

Linux For Embedded Systems

Cairo University Computer Eng. Dept. CMP445-Embedded Systems

Ahmed ElArabawy

Lecture 1: Course Overview

The Lecturer

- Ahmed ElArabawy
- Education:
 - BSc Alexandria University (1992)
 - MSc Alexandria University (1994)
 - PhD SMU University, TX, USA (2001)
- Work
 - Faculty Staff @ Alexandria Univ.
 - Faculty Staff @ Cairo Univ.
 - Microsoft, SySDSoft (Egypt)
 - Ericsson, Broadcom, Solectek, Wilan Labs (USA)
- Embedded Systems Initiatives
 - Linux for Embedded Systems
 http://linux4embeddedsystems.com/
 https://www.facebook.com/groups/linuxforEmbeddedSystems/
 - Raspberry Pi for Arabs
 https://www.facebook.com/groups/linuxforEmbeddedSystems/
- More Details
 https://www.linkedin.com/in/ahmedelarabawy

This Course

- This is an introductory hands-on course in the area of Embedded Systems
- We will be using the <u>Raspberry Pi</u> to learn about the basic aspects of Embedded Development
- We should come out from this course with a decent level of knowledge and hands on experience with embedded systems
- Although the course addresses embedded systems in general, we will be focusing on the use the Raspberry Pi Board throughout the course

- The reason of selecting the Raspberry Pi for this Course:
 - The Raspberry Pi is a very capable board, and can demonstrate all the aspects of embedded systems that we will study in this course (ARM Processor, Linux Support, ...)
 - The Raspberry Pi is very rich in its interfaces (USB, Ethernet, GPIO, I2C, SPI, UART, CSI, DSI,)
 - The Raspberry Pi has strong support of different programming and scripting languages (Bash, Python, Java, C/C++, ..)
 - The Raspberry Pi comes with a <u>huge community</u> and tons of tutorials and projects on the Internet
 - The Raspberry Pi is <u>less Expensive</u> than other comparable board
 - The Raspberry Pi is <u>more available</u> in local market than other boards

What About Other Platforms?

- A lot of the materials in this course is useful for other. embedded system boards
- It is advisable to focus now on the Pi to avoid distractions in the boards differences, and to have a common platform
- Later, you can apply the same course material on a lot of other platforms

- The Internet is full of tutorials, guides, and videos for different projects on the Pi
- So this course will not try to add to this pile with more projects
- The Objective of this course is to perform a structures and organized study on Embedded Systems using the Pi and its associated capabilities
- Each lecture will cover one concept in Embedded Systems using the Pi
- I will be building mini-projects in the lecture to apply the concepts of the lecture
- Then I will be referring to some of the online projects that utilize the discussed topic

- Most of the projects used in this course are simple projects that consider a single concept
 - Connecting to a specific sensor
 - Controlling a specific Motor
 - Interfacing to a specific Display
- In real world projects, the system will contain multiple of these aspects
- So consider the projects in this course as building blocks, for bigger projects
- You will be assigned to do more projects on your own

Course Logistics

The Course Web Site

- It is not enough to watch the video lectures
- The Course Web Site includes much more resources
 - List of applicable Projects
 - Useful Links
 - More Reading Material
 - FAQ
 - Assignments
 - Quizzes and grading

 All code used in this course will be available on the course GitHub Repository

https://github.com/Linux4EmbeddedSystems

 You will need to have your own GitHub account, so if you don't have one already, create one.... It is free

https://github.com/

 You will need the GitHub account to deliver code and associated documentation for all assigned mini-projects

- Good Understanding of <u>Linux and its command Line Interface</u>, if you need to refresh your knowledge on this topic, attending the course **C-102 Understanding Linux** in the public section of the website is highly recommended (I will be referring to specific lectures throughout the course when needed)
- Have access to a Raspberry Pi Board is needed (you will be provided with one)
- Other hardware accessories will be mentioned in each lecture
- This course will use different computer programming and scripting languages:
 - It will use some Bash Scripts, no previous advanced knowledge of Bash Scripts are needed
 - It will use some **Python Scripts**, so it will be <u>useful</u> to have some knowledge about Python, but it is <u>not a must</u> since python is very easy to learn as we go
 - Some parts of the course will be using C Code
 - Other parts will be using Java Code

