

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/11, 15/56, C07K 15/04 C12N 9/42 // (C12N 15/11 C12R 1:885)

(11) International Publication Number:

WO 94/04673

(43) International Publication Date:

3 March 1994 (03.03.94)

(21) International Application Number:

PCT/F193/00330

A1

(22) International Filing Date:

19 August 1993 (19.08.93)

(30) Priority data:

932,485

19 August 1992 (19.08.92)

US

(71) Applicant: OY ALKO AB [FI/FI]; Salmisaarenranta 7, FIN-00180 Helsinki (FI).

(72) Inventors: NAKARI, Tiina, Hannele; Kauppakartanonku-ja 3 E 53, FIN-00930 Helsinki (FI). ONNELA, Maija-Leena; Hakolahdentie 2 B 23, FIN-00200 Helsinki (FI). ILMEN, Marja, Hannele; Seljatie 1 A 19, FIN-00320 Helsinki (FI). NEVALAINEN, Kaisu, Milja, Helena; 13/269-271 Malton Road, North Epping, NSW 2121 (AU). PENTTILÄ, Merja, Elisa; Vāhāntuvantie 9 A 6, FIN-00390 Helsinki (FI).

(74) Agent: LÖNNQVIST, Gunnel; Oy Alko Ab, Law Department/Patents, P.O. Box 350, FIN-00101 Helsinki (FI).

(81) Designated States: AT, AU, BB, BG, BR, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: FUNGAL PROMOTERS ACTIVE IN THE PRESENCE OF GLUCOSE

(57) Abstract

A method is described for the identification and cloning of promoters that express under a defined environmental condition, such as growth in glucose medium. Using this method, five Trichodermal promoters capable of the high expression of operably linked coding sequences are identified, one of which is the promoter for T. reesei teff. Also provided are altered cbh i promoters, altered so that glucose no longer represses expression from such promoter. The invention further provides vectors and hosts that utilize such promoters, and unique fungal enzyme compositions from such hosts.

< 1 mg

1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
ΑU	Australia	GA	Gabon	MW	Molawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	Hυ	Hungary	NZ	New Zealand
BJ	Benin	1E	Ireland	PL	Poland
BR	Brazil	ſΤ	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CP	Central African Republic		of Korea	SD	Sudan
CC	Congo	KR	Republic of Korea	SE	Swedeo
CH	Switzerland	ΚZ	Kazakhstan	SI	Slovenia
Cl	Côte d'Ivoire	L	Liechtensteln	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czec goslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
ĐΧ	Denma k	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolio	٧N	Viet Nam
FI	Finland		_		

15

20

25

Title of the Invention

Fungal Promoters Active in the Presence of Glucose

Cross-Reference to Related Applications

This application is a continuation-in-part of U.S. Application No. 07/496,155 filed March 19, 1990.

Background of the Invention

I. Methods for the Identification of Promoters

Many systems have been used to isolate genes and their promoters located immediately upstream of the translation start site of a gene. The techniques can roughly be divided in two categories, namely (1) where the aim is to isolate genomic DNA fragments containing promoter activity randomly by so-called promoter probe vector systems and (2) where the aim is to isolate a gene *per se* from a genomic bank (library) and isolation of the corresponding promoter follows therefrom.

In promoter probe vector systems, genomic DNA fragments are randomly cloned in front of the coding sequence of a reporter gene that is expressed only when the cloned fragment contains promoter activity (Neve, R.L. et al., Nature 277:324-325 (1979)). Promoter probe vectors have been designed for cloning of promoters in E. coli (An, G. et al., J. Bact. 140:400-407 (1979)) and other bacterial hosts (Band, L. et al., Gene 26:313-315 (1983); Achen, M.G., Gene 45:45-49 (1986)), yeast (Goodey, A.R. et al., Mol. Gen. Genet. 204:505-511 (1986)) and mammalian cells (Pater, M.M. et al., J. Mol. App. Gen. 2:363-371 (1984)). Because it is well known in the art that Trichoderma promoters fail to work in E. coli and yeast (e.g. Penttilä, M.E. et al., Mol. Gen. Genet. 194:494-499 (1984)), these organisms cannot be used as hosts to isolate Trichoderma promoters. Due to the fact that,

10

15

20

25

30

during the transformation of *Trichoderma*, the transforming DNA integrates into the fungal genome in varying copies in random locations, application of this method by using *Trichoderma* itself as a cloning host is also unlikely to succeed and would not be practical for efficient isolation of *Trichoderma* promoters with the desired properties.

Known genes can be isolated from either a cDNA or chromosomal gene bank (library) using hybridization as a detection method. Such hybridization may be with a corresponding, homologous gene from another organism (e.g., Vanhanen et al., Curr. Genet. 15:181-186 (1989)) or with a probe designed on the basis of expected similarities in amino acid sequence. If amino acid sequence is available for the corresponding protein, an oligonucleotide can also be designed which can be used in hybridization for isolation of the gene. If the gene is cloned into an expression bank, the expression product of gene can be also detected from such expression bank by using specific antibodies or an activity test.

Specific genes can be isolated by using complementation of mutations in *E. coli* or yeast (e.g., Keesey, J.K. et al., J. Bact. 152:954-958 (1982); Kaslow, D.C., J. Biol. Chem. 265:12337-12341 (1990); Kronstad, J.W., Gene 79:97-106 (1989)), or complementation of corresponding mutants of filamentous fungi for instance by using SIB selection (Akins et al., Mol. Cell. Biol. 5:2272-2278 (1985)).

However, a major concern is how to isolate specific genes that have the desired promoter properties, for example genes which would be most highly expressed when glucose is present in the medium. There is no information available in literature to indicate which genes are the most highly expressed in an organism, and especially not from filamentous fungi. The phosphoglyceratekinase (PGK) promoter from the yeast Saccharomyces cerevisiae is considered to be a strong promoter for protein production. However, results obtained by the inventors have shown that the corresponding Trichoderma promoter is not suitable for such protein production. Thus, the identification of specific Trichoderma genes for their isolation in order to

10

15

20

25

30

obtain the best possible promoter for protein production in certain desired conditions is unknown and cannot be predicted. Consequently one cannot rely on any previous nucleotide or amino acid sequence information, nor complement any previously known mutations, in gene isolation for such purpose in *Trichoderma*.

Differential hybridization has been used for cloning of genes expressed under certain conditions. The method relies on the screening of a bank separately with an induced and noninduced cDNA probe. By this method e.g., Trichoderma reesei genes strongly expressed during production of cellulolytic enzymes have been isolated (Teeri, T. et al., Bio/Technology 1:696-699 (1983)). The differential hybridization methods used are based on the idea that the genes searched for are expressed in certain conditions (like cellulases on cellulose) but not in some other conditions (like cellulases on glucose) which enables picking up clones hybridizing with only one of the cDNA probes used. However, for isolation of the genes expressed strongly on glucose, this approach (expression on glucose and not on some other media) is not a suitable one, and might in fact result in not finding the most highly expressed genes. This is because when differentially screening a chromosomal bank, only induced genes are selected. Such induced genes are not necessarily the most strongly expressed genes. Thus, no method is known in the art which would permit the identification of promoters which function strongly in Trichoderma on glucose medium.

Another option for obtaining a promoter with desired properties is to modify the already existing ones. This is based on the fact that the function of a promoter is dependent on the interplay of regulatory proteins which bind to specific, discrete nucleotide sequences in the promoter, termed motifs. Such interplay subsequently affects the general transcription machinery and regulates transcription efficiency. These proteins are positive regulators or negative regulators (repressors), and one protein can have a dual role depending on the context (Johnson, P.F. and McKnight, S.L. Annu. Rev. Biochem. 58:799-839 (1989)). However, even a basic understanding of the

10

15

20

25

regions responsible for regulation of a promoter requires a considerable amount of experimental data, and data obtained from the corresponding promoter of another organism is usually not useful (see Vanhanen, S. et al., Gene 106:129-133 (1991)), or at least not sufficient, to explain the function of a promoter originating from another organism.

II. Translation Elongation Factors

Translation Elongation Factors (TEFs) are universally conserved proteins that promote the GTP-dependent binding of an aminoacyl-tRNA to ribosomal A-site in protein synthesis. Especially conserved is the N-terminus of the protein containing the GTP binding domain. TEFs are known as very abundant proteins in cells comprising about 4-6% of total soluble proteins (Miyajima, I. et al., J. Biochem. 83:453-462 (1978); Thiele, D. et al., J. Biol. Chem. 260:3084-3089 (1985)).

tef genes have been isolated from several organisms. In some of them they constitute a multigene family. Also a number of pseudogenes have been isolated from some organisms. The promoter of the human tef gene can direct transcription in vitro at least 2-fold more effectively than the adenovirus major late promoter, which indicates that the tef promoter is a strong promoter in mammalian expression systems (Uetsuki et al., J. Biol. Chem. 264:5791-5798 (1989)). Both the human and the A. thaliana tef1 promoter (for translation elongation factor EF- 1α) has been used in an expression system with high efficiency of gene expression (Kim et al., Gene 91:217-223 (1990); Curie et al., Nucl. Acid Res. 19:1305-1310 (1991)). In both cases the full expression of the promoter was dependent on the presence of the intron in the 5' noncoding region.

tef is quite constitutively expressed, the major exception being its expression in aging and quiescent cells. It is not known to be regulated by the growth substrates of the host.

10

15

20

25

30

III. Expression of Recombinant Proteins in Trichoderma

The filamentous fungus Trichoderma reesei is an efficient producer of hydrolases, especially of different cellulose degrading enzymes. Due to its excellent capacity for protein secretion and developed methods for industrial cultivations, Trichoderma is a powerful host for production of heterologous, recombinant proteins in large scale. The efficient production of both homologous and heterologous proteins in fungi relies on fungal promoters. The promoter of the main cellulase gene of *Trichoderma*, cellobiohydrolase 1 (cbh1), has been used for production of heterologous proteins in Trichoderma grown on media containing cellulose or its derivatives (Harkki et al., Bio/Technology 7:596-603 (1989); Saloheimo et al., Bio/Technology 9:987-990 (1991)). The cbh1 promoter cannot be used when the Trichoderma are grown on glucose containing media due to glucose repression of cbh1 promoter activity. This regulation occurs at the transcriptional level and thus glucose repression could be mediated through the promoter sequences. It is also known that cellulase genes cbh1, cbh2, egl1 and egl2 are coexpressed in various growth conditions, thus it is presumable that same regulatory factors operate on fairly similar promoter sequences mediating similar functions. However, nothing is yet known of the mechanism of glucose repression at the promoter level in filamentous fungi.

Glucose repression in the yeast Saccharomyces cerevisiae has been studied for many years. These studies have however failed, until recently, to identify binding sequences in promoters or regulatory proteins binding to promoters which would mediate glucose repression. The first ever published glucose repressor protein and the binding sequence in eukaryotic cells was published by Nehlin and Ronne (Nehlin, J.O. and Ronne, H. EMBO J. 9:2891-2899 (1990)). This MIG1 protein seems to be responsible of one fifth of the glucose repression of GAL genes in Saccharomyces cerevisiae, other factors still being required to obtain full glucose repression effect (Nehlin, J.O. et al., EMBO J. 10:3373-3377 (1991)).

15

20

25

Thus, it is desirable to be able to produce proteins in *Trichoderma* grown on glucose. Not only is the substrate glucose cheap and readily available, but also *Trichoderma* produces less protease activity when grown on glucose. Further, cellulase production is repressed when *Trichoderma* is grown on glucose, thus allowing for the easier purification of the desired product from the *Trichoderma* medium. Nevertheless, to date there has been no identification or characterization of any promoter that is highly functional in *Trichoderma* grown on glucose. In addition, no modifications of the normally glucose repressed promoter, the *cbh1* promoter, have been identified which would allow the use of this strong promoter for expression of heterologous genes in *Trichoderma* grown on glucose.

Summary of the Invention

This invention is first directed to the identification of the motif, the DNA element, that imparts glucose repression onto the *Trichoderma cbh1* promoter.

The invention is further directed to a modified *Trichoderma cbh1* promoter, such modified promoter lacking such glucose repression element and such modified promoter being useful for the production of proteins, including cellulases, when the host is grown on glucose medium.

The invention is further directed to a method for the isolation of genes that are highly expressed on glucose, especially from filamentous fungal hosts such as *Trichoderma*.

The invention is further directed to five such previously undescribed genes and their promoters from *Trichoderma reesei*.

The invention is further directed to specific cloning vectors for *Trichoderma* containing the above mentioned sequences.

The invention is further directed to filamentous fungal strains transformed with said vectors, which strains thus are able to produce proteins such as cellulases on glucose.

10

15

20

25

The invention is further directed to a process for producing cellulases or other useful enzymes on glucose.

Brief Description of the Drawings

Figure 1 shows the plasmid pTHN1 which carries the *tef1* promoter and 5' part of the coding region and shows the relevant features of the *tef1* gene and the sequenced areas. Figure 1A is the nucleotide sequence of the *tef1* promoter and coding sequence [TEF001; SEQ ID 1]. The promoter sequence stops at base number 1234. The methionine codon of the start site of translation is located at base numbers 1235-1237 and is underlined. The total number of bases shown is 3461. The DNA sequence composition is 850A, 1044C, 860G, 697T, and 10 other.

Figure 2 shows the plasmid pEA33 which carries the *tef1* promoter and the coding region with relevant features.

Figure 3 shows the plasmid pTHN3 which carries the promoter and coding region of the clone cDNA1 and shows the relevant features. Figure 3A is the nucleotide sequence of the cDNA1 promoter and coding sequence [SEQ ID 2]. The promoter sequence stops at base number 1157. The methionine codon of the start site of translation is located at base numbers 1158-1160 as numbered in Figure 3A and is underlined.

Figure 4 shows the plasmid pEA10 which carries the promoter and coding region of the clone cDNA10 and the relevant regions and sequenced areas. Diagonally hatched = insert; solid line = sequenced region (genomic DNA); squared criss-crossed = sequenced region (cDNA). Not all *Eco*RV and *Nde*I sites are shown. Figure 4A is the nucleotide sequence of the cDNA10 promoter and coding sequence [CDNA10SEQ; SEQ ID 3]. The promoter sequence stops at base number 1522. The methionine codon of the start site of translation is located at base numbers 1523-1525 and is underlined. The total number of bases shown is 2868. The DNA sequence composition is 760A, 765C, 675G and 668T.

10

15

20

25

30

Figure 5 shows the plasmid pEA12 which carries the clone cDNA12 and relevant features and sequenced areas. Diagonally hatched = insert; solid line = sequenced region (genomic DNA); squared criss-crossed = sequenced region (cDNA). ? = unsequenced intron region. Note: AvaI is not a unique site. Figure 5A is the nucleotide sequence of the cDNA12 promoter and coding sequence [A12DNA; SEQ 1D 4]. The promoter sequence stops at base number 1101. The methionine codon of the start site of translation is located at base numbers 1102-1104 and is underlined. The total number of bases is 2175. The DNA sequence composition is 569A, 602C, 480G, 519T and 5 other.

Figure 6 shows the plasmid pEA155 which carries the promoter and coding region of the clone cDNA15 and the relevant features and sequenced areas. Diagonally hatched = insert; solid line = sequenced region (genomic DNA); squared criss-crossed = sequenced region (cDNA). Not all *Pst*1 and *Eco*R1 sites are shown. Figure 6A is the nucleotide sequence of the cDNA15 promoter and coding sequence [SEQ 1D 5]. The total number of bases is 2737. The DNA composition is 647A, 695C, 742G, 649T and 4 other.

Figure 7 shows plasmid pPLE3 which carries the egl1 cDNA. Just above the plasmid map is the sequence of the adaptor molecule [SEQ 1D 25] that was constructed to remove the small SacII and Asp718 fragment from the plasmid so as to construct an exact joint [SEQ 1D 26, SEQ 1D 27] between the cbh1 promoter and the egl1 signal sequences [SEQ 1Ds 18 and 16]. Figure 7A shows the 1588 bp sequence of the egl1 cDNA (369A, 527C, 418G and 274T) [SEQ ID 16]. Figure 7B shows the sequence of the 745 bp cbh1 terminator of pPLE131 (198A, 191C, 177G, and 179T) [SEQ ID 23].

Figure 8 shows construction of plasmid pEM-3A and SEQ 1D 28. The "A" on the plasmid maps denotes the EGI tail sequence and the "B" denotes the EGI hinge sequence.

Figure 9 shows the plasmid pTHN100B for expression of the EGIcore under the *tefl* promoter and SEO ID 28.

10

15

20

25

30

Figure 10 shows production of EGIcore from the plasmid pTHN100B into the culture medium of the host strain QM9414 analyzed by EGI specific antibodies from a slot blot. Lane 1: pTHN100B-16b, 200 μ l glucose supernatant; lane 2: QM9414, 200 μ l glucose supernatant; lane 3: TBS; lane 4: QM9414, 200 μ l solka floc 1:500 diluted supernatant; lane 5: QM9414, 200 μ l solka floc 1:5,000 diluted supernatant; lane 6: QM9414, 200 μ l solka floc 1:10,000 diluted supernatant; lane 7: pTHN100B-16b, 200 μ l glucose 1:5 diluted supernatant; lane 8: QM9414, 200 μ l glucose 1:5 diluted supernatant; lane 9: 200 ng EGI protein; lane 10: 100 ng EGI protein; lane 11: 50 ng EGI protein; and lane 12: 25 ng EGI protein.

Figure 11 shows Western blotting with EGI specific antibodies of culture medium of the strain pTHN100B-16c grown in whey-spent grain or glucose medium, and of EGIcore purified from the glucose medium. Lane 1: pTNH100B-16c, 10 μ l whey spent grain supernatant; lane 2: pTNH100B-16c, 5 μ l whey spent grain supernatant; lanes 3-5: EGIcore purified from pTHN100B-16c glucose fermentation; lane 6: pTHN100B-16c, 15 μ l glucose fermenter supernatant, concentrated 100x; lane 7: pTHN100B-16c, 7.5 μ l glucose fermenter supernatant, concentrated 100x; and lane 8: low molecular weight markers at 94kDa, 67 kDa, 43 kDa, 30 kDa and 20.1 kDa (bands 1-5 starting from lane 8, top of gel).

Figure 12 shows Western blotting of culture medium of the strain pTHN100B-16c grown on glucose medium. Lane 1: EGI protein, about 540 ng; lane 2, EGI protein, about 220 ng; lane 3, EGI protein, about 110 ng; lane 4: pTHN100B-16c, 30 μ l glucose fermenter supernatant; lane 5: pTHN100B-16c, 30 μ l glucose fermenter supernatant, concentrated 4.2x; lane 6: low molecular weight markers at 94kDa, 67 kDa, 43 kDa, 30 kDa and 20.1 kDa (bands 1-5 starting from lane 6, top of gel).

Figure 13 diagrams the elements of the plasmid pMLO16. Figure 13A is the sequence of the *cbh1* promoter of plasmid pMLO16 [SEQ ID18]. Figure 13B is the sequence of the *T. reesei cbh1* terminator on plasmid pMLO16 and plasmids derived from it [SEO ID24].

10

15

20

25

30

Figure 14 shows the expression of β -galactosidase on glucose medium in pMLO16del5(11)-transformants of *Trichoderma reesei* QM 9414 (A2-F5). Al: QM 9414 host strain; C1 and El: QM 9414 transformant in which one copy of β -galactosidase expression cassette with intact cbh1 promoter has replaced the cbh1 locus; B1, D1 and F1: empty wells.

Figure 15 shows the restriction map of the plasmid pMLO16del5(11), which carries the shortened form of the *cbh1* promoter fused to the *lacZ* gene and the *cbh1* terminator. Figure 15A is the sequence of the truncated *cbh1* promoter [(pMLO16del5(11)); SEQ ID19]. The polylinker is underlined. The arrow denotes the deletion site.

Figure 16 shows the restriction map of the plasmid pMLO17, which carries the shortened form of the *cbh1* promoter fused to the *cbh1* chromosomal gene. The restriction sites marked with a superscripted cross "+" are not single sites. There are two additional *EcoRI* sites in the *cbh1* gene that are not shown. Figure 16A shows the sequence of the *KspI-Xma1* fragment (the underlined portion) that contains the chromosomal *cbh1* gene [SEQ ID17].

Figure 17 shows the expression of CBHI on glucose medium in pMLO17 transformants of *Trichoderma reesei* QM 9414. A collection of single spore cultures (number and a letter-code) and different control samples are shown.

Figure 18 shows specific mutations of mig-like sequences (M) in *cbh1* promoters of pMI-24, pMI-25, pMI-26, pMI-27 and pMI-28. The promoters shown here were fused to *lacZ* gene and *cbh1* terminator as described for pMLO16 (see Figure 13) or pMLO16del0(2) (see Figure 19). *: sequence alteration made in *cbh1* promoter in different combinations. At position -1505-1500 the genomic sequence is 5'-CTGGGG and the altered sequence is 5'-TCTAAA. At position -1001-996 the genomic sequence is 5'-CTGGGG and the altered sequence is 5'-TCTAAA. At position -720-715 the genomic sequence is 5'-GTGGGG and the altered sequence is 5'-TCTAGA.

10

15

20

and pMI-28, pMLO16 for pMI-24. v = the polylinker. Figure 18A is the sequence of the altered *cbh1* promoter of pMI-24 (PMI27PROM) ([SEQ ID20]). The total number of bases is 1776. The sequence composition is 487A, 399C, 434G, and 456T. The polylinker is underlined and the sequence alteration is boxed. Figure 18B is the sequence of the altered *cbh1* promoter of pMI-27 ([SEQ ID21]). The polylinker is underlined, the arrow denotes the deletion point and the sequence alterations are boxed. Figure 18C is the sequence of the altered *cbh1* promoter of pMI-28 (PMI28PROM) ([SEQ ID22]). The polylinker is underlined, the arrow denotes the deletion point and the sequence alterations are boxed. The total number of bases is 1776. The sequence composition if 490A, 399C, 430G and 457T.

Figure 19 shows the restriction map of the plasmid pMLO16del0(2), which carries the shortened form of the *cbh1* promoter fused to *lacZ* gene and the *cbh1* terminator.

Figure 20 shows the expression of β -galactosidase on indicated medium in *Trichoderma reesei* QM9414 transformed with pMLO16del0(2), pMI-25, pMI-27, pMI-28, pMLO16 and pMI-24.

Detailed Description of the Preferred Embodiments

1. Identification of Fungal Genes that Express on Glucose Medium

In the following description, reference will be made to various methodologies known to those of skill in the art of molecular genetics and biology. Publications and other materials setting forth such known methodologies to which reference is made are incorporated herein by reference in their entireties as though set forth in full.

General principles of the biochemistry and molecular biology of the filamentous fungi are set forth, for example, in Finkelstein, D.B. et al., eds., Biotechnology of Filamentous Fungi: Technology and Products, Butterworth-Heinemann, publishers, Stoneham, MA (1992) and Bennett, J.W. et al., More

10

15

20

25

30

Gene Manipulations in Fungi, Academic Press - Harcourt Brace Jovanovich, publishers, San Diego CA (1991).

To be able to develop versatile systems for protein production from *Trichoderma*, especially when *Trichoderma* are grown on glucose, a method has been developed for the isolation of previously unknown *Trichoderma* genes which are highly expressed on glucose, and their promoters. The method of the invention requires the use of only one cDNA population of probes.

It is to be understood that the method of the invention would be useful for the identification of promoter sequences that are active under any desired environmental condition to which a cell could be exposed, and not just to the exemplified isolation of promoters that are capable of expression in glucose medium. By "environmental condition" is meant the presence of a physical or chemical agent, such agent being present in the cellular environment, either extracellularly or intracellularly. Physical agent would include, for example, certain growth temperatures, especially a high or low temperature. Chemical agents would include any compound or mixtures including carbon growth substrates, drugs, atmospheric gases, etc.

According to the method of the invention, the organism is first grown under the desired growth condition, such as the use of glucose as a carbon source. Total mRNA is then extracted from the organism and preferably purified through at least a polyA + enrichment of the mRNA from the total RNA population. A cDNA bank is made from this total mRNA population using reverse transcriptase and the cDNA population cloned into any appropriate vector, such as the commercially available lambda-ZAP vector system (Stratagene). When using the lambda-ZAP vector system, or any lambda vector system, the cDNA is packaged such that it is suitable for infection of any *E. coli* strain susceptable to lambda bacteriophage infection.

The cDNA bank is transferred by standard colony hybridization techniques onto nitrocellulose filters for screening. The bank is plated and plaque lifts are taken onto nitrocellulose. The bank is screened with a population of labelled cDNAs that had been synthesized against the same RNA

population from which the cloned cDNA bank was constructed, using stringent hybridization conditions. It should be noted that the genes are not expressed in any way during this selection process. This results in clones hybridizing with varying intensity and the ones showing the strongest signals are picked. Genes that are most strongly expressed in the original population comprise the majority of the total mRNA pool and thus give a strong signal in this selection.

5

10

15

20

25

30

The inserts in clones with the strongest signals are sequenced from the 3'end of the insert using any standard DNA sequencing technique as known in the art. This provides a first identification of each clone and allows the exclusion of identical clones. The frequency with which each desired clone is represented in the cDNA lambda-bank is determined by hybridizing the bank against a clone-specific PCR probe. The desired clones are those which, in addition to having the strongest signals as above, are also represented at the highest frequencies in the cDNA bank, since this implies that the abundancy of the mRNA in the population was relatively high and thus that the promoter for that gene was highly active under the growth conditions. Thus, the relevance of this approach and any clone identified therefrom can be doublechecked: the intensity of the hybridization signal of a specific clone should correlate positively with the frequency with which that clone is found in the cDNA bank. The inserts of the clones selected in this manner, such inserts corresponding to the cDNA sequences, may be used as probes to isolate the corresponding genes and their promoters from a chromosomal bank, such as one cloned into lambda as above.

The method of the invention is not limited to *Trichoderma*, but would be using for cloning genes from any host, or from a specific tissue with such host, from which a cDNA bank may be constructed, including, prokaryote (bacterial) hosts, and any eukaryotic host plants, mammals, insects, yeast, and any cultured cell populations.

For example, using the method of the invention, five genes that express relatively high levels of mRNA in *Trichoderma reesei* when such *Trichoderma*

are grown on glucose were identified. These genes were sequenced and identified as clone cDNA33, cDNA1, cDNA10, cDNA12, and cDNA15. When used to screen a *Trichoderma* chromosomal lambda-bank, the corresponding genes and their promoters were identified. Such genes and promoters (or portions thereof) may then be subcloned into any desired vector, such as the pSP73 vector (Promega, Madison, WI, USA).

5

20

25

According to the invention, the clones containing the genes and their promoters (or parts of them) highly expressed in *Trichoderma* grown on glucose are represented as follows:

10	<u>Plasmid</u>	<u>Figure</u>	<u>cDNA</u>	<u>Figure</u>	SEO ID No
	pTHN1	1A	cDNA33	1B	1
	pEA33	2	cDNA33	1B	1
•	pTHN3	3A	cDNA1	3B	2
	pEA10	4A	cDNA10	4B	3
15	pEA12	5A	cDNA12	5B	4
	pEA155	6A	cDNA15	6B	5

One of the genes isolated according to the invention as being highly expressed when Trichoderma was grown on glucose has been identified as the one encoding Trichoderma translation elongation factor 1α (tefI). In addition, four other, new genes have been identified for the first time that are highly expressed on glucose in Trichoderma.

These data show that the method used in this invention resulted in isolating five genes, one of which (tef1) is known to be efficiently expressed in other organisms. However, the tef1 gene was not the most highly expressed of the five genes isolated from the Trichoderma cDNA bank by the method of the invention.

Of the five genes isolated, only *tefl* shows a relevant degree of homology to any known protein sequences. All of the genes isolated are also expressed on other carbon sources and would not have been found with the

WO 94/04673

classical method of differential cloning. This shows the importance of the method used in this invention in isolation of the most suitable genes for a specific purpose, such as for isolation of strong promoters for expression on glucose containing medium.

5

The promoter of any of these genes may be operably linked to a sequence heterologous to such promoter, and especially heterologous to the host *Trichoderma*, for expression of such gene from a *Trichoderma* host that is grown on glucose. Preferably, the coding sequence provides a secretion signal for secretion of the recombinant protein into the medium.

10

Use of the promoters of the invention allow for the expression of genes from *Trichoderma* under conditions in which there are no cellulases and relatively few proteases. Thus, for the first time, recombinant genes can be highly expressed on *Trichoderma* using a glucose-based growth medium.

15

The promoters of the invention, while being strongly expressed on glucose (that is, when the filamentous fungal host is grown on medium providing glucose as a carbon and energy source), are not repressed in the absence of glucose. In addition, they are active when the *Trichoderma* host is grown on carbon sources other than glucose.

20

25

The glucose promoters of the invention, and those identified by the methods of the invention, can be used to produce enzymes native to *Trichoderma* itself, especially of those capable of hydrolysing different kinds of plant material. On glucose, the fungus does not naturally produce these enzymes and consequently one or more specific hydrolytic enzymes could be produced on glucose medium free from other plant material hydrolyzing enzymes. This would result in an enzyme preparate or enzyme mixtures for specific applications.

