Vetores no Espaço

Definimos, anteriormente, um vetor como sendo um par ordenado de números reais. Esta definição foi motivada pelo fato de que a cada par (x, y) podemos fazer corresponder uma seta. No espaço, faremos como no plano, a cada terna (x, y, z) faremos corresponder uma seta. Como, por exemplo, na figura abaixo, a terna (x, y, z) podemos fazer corresponder a seta de O a P.

Definimos um vetor no espaço como sendo uma terna ordenada de números reais (x, y, z) e interpretamos a seta OP como sendo sua representação gráfica. Indicaremos o conjunto dos vetores do espaço por \mathbb{R}^3 .

O vetor 0 = (0,0,0) é o vetor nulo do espaço. Sua representação gráfica é a origem do sistema de coordenadas. Algumas vezes será conveniente indicar um vetor por uma seta que não parte necessariamente da origem. Por exemplo, o vetor

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

definido pelos pontos $A(x_1,y_1,z_1)$ e $B(x_2,y_2,z_2)$ cuja representação mais natural é a indicada por:

Podemos reescrever o vetor \overrightarrow{AB} da seguinte maneira:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

As componentes do vetor \vec{v} que tem um representante com ponto inicial P=(5/2,1,2) e ponto final Q=(0,5/2,5/2) são dadas por :

O número $\sqrt{x^2+y^2+z^2}$ é chamado o módulo do vetor v=(x,y,z) e é indicado por ||v||. Observe que o módulo de um vetor é igual ao comprimento da seta que o representa.

Sejam $u=(x_1,y_1,z_1)$ e $v=(x_2,y_2,z_2)$ vetores e k um número real. Então:

$$u+v$$
, $k\cdot u$, $u\cdot v$

respectivamente, a soma de vetores, o produto de um número por um vetor e o produto escalar de dois vetores, são definidos como segue:

$$u + v = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$
$$k \cdot u = k \cdot (x_1, y_1, z_1) = (k \cdot x_1, k \cdot y_1, k \cdot z_1)$$
$$u \cdot v = (x_1, y_1, z_1) \cdot (x_2, y_2, z_2) = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2.$$

Definição: A multiplicação de um vetor \vec{v} por um escalar α , $\alpha \cdot \vec{v}$ é determinada pelo vetor que possui as seguintes características:

- (a) é o vetor nulo, se $\alpha = 0$ ou $\vec{v} = \vec{0}$;
- (b) se $\alpha \neq 0$, então $\alpha \cdot \vec{v}$ tem o comprimento $|\alpha|$ vezes o comprimento de \vec{v} ;
- (c) A direção é a mesma de \vec{v} (neste caso, dizemos que eles são paralelos). Se $\alpha>0$ dizemos que \vec{v} e $\alpha\cdot\vec{v}$ são parelelos e têm o mesmo sentido. Se $\alpha<0$ dizemos que \vec{v} e $\alpha\cdot\vec{v}$ são parelelos e têm sentidos opostos.

Proposição: Dois vetores não nulos são paralelos (ou colineares) se, e somente se, um é múltiplo escalar do outro.

Exercício: Determine as coordenadas da extremidade do segmento orientado que representa o vetor $\vec{v} = (3, 0, -3)$, sabendo-se que sua origem está no ponto P = (2, 3, -5).

Exercício: Quais são as coordenadas do ponto P', simétrico do ponto P = (1, 0, 3) em relação ao ponto M = (1, 2, -1)? (Sugestão: o ponto P' é tal que o vetor $\overrightarrow{MP'} = -\overrightarrow{MP}$.)

Exercício: Quais dos seguintes vetores são paralelos: $\vec{u} = (6, -4, -2), \ \vec{v} = (-9, 6, 3) \ \text{e} \ \vec{w} = (15, -10, 5).$

Exercício: Dados os pontos P(1,2,4), Q(2,3,2) e R(2,1,-1), determinar as coordenadas de um ponto S tal que P, Q, R e S sejam vértices de um paralelogramo.

Exercício: Determinar os valores de m e n para que sejam paralelos os vetores $\vec{u} = (m+1,3,1)$ e $\vec{v} = (4,2,2n-1)$.

Definição: Sejam u e v vetores não nulos do espaço, o único ângulo θ (medido em radianos) tal que

(i)
$$0 \le \theta \le \pi$$

(ii)
$$\cos \theta = \frac{u \cdot v}{||u|| ||v||}$$

é chamado de ângulo entre os vetores $u \in v$.

