Homework 3

Exercise 1 (Multigrid)

For this problem, you may use the code from the multigrid notebook. Modify the V-cycle setup to answer the following questions. Try to explain your results.

- (a) How does the accuracy change as we change the number of Jacobi iterations performed at each step?
- (b) Is it better to use a finer grid, or more Jacobi iterations if we want to improve the solution accuracy?
- (c) What happens if we don't perform any Jacobi iterations in the "up" part of the V-cycle?
 - (d) What happens if we don't recurse all the way down to the 1-point grid?
- (e) What happens if we use the original Jacobi method, or some other value of ω ?

Exercise 2 (Lipschitz constant for an ODE)

Let $f(u) = \log(u)$.

- (a) Determine the best possible Lipschitz constant for this function over $2 \le u < \infty$.
- (b) Is f(u) Lipschitz continuous over $0 < u < \infty$?
- (c) Consider the initial value problem

$$u'(t) = \log(u(t)),$$

$$u(0) = 2.$$

Explain why we know that this problem has a unique solution for all $t \geq 0$ based on the existence and uniqueness theory described in Section 5.2.1. (Hint: Argue that f is Lipschitz continuous in a domain that the solution never leaves, though the domain is not symmetric about $\eta = 2$ as assumed in the theorem quoted in the book.)

Exercise 3 (Lipschitz constant for a system of ODEs)

Consider the system of ODEs

$$u_1' = 3u_1 + 4u_2,$$

$$u_2' = 5u_1 - 6u_2.$$

Determine the Lipschitz constant for this system in the max-norm $\|\cdot\|_{\infty}$ and the 1-norm $\|\cdot\|_{1}$. (See Appendix A.3.)

Exercise 4 (matrix exponential form of solution)

The initial value problem

$$v''(t) = -4v(t),$$
 $v(0) = v_0,$ $v'(0) = v'_0$

has the solution $v(t) = v_0 \cos(2t) + \frac{1}{2}v'_0 \sin(2t)$. Determine this solution by rewriting the ODE as a first order system u' = Au so that $u(t) = e^{At}u(0)$ and then computing the matrix exponential using (D.30) in Appendix D.

Exercise 5 Well-posedness of SIR model

Consider the SIR model

$$x'(t) = -\beta xy$$

$$y'(t) = \beta xy - \gamma y$$

$$z'(t) = \gamma y,$$

where x, y, z represent susceptible, infected, and removed proportions of the population. Let initial conditions x(0), y(0), z(0) be given such that x(0) + y(0) + z(0) = 1. Since x + y + z = 1 for all time, we can study the system by considering just the first two differential equations and setting z(t) = 1 - x(t) - y(t).

Consider the domain $D = \{(x, y) : x \ge 0, y \ge 0, x + y \le 1\}$. Show that the SIR model has a unique solution for all t > 0 whenever $(x(0), y(0)) \in D$, as follows:

- (i) Show that if $(x(0), y(0)) \in D$, then $(x(t), y(t)) \in D$ for all time. Hint to: to show that x, y remain non-negative, consider the behavior of the SIR system when x = 0 or y = 0. Be sure to state your reasoning clearly and carefully.
 - (ii) Show that the function

$$f: \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} -\beta xy \\ \beta xy - \gamma y \end{bmatrix}$$

is Lipschitz continuous for $(x, y) \in D$.