INFO 8000- Final Project

Chandra Dhakal December 12, 2018

```
rm(list=ls())
cat("\14")
wd<-getwd()
setwd(wd)
event<-read.csv("event.csv")
event<-na.omit(event)</pre>
newdata <- event[which(event$ebt_snap=='1'),]</pre>
event1<-aggregate(newdata[, 2:4], list(newdata$hhnum), sum)
names (event1) [1] <-"hhnum"
# Household data set
hh<-read.csv("household.csv")
hh<-na.omit(hh)
hh1 <- hh[ which(hh$snapnowhh=='1' & hh$snapnowreport ==1),]
#joining two data set by hhnum
#finaldata<-hh1[hh1$hhnum%in%event1$Group.1,]
#event1[!event1$Group.1%in%hh1$hhnum,]
final.data<-merge(hh1, event1)</pre>
# remove duplicate household if any..
final.data<-final.data[!duplicated(final.data$hhnum), ]</pre>
#recoding region variable
final.data$region[final.data$region==1]="Northeast"
final.data$region[final.data$region==2]="Midwest"
final.data$region[final.data$region==3]="South"
final.data$region[final.data$region==4]="West"
#recoding rural variable
final.data$rural[final.data$rural==1]="Rural"
final.data$rural[final.data$rural==0]="Urban"
# recoding adjtfscat variable
final.data$adltfscat[final.data$adltfscat==1]="High"
final.data$adltfscat[final.data$adltfscat==2]="Marginal"
final.data$adltfscat[final.data$adltfscat==3]="Low"
```

```
final.data$adltfscat[final.data$adltfscat==4]="very low"
```

I categorized total weekly food expenditure on food at home based on Official USDA Food Plans, based on weekly food expenditure for a family of 4 (which is average household size in our data) is \$129.5. I am interested to examine the proportion of hosehold that have met the food expenditure requirement on the basis of Thrifty Food Plan and Dietary Guidelines of america.

```
final.data$total.paid <- ifelse(final.data$totalpaid > 129,
                          c("1"), c("0"))
# converting numeric variable into factor
final.data$total.paid<-as.factor(final.data$total.paid)</pre>
final.data$region<-as.factor(final.data$region)</pre>
final.data$hhsize<-as.factor(final.data$hhsize)</pre>
final.data$rural <-as.factor(final.data$rural)</pre>
final.data$targetgroup<-as.factor(final.data$targetgroup)</pre>
final.data$selfemployhh<-as.factor(final.data$selfemployhh)</pre>
final.data$housingown<-as.factor(final.data$housingown)</pre>
final.data$liqassets<-as.factor(final.data$liqassets)</pre>
final.data$anyvehicle<-as.factor(final.data$anyvehicle)</pre>
final.data$foodsufficient<-as.ordered(final.data$foodsufficient)</pre>
final.data$grocerylistfreq<-as.factor(final.data$grocerylistfreq)</pre>
final.data$anyvegetarian<-as.factor(final.data$anyvegetarian)</pre>
final.data$nutritioneduc<-as.factor(final.data$nutritioneduc)</pre>
final.data$eathealthyhh<-as.factor(final.data$eathealthyhh)</pre>
final.data$adltfscat<-as.ordered(final.data$adltfscat)</pre>
final.data$dietstatuspr<-as.factor(final.data$dietstatuspr)
```

Exploratory data analysis

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.1

g2<-ggplot(final.data) +
   geom_bar(aes(primstoresnaptype,totalpaid, fill =primstoresnaptype), stat = "summary", fun.y = "mean")
g2 + labs(title = "Total expenditure by store types", xlab="Store type", ylab="Weekly food expenditure")</pre>
```

Total expenditure by store types


```
g3<-ggplot(data =final.data) +
  geom_bar(aes(region,ebt_snapamt, fill=region), stat = "summary", fun.y = "mean")
g3 + labs(x="Region ", y="Weekly food expenditure",title = "Food expenditure by regions")</pre>
```

Food expenditure by regions


```
g4<-ggplot(data =final.data) +
  geom_bar(aes(rural,totalpaid, fill=rural), stat = "summary", fun.y = "mean")
g4 + labs(x="Rural ", y="Weekly food expenditure",title = "Food expenditure by rural and urban region")</pre>
```

Food expenditure by rural and urban region


```
g5<-ggplot(final.data, aes(x=adltfscat, y=totalpaid, group=rural)) +
geom_line(aes(color=rural))+
geom_point(aes(color=rural))
g5+labs(x="Food security ", y="Weekly food expenditure",title = "Food expenditure with food security l</pre>
```

Food expenditure with food security levels


```
g6<-ggplot(data =final.data) +
  geom_bar(aes(hhsize,totalpaid, fill=hhsize), stat = "summary", fun.y = "mean")
g6 + labs(x="HH size ", y="Weekly food expenditure",title = "Food expenditure by HH size")</pre>
```


Predicting model using mechine learning

```
library(caret)
## Warning: package 'caret' was built under R version 3.5.1
## Loading required package: lattice
library(randomForest)
## Warning: package 'randomForest' was built under R version 3.5.1
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
require(e1071)
## Loading required package: e1071
## Warning: package 'e1071' was built under R version 3.5.1
```

```
set.seed(1337)
# tainControl function
train_control<-trainControl(method = "cv", number=10)</pre>
# create an index to partition data
index <- createDataPartition(final.data$total.paid, p=0.75, list=FALSE)</pre>
# spliting data in to training and testing groups
trainSet <- final.data[ index,] # 75 of data as training data and remaining test data.
testSet <- final.data[-index,]</pre>
#Feature selection using rfe in caret
#control <- rfeControl(functions = rfFuncs, method = "repeatedcv", repeats = 3, verbose = FALSE)
outcomeName<-'total.paid'
#Feature selection using rfe in caret
control <- rfeControl(functions = rfFuncs,</pre>
                      method = "repeatedcv",
                      repeats = 3,
                      verbose = FALSE)
predictors<-names(trainSet)[!names(trainSet) %in% outcomeName]</pre>
spend Pred Profile <- rfe(trainSet[,predictors], trainSet[,outcomeName],</pre>
                         rfeControl = control)
spend Pred Profile
## Recursive feature selection
## Outer resampling method: Cross-Validated (10 fold, repeated 3 times)
## Resampling performance over subset size:
##
   Variables Accuracy Kappa AccuracySD KappaSD Selected
##
##
           4
              0.9977 0.9942 0.006014 0.01498
           8
              0.9965 0.9914 0.008384 0.02063
##
              ##
           16
              0.9959 0.9897 0.008754 0.02187
##
           29
##
## The top 4 variables (out of 4):
##
      totalpaid, ebt_snapamt, itemstot, povthresh_hh
```

Total potential predictors

predictors<-c("hhsize", "region", "rural", "itemstot", "anyvegetarian", "inchhavg_r", "liqassets", "selfemployhh", "anyvehicle", "largeexp", "adltfscat", "foodsufficient", "dietstatuspr", "grocerylistfreq", "primstoresnaptype", "primstoredist_d", "nutritioneduc")

Using several combinations of explatory variables here I finalize following variables in the final model.

predictors<-c("hhsize", "itemstot", "inchhavg_r", "grocerylistfreq", "primstoredist_d") names(getModelInfo())</pre>

```
[1] "ada"
                                                         "AdaBoost.M1"
                                 "AdaBag"
                                 "amdai"
##
     [4] "adaboost"
                                                         "ANFTS"
##
     [7] "avNNet"
                                 "awnb"
                                                         "awtan"
                                                         "bagEarthGCV"
##
    [10] "bag"
                                 "bagEarth"
    [13] "bagFDA"
                                 "bagFDAGCV"
                                                         "bam"
##
##
    [16] "bartMachine"
                                 "bayesglm"
                                                         "binda"
##
    [19] "blackboost"
                                 "blasso"
                                                         "blassoAveraged"
##
   [22] "bridge"
                                 "brnn"
                                                         "BstLm"
   [25] "bstSm"
                                 "bstTree"
                                                         "C5.0"
##
    [28] "C5.0Cost"
                                                         "C5.OTree"
##
                                 "C5.0Rules"
    [31] "cforest"
                                 "chaid"
##
                                                         "CSimca"
##
    [34] "ctree"
                                 "ctree2"
                                                         "cubist"
##
    [37] "dda"
                                 "deepboost"
                                                         "DENFIS"
    [40] "dnn"
                                                         "dwdPoly"
##
                                 "dwdLinear"
                                                         "elm"
##
   [43] "dwdRadial"
                                 "earth"
##
   [46] "enet"
                                 "evtree"
                                                         "extraTrees"
    [49] "fda"
##
                                 "FH.GBML"
                                                         "FIR.DM"
                                 "FRBCS.CHI"
##
    [52] "foba"
                                                         "FRBCS.W"
##
    [55] "FS.HGD"
                                 "gam"
                                                         "gamboost"
                                                         "gaussprLinear"
##
    [58] "gamLoess"
                                 "gamSpline"
                                                         "gbm_h2o"
##
    [61] "gaussprPoly"
                                 "gaussprRadial"
##
    [64] "gbm"
                                 "gcvEarth"
                                                         "GFS.FR.MOGUL"
##
   [67] "GFS.LT.RS"
                                 "GFS.THRIFT"
                                                         "glm.nb"
    [70] "glm"
##
                                 "glmboost"
                                                         "glmnet_h2o"
                                 "glmStepAIC"
##
    [73] "glmnet"
                                                         "gpls"
##
    [76] "hda"
                                 "hdda"
                                                         "hdrda"
                                                         "J48"
##
   [79] "HYFIS"
                                 "icr"
   [82] "JRip"
                                                         "kknn"
##
                                 "kernelpls"
##
    [85] "knn"
                                 "krlsPoly"
                                                         "krlsRadial"
##
   [88] "lars"
                                 "lars2"
                                                         "lasso"
   [91] "lda"
                                 "lda2"
                                                         "leapBackward"
   [94] "leapForward"
                                 "leapSeq"
                                                         "Linda"
##
   [97] "lm"
                                                         "LMT"
##
                                 "lmStepAIC"
## [100] "loclda"
                                 "logicBag"
                                                         "LogitBoost"
## [103] "logreg"
                                                         "lssvmPoly"
                                 "lssvmLinear"
                                 "lvq"
                                                         "M5"
## [106] "lssvmRadial"
## [109] "M5Rules"
                                                         "mda"
                                 "manb"
## [112] "Mlda"
                                 "mlp"
                                                         "mlpKerasDecay"
## [115] "mlpKerasDecayCost"
                                 "mlpKerasDropout"
                                                         "mlpKerasDropoutCost"
## [118] "mlpML"
                                 "mlpSGD"
                                                         "mlpWeightDecay"
## [121] "mlpWeightDecayML"
                                                         "msaenet"
                                 "monmlp"
## [124] "multinom"
                                 "mxnet"
                                                         "mxnetAdam"
## [127] "naive_bayes"
                                 "nb"
                                                         "nbDiscrete"
                                                         "nnet"
## [130] "nbSearch"
                                 "neuralnet"
## [133] "nnls"
                                 "nodeHarvest"
                                                         "null"
## [136] "OneR"
                                 "ordinalNet"
                                                         "ordinalRF"
## [139] "ORFlog"
                                 "ORFpls"
                                                         "ORFridge"
## [142] "ORFsvm"
                                 "ownn"
                                                         "pam"
## [145] "parRF"
                                 "PART"
                                                         "partDSA"
## [148] "pcaNNet"
                                 "pcr"
                                                         "pda"
```

```
## [151] "pda2"
                                                        "PenalizedLDA"
                                 "penalized"
## [154] "plr"
                                 "pls"
                                                        "plsRglm"
## [157] "polr"
                                                        "PRIM"
                                 "ppr"
## [160] "protoclass"
                                 "qda"
                                                        "QdaCov"
## [163] "qrf"
                                 "qrnn"
                                                        "randomGLM"
## [166] "ranger"
                                 "rbf"
                                                        "rbfDDA"
## [169] "Rborist"
                                 "rda"
                                                        "regLogistic"
                                 "rf"
## [172] "relaxo"
                                                        "rFerns"
## [175] "RFlda"
                                 "rfRules"
                                                        "ridge"
## [178] "rlda"
                                 "rlm"
                                                        "rmda"
## [181] "rocc"
                                 "rotationForest"
                                                        "rotationForestCp"
## [184] "rpart"
                                 "rpart1SE"
                                                        "rpart2"
                                 "rpartScore"
                                                        "rqlasso"
## [187] "rpartCost"
                                 "RRF"
## [190] "rqnc"
                                                        "RRFglobal"
                                 "RSimca"
## [193] "rrlda"
                                                        "rvmLinear"
                                                        "SBC"
## [196] "rvmPoly"
                                 "rvmRadial"
## [199] "sda"
                                 "sdwd"
                                                        "simpls"
## [202] "SLAVE"
                                 "slda"
                                                        "smda"
## [205] "snn"
                                 "sparseLDA"
                                                        "spikeslab"
                                                        "stepQDA"
## [208] "spls"
                                 "stepLDA"
                                 "svmBoundrangeString"
## [211] "superpc"
                                                        "svmExpoString"
## [214] "svmLinear"
                                 "svmLinear2"
                                                        "svmLinear3"
## [217] "svmLinearWeights"
                                                        "svmPoly"
                                 "svmLinearWeights2"
## [220] "svmRadial"
                                 "svmRadialCost"
                                                        "svmRadialSigma"
## [223] "svmRadialWeights"
                                 "svmSpectrumString"
                                                        "tan"
## [226] "tanSearch"
                                 "treebag"
                                                        "vbmpRadial"
                                 "vglmContRatio"
                                                        "vglmCumulative"
## [229] "vglmAdjCat"
## [232] "widekernelpls"
                                 "WM"
                                                        "wsrf"
## [235] "xgbDART"
                                 "xgbLinear"
                                                        "xgbTree"
## [238] "xvf"
```

Random Forest

##

```
model rf<-train(trainSet[,predictors],trainSet[,outcomeName],method='rf')</pre>
print(model_rf)
## Random Forest
##
## 576 samples
##
     5 predictor
##
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 576, 576, 576, 576, 576, 576, ...
## Resampling results across tuning parameters:
##
##
     mtry Accuracy
                      Kappa
##
           0.8855207
                      0.7024821
##
           0.8818996
                      0.6946472
     3
##
     5
           0.8712058 0.6670896
```

```
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
confusionMatrix(model_rf)
## Bootstrapped (25 reps) Confusion Matrix
## (entries are percentual average cell counts across resamples)
##
##
            Reference
## Prediction 0 1
          0 68.1 7.0
           1 4.5 20.4
##
##
## Accuracy (average): 0.8852
#Creating grid
#Checking variable importance for GLM
varImp(object=model_rf)
## rf variable importance
##
##
                  Overall
## itemstot
                 100.000
                  10.868
## inchhavg_r
## primstoredist_d 9.934
## hhsize
                    8.243
## grocerylistfreq 0.000
#rf variable importance
plot(model_rf)
```


plot(varImp(object=model_rf), main="Random forest - Variable Importance")

Random forest - Variable Importance


```
#Predictions
predictions_rf<-predict.train(object=model_rf,testSet[,predictors],type="raw")</pre>
table(predictions_rf)
## predictions_rf
##
     0
        1
## 146 44
# Confusion matrix
confusionMatrix(predictions_rf,testSet[,outcomeName])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
##
            0 132 14
##
            1 7 37
##
                  Accuracy : 0.8895
##
                    95% CI : (0.836, 0.9303)
##
       No Information Rate: 0.7316
##
##
       P-Value [Acc > NIR] : 7.679e-08
##
                     Kappa: 0.7058
##
##
   Mcnemar's Test P-Value: 0.1904
##
##
               Sensitivity: 0.9496
```

