

厦门大学《微积分 I-2》课程

补充习题

信息学院自律督导部整理

二重积分: 直角坐标系 (X型区域、Y型区域); 极坐标系。

例 1. 计算二重积分
$$\iint_D (x+y) dx dy$$
 , 其中 D : $x^2 + y^2 \le 2x$.

解: 积分区域关于 x 轴对称, 所以
$$\iint_D (x+y) dxdy = \iint_D x dxdy$$

极坐标系下:
$$x = r\cos\theta$$
, $y = r\sin\theta$, $D:\begin{cases} -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ 0 \le r \le 2\cos\theta \end{cases}$

$$\iint_{D} x dx dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} r \cos\theta \cdot r dr = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta d\theta \int_{0}^{2\cos\theta} r^{2} dr$$
$$= \frac{8}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{4}\theta d\theta = \frac{16}{3} \int_{0}^{\frac{\pi}{2}} \cos^{4}\theta d\theta = \frac{16}{3} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \pi$$

例 2. 设 $D \neq y = \sqrt{1-x^2}$, y = 0 围成, $D_1 \rightarrow D$ 在第一象限的部分,则 $\iint_D (x^2 + 3xy^2) dx dy = (C).$

(A)
$$2\iint_{D_1} (x^2 + 3xy^2) dx dy$$

(C)
$$2\iint\limits_{D_1} x^2 dx dy$$

(D)
$$4\iint_{D_1} x^2 dx dy$$

例 3. 改变积分的顺序 $\int_{0}^{1} dy \int_{0}^{y^{2}} f(x,y) dx + \int_{1}^{2} dy \int_{0}^{\sqrt{1-(y-1)^{2}}} f(x,y) dx$ 。

解:Y型区域:
$$\begin{cases} 0 \le x \le y^2 & \begin{cases} 0 \le x \le \sqrt{1 - (y - 1)^2} \\ 0 \le y \le 1 \end{cases},$$

积分域由
$$x = y^2$$
, $x^2 + (y-1)^2 = 1$, $x = 0$ 围成。

$$\begin{cases} x = y^2 \\ x^2 + (y-1)^2 = 1 \end{cases}$$
的交点 (0,0),(1,1).

X型区域:
$$\begin{cases} 0 \le x \le 1 \\ \sqrt{x} \le y \le 1 + \sqrt{1 - x^2} \end{cases}$$

所以原积分换序后为 $\int_{0}^{1} dx \int_{x/x}^{1+\sqrt{1-x^2}} f(x,y)dy$ 。

例 4. 积分
$$\int_0^2 dx \int_x^2 e^{-y^2} dy$$
 的值等于______。答案: $\frac{1}{2} (1 - e^{-4})$ 。

M:
$$I = \int_0^2 dy \int_0^y e^{-y^2} dx = \int_0^2 y e^{-y^2} dy = -\frac{1}{2} e^{-y^2} \Big|_0^2 = \frac{1}{2} (1 - e^{-4})$$

例 5. 求
$$I = \iint_D xydxdy$$
, D 是由 $x > 0$, $y \ge x$ 与 $x^2 + (y - b)^2 \le b^2$, $x^2 + (y - a)^2 \ge a^2$ ($0 < a < b$)所围成的区域。

解: 选用极坐标系, 积分域的边界:

$$r_1 = 2a\sin\theta$$
, $r_2 = 2b\sin\theta$, $\theta = \frac{\pi}{4}$, $\theta = \frac{\pi}{2}$

积分限:
$$2a\sin\theta \le r \le 2b\sin\theta$$
, $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ 。

$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{2a\sin\theta}^{2b\sin\theta} r^3 \cos\theta \sin\theta dr = \frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin\theta \cos\theta \left[(2b\sin\theta)^4 - (2a\sin\theta)^4 \right] d\theta$$

$$=4\left[b^4-a^4\right]\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\sin^5\theta d(\sin\theta)=\frac{2}{3}\left[b^4-a^4\right]\sin^6\theta\Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}}=\frac{7}{12}\left[b^4-a^4\right]$$

例 6. 求
$$I = \iint_D \sqrt{x^2 y} dx dy$$
, D 是由 $y = x$, $y = -x$ 及 $y = 1$ 围成的区域。

解: 分析 积分区域关于y轴对称,被积函数是关于x的偶函数,

$$\therefore I = \iint_{D} \sqrt{x^{2}y} dx dy = 2 \iint_{D_{1}} x \sqrt{y} dx dy = 2 \iint_{0}^{1} dx \int_{x}^{1} x \sqrt{y} dy = \frac{2}{7}$$

