Model Evaluation

Choosing the **best** model

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

- Task: Predict a store's daily ice cream sales based on outside temperature.
- We only have recorded data from 10 days:

	Day	1	2	3	4	5	6	7	8	9	10
x	Temperature (in °C)	12	33.9	30.1	14.1	4.6	7.3	3.1	29.2	21.1	27.2
y	Ice Cream Sales (in \$)	182.2	445.1	394	167.7	53.7	66.8	114.8	344.2	179.5	267.7

- Task: Predict a store's daily ice cream sales based on outside temperature.
- We only have recorded data from 10 days:

	Day	1	2	3	4	5	6	7	8	9	10
x	Temperature (in °C)	12	33.9	30.1	14.1	4.6	7.3	3.1	29.2	21.1	27.2
у	Ice Cream Sales (in \$)	182.2	445.1	394	167.7	53.7	66.8	114.8	344.2	179.5	267.7

We must compare two models:

$$\circ h_1(x) = w_1 x + w_0$$

$$b_2(x) = w_5' x^5 + w_4' x^4 + \dots + w_1' x + w_0$$

Which model is better?

• h_2 , according to training loss.

Which model is better?

• h_2 , according to training loss.

 But when we evaluate on other points, h₁ performs much better.

Which model is better?

• h_2 , according to training loss.

But when we evaluate on other points, h_1 performs much better.

In practice, we don't always get to do this.

Data Splitting Strategies

• In practice, we don't get to see the *true distribution* and we don't always get access to *more samples* to evaluate on.

- In practice, we don't get to see the *true distribution* and we don't always get access to *more samples* to evaluate on.
- As we have seen, training error is a very optimistic estimate of true error.
 - It will almost always be lower than true error.
 - It will favor more complex models, which tend to overfit.

- In practice, we don't get to see the *true distribution* and we don't always get access to *more samples* to evaluate on.
- As we have seen, training error is a very optimistic estimate of true error.
 - It will almost always be lower than true error.
 - It will favor more complex models, which tend to overfit.
- One possibility to improve the estimate is the Hold-out method:

Randomly select some points from the training data.

Problems with using a single train-test split

- Some algorithms have hyperparameters, which control the training process.
 - \circ e.g. Parameter λ in Ridge Regression
- Repeatedly using the same train test sets when trying different hyperparameters can "wear out" the test set.
 - Overfitting in hyperparameter space.

Problems with using a single train-test split

- Some algorithms have hyperparameters, which control the training process.
 - \circ e.g. Parameter λ in Ridge Regression
- Repeatedly using the same train test sets when trying different hyperparameters can "wear out" the test set.
 - Overfitting in hyperparameter space.
- We can improve the error estimate by using a separate validation set for hyperparameter tuning

Training-Validation-Test split

- Sometimes we don't have enough data to "afford" a validation set.
 - The remaining training set would simply be too small to fit a model on.

- Sometimes we don't have enough data to "afford" a validation set.
 - The remaining training set would simply be too small to fit a model on.

- Split the data into k equal parts (a.k.a. *folds*)
- Repeat the train test process k times, each time using one fold for testing and the rest for training.
- Average out the errors.

- Sometimes we don't have enough data to "afford" a validation set.
 - The remaining training set would simply be too small to fit a model on.

- Split the data into k equal parts (a.k.a. folds)
- Repeat the train test process k times, each time using one fold for testing and the rest for training.
- Average out the errors.
- Even if we have enough data for a validation set, we can obtain a better estimate of true error this way.
 - If we have enough computing power.

Summary

- Using training error for performance evaluation is usually a bad idea.
 - It is a very optimistic estimate of true error and it favors models which overfit.
- Holding out data for testing gives a much better estimate.
- However, if we use a single test set for *hyperparameter selection*, we might end up reducing the quality of the estimation.
 - Using a separate **validation set** for this is a much better idea.
- If we don't have enough data or if we have enough computing power, K-fold Cross-Validation gives an even better estimate.
 - If we use each sample as a fold, we get **Leave-One-Out Cross Validation**

Performance Metrics for Classification

Confusion Matrix

 A confusion matrix is a table which describes the performance of a classification model by displaying how often classes get confused.

Confusion Matrix

 A confusion matrix is a table which describes the performance of a classification model by displaying how often classes get confused.

Accuracy

 Accuracy is the fraction (or percentage) of items for which the model predicted the correct class.

Accuracy =
$$\frac{21}{28}$$
 = 0.75 = 75%

mass

Problems with Accuracy

- Imagine that we must train a classifier to detected if a patient has an extremely rare disease.
 - From 1000 patients, only 20 have the disease.
 - This is not just our dataset, this is the true distribution.

Problems with Accuracy

- Imagine that we must train a classifier to detected if a patient has an extremely rare disease.
 - From 1000 patients, only 20 have the disease.
 - This is not just our dataset, this is the *true distribution*.
- A classifier which predicts that nobody has the disease is 98% accurate.
 - Pretty good, right?
 - Not really... What is the problem?

Problems with Accuracy

- Accuracy does not capture several aspects:
 - The dataset is very imbalanced.
 - One class is much more common than the other.
 - The 2 classes are conceptually different.
 - One is "positive", it represents what we are looking for.
 - One is "negative", it represent the default state.
 - There are 2 types of errors, which may differ in terms of severity.
 - Type 1 error ("False Positive")
 - Type 2 error ("False Negative")

Depending on the problem, one might more serious than the other.

- When there is a positive class or classes are imbalanced, precision and recall are more informative than accuracy.
 - **Precision** is the fraction of *selected* items which are *relevant*.
 - **Recall** is the fraction of *relevant* items which are *selected*.

Relevant = *Positive* Selected = *Predicted Positive*

- When there is a positive class or classes are imbalanced, precision and recall are more informative than accuracy.
 - **Precision** is the fraction of *selected* items which are *relevant*.
 - **Recall** is the fraction of *relevant* items which are *selected*.

Relevant = *Positive* Selected = *Predicted Positive*

- When there is a positive class or classes are imbalanced, precision and recall are more informative than accuracy.
 - **Precision** is the fraction of *selected* items which are *relevant*.
 - **Recall** is the fraction of *relevant* items which are *selected*.

Relevant = Positive Selected = Predicted Positive

- When there is a positive class or classes are imbalanced, precision and recall are more informative than accuracy.
 - **Precision** is the fraction of *selected* items which are *relevant*.
 - **Recall** is the fraction of *relevant* items which are *selected*.

Relevant = Positive Selected = Predicted Positive

Precision =
$$\frac{3}{5}$$
 = 0.6 = 60%
Recall = $\frac{3}{8}$ = 0.375 = 37.5%

 \circ **F**₁ **score** is the harmonic mean of precision and recall.

Summary

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} = \frac{2(\text{Precision} * \text{Recall})}{\text{Precision} + \text{Recall}}$$

Keywords

