

Medusa3D: The Watchful Eye Freezing Illegitimate Users in Virtual Reality Interactions

Aochen Jiao*, Di Duan*, and Weitao Xu City University of Hong Kong

Background

PIN / Password in VR

Shoulder-surfing Attack

Background

Static Biometric

Vulnerable to data leakage and replay attack

Once stolen -> unrecoverable

Background

Active Biometric

Response = H (Challenge)

Challenge-Response Method

Biometric is human's response **pattern** to challenge, but not specific challenge or response.

Motivation

Reflexive eye movement is an activity that is driven by visual stimulation but does not require volitional control.

- R John Leigh and David S Zee. The neurology of eye movements. Contemporary Neurology

VR headsets that already include integrated eye tracker

Can we use reflexive eye responses as biometric?

Preliminary Study

What eye responses are reflexive?

- Reflexive saccade
- Pupil diameter change

How to elicit the reflexive responses?

- When a noticeable change occurs in the field of view
- When focused object changes its depth

Overview

- Visual stimulation
- Signal processing
- Feature extraction & Authentication

Visual Stimulation Design

- **Salient change:** elicit reflexive saccades.
- Variable depth: elicit pupil diameter changes.
- Unpredictability: exclude the interference from memory.

(a) Stim. appears in FOV

(c) Saccades catch stim.

(b) Gaze intersects stim.

(d) New stim. is gazed.

Signal Processing

- Reflexive saccades segmentation
 - Determine the time interval reflexive saccades may occur.
 - \circ Employ iteration method to adaptively search the threshold.
 - Verify the reflexivity of saccades extracted.

❖ Feature Extraction & Authentication

- Graph design
 - We embed the spatial information of reflexive saccades into a graph.
- GNN network design
 - We design a graph-oriented network that can classify the users' feature
- KNN classifier
 - With the feature extracted, a user-specific KNN model is selected that can package legitimate user samples.

Evaluation

❖ Set-up

- Device:
 - HTC VIVE Pro Eye
- Threat model:
 - Zero-effort attack
 - Replay attack
 - Mimicry attack

Participants:

- 25 (20 users + 5 attackers)
- Various in demography and background

• Evaluation metrics:

- FAR: False Acceptance Rate
- o FRR: False Reject Rate

Evaluation

Overall Performance

- Overall 0.21% FAR and 0.13% FRR
- Time required for authentication is about 5 s.

Scheme	FAR (%)	FRR (%)	Authentication time(s)
OcuLock [1]	3.55	3.55	≤10
SkullConduct [2]	6.90	6.90	≤23
Brain Password [3]	2.50	2.50	≈4.80
ElectricAuth [4]	0.83	2.00	≈1.30
SoundLock [5]	0.76	0.91	≤7
VibHead [6]	≈5	≈5	≤1
Medusa3D	0.21	0.13	≈5

- [1] Luo et al. 2020. OcuLock. NDSS 2020.
- [2] Schneegass et al. 2016. SkullConduct. CHI 2016.
- [3] Lin et al. 2018. Brain Password. MobiSys 2018.
- [4] Chen et al. 2021. ElectricAuth. CHI 2021.
- [5] Zhu et al. 2023. SoundLock. NDSS 2023.
- [6] Li et al. 2024. Vibhead. TOSN 2024.

Evaluation

Zero-effort attack

- Attackers attempt to unlock the device with their own biometrics as credentials
- FAR ~ 1%

Replay attack

- Attackers replay a pre-recorded eye movement response.
- Challenge is always new. Pre-recorded one cannot match the new challenge.

Mimicry attack

- Attackers acquire and imitate the eye movement patterns
- Visual stimuli are random and new every time.
- Imitation is voluntary and will be excluded from the reflexive part.

Conclusion

- We propose Medusa3D, a challenge-response authentication system for VR based on reflexive eye responses.
- Medusa3D can utilize active biometric for authentication on users while keep safe against attackers.
- Future work will primarily focus on enhancing the system's robustness for long-term use.

Thanks for your attention! Q&A

I am actively looking for Ph.D. position starting 2025. Feel free to contact me if you have any relevant information.

Email: aochen.jiao@cityu.edu.hk

Personal Website

