A proof is rarely blind deduction from definitions and theorems. Before writing a proof, you must already see in your mind the skeleton joining various parts of the argument. Writing down the technical details is just fleshing out that skeleton.

- 1. Let A and B be sets.
 - (a) Suppose A and B are disjoint (i.e., $A \cap B = \emptyset$) and countable. Prove that $A \cup B$ is countable.
 - (b) Suppose A and B are (not necessarily disjoint but) countable. Prove that $A \cup B$ is countable.

Solution:

(a) A and B are disjoint and countable.

Case A and B are both finite.

Find $m, n \in \mathbb{Z}_{\geq 0}$ and bijections $f: \{1, 2, ..., m\} \to A$ and $g: \{1, 2, ..., n\} \to B$. Define the function $h: \{1, 2, ..., m + n\} \to A \cup B$ by setting

$$h(x) = \begin{cases} f(x), & \text{if } x \leq m; \\ g(x-m), & \text{if } x > m, \end{cases}$$

for each $x \in \{1, 2, ..., m + n\}$.

(h is injective) Let $x_1, x_2 \in \{1, 2, ..., m + n\}$ such that $h(x_1) = h(x_2)$.

As $A \cap B = \emptyset$, according to the definition of h,

 x_1, x_2 are either both less than or equal to m, or both strictly bigger than m.

If x_1, x_2 are both less than or equal to m, then $f(x_1) = h(x_1) = h(x_2) = f(x_2)$, and so $x_1 = x_2$ as f is injective.

If x_1, x_2 are both strictly bigger than m, then $g(x_1 - m) = h(x_1) = h(x_2) = g(x_2 - m)$, and so $x_1 - m = x_2 - m$ as g is injective, and this implies $x_1 = x_2$.

(h is surjective) Let $y \in A \cup B$. Then $y \in A$ or $y \in B$.

If $y \in A$, then the surjectivity of f gives $x \in \{1, 2, \dots, m\}$ such that y = f(x) = h(x).

If $y \in B$, then the surjectivity of g gives $w \in \{1, 2, ..., n\}$ such that y = g(w) = g((w+m) - m) = h(w+m).

These show h is a bijective. So $A \cup B$ is finite and thus countable.

(a) Case A is finite and B is infinite.

Find $m \in \mathbb{Z}_{\geqslant 0}$ and bijections $f : \{1, 2, ..., m\} \to A$ and $g : \mathbb{Z}^+ \to B$. Define the function $h : \mathbb{Z}^+ \to A \cup B$ by setting

$$h(x) = \begin{cases} f(x), & \text{if } x \leq m; \\ g(x-m), & \text{if } x > m, \end{cases}$$

for each $x \in \mathbb{Z}^+$. As in the previous case, one can show that h is bijective. So $A \cup B$ has the same cardinality as \mathbb{Z}^+ , and is thus countable.

Case A is infinite and B is finite.

Same as in the previous case, except that A and B are interchanged.

(a) Case A is infinite and B is infinite.

Find bijections $f: \mathbb{Z}^+ \to A$ and $g: \mathbb{Z}^+ \to B$.

Define the function $h: \mathbb{Z} \to A \cup B$ by setting

$$h(x) = \begin{cases} f(x), & \text{if } x \geqslant 1; \\ g(-x+1), & \text{if } x < 1, \end{cases}$$

for each $x \in \mathbb{Z}^+$.

(h is injective) Let $x_1, x_2 \in \mathbb{Z}$ such that $h(x_1) = h(x_2)$.

As $A \cap B = \emptyset$, according to the definition of h, x_1, x_2 are either both bigger than or equal to 1, or both strictly less than 1.

If x_1, x_2 are both bigger than or equal to 1, then $f(x_1) = h(x_1) = h(x_2) = f(x_2)$, and so $x_1 = x_2$ as f is injective.

If x_1, x_2 are both strictly less than 1, then $g(-x_1 + 1) = h(x_1) = h(x_2) = g(-x_2 + 1)$, and so $-x_1 + 1 = -x_2 + 1$ as g is injective, and this implies $x_1 = x_2$.

(h is surjective) Let $y \in A \cup B$. Then $y \in A$ or $y \in B$.

If $y \in A$, then the surjectivity of f gives $x \in \mathbb{Z}^+$ such that y = f(x) = h(x).

If $y \in B$, then the surjectivity of g gives $w \in \mathbb{Z}^+$ such that

$$y = g(w) = g(-(1-w)+1) = h(1-w)$$
, as $1-w < 1-0 = 1$.

So $A \cup B$ has the same cardinality as \mathbb{Z} . But we know that \mathbb{Z} has the same cardinality as \mathbb{Z}^+ . So $A \cup B$ has the same cardinality as \mathbb{Z}^+ , and is thus countable.

