Aufgabenblatt 5

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

Simplex Algorithmus – Tabellarisches Verfahren.

mit Lösungen

Aufgaben 1 und 2 handeln von den selben LPs, wie in Aufgabenblatt 4. Sie könnten Ihren Rechenweg der 2 Aufgabenblätter vergleichen, um Ihre Lösung zu prüfen und eventuelle Fehler zu korrigieren.

Aufgabe 1 Simplex-Algorithmus

- (a) Geben Sie die folgende LP Problem in Normalform an.
- (b) Erstellen Sie das Anfangstableau des Simplex-Algorithmus und Lösen Sie es tabellarisch.
- (c) Vergleichen Sie jedes Tableau mit der Gleichungen aus Aufgaben 1 Teil (b) im 4. Aufgabenblatt.

Maximiere
$$z = 4x_1 + 3x_2$$

unter $x_1 + x_2 \le 8$
 $2x_1 + x_2 \le 12$
 $2x_1 + 3x_2 \le 18$
 $x_1, x_2 \ge 0$.

(a)

$$z = 4x_1 + 3x_2
 x_1 + x_2 + y_1 = 8
 2x_1 + x_2 + y_2 = 12
 2x_1 + 3x_2 + y_3 = 18
 x_1, x_2, y_1, y_2, y_3 \geqslant 0.$$

(b)

<i>Tab.</i> 0		x_1	x_2
Z	0	-4	-3
y_1	8	1	1
y_2	12	2	1
y_3	18	2	3

<i>Tab. 1</i>		y_2	x_2
Z	24	2	-1
y_1	2	$-\frac{1}{2}$	$\frac{1}{2}$
x_1	6	$\frac{1}{2}$	$\frac{1}{2}$
y_3	6	-1	2

<i>Tab.</i> 2		y_2	y_3
Z	27	$\frac{3}{2}$	$\frac{1}{2}$
y_1	$\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{1}{4}$
x_1	$\frac{9}{2}$	$\frac{3}{4}$	$-\frac{1}{4}$
x_2	3	$-\frac{1}{2}$	$\frac{1}{2}$

Die optimale Lösung ist: $x_1^* = 4\frac{1}{2}, \ x_2^* = 3, z^* = 27$

(c) Die Koeffizienten in den Tableaus passen zu den Koeffizienten in den linearen Gleichungen. Alle Koeffizienten mit Ausnahme derjenigen in der Lösungsspalte haben einen Wechsel im Vorzeichen.

Aufgabe 2 Uhrenhersteller

Lösen Sie die Uhrenhersteller LP durch den Simplex Algorithmus mit dem tabellarischen Verfahren.

maximiere

unter den Nebenbedingungen

 $Z(x_1, x_2) = 3x_1 + 8x_2$

 $2x_1 + 4x_2 \leqslant 1600$

 $6x_1 + 2x_2 \le 1800$

 $x_2 \leqslant 350$

 $x_1, x_2 \geqslant 0$

Arbeiter Stunden

Herstellungsstunden

Alarmbauteile

In Normalform:

$$z = 3x_1 + 8x_2$$

$$2x_1 + 4x_2 + y_1 = 1600$$

$$6x_1 + 2x_2 + y_2 = 1800$$

$$0x_1 + x_2 + y_3 = 350$$

$$x_1, x_2, y_1, y_2, y_3 \geqslant 0.$$

<i>Tab.</i> 0		x_1	x_2
Z	0	-3	-8
y_1	1600	2	4
y_2	1800	6	2
y_3	350	0	1

<i>Tab. 1</i>		x_1	y_3
Z	2800	-3	8
y_1	200	2	-4
y_2	1100	6	-2
x_2	350	0	1

Tab. 2		y_1	y_3
Z	3100	1.5	2
x_1	100	0.5	-2
y_2	500	-3	<i>10</i>
x_2	350	0	1

Optimale Lösung: $x^* = 100$, $y^* = 350$, $z^* = 3100$.

Aufgabe 3 Simplex Algorithmus

Lösen Sie die folgende LP durch das tabellarische Verfahren des Simplex-Algorithmus

$$Z(x_1, x_2) = 120x_1 + 100x_2$$

$$2x_1 + 2x_2 \leqslant 8$$

$$5x_1 + 3x_2 \leqslant 15$$

$$x_1, x_2 \geqslant 0.$$

<i>Tab.</i> 0		x_1	x_2
Z	0	-120	-100
y_1	8	2	2
y_2	15	5	3

<i>Tab. 1</i>		y_2	x_2
Z	360	24	-28
y_1	2	$-\frac{2}{5}$	$\frac{4}{5}$
x_1	3	$\frac{1}{5}$	$\frac{3}{5}$

Tab. 2

$$y_2$$
 y_1

 Z
 430
 10
 35

 x_2
 $\frac{5}{2}$
 $-\frac{1}{2}$
 $\frac{5}{4}$
 x_1
 $\frac{3}{2}$
 $\frac{1}{2}$
 $-\frac{3}{4}$

$$x_1^* = 2.5, \ x_2^* = 1.5, z^* = 430$$