PATENT ABSTRACTS OF JAPAN

(11)Publication number :

2001-135631

(43)Date of publication of application: 18.05.2001

(51)Int.CI.

H01L 21/312 H01L 21/31 H01L 21/768

(21)Application number: 11-319092

(71)Applicant: MATSUSHITA ELECTRONICS

INDUSTRY CORP

(22)Date of filing:

10.11.1999

(72)Inventor:

JIWARI NOBUHIRO

IMAI SHINICHI

(54) SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD

PROBLEM TO BE SOLVED: To stack between the metal wrings an organic film containing fluorine which is excellent in adhesion with a base film and elaborateness of itself, and also has a void between metal wirings, without incurring the earth warming.

SOLUTION: A plurality of metal wirings 106 are made on a semiconductor substrate 100 through a first silicon oxide film 101. Next, a first organic film containing fluorine, which has a void 107a between the metal wirings 106, is stacked between the plural metal wirings 106 and on their topside, using the material gas having C5F8 gas for its main components. Next, a second organic film containing fluorine, which does not have a void, is stacked on the first organic film 107 containing fluorine, using the material gas having C5F8 gas for its main components.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-135631

(P2001-135631A)

(43)公開日 平成13年5月18日(2001.5.18)

(51) Int.Cl.7	識別記号	FI			テーマコード(参考)	
HO1L 21/31	· ·	H01L 2	1/312	Α	5F033	
11012 21,01				· M	5F045	
21/31		2	1/31	C	5F058	
21/76		21/90		s	S	
,			*	N	•	
•		審査請求	未請求	請求項の数10	OL (全 9]	頁) ——
(21) 出願番号	特顧平11-319092	(71)出顧人	00000584	43		
(01) 100			松下電子工業株式会社			
(22) 出願日	平成11年11月10日(1999.11.10)	大阪府高槻市幸町1番1号				
		(72)発明者	地割 信	浩		
			大阪府高	6槻市幸町1番1	号 松下電子工	_案
			株式会社	上内		
		(72)発明者				
				5槻市幸町1番1	号 松下電子工	業
			株式会社			
•		(74)代理人				
			弁理士	前田 弘 (外	.1名)	
					最終頁に	姓 2
•					東次下只 下	er \

(54) 【発明の名称】 半導体装置及びその製造方法

(57)【要約】

【課題】 金属配線同士の間に、下地膜との密着性及び膜の緻密性に優れていると共に金属配線間に空孔を有するフッ素含有有機膜を地球の温暖化を招くことなく堆積できるようにする。

【解決手段】 半導体基板100の上に第1のシリコン酸化膜101を介して複数の金属配線106を形成する。次に、C5F8ガスを主成分とする原料ガスを用いて、複数の金属配線106同士の間及びその上面に、金属配線106同士の間に空孔107aを有する第1のフッ素含有有機膜107を堆積する。次に、C5F8ガスを主成分とする原料ガスを用いて、第1のフッ素含有有機膜107の上に、空孔を有しない第2のフッ素含有有機膜108を堆積する。

【特許請求の範囲】

【請求項1】 半導体基板上に複数の金属配線を形成する工程と、

プラズマ処理装置の反応室内に設けられた試料台に前記 半導体基板を保持すると共に、前記反応室内にC5F8、 C3F6又はC4F6を主成分とする原料ガスを導入することにより、前記複数の金属配線同士の間及びその上面 に、前記複数の金属配線同士の間に空孔を有する第1の フッ素含有有機膜を堆積する工程とを備えていることを 特徴とする半導体装置の製造方法。

【請求項2】 前記反応室内にC5F8、C3F6又はC4 F6を主成分とする原料ガスを導入することにより、前 記第1のフッ素含有有機膜の上に、空孔を有しない第2 のフッ素含有有機膜を堆積する工程をさらに備えている ことを特徴とする請求項1に記載の半導体装置の製造方 法。

【請求項3】 前記第1のフッ素含有有機膜を堆積する 工程は、前記試料台にパイアス電圧を印加しないか又は 相対的に低いパイアス電圧を印加する工程を含み、

前記第2のフッ素含有有機膜を堆積する工程は、前記試料台に相対的に高いバイアス電圧を印加する工程を含むことを特徴とする請求項2に記載の半導体装置の製造方法。

【請求項4】 前記第2のフッ素含有有機膜を堆積する 工程における前記原料ガスには、フッ素原子をスカベン ジするスカベンジ用ガスが混合されていることを特徴と する請求項2に記載の半導体装置の製造方法。

