Лабораторна робота №3

Розв'язати задачу безумовної оптимізації для квадратичної функції:

$$f(x) = ax_1^2 + bx_1x_2 + cx_2^2 + dx_1 + ex_2 \rightarrow min$$
,

методом *покоординатного спуску*. Коефіцієнти *a,b,c,d,e* задані в таблиці.

№	а	b	0	d	0	
	a		c		e	
1.	1	2	2	-2	-3	
2.	7	1	1	-16	-3	
3.	2	2	1	-2	-6	
4.	1	2	3	-2	-3	
5.	3	2	5	-2	-3	
6.	1	-1	8	2	-1	
7.	4	2	5	-2	-3	
8.	6	2	1	6	6	
9.	1	-1	1	-2	1	
10.	3	2	1	-2	-3	
11.	3	2	2	-2	-3	
12.	8	2	1	-3	-6	
13.	3	2	3	-2	-3	
14.	9	5	1	6	2	
15.	2	2	4	-2	-3	
16.	7	-1	1	7	-4	
17.	3	1	1	1	5	
18.	7	5	1	6	3	
19.	4	2	3	-2	-3	
20.	9	1	1	2	-1	
21.	5	4	1	6	4	
22.	1	2	4	-2	-3	
23.	3	3	1	6	5	
24.	6	-1	1	-3	5	
25.	3	2	1	12	-6	
26.	3	4	2	-2	4	
27.	8	-2	1	-1	1	
28.	2	2	3	-2	-3	
29.	5	-2	1	-2	3	

Метод покоординатного спуску

Постановка задачі:

$$f(x) \rightarrow min, \quad x \in E^n$$
.

Загальна схема ітераційних методів для розв'язання задачі безумовної мінімізації має вигляд

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, \quad k = 0, 1, 2, \dots$$
 (1)

де $p^{(k)}$ – напрямок спадання функції f(x) (напрямок спуску) в точці $x^{(k)}$, вектор $p^{(k)} \in U(x^{(k)}, f)$, U – множина напрямків зменшення функції f(x) у точці $x^{(k)}$, α_k – параметр, який регулює довжину кроку вздовж $p^{(k)}$.

У методі покоординатного спуску за напрямок спуску $p^{(k)}$ вибирається один з координатних векторів $e_1,...,e_n$, де $e_i=(0,0,...,\frac{1}{i},...,0)$. Унаслідок цього в точці $x^{(k)}$ на i

кожній ітерації змінюється лише одна з координат $x_i^{(k)}$.

Нехай $x^{(0)}$ – початкове наближення, а α_0 – деяке дійсне число, тоді за методом покоординатного спуску для

$$k = 1: \begin{cases} y_1^{(1)} = x^{(1)} = x^{(0)} + \alpha_0 e_1 \\ y_2^{(1)} = x^{(2)} = x^{(1)} + \alpha_1 e_2 \\ \dots \\ y_n^{(1)} = x^{(n)} = x^{(n-1)} + \alpha_{n-1} e_n \end{cases}$$
 (2)

За формулами (2) буде реалізовано спуск за n внутрішніх ітерацій (n – розмірність простору E^n) з точки $x^{(0)}$ у точку $x^{(n)}$ за ламаною, що складається з відрізків прямих, які паралельні координатним осям.

Спуск по усім n координатам за формулами (2) складають одну **зовнішню ітерацію.**

Наступна друга зовнішня ітерація виконується за формулами:

$$k=2:\begin{cases} y_1^{(2)}=x^{(n+1)}=x^{(n)}+\alpha_ne_1\\ y_2^{(2)}=x^{(n+2)}=x^{(n+1)}+\alpha_{n+1}e_2\\ \dots\\ y_n^{(2)}=x^{(2n)}=x^{(2n-1)}+\alpha_{2n-1}e_n \end{cases}, \quad \text{i таке інше.}$$

Нехай k — номер чергової зовнішньої ітерації (k = 0,1,...), i — номер тієї координати, по якій проводиться спуск, тобто номер внутрішньої ітерації (i =1,2,...,n). Тоді ітераційна рекурентна формула, яка визначає наступне наближення до точки мінімуму, запишеться у вигляді:

$$y_i^{(k)} = x^{(k-1)n+i} = x^{(k-1)n+i-1} + \alpha_{(k-1)n+i-1} \cdot e_i, k = 0, 1, 2, \dots; i = 1, 2, \dots, n$$
 (3)

Після i = n лічильник числа зовнішніх ітерацій k збільшується на 1, а значення i = 1.

