INPHB / TD D'ELECTROSTATIQUE / 2020-2021

Exercice 1

On place quatre charges ponctuelles aux sommets ABCD d'un carré de côté $a=1\,m$, et de centre O, origine d'un repère orthonormé Oxy de vecteurs unitaires \vec{e}_x et \vec{e}_y . On donne :

$$q_1 = q = 10^{-8} C$$

$$q_2 = -2q$$

$$q_3 = 2q$$

$$q_4 = -q$$

$$K = \frac{1}{4\pi\varepsilon_0} = 9.10^9 \text{ S.I.}$$

3) Exprimer le potentiel sur les parties des axes x'x et y'y intérieures au carré. Quelle est, en particulier, la valeur de V aux points d'intersection de ces axes avec les côtés du carré (I, I', J et J') ?

Exercice 2

A. Parmi les distributions de charges suivantes, quelles sont celles pour lesquelles on peut appliquer le théorème de Gauss pour le calcul du champ électrique ? Exprimer alors ce champ en précisant sa direction et son sens :

1) fil de longueur $_$ de densité linéique de charge λ .

2) fil infini de densité linéique de charge λ .

3) circonférence de densité linéique de charge λ .

4) disque de densité surfacique de charge σ .

5) plan infini (π) de densité surfacique de charge σ .

6) sphère de rayon R chargée uniformément :

6.a) en surface avec une densité surfacique σ ;

6.b) en volume avec une densité volumique ρ . Dans le cas de la sphère, donner l'allure des courbes E(r) et V(r).

Exercice 3

On creuse dans une sphère de centre O_1 et de rayon R une cavité sphérique de même centre O_1 et de rayon $\frac{R}{4}$. Il n'y a pas de charge dans la cavité. Dans le volume sphérique restant, la densité volumique de charges est $\rho_0 = cte > 0$. En utilisant le principe de superposition, déterminer l'expression du champ électrique $\vec{E}(r)$ et le potentiel V(r) qui en résulte (en

prenant $V(\infty) = 0$) dans les trois cas suivants :

B.1.a)
$$r \le \frac{R}{4}$$

B.1.b)
$$\frac{R}{4} \le r \le R$$

B.1.c)
$$r \ge R$$

Donner l'allure des courbes E(r) et V(r).

B.2) La cavité est centrée en O_2 tel que $O_1O_2 = \frac{R}{2}$. Exprimer :

B.2.a) le champ en un point M intérieur à la cavité en fonction de $\vec{r}_1 = \overline{O_1 M}$ et . $\vec{r}_2 = \overline{O_2 M}$. Que peut-on en conclure ?

B.2.b) Le champ en un point N extérieur à la sphère de rayon R en fonction de $\vec{r}_1 = \overrightarrow{O_1 M}$ et $\vec{r}_2 = \overrightarrow{O_2 M}$.

Exercice 4 : Calcul du champ à partir du potentiel

On utilise les coordonnées cartésiennes. Le potentiel électrostatique a pour expression

$$V(z) = \frac{\sigma}{2\varepsilon_0} (\sqrt{z^2 + R^2} - z).$$

Déterminer les coordonnées du champ électrostatique créé en P par la distribution de charge.

électrique en un point A, voisin de l'axe, à la distance r de l'axe, et d'abscisse z.

Exercice 5

- I) On place une particule ponctuelle de charge q au point A d'abscisse
- (-a) et une particule ponctuelle de charge 4q au point B d'abscisse b.

Déterminer le rapport $\frac{a}{b}$ pour que le champ électrostatique $\vec{E}(0)$ soit nul en O. Quel est alors le potentiel V(0) en O ?

On posera le potentiel en x = 0 égal à V_0 .

-a ... -a ... -p₀ ρ₀

Exercice 6:

- 1°) Champ et potentiel créés par un plan uniformément chargé Soit un plan P infini portant une charge électrique uniformément répartie sur toute sa surface (densité surfacique de charge uniforme σ).
- **1.a**) Le plan P peut-il être réellement infini ? Sinon, à quelle condition sur OM peut-on considérer que le plan P est infini ?
- **1.b**) Exprimer le champ électrostatique $\vec{E}(M)$ créé en M par le plan infini P en fonction de ε_0 , σ et \vec{u}_x . En déduire

l'expression du champ électrostatique \vec{E} (M') créé en M' par le plan infini P en fonction de ε_0 , σ et \vec{u}_x . Tracer la courbe représentant l'évolution de E_x la coordonnée sur l'axe (Ox) du champ électrostatique \vec{E} en fonction de x.