```
##
              Specificity: 0.7255
##
           Pos Pred Value : 0.9041
           Neg Pred Value: 0.8409
##
##
               Prevalence : 0.7316
            Detection Rate: 0.6947
##
      Detection Prevalence: 0.7684
##
         Balanced Accuracy: 0.8376
##
##
          'Positive' Class : 0
##
##
```

Stochastic Gradient Boosting

Iter TrainDeviance

model_gbm<-train(trainSet[,predictors],trainSet[,outcomeName],method='gbm')</pre>

 ${\tt StepSize}$

Improve

ValidDeviance

##	rer	Traimbeviance	variubeviance	stepsize	Timbrose
##	1	1.0470	nan	0.1000	0.0592
##	2	0.9612	nan	0.1000	0.0458
##	3	0.8928	nan	0.1000	0.0380
##	4	0.8408	nan	0.1000	0.0228
##	5	0.7846	nan	0.1000	0.0243
##	6	0.7473	nan	0.1000	0.0189
##	7	0.7105	nan	0.1000	0.0175
##	8	0.6761	nan	0.1000	0.0164
##	9	0.6489	nan	0.1000	0.0127
##	10	0.6256	nan	0.1000	0.0112
##	20	0.4970	nan	0.1000	0.0020
##	40	0.4228	nan	0.1000	0.0009
##	60	0.4005	nan	0.1000	-0.0000
##	80	0.3833	nan	0.1000	-0.0011
##	100	0.3735	nan	0.1000	-0.0004
##	120	0.3652	nan	0.1000	-0.0006
##	140	0.3600	nan	0.1000	-0.0012
##	150	0.3569	nan	0.1000	-0.0017
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	1	TrainDeviance	ValidDeviance nan	0.1000	Improve 0.0620
##	1 2	1.0433 0.9523		0.1000 0.1000	
## ##	1	1.0433	nan	0.1000	0.0620
## ## ##	1 2 3 4	1.0433 0.9523	nan nan	0.1000 0.1000 0.1000 0.1000	0.0620 0.0441
## ## ## ##	1 2 3 4 5	1.0433 0.9523 0.8725	nan nan nan	0.1000 0.1000 0.1000	0.0620 0.0441 0.0367
## ## ## ##	1 2 3 4 5 6	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206
## ## ## ## ## ##	1 2 3 4 5 6 7	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161
## ## ## ## ## ##	1 2 3 4 5 6 7	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0161
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444 0.6191 0.5925	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0161 0.0121
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0161
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444 0.6191 0.5925 0.4593 0.3803	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0161 0.0121 0.0121 0.0030 -0.0000
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444 0.6191 0.5925 0.4593 0.3803 0.3371	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0121 0.0121 0.0030 -0.0000
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444 0.6191 0.5925 0.4593 0.3803 0.3371	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0121 0.0121 0.0030 -0.0000 -0.0007 -0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444 0.6191 0.5925 0.4593 0.3803 0.3371 0.3037	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0121 0.0121 0.0030 -0.0000 -0.0007 -0.0004 -0.0011
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0433 0.9523 0.8725 0.8082 0.7555 0.7145 0.6785 0.6444 0.6191 0.5925 0.4593 0.3803 0.3371	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0620 0.0441 0.0367 0.0318 0.0248 0.0206 0.0161 0.0121 0.0121 0.0030 -0.0000 -0.0007 -0.0004

##	140	0.2387	nan	0.1000	-0.0006
##	150	0.2290	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.0303	nan	0.1000	0.0599
##	2	0.9378	nan	0.1000	0.0402
##	3	0.8636	nan	0.1000	0.0348
##	4	0.8023	nan	0.1000	0.0304
##	5	0.7507	nan	0.1000	0.0228
##	6	0.7061	nan	0.1000	0.0221
##	7	0.6601	nan	0.1000	0.0201
##	8	0.6253	nan	0.1000	0.0152
##	9	0.5924	nan	0.1000	0.0139
##	10	0.5671	nan	0.1000	0.0104
##	20 40	0.4243	nan	0.1000	0.0020
## ##	60	0.3238 0.2768	nan	0.1000 0.1000	-0.0008 -0.0022
##	80	0.2391	nan nan	0.1000	-0.0022
##	100	0.2148	nan	0.1000	-0.0010
##	120	0.1871	nan	0.1000	-0.0020
##	140	0.1652	nan	0.1000	-0.0009
##	150	0.1543	nan	0.1000	0.0003
##	100	0.1010	11011	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0485	nan	0.1000	0.0556
##	2	0.9590	nan	0.1000	0.0448
##	3	0.8805	nan	0.1000	0.0368
##	4	0.8227	nan	0.1000	0.0275
##	5	0.7723	nan	0.1000	0.0222
##	6	0.7363	nan	0.1000	0.0189
##	7	0.7017	nan	0.1000	0.0169
##	8	0.6735	nan	0.1000	0.0135
##	9	0.6469	nan	0.1000	0.0130
##	10	0.6261	nan	0.1000	0.0112
##	20	0.4934	nan	0.1000	0.0046
##	40	0.4181	nan	0.1000	0.0002
##	60	0.3845	nan	0.1000	-0.0003
##	80	0.3652	nan	0.1000	0.0001
##	100	0.3558	nan	0.1000	-0.0030
##	120	0.3444	nan	0.1000	-0.0005
##	140	0.3384 0.3344	nan	0.1000 0.1000	-0.0010 -0.0007
## ##	150	0.3344	nan	0.1000	-0.0007
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0403	nan	0.1000	0.0599
##	2	0.9426	nan	0.1000	0.0469
##	3	0.8695	nan	0.1000	0.0385
##	4	0.8090	nan	0.1000	0.0288
##	5	0.7604	nan	0.1000	0.0228
##	6	0.7174	nan	0.1000	0.0218
##	7	0.6777	nan	0.1000	0.0157
##	8	0.6458	nan	0.1000	0.0170
##	9	0.6193	nan	0.1000	0.0100
##	10	0.5985	nan	0.1000	0.0088

##	20	0.4582	nan	0.1000	0.0027
##	40	0.3740	nan	0.1000	-0.0003
##	60	0.3431		0.1000	-0.0015
			nan		
##	80	0.3076	nan	0.1000	-0.0017
##	100	0.2825	nan	0.1000	-0.0012
##	120	0.2613	nan	0.1000	-0.0013
##	140	0.2416	nan	0.1000	-0.0011
##	150	0.2333	nan	0.1000	-0.0011
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0299	nan	0.1000	0.0642
##	2	0.9357	nan	0.1000	0.0453
##	3	0.8576	nan	0.1000	0.0360
##	4	0.7920	nan	0.1000	0.0320
##	5	0.7398	nan	0.1000	0.0241
##	6	0.6920	nan	0.1000	0.0223
##	7	0.6546	nan	0.1000	0.0176
##	8	0.6200	nan	0.1000	0.0155
##	9	0.5890	nan	0.1000	0.0143
##	10	0.5638	nan	0.1000	0.0107
##	20	0.4272	nan	0.1000	0.0028
##	40	0.3361	nan	0.1000	0.0007
##	60	0.2882	nan	0.1000	0.0000
##	80	0.2547	nan	0.1000	-0.0015
##	100	0.2207	nan	0.1000	-0.0009
##	120	0.1868	nan	0.1000	-0.0007
##	140	0.1680	nan	0.1000	-0.0007
##	150	0.1592	nan	0.1000	-0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	Iter 1	TrainDeviance	ValidDeviance nan	StepSize 0.1000	Improve 0.0649
		1.0145		0.1000	=
##	1	1.0145 0.9163	nan	0.1000 0.1000	0.0649 0.0484
## ##	1 2	1.0145 0.9163 0.8400	nan nan nan	0.1000 0.1000 0.1000	0.0649 0.0484 0.0361
## ## ##	1 2 3	1.0145 0.9163 0.8400 0.7824	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291
## ## ## ##	1 2 3 4	1.0145 0.9163 0.8400 0.7824 0.7298	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245
## ## ## ##	1 2 3 4 5	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219
## ## ## ## ##	1 2 3 4 5 6 7	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118
## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010
## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0001 0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0001 0.0002 -0.0013
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0001 0.0002 -0.0013 -0.0013
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0001 0.0002 -0.0013
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847 0.2747	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0010 -0.0013 -0.0013 -0.0006 -0.0013
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847 0.2747 0.2708	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0001 0.0002 -0.0013 -0.0013 -0.0013 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847 0.2747 0.2708	nan	0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0001 0.0002 -0.0013 -0.0013 -0.0013 Improve 0.0592
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847 0.2747 0.2708 TrainDeviance 1.0034 0.9036	nan	0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0013 -0.0013 -0.0013 Improve 0.0592 0.0505
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0145 0.9163 0.8400 0.7824 0.7298 0.6841 0.6506 0.6174 0.5901 0.5672 0.4445 0.3673 0.3278 0.3085 0.2942 0.2847 0.2747 0.2708	nan	0.1000 0.1000	0.0649 0.0484 0.0361 0.0291 0.0245 0.0219 0.0152 0.0152 0.0118 0.0112 0.0001 -0.0010 -0.0001 0.0002 -0.0013 -0.0013 -0.0013 Improve 0.0592

##	5	0.7071	nan	0.1000	0.0228
##	6	0.6634	nan	0.1000	0.0209
##	7	0.6274	nan	0.1000	0.0175
##	8	0.5970	nan	0.1000	0.0148
##	9	0.5696	nan	0.1000	0.0140
##	10	0.5487	nan	0.1000	0.0092
##	20	0.4115	nan	0.1000	0.0031
##	40	0.3116	nan	0.1000	0.0009
##	60	0.2679	nan	0.1000	-0.0007
##	80	0.2427	nan	0.1000	-0.0011
##	100	0.2235	nan	0.1000	-0.0018
##	120	0.1975	nan	0.1000	-0.0004
##	140	0.1803	nan	0.1000	-0.0009
##	150	0.1734	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0070	nan	0.1000	0.0662
##	2	0.9079	nan	0.1000	0.0478
##	3	0.8258	nan	0.1000	0.0351
##	4	0.7605	nan	0.1000	0.0338
##	5	0.7033	nan	0.1000	0.0242
##	6	0.6549	nan	0.1000	0.0216
##	7	0.6149	nan	0.1000	0.0185
##	8	0.5795	nan	0.1000	0.0161
##	9	0.5514	nan	0.1000	0.0108
##	10	0.5249	nan	0.1000	0.0102
##	20	0.3825	nan	0.1000	0.0015
##	40	0.2756	nan	0.1000	-0.0008
##	60	0.2197	nan	0.1000	0.0000
##	80	0.1795	nan	0.1000	-0.0009
##	100	0.1510	nan	0.1000	-0.0009
##	120	0.1322	nan	0.1000	-0.0004
##	140	0.1133	nan	0.1000	-0.0007
##	150	0.1049	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0434	nan	0.1000	0.0541
##	2	0.9537	nan	0.1000	0.0434
##	3	0.8791	nan	0.1000	0.0345
##	4	0.8239	nan	0.1000	0.0286
##	5	0.7793	nan	0.1000	0.0222
##	6	0.7347	nan	0.1000	0.0233
##	7	0.6984	nan	0.1000	0.0186
##	8	0.6716	nan	0.1000	0.0136
##	9	0.6405	nan	0.1000	0.0152
##	10	0.6119	nan	0.1000	0.0124
##	20	0.4780	nan	0.1000	0.0027
##	40	0.4109	nan	0.1000	-0.0002
##	60	0.3846	nan	0.1000	-0.0007
##	80	0.3682	nan	0.1000	-0.0017
##	100	0.3539	nan	0.1000	-0.0007
##	120	0.3457	nan	0.1000	-0.0018
##	140	0.3376	nan	0.1000	-0.0007
##	150	0.3361	nan	0.1000	-0.0007

шш					
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnmarra
##	1	1.0318	nan	StepSize 0.1000	Improve 0.0654
##	2	0.9329	nan	0.1000	0.0034
##	3	0.8564	nan	0.1000	0.0370
##	4	0.7976	nan	0.1000	0.0269
##	5	0.7412	nan	0.1000	0.0241
##	6	0.7005	nan	0.1000	0.0203
##	7	0.6634	nan	0.1000	0.0173
##	8	0.6294	nan	0.1000	0.0161
##	9	0.6032	nan	0.1000	0.0108
##	10	0.5767	nan	0.1000	0.0105
##	20	0.4504	nan	0.1000	0.0020
##	40	0.3694	nan	0.1000	-0.0004
##	60	0.3364	nan	0.1000	-0.0004
##	80	0.3034	nan	0.1000	-0.0018
##	100	0.2833	nan	0.1000	-0.0010
##	120	0.2632	nan	0.1000	-0.0012
##	140	0.2443	nan	0.1000	-0.0033
##	150	0.2363	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	${\tt Improve}$
##	1	1.0244	nan	0.1000	0.0628
##	2	0.9310	nan	0.1000	0.0491
##	3	0.8528	nan	0.1000	0.0366
##	4	0.7917	nan	0.1000	0.0324
##	5	0.7356	nan	0.1000	0.0239
##	6	0.6939	nan	0.1000	0.0206
##	7	0.6501	nan	0.1000	0.0172
##	8	0.6167	nan	0.1000	0.0154
##	9	0.5895	nan	0.1000	0.0121
##	10	0.5611	nan	0.1000	0.0133
##	20	0.4213	nan	0.1000	0.0009
##	40	0.3246	nan	0.1000	0.0011
##	60 80	0.2828	nan	0.1000	-0.0006 -0.0008
##	100	0.2449 0.2118	nan	0.1000 0.1000	-0.0000
##	120	0.1895	nan nan	0.1000	-0.0009
##	140	0.1718	nan	0.1000	-0.0011
##	150	0.1632	nan	0.1000	-0.0006
##	100	0.1002	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0413	nan	0.1000	0.0485
##	2	0.9655	nan	0.1000	0.0407
##	3	0.9032	nan	0.1000	0.0282
##	4	0.8508	nan	0.1000	0.0269
##	5	0.8107	nan	0.1000	0.0193
##	6	0.7770	nan	0.1000	0.0165
##	7	0.7398	nan	0.1000	0.0181
##	8	0.7140	nan	0.1000	0.0126
##	9	0.6877	nan	0.1000	0.0131
##	10	0.6677	nan	0.1000	0.0085
##	20	0.5497	nan	0.1000	0.0035
##	40	0.4844	nan	0.1000	0.0006

##	60	0.4472	nan	0.1000	-0.0006
##	80	0.4246	nan	0.1000	-0.0013
##	100	0.4089	nan	0.1000	-0.0007
##	120	0.3982	nan	0.1000	-0.0021
##	140	0.3877	nan	0.1000	-0.0001
##	150	0.3829	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0272	nan	0.1000	0.0609
##	2	0.9432	nan	0.1000	0.0372
##	3	0.8752	nan	0.1000	0.0360
##	4	0.8223	nan	0.1000	0.0236
##	5	0.7742	nan	0.1000	0.0232
##	6	0.7350	nan	0.1000	0.0192
##	7	0.7063	nan	0.1000	0.0129
##	8	0.6801	nan	0.1000	0.0115
##	9	0.6546	nan	0.1000	0.0102
##	10	0.6358	nan	0.1000	0.0085
##	20	0.5127	nan	0.1000	0.0032
##	40	0.4315	nan	0.1000	-0.0007
##	60	0.3798	nan	0.1000	-0.0007
##	80	0.3421	nan	0.1000	-0.0007
##	100	0.3067	nan	0.1000	-0.0005
##	120	0.2812	nan	0.1000	-0.0010
##	140	0.2612	nan	0.1000	-0.0017
##	150	0.2495	nan	0.1000	-0.0007
##	200	0.2100		0.1000	
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	Iter 1	TrainDeviance	ValidDeviance nan	StepSize 0.1000	Improve 0.0580
##	1	1.0345	nan	0.1000	0.0580
## ##	1 2	1.0345 0.9387	nan nan	0.1000 0.1000	0.0580 0.0481
## ## ##	1 2 3	1.0345 0.9387 0.8702	nan nan nan	0.1000 0.1000 0.1000	0.0580 0.0481 0.0328
## ## ## ##	1 2 3 4	1.0345 0.9387 0.8702 0.8150	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265
## ## ## ##	1 2 3 4 5	1.0345 0.9387 0.8702 0.8150 0.7624	nan nan nan nan nan	0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231
## ## ## ## ##	1 2 3 4 5	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176
## ## ## ##	1 2 3 4 5 6 7	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148
## ## ## ## ##	1 2 3 4 5 6 7 8	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152 0.1918	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2435 0.2152 0.1918 0.1796	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0054 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005 -0.0006
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 150	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152 0.1918 0.1796	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152 0.1918 0.1796	nan	0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005 -0.0006
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152 0.1918 0.1796 TrainDeviance 1.0241 0.9354	nan	0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005 -0.0006 Improve 0.0575 0.0414
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2748 0.2435 0.2152 0.1918 0.1796 TrainDeviance 1.0241 0.9354 0.8751	nan	0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005 -0.0006 Improve 0.0575 0.0414 0.0332
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3 4	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2435 0.2152 0.1918 0.1796 TrainDeviance 1.0241 0.9354 0.8751 0.8252	nan	0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005 -0.0006 Improve 0.0575 0.0414 0.0332 0.0279
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.0345 0.9387 0.8702 0.8150 0.7624 0.7244 0.6881 0.6564 0.6357 0.6132 0.4753 0.3750 0.3160 0.2748 0.2748 0.2435 0.2152 0.1918 0.1796 TrainDeviance 1.0241 0.9354 0.8751	nan	0.1000 0.1000	0.0580 0.0481 0.0328 0.0265 0.0231 0.0176 0.0148 0.0154 0.0078 0.0068 0.0026 0.0005 0.0011 -0.0008 -0.0005 0.0003 -0.0005 -0.0006 Improve 0.0575 0.0414 0.0332

##	7	0.7012	nan	0.1000	0.0143
##	8	0.6755	nan	0.1000	0.0127
##	9	0.6523	nan	0.1000	0.0115
##	10	0.6231	nan	0.1000	0.0121
##	20	0.5028	nan	0.1000	0.0022
##	40	0.4162	nan	0.1000	0.0020
##	60	0.3749	nan	0.1000	-0.0011
##	80	0.3537	nan	0.1000	-0.0019
##	100	0.3373	nan	0.1000	-0.0003
##	120	0.3258	nan	0.1000	-0.0013
##	140	0.3139	nan	0.1000	-0.0003
##	150	0.3075	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0154	nan	0.1000	0.0626
##	2	0.9259	nan	0.1000	0.0441
##	3	0.8553	nan	0.1000	0.0331
##	4	0.7989	nan	0.1000	0.0293
##	5	0.7525	nan	0.1000	0.0212
##	6	0.7074	nan	0.1000	0.0217
##	7	0.6712	nan	0.1000	0.0176
##	8	0.6398	nan	0.1000	0.0140
##	9	0.6127	nan	0.1000	0.0140
##	10	0.5880	nan	0.1000	0.0096
##	20	0.4508	nan	0.1000	0.0035
##	40	0.3517		0.1000	-0.0023
##	60	0.3071	nan nan	0.1000	0.0007
##	80	0.2684		0.1000	-0.0002
##	100	0.2338	nan	0.1000	-0.0010
##	120	0.2096	nan	0.1000	-0.0010
##	140	0.1893	nan	0.1000	-0.0002
##	150	0.1893	nan	0.1000	-0.0011
##	150	0.1602	nan	0.1000	-0.0007
##	Iter	TwoinDowinnes	ValidDeviance	C+onCino	Tmnmarra
	1 ter	TrainDeviance		StepSize 0.1000	Improve 0.0630
## ##	2	1.0057 0.9160	nan	0.1000	0.0630
	3	0.8394	nan		
##		0.7791	nan	0.1000 0.1000	0.0389 0.0288
##	4		nan		
##	5	0.7278	nan	0.1000	0.0228
##	6	0.6883	nan	0.1000	0.0181
##	7	0.6486	nan	0.1000	0.0177
##	8	0.6135	nan	0.1000	0.0157
##	9	0.5842	nan	0.1000	0.0122
##	10	0.5616	nan	0.1000	0.0104
##	20	0.4062	nan	0.1000	0.0029
##	40	0.2999	nan	0.1000	-0.0002
##	60	0.2428	nan	0.1000	-0.0009
##	80	0.2004	nan	0.1000	-0.0005
##	100	0.1671	nan	0.1000	-0.0004
##	120	0.1416	nan	0.1000	-0.0016
##	140	0.1211	nan	0.1000	-0.0008
##	150	0.1121	nan	0.1000	-0.0006
##	т.	m . 5 .	W 1	a. a.	T
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve

##	1	1.0726	nan	0.1000	0.0557
##	2	0.9869	nan	0.1000	0.0433
##	3	0.9174	nan	0.1000	0.0351
##	4	0.8611	nan	0.1000	0.0245
##	5	0.8086	nan	0.1000	0.0241
##	6	0.7667	nan	0.1000	0.0196
##	7	0.7292	nan	0.1000	0.0174
##	8	0.6941	nan	0.1000	0.0165
##	9	0.6667	nan	0.1000	0.0119
##	10	0.6459	nan	0.1000	0.0096
##	20	0.5132	nan	0.1000	-0.0004
##	40	0.4362	nan	0.1000	0.0005
##	60	0.4068	nan	0.1000	-0.0006
##	80	0.3930	nan	0.1000	-0.0006
##	100	0.3833	nan	0.1000	-0.0002
##	120	0.3731	nan	0.1000	-0.0004
##	140	0.3684	nan	0.1000	-0.0013
##	150	0.3649	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.0744	nan	0.1000	0.0560
##	2	0.9769	nan	0.1000	0.0497
##	3	0.9011	nan	0.1000	0.0352
##	4	0.8385	nan	0.1000	0.0323
##	5	0.7835	nan	0.1000	0.0250
##	6	0.7378	nan	0.1000	0.0205
##	7	0.6970	nan	0.1000	0.0194
##	8	0.6648	nan	0.1000	0.0147
##	9	0.6377	nan	0.1000	0.0123
##	10	0.6106	nan	0.1000	0.0128
##	20	0.4726	nan	0.1000	0.0044
##	40	0.3797	nan	0.1000	-0.0006
##	60	0.3404	nan	0.1000	-0.0008
##	80	0.3113	nan	0.1000	-0.0012
##	100	0.2894	nan	0.1000	-0.0012
##	120	0.2673	nan	0.1000	-0.0008
##	140	0.2422	nan	0.1000	-0.0006
##	150	0.2324	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0659	nan	0.1000	0.0609
##	2	0.9692	nan	0.1000	0.0441
##	3	0.8895	nan	0.1000	0.0399
##	4	0.8225	nan	0.1000	0.0323
##	5	0.7674	nan	0.1000	0.0253
##	6	0.7137	nan	0.1000	0.0233
##	7	0.6777	nan	0.1000	0.0178
##	8	0.6438	nan	0.1000	0.0145
##	9	0.6102	nan	0.1000	0.0114
##	10	0.5820	nan	0.1000	0.0128
##	20	0.4287	nan	0.1000	0.0031
##	40	0.3355	nan	0.1000	-0.0008
##	60	0.2802	nan	0.1000	-0.0010
##	80	0.2373	nan	0.1000	-0.0010

##	100	0.2127	non	0.1000	-0.0030
	120	0.2127	nan	0.1000	-0.0030
##			nan		
##	140	0.1647	nan	0.1000	-0.0010
##	150	0.1548	nan	0.1000	-0.0007
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0073	nan	0.1000	0.0541
##	2	0.9178	nan	0.1000	0.0422
##	3	0.8519	nan	0.1000	0.0319
##	4	0.7899	nan	0.1000	0.0284
##	5	0.7438	nan	0.1000	0.0210
##	6	0.6983	nan	0.1000	0.0200
##	7	0.6645	nan	0.1000	0.0172
##	8	0.6362	nan	0.1000	0.0128
##	9	0.6050	nan	0.1000	0.0119
##	10	0.5861	nan	0.1000	0.0083
##	20	0.4753	nan	0.1000	-0.0005
##	40	0.4080	nan	0.1000	0.0007
##	60	0.3751	nan	0.1000	-0.0011
##	80	0.3533	nan	0.1000	-0.0004
##	100	0.3401	nan	0.1000	0.0001
##	120	0.3219	nan	0.1000	-0.0004
##	140	0.3109	nan	0.1000	-0.0009
##	150	0.3058	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9896	nan	0.1000	0.0613
##	2	0.8996	nan	0.1000	0.0445
##	3	0.8250	nan	0.1000	0.0388
##	4	0.7694	nan	0.1000	0.0296
##	5	0.7295	nan	0.1000	0.0174
##	6	0.6848	nan	0.1000	0.0190
##	7	0.6474	nan	0.1000	0.0176
##	8	0.6152	nan	0.1000	0.0155
##	9	0.5855	nan	0.1000	0.0117
##	10	0.5655	nan	0.1000	0.0091
##	20	0.4445	nan	0.1000	0.0023
##	40	0.3497	nan	0.1000	-0.0007
##	60	0.3074	nan	0.1000	-0.0016
##	80	0.2728	nan	0.1000	-0.0006
##	100	0.2430	nan	0.1000	-0.0005
##	120	0.2248	nan	0.1000	-0.0014
##	140	0.2102	nan	0.1000	-0.0007
##	150	0.2010	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9899	nan	0.1000	0.0643
##	2	0.8949	nan	0.1000	0.0404
##	3	0.8123	nan	0.1000	0.0375
##	4	0.7506	nan	0.1000	0.0262
##	5	0.6990	nan	0.1000	0.0242
##	6	0.6565	nan	0.1000	0.0214
##	7	0.6196	nan	0.1000	0.0171
##	8	0.5883	nan	0.1000	0.0129

##	9	0.5616	nan	0.1000	0.0127
##	10	0.5406	nan	0.1000	0.0088
##	20	0.3972	nan	0.1000	0.0023
##	40	0.2993	nan	0.1000	-0.0002
##	60	0.2451	nan	0.1000	-0.0006
##	80	0.2038	nan	0.1000	-0.0000
##	100	0.1756	nan	0.1000	-0.0009
##	120	0.1524	nan	0.1000	-0.0000
##	140	0.1291	nan	0.1000	-0.0008
##	150	0.1217	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.0902	nan	0.1000	0.0550
##	2	1.0131	nan	0.1000	0.0387
##	3	0.9455	nan	0.1000	0.0349
##	4	0.8844	nan	0.1000	0.0288
##	5	0.8358	nan	0.1000	0.0242
##	6	0.7956	nan	0.1000	0.0184
##	7	0.7562	nan	0.1000	0.0183
##	8	0.7271	nan	0.1000	0.0149
##	9	0.6988	nan	0.1000	0.0134
##	10	0.6738	nan	0.1000	0.0102
##	20	0.5488	nan	0.1000	0.0026
##	40	0.4550	nan	0.1000	-0.0001
##	60	0.4054	nan	0.1000	-0.0002
##	80	0.3856	nan	0.1000	-0.0010
##	100	0.3711	nan	0.1000	-0.0008
##	120	0.3587	nan	0.1000	-0.0015
##	140	0.3530	nan	0.1000	-0.0011
##	150	0.3482	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0849	nan	0.1000	0.0568
##	2	0.9940	nan	0.1000	0.0470
##	3	0.9218	nan	0.1000	0.0367
##	4	0.8616	nan	0.1000	0.0303
##	5	0.8108	nan	0.1000	0.0266
##	6	0.7710	nan	0.1000	0.0174
##	7	0.7298	nan	0.1000	0.0179
##	8	0.6944	nan	0.1000	0.0146
##	9	0.6665	nan	0.1000	0.0123
##	10	0.6414	nan	0.1000	0.0103
##	20	0.4868	nan	0.1000	0.0016
##	40	0.3837	nan	0.1000	0.0022
##	60	0.3353	nan	0.1000	-0.0011
##	80	0.2954	nan	0.1000	-0.0005
##	100	0.2682	nan	0.1000	-0.0012
##	120	0.2459	nan	0.1000	-0.0009
##	140	0.2293	nan	0.1000	-0.0013
##	150	0.2232	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0737	nan	0.1000	0.0623
##	2	0.9753	nan	0.1000	0.0450

##	3	0.8936	nan	0.1000	0.0397
##	4	0.8255	nan	0.1000	0.0297
##	5	0.7714	nan	0.1000	0.0244
##	6	0.7281	nan	0.1000	0.0196
##	7	0.6936	nan	0.1000	0.0161
##	8	0.6658	nan	0.1000	0.0123
##	9	0.6339	nan	0.1000	0.0136
##	10	0.6088	nan	0.1000	0.0123
##	20	0.4475	nan	0.1000	0.0023
##	40	0.3329	nan	0.1000	-0.0020
##	60	0.2783	nan	0.1000	-0.0002
##	80	0.2392	nan	0.1000	-0.0015
##	100	0.2113	nan	0.1000	-0.0008
##	120	0.1914	nan	0.1000	-0.0011
##	140	0.1665	nan	0.1000	-0.0009
##	150	0.1564	nan	0.1000	-0.0008
##	100	0.1001	nan	0.1000	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0877	nan	0.1000	0.0548
##	2	1.0003	nan	0.1000	0.0419
##	3	0.9406		0.1000	0.0413
##	4	0.8867	nan	0.1000	0.0317
##	5		nan	0.1000	
		0.8440	nan		0.0245
##	6	0.8029	nan	0.1000	0.0199
##	7	0.7677	nan	0.1000	0.0174
##	8	0.7412	nan	0.1000	0.0121
##	9	0.7189	nan	0.1000	0.0108
##	10	0.6952	nan	0.1000	0.0115
##	20	0.5655	nan	0.1000	0.0036
##	40	0.4854	nan	0.1000	-0.0017
##	60	0.4510	nan	0.1000	-0.0003
##	80	0.4311	nan	0.1000	-0.0006
##	100	0.4177	nan	0.1000	-0.0013
##	120	0.4063	nan	0.1000	-0.0010
##	140	0.3975	nan	0.1000	-0.0010
##	150	0.3955	nan	0.1000	-0.0015
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0862	nan	0.1000	0.0555
##	2	1.0025	nan	0.1000	0.0369
##	3	0.9276	nan	0.1000	0.0368
##	4	0.8625	nan	0.1000	0.0317
##	5	0.8101	nan	0.1000	0.0241
##	6	0.7752	nan	0.1000	0.0164
##	7	0.7379	nan	0.1000	0.0176
##	8	0.7043	nan	0.1000	0.0153
##	9	0.6782	nan	0.1000	0.0118
##	10	0.6557	nan	0.1000	0.0089
##	20	0.5131	nan	0.1000	0.0025
##	40	0.4261	nan	0.1000	-0.0012
##	60	0.3754	nan	0.1000	-0.0006
##	80	0.3401	nan	0.1000	-0.0010
##	100	0.3135	nan	0.1000	-0.0010
##	120	0.2865	nan	0.1000	-0.0008

##	140	0.2706	nan	0.1000	-0.0010
##	150	0.2608	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0789	nan	0.1000	0.0626
##	2	0.9869	nan	0.1000	0.0472
##	3	0.9139	nan	0.1000	0.0379
##	4	0.8485	nan	0.1000	0.0299
##	5	0.8006	nan	0.1000	0.0213
##	6	0.7589	nan	0.1000	0.0156
##	7	0.7158	nan	0.1000	0.0191
##	8	0.6811	nan	0.1000	0.0123
##	9	0.6524	nan	0.1000	0.0131
##	10	0.6256	nan	0.1000	0.0102
##	20	0.4782	nan	0.1000	0.0030
##	40	0.3689	nan	0.1000	-0.0007
##	60	0.3169	nan	0.1000	-0.0011
##	80	0.2789	nan	0.1000	-0.0003
##	100	0.2443	nan	0.1000	-0.0009
##	120	0.2168	nan	0.1000	-0.0013
##	140	0.1913	nan	0.1000	-0.0002
##	150	0.1766	nan	0.1000	0.0001
##	T+	Total des Description	W-144D4	Q+ Q:	T
##	Iter 1	TrainDeviance	ValidDeviance	StepSize 0.1000	Improve 0.0574
## ##	2	1.0985 1.0058	nan	0.1000	0.0374
##	3	0.9323	nan nan	0.1000	0.0472
##	4	0.8694	nan	0.1000	0.0303
##	5	0.8114	nan	0.1000	0.0253
##	6	0.7650	nan	0.1000	0.0200
##	7	0.7263	nan	0.1000	0.0191
##	8	0.6938	nan	0.1000	0.0163
##	9	0.6652	nan	0.1000	0.0139
##	10	0.6352	nan	0.1000	0.0124
##	20	0.4939	nan	0.1000	0.0046
##	40	0.4153	nan	0.1000	0.0006
##	60	0.3756	nan	0.1000	-0.0024
##	80	0.3516	nan	0.1000	-0.0006
##	100	0.3373	nan	0.1000	-0.0017
##	120	0.3257	nan	0.1000	-0.0004
##	140	0.3143	nan	0.1000	-0.0012
##	150	0.3090	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.0847	nan	0.1000	0.0662
##	2	0.9852	nan	0.1000	0.0490
##	3	0.9034	nan	0.1000	0.0409
##	4	0.8392	nan	0.1000	0.0333
##	5	0.7843	nan	0.1000	0.0241
##	6	0.7368	nan	0.1000	0.0231
##	7	0.6919	nan	0.1000	0.0195
##	8 9	0.6593	nan	0.1000	0.0152
## ##	10	0.6271 0.6032	nan	0.1000 0.1000	0.0152 0.0086
##	10	0.0032	nan	0.1000	0.0000

##	20	0.4536	nan	0.1000	0.0034
##	40	0.3621	nan	0.1000	-0.0001
##	60	0.3095	nan	0.1000	-0.0005
##	80	0.2705	nan	0.1000	-0.0015
##	100	0.2469	nan	0.1000	-0.0009
##	120	0.2215	nan	0.1000	-0.0021
##	140	0.2055	nan	0.1000	-0.0001
##	150	0.1960	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0842	nan	0.1000	0.0635
##	2	0.9830	nan	0.1000	0.0514
##	3	0.9019	nan	0.1000	0.0388
##	4	0.8324	nan	0.1000	0.0347
##	5	0.7743	nan	0.1000	0.0279
##	6	0.7227	nan	0.1000	0.0241
##	7	0.6825	nan	0.1000	0.0199
##	8	0.6437	nan	0.1000	0.0172
##	9	0.6076	nan	0.1000	0.0165
##	10	0.5806	nan	0.1000	0.0128
##	20	0.4121	nan	0.1000	0.0042
##	40	0.2980	nan	0.1000	-0.0026
##	60	0.2383	nan	0.1000	0.0001
##	80	0.1982	nan	0.1000	-0.0016
##	100	0.1696	nan	0.1000	-0.0004
##	120	0.1429	nan	0.1000	-0.0005
##	140	0.1225	nan	0.1000	-0.0008
##	150	0.1223	nan	0.1000	-0.0006
##	100	0.1121	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Tmprovo
##	1	1.0270		0.1000	Improve 0.0455
##	2	0.9567	nan	0.1000	0.0433
##	3	0.8948	nan	0.1000	0.0319
##	4	0.8521	nan	0.1000	0.0236
	5		nan		
## ##	6	0.8179 0.7884	nan	0.1000 0.1000	0.0180 0.0161
##	7	0.7573	nan	0.1000	0.0161
		0.7347	nan	0.1000	0.0089
##	8		nan		
##	9	0.7121	nan	0.1000	0.0111
##	10	0.6959	nan	0.1000	0.0070
##	20	0.5855	nan	0.1000	0.0025
##	40	0.5012	nan	0.1000	-0.0000
##	60	0.4657	nan	0.1000	-0.0003
##	80	0.4489	nan	0.1000	-0.0005
##	100	0.4364	nan	0.1000	-0.0011
##	120	0.4206	nan	0.1000	-0.0008
##	140	0.4131	nan	0.1000	-0.0009
##	150	0.4074	nan	0.1000	-0.0016
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0176	nan	0.1000	0.0569
##	2	0.9384	nan	0.1000	0.0374
##	3	0.8764	nan	0.1000	0.0322
##	4	0.8335	nan	0.1000	0.0222

##	5	0.7927	nan	0.1000	0.0189
##	6	0.7578	nan	0.1000	0.0137
##	7	0.7248	nan	0.1000	0.0140
##	8	0.6983	nan	0.1000	0.0116
##	9	0.6775	nan	0.1000	0.0103
##	10	0.6574	nan	0.1000	0.0075
##	20	0.5447	nan	0.1000	0.0033
##	40	0.4478	nan	0.1000	-0.0001
##	60	0.3951	nan	0.1000	-0.0009
##	80	0.3610	nan	0.1000	-0.0010
##	100	0.3299	nan	0.1000	-0.0006
##	120	0.3011	nan	0.1000	-0.0004
##	140	0.2774	nan	0.1000	-0.0005
##	150	0.2648	nan	0.1000	0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.0180	nan	0.1000	0.0515
##	2	0.9367	nan	0.1000	0.0419
##	3	0.8735	nan	0.1000	0.0283
##	4	0.8171	nan	0.1000	0.0220
##	5	0.7712	nan	0.1000	0.0211
##	6	0.7331	nan	0.1000	0.0184
##	7	0.7032	nan	0.1000	0.0105
##	8	0.6749	nan	0.1000	0.0100
##	9	0.6488	nan	0.1000	0.0113
##	10	0.6305	nan	0.1000	0.0067
##	20	0.5017	nan	0.1000	0.0021
##	40	0.3872	nan	0.1000	0.0017
##	60	0.3214	nan	0.1000	-0.0001
##	80	0.2756	nan	0.1000	-0.0013
##	100	0.2444	nan	0.1000	-0.0007
##	120	0.2159	nan	0.1000	-0.0012
##	140	0.1908	nan	0.1000	-0.0001
##	150	0.1792	nan	0.1000	-0.0004
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0866	nan	0.1000	0.0508
##	2	1.0033	nan	0.1000	0.0368
##	3	0.9408	nan	0.1000	0.0280
##	4	0.8922	nan	0.1000	0.0224
##	5	0.8511	nan	0.1000	0.0210
##	6	0.8172	nan	0.1000	0.0171
##	7	0.7809	nan	0.1000	0.0158
##	8	0.7508	nan	0.1000	0.0134
##	9	0.7287	nan	0.1000	0.0103
##	10	0.7081	nan	0.1000	0.0083
##	20	0.5978	nan	0.1000	0.0009
##	40	0.5191	nan	0.1000	0.0003
##	60	0.4905	nan	0.1000	0.0007
##	80	0.4688	nan	0.1000	-0.0008
##	100	0.4590	nan	0.1000	-0.0007 -0.0016
## ##	120 140	0.4485	nan	0.1000 0.1000	-0.0016 -0.0005
		0.4383 0.4322	nan		
##	150	0.4322	nan	0.1000	-0.0014

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0806	nan	0.1000	0.0608
