

® BUNDESREPUBLIK DEUTSCHLAND

® Offenlegungsschrift ® DE 195 19 895 A 1

DEUTSCHES PATENTAMT

(21) Aktenzeichen: 195 19 895.6 Anmeldetag: 31. 5.95 Offenlegungstag: 5. 12. 98

(5) Int. Cl.8: C 07 C 255/23 C 07 C 253/30 C 07 B 83/04 C 08 K 5/315 C 09 K 15/20 C 09 K 15/30 C 09 D 7/12 A 81 K 31/445 // (C08K 5/315, 5:3435}

(1) Anmelder:

BASF AG, 87083 Ludwigshafen, DE

② Erfinder:

Krause, Alfred, Dr., 67346 Speyer, DE; Holderbaum, Martin, Dr., 87065 Ludwigshafen, DE; Aumüller, Alexander, Dr., 67435 Neustadt, DE; Trauth, Hubert, 67373 Dudenhofen, DE; Sperling-Vietmeier, Karin, Dr., 87433 Neustadt, DE

3 2-Cyanacryisäureester

Neue 2-Cyanacry!säureester I

$$\left(\begin{array}{c} R^1 \\ R^2 \end{array}\right) C = C \left(\begin{array}{c} CO - O \\ CN \end{array}\right)_n$$

wobei die Reste folgende Bedeutung haben: einer der Reste R¹ und R² Wasserstoff und der andere ein Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern

X für n = 2 ein Rest der Formei II

wobel m - 2 bis 8 ist

X für n > 2 der Rest eines n-wertigen allphatischen oder sycloaliphatischen Polyois mit 3-20 C-Atomen, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten

Die Verbindungen I dienen als Lichtschutzmittel.

Beschreibung

Die vorliegende Erfindung betrifft neue 2-Cyanacrylsäureester der Formel I,

$$\begin{pmatrix}
R^{1} & C & CO & O \\
R^{2} & C & CN
\end{pmatrix}_{n}$$
1

in der einer der Reste R¹ oder R² Wasserstoff bedeutet und der andere für einen Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern steht, n einen Wert von 2 bis 10 hat und

X für den Fall, daß n = 2 ist, einen Rest der Formel II

bedeutet, wobei m einen Wert von 2 bis 8 hat und

X für den Fall, daß n >2 ist, den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit 3—20 C-Atomen bezeichnet, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten kann.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der Verbindungen I, ihre Verwendung als Lichtschutzmittel oder Stabilisatoren für organische Materialien, insbesondere für kosmetische oder dermatologische Zubereitungen, Kunststoffe oder Lacke sowie organische Materialien, welche die Verbindungen I enthalten.

Aus der US-A 3 215 725 und der DE-A 41 22 475 sind 2-Cyanacrylsäureester von einwertigen und zweiwertigen Alkoholen als Lichtschutzmittel für Kunststoffe und Lacke bekannt.

Diese Verbindungen haben jedoch den anwendungstechnischen Nachteil einer relativ hohen Flüchtigkeit. Da sie außerdem mit vielen organischen Materialien, insbesondere mit Polyolefinen nur bedingt verträglich sind, neigen sie vor allem bei Wärmelagerung zur Migration und darauf beruhenden Ausschwitzeffekten.

Es war daher Aufgabe der Erfindung, diesen Nachteilen durch neue Stabilisatoren vom Typ der 2-Cyanacrylsäureester abzuhelfen.

Demgemäß wurden die eingangs definierten 2-Cyanacrylsäureester der allgemeinen Formel I gefunden.

Weiterhin wurde ein Verfahren zur Herstellung dieser Verbindungen, ihre Verwendung als Lichtschutzfaktoren oder Stabilisatoren von organischen Materialien sowie organische Zubereitungen, die diese Verbindungen als Stabilisatoren enthalten, gefunden.

