Leu 115	ı Glu	CTO Lev	G GAC 1 Asp	GGG Gly	CTC Leu 115	1 GIV	A AAG a Lys	TAC Tyı	ACC Thr	3929
AAC Asn 116	Туз	C AGO	C ATO	C CAG	G GTG Val 116	Leu	GCC Ala	TTO Phe	C ACC	C CGC Arc 117	J Ala	A GGA a Gly	A GAC Y Asp	GG(Gly	G GTC Val 1175	3977
AGG Arg	AG! Sei	r GAG	G CAC	G ATO 110 118	e Phe	: ACC : Thi	C CGC Arg	G ACC	C AA/ r Lys 118	s G⊥t	G GA: 1 Asp	r GT: o Val	r CCA L Pro	A GGT o Gly 115	r CCT y Pro 90	4025
CCC Pro	GCG Ala	G GG' a Gl	T GT0 y Val 119	L Lys	G GCA s Ala	A GCC A Ala	G GCC a Ala	G GCG a Ala 12	a Se:	A GCC r Ala	C TCG a Se:	C ATO	G GTO t Vai	L PIII	r GTG e Val	4073

TCC TGG CTT CCC CCT CTC AAG CTG AAC GGC ATC ATC Ser Trp Leu Pro Pro Leu Lys Leu Asn Gly Ile Ile 1210	CGA AAG TAC ACT 4121 Arg Lys Tyr Thr 1220
GTA TTC TGC TCC CAC CCC TAT CCC ACA GTG ATC AGC Val Phe Cys Ser His Pro Tyr Pro Thr Val Ile Ser 1225	GIU PHE GIU AIA
TCT CCC GAC TCG TTT TCC TAC AGA ATT CCC AAC CTG Ser Pro Asp Ser Phe Ser Tyr Arg Ile Pro Asn Leu 1240 1245	AGT AGG AAT CGT 4217 Ser Arg Asn Arg 1255
CAG TAC AGC GTC TGG GTG GTG GCT GTT ACT TCA GCC Gln Tyr Ser Val Trp Val Val Ala Val Thr Ser Ala 1260	GGA AGA GGC AAC 4265 Gly Arg Gly Asn 1270
AGC AGT GAA ATC ATC ACA GTC GAG CCA CTA GCA AAA Ser Ser Glu Ile Ile Thr Val Glu Pro Leu Ala Lys 1275 1280	GCT CCT GCA CGA 4313 Ala Pro Ala Arg 1285
ATC CTG ACC TTC AGT GGG ACA GTG ACT ACT CCA TGG Ile Leu Thr Phe Ser Gly Thr Val Thr Thr Pro Trp 1290 1295	ATG AAA GAC ATT 4361 Met Lys Asp Ile 1300
GTC TTG CCT TGT AAG GCT GTT GGG GAC CCT TCT CCT Val Leu Pro Cys Lys Ala Val Gly Asp Pro Ser Pro 1305	Ald val Lys 11p
ATG AAA GAC AGT AAC GGG ACA CCC AGT CTA GTA ACG Met Lys Asp Ser Asn Gly Thr Pro Ser Leu Val Thr 1320 1325 1330	ATT GAT GGG CGG 4457 Ile Asp Gly Arg 1335
AGG AGC ATC TTT AGC AAC GGA AGC TTC ATT ATT CGC Arg Ser Ile Phe Ser Asn Gly Ser Phe Ile Ile Arg 1340	ACG GTG AAA GCA 4505 Thr Val Lys Ala 1350
GAA GAC TCC GGC TAT TAC AGC TGC ATT GCC AAT AAC Glu Asp Ser Gly Tyr Tyr Ser Cys Ile Ala Asn Asn 1355	AAC TGG GGA TCT 4553 Asn Trp Gly Ser 1365
GAT GAA ATT ATT TTA AAC TTA CAA GTA CAA GTT CCA Asp Glu Ile Ile Leu Asn Leu Gln Val Gln Val Pro 1370	CCA GAT CAG CCT 4601 Pro Asp Gln Pro 1380
CGG CTT ACA GTC TCC AAG ACC ACG TCT TCC TCC ATC Arg Leu Thr Val Ser Lys Thr Thr Ser Ser Ser Ile 1385 1390 139	: Iut red ser irb
CTC CCT GGA GAC AAC GGG GGC AGC TCT ATC AGA GGA Leu Pro Gly Asp Asn Gly Gly Ser Ser Ile Arg Gly 1400 1405	A TAC ATA CTG CAG 4697 Tyr Ile Leu Gln 1415
TAC TCC GAG GAC AAT AGT GAG CAG TGG GGG AGT TTT Tyr Ser Glu Asp Asn Ser Glu Gln Trp Gly Ser Phe 1420	C CCA ATC AGC CCC 4745 e Pro Ile Ser Pro 1430
AGC GAA CGT TCC TAT CGC TTG GAA AAT CTC AAA TGT Ser Glu Arg Ser Tyr Arg Leu Glu Asn Leu Lys Cys 1435	GGG ACT TGG TAT 4793 GGy Thr Trp Tyr 1445
AAG TTC ACA CTG ACA GCC CAA AAT GGA GTG GGC CCA Lys Phe Thr Leu Thr Ala Gln Asn Gly Val Gly Pro 1450 1455	A GGG CGC ATA AGT 4841 o Gly Arg Ile Ser 1460

GAA ATC ATA Glu Ile Ile 1465			Leu Gly					89
GAG CAG GAG Glu Gln Glu 1480					Arg Val			37
CTC ATT GGC Leu Ile Gly		Asp Gly					Leu	85
GAG TAC AGG Glu Tyr Arg				Trp Thr				33
TCT CTC TCC Ser Leu Ser 153	Lys Ser					Ala Thr		81
TAT GAG CTG Tyr Glu Leu 1545			Cys Asn					29
CAG GCC AAC Gln Ala Asn 1560					Ser Thr			77
CTC ATT AAG Leu Ile Lys		Val Gln					Glu	25
GGG CTC AAG Gly Leu Lys				Cys Ile				73
CTG CTG TTT Leu Leu Phe 161	Val Leu		Val Val					21
	U		1615	1119 1119	1620	-	Gln	
AGG CTA AAG Arg Leu Lys 1625	AGG CTG		GCA AAG Ala Lys	AGT TTA	1620 GCT GAA	ATG CTC	ATG 53	69
Arg Leu Lys	AGG CTG Arg Leu ACC CGG	Arg Asp 1630 ACT TCA	GCA AAG Ala Lys O	AGT TTA Ser Leu	GCT GAA Ala Glu 1635 AAG CAA Lys Gln	ATG CTC Met Leu CAG CAG	ATG 530 Met ACC 541	
Arg Leu Lys 1625 AGT AAG AAT Ser Lys Asn	AGG CTG Arg Leu ACC CGG Thr Arg	Arg Asp 1630 ACT TCA Thr Ser 1645 GAC ATA Asp Ile	GCA AAG Ala Lys O GAT ACG Asp Thr	AGT TTA Ser Leu TTA AGC Leu Ser 1650 GCT CAG	GCT GAA Ala Glu 1635 AAG CAA Lys Gln O CTT TTG	ATG CTC Met Leu CAG CAG Gln Gln ATT GAA	ATG 530 Met S41 Thr 1655 GAG 540 Glu	17
Arg Leu Lys 1625 AGT AAG AAT Ser Lys Asn 1640 CTG CGA ATG	AGG CTG Arg Leu ACC CGG Thr Arg CAC ATC His Ile 166 ATG GAG	Arg Asp 1630 ACT TCA Thr Ser 1645 GAC ATA Asp Ile O	GCA AAG Ala Lys O GAT ACG Asp Thr CCC AGG Pro Arg	AGT TTA Ser Leu TTA AGC Leu Ser 1650 GCT CAG Ala Gln 1665 CGC TCC Arg Ser	GCT GAA Ala Glu 1635 AAG CAA Lys Gln O CTT TTG Leu Leu ACG GTT	ATG CTC Met Leu CAG CAG Gln Gln ATT GAA Ile Glu 1670 CTG TTG	ATG 530 Met 540 ACC 541 Thr 1655 GAG 540 Glu ACG 553	17 65
Arg Leu Lys 1625 AGT AAG AAT Ser Lys Asn 1640 CTG CGA ATG Leu Arg Met	AGG CTG Arg Leu ACC CGG Thr Arg CAC ATC His Ile 166 ATG GAG Met Glu 1675 TTT GGA Phe Gly	Arg Asp 1630 ACT TCA Thr Ser 1645 GAC ATA Asp Ile O ACC ATT Thr Ile	GCA AAG Ala Lys GAT ACG Asp Thr CCC AGG Pro Arg GAT GAT Asp Asp 1680 GCT AAG	AGT TTA Ser Leu TTA AGC Leu Ser 1650 GCT CAG Ala Gln 1665 CGC TCC Arg Ser 0 CAG AAG	GCT GAA Ala Glu 1635 AAG CAA Lys Gln CTT TTG Leu Leu ACG GTT Thr Val	ATG CTC Met Leu CAG CAG Gln Gln ATT GAA Ile Glu 1670 CTG TTG Leu Leu 1685 ACG GTC Thr Val	ATG 536 Met 536 Met 546 Thr 1655 GAG 546 Glu ACG 555 Thr 556	17 65

GAT GTT TCA GAC GCT CGG CCG GGA ACG AAT CCC ACC ACC AGG AGG AAT Asp Val Ser Asp Ala Arg Pro Gly Thr Asn Pro Thr Thr Arg Arg Asn 1720 1735	5657
GCC AAG GCT GGG CCC ACA GCG AGA AAC CGC TAT GCC AGC CAG TGG ACC Ala Lys Ala Gly Pro Thr Ala Arg Asn Arg Tyr Ala Ser Gln Trp Thr 1740 1745 1750	5705
CTC AAC CGA CCC CAC CCC ACC ATC TCA GCA CAC ACC CTC ACC ACA GAC Leu Asn Arg Pro His Pro Thr Ile Ser Ala His Thr Leu Thr Thr Asp 1755 1760 1765	5753
TGG AGG CTG CCA ACA CCC AGG GCT GCA GGA TCA GTA GAC AAA GAG AGC Trp Arg Leu Pro Thr Pro Arg Ala Ala Gly Ser Val Asp Lys Glu Ser 1770 1775 1780	5801
GAC AGT TAC AGC GTC AGC CCC TCG CAA GAC ACA GAT CGA GCA AGA AGC Asp Ser Tyr Ser Val Ser Pro Ser Gln Asp Thr Asp Arg Ala Arg Ser 1785 1790 1795	5849
AGC ATG GTC TCC ACA GAA AGT GCC TCC TCC ACT TAC GAA GAA CTG GCC Ser Met Val Ser Thr Glu Ser Ala Ser Ser Thr Tyr Glu Glu Leu Ala 1800 1805	5897
AGG GCC TAC GAA CAC GCC AAG ATG GAA GAG CAA CTG AGG CAC GCC AAG Arg Ala Tyr Glu His Ala Lys Met Glu Glu Gln Leu Arg His Ala Lys 1820 1825 1830	5945
TTC ACC ATC ACG GAG TGC TTC ATA TCA GAC ACG TCA TCG GAG CAG TTG Phe Thr Ile Thr Glu Cys Phe Ile Ser Asp Thr Ser Ser Glu Gln Leu 1835 1840 1845	5993
ACG GCA GGG ACA AAT GAG TAC ACG GAC AGT CTG ACC TCC AGC ACC CCT Thr Ala Gly Thr Asn Glu Tyr Thr Asp Ser Leu Thr Ser Ser Thr Pro 1850	6041
TCC GAA TCG GGA ATC TGC AGG TTC ACT GCA TCT CCC CCC AAA CCT CAG Ser Glu Ser Gly Ile Cys Arg Phe Thr Ala Ser Pro Pro Lys Pro Gln 1865 1870 1875	6089
GAT GGA GGA AGA GTA ATG AAT ATG GCA GTT CCA AAG GCA ATC GGC CAG Asp Gly Gly Arg Val Met Asn Met Ala Val Pro Lys Ala Ile Gly Gln 1880 1885	6137
GTG ACC TCA TAC ATT TGC CTC CAT ACC TTA GAA TGG ACT TTT TGT TAAACC Val Thr Ser Tyr Ile Cys Leu His Thr Leu Glu Trp Thr Phe Cys 1900 1905 1910	GAGG
TGGTCCAGGC ACCAGCAGGG ACCTGAGCTT AGGACAAGCA TGCTTGGAAC CTCAGAAAAG	6252
CCGGACCCTG AAGCGCCCCA CGGTCCTGGA GCCCATCCCG ATGGAAGCCG CCTCCTCCGC	6312
CTCCTCCACG AGAGAAGGAC AGTCGTGGCA GCCGGGGGCC GTGGCCACAT TACCTCAGCG	6372
GGAGGGAGCA GAGCTGGGAC AGGCAGCTAA AATGAGCAGC TCCCAAGAAT CACTGCTCGA	6432
CTCCCGGGGC CATTTGAAAG GAAACAATCC TTACGCAAAA TCTTACACCC TGGTATAACA	6492
GACAGCATGA CTGGACAGCG GTTGTAAATA CAATTCAAAC AATTCAATCA AAGCTACCTT	6552
TTTTTTACGG AATTCCAATA TTTATAATTA AAGAAAATTG CCAAAATATA TT	6604

