Representation Theory 1 V4A3

So Murata

2024/2025 Winter Semester - Uni Bonn

1 Overview of the material

1.1 Lie groups

Definition 1.1. A Lie group is a group G whose underlying set is endowed with the structure of smooth manifolds such that multiplication and inversions are smooth maps.

Definition 1.2. A topological group is a group G whose underlying set is endowed with the structure of topological space such that multiplication and inversions are continuous.

2 Preliminaries

2.1 Topology

Definition 2.1. We have two axioms about the topological spaces

- 1. $T_0(Komogolov)$: Given any 2 points, there exists an open set such that it contains one of them but not both.
- 2. $T_1(Hausdorff)$: Given any 2 points, there exist disjoints open set that each contains one of them.

Definition 2.2. A topological space is second countable if it has a basis which contains at most countably many subsets.

3 Lie groups

3.1 Manifolds

Definition 3.1. Let $f: X \to Y$ be a mapping between two topological spaces X, Y. f is called a homeomorphism if

- 1. f is a bijection,
- 2. f is continuous,

3. f^{-1} is also continuous.

Definition 3.2. Let $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m$ be open sets and $f: U \to V$ be a smooth map. Then the derivative of f at $p \in U$ is

$$df(p) = \left(\frac{\partial f_i}{\partial x_j}\right)_{ij}.$$

Proposition 3.1. Let $f: U \to V, g: V \to W$ be smooth maps. Then for $p \in U$ we have

$$d(g\circ f)=dg(f(p))df(p).$$

Definition 3.3. Let $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m$ be open sets. A map $f: U \to V$ is called a diffeomorphism if

- i). f is smooth. (\Leftrightarrow arbitrary order of partial derivatives exists),
- ii). f^{-1} is defined and is also a smooth map.

Definition 3.4. Let X be a topological space. A chart on X is a homeomorphism $h: U \to V$ where $U \subseteq X$ is open and $V \subseteq \mathbb{R}^n$ is open.

Definition 3.5. An atlas $\mathscr A$ on a topological space X is a collection of charts $\{h_{\lambda} \mid h_{\lambda} : U_{\lambda} \to V_{\lambda}\}_{\lambda \in \Lambda}$ such that $\{U_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X.

Definition 3.6. An atlas \mathscr{A} of X is said to be smooth if for any two charts $h_1: U_1 \to V_2, h_2: U_2 \to V_2$. The following,

$$h_2 \circ h_1^{-1} : h_1(U_1 \cap U_2) \to h_2(U_1 \cap U_2),$$

is a smooth map. Such map is called a transition map.

Definition 3.7. Let X be a topological space and $\mathscr{A}_1, \mathscr{A}_2$ be smooth at lases. We say they are equivalent if $\mathscr{A}_1 \cup \mathscr{A}_2$ is also smooth.

Proposition 3.2. Above definition indeed defines an equivalence relation.

Proof. For any $h_1 \in \mathcal{A}_1, h_2 \in \mathcal{A}_2, h_3 \in \mathcal{A}_3$,

$$h_3 \circ h_1^{-1} = h_3 \circ h_2^{-1} \circ h_2 \circ h_1^{-1}.$$

Definition 3.8. A smooth manifold is a second countable Hausdorff topological space with equivalence classes of smooth atlases.

Definition 3.9. Let M, N be smooth manifolds, $f : M \to N$ be a map, and $p \in M$. f is said to be smooth at p if for one (hence any) pair of charts around p and f(p),

$$h_M: U_M \to V_M, h_N: U_N \to V_N,$$

the composed function

$$h_N \circ f \circ h_M^{-1}: V_M \to V_N$$

is smooth at $h_M(p)$.

Remark 3.1. We can define a function dim : $M \to N$ such that

$$\dim(p) = \dim(V)_p,$$

for any chart $h: U \to V$ around p. And this function is locally constant. In particular, if M is connected then it has a well-defined dimensions.

