ECE 220 Honors Lab Section

Lab2: LC3 Assembly

Working on Lab

- Simplification
 - svn cp https://subversion.ews.illinois.edu/svn/sp16-ece220/_shared/honors_lab2 https://subversion.ews.illinois.edu/svn/sp16-ece220/<netid>/honors_lab2/ -m "Copying"
 - svn co https://subversion.ews.illinois.edu/svn/sp16-ece220/<netid>/honors_lab2/
- Lab structure
 - lab(x)
 - Instr.txt
 - Makefile
 - src directory
 - tests directory
 - obj directory
 - bin directory
 - lecture
 - labX.pdf
 - examples directory
- Makefile
 - What is it
 - Why to use it
 - Demo

XOR

- What does it do?
- How to implement it?
- Solution
 - Iterate through each bit
 - NAND(NAND(A, NOT(B)), NAND(NOT(A), B))

Right Shifting

- Left shift
 - $0101 \rightarrow 1010$
 - ADD Rx, Rx, Rx
- Right shift
 - 0101 → 0010
 - 515
- Solution
 - Use two masks
 - Code demonstration!

Printing Decimal

- Know how to print numbers in hex but how to print in decimal?
 - Alternatively: how to convert base 16 to base 10 in LC3
- Solution
 - Store powers of 10. For each power subtract from hex digit and increment a count.
 - 0x24 0xA = 0x1A 0xA = 0x10 0xA = 0x6; count = 3
 - 0x6 0x1 = ...; count = 6
 - Gets digits from most to least significant
 - Division method
 - 0x24 / 0xA = 0x3 R 0x6
 - 0x3 / 0xA = 0x0 R 0x3
 - Gets digits from least to most significant

Functions

- Differences between BR, JSR (JSRR), JMP, TRAP?
 - BR, JMP
 - JSR (JSRR), TRAP
- MP2 Subroutines
 - Which one should be used?

Recursion

- What is recursion?
 - https://www.google.com/search?q=recursion
- Examples?
 - Fibonacci
 - F(0) = 0
 - F(1) = 1
 - F(n) = F(n-1) + F(n-2)
 - GCM
 - (v! = 0)? gcd(v, u%v) : u
 - Sudoku
- Problems in LC3?

GDB

- Similar to lc3sim!
- Navigate to honors_lab2/lecture/right_shift
- Run gdb ./bin/right_shift
 - Commands
 - List
 - Break
 - Info
 - Delete
 - Run
 - Continue
 - Next
 - Step
 - Print
 - Quit