

BUNDESREPUBLIK DEUTSCHLAND

[®] DE 299 08 319 U 1

® Gebrauchsmusterschrift

(fi) Int. CI.7: H 04 L 12/40 G 08 C 15/00

G 06 F 13/12

MARKENAMT

PATENT- UND

- (21) Aktenzeichen: (2) Anmeldetag:
- Eintragungstag:
- Bekanntmachung im Patentblatt:

299 08 319.5 10. 5. 1999 31. 8.2000

5.10.2000

(3) Inhaber:

Siemens AG, 80333 München, DE

66 Recherchenergebnisse nach § 7 Abs. 2 GbmG:

DE 38 38 152 A1 ΕP 05 98 297 A2 WO 95 30 960 A2

Metzwerk mit mehreren Teilnehmern sowie Teilnehmer für ein derartiges Netzwerk

Netzwerk mit mehreren Teilnehmern, die zum Austausch von Daten an einen gemeinsamen Bus (1) angeschlossen sind, wobei ein Teilnehmer (DPM1) als Master und zumindest ein weiterer Teilnehmer (DPS1...DPSn) als Slave betrieben werden,

wobei im Master (DPM1) eine erste Datenbasis (DB1) vorhanden ist, in welcher für jeden Slave (DPS1...DPSn) ein Datensatz mit dessen Busadresse (A1...An) und mit dessen Parametrier- und Konfigurierdaten (PK1. . .PKn) abgeleat ist.

wobei durch den Master (DPM1) neu an den Bus (1) angeschlossene Teilnehmer (DPSx) erkennbar sind und wobei jeder Slave (DPS1...DPSn, DPSx) eine Ident-Nummer (ID1...IDn, IDx) besitzt, die für den Typ des jeweiligen Slaves eindeutig und durch den Master (DPM1) über den Bus (1) abfragbar ist, dadurch gekennzeichnet,

daß der Master (DPM1) eine zweite Datenbasis (DB2) aufweist, in welcher zumindest ein Datensatz für einen Teilnehmer eines vorbestimmten Typs in das Netzwerk neu aufnehmbarer Teilnehmer mit den zugehörigen Parametrier- und Konfigurierdaten (PKx, PKy) als sogenannte Default-Projektierung abgespeichert ist,

daß der Master (DPM1) dazu ausgebildet ist, bei Erkennen eines neu an den Bus (1) angeschlossenen Teilnehmers (DPSx) dessen Ident-Nummer (IDx) abzufragen und zu überprüfen, ob es sich um einen in das Netzwerk neu aufnehmbaren weiteren Teilnehmer handelt, und

daß ein Datenbasismanager (DM) vorhanden ist, der gegebenenfalls die Default-Projektierung aus der zweiten Datenbasis (DB2) in die erste Datenbasis (DB1) kopiert und um die Busadresse (Ax) des neu angeschlossenen Teilnehmers (DPSx) ergänzt.

Beschreibung

Netzwerk mit mehreren Teilnehmern sowie Teilnehmer für ein derartiges Netzwerk

5

Die Erfindung betrifft ein Netzwerk mit mehreren Teilnehmern nach dem Oberbegriff des Anspruchs 1 sowie einen Teilnehmer für ein derartiges Netzwerk nach dem Oberbegriff des Anspruchs 2.

10

15

20

25

30

Die im Feld installierten Einrichtungen zur Automatisierung technischer Prozesse, wie Sensoren, Aktuatoren, Meßumformer, Antriebe und speicherprogrammierbare Steuerungen, nutzen zunehmend die digitale Mikroelektronik. Für den Informationsaustausch dieser Feldgeräte untereinander sowie mit übergeordneten Systemen werden bitserielle Feldbusse als Kommunikationsmedium eingesetzt. Ein derartiger Feldbus, der insbesondere für den schnellen Datenaustausch auf der Sensor-Aktuator-Ebene konzipiert wurde, ist PROFIBUS DP. Der Austausch von Daten erfolgt vorwiegend zyklisch über einen gemeinsamen Bus, an welchen die Prozeßgeräte als Teilnehmer angeschlossen sind. Eine zentrale Steuerung, die beispielsweise durch einen Personal Computer (PC) mit einem als Steckkarte ausgeführten Kommunikationsprozessor (CP) realisiert sein kann, liest als Master Eingangsinformationen von Sensoren und schreibt Ausgangsinformationen an die Aktuatoren, die als Slaves am Netzwerk betrieben werden. Jeder Slave hat eine eigene Adresse, die durch Software eingestellt und im Slave abgespeichert ist. Alternativ kann die Adresse durch eine Hardware-Einstellung, beispielsweise mit DIP-Schalter, festgelegt sein.

