Gymnázium Evolution Jižní Město

Jakýsi úvod do matematické analýzy

Áďula vod Klepáčů

14. dubna 2024

Předmluva

Matematická analýza je věda o reálných číslech; tuším ovšem, že kolegové analytici mě za ono nedůstojně zjednodušující tvrzení rádi mít příliš nebudou. Snad mohou nicméně souhlasit, že v jejím jádru je pojem *nekonečna*. Nikoli nutně ve smyslu čísla, jež převyšuje všechna ostatní, ale spíše myšlenky, jež zaštiťuje přirozené jevy jako *okamžitá změna*, *blížení* či *kontinuum*.

O zrod matematické analýzy, jež zvláště v zámoří sluje též *kalkulus*, se bez pochyb podělili (nezávisle na sobě) Sir Isaac Newton a Gottfried Wilhelm Leibniz v 17. století po Kristu. Sir Isaac Newton se tou dobou zajímal o dráhy vesmírných těles a učinil dvě zásadní pozorování – zemská tíže působí na objekty zrychlením a zrychlení je *velikost okamžité změny* rychlosti. Potřeboval tedy metodu, jak onu velikost spočítat. Vynález takové metody po přirozeném zobecnění vede ihned na teorii tzv. *limit*, které právě tvoří srdce kalkulu. Pozoruhodné je, že Gottfried Leibniz, nejsa fyzik, dospěl ke stejným výsledkům zpytem geometrických vlastností křivek. V jistém přirozeném smyslu, který se zavazujeme rozkrýt, jsou totiž tečny *limitami* křivek. Ve sledu těchto rozdílů v přístupu obou vědců se v teoretické matematice dodnes, s mírnými úpravami, používá při studiu limit značení Leibnizovo, zatímco ve fyzice a diferenciální geometrii spíše Newtonovo.

Následující text je shrnutím – lingvistickým, vizuálním a didaktickým pozlacením – teorie limit. Hloubka i šíře této teorie ovšem přesáhla původní očekávání a kalkulus se stal součástí nespočtu matematických (samozřejmě i fyzikálních) odvětví bádání. První kapitola je věnována osvěžení nutných pojmů k pochopení textu. Pokračují pojednání o limitách posloupností a reálných číslech, limitách součtů, limitách funkcí a, konečně, derivacích. Tento sled není volen náhodně, nýbrž, kterak bude vidno, znalost předšedších kapitol je nutná k porozumění příchozích.

Jelikož se jedná o text průběžně doplňovaný a upravovaný, autor vyzývá čtenáře, by četli okem kritickým a myslí čistou, poskytovali připomínky a návrhy ke zlepšení.

Obsah

1	Limity funkcí					
	1.1	Základní poznatky o limitě funkce	11			
	1.2	Spojité funkce	20			

Kapitola 1

Limity funkcí

Limita funkce je dost možná nejdůležitější ideou matematické analýzy a obecně matematických disciplín, jež využívá fyzika. Davši vzniknout teorii derivací a primitivních funkcí, umožnila popsat fyzikální jevy soustavami diferenciálních rovnic a je základem zatím nejlepších známých modelův světa – diferencovatelných struktur.

Principiálně se pojem *limity funkce* neliší pramnoho od limity posloupnosti. Matematici funkcí obyčejně myslíme zobrazení popisující vývoj systému v čase (tzv. funkce *jedné proměnné*), případně závislé na více parametrech než jen na čase (tzv. funkce *více proměnných*). Limita funkce v nějakém určeném okamžiku pak znamená vlastně "očekávanou hodnotu" této funkce v tomto okamžiku – hodnotu, ke které je funkce, čím méně času zbývá do onoho okamžiku, tím blíže.

V tomto textu budeme sebe zaobírati pouze funkcemi závislými na čase tvořícími systémy, jejichž stav je rovněž vyjádřen jediným číslem. Uvidíme, že i teorie takto primitivních objektů je veskrze širá.

Definice 1.0.1 (Reálná funkce jedné proměnné)

Ať $M \subseteq \mathbb{R}$ je libovolná podmnožina \mathbb{R} . Zobrazení $f: M \to \mathbb{R}$ nazýváme reálnou funkcí (jedné proměnné).

Ačkolivěk ve světě, jest-li nám známo, proudí čas pouze jedním směrem, matematiku takovými trivialitami netřeba třísnit. Pojem limity reálné funkce budeme tedy definovat bez ohledu na "proud času". Budeme zkoumat jak hodnotu reálné funkce, když se čas blíží *zleva* (tj. přirozeně) k danému okamžiku, tak její očekávanou hodnotu proti toku času.

Ona dva přístupa slujeta limita funkce *zleva* a limita funkce *zprava*. Před jejich výrokem ovšem učiníme kvapný formální obchvat. Bylo by totiž nanejvýš neelegantní musiti různými logickými výroky definovat konečné oproti nekonečným limitám v konečných oproti nekonečným bodům. Následující – čistě formální avšak se silnou geometrickou intuicí – pojem tyto případy skuje v jeden.

