Big Data Analytics Programming

Week-07. Data Preprocessing

Jungwon Seo, 2021-Fall

데이터 확보후..

무엇을 해야할까?

무작위로 수집된 데이터를 통제 가능한 상태로 변환하는 과정

데이터의종류

데이터의 타입에 따른 전처리 방식

- 비정형 데이터
 - 텍스트, 비디오, 오디오, 이미지
- 준정형 데이터
 - XML, JSON, HTML등의 형태
- 정형 데이터
 - Matrix 형태로 바로 표현/접근/연산 가능한 상태
- 어떠한 형태의 데이터든 결국에는 행렬 형태로 표현해야 분석 가능

비정형데이터 - 텍스트 데이터

- Document Normalization (문서 정규화)
 - 인코딩 통일
 - 준정형 데이터로 변형 (XML, CSV, JSON, SQL 등)
- Text Parsing
 - 텍스트 추출 (예: Hello!)
 - Stemming or Lemmatization
- Text Filtering
 - 고빈출어 또는 저빈출어 제거
 - 불용어(stopwords) 제거
 - 개인정보 식별 정보 제거 (예. 주민번호, 핸드폰 번호)
- Transformation
 - One-hot encoding
 - Ordinal encoding


```
[{
    "doc_id": 1,
    "content": "<h1> 안녕하세요 </h1> 만나서 반갑습니다. ....."
    },
    {
        "doc_id": 2,
        "content": "제 이름은 서중원이고, 나이는 31살입니다....."
    },
    {
        "doc_id": 3,
        "content": "I like playing tennis ....."
}]
```



```
[ {
    "doc_id": 1,
    "content": "안녕 만나다 반갑다"
    },
    {
     "doc_id": 2,
     "content": "제 이름 000 나이 00살"
    },
    {
     "doc_id": 3,
     "content": "like play tennis"
    }]
```


	안녕	만나다	반갑다	Tennis
doc1	1	1	1	0
doc2	0	0	0	0
doc3	0	0	0	1

{ "doc_id": 1, "encoded": [3, 32, 218, 12, 25, 2, 205, 337, 16, 2, 113, 4] },
{ "doc_id": 2, "encoded": [3, 225, 21, 55, 88, 278, 238, 73, 61, 21, 31, 4] },
{ "doc_id": 3, "encoded": [3, 22, 311, 72, 28, 34, 5, 7, 33, 65, 13, 4] }

비정형데이터 - 텍스트 데이터

• 원형복원

- Stemming
 - 단어의 끝을 일정한 규칙으로 잘라내는 방식으로 원형 복원
- Lemmatization
 - 사전을 기반으로, context를 고려한 원형 복원
 - Plays, played, playing ====> play

• 불용어 제거

- 불용어(stopwords)란?
 - 데이터셋에 자주 등장하지만, 큰 의미가 없는 단어
 - Task에 따라 제거 하기도 제거하지 않기도 함

Stemming	Adjustable Formality Formaliti Airliner	Adjust Formaliti Formal Airlin
	Meeting	Meet
Lemmatization	Was Better Meeting	Be Good Meeting

Korean Stopwords				
아	어찌됏든	하기보다는		
휴	그위에	차라리		
아이구	게다가	하는 편이 낫다		
아이코	점에서 보아	흐흐		
아이고	비추어 보아	놀라다		
어	고려하면	상대적으로 말하자		
나	하게될것이다	면		
우리	일것이다	마치		
저희	비교적	아니라면		

Default English stopwords list				
This list is used in our Page Analyzer and Article Analyzer for English text, when you let it use the default stopwords list.				
а	ourselves			
about	out			
above	over			
after	own			
again	same			
against	shan't			
all	she			
am	she'd			
an	she'll			
and	she's			
any	should			
are	shouldn't			
aren't	SO			

비정형데이터 - 이미지 데이터

• 이미지 리사이즈

- 가로 세로
- 채널 수 (RGB)
- Cropping
- Noise 제거
 - Blurring
- Segmentation
 - Background vs Objects

비정형데이터 - 이미지 데이터

- 이미지의 정의
 - 3차원 세상에 대한 2차원 화면(View)
 - 디지털 이미지는 한정된 값의 묶음으로 2차원 이미지를 숫자로 표현
 - 이러한 값을 **픽셀**이라고 부르며, 집합으로서 이미지를 나타냄
 - 다른말로 픽셀은 컴퓨터화면에 표시 될 수 있는 가장 작은 단위
 - 디지털 이미지는 픽셀 매트릭스로 컴퓨터에 표시
 - 이미지의 각 픽셀은 정수로 저장

비정형데이터 - 이미지 데이터

RGB

- 회색조 이미지를 처리하는 경우 0 (검은 색 픽셀)에서 최대 255 (흰색 픽셀)
 - 이 둘 사이의 숫자는 회색 음영
- 반면 컬러 이미지는 3 개의 행렬로 표현
 - 각 행렬은 채널이라고도하는 하나의 기본 색상을 나타냄
 - 가장 일반적인 색상 모델은 빨강, 녹색, 파랑 (RGB)
 - 이 세 가지 색상은 함께 혼합되어 광범위한 색상을 생성
 - (R,G,B) = (255, 255, 255) = white

비정형데이터 - 이미지 데이터

- 픽셀좌표
 - 픽셀은 두 개의 (x, y) 좌표로 접근
 - x 값은 열을 나타내고 y 값은 행을 나타냄.
 - 이미지의 왼쪽 상단 모서리에는 원점 좌표 (0,0)
 - x 좌표 값은 오른쪽으로 갈수록 증가
 - y 좌표 값은 아래로 갈수록 증가
 - 각각의 픽셀에 접근해서 조작 가능

비정형데이터 - 오디오 데이터

- Audio 파일 불러오기
- Representation 찾기
 - 시간에 따른 세기 기반으로 표현
 - 주파수 기반으로 표현
 - 주파수와 시간으로 표현 (예: STFT)

[12,3004, 300, 0,0,300 ...]

