A.B ~> the direction of relationship

A is invertible iff

A is squar- \longrightarrow $A \times = S \times$

Adxd

 $AX = \Lambda X$

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$

Lecture 03 Probability and Statistics

Mahdi Roozbahani Georgia Tech

Outline

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Probability

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)
 - E.g., S may be the set of all possible outcomes of a dice roll: S
 (1 2 3 4 5 6)
 - E.g., S may be the set of all possible nucleotides of a DNA site: S
 (A C G T)
 - E.g., S may be the set of all possible time-space positions of an aircraft on a radar screen.
- An Event A is any subset of S
 - Seeing "1" or "6" in a dice roll; observing a "G" at a site; UA007 in space-time interval

Three Key Ingredients in Probability Theory

A sample space is a collection of all possible outcomes

Random variables X represents outcomes in sample space

$$X = \{1, 2, \dots, 6\}$$

$$P(X = 1) = 6$$

Probability of a random variable to happen

$$p(x) = p(x = x)$$

$$p(x) \ge 0$$

b (Xrgx)

X=6.000000-

Continuous variable

Continuous probability distribution
Probability density function
Density or likelihood value
Temperature (real number)
Gaussian Distribution

Discrete variable

Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

$$\sum_{x \in A} p(x) = 1$$

Continuous Probability Functions

- **Examples:**
 - Uniform Density Function:

Density Function:
$$f_x(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Exponential Density Function:

$$\begin{cases} f_x(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}} \\ F_x(x) = 1 - e^{\frac{-x}{\mu}} \end{cases} \quad \text{for } x \ge 0$$

$$for x \ge 0$$

Gaussian(Normal) Density Function

$$f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Discrete Probability Functions

- Examples:
 - Bernoulli Distribution:

$$\begin{cases} 1 - p & for \ x = 0 \\ p & for \ x = 1 \end{cases} = \begin{cases} 0.5 & \text{In Bernoulli, just a single trial is conducted} \\ 0.5 & \text{In Bernoulli, just a single trial is conducted} \end{cases}$$

Binomial Distribution:

•
$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

k is number of successes

n-k is number of failures

The total number of ways of selection k distinct combinations of n trials, **irrespective of order**.

Continuous Probability Functions

- A continuous random variable X is defined on a continuous sample space: an interval on the real line, a region in a high dimensional space, etc.
 - It is meaningless to talk about the probability of the random variable assuming a particular value --- P(x) = 0
 - Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval, or arbitrary Boolean combination of basic propositions.
 - Cumulative Distribution Function (CDF): $F_x(x) = P[X \le x]$
 - Probability Density Function (PDF): $F_x(x) = \int_{-\infty}^x f_x(x) \, dx$ or $f_x(x) = \frac{d F_x(x)}{dx}$
 - Properties: $f_x(x) \ge 0$ and $\int_{-\infty}^{\infty} f_x(x) dx = 1$
 - Interpretation: $f_x(x) = P[X \in \frac{x, x + \Delta}{\Delta}]$

Outline

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Example

X = Throw a dice

Y = Flip a coin

X and Y are random variables

N = total number of trials

 n_{ij} = Number of occurrence

	4
	ľ
	١

Y
$$y_{j=2} = tail$$
 $n_{ij} = 3$ $n_{ij} = 4$ $n_{ij} = 2$ $n_{ij} = 5$ $n_{ij} = 1$ $n_{ij} = 5$ $n_{ij} = 1$ $n_{ij} = 5$ $n_{ij} = 1$ $n_{ij} = 1$ $n_{ij} = 5$ $n_{ij} = 1$ $n_{ij} = 1$

X

			$x_{i=2}=2$					
\	$y_{j=2} = tail$	$n_{ij} \neq 3$	$n_{ij}=4$	$n_{ij}=2$	$n_{ij} = 5$	$n_{ij}=1$	$n_{ij} = 5$	20
Y	$y_{j=2} = tail$ $y_{j=1} = head$	$n_{ij}=2$	$n_{ij}=2$	$n_{ij}=4$	$n_{ij}=2$	$n_{ij}=4$	$n_{ij}=1$	15
	C_i	5	6	6	7	5	6	N=35

$$P(X=1, Y=tail) = \frac{3}{35} = \frac{nij}{N}$$

$$P(Y=tail X=1) = \frac{3}{5} = \frac{nij}{Cij}$$

$$P(Y=head) = \frac{15}{35} = \frac{nij}{N}$$

		X				C		
							$x_{i=6}=6$	
\	$y_{j=2} = tail$ $y_{j=1} = head$	$n_{ij} = 3$	$n_{ij}=4$	$n_{ij}=2$	$n_{ij} = 5$	$n_{ij}=1$	$n_{ij} = 5$	20
Y	$y_{i=1} = head$	$n_{ij}=2$	$n_{ij}=2$	$n_{ij}=4$	$n_{ij}=2$	$n_{ij}=4$	$n_{ij}=1$	15
	C_i		6				6	

