Capítulo I Lógica proposicional

Tema 1. Proposiciones y operadores Lógicos

1.1 Definiciones básicas

Término: Cada parte que constituye un enunciado o discurso. Sinónimo de palabra o colección de palabras.

Término categoremático: término que tiene significado propio e independiente

Término sincategoremático: **término** que no tiene significado propio y seutiliza para modificar o enlazar términos categoremáticos

Proposición lógica: agrupación de **términos** de la que se puede afirmar si su contenido es falso o verdadero. Pueden ser atómicas o moleculares

Proposición atómica: **proposición** que no puede descomponerse en partes que sean a su vez proposiciones.

Proposición molecular: **proposición** formada por una o varias proposiciones atómicas enlazadas por términos sincategoremáticos

Conectores proposicionales: **términos** sincategoremáticos que se usan para modificar o enlazar proposiciones

Conectores monádicos: se aplican a una sola proposición ej: negación

Conectores diádicos: se aplican a dos proposiciones

ej: conjunción (y), disyunción (o) disyunción exclusiva (o...o...) condicional (si...entonces) bicondicional (s y solo si)

Simbolizaciones: proposiciones atómicas se simbolizan por letras minúsculas comenzando por la $p:p.\ q,\ r,\ s$

Variable proposicional: símbolo que sustituye a una proposición atómica Conectivo u operador lógico: símbolo del **conector proposicional**

Conector	Símbolo
negación	П
conjunción	^
disyunción	V
disyunción exclusiva	Δ
condicional	\rightarrow
bicondicional	\leftrightarrow

Fórmula lógica: expresión simbólica que sustituye a una **proposición** molecular

Valorar o hallar valor lógico de una proposición: averiguar la falsedad o veracidad de la misma. $V \Leftrightarrow \text{verdad} \Leftrightarrow 1$, $F \Leftrightarrow \text{falso} \Leftrightarrow 0$.

Álgebra de proposiciones: Construcción de fórmulas lógicas y estudio de su veracidad o falsedad así como de sus propiedades

Axiomas del álgebra de proposiciones:

Axioma 1: toda **proposición** es verdadera o falsa, es decir, toma valores 0 o 1

Axioma 2: Una fórmula lógica representa una proposición cuyo valor de verdad o falsedad depende de los conectores y los valores de verdad o falsedad de las variables proposicionales que la contienen

Axioma 3: Los valores de verdad o falsedad de las fórmulas lógicas se establecen en tablas llamadas Tablas de verdad

Operación lógica: cuando modificamos o enlazamos una o varias proposiciones mediante conectores obteniendo una nueva proposición

1.2 Tablas de verdad

Representación de todas las combinaciones posibles de falsedad o veracidad de una proposición atómica o molecular. Contiene 2^n filas, siendo n la cantidad de variables de la proposición molecular.

Ejemplos de Tablas de verdad

n = 1

p
0
1

n = 4

n = 2

р	q
0	0
0	1
1	0
1	1

n = 3

q	r
0	0
0	1
1	0
1	1
0	0
0	1
1	0
1	1
	0 0 1 1 0

p	q	r	S
p = 0	$\frac{q}{0}$	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

1.3 Operadores lógicos

Negación: Dada una proposición p su contraria no p es verdadera cuando aquella es falsa y se simboliza $\neg p$.

p	¬р
0	1
1	0

Conjunción o producto lógico: Dadas dos proposiciones p, q, el producto lógico es la proposición molecular $p \ y \ q$ que se simboliza $(p \land q)$

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Disyunción o suma lógica: Dadas dos proposiciones p, q, la suma lógica es la proposición molecular p o q que se simboliza $(p \lor q)$

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	1

Disyunción exclusiva: Dadas dos proposiciones p, q, la disyunción exclusiva es la proposición molecular que se simboliza $(p \Delta q)$

p	q	$p \Delta q$
0	0	0
0	1	1
1	0	1
1	1	0

Conjunción negativa: Dadas dos proposiciones p, q, la conjunción negativa significa lingüísticamente "ni" y se simboliza $(p \downarrow q)$

p	q	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

Condicional: Dadas dos proposiciones p, q, el condicional es la proposición molecular si p entonces q que se simboliza $(p \rightarrow q)$