【請求項5】 前記スカベンジ用ガスはCOガスであることを特徴とする請求項4に記載の半導体装置の製造方法

【請求項6】 前記反応室内において、前記第2のフッ素含有有機膜を希ガスからなるプラズマに曝すことにより、前記第2のフッ素含有有機膜を緻密化する工程をさらに備えていることを特徴とする請求項2に記載の半導体装置の製造方法。

【請求項7】 前記希ガスはアルゴンガスであることを 特徴とする請求項6に記載の半導体装置の製造方法。

【請求項8】 前記第2のフッ素含有有機膜を緻密化する工程は、前記半導体基板を前記反応室内のプラズマ発生領域の方に移動した状態で、前記第2のフッ素含有有機膜を前記希ガスからなるプラズマに曝す工程を含むことを特徴とする請求項6に記載の半導体装置の製造方法。

【請求項9】 前記第1のフッ素含有有機膜を堆積する工程は、前記原料ガスの主成分となるガスの種類に応じて該ガスの滞在時間を制御することにより、前記複数の金属配線同士の間に空孔が形成されるようにする工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。

【請求項10】 半導体基板上に形成された複数の金属

配線と、

前記複数の金属配線同士の間及びその上面に堆積されており、前記複数の金属配線同士の間に空孔を有する第1のフッ素含有有機膜と、

前記第1のフッ素含有有機膜の上に堆積されており、空 孔を有しない第2のフッ素含有有機膜とを備えていることを特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、金属配線同士の間に空孔を有する半導体装置及びその製造方法に関する。 【0002】

【従来の技術】近年めざましく進歩した半導体プロセス 技術により半導体素子及び金属配線の微細化及び高集積 化が図られているが、これに伴って、金属配線における 信号の遅延が半導体集積回路の動作速度に大きな影響を 及ぼすようになってきている。

[0003] そこで、特開平 10-233448 号公報に示されるように、金属配線における信号遅延を低減するために、金属配線同士の間に堆積された絶縁膜に空孔 ($\varepsilon=1.0$)を設けたり又は金属配線同士の間に有機膜からなる絶縁膜を堆積したりすることにより、絶縁膜の比誘電率を低減する方法が提案されている。

[0004]

【発明が解決しようとする課題】ところが、前記従来の 半導体装置によると、比誘電率を或る程度まで低減する ことはできるが、半導体素子及び金属配線の一層の微細 化及び高集積化に伴って、金属配線同士の間隔がより小 さくなってくるため、金属配線間における静電容量が増 大し、これによって、金属配線における信号遅延が避け られないという問題が発生してくる。

[0005] そこで、本件発明者らは、CF4 ガス、 $C_{2}F_{6}$ ガス、 $C_{3}F_{8}$ ガス、 $C_{4}F_{8}$ ガス等のパーフルオロカーボンガスを用いて金属配線同士の間にフッ素含有有機膜からなる絶縁膜を堆積すると共に、該絶縁膜に空孔を形成することにより、絶縁膜における金属配線間の比誘電率を低減する方法を考慮した。

【0006】ところが、前記のパーフルオロカーボンガスは地球温暖化係数(GWP100)が大きいので、工業的に多量に使用すると、温室効果によって地球の温暖化を招くという問題があることに気がついた。

【0007】また、前記のパーフルオロカーボンガスを 用いて堆積したフッ素含有有機膜は、膜中に遊離フッ素 が多数存在するために、下地膜との密着性が良くないと いう問題がある。

【0008】さらに、前記のパーフルオロカーボンガスを用いて堆積したフッ素含有有機膜は、膜中に遊離フッ素が多数存在するため緻密性に欠けるので、機械的強度、耐熱性及び耐薬品性に劣るという問題もある。

【0009】前記に鑑み、本発明は、金属配線同士の間

に、下地膜との密着性及び膜の緻密性に優れていると共 に金属配線間に空孔を有するフッ素含有有機膜を、地球 の温暖化を招くことなく堆積できるようにすることを目 的とする。

[0010]