Probability:

$$p(X = x_i) = \frac{c_i}{N}$$

Joint probability:

$$p(X = x_i) = \frac{c_i}{N}$$

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Conditional probability:

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

Sum rule

$$p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \Rightarrow p(X) = \sum_{Y} P(X, Y)$$

Product rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}c_i}{c_iN} = p(Y = y_j|X = x_i)p(X = x_i)$$

$$p(X)Y = p(Y|X)p(X)$$

Joint Distribution

- Key concept: two or more random variables may interact.
 Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write p(x,y) = prob(X = x and Y = y)

Marginal Distribution

 We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

$$p(x) = \sum_{y} p(x, y)$$

This is like adding slices of the table together.

ullet Another equivalent definition: $p(x) = \sum_y p(x|y)p(y)$.

Conditional Distribution

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

$$p(x|y) = p(x,y)/p(y)$$

Independence & Conditional Independence

Two variables are independent iff their joint factors:

 Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$p(x, y|z) = p(x|z)p(y|z)$$
 $\forall z$

Conditional Independence

P(h, F, V, D) = **Examples:** P(h | F,X,D) P (F,V,D) P(Virus | Drink Beer) = P(Virus) iff Virus is independent of Drink Beer =P(h|F,D)P(F,V,D)P(Flu | Virus; DrinkBeer) = P(Flu | Virus) iff Flu is independent of Drink Beer, given Virus P(V,D)P(HFD) P(Headache | Flu; Virus; DrinkBeer) = P(Headache | Flu; DrinkBeer) iff Headache is independent of Virus, given Flu and Drink Beer Assume the above independence, we obtain: P(Headache; Flu; Virus; DrinkBeer) =P(Headache | Flu; Virus; DrinkBeer) P(Flu | Virus; DrinkBeer)

=P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

= P(V)P(D) M

P(Virus | Drink Beer) P(DrinkBeer)

Outline

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Bayes' Rule

• P(X|Y)= Fraction of the worlds in which X is true given that Y is also true.

P(x|y)P(y) = P(y|x)P(x) P(x|y) = P(y|x)P(x)

- For example:
 - H="Having a headache"
 - F="Coming down with flu"

• P(Headche|Flu) = fraction of flu-inflicted worlds in which you have a headache. How to calculate?

Definition:

Corollary:

$$P(X|Y) = P(X,Y) = P(Y|X)P(X)$$

$$P(X|Y) = P(Y|X)P(X)$$

$$P(X|Y) = P(Y|X)P(X)$$

This is called Bayes Rule

Bayes' Rule

•
$$P(Headache|Flu) = \frac{P(Headache,Flu)}{P(Flu)}$$

= $\frac{P(Flu|Headache)P(Headache)}{P(Flu)}$

Other cases:

•
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X|Y)P(Y) + P(X|\neg Y)P(\neg Y)}$$

• $P(Y = y_i|X) = \frac{P(X|Y)P(Y)}{\sum_{i \in S} P(X|Y = y_i)P(Y = y_i)}$
• $P(Y|X,Z) = \frac{P(X|Y,Z)P(Y,Z)}{P(X,Z)} = \frac{P(X|Y,Z)P(Y,Z)}{P(X|Y,Z)P(Y,Z) + P(X|\neg Y,Z)P(\neg Y,Z)}$

Outline

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Mean and Variance

Expectation: The mean value, center of mass, first moment:

$$E_X[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x)dx = \mu$$

- N-th moment: $g(x) = x^n$
- N-th central moment: $g(x) = (x \mu)^n$
- Mean: $E_X[X] = \int_{-\infty}^{\infty} x p_X(x) dx$

$$\bullet \ E[\alpha X] = \alpha E[X]$$

$$E[\alpha] + X] = \alpha + E[X]$$

• $E(\alpha) + X] = \alpha + E[X]$ • Variance(Second central moment): Var(x) =

$$E_X[(X - E_X[X])^2] = E_X[X^2] - E_X[X]^2$$

$$Var(\alpha X) = \alpha^2 Var(X)$$

- $Var(\alpha + X) = Var(X)$

$$M = \frac{x}{5xi}$$

$$\overline{D} = \frac{\sum_{i} (X_i - M_i)^2}{N}$$

For Joint Distributions

- Expectation and Covariance:
 - E[X + Y] = E[X] + E[Y]
 - $cov(X,Y) = E[(X E_X[X])(Y E_Y(Y))] = E[XY] E[X]E[Y]$
 - Var(X)+(Y) = Var(X) + 2cov(X,Y) + Var(Y)

