Laboratorio di Intelligenza artificiale

Vincenzo Bonnici\ Corso di Laurea Magistrale in Scienze Informatiche\ Dipartimento di Scienze Matematiche, Fisiche e Informatiche\ Università degli Studi di Parma\ 2022-2023

Strumenti di sviluppo e analisi

Moduli e pacchetti

In python un modulo è un qualsiasi file con estensione .py che può essere raggiunto dall'ambiente in esecuzione.

Ovviamente, vi è una forte analogia con i package di Java o con le librerie di C++, tuttavia l'organizzazione di moduli e sotto-moduli è gestita in modo diverso.

Se vogliamo strutturare le funzionalità del nostro software in moduli e sotto-moduli, allora dobbiamo creare una gerarchia di cartelle e collocare dentro di esse specifici file (__init.py__) dentro esse. In questo caso, la cartella prende il nome di package.

Decample package

Noi ci occuperemo solo dei moduli, senza addentrarci in come si struttura in software o una API complessa in python.

Un modulo è quindi un qualsiasi file nomemodulo.py della cartella corrente e possiamo richiamarlo con [from] import.

contenuto del file modulo.py # def somma(a,b): return a+b def sottrazione(a,b): return a-b

```
In [2]: import modulo
modulo.somma(1,2)

Out[2]: 
In [3]: from modulo import *
somma(1,2)

Out[3]: 
In [4]: from modulo import somma
somma(1,2)

Out[4]: 3
```

Python Standard Library

Come abbiamo già visto nel caso di itertools, python ci fornisce delle librerie le cui funzioni non sono buit-in nel linguaggio ma possono essere richiamate importando tali

127.0.0.1:8888/lab? 1/44

librerie. L'insieme di queste librerie è detto Python Standard Library.

Di seguito diamo alcuni esempi di quelle più utili per questo corso.

La lista completa è disponibile all'indirizzo https://docs.python.org/3/library/

sys per la gestione di parametri dell'ambiente corrente. Ad esempio, sys.argv ci permette di leggere i parametri da linea di comando quando lanciamo uno script. sys.argv[0] è il nome dello script corrente. sys.argv[1] è il primo parametro passato allo script. len(sys.argv) è il numero di parametri.

getopt per una gestione più sofisticata dei parametri di uno script.

os utile per gestire file, percorsi, processi e tutto quello che riguarda l'interfacciamento con il sistema.

```
math per le funzioni matematiche, come: floor, ceil, factorial, log, sqrt, cos, etc...
```

```
statistics per le funzioni statistiche: mean, stder, etc...
```

Espressioni regolari

Naturalmente, python fornisce un modulo built-in per le espressioni regolari, chiamato re .

Una espressione regolare può essere utilizzata in modo diretto, es

```
import re
re.search('(?<=abc)def', 'abcdef')</pre>
```

```
In [5]:
        import re
         res = re.search('(?<=abc)def', 'abcdef')</pre>
         if res:
             print('trovata')
             print(res)
         print('-'*40)
         res = re.search('den', 'abcdef')
         if res:
             print('trovata')
         else:
             print('non trovata')
             print(res)
        trovata
        <re.Match object; span=(3, 6), match='def'>
        non trovata
        None
```

Tuttavia, è consigliabile **compilare** le espressioni per una questione di efficienza:

```
pattern = re.compile('(?<=abc)def')</pre>
```

127.0.0.1:8888/lab? 2/44

Se il nostro scopo è la semplice verifica di una espressione regolare all'interno di una stringa target, allora match(regex, target_string) ci permette di farlo in modo efficiente e senza scrivere troppo codice:

```
name = 'ENSG_0000923.13'
if re.match('^ENS[GTP][0-9]+(\.[0-9]+)*$', name):
    print('The name is an Ensembl ID')
else:
    print('The name is not an Ensembl ID')
```

Tra le funzioni principali di un oggetto di espressione regole compilato troviamo:

```
.search(target_string[, start, end]) per la ricerca di una regex.
```

.findall(target_string[, start, end]) che ci torna sotto forma di lista tutte le occorrenze del pattern.

```
In [6]: target_string = """
    Emma is a basketball player who was born on June 17, 1993.
    She played 112 matches with scoring average 26.12 points per game.
    Her weight is 51 kg."""
    result = re.findall(r"\d+", target_string)
    print(result)

['17', '1993', '112', '26', '12', '51']
```

.split(target_string) per tokenizzare una stringa in base ad una espressione regolare da utilizzare come punto per la divisione.

```
.sub(replacement, target_string) per sostituire un determinato pattern.
```

In generale, gli oggetti ritornati da questi metodi sono dei **match objects** che ci permette di avere qualche informazione sul matching specifico. Tale oggetto è None se la ricerca del pattern non è andata a buon fine

Se invece vogliamo navigare tra le occorrenze del pattern allora possiamo usare re.finditer che ci ritorna un oggetto iterabile.

```
In [7]: target_string = """
Emma is a basketball player who was born on June 17, 1993.
She played 112 matches with a scoring average of 26.12 points per game.
Her weight is 51 kg."""

# finditer() with regex pattern and target string
# \d{2} to match two consecutive digits
result = re.finditer(r"\d{2}", target_string)

# print all match object
for match_obj in result:
    # print each re.Match object
    print(match_obj)

# extract each matching number
    print(match_obj.group())
```

127.0.0.1:8888/lab? 3/44

```
<re.Match object; span=(50, 52), match='17'>
17
<re.Match object; span=(54, 56), match='19'>
19
<re.Match object; span=(56, 58), match='93'>
93
<re.Match object; span=(72, 74), match='11'>
11
<re.Match object; span=(110, 112), match='26'>
26
<re.Match object; span=(113, 115), match='12'>
12
<re.Match object; span=(148, 150), match='51'>
51
```

Librerie per la Data Science

Tra le librearie più importanti per l'analisi dei dati e il loro sfruttamento abbiamo:

- NumPy: aggiunge il support per array (multi-dimensionali) e funzioni matematiche per lavorare con tali oggetti. link
- SciPy: per il calcolo scientifico. Contiene moduli per: ottimizzazione, algebra, integrazione, interpolazione, FFT, processamento di segnali, ODE e altri. link
- Pandas: per la manipolazione e l'analisi di dati strutturati. link
- SciKit-Learn: framework per il machine learning a scopo educativo. link

e per la visuzalizzazione:

- matplotlib: basata su NumPy, fornisce delle API per la visualizzazione di grafici all'interno di script python. Il modulo pyplot ci permette di avere dei grafici in stile MATLAB. link
- **Seaborn**: basata su matplotlib ma fornisce delle interfaccie più *attraenti* e interattive. Simile alla libreria di R **ggplot2**. link

Pandas

Pandas è una libreria per la gestione dei dati e per una analisi dei dati esplirativa.

Non è una libreria della PSL ma si trova in tutti i repository principali di ptyhon.

Per installarla con pip:

```
pip install pandas
```

Si ispira ai frame di R ed è pensata per essere utilizzata tramite programmazione funzionale piuttosto che tramite programazione imperativa pura.

Inoltre, presenta delle funzionalità che sono simili alle funzionalità di SQL.

Le strutture dati principali sono DataFrame e Series.

127.0.0.1:8888/lab? 4/44

DataFrame ci permette di strutturare i nostri dati secondo un **frame**, ovvero una tabella a cui vengono aggiunti dei metadati per la gestione degli indici di riga e colonna.