##	2	0.9980	nan	0.1000	0.0454
##	3	0.9288	nan	0.1000	0.0339
##	4	0.8692	nan	0.1000	0.0283
##	5	0.8209	nan	0.1000	0.0224
##	6	0.7812	nan	0.1000	0.0178
##	7	0.7486	nan	0.1000	0.0165
##	8	0.7191	nan	0.1000	0.0125
##	9	0.6939	nan	0.1000	0.0111
##	10	0.6744	nan	0.1000	0.0077
##	20	0.5436	nan	0.1000	0.0025
##	40	0.4644	nan	0.1000	-0.0005
##	60	0.4061	nan	0.1000	-0.0007
##	80	0.3678	nan	0.1000	-0.0008
##	100	0.3384	nan	0.1000	-0.0008
##	120	0.3145	nan	0.1000	-0.0021
##	140	0.2866	nan	0.1000	-0.0003
##	150	0.2736	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0733	nan	0.1000	0.0571
##	2	0.9828	nan	0.1000	0.0468
##	3	0.9075	nan	0.1000	0.0354
##	4	0.8485	nan	0.1000	0.0302
##	5	0.8022	nan	0.1000	0.0236
##	6	0.7623	nan	0.1000	0.0196
##	7	0.7188	nan	0.1000	0.0216
##	8	0.6828	nan	0.1000	0.0152
##	9	0.6547	nan	0.1000	0.0112
##	10	0.6291	nan	0.1000	0.0092
##	20	0.5017	nan	0.1000	0.0020
##	40	0.4073	nan	0.1000	-0.0033
##	60	0.3390	nan	0.1000	0.0004
##	80	0.2926	nan	0.1000	-0.0013
##	100	0.2413	nan	0.1000	-0.0006
##	120	0.2101	nan	0.1000	-0.0008
##	140	0.1867	nan	0.1000	-0.0012
##	150	0.1787	nan	0.1000	-0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.0171	nan	0.1000	0.0562
##	2	0.9373	nan	0.1000	0.0417
##	3	0.8722	nan	0.1000	0.0308
##	4	0.8179	nan	0.1000	0.0272
##	5	0.7663	nan	0.1000	0.0250
##	6	0.7262	nan	0.1000	0.0177
##	7	0.6972	nan	0.1000	0.0139
##	8	0.6710	nan	0.1000	0.0139
##	9	0.6434	nan	0.1000	0.0118
##	10	0.6234	nan	0.1000	0.0094
##	20	0.5234	nan	0.1000	0.0020
##	40	0.4640	nan	0.1000	0.0000

##	60	0.4362	nan	0.1000	-0.0003
##	80	0.4165	nan	0.1000	-0.0010
##	100	0.3978	nan	0.1000	-0.0003
##	120	0.3887	nan	0.1000	-0.0005
##	140	0.3783	nan	0.1000	-0.0008
##	150	0.3756	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	0.9962	nan	0.1000	0.0593
##	2	0.9125	nan	0.1000	0.0437
##	3	0.8460	nan	0.1000	0.0332
##	4	0.7891	nan	0.1000	0.0275
##	5	0.7457	nan	0.1000	0.0216
##	6	0.7092	nan	0.1000	0.0181
##	7	0.6790	nan	0.1000	0.0148
##	8	0.6530	nan	0.1000	0.0117
##	9	0.6289	nan	0.1000	0.0105
##	10	0.6112	nan	0.1000	0.0078
##	20	0.4895	nan	0.1000	0.0019
##	40	0.4040	nan	0.1000	0.0005
##	60	0.3620	nan	0.1000	-0.0004
##	80	0.3268	nan	0.1000	0.0005
##	100	0.2947	nan	0.1000	-0.0009
##	120	0.2689	nan	0.1000	-0.0009
##	140	0.2507	nan	0.1000	-0.0002
##	150	0.2392	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
## ##	Iter 1	TrainDeviance 0.9946	ValidDeviance nan	StepSize 0.1000	Improve 0.0588
				_	=
##	1	0.9946	nan	0.1000	0.0588
## ##	1 2	0.9946 0.9043	nan nan	0.1000 0.1000	0.0588 0.0400
## ## ##	1 2 3	0.9946 0.9043 0.8354	nan nan nan	0.1000 0.1000 0.1000	0.0588 0.0400 0.0336
## ## ## ##	1 2 3 4	0.9946 0.9043 0.8354 0.7782	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258
## ## ## ##	1 2 3 4 5	0.9946 0.9043 0.8354 0.7782 0.7329	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202
## ## ## ## ##	1 2 3 4 5 6	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170
## ## ## ## ## ##	1 2 3 4 5 6 7	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124
## ## ## ## ## ##	1 2 3 4 5 6 7 8	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774 0.1675	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 -0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0007
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0007
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774 0.1675	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 -0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0007
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774 0.1675	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0009 Improve
######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774 0.1675	nan	0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0009 Improve 0.0534
#####################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774 0.1675 TrainDeviance 1.0136 0.9299	nan	0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0007 -0.0009 Improve 0.0534 0.0413
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	0.9946 0.9043 0.8354 0.7782 0.7329 0.6967 0.6595 0.6306 0.6022 0.5800 0.4614 0.3674 0.3021 0.2592 0.2285 0.2005 0.1774 0.1675 TrainDeviance 1.0136 0.9299 0.8657	nan	0.1000 0.1000	0.0588 0.0400 0.0336 0.0258 0.0202 0.0170 0.0162 0.0124 0.0101 0.0105 0.0005 -0.0013 -0.0008 -0.0010 -0.0007 -0.0008 -0.0007 -0.0009 Improve 0.0534 0.0413 0.0311

##	7	0.7090	nan	0.1000	0.0125
##	8	0.6759	nan	0.1000	0.0164
##	9	0.6536	nan	0.1000	0.0097
##	10	0.6252	nan	0.1000	0.0119
##	20	0.5106	nan	0.1000	0.0018
##	40	0.4428		0.1000	-0.0006
			nan		
##	60	0.4158	nan	0.1000	-0.0007
##	80	0.3992	nan	0.1000	0.0003
##	100	0.3838	nan	0.1000	-0.0002
##	120	0.3757	nan	0.1000	-0.0006
##	140	0.3665	nan	0.1000	-0.0003
##	150	0.3585	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9981	nan	0.1000	0.0654
##	2	0.9117	nan	0.1000	0.0485
##	3	0.8409	nan	0.1000	0.0361
##	4	0.7842	nan	0.1000	0.0249
##	5	0.7399	nan	0.1000	0.0215
##	6	0.6994		0.1000	0.0180
			nan		
##	7	0.6661	nan	0.1000	0.0157
##	8	0.6331	nan	0.1000	0.0140
##	9	0.6115	nan	0.1000	0.0096
##	10	0.5903	nan	0.1000	0.0083
##	20	0.4694	nan	0.1000	0.0034
##	40	0.3865	nan	0.1000	-0.0009
##	60	0.3409	nan	0.1000	-0.0004
##	80	0.3077	nan	0.1000	-0.0004
##	100	0.2768	nan	0.1000	-0.0009
##	120	0.2503	nan	0.1000	-0.0018
##	140	0.2294	nan	0.1000	-0.0007
##	150	0.2209	nan	0.1000	-0.0003
##	200	0.2200		0.1000	0.000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	0.9980		0.1000	0.0594
##	2		nan	0.1000	0.0394
	3	0.9078	nan		
##		0.8342	nan	0.1000	0.0371
##	4	0.7700	nan	0.1000	0.0281
##	5	0.7229	nan	0.1000	0.0237
##	6	0.6805	nan	0.1000	0.0209
##	7	0.6462	nan	0.1000	0.0120
##	8	0.6180	nan	0.1000	0.0118
##	9	0.5849	nan	0.1000	0.0127
##	10	0.5627	nan	0.1000	0.0093
##	20	0.4379	nan	0.1000	0.0016
##	40	0.3399	nan	0.1000	-0.0006
##	60	0.2800	nan	0.1000	0.0001
##	80	0.2410	nan	0.1000	-0.0003
##	100	0.2072	nan	0.1000	-0.0014
##	120	0.1764		0.1000	0.0014
##	140	0.1704	nan	0.1000	-0.0002
			nan		
##	150	0.1440	nan	0.1000	-0.0005
##	T.	T	W-1435 '	a+. a:	т
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve

##	1	1.0385	nan	0.1000	0.0546
##	2	0.9506	nan	0.1000	0.0422
##	3	0.8869	nan	0.1000	0.0294
##	4	0.8344	nan	0.1000	0.0249
##	5	0.7900	nan	0.1000	0.0209
##	6	0.7543	nan	0.1000	0.0168
##	7	0.7187	nan	0.1000	0.0157
##	8	0.6910	nan	0.1000	0.0131
##	9	0.6671	nan	0.1000	0.0112
##	10	0.6446	nan	0.1000	0.0106
##	20	0.5279	nan	0.1000	0.0030
##	40	0.4557	nan	0.1000	-0.0001
##	60	0.4243	nan	0.1000	-0.0015
##	80	0.4058	nan	0.1000	0.0000
##	100	0.3974	nan	0.1000	-0.0007
##	120	0.3860	nan	0.1000	-0.0009
##	140	0.3800	nan	0.1000	-0.0003
##	150	0.3754	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.0299	nan	0.1000	0.0602
##	2	0.9345	nan	0.1000	0.0416
##	3	0.8617	nan	0.1000	0.0297
##	4	0.8049	nan	0.1000	0.0269
##	5	0.7637	nan	0.1000	0.0190
##	6	0.7232	nan	0.1000	0.0184
##	7	0.6908	nan	0.1000	0.0146
##	8	0.6640	nan	0.1000	0.0134
##	9	0.6403	nan	0.1000	0.0100
##	10	0.6145	nan	0.1000	0.0109
##	20	0.4850	nan	0.1000	0.0028
##	40	0.3991	nan	0.1000	-0.0008
##	60	0.3546	nan	0.1000	-0.0018
##	80	0.3196	nan	0.1000	-0.0004
##	100	0.2905	nan	0.1000	-0.0001
##	120	0.2708	nan	0.1000	-0.0018
##	140	0.2513	nan	0.1000	-0.0008
##	150	0.2386	nan	0.1000	-0.0011
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0344	nan	0.1000	0.0563
##	2	0.9441	nan	0.1000	0.0406
##	3	0.8678	nan	0.1000	0.0336
##	4	0.8083	nan	0.1000	0.0301
##	5	0.7532	nan	0.1000	0.0240
##	6	0.7062	nan	0.1000	0.0197
##	7	0.6670	nan	0.1000	0.0193
##	8	0.6389	nan	0.1000	0.0124
##	9	0.6124	nan	0.1000	0.0131
##	10	0.5864	nan	0.1000	0.0114
##	20	0.4437	nan	0.1000	0.0013
##	40	0.3496	nan	0.1000	-0.0013
##	60	0.2994	nan	0.1000	-0.0005
##	80	0.2592	nan	0.1000	-0.0002

##	100	0 2226	***	0.1000	-0.0004
	120	0.2226 0.1901	nan	0.1000	-0.0004
##			nan		
##	140	0.1653	nan	0.1000	-0.0009
##	150	0.1556	nan	0.1000	-0.0009
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0743	nan	0.1000	0.0567
##	2	0.9895	nan	0.1000	0.0461
##	3	0.9195	nan	0.1000	0.0366
##	4	0.8560	nan	0.1000	0.0319
##	5	0.8034	nan	0.1000	0.0251
##	6	0.7589	nan	0.1000	0.0197
##	7	0.7230	nan	0.1000	0.0186
##	8	0.6946	nan	0.1000	0.0143
##	9	0.6695	nan	0.1000	0.0115
##	10	0.6487	nan	0.1000	0.0100
##	20	0.4975	nan	0.1000	0.0051
##	40	0.4083	nan	0.1000	0.0006
##	60	0.3666	nan	0.1000	-0.0019
##	80	0.3428	nan	0.1000	-0.0014
##	100	0.3254	nan	0.1000	-0.0019
##	120	0.3120	nan	0.1000	-0.0005
##	140	0.3027	nan	0.1000	-0.0011
##	150	0.2972	nan	0.1000	-0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0686	nan	0.1000	0.0605
##	2	0.9677	nan	0.1000	0.0468
##	3	0.8992	nan	0.1000	0.0353
##	4	0.8373	nan	0.1000	0.0311
##	5	0.7800	nan	0.1000	0.0268
##	6	0.7327	nan	0.1000	0.0214
##	7	0.6894	nan	0.1000	0.0210
##	8	0.6541	nan	0.1000	0.0171
##	9	0.6269	nan	0.1000	0.0101
##	10	0.6015	nan	0.1000	0.0092
##	20	0.4472	nan	0.1000	0.0026
##	40	0.3448	nan	0.1000	0.0002
##	60	0.3019	nan	0.1000	-0.0028
##	80	0.2698	nan	0.1000	-0.0000
##	100	0.2450	nan	0.1000	-0.0007
##	120	0.2238	nan	0.1000	-0.0007
##	140	0.2073	nan	0.1000	-0.0011
##	150	0.1978	nan	0.1000	0.0004
##	200	0.120.0		0.1200	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0591	nan	0.1000	0.0617
##	2	0.9534	nan	0.1000	0.0526
##	3	0.8681	nan	0.1000	0.0320
##	4	0.8042	nan	0.1000	0.0332
##	5	0.7498	nan	0.1000	0.0336
##	6	0.7498	nan	0.1000	0.0270
##	7	0.7021		0.1000	0.0232
			nan		
##	8	0.6213	nan	0.1000	0.0191

##	9	0.5903	nan	0.1000	0.0149
##	10	0.5647	nan	0.1000	0.0105
##	20	0.4119	nan	0.1000	0.0030
##	40	0.2998	nan	0.1000	-0.0010
##	60	0.2478	nan	0.1000	-0.0015
##	80	0.2174	nan	0.1000	-0.0007
##	100	0.1909	nan	0.1000	-0.0005
##	120	0.1660	nan	0.1000	-0.0010
##	140	0.1497		0.1000	-0.0004
			nan	0.1000	-0.0004
##	150	0.1410	nan	0.1000	-0.0010
##	T+	T : D :	W-144D4	Q+ Q:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0496	nan	0.1000	0.0611
##	2	0.9645	nan	0.1000	0.0426
##	3	0.8978	nan	0.1000	0.0329
##	4	0.8451	nan	0.1000	0.0272
##	5	0.7945	nan	0.1000	0.0247
##	6	0.7545	nan	0.1000	0.0184
##	7	0.7207	nan	0.1000	0.0145
##	8	0.6860	nan	0.1000	0.0149
##	9	0.6552	nan	0.1000	0.0126
##	10	0.6366	nan	0.1000	0.0090
##	20	0.5139	nan	0.1000	0.0020
##	40	0.4434	nan	0.1000	-0.0004
##	60	0.4134	nan	0.1000	-0.0004
##	80	0.3968	nan	0.1000	-0.0004
##	100	0.3848	nan	0.1000	-0.0001
##	120	0.3730	nan	0.1000	-0.0031
##	140	0.3648	nan	0.1000	-0.0005
## ##					
## ## ##	140 150	0.3648 0.3608	nan nan	0.1000 0.1000	-0.0005 -0.0002
## ## ## ##	140 150 Iter	0.3648 0.3608 TrainDeviance	nan nan ValidDeviance	0.1000 0.1000 StepSize	-0.0005 -0.0002 Improve
## ## ## ##	140 150 Iter 1	0.3648 0.3608 TrainDeviance 1.0363	nan nan ValidDeviance nan	0.1000 0.1000 StepSize 0.1000	-0.0005 -0.0002 Improve 0.0661
## ## ## ## ##	140 150 Iter 1 2	0.3648 0.3608 TrainDeviance 1.0363 0.9425	nan nan ValidDeviance	0.1000 0.1000 StepSize 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468
## ## ## ## ##	140 150 Iter 1 2 3	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746	nan nan ValidDeviance nan	0.1000 0.1000 StepSize 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345
## ## ## ## ##	140 150 Iter 1 2 3 4	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282
## ## ## ## ##	140 150 Iter 1 2 3	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677	nan nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250
## ## ## ## ## ##	140 150 Iter 1 2 3 4	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158	nan nan ValidDeviance nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282
## ## ## ## ## ##	140 150 Iter 1 2 3 4 5	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677	nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313	nan nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941	nan nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122
## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090
## ## # # # # # # # # # # # # # # # #	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775	nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003
## ## ## ## ## ## ## ## ## ## ## ## ##	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0003
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0003 -0.0012 -0.0006
######################################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812 0.2550 0.2327	Nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0012 -0.0006 -0.0004
########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812	Nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0003 -0.0012 -0.0006
########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812 0.2550 0.2327 0.2257	Nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0012 -0.0006 -0.0004 -0.0000
#########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812 0.2550 0.2327 0.2257	Nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0003 -0.0012 -0.0006 -0.0004 -0.0000 Improve
########################	140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.3648 0.3608 TrainDeviance 1.0363 0.9425 0.8746 0.8158 0.7677 0.7313 0.6941 0.6646 0.6399 0.6137 0.4687 0.3775 0.3338 0.3052 0.2812 0.2550 0.2327 0.2257	Nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0005 -0.0002 Improve 0.0661 0.0468 0.0345 0.0282 0.0250 0.0170 0.0186 0.0122 0.0090 0.0107 0.0002 -0.0003 -0.0003 -0.0012 -0.0006 -0.0004 -0.0000

##	3	0.8540	nan	0.1000	0.0378
##	4	0.7915	nan	0.1000	0.0313
##	5	0.7397	nan	0.1000	0.0267
##	6	0.6942	nan	0.1000	0.0226
##	7	0.6565	nan	0.1000	0.0174
##	8	0.6252	nan	0.1000	0.0143
##	9	0.5978	nan	0.1000	0.0136
##	10	0.5702	nan	0.1000	0.0112
##	20	0.4286	nan	0.1000	0.0026
##	40	0.3304	nan	0.1000	0.0014
##	60	0.2760	nan	0.1000	0.0001
##	80	0.2356	nan	0.1000	-0.0012
##	100	0.2073	nan	0.1000	-0.0006
##	120	0.1821	nan	0.1000	-0.0010
##	140	0.1610	nan	0.1000	-0.0000
##	150	0.1529		0.1000	-0.0008
##	130	0.1529	nan	0.1000	0.0008
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0771		0.1000	0.0464
##	2	1.0025	nan	0.1000	0.0404
##	3	0.9364	nan	0.1000	0.0334
	4		nan	0.1000	
##		0.8823	nan		0.0237
##	5 6	0.8447	nan	0.1000	0.0183
##		0.8061	nan	0.1000	0.0184
##	7	0.7757	nan	0.1000	0.0135
##	8	0.7489	nan	0.1000	0.0136
##	9	0.7279	nan	0.1000	0.0081
##	10	0.7090	nan	0.1000	0.0081
##	20	0.5913	nan	0.1000	0.0024
##	40	0.5091	nan	0.1000	0.0007
##	60	0.4707	nan	0.1000	-0.0009
##	80	0.4514	nan	0.1000	-0.0009
##	100	0.4366	nan	0.1000	-0.0008
##	120	0.4288	nan	0.1000	-0.0009
##	140	0.4212	nan	0.1000	0.0000
##	150	0.4176	nan	0.1000	-0.0005
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0759	nan	0.1000	0.0514
##	2	0.9884	nan	0.1000	0.0417
##	3	0.9179	nan	0.1000	0.0332
##	4	0.8617	nan	0.1000	0.0263
##	5	0.8156	nan	0.1000	0.0192
##	6	0.7751	nan	0.1000	0.0191
##	7	0.7403	nan	0.1000	0.0156
##	8	0.7093	nan	0.1000	0.0148
##	9	0.6888	nan	0.1000	0.0113
##	10	0.6669	nan	0.1000	0.0109
##	20	0.5300	nan	0.1000	0.0009
##	40	0.4395	nan	0.1000	-0.0002
##	60	0.3964	nan	0.1000	-0.0015
##	80	0.3624	nan	0.1000	-0.0008
##	100	0.3333	nan	0.1000	-0.0018
##	120	0.3090	nan	0.1000	-0.0022

##	140	0.2908	nan	0.1000	-0.0008
##	150	0.2780	nan nan	0.1000	-0.0008
##	130	0.2700	liali	0.1000	0.0015
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0612	nan	0.1000	0.0501
##	2	0.9705	nan	0.1000	0.0400
##	3	0.8994	nan	0.1000	0.0351
##	4	0.8385	nan	0.1000	0.0268
##	5	0.7870	nan	0.1000	0.0250
##	6	0.7432	nan	0.1000	0.0230
##	7	0.7074	nan	0.1000	0.0175
##	8	0.6745	nan	0.1000	0.0170
##	9	0.6474	nan	0.1000	0.0122
##	10	0.6271	nan	0.1000	0.0076
##	20	0.4828	nan	0.1000	0.0028
##	40	0.3847	nan	0.1000	0.0000
##	60	0.3256	nan	0.1000	0.0001
##	80	0.2880	nan	0.1000	-0.0007
##	100	0.2540	nan	0.1000	-0.0004
##	120	0.2299	nan	0.1000	-0.0011
##	140	0.2079	nan	0.1000	-0.0001
##	150	0.1965	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0313	nan	0.1000	0.0624
##	2	0.9356	nan	0.1000	0.0432
##	3	0.8602	nan	0.1000	0.0372
##	4	0.7941	nan	0.1000	0.0282
##	5	0.7439	nan	0.1000	0.0256
##	6	0.7039	nan	0.1000	0.0194
##	7	0.6667	nan	0.1000	0.0172
##	8	0.6317	nan	0.1000	0.0141
##	9	0.6057	nan	0.1000	0.0131
##	10	0.5808	nan	0.1000	0.0115
##	20	0.4496	nan	0.1000	0.0028
##	40	0.3741	nan	0.1000	0.0002
##	60	0.3431	nan	0.1000	-0.0004
##	80	0.3310	nan	0.1000	-0.0009
##	100	0.3192	nan	0.1000	-0.0008
##	120	0.3095	nan	0.1000	0.0004
##	140	0.3025	nan	0.1000	-0.0007
##	150	0.3010	nan	0.1000	-0.0010
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0195	nan	0.1000	0.0655
##	2	0.9224	nan	0.1000	0.0487
##	3	0.8436	nan	0.1000	0.0364
##	4	0.7857	nan	0.1000	0.0310
##	5	0.7310	nan	0.1000	0.0264
##	6	0.6864	nan	0.1000	0.0196
## ##	7 8	0.6474	nan	0.1000 0.1000	0.0194
##	9	0.6137 0.5831	nan	0.1000	0.0156 0.0138
##	10	0.5556	nan	0.1000	0.0138
##	10	0.5556	nan	0.1000	0.0117

##	20	0.4168	nan	0.1000	0.0030
##	40	0.3301	nan	0.1000	0.0006
##	60	0.2850	nan	0.1000	-0.0006
##	80	0.2575		0.1000	-0.0008
			nan		
##	100	0.2338	nan	0.1000	-0.0013
##	120	0.2127	nan	0.1000	-0.0007
##	140	0.1913	nan	0.1000	-0.0010
## ##	150	0.1843	nan	0.1000	-0.0009
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0222	nan	0.1000	0.0678
##	2	0.9201	nan	0.1000	0.0485
##	3	0.8352	nan	0.1000	0.0407
##	4	0.7664		0.1000	0.0279
##	5	0.7111	nan	0.1000	0.0273
##	6	0.6633	nan	0.1000	0.0272
##	7	0.6186	nan	0.1000	0.0230
##	8	0.5821	nan	0.1000	0.0159
##	9	0.5553	nan	0.1000	0.0139
##	10	0.5235	nan	0.1000	0.0126
##	20	0.3803	nan	0.1000	0.0134
	40		nan		
##		0.2808	nan	0.1000	-0.0024
##	60	0.2341	nan	0.1000	-0.0019
##	80	0.2002	nan	0.1000	-0.0006
##	100	0.1700	nan	0.1000	-0.0008
##	120	0.1452	nan	0.1000	-0.0006
##	140	0.1285	nan	0.1000	-0.0013
##	150	0.1208	nan	0.1000	-0.0010
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 1.0305	ValidDeviance nan	StepSize 0.1000	Improve 0.0535
## ## ## ##	Iter 1 2	TrainDeviance 1.0305 0.9490	ValidDeviance	StepSize 0.1000 0.1000	Improve 0.0535 0.0406
## ## ## ##	Iter 1 2 3	TrainDeviance 1.0305 0.9490 0.8777	ValidDeviance nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326
## ## ## ## ##	Iter 1 2 3 4	TrainDeviance 1.0305 0.9490 0.8777 0.8131	ValidDeviance nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213
## ## ## ## ## ##	Iter	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170
## ## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494 0.6265	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025
## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494 0.6265 0.5183 0.4504 0.4242	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001
## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494 0.6265 0.5183 0.4504 0.4242 0.4020	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494 0.6265 0.5183 0.4504 0.4242 0.4020 0.3896 0.3795	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494 0.6265 0.5183 0.4504 0.4242 0.4020 0.3896 0.3795 0.3704	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012 -0.0002
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.0305 0.9490 0.8777 0.8131 0.7702 0.7378 0.7023 0.6732 0.6494 0.6265 0.5183 0.4504 0.4242 0.4020 0.3896 0.3795	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012
#######################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012 -0.0002 -0.0008 -0.0014
##########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012 -0.0002 -0.0014 Improve
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012 -0.0002 -0.0014 Improve 0.0508
########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012 -0.0002 -0.0014 Improve 0.0508 0.0394
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0535 0.0406 0.0326 0.0274 0.0213 0.0170 0.0157 0.0140 0.0105 0.0096 0.0035 -0.0025 -0.0001 -0.0002 -0.0012 -0.0002 -0.0014 Improve 0.0508

##	5	0.7647	nan	0.1000	0.0225
##	6	0.7213	nan	0.1000	0.0198
##	7	0.6837	nan	0.1000	0.0178
##	8	0.6504	nan	0.1000	0.0146
##	9	0.6232	nan	0.1000	0.0113
##	10	0.6005	nan	0.1000	0.0093
##	20	0.4858	nan	0.1000	0.0005
##	40	0.4032	nan	0.1000	-0.0004
##	60	0.3647	nan	0.1000	-0.0009
##	80	0.3386	nan	0.1000	-0.0020
##	100	0.3093	nan	0.1000	-0.0016
##	120	0.2879		0.1000	-0.0005
	140	0.2646	nan	0.1000	
##			nan		-0.0013
##	150	0.2562	nan	0.1000	-0.0021
##	т.	ш . ъ .	W 1 . ID .	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0136	nan	0.1000	0.0609
##	2	0.9170	nan	0.1000	0.0461
##	3	0.8460	nan	0.1000	0.0315
##	4	0.7807	nan	0.1000	0.0331
##	5	0.7321	nan	0.1000	0.0210
##	6	0.6908	nan	0.1000	0.0172
##	7	0.6594	nan	0.1000	0.0142
##	8	0.6271	nan	0.1000	0.0145
##	9	0.6044	nan	0.1000	0.0108
##	10	0.5779	nan	0.1000	0.0105
##	20	0.4518	nan	0.1000	0.0032
##	40	0.3542	nan	0.1000	0.0000
##	60	0.3043	nan	0.1000	-0.0009
##	80	0.2602	nan	0.1000	-0.0016
##	100	0.2291	nan	0.1000	-0.0003
##	120	0.2005	nan	0.1000	-0.0010
##	140	0.1797	nan	0.1000	-0.0014
##	150	0.1696	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.0078	nan	0.1000	0.0690
##	2	0.9168	nan	0.1000	0.0451
##	3	0.8481	nan	0.1000	0.0366
##	4	0.7831	nan	0.1000	0.0353
##	5	0.7334	nan	0.1000	0.0224
##	6	0.6921	nan	0.1000	0.0171
##	7	0.6528	nan	0.1000	0.0198
##	8	0.6185	nan	0.1000	0.0164
##	9	0.5874	nan	0.1000	0.0138
##	10	0.5650	nan	0.1000	0.0105
##	20	0.4369	nan	0.1000	0.0024
##	40	0.3612	nan	0.1000	0.0001
##	60	0.3316	nan	0.1000	-0.0013
##	80	0.3168	nan	0.1000	-0.0015
##	100	0.3014	nan	0.1000	-0.0003
##	120	0.2916	nan	0.1000	-0.0015
##	140	0.2803	nan	0.1000	-0.0011
##	150	0.2775	nan	0.1000	-0.0009
	100	0.2110	nan	0.1000	0.000

шш					
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Improve
##	1 ter	1.0008		StepSize 0.1000	0.0709
##	2	0.9010	nan nan	0.1000	0.0703
##	3	0.8243	nan	0.1000	0.0345
##	4	0.7594	nan	0.1000	0.0316
##	5	0.7039	nan	0.1000	0.0255
##	6	0.6633	nan	0.1000	0.0200
##	7	0.6263	nan	0.1000	0.0200
##	8	0.5929	nan	0.1000	0.0164
##	9	0.5658	nan	0.1000	0.0117
##	10	0.5437	nan	0.1000	0.0098
##	20	0.4079	nan	0.1000	0.0034
##	40	0.3123	nan	0.1000	0.0013
##	60	0.2734	nan	0.1000	-0.0006
##	80	0.2436	nan	0.1000	-0.0010
##	100	0.2187	nan	0.1000	-0.0003
##	120	0.1976	nan	0.1000	-0.0002
##	140	0.1849	nan	0.1000	-0.0012
##	150	0.1782	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0043	nan	0.1000	0.0699
##	2	0.8992	nan	0.1000	0.0509
##	3	0.8195	nan	0.1000	0.0413
##	4	0.7512	nan	0.1000	0.0338
##	5	0.6947	nan	0.1000	0.0240
##	6	0.6462	nan	0.1000	0.0225
##	7	0.6068	nan	0.1000	0.0176
##	8	0.5738	nan	0.1000	0.0157
##	9	0.5427	nan	0.1000	0.0154
##	10	0.5168	nan	0.1000	0.0107
##	20	0.3767	nan	0.1000	0.0017
##	40	0.2739	nan	0.1000	-0.0015
##	60	0.2298	nan	0.1000	-0.0006
##	80	0.1991	nan	0.1000	-0.0008
##	100	0.1757	nan	0.1000	-0.0003
##	120	0.1550	nan	0.1000	-0.0005
##	140	0.1374	nan	0.1000	-0.0008
##	150	0.1270	nan	0.1000	-0.0003
##	T+	TiDi	ValidDeviance	C+ C :	T
## ##	Iter 1	TrainDeviance 1.0276		StepSize 0.1000	Improve 0.0447
##	2	0.9561	nan	0.1000	0.0366
##	3	0.8994	nan nan	0.1000	0.0300
##	4	0.8541	nan	0.1000	0.0276
##	5	0.8162	nan	0.1000	0.0200
##	6	0.7812	nan	0.1000	0.0169
##	7	0.7498	nan	0.1000	0.0169
##	8	0.7186	nan	0.1000	0.0103
##	9	0.6938	nan	0.1000	0.0147
##	10	0.6737	nan	0.1000	0.0092
##	20	0.5670	nan	0.1000	0.0022
##	40	0.4822	nan	0.1000	0.0012

##	60	0.4459	nan	0.1000	0.0005
##	80	0.4254	nan	0.1000	-0.0012
##	100	0.4059	nan	0.1000	-0.0006
##	120	0.3899	nan	0.1000	-0.0003
##	140	0.3784	nan	0.1000	-0.0006
##	150	0.3721	nan	0.1000	0.0001
##	100	0.0721	nan	0.1000	0.0001
	T+	T i Di	V-1: dD	C+ C	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0160	nan	0.1000	0.0570
##	2	0.9348	nan	0.1000	0.0436
##	3	0.8688	nan	0.1000	0.0282
##	4	0.8117	nan	0.1000	0.0249
##	5	0.7669	nan	0.1000	0.0213
##	6	0.7302	nan	0.1000	0.0195
##	7	0.6994	nan	0.1000	0.0151
##	8	0.6722	nan	0.1000	0.0120
##	9	0.6495	nan	0.1000	0.0103
##	10	0.6319	nan	0.1000	0.0066
##	20	0.4974	nan	0.1000	0.0037
##	40	0.4054	nan	0.1000	0.0000
##	60	0.3531	nan	0.1000	-0.0008
##	80	0.3104	nan	0.1000	-0.0018
##	100	0.2777		0.1000	-0.0010
	120		nan		
##		0.2556	nan	0.1000	-0.0009
##	140	0.2347	nan	0.1000	-0.0015
##	150	0.2264	nan	0.1000	-0.0008
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	1.0045	ValidDeviance nan	0.1000	0.0553
##	1 2	1.0045 0.9165		0.1000 0.1000	0.0553 0.0445
## ##	1	1.0045 0.9165 0.8411	nan	0.1000 0.1000 0.1000	0.0553 0.0445 0.0354
## ## ##	1 2	1.0045 0.9165	nan nan	0.1000 0.1000	0.0553 0.0445
## ## ## ##	1 2 3	1.0045 0.9165 0.8411	nan nan nan	0.1000 0.1000 0.1000	0.0553 0.0445 0.0354
## ## ## ##	1 2 3 4	1.0045 0.9165 0.8411 0.7758	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276
## ## ## ## ##	1 2 3 4 5	1.0045 0.9165 0.8411 0.7758 0.7319	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198
## ## ## ## ##	1 2 3 4 5	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200
## ## ## ## ## ##	1 2 3 4 5 6 7	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 0.0000
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2328	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 0.0000 -0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2328 0.1945 0.1669 0.1459	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001 Improve
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354 TrainDeviance 1.0955	nan	0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001 Improve 0.0477
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354 TrainDeviance 1.0955 1.0162	nan	0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001 Improve 0.0477 0.0367
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354 TrainDeviance 1.0955 1.0162 0.9593	nan	0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001 Improve 0.0477 0.0367 0.0270
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354 TrainDeviance 1.0955 1.0162	nan	0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001 Improve 0.0477 0.0367
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.0045 0.9165 0.8411 0.7758 0.7319 0.6916 0.6567 0.6301 0.6062 0.5839 0.4617 0.3462 0.2788 0.2788 0.2328 0.1945 0.1669 0.1459 0.1354 TrainDeviance 1.0955 1.0162 0.9593	nan	0.1000 0.1000	0.0553 0.0445 0.0354 0.0276 0.0198 0.0200 0.0150 0.0121 0.0103 0.0093 0.0035 -0.0000 -0.0002 -0.0006 -0.0005 -0.0017 -0.0001 Improve 0.0477 0.0367 0.0270

##	7	0.7881	nan	0.1000	0.0152
##	8	0.7648	nan	0.1000	0.0114
##	9	0.7361	nan	0.1000	0.0128
##	10	0.7155	nan	0.1000	0.0103
##	20	0.6028	nan	0.1000	0.0017
##	40	0.5215		0.1000	0.0017
			nan		
##	60	0.4899	nan	0.1000	-0.0007
##	80	0.4655	nan	0.1000	0.0002
##	100	0.4512	nan	0.1000	0.0001
##	120	0.4388	nan	0.1000	-0.0006
##	140	0.4243	nan	0.1000	-0.0003
##	150	0.4192	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0847	nan	0.1000	0.0453
##	2	0.9986	nan	0.1000	0.0380
##	3	0.9320	nan	0.1000	0.0331
##	4	0.8817	nan	0.1000	0.0235
##	5	0.8407	nan	0.1000	0.0183
##	6	0.8012	nan	0.1000	0.0202
##	7	0.7688	nan	0.1000	0.0179
##	8	0.7379	nan	0.1000	0.0126
##	9	0.7158	nan	0.1000	0.0109
##	10	0.6931	nan	0.1000	0.0117
##	20	0.5541	nan	0.1000	0.0018
##	40	0.4643	nan	0.1000	-0.0013
##	60	0.4127	nan	0.1000	-0.0010
##	80	0.3754	nan	0.1000	-0.0018
##	100	0.3414	nan	0.1000	-0.0009
##	120	0.3145	nan	0.1000	-0.0001
##	140	0.2870	nan	0.1000	-0.0021
##	150	0.2753	nan	0.1000	-0.0012
##	200	0.2.00		0.1000	0.0012
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.0824		0.1000	0.0586
##	2		nan		0.0380
		0.9939	nan	0.1000	
##	3	0.9226	nan	0.1000	0.0368
##	4	0.8611	nan	0.1000	0.0291
##	5	0.8096	nan	0.1000	0.0232
##	6	0.7645	nan	0.1000	0.0204
##	7	0.7318	nan	0.1000	0.0153
##	8	0.7008	nan	0.1000	0.0131
##	9	0.6754	nan	0.1000	0.0108
##	10	0.6526	nan	0.1000	0.0093
##	20	0.5135	nan	0.1000	0.0010
##	40	0.3983	nan	0.1000	0.0012
##	60	0.3259	nan	0.1000	-0.0011
##	80	0.2763	nan	0.1000	-0.0007
##	100	0.2415	nan	0.1000	-0.0003
##	120	0.2410	nan	0.1000	0.0002
##	140	0.1888		0.1000	-0.0001
##	150	0.1769	nan	0.1000	-0.0001
	190	0.1709	nan	0.1000	0.0004
##	T4	Too in Dani	V-1:4De:	C+ C	T
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve

##	1	0.9910	nan	0.1000	0.0630
##	2	0.9032	nan	0.1000	0.0467
##	3	0.8341	nan	0.1000	0.0306
##	4	0.7790	nan	0.1000	0.0266
##	5	0.7319	nan	0.1000	0.0209
##	6	0.6914	nan	0.1000	0.0205
##	7	0.6599	nan	0.1000	0.0163
##	8	0.6256	nan	0.1000	0.0166
##	9	0.5959	nan	0.1000	0.0138
##	10	0.5734	nan	0.1000	0.0095
##	20	0.4429	nan	0.1000	0.0038
##	40	0.3506	nan	0.1000	0.0003
##	60	0.3099	nan	0.1000	-0.0002
##	80	0.2876	nan	0.1000	-0.0003
##	100	0.2720	nan	0.1000	-0.0014
##	120	0.2591	nan	0.1000	-0.0003
##	140	0.2486	nan	0.1000	-0.0011
##	150	0.2439	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	0.9802	nan	0.1000	0.0666
##	2	0.8834	nan	0.1000	0.0472
##	3	0.8085	nan	0.1000	0.0361
##	4	0.7458	nan	0.1000	0.0275
##	5	0.6942	nan	0.1000	0.0250
##	6	0.6540	nan	0.1000	0.0207
##	7	0.6176	nan	0.1000	0.0176
##	8	0.5844	nan	0.1000	0.0151
##	9	0.5536	nan	0.1000	0.0126
##	10	0.5284	nan	0.1000	0.0118
##	20	0.3856	nan	0.1000	0.0035
##	40	0.2881	nan	0.1000	-0.0002
##	60	0.2414	nan	0.1000	-0.0016
##	80	0.2112	nan	0.1000	0.0004
##	100	0.1865	nan	0.1000	-0.0011
##	120	0.1612	nan	0.1000	-0.0004
##	140	0.1448	nan	0.1000	-0.0003
##	150	0.1382	nan	0.1000	0.0004
## ##	Ttom	TrainDeviance	ValidDeviance	C+onCino	Tmnmarra
##	Iter 1	0.9738		StepSize 0.1000	Improve 0.0754
##	2	0.8654	nan	0.1000	0.0734
##	3	0.7836	nan nan	0.1000	0.0312
##	4	0.7161	nan	0.1000	0.0332
##	5	0.6632	nan	0.1000	0.0352
##	6	0.6210	nan	0.1000	0.0235
##	7	0.5811		0.1000	0.0220
##	8	0.5475	nan nan	0.1000	0.0170
##	9	0.5223	nan	0.1000	0.0132
##	10	0.4974	nan	0.1000	0.0111
##	20	0.3466	nan	0.1000	0.0113
##	40	0.2423	nan	0.1000	0.0029
##	60	0.1976	nan	0.1000	-0.0006
##	80	0.1644	nan	0.1000	-0.0002
		0.1014	11411	0.1000	0.0002

