

DEEP LEARNING RESEARCH SCIENTIST

Cornelis Lelylaan 5B12, 1062HD, Amsterdam, The Netherlands

🛘 +31 (0)6 44772467 | 💌 mkofinas@gmail.com | 🏕 mkofinas.github.io | 🖸 mkofinas | 😾 mkofinas | 💆 militadiskofinas | 💆 MiltosKofinas

Education _

UvA (University of Amsterdam)

PHD IN COMPUTER SCIENCE

April 2020 - present

Amsterdam, The Netherlands

Title: Deep Future Spatio-temporal Forecasting

AUTh (Aristotle University of Thessaloniki)

DIPLOMA IN ELECTRICAL AND COMPUTER ENGINEERING (M.Sc. EQUIVALENT)

Thessaloniki, Greece
Oct. 2010 - Nov. 2018

Specialization Field: Electronics and Computer Engineering

- GPA: 7.57/10
- ECTS: 307

Research Experience _

Scene Graph Generation using Graph Transformer Networks

University of Amsterdam

RESEARCH ASSISTANT · SUPERVISORS: PROFESSOR CEES G.M. SNOEK & ASSISTANT PROFESSOR EFSTRATIOS GAVVES

Mar. 2019 - May 2019

- Mathematical formulation of a novel abstract Graph Network layer for visual scene graph generation that explicitly utilizes both local and global information on the graph space.
- · Experiments on various architectures to maximize relevant information propagation across graph vertices and edges.
- · Implementation of a multilayer Graph Network that effectively stacks Graph Network layers to increase network performance.
- Use of global information via Transformer blocks that attentively gather global context.
- · Introduction of a self-attentive relationship pruning network that effectively samples meaningful relationships.

P.A.N.D.O.R.A. Robotics Team

Aristotle University of Thessaloniki

COMPUTER VISION & MACHINE LEARNING ENGINEER

Oct. 2014 - Oct. 2015

- Development of a general-purpose image classification API using RGB-D sensor data to tackle victim detection.
 - Classification using a combination of HOG features, color histogram features from different color spaces (e.g. HSV, CIELab) and SIFT features
 with bag-of-words models.
 - Data augmentation using affine transformations, random sampling and color jittering.
- o Training and evaluation using support-vector machines (linear and non-linear), random forests and multilayer perceptrons.
- Motion detection using Gaussian mixture-based background/foreground segmentation algorithms.
- Soft obstacle detection from RGB-D sensor data using Haar wavelets and Hough transform.
- Hard obstacle detection from RGB-D sensor data using point cloud transformations for the creation of local elevation maps and various convolutional kernels for the creation of traversability maps.
- Development of a benchmark testing API for performance evaluation of computer vision algorithms under various environmental conditions (e.g. room lighting).

Diploma Thesis

Scene Graph Generation using Message Passing Neural Networks and Graph Convolutional Networks

Aristotle University of Thessaloniki

Supervisors: Associate Professor Anastasios Delopoulos & Postdoctoral research associate Christos Diou

May 2017- Oct. 2018

- Image semantic content representation using scene graphs that model objects and their relationships.
- Scene graph generation using an end-to-end model that incorporates a message passing scheme, propagating contextual information between
 objects and their relationships to iteratively refine its predictions.
- Experiments on message propagation architectures, including a modified version of Graph Convolutional Networks.
- · Introduction of a relationship pruning network that learns to identify and dismiss unlikely relationships.
- · Performance evaluation on scene graph generation and other auxiliary evaluation tasks using Visual Genome dataset.

Links to thesis:

Greek (Original), English (Translated)

Technical Skills ____

Programming Languages Python, C++, C, MATLAB/Octave, Java

Deep Learning Frameworks PyTorch, TensorFlow

Computer Vision Libraries OpenCV **Robot Software Development Frameworks** ROS

Miscellaneous Linux, Git, Slurm, LAT_FX, TikZ

FEBRUARY 23, 2022

Publications

CONFERENCE PAPERS

• Kofinas, Miltiadis, Nagaraja, Naveen Shankar, and Gavves, Efstratios. "Roto-translated Local Coordinate Frames For Interacting Dynamical Systems". In: Advances in Neural Information Processing Systems 34 (NeurIPS). 2021 (ArXiv) (OpenReview)

Teaching Experience

TEACHING ASSISTANT

Machine Learning I University of Amsterdam, Master Al 2020 & 2021 Deep Learning University of Amsterdam, Master Al Deep Learning II University of Amsterdam, Master Al

THESIS SUPERVISION

Daniël (Stijn) Hamerslag

DRIVING ON DATA, OBJECT DETECTION IN URBAN DRIVING SCENES

Daniel Perez Jensen

PREDICTING RIVER FLOW IN ATACAMA REGION WATERSHEDS

University of Amsterdam, Bachelor Al

Oct. 2020 - Jan. 2021

University of Amsterdam, Master Al

Nov. 2021 - June 2022

Talks_

LoGaG: Learning on Graphs and Geometry Reading Group

ROTO-TRANSLATED LOCAL COORDINATE FRAMES FOR INTERACTING DYNAMICAL SYSTEMS

Virtual

1 Feb, 2022

Honors & Awards

2nd Best Autonomous Robot

ROBOCUP RESCUE COMPETITION

Hefei, China

July 2015

As a member of P.A.N.D.O.R.A. Robotics Team

Languages __

Greek Native Language

English Certificate of Proficiency in English, University of Michigan

Level C2

French Diplôme d'études en langue française B2, Centre international d'études pédagogiques (CIEP)

Level B2

Academic References

Available upon request.