1.d) Le champ électrique varie-t-il de manière continue lors de la traversée du plan chargé. Même question pour le potentiel électrique.

condensateur plan est assimilable à l'association de deux plans infinis uniformément chargés, l'un P_2 de densité surfacique de charge $+\sigma$ et l'autre P_1 de densité surfacique de charge $-\sigma$; ces deux plans sont séparés par une distance e.

2.a) Exprimer σ en fonction de Q la valeur absolue de la charge d'une armature et de S la surface d'une armature.

- **2.b**) Exprimer le champ électrique $\overrightarrow{E_1}$ créé par le plan P_1 en fonction de σ et ε_0 si $x \le -\frac{e}{2}$ et si $x \ge -\frac{e}{2}$.
- **2.c**) Exprimer le champ électrique $\overrightarrow{E_2}$ créé par le plan P_2 en fonction de σ et ε_0 si $x \le \frac{e}{2}$ et si $x \ge \frac{e}{2}$.
- **2.d**) Sur la figure ci-dessus, représenter $\vec{E_1}$ et $\vec{E_2}$ quand $x \le -\frac{e}{2}$, $\frac{e}{2} \ge x \ge -\frac{e}{2}$ et $x \ge \frac{e}{2}$. En déduire l'expression du champ électrostatique \vec{E} créé par le condensateur plan en fonction de σ et ε_0 si $x \le -\frac{e}{2}$
- , $\frac{e}{2} \ge x \ge -\frac{e}{2}$ et $x \ge \frac{e}{2}$. Tracer la courbe représentant l'évolution de E_x la coordonnée sur l'axe (Ox) du champ électrostatique \vec{E} en fonction de x.
- **2.e**) Exprimer le potentiel électrique V en fonction de x, σ , ε_0 et d'une constante que l'on ne cherchera pas à déterminer si $\frac{e}{2} \ge x \ge -\frac{e}{2}$.
- **2.f**) Exprimer la tension U entre les deux armatures du condensateur en fonction de σ , ε_0 et e puis en fonction de Q, S, e et ε_0 .
- **2.g**) En déduire une expression de la capacité C du condensateur en fonction de S, e et ε_0 . Retrouver l'unité de ε_0 .

Exercice 7:

1°) Définition, potentiel et champ créés

On nomme dipôle électrostatique le système constitué de deux charges ponctuelles opposées -q et +q situées en deux points N et P distants de a et tels que a = NP soit très petite devant les autres distances envisagées.

1.a) Exprimer \vec{p} le moment dipolaire de la distribution en fonction de q et \overrightarrow{NP} . Quelle est l'unité de $p = ||\vec{p}||$ dans le système international d'unité ? Quelle est l'unité couramment utilisée ?

- Pour tenir compte de ces propriétés, on se place en coordonnées sphériques dans le plan méridien ou plan tel que ϕ = constante et on utilise les coordonnées polaires dans ce plan c'est-à-dire les deux autres coordonnées sphériques r et θ .
- **1.b**) Exprimer V(M) le potentiel créé en M par le dipôle en fonction de ε_0 , q, MN et MP.
- **1.c**) Exprimer MP² en fonction de r, a et θ puis $\frac{1}{MP}$ en fonction de r, a et θ . On considère que $\frac{a}{r} \ll 1$, préciser l'argument de l'énoncé qui conduit à cette approximation. Simplifier l'expression de $\frac{1}{MP}$ en réalisant un développement limité de la relation précédente au premier ordre en $\frac{a}{r}$.
- **1.d**) Exprimer MN² en fonction de r, a et θ puis $\frac{1}{MN}$ en fonction de r, a et θ . On considère que $\frac{a}{r} \ll 1$, simplifier l'expression de $\frac{1}{MN}$ en réalisant un développement limité de la relation précédente au premier ordre en $\frac{a}{r}$.
- **1.e)** Montrer que le potentiel peut, dans le cadre des approximations réalisées aux questions précédentes, s'écrire sous la forme $V(M) = \frac{qa\cos\theta}{4\pi\varepsilon_0 r^2} = \frac{p\cos\theta}{4\pi\varepsilon_0 r^2} = \frac{\vec{p}.\overrightarrow{OM}}{4\pi\varepsilon_0 r^3}$

1.f) Rappeler la relation liant le champ électrostatique \vec{E} (M) et le potentiel V(M) créés en M par la distribution de charges. Montrer que le champ électrostatique \vec{E} (M) peut s'écrire sous la forme \vec{E} (M) = $E_r(M).\vec{u_r} + E_{\theta}(M).\vec{u_{\theta}}$. Exprimer $E_r(M)$ et $E_{\theta}(M)$ en fonction de p, θ , r et ε_0 .

