(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-89180

(43)公開日 平成11年(1999) 3月30日

			· ··		
(51) Int.Cl. ⁶		識別記号	FΙ		
H02K	7/14		H02K	7/14	0
F 0 4 D	3/00		F04D		С
H02K	19/10		H02K		В
			110 Z K	19/10	\mathbf{A}

審査請求 未請求 請求項の数1 FD (全 3 頁)

(21)出願番号	特願平9-262825	(71) 出願人 000004248
(22) 出願日	平成9年(1997) 9月10日	日本電気精器株式会社
	1 2 1 (1991) 4 7 10日	東京都墨田区堤通一丁目19番9号
		(72)発明者 國廣 敏郎
		東京都墨田区堤通1丁目19番9号 日本電
		気精器株式会社内
		(72)発明者 安倍 良次
		東京都墨田区堤通1丁目19番9号 日本電
		気精器株式会社内
		(72)発明者 斎藤 守弘
		東京都墨田区堤通1丁目19番9号 日本電
		気精器株式会社内
		(74)代理人 弁理士 増田 竹夫

(54) 【発明の名称】 ポンプレスポンプ

(57)【要約】

【課題】 構成がシンプルで小型化に好適なポンプを提供する。

【解決手段】 ロータ1の各突起1A部分をスキューさせて形成し、この斜めに突起1Aを設けたロータ1とステータ2との両端部に発生する圧力差によって流体を吸入・通過させ、移送させるように構成した。

【特許請求の範囲】

【請求項1】 外向き若しくは内向き凸極構造のロータ と、このロータに対向して設けた内向き若しくは外向き 凸状磁極構造のステータとを配設し、前記ステータ側の 磁気吸引力によってロータを回転するSRモータにおい て、

前記ロータのみ若しくはロータ及びステータの各突起部 分をスキューさせて形成し、

この斜めに突起を設けたロータとステータの両端側に発 吐出させるように構成したことを特徴とするポンプレス ポンプ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、構造的にはSR モータで構成されて空気等の気体や水等の液体を移送す るポンプに係り、特に小型化に好適で、シンプルな構成 のポンプレスポンプに関するものである。

[0002]

【従来の技術】各種の流体、例えば、空気等の気体や水 20 等の液体を吸引・吐出させて所望の方向に移送すること ができる機械式のポンプが各種の分野で幅広く使用され ていることは周知である。通常このようなポンプは、基 本的には、流体を通過させて強制的に送りだす羽根やギ ア等の回転体と、この回転体を駆動・回転させるモータ との大きく2つのものから構成されている。

[0003]

【発明が解決しようとする課題】ところが、これらの回 転体とモータとは独立・別個のものであり、構造的には これらのものが別個に設けてあるからどうしても大型化 30 しており、小型化する上での障害となっている。

【0004】そこで、この発明は、上記した事情に鑑 み、構成がシンプルで小型化に好適なポンプレスポンプ を提供することを目的とするものである。

[0005]

【課題を解決するための手段】即ち、この請求項1に記 載の発明は、外向き若しくは内向き凸極構造のロータ と、このロータに対向して設けた内向き若しくは外向き 凸状磁極構造のステータとを配設し、前記ステータ側の 磁気吸引力によってロータを回転するSRモータにおい 40 て、前記ロータのみ若しくはロータ及びステータの各突 起部分をスキューさせて形成し、この斜めに突起を設け たロータとステータの両端側に発生する圧力差によって 流体を一端側から他端側へ吸入・吐出させるように構成 したものである。

[0006]

【発明の実施の形態】以下、この発明の好適な実施例に ついて添付図面を参照しながら説明する。図1はこの発 明に係る空気等の気体を移送するポンプレスポンプを示 すものであり、基本的構造は、羽根車である外向き凸極 50

構造のロータ1と、このロータ1に対向して設けた内向 き凸状磁極構造のステータ2とを配設し、ステータ2側 の磁気吸引力によってロータ1を回転するSRモータと 同様の構成である。なお、この実施例ではインナロータ 方式であるが、アウタロータ方式でも構わない。