Zur Projektierung des Netzwerks wird ein Projektierungstool verwendet, bei dem es sich um ein gesondertes Programmiergerät oder alternativ um ein auf demselben Personal Computer ablauffähiges Programm handeln kann. Mit diesem Projektierungstool wird eine Datenbasis erstellt, die Busparameter und

2

für jeden Slave einen Datensatz enthält. Die Busparameter betreffen überwiegend den Master und enthalten beispielsweise die Busadresse des Masters, die Slot-Zeit und die Übertragungsgeschwindigkeit auf dem Netzwerk. Sie sind selbstverständlich abgestimmt auf die Einstellungen der Slaves. Für jeden Slave sind in einem Datensatz die Busadresse, eine Ident-Nummer, welche den Gerätetyp des Slaves eindeutig kennzeichnet, und Angaben über Einstellungen des jeweiligen Slaves enthalten. Derartige Angaben sind beispielsweise die Zahl der Ein- und Ausgänge des Slaves, die Dauer der Watch-10 dog-Uberwachungszeit, die Reaktionsgeschwindigkeit der Antworttelegramme, welche Optionen eingestellt sind oder ob die Watchdog-Funktion des Slaves eingeschaltet ist. Die mit dem Projektierungstool erstellte Datenbasis wird in den Master geladen und dort in einem Speicher abgelegt. Um einen zu-15 verlässigen Schutz gegen Projektierungsfehler zu erreichen, sendet der Master beim Hochlauf zuerst ein Parametrier- und ein Konfiguriertelegramm an die einzelnen Slaves, um Übereinstimmung zwischen der Datenbasis und den tatsächlich am 20 Netzwerk vorhandenen Slaves zu gewährleisten. Die Parametriertelegramme enthalten allgemeine Informationen, d. h. Informationen, die unabhängig von der jeweiligen Konfigurierung sind. Ein Beispiel hierfür ist die Watchdog-Uberwachungszeit. In Konfiguriertelegrammen wird beispielsweise die Zahl der Ein- und Ausgänge des jeweiligen Slaves, die Art der 25 Ausgänge, ob konsistent oder nichtkonsistent, byte- oder wortorientiert, übertragen. Jeder Slave vergleicht die empfangenen Daten mit seinen eigenen, intern abgelegten Einstellungen. Bei fehlender Übereinstimmung wird ein Verbindungsaufbau abgelehnt und es kommt kein Datentransfer zwi-30 schen Master und dem jeweiligen Slave zustande.

Zum Zeitpunkt der Projektierung, bei welcher die Datenbasis erstellt wird, müssen die Adressen der Slaves im Netzwerk eindeutig festgelegt werden. Eine Änderung der Netzwerk-konfiguration, z.B. durch Änderung einer Slave-Adresse oder Hinzufügen eines neuen Slaves, hat zur Folge, daß eine neue

25

35

Datenbasis erstellt werden muß. Dabei ist die Erweiterung eines bestehenden Netzwerks um einen zusätzlichen Busteilnehmer vergleichsweise aufwendig. Zunächst muß die bestehende Datenbasis in dem Projektierungstool bearbeitet werden. Dazu wird ein Datensatz mit den Parametrier- und Konfigurierdaten des neuen Teilnehmers benötigt, der unter Umständen von einem räumlich weit entfernten Ort beschafft oder gegebenenfalls neu erstellt werden muß. Zudem muß der Master am Netzwerk aufgesucht werden, der die Datenbasis enthält. Der jeweilige Rechner wird heruntergefahren, die Datenbasis vom Projektie-10 rungstool eingespielt und der Rechner mit der neuen Datenbasis hochgefahren. Insbesondere wenn diese Arbeiten selten vorgenommen werden, gestaltet sich dieses Verfahren sehr aufwendig, da sich ein Bediener neu in die jeweilige Projektie-15 rung einarbeiten muß.

