Chapitre 2 LES ESPACES L^p

1. RAPPELS DE TOPOLOGIE

Soit E un K-espace vectoriel de dimension finie ou pas ; $K = \mathbb{R}, \mathbb{C}$.

1.1 NORMES

DEFINITION

On appelle **norme** sur un espace vectoriel E toute application notée $\|.\|_E$ de E vers \mathbb{R}^+ possédant les propriétés suivantes :

- (i) **Positivité** (stricte): $\forall x \in E$, $||x||_E \ge 0$ et $||x||_E = 0 \iff x = 0_E$
- (ii) Homogénéité : $\forall x \in E, \forall \lambda \in K, ||\lambda x||_E = |\lambda| ||x||_E$
- (iii) Inégalité triangulaire : $\forall x, y \in E$, $||x + y||_E \le ||x||_E + ||y||_E$

Le couple $(E, ||.||_E)$ est appelé *espace vectoriel normé*.

1.2 CONVERGENCE DE SUITES DANS UN E.V.N

Soit $(E, ||.||_E)$ un espace vectoriel normé.

DEFINITION

Une suite $(u_n)_n$ de vecteurs de E est dite convergente (vers $l \in E$) **ssi**

$$\forall \varepsilon > 0$$
, $\exists N_0 \in \mathbb{N}$ $t.q$ $\forall n \ge N_0$, $||u_n - l||_E \le \varepsilon$

Dans la suite, $(E, \|.\|_E)$ est un espace vectoriel normé et A est un sous-espace vectoriel de E.

1.3 INTERIEUR d'un sous-espace vectoriel

DEFINITION et PROPRIETES

- Le vecteur $a \in E$ est dit **intérieur à** A, lorsque A contient une boule de centre a;
- L'ensemble des vecteurs de E intérieurs à A est appelé « **intérieur de** A » noté \dot{A} ou int(A);
- \dot{A} est le plus grand (au sens de l'inclusion) ouvert de E contenu dans A;
- Ainsi: A est **ouvert** ssi $\dot{A} = A$

1.4 ADHERENCE d'un sous-espace vectoriel

DEFINITION et PROPRIETES

- Le vecteur $a \in E$ est dit **adhérent à** A, s'il est la limite d'une suite de vecteurs de A;
- L'ensemble des vecteurs de E adhérents à A est appelé « adhérence de A » noté \overline{A} ou adh(A);
- \overline{A} est le plus petit (au sens de l'inclusion) fermé de E contenant A;
- Ainsi: A est **fermé** ssi $\overline{A} = A$

1.5 PARTIES BORNEES

DEFINITION

Une partie A de E est dite bornée si : $\exists M > 0 \ t.q. \|x\|_E \le M, \ \forall x \in A.$

1.6 DENSITE

DEFINITION

On dit que A est dense dans E lorsque $\overline{A} = E$

C'est-à-dire, tout vecteur de E est la limite d'une suite de vecteurs de A; c'est-à-dire encore : tout vecteur de E peut être approché (d'aussi près que l'on veut) par une suite de vecteurs de A.

Espace séparable :

DEFINITION

Un e.v.n est dit **séparable** s'il contient une partie **dense** *finie* ou *dénombrable*.

EXEMPLE:

 \mathbb{R} est séparable car $\mathbb{Q} \subset \mathbb{R}$; \mathbb{Q} est dense dans \mathbb{R} et \mathbb{Q} est dénombrable.

1.7 FRONTIERE

DEFINITION

On appelle **frontière de** A l'ensemble des vecteurs de \overline{A} qui n'appartiennent pas à \dot{A} .

On le note : ∂A

Et donc $\partial A = \overline{A} \setminus \dot{A}$

REMARQUE:

$$\partial A = \overline{A} \cap \overline{E \setminus A}$$

1.8 SUITES DE CAUCHY

DEFINITION

La suite $(u_n)_n$ est dite **suite de Cauchy** si elle vérifie la condition suivante :

$$\forall \varepsilon > 0, \ \exists N_0 \ \in \mathbb{N} \ t. \ q \ \ \forall n,p \geq N_0, \ \left\| u_n - u_p \right\|_E \leq \varepsilon$$

PROPOSITION

Toute suite convergente est une suite de Cauchy.