```
##
      100
                  0.1351
                                              0.1000
                                                        -0.0004
                                      nan
##
      120
                  0.1131
                                              0.1000
                                                        -0.0003
                                      nan
##
      140
                  0.0940
                                      nan
                                              0.1000
                                                        -0.0007
      150
                  0.0878
                                              0.1000
                                                         0.0000
##
                                      nan
##
## Iter
          TrainDeviance
                           ValidDeviance
                                            StepSize
                                                        Improve
##
                                              0.1000
                                                         0.0576
        1
                  1.0610
                                      nan
        2
                                                         0.0423
##
                 0.9775
                                      nan
                                              0.1000
##
        3
                  0.9117
                                      nan
                                              0.1000
                                                         0.0332
##
        4
                  0.8597
                                      nan
                                              0.1000
                                                         0.0259
##
        5
                  0.8143
                                      nan
                                              0.1000
                                                         0.0208
##
        6
                  0.7722
                                      nan
                                              0.1000
                                                         0.0189
        7
##
                  0.7387
                                              0.1000
                                                         0.0160
                                      nan
##
        8
                                              0.1000
                                                         0.0140
                  0.7090
                                      nan
##
        9
                                              0.1000
                                                         0.0126
                  0.6831
                                      nan
##
       10
                  0.6599
                                              0.1000
                                                         0.0100
                                      nan
##
       20
                  0.5433
                                              0.1000
                                                         0.0012
                                      nan
##
       40
                  0.4830
                                              0.1000
                                                         0.0000
                                      nan
##
                  0.4695
                                              0.1000
                                                        -0.0004
       50
                                      nan
print(model_gbm)
## Stochastic Gradient Boosting
##
## 576 samples
##
     5 predictor
##
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 576, 576, 576, 576, 576, 576, ...
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees
                                  Accuracy
                                              Kappa
##
                          50
                                   0.8934490
                                              0.7243933
     1
##
                         100
                                   0.8898759
                                              0.7160867
     1
##
     1
                         150
                                   0.8876620
                                              0.7108699
     2
##
                          50
                                   0.8895093
                                              0.7141743
##
     2
                         100
                                   0.8849033
                                              0.7038224
##
     2
                         150
                                   0.8805909
                                              0.6926282
##
     3
                          50
                                   0.8858876
                                              0.7062951
##
     3
                         100
                                   0.8760507
                                              0.6825678
##
     3
                                   0.8726175 0.6740539
                         150
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 50, interaction.depth
   = 1, shrinkage = 0.1 and n.minobsinnode = 10.
```

plot(model_gbm)


