Adv Data mining group project 2

Libraries required

Loading the Data

```
kent_rt <- as.data.frame(read.csv("COB RT Data.csv", na = c("", "---")))
kent_ct <- as.data.frame(read.csv("COB CT Data.csv", na = c("", "---")))</pre>
```

Data Cleaning

Removing the variables that are not significant

variables_to_rem <- (c("StudNum", "GENDER", "TERM", "CAMPUS", "STATE_CODE", "ETHNICITY_COD E", "COUNTY_CODE", "ZIP_CODE", "RESIDENCY_CODE", "LEGAL_COUNTRY", "LEGAL_COUNTRY_DESC", "HIGH_SCHOOL_CODE", "HIGH_SCHOOL_DESC", "TRANS_HRS", "F1SEQ1_COLLEGE", "F1SEQ1_DEGREE_1", "F1SEQ1_MAJOR", "F1SEQ2_MAJOR", "F1SEQ1_CUMGPA", "F1SEQ1_CUMERNHRS", "F1SEQ2_COLLEGE", "F 1SEQ2_CUMERNHRS", "F1SEQ2_MIDTERM_GPA", "F1SEQ2_COLLEGE", "F1SEQ2_CUM_GPA", "S1SEQ1_CAMPU S", "S1SEQ1 COLLEGE", "S1SEQ1 MAJOR", "S1SEQ2 MAJOR", "S1SEQ2 COLLEGE", "S1SEQ2 CUMERNHR S", "S1SEQ2 MIDTERM GPA", "S1SEQ2 CUM GPA", "F2SEQ1 CAMPUS", "F2SEQ1 COLLEGE", "F2SEQ1 MAJOR", "F2SEQ2_MAJOR", "F2SEQ2_COLLEGE", "F2SEQ2_CUMERNHRS", "F2SEQ2_MIDTERM_GPA", "F2SE Q2 CUM GPA", "S2SEQ1 CAMPUS", "S2SEQ1 COLLEGE", "S2SEQ1 MAJOR", "S2SEQ2 MAJOR", "S2SEQ2 COLLEGE", "S2SEQ2_CUMERNHRS", "S2SEQ2_MIDTERM_GPA", "S2SEQ2_CUM_GPA", "F3SEQ1_CAMPUS", "F3SEQ1 COLLEGE", "F3SEQ1 MAJOR", "F3SEQ2 MAJOR", "F3SEQ2 COLLEGE", "F3SEQ2 CUMERNHRS", "F 3SEQ2_MIDTERM_GPA", "F3SEQ2_CUM_GPA", "S3SEQ1_CAMPUS", "S3SEQ1_COLLEGE", "S3SEQ1_MAJOR", "S 3SEQ2 MAJOR", "S3SEQ2 COLLEGE", "S3SEQ2 CUMERNHRS", "S3SEQ2 MIDTERM GPA", "S3SEQ2 CUM GPA", "F4SEQ1 CAMPUS", "F4SEQ1 COLLEGE", "F4SEQ1 MAJOR", "F4SEQ2 MAJOR", "F4SEQ2 COLLEGE", "F4SEQ2 CUMERNHRS", "F4SEQ2 MIDTERM GPA", "F4SEQ2 CUM GPA", "S4SEQ1 CAMPUS", "S4SEQ1 COLLEGE", "S4SEQ 1 MAJOR", "S4SEQ2 MAJOR", "S4SEQ2 COLLEGE", "S4SEQ2 CUMERNHRS", "S4SEQ2 CUM GPA", "F5SEQ1 CAM PUS", "F5SEQ1_COLLEGE", "F5SEQ1_MAJOR", "F5SEQ2_MAJOR", "F5SEQ2_COLLEGE", "F5SEQ2_CUMERNHRS", "F5SEQ2 MIDTERM GPA", "F5SEQ2 CUM GPA", "S5SEQ1 CAMPUS", "S5SEQ1 COLLEGE", "S5SEQ1 MAJOR", "S5SEQ2_MAJOR", "S5SEQ2_COLLEGE", "S5SEQ2_CUMERNHRS", "S5SEQ2_MIDTERM_GPA", "S5SEQ2_CUM_G PA", "F6SEQ1 CAMPUS", "F6SEQ1 COLLEGE", "F6SEQ1 MAJOR", "F6SEQ2 MAJOR", "F6SEQ2 COLLEGE", "S4SEQ2 MIDTERM GPA", "F6SEQ2 CUMERNHRS", "F6SEQ2 MIDTERM GPA", "F6SEQ2 CUM GPA", "S6SEQ1 CA MPUS", "S6SEQ1 COLLEGE", "S6SEQ1 MAJOR", "S6SEQ2 MAJOR", "S6SEQ2 COLLEGE", "S6SEQ2 CUMERNHRS" ,"S6SEQ2 MIDTERM GPA", "S6SEQ2 CUM GPA", "GRAD TERM BACHELOR", "GRAD COLLEGE BACHELOR", "GRAD MAJOR BACHELOR"))

```
kent_na <- kent_rt %>% dplyr::select(-c(variables_to_rem))
```

```
head(kent_na)
```

##		URS_IND ONCAMPUS	_IND FIRST_GEN_II	ND PELL	_ELIG_IND AC	GE INTERNATIO	NAL_IND
##	1	N	N	N	N 3	18	N
##	2	N	Y	N	Y 2	20	N
##	3	N	Y	Y	N 3	18	N
##	4	N	Y	N	N 3	18	Y
##	5	N	Y	N	N 3	19	N
##	6	N	Y	N	Y	18	N
##		HIGH_SCHOOL_GPA	ATHLETE_IND VETE	RAN_IND	HONORS_REG	STERED_IND A	CT_ENGL
##	1	NA	N	<na></na>		<na></na>	22
##	2	2.66	N	N		N	19
##	3	3.22	N	<na></na>		<na></na>	18
##	4	3.64	N	<na></na>		<na></na>	NA
##	5	NA	N	<na></na>		<na></na>	18
##	6	NA	N	<na></na>		<na></na>	31
##		ACT_MATH ACT_SOC	ACT_NSCI ACT_WR	ITING A	CT_COMP F1SI	EQ2_CURATTHRS	}
##	1	27 22	24	NA	24	16	;
##	2	17 16	21	NA	18	14	
##	3	17 16	21	NA	18	15	,
##	4	NA NA	NA	NA	NA	17	
##	5	25 20	23	NA	21	15	,
##	6	26 35	27	NA	30	14	
##		F1SEQ2_CURERNHRS	F1SEQ2_TERM_GPA	RET_S1	S1SEQ2_CURA	ATTHRS	
##	1	16	2.94	Y		15	
##	2	14	1.81	Y		14	
##	3	15	3.39	Y		16	
##	4	14	2.24	Y		15	
##	5	12	2.04	N		0	
##		14	3.54	Y		16	
##		S1SEQ2 CURERNHRS	S1SEQ2 TERM GPA	RET F2	F2SEQ2 CUR	ATTHRS	
##	1	15	1.98	_ Y		16	
##	2	12	3.06	Y		17	
##	3	13	2.98	Y		14	
##	4	15	3.36	Y		19	
##	5	0	0.00	Y		15	
##	6	16	3.45	Y		12	
##		F2SEQ2_CURERNHRS	F2SEQ2 TERM GPA	RET S2	S2SEQ2 CURA	ATTHRS	
##	1	16	2.88	Y	_	15	
##	2	17	2.75	Y		18	
##	3	14	2.78	Y		16	
##	4	12	2.18	Y		16	
##	5	15	2.78	Y		18	
##	6	12	3.75	Y		15	
##		S2SEQ2_CURERNHRS	S2SEQ2_TERM_GPA	RET_F3	F3SEQ2_CURA	ATTHRS	
##	1	12	2.10	Y	_	15	
##	2	14	1.85	Y		18	
##		14	3.01	Y		18	
##		13		Y		18	
##		18	2.07			16	
##		12	3.78	Y		15	
##		F3SEQ2_CURERNHRS			S3SEQ2 CUR		
##	1	15	2.46	_ Y	- -	15	
##		13	1.74	Y		15	
##		12	1.68	Y		16	
	-	12	1.00	_		- -	