До початку обчислень задається мале довільне число $\varepsilon > 0$. Ітераційний процес (3) закінчується, коли

$$\left\| y_n^{(k+1)} - y_n^{(k)} \right\| \le \varepsilon. \tag{4}$$

Існують різні способи вибору величини α_k на k-ій ітерації. Основна задача при виборі α_k в процесах мінімізації: забезпечити виконання нерівності

$$f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right). \tag{5}$$

Розглянемо деякі способи вибору параметра α_k у методі покоординатного спуску. **Спосіб 1**.

Вибір параметра α_k у методі покоординатного спуску здійснюємо з умови мінімізації цільової функції вздовж напрямку $p^{(k)}$. Наприклад, величини $\alpha_{(k-1)n+i-1}$ в методі (3) можна визначити з умови

$$f\left(x^{(k-1)n+i-1} + \alpha_{(k-1)n+i-1} \cdot e_i\right) = \min_{\alpha \in E^1} f\left(x^{(k-1)n+i-1} + \alpha \cdot e_i\right)$$
 (6)

Спосіб 2.

Нехай $\alpha_k = \alpha_{k-1} > 0$. Обчислимо значення функції в точці $x = x^{(k)} + \alpha_k p^{(k)}$ та перевіримо виконання нерівності

$$f\left(x^{(k)} + \alpha_k p^{(k)}\right) < f\left(x^{(k)}\right). \tag{7}$$

Якщо нерівність (7) виконується, то приймемо $x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$, $\alpha_{k+1} = \alpha_k$ і перейдемо до наступної (k+2)-ї ітерації , або виберемо $\alpha_k = 2\alpha_{k-1}$. Якщо наступне значення f(x) менше за попереднє, то процес подвоєння можна продовжувати до тих пір, поки буде виконуватися умова (7).

У тому випадку, коли (7) не виконується, обчислимо значення функції f(x) в точці $x = x^{(k)} - \alpha_k p^{(k)}$ і перевіримо виконання нерівності

$$f\left(x^{(k)} - \alpha_k p^{(k)}\right) < f\left(x^{(k)}\right). \tag{8}$$

Якщо (8) виконується або приймаємо $x^{(k+1)} = x^{(k)} - \alpha_k p^{(k)}$, $\alpha_{k+1} = \alpha_k$ і переходимо до наступної (k+2)-ї ітерації, або як раніше вибираємо $\alpha_k = 2\alpha_{k-1}$. Якщо значення f(x) менше за попереднє то процес подвоєння можна продовжувати до тих пір, поки буде виконуватися умова (8).

Якщо за одну зовнішню ітерацію, яка складається з n внутрішніх ітерацій при переборі напрямків усіх координатних осей $e_1,...,e_n$ з кроком α_k реалізувалась хоча б одна вдала ітерація, то довжина кроку α_k не дробиться і зберігається на протязі наступного циклу з n ітерацій. Якщо серед останніх n ітерацій не було ні однієї вдалої,

то крок α_k дробиться: $\alpha_k = \frac{1}{2}\alpha_{k-1}$ і здійснюється перехід до наступної зовнішньої ітерації .

Алгоритм методу покоординатного спуску

Початковий етап. Вибрати число $\varepsilon > 0$ для зупинки алгоритму, початкову точку $x^{(0)}$, покласти $t_1 = x^{(0)}$, k = i = 1 і перейти до основного етапу.

Основний етап.

Крок 1. Вибрати $\alpha_{(k-1)n+i-1}$ таке, щоб виконувалася нерівність

$$f\left(x^{(k-1)n+i-1} + \alpha_{(k-1)n+i-1} \cdot e_i\right) < f\left(x^{(k-1)n+i-1}\right)$$

Покласти $x^{(k-1)n+i} = x^{(k-1)n+i-1} + \alpha_{(k-1)n+i-1} \cdot e_i$. Якщо i < n, то замінити i на i+1 та повернутися до кроку 1, якщо i = n, то перейти до кроку 2.

Крок 2. Покласти $t_{k+1} = x^{(kn)}$. Якщо $||t_{k+1} - t_k|| < \varepsilon$, то зупинитися. У протилежному випадку покласти k = k+1, i=1 та перейти до кроку 1.

Алгоритм описаний.

Приклад. Розглянемо таку задачу: знайти мінімум функції

$$f(x) = f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2, x \in E^2$$

Розв'язання. Візьмемо $\varepsilon = 0.01$ та початкову точку $x^{(0)} = \left(x_1^{(0)}; x_2^{(0)}\right) = (0;3)$.