Definice 1.0.2 (Okolí a prstencové okolí bodu)

Ať $a \in \mathbb{R}^*$ a $\varepsilon \in (0, \infty)$. *Okolím* bodu a (o poloměru ε) myslíme množinu

$$B(a,\varepsilon) \coloneqq \begin{cases} (a-\varepsilon, a+\varepsilon), & \text{pokud } a \in \mathbb{R}, \\ (1/\varepsilon, \infty), & \text{pokud } a = \infty, \\ (-\infty, -1/\varepsilon), & \text{pokud } a = -\infty. \end{cases}$$

Podobně, prstencovým okolím a (o velikosti ε) myslíme jeho okolí bez samotného bodu a. Konkrétně,

$$R(a,\varepsilon) \coloneqq \begin{cases} (a-\varepsilon, a+\varepsilon) \setminus \{a\}, & \text{pokud } a \in \mathbb{R}, \\ (1/\varepsilon, \infty), & \text{pokud } a = \infty, \\ (-\infty, -1/\varepsilon), & \text{pokud } a = -\infty. \end{cases}$$

Pro účely definice levých a pravých limit, pojmenujeme rovněž množinu

$$B_{+}(a,\varepsilon) \coloneqq \begin{cases} [a,a+\varepsilon), & \text{pokud } a \in \mathbb{R}, \\ \emptyset, & \text{pokud } a = \infty, \\ (-\infty, -1/\varepsilon), & \text{pokud } a = -\infty \end{cases}$$

pravým okolím bodu *a* a množinu

$$R_{+}(a,\varepsilon) \coloneqq \begin{cases} (a, a+\varepsilon), & \text{pokud } a \in \mathbb{R}, \\ \emptyset, & \text{pokud } a = \infty, \\ (-\infty, -1/\varepsilon), & \text{pokud } a = -\infty \end{cases}$$

pravým prstencovým okolím bodu a. Levé okolí a levé prstencové okolí bodu a se definují analogicky.

Poznámka 1.0.3

Písmena B a R v definici okolí a prstencového okolí pocházejí z angl. slov **b**all a **r**ing. Okolí se v angličtině přezdívá "ball" pro to, že okolí bodu a je ve skutečnosti (jednodimenzionální) kruh s poloměrem ε o středu a. Znázornění okolí bodu jako kruhu v rovině je vysoce účinným vizualizačním aparátem.

Čtenáře možná zarazilo číslo $1/\varepsilon$ v definici okolí bodu ∞ . Důvod užití $1/\varepsilon$ oproti prostému ε je spíše intuitivního rázu. V definici limity a v následných tvrzení si matematici obvykle představujeme pod ε reálné číslo, které je "nekonečně malé". Chceme-li tedy, aby se **zmenšujícím se** ε byla hodnota dané funkce stále blíže nekonečnu, musí se tato hodnota zvětšovat. Díky užité formulaci tomu tak je, neboť s menším ε je číslo $1/\varepsilon$ větší.

Obrázek 1.1: Okolí a prstencové okolí bodu $a \in \mathbb{R}$.

Definice 1.0.4 (Jednostranná limita funkce)

Ať $M\subseteq \mathbb{R}, f:M\to \mathbb{R}$ a $a\in \mathbb{R}^*$. Řekneme, že číslo $L\in \mathbb{R}^*$ je limitou zleva funkce f v bodě a, pokud

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in P_{-}(a, \delta) : f(x) \in B(L, \varepsilon).$$

Tento fakt zapisujeme jako $L = \lim_{x \to a^-} f(x)$.

Podobně, číslo $K \in \mathbb{R}^*$ je *limitou zprava* funkce f v bodě a, pokud

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in P_+(a, \delta) : f(x) \in B(K, \varepsilon).$$

Tento fakt zapisujeme jako $K = \lim_{x \to a^+} f(x)$.

Obrázek 1.2: Jednostranné limity funkce *f* v bodě *a*.

Varování 1.0.5

Fakt, že L je limita **zleva** funkce f v bodě a, vůbec neznamená, že hodnoty f(x) se musejí blížit k L rovněž **zleva**. Adverbia *zleva* a *zprava* značí pouze směr, kterým se k číslu a přibližují **vstupy** funkce f, nikoli její **výstupy** k číslu L.

Pochopitelně, lze též požadovat, aby hodnoty f ležely v daném rozmezí kolem bodu L, jak se její vstupy blíží k a zleva i zprava zároveň. V principu, blíží-li se f ke stejnému číslu zleva i zprava, stačí vzít δ v definici 1.0.4 tak malé, aby f(x) leželo v $B(L, \varepsilon)$ kdykoli je x ve vzdálenosti nejvýše δ od a.

Definice 1.0.6 (Oboustranná limita funkce)

Ať $a,L\in\mathbb{R}^*$ a f je reálná funkce. Řekneme, že L je (oboustrannou) limitou funkce f v bodě a, pokud

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in P(a, \delta) : f(x) \in B(L, \varepsilon).$$

Tento fakt zapisujeme jako $L = \lim_{x \to a} f(x)$.

Je jistě možné představovat si oboustrannou limitu funkce stejně jako limity jednostranné na obrázku 1.2. Ovšem, ona vlastnost "oboustrannosti" umožňuje ještě jiný – však ne rigorózní – pohled. Povýšíme-li situaci do roviny, tj. do prostoru druhé dimenze, a na funkci f budeme nahlížet jako na zobrazení bodů roviny na body roviny, pak L je limitou funkce f v bodě a, když zobrazuje všechny body zevnitř kruhu o poloměru δ a středu a do kruhu o poloměru ε a středu a. Jako na obrázku 1.3.

Obrázek 1.3: Oboustranná limita funkce "ve 2D".

Doporučujeme čtenářům, aby se zamysleli, čím by v této dvoudimenzionální říši byla *jednostranná* limita funkce. Sen zámysl snad vedl k představě, že by se vstupy x musely blížit k bodu a po nějaké určené přímce. Existence "všestranné" limity v a by pak byla ekvivalentní existenci nespočetně mnoha "jednostranných" limit – jedné pro každou přímku procházející bodem a. Věříme, že není obtížné nahlédnout, jak zbytečný by takový pojem ve dvou dimenzích byl. Popsaná situace přímo souvisí s faktem, že první dimenze je z geometrického pohledu "degenerovaná" – kružnice je pouze dvoubodovou množinou.

