Baixe os programas Neuronio.java e Perceptron.java que estão no moodle para responder as questões a seguir.

- a) Altere a constante de aprendizagem (eta) para valores como 2, 0.5 e 0.01 e verifique se isso influencia no número de épocas do treinamento e no ajuste dos pesos.
- b) Altere o programa para que reconheça a tabela AND. Ele continuará funcionando ? (Sim/Não. Por que?)
- c) Altere o programa para que reconheça a tabela XOR. Ele continuará funcionando ? (Sim/Não. Por que?)
- d) Altere o programa para que a rede consiga determinar se um cliente é um mau ou bom pagador. Use os dados da tabela abaixo para treinar a sua rede (exercício extraído da apostila do Prof. Paulo Engel). Observações:
 - Analise que dados s\(\tilde{a}\) adequados para servirem de entrada para rede;
 - Normalize as entradas, os valores devem estar entre 0 e 1. Uma forma de normalização para renda, por exemplo, é dividir todas as rendas pela maior renda encontrada na tabela.
 - Codifique a classe usando valores numéricos. Esses valores devem corresponder aos valores da função de ativação, ou seja, aos valores que ela é capaz de gerar.
 - Use 70% dos dados da tabela para treino e os demais 30% para teste.
 - Contabilize o número de acertos e erros da rede na fase de teste.

Cliente	Renda	Divida	Classe
101	2800	550	bom
102	1300	500	mau
103	1400	80	bom
104	500	200	mau
105	1100	270	mau
106	1800	450	bom
107	2400	650	bom
108	1950	600	bom
109	450	70	mau
110	2750	730	bom
111	850	90	mau
112	1300	200	mau
113	2100	750	bom
114	900	300	mau
115	2700	250	bom
116	1600	500	mau
117	1900	150	bom
118	2500	800	bom
119	1600	700	mau
120	2300	500	bom
121	2100	250	bom

- e) Altere o programa que você fez na letra (d), implemente a rede agora com dois neurônios, um para cada classe. Analise se a quantidade de acertos e erros quanto ao conjunto de teste se equivalem nos dois programas. Colocar mais um neurônio, pirou,melhorou ou foi indiferente ?
- f) Altere o programa para reconhecer 2 letras. Inicialmente, use apenas um neurônio. Treine a rede para reconhecer a letra C e a letra T no formato apresentado abaixo. Após o treino, teste a rede com padrões que tenham ruído.

1	1	1
1	0	0
1	0	0
1	1	1

1	1	1
0	1	0
0	1	0
0	1	0

g) A seguir, altere o programa agora para reconhecer 4 letras: C, T, O e U. Serão necessários 2 neurônios. Após o treino, teste a rede com padrões que tenham ruído.