Величина α_k на кожній ітерації отримана внаслідок одновимірної оптимізації функції f(x) уздовж одного з напрямків $e_i(i=1,2)$, де $e_1=(1;0), e_2=(0;1)$

На *першому* кроці маємо k = 1, $t_1 = x^{(0)} = (0,3)$, $f(t_1) = 52$.

$$i = 1$$
 $x^{(1)} = x^{(0)} + \alpha_0 e_1 = (0;3) + \alpha_0 (1;0) = (\alpha_0;3); f(x^{(1)}) = (\alpha_0 - 2)^4 + (\alpha_0 - 6)^2.$

Щоб знайти α_0 можемо застосувати один з методів одновимірної оптимізації функції $f\left(x^{(1)}\right)$ за змінною α_0 , або використати класичний метод з використанням похідної:

$$f_{\alpha_0}'\left(x^{(1)}\right) = 4(\alpha_0-2)^3 + 2(\alpha_0-6) = 0 \ . \ \mathsf{Звідки} \ \mathsf{маємо} \ \alpha_0 \approx 3.1282 \ . \ \mathsf{Тоді} \ \ x^{(1)} = (3.1282;3) \ .$$

$$i = 2$$
 $x^{(2)} = x^{(1)} + \alpha_1 e_2 = (3.1282; 3) + \alpha_1(0; 1) = (3.1282; 3 + \alpha_1);$

$$f(x^{(2)}) = (3.1282)^4 + (3.1282 - 2(3 + \alpha_1))^2$$
.

Знаходимо α_1 . Маємо $f'_{\alpha_1}\left(x^{(2)}\right) = -4\left(3.1282 - 2(3+\alpha_1)\right) = 0 \Rightarrow \alpha_1 = -1.4359$. Отже, $x^{(2)} = (3.1282; 1.5641)$. Ми виконали дві внутрішні ітерації та одну зовнішню.

Нехай тепер k=2 , $t_2=x^{(2)}=(3.1282;1.5641)$. Тоді $f(t_2)=1.6201$. Переконуємося в тому, що $f(t_2) < f(t_1)$. Перевіряємо критерій зупинки $\|t_2-t_1\|_{E^2} < \varepsilon$:

$$||t_2 - t_1|| = \sqrt{(3.1282 - 0)^2 + (1.5641 - 3)^2} = 3.442 > 0.01.$$

Критерій не виконується, переходимо до наступної ітерації.

$$i = 1$$
 $x^{(3)} = x^{(2)} + \alpha_2 e_1 = (3.1282, 1.5641) + \alpha_2 (1;0) = (3.1282 + \alpha_2, 1.5641);$
$$f(x^{(3)}) = (1.1282 + \alpha_2)^4 + \alpha_2^2.$$

Знаходимо α_2 . Маємо $f'_{\alpha_2}\left(x^{(3)}\right) = 4\left(1.1282 + \alpha_2\right)^3 + 2\alpha_2 = 0 \Rightarrow \alpha_2 = -0.4987$. Отже, $x^{(3)} = (2.6295, 1.5641)$.

$$i = 2$$
 $x^{(4)} = x^{(3)} + \alpha_3 e_2 = (2.6295; 1.5641) + \alpha_3(0;1) = (2.6295; 1.5641 + \alpha_3)$
$$f(x^{(4)}) = (0.6295)^4 + (2\alpha_3 + 0.499)^2$$

По аналогії з попереднім, дістаємо, що $\alpha_3 = -0.2495$. Тоді $x^{(4)} = (2.6295; 1.3146)$.

Покладемо k=3 . Тоді $t_3=x^{(4)}=(2.6295;1.3146)$ та $f(t_3)=0.157$. Переконуємося в тому, що $f(t_3) < f(t_2)$. Перевіряємо критерій зупинки $\left\|t_3 - t_2\right\|_{E^2} < \varepsilon$:

$$||t_3 - t_2|| = \sqrt{(3.1282 - 2.6295)^2 + (1.5641 - 1.3146)^2} = 0.5576 > 0.01.$$

Критерій не виконується. Продовжуємо обчислення далі.

$$i = 1 x^{(5)} = x^{(4)} + \alpha_4 e_1 = (2.6295; 1.3146) + \alpha_4 (1;0) = (2.6295 + \alpha_4; 1.3146)$$
$$f\left(x^{(5)}\right) = \left(0.6295 + \alpha_4\right)^4 + \left(0.0003 + \alpha_4\right)^2.$$

Знаходимо $f'_{\alpha_4}(x^{(5)}) = 0 \Rightarrow \alpha_4 = -0.1809$. Тоді $x^{(5)} = (2.4486; 1,3146)$.

$$i = 2$$
 $x^{(6)} = x^{(5)} + \alpha_5 e_2 = (2.4486; 1.3146) + \alpha_5(0; 1) = (2.4486; 1.3146 + \alpha_5)$
$$f(x^{(6)}) = (0.4486)^4 + (2\alpha_5 + 0.1806)^2.$$