Oboustranné limity souvisejí s jednostrannými velmi přirozeným způsobem. Existence oboustranné limity funkce v bodě je ekvivalentní existenci limity jak zleva tak zprava v témže bodě. Oboustrannou limitu vlastně dostaneme tak, že z levého a pravého okolí limitního bodu, ve kterém již je funkční hodnota blízko limitě, vybereme to menší.

Tvrzení 1.0.7 (Vztah jednostranných a oboustranných limit)

At f je reálná funkce a $a \in \mathbb{R}^*$. Pak $\lim_{x\to a} f(x)$ existuje právě tehdy, když existuje $\lim_{x\to a^+} f(x)$ i $\lim_{x\to a^-} f(x)$ a jsou si rovny.

Důkaz. Implikace (⇒) je triviální. Pokud existuje $L \coloneqq \lim_{x \to a} f(x)$, pak pro dané $\varepsilon > 0$ máme nalezeno $\delta > 0$ takové, že pro $x \in R(a, \delta)$ je $f(x) \in B(L, \varepsilon)$. Ovšem, jistě platí $R_+(a, \delta) \subseteq R(a, \delta)$ i $R_-(a, \delta) \subseteq R(a, \delta)$. To však znamená, že pro $x \in R_+(a, \delta)$ i pro $x \in R_-(a, \delta)$ rovněž platí $f(x) \in B(L, \varepsilon)$. To dokazuje, že existuje jak $\lim_{x \to a^+} f(x)$, tak $\lim_{x \to a^-} f(x)$ a

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = L.$$

Pro důkaz (\Leftarrow) položme $L \coloneqq \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ a pro dané $\varepsilon > 0$ nalezněme $\delta_+ > 0$ a $\delta_- > 0$ splňující výroky

$$\forall x \in R_{+}(a, \delta_{+}) : f(x) \in B(L, \varepsilon),$$

$$\forall x \in R_{-}(a, \delta_{-}) : f(x) \in B(L, \varepsilon).$$

Ať $\delta := \min(\delta_+, \delta_-)$. Pak $R(a, \delta) \subseteq R_+(a, \delta_+) \cup R_-(a, \delta_-)$, a tedy $\delta > 0$ splňuje, že

$$\forall x \in R(a, \delta) : f(x) \in B(L, \varepsilon),$$

čili $\lim_{x\to a} f(x) = L$

Příklad 1.0.8

Tvrzení 1.0.7 je užitečné jak v uvedené, tak v kontrapozitivní formě, tj. při důkazu neexistence oboustranné limity za předpokladu nerovnosti (nikoli nutně *neexistence*) limit jednostranných.

Uvažme funkce $f(x) = \operatorname{sgn}(x)$ a $g(x) = |\operatorname{sgn}(x)|$. Ukážeme, že $\lim_{x\to 0} f(x)$ neexistuje, zatímco $\lim_{x\to 0} g(x) = 1$. Připomeňme, že funkce $\operatorname{sgn}(x)$ je definována předpisem

$$sgn(x) := \begin{cases} -1, & x < 0; \\ 0, & x = 0; \\ 1, & x > 0. \end{cases}$$

Ověříme, že $\lim_{x\to 0^+} f(x)=1$. Mějme dáno $\varepsilon>0$. Volme například $\delta\coloneqq 1$. Potom pro $x\in R_+(0,1)=(0,1)$ platí f(x)=1, čili zřejmě $f(x)\in B(1,\varepsilon)=(1-\varepsilon,1+\varepsilon)$. Podobně se ověří, že $\lim_{x\to 0^-} f(x)=-1$. To ovšem znamená, že $\lim_{x\to 0^+} f(x)\neq \lim_{x\to 0^-} f(x)$, tudíž dle tvrzení 1.0.7 $\lim_{x\to 0} f(x)$ neexistuje.

Velmi obdobným argumentem ukážeme, že $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^-} g(x) = 1$. Čili, podle téhož tvrzení platí $\lim_{x\to 0} g(x) = 1$.

Obrázek 1.4: Obrázek k příkladu 1.0.8.

Cvičení 1.0.9

Dokažte, že pro reálnou funkci f a $a \in \mathbb{R}^*$ platí

$$\lim_{x \to a} f(x) = 0 \Leftrightarrow \lim_{x \to a} |f(x)| = 0.$$

1.1 Základní poznatky o limitě funkce

Počneme nyní shrnovati intuitivně vcelku zřejmé výsledky o limitách reálných funkcí. Jakž jsme již vícekrát děli, ona "intuitivní zřejmost" pravdivosti výroků nechce nabodnout k přeskoku či trivializaci jejich důkazů. Vodami nekonečnými radno broditi se ostražitě, bo tvrzení jako *limita složené funkce* ráda svědčí, že intuicí bez logiky člověk na břeh nedoplove.

Na první pád není překvapivé, že limita funkce je jednoznačně určena, pochopitelně za předpokladu její existence. Vyzýváme čtenáře, aby se při čtení důkazu drželi vizualizace oboustranné limity z obrázku 1.3.

Lemma 1.1.1 (Jednoznačnost limity)

Limita funkce (ať už jednostranná či oboustranná) je jednoznačně určená, pokud existuje.