Essas definições são análogas às suas correspondentes para vetores no plano.

Observação: Se o ângulo entre os vetores u e v for $\frac{\pi}{2}$ radianos, dizemos que u e v são perpendiculares entre si. Da fórmula,

$$\cos \theta = \frac{u \cdot v}{||u||||v||}$$

temos que u e v são perpendiculares se, e somente se, $u \cdot v = 0$.

Exercício: Calcular o ângulo entre os vetores $\vec{u} = (1, 1, 4)$ e $\vec{v} = (-1, 2, 2)$.

Exercício: Sabendo que o vetor $\vec{v} = (2, 1, -1)$ forma um ângulo de 60° com o vetor \overrightarrow{AB} determinado pelos pontos A = (3, 1, -2) e B = (4, 0, m), calcular m.

Operações com vetores Sejam os vetores $u=(x_1,y_1,z_1)$ e $v=(x_2,y_2,z_2)$ e $k\in\mathbb{R}$. Definimos:

(M) Multiplicação por escalar: $k \cdot \vec{u} = k \cdot (x_1, y_1, z_1) = (k \cdot x_1, k \cdot y_1, k \cdot z_1)$.

A adição de vetores satisfaz:

(A1)
$$\vec{u} + \vec{v} = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2) = (x_2 + x_1, y_2 + y_1, z_2 + z_1) = (x_2, y_2, z_2) + (x_1, y_1, z_1) = \vec{v} + \vec{u}.$$

(A2)
$$\vec{u} + (\vec{v} + \vec{w}) = (x_1, y_1, z_1) + [(x_2, y_2, z_2) + (x_3, y_3, z_3)] = (x_1, y_1, z_1) + (x_2 + x_3, y_2 + y_3, z_2 + z_3) = (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3), z_1 + (z_2 + z_3)) = ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3, (z_1 + z_2) + z_3) = (x_1 + x_2, y_1 + y_2, z_1 + z_2) + (x_3, y_3, z_3) = (\vec{u} + \vec{v}) + \vec{w}.$$

(A3)
$$\vec{u} + 0 = \vec{u}$$
, onde $0 = (0,0)$ é o vetor nulo. De fato, $\vec{u} + \vec{0} = (x_1, y_1, z_1 + (0,0,0)) = (x_1 + 0, y_1 + 0, z_1 + 0) = (x_1, y_1, z_1)$.

E a multiplicação de um escolar por vetores satisfaz:

(M1) $k_1 \cdot (u + v) = k_1 \cdot u + k_1 \cdot v$. De fato, pois

$$k_1 \cdot (u+v) = k_1 \cdot [(x_1, y_1, z_1) + (x_2, y_2, z_2)] = k \cdot (x_1 + x_2, y_1 + y_2, z_1 + z_2) = (k \cdot (x_1 + x_2), k \cdot (y_1 + y_2), k \cdot (z_1 + z_2))$$

$$= (k \cdot x_1 + k \cdot x_2, k \cdot y_1 + k \cdot y_2, k \cdot z_1 + k \cdot z_2) = (k \cdot x_1, k \cdot y_1, k \cdot z_1) + (k \cdot x_2, k \cdot y_2, k \cdot z_2) = k \cdot \vec{u} + k \cdot \vec{v}.$$

(M2)
$$(k_1 + k_2) \cdot u = k_1 \cdot u + k_2 \cdot u$$
. De fato,

$$(k_1 + k_2) \cdot u = (k_1 + k_2) \cdot (x_1, y_1, z_1) =$$

(M3)
$$k_1 \cdot (k_2 \cdot u) = (k_1 \cdot k_2)u$$

(M4)
$$1 \cdot u = u \in 0 \cdot u = 0$$
.

Definição: Dados os vetores $\vec{v_1}$, $\vec{v_2}$, ..., $\vec{v_n}$ no espaço, dizemos que o vetor \vec{v} é combinação linear desses vetores se existem escalares $a_1, a_2, \ldots, a_n \in \mathbb{R}$ tais que

$$\vec{v} = a_1 \cdot \vec{v_1} + a_2 \cdot \vec{v_2} + \ldots + a_n \cdot \vec{v_n}.$$

Exemplo: O vetor (8,2,2) é combinação linear dos vetores (1,2,1) e (3,0,3), pois

$$(8,2,2) = -1 \cdot (1,-2,1) + 3 \cdot (3,0,1).$$

Exercício: O vetor $\vec{v} = (7, 8, 9) \in \mathbb{R}^3$ pode ser escrito como combinação linear dos vetores $\vec{v_1} = (2, 1, 4), \ \vec{v_2} = (1, -1, 3) \ \text{e} \ \vec{v_3} = (3, 2, 5)$?