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1910 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Trp Ile Leu Ala Leu Ser Leu Phe Gln Ser Phe Ala Asn Val Phe
 1 10 15
- Ser Glu Asp Leu His Ser Ser Leu Tyr Phe Val Asn Ala Ser Leu Gln 20 25 30
- Glu Val Val Phe Ala Ser Thr Thr Gly Thr Leu Val Pro Cys Pro Ala 35 40
- Ala Gly Ile Pro Pro Val Thr Leu Arg Trp Tyr Leu Ala Thr Gly Glu 50 60
- Glu Ile Tyr Asp Val Pro Gly Ile Arg His Val His Pro Asn Gly Thr
 65 70 75
- Leu Gln Ile Phe Pro Phe Pro Pro Ser Ser Phe Ser Thr Leu Ile His 85 90 95
- Asp Asn Thr Tyr Tyr Cys Thr Ala Glu Asn Pro Ser Gly Lys Ile Arg 100 105
- Ser Gln Asp Val His Ile Lys Ala Val Leu Arg Glu Pro Tyr Thr Val
- Arg Val Glu Asp Gln Lys Thr Met Arg Gly Asn Val Ala Val Phe Lys 130 140
- Cys Ile Ile Pro Ser Ser Val Glu Ala Tyr Ile Thr Val Val Ser Trp 145 150 155
- Glu Lys Asp Thr Val Ser Leu Val Ser Gly Ser Arg Phe Leu Ile Thr 165 170 175
- Ser Thr Gly Ala Leu Tyr Ile Lys Asp Val Gln Asn Glu Asp Gly Leu 180 185 190
- Tyr Asn Tyr Arg Cys Ile Thr Arg His Arg Tyr Thr Gly Glu Thr Arg 195 200 205
- Gln Ser Asn Ser Ala Arg Leu Phe Val Ser Asp Pro Ala Asn Ser Ala 210 215 220
- Pro Ser Ile Leu Asp Gly Phe Asp His Arg Lys Ala Met Ala Gly Gln 225 230 235
- Arg Val Glu Leu Pro Cys Lys Ala Leu Gly His Pro Glu Pro Asp Tyr 245 250 255
- Arg Trp Leu Lys Asp Asn Met Pro Leu Glu Leu Ser Gly Arg Phe Gln 260 265 270

Lys Thr Val Thr Gly Leu Leu Ile Glu Asn Ile Arg Pro Ser Asp Ser 280 Gly Ser Tyr Val Cys Glu Val Ser Asn Arg Tyr Gly Thr Ala Lys Val 295 Ile Gly Arg Leu Tyr Val Lys Gln Pro Leu Lys Ala Thr Ile Ser Pro Arg Lys Val Lys Ser Ser Val Gly Ser Gln Val Ser Leu Ser Cys Ser 330 Val Thr Gly Thr Glu Asp Gln Glu Leu Ser Trp Tyr Arg Asn Gly Glu 345 Ile Leu Asn Pro Gly Lys Asn Val Arg Ile Thr Gly Ile Asn His Glu Asn Leu Ile Met Asp His Met Val Lys Ser Asp Gly Gly Ala Tyr Gln 375 Cys Phe Val Arg Lys Asp Lys Leu Ser Ala Gln Asp Tyr Val Gln Val Val Leu Glu Asp Gly Thr Pro Lys Ile Ile Ser Ala Phe Ser Glu Lys 410 Val Val Ser Pro Ala Glu Pro Val Ser Leu Met Cys Asn Val Lys Gly 425 Thr Pro Leu Pro Thr Ile Thr Trp Thr Leu Asp Asp Pro Ile Leu 440 Lys Gly Gly Ser His Arg Ile Ser Gln Met Ile Thr Ser Glu Gly Asn 455 Val Val Ser Tyr Leu Asn Ile Ser Ser Ser Gln Val Arg Asp Gly Gly 470 Val Tyr Arg Cys Thr Ala Asn Asn Ser Ala Gly Val Val Leu Tyr Gln 490 Ala Arg Ile Asn Val Arg Gly Pro Ala Ser Ile Arg Pro Met Lys Asn Ile Thr Ala Ile Ala Gly Arg Asp Thr Tyr Ile His Cys Arg Val Ile Gly Tyr Pro Tyr Tyr Ser Ile Lys Trp Tyr Lys Asn Ser Asn Leu Leu Pro Phe Asn His Arg Gln Val Ala Phe Glu Asn Asn Gly Thr Leu Lys Leu Ser Asp Val Gln Lys Glu Val Asp Glu Gly Glu Tyr Thr Cys Asn 570 Val Leu Val Gln Pro Gln Leu Ser Thr Ser Gln Ser Val His Val Thr 585 580 Val Lys Val Pro Pro Phe Ile Gln Pro Phe Glu Phe Pro Arg Phe Ser

600

Ile Gly Gln Arg Val Phe Ile Pro Cys Val Val Val Ser Gly Asp Leu 615 620 Pro Ile Thr Ile Thr Trp Gln Lys Asp Gly Arg Pro Ile Pro Gly Ser Leu Gly Val Thr Ile Asp Asn Ile Asp Phe Thr Ser Ser Leu Arg Ile 645 650 Ser Asn Leu Ser Leu Met His Asn Gly Asn Tyr Thr Cys Ile Ala Arg Asn Glu Ala Ala Val Glu His Gln Ser Gln Leu Ile Val Arg Val 680 Pro Pro Lys Phe Val Val Gln Pro Arg Asp Gln Asp Gly Ile Tyr Gly Lys Ala Val Ile Leu Asn Cys Ser Ala Glu Gly Tyr Pro Val Pro Thr Ile Val Trp Lys Phe Ser Lys Gly Ala Gly Val Pro Gln Phe Gln Pro Ile Ala Leu Asn Gly Arg Ile Gln Val Leu Ser Asn Gly Ser Leu Leu Ile Lys His Val Val Glu Glu Asp Ser Gly Tyr Tyr Leu Cys Lys Val Ser Asn Asp Val Gly Ala Asp Val Ser Lys Ser Met Tyr Leu Thr Val Lys Ile Pro Ala Met Ile Thr Ser Tyr Pro Asn Thr Thr Leu Ala Thr Gln Gly Gln Lys Lys Glu Met Ser Cys Thr Ala His Gly Glu Lys Pro Ile Ile Val Arg Trp Glu Lys Glu Asp Arg Ile Ile Asn Pro Glu Met Ala Arg Tyr Leu Val Ser Thr Lys Glu Val Gly Glu Glu Val Ile Ser 840 Thr Leu Gln Ile Leu Pro Thr Val Arg Glu Asp Ser Gly Phe Phe Ser 855 Cys His Ala Ile Asn Ser Tyr Gly Glu Asp Arg Gly Ile Ile Gln Leu 870 Thr Val Gln Glu Pro Pro Asp Pro Pro Glu Ile Glu Ile Lys Asp Val 885 890 Lys Ala Arg Thr Ile Thr Leu Arg Trp Thr Met Gly Phe Asp Gly Asn Ser Pro Ile Thr Gly Tyr Asp Ile Glu Cys Lys Asn Lys Ser Asp Ser 920 Trp Asp Ser Ala Gln Arg Thr Lys Asp Val Ser Pro Gln Leu Asn Ser

935

- Ala Thr Ile Ile Asp Ile His Pro Ser Ser Thr Tyr Ser Ile Arg Met 945 950 955 960
- Tyr Ala Lys Asn Arg Ile Gly Lys Ser Glu Pro Ser Asn Glu Leu Thr 965 970 975
- Ile Thr Ala Asp Glu Ala Ala Pro Asp Gly Pro Pro Gln Glu Val His
 980 985 990
- Leu Glu Pro Ile Ser Ser Gln Ser Ile Arg Val Thr Trp Lys Ala Pro 995 1000 1005
- Lys Lys His Leu Gln Asn Gly Ile Ile Arg Gly Tyr Gln Ile Gly Tyr 1010 1020
- Arg Glu Tyr Ser Thr Gly Gly Asn Phe Gln Phe Asn Ile Ile Ser Val 1025 1030 1035 1040
- Asp Thr Ser Gly Asp Ser Glu Val Tyr Thr Leu Asp Asn Leu Asn Lys 1045 1050 1055
- Phe Thr Gln Tyr Gly Leu Val Val Gln Ala Cys Asn Arg Ala Gly Thr 1060 1065 1070
- Gly Pro Ser Ser Gln Glu Ile Ile Thr Thr Thr Leu Glu Asp Val Pro 1075 1080 1085
- Ser Tyr Pro Pro Glu Asn Val Gln Ala Ile Ala Thr Ser Pro Glu Ser 1090 1095 1100
- Ile Ser Ile Ser Trp Ser Thr Leu Ser Lys Glu Ala Leu Asn Gly Ile 1105 1110 1115
- Leu Gln Gly Phe Arg Val Ile Tyr Trp Ala Asn Leu Met Asp Gly Glu 1125 1130 1135
- Leu Gly Glu Ile Lys Asn Ile Thr Thr Thr Gln Pro Ser Leu Glu Leu 1140 1145 1150
- Asp Gly Leu Glu Lys Tyr Thr Asn Tyr Ser Ile Gln Val Leu Ala Phe 1155 \$1160 \$1165
- Thr Arg Ala Gly Asp Gly Val Arg Ser Glu Gln Ile Phe Thr Arg Thr 1170 1175 1180
- Lys Glu Asp Val Pro Gly Pro Pro Ala Gly Val Lys Ala Ala Ala 1185 1190 1195 1200
- Ser Ala Ser Met Val Phe Val Ser Trp Leu Pro Pro Leu Lys Leu Asn 1205 1210 1215
- Gly Ile Ile Arg Lys Tyr Thr Val Phe Cys Ser His Pro Tyr Pro Thr 1220 1225 1230
- Val Ile Ser Glu Phe Glu Ala Ser Pro Asp Ser Phe Ser Tyr Arg Ile 1235 1240 1245
- Pro Asn Leu Ser Arg Asn Arg Gln Tyr Ser Val Trp Val Val Ala Val 1250 1260
- Thr Ser Ala Gly Arg Gly Asn Ser Ser Glu Ile Ile Thr Val Glu Pro 1265 1270 1275 1280