10

15

20

25

II. Modification of the Cellobiohydrolase I Promoter

This invention also describes a method for the modification of the cellobiohydrolase 1 promoter (cbh1) such that the activity of the promoter is retained but the promoter no longer is repressed when cells are grown on glucose-containing medium. Essentially, the DNA motif that imparted glucose repression has been identified and removed from this promoter, allowing production of desired proteins whose coding sequences are operably linked to the promoter in suitable hosts, such as Trichoderma. Such a modified cbh1 promoter is termed a derepressed cbh1 promoter. As above, when the recombinant organisms obtained from transformation with such constructs are cultivated on glucose containing medium, any protein, including a cellulase may be produced without production of other plant material hydrolysing enzymes, especially of native cellulases.

Isolated glucose promoters or derepressed *cbh1* promoter can be used for instance to produce separate individual cellulases in hosts grown on glucose without any simultaneous production of other hydrolases such as other cellulases, hemicellulases, xylanases etc. or to produce heterologous proteins in varying growth media.

III. <u>Preparation of Coding Sequences Operably Linked to the Promoter Sequences of the Invention</u>

The process for genetically engineering a coding sequence, for expression under a promoter of the invention, is facilitated through the isolation and partial sequencing of pure protein encoding an enzyme of interest or by the cloning of genetic sequences which are capable of encoding such protein with polymerase chain reaction technologies; and through the expression of such genetic sequences. As used herein, the term "genetic sequences" is intended to refer to a nucleic acid molecule (preferably DNA). Genetic sequences that are capable of encoding a protein are derived from a

variety of sources. These sources include genomic DNA, cDNA, synthetic DNA, and combinations thereof. The preferred source of genomic DNA is a fungal genomic bank. The preferred source of the cDNA is a cDNA bank prepared from fungal mRNA grown in conditions known to induce expression of the desired gene to produce mRNA or protein. However, since the genetic code is universal, a coding sequence from any host, including prokaryotic (bacterial) hosts, and any eukaryotic host plants, mammals, insects, yeasts, and any cultured cell populations would be expected to function (encode the desired protein).

10

5-

Genomic DNA may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with the 5' promoter region of the gene sequences and/or with the 3' transcriptional termination region. According to the invention however, the native promoter region would be replaced with a promoter of the invention.

15

...4

Such genomic DNA may also be obtained in association with the genetic sequences which encode the 5' non-translated region of the mRNA and/or with the genetic sequences which encode the 3' non-translated region. To the extent that a host cell can recognize the transcriptional and/or translational regulatory signals associated with the expression of the mRNA and protein, then the 5' and/or 3' non-transcribed regions of the native gene, and/or, the 5' and/or 3' non-translated regions of the mRNA may be retained and employed for transcriptional and translational regulation.

25

30

20

Genomic DNA can be extracted and purified from any host cell, especially a fungal host cell, which naturally expresses the desired protein by means well known in the art. A genomic DNA sequence may be shortened by means known in the art to isolate a desired gene from a chromosomal region that otherwise would contain more information than necessary for the utilization of this gene in the hosts of the invention. For example, restriction digestion may be utilized to cleave the full-length sequence at a desired location. Alternatively, or in addition, nucleases that cleave from the 3'-end of a DNA molecule may be used to digest a certain sequence to a shortened

form, the desired length then being identified and purified by gel electrophoresis and DNA sequencing. Such nucleases include, for example, Exonuclease III and *Bal*31. Other nucleases are well known in the art.

For cloning into a vector, such suitable DNA preparations (either genomic DNA or cDNA) are randomly sheared or enzymatically cleaved, respectively, and ligated into appropriate vectors to form a recombinant gene (either genomic or cDNA) bank.

5

15

20

25

30

A DNA sequence encoding a desired protein or its functional derivatives may be inserted into a DNA vector in accordance with conventional techniques, including blunt-ending or staggered-ending termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. Techniques for such manipulations are disclosed by Maniatis, T., (Maniatis, T. et al., Molecular Cloning (A Laboratory Manual), Cold Spring Harbor Laboratory, second edition, 1988) and are well known in the art.

Libraries containing sequences coding for the desired gene may be screened and the desired gene sequence identified by any means which specifically selects for a sequence coding for such gene or protein such as, for example, a) by hybridization with an appropriate nucleic acid probe(s) containing a sequence specific for the DNA of this protein, or b) by hybridization-selected translational analysis in which native mRNA which hybridizes to the clone in question is translated *in vitro* and the translation products are further characterized, or, c) if the cloned genetic sequences are themselves capable of expressing mRNA, by immunoprecipitation of a translated protein product produced by the host containing the clone.

Oligonucleotide probes specific for a certain protein which can be used to identify clones to this protein can be designed from the knowledge of the amino acid sequence of the protein or from the knowledge of the nucleic acid sequence of the DNA encoding such protein or a related protein. Alternatively, antibodies may be raised against purified forms of the protein

and used to identify the presence of unique protein determinants in transformants that express the desired cloned protein. When an amino acid sequence is listed horizontally, unless otherwise stated, the amino terminus is intended to be on the left end and the carboxy terminus is intended to be at the right end. Similarly, unless otherwise stated or apparent from the context, a nucleic acid sequence is presented with the 5' end on the left.

5 -

10

ţ-,

15 -

20

25

30

Because the genetic code is degenerate, more than one codon may be used to encode a particular amino acid. Peptide fragments may be analyzed to identify sequences of amino acids that may be encoded by oligonucleotides having the lowest degree of degeneracy. This is preferably accomplished by identifying sequences that contain amino acids which are encoded by only a single codon.

Although occasionally an amino acid sequence may be encoded by only a single oligonucleotide sequence, frequently the amino acid sequence may be encoded by any of a set of similar oligonucleotides. Importantly, whereas all of the members of this set contain oligonucleotide sequences which are capable of encoding the same peptide fragment and, thus, potentially contain the same oligonucleotide sequence as the gene which encodes the peptide fragment, only one member of the set contains the nucleotide sequence that is identical to the exon coding sequence of the gene. Because this member is present within the set, and is capable of hybridizing to DNA even in the presence of the other members of the set, it is possible to employ the unfractionated set of oligonucleotides in the same manner in which one would employ a single oligonucleotide to clone the gene that encodes the peptide.

Using the genetic code, one or more different oligonucleotides can be identified from the amino acid sequence, each of which would be capable of encoding the desired protein. The probability that a particular oligonucleotide will, in fact, constitute the actual protein encoding sequence can be estimated by considering abnormal base pairing relationships and the frequency with which a particular codon is actually used (to encode a particular amino acid) in eukaryotic cells. Using "codon usage rules," a single oligonucleotide

sequence, or a set of oligonucleotide sequences, that contain a theoretical "most probable" nucleotide sequence capable of encoding the protein sequences is identified.

5

10

15

20

25

30

The suitable oligonucleotide, or set of oligonucleotides, which is capable of encoding a fragment of a certain gene (or which is complementary to such an oligonucleotide, or set of oligonucleotides) may be synthesized by means well known in the art (see, for example, Oligonucleotides and Analogues, A Practical Approach, F. Eckstein, ed., 1992, IRL Press, New York) and employed as a probe to identify and isolate a clone to such gene by techniques known in the art. Techniques of nucleic acid hybridization and clone identification are disclosed by Maniatis, T., et al., in: Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1982)), and by Hames, B.D., et al., in: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985)). Those members of the above-described gene bank which are found to be capable of such hybridization are then analyzed to determine the extent and nature of coding sequences which they contain.

To facilitate the detection of a desired DNA coding sequence, the above-described DNA probe is labeled with a detectable group. Such detectable group can be any material having a detectable physical or chemical property. Such materials have been well-developed in the field of nucleic acid hybridization and in general most any label useful in such methods can be applied to the present invention. Particularly useful are radioactive labels, such as ³²P, ³H, ¹⁴C, ³⁵S, ¹²⁵l, or the like. Any radioactive label may be employed which provides for an adequate signal and has a sufficient half-life. If single stranded, the oligonucleotide may be radioactively labelled using kinase reactions. Alternatively, polynucleotides are also useful as nucleic acid hybridization probes when labeled with a non-radioactive marker such as biotin, an enzyme or a fluorescent group.

Thus, in summary, the elucidation of a partial protein sequence, permits the identification of a theoretical "most probable" DNA sequence, or

a set of such sequences, capable of encoding such a peptide. By constructing an oligonucleotide complementary to this theoretical sequence (or by constructing a set of oligonucleotides complementary to the set of "most probable" oligonucleotides), one obtains a DNA molecule (or set of DNA molecules), capable of functioning as a probe(s) for the identification and isolation of clones containing a gene.

5.

10

: :

15

20

25

30

In an alternative way of cloning a gene, a bank is prepared using an expression vector, by cloning DNA or, more preferably cDNA prepared from a cell capable of expressing the protein into an expression vector. The bank is then screened for members which express the desired protein, for example, by screening the bank with antibodies to the protein.

The above discussed methods are, therefore, capable of identifying genetic sequences that are capable of encoding a protein or biologically active or antigenic fragments of this protein. The desired coding sequence may be further characterized by demonstrating its ability to encode a protein having the ability to bind antibody in a specific manner, the ability to elicit the production of antibody which are capable of binding to the native, non-recombinant protein, the ability to provide a enzymatic activity to a cell that is a property of the protein, and the ability to provide a non-enzymatic (but specific) function to a recipient cell, among others.

In order to produce the recombinant protein in the vectors of the invention, it is desirable to operably link such coding sequences to the glucose regulatable promoters of the invention. When the coding sequence and the operably linked promoter of the invention are introduced into a recipient eukaryotic cell (preferably a fungal host cell) as a non-replicating DNA (or RNA), non-integrating molecule, the expression of the encoded protein may occur through the transient (nonstable) expression of the introduced sequence.

Preferably the coding sequence is introduced on a DNA molecule, such as a closed circular or linear molecule that is incapable of autonomous replication, Preferably, a linear molecule that integrates into the host chromosome. Genetically stable transformants may be constructed with vector systems, or

transformation systems, whereby a desired DNA is integrated into the host chromosome. Such integration may occur *de novo* within the cell or, be assisted by transformation with a vector which functionally inserts itself into the host chromosome.

5

10

15

20

25

30

The gene encoding the desired protein operably linked to the promoter of the invention may be placed with a transformation marker gene in one plasmid construction and introduced into the host cells by transformation, or, the marker gene may be on a separate construct for co-transformation with the coding sequence construct into the host cell. The nature of the vector will depend on the host organism. In the practical realization of the invention the filamentous fungus Trichoderma has been employed as a model. Thus, for Trichoderma and especially for T. reesei, vectors incorporating DNA that provides for integration of the expression cassette (the coding sequence operably linked to its transcriptional and translational regulatory elements) into the host's chromosome are preferred. It is not necessary to target the chromosomal insertion to a specific site. However, targeting the integration to a specific locus may be achieved by providing specific coding or flanking sequences on the recombinant construct, in an amount sufficient to direct integration to this locus at a relevant frequency.

Cells that have stably integrated the introduced DNA into their chromosomes are selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector in the chromosome, for example the marker may provide biocide resistance, e.g., resistance to antibiotics, or heavy metals, such as copper, or the like. The selectable marker gene can either be directly linked to the DNA gene sequences to be expressed, or introduced into the same cell by cotransformation. A genetic marker especially for the transformation of the hosts of the invention is amdS, encoding acetamidase and thus enabling Trichoderma to grow on acetamide as the only nitrogen source. Selectable markers for use in transforming filamentous fungi include, for example, acetamidase (the amdS gene), benomyl resistance, oligomycin resistance.

PCT/FI93/00330

5

10

15 ·

20

25

30

hygromycin resistance, aminoglycoside resistance, bleomycin resistance; and, with auxotrophic mutants, ornithine carbamoyltransferase (OCTase or the argB gene). The use of such markers is also reviewed in Finkelstein, D.B. in: Biotechnology of Filamentous Fungi: Technology and Products, Chapter 6, Finkelstein, D.B. et al., eds., Butterworth-Heinemann, publishers, Stoneham, MA, (1992), pp. 113-156).

To express a desired protein and/or its active derivatives, transcriptional and translational signals recognizable by an appropriate host are necessary. The cloned coding sequences, obtained through the methods described above, and preferably in a double-stranded form, may be operably linked to sequences controlling transcriptional expression in an expression vector, and introduced into a host cell, either prokaryote or eukaryote, to produce recombinant protein or a functional derivative thereof. Depending upon which strand of the coding sequence is operably linked to the sequences controlling transcriptional expression, it is also possible to express antisense RNA or a functional derivative thereof.

Expression of the protein in different hosts may result in different posttranslational modifications which may alter the properties of the protein. Preferably, the present invention encompasses the expression of the protein or a functional derivative thereof, in eukaryotic cells, and especially in fungus.

A micleic acid molecule, such as DNA, is said to be "capable of expressing" a polypeptide if it contains expression control sequences which contain transcriptional regulatory information and such sequences are "operably linked" to the nucleotide sequence which encodes the polypeptide.

An operable linkage is a linkage in which a sequence is connected to a regulatory sequence (or sequences) in such a way as to place expression of the sequence under the influence or control of the regulatory sequence. Two DNA sequences (such as a coding sequence and a promoter region sequence linked to the 5' end of the coding sequence) are said to be operably linked if induction of promoter function results in the transcription of mRNA encoding the desired protein and if the nature of the linkage between the two DNA

-24-

sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the expression regulatory sequences to direct the expression of the protein, antisense RNA, or (3) interfere with the ability of the DNA template to be transcribed. Thus, a promoter region would be operably linked to a DNA sequence if the promoter was capable of effecting transcription of that DNA sequence.

5

10

15

20

25

30

The precise nature of the regulatory regions needed for gene expression may vary between species or cell types, but shall in general include, as necessary, 5' non-transcribing and 5' non-translating (non-coding) sequences involved with initiation of transcription and translation respectively, such as the TATA box, capping sequence, CAAT sequence, and the like, with those elements necessary for the promoter sequence being provided by the promoters of the invention. Such transcriptional control sequences may also include enhancer sequences or upstream activator sequences, as desired.

Expression of a protein in eukaryotic hosts such as fungus requires the use of regulatory regions functional in such hosts, and preferably fungal regulatory systems. A wide variety of transcriptional and translational regulatory sequences can be employed, depending upon the nature of the host. Preferably, these regulatory signals are associated in their native state with a particular gene which is capable of a high level of expression in the host cell.

In eukaryotes, where transcription is not linked to translation, such control regions may or may not provide an initiator methionine (AUG) codon, depending on whether the cloned sequence contains such a methionine. Such regions will, in general, include a promoter region sufficient to direct the initiation of RNA synthesis in the host cell. Promoters from filamentous fungal genes which encode a mRNA product capable of translation are preferred, and especially, strong promoters can be employed provided they also function as promoters in the host cell.

As is widely known, translation of eukaryotic mRNA is initiated at the codon which encodes the first methionine. For this reason, it is preferable to ensure that the linkage between a eukaryotic promoter and a DNA sequence

10

15

20

25

30

which encodes the desired protein, or a functional derivative thereof, does not contain any intervening codons which are capable of encoding a methionine. The presence of such codons results either in a formation of a fusion protein (if the AUG codon is in the same reading frame as the protein-coding DNA sequence) or a frame-shift mutation (if the AUG codon is not in the same reading frame as the protein-coding sequence).

It may be desired to construct a fusion product that contains a partial coding sequence (usually at the amino terminal end) of a protein and a second coding sequence (partial or complete) of a second protein. The first coding sequence may or may not function as a signal sequence for secretion of the protein from the host cell. For example, the sequence coding for desired protein may be linked to a signal sequence which will allow secretion of the protein from, or the compartmentalization of the protein in, a particular host. Such fusion protein sequences may be designed with or without specific protease sites such that a desired peptide sequence is amenable to subsequent removal. In a preferred embodiment, the native signal sequence of a fungal protein is used, or a functional derivative of that sequence that retains the ability to direct the secretion of the peptide that is operably linked to it. Aspergillus leader/secretion signal elements also function in Trichoderma.

If desired, the non-transcribed and/or non-translated regions 3' to the sequence coding for a desired protein can be obtained by the above-described cloning methods. The 3'-non-transcribed region may be retained for its transcriptional termination regulatory sequence elements, or for those elements which direct polyadenylation in eukaryotic cells. Where the native expression control sequences signals do not function satisfactorily in a host cell, then sequences functional in the host cell may be substituted.

The vectors of the invention may further comprise other operably linked regulatory elements such as DNA elements which confer antibiotic resistance, or origins of replication for maintenance of the vector in one or more host cells.

10

15

20

25

30

Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species.

Once the vector or DNA sequence containing the construct(s) is prepared for expression, the DNA construct(s) is introduced into an appropriate host cell by any of a variety of suitable means, including transformation. After the introduction of the vector, recipient cells are grown in a selective medium, which selects for the growth of vector-containing cells. If this medium includes glucose, expression of the cloned gene sequence(s) results in the production of the desired protein, or in the production of a fragment of this protein as desired. This expression can take place in a continuous manner in the transformed cells, or in a controlled manner, for example, by induction of expression.

Fungal transformation is carried out also accordingly to techniques known in the art, for example, using, for example, homologous recombination to stably insert a gene into the fungal host and/or to destroy the ability of the host cell to express a certain protein.

Fungi-useful as recombinant hosts for the purpose of the invention include, e.g., Trichoderma, Aspergillus, Claviceps purpurea, Penicillium chrysogenum, Magnaporthe grisea, Neurospora, Mycosphaerella spp., Collectotrichum trifolii, the dimorphic fungus Histoplasmia capsulatum, Nectia haematococca (anamorph: Fisarium solani f. sp. phaseoli and f. sp. pisi), Ustilago violacea, Ustilago maydis, Cephalosporium acremonium, Schizophyllum commune, Podospora anserina, Sordaria macrospora, Mucor circinelloides, and Collectotrichum capsici. Transformation and selection techniques for each of these fungi have been described (reviewed in Finkelstein, D.B. in: Biotechnology of Filamentous Fungi: Technology and Products. Chapter 6, Finkelstein, D.B. et al., eds., Butterworth-Heinemann,

5 .

10

15

20

25

30

publishers, Stoneham, MA, (1992), pp. 113-156). Especially preferred are Trichoderma reesei, T. harzianum, T. longibrachiatum, T. viride, T. koningii, Aspergillus nidulans, A. niger, A. terreus, A. ficum, A. oryzae, A. awamori and Neurospora crassa.

The hosts of the invention are meant to include all *Trichoderma*. Trichoderma are classified on the basis of morphological evidence of similarity. T. reesei was formerly known as T. viride Pers. or T. koningii Oudem; sometimes it was classified as a distinct species of the T. longibrachiatum group. The entire genus Trichoderma, in general, is characterized by rapidly growing colonies bearing tufted or pustulate, repeatedly branched conidiophores with lageniform phialides and hyaline or green conidia borne in slimy heads (Bissett, J., Can. J. Bot. 62:924-931 (1984)).

The fungus called *T. reesei* is clearly defined as a genetic family originating from the strain QM6a, that is, a family of strains possessing a common genetic background originating from a single nucleus of the particular isolate QM6a. Only those strains are called *T. reesei*.

Classification by morphological means is problematic and the first recently published molecular data from DNA-fingerprint analysis and the hybridization pattern of the cellobiohydrolase 2 (cbh2) gene in T. reesei and T. longibrachiatum clearly indicates a differentiation of these strains (Meyer, W. et al., Curr. Genet. 21:27-30 (1992); Morawetz, R. et al., Curr. Genet. 21:31-36 (1992).

However, there is evidence of similarity between different *Trichoderma* species at the molecular level that is found in the conservation of nucleic acid and amino acid sequences of macromolecular entities shared by the various *Trichoderma* species. For example, Cheng, C., et al., Nucl. Acids. Res. 18:5559 (1990), discloses the nucleotide sequence of T. viride cbh1. The gene was isolated using a probe based on the T. reesei sequence. The authors note that there is a 95% homology between the amino acid sequences of the T. viride and T. reesei gene. Goldman, G.H. et al., Nucl. Acids Res. 18:6717

10

15

20

25

30

(1990), discloses the nucleotide sequence of phosphoglycerate kinases from *T. viride* and notes that the deduced amino acid sequence is 81% homologous with the phosphoglycerate kinase gene from *T. reesei*. Thus, the species classified to *T. viride* and *T. reesei* must genetically be very close to each other.

In addition, there is a high similarity of transformation conditions among the *Trichoderma*. Although practically all the industrially important species of *Trichoderma* can be found in the formerly discussed *Trichoderma* section *Longbrachiatum*, there are some other species of *Trichoderma* that are not assigned to this section. Such a species is, for example, *Trichoderma harzianum*, which acts as a biocontrol agent against plant pathogens. A transformation system has also been developed for this *Trichoderma* species (Herrera-Estrella, A. et al., Molec. Microbiol. 4:839-843 (1990) that is essentially the same as that taught in the application. Thus, even though *Trichoderma harzianum* is not assigned to the section *Longibrachiatum*, the method used by Herrera-Estrella in the preparation of spheroplasts before transformation is the same. The teachings of Herrera-Estrella show that there is not a significant diversity of *Trichoderma* spp. such that the transformation system of the invention would not be expected to function in all *Trichoderma*.

Further, there is a common functionality of fungal transcriptional control signals among fungal species. At least three A. nidulans promoter sequences, amdS, argB, and gpd, have been shown to give rise to gene expression in T. reesei. For amdS and argB, only one or two copies of the gene are sufficient to being about a selectable phenotypes (Penttilä et al., Gene 61:155-164 (1987). Gruber, F. et al., Curr. Genetic 18:71-76 (1990) also notes that fungal genes can often be successfully expressed across different species. Therefore, it is to be expected that the glucose regulated promoters identified herein would be also regulatable by glucose in other fungi. Except for cbh1, it is understood that the glucose regulated promoters of the invention may not be directly regulated by glucose, but rather that they function regardless of its presence.

10

15

20

25

30

Many species of fungi, and especially *Trichoderma*, are available from a wide variety of resource centers that contain fungal culture collections. In addition, *Trichoderma* species are catalogued in various databases. These resources and databases are summarized by O'Donnell, K. et al., in *Biochemistry of Filamentous Fungi: Technology and Products*, D.B. Fingelstein et al., eds., Butterworth-Heinemann, Stoneham, MA, USA, 1992, pp. 3-39.

After the introduction of the vector and selection of the transformant, recipient cells are grown in a selective medium, which selects for the growth of vector-containing cells. Expression of the cloned gene sequence(s) results in the synthesis and secretion of the desired heterologous or homologous protein, or in the production of a fragment of this protein, into the medium of the host cell.

In a preferred embodiment, the coding sequence is the sequence of an enzyme that is capable of hydrolysing lignocellulose. Examples of such sequences include a DNA sequence encoding cellobiohydrolase 1 (CBH1), cellobiohydrolase II (CBHII), endoglucanase I (EGI), endoglucanase II (EGII), endoglucanase III (EGIII), β -glucosidases, xylanases (including endoxylanases and β -xylosidase), side-group cleaving activities, (for example, α arabinosidase, α -D-glucuronidase, and acetyl esterase), mannanases, pectinases (for example, endo-polygalacturonase, exo-polygalacturonase, pectinesterase, or, pectin and pectin acid lyase), and enzymes of lignin polymer degradation, (for example, lignin peroxidase LIII from Phlebia radiata (Saloheimo et al., Gene 85:343-351 (1989)), or the gene for another ligninase, laccase or Mn peroxidase (Kirk, In: Biochemistry and Genetics of Cellulose Degradation, Aubert et al. (eds.), FEMS Symposium No. 43, Academic Press, Harcourt, Brace Jovanovitch Publishers, London. pp. 315-332 (1988))). The cloning of the cellulolytic enzyme genes has been described and recently reviewed (Teeri, T.T. in: Biotechnology of Filamentous Fungi: Technology and Products, Chapter 14, Finkelstein, D.B. et al., eds., Butterworth-Heinemann, publishers, Stoneham, MA, (1992), pp. 417-445). The gene for the native

10

15

20

25

cellobiohydrolase CBHI sequence has been cloned by Shoemaker et al. (Shoemaker, S., et al., Bio/Technology 1:691-696 (1983)) and Teeri et al. (Teeri, T., et al., Bio/Technology 1:696-699 (1983)) and the entire nucleotide sequence of the gene is known (Shoemaker, S., et al., Bio/Technology 1:691-696 (1983)). From T. reesei, the gene for the major endoglucanase (EGI) has also been cloned and characterized (Penttilä, M., et al., Gene 45:253-263 (1986); Patent Application EP 137,280; Van Arstel, J.N.V., et al., Bio/Technology 5:60-64). Other isolated cellulase genes include cbh2 (Patent Application WO 85/04672; Chen, C.M., et al., Bio/Technology 5:274-278 (1987)) and egl3 (Saloheimo, M., et al., Gene 63:11-21 (1988)). The genes for the two endo-β-xylanases of T. reesei (xln1 and xln2 have been cloned and described in applicants' copending application, U.S. 07/889,893, filed May 29, 1992. The xylanase proteins have been purified and characterized (Tenkanen, M. et al., Proceeding of the Xylans and Xylanases Symposium, Wageningen, Holland (1991)).

The expressed protein may be isolated and purified from the medium of the host in accordance with conventional conditions, such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis, or the like. For example, the cells may be collected by centrifugation, or with suitable buffers, lysed, and the protein isolated by column chromatography, for example, on DEAE-cellulose, phosphocellulose, polyribocytidylic acidagarose, hydroxyapatite or by electrophoresis or immunoprecipitation.

The manner and method of carrying out the present invention may be more fully understood by those of skill by reference to the following examples, which examples are not intended in any manner to limit the scope of the present invention or of the claims directed thereto.

15

20

25

30

Example 1

Isolation of Trichoderma reesei Genes Strongly Expressed on Glucose

For the isolation of glucose induced mRNA Trichoderma reesei strain OM9414 (Mandels, M. et al., Appl. Microbiol. 21:152-154 (1971)) was grown in a 10 liter fermenter in glucose medium (glucose 60 g/l, Bacto-Peptone 5 g/l, Yeast extract 1 g/l, KH₂PO₄ 4 g/l, (NH₄)₂SO₄ 4 g/l, MgSO₄ 0.5 g/l, CaCl₂ 0.5 g/l and trace elements FeSO₄•7H₂O 5 mg/l, MnSO₄•H₂O 1.6 mg/l, ZnSO₄•7H₂O 1.4 mg/l, and CoCl₂•6H₂O 3.7 mg/l, pH 5.0-4.0). Glucose feeding (465g/20h) was started after 30 hours of growth. Mycelium was 10 harvested at 45 hours of growth and RNA was isolated according to Chirgwin, J.M. et al., Biochem. J. 18:5294-5299 (1979)). Poly A+ RNA was isolated from the total RNA by oligo(dT)-cellulose chromatography (Maniatis, T. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982)) and cDNA synthesis and cloning of the cDNAs was carried out according to manufacturer's instructions into lambda-ZAP vector (ZAP-cDNA synthesis kit, Stratagene). The cDNA bank was transferred onto nitrocellulose filters and screened with 32P-labelled singlestranded cDNA synthesized (Teeri, T.T. et al., Anal. Biochem. 164:60-67 (1987)) from the same poly A+ RNA from which the bank was constructed. The labelled cDNA was relabelled with ³²P-dCTP (Random Primed DNA Labeling kit, Boehringer-Mannheim). The hybridization conditions were as described in Maniatis, T. et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982). Fifty clones giving the strongest positive reaction were isolated and the cDNAs were subcloned in vivo into Bluescript SK(-) plasmid according to manufacturer's instructions (ZAP-cDNA synthesis kit, Stratagene).

To identify the clones and exclude the same ones they were all sequenced from the 3' end by using standard methods. The frequency of each specific clone in the cDNA lambda-bank was determined by hybridizing the bank with a clone specific PCR probe. The clones cDNA33, cDNA1,

10

15

20

cDNA10, cDNA12, cDNA15, showing the five highest frequencies corresponded to 1-3% of the total mRNA pool.

Example 2

Characterization of Isolated Glucose Expressed Trichoderma Genes and Their Promoters

The cDNAs of the clones cDNA33, cDNA1, cDNA10, cDNA12, and cDNA15 were used as probes to isolate the corresponding genes and promoters from a Trichoderma chromosomal lambda-bank prepared earlier (Vanhanen, S. et al., Curr. Genet. 15:181-186 (1989)). On the basis of Southern analysis of restriction enzyme digestions carried out for the chromosomal lambda clones, the promoters and either the 5' parts of the chromosomal genes or the whole genes were subcloned into pSP73 vector (Promega, Madison, USA) using appropriate restriction enzymes yielding the plasmids pTHN1 (Figure 1), pEA33 (Figure 2), pTHN3 (Figure 3), pEA10 (Figure 4), pEA12 (Figure 5) and pEA155 (Figure 6), corresponding to the clones cDNA33, cDNA1, cDNA10, cDNA12 and cDNA15, respectively. Sequences were obtained from the 5' ends of the genes and from the promoters using primers designed from previously obtained sequences. The sequences of the isolated promoters and genes or parts of them (either obtained from cDNA or chromosomal DNA) are shown in SEQ ID1 for cDNA33, SEQ ID2 for cDNA1, SEQ ID3 for cDNA10, SEQ ID4 for cDNA12, and SEQ ID5 for cDNA15. Based on sequence similarity to known sequences in a protein data bank the clone cDNA33 could be identified as a translation elongation factor, TEFla.