Creazione di un dataframe vuoto e popolamento

Possiamo creare un dataframe da zero aggiungendo manuamente una colonna alla volta, stando attenti all'ordine dei dati.

```
import pandas as pd
df = pd.DataFrame()
print('-'*40)
display(df)
print('-'*40)
print(len(df))
```

Utilizziamo l'operatore di slice per selezionare le colonne o per crearne di nuove.

Vincoli: i valori all'interno di una singola colonna devono essere di tipo omogeneo.

```
In [9]: nomi = ['Vincenzo', 'Flavio', 'Alessandro']
  eta = [38, 41, 45]

df['nomi'] = nomi
  df['eta'] = eta

display(df)
print('-'*40)
print(len(df)) # numero di righe del dataframe
```

```
nomi eta

0 Vincenzo 38

1 Flavio 41

2 Alessandro 45
```

Si può anche utilizzare l'operatore . per richiamare una colonna come se fosse un attibuto della istanza di classe DataFrame, se e solo se la colonna è già presente nel dataframe.

127.0.0.1:8888/lab? 5/44

Caricamento di un dataframe da file

In alternativa possiamo caricare/salvare un datafrma da n file csv, json, excel, stata, hfd5, sas, etc... (non tratteremo i vair modi e paramteri di caricamneto e salvataggio su file).

```
In [11]: df = pd.read_csv("Salaries.csv")
    display(df)
```

	rank	discipline	phd	service	sex	salary
0	Prof	В	56	49	Male	186960
1	Prof	А	12	6	Male	93000
2	Prof	А	23	20	Male	110515
3	Prof	А	40	31	Male	131205
4	Prof	В	20	18	Male	104800
73	Prof	В	18	10	Female	105450
74	AssocProf	В	19	6	Female	104542
75	Prof	В	17	17	Female	124312
76	Prof	А	28	14	Female	109954
77	Prof	А	23	15	Female	109646

78 rows × 6 columns

Tipi di dato

I tipi di dati dipsonibili in pandas non sono quelli nativi di python. Perchè pandas serve a gestire e dialogare con diversi formati e quindi piattaforme molto diverse da python.

I tipi di dato principale sono:

- object che corrisponde a string
- int64 che corriponde a int
- float64 che corrisponde a float
- datetime64 che è molto simile a datetime

Quando si carica un dataframe da un file, i tipi di dato di ogni colonna vengono interpretati in base al contenuto della colonna.

Come capire il tipo di dato di una colonna?

```
In [12]: print(df['rank'].dtype)
    print(df['salary'].dtype)
    print('-'*40)

df.dtypes
```

127.0.0.1:8888/lab? 6/44

```
object
int64
------
Out[12]: rank object
discipline object
phd int64
service int64
sex object
salary int64
dtype: object
```

Tuttavia è possibile forzare il tipo di dato, stando attenti che l'interno contenuto della colonna sia compatibile con il nuovo tipo di dato.

Ricordiamoci che, in pieno stile python, molte funzioni creano delle copie della strtuttura dati (o della fatte di struttura dati) su cui le lanciamo.

```
In [13]: df['salary_str'] = df['salary'].astype(str)
    print(df['salary_].dtype)
    print(df['salary_str'].dtype)

int64
    object
```

Attributi di un DataFrame

Ecco aluni attributi principali di un dataframe.

```
In [14]:
         print('tipi di ogni colonna \n')
         print(df.dtypes)
         print('-'*40)
         print('nomi delle colonne, in ordine da sx a dx \n')
         print(df.columns)
         print('-'*40)
         print('etichette sulle righe e etichette sulle colonne \n')
         # attenzione, le etichette sono n realtà degli indici
         print(df.axes)
         print('-'*40)
         print('numero di dimensioni \n')
         # ops, lo si può utilizzare per i data warehouse
         print(df.ndim)
         print('-'*40)
         print('numero di righe per ogni dimensione \n')
         print(df.shape)
         print('-'*40)
         print('numero di elementi \n')
         print(df.size, len(df) ,len(df)*len(df.columns))
         print('-'*40)
         print('converte il dataframe in una struttura dati numpy \n')
         print(df.values)
```

127.0.0.1:8888/lab? 7/44

```
tipi di ogni colonna
rank
             object
discipline
           object
phd
             int64
service
             int64
sex
             object
salary
             int64
salary_str object
dtype: object
nomi delle colonne, in ordine da sx a dx
Index(['rank', 'discipline', 'phd', 'service', 'sex', 'salary', 'salary_str'], dty
pe='object')
etichette sulle righe e etichette sulle colonne
[RangeIndex(start=0, stop=78, step=1), Index(['rank', 'discipline', 'phd', 'servic
e', 'sex', 'salary', 'salary_str'], dtype='object')]
-----
numero di dimensioni
numero di righe per ogni dimensione
(78, 7)
numero di elementi
546 78 546
converte il dataframe in una struttura dati numpy
[['Prof' 'B' 56 49 'Male' 186960 '186960']
 ['Prof' 'A' 12 6 'Male' 93000 '93000']
 ['Prof' 'A' 23 20 'Male' 110515 '110515']
 ['Prof' 'A' 40 31 'Male' 131205 '131205']
 ['Prof' 'B' 20 18 'Male' 104800 '104800']
 ['Prof' 'A' 20 20 'Male' 122400 '122400']
 ['AssocProf' 'A' 20 17 'Male' 81285 '81285']
 ['Prof' 'A' 18 18 'Male' 126300 '126300']
 ['Prof' 'A' 29 19 'Male' 94350 '94350']
 ['Prof' 'A' 51 51 'Male' 57800 '57800']
 ['Prof' 'B' 39 33 'Male' 128250 '128250']
 ['Prof' 'B' 23 23 'Male' 134778 '134778']
 ['AsstProf' 'B' 1 0 'Male' 88000 '88000']
 ['Prof' 'B' 35 33 'Male' 162200 '162200']
 ['Prof' 'B' 25 19 'Male' 153750 '153750']
 ['Prof' 'B' 17 3 'Male' 150480 '150480']
 ['AsstProf' 'B' 8 3 'Male' 75044 '75044']
 ['AsstProf' 'B' 4 0 'Male' 92000 '92000']
 ['Prof' 'A' 19 7 'Male' 107300 '107300']
 ['Prof' 'A' 29 27 'Male' 150500 '150500']
 ['AsstProf' 'B' 4 4 'Male' 92000 '92000']
 ['Prof' 'A' 33 30 'Male' 103106 '103106']
 ['AsstProf' 'A' 4 2 'Male' 73000 '73000']
 ['AsstProf' 'A' 2 0 'Male' 85000 '85000']
 ['Prof' 'A' 30 23 'Male' 91100 '91100']
 ['Prof' 'B' 35 31 'Male' 99418 '99418']
 ['Prof' 'A' 38 19 'Male' 148750 '148750']
 ['Prof' 'A' 45 43 'Male' 155865 '155865']
 ['AsstProf' 'B' 7 2 'Male' 91300 '91300']
```