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
	1	1

Bicondicional: Dadas dos proposiciones p, q, el bicondicional es la proposición molecular p si y solo si q que se simboliza $(p \leftrightarrow q)$

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

1.4 Tautología contradicción y contingencia

Tautología: proposición que es siempre **verdadera** independiente de los valores de veracidad de sus proposiciones componentes. *Ejemplo p* $\lor \neg p$

Contradicción: proposición que es siempre **falsa** independiente de los valores de veracidad de sus proposiciones componentes. *Ejemplo* $p \land \neg p$

Contingencia: proposición que es verdadera o falsa Ejemplo $p \lor (p \lor q)$

1.5 Equivalencia e implicación lógicas

Proposiciones equivalentes: si sus tablas de verdad coinciden exactamente, se simboliza ⇔

Ejemplo

p	q	p↔q	$p \rightarrow q$	$q\rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1	1	1	1

Implicación: Se dice que una proposición P implica lógicamente a Q y se escribe $P \Rightarrow Q$ si y solo si la condicional $P \rightarrow Q$ es una **tautología**, es decir, en ningún caso P es verdadera y Q es falsa

La implicación cumple las propiedades:

- 1. Reflexiva $P \Rightarrow P$
- 2. Antisimétrica $[(P \Rightarrow Q) \land (Q \Rightarrow P)] \rightarrow (P \Leftrightarrow Q)$
- 3. Transitiva $[(P \Rightarrow Q) \land (Q \Rightarrow R)] \rightarrow (P \Rightarrow R)$

 $P\Rightarrow Q$ se denomina **Teorema** donde P es condición suficiente para Q o Q es condición necesaria para P

Teorema directo: $P \Rightarrow Q$

Teorema recíproco: $Q \Rightarrow P$

Teorema contrario: $\neg P \Rightarrow \neg Q$

Teorema contrarrecíproco: $\neg Q \Rightarrow \neg P$

1.6 Leyes Lógicas

Leyes de absorción

$$[p \lor (p \land q)] \Leftrightarrow p$$
$$[p \land (p \lor q)] \Leftrightarrow p$$

Leyes de idempotencia

$$p \lor p \Leftrightarrow p$$
$$p \land p \Leftrightarrow p$$

Leyes de asociatividad

$$[p \lor (q \lor r)] \Leftrightarrow [(p \lor q) \lor r]$$
$$[p \land (q \land r)] \Leftrightarrow [(p \land q) \land r]$$

Leyes de conmutatividad

$$(p \lor q) \Leftrightarrow (q \lor p)$$
$$(p \land q) \Leftrightarrow (q \land p)$$
$$(p \leftrightarrow q) \Leftrightarrow (q \leftrightarrow p)$$

Leyes de complementación

 $(p \lor \neg p) \Leftrightarrow 1$ ley del tercio exclusivo $(p \land \neg p) \Leftrightarrow 0$ ley de contradiccion

Leyes de distributividad

$$[p \lor (q \land r)] \Leftrightarrow [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \Leftrightarrow [(p \land q) \lor (p \land r)]$$
$$[p \to (q \land r)] \Leftrightarrow [(p \to q) \land (p \to r)]$$
$$[p \to (q \lor r)] \Leftrightarrow [(p \to q) \lor (p \to r)]$$

Leyes de identidad

$$(p \lor 0) \Leftrightarrow p$$
$$(p \land 1) \Leftrightarrow p$$
$$p \Rightarrow p$$
$$p \Leftrightarrow p$$

Ley de la doble negación o de involución

$$\neg\neg p \Leftrightarrow p$$

Leyes de De Morgan

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

Leyes de simplificación

$$(p \land q) \Rightarrow p$$
$$(p \land q) \Rightarrow q$$

Leyes de adición

$$p \Rightarrow (p \lor q)$$

$$q \Rightarrow (p \lor q)$$

Leyes de inferencia de la alternativa o de los silogismos disyuntivos

$$\left[\neg p \land (p \lor q)\right] \Rightarrow q$$

$$[p \land (\neg p \lor \neg q)] \Rightarrow \neg q$$

Leyes de transitividad o del silogismo hipotético

$$[(p \to q) \land (q \to r)] \Rightarrow (p \to r)$$

$$[(p \leftrightarrow q) \land (q \leftrightarrow r)] \Rightarrow (p \leftrightarrow r)$$