10

15

20

25

30

Example 3

Construction of Vectors for Expression of EGI-core under the tef1-Promoter in Trichoderma

A XhoI + DraIII fragment that is internal to the egl1 cDNA [SEQ ID 16 and Figure 7A] sequence of plasmid pPLE3 (Figure 7) carrying the EcoRI-BamHI fragment of egl1 cDNA from pTTc11 (Penttilä et al., Gene 45:253-263 (1986); Penttilä et al., Yeast 3:175-185 (1987) inbetween the cbh1 promoter and c. 700 nt long AvaII terminator fragment was replaced by a XhoI-DraIII fragment of cDNA from plasmid pEG131 (Nitisinprasert, S., Reports from Department of Microbiology, University of Helsinki (1990)). The pPEG131 insert sequence is egl1 cDNA in which a STOP codon is constructed just before the hinge region of the egl1 gene. The cbh1 terminator sequence is Figure 7B [SEQ ID 23]. SEQ ID 23 is a shortened cbh1 terminator sequence, similar to SEQ ID 24 (the "long" cbh1 terminator but lacking 30 nucleotides at the 5' end).

pPLE3 contains a pUC18 backbone, and carries the *cbh1* promoter inserted at the *EcoRI* site. The *cbh1* promoter is operably linked to the full length *egl1* cDNA coding sequence and to the *cbh1* transcriptional terminator. The ori and amp genes are from the bacterial plasmid.

The resulting plasmid pEM-3 (Figure 8) now carries a copy of egl1 cDNA with a translational stop codon after the egl1 core region (EGI amino acids 1-22 are the EGI signal sequence; EGI amino acids 23-393, terminating at a Thr, are considered the 'core' sequence). pEM-3 was then digested with EcoRI and SphI and the released Bluescribe M13+ moiety (Vector Cloning Systems, San Diego, USA) of the plasmid was replaced by EcoRI and SphI digested pAMD (Figure 8) containing a 3.4 kb amdS fragment from plasmid p3SR2 (Hynes, M.J. et al., Mol. Cell. Biol. 3:1430-1439 (1983); Tilburn, J. et al., Gene 26:205-221 (1983). This resulting plasmid pEM-3A (Figure 8) was digested with EcoRI and partially with KspI to release the 2.3 kb fragment carrying the cbhI-promotor and the 8.6 kb fragment carrying the rest of the

. 5

10

15

20

25

plasmid was purified from agarose gel. Based on the sequence data of the tefl promoter (SEQ ID1 bases I-1234), two primers were designed (SEQ ID6 and SEQ ID7) and used in a PCR reaction to isolate a 1.2 kb promoter fragment adjacent to the translational start site of the tefl gene. The 5' primer was accegnate attack accegnate attack accegnate attack (SEQ ID6) and the 3' primer was

ACCGCCGCGGTTTGACGGTTTGTGTGATGTAGCG (SEQ ID7).

The bold and underlined GAATTC in the 5' primer is an EcoRI site. The bold and underlined TCTAGA in the 5' primer is an XbaI site. The bold and underlined CCGCGG in the 3' primer is a SacII site. This fragment was digested with EcoRI and partially with KspI and purified from agarose gel and ligated to the 8.6 kb pEM-3A fragment resulting in plasmid pTHN100B (Figure 9). This expression vector carries DNA encoding the EGI-core construction operably linked to the tefI promoter; this plasmid also carries an amdS marker gene for selection of Trichoderma transformants.

Example 4

Transformation of Trichoderma, Purification of the EGI-Core Producing Clones and Their Analysis

Trichoderma reesei strain QM9414 was transformed essentially as described (Penttilä, M. et al., Gene 61:155-164 (1987) using 6-10 µg of the plasmid pTHN100B. The Amd⁺ transformants obtained were streaked twice onto slants containing acetamide (Penttilä, M. et al. Gene 61:155-164 (1987)). Thereafter spore suspensions were made from transformants grown on Potato Dextrose agar (Difco). EGI-core production was tested by slot blotting with EGI specific antibody from 50 ml shake flask cultures carried out in minimal medium (Penttilä, M. et al. Gene 61:155-164 (1987)) supplemented with 5% glucose and using additional glucose feeding (total amount of fed glucose was 6 ml of 20% glucose). The spore suspensions of the EGI-core producing clones were purified to single spore cultures on Potato Dextrose agar plates.

10

15

25

EGI-core production was analyzed again from these purified clones as described above (Figure 10).

Example 5

Characterization of EGI-core produced by Trichoderma Grown on Glucose

EGI-core producing strain pTHN100B-16c was grown in a 10 liter fermenter in glucose medium as described earlier in Example 1 except that yeast extract was left out and glucose feeding was 555g/22h. The culture supernatant was separated from the mycelium by centrifugation. The secretion of EGI-core by Trichoderma was verified by Western blotting by conventional methods running concentrated culture supernatants on SDS-PAGE and treating the blotted filter with monoclonal EGI-core specific antibodies (Figure 11 and Figure 12). The enzyme activity was shown semiquantitatively in a microtiter plate assay by using the concentrated culture supernatants and 3 mM chloronitrophenyl lactocide as a substrate and measuring the absorbance at 405 nm (Clayessens, M. et al., Biochem. J. 261:819-825 (1989).

Example 6

Construction of \(\beta\)-Galactosidase Expression Vectors with Truncated Fragments of the cbh1-Promoter

The vector pMLO16 (Figure 13) contains a 2.3 kb cbh1 promoter fragment (ISEO ID18, Figure 13A) starting at 5' end from the EcoRI site, 20 · isolated from chromosomal gene bank of Trichoderma reesei (Teeri, T. et al., J. Bio/Technology 1:696-699 (1983)), a 3.1 kb BamHI fragment of the lacZ gene from plasmid pAN924-21 (van Gorcom et al., Gene 40:99-106 (1985)) and a 1.6 kb cbh1 terminator (Figure 13B, [SEQ ID 24]) starting from 84 bp upstream from the translation stop codon and extending to a BamHI site at the 3' end (Shoemaker, S. et al., Bio/Technology 1:691-696 (1983); Teeri, T. et al., Bio/Technology 1:696-699 (1983)). These pieces were linked to a 2.3

10

15

20

25

kb long EcoRI-PvuII region of pBR322 (Sutcliffe, J.G., Cold Spring Harbor Symp. Quant. Biol. 43:77-90 (1979)) generating junctions as shown in Figure 13. The exact in frame joint between the 2.3 kb <math>cbh1 promoter and the 3.1 kb lacZ gene was constructed by using an oligo depicted in Figure 13. A polylinker shown in Figure 13 was cloned into the single internal XbaI site in the cbh1 promoter for the purpose of promoter deletions. A short SaII linker shown in Figure 13 was cloned into the joint between the pBR322 and cbh1 promoter fragments so that the expression cassette can be released from the vector by restriction digestion with SaII and SphI. Progressive unidirectional deletions were introduced to the cbh1 promoter by cutting the vector with KpnI and XhoI and using the Erase-A-Base System (Promega, Madison, USA) according to manufacturer's instructions. Plasmids obtained from different deletion time points were transformed into the E. coli strain DH5 α (BRL) by the method described in (Hanahan D., J. Mol. Biol. 166:557-580 (1983)) and the deletion end points were sequenced by using standard methods.

Example 7

Transformation of Trichoderma, Isolation of the β -Galactosidase Producing Clones and Their Analysis

Trichoderma reesei strain QM9414 was transformed with expression vectors for β -galactosidase containing either the intact 2.3 kb cbh1 promoter or truncated versions of it, generated as explained in Example 6. Twenty μg of the plasmids were digested with SalI and SphI to release the expression cassettes from the vectors and these mixtures were cotransformed to Trichoderma together with 3 μg of plasmid p3SR2 (Hynes, M.J. et al., Mol. Cell. Biol. 3:1430-1439 (1983)) containing the acetamidase gene. The transformation method was that described in (Penttilä, M. et al. Gene 61:155-164 (1987)) and the Amd+ transformants were screened as described earlier in Example 4. The β -galactosidase production of the Amd+ transformants was tested by inoculating spore suspensions on microtiter plate wells containing

10

15

20

25

solid minimal medium (Penttilä, M. et al. Gene 61:155-164 (1987)) supplemented with 2% glucose, 2% fructose and 0.2% peptone and pH adjusted to 7. After 24 h incubation in 28°C, 10 μ l of the chromogenic substrate X-gal (20 mg/ml) was added to each well and the formation of blue color was followed as an indication of β -galactosidase activity. An intense blue color could be detected in transformants transformed with a plasmid pMLO16del5(11) (Figure 14) containing a 1110 bp deletion in the cbh1 promoter beginning from the promoter internal polylinker and ending 385 bp before the translation initiation site (Figure 15). The sequence of this truncated promoter is provided as SEQ ID19 (Figure 15A).

Example 8

Production of CBHI on Glucose with the Glucose-Derepressed cbh1-Promoter

For the production of CBHI on glucose an expression plasmid pMLO 17 (Figure 16) was constructed. The plasmid pMLO16del5(11) was digested with the enzymes Kspl (the first nucleotide of the recognition sequence is at the position -16 from the ATG) and Xmal (the first nucleotide of the recognition sequence is 76 nucleotides downstream from the translation stop codon of the cbh1 gene). The vector part containing the shortened cbh1 promoter, the cbh1 terminator and the pBR322 sequence was ligated to the chromosomal cbh1 gene isolated as a Kspl-Xmal-fragment from the chromosomal gene bank of Trichoderma reesei (Teeri, T. et al., Bio/Technology 1:696-699 (1983)). The sequence of this fragment is provided as the underlined portion of Figure 16A ([SEQ ID17]). The plasmid pMLO17 was transformed to the Trichoderma reesei strain QM 9414 and the Amd+ transformants were screened as described earlier in example 7. CBHI production was tested from 40 transformants in microtiter plate cultures (200 μl; 3 days) carried out in minimal medium (Penttilä, M. et al. Gene 61:155-164 (1987) supplemented with 3% glucose and using additional glucose

10

15

20

25

30

feeding (total amount of fed glucose was 6 mg/200 μ l culture). The culture supernatants were slot blotted on nitrocellulose filters and CBHI was detected with specific antibody. The spore suspensions of the 10 best CBHI producing transformants were purified to single spore cultures on plates containing acetamide and Triton X-100 (Penttilä, M. et al., Gene 61:155-164 (1987)). Thirty single spore cultures were tested for CBHI production in shake flask cultivations (50 ml; 6 days) carried out in the same medium as described above. The total amount of fed glucose was 1.8g/50ml culture. Dilutions of the culture supernatants were slot blotted and CBHI was detected with specific antibody (Figure 17).

Example 9

β-Galactosidase Expression Vectors with Specific Mutations in cbh1 Promoter to Release Glucose Repression

Three 6 bp sequences found in cbh1 promoter similar to binding sites of Saccharomyces cerevisiae glucose repressor protein MIGI (Nehlin & Ronne, EMBO J. 9:2891-2899 (1990); Nehlin et al., EMBO J. 10:3373-3377 (1991)) were changed into other nucleotides to study the functionality of these mig-like sequences in mediating the glucose repression of the native cbhl promoter of *Trichoderma reesei*. To construct β -galactosidase expression vectors with cbh1 promoters carrying specific mutations, sequence alterations were made into primers (specifically: TCT TCA AGA ATT GCT CGA CCA ATT CTC ACG GTG AAT GTA GG (SEQ ID 8); ACA CAT CTA GAG GTG ACC TAG GCA TTC TGG CCA CTA GAT ATA TAT TTA GAA GGT TCT TGT AGC TCA AAA GAG c (SEQ ID 9); ggg aat tot ota gaa acg ogt teg caa att acg gta og (SEQ ID 10); GGG AAT TCG GTC ACC TCT AAA TGT GTA ATT TGC CTG CTT GAC C (SEQ ID II); GGG AAT TCG GTC ACC TCT AAA TGT GTA ATT TGC CTG CTT GAC CGA TCT AAA CTG TTC GAA GCC CGA ATG TAG G (SEQ ID 12); GGG AAT TOT TOT AGA TTG CAG AAG CAC GGC AAA GCC CAC TTA CCC (SEQ ID 13); tag cga att cta ggt cac ctc taa agg tac cct gca gct cga gct AG (SEQ ID 14); and GGG AAT TCA TGA TGC GCA GTC CGC GG (SEQ ID 15);

10

15

20

25

30

these primers were specific for the *cbh1* promoter and the *cbh1* promoter internal polylinker and were used in PCR amplification of *cbh1* promoter sequences for cloning.

pMLO16 (Figure 13) was used as a PCR template with the appropriate primers to yield a 770 bp fragment A (primers TAG CGA ATT CTA GGT CAC CTC TAA AGG TAC CCT GCA GCT CGA GCT AG (SEQ ID 14) and GGG AAT TCT CTA GAA ACG CGT TGG CAA ATT ACG GTA CG (SEQ ID 10), beginning at the polylinker at -1500 and ending at -720 upstream of ATG, and a 720 bp fragment B (primers GGG AAT TCT TCT AGA TTG CAG AAG CAC GGC AAA GCC CAC TTA CCC (SEQ ID 13) and GGG AAT TCA TGA TGC GCA GTC CGC GG (SEQ ID 15)), beginning at -720 and ending at KspI at -16. Fragments A and B were purified from agarose gel and digested with BstEII-XbaI and Xba1-KspI respectively, ligated to the 7.8 kb fragment of pMLO16 to produce pMI-24. The resulting cbhI promoter carries a sequence alteration (genomic sequence 5' GTGGGG, altered sequence: 5' TCTAGA) at position -720 to -715 upstream of the translation initiation codon of intact cbhI promoter (Figure 18). The sequence of the altered cbhI promoter in pMI-24 is provided in Figure 18A and SEQ ID20.

pMLO16del0(2) (Figure 19) containing a 460 bp deletion in the *cbh1* promoter beginning from the promoter internal polylinker and ending 1025 bp before the translation initiation site was constructed as described in Example 6 and used as a PCR template with primers (TCT TCA AGA ATT GCT CGA CCA ATT CTC ACG GTG AAT GTA GG (SEQ ID 8) and ACA CAT CTA GAG GTG ACC TAG GCA TTC TGG CCA CTA GAT ATA TAT TTA GAA GGT TCT TGT AGC TCA AAA GAG C (SEQ ID 9)) to yield a 800 bp fragment C, beginning from the 5' end of *cbh1* promoter and ending at the promoter internal polylinker. Fragment C was purified from agarose gel, digested with *Sal1-Xba1* and ligated to the 7.6 kb *Sal1-Xba1* fragment of pMLO16del0(2) to produce pMI-25. The *cbh1* promoter of pMI-25 has a sequence alteration (genomic sequence: 5'GTGGGG, altered sequence: 5TCTAAA) at position -1505-1500 upstream of the translation initiation codon of intact *cbh1* promoter (Figure 18).

10

15

20

25

30

pMLO16del0(2) was used as a PCR template to yield a 750 bp fragment D (primers GGG AAT TCG GTC ACC TCT AAA TGT GTA ATT TGC CTG CTT GAC CGA TCT AAA CTG TTC GAA GCC CGA ATG TAG G (SEQ ID 12) and GGG AAT TCA TGA TGC GCA GTC CGC GG (SEQ ID 15)), beginning from the promoter internal polylinker and ending at Kspl at -16. Fragment D was purified from agarose gel, digested with BstEIl-Kspl and ligated to the 7.8 kb BstEIl-Kspl fragment of pMl-25 to produce pMI-26. The cbhl promoter of pMl-26 has sequence alterations at positions -1505-1500 (genomic sequence: 5'GTGGGG, altered sequence: 5TCTAAA) and -1001-996 (genomic sequence: 5'CTGGGG, altered sequence: 5TCTAAA) upstream of the translation initiation codon of intact cbhl promoter (Figure 18).

pMLO16del0(2) was used as a PCR template to yield a 280 bp fragment E (primers GGG AAT TCT CTA GAA ACG CGT TGG CAA ATT ACG GTA CG (SEQ ID 10) and GGG AAT TCG GTC ACC TCT AAA TGT GTA ATT TGC CTG CTT GAC C (SEQ ID 11)), beginning from the promoter internal polylinker and ending at -720 and a 720 bp fragment F (primers GGG AAT TCT TCT AGA TTG CAG AAG CAC GGC AAA GCC CAC TTA CCC (SEQ ID 13) and GGG AAT TCA TGA TGC GCA GTC CGC GG (SEQ ID 15)), beginning at -720 and ending at Kspl at -16. Fragments D and E were purified from agarose gel, digested with BstEII-XbaI and XbaI-KspI respectively and ligated to the 7.8 kb BstEII-KspI fragment of pMI-25 to produce pMI-27. The cbhI promoter of pMI-27 has sequence alterations at positions -1505-1500 (genomic sequence: 5'GTGGGG, altered sequence: 5TCTAAA) and -720-715 (genomic sequence: 5'GTGGGGG, altered sequence: 5TCTAGA) upstream of the translation initiation codon of intact cbhI promoter (Figure 18). The sequence of the altered cbhI promoter of pMI-27 is shown in Figure 18C and SEQ ID21.

pMLO16del0(2) was used as a PCR template to yield a 280 bp fragment G (primers GGG AAT TCT CTA GAA ACG CGT TGG CAA ATT ACG GTA CG (SEQ ID 10) and GGG AAT TCG GTC ACC TCT AAA TGT GTA ATT TGC CTG CTT GAC CGA TCT AAA CTG TTC GAA GCC CGA ATG TAG G (SEQ ID 12)), beginning from the promoter internal polylinker and ending at -720 and a 720

15

20

bp fragment H (primers GGG AAT TCT TCT AGA TTG CAG AAG CAC GGC AAA GCC CAC TTA CCC (SEQ ID 13) and GGG AAT TCA TGA TGC GCA GTC CGC GG (SEQ ID 15)), beginning at -720 and ending at KspI at -16. Fragments G and H were purified from agarose gel, digested with BstEII-XbaI and XbaI-KspI respectively and ligated to the 7.8 kb BstEII-KspI fragment of pMI-25 to produce pMI-28. The *cbhI* promoter of pMI-28 has sequence alterations at positions -1505-1500 (genomic sequence: 5'GTGGGG, altered sequence: 5TCTAAA), -1001-996 (genomic sequence: 5'CTGGGG, altered sequence: 5TCTAAA), and -720-715 (genomic sequence: 5'GTGGGG, altered sequence: 5TCTAGA) upstream of the translation initiation codon of intact *cbhI* promoter (Figure 18). The sequence of the altered *cbhI* promoter of pMI-28 is shown in Figure 18C and SEQ ID22.

All PCR amplified DNA fragments and ligation joints were sequenced using standard methods to ensure that the mutations were present and no other nucleotides were changed. Transformation of *Trichoderma reesei* QM9414 with the vectors mentioned above, isolation of β -galactosidase producing clones and their analysis was done as described in Example 7. After addition of X-gal, an intense blue color was detected on glucose grown transformant colonies as an indication of β -galactosidase activity in transformants transformed with the plasmids pM1-24, pMI-27 and pMI-28 (Figure 20), indicating that altering the *cbh1* promoter according to any of those mutations was sufficient to allow for expression of proteins in *Trichoderma* under the *cbh1* promoter in the presence of glucose.

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

(1)	ATIM	T TO	ANIT.
/11	$\alpha \nu \nu$	1.11.4	3 1 1 1 1

ALKO Ltd (A) NAME:

(B) STREET: Salmisaarenranta 7 H

(C) CITY: Helsinki (D) COUNTRY: Finland (E) POSTAL CODE: FIN-00180

(ii) TITLE OF INVENTION: Fungal Promoters Active In The Presence Of Glucose

(iii) NUMBER OF SEQUENCES: 28

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: ALKO Ltd

Law Department/Patents

(B) POSTAL ADDRESS: P.O. Box 350

(C) CITY: Helsinki

(D) COUNTRY: Finland (E) POSTAL CODE: FIN-00101

(v) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/932,485

(B) FILING DATE: 19-AUG-1992

(vi) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 358-0-13311

(B) TELEFAX: 358-0-1333346

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3461 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

60	GGGGCTTGAC	CCGCTGAAAT	TTTGGATACG	AGCCCGCGAG	ACAGAAACGG	CGCCGTGACG
120	CAGGCGACGA	GATGTAGAGC	GGACAAGATG	CGGTGCCAGA	AAGCCGAGCG	ggtgaaggag
180	CCCAGCAGCG	GCACCACCGC	TGGCAATGAC	ATCAATCAGA	CAACCATCAA	CGACCAAACG
240	GGAACAGAAA	AGACGCCCAA	CTCCTCGGCA	CATGGACGCG	ACGAAGAAGC	CGAACCGCCG
300	CGAAGCCTCC	GCCGCGACGT	GACGCCTACC	ATCAGAAGAC	CCGCACCCGT	AAAGTAATCT
360	TGGCGCCGCC	TCGAGGAGTT	GACATGCCCG	GGATTACGAA	CCACGCTCCA	GGCGCGGTGT
420	GCAGGTCAAG	CGCCGGTCAA	GCCCGCGGCC	GAACGGGGAA	GCATGGGCTG	CTCCTCCNNN

AGGCGGCAGA	ACAGGCTCGG	CCTCGGCGCC	AAGGAGCTCA	aggaggaaga	GGACCTCGGC	480
GGGTGGAACC	AGAACGGCAA	GAAAAAGTCG	AGGCCSCGCG	GCTGAG CGAG	TATCGGAGGG	540
AGGAGAGCAA	GCGCAAGGAA	GGCCGGGGGC	ATGAGGACAG	CTATAAACGA	GAGAGGGAGC	600
GCGAACGGAT	CGCGAGAGGG	ATCACTACAG	GGAGCGAGAC	CGGGACAGGG	ATCGCGATTA	660
TAGGGATCGG	GATAGGGATA	GACATCGGGA	CCACGATAGG	CACAGGGACC	GACATCGCGA	720
CTCTGACCGG	CACCATCGAC	GATGAAGGAG	CTTTTGCATT	CTTCTCTTCG	TCAACCACTT	780
TTGAGACTAA	CATTAACCAT	GCCGTTTTCT	TGAAAAGCTT	GTACTCATCA	TGATGTTTTT	840
AAGCAAATAG	GCGACAGGCG	TACAGACACC	TTAATATCAC	ATAGAGGCAC	GGCACACATA	900
CGTCTTGGAG	AAGACACGTA	CTTACGAATG	ATGGGAGAAT	TACCTACTCT	GACTTGTGTA	960
AATTAGAATA	TCAATGACAC	TATGTATATT	CAGTCGAGCT	GCGAATGGTC	ACACATTGTC	1020
TGATCTGCGA	ATTTGTATGT	GCTGCCTCTC	CCTCTGACCT	TCTGGTCTGG	TGATACCATC	1080
CTCCCTCAGT	TTGGATCATC	GCCTTATTCT	TCTTCCCTCT	TCTGCATCTG	CTTCCTGCTC	1140
GTTTGAGGAA	CATCGCCAGC	TGACTCTGCT	TGCCTCGCAG	CGATCTAGTC	AAGAACAACA	1200
CNAGCTCTCA	CGCTACATCA	CACAAACCGT	CAAAATGGGT	AAGGAGGACA	AGACTCACAT	1260
CAACGTGGTC	GTCATCGTAC	GTATTTTCCG	ATCCCTCATC	GGCNGTCATC	TGNCCAGTCT	1320
GATTCCAAGA	ATCACCGTGC	TAACCATATA	CCATCTANGG	GTGCGTATTC	CATCAATCAT	1360
CTTGAGCCAG	ATCGACCGAA	CATACGATAC	TGACTTTGCT	ACGACAGCCA	CGTCGACTCC	1440
GGCAAGTCTA	CCACCGTGAG	TAAACACCCA	TTCCACTCCA	CGACCGCAAG	CTCCATCTTG	1500
CGCGTGGCGT	CTCTGCGATG	AACATCCGAA	ACTGACGTTC	TGTTACAGAC	TGGTCACTTG	1560
ATCTACCAGT	GCGGTGGTAT	CGACAAGCGT	ACCATTGAGA	AGTTCGAGAA	GGTAAGCTTC	1620
GTTCCTTAAA	TCTCCAGACG	CGAGCCCAAT	CTTTGCCCAT	CTGCCCAGCA	TCTGGCGAAC	1680
GAATGCTGTG	CCGACACGAT	TTTTTTTTC	ATCACCCCGC	TTTCTCCTAC	CCCTCCTTCG	1740
AGCGACGCAA	ATTTTTTTG	CTGCCTTACG	AGTTTTAGTG	GGGTCGCACC	TCACAACCCC	1800
ACTACTGCTC	TCTGGCCGCT	CCCCAGTCAC	CCAACGTCAT	CAACGCAGCA	GTTTTCAATC	1860
AGCGATGCTA	ACCATATTCC	CTCGAACAGG	AAGCCGCCGA	ACTCGGCAAG	GGTTCCTTCA	1920
AGTACGCGTG	GGTTCTTGAC	AAGCTCAAGG	CCGAGCGTGA	GCGTGGTATC	ACCATCGACA	1980
TTGCCCTCTG	GAAGTTCGAG	ACTCCCAAGT	ACTATGTCAC	CGTCATTGGT	ATGTTGGCAG	2040
CCATCACCTC	ACTGCGTCGT	TGACACATCA	AACTAACAAT	GCCCTCACAG	ACGCTCCCGG	2100
CCACCGTGAC	TTCATCAAGA	ACATGATCAC	TGGTACTTCC	CAGGCCGACT	GCGCTATCCT	2160
CATCATCGCT	GCCGGTACTG	GTGAGTTCGA	GGCTGGTATC	TCCAAGGATG	GCCAGACCCG	2220
TGAGCACGCT	CTGCTCGCCT	ACACCCTGGG	TGTCAAGCAG	CTCATCGTCG	CCATCAACAA	2280
GATGGACACT	GCCAACTGGG	CCGAGGCTCG	TTACCAGGAA	ATCATCAAGG	AGACTTCCAA	2340
CTTCATCAAG	AAGGTCGGCT	TCAACCCCAA	GGCCGTTGCT	TTCGTCCCCA	TCTCCGGCTT	2400
CAACGGTGAC	AACATGCTCA	CCCCCTCCAC	CAACTGCCCC	TGGTACAAGG	GCTGGGAGAA	2460
GGAGACCAAG	GCTGGCAAGT	TCA CCGGCAA	GACCCTCCTT	GAGGCCATCG	ACTCCATCGA	2520
GCCCCCCAAG	CGTCCCACGG	ACAAGCCCCT	GCGTCTTCCC	CTCCAGGACG	TCTACAAGAT	2560

CGGTGGTATC	GGAACAGTTC	CCGTCGGCCG	TATCGAGACT	GGTGTCCTCA	AGCCCGGTAT	2640
GGTCGTTACC	TTCGCTCCCT	CCAACGTCAC	CACTGAAGTC	AAGTCCGTCG	AGATGCACCA	2700
CGAGCAGCTC	GCTGAGGGCC	AGCCTGGTGA	CAACGTTGGT	TTCAACGTGA	AGAACGTTTC	2760
CGTCAAGGAA	ATCCGCCGTG	GCAACGTTGC	CGGTGACTCC	AAGAACGACC	CCCCCATGGG	2820
CGCCGCTTCT	TTCACCGCCC	AGGTCATCGT.	CATGAACCAC	CCCGGCCAGG	TCGGTGC CGG	2880
CTACGCCCCC	GTCCTCGACT	GCCACACTGC	CCACATTGCC	TGCAAGTTCG	CCGAGCTCCT	2940
CGAGAAGATC	GACCGCCGTA	CCGGTAAGGC	TACCGAGTCT	GCCCCCAAGT	TCATCAAGTC	3000
TGGTGACTCC	GCCATCGTCA	AGATGATCCC	CTCCAAGCCC	ATGTGCGTTG	AGGCTTTCAC	3060
CGACTACCCT	CCCCTGGGTC	GTTTCGCCGT	CCGTGACATG	CGCCAGACCG	TCGCTGTCGG	3120
TGTCATCAAG	GCCGTCGAGA	AGTCCTCTGC	CGCCGCCGCN	AAGGTCACCA	AGTCCGCTGC	3180
CAAGGCCGCC	AAGAAATAAG	CGATACCCAT	CATCAACACC	TGATGTTCTG	GGGTCCCTCG	3240
TGAGGTTTCT	CCAGGTGGGC	ACCACCATGC	GCTCACTTCT	ACGACGAAAC	GATCAATGTT	3300
GCTAT GCATG	AGSACTCGAC	TATGAATCGA	GGCACGGTTA	ATTGAGAGGC	TGGGAATAAG	3360
GGTTCCATCA	GAACTTCTCT	GGGAATGCAA	AACAAAAGGG	AACAAAAAA	CTAGATAGAA	3420
GTGAATTCAT	GACTTCGACA	АССААЛАЛАЛ	AAAAAAAA	A		3461