			na bu	ta mining group project 2
## 4	11	3.14	Y	18
## 5	16	2.68	Y	9
## 6	15	3.74	Y	15
##	S3SEQ2_CURERNHRS	S3SEQ2_TERM_GPA	$\mathtt{RET}_\mathtt{F4}$	F4SEQ2_CURATTHRS
## 1	12	2.93	Y	12
## 2	12	1.90	Y	15
## 3	13	1.80	Y	19
## 4	12	1.93	Y	19
## 5	9	2.67	Y	15
## 6	15	3.68	Y	15
##	F4SEQ2_CURERNHRS	F4SEQ2_TERM_GPA	RET_S4	S4SEQ2_CURATTHRS
## 1	12	2.60	Y	12
## 2	6	1.35	Y	15
## 3	16	1.98	Y	18
## 4	13	1.35	Y	18
## 5	12	3.58	Y	18
## 6	15	3.28	Y	12
##	S4SEQ2 CURERNHRS		RET F5	F5SEQ2_CURATTHRS
## 1		2.58	_ Y	9
## 2	3	2.00	N	0
## 3		1.65	Y	15
## 4		1.75	Y	16
## 5	_	2.78	N	0
## 6		3.33	Y	15
##				S5SEQ2 CURATTHRS
## 1	_	2.57	Y	6
## 2		0.00	N	0
## 3		2.58	Y	18
## 4		2.94	Y	6
## 5		0.00	N	0
## 6		3.66	N	0
##				F6SEQ2_CURATTHRS
## 1	-		N N	0
## 2		0.00	N	0
## 3		3.08	Y	15
## 4		2.35	N	0
## 5		0.00	N	0
## 6		0.00	N	0
##				S6SEQ2 CURATTHRS
$\pi\pi$	r obegz_conenino	LODEOZ IEMI GLY		DUDLOZ COMATIIND
## 1	0		_	-
## 1		0.0	– N	_ 0
## 2	0	0.0	N N	0
## 2 ## 3	0 9	0.0 0.0 3.1		0 0 9
## 2 ## 3 ## 4	0 9 0	0.0 0.0 3.1 0.0		
## 2 ## 3 ## 4 ## 5	0 9 0	0.0 0.0 3.1 0.0 0.0		
## 2 ## 3 ## 4 ## 5 ## 6	0 9 0 0	0.0 0.0 3.1 0.0 0.0		- 0 9 0 0 0
## 2 ## 3 ## 4 ## 5 ## 6	0 9 0 0 0 S6SEQ2_CURERNHRS	0.0 0.0 3.1 0.0 0.0 0.0 S6SEQ2_TERM_GPA		- 0 0 9 0 0 0 FEIND
## 2 ## 3 ## 4 ## 5 ## 6 ##	0 9 0 0 0 \$6SEQ2_CURERNHRS 0	0.0 0.0 3.1 0.0 0.0 0.0 S6SEQ2_TERM_GPA 0.00		- 0 0 9 0 0 0 FEIND Y
## 2 ## 3 ## 4 ## 5 ## 6 ## 1 ## 1	0 9 0 0 0 S6SEQ2_CURERNHRS 0 0	0.0 0.0 3.1 0.0 0.0 0.0 S6SEQ2_TERM_GPA 0.00 0.00		- 0 0 9 0 0 0 FEIND Y N
## 2 ## 3 ## 4 ## 5 ## 6 ## 1 ## 2 ## 3	0 9 0 0 0 \$6\$EQ2_CURERNHRS 0 0	0.0 0.0 3.1 0.0 0.0 0.0 S6SEQ2_TERM_GPA 0.00 0.00		
## 2 ## 3 ## 4 ## 5 ## 6 ## 1 ## 2 ## 3	0 9 0 0 0 \$6\$EQ2_CURERNHRS 0 0 6	0.0 0.0 3.1 0.0 0.0 0.0 S6SEQ2_TERM_GPA 0.00 0.00 2.65 0.00		- 0 0 9 0 0 0 0 FEIND Y N N
## 2 ## 3 ## 4 ## 5 ## 6 ## 1 ## 2 ## 3	0 9 0 0 0 S6SEQ2_CURERNHRS 0 0 6	0.0 0.0 3.1 0.0 0.0 0.0 S6SEQ2_TERM_GPA 0.00 0.00		

```
graduated <- kent_na$GRADUATEIND</pre>
```

KNN Imputation

```
kent_knn <- as.data.frame((kent_na[,1:16]))
kent_knn <- knnImputation(kent_knn)
kent_zero <- kent_na[,17:63]
kent_zero <- kent_zero %>% mutate_all(funs(replace_na(.,0)))
```

```
kent <- cbind(kent_knn, kent_zero)
kent <- cbind(kent, graduated)</pre>
```

Spring semester 1

Spring Semester 1 (retain)

```
s1_r <- (kent[,1:20])
s1_r <- cbind(s1_r,graduated)</pre>
```

```
sample_train<- sample(seq_len(nrow(s1_r)), size = floor(0.80*nrow(s1_r)))
sample_test <- sample(seq_len(nrow(s1_r)), size = floor(0.20*nrow(s1_r)))
s1_r_train <- s1_r[sample_train, ]
s1_r_test <- s1_r[sample_test, ]</pre>
```

```
retain_s1 <- glm(RET_S1 ~ ., family = binomial, data = s1_r_train)
predict_s1_r <- predict(retain_s1, s1_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s1_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s1_r_test$RET_S1, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Ν
##
##
                59 1126
##
                  Accuracy: 0.9504
##
##
                    95% CI: (0.9365, 0.962)
##
       No Information Rate: 0.947
       P-Value [Acc > NIR] : 0.3308
##
##
##
                     Kappa : 0.1138
##
##
    Mcnemar's Test P-Value: 4.321e-14
##
                 Precision : 1.000000
##
##
                    Recall: 0.063492
                        F1: 0.119403
##
##
                Prevalence: 0.052986
##
            Detection Rate: 0.003364
##
      Detection Prevalence: 0.003364
##
         Balanced Accuracy: 0.531746
##
##
          'Positive' Class : N
##
```

```
roc(s1_r_test$RET_S1, as.numeric(predict_s1_r))
```

```
##
## Call:
## roc.default(response = s1_r_test$RET_S1, predictor = as.numeric(predict_s1_r))
##
## Data: as.numeric(predict_s1_r) in 63 controls (s1_r_test$RET_S1 N) < 1126 cases (s1_r_test$RET_S1 Y).
## Area under the curve: 0.8311</pre>
```

