

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática Filtragem Adaptativa - TIP7188

Lista de Exercícios

Aluno: Lucas de Souza Abdalah (539567)

Professor: Charles Casimiro Cavalcante e Guilherme de Alencar Barreto

Data de Entrega: 20/07/2022

Sumário

1	List	ta 1: Estatísticas de Segunda Ordem	2
_	1.1	Média e Autocorrelação	2
	1.2	Processos Estacionários	2
	1.3	Matriz de Autocorrelação	4
	1.4	Matriz Definida Positiva	4
	$1.4 \\ 1.5$	Covariância e correlação	5
	1.6	Função de autocorrelação	5
	1.7	Exercícios Propostos	7
2	List	ta 2: Filtragem Linear Ótima	9
_	2.1	Filtragem Ótima	9
	2.2	9	10
	2.3	·	$10 \\ 10$
	2.4	,	$10 \\ 11$
	2.5		11
	2.6	-	13
0	T :		
3		O .	15
	3.1	0	$\frac{15}{16}$
	3.2	0	16
	3.3	8	17
	3.4	1 3	17
	3.5	,	22
	3.6	1 3 1	25
	3.7	Exercícios Propostos	31
4	List	•	33
	4.1	Algoritmo RLS	33
	4.2	Exercícios Propostos	35
5	Imp	olementações em MATLAB	36
	5.1	Métodos	37
	5.2	Função Main	73

1 Lista 1: Estatísticas de Segunda Ordem

1.1 Média e Autocorrelação

Para obter a média, basta a expressão de acordo com o operador esperança $\mathbb{E}\{\cdot\}$, dado que as variáveis aleatórias tem mesma média, resume-se a expressão:

$$\mathbb{E}\{x(n)\} = \mathbb{E}\{v(n) + 3v(n-1)\}$$
$$= \mu + 3\mu$$
$$= 4\mu$$

Já a variância, é obtida aplicando o mesmo operador, "abrindo" o termo ao quadrado, reorganizando em função do termo σ^2 e sabendo que v(n) e v(n-1) são descorrelacionadas:

$$\mathbb{E}\{[(x(n) - \mu_X)]^2\} = \mathbb{E}\{[v(n) - 3v(n-1) - \mu_X]^2\}$$

$$= \mathbb{E}\{[v(n) - 3v(n-1) - 4\mu]^2\}$$

$$= \mathbb{E}\{[v(n) - \mu + 3v(n-1) - 3\mu]^2\}$$

$$= \sigma^2 + 9\sigma^2 + \mathbb{E}\{6[v(n) - \mu][v(n-1) - \mu]\}$$

$$= 10\sigma^2$$

Para afirmar que o processo apresentado é estacionário em sentido amplo, abrevidado em inglês para **WSS**, as estatísticas de primeira e de segunda ordem devem ser independentes ao deslocamento no tempo. Isto pode ser observado, assumindo novamente que x(n) e $x(n + \tau)$, via função de correlação, dada por:

$$\begin{split} \mathbb{E}\{x(n)x(n+\tau)\} &= \mathbb{E}\{[v(n)+3v(n-1)][v(n+\tau)+3v(n-1+\tau)]\},\\ &= \mathbb{E}\{v(n)v(n+\tau)+3v(n)v(n-1+\tau)+3v(n-1)v(n+\tau)+9v(n-1)v(n-1+\tau)\}\\ &= \mathbb{E}\{\mu^2+3\mu^2+3\mu^2+9\mu^2\}\\ &= 16\mu^2 \end{split}$$

Visto que os pré-requisitos são cumpridos, pode-se concluir que o processo é de fato WSS. Entretanto, para afirmar algo além disso é necessário conhecer os movimentos de ordem superior do caso estudado.

1.2 Processos Estacionários

Funções de autocorrelação de x e de y

Primeiramente, é conveniente definir o processo de ruído branco, visto que este possui propriedades bastante conveniente para a solução do problema. O processo desta natureza tem média nula e tem todas as suas amostras independentes entre si. Isto permite que seja obtida a média de novos processos resultantes da mistura linear desses ruídos.

Para x(n), obtém-se a média dado:

$$\mathbb{E}\{x(n)\} = \mathbb{E}\{v_1(n) + 3v_2(n-1)\}\$$

= $\mu_1 + 3\mu_2$
= 0

Enquanto para a variânciam, tem-se que (semelhante ao exercício 1.1):

$$\mathbb{E}\{[x(n) - \mu]^2\} = \mathbb{E}\{[x(n) - 0]^2\}$$

$$= \mathbb{E}\{[v_1(n) + 3v_2(n-1)]^2\}$$

$$= \mathbb{E}\{[v_1^2(n)] + 6[v_1(n)v_2(n-1)] + 9[v_2^2(n-1)]\}$$

$$= 1\sigma_1^2 + 9\sigma_2^2$$

$$= 5$$

O mesmo procedimento é aplicado para y(n):

$$\mathbb{E}\{y(n)\} = \mathbb{E}\{v_2(n+1) + 3v_1(n-1)\}\$$

= $\mu_2 + 3\mu_1$
= 0

$$\begin{split} \mathbb{E}\{[y(n) - \mu]^2\} &= \mathbb{E}\{[y(n) - 0]^2\} \\ &= \mathbb{E}\{[v_2(n+1) + 3v_1(n-1)]^2\} \\ &= \mathbb{E}\{[v_2^2(n)] + 6[v_2(n+1)v_1(n-1)] + 9[v_2^1(n-1)]\} \\ &= 9\sigma_1^2 + 1\sigma_2^2 \\ &= 5 \end{split}$$

Para função de autocorrelação de x(n), sabe-se que as amostras são descorrelacionadas e o processo é de média nula, então o produto de diversos termos igual a zero também é zero. Temos que:

$$r_x(\tau) = \mathbb{E}\{x(n)x(n+\tau)\} = \mathbb{E}\{[v_1(n) + 3v_2(n-1)][v_1(n+\tau) + 3v_2(n-1+\tau)]\},$$

$$= \mathbb{E}\{v_1(n)v_1(n+\tau) + 3v_1(n)v_2(n-1+\tau) + 3v_2(n-1)v_1(n+\tau) + 9v_2(n-1)v_2(n-1+\tau)\}$$

$$= \vdots \quad \text{(Mesmo passo a passo do problema 1.1)}$$

$$= 0$$

Para y(n), o processo é o mesmo, consquentemente $r_y(\tau)=0$.

Finalmente, observa-se que estatísticas de primeira e de segunda ordem são independentes do tempo para ambos, i.e, os dois processos são **WSS**.

Função de correlação cruzada

Para obter a função de correlação cruzada, basta aplicar as premissas utilizadas anteriormente: I) Processo de ruído branco é descorrelacionado; II) Média nula.

$$r_{x,y}(n_1, n_0) = \mathbb{E}\{[x(n_1)y^*(n_0)]\}\$$

$$= \mathbb{E}\{[v_1(n_1) + 3v_2(n_1 - 1)][v_2(n_0 + 1) + 3v_1(n_0 - 1)]^*\},\$$

$$= \mathbb{E}\{v_1(n_1)v_2^*(n_0 + 1) + 3v_1(n_1)v_1^*(n_0 - 1) + 3v_2(n_1 - 1)v_2^*(n_0 + 1) + 9v_2(n_1 - 1)v_1^*(n_0 - 1)\}\$$

$$= 0$$

Esta função também é igual a zero, $r_{x,y}(n_1, n_0) = 0$. Isto implica que os processos são conjuntamente estacionários, pois há independência do tempo da função, e por partir de processos de ruído branco, processos WSS individualmente, isto sustenta os desenvolvimento acima.

1.3 Matriz de Autocorrelação

Um vetor aleatório bidimensional

Para garantir a existência da matriz de correlação, deve-se corresponder as seguintes premissas: I) $\mathbf{R_x} = \mathbf{R_x^H}$; II) $\mathbf{a^H}\mathbf{R_{xa}} \ge 0$; III) $\mathbf{Ax} = \lambda \mathbf{x}, \forall \lambda \ge 0 | \mathbf{x} \in \mathbb{R}$.

Assumindo um vetor aleatório bidimensional: $\mathbf{X} = (x_1, x_2)$, a existência de \mathbf{R} e sua hermitiana, \mathbf{R}^H .

Os elementos da contra-diagonal da matriz hermitiana deve obdece para são equivalência simétrica: I) $\mathbb{E}\{[x_1x_2^*]\} = \mathbb{E}\{[x_2x_1^*]\}$ e II) $\mathbb{E}\{[x_2x_1^*]\} = \mathbb{E}\{[x_1x_2^*]\}$

Além disso, a vantagem de $\mathbb{E}\{\cdot\}$ ser um operador linear, garante que os resultados são de fato iguais, independente da ordem dos vetores.

Já a limitação dos autovalores está diretamente ao determinante da matriz, sendo esse maior que zero, o critério imposto é atingido, i.e, para o caso 2×2 , o produto dos elementos da diagonal principal é maior que o produto dos elementos da contra-diagonal.

Processo estocástico estacionário escalar

Em processo semelhante ao exemplo anterior, assume-se um processo estocástico estacionário escalar do tipo $\mathbf{X}_{(t)} = x(t)$ e sua versão atrasada $\mathbf{X}_{(t+\tau)} = x(t+\tau)$. Dado a matriz \mathbf{R} e sua hermitiana, \mathbf{R}^H .

Os elementos da contra-diagonal da matriz hermitiana deve obdece para são equivalência simétrica: I) $\mathbb{E}\{[x(t)x^*(t+\tau)]\} = \mathbb{E}\{[x(t+\tau)x^*(t)]\}$ e II) $\mathbb{E}\{[x(t+\tau)x^*(t)]\} = \mathbb{E}\{[x(t)x^*(t+\tau)]\}$.

Novamente, a vantagem do operador linear é conveniente para que independente da ordem, e igualdade na contra-diagonal, i.e, simetria.

Para os autovalores, o produto dos elementos da diagonal principal é maior que o produto dos elementos da contra-diagonal, i.e:

$$\mathbb{E}\{[x^2(t)]\}\mathbb{E}\{[x^2(t+\tau)]\} > \mathbb{E}\{[x(t)x^*(t+\tau)]]\}\mathbb{E}\{[x(t+\tau)]x^*(t)]\}$$

1.4 Matriz Definida Positiva

Assumindo a expressão que define matriz de autocorrelação e que existe sua inversa bem,

$$egin{aligned} \mathbb{E}\{\mathbf{x}\mathbf{x}^{\mathrm{H}}\} &= \mathbf{R}_x \ \mathbb{E}\{\mathbf{x}\mathbf{x}^{\mathrm{H}}\}\mathbf{R}_x^{-1} &= \mathbf{R}_x\mathbf{R}_x^{-1} \end{aligned}$$

A inversa pode adentrar o operador, enquanto do lado direito obtém-se uma matrix identidade

$$\mathbb{E}\{\mathbf{x}\mathbf{x}^{\mathrm{H}}\mathbf{R}_{x}^{-1}\} = \mathbf{I}_{N\times N}$$

Isto permite aplicar o traço da matriz e por meio da propriedade de permutação cíclica do operador, tem-se que:

$$\operatorname{Trace}\{\mathbb{E}\{\mathbf{x}\mathbf{x}^{\mathsf{H}}\mathbf{R}_{x}^{-1}\}\} = \operatorname{Tr}\{\mathbf{I}_{N\times N}\}$$

Observa-se que o traço da matriz identidade $\mathbf{I}_{N\times N}$ é justamente a soma dos elementos da diagonal, N.

$$\operatorname{Trace}\{\mathbb{E}\{\mathbf{x}^{\mathsf{H}}\mathbf{R}_{x}^{-1}\mathbf{x}\}\} = \sum_{i=1}^{N} 1$$

1.5 Covariância e correlação

Expressão 1 Dado que a matriz de Covariância pode ser obtida por:

$$C_X = \mathbb{E}\{[(x-\mu)(x-\mu)^H]\}$$

= $\mathbb{E}\{xx^H\} - \mathbb{E}\{x\mu^H\} - \mathbb{E}\{\mu x^H\} + \mathbb{E}\{\mu \mu^H\}$

Considerando que a matriz de correlação pode ser escrita como demonstrado no exercício 1.4:

$$C_X = R_X - \mu^H \mathbb{E}\{[x]\} - \mu \mathbb{E}\{[x^H]\} + \mu \mu^H,$$

= $R_X - \mu \mu^H - \mu \mu^H + \mu \mu^H,$
= $R_X - \mu \mu^H,$

Por fim, obtém-se que:

$$R_X = C_X + \mu \mu^H.$$

Expressão 2 As expressões de correlação cruzada são obtidos de forma análoga, tal que:

$$\mathbf{C}_{\mathbf{x}\mathbf{y}} = \mathbb{E}\{[x - \mu_x][y - \mu_y]\},\tag{1.1}$$

$$= \mathbb{E}\{[xy]\} - \mathbb{E}\{[x\mu_y]\} - \mathbb{E}\{[\mu_x y]\} + \mathbb{E}\{[\mu_x \mu_y]\}$$
(1.2)

$$= \mathbb{E}\{[xy]\} - \mu_y \mu_x - \mu_x \mu_y + \mu_x \mu_y \tag{1.3}$$

$$= \mathbb{E}\{[xy]\} + \mu_x \mu_y,\tag{1.4}$$

$$=\mu_x\mu_y\tag{1.5}$$

(1.6)

De forma análoga, obtém que $C_{yx} = -\mu_x \mu_y$, consquentemente

$$\mathbf{C}_{\mathbf{x}\mathbf{y}} + \mathbf{C}_{\mathbf{y}\mathbf{x}} = \mu_x \mu_y - \mu_x \mu_y$$
$$= 0$$

1.6 Função de autocorrelação

Função do Processo Como nos problemas anteriores, utiliza-se como premissa que os processos são descorrelacionados e tem média nula. A função é dada por $r_x = \mathbb{E}\{x(n)x^*(n)\}$, tal que

$$r_x = \mathbb{E}\{[v_1(n) + 2v_1(n+1) + 3v_2(n-1)][v_1(n) + 2v_1(n+1) + 3v_2(n-1)]^*(n)\}$$

= $r_v(n, n) + 2r_v(n, n+1) + 2r_v(n+1, n) + 4r_v(n+1, n+1) + 9r_v(n-1, n-1)$

Observa-se que apenas termos onde a função degrau está presente permanecem, enquanto o restantes podem ser cancelados, de modo que:

$$r_x = 2r_v(n, n+1) + 2r_v(n+1, n)$$

= $\delta(n-n-1) + \delta(n+1-n)$

Isto pode ser reorganizado, sendo $\tau = n_1 - n_2$, de modo que:

$$r_x(n_1, n_2) = \delta(\tau) + \delta(-\tau)$$

Há apenas um deslocamento temporal (τ) atrelado à correlação, logo o processo é WSS.

Matriz de Correlação

Utilizando as relações obtidas anteriormente, é possível observar que os únicos elementos não nulos pertencem à diagonal, onde $n_1 = n_2$, acarretando $\delta(0) + \delta(0) = 2$.

Considerando 8 amostras consecutivas, a matriz de correlação é dada por:

$$\mathbf{R}_{\mathbf{x}} = 2 \times I_{8 \times 8}$$

Isto é, uma matriz 8×8 , onde apenas a diagonal é não nula, preenchida por 2.

Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

Filtragem Adaptativa - TIP 7188

Prof. Dr. Charles Casimiro Cavalcante Prof. Dr. Guilherme de Alencar Barreto

Período: 2022.2

Lista de Exercícios No. 1: Estatísticas de Segunda Ordem

1. (Média e autocorrelação) Determine a média e a função de autocorrelação para o processo aleatório

$$x(n) = v(n) + 3v(n-1)$$

em que v(n) é uma sequência de variáveis aleatórias independentes com média μ e variância σ^2 . x(n) é estacionário? Justifique.

