43

5.0 ... 34

two parallel

20

7.3

19

٧

V

 $\mathsf{m}\Omega$

Α

Α

 $V_{\rm bb(AZ)}$

 $V_{\rm bb(on)}$

one

40

4.8

19

Smart Two Channel Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection¹)
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Application

- μC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitive loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS® technology. Fully protected by embedded protection functions.

Product Summary

Overvoltage Protection

active channels:

Ron

I_{L(NOM)}

I_{L(SCr)}

Operating voltage

On-state resistance

Nominal load current

Current limitation

Pin Definitions and Functions

Pin	Symbol	Function
1,10,	V_{bb}	Positive power supply voltage. Design the
11,12,		wiring for the simultaneous max. short circuit
15,16,		currents from channel 1 to 2 and also for low
19,20		thermal resistance
3	IN1	Input 1,2, activates channel 1,2 in case of
7	IN2	logic high signal
17,18	OUT1	Output 1,2, protected high-side power output
13,14	OUT2	of channel 1,2. Design the wiring for the max.
		short circuit current
4	ST1	Diagnostic feedback 1,2 of channel 1,2,
8	ST2	open drain, low on failure
2	GND1	Ground 1 of chip 1 (channel 1)
6	GND2	Ground 2 of chip 2 (channel 2)
5,9	N.C.	Not Connected

Pin configuration (top view)

V_{bb}	1	•	20	V_{bb}
GND1	2		19	V_{bb}
IN1	3		18	OUT1
ST1	4		17	OUT1
N.C.	5		16	V_{bb}
GND2	6		15	V_{bb}
IN2	7		14	OUT2
ST2	8		13	OUT2
N.C.	9		12	V_{bb}
V_{bb}	10		11	V_{bb}

Semiconductor Group

¹⁾ With external current limit (e.g. resistor R_{GND} =150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.

Block diagram

Two Channels; Open Load detection in on state;

Leadframe connected to pin 1, 10, 11, 12, 15, 16, 19, 20

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{ m bb}$	43	V
Supply voltage for full short circuit protection $T_{\rm j,start}$ = -40+150°C	$V_{ m bb}$	34	V

Maximum Ratings at $T_j = 25^{\circ}$ C unless otherwise specified

Parameter	Symbol	Values	Unit
Load current (Short-circuit current, see page 5)	/L	self-limited	А
Load dump protection ²⁾ $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{S}}$, $U_{\text{A}} = 13.5 \text{ N}$ $R_{\text{I}}^{(3)} = 2 \Omega$, $t_{\text{d}} = 200 \text{ ms}$; IN = low or high, each channel loaded with $R_{\text{L}} = 2.8 \Omega$,	V _{Load dump} ⁴⁾	60	V
Operating temperature range	T _j	-40+150	°C
Storage temperature range	$T_{\rm stg}$	-55 + 150	
Power dissipation (DC) ⁵⁾ $T_a = 25^{\circ}\text{C}$	P _{tot}	3.8	W
(all channels active) $T_a = 85^{\circ}\text{C}$:	2.0	
Inductive load switch-off energy dissipation, single pulse $V_{bb} = 12V$, $T_{j,start} = 150^{\circ}C^{5}$,)		
$I_L = 4.8 \text{ A}, Z_L = 44 \text{ mH}, 0 \Omega$ one channel:	E_{AS}	0.65	J
$I_L = 7.3 \text{ A}, Z_L = 44 \text{ mH}, 0 \Omega$ two parallel channels:	:	1.5	
see diagrams on page 10			
Electrostatic discharge capability (ESD) (Human Body Model)	V _{ESD}	1.0	kV
Input voltage (DC)	V _{IN}	-10 +16	V
Current through input pin (DC)	I _{IN}	±2.0	mA
Current through status pin (DC)	<i>I</i> _{ST}	±5.0	
see internal circuit diagram page 8			

Thermal Characteristics

Parameter and Conditions	Symbol	Values			Unit	
			min	typ	max	
Thermal resistance						
junction - soldering point ^{5),6)}	each channel:	R_{thjs}			11	K/W
junction - ambient ⁵⁾	one channel active:	R _{thja}		40		
	all channels active:			33		

_

Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 k Ω resistor in series with the status pin. A resistor for input protection is integrated.

