smires – Calculating Hydrological Metrics for Univariate Time Series

Tobias Gauster, Gregor Laaha

Institute of Applied Statistics and Computing BOKU, Vienna

Happy families are all alike; ...

- Leo Tolstoi, Anna Karenina

Hydrological/ecological metrics are all alike.

Science and Management of Intermittent Rivers and Ephemeral Streams

Working Group 1: Prevalence, distribution and trends of IRES

The R package smires

- Provides a framework for computing hydro-/ecological metrics.
- Contains sample datasets of every participating European country.
- Is aimed at unexperienced useRs.
- Has only a few requirements on input data.
- Can work with binary data (flow, no-flow).

https://github.com/mundl/smires

Functions

Preprocessing

```
is.intermittent() checks for intermittency
validate() validates input time series
```

Computing Metrics

```
metric() continuous time series
smires() binary time series, e.g. for intermittent rivers
```

Low level functions

```
group_by_interval() assigns indices and groups
find_events() derives a binary time series
```

Metrics for continuous time series

E.g. mean annual maximum discharge

```
> metric(balder,
+
         fun_major = max, fun_total = mean,
         plot = T, drop = T, outvar = "mean.annual.max")
+
mean.annual.max
```

5.438429

Metrics for continuous time series

E.g. mean annual maximum discharge, hydrological year starting in September

```
> metric(balder, major = 244,
+ fun_major = max, fun_total = mean,
+ plot = T, drop = T, outvar = "mean.annual.max")
```

mean.annual.max 5.696429

Metrics for continuous time series

E.g. maximum annual discharge, hydrological year starting in September

```
> metric(balder, major = 244, fun_major = max)
# A tibble: 7 x 2
 major variable
 <ord>
          <dbl>
  1974 4.720
2 1975 3.955
3
  1976 5.471
4
  1977 5.334
5
  1978
          7.757
  1979 6.753
6
7
  1980
          5.885
```

Threshold is 1 l/s

```
> smires(balder, plot = T) %>% head(3)
```

```
# A tibble: 3 \times 9
                                 end group duration major minor variab
  event
          state
                     start
                               <date> <dbl>
                                              <time> <ord> <ord>
  <ord>
         <fctr>
                    <date>
                                                                   <tim
      1 no-flow 1974-09-01 1974-10-17
                                             46 days 1974
                                                             Sep
                                                                  46 da
2
           flow 1974-10-17 1974-10-30
                                             13 days
                                                      1974
                                                             Oct
                                                                  13 da
3
      3 no-flow 1974-10-30 1974-11-05
                                                      1974
                                              6 days
                                                             Oct
                                                                   6 da
```

Stream-Flow Permanence (threshold = 0.001)

Threshold is 20 I/s

```
> smires(balder, threshold = 0.2, plot = T) %>% head(3)
```

```
# A tibble: 3 \times 9
                                end group duration major minor variab
  event
         state
                     start
                               <date> <dbl>
                                              <time> <ord> <ord>
  <ord>
        <fctr>
                    <date>
                                                                   <tim
      1 no-flow 1974-09-01 1974-10-18
                                             47 days 1974
                                                             Sep
                                                                  47 da
2
           flow 1974-10-18 1974-10-19
                                              1 days
                                                     1974 Oct
                                                                   1 da
3
      3 no-flow 1974-10-19 1974-10-24
                                              5 days 1974
                                                             Oct
                                                                   5 da
```

Stream-Flow Permanence (threshold = 0.2)

Minor Interval

Mean annual maximum duration of events

```
> rm(balder)
```

```
> smires(balder.
        fun_major = max,
        drop_na = "major")
# A tibble: 10 x 3
  major state variable
  <ord> <fctr> <time>
 1 1974 no-flow 46 days
2 1974 flow 125 days
 3 1975 no-flow 45 days
4 1975 flow 25 days
 5 1976 no-flow 76 days
6 1976 flow 49 days
 7 1979 no-flow 20 days
8 1979 flow 214 days
   1980 no-flow 12 days
10
   1980
          flow 46 days
```

```
> smires(balder,
         fun_major = max,
         fun_total = mean,
         drop_na = "major")
# A tibble: 2 \times 2
    state variable
  <fctr>
             <time>
1 no-flow 39.8 days
2
     flow 91.8 days
```

> # Appending the group and interval indices
> grouped <- group_by_interval(balder)</pre>

Low level functions

> head(grouped, 3)

A tibble: 3 x 6

```
time discharge major minor group hday
     <date>
               <dbl> <ord> <ord> <dbl> <dbl>
1 1974-09-01
                  0 1974
                           Sep
                                      244
2 1974-09-02
                  0 1974 Sep 1 245
3 1974-09-03
                  0 1974
                           Sep
                                      246
> # Detecting events
> find_events(grouped, rule = "start") %>% head(3)
# A tibble: 3 x 8
                              end group duration major minor
 event.
        state
                  start
 <ord> <fctr> <date> <date> <dbl> <time> <ord> <ord>
     1 no-flow 1974-09-01 1974-10-17
                                     1 46 days 1974 Sep
                                        13 days 1974 Oct
         flow 1974-10-17 1974-10-30
3
     3 no-flow 1974-10-30 1974-11-05
                                         6 days 1974
                                                      Oct
```

Varying the minor interval: Seasonal analysis

```
> seasons < c(spring = 60, summer = 152,
              autumn = 244, winter = 335)
+
> smires(balder, minor = seasons, fun_minor = max)
# A tibble: 8 \times 3
  minor state variable
  <ord> <fctr> <time>
1 spring no-flow 70 days
2 spring flow 96 days
3 summer no-flow 45 days
4 summer flow 49 days
5 autumn no-flow 76 days
6 autumn flow 214 days
7 winter no-flow 20 days
8 winter flow 96 days
```

Summary

- The package smires provides a framework to compute metrics of univariate time series.
- Either continuous or binary time series.
- Free choice of the aggregation period (calendar years, hydrological years, months, seasons, ...).
- Free choice of the aggregation function.
- github: https://github.com/mundl/smires

Acknowledgements

This research is based upon work from COST Action CA15113 (SMIRES, Science and Management of Intermittent Rivers and Ephemeral Streams, www.smires.eu), supported by COST (European Cooperation in Science and Technology)

Science and Management of Intermittent Rivers and Ephemeral Streams