Знаходимо $f'_{\alpha_5}\left(x^{(6)}\right) = 0 \Rightarrow \alpha_5 = -0.0903$. Тоді $x^{(6)} = (2.4486; 1.2243)$

Покладемо k=4 . Тоді $t_4=x^{(6)}=(2.4486;1.2243)$ та $f(t_4)=0.0405$. Переконуємося в тому, що $f(t_4) < f(t_3)$. Перевіряємо критерій зупинки $\|t_4-t_3\|_{E^2} < \varepsilon$:

$$||t_4 - t_3|| = \sqrt{(2.4486 - 2.6295)^2 + (1.2243 - 1.3146)^2} = 0.2022 > 0.01$$
 і таке інше.

Після 13 зовнішніх ітерацій отримана точка (2.1593;1.0797), значення цільової функції в якій дорівнює 0.0006. Обчислення наведені в таблиці.

k	t_k	$f(t_k)$	i	e_i	$x^{(k-1)n+i-1}$	$\alpha_{(k-1)n+i-1}$	$ t_{k+1}-t_k $
1 (0;3)	(0.3)	52	1	(1; 0)	(0;3)	3.1282	_
	(0,3)		2	(0; 1)	(3.1282; 3)	- 1.4359	
2 (3.1282;1.5641)	1.6201	1	(1; 0)	(3.1282;1.5641)	- 0.4987	3.442	
		2	(0; 1)	(2.6295,1.5641)	- 0.2495	3.442	
3 (2.6295; 1.3146)	0.157	1	(1; 0)	(2.6295; 1.3146)	- 0.1809	0.5576	
	(2.02)3,1.3140)	0.137	2	(0; 1)	(2.4486;1.3146)	-0.0903	0.5570
4 (2.4486;1.224	(2.4486:1.2243)	0.0405	1	(1; 0)	(2.4486;1.2243)	-0.0912	0.2022
	(2.4460,1.2243)		2	(0; 1)	(2.3574;1.2243)	-0.0456	
5 (2.3574;1.1787)	(2 3574:1 1787)	0.0163	1	(1; 0)	(2.3574;1.1787)	- 0.0552	0.102
	(2.3374,1.1767)		2	(0; 1)	(2.3022; 1.1787)	- 0.0276	
6 (2.3022; 1.1511)	0.0083	1	(1; 0)	(2.3022; 1.1511)	-0.0372	0.0617	
	(2.3022, 1.1311)	0.0083	2	(0; 1)	(2.2650; 1.1511)	-0.0186	0.0017
7 (2.2650; 1.1325	(2.2650: 1.1325)	0.0049	1	(1; 0)	(2.2650; 1.1325)	-0.027	0.0416
	(2.2030, 1.1323)		2	(0; 1)	(2.2380;1.1325)	- 0.0135	
8 (2.2380;1.119	(2 2380:1 119)	0.0032	1	(1; 0)	(2.2380;1.119)	-0.0206	0.0302
	(2.2300,1.117)		2	(0; 1)	(2.2174;1.119)	-0.0103	
9 (2.2174;1.108	(2 2174-1 1087)	0.0022	1	(1; 0)	(2.2174;1.1087)	-0.0163	0.023
	(2.2171,1.1007)	0.0022	2	(0; 1)	(2.2011;1.1087)	-0.0082	
10 (2.2011;1	(2.2011;1.1005)	0.0016	1	(1; 0)	(2.2011;1.1005)	-0.0133	0.0182
	(2.2011,1.1003)		2	(0; 1)	(2.1878;1.1005)	-0.0066	
11 (2.1878;1.09	(2 1878-1 0939)	0.0012	1	(1; 0)	(2.1878;1.0939)	-0.011	0.0148
	(2.1070,1.0737)		2	(0; 1)	(2.1768;1.0939)	-0.0055	
12	(2.1768;1.0884)	0.001	1	(1; 0)	(2.1768;1.0884)	-0.0094	0.0123
			2	(0; 1)	(2.1674;1.0884)	-0.0047	
13	(2.1674;1.0837)	0.0008	1	(1; 0)	(2.1674;1.0837)	-0.0081	0.0105
1.5	(2.1071,1.0037)	0.0000	2	(0; 1)	(2.1593;1.0837)	-0.004	0.0105
14	(2.1593;1.0797)	0.0006					0.009

Зазначимо, що оптимальним розв'язком цієї задачі є точка $\hat{x} = (2; 1)$, в якій значення цільової функції дорівнює нулю. Укажемо також, що помітне зменшення значень функції отримано за декілька перших ітерацій, тоді як на останніх ітераціях процес явно уповільнюється.