中国科学技术大学

2012—2013 学年第一学期考试试卷

考试科目: <u>随机过程</u>	得 分:
学生所在系:	学 号:
(2013年1月22日	,开卷)
一、(20分)设有随机过程	
$X(t) = \xi \cos t + \eta \sin t,$	$(0 < t < \pi)$
其中 ξ 与 η 独立,且都服从正态分布 $N(0,\sigma^2)$,试	求:
(1) $\{X(t), \ 0 < t < \pi\}$ 的均值函数 $\mu_X(t)$ 与协	b 方差函数 $r_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
(2) $\{X(t), 0 < t < \pi\}$ 的一维与二维分布密度	 支。
二、 (20 分) 公路某收费站红、黄、蓝三种颜色 过程,且相互独立,试求:	色的汽车到达数分别为速率3,4,5的泊松
(1) 第一辆车(红、黄或蓝色)的平均到达时	寸间及第一辆红车的平均到达时间;
(2) 红车首先到达的概率;	
(3) 在相继的两辆红车之间恰有 k 辆车到达的	勺概率 (<i>k</i> = 0, 1, 2, · · · · ·)。
三、 (20 分) 有关某种商品的销售状况共有 24 1, 1, 0, 1, 0, 0, 1, 1, 1, 0 1, 1, 0, 0, 1, 1, 0, 1, 0, 1	0, 1, 0,
假设该商品销售状况满足齐次马氏链,	, , ,
(1) 试确定该马氏链的一步转移概率矩阵 P	(用转移频率来近似转移概率);
(2) 若现在是畅销,试确定其后第四季度的银	消售状况;
(3) 若影响销售的所有因素不变,试分析长期	明以后销售状况的分布。

2012—2013 学年, 第一学期, 第1页(共2页)

四、(18分) 设 $\{X_n, n \ge 0\}$ 为区间[0, 3]上的随机游动,其一步转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1, & 0, & 0, & 0 \\ 1 & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, & 0 \\ 0, & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3} \\ 0, & 0, & 1, & 0 \end{bmatrix}$$

试求质点由状态 k 出发而被状态 0 吸收的概率 p_k 及吸收的平均时间 v_k (k=1,2,3)。

五、(22 分)设 $\{X_n, n \ge 0\}$ 为独立同分布的随机序列,且 $E(X_0) = 0$, $Var(X_0) = \sigma^2$ 。 又设 $\{N(t), t \ge 0\}$ 为强度 λ 的泊松过程,且与 $\{X_n, n \ge 0\}$ 独立。记 $Y(t) = X_{N(t)}$, $(t \ge 0)$,

- (1) 证明{Y(t), t ≥ 0} 为平稳过程;
- (2) 试求 $\{Y(t), t \ge 0\}$ 的功率谱密度函数。
- (3) $\{Y(t), t \ge 0\}$ 的均值遍历性是否成立? 为什么?

(完)