例 7. 若函数 f(x,y) 在矩形区域 $D: 0 \le x \le 1, 0 \le y \le 1$ 上连续,

且
$$xy \left(\iint_D f(x,y) dxdy \right)^2 = f(x,y) - 1$$
,则 $f(x,y) = \underline{\hspace{1cm}}$
解: 令 $\left(\iint_D f(x,y) dxdy \right)^2 = c$,则由题设知 $f(x,y) = cxy + 1$,
于是 $\iint_D f(x,y) dxdy = \sqrt{c}$
$$\iint_D (cxy + 1) dxdy = \int_0^1 dx \int_0^1 (cxy + 1) dy$$
$$= \int_0^1 (\frac{1}{2}cx + 1) dx = \frac{1}{4}c + 1 = \sqrt{c}$$

解得 c = 4, 所以 f(x,y) = 4xy + 1。

例 8. 计算
$$\iint_{D} \left(\frac{1 - x^2 - y^2}{1 + x^2 + y^2} \right)^{\frac{1}{2}} dx dy,$$

其中D为 $x^2+y^2=1$ 与x轴和y轴所围第一象限部分。

解:用极坐标计算比较方便。

原式=
$$\iint_{D} \left(\frac{1-r^{2}}{1+r^{2}}\right)^{\frac{1}{2}} r dr d\theta = \iint_{D} \frac{1-r^{2}}{\sqrt{1-r^{4}}} r dr d\theta = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \frac{1-r^{2}}{2\sqrt{1-r^{4}}} dr^{2}$$
令 $r^{2} = t$,

$$\Re \vec{\mathbf{x}} = \frac{\pi}{4} \int_0^1 \frac{1-t}{\sqrt{1-t^2}} dt = \frac{\pi}{4} \left[\arcsin t \Big|_0^1 + \int_0^1 \frac{1}{2\sqrt{1-t^2}} d\left(1-t^2\right) \right]$$

$$= \frac{\pi}{4} \left[\frac{\pi}{2} + \sqrt{1-t^2} \Big|_0^1 \right] = \frac{\pi^2}{8} - \frac{\pi}{4}$$

三重积分: 直角坐标系、柱坐标系(投影法、截面法); 球坐标系。

例 9. 由不等式
$$z \le 6 - x^2 - y^2$$
, $z \ge \sqrt{x^2 + y^2}$ 及 $x^2 + y^2 \le 1$ 所表示的立体体积 V 等于(A)。

(A)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_r^{6-r^2} dz$$
;

(A)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_r^{6-r^2} dz$$
; (B) $\int_0^{2\pi} d\theta \int_0^{\sqrt{3}} r dr \int_r^{6-r^2} dz$;

(C)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_0^{6-r^2} dz$$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_0^{6-r^2} dz$$
; (D) $\int_0^{2\pi} d\theta \int_0^{\sqrt{3}} r dr \int_0^{6-r^2} dz$.

例 10. 计算
$$I = \iiint_{\Omega} \frac{1}{(1+x+y+z)^3} dx dy dz$$
,

其中 Ω 为平面x=0, y=0, z=0, x+y+z=1所围成的四面体。

解: (投影法)将积分区域投影到 XOY 坐标面上, 先对 Z 积分, 再对 Y、X 积分

原式 =
$$\int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} \frac{dz}{(1+x+y+z)^3}$$

= $\int_0^1 dx \int_0^{1-x} \left[-\frac{1}{2(1+x+y+z)^2} \right]_0^{1-x-y} dy$
= $-\frac{1}{2} \int_0^1 dx \int_0^{1-x} \left[\frac{1}{4} - \frac{1}{(1+x+y)^2} \right] dy$
= $-\frac{1}{2} \int_0^1 \left(\frac{y}{4} + \frac{1}{1+x+y} \right) \Big|_0^{1-x} dx$
= $-\frac{1}{2} \int_0^1 \left(\frac{1}{4} (1-x) + \frac{1}{2} - \frac{1}{1+x} \right) dx = \frac{1}{2} \left(\ln 2 - \frac{5}{8} \right)$

例 11. 在一个形状为旋转抛物面 $z=x^2+y^2$ 的容器内已经盛有 8π 立方

厘米的水,现又倒入 120π 立方厘米的水。问水面比原来升高多少厘米?

