CS 381 - Spring 2019

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs
Week 6

Dynamic programming (DP)

Break a problem into a series of overlapping subproblems, and use the corresponding recurrence to build up solutions to larger and larger subproblems.

Assignment Project Exam Help Overlapping Subproblems

https://tutorcs.com
Optimal Substructure (Optimality Conditions)

WeChat: cstutorcs An optimal solution to a problem (instance) contains optimal solutions to subproblems.

DP typically solves optimization problems by combining optimum solutions for subproblems.

Steps taken when designing a DP algorithm

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal Assignment Project Exam Help solution in terms of optimum subsolutions
- 3. Compute the https://ttttorest.compute/.
- 4. Construct an weignascolution from the computed entries and other information.

Fibonacci Sequence

•
$$F_0 = 0, F_1 = 1$$

•
$$F_n = F_{n-1} + F_{n-2}$$

https://tutorcs.com

- The most natural approach is Divide-and-Conquer
- How efficient is a D&Q algorithm?

$$2T(n-2) + c \le T(n) = T(n-1) + T(n-2) + c \le 2T(n-1) + c$$

• Why is it exponential? Is there a better Solution?

```
Review: Fibonacci numbers F(n) = F(n-1) + F(n-2)
```

```
Recursion:
       rec-fib(n):
          base cases...
         return rec-fib(n-1)+rec-fib(n-2)
DPTop-down Signment Project Exam Help
       mem-fib(n):
          initialitatasiay tutores.com
          if M[n] == NIL
           return M[n]
DP Bottom-up:
        dp-fib(n):
          initialize array M[1..n]
          for I = 3 to n
             M[i] = M[i-1] + M[i-2]
          return M[n]
```

Problem 1: Non Adjacent Selection (NAS)

 ${f S}$ is an array of size ${f n}$ (positive integers in arbitrary order) Select entries in S so that

- i. the sum sof ghan electer bject i Essia mantal pum
- ii. no two selected entries are adjacent in array S https://tutorcs.com

WeChat: cstutorcs

Examples

```
[14, 6, 33, 1, 2, 8]
```

Recurrence for an Efficient DP Algorithm

$$OPT(n) = \max\{OPT(n-1), OPT(n-2) + S[n]\}$$

OPT[1] =
$$S[1]$$

Assignment Project Exam Help
OPT[2] = $\max\{OPT(1), S[2]\}$
https://tutorcs.com
OPT[k] = $\max\{OPT(k-1), OPT(k-2) + S[k]\}, 3 \le k \le n$
WeChat: cstutorcs

Compute entries of array OPT in O(n) time in one left to right scan (at position k, look at k-1 and k-2)

$$S = [14, 6, 8, 9, 7, 2]$$

Start at n scanning left and determine elements in set T

```
T = \{\}; k = n
\mathbf{while} \ k \geq 1
\mathbf{if} \ OPT[k-1] \triangleq \mathbf{Spignment} \\ \mathbf{Project} \ \mathbf{Exam} \ \mathbf{Help}
\mathbf{then} \ k = k - \mathbf{https:} \\ \mathbf{Mthiones.sedented}
\mathbf{else} \ \mathbf{add} \ \mathbf{index} \ k \ \mathbf{to} \ \mathbf{set} \ T; \ k = k-2
\mathbf{WeChat:} \ \mathbf{cstutores}
\mathbf{Return} \ T
```

Generating the elements in the solution costs O(n) time Note: Revisit the O(n) time iterative solution to maximum subarray problem (it is DP)

Problem 2: Rod Cutting Problem (15.1)

- Input is
 - n, the length of a steel rod
 - an arrayspighrizent Project Exam Help

The rod is cut into shorter rods...dn

• A rod of length k is sold for profit p[k], 1≤k ≤n. WeChat: cstutorcs

Cut the rod into pieces that maximize the total profit

- No cuts can be undone
- Making a cut is "free"

Example

WeChat: cstutorcs
Making no cut has a profit of 14

Making one cut creating pieces of length 1 and 4

• profit of 3 + 3 + 10 = 16

Profit of 16 is possible

There are 2ⁿ⁻¹ ways to cut a rod of length n.

$$n = 4$$
 $p = [1, 5, 8, 9]$

Can we use DP?

