

NGUYỄN CÔNG PHƯƠNG

LÝ THUYẾT MẠCH I

MẠNG HAI CỦA

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều
- V. Mạng hai cửa
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Mạng hai cửa

https://www.efxkits.us/two-transistor-audio-amplifier-circuit-explanation/

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Mạng hai cửa

Mạng hai cửa

Phân tích mạch có mạng hai cửa (đã biết bộ thông số)

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Bộ thông số \mathbf{Z} (1), định nghĩa

- Còn gọi là bộ số tổng trở.
- Thường được dùng để:
 - Tổng hợp các bộ lọc,
 - Phối hợp trở kháng,...

$$\begin{cases} \dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\ \dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \end{cases} \longleftrightarrow \begin{bmatrix} \dot{U}_{1} \\ \dot{U}_{2} \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} \dot{I}_{1} \\ \dot{I}_{2} \end{bmatrix} = \begin{bmatrix} Z \end{bmatrix} \begin{bmatrix} \dot{I}_{1} \\ \dot{I}_{2} \end{bmatrix}$$

Bộ thông số **Z** (2), cách tính

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

$$\dot{I}_{2} = 0 \rightarrow \begin{cases} \dot{U}_{1} = Z_{11}\dot{I}_{1} \\ \dot{U}_{2} = Z_{21}\dot{I}_{1} \end{cases} \rightarrow Z_{11} = \frac{\dot{U}_{1}}{\dot{I}_{1}} \bigg|_{\dot{I}_{2}=0}, \quad Z_{21} = \frac{\dot{U}_{2}}{\dot{I}_{1}} \bigg|_{\dot{I}_{2}=0}$$

$$\dot{I}_{1} = 0 \rightarrow \begin{cases} \dot{U}_{1} = Z_{12}\dot{I}_{2} \\ \dot{U}_{2} = Z_{22}\dot{I}_{2} \end{cases} \rightarrow Z_{12} = \frac{\dot{U}_{1}}{\dot{I}_{2}} \bigg|_{\dot{I}_{1} = 0}, \quad Z_{22} = \frac{\dot{U}_{2}}{\dot{I}_{2}} \bigg|_{\dot{I}_{1} = 0}$$

Bộ thông số **Z** (3), cách tính

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$

$$\rightarrow Z_{11} = \frac{U_1}{\dot{I}_1} \bigg|_{\dot{I}_2 = 0}$$

$$Z_{21} = \frac{U_2}{\dot{I}_1} \bigg|_{\dot{I}_2 = 0}$$

$$I_1 = 0$$

$$\dot{\dot{U}}_1$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$

)
$$\rightarrow Z_{12} = \frac{\dot{U}_1}{\dot{I}_2}\Big|_{\dot{I}_1=0}$$
, $Z_{22} = \frac{\dot{U}_2}{\dot{I}_2}\Big|_{\dot{I}_1=0}$

$$Z_{22} = \frac{\dot{U}_2}{\dot{I}_2} \bigg|_{\dot{I}_1 = 0}$$

Bộ thông số \mathbf{Z} (4)

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

- Nếu $Z_{11} = Z_{22}$: mạng hai cửa đối xứng
- Nếu $Z_{12} = Z_{21}$: mạng hai cửa tương hỗ
- Có một số mạng hai cửa không có bộ số Z

Bộ thông số \mathbf{Z} (5), cách tính

$$R_1 = 10 \ \Omega; R_2 = 20 \ \Omega; R_3 = 30 \ \Omega; \text{ Tìm } \mathbf{Z}?$$

$$Z_{11} = \frac{\dot{U}_1}{\dot{I}_1} \Big|_{\dot{I}_2 = 0}$$

$$\dot{U}_1 = (R_1 + R_2)\dot{I}_1$$

$$= 10 + 20$$

$$= 30 \Omega$$

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

D 2 41 2 4 2 2

Bộ thông số Z (6), cách tính

$$R_1 = 10 \ \Omega; R_2 = 20 \ \Omega; R_3 = 30 \ \Omega; \text{ Tìm } \mathbf{Z}?$$

$$Z_{21} = \frac{U_2}{\dot{I}_1} \Big|_{\dot{I}_2 = 0}$$

$$\dot{U}_2 = R_2 \dot{I}_1$$

$$\Rightarrow Z_{21} = R_2$$

$$= \boxed{20 \ \Omega}$$

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

Bộ thông số **Z** (7), cách tính

$$R_1 = 10 \ \Omega; R_2 = 20 \ \Omega; R_3 = 30 \ \Omega; \text{ Tìm } \mathbf{Z}?$$

$$Z_{12} = \frac{\dot{U}_1}{\dot{I}_2}\Big|_{\dot{I}_1=0}$$
 $\rightarrow Z_{12} = R_2$
 $\dot{U}_1 = R_2 \dot{I}_2$ $= \boxed{20 \ \Omega}$

Bộ thông số Z (8), cách tính

$$R_1 = 10 \ \Omega; R_2 = 20 \ \Omega; R_3 = 30 \ \Omega; \text{ Tìm } \mathbf{Z}?$$

$$Z_{22} = \frac{U_2}{\dot{I}_2} \Big|_{\dot{I}_1 = 0}$$

$$\dot{U}_2 = (R_2 + R_3)\dot{I}_2$$

$$= 20 + 30$$

$$= |50 \Omega|$$

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{cases}$$

Bộ thông số Z (9), cách tính

VD1

$$R_1 = 10 \ \Omega; R_2 = 20 \ \Omega; R_3 = 30 \ \Omega; \text{ Tìm } \mathbf{Z}?$$

Cách 1

$$\mathbf{Z} = \begin{bmatrix} 30 & (-20) \\ 20 & (-50) \end{bmatrix} \mathbf{\Omega}$$

$$\mathbf{Z} = \begin{vmatrix} 30 & 20 \\ 20 & 50 \end{vmatrix} \mathbf{\Omega}$$

Bộ thông số **Z** (10), cách tính

VD1

$$R_1 = 10 \ \Omega; R_2 = 20 \ \Omega; R_3 = 30 \ \Omega; \text{ Tim } \mathbf{Z}?$$

Cách 2

$$\begin{aligned} \dot{U}_1 &= \dot{U}_{R1} + \dot{U}_{R2} &= R_1 \dot{I}_1 + R_2 (\dot{I}_1 + \dot{I}_2) &= (R_1 + R_2) \dot{I}_1 + R_2 \dot{I}_2 \\ \dot{U}_2 &= \dot{U}_{R3} + \dot{U}_{R2} &= R_3 \dot{I}_2 + R_2 (\dot{I}_1 + \dot{I}_2) &= R_2 \dot{I}_1 + (R_2 + R_3) \dot{I}_2 \end{aligned}$$

$$\rightarrow \begin{cases}
\dot{U}_{1} = (R_{1} + R_{2})\dot{I}_{1} + R_{2}\dot{I}_{2} \\
\dot{U}_{2} = R_{2}\dot{I}_{1} + (R_{2} + R_{3})\dot{I}_{2}
\end{cases}$$

$$\begin{cases}
\dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\
\dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2}
\end{cases}$$

$$Z_{11} = R_1 + R_2 = 30\Omega$$

$$Z_{12} = R_2 = 20\Omega$$

$$Z_{21} = R_2 = 20\Omega$$

$$Z_{22} = R_2 + R_3 = 50\Omega$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Bộ thông số $\mathbf{Y}(1)$

• Gọi là bộ số tổng dẫn.

$$\begin{cases} \dot{I}_{1} = Y_{11}\dot{U}_{1} + Y_{12}\dot{U}_{2} \\ \dot{I}_{2} = Y_{21}\dot{U}_{1} + Y_{22}\dot{U}_{2} \end{cases} \longleftrightarrow \begin{bmatrix} \dot{I}_{1} \\ \dot{I}_{2} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{U}_{2} \end{bmatrix} = \begin{bmatrix} Y \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{U}_{2} \end{bmatrix}$$

Bộ thông số **Y** (2)

$$\begin{cases} \dot{I}_1 = Y_{11}\dot{U}_1 + Y_{12}\dot{U}_2 \\ \dot{I}_2 = Y_{21}\dot{U}_1 + Y_{22}\dot{U}_2 \end{cases}$$

Mạng hai cửa không nguồn

$$\dot{U}_2 = 0$$

$$\longrightarrow Y_{11} = \frac{I_1}{\dot{U}_1} \bigg|_{\dot{U}_2 = 0}$$

$$Y_{21} = \frac{\dot{I}_2}{\dot{U}_1} \bigg|_{\dot{U}_2 = 0}$$

$$\dot{U}_1 = 0$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$

$$\rightarrow Y_{12} = \frac{\dot{I}_1}{\dot{U}_2} \bigg|_{\dot{U}_1 = 0}$$

$$Y_{22} = \frac{\dot{I}_2}{\dot{U}_2} \bigg|_{\dot{U}_1 = 0}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Bộ thông số **H** (1)

- Còn gọi là bộ số lai (H: hybrid).
- Dùng để mô tả các linh kiện điện tử (ví dụ transistor).