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1636 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GGTCTGAAGG	ACGTGGAATG	ATGGACTTAA	TGACAAGAGT	TGCCTGGCTA	TTGAGCTCTG	60
GTACATGGAT	CTCGAACTGA	GAGCGTACAA	GTTACATGTA	GTAAATCTAG	TAGATCTCGC	120
TGAAAGCCCT	CTTTCCCGGT	AGAAACACCA	CCAGCGTCCC	GTAGGACAAG	ATCCTGTCGA	180
TCTGAGCACA	TGAATTGCTT	CCCTGGATCT	GGCGCTGCAT	CTGTTTCCCC	AGACAATGAT	240
GGTAGCAGCG	CATGGAAGAA	CCCGGTTGTT	CGGAATGTCC	TTGTGCTAAC	AGTGGCATGA	300
TTTTACGTTG	CGGCTCATCT	CGCCTTGGCA	CCGGACCTCA	GCAAATCTTG	TCACAACAGC	360
AATCTCAAAC	AGCCTCATGG	TTCCCAGATT	CCCTGATTCA	GAACTCTAGA	GCGGCAGATG	420
TCAAACGATT	CTGACCTAGT	ACCTTGAGCA	TCCCTTTCGG	ATCCGGCCCA	TGTTCTGCCT	480
GCCCTTCTGA	GCACAGCAAA	CAGCCCAAAA	GGCGCCGGCC	GATTCCTTTC	CCGGGATGCT	540
CCGGAGTGGC	ACCACCTCCC	AAAACAAGCA	ACCTTGAACC	CCCCCCCAA	ATCAACTGAA	600
GCGCTCTTCG	CCTAACCAGC	ATAAGCCCCC	CCCAGGATCG	TTAGGCCAAG	TGGTAGGGCC	660
AGCCAATTAG	CGAGNGGCCA	TTTGGAGGTC	ATGGGCGCAG	AATGTCCTGA	CAGTGGTATG	720
ATATTGACTG	CCCGGTGTGT	GTGGCATCTG	GCCATAATCG	CAGGCTGAGG	CGAGGAAGTC	780
TCGT GAGGAT	GTCCCGACTT	TGACATCATG	agggagtgag	AAACTGAAGA	GAAGGAAAGC	840
TTCGAAGGTT	CGATAAGGGA	TGATTTGCAT	GGCGGGCGAC	AGGATGCGAT	GGCTCGTTGG	900
GATACATAAT	GCTTGGGTTG	GAAGCGATTC	CAGGTCGTCT	TTTTTTGGTT	CATCATCACA	960

GCATCAACAA	GCAACGATAC	AAGCAATCCA	CTGAGGATTA	CCTCTCAACT	CAACCACTIT	1020
CCAAACCATC	TCAACTCCCT	AAGATTCTTT	CAGTGTATTA	TCACTAGGAT	TTTTCCCAAG	1080
CCGGCTTCAA	AACACACAGA	TAAACCACCA	ACTCTACAAC	CAAAGACTTT	TTGATCAATC	1140
CAACAACTTC	TCTCAACATG	TCTGCTGCAA	CCGTCACCCG	CACTGCAACC	GCCGCTGTTC	1200
GCAGACCCGG	CTTCTTCATG	CAAGTCCGAC	GGATGGGACG	CTCATTCGAG	CACCAGCCCT	1260
TTGAGCGACT	CTCCGCCACC	ATGAAGCCTG	CACGACCCGA	CTATGCTAAG	CAAGTCGTCT	1320
GGACGGCTGG	CAAGTTTGTC	ACTTATGTTC	CTCTTTTCGG	CGCCATGCTT	ACCTGGCCTG	1380
CGCTCGCCAA	STGGGCTCTG	GACGGACACA	TCGGACGGTG	GTAAAAGATC	AGACTCTTGT	1440
CGAGGCAACG	GGGAATAGAC	AGGACAGCAA	AAAAGATATC	TCCGGATAGA	AGTGTCCATC	1500
TTTCGACTTG	TATATATATA	TATGCTATAC	TCTGGGGGCG	TTTGGATGGA	CTTTGGGCAC	1560
GAAGCATACT	TTGGCGCAAC	GCAGATACTT	TAATCTGATT	CCTTTTGTTA	АТТСАААААА	1620
AAAAAAAA	AAAAA					1636

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2868 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TTTGTATGGC TGGATCTCGA AAGGCCCTTG TCATCGCCAA GCGTGGCTAA TATCGAATGA	60
GGGACACCCA CTTGCATATC TCCTGATCAT TCAAACGACA AGTGTGAGGT AGGCAATCCT	120
CGTATCCCAT TGCTGGGCTG AAAGCTTCAC ACGTATCGCA TAAGCGTCTC CAACCAGTGC	180
TTAGGTGACC CTTAAGGATA CTTACAGTAA GACTGTATTA AGTCAGTCAC TCTTTCACTC	240
GGGCTTTGAA TACGATCCTC AATACTCCCG ATAACAGTAA GAGGATGATA CAGCCTGCAG	300
TTGGCAAATG TAAGCGTAAT TAAACTCAGC TGAACGGCCC TTGTTGAAAG TCTCTCTCGA	360
TCAAAGCAAA GCTATCCACA GACAAGGGTT AAGCAGGCTC ACTCTTCCTA CGCCTTGGAT	420
ATGCAGCTTG GCCAGCATCG CGCATGGCCA ATGATGCACC CTTCACGGCC CAACGGATCT	480
CCCGTTAAAC TCCCCTGTAA CTTGGCATCA CTCATCTGTG ATCCCAACAG ACTGAGTTGG	540
GGGCTGCGGC TGGCGGATGT CGGAGCAAAG GATCACTTCA AGAGCCCAGA TCCGGTTGGT	600
CCATTGCCAA TGGATCTAGA TTCGGCACCT TGATCTCGAT CACTGAGACA TGGTGAGTTG	660
CCCGGACGCA CCACAACTCC CCCTGTGTCA TTGAGTCCCC ATATGCGTCT TCTCAGCGTG	720
CAACTCTGAG ACGGATTAGT CCTCACGATG AAATTAACTT CCAGCTTAAG TTCGTAGCCT	780
TGAATGAGTG AAGAAATTTC AAAAACAAAC TGAGTAGAGG TCTTGAGCAG CTGGGGTGGT	840
ACGCCCCTCC TCGACTCTTG GGACATCGTA CGGCAGAGAA TCAACGGATT CACACCTTTG	900
GGTCGAGATG AGCTGATCTC GACAGATACG TGCTTCACCA CAGCTGCAGC TACCTTTGCC	960
CAACCATTGC GTTCCAGGAT CTTGATCTAC ATCACCGCAG CACCCGAGCC AGGACGGAGA	1020
GAACAATCCG GCCACAGAGC AGCACCGCCT TCCAACTCTG CTCCTGGCAA CGTCACACAA	1080
CCTGATATTA GATATCCACC TGGGTGATTG CCATTGCAGA GAGGTGGCAG TTGGTGATAC	1140

CGACTGGCCA	TGCAAGACGC	GGCCGGGCTA	GCTGAAATGT	CCCCGAGAGG	ACAATTGGGA	1200
GCGTCTATGA	CGGCGTGGAG	ACGACGGGAA	AGGACTCAGC	CGTCATGTTG	TGTTGCCAAT	1260
TTGAGA TT GT	TGACCGGGAA	AGGGGGGACG	AAGAGGATGG	CTGGGTGAGG	TGGTATTGGG	1320
AGGATGCATC	ATTCGACTCA	GTGAGCGATG	TAGAGCTCCA	AGAATATAAA	TATCCCTTCT	1380
CTCTCTTCTC	AAAATCTCCT	TCCATCTTGT	CCTTCATCAG	CACCAGAGCC	AGCCTGAACA	1440
CCTCCAGTCA	ACTTCCCTTA	CCAGTACATC	TGAATCAACA	TCCATTCTTT	GAAATCTCAC	1500
CACAACCACC	ATCTTCTTCA	AAATGAAGTT	CTTCGCCATC	GCCGCTCTCT	TTGCCGCCGC	1560
TGCCGTTGCC	CAGCCTCTCG	AGGACCGCAG	CAACGGCAAC	GGCAATGTTT	GCCCTCCCGG	1620
CCTCTTCAGC	AACCCCCAGT	GCTGTGCCAC	CCAAGTCCTT	GGCCTCATCG	GCCTTGACTG	1680
CAAAGTCCGT	AAGTTGAGCC	ATAACATAAG	AATCCTCTTG	ACGGAAATAT	GCCTTCTCAC	1 7 40
TCCTTTACCC	CTGAACAGCC	TCCCAGAACG	TTTACGACGG	CACCGACTTC	CGCAACGTCT	1800
GCGCCAAAAC	CGGCGCCCAG	CCTCTCTGCT	GCGTGGCCCC	CGTTGTAAGT	TGATGCCCCA	1860
GCTCAAGCTC	CAGTCTTTGG	CAAACCCATT	CTGACACCCA	GACTGCAGGC	CGGCCAGGCT	1920
CTTCTGTGCC	AGACCGCCGT	CGGTGCTTGA	GATGCCCGCC	CGGGGTCAAG	GTGTGCCCGT	1980
GAGAAAGCCC	ACAAAGTGTT	GATGAGGACC	ATTTCCGGTA	CTGGGAAAGT	TGGCTCCACG	2040
TGTTTGGGCA	GGTTTGGGCA	agitgigtag	ATATTCCATT	CGTACGCCAT	TCTTATTCTC	2100
CAATATTTCA	GTACACTTTT	CTTCATAAAT	CAAAAAGACT	GCTATTCTCT	TTGTGACATG	2160
CCGGAAGGGA	ACAATTGCTC	TTGGTCTCTG	TTATTTGCAA	GTAGGAGTGG	GAGATTCGCC	2220
TTAGAGAAAG	TAGAGAAGCT	GTGCTTGACC	GTGGTGTGAC	TCGACGAGGA	TGGACTGAGA	2280
GTGTTAGGAT	TAGGTCGAAC	GTTGAAGTGT	ATA CAGGATC	GTCTGGCAAC	CCACGGATCC	2340
FATGA CTTGA	TGCAATGGTG	AAGATGAATG	ACAGTGTAAG	AGGAAAAGGA	AATGTCCGCC	2400
ITCAGCTGAT	ATCCACGCCA	ATGATACAGC	GATATACCTC	CAATATCTGT	GGGAACGAGA	2460
CATGACATAT	TTGTGGGAAC	AACTTCAAAC	AGCGAGCCAA	GACCTCAATA	TGCACATCCA	2520
AAGCCAAACA	TTGGCAAGAC	GAGAGACAGT	CACATTGTCG	TCGAAAGATG	GCATCGTACC	2580
CAAATCATCA	GCTCTCATTA	TCGCCTAAAC	CACAGATTGT	TTGCCGTCCC	CCAACTCCAA	2640
AACGTTACTA	CAAAAGACAT	GGGCGAATGC	AAAGACCTGA	AAGCAAACCC	TTTTTGCGAC	2700
ICAATTCCCT	CCTTTGTCCT	CGGAATGATG	ATCCTTCACC	aagtaaaaga	AAAAGAAGAT	2760
rgagataata	CATGAAAAGC	ACAACGGAAA	CGAAAGAACC	aggaaaagaa	TAAATCTATC	2820
ACGCACCTTG	TCCCCACACT	AAAAGCAACA	ggggggtaa	AATGAAAT		2868

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 2175 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CATGATTTCA	CTCGGCAAAC	TCTGGCTACA	ATTTTCAGGC	GGCGAGTTCC	GATACAAGGG	120
AAATCTATTA	CCCACAGACG	AACGGGAATC	GGTGATGAGT	GGTTTCTTGT	AAGTCAACAT	180
TGAGCTAGAT	AATTCCGGGC	GAGATCAAGA	TGCCATACTT	TGATTGATGA	AAAATCAATG	240
TCAGGCGTAA	GTCTCTTCAA	GCTCGCCCAG	TCCTCTGTAT	GTAACAGCAA	TCGCAATTCC	300
GAAATGTGCC (GAGCCAATGG	AACATGCGTG	TCTTTCTCTT	TTCACACACA	TCCAGTTCGA	360
GAGTCTTCTC :	TTCATCGTTT	CATCGAATCC	CTTCCCCTCC	AGCTATTCAC	CCAGCCGAGC	420
CCTTCAGCGC A	ACCAGCGTAT	GTATGTACCC	TCGGCTAAGA	CGCAACAGAA	GCATCATCAA	480
TATACCTGAT	GTACTACTAT	CTACTATGAA	GCCCAAAAAC	CCCTTCGCAG	CCCAAATGTA	540
ACCCAAGCAA	CGAATCCCCA	ATAAGAGACA	ATCCTCAGTG	ACCCCCAGAA	GAGCACAGAA	600
TCGAGCTGGT	CCTGGTGGGT	CGCATTGAGA	CCGGTGGAGA	TGCGTTCGAT	TCGACTGCCG	660
GAGCTCCCGG (GAAGCCGGCA	GATGGTCCCA	TGCGATGCCC	TGCACCGTTT	TTGTGAATCG	720
TCGGCATCGC (GAGAAGTGGC	CTGCTATGAC	GTCGCTTGCA	GCTTGGCCGC	TCTGTTCGAA	780
GTTTTTCGAT	STTTTTCTTC	ATGCGGGAGA	AAGAAAACAT	CAGATGACAT	GATTATCCGA	840
ATGGATGGCG	GGAGTTATCG	TGGTGACGGC	TGCTTCATGA	GATGAGTATA	aatgagcttg	900
TTCGCTCAGC (etgtcatgga	TCTTGTCCAG	CTCCAAAGCA	TCGGCTTCAG	CATCCATCCG	960
CTTGAACAGA (CAGGCACCAG	CTTGAATCAG	AAGCATACCC	TTGATTTGAT	ACTCTCTTGG	1020
GAAAAAACAC (CACCATCTGT	GTAATACTTT	GATACCCCCA	AAGCTCAAAC	GACCGCTTGT	1080
ACATACAATA A	ACACCGCCAC	AATGTTCGCC	AACTTGACGC	ACGCTACCCT	GCGATTCATC	1140
GCCTTCTTCA I	ACCACCTGAT	GATCCTGGCC	TCATCAGCCA	TCGTCACCGG	CCTCGTATCC	1200
TGGTTCCTCG A	ACAAGTACGA	CTACCGCGGC	GTGAACATTG	TCTACCAGGA	AGTCATCGTA	1260
TGTCCTCCCA A	AGCACCACAT	CAAACACACC	CCATACCTTG	GCTCTCCTCA	GCTCCGTCGA	1320
AGCACATAAT A	ACTAACGCAT	GCAACAACTA	GGCCACCATA	ACTCTGGGCT	TCTGGCTCGT	1380
TGGTGCCGTC 1	TTGCCCCTCG	TTGGCAGATA	CCGCGGCCAC	CTGGCCCCTC	TCAACCTCAT	1440
CITCTCCTAC (CTCTGGCTCA	CCTCTTTCAT	CTTCTCCGCG	CAGGACTGGA	GCAGCGACAA	1500
GTGCAGCTTC (GCCAGCCTG	GCGAGGGCCA	CTGCAGCCGC	AAGAAGGCCA	TTGAATCCTT	1560
CAACITTATC O	CATTGTA AG	TGCCTACAAG	TAATTTGCTA	TGTATATGGG	AGAGAGAGAG	1620
AAGAAGAAGA	ATATGGCTCT	AACATGGCAT	CTCTACAGCT	TCTTCCTCCT	CTGCAACACC	1680
CTGGTTGAGA 1	rgctcctgct	CCGCGCCGAG	TATGCTACCC	CCGTTGCTGC	TGCTCACAAC	1740
AAGGAGATTT (CTGCCGGCCG	CCCCTCTGAC	AACTCTGTCT	AAATAACAAT	AGACATGCAT	1800
AGATGAACGG A	AGACCACTTC	TACTTTCTTT	GCGAGTTCCT	GATCCGTTGA	CCTGCAGGTC	1860
GACEBBBBBCC (CGCTCGCAT	GGTTCATCTG	CTACAACAAC	ACAATGACAA	TCCGAACCAG	1920
TCAATAAACC 1	rcgacaacac	GACGAGTACT	TTTGCGGATA	GAAAGATACC	CATTACACAG	1980
GAGATCAAAT (GGGAAATTG	GAAGTGTATG	GATGGACGCC	CGTGTATAAT	GAGGTTGTGA	2040
ACGGGATGGG A	AGGCAATGAA	TAATGGATAA	TGAGGTAATG	GATAGATTCG	GTCGTTTTGA	2100
TACCACAGCT (SCACTCTGCT	CTACGTCTGT.	CATTAATGAT	ACATACAAAT	GATACCTTAT	2160
ACGCTAAAAA A	AAAA					2175

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2737 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TCTAGAATCT	CTTCGAGATG	GCCGAGAAAG	GCTTGTTTTT	CTCTCCTTCT	TCAAACTGGC	60
CACTGTTTGT	TTTCAAACTT	GGGGTTTCGT	GGGGCTTTTG	GGGGCATGTC	TGCCAGGTCT	120
CCCGTAGGCT	GGACAGCCAA	AGCCTCACTA	CAAACAGGCA	GTTGTCAATA	GATTGATGTC	180
TGAGATGGAT	GGTTTTATGT	TTGGGGGAGG	TCATGTATGT	ATTTATCTAT	ATTTGCAAAG	240
ATGATCCATG	AGTCAGACTT	GCACAGGTTT	CTCGTGCGCT	GGATAAATCT	TGTTGGAGTG	300
CGGGTGAGGT	GGTGGATGGC	ATTCAACCCA	CAGCAACACT	TGCCCAGGGG	GATGTACTGC	360
AGCGATTTGT	TTCCCTTCGA	GTATTAGATG	ATGATGCCGA	ACAGACAAAT	TTGAGCCTCG	420
CTGCTCTCGG	ATGTCGGGTT	TCTCTTGTGT	GCCGGTGATG	TGTGATGGCC	TGGCCCGCAA	480
AGAGAGCGAA	AAACATGCTC	AAAATGTAGC	ACACGGCGAC	TTCTCGGACA	CTTGCGTACC	540
TTGAGAGACA	AGCAGACTAC	AGGGATGACG	AGTAATACGA	CAGAGCGATA	CGACACAGCT	600
ATACGACACA	GCTAAGAAAA	TAAAGGTATT	AGTACTACTA	ATTGATTACC	TACTACCTAG	660
ATATATACTA	TACCTTATAT	TTTATATGTG	TGTGTGTGTG	TATGTATATG	CCTTACCTTA	720
TGCTTCGCAA	AGAAGAGAAA	CTAAAACGCC	TCCTGGCTAC	CTACCTACCT	CTACCTTGTA	780
AGAGATGGAA	TAATGTGGCC	GCGCGTAAAG	TAGGTACTGG	ATATACAGGT	CCTGAACATG	840
GCCCTGAATC	CTGCCAGGCA	GCCACCTCAC	CCCTTCCGCA	GGTATTTATG	TAGCCCACAG	900
CTCCTCCAGA	GACGATGCCG	AGATGCCTCA	TGCAGTCTAC	CTACAAAGCC	AGCAGTTTCA	960
CGCTTGACTC	TCACTCTTGA	TTGAATTCCC	TCCCTCCCAT	AATACCAATT	GGCGTTCAAC	1020
GATTGCCAGC	AGAATGGCCG	CCCAACACGA	CGTCGAGGCC	ATGGCAAAGT	CCATGTCCGA	1080
CTTTTTCAAG	GACACGGCCC	AAAAGCAGGA	CTCGACCAAG	CATGACTTTG	TCCAAGCCTC	1140
GCACGGCATC	ATGAGGGCCA	TTGTCGAGCC	GCTCGTCACC	CAGATGGGCT	TCCGCGAGAC	. 1200
CCTCACCGAG	CCCGTCGTCT	TGCTCGACAG	CGCGTGCGGA	GCGGGCGTGC	TGACGCAGGA	1260
GGTGCAGGCG	GCGCTGCCAA	AGGAGCTTCT	GGAGAGGAGC	TCGTTTACGT	GTGCGGACAA	1320
TGCCGAGGGC	TTGGTGGACG	TGGTGAAGAG	GAGGATTGAT	GAGGAGAAGT	GGGTGAATGC	1380
AGAGGCCAAG	GTCCTTGATG	CCCTGGTGAG	TATATACATA	TATATCTATA	TCTATATAGA	1440
TATATATATG	CCTTTGACTC	CCCCCTTTAC	ATGTCCTACG	GCTGCTGATT	GATTGATTGA	1500
TGTGGTGATG	GTGATGTCCC	AGAACACGGG	GCTCCCAGAC	AACTCCTTCA	CCCATGTGGG	1560
CATTGCCCTG	GCACTGCACA	TCATCCCCGA	TCCAGATGCC	GTCGTCAAAG	GTAAACAATC	1620
ACCAGCGTCA	CTGCAAAGAG	AGATTACGGG	ATATCATATA	CTGAAACCAA	AGCCCAGACT	1680
GCATCAGAAT	GCTCAAGCCA	GGCGGCAT CT	TTGGCGCATC	GACATGGCCC	AAGGCCAGCG	1740
CCGACATGTT	CTGGATCGCC	GACATGCGCA	CCGCCCTGCA	GTCGCTCCCC	TTTGACGCGC	1800

CGCTGCCAGA	CCCGTTCCCC	ATGCAGCTGC	ACACCTCGGG	CCACTGGGAC	GACGCCGCCT	1860
GGGTCGAGAA	GCATCTCGTC	GAGGATCTGG	GGCTGGCCAA	CGTCTGTGTG	AGGGAGCCGG	1920
CGGGCGAGTA	CAGCTTTGCG	AGCGCGGACG	AGTTCATGGC	GACGTTTCAG	ATGATGCTGC	1980
CGTGGATTAT	GAAGACGTTT	TGGAGCGAGG	AGGTGAGGGA	GAAGCATTCG	GTCGACGAGG	2040
TCAAGGAGTT	ggtgaagagg	CATCTGGAGG	ACAAGTATGG	GGGGAAGGGA	TGGACCATTA	2100
AGTGGCGGGT	GATTACCATG	ACTGCGACTG	CGAGCAAGTG	AGGGAGGGCA	TCTGCTCATG	2160
ATTATGTGAC	AGCGAGCCAG	TAGAGAGCCA	TATTGTTGTC	TTCAGAATGT	GAGGA CCGTG	2220
ATGGTTGGTG	TTTGTTGGAG	TGATAACTCG	TGGGTGTTGC	TATTTGCATG	TGAGACGATG	2280
AACCATGCGC	ACCAGCCACA	ATCACTGTCC	CCCACCTTAC	CTACCAACTT	CAAGTTACCA	2340
CCTTACCTTT	ACCTGATCTA	GCACTGTGGC	GCAGCTTGGT	TTGACTGCTA	GGTACCTACC	2400
TAGTAGTAAT	CAGGTACATT	CTTCATCCCT	GTGTCCTGGT	GTCGCAGTTG	CAGCTTGTCT	2460
TATCGCTGTG	GCCACGCATC	GAGTGGCAGC	ATCTTCAACT	TCAAGTCCCG	TCGGTCGCAC	2520
TCTGGCCACG	TCGCAGATGG	ATCGCAGCGG	GATCTGAACC	GCTCGCTCGG	CAACTGATAC	2580
CAAGTCAACA	AACACACGAG	ACGACGGGAC	GCTGATATAA	nnngaggag	GGTAAGAGAA	2640
CTCTACGAGG	GGCGGAAACT	TGGTCCGACA	ATTTCCCTCC	CATCTTCACC	CTCGACTCGA	2700
ACTCGAACTC	GATAGCCGCA	CCCTCGACCG	ATTGCCC			2737

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 43 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ACCGGAATTC ATATCTAGAG GAGCCCGCGA GTTTGGATAC GCC

43

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ACCGCCGCGG TTTGACGGTT TGTGTGATGT AGCG

34

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
TCTTCAAGAA TTGCTCGACC AATTCTCACG GTGAATGTAG G	41
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
ACACATCTAG AGGTGACCTA GGCATTCTGG CCACTAGATA TATATTTAGA AGGTTCTTGT	60
AGCTCAAAAG AGC	73
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
GGGAATTCTC TAGAAACGCG TTGGCAAATT ACGGTACG	38
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GGGAATTCGG TCACCTCTAA ATGTGTAATT TGCCTGCTTG ACC	43
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GGGAATTCGG TCACCTCTAA ATGTGTAATT TGCCTGCTTG ACCGATCTAA ACTGTTCGAA	60
GCCCGAATGT AGG	73
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUE	ENCE DESCRIPTION:	SEQ ID NO:13	:		
GGGAATTCTT CTA	GATTGCA GAAGCACGG	C AAAGCCCACT	TACCC		45
(2) INFORMATIO	N FOR SEQ ID NO:1	4:			
(A) (B) (C)	ENCE CHARACTERISTI LENGTH: 47 base p TYPE: nucleic aci STRANDEDNESS: sir TOPOLOGY: linear	airs d			
(xi) SEQUE	NCE DESCRIPTION:	SEQ ID NO:14	:		
TAGCGAATTC TAG	GTCACCT CTAAAGGTA	C CCTGCAGCTC	GAGCTAG	•	47
(2) INFORMATIO	N FOR SEQ ID NO:1	5:			
(A) (B) (C)	INCE CHARACTERISTI LENGTH: 26 base p TYPE: nucleic aci STRANDEDNESS: sin TOPOLOGY: linear	airs d			
(xi) SEQUE	NCE DESCRIPTION:	SEQ ID NO:15	:		
GGGAATTCAT GAT	GCGCAGT CCGCGG		·		26
(2) INFORMATIO	N FOR SEQ ID NO:1	6:			
(A) (B) (C)	NCE CHARACTERISTI LENGTH: 1588 base TYPE: nucleic aci STRANDEDNESS: sin TOPOLOGY: linear	pairs d			
(xi) SEQUE	NCE DESCRIPTION:	SEQ ID NO:16	:		
CCCCCTATC TTA	GTCCTTC TTGTTGTCC	C AAAATGGCGC	CCTCAGTTAC	ACTGCCGTTG	60
ACCACGGCCA TCC	TGGCCAT TGCCCGGCT	c gregeegeee	AGCAACCGGG	TACCAGCACC	120
CCCGAGGTCC ATC	CCAAGTT GACAACCTA	C AAGTGTACAA	AGTCCGGGGG	GTGCGTGGCC	180
CAGGACACCT CGG	TGGTCCT TGACTGGAA	C TACCGCTGGA	TGCACGACGC	AAACTACAAC	240
TCGTGCACCG TCA	ACGGCGG CGTCAACAC	C ACGCTCTGCC	CTGACGAGGC	GACCTGTGGC	300
AAGAACTGCT TCA	TCGAGGG CGTCGACTA	C GCCGCCTCGG	GCGTCACGAC	CTCGGGCAGC	360
AGCCTCACCA TGA	ACCAGTA CATGCCCAG	C AGCTCTGGCG	GCTACAGCAG	CGTCTCTCCT	420
CGGCTGTATC TCC	TGGACTC TGACGGTGA	G TACGTGATGC	TGAAGCTCAA	CGGCCAGGAG	480
CTGAGCTTCG ACG	TCGACCT CTCTGCTCT	G CCGTGTGGAG	AGAACGGCTC	GCTCTACCTG	540
TCTCAGATGG ACG	AGAACGG GGGCGCCAA	C CAGTATAACA	CGGCCGGTGC	CAACTACGGG	600
AGCGGCTACT GCG	ATGCTCA GTGCCCCGT	C CAGACATGGA	GGAACGGCAC	CCTCAACACT	660
AGCCACCAGG GCT	TCTGCTG CAACGAGAT	G GATATCCTGG	AGGCCAACTC	GAGGGCGAAT	720
GCCTTGACCC CTC	ACTCTTG CACGGCCAC	G GCCTGCGACT	CTGCCGGTTG	CGGCTTCAAC	780
AGCCTCACCA TGA CGGCTGTATC TCC CTGAGCTTCG ACG TCTCAGATGG ACG	ACCAGTA CATGCCCAG TGGACTC TGACGGTGA TCGACCT CTCTGCTCT	C AGCTCTGGCG G TACGTGATGC G CCGTGTGGAG C CAGTATAACA	GCTACAGCAG TGAAGCTCAA AGAACGGCTC CGGCCGGTGC	CGTCTCTCT CGGCCAGGAG GCTCTACCTG CAACTACGGG	420 480 540

