Algebra Definitions

Peter Kagey

May 2019

1 Groups

1.1 Notation and definitions

1.1.1 Basic definitions

Definition 1.1.1.1 (Normal subgroup). Let G be a group and K be a subgroup of G. If $gkg^{-1} \in K$ for all $k \in K$ and $g \in G$, then K is called a normal subgroup of G and is denoted $K \triangleleft G$.

Definition 1.1.1.2 (Simple group). A group G is called a simple group is a group whose only normal subgroups are $\{e\}$ and G.

Definition 1.1.1.3 (Semidirect product). Let $K \subseteq G$ and $Q \subseteq G$. A group G is a semidirect product of K by Q (denoted $G = K \ltimes Q$) if there exists $Q_1 \cong Q$ such that Q_1 is a complement of K in G, that is $K \cap Q_1 = 1$ and $KQ_1 = G$.

1.1.2 Galois Theory

Definition 1.1.2.1 (Normal series). A normal series of a group G is a sequence of subgroups

$$G = G_0 \ge G_1 \ge \ldots \ge G_n = 1$$

in which $G_{i+1} \subseteq G_i$ for all i.

Definition 1.1.2.2 (Factor groups). The factor groups of a normal series are the groups G_i/G_{i+1} for $i=0,1,\ldots,n-1$.

Definition 1.1.2.3 (Length). The length of a normal series is the number of nontrivial factor groups.

Definition 1.1.2.4 (Solvable group). A finite group is solvable if it has a normal series whose factor groups are cyclic of prime order.

1.1.3 Centralizer/Normalizer

Definition 1.1.3.1 (Center). The center of a group G, denoted by Z(G), is the set of all $a \in G$ that commute with every element of G.

Definition 1.1.3.2 (Centralizer). The centralizer of a subset S of a group G is defined to be

$$C_G(S) = \{g \in G \mid gs = sg \text{ for all } s \in S\}.$$

Definition 1.1.3.3 (Normalizer). The centralizer of a subset S in the group G is defined to be

$$N_G(S) = \{ g \in G \mid gS = Sg \}.$$

Definition 1.1.3.4 (Commutator). If $a, b \in G$, the commutator of a and b, denoted [a, b], is

$$[a, b] = aba^{-1}b^{-1},$$

and the commutator subgroup of G, denoted G', is the subgroup of G generated by all of the commutators.

Definition 1.1.3.5 (Class equation). Partition G into its conjugacy classes, with x_i the representative of the ith conjugacy class. The class equation of the finite group G is

$$|G| = |Z(G)| + \sum_{i} [G : C_G(x_i)].$$

1.1.4 Group Actions

Definition 1.1.4.1 (Group action). Let G be a group and X be a set. Then a group action on X is a function $\varphi \colon G \times X \to X$ denoted $\varphi(g,x) = g \cdot x$ and satisfying

- (i) Identity: group action by the identity is trivial for all $x \in X$: $1 \cdot x = x$.
- (ii) Compatibility: $(gh) \cdot x = g \cdot (h \cdot x)$.

And X is called a G-set.

Definition 1.1.4.2 (Orbit). The orbit of an element $x \in X$ is denoted by

$$G \cdot x = \{g \cdot x \mid g \in G\}$$

Definition 1.1.4.3 (Stabilizer subgroup). The stabilizer subgroup of G with respect to $x \in X$ is denoted

$$G_x = \{ g \in G \mid g \cdot x = x \}$$

Definition 1.1.4.4 (Transitive). A group action is called transitive is for each $x, y \in X$ there exists some $g \in G$ such that $g \cdot x = y$.

1.2 Theorems

Theorem 1.2.1 (First isomorphism theorem). If $\varphi \colon G \to H$ is a group homomorphism then $\ker(\varphi) \subseteq G$ and $G/\ker(\varphi) \cong \varphi(G)$.

Theorem 1.2.2 (Second isomorphism theorem). Let G be a group with $S \leq G$ and $N \subseteq G$. Then

- 1. $SN \leq G$
- 2. $S \cap N \subseteq S$, and
- 3. $(SN)/N \cong S/(S \cap N)$.

