# CSCI 335 Software Design and Analysis III Lecture 3: Part 2 Analysis of Algorithms

Professor Anita Raja

### Agenda

- •Big Five
- •C++11: Templates/Matrices
- Asymptotic Analysis of Algorithms
- •Assignment 1 Discussion

1

2

# **Mathematical Background: Exponents**

- •Law of exponents
- Derived from basics definitions of multiplication, division and exponents.

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$a^{x} \div a^{y} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy}$$

# **Mathematical Background:** Logarithms

- •Rules of logarithms
- •Derived from rules of exponents

$$\log xy = \log x + \log y$$
$$\log x/y = \log x - \log y$$
$$\log x^y = y \log x$$
$$\log_a x = \frac{\log_b x}{\log_b a}$$

3

# **Mathematical Background:** Logarithms

$$log x^y = y \log x \cdot$$

Proof:

Let 
$$x = e^{z}$$
  
 $x^{y} = (e^{z})^{y} = e^{zy}$   
 $\log x^{y} = \log e^{zy} = zy$   
 $\log x^{y} = y \log x$ 

# **Mathematical Background:** Logarithms

$$log_a x = \frac{log_b x}{log_b a}$$

Proof:

Let 
$$x = a^{z}$$
  
 $log_{b} x = log_{b} a^{z} = z log_{b} a$   
But  $z = log_{a} x = \frac{log_{b} x}{log_{b} a}$ 

6

5

# **Mathematical Background: Series**

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

$$\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \approx \frac{N^{2}}{2}$$

$$\sum_{i=1}^{N} i^{2} = \frac{N(N+1)(2N+1)}{6} \approx \frac{N^{3}}{3}$$

6

# **Mathematical Background: Modulo**

• Euclidean division is defined by the equation:

$$a=qb+r$$

$$a \operatorname{div} b = q$$

$$a \operatorname{mod} b = r = a - qb$$

• Note:  $a \mod b = a$  for  $1 \le a < b$ , not 0!

• For example:  $: 3 \mod 11 = 3 \neq 0$ 

8

7

### **Motivation**

- Algorithm:
- clearly specified set of simple instructions to be followed to solve a problem.
  - Important step: determine how much in the way of resources, such as time and space, the algorithm will require.

9

11

### **The Growth of Functions**

- Establish relative order of functions:
  - · Compare relative rate of growth.
- •We accept the constant C in the requirement  $\bullet f(N) \le C \cdot g(N)$  whenever N > k, because C does not grow with N.
- •We are only interested in large n, so it is OK if  $\ f(N) \ge C \cdot g(n) \ \ for \ n \le k.$



**Big-Oh Notation** 

- Special notation to define upper bounds and lower bounds of functions.
- •In CS, usually the functions we are bounding are running times and memory requirements.
  - Also refer to the running time as T(n).

10

10

12

### **Relative Rates of Growth**



| Analysis<br>Type | Mathematical<br>Expression | Relative<br>Rates of<br>Growth |
|------------------|----------------------------|--------------------------------|
| Big O            | f(N) = O(g(N))             | f(N) <u>&lt;</u> g(N)          |
| Small o          | f(N) = o(g(N))             | f(N) < g(N)                    |
| Big $\Omega$     | $f(N) = \Omega(g(N))$      | f(N) <u>&gt;</u> g(N)          |
| Big θ            | $f(N) = \theta(g(N))$      | f(N) = g(N)                    |

### What it All Means



- f(N) is the actual growth rate of the algorithm.
- •g(N) is the function that bounds the growth rate:
  - may be upper or lower bound
- •f(N) may not equal g(N):
  - constants and lesser terms ignored because it is a *bounding function*

13

15

# • For N greater than some constant, we have the following definitions: $T(N) = O(f(N)) \leftarrow T(N) \leq cf(N)$ Upper bound on T(N) $T(N) = \Omega(g(N)) \leftarrow T(N) \geq c\theta(N)$ Lower bound on T(N) $T(N) = \Theta(h(N)) \leftarrow T(N) = O(h(N)),$ Tight bound on T(N) • There exists some constant c such that cf(N) bounds T(N)

### **Smallest upper bound**

•Question: If f(x) is  $O(x^2)$ , is it also  $O(x^3)$ ?