- Leu Ala Lys Ala Pro Ala Arg Ile Leu Thr Phe Ser Gly Thr Val Thr 1285 1290 1295
- Thr Pro Trp Met Lys Asp Ile Val Leu Pro Cys Lys Ala Val Gly Asp 1300 1305 1310
- Pro Ser Pro Ala Val Lys Trp Met Lys Asp Ser Asn Gly Thr Pro Ser 1315 1320 1325
- Leu Val Thr Ile Asp Gly Arg Arg Ser Ile Phe Ser Asn Gly Ser Phe 1330 1335 1340
- Ile Ile Arg Thr Val Lys Ala Glu Asp Ser Gly Tyr Tyr Ser Cys Ile 1345 1350 1355 1360
- Ala Asn Asn Asn Trp Gly Ser Asp Glu Ile Ile Leu Asn Leu Gln Val 1365 1370 1375
- Gln Val Pro Pro Asp Gln Pro Arg Leu Thr Val Ser Lys Thr Thr Ser 1380 1385
- Ser Ser Ile Thr Leu Ser Trp Leu Pro Gly Asp Asn Gly Gly Ser Ser 1395 1400 1405
- Ile Arg Gly Tyr Ile Leu Gln Tyr Ser Glu Asp Asn Ser Glu Gln Trp 1410 1415 1420
- Gly Ser Phe Pro Ile Ser Pro Ser Glu Arg Ser Tyr Arg Leu Glu Asn 1425 1430 1435 1440
- Leu Lys Cys Gly Thr Trp Tyr Lys Phe Thr Leu Thr Ala Gln Asn Gly 1445 1450 1455
- Val Gly Pro Gly Arg Ile Ser Glu Ile Ile Glu Ala Lys Thr Leu Gly 1460 1465 1470
- Lys Glu Pro Gln Phe Ser Lys Glu Gln Glu Leu Phe Ala Ser Ile Asn 1475 1480 1485
- Thr Thr Arg Val Arg Leu Asn Leu Ile Gly Trp Asn Asp Gly Gly Cys 1490 1495 1500
- Pro Ile Thr Ser Phe Thr Leu Glu Tyr Arg Pro Phe Gly Thr Thr Val 1505 1510 1515 1520
- Trp Thr Thr Ala Gln Arg Thr Ser Leu Ser Lys Ser Tyr Ile Leu Tyr 1525 1530 1535
- Asp Leu Gln Glu Ala Thr Trp Tyr Glu Leu Gln Met Arg Val Cys Asn 1540 1545 1550
- Ser Ala Gly Cys Ala Glu Lys Gln Ala Asn Phe Ala Thr Leu Asn Tyr 1555 1560 1565
- Asp Gly Ser Thr Ile Pro Pro Leu Ile Lys Ser Val Val Gln Asn Glu 1570 1575 1580
- Glu Gly Leu Thr Thr Asn Glu Gly Leu Lys Met Leu Val Thr Ile Ser 1585 1590 1595 1600
- Cys Ile Leu Val Gly Val Leu Leu Leu Phe Val Leu Leu Leu Val Val 1605 1610 1615

- Arg Arg Arg Arg Glu Gln Arg Leu Lys Arg Leu Arg Asp Ala Lys 1620 1625 1630
- Ser Leu Ala Glu Met Leu Met Ser Lys Asn Thr Arg Thr Ser Asp Thr 1635 1640 1645
- Leu Ser Lys Gln Gln Gln Thr Leu Arg Met His Ile Asp Ile Pro Arg 1650 1655 1660
- Ala Gln Leu Leu Ile Glu Glu Arg Asp Thr Met Glu Thr Ile Asp Asp 1665 1670 1675 1680
- Arg Ser Thr Val Leu Leu Thr Asp Ala Asp Phe Gly Glu Ala Ala Lys 1685 1690 1695
- Gln Lys Ser Leu Thr Val Thr His Thr Val His Tyr Gln Ser Val Ser 1700 1705 1710
- Gln Ala Thr Gly Pro Leu Val Asp Val Ser Asp Ala Arg Pro Gly Thr 1715 1720 1725
- Asn Pro Thr Thr Arg Arg Asn Ala Lys Ala Gly Pro Thr Ala Arg Asn 1730 1735 1740
- Arg Tyr Ala Ser Gln Trp Thr Leu Asn Arg Pro His Pro Thr Ile Ser 1745 1750 1755 1760
- Ala His Thr Leu Thr Thr Asp Trp Arg Leu Pro Thr Pro Arg Ala Ala 1765 1770 1775
- Gly Ser Val Asp Lys Glu Ser Asp Ser Tyr Ser Val Ser Pro Ser Gln 1780 1785
- Asp Thr Asp Arg Ala Arg Ser Ser Met Val Ser Thr Glu Ser Ala Ser 1795 1800 1805
- Ser Thr Tyr Glu Glu Leu Ala Arg Ala Tyr Glu His Ala Lys Met Glu 1810 1815 1820
- Glu Gln Leu Arg His Ala Lys Phe Thr Ile Thr Glu Cys Phe Ile Ser 1825 1830 1835 1840
- Asp Thr Ser Ser Glu Gln Leu Thr Ala Gly Thr Asn Glu Tyr Thr Asp 1845 1850 1855
- Ser Leu Thr Ser Ser Thr Pro Ser Glu Ser Gly Ile Cys Arg Phe Thr 1860 1865 1870
- Ala Ser Pro Pro Lys Pro Gln Asp Gly Gly Arg Val Met Asn Met Ala 1875 1880 1885
- Val Pro Lys Ala Ile Gly Gln Val Thr Ser Tyr Ile Cys Leu His Thr 1890 1895 1900
- Leu Glu Trp Thr Phe Cys 1905 1910

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 388 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: both	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	60
CCGGGTATTC TTACTCATGA GCATTTCAGC TAAACTCTTT GCATCTCGCA GCCTCTTTAG	120
CCTCTGCTCC CGCCGCCTCC TCCGCACAAC CAGCAGGAGC ACAAACAGCA GCAAGACCCC	
CACCAGGATA CAGGAGATGG TCACCAGCAT CTTGAGCCCC TCGTTGGTCG TCAGCCCTTC	180
TTCGTTTTGG ACAACTGACT TAATGAGTGG AGGAATTGTA CTGCCATCGT AGTTCAGCGT	240
AGCGAAGTTG GCCTGCTTCT CCGCGCAGCC CGCACTGTTG CACACCCGCA TCTGCAGCTC	300
ATACCAGGTG GCTTCCTGCA GGTCATACAG GATGTAGGAC TTGGAGAGAG AGGTCCTCTG	360
AGCTGTGGTC CAAACTGTGG TCCCAAAG	388
(2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	20
CCTGATGCTC GAGTGAATTC	20
(2) INFORMATION FOR SEQ ID NO:5:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
CCAGTTCTCA AAGGAGCAGG	20

(2)	INFORMATION	FOR	SEQ	ID	NO:6:
-----	-------------	-----	-----	----	-------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CCTGTATGAC CTGCAGGAAG

20

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 842 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCGGGCCGGG	CGCGGCGGAG	CGCAGCGCAA	CGCGGGGGGC	GAGGCCGGCG	CGTGGCTCGC	60
TCGCTGGCTC	GCTGGCTCGC	GGGAGGCCGG	GCAGCAGCAG	GGGCATGTGG	ATACTGGCTC	120
TCTCCTTGTT	CCAGAGCTTC	GCGAATGTTT	TCAGTGAAGA	GCCCCACTCC	AGCCTCTACT	180
TTGTCAATGC	ATCGCTGCAA	GAGGTAGTGT	TTGCAAGCAC	ATCGGGGACG	CTGGTGCCCT	240
GCCCGGCTGC	AGGCATCCCT	CCTGTGACTC	TCAGATGGTA	CCTAGCAACG	GGCGAGGAGA	300
TCTACGATGT	CCCCGGGATC	CGCCACGTCC	ATCCCAATGG	CACTCTCCAA	ATTTTCCCCT	360
TTCCTCCTTC	AAGCTTCAGC	ACCTTAATCC	ATGATAATAC	TTACTATTGC	ACAGCTGAAA	420
ACCCTTCAGG	GAAAATTAGA	AGTCAGGATG	TCCACATCAA	GGCTGTTTTA	CGGGAGCCCT	480
ATACAGTCCG	TGTGGAGGAC	CAGAAAACCA	TGAGAGGCAA	TGTCGCGGTG	TTCAAGTGCA	540
TTATCCCCTC	CTCGGTGGAG	GCGTACGTCT	CTGTCGTCTC	ATGGGAGAAA	GACACGGTTT	600
CACTTGTCTC	AGGATCTAGA	TTTCTCATCA	CATCCACGGG	AGCCTTGTAT	ATTAAAGATG	660
TTCAGAACGA	AGATGGGCTG	TACAACTACC	GCTGCATCGC	GCGGCACAGA	TTCGCGGGGG	720
AGACGAGACA	GAGCAACTGC	GCGAGACTGT	TCGTGTCAGA	ACCAGCAAAC	TCAGCCCATC	780
CATCCTGGAA	GGGTTTGACC	ACCGCCAAAC	CATGGCCGGG	CACGCGTGGA	GCTGCCTTGC	840
CA						842

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 898 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TGCCGGCCGG	TTGCAAGCCT	GTACTACAGG	CCATACTGCG	TGAATTATCA	GGTTGTCCAG	60
GGTGTACACT	TCGCTGTCCC	GGTGGTGTCA	ATACTGATGA	TGTTGAACTG	GAAGTTACCC	120
CGTGCTGTAC	TCCGGTAGCC	TATTGGTAGC	CGCGAATGAT	CCCGTCTTGT	ATAGTGTTCT	180
TGGGAGCCTC	TCCAGGTAAC	CCTGATACTC	TGAGATGAGG	TGGGTTCCAA	GTGAACTTCC	240
TGAGGTGGAC	ATCACGAGCT	GCCTCATCCG	CCGTGATGGT	GATCTCGTTG	CTGGGCTCAC	300
TCTTGCCAAT	CCGGTTCTTG	GCGTACATGC	GGATGCTGTA	GGTGGAGGAA	GGGTGGATAT	360
CAATGATGGT	GGCCGAGTTC	AGCTGAGGGG	AAACATCTTT	GGTTCTCTGA	GCAGAATCCC	420
ACGAGTCTGA	TTTATTTTTG	CATTCACACT	GTCATAGCCT	GTGATGGGGC	TGTTGCCATC	480
AAACCCCATG	GTCCACCTGA	GCGTGATGGT	GCGAGCTTTG	ACATCTCTTG	ATCTCAATCT	540
CGGGAGGATC	TGGGGGTTCT	TGCACTGTGA	GTTGAATTAT	TCCACGGTCC	TCCCCGTATG	600
AATTGATAGC	ATGGCAGGAG	AAGAAACCGG	AATCTTCTCT	CACTGTTGGC	AAAATCTGCA	660
GCGTAGATAT	CACTTCCTCT	CCCACCTCCT	TGGTGGATAC	AGTACGGGCC	ACTTTCAGGG	720
TTAATGATCC	TGTCTCTCTT	CTCCAGCGGA	CAATGATGGG	CTCTCCCATG	GGCTGTGCAG	780
CTCATTCCTT	CCTTTGACCC	TGATGGCCAG	GTGGTGTGGG	TATAAGTTAT	ATCATGGCCG	840
GAATTTCCCT	GTGAGTCCAT	GGACTTGCTG	AACGTTCTGC	GCCCACATCG	TTCGCTGA	898

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2173 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACCACCATTC	ACACACCCAG	ACATGGCGGG	TTCGCGGCAA	CCTTCAGTTC	CTGGCCTTCC	60
TGTAGGGTAA	AGGGCTGCTG	CGGGTTTATA	GACCGGCACA	TGCCCATCCT	GGCATACGGT	120
GGCCAGTGGC	TTTCCATCTG	GATTCCAGGC	CAAGCTAAAA	ATCTGTTCCT	GATGGCCCTG	180