$$\begin{cases}
\dot{U}_{1} = H_{11}\dot{I}_{1} + H_{12}\dot{U}_{2} \\
\dot{I}_{2} = H_{21}\dot{I}_{1} + H_{22}\dot{U}_{2}
\end{cases}
\longleftrightarrow
\begin{bmatrix}
\dot{U}_{1} \\
\dot{I}_{2}
\end{bmatrix} =
\begin{bmatrix}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{bmatrix}
\begin{bmatrix}
\dot{I}_{1} \\
\dot{U}_{2}
\end{bmatrix} =
\begin{bmatrix}
H\right]
\begin{bmatrix}
\dot{I}_{1} \\
\dot{U}_{2}
\end{bmatrix}$$

Bộ thông số H (2)

$$\begin{cases} \dot{U}_1 = H_{11}\dot{I}_1 + H_{12}\dot{U}_2 \\ \dot{I}_2 = H_{21}\dot{I}_1 + H_{22}\dot{U}_2 \end{cases}$$

Mạng hai cửa không nguồn

$$\begin{array}{c|c}
\dot{I}_{2} \\
\dot{U}_{2} = 0 \longrightarrow H_{11} = \frac{\dot{U}_{1}}{\dot{I}_{1}}\Big|_{\dot{U}_{2}=0}, \quad H_{21} = \frac{\dot{I}_{2}}{\dot{I}_{1}}\Big|_{\dot{U}_{2}=0}$$

Mạng hai cửa không nguồn

$$\frac{\dot{U}_{2}}{\dot{U}_{2}} \rightarrow H_{12} = \frac{\dot{U}_{1}}{\dot{U}_{2}}\Big|_{\dot{I}_{1}=0}, \quad H_{22} = \frac{\dot{I}_{2}}{\dot{U}_{2}}\Big|_{\dot{I}_{2}=0}$$

$$H_{22} = \frac{\dot{I}_2}{\dot{U}_2} \bigg|_{\dot{I}_1 = 0}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Bộ thông số G(1)

 Còn gọi là bộ số lai nghịch đảo.

$$\begin{cases} \dot{I}_{1} = G_{11}\dot{U}_{1} + G_{12}\dot{I}_{2} \\ \dot{U}_{2} = G_{21}\dot{U}_{1} + G_{22}\dot{I}_{2} \end{cases} \iff \begin{bmatrix} \dot{I}_{1} \\ \dot{U}_{2} \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{I}_{2} \end{bmatrix} = \begin{bmatrix} G \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{I}_{2} \end{bmatrix}$$

Bộ thông số G(2)

$$\begin{cases} \dot{I}_1 = G_{11}\dot{U}_1 + G_{12}\dot{I}_2 \\ \dot{U}_2 = G_{21}\dot{U}_1 + G_{22}\dot{I}_2 \end{cases}$$

Mạng hai cửa không nguồn

$$\dot{U}_2 = 0$$

$$\to G_{11} = \frac{I_1}{\dot{U}_1} \Big|_{\dot{I}_2 = 0}$$

$$G_{21} = \frac{U_2}{\dot{U}_1} \bigg|_{\dot{I}_2 = 0}$$

$$\dot{U}_1 = 0$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$
 $\rightarrow G_{12}$

$$) \to G_{12} = \frac{\dot{I}_1}{\dot{I}_2} \bigg|_{\dot{U}_1 = 0}$$

$$G_{22} = \frac{\dot{U}_2}{\dot{I}_2} \bigg|_{\dot{U}_1 = 0}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Bộ thông số A (1)

- Còn gọi là bộ số truyền tải.
- Ký hiệu khác: T(ransmission).
- Thường được dùng trong phân tích đường dây truyền tải (hệ thống điện, hệ thống liên lạc).

$$\begin{cases} \dot{U}_{1} = A_{11}\dot{U}_{2} + A_{12}\dot{I}_{2} \\ \dot{I}_{1} = A_{21}\dot{U}_{2} + A_{22}\dot{I}_{2} \end{cases} \longleftrightarrow \begin{bmatrix} \dot{U}_{1} \\ \dot{I}_{1} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \dot{U}_{2} \\ \dot{I}_{2} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \dot{U}_{2} \\ \dot{I}_{2} \end{bmatrix}$$

Bộ thông số A (2)

$$\begin{cases} \dot{U}_1 = A_{11}\dot{U}_2 + A_{12}\dot{I}_2 \\ \dot{I}_1 = A_{21}\dot{U}_2 + A_{22}\dot{I}_2 \end{cases}$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$

$$\rightarrow A_{11} = \frac{U_1}{\dot{U}_2} \bigg|_{\dot{I}_{2^1}}$$

$$A_{21} = \frac{I_1}{\dot{U}_2} \bigg|_{\dot{I}_2 = 0}$$

$$\dot{U}_1$$

Mạng hai cửa không nguồn

$$\dot{U}_2 = 0$$

$$\rightarrow A_{12} = \frac{\dot{U}_1}{\dot{I}_2} \bigg|_{\dot{U} = 0}$$

$$A_{22} = \frac{\dot{I}_1}{\dot{I}_2} \bigg|_{\dot{U}_2 = 0}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Bộ thông số \mathbf{B} (1)

- Còn gọi là bộ số truyền tải ngược.
- Ký hiệu khác: t(ransmission).

$$\begin{cases} \dot{U}_{2} = B_{11}\dot{U}_{1} + B_{12}\dot{I}_{1} \\ \dot{I}_{2} = B_{21}\dot{U}_{1} + B_{22}\dot{I}_{1} \end{cases} \iff \begin{bmatrix} \dot{U}_{2} \\ \dot{I}_{2} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{I}_{1} \end{bmatrix} = \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{I}_{1} \end{bmatrix}$$

Bộ thông số **B** (2)

$$\begin{cases} \dot{U}_2 = B_{11}\dot{U}_1 + B_{12}\dot{I}_1 \\ \dot{I}_2 = B_{21}\dot{U}_1 + B_{22}\dot{I}_1 \end{cases}$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$

$$\rightarrow B_{11} = \frac{U_2}{\dot{U}_1} \bigg|_{\dot{I}_1 = 0}$$

$$B_{21} = \frac{I_2}{\dot{U}_1} \bigg|_{\dot{I}_1 = 0}$$

$$\dot{U}_1 = 0$$

Mạng hai cửa không nguồn

$$\dot{U}_2$$

$$\rightarrow B_{12} = \frac{U_2}{\dot{I}_1} \bigg|_{\dot{U}_1 = 0}$$

$$B_{22} = \frac{I_2}{\dot{I}_1} \bigg|_{\dot{U}_1 = 0}$$

Mạng hai cửa

$$\begin{cases} \dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\ \dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \end{cases} \stackrel{\dot{I}_{1}}{\longrightarrow}$$

$$\begin{cases} \dot{I}_1 = Y_{11}\dot{U}_1 + Y_{12}\dot{U}_2 \\ \dot{I}_2 = Y_{21}\dot{U}_1 + Y_{22}\dot{U}_2 \end{cases}$$

$$\begin{cases} \dot{U}_{1} = H_{11}\dot{I}_{1} + H_{12}\dot{U}_{2} \\ \dot{I}_{2} = H_{21}\dot{I}_{1} + H_{22}\dot{U}_{2} \end{cases}$$

$$\dot{U}_1$$
 Mạng hai cửa không nguồn

$$\begin{cases} \dot{I}_{1} = Y_{11}\dot{U}_{1} + Y_{12}\dot{U}_{2} \\ \dot{I}_{2} = Y_{21}\dot{U}_{1} + Y_{22}\dot{U}_{2} \end{cases} \qquad \begin{cases} \dot{U}_{2} = B_{11}\dot{U}_{1} + B_{12}\dot{I}_{1} \\ \dot{I}_{2} = G_{11}\dot{U}_{1} + G_{12}\dot{I}_{2} \\ \dot{U}_{2} = G_{21}\dot{U}_{1} + G_{22}\dot{I}_{2} \end{cases} \qquad \begin{cases} \dot{U}_{2} = B_{11}\dot{U}_{1} + B_{12}\dot{I}_{1} \\ \dot{I}_{2} = B_{21}\dot{U}_{1} + B_{22}\dot{I}_{1} \end{cases}$$

$$\int \dot{U}_1 = A_{11}\dot{U}_2 + A_{12}\dot{I}_2
\dot{I}_1 = A_{21}\dot{U}_2 + A_{22}\dot{I}_2$$

$$\begin{cases} \dot{U}_2 = B_{11}\dot{U}_1 + B_{12}\dot{I} \\ \dot{I}_2 = B_{21}\dot{U}_1 + B_{22}\dot{I}_1 \end{cases}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Quan hệ giữa các bộ thông số (1)

$$\begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix} = \begin{bmatrix} Z \end{bmatrix} \begin{bmatrix} \dot{I}_1 \\ \dot{I}_2 \end{bmatrix}$$

$$\rightarrow [Y] = [Z]^{-1}$$

$$[G] = [H]^{-1}$$

Quan hệ giữa các bộ thông số (2)

$$\begin{cases} \dot{U}_{1} = H_{11}\dot{I}_{1} + H_{12}\dot{U}_{2} \\ \dot{I}_{2} = H_{21}\dot{I}_{1} + H_{22}\dot{U}_{2} \\ \rightarrow \dot{U}_{1} = \begin{pmatrix} H_{21} & I_{1} + \frac{1}{H_{22}}\dot{I}_{2} \\ H_{11} - \frac{H_{12}H_{21}}{H_{22}} \end{pmatrix} \dot{I}_{1} + \frac{H_{12}}{H_{22}}\dot{I}_{2} \end{cases}$$

$$\rightarrow \begin{cases} \dot{U}_{1} = \left(H_{11} - \frac{H_{12}H_{21}}{H_{22}}\right)\dot{I}_{1} + \frac{H_{12}}{H_{22}}\dot{I}_{2} \\ \dot{U}_{2} = -\frac{H_{21}}{H_{22}}\dot{I}_{1} + \frac{1}{H_{22}}\dot{I}_{2} \end{cases} \rightarrow \mathbf{Z} = \begin{bmatrix} H_{11} - \frac{H_{12}H_{21}}{H_{22}} & \frac{H_{12}}{H_{22}} \\ -\frac{H_{21}}{H_{22}} & \frac{1}{H_{22}} \end{bmatrix}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Phân tích mạch có mạng hai cửa (1)

$$\dot{E} = 220 \,\mathrm{V}; \ Z_t = j50 \,\Omega; \ \mathbf{Z} = \begin{bmatrix} 10 & j20 \\ j20 & 40 \end{bmatrix} \Omega.$$