Dependência Linear:

Fixemos a seguinte linguagem:

Um vetor, não nulo, \vec{u} , diz-se paralelo a uma reta r, para quaisquer pontos A e B de r, $A \neq B$, se tivermos o ângulo entre \overrightarrow{AB} e \vec{u} igual a 0 ou a π radianos.

O vetor nulo, diz-se paralelo a qualquer reta.

Definição: Seja $\{v_1, v_2, \dots, v_n\}$ um conjunto de vetores no espaço. Dizemos que este conjunto de vetores é linearmente independente (ou L.I.) se dados $a_1, a_2, \dots, a_n \in \mathbb{R}$ a combinação linear:

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \ldots + a_n \cdot v_n = \vec{0} \iff a_1 = a_2 = \ldots = a_n = 0.$$

Caso contrário, os vetores são Linearmente Dependentes (L.D.).

Exemplo: Verifique se o conjunto formado pelos vetores $\vec{u}=(1,1,1), \ \vec{v}=(1,2,1)$ e $\vec{w}=(3,2,-1)$ são L.I. ou L.D.?

1. Mostre que o triângulo de vértices A(2,3,1) e B(2,1,-1) e C(2,2,-2) é um triângulo retângulo.

2. Sabendo que o vetor $\vec{v} = (2, 1, -1)$ forma um ângulo de 60° com o vetor \overrightarrow{AB} determinado pelso pontos A(3, 1, -2) e B(4, 0, m), calcule o valor de m.

3. Verifique se os vetores $\vec{u_1} = (1,0,1), \ \vec{v_2} = (1,1,0), \ \vec{v_3} = (1,1,1), \ \vec{v_4} = (-1,2,1)$ são linearmente independentes ou linearmente dependentes.

Produto Vetorial

Como fazer para que o vetor $\vec{w}=(x,y,z)$ seja simultaneamente perpendicular a dois vetores dados $\vec{u}=(a,b,c)$ e $\vec{v}=(a_1,b_1,c_1)$.

Devemos ter $\vec{u} \cdot \vec{w} = 0$ e $\vec{v} \cdot \vec{w} = 0$, o que nos dá:

$$\begin{cases} ax + by + cz = 0 \\ a_1x + b_1y + c_1z = 0 \end{cases}$$

Este sistema admite uma infinidade de soluções. Uma delas é

$$\begin{cases} x = bc_1 - b_1c \\ y = a_1c - ac_1 \\ z = ab_1 - a_1b. \end{cases}$$

(a qual pode ser verificada por sustituição).

Portanto, o vetor

$$\vec{w} = (bc_1 - b_1c, a_1c - ac_1, ab_1 - a_1b)$$

é simultaneamente perpendicular a $\vec{u} = (a, b, c)$ e $\vec{v} = (a_1, b_1, c_1)$.

O vetor \vec{w} é chamado produto vetorial de \vec{u} po \vec{v} e indicado por $\vec{u} \times \vec{v}$.

Agora daremos um método para calcular o produto vetorial de $\vec{u} = (a, b, c)$ por $\vec{v} = (a_1, b_1, c_1)$ sem ter que decorar a fórmula.

Primeiro, se i = (1, 0, 0), j = (0, 1, 0) e k = (0, 0, 1). Então:

$$(x, y, z) = xi + yj + zk.$$

Consideremos

$$\left|\begin{array}{ccc} i & j & k \\ a & b & c \\ a_1 & b_1 & c_1 \end{array}\right|$$

um determinante de ordem 3 sobre o conjunto dos números reais.

Resolvendo este determinante temos

Exemplo: Se $\vec{u} = (-1, 2, 4)$ e $\vec{v} = (1, 3, 5)$, usando o método acima determine $\vec{u} \times \vec{v}$.

Observação: Tanto o vetor $\vec{u} \times \vec{v}$ quanto o vetor $\vec{v} \times \vec{u}$ são, simultaneamente, perpendiculares a \vec{u} e a \vec{v} .

Proposição: O produto vetorial não é comutativo.

Identificamos o sentido de $\vec{u} \times \vec{v}$ como sendo aquele que um saca-rolhas avança quando sua extremidade é colocada na origem comum de \vec{u} e \vec{v} e ele é girado no sentido de \vec{u} para \vec{v} .