【課題を解決するための手段】前記の目的を達成するため、本発明に係る半導体装置の製造方法は、半導体基板上に複数の金属配線を形成する工程と、プラズマ処理装置の反応室内に設けられた試料台に半導体基板を保持すると共に、反応室内に、C5F8、C3F6又はC4F6を主成分とする原料ガスを導入することにより、複数の金属配線同士の間及びその上面に、複数の金属配線同士の間に空孔を有する第1のフッ素含有有機膜を堆積する工程とを備えている。

【0011】本発明に係る半導体装置の製造方法によると、大気寿命が短いと共にGWP100が小さい、C5F8、C3F6又はC4F6を主成分とする原料ガスを用いて第1のフッ素含有有機膜を堆積するため、工業的に大量生産しても、地球の温暖化を招き難い。

【0012】また、原料ガスの主成分である C_5F_8 ガス、 C_3F_6 ガス又は C_4F_6 ガスはいずれも炭素の二重結合を有しているため、成膜時に炭素の二重結合が切れて各炭素原子が遊離フッ素と結合し、第1のフッ素含有有機膜における遊離フッ素の数が減少するので、第1のフッ素含有有機膜は、膜質が緻密になると共に下地との密着性が向上する。

【0013】さらに、第1のフッ素含有有機膜は、金属配線同士の間に空孔を有しているため、金属配線間の比誘電率が低くなるので、金属配線における信号遅延を低減することができる。

【0014】本発明の半導体装置の製造方法は、反応室内に C_5F_8 、 C_3F_6 又は C_4F_6 を主成分とする原料ガスを導入することにより、第1のフッ素含有有機膜の上に、空孔を有しない第2のフッ素含有有機膜を堆積する工程をさらに備えていることが好ましい。

【0015】このようにすると、第1のフッ素含有有機 膜は空孔を有しているため機械的強度に劣る懸念がある が、第1のフッ素含有有機膜の上には空孔を有しない第 2のフッ素含有有機膜を堆積するため、第2のフッ素含 有有機膜が第1のフッ素含有有機膜の機械的強度の劣化 を補うことができる。従って、第1のフッ素含有有機膜 と第2のフッ素含有有機膜とからなる層間絶縁度におい ては、比誘電率の低減と機械的強度の確保との両立を図 ることができる。

【0016】第1のフッ素含有有機膜の上に、空孔を有しない第2のフッ素含有有機膜を堆積する工程を備えている場合には、第1のフッ素含有有機膜を堆積する工程は、試料台にパイアス電圧を印加しないか又は相対的に低いパイアス電圧を印加する工程を含み、第2のフッ素含有有機膜を堆積する工程は、試料台に相対的に高いバ

イアス電圧を印加する工程を含むことが好ましい。 【0017】このようにすると、同一の原料ガスを用いて、第1のフッ素含有有機膜には空孔を形成される一方、第2のフッ素含有有機膜には空孔が形成されないようにすることが可能になる。

【0018】また、第2のフッ素含有有機膜を堆積する 工程を備えている場合には、第2のフッ素含有有機膜を 堆積する工程における原料ガスには、フッ素原子をスカ ベンジするスカベンジ用ガスが混合されていることが好 ましい。

【0019】このようにすると、プラズマ中のフッ素イオンの数が減少するため、第2のフッ素含有有機膜においては、フッ素原子の割合が減少する一方、炭素原子の割合が増加するので、比誘電率は高くなるが機械的強度に優れた第2のフッ素含有有機膜を得ることができる。

【0020】この場合、スカベンジ用ガスはCOガスであることが好ましい。このようにすると、C5F8、C3F6又はC4F6がプラズマ化する際に発生するフッ素を確実にスカベンジすることができる。

【0021】また、第2のフッ素含有有機膜を堆積する工程を備えている場合には、反応室内において、第2のフッ素含有有機膜を希ガスからなるプラズマに曝すことにより、第2のフッ素含有有機膜を緻密化する工程をさらに備えていることが好ましい。このようにすると、第2のフッ素含有有機膜は、膜質が緻密になるので、機械的強度、耐熱性及び耐薬品性が向上する。

【0022】この場合、希ガスはアルゴンガスであることが好ましい。その理由は以下のとおりである。

【0023】アルゴンガスを成膜用の原料ガスに添加すると、堆積レートが向上するので、成膜用の原料ガスにはアルゴンガスを添加することが多い。従って、アルゴンガスからなるプラズマを用いて緻密化を行なうと、成膜工程と緻密化工程とで同じ希ガス(アルゴンガス)を使えるので、成膜工程と緻密化工程とを同一の反応室で且つ連続的に行なうことが容易になる。