Partial dependency plot for Spring semester 1 (retain) - top 3 variables

```
sl_r_imp <- varImp(retain_s1, scale = FALSE)

par s1 r erhr <- partial(retain s1, pred.var = c("F1SEQ2 CURERNHRS"), chull = TRUE)</pre>
```

```
par_sl_r_erhr <- partial(retain_sl, pred.var = c("F1SEQ2_CURERNHRS"), chull = TRUE)
plot_sl_r_erhr <- autoplot(par_sl_r_erhr , contour = TRUE)
par_sl_r_athr <- partial(retain_sl, pred.var = c("F1SEQ2_CURATTHRS"), chull = TRUE)
plot_sl_r_athr <- autoplot(par_sl_r_athr, contour = TRUE)
par_sl_r_act <- partial(retain_sl, pred.var = c("ACT_WRITING"), chull = TRUE)
plot_sl_r_act <- autoplot(par_sl_r_act, contour = TRUE)
grid.arrange(plot_sl_r_erhr, plot_sl_r_athr, plot_sl_r_act)</pre>
```


Spring Semester 1 (graduate)

```
s1_g <- s1_r %>% filter(RET_S1 == "Y")
s1_g <- s1_g %>% dplyr::select(-(RET_S1))

sample_train<- sample(seq_len(nrow(s1_g)), size = floor(0.80*nrow(s1_g)))
sample_test <- sample(seq_len(nrow(s1_g)), size = floor(0.20*nrow(s1_g)))
s1_g_train <- s1_g[sample_train, ]
s1_g_test <- s1_g[sample_test, ]</pre>
```

```
graduate_s1 <- glm(graduated ~ ., family = binomial, data = s1_g_train)
predict_s1_g <- predict(graduate_s1, s1_g_test, type = "response")</pre>
```

```
 prob <- as.factor(ifelse(as.numeric(predict\_s1\_g > .25) == 1, "Y", "N")) \\ confusionMatrix(data = prob, reference = s1\_g\_test\$graduated, mode = "prec\_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 78
                  15
##
            Y 515 515
##
                  Accuracy: 0.528
##
                    95% CI: (0.4984, 0.5576)
##
##
       No Information Rate: 0.528
       P-Value [Acc > NIR] : 0.5121
##
##
##
                     Kappa : 0.0983
##
##
    Mcnemar's Test P-Value : <2e-16
##
                 Precision : 0.83871
##
##
                    Recall: 0.13153
##
                        F1: 0.22741
##
                Prevalence: 0.52805
##
            Detection Rate: 0.06946
##
      Detection Prevalence: 0.08281
##
         Balanced Accuracy: 0.55162
##
##
          'Positive' Class : N
##
```

```
roc(s1_g_test$graduated, as.numeric(predict_s1_g))
```

```
##
## Call:
## roc.default(response = s1_g_test$graduated, predictor = as.numeric(predict_s1_g))
##
## Data: as.numeric(predict_s1_g) in 593 controls (s1_g_test$graduated N) < 530 cases (s
1_g_test$graduated Y).
## Area under the curve: 0.6361</pre>
```

Fall Semester 2

Fall Semester 2 (retain)

```
f2_r <- cbind(kent[,1:24], graduated) %>% filter(RET_S1 == "Y")
f2_r <- f2_r %>% dplyr::select(-RET_S1)
```

```
sample_train <- sample(seq_len(nrow(f2_r)), size = floor(0.80*nrow(f2_r)))
sample_test <- sample(seq_len(nrow(f2_r)), size = floor(0.20*nrow(f2_r)))

f2_r_train <- f2_r[sample_train, ]
f2_r_test <- f2_r[sample_test, ]</pre>
```

```
retain_f2 <- glm(RET_F2 ~ ., family = binomial, data = f2_r_train)
predict_f2_r <- predict(retain_f2, f2_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f2_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f2_r_test$RET_F2, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 20
                    5
##
            Y 103 995
##
##
                  Accuracy: 0.9038
                    95% CI: (0.8851, 0.9204)
##
##
       No Information Rate: 0.8905
##
       P-Value [Acc > NIR] : 0.08107
##
##
                     Kappa : 0.2422
##
##
   Mcnemar's Test P-Value : < 2e-16
##
                 Precision : 0.80000
##
                    Recall : 0.16260
##
##
                        F1: 0.27027
                Prevalence: 0.10953
##
##
            Detection Rate: 0.01781
      Detection Prevalence: 0.02226
##
##
         Balanced Accuracy: 0.57880
##
          'Positive' Class : N
##
##
```

```
roc(f2_r_test$RET_F2, as.numeric(predict_f2_r))
```

```
##
## Call:
## roc.default(response = f2_r_test$RET_F2, predictor = as.numeric(predict_f2_r))
##
## Data: as.numeric(predict_f2_r) in 123 controls (f2_r_test$RET_F2 N) < 1000 cases (f2_r_test$RET_F2 Y).
## Area under the curve: 0.88</pre>
```

Fall Semester 2 (graduate)

```
f2_g <- f2_r %>% filter(RET_F2 == "Y")
f2_g <- f2_g %>% dplyr::select(-RET_F2)
```

```
sample_train<- sample(seq_len(nrow(f2_g)), size = floor(0.80*nrow(f2_g)))
sample_test <- sample(seq_len(nrow(f2_g)), size = floor(0.20*nrow(f2_g)))

f2_g_train <- f2_g[sample_train, ]
f2_g_test <- f2_g[sample_test, ]</pre>
```

```
graduate_f2 <- glm(graduated ~ ., family = binomial, data = f2_g_train)
predict_f2_g <- predict(graduate_f2, f2_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f2_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f2_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
            N 31
##
            Y 466 489
##
##
##
                  Accuracy: 0.5242
                    95% CI: (0.4926, 0.5557)
##
##
       No Information Rate: 0.501
       P-Value [Acc > NIR] : 0.07652
##
##
##
                     Kappa : 0.0502
##
    Mcnemar's Test P-Value : < 2e-16
##
##
                 Precision: 0.83784
##
##
                    Recall: 0.06237
                        F1: 0.11610
##
                Prevalence: 0.50101
##
##
            Detection Rate: 0.03125
      Detection Prevalence: 0.03730
##
##
         Balanced Accuracy: 0.52513
##
##
          'Positive' Class : N
##
```

```
roc(f2_g_test$graduated, as.numeric(predict_f2_g))
```

```
##
## Call:
## roc.default(response = f2_g_test$graduated, predictor = as.numeric(predict_f2_g))
##
## Data: as.numeric(predict_f2_g) in 497 controls (f2_g_test$graduated N) < 495 cases (f
2_g_test$graduated Y).
## Area under the curve: 0.6277</pre>
```