CAGTTTCAGC CGTTCAGCTC CA	AGTCTGAAG	TTCCCAGATG	CGAACGGTTA	GATCATAGGA	240
ACTGGAAGCC AGTACATCGG CA	AGCCAGGGG (GTGGAAGCGC	AGAGAGTAGA	TCTTTTCTGT	300
GTGGCCTGTG AGCACAGTCT CA	AGGTGTGGT (GAGAACATTC	TCGAGCCAGC	GAGCGTTCAT	360
ACCGCTTGGA AAACCTAAAG TO	GTGGGACTT (GGTATAAGTT	CACCCTTACT	GCCCAAAATG	420
GAGTAGGTCC CGGGCGCATA AC	GTGAAATCA	TAGAAGCCAA	AACCCTGGGG	AAAGAACCCC	480
AGTTCTCCAA GGAGCAGGAG CI	TTTTCGCCA	GCATCAATAC	CACCCGAGTG	AGGCTGAATC	540
TGATTGGCTG GAATGACGGC GC	GCTGTCCAA	TCACCTCATT	CACTCTTGAA	TACAGACCCT	600
TTGGGACCAC GGTCTGGACC AC	CAGCTCAGC	GGACCTCCCT	TTCCAAGTCC	TAACATTCTG	660
TATGACCTGC AAGAAGCCAC G	TGGTATGAA	CTGCAGATGA	GAGTGTGCAA	CAGCGCCGGC	720
TGTGCGGATA AGCAAGCCAA C	TTCGCCACG	CTGAACTACG	ATGGCAGTAC	AATCCCTCCA	780
CTCATTAAGT CAGTTGTCCA CA	AAAGCGAAG	AAGGGCTGAC	AACCAACGAA	GGGCTCAAGA	840
TCCTCGTGAC CATCTCCTGC A	TCCTGGTCG	GGGTTCTACT	GCTCTTTGTG	CTTCTGCTGG	900
TTGTGCGGAG GAGACGGCGA G	AGCAGAGGC	TGAAGAGGCT	GAGAGATGCA	AAGAGTTTAG	960
CTGAAATGCT CATGAGCAAA A	ACACACGGA	CTTCAGATAC	CTTAAGCAAA	CAGCAGCAGA	1020
CTTTGAGAAT GCACATTGAT A	TACCCAGGG	CTCAGCTTTT	GATTGAAGAG	AGAGACACAA	1080
TGGAGACCAT AGATGACCGC T	CCACAGTCC	TGTTGACGGA	TGCTGACTTC	GGGGAGGCAG	1140
CCAAACAGAA GTCACTGACA G	TGACTCACA	CGGTGCATTA	CCAATCGGTG	TCTCAGGCCA	1200
CCGGGCCCCT CGTGGATGTC T	CCGATGCTC	GGCCAGGAAC	GAATCCCACC	ACCAGGAGGA	1260
ATGCAAAGGC TGGACCCACA G	GCGAGAAACC	GGTACGCCAG	CCAGTGGACG	CTCAACAGAC	1320
CCCATCCTAC CATCTCTGCA C	CACACCCTCA	CCACAGAATG	AGACTGCTAC	ACCAGGCTAC	1380
AGGATCCGTG ACAGGAGAGC G	SACAGTACAG	CGTCAGCCCA	TTCACAAGAC	ACAGACGAGC	1440
AAGAAGCAGC ATGTTCTCCA C	CAGAAAGTGC	TTCTTCTACC	TACGAAGACT	GCCAGGCCTA	1500
TGAACACGCC AAGATGGAAG A	AGCAGCTGAG	GCATGCCAAG	TTCACCATCA	CAGAGTGCTT	1560
CATATCCGAT ACGTCCTCCG A	AGCAGTTGAC	GGCAGGACAA	ATGAGTACAC	GGACAGTCTG	1620
ACTCCAGTAC CCCTTCAGAA T	CCGGGATCTG	CAGATTCATG	CATCTCCCCC	CAACCTCAGG	1680
ATGGAGGACG AGTGTGAACA T	rggcggttcc	AAAGGCCCAT	CGGCCAGGCG	ACTCATACAC	1740
CTGCTCCATA CCTACGATGG A	ATTCTTGTTA	AACCGGGCGC	ACCAGGCACC	AGCAGGACTG	1800
AGTTTAGGAC AAGCGTGCTT G	GGAACCCCAG	AAAGTCGGAC	CCTGAAACGC	CCCACGGTCG	1860
TTGAGCCCAC CCCTATGGAG	GCCTCCTCCT	CCACTTCTTC	CACGCGAGAA	GGACAGCAGT	1920
CGTGGCAACA AGGGGCTGTG	GCCACCTTAC	CTCAGCGAGA	GGGTGCAGAG	CTGGACAGGC	1980
AGCTAAAATG AGCAGCTCCC A	AAGAGTCACT	GCTGGACTCC	CGGGCCATTO	; AAAGGAACAA	2040
TCCCTACGCA AATCTTACAC	CTTGGTATAA	CACATGGCAC	TGATGGACAG	G CGGTTGTAAT	2100

ACAATTAACG	AGCCAATCAA	GCTACTTTTT	TATGAATTCC	GATATTTATA	ATTAAGAATT	2160
GCCAAATATA	ТТА					2173

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6413 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 453..5168
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

(
TGACTGAGGC CGGAGCACGG CAAAGATGAG CCTGCCCGCC CGCCTGCTGC CTGGATGCGG	60
AGGGTGAGGG CTGGCGCACG GGAGGCCGCT GGCTGCGCAT TCTGGGCCGC GAGTGCCCGG	120
GATGAGCTCA CGCCCGCGTC TGCGGCTCTC TCCACCTGCC GACCTGCCGG GGGCCCACTG	180
AGCTGACGGC GCACCTGGGC TCCGGCCGCA GCGTGGGGCG CGGCGCCCGG GAGCAGGTGT	240
GCAGGAGCGC AGCGCGCGC GAGCGCAGCC CTCGCTCCGG AGCCCGGCCG CGCCGCGTGC	300
CCGGGCGGCT AGGCAGCGGC GGCGGCGGCG GGCGGGGGGGGGG	360
CAGGTGCCGA GCGGCGAGCG GAGCCGGGCC GGGCGAGCG CGGGGGGCGA GGCCGGCGCG	420
TCGCTCGCGG GAGGCCGGGG AGCGGCAGGG GC ATG TGG ATA CTG GCT CTC TCC Met Trp Ile Leu Ala Leu Ser 1	473
TTG TTC CAG AGC TTC GCG AAT GTT TTC AGT GAA GAC CTA CAC TCC AGC Leu Phe Gln Ser Phe Ala Asn Val Phe Ser Glu Asp Leu His Ser Ser 10	521
CTC TAC TTT GTC AAT GCA TCT CTG CAA GAG GTA GTG TTT GCC AGC ACC Leu Tyr Phe Val Asn Ala Ser Leu Gln Glu Val Val Phe Ala Ser Thr 25	569
ACG GGG ACT CTG GTG CCC TGC CCC GCA GCA GGC ATC CCT CCT GTG ACT Thr Gly Thr Leu Val Pro Cys Pro Ala Ala Gly Ile Pro Pro Val Thr 40 45 50 55	617
CTC AGA TGG TAC CTA GCC ACG GGC GAG GAG ATC TAC GAT GTC CCC GGG Leu Arg Trp Tyr Leu Ala Thr Gly Glu Glu Ile Tyr Asp Val Pro Gly 60 65 70	665
ATC CGC CAC GTC CAC CCC AAC GGC ACT CTC CAA ATT TTC CCC TTC CCT Ile Arg His Val His Pro Asn Gly Thr Leu Gln Ile Phe Pro Phe Pro 75 80 85	713
CCT TCA AGC TTC AGT ACC TTA ATC CAT GAT AAT ACT TAT TAT TGC ACA Pro Ser Ser Phe Ser Thr Leu Ile His Asp Asn Thr Tyr Tyr Cys Thr 90 95 100	761

GCT Ala	GAA Glu 105	AAT Asn	CCT Pro	TCA Ser	GGG Gly	AAA Lys 110	ATT Ile	AGA Arg	AGT Ser	CAG Gln	GAT Asp 115	GTC Val	CAC His	ATC Ile	AAG Lys	809
GCT Ala 120	GTT Val	TTA Leu	CGG Arg	GAG Glu	CCC Pro 125	TAT Tyr	ACA Thr	GTC Val	CGT Arg	GTG Val 130	GAG Glu	GAC Asp	CAG Gln	AAA Lys	ACC Thr 135	857
ATG Met	AGA Arg	GGC Gly	AAT Asn	GTT Val 140	GCG Ala	GTC Val	TTC Phe	AAG Lys	TGC Cys 145	ATT Ile	ATC Ile	CCC Pro	TCC Ser	TCG Ser 150	GTG Val	905
GAG Glu	GCG Ala	TAC Tyr	ATC Ile 155	ACT Thr	GTC Val	GTC Val	TCA Ser	TGG Trp 160	GAG Glu	AAA Lys	GAC Asp	ACT Thr	GTT Val 165	TCA Ser	CTT Leu	953
GTC Val	TCA Ser	GGA Gly 170	TCT Ser	AGA Arg	TTT Phe	CTC Leu	ATC Ile 175	ACA Thr	TCC Ser	ACG Thr	GGA Gly	GCC Ala 180	TTG Leu	TAT Tyr	ATT Ile	1001
AAA Lys	GAT Asp 185	GTA Val	CAG Gln	AAT Asn	GAA Glu	GAT Asp 190	GGA Gly	TTG Leu	TAT Tyr	AAC Asn	TAC Tyr 195	CGC Arg	TGC Cys	ATC Ile	ACG Thr	1049
CGG Arg 200	CAT His	CGA Arg	TAC Tyr	ACC Thr	GGA Gly 205	GAG Glu	ACG Thr	AGG Arg	CAG Gln	AGC Ser 210	AAC Asn	AGC Ser	GCC Ala	AGA Arg	CTT Leu 215	1097
TTT Phe	GTA Val	TCA Ser	GAC Asp	CCA Pro 220	GCG Ala	AAC Asn	TCA Ser	GCC Ala	CCA Pro 225	TCC Ser	ATA Ile	CTG Leu	GAT Asp	GGG Gly 230	TTT Phe	1145
GAC Asp	CAT His	CGC Arg	AAA Lys 235	Ala	ATG Met	GCT Ala	GGG Gly	CAG Gln 240	CGT Arg	GTG Val	GAG Glu	CTG Leu	CCT Pro 245	TGC Cys	AAA Lys	1193
GCG Ala	CTC Leu	GGG Gly 250	His	CCT Pro	GAG Glu	CCA Pro	GAT Asp 255	TAC Tyr	CGC Arg	TGG Trp	CTG Leu	AAG Lys 260	GAC Asp	AAC Asn	ATG Met	1241
CCC Pro	CTG Leu 265	Glu	CTT Leu	TCA Ser	GGG Gly	AGG Arg 270	TTC Phe	CAG Gln	AAG Lys	ACC Thr	GTG Val 275	Thr	GGG Gly	CTG Leu	CTC Leu	1289
ATT Ile 280	Glu	AAC Asn	: ATT	CGC Arg	CCC Pro 285	Ser	GAC Asp	TCA Ser	GGC Gly	AGC Ser 290	Туг	GTT Val	TGT Cys	GAA Glu	GTG Val 295	1337
TCC Ser	AAC Asn	AGA Arg	TAC Tyr	GGA Gly 300	Thr	GCT Ala	AAG Lys	GTG Val	ATA Ile 305	Gly	CGC Arg	CTG Leu	TAC Tyr	GTG Val 310	AAA Lys	1385
CAG Gln	CCA Pro	CTG Leu	AAA Lys 315	Ala	ACC Thr	ATC Ile	AGT Ser	CCC Pro 320	Arg	AAG Lys	GTI Val	AAA Lys	AGC Ser 325	Ser	GTG Val	1433
GGT Gly	AGC Ser	CAA Glr 330	ı Val	TCC Ser	TTG Leu	TCC Ser	TGC Cys 335	Ser	GTG Val	ACA Thr	GGF Gly	A ACT 7 Thr 340	Glu	GAC Asp	CAG Gln	1481
GA <i>A</i> Glu	CTC Leu 345	ı Ser	TGG Trp	TAC Tyr	C CGC Arg	AAT Asn 350	ı Glz	GAF Glu	A ATC	CTC Leu	AAC Asr 355	n Pro	GGA Gly	AAA Lys	AAT Asn	1529

