5. Allika kodeerimine

Side IRT3930

Ivo Müürsepp

Allika mudel

Allika Entroopia

 Shannoni entroopia on informatsiooniallika poolt toodetava informatsiooni keskmine hulk.

$$H(A) = \sum_{j=1}^{N} p(a_j)I(a_j) = -\sum_{j=1}^{N} p(a_j)\log_2 p(a_j)$$

Allika Entroopia

FIGURE 2.1 H_n in bits per letter for n = 1, ..., 12 for Wealth of Nations.

Kood

 Koodi C all peetakse silmas ühest vastavust allika sümbolite a_i ja neid sümboleid kirjeldavate digitaalsete sümbolite (koodsõnade) c_i vahel.

USASCII code chart

De b 5	5					000	°0 ,	0 - 0	0	100	0 1	10	1 1
	4 b	3	b ₂	b	Row	0	ı	2	3	4	5	6	7
<u>`</u> [0	T	5	0	0	0	NUL .	DLE	SP	0	0	P	``	P
0	7	0	0	_		soн	DC1	!	1	Α.	O ·	0	q
O) (٥	_	0	2	STX	DC2	"	2	В	R	b	r
0	न	0	_	_	3	ETX	DC3	#	3	C	S	С	\$
0	7	1	0	0	4	EOT	DC4	•	4	D	Т	đ	t
0	7	ī	0	-	5	ENQ	NAK	%	5	Ε	U	e	U
0	T	1	1	0	6	ACK	SYN	8	6	F	>	f	٧
0	\mathbf{I}		1	1	7	BEL	ETB	•	7	G	W	g	3
ı	1	0	0	0	8	BS	CAN	(8	н	×	h	×
Ī		0	0	-	9	нТ	EM)	9	1	Y	i	у
Γ	T	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
- Fi	1	0	1	1	11	VT	ESC	+		K	C	k.	{
Ī		ı	0	0	12	FF	FS	•	<	L	\	l	1
		1	0	1	13	CR	GS	-	=	М)	m	}
		1	1	0	14	so	RS		>	N	^	n	?
	II	1	ı	1	15	SI	US	/	?	0	_	0	DEL

Koodi parameetrid

Koodsõna keskmine pikkus

$$L = \sum_{j=1}^{N} p(a_j) n(a_j)$$

 Koodsõna keskmise pikkuse ja allika entroopia erinevust nimetatakse koodi liiasuseks (redundancy)

$$D = L - H$$

Morse kood

Α	•-	J	•	S	•••	1	•
В		K		Т	_	2	••
С		L	•-••	U	••-	3	
D		М		٧	•••-	4	••••
Е	•	Ν	-•	W	•	5	****
F	••	0		Χ		6	
G		Р	••	Υ		7	
Н	****	Q		Z		8	
I	••	R	•-•	0		9	

Analoog-digitaalmuundus

- Analoogsignaal pidev argumendis ja väärtuses s(t).
- Esimese sammuna fikseeritakse analoogsignaali väärtus mingil lõplikul hulgal ajahetkedel $s(n\cdot\Delta t)$.
- Protsessi nimetatakse diskreetimiseks (võendamine).
- Nyquist-Shannon-Kotelnikovi teoreem:
 - Kui signaali s(t) ribalaius on B hertsi, siis on see signaal täielikult määratud disreetsete väljavõtetega ajavahemike 1/2B sekundi tagant.
 - Vajalik diskreetimissamm $\Delta t \leq 1/(2B)$
 - Põhiriba signaali korral diskreetimissagedus $f_s \ge 2f_m$

Kvantimine

- Signaali väärtus diskreetsetel ajahetkedel $s(n\cdot\Delta t)$ mõõdetakse mingi lõpliku täpsusega $\pm q/2$ ja salvestatakse digitaalsel kujul bittide arvuga n_B .
- Kvantimissammu q suurus on määratud bittide arvuga n_B ja sisendpinge maksimaalse muutumisvahemikuga U_{pp} (- U_m ... U_m)

$$q = \frac{U_{pp}}{2^{n_B} - 1} \approx \frac{U_{pp}}{2^{n_B}} = \frac{U_m}{2^{n_B - 1}}$$

 Kvantimisega kaasneb alati pöördumatu informatsioonikadu, mida iseloomustab kvantimismüra võimsusega

$$N = \frac{q^2}{12}$$

Kvantimismüra

Allika kodeerimine

10

G.711 koodek

- 300-3400Hz
- $f_s = 8 \text{kHz}$
- r = 64 kbit/s
- A ja μ seadused.
 - A = 87,6

$$|u_{v}| = \begin{cases} \frac{A|u_{s}|}{1 + \ln(A)} & 0 \le |m| \le \frac{1}{A} \\ \frac{1 + \ln(A|u_{s}|)}{1 + \ln(A)} & \frac{1}{A} \le |m| \le 1 \end{cases}$$

Harjutusülesanded

- Allika tähestikus A on neli sümbolit a_1 , a_2 , a_3 ja a_4 , vastavalt tõenäosustega p_1 = 0,505; p_2 = 0,25; p_3 = 1/8 ja p_4 = 0,12. Kui suur on selle allika entroopia H(A) ?
- Eelmises ülesandes antud allika A kodeerimiseks kasutati järgnevaid koodsõnu $c_1 = 1$, $c_2 = 01$, $c_3 = 001$ ja $c_4 = 0001$. Kui suured on kasutatava koodi keskmine L pikkus ja liiasus D?
- Vähemalt kui suur peab olema diskreetimissagedus, kui muundatava signaali maksimaalne sagedus on 3,4kHz?
- Digitaliseeritava analoogsignaali väärtus on vahemikus ±3,3V, kui suur on signaali mõõtmise täpsus, kui muundur on kaheksabitine?

Materjalid

• ITU-T Recommendation G.711 http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.711-198811-I!!PDF-E&type=items, 02.10.2017