```
#Prediction with GBM
predictions_gbm<-predict.train(object=model_gbm,testSet[,predictors],type="raw")</pre>
table(predictions_gbm)
## predictions_gbm
##
     0
        1
## 144 46
confusionMatrix(predictions_gbm,testSet[,outcomeName])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                0
##
            0 131
                   13
                  38
##
                8
##
                  Accuracy : 0.8895
##
                    95% CI: (0.836, 0.9303)
##
##
       No Information Rate: 0.7316
##
       P-Value [Acc > NIR] : 7.679e-08
##
##
                     Kappa: 0.7096
   Mcnemar's Test P-Value: 0.3827
##
##
##
               Sensitivity: 0.9424
```

Specificity: 0.7451

##

```
##
            Pos Pred Value: 0.9097
##
            Neg Pred Value: 0.8261
##
                Prevalence: 0.7316
##
            Detection Rate: 0.6895
##
      Detection Prevalence: 0.7579
##
         Balanced Accuracy: 0.8438
##
          'Positive' Class : 0
##
##
```

Neural Network (nnet) method

```
model_nnet<-train(trainSet[,predictors],trainSet[,outcomeName],method='nnet')</pre>
## # weights:
## initial value 355.003299
## iter 10 value 327.609893
## iter 20 value 284.139022
## iter 30 value 225.514498
## iter
       40 value 170.657867
## iter 50 value 131.923068
## iter 60 value 124.929547
        70 value 119.577670
## iter
## iter 80 value 119.418854
## final value 119.417378
## converged
## # weights:
## initial value 333.421147
## iter 10 value 327.618837
## iter 20 value 297.975246
## iter 30 value 182.523246
## iter 40 value 156.613281
## iter 50 value 150.049571
## iter
        60 value 147.592928
## iter 70 value 141.305311
## iter 80 value 139.846989
## iter 90 value 139.804972
## iter 100 value 139.793664
## final value 139.793664
## stopped after 100 iterations
## # weights: 106
## initial value 563.831021
## iter 10 value 327.706030
## iter 20 value 326.989521
## iter 30 value 320.645616
## iter 40 value 309.798514
## iter 50 value 263.100281
## iter 60 value 218.225853
## iter
        70 value 160.877637
## iter 80 value 123.924422
## iter 90 value 121.683786
## iter 100 value 116.655054
```

```
## final value 116.655054
## stopped after 100 iterations
## # weights: 22
## initial value 380.314004
## iter 10 value 329.429294
## iter 20 value 327.879467
## iter 30 value 317.788398
## iter 40 value 204.679541
## iter 50 value 154.175149
## iter 60 value 149.867004
## iter 70 value 145.005766
## iter 80 value 136.540289
## iter 90 value 134.453969
## iter 100 value 134.084093
## final value 134.084093
## stopped after 100 iterations
## # weights: 64
## initial value 390.124100
## iter 10 value 319.683601
## iter 20 value 311.795447
## iter 30 value 272.280769
## iter 40 value 237.493240
## iter 50 value 160.456855
## iter 60 value 133.686480
## iter 70 value 131.953129
## iter 80 value 131.762319
## iter 90 value 130.991264
## iter 100 value 127.964149
## final value 127.964149
## stopped after 100 iterations
## # weights: 106
## initial value 345.332244
## iter 10 value 329.416576
## iter 20 value 327.231602
## iter 30 value 245.053773
## iter 40 value 142.622519
## iter 50 value 137.798020
## iter 60 value 135.823545
## iter 70 value 133.573813
## iter 80 value 133.458967
## iter 80 value 133.458967
## iter 80 value 133.458967
## final value 133.458967
## converged
## # weights: 22
## initial value 399.261018
## iter 10 value 331.373106
## final value 331.371913
## converged
## # weights: 64
## initial value 389.843746
## iter 10 value 326.291280
## iter 20 value 288.626067
## iter 30 value 197.334204
```

```
## iter 40 value 178.891633
## iter 50 value 163.535247
## iter 60 value 160.280195
## iter 70 value 156.104842
## iter 80 value 155.237050
## iter 90 value 154.776872
## iter 100 value 153.396891
## final value 153.396891
## stopped after 100 iterations
## # weights: 106
## initial value 454.937170
## iter 10 value 266.230891
## iter 20 value 258.488807
## iter 30 value 254.068804
## iter 40 value 236.472966
## iter 50 value 177.332166
## iter 60 value 155.779613
## iter 70 value 144.162978
## iter 80 value 139.655930
## iter 90 value 138.665973
## iter 100 value 138.600443
## final value 138.600443
## stopped after 100 iterations
## # weights: 22
## initial value 333.610413
## iter 10 value 328.113570
## iter 20 value 328.101643
## final value 328.101634
## converged
## # weights: 64
## initial value 419.540419
## iter 10 value 328.114779
## iter 20 value 328.082783
## iter 30 value 328.017457
## iter 40 value 327.696077
## iter 50 value 254.901924
## iter 60 value 171.292686
## iter 70 value 143.744209
## iter 80 value 139.784847
## iter 90 value 134.821413
## iter 100 value 121.678042
## final value 121.678042
## stopped after 100 iterations
## # weights: 106
## initial value 735.558209
## iter 10 value 327.586539
## iter 20 value 325.273147
## iter 30 value 312.579389
## iter 40 value 312.459731
## iter 50 value 312.446044
## iter 60 value 312.445339
## iter 70 value 312.445183
## iter 70 value 312.445182
## iter 70 value 312.445182
```

```
## final value 312.445182
## converged
## # weights: 22
## initial value 492.894842
## iter 10 value 329.262464
## iter 20 value 328.380165
## final value 328.375524
## converged
## # weights: 64
## initial value 397.894169
## iter 10 value 330.777746
## iter 20 value 328.964342
## iter 30 value 327.242294
## iter 40 value 295.409801
## iter 50 value 201.101164
## iter 60 value 159.059746
## iter 70 value 132.647885
## iter 80 value 126.924776
## iter 90 value 126.529625
## iter 100 value 124.955356
## final value 124.955356
## stopped after 100 iterations
## # weights: 106
## initial value 465.663233
## iter 10 value 329.117443
## iter 20 value 277.637528
## iter 30 value 246.431410
## iter 40 value 226.381265
## iter 50 value 167.040766
## iter 60 value 138.332015
## iter 70 value 122.753467
## iter 80 value 118.850516
## iter 90 value 118.342991
## iter 100 value 117.113020
## final value 117.113020
## stopped after 100 iterations
## # weights: 22
## initial value 344.011234
## iter 10 value 323.780993
## iter 20 value 323.613052
## iter 30 value 323.585334
## iter 40 value 240.164365
## iter 50 value 134.325928
## iter 60 value 124.124548
## iter 70 value 121.411361
## iter 80 value 119.566737
## iter 90 value 118.042886
## iter 100 value 117.134234
## final value 117.134234
## stopped after 100 iterations
## # weights: 64
## initial value 578.352387
## iter 10 value 328.109472
## iter 20 value 328.095171
```

```
## iter 30 value 327.793304
## iter 40 value 283.548561
## iter 50 value 264.955790
## iter 60 value 232.057188
## iter 70 value 161.217442
## iter 80 value 141.334662
## iter 90 value 133.489305
## iter 100 value 131.913864
## final value 131.913864
## stopped after 100 iterations
## # weights: 106
## initial value 523.268924
## iter 10 value 323.267772
## iter 20 value 251.448694
## iter 30 value 224.727456
## iter 40 value 152.478300
## iter 50 value 132.612731
## iter 60 value 128.259744
## iter 70 value 119.835327
## iter 80 value 119.474284
## iter 90 value 119.357435
## iter 100 value 119.260927
## final value 119.260927
## stopped after 100 iterations
## # weights: 22
## initial value 395.706746
## iter 10 value 335.438782
## final value 335.438699
## converged
## # weights: 64
## initial value 359.821596
## iter 10 value 334.379644
## iter 20 value 333.595400
## iter 30 value 291.351216
## iter 40 value 230.931580
## iter 50 value 147.790103
## iter 60 value 122.211248
## iter 70 value 115.869667
## iter 80 value 109.954922
## iter 90 value 107.316940
## iter 100 value 106.335153
## final value 106.335153
## stopped after 100 iterations
## # weights: 106
## initial value 350.432788
## iter 10 value 334.438770
## iter 20 value 326.236789
## iter 30 value 296.763973
## iter 40 value 182.772471
## iter 50 value 139.624753
## iter 60 value 130.027332
## iter 70 value 126.997330
## iter 80 value 120.514319
## iter 90 value 120.369874
```

```
## final value 120.369663
## converged
## # weights: 22
## initial value 499.747296
## iter 10 value 334.635265
## iter 20 value 334.380507
## iter 30 value 333.916051
## iter 40 value 323.935174
## iter 50 value 307.674791
## iter 60 value 259.391851
## iter 70 value 152.556861
## iter 80 value 132.351351
## iter 90 value 129.516081
## iter 100 value 129.327521
## final value 129.327521
## stopped after 100 iterations
## # weights: 64
## initial value 344.861402
## iter 10 value 332.452457
## iter 20 value 276.991536
## iter 30 value 228.359831
## iter 40 value 143.890331
## iter 50 value 138.363179
## iter 60 value 124.627494
## iter 70 value 120.622271
## iter 80 value 116.470719
## iter 90 value 116.276751
## iter 100 value 116.069914
## final value 116.069914
## stopped after 100 iterations
## # weights: 106
## initial value 401.929028
## iter 10 value 305.073176
## iter 20 value 296.585930
## iter 30 value 282.881781
## iter 40 value 232.962529
## iter 50 value 178.471096
## iter 60 value 133.898767
## iter 70 value 122.652002
## iter 80 value 121.300593
## iter 90 value 119.744003
## iter 100 value 110.193248
## final value 110.193248
## stopped after 100 iterations
## # weights: 22
## initial value 382.511845
## iter 10 value 331.975871
## iter 20 value 239.964392
## iter 30 value 185.497475
## iter 40 value 154.949966
## iter 50 value 127.399892
## iter 60 value 119.146785
## iter 70 value 116.029982
## iter 80 value 114.918323
```

```
## iter 90 value 114.873598
## iter 100 value 114.561198
## final value 114.561198
## stopped after 100 iterations
## # weights: 64
## initial value 367.545443
## iter 10 value 338.984075
## iter 20 value 327.920597
## iter 30 value 214.584272
## iter 40 value 135.119400
## iter 50 value 112.064960
## iter 60 value 102.261154
## iter 70 value 96.686024
## iter 80 value 93.410169
## iter 90 value 92.141682
## iter 100 value 88.708885
## final value 88.708885
## stopped after 100 iterations
## # weights: 106
## initial value 378.916325
## iter 10 value 298.163046
## iter 20 value 272.248757
## iter 30 value 203.951231
## iter 40 value 169.328348
## iter 50 value 126.805122
## iter 60 value 122.115040
## iter 70 value 118.800241
## iter 80 value 111.120425
## iter 90 value 107.102214
## iter 100 value 106.171720
## final value 106.171720
## stopped after 100 iterations
## # weights: 22
## initial value 354.233679
## iter 10 value 335.420667
## iter 20 value 330.476047
## iter 30 value 317.124151
## iter 40 value 218.915225
## iter 50 value 142.102142
## iter 60 value 129.782683
## iter 70 value 125.520046
## iter 80 value 121.755151
## iter 90 value 120.505094
## iter 100 value 120.106769
## final value 120.106769
## stopped after 100 iterations
## # weights: 64
## initial value 431.917964
## iter 10 value 334.188155
## iter 20 value 330.384554
## iter 30 value 254.522939
## iter 40 value 186.061236
## iter 50 value 130.657140
## iter 60 value 121.829080
```

