Computer-Aided VLSI System Design

Final Project: 5G MIMO Demodulation: QR Decomposition

Lecturer: Yi-Lin Lo

Graduate Institute of Electronics Engineering, National Taiwan University

MediaTek

MEDIATEK

Overview

 MIMO (multiple input, multiple output) is an antenna technology for wireless communications, the encode flow is as follows:

- At the receiver, we need to decode the data by reverting the encode flow
- In this project, we'll try to implement a part of simple MIMO receiver to demodulate the RX data
 - AWGN (additive white Gaussian noise) channel

System Model

The received signal y per data RE can be expressed as [1] RE: resource element

$$- \underline{y} = H\underline{\tilde{s}} + \underline{n}$$

- H: channel, \tilde{s} : transmitted symbol, n: noise
- At the 4TX * 4RX transmission, the formula can be re-written as

$$-\begin{bmatrix} \frac{y_1}{y_2} \\ \frac{y_2}{y_3} \\ \frac{y_4}{y_4} \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\ H_{21} & H_{22} & H_{23} & H_{24} \\ H_{31} & H_{32} & H_{33} & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{bmatrix} \begin{bmatrix} \frac{\tilde{s}}{\tilde{s}_1} \\ \frac{\tilde{s}_2}{\tilde{s}_3} \\ \frac{\tilde{s}_4}{\tilde{s}_4} \end{bmatrix} + \begin{bmatrix} \frac{n_1}{n_2} \\ \frac{n_3}{n_4} \end{bmatrix}$$

- The MIMO receiver is to demodulate the $\underline{\tilde{s}}$ by y, H, \underline{n} .
- $-\ \underline{\tilde{s}}_1, \underline{\tilde{s}}_2, \underline{\tilde{s}}_3$ and $\underline{\tilde{s}}_4$ are the symbol with modulation (QPSK 2-bit data)
- The output of MIMO receiver is the LLR per bit
 - LLR: log likelihood ratio, if the value is positive, it means the possibility of this bit is 0 is much higher than 1, and vice versa
 - Total 8 LLRs per data RE (4-signal * 2-bit (QPSK))

System Model

 From [1], MIMO receiver is composed of QR decomposition (QRD) and Maximum Likelihood (ML) demodulation

Tx2Rx Model

Tx2Rx Model

$$- \underline{y} = H\underline{\tilde{s}} + \underline{n}$$

- Modulator: transmitted signal $\tilde{\underline{s}}$
 - QPSK: pairs of bits are mapped to complex-valued modulation symbols
- MIMO
 - Channel: multiply by channel matrix: H
 - 4X4 matrix, complex number
 - Normal distribution random matrix
 - *H* ∼N(0,1/4)
 - AWGN: add noise n
 - adds white Gaussian noise
 - <u>n</u> ~N(0,1)

QR Decomposition (QRD)

- Motivation
 - Reduce the complexity of Maximum Likelihood (ML) demodulation

•
$$\hat{\underline{s}} = argmin_{\underline{s} \in A} (\|\underline{y} - H\underline{s}\|^2)$$
 A: a set of all combinations of 4 transmitted symbol vectors $(s_1 \sim s_4)$

With QR decomposition, a signal model can be re-written as

$$\underline{y} = H\underline{s} + \underline{n}$$

$$\underline{y} = (QR)\underline{s} + \underline{n}$$

$$Q^{H}\underline{y} = Q^{H}QR\underline{s} + Q^{H}\underline{n}$$

$$\underline{\hat{y}} = R\underline{s} + \underline{v}$$

$$\begin{cases}
Q: an orthogonal matrix, where $Q^{H}Q = I$

$$R: an upper triangular matrix$$$$

— ML demodulation question becomes $\hat{\underline{s}} = argmin_{\underline{s} \in A}(\|\hat{\underline{y}} - R\underline{s}\|^2)$

Modified Gram-Schmidt

- You can find the concept of Gram-Schmidt Procedure in Prof.
 Hung-Yi Lee's Linear Algebra course [2]
 - Starting from 21:30
- In this project, we use Modified Gram-Schmidt Procedure [3]
 - Please refer to **Numerical stability** in [3]

$$H = [h_1|h_2|h_3|h_4] = [e_1|e_2|e_3|e_4] \begin{bmatrix} h_1 \cdot e_1 & h_2 \cdot e_1 & h_3 \cdot e_1 & h_4 \cdot e_1 \\ 0 & h_2 \cdot e_2 & h_3 \cdot e_2 & h_4 \cdot e_2 \\ 0 & 0 & h_3 \cdot e_3 & h_4 \cdot e_3 \\ 0 & 0 & 0 & h_4 \cdot e_4 \end{bmatrix} = QR$$