Definition 3.10. Let M, N be smooth manifold and $f: M \to N$ be a mapping which is smooth at $p \in M$. For any charts,

$$h_N \circ f \circ h_M^{-1} : V_M \to V_N,$$

the rank of f at p is such that

$$\operatorname{rk}(f; p) = \operatorname{rank}(\operatorname{\mathbf{df}}(h_M(p))(h_N \circ f \circ h_M^{-1})).$$

Definition 3.11. Let M, N be smooth manifolds and $f: M \to N$ be a smooth map. A point p is said to be regular with respect to the map f. And a point $q \in N$ is called a regular value if all $p \in f^{-1}(q)$ are regular.

Definition 3.12. Let M be a manifold. A subset $N \subseteq M$ is called an embedded submanifold if for any point $p \in N$, there is a chart $h_M : U_M \to V_M$ around p such that

$$h_M|_N: U_M \cap N \to V_M \cap \mathscr{R}^n$$
,

is a diffeomorphism where n is the dimension of N.

In particular, an embedded submanifold of an euclidean space is called a embedded manifold.

Definition 3.13. A map $f: M \to N$ of smooth manifolds is called a diffeomorphism if

- i). $f: M \to N$ is a bijection,
- ii). f, f^{-1} are both smooth.

Theorem 3.1. Let $f: M \to N$ be a smooth map between manifolds, and $q \in N$ be a regular value. Then $f^{-1}(q) \subset M$ is an embedded submanifold.

Theorem 3.2. Let $f: M \to N$ be a smooth map of manifolds $p \in M$ be a regular point, and $\dim(p) = \dim(f(p))$. Then f is a local diffeomorphism of p. In other words, there is a neighborhood U_M of p in M and $f(p) \in U_N \subset N$ such that

$$f|_{U_M}:U_M\to U_N,$$

is a diffeomorphism.

Definition 3.14. Let $M \subseteq \mathbb{R}^n$ be an embedded manifold such that for some open set $U \subset \mathbb{R}^n$, there is $V \subset \mathbb{R}^n$ such that

$$h: U \to V$$
, $h_M: U \cap M \to V \cap \mathbb{R}^m$,

is a diffeomorphism where h_M is defined to be taking the first m coordinate of the points in V. (Thus $m \leq n$).

The tangent space T_pM of M at p is the subspace of \mathbb{R}^n such that

$$(\mathbf{dh}(p))^{-1}(\mathbb{R}^m) \subset \mathbb{R}^n.$$

There are three definitions of tangent spaces and they are all equivalent. However, each of them has its own advantages.

Definition 3.15 (Coordinate tangent space). Given a smooth manifold M and a point $p \in M$. The coordinate tangent space of p is such that

$$T_p^{\mathbf{Coo}}M = \{(h,v) \mid h: U \to V \ \text{is a chart}, v \in \mathbb{R}^m\}/\sim.$$

Where \sim is an equivalence relation such that

$$(h_1, v_1) \sim (h_2, v_2)$$
 if $(\mathbf{d}(h_2 \circ h_1^{-1})(h_1(p)))(v_1) = v_2$.

Definition 3.16. Given a smooth manifold M, a point $p \in M$, and a smooth map $\alpha : I \to M$ whose domain I is an open interval contains 0. α is called a smooth curve if $\alpha(0) = p$.

Definition 3.17. Two smooth curves $\alpha, \beta: I \to M$ through p are said to be tangentially equivalent if for one (hence any) charts $h: U \to V$ around p, we have

$$d(h \circ \alpha)(0) = d(h \circ \beta)(0).$$

We denote such relation as \sim_T .

Definition 3.18 (Geometric tangent space). The geometric tangent space at p of a smooth manifold M is such that

$$T_p^{\mathbf{Geo}} = \{\alpha: I \to M \mid \alpha \text{ is a smooth curve}\}/\sim_T.$$

Definition 3.19. A germ of smooth functions of manifolds M at p is an equivalence class of tuples (U, f) where

- i). $U \subset M$ is a neighborhood of p,
- ii). $f:U\to\mathbb{R}$ is smooth.

and two tuples $(U_1, f_1), (U_2, f_2)$ are equivalent if there is a neighborhood V of p such that $V \in U_1 \cap U_2$ and $f_1|_V = f_2|_V$.