```
## iter 70 value 120.240373
## iter 80 value 120.100468
## iter 90 value 120.098486
## iter 100 value 120.097210
## final value 120.097210
## stopped after 100 iterations
## # weights: 106
## initial value 347.117431
## iter 10 value 280.498364
## iter 20 value 150.309392
## iter 30 value 146.086379
## iter 40 value 145.342979
## iter 50 value 140.918944
## iter 60 value 137.283709
## iter 70 value 135.191816
## iter 80 value 132.793804
## iter 90 value 132.694703
## iter 100 value 132.508963
## final value 132.508963
## stopped after 100 iterations
## # weights: 22
## initial value 489.875389
## iter 10 value 291.895828
## iter 20 value 247.019757
## iter 30 value 191.239141
## iter 40 value 144.373769
## iter 50 value 131.292617
## iter 60 value 130.261213
## final value 130.252858
## converged
## # weights: 64
## initial value 357.647503
## iter 10 value 283.460957
## iter 20 value 261.636627
## iter 30 value 256.565605
## iter 40 value 247.950797
## iter 50 value 240.221049
## iter 60 value 144.289262
## iter 70 value 132.760710
## iter 80 value 129.143769
## iter 90 value 120.232287
## iter 100 value 114.826381
## final value 114.826381
## stopped after 100 iterations
## # weights: 106
## initial value 373.352984
## iter 10 value 333.923814
## iter 20 value 319.658750
## iter 30 value 254.693699
## iter 40 value 249.970382
## iter 50 value 237.414361
## iter 60 value 222.289056
## iter 70 value 182.027920
## iter 80 value 114.304745
```

```
## iter 90 value 105.687617
## iter 100 value 101.946055
## final value 101.946055
## stopped after 100 iterations
## # weights: 22
## initial value 394.136199
## iter 10 value 335.440154
## final value 335.439434
## converged
## # weights: 64
## initial value 357.584527
## iter 10 value 331.484202
## iter 20 value 330.445381
## iter 30 value 329.657140
## iter 40 value 328.661755
## iter 50 value 328.655378
## iter 60 value 328.653205
## final value 328.650652
## converged
## # weights: 106
## initial value 411.644787
## iter 10 value 331.513242
## iter 20 value 331.052263
## iter 30 value 327.404532
## iter 40 value 324.838775
## iter 50 value 274.281649
## iter 60 value 240.186910
## iter 70 value 207.298935
## iter 80 value 167.008773
## iter 90 value 155.559287
## iter 100 value 153.745072
## final value 153.745072
## stopped after 100 iterations
## # weights: 22
## initial value 534.002031
## iter 10 value 339.840263
## iter 20 value 339.453247
## final value 339.453093
## converged
## # weights: 64
## initial value 473.347627
## iter 10 value 339.460389
## iter 20 value 338.617550
## iter 30 value 338.266047
## iter 40 value 335.484205
## iter 50 value 335.376851
## iter 60 value 333.364108
## iter 70 value 333.347348
## iter 80 value 333.339978
## iter 90 value 333.339717
## final value 333.339670
## converged
## # weights: 106
## initial value 375.216996
```

```
## iter 10 value 339.807847
## iter 20 value 328.784757
## iter 30 value 315.528370
## iter 40 value 315.319950
## final value 315.319718
## converged
## # weights: 22
## initial value 352.540230
## iter 10 value 340.484402
## iter 20 value 340.176504
## final value 340.176026
## converged
## # weights: 64
## initial value 395.874508
## iter 10 value 296.670480
## iter 20 value 211.240159
## iter 30 value 134.249959
## iter 40 value 129.655585
## iter 50 value 127.621684
## iter 60 value 127.398347
## iter 70 value 127.384221
## final value 127.384165
## converged
## # weights: 106
## initial value 360.928204
## iter 10 value 340.100199
## iter 20 value 298.949850
## iter 30 value 267.076797
## iter 40 value 240.481860
## iter 50 value 158.644780
## iter 60 value 131.148256
## iter 70 value 130.681291
## final value 130.681205
## converged
## # weights:
              22
## initial value 348.634657
## iter 10 value 336.074087
## iter 20 value 335.831839
## final value 335.830875
## converged
## # weights: 64
## initial value 398.326472
## iter 10 value 339.467679
## iter 20 value 339.453741
## iter 30 value 336.927112
## iter 40 value 335.532291
## iter 50 value 292.313583
## iter 60 value 152.861636
## iter 70 value 127.546562
## iter 80 value 124.162017
## iter 90 value 123.672788
## final value 123.659895
## converged
## # weights: 106
```

```
## initial value 375.854733
## iter 10 value 339.638205
## iter 20 value 334.677635
## iter 30 value 315.483875
## iter 40 value 309.753193
## iter 50 value 305.660386
## iter 60 value 305.649403
## iter 70 value 305.643145
## iter 80 value 305.639535
## final value 305.638772
## converged
## # weights:
              22
## initial value 321.297070
## iter 10 value 319.436114
## final value 319.435945
## converged
## # weights: 64
## initial value 405.463922
## iter 10 value 310.507942
## iter 20 value 248.202200
## iter 30 value 205.204355
## iter 40 value 151.902304
## iter 50 value 140.370587
## iter 60 value 131.785834
## iter 70 value 102.175692
## iter 80 value 92.466497
## iter 90 value 91.990526
## iter 100 value 89.400803
## final value 89.400803
## stopped after 100 iterations
## # weights: 106
## initial value 498.807424
## iter 10 value 316.983522
## iter 20 value 254.771440
## iter 30 value 230.692472
## iter 40 value 219.330025
## iter 50 value 198.026367
## iter 60 value 136.514240
## iter 70 value 115.987753
## iter 80 value 112.473795
## iter 90 value 110.809252
## iter 100 value 110.229697
## final value 110.229697
## stopped after 100 iterations
## # weights: 22
## initial value 333.199678
## iter 10 value 317.739844
## iter 20 value 317.607997
## iter 30 value 312.333196
## iter 40 value 218.387097
## iter 50 value 148.522168
## iter 60 value 126.241540
## iter 70 value 124.260873
## final value 124.227849
```

```
## converged
## # weights: 64
## initial value 498.258900
## iter 10 value 318.642332
## iter 20 value 314.277079
## iter 30 value 235.184738
## iter 40 value 214.118472
## iter 50 value 168.341912
## iter 60 value 143.345515
## iter 70 value 115.504079
## iter 80 value 114.383109
## iter 90 value 114.353134
## final value 114.353121
## converged
## # weights: 106
## initial value 326.753541
## iter 10 value 319.953228
## iter 20 value 294.913274
## iter 30 value 249.296009
## iter 40 value 224.067941
## iter 50 value 192.555963
## iter 60 value 121.093454
## iter 70 value 116.213536
## iter 80 value 110.374935
## iter 90 value 109.891351
## iter 100 value 109.378547
## final value 109.378547
## stopped after 100 iterations
## # weights: 22
## initial value 337.944387
## iter 10 value 319.437149
## final value 319.437029
## converged
## # weights: 64
## initial value 375.633669
## iter 10 value 317.194410
## iter 20 value 316.385554
## iter 30 value 264.183896
## iter 40 value 238.757654
## iter 50 value 175.061833
## iter 60 value 150.821490
## iter 70 value 138.976082
## iter 80 value 129.705900
## iter 90 value 129.683054
## iter 100 value 129.428521
## final value 129.428521
## stopped after 100 iterations
## # weights: 106
## initial value 323.649656
## iter 10 value 317.395154
## iter 20 value 316.910153
## iter 30 value 315.449415
## final value 315.446531
## converged
```

```
## # weights: 22
## initial value 479.129249
## iter 10 value 340.841344
## iter 20 value 337.495926
## iter 30 value 272.102516
## iter 40 value 246.294504
## iter 50 value 224.585578
## iter 60 value 209.823286
## iter 70 value 201.578230
## iter 80 value 200.937250
## iter 90 value 199.893405
## iter 100 value 199.426584
## final value 199.426584
## stopped after 100 iterations
## # weights: 64
## initial value 342.687276
## iter 10 value 337.950105
## iter 20 value 330.204996
## iter 30 value 329.984650
## final value 329.983816
## converged
## # weights: 106
## initial value 568.340739
## iter 10 value 337.073457
## iter 20 value 335.737092
## iter 30 value 335.269742
## iter 40 value 331.559541
## iter 50 value 326.146872
## iter 60 value 322.464108
## iter 70 value 321.501595
## iter 80 value 319.709268
## iter 90 value 317.163941
## iter 100 value 312.732087
## final value 312.732087
## stopped after 100 iterations
## # weights: 22
## initial value 427.330694
## iter 10 value 294.925217
## iter 20 value 270.811810
## iter 30 value 236.455279
## iter 40 value 155.488219
## iter 50 value 152.913149
## final value 152.873529
## converged
## # weights: 64
## initial value 403.322959
## iter 10 value 339.912266
## iter 20 value 316.031296
## iter 30 value 283.856105
## iter 40 value 209.194379
## iter 50 value 169.842861
## iter 60 value 156.180202
## iter 70 value 144.186965
## iter 80 value 138.204726
```

```
## iter 90 value 137.034024
## iter 100 value 136.827529
## final value 136.827529
## stopped after 100 iterations
## # weights: 106
## initial value 410.785014
## iter 10 value 316.822543
## iter 20 value 270.414793
## iter 30 value 265.677487
## iter 40 value 239.485054
## iter 50 value 164.484070
## iter 60 value 159.649108
## iter 70 value 151.671743
## iter 80 value 148.351296
## iter 90 value 147.244346
## iter 100 value 141.779156
## final value 141.779156
## stopped after 100 iterations
## # weights: 22
## initial value 348.206988
## iter 10 value 341.139519
## iter 20 value 337.369996
## iter 30 value 337.251737
## iter 40 value 337.250434
## iter 40 value 337.250431
## final value 337.250416
## converged
## # weights: 64
## initial value 404.852993
## iter 10 value 340.855723
## iter 20 value 337.084381
## iter 30 value 310.360172
## iter 40 value 253.516480
## iter 50 value 211.120294
## iter 60 value 177.702516
## iter 70 value 153.297225
## iter 80 value 151.680200
## iter 90 value 151.487430
## iter 100 value 149.914544
## final value 149.914544
## stopped after 100 iterations
## # weights: 106
## initial value 587.666638
## final value 341.269667
## converged
## # weights: 22
## initial value 424.696231
## iter 10 value 347.231747
## iter 20 value 347.217490
## final value 347.217411
## converged
## # weights: 64
## initial value 441.421013
## iter 10 value 347.227555
```

```
## iter 20 value 345.469992
## iter 30 value 338.191127
## iter 40 value 337.702062
## iter 50 value 336.935143
## iter 60 value 329.269649
## iter 70 value 329.093604
## iter 80 value 328.204976
## iter 90 value 326.919578
## iter 100 value 307.847089
## final value 307.847089
## stopped after 100 iterations
## # weights: 106
## initial value 457.177114
## iter 10 value 346.969935
## iter 20 value 269.185348
## iter 30 value 233.982063
## iter 40 value 197.181958
## iter 50 value 176.080305
## iter 60 value 171.778358
## iter 70 value 171.659448
## final value 171.658560
## converged
## # weights: 22
## initial value 363.668183
## iter 10 value 348.091028
## iter 20 value 338.714584
## iter 30 value 155.040781
## iter 40 value 137.179934
## iter 50 value 136.431336
## final value 136.424610
## converged
## # weights: 64
## initial value 362.223169
## iter 10 value 348.738897
## iter 20 value 292.425170
## iter 30 value 202.897287
## iter 40 value 170.519215
## iter 50 value 129.230259
## iter 60 value 127.415905
## iter 70 value 127.330467
## final value 127.330019
## converged
## # weights: 106
## initial value 380.416676
## iter 10 value 302.498524
## iter 20 value 270.291511
## iter 30 value 232.604308
## iter 40 value 202.628345
## iter 50 value 188.175665
## iter 60 value 141.695002
## iter 70 value 130.750342
## iter 80 value 126.556163
## iter 90 value 125.223809
## iter 100 value 123.556476
```

```
## final value 123.556476
## stopped after 100 iterations
## # weights: 22
## initial value 364.184461
## iter 10 value 264.760346
## iter 20 value 226.417452
## iter 30 value 206.087297
## iter 40 value 187.453595
## iter 50 value 175.680399
## iter 60 value 168.559759
## iter 70 value 166.938701
## iter 80 value 166.763995
## iter 90 value 166.731278
## iter 100 value 166.293890
## final value 166.293890
## stopped after 100 iterations
## # weights: 64
## initial value 467.530533
## iter 10 value 348.567700
## iter 20 value 345.743950
## iter 30 value 334.361198
## iter 40 value 254.641744
## iter 50 value 155.267406
## iter 60 value 153.163102
## iter 70 value 151.636222
## iter 80 value 146.608072
## iter 90 value 145.480626
## iter 100 value 128.340524
## final value 128.340524
## stopped after 100 iterations
## # weights: 106
## initial value 353.521529
## iter 10 value 347.012909
## iter 20 value 346.584399
## iter 30 value 293.485347
## iter 40 value 211.475613
## iter 50 value 161.478954
## iter 60 value 121.589174
## iter 70 value 117.361158
## iter 80 value 111.562010
## iter 90 value 109.923292
## iter 100 value 107.676312
## final value 107.676312
## stopped after 100 iterations
## # weights: 22
## initial value 412.544308
## iter 10 value 348.127647
## iter 20 value 347.868415
## iter 30 value 347.856744
## final value 347.856674
## converged
## # weights: 64
## initial value 680.578271
## iter 10 value 341.909261
```

```
## iter 20 value 333.519485
## iter 30 value 333.254485
## iter 40 value 333.252730
## final value 333.252614
## converged
## # weights: 106
## initial value 396.314970
## iter 10 value 347.777466
## iter 20 value 250.830702
## iter 30 value 134.856311
## iter 40 value 120.040666
## iter 50 value 119.497206
## iter 60 value 119.326953
## iter 70 value 118.933855
## final value 118.930673
## converged
## # weights: 22
## initial value 514.861809
## iter 10 value 348.197054
## iter 20 value 347.674141
## iter 30 value 347.472228
## iter 40 value 328.017366
## iter 50 value 249.159808
## iter 60 value 194.356194
## iter 70 value 143.152621
## iter 80 value 133.237997
## iter 90 value 132.645758
## final value 132.644432
## converged
## # weights: 64
## initial value 420.735508
## iter 10 value 348.080185
## iter 20 value 292.326253
## iter 30 value 273.029588
## iter 40 value 214.648605
## iter 50 value 175.558836
## iter 60 value 134.168015
## iter 70 value 130.716154
## iter 80 value 125.788605
## iter 90 value 123.311088
## iter 100 value 123.154419
## final value 123.154419
## stopped after 100 iterations
## # weights: 106
## initial value 739.197563
## iter 10 value 302.416610
## iter 20 value 217.302914
## iter 30 value 139.265619
## iter 40 value 136.161517
## iter 50 value 135.699142
## iter 60 value 129.529865
## iter 70 value 127.874854
## iter 80 value 124.208247
## iter 90 value 123.804123
```

```
## iter 100 value 120.204955
## final value 120.204955
## stopped after 100 iterations
## # weights: 22
## initial value 402.101138
## iter 10 value 347.867720
## final value 347.858173
## converged
## # weights: 64
## initial value 360.949916
## iter 10 value 347.690101
## iter 20 value 282.511009
## iter 30 value 270.399861
## iter 40 value 268.926078
## iter 50 value 238.095338
## iter 60 value 188.472603
## iter 70 value 144.453282
## iter 80 value 122.225942
## iter 90 value 119.549013
## iter 100 value 119.451944
## final value 119.451944
## stopped after 100 iterations
## # weights: 106
## initial value 376.181330
## iter 10 value 348.487243
## iter 20 value 304.846111
## iter 30 value 270.107770
## iter 40 value 179.184866
## iter 50 value 161.177597
## iter 60 value 148.590177
## iter 70 value 145.340289
## iter 80 value 131.029688
## iter 90 value 124.787237
## iter 100 value 123.837731
## final value 123.837731
## stopped after 100 iterations
## # weights: 22
## initial value 353.857502
## iter 10 value 346.615459
## iter 20 value 346.613700
## iter 20 value 346.613697
## iter 20 value 346.613697
## final value 346.613697
## converged
## # weights: 64
## initial value 402.446464
## iter 10 value 346.615176
## final value 346.613832
## converged
## # weights: 106
## initial value 351.577415
## iter 10 value 345.722671
## iter 20 value 344.544960
## final value 344.542663
```

```
## converged
## # weights: 22
## initial value 423.245453
## iter 10 value 347.763737
## iter 10 value 347.763734
## iter 10 value 347.763734
## final value 347.763734
## converged
## # weights: 64
## initial value 493.731891
## iter 10 value 346.351314
## iter 20 value 309.156004
## iter 30 value 243.766158
## iter 40 value 167.958623
## iter 50 value 155.078466
## iter 60 value 148.460037
## iter 70 value 147.812527
## iter 80 value 147.809735
## final value 147.809710
## converged
## # weights: 106
## initial value 353.113879
## iter 10 value 346.990026
## iter 20 value 346.233245
## iter 30 value 291.209936
## iter 40 value 266.285524
## iter 50 value 170.009401
## iter 60 value 160.451006
## iter 70 value 153.361748
## iter 80 value 151.339881
## iter 90 value 150.859547
## iter 100 value 149.353225
## final value 149.353225
## stopped after 100 iterations
## # weights: 22
## initial value 349.133896
## iter 10 value 346.614739
## iter 10 value 346.614738
## iter 10 value 346.614738
## final value 346.614738
## converged
## # weights: 64
## initial value 363.945947
## iter 10 value 345.982121
## iter 20 value 345.972207
## iter 30 value 345.279239
## iter 40 value 345.276165
## iter 40 value 345.276162
## iter 40 value 345.276162
## final value 345.276162
## converged
## # weights: 106
## initial value 348.291499
## iter 10 value 280.576555
```

```
## iter 20 value 261.153041
## iter 30 value 252.216361
## iter 40 value 251.060394
## iter 50 value 248.677701
## iter 60 value 219.967550
## iter 70 value 197.123334
## iter 80 value 157.915536
## iter 90 value 138.962961
## iter 100 value 129.501222
## final value 129.501222
## stopped after 100 iterations
## # weights:
              22
## initial value 403.895497
## iter 10 value 327.052060
## final value 327.052034
## converged
## # weights: 64
## initial value 472.574553
## iter 10 value 308.960425
## iter 20 value 295.734320
## iter 30 value 292.396944
## iter 40 value 287.228637
## iter 50 value 253.593100
## iter 60 value 247.983131
## iter 70 value 204.701944
## iter 80 value 120.525351
## iter 90 value 98.708514
## iter 100 value 88.311498
## final value 88.311498
## stopped after 100 iterations
## # weights: 106
## initial value 618.643224
## iter 10 value 326.623589
## iter 20 value 325.760874
## iter 30 value 265.261464
## iter 40 value 233.730864
## iter 50 value 201.667953
## iter 60 value 164.506210
## iter 70 value 144.615083
## iter 80 value 141.796878
## iter 90 value 140.646549
## iter 100 value 140.302350
## final value 140.302350
## stopped after 100 iterations
## # weights: 22
## initial value 659.370706
## iter 10 value 327.243634
## final value 327.241853
## converged
## # weights:
              64
## initial value 410.895402
## iter 10 value 326.901285
## iter 20 value 272.640395
## iter 30 value 256.514501
```

```
## iter 40 value 198.805392
## iter 50 value 147.601150
## iter 60 value 116.504194
## iter 70 value 113.957835
## iter 80 value 112.700563
## iter 90 value 111.519108
## iter 100 value 111.505210
## final value 111.505210
## stopped after 100 iterations
## # weights: 106
## initial value 333.048612
## iter 10 value 326.644462
## iter 20 value 236.270158
## iter 30 value 204.061839
## iter 40 value 170.556546
## iter 50 value 119.673139
## iter 60 value 115.626057
## iter 70 value 112.864110
## iter 80 value 112.616090
## iter 90 value 112.484546
## iter 100 value 112.467201
## final value 112.467201
## stopped after 100 iterations
## # weights: 22
## initial value 410.806469
## iter 10 value 327.159915
## final value 327.159892
## converged
## # weights: 64
## initial value 346.708877
## iter 10 value 325.849809
## iter 20 value 325.575733
## iter 30 value 325.574933
## iter 40 value 325.345579
## iter 50 value 324.802906
## iter 60 value 324.462452
## iter 70 value 324.458485
## final value 324.458429
## converged
## # weights: 106
## initial value 1005.262659
## iter 10 value 324.854401
## iter 20 value 317.145953
## iter 30 value 314.244480
## iter 40 value 136.901996
## iter 50 value 107.170761
## iter 60 value 99.905609
## iter 70 value 97.281748
## iter 80 value 96.379346
## iter 90 value 96.339995
## iter 100 value 96.182670
## final value 96.182670
## stopped after 100 iterations
## # weights: 22
```

```
## initial value 502.484075
## iter 10 value 302.591447
## iter 20 value 237.045433
## iter 30 value 165.815537
## iter 40 value 152.172898
## iter 50 value 146.760499
## iter 60 value 145.651717
## iter 70 value 145.649256
## final value 145.649254
## converged
## # weights: 64
## initial value 356.349864
## iter 10 value 350.909786
## iter 20 value 349.783588
## iter 30 value 341.529373
## iter 40 value 209.612854
## iter 50 value 164.945710
## iter 60 value 150.080697
## iter 70 value 147.490262
## iter 80 value 147.360000
## iter 90 value 146.534664
## iter 100 value 145.787466
## final value 145.787466
## stopped after 100 iterations
## # weights: 106
## initial value 357.884730
## iter 10 value 350.675904
## iter 20 value 342.361247
## iter 30 value 340.217850
## iter 40 value 330.212116
## iter 50 value 226.535882
## iter 60 value 159.302332
## iter 70 value 148.807780
## iter 80 value 142.115829
## iter 90 value 140.373889
## iter 100 value 134.199720
## final value 134.199720
## stopped after 100 iterations
## # weights: 22
## initial value 377.602454
## iter 10 value 350.745109
## iter 20 value 263.303608
## iter 30 value 164.117213
## iter 40 value 155.323673
## iter 50 value 155.003523
## final value 155.001515
## converged
## # weights: 64
## initial value 451.796769
## iter 10 value 350.332385
## iter 20 value 349.668259
## iter 30 value 339.853323
## iter 40 value 327.100184
## iter 50 value 290.491839
```