CCCTATGGCA GCGGCTACAA AAGCTACTAC GGCCCCGGAG ATACCGTTGA CACCTCCAAG

ACCTTCACCA TCATCACCCA	GTTCAACACG	GACAACGGCT	CGCCCTCGGG	CAACCTTGTG	900
AGCATCACCC GCAAGTACCA	GCAAAACGGC	GTCGACATCC	CCAGCGCCCA	GCCCGGCGGC	960
GACACCATCT CGTCCTGCCC	GTCCGCCTCA	GCCTACGGCG	GCCTCGCCAC	CATGGGCAAG	1020
GCCCTGAGCA GCGGCATGGT	GCTCGTGTTC	AGCATTTGGA	ACGACAACAG	CCAGTACATG	1080
AACTGGCTCG. ACAGCGGCAA	CGCCGGCCCC	TGCAGCAGCA	CCGAGGGCAA	CCCATCCAAC	1140
ATCCTGGCCA ACAACCCCAA	CACGCACGTC	GTCTTCTCCA	ACATCCGCTG	GGGAGACATT	1200
GGGTCTACTA CGAACTCGAC	TGCGCCCCCG	CCCCCCCCTG	CGTCCAGCAC	GACGTTTTCG	1260
ACTACACGGA GGAGCTCGAC	GACTTCGAGC	AGCCCGAGCT	GCACGCAGA C	TCACTGGGGG	1320
CAGTGCGGTG GCATTGGGTA	CAGCGGGTGC	AAGACGTGCA	CGTCGGGCAC	TACGTGCCAG	1380
TATAGCAACG ACTACTACTC	GCAATGCCTT	TAGAGCGTTG	ACTTGCCTCT	GGTCTGTCCA	1440
GACGGGGCA CGATAGAATG	CGGGCACGCA	GGGAGCTCGT	AGACATTGGG	CTTAATATAT	1500
AAGACATGCT ATGTTGTATC	TACATTAGCA	AATGACAAAC	алатбалала	GAACTTATCA	1560
АССАЛАЛАЛА АЛАЛАЛАЛА	AAAAAAA				1588

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1820 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

				CCGCGGACTG	CGCATCATGT	1740
ATCGGAAGTT	GGCCGTCATC	TCGGCCTTCT	TGGCCACAGC	TCGTGCTCAG	TCGGCCTGCA	1800
CTCTCCAATC	GGAGACTCAC	CCGCCTCTGA	CATGGCAGAA	ATGCTCGTCT	GGTGGCACTT	1860
GCACTCAACA	GACAGGCTCC	GTGGTCATCG	ACGCCAACTG	GCGCTGGACT	CACGCTACGA	1920
ACAGCAGCAC	GAACTGCTAC	GATGGCAACA	CTTGGAGCTC	GACCCTATGT	CCTGACAACG	1980
AGACCTGCGC	GAAGAACTGC	TGTCTGGACG	GTGCCGCCTA	CGCGTCCACG	TACGGAGTTA	2040
CCACGAGCGG	TAACAGCCTC	TCCATTGGCT	TTGTCACCCA	GTCTGCGCAG	AAGAACGTTG	2100
GCGCTCGCCT	TTACCTTATG	GGCAGCGACA	CGACCTACCA	GGAATTCACC	CTGCTTGGCA	2160
ACGAGTTCTC	TTTCGATGTT	GATGTTTCGC	AGCTGCCGTA	AGTGACTTAC	CATGAACCCC	2220
TGACGTATCT	TCTTGTGGGC	TCCCAGCTGA	CTGGCCAATT	TAAGGTGCGG	CTTGAACGGA	2280
GCTCTCTACT	TCGTGTCCAT	GGACGCGGAT	GGTGGCGTGA	GCAAGTATCC	CACCAACACC	2340
GCTGGCGCCA	AGTACGGCAC	GGGGTACTGT	GACAGCCAGT	GTCCCCGCGA	TCTGAAGTTC	2400
ATCAATGGCC	AGGCCAACGT	TGAGGGCTGG	GAGCCGTCAT	CCAACAACGC	AAACACGGGC	2460
ATTGGAGGAC	ACGGAAGCTG	CTGCTCTGAG	ATGGATATCT	GGGAGGCCAA	CTCCATCTCC	2520
GAGGCTCTTA	CCCCCCACCC	TTGCACGACT	GTCGGCCAGG	AGATCTGCGA	GGGTGATGGG	2580
TGCGGCGGAA	CTTACTCCGA	TAACAGATAT	GGCGGCACTT	GCGATCCCGA	TGGCTGCGAC	2640
TGGAACCCAT	ACCGC CTGGG	CAACACCAGC	TTCTACGGCC	CTGGCTCAAG	CTTTACCCTC	2700

GATACCACCA	AGAAATTGAC	CGTTGTCACC	CAGTCCGAGA	CGTCGGGTGC	CATCAACCGA	2760
TACTATGTCC	AGAATGGCGT	CACTTTCCAG	CAGCCCAACG	CCGAGCTTGG	TAGTTACTCT	2820
GGCAACGAGC	TCAACGATGA	TTACTGCACA	GCTGAGGAGG	CAGAATTCGG	CGGATCCTCT	2880
TTCTCAGACA	AGGGCGGCCT	GACTCAGTTC	AAGAAGGCTA	CCTCTGGCGG	CATGGTTCTG	2940
GTCATGAGTC	TGTGGGATGA	TGTGAGTTTG	ATGGACAAAC	ATGCGCGTTG	ACAAAGAGTC	3000
AAGCAGCTGA	CTGAGATGTT	ACAGTACTAC	GCCAACATGC	TGTGGCTGGA	CTCCACCTAC	3060
CCGACAAACG	AGACCTCCTC	CACACCCGGT	GCCGTGCGCG	GAAGCTGCTC	CACCAGCTCC	3120
GGTGTCCCTG	CTCAGGTCGA	ATCTCAGTCT	CCCAACGCCA	AGGTCACCTT	CTCCAACATC	3180
AAGTTCGGAC	CCATTGGCAG	CACCGGCAAC	CCTAGCGGCG	GCAACCCTCC	CGGCGGAAAC	3240
CCGCCTGGCA	CCACCACCAC	CCGCCGCCCA	GCCACTACCA	CTGGAAGCTC	TCCCGGACCT	3300
ACCCAGTCTC	ACTACGGCCA	GTGCGGCGGT	ATTGGCTACA	GCGGCCCCAC	GGTCTGCGCC	3360
AGCGGCACAA	CTTGCCAGGT	CCTGAACCCT	TACTACTCTC	AGTGCCTGTA	AAGCTCCGTG	3420
CGAAAGCCTG	ACGCACCGGT	AGATTCTTGG	TGAGCCCGTA	TCATGACGGC	GGCGGGAGCT	3480
ACATGGCCCC	GGGTGATTTA	TTTTTTTTGT	ATCTACTTCT	GACCCTTTTC	AAATATACGG	3540

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2211 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATTCTCAC	GGTGAATGTA	GCCTTTTGT	AGGGTAGGAA	TTGTCACTCA	AGCACCCCCA	60
ACCTCCATTA	CGCCTCCCCC	ATAGAGTTCC	CAATCAGTGA	GTCATGGCAC	TGTTCTCAAA	120
TAGATTGGGG	AGAAGTTGAC	TTCCGCCCAG	AGCTGAAGGT	CGCACAACCG	CATGATATAG	180
GGTCGGCAAC	GGCAAAAAAG	CACGTGGCTC	ACCGAAAAGC	AAGATGTTTG	CGATCTAACA	240
TCCAGGAACC	TGGATACATC	CATCATCACG	CACGACCACT	TTGATCTGCT	GGTAAACTCG	300
TATTCGCCCT	AAACCGAAGT	GCGTGGTAAA	TCTACACGTG	GGCCCCTTTC	GGTATACTGC	360
GTGTGTCTTC	TCTAGGTGCA	TTCTTTCCTT	CCTCTAGTGT	TGAATTGTTT	GTGTTGGGAG	420
TCCGAGCTGT	AACTACCTCT	GAATCTCTGG	AGAATGGTGG	ACTAACGACT	ACCGTGCACC	480
TGCATCATGT	ATATAATAGT	GATCCTGAGA	AGGGGGGTTT	GGAGCAATGT	GGGACTTTGA	540
TGGTCATCAA	ACAAAGAACG	AAGACGCCTC	TTTTGCAAAG	TTTTGTTTCG	GCTACGGTGA	600
AGAACTGGAT	ACTTGTTGTG	TCTTCTGTGT	ATTTTTGTGG	CAACAAGAGG	CCAGAGACAA	660
TCTATTCAAA	CACCAAGCTT	GCTCTTTTGA	GCTACAAGAA	CCTGTGGGGT	ATATATCTAG	720
agttgtgaag	TCGGTAATCC	CGCTGTATAG	TAATACGAGT	CGCATCTAAA	TACTCCGAAG	780
CTGCTGCGAA	CCCGGAGAAT	CGAGATGTGC	TGGAAAGCTT	CTAGCGAGCG	GCTAAATTAG	840
CATGAAAGGC	TATGAGAAAT	TCTGGAGACG	GCTTGTTGAA	TCATGGCGTT	CCATTCTTCG	900
ACAAGCAAAG	CGTTCCGTCG	CAGTAGCAGG	CACTCATTCC	CGAAAAAACT	CGGAGATTCC	960

TAAGTAGCGA TGGAACCGGA ATAATATAA	I AGGCAATACA	TTGAGTTGCC	TCGACGGTTG	1020
CAATGCAGGG GTACTGAGCT TGGACATAA	C TGTTCCGTAC	CCCACCTCTT	CTCAACCTTT	1080
GGCGTTTCCC TGATTCAGCG TACCCGTAC	A . AGTCGTAATC	ACTATTAACC	CAGACTGACC	1140
GGACGTGTTT TGCCCTTCAT TTGGAGAAA	T AATGTCATTG	CGATGTGTAA	TTTGCCTGCT	1200
TGACCGACTG GGGCTGTTCG AAGCCCGAAT	r GTAGGATTGT	TATCCGAACT	CTGCTCGTAG	1260
AGGCATGTTG TGAATCTGTG TCGGGCAGGA	A CACGCCTCGA	AGGTTCACGG	CAAGGGAAAC	1320
CACCGATAGC AGTGTCTAGT AGCAACCTGT	r aaagccgcaa	TGCAGCATCA	CTGGAAAATA	1380
CAAACCAATG GCTAAAAGTA CATAAGTTAA	A TGCCTAAAGA	AGTCATATAC	CAGCGGCTAA	1440
TAATTGTACA ATCAAGTGGC TAAACGTAC	GTAATTTGCC	AACGCGTTGT	GGGGTTGCAG	1500
AAGCAACGGC AAAGCCCACT TCCCACGTTT	r GTTTCTTCAÇ	TCAGTCCAAT	CTCAGCTGGT	1560
GATCCCCCAA TTGGGTCGCT TGTTTGTTCC	GGTGAAGTGA	AAGAAGACAG	AGGTAAGAAT	1620
GTCTGACTCG GAGCGTTTTG CATACAACCA	A AGGGCAGTGA	TGGAAGACAG	TGAAATGTTG	1680
ACATTCAAGG AGTATTTAGC CAGGGATGCT	TGAGTGTATC	GTGTAAGGAG	GTTTGTCTGC	1740
CGATACGACG AATACTGTAT AGTCACTTCT	GATGAAGTGG	TCCATATTGA	AATGTAAGTC	1800
GGCACTGAAC AGGCAAAAGA TTGAGTTGAA	ACTGCCTAAG	ATCTCGGGCC	CTCGGGCTTC	1860
GGCTTTGGGT GTACATGTTT GTGCTCCGGG	CAAATGCAAA	GTGTGGTAGG	ATCGACACAC	1920
TGCTGCCTTT ACCAAGCAGC TGAGGGTATG	G TGATAGGCAA	ATGTTCAGGG	GCCACTGCAT	1980
GGTTTCGAAT AGAAAGAGAA GCTTAGCCAA	GAACAATAGC	CGATAAAGAT	AGCCTCATTA	2040
AACGAAATGA GCTAGTAGGC AAAGTCAGCG	AATGTGTATA	TATAAAGGTT	CGAGGTCCGT	2100
GCCTCCCTCA TGCTCTCCCC ATCTACTCAT	CAACTCAGAT	CCTCCAGGAG	ACTTGTACAC	2160
CATCTTTGA GGCACAGAAA CCCAATAGTC	AACCGCGGAC	TGCGCATCAT	G	2211
(2) INFORMATION FOR SEC ID NO.19				

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1137 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCTCAC	GGTGAATGTA	GGCCTTTTGT	AGGGTAGGAA	TTGTCACTCA	AGCACCCCCA	60
ACCTCCATTA	CGCCTCCCCC	ATAGAGTTCC	CAATCAGTGA	GTCATGGCAC	TGTTCTCAAA	120
TAGATTGGGG	AGAAGTTGAC	TTCCGCCCAG	AGCTGAAGGT	CGCACAACCG	CATGATATAG	180
GGTCGGCAAC	GGCAAAAA AG	CACGTGGCTC	ACCGAAAAGC	AAGATGTTTG	CGATCTAACA	240
TCCAGGAACC	TGGATACATC	CATCATCACG	CACGACCACT	TTGATCTGCT	GGTAAACTCG	300
TATTCGCCCT	AAACCGAAGT	GCGTGGTAAA	TCTACACGTG	GGCCCCTTTC	GGTATACTGC	360
GTGTGTCTTC	TCTAGGTGCA	TTCTTTCCTT	CCTCTAGTGT	TGAATTGTTT	GTGTTGGGAG	420
TCCGAGCTGT	AACTACCTCT	GAATCTCTGG	AGAATGGTGG	ACTAACGACT	ACCGTGCACC	480
TGCATCATGT	ATATAATAGT	GATCCTGAGA	AGGGGGTTT	GGAGCAATGT	GGGACTTTGA	540

TGGTCATCAA	ACAAAGAACG	AAGACGCCTC	TTTTGCAAAG	TTTTGTTTCG	GCTA CGGTGA	600
AGAACTGGAT	ACTTGTTGTG	TCTTCTGTGT	ATTTTTGTGG	CAACAAGAGG	CCAGAGACAA	660
TCTATTCAAA	CACCAAGCTT	GCTCTTTTGA	GCTACAAGAA	CCTGTGGGGT	ATATATCTAG	720
TGGCCAGAAT	GCCTAGGTCA	CCTCTAGAGA	GTTGAAACTG	CCTAAGATCT	CGGGCCCTCG	78 0
GGCTTCGGCT	TTGGGTGTAC	ATGTTTGTGC	TCCGGGCAAA	TGCAAAGTGT	GGTAGGATCG	840
ACACACTGCT	GCCTTTACCA	AGCAGCTGAG	GGTATGTGAT	AGGCAAATGT	TCAGGGGCCA	900
CTGCATGGTT	TCGAATAGAA	AGAGAAGCTT	AGCCAAGAAC	AATAGCCGAT	AAAGATAGCC	960
TCATTAAACG	AAATGAGCTA	GTAGGCAAAG	TCAGCGAATG	TGTATATATA	AAGGTTCGAG	1020
GTCCGTGCCT	CCCTCATGCT	CTCCCCATCT	ACTCATCAAC	TCAGATCCTC	CAGGAGACTT	1080
GTACACCATC	TTTTGAGGCA	CAGAAACCCA	ATAGTCAACC	GCGGACTGCG	CATCATG	1137

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2261 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GAATTCTCAC GGTGAATGTA GGCCTTTTGT AGGGTAGGAA TTGTCACTCA AGCACCCCCA 60 ACCTCCATTA CGCCTCCCCC ATAGAGTTCC CAATCAGTGA GTCATGGCAC TGTTCTCAAA 120 TAGATTGGGG AGAAGTTGAC TTCCGCCCAG AGCTGAAGGT CGCACAACCG CATGATATAG 180 GGTCGGCAAC GGCAAAAAAG CACGTGGCTC ACCGAAAAGC AAGATGTTTG CGATCTAACA 240 TCCAGGAACC TGGATACATC CATCATCACG CACGACCACT TTGATCTGCT GGTAAACTCG 300 TATTCGCCCT AAACCGAAGT GCGTGGTAAA TCTACACGTG GGCCCCTTTC GGTATACTGC 360 GTGTGTCTTC TCTAGGTGCA TTCTTTCCTT CCTCTAGTGT TGAATTGTTT GTGTTGGGAG 420 TCCGAGCTGT AACTACCTCT GAATCTCTGG AGAATGGTGG ACTAACGACT ACCGTGCACC 480 TGCATCATGT ATATAATAGT GATCCTGAGA AGGGGGGTTT GGAGCAATGT GGGACTTTGA 540 TGGTCATCAA ACAAAGAACG AAGACGCCTC TTTTGCAAAG TTTTGTTTCG GCTACGGTGA 600 AGAACTGGAT ACTTGTTGT TCTTCTGT ATTTTTGTGG CAACAAGAGG CCAGAGACAA 660 TCTATTCAAA CACCAAGCTT GCTCTTTTGA GCTACAAGAA CCTGTGGGGT ATATATCTAG 720 TGGCCAGAAT GCCTAGGTCA CCTCTAAAGG TACCCTGCAG CTCGAGCTAG AGTTGTGAAG 780 TCGGTAATCC CGCTGTATAG TAATACGAGT CGCATCTAAA TACTCCGAAG CTGCTGCGAA 840 CCCGGAGAAT CGAGATGTGC TGGAAAGCTT CTAGCGAGCG GCTAAATTAG CATGAAAGGC 900 TATGAGAAAT TCTGGAGACG GCTTGTTGAA. TCATGGCGTT CCATTCTTCG ACAAGCAAAG 960 CGTTCCGTCG CAGTAGCAGG CACTCATTCC CGAAAAAACT CGGAGATTCC TAAGTAGCGA 1020 TGGAACCGGA ATAATATAAT AGGCAATACA TTGAGTTGCC TCGACGGTTG CAATGCAGGG 1080 GTACTGAGCT TGGACATAAC TGTTCCGTAC CCCACCTCTT CTCAACCTTT GGCGTTTCCC 1140 TGATTCAGCG TACCCGTACA AGTCGTAATC ACTATTAACC CAGACTGACC GGACGTGTTT 1200

T	GCCCTTCAT	TTGGAGAAAT	AATGTCATTG	CGATGTGTAA	TTTGCCTGCT	TGACCGACTG	1260
G	GGCTGTTCG	AAGCCCGAAT	GTAGGATTGT	TATCCGAACT	CTGCTCGTAG	AGGCATGTTG	1320
T	gaatctgtg	TCGGGCAGGA	CACGCCTCGA	AGGTTCACGG	CAAGGGAAAC	CACCGATAGC	1380
A	GTGTCTAGT	AGCAACCTGT	AAAGCCGCAA	TGCAGCATCA	CTGGAAAATA	CAAACCAATG	1440
G	CTAAAAGTA	CATAAGTTAA	TGCCTAAAGA	AGTCATATAC	CAGCGGCTAA	TAATTGTACA	1500
A	TCAAGTGGC	TAAACGTACC	GTAATTTGCC	AACGCGTTTC	TAGATTGCAG	AAGCACGGCA	1560
A	AGCCCACTT	ACCCACGTTT	GTTTCTTCAC	TCAGTCCAAT	CTCAGCTGGT	GATCCCCCAA	1620
T'	TGGGTCGCT	TGTTTGTTCC	GGTGAAGTGA	AAGAAGACAG	AGGTAAGAAT	GTCTGACTCG	1680
G	AGCGTTTTG	CATACAACCA	AGGGCAGTGA	TGGAAGACAG	TGAAATGTTG	ACATTCAAGG	1740
A	GTATTTAGC	CAGGGATGCT	TGAGTGTATC	GTGTAAGGAG	GTTTGTCTGC	CGATACGACG	1800
A	ATACTGTAT	AGTCACTTCT	GATGAAGTGG	TCCATATTGA	AATGTAAGTC	GGCACTGAAC	1860
A	GGCAAAAGA	TTGAGTTGAA	ACTGCCTAAG	ATCTCGGGCC	CTCGGGCTTC	GGCTTTGGGT	1920
G	TACATGTTT	GTGCTCCGGG	CAAATGCAAA	GTGTGGTAGG	ATCGACACAC	TGCTGCCTTT	1980
A	CCAAGCAGC	TGAGGGTATG	TGATAGGCAA	ATGTTCAGGG	GCCACTGCAT	GGTTTCGAAT	2040
A	GAAAGAGAA	GCTTAGCCAA	GAACAATAGC	CGATAAAGAT	AGCCTCATTA	AACGAAATGA	2100
G	CTAGTAGGC	AAAGTCAGCG	AATGTGTATA	TATAAAGGTT	CGAGGTCCGT	GCCTCCCTCA	2160
T	GCTCTCCCC	ATCTACTCAT	CAACTCAGAT	CCTCCAGGAG	ACTTGTACAC	CATCTTTTGA	2220
G	GCACAGAAA	CCCAATAGTC	AACCGCGGAC	TGCGCATCAT	G		2261

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1776 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CAATTCTCAC	GGTGAATGTA	GGCCTTTTGT	AGGGTAGGAA	TTGTCACTCA	AGCACCCCCA	60
ACCTCCATTA	CGCCTCCCCC	ATAGAGTTCC	CAATCAGTGA	GTCATGGCAC	TGTTCTCAAA	120
TAGATTGGGG	AGAAGTTGAC	TTCCGCCCAG	AGCTGAAGGT	CGCACAACCG	CATGATATAG	180
GGTCGGCAAC	GGCAAAAAAG	CACGTGGCTC	ACCGAAAAGC	AAGATGTTTG	CGATCTAACA	240
TCCAGGAACC	TGGATACATC	CATCATCACG	CACGACCACT	TTGATCTGCT	GGTAAACTCG	300
TATTCGCCCT	AAACCGAAGT	GCGTGGTAAA	TCTACACGTG	GGCCCCTTTC	GGTATACTGC	360
GTGTGTCTTC	TCTAGGTGCA	TTCTTTCCTT	CCTCTAGTGT	TGAATTGTTT	GTGTTGGGAG	420
TCCGAGCTGT	AACTACCTCT	GAATCTCTGG	AGAATGGTG G	ACTAACGACT	ACCGTGCACC	480
TGCATCATGT	ATATAATAGT	GATCCTGAGA	AGGGGGGTTT	GGAGCAATGT	GGGACTTTGA	540
TGGTCATCAA	ACAAAGAACG	AAGACGCCTC	TTTTGCAAAG	TTTTGTTTCG	GCTACGGTGA	600
AGAACTGGAT	ACTTGTTGTG	TCTTCTGTGT	ATTTTTGTGG	CAACAAGAGG	CCAGAGACAA	660
TCTATTCAAA	CACCAAGCTT	GCTCTTTTGA	GCTACAAGAA	CCTTCTAAAT	ATATATCTAG	720

-57-

TGGCCAGAAT	GCCTAGGTCA	CCTCTAAATG	TGTAATTTGC	CTGCTTGACC	ga ctggggct	780
GTTCGAAGCC	CGAATGTAGG	ATTGTTATCC	GAACTCTGCT	CGTAGAGGCA	TGTTGTGAAT	840
CTGTGTCGGG	CAGGACACGC	CTCGAAGGTT	CACGGCAAGG	GAAACCACCG	ATAGCAGTGT	900
CTAGTAGCAA	CCTGTAAAGC	CGCAATGCAG	CATCACTGGA	AAATACAAAC	CAATGGCTAA	960
AAGTACATAA	GTTAATGCCT	AAAGAAGTCA	TATACCAGCG	GCTAATAATT	GTACAATCAA	1020
GTGGCTAAAC	GTACCGTAAT	TTGCCAACGC	GTTTCTAGAT	TGCAGAAGCA	CGGCAAAGCC	1080
CACTTACCCA	CGTTTGTTTC	TTCACTCAGT	CCAATCTCAG	CTGGTGATCC	CCCAATTGGG	1140
TCGCTTGTTT	GTTCCGGTGA	AGTGAAAGAA	ga cagaggta	AGAATGTCTG	ACTCGGAGCG	1200
TTTTGCATAC	AACCAAGGGC	agtgatggaa	GACAGTGAAA	TGTTGACATT	CAAGGAGTAT	1260
TTAGCCAGGG	ATGCTTGAGT	GTATCGTGTA	AGGAGGTTTG	TCTGCCGATA	CGACGAATAC	1320
TGTATAGTCA	CTTCTGATGA	AGTGGTCCAT	ATTGAAATGT	AAGTCGGCAC	TGAACAGGCA	1380
AAAGATTGAG	TTGAAACTGC	CTAAGATCTC	GGGCCCTCGG	GCTTCGGCTT	TGGGTGTACA	1440
TGTTTGTGCT	CCGGGCAAAT	GCAAAGTGTG	GTAGGATCGA	CACACTGCTG	CCTTTACCAA	1500
GCAGCTGAGG	GTATGTGATA	GGCAAATGTT	CAGGGGCCAC	TGCATGGTTT	CGAATAGAAA	1560
GAGAAGCTTA	GCCAAGAACA	ATAGCCGATA	AAGATAGCCT	CATTAAACGA	AATGAGCTA G	1620
TAGGCAAAGT	CAGCGAATGT	GTATATATAA	AGGTTCGAGG	TCCGTGCCTC	CCTCATGCTC	1680
TCCCCATCTA	CTCATCAACT	CAGATCCTCC	AGGAGACTTG	TACACCATCT	TTTGAGGCAC	1740,
AGAAACCCAA	TAGTCAACCG	CGGACTGCGC	ATCATG			1776

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1776 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

60	AGCACCCCCA	TTGTCACTCA	agggtaggaa	GGCCTTTTGT	GGTGAATGTA	CAATTCTCAC
120	TGTTCTCAAA	GTCATGGCAC	CAATCAGTGA	ATAGAGTTCC	CGCCTCCCCC	ACCTCCATTA
180	CATGATATAG	CGCACAACCG	AGCTGAAGGT	TTCCGCCCAG	AGAAGTTGAC	TAGATTGGGG
240	CGATCTAACA	AAGATGTTTG	ACCGAAAAGC	CACGTGGCTC	GGCAAAAAAG	GGTCGGCAAC
300	GGTAAACTCG	TTGATCTGCT	CACGACCACT	CATCATCACG	TGGATA CATC	TCCAGGAACC
360	GGTATACTGC	GGCCCCTTTC	TCTACACGTG	GCGTGGTAAA	AAACCGAAGT	TATTCGCCCT
420	GTGTTGGGAG	TGAATTGTTT	CCTCTAGTGT	TTCTTTCCTT	TCTAGGTGCA	GTGTGTCTTC
480	ACCGTGCACC	ACTAACGACT	AGAATGGTGG	GAATCTCTGG	AACTACCTCT	TCCGAGCTGT
540	GGGACTTTGA	GGAGCAATGT	AGGGGGGTTT	GATCCTGAGA	ATATAATAGT	TGCATCATGT
600	GCTACGGTGA	TTTTGTTTCG	TTTTGCAAAG	AAGACGCCTC	ACAAAGAACG	TGGTCATCAA
660	CCAGAGACAA	CAACAAGAGG	ATTTTTGTGG	TCTTCTGTGT	ACTTGTTGTG	AGAACTGGAT
720	ATATATCTAG	CCTTCTAAAT	GCTACAAGAA	GCTCTTTTGA	CACCAAGCTT	TCTATTCAAA

PCT/FI93/00330 WO 94/04673

TGGCCAGAAT	GCCTAGGTCA	CCTCTAAATG	TGTAATTTGC	CTGCTTGACC	GATCTAAACT	780
GTTCGAAGCC	CGAATGTAGG	ATTGTTATCC	GAACTCTGCT	CGTAGAGGCA	TGTTGTGAAT	840
CTGTGTCGGG	CAGGACACGC	CTCGAAGGTT	CACGGCAAGG	GAAACCACCG	ATAGCAGTGT	900
CTAGTAGCAA	CCTGTAAAGC	CGCAATGCAG	CATCACTGGA	AAATACAAAC	CAATGGCTAA	960
AAGTACATAA	GTTAATGCCT	AAAGAAGTCA	TATACCAGCG	GCTAATAATT	GTACAATCAA	1020
GTGGCTAAAC	GTACCGTAAT	TTGCCAACGC	GTTTCTAGAT	TGCAGAAGCA	CGGCAAAGCC	1080
CACTTACCCA	CGTTTGTTTC	TTCACTCAGT	CCAATCTCAG	CTGGTGATCC	CCCAATTGGG	1140
TCGCTTGTTT	GTTCCGGTGA	AGTGAAAGAA	GACAGAGGTA	AGAATGTCTG	ACTCGGAGCG	1200
TTTTGCATAC	AACCAAGGGC	AGTGATGGAA	GACAGTGAAA	TGTTGACATT	CAAGGAGTAT	1260
TTAGCCAGGG	ATGCTTGAGT	GTATCGTGTA	AGGAGGTTTG	TCTGCCGATA	CGACGAATAC	1320
TGTATAGTCA	CTTCTGATGA	AGTGGTCCAT	ATTGAAATGT	AAGTCGGCAC	TGAACAGGCA	1380
AAAGATTGAG	TTGAAACTGC	CTAAGATCTC	GGGCCCTCGG	GCTTCGGCTT	TGGGTGTACA	1440
TGTTTGTGCT	CCGGGCAAAT	GCAAAGTGTG	GTAGGATCGA	CACACTGCTG	CCTTTACCAA	1500
GCAGCTGAGG	GTATGTGATA	GGCAAATGTT	CAGGGGCCAC	TGCATGGTTT	CGAATAGAAA	1560
GAGAAGCTTA	GCCAAGAACA	ATAGCCGATA	AAGATAGCCT	CATTAAACGA	AATGAGCTAG	1620
TAGGCAAAGT	CAGCGAATGT	GTATATATAA	AGGTTCGAGG	TCCGTGCCTC	CCTCATGCTC	1680
rccccatcta	CTCATCAACT	CAGATCCTCC	AGGAGACTTG	TACACCATCT	TTTGAGGCAC	1740
AGAAACCCAA	TAGTCAACCG	CGGACTGCGC	ATCATG			1776

