MinHash và Locality Sensitive Hashing - LSH

Phân cụm văn bản sử dụng hàm băm với thời gian xấp xỉ O(n) (độ chính xác sẽ thấp hơn so với TF-IDF hoặc Word2Vec/Doc2Vec). Ý tưởng cơ bản là:

- Biểu diễn lại văn bản bằng tập ký tự liên tiếp hoặc cụm từ liên tiếp (shingles/n-grams).
- Dùng tập hàm băm để biến đổi 1 văn bản về 1 signature ngắn.
- LSH để phân cụm: nhóm các văn bản vào các bucket nếu có signature tương đồng.
- Dùng khoảng cách Jaccard để tính độ tương đồng giữa các văn bản.

Ví dụ bước chạy của MinHash và LSH trên 3 văn bản:

"Machine learning is fun", "Machine learning is hard", "Data structure is easy"

A. Dùng n-grams

7: easy

Bước 1: Chuẩn hóa và chuyển thành tập từ (shingling), dùng shingling đơn giản theo từ (1-gram).

Tài liệu Tập từ D1 {machine, learning, is, fun} D2 {machine, learning, is, hard} D3 {data, structure, is, easy} Tập từ điển tổng hợp (universe) gồm: → {machine, learning, is, fun, hard, data, structure, easy} → đánh số từ: 0: machine 1: learning 2: is 3: fun 4: hard 5: data 6: structure

Bước 2: Biểu diễn mỗi văn bản thành vector đặc trưng (bit vector)

Tài liệu	0	1	2	3	4	5	6	7
D1	1	1	1	1	0	0	0	0
D2	1	1	1	0	1	0	0	0
D3	0	0	1	0	0	1	1	1

Bước 3: Tính MinHash signature

Giả sử ta dùng 2 hàm băm đơn giản để minh họa:

$$h1(x) = (x + 1) \% 8$$

$$h2(x) = (3 * x + 1) \% 8$$

→ Tính chữ ký MinHash (MinHash Signature) với mỗi tài liệu: (với mỗi hàm băm, tìm index nhỏ nhất mà bit = 1 sau khi hoán vị theo hàm đó)

Với h1(x):

[
Index gốc	h1(x) = (x+1)%8
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	0

- → Theo thứ tự hoán vị [7,0,1,2,3,4,5,6]
 - D1: các vị trí có bit = 1: [0,1,2,3] → sau hoán vị: [0,1,2,3]
 → Min index đầu tiên = 0
 - D2: [0,1,2,4] → sau hoán vị: [0,1,2,4] → min = 0
 - D3: [2,5,6,7] → sau hoán vị: [7,2,5,6] → min = 7

Với h2(x):

Index	h2(x) = (3x + 1)%8
0	1
1	4
2	7
3	2
4	5
5	0
6	3
7	6

→ Hoán vị: [5,0,1,6,3,4,7,2]

- D1: vị trí bit = 1: [0,1,2,3]
 → sau hoán vị: [0,1,2,3] → hoán vị tương ứng: [5,0,1,6] → bit = 1 tại vị trí 0 → giá trị = 0
- D2: [0,1,2,4] → [5,0,1,4] → min = 0
- D3: [2,5,6,7] → [5,6,7] → h2(5)=0 → 5 là index → min = 5

MinHash Signatures:

Tài liệu	h1	h2
D1	0	0
D2	0	0
D3	7	5

• Bước 4: Dùng LSH để phân cụm

- Chia chữ ký thành băng (band): dùng 2 hash signature, chia mỗi band có 1 giá trị (2 bands)
- Hash mỗi band vào bảng băm:

Band 1 (h1):

Hash value	Documents		
0	D1, D2		
7	D3		

Band 2 (h2):

Hash value	Documents		
0	D1, D2		
5	D3		

Kết quả phân cụm:

- D1 và D2 giống nhau, nằm cùng cụm (vì chung cả 2 band)
- D3 khác, ở cụm riêng

B. Dùng Shingles

Bước 1: Tiền xử lý và tạo Shingles

- Shingle size (k): Chọn k=2 (bigram).
- Chuyển văn bản thành tập shingles (bỏ qua khoảng trắng và chữ hoa/thường):