```
## iter 60 value 288.218490
## iter 70 value 281.463475
## iter 80 value 250.773620
## iter 90 value 219.759878
## iter 100 value 181.838665
## final value 181.838665
## stopped after 100 iterations
## # weights: 106
## initial value 398.956941
## iter 10 value 350.760848
## iter 20 value 349.506974
## iter 30 value 334.569890
## iter 40 value 266.386374
## iter 50 value 238.396970
## iter 60 value 170.574561
## iter 70 value 155.594685
## iter 80 value 151.219507
## iter 90 value 143.972869
## iter 100 value 137.760419
## final value 137.760419
## stopped after 100 iterations
## # weights: 22
## initial value 480.956646
## iter 10 value 350.789186
## iter 20 value 350.787473
## iter 30 value 350.740876
## iter 40 value 348.317396
## iter 50 value 314.765486
## iter 60 value 312.784843
## iter 70 value 278.649720
## iter 80 value 235.974251
## iter 90 value 228.207527
## iter 100 value 185.874144
## final value 185.874144
## stopped after 100 iterations
## # weights: 64
## initial value 509.508253
## iter 10 value 348.290073
## iter 20 value 281.845511
## iter 30 value 278.086130
## iter 40 value 275.835304
## iter 50 value 274.861918
## iter 60 value 269.248497
## iter 70 value 199.891883
## iter 80 value 147.252327
## iter 90 value 142.742195
## iter 100 value 138.401515
## final value 138.401515
## stopped after 100 iterations
## # weights: 106
## initial value 754.392241
## iter 10 value 303.904632
## iter 20 value 271.594439
## iter 30 value 199.712369
```

```
## iter 40 value 169.872684
## iter 50 value 148.057801
## iter 60 value 145.950880
## iter 70 value 145.229308
## iter 80 value 141.704269
## iter 90 value 140.811875
## iter 100 value 140.632567
## final value 140.632567
## stopped after 100 iterations
## # weights: 22
## initial value 405.018786
## final value 337.414167
## converged
## # weights: 64
## initial value 339.875946
## iter 10 value 331.377859
## iter 20 value 324.273224
## iter 30 value 324.217383
## final value 324.217316
## converged
## # weights: 106
## initial value 489.780531
## iter 10 value 334.982571
## iter 20 value 310.990397
## iter 30 value 298.461830
## iter 40 value 277.334645
## iter 50 value 163.233802
## iter 60 value 155.153387
## iter 70 value 153.337394
## iter 80 value 151.234135
## iter 90 value 150.004338
## iter 100 value 149.056655
## final value 149.056655
## stopped after 100 iterations
## # weights: 22
## initial value 363.676068
## iter 10 value 337.570802
## iter 20 value 337.523339
## final value 337.523294
## converged
## # weights: 64
## initial value 367.083286
## iter 10 value 336.811982
## iter 20 value 269.250675
## iter 30 value 198.888401
## iter 40 value 170.323981
## iter 50 value 155.298976
## iter 60 value 154.040419
## iter 70 value 153.981248
## iter 80 value 153.971344
## final value 153.953016
## converged
## # weights: 106
## initial value 438.823336
```

```
## iter 10 value 319.344183
## iter 20 value 263.072542
## iter 30 value 175.173847
## iter 40 value 157.131584
## iter 50 value 155.002793
## iter 60 value 154.535132
## iter 70 value 154.430192
## iter 80 value 154.423768
## final value 154.423612
## converged
## # weights:
              22
## initial value 344.824902
## iter 10 value 337.416754
## iter 20 value 337.123015
## iter 30 value 334.084825
## iter 40 value 331.305464
## iter 50 value 331.299846
## iter 60 value 330.637061
## iter 70 value 249.980541
## iter 80 value 184.661084
## iter 90 value 157.743355
## iter 100 value 155.479665
## final value 155.479665
## stopped after 100 iterations
## # weights: 64
## initial value 394.680557
## iter 10 value 329.540677
## iter 20 value 327.158765
## iter 30 value 238.419361
## iter 40 value 156.720896
## iter 50 value 147.555294
## iter 60 value 146.395092
## iter 70 value 146.003072
## iter 80 value 145.766891
## iter 90 value 145.619864
## iter 100 value 145.592409
## final value 145.592409
## stopped after 100 iterations
## # weights: 106
## initial value 572.868616
## iter 10 value 334.194611
## iter 20 value 324.697405
## iter 30 value 322.749018
## iter 40 value 322.554514
## iter 50 value 322.549079
## iter 60 value 312.648944
## iter 70 value 216.040018
## iter 80 value 163.631668
## iter 90 value 149.566462
## iter 100 value 146.556387
## final value 146.556387
## stopped after 100 iterations
## # weights: 22
## initial value 358.680236
```

```
## iter 10 value 348.454584
## iter 20 value 309.814812
## iter 30 value 262.269555
## iter 40 value 135.618155
## iter 50 value 119.079776
## iter 60 value 111.657430
## iter 70 value 102.330278
## iter 80 value 101.565738
## iter 90 value 101.540325
## iter 100 value 101.531012
## final value 101.531012
## stopped after 100 iterations
## # weights: 64
## initial value 461.188900
## iter 10 value 279.129954
## iter 20 value 269.584266
## iter 30 value 259.007385
## iter 40 value 204.746033
## iter 50 value 121.728427
## iter 60 value 114.005644
## iter 70 value 107.233626
## iter 80 value 93.340458
## iter 90 value 92.422180
## iter 100 value 92.418098
## final value 92.418098
## stopped after 100 iterations
## # weights: 106
## initial value 371.670108
## iter 10 value 346.890496
## iter 20 value 335.686315
## iter 30 value 281.587722
## iter 40 value 143.622300
## iter 50 value 120.857207
## iter 60 value 118.677182
## iter 70 value 109.693261
## iter 80 value 101.060162
## iter 90 value 91.798629
## iter 100 value 85.528175
## final value 85.528175
## stopped after 100 iterations
## # weights: 22
## initial value 351.801483
## iter 10 value 279.679221
## iter 20 value 184.914740
## iter 30 value 134.216568
## iter 40 value 126.663355
## iter 50 value 126.350530
## final value 126.350081
## converged
## # weights:
              64
## initial value 350.087168
## iter 10 value 348.567613
## iter 20 value 319.405856
## iter 30 value 275.568708
```

```
## iter 40 value 252.912976
## iter 50 value 158.578840
## iter 60 value 127.779056
## iter 70 value 124.829344
## iter 80 value 124.392090
## iter 90 value 124.382719
## final value 124.382717
## converged
## # weights: 106
## initial value 374.720957
## iter 10 value 322.372238
## iter 20 value 272.029194
## iter 30 value 266.275928
## iter 40 value 241.233442
## iter 50 value 132.165624
## iter 60 value 125.653662
## iter 70 value 123.331654
## iter 80 value 117.185811
## iter 90 value 115.847644
## iter 100 value 115.001897
## final value 115.001897
## stopped after 100 iterations
## # weights: 22
## initial value 381.024683
## iter 10 value 346.875226
## iter 20 value 342.293326
## iter 30 value 342.276532
## iter 40 value 342.271438
## iter 50 value 342.267309
## iter 60 value 342.264522
## final value 342.263544
## converged
## # weights: 64
## initial value 477.361846
## iter 10 value 346.666224
## iter 20 value 345.653501
## iter 30 value 162.896955
## iter 40 value 144.132258
## iter 50 value 143.807899
## iter 60 value 141.588086
## iter 70 value 131.289622
## iter 80 value 119.693446
## iter 90 value 118.399886
## iter 100 value 117.815085
## final value 117.815085
## stopped after 100 iterations
## # weights: 106
## initial value 415.644824
## iter 10 value 315.943211
## iter 20 value 281.246384
## iter 30 value 279.078635
## iter 40 value 263.096679
## iter 50 value 167.935267
## iter 60 value 154.623523
```

```
## iter 70 value 143.079852
## iter 80 value 138.221495
## iter 90 value 137.733521
## iter 100 value 133.094237
## final value 133.094237
## stopped after 100 iterations
## # weights: 22
## initial value 406.556941
## iter 10 value 322.481198
## iter 20 value 322.396462
## final value 322.391585
## converged
## # weights: 64
## initial value 476.396451
## iter 10 value 318.709089
## iter 20 value 309.582778
## iter 30 value 309.544192
## final value 309.543227
## converged
## # weights: 106
## initial value 425.248144
## iter 10 value 270.660595
## iter 20 value 253.830653
## iter 30 value 219.073917
## iter 40 value 158.780324
## iter 50 value 115.433420
## iter 60 value 110.432551
## iter 70 value 109.946746
## iter 80 value 109.942018
## iter 90 value 109.870111
## iter 100 value 107.104120
## final value 107.104120
## stopped after 100 iterations
## # weights: 22
## initial value 499.676067
## iter 10 value 304.901049
## iter 20 value 159.039150
## iter 30 value 139.298640
## iter 40 value 128.034230
## iter 50 value 128.008539
## final value 128.008509
## converged
## # weights: 64
## initial value 576.382435
## iter 10 value 291.327746
## iter 20 value 231.905666
## iter 30 value 144.380465
## iter 40 value 129.064542
## iter 50 value 126.984305
## iter 60 value 124.384189
## iter 70 value 123.230484
## iter 80 value 123.141340
## iter 90 value 123.139470
## final value 123.139466
```

```
## converged
## # weights: 106
## initial value 350.878773
## iter 10 value 322.789274
## iter 20 value 321.994101
## iter 30 value 306.531515
## iter 40 value 275.478784
## iter 50 value 232.955007
## iter 60 value 188.036826
## iter 70 value 127.869504
## iter 80 value 127.622996
## iter 90 value 127.242339
## iter 100 value 124.773433
## final value 124.773433
## stopped after 100 iterations
## # weights: 22
## initial value 372.262814
## iter 10 value 322.482065
## final value 322.481734
## converged
## # weights: 64
## initial value 386.666715
## iter 10 value 321.819260
## iter 20 value 310.732800
## iter 30 value 309.706956
## iter 40 value 309.667358
## iter 50 value 309.639934
## iter 60 value 309.632570
## iter 70 value 296.690320
## iter 80 value 288.922851
## iter 90 value 240.966022
## iter 100 value 208.445465
## final value 208.445465
## stopped after 100 iterations
## # weights: 106
## initial value 338.424293
## iter 10 value 289.902099
## iter 20 value 233.548563
## iter 30 value 150.971832
## iter 40 value 130.097405
## iter 50 value 116.164681
## iter 60 value 111.234318
## iter 70 value 109.553587
## iter 80 value 109.133944
## iter 90 value 109.114079
## iter 100 value 109.109333
## final value 109.109333
## stopped after 100 iterations
## # weights: 22
## initial value 583.152891
## iter 10 value 328.108543
## iter 20 value 327.970800
## final value 327.970651
## converged
```

```
## # weights: 64
## initial value 361.137019
## iter 10 value 308.858449
## iter 20 value 266.227159
## iter 30 value 257.622137
## iter 40 value 219.749776
## iter 50 value 158.793813
## iter 60 value 120.191630
## iter 70 value 117.656355
## iter 80 value 117.274729
## iter 90 value 117.260013
## iter 100 value 117.253362
## final value 117.253362
## stopped after 100 iterations
## # weights: 106
## initial value 420.937704
## iter 10 value 326.646546
## iter 20 value 262.804164
## iter 30 value 229.841269
## iter 40 value 221.205929
## iter 50 value 181.657444
## iter 60 value 174.023629
## iter 70 value 165.942405
## iter 80 value 157.127749
## iter 90 value 137.774374
## iter 100 value 112.198118
## final value 112.198118
## stopped after 100 iterations
## # weights: 22
## initial value 597.589420
## iter 10 value 329.087293
## iter 20 value 327.900985
## iter 30 value 308.400964
## iter 40 value 256.726534
## iter 50 value 233.519245
## iter 60 value 156.462718
## iter 70 value 143.406351
## iter 80 value 134.500789
## iter 90 value 134.428132
## iter 90 value 134.428131
## iter 90 value 134.428130
## final value 134.428130
## converged
## # weights: 64
## initial value 335.098428
## iter 10 value 327.274685
## iter 20 value 270.261783
## iter 30 value 260.180251
## iter 40 value 235.125494
## iter 50 value 212.369889
## iter 60 value 138.565349
## iter 70 value 125.393082
## iter 80 value 125.005860
## iter 90 value 124.993974
```

```
## final value 124.993820
## converged
## # weights: 106
## initial value 745.732690
## iter 10 value 335.197181
## iter 20 value 327.263557
## iter 30 value 266.001155
## iter 40 value 222.451407
## iter 50 value 169.160345
## iter 60 value 141.362912
## iter 70 value 130.785597
## iter 80 value 123.291152
## iter 90 value 118.872816
## iter 100 value 109.906983
## final value 109.906983
## stopped after 100 iterations
## # weights: 22
## initial value 451.188804
## iter 10 value 328.476492
## iter 20 value 327.552522
## iter 30 value 322.377304
## iter 40 value 322.182998
## iter 50 value 230.086098
## iter 60 value 144.714728
## iter 70 value 127.787766
## iter 80 value 125.273398
## iter 90 value 123.906582
## iter 100 value 123.697850
## final value 123.697850
## stopped after 100 iterations
## # weights: 64
## initial value 520.799135
## iter 10 value 325.942098
## iter 20 value 323.722821
## iter 30 value 323.067014
## iter 40 value 319.990194
## iter 50 value 319.866081
## iter 60 value 319.859390
## iter 70 value 319.852303
## iter 80 value 318.684535
## iter 90 value 318.322821
## iter 100 value 317.930093
## final value 317.930093
## stopped after 100 iterations
## # weights: 106
## initial value 347.753519
## iter 10 value 327.521969
## iter 20 value 326.926759
## iter 30 value 318.089226
## iter 40 value 276.975551
## iter 50 value 132.572384
## iter 60 value 124.728492
## iter 70 value 118.828675
## iter 80 value 117.434542
```

```
## iter 90 value 117.301103
## iter 100 value 117.091271
## final value 117.091271
## stopped after 100 iterations
## # weights: 22
## initial value 506.625266
## iter 10 value 347.771309
## iter 20 value 344.193936
## iter 30 value 273.845461
## iter 40 value 238.575733
## iter 50 value 157.282179
## iter 60 value 141.503702
## iter 70 value 130.718345
## iter 80 value 124.610512
## iter 90 value 117.637241
## iter 100 value 116.642683
## final value 116.642683
## stopped after 100 iterations
## # weights: 64
## initial value 362.259869
## iter 10 value 350.185077
## iter 20 value 333.214292
## iter 30 value 322.556238
## iter 40 value 253.267887
## iter 50 value 171.130434
## iter 60 value 146.617313
## iter 70 value 139.975158
## iter 80 value 137.253672
## iter 90 value 130.945809
## iter 100 value 127.998637
## final value 127.998637
## stopped after 100 iterations
## # weights: 106
## initial value 358.011337
## iter 10 value 349.057870
## iter 20 value 324.689561
## iter 30 value 319.614983
## iter 40 value 251.371022
## iter 50 value 162.919473
## iter 60 value 139.246425
## iter 70 value 128.995597
## iter 80 value 125.766616
## iter 90 value 123.736721
## iter 100 value 122.507159
## final value 122.507159
## stopped after 100 iterations
## # weights: 22
## initial value 353.198207
## iter 10 value 349.974275
## final value 349.973074
## converged
## # weights: 64
## initial value 364.479030
## iter 10 value 327.765721
```

```
## iter 20 value 274.588651
## iter 30 value 266.572474
## iter 40 value 208.156396
## iter 50 value 155.805620
## iter 60 value 148.336222
## iter 70 value 146.081495
## iter 80 value 145.086276
## iter 90 value 144.407956
## iter 100 value 143.919697
## final value 143.919697
## stopped after 100 iterations
## # weights: 106
## initial value 355.889034
## iter 10 value 349.620595
## iter 20 value 346.062801
## iter 30 value 248.599462
## iter 40 value 149.822374
## iter 50 value 146.130996
## iter 60 value 145.684076
## iter 70 value 143.120822
## iter 80 value 141.951841
## iter 90 value 139.036409
## iter 100 value 137.155219
## final value 137.155219
## stopped after 100 iterations
## # weights: 22
## initial value 537.144214
## iter 10 value 349.315888
## iter 20 value 347.500392
## iter 30 value 347.496687
## final value 347.496551
## converged
## # weights: 64
## initial value 588.028691
## iter 10 value 337.163623
## iter 20 value 324.484835
## iter 30 value 323.295483
## iter 40 value 322.456276
## iter 50 value 270.725674
## iter 60 value 186.380443
## iter 70 value 168.750186
## iter 80 value 136.440947
## iter 90 value 132.953662
## iter 100 value 126.051552
## final value 126.051552
## stopped after 100 iterations
## # weights: 106
## initial value 347.921975
## iter 10 value 274.660027
## iter 20 value 195.144787
## iter 30 value 148.310751
## iter 40 value 134.072041
## iter 50 value 133.028080
## iter 60 value 131.864055
```

```
## iter 70 value 129.628165
## iter 80 value 128.928967
## iter 90 value 128.485212
## iter 100 value 128.291791
## final value 128.291791
## stopped after 100 iterations
## # weights: 22
## initial value 325.079779
## iter 10 value 324.998246
## iter 20 value 324.138785
## final value 324.126406
## converged
## # weights: 64
## initial value 569.564957
## iter 10 value 321.244923
## iter 20 value 283.991301
## iter 30 value 147.614260
## iter 40 value 125.850940
## iter 50 value 124.542655
## iter 60 value 119.012956
## iter 70 value 118.393748
## iter 80 value 118.390206
## final value 118.390200
## converged
## # weights: 106
## initial value 398.324914
## iter 10 value 278.652078
## iter 20 value 232.758766
## iter 30 value 184.867154
## iter 40 value 134.208818
## iter 50 value 126.448392
## iter 60 value 121.791798
## iter 70 value 121.391010
## iter 80 value 121.313094
## iter 90 value 119.296309
## iter 100 value 115.510767
## final value 115.510767
## stopped after 100 iterations
## # weights: 22
## initial value 375.616945
## iter 10 value 325.214846
## iter 20 value 324.772928
## iter 30 value 264.536123
## iter 40 value 258.532128
## iter 50 value 226.870850
## iter 60 value 167.938030
## iter 70 value 134.807869
## iter 80 value 131.926341
## iter 90 value 131.374132
## final value 131.374049
## converged
## # weights: 64
## initial value 510.271756
## iter 10 value 251.177199
```

```
## iter 20 value 183.560401
## iter 30 value 148.902625
## iter 40 value 130.243541
## iter 50 value 127.657422
## iter 60 value 127.595160
## iter 70 value 127.582950
## final value 127.577115
## converged
## # weights: 106
## initial value 408.050396
## iter 10 value 325.371640
## iter 20 value 275.437164
## iter 30 value 149.646623
## iter 40 value 135.310814
## iter 50 value 129.688052
## iter 60 value 129.475881
## final value 129.460394
## converged
## # weights: 22
## initial value 335.030717
## iter 10 value 322.125394
## iter 20 value 294.907983
## iter 30 value 141.426713
## iter 40 value 139.376918
## iter 50 value 136.234434
## iter 60 value 133.465931
## iter 70 value 133.225531
## iter 80 value 133.200016
## iter 90 value 133.014665
## iter 100 value 132.895292
## final value 132.895292
## stopped after 100 iterations
## # weights: 64
## initial value 352.838877
## iter 10 value 323.783665
## iter 20 value 321.407044
## iter 30 value 320.926880
## iter 40 value 320.312521
## iter 50 value 282.606974
## iter 60 value 175.358791
## iter 70 value 138.864972
## iter 80 value 130.678247
## iter 90 value 123.850323
## iter 100 value 117.336449
## final value 117.336449
## stopped after 100 iterations
## # weights: 106
## initial value 324.533870
## iter 10 value 310.721316
## iter 20 value 278.438016
## iter 30 value 274.303066
## iter 40 value 255.736712
## iter 50 value 226.976131
## iter 60 value 177.586932
```

```
## iter 70 value 126.150860
## iter 80 value 122.828694
## iter 90 value 119.059074
## iter 100 value 118.097097
## final value 118.097097
## stopped after 100 iterations
## # weights: 22
## initial value 384.346015
## final value 331.626388
## converged
## # weights: 64
## initial value 645.802118
## iter 10 value 329.470314
## iter 20 value 328.135298
## iter 30 value 243.727664
## iter 40 value 142.245738
## iter 50 value 115.045028
## iter 60 value 107.694015
## iter 70 value 104.456612
## iter 80 value 103.394604
## iter 90 value 102.712193
## iter 100 value 101.878753
## final value 101.878753
## stopped after 100 iterations
## # weights: 106
## initial value 391.614585
## iter 10 value 286.175970
## iter 20 value 264.063639
## iter 30 value 263.012163
## iter 40 value 213.171578
## iter 50 value 119.804569
## iter 60 value 113.464875
## iter 70 value 111.456204
## iter 80 value 106.607366
## iter 90 value 105.923468
## iter 100 value 104.558060
## final value 104.558060
## stopped after 100 iterations
## # weights: 22
## initial value 429.528589
## iter 10 value 332.250048
## iter 20 value 318.863280
## iter 30 value 283.391454
## iter 40 value 235.333215
## iter 50 value 172.566447
## iter 60 value 132.695705
## iter 70 value 124.005860
## iter 80 value 123.744191
## final value 123.732551
## converged
## # weights: 64
## initial value 343.594290
## iter 10 value 324.448383
## iter 20 value 277.706887
```