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 745 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GGACCTACCC	AGTCTCACTA	CGGCCAGTGC	GGCGGTATTG	GCTA CAGCGG	CCCCACGGTC	60
TGCGC CAGCG	GCACAACTTG	CCAGGTCCTG	AACCCTTACT	ACTCTCAGTG	CCTGTAAAGC	120
TCCGTGCGAA	AGCCTGACGC	ACCGGTAGAT	TCTTGGTGAG	CCCGTATCAT	GACGGCGGCG	180
GGAGCTACAT	GGCCCCGGGT	GATTTATTTT	TTTTGTATCT	ACTTCTGACC	CTTTTCAAAT	240
ATACGGTCAA	CTCATCTTTC	ACTGGAGATG	CGGCCTGCTT	GGTATTGCGA	TGTTGTCAGC	300
TTGGCAAATT	GTGGCTTTCG	ААААСАСААА	ACGATTCCTT	AGTAGCCATG	CATTTTAAGA	360
TAACGGAATA	GAAGAAAGAG	GAAATTAAAA	Алалалала	AACAAACATC	CCGTTCATAA	420
CCCGTAGAAT	CGCCGCTCTT	CGTGTATCCC	AGTACCACGT	CAAAGGTATT	CATGATCGTT	480
CAATGTTGAT	ATTGTTCCGC	CAGTATGGCT	CCACCCCCAT	CTCCGCGAAT	CTCCTCTTCT	540
CGAACGCGGT	AGTGGCTGCT	GCCAATTGGT	AATGACCATA	GGGAGACAAA	CAGCATAATA	600
GCAACAGT GG	AAATTAGTGG	CGCAATAATT	GAGAACACAG	TGAGACCATA	GCTGGCGGCC	660
TGGAAAGCAC	TGTTGGAGAC	CAACTTGTCC	GTTGCGAGGC	CAACTTGCAT	TGCTGTCAAG	720

WO 94/04673 PCT/F193/00330

-59-

ACGATGACAA CGTAGCCGAG GACCC

745

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1627 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GGCGGTATTG	GCTA CAGCGG	CCCCACGGTC	TGCGCCAGCG	GCACAACTTG	CCAGGTCCTG	60
AACCCTTACT	ACTCTCAGTG	CCTGTAAAGC	TCCGTGCGAA	AGCCTGACGC	ACCGGTAGAT	120
TCTTGGTGAG	CCCGTATCAT	GACGGCGGCG	GGAGCTACAT	GGCCCCGGGT	GATTTATTTT	180
TTTTGTATCT	ACTTCTGACC	CTTTTCAAAT	ATACGGTCAA	CTCATCTTTC	ACTGGAGATG	240
CGGCCTGCTT	GGTATTGCGA	TGTTGTCAGC	TTGGCAAATT	GTGGCTTTCG	AAAACACAAA	300
ACGATTCCTT	AGTAGCCATG	CATCGGGATC	CTTTAAGATA	ACGGAATAGA	AGAAAGAGGA	360
AATTAAAAAA	АААААААА	CAAACATCCC	GTTCATAACC	CGTAGAATCG	CCGCTCTTCG	420
TGTATCCCAG	TACCACGGCA	AAGGTATTTC	ATGATCGTTC	AATGTTGATA	TTGTTCCCGC	480
CAGTATGGCT	GCACCCCCAT	CTCCGCGAAT	CTCCTCTTCT	CGAACGCGGT	AGTGGCGCGC	540
CAATTGGTAA	TGACCATAGG	GAGACAAACA	GCATAATAGC	AACAGTGGAA	ATTAGTGGCG	600
CAATAATTGA	GAACACAGTG	AGACCATAGC	TGGCGGCCTG	GAAAGCACTG	TTGGAGACCA	660
ACTTGTCCGT	TGCGAGGCCA	ACTTGCATTG	CTGTCAAGAC	GATGACAACG	TAGCCGAGGA	720
CCGTCACAAG	GGACGCAAAG	TTGTCGCGGA	TGAGGTCTCC	GTAGATGGCA	TAGCCGGCAA	780
TCCGAGAGTA	GCCTCTCAAC	AGGTGGCCTT	TTCGAAACCG	GTAAACCTTG	TTCAGACGTC	840
CTAGCCGCAG	CTCACCGTAC	CAGTATCGAG	GATTGACGGC	AGAATAGCAG	TGGCTCTCCA	900
GGATTTGACT	GGACAAAATC	TTCCAGTATT	CCCAGGTCAC	AGTGTCTGGC	AGAAGTCCCT	960
TCTCGCGTGC	ANTCGAAAGT	CGCTATAGTG	CGCAATGAGA	GCACAGTAGG	AGAATAGGAA	1020
CCCGCGAGCA	CATTGTTCAA	TCTCCACATG	AATTGGATGA	CTGCTGGGCA	GAATGTGCTG	1080
CCTCCAAAAT	CCTGCGTCCA	ACAGATACTC	TGGCAGGGGC	TTCAGATGAA	TGCCTCTGGG	1140
CCCCCAGATA	AGATGCAGCT	CTGGATTCTC	GGTTACNATG	ATATCGCGAG	AGAGCA CGAG	1200
TTGGTGATGG	AGGGACAGGA	GGCATAGGTC	GCGCAGGCCC	ATAACCAGTC	TTGCACAGCA	1260
TTGATCTTAC	CTCACGAGGA	GCTCCTGATG	CAGAAACTCC	TCCATGTTGC	TGATTGGGTT	1320
GAGAATTTCA	TCGCTCCTGG	ATCGTATGGT	TGCTGGCAAG	ACCCTGCTTA	ACCGTGCCGT	1380
GTCATGGTCA	TCTCTGGTGG	CTTCGTCGCT	GGCCTGTCTT	TGCAATTCGA	CAGCAAATGG	1440
TGGAGATCTC	TCTATCGTGA	CAGTCATGGT	AGCGATAGCT	AGGTGTCGTT	GCACGCACAT	1500
AGGCCGAAAT	GCGAAGTGGA	AAGAATTTCC	CGGNTGCGGA	ATGAAGTCTC	GTCATTTTGT	1560
ACTCGTACTC	GACACCTCCA	CCGAAGTGTT	AATAATGGAT	CCACGATGCC	AAAAAGCTTG	1620
TGCATGC						1627

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 91 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GGACTGGCAT CATGGCGCCC TCAGTTACAC TGCCGTTGAC CACGGCCATC CTGGCCATTG	60
CCCGGCTCGT CGCCGCCCAG CAACCGGGTA C	91
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 97 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1895	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
AACCGCGGAC TGGCATC ATG GCG CCC TCA GTT ACA CTG CCG TTG ACC ACG Met Ala Pro Ser Val Thr Leu Pro Leu Tbr Thr 1 5 10	50
GCC ATC CTG GCC ATT GCC CGG CTC GTC GCC GCC CAG CAA CCG GGT Ala Ile Leu Ala Ile Ala Arg Leu Val Ala Ala Gln Gln Pro Gly 15 20 25	95
AC	97
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
Met Ala Pro Ser Val Thr Leu Pro Leu Thr Thr Ala Ile Leu Ala Ile 1 5 10 15	
Ala Arg Leu Val Ala Ala Gln Gln Pro Gly 20 25	
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

ACT ACG TAG TCG ACT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

PCT/FI93/00330

5

10

15

20

WHAT IS CLAIMED IS:

h.

1.

- A method for cloning a promoter that is active in a desired environmental condition, said method comprising: exposing a host to said environmental condition; a. b. extracting mRNA from said host; preparing a cDNA bank from said mRNA; C. detectably labelling a sample of said cDNA; d. hybridizing said labelled labelled cDNA to said cDNA e.
 - bank; selecting clones from said hybridization of step (e) on f.
 - determining the relative abundancy of said selected g. clones in the cDNA bank of step (c);

the basis of the intensity of the hybridization;

- identifying the most abundant clones of step (g); and i. using the inserts of the clones of step (h) to identify and clone the host promoter that was responsible for expression of the corresponding mRNA under said environmental condition.
- 2. The method of claim 1, wherein said condition is growth in glucose-containing medium.
- 3. The method of claim 1, wherein the host is a filamentous fungi.

- 4. The method of claim 1, wherein the host is selected from the group consisting of Trichoderma, Aspergillus, Claviceps purpurea, Penicillium chrysogenum, Magnaporthe grisea, Neurospora, Mycosphaerella spp., Collectotrichum trifolii, the dimorphic fungus Histoplasmia capsulatum, Nectia haematococca (anamorph: Fusarium solani f. sp. phaseoli and Ustilago violacea, pisi), Ustilago maydis, Cephalosporium acremonium, Schizophyllum commune, anserina. Sordaria Podospora macrospora, Mucor circinelloides, and Collectotrichum capsici.
 - 5. The method of claim 4, wherein the host is *Trichoderma*.
 - 6. The method of claim 5, wherein the host is T. reesei.
 - 7. An isolated promoter capable of expression of an operably-linked coding sequence in a fungal host grown on glucose.
- 15 8. The promoter of claim 7, wherein said promoter is cloned by a method comprising:
 - a. exposing a host to said environmental condition;
 - b. extracting mRNA from said host;
 - c. preparing a cDNA bank from a first sample of said mRNA;
 - d. detectably labelling a sample of said cDNA;
 - e. hybridizing said labelled labelled cDNA to said cDNA bank;
 - f. selecting clones from said hybridization of step (e) on the basis of the intensity of the hybridization;
 - g. determining the relative abundancy of said selected clones in the cDNA bank of step (c);

10

20

PCT/F193/00330

- h. identifying the most abundant clones of step (g); and
- i. using the inserts of the clones of step (h) to identify and clone the host promoter that was responsible for expression of the corresponding mRNA under said environmental condition.

5

9. The promoter of claim 7, wherein said host is a filamentous fungi.

10

10. The promoter of claim 9, wherein said host is selected from the group consisting of Trichoderma, Aspergillus, Claviceps purpurea, Penicillium chrysogenum, Magnaporthe grisea, Neurospora, Mycosphaerella spp., Collectotrichum trifolii, the dimorphic fungus Histoplasmia capsulatum, haematococca (anamorph:Fusarium solani f. sp. phaseoli and Ustilago violacea, Ustilago pisi). maydis, Cephalosporium acremonium, Schizophyllum commune. Podospora anserina, Sordaria macrospora, Мисог circinelloides, and Collectotrichum capsici.

15

11. The promoter of claim 10, wherein said host is Trichoderma.

- 12. The promoter of claim 11, wherein said host is selected from the group consisting of T. reesei, T. harzianum, T. longibrachiatum, T. viride, and T. koningii.
- 13. The promoter of claim 12, wherein said host is T. reesei.
- 14. The promoter of claim 13, wherein said promoter is the *tef1* promoter.

- 15. The promoter of claim 14, wherein said *tef1* promoter contains promoter elements of the 1.2 kb sequence adjacent to the translational start site of SEQ ID 1.
- 16. The promoter of claim 13, wherein said promoter is the promoter of SEQ ID 2.
- 17. The promoter of claim 13, wherein said promoter is the promoter of SEQ ID 3.
- 18. The promoter of claim 13, wherein said promoter is the promoter of SEQ ID 4.
- 19. The promoter of claim 13, wherein said promoter is the promoter of SEQ ID 5.
 - 20. The promoter of claim 13, wherein said promoter is the promoter of SEQ ID 6.
 - 21. The promoter of claim 7, wherein said promoter is an altered *cbh1* promoter, such alteration decreasing the ability of glucose to repress said *cbh1* promoter.
 - 22. The promoter of claim 21, wherein said native *cbh1* promoter has an altered mig-like sequence at approximately position -720 to -715.
- 20 23. The promoter of claim 22, wherein said mig-like sequence is 5'-GTGGGG.

15

- 24. The promoter of claim 22, wherein said altered mig-like sequence 5'-TCTAGA.
- 25. The promoter of claim 24, wherein said promoter is the *cbh1* promoter of pM1-24.
- 5 26. The promoter of claim 21, wherein said native *cbh1* promoter has the sequence TCTAAA at position -1505 to -1500 and the sequence TCTAGA at position -720 to -715.
 - 27. The promoter of claim 22, wherein said native *cbh1* promoter has the sequence TCTAAA at position -1505 to -1500 and the sequence TCTAAA at position -1001 to -996 and the sequence TCTAGA at position -720 to -715.
 - 28. A promoter, wherein said promoter is selected from the *cbh1* promoter of the group consistin of pML016del5(11), pMI-24, pMI-27, pMI-28, pML016del5(11), SEQ ID 19, SEQ ID 20, SEQ ID 21 and SEQ ID 22.
 - 29. A vector comprising the promoter of claim 7.
 - 30. The vector of claim 29, wherein said promoter is operably linked to a coding sequence.
 - 31. The vector of claim 30, wherein said coding sequence encodes an enzyme hydrolysing lignocellulose.
 - 32. A host cell transformed with the vector of claim 31.

15

- 33. The vector of claim 32, wherein said vector is selected from the group consisting of pTHN100B, pML016del5(11), pMI-24, pMI-27, pMI-28.
- 34. A host cell transformed with the vector of claim 33.
- 5 35. A host cell transformed with the vector of claim 30.
 - 36. The host cell of claim 35, wherein said cell is a fungal cell.
 - 37. The host cell of claim 36, wherein said fungal cell is that of a fungus selected from the group consisting of Trichoderma, Aspergillus, Claviceps purpurea, Penicillium chrysogenum, Magnaporthe grisea, Neurospora, Mycosphaerella spp., Collectotrichum trifolii, the dimorphic fungus Histoplasmia capsulatum, Nectia haematococca (anamorph:Fusarium solani f. sp. phaseoli and f. sp. pisi), Ustilago violacea, Ustilago maydis, Cephalosporium acremonium, Schizophyllum commune, Podospora anserina, Sordaria macrospora, Mucor circinelloides, and Collectotrichum capsici.
 - 38. The host cell of claim 37, wherein said fungus is *Trichoderma*.
 - 39. The host cell of claim 38, wherein said fungus is selected from the group consisting of T. reesei, T. harzianum, T. longibrachiatum, T. viride, and T. koningii.
 - 40. The host cell of claim 39, wherein said fungus is T. reesei.

. 5

- 41. An enzyme composition produced by a method comprising:
 - a. growing the host cell of claim 35 in the presence of glucose;
 - b. separating the host cell from the growth medium; and
 - c. using said growth medium of step (b) as the source of the enzymes in said enzyme composition.

FIG.1

SUBSTITUTE SHEET

1 CGCCGTGACG ACAGAAACGG AGCCCGCGAG TTTGGATACG CCGCTGAAAT GGGGCTTGAC 61 GETGAAGGAG AAGCCGAGCG CGGTGCCAGA GGACAAGATG GATGTAGAGC CAGGCGACGA 121 CGACCAAACG CAACCATCAA ATCAATCAGA TGGCAATGAC GCACCACCGC CCCAGCAGCG 181 CGAACCGCCG ACGAAGAAGC CATGGACGCG CTCCTCGGCA AGACGCCCAA GGAACAGAAA 241 AAAGTAATCT CCGCACCCGT ATCAGAAGAC GACGCCTACC GCCGCGACGT CGAAGCCTCC 301 GCCGCGCTGT CCACGCTCCA GGATTACGAA GACATGCCCG TCGAGGAGTT TGGCGCCGCC 361 CTCCTCCNNN GCATGGGCTG GAACGGGGAA GCCCGCGGCC CGCCGGTCAA GCAGGTCAAG 421 AGGCGGCAGA ACAGGCTCGG CCTCGGCGCC AAGGAGCTCA AGGAGGAAGA GGACCTCGGC 481 GGGTGGAACC AGAACGGCAA GAAAAAGTCG AGGCCSCGCG GCTGAGCGAG TATCGGAGGG 541 AGGAGAGCAA GCGCAAGGAA GGCCGGGGGC ATGAGGACAG CTATAAACGA GAGAGGGAGC 601 GCGAACGGAT CGCGAGAGGG ATCACTACAG GGAGCGAGAC CGGGACAGGG ATCGCGATTA 661 TAGGGATCGG GATAGGGATA GACATCGGGA CCACGATAGG CACAGGGACC GACATCGCGA 721 CTCTGACCGG CACCATCGAC GATGAAGGAG CTTTTGCATT CTTCTCTTCG TCAACCACTT 781 TTGAGACTAA CATTAACCAT GCCGTTTTCT TGAAAAGCTT GTACTCATCA TGATGTTTTT 841 AAGCAAATAG GCGACAGGCG TACAGACACC TTAATATCAC ATAGAGGCAC GGCACACATA 901 CGTCTTGGAG AAGACACGTA CTTACGAATG ATGGGAGAAT TACCTACTCT GACTTGTGTA 961 AATTAGAATA TCAATGACAC TATGTATATT CAGTCGAGCT GCGAATGGTC ACACATTGTC 1081 CTCCCTCAGT TTGGATCATC GCCTTATTCT TCTTCCCTCT TCTGCATCTG CTTCCTGCTC 1141 GTTTGAGGAA CATCGCCAGC TGACTCTGCT TGCCTCGCAG CGATCTAGTC AAGAACAACA 1201 CNAGCTCTCA CGCTACATCA CACAAACCGT CAAAATGGGT AAGGAGGACA AGACTCACAT 1261 CAACGTGGTC GTCATCGTAC GTATTTTCCG ATCCCTCATC GGCNGTCATC TGNCCAGTCT 1321 GATTCCAAGA ATCACCGTGC TAACCATATA CCATCTANGG GTGCGTATTC CATCAATCAT 1381 CTTGAGCCAG ATCGACCGAA CATACGATAC TGACTTTGCT ACGACAGCCA CGTCGACTCC

FIG.1A-1

1441 GGCAAGTCTA CCACCGTGAG TAAACACCCA TTCCACTCCA CGACCGCAAG CTCCATCTTG 1501 CGCGTGGCGT CTCTGCGATG AACATCCGAA ACTGACGTTC TGTTACAGAC TGGTCACTTG 1561 ATCTACCAGT GCGGTGGTAT CGACAAGCGT ACCATTGAGA AGTTCGAGAA GGTAAGCTTC 1621 GTTCCTTAAA TCTCCAGACG CGAGCCCAAT CTTTGCCCAT CTGCCCAGCA TCTGGCGAAC 1681 GAATGCTGTG CCGACACGAT TTTTTTTTTC ATCACCCCGC TTTCTCCTAC CCCTCCTTCG 1741 AGCGACGCAA ATTITITTIG CTGCCTTACG AGTTITAGTG GGGTCGCACC TCACAACCCC 1801 ACTACTGCTC TCTGGCCGCT CCCCAGTCAC CCAACGTCAT CAACGCAGCA GTTTTCAATC 1861 AGCGATGCTA ACCATATTCC CTCGAACAGG AAGCCGCCGA ACTCGGCAAG GGTTCCTTCA 1921 AUTACGCGTG GGTTCTTGAC AAGCTCAAGG CCGAGCGTGA GCGTGGTATC ACCATCGACA 1981 TTGCCCTCTG GAAGTTCGAG ACTCCCAAGT ACTATGTCAC CGTCATTGGT ATGTTGGCAG 2041 CCATCACCTC ACTGCGTCGT TGACACATCA AACTAACAAT GCCCTCACAG ACGCTCCCGG 2101 CCACCGTGAC TTCATCAAGA ACATGATCAC TGGTACTTCC CAGGCCGACT GCGCTATCCT 2161 CATCATCGET GCCGGTACTG GTGAGTTCGA GGCTGGTATC TCCAAGGATG GCCAGACCCG 2221 TGAGCACGET CTGCTCGCCT ACACCCTGGG TGTCAAGCAG CTCATCGTCG CCATCAACAA 2281 GATGGACACT GCCAACTGGG CCGAGGCTCG TTACCAGGAA ATCATCAAGG AGACTTCCAA 2341 CTTCATCAAG AAGGTCGGCT TCAACCCCAA GGCCGTTGCT TTCGTCCCCA TCTCCGGCTT 2401 CAACGGTGAC AACATGCTCA CCCCCTCCAC CAACTGCCCC TGGTACAAGG GCTGGGAGAA 246) GGAGACCAAG GCTGGCAAGT TCACCGGCAA GACCCTCCTT GAGGCCATCG ACTCCATCGA 2521 GCCCCCAAG CGTCCCACGG ACAAGCCCCCT GCGTCTTCCC CTCCAGGACG TCTACAAGAT 2581 COGTOGTATO GGAACAGTTC COGTOGGCCG TATOGAGACT GGTGTCCTCA AGCCCGGTAT 2641 GGTCGTTACC TTCGCTCCCT CCAACGTCAC CACTGAAGTC AAGTCCGTCG AGATGCACCA 2701 CGAGCAGCTC GCTGAGGGCC AGCCTGGTGA CAACGTTGGT TTCAACGTGA AGAACGTTTC 2761 COTCAAGGAA ATCCGCCGTG GCAACGTTGC CGGTGACTCC AAGAACGACC CCCCCATGGG

FIG.1A-2

2821 CGCCGCTTCT TTCACCGCCC AGGTCATCGT CATGAACCAC CCCGGCCAGG TCGGTGCCGG
2881 CTACGCCCCC GTCCTCGACT GCCACACTGC CCACATTGCC TGCAAGTTCG CCGAGCTCCT
2941 CGAGAAGATC GACCGCCGTA CCGGTAAGGC TACCGAGTCT GCCCCCAAGT TCATCAAGTC
3001 TGGTGACTCC GCCATCGTCA AGATGATCCC CTCCAAGCCC ATGTGCGTTG AGGCTTTCAC
3061 CGACTACCCT CCCCTGGGTC GTTTCGCCGT CCGTGACATG CGCCAGACCG TCGCTGTCGG
3121 TGTCATCAAG GCCGTCGAGA AGTCCTCTGC CGCCGCCGCN AAGGTCACCA AGTCCGCTGC
3181 CAAGGCCGCC AAGAAATAAG CGATACCCAT CATCAACACC TGATGTTCTG GGGTCCCTCG
3241 TGAGGTTTCT CCAGGTGGGC ACCACCATGC GCTCACTTCT ACGACGAAAC GATCAATGTT
3301 GCTATGCATG AGSACTCGAC TATGAATCGA GGCACGGTTA ATTGAGAGGC TGGGAATAAG
3361 GGTTCCATCA GAACTTCTCT GGGAATGCAA AACAAAAAAAA A

FIG.1A-3

FIG.2

FIG.3

1 GGTCTGAAGG ACGTGGAATG 21 ATGGACTTAA TGACAAGAGT TGCCTGGCTA TTGAGCTCTG GTACATGGAT CTCGAACTGA 81 GAGCGTACAA GTTACATGTA GTAAATCTAG TAGATCTCGC TGAAAGCCCT CTTTCCCGGT 141 AGAAACACCA CCAGCGTCCC GTAGGACAAG ATCCTGTCGA TCTGAGCACA TGAATTGCTT 201 CCCTGGATCT GGCGCTGCAT CTGTTTCCCC AGACAATGAT GGTAGCAGCG CATGGAAGAA 261 CCCGGTTGTT CGGAATGTCC TTGTGCTAAC AGTGGCATGA TTTTACGTTG CGGCTCATCT 321 CGCCTTGGCA CCGGACCTCA GCAAATCTTG TCACAACAGC AATCTCAAAC AGCCTCATGG 381 TTCCCAGATT CCCTGATTCA GAACTCTAGA GCGGCAGATG TCAAACGATT CTGACCTAGT 441 ACCTIGAGCA TOCCTITOGG ATCCGGCCCA TGTTCTGCCT GCCCTTCTGA GCACAGCAAA 501 CAGCCCAAAA GGCGCCGGCC GATTCCTTTC CCGGGATGCT CCGGAGTGGC ACCACCTCCC 561 AAAACAAGCA ACCTTGAACC CCCCCCCAA ATCAACTGAA GCGCTCTTCG CCTAACCAGC 621 ATAAGCCCCC CCCAGGATCG TTAGGCCAAG TGGTAGGGCC AGCCAATTAG CGAGNGGCCA 681 TTTGGAGGTC ATGGGCGCAG AATGTCCTGA CAGTGGTATG ATATTGACTG CCCGGTGTGT 741 GTGGCATCTG GCCATAATCG CAGGCTGAGG CGAGGAAGTC TCGTGAGGAT GTCCCGACTT 801 TGACATCATG AGGGAGTGAG AAACTGAAGA GAAGGAAAGC TTCGAAGGTT CGATAAGGGA 861 TGATTTGCAT GGCGGGCGAC AGGATGCGAT GGCTCGTTGG GATACATAAT GCTTGGGTTG 921 GAAGCGATTC CAGGTCGTCT TTTTTTGGTT CATCATCACA GCATCAACAA GCAACGATAC 981 AAGCAATCCA CTGAGGATTA CCTCTCAACT CAACCACTTT CCAAACCATC TCAACTCCCT 1041 AAGATTCTTT CAGTGTATTA TCACTAGGAT TTTTCCCAAG CCGGCTTCAA AACACACAGA 1101 TAAACCACCA ACTOTACAAC CAAAGACTTT TTGATCAATC CAACAACTTC TCTCAACATG 1161 TOTGCTGCAA CCGTCACCCG CACTGCAACC GCCGCTGTTC GCAGACCCGG CTTCTTCATG 1221 CAAGTCCGAC GGATGGGACG CTCATTCGAG CACCAGCCCT TTGAGCGACT CTCCGCCACC 1281 ATGAAGCCTG CACGACCCGA CTATGCTAAG CAAGTCGTCT GGACGGCTGG CAAGTTTGTC 1341 ACTIAIGITC CICTITICGG CGCCAIGCTT ACCIGGCCIG CGCTCGCCAA STGGGCTCIG 1401 GACGGACACA TCGGACGGTG GTAAAAGATC AGACTCTTGT CGAGGCAACG GGGAATAGAC

FIG.3A

1461 AGGACAGCAA AAAAGATATC TCCGGATAGA AGTGTCCATC TTTCGACTTG TATATATATA

1521 TATGCTATAC TCTGGGGGCG TTTGGATGGA CTTTGGGCAC GAAGCATACT TTGGCGCAAC

1581 GCAGATACTT TAATCTGATT CCTTTTGTTA ATTCAAAAAA AAAAAAAAA AAAAAAA

FIG.3A(Cont.)