- 1. Calculate Euclidean distance $\|\mathbf{h}_1^{(0)}\|$ // R_{11}
- 2. Calculate normalized orthogonal vector $e_1 = h_1^{(0)} / \|h_1^{(0)}\|$
- 3. Calculate inner products

$$- h_2^{(0)} \cdot e_1 = e_1^H h_2^{(0)} //R_{12}$$

$$- h_3^{(0)} \cdot e_1 = e_1^H h_3^{(0)} //R_{13}$$

$$- h_4^{(0)} \cdot e_1 = e_1^H h_4^{(0)} //R_{14} = \sqrt{a^2 + b^2} \text{ for } (a + bj)$$

Note: Euclidean distance
$$-\sqrt{a^2 + b^2} \text{ for } (a + bi)$$

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u},$$

 $Q_{11}, Q_{21}, Q_{31}, Q_{41}$

• 4. Calculate orthogonal vectors $h_2^{(1)}$, $h_3^{(1)}$, $h_4^{(1)}$ by removing its projection along h_1

$$- h_2^{(1)} = h_2^{(0)} - proj_{h_1}^{h_2^{(0)}} = h_2^{(0)} - (h_2^{(0)} \cdot e_1)e_1 = h_2^{(0)} - (R_{12})e_1$$

$$- h_3^{(1)} = h_3^{(0)} - proj_{h_1}^{h_3^{(0)}} = h_3^{(0)} - (h_3^{(0)} \cdot e_1)e_1 = h_3^{(0)} - (R_{13})e_1$$

$$- h_4^{(1)} = h_4^{(0)} - proj_{h_1}^{h_4^{(0)}} = h_4^{(0)} - (h_4^{(0)} \cdot e_1)e_1 = h_4^{(0)} - (R_{14})e_1$$

- 1. Calculate Euclidean distance $\|\mathbf{h}_{2}^{(1)}\| //R_{22}$
- 2. Calculate normalized orthogonal vector $e_2 = h_2^{(1)} / \|h_2^{(1)}\|$
- 3. Calculate inner products

$$- h_3^{(1)} \cdot e_2 = e_2^H h_3^{(1)} //R_{23}$$

$$- h_4^{(1)} \cdot e_2 = e_2^H h_4^{(1)} //R_{24}$$

• 4. Calculate orthogonal vectors $h_3^{(2)}$, $h_4^{(2)}$ by removing its projection along h_2

$$- h_3^{(2)} = h_3^{(1)} - proj_{h_2}^{h_3^{(1)}} = h_3^{(1)} - (h_3^{(1)} \cdot e_2)e_2 = h_3^{(1)} - (R_{23})e_2$$

$$- h_4^{(2)} = h_4^{(1)} - proj_{h_2}^{h_4^{(1)}} = h_4^{(1)} - (h_4^{(1)} \cdot e_2)e_2 = h_4^{(1)} - (R_{24})e_2$$

- 1. Calculate Euclidean distance $\|\mathbf{h}_3^{(2)}\| //R_{33}$
- 2. Calculate normalized orthogonal vector $e_3 = h_3^{(2)} / ||h_3^{(2)}||$
- 3. Calculate inner products

$$- h_4^{(2)} \cdot e_3 = e_3^H h_4^{(2)} //R_{34}$$

• 4. Calculate orthogonal vectors $h_4^{(3)}$ by removing its projection along h_3

$$- h_4^{(3)} = h_4^{(2)} - proj_{h_3}^{h_4^{(2)}} = h_4^{(2)} - (h_4^{(2)} \cdot e_3)e_3 = h_4^{(2)} - (R_{34})e_3$$

- 1. Calculate Euclidean distance $\|m{h}_4^{(3)}\|$ // R_{44}
- 2. Calculate normalized orthogonal vector $e_4 = h_4^{(3)} / ||h_4^{(3)}||$