 $D\mathring{\mathtt{u}}\mathtt{KAZ}.\ Dokážeme lemma pouze pro oboustrannou limitu, důkaz pro limity jednostranné je v zásadě totožný.$

Pro spor budeme předpokládat, že L i L' jsou limity f v bodě $a \in \mathbb{R}^*$. Nejprve ošetříme případ, kdy $L, L' \in \mathbb{R}$. Bez újmy na obecnosti smíme předpokládat, že L > L'. Volme $\varepsilon \coloneqq (L - L')/3$. K tomuto ε existují z definice limity $\delta_1 > 0$, $\delta_2 > 0$ takové, že

$$\forall x \in R(a, \delta_1) : f(x) \in B(L, \varepsilon).$$

a rovněž

$$\forall x \in R(a, \delta_2) : f(x) \in B(L', \varepsilon).$$

Volíme-li ovšem $\delta := \min(\delta_1, \delta_2)$, pak pro $x \in R(a, \delta)$ dostaneme

$$f(x) \in B(L, \varepsilon) \cap B(L', \varepsilon)$$
.

Poslední vztah lze přepsat do tvaru

$$L - \varepsilon < f(x) < L + \varepsilon,$$

 $L' - \varepsilon < f(x) < L' + \varepsilon.$

Odtud plyne, že

$$L - \varepsilon < L' + \varepsilon$$
,

což po dosazení $\varepsilon = (L - L')/3$ a následné úpravě vede na

$$2L - L' < 2L' - L,$$

z čehož ihned

což je spor.

Nyní ať například $L=\infty$ a $L'\in\mathbb{R}$. Z definice okolí $B(L,\varepsilon)$ pro $L=\infty$, stačí nalézt $\varepsilon>0$ takové, že

$$\frac{1}{\varepsilon} > L' + \varepsilon,$$

pak se totiž nemůže stát, že

$$f(x) \in B(\infty, \varepsilon) \cap B(L', \varepsilon)$$
.

Snadným výpočtem zjistíme, že

$$\frac{1}{\varepsilon} > L' + \varepsilon$$

právě tehdy, když $\varepsilon < (\sqrt{L'^2 + 4} - L')/2$. Pro libovolné takové ε tudíž dostáváme spor stejně jako v předchozím případě.

Ostatní případy se ošetří obdobně.

Obrázek 1.5: Spor v důkazu lemmatu 1.1.1.

Lemma 1.1.2

Ať reálná funkce f má **konečnou** limitu $L \in \mathbb{R}$ v bodě $a \in \mathbb{R}^*$. Pak existuje prstencové okolí a, na němž je f omezená.

Důκaz. Pro dané $\varepsilon > 0$ nalezneme z definice limity $\delta > 0$ takové, že pro $x \in R(a, \delta)$ platí $f(x) \in B(L, \varepsilon)$. Protože však $B(L, \varepsilon) = (L - \varepsilon, L + \varepsilon)$ platí pro $x \in R(a, \delta)$ odhady

$$L - \varepsilon \le f(x) \le L + \varepsilon$$
,

čili je f na $R(a, \delta)$ omezená.

Vzhledem k základním aritmetickým operacím si limity funkcí počínají vychovaně. Za předpokladu, že výsledný výraz dává smysl, můžeme spočítat limitu součtu, součinu či podílu funkcí jako součet, součin či podíl limit těchto funkcí.

Věta 1.1.3 (Aritmetika limit funkcí)

Ať f,g jsou reálné funkce a $a \in \mathbb{R}^*$. Předpokládejme, že $\lim_{x\to a} f(x)$ i $\lim_{x\to a} g(x)$ existují a označme je po řadě L_f a L_q . Potom platí

- (a) $\lim_{x\to a} (f+g)(x) = L_f + L_q$, dává-li výraz napravo smysl.
- (b) $\lim_{x\to a} (f \cdot g)(x) = L_f \cdot L_q$, dává-li výraz napravo smysl.
- (c) $\lim_{x\to a} (f/g)(x) = L_f/L_g$, dává-li výraz napravo smysl.

Důkaz. Dokážeme pouze část (c), neboť je výpočetně nejnáročnější, ač nepřináší mnoho intuice. Část (a) je triviální a (b) je lehká. Vyzýváme čtenáře, aby se je pokusili dokázat sami.

Už jen v důkazu samotné části (c) bychom správně měli rozlišit šest různých případů:

(1)
$$L_f \in \mathbb{R}, L_g \in \mathbb{R} \setminus \{0\},$$

- (2) $L_f \in \mathbb{R}, L_q \in \{-\infty, \infty\},$
- (3) $L_f = \infty, L_g \in (0, \infty),$ (4) $L_f = \infty, L_g \in (-\infty, 0),$
- $(5) L_f = -\infty, L_q \in (0, \infty),$
- (6) $L_f = -\infty, L_a \in (-\infty, 0)$

Jelikož se výpočty limit v oněch případech liší vzájemně pramálo a získaná intuice je asymptoticky rovna té ze znalosti metod řešení exponenciálních rovnic, soustředíme se pouze na (nejzajímavější) případ (1).

Ať tedy $L_f \in \mathbb{R}, L_g \in \mathbb{R} \setminus \{0\}$. Je nejprve dobré si uvědomit, že L_f/L_g není definován **nikdy**, pokud $L_q = 0$, bez ohledu na hodnotu L_f . Totiž, hodnoty g se mohou k L_q limitně blížit zprava, zleva či střídavě z obou směrů. Nelze tudíž obecně určit, zda dělíme čím dál tím menším kladným číslem, či čím dál tím větším záporným číslem.