Ley del dilema constructivo

$$[(p \lor q) \land (p \to r) \land (q \to r)] \Rightarrow r$$

Segunda ley del dilema constructivo

$$[(p \to q) \land (r \to s) \land (p \lor r)] \Rightarrow (q \lor s)$$

Ley del dilema destructivo

$$\left[(\neg p \lor \neg q) \land (r \to p) \land (s \to q) \right] \Rightarrow (\neg r \lor \neg s)$$

Ley del bicondicional

$$(p \leftrightarrow q) \Leftrightarrow [(p \to q) \land (q \to p)]$$

Leyes del condicional

$$(p \rightarrow q) \Leftrightarrow (\neg p \lor q)$$
 condicional disyuntivo

$$(p \rightarrow q) \Leftrightarrow \neg (p \land \neg q)$$
 reduccion al absurdo

Leyes de transposición

$$(p \to q) \Leftrightarrow (\neg q \to \neg p)$$

$$(p \leftrightarrow q) \Leftrightarrow (\neg q \leftrightarrow \neg p)$$

Ley de permutación

$$[p \to (q \to r)] \Leftrightarrow [q \to (p \to r)]$$

Ley del silogismo

$$(p \rightarrow q) \Rightarrow [(q \rightarrow r) \rightarrow (p \rightarrow r)]$$

Ley de exportación e importación

$$\left[(p \land q) \to r \right] \Leftrightarrow \left[p \to (q \to r) \right]$$

Leyes de expansión

$$(p \to q) \Leftrightarrow [(p \lor q) \leftrightarrow q]$$

$$(p \rightarrow q) \Leftrightarrow [(p \land q) \leftrightarrow p]$$

Ley de separación o del modus ponendo ponens

$$[(p \to q) \land p] \Rightarrow q$$

Ley del modus tolendo tolens

$$[(p \to q) \land \neg q] \Rightarrow p$$

Ley del modus tolendo ponens

$$[(p \lor q) \land p] \Rightarrow q$$

Ley de resolución

$$\big[(\neg p \lor q) \land (p \lor r) \big] \Rightarrow (q \lor r)$$

Tema 2. Cálculo de operadores lógicos

2.1 Procedimientos de decisión

Tablas de verdad Árboles semánticos Refutación

2.2 Sistema inferencial del cálculo de proposiciones Reglas básicas de inferencia:

Reglas de Eliminación	Reglas de Introducción
Reglas básicas del condicional	
1.Modus ponendo ponens	2. Teorema de deducción
$p \rightarrow q$	$\lceil p \rceil$
<u>p</u>	:
q	<u> </u>
	$p \rightarrow q$
Reglas básicas de la conjunción	
3. Simplificación	4. Producto
$\underline{p \wedge q}$	p
p	<u>q</u>
	$p \wedge q$

Reglas básicas de la disyur	nción
5. Prueba por casos	6. Adición
$p \lor q$	
$\lceil p \rceil$	<u>p</u>
:	$p \lor q$
$\lfloor r$	
$\lceil q floor$	\underline{q}
:	$p \lor q$
$\lfloor r \rfloor$	
r	
Reglas básicas de la negac	ión

$$\frac{\neg \neg p}{p}$$

8. Reducción al absurdo

$$\begin{bmatrix} p \\ \vdots \\ q \land \neg q \end{bmatrix}$$

Tema 3. Lógica de predicados

3.1 Cuantificadores

Cuantificador universal: "para todo", "cualquier"

Sea P(x) un predicado sobre el conjunto A $(\forall x \in A)P(x)$

Si
$$A = \{a_1, a_2, ..., a_{n-1}, a_n\}$$

 $(\forall x \in A) P(x) \Leftrightarrow P(a_1) \land P(a_2) \land ... \land P(a_{n-1}) \land P(a_n) \land P(a_n)$

Cuantificador existencial: "existe al menos uno", "alguno"