Der Erfindung liegt die Aufgabe zugrunde, ein Netzwerk mit mehreren Teilnehmern sowie einen Teilnehmer für ein derartiges Netzwerk zu schaffen, bei welchem ein neuer Teilnehmer in einfacher Weise in das Netzwerk aufgenommen werden kann.

Zur Lösung dieser Aufgabe weist das neue Netzwerk der eingangs genannten Art die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale und der neue Teilnehmer für ein derartiges Netzwerk die Merkmale des Anspruchs 2 auf.

Die Erfindung hat den Vorteil, daß neue Teilnehmer ohne aufwendige Maßnahmen eines erfahrenen Bedieners in das Netzwerk aufgenommen werden können. Sie ist insbesondere in solchen Anlagen vorteilhaft anwendbar, bei denen Slaves gleichen Typs 30 von einem Anwenderprogramm identisch behandelt werden. Als Beispiel sei ein Flughafen genannt, auf welchem mehrere Anzeigetafeln mit gleichen Daten angesteuert werden. Wird zu einem späteren Zeitpunkt eine weitere Anzeigetafel an das Netzwerk angeschlossen, so wird diese als solche erkannt, in den zyklischen Datenaustausch aufgenommen und mit Anzeige-

daten versorgt, ohne daß erneut eine manuelle Projektierung des Netzwerks durchgeführt werden muß.

Anhand der Zeichnungen, in denen ein Ausführungsbeispiel der Erfindung dargestellt ist, werden im folgenden die Erfindung sowie Ausgestaltungen und Vorteile näher erläutert.

Es zeigen:

Figur 1 ein Blockschaltbild eines Netzwerks,

10 Figur 2 den prinzpiellen Aufbau einer Datenbasis und

Figur 3 eine Default-Projektierung für einen neuen Teilnehmer.

In Figur 1 ist ein einfach aufgebautes Netzwerk mit einem Feldbus 1 dargestellt, an welchen ein Teilnehmer DPM1, der 15 als Master betrieben wird, sowie Teilnehmer DPS1 ... DPSn als Slaves angeschlossen sind. Der Master ist ein Personal Computer, in welchen ein Kommunikationsprozessor CP als Steckkarte eingesetzt ist. Bei den Slaves DPS1 ... DPSn handelt es sich um Sensoren oder Aktuatoren, die über den Feldbus 1, 20 welcher der PROFIBUS DP-Spezifikation genügt, in einer Datentransfer-Phase abgefragt bzw. mit Daten versorgt werden. Bevor die Slaves DPS1 ... DPSn in die Datentransfer-Phase aufgenommen werden, prüft der Master DPM1 in einer sogenannten Parametrierungs- und Konfigurationsphase, ob die projektierte 25 Sollkonfiguration mit der tatsächlichen Gerätekonfiguration übereinstimmt.

Für die Parametrierungs- und Konfigurationsphase verwendet
der Kommunikationsprozessor CP des Masters DPM1 eine Datenbasis DB1, deren prinzipieller Aufbau in Figur 2 dargestellt
ist. Die Datenbasis DB1 enthält zum einen Busparameter BP,
die den Master DPM1 betreffen und mit den Parametern der
projektierten Slaves DPS1 ... DPSn abgestimmt sind. Beispiele
hierfür sind die Adresse des Masters DPM1 am Bus 1, die eingestellte Slot-Zeit und die Übertragungsgeschwindigkeit. Zum
andern sind in der Datenbasis DB1 Datensätze, die den einzel-

nen projektierten Slaves DPS1 ... DPSn zugeordnet sind, enthalten. Beispielsweise besteht der Datensatz, der dem Slave DPS1 zugeordnet ist, aus einer Adresse A1, einer Ident-Nummer ID1 und Parametrier- und Konfigurierdaten PK1. Entsprechend ist der Datensatz des Slaves DPSn aus einer Adresse An, einer Ident-Nummer IDn und Parametrier- und Konfigurierdaten PKn gebildet.