127.0.0.1:8888/lab? 8/44

```
['Prof' 'B' 21 20 'Male' 123683 '123683']
['AssocProf' 'B' 9 7 'Male' 107008 '107008']
['Prof' 'B' 22 21 'Male' 155750 '155750']
['Prof' 'A' 27 19 'Male' 103275 '103275']
['Prof' 'B' 18 18 'Male' 120000 '120000']
['AssocProf' 'B' 12 8 'Male' 119800 '119800']
['Prof' 'B' 28 23 'Male' 126933 '126933']
['Prof' 'B' 45 45 'Male' 146856 '146856']
['Prof' 'A' 20 8 'Male' 102000 '102000']
['AsstProf' 'B' 4 3 'Male' 91000 '91000']
['Prof' 'B' 18 18 'Female' 129000 '129000']
['Prof' 'A' 39 36 'Female' 137000 '137000']
['AssocProf' 'A' 13 8 'Female' 74830 '74830']
['AsstProf' 'B' 4 2 'Female' 80225 '80225']
['AsstProf' 'B' 5 0 'Female' 77000 '77000']
['Prof' 'B' 23 19 'Female' 151768 '151768']
['Prof' 'B' 25 25 'Female' 140096 '140096']
['AsstProf' 'B' 11 3 'Female' 74692 '74692']
['AssocProf' 'B' 11 11 'Female' 103613 '103613']
['Prof' 'B' 17 17 'Female' 111512 '111512']
['Prof' 'B' 17 18 'Female' 122960 '122960']
['AsstProf' 'B' 10 5 'Female' 97032 '97032']
['Prof' 'B' 20 14 'Female' 127512 '127512']
['Prof' 'A' 12 0 'Female' 105000 '105000']
['AsstProf' 'A' 5 3 'Female' 73500 '73500']
['AssocProf' 'A' 25 22 'Female' 62884 '62884']
['AsstProf' 'A' 2 0 'Female' 72500 '72500']
['AssocProf' 'A' 10 8 'Female' 77500 '77500']
['AsstProf' 'A' 3 1 'Female' 72500 '72500']
['Prof' 'B' 36 26 'Female' 144651 '144651']
['AssocProf' 'B' 12 10 'Female' 103994 '103994']
['AsstProf' 'B' 3 3 'Female' 92000 '92000']
['AssocProf' 'B' 13 10 'Female' 103750 '103750']
['AssocProf' 'B' 14 7 'Female' 109650 '109650']
['Prof' 'A' 29 27 'Female' 91000 '91000']
['AssocProf' 'A' 26 24 'Female' 73300 '73300']
['Prof' 'A' 36 19 'Female' 117555 '117555']
['AsstProf' 'A' 7 6 'Female' 63100 '63100']
['Prof' 'A' 17 11 'Female' 90450 '90450']
['AsstProf' 'A' 4 2 'Female' 77500 '77500']
['Prof' 'A' 28 7 'Female' 116450 '116450']
['AsstProf' 'A' 8 3 'Female' 78500 '78500']
['AssocProf' 'B' 12 9 'Female' 71065 '71065']
['Prof' 'B' 24 15 'Female' 161101 '161101']
['Prof' 'B' 18 10 'Female' 105450 '105450']
['AssocProf' 'B' 19 6 'Female' 104542 '104542']
['Prof' 'B' 17 17 'Female' 124312 '124312']
['Prof' 'A' 28 14 'Female' 109954 '109954']
['Prof' 'A' 23 15 'Female' 109646 '109646']]
```

Metodi di un dataframe

Pandas mette a disposizione dei metodi per analizzare in modo veloce un dataframe per l'analisi esplorativa e quindi per aver ein modo veloce delle statistiche sul dataframe.

```
In [15]: df.describe()
```

127.0.0.1:8888/lab? 9/44

service

salary

phd

Out[15]:

```
count 78.000000
                          78.000000
                                        78.000000
                                    108023.782051
                19.705128
                          15.051282
          mean
                12.498425
                          12.139768
                                     28293.661022
            std
                 1.000000
                           0.000000
                                     57800.000000
           min
           25%
                10.250000
                           5.250000
                                     88612.500000
           50%
                18.500000
                          14.500000
                                    104671.000000
           75%
                27.750000
                          20.750000
                                    126774.750000
           max 56.000000 51.000000
                                    186960.000000
          print('valore minimo per ogni colonna')
In [16]:
          print(df.min())
          print('-'*40)
          print('valore massimo per ogni colonna')
          print(df.max())
          valore minimo per ogni colonna
                        AssocProf
          rank
          discipline
                                 Α
          phd
                                 1
                                 0
          service
                           Female
          sex
          salary
                            57800
                           102000
          salary_str
          dtype: object
          valore massimo per ogni colonna
          rank
                          Prof
          discipline
                             В
                             56
          phd
                             51
          service
          sex
                          Male
          salary
                        186960
                         99418
          salary_str
          dtype: object
          print('medie, mediane e deviazioni standard')
In [17]:
          print("!!! SOLO per colonne di dati numerici !!!")
          df.mean()
          medie, mediane e deviazioni standard
          !!! SOLO per colonne di dati numerici !!!
          /tmp/ipykernel_677/2565118952.py:4: FutureWarning: Dropping of nuisance columns in
          DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version
          this will raise TypeError. Select only valid columns before calling the reductio
          n.
            df.mean()
         phd
                        1.970513e+01
Out[17]:
          service
                        1.505128e+01
                        1.080238e+05
          salary
          salary str
                                  inf
          dtype: float64
          df['salary'].median()
In [18]:
```

127.0.0.1:8888/lab?

```
Out[18]: 104671.0
```

```
In [19]: df.std()
```

/tmp/ipykernel_677/3390915376.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reductio n.

df.std()

Out[19]: phd 12.498425 service 12.139768 salary 28293.661022

dtype: float64

Groupby

E' possibile raggrupare i dati con l'operatore groupby , molto simile all'omonimo operatore SQL.

L'operatore divie i dati in gruppi in base al criterio specificato, e poi possibile calcolare delle statistiche per ognuno dei gruppi creati.

```
df_gby_rank = df.groupby(['rank'])
In [20]:
          df_gby_rank.mean()
Out[20]:
                          phd
                                                  salary
                                  service
               rank
                     15.076923 11.307692
                                           91786.230769
          AssocProf
            AsstProf
                      5.052632
                                 2.210526
                                           81362.789474
               Prof 27.065217 21.413043 123624.804348
```

Nel caso in ci il criterio di raggrupamento coinvolge più colonne, allora verrà calcolato il prodotto cartesiano delle colonne coinvolte e il raggruppamento verrà fatto secondo il risultato di tale prodotto.

```
df gby = df.groupby(['rank', 'discipline'])
In [21]:
           df_gby.mean()
Out[21]:
                                      phd
                                              service
                                                               salary
                     discipline
                rank
           AssocProf
                                            15.800000
                                                        73959.800000
                                 18.800000
                                 12.750000
                                                       102927.750000
                              В
                                             8.500000
            AsstProf
                                  4.375000
                                             2.125000
                                                        74450.000000
                              Α
                                  5.545455
                                             2.272727
                                                        86390.272727
                Prof
                                 28.086957
                                            20.434783
                                                       111935.695652
                                 26.043478
                                                       135313.913043
                                            22.391304
```

df_gby.mean()

df_gby = df.groupby(['rank', 'discipline','sex'])

127.0.0.1:8888/lab?

