import numpy as np
import pandas as pd
df=pd.read_csv('/content/diabetes.csv')
df

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	C
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

768 rows × 9 columns

df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Out
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	

df.tail()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	C
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

df.dtypes

Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64

```
Insulin
                                   int64
                                 float64
     RMT
     DiabetesPedigreeFunction
                                 float64
                                   int64
     Age
     Outcome
                                   int64
     dtype: object
df.isna().sum()
     Pregnancies
                                 0
     Glucose
                                 а
     BloodPressure
     SkinThickness
                                 0
     Insulin
                                 0
     BMT
                                 0
     DiabetesPedigreeFunction
                                 0
                                 a
     Age
     Outcome
                                 0
     dtype: int64
x=df.iloc[:,:-1].values
                                     , ...,
                                             33.6 ,
     array([[ 6.
                    , 148.
                               72.
                                                       0.627,
                                                               50.
                                                                      ],
                   , 85.
                                                        0.351,
                               66.
                                             26.6
                                                               31
              1.
                                     , ...,
                                                                      ],
                           ,
                    , 183.
              8.
                               64.
                                             23.3
                                                        0.672,
                                                               32.
            [
                                      , ...,
                                                                      1,
                    , 121.
            Γ
              5.
                               72.
                                             26.2
                                                        0.245,
                                                               30.
                                                                      ],
                                      , . . . ,
                    , 126.
              1.
                                60.
                                             30.1
                                                        0.349,
                                                               47.
                                                                      ],
            Γ
                                     , ...,
              1.
                      93.
                                70.
                                             30.4
                                                        0.315,
                                                               23.
                                                                      11)
                                      . . . . .
y=df.iloc[:,-1].values
     array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
            1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
            1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
            1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
            1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
            1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
            0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
            1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
            0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
            0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
            0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
            0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
            0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
            1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
```

```
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
x_train
     array([[1.50e+01, 1.36e+02, 7.00e+01, ..., 3.71e+01, 1.53e-01, 4.30e+01],
            [0.00e+00, 9.70e+01, 6.40e+01, ..., 3.68e+01, 6.00e-01, 2.50e+01],
            [1.00e+00, 1.16e+02, 7.00e+01, ..., 2.74e+01, 2.04e-01, 2.10e+01],
            [1.30e+01, 1.26e+02, 9.00e+01, ..., 4.34e+01, 5.83e-01, 4.20e+01],
            [4.00e+00, 1.71e+02, 7.20e+01, ..., 4.36e+01, 4.79e-01, 2.60e+01],
            [9.00e+00, 1.02e+02, 7.60e+01, ..., 3.29e+01, 6.65e-01, 4.60e+01]])
#Normalization
#MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(x train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
x train
     array([[1.
                        0.68686869, 0.57377049, ..., 0.55290611, 0.03030303,
             0.43137255],
                       , 0.48989899, 0.52459016, ..., 0.54843517, 0.22950089,
            [0.
             0.07843137],
            [0.06666667, 0.58585859, 0.57377049, ..., 0.40834575, 0.0530303,
                       ],
            [0.86666667, 0.63636364, 0.73770492, ..., 0.64679583, 0.22192513,
             0.41176471],
            [0.26666667, 0.86363636, 0.59016393, ..., 0.64977645, 0.17557932,
                       , 0.51515152, 0.62295082, ..., 0.49031297, 0.25846702,
            [0.6
             0.49019608]])
from sklearn.svm import SVC
model=SVC()
model.fit(x train,y train)
v pred=model.predict(x test)
y_pred
     array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
            0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,
            0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0,
            1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0])
from sklearn.metrics import confusion matrix, accuracy score
cm=confusion_matrix(y_test,y_pred)
print(cm)
     [[136 10]
      [ 38 47]]
score=accuracy score(y test,y pred)
score
     0.7922077922077922
```