Da die Reste R¹ und R² ungleich sind, können die 2-Cyanacrylsäureestergruppen von I sowohl in der Cis-als auch in der trans-Form vorliegen. Bei der Herstellung der Verbindungen entstehen meist Gemische dieser Isomeren. Eine Trennung dieser Isomeren ist möglich, jedoch für die meisten anwendungstechnischen Zwecke nicht erforderlich.

Als organische Reste für R¹ bzw. R² kommen allgemein Ringstrukturen in Betracht, die mindestens einen isooder heteroaromatischen Kern enthalten, der vorzugsweise direkt an das 3-C-Atom der Acrylsauregruppierung gebunden ist, aber auch über aliphatische oder cycloaliphatische Gruppierungen mit diesem C-Atom verknüpft sein kann.

Bevorzugt steht R¹ bzw. R² für die Phenylgruppe sowie daneben allgemein für Phenylgruppen, die bis zu 3 der folgenden Substituenten tragen können:

- lineares C1-C3-Alkyl wie Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl oder Octyl,
- verzweigtes C3—C3-Alkyl wie iso-Propyl, iso-Butyl, sec.-Butyl, tert-Butyl, iso-Pentyl, sec.-Pentyl, tert-Pentyl, neo-Pentyl oder 2-Ethylhexyl,
- Cyan, Hydroxy,

60

- C₁—C₁₈-Alkoxy wie Methoxy, Ethoxy, Propoxy, Butoxy oder 2-Ethylhexoxy sowie längerkettige Alkoxy-gruppen, wobel der Alkylrest bevorzugt von natürlichen Fettsäuren abgeleitet ist wie Decyl, Dodecyl, Tetradecyl, Hexadecyl oder Octadecyl,
- Carbalkoxyreste mit den oben genannten Alkylgruppen oder
- C3-C6-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Methylcyclopentyl oder Cyclohexyl.

Unter den substituierten Phenylgruppen haben solche besondere Bedeutung, die in 4-Stellung eine Hydroxygruppe oder eine C₁—C₄-Alkoxygruppe tragen, da diese 4-substituierten Phenylgruppen zum stabilisierenden Effekt der Verbindungen I beitragen. Dieser Effekt wird durch die Methyl- oder tert.-Butylgruppen in 3-Stellung sowie besonders durch zwei dieser Gruppen in 3- und 5-Stellung noch weiter verstärkt, so daß für die Reste R¹ bzw. R² Reste der Formel Ia

$$\mathbb{R}^3$$
O

in der R³ für Wasserstoff oder einen C₁--C₄-Alkylrest steht und R⁴ Methyl oder tert-Butyl bedeutet, ganz 10 besonders bevorzugt werden.

Ein weiterer bevorzugter Rest für R1 bzw. R2 ist der Chromanrest Ib

da auch dieser die stabilisierende Wirkung der Verbindungen I verstärkt.

Als weitere Reste R¹ bzw. R² kommen heterocyclische Gruppen wie substituierte oder unsubstituierte Thiophenyl, Furfuryl- und Pyridylreste in Betracht.

Ist n = 2 steht X für einen Rest der Formel II

wobel m einen Wert von 2 bis 8, vorzugsweise 2 bis 6 bedeutet, besonders bevorzugt jedoch für 2 steht.

Wenn n > 2 ist, steht X für den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Alkohols. Diese Alkohole können linear oder verzweigt sein, und ihre C-Ketten können durch ein oder mehrere Sauerstoff- oder Schwefelatome, durch Iminogruppen (-NH-) oder Alkyliminogruppen (-NR'-), wobei R' vorzugsweise für 35 C_1-C_4 -Alkyl steht, unterbrochen sein.

