Concours Centrale - Supélec 1997

Épreuve: MATHÉMATIQUES I

Filière MP

Étant donnée une suite réelle (a_n) , on associe à tout couple (u_0,u_1) de nombres réels la suite réelle (u_n) définie à partir de ces deux valeurs initiales u_n et u_1 par la relation (\Re) :

$$u_{n+1} = u_n + a_{n-1}u_{n-1}$$
 où $n \ge 1$

Partie I - Étude de la convergence de la suite (un)

I.A. On suppose dans la sous partie I.A que la suite (a_n) est à termes positifs et que $u_n \ge 0$ et $u_1 > 0$.

I.A.1) Étudier, pour $n \ge 1$, le sens de variation de la suite (u_n) .

LA.2) Établir, pour $n \ge 2$, l'inégalité $u_{n+1} \le u_n \exp(a_{n-1})$.

En déduire que si la série Σa_n converge, alors la suite (u_n) converge aussi.

I.A.3) Établir réciproquement que si la suite (u_n) 'converge, alors la série Σa_n est convergente.

I.B - Dans la sous partie I.B, on suppose la série Σa_n absolument convergente et l'on considère la suite (v_n) définie par $v_0 = |u_0|$, $v_1 = |u_1|$ et, pour $n \ge 1$, $v_{n+1} = v_n + |a_{n-1}| v_{n-1}$

I.B.1) Comparer $|u_n|$ et v_n .

I.B.2) Étudier la convergence absolue de la série $\Sigma(u_{n+1}-u_n)$ et la convergence de la suite (u_n) .

I.C - On suppose dans la question I.C que $a_n = a^n$, a étant un réel de l'intervalle $\{0,1\}$, et que la limite L de la suite (u_n) est non nulle. Déterminer un équivalent de $u_{k+1}-u_k$ et en déduire un équivalent de $L-u_n$ en interprétant $L-u_n$ comme reste d'ordre n de la série $\Sigma(u_{k+1}-u_k)$ (on citera précisément le théorème utilisé).

I.D - On suppose dans la sous partie I.D que

$$a_n = \frac{1}{(n+1)(n+2)}$$

et que la limite L de la suite (u_n) est non nulle.

I.D.1) Prouver que u_{k+1} u_k est équivalent à

$$L \int_{k}^{k+1} \frac{dt}{t^{2}}$$

et en déduire que L u_n est équivalent à $\frac{L}{n}$.

1.D.2) On définit la suite (ε_n) , en posant pour $n \ge 1$

$$u_n = L - \frac{L}{n} + \varepsilon_n.$$

Déterminer de même un équivalent de $\varepsilon_{n+1} - \varepsilon_n$, puis de ε_n , et en déduire le développement limité à l'ordre 2 de u_n par rapport à $\frac{1}{n}$.

Partie II - Étude des suites (v_n) de limite nulle

Dans toute cette partie, on suppose les a_n strictement positifs pour tout entier naturel n et la série Σa_n convergente. Toute suite (u_n) de premiers termes u_0 et u_1 et définie par la relation (\Re) est donc convergente . On note $L(u_0,u_1)$ sa limite.

II.A - Montrer que l'application

$$L: \mathbb{R}^2 \to \mathbb{R}, (u_0, u_1) \mapsto L(u_0, u_1)$$

est linéaire.

Dans toute la suite de cette partie, on supposera le couple (u_0,u_1) distinct du couple (0,0).

 $\mathbf{H.B}$ - On note N le noyau de l'application linéaire L.

II.B.1) Montrer que s'il existe un indice $m \in \mathbb{N}$ tel que $u_m = 0$, alors la limite $L(u_0, u_1)$ de la suite (u_n) est non nulle.

II.B.2) Déterminer la dimension du sous-espace N.

II.C - On dira que la suite (u_n) est alternée si $u_n u_{n+1} < 0$ pour tout indice n.

II.C.1) Montrer que le couple de récls (u_0, u_1) est dans N si et seulement si la suite (u_n) de premiers termes u_0 et u_1 est alternée.

H.C.2) Le rapport $r_0 = \langle u_1 / u_0 \rangle$ dépend-t-il de l'élément $\langle u_0, u_1 \rangle$ choisi dans $N \setminus \{0,0\}$?

CONCOURS CENTRALE

SUP'ELEC

Mathématiques

II.D - On suppose dans cette question que le couple (u_0, u_1) appartient à N, donc que la suite (u_{-}) est alternée. Pour tout entier $n \ge 0$, on pose

$$r_n = -\frac{u_{n+1}}{u_n}.$$

II.D.1) Prouver que, pour tout entier $n \ge 1$, on a

$$r_n = -1 + \frac{a_{n-1}}{r_{n-1}}$$
 et $0 < r_n < a_n$.

II.D.2) En déduire que la suite (r_n) converge vers une limite que l'on précisera.

II.D.3) Étudier enfin la convergence des séries Σr_n , Σu_n et $\Sigma |u_n|$.

Partie III - Application à la résolution d'une équation différentielle

On considère dans cette partie l'équation différentielle (E):

$$(x-1)y'' + 2y' + y = 0$$

III.A - Déterminer les solutions de (E) développables en série entière pour |x| < 1, puis montrer que toutes les solutions de (E) sur |-1,+1| sont développables en série entière sur cet intervalle.

III.B - Montrer que, parmi ces solutions, il existe une droite vectorielle de solutions développables en série entière sur R.

III.C - Soit f une solution de (E) développable en série entière sur [-1, +1], mais pas sur R. En utilisant les résultats de I.D, montrer que t admet pour développement asymptotique quand x tend vers 1 à gauche :

$$f(x) = \frac{L}{1-x} + L \ln(1-x) + g(x)$$

où L est un réel non nul et q une fonction admettant une limite finie lorsque x tend vers 1 à gauche.

Partie IV - Étude du novau N de l'application L

Dans toute cette partie, on suppose les a_n strictement positifs pour tout indice n et la série Σa_n convergente. Pour tout entier naturel n, on considère les fonctions

$$f_n: [0, +\infty[\rightarrow [0, +\infty[, x \mapsto f_n(x) = \frac{a_n}{1+x}]]$$

$$g_n = f_0 \circ f_1 \circ \cdots \circ f_n$$

On pose $p_n = g_n(0)$.

Filière MP

Par ailleurs r_0 est l'unique réel tel que, pour tout u_1 non nul, le couple $(-r_0u_1, u_1)$ est élément de N (cf. II.D).

IV.A - Établir que f_n et g_n sont monotones, dérivables, et que, pour $x \ge 0$, $|g_n'(x)| \leq a_0 a_1 \cdots a_n$.

En déduire que, pour tout $n \ge 1$, $|p_n - p_{n-1}| \le a_0 a_1 \cdots a_n$.

IV.B - Établir que, pour tout entier $n \ge 1$, r_0 est compris entre p_{n+1} et p_n . En déduire que r_0 est limite de la suite (p_n) .

IV.C - La suite (a_n) et un réel $\varepsilon > 0$ étant donnés, écrire en français ou dans un langage de programmation un algorithme permettant d'obtenir une valeur approchée à moins de ε près de r_0 .

IV.D - Déterminer le nombre r_0 à 10^{-5} près lorsque

$$a_n = \frac{1}{(n+1)(n+2)}.$$

••• FIN •••