Lecture 8 – Documentation, Hypertext and MHEG

- Document, Architecture and Multimedia integration;
- Hypertext, Hypermedia and Multimedia
- Hypermedia System: Architecture, nodes and Pointers;
- Document Architecture: SGML and ODA
- MHEG

Introduction

- A Document consists of a set of structural information that can be in different forms of media
- During presentation it can be generated and recorded.
- A document is aimed at the perception of a human and is accessible for computer processing
- A multimedia document is a document which is comprised of information coded in at least one continuous (time dependent) medium and in one discrete (time independent) medium.
- Integration of the different media is given through a close relation between information units.
- ▶ This is also called synchronization.
- It is closely related to its environment of tools, data abstractions, basic concepts and document architecture.

Documents

- Currently continuous and discrete data are processed differently:
 - Text is processed within an editor program as a type of a programming language (namely the type character)
 - ► A motion picture can be manipulated with the same editor program only through library calls.
- ► The goal of abstracting multimedia data is to achieve integration all media.
- This reduce the complexity of the program generation and maintenance that process multimedia data.
- Basic system concepts for document processing use multimedia abstractions and also serve as concepts for the information architecture in a documents
- Thus we use the terms document architecture and information architecture interchangeably.

Document Architecture

- Exchanging documents entails exchanging the document content as well as the document structure.
- This requires that both documents have the same document architectures.
- The current standardized architectures are:
 - ▶ The Standard Generalized Markup Language (SGML) and
 - ▶ The Open Document Architecture (ODA).
- There are also proprietary document architectures such as
 - DEC's Document Content Architecture (DCA)
 - ► IBM's Mixed Object Document Content Architecture (MO:DCA)
- Information architectures use their data abstractions and concepts.
- A document architecture describes the connections among the individual elements represented as models

Elements in Document Architecture

Presentation Structure Model Manipulation Model Content Representation Model

The manipulation model describes all the operations allowed for creation, change and deletion of multimedia information.

- The representation model defines
 - Protocols for exchanging information between computers
 - Formats for storing data
- Presentation model describes the format for the presentation

Manipulation of Data

- The user becomes most aware of multimedia documents through tools for manipulation of multimedia data, such as editors, desktop publishing programs and other text processing programs
- A document undergoes the process shown in figure next.
- The information included in a document belongs to a certain document type.
 - ► Eg. Business letter
 - Internal Memorandum
- The same document can belong to other types which mainly influence the final representation.
- The transformation from the actual information to its final representation behaves according to rules specified

Manipulation of Data

- The user becomes most aware of multimedia documents through tools for manipulation of multimedia data.
- Such as editors, desktop publishing programs and other text processing programs
- The document undergoes the process shown aside.
- The information included in a document belongs to a certain document type. Eg. Business letter or internal memorandum

Manipulation of Multimedia Data

- ▶ The same document can belong to other types which mainly influence the final representation.
- The transformation from the actual information to its final representation behaves according to rules specified to the document architecture.
- The processing cycles of a traditional document and an interactive multimedia presentation are analogous.
- ▶ The document exists in a processable representation.
- ▶ The result is a final representation of the document.
- ► A typical example of this representation is the typesetting language PostScript™.
- The availability of hypertext and multimedia technology have changed the representation of documents although the processing cycle remains same.

Manipulation of Multimedia Datg

- ☐ The output of interactive hypermedia documents will be mostly computer-supported.
- Therefore, the presentation of a documents will have to be not only final, but also be executable.
- While there are a broad range of processable formats, there are too few final representation formats.
- It has been internationally recognized that such a final representation is very important and, especially in a distributed, heterogeneous system environment.
- ☐ This exchange format for interactive multimedia presentation is called MHEG (Multimedia and Hypermedia Information Coding Expert Group)
- Using the main concept of Hypermedia and Hypertext for multimedia documents, SGML, ODA are presented.

Hypertext, Hypermedia and Multimedia

- Communication reproduces knowledge stored in the human brain via several media.
- Documents are one method of transmitting information.
- Reading a document is an act of reconstructing knowledge.
- In an ideal case, knowledge transmission starts with an author and ends with a reconstruction of the same ideas by a reader.
- Information loss is minimal.
- Knowledge must be artificially serialized before the actual exchange.
- Hence it is transformed into a linear document and the structural information is integrated into the actual content.

