

SDS 384 11: Theoretical Statistics

Lecture 7a: Efron Stein inequality

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

Efron Stein inequality

- Consider n independent random variables in some metric space \mathcal{X} .
- Consider a function $g: \mathcal{X}^n \to \mathbb{R}$
- Let $Z := g(X_1, ..., X_n)$
- We are interested in computing $var(g(X_1,...,X_n))$
- Define $E_i(Z) = E[Z|X_{1:i-1}, X_{i+1:n}]$

An upper bound

Theorem

$$var(Z) \leq \sum_{i=1}^{n} E\left[Z - E_{i}[Z]\right]^{2}$$

Proof.

 \bullet For two arbitrary bounded random variables $X,\,Y,$ we have:

$$E[XY] = E[E[XY|Y]] = E[YE[X|Y]]$$

- Let V := Z E[Z]
- Let $V_i := E[Z|X_{1:i}] E[Z|X_{1:i-1}]$
- Clearly $V = \sum_{i} V_{i}$

Proof continued

$$\operatorname{var}(Z) = E \left[\sum_{i} V_{i} \right]^{2}$$

$$= \sum_{i} E[V_{i}^{2}] + 2 \sum_{i \leq i} E[V_{i}V_{j}] = \sum_{i} E[V_{i}^{2}]$$

$$(2)$$

• Why is the last step true? For i > j

$$E[V_i V_j] = E[E[V_i V_j | X_1, \dots, X_j]]$$

= $E[V_j E[V_i | X_1, \dots, X_j]] = 0$

Proof cont.

• Note that for three independent random variables X, Y, Z

$$E[g(X, Y, Z)|X] = E[[g(X, Y, Z)|X, Z]|X, Y]$$

$$LHS = \int_{y,z} g(x,y,z) f(y,z|x) dy dz = \int_{z} \left(\int_{y} g(x,y,z) f(y|x,z) dy \right) f(z|x) dz$$

$$= \int_{z} E[g(X,Y,Z)|X,Z] f(z|x) dz$$

$$\stackrel{independence}{=} \int_{z} E[g(X,Y,Z)|X,Z] f(z|x,y) dz$$

$$= E[E[g(X,Y,Z)|X,Z]|X,Y]$$

4

Proof cont.

•

$$\begin{split} V_i^2 &= (E[Z|X_{1:i}] - E[Z|X_{1:i-1}])^2 \\ &= (E[Z|X_{1:i}] - E[Z|X_{1:i-1}])^2 \\ &= (E[E[Z|X_{1:n}]|X_{1:i}] - E[E[Z|X_{1:i-1}, X_{i+1:n}]|X_{1:i}])^2 \\ &= (E[E[Z|X_{1:n}] - E[Z|X_{1:i-1}, X_{i+1:n}]|X_{1:i}])^2 \\ &= (E[Z - E_iZ|X_{1:i}])^2 \\ &\leq E[(Z - E_iZ)^2|X_{1:i}] \\ E[V_i^2] &\leq E[(Z - E_iZ)^2] \end{split}$$

The Efron Stein inequality

Theorem

Let $X_1', \ldots X_n'$ denote an independent copy of X_1, \ldots, X_n . Let $Z_i' = g(X_{1:i-1}, X_i', X_{i+1:n})$. We have:

$$var(Z) \leq \frac{1}{2} \sum_{i} E[(Z - Z_i')^2].$$

Proof.

- If X, Y are iid, $var(X) = \frac{E[X Y]^2}{2}$
- Conditioned on $X_{1:i-1}, X_{i:n}, Z$ and Z'_i are independent and so

$$E_i[Z - E_i[Z]]^2 = \frac{E_i[Z - Z_i']^2}{2}$$

$$var(Z) \le \sum_{i=1}^{n} E[Z - E_i[Z]]^2 = \frac{E[E_i[Z - Z_i']^2]}{2}$$

Remarks

- For $g(X_1, ..., X_n) = \sum_i X_i$ we have an equality.
- So in some sense, sums of independent random variables are the least concentrated functions
- Consider a function with the Bounded Difference property, i.e.

$$\sup_{x_{1:n},x_i' \in \mathcal{X}} |g(x_1,\ldots,x_n) - g(x_{1:i-1}x_i'x_{i+1:n})| \le c_i$$

• We have:

$$\operatorname{var}(g(X)) \leq \frac{1}{2} \sum_{i} c_{i}^{2}$$

Example: longest common subsequence

Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be two sequences of coin flips. Z is the length of the longest common subsequence.

$$Z = \max\{k : X_{i_1} = Y_{j_1}, \dots, X_{i_k} = Y_{j_k}\}$$

where $1 \le i_1 < i_2 ...$ and $1 \le j_1 < j_2 ...$

- It is well known that $E[Z]/n \rightarrow \mu$ where $\mu \in [0.757, 0.837]$.
- If you change one bit of X, it can change Z by at most one, so,

$$var(Z) \leq n/2$$

• So Z concentrates around its mean.