Văn bản Shingles (k=2) "Machine learning is fun" {'ma', 'ac', 'ch', 'hi', 'in', 'le', 'ea', 'ar', 'rn', 'ni', 'is', 'sf', 'fu', 'un'} "Machine learning is hard" {'ma', 'ac', 'ch', 'hi', 'in', 'le', 'ea', 'ar', 'rn', 'ni', 'is', 'sh', 'ha', 'ar', 'rd'} "Data structure is easy" {'da', 'at', 'ta', 'as', 'st', 'tr', 'ru', 'uc', 'ct', 'tu', 'ur', 're', 'is', 'se', 'ea', 'as', 'sy'}

Bước 2: Tạo MinHash Signatures

- Số lượng hàm băm (num_perm): Chọn 3 (để minh họa, thực tế dùng 128–256).
- Giả sử 3 hàm băm h1, h2, h3 (ví dụ đơn giản):

o
$$h1(x) = (x + 1) \% 10$$

o
$$h2(x) = (2x + 3) \% 10$$

o h3(x) = (3x + 5) % 10(Lưu ý: Trong thực tế, dùng hàm băm như MurmurHash.)

Tính MinHash cho từng văn bản:

- 1. **Mã hóa shingles thành số** (ví dụ: 'ma' → 1, 'ac' → 2, ...).
- 2. Với mỗi hàm băm, lấy **giá trị băm nhỏ nhất** của các shingles trong văn bản.

Văn bản	h1(x)	h2(x)	h3(x)	MinHash Signature
"Machine learning is fun"	min{2,3,4,} = 1	min{5,7,9,} = 2	min{8,1,4,} = 0	[1, 2, 0]
"Machine learning is hard"	min{2,3,4,} = 1	min{5,7,9,} = 2	min{8,1,4,} = 0	[1, 2, 0]
"Data structure is easy"	min{4,5,6,} = 1	min{9,1,3,} = 1	min{2,6,0,} = 0	[1, 1, 0]

(Giá trị cụ thể phụ thuộc vào hàm băm thực tế.)

Bước 3: Áp dụng LSH để phân cụm

- **Ngưỡng tương đồng (**threshold**)**: Chọn 0.5 (tức 2/3 signature giống nhau).
- Chia signature thành các band (ví dụ: 3 band, mỗi band 1 hàng):

o Band 1: Hàng 1

o Band 2: Hàng 2

o Band 3: Hàng 3

Văn bản	Band 1	Band 2	Band 3
"Machine learning is fun"	1	2	0

Văn bản	Band 1	Band 2	Band 3
"Machine learning is hard"	1	2	0
"Data structure is easy"	1	1	0

- Nhóm vào cùng bucket nếu ít nhất 1 band trùng nhau:
 - Bucket (1): "Machine learning is fun", "Machine learning is hard", "Data structure is easy"

(Vì Band 1 của cả 3 văn bản đều là 1)

Bucket (2,0): "Machine learning is fun", "Machine learning is hard"
 (Band 2 + Band 3 trùng)

→ Kết quả phân cụm:

- Cum 1: "Machine learning is fun", "Machine learning is hard"
- Cum 2: "Data structure is easy"

(Do 2 văn bản đầu có 2/3 signature giống nhau, vượt ngưỡng 0.5.)

Bước 4: Đánh giá độ tương đồng Jaccard thực tế

- **Tính Jaccard similarity** giữa các tập shingles:
 - Jaccard("fun", "hard") = 9/15 ≈ 0.6(9 shingles chung: {'ma','ac','ch','hi','in','le','ea','ar','is'})
 - Jaccard("fun", "easy") = $1/20 \approx 0.05$
 - Jaccard("hard", "easy") = $1/20 \approx 0.05$
- → MinHash + LSH đã phân cụm chính xác các văn bản tương đồng.

Chú ý. Bên cạch jarcard, bạn có thể dùng cosin để tính độ tương tự. Hãy thử nghiệm cả 2 phương pháp này!

Ứng dụng.

- Đầu vào là tập văn bản tiếng Việt
- Nếu n-gram thì chọn 2-4 gram
- Nếu shingles thì chọn 5-10
- Số lượng hàm băm 128–256
- Ngưỡng tương đồng 0.3–0.7 tùy chỉnh

Hãy đưa ra các cụm văn bản dùng độ tương đồng theo jarcard, và cosin.

Chú ý. Tự code lại bằng C/C++, KHÔNG dùng thư viện!