Spring Semester 2

Spring Semester 2(retain)

```
s2_r <- cbind(kent[,1:28], graduated) %>% filter(RET_F2 == "Y")
s2_r <- s2_r %>% dplyr::select(-RET_F2)
```

```
sample_train<- sample(seq_len(nrow(s2_r)), size = floor(0.80*nrow(s2_r)))
sample_test <- sample(seq_len(nrow(s2_r)), size = floor(0.20*nrow(s2_r)))

s2_r_train <- s2_r[sample_train, ]
s2_r_test <- s2_r[sample_test, ]</pre>
```

```
retain_s2 <- glm(RET_S2 ~ ., family = binomial, data = s2_r_train)
predict_s2_r <- predict(retain_s2, s2_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s2_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s2_r_test$RET_S2, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 77
##
            Y 38 879
##
##
                  Accuracy: 0.956
##
                    95% CI: (0.9414, 0.9679)
##
       No Information Rate: 0.885
       P-Value [Acc > NIR] : 1.966e-15
##
##
##
                     Kappa : 0.7541
##
##
    Mcnemar's Test P-Value: 2.962e-06
##
                 Precision: 0.9277
##
##
                    Recall : 0.6696
                        F1 : 0.7778
##
##
                Prevalence: 0.1150
##
            Detection Rate: 0.0770
##
      Detection Prevalence: 0.0830
##
         Balanced Accuracy: 0.8314
##
##
          'Positive' Class : N
##
```

```
roc(s2_r_test$RET_S2, as.numeric(predict_s2_r))
```

```
##
## Call:
## roc.default(response = s2_r_test$RET_S2, predictor = as.numeric(predict_s2_r))
##
## Data: as.numeric(predict_s2_r) in 115 controls (s2_r_test$RET_S2 N) < 885 cases (s2_r_test$RET_S2 Y).
## Area under the curve: 0.9238</pre>
```

Spring Semester 2 (graduate)

s2_g_train <- s2_g[sample_train,]
s2 g test <- s2 g[sample test,]</pre>

```
s2_g <- s2_r %>% filter(RET_S2 == "Y")
s2_g <- s2_g %>% dplyr::select(-RET_S2)

sample_train<- sample(seq_len(nrow(s2_g)), size = floor(0.80*nrow(s2_g)))
sample test <- sample(seq_len(nrow(s2_g)), size = floor(0.20*nrow(s2_g)))</pre>
```

```
graduate_s2 <- glm(graduated ~ ., family = binomial, data = s2_g_train)
predict_s2_g <- predict(graduate_s2, s2_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s2_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s2_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               N
##
            N 27
            Y 332 525
##
##
##
                  Accuracy : 0.6209
##
                    95% CI: (0.5881, 0.6529)
       No Information Rate: 0.5962
##
##
       P-Value [Acc > NIR] : 0.07046
##
##
                     Kappa : 0.0771
##
##
    Mcnemar's Test P-Value : < 2e-16
##
##
                 Precision : 0.84375
                    Recall : 0.07521
##
                        F1: 0.13811
##
##
                Prevalence: 0.40382
            Detection Rate: 0.03037
##
##
      Detection Prevalence: 0.03600
         Balanced Accuracy: 0.53289
##
##
          'Positive' Class : N
##
##
```

```
roc(s2_g_test$graduated, as.numeric(predict_s2_g))
```

```
##
## Call:
## roc.default(response = s2_g_test$graduated, predictor = as.numeric(predict_s2_g))
##
## Data: as.numeric(predict_s2_g) in 359 controls (s2_g_test$graduated N) < 530 cases (s
2_g_test$graduated Y).
## Area under the curve: 0.6623</pre>
```

Fall semester 3

Fall Semester 3 (retain)

```
f3_r <- cbind(kent[,1:32], graduated) %>% filter(RET_S2 == "Y")
f3_r <- f3_r %>% dplyr::select(-RET_S2)
```

```
sample_train <- sample(seq_len(nrow(f3_r)), size = floor(0.80*nrow(f3_r)))
sample_test <- sample(seq_len(nrow(f3_r)), size = floor(0.20*nrow(f3_r)))

f3_r_train <- f3_r[sample_train, ]
f3_r_test <- f3_r[sample_test, ]</pre>
```

```
retain_f3 <- glm(RET_F3 ~ ., family = binomial, data = f3_r_train)
predict_f3_r <- predict(retain_f3, f3_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f3_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f3_r_test$RET_F3, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
                2
                     0
            N
##
            Y 60 837
##
##
                  Accuracy : 0.9333
##
                    95% CI: (0.9149, 0.9487)
##
       No Information Rate: 0.931
       P-Value [Acc > NIR] : 0.4289
##
##
##
                     Kappa: 0.0584
##
    Mcnemar's Test P-Value: 2.599e-14
##
##
                 Precision : 1.000000
##
                    Recall : 0.032258
##
                         F1: 0.062500
##
                Prevalence : 0.068966
##
##
            Detection Rate: 0.002225
##
      Detection Prevalence: 0.002225
##
         Balanced Accuracy: 0.516129
##
##
          'Positive' Class : N
##
```

```
roc(f3_r_test$RET_F3, as.numeric(predict_f3_r))
```

```
##
## Call:
## roc.default(response = f3_r_test$RET_F3, predictor = as.numeric(predict_f3_r))
##
## Data: as.numeric(predict_f3_r) in 62 controls (f3_r_test$RET_F3 N) < 837 cases (f3_r_test$RET_F3 Y).
## Area under the curve: 0.8812</pre>
```

Fall Semester 3 (graduate)

```
f3_g <- f3_r %>% filter(RET_F3 == "Y")
f3_g <- f3_g %>% dplyr::select(-RET_F3)
```

```
sample_train<- sample(seq_len(nrow(f3_g)), size = floor(0.80*nrow(f3_g)))
sample_test <- sample(seq_len(nrow(f3_g)), size = floor(0.20*nrow(f3_g)))

f3_g_train <- f3_g[sample_train, ]
f3_g_test <- f3_g[sample_test, ]</pre>
```

```
graduate_f3 <- glm(graduated ~ ., family = binomial, data = f3_g_train)
predict_f3_g <- predict(graduate_f3, f3_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f3_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f3_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 11
            Y 320 502
##
##
                  Accuracy : 0.6129
##
##
                    95% CI: (0.579, 0.6461)
##
       No Information Rate: 0.6045
       P-Value [Acc > NIR] : 0.3236
##
##
##
                     Kappa : 0.0303
##
##
    Mcnemar's Test P-Value : <2e-16
##
                 Precision : 0.73333
##
##
                    Recall: 0.03323
##
                        F1: 0.06358
##
                Prevalence: 0.39546
##
            Detection Rate: 0.01314
##
      Detection Prevalence: 0.01792
##
         Balanced Accuracy: 0.51266
##
##
          'Positive' Class : N
##
```

```
roc(f3_g_test$graduated, as.numeric(predict_f3_g))
```

```
##
## Call:
## roc.default(response = f3_g_test$graduated, predictor = as.numeric(predict_f3_g))
##
## Data: as.numeric(predict_f3_g) in 331 controls (f3_g_test$graduated N) < 506 cases (f
3_g_test$graduated Y).
## Area under the curve: 0.6723</pre>
```

