

ND-A194 947

CENTRAL ADRENERGIC RECEPTORS AS MEDIATORS OF CENTRAL
RESPONSE TO STRESS. STUDY WITH POSITRON EMISSION
TOMOGRAPHY (PET)(U) LOUVAIN UNIV (BELGIUM)

1/1

UNCLASSIFIED

A M GOFFINET 19 FEB 88

F/G 6/4

NL

REF ID: A6512
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

AD-A194 947 ECTE

3 1 1 1988

DRC FILE COPY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

University of Louvain

6b. OFFICE SYMBOL
(If applicable)

H

1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6c. ADDRESS (City, State, and ZIP Code)

2, Chemin due Cyclotron
B-1348 Louvain-la-Neuve
Belgium

7a. NAME OF MONITORING ORGANIZATION

European Office of Aerospace Research and
Development (EOARD)

7b. ADDRESS (City, State, and ZIP Code)

P.O. Box 14
FPO New York 095108a. NAME OF FUNDING / SPONSORING
ORGANIZATION

EOARD

8b. OFFICE SYMBOL
(If applicable)

LRB

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

P.O. Box 14
FPO New York 09510

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
61102F	2301	D1	218

11. TITLE (Include Security Classification)

Central Adrenergic Receptor as Mediators of Central Response to Stress; Study with
Positron Emission Tomography

12. PERSONAL AUTHOR(S)

Andre M. Goffinet, MD, PhD

13a. TYPE OF REPORT

Final Scientific

13b. TIME COVERED

FROM 30Sep86 TO 29Sep87

14. DATE OF REPORT (Year, Month, Day)

1988, Feb 19

15. PAGE COUNT

7

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD	GROUP	SUB-GROUP
06	16	

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Positron Emission Tomography (PET), Adrenergic Receptors,
Stress, Attention, Brain Glucose Metabolism, C-11-N-
Methylspiperone

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes initial studies designed to investigate the effects of a high degree of neurological alertness on brain metabolism. Positron emission tomography (PET) was used to quantitate brain metabolism using fluorodeoxyglucose (FDG) as an indicator of glucose uptake during mental stimulation provided by playing a video game (Mooncrash) for 30 minutes. Brain metabolism in 22 regions during neurological alertness was compared with the resting state. In most subjects there was a marked increase in brain metabolism with stimulation, however there was tremendous variability in brain metabolism in the eight subjects. Consistent patterns of activation were found with maximal activation in primary visual cortex, followed by parieto-occipital cortex, cerebellum and thalamus. ←

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

 UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

Maj James N. McDougal

22b. TELEPHONE (Include Area Code)

01-409-4285

22c. OFFICE SYMBOL

EOARD/LRB

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.

All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

88 3 08 233

Grant AFSOR-86-0353: Scientific report.

Title: Central adrenergic receptors as mediators of central response to stress: study with Positron Emission Tomography (PET).

Investigator: André M. GOFFINET, MD, PhD

Positron Tomography Laboratory

2, Chemin du Cyclotron

B-1348 Louvain-la-Neuve

Belgium

Tel: 32 - 10 - 47 28 25/22

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A-1	

This research project was activated in early December 1986, due to administrative delays. As stated in the original proposal, the program involved two aspects. First, studies of brain metabolism under situations which approximate a situation of stress. Second, development of tracer molecules for in vivo analyses of beta-adrenergic receptors. Interesting data could be collected on these two aspects of the program and point to several areas important for future investigations.

1. Brain glucose metabolism in a situation of alertness.

The first problem was to define a situation in the laboratory which would generate a high degree of neurological alertness and thus mimic to a certain extent a situation of stress. A good way to achieve this would be to use a flight simulator. However, this equipment is not available in our laboratory setting and it was decided, as a first approach, to use a videogame (Mooncrash) as the stressor. The Positron Tomography technique used is the so-called FDG/PET autoradiographic procedure for measurement of glucose metabolism. Briefly, [F-18]-labeled deoxyfluoroglucose, a non metabolized glucose analog, is injected intravenously into a forearm vein. The tracer input function is sampled from a catheter inserted into a pedal (during stimulation) or radial (studies at rest) artery under local anesthesia. Beginning at injection time or one minute before, the subject is asked to concentrate as much as he can on the game, and is allowed to play for 30 min. After 30 min, more than 90% of the tracer has been incorporated in the brain. The subject is then at rest on the tomograph's bed and FDG uptake is measured with the ECAT III positron camera. Emission density data are converted into estimations of

regional brain glucose metabolism by using the operational equations of Sokoloff, adapted for PET by Phelps.