Q₁₄, Q₂₄, Q₃₄, Q₄

• Received signal y_hat (\hat{y}) becomes

$$- \ \hat{\underline{y}} = Q^H \underline{y} = \begin{bmatrix} Q_{11}^* & Q_{21}^* & Q_{31}^* & Q_{41}^* \\ Q_{12}^* & Q_{22}^* & Q_{32}^* & Q_{42}^* \\ Q_{13}^* & Q_{23}^* & Q_{33}^* & Q_{43}^* \\ Q_{14}^* & Q_{24}^* & Q_{34}^* & Q_{44}^* \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} Q_{11}^* y_1 + Q_{21}^* y_2 + Q_{31}^* y_3 + Q_{41}^* y_4 \\ Q_{12}^* y_1 + Q_{22}^* y_2 + Q_{32}^* y_3 + Q_{42}^* y_4 \\ Q_{13}^* y_1 + Q_{23}^* y_2 + Q_{33}^* y_3 + Q_{43}^* y_4 \\ Q_{14}^* y_1 + Q_{24}^* y_2 + Q_{34}^* y_3 + Q_{44}^* y_4 \end{bmatrix}$$

Soft-bit calculation [1]

$$LLR: L\left(\frac{x_{k,b}|\underline{y}}{\underline{y}}\right) \approx \min_{\underline{x} \in X_{k,b,1}} \left\|\underline{y} - H\underline{s}\right\|^2 - \min_{\underline{x} \in X_{k,b,0}} \left\|\underline{y} - H\underline{s}\right\|^2 \quad \underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} (x_{1,1}, x_{1,2}) \\ (x_{2,1}, x_{2,2}) \\ (x_{3,1}, x_{3,2}) \\ (x_{4,1}, x_{4,2}) \end{bmatrix} \Leftrightarrow \underline{s}$$

 b^{th} bit in the x_k

 \mathbf{k}^{th} entry of \mathbf{x} , $X_{k,b,1}$: subsets of $\{x\}$ with the bth bit in the \mathbf{k}^{th} entry = 1

 $X_{k,b,0}$: subsets of $\{\underline{x}\}$ with the bth bit in the kth entry = 0

$$\left\| \underline{y} - H\underline{s} \right\|^{2} \Rightarrow \left\| \underline{\hat{y}} - R\underline{s} \right\|^{2} = \left(\begin{bmatrix} \widehat{y_{1}} \\ \widehat{y_{2}} \\ \widehat{y_{3}} \\ \widehat{y_{4}} \end{bmatrix} - \begin{bmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ 0 & R_{22} & R_{23} & R_{24} \\ 0 & 0 & R_{33} & R_{34} \\ 0 & 0 & 0 & R_{44} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} \right)^{2}$$

$$= \sum_{i=1}^{4} \left| \left[\widehat{y}_{i} - \sum_{j=i}^{4} R_{ij} s_{j} \right] \right|^{2}$$

- Hard-bit calculation
 - $L(x_{k,b}|y)$'s sign-bit = 0, hard-bit out = 0
 - $L(x_{k,b}|y)$'s sign-bit = 1, hard-bit out = 1

Block Diagram

Input/Output

Signal Name	I/O	Width	Simple Description
i_clk	I	1	本系統為同步於時脈正緣之同步設計。 (註: Host端採clk正緣時送資料。)
i_rst	I	1	高位準 "非" 同步(active high asynchronous)之系統重置信號。
i_trig	I	1	輸入資料有效控制訊號。當為high時i_data有效。
i_data	I	48	每筆資料包含虛部與實部({imaginary, real}),各24位元,為 {S1.22}之fixed point。
o_rd_vld	0	1	輸出資料有效之控制訊號。當為High時,表示目前輸出的 o_y_hat 與 o_r 為有效的。
o_last_data	0	1	當為High時,下個i_clk正緣i_trig為High開始送資料(200 cycles)
o_y_hat	0	160	y_hat資料輸出,包含 4 筆,每筆各 40 bits,i_y_hat [159:120] 為 y ₄ ,i_y_hat [119:80] 為 y ₃ ,依此類推,每筆資料包含虛部與實 部({imaginary, real}),各20位元,為{S3.16}之fixed point。
o_r	0	320	R資料輸出,依序為 {r ₄₄ , r ₃₄ , r ₂₄ , r ₁₄ , r ₃₃ , r ₂₃ , r ₁₃ , r ₂₂ , r ₁₂ , r ₁₁ },r _{ii} 僅包含實部,為20位元,{S3.16}之fixed point,r _{ij} 則包含虛部與實部({imaginary, real}),各20位元,同樣為{S3.16}之fixed point。