Spring semester 3

Spring Semester 3 (retain)

```
s3_r <- cbind(kent[,1:36], graduated) %>% filter(RET_F3 == "Y")
s3_r <- s3_r %>% dplyr::select(-RET_F3)
```

```
sample_train<- sample(seq_len(nrow(s3_r)), size = floor(0.80*nrow(s3_r)))
sample_test <- sample(seq_len(nrow(s3_r)), size = floor(0.20*nrow(s3_r)))

s3_r_train <- s3_r[sample_train, ]
s3_r_test <- s3_r[sample_test, ]</pre>
```

```
retain_s3 <- glm(RET_S3 ~ ., family = binomial, data = s3_r_train)
predict_s3_r <- predict(retain_s3, s3_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s3_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s3_r_test$RET_S3, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
##
            N 116
                    7
            Y 33 698
##
##
##
                  Accuracy : 0.9532
                    95% CI: (0.9368, 0.9663)
##
##
       No Information Rate: 0.8255
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.8254
##
##
   Mcnemar's Test P-Value: 7.723e-05
##
                 Precision: 0.9431
##
                    Recall : 0.7785
##
##
                        F1: 0.8529
                Prevalence: 0.1745
##
##
            Detection Rate: 0.1358
##
      Detection Prevalence: 0.1440
##
         Balanced Accuracy: 0.8843
##
          'Positive' Class : N
##
##
```

```
roc(s3_r_test$RET_S3, as.numeric(predict_s3_r))
```

```
##
## Call:
## roc.default(response = s3_r_test$RET_S3, predictor = as.numeric(predict_s3_r))
##
## Data: as.numeric(predict_s3_r) in 149 controls (s3_r_test$RET_S3 N) < 705 cases (s3_r_test$RET_S3 Y).
## Area under the curve: 0.9496</pre>
```

Spring Semester 3 (graduate)

```
s3_g <- s3_r %>% filter(RET_S3 == "Y")
s3_g <- s3_g %>% dplyr::select(-RET_S3)
```

```
sample_train<- sample(seq_len(nrow(s3_g)), size = floor(0.80*nrow(s3_g)))
sample_test <- sample(seq_len(nrow(s3_g)), size = floor(0.20*nrow(s3_g)))
s3_g_train <- s3_g[sample_train, ]
s3_g_test <- s3_g[sample_test, ]</pre>
```

```
graduate_s3 <- glm(graduated ~ ., family = binomial, data = s3_g_train)
predict_s3_g <- predict(graduate_s3, s3_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s3_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s3_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 11
            Y 212 500
##
##
##
                  Accuracy : 0.7019
                    95% CI: (0.6672, 0.735)
##
##
       No Information Rate: 0.6937
       P-Value [Acc > NIR] : 0.3307
##
##
##
                     Kappa : 0.0532
##
    Mcnemar's Test P-Value : <2e-16
##
##
                 Precision : 0.68750
##
##
                    Recall: 0.04933
                        F1: 0.09205
##
                Prevalence: 0.30632
##
##
            Detection Rate: 0.01511
      Detection Prevalence: 0.02198
##
##
         Balanced Accuracy: 0.51971
##
##
          'Positive' Class : N
##
```

```
roc(s3_g_test$graduated, as.numeric(predict_s3_g))
```

```
##
## Call:
## roc.default(response = s3_g_test$graduated, predictor = as.numeric(predict_s3_g))
##
## Data: as.numeric(predict_s3_g) in 223 controls (s3_g_test$graduated N) < 505 cases (s
3_g_test$graduated Y).
## Area under the curve: 0.7189</pre>
```

Fall semester 4

Fall Semester 4 (retain)

```
f4_r <- cbind(kent[,1:40], graduated) %>% filter(RET_S3 == "Y")
f4_r <- f4_r %>% dplyr::select(-RET_S3)
```

```
sample_train <- sample(seq_len(nrow(f4_r)), size = floor(0.80*nrow(f4_r)))
sample_test <- sample(seq_len(nrow(f4_r)), size = floor(0.20*nrow(f4_r)))

f4_r_train <- f4_r[sample_train, ]
f4_r_test <- f4_r[sample_test, ]</pre>
```

```
retain_f4 <- glm(RET_F4 ~ ., family = binomial, data = f4_r_train)
predict_f4_r <- predict(retain_f4, f4_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f4_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f4_r_test$RET_F4, mode = "prec_recall")
```

```
## Warning in confusionMatrix.default(data = prob, reference =
## f4_r_test$RET_F4, : Levels are not in the same order for reference and
## data. Refactoring data to match.
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
##
##
            Y 52 687
##
                  Accuracy : 0.9296
##
##
                    95% CI: (0.9087, 0.947)
##
       No Information Rate: 0.9296
       P-Value [Acc > NIR] : 0.5368
##
##
##
                     Kappa: 0
##
##
    Mcnemar's Test P-Value: 1.522e-12
##
                 Precision:
##
##
                    Recall : 0.00000
                        F1:
##
##
                Prevalence: 0.07037
##
            Detection Rate: 0.00000
##
      Detection Prevalence: 0.00000
##
         Balanced Accuracy: 0.50000
##
##
          'Positive' Class : N
##
```

```
roc(f4_r_test$RET_F4, as.numeric(predict_f4_r))
```

```
##
## Call:
## roc.default(response = f4_r_test$RET_F4, predictor = as.numeric(predict_f4_r))
##
## Data: as.numeric(predict_f4_r) in 52 controls (f4_r_test$RET_F4 N) < 687 cases (f4_r_test$RET_F4 Y).
## Area under the curve: 0.6967</pre>
```

Fall Semester 4 (graduate)

```
f4_g <- f4_r %>% filter(RET_F4 == "Y")
f4_g <- f4_g %>% dplyr::select(-RET_F4)
sample train<- sample(seg len(nrow(f4 g)), size = floor(0.80*nrow(f4 g)))
```

```
sample_train<- sample(seq_len(nrow(f4_g)), size = floor(0.80*nrow(f4_g)))
sample_test <- sample(seq_len(nrow(f4_g)), size = floor(0.20*nrow(f4_g)))

f4_g_train <- f4_g[sample_train, ]
f4_g_test <- f4_g[sample_test, ]</pre>
```

```
graduate_f4 <- glm(graduated ~ ., family = binomial, data = f4_g_train)
predict_f4_g <- predict(graduate_f4, f4_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f4_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f4_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
##
            Y 189 488
##
##
##
                  Accuracy : 0.7241
                    95% CI: (0.689, 0.7573)
##
       No Information Rate: 0.7124
##
##
       P-Value [Acc > NIR] : 0.2645
##
##
                     Kappa : 0.0569
##
##
    Mcnemar's Test P-Value : <2e-16
##
##
                 Precision : 1.00000
                    Recall : 0.04061
##
                         F1: 0.07805
##
##
                Prevalence: 0.28759
            Detection Rate: 0.01168
##
##
      Detection Prevalence: 0.01168
         Balanced Accuracy: 0.52030
##
##
          'Positive' Class : N
##
##
```

```
roc(f4_g_test$graduated, as.numeric(predict_f4_g))
```

```
##
## Call:
## roc.default(response = f4_g_test$graduated, predictor = as.numeric(predict_f4_g))
##
## Data: as.numeric(predict_f4_g) in 197 controls (f4_g_test$graduated N) < 488 cases (f
4_g_test$graduated Y).
## Area under the curve: 0.6697</pre>
```