The subjects for the present studies are young adult males (mean age 22 yrs) recruited from the surrounding community and have a negative neurological history. FDG is given at a moderate dose of 6 mCi, allowing us to perform control studies (without stimulation) on the same subjects. So far, 8 analyses have been performed in the situation of stimulation and repeated at rest. Results of the regional brain glucose utilization (expressed in micromols per 100g brain per min) in the 8 subjects during stimulation at during the study at rest are shown on table I.

Several striking observations can be made on these data. First, there is a tremendous variability in the level of brain glucose metabolism. In most of the subjects, there is a marked increase in metabolism during stimulation on the game. It is worth pointing out that the increase of brain metabolism in an actual situation of stress can only be higher than our estimation, since the stimulation performed in the laboratory setting is hardly maximal. However, it is remarkable and rather unexpected that in 2 subjects, there is no significant differences in the global rate of glucose utilization between the activated and the resting state. Actually, in one patient, metabolic rates were more elevated at rest than during stimulation. The only reasonable interpretation of such a discrepancy is that the mean level of brain glucose utilization at rest can vary in response to several poorly defined factors in addition to its variation with specific stimuli.

This large individual variation certainly hampers the detection of subtle variations of brain metabolic activity in response to environmental

modifications. However, by expressing metabolic rates in percent of a mean gray matter glucose utilization, it is still possible to analyze variations in the pattern of regional glucose utilization in response to stress and other stimuli. These so-called relative metabolic indexes are shown in table II for the 8 subjects successfully examined at rest and under submaximal alertness. It is clear from the comparison of the two states that consistent patterns of activation are found. Maximal activation is found in primary visual cortex, followed by parieto-occipital cortex, cerebellum and thalamus. Other regions undergo relatively less activation.

Although they remain quite preliminary, these results point to several interesting questions which should be pursued further. Some of the issues raised may even have significant practical implications.

First, a level of metabolic activation such as that observed in some of our subjects has been reported in the literature only in pathologic conditions (namely in "petit mal" epilepsy). Our data show that brain metabolism, far from being independant of the mental state, can vary in large proportions in response to the environment. We think that this interaction between brain and environment is interesting in itself and should be studied further.

Second, the measurements allow us to make a reasonable estimate of the energetic demands of the brain in situations of maximal stimulation. If we consider a glucose metabolism of at least 10 mg/100g.min for 1 kg of gray matter, we obtain a glucose utilisation of 6 g/h. Again, the actual situation may be of an even higher value. This level of glucose utilization must certainly be attained by pilots, especially when performing specific, non routine missions. It appears reasonable to suggest that, when brain glucose demand reaches this level, even a mild degree of hypoglycemia

which in normal circumstances would be without consequences, may affect subtle brain physiologic parameters such as reaction times. It may thus be interesting to perform estimations of reaction times in different conditions of stress, and at different levels of glycemia. Studies of this type might have significant practical implications. For example, if our preliminary data are confirmed, it might prove useful to achieve a physiologic "glucose clamp" in pilots and other personnel experiencing high levels of stimulation and whose responsiveness is critical. Ways to protect against hypoglycemia, usually by increasing liver glycogen reserves, are well known by nutritionists and are apparently being used by some athletes.

2. Development of a tracer for adrenergic receptors.

As stated in the original proposal, our understanding of adrenergic mediation of brain reactions to stress would greatly benefit from reliable methods for *in vivo* analyses of adrenoceptors. Although PET may provide such a tool in the future, the development of an appropriate tracer certainly requires a lot of work and effort, and must thus be regarded as a medium-term project.

From a radiochemical standpoint, ligands for PET can be labeled with carbon-11 or fluorine-18 (other isotopes being of relatively minor importance). C-11 radiochemistry is more easy to perform than fluorine chemistry, and was selected as the first choice. The first series of experiments aimed at the reliable preparation of methyl iodide, a general purpose reagent for C-11 labeling reactions. An original method for methyl iodide synthesis was recently developed in our laboratory. Compared to other methods, this preparation uses P_2I_4 in the synthesis of methyl iodide, resulting into the production of a strictly anhydrous reagent.

In order to assess the quality of the radiolabeled precursor, we chose to produce C-11-N-methylspiperone (NMS), a ligand of dopamine D2 receptors. This molecule was selected since its synthesis has been performed by others previously. It can thus serve as a "gold standard" for our radiochemistry procedures. In addition, our laboratory plans to study dopaminergic receptors in human diseases.

