Satisfiability of Dolev-Yao Constraints

Laurent Mazaré

laurent.mazare@imag.fr

Laboratoire VERIMAG Grenoble, France

Motivation

Constraints are used to verify secrecy with a bounded number of sessions.

Motivation

- Constraints are used to verify secrecy with a bounded number of sessions.
- Needham-Schroeder constraint:

$$NS = E, \{N_C, A\}_{K_C} \Vdash \{x, A\}_{K_B}$$

$$\land E, \{N_C, A\}_{K_C}, \{x, N_B\}_{K_A} \Vdash \{N_C, y\}_{K_A}$$

$$\land E, \{N_C, A\}_{K_C}, \{x, N_B\}_{K_A}, \{y\}_{K_C} \Vdash N_B$$

Motivation

- Constraints are used to verify secrecy with a bounded number of sessions.
- Needham-Schroeder constraint:

$$NS = E, \{N_C, A\}_{K_C} \Vdash \{x, A\}_{K_B}$$

$$\land E, \{N_C, A\}_{K_C}, \{x, N_B\}_{K_A} \Vdash \{N_C, y\}_{K_A}$$

$$\land E, \{N_C, A\}_{K_C}, \{x, N_B\}_{K_A}, \{y\}_{K_C} \Vdash N_B$$

Extensions: Inequations, Multiple Intruders, Opacity (Strong Secrecy).

Messages and Constraints

Messages are defined by:

$$m ::= a|x|f(m_1,...,m_n)|\langle m_1,m_2\rangle|\{m_1\}_{m_2}$$

a: atom, x: variable, f: first order symbol

Messages and Constraints

Messages are defined by:

$$m ::= a|x|f(m_1,...,m_n)|\langle m_1,m_2\rangle|\{m_1\}_{m_2}$$

a: atom, x: variable, f: first order symbol

Constraints are defined by:

$$C ::= \bot |\top|C \lor C|C \land C|C_A$$

$$C_A ::= T \Vdash m[U] | m \neq n$$

m, n: messages, T, U: finite sets of messages.

Models

A substitution σ is a model of constraint C iff $\sigma \models C$ where \models is the smallest relation defined by:

• Usual definitions for \top , \wedge , \vee

Models

A substitution σ is a model of constraint C iff $\sigma \models C$ where \models is the smallest relation defined by:

• Usual definitions for \top , \wedge , \vee

$$\frac{m\sigma \neq n\sigma}{\sigma \models m \neq n}$$

Models

A substitution σ is a model of constraint C iff $\sigma \models C$ where \models is the smallest relation defined by:

ullet Usual definitions for \top , \wedge , \vee

$$\frac{m\sigma \neq n\sigma}{\sigma \models m \neq n}$$

$$\frac{T\sigma \vdash m\sigma[U\sigma]}{\sigma \models T \Vdash m[U]}$$

where $T \vdash m[U]$ is defined as \vdash except the decode rule:

$$\frac{T \vdash \{m\}_u[U] \quad u \in U}{T \vdash m[U]}$$

• A constraint C is well-formed iff $C = \bigvee Co$ and for each Co:

- A constraint C is well-formed iff $C = \bigvee Co$ and for each Co:
 - If $T \Vdash m[U]$ and $T' \Vdash m'[U']$ are in Co, then $T \subseteq T'$ or $T' \subseteq T$ (Environment Inclusion).

- A constraint C is well-formed iff $C = \bigvee Co$ and for each Co:
 - If $T \Vdash m[U]$ and $T' \Vdash m'[U']$ are in Co, then $T \subseteq T'$ or $T' \subseteq T$ (Environment Inclusion).
 - If $T \Vdash m[U] \in Co$ and $x \in var(T)$, then there exists $T' \Vdash m'[U'] \in Co$ such that $x \in var(m')$, $U' \subseteq U$ and $T' \subsetneq T$ (Variable Introduction).

- A constraint C is well-formed iff $C = \bigvee Co$ and for each Co:
 - If $T \Vdash m[U]$ and $T' \Vdash m'[U']$ are in Co, then $T \subseteq T'$ or $T' \subseteq T$ (Environment Inclusion).
 - If $T \Vdash m[U] \in Co$ and $x \in var(T)$, then there exists $T' \Vdash m'[U'] \in Co$ such that $x \in var(m')$, $U' \subseteq U$ and $T' \subsetneq T$ (Variable Introduction).
- A constraint C quasi-well-formed iff

- A constraint C is well-formed iff $C = \bigvee Co$ and for each Co:
 - If $T \Vdash m[U]$ and $T' \Vdash m'[U']$ are in Co, then $T \subseteq T'$ or $T' \subseteq T$ (Environment Inclusion).
 - If $T \Vdash m[U] \in Co$ and $x \in var(T)$, then there exists $T' \Vdash m'[U'] \in Co$ such that $x \in var(m')$, $U' \subseteq U$ and $T' \subsetneq T$ (Variable Introduction).
- A constraint C quasi-well-formed iff
 - Variable Introduction.