Out[22]:	phd	service	salary
046[22].	piid	301 1100	Jaiai y

rank	discipline	sex					
AssocProf	А	Female	18.500000	15.500000	72128.500000		
		Male	20.000000	17.000000	81285.000000		
	В	Female 13.500000 8.8	8.833333	99435.666667			
		Male	10.500000	7.500000	113404.000000		
AsstProf	Α	Female	4.833333	2.500000	72933.333333		
		Male	3.000000	1.000000	79000.000000		
	В	Female	6.600000	2.600000	84189.800000		
		Male	4.666667	2.000000	88224.000000		
Prof	A B	Α	Α	Female	26.500000	16.125000	109631.875000
		Male	28.933333	22.733333	113164.400000		
		В	Female	21.500000	17.900000	131836.200000	
		Male	29.538462	25.846154	137989.076923		

Di defautl, groupby ordina i dati in uscita, ma questo può rallentare le operazioni, e', quindi, possibile disattivare l'ordinamento dei dati.

Filtrare e selezionare i dati in un DataFrame

E' possibile selezione una porzione di un dataframe selezionando solo le righe per cui una o più determinate colonne hanne dei valori ben specifici.

Il risultato è una **copia** del dataframe originale. **Tuttavia**, vengono mantenute le etichette originali sulle righe. In questo esempio, le righe con etichetta 8 e 9 non hanno passato il filtraggio.

```
In [24]: df_sub = df[ df['salary'] > 120000 ]
    df_sub.head()
```

127.0.0.1:8888/lab? 12/44

Out[24]:		rank	discipline	phd	service	sex	salary	salary_str
	0	Prof	В	56	49	Male	186960	186960
	3	Prof	А	40	31	Male	131205	131205
	5	Prof	А	20	20	Male	122400	122400
	7	Prof	А	18	18	Male	126300	126300
	10	Prof	В	39	33	Male	128250	128250

```
In [25]: df_sub = df[ df['sex'] == 'Female' ]
    df_sub.head()
```

Out[25]:		rank	discipline	phd	service	sex	salary	salary_str
	39	Prof	В	18	18	Female	129000	129000
	40	Prof	А	39	36	Female	137000	137000
	41	AssocProf	А	13	8	Female	74830	74830
	42	AsstProf	В	4	2	Female	80225	80225
	43	ΔsstProf	В	5	0	Female	77000	77000

L'operatore di slicing

L'operatore di slicing ci permette di selezionare righe e colonne tramite la loro posizione o la loro etichetta, e quindi di estrarre una determinata portzione/slice del dataframe creando sempre una copia.

In base all'argomento dell'operator di slicing, selezioneremo colonne oppure righe.

Se l'agormento è una strnga o una Isita di stringhe, allora l'operazione selezione le colonne.

Se l'argomento è un intervallo di interi (start:end) verrano estratte le righe in base alla loro posizione (che non è la loro etichetta).

```
In [27]: print('selezioniamo più riche in base alla loro posizione')
    df[10:20]
```

selezioniamo più riche in base alla loro posizione

127.0.0.1:8888/lab? 13/44

Out[27]: rank discipline phd service salary salary_str sex 10 Prof В 39 33 Male 128250 128250 11 Prof 23 134778 В 23 Male 134778 12 AsstProf В 1 Male 88000 88000 0 13 35 162200 162200 Prof В 33 Male 14 Prof В 25 19 Male 153750 153750 15 В 17 3 150480 150480 Prof Male **16** AsstProf В 8 3 Male 75044 75044 92000 92000 17 AsstProf В 4 0 Male 18 Prof Α 19 Male 107300 107300 19 Prof 29 Male 150500 150500

In [28]: print('selezioniamo più riche in base alla loro posizione e NON etichetta')
df[df['salary'] > 120000][1:10]

selezioniamo più riche in base alla loro posizione e NON etichetta

Out[28]:		rank	discipline	phd	service	sex	salary	salary_str
	3	Prof	А	40	31	Male	131205	131205
	5	Prof	А	20	20	Male	122400	122400
	7	Prof	А	18	18	Male	126300	126300
	10	Prof	В	39	33	Male	128250	128250
	11	Prof	В	23	23	Male	134778	134778

 13
 Prof
 B
 35
 33
 Male
 162200
 162200

 14
 Prof
 B
 25
 19
 Male
 153750
 153750

19 Prof A 29 27 Male 150500 150500

3

Per selezionare righe e colonne è necessario combinare più operatori di slicing in sequenza.

150480

Male 150480

In [29]: df[0:2]['rank']

15

Prof

Out[29]:

0 Prof1 Prof

Name: rank, dtype: object

В

17

Attenzione è necessario passare una lista di colone per far si che il risutlato dell'operatore di slicing sia un dataframe.

In [30]: df[0:2][['rank']]

Out[30]:

rank

O Prof

1 Prof

127.0.0.1:8888/lab? 14/44

Applciare operatori di slicing multipli può essre poco efficiente perchè goni operatore produce una copia dei dati filtrari.

Esiste però un modo per selezionare righe e colonne in una sola operazione tramite il metodo loc .

```
df.loc[10:20,['rank','sex','salary']]
In [31]:
Out[31]:
                rank
                       sex
                            salary
          10
                           128250
                 Prof Male
          11
                 Prof Male 134778
          12 AsstProf Male
                             88000
          13
                 Prof Male 162200
          14
                 Prof Male 153750
          15
                 Prof Male 150480
          16 AsstProf Male
                             75044
          17 AsstProf Male
                             92000
          18
                 Prof Male 107300
          19
                 Prof Male 150500
          20 AsstProf Male
                             92000
```

Se volgiamo selezionare le colnnein base alla loro posizione, allora utilizziamo il metodo iloc .

```
In [32]:
           df.iloc[10:20,[0,1]].head()
Out[32]:
                  rank discipline
           10
                               В
                  Prof
           11
                  Prof
                               В
                               В
           12 AsstProf
           13
                               В
                  Prof
           14
                  Prof
                               В
```

In [33]: df.iloc[10:20,0:2].head()

Out[33]:		rank	discipline
	10	Prof	В
	11	Prof	В
	12	AsstProf	В
	13	Prof	В
	14	Prof	В

127.0.0.1:8888/lab? 15/44

Questo operatore si può qundi utilizzare per selezionare un elemento in modo *classico* usando inidici numerici per righe e colonne.

iloc non crea copie del dataframe ma è più simile ad una vista parziale su di esso. E', quindi, possibile utilzzare iloc per cambiare il contenuto del dataframe.

```
In [34]:
           df.head()
Out[34]:
              rank
                    discipline
                               phd
                                     service
                                               sex
                                                     salary
                                                            salary_str
           0
              Prof
                            В
                                 56
                                                    186960
                                         49
                                              Male
                                                               186960
               Prof
                                              Male
                                                     93000
                                                                93000
                            Α
                                 12
           2
               Prof
                            Α
                                 23
                                         20 Male
                                                   110515
                                                               110515
               Prof
                                 40
                                              Male
                                                   131205
                                                               131205
                            Α
                                                   104800
               Prof
                            В
                                 20
                                         18
                                             Male
                                                               104800
In [35]:
           print(df.iloc[0,0])
           Prof
           df.iloc[0,0] = 'AsstProf'
In [36]:
           df.head()
                                  phd
Out[36]:
                 rank
                       discipline
                                        service
                                                  sex
                                                        salary
                                                               salary_str
           0 AsstProf
                               В
                                    56
                                            49
                                                Male
                                                       186960
                                                                  186960
           1
                                                Male
                                                        93000
                                                                   93000
                  Prof
                               Α
                                    12
                                             6
           2
                                                                  110515
                  Prof
                               Α
                                    23
                                            20
                                                Male 110515
                                    40
                                                       131205
                                                                  131205
                  Prof
                               Α
                                            31
                                                 Male
           4
                  Prof
                               В
                                    20
                                            18
                                                Male 104800
                                                                  104800
```