Die Gruppierung X leitet sich vorzugsweise von folgenden bekannten Polyolen ab:

65

Die 2-Cyanacrylsäureester der Formel I sind vorzugsweise durch Umsetzung von Cyanessigsäureestern der allgemeinen Formel III

mit n mol eines Aldehydes (IV)

unter den Bedingungen der Knoevenagel-Kondensation erhältlich. Die Umsetzung kann z. B. in aromatischen Lösungsmitteln wie Toluol oder Xylol durchgeführt werden (s. z. B. Organikum, Ausgabe 1976, S. 572). Bevorzugt werden jedoch polare organische Lösungsmittel wie Dimethylformamid, Dimethylacetamid oder N-Methylpyrrolidon verwendet. Die Reaktionstemperaturen liegen bevorzugt zwischen 20 und 120°C, besonders bevorzugt zwischen 40 und 80°C. In Abhängigkeit von der Reaktivität des eingesetzten Aldehyds ist die Verwendung eines Katalysators bzw. eines Katalysatorgemisches vorteilhaft. Als Katalysatoren eignen sich z. B. Ammoniumscetat sowie Piperidin und B-Alanin und deren Acetate.

Die Cyanessigester II können beispielsweise durch Umsetzung von Cyanessigsäure oder deren Estern mit den entsprechenden Polyolen x(OH)n in Gegenwart eines Katalysators wie Borsäure, Na₂CO₃ oder K₂CO₃ oder Tetrabutylorthotitanat vorzugsweise in Toluol oder Xylol hergestellt werden.

Die erfindungsgemäßen Verbindungen eignen sich in hervorragender Weise zum Stabilisieren von organischen Materialien gegen die Einwirkung von Licht, Sauerstoff und Wärme.

So können beispielsweise Kunststoffe wie Polyester, Polyurethane, Polyamide und Polycarbonate sowie Additionspolymere wie Polyacrylate, Polystyrol, Polyethylen oder copolymere wie Acrylnitril-Butadien-Styrol (ABS) mit den 2-Cyanacrylsäureestern I wirkungsvoll stabilisiert werden. Das gleiche gilt für Lacke und andere Anstrichmittel. Für diesen Anwendungsbereich werden die Verbindungen in Konzentrationen von 0,01 bis 5 Gew.-%, bezogen auf die Menge des Kunststoffs, eingesetzt, bevorzugt in einer Konzentration von 0,02 bis 2 Gew.-%. Die Kombination mit anderen Stabilisatoren, beispielsweise Antioxidantien, Metalldesaktivatoren oder anderen Lichtschutzmitteln sowie mit antistatischen oder flammhemmenden Mitteln, ist oft vorteilhaft.

Besonders wichtige Costabilisatoren sind beispielsweise sterisch gehinderte Phenole sowie Phosphite, Phosphonite, Amine und Schwefelverbindungen.

Als geeignete Costabilisatoren kommen z. B. in Betracht:

Phenolische Antioxidationsmittel wie	5
2,6-Di-tertbutyl-4-methylphenol,	
u-Octadecyl-β-(3,5-di-tert-butyl-4-hydroxyphenol)-propionat,	
1,1,3-Tris-(2-methyl-4-hydroxy-5-tertbutylphenyl)-butan,	
1,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-benzol,	
1,3,5-Tris-(3,5-di-tertbutyl-4-hydroxybenzyl)-isocyanurat,	10
1,3,5-Tris-{B-(3,5-di-tertbutyl-4-hydroxyphenyl)-propionylethyl]-isocyanurat,	
1,3,5-Tris-(2,6-di-methyl-3-hydroxy-4-tertbutylbenzyf)-isocyanurat und	
Pentaerythrit-tetrakis-[β-(3,5-di-tertbutyl-4-hydroxy)-propicnat],	
phosphorhaltige Antioxidantien wie	15
Tris-(nonylphenyl)-phosphit, Distearylpentaerythritphosphit,	
Tris-(2,4-di-tertbutyl-phenyl)-phosphit,	
Tris-(2-tert-butyl-4-methylphenyl)-phosphit	
Bis-(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit und	
Tetrakis-(2,4-di-tertbutylphenyl)-4,4'-biphenylendiphosphit,	20
schwefelhaltige Antioxidantien wie	
Dilaurylthiodipropionat,	
Dimyristylthiodipropionat,	
Distearylthiodipropionat,	25
Pentaerythrittetrakis-(β-laurylthiopropionat) und	
Pentäerythrittetrakis-(ß-hexyithiopropionat),	
sterisch gehinderte Amine wie	
Bis-(2.2,6,6-tetramethylpiperidyl)-sebacat,	30
Bis-(1,2,2,6,6-pentamethylpiperidyl)-sebacat,	
Bis-(1,2,2,6,6-pentamethylpiperidyl)-ester,	
N,N'-Bis(formyl)-bis (2,2,6,6-teträmethyl-4-piperidyl)-1,6-hexandiamin,	
das Kondensationsprodukt von	35
1-Hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernsteinsäure,	
das Kondensationsprodukt von	
N.N'-(2,2,6,6-Tetramethylpiperidyl)-hexamethylendiamin und	
4-tert-Octylamino-2,6-dichlor,1,3,5-s-triazin,	40
Poly-[3-(Bicosyl/Tetracosyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-pyrrolidin-2,5-dion].	
Tris-(2,2,6,6-Tetramethylpiperidyl)-nitrilotriacetat, Tetrakis-(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butantetracarbonsäure,	
1-etranis-(2,2,5,5-tetrametmy1-4-piperidy1-1,2,5,4-butantetracarponsaure, 1,1'-(1,2-Ethandiyl)-bis-(3,3,5,5-tetramethylpiperazinon),	
	45
die Kondensationsprodukte von	
4-Amino-2,2,6,6-tetramethylpiperidinen und Tetramethylolacetylendiharnstoffen sowie	
2-(2'-Hydroxyphenyi)-benztriazole,	
2-Hydroxybenzophenone,	50
Arylester von Hydroxybenzoesäuren,	
z-cyanozimtsäurederivate,	
Nickelverbindungen oder	
Qxalsāuredianilīde.	
7.10 Vannischung der enfindungsgemäßen Verkinder ein I uns allem ein Verster für 1.00.00. 11.1. Leine	55
Zur Vermischung der erfindungsgemäßen Verbindungen I, vor allem mit Kunststoffen, können alle bekannten	

Zur Vermischung der erfindungsgemäßen Verbindungen I, vor allem mit Kunststoffen, können alle bekannten Vorrichtungen und Methoden zum Einmischen von Stabilisierungsmitteln oder anderen Zusätzen in Polymere angewandt werden.

Die UV-Strahlung wird in drei Bereiche eingeteilt: den UV-A-Bereich (320—400 nm), den UV-B-Bereich (290—320 nm) und den UV-C-Bereich (200—290 nm). Der hochenergetische UV-C-Bereich wird überwiegend von der Ozonschicht absorbiert. Strahlung im UV-B-Bereich ist vor allem für die Entstehung von Sonnenbrand und Hautkrebs verantwortlich. Die UV-A-Strahlung bewirkt bei längerer Einwirkung sowohl die Hautbräunung, ist aber auch für die Alterung der Haut mitverantwortlich.

Wegen der günstigen Löslichkeitseigenschäften sowie der guten Absorptionseigenschäften, besonders im UV-A-Bereich, eignen sich die erfindungsgemäßen Verbindungen besonders für Anwendungen im kosmetischen und dermatologischen Bereich. Auch zum Schutz kosmetischer Präparate wie Parfums, Cremes und Lotionen können die Verbindungen vorteilhaft eingesetzt werden. Besonders bevorzugt sind Kombinationen mit Lichtschutzmitteln, die im UV-B-Bereich absorbieren. Für kosmetische Formulierungen werden die 2-Cyanacrylsäu-

reester I in Konzentrationen von 0,05 bis 15-Gew.-%, bevorzugt von 0,1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der kosmetischen Formulierung, eingesetzt.

Weitere organische Materialien, denen die erfindungsgemäßen Verbindungen vorteilhaft zugemischt werden, sind Arzneimittelformulierungen wie Pillen und Zäpfehen, photographische Aufzeichnungsmaterialien, insbesondere photographische Emulsionen, sowie Vorprodukte für Kunststoffe und Lacke.