Propriedade: Dados os vetores do espaço \vec{u} , \vec{v} e \vec{v} . Valem as seguintes propriedades:

- (a) $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w};$
- (b) $\vec{w} \times (\vec{u} + \vec{v}) = \vec{w} \times \vec{u} + \vec{w} \times \vec{v};$
- (c) $(k\vec{u}) \times \vec{v} = \vec{u} \times (k\vec{v}) = k(\vec{u} \times \vec{v}), \forall k \in \mathbb{R}.$

Observação 1: $\vec{u} \times (\vec{v} \times \vec{w}) \neq (\vec{u} \times \vec{v}) \times \vec{w}$.

Observação 2: Temos $||\vec{u}\times\vec{v}||^2=||\vec{u}||^2||\vec{v}||^2-(\vec{u}\cdot\vec{v})^2$

Proposição: Quaisquer que sejam os vetores não nulos \vec{u} e \vec{v} de \mathbb{R}^3 temos

$$||\vec{u} \times \vec{v}|| = ||\vec{u}||||\vec{v}|| \operatorname{sen}\theta$$

onde θ é o ângulo entre os vetores \vec{u} e \vec{v} .

Exemplo: Determinar um vetor unitário simultaneamente ortogonal aos vetores $\vec{u}=(2,-6,3)$ e $\vec{v}=(4,3,1)$.

Na figura abaixo representamos o paralelogramo definido pelos vetores \vec{u} e \vec{v} , isto é, o paralelogramo cujos lados são as setas que representam \vec{u} e \vec{v} .

A área deste paralelogramo é dada por:

$$A = Base.altura$$

No caso a base é $||\vec{u}||$ e a altura é $h = ||\vec{v}|| \mathrm{sen} \theta$.

Logo, a área A é

$$A = ||\vec{u}||||\vec{v}|| \operatorname{sen}\theta = ||\vec{u} \times \vec{v}||.$$

Exemplo: Calcule a área do triângulo cujos vértices são $A(3,2,1),\ B(0,-2,4)$ e C(4,1,2).

Exemplo: Sejam os vetores $\vec{u}=(3,1,-1)$ e $\vec{v}=(a,0,2)$. Calcular o valor de a para que a área do paralelogramo determinado por \vec{u} e \vec{v} seja igual a $2\sqrt{6}$.

Proposição: Dois vetores \vec{u} e \vec{v} são paralelos se, e somente se, $|\vec{u} \times \vec{v}| = 0$ (isto é, \vec{u} e \vec{v} são múltiplos escalares um do outro).

Exemplo: Verifique se os vetores $\vec{u}=(1,3,-2)$ e $\vec{v}=(-2,3,1)$ são paralelos.

Produto Misto O número $(\vec{u} \times \vec{v}) \times \vec{w}$, onde \vec{u} , \vec{v} e \vec{w} pertencem ao \mathbb{R}^3 , é chamado de **produto misto** dos vetores \vec{u} , \vec{v} e \vec{w} .

Se $\vec{u}=(a_1,b_1,c_1),\ \vec{v}=(a_2,b_2,c_2)$ e $\vec{w}=(a_3,b_3,c_3),$ o produto misto de $\vec{u},\ \vec{v}$ e \vec{w} é dado por

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Observação: Outra notação para produto misto é: $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u}, \vec{v}, \vec{w})$.

Várias propriedades do produto misto podem ser deduzidas a partir das propriedades de determinantes.

Por exemplo, fazendo-se duas permutações, o determinante não se altera e, portanto, temos

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ a_1 & b_1 & c_1 \end{vmatrix}$$

Desta igualdade deduzimos a seguinte propriedade do produto misto

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \vec{v} \cdot (\vec{w} \times \vec{u}).$$

Como o produto escalar é comutativo podemos permutar os sinais \cdot e \times :

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{v} \times \vec{w}) \cdot \vec{u}$$

Propriedade: $(\vec{u}, \vec{v}, \vec{w}) = 0$ se um dos vetores é nulo, se dois deles são colineares, ou se os três são coplanares.

Exemplo: Verificar se são coplanares os seguintes vetores $\vec{u}=(3,-1,4), \ \vec{v}=(1,0,-1)$ e $\vec{w}=(2,-1,0)$

Exemplo: Qual deve ser o valor de m para que os vetores $\vec{a} = (m, 2, -1), \ \vec{b} = (1, -1, 3)$ e $\vec{c} = (0, -2, 4)$ sejam coplanares?