Ordinare i dati di un dataframe

Possiamo ordinare le righe di un dataframe in base al contenuto delle colonne, così come faremmo ad esmepio in excell, quindi, specificando pure più colonne ed un ordine di preferenza tra colonne.

```
df_sorted = df.sort_values( by ='service')
In [37]:
           df_sorted.head()
                                   phd
Out[37]:
                        discipline
                  rank
                                        service
                                                    sex
                                                         salary
                                                                salary_str
           55 AsstProf
                                     2
                                                         72500
                                                                    72500
                               Α
                                              0
                                                 Female
           23 AsstProf
                                     2
                                              0
                                                   Male
                                                         85000
                                                                    85000
                               Α
           43 AsstProf
                                     5
                                                         77000
                                                                    77000
                                В
                                              0 Female
           17 AsstProf
                                В
                                              0
                                                   Male
                                                         92000
                                                                    92000
           12 AsstProf
                                В
                                     1
                                              0
                                                   Male
                                                         88000
                                                                    88000
```

127.0.0.1:8888/lab? 16/44

df sorted = df.sort values(by =['service', 'salary'],

In [38]:

ascending = [True, False])
df_sorted.head(10)

Out[38]:

	rank	discipline	phd	service	sex	salary	salary_str
52	Prof	А	12	0	Female	105000	105000
17	AsstProf	В	4	0	Male	92000	92000
12	AsstProf	В	1	0	Male	88000	88000
23	AsstProf	А	2	0	Male	85000	85000
43	AsstProf	В	5	0	Female	77000	77000
55	AsstProf	А	2	0	Female	72500	72500
57	AsstProf	А	3	1	Female	72500	72500
28	AsstProf	В	7	2	Male	91300	91300
42	AsstProf	В	4	2	Female	80225	80225
68	AsstProf	А	4	2	Female	77500	77500

Gesione dei valori mancanti

Pandas mette a disposizione varie funzionalità per gestire i valori mancanti o non definiti.

In [39]: flights = pd.read_csv("flights.csv")
 display(flights)

	year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	0
0	2013	1	1	517.0	2.0	830.0	11.0	UA	N14228	1545	
1	2013	1	1	533.0	4.0	850.0	20.0	UA	N24211	1714	
2	2013	1	1	542.0	2.0	923.0	33.0	AA	N619AA	1141	
3	2013	1	1	554.0	-6.0	812.0	-25.0	DL	N668DN	461	
4	2013	1	1	554.0	-4.0	740.0	12.0	UA	N39463	1696	
160749	2013	9	30	2105.0	-1.0	2329.0	-25.0	UA	N477UA	475	
160750	2013	9	30	2121.0	21.0	2349.0	-25.0	DL	N193DN	2363	
160751	2013	9	30	2140.0	0.0	10.0	-30.0	AA	N335AA	185	
160752	2013	9	30	2149.0	-7.0	2245.0	-23.0	UA	N813UA	523	
160753	2013	9	30	2233.0	80.0	112.0	42.0	UA	N578UA	471	

160754 rows × 16 columns

Possiamo cercare i valori nulli in una singola colonna o in tutto il dataframe

```
In [40]: print('righe dove la colonna dep_time è null')
flights[ flights['dep_time'].isnull() ]
```

righe dove la colonna dep_time è null

127.0.0.1:8888/lab? 17/44

Out[40]:		year	month	aay	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight
	403	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791
	404	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925
	858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133
	859	2013	1	2	NaN	NaN	NaN	NaN	AA	N3FBAA	753
	860	2013	1	2	NaN	NaN	NaN	NaN	UA	NaN	623
	159519	2013	9	27	NaN	NaN	NaN	NaN	US	NaN	2164
	159520	2013	9	27	NaN	NaN	NaN	NaN	UA	NaN	269
	159854	2013	9	28	NaN	NaN	NaN	NaN	AA	N320AA	1
	159855	2013	9	28	NaN	NaN	NaN	NaN	US	NaN	581
	160286	2013	9	29	NaN	NaN	NaN	NaN	UA	NaN	331
											•
In [41]:		_				ie sono nu	11')				
In [41]:	flights	[flig	hts.isn	ull())]		11')				
	flights	[flig	hts.isn utte le	colo	onne sono		·	arr_delay	carrier	tailnum	flight
	flights	[flig	hts.isn utte le	colo	onne sono	null	·	arr_delay	carrier NaN	tailnum NaN	flight NaN
	flights	[flig love to	hts.isn utte le month	colo day	onne sono dep_time	null dep_delay	arr_time				
	flights	[flig love to year NaN	hts.isn utte le month NaN	colo day NaN	onne sono dep_time NaN	null dep_delay NaN	arr_time	NaN	NaN	NaN	NaN
	righe d	s[flig love to year NaN NaN NaN	hts.isn utte le month NaN NaN	colo day NaN	onne sono dep_time NaN NaN	null dep_delay NaN NaN	arr_time NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN
	flights righe d	s[flig love to year NaN NaN	hts.isn utte le month NaN NaN	colo day NaN NaN	onne sono dep_time NaN NaN NaN	null dep_delay NaN NaN NaN	arr_time NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN
	righe d	s[flig love t year NaN NaN NaN	hts.isn utte le month NaN NaN NaN NaN	colo day NaN NaN NaN NaN	onne sono dep_time NaN NaN NaN NaN NaN	null dep_delay NaN NaN NaN NaN NaN	arr_time NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN
	righe d	s[flig love to year NaN NaN NaN NaN	hts.isn utte le month NaN NaN NaN NaN NaN	vall() colo day NaN NaN NaN NaN NaN NaN	onne sono dep_time NaN NaN NaN NaN NaN NaN	null dep_delay NaN NaN NaN NaN NaN NaN	arr_time NaN NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN	NaN NaN NaN NaN
	flights righe d 0 1 2 3 4	s[flig love to year NaN NaN NaN NaN NaN	hts.isn utte le month NaN NaN NaN NaN NaN NaN	ull() colo day NaN NaN NaN NaN NaN	onne sono dep_time NaN NaN NaN NaN NaN NaN NaN N	null dep_delay NaN NaN NaN NaN NaN NaN NaN	arr_time NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN
In [41]:	0 1 2 3 4 160749	S[flig love to year NaN NaN NaN NaN NaN	hts.isn utte le month NaN NaN NaN NaN NaN NaN NaN NaN	vall() colo day NaN NaN NaN NaN NaN NaN NaN NaN	onne sono dep_time NaN NaN NaN NaN NaN NaN NaN N	null dep_delay NaN NaN NaN NaN NaN NaN NaN NaN	arr_time NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN
	0 1 2 3 4 160749 160750	s[flig love to year NaN NaN NaN NaN NaN NaN	hts.isn utte le month NaN NaN NaN NaN NaN NaN NaN NaN NaN	vall() colo day NaN NaN NaN NaN NaN NaN NaN NaN NaN	onne sono dep_time NaN NaN NaN NaN NaN NaN NaN N	null dep_delay NaN NaN NaN NaN NaN NaN NaN	arr_time NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN
	0 1 2 3 4 160749 160751	s [flig love to year NaN NaN NaN NaN NaN NaN NaN	hts.isn utte le month NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	vall() colo day NaN NaN NaN NaN NaN NaN NaN NaN NaN N	onne sono dep_time NaN NaN NaN NaN NaN NaN NaN N	null dep_delay NaN NaN NaN NaN NaN NaN NaN NaN NaN N	arr_time NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN
Out[41]:	flights righe d 0 1 2 3 4 160749 160750 160751	In the second se	hts.isn utte le month NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN	onne sono dep_time NaN NaN NaN NaN NaN NaN NaN N	null dep_delay NaN NaN NaN NaN NaN NaN NaN	arr_time NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN	NaN NaN NaN NaN NaN NaN NaN NaN NaN

127.0.0.1:8888/lab?

