Groupe fondamental et

Revêtements

revêtement

Question 1/14

Revêtement d'un espace topologique BDéfinition avec l'espace discret

Réponse 1/14

 $p: X \to B$ continue avec X un espace topologique tel que pour tout $y \in B$, il existe un voisinage ouvert V de y, un espace discret D et $h: V \times D \to p^{-1}(V)$ tels que le

diagramme suivant commute
$$V \times D \xrightarrow{p} p^{-1}(V)$$

$$V \times D \xrightarrow{p} p$$

Question 2/14

Revêtement d'un espace topologique BDéfinition avec l'espace discret

Réponse 2/14

 $p: X \to B$ continue avec X un espace topologique tel que pour tout $y \in B$, il existe un voisinage ouvert V de y, tel que $p^{-1}(V)$ est une réunion disjointe d'ouverts de X qui s'envoient chacun homéomorphiquement sur Vvia p

Question 3/14

Revêtement associé à une action proprement discontinue

Réponse 3/14

Si $G \curvearrowright X$ par homéomorphismes est proprement discontinue, G est discret et X est un espace topologique alors $\pi\colon X \to G\backslash X^{\scriptscriptstyle 1}$ est un revêtement dont le groupe de Galois contient G

^{1.} $G \setminus X$ désigne les classes à gauche par l'action $G \curvearrowright X$

Question 4/14

Groupe des automorphismes de p

Réponse 4/14

$$\operatorname{Gal}(()p) := \{ \varphi \text{ hom\'eomorphismes}, p \circ \varphi = p \}$$

Question 5/14

CNS pour que $G \curvearrowright X$ soit proprement discontinue

Réponse 5/14

G est discret, X est localement compact et $G \curvearrowright X$ est libre et propre

Question 6/14

Action propre $G \curvearrowright X$

Réponse 6/14

Pour tout compact de X, $\{g \in G, g(K) \cap K \neq \emptyset\}$ est fini

Question 7/14

Morphisme de revêtement

Réponse 7/14

$$\varphi: X \to X'$$
 tel que le diagramme suivant commute

Question 8/14

Action proprement discontinue $G \curvearrowright X$

Réponse 8/14

Pour tout $x \in X$, il existe un voisinage ouvert U de x tel que pour tout $g \neq 1$, $g(U) \cap U = \emptyset$

Question 9/14

Revêtement galoisien

Réponse 9/14

p est galoisien si pour tout $x \in B$, $\operatorname{Gal}(()p) \curvearrowright p^{-1}(x)$ transitivement Si cette propriété est vérifiée pour un $x \in B$ alors elle est vérifiée pour tout $x \in B$

Question 10/14

Propriétés de Gal(p) si $p:X \to B$ est un revêtement galoisien et X est connexe

Réponse 10/14

 $Gal(p) \curvearrowright X$ est proprement discontinue et $Gal(p) \setminus p$ et B sont homéomorphes

Question 11/14

Revêtement trivial

Réponse 11/14

Un revêtement pour lequel V = B convient

Question 12/14

Propriété locale d'un revêtement

Réponse 12/14

Un revêtement est un homéomorphisme local

Question 13/14

Factorisation par un revêtement

Réponse 13/14

Si on a le diagramme suivant qui commute

$$X/p \xrightarrow{\varphi} B$$
 Alors φ est un homéomorphisme

Question 14/14

Terminologie associée aux revêtements

Réponse 14/14

X: espace total B · base p : revêtement V: voisinage distingé (de y) ou assiette h: trivialisation locale $p^{-1}(y)$: fibre de y ou pile d'assiettes