- Viết hệ phương trình bộ số,
- Viết phương trình dòng/áp/...,
- Giải hệ phương trình.

$$\begin{bmatrix}
\dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\
\dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \\
\dot{Z} = \begin{bmatrix}
10 & j20 \\
j20 & 40
\end{bmatrix}$$

$$A: \dot{U}_{1} = \dot{E} \\
B: Z_{t}\dot{I}_{2} + \dot{U}_{2} = 0$$

$$\begin{vmatrix}
\dot{I}_{1} = 10\dot{I}_{1} + j20\dot{I}_{2} \\
\dot{U}_{2} = j20\dot{I}_{1} + 40\dot{I}_{2} \\
-j50\dot{I}_{2} = j20\dot{I}_{1} + 40\dot{I}_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
\dot{I}_{1} = 14,09 + j4,94 \text{ A}
\end{vmatrix}$$

Phân tích mạch có mạng hai cửa (2)

$$\dot{E} = 220 \text{ V};$$
 $Z_1 = 20 \Omega; \ Z_t = j50 \Omega; \ \mathbf{A} = \begin{bmatrix} 3 & 200 \\ 0,04 & 3 \end{bmatrix}.$

- 1. Viết hệ phương trình bộ số,
- 2. Viết phương trình dòng/áp/...,
- 3. Giải hệ phương trình.

$$\begin{vmatrix} U_{1} = A_{11}U_{2} + A_{12}I_{2} \\ \dot{I}_{1} = A_{21}\dot{U}_{2} + A_{22}\dot{I}_{2} \\ A = \begin{bmatrix} 3 & 200 \\ 0,04 & 3 \end{bmatrix} \Rightarrow \begin{cases} \dot{U}_{1} = 3\dot{U}_{2} + 200\dot{I}_{2} \\ \dot{I}_{1} = 0,04\dot{U}_{2} + 3\dot{I}_{2} \\ A : 20\dot{I}_{1} + \dot{U}_{1} = 220 \\ B : j50\dot{I}_{2} - \dot{U}_{2} = 0 \end{cases}$$

$$\rightarrow \begin{cases} \vec{I}_1 = 2,46 - j0,11 \text{ A} \\ \vec{I}_1 = 0.55 \quad j0.40 \text{ A} \end{cases}$$

Phân tích mạch có mạng hai cửa (3)

$$\begin{vmatrix}
\dot{E} = 200 \,\mathrm{V}; \, Z_n = 5 \,\Omega; \\
Z_f = j10 \,\Omega; \, Z_t = -j20 \,\Omega;
\end{vmatrix} \mathbf{Y} = \begin{bmatrix}
0,0455 & -0,0182 \\
-0,0182 & 0,0273
\end{bmatrix} \mathrm{S}.$$

$$\begin{cases} \dot{I}_1 = Y_{11}\dot{U}_1 + Y_{12}\dot{U}_2 \\ \dot{I}_2 = Y_{21}\dot{U}_1 + Y_{22}\dot{U}_2 \end{cases}$$

$$n: \dot{I}_n - \dot{I}_1 - \dot{I}_f = 0$$

$$t: \dot{I}_f - \dot{I}_2 - \dot{I}_t = 0$$

$$A: Z_n \dot{I}_n + \dot{U}_1 = \dot{E}$$

$$B: \ Z_f \dot{I}_f - \dot{U}_1 + \dot{U}_2 = 0$$

$$C: \dot{U}_2 - Z_t \dot{I}_t = 0$$

$$\rightarrow \begin{cases} \dot{I}_n = 12,80 + j7,99 \text{ A} \\ \dot{I}_t = 7,20 + j10,40 \text{ A} \end{cases}$$

Phân tích mạch có mạng hai cửa (4)

$$Z_f \dot{I}_{vf} - \dot{U}_1 + \dot{U}_2 = 0$$

$$\rightarrow \begin{cases} \dot{I}_{vn} = 12,80 + j7,99 \text{ A} \\ \dot{I}_{vt} = 7,20 + j10,40 \text{ A} \end{cases} \rightarrow \begin{cases} \dot{I}_{n} = 12,80 + j7,99 \text{ A} \\ \dot{I}_{t} = 7,20 + j10,40 \text{ A} \end{cases}$$

Phân tích mạch có mạng hai cửa (5)

VD3

$$\begin{array}{c|c}
\dot{E} = 200 \,\text{V}; \, Z_n = 5 \,\Omega; \\
Z_f = j10 \,\Omega; \, Z_t = -j20 \,\Omega; \, \mathbf{Y} = \begin{bmatrix} 0.0455 & -0.0182 \\ -0.0182 & 0.0273 \end{bmatrix} \text{S.} \\
\dot{I}_n \, \dot{I}_f \\
\dot{I}_n \, \dot{I}_1 \\
\dot{I}_n \, \dot{I}_n \, \dot{I}_n \, \dot{I}_n \\
\dot{I}_n \, \dot{I}_n \, \dot{I}_n \, \dot{I}_n \\
\dot{I}_n \, \dot{I}_n \, \dot{I}_n \, \dot{I}_n \, \dot{I}_n \, \dot{I}_n \\
\dot{I}_n \, \dot{I}_n \\
\dot{I}_n \, \dot{I}_n$$

$$\begin{array}{c|c}
 & n: \dot{I}_{n} - \dot{I}_{1} - \dot{I}_{f} = 0 \\
 & t: \dot{I}_{f} - \dot{I}_{2} - \dot{I}_{t} = 0 \\
 & \dot{I}_{1} = Y_{11}\dot{U}_{1} + Y_{12}\dot{U}_{2} = Y_{11}\dot{\varphi}_{n} + Y_{12}\dot{\varphi}_{t} \\
 & \dot{I}_{2} = Y_{21}\dot{U}_{1} + Y_{22}\dot{U}_{2} = Y_{21}\dot{\varphi}_{n} + Y_{22}\dot{\varphi}_{t} \\
 & \dot{I}_{n} = \frac{\dot{E} - \dot{\varphi}_{n}}{Z}
\end{array}$$

$$\dot{I}_{t} = \frac{\dot{\varphi}_{t}}{Z_{t}}$$

$$\dot{I}_{f} = \frac{\dot{\varphi}_{n} - \dot{\varphi}_{t}}{Z_{f}}$$

$$\rightarrow \begin{cases} (Z_{n}Z_{f}Y_{11} + Z_{n} + Z_{f})\dot{\varphi}_{n} + (Z_{n}Z_{f}Y_{12} - Z_{n})\dot{\varphi}_{t} = Z_{f}\dot{E} \\ (Z_{t}Z_{f}Y_{21} - Z_{t})\dot{\varphi}_{n} + (Z_{t}Z_{f}Y_{22} + Z_{t} + Z_{f})\dot{\varphi}_{t} = 0 \end{cases}$$

https://sites.google.com/site/ncpdhbkhn/home

Phân tích mạch có mạng hai cửa (6)

Phan tien mach co mang har cura (6)

$$\dot{E} = 200 \,\text{V}; \, Z_n = 5 \,\Omega; \\
Z_f = j10 \,\Omega; \, Z_t = -j20 \,\Omega; \, \mathbf{Y} = \begin{bmatrix} 0.0455 & -0.0182 \\ -0.0182 & 0.0273 \end{bmatrix} \,\text{S.}$$

$$\dot{I}_n \, \dot{I}_f \, \dot{I}_t \, \dot{I}_2 \, \dot{I}_t \, \dot{I}_2 \,$$

$$\rightarrow \begin{cases} \dot{\varphi}_n = 135,99 - j39,97 \text{ V} \\ \dot{\varphi}_t = 207,92 - j143,97 \text{ V} \end{cases}$$

$$\Rightarrow \begin{cases} \dot{\varphi}_{n} = 135,99 - j39,97 \text{ V} \\ \dot{\varphi}_{t} = 207,92 - j143,97 \text{ V} \end{cases}
\Rightarrow \begin{cases} \dot{I}_{n} = \frac{\dot{E} - \dot{\varphi}_{n}}{Z_{n}} = 12,80 + j7,99 \text{ A} \\ \dot{I}_{t} = \frac{\dot{\varphi}_{t}}{Z_{t}} = 7,20 + j10,40 \text{ A} \end{cases}$$

Phân tích mạch có mạng hai cửa (7)

$$\dot{U}_{aM} = Z_M \dot{I}_2$$

$$\dot{U}_{bM} = Z_M \dot{I}_2$$

Phân tích mạch có mạng hai cửa (8)