2. (Processos estacionários) Sejam os processos aleatórios x(n) e y(n) definidos por

$$x(n) = v_1(n) + 3v_2(n-1)$$

е

$$y(n) = v_2(n+1) + 3v_1(n-1)$$

em que $v_1(n)$ e $v_2(n)$ são processos de ruído branco independentes cada um com variância igual a 0,5.

- (a) Quais são as funções de autocorrelação de x e de y? Os processos são WSS?
- (b) Qual é a função de correlação cruzada $r_{xy}(n_1, n_0)$? Estes processos são conjuntamente estacionários (no sentido amplo)? Justifique.
- 3. (Matriz de autocorrelação) Quais as condições que os elementos de uma matriz

$$\mathbf{R} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

devem satisfazer tal que ${f R}$ seja uma matriz de autocorrelação válida de

- (a) Um vetor aleatório bidimensional?
- (b) Um processo estocástico estacionário escalar?
- 4. (Matriz definida positiva) Assuma que a inversa R_x^{-1} da matriz de autocorrelação de um vetor coluna N-dimensional exista. Mostre que

$$E\left\{\mathbf{x}^{H}\mathbf{R}_{\mathbf{x}}^{-1}\mathbf{x}\right\} = N$$

- 5. (Covariância e correlação) Mostre que as matrizes de correlação e covariância satisfazem as relações abaixo:
 - $\mathbf{R}_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}} + \boldsymbol{\mu}_{\mathbf{x}} \boldsymbol{\mu}_{\mathbf{x}}^H$
 - $C_{x+y} = C_x + C_{xy} + C_{yx} + C_y$, para $x \in x$ descorrelacionados

Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

6. (Função de autocorrelação) Processos aleatórios $v_1(n)$ e $v_2(n)$ são independentes e têm a mesma função de correlação

$$r_v(n_1, n_0) = 0.5\delta(n_1 - n_0)$$

(a) Qual é a função de correlação do processo aleatório

$$x(n) = v_1(n) + 2v_1(n+1) + 3v_2(n-1)$$
?

Este é um processo WSS? Justifique.

(b) Encontre a a matrix de correlação de um vetor aleatório consistindo de oito amostras consecutivas de x(n).

2 Lista 2: Filtragem Linear Ótima

2.1 Filtragem Ótima

Coeficientes de Wiener

Considerando o problema de filtragem de Wiener, e assumindo conhecimento da matriz de correlação $\mathbf{R}_{\mathbf{X}}$ e do vetor de correlação cruzada $\mathbf{p}_{\mathbf{X}d}$, pode-se obter os coeficientes de \mathbf{w} .

$$\mathbf{w} = \mathbf{R_X}^{-1} \mathbf{p_{X}}_d \tag{2.1}$$

Aplicando a equação 2.1, obtém-se o vetor de pesos do filtro.

$$\mathbf{R_X}^{-1} = \begin{bmatrix} 1.3333 & -0.6667 \\ -0.6667 & 1.3333 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} 1.3333 & -0.6667 \\ -0.6667 & 1.3333 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$$
$$= \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}.$$

Erro Médio Quadrático

A partir do vetor de pesos, resultado de 2.1, basta aplicá-lo na equação do erro mínimo.

$$\mathbb{E}\{e^{2}(n)\} = \sigma_{d}^{2} - 2\mathbf{w}^{\mathsf{T}}\mathbf{p}_{\mathbf{X}d} + \mathbf{w}^{\mathsf{T}}\mathbf{R}_{\mathbf{X}}\mathbf{w}$$
(2.2)

$$\begin{split} e &= \sigma_d^2 - 2 \begin{bmatrix} 0.5 & 0.0 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix} + \begin{bmatrix} 0.5 & 0.0 \end{bmatrix} \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.0 \end{bmatrix} \\ &= \sigma_d^2 - 2 \times 0.25 + 0.25 \\ &= \sigma_d^2 - 0.25 \end{split}$$

Representação em Autovalores

A decomposição em valores singulares (EVD) pode ser aplicada na matriz de correlação

$$\mathbf{R}_X = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} \tag{2.3}$$

Aplicando diretamente o resultado da EVD 2.3 na equação do filtro ótimo 2.1, obtém-se:

$$\mathbf{w} = (\mathbf{Q}\Lambda\mathbf{Q}^{-1})^{-1}\mathbf{p}_{\mathbf{X}d} \tag{2.4}$$

Finalmente, o resultado é uma expressão que compreende a inversão de matrizes menos custosas computacionalmente. Isto se dá principalmente por Λ ser uma matriz diagonal contendo os autovalores da matriz de autocorrelação, bastando calcular $1/\lambda_i$ para obter a sua inversa.

$$\mathbf{w} = \mathbf{Q}^{-1} \mathbf{\Lambda}^{-1} \mathbf{Q} \mathbf{p}_{\mathbf{X}d}. \tag{2.5}$$

2.2 Erro Médio Quadrático Mínimo

Para verificar a expressão proposta, é necessário obter a matriz de correlação do vetor aumentado.

$$\mathbf{A} = \mathbb{E} \left\{ \begin{bmatrix} d(n) \\ x(n) \end{bmatrix} \begin{bmatrix} d(n)^{\top} & x(n)^{\top} \end{bmatrix} \right\}$$

$$= \begin{bmatrix} \mathbb{E} \{ d(n)d(n)^{\top} \} & \mathbb{E} \{ d(n)x(n)^{\top} \} \\ \mathbb{E} \{ x(n)d(n)^{\top} \} & \mathbb{E} \{ x(n)x(n)^{\top} \} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d^2 & \mathbf{p}_{\mathbf{X}d}^{\top} \\ \mathbf{p}_{\mathbf{X}d} & \mathbf{R}_X \end{bmatrix}$$

É conveniente observar que ao desenvolver a equação, os elementos resultantes da expressão são todo conhecidos. Multiplicando o resultado obtido pelo vetor $\begin{bmatrix} 1 \\ -w \end{bmatrix}$ à direita e assumindo o modelo nas condições de filtragem ótima, dado filtro de wiener, onde, $\mathbf{w}_{\text{opt}} = \mathbf{R}_X^{-1} \mathbf{p}_{\mathbf{X}d}$, temos que:

$$\mathbf{A} \begin{bmatrix} 1 \\ -\mathbf{w} \end{bmatrix} = \begin{bmatrix} \sigma_d^2 & \mathbf{p}_{\mathbf{X}d}^{\top} \\ \mathbf{p}_{\mathbf{X}d} & \mathbf{R}_X \end{bmatrix} \begin{bmatrix} 1 \\ -\mathbf{w} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d^2 - \mathbf{p}_{\mathbf{X}d}^{\top} \mathbf{w} \\ \mathbf{p}_{\mathbf{X}d} - \mathbf{R}_X \mathbf{w} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d^2 - \mathbf{p}_{\mathbf{X}d}^{\top} \mathbf{R}_X^{-1} \mathbf{p}_{\mathbf{X}d} \\ \mathbf{p}_{\mathbf{X}d} - \mathbf{R}_X \mathbf{R}_X^{-1} \mathbf{p}_{\mathbf{X}d} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d^2 - \mathbf{p}_{\mathbf{X}d}^{\top} \mathbf{R}_X^{-1} \mathbf{p}_{\mathbf{X}d} \\ \mathbf{p}_{\mathbf{X}d} - \mathbf{I}_X \mathbf{p}_{\mathbf{X}d} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d^2 - \mathbf{p}_{\mathbf{X}d}^{\top} \mathbf{R}_X^{-1} \mathbf{p}_{\mathbf{X}d} \\ \mathbf{p}_{\mathbf{X}d} - \mathbf{I}_X \mathbf{p}_{\mathbf{X}d} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_d^2 - \mathbf{p}_{\mathbf{X}d}^{\top} \mathbf{R}_X^{-1} \mathbf{p}_{\mathbf{X}d} \\ 0 \end{bmatrix}$$

Finalmente, dado a equação obtida, com expressão equivalente à J_{min} , pode-se escrever a relação proposta.

$$\mathbf{A} \begin{bmatrix} 1 \\ -\mathbf{w} \end{bmatrix} = \begin{bmatrix} J_{min} \\ 0 \end{bmatrix}$$

2.3 Cancelamento de Ruído

Formulando a expressão do erro a partir do sistema sugerido:

$$e(n) = x(n) - \hat{v_1}$$

= $x(n) - \mathbf{w}^T v_2(n)$

Dado a equação obtida acima, deve-se aplicar: I) função erro quadrático médio (MSE), II) o operador valor esperado, com o filtro apresentando coeficientes constantes.

$$\mathbb{E}\{e^2(n)\} = \mathbb{E}\{x^2(n)\} - 2\mathbf{w}^T \mathbb{E}\{x(n)v_2(n)\} + \mathbf{w}^T \mathbb{E}\{v_2(n)v_2(n)^T\}\mathbf{w},$$

= $\sigma_x^2 - 2\mathbf{w}^T \mathbf{p}_{xv_2} + \mathbf{w}^T \mathbf{R}_{v_2} \mathbf{w}.$

Isto permite encontrar a equação para calculcar o w que minimiza o MSE via gradiante.

$$\nabla_{\mathbf{w}} \mathbb{E}\{e^{2}(n)\} = 0$$
$$-2\mathbf{p}_{xv_{2}} + 2\mathbf{R}_{v_{2}}\mathbf{w} = 0$$
$$-\mathbf{p}_{xv_{2}} + \mathbf{R}_{v_{2}}\mathbf{w} = 0$$

Por fim, temos que $\mathbf{w} = \mathbf{R}_{v_2}^{-1} \mathbf{p}_{xv_2}$ é o vetor de pesos do filtro.

2.4 Predição Ótima

O primeiro passo é definir a matriz de autocorrelação para x(n). Visando a simplicidade, mas sem perda de generalidade, pode-se considerar que o processo S é WSS e tem variância σ_s^2 :

$$\mathbf{R}_{x} = \begin{bmatrix} \mathbb{E}\{x(n)x^{*}(n)\} & \mathbb{E}\{x(n-1)x^{*}(n)\} \\ \mathbb{E}\{x(n)x^{*}(n-1)\} & \mathbb{E}\{x(n-1)x^{*}(n-1)\} \end{bmatrix}$$

Dado as premissas assumidas, a matriz pode ser simplificada para uma matriz diagonal preenchido por $2\sigma_s^2$.

Finalmente, considerando média nula para o processo D, a consequencia é que o vetor de correlação cruzada também é nulo.

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_{x}^{-1} \mathbf{p}_{xd}$$

$$= \begin{bmatrix} 2\sigma_{s}^{2} & 0\\ 0 & 2\sigma_{s}^{2} \end{bmatrix} \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

Isto implica que o filtro linear ótimo para esse processo seria o próprio vetor nulo.

2.5 Superfície de Erro

Dado os coeficientes, temos que a matriz de correlação \mathbf{R}_x do filtro ótimo é uma matriz identidade de ordem 2×2 .

Aplicando a solução do filtro ótimo de Wiener, obtém-se finalmente o vetor de pesos:

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_{x}^{-1} \mathbf{p}_{xd}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4.5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 4.5 \end{bmatrix}$$

A superfície definida por $J(\mathbf{w})$

Abrindo a equação do erro médio, para obter a expressão que define a superfície.

$$\mathbf{J}(w) = \mathbb{E}\{e^2(n)\}\tag{2.6}$$

$$= \sigma_d^2 - 2\mathbf{w}^T \mathbf{p}_{xd} + w^T \mathbf{R}_X \mathbf{w}. \tag{2.7}$$

Aplicando os valores obtidos na expressão da superfície:

$$\mathbf{J}(w_0, w_1) = 24.40 - 2 \begin{bmatrix} w_0 w_1 \end{bmatrix} \begin{bmatrix} 2 \\ 4.5 \end{bmatrix} + \begin{bmatrix} w_0 w_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$
$$= 24.40 - 4w_0 - 9w_1 + w_0^2 + w_1^2$$

Utilizando um MATLAB é possível obter a Figura 2.1 onde é traçada a superfície de erro MSE expressada na Equação (2.7).

Figura 2.1: Superfície de erro $J(w_0, w_1)$.

Filtragem Adaptativa - TIP 7188

Prof. Dr. Charles Casimiro Cavalcante Prof. Dr. Guilherme de Alencar Barreto

Período: 2022.2

Lista de Exercícios No. 2: Filtragem Linear Ótima

1. (Filtragem ótima) Considere um problema de filtragem de Wiener conforme caracterizado a seguir. A matriz de correlação $\mathbf{R}_{\mathbf{x}}$ de um vetor de entrada $\mathbf{x}(n)$ é dada por

$$\mathbf{R}_{\mathbf{x}} = \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array} \right].$$

O vetor de correlação cruzada $\mathbf{p}_{\mathbf{x}d}$ entre o vetor de entrada \mathbf{x} e a resposta desejada d(n) é

$$\mathbf{p}_{\mathbf{x}d} = \left[\begin{array}{c} 0.5 \\ 0.25 \end{array} \right]$$

- (a) Encontre o vetor de coeficientes do filtro de Wiener.
- (b) Qual é o mínimo erro médio quadrático fornecido por este filtro?
- (c) Formule uma representação do filtro de Wiener em termos dos autovalores da matriz $\mathbf{R}_{\mathbf{x}}$ e de seus autovetores associados.
- 2. (Erro médio quadrático mínimo) Mostre que a equação do erro mínimo pode se escrita da seguinte maneira:

$$\mathbf{A} \left[\begin{array}{c} 1 \\ -\mathbf{w} \end{array} \right] = \left[\begin{array}{c} J_{\min} \\ \mathbf{0} \end{array} \right]$$

em que J_{\min} é o mínimo erro médio quadrático, \mathbf{w} é o filtro de Wiener, e \mathbf{A} é a matriz de correlação do vetor aumentado

$$\left[\begin{array}{c} d(n) \\ \mathbf{x}(n) \end{array}\right]$$

em que d(n) é o sinal desejado e $\mathbf{x}(\mathbf{n})$ é o sinal de entrada do filtro de Wiener.

3. (Cancelamento de ruído) Em várias aplicações práticas há uma necessidade de cancelar ruído que foi adicionado a um sinal. Por exemplo, se estamos usando o telefone celular dentro de um ruído e o ruído do carro ou rádio é adicionado à mensagem que estamos tentando transmitir. A Figura 1 ilustra as situações de contaminação de ruído. Calcule o filtro de Wiener (filtro ótimo) de tal configuração em relação às estatísticas dos sinais envolvidos que você dispõe (conhece).

Figure 1: Esquema de cancelamento de ruído.

Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

4. (Predição ótima) Seja um processo estocástico dado por

$$x(n) = s(n+a) + s(n-4a),$$

em que S(n) é um processo estocástico WSS dado e a é uma constante.

Deseja-se filtrar o processo de tal forma obter-se um processo D(s) = s(n-a), o qual também sabe-se que é um processo WSS. Suponha que o sinal d(n) possua média nula e variância unitária.

- (a) Calcule o filtro, com dois coeficientes, que fornece a solução ótima em relação ao erro médio quadrático.
- (b) Calcule o preditor direto ótimo de passo unitário, com dois coeficientes, que fornece a solução ótima em relação ao erro médio quadrático.
- (c) Compare as soluções dos dois.
- 5. (Superfície de erro) Suponha que foram encontrados os seguintes coeficientes de autocorrelação: $r_x(0) = 1$ e $r_x(1) = 0$. Tais coeficientes foram obtidos de amostras corrompidas com ruído. Além disso, a variância do sinal desejado é $\sigma_d^2 = 24.40$ e o vetor de correlação cruzada é $\mathbf{p}_{\mathbf{x}d} = \begin{bmatrix} 2 & 4.5 \end{bmatrix}^T$. Encontre:
 - (a) O valor dos coeficientes do filtro de Wiener.
 - (b) A superfície definida por $J(\mathbf{w})$. Faça um gráfico da mesma.

3 Lista 3: Algoritmos Recursivos

3.1 Algoritmo LMF

O algoritmo é apresentado e debatido no trabalho *The Least Mean Square Fourth (LMF)* Algorithm and Its Family (Widrow, 1984), que foi utilizado de inspiração para solução desse problema.