Out[42]:		year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	C
	0	False	False	False	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	False	False	False	
	•••											
	160749	False	False	False	False	False	False	False	False	False	False	
	160750	False	False	False	False	False	False	False	False	False	False	
	160751	False	False	False	False	False	False	False	False	False	False	
	160752	False	False	False	False	False	False	False	False	False	False	
	160753	False	False	False	False	False	False	False	False	False	False	

160754 rows × 16 columns

In [43]: print('righe dove il valore di almeno una colonna è nullo')
flights[flights.isnull().any(axis=1)].head()

righe dove il valore di almeno una colonna è nullo

Out[43]:		year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	origiı
	330	2013	1	1	1807.0	29.0	2251.0	NaN	UA	N31412	1228	EWI
	403	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791	LGA
	404	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925	LG/
	855	2013	1	2	2145.0	16.0	NaN	NaN	UA	N12221	1299	EWI
	858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JFI

any ritorna False a meno che non esiste un elmento di valore True (o equivalente) sull'asse (dimensione) selezionato.

Il primo asse ,di inidce 0, sono le righe. Il secondo asse, di indice 1, sono le colonne.

L'elemento null di pandas non cirrisponde a None quindi ci servono dei metodi specifici per capire se un valore è nullo oppure no. questi metodi sono isnull() e notnull().

Pandas mette a dispozine dei metodi per cancellare le righe in cui compaiono uno o più valori nulli o per sostituire i valori nulli con un valore specifico.

- dropna() elimina le righe per cui almeno un valore è nullo
- dropna(how='all') elimina le righe in cui tutti i valori sono nulli
- dropna(axis=1, how='all') elimina le colonne cui tutti i valori sono nulli
- dropna(thresh=5) elimina le righe con contengono più di 4 valori nulli
- fillna(0) sostiuisci i valori nulli con un valore specifico

127.0.0.1:8888/lab?

Diverse colonne possono avere diversi tipi, quindi fillna (0) potrebbe non essere la soluzone milgiore. Sarà necessario specificare un fillna per colonnna.

In [44]:	fligh	<pre>flights[flights['tailnum'].isnull()].head()</pre>										
Out[44]:		year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	orig
	858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JF
	860	2013	1	2	NaN	NaN	NaN	NaN	UA	NaN	623	ΕW
	1281	2013	1	3	NaN	NaN	NaN	NaN	UA	NaN	714	ΕW
	1282	2013	1	3	NaN	NaN	NaN	NaN	UA	NaN	719	ΕW
	3283	2013	1	8	NaN	NaN	NaN	NaN	US	NaN	123	EW
4												•
In [45]:	[45]: flights['tailnum'] = flights['tailnum'].fillna('NESSUNO')											
	fligh	nts[f	lights['tai]	.num'] ==	'NESSUNO'].head())				
Out[45]:		year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	fligh	t or
	858	2013	1	2	NaN	NaN	NaN	NaN	AA	NESSUNO	133	3
	860	2013	1	2	NaN	NaN	NaN	NaN	UA	NESSUNO	623	3 E
	1281	2013	1	3	NaN	NaN	NaN	NaN	UA	NESSUNO	714	4 E
	1282	2013	1	3	NaN	NaN	NaN	NaN	UA	NESSUNO	719) E
	3283	2013	1	8	NaN	NaN	NaN	NaN	US	NESSUNO	123	3 E
4												•

Sovrascrittura mutlipla dei valori delle celle

L'operatore di slicing può essere utilizzato per cambiare il valore delle celle. In questo caso lo slicing non produce una copia ma altera il contenuto del dataframe.

```
In [46]: set(flights['month'])
Out[46]: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

In [47]: flights[ flights['month']==1 ] = 0
    set(flights['month'])
Out[47]: {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Possiamo anche creare una nuova colonna il cui valore è una combinazione di due o più colonne del dataframe o il valore di una singola colonna a cui applichiamo una funzione.

In [48]: flights['n2'] = flights['distance'] + (2 * flights['month'])
    flights['n2']
```

127.0.0.1:8888/lab? 20/44

```
0
Out[48]:
          1
                        0
          2
                        0
          3
                        0
          4
                        0
                     . . .
          160749
                    1418
          160750
                    2493
          160751
                    2493
                     218
          160752
          160753
                     2583
          Name: n2, Length: 160754, dtype: int64
```

Tuttavia, spesso non possiamo applicare funzioni matematiche o operazioni complesse. Per quasto ci viene in aiuto la funzione apply che serve appunto ad applicare una funzione su uno specifico asse di un dataframe.

```
In [49]:
         import numpy as np
         df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
         print(df)
         print('-'*40)
         df = df.apply(np.sqrt)
         print(df)
            A B
           4 9
           4 9
           4
              9
              Α
                  В
         0 2.0 3.0
         1 2.0 3.0
         2 2.0 3.0
```

Unire dataframe

Se due adatframe hanno le stesse colonne, allora possiamo concatenare uno dei due datafram all'altro.

Dobbiamo però stare **attenti** alle etichette sulle righe, che potrebbero non essere più univoche.

127.0.0.1:8888/lab? 21/44

```
A Bx 5 6y 7 8
```

```
In [53]: df3 = pd.concat( [df1,df2] )
    display(df3)
```

```
      A
      B

      x
      1
      2

      y
      3
      4

      x
      5
      6

      y
      7
      8
```

```
In [54]: df3 = pd.concat( [df1,df2], ignore_index=True )
    display(df3)
```

```
A B0 1 21 3 42 5 63 7 8
```

Oppure possiamo resettare gli indici.

```
In [55]: df3 = pd.concat( [df1,df2] )
    df3.reset_index(inplace = True)
    display(df3)
```

	index	A	В
0	Х	1	2
1	у	3	4
2	х	5	6
3	у	7	8

Inoltre, pandas mette a disposizione delle operazioni di join in stile SQL.

Ricordiamo: Djoin

127.0.0.1:8888/lab? 22/44

```
        lkey
        value

        0
        foo
        1

        1
        bar
        2

        2
        baz
        3

        3
        foo
        5
```

```
In [58]: display(df2)
```

	rkey	value
0	foo	5
1	bar	6
2	baz	7
3	foo	8

```
In [59]: df3 = df1.merge(df2, left_on='lkey', right_on='rkey')
display(df3)
```

	lkey	value_x	rkey	value_y
0	foo	1	foo	5
1	foo	1	foo	8
2	foo	5	foo	5
3	foo	5	foo	8
4	bar	2	bar	6
5	baz	3	baz	7

Attenzione

- l'ordine è importante
- di default viene utlizzato inner

```
In [60]: df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]})
    df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]})

print(df1)
    print('-'*40)
    print(df2)
    print('#'*40)

df3 = df1.merge(df2, on='a')
    print(df3)
    print('-'*40)

df3 = df1.merge(df2, how='inner', on='a')
    print(df3)
    print('-'*40)

df3 = df1.merge(df2, how='outer', on='a')
```

127.0.0.1:8888/lab? 23/44

Elementi grafici

Pandas mette a disposizine alcuni elementi grafici perl'analisi esplorativa, attraverso matplotlib e Seaborn.

