```
# for inline plots in jupyter
%matplotlib inline
# import matplotlib
import matplotlib.pyplot as plt
# for latex equations
from IPython.display import Math, Latex
# for displaying images
from IPython.core.display import Image
import numpy as np
```

```
# import seaborn
import seaborn as sns
# settings for seaborn plotting style
sns.set(color_codes=True)
# settings for seaborn plot sizes
sns.set(rc={'figure.figsize':(5,5)})
```

→ Bernoulli Distribution

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

[Text(0, 0.5, 'Frequency'), Text(0.5, 0, 'Bernoulli Distribution')]
```

BINOMINAL DISTRIBUTION

- Daicean Distribution

You can generate a poisson distributed discrete random variable using scipy.stats module's poisson.rvs() method which takes μ as a shape parameter and is nothing but the λ in the equation. To shift distribution use the loc parameter. size decides the number of random variates in the distribution. If you want to maintain reproducibility, include a random_state argument assigned to a number.

Colab paid products - Cancel contracts here

X