비정형데이터 - 오디오 데이터

- 소리의 3요소
 - **주파수**: 음의 높낮이, Hz
 - 진동수가 높은 음을 고음
 - 진동수가 낮은 음을 저음
 - 돌고래: 초음파
 - 호랑이: 저주파
 - **진폭**: 음의 세기, dB
 - **파형** : 음색

물리량	심리량(subjective quantity)			
(physical quantity)	소리 크기 (loudness)	소리 높낮이 (pitch)	음색 (timbre)	
음압(pressure)	***	*	*	
주파수(frequency)	**	大大大	**	
스펙트럼(spectrum)	*	*	***	
포락선(envelope)	*	*	**	
지속시간(duration)	*	*	*	

(상관정도: *)

소리의 3요소

준정형데이터 - XML, JSON

- Row(행) 기반 데이터로 변형
 - 일반적으로 XML과 JSON으로 이루어진 데이터의 경우 불규칙한 차원수를 포함하기 때문에 데이터를 분해하여, 2 차원의 매트릭스로 표현하는 작업이 필요
 - Row 기반의 데이터가 되야 빈도수나 평균/합과 같은 Aggregation을 통해 추가적인 유의미한 정보 추출 가능 (Feature Engineering)
 - CSV의 경우에는 이미 행 기반

[원본 데이터]

	AMOUNT		AMOUNT
WHAT		wно	
Beer	183.0	Beth	80.0
Car	68.0	Janet	129.0
Food	136.0	Joe	178.0

[Aggregate 데이터]

[행기반 데이터]

19 Janet

WHO WEEK WHAT AMOUNT

4 Food

4 Food

5 Food

4 Food

12.0

19.0

16.0

17.0

17.0

14.0

12.0

17.0

15.0

12.0

20.0

17.0

14.0

정형데이터

- Data Cleaning
 - 결측값(Missing Value) 처리
 - Noise와 Outlier 처리
 - 중복 데이터 처리
 - 기타: 다른 화폐단위, 다른 온도 단위 등등
- Data Normalization (Numeric Feature)
 - Min-Max Scaling
 - Z-score Normalization
- Data Encoding (Categorical Feature)
 - Ordinal Encoding => 0,1,2,3,4
 - One-hot Encoding => [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]
 - Binary Encoding => 000, 001, 011, 100

정형데이터 - 결측값

- 결측값이 생기는 이유
 - 모든 정보가 반드시 수집되는 것은 아님
 - 코로나로 인한 방명록 작성
 - 사람들은 나이나 체중을 숨기려는 경향이 있음
 - 일부 속성들은 특정 대상에게는 적용되지 않음
 - 연간소득, 어린이는?
- 결측값 처리
 - 데이터 객체 제거
 - 데이터 속성 제거
 - 결측값 추정
 - 분석 중 결측값 무시

183	70	25
176	60	22
154	40	35
168	70	40
	176 154	176 60 154 40

정형데이터 - Noise, Outlier

- 잡음 (Noise)
 - 잘못된 관측 또는 무작위적 오류
 - 예) 오타, 결측값, 의미없는 값
- 이상치 (Outlier)
 - 대부분의 데이터와는 상당히 다른 형태를 보이는 데이터
 - Noise와는 다르게 관심 갖고 지켜봐야 하는 경우가 있음
 - Anomaly Detection
 - 예) 넷플릭스 계정 해외접속

말콤 글래드웰, 아웃라이어, 김영사(2009)

정형데이터 - Normalization

- 수치 범위가 넒은 속성(feature)에 대한 편향(bias)을 방지하기 위해
 - 예:1.7m vs 60kg
- Min-Max Scaling

$$x_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

z-score Normalization

$$z = \frac{x - \mu}{\sigma}$$

- 효과
 - 경사하강법 사용시 더 빠르게 최적의 해를 찾을 수 있음
 - 정규화가 필요하지 않은 모델들도 있다: 의사결정트리

정형데이터 - Encoding

• 목적

• Categorical type의 데이터는 수학적 연산이 불가능 하기 때문에, 이를 숫자로 표현할 필요성이 있음

Ordinal Encoding

- 일반적으로 값들 사이의 대소관계가 존재하는 경우에 사용
- 하지만, 딥러닝을 이용한 NLP 분야에서는 단어들을 Ordinal Encoding을 사용함

One-hot Encoding

- 값들 사이의 대소관계가 존재하지 않는 경우에 사용
- Sparse matrix: 희소행렬
- 국가 => 열 200개

Binary Encoding

• ID 값을 부여후 2진법으로 표현

혈액형	ID	이진 인코딩	원-핫 인코딩
Α	1	0 0 1	1000
В	2	010	0100
AB	3	011	0010
O	4	100	0001

E.O.D