GTG Val 360	AGG Arg	ATC Ile	ACA Thr	GGG Gly	ATC Ile 365	AAC Asn	CAC His	GAA Glu	AAC Asn	CTT Leu 370	ATA Ile	ATG Met	GAT Asp	CAC His	ATG Met 375	1577
GTC Val	AAA Lys	AGT Ser	GAC Asp	GGG Gly 380	GGC Gly	GCA Ala	TAC Tyr	CAG Gln	TGC Cys 385	TTT Phe	GTG Val	CGC Arg	AAG Lys	GAC Asp 390	AAG Lys	1625
CTG Leu	TCC Ser	GCT Ala	CAA Gln 395	GAC Asp	TAT Tyr	GTG Val	CAG Gln	GTG Val 400	GTC Val	CTT Leu	GAA Glu	GAT Asp	GGA Gly 405	ACT Thr	CCC Pro	1673
AAA Lys	ATT Ile	ATT Ile 410	TCT Ser	GCC Ala	TTT Phe	AGT Ser	GAA Glu 415	AAG Lys	GTG Val	GTG Val	AGT Ser	CCA Pro 420	GCA Ala	GAG Glu	CCG Pro	1721
GTT Val	TCC Ser 425	CTT Leu	ATG Met	TGC Cys	AAC Asn	GTG Val 430	AAG Lys	GGA Gly	ACA Thr	CCT Pro	TTG Leu 435	CCC Pro	ACG Thr	ATC Ile	ACG Thr	1769
TGG Trp 440	ACC Thr	CTG Leu	GAC Asp	GAT Asp	GAC Asp 445	CCG Pro	ATT Ile	CTC Leu	AAG Lys	GGT Gly 450	GGC Gly	AGT Ser	CAC His	CGC Arg	ATC Ile 455	1817
AGC Ser	CAG Gln	ATG Met	ATC Ile	ACG Thr 460	TCG Ser	GAG Glu	GGG Gly	AAC Asn	GTG Val 465	GTC Val	AGC Ser	TAC Tyr	CTG Leu	AAC Asn 470	ATC Ile	1865
TCC Ser	AGC Ser	TCC Ser	CAG Gln 475	GTC Val	CGG Arg	GAC Asp	GGG Gly	GGA Gly 480	GTC Val	TAC Tyr	CGC Arg	TGC Cys	ACT Thr 485	GCC Ala	AAC Asn	1913
AAC Asn	TCG Ser	GCG Ala 490	GGA Gly	GTC Val	GTC Val	CTG Leu	TAC Tyr 495	CAG Gln	GCT Ala	CGA Arg	ATA Ile	AAC Asn 500	GTA Val	AGA Arg	GGG Gly	1961
CCT Pro	GCA Ala 505	AGC Ser	ATT Ile	CGA Arg	CCA Pro	ATG Met 510	AAA Lys	AAC Asn	ATC Ile	ACA Thr	GCA Ala 515	ATA Ile	GCA Ala	GGA Gly	CGG Arg	2009
GAC Asp 520	Thr	TAC Tyr	ATT Ile	CAC His	TGT Cys 525	CGT Arg	GTG Val	ATT Ile	GGC Gly	TAT Tyr 530	CCG Pro	TAT	TAC Tyr	TCC Ser	ATT Ile 535	2057
AAA Lys	TGG Trp	TAC Tyr	AAG Lys	AAC Asn 540	Ser	AAC Asn	CTG Leu	CTT Leu	CCT Pro 545	TTC Phe	AAC Asn	CAC His	CGC Arg	CAA Gln 550	GTG Val	2105
GCA Ala	TTT Phe	GAG Glu	AAC Asn 555	Asn	GGA Gly	ACT Thr	CTT Leu	AAA Lys 560	Leu	TCA Ser	GAT Asp	GTG Val	CAA Gln 565	Lys	GAA Glu	2153
GTG Val	GAC Asp	GAG Glu 570	Gly	GAG Glu	TAC Tyr	ACG Thr	TGC Cys 575	Asn	GTG Val	TTG Leu	GTT Val	CAA Gln 580	Pro	CAA Gln	CTC Leu	2201
TCC Ser	ACC Thr 585	Ser	CAG Gln	AGC Ser	GTC Val	CAC His	Val	ACC Thr	GTG Val	AAA Lys	GTI Val 595	. Pro	CCT Pro	TTC Phe	ATA Ile	2249
CAA Gln 600	. Pro	TTT Phe	GAG Glu	TTI Phe	CCA Pro 605	Arg	TTC Phe	TCC Ser	C ATT	GGG Gly 610	Glr	G CGG n Arg	GTC Val	TTC Phe	ATC Ile 615	2297

CCC Pro	TGT Cys	GTT Val	GTG Val	GTC Val 620	TCA Ser	GGG Gly	GAC Asp	TTA Leu	CCC Pro 625	ATC Ile	ACG Thr	ATC Ile	ACC Thr	TGG Trp 630	CAG Gln	2345
AAG Lys	GAT Asp	GGC Gly	CGG Arg 635	CCA Pro	ATC Ile	CCT Pro	GGG Gly	AGC Ser 640	CTT Leu	GGG Gly	GTG Val	ACC Thr	ATT Ile 645	GAC Asp	AAT Asn	2393
ATT Ile	GAC Asp	TTC Phe 650	ACG Thr	AGC Ser	TCC Ser	TTG Leu	AGG Arg 655	ATT Ile	TCC Ser	AAT Asn	CTC Leu	TCG Ser 660	CTC Leu	ATG Met	CAC His	2441
AAT Asn	GGG Gly 665	AAT Asn	TAC Tyr	ACC Thr	TGC Cys	ATA Ile 670	GCC Ala	CGG Arg	AAT Asn	GAG Glu	GCC Ala 675	GCC Ala	GCT Ala	GTG Val	GAG Glu	2489
CAC His 680	CAA Gln	AGC Ser	CAG Gln	TTG Leu	ATT Ile 685	GTC Val	AGA Arg	GTT Val	CCT Pro	CCC Pro 690	AAG Lys	TTT Phe	GTG Val	GTT Val	CAG Gln 695	2537
CCA Pro	CGG Arg	GAC Asp	CAG Gln	GAC Asp 700	GGG Gly	ATT Ile	TAT Tyr	GGC Gly	AAA Lys 705	GCA Ala	GTC Val	ATC Ile	CTC Leu	AAT Asn 710	TGT Cys	2585
TCT Ser	GCT Ala	GAG Glu	GGT Gly 715	TAC Tyr	CCT Pro	GTA Val	CCT Pro	ACC Thr 720	ATC Ile	GTG Val	TGG Trp	AAA Lys	TTC Phe 725	TCT Ser	AAA Lys	2633
GGT Gly	GCT Ala	GGG Gly 730	GTT Val	CCC Pro	CAG Gln	TTC Phe	CAG Gln 735	CCA Pro	ATT Ile	GCC Ala	CTA Leu	AAT Asn 740	СТА	CGA Arg	ATC Ile	2681
CAA Gln	GTT Val 745	CTC Leu	AGC Ser	AAT Asn	GGG Gly	TCG Ser 750	TTG Leu	CTG Leu	ATC Ile	AAG Lys	CAT His 755	Val	GTG Val	GAG Glu	GAA Glu	2729
GAC Asp 760	Ser	GGC Gly	TAC Tyr	TAC Tyr	CTC Leu 765	TGC Cys	AAG Lys	GTC Val	AGC Ser	AAC Asn 770	. Asp	GTG Val	GGC Gly	GCA Ala	GAC Asp 775	2777
GTC Val	AGC Ser	AAG Lys	TCC Ser	ATG Met 780	Tyr	CTC Leu	ACG Thr	GTT Val	AAA Lys 785	тте	CCT Pro	GCG Ala	ATG Met	ATA Ile 790	ACA Thr	2825
TCC Ser	TAT Tyr	CCA Pro	AAT Asn 795	Thr	ACC Thr	CTG Leu	GCC Ala	ACG Thr	GIn	GGG Gly	G CAG	AAA n Lys	AAG Lys 805	GIL	ATG Met	2873
AGC Sei	TGC Cys	ACC Thr 810	: Ala	CAT His	GGT Gly	GAG	AAG Lys 815	Pro	ATT Ile	ATA Ile	A GTO	C CGC L Arg 820	1 T.F.	GAG Glu	AAG Lys	2921
GA0 Glu	G GAC 1 Asp 825	Arg	A ATC	ATT	AAC Asr	CCT Pro 830	o Glu	ATO Met	G GCC : Ala	CGI Arg	TA1 TY1 835	г ьег	GTC u Val	TCC Ser	C ACC	2969
AA(Ly: 84(s Glu	GT(G GGA L Gly	A GAF	A GAG 1 Glu 845	ı Val	ATI Ile	TCI e Sei	T ACT	CTC Leu 850	1 GII	G ATT	TTC e Let	G CCA 1 Pro	A ACT Thr 855	3017
GT(Va	G AGA L Aro	A GAZ g Glu	A GAT 1 Asp	TCT Sei 860	c Gly	TTO Phe	TTI Phe	TCC e Sei	TGC C Cys 865	s His	r GC' s Ala	r Art	r AA e Asi	TC: n Se: 870	TAT r Tyr	3065

GGG Gly	GAG Glu	GAC Asp	CGT Arg 875	GGA Gly	ATA Ile	ATT Ile	CAG Gln	CTC Leu 880	ACA Thr	GTG Val	CAA Gln	GAG Glu	CCC Pro 885	CCA Pro	GAC Asp	3113	\$
CCT Pro	CCC Pro	GAA Glu 890	ATT Ile	GAG Glu	ATC Ile	AAA Lys	GAT Asp 895	GTC Val	AAA Lys	GCA Ala	CGC Arg	ACA Thr 900	ATT Ile	ACG Thr	CTC Leu	3161	-
AGG Arg	TGG Trp 905	ACC Thr	ATG Met	GGG Gly	TTT Phe	GAT Asp 910	GGA Gly	AAC Asn	AGT Ser	CCC Pro	ATC Ile 915	ACA Thr	GGC Gly	TAC Tyr	GAT Asp	3209)
ATT Ile 920	GAA Glu	TGC Cys	AAA Lys	AAT Asn	AAA Lys 925	TCA Ser	GAC Asp	TCC Ser	TGG Trp	GAT Asp 930	TCT Ser	GCT Ala	CAG Gln	AGA Arg	ACC Thr 935	3257	7
AAA Lys	GAT Asp	GTT Val	TCC Ser	CCT Pro 940	CAG Gln	CTG Leu	AAC Asn	TCG Ser	GCC Ala 945	ACC Thr	ATC Ile	ATT Ile	GAT Asp	ATC Ile 950	CAC His	3305	5
CCT Pro	TCC Ser	TCC Ser	ACC Thr 955	TAC Tyr	AGC Ser	ATC Ile	CGC Arg	ATG Met 960	TAC Tyr	GCC Ala	AAG Lys	AAC Asn	CGG Arg 965	ATT Ile	GGC Gly	3353	3
AAG Lys	AGC Ser	GAG Glu 970	CCC Pro	AGC Ser	AAC Asn	GAG Glu	CTC Leu 975	ACC Thr	ATC Ile	ACG Thr	GCG Ala	GAC Asp 980	GAG Glu	GCA Ala	GCT Ala	340	1
CCT Pro	GAT Asp 985	GGT Gly	CCA Pro	CCT Pro	CAG Gln	GAA Glu 990	GTT Val	CAC His	CTG Leu	GAG Glu	CCT Pro 995	Ile	TCA Ser	TCT Ser	CAG Gln	344	9
AGC Ser 100	Ile	AGG Arg	GTC Val	ACA Thr	TGG Trp 100	Lys	GCT Ala	CCC Pro	AAG Lys	AAA Lys 101	His	TTG Leu	CAA Gln	AAT Asn	GGG Gly 1015	349	7
ATT Ile	ATC Ile	CGT Arg	GGC Gly	TAC Tyr 102	Gln	ATA Ile	GGT Gly	TAC Tyr	CGA Arg 102	Glu	TAC Tyr	AGC Ser	ACT Thr	GGG Gly 103	GGT Gly O	354	5
AAC Asn	TTC Phe	CAA	TTC Phe 103	Asn	ATT	ATC Ile	AGT Ser	GTC Val 104	Asp	ACC Thr	AGC Ser	: GGG	GAC Asp 104	ser	GAG Glu	359	3
GTT Val	TAC Tyr	ACC Thr 105	Leu	GAC Asp	AAC Asn	CTG Leu	AAT Asn 105	. Lys	TTC Phe	ACT Thr	CAG Gln	TAC Tyr 106	. стА	CTG Leu	GTG Val	364	1
GTG Val	CAG Gln 106	Ala	TGT Cys	AAC Asn	: CGG : Arg	GCC Ala 107	Gly	ACG Thr	GGG Gly	CCT Pro	TCT Ser 107	Ser	CAG Gln	GAA Glu	ATC Ille	368	:9
ATC Ile 108	Thr	ACC Thr	C ACT	CTC	GAG Glu 108	. Asp	GTG Val	CCC Pro	C AGT	TAC Tyr 109	Pro	C CCC Pro	GAA Glu	AA1 Asr	GTC Val 1095	373	37
CAA Gln	GCC Ala	C ATA	A GCA e Ala	A ACA Thr 110	Ser	CCA Pro	A GAZ O Glu	A AGO 1 Sei	C ATA 116	e Ser	A ATA	A TCC e Ser	TGG Trp	TCO Ser 111	C ACA Thr	378	}5
CTI Leu	TCC Ser	C AAC	G GAA S Glu 111	ı Ala	C TTG a Leu	TAA G 1 Asr	GGF n Gly	A AT: / Ile 112	e Lei	C CAC 1 Glr	G GGC	G TTO y Phe	C AGA Arg 112	y Va.	C ATT L Ile	383	33

