Aufgabe 1. (2 Punkte) Es sei

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 2 & 3 & 4 & 5 & 6 \\ 0 & 2 & 2 & 4 & 4 \end{pmatrix} \in \mathcal{M}_{4,5}(\mathbb{R}).$$

Man finde eine Basis von ker(A).

Aufgabe 2. (2 Punkte) Es sei $t \in \mathbb{R}$ und

$$A = \begin{pmatrix} t & 2 & 1 \\ 2 & 4 & 2 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}).$$

Man berechne für alle $t \in \mathbb{R}$ den Rang von A.

Aufgabe 3. (3 Punkte) Man bestimme alle Lösungen $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ des Gleichungssystems

$$\begin{cases} x_3 + 2x_4 &= 1, \\ x_1 + 2x_2 + x_3 + 3x_4 &= 1, \\ x_1 + 2x_2 + 2x_3 + 5x_4 &= 2. \end{cases}$$

Aufgabe 4. (3 Punkte) Es sei

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix} \in \mathcal{M}_{4,3}(\mathbb{R}).$$

Man finde alle Lösungen $x \in \mathbb{R}^3$ des Gleichungssystems $A \cdot x = b$, wobei

$$b = \begin{pmatrix} 2\\4\\8\\16 \end{pmatrix} \quad , \text{ bzw.} \quad b = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}.$$

- * Aufgabe 5. (5 Punkte)
 - (i) Es sei V ein endlich-dimensionaler k-Vektorraum und $f: V \to V$ eine lineare Abbildung. Wir nehmen an, dass die Matrix $\mathcal{M}_{\mathcal{C}}(f)$ unabhängig der Basis \mathcal{C} von V ist. Was kann man über f sagen?
 - (ii) Es sei $M \in \mathcal{M}_n(k)$ sodass MN = NM für alle $N \in \mathcal{M}_n(k)$. Was kann man über M sagen?