Does the Principle of Optimality hold?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Can we use DP?

Does the Principle of Optimality hold?

Assume we make an optimal cut creating one piece of length k and one of length n-k.

Then, both piece https://tutorcspanial way. Why?

Otherwise we don't have an optimal solution.

Can we use DP?

Does the Principle of Optimality hold?

Assume we make an optimal cut creating one piece of length k and one of length n-k.

Then, both piece https://tutorcspamal way. Why?

Otherwise we don't have an optimal solution.

How about overlapping subproblems?

How to use DP?

• If we make an optimal cut creating a piece of length k and one of length n-k, both pieces are cut in a optimal way.

• Let opt(n) be the profit of an optimal solution for a rod of length **n**. The https://tutorcs.com

$$opt(n) = \max_{stitled} \{p[n]_{stitled}\} + opt(n-1),$$

$$opt(2) + opt(n-2),$$

opt(n-2)+opt(2), opt(n-1)+opt(1)}

Another way to look at the cuts ...

$$opt(n) = max_{1 \le i \le n} \{p[i] + opt(n-i)\}$$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Another way to look at the cuts ...

$$opt(n) = \max_{1 \le i \le n} \{p[i] + opt(n-i)\}$$

If a piece of length i is the leftmost piece cut from the rod, it a signment Project Exam Help generates a profit of p[i].

The remaining https://tentgutca-commut in an optimal way maximizing the profit cstutores

New recurrence:

$$opt(j) = max_{1 \le i \le j} \{p[i] + opt(j-i)\} \text{ for } 1 \le j \le n$$

$$r(j) = \max_{1 \le i \le j} \{p[i] + r(j-i)\} \text{ for } 1 \le j \le n \text{ (r stands for opt)}$$

```
BOTTOM-UP-CUT-ROD(p, n)
   let r[0...n] be a new array
   Agsignment Project Exam Help
   for j = 1 to n
      https://tutorcs.com
       for i chat: cstutores
           q = \max(q, p[i] + r[i-i])
       r[j] = q
   return r[n]
```

Total time is $O(n^2)$ and space is O(n). See page 366 for more details.

$r(j) = \max_{1 \le i \le j} \{p[i] + r(j-i)\} \text{ for } 1 \le j \le n \text{ (r stands for opt)}$

BOTTOM-UP-CUT-ROD
$$(p, n)$$

1 let $r[0..n]$ be a new array

2 r {Ssignment Project Exam Help

3 for $j = 1$ to n Profit of a piece of

4 attps://tutorcs.com length i

5 for $i = 1$ to $i = 1$ The profit of a piece of $i = 1$ to $i = 1$ to $i = 1$ to $i = 1$ to $i = 1$ The profit of a piece of $i = 1$ to $i = 1$ The profit of a piece of $i = 1$ to $i = 1$ The profit of a piece of $i = 1$ to $i = 1$ The profit of a piece of

Total time is $O(n^2)$ and space is O(n). See page 366 for more details.

Example

WeChat: cstutorcs

How to record where the cuts are made?

Use an arrays to record which index \mathbf{k} resulted in the maximum for opt(j)

Needs some adjusting of indices to generate cut positions

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
let r[0...n] and s[0...n] be new arrays
r[0] = 0
for j = 1 to n
    q = -\infty
    for i = 1 to j
        if q < Assignment Project Exam Help
            q = p[i] + r[j - i]
s[j] = https://tutorcs.com
    r[j] = q
                    WeChat: cstutorcs
return r and s
```

```
PRINT-CUT-ROD-SOLUTION(p, n)