REMARQUE

La réciproque est fausse : il existe des suites de Cauchy non convergentes.

On peut par exemple considérer un nombre irrationnel (mettons $l=\sqrt{2}$). Il existe une suite $(u_n)_n$ de $\mathbb Q$ convergeant vers l, c'est donc une suite de Cauchy de $\mathbb R$, mais aussi de $\mathbb Q$. Si la suite avait une limite dans $\mathbb Q$, cette limite serait l. Impossible.

1.9 E.V.N COMPLETS - E.V.N COMPACTS

DEFINITION

Un **espace vectoriel normé complet** (ou encore *espace de BANACH*) est un espace vectoriel dans lequel **toute suite de Cauchy est convergente**.

PROPOSITION (Critère de Cauchy)

Dans un espace vectoriel normé *complet*, une **suite est convergente** *ssi* **elle est une suite de Cauchy**.

EXEMPLES

- \mathbb{R}^p est complet pour $p \in \mathbb{N}^*$
- \mathbb{R} , \mathbb{C} sont complets

PROPOSITION

Tout produit d'espaces vectoriels complets est un espace vectoriel complet.

DEFINITION

Un espace vectoriel normé E est dit **compact** si : de toute suite de vecteurs de E, on peut extraire une sous-suite convergente, dans E (c'est la propriété de Bolzano-Weierstrass).

En d'autres termes, toute suite de E possède au moins une valeur d'adhérence.

PROPOSITION

Tout espace vectoriel normé compact est borné.

Dans toute la suite du chapitre, (E, S_E, μ) est un espace mesuré.

2. PREMIERES DEFINITIONS

DEFINITION 2.1

Soit un réel p tel que : 0 .

On appelle et on note $L^p(\mu)$ l'ensemble des fonctions f mesurables et définies sur E, à valeurs dans $\mathbb C$ et de puissance $p\`eme$ intégrable, c'est-à-dire :

$$\int_{E} |f|^{p} d\mu < \infty$$

Ainsi:

- $L^1(\mu)$: $\int_E |f| d\mu < \infty$

- $L^2(\mu)$: $\int_E |f|^2 d\mu < \infty$

-

DEFINITION 2.2

On appelle et on note $L^{\infty}(\mu)$ l'ensemble des fonctions f mesurables et définies sur E, bornées presque partout dans E.

REMARQUE 2.1

Si μ est la mesure de Lebesgue et $E=\mathbb{R}^n$ $(n\geq 1)$, alors on notera $\boldsymbol{L^p}(\mathbb{R}^n)$ au lieu de $L^p(\mu)$ ou tout simplement $\boldsymbol{L^p}$.

DEFINITION 2.3

Soient les réels p et q tels que : $1 < p, q < \infty$.

Si p+q=pq, c'est-à-dire $\frac{1}{p}+\frac{1}{q}=1$, on dit que les réels p et q forment un couple d'exposants conjugués.

REMARQUE 2.2

- Cas particulier : p = q = 2
- Quand $p \to 1$ alors $q \to \infty$: on conviendra donc de dire que ${\bf 1}$ et ∞ sont des **exposants** conjugués.

5

EXEMPLES

$$f(t) = \begin{cases} \frac{\sin t}{t} & t \neq 0 \\ 1 & t = 0 \end{cases} ; \quad f \in L^2(\mathbb{R}) ; f \notin L^1(\mathbb{R})$$

$$- g(t) = \begin{cases} 0 & t \le 0 \\ \frac{1}{\sqrt{t}(1+t^2)} & t > 0 \end{cases} ; g \in L^1(\mathbb{R}) ; g \notin L^2(\mathbb{R})$$

-
$$w(t) = e^{-t^2}$$
 sur \mathbb{R} ; $w \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

3. NORMES DANS L^p

Soit (E, S_E, μ) un espace mesuré.

PROPOSITION 3.1

Pour $1 \le p < \infty$, l'application : $f \mapsto \left(\int_E |f|^p \, d\mu \right)^{\frac{1}{p}}$ est une norme dans $L^p(\mu)$ appelée norme L^p de f.

On note : $\|f\|_p = \left(\int_E |f|^p d\mu\right)^{\frac{1}{p}}$

De même, l'application : $f \mapsto \inf \{c \ge 0, |f(x)| < c \ p.p \ \text{dans } E\}$ est une norme dans $L^{\infty}(\mu)$ appelée **norme** L^{∞} de f.