 $R_{\rm I}$ = internal resistance of the load dump test pulse generator

 $^{^{4)}}$ $V_{Load\ dump}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

⁵⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 16

Soldering point: upper side of solder edge of device pin 15. See page 16

40

50

16

24

μΑ

Electrical Characteristics

Parameter and Con-	Parameter and Conditions, each of the two channels			Values			Unit
at T _j = 25 °C, V_{bb} = 12 V	unless otherwise	specified		min	typ	max	
Load Switching Cap	pabilities and	Characteristics	3				
On-state resistance (V _{bb} to OUT)						
$I_L = 2 A$	each channe	el, $T_{j} = 25^{\circ}C$:	R _{ON}		36	40	mΩ
		$T_{\rm j} = 150^{\circ}{\rm C}$:			67	75	
two	parallel chann	els, $T_i = 25$ °C:			18	20	
Nominal load current		channel active:	I _{L(NOM)}	4.4	4.8		Α
	two parallel o	hannels active:		6.7	7.3		
Device on PCB5), Ta	$T_a = 85^{\circ}C, T_j \leq$	150°C					
Output current while			I _{L(GNDhigh)}			10	mA
up; $V_{bb} = 30 \text{ V}$, V_{IN}	= 0, see diagra	am page 9					
Turn-on time ⁷⁾	ΙΝ Δ	to 90% V_{OUT} :	<i>t</i> on	80	180	350	μs
Turn-off time	IN Z	_ to 10% <i>V</i> _{ОUТ} :	t _{off}	80	250	450	
$R_{\rm L} = 12 \Omega, T_{\rm j} = -40$	+150°C						
Slew rate on 7)			d V/dt _{on}	0.1		1	V/µs
10 to 30% $V_{\rm OUT}$, $R_{\rm L}$	$=$ 12 Ω , T_{j}	=-40+150°C:					
Slew rate off 7)			-d V/dt _{off}	0.1		1	V/μs
70 to 40% V_{OUT} , R_{L}	$= 12 \Omega, I_{j}$	=-40+150°C:					
Operating Paramete	aro.						
Operating Parameter Operating voltage ⁸⁾		=-40+150°C:	$V_{ m bb(on)}$	5.0		34	V
Undervoltage shutdo		=-40+150°C:	V _{bb(under)}	3.5		5.0	V
Undervoltage restart		$T_i = -40 + 25$ °C:	V _{bb(u rst)}			5.0	V
Ondervoitage restart		$T_{\rm i} = +150^{\circ}{\rm C}$:	v bb(u rst)			7.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Undervoltage restart	of charge num		$V_{ m bb(ucp)}$		5.6	7.0	V
see diagram page 1	$\frac{14}{T_{\rm j}}$	=-40+150°C:	bb(ucp)		0.0	7.0	•
Undervoltage hystere	esis		$\Delta V_{ m bb(under)}$		0.2		V
$\Delta V_{\text{bb(under)}} = V_{\text{bb(u rst)}}$			` ′				
Overvoltage shutdow		=-40+150°C:	$V_{ m bb(over)}$	34		43	V
Overvoltage restart	'	=-40+150°C:	$V_{ m bb(o\ rst)}$	33			V
Overvoltage hysteres	sis T_{j}	=-40+150°C:	$\Delta V_{ m bb(over)}$		0.5		V
Overvoltage protection	$on^{9)}$ T_{j}	=-40+150°C:	$V_{\mathrm{bb}(AZ)}$	42	47		V
$I_{bb} = 40 \text{ mA}$							
04 11 4 11	1	T 0500	1.		4.0	40	

Standby current, all channels off

 $V_{IN} = 0$

 $T_{\rm j}$ =25°C:

 $T_{\rm i}$ =150°C:

 $I_{\rm bb(off)}$

⁷⁾ See timing diagram on page 12.

