

Computer Vision Systems Programming VO Object Recognition – Deep Learning

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Deep learning motivation

Multilayer perceptrons

Convolutional neural networks

Deep learning applications

mages from LeCun et al. 1989, Taigman et al. 2013, image-net.or

Object Recognition Traditional Approach

Object Recognition Traditional Approach

Problem: how to choose the representation/features?

"General" features not optimal

▶ Not tuned to task at hand, low-level

Designing task-specific features is complex

Virtually impossible to do optimally

Solution: learn representation as well

Learning high-level representations directly is difficult

Deep Learning (DL) solves this

- By learning a hierarchy of representations
- Layers in hierarchy build upon each other

 \boldsymbol{n} levels of features/representations

Learned jointly with the output mapping

Methods based on DL are state of the art

► For almost all recognition-related CV tasks

"From now on, DL has to be considered as the primary candidate in essentially any visual recognition task" [Razavian et al. 2014]

DL is realized using MultiLayer Perceptrons (MLPs)

Binary linear classifier

Feature vectors \mathbf{x} classified as $f(\mathbf{w}^{\top}\mathbf{x} + b) \in \{-1, +1\}$

f is a discontinuous step function

$$f(v) = \begin{cases} +1 & \text{if } v > 0\\ -1 & \text{otherwise} \end{cases}$$

 \mathbf{w}, b learned from training data

The Perceptron

The Perceptron – Limitations

Only two classes

Linear decision boundaries

Learning never converges for non-separable data

Two-Layer Architecture

Replace f with continuous nonlinearity (e.g. $\tanh(\cdot)$) Introduce layer of M such "Perceptrons" (hidden units) Hidden units connected to layer of K output units

Two-Layer Architecture

Output of mth hidden unit is $z_m(\mathbf{x}) = f(\mathbf{w}_m^{\top} \mathbf{x})$

▶ Bias b included in \mathbf{w} and \mathbf{x} , $w_0 = b$, $x_0 = 1$

Two-Layer Architecture

Output of kth output unit is $y_k(\mathbf{z}) = g(\mathbf{w}_k^{\top} \mathbf{z})$

Choice of g depends on problem (regression, classification)

Two-Layer Architecture

Both f and g are differentiable

- Learn w using gradient descent
- Gradients evaluated via error backpropagation

The Pylearn2 Library

Machine learning library with focus on DL

Written in Python, but interaction mostly in YAML

Open-source: https://github.com/lisa-lab/pylearn2

The Pylearn2 Library MLP Regression Example

Use pylearn2 to train a MLP for regression

The Pylearn2 Library MLP Regression Example

```
model: !obj:pylearn2.models.mlp.MLP {
    nvis: 1, # one input unit x
    layers: [ # two layers
        !obj:pylearn2.models.mlp.Tanh { # tanh activations for hidden units
            dim: 3, # use M=3 hidden units
            layer name: 'hidden',
            irange: 0.1
        },
        !obj:pylearn2.models.mlp.Linear { # linear output layer for regression
            dim: 1, # one output unit, K=1
            layer_name: 'out',
            irange: 0.1
        }
```

The Pylearn2 Library MLP Regression Example

```
# dataset contains the (x,y) pairs from the previous figure
dataset: &train !pkl: 'mlp_data_regression.pkl',
# train using batch gradient descent
algorithm: !obj:pylearn2.training_algorithms.bgd.BGD {
   conjugate: 1,
   batch_size: 50,
   line_search_mode: 'exhaustive',
   termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter {
      max_epochs: 100 # train for 100 epochs
   }
}
```

The Pylearn2 Library MLP Regression Example

Full example: https://github.com/cpra/cvsp-vo-slides

Convolutional Neural Networks Motivation

Above MLP architecture does not scale to images

▶ VGA resolution, M = 1000: ~ 300 million params

Convolutional Neural Networks Motivation

Nearby pixels are closely correlated Exploit topology through locally connected layers

Convolutional Neural Networks Convolutional Layers

Convolutional Neural Networks Convolutional Layers

Number of params independent of image resolution and ${\it M}$

$$F=100,\,15\times15$$
 receptive field: $\sim23,000$ params

Feature map evaluation equals

- lacktriangle Convolution with kernel \mathbf{w}_f (hence the name)
- ▶ Followed by nonlinearity $f(\cdot) = \max(0, \cdot)$ (ReLU)