Beispiele

Allgemeine Herstellvorschrift

0,1 mol eines n-wertigen Cyanessigsäureesters III,

10

25

45

50

55

65

welcher durch Umsetzung von Cyanessigsäure mit dem entsprechenden n-wertigen Alkohol in bekannter Weise erhalten wurde, wurden mit 0,12 n mol eines Aldehyds IV

in 100 ml N,N-Dimethylacetammid in Gegenwart von 0,5 ml Piperidin und 0,3 ml Eisessig umgesetzt. Nach 3 Stunden bei 70°C wurde der Niederschlag abgetrennt, mit Methanol und Wasser gewaschen und getrocknet. Die Einzelheiten dieser Versuche sowie die Eigenschaften der erhaltenen Verbindungen I sind der folgenden Tabelle zu entnehmen.

DE 195 19 895 A1

Bsp	X	R ¹ bzw. R ²	λmax [nm]	molarer Extinktions- koeffizient 8 [1-cm ⁻¹ -mol ⁻¹]	Schmelz -punkt [°C]	Yna-	5
1	-CH ₂ -CH ₂ -N	H ₃ CO	342	57 000	>265	95	10
2	-CH ₂ -CH ₂ -N	но	350	59 000	>265	70	15
3	-CH ₂ -CH ₂ -N	H3CO X	336	47 000	>265	92	20
4	CH ₂ - -CH ₂ -C-CH ₃ CH ₂ -	\bigcirc	306	59 188	110-112	70	25
5	CH ₂ - -CH ₂ -C-CH ₃ CH ₂ -	H3C-	322	66 678	115–120	77	30
6	CH ₂ - -CH ₂ -C-CH ₃ CH ₂ -	н ₃ со-	346	76 912	75-80	90	. 35

2

	Bsp	X	R1 bzw.	•	molarer	Schmelz	Aus-
			R ²	λmax [nm]	Extinktions- koeffizient	-punkt	beute [%]
				frmi	8	[°C]	
5					[1-cm ⁻¹ -mol ⁻¹]		
10	7	CH ₂ - -CH ₂ -C-CH ₃ CH ₂	+	324	73 332	90-95	84
15	8	CH ₂ - - -CH ₂ -C-CH ₃ CH ₂ -	H ₃ CO	340	72 000	179–181	70
20	9	CH ₂ - -CH ₂ -C-CH ₃ -CH ₂ -	HO X	353	72 000	170-174	77
25	10	CH ₂ - -CH ₂ -C-CH ₃ CH ₂ -	H ₃ CO-	354	72 100	95100	88
30	11	CH ₂ - - -CH ₂ -C-CH ₂ -CH ₃ CH ₂ -		306	58 256	114-116	63
35	12	CH ₂ -CH ₂ -C-CH ₂ -CH ₃ CH ₂	H3C-	322	67 090	95–102	74
40	13	CH ₂ - -CH ₂ -C-CH ₂ -CH ₃ CH ₂ -	H3CO-	346	75 519	30–35	73
45	14	CH ₂ - -CH ₂ -C-CH ₂ -CH ₃ CH ₂ -	+<>>	322	57 601	168–170	67
50	15	CH ₂ - -CH ₂ -C-CH ₂ -CH ₃ CH ₂	H ₃ CO-	338	68 000	103-105	74
55	16	CH ₂ - -CH ₂ -C-CH ₂ -CH ₃ CH ₂ -	н3со-	354	72 000	85–87	74
60	17	CH ₂ 	но -	358	106 480	275-276	66
65	18	CH ₂ - 	H ₃ Co-	346	102 298	215-216	90

