

CPU Benchmarking:

System Configuration:

• Operating System: Ubuntu 14.4

• RAM: 8 GB

No of Physical cores: 4No of logical cores: 8.

No. of Threads	Average GFLOPS	Average GIOPS
1	0.174785	0.217382
2	0.149712	0.205318
4	0.221784	0.459432

Graph for CPU Benchmarking:

• X Axis: Number of Threads

Y Axis: Instructions per cycle in giga [GFLOPS and GIOPS]

The X axis is number of threads and Y axis is instructions per cycle having both GFLOPS and GIOPS. The minimum numbers of threads are 1 and maximum are 4. From the graph we can observe that the FLOPS and IOPS are highest when we run on a 4 thread.

Where: X Axis: Number of Threads

Y Axis: Instructions per cycle in giga

Graph for CPU Benchmarking for 600 samples using thread 4:

• X Axis: Time (0 to 10min)

Y Axis: Instructions per cycle in giga [GFLOPS and GIOPS]

The X axis is Time in seconds for 600 seconds and Y axis is instructions per cycle having both GFLOPS and GIOPS. The thread used is 4. From the graph we can observe that the FLOPS has hig readings and IOPS as a constant flow.

Where: X Axis: Time in 600 seconds

Y Axis: Instructions per cycle in giga

Theoretical Performance: Number of cores * Number of Instructions per cycle * Clock Speed =

76.8 GFLOPS

Efficiency achieved compared to theoretical value: 40.69%

Linpack Results:

The maximum GFLOPS achieved 20.4223

The efficiency of the results from Linpack when compared with theoretical performance is 49.18%

DISK Benchmarking:

- All the experiments were performed on a VM of 20GB hard disk. The read and write operations to and from the memory are performed using this file system.
- The accuracy of the result could have been increased if we had a dual boot or the entire system running on Ubuntu. The following results are based on above configuration.
- The 1 MB access speeds are from cached space. Thus, we consider theoretical speed(max) of 3Gbps.

1 Byte

Thread	Seq	Seq	Ran	Ran	Seq	Seq	Ran Read	Ran
S	Read	Write	Read	Write	Read	Write	Latency	Write
					Latency	Latency		Latency
1	0.04029	0.04121	0.04004	0.03306	0.23669	0.23125	0.238176	0.28844
	1	0	1	2	8	2		6
2	0.03559	0.03281	0.03617	0.03281	0.26790	0.29062	0.263626	0.33474
	8	4	5	4	1	7	5	5

1 KB

Threa	Seq Read	Seq	Ran Read	Ran	Seq	Seq	Ran	Ran
ds		Write		Write	Read	Write	Read	Write
					Latency	Latency	Latency	Latency
1	1261.7086	193.5320	2977.3246	161.3619	0.7740	5.0460	0.3280	6.0520
	56	06	95	46	00	00	00	00
2	1163.9600	356.9959	1266.6180	206.6143	0.8390	2.7355	0.7710	4.7265
	72	79	29	02	00	00	00	00

1 MB

Threa	Seq Read	Seq	Ran Read	Ran	Seq	Seq	Ran	Ran
ds		Write		Write	Read	Write	Read	Write
					Latenc	Latency	Latency	Latency
					у			
1	8568.980	490.4364	3447.087	450.6737	1.1670	20.3900	2.90100	22.1890
	291	88	211	51	00	0	0	0
2	8960.573	415.5412	3770.028	564.4615	1.1160	24.0650	2.65250	17.7160
	477	42	275	04	00	00	00	00

Seq Read: Sequential read in Mbps Seq Write: Sequential write in Mbps Ran Read: Random read in Mbps Ran Write: Random write in Mbps Seq Latency: Sequential Latency in ms Ran Latency: Random Latency in ms

Graph for DISK Benchmarking:

For each of 1BYTE, 1KB, 1MB we plot graphs for sequential read, sequential write, random read, random write and latency for 1 and 2 threads. The latency has both values of random and sequential read and write in it. From the graphs we notice that the performance is best for 1 thread.

1 BYTE:

1Byte Sequential and Random Speed: Read and Write Throughput

X Axis: Number of Threads

• Y Axis: Speed in MBPS

1Byte Sequential and Random Speed: Read and Write Latency

• X Axis: Number of Threads

• Y Axis: Latency in milliseconds

1 KILOBYTE:

1KiloByte Sequential and Random Speed: Read and Write Throughput

• X Axis: Number of Threads

• Y Axis: Speed in MBPS

1KiloByte Sequential and Random Speed: Read and Write Latency

• X Axis: Number of Threads

• Y Axis: Latency in milliseconds

1 MEGABYTE:

1MegaByte Sequential and Random Speed: Read and Write Throughput

• X Axis: Number of Threads

• Y Axis: Speed in MBPS

1MegaByte Sequential and Random Speed: Read and Write Latency

• X Axis: Number of Threads

• Y Axis: Latency in milliseconds

Memory Benchmarking:

System Configuration:

• Operating System: Ubuntu 14.4

• RAM: 8 GB

No of Physical cores: 4No of logical cores: 8

1 Thread:

Random Access:

Block size	1 Byte	1 KiloByte	1 MegaByte
Speed	24.035342 MB/sec	10393.385483	2824.061000
		MB/sec	MB/sec
Latency	0.0396780 ms	0.0093960 ms	0.0354100 ms

Sequential Access:

Block size	1 Byte	1 KiloByte	1 MegaByte
Speed	71.904872 MB/sec	13828.412631	5705.482969
		MB/sec	MB/sec
Latency	0.01326300 ms	0.00706200 ms	0.01752700 ms

2 Threads:

Random Access:

Block size	1 Byte	1 KiloByte	1 MegaByte
Speed	22.020234 MB/sec	8637.559703	5108.426349
		MB/sec	MB/sec
Latency	0.0433090 ms	0.0113060 ms	0.01957550 ms

Sequential Access:

Block size	1 Byte	1 KiloByte	1 MegaByte
Speed	82.167261 MB/sec	14463.307168	8444.519507
		MB/sec	MB/sec
Latency	0.011606500 ms	0.00675200 ms	0.01184200 ms

Graph for Memory Benchmarking:

For each of 1BYTE, 1KB, 1MB we plot graphs for sequential read + write, random read + write and latency for 1 and 2 threads. The latency has both values of random and sequential in it. From the graphs we notice that the performance is best for 1 thread.

Sequential Access Speed:

Sequential Access Speed for Both Threads

X Axis: Size of blockY Axis: Speed in MBPS

Random Access Speed:

Random Access Speed for Both Threads

X Axis: Size of blockY Axis: Speed in MBPS

Latency graph:

Sequential Access Latency for Both Threads

• X Axis: Size of block

• Y Axis: Latency in milliseconds

Random Access Latency for Both Threads

• X Axis: Size of block

• Y Axis: Latency in milliseconds

Theoretical Performance: Base DRAM clock frequency * No. of data transfer per clock *

Memory Bus width * No. of Interfaces: 1600*2*64*2

Memory Bandwidth: 51.2 GB/s

STREAM Results:

The result of stream benchmark tool gives the memory bandwidth as 32.68 divided into 4 micro benchmarks: COPY, SCALE, SUM, and TRIAD. The efficiency achieved by STREAM benchmark tool when compared with our theoretical performance is 61.8%