1. Нехай A і B відрізняються скінченною кількістю елементів. Якщо A – PM, то B – PM. Довести.

Маємо таку теорему, що для РМ об'єднання, перетин і доповнення скінченної кількості рекурсивних множин ϵ рекурсивною множиною. Отже будь-яка множина, яка утворюється шляхом обчислювальних операацій над A, також буде PM.

Оскільки $A \in PM \Rightarrow A \cap B \subseteq A$, отже $A \cap B$ також $\in PM$.

За умовою, множини А та В відрізняються лие скінченною кількістю елементів:

- Множина В\А є скінченною
- Множина А\В є скінченною

Тоді множину В можна представити як: $B = (A \cap B) \cup (B \setminus A)$ Об'єднання $A \cap B$ та $B \setminus A$ є операціями, що зберігають рекурсивність згідно з теоремою, а отже **В також** є **РМ**

Характеристична функція множини В, $\chi B(x)$:

Якщо $x \in (A \cap B)$, то $\chi B(x) = \chi A(x)$

Якщо $x \in (B \setminus A)$, то $\chi B(x)=1$

Якщо $x \notin B$, то $\chi B(x)=0$

Всі перевірки ϵ обчислвальними, а отже $\chi B(x)$ хаарктеристина функція РМ.

2. Функція f — ЧРФ, але не РФ. Область визначення функції $\mathbf{g}(\mathbf{x}) = \mathbf{m}_{\mathbf{y}}(\mathbf{f}(\mathbf{y}) = \mathbf{x})$ є ПРМ. Довести.

Функція g(x) визначена для таких x, для яких існує y, що f(y)=x. Тобто якщо x належить до області значень таких функції f, то g(x) визначена.

Якщо f приймає лише скінченну множину значень, тоді область визначення функції g, яка збігається з областю значень f, також є скінченою множиною. Кожна скінченна множина натуральних чисел є ПРМ, що можна показати через побудову її характеристичної функції:

$$\chi(x)=sg(|x-a_0||x-a_1||x-a_2|...|x-a_n|),$$

де $\{a_0, a_1, ..., a_n\}$ – скінч. множ. натур. чисел є ПРФ

Отже область D_g , що збігається з E_f , яка може бути ПР, ε ПРМ

3. Функція не є РФ. Довести.

$$w(x) = \begin{cases} 0, U(x,x) > 1 \\ 1, в інших випадках \end{cases}$$

Припустимо , що w(x)- $P\Phi$, тоді для неї існує універсальна $P\Phi$ U(y,x), яка може обчислювати будь-яку $P\Phi$ за номером у і аргументом x.

Нехай х=у. Тоді: $w(y)=\{0, U(y,y)>1; 1, в інших випадках ⇒ <math>w(y)=U(y,y)$

Випадки:

Якщо w(y)=0, то за визначенням w(x)=U(y,y)>1

Якщо w(y)=1, то $U(y,y) \le 1$ або U(y,y)

Отримаємо суперечність:

Якщо w(y)=0, то U(y,y)>1, але за визначенням w(y)=U(y,y), тобто w(y)=0, що суперечить умові, що U(y,y)>1.

Якщо w(y)=1, то $U(y,y) \le 1$, але за визначенням w(y)=U(y,y), це означає, що $U(y,y) \le 1$, що суперечить умові, що w(y)=0 для U(y,y)>1

Через отриману суперечність- припущення, що $w(x) \in P\Phi$, ε хибним. Отже, функція w(x) не ε $P\Phi$

4. Побудувати ПРФ, яка за номерами Кліні функцій f(x) і g(x) обчислює номер Кліні функції f(g(x)).

Нехай n_f - номер f(x), n_g - номер g(x). Ці номери відображають відповідні функції через універсальну функцію Кліні T(x,n), де n-номер функції x-її аргумент. Для побудови номера f(g(x)) необхідно виконати кодування пари (n_f, n_g) , що можна зробити через $\Pi P\Phi$ пари Кантора:

$$c(a,b) = \frac{(a+b)(a+b+1)}{2} + b$$

Отже обчислватимо номер за формулою $n_{f(g(x))} = c(n_f, n_g)$

Алгоритм кодування пари чисел n_f та n_g за формулою Кантора ε ПР, а отже й побудована функція буде також ПР.

5. Множина ЧРФ – зліченна. Довести.

Відображення, яке кожній ЧРФ f(x) ставить у відповідність номер n, ε ін'єктивним якщо $f(x)\neq g(x)$, то машини T(n,x) і T(m,x) мають різні номери n і m ($n\neq m$). Крім того, множина M номерів нескінченна, бо

$$f_1(x)=x=T(n_1,x);$$

$$f_2(x)=x+1=T(n_2,x);$$

.

Отже з цього маємо бієцкії: $N \leftrightarrow M \leftrightarrow \mathsf{ЧР}\Phi$