So far, work on adrenoceptor ligands has been focused only on studies of the available literature in order to select candidate ligands for PET. Based upon this literature survey, the beta-receptor ligand pindolol was selected as a possible starting point. Further information, particularly provided by Dr. G Engel (Sandoz, Basles), suggested that a more recent pindolol derivative, butylpindolol, may be a more promising candidate. Work in various laboratories has clearly shown that propranolol, the best characterized member of the aryloxypropanolamines with affinity for beta-receptors, cannot be used with PET due to its high lipophilicity. Pindolol has given some encouraging results in a few animals studies, although its passage through the blood-brain barrier is not optimal. A recent report suggests that butylpindolol might better than pindolol.

Based on these evidences, our future strategy will be to prepare pindolol or butylpindolol derivatives of increasing lipophilicity, as has been made with spiroperidol derivatives, and check whether these modifications result into some improvement of pharmacokinetic behavior.

Table 1 Comparison of glucose metabolic rates in sensorial activation (S A) versus resting state (R R).
(increment / 100 g. min)

RAIN REGIONS	Subjects	S A R S	S A R S	S A R S	S A R S	S A V	S A V	S A V	S A V	S A R S	S A R S	S A R S	S A R S	S A R S	S A R S		
1 Right Frontal Cortex	43.94	42.49	43.92	53.97	61.64	54.89	55.39	34.97	55.21	34.44	52.13	35.34	36.78	41.54	58.63	54.61	
2 Left Frontal Cortex	63.04	42.51	64.87	56.00	42.68	57.79	55.24	34.40	56.27	32.41	50.25	35.70	38.68	42.41	56.41	54.03	
3 Right Temporal Cortex	60.72	37.67	60.94	46.32	62.07	50.60	47.84	31.04	45.97	28.81	43.77	29.12	33.28	34.35	50.58	45.27	
4 Left Temporal Cortex	57.22	36.71	61.79	50.46	59.35	53.00	50.40	31.93	50.85	29.89	45.45	28.51	31.26	35.03	48.61	45.14	
5 Right Motor Cortex	67.72	42.27	65.91	53.61	65.17	57.97	55.24	34.74	57.78	39.08	50.08	36.44	60.19	56.10			
6 Left Motor Cortex	61.94	42.34	68.15	57.00	45.14	40.18	56.88	34.95	57.81	36.75	51.40	37.53	55.82	56.31			
7 Right Parietal Cx	57.17	24.69	59.91	49.70	57.09	50.74	46.10	28.27	43.27	30.23	43.78	29.81		49.71	47.73		
8 Left Parietal Cx	56.39	36.99	58.04	48.46	55.87	51.81	48.96	28.79	45.14	31.03	46.31	28.83		49.93	47.03		
9 Right Par-acc Cortex	58.41	35.32	61.02	51.00	61.05	46.21	51.74	28.83	49.80	28.86	47.98	28.37	33.18	37.03	52.33	48.00	
10 Left Par-acc Cortex	55.36	36.10	60.38	50.67	60.14	47.79	55.32	27.29	51.93	28.22	46.11	28.07	32.64	36.40	51.12	47.24	
11 Right Visual Cortex	72.94	42.81	77.23	49.38	73.85	55.82	69.06	34.46	58.79	32.11	61.71	35.49	50.26	42.29	67.45	54.81	
12 Left Visual Cortex	72.44	43.04	78.19	50.03	75.16	55.35	70.37	33.48	57.16	31.07	59.84	35.34	48.81	41.81	63.71	52.29	
13 Right Insula	59.67	36.74	60.07	50.72	58.40	51.73	49.05	20.91	47.35	30.16	46.92	30.02	35.42	36.09	54.49	48.18	
14 Left Insula	58.50	36.21	61.54	51.87	59.30	51.95	49.74	29.53	49.22	30.40	46.12	27.90	34.47	35.67	52.21	49.56	
15 Right Striatum	61.78	39.52	61.30	53.47	62.30	56.47	51.27	31.24	47.34	29.11	45.27	31.67	37.31	38.06	56.00	50.81	
16 Left Striatum	62.22	37.34	64.20	54.92	63.51	54.63	50.37	31.78	47.18	28.21	44.34	31.39	37.16	38.82	57.10	52.46	
17 Right Thalamus	57.00	33.42	64.92	48.35	60.25	52.29	49.49	30.23	54.55	31.88	46.93	30.49	40.55	35.30	54.17	46.37	
18 Left Thalamus	55.44	34.79	68.99	50.95	58.97	51.22	48.29	30.46	53.21	32.37	44.61	31.70	37.82	35.48	55.13	46.08	
19 Right Frontomesial Cx	61.22	40.22	64.03	54.49	56.38	54.14	50.58	33.47	53.33	34.84	48.40	34.28	37.62	38.13	56.31	52.81	
20 Left Frontomesial Cx	62.04	40.15	64.14	57.52	58.45	54.84	51.27	35.14	54.58	35.87	47.90	33.80	36.73	39.03	57.62	52.07	
21 Right Cerebellum	51.74	27.65	52.28	44.60	61.50	47.63	50.40	28.07	41.51	26.57	41.70	26.83	37.61	28.46	46.32	42.48	
22 Left Cerebellum	51.61	26.43	53.08	44.57	50.55	49.45	52.63	27.40	44.92	27.16	42.87	26.15	38.71	27.90	46.24	41.80	
MEAN GRAY MATTER																	
RIGHT NEOSPHERE		63.16	37.93	63.74	51.70	42.35	50.99	34.49	32.44	52.95	32.13	50.50	31.36	38.46	36.67	56.88	51.86
LEFT NEOSPHERE		59.33	37.44	53.08	51.70	43.31	52.42	35.74	31.38	53.21	31.11	48.80	30.52	30.58	37.77	52.85	50.60