(b) $A \cup B = (A \setminus B) \cup B$, where $A \setminus B$ and B are disjoint.

 $A \setminus B$ and B are subsets of countable sets. So $A \setminus B$ and B are countable by Proposition 8.3.5. Hence (a) implies $(A \setminus B) \cup B$, and thus $A \cup B$, is countable.

2. Let A_0, A_1, A_2, \ldots be countable sets. Recall from Tutorial 3 Problem 9 that for all $n \in \mathbb{Z}_{\geq 0}$,

$$\bigcup_{i=0}^{n} A_i = A_0 \cup A_1 \cup \dots \cup A_n,$$

and for all x,

$$x \in \bigcup_{i=0}^{\infty} A_i$$
 if and only if $x \in A_i$ for some non-negative integer i .

- (a) Prove by induction that $\bigcup_{i=0}^n A_i$ is countable for any integer $n \ge 0$.
- (b) Does (a) prove that $\bigcup_{i=0}^{\infty} A_i$ is countable?
- (c) Using the countability of $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ from Theorem 8.4.4, or otherwise, prove that $\bigcup_{i=0}^{\infty} A_i$ is countable. (Hint: You may find Tutorial 7 Problem 9 useful.)

Solution: A_0, A_1, A_2, \ldots are countable.

(a) $\bigcup_{i=0}^{n} A_i$ is countable:

Basis n = 0. $\bigcup_{i=0}^{0} A_i = A_0$, which is given as countable.

Induction Hypothesis. Suppose the claim is true for n = k where $k \in \mathbb{Z}_{\geq 0}$. Induction Step. Consider n = k + 1. Note $\bigcup_{i=0}^{k+1} A_i = (\bigcup_{i=0}^k A_i) \cup A_{k+1}$.

Since $\bigcup_{i=0}^{k} A_i$ is countable by the Induction Hypothesis, and A_{k+1} is given as countable, the claim is true by Problem 1(b).

- No, because maybe $\bigcup_{i=0}^{\infty} A_i \neq \bigcup_{i=0}^n A_i$ for any $n \in \mathbb{Z}_{\geq 0}$: consider the case when each $A_i = \{i\}$.
- Intuition: The elements of A_0, A_1, A_2, \ldots can be mapped row by row injectively to $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$. Complications: finite A_i or $A_i \cap A_j \neq \emptyset$.

Solution: map $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$ to $\bigcup_{i=0}^{\infty} A_i$ instead.

Claim. Let $B = \bigcup_{i=0}^{\infty} A_i$. Then B is countable.

Proof. If $A_i = \emptyset$ for all integer $i \ge 0$, then $B = \emptyset$, and so B is countable.

Suppose $A_i \neq \emptyset$ for some integer $i \geqslant 0$. Pick any b that is in some A_i .

For each nonempty A_i , fix a surjection $f_i : \mathbb{Z}^+ \to A_i$

given by Tutorial 7 Problem 9 and the countability of A_i .

Define $g: \mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} \to B$ by setting, for all $i, j \in \mathbb{Z}_{\geqslant 0}$,

$$g(i,j) = \begin{cases} b, & \text{if } A_i = \emptyset; \\ f_i(j+1), & \text{if } A_i \neq \emptyset. \end{cases}$$

Consider any $y \in B$. Then $y \in A_k$ for some integer $k \ge 0$. Fix such a k.

Then the surjectivity of f_k gives $x \in \mathbb{Z}^+$

such that
$$y = f_k(x) = f_k((x-1)+1) = g(k, x-1)$$
, as $x-1 \ge 1-1 = 0$.

This shows g is a surjection $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \to B$.

Use the countability of $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$ to find a surjection $h \colon \mathbb{Z}^+ \to \mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$.

Then $g \circ h$ is a surjection $\mathbb{Z}^+ \to B$ by Proposition 8.1.1(1).

So B is countable by Tutorial 7 Problem 9.

- 3.* The set \mathbb{Q} of rational numbers can be defined by $\mathbb{Q} = \{r \in \mathbb{R} : \exists m \in \mathbb{Z} \exists n \in \mathbb{Z}^+ \ r = \frac{m}{n} \}.$
 - (a) Consider the following "proof" that Q is countable.

"Note that $\mathbb{Z} \subseteq \mathbb{Q}$. Since \mathbb{Z} is countable and every subset of a countable set is countable, we know \mathbb{Q} is countable."

What is wrong with this "proof"?

- (b) Using the countability of $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$, or otherwise, prove that \mathbb{Q} is countable. (This is even more surprising than the countability of \mathbb{Z} , since there are infinitely many rational numbers between any two rational numbers.)
- (c) In essence, a set X is countable means we can write $X = \{x_0, x_1, x_2, \ldots\}$. Write \mathbb{Q} in this form.