Bsp	х	R ¹ bzw. R ²	λmax [zm]	molarer Extinktions- koeffizient	Schmelz -punkt [°C]	Aus~ beute [%]	
				[1-cm ⁻¹ -mol ⁻¹]			5
19	CH ₂ - -CH ₂ -C-CH ₂ - CH ₂ -	<u></u>	308	63 909	148-155	79	10
20	CH ₂ - - -CH ₂ -C-CH ₂ - CR ₂ -	H3C-	324	102 273	250	79	15
21	CH ₂ - 	+(>	324	101 131	130-131	67	20
22	CH ₂ - -CH ₂ -C-CH ₂ - CH ₂ -	H3CO-	342	51 000	98-100	60	25
23	CH ₂ - -CH ₂ -C-CH ₂ CH ₂ -	H3CO-X	356	110 500	115-118	87	30
24	CH2- CH2- -CH2-C-CH2-0-CH2-C-CH2- CH2- CH2-	H3C-	320	120 582	128-132	65	35
25	CH2- CH2- -CH2-C-CH2-C-CH2- -CH2- CH2- CH2-	H3CO-	342,	145 000	105-108	88	40
26	CH2- CH2- -CH2-C-CH2-G-CH2-C-CH2- CH2- CH2-	H3CC	338	149 300	150-151	58	45
27	CH2- CH2- -CH2-C-CH2-O-CH2-C-CH2- CH2- CH2-	H300	352	145 000	135-140	51	50

^{*} UV-Messungen in CH2Cl2

Patentansprüche

1.2-Cyanacrylsäureester der Formel I

in der einer der Reste R¹ oder R² Wasserstoff bedeutet und der andere für einen Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern steht, n einen Wert von 2 bis 10 hat und

X für den Fall, daß n = 2 ist, einen Rest der Formel II

bedeutet, wobei m einen Wert von 2 bis 8 hat und

15

20

25

30

40

55

65

X für den Fall, daß n > 2 ist, den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit 3-20 C-Atomen bezeichnet, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten kann. 2 2-Cyanacryksäureester nach Anspruch 1, in denen einer der Reste R¹ oder R² die Phenylgruppe bedeutet, die bis zu 3 der folgenden Substituenten tragen kann: C₁-C₈-Alkyl, C₁-C₁₈-Alkoxy, C₂-C₆-Cycloalkyl, C₂-C₆-Acyl, C₂-C₆-Acyloxy, C₂-C₆-Alkoxycarbonyl, Cyan und Hydroxy.

3. 2-Cyanacrylsäureester nach Anspruch 2, in denen die Phenylgruppe in 4-Stellung eine Hydroxylgruppe oder eine C₁-C₄-Alkoxygruppe trägt.

4.2-Cyanacrylsäureester nach Anspruch 2 oder 3, in denen die Phenylgruppe in 3-Stellung eine Methyl- oder tert.-Butylgruppe trägt.

5.2-Cyanacrylsäureester nach den Ansprüchen 1 bis 4, in denen n einen Wert von 3 bis 6 einnimmt.
 6. Verfahren zur Herstellung von 2-Cyanacrylsäureestern gemäß den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man einen Cyanessigsäureester der allgemeinen Formel II

mit n mol eines Aldehydes der allgemeinen Formel IV

unter den Bedingungen der Knoevenagel-Kondensation in einem polaren Lösungsmittel und in Gegenwart eines Katalysators umsetzt.

 Verwendung der 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 5 als Lichtschutzmittel oder Stabilisatoren für organische Materialien.

8. Verwendung der Z-Cyanacrylsäureester gemäß Anspruch 6 als Lichtschutzmittel oder Stabilisatoren in kosmetischen oder dermatologischen Zubereitungen.

 Verwendung der 2-Cyanacrylsäureester gemäß Anspruch 6 als Lichtschutzmittel oder Stabilisatoren in Kunststoffen oder Lacken.

10. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisierte organische Materialien, welche 0,01 bis 10 Gew.-%, bezogen auf die Menge des organischen Materials, eines oder mehrerer 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 5 enthalten.

11. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisierte kosmetische oder dermatologische Zubereitungen, welche 0,01 bis 15 Gew. '%, bezogen auf die Menge dieser Zubereitungen, eines oder mehrerer 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 5 enthalten.

12. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabilisierte Kunststoffe und Lacke, welche 0,01 bis 10 Gew.-%, bezogen auf die Menge des Kunststoffs oder Lacks, eines oder mehrerer 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 5 enthalten.