	10	só	30	40	50	60
1	TTTGTATGGC	TGGATCTCGA	AAGGCCCTTG	TCATCGCCAA	GCGTGGCTAA	TATCGAATGA
61	GGGACACCGA	CTTGCATATC	TCCTGATCAT	TCAAACGACA	AGTGTGAGGT	AGGCAATCCT
121	CGTATCCCAT	TGCTGGGCTG	AAAGETTCAC	ACGTATEGEA	TAAGCGTCTC	CAACCAGTGC
181	TTAGGTGACC	CTTAAGGATA	CTTACAGTAA	GACTGTATTA	AGTCAGTCAC	TCTTTCACTC
241	GGGCTTTGAA	TACGATCCTC	AATACTCCCG	ATAACAGTAA	GAGGATGATA	CAGCCTGCAG
301	TTGGCAAATG	TAAGCGTAAT	TAAACTCAGC	TGAACGGCCC	TTGTTGAAAG	TCTCTCTCGA
361	TCAAAGCAAA	GCTATCCACA	GACAAGGGTT	AAGCAGGCTC	ACTCTTCCTA	CGCCTTGGAT
421	ATGCAGCTTG	GCCAGCATCG	CGCATGGCCA	ATGATGCACC	CTTCACGGCC	CAACGGATCT
481	CCCGTTAAAC	TCCCCTGTAA	CTTGGEATCA	CTCATCTGTG	ATCCCAACAG	ACTGAGTTGG
541	GGGCTGCGGC	TGGCGGATGT	CGGAGCAAAG	GATCACTTCA	AGAGCCCAGA	TCCGGTTGGT
601	CCATTGCCAA	TGGATCTAGA	TTCGGCACCT	TGATCTCGAT	CACTGACACA	TGGTGAGTTG
661	CCCGGACGCA	CCACAAGTCC	CCCTGTGTCA	TTGAGTCCCC	ATATGCGTCT	TCTCAGCGTG
721	CAACTCTGAG	ACGGATTAGT	CCTCACGATG	AAATTAACTT	CCAGCTTAAG	TTCGTAGCCT
781	TGAATGAGTG	AAGAAATTTC	AAAAACAAAC	TGAGTAGAGG	TCTTGAGCAG	CTGGGGTGGT
841	ACGCCCCTCC	TCGACTCTTG	GGACATCGTA	CGGCAGAGAA	TCAACGGATT_	CACACCTTTG
901	GGTCGAGATG	AGCTGATCTC	GACAGATACG	TGCTTCACCA	CAGCTGCAGC	TACCTTTGCC
961	CAACCATTGC	GTTCCAGGAT	CTTGATCTAC	ATCACCGCAG	CACCCGAGCC	AGGACGGAGA
1021	GAACAATCCG	GCCACAGAGC	AGCACCGCCT	TECAACTETG	CTCCTGGCAA	CGTCACACAA
1081	CCTGATATTA	GATATCCACC	TGGGTGATTG	CCATTGCAGA	GAGGTGGCAG	TTGGTGATAC
1141	CGACTGGCCA	TGCAAGACGC	GGCCGGGCTA	GCTGAAATGT	CCCCGAGAGG	ACAATTGGGA
1201	GCGTCTATGA	CGGCGTGGAG	ACGACGGGAA	AGGACTCAGE	CGTCATGTTG	TGTTGCCAAT
1261	TTGAGATTGT	TGACCGGGAA	AGGGGGGACG	AAGAGGATGG	CTGGGTGAGG	TGGTATTGGG
1321	AGGATGCATC	ATTCGACTCA	GTGAGCGATG	TAGAGCTCCA	AGAATATAAA	TATCCCTTCT
1381	CTGTCTTCTC	AAAATCTCCT	TCCATCTTGT	CCTTCATCAG	CACCAGAGCC	AGCCTGAACA
1441	CCTCCAGTCA	ACTTCCCTTA	CCAGTACATC	TGAATCAACA	TCCATTCTTT	GAAATCTCAC
1501	CACAACCACC	ATCTTCTTCA	AA <u>ATG</u> AAGTT	CTTCGCCATC	GCCGCTCTCT	TTGCCGCCGC
1561	TGCCGTTGCC	CAGCCTCTCG	AGGACCGCAG	CAACGGCAAC	GGCAATGTTT	GCCCTCCCGG
1621	CCTCTTCAGC	AACCCCCAGT	GETGTGCCAC	CCAAGTCCTT	GGCCTCATCG	GCCTTGACTG
1681	CAAAGTCCGT	AAGTTGAGCC	ATAACATAAG	AATCCTCTTG	ACGGAAATAT	GCCTTCTCAC
1741	TCCTTTACCC	CTGAACAGCC	TCCCAGAACG	TTTACGACGG	CACCGACTTC	CGCAACGTCT
1801	GEGCCAAAAC	CGGCGCCCAG	CCTCTCTGCT	GCGTGGCCCC	CGTTGTAAGT	TGATGCCCCA
1861	GCTCAAGCTC	CAGTCTTTGG	CAAACCCATT	CTGACACCCA	GACTGCAGGC	CGGCCAGGCT

FIG.4A

1921 CTTCTGTGCC AGACCGCCGT CGGTGCTTGA GATGCCCGCC CGGGGTCAAG GTGTGCCCGT 1981 GAGAAAGECE ACAAAGTGTT GATGAGGACE ATTTCCGGTA ETGGGAAAGT TGGCTECACG 2041 TGTTTGGGCA GGTTTGGGCA AGTTGTGTAG ATATTCCATT CGTACGCCAT TCTTATTCTC 2101 CAATATTICA GTACACTITI CITCATAAAT CAAAAAGACT GCTATTCTCT TIGTGACATG 2161 CCGGAAGGGA ACAATTGCTC TTGGTCTCTG TTATTTGCAA GTAGGAGTGG GAGATTCGCC 1555 TTAGAGAAAG TAGAGAAGCT GTGCTTGACC GTGGTGTGAC TCGACGAGGA TGGACTGAGA 2281 GTGTTAGGAT TAGGTCGAAC GTTGAAGTGT ATACAGGATC GTCTGGCAAC CCACGGATCC 2341 TATGACTTGA TGCAATGGTG AAGATGAATG ACAGTGTAAG AGGAAAAGGA AATGTCCGCC TTCAGCTGAT ATCCACGCCA ATGATACAGC GATATACCTC CAATATCTGT GGGAACGAGA 2461 CATGACATAT TTGTGGGAAC AACTTCAAAC AGCGAGCCAA GACCTCAATA TGCACATCCA 2521 AAGCCAAACA TTGGCAAGAC GAGAGACAGT CACATTGTCG TCGAAAGATG GCATCGTACC 2581 CAAATCATCA GETETCATTA TEGEETAAAC CACAGATTGT TTGEEGTEEL ECAACTCEAA 2641 AACGTTACTA CAAAAGACAT GGGCGAATGC AAAGACCTGA AAGCAAACCC TTTTTGCGAC 2701 TCAATTCCCT CCTTTGTCCT CGGAATGATG ATCCTTCACC AAGTAAAAGA AAAAGAAGAT 2761 TGAGATAATA CATGAAAAGC ACAACGGAAA CGAAAGAACC AGGAAAAGAA TAAATCTATC 2821 ACGCACCTTG TCCCCACACT AAAAGCAACA GGGGGGGTAA AATGAAAT

FIG.4A(Cont.)

10 20 30 60 50 1 AAAAAGCTAG AACGAGACGA TTCCGGCCCG GCAAACCAGG CCGAGTGACG GGAGCATTTC 61 CATGATTTCA CTCGGCAAAC TCTGGCTACA ATTTTCAGGC GGCGAGTTCC GATACAAGGG 121 AAATCTATTA CCCACAGACG AACGGGAATC GGTGATGAGT GGTTTCTTGT AAGTCAACAT 181 TGAGCTAGAT AATTCCGGGC GAGATCAAGA TGCCATACTT TGATTGATGA AAAATCAATG 241 TCAGGCGTAA GTCTCTTCAA GCTCGCCCAG TCCTCTGTAT GTAACAGCAA TCGCAATTCC 301 GAAATGTGCC GAGCCAATGG AACATGCGTG TCTTTCTCTT TTCACACACA TCCAGTTCGA 361 GAGTETTETE TTEATEGITT CATEGAATEE CTTECCETEE AGETATTEAE CEAGEEGAGE 421 CCTTCAGCGC ACCAGCGTAT GTATGTACCC TCGGCTAAGA CGCAACAGAA GCATCATCAA 481 TATACCTUAT GTACTACTAT CTACTATGAA GCCCAAAAAC CCCTTCGCAG CCCAAATGTA 541 ACCCAAGCAA CGAATCCCCA ATAAGAGACA ATCCTCAGTG ACCCCCAGAA GAGCACAGAA 601 TCGAGCTGGT CCTGGTGGGT CGCATTGAGA CCGGTGGAGA TGCGTTCGAT TCGACTGCCG 661 GAGCTCCCGG GAAGCCGGCA GATGGTCCCA TGCGATGCCC TGCACCGTTT TTGTGAATCG 721 TCGGCATCGC GAGAAGTGGC CTGCTATGAC GTCGCTTGCA GCTTGGCCGC TCTGTTCGAA 781 GTTTTTCGAT GTTTTTCTTC ATGCGGGAGA AAGAAAACAT CAGATGACAT GATTATCCGA 841 ATGGATGGCG GGAGTTATCG TGGTGACGGC TGCTTCATGA GATGAGTATA AATGAGCTTG 901 TTCGCTCAGC GTGTCATGGA TCTTGTCCAG CTCCAAAGCA TCGGCTTCAG CATCCATCCG 1021 GAAAAAACAC CACCATCTGT GTAATACTTT GATACCCCCA AAGCTCAAAC GACCGCTTGT 1081 ACATACAATA ACACEGECAC AATGTTCGCE AACTTGACGC ACGCTACCCT GCGATTCATC 1141 GCCTTCTTCA ACCACCTGAT GATCCTGGCC TCATCAGCCA TCGTCACCGG CCTCGTATCC 1201 TGGTTCCTCG ACAAGTACGA CTACCGCGGC GTGAACATTG TCTACCAGGA AGTCATCGTA 1261 TGTCCTCCCA AGCACCACAT CAAACACACC CCATACCTTG GCTCTCCTCA GCTCCGTCGA 1321 AGCACATAAT ACTAACGCAT GCAACAACTA GGCCACCATA ACTCTGGGCT TCTGGCTCGT 1381 TGGTGCCGTC TTGCCCCTCG TTGGCAGATA CCGCGGCCAC CTGGCCCCTC TCAACCTCAT

FIG.5A

1441 CTTCTCCTAC CTCTGGCTCA CCTCTTTCAT CTTCTCCGCG CAGGACTGGA GCAGCGACAA
1501 GTGCAGCTTC GGCCAGCCTG GCGAGGGCCA CTGCAGCCGC AAGAAGGCCA TTGAATCCTT
1561 CAACTTTATC GCATTGTAAG TGCCTACAAG TAATTTGCTA TGTATATGGG AGAGAGAGA
1621 AAGAAGAAGA ATATGGCTCT AACATGGCAT CTCTACAGCT TCTTCCTCCT CTGCAACACC
1681 CTGGTTGAGA TGCTCCTGCT CCGCGCCGAG TATGCTACCC CCGTTGCTGC TGCTCACAAC
1741 AAGGAGATTT CTGCCGGCCG CCCCTCTGAC AACTCTGTCT AAATAACAAT AGACATGCAT
1801 AGATGAACGG AGACCACTTC TACTTTCTTT GCGAGTTCCT GATCCGTTGA CCTGCAGGTC
1861 GACBBBBBCC GCGCTCGCAT GGTTCATCTG CTACAACAAC ACAATGACAA TCCGAACCAG
1921 TCAATAAACC TCGACAACAC GACGAGTACT TTTGCGGATA GAAAGATACC CATTACACAG
1981 GAGATCAAAT GGGGAAATTG GAAGTGTATG GATGGACGCC CGTGTATAAT GAGGTTGTGA
2041 ACGGGATGGG AGGCAATGAA TAATGGATAA TGAGGTAATG GATAGATTCG GTCGTTTTGA
2101 TACCACAGCT GCACTCTGCT CTACGTCTGT CATTAATGAT ACATACAAAT GATACCTTAT

FIG.5A(Cont.)

10 30 50 60 20 1 TCTAGAATCT CTTCGAGATG GCCGAGAAAG GCTTGTTTTT CTCTCCTTCT TCAAACTGGC 61 CACTGTTTGT TTTCAAACTT GGGGTTTCGT GGGGCTTTTG GGGGCATGTC TGCCAGGTCT 121 CCCGTAGGCT GGACAGCCAA AGCCTCACTA CAAACAGGCA GTTGTCAATA GATTGATGTC 181 TGAGATGGAT GGTTTTATGT TTGGGGGAGG TCATGTATGT ATTTATCTAT ATTTGCAAAG 241 ATGATCCATG AGTCAGACTT GCACAGGTTT CTCGTGCGCT GGATAAATCT TGTTGGAGTG 301 CGGGTGAGGT GGTGGATGGC ATTCAACCCA CAGCAACACT TGCCCAGGGG GATGTACTGC 361 AGCGATTTGT TTCCCTTCGA GTATTAGATG ATGATGCCGA ACAGACAAAT TTGAGCCTCG 421 CTGCTCTCGG ATGTCGGGTT TCTCTTGTGT GCCGGTGATG TGTGATGGCC TGGCCCGCAA 481 AGAGAGCGAA AAACATGCTC AAAATGTAGC ACACGGCGAC TTCTCGGACA CTTGCGTACC 541 TTGAGAGACA AGCAGACTAC AGGGATGACG AGTAATACGA CAGAGCGATA CGACACAGCT 601 ATACGACACA GCTAAGAAAA TAAAGGTATT AGTACTACTA ATTGATTACC TACTACCTAG 721 TGCTTCGCAA AGAAGAGAAA CTAAAACGCC TCCTGGCTAC CTACCTACCT CTACCTTGTA 781 AGAGATGGAA TAATGTGGCC GCGCGTAAAG TAGGTACTGG ATATACAGGT CCTGAACATG 841 GCCCTGAATC CTGCCAGGCA GCCACCTCAC CCCTTCCGCA GGTATTTATG TAGCCCACAG 901 CTCCTCCAGA GACGATGCCG AGATGCCTCA TGCAGTCTAC CTACAAAGCC AGCAGTTTCA 961 CGCTTGACTC TCACTCTTGA TTGAATTCCC TCCCTCCCAT AATACCAATT GGCGTTCAAC 1021 GATTGCCAGC AGAATGGCCG CCCAACACGA CGTCGAGGCC ATGGCAAAGT CCATGTCCGA 1081 CTTTTTCAAG GACACGGCCC AAAAGCAGGA CTCGACCAAG CATGACTTTG TCCAAGCCTC 1141 GCACGGCATC ATGAGGGCCA TTGTCGAGCC GCTCGTCACC CAGATGGGCT TCCGCGAGAC 1201 CCTCACCGAG CCCGTCGTCT TGCTCGACAG CGCGTGCGGA GCGGGCGTGC TGACGCAGGA 1261 GGTGCAGGCG GCGCTGCCAA AGGAGCTTCT GGAGAGGAGC TCGTTTACGT GTGCGGACAA 1321 TGCCGAGGGC TTGGTGGACG TGGTGAAGAG GAGGATTGAT GAGGAGAAGT GGGTGAATGC 1381 AGAGGCCAAG GTCCTTGATG CCCTGGTGAG TATATACATA TATATCTATA TCTATATAGA 1441 TATATATATG CCTTTGACTC CCCCCTTTAC ATGTCCTACG GCTGCTGATT GATTGATTGA

FIG.6A

1501 TOTGOTGATG GTGATGTCCC AGAACACGGG GCTCCCAGAC AACTCCTTCA CCCATGTGGG 1561 CATTGCCCTG GCACTGCACA TCATCCCCGA TCCAGATGCC GTCGTCAAAG GTAAACAATC 1621 ACCAGOGTCA CTGCAAAGAG AGATTACGGG ATATCATATA CTGAAACCAA AGCCCAGACT 1681 GCATCAGAAT GCTCAAGCCA GGCGGCATCT TTGGCGCATC GACATGGCCC AAGGCCAGCG 1741 CCGACATGTT CTGGATCGCC GACATGCGCA CCGCCCTGCA GTCGCTCCCC TTTGACGCGC 1801 CGCTGCCAGA CCCGTTCCCC ATGCAGCTGC ACACCTCGGG CCACTGGGAC GACGCCGCCT 1861 GGGTCGAGAA GCATCTCGTC GAGGATCTGG GGCTGGCCAA CGTCTGTGTG AGGGAGCCGG 1921 CGGGCGAGTA CAGCTTTGCG AGCGCGGACG AGTTCATGGC GACGTTTCAG ATGATGCTGC 1981 COTGGATTAT GAAGACGTTT TGGAGCGAGG AGGTGAGGGA GAAGCATTCG GTCGACGAGG 2041 TCAAGGAGTT GGTGAAGAGG CATCTGGAGG ACAAGTATGG GGGGAAGGGA TGGACCATTA 2101 AGTGGCGGGT GATTACCATG ACTGCGACTG CGAGCAAGTG AGGGAGGGCA TCTGCTCATG 2161 ATTATGTGAC AGCGAGCCAG TAGAGAGCCA TATTGTTGTC TTCAGAATGT GAGGACCGTG 2221 ATGGTTGGTG TTTGTTGGAG TGATAACTCG TGGGTGTTGC TATTTGCATG TGAGACGATG 2281 AACCATGCGC ACCAGCCACA ATCACTGTCC CCCACCTTAC CTACCAACTT CAAGTTACCA 2341 CCTTACCTTT ACCTGATCTA GCACTGTGGC GCAGCTTGGT TTGACTGCTA GGTACCTACC 2401 TAGTAGTAAT CAGGTACATT CTTCATCCCT GTGTCCTGGT GTCGCAGTTG CAGCTTGTCT 2461 TATCGCTGTG GCCACGCATC GAGTGGCAGC ATCTTCAACT TCAAGTCCCG TCGGTCGCAC 2521 TCTGGCCACG TCGCAGATGG ATCGCAGCGG GATCTGAACC GCTCGCTCGG CAACTGATAC 2581 CAAGTCAACA AACACAGGAG ACGACGGGAC GCTGATATAA NNNNGAGGAG GGTAAGAGAA 2701 ACTCGAACTC GATAGCCGCA CCCTCGACCG ATTGCCC

FIG.6A(Cont.)

CHOCKITHE CUEFT

CCCCCCTATC TTAGTCCTTC TTGTTGTCCC AAAATGGCGC CCTCAGTTAC ACTGCCGTTG ACCACGGCCA TCCTGGCCAT TGCCCGGCTC GTCGCCGCCC AGCAACCGGG TACCAGCACC CCCGAGGTCC ATCCCAAGTT GACAACCTAC AAGTGTACAA AGTCCGGGGG GTGCGTGGCC CAGGACACCT CGGTGGTCCT TGACTGGAAC TACCGCTGGA TGCACGACGC AAACTACAAC TCGTGCACCG TCAACGGCGG CGTCAACACC ACGCTCTGCC CTGACGAGGC GACCTGTGGC AAGAACTGET TCATCGAGGG CGTCGACTAC GCCGCCTCGG GCGTCACGAC CTCGGGCAGC AGCCTCACCA TGAACCAGTA CATGCCCAGC AGCTCTGGCG GCTACAGCAG CGTCTCTCCT CGGCTGTATC TCCTGGACTC TGACGGTGAG TACGTGATGC TGAAGCTCAA CGGCCAGGAG CTGAGETTEG ACGTEGACET CTETECTETG CEGTGTGGAG AGAACGGETE GETCTACETG TCTCAGATGG ACGAGAACGG GGGCGCCAAC CAGTATAACA CGGCCGGTGC CAACTACGGG AGCGGCTACT GCGATGCTCA GTGCCCCGTC CAGACATGGA GGAACGGCAC CCTCAACACT AGCCACCAGG GCTTCTGCTG CAACGAGATG GATATCCTGG AGGGCAACTC GAGGGCGAAT GCCTTGACCC CTCACTCTTG CACGGCCACG GCCTGCGACT CTGCCGGTTG CGGCTTCAAC CCCTATGGCA GCGGCTACAA AAGCTACTAC GGCCCCGGAG ATACCGTTGA CACCTCCAAG ACCTTCACCA TCATCACCCA GTTCAACACG GACAACGGCT CGCCCTCGGG CAACCTTGTG AGCATCACCE GCAAGTACCA GCAAAACGGC GTCGACATCE CCAGEGECCA GCCCGGCGGC GACACCATCT CGTCCTGCCC GTCCGCCTCA GCCTACGGCG GCCTCGCCAC CATGGGCAAG GCCCTGAGCA GCGGCATGGT GCTCGTGTTC AGCATTTGGA ACGACAACAG CCAGTACATG AACTGGCTCG ACAGCGGCAA CGCCGGCCCC TGCAGCAGCA CCGAGGGCAA CCCATCCAAC ATCCTGGCCA ACAACCCCAA CACGCACGTC GTCTTCTCCA ACATCCGCTG GGGAGACATT GGGTCTACTA CGAACTCGAC TGCGCCCCG CCCCCGCCTG CGTCCAGCAC GACGTTTTCG ACTACACGGA GGAGCTCGAC GACTTCGAGC AGCCCGAGCT GCACGCAGAC TCACTGGGGG CAGTGCGGTG GCATTGGGTA CAGCGGGTGC AAGACGTGCA CGTCGGGCAC TACGTGCCAG TATAGCAACG ACTACTACTC GCAATGCCTT TAGAGCGTTG ACTTGCCTCT GGTCTGTCCA GACGGGGCA CGATAGAATG CGGGCACGCA GGGAGCTCGT AGACATTGGG CTTAATATAT AAGACATGCT ATGTTGTATC TACATTAGCA AATGACAAAC AAATGAAAAA GAACTTATCA ΑΓΕΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑ

FIG.7A

FIG.7B

FIG.9

FIG.10

FIG.11

WO 94/04673 PCT/F193/00330

25/47

FIG. 12

EcoRI 10	50	30	40	50	60	
	GGTGAATGTA	GGCCTTTTGT	AGGGTAGGAA	TTGTCACTCA	AGCACCCCCA	60
ACCTCCATTA	CGCCTCCCCC	ATAGAGTTCC	CAATCAGTGA	GTCATGGCAC	TGTTCTCAAA	120
TAGATTGGGG	AGAAGTTGAC	TTCCGCCCAG	AGCTGAAGGT	CGCACAACCG	CATGATATAG	180
GGTCGGCAAC	GGCAAAAAAG	CACGTGGCTC	ACCGAAAAGC	AAGATGTTTG	CGATCTAACA	240
TCCAGGAACC	TGGATACATC	CATCATCACG	CACGACCACT	TTGATCTGCT	GGTAAACTCG	300
TATTCGCCCT	AAACCGAAGT	GCGTGGTAAA	TCTACACGTG	GGCCCCTTTC	GGTATACTGC	360
стст стс ттс	TCTAGGTGCA	TTCTTTCCTT	CCTCTAGTGT	TGAATTGTTT	GTGTTGGGAG	420
TCCGAGCTGT	AACTACCTCT	GAATCTCTGG	AGAATGGTGG	ACTAACGACT	ACCGTGCACC	480
TGCATCATGT	ATATAATAGT	GATCCTGAGA	AGGGGGTTT	GGAGCAATGT	GGGACTTTGA	540
TGGTCATCAA	ACAAAGAACG	AAGACGCCTC	TTTTGCAAAG	TTTTGTTTCG	GCTACGGTGA	600
AGAACTGGAT	ACTTGTTGTG	TCTTCTGTGT	ATTTTTGTGG	CAACAAGAGG -1505		660
TCTATTCAAA	CACCAAGCTT	GCTCTTTTGA	GCTACAAGAA	i	ATATA <u>TCTAG</u>	720
<u>A</u> GTTGTGAAG	TCGGTAATCC	CGCTGTATAG	TAATACGAGT	CGCATCTAAA	TACTCCGAAG	780
CTGCTGCGAA	CCCGGAGAAT	CGAGATGTGC	TGGAAAGCTT	CTAGCGAGCG	GCTAAATTAG	840
CATGAAAGGC	TATGAGAAAT	TCTGGAGACG	GCTTGTTGAA	TCATGGCGTT	CCATTCTTCG	900
ACAAGC AA AG	CGTTCCGTCG	CAGTAGCAGG	CACTCATTCC	CGAAAAAACT	CGGAGATTCC	960
TAAGTAGCGA	TGGAACCGGA	ATAATATAAT	AGGCAATACA	TTGAGTTGCC	TCGACGGTTG	1020
CAATGCAGGG	GTACTGAGCT	TGGACATAAC	TGTTCCGTAC	CCCACCTCTT	CTCAACCTTT	1080
GGCGTTTCCC	TGATTCAGCG	TACCCGTACA	AGTCGTAATC	ACTATTAACC	CAGACTGACC	1140
GGACGTGTTT -100	TGCCCTTCAT	TTGGAGAAAT	AATGTCATTG	CGATGTGTAA	TTTGCCTGCT	1200
1		AAGCCCGAAT	GTAGGATTGT	TATCCGAACT	CTGCTCGTAG	1260

FIG.13A

AGG	CATGTTG	TGAATCTGTG	TCGGGCAGGA	CACGCCTCGA	AGGTTCACGG	CAAGGGAAAC	1320
CACI	CGATAGC	AGTGTCTAGT	AGCAACCTGT	AAAGCCGCAA	TGCAGCATCA	CTGGAAAATA	1380
CAA	ACCAATG	GCTAAAAGTA	CATAAGTTAA	TGCCTAAAGA	AGTCATATAC		1440
TAA	TTGTACA	ATCAAGTGGC	TAAACGTACC	GTAATTTGCC	, — ·	•	1500
AAGI	CAACGGC	AAAGCCCACT	TCCCACGTTT	GTTTCTTCAC	TCAGTCCAAT	CTCAGCTGGT	1560
GATI	CCCCAA	TTGGGTCGCT	TGTTTGTTCC	GGTGAAGTGA	AAGAAGACAG	AGGTAAGAAT	1620
GTC.	TGACTCG	GAGCGTTTTG	CATACAACCA	AGGGCAGTGA	TGGAAGACAG	TGAAATGTTG	1680
ACA:	TTCAAGG	AGTATTTAGC	CAGGGATGCT	TGAGTGTATC	GTGTAAGGAG	стттстстсс	1740
CGA	TACGACG	AATACTGTAT	AGTCACTTCT	GATGAAGTGG	TCCATATTGA	AATGTAAGTC	1800
GGC	ACTGAAC	AGGCAAAAGA	TTGAGTTGAA	ACTGCCTAAG	ATCTCG6GCC	CTCGGGCTTC	1860
GGC	TTGGGT	GTACATGTTT	GTGCTCCGGG	CAAATGCAAA	GTGTGGTAGG	ATCGACACAC	1920
TGC'	TGCCTTT	ACCAAGCAGC	TGAGGGTATG	TGATAGGCAA	ATGTTCAGGG	GCCACTGCAT	1980
GGT	TTCGAAT	AGAAAGAGAA	GCTTAGCCAA	GAACAATAGC	CGATAAAGAT	AGCCTCATTA	2040
AACI	GAAATGA	GCTAGTAGGC	AAAGTCAGCG	AATGTGTATA	TATAAAGGTT	CGAGGTCCGT	2100
GCC.	TCCCTCA	TECTCTCCCC	ATCTACTCAT	CAACTCAGAT	CCTCCAGGAG	ACTTGTACAC	2160
CATI	CTTTTGA	GGCACAGAAA	CCCAATAGTC	AACCGCGGAC Ksp.I	TGCGCATQAT	G	2211

FIG. 13A(Cont.)

60	CCAGGTCCTG	GCACAACTTG	TGCGCCAGCG	CCCCACGGTC	GCTACAGCGG	GGCGGTATTG
120	ACCGGTAGAT	AGCCTGACGC	TCCGTGCGAA	CCTGTAAAGC	ACTCTCAGTG	AACCCTTACT
180	GATTTATTTT	GGCCCCGGGT	GGAGCTACAT	GACGGCGGCG	CCCGTATCAT	TCTTGGTGAG
240	ACTGGAGATG	CTCATCTTTC	ATACGGTCAA	CTTTTCAAAT	ACTTCTGACC	TTTTGTATCT
300	AAAACACAAA	GTGGCTTTCG	TTGGCAAATT	_		CGGCCTGCTT
360	AGAAAGAGGA	ACGGAATAGA	<u>C</u> tttaagata		AGTAGCC <u>ATG</u>	ACGATTCCTT
420	CCGCTCTTCG	CGTAGAATCG	GTTCATAACC	CAAACATCCC	AAAAAAAAA	AATTAAAAAA
480	TTGTTCCCGC	AATGTTGATA	ATGATCGTTC	AAGGTATTTC	TACCACGGCA	TGTATCCCAG
540	AGTGGCGCGC	CGAACGCGGT	стестеттет	CTCCGCGAAT	GCACCCCCAT	CAGTATGGCT
600	ATTAGTGGCG	AACAGTGGAA	GCATAATAGC	GAGACAAACA	TGACCATAGG	CAATTGGTAA
660	TTGGAGACCA	GAAAGCACTG	TGGCGGCCTG	AGACCATAGC	GAACACAGTG	CAATAATTGA
720	TAGCCGAGGA	GATGACAACG	CTGTCAAGAC	ACTTGCATTG	TGCGAGGCCA	ACTTGTCCGT
78 0	TAGCCGGCAA	GTAGATGGCA	TGAGGTCTCC	TTGTCGCGGA	GGACGCAAAG	CCGTCACAAG
840	TTCAGACGTC	GTAAACCTTG	TTCGAAACCG	AGGTGGCCTT	GCCTCTCAAC	TCCGAGAGTA
900	TGGCTCTCCA	AGAATAGCAG	GATTGACGGC	CAGTATCGAG	CTCACCGTAC	CTAGCCGCAG
96 D	AGAAGTCCCT	AGTGTCTGGC	CCCAGGTCAC	TTCCAGTATT	GGACAAAATC	GGATTTGACT
1020	AGAATAGGAA	GCACAGTAGG	CGCAATGAGA	CGCTATAGTG	ANTCGAAAGT	TCTCGCGTGC
1080	GAATGTGCTG	CTGCTGGGCA	AATTGGATGA	TCTCCACATG	CATTGTTCAA	CCCGCGAGCA
1140	TGCCTCTGGG	TTCAGATGAA	TGGCAGGGGC	ACAGATACTC	CCTGCGTCCA	CCTCCAAAAT
1200	AGAGCACGAG	ATATCGCGAG	GGTTACNATG	CTGGATTCTC	AGATGCAGCT	CCCCAGATA
1260	TTGCACAGCA	ATAACCAGTC	GCGCAGGCCC	GGCATAGGTC	AGGGACAGGA	TTGGTGATGG
1320	TGATTGGGTT	TCCATGTTGC	CAGAAACTCC	GCTCCTGATG	CTCACGAGGA	ITGATCTTAC

FIG.13B

		FIC	47D/	^ [']	\	
Sph[T <u>GCATGC</u>						1627
	GACACCTCCA	CCGAAGTGTT	AATAAT <u>GGAT</u>	CCACGATGCC	AAAAAGCTTG	1620
			BamH!			
AGGCCGAAAT	GCGAAGTGGA	AAGAATTTCC	CGGNTGCGGA	ATGAAGTCTC	GTCATTTTGT	1560
TGGAGATCTC	TCTATCGTGA	CAGTCATGGT	AGCGATAGCT	AGGTGTCGTT	GCACGCACAT	1500
GTCATGGTCA	TCTCTGGTGG	CTTCGTCGCT	GGCCTGTCTT	TGCAATTCGA	CAGCAAATGG	1440
GAGAATTTCA	TCGCTCCTGG	ATCGTATGGT	TGCTGGCAAG	ACCCTGCTTA	ACCGTGCCGT	1380

FIG.13B(Cont.)