La documentazione riguardante i plot è displnibile alla pagina ufficiale di Pandas link.

In alcuni casi, con vecchie verisoni di notebook, può essre utile attivare la direttiva %matplotlib inline

matplotlib

Vivamente consigliato consultare i cheatsheet link.

Come si compone un **plot** (figure):

Anatomia di un subplot:

Assi e subplot

Un plot può essere diviso in diversi sotto-plot seguendo una divesione per righe e colonne. Vengono così creati degli **assi**. Ogni asse corrisponde ad una specifica combinazione ri

127.0.0.1:8888/lab? 24/44

indice di righa e di colonna.

```
In [61]:
          import matplotlib.pyplot as plt
          fig1, fig1_axes = plt.subplots(ncols=2, nrows=2)
          fig1_axes[0,0].set_title("axis 0,0")
          fig1_axes[0,1].set_title("axis 0,1")
          fig1_axes[1,0].set_title("axis 1,0")
          fig1_axes[1,1].set_title("axis 1,1")
          Text(0.5, 1.0, 'axis 1,1')
Out[61]:
                       axis 0,0
                                                    axis 0,1
          1.00
                                       1.00
           0.75
                                       0.75
           0.50
                                       0.50
           0.25
                                       0.25
           0.00
                                       0.00
                       axis 1.0
                                      10 0.0
                                                    axis b.a
                   0.2
                                 0.8
                                               0.2
                                                              0.8
                                                                  1.0
          1.00
           0.75
                                       0.75
```

Asso piglia tutto: tight_layout

0.8

0.6

0.50

0.25

0.00

0.0

0.2

0.4

0.6

0.8

1.0

1.0

```
import matplotlib.pyplot as plt
In [62]:
           fig1, fig1_axes = plt.subplots(ncols=2, nrows=2)
           fig1_axes[0,0].set_title("axis 0,0")
           fig1_axes[0,1].set_title("axis 0,1")
           fig1_axes[1,0].set_title("axis 1,0")
           fig1_axes[1,1].set_title("axis 1,1")
           fig1.tight_layout()
                                                            axis 0,1
                          axis 0,0
           1.00
                                              1.00
           0.75
                                              0.75
           0.50
                                              0.50
                                              0.25
           0.25
           0.00
                                              0.00
               0.0
                    0.2
                         0.4
                               0.6
                                    0.8
                                         1.0
                                                  0.0
                                                       0.2
                                                            0.4
                                                                  0.6
                                                                       0.8
                                                                             1.0
                          axis 1,0
                                                             axis 1,1
           1.00
                                              1.00
           0.75
                                              0.75
           0.50
                                              0.50
           0.25
                                              0.25
           0.00
               0.0
                    0.2
                         0.4
                               0.6
                                    0.8
                                         1.0
                                                       0.2
                                                            0.4
                                                                  0.6
                                                                       0.8
                                                                             1.0
```

Griglie

0.50

0.25

0.00

0.0

0.2

0.4

127.0.0.1:8888/lab? 25/44

Usandi subplots abbimao vari vincoli. Ad esempio, ogni riga deve avere lo stesso numero di colonne, oppure tutti i subplot della stecca colonna devono are la stessa larghezza.

Possiamo liberarci di questi vincoli usando **gridspec**. Questo gestore di layout ci permette anche di avere un numero variabile di subpot sulla stessa riga o colonna, ovvero di avere elementi con **span** diverso.

```
In [63]: fig3 = plt.figure(constrained_layout=True)
gs = fig3.add_gridspec(3, 3) # Numero originale di righe e colonne
f3_ax1 = fig3.add_subplot(gs[0, :])
f3_ax1.set_title('gs[0, :]')
f3_ax2 = fig3.add_subplot(gs[1, :-1])
f3_ax2.set_title('gs[1, :-1]')
f3_ax3 = fig3.add_subplot(gs[1:, -1])
f3_ax3.set_title('gs[1:, -1]')
f3_ax4 = fig3.add_subplot(gs[-1, 0])
f3_ax4.set_title('gs[-1, 0]')
f3_ax5 = fig3.add_subplot(gs[-1, -2])
```


Istogrammi

```
In [64]: flights = pd.read_csv("flights.csv")
    display(flights)
```

127.0.0.1:8888/lab? 26/44

	year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	0
0	2013	1	1	517.0	2.0	830.0	11.0	UA	N14228	1545	
1	2013	1	1	533.0	4.0	850.0	20.0	UA	N24211	1714	
2	2013	1	1	542.0	2.0	923.0	33.0	AA	N619AA	1141	
3	2013	1	1	554.0	-6.0	812.0	-25.0	DL	N668DN	461	
4	2013	1	1	554.0	-4.0	740.0	12.0	UA	N39463	1696	
160749	2013	9	30	2105.0	-1.0	2329.0	-25.0	UA	N477UA	475	
160750	2013	9	30	2121.0	21.0	2349.0	-25.0	DL	N193DN	2363	
160751	2013	9	30	2140.0	0.0	10.0	-30.0	AA	N335AA	185	
160752	2013	9	30	2149.0	-7.0	2245.0	-23.0	UA	N813UA	523	
160753	2013	9	30	2233.0	80.0	112.0	42.0	UA	N578UA	471	

160754 rows × 16 columns

In [66]: flights.hist(column='distance');

127.0.0.1:8888/lab? 27/44

Attenzione a come vengono raggrupati i valori nelle varie barre.

Con seaborn è possibile importare dati da un dataframe e, in questo caso, combinare l'istogramma con un **density plot**.

```
In [68]: import seaborn as sns
sns.displot(flights.distance, bins=10, kde=True);
```

127.0.0.1:8888/lab? 28/44

Attenzione ai density plot, spesso ingannano.

Grafici a barre

```
In [70]: df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]})
ax = df.plot.bar(x='lab', y='val', rot=0)
```

127.0.0.1:8888/lab? 29/44

	speed	lifespan
snail	0.1	2.0
pig	17.5	8.0
elephant	40.0	70.0
rabbit	48.0	1.5
giraffe	52.0	25.0
coyote	69.0	12.0
horse	88.0	28.0

```
In [72]: ax = df.plot.bar(rot=0)
```



```
In [73]: df.plot.bar(stacked=True);
```

127.0.0.1:8888/lab? 30/44


```
In [74]: print(df.index)
    df['animal'] = df.index
    df.index = range(len(df))
    display(df)
```

Index(['snail', 'pig', 'elephant', 'rabbit', 'giraffe', 'coyote', 'horse'], dtype
='object')

animal	lifespan	speed	
snail	2.0	0.1	0
pig	8.0	17.5	1
elephant	70.0	40.0	2
rabbit	1.5	48.0	3
giraffe	25.0	52.0	4
coyote	12.0	69.0	5
horse	28.0	88.0	6

```
In [75]: df.plot.bar(x='animal', y='speed', rot=0)
    df.plot.bar(x='animal', y='lifespan', rot=0)
```

Out[75]: <AxesSubplot:xlabel='animal'>

127.0.0.1:8888/lab? 31/44


```
import numpy as np
In [76]:
         xlabels = df.animal
         x = np.arange(len(xlabels))
         width = 0.35 # the width of the bars
         fig, ax = plt.subplots()
         rects1 = ax.bar(x - width/2, df.speed, width, label='speed')
         rects2 = ax.bar(x + width/2, df.lifespan, width, label='lifespan')
         # Add some text for labels, title and custom x-axis tick labels, etc.
         ax.set_ylabel('Animals')
         ax.set_xticks(x, xlabels)
         ax.legend()
         ax.bar_label(rects1, padding=3)
         ax.bar_label(rects2, padding=3)
         fig.tight_layout()
         plt.show()
```


Scatter plot

In generale richiedono che le due misure graficate siano entrambe dei valori numerici.