Hypertext and Hypermedia

- In the case of hypertext and hypermedia, a graphical structure is possible in a document which may simplify the writing and reading process.
- A book or an article on a paper has a given structure and is represented in a sequential form. Although it is possible to read individual paragraphs without reading previous paragraphs, authors mostly assume a sequential reading.
- Therefore many paragraphs refer to previous learning in the document.
- Novels, movies always assume a pure sequential reception.
- Scientific literature can consists of independent chapters, although mostly a sequential reading is assumed.
- ▶ Technical documentation consists often a collection of relatively independent information units.

Properties of Hypertext and Hypermedia

- Non Linear Information Chain
 - ▶ They have as a major property a non linear information link
 - ▶ There exists not only a reading sequence, but also the reader decides on his/her reading path.
 - ▶ The reader can start in a lexicon with a notion hypertext, then go through a cross reference to systems and finish with a description of AppleTalk.
 - ▶ By this association, through reference links, the author of the information determines the actual links
 - The structure is a tree where the reading path in this linear document is explained verbally and not through the structure.
 - ▶ A hypertext structure is a graph, consisting of nodes and edges.
 - ▶ The references to other chapters and literature citations are such pointers which build a tree-similar document to a graph.

Non Linear Information Chain cont...

- ▶ The nodes are the actual information units.
- ▶ They are the text elements, individual graphics, audio or video LDUs.
- ▶ The information units are shown at the user interface mostly in their own windows.
- ▶ The edges provide links to other information units.
- ▶ They are usually called pointers or links.
- ▶ A pointer is mostly a directed edge an includes its own information too.

► The forward movement in linear sorted documents is called a navigation through the graph.

- ► At the user interface, the origin of pointer must be marked, so that the user can move to a further information unit.
- This origin of a pointer is called an anchor
- A main factor of the user interface is the concept of the anchor.

How can the anchor be represented properly

- A media-independent representation can happen through the selection of general graphical elements, such as buttons.
- ▶ In such an element, information about the destination node should be included.
- ▶ If the destination node is a text, a short, descriptive text of the content can be represented.
- In the case of an image, the image content can appear in minimized form on the screen.
- A visual representation of the video content can follow in form of a moving icon (MICON).
- This is a minimized motion picture which represents a characteristical portion of the video sequence of the destination node.
- If the content of the destination node consists of audio information, a visual representation of the audio content must follow.

Anchor cont...

- ▶ In a text, individual words, paragraphs or text sections of different length can be used for representation.
- ▶ The positioning of the pointer to the marked area and double clicking in this area leads to a display of the destination node, connected with the clicked information.
- ▶ In images, specific graphical objects or simply areas are defined as selection objects, a specific marking can occur through a color or stripe.
- ▶ In a motion video, media-independent representation of the anchor are preferred.
- There can also be time changing areas used.
- Mostly, no spatial selection occurs and the particular shown image is conclusive.
- ▶ A time selection is supported.

Hypertext system

- ► This system is mainly determined though non-linear links of information.
- ▶ Pointers connect the nodes.
- ▶ The data of different nodes can be represented with one or several media types.
- ▶ In a pure text system, only text parts are connected.
- Hypertext as an information object which includes links to several media.
- Multimedia System
 - It contains information which is coded at least in a continuous and discrete medium

Hypermedia System

- Hypermedia System
 - Includes the non linear information links of hyper text systems and the continuous and discrete media of multimedia systems.

- In often the case, hyperia notion is not use in its strongest sense.
- Hypertext and hypermedia are used interchangeably.

Hypermedia System

- A hypermedia system includes the non-linear information links of hypertext systems and the continuous and discrete media of multimedia systems.
- There have been many international conferences covering this area since the late 1980s: Hypertext'87, Hypertext'89 etc.
- There exists a large number of conferences and workshops, in addition to these main international events, at the regional and national levels.

Hypermedia Systems: History

- ► The history of hypertext goes quite far back, although it has been only recently that hypertext systems came on the market.
- Vannever Bush is the originator of the main hypertext concept, the linked information structure.
- ► He described the first hypertext system MEMEX (Memory Extender).
- It was never implemented and remained in the paper only.
- ▶ He developed this idea in 1932.
- He published the first descriptive article as We May Think in 1945.

- Doug Englebart developed a project to augment the human capability Augument at the Stanford Research Institute (SRI) 1962-1976.
- One part of it is NLS(oN Line System), which has hypertext properties.
- NLS served as joint document storage for all created documents during this project.
- All scientists working on this project used it with its possibilities of pointers.
- At the end there were approximately 100,000 entries.