Sea P(x) un predicado sobre $A \neq \emptyset$ $(\exists x \in A)P(x)$

Si
$$A = \{a_1, a_2, ..., a_{n-1}, a_n\}$$

 $(\forall x \in A)P(x) \Leftrightarrow P(a_1) \lor P(a_2) \lor ... \lor P(a_{n-1}) \lor P(a_n)$

Relaciones entre los cuantificadores:

Sea P(x) un predicado sobre A

$$\neg(\forall x)P(x) \Leftrightarrow (\exists x)(\neg P(x))$$
$$\neg(\exists x)P(x) \Leftrightarrow (\forall x)(\neg P(x))$$

Casos particulares de los anteriores:

$$\neg(\exists x)(\neg P(x)) \Leftrightarrow (\forall x)P(x)$$
$$\neg(\forall x)(\neg P(x)) \Leftrightarrow (\exists x)(P(x))$$

Cuantificador Universal \forall y conectivos \land y \lor

$$(\forall x P(x)) \land (\forall x Q(x)) \longleftrightarrow (\forall x)(P(x) \land Q(x))$$

$$(\forall x P(x)) \lor (\forall x Q(x)) \to (\forall x)(P(x) \lor Q(x))$$

Cuantificador Existencial \exists y conectivos \land , \lor y \rightarrow

$$(\exists x P(x)) \lor (\exists x Q(x)) \longleftrightarrow (\exists x)(P(x) \lor Q(x))$$

$$(\exists x P(x)) \land (\exists x Q(x)) \leftarrow (\exists x)(P(x) \land Q(x))$$

$$(\exists x P(x)) \to (\exists x Q(x)) \leftarrow (\exists x)(P(x) \to Q(x))$$

3.2 Proposiciones Categóricas.

Proposición Universal Afirmativa: A

Todo S es P
$$(\forall x)(S(x) \rightarrow P(x))$$
 $S \subset P$

Proposición Universal Negativa: E

Ningún S es P
$$(\forall x)(S(x) \rightarrow \neg P(x))$$
 $S \cap P = \emptyset$

Proposición Particular Afirmativa: I

Algún S es P
$$(\exists x)(S(x) \land P(x))$$
 $S \cap P \neq \emptyset$

Proposición Particular Negativa: O

Algún S no es
$$P$$
 $(\forall x)(S(x) \land \neg P(x))$ $S \not\subset P$

Ejemplos

- Toda función continua en [a,b], es integrable en [a,b]
- Toda circunferencia cumple que la razón Perímetro/diámetro = π
- Ningún número de la forma n! + n es primo
- Ninguna matriz singular (|A|=0) tiene inversa
- Algunos sistemas de ecuaciones lineales tienen infinitas soluciones
- Algunos triángulos rectángulos son isósceles
- Algunas funciones continuas en [a,b] no son derivables en todo punto de [a,b] Algunas matrices no tienen inversa.

3.3 El Silogismo Categórico

Se llama Silogismo Categórico a la deducción a partir de dos proposiciones categóricas donde la conclusión también es una proposición categórica.

Términos del Silogismo Categórico

- Término Menor = Sujeto de la conclusión = Premisa Menor
- Término Mayor = Predicado de la conclusión = Premisa Mayor
- Término Medio = Figura en ambas premisas y no en la conclusión

Tipos de Silogismos Categóricos

Figura 1	Figura 2	Figura 3	Figura 4
M - P	P - M	M - P	P - M
S - M	S - M	M - S	M - S
S - P	S - P	S - P	S - P

Tabla de Silogismos Válidos:

Figura 1	Figura 2	Figura 3	Figura 4
Barbara (AAA-1)	Cesare (EAE-2)	Disamis (IAI-3)	Bramantip (AAI-4)
Celarent (EAE-1)	Camestres (AEE-2)	Datisi (AII-3)	Camenes (AEE-4)
Darii (AII-1)	Festino (EIO-2)	Bocardo (OAO-3)	Dimaris (IAI-4)
Ferio (EIO-1)	Baroco (AOO-2)	Ferison (EIO-3)	Fesapo (EAO-4)
Barbari (AAI-1)	Cesaro (EAO-2)	Darapti (AAI-3)	Fresison (EIO-4)
Celaront (EAO-1)	Camestrop (AEO-2)	Felapton (EAO-3)	Camenop (AEO-4)