Položme $\varepsilon_g = |L_g|/2$. K tomuto ε_g existuje z definice limity δ_g takové, že pro $x \in R(a, \delta_g)$ platí $g(x) \in B(L_q, \varepsilon_q)$. Poslední vztah si přepíšeme na

$$L_g - \varepsilon_g < g(x) < L_g + \varepsilon_g,$$

$$L_g - \frac{|L_g|}{2} < g(x) < L_g + \frac{|L_g|}{2}.$$

Speciálně tedy pro $x \in R(a, \delta_a)$ máme odhad

$$|g(x)| > \left| L_g - \frac{|L_g|}{2} \right| > \frac{|L_g|}{2}.$$

Jelikož poslední výraz je z předpokladu kladný, má výraz f(x)/g(x) smysl pro každé $x \in$ $R(a, \delta_a)$, neboť pro tato x platí $q(x) \neq 0$.

Pro $x \in R(a, \delta_a)$ odhađujme

$$\begin{split} \left| \frac{f(x)}{g(x)} - \frac{L_f}{L_g} \right| &= \frac{|f(x)L_g - g(x)L_f|}{|g(x)||L_g|} = \frac{|f(x)L_g - L_fL_g + L_fL_g - g(x)L_f|}{|g(x)||L_g|} \\ &\leq \frac{|L_g||f(x) - L_f| + |L_f||L_g - g(x)|}{|g(x)||L_g|} \\ &= \frac{1}{|g(x)|} |f(x) - L_f| + \frac{|L_f|}{|g(x)||L_g|} |L_g - g(x)| \\ &< \frac{2}{|L_g|} |f(x) - L_f| + \frac{2|L_f|}{|L_g|^2} |L_g - g(x)| \\ &\leq c(|f(x) - L_f| + |L_g - g(x)|) \end{split}$$

pro $c := \max(2/|L_q|, 2|L_f|/|L_q|^2)$.

Ať je nyní dáno $\varepsilon > 0$. K číslu $\varepsilon/2c$ existují z definice limity $\delta_1, \delta_2 > 0$ taková, že

$$\forall x \in R(a, \delta_1) : |g(x) - L_g| < \frac{\varepsilon}{2c},$$

$$\forall x \in R(a, \delta_2) : |f(x) - L_f| < \frac{\varepsilon}{2c}.$$

Položíme-li nyní $\delta \coloneqq \min(\delta_1, \delta_2, \delta_q)$, pak pro $x \in R(a, \delta)$ platí

$$\left|\frac{f(x)}{g(x)} - \frac{L_f}{L_g}\right| < c(|f(x) - L_f| + |L_g - g(x)|) < c\left(\frac{\varepsilon}{2c} + \frac{\varepsilon}{2c}\right) = \varepsilon,$$

což dokazuje rovnost $\lim_{x\to a} (f/g)(x) = L_f/L_q$.

Varování 1.1.4

Předpoklad definovanosti výsledného výrazu ve znění věty o aritmetice limit je zásadní.

Uvažme funkce f(x) = x + c pro libovolné $c \in \mathbb{R}$, g(x) = -x. Pak platí

$$\lim_{x \to \infty} f(x) = \infty,$$

$$\lim_{x \to \infty} g(x) = -\infty$$

$$\lim_{x \to \infty} (f(x) + g(x)) = c,$$

ale $\lim_{x\to\infty} f(x) + \lim_{x\to\infty} g(x)$ není definován.

Cvičení 1.1.5

Dokažte tvrzení (b) a (c) ve větě 1.1.3.

Úloha 1.1.6

Spočtěte

$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}}.$$

Řešení. Jelikož limitním bodem je ∞, neliší se výpočet limity funkce v zásadě nijak od výpočtu limity sesterské posloupnosti. Stále je třeba identifikovat a vytknout "nejrychleji rostoucí" členy z čitatele a jmenovatele zlomky a poté se odkázat na aritmetiku limit.

Přímým dosazením zjistíme, že bez dalších úprav vychází limitní výraz ∞/∞ , na jehož základě nelze nic rozhodnout. Upravujeme tudíž následující způsobem:

$$\frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}} = \frac{x^{20}(2-\frac{3}{x^{20}}) \cdot x^{30}(3+\frac{2}{x^{30}})}{x^{50}(2+\frac{1}{x^{50}})} = \frac{x^{50}}{x^{50}} \cdot \frac{(2-\frac{3}{x^{20}})(3+\frac{2}{x^{30}})}{2+\frac{1}{x^{50}}}.$$

Předpokládajíce definovanost výsledného výrazu (již je třeba ověřit až na samotném konci výpočtu), smíme z aritmetiky limit tvrdit, že

$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}} = \lim_{x \to \infty} \frac{x^{50}}{x^{50}} \cdot \lim_{x \to \infty} \frac{(2-\frac{3}{x^{20}})(3+\frac{2}{x^{30}})}{2+\frac{1}{x^{50}}}.$$

Zřejmě platí

$$\lim_{x \to \infty} \frac{x^{50}}{x^{50}} = 1.$$

Opět použitím aritmetiky limit můžeme počítat

$$\lim_{x \to \infty} \frac{(2 - x^{20})(3 + \frac{2}{x^{30}})}{2 + \frac{1}{x^{50}}} = \frac{\lim_{x \to \infty} (2 - \frac{1}{x^{20}}) \cdot \lim_{x \to \infty} (3 + \frac{2}{x^{30}})}{\lim_{x \to \infty} (2 + \frac{1}{x^{50}})} = \frac{(2 - 0) \cdot (3 + 0)}{2 + 0} = 3.$$

Celkem tedy

$$\lim_{x \to \infty} \frac{(2x-3)^{20}(3x+2)^{30}}{(2x+1)^{50}} = 1 \cdot 3 = 3.$$

Protože výsledný výraz je definován, byla věta o aritmetice limit použita korektně.

