Conceptos Fundamentales de Bases de Datos de Radiación Solar Energía Solar Fotovoltaica

Oscar Perpiñán Lamigueiro

Universidad Politécnica de Madrid

- 1 Introducción
- 2 Estaciones Meteorológicas
- Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Radiación Solar y Sistemas Fotovoltaicos

- La energía producida por un sistema fotovoltaico depende principalmente de la radiación incidente en el generador.
- Consecuentemente, la estimación del comportamiento de un sistema FV en un determinado lugar durante un período temporal exige conocer la radiación solar disponible en el plano del generador.

La radiación solar no se puede calcular analíticamente

- La radiación solar que alcanza la superficie terrestre es el resultado de complejas interacciones en la atmósfera.
- ▶ Para estimar la radiación se necesitan medidas terrestres o imágenes de satélite.

Ángulo de Inclinación

- Los generadores FV tienen un **ángulo de inclinación positivo** para maximizar el rendimiento.
- Este ángulo depende de la latitud del lugar y de la aplicación del sistema.

Bases de Datos de Radiación Solar

Por tanto, es inviable mantener una base de datos de radiación solar incidente:

Las bases de datos registran radiación en el plano horizontal.

La estimación de la radiación incidente en el plano inclinado requiere un **procedimiento de transposición** para cada lugar y sistema.

Variabilidad Temporal y Espacial

La irradiancia solar extraterrestre depende de la latitud y el instante temporal (*proceso determinista*).

La irradiancia solar incidente en la superficie terrestre es resultado de la interacción con la atmósfera cambiante: variabilidad temporal y espacial (proceso estocástico).

Variabilidad Temporal

Variabilidad de la irradiación diaria, mensual y anual durante el período comprendido entre 2001-2008 en Carmona, Sevilla

Variabilidad Espacial

Estimación a partir de Medidas

Para estimar la radiación incidente es necesario contar con:

▶ **Medidas cercanas** (variabilidad espacial): distancia no superior a 10 km.

Series temporales largas (variabilidad temporal): 10 años.

Fuentes de datos

▶ Estaciones meteorológicas

- Series largas y con tiempos de muestreo altos.
- Baja resolución espacial (medidas puntuales)
- Precisión en caso de medida directa.

► Imágenes de satélite

- ► Tiempos de muestreo bajos (mejorando)
- Resolución espacial alta
- Error debido a la estimación.

► Híbrido

Medidas terrestres combinadas con imágenes de satélite

- Introducción
- 2 Estaciones Meteorológicas
- Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Piranómetro

La medida directa de radiación solar global se realiza con un piranómetro.

- Según la precisión, tiempo de respuesta, estabilidad, etc. la ISO 9060-2018 distingue tres tipos:
 - Clase A (alta calidad)
 - Clase B (buena calidad)
 - Clase C (calidad normal)
- Los piranómetros requieren limpieza, mantenimiento y calibración periódica.

Red SIAR

https://servicio.mapa.gob.es/websiar/

- ► El Sistema de Información Agroclimática para el Regadío (SiAR) registra datos agroclimáticos relacionados con demanda hídrica de las zonas de riego.
- Más de 400 estaciones.
- Valores diarios y horarios

Otros recursos

Redes de Comunidades Autónomas

- ► Meteogalicia
- ► MeteoNavarra
- ► Cataluña
- ► MeteoEuskadi
- Andalucía

Más recursos

https://github.com/oscarperpinan/mds/wiki

- Introducción
- 2 Estaciones Meteorológicas
- 3 Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Radiómetros

- Los satélites meteorológicos están equipados con radiómetros que captan radiación emitida por la Tierra.
- La radiación emitida por la Tierra depende de la reflexión del suelo, y la geometría y composición de la atmósfera.
- Los diferentes fenómenos físicos se detectan en **bandas de frecuencias** distintas (canales).
- Existen diversos procedimientos para estimar radiación solar en superficie a partir de la información de los diferentes canales del radiómetro.

SSE-NASA

Surface meteorology and Solar Energy (SSE)

- ▶ 200 parámetros meteorológicos y de energía solar derivados de imágenes de satélite.
- ▶ Base de datos de casi 40 años.
- Resolución 1°x1°
- ▶ Variable de interés: All Sky Surface Shortwave Downward Irradiance

https://power.larc.nasa.gov/

EUMETSAT - SAF

EUMETSAT es la agencia europea de satélites en operación, para la monitorización de la meteorología, clima y el medio ambiente.