【0024】また、第2のフッ素含有有機膜を緻密化する場合には、半導体基板を反応室内のプラズマ発生領域の方に移動した状態で、第2のフッ素含有有機膜を希ガスからなるプラズマに曝すことが好ましい。このようにすると、フッ素含有有機膜の緻密化が促進される。

【0025】本発明に係る半導体装置の製造方法において、第1のフッ素含有有機膜を堆積する工程は、原料ガスの主成分となるガスの種類に応じて該ガスの滞在時間を制御することにより、空孔が形成されるようにする工程を含むことが好ましい。

【0026】このようにすると、金属配線同士の間に空 孔を有する第1のフッ素含有有機膜を確実に堆積することができる。

【0027】本発明に係る半導体装置は、半導体基板上 に形成された複数の金属配線と、複数の金属配線同士の 間及びその上面に堆積されており、空孔を有する第1の フッ素含有有機膜と、第1のフッ素含有有機膜の上に堆 積されており、空孔を有しない第2のフッ素含有有機膜 とを備えている。

【0028】本発明に係る半導体装置によると、第1のフッ素含有有機膜の上に堆積されており空孔を有しない第2のフッ素含有有機膜が第1のフッ素含有有機膜の機械的強度の劣化を補うため、第1のフッ素含有有機膜と第2のフッ素含有有機膜とからなる層間絶縁膜においては、比誘電率の低減と機械的強度の確保との両立を図ることができる。

[0029]

【発明の実施の形態】以下、本発明の一実施形態に係る 半導体製造装置の製造方法について説明するが、その前 提として、該製造方法に用いるプラズマ処理装置につい て図1を参照しながら説明する。

【0030】図1は誘導結合型のプラズマ処理装置の概略断面構造を示しており、反応室10の底部には試料台となる下部電極11が配置され、該下部電極11は半導体基板12を保持している。

【0031】反応室10には、C5F8ガスを供給する第1のガスボンベ13A、Arガスを供給する第2のガスボンベ13B、及びCOガスを供給する第3のガスボンベ13Cが接続されており、反応室10には第1、第2及び第3のガスボンベ13A、13B、13Cから、流量が制御されたC5F8ガス、Arガス及びCOガスがそれぞれ導入される。また、反応室10には、流路開閉弁14、ターボ分子ポンプ(TMP)15及びドライポンプ(DP)16からなるガス排気手段が設けられている。

【0032】反応室10の側壁の外部には柱状コイル17が設けられており、柱状コイル17の一端は第1のマッチング回路18を介して第1の高周波電源19に接続されていると共に、柱状コイル17の他端は反応室10の側壁に接続されることにより接地されている。第10の高周波電源19から柱状コイル17に高周波電力を生し、反応室10内に供給される。また、下部電池では、コンデンサ21、第2のマッチング回路22及び第2の高周波電源23が接続されており、第2の高周波電源23が接続されており、第2の高周波電源23が接続されており、第2の高周波電源23が接続されており、第2の高周波電源23が接続されており、第2の高周波電源23が接続されており、第2の高温波電力を印加すると、反応室10内に発生した粒子は下部電極110いては半導体基板12に向かって照射される。

【0033】以下、前記の誘導結合型のプラズマ処理装置を用いて行なう、一実施形態に係る半導体装置の製造方法について、図1及び図2(a)~(d)を参照しながら説明する。

【0034】まず、図2(a)に示すように、シリコンからなる半導体基板100の上に、例えば熱酸化膜から

なる第1のシリコン酸化膜101、例えばアルミニウム 又は飼からなる金属膜102、及び例えばTEOSから なる第2のシリコン酸化膜を順次形成した後、該第2の シリコン酸化膜をパターニングしてハードマスク105 を形成する。

【0035】次に、ハードマスク105を用いて金属膜102に対してドライエッチングを行なって、図2(b)に示すように、金属膜102からなる複数の金属配線106を形成する。

【0036】次に、第1の第1のガスポンベ13Aから C5F8ガスを、第2のガスボンベ13BからArガスを それぞれ供給して、C5F8ガスとArガスとが混合され てなる第1の原料ガスを反応室10内に導入すると共に、第1の高周波電源19から柱状コイル17に、例えば2.0MHzの周波数を持つ第1の高周波電力を400~3000Wのパワーで印加して、反応室10内にC5F8/Arプラズマを発生させる。この場合、C5F8ガスとArガスとの混合割合は体積流量比で1:1から 1:10までの範囲内が好ましい。