⁸⁾ At supply voltage increase up to $V_{bb} = 5.6 \text{ V}$ typ without charge pump, $V_{OUT} \approx V_{bb} - 2 \text{ V}$

⁹⁾ see also $V_{
m ON(CL)}$ in circuit diagram on page 8.

SIEMENS BTS 734 L1

Parameter and Conditions, each of the two channels		Symbol	Values			Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwis	e specified		min	typ	max	
Leakage output current (included $V_{IN} = 0$	in I _{bb(off)})	$I_{L(off)}$			20	μΑ
Operating current ¹⁰⁾ , $V_{IN} = 5V$, $T_j = I_{GND} = I_{GND1} + I_{GND2}$,	=-40+150°C one channel on: two channels on:	I _{GND}		1.8 3.6	4 8	mA

Protection Functions

Initial peak short circuit current limit, (diagrams, page 13)	(see timing					
each channe	I, $T_j = -40$ °C:	I _{L(SCp)}	47	55	66	Α
	<i>T</i> _j =25°C:		35	44	54	
	$T_{\rm j} = +150^{\circ}{\rm C}$:		21	26	34	
two para	allel channels	twice	the curre	nt of one	channel	
Repetitive short circuit current limit,						
$T_{\rm j} = T_{\rm jt}$	each channel	I _{L(SCr)}		19		Α
two para	allel channels			19		
(see timing diagrams, page 13)						
Initial short circuit shutdown time	$T_{\rm j,start}$ =-40°C:	t _{off(SC)}		3		ms
	$T_{\rm j,start} = 25^{\circ}\text{C}$:	, ,		2.5		
(see page 11 and timing diagrams on page	e 13)					
Output clamp (inductive load switch of at $V_{ON(CL)} = V_{bb} - V_{OUT}$	off) ¹¹⁾	V _{ON(CL)}	41	47		V
Thermal overload trip temperature	T_{jt}	150			°C	
Thermal hysteresis		$\Delta T_{\rm jt}$		10		K

Reverse Battery

Reverse battery voltage 12)	-V _{bb}	 	32	V
Drain-source diode voltage ($V_{out} > V_{bb}$) $I_L = -4.8 \text{ A}, T_j = +150 ^{\circ} \text{C}$	-V _{ON}	 600		mV

¹⁰⁾ Add I_{ST} , if $I_{ST} > 0$

¹¹⁾ If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest VON(CL)

¹²⁾ Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).