Ejemplos

Analizar la validez de los siguientes modos silogísticos

1.- Ningún número negativo es natural Todo numero menor que 0 es negativo

Ningún número menor que 0 es natural

Término mayor = S(sujeto) = menor que 0, Término menor = P(predicado) = es natural, Término medio = M = negativo

Ningún número negativo es natural E $M \longrightarrow P$ Todo número menor que 0 es negativo A $S \longrightarrow M$

Ningún número menor que 0 es natural $E S \longrightarrow P$

Corresponde a la figura 1, modo EAE-1, luego es válido

2.- Todo número entero es real A M - PTodo número natural es entero A S - MTodo número natural es real A S - P

Término mayor = S (sujeto) = es natural, Término menor = P (predicado) = es real, Término medio = M = es entero

Corresponde a la figura 1, modo AAA-1, luego es válido

Término mayor = S(sujeto) = Primos, Término menor = P(predicado) = Impares, Término medio = M = Divisible por 2

Corresponde a la figura 2, modo EIO-1, luego es válido

Ejercicios Resueltos

- 1.- En cada una de las siguientes formas proposicionales encontrar equivalentes utilizando los conectivos \land y \neg , simplificándolas en lo posible.
- a) $p \lor q \lor \neg r$ (Los paréntesis suelen omitirse)

Solución:
$$\neg(\neg p \land \neg q \land r)$$

b)
$$p \lor [(\neg q \land r) \to p]$$

Solución:
$$\neg [\neg p \land (\neg q \land r)]$$

c)
$$p \rightarrow (q \rightarrow r)$$

Solución:
$$\neg (p \land q \land \neg r)$$

2.- Simplificar las siguientes expresiones y escribirlas utilizando los conectivos \vee y \neg .

a)
$$(p \land \neg q) \land \neg p$$

b)
$$p \rightarrow (q \lor r) \land \neg p \land q$$

Solución:
$$\neg p \lor \neg \lceil \neg (q \lor r) \lor p \lor \neg q \rceil$$

c)
$$\neg p \land \neg q \land (r \rightarrow p)$$

Solución:
$$\neg [p \lor q \lor \neg (\neg r \lor p)]$$

3.- Simplificar las formas proposicionales siguientes:

a)
$$\lceil (p \land q) \land r \rceil \lor \lceil (p \land q) \land \neg r \rceil \lor \lceil \neg p \land q \rceil$$

Solución:
$$\tau \wedge q \equiv q$$
 (τ = Tautología)

b)
$$[p \rightarrow (q \vee \neg r)] \wedge \neg p \wedge q$$

Solución:
$$\neg p \land q$$

4.- Averiguar mediante tablas de verdad si son o no tautologías las formas proposicionales siguientes:

a)
$$p \leftrightarrow \neg \neg p$$

p	$\neg p$	$\neg\neg p$	$p \leftrightarrow \neg \neg p$
1	0	1	1
0	1	0	1

b)	$\lceil (p \lor q) \lor r \rceil$	\leftrightarrow	$p \vee 0$	$(q \vee r)$	7
- /	(I I)		r	(1)	' !

p	q	r	$p \lor q$	$\left[\left(p \vee q \right) \vee r \right]$	$(q \lor r)$	$[p\vee (q\vee r)]$	$[(p \lor q) \lor r] \leftrightarrow [p \lor (q \lor r)]$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	0	1	1
0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	0	1	0	1	1	1	1
0	0	0	0	0	0	0	1

c)
$$(p \land \neg p) \rightarrow q$$

p	q	$\neg p$	$(p \land \neg p)$	$(p \land \neg p) \rightarrow q$
1	1	0	0	1
1	0	0	0	1
0	1	1	0	1
0	0	1	0	1

d)
$$(p \rightarrow q) \rightarrow (p \rightarrow (p \land q))$$

p	q	$p \rightarrow q$	$p \wedge q$	$p \to (p \land q)$	$(p \to q) \to (p \to (p \land q))$
1	0	1	1	1	1
1	1	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	1

e)
$$[(p \land q) \lor \neg r] \leftrightarrow p$$

p	q	r	$\neg r$	$p \wedge q$	$(p \land q) \lor \neg r$	$[(p \land q) \lor \neg r] \leftrightarrow p$
1	1	1	0	1	1	1
1	1	0	1	1	1	1
1	0	1	0	0	0	0
1	0	0	1	0	1	1
0	1	1	0	0	0	1
0	1	0	1	0	1	0
0	0	1	0	0	0	1
0	0	0	1	0	1	0

f)	-($p \wedge q$	\longleftrightarrow	$(\neg n)$	$\vee \neg a$)
1)	7	$\rho \wedge q$	/ /	$\neg p$	$\vee \neg q$,