4 1 1 1 1

FIG.15

* 1 * 4 * * 4

1	10 GAATTCTCAC	20 GGTGAATGTÀ	30 GGCCTTTTGŤ	40 AGGGTAGGAA	50 TTGTCACTCA	60 AGCACCCCA
61	ACCTCCATTA	CGCCTCCCC	ATAGAGTTCC	CAATCAGTGA	GTCATGGCAC	TGTTCTCAAA
121	TAGATTGGGG	agaagt t gac	TTCCGCCCAG	AGCTGAAGGT	CGCACAACCG	CATGATATAG
181	GGTCGGCAAC	GGCAAAAAAG	CACGTGGCTC	ACCGAAAAGC	AAGATGTTTG	CGATCTAACA
241	TCCAGGAACC	TGGATACATC	CATCATCACG	CACGACCACT	TTGATCTGCT	GGTAAACTCG
301	TATTCGCCCT	AAACCGAAGT	GCGTGGTAAA	TCTACACGTG	GGCCCCTTTC	GGTATACTGC
361	GTGTGTCTTC	TCTAGGTGCA	TTCTTTCCTT	CCTCTAGTGT	TGAATTGTTT	GTGTTGGGAG
421	TCCGAGCTGT	AACTACCTCT	GAATCTCTGG	AGAATGGTGG	ACTAACGACT	ACCGTGCACC
481	TGCATCATGT	ATATAATAGT	GATCCTGAGA	AGGGGGGTTT	GGAGCAATGT	GGGACTTTGA
541	TGGTCATCAA	ACAAAGAACG	AAGACGCCTC	TTTTGCAAAG	TTTTGTTTCG	GCTACGGTGA
601	AGAACTGGAT	ACTTGTTGTG	TCTTCTGTGT	ATTTTTGTGG	CAACAAGAGG	CCAGAGACAA
661	TCTATTCAAA	CACCAAGCTT	GCTCTTTTGA	GCTACAAGAA	CCTGTGGGGT	ATATATCTAG
721	TGGCCAGAAT	GCCTAGGTCA	CCTCTAGAGA	GTTGAAACTG	CCTAAGATCT	CGGGCCCTCG
781	GGCTTCGGCT	TTGGGTGTAC	ATGTTTGTGC	TCCGGGCAAA	TGCAAAGTGT	GGTAGGATCG
841	ACACACTGCT	GCCTTTACCA	AGCAGCTGAG	GGTATGTGAT	AGGCAAATGT	TCAGGGGCCA
901	CTGCATGGTT	TCGAATAGAA	AGAGAAGCTT	AGCCAAGAAC	AATAGCCGAT	AAAGATAGCC
961	TCATTAAACG	AAATGAGCTA	GTAGGCAAAG	TCAGCGAATG	TGTATATATA	AAGGTTCGAG
1021	GTCCGTGCCT	CCCTCATGCT	CTCCCCATCT	ACTCATCAAC	TCAGATCCTC	CAGGAGACTT
1081	GTACACCATC	TTTTGAGGCA	CAGAAACCCA	ATAGTCAACC	GCGGACTGCG	CATCATG

FIG. 15A

- RESTRICTION SITES MARKED WITH $^+$ ARE NOT SINGLE SITES TWO ADDITIONAL ECORI -SITES IN THE cbh1-GENE

FIG.16

CCGCGGACTG CGCATCATGT	1740
ATCGGAAGTT GGCCGTCATC TCGGCCTTCT TGGCCACAGC TCGTGCTCAG TCGGCCTGCA	1800
CTCTCCAATC GGAGACTCAC CCGCCTCTGA CATGGCAGAA ATGCTCGTCT GGTGGCACTT	1860
GCACTCAACA GACAGGCTCC GTGGTCATCG ACGCCAACTG GCGCTGGACT CACGCTACGA	1920
ACAGCAGCAC GAACTGCTAC GATGGCAACA CTTGGAGCTC GACCCTATGT CCTGACAACG	1980
AGACCTGCGC GAAGAACTGC TGTCTGGACG GTGCCGCCTA CGCGTCCACG TACGGAGTTA	2040
CCACGAGCGG TAACAGCCTC TCCATTGGCT TTGTCACCCA GTCTGCGCAG AAGAACGTTG	2100
GCGCTCGCCT TTACCTTATG GGCAGCGACA CGACCTACCA GGAATTCACC CTGCTTGGCA	2160
ACGAGTTCTC TTTCGATGTT GATGTTTCGC AGCTGCCGTA AGTGACTTAC CATGAACCCC	2220
TGACGTATCT TCTTGTGGGC TCCCAGCTGA CTGGCCAATT TAAGGTGCGG CTTGAACGGA	2280
GCTCTCTACT TCGTGTCCAT GGACGCGGAT GGTGGCGTGA GCAAGTATCC CACCAACACC	2340
GCTGGCGCCA AGTACGGCAC GGGGTACTGT GACAGCCAGT GTCCCCGCGA TCTGAAGTTC	2400
ATCAATGGCC AGGCCAACGT TGAGGGCTGG GAGCCGTCAT CCAACAACGC AAACACGGGC	2460
ATTGGAGGAC ACGGAAGCTG CTGCTCTGAG ATGGATATCT GGGAGGCCAA CTCCATCTCC	2520
GAGGETETTA CECECEACE TTGEACGACT GTEGGECAGG AGATETGEGA GGGTGATGGG	2580
TGCGGCGGAA CTTACTCCGA TAACAGATAT GGCGGCACTT GCGATCCCGA TGGCTGCGAC	2640
TGGAACCCAT ACCGCCTGGG CAACACCAGC TTCTACGGCC CTGGCTCAAG CTTTACCCTC	2700
GATACCACCA AGAAATTGAC CGTTGTCACC CAGTCCGAGA CGTCGGGTGC CATCAACCGA	2760
TACTATGTCC AGAATGGCGT CACTTTCCAG CAGCCCAACG CCGAGCTTGG TAGTTACTCT	2820
GGCAACGAGC TCAACGATGA TTACTGCACA GCTGAGGAGG CAGAATTCGG CGGATCCTCT	2880
TTCTCAGACA AGGGCGGCCT GACTCAGTTC AAGAAGGCTA CCTCTGGCGG CATGGTTCTG	2940
GTCATGAGTC TGTGGGATGA TGTGAGTTTG ATGGACAAAC ATGCGCGTTG ACAAAGAGTC	3000

FIG.16A

AAGCAGCTGA	CTGAGATGTT	ACAGTACTAC	GCCAACATGC	TGTGGCTGGA	CTCCACCTAC	3060
CCGACAAACG	AGACCTCCTC	CACACCCGGT	GCCGTGCGCG	GAAGETGETE	CACCAGCTCC	3120
<u> GGTGTCCCTG</u>	CTCAGGTCGA	ATCTCAGTCT	CCCAACGCCA	AGGTCACCTT	CTCCAACATC	3180
AAGTTCGGAC	CCATTGGCAG	CACCGGCAAC	CCTAGCGGCG	GCAACCCTCC	CGGCGGAAAC	3240
CCGCCTGGCA	CCACCACCAC	CCGCCGCCCA	GCCACTACCA	CTGGAAGCTC	TCCCGGACCT	3300
ACCCAGTCTC	ACTACGGCCA	GTGCGGCGGT	ATTEGCTACA	GCGGCCCCAC	GGTCTGCGCC	3360
AGCGGCACAA	CTTGCCAGGT	CCTGAACCCT	TACTACTCTC	AGTGCCTGTA	AAGCTCCGTG	3420
CGAAAGCCTG	ACGCACCGGT	AGATTCTTGG	TGAGCCCGTA	TCATGACGGC	GGCGGGAGCT	3480
ACATGGCCCC Xma I	<u>GGG</u> IGATTTA	ппппп	ATCTACTTCT	GACCCTTTTC	AAATATACGG	3540

FIG.16A(Cont.)

FIG.17A

ב	r	ב
•		
<u>_</u>	_	_
L	L	_

414	41A	41A	418	418	418
UNDILUTED	1:5	1:50	UNDILUTED	1:5	1:50
41E	41E	41E	35A	35A	35A
UNDILUTED	1:5	1:50	UNDILUTED	1:5	1:50
358	35B	35B	35C	35C	350
UNDILUTED	1:5	1:50	UNDILUTED	1:5	1:50
24A	24A	24A	248	248	24B
UNDILUTED	1:5	1:50	UNDILUTED	1:5	1:50
39A	39A	39A	39B	39B	39B
UNDILUTED	1:5	1:50	UNDILUTED	1:5	1:50
390	39C	39C	320	320	320
UNDILUTED	1:5	1:50	UNDILUTED	1:5	1:50
CBHI NEGATIVE STRAIN	HOST STRAIN	BUFFER	HOST STRAIN CELLULOSE	HOST STRAIN CELLULOSE	HOST STRAIN CELLULOSE
UNDILUTED	UNDILUTED		MEDIUM 1:20	MEDIUM 1:40	MEDIUM 1:80
CBHI NEGATIVE STRAIN	HOST STRAIN	CBHI	CBHI	CBHI	CBHI
1:5	1:5	200 ng	100 ng	50 ng	25 ng

 $^{\bullet}:=\mathbb{N}_{q_{1}}^{q_{1}}=\mathbb{N}_{q}$

10 60 1 GAATTCTCAC GGTGAATGTA GGCCTTTTGT AGGGTAGGAA TTGTCACTCA AGCACCCCCA 61 ACCTCCATTA CGCCTCCCCC ATAGAGTTCC CAATCAGTGA GTCATGGCAC TGTTCTCAAA 121 TAGATTOGGG AGAAGTTGAC TTCCGCCCAG AGCTGAAGGT CGCACAACCG CATGATATAG 181 GGTCGGCAAC GGCAAAAAAG CACGTGGCTC ACCGAAAAGC AAGATGTTTG CGATCTAACA 241 TCCAGGAACC TGGATACATC CATCATCACG CACGACCACT TTGATCTGCT GGTAAACTCG 301 TATTCGCCCT AAACCGAAGT GCGTGGTAAA TCTACACGTG GGCCCCTTTC GGTATACTGC 361 GTGTGTCTTC TCTAGGTGCA TTCTTTCCTT CCTCTAGTGT TGAATTGTTT GTGTTGGGAG 421 TCCGAGCTGT AACTACCTCT GAATCTCTGG AGAATGGTGG ACTAACGACT ACCGTGCACC 481 TGCATCATGT ATATAATAGT GATCCTGAGA AGGGGGGTTT GGAGCAATGT GGGACTTTGA 541 TGGTCATCAA ACAAAGAACG AAGACGCCTC YTTTGCAAAG YTTTGTTTCG GCTACGGTGA 601 AGAACTGGAT ACTTGTTGTG TCTTCTGTGT ATTTTTGTGG CAACAAGAGG CCAGAGACAA 661 TCTATTCAAA CACCAAGCTT GCTCTTTTGA GCTACAAGAA CCTGTGGGGT ATATATCTAG 721 TGGCCAGAAT GCCTAGGTCA CCTCTAAAGG TACCCTGCAG CTCGAGCTAG AGTTGTGAAG 781 TCGGTAATCC CGCTGTATAG TAATACGAGT CGCATCTAAA TACTCCGAAG CTGCTGCGAA 841 CCCGGAGAAT CGAGATGTGC TGGAAAGCTT CTAGCGAGCG GCTAAATTAG CATGAAAGGC 901 TATGAGAAAT TCTGGAGACG GCTTGTTGAA TCATGGCGTT CCATTCTTCG ACAAGCAAAG 961 COTTCCGTCG CAGTAGCAGG CACTCATTCC CGAAAAAACT CGGAGATTCC TAAGTAGCGA 1021 TGGAACCGGA ATAATATAAT AGGCAATACA TTGAGTTGCC TCGACGGTTG CAATGCAGGG LOBI GTACTGAGCT TGGACATAAC TGTTCCGTAC CCCACCTCTT CTCAACCTTT GGCGTTTCCC 1141 TGATTCAGCG TACCCGTACA AGTCGTAATC ACTATTAACC CAGACTGACC GGACGTGTTT 1201 TGCCCTTCAT TTGGAGAAAT AATGTCATTG CGATGTGTAA TTTGCCTGCT TGACCGACTG 1261 GGGCTGTTCG AAGCCCGAAT GTAGGATTGT TATCCGAACT CTGCTCGTAG AGGCATGTTG 1321 TGAATCTGTG TCGGGCAGGA CACGCCTCGA AGGTTCACGG CAAGGGAAAC CACCGATAGC 1381 AGTGTCTAGT AGCAACCTGT AAAGCCGCAA TGCAGCATCA CTGGAAAATA CAAACCAATG 1441 GCTAAAAGTA CATAAGTTAA TGCCTAAAGA AGTCATATAC CAGCGGCTAA TAATTGTACA 1501 ATCAAGTGGC TAAACGTACC GTAATTTGCC AACGCGTTTC TAGATTGCAG AAGCACGGCA

FIG.18A

SUBSTITUTE SHEET

1561 AAGCCCACTT ACCCACGTTT GTTTCTTCAC TCAGTCCAAT CTCAGCTGGT GATCCCCCAA
1621 TTGGGTCGCT TGTTTGTTCC GGTGAAGTGA AAGAAGACAG AGGTAAGAAT GTCTGACTCG
1681 GAGCGTTTTG CATACAACCA AGGGCAGTGA TGGAAGACAG TGAAATGTTG ACATTCAAGG
1741 AGTATTTAGC CAGGGATGCT TGAGTGTATC GTGTAAGGAG GTTTGTCTGC CGATACGACG
1801 AATACTGTAT AGTCACTTCT GATGAAGTGG TCCATATTGA AATGTAAGTC GGCACTGAAC
1861 AGGCAAAAGA TTGAGTTGAA ACTGCCTAAG ATCTCGGGCC CTCGGGCTTC GGCTTTGGGT
1921 GTACATGTTT GTGCTCCGGG CAAATGCAAA GTGTGGTAGG ATCGACACAC TGCTGCCTTT
1981 ACCAAGCAGC TGAGGGTATG TGATAGGCAA ATGTTCAGGG GCCACTGCAT GGTTTCGAAT
2041 AGAAAGAGAA GCTTAGCCAA GAACAATAGC CGATAAAGAT AGCCTCATTA AACGAAATGA
2101 GCTAGTAGGC AAAGTCAGCG AATGTGTATA TATAAAGGTT CGAGGTCCGT GCCTCCCTCA
2161 TGCTCTCCCC ATCTACTCAT CAACTCAGAT CCTCCAGGAG ACTTGTACAC CATCTTTTGA
2221 GGCACAGAAA CCCAATAGTCAACCGCGGAC TGCGCATQATGT

FIG.18A(Cont.)

42/47

10 50 30 50 60 1 CAATTETCAC GGTGAATGTA GGCCTTTTGT AGGGTAGGAA TTGTCACTCA AGCACCCCCA 61 ACCTCCATTA CGCCTCCCCC ATAGAGTTCC CAATCAGTGA GTCATGGCAC TGTTCTCAAA 121 TAGATTGGGG AGAAGTTGAC TTCCGCCCAG AGCTGAAGGT CGCACAACCG CATGATATAG 181 GGTCGGCAAC GGCAAAAAG CACGTGGCTC ACCGAAAAGC AAGATGTTTG CGATCTAACA 241 TCCAGGAACC TGGATACATC CATCATCACG CACGACCACT TTGATCTGCT GGTAAACTCG 301 TATTCGCCCT AAACCGAAGT GCGTGGTAAA TCTACACGTG GGCCCCTTTC GGTATACTGC 361 GTGTGTCTTC TCTAGGTGCA TTCTTTCCTT CCTCTAGTGT TGAATTGTTT GTGTTGGGAG 421 TCCGAGCTGT AACTACCTCT GAATCTCTGG AGAATGGTGG ACTAACGACT ACCGTGCACC 481 TGCATCATGT ATATAATAGT GATCCTGAGA AGGGGGGTTT GGAGCAATGT GGGACTTTGA 541 TGGTCATCAA ACAAAGAACG AAGACGCCTC TTTTGCAAAG TTTTGTTTCG GCTACGGTGA 601 AGAACTGGAT ACTTGTTGTG TCTTCTGTGT ATTTTTGTGG CAACAAGAGG CCAGAGACAA 661 TCTATTCAAA CACCAAGCTT GCTCTTTTGA GCTACAAGAA CCTTCTAAAT ATATATCTAG 721 TGGCCAGAAT GCCTAGGTCA CCTCTAAATG TGTAATTTGC CTGCTTGACC GATCTAAACT 781 GTTCGAAGCC CGAATGTAGG ATTGTTATCC GAACTCTGCT CGTAGAGGCA TGTTGTGAAT 841 CTGTGTCGGG CAGGACACGC CTCGAAGGTT CACGGCAAGG GAAACCACCG ATAGCAGTGT 901 CTAGTAGCAA CCTGTAAAGC CGCAATGCAG CATCACTGGA AAATACAAAC CAATGGCTAA 961 AAGTACATAA GTTAATGCCT AAAGAAGTCA TATACCAGCG GCTAATAATT GTACAATCAA 1021 GTGGCTAAAC GTACCGTAAT TTGCCAACGC GTTTCTAGAT TGCAGAAGCA CGGCAAAGCC 1081 CACTTACCCA CGTTTGTTTC TTCACTCAGT CCAATCTCAG CTGGTGATCC CCCAATTGGG 1141 TCGCTTGTTT GTTCCGGTGA AGTGAAAGAA GACAGAGGTA AGAATGTCTG ACTCGGAGCG 1201 TTTTGCATAC AACCAAGGGC AGTGATGGAA GACAGTGAAA TGTTGACATT CAAGGAGTAT 1261 TTAGCCAGGG ATGCTTGAGT GTATCGTGTA AGGAGGTTTG TCTGCCGATA CGACGAATAC

FIG.18B

1321 TGTATAGTCA CTTCTGATGA AGTGGTCCAT ATTGAAATGT AAGTCGGCAC TGAACAGGCA
1381 AAAGATTGAG TTGAAACTGC CTAAGATCTC GGGCCCTCGG GCTTCGGCTT TGGGTGTACA
1441 TGTTTGTGCT CCGGGCAAAT GCAAAGTGTG GTAGGATCGA CACACTGCTG CCTTTACCAA
1501 GCAGCTGAGG GTATGTGATA GGCAAATGTT CAGGGGCCAC TGCATGGTTT CGAATAGAAA
1561 GAGAAGCTTA GCCAAGAACA ATAGCCGATA AAGATAGCCT CATTAAACGA AATGAGCTAG
1621 TAGGCAAAGT CAGCGAATGT GTATATATAA AGGTTCGAGG TCCGTGCCTC CCTCATGCTC
1681 TCCCCATCTA CTCATCAACT CAGATCCTCC AGGAGACTTG TACACCATCT TTTGAGGCAC
1741 AGAAACCCAA TAGTCAACCG CGGACTGCGC ATQATG

FIG.18B(Cont.)

44/47

60 10 50 30 50 1 CAATTCTCAC GGTGAATGTA GGCCTTTTGT AGGGTAGGAA TTGTCACTCA AGCACCCCCA 61 ACCTCCATTA CGCCTCCCC ATAGAGTTCC CAATCAGTGA GTCATGGCAC TGTTCTCAAA 121 TAGATTGGGG AGAAGTTGAC TTCCGCCCAG AGCTGAAGGT CGCACAACCG CATGATATAG 181 GGTCGGCAAC GGCAAAAAAG CACGTGGCTC ACCGAAAAGC AAGATGTTTG CGATCTAACA 241 TCCAGGAACC TGGATACATC CATCATCACG CACGACCACT TTGATCTGCT GGTAAACTCG 301 TATTCGCCCT ANACCGAAGT GCGTGGTAAA TCTACACGTG GGCCCCTTTC GGTATACTGC 361 GTGTGTCTTC TCTAGGTGCA TTCTTTCCTT CCTCTAGTGT TGAATTGTTT GTGTTGGGAG 421 TCCGAGCTGT AACTACCTCT GAATCTCTGG AGAATGGTGG ACTAACGACT ACCGTGCACC 481 TGCATCATGT ATATAATAGT GATCCTGAGA AGGGGGGTTT GGAGCAATGT GGGACTTTGA 541 TGGTCATCAA ACAAAGAACG AAGACGCCTC TTTTGCAAAG TTTTGTTTCG GCTACGGTGA 601 AGAACTGGAT ACTTGTTGTG TCTTCTGTGT ATTTTTGTGG CAACAAGAGG CCAGAGACAA 661 TCTATTCAAA CACCAAGCTT GCTCTTTTGA GCTACAAGAA CCTTCTAAAT ATATATCTAG 721 TGGCCAGAAT GCCTAGGTCA CCTCTAAATG TGTAATTTGC CTGCTTGACC GATCTAAACT 781 GTTCGAAGCC CGAATGTAGG ATTGTTATCC GAACTCTGCT CGTAGAGGCA TGTTGTGAAT 841 CTGTGTCGGG CAGGACACGC CTCGAAGGTT CACGGCAAGG GAAACCACCG ATAGCAGTGT 901 CTAGTAGCAA CCTGTAAAGC CGCAATGCAG CATCACTGGA AAATACAAAC CAATGGCTAA 961 AAGTACATAA GTTAATGCCT AAAGAAGTCA TATACCAGCG GCTAATAATT GTACAATCAA 1021 GTGGCTAAAC GTACCGTAAT TTGCCAACGC GTTTCTAGAT TGCAGAAGCA CGGCAAAGCC 1081 CACTTACCCA CGTTTGTTTC TTCACTCAGT CCAATCTCAG CTGGTGATCC CCCAATTGGG 1141 TCGCTTGTTT GTTCCGGTGA AGTGAAAGAA GACAGAGGTA AGAATGTCTG ACTCGGAGCG 1201 TTTTGCATAC AACCAAGGGC AGTGATGGAA GACAGTGAAA TGTTGACATT CAAGGAGTAT 1261 TTAGCCAGGG ATGCTTGAGT GTATCGTGTA AGGAGGTTTG TCTGCCGATA CGACGAATAC

FIG.18C

1321 TGTATAGTCA CTTCTGATGA AGTGGTCCAT ATTGAAATGT AAGTCGGCAC TGAACAGGCA
1381 AAAGATTGAG TTGAAACTGC CTAAGATCTC GGGCCCTCGG GCTTCGGCTT TGGGTGTACA
1441 TGTTTGTGCT CCGGGCAAAT GCAAAGTGTG GTAGGATCGA CACACTGCTG CCTTTACCAA
1501 GCAGCTGAGG GTATGTGATA GGCAAATGTT CAGGGGCCAC TGCATGGTTT CGAATAGAAA
1561 GAGAAGCTTA GCCAAGAACA ATAGCCGATA AAGATAGCCT CATTAAACGA AATGAGCTAG
1621 TAGGCAAAGT CAGCGAATGT GTATATATAA AGGTTCGAGG TCCGTGCCTC CCTCATGCTC
1681 TCCCCATCTA CTCATCAACT CAGATCCTCC AGGAGACTTG TACACCATCT TTTGAGGCAC
1741 AGAAACCCAA TAGTCAACCG CGGACTGCGC ATQATG

FIG.18C(Cont.)

WO 94/04673 PCT/FI93/00330

46/47

4

FIG.19

47/47

INTERNATIONAL SEARCH REPORT

International application No. PCT/FI 93/00330

A. CLASSIFICATION OF SUBJECT MATTER

IPC5: C12N 15/11, C12N 15/56, C07K 15/04, C12N 9/42 // (C 12 N 15/11,

C 12 R 1:885)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC5: C12N, C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MEDLINE, BIOSIS, CA, WPI, CLAIMS

Further documents are listed in the continuation of Box C.

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BIOTECHNOLOGY, Volume 7, June 1989, A. Harkki et al, "A novel fungal expression system: secretion of active calf chymosin from the filamentous fungsu trichoderma reesei", page 596 - page 603, see page 596, column 1, line 22 - column 2, line 31, page 599, column 1, lines 44-49 and the whole document	1-40
X	EP, A1, 0137280 (CETUS CORPORATION), 17 April 1985 (17.04.85), see page 5, lines 9-24, table 1, page 30-44 and the whole document	1-40

* "A"	Special categories of cited documents: document defining the general state of the art which is not considered	date and not in (sublished after the international filing date or priorit conflict with the application but cited to understand theory underlying the invention		
"E"	to be of particular relevance		nicular relevance: the claimed invention cannot be		
L.	eriter document but published on or after the international filing date document which may throw doubts on priority ctaim(s) or which is cited to establish the publication date of another citation or other	considered novel step when the do	l or cannot be considered to involve an inventive ocument is taken alone		
-0-	special reason (as specified) document referring to an oral disclosure, use, exhibition or other	considered to in	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination		
"P"	means document published prior to the international filing date but later than the priority date claimed	being obvious to	a person skilled in the art er of the same patent family		
Dat	e of the actual completion of the international search	ate of mailing of t	he international search report		
12	January 1994	17 -01	- 1994		
Name and mailing address of the ISA/		Authorized officer			
	edish Patent Office c 5055, S-102 42 STOCKHOLM	onny Brun			
CHAR	1000, 0-102 42 010014 10LW	otitia et.ett	46 8 782 25 00		

χ See patent family annex.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI 93/00330

		1/11 93/003	
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	passages F	Relevant to claim No
x	Dialog Information, Services, file 357, Dialog acc.no. 016146, DBA acc.no. 83-10126, Teeri T. et al: "The molecular cloning of the major cellulase gene from Trichoderma reesei - cellobiohydrolase I gene isolation cloning characterization", Bio/Technology (1, 8, 696) 1983	and	1-6
A	US, A, 5108918 (MARTIEN A.M. GROENEN ET AL), 28 April 1992 (28.04.92), see column 1, line column 4, lines 13-22, column 11, lines 46-6 the whole document	s 1-68, l and	14-20
}			4
		İ	•
Porties	A/210 (continuation of second sheet) (July 1992)		

International application No.

PCT/FI 93/00330

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This int	ernational search report has not been established in respect of certain claims under Article 17(2X2) for the following reasons:
1. X	Claims Nos.: 41 because they relate to subject master not required to be searched by this Authority, namely:
	The claim is not clear and concise and consequently it does not permit a meaningful search. (See art. 6).
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(2).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
1	next sheet!
1. X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search feer were timely paid by the applicant, this international search report covers only those claims for which feer were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Rema	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI 93/00330

- 1. Claims 1-6: A method for cloning a promoter that is active in a desired environmental condition.
- 2. Claims 14-20 completely, claims 7-13 and 29-40 partially: The tef 1 promoter of trichoderma reesei and variants thereof as well as vectors and host cells comprising the promoter.
- 3. Claims 21-28 completely, claims 7, 13 and 29-40 partially: The cbhl promoter of trichoderma reesei and variants thereof as well as vectors and host cells comprising the promoter.

The special technical feature of group 1 relates to a method for cloning a promoter. The method is not restricted to certain organisms or genes.

The special technical features of group 2 and 3 relate to some promoters from Trichoderma.

Methods for finding promoter sequences are well-known in the art. Hence, group 1 and the groups 2 and 3 are not so linked as to form a single inventive concept.

Trichoderma promoter sequences capable of expression of an operably-linked coding sequence in a fungal host grown on glucose are known in the art, for instance by EP-A1-137 280 or Teeri et al, Bio/technology, vol. 1, page 696-699. Consequently, the common feature (trichoderma promoter sequences) is not a special technical feature within the meaning of PCT, Rule 13.2 second sentence, since it makes no contribution over the prior art.

Therefor, there is no other feature common to claims 7-40. Since there exists no other common feature which can be considered as a special technical feature within the meaning of PCT rule 13.2, no technical relationship within the meaning of PCT rule 13 between the different inventions can be seen.

Consequently it appears that, a posteriori claims 7-40 do not satisfy the requirement of unity of invention.

INTERNATIONAL SEARCH REPORT Information on patent family members

International application No. 27/11/93 PCT/FI 93/00330

Patent document cited in search report	Publication date	Patent family member(s)		Publication date		
EP-A1- 0137280	A1- 0137280 17/04/85		AU-B- 589 AU-A- 3253 DE-A- 3485		0137280 589112 3253084 3485558 60149387	05/10/89 07/03/85 16/04/92 06/08/85
5-A- 5108918	28/04/92	AU-B- AU-B- AU-A- AU-A- EP-A- JP-A-	631371 631806 3956889 3956989 0354624 2167078	26/11/92 10/12/92 15/02/90 15/02/90 14/02/90 27/06/90		

Form PCT/ISA/210 (patent family annex) (July 1992)