0.4

0.6

<u>JIEIVIEI 15</u>					DIS I	34 L I
Parameter and Conditions, each	ch of the two channels	Symbol		Values	;	Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherw	vise specified		min	typ	max	
Diagnostic Characteristics						
Open load detection current, (on	-condition)					
each ch	nannel, $T_i = -40$ °C:	I _{L (OL)}	20		1050	mΑ
	T _i = 25°C:	,	20		800	
	$T_{\rm i} = 150^{\circ}{\rm C}$:		20		800	
two	o parallel channels	twice	the curre	nt of one	channel	
Open load detection voltage ¹³⁾	$T_{\rm i}$ =-40+150°C:	$V_{OUT(OL)}$	2	3	4	V
Internal output pull down	T _i =-40+150°C:	Ro	4	10	30	kΩ
(OUT to GND), V _{OUT} = 5 V	7j =-40+150 C.	N ₀	4	10	30	K22
Input and Status Feedback ¹⁴) Input resistance (see circuit page 8)		R _I	2.5	3.5	6	kΩ
(see circuit page 8) Input turn-on threshold voltage	T _i =-40+150°C:	V _{IN(T+)}	1.7		3.3	V
Input turn off throshold voltage	7 ₁ =-40+130 C.	1/	1.5			V
Input turn-off threshold voltage	$T_{\rm j}$ =-40+150°C:	$V_{IN(T-)}$	1.5			V
Input threshold hysteresis		$\Delta V_{IN(T)}$		0.5		V
Off state input current $T_j = -40+150$ °C:	$V_{IN} = 0.4 \text{ V}$:	I _{IN(off)}	1		50	μΑ
On state input current $T_j = -40+150$ °C:	$V_{\text{IN}} = 5 \text{ V}$:	I _{IN(on)}	20	50	90	μΑ
Delay time for status with open I off	oad after switch	t _{d(ST OL4)}	100	520	1000	μs
(see timing diagrams, page 13),	$T_{\rm j}$ =-40+150°C:					
Status invalid after positive inpur	t slope	$t_{d(ST)}$		250	600	μs
(open load)	$T_{\rm j}$ =-40+150°C:					
Status output (open drain)						
Zener limit voltage $T_j = -40+150$	0° C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V

 $V_{\rm ST(low)}$

 $T_{\rm j}$ =-40...+25°C, $I_{\rm ST}$ = +1.6 mA:

 $T_{\rm j}$ = +150°C, $I_{\rm ST}$ = +1.6 mA:

ST low voltage

¹³⁾ External pull up resistor required for open load detection in off state.

 $^{^{14)}\,}$ If ground resistors $R_{\mbox{\footnotesize GND}}$ are used, add the voltage drop across these resistors.

Truth Table

Channel 1	Input 1	Output 1	Status 1
Channel 2	Input 2	Output 2	Status 2
	level	level	BTS 734L1
Normal	L	L	Н
operation	Н	Н	Н
Open load	L	Z	H (L ¹⁵⁾)
	Н	Н	L
Short circuit	L	Н	L ¹⁶)
to V _{bb}	Н	Н	H (L ¹⁷⁾)
Overtem-	L	L	Н
perature	Н	L	L
Under-	L	L	Н
voltage	Н	L	Н
Overvoltage	L	L	Н
	Н	L	Н

L = "Low" Level

X = don't care

Z = high impedance, potential depends on external circuit

H = "High" Level Status signal valid after the time delay shown in the timing diagrams

Parallel switching of channel 1 and 2 is easily possible by connecting the inputs and outputs in parallel. The status outputs ST1 and ST2 have to be configured as a 'Wired OR' function with a single pull-up resistor.

Terms

Leadframe (V_{bb}) is connected to pin 1,10,11,12,15,16,19,20

External R_{GND} optional; two resistors R_{GND1}, R_{GND2} = 150 Ω or a single resistor R_{GND} = 75 Ω for reverse battery protection up to the max. operating voltage.

¹⁵⁾ With external resistor between output and Vbb

An external short of output to V_{bb} in the off state causes an internal current from output to ground. If R_{GND} is used, an offset voltage at the GND and ST pins will occur and the $V_{ST low}$ signal may be errorious.

¹⁷⁾ Low resistance to $V_{\rm bb}$ may be detected by no-load-detection

Input circuit (ESD protection), IN1 or IN2

ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output, ST1 or ST2

ESD-Zener diode: 6.1 V typ., max 5.0 mA; $R_{ST(ON)}$ < 375 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Inductive and overvoltage output clamp, OUT1 or OUT2

 V_{ON} clamped to $V_{ON(CL)} = 47 \text{ V typ.}$

Overvoltage protection of logic part GND1 or GND2

 $V_{Z1} = 6.1 \text{ V typ.}, V_{Z2} = 47 \text{ V typ.}, R_I = 3.5 \text{ k}\Omega \text{ typ.}, R_{GND} = 150 \Omega, R_{ST} = 15 \text{ k}\Omega \text{ nominal.}$

Reverse battery protection

 $R_{GND} = 150 \Omega$, $R_{I} = 3.5 k\Omega$ typ,

Temperature protection is not active during inverse current operation.