Úloha 1.1.7

Spočtěte

$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9}$$

Řešení. Úlohy na výpočet limit funkcí v bodech jiných než ±∞ jsou fundamentálně rozdílné od výpočtu limit posloupností. Nelze již rozumně hovořit o "rychlosti růstu některého členu" či podobných konceptech. Výpočet se pochopitelně stále opírá o větu o aritmetice limit, ale často dožaduje jiných algebraických úprav včetně dělení mnohočlenů.

Dosazením x=3 do zadaného výrazu získáme 0/0, tedy je třeba pro výpočet limity výraz nejprve upravit.

Zde postupujeme takto:

$$\frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9} = \frac{\sqrt{x+13} - 2\sqrt{x+1}}{(x-3)(x+3)} \cdot \frac{\sqrt{x+13} + 2\sqrt{x+1}}{\sqrt{x+13} + 2\sqrt{x+1}}$$
$$= \frac{(x+13) - 4(x+1)}{(x-3)(x+3)(\sqrt{x+13} + 2\sqrt{x+1})}.$$

Nyní,

$$(x+13) - 4(x+1) = -3x + 9 = -3(x-3).$$

Pročež,

$$\frac{(x+13)-4(x+1)}{(x-3)(x+3)(\sqrt{x+13}+2\sqrt{x+1})} = \frac{-3}{(x+3)(\sqrt{x+13}+2\sqrt{x+1})}.$$

Z aritmetiky limit máme

$$\lim_{x \to 3} \frac{\sqrt{x+13} - 2\sqrt{x+1}}{x^2 - 9} = \lim_{x \to 3} \frac{-3}{(x+3)(\sqrt{x+13} + 2\sqrt{x+1})}$$
$$= \frac{-3}{(3+3)(\sqrt{3+13} + 2\sqrt{3+1})} = \frac{-3}{48}.$$

Protože je konečný výraz definovaný, směli jsme použít větu o aritmetice limit.

V důkazu věty o aritmetice limit jsme zmínili, že na jejím základě nelze nic rozhodnout v případě, že konečný výraz vyjde a/0, kde $a \in \mathbb{R}^*$. K rozřešení právě těchto situací slouží následující tvrzení.

Tvrzení 1.1.8

At f, g jsou reálné funkce, $a \in \mathbb{R}^*$. Dále at $\lim_{x \to a} f(x) = A \in \mathbb{R}^*$, A > 0, $\lim_{x \to a} g(x) = 0$ a existuje prstencové okolí bodu a, na němž je q kladná.

Potom $\lim_{x\to a} f(x)/g(x) = \infty$.

DůκAz. Ať je z předpokladu dáno $\eta > 0$ takové, že pro $x \in R(a, \eta)$ je q(x) > 0. Rozlišíme dva případy.

Prvním případ nastává, když $A \in \mathbb{R}$ je číslo. Mějme dáno $\varepsilon > 0$. Jelikož $\lim_{x \to a} f(x) = A$ a A > 0, nalezneme pro A/2 číslo $\delta_1 > 0$ takové, že pro $x \in R(a, \delta_1)$ platí

$$f(x) \in B\left(A, \frac{A}{2}\right) = \left(\frac{A}{2}, \frac{3A}{2}\right),$$

čili f(x) > A/2. Podobně, za předpokladu $\lim_{x \to a} g(x) = 0$ nalezneme $\delta_2 > 0$ takové, že pro $x \in R(a, \delta_2)$ platí

$$g(x) \in B\left(0, \frac{A}{2\varepsilon}\right) = \left(-\frac{A}{2\varepsilon}, \frac{A}{2\varepsilon}\right),$$

tedy speciálně $g(x) < A/2\varepsilon$, z čehož dostáváme $1/g(x) > 2\varepsilon/A$. Celkově pro $\delta = \min(\delta_1, \delta_2, \eta)$ a $x \in R(a, \delta)$ můžeme počítat

$$\left| \frac{f(x)}{g(x)} \right| = \frac{f(x)}{g(x)} > \frac{A}{2} \cdot \frac{2\varepsilon}{A} = \varepsilon,$$

kde první rovnost plyne z toho, že pro $x \in R(a, \delta)$ platí f(x) > 0 i g(x) > 0. To dokazuje, že $\lim_{x\to a} f(x)/g(x) = \infty$ v případě $A \in \mathbb{R}$.

Ošetřeme případ $A = \infty$. Argumentujíce analogicky předchozímu odstavci nalezneme $\delta_1 > 0$ takové, že pro $R(a,\delta_1)$ platí f(x)>1 a pro dané $\varepsilon>0$ nalezneme $\delta_2>0$ takové, že pro $x \in R(a, \delta_2)$ platí $g(x) < 1/\varepsilon$, a tedy $1/g(x) > \varepsilon$. Potom, pro $x \in R(a, \min(\eta, \delta_1, \delta_2))$ platí

$$\left| \frac{f(x)}{g(x)} \right| = \frac{f(x)}{g(x)} > 1 \cdot \varepsilon = \varepsilon,$$

což dokazuje opět, že $\lim_{x\to a} f(x)/g(x) = \infty$ i v případě $A = \infty$.

Tím je důkaz završen.