Hypertext System : History

- Ted Nelson used the notion Hypertext for the first time in 1965.
- In his system all information which human beings described at any time, was contained.
- His concepts described the access to local, as well as to remote data.
- It was not implemented with his global information content until now.
- Since the middle of 1960s, work on hypertext systems has been going on at Brown University, Providence, RI.
- ▶ In 1967, the Hypertext Editing System was developed under the leadership of Andries van Dam.
- This was the first run-able hypertext system.
- It needed 120 Kbyte main memory of a small IBM/360.

Hypermedia System - History

- It was sold and used for the documentation of the Apollo Mission.
- The successor project was FRESS (File Retrieval and Editing SyStem) in 1968.
- ▶ Both systems linked documents through pointers, the user interface was implemented through text.
- ► At Brown University from this time, successful research in the area of hypertext/hypermedia has continued.

- The Aspen Movie Map is the first important hypermedia system which supports continuous media.
- ▶ It was developed at the MIT Architecture Machine Group under the intensive cooperation of Andrew Lippman.
- This group was built up later on with other scientists as was known as the MIT Media Lab.
- With this application, a virtual drive through the city Aspen (Colorado) could be followed on the computer screen.
- ► The user could move in all four geographical directions as he/she desired.
- A joystick served as an input of the direction.
- ► The technique uses a large set of individual images which were stored on a video stick.

Multimedia System - Concepts

- Hypertext systems differ from each other in their fundamental concepts
 - Unspecified systems were not developed for any specific application. They are determined to be used generally for the generation and reading of hypertext documents.
 - Application specific systems were developed for determined usages.

- Architecture:
- The architecture of a hypertext system can be divided into three layers with different functionalities
 - □ Presentation Layer
 - At the upper layer all functions connected to the user interface are embedded.
 - Nodes and pointers are mapped to the user interface.
 - At the user interface, one or several parts of the document are visualized.
 - This layer determines which data are presented and how they are presented.
 - This layer takes over control of all inputs.

■ Hypertext Abstract Machine

- The hypertext abstract machine (HAM) is placed between the presentation and storage layers.
- It can expect from the underlying layer database functions for storage of multimedia data in a distributed environment.
- It does not have to consider input and output of the upper layer.
- HAM knows the structure of the document, it has the knowledge about the pointers and its attributes.
- The data structure is constructed for the management of the document.
- This layer has the least system dependency in comparison to the other two layers
- This is the most suitable layer for standardization.

☐ Storage Layer

- □ The storage layer is the lowest layer.
- ☐ All functions connected with the storage of data belongs to this layer.
- ☐ The specific properties of the different discrete and continuous media need to be considered.
- Functionalities from traditional database systems are expected
 - Persistence data persists through programs and processes
 - Multiuser operations Synchronizations, locks etc
 - Restoration of data after failure Transactions
- ☐ The nodes and pointers of a hypertext document are processed as data objects without any special semantics.

- Unfortunately, in most current implementation, there is no clear division between the different layers.
- The reasons are
 - Shorter development time
 - Efficient implementation
 - Currently an incomplete

Nodes

- A node is an information unit (LDU) in a hypertext document.
- The main classification criterion of different realizations is the maximal stored data amount in one node
 - The maximal stored data amount can be limited and mapped onto the screen size.
 - ▶ The metaphor of note card, frame is introduced.
 - A video clip and audio passage could be limited to the duration of 20 sec (eg)
 - An author is forced eventually to distribute logical connected text content to several cards, although not desired.
 - Applying it to the video clips it could link to a close interconnection among the distributed sequences could get lost easily.

Nodes

- Window based systems with an unlimited data amount per node are the alternatives.
- Forward and backward scrolling of pages is offered analogous to other windows at the user interface.
- Intermedia is such a system.
- Here at every node the amount of data, coded as continuous media, is not limited with respect to its duration.
- ► Therefore, individual nodes can include a very different length although they appear to be equal
- For this problem two solution could be put forwards
 - Either it is switched between the nodes
 - Scrolling is used in one node with the usual mechanisms known window systems.

Pointers

- Pointers are the edges of a hypertext graph.
- Hypertext systems are classified according to different criteria with respect to edges.
- Which information includes a pointer?
 - Simple pointers link two nodes of the graph without containing any further information.
 - They are visible only through the relation between the nodes
 - Typed Pointers includes further information
 - Each pointer gets label.
 - ▶ Though this label, commentaries to the particular label are possible.
- One can use further semantics.