Open-load detection, OUT1 or OUT2

ON-state diagnostic condition:

 $V_{\text{ON}} < R_{\text{ON}} \cdot I_{L(\text{OL})}$; IN high

OFF-state diagnostic condition:

 $V_{OUT} > 3 \text{ V typ.}$; IN low

GND disconnect

Any kind of load. In case of IN = high is $V_{OUT} \approx V_{IN} - V_{IN}(T+)$. Due to $V_{GND} > 0$, no $V_{ST} = low$ signal available.

GND disconnect with GND pull up

Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available.

V_{bb} disconnect with energized inductive load

For inductive load currents up to the limits defined by E_{AS} (max. ratings and diagram on page 10) each switch is protected against loss of V_{bb} .

Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection.

Inductive load switch-off energy dissipation

Energy stored in load inductance:

$$E_{L} = \frac{1}{2} \cdot L \cdot I_{L}^{2}$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$E_{AS} = E_{bb} + E_L - E_R = \int V_{ON(CL)} \cdot i_L(t) dt$$

with an approximate solution for $R_L > 0 \Omega$:

$$E_{\text{AS}} = \frac{I_{\text{L}} \cdot L}{2 \cdot R_{\text{L}}} \left(V_{\text{bb}} + |V_{\text{OUT(CL)}}| \right) \ ln \ (1 + \frac{I_{\text{L}} \cdot R_{\text{L}}}{|V_{\text{OUT(CL)}}|} \right)$$

Maximum allowable load inductance for a single switch off (one channel)⁵⁾

$$L = f(I_L)$$
; T_{j,start} = 150°C, V_{bb} = 12 V, R_L = 0 Ω

Typ. on-state resistance

 $R_{ON} = f(V_{bb}, T_j); I_L = 2 A, IN = high$

RON [mOhm]

Typ. open load detection current

 $I_{L(OL)} = f(V_{bb}, T_j);$ IN = high

Typ. standby current

 $I_{bb(off)} = f(T_j)$; $V_{bb} = 9...34 \text{ V}$, IN1,2 = low

Typ. initial short circuit shutdown time

50

100

150

200

T_j [°C]

 $t_{off(SC)} = f(T_{j,start}); \ V_{bb} = 12 \ V$

0

toff(SC) [msec]

0

-50

Timing diagrams

Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition:

Figure 2b: Switching a lamp:

The initial peak current should be limited by the lamp and not by the initial short circuit current $I_{L(SCp)}=44$ A typ. of the device.

Figure 2c: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions ($t_{off(SC)}$ vs. $T_{j,start}$ see page 11)

Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

ST1 and ST2 have to be configured as a 'Wired OR' function ST1/2 with a single pull-up resistor.

Figure 4a: Overtemperature: Reset if $T_j < T_{jt}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

The status delay $td(ST\ OL4)$ is for differentiation between the failure modes "open load in ON-state" and "overtemperature"; $td(ST\ OL4)$ only appears after turn off to open load.

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 5c: Open load: detection in ON- and OFF-state (with R_{EXT}), turn on/off to open load

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

 $IN = high, \ normal \ load \ conditions.$ Charge pump starts at $V_{bb(ucp)} = 5.6 \ V \ typ.$

Figure 7a: Overvoltage:

Package and Ordering Code

 Standard P-DSO-20-9
 Ordering Code

 BTS734L1
 Q67060-S7009-A2

Definition of soldering point with temperature T_s : upper side of solder edge of device pin 15.

Printed circuit board (FR4, 1.5mm thick, one layer 70 μ m, 6cm² active heatsink area) as a reference for max. power dissipation P_{tot}, nominal load current I_{L(NOM)} and thermal resistance R_{thja}