VD5

$$\begin{bmatrix} e = 10 + 20\cos 5t \text{ V}; & \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; i_1 = ? \end{bmatrix} \quad 10\Omega \begin{bmatrix} \mathbf{i}_1 \\ \mathbf{u}_1 \end{bmatrix} \quad \mathbf{Z} \quad \begin{bmatrix} i_2 \\ u_2 \end{bmatrix}$$

Xét nguồn một chiều:

$$\begin{cases} U_{1DC} = 30I_{1DC} + 20I_{2DC} \\ U_{2DC} = 20I_{1DC} + 50I_{2DC} \end{cases}$$

$$10I_{1DC} + U_{1DC} = 10$$

$$U_{2DC} = 0$$

$$\to I_{1DC} = 0,31 \,\text{A}$$

Phân tích mạch có mạng hai cửa (9)

VD5

$$e = 10 + 20\cos 5t \text{ V}; \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; i_1 = ?$$

Xét nguồn xoay chiều:

$$\begin{cases} \dot{U}_{1AC} = 30\dot{I}_{1AC} + 20\dot{I}_{2AC} \\ \dot{U}_{2AC} = 20\dot{I}_{1AC} + 50\dot{I}_{2AC} \\ 10\dot{I}_{1AC} + \dot{U}_{1AC} = 20 \\ \dot{U}_{2AC} + j10\dot{I}_{2AC} = 0 \end{cases}$$

$$\rightarrow \dot{I}_{1AC} = 0.60 / -4.76^{\circ} \rightarrow i_{1AC}(t) = 0.60 \cos(5t - 4.76^{\circ}) A$$

Phân tích mạch có mạng hai cửa (10)

$$e = 10 + 20\cos 5t \text{ V}; \quad \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad i_1 = ?$$

$$10\Omega \begin{bmatrix} i_1 \\ u_1 \end{bmatrix} \quad \mathbf{Z} \quad \begin{bmatrix} i_2 \\ u_2 \end{bmatrix}$$

$$I_{1DC} = 0.31A$$

$$i_{1AC}(t) = 0,60\cos(5t - 4,76^{\circ}) A$$

$$\rightarrow |i_1(t) = 0.31 + 0.60\cos(5t - 4.76^{\circ}) \text{ A}|$$

Phân tích mạch có mạng hai cửa (11)

VD6

$$\begin{bmatrix} \dot{E} = 220 \,\mathrm{V}; \, Z_2 = j10 \,\Omega; \\ Z_a = j20 \,\Omega; \, Z_b = -j40 \,\Omega; \, Z_c = 5 \,\Omega; \end{bmatrix} \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega.$$

$$\begin{cases} \dot{U}_1 = 30\dot{I}_1 + 20\dot{I}_2 \\ \dot{U}_2 = 20\dot{I}_1 + 50\dot{I}_2 \end{cases}$$

$$b: \dot{I}_1 + \dot{I}_2 - \dot{I}_c = 0$$

$$A: \dot{U}_{1} + Z_{a}\dot{I}_{1} + Z_{c}\dot{I}_{c} = \dot{E}$$

$$B: Z_2 \dot{I}_2 + \dot{U}_2 + Z_b \dot{I}_2 + Z_c \dot{I}_c = 0$$

$$B: Z_{2}\dot{I}_{2} + \dot{U}_{2} + Z_{b}\dot{I}_{2} + Z_{c}\dot{I}_{c} = 0$$

$$\dot{I} = 6.27 - i3.64 \text{ A}$$

$$\Rightarrow \begin{cases}
\dot{I}_1 = 6,27 - j3,64 \text{ A} \\
\dot{I}_2 = -2,89 + j0,076 \text{ A} \\
\dot{I}_c = 3,38 - j3,56 \text{ A}
\end{cases}$$

Cách 2?

Kết nối các mạng hai cửa

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

V. Mạng hai cửa

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Kết nối các mạng hai cửa (1)

- 1. Nối tiếp
- 2. Song song
- 3. Xâu chuỗi (tầng)
- 4. Lai 1
- 5. Lai 2

https://www.efxkits.us/two-transistor-audio-amplifier-circuit-explanation/

Kết nối các mạng hai cửa (2), nối tiếp

$$\begin{cases} \dot{I}_{1} = \dot{I}_{1a} = \dot{I}_{1b} \\ \dot{U}_{1} = \dot{U}_{1a} + \dot{U}_{1b} \\ \dot{I}_{2} = \dot{I}_{2a} = \dot{I}_{2b} \\ \dot{U}_{2} = \dot{U}_{2a} + \dot{U}_{2b} \end{cases}$$

Kết nối các mạng hai cửa (3), nối tiếp

$$\begin{cases} \dot{I}_{1} = \dot{I}_{1a} = \dot{I}_{1b} \\ \dot{U}_{1} = \dot{U}_{1a} + \dot{U}_{1b} \\ \dot{I}_{2} = \dot{I}_{2a} = \dot{I}_{2b} \\ \dot{U}_{2} = \dot{U}_{2a} + \dot{U}_{2b} \end{cases} \begin{cases} \dot{U}_{1a} = Z_{11a}\dot{I}_{1a} + Z_{12a}\dot{I}_{2a} \\ \dot{U}_{2a} = Z_{21a}\dot{I}_{1a} + Z_{22a}\dot{I}_{2a} \\ \dot{U}_{2b} = Z_{21b}\dot{I}_{1b} + Z_{12b}\dot{I}_{2b} \\ \dot{U}_{2b} = Z_{21b}\dot{I}_{1b} + Z_{22b}\dot{I}_{2b} \end{cases} \rightarrow \begin{cases} \dot{U}_{1a} = Z_{11a}\dot{I}_{1} + Z_{12a}\dot{I}_{2} \\ \dot{U}_{2a} = Z_{21a}\dot{I}_{1} + Z_{22a}\dot{I}_{2} \\ \dot{U}_{2a} = Z_{21a}\dot{I}_{1} + Z_{22a}\dot{I}_{2} \end{cases}$$

$$\begin{cases} \dot{U}_{1a} = Z_{11a} \dot{I}_{1a} + Z_{12a} \dot{I}_{2a} \\ \dot{U}_{2a} = Z_{21a} \dot{I}_{1a} + Z_{22a} \dot{I}_{2a} \end{cases}$$

$$\dot{U}_{1b} = Z_{11b}I_{1b} + Z_{12b}I_{2b}$$

$$\dot{U}_{2b} = Z_{21b}\dot{I}_{1b} + Z_{22b}\dot{I}_{2b}$$

$$\dot{I}_{1} = \dot{I}_{1a} = \dot{I}_{1b}$$

$$\dot{I}_{2} = \dot{I}_{2a} = \dot{I}_{2b}$$

$$\begin{cases} \dot{U}_{1a} = Z_{11a}\dot{I}_1 + Z_{12a}\dot{I}_2 \\ \dot{U}_{2a} = Z_{21a}\dot{I}_1 + Z_{22a}\dot{I}_2 \end{cases}$$

$$\begin{cases} \dot{U}_{1b} = Z_{11b}\dot{I}_1 + Z_{12b}\dot{I}_2 \\ \dot{U}_{2b} = Z_{21b}\dot{I}_1 + Z_{22b}\dot{I}_2 \end{cases}$$

Kết nối các mạng hai cửa (4), nối tiếp

$$\begin{cases} \dot{I}_{1} = \dot{I}_{1a} = \dot{I}_{1b} \\ \dot{U}_{1} = \dot{U}_{1a} + \dot{U}_{1b} \\ \dot{I}_{2} = \dot{I}_{2a} = \dot{I}_{2b} \\ \dot{U}_{2} = \dot{U}_{2a} + \dot{U}_{2b} \end{cases}$$

$$\Rightarrow \begin{cases} \dot{U}_{1} = \dot{U}_{1a} + \dot{U}_{1b} = (Z_{11a}\dot{I}_{1} + Z_{12a}\dot{I}_{2}) + (Z_{11b}\dot{I}_{1} + Z_{12b}\dot{I}_{2}) \\ \dot{U}_{2} = \dot{U}_{2b} + \dot{U}_{2b} = (Z_{21a}\dot{I}_{1} + Z_{22a}\dot{I}_{2}) + (Z_{21b}\dot{I}_{1} + Z_{22b}\dot{I}_{2}) \end{cases}$$