Pointers

- The following relations can be expressed though pointers:
 - ▶ To Be: Relation
 - ▶ To present :Demonstration
 - ▶ To influence : Consequences from a behavior can be described more closely.
 - ▶ To need or to be needed: This relation expresses a necessity
 - ▶ To own : Ownership is expressed.
 - To include: An inclusion relation is expressed in different meanings.
 - ▶ To be similar : Similarities can be explained.

- Who is responsible for the pointer?
 - Implicit Pointers: A relation between nodes can be established automatically by a hypertext system.
 - ▶ The author determines the algorithm according to which pointers are created.
 - ▶ The system Intermedia automatically generates all pointers.
 - Query references are done automatically using main notions of an entry.
 - Explicit Pointers : The author creates all links
 - A pointer can be created at different times.

A hypertext system consists of several necessary tools.

- ► Editors process information represented in different media.
- ▶ The generation, management, editing and deletion of pointers are supported.
- Search tools allow the search of desired information.
- Browser allows a shortened but clear representation of the nodes and edges.
- ▶ The nodes are described media dependently
- During navigation through a document, a proper support of the phenomena is needed.

SGML (Standard Generalized Markup Language) Architecture publishers.

- Authors prepare the text in a uniform way the title, tables, etc without the description of the actual representation
- The publishers specifies the resulting layout.
- The basic idea is that the author uses tags for marking certain text parts.
- SGML determines the form of tags but it does not specify their locations and meanings.
- User groups agree on the meaning of the tags.
- SGML makes a frame available with which the user specifies the syntax description in an object specific system.

SGML (Standard Generalized Markup Language) Architecture

- Here classes and objects, hierarchies of classes and objects, inheritance and the link to methods can be used by the specifications.
- SGML specifies the syntax but not the semantics

```
<title>Multimedia – Technology </titile>
<author>Felix Getou </author>
<side> IBM </side>
<summary> This exceptional paper from
peter.....</summary>
```

This example shows an application of SGML in a text document ► Figure : SGML: Document Document processing — from the information to the Generic Mark-up presentation. Definition (Document Type Reference) SGML Parser Rules User Group Specific Definitions Formatter Semantics of Target Attributes Document

Figure : SGML:
 Document architecture
 — emphasis on the representation model.

Documentation Architecture ODA

- Open Document Architecture (ODA) initially called office Document architecture as it supports mostly office oriented application.
- Main goal is to support the exchange processing an presentation of documents in open system.
- Used mainly by computer industry especially in Europe.

ODA cont...

Figure : ODA: Content, layout and logical view.

Content portions

- It describes for each medium
 - The specification of the elements
 - 2. The possible access function.
 - 3. The data coding.
- LAYOUT STRUCTURE AND LOGICAL STRUCTURE
- Describes the co-operation of information units.
- Layout structure specifies mainly the representation of a documents
- The logical structure includes the partitioning of the content.

- ODA distiinguishes the following layout and logical structures:
 - The generic logical and generic layout structure includes a set of default values
 - The specific logical and specific layout structure describes a concrete document.
- Figure : Relations among content and logical and layout structures

Information Architecture of ODA

Figure: ODA information architecture with structure, content, presentation and representation model.

- ► ISO/IEC JTC1/SC29 (Coding of Audio, Picture, Multimedia and Hypermedia Information) works on the standardization of the exchange format for multimedia systems.
- ► The actual standards are developed at the international level in the three working groups cooperating with research and industry.

WG1
Coding of Still
Pictures
(JBIG/JPEG)

WG11 Coding of Moving Pictures and Associated Audio (MPEG)

WG12
Coding of Multimedia
and Hypermedia
Information (MHEG)

Content

Structure

- The results of the working groups
 - ▶ The Joint Photographic Expert Group (JPEG)
 - ▶ The Motion Picture Expert Group (MPEG)
- These are of special importance in the area of multimedia systems.
- The contents in the form of individual information objects are described with the help of the above named standards.
- The structure is specified first through timely spatial relations between the information objects.
- ► The standard is the subject of the working group WG12.
- This is known as Multimedia and Hypermedia Information Coding Expert Group (MHEG).

- The final MPEG standard will be described in three documents.
- The first part will discuss the concepts and exchange format.
 - ▶ The main concepts are covered in the first document.
- The second part part describes an alternative of the exchange format.
- The third part should present a reference architecture for a linkage to the script language.
 - ▶ The second and third documents are still in progress.

- Further discussions about MHEG are based manly on the committee draft version, because
 - All related experiences have been gained on this basis
 - ► The basic concepts between the final standard and this committee draft remain to be the same
 - ▶ The finalization of this standard is still in progress.
- All these discussion is based on designing, implementing and improving the MHEG standard.