```
## iter 30 value 261.817028
## iter 40 value 243.397223
## iter 50 value 138.164612
## iter 60 value 125.665241
## iter 70 value 121.595575
## iter 80 value 120.994803
## iter 90 value 120.967961
## iter 100 value 120.729898
## final value 120.729898
## stopped after 100 iterations
## # weights: 106
## initial value 408.147837
## iter 10 value 331.262370
## iter 20 value 330.118894
## iter 30 value 322.634088
## iter 40 value 215.803859
## iter 50 value 150.636241
## iter 60 value 124.423942
## iter 70 value 118.056977
## iter 80 value 113.547566
## iter 90 value 112.717159
## iter 100 value 112.660632
## final value 112.660632
## stopped after 100 iterations
## # weights: 22
## initial value 619.754220
## final value 332.401618
## converged
## # weights: 64
## initial value 545.982443
## iter 10 value 331.908181
## iter 10 value 331.908178
## final value 331.908178
## converged
## # weights: 106
## initial value 421.412497
## iter 10 value 287.673245
## iter 20 value 270.290002
## iter 30 value 221.785693
## iter 40 value 132.446699
## iter 50 value 122.263280
## iter 60 value 121.274973
## iter 70 value 120.893621
## iter 80 value 118.829753
## iter 90 value 117.168202
## iter 100 value 117.092944
## final value 117.092944
## stopped after 100 iterations
## # weights: 22
## initial value 339.820592
## final value 321.689285
## converged
## # weights: 64
## initial value 386.426202
```

```
## iter 10 value 303.471454
## iter 20 value 205.313703
## iter 30 value 148.169198
## iter 40 value 142.057161
## iter 50 value 140.677896
## iter 60 value 137.892638
## iter 70 value 137.088046
## iter 80 value 136.265679
## iter 90 value 130.050311
## iter 100 value 112.487062
## final value 112.487062
## stopped after 100 iterations
## # weights: 106
## initial value 326.675321
## iter 10 value 319.290944
## iter 20 value 262.888762
## iter 30 value 170.474879
## iter 40 value 147.019640
## iter 50 value 144.078508
## iter 60 value 141.980687
## iter 70 value 140.575877
## iter 80 value 140.110731
## iter 90 value 139.465811
## iter 100 value 136.256661
## final value 136.256661
## stopped after 100 iterations
## # weights: 22
## initial value 423.377247
## iter 10 value 319.515794
## iter 20 value 273.288464
## iter 30 value 245.963091
## iter 40 value 153.400266
## iter 50 value 139.586200
## iter 60 value 138.335350
## final value 138.318830
## converged
## # weights: 64
## initial value 354.713806
## iter 10 value 321.319973
## iter 20 value 314.341364
## iter 30 value 292.293495
## iter 40 value 258.312316
## iter 50 value 191.173887
## iter 60 value 143.097778
## iter 70 value 138.084555
## iter 80 value 135.574557
## iter 90 value 135.398871
## iter 100 value 134.368112
## final value 134.368112
## stopped after 100 iterations
## # weights: 106
## initial value 524.750369
## iter 10 value 298.101443
## iter 20 value 291.153223
```

```
## iter 30 value 267.884832
## iter 40 value 225.829387
## iter 50 value 204.439073
## iter 60 value 146.357310
## iter 70 value 139.687018
## iter 80 value 136.532493
## iter 90 value 134.272291
## iter 100 value 133.144744
## final value 133.144744
## stopped after 100 iterations
## # weights: 22
## initial value 479.982105
## final value 321.690000
## converged
## # weights: 64
## initial value 597.077539
## iter 10 value 319.484506
## iter 20 value 319.086848
## iter 30 value 318.928567
## iter 40 value 317.501725
## iter 50 value 317.405131
## iter 60 value 317.404266
## iter 70 value 317.402990
## iter 80 value 317.402348
## final value 317.402323
## converged
## # weights: 106
## initial value 473.804169
## iter 10 value 319.398933
## iter 20 value 318.936104
## iter 30 value 318.683049
## iter 40 value 318.497662
## iter 50 value 318.497110
## iter 60 value 318.495342
## iter 70 value 318.486294
## iter 80 value 305.118086
## iter 90 value 172.808440
## iter 100 value 132.928546
## final value 132.928546
## stopped after 100 iterations
## # weights: 22
## initial value 366.197901
## iter 10 value 325.113728
## iter 20 value 325.097472
## final value 325.097450
## converged
## # weights: 64
## initial value 676.390554
## iter 10 value 325.420800
## iter 20 value 294.969966
## iter 30 value 233.441917
## iter 40 value 161.289728
## iter 50 value 154.777061
## iter 60 value 151.609130
```

```
## iter 70 value 142.849561
## iter 80 value 141.260316
## iter 90 value 136.134396
## iter 100 value 133.554705
## final value 133.554705
## stopped after 100 iterations
## # weights: 106
## initial value 384.401484
## iter 10 value 317.639423
## iter 20 value 299.223681
## iter 30 value 291.146919
## iter 40 value 284.939065
## iter 50 value 281.938368
## iter 60 value 281.906747
## final value 281.906715
## converged
## # weights: 22
## initial value 414.126464
## iter 10 value 328.338343
## final value 328.335739
## converged
## # weights: 64
## initial value 571.731898
## iter 10 value 326.025560
## iter 20 value 323.720582
## iter 30 value 290.658310
## iter 40 value 276.315888
## iter 50 value 263.893430
## iter 60 value 163.191009
## iter 70 value 149.720191
## iter 80 value 144.222478
## iter 90 value 137.890430
## iter 100 value 137.729660
## final value 137.729660
## stopped after 100 iterations
## # weights: 106
## initial value 697.363923
## iter 10 value 322.521960
## iter 20 value 224.099806
## iter 30 value 159.905707
## iter 40 value 151.767546
## iter 50 value 140.867773
## iter 60 value 135.440275
## iter 70 value 135.103263
## iter 80 value 133.873230
## iter 90 value 129.427836
## iter 100 value 127.022072
## final value 127.022072
## stopped after 100 iterations
## # weights: 22
## initial value 705.016299
## iter 10 value 330.902581
## iter 20 value 315.239893
## iter 30 value 223.702027
```

```
## iter 40 value 153.427117
## iter 50 value 142.196703
## iter 60 value 132.986392
## iter 70 value 128.876887
## iter 80 value 127.682844
## iter 90 value 127.409515
## iter 100 value 127.370630
## final value 127.370630
## stopped after 100 iterations
## # weights: 64
## initial value 325.228732
## iter 10 value 267.560634
## iter 20 value 252.137726
## iter 30 value 198.246136
## iter 40 value 175.454784
## iter 50 value 151.091467
## iter 60 value 147.752229
## iter 70 value 145.098582
## iter 80 value 143.768729
## iter 90 value 140.032802
## iter 100 value 139.679735
## final value 139.679735
## stopped after 100 iterations
## # weights: 106
## initial value 353.796470
## iter 10 value 307.292961
## iter 20 value 295.691505
## iter 30 value 285.539306
## iter 40 value 268.986874
## iter 50 value 265.517619
## iter 60 value 264.266079
## iter 70 value 259.349056
## iter 80 value 205.186146
## iter 90 value 150.801077
## iter 100 value 144.732976
## final value 144.732976
## stopped after 100 iterations
## # weights: 22
## initial value 412.390093
## iter 10 value 346.777349
## iter 20 value 346.555750
## final value 346.555695
## converged
## # weights: 64
## initial value 396.794800
## iter 10 value 346.266523
## iter 20 value 342.205723
## iter 30 value 342.085082
## final value 341.727467
## converged
## # weights: 106
## initial value 448.595703
## iter 10 value 345.530616
## iter 20 value 345.093997
```

```
## iter 30 value 338.760038
## iter 40 value 324.201790
## iter 50 value 320.301126
## iter 60 value 293.059616
## iter 70 value 256.161873
## iter 80 value 199.021803
## iter 90 value 157.530916
## iter 100 value 149.860635
## final value 149.860635
## stopped after 100 iterations
## # weights: 22
## initial value 404.701937
## iter 10 value 346.742409
## iter 20 value 346.538826
## final value 346.522872
## converged
## # weights: 64
## initial value 458.400297
## iter 10 value 274.743451
## iter 20 value 188.208950
## iter 30 value 166.573672
## iter 40 value 159.737574
## iter 50 value 158.131117
## iter 60 value 157.243572
## iter 70 value 152.508879
## iter 80 value 150.669690
## iter 90 value 141.821844
## iter 100 value 138.525567
## final value 138.525567
## stopped after 100 iterations
## # weights: 106
## initial value 371.482269
## iter 10 value 345.255876
## iter 20 value 317.221263
## iter 30 value 284.360974
## iter 40 value 248.892504
## iter 50 value 186.585847
## iter 60 value 172.479543
## iter 70 value 161.203682
## iter 80 value 154.025080
## iter 90 value 151.449653
## iter 100 value 150.554635
## final value 150.554635
## stopped after 100 iterations
## # weights: 22
## initial value 399.115345
## iter 10 value 345.949542
## final value 345.948147
## converged
## # weights:
              64
## initial value 373.526859
## iter 10 value 345.557028
## iter 20 value 344.946078
## iter 30 value 343.695559
```

```
## iter 40 value 341.256463
## iter 50 value 338.814714
## iter 60 value 338.802289
## iter 70 value 338.800655
## iter 80 value 338.799811
## iter 80 value 338.799811
## iter 80 value 338.799811
## final value 338.799811
## converged
## # weights: 106
## initial value 603.516993
## iter 10 value 346.649431
## iter 20 value 342.909605
## iter 30 value 323.168769
## iter 40 value 294.991063
## iter 50 value 248.510165
## iter 60 value 171.971425
## iter 70 value 155.937116
## iter 80 value 154.596453
## iter 90 value 151.959002
## iter 100 value 147.819802
## final value 147.819802
## stopped after 100 iterations
## # weights: 22
## initial value 410.393824
## iter 10 value 342.440830
## final value 342.440647
## converged
## # weights: 64
## initial value 344.105884
## iter 10 value 341.913473
## iter 20 value 340.544019
## iter 30 value 335.793409
## iter 40 value 335.006251
## iter 50 value 335.004935
## iter 50 value 335.004933
## final value 335.004930
## converged
## # weights: 106
## initial value 493.226826
## iter 10 value 341.987247
## iter 20 value 341.625384
## iter 30 value 335.535382
## iter 40 value 335.474399
## final value 335.474307
## converged
## # weights: 22
## initial value 437.038235
## iter 10 value 344.141520
## final value 344.141509
## converged
## # weights: 64
## initial value 356.941436
## iter 10 value 342.379230
```

```
## iter 20 value 341.368536
## iter 30 value 340.637093
## iter 40 value 340.611346
## final value 340.611285
## converged
## # weights: 106
## initial value 512.061833
## iter 10 value 342.390380
## iter 20 value 341.733593
## iter 30 value 300.478177
## iter 40 value 290.510570
## iter 50 value 280.314226
## iter 60 value 188.708478
## iter 70 value 154.964038
## iter 80 value 148.575693
## iter 90 value 147.377974
## iter 100 value 145.474743
## final value 145.474743
## stopped after 100 iterations
## # weights: 22
## initial value 426.016416
## iter 10 value 342.172295
## iter 20 value 341.976734
## final value 341.976644
## converged
## # weights: 64
## initial value 355.602099
## iter 10 value 344.084011
## iter 20 value 344.070615
## iter 30 value 342.444664
## iter 30 value 342.444662
## iter 30 value 342.444662
## final value 342.444662
## converged
## # weights: 106
## initial value 348.231428
## iter 10 value 307.683514
## iter 20 value 257.068266
## iter 30 value 145.783191
## iter 40 value 139.456132
## iter 50 value 138.442786
## iter 60 value 137.537220
## iter 70 value 134.437639
## iter 80 value 133.088328
## iter 90 value 132.253864
## iter 100 value 132.064255
## final value 132.064255
## stopped after 100 iterations
## # weights: 22
## initial value 461.176396
## iter 10 value 349.087083
## iter 20 value 349.003931
## iter 30 value 347.342579
## iter 40 value 344.158305
```

```
## iter 50 value 272.048028
## iter 60 value 180.166308
## iter 70 value 155.315709
## iter 80 value 147.075710
## iter 90 value 140.411580
## iter 100 value 140.267474
## final value 140.267474
## stopped after 100 iterations
## # weights: 64
## initial value 353.998865
## iter 10 value 349.055296
## iter 20 value 343.846559
## iter 30 value 322.280166
## iter 40 value 179.244787
## iter 50 value 156.055318
## iter 60 value 154.157224
## iter 70 value 151.281777
## iter 80 value 143.411893
## iter 90 value 142.137062
## iter 100 value 138.411240
## final value 138.411240
## stopped after 100 iterations
## # weights: 106
## initial value 614.513367
## iter 10 value 340.592691
## iter 20 value 319.260300
## iter 30 value 299.526828
## iter 40 value 281.351539
## iter 50 value 230.107186
## iter 60 value 142.265845
## iter 70 value 135.556720
## iter 80 value 135.121755
## iter 90 value 134.578846
## iter 100 value 129.028183
## final value 129.028183
## stopped after 100 iterations
## # weights: 22
## initial value 429.678013
## iter 10 value 348.909533
## iter 20 value 348.859184
## final value 348.858327
## converged
## # weights: 64
## initial value 497.809591
## iter 10 value 330.619670
## iter 20 value 284.040189
## iter 30 value 275.942680
## iter 40 value 268.632193
## iter 50 value 260.945002
## iter 60 value 177.632901
## iter 70 value 152.986936
## iter 80 value 149.190262
## iter 90 value 149.043949
## iter 100 value 148.733163
```

```
## final value 148.733163
## stopped after 100 iterations
## # weights: 106
## initial value 489.727169
## iter 10 value 348.559868
## iter 20 value 347.456317
## iter 30 value 325.452959
## iter 40 value 248.144673
## iter 50 value 197.501161
## iter 60 value 158.380858
## iter 70 value 144.189740
## iter 80 value 143.190907
## iter 90 value 138.979464
## iter 100 value 137.456907
## final value 137.456907
## stopped after 100 iterations
## # weights: 22
## initial value 378.684007
## iter 10 value 347.781986
## iter 20 value 339.977988
## iter 30 value 249.067003
## iter 40 value 159.240983
## iter 50 value 153.943334
## iter 60 value 147.796250
## iter 70 value 147.248228
## iter 80 value 147.092273
## iter 90 value 146.200888
## iter 100 value 146.105708
## final value 146.105708
## stopped after 100 iterations
## # weights: 64
## initial value 412.201167
## iter 10 value 347.670748
## iter 20 value 343.416444
## iter 30 value 294.394161
## iter 40 value 168.993988
## iter 50 value 148.915760
## iter 60 value 148.164300
## iter 70 value 143.866342
## iter 80 value 143.100175
## iter 90 value 142.954671
## iter 100 value 142.816546
## final value 142.816546
## stopped after 100 iterations
## # weights: 106
## initial value 625.686474
## iter 10 value 343.851075
## iter 20 value 335.260917
## iter 30 value 334.904555
## iter 40 value 332.612116
## iter 50 value 281.846953
## iter 60 value 175.941824
## iter 70 value 157.036978
## iter 80 value 155.107436
```

```
## iter 90 value 154.479120
## iter 100 value 152.546983
## final value 152.546983
## stopped after 100 iterations
## # weights: 22
## initial value 342.211968
## iter 10 value 326.819158
## final value 326.813916
## converged
## # weights: 64
## initial value 702.953758
## iter 10 value 326.847637
## iter 20 value 326.799763
## iter 30 value 326.251877
## iter 40 value 323.834638
## iter 50 value 322.331753
## iter 60 value 317.823365
## iter 70 value 317.037228
## iter 80 value 301.468735
## iter 90 value 283.310739
## iter 100 value 249.644262
## final value 249.644262
## stopped after 100 iterations
## # weights: 106
## initial value 757.711903
## iter 10 value 325.472123
## iter 20 value 323.108874
## iter 30 value 322.760908
## iter 40 value 315.388459
## iter 50 value 308.319949
## iter 60 value 308.162936
## iter 70 value 305.637587
## iter 80 value 305.513382
## iter 90 value 300.411848
## iter 100 value 291.449000
## final value 291.449000
## stopped after 100 iterations
## # weights: 22
## initial value 352.371897
## iter 10 value 327.126742
## final value 327.102413
## converged
## # weights: 64
## initial value 536.242792
## iter 10 value 327.193939
## iter 20 value 284.015988
## iter 30 value 221.709220
## iter 40 value 145.428074
## iter 50 value 132.578507
## iter 60 value 125.053391
## iter 70 value 119.528796
## iter 80 value 114.880611
## iter 90 value 112.943630
## iter 100 value 111.403846
```

```
## final value 111.403846
## stopped after 100 iterations
## # weights: 106
## initial value 389.103481
## iter 10 value 311.123658
## iter 20 value 252.993311
## iter 30 value 199.371191
## iter 40 value 151.669471
## iter 50 value 119.824519
## iter 60 value 114.978981
## iter 70 value 113.959868
## iter 80 value 110.769639
## iter 90 value 107.974348
## iter 100 value 105.587660
## final value 105.587660
## stopped after 100 iterations
## # weights: 22
## initial value 361.980864
## iter 10 value 328.226265
## iter 20 value 327.147395
## iter 30 value 324.905633
## iter 40 value 323.439233
## iter 50 value 323.438039
## iter 60 value 323.436487
## iter 70 value 323.435779
## final value 323.435773
## converged
## # weights: 64
## initial value 885.800443
## iter 10 value 326.484001
## iter 20 value 326.353290
## iter 30 value 326.151224
## final value 326.147423
## converged
## # weights: 106
## initial value 545.039767
## iter 10 value 326.838264
## iter 20 value 326.816524
## final value 326.815080
## converged
## # weights: 106
## initial value 502.846058
## iter 10 value 335.673490
## iter 20 value 289.729062
## iter 30 value 204.521096
## iter 40 value 149.527181
## iter 50 value 143.297707
## iter 60 value 142.179891
## iter 70 value 141.798523
## iter 80 value 141.710352
## iter 90 value 141.061513
## iter 100 value 139.859044
## final value 139.859044
## stopped after 100 iterations
```

```
print(model_nnet)
## Neural Network
##
## 576 samples
##
    5 predictor
##
    2 classes: '0', '1'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 576, 576, 576, 576, 576, 576, ...
## Resampling results across tuning parameters:
##
##
     size decay Accuracy
                            Kappa
##
          0e+00 0.7593696 0.1757480
     1
          1e-04 0.7762596 0.2406536
##
##
     1
          1e-01 0.8209556 0.3944200
##
     3
          0e+00 0.8133218 0.3968140
          1e-04 0.8136883 0.4052193
##
    3
##
    3
          1e-01 0.8739967 0.6615744
##
          0e+00 0.8248843 0.4771722
    5
##
    5
          1e-04 0.8437348 0.5532274
##
    5
          1e-01 0.8771927 0.6799754
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 5 and decay = 0.1.
plot(model_nnet)
```



```
confusionMatrix(predictions_nnet,testSet[,outcomeName])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                0
                    1
##
            0 132 11
##
                7 40
##
                  Accuracy : 0.9053
##
                    95% CI : (0.8544, 0.9429)
##
##
       No Information Rate : 0.7316
##
       P-Value [Acc > NIR] : 2.306e-09
##
##
                     Kappa: 0.7526
    Mcnemar's Test P-Value : 0.4795
##
##
```

```
##
               Sensitivity: 0.9496
##
               Specificity: 0.7843
            Pos Pred Value: 0.9231
##
##
            Neg Pred Value: 0.8511
##
                Prevalence: 0.7316
##
            Detection Rate: 0.6947
##
      Detection Prevalence: 0.7526
         Balanced Accuracy: 0.8670
##
##
##
          'Positive' Class : 0
##
confusionMatrix(predictions_gbm,testSet[,outcomeName])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
              0 1
            0 131 13
              8 38
##
            1
##
##
                  Accuracy : 0.8895
##
                    95% CI: (0.836, 0.9303)
##
      No Information Rate : 0.7316
      P-Value [Acc > NIR] : 7.679e-08
##
##
##
                     Kappa: 0.7096
##
   Mcnemar's Test P-Value: 0.3827
##
##
               Sensitivity: 0.9424
               Specificity: 0.7451
##
##
            Pos Pred Value: 0.9097
##
            Neg Pred Value: 0.8261
##
                Prevalence: 0.7316
            Detection Rate: 0.6895
##
##
      Detection Prevalence: 0.7579
##
         Balanced Accuracy: 0.8438
##
##
          'Positive' Class: 0
##
confusionMatrix(predictions_rf,testSet[,outcomeName])
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
              0
##
            0 132 14
              7 37
            1
##
##
##
                  Accuracy : 0.8895
##
                    95% CI: (0.836, 0.9303)
##
      No Information Rate: 0.7316
##
      P-Value [Acc > NIR] : 7.679e-08
##
```

```
Kappa : 0.7058
##
   Mcnemar's Test P-Value: 0.1904
##
##
##
               Sensitivity: 0.9496
               Specificity: 0.7255
##
            Pos Pred Value : 0.9041
##
##
            Neg Pred Value: 0.8409
                Prevalence: 0.7316
##
##
            Detection Rate: 0.6947
##
     Detection Prevalence: 0.7684
##
         Balanced Accuracy: 0.8376
##
##
          'Positive' Class : 0
##
```

Using these three methods, the Stochastic Gradient Boosting (GBM) approach has highest accuracy of 0.9, thus we can cay that Stochastic Gradient Boosting algorith predict the food expenditure better.