Fabrication of 3D Touch Sensors in OLED Smart Phones

1:00 – 1:15 Wednesday, 12/6/2017 Maximilian Sokoluk, Ka Chun Wong, and Yaxin Zhu

Contents

- 1. Deposit Si₃N₄ layer
- 2. Deposit ITO layer as bottom electrode
- 3. Deposit sacrificial layer with SiO₂
- 4. Deposit Si₃N₄ sensing membrane
- 5. Deposit ITO layer as top electrode
- 6. Make an opening from the top
- 7. Remove the sacrificial layer

Few points to consider

- Tolerance temperature continuous use 232 °C (450 °F); short excursions 400 °C (752 °F).
- Find the suitable material to mask the Silicon Nitride
- Set specific rpm for different thicknesses
- Find suitable deposition methods depending on the required layer quality

1. Deposit Si₃N₄ layer by PECVD

Goal: Deposit a thin silicon nitride layer with the thickness of 500nm on the polyimide layer using PECVD

$$SiH_4 + 4NH_3 \rightleftharpoons Si(NH_2)_4 + 4H_2$$

 $3Si(NH_2)_4 \rightleftharpoons Si_3N_4 + 8NH_3$

- Comparisons
 - LPCVD: high temperature (550-600 °C)
 - Evaporation: no good for composites

1. Deposit Si₃N₄ layer by PECVD

- Substrate Temperature: 150 °C
- Radio frequency: 13.6MHz
- > Power: 40W
- Chamber Pressure: 600 mTorr
- \rightarrow Gas rate: $SiH_4: NH_3: N_2 = 1:10:20$
- Deposition rate: 6 nm/min

Table 1 PECVD conditions

Parameter	Value		
Gas flow ratio: SiH ₄ /NH ₃ /N ₂	1/10/20		
Substrate temperature (°C)	125, 150, 200, 300		
Radio frequency (RF), Power (W)	40, 120, 200		
Chamber pressure (mTorr)	200, 600		
Radio frequency (MHz)	13.6		

Table 2
Mechanical properties of PECVD thin films under various deposition conditions

Substrate temperature (°C)	RF power (W)	Chamber pressure (mTorr)	Film thickness (nm)	Density (Mg/m ³)	Elastic modulus (GPa)	Hardness (GPa)
125	120	600	600, 1195	2.2 ± 0.2	106.8 ± 2.5	11.9 ± 0.5
150	120	600	650	2.3 ± 0.2	124.8 ± 2.5	13.5 ± 0.4
200	120	600	605, 1190	2.6 ± 0.3	140.2 ± 3.4	15.6 ± 0.7
300	120	600	585	2.8 ± 0.3	198.1 ± 1.8	22.1 ± 0.5
150	40	600	595	2.0 ± 0.2	110.6 ± 2.2	11.4 ± 0.7
150	200	600	1210	2.4 ± 0.2	130.3 ± 2.1	14.4 ± 0.6
150	120	200	715	2.5 ± 0.3	142.1 ± 1.8	15.4 ± 0.6

Huang, Han, et al. Materials Science and Engineering, 2006

2. Deposit ITO layer as bottom electrode

- Goal: deposite 50 nm thick, 5um wide ITO layer
- > Steps
 - Pattern the photoresist
 - Lift Off: ITO deposition with E-beam evaporation; Clean the photoresist by acetone
- Comparison: sputtering, lithography, etching

2.1 Pattern the photoresist

- Positive PR will have the "wings" at edge;
- Negative PR is good.

2.1 Pattern the photoresist

- Goal: deposit Negative Photoresist with 500 nm
- > Type: SU-8 2000.5

Si₃N₄

- Light Source: UV (350-400 nm), (i-line 365 nm recommended)
- ➤ Spin Rate : 3000 rpm, 30 sec

10 um features, 50 um SU-8 2000 coating

Figure 1.a. SU-8 2000 Spin Speed vs. Thickness

2.2 Lift-off

- > Steps:
 - ITO deposition with E-beam evaporation
 - Clean the photoresist by acetone
- Comparison: Sputtering (better for uniform coating)

3. Deposit sacrificial layer-SiO₂ by PECVD

Goal: deposit a silicon oxide layer with the thickness of 800 nm on the device using PECVD

3. Deposit sacrificial layer-SiO₂ by PECVD

Substrate Temperature: 200 °C

➤ Power: 75W

Gas: Tetraethoxysilane (TEOS)

Table 1			
Deposition parameters and	properties of the	deposited SiO ₂	films

TEOS (sccm)	Microwave power (W)	Sample temperature (°C)	Deposition rate (nm/min)	Final thickness (nm)	Void in the SiO ₂ (%)	Refractive index $(\lambda = 633 \text{ nm})$	Etch chemical rate (nm/min)	XPS Stoichiometry O/Si	XPS at.% C/O
2.5	75	200	2.45 ± 0.1	79 ± 0.5	-0.5 ± 0.2	1.459 ± 0.001	16.0 ± 0.2		
2.5	75	200	2.50 ± 0.1	108 ± 0.1	0.07 ± 0.2	1.456 ± 0.001		2.18 ± 0.5	2.03 ± 1.0
3.75	75	200	4.43 ± 0.1	153 ± 0.5	-1.3 ± 0.2	1.463 ± 0.001	13.6 ± 0.2		
5	75	200	6.88 ± 0.1	168 ± 0.5	-1.0 ± 0.2	1.462 ± 0.001		2.00 ± 0.5	0.34 ± 1.0
2.5	100	200	3.16 ± 0.1	116 ± 0.5	-0.3 ± 0.2	1.458 ± 0.001	15.5 ± 0.2	2.08 ± 0.5	1.05 ± 1.0
2.5	75	350	2.10 ± 0.1	87 ± 0.5	-0.1 ± 0.2	1.457 ± 0.001			
Thermal oxide					0 ± 0.2	1.457 ± 0.001	6.5 ± 0.2		

