Partie 6

IP (Internet Protocol)

IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- □ ICMP

Interconnexion

- une concaténation de réseaux
 - à l'intérieur d'un réseau, les nœuds utilisant la technologie spécifique de leur réseau

- □ l'interconnexion consiste à faire transiter des informations depuis une machine sur un réseau vers une autre machine sur un autre réseau
 - les différences entre tous les réseaux ne doivent pas apparaître à l'utilisateur

Interconnexion

- Principe
 - mise en œuvre d'une couche réseau
 - masquant les détails de la communication physique du réseau
 - détachant les applications des problèmes de routage
- □ le logiciel d'interconnexion
 - fait apparaître l'ensemble des réseaux disparates comme un seul et unique réseau
 - offre un service commun à toutes les applications

Interconnexion IP

- □ la glue qui lie l'Internet : le protocole IP (Internet Protocol)
- une pile de protocoles

Encapsulations successives

cas application / TCP / IP / Ethernet

données

en-tête IP en-tête TCP données

datagramme IP

en-tête Ethernet en-tête IP en-tête TCP données queue Ethernet

Internet Protocol (IP)

protocole de la couche d'interconnexion

- caractéristiques de l'interface IP
 - adresse unique et homogène
 - transfert par blocs (datagrammes)
 - service sans connexion
 - service **best effort** (les datagrammes ne sont pas éliminés sans raison)

- fonctions de IP
 - adressage
 - routage
 - fragmentation

Service IP

- utilise un service minimum
 - envoi d'une unité de transfert d'un point à ses voisins
 - voisin: partage la même connexion physique
- rend un service minimum
 - service de connectivité
 - service en mode non connecté
 - absence d'états dans les routeurs
 - transmission de datagrammes
 - remise best effort
 - service non fiable
- avantages
 - robustesse
 - efficace pour les échanges brefs
 - simplicité d'utilisation

Primitives de service IP

```
SEND (
                                    DELIVER (
adresse source
                                    adresse source
adresse destination
                                    adresse destination
protocole utilisateur : TCP ou UDP protocole utilisateur : TCP ou UDP
indicateurs de QoS: high ou normal indicateurs de QoS: high ou normal
       rapidité
                                            rapidité
                                            priorité
       priorité
       débit.
                                            débit
       sécurité
                                            sécurité
identificateur du paquet courant
                                    longueur des données
indicateur de fragmentation : O/N
                                    données optionnelles
durée de vie
                                    données
longueur des données
données optionnelles
       sécurité (pwd passerelle),
       routage à la source, enreq.
       du chemin, estampillage
données
```


IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- □ ICMP

Relayage vs. routage

- relayage (forwarding)
 - action de retransmettre sur une interface un datagramme reçu sur une autre interface et n'étant pas arrivé à destination
- routage
 - action de chercher (1) l'interface sur laquelle transmettre un datagramme, et (2) le destinataire immédiat
- interface (réseau) : point d'accès au réseau (physique)

Relayage par IP

■ Vue topologique

Relayage par IP

Vue architecturale

Que fait un routeur ?

- Pour chaque datagramme IP qui traverse le routeur, IP :
 - vérifie le checksum, si faux → destruction du datagramme
 - détermine si ce sont des données utilisateur ou de contrôle destinées au routeur
 - décrémente la durée de vie, si nulle → destruction du datagramme
 - décide du routage
 - fragmente le datagramme si nécessaire
 - reconstruit l'en-tête IP avec les champs mis à jour
 - transmet le(s) datagramme(s) au protocole d'accès de l'interface réseau de sortie avec l'adresse de sous-réseau correspondante
- A réception dans l'hôte destinataire, IP :
 - vérifie le checksum
 - s'il y a eu fragmentation, mémorise puis réassemble
 - délivre au niveau supérieur les données et les paramètres par la primitive DELIVER

Routage

fonction déterminant un chemin vers une adresse destinataire

■ table de routage

■ informations nécessaires pour atteindre le prochain nœud

■ algorithme de routage

 calcul d'un chemin optimal pour atteindre une adresse destinataire

protocole de routage

- échange d'informations de routage
- dépend du domaine dans lequel se trouve le routeur
- ex:RIP, OSPF, ...

IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- □ ICMP

Différentes "adresses"

- 2 niveaux de conversion
 - nom ⇔ adresse IP
 - adresse IP ⇔ adresse physique

Les domaines

- ☐ l'Internet est organisé en domaines
 - Domaine : ensemble de réseaux administrée par une seule autorité, appelé Administrative System
 - Domaine : regroupement de sites ayant une relation fonctionnelle ou géographique entre eux

- hiérarchie de domaines
 - ex:euros.rp.lip6.fr

- exemples de domaines
 - gov : institutions gouvernementales américaines
 - .edu: universités américaines
 - .com : sites commerciaux
 - .fr : sites français
 - □ .lip6.fr: LIP6

Nommage

- Principe
 - unicité des noms
 - gestion distribuée: nommage hiérarchique
 - plan de nommage indépendant du plan d'adressage
- besoin d'une glue : Domain Name System

Résolution des noms

- □ hiérarchie de serveurs DNS
 - découpage de la hiérarchie en zones
 - chaque zone est servie par au moins un serveur de noms
- redondance
 - un serveur primaire + des serveurs secondaires par zone
- un client effectue des requêtes à son serveur DNS
- le serveur DNS répond ou remonte la demande au serveur de niveau supérieur
- présence de caches aux différents niveaux

Adressage physique

- Principe
 - adresse propre au système de transmission
 - identifie le périphérique
 - multitude d'espaces d'adressage
 - exemples
 - © Ethernet : sur 6 octets, adressage absolu
 - @ ATM : sur 20 octets, adressage hiérarchique
- besoin d'une glue : Address Resolution Protocol

Résolution des adresses

IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- □ ICMP

Adressage IP

- adressage
 - pour l'identification d'un équipement réseau
 - pour le routage
- plan d'adressage homogène
 - format: 4 octets → 4,3 milliards d'adresses ???
 - notation décimale pointée: x1.x2.x3.x4
- adresse globalement unique et hiérarchique
- □ format : <réseau> <machine>
 - localisateur ou préfixe réseau : identificateur de réseau
 - identificateur: identificateur de machine

réseau	machine		
localisateur	identificateur		

Attribution des adresses

Adressage réseau

un préfixe réseau par réseau physique routeur ■ au niveau IP 27.45 28.2 136.72.x.x au niveau physique routeur répéteur 📥

Classes d'adresses

- □ le découpage <réseau> / <machine> n'est pas fixe
- 5 classes d'adresses

comment reconnaître ces classes ?

Classes d'adresses

	08	3	16 2	24 31	
Α	0 réseau		machine		
В	10 rés	eau	macl	nine	
С	110	réseau		machine	
D	1110 adresse de multidestination				
Ε	1111 réservé				

Classes d'adresses

□ classe A : 27 réseaux (128)

réservé: 0.0.0.0 et 127.0.0.0

■ disponible: 1.0.0.0 à 126.0.0.0

□ 126 réseaux classe A et 16 777 214 machines/réseau

□ classe B : 214 réseaux (16 384)

□ réservé: 128.0.0.0 et 191.255.0.0

■ disponible 128.1.0.0 à 191.254.0.0

□ 16 382 réseaux classe B et 65 534 machines/réseau

□ classe C : 221 réseaux (2 097 152)

□ réservé 192.0.0.0 et 223.255.255.0

■ disponible 192.0.1.0 à 223.255.254.0

2 097 150 réseaux classe C et 254 machines/réseau

Les adresses particulières

- une adresse IP dont la valeur hostid ne comprend que des 1 ne peut être attribuée à une machine réelle
 - c'est une adresse de diffusion dirigée
- une adresse IP dont la valeur hostid ne comprend que des 0 ne peut être attribuée à une machine réelle

c'est une adresse de réseau

Subnetting

- Problème
 - distinction <réseau> / <hôte> insuffisante en pratique

Sous-adressage

- Principe
 - ajout d'un niveau hiérarchique dans l'adressage
 - adresse de sous-réseau
 - subdivision de la partie <hôte>