【0007】また、このポンプレスポンプでは、図2及 び図3に示すように、ロータ1の強磁性体となる突起1 A部分が、適宜の傾き角度にスキューされた構造となっ ており、ポンプの羽根としても機能する。また、この突 生する圧力差によって流体を一端側から他端側へ吸入・ 10 起1A部分は、流体の移送効率を考慮してできるだけ大 きく突出させておくのが好ましいが、回転効率との調和 を考慮した大きさに形成させてある。なお、この実施例 では、ロータ1の突起1A部分のみスキューさせてある が、ステータ2側の凸状部分も同様に同方向に(傾き角 度は最適な回転効率となるように設定する)スキューさ せた構成でもよい。

> 【0008】また、このポンプレスポンプでは、ハウジ ング3のうち、ロータ1の回転軸1Bを支持する軸受け が設けられた左右側支持部の中央部を除く外周辺部に、 流体を取り込む吸入口3A及び排出する吐出口3Bが開 口されている。

> 【0009】従って、この実施例によれば、通常のSR モータと同様に、ステータ2側の各コイル2Aに適宜通 電・励磁させれば、発生する磁気的な吸引力でロータ1 の各突起1 A部分が吸引されて回転する。またこの回転 動作によって発生するハウジング3の左右側の圧力差に よって、低圧側の吸入口3Aから流体が吸引されてロー タ1とステータ2との間の隙間を通り抜け、高圧側の吐 出口3Bから外部に吐出されるから、流体を一定方向に (図1において左方から右方へ)移送することができ る。また、この移送する気体が低温であれば、同時にス テータ2側の冷却も行うことができる。

【0010】なお、この実施例では、空気等の気体を移 送するように構成したが、この他に例えば水等の液体も 移送する場合には、ステータの各コイルをモールドして 防水することが必要であるが、このモールドにはできる だけ透磁性の高い物質を使用するのが好ましい。

[0011]

【発明の効果】以上説明してきたようにこの発明によれ ば、ロータのみ若しくはロータ及びステータの各突起部 分をスキューさせて形成し、この斜めに突設したロータ 及びステータの突起部分の間の隙間に発生する圧力差に よって流体を吸入・通過させるように構成したから、換 言すれば、従来の回転体をロータ自身が兼用しているか ら、構成が簡易で小型化に好適である。しかも、この発 明によれば、単純で可逆的な構成であるから、回転方向 を逆にするだけの簡単な方法で、流体を逆方向に移送す ることもできる。

【図面の簡単な説明】

【図1】この発明に係るポンプレスポンプを示す断面

図。

【図2】羽根車(ロータ)部分を示す平面図。

【図3】同斜視図。

【符号の説明】

1 ロータ (羽根車)

1 A 突起 (羽根)

2 ステータ

2A コイル

3 ハウジング

3A 吸入口

3B 吐出口

【図1】

【図2】

(3)

【図3】

4

PAT-NO:

JP411089180A

DOCUMENT-IDENTIFIER:

JP 11089180 A

TITLE:

PUMP WITHOUT PUMP

PUBN-DATE:

March 30, 1999

INVENTOR-INFORMATION:
NAME
KUNIHIRO, TOSHIRO
ABE, RYOJI
SAITO, MORIHIRO

ASSIGNEE-INFORMATION:
NAME
NIPPON ELECTRIC IND CO LTD

COUNTRY N/A

APPL-NO:

JP09262825

APPL-DATE:

September 10, 1997

INT-CL (IPC): H02K007/14, F04D003/00 , H02K019/10

ABSTRACT:

PROBLEM TO BE SOLVED: To reduce in size a pump without pump by forming protruding parts of only a rotor or a rotor and stator by skewing, and sucking and discharging liquid from one end side to the other end side by a pressure difference generated at both sides of the rotor and stator having oblique protruding parts, thereby simplifying a constitution.

SOLUTION: Protruding 1A parts to become ferromagnetic parts of a rotor 1 each has a structure that the parts are skewed at a suitable oblique angle, and

functions as a blade of a pump. Similarly to a conventional SR motor, when coils 2A of a stator 2 side are suitably energized and excited, the protruding 1A parts of the rotor 1 are attracted by generated magnetic attraction force and rotated. And, fluid is sucked from a suction port 3A of a low pressure side by a pressure difference of right and left sides of a housing 3 generated by the rotation, passed through a gap between the rotor 1 and the stator 2, and discharged from a discharge port 3B of a high pressure side to the exterior. Thus, the fluid can be transferred in a predetermined direction.

COPYRIGHT: (C)1999, JPO