C. Martinet Département de Physico-chimie des Matdriaux, 2010

3. RIE Etching

- Substrate Temperature: 150 °C
- Radio frequency: 13.6MHz
- > Power: 1400W
- ➤ Voltage: 150V
- Chamber Pressure: 6 mTorr
- ightharpoonup Gas ratio: $C_3 F_6/H_2 = 11:3$

M. Schaepkens, et al. State University of New York

4. Deposit Si₃N₄ sensing membrane

Goal: deposit a thin silicon nitride layer with the thickness of 500nm on the device using PECVD

$$SiH_4 + 4NH_3 \rightleftharpoons Si(NH_2)_4 + 4H_2$$

 $3Si(NH_2)_4 \rightleftharpoons Si_3N_4 + 8NH_3$

4. Deposit Si₃N₄ sensing membrane

- Substrate Temperature: 150 °C
- Radio frequency: 13.6MHz
- > Power: 40W
- ➤ Chamber Pressure: 600 mTorr
- \rightarrow Gas ratio: $SiH_4: NH_3: N_2 = 1:10:20$

Table 1 PECVD conditions

Parameter	Value		
Gas flow ratio: SiH ₄ /NH ₃ /N ₂	1/10/20		
Substrate temperature (°C)	125, 150, 200, 300		
Radio frequency (RF), Power (W)	40, 120, 200		
Chamber pressure (mTorr)	200, 600		
Radio frequency (MHz)	13.6		

Table 2
Mechanical properties of PECVD thin films under various deposition conditions

Substrate temperature (°C)	RF power (W)	Chamber pressure (mTorr)	Film thickness (nm)	Density (Mg/m ³)	Elastic modulus (GPa)	Hardness (GPa)
125	120	600	600, 1195	2.2 ± 0.2	106.8 ± 2.5	11.9 ± 0.5
150	120	600	650	2.3 ± 0.2	124.8 ± 2.5	13.5 ± 0.4
200	120	600	605, 1190	2.6 ± 0.3	140.2 ± 3.4	15.6 ± 0.7
300	120	600	585	2.8 ± 0.3	198.1 ± 1.8	22.1 ± 0.5
150	40	600	595	2.0 ± 0.2	110.6 ± 2.2	11.4 ± 0.7
150	200	600	1210	2.4 ± 0.2	130.3 ± 2.1	14.4 ± 0.6
150	120	200	715	2.5 ± 0.3	142.1 ± 1.8	15.4 ± 0.6

Huang, Han, et al. Materials Science and Engineering, 2006

5. Deposit ITO layer as top electrode

Goal: deposit a thin ITO layer with the thickness of 50nm on the device using Electron Beam Evaporation / Lift Off

5. Deposit ITO layer as top electrode

- Steps
 - Electron Beam Evaporation the ITO layer with 50 nm thickness and 8 um wide
 - Remove the photoresist by acetone

6. Fabricate release hole in Si₃N₄

Steps: fabricate hole in sensing membrane to release sacrificial Silicon Oxide layer

6. Fabricate release hole in Si₃N₄

- ➤ Spin coat Olin Hunt 6512
- > RPM: 1000 2000
- Thickness: 500 nm

- RIE settings: 200W, gap= 2.6 mm
 13.56Hz, 200 °C
- \rightarrow Gas: CF₂+CHF₃+He (10:5:10 sccm)
- Etch rate: 130 nm/sec
- > 13s etching

7. Remove the sacrificial layer

- HNA wet etch
- > SiO₂ etch rate: 30 nm/min
- > Etches nitride

- > HF Vapor
- > SiO₂ etch rate: 40 nm/s
- > Thickness: 500 nm

Reference

- 1. Huang, Han, et al. "Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films." Materials Science and Engineering: A 435 (2006): 453-459.
- 2. C. Martinet, V. Paillard, A. Gagnaire, J. Joseph, Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating, In Journal of Non-Crystalline Solids, Volume 216, 1997, Pages 77-82
- 3. J Buhler, F-P Steiner and H Baltes "Silicon dioxide sacrificial layer etching in surface micromachining" J. Micromech. Microeng. 7 (1997) R1–R13
- Kirt R. Williams, Kishan Gupta, and Matthew Wasilik "Etch Rates for Micromachining Processing—Part II" JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBER 2003
- 5. M. Schaepkens, et al. "Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism". State University of New York, Albany, New York 1998
- 6. Karabacak T, Zhao Y P, Wang G C, et al. Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition[J]. Physical Review B, 2002, 66(7): 075329.

Thank you!

Q&A

The goal of the project is to develop a process to fabricate a microscale 3D touch based on polymer materials used in the OLED circuitry. The fabrication process is shown schematically above. The sensing membrane is made of silicon nitride (SiN_x) while the top and bottom electrodes are made of indium tin oxide (ITO). (A) The fabrication process starts by covering a polyimide substrate with a 500 nm-thick of SiN_x layer. (B) A 50 nm-thick and 5 μ m-wide ITO layer is fabricated as a bottom electrode. (C) An 800 nm-thick and 5 μ m-wide sacrificial layer is fabricated. (D) A 500 nm-thick top SiN_x sensing membrane is fabricated. (E) A 50 nm-thick and 8 μ m-wide ITO layer is fabricated as a top electrode. (F) A hole with a diameter of 500 nm is fabricated via the top SiN_x layer. (G) The sacrificial layer is removed.