【0037】このようにすると、図2(c)に示すように、複数の金属配線106同士の間及びその上面に、金属配線106同士の間に空孔107aを有する第1のフッ素含有有機膜107が堆積される。

【0038】第1のフッ素含有有機膜107を堆積する工程においては、下部電極12には第2の高周波電力(バイアス電圧)を印加しないことが好ましい。このようにすると、プラズマ中のイオン種を半導体基板100の方に引き込む力が弱くなるので、第1のフッ素含有有機膜107には空孔107aが形成される。

【0039】尚、第1のフッ素含有有機膜107に形成される空孔107aが大きくなり過ぎて、第1のフッ素ガン有機膜107を平坦化したときに空孔107aの上部が露出する恐れがある場合には、第1のフッ素含有有機膜107を堆積する工程における初期段階では第2の高周波電源23から下部電極12に第2の高周波電力を印加すると共に、第1のフッ素含有有機膜107を堆積する工程における初期段階が終わった後には下部電極12に第2の高周波電力を印加しないようにすることが好ましい。

【0040】また、第1のフッ素含有有機膜107を堆積する工程においては、第1の原料ガスの主成分となるガス(ここではC5F8ガス)の種類に応じて該ガスの滞在時間を制御すると、第1のフッ素含有有機膜107に空孔107aを確実に形成することができる。以下、その理由について説明する。

【0041】分子量が大きい分子(高次の分子)又は分子量が大きいラジカル(高次のラジカル)は、トレンチ又はホールの側壁であるパターン側壁への付着率が小さいため、トレンチ又はホールの底部に堆積し易いので、堆積膜には空孔が形成され難い。これに対して、分子量

が小さい分子(低次の分子)又は分子量が小さいラジカル(低次のラジカル)は、パターン側壁への付着率が大きいため、トレンチ又はホールの側壁に付着し易いので、堆積膜には空孔が形成され易い。

【0042】従って、プラズマ中の高次の分子又は高次のラジカルの解離を促進して、低次の分子又は低次のラジカルを生成すると、堆積膜には空孔が形成され易いことになる。

【0043】ところで、プラズマ中における高次の分子 又は高次のラジカルの解離は、導入するガスの種類に応 じて該ガスの滞在時間を制御することに促進される。ガ スの滞在時間 τ は、 τ (sec) = P (Pa) × V (m^3) \angle Q ($Pa \cdot m^3/sec$) で表わすことができる。ここで、Pはガスの圧力であり、V は反応室の容積であり、Q はガスの流量である。

【0044】原料ガスの主成分が C_5F_8 ガスである場合には、 C_5F_8 ガスのプラズマ中における滞在時間 τ を長くすると、高次の分子が解離して低次の分子が生成されるための時間を十分に確保できるため、イオン種のパターン側壁への付着率が大きくなるので、堆積膜に空孔を確実に形成することができる。

【0045】C5F8ガスの滞在時間でを長くするためには、前記の式から、ガスの圧力Pを大きくしたり、ガスの流量Qを小さくしたりすればよい。反応室の容積Vは制御できないが、容積の大きい反応室を用いるとよい。

【0046】原料ガスの主成分がC5F8ガスである場合には、前述のように、滞在時間を長くすると低次の分子が増加するが、原料ガスの主成分がC2F6ガスである場合には、滞在時間を短くすると低次の分子が増加する。原料ガスの主成分がC3F6ガスである場合には、C5F8ガスのときの最適な滞在時間とC2F6ガスのときの最適な滞在時間との中間程度の滞在時間にすると、低次の分子が増加する。

【0047】以上のように、第1のフッ素含有有機膜107に空孔107aを形成するためには、下部電極12にパイアス電圧を印加しない方法、及び、主成分となるガスの滞在時間をガスの種類に応じて最適化する方法が挙げられるが、これ以外に、ガス圧力を大きくしたり又は柱状コイルに印加する高周波電力のパワーを大きくしたりして、プラズマ密度(電子密度を意味する)を大きくすると、イオン種のパターン側壁への付着率が大きくなる。