Aplicação do Produto Misto

Suponha que queiramos encontrar o volume V de um paralelepípedo como o da figura

Sabemos que este volume é igual ao produto da área de uma base pela altura correspondente.

Sendo $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AD}$, $\vec{w} = \overrightarrow{AE}$, θ a medida do ângulo entre $\vec{u} \times \vec{v}$ e \vec{w} , h a altura relativa à base ABCD e S a área da base de ABCD, temos

$$V = S.h = ||\vec{u} \times \vec{v}||.h = ||\vec{u} \times \vec{v}||.||\vec{w}||.|\cos\theta|$$

ou seja,

$$V = (\vec{u} \times \vec{v}) \cdot \vec{w}.$$

Note que, $h=||\vec{w}||\cos\theta$ resulta da observação de que o triângulo AME é retângulo em M. O módulo em $\cos\theta$ é necessário, pois $\frac{\pi}{2}<\theta\leq\pi$.

Exemplo: Dados os vetores $\vec{u}=(x,5,0), \ \vec{v}=(3,-2,1)$ e $\vec{w}=(1,1,-1),$ calcular o valor de x para que o volume do paralelepípedo determinado por $\vec{u}, \ \vec{v}$ e \vec{w} seja 24 unidades de volume.

Exemplo: Calcule o volume do paralelepípedo determinado pelos vetores $\vec{u}=(3,5,7), \ \vec{v}=(2,0,-1)$ e $\vec{w}=(0,1,3).$

Projeção Ortogonal Dados dois vetores não nulos \vec{u} e \vec{v} queremos determinar um vetor \vec{p} que é a projeção do vetor \vec{v} sobre \vec{u} . Observe que o vetor \vec{p} é paralelo ao vetor \vec{u} , isto é, $\vec{p}//\vec{u}$ e $(\vec{v}-\vec{p}) \perp \vec{u}$

Temos que \vec{p} é múltiplo de $\vec{u} \Longleftrightarrow \vec{p} = \lambda \vec{u}$. (1)

Além disso, seja $\vec{w} = \vec{v} - \vec{p}$ e $\vec{w} \perp \vec{u} \Longleftrightarrow \vec{w} \cdot \vec{u} = 0 \Longleftrightarrow (\vec{v} - \vec{p} \cdot \vec{u}) = 0.$ (2)

Desenvolvendo o produto escalar de (2) temos:

$$\begin{array}{cccc} (\vec{v}-\vec{p}\cdot\vec{u}) & = & 0 \\ (\vec{v}\cdot\vec{u})-(\vec{p}\cdot\vec{u}) & = & 0 \\ (\vec{v}\cdot\vec{u})-(\lambda\vec{u}\cdot\vec{u}) & = & 0 \\ (\vec{v}\cdot\vec{u})-\lambda(\vec{u}\cdot\vec{u}) & = & 0 \\ (\vec{v}\cdot\vec{u}) & = & \lambda(\vec{u}\cdot\vec{u}) \end{array}$$

Daí segue que

$$\lambda = \frac{(\vec{v} \cdot \vec{u})}{(\vec{u} \cdot \vec{u})} = \frac{(\vec{v} \cdot \vec{u})}{||\vec{u}||^2}.$$

Substituindo em (1) temos

$$\vec{p} = \left(\frac{(\vec{v} \cdot \vec{u})}{||\vec{u}||^2}\right) \vec{u} = proj_{\vec{u}} \vec{v}.$$

Exemplo: Determine a projeção ortogonal do vetor $\vec{v} = (2, 3, 4)$ sobre o vetor $\vec{u} = (1, -1, 0)$.

Exemplo: Decomponha o vetor $\vec{u} = (-1, -3, 2)$ como a soma de dois vetores \vec{v} e \vec{w} com \vec{v} paralelo ao vetor t = (0, 1, 3) e \vec{w} ortogonal a este último.

Exemplo: Sejam os vetores $\vec{u}=(6,3,2)$ e $\vec{v}=(1,-2,-2)$. Determine a projeção ortogonal do vetor \vec{u} sobre o vetor \vec{v} .

Exemplo: Sejam $\vec{u} = (2, -2, 1)$ e $\vec{v} = (3, -6, 0)$.

- (a) Obtenha a projeção ortogonal, isto é, o vetor $\vec{p},$ de \vec{v} sobre $\vec{u};$
- (b) Determine \vec{p} e \vec{q} tais que $\vec{v} = \vec{p} + \vec{q}$, sendo \vec{p} paralelo a \vec{u} e \vec{q} perpendicular a \vec{u} .