Escrevendo a definição de erro em função do sinal desejado e da saída, obtemos:

$$e(n) = d(n) - y(n),$$

$$e(n) = d(n) - \mathbf{w}^{\mathrm{T}}(n)\mathbf{x}(n),$$

Utilizando o gradiente do erro elevado a quarta ordem, é possível obter a expressão de recursão através de derivação implícita:

$$\nabla_{\mathbf{w}} \mathbb{E}\{e^{4}(n)\} = \frac{\partial \mathbb{E}\{e^{4}(n)\}}{\partial \mathbf{w}}$$
$$= \mathbb{E}\left\{\frac{\partial e^{4}(n)}{\partial \mathbf{w}}\right\}$$
$$= \mathbb{E}\left\{\frac{\partial e^{4}(n)}{\partial e(n)} \cdot \frac{\partial e(n)}{\partial \mathbf{w}}\right\}$$

Abrindo a expressão da derivação implícita, temos que:

$$\nabla_{\mathbf{w}} \mathbb{E}\{e^{4}(n)\} = \mathbb{E}\left\{4e^{3}(n)\frac{\partial(d(n) - \mathbf{w}^{\mathrm{T}}(n)\mathbf{x}(n))}{\partial \mathbf{w}}\right\}$$
$$= \mathbb{E}\{4e^{3}(n)(0 - \mathbf{x}(n))\}$$
$$= -4\mathbb{E}\{e^{3}(n)\mathbf{x}(n)\}$$

Dado o resultado obtido em função de $\mathbb{E}\{e^4(n)\}$, visando minimizá-lo é necessário que x(n) seja ortogonal à e(n). Isto implica que:

$$\mathbb{E}\{(d(n) - \mathbf{w}^{\mathrm{T}}(n)\mathbf{x}(n))^{3}\mathbf{x}(n)\} = 0$$

Ela permite demonstrar que a expressão converge em média, dado os seguintes parâmetros: σ_z^2 e λ_{max} , respectivamente, variância do ruído e o maior autovalor λ_{max} da matriz \mathbf{R}_x . Se o passo de aprendizado (μ_{LMF}) for definido tal que:

$$1 < \mu_{\rm LMF} < \frac{1}{6\sigma_z^2 \lambda_{\rm max}},$$

O algoritmo recursivo do LMF é obtido a partir das expressões acima, reproduzindo a expressão semlhante ao do gradiente descendente, utilizando em problemas seguintes, de modo que:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu_{\text{LMF}} \mathbf{g}_w(n)$$
$$= \mathbf{w}(n) + 4\mu_{\text{LMF}} e^3(n) \mathbf{x}(n)$$

3.2 Algoritmo LMS

Condição para convergência do algoritmo

O erro nos coeficientes do filtro à cada iteração está associado à condição de convergência. Relacionando o erro dos coeficientes em um iteração qualquer com o filtro ótimo: $\Delta \mathbf{w}(n) = \mathbf{w}(n) - \mathbf{w}_{\text{opt}}$.

E isso permite aplicar a função de recurssão do LMS, de modo que:

$$\Delta \mathbf{w}(n+1) = \Delta \mathbf{w}(n) + 2\mu e(n)\mathbf{x}(n)$$

$$= \Delta \mathbf{w}(n) + 2\mu \mathbf{x}(n) \left[e_{\text{opt}}(n) - \mathbf{x}^{\text{T}}(n)\Delta \mathbf{w}(n) \right]$$

$$= \left[\mathbf{I} - 2\mu \mathbf{x}(n)\mathbf{x}^{\text{T}}(n) \right] \Delta \mathbf{w}(n) + 2\mu e_{\text{opt}}(n)\mathbf{x}(n)$$

Aplicando o operador esperança em ambos os lados da expressão e reescrevendo o lado direito, partindo das relações $e(n) = e^{T}(n)$.

$$\mathbb{E}\{\Delta \mathbf{w}(n+1)\} = \mathbb{E}\{\left[\mathbf{I} - 2\mu \mathbf{x}(n)\mathbf{x}^{\mathrm{T}}(n)\right] \Delta \mathbf{w}(n) + 2\mu e_{\mathrm{opt}}(n)\mathbf{x}(n)\}$$
$$= \mathbb{E}\{\left[\mathbf{I} - 2\mu \mathbf{x}(n)\mathbf{x}^{\mathrm{T}}(n)\right] \Delta \mathbf{w}(n)\} + 2\mu \mathbb{E}\{e_{\mathrm{opt}}(n)\mathbf{x}(n)\}$$

Como em problemas anteriores, utilizamos novamente a vantagem do operador esperança ser um operador linear. Então, se temos simultaneamente que: $\mathbf{x}(n)$ é ortogonal a $e_{\text{opt}}(n)$ e $\Delta \mathbf{w}(n)$, logo:

$$\mathbb{E}\{\Delta \mathbf{w}(n+1)\} = \left[\mathbf{I} - 2\mu \mathbb{E}\{\mathbf{x}(n)\mathbf{x}^{\mathrm{T}}(n)\}\right] \mathbb{E}\{\Delta \mathbf{w}(n)\}$$
$$= \left(\mathbf{I} - 2\mu \mathbf{R}_{x}\right) \mathbb{E}\{\Delta \mathbf{w}(n)\}$$

Visando obter uma matriz diagonal para facilitar a análise de condicionamento do algoritmo, assume-se a existência uma matriz unitária que diagonaliza \mathbf{R}_x , \mathbf{Q} , onde:

$$\mathbb{E}\{\mathbf{Q}^{\mathrm{T}}\Delta\mathbf{w}(n+1)\} = (\mathbf{I} - 2\mu\mathbf{Q}^{\mathrm{T}}\mathbf{R}_{x}) \mathbf{I}\mathbb{E}\{\Delta\mathbf{w}(n)\}$$
$$= (\mathbf{I} - 2\mu\mathbf{Q}^{\mathrm{T}}\mathbf{R}_{x}) \mathbf{Q}\mathbf{Q}^{\mathrm{T}}\mathbb{E}\{\Delta\mathbf{w}(n)\}$$
$$= (\mathbf{I} - 2\mu\mathbf{Q}^{\mathrm{T}}\mathbf{R}_{x}\mathbf{Q}) \mathbb{E}\{\mathbf{Q}^{\mathrm{T}}\Delta\mathbf{w}(n)\}$$

Reorganizando, tem-se que:

$$\mathbb{E}\{\Delta \mathbf{w}'(n+1)\} = (\mathbf{I} - 2\mu \mathbf{\Lambda}) \,\mathbb{E}\{\Delta \mathbf{w}'(n)\}\$$

A expressão anterior, pode ser expandida à esquerda para a análise de convergência do filtro, de modo que:

$$\mathbb{E}\{\Delta \mathbf{w}'(n+1)\} = (\mathbf{I} - 2\mu \mathbf{\Lambda})^{n+1} \mathbb{E}\{\Delta \mathbf{w}'(0)\}$$
$$= \operatorname{diag}\left[(1 - 2\mu \lambda_1)^{n+1}, (1 - 2\mu \lambda_2)^{n+1}, \dots, (1 - 2\mu \lambda_N)^{n+1}) \right] \mathbb{E}\{\Delta \mathbf{w}'(0)\}$$

Onde diag (\cdot) é uma matriz diagonal contendo cada autovalor da matriz de autocorrelação, $\lambda_n \forall n \in \{1, \dots, N\}$. Isso permite avaliar a condição de estabilidade apenas com propriedades relacionadas à λ .

Finalmente, de acordo com a expressão anterior, temos que para garantir estabilidade na convergência, é necessário que o passo de aprendizado do algoritmo μ esteja contido entre 0 e o maior autovalor. Desta forma é possível garantir que a medida que as dimensões dessa matriz aumenta, os valores vão reduzir, tendendo a zero:

$$0 < \mu < \frac{1}{\lambda_{\max}}$$

Erro em excesso em média quadrática

3.3 Algoritmo LMS Normalizado

A expressão recursiva do algoritmo NLMS para atualização dos coeficientes de filtro é dada por:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \frac{\mu_{norm}}{\gamma + \mathbf{x}^{\mathrm{T}}(k)\mathbf{x}(k)} \mathbf{e}(k)\mathbf{x}(k),$$

A partir da relação com o algortimo LMS, asssumindo um valor médio de μ , na direção de $2\mathbf{e}(k)\mathbf{x}(k)$ está diretamente relacionado com a expressão:

$$\frac{\mu_{norm}}{2\text{trace}(\mathbf{R}_{\mathbf{xx}})}$$

Finalmente, isso permite limitar à direita o valor de convergência do NLMS, tendo como parâmetro as equações utilizadas na atualização do LMS.

$$0 < \frac{\mu_{norm}}{2 \text{trace}(\mathbf{R}_{\mathbf{xx}})} < \frac{1}{\text{trace}(\mathbf{R}_{\mathbf{xx}})}$$
$$0 < \mu_{norm} < 2,$$

3.4 Equalização de Canais

Equalizado Ótimo e plano Z

Considerando o sinal gaussiano branco x(n), a saída do canal y(n) é dada por: y(n) = x(n) + 1.6x(n-1). Consequentemente, tem a seguinte a matriz de autocorrelação:

$$\mathbf{R}_{y} = \begin{bmatrix} \mathbb{E}\{y(n)y^{\mathrm{H}}(n)\} & \mathbb{E}\{y(n)y^{\mathrm{H}}(n-1)\} \\ \mathbb{E}\{y(n-1)y^{\mathrm{H}}(n)\} & \mathbb{E}\{y(n-1)y^{\mathrm{H}}(n-1)\} \end{bmatrix},$$

Aplicando os valores em cada expressão de correlação, e sabendo que sinal tem média nula e suas amostras são independentes, temos que matriz de autocorrelação teórica:

$$\mathbf{R}_y = \begin{bmatrix} 3.56 & 1.60 \\ 1.60 & 3.56 \end{bmatrix}$$

O vetor de correlação cruzada é dado por:

$$\mathbf{p}_{yd} = \begin{bmatrix} \mathbb{E}\{y(n)d(n)\}\\ \mathbb{E}\{y(n-1)d(n)\} \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix},$$

buscando obter a maior correlação possivel com o sinal desejado, sem que haja dependência de amostras em instantes diferentes. Por fim, temos que os coeficientes ótimos (Wiener) do equalizador são:

$$\mathbf{w}_{\text{opt}} = \mathbf{R}_{y}^{-1} \mathbf{p}_{yd}$$

$$= \begin{bmatrix} 0.35 & -0.16 \\ -0.16 & 0.35 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.35 \\ -0.16 \end{bmatrix}$$

Levando em consideração todas as informações obtidas, é possível calculcar o diagram de zeros do filtro e do canal na Fig. 3.1.

Figura 3.1: Zeros do canal e do equalizador no plano-z.

Filtro de Erro de Predição Direta de Passo Unitário

O filtro de predição direta de passo unitário é dado por:

$$\hat{x}(n) = \sum_{i=k}^{M+k-1} w_{f,i} x(n-i)$$
$$= \sum_{i=1}^{2} w_{f,i} x(n-i)$$
$$= \mathbf{w}_f^{\mathrm{T}} \mathbf{x}(n-1),$$

Tendo que o erro quadrático médio (MSE) é:

$$\mathbb{E}\{e^{2}(n)\} = \mathbb{E}\{(x(n) - \hat{x}(n))^{2}\}$$
$$= \mathbf{r}_{x}(0) - 2\mathbf{w}_{f}^{\mathsf{T}}\mathbf{r}_{x,f} + \mathbf{w}_{f}^{\mathsf{T}}\mathbf{R}_{x}\mathbf{w}_{f}$$

E a solução ótima é: $\mathbf{w}_{f,\mathrm{opt}} = \mathbf{R}_x^{-1} \mathbf{r}_{x,f}$.

Teremos assim que a mesma matriz de autocorrelação e o vetor de correlação cruzada serão definidos por

$$\mathbf{r}_{y,f} = \begin{bmatrix} r_y(1) \\ r_y(2) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{E}\{y(n)y(n-1)\} \\ \mathbb{E}\{y(n)y(n-2)\} \end{bmatrix}$$

$$= \begin{bmatrix} 1.60 \\ 0 \end{bmatrix}.$$

Logo, os coeficientes do filtro são:

$$\mathbf{w}_{f,\text{opt}} = \begin{bmatrix} 0.35 & -0.16 \\ -0.16 & 0.35 \end{bmatrix} \begin{bmatrix} 1.60 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0.56 \\ -0.26 \end{bmatrix}.$$

Por fim, podemos verificar o ponto de zero do filtro, como antecipado no Fig. 3.1, $W(z) = 0.56 - 0.26z^{-1}$:

$$0.56 - 0.26z^{-1} = 0$$
$$z = 0.45$$

Curvas de MSE e de Nível dos algoritmos

Como apresentado anteriormente, na seção 2, questão 5, o conceito de superfície de erro utilizado para traçar as curvas de nível e MSE é baseado respectivamente nas funções $J(w) = \sigma_d^2 - 2\mathbf{w}^{\mathsf{T}}\mathbf{p}_{\mathbf{X}d} + w^{\mathsf{T}}\mathbf{R}_X\mathbf{w}$ e $J(w) = \mathbb{E}\{e^2(n)\}.$

Figura 3.2: Resultados da implementação do algoritmo gradiente determinístico com N=1000 amostras, filtro de ordem M=2 e parâmtro $\mu=10^{-2}$. **Superior:** Evoulação da curva MSE. **Inferior:** Caminho percorrido até o ponto de convergência, i.e, filtro de Wiener.

As Figuras 3.2, 3.3, 3.4 e 3.5 apresentam o comportamento do erro quadrático médio (MSE) e as curvas de convergência sobre a superfície MSE para cada algoritmo implementado. A ordem de M=2 foi utilizada para todos os filtros, consequentemente o vetor de pesos na atualização possui apenas 2 coeficientes atualizados por iteração. O desempenho médio é semelhante, com certa vantagem para o NLMS.

Para os métodos determinísticos, é possível observar que há convergência organizada e suave. Isso é esperado, dado que o algoritmo utiliza o conhecimento dos coeficientes ideais do filtro.

Figura 3.3: Resultados da implementação do algoritmo Newton com N=1000 amostras, filtro de ordem M=2 e parâmtro $\mu=0.5\times 10^{-2}$. **Superior:** Evoulação da curva MSE. **Inferior:** Caminho percorrido até o ponto de convergência, i.e, filtro de Wiener.

Figura 3.4: Resultados da implementação do algoritmo LMS com N=1000 amostras, filtro de ordem M=2 e parâmtro $\mu=10^{-3}$. **Superior:** Evoulação da curva MSE. **Inferior:** Caminho percorrido até o ponto de convergência, i.e, filtro de Wiener.

Figura 3.5: Resultados da implementação do algoritmo NLMS com N=1000 amostras, filtro de ordem M=2 e parâmtros $\mu=0.5\times 10^{-1}$ and $\gamma=0.5$. **Superior:** Evoulação da curva MSE. **Inferior:** Caminho percorrido até o ponto de convergência, i.e, filtro de Wiener.

Enquanto para os métodos estocásticos, é visível algumas regiões de desordem na convergência, isso é dado como consequência da utilização das aproximações estatísticas instantâneas do sinal para o cálculo dos coeficientes. Ao comparar o LMS e sua versão normalizada, o primeiro apresenta uma maior estabilidade de convergência, enquanto o segundo apresentar uma numvem de pontos bem menos densa em torno da solução de Wiener, além de pontos que aparentemente se afastam da solução, consequência das iterações iniciais.

Número de condicionamento

O número de condicionamento consiste no quociente entre o maior λ_{\max} e menor λ_{\min} autovalor da matrix \mathbf{R}_x .

A partir da equação $\lambda^2 - 7.12\lambda + 10.11 = 0$, obtém-se as raízes do polinômio e consequentemente os autovalores e autovetores da matriz.