Outline

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Gaussian Distribution

Gaussian Distribution:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability density function

Probability versus likelihood

Likelinge P (X+dx \ M,6) $\int \left(X = x_1, X = x_2, \dots \right)$ $= \mathcal{P}\left(X=X_1\right) \mathcal{D}\left(X=X_2\right) \cdots \mathcal{P}\left(X=X_{3co}\right)$

Multivariate Gaussian Distribution

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\}$$

• Moment Parameterization $\mu = E(X)$

$$\Sigma = Cov(X) = E[(X - \mu)(X - \mu)^{\mathsf{T}}]$$

- Mahalanobis Distance $\Delta^2 = (x \mu)^T \Sigma^{-1} (x \mu)$
- Tons of applications (MoG, FA, PPCA, Kalman filter,...)

Multivariate Gaussian Distribution

• Joint Gaussian $P(X_1, X_2)$

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Marginal Gaussian

$$\mu_2^m = \mu_2 \qquad \quad \Sigma_2^m = \Sigma_2$$

• Conditional Gaussian $P(X_1|X_2=x_2)$

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Properties of Gaussian Distribution

 The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x is distributed

$$E(AX)+(b) = AE(X) + b$$

$$Cov(AX + b) = ACov(X)A^{T}$$

this means that for Gaussian distributed quantities:

$$X \sim N(\mu, \Sigma) \rightarrow AX + b \sim N(A\mu + b, A\Sigma A^{\mathsf{T}})$$

The sum of two independent Gaussian r.v. is a Gaussian

$$Y = X_1 + X_2, X_1 \perp X_2 \rightarrow \mu_y = \mu_1 + \mu_2, \Sigma_y = \Sigma_1 + \Sigma_2$$

 The multiplication of two Gaussian functions is another Gaussian function (although no longer normalized)

$$N(a,A)N(b,B) \propto N(c,C),$$

where $C = (A^{-1} + B^{-1})^{-1}, c = CA^{-1}a + CB^{-1}b$

Central Limit Theorem

Probability mass function of a biased dice

Let's say, I am going to get a sample from this pmf having a size of n = 4

$$S_1 = \{1,1,1,6\} \Rightarrow E(S_1) = \underbrace{2.25}_{S_2}$$
 $S_2 = \{1,1,3,6\} \Rightarrow E(S_2) = \underbrace{2.75}_{\sim}$
 \vdots

$$S_m = \{1,4,6,6\} \Rightarrow E(S_m) = 4.25$$

According to CLT, it will follow a bell curve distribution (normal distribution)

Outline

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Maximum Likelihood Estimation

$$L(p) = P(X=x_1, X=x_2, \ldots, X=x_n)$$

- Probability: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc).
- Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression).

Main assumption:

Independent and identically distributed random variables i.i.d

Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function:
$$f(x_i; p) = p^{x_i}(1-p)^{1-x_i}$$
 $x_i \in \{0,1\}$ or $\{head, tail\}$
$$L(p) = p(X = x_1, X = x_2, X = x_3, \dots, X = x_n)$$

i.i.d assumption

$$= p(X = x_1)p(X = x_2) \dots p(X = x_n) = f(x_1; p)f(x_2; p) \dots f(x_n; p)$$

$$L(p) = \prod_{i=1}^{n} f(x_i; p) = \prod_{i=1}^{n} p^{x_i} (1 - p)^{1 - x_i}$$

$$L(p) = p^{x_1} (1 - p)^{1 - x_1} \times p^{x_2} (1 - p)^{1 - x_2} \dots \times p^{x_n} (1 - p)^{1 - x_n} =$$

$$= p^{\sum x_i} (1 - p)^{\sum (1 - x_i)}$$

We don't like multiplication, let's convert it into summation

What's the trick?

Take the log

$$L(p) = p^{\sum x_i} (1 - p)^{\sum (1 - x_i)}$$

$$logL(p) = l(p) = log(p) \sum_{i=1}^{n} x_i + log(1-p) \sum_{i=1}^{n} (1-x_i)$$

Max L(P)

How to optimize p?

$$\frac{\partial l(p)}{\partial p} = 0$$

$$\frac{\sum_{i=1}^{n} x_i}{p} - \frac{\sum_{i=1}^{n} (1 - x_i)}{1 - p} = 0$$

$$p = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$M = \frac{\sum x_i}{n} \quad \mathcal{E} = \frac{\sum (x_i - \mu)^c}{n}$$

$$\mathcal{S} = \frac{2(x_i - \mu)}{n}$$