Timed CTL

VERIFICATION OF TA

Reachability (and beyond)

- The Region TS can be exploited to verify reachability of locations
- **Theorem**: Checking the reachability of a location in a timed automaton is PSPACE-complete.
 - The exponential part is due to the regions
 - The size of the region transition system is exponential in the number of clocks and the (binary representation of) constants with which clocks are compared.
- What about a temporal logic to express more interesting properties?
- Since bisimulation equivalence implies CTL equivalence (implication holds also for infinite state system) we could use CTL formulae over a TA, verifying them on the finite RTS imstead.
 - equivalence implies we get the same results
- However, CTL is somewhat poor to express timing constraints: no metric!
 - still useful!

CTL strengths/limitations

"the gate is always closed when the train is at the crossing"

• It does not contain any timing aspects, and can be described in CTL by:

 $AG(in \rightarrow down),$

 where in and down are locations in the timed automata Train and Gate, respectively.

• The (*timed liveness*) property "once the train is far, within 1 minute the gate is up for at least 1 minute" instead cannot be defined in CTL!

Timed CTL

- Extension of CTL with a metric Until Operator U^J State formulae as usual, but allowing atomic clock constraints g (typically over the set of clocks in a timed automaton):
- Φ ::= true | a | g | Φ Λ Φ | $\neg \Phi$ | $E\phi$ | $\nabla \phi$ with a in AP, g in ACC(C)

Timed CTL extends CTL with atomic clock constraints

- Path formulae: $\phi := \Phi U^{J} \Phi$ where **J** is an interval whose bounds are natural numbers.
- Define $F^{J} \Phi = \text{true } U^{J} \Phi$: Φ holds sometimes during the interval J in the current path
- Derived operators:
- EG^J $\Phi = \neg AF^J \neg \Phi$ there exists a path s.t. Φ holds during the interval J.
- AG^J $\Phi = \neg EF^J \neg \Phi$ for all paths, Φ holds during the interval J.

Examples

"the light cannot be continuously switched on for more than 2 minutes"

$$AG(on \rightarrow AF \leq 2 \neg on)$$
.

"the light will stay on for at least 1 time unit and then switch off"

AG (on
$$\Lambda$$
 (x = 0)) \rightarrow (AG ≥ 1 on Λ AF >1 off)

(using a clock reset—test if 0-- to specify the time instant when the light is switched on, as in the TA for the Light Switch.

The train

"once the train is far, within 1 minute the gate is up for at least 1 minute"

$$AG(far \rightarrow AF^{\leq 1} AG^{\geq 1} up).$$

"the train needs at least 2 minutes to reach the crossing after transmitting the "approach" signal"

AG (near
$$\Lambda$$
 (y = 0)) \rightarrow AG $^{\geq 2}$ \neg in

(the clock constr. y=0 denote the instant when the train signals its approach, see the TA for the train)

"the train needs at most five minutes to pass the crossing since its approach":

AG (near
$$\Lambda$$
 (y = 0)) \rightarrow AF $^{\leq 5}$ far.

Semantics if TCTL

- Path formulae are required to hold only on time-divergent paths
- If $s = \langle I, \eta \rangle$ is a state then

```
\begin{array}{lll} s \models \mathrm{true} \\ s \models a & \mathrm{iff} & a \in L(\ell) \\ s \models g & \mathrm{iff} & \eta \models g \\ s \models \neg \Phi & \mathrm{iff} & \mathrm{not} \ s \models \Phi \\ s \models \Phi \land \Psi & \mathrm{iff} & (s \models \Phi) \ \mathrm{and} \ (s \models \Psi) \\ s \models \exists \varphi & \mathrm{iff} & \pi \models \varphi \ \mathrm{for} \ \mathrm{some} \ \pi \in Paths_{div}(s) \\ s \models \forall \varphi & \mathrm{iff} & \pi \models \varphi \ \mathrm{for} \ \mathrm{all} \ \pi \in Paths_{div}(s). \end{array}
```