Utilizando o MATLAB para calcular o quociente entre autovalores máximo e mínimo, obtemos que:

$$\mathbb{C}(\mathbf{R}_x) = \frac{5.160}{1.960} = 2.633$$

Modelo de canal para número de condicionamento menor/maior que 5

Definindo uma função de transferência do canal: $H(z) = a_0 + a_1 z^{-1}$, pode-se obter a matriz de autocorrelação, visando obter o polinômio característico: $\lambda^2 + b\lambda + c = 0$.

$$\mathbf{R}_{y} = \begin{bmatrix} a_0 + a_1^2 & a_1 \\ a_1 & a_0 + a_1^2 \end{bmatrix},$$

Reorganizando a equação característica obtida a partir da matriz, tem-se que:

$$\lambda^{2} \underbrace{-2(a_{0} + a_{1}^{2})}_{b} \lambda + \underbrace{(a_{0} + a_{1}^{2})^{2} - a_{1}^{2}}_{c} = 0$$
$$\lambda^{2} + b\lambda + c = 0$$

A solução de equação de 2^0 grau pode ser obtida através equação de Bháskara, de modo que:

$$\mathbb{C}(\mathbf{R}_x) = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$$

$$= \frac{2(a_0 + a_1^2) + \sqrt{4(a_0 + a_1^2)^2 - 4(a_0 + a_1^2)^2 + 4a_1^2}}{2(a_0 + a_1^2) - \sqrt{4(a_0 + a_1^2)^2 - 4(a_0 + a_1^2)^2 + 4a_1^2}}$$

$$= \frac{a_0 + a_1^2 + a_1}{a_0 + a_1^2 - a_1}$$

As relações acima permitem estabelecer as inequações que limitam o número de condicionamento: $5(a_0 + a_1^2 - a_1) \le a_0 + a_1^2 + a_1 \le 5(a_0 + a_1^2 - a_1)$.

3.5 Identificação de Sistemas

Limite Superior para μ

Para definir o limite superior do fator de aprendizado, i.e, assegurar estabilidade, é necessário obter λ_{\max} de R_X .

Para isso é necessário desenvolver as equações que caracterizam o sistema, função de transferência e a representação da saída no tempo, respectivamente:

$$H(z) = \frac{1 - z^{-12}}{1 - z^{-1}}$$

$$= \frac{(1 - z^{-1})(\sum_{k=0}^{11} z^{-k})}{1 - z^{-1}}$$

$$= \sum_{k=0}^{11} z^{-k}$$

$$y(n) = \sum_{k=0}^{11} x(n-k)$$

Tendo essas informações, é possível estimar a R_X utilizando o MATLAB, mostrada na Tabela 1.

De acordo com o autovalor máximo, obtido no MATLAB, temos o seguinte intervalo de convergência:

$$0 < \mu < \frac{1}{97}$$

11.9509	10.9518	9.9530	8.9546	7.9567	6.9589	 0.9785
10.9518	11.9509	10.9518	9.9530	8.9546	7.9567	 1.9749
9.9530	10.9518	11.9509	10.9518	9.9530	8.9546	 2.9716
8.9546	9.9530	10.9518	11.9509	10.9518	9.9530	 3.9684
7.9567	8.9546	9.9530	10.9518	11.9509	10.9518	 4.9654
6.9589	7.9567	8.9546	9.9530	10.9518	11.9509	 5.9620
5.9620	6.9589	7.9567	8.9546	9.9530	10.9518	 6.9589
4.9654	5.9620	6.9589	7.9567	8.9546	9.9530	 7.9567
3.9684	4.9654	5.9620	6.9589	7.9567	8.9546	 8.9546
2.9716	3.9684	4.9654	5.9620	6.9589	7.9567	 9.9530
1.9749	2.9716	3.9684	4.9654	5.9620	6.9589	 10.9518
0.9785	1.9749	2.9716	3.9684	4.9654	5.9620	 11.9509

Tabela 1: Matriz de autocorrelação R_X , com simulação de Monte Carlo, utilizando 10000 iterações.

O algoritmo para $\frac{\mu_{\max}}{2}$, $\frac{\mu_{\max}}{10}$ e $\frac{\mu_{\max}}{50}$

As Figuras 3.6, 3.7 e 3.8 mostram o desempenho de cada filtro, de acordo com os parâmetros, e o apresentam o comportamento dos coeficientes na convergência do algoritmo.

A primeira vista, o rastreio do resposta em frequência é o que deixa mais evidente a relação entre a diminuição do μ e a piora do desempenho. Isso se dá, pois ao passo que o μ reduzse, a flexibilidade de adaptação diminui concomitantemente, tornando mais difícil do filtro acompanhar mudanças no canal.

Figura 3.6: Amostras = 5000, $M=15, \, \mu=\frac{\mu_{\text{max}}}{2}$

Figura 3.7: Amostras = 5000, $M=15, \, \mu=\frac{\mu_{\text{max}}}{10}$

Figura 3.8: Amostras = 5000, $M=15,\,\mu=\frac{\mu_{\rm max}}{50}$

Meça o desajuste (misadjustment)

Para calcular o desajuste, podemos utilizar:

$$M = \frac{\xi_{\text{exc}}}{\xi_{\text{min}}}$$

$$\approx \frac{\mu \text{trace}(\mathbf{R}_x)}{1 - \mu \text{trace}(\mathbf{R}_x)}$$

Utilizando o MATLAB, foi possível calcular o desajuste a partir dessa expressão foi possível obter a Tabela 2.

	$\mu_{\rm max}/2$	$\mu_{\rm max}/10$	$\mu_{\rm max}/50$
Téorico	-1.3846	2.5714	0.1682
Empírico	-1.3868	2.5342	0.1674

Tabela 2: Comparativo entre os valores de desajuste teóricos e empíricos.

Resposta em frequência do filtro FIR

Já apresentado anteriormente nesta seção, a resposta em frequência do filtro é apresentada nas Figuras 3.6, 3.7 e 3.8. A resposta se assemelha muito do sistema que se deseja estimar para o caso de $\mu/2$. Pois o sistema tem mais adaptabilidade para seguir as mudanças do canal. Entretanto, se esse valor diminui, a identificação piora, tendo uma versão atenuadas do sistema em questão. Já para a análise no domínio do tempo, apenas o sinal do primeiro caso se assemelha, os outros dois sinais são bastante degradados e quase não se pode ver relação entre o original e o estimado.

3.6 Equalização Adaptativa

Treine o filtro adaptativo NLMS

A evolução temporal do MSE apresenta comportamento similar aos problemas anteriores, com MSE tendo variação considerável até mesmo após a convergência, Figura 3.9. Já na Figura 3.10, observa-se a evolução temporal em quatro janelas de transmissão, permitindo a visualização dos símbolos enviados originalmente e de suas respectivas estimações. Nos dois gráficos superiores, há a adaptação inicial do filtro, onde ainda há certa dificuldade para acompanhar a variação do canal. nas primeiras amostras. Nos dois inferiores, há janelas com etapas mais avançadas da adaptação, onde pode-se visulizar uma capacidade levemente superior de acompanhar o canal.

Além disso, é possível ver na figura 3.11 o impacto no filtro da aplicação da filtragem a um sinal de modução 16-QAM. A estimação visivelmente separa o sinal transmitido em diferentes regiões de decisão, que bastaria aplicar um decisor para reconstrução do sinal original modulado.

Figura 3.9: Curva de MSE para: Amostras = 5000, $M=15,\,\mu=0.4.$

Figura 3.10: Evolução temporal: Amostras = 5000, $M=15, \, \mu=0.4.$

Figura 3.11: Esquema de Transmissão: Amostras = 5000, $M=15, \mu=0.4$.

Treine o filtro adaptativo LMS

A variação do treino adaptativo de acordo com o número de amostras disposto na Figura 3.12. Apenas por inspeção visual é uma tarefa complexa indicar comparações. Aparentemente, as variações entre as etapas diversas são bem sutis.

Figura 3.12: Evolução temporal de acordo com o tamanho da janela de treinamento: Amostras = 5000, $M=15,\,\mu=0.001$

Dados transmitidos foram gerados de uma constelação 256-QAM

Organizar

A evolução temporal do MSE apresenta comportamento similar ao do primeiro problema. Entretanto, é notável que a média para a constelação 256-QAM é muito maior, o que segue o resultado esperado instintivamente, já que o espaço entre os símbolos é menor, provocando maior dificuldade da identificação do símbolo original. Além disso, o MSE apresenta variação considerável até mesmo após a convergência, Figura 3.13. Já na Figura 3.14, observa-se a evolução temporal em duas janelas de transmissão, permitindo a visualização dos símbolos enviados originalmente e de suas respectivas estimações. No gráfico superior, há a adaptação inicial do filtro, onde ainda há certa dificuldade para acompanhar a variação do canal. nas primeiras amostras. Já no inferior, há uma etapas mais avançada da adaptação, onde pode-se visulizar uma capacidade levemente superior de acompanhar o canal.

Métricas de SER ou BER podem ajudar a identificar melhor problemas de adaptação do filtro para esse tipo de exercício.

Figura 3.13: Curva MSE para: Amostras = 5000, M = 15, $\mu = 0.4$.

25 Sample, N

Original

Figura 3.14: Evolução temporal: Amostras = 5000, $M=15,\,\mu=0.4.$

Curvas de taxa de erro de símbolo (SER) versus SNR

A Figura 3.15 permite avaliar o real desempenho do filtro quando associado a um equalizador que desconhece o sinal verdadeiro.

Como esperado, é possível visualizar que ao passo que a ordem da modulação aumenta, o desempenho piora vertiginosamente. Isso está relacionado com o que já foi apresentado em seções anteriores, fenômeno decorrente da proximidade dos símbolos das constelações digitais, o que acarreta interferências de ruído do canal, aumentando a frequência dos erros de decisão.

Além disso, pode-se relacionar com o fator do treinamento, que utilizada uma constelação com apenas 4 símbolos e ao efetuar transmissões com esquema de modulação com até 64 vezes mais símbulos, apresenta um filtro de comprimento pequeno para compensar essa discrepância entre treino e transmissão.

Figura 3.15: SER vs SNR (dB) para 1000 realizações de Monte Carlo: Amostras = 5000, $M=15,\,\mu=0.4$

Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

Filtragem Adaptativa - TIP 7188

Prof. Dr. Charles Casimiro Cavalcante Prof. Dr. Guilherme de Alencar Barreto

Período: 2022.2

Lista de Exercícios No. 3: Algoritmos Recursivos

- 1. (Algoritmo LMF) Deseja-se minimizar a função objetivo $\mathbb{E}\left\{e^4(n)\right\}$ utilizando-se um algoritmo do gradiente estocástico do tipo LMS. O algoritmo resultando é chamado de algoritmo least mean fourth (LMF). Derive tal algoritmo. Derive também o filtro ótimo para tal critério e compare as soluções.
- 2. (Algoritmo LMS) Considere o uso de um a sequência de ruído branco com média nula e variância σ^2 como entrada do algoritmo LMS. Avalie
 - (a) a condição para convergência do algoritmo em média quadrática;
 - (b) o erro em excesso em média quadrática.
- (Algoritmo LMS Normalizado) Avalie a questão anterior para o caso do algoritmo LMS-Normalizado. Compare os dois casos.
- 4. (Equalização de canais) Considere um sinal branco gaussiano de variância unitária transmitido por um canal de comunicação de função de transferência $H(z) = 1 + 1.6z^{-1}$. Para compensar este canal utiliza-se um equalizador dado por $W(z) = w_0 + w_1 z^{-1}$.
 - (a) Forneça o equalizador ótimo segundo o critério de Wiener. Esboce a posição dos zeros do canal e do equalizador no plano Z.
 - (b) Obtenha o filtro de erro de predição direta de passo unitário, correspondente ao sinal à saída do canal. Calcule os zeros deste filtro e compare com os do equalizador.
 - (c) Obtenha as trajetórias sobre as curvas de nível, tendo condições iniciais nulas para os coeficientes do equalizador, para os seguintes algoritmos
 - (a) Gradiente determinístico;
 - (b) Algoritmo de Newton;
 - (c) LMS;
 - (d) LMS-normalizado;
 - (d) Obtenha também a evolução do erro quadrático médio para cada um dos algoritmos anteriores.
 - (e) Qual o número de condicionamento para o problema em questão?
 - (f) Qual deveria ser o canal para que o número de condicionamento fosse menor/maior que 5? Comente os resultados.
- 5. (Identificação de sistemas) Utilize o algoritmo LMS para identificar um sistema com a função de transferência dada abaixo.

$$H(z) = \frac{1 - z^{-12}}{1 - z^{-1}}$$

O sinal de entrada é um ruído branco distribuído uniformemente com variância $\sigma_x^2 = 1$, e o ruído de medida é assumido gaussiano branco descorrelacionado da entrada e com variância de entrada $\sigma_x^2 = 10^{-3}$. O filtro adaptativo tem 12 coeficientes.

(a) Calcule o limite superior para μ (ou seja μ_{max}) para garantir a estabilidade do algoritmo.

Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

- (b) Execute o algoritmo para $\frac{\mu_{\text{max}}}{2}$, $\frac{\mu_{\text{max}}}{10}$ e $\frac{\mu_{\text{max}}}{50}$. Comente sobre o comportamento da convergência de cada caso.
- (c) Meça o desajuste (misadjustment) em cada exemplo e comparar com os resultados obtidos pela solução teórica (Eq. (3.50) do livro texto)
- (d) Mostre o gráfico da resposta em frequência do filtro FIR em qualquer uma das iterações após a convergência ser obtida e compare com o sistema desconhecido.

6. (Equalização adaptativa) Seja o canal de comunicações dado por

$$H(z) = 0.5 + 1.2z^{-1} + 1.5z^{-2} - z^{-3}$$

e deseja-se projetar um equalizar para o mesmo. A estrutura do equalizador é mostrada na Figura 1. Os símbolos s(n) são transmitidos através de um canal e corrompidos por ruído aditivo gaussiano branco complexo v(n). O sinal recebido x(n) é processado pelo equalizador FIR para gerar estimativas $\tilde{s}(n-\delta)$, as quais são passados por um dispositivo decisor gerando símbolos $\hat{s}(n-\delta)$. O equalizador possui dois modos de operação: um modo de treinamento durante o qual uma versão atrasada e replicada da sequência de entrada é usada como o sinal de referência (desejado) e um modo dirigido por decisão no qual a saída do dispositivo de decisão substitui a sequência de referência. O sinal de entrada s(n) é escolhido de uma constelação QAM (por exemplo, 4-QAM, 16-QAM, 64-QAM ou 256-QAM).

Figure 1: Equalizador linear adaptativo operando em dois modos: modo de treinamento e modo dirigido por decisão.

- (a) Faça um programa que treine o filtro adaptativo com 500 símbolos de uma constelação 4-QAM, seguindo de uma operação dirigida por decisão de 5000 símbolos de uma constelação 16-QAM. Escolha a variância do ruído σ_v^2 de maneira que ela promova uma relação sinal ruído de 30 db na entrada do equalizador. Note que os símbolos escolhidos não têm variância unitária. Por esta razão, a a variância do ruído necessita ser ajustada adequadamente para cada uma das diferentes modulações (constelações) QAM para fornecer o nível de SNR desejado. Escolha $\delta = 15$ e o comprimento do equalizador M = 15. Mostre os gráficos da evolução temporal de s(n), x(n) e $\tilde{s}(n-\delta)$. Use o LMS-normalizado com um fator de passo de $\mu = 0.4$.
- (b) Para os mesmos parâmetros do item (a), plote e compare os gráficos de evolução que seriam resultante se o equalizador fosse treinado com 150, 300 e 500 iterações. Use o LMS com um $\mu=0.001$.
- (c) Assuma agora que os dados transmitidos foram gerados de uma constelação 256-QAM ao invés de 16-QAM. Plote os gráficos da evolução do sinal na saída do equalizador quando treinado usando o LMS-normalizado e 500 símbolos de treinamento.
- (d) Gerar as curvas de taxa de erro de símbolo (SER, do inglês *Symbol Error Rate*) versus SNR na entrada do equalizador para símbolos de constelações 4, 16, 64 e 256-QAM. Faça SNR variar de 5 dB a 30 dB.

