

Fig. 1

Fig. 2A

Fig. 2B

Fig. 3

Fig. 4

Fig. 5

Fig. 6A

Fig. 6B

Expression of P501S by the Baculovirus Expression System

0.6 million high 5 cells in 6-well plate were infected with an unrelated control virus BV/ECD_PD (lane 2), without virus (lane 3), or with recombinant baculovirus for P501 at different MOIs (lane 4 – 8). Cell lysates were run on SDS-PAGE under the reducing conditions and analyzed by Western blot with a monoclonal antibody against P501S (P501S-10E3-G4D3). Lane 1 is the biotinylated protein molecular weight marker (BioLabs).

Fig. 7

Figure 8. Mapping of the epitope recognized by 10E3-G4-D3

Fig. 8

Figure 1. Schematic of P501S with predicted transmembrane, cytoplasmic, and extracellular regions

Underlined sequence: Predicted transmembrane domain; **Bold sequence:** Predicted extracellular domain;
Italic sequence: Predicted intracellular domain. Sequence in bold/underline, used to generate polyclonal rabbit serum

P501S
M**VQYVAVVAVTAAK** A**CQIIVNLLSIQVCF** A**ACITVYVPPPLTEVNEVKEN** T**TYVLCGCPYLGIVCYCPYLGLV**C**YCPYLGSAS**
I**DIVWRCGIVCIRRIP** E**IVWALSIQLLSLPPIRACWV** A**GIIICPPIWPE** I**AIIILGCGYGLDIFCGQVCFPL**
R**VALISLHFERDPPDTCRQ** A**YYSYVAVMISLGIQVQVTPA** D**WIVTSVATAPVLCGQW**
C**LHQLIATLHLI**,**F****CYVAVPLH**,**Y****AKTVVACIIPFVCI**,**N****SPVTCVPI**,**S****PTVCRARLAFRN**,**G****IAJ**
italic sequence
M**CSLQGLLQCLASLYSLSVY** M**DRVVCCTRAVWV** S**YVAVIVPVA** M**DTGTTKARRVY** P**EGYV**
T**IG**
T**IGCETISALQQLYPLASLY** H**EKQKVFLPKYRCGDTGASSVEDSI** M**TSFIIJCPKPGAPPFNCIVGAGCSGL**,
J**IPPIPPIPACASACCOVSIVVWVNGKRC** I**UUTAHNU**,**S****ATLSSQVAPSLI**: M**GSIIVQLSQS**
V**TA****YMVSAAGLGLVALYPAT** Q**VVFIDKSDIAKYS**

Localization of domains predicted using **IMMTOPI** (C.I.R. Tusnády and I. Simon (1998) Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to topology Prediction. *J. Mol. Biol.* 283, 489-506,

Genomic Map of (5) Corixa Candidate Genes

Fig. 10

FIGURE 4. Elisa assay of rabbit polyclonal antibody specificity

Fig. 11

10 20 30 40 50 60 70
 GTCACTTAGGAAAAGGTGTCTTCCGGCAGCCGGGCTCAGCATGAGGAACAGAAGGAATGACACTCTGG 70
 ACAGCACCCGGACCCCTGTACTCCAGCGGTCTCGGAGCACAGACTTGTCTTACACTGAAAGCGACTTGGT 140
 GAATTTTATTCAAGCAAATTTAAGAAAACGAGAAATGTGTCTTCTTACCAAAGATTCCAAGGCCACGGAG 210
 AATGTGTSCAAGTGTGGCTATGCCAGAGGCAGCACATGGAAGGCACCCAGATCAACCAAAGTGAGAAAT 280
 GCAACTACAAGAAAACACACCAAGGAATTCTACCGACGCCCTGGGGATATTAGTTGAGACACTGGG 350
 360 370 380 390 400 410 420
 GAAGAAAGGGAAGTATAACGTCTGTCTGCACACGGACCGGAAATCCTTACGAGCTGCTGACCCAG 420
 CACTGGCACCCTGAAAACAACACCTGGTCATTCTGTGACCGGGGCCAAGAACCTTCGCCCTGAAGC 490
 CGCGCATGCCAAGATCTTACGCCGCTCATCTACATCGGGCAGTCAGGTTGGATCTACGGG 560
 AGGCACCCATTATGGCCTGACGAAGTACATCGGGAGGTGGTGAGAGATAACACCATCAACGGAGTTCA 630
 GAGGAGAATATTGTGGCATTGGCATAGCAGCTGGGCTTCAACCGGGACACCCCTCATCAGGA 700
 710 720 730 740 750 760 770
 ATGGCGATGCTGAGGGCTATTAGGGCACTGACCTTACGGATGACTTCACAAAGGATCCACTGTATAT 770
 CTGGACAAACGACACACAAATTGGCTGCTGGACAAATGGCTGTCATGGACATCCCACCTGCTGAAGCA 840
 AGGCTCGGAATCAGCTAGAGAAGCAATCTCTGACGCACTTACAGATTCAAGATTCAACACTATGGTGGCAAGA 910
 TCCCCATTGTGTGTTGGCCAAAGGAGGTGGAAAGGACATTGAAAGCCATCAATAACCTCCATCAAAAG 980
 TAAATTCCTTGTGTGGTGGTGGAGGCTGGGGCGGATGGCTGATGCTGCTAGGCTGGTGGAGGTG 1050
 1060 1070 1080 1090 1100 1110 1120
 GAGGATGCCCGACATCTTCTGCCGTCAAGGAGAAGCTGGCTGCCCTTTACCCCGCAGGGTGTCTGGG 1120
 TGCTGAGGAGGGAGACTGAGAGTTGGATCAAATGGCTAAAGAAATCTGAAATGTTCTCACCTATTAAAC 1190
 AGTTATTAAATGAAAGAAAGCTGGGGATGAAATTTGTGACGCACTGCCATCTCTACGCTCTATACAAAGCC 1260
 TCAGCACCAAGTGAAGCAAGACAAAGGATAACTGGAAAGGGCAGTGTGAAGCTTCTCTGGAGTGGAAACCGAG 1330
 TGGACTTACCCAAATGATGAGATTTCACCAATGACCCCGGATGGAGCTGCTGACCTCAAGAAAGTCAT 1400
 1410 1420 1430 1440 1450 1460 1470
 GTTTCAGGGCTCTCATAAAGGACAGACCCAAAGTTGTCGCCCTCTTCTGGAGAAATGGCTGAAACCTACGG 1470
 AAGTTTCTCACCCATGATGCTCTCACTGAACTCTTCTCAACCCACTTCAGCACGCTTGTGTAACCGGAATC 1540
 TGCAGATGCCAAGAATTCCATAATGATGCCCTCTCACTGTTCTGGAAACTGGTTGCGAACTTCGG 1610
 AAGAGGCTTGGAAAGGAAGGAAAGGAAATGGCGGGAGAGATGGACATAGAACTCCACGAGGTCTCT 1680
 ATTACTCGGCACCCCTGCAAGCTCTTCTGAGGAAATTCTCAAGAAATAGAAGGAAACTCTCCAAAG 1750
 1760 1770 1780 1790 1800 1810 1820
 TCATTTGGGAGGAGACCAAGGGGCTGCACTCTGGCAAGGCCCTGCCAGCCAGCAAGCTTCTGAAAGACTCTGGC 1820
 CAAAGTGAAGAAAGGACATCAATGCTGTTGGGGAGTGGAGGAGCTGGCTAAATGAGTACGAGAACCCGGGT 1890
 GTTGAAGCTGTCACTTCACTGCTACAGCAACGGATGAGCTTCTGCAAGAACAGCTGGCTGTTGCTTCTGT 1960
 AAGCTTGGGCTGGAAAGCAACTGCTGGAGCTGGGGTGGAGGCAAGGAGACCAAGATTTCAACCGGCCAGCC 2030
 TGGGGTCCAGAATTCTTCTAAGCAATGGGAAAGAGATTCCCGAGAGACCCAAAGAAGCAACTGGAGATT 2100