Kết nối các mạng hai cửa (5), nối tiếp

$$\begin{cases} \dot{I}_{1} = \dot{I}_{1a} = \dot{I}_{1b} \\ \dot{U}_{1} = \dot{U}_{1a} + \dot{U}_{1b} \\ \dot{I}_{2} = \dot{I}_{2a} = \dot{I}_{2b} \\ \dot{U}_{2} = \dot{U}_{2a} + \dot{U}_{2b} \end{cases}$$

$$\begin{cases} \dot{I}_{1} = \dot{I}_{1a} = \dot{I}_{1b} \\ \dot{U}_{1} = \dot{U}_{1a} + \dot{U}_{1b} = (Z_{11a}\dot{I}_{1} + Z_{12a}\dot{I}_{2}) + (Z_{11b}\dot{I}_{1} + Z_{12b}\dot{I}_{2}) \\ \dot{U}_{2} = \dot{U}_{1b} + \dot{U}_{2b} = (Z_{21a}\dot{I}_{1} + Z_{22a}\dot{I}_{2}) + (Z_{21b}\dot{I}_{1} + Z_{22b}\dot{I}_{2}) \\ \dot{U}_{2} = \dot{I}_{2a} = \dot{I}_{2b} \\ \dot{U}_{2} = (Z_{21a} + Z_{11b})\dot{I}_{1} + (Z_{22a} + Z_{22b})\dot{I}_{2} \\ \leftrightarrow \begin{cases} \dot{U}_{1} = (Z_{11a} + Z_{11b})\dot{I}_{1} + (Z_{22a} + Z_{22b})\dot{I}_{2} \\ \dot{U}_{2} = (Z_{21a} + Z_{21b})\dot{I}_{1} + (Z_{22a} + Z_{22b})\dot{I}_{2} \end{cases} \\ \leftrightarrow \begin{cases} \dot{U}_{1} = (Z_{11a} + Z_{11b})\dot{I}_{1} + (Z_{22a} + Z_{22b})\dot{I}_{2} \\ \dot{U}_{2} = (Z_{21a} + Z_{21b})\dot{I}_{1} + (Z_{22a} + Z_{22b})\dot{I}_{2} \end{cases} \\ \leftrightarrow \begin{cases} \dot{U}_{1} = (Z_{11a} + Z_{11b})\dot{I}_{1} + (Z_{22a} + Z_{22b})\dot{I}_{2} \\ Z_{21a} + Z_{21b} & Z_{22a} + Z_{22b} \end{cases} \\ [Z_{a}] = \begin{bmatrix} Z_{11a} & Z_{12a} \\ Z_{21a} & Z_{22a} \end{bmatrix}; \quad [Z_{b}] = \begin{bmatrix} Z_{11b} & Z_{12b} \\ Z_{21b} & Z_{22b} \end{bmatrix} \end{cases}$$

$$\longrightarrow [Z] = [Z_a] + [Z_b]$$

Kết nối các mạng hai cửa (6), nối tiếp

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Kết nối các mạng hai cửa (8), xâu chuỗi

Kết nối các mạng hai cửa (9), lai 1

Kết nối các mạng hai cửa (10), lai 2

Kết nối các mạng hai cửa (11)

$$\begin{bmatrix} \dot{E} = 220 \,\mathrm{V}; \, Z_2 = j10 \,\Omega; \\ Z_a = j20 \,\Omega; \, Z_b = -j40 \,\Omega; \, Z_c = 5 \,\Omega; \end{bmatrix} \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega.$$

$$\begin{cases} \dot{U}_1 = 30\dot{I}_1 + 20\dot{I}_2 \\ \dot{U}_2 = 20\dot{I}_1 + 50\dot{I}_2 \end{cases}$$

$$b: \ \dot{I}_1 + \dot{I}_2 - \dot{I}_c = 0$$

$$A: \dot{U}_1 + Z_a \dot{I}_1 + Z_c \dot{I}_c = \dot{E}$$

$$B: Z_{2}\dot{I}_{2} + \dot{U}_{2} + Z_{b}\dot{I}_{2} + Z_{c}\dot{I}_{c} = 0$$

$$\Rightarrow \begin{cases}
\dot{I}_1 = 6,27 - j3,64 \text{ A} \\
\dot{I}_2 = -2,89 + j0,076 \text{ A} \\
\dot{I}_c = 3,38 - j3,56 \text{ A}
\end{cases}$$

Kết nối các mạng hai cửa (12)

$$\dot{E} = 220 \text{ V}; \ Z_2 = j10 \ \Omega;
Z_a = j20 \ \Omega; \ Z_b = -j40 \ \Omega; \ Z_c = 5 \ \Omega; \ \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega.$$

$$\mathbf{Z'} = \begin{bmatrix} Z_a + Z_c & Z_c \\ Z_c & Z_b + Z_c \end{bmatrix}$$
$$= \begin{bmatrix} 5 + j20 & 5 \\ 5 & 5 - j40 \end{bmatrix} \Omega$$

$$\mathbf{Z} + \mathbf{Z'} = \begin{bmatrix} 35 + j20 & 25 \\ 25 & 55 - j40 \end{bmatrix} \Omega$$

Kết nối các mạng hai cửa (13)

$$\dot{E} = 220 \text{ V}; \ Z_2 = j10 \ \Omega; \ Z_3 = j20 \ \Omega; \ Z_4 = -j40 \ \Omega; \ Z_5 = 5 \ \Omega; \ \mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega.$$

$$\mathbf{Z} + \mathbf{Z'} = \begin{bmatrix} 35 + j20 & 25 \\ 25 & 55 - j40 \end{bmatrix} \Omega$$

$$\begin{cases} \dot{U}_{1}' = (35 + j20)\dot{I}_{1} + 25\dot{I}_{2} = 220\\ \dot{U}_{2}' = 25\dot{I}_{1} + (55 - j40)\dot{I}_{2} = -j10\dot{I}_{2} \end{cases}$$

$$\rightarrow \begin{cases} \dot{I}_1 = 6,27 - j3,64 \text{ A} \\ \dot{I}_2 = -2,89 + j0,076 \text{ A} \end{cases}$$

Kết nối các mạng hai cửa (14)

Kết nối các mạng hai cửa (15)

$$\begin{vmatrix} \dot{E} = 200 \,\mathrm{V}; \, Z_n = 5 \,\Omega; \\ Z_f = j10 \,\Omega; \, Z_t = -j20 \,\Omega; \, \mathbf{Y} = \begin{bmatrix} 0,0455 & -0,0182 \\ -0,0182 & 0,0273 \end{bmatrix} \mathrm{S.} \quad \dot{I}_n \quad \dot{I}_f$$

$$\begin{cases} -\dot{U}'_1 + Z_f \dot{I}'_1 + \dot{U}'_2 = 0 \\ -\dot{U}'_1 - Z_f \dot{I}'_2 + \dot{U}'_2 = 0 \end{cases} \quad \dot{I}'_1 \atop \dot{U}'_1 \qquad Z_f$$

$$\rightarrow \mathbf{Y'} = \begin{bmatrix} -j0,10 & j0,10 \\ j0,10 & -j0,10 \end{bmatrix} \mathbf{S}$$

Kết nối các mạng hai cửa (16)

$$\begin{bmatrix} \dot{E} = 200 \,\mathrm{V}; \, Z_n = 5 \,\Omega; \\ Z_f = j10 \,\Omega; \, Z_t = -j20 \,\Omega; \, \mathbf{Y} = \begin{bmatrix} 0.0455 & -0.0182 \\ -0.0182 & 0.0273 \end{bmatrix} \mathrm{S.} \quad \dot{I}_n \, \dot{I}_f$$

$$\mathbf{Y'} = \begin{bmatrix} -j0,10 & j0,10 \\ j0,10 & -j0,10 \end{bmatrix} S$$

$$\mathbf{Y} + \mathbf{Y'} = \begin{bmatrix} 0.0455 - j0.10 & -0.0182 + j0.10 \\ -0.0182 + j0.10 & 0.0273 - j0.10 \end{bmatrix} S$$

$$\begin{cases} \dot{I}_n = (0,0455 - j0,10)\dot{U}_1 - (0,0182 - j0,10)\dot{U}_2 \\ -\dot{I}_t = -(0,0182 - j0,10)\dot{U}_1 + (0,0273 - j0,10)\dot{U}_2 \\ 5\dot{I}_n + \dot{U}_1 = 200 \\ \dot{U}_2 + j20\dot{I}_t = 0 \end{cases}$$

$$\rightarrow \begin{cases} \dot{I}_n = 12,76 + j8,02 \text{ A} \\ \dot{I}_t = 7,22 + j10,41 \text{ A} \end{cases}$$

Mạng hai cửa

VD3

Mang T & П

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

V. Mạng hai cửa

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mang T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Mạng T & $\Pi(1)$

- 1. Tìm bộ số **X**' của mạng T hoặc Π,
- 2. $\mathbf{X} = \mathbf{X}'(\alpha)$,
- 3. Giải (α) để tìm các tổng trở của mạng T hoặc Π.