- A constraint C is well-formed iff $C = \bigvee Co$ and for each Co:
 - If $T \Vdash m[U]$ and $T' \Vdash m'[U']$ are in Co, then $T \subseteq T'$ or $T' \subseteq T$ (Environment Inclusion).
 - If $T \Vdash m[U] \in Co$ and $x \in var(T)$, then there exists $T' \Vdash m'[U'] \in Co$ such that $x \in var(m')$, $U' \subseteq U$ and $T' \subsetneq T$ (Variable Introduction).
- A constraint C quasi-well-formed iff
 - Variable Introduction.
 - There exists a closed message m that occurs in any environment of Co.

Constraints

Reducing usual well-formed constraints to our constraints:

$$igwedge_{1 \leq i \leq n} T_i \sigma dash m_i \sigma \Leftrightarrow \ \sigma \models igwedge_{k_1, \ldots, k_{lpha} \in keys(T, m)} ig(T_1 dash k_1[] \wedge \ldots \wedge T_1 dash m_1[k_1, \ldots, k_{i_1}]ig) \ \wedge ig(T_2 dash k_{i_1+1}[k_1, \ldots, k_{i_1}] \wedge \ldots \wedge T_2 dash m_2[k_1, \ldots, k_{i_2}]ig) \ \wedge \ldots \ \wedge ig(T_n dash k_{i_{n-1}+1}[k_1, \ldots, k_{i_{n-1}}] \wedge \ldots \wedge T_n dash m_n[k_1, \ldots, k_{i_n}]ig)$$

Satisfiability 1: Rewriting

$$T \Vdash a[U] \rightarrow \top$$
 $T \Vdash a[U] \rightarrow \bot$
 $T \Vdash f(m_1, ..., m_n)[U] \rightarrow \top$
 $T \Vdash f(m_1, ..., m_n)[U] \rightarrow \bot$
 $T \Vdash \langle m, n \rangle [U] \rightarrow T \Vdash m[U] \land T \Vdash n[U]$
 $T \Vdash \{m\}_n[U] \rightarrow \top$
 $T \Vdash \{m\}_n[U] \rightarrow T \Vdash m[U] \land T \Vdash n[U]$

 $ightharpoonup C_1
ightharpoonup C_2$, if C_1 is well-formed, then C_2 is well-formed too.

- $ightharpoonup C_1
 ightharpoonup C_2$, if C_1 is well-formed, then C_2 is well-formed too.
- Correctness and Completness

- $C_1 \rightarrow C_2$, if C_1 is well-formed, then C_2 is well-formed too.
- Correctness and Completness
- Termination

- $C_1 \rightarrow C_2$, if C_1 is well-formed, then C_2 is well-formed too.
- Correctness and Completness
- Termination
- Normal Forms:

$$\bigvee \left(\left(T \Vdash x[U] \right) \land \left(\bigwedge m \neq n \right) \right)$$

Satisfiability 3: Inequations

Let P be the constraint

$$m_1 \neq n_1 \wedge ... \wedge m_j \neq n_j$$

If P is satisfiable, then for any substitution σ such that $P\sigma$ is closed and $x\sigma = y\sigma \Rightarrow x = y$,

There exists an integer k such that $k \leq j+1$ and σ^k is a model of P.

Satisfiability 3: Inequations

Let P be the constraint

$$m_1 \neq n_1 \wedge ... \wedge m_j \neq n_j$$

If P is satisfiable, then for any substitution σ such that $P\sigma$ is closed and $x\sigma = y\sigma \Rightarrow x = y$,

There exists an integer k such that $k \leq j+1$ and σ^k is a model of P.

Application:

$$x\sigma = \langle m, ..., m \rangle$$

Satisfiability 4: Results

Satisfiability for well-formed constraints is decidable (and NP-complete).

Satisfiability 4: Results

- Satisfiability for well-formed constraints is decidable (and NP-complete).
- Same thing for quasi-well-formed constraints.

Satisfiability 4: Results

- Satisfiability for well-formed constraints is decidable (and NP-complete).
- Same thing for quasi-well-formed constraints.
- Security for protocols with inequations (bounded number of sessions).

Opacity: Definitions

An intruder C observes a protocol session between A and B. Could he deduce any property on the parameters of this protocol?

Opacity: Definitions

- An intruder C observes a protocol session between A and B. Could he deduce any property on the parameters of this protocol?
- Example : electronic vote.

$$A \rightarrow B : \{vote\}_k$$

If $vote \in \{yes, no\}$, the intruder could infer yes or no using Dolev-Yao, could he guess the value of vote?