【0048】次に、第1の第1のガスボンベ13AからC5F8ガスを、第2のガスボンベ13BからArガスを、第3のガスボンベ13CからCOガスをそれぞれ供給して、C5F8ガスとArガスとCOガスとが混合されてなる第2の原料ガスを反応室10内に導入すると共に、第1の高周波電源19から柱状コイル17に、例えば2.0MHzの周波数を持つ第1の高周波電力を400~3000Wのパワーで印加して、反応室10内にC

5F8/Ar/COプラズマを発生させる。この場合、C5F8ガスとArガスとの混合割合は体積流量比で1:1から1:10までの範囲内が好ましい。COガスは、プラズマ中のフッ素をスカベンジ(scaveng:物理吸着と共に化学反応を起こす作用)するスカベンジ用ガスとして機能する。尚、COガスの混合割合については後述する。

【0049】また、第2の高周波電源23から下部電極12に、例えば1.8MHzの周波数を持つ第2の高周波電力を0~7.0W/cm²のパワーで印加して、図2(d)に示すように、第1のフッ素含有有機膜107の上に全面に亘って、空孔を有しない第2のフッ素含有機膜108を堆積する。

【0050】第2のフッ素含有有機膜108を堆積する工程においては、第2の高周波電源23から下部電極12に第2の高周波電源23から下部電極12に第2の高周波電力を印加すると、プラズマ中のイオン種を半導体基板100の方に引き込む力が強くなるので、空孔を有しない第2のフッ素含有有機膜108を堆積することができる。もっとも、第2のフッ素含有有機膜108を堆積する際の他の条件によっては、下部電極12に第2の高周波電力を印加しなくても、空孔を有しない第2のフッ素含有有機膜108を堆積することができる。

【0051】第2の原料ガスには、プラズマ中のフッ素をスカベンジするスカベンジ用ガスとしてのCOガスが添加されているため、C5F8/Ar/COプラズマ中において、COイオンとC5F8が分解してなるF(フッ素)とが反応してCOFが形成されるので、第2の原料ガスからなるプラズマ中のフッ素の数は、第1の原料ガスからなるプラズマ中のフッ素の数よりも少ない。このため、第2の原料ガスを用いて堆積された第2のフッ素含有有機膜108は、第1の原料ガスを用いて堆積された第1のフッ素含有有機膜107に比べて、比誘電率は高いが、機械的強度は優れている。

【0052】図3は、C5F8ガスとCOガスとの合計量に対するCOガスの混合割合と、比誘電率との関係を示している。図3から分かるように、COガスの混合割合を大きくすると、スカベンジされるフッ素の数が増加して、フッ素含有有機膜中に取り込まれるフッ素原子の数が減少するので、フッ素含有有機膜の比誘電率は大きくなる。フッ素含有絶縁膜におけるフッ素原子の含有量と機械的強度とはトレードオフの関係にあり、膜中のフッ素原子の割合が低減するに伴って炭素原子の割合が増加するので、機械的強度は増加する。

【0053】尚、本実施形態においては、第2の原料ガスには、スカベンジ用ガスとしてのCOガスを混合したが、COガスは混合しなくてもよいと共に、COガスに代えて、H2 ガス等を用いてもよい。

【0054】次に、第1のガスボンベ13AからのC5 F8ガスの導入及び第3のガスボンベ13CからのCO ガスの導入をそれぞれ停止する一方、第2のガスボンベ13BからのArガスの導入を継続する。また、第1の高周波電源19から柱状コイル17に例えば2.0MHzの周波数を持つ第1の高周波電力を400~3000Wのパワーで印加し且つ第2の高周波電源23から下部電極12に例えば1.8MHzの周波数を持つ第2の高周波電力を0~7.0W/cm²のパワーで印加して、第2のフッ素含有有機膜108をArプラズマに曝す。尚、Arガスの導入量は、特に限定されないが、標準状態における1分間の体積流量として180mL/min程度が好ましい。

【0055】このようにして、第2のフッ素含有有機膜108をArプラズマに曝すと、第2のフッ素含有有機膜108はプラズマの輻射熱によって加熱され、その温度は300℃程度まで上昇する。第2のフッ素含有有機膜108を30分間程度保持すると、該第2のフッ素含有有機膜108は緻密化されるので、機械的強度、耐熱性及び耐薬品性等が向上する。尚、第2のフッ素含有有機膜108の緻密化に用いるプラズマとしては、Arプラズマに代えて、Heガス等の他の希ガスからなるプラズマを用いてもよい。