{SA.B}: fixed point with sign bit, A-bit integer, and B-bit fraction

Data format

- o_y_hat and o_r
 - Real and imaginary are both S3.16

I/O Spec

Input:

- i_trig: comes in consecutive 200 cycles, each cycle carries one element of H and y_hat
- i_data: complex number, s1.22 for each element

• Order:
$$H_{11} \rightarrow H_{12} \rightarrow H_{13} \rightarrow H_{14} \rightarrow Y_1 \rightarrow H_{21} \rightarrow H_{22} \rightarrow H_{23} \rightarrow H_{24} \rightarrow Y_2$$

 $\rightarrow H_{31} \rightarrow H_{32} \rightarrow H_{33} \rightarrow H_{34} \rightarrow Y_3 \rightarrow H_{41} \rightarrow H_{42} \rightarrow H_{43} \rightarrow H_{44} \rightarrow Y_4$

Output:

- o_rd_vld: set high (a RE of R and y_hat are ready)
- o_last_data: set high (last RE(#10) of R and y_hat are ready)
- R: s3.16 for each element
- y_hat: s3.16 for each element

Spec - Interface

Specification

- The clock frequency should be at least 200 MHz
- Only worst-case library is used for synthesis and APR.
- The slack for setup-time should be non-negative.
- No any timing violation and glitches for the gate level simulation and post-layout simulation.

Design Files

 Use the functions in the "Matlab" file to evaluate the soft LLR error rate of the files generated by RTL simulation

Change the "packet_no" to evaluate files from packets

Specifications for APR (1)

- 只需做 Marco layout 即不用包含 IO Pad 、 Bonding Pad)
- VDD 與 VSS Power Ring 寬度請各設定為 2um 只須做一組
- 不需加 Dummy Metal
- Power Stripe 務必至少加一組 · 其 VDD 、 VSS 寬度各設定為 2um
 - Power Stripe 垂直方向至少一組,水平方向可不加

Specifications for APR (2)

- 務必要加 Power Rail (follow pin)
- Core Filler 務必要加
- APR 後之 GDSII 檔案務必產生
- 完成 APR DRC/LVS 完全無誤
- 記得先產生QR_Engine.ioc,再重新讀取該檔來設定 pin position

Grading Policy

Baseline 50% + Performance 40% + Report 10%

Item	%	Description
RTL Simulation	20	Pass full pattern simulation with specs
Synthesis	10	Pass gate-level sim
APR	20	Finish APR with no DRC/LVS errors Pass post-layout simulation
Performance	40	Area x Time x Power / (Performance Gain)
Report	10	 Algorithm Hardware implementation

Violation	Penalty
Clock Frequency of Gate-level sim < 200 MHz	Performance*0.5
Gate-level sim pass but post-sim fail	Performance*0.5
Only RTL pass	Performance不評分
違反繳交格式與規則	總分-5

Grading Policy - Test Pattern

- Total 6 packets: P#1-3 (SNR 10dB) and P#4-6 (SNR 15dB)
- Another 6 packets of hidden data: P#7-9 and P#10-12

Soft LLR Error Rate (SNR)					
Soft LLR Error Rate (10 dB)	< 2 %	< 6%	< 10 %	< 13%	>= 13%
Soft LLR Error Rate (15 dB)	< 1%	< 2%	< 4%	< 6%	>= 6%
Performance Gain	1.76x	1.32x	1.14x	1.00x	fail

- For example, if a student gets
 - 1.56% in P#1, 1.12% in P#2, 1.00% in P#3, 1.20% in P#7, 1.30% in P#8, 2.01% in P#9 -> Performance Gain 1.32x
 - 3.57% in P#4, 4.13% in P#5, 1.56% in P#6, 3.50% in P#10, 2.57% in P#11, 0.56% in P#12 -> Performance Gain 1.00x
 - Take average, Performance Gain (1.32+1.00)/2 = 1.16x as final score
- Total 1000 data RE at each packet