Spring semester 4

Spring Semester 4(retain)

```
s4_r <- cbind(kent[,1:44], graduated) %>% filter(RET_F4 == "Y")
s4_r <- s4_r %>% dplyr::select(-RET_F4)
```

```
sample_train<- sample(seq_len(nrow(s4_r)), size = floor(0.80*nrow(s4_r)))
sample_test <- sample(seq_len(nrow(s4_r)), size = floor(0.20*nrow(s4_r)))
s4_r_train <- s4_r[sample_train, ]
s4_r_test <- s4_r[sample_test, ]</pre>
```

```
retain_s4 <- glm(RET_S4 ~ ., family = binomial, data = s4_r_train)
predict_s4_r <- predict(retain_s4, s4_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s4_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s4_r_test$RET_S4, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 124
##
            Y 34 546
##
##
                  Accuracy: 0.949
##
                    95% CI: (0.9301, 0.964)
##
       No Information Rate: 0.7762
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa : 0.8418
##
   Mcnemar's Test P-Value: 2.383e-07
##
##
                 Precision: 0.9841
##
                    Recall : 0.7848
##
                        F1 : 0.8732
##
                Prevalence: 0.2238
##
##
            Detection Rate: 0.1756
##
      Detection Prevalence: 0.1785
##
         Balanced Accuracy: 0.8906
##
##
          'Positive' Class : N
##
```

```
roc(s4_r_test$RET_S4, as.numeric(predict_s4_r))
```

```
##
## Call:
## roc.default(response = s4_r_test$RET_S4, predictor = as.numeric(predict_s4_r))
##
## Data: as.numeric(predict_s4_r) in 158 controls (s4_r_test$RET_S4 N) < 548 cases (s4_r_test$RET_S4 Y).
## Area under the curve: 0.9419</pre>
```

Spring Semester 4 (graduate)

```
s4_g <- s4_r %>% filter(RET_S4 == "Y")
s4_g <- s4_g %>% dplyr::select(-RET_S4)

sample_train<- sample(seq_len(nrow(s4_g)), size = floor(0.80*nrow(s4_g)))
sample_test <- sample(seq_len(nrow(s4_g)), size = floor(0.20*nrow(s4_g)))
s4_g_train <- s4_g[sample_train, ]
s4_g_test <- s4_g[sample_test, ]</pre>
```

```
graduate_s4 <- glm(graduated ~ ., family = binomial, data = s4_g_train)
predict_s4_g <- predict(graduate_s4, s4_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s4_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s4_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
##
            N 16
##
            Y 82 458
##
                  Accuracy : 0.8464
##
##
                    95% CI: (0.8139, 0.8753)
##
       No Information Rate: 0.825
       P-Value [Acc > NIR] : 0.09899
##
##
##
                     Kappa : 0.2252
##
##
    Mcnemar's Test P-Value : < 2e-16
##
                 Precision : 0.80000
##
                    Recall : 0.16327
##
##
                        F1: 0.27119
##
                Prevalence: 0.17500
##
            Detection Rate: 0.02857
##
      Detection Prevalence: 0.03571
##
         Balanced Accuracy: 0.57730
##
##
          'Positive' Class : N
##
```

```
roc(s4_g_test$graduated, as.numeric(predict_s4_g))
```

```
##
## Call:
## roc.default(response = s4_g_test$graduated, predictor = as.numeric(predict_s4_g))
##
## Data: as.numeric(predict_s4_g) in 98 controls (s4_g_test$graduated N) < 462 cases (s4_g_test$graduated Y).
## Area under the curve: 0.8347</pre>
```

Fall semester 5

Fall Semester 5 (retain)

```
f5_r <- cbind(kent[,1:48], graduated) %>% filter(RET_S4 == "Y")
f5_r <- f5_r %>% dplyr::select(-RET_S4)
```

```
sample_train <- sample(seq_len(nrow(f5_r)), size = floor(0.80*nrow(f5_r)))
sample_test <- sample(seq_len(nrow(f5_r)), size = floor(0.20*nrow(f5_r)))

f5_r_train <- f5_r[sample_train, ]
f5_r_test <- f5_r[sample_test, ]</pre>
```

```
retain_f5 <- glm(RET_F5 ~ ., family = binomial, data = f5_r_train)
predict_f5_r <- predict(retain_f5, f5_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f5_r > .25)==1, "Y", "N")) confusionMatrix(data = prob, reference = f5_r_test$RET_F5, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
##
            N 77 10
##
            Y 209 269
##
##
                  Accuracy : 0.6124
                    95% CI: (0.5708, 0.6528)
##
##
       No Information Rate: 0.5062
##
       P-Value [Acc > NIR] : 2.464e-07
##
##
                     Kappa : 0.2314
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
                 Precision: 0.8851
##
                    Recall : 0.2692
##
##
                        F1: 0.4129
                Prevalence: 0.5062
##
##
            Detection Rate: 0.1363
##
      Detection Prevalence: 0.1540
##
         Balanced Accuracy: 0.6167
##
          'Positive' Class : N
##
##
```

```
roc(f5_r_test$RET_F5, as.numeric(predict_f5_r))
```

```
##
## Call:
## roc.default(response = f5_r_test$RET_F5, predictor = as.numeric(predict_f5_r))
##
## Data: as.numeric(predict_f5_r) in 286 controls (f5_r_test$RET_F5 N) < 279 cases (f5_r_test$RET_F5 Y).
## Area under the curve: 0.8186</pre>
```

Fall Semester 5 (graduate)

```
f5_g <- f5_r %>% filter(RET_F5 == "Y")
f5_g <- f5_g %>% dplyr::select(-RET_F5)
```

```
sample_train<- sample(seq_len(nrow(f5_g)), size = floor(0.80*nrow(f5_g)))
sample_test <- sample(seq_len(nrow(f5_g)), size = floor(0.20*nrow(f5_g)))

f5_g_train <- f5_g[sample_train, ]
f5_g_test <- f5_g[sample_test, ]</pre>
```

```
graduate_f5 <- glm(graduated ~ ., family = binomial, data = f5_g_train)
predict_f5_g <- predict(graduate_f5, f5_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f5_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f5_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
                    Y
            N 10
                    1
##
            Y 62 216
##
##
##
                  Accuracy: 0.782
                    95% CI: (0.7299, 0.8282)
##
##
       No Information Rate: 0.7509
       P-Value [Acc > NIR] : 0.123
##
##
##
                     Kappa : 0.1873
##
    Mcnemar's Test P-Value: 4.053e-14
##
##
                 Precision : 0.90909
##
##
                    Recall: 0.13889
##
                        F1: 0.24096
                Prevalence: 0.24913
##
##
            Detection Rate: 0.03460
      Detection Prevalence: 0.03806
##
##
         Balanced Accuracy: 0.56714
##
##
          'Positive' Class : N
##
```

```
roc(f5_g_test$graduated, as.numeric(predict_f5_g))
```

```
##
## Call:
## roc.default(response = f5_g_test$graduated, predictor = as.numeric(predict_f5_g))
##
## Data: as.numeric(predict_f5_g) in 72 controls (f5_g_test$graduated N) < 217 cases (f5_g_test$graduated Y).
## Area under the curve: 0.7982</pre>
```

