

Figure 48.1: Inequality of Proposition 48.3.

Proof. Since A is convex, $\frac{1}{2}(u+v) \in A$ if $u,v \in A$, and thus, $\|\frac{1}{2}(u+v)\| \ge d$. From the parallelogram equality written in the form

$$\left\| \frac{1}{2}(u+v) \right\|^2 + \left\| \frac{1}{2}(u-v) \right\|^2 = \frac{1}{2} \left(\|u\|^2 + \|v\|^2 \right),$$

since $\delta < d$, we get

$$\left\| \frac{1}{2}(u-v) \right\|^2 = \frac{1}{2} \left(\|u\|^2 + \|v\|^2 \right) - \left\| \frac{1}{2}(u+v) \right\|^2 \le (d+\delta)^2 - d^2 = 2d\delta + \delta^2 \le 3d\delta,$$

from which

$$||v - u|| \le \sqrt{12d\delta}.$$

Definition 48.2. If X is a nonempty subset of a metric space (E, d), for any $a \in E$, recall that we define the *distance* d(a, X) of a to X as

$$d(a, X) = \inf_{b \in X} d(a, b).$$

Also, the diameter $\delta(X)$ of X is defined by

$$\delta(X) = \sup\{d(a,b) \mid a,b \in X\}.$$

It is possible that $\delta(X) = \infty$.

We leave the following standard two facts as an exercise (see Dixmier [51]):

Proposition 48.4. Let E be a metric space.

- (1) For every subset $X \subseteq E$, $\delta(X) = \delta(\overline{X})$.
- (2) If E is a complete metric space, for every sequence (F_n) of closed nonempty subsets of E such that $F_{n+1} \subseteq F_n$, if $\lim_{n\to\infty} \delta(F_n) = 0$, then $\bigcap_{n=1}^{\infty} F_n$ consists of a single point.

We are now ready to prove the crucial projection lemma.