Physics Presentation Særnaki C. Milmile	
Schaki C. Milmile Roll no. 20221161	9
O	
(18) A long coaxial cable carries a uniform volume	
charge density of on the inner cylinder (radius)	a)
outer cylindrical shell (nadius)	
outer cylindrical shell (nadiusb). This serrface cho is negative and is of just the wild to leave the	org
is negative and is of just the right magnitude	0 6
Find the electric hold in and at the reutral.	
(1) inside the ennex cylindere (3 <a), (2)="" between="" td="" the<=""><td></td></a),>	
Some Plot/E/ as a function of s.	
	6 11
$\begin{array}{c} 2_1 + 2_2 = 0 \\ \end{array}$	
5 = q1 0 = 52TTL1	
$\frac{6}{2\pi bl} = 62\pi bl$	-
$g = q_2$ $q_2 = g\pi a^2 l$ 3 cases.	3
$\pi a^2 l$ $\frac{1}{2} = \int \pi a^2 l$ $\frac{3 \text{ cases}}{5 < a}$	
Now, b>s >a field	tric 1
52TT b1 + 8TT a2 1 = 0 5>b 5= 9	C
TILL 626+9a2)=0	2
	6
	-
	2
	2
	2

For,

5<a

q'= 8x TTS2l

A = 2TTSl

$$E \oint dA = \frac{9 \text{ in}}{\epsilon_0}$$

EA = 9:in

E. 2/158 = Sts28

$$E_1 = \frac{3s}{260} \rightarrow s < a.$$

For, a < 5 26

E. 2HSX = gHazx Eo

$$E_2 = \frac{8a^2}{2865}$$