Image from Krizhevsky, Sutskever, and Hinton 2012

Convolutional Neural Networks Pooling Layers

After convolutional layer

Hidden units pool information locally (e.g. max, avg)

Data reduction, robustness to small translations

Convolutional Neural Networks Local Contrast Normalization Layers

Between convolution and pooling layers

Normalize responses spatially or over adjacent feature maps

Produce more expressive, robust features

Convolutional Neural Networks Architecture

MLPs with above layers are Convolutional Neural Networks (CNNs)

Usually several Conv \Rightarrow Norm \Rightarrow Pooling blocks

Later Conv layers operate on multiple feature maps

mage adapted from Kavukcuoglu 2011

Convolutional Neural Networks Architecture

Blocks followed by a traditional MLP

Deep Learning Applications Zip Code Recognition

Zip code recognition from images

Among first applications of CNNs (1989!)

- ▶ DL and CNNs are "old" concepts
- ▶ Now successful due to available data & processing power

Deep Learning Applications

Zip Code Recognition

Deep Learning Applications Zip Code Recognition

Let's try this ourselves

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Image from convnetjs.com

Large market (expected \$6.5B by 2018)

► Security, law enforcement, HCI, ...

Complicated task

▶ Pose, occlusions, aging, expressions, accessories

| Image adapted from http://vis-www.cs.umass.edu/lfw/

Deep Learning Applications

Face Recognition - Taigman et al. 2013

Face recognition via 3D face frontalization and DL

- Conv ⇒ Pooling ⇒ Conv for low-level features
- Locally connected layers for high-level features
- $ightharpoonup \sim 120$ million parameters, ~ 4 million training images

Deep Learning Applications

Face Recognition - Taigman et al. 2013

Human-level face verification performance

Image from Taigman et al. 2013

Object recognition on the ImageNet database

- $ightharpoonup \sim 14$ million images categorized hierarchically
- ► Annual object recognition challenges

Image from http://web.eecs.umich.edu/~jiadeng.

DL has lead to significant performance gains on ImageNet

Results of 2014 ImageNet object detection challenge (excerpt)

Deep Learning Applications

Object Recognition - Krizhevsky, Sutskever, and Hinton 2012

Object classification and localization via DL

Won the 2012 challenge by a large margin

 ~ 60 million parameters, ~ 1.2 million training images

Deep Learning Applications

Object Recognition - Krizhevsky, Sutskever, and Hinton 2012

Implemented using cuda-convnet

- https://code.google.com/p/cuda-convnet/
- ▶ Open-source C++/CUDA implementation of CNNs
- Network structure definitions available on the webpage

Online demo of 2013 winner of classification challenge

http://www.clarifai.com/

Deep Learning Applications Other Applications

Scene labeling

Action recognition

Speech recognition

. . .

Remarks

DL and CNNs are very powerful concepts

▶ State of the art results in many areas of application

Training CNNs is complex

- Some CNNs are trained on GPUs for weeks
- Large training datasets required
- Reason why DL became popular only recently

Several free implementations available

pylearn2, convnetjs, cuda-convnet, caffe, torch7, ...

Bibliography I

- Bengio, Yoshua, Ian Goodfellow, and Aaron Courville (2014). **Deep Learning (draft)**. MIT Press.
- Bishop, Christopher (2006). **Pattern recognition and machine learning**. Springer.
- Kavukcuoglu, Koray (2011). Learning feature hierarchies for object recognition. PhD thesis.
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). Imagenet classification with deep convolutional neural networks.

Bibliography II

LeCun, Yann et al. (1989). Backpropagation applied to handwritten zip code recognition.

Razavian, Ali Sharif et al. (2014). **CNN Features off-the-shelf:** an **Astounding Baseline for Recognition**.

Sermanet, Pierre et al. (2012). **Pedestrian Detection with Unsupervised Multi-Stage Feature Learning**.

Taigman, Yaniv et al. (2013). **Deepface: Closing the gap to human-level performance in face verification**.