4 Lista 4: Método dos Mínimos Quadrados

4.1 Algoritmo RLS

As tabelas 3 e 4 apresentas as 10 primeiras iterações dos coeficientes de filtro, para caso w_0 seja fixo igual a um ou possa atualizar livremente. É possível observar que a oscilação fica cada menor ao se aproximar da 10^a iteração.

Iterations	w_0	w_1	w_2
1	1	0	0
2	-	-0.0161	-0.0130
3	-	-0.0168	-0.0472
4	-	0.0048	-0.0518
5	-	0.0320	-0.0831
6	-	0.0504	-0.0561
7	-	-0.0231	0.0466
8	-	0.0630	0.1069
9	-	0.0568	0.1192
10	-	0.0796	0.1457

Tabela 3: Atualização do filtro com o w_0 fixo igual a um.

Iterations	w_0	w_1	w_2
1	1	0	0
2	0.9860	-0.0161	-0.0130
3	0.9611	-0.0167	-0.0435
4	0.9687	0.0134	-0.0499
5	0.9322	0.0369	-0.0769
6	0.9053	0.0609	-0.0419
7	0.8471	0.0034	0.0384
8	0.7149	0.0642	0.0809
9	0.7264	0.0767	0.0558
10	0.7125	0.0843	0.0646

Tabela 4: Atualização do filtro com o w_0 livre para atualizar.

A título de comparação, foi implementado ambos os casos de atualização do coeficientes w_0 . A Figura 4.1 mostra os sinais obtidos com ambos os vetores de filtro, que se aproximam consideravelmente do sinal original, senoidal entre $(-3\pi, 3\pi)$.

Na inicialização do filtro, ambos distam igualmente do sinal desejado, porém ao passo que mais amostras são utilizadas no processo de adaptação, ambos se aproximam do sinal alvo. Apresentando maiores oscilações justamente nos pontos inflexão, dado a variação mais abrupta.

É possível observar também que o algoritmo com livre adaptação para w_0 apresenta desempenho melhor que o proposto, dado que existe um coeficiente a mais para garantir que a adaptação será mais adequada que ao manter um valor fixo e atualizar apenas dois coeficientes.

Figura 4.1: Primeiro coeficiente livre para adaptação com Amostras = 100, $M=2,\,\lambda=0.98$

Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

Filtragem Adaptativa - TIP 7188

Prof. Dr. Charles Casimiro Cavalcante Período: 2018.2

Lista de Exercícios No. 4: Método dos Mínimos Quadrados

- 1. O algoritmo RLS é utilizado para prever o sinal $x(n) = \cos\left(\frac{\pi n}{3}\right)$ usando um filtro FIR de segunda ordem com o primero coeficiente fixo em 1. Dado $\lambda = 0.98$, calcule o sinal de saída y(n) e os coeficientes do filtro nas primeiras 10 iterações. Note que a meta é minimizar $E\left\{y^2(n)\right\}$. Inicie com $\mathbf{w} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ e $\delta = 100$.
- 2. Seja $\epsilon(n)$ que denota um erro de estimação a priori

$$\epsilon(n) = d(n) - \mathbf{w}^H(n-1)\mathbf{x}(n)$$

em que d(n) é a resposta desejada, $\mathbf{x}(n)$ é o vetor de entrada do filtro e $\mathbf{w}(n-1)$ é a estimativa anterior do vetor de coeficientes do filtro. Seja e(n) o erro de estimação a posteriori

$$e(n) = d(n) - \mathbf{w}^H(n)\mathbf{x}(n)$$

em que $\mathbf{w}(n)$ é a estimativa atual do vetor de coeficientes do filtro. Para dados complexos ambos $\epsilon(n)$ e $\epsilon(n)$ são de valores complexos. Mostre que o produto $\epsilon(n)e^*(n)$ é sempre de valor real.

- **3.** Seja um sinal x(n) composto de uma senóide em meio à ruído. Simule um preditor adaptativo de ordem 2 com um algoritmo RLS considerando SNR = 3 dB e SNR $\rightarrow \infty$. Variando o fator de esquecimento e/ou as condições iniciais verifique e comente sobre a ocorrência ou não de instabilidade numérica. Repita o procedimento como preditor de ordem 3.
- 4. Considere um sinal branco gaussiano de variância unitária transmitido por um canal de comunicação de função de transferência $H(z) = 1 + 1.6z^{-1}$. Para compensar este canal utiliza-se um equalizador dado por $W(z) = w_0 + w_1 z^{-1}$. (Problema da lista de exercícios no. 3).
 - (a) Calcule a adaptação do algoritmo usando o RLS.
 - (b) Obtenha as trajetórias sobre as curvas de nível, tendo condições iniciais nulas para os coeficientes do equalizador. Verifique qual a melhor inicialização do algoritmo RLS. Compare com os algoritmos LMS, LMS-Normalizado e Gauss-Newton.
 - (c) Obtenha também a evolução do erro quadrático médio para cada um dos algoritmos anteriores.
- 5. Seja a questão 6 da lista de exercícios anterior (Algoritmos Recursivos questão sobre Equalização Adaptativa). Implemente o RLS para a equalização do sistema considerado na letra (a) da mesma. Compare os resultados obtidos com o LMS. Verifique a velocidade de convergência para os casos de $\lambda = 0.9$, $\lambda = 0.99$ e $\lambda = 0.999$.

5 Implementações em MATLAB

A implementação é dividida em dois arquivos. O primeiro é chamado $filter_hw.m^1$, onde há a definição dos métodos utilizados nos problemas. O segundo é o script $main.m^2$, que chama os métodos para serem executados. São apresentados nas sessões 5.1 e 5.2, respectivamente.

 $^{^2} main.m: \\ https://github.com/lucasabdalah/Courses-HWs/blob/master/Master/TIP7188-FILTRAGEM_ADAPTATIVA/homework/code/main.m.$

Table of Contents

MÉTODOS	1
HOMEWORK 2 - PROBLEM 5	
HOMEWORK 3 - PROBLEM 4	
HOMEWORK 3 - PROBLEM 5	
HOMEWORK 3 - PROBLEM 6	
HOMEWORK 4 - PROBLEM 1	
HOMEWORK 4 - PROBLEM 3	25
VERBOSE DETAILS	
SAVE DATA TO TXT FILE	

MÉTODOS

[TIP7188 - Filtragem Adaptativa] Author: Lucas Abdalah

filter_hw.m

filter_hw is a package developped for the Adaptative Filtering Course It is a way to make a compilation for all function

CONTENT

```
HOMEWORK 2 - PROBLEM 5

SAVE DATA TO TXT FILE
filter_hw.MAT2TXT - Write a matrix X into a txt file
filter_hw.TENSOR2TXT - Write a 3D tensor X into a txt file

PLACE HOLDER

classdef filter_hw

methods(Static)
```

HOMEWORK 2 - PROBLEM 5

```
function hw2p5(varargin)
% FILTER_HW.HW2P5 Perfom the error surface propose on the Hw 2,
problem 5
%
% See also.

if isempty(varargin)
    save_results = false;
else
    save_results = varargin{1};
end

N = 25;
```

```
w_lim = 100;
    w = [linspace(-w_lim,w_lim,N); linspace(-w_lim,w_lim,N)];
    [w_0, w_1] = meshgrid(w(1,:), w(2,:));
   J_{surface} = @(w_0, w_1) 24.40 - 4.*w_0 - 9.*w_1 + w_0.^2 + w_1.^2;
   J = J_surface(w_0, w_1);
   h = figure();
   surf(w_0, w_1, J, 'EdgeColor', 'none');
   colormap turbo;
   xlabel('$w_0$', 'FontSize', 16, 'interpreter', 'latex');
   ylabel('$w 1$', 'FontSize', 16, 'interpreter', 'latex');
   zlabel('$J$', 'FontSize', 16, 'interpreter', 'latex');
   view([-24.5036297640653 47.6514617014408]);
   colorbar('box', 'off');
   grid on;
   axis tight;
   pathName = 'figures/';
    filter_hw.export_fig(save_results, h, [pathName, 'hw2p5']);
end
```

HOMEWORK 3 - PROBLEM 4

```
function filter_path(signal_d_var, weights, wiener, Rx, p, c_)
% FILTER_HW.FILTER_PATH Perfom the weights path surface
응
   See also.
    step = 0.25;
   X = meshgrid (-1:step:1, -1:step:1);
   w = [X(:), reshape(transpose(X),[],1)];
    [wLen, \sim] = size(w);
   J = zeros(wLen, 1);
    for n = 1:wLen
        J(n) = signal_d_var - 2*w(n,:)*p + w(n,:)*Rx*w(n,:).';
   contour(X, X', reshape(J,size(X)), '-.', 'color', 'k');
   hold on;
   scatter(weights(1,:), weights(2, :), '.', 'MarkerEdgeColor', c_);
   hold off;
   ha = annotation('textarrow', [0 0], [0 0], 'String', 'Wiener');
   ha.Parent = gca;
   ha.X = [wiener(1)+0.15 wiener(1)];
   ha.Y = [wiener(2)-0.4 wiener(2)];
   grid on;
end
function [error, weights] = dga(signal_x, signal_d, order, mi, Rx, p)
% FILTER_HW.DGA Perfom the Deterministic Gradient Algorithm
   See also.
   N = length(signal_x);
    error = zeros(N,1);
   weights = zeros(order, N);
    signal_d = signal_d(order:end,1);
```

```
for n = 1:(N - order - 1)
        error(n,1) = signal_d(n) - weights(:,n)'*signal_x(n:n)
+order-1);
        weights(:,n+1) = weights(:,n) - 2*mi*(Rx*weights(:,n) - p);
    end
end
function [error, weights] = lms(signal x, signal d, order, mi)
% FILTER HW.LMS Perfom the LMS Algorithm
   See also.
   N = length(signal_x);
    error = zeros(N,1);
    weights = zeros(order, N);
    signal_d = signal_d(order:end,1);
    for n = 1:(N - order - 1)
        error(n) = signal_d(n) - weights(:,n)' * signal_x(n:n)
+order-1);
        weights(:,n+1) = weights(:,n) + 2 * mi * error(n) *
 signal_x(n:n+order-1);
    weights = flip(weights);
end
function [error, weights] = newton(signal_x, signal_d, order, mi,
wiener)
% FILTER_HW.NEWTON Perfom the Newton Algorithm
   See also.
   N = length(signal_x);
    error = zeros(N,1);
    weights = zeros(order, N);
    signal_d = signal_d(order:end,1);
    for n = 1:(N - order - 1)
        error(n,1) = signal_d(n) - weights(:,n)'*signal_x(n:n)
+order-1);
        weights(:,n+1) = weights(:,n) - mi*(weights(:,n) - wiener);
    end
end
function [error, weights] = nlms(signal_x, signal_d, order, mi, gamma)
% FILTER_HW.NLMS Perfom the NLMS Algorithm
응
   See also.
   N = length(signal_x);
    error = zeros(N,1);
    weights = zeros(order, N);
    signal_d = signal_d(order:end,1);
```

```
for n = 1:(N - order - 1)
       mi_normalized = mi/(gamma + norm(signal_x));
       error(n) = signal_d(n) - weights(:,n)' * signal_x(n:n +
order-1);
       weights(:,n+1) = weights(:,n) + 2 * mi_normalized * error(n)
 * signal_x(n:n+order-1);
   end
   weights = flip(weights);
end
function hw3p4(varargin)
   % Save or not the results
   if isempty(varargin)
       save_results = false;
   else
       save_results = varargin{1};
   end
   pathName = 'figures/';
   h0 = figure();
   viscircles([0, 0], 1,'Color','k', 'LineStyle','-', 'LineWidth',
1.5);
   line([0 0],[-1 1], 'Color', 'k', 'HandleVisibility','off');
   line([-1 1], [0 0], 'Color', 'k', 'HandleVisibility','off');
   hold on
   scatter(-1.6, 0, 'o', 'filled');
   scatter(0.45, 0, 'o', 'filled');
   hold off
   xlabel('$\Re (Z)$', 'interpreter', 'latex');
   ylabel('$\Im (Z)$', 'interpreter', 'latex');
   axis([-1.7 1.7 -1.7 1.7]);
   legend('Channel Zeros', 'Filter Zeros', 'Location', 'Northeast');
   grid minor
   axis square
   filter_hw.export_fig(save_results, h0, [pathName, 'hw3p4-zeros']);
   % Color scheme to plot -----
   c_ = struct('dg', [57 106 177]./255, 'lms', [204 37
41]./255, 'newton', [62 150 81]./255, 'nlms', [107 76
154]./255, 'mean', 'k');
   % General Setup -----
   N = 1000; % Number of samples
   order = 2; % Filter order
   % Signal Model -----
   signal_d = randn(N,1);
   signal_d_var = var(signal_d);
    % Noisy Version ------
   Hz = [1 \ 1.6];
```

```
signal_x = filter(Hz,1,signal_d);
  noise = sqrt(1/(10^{(inf/10))}).*randn(N,1);
   signal_x = signal_x + noise;
   % Wiener Filter -----
  Rxcorr = sort(xcorr(Hz));
  Rx = reshape([Rxcorr(end) Rxcorr], [2, 2]); % Autocorrelation
matrix
  p = eye(2,1); % Cross-correlation
  wiener = Rx\p; % Wiener solution
  fprintf('Wiener solution: %2.2f \n %2.2f \n', wiener);
   % Deterministic Gradient Algorithm
  dg.mi = 1e-2;
   [dg.error, dg.weights] = filter_hw.dga(signal_x, signal_d, order,
dg.mi, Rx, p);
   % Newton Implementation -----
  newton.mi = 5e-2;
   [newton.error, newton.weights] = filter_hw.newton(signal_x,
signal_d, order, newton.mi, wiener);
   % LMS Algorithm -----
   lms.mi = 1e-3;
   [lms.error, lms.weights] = filter_hw.lms(signal_x, signal_d,
order, lms.mi);
   % NLMS Algorithm -----
  nlms.mi = 5e-1;
  gamma = 0.5;
   [nlms.error, nlms.weights] = filter_hw.nlms(signal_x, signal_d,
order, nlms.mi, gamma);
   % Plot - Deterministic Gradient Algorithm
  h1 = figure(1);
   subplot(2,1,1);
  semilogy(1:N, dg.error.^2,'-','color', c_.dg , "linewidth", 1); %
MSE
   semilogy(1:N, repelem(mean(dg.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
  hold off
  xlabel('Iterations');
  ylabel('MSE');
  legend('Deterministic Gradient', 'Mean', 'Location', 'Best')
  grid on;
  axis tight
   subplot(2,1,2);
   filter_hw.filter_path(signal_d_var, dg.weights, wiener, Rx, p,
c_.dg); % Solution Path
  xlabel('$w_1$', 'interpreter', 'latex');
  ylabel('$w_0$', 'interpreter', 'latex');
   legend('Solution Contour', 'Deterministic
Gradient', 'Location', 'Northeast')
  axis tight
   filter hw.export fig(save results, h1, [pathName, 'hw3p4-dga']);
```

```
% Plot - Newton Implementation
 _____
   h2 = figure(2);
   subplot(2,1,1);
   semilogy(1:N, newton.error.^2,'-','color', c_.newton, "linewidth",
1); % MSE Curve
   hold on
   semilogy(1:N, repelem(mean(newton.error.^2), N), '--', 'color',
 c_.mean, "linewidth", 1);
   hold off
   xlabel('Iterations');
   ylabel('MSE');
   legend('Newton', 'Mean', 'Location', 'Best');
   grid on;
   axis tight
   subplot(2,1,2);
   filter_hw.filter_path(signal_d_var, newton.weights, wiener, Rx, p,
 c_.newton);
   xlabel('$w_1$', 'interpreter', 'latex');
   ylabel('$w_0$', 'interpreter', 'latex');
   legend('Solution Contour', 'Newton', 'Location', 'Northeast')
   axis tight
   filter_hw.export_fig(save_results, h2, [pathName, 'hw3p4-
newton']);
   % Plot - LMS Algorithm ------
   h3 = figure(3);
   subplot(2,1,1);
   semilogy(1:N, lms.error.^2,'-','color', c_.lms , "linewidth",
 1); % MSE
   hold on
   semilogy(1:N, repelem(mean(lms.error.^2), N), '--', 'color',
 c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   ylabel('MSE');
   legend('LMS', 'Mean', 'Location', 'Best')
   grid on;
   axis tight
   subplot(2,1,2);
   filter_hw.filter_path(signal_d_var, lms.weights, wiener, Rx, p,
 c_.lms); % Solution Path
   xlabel('$w_1$', 'interpreter', 'latex');
   ylabel('$w_0$', 'interpreter', 'latex');
   legend('Solution Contour', 'LMS', 'Location', 'Northeast')
   axis tight
   filter_hw.export_fig(save_results, h3, [pathName, 'hw3p4-lms']);
   % Plot - NLMS Implementation ------
   h4 = figure(4);
   subplot(2,1,1);
   semilogy(1:N, nlms.error.^2,'-','color', c_.nlms, "linewidth", 1);
```

```
hold on
   semilogy(1:N, repelem(mean(nlms.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
  hold off
  xlabel('Samples, N');
  ylabel('MSE');
  legend('NLMS','Mean', 'Location', 'Best');
  grid on;
  axis tight
  subplot(2,1,2);
   filter_hw.filter_path(signal_d_var, nlms.weights, wiener, Rx, p,
c_.nlms);
  xlabel('$w_1$', 'interpreter', 'latex');
  ylabel('$w_0$', 'interpreter', 'latex');
   legend('Solution Contour', 'NLMS', 'Location', 'Northeast')
  axis tight
  filter_hw.export_fig(save_results, h4, [pathName, 'hw3p4-nlms']);
```