And we denote the set of germs at p as

$$\mathscr{C}^{\infty}(p)$$
.

Remark 3.2. $\mathscr{C}^{\infty}(U,\mathbb{R})$ and $\mathscr{C}^{\infty}(p)$ are rings, in fact \mathbb{R} -algebras.

Definition 3.20. Let R be a ring and A be a bimodule over R. A R-derivation in A is an operator $X: A \to A$ such that the Leibniz rule holds. In other words,

$$X(ab) = aX(b) + X(a)b,$$

holds for all $a, b \in A$.

Definition 3.21 (Algebraic tangent space). The algebraic tangent space $T_p^{\mathbf{Alg}}M$ of M at p is the set of \mathbb{R} -derivations $X: \mathscr{C}^{\infty}(p) \to \mathbb{R}$.

Remark 3.3. In the above definition, \mathbb{R} is considered as a $\mathscr{C}^{\infty}(p)$ -bimodule via the evaluation map $f \mapsto f(p)$.

Theorem 3.3. The following are isomorphisms of \mathcal{R} -vector spaces.

$$T_p^{\mathbf{Geo}}M \to T_p^{\mathbf{Alg}}M, \alpha \mapsto (f \mapsto (f \circ \alpha)'(0)),$$

$$T_p^{\mathbf{Alg}}M \to T_p^{\mathbf{Coo}}M, X \mapsto (h, ((Xh_i)(p))_{i=1,\dots,n}),$$

$$T_p^{\mathbf{Coo}}M \to T_p^{\mathbf{Geo}}M, (h, v) \mapsto \alpha(t) = h^{-1}(h(p) + t \cdot v).$$

Proposition 3.3. $\mathscr{C}^{\infty}(p)$ is a local ring with its maximal ideal

$$\mathfrak{m}_p = \{ f \in \mathscr{C}^{\infty}(p) \mid f(p) = 0 \}.$$

Moreover, if we have a derivation $X : \mathscr{C}^{\infty}(p) \to \mathbb{R}$, the restricted derivation $X|_{\mathfrak{m}_p}$ is in $\operatorname{Hom}_{\mathbb{R}}(\mathfrak{m}_p/\mathfrak{m}_p^2)$. And by this restriction, we get an isomorphism between $T_p^{\mathbf{Alg}}M$ and $\operatorname{Hom}_{\mathbb{R}}(\mathfrak{m}_p/\mathfrak{m}_p^2, \mathbb{R})$.

Remark 3.4. In this way, a smooth manifold is recognized as a locally ringed space, locally isomorphic to \mathbb{R}^n .

Remark 3.5. Let V be a finite dimensional \mathbb{R} -vector space. It has a tautological smooth manifold structure by taking charts such that the sets of isomorphisms of V and \mathbb{R}^n given by arbitrary basis of V.

We claim that we have canonical isomorphisms

$$T_nV \to V$$

for any $p \in V$,

$$\begin{split} V &\to T_p^{\mathbf{Coo}} V, v \mapsto (h, h(v)), \\ V &\to T_p^{\mathbf{Geo}} V, v \mapsto (t \mapsto p + tv), \\ V &\to T_p^{\mathbf{Alg}} V, v \mapsto \left(f \mapsto \frac{d}{dt} \bigg|_{t=0} f(p + tv) \right) \end{split}$$

Definition 3.22. Let $f: M \to N$ be a map of smooth manifolds which is smooth at $p \in M$. Its differential of p is the linear map

$$\mathbf{d}f(p) = \mathbf{d}_p(f) : T_pM \to T_{f(p)}N,$$

defined as follows.

- 1). Geometric tangent space: $\mathbf{d}_{p}(f)(\alpha) = f \circ \alpha$ where α is a smooth curve.
- 2). Algebraic tangent space : $\mathbf{d}_p(f)(X)(\varphi) = X(\varphi \circ f)$ where $\varphi \in \mathscr{C}^{\infty}(f(p))$.
- 3). Coordinate tangent space : $\mathbf{d}_p(f)(h_M, v_M) = (h_N, d_{h_M(p)}(h_N))$.