- □ le sous-réseau
 - est un réseau physique (i.e. un réseau IP connexe) du réseau de site
 - a une visibilité purement interne

Le masque de sous-réseau

- □ le masque indique la frontière entre la partie <sous-réseau> et la partie <machine>
- le masque est propre au site
- le masque est de 32 bits
- □ bits du masque de sous-réseau (subnet mask)
 - positionnés à 1 → partie réseau
 - positionnés à 0 → partie machine
- exemple
 - **1** 11111111 11111111 11111111 00000000
 - 3 octets pour le champ réseau, 1 octet pour le champ machine
- notations
 - décimale pointée
 - exemple : 255.255.255.0
 - adresse réseau/masque
 - \blacksquare exemple: 193.49.60.0/27 (27 = nombre de bits contigus du masque)

Masque de sous-réseau

utilisation

- exemple
 - le réseau 142.68.0.0 (classe B!) a comme masque 255.255.255.0
 - soit l'hôte d'@IP 142.68.2.6

142.68.2.6	10001110.01000100.00000010.00000110	
255.255.255.0	1111111.1111111.1111111.0000000	&&
142.68.2.0	10001110.01000100.00000010.00000000	=

□ l'hôte est sur le sous-réseau numéro 2, et a comme identificateur 6

Le masque de sous-réseau

- Le choix du découpage <réseau> / <hôte> dépend des perspectives d'évolution du site
 - exemple classe B :
 - 8 bits pour la partie sous réseau → 256 sous réseaux de 254 machines
 - 3 bits pour la partie sous réseau → 8 sous-réseaux de 8190 machines
 - exemple classe C :
 - 4 bits pour la partie sous-réseau → 16 sous-réseaux de 14 machines

Configuration sous Win...

Adresse dynamique : DHCP

Relais DHCP

IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- □ ICMP

Le datagramme IP

Les champs de l'en-tête IP

- version: identification de la version courante du protocole (4 pour IPv4)
- ☐ IHL (IP Header Length) : longueur de l'en-tête IP (en mots de 32 bits)
- TOS (Type Of Service): type de service à appliquer au paquet en fonction de certains paramètres comme le délai de transit, la sécurité
- total length: longueur totale du datagramme (en octets)
- identification: valeur fournie par la source aidant la destination au réassemblage des différents fragments du datagramme
- flags: utilisé par la fragmentation et composé de
 - DF (Don't Fragment)
 - MF (More Fragment)
 - réservé
- offset: déplacement par rapport au datagramme initial (en multiple de 8 octets)

- TTL (Time To Live) : limite supérieure du temps de vie d'un datagramme
- protocol : protocole utilisé pour le champ de données
 - 1 pour ICMP
 - □ 6 pour TCP
 - □ 17 pour UDP
- checksum: zone de contrôle d'erreur portant uniquement sur l'en-tête du datagramme
- **source address**: @ IP de la source du datagramme
- destination address : @ IP de la destination du datagramme
- options: fonctions de contrôle utiles dans certaines situations (estampillage temporel, sécurité, routage particulier, etc.)
- **padding**: pour aligner l'en-tête sur 32 bits

IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- □ ICMP

Fragmentation et réassemblage

- Motivations
 - l'Internet est par nature hétérogène
 - le MTU (Maximum Transmission Unit) varie selon la technologie
 - certains protocoles de niveau supérieur génèrent des datagrammes de longueur supérieure au MTU
 - adaptation de la taille du datagramme au MTU

Fragmentation et réassemblage

- Principe
 - découpage de la charge utile et duplication de l'en-tête

réassemblage par le destinataire final

Fragmentation et réassemblage

- exemple
 - MTU Ethernet = 1500 octets
 - MTU FDDI = 4500 octets

IP - Plan

- Interconnexion IP
- Relayage et routage IP
- Adressage et nommage
- Adressage IP
- Datagramme IP
- Fragmentation
- ICMP