end

HOMEWORK 3 - PROBLEM 5

```
function [error, weights, signal_d_hat] = hw3p5_lms(signal_x,
 signal_d, M, mi)
   N = length(signal_x);
   error = zeros(N,1);
   weights = zeros(M, N);
   signal_d_hat = zeros(size(signal_x));
    for ss = 1:(N - M)
        signal_d_hat(ss) = weights(:,ss)'*signal_x(ss:ss+M-1);
        error(ss) = signal_d(ss) - weights(:,ss)' * signal_x(ss:ss
+M-1);
        weights(:,ss+1) = weights(:,ss) + 2 * mi * error(ss) *
signal_x(ss:ss+M-1);
   end
    signal_d_hat = zscore(signal_d_hat);
end
function hw3p5(varargin)
    % General Setup
    c_ = struct('original', [57 106 177]./255, 'estimated', [204 37
 41]./255, 'lms', [107 76 154]./255, 'mean', 'k');
   order = 15; M = order + 1;
   N = 5000 + M; % Number of samples
   mi_ceil = 1/97;
    % Signal Model
   SNR dB = 30;
   SNR li = 10^{(SNR dB/10)};
   variance_noise = 1/SNR_li;
```

```
noise = sqrt(variance_noise).*randn(N,1);
   signal_d = zscore(randn(N,1)); % Z-score Normalization
  Hz = ones(1,12);
   signal_x = filtfilt(Hz,1,signal_d);
   signal_x = zscore(signal_x + noise);
   [mu02.error, mu02.weights, mu02.signal_d_hat] =
filter_hw.hw3p5_lms(signal_x, signal_d, M, mi_ceil/2);
   [mu10.error, mu10.weights, mu10.signal_d_hat] =
filter hw.hw3p5 lms(signal x, signal d, M, mi ceil/10);
   [mu50.error, mu50.weights, mu50.signal_d_hat] =
filter_hw.hw3p5_lms(signal_x, signal_d, M, mi_ceil/50);
   % Plot - mu/2
  h1 = figure();
   subplot(3,1,1)
   semilogy(1:N, abs(mu02.error).^2,'-','color',
c_.lms , "linewidth", 1);
  hold on
   semilogy(1:N, repelem(mean(abs(mu02.error).^2), N),'--','color',
c_.mean , "linewidth", 1);
  hold off
  xlabel('Samples, N');
  xlim([0 N]);
  ylabel('MSE');
   legend('LMS', 'Mean', 'Location', 'Best');
   title('$\mu_{\max}/2$', 'interpreter', 'latex')
  grid on;
   subplot(3,1,2)
   [Hf,wf] = freqz(mu02.weights(:, N - M + 1).',1, 'whole', 512);
   [Hc,wc] = freqz(ones(1,12), 1, 'whole', 512);
  plot(wc/pi,20*log10(abs(Hc)), '--', 'color',
c_.original, "linewidth", 1.5);
  hold on;
  plot(wf/pi,20*log10(abs(Hf)), '-', 'color',
c_.estimated, "linewidth", 1.5);
  xlabel('Normalized Frequency (\times\pi rad/sample)')
  ylabel('Magnitude (dB)')
   legend('System', 'Filter', 'Location', 'Best');
  grid on;
  subplot(3,1,3)
  plot(1:N, signal_d, '--','color', c_.original, "linewidth", 1.5);
  hold on;
  plot(1:N, mu02.signal_d_hat, '-', 'color',
c_.estimated, "linewidth", 1.5);
  xlabel('Samples, N');
  xlim([1000 1050]);
  ylabel('Magnitude');
  legend('Original', 'Estimated', 'Location', 'Best');
  grid on;
   % savefig tight(h1, 'figures/hw3p5b-mu02', 'both');
```

```
% Plot - mu/10
  h2 = figure();
   subplot(3,1,1)
   semilogy(1:N, abs(mu10.error).^2,'-','color',
c_.lms , "linewidth", 1);
  hold on
  semilogy(1:N, repelem(mean(abs(mu10.error).^2), N),'--','color',
c_.mean , "linewidth", 1);
  hold off
  xlabel('Samples, N');
  xlim([0 N]);
  ylabel('MSE');
  legend('LMS', 'Mean', 'Location', 'Best');
  title('$\mu_{\max}/10$', 'interpreter', 'latex')
  grid on;
  subplot(3,1,2)
   [Hf, wf] = freqz(mu10.weights(:, N - M + 1).', 1, 'whole', 512);
   [Hc,wc] = freqz(ones(1,12), 1, 'whole', 512);
  plot(wc/pi,20*log10(abs(Hc)), '--', 'color',
c_.original, "linewidth", 1.5);
  hold on;
  plot(wf/pi,20*log10(abs(Hf)), '-', 'color',
c_.estimated, "linewidth", 1.5);
  xlabel('Normalized Frequency (\times\pi rad/sample)')
  ylabel('Magnitude (dB)')
   legend('System', 'Filter', 'Location', 'Best');
  grid on;
  subplot(3,1,3)
  plot(1:N, signal_d, '--','color', c_.original, "linewidth", 1.5);
  hold on;
  plot(1:N, mu10.signal_d_hat, '-', 'color',
c_.estimated, "linewidth", 1.5);
  xlabel('Samples, N');
  xlim([4000 4050]);
  ylabel('Magnitude');
  legend('Original', 'Estimated', 'Location', 'Best');
  grid on;
   % savefig_tight(h2, 'figures/hw3p5b-mu10', 'both');
   % Plot - mu/50
  h3 = figure();
   subplot(3,1,1)
   semilogy(1:N, abs(mu50.error).^2,'-','color',
c_.lms , "linewidth", 1);
  hold on
   semilogy(1:N, repelem(mean(abs(mu50.error).^2), N),'--','color',
c_.mean , "linewidth", 1);
  hold off
  xlabel('Samples, N');
  xlim([0 N]);
  ylabel('MSE');
   legend('LMS', 'Mean', 'Location', 'Best');
```

```
title('$\mu_{\max}/50$', 'interpreter', 'latex')
  grid on;
   subplot(3,1,2)
   [Hf,wf] = freqz(mu50.weights(:, N - M + 1).',1, 'whole', 512);
   [Hc,wc] = freqz(ones(1,12), 1, 'whole', 512);
  plot(wc/pi,20*log10(abs(Hc)), '--', 'color',
c_.original, "linewidth", 1.5);
  hold on;
  plot(wf/pi,20*log10(abs(Hf)), '-', 'color',
c_.estimated, "linewidth", 1.5);
  xlabel('Normalized Frequency (\times\pi rad/sample)')
  ylabel('Magnitude (dB)')
   legend('System', 'Filter', 'Location', 'Best');
  grid on;
  subplot(3,1,3)
  plot(1:N, signal_d, '--','color', c_.original, "linewidth", 1.5);
  hold on;
  plot(1:N, mu50.signal_d_hat, '-', 'color',
c_.estimated, "linewidth", 1.5);
  xlabel('Samples, N');
  xlim([4000 4050]);
  ylabel('Magnitude');
  legend('Original', 'Estimated', 'Location', 'Best');
  grid on;
   % savefig_tight(h3, 'figures/hw3p5b-mu50', 'both');
   % Misadjustment for all scenarios
  Mcoef = 12;
  Rxx = zeros(Mcoef,Mcoef);
  RMC = 10000;
   for k = 1:RMC
      x = zscore(randn(RMC,1) + randn(RMC,1));
      y = zeros(length(x) + Mcoef - 1, 1);
      for i = Mcoef:length(x)
           for ii = 0:11
               y(i + Mcoef - 1) = y(i + Mcoef - 1) + x(i - ii);
           end
       end
       [~,R] = corrmtx(y, Mcoef - 1, 'autocorrelation');
      Rxx = Rxx + R;
  end
  Rxx = Rxx./RMC;
  rTrace = trace(Rxx);
  rTraceceil = trace(ceil(Rxx));
  mis.the02 = ((0.05/2)*(rTraceceil))/(1 - (0.05/2)*(rTraceceil));
  mis.emp02 = ((0.05/2)*(rTrace))/(1 - (0.05/2)*(rTrace));
```

HOMEWORK 3 - PROBLEM 6

```
function SER = hw3p6(varargin)
    % (a) -----
    c_ = struct('original', [57 106 177]./255, 'estimated', [204 37
 41]./255, 'nlms', [107 76 154]./255, 'mean', 'k');
   disp('a')
   % Training Phase
   % General setup
   mi = 0.4e-0;
   qamma = 1e-3;
    order = 15; M = order + 1;
   N = 500; % Samples
    % Empty vectors to fill with obtained coefficients.
   error = zeros(N,1);
   weights = zeros(M, N);
    % Signal Model
   SNR = inf;
   QAM_train = 4;
   signal_d_train = randi([0,QAM_train - 1],[N 1]);
    signal_d_train = qammod(signal_d_train,QAM_train);
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal x train = filtfilt(Hz,1,signal d train);
   snr = 10^(SNR/10);
   energy = mean(abs(signal_x_train(:)).^2);
   noise = sqrt(energy.*1/snr/2) * (complex(randn(N,1), randn(N,1)));
    % Generating the noisy received signal.
   signal_x_train = signal_x_train + noise;
    % NLMS algorithm
    for s = M:N
       window_x = signal_x_train(s:-1:s-M+1);
        mi_normalized = mi/(gamma + norm(window_x)^2);
        error(s) = signal_d_train(s-M+1) - weights(:,s)'*window_x;
        weights(:,s+1) = weights(:,s) + mi normalized * conj(error(s))
 * window x;
```