Strictly speaking, N does not have to be a normal subgroup as long as S is a subgroup of the normalizer of N, $S \leq N_G(N)$.

Theorem 1.2.3 (Third isomorphism theorem). Let G be a group with normal subgroup $N \leq G$. Then

- 1. If $K \leq G$ (resp. $K \leq G$) such that $N \subseteq K \subseteq G$, then $K/N \leq G/N$ (resp. $K/N \leq G/N$).
- 2. Every subgroup (resp. normal subgroup) of G/N is of the form K/N, for some subgroup (resp. normal subgroup) $K \subset G$ such that $N \subseteq K \subseteq G$.
- 3. If $K \subseteq G$ such that $N \subseteq K \subseteq G$, then $(G/N)/(K/N) \cong G/K$.

Theorem 1.2.4 (Simplicity of the A_n). A_n is simple for all $n \geq 5$.

Theorem 1.2.5 (Sylow's theorem).

- (i) If P is a Sylow p-subgroup of a finite group G, then all Sylow p-subgroups of G are conjugate to P.
- (ii) If there are r Sylow p-subgroups, then r divides |G| and $r \equiv 1 \mod p$.

Theorem 1.2.6 (Fundamental Theorem of Abelian Groups). If G and H are finite abelian groups, then $G \cong H$ if and only if, for all primes p, they have the same elementary divisors.

Theorem 1.2.7. Let G be a finite group and p be the least prime divisor of |G|. Then if H is a subgroup of G such that [G:H]=p, then $H \leq G$.

2 Fields

2.1 Notation and definitions

2.1.1 Basic definitions

Definition 2.1.1.1 (Degree of a field extension). Suppose that E/k is a field extension. Then E may be considered as a vector space over k. The dimension of this vector space is called the degree of the field extension and is denoted by [E:k].

Definition 2.1.1.2 (Field automorphism). A field automorphism of a field K is an isomorphism $\phi \colon K \to K$. In particular,

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b)$.

Definition 2.1.1.3 (Splitting field). A splitting field of a polynomial p over a field K is a field extension $L \supseteq K$ over which p factors into linear factors.

Definition 2.1.1.4 (Separable polynomial). A polynomial p is called separable if factors into distinct linear factors in its splitting field.

Definition 2.1.1.5 (Separable extension). A separable extension is an field extension $E \supseteq F$ such that for every $\alpha \in E$, the minimal polynomial of α over F is a separable polynomial.

Definition 2.1.1.6 (Normal extension). A normal extension $K \supseteq L$ is one for which every polynomial that is irreducible over K either has no root in L or splits into linear factors in L.

Definition 2.1.1.7 (Galois extension). A Galois extension is an algebraic field extension E/F that is normal and separable.

Definition 2.1.1.8 (Galois group). Let $E \supseteq F$ be a field extension. The Galois group Gal(E/F) is the set of automorphisms of E that fix F under function composition.

Definition 2.1.1.9 (Galois correspondence). Let $E \supseteq F$ be a finite, Galois extension. The Galois correspondence is the bijection between intermediate fields $F \supseteq K \supset E$ and subgroups of the Galois group E/F.

Definition 2.1.1.10 (Trace). ???

Definition 2.1.1.11 (Norm). ???

Definition 2.1.1.12 (Radical extension). A radical extension of a field K is an extension that is obtained by adjoining a sequence of nth roots of elements of K.

Definition 2.1.1.13 (Finite field). A finite field is a field with a finite number of elements. Note: any finite field has p^k elements for some prime p and $k \in \mathbb{N}$.

Definition 2.1.1.14 (Cyclotomic extension). A cyclotomic extension $\mathbb{Q}(\xi_n)$ of \mathbb{Q} is an extension formed by adjoining a primitive nth root of unity.

Definition 2.1.1.15 (Algebraic closure). An algebraic closure of a field K is an algebraic extension F/K such that F contains a root for every non-constant polynomial in F[x].

2.2 Theorems

Theorem 2.2.1 (Isomorphism extension theorem). Let F be a field and $\phi \colon F \to F'$ an isomorphism. Then if E is an extension field of F, ϕ can be extended into an isomorphism $\tau \colon E \to E'$.