TAC TGG GCC AAC Tyr Trp Ala Asn 1130	CTC ATG GAC Leu Met Asp	GGA GAG CTG GGT Gly Glu Leu Gly 1135	GAG ATT AAA AAC ATC Glu Ile Lys Asn Ile 1140	3881
ACC ACC ACA CAG Thr Thr Thr Gln 1145	CCT TCA CTG Pro Ser Leu 1150	Glu Leu Asp Gly	CTG GAA AAG TAC ACC Leu Glu Lys Tyr Thr 1155	3929
AAC TAC AGC ATC Asn Tyr Ser Ile 1160	CAG GTG CTG Gln Val Leu 1165	GCC TTC ACC CGC Ala Phe Thr Arg 117	GCA GGA GAC GGG GTC Ala Gly Asp Gly Val 0 1175	3977
AGG AGT GAG CAG Arg Ser Glu Gln	ATC TTC ACC Ile Phe Thr 1180	CGG ACC AAA GAG Arg Thr Lys Glu 1185	GAT GTT CCA GGT CCT Asp Val Pro Gly Pro 1190	4025
CCC GCG GGT GTG Pro Ala Gly Val	Lys Ala Ala	GCG GCC TCA GCC Ala Ala Ser Ala 1200	TCC ATG GTC TTT GTG Ser Met Val Phe Val 1205	4073
TCC TGG CTT CCC Ser Trp Leu Pro 1210	CCT CTC AAG Pro Leu Lys	CTG AAC GGC ATC Leu Asn Gly Ile 1215	ATC CGA AAG TAC ACT Ile Arg Lys Tyr Thr 1220	4121
GTA TTC TGC TCC Val Phe Cys Ser 1225	CAC CCC TAT His Pro Tyr 123	Pro Thr Val Ile	AGC GAG TTT GAG GCC Ser Glu Phe Glu Ala 1235	4169
TCT CCC GAC TCC Ser Pro Asp Ser 1240	TTT TCC TAC Phe Ser Tyr 1245	AGA ATT CCC AAC Arg Ile Pro Asn 125	CTG AGT AGG AAT CGT Leu Ser Arg Asn Arg 0 1255	4217
CAG TAC AGC GTO Gln Tyr Ser Val	TGG GTG GTG Trp Val Val 1260	GCT GTT ACT TCA Ala Val Thr Ser 1265	GCC GGA AGA GGC AAC Ala Gly Arg Gly Asn 1270	4265
AGC AGT GAA ATO Ser Ser Glu Ile 12	e Ile Thr Val	GAG CCA CTA GCA Glu Pro Leu Ala 1280	AAA GCT CCT GCA CGA Lys Ala Pro Ala Arg 1285	4313
ATC CTG ACC TTC Ile Leu Thr Pho 1290	C AGT GGG ACA e Ser Gly Thr	GTG ACT ACT CCA Val Thr Thr Pro 1295	TGG ATG AAA GAC ATT Trp Met Lys Asp Ile 1300	4361
GTC TTG CCT TG Val Leu Pro Cys 1305	T AAG GCT GTT S Lys Ala Val 131	Gly Asp Pro Ser	CCT GCA GTC AAA TGG Pro Ala Val Lys Trp 1315	4409
ATG AAA GAC AG Met Lys Asp Se: 1320	AAC GGG ACA Asn Gly Thr 1325	CCC AGT CTA GTA Pro Ser Leu Val	A ACG ATT GAT GGG CGG Thr Ile Asp Gly Arg 30 1335	4457
AGG AGC ATC TT Arg Ser Ile Pho	r AGC AAC GGA e Ser Asn Gly 1340	AGC TTC ATT ATT Ser Phe Ile Ile 1345	C CGC ACG GTG AAA GCA Arg Thr Val Lys Ala 1350	4505
GAA GAC TCC GG Glu Asp Ser Gl 13	y Tyr Tyr Ser	TGC ATT GCC AAT Cys Ile Ala Asr 1360	AAC AAC TGG GGA TCT Asn Asn Trp Gly Ser 1365	4553
GAT GAA ATT AT				4601

CGG CTT ACA GTC TCC AAG ACC ACG TCT TCC TCC ATC ACC CTT TCT TGG Arg Leu Thr Val Ser Lys Thr Thr Ser Ser Ser Ile Thr Leu Ser Trp 1385 1390 1395	4649
CTC CCT GGA GAC AAC GGG GGC AGC TCT ATC AGA GGA TAC ATA CTG CAG Leu Pro Gly Asp Asn Gly Gly Ser Ser Ile Arg Gly Tyr Ile Leu Gln 1400 1405 1410	4697
TAC TCC GAG GAC AAT AGT GAG CAG TGG GGG AGT TTT CCA ATC AGC CCC Tyr Ser Glu Asp Asn Ser Glu Gln Trp Gly Ser Phe Pro Ile Ser Pro 1420 1425 1430	4745
AGC GAA CGT TCC TAT CGC TTG GAA AAT CTC AAA TGT GGG ACT TGG TAT Ser Glu Arg Ser Tyr Arg Leu Glu Asn Leu Lys Cys Gly Thr Trp Tyr 1435 1440 1445	4793
AAG TTC ACA CTG ACA GCC CAA AAT GGA GTG GGC CCA GGG CGC ATA AGT Lys Phe Thr Leu Thr Ala Gln Asn Gly Val Gly Pro Gly Arg Ile Ser 1450 1455 1460	4841
GAA ATC ATA GAA GCA AAG ACC TTA GGA AAA GAG CCC CAG TTC TCA AAG Glu Ile Ile Glu Ala Lys Thr Leu Gly Lys Glu Pro Gln Phe Ser Lys 1465 1470 1475	4889
GAG CAG GAG CTG TTT GCC AGC ATC AAC ACC ACA CGC GTG AGG CTG AAC Glu Gln Glu Leu Phe Ala Ser Ile Asn Thr Thr Arg Val Arg Leu Asn 1480 1485 1490 1495	4937
CTC ATT GGC TGG AAT GAT GGC GGC TGC CCC ATC ACC TCC TTC ACA CTA Leu Ile Gly Trp Asn Asp Gly Gly Cys Pro Ile Thr Ser Phe Thr Leu 1500 1505 1510	4985
GAG TAC AGG CCC TTT GGG ACC ACA GTT TGG ACC ACA GCT CAG AGG ACC Glu Tyr Arg Pro Phe Gly Thr Thr Val Trp Thr Thr Ala Gln Arg Thr 1515 1520	5033
TCT CTC TCC AAG TCC TAC ATC CTG TAT GAC CTG CAG GAA GCC ACC TGG Ser Leu Ser Lys Ser Tyr Ile Leu Tyr Asp Leu Gln Glu Ala Thr Trp 1530 1540	5081
TAT GAG CTG CAG ATG CGG GTG TGC AAC AGT GCG GGC TGC GCG GAG AAG Tyr Glu Leu Gln Met Arg Val Cys Asn Ser Ala Gly Cys Ala Glu Lys 1545 1550 1555	5129
CAG GCT AAA GAG GCT GCG AGA TGC AAA GAG TTT AGC TGAAATGCTC Gln Ala Lys Glu Ala Ala Arg Cys Lys Glu Phe Ser 1560 1565 1570	5175
ATGAGTAAGA ATACCCGGAC TTCAGATACG TTAAGCAAGC AACAGCAGAC CCTGCGAATG	5235
CACATCGACA TACCCAGGGC TCAGCTTTTG ATTGAAGAGA GAGACACGAT GGAGACCATT	5295
GATGATCGCT CCACGGTTCT GTTGACGGAT GCTGACTTTG GAGAGGCAGC TAAGCAGAAG	5355
TCCCTGACGG TCACTCACAC GGTCCATTAC CAATCGGTGT CTCAGGCCAC TGGGCCCTTA	5415
GTGGATGTTT CAGACGCTCG GCCGGGAACG AATCCCACCA CCAGGAGGAA TGCCAAGGCT	5475
GGGCCCACAG CGAGAAACCG CTATGCCAGC CAGTGGACCC TCAACCGACC CCACCCCACC	5535
ATCTCAGCAC ACACCCTCAC CACAGACTGG AGGCTGCCAA CACCCAGGGC TGCAGGATCA	5595
GTAGACAAAG AGAGCGACAG TTACAGCGTC AGCCCCTCGC AAGACACAGA TCGAGCAAGA	5655

TCTCCACAGA	AAGTGCCTCC	TCCACTTACG	AAGAACTGGC	CAGGGCCTAC	5715
AGATGGAAGA	GCAACTGAGG	CACGCCAAGT	TCACCATCAC	GGAGTGCTTC	5775
CGTCATCGGA	GCAGTTGACG	GCAGGGACAA	ATGAGTACAC	GGACAGTCTG	5835
CCCCTTCCGA	ATCGGGAATC	TGCAGGTTCA	CTGCATCTCC	CCCCAAACCT	5895
GAAGAGTAAT	GAATATGGCA	GTTCCAAAGG	CAATCGGCCA	GGTGACCTCA	5955
TCCATACCTT	AGAATGGACT	TTTTGTTAAA	CCGAGGTGGT	CCAGGCACCA	6015
GAGCTTAGGA	CAAGCATGCT	TGGAACCTCA	GAAAAGCCGG	ACCCTGAAGC	6075
CCTGGAGCCC	ATCCCGATGG	AAGCCGCCTC	CTCCGCCTCC	TCCACGAGAG	6135
GTGGCAGCCG	GGGGCCGTGG	CCACATTACC	TCAGCGGGAG	GGAGCAGAGC	6195
AGCTAAAATG	AGCAGCTCCC	AAGAATCACT	GCTCGACTCC	CGGGGCCATT	6255
CAATCCTTAC	GCAAAATCTT	ACACCCTGGT	ATAACAGACA	GCATGACTGG	6315
TAAATACAAT	TCAAACAATT	CAATCAAAGC	TACCTTTTT	TTACGGAATT	6375
TAATTAAAGA	AAATTGCCAA	AATATATT			6413
	AGATGGAAGA CGTCATCGGA CCCCTTCCGA GAAGAGTAAT TCCATACCTT GAGCTTAGGA CCTGGAGCCC GTGGCAGCCG AGCTAAAATG CAATCCTTAC TAAATACAAT	AGATGGAAGA GCAACTGAGG CGTCATCGGA GCAGTTGACG CCCCTTCCGA ATCGGGAATC GAAGAGTAAT GAATATGGCA TCCATACCTT AGAATGGACT GAGCTTAGGA CAAGCATGCT CCTGGAGCCC ATCCCGATGG GTGGCAGCCG GGGGCCGTGG AGCTAAAATG AGCAGCTCCC CAATCCTTAC GCAAAATCTT TAAATACAAT TCAAACAATT	AGATGGAAGA GCAACTGAGG CACGCCAAGT CGTCATCGGA GCAGTTGACG GCAGGGACAA CCCCTTCCGA ATCGGGAATC TGCAGGTTCA GAAGAGTAAT GAATATGGCA GTTCCAAAGG TCCATACCTT AGAATGGACT TTTTGTTAAA GAGCTTAGGA CAAGCATGCT TGGAACCTCA CCTGGAGCCC ATCCCGATGG AAGCCGCCTC GTGGCAGCCG GGGGCCGTGG CCACATTACC AGCTAAAATG AGCAGCTCCC AAGAATCACT CAATCCTTAC GCAAAATCTT ACACCTGGT	AGATGGAAGA GCAACTGAGG CACGCCAAGT TCACCATCAC CGTCATCGGA GCAGTTGACG GCAGGGACAA ATGAGTACAC CCCCTTCCGA ATCGGGAATC TGCAGGTTCA CTGCATCTCC GAAGAGTAAT GAATATGGCA GTTCCAAAGG CAATCGGCCA TCCATACCTT AGAATGGACT TTTTGTTAAA CCGAGGTGGT GAGCTTAGGA CAAGCATGCT TGGAACCTCA GAAAAAGCCGG CCTGGAGCCC ATCCCGATGG AAGCCGCCTC CTCCGCCTCC GTGGCAGCCG GGGGCCGTGG CCACATTACC TCAGCGGAG AGCTAAAAATG AGCAGCTCCC AAGAATCACT GCTCGACTCC CAATCCTTAC GCAAAATCTT ACACCCTGGT ATAACAGACA TAAAATACAAT TCAAAACAATT CAATCAAAGC TACCTTTTTT	TCTCCACAGA AAGTGCCTCC TCCACTTACG AAGAACTGGC CAGGGCCTAC AGATGGAAGA GCAACTGAGG CACGCCAAGT TCACCATCAC GGACTGCTTC CGTCATCGGA GCAGTTGACG GCAGGGACAA ATGAGTACAC GGACAGTCTG CCCCTTCCGA ATCGGGAATC TGCAGGTTCA CTGCATCTCC CCCCAAACCT GAAGAGTAAT GAATATGGCA GTTCCAAAGG CAATCGGCCA GGTGACCTCA TCCATACCTT AGAATGGACT TTTTGTTAAA CCGAGGTGGT CCAGGCACCA GAGCTTAGGA CAAGCATGCT TGGAACCTCA GAAAAGCCGG ACCCTGAAGC CCTGGAGCCC ATCCCGATGG AAGCCGCCTC CTCCGCCTCC TCCACGAGAG GTGGCAGCCG GGGGCCGTGG CCACATTACC TCAGCGGGAG GGAGCAGAGC AGCTAAAAATG AGCAGCTCC AAGAATCACT GCTCGACTCC CGGGGCCATT CAATCCTTAC GCAAAAATCTT ACACCCTGGT ATAACAGACA GCATGACTGG TAAATACAAT TCAAACAATT CAATCAAAGC TACCTTTTTT TTACGGAATT TAATTAAAGA AAATTGCCAA AATATATT

