Deep Learning Architectures

Mohsen Kiskani

April 14, 2019

1 Description

1.1 Basic Formulas

$Conv2D(C_i, C_o, K, S = 1, P = 0, d = 1)$	(1
MaxPool2D(K, S = None, P = 0, d = 1)	(2
MaxPool2d and Conv2D $ ightarrow L_{out} = \lfloor \frac{L_{in} + 2P - d(K-1) - 1}{S} + 1 \rfloor$	(3
$\operatorname{Conv2D}(C_i, C_o, 1) \to L_{out} = L_{in}$	(4
$Conv2D(C_i, C_o, 3, 1, 1) \to L_{out} = L_{in}$	(5
Tensor representation $\rightarrow N \times C \times H \times W$	(6

Figure 1: Bottleneck layer 1 with downsample unit

Figure 2: Bottleneck layer 1 without downsample unit

Figure 3: Bottleneck layer 2 with downsample unit

Figure 4: Bottleneck layer 2 without downsample unit

Figure 5: Bottleneck layer 3 with downsample unit

Figure 6: Bottleneck layer 3 without downsample unit

Figure 7: Bottleneck layer 4 with downsample unit

Figure 8: Bottleneck layer 4 without downsample unit

Figure 9: ResNet-50 architecture used.

Figure 10: Architecture to concatenate ResNet outputs.

Figure 11: Final network layers.

Figure 12: Dice loss calculation

2 Loss

2.1 Geometry loss calculation

Both predicted and true Geometry Score tensors of size $14 \times 5 \times 128 \times 128$ are split into 4 tensors each with sizes $14 \times 1 \times 128 \times 128$. These tensors are respectively called $d_{gt}^1, d_{gt}^2, d_{gt}^3, d_{gt}^4, \theta_{gt}$ and $d_{pr}^1, d_{pr}^2, d_{pr}^3, d_{pr}^4, \theta_{pr}$. Then the following element-wise operations are done to find tensors Area_{gt} and Area_{pr} of sizes $14 \times 1 \times 128 \times 128$,

$$Area_{gt} = (d_{qt}^1 + d_{qt}^3) \odot (d_{qt}^2 + d_{qt}^4)$$
(7)

$$Area_{pr} = (d_{pr}^1 + d_{pr}^3) \odot (d_{pr}^2 + d_{pr}^4).$$
(8)

To find the intersection area tensor, the following element-wise tensor operations are used which result is tensors w_{union} and h_{union} of sizes $14 \times 1 \times 128 \times 128$,

$$w_{\text{union}} = \min(d_{qt}^2, d_{pr}^2) + \min(d_{qt}^4, d_{pr}^4) \tag{9}$$

$$h_{\text{union}} = \min(d_{at}^1, d_{vr}^1) + \min(d_{at}^3, d_{vr}^3). \tag{10}$$

This allows us to compute the area intersection and union tensors of size $14 \times 1 \times 128 \times 128$ as follows,

$$Area_{intersection} = w_{union} \odot h_{union}$$
 (11)

$$Area_{union} = Area_{qt} + Area_{pr} - Area_{intersection}.$$
 (12)

Using these areas and based on element-wise tensor operations, the loss tensor L_{AABB} of size $14 \times 1 \times 128 \times 128$ is calculated as follows,

$$L_{\text{AABB}} = -\log\left(\frac{\text{Area}_{\text{intersection}} + 1}{\text{Area}_{\text{union}} + 1}\right). \tag{13}$$

The angle loss tensor L_{θ} and the overall loss tensor L_{q} of sizes $14 \times 1 \times 128 \times 128$ are also calculated as follows,

$$L_{\theta} = 1 - \cos\left(\theta_{pr} - \theta_{tr}\right) \tag{14}$$

$$L_g = L_{\text{AABB}} + 20L_{\theta}. \tag{15}$$

Finally, the overall loss value is calculates as

$$l = \text{torch.mean}(L_q \odot y_{tr}) + L_{\text{classification}}$$
(16)