Eventually, Globally

for time-divergent path $\pi \in s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} \dots$

$$\pi \models \Diamond^J \Phi \text{ iff } \exists i \geqslant 0. \, s_i + d \models \Phi \text{ for some } d \in [0, d_i] \text{ with } \sum_{k=0}^{i-1} d_k + d \in J.$$

i.e., it is satisfied whenever a Φ -state is reached at some time instant $t \in J$.

$$\pi \models \Box^J \Phi \text{ iff } \forall i \geqslant 0. \, s_i + d \models \Phi \text{ for any } d \in [0, d_i] \text{ with } \sum_{k=0}^{i-1} d_k + d \in J.$$

all states visited by π in the time interval J satisfy Φ .

Informal definition of Until

- Formal Semantics of Until can be found in B&K
- A Time-divergent path π satisfies $\Phi U^{J} \Psi$ whenever at some time point in J, a state is reached satisfying Ψ and at all previous time instants $\Phi V \Psi$ holds.
 - NB: In LTL/CTL, Φ U Ψ is equivalent to (Φ **v** Ψ) U Ψ.

$$\Phi = \forall (a \cup 1)^{-1}b)$$

$$\pi \in \underbrace{\langle \ell, 0 \rangle}_{s_0} \xrightarrow{0.5} \underbrace{\langle \ell', 0.5 \rangle}_{s_1} \xrightarrow{2.5} \underbrace{\langle \ell, 0 \rangle}_{s_2} \dots$$

$$\pi \models a \cup 1)^{-1}b$$

 $s_1+d \models b$ for some $d \in [0,2.5]$ such that 0.5+d > 1

TCTL semantics for TA

Let TA be a timed automaton with clocks C and locations Loc. For TCTL state formula Φ , the satisfaction set $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in Loc \times Eval(C) \mid s \models \Phi \}.$$

The timed automaton TA satisfies TCTL state formula Φ if and only if Φ holds in all initial states of TA:

$$TA \models \Phi$$
 if and only if $\forall \ell_0 \in Loc_0. \langle \ell_0, \eta_0 \rangle \models \Phi$

where $\eta_0(x) = 0$ for all $x \in C$.

Model checking?

- The construction of the RTS(TA) can be modified to add regions introduced by a TCTL formula Φ
 - When defining RTS we have to consider also clock constraints occurring in the formula Φ (i.e., the max constant c_x for each x)
- Result is a transition system RTS(TA, Φ)
 - Unfortunately, RTS(TA, Φ) is not bisimilar to TS(TA) (because of elimination of certain delay transitions)...but this still works since it is stutter-equivalent.
- There is a construction eliminating timing parameters from every TCTL subformula formula, by just adding new clocks
 - Ex: **EF**≤5 ϕ becomes **EF**((z≤5) \wedge ϕ)

Given a state s, s |= EF ≤ 5 ϕ iff s[z:=0] |= EF((z ≤ 5) \wedge ϕ)

- Details are skipped here...
- Result is a formula Φ'

Elimination of clocks

- The reason this elimination works is that a temporal logic extending CTL with clocks, rather than dense time operators, subsumes TCTL.
 - The idea of this logic, called **TCTLc**, is to consider a new set of clocks the formula clocks and to add atomic constraints "x<c, x=c" in the logic and a new operator ("in") to reset a given clock to zero.
 - A TCTL formula Φ can always be transformed into an equivalent TCTLc formula Φ '
 - We can also define a Region TS, called RTS(A, Φ ') introducing the formula clocks in RTS(A) and their constraints.

Model checking!

• TCTLc that can be interpreted over the Region TS(TA, Φ ') as a CTL formula if clock constraints are considered just as atomic propositions and non-Zeno behaviors are excluded.

