Příloha: Výstupní zpráva (Ukázka)

Jméno: Miroslav Bálek

Login: xbalek02

Architektura navrženého obvodu

Schéma obvodu

Popis funkce

Obvod se skládá z:

- FSM Konečný automat
- Počítadla:
 - CLK_COUNTER Slouží k počítání tiků hodinového signálu
 - BIT_COUTER Slouží k počítání datových bitů
 - o DEMULTIPLEXOR Přepínač pro paralelní zobrazení dat

Obvod se skládá z FSM viz. níže, dále se skládá z CLK_COUNTER sloužící k počítaní hod. signálů. Dále se skládá z BIT_COUNTER sloužící k počítání datových bitů. Vstupem do obvodu je datová linka DIN, na níž jsou přenášeny data. Po příchodu start bitu je zpracováno 8 sériových datových bitů jednou za 16 hod. sig., počítáno díky CLK_COUNTER, které se po přijetí ukončovacího bitu end bit zobrazí paralelně na výstupu DOUT pomocí demultiplexoru (adresování je realizováno pomocí BIT_COUNTER). Validita dat na výstupu DOUT je potvrzena výstupem DOUT_VALID, a to nastavením jeho hodnoty do log. 1 po dobu jednoho hod. signálu.

Návrh automatu (Finite State Maschine)

Schéma automatu

Legenda:

- DIN Datový vstup
- o CLK COUNT Počítadlo hodinových tiku
- o CLK_EN Povoluje běh CLK_COUNT
- o BIT_COUNT Počítadlo přijatých bitů
- o BIT_EN Povoluje běh BIT_COUNT

o CLK_RESET – Slouží k vynulování CLK_COUNT

Obvod čeká ve stavu AWAIT, dokud se na datovém vstupu DIN neobjeví logická 0. Poté přechází do stavu WAIT_FOR_DATA. V tomto stavu obvod čeká dvacet čtyři hodinových signálu a automat přechází do stavu DATA. Zde dochází ke zaznamenávání osmi bitů. Následně přechází automat do stavu IS_STOP_BIT, kde čeká na příjem tzv. stop bitu. Po přijmutí tohoto stop bitu přechází automat do stavu VALID na výstupu D_VALID podobu jednoho hod. signálu zobrazí log. 1 a automat se vrací do původního stavu AWAIT.

