Logistic Regression

Lead Scoring Case Study

Problem Statement

- X Education is a company providing online courses directed at professionals
- Their website is promoted at various online avenues. Interested people visit the website and fill up a form. These are classified as leads
- The company contacts these leads to convert them towards completing purchase of the course
- The current strategy is to contact every single lead, which is very resource intensive
- Moreover, there is a very low conversion rate of only 30% even after contacting all the leads
- Hence, the company requires a solution that can help identify leads most likely to convert so they can focus their resources on them

Data Exploration and Cleaning

- The data file was perused and the data dictionary was used to understand the different columns
- A brief EDA of the dataset was done to identify columns with missing values and irrelevant columns that could be dropped
- A number of categorical cells contained the value 'select'. This was replaced with null value
- Missing values were dealt with by:
 - Deleting columns with large percentage of missing values
 - Deleting rows for those columns where a very small percentage of the data was missing
 - Creating a value "missing" where neither deletion not imputation made sense

Data Exploration and Cleaning

- There were a number of columns containing Yes/No values. These were replaced with binary 1/0 numerical values
- Columns where the data was dominated by a single value were dropped as these did not add value to the analysis
- Certain categorical values had a large number of options in the data.
 Bucketing was done for these to consolidate options with lower percentage representation
- Finally, some column names were modified to enhance readability

Data Preparation

- The categorical columns were converted into dummy variables with n-1 columns created for n options in the categorical columns. Original columns with categorical data were then dropped
- The dataset was split into train and test sets. 70% was taken as training set and 30% for test set
- The training dataset was scaled to address the large variation in numerical data values. MinMax scaler was used in this case
- The conversion rate of the train dataset was checked to ensure there was no class imbalance. A decent rate of 38.5% was obtained

Model Building

- The training dataset was split into X (independent variables) and y (target variable)
- Recursive feature elimination was used to automate model creation and obtain the best features. Overall 10 features were identified
- These features were then used to create the logistic regression model in StatsModel
- The intention was to fine-tune the independent variables basis the p-value and VIF obtained. However, in the first iteration itself all variables had p-value < 0.05 and VIF < 2 so this model was finalised for further evaluations

Model Evaluation

- Predicted conversion probability values were obtained using the model
- In order to assign binary values to conversion prediction, a cutoff point had to be estimated
- This was done by obtaining binary prediction value at different cutoff points and calculating the model accuracy, sensitivity and specificity at these values
- The value were plotted to see at what cutoff could the metrics be optimised

Model Evaluation

prob	accuracy	sensitivity	specificity
0.0	0.385136	1.000000	0.000000
0.1	0.616753	0.975879	0.391805
0.2	0.753740	0.917007	0.651472
0.3	0.795780	0.833606	0.772087
0.4	0.803181	0.757155	0.832010
0.5	0.806330	0.686427	0.881434
0.6	0.802078	0.619787	0.916261
0.7	0.777988	0.507359	0.947503
0.8	0.760038	0.427228	0.968502
0.9	0.704613	0.253884	0.986940

- Of the three metrics, sensitivity was focussed on the most as the goal of the model is to correctly identify conversions (i.e. True Positives)
- Using this, 0.3 was selected as the cutoff point

Model Evaluation

- With this cutoff point, the model achieved an accuracy of 79.5% and a sensitivity of 83.3%, which is in line with the CEO's requirement of over 80% conversions
- An ROC curve was also plotted. It provided the desired left-hand curve shape with sufficient area under the curve, indicating a good model
- As a final step, the lead scores were assigned by using the formula conversion_probability * 100

Making Predictions on Test Data

- Transformations were done on the test data set to mirror those on train set. This included:
 - Splitting into X (independent variables) and y (target variable)
 - Scaling the numerical variables
 - Selecting the relevant columns used in the model
- Predicted probability values were generated using the model and predicted conversion was assigned based on the earlier selected cutoff point
- The metrics were checked and we obtained an accuracy of 79.1% and sensitivity of 82%, similar to the training set. This indicates the model is able to generalise sufficiently
- Finally, the lead scores were assigned to each prospect using the formula predicted_probability * 100

Model Results – Business Insights

While the model was created using 10 independent variables, we can see that the variables have come from 5 notable columns:

- Total visits to the site Prospects most likely to convert would visit the site multiple times, indicating a continued interest in the course
- The time spent on the website longer time spent by the prospect indicates a higher chance of conversion
- Lead origin leads originating from the leads add form and the leads import data are likeliest to convert
- Additionally, leads coming from Olark chat also show a higher tendency to convert
- Within occupations, working professionals had a higher weightage towards conversion, indicating the course could be used to further one's career path.