Assignment - 4 (submission deadline: 2 April, 2021)

Note: Unless otherwise stated, notation used is as defined in the class.

- 1. Which of the following groupoids are semigroups? Which are groups?
 - (a) (\mathbb{N}, \star) where $a \star b = ab$ for all $a, b \in \mathbb{N}$.
 - (b) (\mathbb{N}, \star) where $a \star b = b$ for all $a, b \in \mathbb{N}$.
 - (c) (\mathbb{Z}, \star) where $a \star b = a b$ for all $a, b \in \mathbb{Z}$.
 - (d) (\mathbb{Z}, \star) where $a \star b = a + b + ab$ for all $a, b \in \mathbb{Z}$.
 - (e) (\mathbb{R}, \star) where $a \star b = a|b|$ for all $a, b \in \mathbb{R}$.
 - (f) (\mathbb{R}, \star) where $a \star b = 2^a b$ for all $a, b \in \mathbb{R}$.
- 2. Let (G,\star) be a group and $a,b\in G$. Suppose that $a^2=e$ and $a\star b\star a=b^7$. Show that $b^{48}=e$.
- 3. Let G be a group generated by the elements a and b such that o(a) = 4, $a^2 = b^2$, and $ba = a^3b$. Find o(b) and |G|.
- 4. If $G = \langle g \rangle$ is a cyclic group of order 30, then find all distinct elements of (a) order 5 (b) order 6.
- 5. Let (G, *) be a group and $a, b \in G$ where $b \neq e$. If o(a) = 3 and $a * b * a^{-1} = b^2$ find o(b).
- 6. Justify your answer: (Q^+, \star) is not a abelian group where $a \star b = \frac{ab}{2} \ \forall a, b \in \mathbb{Q}$
- 7. Let S be the set of all roots of the equation $x^5 = 1$. Does S forms a commutative group w.r.t multiplication?
- 8. Let $G = (\mathbb{Z}, +)$ and $H = (3\mathbb{Z}, +)$. Find all the distinct right cosets of H.
- 9. Find the order of the permutation given below and check if it is even or odd permutation. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2 \end{pmatrix}$
- 10. Find fg, gf, f^{-1}, g^{-1} where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 5 & 6 & 1 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 5 & 3 & 2 \end{pmatrix}$.

 ---END------