14

14

16

### **Definitions Continued**

- T(N) = O(f(N)) if there are positive constants c and  $n_0$  such that  $T(N) \le cf(N) \text{ when } N \ge n_0$
- $T(N) = \Omega(g(N))$  if there are positive constants c and  $n_0$  such that  $T(N) \ge cg(N)$  when  $N \ge n_0$
- $T(N) = \Theta(h(N))$  if and only if T(N) = O(h(N)) and  $T(N) = \Omega(h(N))$
- T(N) = O(p(N)) if, for all positive constants c, there exists an  $n_0$  such that T(N) < cp(N) when  $N > n_0$ . Les formally, T(N) = o(p(N)) if T(N) = O(p(N)) and  $T(N) \neq \Theta(p(N))$



Example

•  $N^2 = \Omega(N^2)$ •  $N = \Omega(\log N)$ function(N)  $C^*g(N)$ N

17

19

Example

 $\bullet 5N^3 + N = \Theta(N^3)$ 

•  $0.2 \log N + \log \log N = \Theta (\log N)$ 



18

**Definition** 

• Alternatively, O(f(N)) can be thought of as meaning  $T(N) = O\big(f(N)\big) \leftarrow \lim_{N \to \infty} f(N) \geq \lim_{n \to \infty} T(N)$ 

- The idea of these definitions is to establish a relative order among functions. Thus, we compare their **relative rates of growth.**
- **Note:** Big-Oh notation is also referred to as asymptotic analysis for this reason.

20

### **The Growth of Functions**

- A problem that can be solved with polynomial worst-case complexity is called **tractable**:
  - Searching an ordered list, Sorting a list, Integer multiplication.
- Problems of higher complexity are called **intractable**:
  - Factoring a number into primes. (this is why RSA and public key encryption is
  - SAT, the satisfiability problem to test whether a given Boolean formula is satisfiable
  - · Graph coloring, bin packing.
- Problems that no algorithm can solve are called **unsolvable**:

  - Integer factorization in polynomial time.
  - Fastest algorithm for matrix multiplication, multiplication of 2 n-digit numbers.

21



### **Typical growth rates**

| Function   | Name        |
|------------|-------------|
| С          | Constant    |
| log N      | Logarithmic |
| $\log^2 N$ | Log-squared |
| N          | Linear      |
| N log N    |             |
| $N^2$      | Quadratic   |
| $N^3$      | Cubic       |
| $2^N$      | Exponential |

22

### **Model of computation**

- Model needed for algorithm analysis
  - Note algorithm not C++/code analysis
- •One unit of time corresponds to simple instructions:
  - Addition, multiplication, comparison, assignment.
- •Fixed size (32-bit) integers.
- •Infinite memory
  - Interest in algorithm itself, not performance in any particular machine.

### What to analyze

- •Running time (Time complexity)
- Memory usage (Space complexity)
- What kind of input?
  - Worst-case running time
  - Best-case running time
  - Average-case running time
    - Sometimes it is hard to define what is the average input.
- Size of the input problem, N.
  - If input is an array, N is the size of the array.
  - If input is a number, N is the number of bits used to represent it.

25

### **Useful Rules for Big-O**

•When adding algorithmic complexities the larger value dominates.

For any **polynomial**  $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ , where  $a_0, a_1, ...,$  $a_n$  are real numbers, f(x) is  $O(x^n)$ .

- •If  $f_1(x)$  is  $O(g_1(x))$  and  $f_2(x)$  is  $O(g_2(x))$ , then  $(f_1 + f_2)(x)$  is  $O(\max(g_1(x), g_2(x)))$
- •If  $f_1(x)$  is O(g(x)) and  $f_2(x)$  is O(g(x)), then  $(f_1 + f_2)(x)$  is O(g(x)).

