Data Visualization – Homework

Introduction

This report presents an Exploratory Data Analysis (EDA) on the dataset region_05.csv. The objective is to analyze, clean, and visualize the data using four different tools: **Python, R, Excel, and Power BI**. The comparison of these tools highlights their strengths and weaknesses in terms of usability, visualization capabilities, and analytical efficiency.

2. Data Cleaning and Preparation

2.1 Identifying Issues in the Dataset

- The dataset contains 14,498 rows and 135 columns.
- Several columns have missing values.
- Some columns contain **mixed data types**, requiring proper conversion.
- **Duplicate rows** were identified and removed.
- Latitude and Longitude columns had **null values**, affecting geographical analysis.

2.2 Data Cleaning Steps

- Removed duplicate rows.
- Dropped columns with excessive missing values.
- Filled missing numerical values using mean imputation.
- Filled missing categorical values with 'Unknown'.
- Converted necessary columns into proper data types.

3. Data Exploration and Visualization

3.1 Python Analysis and Visualization

Python was used for EDA with the following steps:

- Libraries Used: pandas, seaborn, matplotlib
- Data Cleaning: Removed duplicates, handled missing values.
- Visualization Techniques:
 - Yearly Trend Analysis: A line chart displaying the number of incidents per year.
 - o **Top 10 Countries Analysis**: A bar chart highlighting the countries with the most incidents.

• Correlation Matrix: A heatmap to explore relationships between numerical variables.

3.2 R Analysis and Visualization

R was used to replicate the analysis with:

- Libraries Used: ggplot2, dplyr, corrplot
- **Data Cleaning**: Similar steps as Python (handling missing values, duplicates, data type conversion).
- Visualization Techniques:
 - Yearly Trend (Line Chart)
 - o Top 10 Countries (Bar Chart)
 - Correlation Heatmap

3.3 Excel Analysis and Visualization

Excel was used to perform EDA via:

- **Pivot Tables** to summarize incidents per year and country.
- Bar Chart for Top 10 Countries.
- Conditional Formatting Heatmap for correlation analysis.
- Map Visualization using Excel's Maps feature.

3.4 Power BI Analysis and Visualization

Power BI provided interactive dashboards for:

- Yearly Trend (Line Chart)
- Top 10 Countries (Bar Chart)
- Geographical Map
- Correlation Analysis (Using DAX)
- Filters and Interactive Slicers

4. Tool Comparison

4. Tool Comparison

Feature	Python	R	Excel	Power BI
Best for	Advanced Analysis	Statistical Analysis	Quick Reporting	Interactive Dashboards
Ease of Use	Moderate	Moderate	Easy	Easy
Interactivity	Low	Low	Medium	High
Performance	High	High	Medium	High
Customization	ı High	High	Medium	High
Automation	High (Jupyter Notebooks)	High (R Scripts)	Low	High (DAX & Power Query)

5. Findings and Insights

- Incidents increased over the years, peaking in certain periods.
- Top affected countries were identified and analyzed.
- Correlations between key variables provided insights into patterns.
- Power BI and Excel are best for business users, while Python and R offer greater flexibility and depth.

6. Conclusion

Each tool has its strengths:

- **Python** is excellent for automation and advanced analysis.
- **R** is strong for statistical modeling and visualization.
- Excel is quick for basic reporting.
- Power BI provides interactive dashboards for better data-driven decision-making.

CODE SINPPETS: -

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load dataset
file path = "/content/region 05.csv"
df = pd.read csv(file path)
# Display basic info
print(df.info())
print(df.head())
# Check for missing values
missing_values = df.isnull().sum()
missing_values = missing_values[missing_values > 0].sort_values(ascending=False)
# Check for duplicate rows
duplicate count = df.duplicated().sum()
print(f"Duplicate Rows: {duplicate count}")
# Summary statistics for numerical columns
numerical summary = df.describe()
print(numerical_summary)
# Remove duplicate rows
df cleaned = df.drop duplicates()
```

```
# Drop columns that are entirely empty
empty cols = missing values[missing values == len(df)].index
df cleaned = df cleaned.drop(columns=empty cols)
# Handle missing values in critical columns
df_cleaned = df_cleaned.dropna(subset=['iyear', 'country_txt', 'latitude', 'longitude'])
# Plot incidents per year
plt.figure(figsize=(12, 6))
sns.countplot(data=df cleaned, x='iyear', palette="Blues",
order=sorted(df cleaned['iyear'].unique()))
plt.xticks(rotation=45)
plt.xlabel("Year")
plt.ylabel("Number of Incidents")
plt.title("Yearly Trend of Incidents")
plt.show()
# Top 10 countries with the most incidents
top countries = df cleaned['country txt'].value counts().head(10)
# Plot incidents by country
plt.figure(figsize=(12, 6))
sns.barplot(x=top countries.index, y=top countries.values, palette="Reds")
plt.xticks(rotation=45)
plt.xlabel("Country")
plt.ylabel("Number of Incidents")
plt.title("Top 10 Countries with the Most Incidents")
plt.show()
```