Mạng T & Π (2)

$$\mathbf{Z'} = \begin{bmatrix} Z_A + Z_B & Z_B \\ Z_B & Z_B + Z_C \end{bmatrix}$$

$$\mathbf{Z} = egin{bmatrix} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \end{bmatrix}$$

$$Z = Z'$$

$$\Rightarrow \begin{cases} Z_A + Z_B = Z_{11} \\ Z_B = Z_{12} \\ Z_B = Z_{21} \\ Z_B + Z_C = Z_{22} \end{cases} \rightarrow \begin{cases} Z_A = Z_{11} - Z_{12} \\ Z_B = Z_{12} \\ Z_C = Z_{22} - Z_{12} \end{cases}$$

Mạng T & Π (3)

$$\mathbf{Z'} = \begin{bmatrix} Z_A (Z_B + Z_C) & Z_A Z_C \\ Z_A + Z_B + Z_C & Z_A + Z_B + Z_C \\ Z_A Z_C & Z_C (Z_B + Z_A) \\ Z_A + Z_B + Z_C & Z_A + Z_B + Z_C \end{bmatrix} \begin{bmatrix} I_1 \\ U_1 \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_2 \\ U_2 \\ U_2 \end{bmatrix}$$

$$Z = Z'$$

Mạng T & Π (4)

Niang I & II (4)
$$A' = \begin{bmatrix} 1 + \frac{Z_A}{Z_B} & Z_A + Z_C + \frac{Z_A Z_C}{Z_B} \\ \frac{1}{Z_B} & 1 + \frac{Z_C}{Z_B} \end{bmatrix}$$

$$Z_{A} = \frac{A_{11} - 1}{A_{21}}$$

$$Z_{B} = \frac{1}{A_{21}}$$

$$Z_{C} = \frac{A_{22} - 1}{A_{21}}$$

Mạng T & Π (5)

$$\mathbf{A'} = \begin{bmatrix} 1 + \frac{Z_B}{Z_C} & Z_B \\ \frac{Z_A + Z_B + Z_C}{Z_A Z_C} & 1 + \frac{Z_B}{Z_A} \end{bmatrix}$$

$$Z_{A} = \frac{A_{12}}{A_{22} - 1}$$

$$Z_{B} = A_{12}$$

$$Z_{C} = \frac{A_{12}}{A_{11} - 1}$$

Cách 2

Mạng T & Π (6)

$$\dot{E} = 220 \,\mathrm{V}; \ Z_t = j50 \,\Omega; \ \mathbf{Z} = \begin{bmatrix} 10 & j20 \\ j20 & 40 \end{bmatrix} \Omega.$$

$$\begin{cases} Z_A = Z_{11} - Z_{12} = 10 - j20 \ \Omega \\ Z_B = Z_{12} = j20 \ \Omega \\ Z_C = Z_{22} - Z_{12} = 40 - j20 \ \Omega \end{cases}$$

$$\dot{I}_{1} = \frac{\dot{E}}{Z_{A} + Z_{B} / / (Z_{C} + Z_{t})} = \frac{220}{(10 - j20) + \frac{j20(40 - j20 + j50)}{j20 + 40 - j20 + j50}}$$

$$= 14,09 + j4,94 \text{ A}$$

$$\dot{I}_{2} = \frac{-\dot{I}_{1}Z_{B}}{Z_{B} + Z_{C} + Z_{t}} = \frac{-(14,09 + j4,94)j20}{j20 + 40 - j20 + j50} =$$

$$= \boxed{-2,47 - j3,96 \text{ A}}$$

Cách 3

Mạng T & Π (7)

$$\begin{vmatrix} \dot{E} = 220 \,\mathrm{V}; \ Z_t = j50 \,\Omega; \ \mathbf{Z} = \begin{bmatrix} 10 & j20 \\ j20 & 40 \end{bmatrix} \Omega. \end{vmatrix}$$

$$Z_A = \frac{Z_{11}Z_{22} - Z_{12}^2}{Z_{22} - Z_{12}} = 16 + j8 \Omega$$

$$Z_{B} = \frac{Z_{11}Z_{22} - Z_{12}^{2}}{Z_{12}} = -j40 \ \Omega$$

$$Z_C = \frac{Z_{11}Z_{22} - Z_{12}^2}{Z_{11} - Z_{12}} = 16 + j32 \Omega$$

$$\dot{I}_1 = \frac{\dot{E}}{Z_A / [Z_B + (Z_C / / Z_t)]} = 14,09 + j4,94 \text{ A}$$

$$\dot{I}_B = \frac{E}{Z_B + (Z_C / / Z_t)} = 3,09 + j10,44 \text{ A}$$

$$\dot{I}_2 = \frac{-\dot{I}_B Z_C}{Z_C + Z_C} = \boxed{-2,47 - j3,96 \text{ A}}$$

Mang T & Π (8)

<u>VD2</u>

$$\dot{E} = 220 \text{ V}; \\
= 20 \Omega; \quad Z_t = j50 \Omega; \quad \mathbf{A} = \begin{bmatrix} 3 & 200 \\ 0,04 & 3 \end{bmatrix}.$$

$$Z_A = \frac{A_{11} - 1}{A_{21}} = \frac{3 - 1}{0.04} = 50 \ \Omega$$

$$Z_B = \frac{1}{A_{21}} = \frac{1}{0,04} = 25 \Omega$$

$$Z_C = \frac{A_{22} - 1}{A_{21}} = \frac{3 - 1}{0.04} = 50 \ \Omega$$

$$\dot{I}_1 = \frac{\dot{E}}{Z_1 + Z_A + Z_B / / (Z_C + Z_t)} = 2.46 - j0.11 \text{ A}$$

$$\dot{I}_2 = \frac{\dot{I}_1 Z_B}{Z_B + Z_C + Z_t} = \boxed{0,55 - j0,40 \text{ A}}$$

Mang T & Π (9)

Mang T & II (9)

VD3

$$\dot{E} = 200 \text{ V}; Z_n = 5 \Omega;$$
 $Z_f = j10 \Omega; Z_t = -j20 \Omega;$
 $Z = Y^{-1} = \begin{bmatrix} 0.0455 & -0.0182 \\ -0.0182 & 0.0272 \end{bmatrix}^{-1}$
Cách 5 Z_n
 \dot{U}_1

$$\mathbf{Z} = \mathbf{Y}^{-1} = \begin{bmatrix} 0,0455 & -0,0182 \\ -0,0182 & 0,0273 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega$$

$$\begin{cases} Z_A = \frac{Z_{11}Z_{22} - Z_{12}^2}{Z_{22} - Z_{12}} = 36,67 \ \Omega \\ Z_B = \frac{Z_{11}Z_{22} - Z_{12}^2}{Z_{12}} = 55,00 \ \Omega \\ Z_C = \frac{Z_{11}Z_{22} - Z_{12}^2}{Z_{11} - Z_{12}} = 110,00 \ \Omega \end{cases}$$

Mang T & Π (10)

Mang T & II (10)

VD3

$$\dot{E} = 200 \text{ V}; Z_n = 5 \Omega;$$
 $Z_f = j10 \Omega; Z_t = -j20 \Omega;$

Cách 5 Z_n
 \dot{I}_n
 \dot{I}_f
 \dot{I}_1
 \dot{U}_1

$$Z_A = 36,67 \ \Omega; \ Z_B = 55,00 \ \Omega; \ Z_C = 110,00 \ \Omega$$

$$\dot{I}_n = \frac{\dot{E}}{Z_n + \{Z_A / /[(Z_f / /Z_B) + (Z_t / /Z_C)]\}}$$
$$= \boxed{12,80 + j8,00 \text{ A}}$$

$$\dot{I}_A = \frac{\dot{E} - Z_n \dot{I}_n}{Z_A} = 3,71 - j1,09 \text{ A}$$

$$\dot{I}_{t} = \frac{(\dot{I}_{n} - \dot{I}_{A})Z_{C}}{Z_{C} + Z_{t}} = \boxed{7,20 + j10,40 \text{ A}}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

V. Mạng hai cửa

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Mạng hai cửa tương đương của mạch điện có hỗ cảm (1)

$$\begin{bmatrix}
\dot{I}_{2} \\
L_{2}
\end{bmatrix}
\dot{U}_{2} \rightarrow
\begin{bmatrix}
\dot{U}_{1} = j\omega \mathbf{L}_{1}\dot{I}_{1} + j\omega \mathbf{M}\dot{I}_{2} \\
\dot{U}_{2} = j\omega M\dot{I}_{1} + j\omega \mathbf{L}_{2}\dot{I}_{2}
\end{bmatrix}$$

$$\rightarrow \begin{cases}
L_A + L_B = L_1 \\
L_B = M
\end{cases}
\rightarrow \begin{cases}
L_A = L_1 - M \\
L_B = M \\
L_C = L_2
\end{cases}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Mạng hai cửa tương đương của mạch điện có hỗ cảm (2)

$$\begin{bmatrix} L_C & i_2 \\ \dot{U}_2 & \dot{U}_2 \end{bmatrix}$$
 $\begin{bmatrix} L_A = L_1 - M \\ L_B = M \\ L_C = L_2 - M \end{bmatrix}$

$$L_{A} = \frac{L_{1}L_{2} - M^{2}}{L_{2} - M}$$

$$L_{B} = \frac{L_{1}L_{2} - M^{2}}{M}$$

$$L_{C} = \frac{L_{1}L_{2} - M^{2}}{L_{1} - M}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Mạng hai cửa tương đương của mạch điện có hỗ cảm (3)

VD1

$$Z_{ab}=?$$

Cách 3

$$Z_A = j20 - j5 = j15\Omega$$

$$Z_C = j50 - j5 = j45\Omega$$

$$Z_{R} = j5\Omega$$

$$Z_{td} = \frac{Z_B(10 + Z_A)}{Z_B + 10 + Z_A} + Z_C$$
$$= \boxed{0,50 + j49 \Omega}$$

TRUONG BAI HOC BÁCH KHOA HÀ NỘI

Mạng hai cửa tương đương của mạch điện có hỗ cảm (4)

$$Z_{ab}=?$$

$$Z_A = \frac{j20.j50 - (j5)^2}{j50 - j5} = j21,67 \Omega$$

$$Z_B = \frac{j20.j50 - (j5)^2}{j5} = j195 \ \Omega$$

$$Z_C = \frac{j20.j50 - (j5)^2}{j20 - j5} = j65 \Omega$$

$$Z_{td} = \frac{\left(\frac{10Z_A}{10 + Z_A} + Z_B\right)Z_C}{\frac{10Z_A}{10 + Z_A} + Z_B + Z_C} = \underbrace{\begin{bmatrix}0,50 + j49 \ \Omega\end{bmatrix}}_{\text{https://sites.google.com/site/ncpdh}}$$