Protocole de contrôle ICMP

- Motivation
 - pas de signalisation dans IP
 - pas de retour d'information
 - pas de messages d'anomalies
- □ ICMP (Internet Control Message Protocol)
 - instrumentation et test
 - signalisation d'anomalies
 - mise en œuvre obligatoire
 - messages ICMP encapsulés dans IP
 - même si:

Messages ICMP

ormat : les messages ICMP ont tous le même format pour le premier mot de 32 bits

type code	checksum
-----------	----------

champ type

Туре	Message	Objet
0 3 4 5 8 11 12 13 14 15 16	Echo Reply Destination Unreachable Source Quench Redirect Echo Time Exceeded Parameter Problem Timestamp Timestamp Reply Information Request Information Reply	Réponse en écho. Destination inaccessible. Interruption de la source. Redirection, changement de route. Demande d'écho. Temps de vie d'un datagramme dépassé. Datagramme mal formé. Demande de date d'estampillage. Réponse à une demande d'estampillage. Demande d'information. Réponse à une demande d'information.
17 18	Address Mask Request Address Mask Reply	Demande de masque d'adresse. Réponse à une demande de masque d'adresse.

- Principe
 - exploite la fonction echo de ICMP
 - un routeur ou un hôte recevant un echo request retourne un echo reply
 - permet de
 - tester l'accessibilité d'une machine
 - obtenir des statistiques sur la qualité de la route

```
$ ping castor.univ-reunion.fr
PING castor.univ-reunion.fr (194.199.73.51): 56 data bytes
64 bytes from 194.199.73.51: icmp_seq=0 ttl=246 time=570.800 ms
64 bytes from 194.199.73.51: icmp_seq=1 ttl=246 time=581.364 ms
64 bytes from 194.199.73.51: icmp_seq=2 ttl=246 time=571.022 ms
64 bytes from 194.199.73.51: icmp_seq=3 ttl=246 time=572.722 ms
64 bytes from 194.199.73.51: icmp_seq=4 ttl=246 time=579.121 ms
64 bytes from 194.199.73.51: icmp_seq=4 ttl=246 time=579.121 ms
64 bytes from 194.199.73.51: icmp_seq=5 ttl=246 time=571.619 ms
^C
----castor.univ-reunion.fr PING Statistics---
6 packets transmitted, 6 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 570.800/574.441/581.364/4.598 ms
```


Outil traceroute

- Principe
 - transmet des paquets vers une destination, en partant d'un TTL de 1 et en l'incrémentant

- si un routeur décrémente le TTL à 0, il retourne un message ICMP "TTL expiré"
- permet d'identifier la route vers la destination

Outil traceroute

exemple

```
$ traceroute castor.univ-reunion.fr
traceroute to castor.univ-reunion.fr (194.199.73.51), 30 hops max, 40 byte packets
1 olympe-61-0 (132.227.61.200) 0.219 ms 0.246 ms 0.234 ms
2 r-scott.reseau.jussieu.fr (134.157.251.126) 0.878 ms 0.875 ms 0.845 ms
3 r-jusren.reseau.jussieu.fr (134.157.254.126) 0.967 ms 0.895 ms 0.933 ms
4 jussieu.cssi.renater.fr (194.214.109.21) 1.566 ms 1.288 ms 2.091 ms
5 nio-nl.cssi.renater.fr (194.214.109.5) 1.804 ms 2.582 ms 2.260 ms
6 nio-n3.cssi.renater.fr (193.51.206.170) 11.752 ms 22.965 ms 23.103 ms
7 reunion.cssi.renater.fr (193.51.206.170) 11.752 ms 580.797 ms 571.993 ms
8 cs-iremia.univ-reunion.fr (195.220.151.53) 568.513 ms 569.076 ms 580.685 ms
9 castor.univ-reunion.fr (194.199.73.51) 570.421 ms 589.480 ms 567.862 ms
```