```
# Compute correlation matrix for numerical columns

corr_matrix = df_cleaned.select_dtypes(include=['float64', 'int64']).corr()

# Plot correlation heatmap

plt.figure(figsize=(12, 8))

sns.heatmap(corr_matrix, cmap="coolwarm", annot=False, linewidths=0.5)

plt.title("Correlation Heatmap of Numerical Variables")

plt.show()

# Export cleaned dataset for Excel analysis

df_cleaned.to_csv("/content/cleaned_region_05.csv", index=False)

print("Cleaned dataset saved as 'cleaned_region_05.csv'.")
```


R PROGGRAM: -

Load necessary libraries

library(ggplot2)

library(dplyr)

library(tidyr)

library(corrplot)

library(readr)

library(readxl)

Load the dataset

file_path <- "C:/Users/revan/OneDrive/Desktop/region_05.csv"

```
# Check if file is an Excel file or CSV
if (grepl("\\.xlsx$|\\.xls$", file path)) {
 df <- read excel(file path)</pre>
} else {
 df <- tryCatch({</pre>
  read_csv(file_path)
 }, error = function(e) {
  stop("File format not recognized. Please check if it's a valid CSV or Excel file.")
 })
}
# Display basic dataset information
dataset overview <- function(df) {</pre>
 print("Dataset Information:")
 print(str(df))
 print("\nFirst 5 Rows:")
 print(head(df))
 print("\nMissing Values:")
 print(colSums(is.na(df)))
 print("\nDuplicate Rows:")
 print(nrow(df) - nrow(unique(df)))
 print("\nDescriptive Statistics:")
 print(summary(df))
}
dataset overview(df)
```

Handling Missing Values: Drop columns with more than 50% missing values

```
missing_threshold <- 0.5 * nrow(df)
df cleaned <- df %>% select(where(~ sum(is.na(.)) < missing_threshold))
# Filling remaining missing values
for (col in names(df_cleaned)) {
 if (is.character(df_cleaned[[col]])) {
  df_cleaned[[col]][is.na(df_cleaned[[col]])] <- names(sort(table(df_cleaned[[col]]),
decreasing = TRUE)[1]
 } else {
  df_cleaned[[col]][is.na(df_cleaned[[col]])] <- median(df_cleaned[[col]], na.rm =
}
}
# Detecting and removing outliers using IQR method
remove outliers <- function(df, column) {
 Q1 \leftarrow quantile(df[[column]], 0.25, na.rm = TRUE)
 Q3 <- quantile(df[[column]], 0.75, na.rm = TRUE)
 IQR <- Q3 - Q1
 lower bound <- Q1 - 1.5 * IQR
 upper bound \leftarrow Q3 + 1.5 * IQR
 df %>% filter(df[[column]] >= lower bound & df[[column]] <= upper bound)
}
numerical cols <- names(df cleaned)[sapply(df cleaned, is.numeric)]</pre>
for (col in numerical cols) {
 df_cleaned <- remove_outliers(df_cleaned, col)</pre>
}
# Exploratory Data Analysis (EDA) Visualizations
```

```
ggplot(df cleaned, aes(x = iyear)) +
 geom histogram(bins = 50, fill = "blue", alpha = 0.7) +
 labs(title = "Distribution of Events by Year", x = "Year", y = "Frequency")
# Boxplot for latitude by region
ggplot(df cleaned, aes(x = as.factor(region), y = latitude)) +
 geom_boxplot() +
 labs(title = "Latitude Distribution by Region", x = "Region", y = "Latitude")
# Select only numeric columns for correlation analysis
numeric df <- df cleaned %>% select(where(is.numeric))
# Compute correlation matrix
corr matrix <- cor(numeric df, use = "complete.obs")</pre>
# Plot heatmap of correlation matrix
corrplot(corr_matrix, method = "color", col = colorRampPalette(c("blue", "white",
"red"))(200), tl.cex = 0.8)
# Save cleaned dataset for further analysis
write_csv(df_cleaned, "C:/Users/revan/OneDrive/Desktop/cleaned_region_05.csv")
print("Cleaned dataset saved.")
```

Distribution of Events by Year

Latitude Distribution by Region

POWER BI: -