Mạng hai cửa tương đương của mạch điện có hỗ cảm (5)

VD2

$$Z_{1} = 10 + j15\Omega; Z_{2} = 20 + j10\Omega; Z_{M} = j2\Omega;$$

$$Z_{3} = -j20\Omega; Z_{4} = 25\Omega; \dot{E}_{1} = 100V;$$

$$\dot{E}_{2} = 150 / 30^{\circ} V; \dot{J} = 5 / 45^{\circ} A$$

Cách 2

$$Z_A = Z_1 - Z_M$$
$$Z_C = Z_2 - Z_M$$

Mạng hai cửa tương đương của mạch điện có hỗ cảm (6)

$$Z_{1} = 10 + j15\Omega; Z_{2} = 20 + j10\Omega; Z_{M} = j2\Omega;$$

$$Z_{3} = -j20\Omega; Z_{4} = 25\Omega; \dot{E}_{1} = 100V;$$

$$\dot{E}_{2} = 150 / 30^{\circ} V; \dot{J} = 5 / 45^{\circ} A$$

$$\begin{cases}
\left(\frac{1}{Z_A} + \frac{1}{Z_C} + \frac{1}{Z_3 + Z_B}\right) \dot{\varphi}_d - \frac{1}{Z_3 + Z_B} \dot{\varphi}_b = \frac{\dot{E}_1}{Z_A} + \frac{\dot{E}_2}{Z_C} \\
- \frac{1}{Z_3 + Z_B} \dot{\varphi}_d + \left(\frac{1}{Z_3 + Z_B} + \frac{1}{Z_4}\right) \dot{\varphi}_b = \dot{J}
\end{cases}$$

$$\rightarrow \begin{cases} \dot{\varphi}_d = 88,11 + j40,06 \text{ V} \\ \dot{\varphi}_b = 111,12 + j56,43 \text{ V} \end{cases}$$

$$\begin{vmatrix}
\dot{I}_{1} = (\dot{E}_{1} - \dot{\varphi}_{d}) / Z_{A} = -1,49 - j2,06 \text{ A} \\
\dot{I}_{2} = (\dot{E}_{2} - \dot{\varphi}_{d}) / Z_{C} = 2,40 + j0,79 \text{ A} \\
\dot{I}_{3} = (\dot{\varphi}_{d} - \dot{\varphi}_{b}) / (Z_{B} + Z_{3}) = 0,91 - j1,28 \text{ A} \\
\dot{I}_{4} = \dot{\varphi}_{b} / Z_{4} = 4,44 + j2,26 \text{ A}
\end{vmatrix}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

V. Mạng hai cửa

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Tương hỗ (1)

$$\begin{cases}
\dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\
\dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \\
\dot{U}_{1} = \dot{E} \\
\dot{U}_{2} = 0
\end{cases}
\rightarrow \dot{I}_{2} = \frac{Z_{21}\dot{E}}{Z_{21}Z_{12} - Z_{11}Z_{22}}$$

$$\rightarrow \dot{I}_2 = \frac{Z_{21}\dot{E}}{Z_{21}Z_{12} - Z_{11}Z_{22}}$$

Mạng hai cửa gọi là tương hỗ nếu $I_1 = I_2$

$$\begin{array}{c|c}
 & I_1 \\
 & \dot{U}_1
\end{array}$$

$$\mathbf{Z} \qquad \begin{cases}
\dot{I}_{2} \\
\dot{U}_{2} \\
\dot{E}
\end{cases} \qquad \begin{cases}
\dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\
\dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2}
\end{cases} \rightarrow \dot{I}_{1} = \frac{Z_{12}\dot{E}}{Z_{21}Z_{12} - Z_{11}Z_{22}}$$

$$\Rightarrow \dot{I}_{1} = \frac{Z_{12}\dot{E}}{Z_{21}Z_{12} - Z_{11}Z_{22}}$$

Mạng hai cửa gọi là tương hỗ nếu $Z_{12} = Z_{21}$

Tương hỗ (2)

- Mạng hai cửa gọi là tương hỗ nếu $Z_{12} = Z_{21}$.
- Bộ số \mathbf{Z} của mạng hai cửa tuyến tính không nguồn luôn có $Z_{12} = Z_{21}$.
- Suy ra: mạng hai cửa tuyến tính không nguồn luôn có tính tương hỗ.

- **Z**: $Z_{12} = Z_{21}$
- **Y**: $Y_{12} = Y_{21}$
- **H**: $H_{12} = -H_{21}$
- **G**: $G_{12} = -G_{21}$
- \mathbf{A} : $\det(\mathbf{A}) = 1$
- \mathbf{B} : $\det(\mathbf{B}) = 1$

86

Tương hỗ (3)

$$\dot{E} = 220 \,\mathrm{V}; \ Z_t = j50 \,\Omega; \ \mathbf{Z} = \begin{bmatrix} 10 & j20 \\ j20 & 40 \end{bmatrix} \Omega.$$

$$\begin{cases} \dot{U}_{1} = 10\dot{I}_{1} + j20\dot{I}_{2} \\ \dot{U}_{2} = j20\dot{I}_{1} + 40\dot{I}_{2} \\ \dot{U}_{1} = \dot{E} \\ \dot{U}_{2} = 0 \end{cases} \rightarrow \dot{I}_{2} = -j5,50 \text{ A}$$

$$\begin{cases} \dot{U}_{1} = 10\dot{I}_{1} + j20\dot{I}_{2} \\ \dot{U}_{2} = j20\dot{I}_{1} + 40\dot{I}_{2} \\ \dot{U}_{2} = \dot{E} \\ \dot{U}_{1} = 0 \end{cases} \rightarrow \dot{I}_{1} = -j5,50 \text{ A}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

V. Mạng hai cửa

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Tổng trở vào & hòa hợp tải (1)

Để truyền công suất cực đại, tổng trở tải phải bằng liên hợp phức của tổng trở Thevenin

Tổng trở vào & hòa hợp tải (2)

Tổng trở vào & hòa hợp tải (3)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad \dot{E} = 220 \text{ V}$$

$$Z_1 = 15 + j25 \Omega$$

$$\text{Tìm } Z_2 \text{ để } P_{Z2} \text{ cực đại?}$$

$$Z_2 = \hat{Z}_{td}$$

$$Z_A = Z_{11} - Z_{12} = 10 \ \Omega$$

$$Z_B = Z_{12} = 20 \ \Omega$$

$$Z_C = Z_{22} - Z_{12} = 30 \ \Omega$$

$$\dot{E}_{td}$$
 Z_{td}

$$Z_{td} = \frac{(Z_1 + Z_A)Z_B}{Z_1 + Z_A + Z_B} + Z_C = 43,21 + j3,77 \Omega$$

$$Z_2 = \hat{Z}_{td} = \boxed{43, 21 - j3, 77 \ \Omega}$$

Tông trở vào & hòa hợp tải (4)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad \dot{E} = 220 \, \mathrm{V}$$
 Cách 2
$$Tim \, Z_2 \, \text{để } P_{Z2} \, \text{cực đại?} \qquad Z_2 = \hat{Z}$$

$$\begin{cases} \dot{U}_{1} = 30\dot{I}_{1} + 20\dot{I}_{2} \\ \dot{U}_{2} = 20\dot{I}_{1} + 50\dot{I}_{2} \end{cases}$$
$$(15 + j25)\dot{I}_{1} + \dot{U}_{1} = \dot{E} = 220$$
$$\dot{I}_{2} = 0$$

$$\rightarrow \dot{U}_2 = 74,72 - j41,51 \text{V} = \dot{U}_{h\mathring{\sigma}}$$

Tông trở vào & hòa hợp tải (5)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad \dot{E} = 220 \text{ V}$$

$$Z_1 = 15 + j25 \Omega$$

$$\text{Tim } Z_2 \text{ dê } P_{Z2} \text{ cực đại?} \qquad Z_2 = \hat{Z}$$

$$\begin{cases} \dot{U}_{1} = 30\dot{I}_{1} + 20\dot{I}_{2} \\ \dot{U}_{2} = 20\dot{I}_{1} + 50\dot{I}_{2} \end{cases}$$
$$(15 + j25)\dot{I}_{1} + \dot{U}_{1} = \dot{E} = 220$$
$$\dot{U}_{2} = 0$$

$$\rightarrow \dot{I}_2 = -1,63 + j1,10 A = -\dot{I}_{ng\acute{a}n}$$

Tổng trở vào & hòa hợp tải (6)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad \dot{E} = 220 \, \mathrm{V}$$
 Cách 2
$$Z_1 = 15 + j25 \, \Omega$$

$$\mathrm{Tim} \ Z_2 \, \mathrm{del} \ P_{Z2} \, \mathrm{cực} \, \mathrm{dại} ? \qquad Z_2 = \hat{Z}_1$$

Cách 2
$$Z_1$$
 \dot{I}_1 \dot{U}_1 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2 \dot{U}_2

