

Visualising Smart
Meter data by
Manifold Learning
using Dynamic Time
Warping

Presented by: Maria Lim

Introduction

- Data high-dimensional multivariate & vast
- Explore & visualise dimensionality reduction
- ► Find low-dimensional manifolds of the data hidden in their high-dimensional space
- Detect households with anomalous electricity demand
- Incorporate dynamic time warping

Outline

- Dynamic Time Warping (DTW)
- Dimensionality Reduction
- Data used and preparation
- ► Results
- **Conclusion**

Dynamic Time Warping (DTW)

- ► Aim: measure similarity by finding the optimal match yields a minimal cost (the distance) under certain restrictions:
- Let two time series, $q = [q_1, q_2, q_3, ..., q_N]$ and $r = [r_1, r_2, r_3, ..., r_M]$
- ▶ 1) Monotonicity condition. Eg: $q_3 \rightarrow r_3$, $q_4 \rightarrow r_2$ or r_1
- ▶ 2) Continuity condition
- ▶ 3) Boundary condition. Eg: $q_1 \rightarrow r_1$ and $q_N \rightarrow r_M$

DTW Algorithm

1. Initialisation:

for
$$i = 1 \text{ to } N \text{: } D_{i,0} = \infty$$

for $j = 1 \text{ to } M \text{: } D_{0,j} = \infty$
 $D_{0,0} = 0$

2. Calculate cost matrix:

for
$$i = 1 \text{ to } N$$
:
for $j = 1 \text{ to } M$:

$$D_{i,j} = d(q_i, r_j) + min \begin{cases} D_{i-1,j-1} \ (match) \\ D_{i-1,j} \ (insertion) \\ D_{i,j-1} \ (deletion) \end{cases}$$

- 3. Warping path = Path traced back from $D_{N,M}$ to $D_{0,0}$ with minimum cost
- 4. Distance = $D_{N,M}$

Comparison with Euclidean distance

Dimensionality reduction

- Observations time series lying on metric space with distance between them - DTW
- Visualise low dimension representation using:
- ▶ 1) classical Multidimensional scaling (MDS)
- > 2) Isometric feature mapping (Isomap)
- > 3) Locally Linear Embedding (LLE)

Classical MDS

- Input: $x_i \in \mathbb{R}^p$ for i = 1,2,3,...,n
 - Distance between x_i and $x_j = \delta_{ij}$
- Output: $y_i \in \mathbb{R}^m$ for i = 1, 2, 3, ..., n
 - ► Distance between y_i and $y_j = d_{ij}$
- Soal: d_{ij} matches δ_{ij}

Classical MDS (Euclidean)

Aim: minimize strain function $\sum_{i=1}^{n-1} \sum_{j=i+1}^n (\delta_{ij}^2 - d_{ij}^2)$

- 1. Set up an $n \times n$ matrix of squared interpoint distances $\Delta^{(2)} = \{\delta_{ij}^{\ 2}\}$
- 2. Apply double centering:

$$B = H' \Delta^{(2)} H$$

where centring matrix $H = I - \frac{1}{n}J_n$,

I is an $n \times n$ identity matrix, and

 J_n is an $n \times n$ matrix of all ones

3. Apply eigenvalue decomposition:

$$B = U \Lambda U'$$

4. Output coordinates are given by:

$$Y = U_m \Lambda_m^{1/2}$$

where U_m is the matrix of m eigenvectors and

 Λ_m is the diagonal matrix of m eigenvalues of ${f B}$

Classical MDS (non-Euclidean)

- ightharpoonup Aim: minimize $tr\{(B B^*)\}$
- Where B* = doubly-centred squared (Euclidean) distance matrix in output space
- Consider only eigenvectors corresponding to non-negative eigenvalues

Isomap

- non-linear extension to classical MDS
- Instead of interpoint distances (dashed line), consider geodesic distances (solid line) between input points

Isomap algorithm

- ▶ 1) Construct neighbourhood graph G
 - lacktriangle Calculate Euclidean distances between points, δ_{ij}
 - Connect each point to its K-nearest neighbours
 - ightharpoonup Edge weight = δ_{ij}
- ▶ 2) Find shortest path on G, between every pair of points, $d_G(i,j)$ and estimate geodesic distance $D_G = \{d_G(i,j)\}$
 - ▶ Use algorithms like Dijkstra's method, Floyd- Warshall algorithm
- ▶ 3) Construct embedding using MDS
 - ightharpoonup Use D_G as input

Advantages

- exploits a dataset's geometry
- global

Disadvantages

- High complexity
- Unclear to choose K

Pros and cons of Isomap

LLE

- Preserve local properties
- Suited non-convex manifolds

LLE algorithm

- ▶ 1) Nearest neighbour search
 - Construct ε or K-neighbourhood graph G to find nearest neighbours (nn) of each input point x_i
- 2) Constrained least-squares fits
 - Reconstruct x_i as linear combination of its nn x_i , minimise

$$\left\|x_i - \sum_{j \in \mathcal{U}_k(i)} w_{ij} x_j\right\|^2$$

- 3) Eigenproblem
 - Fix weight w_{ij} , find output point y_i that minimise

$$\left\| y_i - \sum_{j \in \mathcal{U}_k(i)} w_{ij} y_j \right\|^2$$

Pros and cons of LLE

Advantage

 Complexity - sparsity of weight matrix

Disadvantage

Local based

Quality measure: Trustworthiness

Penalise error: observations close in output space, but not close in the input space

$$T(K) = 1 - \frac{2}{G_K} \sum_{i=1}^n \sum_{\substack{j \in V_k(i) \\ j \notin \mathcal{U}_k(i)}} (\rho_{ij} - K)$$

The Dataset

- Irish smart meter dataset
 - over 5,000 homes and businesses
 - behavioral trial conducted by Commission for Energy Regulation (CER)
 - ► Between 14 July 2009 and 31 December 2010
 - ► Half-hourly interval (denote as period) electricity usage records: one day has 48 periods

Electric demand examples

Preparation of data, input X

- Matrix n x t
- n = number of observations, could be a day, a period of week, a household etc
- t = time of demand, could be a half-hour period, a day, a week, or a month

Results

Daily usage as single observation for ID 1539

Single household: Single observation as a daily usage

n = number of days t = demand in a day Input data: $X \in \mathbb{R}^{534 \times 48}$

-10

Dimensionality	Trustworthiness
reduction	for DTW
MDS	0.885
Isomap	0.868
LLE	0.839

Half-hourly period of week as single observation for ID 1003

Single household: Single observation as a period of week

n = one period in a week t = week of observation Input data: $X \in \mathbb{R}^{336 \times 74}$

20

Dimensionality	Trustworthiness
reduction	for DTW
MDS	0.883
Isomap	0.884
LLE	0.747

Multiple households: Christmas day electricity consumptions

- n = number of households
- t = demand of Christmas day
- ▶ Input data: $X \in \mathbb{R}^{556 \times 48}$
- Local Outlier Factor (LOF): density-based outlier detection method - measures local deviation of the density - with respect to neighbours

Dimensionality reduction	MDS	Isomap	LLE
Trustworthiness	0.911	0.892	0.641

Standardised demand plots for different IDs

Conclusions

- DTW distances represent better similarity usage pattern
- Topology of manifolds well-preserved in MDS and Isomap, but not LLE
- successfully identify both typical and anomalous households
- Future work: apply other manifold learning algorithms; explore application of bounding techniques in DTW to efficiently handle large data (when comparing multiple households)

Thank you