Fig. 12A (1)

Fig. 12A(2)

Fig. 12A(3)

10 20 30 40 50 60 70
 MRNRRNOTL0STRTLYSSASRSTDLSYESDLVNFIOANFKKRECVFETKDSKATENVCKCGYAQS0HME 70
 GTQIN0SEKWNYKKHTKEFPITOAFGDIQFETLGKKGYIRLSCOTDAEILYELLTOWHHLKTPNLVISVT 140
 GGAKNFAALKPRMRKIFSRLIYIAQSKGAWILTGGTHYGLTKYIGEVVRDNTISRSSEENIVAIIGIAAWGM 210
 VSNR0TLLRNCOAEGYFLAOYLMDDFTRDPLYILDNNHHTLLLVDNGCHGHPTVEAKLRNOLEKHISERT 280
 IQDSNYGGKIPIVCFAOGGGKETLKAINTSIKNKIPCVVVVEGSGRIADVIASLVEVEDAPTSSAVKEKLV 350
 360 370 380 390 400 410 420
 RFLPRTVSRLSEEETESWIKWLKEILECSHLLTVKMEEAGDEIYSNAISYALYKAFSTSEQDKDNWNGO 420
 LKLLLEWNOLDLANDEIFTNDRRWESADLOEVMFTALIKDRPKFYRLFLENGLNLRKFLTHOVLTELSN 490
 HFSTLVYRNLGIAKNSYNDALLTFVWKLYANFRRGFRKEDRNGR0EM0TELHGVSPITRHPLQALFIWAI 560
 L0NKKELSKVIWECTRGCTLAALGASKLLKTAKYKNDINAAGESEELANEYETRAVELFECYSS0EDL 630
 AEQLLVYSCEAWGGSNCLELAYEATDQHFTAOPGVONFLSK0WYGEISRDTKNWKIIILCLFIIPLYGCGF 700
 710 720 730 740 750 760 770
 VSFRKKPVCKHKLLWYYVAFFTSPFVYFSWNNVYFYIAFLLLFAYVLLMDFHSVPHPPLEVLYSLYFVLF 770
 CDEIVROWYVNGVNYFTDLWNVMOTLGLFYIAGIVFRHSSNKSSLYSGRVIFCLOYEITFLRLTHIFTV 840
 SRNLGPKIIML0RMLIDVFFFFLFAYWMYAFGVARCGILRONEQRWRWIFRSVIVYEPYLAMFGQVPSDV 910
 OGTTYDFAHCTFTGNESKPLCYELDEHNLPRFPEVITIPLVCIYMLSTNILLVNLVAMFGYTVGTVGEN 980
 NDCYWKF0RYFLVOEYCSRLNIPFPFIVF1YF1MVVKCFXCCC0KEKNMESSVCCFKNEDNETLAWEGYM 1050
 1060 1070 1080 1090 1100 1110 1120
 KENYLVKINTKANDTSEEMRHRFRODCKLN0LKGELKEIANKIK. 1096

Fig. 12B