See soft LLR error rate in appendix

Power

- Only need to calculate the total power of 10 RE
- Change the parameter "NO_10RE" to 1 in testbench

```
testfixture.v

itimescale 1ns/1ps
define CYCLE 5.0

// NO_10RE 100 (function check)
// NO_10RE 1 (power analysis)
define NO_10RE 1 // 1 packet = 1000RE
module testfixture;
```

Use the output fsdb file for power analysis of primetime

Area x Time x Power / (Performance Gain)

- Area (um²): Core area
 - 小數點以下四捨五入到兩位
- Time (ns): Simulation time of postsim
 - 整數
- Power (mW): Total power of postsim
 - 小數點以下四捨五入到一位

Grading Policy - Report

- Algorithm
 - QR decomposition algorithm introduction
 - FXP setting
- HW implementation
 - HW scheduling
 - HW block diagram
 - Area / Power / Latency report
 - Technique sharing for HW improvement

Submission Files

- Due Tuesday, Dec. 19, 23:59 (Submit to NTUCOOL)
 - No late submission
- Require data (with the required directory hierarchy):

Violation	Penalty
01_RTL	1. All design Verilog files 2. rtl.f
02_SYN	1. Area/timing reports
03_GATE	1. QR_Engine_syn.v/sdf 2. rtl.f
04_APR	1. Route database 2. QR_Engine.gds
05_POST	1. QR_Engine_pr.v/sdf 2. rtl.f
reports	1. design.spec. 2. teamXX_report.pdf

- Final project presentation (MTK experience sharing)
 - Date: Dec. 26, 2023

design.spec


```
Maximum operating frequency: (MHz)

Performance Gain:

POST-SIM cycle: (ns)

POST-SIM latency: (ns)

Post layout area: (um^2)

Post layout total power: (mW)

# of DRC violations:

Status of LVS check: (pass/fail)
```

Submission Hierarchy

Folder name: teamID_final_project. Follow the hierarchy below

```
team03 final project
            01_RTL
                     QR Engine.v (and other verilog files)
            02_SYN
                      QR Engine.area
                     QR_Engine.max.timing
                     QR Engine.min.timing
            03 GATE
                      QR_Engine_syn.sdf
                      QR Engine syn.v
            04 APR
                      route
                      route.dat
                      QR Engine.gds
            05 POST
                      QR Engine pr.sdf
                      QR Engine pr.v
            reports
                      design.spec
                      team03_report.pdf
```

Compress the folder teamID_final_project in a tar file named teamID_final_project_vk.tar (k is the number of version, k =1,2,...), e.g. team03_final_project_v1.tar

Final Project Presentation

- The top 5-6 groups have the opportunity to give a presentation on stage and will be eligible for additional bonus points
 - PowerPoint
 - Approximate 15 minutes
- Presentation Content
 - Algorithm (if you use other methods)
 - Bit-length decision
 - ...
 - Hardware Design
 - The performance improvements for steps

Reference

- [1] Parallel High Throughput Soft-output Sphere Decoder: <u>Link</u>
- [2] [Video][Hung-yi Lee] Orthogonal Basis: Gram-Schmidt process: Link
- [3] Gram-Schmidt process: Link

Appendix

Performance Evaluation Before APR

- Area (um²): Total cell area (Synthesis)
- Time (ns): Simulation time of gatesim
- Power (mW): Total power of gatesim

A x T x P

Performance Gain

Level 6	Unbelievable !!!	10 ¹¹
Level 5	Excellent !!	10 ¹²
Level 4	Great!	IC Design Engineer
Level 3	Good Design	Have skills in IC Design
Level 2		
Level 1		10 ¹⁵
Level 0		10 ¹⁶

Multiply

- 8 x 8 bits: 2.54 ns
- 12 x 12 bits: 3.11 ns
- 16 x 16 bits: 3.46 ns
- 20 x 20 bits: 3.83 ns
- 24 x 24 bits: 4.04 ns
- 28 x 28 bits: 4.23 ns
- 32 x 32 bits: 4.39 ns
- 36 x 36 bits: 4.63 ns

DesignWare: Sqrt_pipe

- Input 33 bits / Output 17 bits
- # of pipeline stage (1): 13.86 ns
- # of pipeline stage (2): 6.93 ns
- # of pipeline stage (3): 4.62 ns
- # of pipeline stage (4): 3.47 ns
- # of pipeline stage (5): 2.77 ns

