数项级数 练习题

Edited by G.Cui

Ex 1. 证明下列级数收敛.

1)
$$\sum_{n=1}^{\infty} \left[\frac{1}{n} - \ln(1 + \frac{1}{n}) \right];$$

2)
$$\sum_{n=1}^{\infty} [e - (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!})].$$

Ex 2. 设级数 $\sum_{n=1}^{\infty}$ 收敛, $a_n > 0$, a_n 单调递减, 试证: $\lim_{n \to \infty} na_n = 0$.

Ex 3. 设 $x_n = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}$, 试证: $\lim_{n \to \infty} x_n$ 存在.

Ex 4. 设 $a_n = (1 - \frac{p \ln n}{n})^n$, 讨论 $\sum a_n$ 的敛散性.

Ex 5. 讨论级数 $\sum_{n=1}^{\infty} a_n = \frac{1}{1^p} - \frac{1}{2^q} + \frac{1}{3^p} - \frac{1}{4^q} + \dots + \frac{1}{(2n-1)^p} - \frac{1}{(2n)^q} + \dots (p > 0, q > 0)$ 的绝对收敛性与条件收敛性.

Ex 6. 设 $\{a_n\}(n \ge 1)$ 是正实数序列, 证明: 若级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛, 则级数

$$\sum_{n=1}^{\infty} \frac{n^2}{(a_1 + a_2 + \dots + a_n)^2} a_n$$

也收敛.