1.g) Montrer que
$$\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{3.(\vec{p}.\overrightarrow{OM}).\overrightarrow{OM} - OM^2.\vec{p}}{OM^5}$$
.

- **1.h**) Les effets d'un dipôle se font ressentir à moins grande distance que ceux d'une charge unique. Pourquoi ?
- 1.i) Représenter les lignes de champ et les équipotentielles du dipôle électrostatique.
- 2°) Action d'un champ extérieur uniforme sur un dipôle

On s'intéresse à l'action subie par un dipôle plongé dans un champ extérieur uniforme \vec{E} .

- **2.a)** Quelle est la force exercée par ce champ électrostatique extérieur uniforme sur le dipôle électrostatique ?
- **2.b)** Montrer que le moment exercé par le champ électrostatique extérieur uniforme s'écrit : $\vec{M}_{/O} = \vec{p} \wedge \vec{E}$. Ce moment dépend-t-il du point où on le calcule ? Si on note α l'angle entre \vec{p} et \vec{E} , pour quelles valeurs de α , $\vec{M}_{/O}$ est-il nul ?
- **2.c**) En appliquant le théorème du moment cinétique au dipôle électrostatique, déterminer les valeurs de α pour lesquelles le dipôle est à l'équilibre. Comparer la stabilité de ces deux positions. Quelle est l'action d'un champ électrostatique extérieur uniforme sur un dipôle.
- **2.d**) Soient $V_{ext}(P)$ et $V_{ext}(N)$ les potentiels électrostatiques de P et N associés au champ extérieur \vec{E} , exprimer l'énergie potentielle du dipôle (ne pas confondre cette énergie avec l'énergie potentielle d'interaction entre les deux charges) dans le champ \vec{E} en fonction de $V_{ext}(P)$ et $V_{ext}(N)$ et montrer que $E_p = -\vec{p}.\vec{E}$. Déterminer les positions d'équilibre du dipôle (utiliser l'angle α) et étudier la stabilité de ces positions.

Exercice 8

- **A)** En première approximation, une molécule d'eau peut être considérée comme formée de deux ions H^+ et un ion O^{2-} disposés comme l'indique la figure. Calculer le moment dipolaire \vec{p}_A de cette molécule sachant que les distances entre O^{2-} et les deux ions H^+ sont toutes les deux égales à 1 Å.
- **B**) On considère une molécule d'eau A, placée au point O. Elle est assimilable à un dipôle électrique permanent de moment \vec{p}_A dont le centre est en O. En un point M, situé sur l'axe de la molécule A, à une distance r, on place successivement :
- **B.1**) Une charge électrique q > 0. Quelle est la force exercée par la molécule A sur cette charge?
- **B.2**) Un dipôle de moment \vec{p} orienté selon \overrightarrow{OM} .
- **B.2.a)** Quelle est l'énergie potentielle du dipôle \vec{p} dans le champ électrique \vec{E}_M créé en M par la molécule A ? (On

supposera que r est suffisamment grand pour que le champ \vec{E}_M puisse être considéré comme constant autour de M.)

- B.2.b) Quelle est la force à laquelle est soumis le dipôle ? On précisera sa direction et son sens.
- **B.3**) On considère un dipôle induit \vec{p} dont l'intensité est proportionnelle à l'intensité du champ \vec{E}_M , soit $\vec{p} = \beta \vec{E}_M$ (on supposera toujours \vec{E}_M constant autour de M).
- B.3.a) Quelle est l'énergie potentielle d'interaction de ce dipôle avec la molécule d'eau?
- **B.3.b)** À quelle force est-il soumis?
- **B.4)** L'interaction dipôle-dipôle peut-elle suffire à expliquer la stabilité du système de deux molécules ? Justifier votre réponse.