EE4305 Introduction to Fuzzy/Neural Systems

Problem-Solving 4

1. A fuzzy system contains the following two fuzzy rules

if
$$X$$
 is P_1 then Y is Q_1

if X is
$$P_2$$
 then Y is Q_2

where the fuzzy sets P_1 , P_2 , Q_1 and Q_2 are defined by

$$P_1 = 1/1 + 0.5/2 + 0/3$$

$$Q_1 = 0.4/4 + 0.5/5 + 0.6/6$$

$$P_2 = 0.1/1 + 0.4/2 + 1/3$$

$$Q_2 = 0.1/4 + 0.2/5 + 0.3/6$$

For a crisp input of $x^* = 2$, apply the fuzzy inference to obtain the output fuzzy set F of the system. Defuzzify F using the center-of-area method.

2. Conduct a simulation of an automobile cruise control system. Let speed (v) = 0 to 100 (mph), angle of inclination of the road $(\theta) = -10$ to 10 degrees, and throttle position (T) = 0 to 10. The dynamics of the system are given by the following:

$$T = k_1 v + \theta k_2 + m\dot{v}$$

$$\dot{v} = v(n+1) - v(n)$$

$$T(n) = k_1 v(n) + \theta(n)k_2 + m(v_{n+1} - v_n)$$

So,

$$v_{n+1} = \left(1 - \frac{k_1}{m}\right) v(n) + T(n) - \frac{k_2}{m} \theta(n)$$
$$= k_a v(n) + T(n) - k_b \theta(n)$$

where T = throttle position; $k_1 =$ viscous friction; v = speed; $\theta =$ angle of incline;

$$k_2 = mg\sin\theta$$
; $\dot{v} = \text{acceleration}$; $m = \text{mass}$; $k_a = 1 - \frac{k_1}{m} = 0.9$; and $k_b = \frac{k_2}{m} = 0.1$.

The membership function for speed is determined by the cruise control setting, which is assumed to be 50 mph. The membership functions are shown in Figure 1 and the rules are presented in Table 1. The initial condition of speed v=52.5 mph. Conduct 4 graphical simulation cycles for this system using the center-of-area defuzzification method. Use an angle of incline $\theta=-5^{\circ}$ for the first 2 simulations and an angle of incline $\theta=-2.5^{\circ}$ for the next 2 simulation cycles.

Figure 1

Table 1

Throttle position (T)	Inclination of the road (θ)		
Speed (v)	Up	Level	Down
High	LM	LM	Low
ОК	HM	Med	LM
Low	High	HM	НМ