Existen diferentes Satellite Application Facilities (SAFs):

- ► SAF on Climate Monitoring (CM SAF): datos derivados de imágenes de satélite adecuados para la monitorización del clima.
 - ► Surface incoming shortwave radiation (Daily SIS, Monthly SIS)
- ➤ SAF on Land Surface Analysis (LSA SAF): genera, archiva y distribuye productos operacionales con un conjunto de parámetros relacionados con la radiación en superficie, la evotranspiración, cobertura vegetal e incendios.
 - **▶** Down-welling surface short-wave radiation flux (DSSF)

- Introducción
- 2 Estaciones Meteorológicas
- Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Herramientas

Interpolación espacial

- Objetivo: mejorar la resolución espacial de medidas dispersas
- ightharpoonup Ejemplo: Inverse Distance Weighting (IDW): determinista (los pesos w_i son una función inversa de la distancia.)

$$\widehat{G}_d(x_0) = \frac{\sum_{i=1}^N w_i G_d(x_i)}{\sum_{i=1}^N w_i}, \quad w_i = \frac{1}{d(x_0, x_i)^p}$$

Corrección por topografía

- ► *Sky-View Factor (SVF)*: proporción de cielo visible para un receptor horizontal (afecta a la radiación difusa isotrópica)
- Horizon blocking: bloqueo de región circunsolar por horizonte (afecta a radiación directa y difusa anisotrópica)

PVGIS-r.sun

https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html

- Datos de radiación en el plano horizontal de CM-SAF
- Permite incorporar la corrección por topografía (SVF y horizon blocking) con perfil estándar o con datos importados.

- Introducción
- 2 Estaciones Meteorológicas
- 3 Imágenes de Satélite
- 4 Métodos híbridos
- **6** Control de calidad

Introducción

Las medidas recogidas por estaciones meteorológicas se deben filtrar para eliminar datos erróneos.

Para valores de irradiación diaria destacan:

- Límites Físicos
- Coherencia espacial

Límites físicos: Irradiación Diaria

La radiación global en el plano horizontal debe ser inferior a la extraterrestre $(K_{td} \le 1)$

$$G_d(0) \leq B_{od}(0)$$

► El índice de claridad debe ser superior a 0.03

$$K_{td} = \frac{G_d(0)}{B_{od}(0)} \ge 0.03$$

La radiación global en el plano horizontal debe ser inferior a la de un modelo de cielo claro

Coherencia espacial: planteamiento

- Las medidas de una estación se pueden comparar con las recogidas por estaciones cercanas.
- Esta comprobación debe realizarse con **datos agregados** (diarios) (la variabilidad espacial intradiaria puede ser alta)
- Esta comprobación debe realizarse con estaciones que tienen clima y geografía similar.

Coherencia espacial: procedimiento

Estimamos la irradiación en el lugar, x_0 , con la interpolación espacial de las estaciones cercanas, x_i .

$$\widehat{G}_d(x_0) = \frac{\sum_{i=1}^N w_i G_d(x_i)}{\sum_{i=1}^N w_i}$$

Los pesos w_i son una función inversa de la distancia d entre las estaciones (IDW).

$$w_i = 1/d^2(x_0, x_i)$$

lacktriangle Comparamos la irradiación estimada, $\widehat{G}_d(x_0)$, con la medida en la estación, $G_d(x_0)$.

$$\left|\widehat{G}_d(x_0) - G_d(x_0)\right|$$

La diferencia absoluta debe estar por debajo de un límite (p.ej. 50%)

Métricas para diferencias

▶ Mean Bias Difference (MBD), diferencia media (indica si la medida, X, está por encima o debajo de la referencia, *R*):

$$MBE = \overline{\mathbf{D}} = \overline{\mathbf{X}} - \overline{\mathbf{R}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - r_i)$$

Root Mean Square Difference (RMSD), diferencia cuadrático media:

$$RMSD = \left(\frac{1}{n}\sum_{i=1}^{n}d_i^2\right)^{1/2} = \left(\frac{1}{n}\sum_{i=1}^{n}(x_i - r_i)^2\right)^{1/2}$$

► Mean Absolute Deviation (MAD):

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |d_i| = \frac{1}{n} \sum_{i=1}^{n} |x_i - r_i|$$