(2) INFORMATION FOR SEQ ID NO:11:

115

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1571 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
- Met Trp Ile Leu Ala Leu Ser Leu Phe Gln Ser Phe Ala Asn Val Phe Ser Glu Asp Leu His Ser Ser Leu Tyr Phe Val Asn Ala Ser Leu Gln 25 Glu Val Val Phe Ala Ser Thr Thr Gly Thr Leu Val Pro Cys Pro Ala Ala Gly Ile Pro Pro Val Thr Leu Arg Trp Tyr Leu Ala Thr Gly Glu Glu Ile Tyr Asp Val Pro Gly Ile Arg His Val His Pro Asn Gly Thr Leu Gln Ile Phe Pro Phe Pro Pro Ser Ser Phe Ser Thr Leu Ile His Asp Asn Thr Tyr Tyr Cys Thr Ala Glu Asn Pro Ser Gly Lys Ile Arg 100 105

Ser Gln Asp Val His Ile Lys Ala Val Leu Arg Glu Pro Tyr Thr Val

120

125

Arg Val Glu Asp Gln Lys Thr Met Arg Gly Asn Val Ala Val Phe Lys 135 Cys Ile Ile Pro Ser Ser Val Glu Ala Tyr Ile Thr Val Val Ser Trp 150 Glu Lys Asp Thr Val Ser Leu Val Ser Gly Ser Arg Phe Leu Ile Thr Ser Thr Gly Ala Leu Tyr Ile Lys Asp Val Gln Asn Glu Asp Gly Leu Tyr Asn Tyr Arg Cys Ile Thr Arg His Arg Tyr Thr Gly Glu Thr Arg 200 Gln Ser Asn Ser Ala Arg Leu Phe Val Ser Asp Pro Ala Asn Ser Ala Pro Ser Ile Leu Asp Gly Phe Asp His Arg Lys Ala Met Ala Gly Gln Arg Val Glu Leu Pro Cys Lys Ala Leu Gly His Pro Glu Pro Asp Tyr Arg Trp Leu Lys Asp Asn Met Pro Leu Glu Leu Ser Gly Arg Phe Gln 270 Lys Thr Val Thr Gly Leu Leu Ile Glu Asn Ile Arg Pro Ser Asp Ser 280 Gly Ser Tyr Val Cys Glu Val Ser Asn Arg Tyr Gly Thr Ala Lys Val Ile Gly Arg Leu Tyr Val Lys Gln Pro Leu Lys Ala Thr Ile Ser Pro 315 Arg Lys Val Lys Ser Ser Val Gly Ser Gln Val Ser Leu Ser Cys Ser Val Thr Gly Thr Glu Asp Gln Glu Leu Ser Trp Tyr Arg Asn Gly Glu Ile Leu Asn Pro Gly Lys Asn Val Arg Ile Thr Gly Ile Asn His Glu 360 Asn Leu Ile Met Asp His Met Val Lys Ser Asp Gly Gly Ala Tyr Gln Cys Phe Val Arg Lys Asp Lys Leu Ser Ala Gln Asp Tyr Val Gln Val 395 Val Leu Glu Asp Gly Thr Pro Lys Ile Ile Ser Ala Phe Ser Glu Lys Val Val Ser Pro Ala Glu Pro Val Ser Leu Met Cys Asn Val Lys Gly Thr Pro Leu Pro Thr Ile Thr Trp Thr Leu Asp Asp Pro Ile Leu 440 Lys Gly Gly Ser His Arg Ile Ser Gln Met Ile Thr Ser Glu Gly Asn Val Val Ser Tyr Leu Asn Ile Ser Ser Ser Gln Val Arg Asp Gly Gly Val Tyr Arg Cys Thr Ala Asn Asn Ser Ala Gly Val Val Leu Tyr Gln Ala Arg Ile Asn Val Arg Gly Pro Ala Ser Ile Arg Pro Met Lys Asn Ile Thr Ala Ile Ala Gly Arg Asp Thr Tyr Ile His Cys Arg Val Ile 520 Gly Tyr Pro Tyr Tyr Ser Ile Lys Trp Tyr Lys Asn Ser Asn Leu Leu Pro Phe Asn His Arg Gln Val Ala Phe Glu Asn Asn Gly Thr Leu Lys 550 Leu Ser Asp Val Gln Lys Glu Val Asp Glu Gly Glu Tyr Thr Cys Asn 570 Val Leu Val Gln Pro Gln Leu Ser Thr Ser Gln Ser Val His Val Thr Val Lys Val Pro Pro Phe Ile Gln Pro Phe Glu Phe Pro Arg Phe Ser 600 Ile Gly Gln Arg Val Phe Ile Pro Cys Val Val Val Ser Gly Asp Leu Pro Ile Thr Ile Thr Trp Gln Lys Asp Gly Arg Pro Ile Pro Gly Ser Leu Gly Val Thr Ile Asp Asn Ile Asp Phe Thr Ser Ser Leu Arg Ile 650 Ser Asn Leu Ser Leu Met His Asn Gly Asn Tyr Thr Cys Ile Ala Arg Asn Glu Ala Ala Ala Val Glu His Gln Ser Gln Leu Ile Val Arg Val 680 Pro Pro Lys Phe Val Val Gln Pro Arg Asp Gln Asp Gly Ile Tyr Gly 695 Lys Ala Val Ile Leu Asn Cys Ser Ala Glu Gly Tyr Pro Val Pro Thr Ile Val Trp Lys Phe Ser Lys Gly Ala Gly Val Pro Gln Phe Gln Pro 730 Ile Ala Leu Asn Gly Arg Ile Gln Val Leu Ser Asn Gly Ser Leu Leu Ile Lys His Val Val Glu Glu Asp Ser Gly Tyr Tyr Leu Cys Lys Val Ser Asn Asp Val Gly Ala Asp Val Ser Lys Ser Met Tyr Leu Thr Val Lys Ile Pro Ala Met Ile Thr Ser Tyr Pro Asn Thr Thr Leu Ala Thr

- Gln Gly Gln Lys Lys Glu Met Ser Cys Thr Ala His Gly Glu Lys Pro 805 810 815
- Ile Ile Val Arg Trp Glu Lys Glu Asp Arg Ile Ile Asn Pro Glu Met 820 825 830
- Ala Arg Tyr Leu Val Ser Thr Lys Glu Val Gly Glu Val Ile Ser 835 840 845
- Thr Leu Gln Ile Leu Pro Thr Val Arg Glu Asp Ser Gly Phe Phe Ser 850 855 860
- Cys His Ala Ile Asn Ser Tyr Gly Glu Asp Arg Gly Ile Ile Gln Leu 865 870 875
- Thr Val Gln Glu Pro Pro Asp Pro Pro Glu Ile Glu Ile Lys Asp Val 885 890 895
- Lys Ala Arg Thr Ile Thr Leu Arg Trp Thr Met Gly Phe Asp Gly Asn $900 \hspace{1.5cm} 905 \hspace{1.5cm} 910$
- Ser Pro Ile Thr Gly Tyr Asp Ile Glu Cys Lys Asn Lys Ser Asp Ser 915 920 925
- Trp Asp Ser Ala Gln Arg Thr Lys Asp Val Ser Pro Gln Leu Asn Ser 930 935 940
- Ala Thr Ile Ile Asp Ile His Pro Ser Ser Thr Tyr Ser Ile Arg Met 945 950 955 960
- Tyr Ala Lys Asn Arg Ile Gly Lys Ser Glu Pro Ser Asn Glu Leu Thr 965 970 975
- Ile Thr Ala Asp Glu Ala Ala Pro Asp Gly Pro Pro Gln Glu Val His 980 985 990
- Leu Glu Pro Ile Ser Ser Gln Ser Ile Arg Val Thr Trp Lys Ala Pro 995 1000 1005
- Lys Lys His Leu Gln Asn Gly Ile Ile Arg Gly Tyr Gln Ile Gly Tyr 1010 1015 1020
- Arg Glu Tyr Ser Thr Gly Gly Asn Phe Gln Phe Asn Ile Ile Ser Val 1025 1030 1035 1040
- Asp Thr Ser Gly Asp Ser Glu Val Tyr Thr Leu Asp Asn Leu Asn Lys 1045 1050 1055
- Phe Thr Gln Tyr Gly Leu Val Val Gln Ala Cys Asn Arg Ala Gly Thr 1060 1065 1070
- Gly Pro Ser Ser Gln Glu Ile Ile Thr Thr Thr Leu Glu Asp Val Pro 1075 1080 1085
- Ser Tyr Pro Pro Glu Asn Val Gln Ala Ile Ala Thr Ser Pro Glu Ser 1090 1095 1100
- Ile Ser Ile Ser Trp Ser Thr Leu Ser Lys Glu Ala Leu Asn Gly Ile 1105 1110 1115 1120
- Leu Gln Gly Phe Arg Val Ile Tyr Trp Ala Asn Leu Met Asp Gly Glu 1125 1130 1135