Remark 3.6. Given a chart $h: U \to V$ around $p \in M$. h consists of coordinate functions h_i where $1 \le i \le m$ for $V \subset \mathbb{R}^m$. We have for each i

$$\mathbf{d}_p h_i: T_p M \to \mathbb{R},$$

and

$$B = \{d_p h_1, \cdots, d_p h_m\}$$

is a basis of the dual space $(T_pM)^*$.

Let

$$\{\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_m}\}$$

be the dual basis of B. By definition, this means that for any $1 \le i, j \le m$, we have

$$\frac{\partial}{\partial x_i} h_j = d_p h_j(\frac{\partial}{\partial x_i}) = \delta_{ij}.$$

Proposition 3.4. Let $f: M \to N$ be a map between smooth manifolds which is smooth and $q \in N$ be a regular value. For $p \in f^{-1}(q)$, we have

$$T_p f^{-1}(q) = \mathbf{d}_p(f)^{-1}(0) \subset T_p M.$$

Proof. \Box

3.2 Immersions and Submersions

Definition 3.23. Let $f: M \to N$ be a smooth map of smooth manifolds. f is called an

- 1). immersion if $\mathbf{d}f: T_pM \to T_{f(p)}N$ is injective for any $p \in M$,
- 2). submersion, if $\mathbf{d}f(p): T_pM \to T_{f(p)}N$ is surjective for any $p \in M$.

Remark 3.7. An immersion need not be injective. The counter example is

$$e^{ix}: \mathbb{R} \to S^1$$
.

is an immersion.

Remark 3.8. A submersion need not be injective. The counter example is

$$i_U:U\to M$$
.

an inclusion map is a submersion.

Remark 3.9. We know that if f is a submersion, then $f^{-1}(q)$ is an embedded submanifold. However, if f is an immersion, even it is injective, f(M) need not be an embedded submanifold of N.

Definition 3.24. An immersed submanifold is an image of an injective immersion.

Remark 3.10. We endow f(M) with the transported topology and differential structure from M so that f becomes a diffeomorphism between M and f(M). But this topology need not be the relative topology from N. It may be strictly finite.

Example 3.1. Let $T = S^1 \times S^1$ be a torus. Let $r \in \mathbb{R}$. We consider a map $f : \mathbb{R} \to T$ such that

$$f(x) = (e^{2\pi tx}, e^{2\pi rix}).$$

This is an immersion for any r. We examine this by several cases.

First, when r is not a rational number then f is injective, the image is an immersed manifold. However, a copy of \mathbb{R} . But this image is a dense subset of the torus.

Second, if r is rational then f is not injective. It is going to factor through an injective immersion $\mathbb{R}/b\mathbb{Z} \to T$ where $r = \frac{a}{b}$, $a, b \in \mathbb{Z}$ are coprime. This image is not only immersed but also embedded.

Remark 3.11. If $f: M \to N$ is an immersion, $\mathbf{d}f(p)$ identifies T_pM with a linear subspace of $T_{f(p)}N$.

Proposition 3.5. If $f: M \to N$ is an injective immersion, that is also closed subset of N, then its image is an embedded submanifold.

Remark 3.12. Thus we have the notion of a closed submanifold.

3.3 Multi-linear forms

Definition 3.25. Let \mathbb{V} be a vector space and $\varphi: \bigoplus_{i=1}^m V \to \mathbb{R}$ is called a m-multi-linear function if for any $i = 1, \dots, m$ and $\{a_j\}_{j \neq i} \subset V$ we have

$$\varphi(a_1,\cdots,a_{i-1},x,a_{i+1},\cdots,a_m):V\to\mathbb{R}$$

is a linear function

Definition 3.26. Let X be a smooth n-dimensional manifold and $m \in \mathbb{N}$. Then we define the followings

1.
$$\mathscr{L}_p^m = \{ \varphi : \bigoplus_{i=1}^m T_p X \to \mathbb{R} | \varphi \text{ is a m-multi-linear function.} \}$$