Communication Channels Course WebSite

- All Students will need to create an account in the course website http://linux4embeddedsystems.com
- Students will need also to create a GitHub Account https://github.com/
- Students need to send me the email (used in the course login) and their GitHub username by Midnight today
- I will enroll you in the course, and send you instructions by email
- Announcements from the lecturer will be put on the website, and sent by email
- The course website will contain,
 - Access to the <u>lecture videos</u>, note that the videos will be on **youtube**, so you can download them if you need to
 - Access to the <u>lecture slides</u> in pdf format
 - A list of <u>required</u> reading material. These are <u>part of the course</u>, and will be included in the midterm and final exams
 - A list of <u>optional</u> reading material. These are recommended for those who are interested in the topic, and they are <u>not</u> going to be part of the exam
 - Any course related <u>announcements</u>
 - Weekly <u>assignments/mini-projects</u> description
 - Quizzes and grades
 - Discussion forums

Communication Channels Discussion Forum

- All student questions should be placed on the discussion forum in the course website
- Both the Lecturer and the course TAs will be monitoring the discussion forum to answer course related questions
- Other students are encouraged to respond to their colleague questions
- You can also post ideas, interesting articles, interesting embedded news on the discussion forum
- It is highly encouraged to keep the discussion forum active with students/TAs/Lecturer interaction

Communication Channels Lecturer Availability

- It is highly recommended to use the discussion forum for student questions
- However, if you need to address the lecturer directly, you can communicate to him via email
 aelarabawy.cmp445@gmail.com
- Lecturer should be responding to your emails, or will ask you to post your question on the discussion forum (if the question does not require a private answer)
- The Lecturer will be available online for interactive communication with the students on a specified time on weekly basis (time will be specified via a course announcement)

Student Groups

Assigning Groups

- Some of the course assignments will be assigned on an individual basis
- However, most of the course assignments will be assigned on team/group basis
- Students will need to form teams/groups of 3-4 students per group
- Each group will need to pick a name to their group (must be a name related to embedded Systems)
- Each group will need to assign a group leader for their group
- Each group leader will need to send to the Lecturer and TAs the group name and team member names by <u>midnight</u> <u>Monday</u>

Project Assignments

- Throughout the course there will be a lot of mini-projects assigned for students
- Projects will be assigned on group basis
- Sometimes all groups will have the same project, other times, each group will have their own project
- Each group will be handed over a hardware kit at the beginning of the course (A Raspberry Pi + Accessories)
- This hardware will remain with the students throughout the full term, and they will need to return it in a working condition at the end of the term
- The provided hardware will include most of the required material for the assigned projects, however, sometimes minor additions may be required by the students
- Project deliverable will be:
 - Showing the TA the project outcome
 - Commit the project code and associated documentation to the group leader GitHub Account
 - Send the lecturer an email to inform him of the readiness of the project

- Course Grade will be based on the following:
 - Final exam: 70%
 - Midterm exam: 10%
 - Projects and Assignments: 20%
- All exams will be open book, open notes (all you can bring)
- Exams will cover:
 - Lecture material
 - Mandatory Reading material
 - Assignments and Projects

Overview on Embedded Systems

Overview on Embedded Systems OSs

Unwrapping the Raspberry Pi

Preparing the Raspberry Pi

The Pi as a Linux Box

The Pi Control Arm

Accessing the Pi GPIO

The I²C Interface

The SPI Interface

The 1-Wire Interface

The UART Interface

Using PWM Control

Handling Analog Signals

Motor Control Using the Pi

Using Sensors

Closing the Loop

LED Displays

LCD and Touch Screens

Interfacing to Cameras

The Pi and the Web

Using OpenCV with the Pi

Using FFMPEG With The Pi

Using Matlab with the Pi

Emulating the Pi