On note : $||f||_{\infty} = \inf \{c \ge 0, |f(x)| < c \ p.p \ \text{dans } E\}$

PROPOSITION 3.2 (Inégalité de Hölder)

Soient p et q des exposants conjugués, avec $1 \le p \le \infty$.

Si $f \in L^p(\mu)$ et $g \in L^q(\mu)$ alors

- (i) $fg \in L^1(\mu)$
- (ii) $||fg||_1 \le ||f||_p ||g||_q$

PROPOSITION 3.3 (Inégalité de Minkowsky)

Supposons $1 \le p \le \infty$ et $f, g \in L^p(\mu)$ alors

- (i) $f + g \in L^p(\mu)$
- (ii) $||f + g||_p \le ||f||_p + ||g||_p$

THEOREME 3.1

 $\left(L^p(\mu),\|.\|_p\right)$ est un **espace vectoriel normé complet** pour $1\leq p\leq \infty$

6

REMARQUE 3.1

- $L^p(\mu)$ est un e.v.n mais ATTENTION ses éléments (ses vecteurs) ne sont pas des fonctions, mais des classes d'équivalence de fonctions (pour simplifier le langage, on dira espace de fonctions) ; $f \sim g \Leftrightarrow f = g$ p. p
- C'est un fait particulièrement important que $L^p(\mu)$ soit complet (ce n'était pas le cas avec l'intégrale de Riemann), c'est-à-dire toute suite de Cauchy de $L^p(\mu)$ converge vers un élément de $L^p(\mu)$:

On introduit à présent, une nouvelle notion de convergence : la convergence en norme p.

DEFINITION 3.1 (Convergence en norme p)

Une suite $(f_n)_n$ converge vers f en norme p si

$$\lim_{n\to+\infty}||f_n-f||_p=0$$

DEFINITION 3.1 (Convergence p.p.)

Une suite $(f_n)_n$ converge p.p vers f si

$$\mu\left(\left\{x\in E\ t.\ q\ \lim_{n\to+\infty}f_n(x)\neq f(x)\right\}\right)=0$$

CONV. UNIFORME ⇒ CONV. SIMPLE (Conv. ponctuelle) ⇒ CONV. P.P.

REMARQUE 3.2

En toute généralité, il n'y a <u>pas de lien</u> entre la convergence $p \cdot p$ et la convergence en norme p. On sait par exemple que la convergence en norme p entraine la convergence $p \cdot p$ d'une sous-suite.

4. APPROXIMATION PAR LES FONCTIONS CONTINUES

4.1 RELATIONS D'INCLUSION

PROPOSITION 4.1

Soit $I \subset \mathbb{R}$ un intervalle de mesure finie, c'est-à-dire $\mu(I) < \infty$;

Soit p, q tels que $1 \le p \le q \le \infty$

Alors $L^q(I) \subset L^p(I)$.

REMARQUE 4.1

On a donc, si $\mu(I) < \infty$: $L^{\infty}(I) \subset \cdots \subset L^{2}(I) \subset L^{1}(I)$

4.2 DENSITE

Rappels : On dit que A est dense dans E lorsque $\bar{A} = E$.

THEOREME 4.1

Notons S l'ensemble des **fonctions en escalier** (notées s), **mesurables**, à valeurs complexes, définies sur E et telles que : $\mu(\{x \in E, s(x) \neq 0\}) < \infty$,

Alors **S** est dense dans $L^p(\mu)$ pour $1 \le p < \infty$.

DEFINITION 4.1

Soit $f: \mathbb{R} \to \mathbb{R}$ ($ou \mathbb{C}$) une fonction **continue**. On appelle **support de** f, l'adhérence de l'ensemble $\{x \in \mathbb{R}, f(x) \neq 0\}$.

Notons $C_c(I)$ l'ensemble des fonctions continues définies sur $I \subset \mathbb{R}$ et à support borné.

THEOREME 4.2

L'espace ${\it C}_c(I)$ est dense dans $L^p(I)$ pour $1 \le p < \infty$.

REMARQUE 4.2

Le théorème est faux pour $p = \infty$.