Pauta Tarea 1 Informática Teórica

Expresiones regulares equivalentes

NP-Complete Warriors

2024-08-05

Cada una por turno, dando un ejemplo de palabra con dos interpretaciones o una explicación de porqué no es ambigua.

1. $(b \mid \varepsilon)(ab)^*(a \mid \varepsilon) \vee (a \mid \varepsilon)(ba)^*(b \mid \varepsilon)$

Ambas representan palabras que alternan a y b. Intuitivamente son equivalentes.

Consideremos palabras que alternan a y b, para $n \ge 0$ son de las formas:

 $(ab)^n$: Quedan representadas por la primera expresión mediante ε para el primer paréntesis, repetir ab n veces, ε para el segundo paréntesis. La segunda expresión las describe si n=0 eligiendo ε para los tres factores. Si $n \ge 1$, podemos escribir $(ab)^n = a(ba)^{n-1}b$, representable por la segunda.

 $(ab)^n a$: Podemos escribir $(ab)^n a = a(ba)^n$, para ambas expresiones respectivamente.

 $(ba)^n \mathbf{v} (ba)^n a$: Simétricas a las dos anteriores.

Concluimos que son equivalentes.

2. $(a | b | c)^* a(b | c)^* bc^* y (a | b | c)^* a(a | b | c)^* b(a | b | c)^*$

La primera expresa que hay una última a, luego una última b, luego solo c. La segunda permite a luego de la última b, cosa que no da la primera. No se ven equivalentes.

Consideremos la palabra *aba*. Queda descrita por la segunda expresión, pero no por la primera. No son equivalentes.

3. $aa^* y a^* a$

Ambas expresan a^+ , son equivalentes.

Formalmente, para $n \ge 0$ la primera describe palabras $a \cdot a^n$:

$$a \cdot a^n = a^{n+1}$$
$$= a^n \cdot a$$

La expresión final es lo que describe la expresión segunda. Son equivalentes.

4. $(a | b)^* y (a | c)^*$

Vemos que \boldsymbol{b} es representado por la primera, pero no por la segunda. No son equivalentes.

5. $(a^*b^*)^* y (a | b)^*$

La segunda expresión son todas las palabras que se pueden formar con a y b, basta demostrar que se pueden representar de la primera forma. Sea α una palabra cualquiera. Tendrá la forma, para algún $n \ge 0$:

$$\alpha = x_1 x_2 \cdots x_n$$

donde x_k es a o b. Pero cada x_k queda representado por a^*b^* , eligiendo ya sea una sola a y ninguna b o ninguna a y una sola b. La secuencia de x_k queda representada por $(a^*b^*)^*$, son equivalentes.

Puntajes

Total		120
1. Detalle de equivalencia	30	
2. Palabra que demuestra no equivalencia, explicación	30	
3. Detalle de equivalencia	15	
4. Palabra que demuestra no equivalencia, explicación	15	
5. Detalle de equivalencia	30	