Mathématiques discrètes : Suites récurrentes

Definitions

lécurrence néaire

Equation de partition

Remarques

Mathématiques discrètes : Suites récurrentes

Licence — Université Lille 1
Pour toutes remarques : Alexandre.Sedoglavic@univ-lille1.fr

Semestre 3 — 2008-09

Une *suite* est un ensemble E d'éléments indexés par les entiers naturels. Elle peut être assimilée à une application de $\mathbb N$ dans E.

Les *relations de récurrence* sont des règles de définition de suites d'éléments : chaque élément étant défini en fonction des précédents.

Ces relations interviennent souvent dans l'estimation de la complexité de résolution de problèmes se ramenant à celle de cas de taille plus petite — du type *diviser pour régner* comme les stratégies à base de dichotomie.

Ce cours traitera principalement des relations de récurrence linéaires.

Définitions

Récurrence inéaire

Equation de

Kemarques

Notation

Classiquement, on note une suite $(u_n)_{n\in\mathbb{N}}$. Ainsi, une relation f de récurrence se présente sous la forme :

$$u_n = f(u_{n-1}, \ldots, u_{n-k}).$$

Les relations de récurrence peuvent se classer suivant 3 critères :

- les propriétés de la fonction f (linéarité, etc).
- ▶ l'ordre k de la récurrence.
- abscence ou non de paramètre dans la fonction f (relation homogène ou non).

Définitions

inéaire

Equation of partition

Remarques

La suite $(u_n)_{n\in\mathbb{N}}$ des puissances de u_0 est définie par la relation de récurrence linéaire, homogène d'ordre $1: u_n = u_0 u_{n-1}$.

La suite $(u_n)_{n\in\mathbb{N}}$ des nombres factoriels est définie par la relation de récurrence non linéaire, non homogène d'ordre $1: u_n = nu_{n-1}$.

Les suites $(C_n^m)_{n\in\mathbb{N}}$ des coefficients binomiaux d'ordre m sont définies par les relations de récurrence linéaires homogènes $C_n^m = C_{n-1}^m + C_{n-1}^{m-1}$.

L'algèbre linéaire nous permet de résoudre toutes les récurrences linéaires. Nous ne considérons dans la suite que des cas particuliers de la théorie générale.

Définitions

Récurrence linéaire

Equation de partition

Remarques

Le cas homogène est le plus simple :

 $u_n = cu_{n-1}$

On obtient une forme close $u_n = c^n u_0$.

Le cas inhomogène correspond à la relation :

$$u_n = cu_{n-1} + r(n)$$

On obtient une forme close:

$$u_n = c^n u_0 + \sum_{i=0}^n r(n)c^{n-i},$$

(si le second membre r(n) se simplifie).

Remarques

Étant donnée une relation linéaire homogène d'ordre k:

$$u_n = c_1 u_{n-1} + \cdots + c_k u_{n-k}.$$
 (1)

et son polynôme caractéristique associé $p(x) = x^k - \sum_{i=1}^k c_i x^{k-i}$.

Proposition

L'ensemble des suites solutions de (1) forment un espace vectoriel V de dimension k.

Si p(x) a k racines distinctes $\{r_1, \ldots, r_k\}$, alors les k suites $(r_i^n)_{n \in \mathbb{N}}$ pour $i = 1 \ldots k$ forment une base de V.

Si p(x) a p racines distinctes $\{r_1, \ldots, r_p\}$ de multiplicité $\{m_1, \ldots, m_p\}$, alors les k suites $(n^j r_i^n)_{n \in \mathbb{N}}$ pour $i = 1 \ldots p$ et $j = 1 \ldots m_i$ forment une base de V.

Définitions

Récurrence linéaire

> quation de artition

Remarques

Étant donnée une relation linéaire homogène d'ordre k:

$$u_n = c_1 u_{n-1} + \cdots + c_k u_{n-k} + r(n).$$
 (2)

Proposition

L'ensemble des solutions de (2) est un espace affine de dimension k dont l'espace vectoriel associé est l'ensemble des solutions de l'équation homogène correspondante.

En conséquence, il faut déjà résoudre l'équation homogène et trouver une solution particulière de (2).

Remarques

Definition

Une relation de récurrence de la forme $u_n=f(u_{n/a})$ avec a constant est une équation de partition. Elle définie une suite récurrente $(u_n)_{n\in\{a^i|i\in\mathbb{N}\}}$ de manière unique.

L'étude de l'équation de partition $u_n = cu_{n/a} + d(n)$ se ramène à celle de la récurrence $v_{k+1} = cv_k + d(a^{k+1})$ par le changement de variable $v_n = u_{a^k}$.

Definitions

Récurrence inéaire

Equation of partition

Remarques

Il n'y a pas de méthode générale pour traiter les récurrences linéaires à coefficients variables.

Cette remarque est valable pour les récurrences non linéaires