### **Useful Rules for Big-O: Summing Execution Times**

- If f(N) is a polynomial of degree k, then  $f(N) = \theta(N^k)$
- If  $T_1(N) = O(f(N))$  and  $T_2(N) = O(g(N))$ , then  $T_1(N) + T_2(N) = O(f(N) + g(N))$   $T_1(N) \cdot T_2(N) = O(f(N), g(N))$
- $log^k(N) = O(N)$  for any constant k. · logarithms grow very slowly
- If an algorithm's execution time is  $N^2 + N$  then it is said to have  $O(N^2)$ execution time, not  $O(N^2 + N)$ .
- Formally, a function f(N) dominates a function g(N) if there exists a constant value n<sub>0</sub> such that for all values N > N<sub>0</sub> it is the case that g(N) <

26

### **Useful Rules for Big-O**

- •Loops:
  - Running time of a for loop is at most the running time of the statements inside the for loop times the number of iterations.
- Nested loops:
  - Analyze inside out. Running time of statement multiplied by the product of the sizes of the loops.
- Consecutive statements:
  - Just add.
- If/Else:
  - Never more than the running time of the test plus the larger of the running times of S1 and S2.

### Simple example

•Simple example. Running time?

```
// @n: a positive integer
// @returns 1^3 + 2^3 + ... + n^3
// Will return 0, if n is smaller than 1.
int SumOfCubes(int n) {
  int sum_of_cubes = 0;
  for (int i = 1; i <= n; ++i)
    sum_of_cubes += i * i * i;
  return sum_of_cubes;
}</pre>
```

29

29

### **Recursion**

```
•Factorial:
```

•Running time?

### Simple example

•Simple example. Running time?

30

### **Summary**

- Algorithmic Complexity review
- •No class Monday
- •Thursday 9/8 class:
  - Factorial, Fibonacci, Maximum subsequence problem
  - Read 3.1-3.3 for next class.
  - Verification of Enrollment Survey will go online.

32

33

### L'Hôpital's Rule

If 
$$\lim_{N \to \infty} f(N) = \infty$$
 and  $\lim_{N \to \infty} g(N) = \infty$ 

$$\lim_{N \to \infty} \frac{f(N)}{g(N)} = \lim_{N \to \infty} \frac{f'(N)}{g'(N)}$$

Where f'(N) and g'(N) are derivatives of f(n) and g(n) respectively.

**Using limits** 

In order to determine the relative growth rate of two functions f(N) and g(N) we can compute the limit:

$$\lim_{N\to\infty} f(N)/g(N)$$

If the limit is

Zero: f(N) = o(g(N))  $C \neq 0$ :  $f(N) = \Theta(g(N))$  $\infty$ : g(N) = o(f(N))

Oscillation: no relation; limit does not exist.

34

34

### L'Hopital's Rule Examples

• Example 1:  $f(N) = N^2$  and g(N) = N

$$\lim_{N \to \infty} N^2 = \infty? \text{ and } \lim_{N \to \infty} N = \infty?$$

$$\lim_{N \to \infty} \frac{N^2}{N} = \lim_{N \to \infty} \frac{f'(N) = 2N}{a'(N) = 1} = \lim_{N \to \infty} 2N = \infty$$

Therefore  $N = o(N^2)$ 

• Example 2:  $f(N) = \log N$  and g(N) = N

$$\begin{split} &\lim_{N\to\infty}\log N=\infty ? \text{ and } \lim_{N\to\infty}N=\infty ? \\ &\lim_{N\to\infty}\frac{\log N}{N}=\lim_{N\to\infty}\frac{f'(N)=1/N}{g'(N)=1}=\lim_{N\to\infty}\frac{1}{N}=0 \end{split}$$

Therefore,  $\log N = o(N)$