Zur Erstellung der Datenbasis DB1 dient ein Projektierungstool PT, das zur Datenübertragung an den Master DPM1 gemäß 10 Figur 1 angeschlossen ist. Zur Vereinfachung der Erstellung der Datenbasis können sogenannte GSD-Files verwendet werden, die in einheitlicher Form gerätespezifische elektronische Datenblätter mit vorgefertigten Parametrier- und Konfigurierdaten enthalten. Diese GSD-Files werden von Diskette in ein 15 als Projektierungstool PT eingesetztes Programmiergerät geladen. Mit dem Projektierungstool PT wird weiterhin eine zweite Datenbasis DB2 erstellt, die Datensätze einer Default-Projektierung enthält. Ein Beispiel einer derartigen Default-20 Projektierung ist in Figur 3 dargestellt. Sie besteht aus zwei Datensätzen. Der erste Datensatz wird aus einer Ident-Nummer IDx und Parametrier- und Konfigurierdaten PKx, der zweite Datensatz aus einer Ident-Nummer IDy und Parametrierund Konfigurierdaten PKy gebildet. Die in der Datenbasis DB2 abgespeicherte Default-Projektierung unterscheidet sich vor 25 allem durch das Fehlen einer Busadresse von den Datensätzen der Datenbasis DB1, die jeweils die Busadresse des Slaves aufweisen, dem die Datensätze zugeordnet sind. Für jeden Gerätetyp, der automatisch in das Netzwerk aufnehmbar ist, liegt in der Datenbasis DB2 ein Datensatz als Default-Projek-30 tierung vor.

Während der Datentransfer-Phase prüft der in Figur 1 dargestellte Master DPM1 von Zeit zu Zeit durch GAP-Abfragen, ob neue Teilnehmer, insbesondere neue Slaves, an den Bus angeschlossen wurden. Dabei werden nacheinander die Adressen angesprochen, die bisher am Bus 1 von keinem der Teilnehmer

verwendet wurden. Die Neuaufnahme eines Teilnehmers soll im folgenden anhand des Slaves DPSx erläutert werden. Seine Verbindung zum Feldbus 1 ist mit durchbrochenen Linien gezeichnet, um darzustellen, daß er während der Datentransfer-Phase an den Feldbus 1 angeschlossen wurde. Wie jeder Teilnehmer am 5 Feldbus 1 besitzt der neu zugeschaltete Slave DPSx eine eigene Adresse. Beim Slave DPSx ist diese beispielsweise durch einen DIP-Schalter eingestellt. Sendet der Master DPM1 über den Feldbus 1 ein GAP-Abfragetelegramm an den Slave DPSx, so meldet sich dieser mit einem Antworttelegramm und durch den 10 Master wird der neu angeschlossene Slave DPSx erkannt. Daraufhin richtet der Master DPM1 ein Diagnosetelegramm an den Slave DPSx, welches der Slave DPSx mit einem Telegramm beantwortet, in welchem seine Ident-Nummer IDx als Information enthalten ist. Gleichzeitig nimmt der Master DPM1 den 15 neuen Teilnehmer DPSx in seine Life-List auf, in welcher alle am Bus befindlichen Teilnehmer aufgeführt sind. Ein im Kommunikationsprozessor CP des Masters DPM1 befindlicher Datenbasismanager DM, der als Software-Tool realisiert sein kann, prüft, ob zu der empfangenen Ident-Nummer IDx des Slaves DPSx 20 in der Datenbasis DB2 ein Datensatz einer Default-Projektierung vorliegt. Ist dies der Fall, so gehört der Slave DPSx zu den Gerätetypen, die automatisch in das Netzwerk neu aufgenommen werden können. Der Datenbasismanager DM kopiert den Datensatz mit der Ident-Nummer IDx und den Parametrier- und 25 Konfigurierdaten PKx in die Datenbasis DB1, fügt die Adresse Ax des neu zugeschalteten Slaves DPSx hinzu, so daß ein vollständiger Datensatz für den Teilnehmer DPSx in der Datenbasis DB1 vorliegt. Zur Vermeidung von Projektierungsfehlern werden anschließend analog zur Parametrierungs- und Konfigurations-30 phase beim Hochlauf Parametrierungs- und Konfigurierungstelegramme an den Slave DPSx gesendet und überprüft, ob die projektierte Konfiguration mit der tatsächlichen Gerätekonfiguration übereinstimmt. Damit ist der Slave DPSx neu in den zyklischen Datenverkehr des PROFIBUS DP eingebunden. 35

