jack.kelly@postgrad.plymouth.ac.uk

Jack Kelly, Camille Carroll,

Rana Moyeed, Xinzhong Li

Integrated systems approach to identify genetic networks and hubs in Parkinson's disease

Background

- Network analysis allows for a greater understanding of the interactions of genes in the biological processes that underlie the pathophysiological state of disease
- Allows for identification of sub-networks that are formed of clusters of highly interconnected genes, also known as modules
- Can then identify hub genes which are highly connected within modules and play an important role in preservation of the module.

Objective

 Use network analysis to gain molecular insight into Parkinson's disease using gene expression data in blood

Method

- Dataset GSE99039 from GEO database:
 - Microarray dataset
 - Idiopathic Parkinson's
 - Whole blood
 - 204 disease and 231 healthy control
- Weighted Gene Correlation Network Analysis
 (WGCNA) is used to build networks

Modules of highly connected genes are found using hierarchical clustering and an additional *k*-means correction based step

- Preservation of modules between Parkinson's and healthy control were identified using NetRep [1]
- Intra modular hubs of high biological relevance are identified using betweenness centrality (BC), closeness centrality, module membership and PageRank.

Modules

We highlight these significant modules: **PD network modules not present in control network (14/54)**

- Infection (92 genes)
- Natural killer cell mediated cytotoxicity (150 genes)
- Insulin resistance (351 genes)
- Response to misfolded proteins (150 genes)
- Clathrin-dependent endocytosis (310 genes)
- B cell activation(95 genes)

Processes associated with healthy control modules not present in PD network (4/25)

- Hedgehog signalling pathway (1992 genes)
- Antigen processing and presentation (606 genes)

Hub genes

- A permutation test was created to identify the highly connected hub genes:
 - Hub genes in the infection module (CTSL, HERC5) have been implicated in infection previously, but are novel Parkinson's genes
 - The hub gene *SNRNP70* in response to misfolded protein module has been correlated with amyloid-β and tau [2]
 - C15orf48 and UBL7 are the top hub genes for Clathrin-dependent endocytosis module
- A full list of hubs can be found at bit.ly/NetworkPD

Insulin Resistance in Parkinson's disease

- Modules are visualised using Gephi
- Hub genes are highlighted:
 - HDAC6 has been shown to be a regulator of glucose metabolism [3]
 - FAM114A1 has been associated with insulin resistance [4]
- Many of these hub genes (e.g. *RENBP*, *HDAC6*, *FAM114A1*) have been associated with insulin resistance previously, however are novel to Parkinson's disease

Conclusion

- We have identified many important processes that are altered in Parkinson's disease patients or are present in Parkinson's patients but not in healthy controls
- We show multiple novel genes that play an important role in key processes that are dysregulated in Parkinson's disease and could present new therapeutic targets
- A full list of significant modules and hub genes can be found at: bit.ly/NetworkPD

[1] Ritchie *et al.*, 2016. *Cell Systems*, 3(1): 71-82. [2] Hales *et al.*, 2016. *Proteomics*, 16(23): 3042-53 [3] Winkler *et al.*, 2012. *Diabetes*, 61(2): 513-523. [4] Xie *et al.*, 2016. *Obestity*, 24(7): 1506-14

Plymouth.ac.uk/peninsula