Poznámka 1.1.9

Předchozí tvrzení pochopitelně platí i při záměně ostrých nerovností v jeho znění. Konkrétně, za předpokladů

(<>)
$$\lim_{x\to a} f(x) = A < 0$$
 a $g(x) > 0$ na $R(a, \eta)$ platí $\lim_{x\to a} f(x)/g(x) = -\infty$;

(><)
$$\lim_{x\to a} f(x) = A > 0$$
 a $g(x) < 0$ na $R(a, \eta)$ platí $\lim_{x\to a} f(x)/g(x) = -\infty$; (<<) $\lim_{x\to a} f(x) = A < 0$ a $g(x) < 0$ na $R(a, \eta)$ platí $\lim_{x\to a} f(x)/g(x) = \infty$.

(<<)
$$\lim_{x\to a} f(x) = A < 0$$
 a $q(x) < 0$ na $R(a, \eta)$ platí $\lim_{x\to a} f(x)/q(x) = \infty$.

Důkazy všech těchto případů jsou identické důkazu původního tvrzení.

Posledním základním tvrzením o limitách funkcí je vztah limit a uspořádání reálných čísel, vlastně jakási varianta lemmatu ?? pro posloupnosti.

Věta 1.1.10 (O srovnání)

 $A f a \in \mathbb{R}^* a f, g, h$ jsou reálné funkce.

(a) Pokud

$$\lim_{x \to a} f(x) > \lim_{x \to a} g(x),$$

pak existuje prstencové okolí bodu a, na němž f > g.

(b) Existuje-li prstencové okolí bodu a, na němž platí $f \leq g$, pak

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

(c) Existuje-li prstencové okolí a, na němž $f \le h \le g$ a $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = A \in \mathbb{R}^*$, pak existuje rovněž $\lim_{x\to a} h(x)$ a jest rovna A.

Důkaz. Položme $L_f \coloneqq \lim_{x \to a} f(x)$ a $L_g \coloneqq \lim_{x \to a} g(x)$.

Dokážeme (a). Protože $L_f>L_g$, existuje $\varepsilon>0$ takové, že $L_f-L_g>2\varepsilon$. K tomuto ε nalezneme z definice limity $\delta_f>0$ a $\delta_g>0$ taková, že

$$\forall x \in R(a, \delta_f) : f(x) \in B(L_f, \varepsilon),$$

 $\forall x \in R(a, \delta_q) : g(x) \in B(L_q, \varepsilon).$

To ovšem znamená, že pro $x \in R(a, \min(\delta_f, \delta_q))$ platí jak

$$f(x) > L_f - \varepsilon$$
,

tak

$$g(x) < L_g + \varepsilon,$$

čili

$$f(x) - g(x) > L_f - \varepsilon - L_g - \varepsilon = L_f - L_g - 2\varepsilon > 0$$
,

jak jsme chtěli.

Část (b) dokážeme sporem. Ať $L_f > L_g$. Podle (a) pak existuje prstencové okolí $R(a, \delta)$ bodu a, na němž f > g. Ovšem, podle předpokladu existuje rovněž okolí $R(a, \eta)$ bodu a, kde zase $f \le g$. Vezmeme-li tudíž $x \in R(a, \min(\delta, \eta))$, pak $f(x) > g(x) \ge f(x)$, což je spor.

V důkazu (c) rozlišíme dva případy. Položme $L \coloneqq L_f = L_g$ a ať nejprve $L \in \mathbb{R}$. Pro dané $\varepsilon > 0$ existují $\delta_f, \delta_g > 0$ taková, že pro $x \in R(a, \delta_f)$ platí

$$L - \varepsilon < f(x) < L + \varepsilon$$

a pro $x \in R(a, \delta_q)$ zas

$$L - \varepsilon < q(x) < L + \varepsilon$$
.

Z předpokladu existuje prstencové okolí $R(a,\eta)$, na němž $f \leq h \leq g$. Pročež, pro $x \in R(a,\min(\delta_f,\delta_g,\eta))$ máme

$$L - \varepsilon < f(x) \le h(x) \le q(x) < L + \varepsilon$$

z čehož plyne $h(x) \in B(L, \varepsilon)$, neboli $\lim_{x \to a} h(x) = L$.

Pro $L=\infty$ postupujeme jednodušeji, neboť stačí dolní odhad. K danému $\varepsilon>0$ nalezneme $\delta>0$ takové, že pro $x\in R(a,\delta)$ platí

$$f(x) > \frac{1}{\varepsilon}.$$

Pak pro $x \in R(a, \min(\delta, \eta))$ máme odhad

$$\frac{1}{\varepsilon} < f(x) \le h(x),$$

čili $h(x) \in B(\infty, \varepsilon)$, což dokazuje rovnost $\lim_{x \to a} h(x) = \infty$.

Případ $L = -\infty$ se ošetří horním odhadem funkcí g.

Cvičení 1.1.11

Spočtěte následující limity funkcí

$$\lim_{x \to 1} \frac{3x^4 - 4x^3 + 1}{(x - 1)^2},$$

$$\lim_{x \to 0} \frac{3x + \frac{2}{x}}{x + \frac{4}{x}},$$

$$\lim_{x \to -\infty} \sqrt{x^2 + x} - x,$$

$$\lim_{x \to \infty} \frac{\sqrt{x - 1} - 2x}{x - 7}.$$

Posledním tvrzením, které si v této sekci dokážeme, hovoří o způsobu výpočtu limit složených funkcí. Závěr jeho je velmi přirozený – má-li funkce g limitu A v bodě a a funkce f limitu B v bodě A, pak $f \circ g$ má limitu B v bodě a, jak by jeden čekal. Toto tvrzení má však své předpoklady; pro libovolné dvě funkce pravdivé není.