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg (p \land q)$	$(\neg p \lor \neg q)$	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
1	1	0	0	1	0	0	1
1	0	0	1	0	1	1	1
0	1	1	0	0	1	1	1
0	0	1	1	0	1	1	1

- 5.- Escribir las siguientes expresiones lógicas utilizando los conectivos \land , \lor y \neg . *Para resolverlo usaremos sus tablas de verdad.*
- a) $p\Delta q$ Solución:

p	q	$p\Delta q$
0	0	0
0	1	1
1	0	1
1	1	0

$$\Leftrightarrow (\neg p \land q)$$
$$\Leftrightarrow (p \land \neg q)$$

Luego
$$p\Delta q \Leftrightarrow (\neg p \wedge q) \vee (p \wedge \neg q)$$

b) $p \downarrow q$

p	q	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

$$\Leftrightarrow (\neg p \land \neg q)$$

Luego $p \downarrow q \Leftrightarrow (\neg p \land \neg q)$

c) $p \rightarrow q$

p	q	$p \rightarrow q$
0	0	1
0	1	1

$$\Leftrightarrow (\neg p \land \neg q)$$

1	0	0	$\Leftrightarrow \neg (p \land \neg q)$
1	1	1	$\Leftrightarrow (p \land q)$

Luego
$$(p \rightarrow q) \Leftrightarrow (\neg p \land \neg q) \land (\neg p \land q) \land (p \land q) \Leftrightarrow \neg (p \land \neg q)$$

Aplicando De Morgan $\neg (p \land \neg q) \Leftrightarrow \neg p \lor \neg \neg q \Leftrightarrow \neg p \lor q$

Luego $p \to q \Leftrightarrow \neg p \lor q$ también.

c) $p \leftrightarrow q$

p	q	$p \leftrightarrow q$	
0	0	1	$\Leftrightarrow (\neg p \land \neg q)$
0	1	0	
1	0	0	
1	1	1	$\Leftrightarrow (p \land q)$

Luego
$$(p \leftrightarrow q) \Leftrightarrow (p \to q) \land (q \to p) \Leftrightarrow (\neg p \land \neg q) \lor (p \land q)$$

Pero $p \to q \Leftrightarrow \neg p \lor q$ y $q \to p \Leftrightarrow \neg q \lor p$ (del apartado anterior)

Luego $p \leftrightarrow q \Leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$ también.

6.- Resolver los siguientes argumentos:

a) Conclusión: $t \lor u$

- 1. $(p \land q) \rightarrow (r \lor s)$
- 2. $p \rightarrow q$
- 3. $p \land (r \rightarrow (t \land u))$
- $4. \quad s \to (t \land w)$
- 5. *p* Simp 3
- 6. q MPP(2,5)
- 7. $p \wedge q \operatorname{Prod}(5,6)$
- 8. $r \lor s$ MPP(1,7)
- 9. $r \rightarrow (t \land u)$ Simp 3
- 11. $t \wedge u$ MPP(9,10)
- 12. *t*
- 13. s14. $t \wedge w$ MPP(4,13)
- 15. *t* Simp 14

- 16. *t* Cas 8,10-12,13-15
- 17. $t \lor u$ Ad 16
- b) Conclusión: ¬p
 - 1. $p \rightarrow (\neg q \land r)$
 - 2. $r \rightarrow q$
 - 3. *p* aux
 - 4. $\neg q \land r$ MPP(1,3)