(r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

while n > 0

print s[n]

n = n - s[n]
```

Dynamic Programming Problems

- 1) Non-Adjacent Selection
- Rod Cutting
- 3) Weighted Significant Project Exam Help

https://tutercslongest Common Subsequence

- WeChat: 5) Sequence Alignment
 - 6) Matrix Chain Multiplication
 - 7) 0/1 Knapsack
 - 8) Coins in a Line

Steps taken when designing a DP algorithm

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal Assignment Project Exam Help solution in terms of optimum subsolutions
- 3. Compute the https://ttttorest.compute/.
- 4. Construct an weignascolution from the computed entries and other information.

Problem 3: Weighted interval scheduling

Weighted interval scheduling problem.

- Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum-weight subset of mutually compatible jobs.

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$.

Def. p(j) = largest index i < j such that job i is compatible with j.Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Assignment Project Exam Help

Dynamic programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

Goal. OPT(n) = value of optimal solution to the original problem.

Case 1. OPT(j) selseignment Project Exam Help

- Collect profit *v_j*.
- Can't use incompatible of tutores, point, ..., j-1.
- Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j).

(proof via exchange argument)

Case 2. OPT(j) does not select job j.

• Must include optimal solution to problem consisting of remaining jobs 1, 2, ..., j-1.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), & OPT(j-1) \right\} \text{ otherwise} \end{cases}$$

Weighted interval scheduling: brute force

```
Brute-Force (n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n)

Sort jobs by finish time so that f_1 \leq f_2 \leq ... \leq f_n.

Compute Assignment. Project Exam Help Return Compute-Opt(n).

https://tutorcs.com
```

```
COMPUTE-OPT(j) WeChat: cstutorcs

IF j = 0

RETURN 0.

ELSE

RETURN max { v_j + Compute-Opt(p[j]), Compute-Opt(j-1) }.
```

Weighted interval scheduling: Brute Force

Observation. Recursive algorithm is spectacularly slow because of overlapping subproblems \Rightarrow exponential-time algorithm.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Assignment Project Exam Help

Weighted interval scheduling: memoization

Top-down dynamic programming (memoization). Cache result of each subproblem; lookup as needed.

```
Top-Down (n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n)
Assignment Project Exam Help
Sort jobs by finish time so that f_1 \le f_2 \le ... \le f_n.

Compute p[1], p[2], .h.telps://tutorcs.com
M[0] \leftarrow 0. \leftarrow global array M[]
RETURN M-COMPUTE-We Chat: cstutorcs
```

```
M-COMPUTE-OPT(j)

IF M[j] = uninitialized

M[j] \leftarrow \max \{ v_j + \text{M-Compute-Opt}(p[j]), \text{ M-Compute-Opt}(j-1) \}.

RETURN M[j].
```

Weighted interval scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Compute the vector $p[]:O(n \log n)$.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns Arssignment Project Exam Help
 - (ii) fills in one new entry M[j] and makes two recursive calls https://tutorcs.com
- Progress measure $\Phi = \#$ nonempty entries among M[1...n].
 initially $\Phi = 0$, throughout $\Phi \leq n$.

 - (ii) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are presorted by start and finish times.

Weighted interval scheduling: finding a solution

- Q. DP algorithm computes optimal value. How to find solution itself?
- A. Make a second pass by calling FIND-SOLUTION(n).

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Weighted interval scheduling: finding a solution

- Q. DP algorithm computes optimal value. How to find solution itself?
- A. Make a second pass by calling FIND-SOLUTION(n).

```
FIND-SOLUTION (j)

Assignment Project Exam Help

RETURN https://tutorcs.com

Else if (v_j + M[p[j]] > M[j-1])