- Therefore, under a non-Zeno assumption:
- $TA \models \Phi$ under the TCTL semantics is equivalent to $RTS(TA, \Phi) \models \Phi$ under the CTL semantics
- Standard CTL model checking can thus be used
 - In practice, various optimizations are introduced

Final result

Theorem 9.68. Time Complexity of TCTL Model Checking

For timed automaton TA and TCTL formula Φ , the TCTL model-checking problem $TA \models \Phi$ can be determined in time $\mathcal{O}((N+K) \cdot |\Phi|)$, where N and K are the number of states and transitions in the region transition system $RTS(TA, \Phi)$, respectively.

• States of the RTS are exponential in the number of clocks and in the (binary repr. of) the constants:

Theorem 9.69. Complexity of TCTL Model Checking

The TCTL model-checking problem is PSPACE-complete.

- In practice, most often model checkers do not support full TCTL
 - Symbolic techniques improving efficiency of verification cannot be easily extended to full TCTL.

Other results

- Model checking safety, reachability, ω-regular properties, LTL and CTL for TA is PSPACE-complete
- TCTL satisfiability is undecidable
- The model-checking problem for Timed LTL is undecidable
 - − Timed LTL is LTL extended with clock variables and clock constraints: G(warning \rightarrow x.F(alarm $^{\prime}$ x<10)
- Model checking Metric Temporal Logic (MTL) against TA is decidable, but only under finite runs (not primitive recursive...)
 - MTL has U³ operator, but no clocks. It is less expressive than Timed LTL.

TIMED LANGUAGES

Timed ω-word

- Intuition: an infinite sequence of "states", each with a timestamp
 - (a, 0.3) (b, 1.6) (a, 4.1) (b, 4.25) (a, 9.8)...
 - (up, 2.5) (up, 2.6) (down, 2.62) (up, 2.624) (up, 2.625) (up, 2.6252)...
 - ({up, no_alarm}, 0.1) ({up, no_alarm}, 27.3) ({down, alarm}, 150.0)...
- Timed ω -word (or, more simply, timed word): a sequence of values (σ_1, τ_1) (σ_2, τ_2) ... where each symbol σ_i is associated with a real-valued timestamp τ_i

Timed language

- Def: time sequence $\tau = \tau_1 \tau_2 \tau_3 ...$ an infinite sequence of time values $\tau_i \ge 0 \in \mathbb{R}_{\ge 0}$ s.t.
 - $-\tau_i \le \tau_{i+1}$ for all $i \ge 1$ (monotonicity)
 - if we impose $\tau_i < \tau_{i+1}$ then strict monotonicity
 - − for all t∈R , there is some $i \ge 1$ s.t. $\tau_i > t$ (progress)
- Def: *timed word* σ over alphabet (i.e., finite set of symbols) \mathscr{A} is a pair (σ , τ), where $\sigma = \sigma_1 \sigma_2 \dots (\in \mathscr{A}_{\omega})$, is an ω -word and τ is a time sequence
- Def: *timed language* over \mathscr{A} is a set of timed words over \mathscr{A}

The Untime operation

- The *Untime* operation on a timed language discards the time values associated with symbols
- Def: for a timed language \mathscr{L} over \mathscr{A} , Untime(\mathscr{L}) = { $\sigma \in \mathscr{A} \mid$ there is a τ s.t. (σ , τ) $\in \mathscr{L}$ }
 - Untime(\mathcal{L}) is a set of ω-words

Timed Automata as Recognizers of timed languages

- We consider timed words in the alphabet of the actions, called the input alphabet
- No atomic propositions in the locations
- A set of final locations
- A Timed Automaton is a tuple $\langle L, \Sigma, C, E, I_0, J, F \rangle$:
 - *L* is a finite set of locations
 - $-\Sigma$ is a finite set of input symbols
 - C is a finite set of clocks
 - $-I_0 \in L$ is the initial location
 - E is a set of edges: $E \subseteq L \times B(C) \times \Sigma \times 2^{c} \times L$ where B(C) is the set of clock constraints
 - $-J: L \rightarrow B(C)$ are the invariants
 - *F* is the set of *final locations*
- Everything else is as usual, but a timed word is accepted if there is a path leading infinitely often to a final location