Spring semester 5

Spring Semester 5 (retain)

```
s5_r <- cbind(kent[,1:52], graduated) %>% filter(RET_F5 == "Y")
s5_r <- s5_r %>% dplyr::select(-RET_F5)
```

```
sample_train<- sample(seq_len(nrow(s5_r)), size = floor(0.80*nrow(s5_r)))
sample_test <- sample(seq_len(nrow(s5_r)), size = floor(0.20*nrow(s5_r)))

s5_r_train <- s5_r[sample_train, ]
s5_r_test <- s5_r[sample_test, ]</pre>
```

```
retain_s5 <- glm(RET_S5 ~ ., family = binomial, data = s5_r_train)
predict_s5_r <- predict(retain_s5, s5_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s5_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s5_r_test$RET_S5, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
##
            N 40
##
            Y 90 170
##
##
                  Accuracy: 0.7
##
                    95% CI: (0.6447, 0.7513)
##
       No Information Rate: 0.5667
       P-Value [Acc > NIR] : 1.401e-06
##
##
##
                     Kappa : 0.335
##
##
    Mcnemar's Test P-Value : < 2.2e-16
##
                 Precision: 1.0000
##
##
                    Recall : 0.3077
                        F1: 0.4706
##
##
                Prevalence: 0.4333
##
            Detection Rate: 0.1333
##
      Detection Prevalence: 0.1333
##
         Balanced Accuracy: 0.6538
##
##
          'Positive' Class : N
##
```

```
roc(s5_r_test$RET_S5, as.numeric(predict_s5_r))
```

```
##
## Call:
## roc.default(response = s5_r_test$RET_S5, predictor = as.numeric(predict_s5_r))
##
## Data: as.numeric(predict_s5_r) in 130 controls (s5_r_test$RET_S5 N) < 170 cases (s5_r_test$RET_S5 Y).
## Area under the curve: 0.7813</pre>
```

Spring Semester 5 (graduate)

s5_g_train <- s5_g[sample_train,]
s5 g test <- s5 g[sample test,]</pre>

```
s5_g <- s5_r %>% filter(RET_S5 == "Y")
s5_g <- s5_g %>% dplyr::select(-RET_S5)

sample_train<- sample(seq_len(nrow(s5_g)), size = floor(0.80*nrow(s5_g)))
sample_test <- sample(seq_len(nrow(s5_g)), size = floor(0.20*nrow(s5_g)))</pre>
```

```
graduate_s5 <- glm(graduated ~ ., family = binomial, data = s5_g_train)
predict_s5_g <- predict(graduate_s5, s5_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s5_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s5_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                N
##
##
            Y 20 141
##
##
                  Accuracy : 0.8588
                    95% CI: (0.7973, 0.9074)
##
       No Information Rate: 0.8529
##
##
       P-Value [Acc > NIR] : 0.4670
##
##
                     Kappa : 0.2345
##
##
    Mcnemar's Test P-Value: 0.0022
##
##
                 Precision : 0.55556
                    Recall : 0.20000
##
                        F1: 0.29412
##
##
                Prevalence: 0.14706
            Detection Rate: 0.02941
##
##
      Detection Prevalence: 0.05294
         Balanced Accuracy: 0.58621
##
##
          'Positive' Class : N
##
##
```

```
roc(s5_g_test$graduated, as.numeric(predict_s5_g))
```

```
##
## Call:
## roc.default(response = s5_g_test$graduated, predictor = as.numeric(predict_s5_g))
##
## Data: as.numeric(predict_s5_g) in 25 controls (s5_g_test$graduated N) < 145 cases (s5_g_test$graduated Y).
## Area under the curve: 0.8284</pre>
```

Fall semester 6

Fall Semester 6 (retain)

```
f6_r <- cbind(kent[,1:56], graduated) %>% filter(RET_S5 == "Y")
f6_r <- f6_r %>% dplyr::select(-RET_S5)
```

```
sample_train <- sample(seq_len(nrow(f6_r)), size = floor(0.80*nrow(f6_r)))
sample_test <- sample(seq_len(nrow(f6_r)), size = floor(0.20*nrow(f6_r)))

f6_r_train <- f6_r[sample_train, ]
f6_r_test <- f6_r[sample_test, ]</pre>
```

```
retain_f6 <- glm(RET_F6 ~ ., family = binomial, data = f6_r_train)
predict_f6_r <- predict(retain_f6, f6_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f6_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f6_r_test$RET_F6, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction N Y
##
            N 55
##
            Y 57 56
##
##
                  Accuracy : 0.6271
##
                    95% CI: (0.5514, 0.6985)
##
       No Information Rate: 0.6328
       P-Value [Acc > NIR] : 0.595
##
##
##
                     Kappa: 0.3053
##
   Mcnemar's Test P-Value: 7.238e-09
##
##
                 Precision: 0.8594
##
                    Recall : 0.4911
##
                        F1: 0.6250
##
                Prevalence: 0.6328
##
##
            Detection Rate: 0.3107
##
      Detection Prevalence: 0.3616
##
         Balanced Accuracy: 0.6763
##
##
          'Positive' Class : N
##
```

```
roc(f6_r_test$RET_F6, as.numeric(predict_f6_r))
```

```
##
## Call:
## roc.default(response = f6_r_test$RET_F6, predictor = as.numeric(predict_f6_r))
##
## Data: as.numeric(predict_f6_r) in 112 controls (f6_r_test$RET_F6 N) < 65 cases (f6_r_test$RET_F6 Y).
## Area under the curve: 0.8058</pre>
```

Fall Semester 6 (graduate)

```
f6_g <- f6_r %>% filter(RET_F6 == "Y")
f6_g <- f6_g %>% dplyr::select(-RET_F6)
```

```
sample_train<- sample(seq_len(nrow(f6_g)), size = floor(0.80*nrow(f6_g)))
sample_test <- sample(seq_len(nrow(f6_g)), size = floor(0.20*nrow(f6_g)))

f6_g_train <- f6_g[sample_train, ]
f6_g_test <- f6_g[sample_test, ]</pre>
```

```
graduate_f6 <- glm(graduated ~ ., family = binomial, data = f6_g_train)
predict_f6_g <- predict(graduate_f6, f6_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_f6_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = f6_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction N Y
##
            N 8
            Y 14 45
##
##
                  Accuracy: 0.7794
##
                    95% CI: (0.6624, 0.871)
##
##
       No Information Rate: 0.6765
       P-Value [Acc > NIR] : 0.042702
##
##
##
                     Kappa : 0.4042
##
##
    Mcnemar's Test P-Value: 0.001946
##
                 Precision: 0.8889
##
##
                    Recall : 0.3636
##
                        F1 : 0.5161
##
                Prevalence: 0.3235
##
            Detection Rate: 0.1176
##
      Detection Prevalence: 0.1324
##
         Balanced Accuracy: 0.6709
##
##
          'Positive' Class : N
##
```

```
roc(f6_g_test$graduated, as.numeric(predict_f6_g))
```

```
##
## Call:
## roc.default(response = f6_g_test$graduated, predictor = as.numeric(predict_f6_g))
##
## Data: as.numeric(predict_f6_g) in 22 controls (f6_g_test$graduated N) < 46 cases (f6_g_test$graduated Y).
## Area under the curve: 0.8251</pre>
```