2.
$$\mathscr{L}^m = \bigcup_{p \in X} \mathscr{L}_p^m$$

Definition 3.27. Let X be a smooth n-dimensional manifold. A map $V: X \to \mathcal{L}^m$ is called a m-tensorfield if

- i. For any $p \in X$, $V(p) \in \mathcal{L}_p^m$.
- ii. For any chart (U,φ) around p with a basis $\{e_1^{\varphi},\cdots,e_n^{\varphi}\}$ and for any $i_1,\cdots,i_m\in\{1,\cdots,n\}$ we have a map $V_{(i_1,\cdots,i_m)}:X\to\mathbb{R}$ such that $V_{(i_1,\cdots,i_m)}(p)=V(p)(\underline{e}_{i_1},\cdots,\underline{e}_{i_m})$ is smooth.

Proposition 3.6. For any m tensorfield V, we have

Definition 3.28. We define $\mathscr{V}^m(X)$ to be the set of all m-tensorfield.

Proposition 3.7. $\mathscr{V}^m(X)$ is a vector space over \mathbb{R} and a module over $\mathscr{F}(X)$ with the common basis $\{E_{i_1,\cdots,i_m}\}_{i_1,\cdots,i_m\in\{1,\cdots,n\}}$

Proposition 3.8. Let X be a smooth n-dimensional manifold and $V: X \to \mathcal{L}^m$ be such that for any $p \in X, V(p) \in \mathcal{L}_p^m$ the followings are equivalent.

- 1. V is a m-tensorfield.
- 2. For any chart (U,φ) around p with basis $\{\underline{e}_1^{\varphi},\cdots,\underline{e}_n^{\varphi}\}$ and for any $1\leq i_1,\cdots,i_m\leq n$ there exist smooth mappings $\lambda_{i_1,\cdots,i_m}:X\to\mathbb{R}$ such that $V(p)=\sum_{1\leq i_1,\cdots,i_m\leq n}\lambda_{i_1,\cdots,i_m}(p)E_{i_1,\cdots,i_m}^{\varphi}$.
- 3. For any vectorfields $v_1, \dots, v_m : X \to TX$ we have a function $V : X \to \mathbb{R}$ such that $V_{v_1, \dots, v_m}(p) = V(p)(v_1(p), \dots, v_m(p))$ is smooth.

Proof. 1. \Leftrightarrow 2. is trivial. 1. \Rightarrow 3. is clear by the multi-linearity, and 3. \Rightarrow 1. is choosing $v_i = e_i^{\varphi}$ for each $i = 1, \dots, n$.

Proposition 3.9. Let $V: X \to \mathcal{L}^m$ then thre followings are equivalent.

- 1. V is a m-tensorfield.
- 2. For any $\{v_1, \dots, v_m\} \in \mathcal{V}(X)$, $\Psi : \bigoplus_{i=1}^m \mathcal{V}(X) \to \mathcal{F}(X)$ such that $\Psi(v_1, \dots, v_m)(p) = V(p)(v_1(p), \dots, v_m(p))$ is smooth and $\mathcal{F}(X)$ -linear.

Proof. 1. \Rightarrow 2. follows from the multilinearity and decompositions of tensors. 2. \Rightarrow 1. follows by fixing all element except one we still have the linearity thus, the function is mutilinear.

3.4 Tensor and Wedge products

Definition 3.29. Let $V_1: X \to \mathcal{L}^r, V_2: X \to \mathcal{L}^s$ be tensorfield. Then We define the tensorproduct $V_1 \otimes V_2: X \to \mathcal{L}^{r+s}$ of them to be

$$(V_1 \otimes V_2)(p)(v_1, \dots, v_r, v_{r+1}, \dots, v_{r+s}) = V_1(p)(v_1, \dots, v_r)V_2(p)(v_{r+1}, \dots, v_{r+s})$$

Proposition 3.10. The operation \bigotimes is bilinear and associative.

Proof. By substituting values, they are trivial.

Proposition 3.11. Let $U \subset X$ be an open set and $V_1, \dots, V_n \in \mathscr{V}^1(U)$ be a basis in $\mathscr{V}^1(U)$ then $\{\bigotimes_{j=1}^r V_{i_j}\}_{1 \leq i_1, \dots, i_r \leq r}$ is a basis in $\mathscr{V}^r(U)$.

