MIDTERM 2 FORMULA SHEET

Miscellaneous Formulae

Please note- it is up to you to understand what each formula means, and it is also up to you to know which formula you need to use in a given situation. We (the Course Staff) will not be able to answer any questions about these formulas during the Exam.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad s_{X}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad s_{X} = \sqrt{s_{X}^{2}}$$

$$IQR = Q_{3} - Q_{1} \qquad range(X) = max\{X\} - min\{X\}$$

$$0 \le \mathbb{P}(A) \le 1 \qquad \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\mathbb{P}(E \mid F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} \text{ provided that } \mathbb{P}(F) \ne 0$$

$$\mathbb{P}(E \mid F) = \frac{\mathbb{P}(F \mid E) \cdot \mathbb{P}(E)}{\mathbb{P}(F)} \text{ provided that } \mathbb{P}(E) \ne 0 \text{ and } \mathbb{P}(F) \ne 0$$

$$E \perp F \text{ if any of: } \mathbb{P}(E \mid F) = \mathbb{P}(E); \quad \mathbb{P}(F \mid E) = \mathbb{P}(F); \quad \mathbb{P}(E \cap F) = \mathbb{P}(E) \cdot \mathbb{P}(F)$$

$$0! = 1 \qquad \mathbb{P}(E) = \mathbb{P}(E \cap F) + \mathbb{P}(E \cap F^{\mathbb{C}})$$

$$n! = n \times (n-1) \times \cdots \times 2 \times 1 \qquad (n)_{k} = \frac{n!}{(n-k)!} \qquad (n)_{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\mathbb{P}(X = k) \ge 0 \qquad \sum_{\text{all } k} \mathbb{P}(X = k) = 1 \qquad \text{SD}(X) = \sqrt{\text{Var}(X)}$$

$$\text{Var}(X) = \sum_{\text{all } k} (k - \mathbb{E}[X])^{2} \cdot \mathbb{P}(X = k) = \left(\sum_{\text{all } k} k^{2} \cdot \mathbb{P}(X = k)\right) - (\mathbb{E}[X])^{2}$$

Binomial Distribution: $X \sim Bin(n, p)$

$$S_X = \{0, 1, 2, \dots, n\}$$
 $\mathbb{E}[X] = np$ $\operatorname{Var}(X) = np(1-p)$ $\mathbb{P}(X = k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \text{ if } k \in S_X \text{ and } 0 \text{ otherwise}$

Uniform: $X \sim \text{Unif}(a, b)$

$$S_X = [a, b]$$

$$\mathbb{E}[X] = \frac{a+b}{2} \qquad \text{Var}(X) = \frac{(b-a)^2}{12}$$
 $f_X(X) = \frac{1}{b-a}$ if $x \in S_X$ and 0 otherwise

Normal: $X \sim \mathcal{N}(\mu, \sigma)$)

$$S_X = \mathbb{R} = (-\infty, \infty) \qquad \mathbb{E}[X] = \mu \qquad \text{Var}(X) = \sigma^2$$

$$f_X(X) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \qquad Z = \left(\frac{X-\mu}{\sigma}\right) \sim \mathcal{N}(0, 1)$$

Central Limit Theorem for Proportions

Given a population with proportion p, define \widehat{P} to be the sample proportion. Then

$$\widehat{P} \sim \mathcal{N}\left(p, \sqrt{rac{p(1-p)}{n}}
ight)$$

provided: **(1)** $np \ge 10$ and **(2)** $n(1-p) \ge 0$ —**OR**— **(1)** $n\widehat{p} \ge 10$ and **(2)** $n(1-\widehat{p}) \ge 0$

Flowchart for the Sampling Distribution of \overline{X}

Assorted Coding Results

- .ppf(q, *args): point-percent function. Description of arguments:
 - q: array_like; lower tail probability
 - *args: parameters of the distribution
- \bullet .cdf(x, *args) : cumulative distribution function. Description of arguments:
 - x: quantiles
 - *args: parameters of the distribution
- .pdf (x, *args): probability density function. Description of arguments:
 - x: array_like; quantiles
 - *args: parameter(s) of the distribution