Theorem 2.2.2 (Fundamental theorem of Galois theory). Let E/k be a finite Galois extension with Galois group G = Gal(E/k). The function

$$\gamma \colon \operatorname{Sub}(\operatorname{Gal}(E/k)) \to \operatorname{Int}(E/k),$$

defined by $H \mapsto E^H$, is an order reversing bijection whose inverse maps $B \mapsto \operatorname{Gal}(E/B)$.

Theorem 2.2.3 (Primitive element theorem). Finite separable extensions are simple.

3 Commutative Algebra

3.1 Notation and definitions

3.1.1 Basic definitions

Definition 3.1.1.1 (Localization). ???

Note. Localization is a formal way to introduce the "denominators" to a given ring or module.

Definition 3.1.1.2 (Integral element). Let B be a ring and $A \subset B$ a subring. Then an element $b \in B$ is called integral over A if for some $n \geq 1$, there exist $a_i \in A$ such that $b^n = a_{n-1}b^{n-1} + \cdots + a_1b + a_0$.

Definition 3.1.1.3 (Integral extension). A ring B is called an integral extension of $A \subset B$ if every element of B is integral over A.

Note. The set of elements of B that are integral over A is called the integral closure of A in B.

Definition 3.1.1.4 (Unique factorization domain). A unique factorization domain is an integral domain in which every non-zero non-unit element can be written as the product of prime elements uniquely.

Note. In general every prime is irreducible, but in a UFD, the converse is true.

Definition 3.1.1.5 (Principal ideal domain). A principal ideal domain is one in which every ideal is generated by a single element. That is, if R is a ring and $I \subseteq R$ is an ideal of R, then I = (a) for some element $a \in R$.

Definition 3.1.1.6 (Noetherian ring). A Noetherian ring is a ring that satisfies the ascending chain condition on ideals, that is given any chain

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_k \subseteq I_{k+1} \subseteq \cdots$$

there exists some n after which $I_n = I_{n+1} = I_{n+2} = \cdots$.

Definition 3.1.1.7 (Variety). Let k be an algebraically closed field, and F a subset of $k[x_1, \ldots, x_n]$. Then the variety defined by F is

$$Var(F) = \{ a \in k^n | f(a) = 0 \text{ for all } f \in F \}$$

Definition 3.1.1.8 (Zariski topology). The Zariski topology is a topology on algebraic varieties where the closed sets on k^n are Var(F) for some $F \subset k[x_1, \ldots, x_n]$.

Note. For any two ideals of polynomials I and J,

- 1. $V(I) \cup V(J) = V(IJ) = Var(I \cap J)$, and
- 2. $V(I) \cap V(J) = V(I + J)$.

3.2 Theorems

Theorem 3.2.1 (Eisenstein criterion). Let D be an integral domain and $f(x) = a_n x^n + \ldots + a_1 x + a_0$ where $a_i \in D$, and so $f(x) \in D[x]$. Then if there exists a prime ideal \mathfrak{p} of D such that

- 1. $a_i \in \mathfrak{p}$ for each i < n,
- 2. $a_n \not\in \mathfrak{p}$, and
- 3. $a_0 \notin \mathfrak{p}^2$,

then f cannot be written as the product of two non-constant polynomials in D[x].

Theorem 3.2.2 (Hilbert basis theorem). A polynomial ring R[x] over a Noetherian ring R is Noetherian.

Theorem 3.2.3 (Hilbert's Nullstellensatz). Let k be a field and \overline{k} be an algebraically closed field extension. Consider the polynomial ring $k[x_1, \ldots, x_n]$, and let I be an ideal in this ring. Hilbert's Nullstellensatz states that if $p \in k[x_1, \ldots, x_n]$ vanishes on Var(I), then $p^r \in I$ for some $r \in \mathbb{N}$.

4 Modules

4.1 Notation and definitions

4.1.1 Basic definitions

Definition 4.1.1.1 (Irreducible module). An irreducible module or a simple module over a ring R are nonzero modules whose only submodules are the module itself and the zero module.