Proof. Since \otimes is bilinear, this is a tensor product thus the set in the statement is indeed a basis.

Definition 3.30. Let $V \in \mathscr{V}^m(X)$ be a m-tensor. V is said to be alternating if for any $p \in X$, $(v_1, \dots, v_m) \in \bigoplus_{i=1}^m T_p X$ and $\sigma \in \mathfrak{S}_m$ we have

$$V(p)(v_{\sigma(1)}, \cdots, v_{\sigma(m)}) = \operatorname{sgn}(\sigma)V(p)(v_1, \cdots, v_m)$$

Furthermore, such V is called a m-form.

Notation 3.1. The set of all m-forms is denoted by

$$\mathscr{A}^m(X) = \{ V \in \mathscr{V}^m(X) \mid V \text{ is a m-form.} \}$$

Definition 3.31. Let $V_1 \in \mathscr{A}^r(X), V_2 \in \mathscr{A}^s(X)$ then the wedge product is

$$(V_1 \wedge V_2)(p)(v_1, \cdots, v_{r+s}) = \frac{1}{r!s!} \sum_{\sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\sigma) V_1 \otimes V_2(v_{\sigma(1)}, \cdots, v_{\sigma(r+s)})$$

Proposition 3.12. Let $V_1, \dots, V_n \in \mathcal{A}^1(X)$, $p \in X$ and $v_1, \dots, v_n \in T_pX$ then we have

$$(V_1 \wedge \cdots \wedge V_n)(p)(v_1, \cdots, v_n) = \det(V_i(p)(v_i))_{i,j}$$

Proof.

$$(V_1 \wedge \dots \wedge V_n)(p)(v_1, \dots, v_n) = \frac{1}{1! \dots 1!} \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n V_i(p)(v_{\sigma}(i))$$

Proposition 3.13. Similar to the case in tensorfields, we have the following statements.

- 1. $\mathscr{A}^m(X)$ is a subspace of \mathscr{V}^m over \mathbb{R} .
- 2. $\mathscr{A}^m(X)$ is a module over $\mathscr{F}(X)$.

Proof. Trivial. \Box

Proposition 3.14. Let $V_1 \in \mathscr{A}^r, V_2 \in \mathscr{A}^s$, then $V_1 \wedge V_2 \in \mathscr{A}^{r+s}$ and such $\wedge : \mathscr{A}^r \times \mathscr{A}^s \to \mathscr{A}^{r+s}$ is bilinear.

Proof. Bilinearity follows from the bilinearity of \otimes . We will show that this is indeed well-defined.

Let $\sigma \in \mathfrak{S}_{r+s}$. Then we have

$$(V_1 \wedge V_2)(p)(v_{\sigma(1)}, \dots, v_{\sigma(r+s)}) = \frac{1}{r!s!} \sum_{\tau \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\tau) V_1 \otimes V_2(v_{\tau \circ \sigma(1)}, \dots, v_{\tau \circ \sigma(r+s)})$$

$$= \operatorname{sgn}(\sigma) \frac{1}{r!s!} \sum_{\tau \circ \sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\tau \circ \sigma) V_1 \otimes V_2(v_{\tau \circ \sigma(1)}, \dots, v_{\tau \circ \sigma(r+s)})$$

$$= \operatorname{sgn}(\sigma) (V_1 \wedge V_2)(p)(v_{\sigma(1)}, \dots, v_{\sigma(r+s)})$$

Proposition 3.15.

$$V_2 \wedge V_1 = (-1)^{rs} (V_1 \wedge V_2)$$

Proof. Let $\tau \in \mathfrak{S}_{r+s}$ to be such that

$$\tau(i) = \begin{cases} r+i & (1 \le i \le s) \\ i-s & (s+1 \le i \le r+s) \end{cases}$$

Then clearly the inversion number is $N(\tau) = rs$. It is also obvious that

$$V_2 \wedge V_1(p)(v_{\tau(1)}, \dots, v_{\tau(r+s)}) = V_1 \wedge V_2(p)(v_1, \dots, v_{r+s})$$

Proposition 3.16. Let $V_1 \in \mathscr{A}^r, V_2 \in \mathscr{A}^s, V_3 \in \mathscr{A}^t$ then $(V_1 \wedge V_2) \wedge V_3 = V_1 \wedge (V_2 \wedge V_3)$.