Wird andererseits ein Teilnehmer vom Bus 1 entfernt oder fällt ein Teilnehmer während der Datentransfer-Phase aus, so wird durch den Datenbasismanager DM der diesem Teilnehmer zugeordnete Datensatz aus der Datenbasis DB1 gelöscht.

5

10

Der Datenbasismanager DM kann im Hintergrund als gesonderte Task des Kommunikationsprozessors CP ablaufen, so daß die PROFIBUS DP-Kommunikation für eine Ergänzung der Datenbasis DB1 nicht unterbrochen werden muß. Damit kann die Aufnahme neuer Teilnehmer dynamisch erfolgen, ohne daß damit Nachteile für den Kommunikationszyklus auf dem Netzwerk verbunden wären.

Die automatische Neuaufnahme von Slaves ist besonders dann vorteilhaft, wenn neu zugeschaltete Slaves durch ein im Personal Computer ablaufendes Anwenderprogramm AP in gleicher Weise behandelt werden wie bereits vorhandene Slaves. Das ist beispielsweise bei Anzeigetafeln auf einem Flughafen der Fall. Eine besondere Vorbereitung des Anwenderprogramms AP zur Eingliederung neu zugeschalteter Slaves ist dann nicht erforderlich.

In anderen Fällen, in denen ein neu an den Feldbus 1 angeschlossener Slave auch im Anwenderprogramm AP zu berücksichtigen ist, muß das Anwenderprogramm AP für die Aufnahme 25 neuer Slaves eines freigeschalteten Typs, d. h. eines Gerätetyps, für welchen eine Default-Projektierung in der Datenbasis DB2 vorliegt, vorbereitet sein. Diese Vorbereitung ist jedoch anwendungsspezifisch vorzunehmen. Eine Möglichkeit wäre die Erzeugung einer Meldung durch den Datenbasismanager 30 DM an einen Bediener, der dann die Einbindung des neuen Teilnehmers in die jeweilige Anwendung vornimmt. Eine andere Möglichkeit mit einem entsprechend vorbereiteten Anwenderprogramm ist die Erzeugung einer Event-Meldung durch den Datenbasismanager DM, welche das Anwenderprogramm AP darüber 35 informiert, daß ein neuer Slave aufgenommen worden ist. Begleitend werden dem Anwenderprogramm AP die Adresse des neu

zugeschalteten Slaves und dessen Ident-Nummer mitgeteilt. Das Anwenderprogramm AP ist dann so auszugestalten, daß es individuell auf jeden neuen Slave-Typ reagiert.

In dem beschriebenen Ausführungsbeispiel wurden eine Datenbasis DB1 mit den Datensätzen der bereits im Netzwerk befindlichen Teilnehmer und eine Datenbasis DB2 mit Datensätzen automatisch in das Netzwerk einbindbarer Teilnehmer verwendet. Alternativ können selbstverständlich die Datensätze auch in einer gemeinsamen Datenbasis zusammengefaßt werden, wobei dann eine Kennung zur Unterscheidung vorzusehen ist, ob der jeweilige Teilnehmer, dem ein Datensatz zugeordnet ist, bereits in das Netzwerk eingebunden ist oder ob es sich um einen Datensatz einer Default-Projektierung handelt.