Opacity: Definitions

- An intruder C observes a protocol session between A and B. Could he deduce any property on the parameters of this protocol?
- Example : electronic vote.

$$A \rightarrow B : \{vote\}_k$$

If $vote \in \{yes, no\}$, the intruder could infer yes or no using Dolev-Yao, could he guess the value of vote?

Intuitive definition of opacity of property φ.

Similarity

Simultaneous Deductions: $E, E' \vdash m, m'$

$$\overline{\{n_1,...,n_k\}_j,\{n'_1,...,n'_k\}_j} \vdash n_i,n'_i$$

$$\frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{\{n_1,\ldots,n_k\}_j,\{n_1',\ldots,n_k'\}_j\vdash n_i,n_i'} \qquad \frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{E,E'\vdash \langle n_1,n_2\rangle,\langle n_1',n_2'\rangle}$$

$$\frac{E,E'\vdash\langle n_1,n_2\rangle,\langle n'_1,n'_2\rangle}{E,E'\vdash n_1,n'_1}$$

$$\frac{E,E' \vdash \langle n_1,n_2 \rangle, \langle n'_1,n'_2 \rangle}{E,E' \vdash n_2,n'_2}$$

$$\frac{E,E'\vdash\{n_1\}_{n_2},\{n_1'\}_{n_2'}\quad E,E'\vdash n_2,n_2'}{E,E'\vdash n_1,n_1'} \qquad \frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{E,E'\vdash\{n_1\}_{n_2},\{n_1'\}_{n_2'}}$$

$$\frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{E,E'\vdash \{n_1\}_{n_2},\{n_1'\}_{n_2'}}$$

Similarity

Simultaneous Deductions: $E, E' \vdash m, m'$

$$\{n_1,...,n_k\}_j,\{n'_1,...,n'_k\}_j\vdash n_i,n'_i$$

$$\frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{\{n_1,\ldots,n_k\}_j,\{n_1',\ldots,n_k'\}_j\vdash n_i,n_i'} \qquad \frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{E,E'\vdash \langle n_1,n_2\rangle,\langle n_1',n_2'\rangle}$$

$$\frac{E,E'\vdash\langle n_1,n_2\rangle,\langle n'_1,n'_2\rangle}{E,E'\vdash n_1,n'_1} \qquad \frac{E,E'\vdash\langle n_1,n_2\rangle,\langle n'_1,n'_2\rangle}{E,E'\vdash n_2,n'_2}$$

$$\frac{E,E'\vdash\langle n_1,n_2\rangle,\langle n_1',n_2'\rangle}{E,E'\vdash n_2,n_2'}$$

$$\frac{E,E'\vdash\{n_1\}_{n_2},\{n_1'\}_{n_2'}\quad E,E'\vdash n_2,n_2'}{E,E'\vdash n_1,n_1'} \qquad \frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{E,E'\vdash\{n_1\}_{n_2},\{n_1'\}_{n_2'}}$$

$$\frac{E,E'\vdash n_1,n_1'\quad E,E'\vdash n_2,n_2'}{E,E'\vdash \{n_1\}_{n_2},\{n_1'\}_{n_2'}}$$

Similarity:

$$\frac{a \in Atomes}{a \sim a}$$

$$\frac{u_1 \sim u_2 \quad v_1 \sim v_2}{\langle u_1, v_1 \rangle \sim \langle u_2, v_2 \rangle}$$

$$\frac{env_1,env_2\vdash k,k}{\{u\}_k\sim\{v\}_k} \frac{u\sim v}{\{v\}_k}$$

$$\frac{a \in Atomes}{a \sim a} \quad \frac{u_1 \sim u_2 \quad v_1 \sim v_2}{\langle u_1, v_1 \rangle \sim \langle u_2, v_2 \rangle} \quad \frac{env_1, env_2 \vdash k, k \quad u \sim v}{\{u\}_k \sim \{v\}_k} \quad \frac{\neg env_1 \vdash k \quad \neg env_2 \vdash k'}{\{u\}_k \sim \{v\}_{k'}}$$

The intruder C follows Dolev-Yao model against a protocol implying A and B (Active Intruder).

- The intruder C follows Dolev-Yao model against a protocol implying A and B (Active Intruder).
- The intruder knows the protocol used and the trace of the protocol followed during this session.

- The intruder C follows Dolev-Yao model against a protocol implying A and B (Active Intruder).
- The intruder knows the protocol used and the trace of the protocol followed during this session.
- ullet The intruder has an initial knowledge c_0 . For example :

$$c_0 = (k_1 \neq k_2)$$

- The intruder C follows Dolev-Yao model against a protocol implying A and B (Active Intruder).
- The intruder knows the protocol used and the trace of the protocol followed during this session.
- ullet The intruder has an initial knowledge c_0 . For example :

$$c_0 = (k_1 \neq k_2)$$

Protocols without branching (if).

