GRADE

100%

Practice quiz on Exponents and Logarithms

TOTAL POINTS 12

1. Re write the number $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ using exponents.

1/1 point

- $(2^4)(7^2)$
- \bigcirc (16⁴)(49²)
- $\bigcirc (2 \times 7)^6$
- $\bigcirc (2^6)(7^6)$

✓ Correct

For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.

2. What is $(x^2 - 5)^0$?

1 / 1 point

- \bigcirc -4
- 1
- $(x^2) 5$
- $\bigcirc (x^2)$

✓ Correct

Any real number (except zero) raised to the "zeroith" power = 1.

3. Simplify $((x-5)^2)^{-3}$

1 / 1 point

- $(x-5)^{-5}$
- $\bigcirc (x-5)$
- $(x-5)^{-1}$
- $(x-5)^{-6}$

✓ Correct

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times -3)} = (x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\frac{1}{(x-5)^6}$

- 4. Simplify $(\frac{8^2}{8^7})^2$
 - 0.8^{-5}
 - 8-1
 - 0.8^{-4}
 - 8-10

✓ Correct

We can first simplify what is inside the parenthesis to $8^{-5} \mathrm{using}$ the Division and Negative Powers Rule.

Then apply division and negative powers-- the result is the same. $\frac{8^4}{8^{14}}=8^{-10}$

5. $\log 35 = \log 7 + \log x$

1 / 1 point

Solve for x

- 0 7
- 5
- O 28
- O 4

✓ Correct

$$\log(x) = \log 35 - \log 7$$

$$\log(x) = \log \left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6. $\log_2(x^2 + 5x + 7) = 0$

1 / 1 point

Solve for x

- $\bigcirc x = 3$
- $\bigcirc \ \ x=2 \ {\rm or} \ \ x=3$
- **●** x = -2 or x = -3
- $\bigcirc x = 2$

/ Correct

We use the property that $b^{\log_b a} = a$

7.	Simplify	logo	72	— loga	g
	JIIII PIIII y	1082	12	1082	U

1 / 1 point

- $\bigcirc \log_2 63$
- 3
- 0 4
- $\bigcirc \ \log_2 4$

✓ Correct

By the quotient rule, this is $\log_2 \frac{72}{9} = \log_2 2^3 = 3$

8. Simplify $\log_3 9 - \log_3 3 + \log_3 5$

1 / 1 point

- 0 8
- O 15
- $\bigcirc \log_3 8$
- log₃ 15

✓ Correct

By the Quotient and Product Rules, this is $\log_3 \frac{9 \times 5}{3} = \log_3 15$

9. Simplify $\log_2(3^8 \times 5^7)$

1 / 1 point

$$(8 \times \log_2 3) + (7 \times \log_2 5)$$

- $\bigcirc (5 \times \log_2 3) + (8 \times \log_2 5)$
- $\bigcirc \ 15 \times \log_2 56$
- \bigcirc 56 $\times \log_2 15$

✓ Correct

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

10.If
$$\log_{10} y = 100$$
, what is $\log_2 y = ?$

1 / 1 point

- 301.03
- O 500
- 332.19
- O 20

Use the change of base formula, $\log_a b = \frac{\log_{\chi} b}{\log_{\chi} a}$

- 0 10.41%
- 0 11.41%
- ① 13.41%
- 0 12.41%

$$\frac{\ln\frac{15}{3}}{12} = 0.1341$$

12.Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25×10^{-10} grams weights 1000 Kilograms?

1 / 1 point

- 8.75 days
- O.875 days
- 875 days
- O 87.5 days

$$6.25 imes 10^{-10} imes e^{4t} = 10^6$$

$$4t = \ln \left(\frac{10^6}{(6.25 \times 10^{-10})} \right) = 35.00878$$

$$t = \ln \ \frac{10^6}{6.25 \times 10^{-10}} = 8.752195$$