Uniform deviation

For X_1, \ldots, X_n iid random variables, let $\hat{P}_n(A) = \frac{1}{n} \mathbb{1}(X_i \in A)$ and $P_n(A) = P(X_i \in A)$. We are interested in te quantity $Z := \sup_A |\hat{P}_n(A) - P_n(A)|$

- If we change one X_i , Z changes by 1/n at most.
- So $var(Z) \le \frac{1}{2n}$ by the Efron Stein inequality.
- Can we do better?

Uniform deviation

For X_1, \ldots, X_n iid random variables, let

$$Z = \sup_{f \in \mathcal{F}} \sum_{j} f(X_{j}).$$

For simplicity, assume $Ef[X_i] = 0$. We will show that the E/S inequality gives a much tighter upper bound that the one we just derived.

- $var(Z) \le \frac{1}{2} \sum_{i} E[(Z Z_{i}')^{2}]$
- Say f* achieves the supremum for Z and f* achieves the supremum for Zi

$$f_*(X_i) - f_*(X_i') \le Z - Z_i \le f^*(X_i) - f^*(X_i')$$

$$(Z - Z_i)^2 \le \max((f_*(X_i) - f_*(X_i'))^2, (f^*(X_i) - f^*(X_i'))^2)$$

$$\le \sup_{f \in \mathcal{F}} (f(X_i) - f(X_i'))^2$$

Uniform deviation

$$\operatorname{var}(Z) \leq \frac{1}{2} \sum_{i} E \left[\sup_{f \in \mathcal{F}} (f(X_{i}) - f(X_{i}'))^{2} \right]$$

$$\leq \sum_{i} E \left[\sup_{f \in \mathcal{F}} (f(X_{i})^{2} + f(X_{i}')^{2}) \right]$$

$$\leq 2 \sum_{i} E \sup_{f \in \mathcal{F}} f(X_{i})^{2}$$

- (i) uses $|2ab| \le a^2 + b^2$
- If $f(X_i) \in [-1,1]$ we get $var(Z) \leq 2n$
- But if the maximum variance of $f(X_i)$ is small we have a significant improvement.

Minimum of empirical loss

Consider a function class \mathcal{F} of binary valued functions on some space \mathcal{X} . Given an iid sample $(X_i,Y_i)\in\mathcal{X}\times\{0,1\}$, for each $f\in\mathcal{F}$ we define the empirical loss:

$$L_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i)$$
 where $\ell(y, y') = 1(y \neq y')$

Define the empirical loss as $\hat{L} = \inf_{f \in \mathcal{F}} L_n(f)$.

- Naive application of Efron Stein shows $var(\hat{L}) \le 2/n$
- Is this enough?

Minimum of empirical loss

- Let $Z = n\hat{L}$
- Let $Z_i = \min_{f \in \mathcal{F}} \left(\sum_{j \neq i} \ell(f(X_j), Y_j) + \ell(f(X_i'), Y_i') \right)$
- $var(Z) \le \frac{1}{2} \sum_{i} E[Z Z'_{i}]^{2} = \sum_{i} E[Z Z'_{i}]^{2} 1(Z'_{i} > Z)$
- Note that $0 \ge (Z Z_i')1(Z_i' > Z) \ge (\ell(f^*(X_i), Y_i) \ell(f^*(X_i'), Y_i'))1(Z_i' > Z)$
- So $(Z Z_i')^2 1(Z_i' > Z) \le (\ell(f^*(X_i), Y_i) \ell(f^*(X_i'), Y_i'))^2 1(Z_i' > Z) \le \ell(f^*(X_i'), Y_i') 1(\ell(f^*(X_i), Y_i) = 0)$
- So, $E\sum_{i}(Z-Z_{i}')^{2}1(Z_{i}'>Z) \leq E\sum_{\ell(f^{*}(X_{i}),Y_{i})=0}E_{X_{i}',Y_{i}'}\ell(f^{*}(X_{i}'),Y_{i}') \leq nEL(f^{*})$
- Often you can show that $EL(f^*) = E\hat{L} + O(n^{-1/2})$
- So $\operatorname{var}(\hat{L}) \leq \frac{E\hat{L}}{n} + o(1)$