Věta 1.1.12 (Limita složené funkce)

Ať $a, A, B \in \mathbb{R}^*$ a f, g jsou reálné funkce. Nechť navíc platí

$$\lim_{x \to a} g(x) = A \quad a \quad \lim_{y \to A} f(y) = B.$$

Je-li splněna **aspoň jedna** z podmínek:

R Existuje prstencové okolí a, na němž platí $q \neq A$.

1.2 Spojité funkce

Vlastnost spojitosti funkce či zobrazení je zcela jistě tou nejdůležitější především v topologii (disciplíně zpytující "tvar" prostoru), kde se vlastně s jinými zobrazením než spojitými vůbec nepracuje.

Intuitivně je zobrazení *spojité* v moment, kdy zobrazuje souvislé části prostoru na souvislé části prostoru. Souvislostí se zde myslí vlastnost konkrétní podmnožiny prostoru (třeba \mathbb{R}^n), kdy z každého bodu do každého jiného bodu existuje cesta (křivka v prostoru), která tuto podmnožinu neopustí (obrázek 1.6).

Obrázek 1.6: Souvislá podmnožina \mathbb{R}^2 .

Spojité zobrazení lze tudíž definovat tím způsobem, že dva obrazy bodů lze vždy spojit křivkou, která neopouští obraz souvislé podmnožiny, ve které leží jejich vzory. Jednodušeji, spojité zobrazení nesmí "roztrhnout" souvislou podmnožinu prostoru, i když do ní může například "udělat díry".

Obrázek 1.7: Spojité zobrazení $f: \mathbb{R}^2 \to \mathbb{R}^2$.

V první dimenzi je situace pochopitelně výrazně jednodušší. Souvislou podmnožinou $\mathbb R$ je *interval*, a tedy spojité zobrazení je takové, které zobrazuje interval na interval. Takto se však, primárně z technických důvodů, spojité zobrazení obyčejně nedefinuje a vlastnost zachování intervalu se musí dokázat.

Pojem limity funkce umožňuje definovat spojitou funkci jako tu, která se v každém bodě blíží ke své skutečné hodnotě, tj. nedělá žádné "skoky".

Definice 1.2.1 (Spojitá funkce)

Ať $a \in \mathbb{R}$. Řekneme, že reálná funkce f je spojitá v bodě a, pokud

$$\lim_{x \to a} f(x) = f(a).$$

1.2. Spojité funkce 21

Poznámka 1.2.2 (Jednostranně spojitá funkce)

Obdobně předchozí definici tvrdíme, že funkce f je spojitá zleva, resp. zprava, v bodě $a \in \mathbb{R}$, pokud $\lim_{x\to a^-} f(x) = f(a)$, resp. $\lim_{x\to a^+} f(x) = f(a)$. Ona funkce je pak spojitá v bodě a, když je v a spojitá zleva i zprava.

(a) Funkce f spojitá zleva (ale ne zprava) v bodě a. (b) Funkce f spojitá zprava (ale ne zleva) v bodě a.

Obrázek 1.8: Jednostranná spojitost

Definice 1.2.3 (Funkce spojitá na intervalu)

Ať $I \subseteq \mathbb{R}$ je interval. Řekneme, že reálná funkce f je spojitá na I, je-li

- spojitá v každém vnitřním bodě I,
- spojitá zprava v levém krajním bodě *I*, pokud tento leží v *I* a
- spojitá zleva v pravém krajním bodě I, pokud tento leží v I.

Nyní se jmeme dokázat, že spojité funkce na intervalu (souvislé množině) mají skutečně ony přirozené vlastnosti, pomocí nichž jsme je popsali v úvodu do této sekce. Konkrétně dokážeme, že spojité funkce zobrazují interval na interval. K tomu poslouží ještě jedno pomocné tvrzení, známé též pod přespříliš honosným názvem "Bolzanova věta o nabývání mezihodnot".

Věta 1.2.4 (Bolzanova)

Nechť f je reálná funkce spojitá na [a,b] a f(a) < f(b). Potom pro každé $y \in (f(a),f(b))$ existuje $x \in (a,b)$ takové, že f(x) = y.

Důкаz. Ať je $y \in (f(a), f(b))$ dáno. Označme

$$M \coloneqq \{z \in [a, b] \mid f(z) < y\}.$$

Ukážeme, že množina M má konečné supremum. K tomu potřebujeme ověřit, že je neprázdná a shora omezená. Protože f(a) < y, jistě $a \in M$. Podobně, jelikož y < f(b), je b horní závorou M. Existuje tedy sup M, které označíme S. Jistě platí $S \in (a,b)$. Ukážeme, že f(S) = y vyloučením možností f(S) < y a f(S) > y.

Ať nejprve f(S) < y. Protože f je z předpokladu spojitá (čili $\lim_{c \to S} f(c) = f(S) < y$), existuje $\varepsilon > 0$ takové, že pro každé $c \in (S, S + \varepsilon)$ platí f(c) < y. To je ovšem spor s tím, že S je horní závorou M. Nutně tedy $f(S) \ge y$.

Ať nyní f(S)>y. Opět ze spojitosti f nalezneme $\varepsilon>0$ takové, že pro $c\in (S-\varepsilon,S)$ platí f(c)>y. Dostáváme spor s tím, že S je **nejmenší** horní závorou M.

Celkem vedly obě ostré nerovnosti ke sporu, tudíž f(S) = y a důkaz je hotov.