Example of Timed Automaton accepting a Timed Language

• Accepts the timed language $\mathcal{L} = \{((ab)^{\omega}, \tau) \mid \text{ for all i, } (\tau_{2i} < \tau_{2i-1} + 2)\}$

Run and acceptance for TA

- Def: a run $r_{(\sigma, \tau)}$ over a timed word (σ, τ) , with $\sigma = \sigma_1 \sigma_2 ...$, and $\tau = \tau_1 \tau_2 ...$, is an infinite sequence $r_{(\sigma, \tau)}$: $\langle I_0, \eta_0 \rangle \longrightarrow \sigma_1, \tau_1 \langle I_1, \eta_1 \rangle \longrightarrow \sigma_2, \tau_2 \langle I_2, \eta_2 \rangle ...$
- where $I_i \in L$, η_i are clock evaluations s.t.:
 - η₀(x)=0 for all x∈C (initiation)
 - − $\forall i \ge 1$, there is $e \in E$ s.t. $e = \langle I_{i-1}, \gamma_i, \sigma_i, \hat{C}_i, I_i \rangle$ and $(\eta_{i-1} + \tau_i \tau_{i-1})$ satisfies both γ_i and $J(I_{i-1})$, $\eta_i = [\hat{C}_i \longmapsto 0](\eta_{i-1} + \tau_i \tau_{i-1})$ and η_i satisfies $J(I_i)$
- $inf(r_{(\sigma, \tau)})$ is the of locations visited *infinitely often* in the run

A timed word (σ, τ) is accepted by a TA $\langle L, \Sigma, C, E, I_0, J, F \rangle$ iff

there exists a run $r_{(\sigma, \tau)}$ s.t. $inf(r_{(\sigma, \tau)}) \cap F \neq \emptyset$

More examples of TA

• TA that recognizes the timed language $\mathcal{L}_{crt} = \{((ab)^{\omega}, \tau) \mid \text{ exists i s.t. for all } j \geq i \ (\tau_{2j} - \tau_{2j-1} < 2)\}$

• TA that recognizes the timed language $\mathcal{L}_{per} = \{\{a,b\}^{\omega}, \tau\} \mid \forall k \exists j \text{ s.t. } (\Box_j = 3k \text{ and } \sigma_j = a)\}$

Timed regular languages

- Def: a timed regular language is a language that is accepted by some TA
 - $\mathcal{L}_{\mathrm{crt}}$ and $\mathcal{L}_{\mathrm{per}}$ are timed regular languages
 - $\mathcal{L}_{nr} = \{ ((ab)^{\omega}, \tau) \mid \forall j \ (\tau_{2j} \tau_{2j-1} < \tau_{2j+2} \tau_{2j+1}) \}$ is *not* regular
- If \mathcal{L} is an ω -regular language $\subseteq \mathscr{A}^{\omega}$, $\mathcal{L}_{t} = \{(\sigma, \tau) \mid \sigma \in \mathcal{L}\}$ is a timed regular language $-\tau$ is any!

Untimed languages of TA are ω -regular

- Given a TA that accepts a language \mathcal{L} , there is a BA that accepts Untime(\mathcal{L})
 - that is, given a timed regular language \mathcal{L} , Untime(\mathcal{L}) is ω -regular
 - Eliminating timing constraints from the transitions is not enough!
 - in the following TA, state *error* is not reachable due to the timing constraints; if we simply remove them, then it becomes easily reachable

Properties of TA

- TA are *closed* under union and intersection, but are *not closed* under complementation
 - A noncomplementable TA: $\mathcal{L}_{nc} = \{(a^{\omega}, \tau) \mid \exists i, \exists j > i \ (\tau_j = \tau_i + 1)\}$

- An immediate consequence is that TA cannot be determinized
- Nonclosure under complement strongly limits automata-based model checking
 - Language-inclusion and language-equivalence are indeed undecidable!
- Emptiness is decidable by verifying emptiness of Region Automaton (similar to the Region Transition System)

Signals

 Each instant of the time domain is associated with the "state" of the system in that instant

Continuous time semantics

- It is possible to define TA (and temporal logic) semantics over signals rather than over Timed Words
 - The semantics in terms of Transition Systems is based on Timed Words
 - Linear-time TLs are more naturally interpreted over signals
- It is more realistic, but decision problems become harder to compute
 - For instance, the logic MTL becomes undecidable over continuous-time semantics
- NB: continuous-time semantics = signals
- pointwise semantics = timed words

Model Checking TA for LTL?