 - 5. r Simp 46. q MPP (2,5)
 - 7. $\neg q$ Simp 4
 - 8. $q \land \neg q$ Prod(6,7)
 - 9. $\neg p$ Abs 3-8
- c) Conclusión: $\neg t$
 - 1. $(p \lor s) \rightarrow \neg (q \land r)$
 - 2. $r \rightarrow w \lor m$
 - 3. $w \rightarrow p$
 - 4. $m \rightarrow s$
 - 5. $\neg (q \land r) \rightarrow \neg t$
 - 6. *r* Aux
 - 7. $w \lor m$ MPP(2,6)
 - 8. w
 - 9. *p* MPP(3,8)
 - 10. $p \lor s$ Ad 9
 - 11. $\neg (q \land r)$ MPP(1,10)
 - 12. $\neg t$ MPP(5,11)
 - 13. *m*
 - 14. *s* MPP(4,13)
 - 15. $p \lor s$ Ad 14
 - 16. $\neg (q \land r)$ MPP(1,14)
 - 17. $\neg t$ MPP(5,15)
 - 18. $\neg t$ CAS 7, 8-12, 13-16
- d) *Conclusión:* $r \rightarrow \neg p$

- 1. $p \land q \rightarrow \neg r$
- 2. $q \wedge t$
- 3. *r*
- 4. q Simp 2
- 5. p
- Aux
- 6. $p \wedge q \quad \text{Prod}(4,5)$
- 7. $\neg r$ MPP(1,6)
- 8. $r \land \neg r \operatorname{Prod}(3,7)$
- 9. $\neg p$ Abs 5-8
- 10. $r \rightarrow \neg p$
- 7.- Analizar la validez de los siguientes modos:

Ningún número negativo es natural Todo número menor que 0 es negativo

Ningún número menor que 0 es natural

Término mayor = S (sujeto) = menor que 0

Término menor = P (predicado) = es natural

Término medio = \mathbf{M} = negativo

Ningún número negativo es natural E M-PTodo número menor que 0 es negativo A S-M

Ningún número menor que 0 es natural E - S - P

Corresponde a la figura 1, modo EAE-1, luego es válido

Todo número entero es real A M-PTodo número natural es entero A S-M

Todo número natural es entero A S-P

Término mayor = S (sujeto) = es natural

Término menor = P (predicado) = es real

Término medio = \mathbf{M} = es entero

Corresponde a la figura 1, modo AAA-1, luego es válido

Ningún número impar es divisible por 2 E P-MAlgún número primo es divisible por 2 I S-M

Algún número primo no es impar O S - P

Término mayor = S (sujeto) = Primos Término menor = P (predicado) = Impares Término medio = M = Divisibles por 2

Corresponde a la figura 2, modo EIO-2, luego es válido

Algunos triángulos son rectángulos I M-P Todo triángulo tiene tres ángulos que

Suman 180° A M-S

Algún triángulo cuyos tres ángulos suman 180° es un triángulo rectángulo I S-P

Término mayor = S (sujeto) = Triángulo cuyos 3 ángulos suman 180°

Término menor = P (predicado) = Triángulo rectángulo Término medio = **M** = Triángulo

Ninguna matriz singular es invertible E P-M Algunas matrices invertibles son triangulares I M-S

Algunas matrices triangulares no son singulares O S - P

Término mayor = S (sujeto) = Triangular Término menor = P (predicado) = Singular Término medio = M = Invertible

Corresponde a la figura 4, modo EIO-4, luego es válido

Algunos triángulos son rectángulos I M—P Todo triángulo tiene tres ángulos que suman 180° A M—S

Algún triángulo cuyos tres ángulos suman 180º

es un triángulo rectángulo

Término mayor = S (sujeto) = Triángulo cuyos 3 ángulos suman 180°, Término menor

= P (predicado) = Triángulo rectángulo, Término medio = M = Triángulo

Corresponde a la figura 3, modo IAI-3, luego es válido

5.- Ninguna matriz singular es invertible E P - M

Algunas matrices invertibles son triangulares I M—S

Algunas matrices triangulares no son singulares

 $\boldsymbol{O} \quad \boldsymbol{S} - \boldsymbol{P}$

S - P

Término mayor = S (sujeto) = Triangular, Término menor = P (predicado) = Singular, Término medio = M = Invertible

Corresponde a la figura 4, modo EIO-4, luego es válido