Continuous Control - Reachers

1 Framework

1.1 Environment objective

There are 20 parallel agents that stand for double-joint robotics arms which objective is to learn to follow a target as long as possible, for such purpose each agent receives a positive reward of +0.1. To tackle this task a multi-agent version of the Deep Deterministic Policy Gradient (DDPG) is used.

1.2 DDPG

The model was introduced as an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces[1]. The algorithm uses a couple of neural networks the first called actor it's used to learn the best action in a continuous action space, and then uses this estimate to train a second network called critic to learn the optimal action-value function. The critic is used to give more stability to the policy gradient method which tend to have high variance. The following pseudo-code stands for the DDPG algorithm introduced in the original paper:

1.2.1 DDPG

```
Algorithm 1 DDPG algorithm[1]
```

```
1: Randomly initialize critic network Q(s, a|\theta^Q) and actor \mu(s|\theta^\mu) with weight \theta^Q and \theta^\mu.
 2: Initialize target network Q' and \mu' with weights \theta^{Q'} \leftarrow \theta^Q and \theta^{\mu'} \leftarrow \theta^{\mu}
 3: Initialize replay buffer R
 4: for episode = 1 M do
            Initialize a random process N for action exploration.
 6:
            Receive initial observation state s_1
 7:
            for t = 1T do
                  Select action a_t = \mu(s_t \mid \theta^{\mu}) + N_t according to the current policy and exploration noise.
 8:
                  Execute action a_t in emulator and observe reward r_t and s_{t+1}
 9:
                  Store transition (s_t, a_t, r_t, s_{t+1}) in R
10:
                  Sample random minibatch of N transitions (s_i, a_i, r_t, s_{i+1}) from R
11:
                  Set y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1} \mid Q^{\mu'}) \mid \theta^{Q'})
Update critic by minimizing the loss: L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i \mid \theta^Q))^2
Update the actor policy using the sampled policy gradient:
12:
13:
14:
                  \nabla_{\theta^{\mu}} J = \frac{1}{N} \sum_{i} \nabla_{a} Q(s_{i}, a_{i} \mid \theta^{Q}) \mid_{s=s_{i}, a=a_{i}} \nabla_{\theta^{\mu}} \mu(s \mid \theta^{\mu}) \mid_{s=s_{i}} Upgrade the target networks:
15:
16:
                                                                          \theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}
\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}
      \begin{array}{c} \text{end for} \\ \text{end for} \end{array}
```

So the algorithm create an actor and critic-networks and and a copies of each one designed to be the target networks and be update only after certain number of steps have occurred using a soft update (it blends the local-networks with the targets-networks with a convex combination). Basically follows the line dictated by the DQN algorithm but using the actor-network to approximate the $argmax_aQ(s, a \mid \theta^Q)$ n thus the critic network assess the return given the current action and state, and finally the actor network uses critic value to maximizes the return as a function of the best action.

2 DDPG implementation

At each step the environment returns the rewards and next states for each agents these are stored along with previous states and the taken actions in the replay buffer, the agent keep taking actions and repeating this process until after a certain number of steps a sample batch is taken from the buffer and the learning process starts. After compute the updates for each network the weight are propagated to the agents.

2.1 Hyper-parameters

Hyper-parameters				
Parameter	Value	Description		
BUFFER_SIZE	100,000	replay buffer size		
BATCH_SIZE	128	minibatch size		
GAMMA	0.99	discount factor used in TD targets		
TAU	.001	for soft update of target parameters		
LR_ACTOR	.003	learning rate used by the optimizer algorithm of the		
		actor neural network		
LR_CRITIC	.003	learning rate used by the optimizer algorithm of the		
		critic neural network		
UPDATE_EVERY	1	how step are needed to update the networks		
NUMBER_UPDATES	1	number of time the networks are updated in each		
		leaning phase		
HIDDEN_LAYER_1	64	number of nodes for the first fully connected layer in		
		critic and actor's network		
HIDDEN_LAYER_2	128	number of nodes for the second fully connected layer		
		in critic and actor's network		

Different number of layers were used to define the networks but after two layers the expected time to train the model augmented drastically, so a number of 2 layer were appropriate to train the agent. In the same fashion a different combinations of nodes in each layer were tried(all of them were powers of 2) and this was the fastest combination to trained the model that I observed.

2.1.1 Network's architecture

Actor Network				
Layers	Nodes	Activation function		
Input layer	33	Rectifier Linear Unit		
First hidden layer	64	Rectifier Linear Unit		
Second hidden layer	128	Hyperbolic Tangent		
Output layer	4	NA		

Critic Network				
Layers	Nodes	Activation function		
Input layer	33	Leaky Rectifier Linear Unit		
First hidden layer	68	Leaky Rectifier Linear Unit		
Second hidden layer	128	Identity		
Output layer	1	NA		

To the output of the actor network the noise coming from an Ornstein-Uhlenbeck process is added and then clipped between -1 and +1. Another thing to notice is after feeding the input layer of the critic-network with states, the output of that layer and the actions coming from the output of the actor-network are concatenated to finally feed the second layer of the critic-network.

3 Results

Following can be observed how the agents perform through the training phase, their average performance over a window of 100 hundreds episode and the moment they solved the environment. The next table show the result for the first 20 episodes.

DDPG Agents				
Episode	Score	Average Score		
1	0.273000	26.174074		
2	0.938500	26.535534		
3	0.793500	26.879354		
4	0.858000	27.227534		
5	0.756000	27.580699		
6	1.237000	27.928609		
7	1.682500	28.273379		
8	1.758500	28.616674		
9	1.934000	28.962289		
10	1.178500	29.311414		
11	0.410500	29.665719		
12	2.544000	30.017844		
13	3.100000	30.295358		
14	2.110500	30.572862		
15	2.863500	30.866288		
16	2.710500	31.157984		
17	3.211000	31.457431		
18	4.729000	31.757925		
19	6.696500	32.048558		
20	5.888500	32.324124		

Environment solved in 11 episodes! with Average Score: 30.02.

4 Future Work

The following steps for this exercises would be:

Implement the D4PG[2] algorithm to the environment, the enhancements would be to change the the replay buffer per a prioritized replay buffer (PER), enable the use of n-steps bootstraping to compute the time difference targets(TD targets) and finally implement distributional critics network. The last step

has to be studied further by me and it is perhaps the most difficult part in my point of view, in fact I've already worked on the implementation of D3PG but I have to test it and make the agents converge.

References

- [1] Timothy P. Lillicrap, Jonathan J. Hunt, et al (2016). CONTINUOUS CONTROL WITH DEEP RE-INFORCEMENT LEARNING. Google Deep mind. London, UK.
- [2] Gabriel Barth-Maron , Matthew W. Hoffman, et al (2018). DISTRIBUTED DISTRIBUTIONAL DETERMINISTIC POLICY GRADIENTS. Google Deep mind. London, UK.