INE5403 - Fundamentos de Matemática Discreta para a Computação

- 4) Relações
 - 4.1) Relações e Dígrafos
 - 4.2) Caminhos em Relações e Dígrafos
 - 4.3) Propriedades de Relações
 - 4.4) Relações de Equivalência
 - 4.5) Manipulação e Fecho de Relações

Relações

<u>Definição</u>: Sejam A e B conjuntos. Uma *relação binária* R de A em B é um subconjunto de A×B.

- Ou: uma relação binária de A em B é um conjunto R de pares ordenados, onde o 1º elemento de cada par vem de A e o 2º vem de B, ou seja, R ⊆ A×B.
- Quando (a,b) ∈ R, diz-se que a está relacionado com b por R.
- Usa-se a notação a R b para denotar que (a,b)∈ R.
- Se a não está relacionado com b por R, escreve-se a R b.
- Relações binárias representam ligações entre elementos de 2 conjuntos.
 - veremos também relações n-árias
 - vamos omitir a palavra "binária"

Representação de relações usando dígrafos

Exemplo: Sejam $A=\{1,2,3,4\}$ e $R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}$

O dígrafo de R é:

<u>Definição</u>: Seja R uma relação sobre o conjunto A. Um <u>caminho de</u> <u>comprimento n</u> em R de a para b é uma seqüência finita $\pi=a,x_1,x_2,...,x_{n-1}$,b tal que:

- Note que um caminho de comprimento n envolve n+1 elementos de A (n\u00e3o necessariamente distintos).
- O modo mais fácil de visualizar um caminho é com o dígrafo de uma relação:

sucessão de arestas, seguindo os sentidos indicados.

Exemplo: Considere o dígrafo:

Então:

 $\pi_1 = 1,2,5,4,3$ é um caminho de comprimento 4 de 1 a 3

 π_2 = 1,2,5,1 é um caminho de comprimento 3 do vértice 1 para ele mesmo

 π_3 = 2,2 é um caminho de comprimento 1 do vértice 2 para ele mesmo

- Um caminho que começa e termina no mesmo vértice é chamado de um <u>ciclo</u> (π_2 e π_3 são ciclos).
- Caminhos de comprimento 1 podem ser identificados pelos pares ordenados (x,y) que pertencem a R.
- Caminhos em relações R podem ser usados para definir novas relações bastante úteis.

<u>Definição</u>: (relação Rⁿ sobre A)

x Rⁿ y significa que há um <u>caminho de comprimento n</u> de x até y em R.

<u>Definição</u>: (relação R[∞] sobre A)

x R[∞] y significa que há algum caminho em R de x até y. (R[∞] é chamada de *relação de conectividade* para R)

- Note que Rⁿ(x) consiste de todos os vértices que podem ser alcançados a partir de x por meio de um caminho em R de comprimento n.
- O conjunto R[∞](x) consiste de todos os vértices que podem ser alcançados a partir de x por meio de <u>algum</u> caminho em R.

Exemplo1: Seja A o conjunto de todos os seres humanos vivos e seja R a relação "conhecimento mútuo" (a R b significa que a e b se conhecem). Então:

- A R² b significa que a e b têm um conhecido em comum.
- Em geral, $a \, \mathbb{R}^n \, b$ se a conhece alguém (x_1) , que conhece x_2 , ..., que conhece x_{n-1} , que conhece b.
- Finalmente, a R[∞] b significa que existe alguma lista encadeada de conhecidos que começa em a e termina em b.
- Questão: será que toda dupla de brasileiros está relacionada por R∞?

Exemplo2: Seja A o conjunto de cidades brasileiras, e seja x R y se há algum vôo direto (de alguma cia aérea) de x para y.

- x e y estão relacionados por Rⁿ se for possível agendar um vôo de x para y com exatamente n-1 paradas intermediárias
- x R[∞] y se for possível ir de avião de x para y.

Exemplo3: Seja A={1,2,3,4,5,6} e sejam os dígrafos das relações R e R² sobre A dados por:

Exemplo3 (cont.):

 Uma linha conecta 2 vértices no dígrafo para R₂ somente se existir um caminho de comprimento 2 conectando os mesmos vértices no dígrafo para R₁.

Portanto:

```
1 R<sup>2</sup> 2 porque 1 R 2 e 2 R 2
1 R<sup>2</sup> 4 porque 1 R 2 e 2 R 4
1 R<sup>2</sup> 5 porque 1 R 2 e 2 R 5
2 R<sup>2</sup> 2 porque 2 R 2 e 2 R 2
e assim sucessivamente.
```

 De um modo similar, podemos construir o dígrafo de Rⁿ para qualquer n.

Exemplo4: Sejam A={a,b,c,d,e} e

$$R=\{(a,a),(a,b),(b,c),(c,e),(c,d),(d,e)\}.$$

Compute (a) R^2 (b) R^{∞}

Solução: o dígrafo de R é dado por:

(a) Portanto: $R^2 = \{(a,a),(a,b),(a,c),(b,e),(b,d),(c,e)\}$

Exemplo4 (cont.):

(b) R[∞] = "todos os pares ordenados de vértices para os quais há um caminho de qualquer comprimento do primeiro vértice para o segundo"

ou seja:

$$R^{\infty} = \{(a,a),(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)\}$$

- Por exemplo, (a,d)∈ R[∞], já que há um caminho de comprimento 3 de a para d: "a,b,c,d".
- Similarmente, (a,e)∈ R[∞], já que há um caminho de comprimento 3 de a para e: "a,b,c,e" (assim como "a,b,c,d,e")

Produto booleano

Exemplo: Encontre o produto booleano de A e B, onde:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \\ (0 \wedge 1) \vee (1 \wedge 0) & (0 \wedge 1) \vee (1 \wedge 1) & (0 \wedge 0) \vee (1 \wedge 1) \\ (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \end{bmatrix}$$

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \\ 0 \vee 0 & 0 \vee 1 & 0 \vee 1 \\ 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \end{bmatrix}$$

Exemplo: Sejam A e R como no exemplo anterior. Então:

$$1 = (0 \land 0) \lor (0 \land 0) \lor (1 \land 1) \lor (0 \land 0) \lor (0 \land 0)$$

 Seja R uma relação sobre A={a₁,a₂,...,a_n} e seja M_R uma matriz n×n representando R.

Teorema: Se R é uma relação sobre $A = \{a_1, a_2, ..., a_n\}$ então:

$$M_{R^2} = M_R \otimes M_R$$

Prova:

- Seja $M_R = [m_{ij}]$ and $M_{R2} = [n_{ij}]$;
- o elemento n_{ij} de M_R⊗M_R será = 1 se a <u>linha i</u> do 1º M_R e a <u>coluna j</u> do 2º M_R tiverem um nº 1 na mesma posição relativa (digamos k);
- ou seja, $n_{ij}=1$ se $m_{ik}=1$ e $m_{kj}=1$ para algum k \Rightarrow se $n_{ij}=1$, então $a_i R a_k$ e $a_k R a_j$
- portanto, $n_{ij}=1 \Rightarrow a_i R^2 a_j$.

• Esta idéia pode ser generalizada:

Teorema: Para n ≥ 2 e para uma relação R sobre A, temos:

$$M_{R^n} = M_R \otimes M_R \otimes ... \otimes M_R$$
 (n fatores)

- Exercício: Para a relação R cujo dígrafo é dado abaixo,
 - a) Desenhe os dígrafos de R² e R[∞]
 - b) Encontre M_R² e M_R[∞]