Definition 4.1.1.2 (Torsion element). An element m of a module M over a ring R is called a torsion element of the module if there exists (a non zero divisor) $r \in R$ such that rm = 0.

Definition 4.1.1.3 (Torsion module). A module M over a ring R is called a torsion module if all of its elements are torsion elements.

Definition 4.1.1.4 (Free module). A free module is a module that has a basis, E. That is

- 1. E is a generating set for M, and
- 2. E is linearly independent: $r_1e_1 + \ldots + r_ne_n = 0_M$ implies $r_1 = \ldots = r_n = 0_R$.

Definition 4.1.1.5 (Projective module). A left R-module P is projective if whenever $p: A \to A''$ is surjective and $h: P \to A''$ is any map, then there exists $g: P \to A$ with $h = p \circ g$.

$$\begin{array}{c}
P \\
\downarrow h \\
A \xrightarrow{p} A''
\end{array}$$

Note. A left R-module P is projective if and only if every short exact sequence

$$0 \to A \xrightarrow{i} B \xrightarrow{p} P \longrightarrow 0$$

is split, that is, $B \cong A \oplus P$.

Definition 4.1.1.6 (Modules over PIDs). ???

Definition 4.1.1.7 (Chain conditions). ???

Definition 4.1.1.8 (Tensor products). Let A and B be modules over a commutative ring R. Then $A \otimes_R B$ is an R module where $\phi: A \times B \to A \otimes_R B$ defined by $(a,b) \stackrel{\phi}{\mapsto} a \otimes b$ is a middle linear map:

- 1. $\phi(a+a',b) = \phi(a,b) + \phi(a',b)$
- 2. $\phi(a, b + b') = \phi(a, b) + \phi(a, b')$
- 3. $\phi(ar, b) = \phi(a, rb)$

Where any bilinear map $h: A \times B \to Z$ can be written as $h = \widetilde{h} \circ \phi$ for some unique \widetilde{h} .

Note. The tensor product is the freest bilinear operation.

Definition 4.1.1.9 (Exact sequences). An exact sequence is a sequence of objects and morphisms between them

$$G_0 \xrightarrow{f_1} G_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} G_n$$

such that $Im(f_k) = \ker(f_{k+1})$.

4.2 Theorems

Theorem 4.2.1 (Structure theorem for finitely generated modules over a PID). For every finitely generated module M over a PID R, there is a unique decreasing sequence of proper ideals

$$(d_1) \supseteq (d_2) \supseteq \cdots \supseteq (d_n)$$

such that M is isomorphic to the sum of cyclic modules:

$$M \cong \bigoplus_{i=1}^{n} R/(d_i) = R/(d_1) \oplus R/(d_2) \oplus \cdots \oplus R/(d_n).$$

Note. The number of d_i s that are equal to zero is the dimension of the free part of M.

5 Noncommutative Rings

5.1 Notation and definitions

5.1.1 Basic definitions

Definition 5.1.1.1 (Artinian Rings). A ring is called left artinian if it has descending chain condition on left ideals.

Definition 5.1.1.2 (Jacobson radical). The Jacobson radical of R, denoted J(R), is the intersection of all of the maximal left ideals in R.

Definition 5.1.1.3 (Jacobson semisimple). A ring R is called Jacobson semisimple if J(R) = (0).

Definition 5.1.1.4 (Division rings). A division ring is a "possibly noncommutative field"; that is D is a ring in which $1 \neq 0$ and ever nonzero element $a \in D$ has a multiplicative inverse.

5.2 Theorems

Definition 5.2.0.1 (Artin-Wedderburn theorem). Every semisimple ring R is a direct product,

$$R \cong \operatorname{Mat}_{n_1}(\Delta_1) \times \cdots \times \operatorname{Mat}_{n_m}(\Delta_m)$$

Definition 5.2.0.2 (Skolem-Noether theorem). Let A be a central simple k-algebra over a field k and let B and B' be isomorphic simple k-subalgebras of A. If $\psi: B \to B'$ is an isomorphism, then there exists a unit $u \in A$ with $\psi(b) = ubu^{-1}$ for all $b \in B$.

Definition 5.2.0.3 (Wedderburn's theorem on finite division rings). Every finite division ring D is a field.