- Model checking TA for LTL, over both the point-wise and continuous semantics, is PSPACE-complete.
 - Just build the BA equivalent to the negation of a formula and build the product with the TA
 - Result is still a TA (TA are closed under intersection)
 - Verify emptiness of the result
- Unfortunately, most metric extensions of LTL are undecidable
 - Metric Interval Temporal Logic is decidable, but in EXPTIME

The Uppaal tool

Introduction

- Not the first tool for the verification of Timed Automata
 - KRONOS is the original one
- Developed by University of Uppsala and University of Aalborg
 - UPPsala + AALborg = UPPAAL
- www.uppaal.org
 - academic version
 - there is also a commercial version (www.uppaal.com)
- Some references (<u>available from the Uppaal website</u>):
 - <u>Timed Automata: Semantics, Algorithms and Tools</u>, Johan Bengtsson and Wang Yi. LNCS 3098, 2004
 - <u>Tutorial</u> on Uppaal

Building models from components

- Uppaal allows users to build complex models as networks of Timed Automata
 - the model is broken down into interacting components
- The interaction between components is achieved through channels
 - one component issues a message through a channel, the other receives it
- If H is the set of channels, the symbol on a transition is now of type $\Sigma \cup H! \cup H$?
 - c!: component sends a message through channel c
 - c?: component receives a message through channel c

Example of network of TA

Example in Uppaal

Regions vs. zones

• The region abstraction is very fine, this automaton has over 50 states

- Clock zones are a coarser abstraction
 - a zone corresponds to a clock constraint, and covers many regions
- Zone graph for the previous automaton:

Committed and urgent locations

- Time cannot pass in locations that are committed or urgent
- When a location is *urgent*, this is like resetting a clock y upon entering the location, and adding invariant $y \le 0$ to the location
 - but interleaving with normal locations is possible
- When a location is *committed*, not only time *cannot* pass, but in addition the only transition that can be taken must exit a committed location
 - i.e., only interleaving with other committed locations is possible
- Useful to reduce interleaving and the number of clocks

Urgent channels

 If a synchronization channel is declared as urgent, the synchronization occurs as soon as it is enabled

- as soon as the two automata are in locations l_1 and s_1 , the synchronization occurs
- transitions with urgent channels cannot have clock constraints, for efficiency reasons

The query language

- Properties to be checked in Uppaal can be expressed using a subset of (T)CTL
 - A[] Expression
 - E<> Expression
 - E∏ Expression
 - A<> Expression
 - Expression --> Expression
 - where Expression is a formula describing a (combination of) location, guard on variables, clock constraint
 - for example, error, or Lamp.bright or Lamp.dim
 - deadlock is a special keyword to describe deadlocked states
 - clock constraints allow some TCTL-like constraints: the query language can be considered a "safety subset" of TCTL.

The query language (2)

- E<>P "P is reachable"
 - there is a path (i.e., a run) from the initial state that leads to a state in which P holds
 - i.e., a state in which P holds is reachable from the initial state
- A<>P "P is inevitable"
 - all paths from the initial state are such that eventually a state in which P holds is reached
- A[]P "P is an invariant"
 - all states that are reachable from the initial state are such that P holds
- E[]P "P is potentially always true"
 - there is a path from the initial state such that P holds in all states that are along that path ()
- P --> Q "P leads to Q"
 - along all paths from the initial state, all states in which P holds are such that eventually Q holds
 - this is an abbreviation for the CTL propertyA[] (P imply A<> Q)