QCon

www.qconferences.com

浅谈华为泛媒体性能测试

姓名: 胡余锋

电话: 028 13880881280

Email: huyufeng@huawei.com

个人简介

• 胡余峰

•

• 公司职务: 华为IT产品线存储解决方案开发部副总监

• 所在城市:成都

• 电话: 13880881280

邮箱: <u>huyufeng@huawei.com</u>

• 微信: earthure

•

- 2001年任中科院计算所高级工程师,负责人工智能在教育行业应用,发布了智能几何、代数、物理、化学等一系列智能教育软件
- 2005年加入华为光网络产品线,经历光纤网络SDH、PDH、ATM、DDN、微波等多种技术多种身份,从一名开发人员彻头彻尾转变为一名测试工程师。
- 2007年初加入华为存储产品线直到现在,历经华为到华赛的合资,又回到华为的曲折过程,辗转从解决方案到产品测试,又回到解决方案的折腾,丰富了我的职业生涯,端到端了解华为核心价值观之以客户为中心
- 关注领域:存储、大数据、云

目 录

- 多字产视角的黑盒设计理念
- > 泛媒体测试的挑战
- > 华为泛媒体测试解决方案

客户视角的黑盒测试设计

存储测试重点和难点一性能

扩展性、数据保护、可管理性、生态系统、多租户、安全、RAS

功能性评估-----回答: "有" 或者 "无"的问题

性能测试需要 消耗大量物料

性能测试周期长

性能评估困难

模型复杂

物料不足

性能与业务 软件强相关

性能问题难改进

性能影响体验

QCon

性能评估

-----回答: "优"或者"劣"的问题

测试难点和 重点指向 性能

存储性能判断标准-时延

存储性能环境因素

目 录

- ▶客户视角的黑盒设计理念
- >泛媒体测试的挑战
- > 华为泛媒体测试解决方案

泛媒体行业多样化

泛媒体应用五花八门

泛媒体应用例举

视频编辑业务

- ▶稳定读IO
- ▶顺序大IO (IO大小各异)
- ▶拖动时极限读IO(根据实际需求占比不 一)
- ▶渲染时极限写IO (根据实际需求占比不一)

视频监控

- ▶稳定读IO (持续读IO)
- ▶顺序大IO (IO大小各异)
- ▶无写IO

存储性能环境关注点一并发、读写

存储性能环境关注点一热点

存储性能环境关注点一突发

泛媒体测试现状

目 录

- ▶客户视角的黑盒设计理念
- ▶泛媒体测试的挑战
- ~华为泛媒体测试解决方案

Workload测试方案架构体系

Workload方案数据采集

华为自研数据采集工具xCloud

主机侧	网络侧	存储侧
■内核层	■镜像IP SAN	■控制器
■虚拟化层	□镜像FC SAN	
□应用层	■旁路IP SAN	
	□旁路FC SAN	

采集点	工具	成熟度	
主机侧	IOtrace	目前支持大部分inux系统和windows2008系统录制可靠性:磁盘已满时,停止录制,防止系统异常重启。性能:对内存要求:动态分配,大小(512B*1024B)*i*ndev*mcpu+1M;i取值(1~1024),当CPU忙时为1,空闲时为1024对CPU要求:10万IOPS,CPU3%-10%	
网络侧	DRPT	目前只支持在交换机做端口镜像,iscsi协议 IP-SAN的录制采集,	
存储侧	性能监控	多控同时录制,录制要求:被测对象IO流量之能超过6万IOPS/单控,录制时间:最大支持5.5天,录制容量:不受限制	

Workload方案数据分析

数据分析工具SPM

```
D:\Offset\SPM.exe
                                                              - - X
[Debug ]
              Version: V0.24 Windows_x86_64 Release Date: 2014.02.12
              Welcome You To Use SPM(Storage Pressure Maker).
[Debug ]
Windwos System Disk Info:
evice
                                             Disk_Size(MB)
         Schedular Is Start....002A1DC0 00000000
otice:Command Mode On, You Can Type [help] For Usage Of Command.
SPM: #
SPM: # help
elcome To Use SPM Help.
        : show this page.
 quit
       : exit from SPM.
       : rescan disk info, SPM can auto rescan, so, this is useless.
 scan
        : print SPM log content.
        : show SPM version, release date and author info.
 lba_con : calculate the continuity of lba. if you want calculate the read
           (write) IO only, you can use [-r]([-w]) parameter. all the IO
           will be calculated if without any parameter.
 lba_hot : calculate the distributing of lba.if you want calculate the read ;
           (write)IO only, you can use [-r]([-w]) parameter. all the IO will #
           be calculated if without any parameter.
 parse : parse all the io's info to Total_IO_Detail.txt, this file maybe
           very large, because the count of io always huge.
 par2csv : parse all the io's data to Total_IO_Detail.csv, this file maybe
           very large, because the count of io always huge.
 iorate : calculate the real-time rate of io size every second, the result
           will be recorded to iorate.csv
        : calculate iops, bandwidth, io delay and so on every second, the
           result will be recorded to statistics.csv
 clslog : clear all the old log, SPM_LOG/ not included.
```

数据分析工具报表

Total_IO_Detail.csv						
	A	В	C	D	E	F
1	读/写	回/透	时延(100us)	IO大小(K)	下发时间(100u	LBA
2	读	透	880	2048	0	7323648
3	读	透 透 透	858	1024	53	7315456
4	读	透	180	2048	329	7311360
5	读	透 透 透 透 透	977	256	383	7294976
6	读	透	820	1024	395	7307264
7	读	透	860	2048	572	7303168
8	写	透	1930	256	722	7274496
9	写	透	1850	256	723	7270400
10	读	透	2000	512	732	7299072
11	写	透	1570	512	733	7266304
12	读	透	3000	512	876	7290880
13	读	透 透 透	3140	128	1011	7282688
14	读	透	3450	512	1015	7286784

Workload方案数据分析

参数项	参数值	
256KB数据块数量	1%	
512KB数据块数量	2%	
1MB数据块数量	84%	
2MB数据块数量	9%	
响应时延小于4ms	50%	
响应时延小于5ms	80%	
响应时延小于6ms	90%	
响应时延小于7ms	99%	

EDIUS采集数据

等价类划分技术点

等价类划分

1

256KB &512KB IO 占比: 0%-20%

1MB & 2MB IO 占比: 80%-100%

2

256KB &512KB IO 占比: 21%-40%

1MB & 2MB IO 占比: 60%-79%

3

256KB &512KB IO 占比: 41%-60%

1MB & 2MB IO 占比: 40%-59%

4

256KB &512KB IO 占比: 61%-80%

1MB & 2MB IO 占比: 20%-39%

256KB &512KB IO 占比: 61%-80%

1MB & 2MB IO 占比: 20%-39%

真实IO回放

IO回放工具

IO回放技术点

测试效率提升

- ●传统测试:存储环境搭建8小时+一套软件测试48小时*20套软件=968小时
- ●Workload测试:存储环境搭建8小时+一套软件模拟测试8小时*5(20套软件进行等价类划分,实际小于5)=48小时
- ●通过等价类划分以及Workload模拟测试,测试时间从原始968小时降低到小于48小时,测试效率提升20.2倍。

Thanks!