【0056】図4(a)はArプラズマに曝す前のフッ素含有有機膜のポリマー構造を示し、図4(b)はAr

プラズマに曝した後のフッ素含有有機膜のポリマー構造を示している。図4(a)と図4(b)との対比から明らかなように、フッ素含有有機膜をArプラズマに曝すと、フッ素含有有機膜の温度が上昇して、ポリマー構造中に存在していた遊離フッ素が炭素原子と結合する。このため、遊離フッ素の数が減少するので、第2のフッ素含有有機膜108は緻密化する。

【0057】本実施形態においては、第1及び第2のフッ素含有有機膜107、108を堆積する際の原料ガスとしては、 C_5F_8 ガスに代えて、 C_3F_6 ガス又は C_4F_6 ガスを用いてもよい。

【0058】以下、第1及び第2のフッ素含有有機膜107、108を堆積する際の原料ガスとしては、 C_5F_8 ガス、 C_3F_6 ガス又は C_4F_6 ガスが好ましい理由について説明する。

【0059】まず、第1の理由は、他のパーフルオロカーボンガスに比べて、地球の温暖化を招き難いからである。 [表1] は、ガスの種類と、大気寿命及びGWP 100 (二酸化炭素の100年間の温暖化能力を1としたときの各ガスの温暖化能力を定量化した値)との関係を示している。

【0060】 【表1】

ガス名	化学式	大気寿命(年)	GWP100
Carbondioxide	CO2	170	1
Tetrafluoromethane	CF4	50000	6500
Hexafluoroethane	C ₂ F ₆	10000	9200
Trifluoromethane	CHF3	250	12100
Octafluoropropane	C3F8	2600	7000
Octafluorocyclobutane	C4F8	3200	8700
Octafluorocyclopentene	C ₆ F ₈	1	90
Hexafluoropropene	СзF6	1未満	100未満(推定)
Hexafluoropropane	C4F6	1未満	100未満(推定)

【0061】 [表 1] から分かるように、 C_5F_8 ガス、 C_3F_6 ガス及び C_4F_6 ガスは、大気寿命が短いと共にGWP 100 が小さいため、他のパーフルオロカーボンガスに比べて地球の温暖化を招き難い。

【0062】第2の理由は、C5F8、C3F6及びC4F6はいずれも炭素の二重結合を有しているため、成膜時に炭素の二重結合が切れて各炭素原子が遊離フッ素と結合する。このため、第1及び第2のフッ素含有有機膜107、108における遊離フッ素の数が減少するので、堆積された第1及び第2のフッ素含有有機膜107、108は、膜質が緻密になると共に下地との密着性が向上する。

【0063】また、第1及び第2のフッ素含有有機膜1 07を堆積するための原料ガスとしては、C5F8ガス は、他のパーフルオロカーボンガス例えば C_2F_6 ガス又は C_4F_8 ガスよりも好ましい。その理由は、 C_5F_8 ガスを用いて堆積されたフッ素含有有機膜の比誘電率は、他のパーフルオロカーボンガスを用いて堆積されたフッ素含有有機膜の比誘電率に比べて小さいからである。以下、この点について詳細に説明する。

【0064】図5は、 C_5F_8 ガス、 C_2F_6 ガス及び C_4F_8 ガスを用いて堆積したフッ素含有有機膜のXPS測定結果を示している。図5から分かるように、 C_5F_8 ガスを用いて堆積したフッ素含有有機膜は、 C_2F_6 ガス又は C_4F_8 ガスを用いて堆積したフッ素含有有機膜に比べて、膜中に含まれるフッ素原子の量が多いことが確認できる。

【0065】膜中に含まれるフッ素原子の量が多い理由

は、ガス分子量の大きい C_5F_8 ガスを用いてプラズマを 生成するため、有機膜を構成する C_xF_y 分子におけるフッ素原子の数が多くなるからである。

【0066】例えば、C₂F₆ガスとC₅F₈ガスとを比較 すると、C₂F₆及びC₅F₈は、

C₂F₆→C₂F₅↓+F↑

C5F8→C5F7↓+F↑

のように解離する。有機膜となるのは C_2F_5 又は C_5F_7 であるから、 C_5F_7 が堆積してできた膜は、 C_2F_5 が堆積してできた膜に比べて、膜中のフッ素は当然多くなる。