Tổng trở vào & hòa hợp tải (7)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad \dot{E} = 220 \text{ V}$$

$$Z_1 = 15 + j25 \Omega$$

$$\text{Tim } Z_2 \text{ dê } P_{Z2} \text{ cực đại?} \qquad Z_2 = \hat{Z}$$

$$Z_2 = \hat{Z}_{td}$$

$$\begin{cases} \dot{U}_1 = 30\dot{I}_1 + 20\dot{I}_2 \\ \dot{U}_2 = 20\dot{I}_1 + 50\dot{I}_2 \end{cases}$$
$$(15 + j25)\dot{I}_1 + \dot{U}_1 = 0$$
$$\dot{U}_2 = 10$$

$$\rightarrow \dot{I}_2 = 0,023 - j0,002 \,\text{A} \quad \rightarrow Z_{td} = \frac{10}{\dot{I}_2} = 43,15 + j3,75 \,\Omega$$

Tổng trở vào & hòa hợp tải (8)

$$Z_{ab} = \frac{\dot{U}_1}{\dot{I}_1}$$

$$\dot{U}_2 = Z_2 \dot{I}_2$$

$$\Rightarrow Z_{ab} = \frac{A_{11}Z_2 + A_{12}}{A_{21}Z_2 + A_{22}}$$

Tổng trở vào & hòa hợp tải (9)

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Tổng trở vào & hòa hợp tải (10)

$$oldsymbol{Z} = egin{bmatrix} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \end{bmatrix}$$
 ——

Tông trở vào & hòa hợp tải (11)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \Omega; \quad \dot{E} = 220 \text{ V}$$

$$Z_1 = 15 + j25 \Omega$$

$$\text{Tim } Z_2 \text{ dê } P_{Z2} \text{ cực đại?} \qquad Z_2 = \hat{Z}$$

$$Z_2 = \hat{Z}_{td}$$

$$\begin{split} Z_{td} &= Z_{ab} = \frac{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{22}Z_{1}}{Z_{11} + Z_{1}} \\ &= \frac{30.50 - 20.20 + 50(15 + j25)}{30 + 15 + j25} \\ &= 43,21 + j3,77 \ \Omega \end{split}$$

Tổng trở vào & hòa hợp tải (12)

VD2

$$\begin{vmatrix} \dot{E} = 220 \,\mathrm{V}; \ Z_t = j50 \,\Omega; \ \mathbf{Z} = \begin{bmatrix} 10 & j20 \\ j20 & 40 \end{bmatrix} \Omega. \end{vmatrix}$$

Cách 4

$$\begin{split} Z_{ab} &= \frac{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}}{Z_{22} + Z_{t}} = \\ &= \frac{10.40 - j20.j20 + 10.j50}{40 + j50} = 13,90 - j4,88 \ \Omega \end{split}$$

$$\dot{I}_1 = \frac{\dot{E}}{Z_{ab}} = \frac{220}{13,90 - j4,88} = \boxed{14,09 + j4,94 \text{ A}}$$

100

Tổng trở vào & hòa hợp tải (13)

VD3

$$\dot{E} = 220 \text{ V}; \\
Z_1 = 20 \Omega; \quad Z_t = j50 \Omega; \quad \mathbf{A} = \begin{bmatrix} 3 & 200 \\ 0,04 & 3 \end{bmatrix}. \quad Z_1 \quad \dot{I}_1 \\
\dot{U}_1 \quad \dot{U}_1$$

Cách 3

$$Z_{ab} = \frac{A_{11}Z_t + A_{12}}{A_{21}Z_t + A_{22}} = \frac{3(j50) + 200}{0,04(j50) + 3} = 69,23 + j3,85 \Omega$$

$$\dot{I}_{1} = \frac{\dot{E}}{Z_{1} + Z_{ab}} = \frac{220}{20 + 69,23 + j3,85}$$
$$= 2,46 - j0,11 \text{ A}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch I

- I. Thông số mạch
- II. Phần tử mạch
- III. Mạch một chiều
- IV. Mạch xoay chiều

V. Mạng hai cửa

- 1. Các bộ thông số Z, Y, H, G, A, B
- 2. Quan hệ giữa các bộ thông số
- 3. Phân tích mạch có mạng hai cửa
- 4. Kết nối các mạng hai cửa
- 5. Mạng T & Π
- 6. Mạng hai cửa tương đương của mạch điện có hỗ cảm
- 7. Tương hỗ
- 8. Tổng trở vào & hòa hợp tải
- 9. Hàm truyền đạt
- VI. Mạch ba pha
- VII. Khuếch đại thuật toán

Hàm truyền đạt (1)

Hàm truyền đạt áp:

$$K_u = \frac{U_2}{\dot{U}_1}$$

Hàm truyền đạt dòng:

$$K_i = \frac{I_2}{\dot{I}_1}$$

Hàm truyền đạt áp dòng: $K_{ui} = \frac{U_2}{\dot{I}_1}$

Hàm truyên đạt (2)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; \dot{E} = 220 \text{ V}$$

$$Z_{t} = 15 + j25 \Omega$$

$$T \text{ inh } K_{u}, K_{i}, K_{ui}.$$

$$\begin{cases} \dot{U}_{1} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\ \dot{U}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \\ \dot{U}_{1} = \dot{E} \\ \dot{U}_{2} = -Z_{t}\dot{I}_{2} \end{cases}$$

$$\rightarrow \begin{cases} \dot{E} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\ -Z_{t}\dot{I}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2} \end{cases}$$

$$\dot{I}_1$$
 \dot{U}_1
 \dot{U}_2
 \dot{U}_2
 \dot{U}_2

$$\dot{U}_{2} = -Z_{t}\dot{I}_{2}$$

$$\Rightarrow \begin{cases}
\dot{E} = Z_{11}\dot{I}_{1} + Z_{12}\dot{I}_{2} \\
-Z_{t}\dot{I}_{2} = Z_{21}\dot{I}_{1} + Z_{22}\dot{I}_{2}
\end{cases}
\Rightarrow \begin{cases}
\dot{I}_{1} = \frac{Z_{22} + Z_{t}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}}\dot{E} \\
\dot{I}_{2} = \frac{-Z_{21}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}}\dot{E}
\end{cases}$$

Hàm truyền đạt (3)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; \dot{E} = 220 \text{ V}$$

$$Z_{t} = 15 + j25 \Omega$$

$$\text{Tính } K_{u}, K_{i}, K_{ui}.$$

$$\dot{I}_{1} = \frac{Z_{22} + Z_{t}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}} \dot{E}$$

$$\dot{I}_{2} = \frac{-Z_{21}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}} \dot{E} \\
\dot{U}_{2} = -Z_{t}\dot{I}_{2}$$

$$\dot{U}_{2} = -Z_{t}\dot{I}_{2} = \frac{Z_{21}Z_{t}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}} \dot{E}$$

$$\to K_u = \frac{\dot{U}_2}{\dot{U}_1} = \frac{Z_{21}Z_t}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_t} = 0.28 + j0.19$$

Hàm truyền đạt (4)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; \dot{E} = 220 \text{ V}$$

$$Z_{t} = 15 + j25 \Omega$$

$$T \text{ inh } K_{u}, K_{i}, K_{ui}.$$

$$\dot{E}$$
 \dot{I}_1
 \dot{U}_1
 \dot{U}_2
 \dot{U}_2
 \dot{U}_2

$$\dot{I}_{1} = \frac{Z_{22} + Z_{t}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}} \dot{E}$$

$$\begin{vmatrix}
\dot{I}_{2} = \frac{-Z_{21}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}}\dot{E}
\end{vmatrix} \rightarrow K_{i} = \frac{-Z_{21}}{Z_{22} + Z_{t}} = \boxed{-0,27 + j0,10}$$

$$K_{i} = \frac{-\dot{I}_{2}}{Z_{22} + Z_{t}} = \boxed{-0,27 + j0,10}$$

$$\to K_i = \frac{-Z_{21}}{Z_{22} + Z_t} = \boxed{-0,27 + j0,10}$$

Hàm truyên đạt (5)

$$\mathbf{Z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix}; \dot{E} = 220 \text{ V}$$

$$Z_{t} = 15 + j25 \Omega$$

$$T \text{ inh } K_{u}, K_{i}, K_{ui}.$$

$$\dot{E}$$
 \dot{I}_1
 \dot{U}_1
 \dot{U}_2
 \dot{U}_2
 \dot{U}_2

$$\dot{I}_{1} = \frac{Z_{22} + Z_{t}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}} \dot{E}$$

$$\begin{vmatrix}
\dot{I}_{2} = \frac{-Z_{21}}{Z_{11}Z_{22} - Z_{12}Z_{21} + Z_{11}Z_{t}}\dot{E} \\
X_{ui} = \frac{\dot{U}_{2}}{\dot{I}_{1}}, \quad \dot{U}_{2} = -Z_{t}\dot{I}_{2}
\end{vmatrix} \rightarrow K_{ui} = \frac{Z_{21}Z_{t}}{Z_{22} + Z_{t}} = \frac{[6,60 + j5,15 \ \Omega]}{[6,60 + j5,15 \ \Omega]}$$

Hàm truyền đạt (6)

$$\dot{E} = 380 \text{ V}; Z_t = 15 + j25 \Omega;$$
 $K_u = 0, 28 + j0, 19; \text{ Tính } U_2?$

$$K_{u} = \frac{\dot{U}_{2}}{\dot{U}_{1}}$$

$$\rightarrow \dot{U}_{2} = K_{u}\dot{E} = (0, 28 + j0, 19)380$$

$$\dot{U}_{1} = \dot{E}$$

$$= 107, 7 + j70, 5 \text{ V}$$

$$\rightarrow U_{2} = 128, 7 \text{ V}$$