end

```
% Transmission
  N = 5000 + M;
   % Signal Model
   SNR = 30;
   OAM = 16;
   signal d = randi([0,QAM - 1],[N 1]); % The same pilot for every
pilot frame and block.
   signal_d = qammod(signal_d,QAM); % 4-QAM Pilot Signal.
   signal_x = filtfilt(Hz,1,signal_d);
   snr = 10^{(SNR/10)};
   energy = mean(abs(signal_x(:)).^2); % Energy symbol pilot.
   noise = sqrt(energy.*1/snr/2) * (complex(randn(N,1), randn(N,1)));
   signal_x = signal_x + noise;
   % Empty vectors to fill with obtained coefficients.
   weightsShape = weights(:,s+1);
   error = zeros(N,1);
   weights = zeros(M, N);
   weights(:,M) = weightsShape;
   signal_d_hat = zeros(size(signal_d));
   % NLMS algorithm with QAM signal
   for s = M:N
       window_x = signal_x(s:-1:s-M+1);
       mi_normalized = mi/(gamma + norm(window_x)^2);
       signal_d_hat(s-M+1) = weights(:,s)'*window_x; % Filtering the
signal
       error(s) = qammod(qamdemod(signal_x(s-M+1),QAM),QAM) -
weights(:,s)'*window_x;
       weights(:,s+1) = weights(:,s) + mi_normalized * conj(error(s))
* window_x;
   end
   % MSE Curve
  h1 = figure();
   semilogy(1:N, abs(error).^2,'-','color', c_.nlms , "linewidth",
   hold on
   semilogy(1:N, repelem(mean(abs(error).^2), N),'--','color',
c_.mean , "linewidth", 1);
  hold off
   xlabel('Samples, N');
  ylabel('MSE');
   xlim([0 N]);
   legend('NLMS', 'Mean', 'Location', 'Best');
   grid on;
   % savefig_tight(h1, 'figures/hw3p6a-MSE', 'both');
   % Temporal Evolution
   ShowEvolution = qamdemod(signal_d_hat,QAM);
```

```
Lsamples = 50;
    h2 = figure();
    subplot(2,2,1)
    stem(1:Lsamples, qamdemod(signal_d(1:Lsamples),QAM),'-','color',
 c_.original, "linewidth", 1, "markersize", 2);
    hold on;
    stem(1:Lsamples, ShowEvolution(1:Lsamples), '--', 'color',
 c_.estimated, "linewidth", 1, "markersize", 2);
   hold off;
    xlabel('Sample, N');
    ylabel('Magnitude');
    axis([0 50 0 20])
    grid on;
    subplot(2,2,2)
    stem(300:350, qamdemod(signal_d(300:350),QAM),'-','color',
 c_.original, "linewidth", 1, "markersize", 2);
    hold on;
    stem(300:350, ShowEvolution(300:350), '--', 'color',
 c_.estimated, "linewidth", 1, "markersize", 2);
   hold off;
    xlabel('Sample, N');
    ylabel('Magnitude');
    axis([300 350 0 20])
 legend('Original', 'Estimated', 'Location', 'northeastoutside','Orientation', 'Ho
 [0.5 0.47 0.0 1], 'Units', 'normalized');
    legend boxoff
    grid on;
    subplot(2,2,3)
    stem(3000:3050, qamdemod(signal_d(3000:3050),QAM),'-','color',
 c_.original, "linewidth", 1, "markersize", 2);
   hold on;
    stem(3000:3050, ShowEvolution(3000:3050), '--', 'color',
 c_.estimated, "linewidth", 1, "markersize", 2);
   hold off;
    xlabel('Sample, N');
    ylabel('Magnitude');
    axis([3000 3050 0 20])
    grid on;
    subplot(2,2,4)
    stem((5000-Lsamples):5000, gamdemod(signal d((5000-
Lsamples):5000),QAM),'-','color', c_.original, "linewidth",
 1, "markersize", 2);
    hold on;
    stem((5000-Lsamples):5000, ShowEvolution((5000-
Lsamples):5000), '--','color', c_.estimated, "linewidth",
 1, "markersize", 2);
   hold off;
    xlabel('Sample, N');
    ylabel('Magnitude');
    axis([4950 5000 0 20])
    grid on;
    % savefig_tight(h2, 'figures/hw3p6a-evolution', 'both');
```

```
% Plot Results
  h3 = figure();
   subplot(2,2,1)
   plot(signal_d_train,'.','color', 'y',"markersize", 8)
   title('Training');
   xlabel('In Phase');
  ylabel('Quadrature');
   axis([-2 \ 2 \ -2 \ 2]);
   set(gca,'Color','k');
   subplot(2,2,2)
   plot(signal_d,'.','color', 'y',"markersize", 8)
   title('Original');
   xlabel('In Phase');
   ylabel('Quadrature');
   set(gca,'Color','k');
   subplot(2,2,3)
   plot(signal_x,'.','color', 'y',"markersize", 8)
   title('Transmitted');
  xlabel('In Phase');
  ylabel('Quadrature');
   set(gca,'Color','k');
   subplot(2,2,4)
plot(qammod(qamdemod(signal_d_hat,QAM),QAM),'.','color', 'y',"markersize",
8)
   title('Filter and Decisor');
   xlabel('In Phase');
   ylabel('Quadrature');
   set(gca,'Color','k');
   set(gcf, 'InvertHardcopy', 'off')
   % savefig_tight(h3, 'figures/hw3p6a-QAM', 'both');
   % General setup
   % (b) -----
   disp('b')
   % General setup
   mi = 1e-3;
   order = 15; M = order + 1;
   N = 5000 + 50;
   % Signal Model
   SNR = 30;
   QAM = 16;
   signal_d = qammod(randi([0,QAM - 1],[N 1]),QAM);
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal_x = filter(Hz,1,signal_d);
   snr = 10^(SNR/10);
   energy = mean(abs(signal_x(:)).^2); % Energy symbol pilot.
   noise = sqrt(energy.*(1/snr)/2)*complex(randn(N,1), randn(N,1));
   signal_x = signal_x + noise;
```

```
% Training (50 Samples)
   N = 50;
   error = zeros(N,1);
   weights = zeros(M, N);
   % Signal Model
   QAM train = 4;
   signal_d_train = (1/sqrt(2)) * qammod(randi([0,QAM_train - 1],[N
1]),QAM train);
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal_x_train = filter(Hz,1,signal_d_train);
   snr = 10^(inf/10);
   energy = mean(abs(signal_x_train(:)).^2);
   noise = sqrt(energy.*1/snr/2) * (complex(randn(N,1), randn(N,1)));
   signal_x_train = signal_x_train + noise;
   % LMS algorithm
   for s = M:N
       window_x = signal_x_train(s:-1:s-M+1);
       error(s) = signal_d_train(s-M+1) - weights(:,s)'*window_x;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
window x;
   end
   % Transmission
   N = 5000 + 50; % Samples
   % Empty vectors
   weights = zeros(M, N);
   error = zeros(N,1);
   weightsShape = weights(:,s+1);
   weights(:,M) = weightsShape;
   signal_d_hat_50 = zeros(size(signal_d));
   for s = M:N
       windowX= signal_x(s:-1:s-M+1);
       signal_d_hat_50(s-M+1) = weights(:,s)'*windowX;
       error(s) = qammod(qamdemod(signal_x(s-M+1),QAM),QAM) -
weights(:,s)'*windowX;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Training (150 Samples)
   N = 150;
   % Empty vectors
   error = zeros(N,1);
   weights = zeros(M, N);
   % Signal Model
   QAM train = 4;
   signal_d_train = randi([0,QAM_train - 1],[N 1]);
   signal_d_train = (1/sqrt(2)) * qammod(signal_d_train,QAM_train);
```

```
Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal_x_train = filter(Hz,1,signal_d_train);
   snr = 10^(inf/10);
   energy = mean(abs(signal_x_train(:)).^2);
   noise = sqrt(energy.*1/snr/2) * (complex(randn(N,1), randn(N,1)));
   signal_x_train = signal_x_train + noise;
   % LMS
   for s = M:N
       aux = signal x train(s:-1:s-M+1);
       error(s) = signal_d_train(s-M+1) - weights(:,s)'*aux;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Transmission
   N = 5000 + 50; % Samples
   % Empty vectors
   error = zeros(N,1);
   weightsShape = weights(:,s+1);
   weights = zeros(M, N);
   weights(:,M) = weightsShape;
   signal_d_hat_150 = zeros(size(signal_d));
   % LMS algorithm
   for s = M:N
       windowX= signal_x(s:-1:s-M+1);
       signal_d_hat_150(s-M+1) = weights(:,s)'*windowX;
       error(s) = qammod(qamdemod(signal_x(s-M+1),QAM),QAM) -
weights(:,s)'*windowX;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Training (300 Samples)
   N = 300;
   % Empty vectors
   error = zeros(N,1);
   weights = zeros(M, N);
   % Signal Model
   QAM_train = 4;
   signal_d_train = randi([0,QAM_train - 1],[N 1]);
   signal_d_train = (1/sqrt(2)) * qammod(signal_d_train,QAM_train);
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal_x_train = filter(Hz,1,signal_d_train);
   snr = 10^(inf/10);
   energy = mean(abs(signal_x_train(:)).^2);
   \label{eq:noise} \mbox{noise = sqrt(energy.*1/snr/2) * (complex(randn(N,1), randn(N,1)));}
   signal_x_train = signal_x_train + noise;
   % LMS algorithm
   for s = M:N
       aux = signal_x_train(s:-1:s-M+1);
```

```
error(s) = signal_d_train(s-M+1) - weights(:,s)'*aux;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Transmission
   % Empty vectors
   N = 5000 + 50;
   error = zeros(N,1);
   weightsShape = weights(:,s+1);
   weights = zeros(M, N);
   weights(:,M) = weightsShape;
   signal_d_hat_300 = zeros(size(signal_d));
   % LMS algorithm
   for s = M:N
       windowX= signal_x(s:-1:s-M+1);
       signal_d_hat_300(s-M+1) = weights(:,s)'*windowX;
       error(s) = qammod(qamdemod(signal_x(s-M+1),QAM),QAM) -
weights(:,s)'*windowX;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Training (500 Samples)
   N = 500;
   % Empty vectors
   error = zeros(N,1);
   weights = zeros(M, N);
   % Signal Model
   QAM_train = 4;
   signal_d_train = randi([0,QAM_train - 1],[N 1]);
   signal_d_train = qammod(signal_d_train,QAM_train);
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal_x_train = filter(Hz,1,signal_d_train);
   snr = 10^(inf/10);
   energy = mean(abs(signal_x_train(:)).^2);
   noise = sqrt(energy.*1/snr/2) * (complex(randn(N,1), randn(N,1)));
   signal_x_train = signal_x_train + noise;
   % LMS
   for s = M:N
       aux = signal_x_train(s:-1:s-M+1);
       error(s) = signal_d_train(s-M+1) - weights(:,s)'*aux;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Transmission
   N = 5000 + 50;
```

```
% Empty vectors
   error = zeros(N,1);
   weightsShape = weights(:,s+1);
   weights = zeros(M, N);
   weights(:,M) = weightsShape;
   signal_d_hat_500 = zeros(size(signal_d));
   % LMS algorithm
   for s = M:N
       windowX= signal_x(s:-1:s-M+1);
       signal_d_hat_500(s-M+1) = weights(:,s)'*windowX;
       error(s) = qammod(qamdemod(signal_x(s-M+1),QAM),QAM) -
weights(:,s)'*windowX;
       weights(:,s+1) = weights(:,s) + 2 * mi * conj(error(s)) *
windowX;
   end
   % Temporal Evolution
   selectWindow = 4975:5000;
   [~,~,temporalShift] =
alignsignals(qamdemod(signal_d,QAM)),qamdemod(signal_d_hat_500,QAM));
   evolutionWindow =
circshift(qamdemod(signal_d_hat_50,QAM),temporalShift);
   evolutionWindow_50 = evolutionWindow(selectWindow);
   evolutionWindow =
circshift(qamdemod(signal_d_hat_150,QAM),temporalShift);
   evolutionWindow_150 = evolutionWindow(selectWindow);
   evolutionWindow =
circshift(qamdemod(signal_d_hat_300,QAM),temporalShift);
   evolutionWindow_300 = evolutionWindow(selectWindow);
   evolutionWindow =
circshift(qamdemod(signal_d_hat_500,QAM),temporalShift);
   evolutionWindow_500 = evolutionWindow(selectWindow);
   h4 = figure;
   subplot(2,2,1)
   stem(selectWindow,
qamdemod(signal_d(selectWindow),QAM),'-','color',
c_.original, "linewidth", 1, "markersize", 1);
   hold on;
   stem(selectWindow, evolutionWindow_50,'--','color',
c_.estimated, "linewidth", 1, "markersize", 1);
  hold off;
   title('50 Samples');
   xlabel('Sample, N');
   xlim([min(selectWindow) max(selectWindow)]);
   ylabel('Magnitude');
   ylim([0 20])
legend('Original', 'Estimated', 'Location', 'northeastoutside','Orientation', 'Ho
[0.5 0.47 0.0 1], 'Units', 'normalized');
   grid on;
```

```
legend boxoff
   subplot(2,2,2)
   stem(selectWindow,
qamdemod(signal_d(selectWindow),QAM),'-','color',
c_.original, "linewidth", 1, "markersize", 1);
  hold on;
  stem(selectWindow, evolutionWindow_150,'--','color',
c_.estimated, "linewidth", 1, "markersize", 1);
  hold off;
  title('150 Samples');
  xlabel('Sample, N');
  xlim([min(selectWindow) max(selectWindow)]);
  ylabel('Magnitude');
  grid on;
  subplot(2,2,3)
   stem(selectWindow,
qamdemod(signal_d(selectWindow),QAM),'-','color',
c_.original, "linewidth", 1, "markersize", 1);
  hold on;
  stem(selectWindow, evolutionWindow_300,'--','color',
c_.estimated, "linewidth", 1, "markersize", 1);
  hold off;
  title('300 Samples');
  xlabel('Sample, N');
  xlim([min(selectWindow) max(selectWindow)]);
  ylabel('Magnitude');
  grid on;
   subplot(2,2,4)
   stem(selectWindow,
qamdemod(signal_d(selectWindow),QAM),'-','color',
c_.original, "linewidth", 1, "markersize", 1);
  hold on;
   stem(selectWindow, evolutionWindow_500,'--','color',
c_.estimated, "linewidth", 1, "markersize", 1);
  hold off;
  title('500 Samples');
  xlabel('Sample, N');
  xlim([min(selectWindow) max(selectWindow)]);
  ylabel('Magnitude');
  grid on;
  savefig_tight(h4, 'figures/hw3p6b-evolutionSamples', 'both');
   % (C) -----
  disp('c');
   % General Setup
  N = 500;
  mi = 0.4;
  gamma = 1e-3;
  order = 15; M = order+1;
   % Empty vectors
```

```
error = zeros(N,1);
   weights = zeros(M, N);
   % Signal Model
   SNR = 30;
   QAM_train = 4;
   signal_d_train = randi([0,QAM_train - 1],[N 1]);
   signal_d_train = qammod(signal_d_train,QAM_train);
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal x train = filtfilt(Hz,1,signal d train);
   snr = 10^(inf/10);
   energy = mean(abs(signal_x_train(:)).^2);
   noise = sqrt(energy.*1/snr/2) * complex(randn(N,1), randn(N,1));;
   signal_x_train = signal_x_train + noise;
   % LMS
   for s = M:N
       aux = signal_x_train(s:-1:s-M+1);
       mi_normalized = mi/(gamma + norm(aux)^2);
       error(s) = signal_d_train(s-M+1) - weights(:,s)'*aux;
       weights(:,s+1) = weights(:,s) + mi_normalized * conj(error(s))
* aux;
   end
   % Transmission
   N = 5000 + 50; % Number of samples
   % Empty vectors
   error = zeros(N,1);
   weights = zeros(M, N);
   % Signal Model
   SNR = 30;
   QAM = 256;
   signal_d = randi([0,QAM - 1],[N 1]);
   signal_d = qammod(signal_d,QAM); % 4-QAM Pilot Signal.
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   signal_x = filtfilt(Hz,1,signal_d);
   snr = 10^(SNR/10);
   energy = mean(abs(signal_x(:)).^2);
   noise = sqrt(energy.*1/snr/2)*complex(randn(N,1), randn(N,1));;
   signal_x = signal_x + noise;
   signal_d_hat = zeros(size(signal_d));
   % NLMS
   for s = M:N
       aux = signal_x(s:-1:s-M+1);
       mi_normalized = mi/(gamma + norm(aux)^2);
       signal_d_hat(s-M+1) = weights(:,s)'*aux;
       error(s) = qammod(qamdemod(signal_x(s-M+1),QAM),QAM) -
weights(:,s)'*aux;
       weights(:,s+1) = weights(:,s) + mi_normalized * conj(error(s))
* aux;
   end
```

```
% MSE
    h5 = figure();
    semilogy(1:N, abs(error).^2,'-','color', c_.nlms , "linewidth",
 1);
    hold on
    semilogy(1:N, repelem(mean(abs(error).^2), N),'--','color',
 c_.mean , "linewidth", 1);
    hold off
    xlabel('Samples, N');
    xlim([0 N]);
    ylabel('MSE');
    legend('NLMS', 'Mean', 'Location', 'Best');
    grid on;
    savefig_tight(h5, 'figures/hw3p6c-MSE', 'both');
    % Temporal Evolution
    L = 50;
    aux = qamdemod(signal_d_hat,QAM);
    aux1 = aux(1:L);
    aux2 = aux(5000-L:5000);
    figure
    subplot(211)
    stem(1:L, qamdemod(signal_d(1:L),QAM),'-','color',
 c_.original, "linewidth", 1, "markersize", 3);
    hold on;
    stem(1:L, aux1,'-','color', c_.estimated, "linewidth",
 1, "markersize", 3);
    hold off;
    title('First Samples');
    xlabel('Sample, N');
    xlim([0 L])
    ylabel('Magnitude');
 legend('Original', 'Estimated', 'Location', 'northeastoutside','Orientation', 'Ho
 [0.5 0.47 0.0 1.03], 'Units', 'normalized');
    legend boxoff
    grid on;
    subplot(212)
    stem((5000-L):5000, qamdemod(signal_d((5000-
L):5000),QAM),'-','color', c_.original, "linewidth", 1, "markersize",
 3);
    hold on;
    stem((5000-L):5000, aux2,'-','color', c_.estimated, "linewidth",
 1, "markersize", 3);
    hold off;
    title('Last Samples');
    xlabel('Sample, N');
    ylabel('Magnitude');
    xlim([(5000-L) 5000])
    grid on;
    % savefig_tight(h5, 'figures/hw3p6c-evolution', 'both');
```

```
% (d) -----
   disp('d')
   close all;
   % General Setup
   RMC = 1000;
   QAM train = 4;
   QAM_symbols = 4.^(1:4);
   SNRdB = 0:10:30;
   order = 15; M = order + 1;
   mi = 0.4;
   gamma = 1e3;
   train.N = 500;
   trans.N = 5000;
   Hz = [0.5 \ 1.2 \ 1.5 \ -1];
   train.error = zeros(train.N,1);
   train.weights = zeros(M, train.N);
   trans.error = zeros(trans.N,1);
   trans.weights = zeros(M, trans.N);
   SER = cell(RMC, length(QAM_symbols), length(SNRdB));
   tic;
   for rmc = 1:RMC
       for iiQAM = 1:length(QAM_symbols)
           for iiSNR = 1:length(SNRdB)
               fprintf('RMC, SNR (2.0f, 2.0f dB) -- 2.0f-QAM \n',
rmc, SNRdB(iiSNR), QAM_symbols(iiQAM))
               % Training
               signal_d_train = qammod(randi([0,QAM_train - 1],
[train.N 1]),QAM_train);
               signal_x_train = filtfilt(Hz,1,signal_d_train);
               energy = mean(abs(signal_x_train(:)).^2); % Energy
symbol
               signal_x_train = signal_x_train + sqrt(energy.*1/
(10^(inf/10))/2) * complex(randn(train.N,1), randn(train.N,1));
               for s = M:train.N
                   aux = signal_x_train(s:-1:s-M+1);
                   mi_normalized = mi/(gamma + norm(aux)^2);
                   train.error(s) = signal_d_train(s-M+1) -
train.weights(:,s)'*aux;
                   train.weights(:,s+1) = train.weights(:,s) +
mi_normalized * conj(train.error(s)) * aux;
               end
               % Transmission
               QAM = QAM_symbols(iiQAM);
               signal_d = qammod(randi([0,QAM - 1],[trans.N 1]),QAM);
               signal_x = filtfilt(Hz,1,signal_d);
```

```
energy = mean(abs(signal_x(:)).^2); % Energy symbol
pilot.
               signal_x = signal_x + sqrt(energy.*1/
(10^(SNRdB(iiSNR)/10))/2) * (randn(trans.N,1) + 1i*randn(trans.N,1));
               signal_d_hat = zeros(size(signal_d));
                % NTMS
               for s = M:trans.N
                   aux = signal_x(s:-1:s-M+1);
                   mi normalized = mi/(gamma + norm(aux)^2);
                   signal_d_hat(s-M+1) = trans.weights(:,s)'*aux;
                   trans.error(s) = qammod(qamdemod(signal_x(s-M
+1),QAM),QAM) - trans.weights(:,s)'*aux;
                   trans.weights(:,s+1) = trans.weights(:,s) +
mi_normalized * conj(trans.error(s)) * aux;
               SER{rmc, iiSNR, iiQAM} = sum(qamdemod(signal_d,QAM) ~=
 qamdemod(signal_d_hat,QAM)) / length(qamdemod(signal_d,QAM));
           \quad \text{end} \quad
       end
       fprintf('----\n\n')
   end
   t = toc;
   disp(t)
   C =
struct('QAM4', 'y', 'QAM16', 'k', 'QAM64', 'r', 'QAM256', 'b', 'mean', 'k');
   h6 = figure();
   semilogy(SNRdB, mean(cell2mat(SER(:, :, 1)), 1),'-', 'color',
 c_.QAM4, 'linewidth', 1.5);
   hold on;
   semilogy(SNRdB, mean(cell2mat(SER(:, :, 2)), 1),'-', 'color',
 c_.QAM16, 'Marker', 's', 'MarkerFaceColor', c_.QAM16, 'linewidth',
 1.5);
   semilogy(SNRdB, mean(cell2mat(SER(:, :, 3)), 1),'-.', 'color',
c_.QAM64, 'Marker', 'o', 'MarkerFaceColor', c_.QAM64, 'linewidth',
   semilogy(SNRdB, mean(cell2mat(SER(:, :, 4)), 1),'--', 'color',
c_.QAM256, 'Marker', '^', 'MarkerFaceColor', c_.QAM256, 'linewidth',
 1.5);
   hold off;
   xlabel('SNR (dB)');
   ylabel('SER');
   xticks(SNRdB);
   ylim([2e-3 2]);
   legend('4-QAM', '16-QAM', '64-QAM', '256-
QAM', 'Location', 'Best');
   grid minor
   save('hw3p6d.mat', 'SNRdB', 'SER', 'c_');
```

```
savefig_tight(h6, 'figures/hw3p6d-SER', 'both');

disp('pause');
 pause();
 return
end
```