Schutzansprüche

werden,

35

1. Netzwerk mit mehreren Teilnehmern, die zum Austausch von Daten an einen gemeinsamen Bus (1) angeschlossen sind, wobei ein Teilnehmer (DPM1) als Master und zumindest ein weiterer Teilnehmer (DPS1 ... DPSn) als Slave betrieben

wobei im Master (DPM1) eine erste Datenbasis (DB1) vorhanden ist, in welcher für jeden Slave (DPS1 ... DPSn) ein Datensatz

- mit dessen Busadresse (Al ... An) und mit dessen Parametrierund Konfigurierdaten (PK1 ... PKn) abgelegt ist,
 wobei durch den Master (DPM1) neu an den Bus (1) angeschlossene Teilnehmer (DPSx) erkennbar sind und
 wobei jeder Slave (DPS1 ... DPSn, DPSx) eine Ident-Nummer
- 15 (ID1 ... IDn, IDx) besitzt, die für den Typ des jeweiligen Slaves eindeutig und durch den Master (DPM1) über den Bus (1) abfragbar ist,

dadurch gekennzeichnet,

- daß der Master (DPM1) eine zweite Datenbasis (DB2) aufweist,
 20 in welcher zumindest ein Datensatz für einen Teilnehmer eines
 vorbestimmten Typs in das Netzwerk neu aufnehmbarer Teilnehmer mit den zugehörigen Parametrier- und Konfigurierdaten
 (PKx, PKy) als sogenannte Default-Projektierung abgespeichert
 ist,
- daß der Master (DPM1) dazu ausgebildet ist, bei Erkennen eines neu an den Bus (1) angeschlossenen Teilnehmers (DPSx) dessen Ident-Nummer (IDx) abzufragen und zu überprüfen, ob es sich um einen in das Netzwerk neu aufnehmbaren weiteren Teilnehmer handelt, und
- daß ein Datenbasismanager (DM) vorhanden ist, der gegebenenfalls die Default-Projektierung aus der zweiten Datenbasis (DB2) in die erste Datenbasis (DB1) kopiert und um die Busadresse (Ax) des neu angeschlossenen Teilnehmers (DPSx) ergänzt.

2. Teilnehmer für ein Netzwerk nach Anspruch 1, dadurch gekennzeichnet,

daß der Teilnehmer (DPM1) als Master betreibbar ist,
daß der Teilnehmer (DPM1) eine erste Datenbasis (DB1) aufweist, in welcher für jeden Slave (DPS1 ... DPSn, DPSx) ein
Datensatz mit dessen Busadresse (Al ... An, Ax) und mit dessen Parametrier- und Konfigurierdaten (PK1 ... PKn, PKx)
ablegbar ist,

daß durch den Teilnehmer (DPM1) neu an den Bus angeschlossene Teilnehmer (DPSx) erkennbar sind,

daß durch den Teilnehmer (DPM1) eine Ident-Nummer (ID1 ...

- 10 IDn, IDx) eines Slaves (DPS1 ... DPSn, DPSx) abfragbar ist, daß der Teilnehmer (DPM1) eine zweite Datenbasis (DB2) aufweist, in welcher zumindest ein Datensatz für einen Teilnehmer eines vorbestimmten Typs in das Netzwerk neu aufnehmbarer Teilnehmer mit den zugehörigen Parametrier- und Kon-
- 15 figurierdaten (PKx, PKy) als sogenannte Default-Projektierung abspeicherbar ist,
 - daß der Teilnehmer (DPM1) dazu ausgebildet ist, bei Erkennen eines neu an den Bus (1) angeschlossenen Teilnehmers (DPSx) dessen Ident-Nummer (IDx) abzufragen und zu überprüfen, ob es
- 20 sich um einen in das Netzwerk neu aufnehmbaren weiteren Teilnehmer handelt, und
 - daß ein Datenbasismanager (DM) vorhanden ist, durch welchen gegebenenfalls die Default-Projektierung aus der zweiten Datenbasis (DB2) in die erste Datenbasis (DB1) kopierbar und
- 25 um die Busadresse (Ax) des neu angeschlossenen Teilnehmers (DPSx) ergänzbar ist.

]	ВР		
FIG 2	PK1	ID1	A1
1 1102 !	•		
	PKn	IDn	An

IDx	PKx
IDy	PKy

FIG 3