- Leu Gly Glu Ile Lys Asn Ile Thr Thr Gln Pro Ser Leu Glu Leu 1140 1145 1150
- Asp Gly Leu Glu Lys Tyr Thr Asn Tyr Ser Ile Gln Val Leu Ala Phe 1155 1160 1165
- Thr Arg Ala Gly Asp Gly Val Arg Ser Glu Gln Ile Phe Thr Arg Thr 1170 1175 1180
- Lys Glu Asp Val Pro Gly Pro Pro Ala Gly Val Lys Ala Ala Ala 1185 1190 1195 1200
- Ser Ala Ser Met Val Phe Val Ser Trp Leu Pro Pro Leu Lys Leu Asn 1205 1210 1215
- Gly Ile Ile Arg Lys Tyr Thr Val Phe Cys Ser His Pro Tyr Pro Thr 1220 1230
- Val Ile Ser Glu Phe Glu Ala Ser Pro Asp Ser Phe Ser Tyr Arg Ile 1235 1240 1245
- Pro Asn Leu Ser Arg Asn Arg Gln Tyr Ser Val Trp Val Val Ala Val 1250 1255 1260
- Thr Ser Ala Gly Arg Gly Asn Ser Ser Glu Ile Ile Thr Val Glu Pro 1265 1270 1275 1280
- Leu Ala Lys Ala Pro Ala Arg Ile Leu Thr Phe Ser Gly Thr Val Thr 1285 1290 1295
- Thr Pro Trp Met Lys Asp Ile Val Leu Pro Cys Lys Ala Val Gly Asp 1300 1305 1310
- Pro Ser Pro Ala Val Lys Trp Met Lys Asp Ser Asn Gly Thr Pro Ser 1315 1320 1325
- Leu Val Thr Ile Asp Gly Arg Arg Ser Ile Phe Ser Asn Gly Ser Phe 1330 1340
- Ile Ile Arg Thr Val Lys Ala Glu Asp Ser Gly Tyr Tyr Ser Cys Ile 1345 1350 1355 1360
- Ala Asn Asn Asn Trp Gly Ser Asp Glu Ile Ile Leu Asn Leu Gln Val 1365 1370 1375
- Gln Val Pro Pro Asp Gln Pro Arg Leu Thr Val Ser Lys Thr Thr Ser 1380 1385 1390
- Ser Ser Ile Thr Leu Ser Trp Leu Pro Gly Asp Asn Gly Gly Ser Ser 1395 1400 1405
- Ile Arg Gly Tyr Ile Leu Gln Tyr Ser Glu Asp Asn Ser Glu Gln Trp 1410 1415 1420
- Gly Ser Phe Pro Ile Ser Pro Ser Glu Arg Ser Tyr Arg Leu Glu Asn 1425 1430 1435 1440
- Leu Lys Cys Gly Thr Trp Tyr Lys Phe Thr Leu Thr Ala Gln Asn Gly 1445 1450 1455
- Val Gly Pro Gly Arg Ile Ser Glu Ile Ile Glu Ala Lys Thr Leu Gly $1460 \hspace{1.5cm} 1465 \hspace{1.5cm} 1470$

Lys Glu Pro Gln Phe Ser Lys Glu Gln Glu Leu Phe Ala Ser Ile Asn 1475 1480 1485

Thr Thr Arg Val Arg Leu Asn Leu Ile Gly Trp Asn Asp Gly Gly Cys 1490 1495 1500

Pro Ile Thr Ser Phe Thr Leu Glu Tyr Arg Pro Phe Gly Thr Thr Val 1505 1510 1515 1520

Trp Thr Thr Ala Gln Arg Thr Ser Leu Ser Lys Ser Tyr Ile Leu Tyr 1525 1530 1535

Asp Leu Gln Glu Ala Thr Trp Tyr Glu Leu Gln Met Arg Val Cys Asn $1540 \hspace{1.5cm} 1545 \hspace{1.5cm} 1550 \hspace{1.5cm}$

Ser Ala Gly Cys Ala Glu Lys Gl
n Ala Lys Glu Ala Ala Arg Cys Lys 1555 1560 1565

Glu Phe Ser 1570 15

That which is claimed is:

- 1. Isolated nucleic acid encoding a mammalian DS-CAM member of the Immunoglobin (Ig) superfamily of proteins, or a fragment thereof, wherein said DS-CAM comprises at least 7 Ig-like domains.
- 2. Isolated nucleic acid according to claim 1, wherein said nucleic acid, or fragments thereof, is selected from:
- 10 (a) DNA encoding the amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9,
 - (b) DNA that hybridizes to the DNA of (a) under moderately stringent conditions, wherein said DNA encodes biologically active DS-CAM, or
 - (c) DNA degenerate with respect to either (a) or(b) above, wherein said DNA encodes biologically active DS-CAM.
- 3. A nucleic acid according to claim 2, wherein 20 said nucleic acid hybridizes under high stringency conditions to the DS-CAM coding portion of nucleotides SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10.
- 4. A nucleic acid according to claim 2, wherein the nucleotide sequence of said nucleic acid is substantially the same as that set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10.
- 5. A nucleic acid according to claim 2, wherein the nucleotide sequence of said nucleic acid is the same as that set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10.

- 6. A nucleic acid according to claim 2, wherein said nucleic acid is cDNA.
- A vector containing the nucleic acid of claim
- 5 8. Recombinant cells containing the nucleic acid of claim 2.
- 9. An oligonucleotide comprising at least 15 nucleotides capable of specifically hybridizing with a sequence of nucleic acids of the nucleotide sequence set 10 forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9 or SEQ ID NO:10.
 - 10. An oligonucleotide according to claim 9, wherein said oligonucleotide is labeled with a detectable marker.
- 15 11. An antisense oligonucleotide capable of specifically binding to mRNA encoded by said nucleic acid according to claim 2.
- 12. A kit for detecting the presence of the DS-CAM cDNA sequence comprising at least one oligonucleotide 20 according to claim 10.
 - 13. An isolated DS-CAM protein comprising at least 7 Ig-like domains.
- 14. A DS-CAM protein according to claim 13, further characterized by being expressed in a significantly higher amount in brain versus lung, liver or kidney.
 - 15. A DS-CAM protein according to claim 13, wherein the amino acid sequence of said protein comprises substantially the same protein sequence set forth in

SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9.

- 16. A DS-CAM protein according to claim 15 comprising the same amino acid sequence as the protein 5 sequence set forth in SEQ ID NO:2 or SEQ ID NO:11, or the DS-CAM coding region of SEQ ID NO:7, SEQ ID NO:8 or SEO ID NO:9.
- 17. A DS-CAM protein according to claim 13, wherein said protein is encoded by a nucleotide sequence

 10 comprising substantially the same nucleotide sequence set forth in SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:8,

 SEQ ID NO:9, or SEQ ID NO:10.
- 18. A DS-CAM protein according to claim 17, wherein said protein is encoded by a nucleotide sequence
 15 comprising SEQ ID NO:1 or SEQ ID NO:10.
- A DS-CAM protein according to claim 13, wherein said protein is encoded by a nucleotide sequence that comprises substantially the same nucleotide sequence as nucleotides 453-6185 set forth in SEQ ID NO:1,
 nucleotides 453-5168 set forth in SEQ ID NO:10,
 SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9.
- 20. Method for expression of a DS-CAM-related protein, said method comprising culturing cells of claim 8 under conditions suitable for expression of said DS-CAM protein.
 - 21. An isolated anti-DS-CAM antibody having specific reactivity with a DS-CAM protein according to claim 13.
- 22. Antibody according to claim 21, wherein said 30 antibody is a monoclonal antibody.

- 23. An antibody according to claim 21, wherein said antibody is a polyclonal antibody.
- 24. A composition comprising an amount of the antisense oligonucleotide according to claim 11 effective to inhibit expression of a DS-CAM protein and an acceptable hydrophobic carrier capable of passing through a cell membrane.
 - 25. A transgenic nonhuman mammal expressing exogenous nucleic acid encoding a DS-CAM protein.
- 26. A transgenic nonhuman mammal according to claim 25, wherein said nucleic acid encoding said DS-CAM protein has been mutated, and wherein the DS-CAM protein so expressed is not native DS-CAM.
- 27. A transgenic nonhuman mammal according to claim 15 25, wherein the transgenic nonhuman mammal is a mouse.
- 28. A method for identifying nucleic acids encoding a mammalian DS-CAM protein, said method comprising: contacting a sample containing nucleic acids with an oligonucleotide according to claim 9, wherein said contacting is effected under high stringency hybridization conditions, and identifying compounds which hybridize thereto.
- 29. A method for detecting the presence of a mammalian DS-CAM protein in a sample, said method comprising contacting a test sample with an antibody according to claim 21, detecting the presence of an antibody-DS-CAM complex, and therefor detecting the presence of a mammalian DS-CAM in said test sample.
- 30. Single strand DNA primers for amplification of 30 DS-CAM nucleic acid, wherein said primers comprise a

nucleic acid sequence derived from the nucleic acid sequence set forth as SEQ ID NO: 1, SEQ ID NO:10, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9.

ABSTRACT OF THE DISCLOSURE

In accordance with the present invention, there are provided novel Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

Figure 1 -

Figure 2

S	ΕQ	ID	NO:2
1	MWII	ALSI	FGSFANVFSEDLHSS
24	LYF STL	/NASI	Qevvfasttgti.vp <u>q</u> paagippytirwylatgeeiydvpgirhvhp ngt lqifpfppssf YY q ta enpe gkirsqdvhikavlrepy
127	TVR YR C	VEDQI ITRH	ttmrgnvavfkqiipssveayitvvswekdtvslvsgsrflitstgalyikdvqnedglyn Rytgetrqsnsarlfvsdpansap
2 26	SIL E VS	DGFD: NRYG	irkamagorvelp o kalghpepdyrwlkdnmplelsgrfoktvtgllienirpsdsgsyv o fakvigrlyvkopl ka
317	TIS CF	PRKV RKDK	KSSVGSQV5LS <u>C</u> SVTGTEDQELSWYRNGEILNPGKNVRITGINHENLIMDHMVKSDGGAYQ LSAQDYVQVVLEDGTPKI
410	IS#	FSEK VYR <u>C</u>	vvspaepvslm <u>o</u> nvkgtplptitwtldddpilkggshrisomitsegnvvsyl nisssov r Tammbagvvlyqarinvrgpas
507	IRI	MKNI VLVQI	TALAGRDTYIH <u>C</u> RVIGYPYYSIKWYKNSNLLPFNHRQVAFENNGTLKLSDVQKEVDEGEYT POLSTSQSVHYTVKVPPFIQPFE
604	FP!	RFSIC	QRVFIP C VVVSGDLPITITWQKDGRPIPGSLGVTIDNIDFTSSLRI <i>SN</i> LSLMHN GNTT<u>C</u>IA EHQSQLIVRVPPKFVVQPR
696	DQ	DGIY(VSND	ckaviln <u>c</u> saegypyptivwkfskgagypqfqpialngriqvls ngs llikhvveedsgyyl Vgadyskshyltykipamits
790	GE GE	nttl FSCH	atqqqkemsqtahgekplivrwekedriinpemarylvstkevgeevistlqilptvreds Ainsygedrgiiqlivqeppd
88	B PE	EIEI IRMY	kdvkartitlrwtmgfdgnspitgydieckn ks dswdsaqrtkdvspqlnsatiidihpsst Aknrigksepsneltitadeaa
98	4 PI	GPPQ ILNKE	evrlepissosirvtwkapkkhlongiirgyoigyreystggnfofniisvdtsgdsevytl Tgyglvvqacnragtgpssoeiitttled
108	7 VI	ekyte Ekyte	envoalatspesisismstlskealngilogfrviywanlmdgelgeikmitttopsleldg Mbiqvlaftragdgvrseqiftrtk
118	16 E	DVPG1 RQYS7	PAGVKAAAASASMYFVSWLPPLKLNGIIRKYTVFCSHPYPTVISEFEASPDSFSYRIP NLSR MVVAVTSAGR GNSSE IITVEPL
125	32 A	Kapai Aed s(kiltfsgtvttpmmkdivlp <u>c</u> kavgdpspavkwmkdsmgtpslvtidgrrsifsmgæfiirtv Gyys <u>C</u> iannnwgsdeiiinlq
13	78 V	<u>TM.</u> K	DOPRLTVSKTTSSSITLSWLPGDNGGSSIRGYILQYSEDNSEQWGSFPISPSERSYRLENLKC FTLTAQNGVGPGRISEIIEAKTL
14	72 G	KEPQ ATWY	FSKEGELFASINTTRVRINLIGWNDGGCPITSFTLEYRPFGTTVWTTAGRTSLSKSYILYDLQ ELGWRVCNSAGCAEKQANFATLNYDGSTIPPLIKSVVQNEEGLITNEGLK
15	95 t	(LVT)	SCILVGVLLLFVLLLVV
16	17	RRRR	egrikrirdaksiaehimskntrtsdtiskoootirmhidipraoliieerdtmetiddrstv Degeaakoksitythtyrosysgatgelydysdarpotnettrrnakagetarnryasomti

MRPHFTISAHTLITUMRLPTPRAAGSVDKESDSYSVSPSQDTDRARSSMVSTESASSTYELARAYEH
AMMEEQLRHAKFTITECFISDTSSEQLTAGTNEYTDSLTSSTPSESGICKFTASPPKPQDGGRVMMA
VPKAIGQVTSYICLHTLEWTFC

Figure 3

揺

, k