Self bounding functions

Definition

A non-negative function $g:\mathcal{X}^n]\to\mathcal{R}$ has the self bounding property if there exist functions $g_i:\mathcal{X}^{n-1}\to\mathcal{R}$ such that for all $x_1,\ldots,x_n\in\mathcal{X}$ and $i\in[n]$,

- $0 \le g(x_1, \ldots, x_n) g_i(x_{1:i-1}, x_{i+1:n}) \le 1$
- $\sum_{i} (g(x_1,...,x_n) g_i(x_{1:i-1},x_{i+1:n})) \leq g(x_1,...,x_n)$
- Clearly, $\sum_{i} (g(x_{1:n}) g_i(x_{1:i-1}, x_{i+1:n}))^2 \le g(x_1, \dots, x_n) =: Z$
- Now Theorem 1 gives:

$$var(Z) \le \sum_{i} E[(Z - E_{i}[Z])^{2}] \le \sum_{i} E[(Z - g_{i}(x_{1:i-1}, x_{i+1:n}))^{2}] \le E[g(x_{1:n})]$$

• So $var(Z) \leq E[Z]$

Concentration of self bounding functions

Theorem

Consider $Z := g(X_1, ..., X_n)$ where $X_1, ..., X_n$ are independent random variables. For all $t \ge 0$,

$$P(Z \ge E[Z] + t) \le \exp\left(-\frac{t^2}{2(EZ + t/3)}\right)$$

 $P(Z \le E[Z] - t) \le \exp\left(-\frac{t^2}{2EZ}\right)$

Relative Stability

- A sequence of non-negative random variables $\{Z_n\}$ are said to be relatively stable if $Z_n/E[Z_n] \stackrel{P}{\to} 0$
- If Z_n also satisfies the self bounding property,

$$P\left(\left|\frac{Z_n}{E[Z_n]} - 1\right| \ge \epsilon\right) \le \frac{\operatorname{var}(Z_n)}{\epsilon^2 E[Z_n]^2} \le \frac{1}{\epsilon^2 E[Z_n]}$$

• So as long as $E[Z_n] \to \infty$, Z_n satisfies the relative stability condition

Example: empirical processes

Consider a function class \mathcal{F} of functions in [0,1]. $Z:=\sup_{f\in\mathcal{F}}\sum_i f(X_i)$. We show that Z is self bounding.

- Let $Z_i := \sup_{f \in \mathcal{F}} \sum_{j \neq i} f(X_i)$
- Let f^* maximize Z and f_i maximize Z_i
- We have $0 \le f_i(X_i) \le f^*(X_i) \le 1$
- So $\sum_{i}(Z-Z_{i})\leq\sum_{i}f^{*}(X_{i})=Z$
- Hence $var(Z) \le E[Z]$, while a naive application of E-S will give us $var(Z) \le n/2$

Rademacher averages

Consider a function class \mathcal{F} of functions in [-1,1]. Let $\{\epsilon_i\}_1^n$ denote n independent Rademacher variables independent of X_1,\ldots,X_n . The conditional Rademacher average is defined as

$$Z := E \left[\sup_{f \in \mathcal{F}} \sum_{i} \epsilon_{i} f(X_{i}) | X_{1:n} \right]$$

Z has the self bounding property and so $var(Z) \le E[Z]$.

• Define
$$Z_i := E\left[\sup_{f \in \mathcal{F}} \sum_{j \neq i} \sigma_j f(X_j) | X_{1:n}\right]$$

Rademacher avg cont.

• Let f^* maximize Z and f_i maximize Z_i . Note that:

$$Z - Z_i \leq E[\epsilon_i f^*(X_i)|X_{1:n}] \leq 1$$

• On the other hand,

$$Z - Z_i \ge E[\epsilon_i f_i(X_i) | X_{1:n}] = 0$$

- The last step is true because ?
- So $\sum_{i}(Z-Z_{i}) \leq Z$
- Hence Z has the self-bounding property and has $var(Z) \le E[Z]$