Opacity Constraints

ullet Two sessions are not similar iff C is satisfiable.

Opacity Constraints

- Two sessions are not similar iff C is satisfiable.
- Constraint related to the active intruder is:

$$C_{AI} = T_1, T_1' \Vdash m_1, m_1' \land T_2, T_2' \Vdash m_2, m_2' \land ... \Vdash m_{\alpha}$$

Opacity Constraints

- Two sessions are not similar iff C is satisfiable.
- Constraint related to the active intruder is:

$$C_{AI} = T_1, T_1' \Vdash m_1, m_1' \land T_2, T_2' \Vdash m_2, m_2' \land ... \Vdash m_{\alpha}$$

Sessions are not similar:

$$C_S = \left(\bigvee_i T_{\alpha}, T'_{\alpha} \Vdash n_i \nsim n'_i\right)$$

Opacity Constraints

- Two sessions are not similar iff C is satisfiable.
- Constraint related to the active intruder is:

$$C_{AI} = T_1, T_1' \Vdash m_1, m_1' \land T_2, T_2' \Vdash m_2, m_2' \land ... \Vdash m_{\alpha}$$

Sessions are not similar:

$$C_S = \left(\bigvee_i T_{\alpha}, T'_{\alpha} \Vdash n_i \nsim n'_i\right)$$

Eventually,

$$C = C_{AI} \wedge C_S$$

• Only two possible sessions: v = y (for T) and v = n (for T').

- Only two possible sessions: v = y (for T) and v = n (for T').
- New constraint:

$$C_S = T_{\alpha}, T'_{\alpha} \Vdash y, n \lor T_{\alpha}, T'_{\alpha} \Vdash n, y$$

- Only two possible sessions: v = y (for T) and v = n (for T').
- New constraint:

$$C_S = T_{\alpha}, T'_{\alpha} \Vdash y, n \lor T_{\alpha}, T'_{\alpha} \Vdash n, y$$

• The vote value is opaque ($\phi = (v = y)$) iff C is not satisfiable.

- Only two possible sessions: v = y (for T) and v = n (for T').
- New constraint:

$$C_S = T_{\alpha}, T'_{\alpha} \Vdash y, n \lor T_{\alpha}, T'_{\alpha} \Vdash n, y$$

- The vote value is opaque ($\phi = (v = y)$) iff C is not satisfiable.
- ullet Constraint C only uses \Vdash so satisfiability is decidable.

Dumb Vote Protocol

ullet S is the authority collecting votes, A is a voter.

$$S \rightarrow A$$
: k

$$A \rightarrow S$$
: $\{v\}_k$

And
$$T = T' = \{y, n, k_C, k_C^{-1}\}.$$

Dumb Vote Protocol

ullet S is the authority collecting votes, A is a voter.

$$S \rightarrow A: k$$

 $A \rightarrow S: \{v\}_k$

And
$$T = T' = \{y, n, k_C, k_C^{-1}\}.$$

Constraint C is:

$$T, T' \Vdash x, x' \land T; \{y\}_x, T'; \{n\}_{x'} \Vdash y, n$$

Dumb Vote Protocol

ullet S is the authority collecting votes, A is a voter.

$$S \to A$$
: k
 $A \to S$: $\{v\}_k$

And
$$T = T' = \{y, n, k_C, k_C^{-1}\}.$$

Constraint C is:

$$T, T' \Vdash x, x' \land T; \{y\}_x, T'; \{n\}_{x'} \Vdash y, n$$

• C is satisfiable $(x = x' = k_C)$. Immediate attack.

Decision procedure for constraint with inequations, first order symbols, multiple "knowledges".

- Decision procedure for constraint with inequations, first order symbols, multiple "knowledges".
- Decision procedure for opacity with an active (Dolev-Yao) intruder.

- Decision procedure for constraint with inequations, first order symbols, multiple "knowledges".
- Decision procedure for opacity with an active (Dolev-Yao) intruder.
- Future Works:

- Decision procedure for constraint with inequations, first order symbols, multiple "knowledges".
- Decision procedure for opacity with an active (Dolev-Yao) intruder.
- Future Works:
 - General opacity problem.

- Decision procedure for constraint with inequations, first order symbols, multiple "knowledges".
- Decision procedure for opacity with an active (Dolev-Yao) intruder.
- Future Works:
 - General opacity problem.
 - General constraints (allow to modelize Fairness/Protocol Composition...).

- Decision procedure for constraint with inequations, first order symbols, multiple "knowledges".
- Decision procedure for opacity with an active (Dolev-Yao) intruder.
- Future Works:
 - General opacity problem.
 - General constraints (allow to modelize Fairness/Protocol Composition...).
 - Add equational theories.