解: (截面法)设水深为h,容器的容水量为V(h),则

$$V(h) = \iiint_{\Omega} dxdydz = \int_{0}^{h} dz \iint_{D_{z}} dxdy = \pi \int_{0}^{h} zdz = \frac{1}{2}\pi h^{2}$$

$$V(h_{1}) = \frac{1}{2}\pi h^{2} = 8\pi \quad \Rightarrow h = 4 \ \mathbb{E} \, \mathbb{R},$$

$$V(h_{2}) = \frac{1}{2}\pi h^{2} = 128\pi \quad \Rightarrow h = 16 \ \mathbb{E} \, \mathbb{R}$$

例 12. 计算三重积分 $\iiint_{\Omega} z\sqrt{x^2+y^2} dxdydz$, 其中 Ω 为由

所以水升高 $h_3 - h_1 = 12 厘米$ 。

柱面 $x^2 + y^2 = 2x$ 及z = 0, z = a (a > 0), y = 0所围成的半圆柱体。

解: 在柱坐标系下:
$$\Omega$$
 为
$$\begin{cases} 0 \le r \le 2\cos\theta \\ 0 \le \theta \le \frac{\pi}{2} \end{cases}$$
,
$$0 \le z \le a$$

原式 =
$$\iiint_{\Omega} z r^2 dr d\theta dz$$

$$= \int_0^a z dz \int_0^{\pi/2} d\theta \int_0^{2\cos\theta} r^2 dr = \frac{4a^2}{3} \int_0^{\pi/2} \cos^3\theta d\theta = \frac{8}{9}a^2.$$

例 13. 计算三重积分 $I = \iiint_{\Omega} (x+z) dx dy dz$,

其中 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 及上半球面 $z = \sqrt{1 - x^2 - y^2}$ 所围成.

解: 因为 Ω 关于 YOZ 坐标面对称, 所以 $\iiint_{\Omega} (x+z) dx dy dz = \iiint_{\Omega} z dx dy dz$

选用球坐标系 $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$,

则
$$\Omega$$
: $0 \le \theta \le 2\pi$, $0 \le \theta \le \frac{\pi}{4}$, $0 \le \rho \le 1$,

$$I = \iiint z dx dy dz$$

$$= \iiint_{\Omega} \rho \cos \varphi \rho^{2} \sin \varphi d\theta d\varphi d\rho = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} \cos \varphi \sin \varphi d\varphi \int_{0}^{1} \rho^{3} d\rho$$

$$= \frac{1}{2}\pi \int_{0}^{\frac{\pi}{4}} \cos \varphi \sin \varphi d\varphi = \frac{1}{2}\pi \cdot \frac{1}{2}\sin^{2}\varphi \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8}$$

例 14. 计算三重积分 $\iint_{\Omega} \left(x^2+y^2\right) dv$,其中 Ω 是圆台,高为 h,上、下底半径分 别为 a,b(b>a),其下底面在 xOy 面上,圆心在原点 O 。

解:被积函数为 x^2+y^2 , D_z 为圆域,故用截面法(先二后一)求解。

先求出圆台侧面的方程, 易知该圆台为 yOz 面上直线 $z = \frac{h}{b-a}(b-y)$

绕
$$z$$
轴旋转得到,故其方程为 $z = \frac{h}{h-a} \left(b - \sqrt{x^2 + y^2} \right)$,

$$\text{ If } 0 \leq z \leq h \text{ ; } D_z : \begin{cases} 0 \leq r \leq b - \frac{b-a}{h}z \\ 0 \leq \theta \leq 2\pi \end{cases} \text{,}$$

$$\iiint_{\Omega} (x^{2} + y^{2}) dv = \int_{0}^{h} dz \iint_{D_{z}} r^{3} dr d\theta = \int_{0}^{h} dz \int_{0}^{2\pi} d\theta \int_{0}^{b - \frac{b - a}{h} z} r^{3} dr$$

$$= \int_{0}^{h} \frac{\pi}{2} \left(b - \frac{b - a}{h} z \right)^{4} dz = -\frac{h}{(b - a)} \frac{\pi}{2} \cdot \frac{1}{5} \left(b - \frac{b - a}{h} z \right)^{5} \Big|_{0}^{h}$$

$$= -\frac{h}{(b - a)} \frac{\pi}{10} \cdot \left(a^{5} - b^{5} \right) = \frac{\pi h}{10} \left(a^{4} + a^{3}b + a^{3}b^{2} + ab^{3} + b^{4} \right)$$