Solution:

- (a) It was proved in Proposition 8.3.5 that " $A \subseteq B \to (B \text{ is countable}) \to A \text{ is countable}$ ". Converse error in "proof", which says " $\mathbb{Z} \subseteq \mathbb{Q} \to (\mathbb{Z} \text{ is countable}) \to \mathbb{Q} \text{ is countable}$ "
- (b) Intuition: The elements of \mathbb{Q} can be mapped injectively to $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$, which is countable. Complications: possible $\frac{m}{n} = \frac{h}{k}$ and negative r. Solution: Use Problem 2(c).

Define $A_0 = \emptyset$, and $A_i = \{\frac{m}{i} : m \in \mathbb{Z}\}$ for all $i \in \mathbb{Z}^+$.

Note $A_0, A_1, A_2, ...$ are all countable since A_i has the same cardinality as \mathbb{Z} for each $i \in \mathbb{Z}^+$. As $\mathbb{Q} = \bigcup_{i=0}^{\infty} A_i$, we deduce that \mathbb{Q} is countable by Problem 2(c).

(c) In the proof of Theorem 8.4.4, we enumerated the elements of $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$ as

$$\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} = \{(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (0,4), \dots\}.$$

For \mathbb{Q} , we can follow this enumeration, treating (m, n) as $\frac{m}{n}$, remove the fractions with zero denominator, then add the negatives:

$$\mathbb{Q} = \left\{0, 1, -1, 0, 2, -2, \frac{1}{2}, -\frac{1}{2}, 0, 3, -3, 1, -1, \frac{1}{3}, -\frac{1}{3}, 0, \dots\right\}.$$

There are many alternative answers.

4. Let Y and Z be sets that are countable and infinite. Prove that $Y \times Z$ is countable. (This is a generalization of the fact that $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is countable.)

Solution: Intuition: Map $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$ surjectively to $Y \times Z$.

Use the fact that Y and Z are countable and infinite to find bijections $f: \mathbb{Z}^+ \to Y$ and $g: \mathbb{Z}^+ \to Z$. Define $h: \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \to Y \times Z$ by setting h(i,j) = (f(i+1), g(j+1)) for each $(i,j) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$.

Injectivity:
$$h(i_1, j_1) = h(i_1, j_2) \Rightarrow (f(i_1 + 1), g(j_1 + 1)) = (f(i_2 + 1), g(j_2 + 1))$$

 $\Rightarrow f(i_1 + 1) = f(i_2 + 1) \text{ and } g(j_1 + 1) = g(j_2 + 1)$
 $\Rightarrow i_1 + 1 = i_2 + 1 \text{ and } j_1 + 1 = j_2 + 1 \text{ as } f \text{ and } g \text{ are injective}$
 $\Rightarrow i_1 = i_2 \text{ and } j_1 = j_2$
 $\Rightarrow (i_1, j_1) = (i_2, j_2).$

Surjectivity: Consider any $(y, z) \in Y \times Z$.

Use the surjectivity of f and g to find $i \in \mathbb{Z}^+$ and $j \in \mathbb{Z}^+$ such that f(i) = g and g(j) = z. Then (y, z) = (f(i), g(j)) = (f((i-1)+1), g((j-1)+1)) = h(i-1, j-1).

Since h is bijective, we know $Y \times Z$ has the same cardinality as $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$, which is countable. So $Y \times Z$ is also countable.

- 5. Prove that:
 - (a) if a set X has an uncountable subset, then X is also uncountable;
 - (b)* if A is uncountable and B is countable, then $A \setminus B$ is uncountable.

Solution:

- (a) Let $Y \subseteq X$. Proposition 8.3.5 tells us that if X is countable, then Y is countable. Taking the contrapositive gives: if Y is uncountable, then X is uncountable.
- (b)* Note that $A = (A \setminus B) \cup (A \cap B)$. As $A \cap B \subseteq B$ and B is countable, we know $A \cap B$ is countable by Proposition 8.3.5. If $A \setminus B$ is countable, then $(A \setminus B) \cup (A \cap B)$ is countable by Problem 1, contradicting the uncountability of A. So $A \setminus B$ must be uncountable.
- 6. It will be shown in the lectures that if X is a finite set, then $\mathcal{P}(X)$ is finite and has cardinality $2^{|X|}$. Use this to prove that a set X has countably many subsets if and only if X is finite.

Solution:

Claim: $\mathcal{P}(X)$ is countable if and only if X is finite.

- (\Leftarrow) If X is finite, then $\mathcal{P}(X)$ is finite and thus countable.
- (\Rightarrow) We prove the contrapositive, that X is infinite implies $\mathcal{P}(X)$ is uncountable. Suppose X is infinite. Then X has a countable infinite subset, say Y, by Proposition 8.3.4. Now Corollary 9.2.2 tells us $\mathcal{P}(Y)$ is uncountable. As $Y \subseteq X$, every subset of Y is also a subset of X. So $\mathcal{P}(Y) \subseteq \mathcal{P}(X)$.

