

I M M U N E TECHNOLOGY INSTITUTE

Análisis de sentimientos de reseñas -Disneyland Máster en Data Science 2406VDSO

Nombre de los autores

Keilor Fallas Lindsay López Wendy Rodríguez Allan Vargas

>OUTLINE_

O 1. INTRODUCCIÓN_

<MOTIVACIÓN>

Objetivo general:

Analizar el sentimiento de las reseñas de visitantes de Disneyland (California, París y Hong Kong) utilizando NLP, DL y ML.

<OBJETIVOS>

> OBJETIVO 1:

Preparar y limpiar los datos

> OBJETIVO 2:

Aplicar técnicas de EDA

> OBJETIVO 3:

Clasificar las opiniones usando ML, DL y NLP

> OBJETIVO 4:

Comparar desempeño de modelos

2. ESTADO DEL ARTE_

Fundamentos del análisis de sentimiento

- > Procesamiento del Lenguaje Natural (NLP)
 - >> Representación del Texto
 - >> Clasificación
 - >> Métricas de Rendimiento

Usos de la herramienta de análisis de sentimientos

2. ESTADO DEL ARTE_

Trabajos relacionados

3.

DESARROLLO_Tratamiento de datos

<Variables>

- > review_id
- > rating
- > year_month
- > reviewer_location
- > review_text
- > branch

<Limpieza>

- > Eliminar duplicados
- > Estandarizar fechas
- > Limpieza de texto
- > Consistencia de variables
- > Normalización de texto de reseñas

<Variable target>

- >1-3: Negativa
- > 4 5: Positiva

O 3. DESARROLLO_EDA

>> EDA: Histograma de la Distribución de los Ratings

Distribución de Ratings

20000 - 15000 - 10086

Rating

>> EDA: Gráfico de Pastel de la Distribución por Parque

Distribución de reseñas por Parque

3. DESARROLLO_EDA

>> EDA: Gráfico de Barras Horizontal de los Top 10 Países con Más Reseñas

>> EDA: Gráfico de líneas: Reseñas a lo Largo del Tiempo

O 3. DESARROLLO_EDA

>> EDA: Gráfico de Barras de la Distribución de Sentimiento

Split Train – Test

- > 80 % Entramiento
- > 20 % Pruebas

>>ML: Regresión Logística

0.85

0.80

0.2

0.4

Recall

3. **DESARROLLO**_ML, DL y NLP

0.6

0.8

1.0

>>ML: Naive Bayes

>>ML: Árbol de Decisión

>>DL_NLP: SVC Linear

>>DL_NLP: Natural Language Toolkit

>>DL_NLP: Recurrent Neural Network (RNN)

>>DL_NLP: BERT

>>DL_NLP: Hugging Face Transformers (DistilBERT)

>>DL_NLP: Long Short-Term Memory (LSTM)

PRUEBAS Y RESULTADOS

4.

PRUEBAS Y RESULTADOS

conclusión_1 > conclusión_1

> CONCLUSIÓN_2 > CONCLUSIÓN_3

> CONCLUSIÓN_4

El EDA permitió comprender mejor el comportamiento de los datos e identificar patrones en la distribución temporal y geográfica.

Mejor modelo predictivo Hugging **Face Transformers** (SVCLinear y SVM mostraron buenos resultados).

Se recomienda recolectar más datos de la clase negativa para mejorar la predicción.

Se recomienda utilizar técnica Ensemble para generar sinergias entre los modelos.

Muchas gracias a IMMUNE por la oportunidad_

https://immune.institute