例 15. 计算
$$\iint_{\Omega} \frac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{1+x^2+y^2}$$
, 其中 Ω 由 $x^2+y^2=4z$ 与 $z=h$ $(h>0)$ 所围成。

解: 投影法(先一后二)
$$\Omega$$
:
$$\begin{cases} \frac{r^2}{4} \leq z \leq h \\ \\ D_{xoy} : \begin{cases} 0 \leq r \leq 2\sqrt{h} \\ 0 \leq \theta \leq 2\pi \end{cases} \end{cases}$$
 (柱坐标系)

$$\iiint_{\Omega} \frac{\mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z}{1 + x^2 + y^2} = \int_{0}^{2\pi} d\theta \int_{0}^{2\sqrt{h}} \frac{r dr}{1 + r^2} \int_{\frac{r^2}{4}}^{h} dz = \frac{\pi}{4} [(1 + 4h) \ln(1 + 4h) - 4h] \cdot$$

截面法(先二后一)
$$\Omega$$
:
$$\begin{cases} D_z: \begin{cases} 0 \le r \le 2\sqrt{z} \\ 0 \le \theta \le 2\pi \end{cases}, \\ 0 \le z \le h \end{cases}$$

$$\iiint_{\Omega} \frac{\mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z}{1 + x^2 + y^2} = \int_{0}^{h} dz \int_{0}^{2\pi} d\theta \int_{0}^{2\sqrt{z}} \frac{r dr}{1 + r^2} = \frac{\pi}{4} [(1 + 4h) \ln(1 + 4h) - 4h] \cdot$$

例 16. 计算
$$\iint_{\Omega} (x+y)^2 dxdydz$$
, 其中 Ω 为 抛物 面 $x^2 + y^2 = 2z$ 与

球面
$$x^2 + y^2 + z^2 = 3$$
 所围成的区域。

解: 由对称性知
$$\iiint_{\Omega} (x+y)^2 dxdydz = \iiint_{\Omega} (x^2+y^2) dxdydz$$

联立
$$\begin{cases} x^2 + y^2 = 2z \\ x^2 + y^2 + z^2 = 3 \end{cases}$$
, 得 $2z + z^2 = 3$, 则 $z = 1$, $z = -3$ (舍去)

交线在 XOY 面上的投影线
$$\begin{cases} x^2 + y^2 = 2 \\ z = 0 \end{cases}$$

柱面坐标系下,
$$\Omega$$
:
$$\begin{cases} \frac{r^2}{2} \le z \le \sqrt{3-r^2} \\ 0 \le r \le \sqrt{2} \\ 0 \le \theta \le 2\pi \end{cases}$$

$$\iiint_{\Omega} (x^2 + y^2) dx dy dz = \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} r^2 r dr \int_{\frac{r^2}{2}}^{\sqrt{3-r^2}} dz$$

$$= 2\pi \int_0^{\sqrt{2}} r^3 (\sqrt{3-r^2} - \frac{r^2}{2}) dr = \pi \int_0^{\sqrt{2}} r^2 (\sqrt{3-r^2} - \frac{r^2}{2}) dr^2 \qquad \Leftrightarrow r^2 = u,$$

$$= \pi \int_0^2 u (\sqrt{3-u} - \frac{u}{2}) du = \pi [\int_0^2 u \sqrt{3-u} du - \frac{1}{2} \int_0^2 u^2 du]$$

$$\int_{0}^{2} u \sqrt{3 - u} du = \sqrt[4]{3 - u} = t, \quad u = 3 - t^{2}, \quad du = -2dt,$$

$$u = 0, t = \sqrt{3}; \quad u = 2, t = 1$$

$$\int_{0}^{2} u \sqrt{3 - u} du = \int_{\sqrt{3}}^{1} (3 - t^{2})t(-2tdt) = 2\int_{1}^{\sqrt{3}} (3 - t^{2})t^{2}dt$$

$$= 2(t^{3} - \frac{1}{5}t^{5})_{1}^{\sqrt{3}} = 2(3\sqrt{3} - 1 - \frac{9}{5}\sqrt{3} + \frac{1}{5}) = (\frac{12}{5}\sqrt{3} - \frac{8}{5})$$

$$\frac{1}{2} \int_{0}^{2} u^{2} du = \frac{1}{6}u^{3} \Big|_{0}^{2} = \frac{4}{3}$$

$$\therefore \quad \iiint (x^{2} + y^{2}) dx dy dz = (\frac{12}{5}\sqrt{3} - \frac{8}{5})\pi - \frac{4}{3}\pi = (\frac{12}{5}\sqrt{3} - \frac{44}{15})\pi$$

例 17. 利用球面坐标系计算
$$\iint_{\Omega} \left(\sqrt{x^2 + y^2 + z^2} \right)^5 dv$$
, 其中 Ω : $x^2 + y^2 + z^2 \le 2z$.