HOMEWORK 4 - PROBLEM 1

```
function [y, weights] = hw4p1rls(signal_x, signal_d, M, lambda,
  delta, fixcoeff)
           N = length(signal_d);
           error = zeros(N,1);
           weights = zeros(M, N);
           Rd = delta*eye(M);
           y = zeros(N,1);
           weights(1,1) = 1;
           for n = 2:(N - M - 1)
                       Rd = (1/lambda)*(Rd - (Rd*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*signal_x(n:n+M-1)*si
+M-1)'*Rd)/(lambda + signal_x(n:n+M-1)'*Rd*signal_x(n:n+M-1)));
                       error(n) = signal_d(n) - weights(:,n-1)' * signal_x(n:n+M-1);
                       weights(:,n) = weights(:,n-1) + Rd*error(n)*signal_x(n:n+M-1);
                       if fixcoeff
                                  weights(1,n) = 1; % Impose first coeff fix
                       end
                       y(n) = weights(:,n-1)' * signal_x(n:n+M-1);
           end
end
function hw4p1(varargin)
           disp('hw4p1')
           c_ = struct('original', [57 106 177]./255, 'fixcoef', [204 37
   41]./255, 'freecoef', [62 150 81]./255);
           % General Setup
           N = 100;
           order = 2; M = order + 1;
           lambda = 0.98;
           delta = 1;
           % Signal Model
           t = linspace(-3*pi, 3*pi, N).';
           signal_d = cos(pi*t/3);
           SNR_dB = 10;
           noise = sqrt((1/(10^(SNR_dB/10)))/2).*randn(N,1);
           signal_x = signal_d + noise;
            [fixcoef.y, fixcoef.weights] = filter_hw.hw4p1rls(signal_x,
   signal_d, M, lambda, delta, true);
```

```
[freecoef.y, freecoef.weights] = filter_hw.hw4p1rls(signal_x,
signal_d, M, lambda, delta, false);
   filter_hw.mat2txt('hw4p1coef.txt',
fixcoef.weights(:,1:10).', 'w', 'coef fix');
   filter_hw.mat2txt('hw4p1coef.txt',
freecoef.weights(:,1:10).', 'a', 'free fix');
   % MSE Curve
  h1 = figure();
   plot(signal_d,'-','color', 'k', "linewidth", 1);
  hold on;
   plot(fixcoef.y,'--','color', c_.fixcoef,
 'Marker', '^', 'MarkerFaceColor'
c_.fixcoef, 'MarkerIndices',1:20:length(fixcoef.y), "linewidth", 1);
   plot(freecoef.y,'-.','color', c_.freecoef,
 'Marker', 'o', 'MarkerFaceColor',
c_.freecoef, 'MarkerIndices',1:25:length(freecoef.y), "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   legend('Original (SNR = 10 dB)', 'Fix Coef', 'Free
Coef', 'Location', 'Best');
   grid on;
   savefig_tight(h1, 'figures/hw4p1', 'both');
```

HOMEWORK 4 - PROBLEM 3

end

```
function [error, weights] = hw4p3rls(signal_d, M, SNR_dB, lambda)
   N = length(signal_d);
   error = zeros(N,1);
   weights = zeros(M, N);
   noise = sqrt((1/(10^(SNR_dB/10)))/2).*randn(N,1);
    signal_x = signal_d + noise; % Defining delta by the inverse of
 the signal energy
   delta = 1/(sum(signal_x.^2)/length(signal_x));
   Rd = delta*eye(M);
   signal_d = signal_d(M:end,1);
    for ss = 2:(N - M - 1)
        Rd = (1/lambda)*(Rd - (Rd*signal_x(ss:ss+M-1)*signal_x(ss:ss+M-1))*
+M-1)'*Rd)/(lambda + signal_x(ss:ss+M-1)'*Rd*signal_x(ss:ss+M-1)));
        error(ss) = signal_d(ss) - weights(:,ss-1)' * signal_x(ss:ss
+M-1);
        weights(:,ss) = weights(:,ss-1) + Rd*error(ss)*signal_x(ss:ss
+M-1);
   weights = flip(weights);
```

```
end
```

```
function hw4p3(varargin)
   disp('hw4p3');
    c_ = struct('original', [57 106 177]./255, 'estimated', [204 37
 41]./255, 'nlms', [107 76 154]./255, 'mean', 'k');
    % General Setup
   N = 510;
   A.lambda = 0.9;
   B.lambda = 0.99;
   C.lambda = 0.999;
    % Order = 2
   order = 2; M = order + 1;
   SNR_dB = 3;
   % Signal Model
    t = linspace(-pi,pi,N).';
    signal_d = sin(2*pi*t); % Generating the noisy received signal.
    % Change: M, SNR, lambda
    [A.error, A.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
A.lambda);
    [B.error, B.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
B.lambda);
    [C.error, C.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
C.lambda);
   % Plot - 3 dB
   h1 = figure();
   subplot(2,2,1)
   semilogy(1:N, A.error.^2,'-','color', c_.nlms, "linewidth",
 1, "markersize", 8);
   hold on
    semilogy(1:N, repelem(mean(A.error.^2), N), '--', 'color',
 c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
    legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(A.lambda), ')'), strcat('Mean =',
num2str(mean(A.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
    subplot(2,2,2)
    semilogy(1:N, B.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
```

```
hold on
   semilogy(1:N, repelem(mean(B.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
  hold off
   xlabel('Samples, N');
  xlim([0 N-10]);
  ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(B.lambda), ')'), strcat('Mean =',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,3)
   plot(1:N, A.weights(1,:),'-','color', c_.original, "linewidth",
1);
  hold on;
  plot(1:N, A.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   subplot(2,2,4)
  plot(1:N, B.weights(1,:),'-','color', c_.original, "linewidth",
1);
  hold on;
  plot(1:N, B.weights(2,:),'--','color', c_.estimated, "linewidth",
  hold off;
  xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   % savefig_tight(h1, 'figures/hw4p3-fig1', 'both');
  h2 = figure();
   subplot(2,1,1)
   semilogy(1:N, C.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(C.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
```

```
xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(C.lambda), ')'), strcat('Mean =',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,1,2)
   plot(1:N, C.weights(1,:),'-','color', c_.original, "linewidth",
1);
   hold on;
   plot(1:N, C.weights(2,:),'--','color', c_.estimated, "linewidth",
   hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   % savefig_tight(h2, 'figures/hw4p3-fig2', 'both');
   pause;
   close all;
   SNR_dB = inf;
   % Signal Model
   t = linspace(-pi,pi,N).';
   signal_d = sin(2*pi*t); % Generating the noisy received signal.
   % Change: M, SNR, lambda
   [A.error, A.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
A.lambda);
   [B.error, B.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
B.lambda);
   [C.error, C.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
C.lambda);
   % Plot - inf dB
   h3 = figure();
   subplot(2,2,1)
   semilogy(1:N, A.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(A.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
```

```
xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' \alpha = ', num2str(A.lambda), ')'), strcat('Mean = ',
num2str(mean(A.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,2)
   semilogy(1:N, B.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(B.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
  ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(B.lambda), ')'), strcat('Mean = ',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,3)
  plot(1:N, A.weights(1,:),'-','color', c_.original, "linewidth",
1);
  hold on;
  plot(1:N, A.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   subplot(2,2,4)
  plot(1:N, B.weights(1,:),'-','color', c_.original, "linewidth",
1);
  plot(1:N, B.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
```

```
grid on;
   % savefig_tight(h3, 'figures/hw4p3-fig3', 'both');
   h4 = figure();
   subplot(2,1,1)
   semilogy(1:N, C.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   semilogy(1:N, repelem(mean(C.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' \alpha = ', num2str(C.lambda), ')'), strcat('Mean = ',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,1,2)
   plot(1:N, C.weights(1,:),'-','color', c_.original, "linewidth",
1);
   plot(1:N, C.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
   hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   % savefig_tight(h4, 'figures/hw4p3-fig4', 'both');
   pause;
   close all;
   % Order = 3
   order = 3; M = order + 1;
   SNR_dB = 3;
   % Signal Model
   t = linspace(-pi,pi,N).';
   signal_d = sin(2*pi*t); % Generating the noisy received signal.
   % Change: M, SNR, lambda
   [A.error, A.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
A.lambda);
```

```
[B.error, B.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
B.lambda);
   [C.error, C.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
C.lambda);
   % Plot - 3 dB
   h5 = figure();
   subplot(2,2,1)
   semilogy(1:N, A.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(A.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' \alpha = ', num2str(A.lambda), ')', strcat('Mean = ', num2str(A.lambda), ')'
num2str(mean(A.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,2)
   semilogy(1:N, B.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(B.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(B.lambda), ')'), strcat('Mean = ',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,3)
   plot(1:N, A.weights(1,:),'-','color', c_.original, "linewidth",
1);
   plot(1:N, A.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
   hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
```

```
grid on;
   subplot(2,2,4)
  plot(1:N, B.weights(1,:),'-','color', c_.original, "linewidth",
1);
  hold on;
  plot(1:N, B.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   % savefig_tight(h5, 'figures/hw4p3-fig5', 'both');
  h6 = figure();
   subplot(2,1,1)
   semilogy(1:N, C.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(C.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
  hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
  ylim([1e-8 1e0])
  ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(C.lambda), ')'), strcat('Mean = ',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,1,2)
   plot(1:N, C.weights(1,:),'-','color', c_.original, "linewidth",
1);
   hold on;
  plot(1:N, C.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   % savefig tight(h6, 'figures/hw4p3-fig6', 'both');
```

```
pause;
   close all;
   SNR_dB = inf;
   % Signal Model
   t = linspace(-pi,pi,N).';
   signal_d = sin(2*pi*t); % Generating the noisy received signal.
   % Change: M, SNR, lambda
   [A.error, A.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
A.lambda);
   [B.error, B.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
B.lambda);
   [C.error, C.weights] = filter_hw.hw4p3rls(signal_d, M, SNR_dB,
C.lambda);
   % Plot - inf dB
   h7 = figure();
   subplot(2,2,1)
   semilogy(1:N, A.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(A.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(A.lambda), ')'), strcat('Mean =',
num2str(mean(A.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,2)
   semilogy(1:N, B.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
   hold on
   semilogy(1:N, repelem(mean(B.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
   ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' $\lambda$ = ', num2str(B.lambda), ')'), strcat('Mean =',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,2,3)
```

```
plot(1:N, A.weights(1,:),'-','color', c_.original, "linewidth",
1);
  plot(1:N, A.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
  xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   subplot(2,2,4)
   plot(1:N, B.weights(1,:),'-','color', c_.original, "linewidth",
1);
  hold on;
  plot(1:N, B.weights(2,:),'--','color', c_.estimated, "linewidth",
1);
  hold off;
   xlabel('Samples, N');
   ylabel('Magnitude');
   xlim([0 N-10]);
legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo
   legend boxoff
   grid on;
   savefig_tight(h7, 'figures/hw4p3-fig7', 'both');
  h8 = figure();
   subplot(2,1,1)
   semilogy(1:N, C.error.^2,'-','color', c_.nlms, "linewidth",
1, "markersize", 8);
  hold on
   semilogy(1:N, repelem(mean(C.error.^2), N), '--', 'color',
c_.mean, "linewidth", 1);
   hold off
   xlabel('Samples, N');
   xlim([0 N-10]);
  ylim([1e-8 1e0])
   ylabel('MSE');
   legend(strcat(sprintf('RLS (M = %2.0f, SNR = $%2.0f$ dB,', order,
SNR_dB), ' \alpha = ', num2str(C.lambda), ')'), strcat('Mean = ',
num2str(mean(B.error.^2))), 'interpreter', 'latex', 'Orientation', 'Vertical', 'L
   legend boxoff
   grid on;
   subplot(2,1,2)
   plot(1:N, C.weights(1,:),'-','color', c_.original, "linewidth",
1);
  hold on;
```

```
plot(1:N, C.weights(2,:),'--','color', c_.estimated, "linewidth",

1);
  hold off;
  xlabel('Samples, N');
  ylabel('Magnitude');
  xlim([0 N-10]);

legend('$w_0$', '$w_1$', 'interpreter', 'latex', 'Orientation', 'Horizontal', 'Lo legend boxoff
  grid on;

savefig_tight(h8, 'figures/hw4p3-fig8', 'both');
```

end

VERBOSE DETAILS

```
function export_fig(Activate, h, filename)
   if Activate
        savefig_tight(h, filename, 'both');
        filter_hw.verbose_save(filename);
   else
        pause(2)
        close(h);
   end
end

function verbose_save(filename)
   fprintf('Saving Results for:\n\t %s \n', filename);
end
```

SAVE DATA TO TXT FILE

```
end
    fprintf(fileID, '\n');
    fclose(fileID);
end

% end methods list
end
end
ans =
    filter_hw with no properties.
```

Published with MATLAB® R2021a

Função Main

[TIP7188 - Filtragem Adaptativa] Author: Lucas Abdalah

```
main.m

clearvars;
close all;
clc; pause(0.1)

% publish('main.m', 'pdf');
% publish('filter_hw.m', 'pdf');
% filter_hw.hw2p5();
% filter_hw.hw3p4();
% filter_hw.hw3p5();
% filter_hw.hw3p6();
% filter_hw.hw4p1();
% filter_hw.hw4p3();
```

Published with MATLAB® R2021a