【0067】従って、C5F8ガスを用いて堆積した第1のフッ素含有有機膜107からなる線間絶縁膜における配線間容量は、他のパーフルオロカーボンガスを用いて堆積したフッ素含有有機膜からなる線間絶縁膜の配線間容量よりも小さくなるので、金属配線106における配線遅延は低減する。

【0068】ところで、前記の実施形態においては、下部電極11の温度については、特に説明しなかったが、膜を堆積する際には、下部電極11を低温にして半導体基板100の温度を低くすると、堆積レートが速くなるため、第1又は第2のフッ素含有有機膜107、107を効率良く得られる。従って、第1又は第2のフッ素含有有機膜107、108を堆積する工程においては、下部電極11を冷却して半導体基板100の温度を低くしておくことが好ましい。

【0069】ところが、半導体基板100の温度を低くしておくと、第2のフッ素含有有機膜108をArプラズマに曝して緻密化する際の効率が悪くなる。

【0070】そこで、緻密化工程においては、下部電極11に通常設けられている突き上げピン(図示は省略している。)を押し上げて、下部電極11に保持されている半導体基板100を下部電極11から数cm程度持ち上げることにより、半導体基板100を、冷却されている下部電極11から離すと共にプラズマ発生領域に接近させることが好ましい。このようにすると、低温で堆積することにより効率良く第2のフッ素含有有機膜108が得られると共に、第2のフッ素含有有機膜108をプラズマ発生領域に接近させることにより緻密にすることができる。

[0071]

【発明の効果】本発明に係る半導体装置の製造方法によると、大気寿命が短いと共にGWPが小さいC5F8、C3F6又はC4F6を主成分とする原料ガスを用いて第1のフッ素含有有機膜を堆積するので、工業的に大量生産しても地球の温暖化を招き難いと共に、第1のフッ素含有機膜における遊離フッ素の数が減少するので、第1のフッ素含有有機膜は、膜質が緻密になると共に下地との密着性が向上する。

【0072】本発明に係る半導体装置によると、第1のフッ素含有有機膜の上に堆積されており空孔を有しない第2のフッ素含有有機膜が第1のフッ素含有有機膜の機械的強度の劣化を補うので、第1のフッ素含有有機膜と第2のフッ素含有有機膜とからなる層間絶縁膜においては、比誘電率の低減と機械的強度の確保との両立を図ることができる。

【図面の簡単な説明】

【図1】図1は本発明の一実施形態に係る半導体装置の 製造方法に用いられる誘導結合型のプラズマ処理装置の 全体構成を示す断面図である。

【図2】(a)~(d)は、本発明の一実施形態に係る 半導体装置の製造方法の各工程を示す断面図である。

【図3】フッ素含有有機膜を堆積するための原料ガスにおける、C5F8ガスとCOガスとの合計量に対するCOガスの混合割合と、比誘電率との関係を示す図である。

【図4】(a)はプラズマに曝す前のフッ素含有有機膜のポリマー構造を示す図であり、(b)はプラズマに曝した後のフッ素含有有機膜のポリマー構造を示す図である。

【図5】C₅F₈ガス、C₂F₆ガス及びC₄F₈ガスを用い て堆積したフッ素含有有機膜のXPS測定結果を示す図 である。

【符号の説明】

- 10 反応室
- 11 下部電極
- 12 半導体基板
- 13A 第1のガスボンベ
- 13B 第2のガスポンペ
- 13C 第3のガスポンベ
- 14 流路開閉弁
- 15 ターボ分子ポンプ
- 16 ドライポンプ
- 17 柱状コイル
- 18 第1のマッチングコイル
- 19 第1の髙周波電源
- 21 コンデンサ
- 22 第2のマッチング回路
- 23 第2の高周波電源
- 100 半導体基板
- 101 第1のシリコン酸化膜
- 102 金属膜
- 103 第2のシリコン酸化膜
- 104 レジストパターン
- 105 ハードマスク
- 106 金属配線
- 107 第1のフッ素含有有機膜
- 108 第2のフッ素含有有機膜

9

フロントページの続き

Fターム(参考) 5F033 HH11 QQ00 QQ08 QQ11 QQ28 QQ74 RR04 RR21 RR24 RR26 RR29 SS01 SS04 SS15 SS19 TT03 XX12 XX25 5F045 AA08 AB39 AC16 AC17 BB16 BB17 CB05 DC55 DC63 DP04 EB02 EH14 HA23

> 5F058 AA08 AA10 AC05 AD01 AD06 AF02 AG07 AH01 AH02