Matrix Theory Assignment 1

Ankur Aditya: EE20RESCH11010

Abstract—This document contains the procedure to get image of a point in a line.

Download the python code from the below link. Go through the README file in the reposotory.

https://github.com/ankuraditya13/EE5609— Assignment–1

1 Problem

Find the image of the point $\binom{3}{8}$ with respect to the line

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = 7 \tag{1.0.1}$$

2 Solution

Let, **P**(given point) = $\begin{pmatrix} 3 \\ 8 \end{pmatrix}$

Let, Rbe image point

Let vector
$$\mathbf{n} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Let m be the directional vector along the line, x + 3y = 7.

Hence,
$$m = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

By property in Figure 0, the line PR bisects the mirror equation perpendicularly. Hence,

$$2\mathbf{Q} = \mathbf{P} + \mathbf{R} \tag{2.0.1}$$

Hence the reflection vector \mathbf{R} is given as,

$$\frac{\mathbf{R}}{2} = \frac{\mathbf{m}\mathbf{m}^T - \mathbf{n}\mathbf{n}^T}{\mathbf{m}^T\mathbf{m} + \mathbf{n}^T\mathbf{n}}\mathbf{P} + c\frac{\mathbf{n}}{\|\mathbf{n}\|^2}$$
 (2.0.2)

Norm,
$$|||\mathbf{n}||| = \sqrt[2]{1^2 + 3^2} = \sqrt[2]{10}$$

Substituting these values in equation (2.0.2) we get,

$$\mathbf{R} = \begin{pmatrix} -1 \\ -4 \end{pmatrix} \tag{2.0.3}$$

Fig. 0: Image of a point in 2D line

Hence, it is the required answer for image of **P** in line $\begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = 7$.