解:
$$\Omega$$
 是球体: $x^2+y^2+(z-1)^2\leq 1$, 选择球面坐标系:
$$\begin{cases} 0\leq\theta\leq 2\pi\\ 0\leq\varphi\leq\frac{\pi}{2}\\ 0\leq r\leq 2\cos\varphi \end{cases}$$

$$\iiint_{\Omega} \left(\sqrt{x^2 + y^2 + z^2} \right)^5 dv = \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\phi \int_0^{2\cos\phi} r^5 \cdot r^2 \sin\phi dr$$
$$= 2\pi \int_0^{\frac{\pi}{2}} \sin\phi d\phi \int_0^{2\cos\phi} r^7 dr = 2\pi \int_0^{\frac{\pi}{2}} \frac{1}{8} (2\cos\phi)^8 \sin\phi d\phi$$

$$= -\frac{1}{4}\pi \int_0^{\frac{\pi}{2}} 2^8 (\cos\varphi)^8 d\cos\varphi = -\frac{2^8}{4\times 9}\pi (\cos^9\varphi)_0^{\frac{\pi}{2}} = \frac{64}{9}\pi.$$

例 18 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1, \\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2, \end{cases}$$

计算二重积分 $\iint_{\Omega} f(x,y)d\sigma$, 其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。

由区域的对称性和被积函数的奇偶性有 解

$$\iint\limits_{D} f(x,y)d\sigma = 4\iint\limits_{D_{1}} f(x,y)d\sigma ,$$

其中
$$D_1$$
为 D 在第 I 象限的部分,而
$$\iint_{D_1} f(x,y)d\sigma = \iint_{D_{11}} f(x,y)d\sigma + \iint_{D_{12}} f(x,y)d\sigma$$
 ,

其中 $D_{11} = \{(x, y) \mid 0 \le y \le 1 - x, 0 \le x \le 1\}$

$$D_{12} = \{(x,y) \mid 1 \le x + y \le 2, x \ge 0, y \ge 0\} \qquad (如图).$$

因为
$$\iint_{D_{11}} f(x,y) d\sigma = \iint_{D_{11}} x^2 d\sigma = \int_0^1 dx \int_0^{1-x} x^2 dy = \int_0^1 x^2 (1-x) dx = \frac{1}{12}$$

$$\iint_{D_{12}} f(x,y)d\sigma = \iint_{D_{12}} \frac{1}{\sqrt{x^2 + y^2}} d\sigma = \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{\sin \theta + \cos \theta}{\sin \theta + \cos \theta}}^{\frac{2}{\sin \theta + \cos \theta}} dr = \int_0^{\frac{\pi}{2}} \frac{1}{\sin \theta + \cos \theta} d\theta$$

 $=\sqrt{2}\ln(\sqrt{2}+1)$

所以
$$\iint_D f(x,y)d\sigma = 4\left[\frac{1}{12} + \sqrt{2}\ln(\sqrt{2}+1)\right] = \frac{1}{3} + 4\sqrt{2}\ln(\sqrt{2}+1)$$

例 19
$$\iint_D |xy| \, dxdy$$
, 平面区域 $D: \{(x,y) | x^2 + y^2 \le a^2\}, a > 0$.

解:设 $^{D_{1}}$ 为区域 D 在第一象限部分,由对称性

$$\iint_{D} |xy| dxdy = 4 \iint_{D_1} xy dxdy$$

$$=4\int_0^{\frac{\pi}{2}} d\theta \int_0^a \rho^3 \cos\theta \sin\theta d\rho = 4\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{2} d\theta \int_0^a \rho^3 d\rho$$

$$= 4 \left[-\frac{\cos 2\theta}{4} \right]_0^{\frac{\pi}{2}} \left[\frac{\rho^4}{4} \right]_0^a = \frac{a^2}{2}.$$