/و	9 L/	9/	9/	/۱۱	9L/	/50	Total
9/							Of .JoA
	9/						Act. 9
				٧2			8 .foA
					/و	٧2	₹.JoA
	٧2						9 .fɔA
						٧2	č .foA
			9/	9/			₽.JɔA
	٧2	٧2					&ct. 3
					9/	٧2	Act. 2
					/و	9/	ſ.JɔA
	əjnpow	.məlqmi	ΙЧΑ	.məlqmi	écrire	analyse	
Dict.	Créer	Écrire	Utiliser	Interf.	Réc.	.эèЯ	

Une grenouille décide de monter un escalier. Quand elle saute, elle monte de 1 ou de 2 marches.

- Détermine le nombre de chemins différents possibles si l'escalier est composé d'une seule marche.
- 2. Même question avec 2 marches, 3 marches et 4 marches.
- 3. **Proposer** une formulation récursive d'une fonction ${\it ch}_p(m_r)$ calculant le nombre de chemins possibles en fonction du nombre de
- marches restantes (m_r) . 4. **Proposer** une implémentation en Python d'une telle fonction récursive.

6 àTIVITS 6

En quoi consiste la factorisation de code? Donne en trois avantages.

Donne les définitions récursives et **propose** les implémentations en Python de la fonction mathématique somme(n) qui associe à n la somme des n premiers nombres entiers et de la fonction puissance(x,n) qui aux nombres entiers x et n associe le nombre x^n .

On dit que dans un module on distingue implémentation et interface. **Donne** une définition/explication de ces deux termes.

Donne cinq exemples d'exceptions en Python.

Indique à quoi servent les mots clés try et except et donne un exemple d'utilisation et précise ce que fait ton code.

Indique l'intérêt d'une table de hachage et **précise** en quelques lignes le fonctionnement général d'une table de hachage.

|?

[]

John McCarthy a inventé la fonction $f_{91}(n)$ définie par :

$$f_{91}(n) = \begin{cases} n - 10 & \text{si } n > 100, \\ f_{91}(f_{91}(n+11)) & \text{si } n \le 100. \end{cases}$$

- 1. **Calcule** $f_{91}(101)$, $f_{91}(100)$, $f_{91}(98)$ et $f_{91}(91)$.
- 2. **Propose** une implémentation de cette fonction.

ACTIVITÉ 3

Voici l'interface minimale pour une structure de tableau redimension-nable ${\tt tab_redim}$:

fonction	description			
cree()	crée et renvoie un tableau vide			
<pre>lit(tr,i)</pre>	(équivalent à []) renvoie l'élément de tr à l'indice			
	i (équivalent à tr[i])			
ecrit(tr,i,x)	place la valeur ${\mathbf x}$ dans la case			
	d'indice i du tableau tr			
	(équivalent à tr[i] = x)			
ajoute(tr,x)	ajoute le nouvel élément ${f x}$ au			
	tableau tr, après ses éléments			
	actuels (équivalent à			
	tr.append (x))			

On décide de représenter un tableau redimensionnable tr de n éléments par un dictionnaire contenant (1) d'une part le nombre 'n' appelé taille et (2) d'autre part un tableau 't' de longueur supérieure ou égale à n appelée $\operatorname{capacit\'e}$.

Les n éléments sont stockés dans les cases d'indices 0 à n-1. Les autres cases de ${\tt t}$ contiennent None.

Propose une implémentation du module tab_redim.

ACTIVITÉ 4

Dans ton programme projet.py, tu souhaites utiliser les fonctions affiche et est_entier de ton module personnel. Tout le code de ton module personnel est dans un fichier nommé perso.py qui est situé dans le même répertoire que ton programme.

- Indique la/les instructions permettant de te donner accès aux deux fonctions.
- 2. Tu souhaites initialiser la variable tirage avec un nombre aléatoire pris entre 100 et 1000 inclus. **Indique** la/les instructions permettant de réaliser cela.
- 3. Tu souhaites notifier l'utilisation d'une erreur de nom de variable inexistante et affichant le texte "Désolé, la variable a été effacée". **Indique** la/les instructions permettant de réaliser cela.

Indique les constituants d'une fonction récursive.