Tutorial 2

Question 1

Algorithm:

- 1) Generate U~U[0,1]
- 2) Let X=(-log(U)/alpha)^(1/beta)

Question 2

Algorithm 1:

- 1) Let i=0, Y=p, p=pi^r,
- 2) Generate U~U[0,1]
- 3) If U<Y, X=i, Else
 p=p*(i+r)*(1-pi)/(i+1)
 Y=Y+p;i=i+1</pre>
- 4) return to step 3

Algorithm 2:

Using the geometrical random generator packages:

Generate X1, X2, ..., Xr ~Geometrical(p)

X1+X2+..+Xr ~Negative Binominal (r,p)

Question 3

a)
$$P_{n} = \left(1 - \frac{2}{5}p_{j}\right) \lambda_{n}$$

$$= \left(1 - \frac{2}{5}p_{j}\right) \left(1 - \lambda_{n-1}\right) \lambda_{n}$$

$$= \left(1 - \frac{2}{5}p_{j}\right) \left(1 - \lambda_{n-1}\right) \lambda_{n}$$

$$= \left(1 - p_{1}\right) \dots \left(1 - \lambda_{n-1}\right) \lambda_{n}$$

$$= \left(1 - \lambda_{1}\right) \left(1 - \lambda_{2}\right) \dots \left(1 - \lambda_{n-1}\right) \lambda_{n} \quad (shown)$$

67	for pay
	u; ≥ X; ;= 1, / N-1
	means un< do and P(x=n)= do.
	Yn= P(X=n) = (1- di)(1-di) (1-dad) (An) (shown).
	as desired purf.
c)	$X \sim Geometric (p)$ $p_{\Lambda} = (1-p)^{N-1}p$
	$\rho_{\Lambda} = (1-\rho) \cdot \rho$ $= (1-\rho) \cdot \cdot \cdot (1-\rho) \rho$
	$\lambda_{n} = \frac{f_{n}}{1 - c_{n}^{-1}f_{n}^{-1}}$
	= (1-p) ⁿ⁻¹ P
	$= \frac{(1-p)^{n-1}p}{1-\sum_{i=1}^{n}(1-p)^{i-1}p}$
	$=\frac{(1-p)^{n-1}}{((-p)^{n-1}}=p$
	.: P(X=n) = (1-p) 1p

Question 4

- a) Given a<=x<=b
- b) Rejection method: $c=\sup (f(x)/g(x))=1/(G(b)-G(a)).$
 - 1) Generate V~g(x)
 - 2) Generate U~U[0,1]
 - 3) If U <= f(V)/(c*g(V)), set X = V.

Question 5

Algorithm:

- 1) Generate Z~N(0,1), using standard normal distribution packages
- 2) Set V=mu+sigma*Z
- 3) If a<=V<=b, set X=V; else go back to 1)