Spring semester 6

Spring Semester 6 (retain)

```
s6_r <- cbind(kent[,1:60], graduated) %>% filter(RET_F6 == "Y")
s6_r <- s6_r %>% dplyr::select(-RET_F6)
```

```
sample_train<- sample(seq_len(nrow(s6_r)), size = floor(0.80*nrow(s6_r)))
sample_test <- sample(seq_len(nrow(s6_r)), size = floor(0.20*nrow(s6_r)))

s6_r_train <- s6_r[sample_train, ]
s6_r_test <- s6_r[sample_test, ]</pre>
```

```
retain_s6 <- glm(RET_S6 ~ ., family = binomial, data = s6_r_train)
predict_s6_r <- predict(retain_s6, s6_r_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s6_r > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s6_r_test$RET_S6, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction N Y
##
            N 23 3
##
            Y 17 34
##
##
                  Accuracy : 0.7403
                    95% CI: (0.6277, 0.8336)
##
##
       No Information Rate: 0.5195
##
       P-Value [Acc > NIR] : 6.073e-05
##
##
                     Kappa : 0.487
##
##
   Mcnemar's Test P-Value: 0.00365
##
                 Precision: 0.8846
##
                    Recall : 0.5750
##
##
                        F1: 0.6970
                Prevalence: 0.5195
##
##
            Detection Rate: 0.2987
##
      Detection Prevalence: 0.3377
##
         Balanced Accuracy: 0.7470
##
          'Positive' Class : N
##
##
```

```
roc(s6_r_test$RET_S6, as.numeric(predict_s6_r))
```

```
##
## Call:
## roc.default(response = s6_r_test$RET_S6, predictor = as.numeric(predict_s6_r))
##
## Data: as.numeric(predict_s6_r) in 40 controls (s6_r_test$RET_S6 N) < 37 cases (s6_r_t est$RET_S6 Y).
## Area under the curve: 0.8736</pre>
```

Spring Semester 6 (graduate)

```
s6_add <- kent %>% filter(RET_S1 == "Y") %>% filter(RET_F2 == "Y") %>% filter(RET_S2 ==
"Y") %>% filter(RET_F3 == "Y") %>% filter(RET_S3 == "Y") %>% filter(RET_F4 == "Y") %>% f
ilter(RET_S4 == "Y") %>% filter(RET_F5 == "Y") %>% filter(RET_S5 == "Y") %>% filter(RET_
F6 == "Y") %>% filter(RET_S6 == "Y") %>% dplyr::select(c(S6SEQ2_CURATTHRS, S6SEQ2_CURERN
HRS, S6SEQ2_TERM_GPA))
nrow(s6_add)
```

[1] 119

```
s6_g <- s6_r %>% filter(RET_S6 == "Y")
empty <- matrix(c(rep.int(NA,length(s6_add))), nrow = 67, ncol = length(s6_add))
colnames(empty) <- colnames(s6_add)
s6_add <- rbind(s6_add, empty)
s6_g <- cbind(s6_g, s6_add)
s6_g <- s6_g %>% dplyr::select(-c(URS_IND,ONCAMPUS_IND,FIRST_GEN_IND, PELL_ELIG_IND, INT
ERNATIONAL_IND, ATHLETE_IND, VETERAN_IND, HONORS_REGISTERED_IND, RET_S1, RET_F2, RET_S2,
RET_F3, RET_S3, RET_F4, RET_S4, RET_F5, RET_S5, RET_S6))
```

```
sample_train<- sample(seq_len(nrow(s6_g)), size = floor(0.80*nrow(s6_g)))
sample_test <- sample(seq_len(nrow(s6_g)), size = floor(0.20*nrow(s6_g)))

s6_g_train <- s6_g[sample_train, ] %>% as.data.frame()
s6_g_test <- s6_g[sample_test, ] %>% as.data.frame()
```

```
graduate_s6 <- glm(graduated ~ ., family = "binomial", data = s6_g_train)</pre>
```

```
## Warning: glm.fit: algorithm did not converge
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
predict_s6_g <- predict(graduate_s6, s6_g_test, type = "response")</pre>
```

```
prob <- as.factor(ifelse(as.numeric(predict_s6_g > .25)==1, "Y", "N"))
confusionMatrix(data = prob, reference = s6_g_test$graduated, mode = "prec_recall")
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction N Y
##
            N
            Y 0 17
##
##
                  Accuracy: 0.913
##
                    95% CI: (0.7196, 0.9893)
##
##
       No Information Rate: 0.8261
       P-Value [Acc > NIR] : 0.2106
##
##
##
                     Kappa : 0.7473
##
##
    Mcnemar's Test P-Value: 0.4795
##
                 Precision: 0.6667
##
##
                    Recall : 1.0000
##
                        F1: 0.8000
##
                Prevalence: 0.1739
##
            Detection Rate: 0.1739
##
      Detection Prevalence: 0.2609
##
         Balanced Accuracy: 0.9474
##
##
          'Positive' Class : N
##
```

```
roc(s6_g_test$graduated, as.numeric(predict_s6_g))
```

```
##
## Call:
## roc.default(response = s6_g_test$graduated, predictor = as.numeric(predict_s6_g))
##
## Data: as.numeric(predict_s6_g) in 4 controls (s6_g_test$graduated N) < 19 cases (s6_g_test$graduated Y).
## Area under the curve: 0.9737</pre>
```

Partial Dependency plot for Spring semester 6 (graduate) - top 3 variables

```
s6_g_imp <- varImp(graduate_s6, scale = FALSE)
```

```
par_s6_g_atthr <- partial(graduate_s6, pred.var = c("S6SEQ2_CURATTHRS"), chull = TRUE)
plot_s6_g_atthr <- autoplot(par_s6_g_atthr , contour = TRUE)
par_s6_g_acts <- partial(graduate_s6, pred.var = c("ACT_SOC"), chull = TRUE)
plot_s6_g_acts <- autoplot(par_s6_g_acts, contour = TRUE)
par_s6_g_erhr <- partial(graduate_s6, pred.var = c("F2SEQ2_CURERNHRS"), chull = TRUE)
plot_s6_g_erhr <- autoplot(par_s6_g_erhr, contour = TRUE)
grid.arrange(plot_s6_g_atthr, plot_s6_g_acts, plot_s6_g_erhr)</pre>
```