Proof.

$$(V_1 \wedge V_2) \wedge V_3(p)(v_1, \dots, v_{r+s+t}) = \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau)(V_1 \wedge V_2) \oplus V_3(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

$$= \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau)$$

$$(\frac{1}{r!s!} \sum_{\sigma \in \mathfrak{S}_{r+s}} \operatorname{sgn}(\sigma)V_1 \otimes V_2(v_{\tau \circ \sigma(1)}, \dots, v_{\tau \circ \sigma(r+s)}))$$

$$V_3(v_{\sigma(r+s+1)}, \dots, v_{\sigma(r+s+t)})$$

If for $\tau_1, \tau_2 \in \mathfrak{S}_{r+s+t}, \sigma_1, \sigma_2 \in \mathfrak{S}_{r+s}$ we have $\tau_1 \circ \sigma_1 = \tau_2 \circ \sigma_2$ then they satisfy the followings

- i. For any $r+s+1 \le i \le r+s+t$ we have $\tau_1(i) = \tau_2(i)$.
- ii. From above we get $\tau_2^{-1} \circ \tau_1 \in \mathfrak{S}_{r+s}$

Fixing σ_1 , there exists (r+s)! many such σ_2 . This implies that we can choose σ_1 to be the identity. Thus we get

$$(V_{1} \wedge V_{2}) \wedge V_{3}(p)(v_{1}, \dots, v_{r+s+t}) = \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau)(V_{1} \wedge V_{2}) \oplus V_{3}(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

$$= \frac{1}{(r+s)!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau) \frac{(r+s)!}{r!s!} V_{1} \oplus V_{2} \oplus V_{3}(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

$$= \frac{1}{r!s!t!} \sum_{\tau \in \mathfrak{S}_{r+s+t}} \operatorname{sgn}(\tau) V_{1} \oplus V_{2} \oplus V_{3}(v_{\tau(1)}, \dots, v_{\tau(r+s+t)})$$

From the previous proposition we get

4 Integration

Definition 4.1. A differential k-form ω on a smooth manifold M is a collection $\omega(p) \in A^k(T_pM)$ for all $p \in M$.

Remark 4.1. We can define what it means for ω to be continuous or smooth at some points $p \in M$ as follows.

First, we pick a chart $h: U \to V$ around p and get the basis

$$\{\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_m}\},\$$

of T_pM that moves with $p \in U$.

We also have a basis $A^k(T_pM) = \bigwedge^k(T_pM)^*$. Hence we can express ω as p in terms of that basis and the scalars in this expression are functions on U.

$$\omega(p) = \sum f_{i_1, \dots, i_k} \cdot d_{x_{i_1}} \wedge \dots \wedge d_{x_{i_k}}.$$

And we can require $f_{i_1,\dots,i_k}\cdots d_{x_{i_1}}$ to be smooth/continuous at p.

Example 4.1. If $M = \mathbb{R}^n$, we have the canonical identification,

$$T_pM=\mathbb{R}^n$$
.

This gives us standard differential form of degree n. which is given by

$$e_1^* \wedge \cdots \wedge e_n^*,$$

where e_1, \dots, e_n is the standard basis of \mathbb{R}^n .

Definition 4.2. Let $f: M \to N$ be a smooth map of manifolds and ω be a differential form of degree k on N. We define $f^*(\omega)$ of degree k on M by

$$f^*(w)(p)(x_1,\dots,x_k) = \omega(f(p))(\mathbf{d}f_p(x_1),\dots,\mathbf{d}f_p(x_k)).$$

Definition 4.3. A differential n-form ω on M is said to be locally integrable if for any point $p \in M$, if for any point $p \in M$, there is one (hence any) chart $h: U \to V$ such that $\omega|_U =$