Perfect Secrecy and One Time Pad Notes

Songyue Wang (sywang@cs.hku.hk) HKU-COMP3357 Spring 2023

1 Perfect Secrecy

1.1 Definition of Perfect Secrecy

An encryption scheme (Gen, Enc,Dec) with message space M is perfectly secret if for every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$ for which Pr[C = c] > 0:

$$Pr[M = m|C = c] = Pr[M = m] \tag{1}$$

For an adversary with unlimited computational power, the ciphertext does not leak any information about the underlying message.

2 One Time Pad

2.1 Definition of One Time Pad

- Gen: choose a uniform binary string from $K = \{0, 1\}^l$.
- Enc: given key k and message $m \in \{0,1\}^l$, compute cipher text $c := k \oplus m$.
- Dec: given key k and message $c \in \{0,1\}^l$, compute plaintext $m := k \oplus c$.

2.2 Proof of Perfect Secrecy for OTP

For arbitary $c \in C, m' \in M$ and uniformed selected $k \in \{0,1\}^l,$ we compute:

$$Pr[C = c|M = m'] = Pr[Enc_k(m') = c] = 2^{-l}$$
 (2)

$$Pr[C = c] = \sum_{m' \in M} Pr[C = c | M = m'] \cdot Pr[M = m']$$

$$= 2^{-l} \cdot \sum_{m' \in M} Pr[M = m']$$

$$= 2^{-l}$$
(3)

Use Bayes' Theorem,

$$Pr[M = m|C = c] = \frac{Pr[C = c|M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

$$= \frac{2^{-l} \cdot Pr[M = m']}{2^{-l}}$$

$$= Pr[M = m]$$
(4)

Regardless of the cipher text, the adversary can only guess the message with **priori probabilities** (no extra information leaked).

2.3 Points to Note

• Reusing the same pad will be unsecure.

We have 2 messages with equal length, which are encrypted with the same pad:

$$m_1 \oplus k = c_1 m_2 \oplus k = c_2$$
 (5)

The adversary can simply XOR two cipher texts:

$$c_1 \oplus c_2 = m_1 \oplus m_2 \oplus k \oplus k = m_1 \oplus m_2 \tag{6}$$

If some bits in $m_1 \oplus m_2$ are 0, it can be concluded that the the corresponding bits in m_1 and m_2 are the same, if $m_1 \oplus m_2$ is an all-zero bit string, we know the same message is being sent twice.

• The OTP inherits the limitation of perfect secret encryption scheme. If the mssage space is M and key space is K, then $|K| \ge |M|$.

Proof.

Assume |K| < |M|, and $M(c) \stackrel{\text{def}}{=} m | m = Dec_k(c)$ for some $k \in K$. As $|M(c)| \le |K|$, there is some $m' \in M$ s.t. $m' \notin M(c)$ Therefore for these messages,

$$Pr[M = m'|C = c] = 0 (7)$$

Which is not equal to **priori probabilities**.