2012-XE: ENGINEERING SCIENCES

EE24BTECH11008-ASLIN GARVASIS

- 6) In the case of a fully developed flow through a pipe, the shear stress at the centerline is
 - a) a function of the axial distance
 - b) a function of the centerline velocity
 - c) zero
 - d) infinite
- 7) The velocity in a one-dimensional unsteady flow is given by $(x^2 t)$, where x is the position and t is the time. The total acceleration at any x and t is
 - a) $-1 + xt + x^3$
 - b) $-1 + xt + 2x^3$
 - c) $-1 xt x^3$
 - d) $-1 2xt + 2x^3$
- 8) If ψ is the stream function, the Laplace's equation $\Delta \psi = 0$ is true when the flow is
 - a) incompressible
 - b) incompressible and irrotational
 - c) irrotational
 - d) compressible
- 9) A fully developed laminar flow is taking place through a pipe. If the flow velocity is doubled maintaining the flow laminar, the pressure loss would be
 - a) halved
 - b) unaltered
 - c) doubled
 - d) trebled

Q.10-Q.22 carry two marks each.

- 10) In the following equations, u and v are the velocities in the x- and y- directions, respectively and t is time. The flow field that CANNOT be termed as incompressible is
 - a) $u = x^3 + xy^2, v = y^3 + yx^2$
 - b) u = 10xt, v = -10yt
 - c) $u = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$, v = 0 ($\delta = constant$) d) u = 2y, v = 2x
- 11) A U-tube mercury (Hg) manometer as shown below is employed to measure the pressure of an oil-filled vessel. The densities of Hg and oil are $13600\left(\frac{kg}{m^3}\right)$ and $800\left(\frac{kg}{m^3}\right)$, respectively. The gravitational acceleration may be taken as $10\left(\frac{m}{s^2}\right)$. The gauge pressure (inPa) at a point A when $h_1 = 0.5$ (m) and $h_2 = 0.9$ (m), is approximately

- a) 118.4×10^3
- b) 118.4
- c) 11.84
- d) 1.184

12) Water is supplied to a tank at the rate of $40.02\left(\frac{m^3}{s}\right)$ as shown below. The cross-sectional area of the tank is $1 \, (mm)$ and the inner diameter of the outlet pipe is $60 \, (mm)$. At a time when the water level in the tank is increasing at the rate of $5 \left(\frac{mm}{s}\right)$, the average velocity $\left(in \left(\frac{m}{s}\right)\right)$ of water in the outlet pipe is approximately

- a) 0.005
- b) 0.06
- c) 5.3
- d) 20
- 13) The water level in a gas-pressurized tank with a large cross-sectional area is maintained constant as shown in the figure below. The water level in the tank is $4.2 \, (m)$ above the pipe centerline as indicated in the figure. The gas pressure is $130 \, (kPa)$. The atmospheric pressure, gravitational acceleration and density of water may be taken as $100 \, (kPa)$, $10 \, \left(\frac{m}{s^2}\right)$ and $1000 \, \left(\frac{kg}{m^3}\right)$, respectively. Neglecting losses, the maximum velocity in $\left(\frac{m}{s}\right)$ of water at any location in the horizontal portion of the delivery pipe for the pressure NOT to drop below atmospheric pressure, is

- a) 1.3
- b) 4.2
- c) 10
- d) 12
- 14) The figure given below shows typical non-dimensional velocity profiles for fully developed laminar flow between two infinitely long parallel plates separated by a distance a along y-direction. The upper plate is moving with a constant velocity *u* in the x-direction and the lower plate is stationary.

Column I	Column II
P. profile I	$\frac{\partial p}{\partial x} > 0$
Q. profile II	$\frac{\partial p}{\partial x} < 0$
R. profile III	$\frac{\partial p}{\partial x} = 0$

Match the non-dimensional velocity profiles in Column I with Column II

- a) P-2; Q-3; R-1
- b) P-3; Q-2; R-1
- c) P-3; Q-1; R-2
- d) P-1; Q-2; R-3
- 15) Air flows over a spherical storage vessel of diameter 4(m) at a speed of $1\left(\frac{m}{s}\right)$. To find the drag force on the vessel, a test run is to be carried out in water using a sphere of diameter 100(mm) The density and dynamic viscosity of air are $1.2\left(\frac{kg}{m^3}\right)$ and $1.8*10^{-5}(Pa.s)$, respectively. The density and dynamic viscosity of water are $1000\left(\frac{kg}{m^3}\times i\right)$ and $10^{-3}(Pa.s)$, respectively. The drag force on the model is 4(N) under dynamically similar conditions. The drag force in (N) on the prototype is approximately
 - a) 0.25
 - b) 0.93
 - c) 1.08
 - d) 4
- 16) The velocity of an air stream is $20\left(\frac{m}{s}\right)$. The densities of mercury and air are $13600\left(\frac{kg}{m^3}\right)$ and $1.2\frac{kg}{m}$, respectively. The gravitational acceleration may be taken as $10\left(\frac{m}{s}\right)$ When a Pitot-static tube is placed in the stream, assuming the flow to be incompressible and frictionless, the difference between the stagnation and static pressure in the flow field (*inmmHg*) would approximately be
 - a) 1760
 - b) 1.76
 - c) 0.57
 - d) 0.57×10^{-5}

Common Data Questions

Common Data for Questions 17 and 18:

A vessel containing water (density $1000 \left(\frac{kg}{m^3}\right)$) and oil (density $800 \left(\frac{kg}{m^3}\right)$), pressurized by gas, is shown in the figure below. Assume that the gravitational acceleration is $10 \left(\frac{m}{k^2}\right)$.

- 17) The pressure (in bar) exerted on the wall inside the vessel is approximately
 - a) 0.238
 - b) 2.38
 - c) 23.8
 - d) 238
- 18) The gate is 1 (m) wide perpendicular to the plane of the paper. The force (in N) exerted on the gate is approximately
 - a) 2.23×10^3
 - b) 2.23×10^4

- c) 2.23×10^5 d) 2.23×10^6