Soft LLR Error Rate

- sign(DUT Soft LLR) == sign(GLD Soft LLR^{note1})
 - $|llr_{dut}| \ge |llr_{gld}|$: error rate = 0%
 - $-|llr_{dut}| < |llr_{gld}|$: error rate = $(abs(llr_{gld}) abs(llr_{dut}))/abs(llr_{gld})$
- sign(DUT Soft LLR) ~= sign(GLD Soft LLR)
 - error rate = $abs(llr_{dut} llr_{gld})/abs(llr_{gld})$

Formula

$$\begin{split} &- \text{ LLR for } x_{1,1} : L\left(x_{1,1}|\underline{y}\right) = \min_{\underline{x} \in X_{1,1,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{1,1,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{1,2} : L\left(x_{1,2}|\underline{y}\right) = \min_{\underline{x} \in X_{1,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{1,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{2,1} : L\left(x_{2,1}|\underline{y}\right) = \min_{\underline{x} \in X_{2,1,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{2,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{2,2} : L\left(x_{2,2}|\underline{y}\right) = \min_{\underline{x} \in X_{2,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{2,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{3,1} : L\left(x_{3,1}|\underline{y}\right) = \min_{\underline{x} \in X_{3,1,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{3,1,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{3,2} : L\left(x_{3,2}|\underline{y}\right) = \min_{\underline{x} \in X_{3,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{3,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{4,1} : L\left(x_{4,1}|\underline{y}\right) = \min_{\underline{x} \in X_{4,1,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{3,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{4,2} : L\left(x_{4,2}|\underline{y}\right) = \min_{\underline{x} \in X_{4,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{4,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{4,2} : L\left(x_{4,2}|\underline{y}\right) = \min_{\underline{x} \in X_{4,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{4,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{4,2} : L\left(x_{4,2}|\underline{y}\right) = \min_{\underline{x} \in X_{4,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{\underline{x} \in X_{4,2,0}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 \\ &- \text{ LLR for } x_{4,2} : L\left(x_{4,2}|\underline{y}\right) = \min_{\underline{x} \in X_{4,2,1}} \Sigma_{i=1}^4 | \left[\widehat{y_i} - \Sigma_{j=i}^4 R_{ij} s_j\right] |^2 - \min_{$$

Formula

$$- s_1 \sim s_4$$
: one of $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\mathbf{j}\right)$, $\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\mathbf{j}\right)$, $\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\mathbf{j}\right)$, and $\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\mathbf{j}\right)$

- At
$$\sum_{i=1}^{4} |[\widehat{y}_i - \sum_{j=i}^{4} R_{ij} s_j]|^2$$
 part:

• 4th entry:
$$\widehat{y_4} - R_{44}s_4 = a + bj \rightarrow a^2 + b^2$$

• 3rd entry:
$$\widehat{y_3} - R_{33}s_3 - R_{34}s_4 = c + dj \rightarrow c^2 + d^2$$

• 2nd entry:
$$\widehat{y_2} - R_{22}s_2 - R_{23}s_3 - R_{24}s_4 = e + fj \rightarrow e^2 + f^2$$

• 1st entry:
$$\widehat{y_1} - R_{11}s_1 - R_{12}s_2 - R_{13}s_3 - R_{14}s_4 = g + hj \rightarrow g^2 + h^2$$

$$-\sum_{i=1}^{4} \left| \left[\hat{y}_i - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 = a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2$$

- QPSK constellation
 - $-x_1 \sim x_4$: one of (0,0), (1,0), (0,1), and (1,1)

$$- \ s_1 \sim s_4 : \ \text{one of} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} j \right), \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} j \right), \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} j \right) \ \text{, and} \ \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} j \right)$$

- Total 256 (=4⁴) possibilities for 4-layer QPSK
- Full search with 256 possibilities

- Compute $\sum_{i=1}^4 \left| \left[\widehat{y}_i \sum_{j=i}^4 R_{ij} s_j \right] \right|^2$ for each A(path M), M=1~256
 - Bring in total 256 results to compute each bit LLR, exactly 128 results for $X_{k,b,0}$ and $X_{k,b,1}$ without overlapping

- A: a set of all combinations of s₁-s₄
 with total 4⁴ = 256 combinations
- A(M): one of the combination