RETURN We Chatsocstunges

Else

RETURN FIND-SOLUTION (j-1).
```

Analysis. # of recursive calls $\leq n \Rightarrow O(n)$.

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP
$$(n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n)$$

Assignment Project Exam Help

Sort jobs by finish time so that $f_1 \le f_2 \le ... \le f_n$.

Compute $p[1]$, which is a significant previously computed values

 $M[0] \leftarrow 0$. previously computed values

FOR $j = 1$ TO n We Chat: estutores

 $M[j] \leftarrow \max \{ v_j + M[p[j]], M[j-1] \}$.

Running time. The bottom-up version takes $O(n \log n)$ time.

Weighted Interval Scheduling

Weighted interval scheduling DP algorithm has $O(n \log n)$ running time:

- Sort by finish time: O(n log n) time
- Computing https://tutorcs.com O(n log n) time.
- Compute Mentries: O(n)
- Backtrack for finding intervals to select: O(n)

DP: Problems on strings

String problems have numerous applications; an important application areasisgenmentational biplogy/pieipformatics.

- the alphabet is pergly to the alphabet is
- strings can be very long and there may be noise in the WeChat: cstutorcs string (approximate string matching)
- algorithms need to be fast

Problem 4: Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

Assignment Project Exam Help

• Given two sequences x[1..m] and y[1..n], find a longest subsequences common to them both.

Dynamic programming

Example: Longest Common Subsequence (LCS)

• Given two Asseignences Project Example 1 ... n, find a longest subsequence common to them both.

— "a" not "the" WeChat: cstutorcs

Dynamic programming

Example: Longest Common Subsequence (LCS)

• Given two Ascignences Project Expandel [1], find a longest subsequence common to them both.

- "a" not "the" WeChat: cstutorcs

x: A B C B D A B

y: B D C A B A

Dynamic programming

Example: Longest Common Subsequence (LCS)

• Given two sequences x [1 m] and x [1 m], find a longest subsequence common to them both.

functional notation, but not a function

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...m].

Assignment Project Exam Help

https://tutorcs.com

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...n].

Assignment Project Exam Help

Analysis

- Checking https://tutorespersubsequence.
- 2^m subsequences to far the subsequence length m determines a distinct subsequence of x).

```
Worst-case running time = O(n2^m)
= exponential time.
```

Towards a better algorithm **Simplification:**

1. Look at the *length* of a longest-common

subsequence.

Assignment Project Exam Help

Extend the algorithm to find the LCS itself.

https://tutorcs.com

Towards a better algorithm Simplification:

1. Look at the *length* of a longest-common subsequence.

subsequence.

Assignment Project Exam Help

Extend the algorithm to find the LCS itself.

https://tutorcs.com

Notation: Denote the length of a sequence s
WeChat: cstutorcs

by | s |.

Towards a better algorithm **Simplification:**

- 1. Look at the *length* of a longest-common
- subsequence.

 Assignment Project Exam Help

 Extend the algorithm to find the LCS itself. https://tutorcs.com
- Notation: Denote the length of a sequence s

 WeChat: cstutorcs by | s |.

Strategy: Consider *prefixes* of x and y.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \\ \text{Assignment Project Exam Help} \end{cases}$$

https://tutorcs.com

Recursive formulation Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max \{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \\ \text{Assignment Project Exam Help} \\ \text{Case } x[i] = y[j]: \\ x: & \text{https://tutorcs.com} \\ x: & \text{wechat. estutorcs} \\ y: & \text{wechat. estutorcs} \end{cases}$$

Recursive formulation Theorem.

Let
$$z[1 ... k] = LCS(x[1 ... i], y[1 ... j])$$
, where $c[i, j] = k$. Then, $z[k] = x[i]$, or else z could be extended. Thus, $z[1 ... k-1]$ is CS of $x[1 ... i-1]$ and $y[1 ... j-1]$.

Proof (continued)

```
Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]).

Suppose w is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, cut and Project Exam Help paste: w ||z[k]| (w concatenated with z[k]) is a common subsequence of condot of
```

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]). Suppose w is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, cut and paste: w || z[k] (w concatenated with z[k]) is a common subsequence common subsequence common y[1 ... j] with |w|| z[k] echat. Contradiction, proving the claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j] = c[i-1, j-1] + 1.

Other cases are similar.

Dynamic-programming hallmark #1

Optimal substructure
An Spirmant Plaiten Frampholilem

(instance) contains optimal

solutions to subproblems.

Dynamic-programming hallmark #1

Optimal substructure

An Spinnal Staits have problem

(instance) contains optimal

WeChat: cstutorcs

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

solutions to subproblems.

Recursive algorithm for LCS

```
LCS(x, y, i, j)

if x[i] = y[j]

then return Project Exam Help() + 1

else ratips // tutorex. [LCS(x, y, i-1, j),

We Chat: cstutores
```

Recursive algorithm for LCS

```
LCS(x, y, i, j)

if x[i] = y[j]

then return Project Exam Help() + 1

else ratips // tutorex. [LCS(x, y, i-1, j),

WeChat: cstutores
```

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Recursion tree

Height = $m + n \Rightarrow$ potentially work exponential.

Recursion tree

Height = $m + n \Rightarrow$ potentially exponential work, but we're solving subproblems already solved!