$\begin{array}{c} \textbf{STANDARD NORMAL TABLE} \\ \textbf{Negative } z\text{-values} \end{array}$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

STANDARD NORMAL TABLE

Positive z-values

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998

$t-{ m TABLE}$

one-tailed	0.100	0.050	0.025	0.010	0.005
two-tailed	0.200	0.100	0.050	0.020	0.010
$\mathrm{d}\mathrm{f}$ 1	3.08	6.31	12.71	31.82	63.66
2	1.89	2.92	4.30	6.96	9.92
3	1.64	2.35	3.18	4.54	5.84
4	1.53	2.13	2.78	3.75	4.60
5	1.48	2.02	2.57	3.36	4.03
6	1.44	1.94	2.45	3.14	3.71
7	1.41	1.89	2.36	3.00	3.50
8	1.40	1.86	2.31	2.90	3.36
9	1.38	1.83	2.26	2.82	3.25
10	1.37	1.81	2.23	2.76	3.17
11	1.36	1.80	2.20	2.72	3.11
12	1.36	1.78	2.18	2.68	3.05
13	1.35	1.77	2.16	2.65	3.01
14	1.35	1.76	2.14	2.62	2.98
15	1.34	1.75	2.13	2.60	2.95
16	1.34	1.75	2.12	2.58	2.92
17	1.33	1.74	2.11	2.57	2.90
18	1.33	1.73	2.10	2.55	2.88
19	1.33	1.73	2.09	2.54	2.86
20	1.33	1.72	2.09	2.53	2.85
21	1.32	1.72	2.08	2.52	2.83
22	1.32	1.72	2.07	2.51	2.82
23	1.32	1.71	2.07	2.50	2.81
24	1.32	1.71	2.06	2.49	2.80
25	1.32	1.71	2.06	2.49	2.79
26	1.31	1.71	2.06	2.48	2.78
27	1.31	1.70	2.05	2.47	2.77
28	1.31	1.70	2.05	2.47	2.76
29	1.31	1.70	2.05	2.46	2.76
30	1.31	1.70	2.04	2.46	2.75

one-tailed	l	0.050			
two-tailed	0.200	0.100	0.050	0.020	0.010
df 31	1.31	1.70	2.04	2.45	2.74
32	1.31	1.69	2.04	2.45	2.74
33	1.31	1.69	2.03	2.44	2.73
34	1.31	1.69	2.03	2.44	2.73
35	1.31	1.69	2.03	2.44	2.72
36	1.31	1.69	2.03	2.43	2.72
37	1.30	1.69	2.03	2.43	2.72
38	1.30	1.69	2.02	2.43	2.71
39	1.30	1.68	2.02	2.43	2.71
40	1.30	1.68	2.02	2.42	2.70
41	1.30	1.68	2.02	2.42	2.70
42	1.30	1.68	2.02	2.42	2.70
43	1.30	1.68	2.02	2.42	2.70
44	1.30	1.68	2.02	2.41	2.69
45	1.30	1.68	2.01	2.41	2.69
46	1.30	1.68	2.01	2.41	2.69
47	1.30	1.68	2.01	2.41	2.68
48	1.30	1.68	2.01	2.41	2.68
49	1.30	1.68	2.01	2.40	2.68
50	1.30	1.68	2.01	2.40	2.68
60	1.30	1.67	2.00	2.39	2.66
70	1.29	1.67	1.99	2.38	2.65
80	1.29	1.66	1.99	2.37	2.64
90	1.29	1.66	1.99	2.37	2.63
100	1.29	1.66	1.98	2.36	2.63
150	1.29	1.66	1.98	2.35	2.61
200	1.29	1.65	1.97	2.35	2.60
300	1.28	1.65	1.97	2.34	2.59
400	1.28	1.65	1.97	2.34	2.59
∞	1.28	1.645	1.96	2.33	2.58

You may use this page for scratch work, if necessary. Keep in mind that NOTHING on this page will be graded.

You may use this page for scratch work, if necessary. Keep in mind that NOTHING on this page will be graded.