Guía de Ejercicios PLC

1) Escribir en Listado de Instrucciones el programa equivalente al siguiente programa en Ladder:

2) Control de un motor bidireccional.

Realice un programa en Ladder para controlar el arranque y detención de un motor con doble sentido de giro. Agregue un enclavamiento que verifique la total detención del motor antes de invertir su dirección. Indique la conexión de las entradas y salidas del PLC. Dibuje el diagrama eléctrico completo, indicando también el circuito de potencia. Realice un enclavamiento eléctrico entre ambos contactores.

Contemplar las siguientes señales de entrada:

- DI-001: Pulsador de Marcha Directa (NA)
- DI-002: Pulsador de Marcha Inversa (NA)
- DI-003: Pulsador de Paro (NC)
- DI-004: Sensor de cero velocidad del motor (NA)

Contemplar las siguientes señales de salida:

- DO-030: Activación contactor marcha directa
- DO-031: Activación contactor marcha directa
- **3)** Dispone de un botón pulsador y una lámpara. Prepare un diagrama escalera, donde al pulsar una vez el botón se encienda la lámpara y al hacerlo por segunda vez se apague.
- **4)** Estudie la lógica de la figura y para cada una de las condiciones planteadas determine si el temporizador está reseteado, contando, si terminó de contar o si las condiciones planteadas no son válidas.
 - a) Input=1, EN=1, TT=1 y DN=0
 - **b)** Input=1, EN=1, TT=1 y DN=1
 - c) Input=0, EN=0, TT=0 y DN=0
 - d) Input=1, EN=1, TT=0 y DN=1

Referencias:

- TT= Timer Timing
- DN= Done
- EN= Enable

Link con repaso sobre funcionamiento Timers: https://www.theautomationstore.com/rslogix-lesson-timers-ton-tof-and-rto-explained/

5) Estudie la lógica de la figura y para cada una de las condiciones planteadas determine si el temporizador está reseteado, contando, si terminó de contar o si las condiciones planteadas no son válidas.

Respuestas (si fuera un TON): Respuestas (para TOF):

- 6) Estudie la lógica ladder de la figura y responda las siguientes preguntas:
 - ¿Cuál es el propósito de interconectar los dos temporizadores?
 - (Cuánto tiempo transcurrirá hasta que la salida PL sea energizada?
 - ¿Cuáles dos condiciones se deben satisfacer para que el temporizador T4:2 comience a contar?
 - ¿Qué pasará cuando la entrada PB2 se active?
 - Cuando la entrada PB1 se active, ¿cuánto tiempo acumulado debe pasar hasta que el peldaño 3 se active?

- **7)** Escribir un programa en Ladder para controlar el sistema de la figura. El funcionamiento del mismo deberá ser el siguiente:
 - Botones de Start (NA) y Stop (NC) son usados para arrancar y parar el proceso
 - Cuando el botón de Start es presionado, se energiza la solenoide A para comenzar el llenado del tanque
 - A medida que el tanque comienza a llenarse, el Empty Sensor Switch se cierra
 - Cuando el tanque está lleno, el Full Sensor Switch se cierra
 - La solenoide A es des-energizada
 - El motor del agitador arranca automáticamente y permanece encendido por 3 minutos para mezclar el líquido
 - Cuando el motor del agitador se detiene, la solenoide B es energizada para vaciar al tanque
 - Cuando el tanque está completamente vacío, se debe des-energizar la solenoide B
 - El botón de Start es presionado para repetir la secuencia

- 8) Controlar el proceso descripto en el punto 7 utilizando un diagrama SFC.
- **9)** Diseñar un programa de PLC en Ladder y su conexionado de entradas y salidas para controlar el siguiente proceso industrial:
 - Producto en posición (el Limit Switch LS1 se cierra)
 - El botón de Start es presionado y se enciende el motor de transporte para mover el producto hacia la posición A (el contacto del Limit Switch LS1 se abre cuando su brazo vuelve a la posición normal)
 - El transporte mueve el producto hacia la posición A y para (posición detectada por 8 flancos ascendentes de pulsos de encoder, los cuales son contados por un contador)
 - Se contabilizan 10 segundos con un temporizador, después de los cuales el transporte arranca y mueve el producto hasta el Limit Switch LS2 y para (el contacto de LS2 se cierra cuando el brazo actuador es golpeado por el producto)
 - Un pulsador de emergencia (NC) es usado para parar el proceso en cualquier momento
 - Si la secuencia es interrumpida por el pulsador de emergencia, el contador y el temporizador son reseteados automáticamente.

- 10) Controlar el proceso descripto en el punto 9 utilizando un diagrama SFC.
- **11)** Automatizar el funcionamiento de un ascensor utilizando un PLC. Diseñar e implementar el programa del PLC en Codesys. Utilizar Codesys para crear una interfaz gráfica que permita probar el funcionamiento del programa.

En la figura se indica un total de 3 niveles. El ascensor dispone de sensores en cada nivel para detectar que la cabina esta alineada con el nivel del piso.

La prioridad es determinada por orden cronológico en el llamado al ascensor.

	Address	Name	Input/Output	Signal Location	Description
1	IX0.0	Start PB	Input	Electrical Panel	Pulsador en tablero
					eléctrico para poner en
					servicio el ascensor.
2	IX0.1	Stop PB	Input	Electrical Panel	Pulsador en tablero
					eléctrico para sacar de
					servicio el ascensor. Por
					ejemplo, para
					mantenimiento.
3	IX0.2	Ground Floor PB	Input	Ground Floor	Pulsador para llamar al
					ascensor en planta baja
4	IX0.3	First Floor PB	Input	Firts Floor	Pulsador para llamar al
					ascensor en primer piso
5	IX0.4	Second Floor PB	Input	Second Floor	Pulsador para llamar al
					ascensor en segundo piso
6	IX0.5	Ground Limit	Input	Ground Floor	Sensor cabina alineada
		Switch			con planta baja
7	IX0.6	First Floor Limit	Input	Firts Floor	Sensor cabina alineada
		Switch			con primer piso
8	IX0.7	Second Floor	Input	Second Floor	Sensor cabina alineada
		Limit Switch			con segundo piso
9	IX1.0	Open Door Limit	Input	Cabinet	Sensor puerta
		Switch			completamente abierta
10	IX1.1	Close Door Limit	Input	Cabinet	Sensor puerta
		Switch			completamente cerrada
11	IX1.2	0 PB	Input	Cabinet	Botón dentro de cabina
					para ir a planta baja
12	IX1.3	1 PB	Input	Cabinet	Botón dentro de cabina
					para ir a primer piso
13	IX1.4	2 PB	Input	Cabinet	Botón dentro de cabina
					para ir a segundo piso
14	QX0.0	Down Motor	Output	Electrical Panel	Salida para encender el
					motor del ascensor para
					bajar
15	QX0.1	Up Motor	Output	Electrical Panel	Salida para encender el
					motor del ascensor para
					subir
16	QX0.2	Open Door	Output	Cabinet	Salida para encender el
		Motor			motor para abrir la
					puerta de la cabina
17	QX0.3	Clos Door Motor	Output	Cabinet	Salida para encender el
					motor para cerrar la
					puerta de la cabina