Figure 1. Comparison of relative metabolic rates in normal (100%) oxygenation (100%) versus resting state (10%).

Fig. 1. Comparison of relative metabolic rates in *soybean* and *cowpea* seedlings.

Region	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
BAIAT RATINGS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Right Frontal Cortex	103	97	112	75	100	79	108	18	98	10	106	16	100	32	109	21	104	41	108	88	104	99	114	22	95	36	111	61	106	86	106	40																		
Left Frontal Cortex	102	53	112	60	102	29	108	23	99	76	111	77	100	05	107	43	104	41	103	10	101	21	115	38	100	29	113	91	102	82	105	47																		
Right Lateral Cortex	98	74	99	96	78	09	89	52	98	79	97	87	84	68	96	94	86	93	91	08	88	14	94	12	100	28	92	27	92	19	88	37																		
Left Temporal Cortex	93	04	97	41	97	37	97	53	98	46	102	91	91	28	99	72	98	16	94	47	91	54	92	15	01	05	94	11	88	60	88	11																		
Right Motor Cortex	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50			
Left Motor Cortex	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Right Parietal Cortex	95	30	94	26	96	21	98	57	97	17	89	37	93	71	90	04	94	18	91	24	96	64	92	34	86	03	99	49	93	39	92	70																		
Left Parietal Cortex	90	33	95	80	95	20	97	93	95	53	72	92	43	100	19	89	23	98	20	89	21	92	87	90	72	84	63	97	80	93	17	92	21																	
Right Par-occ Cortex	118	61	113	40	121	78	95	44	117	54	107	94	125	07	107	62	111	18	101	32	124	29	114	71	130	21	113	42	119	80	106	99																		
Left Par-occ Cortex	118	16	116	21	123	29	96	70	119	42	107	05	127	45	104	56	108	09	98	29	120	52	114	22	126	55	112	33	111	63	102	07																		
Right Visual Cortex	97	02	97	49	96	72	98	03	92	95	100	05	88	84	96	53	89	54	95	35	94	50	97	03	91	03	96	96	99	32	94	05																		
Left Visual Cortex	95	12	96	09	97	04	100	25	94	38	100	47	88	28	92	22	93	07	96	11	92	89	90	17	87	37	75	84	95	16	96	74																		
Right Insula	100	45	104	87	96	64	103	34	99	16	109	22	92	86	97	54	89	36	91	18	102	36	96	73	102	26	102	07	99	18																				
Left Insula	101	17	99	08	104	38	106	15	101	08	105	64	91	23	99	25	98	22	89	19	89	31	101	43	76	34	101	30	104	07	102	40																		
Right Striatum	97	55	106	73	100	99	109	18	89	73	104	71	91	61	105	15	100	85	110	15	97	88	110	80	77	54	102	44	102	63	103	08																		
Left Striatum	100	70	106	54	101	14	111	19	93	02	106	06	92	86	109	74	103	21	113	40	96	47	107	24	75	15	104	04	105	39	101	64																		
Right Putamen	84	46	73	37	82	43	86	20	97	88	92	12	91	28	87	66	71	28	88	50	84	00	83	99	86	72	77	51	77	00	84	43	82	92																
Left Putamen	03	72	76	66	83	70	86	14	96	37	96	03	95	32	86	20	84	19	85	87	86	34	84	52	100	36	71	76	84	28	81	59																		

END

DATED

FILM

8-88

DTIC