Hence Problem 5(a) implies $\mathcal{P}(X)$ is uncountable.

7.* Prove that

- (a) $\{S \in \mathcal{P}(\{b\}^*) : S \text{ contains exactly 3 strings} \}$ is countable;
- (b) $\mathcal{P}(\{b\}^*)$ is uncountable.

(Part (a) can be generalized to "there are countably many finite subsets of $\{b\}^*$ ", while part (b) says $\{b\}^*$ has uncountably many subsets. Therefore, the point here is: the uncountability of $\mathcal{P}(\{b\}^*)$ must be from the infinite subsets.)

Solution:

(a) For a symbol c and $n \in \mathbb{Z}_{\geq 0}$, let c^n denote the string $\widetilde{cccc...cc}$; e.g., c^0 is the empty string, $c^1 = c$, and $c^3 = ccc$.

Let $U = \{(m, n, k) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+ : m < n < k\}.$

Since \mathbb{Z}^+ is countable, Problem 4 tells us $\mathbb{Z}^+ \times \mathbb{Z}^+ \times \mathbb{Z}^+$ is also countable.

So U is countable too by Proposition 8.3.5.

Let $V = \{0^m 10^n 10^k : m < n < k \text{ for some } m, n, k \in \mathbb{Z}_{\geq 0}\}.$

As one can directly verify, the function $f: U \to \mathcal{V}$

such that $f(m, n, k) = 0^{m-1} 10^{n-1} 10^{k-1}$ for all $(m, n, k) \in U$ is a bijection.

So \mathcal{V} is countable.

Note that if $S \in \mathcal{P}(\{b\}^*)$ and S contains exactly 3 strings,

then $S = \{b^m, b^n, b^k\}$ where m, n, k are different non-negative integers, since S is a set.

Define $\mathcal{T}_3 = \{ S \in \mathcal{P}(\{b\}^*) : S \text{ contains exactly } 3 \text{ strings} \}.$

Define a function $g: \mathcal{T}_3 \to \mathcal{V}$ by setting $f(\{b^m, b^n, b^k\}) = 0^m 10^n 10^k$ whenever $m, n, k \in \mathbb{Z}_{\geq 0}$ satisfying m < n < k.

(g is surjective) For any $0^m 10^n 10^k \in \mathcal{V}$, we have m < n < k, so b^m , b^n and b^k are three different strings; therefore $\{b^m, b^n, b^k\} \in \mathcal{T}_3$ and $g(\{b^m, b^n, b^k\}) = 0^m 10^n 10^k$.

(g is injective) Suppose $g(S_1) = 0^m 10^n 10^k = g(S_2)$. Then $S_1 = \{b^m, b^n, b^k\} = S_2$.

Since g is bijective, the sets \mathcal{T}_3 and \mathcal{V} have the same cardinality. So \mathcal{T}_3 is countable.

(b) One can verify that the function $h: \mathbb{Z}^+ \to \{b\}^*$ satisfying $h(n) = b^n$ for each $n \in \mathbb{Z}^+$ is injective. As \mathbb{Z}^+ is infinite, this implies $\{b\}^*$ is infinite too. So $\mathcal{P}(\{b\}^*)$ is uncountable by Problem 6. 8.* Let B be a finite subset of an infinite set C. Prove that there are uncountably many countable sets X such that $B \subseteq X \subseteq C$.

Solution: Given: infinite C and finite $B \subseteq C$.

Intuition: Take a countable infinite subset D of C, then add B to the subsets of D.

Proof.

Let $A = C \setminus B$.

As B is finite and C is infinite,

we know A is infinite by the solution to Problem 1(a).

So A has a countably infinite subset, say D, by Proposition 8.3.4.

Note that $\mathcal{P}(D)$ is uncountable by Corollary 9.2.2.

Since D is countable,

Proposition 8.3.5 says every $Y \in \mathcal{P}(D)$ is countable.

Thus, for each $Y \subseteq D$, the union $B \cup Y$ is countable by Problem 1.

As $B \cap D \subseteq B \cap A = B \cap (C \setminus B) = \emptyset$,

one can verify that $\{B \cup Y : Y \in \mathcal{P}(D)\}$ has the same cardinality as $\mathcal{P}(D)$.

So $\{B \cup Y : Y \in \mathcal{P}(D)\}$ is uncountable.

Moreover, for each $Y \in \mathcal{P}(D)$, we have $B \subseteq B \cup Y \subseteq C$ as $B \subseteq C$ and $Y \subseteq D \subseteq A = C \setminus B \subseteq C$.