127.0.0.1:8888/lab? 32/44

```
In [77]: df.plot.scatter(x='speed', y='lifespan');
             70
             60
             50
          lifespan
             40
             30
             20
             10
              0
                  Ó
                            20
                                       40
                                                   60
                                                             80
                                        speed
           color_labels = df['animal'].unique()
In [78]:
           rgb_values = sns.color_palette("viridis",len(color_labels))
           color_map = dict(zip(color_labels, rgb_values))
           df.plot.scatter(x='speed', y='lifespan', c=df['animal'].map(color_map))
          <AxesSubplot:xlabel='speed', ylabel='lifespan'>
Out[78]:
             70
             60
             50
          ifespan
             40
             30
             20
             10
              0
                            20
                                       40
                                                   60
                                                             80
                                        speed
           sns.scatterplot(x='speed', y='lifespan', data=df, hue='animal', ec=None)
In [79]:
          <AxesSubplot:xlabel='speed', ylabel='lifespan'>
Out[79]:
             70
                                                           animal
                                                             snail
             60
                                                             pig
                                                             elephant
             50
                                                             rabbit
                                                             giraffe
          lifespan
30
                                                             coyote
                                                             horse
             20
             10
              0
                                                   60
                             20
                                       40
                                                             80
```

127.0.0.1:8888/lab? 33/44

speed

```
In [80]: sns.jointplot(x='distance', y='hour', data=flights)
```

Out[80]: <seaborn.axisgrid.JointGrid at 0x7f15fec0be80>

127.0.0.1:8888/lab? 34/44


```
In [82]:
         from matplotlib import colors
         import numpy as np
         from numpy.random import multivariate_normal
         import matplotlib.pyplot as plt
         result = np.vstack([
             multivariate_normal([10, 10],
                      [[3, 2], [2, 3]], size=1000000),
              multivariate_normal([30, 20],
                      [[2, 3], [1, 3]], size=100000)
         ])
         plt.hist2d(result[:, 0],
                     result[:, 1],
                     bins = 100,
                     cmap = "RdY1Gn_r",
                     norm = colors.LogNorm())
         plt.show()
```

/tmp/ipykernel_677/570105083.py:10: RuntimeWarning: covariance is not positive-sem
idefinite.

multivariate_normal([30, 20],

Pair plot

pip install -U scikit-learn

```
In [83]: from sklearn.datasets import load_iris
  import numpy as np
  import pandas as pd
```

127.0.0.1:8888/lab? 35/44

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0
•••					
145	6.7	3.0	5.2	2.3	2.0
146	6.3	2.5	5.0	1.9	2.0
147	6.5	3.0	5.2	2.0	2.0
148	6.2	3.4	5.4	2.3	2.0
149	5.9	3.0	5.1	1.8	2.0

150 rows × 5 columns

{0.0, 1.0, 2.0}

```
In [84]: import seaborn as sns
sns.pairplot(data1, hue="target", diag_kind="hist")
```

Out[84]: <seaborn.axisgrid.PairGrid at 0x7f15fe93c1f0>

127.0.0.1:8888/lab? 36/44

In [85]: sns.pairplot(data1, hue="target", diag_kind="hist", corner=True)

Out[85]: <seaborn.axisgrid.PairGrid at 0x7f15fdce3880>

127.0.0.1:8888/lab? 37/44

In [86]: sns.pairplot(data1, hue="target", markers=["o", "s", "D"])

Out[86]: <seaborn.axisgrid.PairGrid at 0x7f15f7e4f6a0>

127.0.0.1:8888/lab? 38/44

Box plot

127.0.0.1:8888/lab? 39/44


```
print(dft[ dft.X=='A' ]['Col1'])
In [89]:
              0.472986
         0
         1
              0.242439
         2
              0.753143
              0.005127
         3
             -0.806982
         Name: Col1, dtype: float64
         print(dft[ dft.X=='A' ]['Col2'])
In [90]:
         0
             -0.681426
             -1.700736
         1
             -1.534721
         3
             -0.120228
              2.871819
         Name: Col2, dtype: float64
```

IQR = **interquantile range** è un indice di dispersione e ci informa quanto i valori della distribuzione si allontanano dal valore centrale. Nel caso specifico di IQR, l'informazione di dispersione riguarda il 50% dei dati più vicini alla media.


```
In [91]: flights.boxplot(column='distance', by='carrier')
Out[91]: <AxesSubplot:title={'center':'distance'}, xlabel='carrier'>
```

127.0.0.1:8888/lab? 40/44

Violin plot

```
In [100... fig, axes = plt.subplots(figsize=(5,2))
    sns.violinplot(x='X',y='Col1', data=dft, ax = axes)
    axes.yaxis.grid(True)
```



```
In [93]: dft.boxplot(column='Col1', by='X')
```

Out[93]: <AxesSubplot:title={'center':'Col1'}, xlabel='X'>


```
In [94]: sns.swarmplot(x='X',y='Col1', data=dft)
Out[94]: <AxesSubplot:xlabel='X', ylabel='Col1'>
```

127.0.0.1:8888/lab? 41/44


```
In [95]: salaries = pd.read_csv("Salaries.csv")
sns.swarmplot(x='rank',y='service', data=salaries)
```

Out[95]: <AxesSubplot:xlabel='rank', ylabel='service'>

Attenzione: ogni violino è indipendente dall'altro. In particolare le larghezze non sono assolute ma relative ad ogni violino.

```
In [96]: sns.violinplot(x='rank',y='service', data=salaries)
sns.swarmplot(x='rank',y='service', data=salaries, color='k', alpha=0.3)
Out[96]: <AxesSubplot:xlabel='rank', ylabel='service'>
```

127.0.0.1:8888/lab? 42/44


```
import pandas as pd
import seaborn as sns
sns.set(style="whitegrid", palette="muted")

# Load the example iris dataset
iris = sns.load_dataset("iris")
display(iris)
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
•••					
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [98]: # "Melt" the dataset to "long-form" or "tidy" representation
  iris = pd.melt(iris, "species", var_name="measurement")
  display(iris)
```

127.0.0.1:8888/lab? 43/44

	species	measurement	value
0	setosa	sepal_length	5.1
1	setosa	sepal_length	4.9
2	setosa	sepal_length	4.7
3	setosa	sepal_length	4.6
4	setosa	sepal_length	5.0
•••			
595	virginica	petal_width	2.3
596	virginica	petal_width	1.9
597	virginica	petal_width	2.0
598	virginica	petal_width	2.3
599	virginica	petal_width	1.8

600 rows × 3 columns

127.0.0.1:8888/lab? 44/44