4. Gyakorlat (2019.03.05.)

Téma: láncolt ábrázolás, egyszerű lista, fejelemes lista. Keresés, beszúrás, törlés rendezett egyszerű listával, beszúrás fejelemes lista esetén, egyszerű lista megfordítása, egyszerű lista szétfűzése, prímszita listával.

Láncolt listák

Egy vagy két irányúak lehetnek.

Összehasonlítás a tömbbel:

- Előny: a rendezett beszúrás / törlés nem igényel elemmozgatást. Persze a beszúrás / törlés helyének megtalálása rendezett esetben O(n).
- Hátrány: nem indexelhető konstans műveletigénnyel, csak O(n)-nel!

Egyirányú lista

Listaelem típusa (jegyzetből):

Bejáráshoz pointereket használunk: p, q: E1*

Elem adattagjainak elérése: p→key, p→next (helyes még a *(p).key, *(p).next)

Ha új listaelemet szeretnénk létrehozni: p = new E1,

feleslegessé vált listaelem felszabadítása: delete p (utána már nem hivatkozhatunk rá)

Egyirányú listák fajtái (jegyzetből)

1. **Egyszerű egyirányú láncolt lista (S1L)**: a legegyszerűbb forma, az első elemre egy pointer mutat. Ha még nincs eleme a listának, ez a pointer 0(Null, Nil) értékű.

```
L_1 == \bigotimes
L_1 \longrightarrow 9 \longrightarrow 16 \longrightarrow 4 \longrightarrow 1 /
```

2. **Fejelemes egyirányú láncolt lista (H1L):** gyakori trükk, hogy egy valódi adatot nem tároló elemet helyezünk el a lista elejére. Célja: a lista elején (vagy az üres listával) végzett műveletek megkönnyítése, mert így a lista

elejére mutató pointerünk soha nem 0 értékű, továbbá az első elem előtt is van egy listaelem

Feladatok

S1L kezelésének bemutatása: egy halmazt ábrázolunk egyszerű listával (egy adott kulcs csak egyszer fordulhat elő). Típus műveletek:

- egy elem benne van-e a halmazban: keresés kulcs alapján,
- egy elem betevése a halmazba (ha még nincs benne): beszúrás,
- egy elem kivétele a halmazból (ha benne van): törlés.

Legyen a listánk növekedően rendezett. Készítsük el a keresés, beszúrás és törlés algoritmusát:

Keresés:

findInS1L(L:E1*, dataToFind:T): E1*

Sikertelen keresés eredménye: Null pointert ad vissza, így nem kell a logikai változó ami lineáris keresés tételénél szerepelt.

Beszúrás:

A kereséshez hasonló ciklussal indul, meg kell keresni a kulcs helyét a rendezett sorozatban. A műveletekhez világos, hogy két elem címe kell: az az elem, ami elé fogunk befűzni (az első olyan, melynek a kulcsa nagyobb a beszúrandó elem kulcsánál), valamint az előtte lévő elem címe. Ehhez két bejáró pointert használjunk. Egyirányú listák esetén, ha a lista felépítését megváltoztatja az algoritmus, mindig két bejáró pointert használunk.

insertIntoS1L(&L: E1*, dataToInsert: T)

A két bejáró pointer: pe, és p.

pe pointert 0-ról indítsuk, ez jelzi majd, hogy nincs még "előző" elem!

Ha már van ilyen kulcsú elemünk, nem történik semmi.

A beszúrásnál csak az a lépés kerül elágazásba, amikor beszúrt elem előtti elemnek a next pointerét módosítjuk, ugyanis, ha nincs előző elem, akkor L módosul!

Mivel a műveletnél L pointer módosulhat, így fontos, hogy az cím szerint átvett paraméter legyen!

Törlés:

Hasonlóan a beszúráshoz, itt is pe és p a két bejáró pointer.

Ha az adott kulcsú elem nem található meg, akkor nem történik semmi.

Itt is fontos, hogy L cím szerinti paraméter.

Hívjuk fel a figyelmet, miért fontos a delete művelet!

Nézzük meg fejelemes listákra is (H1L) a műveleteket!

Keresés: csak az indulás különbözik, a fejelemben nincs kulcs, így p \coloneqq L \to next az induló lépés.

Beszúrás: indulásnál *pe* a fejelemre mutathat, hiszen az első elem előtt van mindig a fejelem, *p* pedig hasonlóan az előbbi algoritmushoz a lista első elemére mutat. Mivel *pe* nem lehet Null, nincs szükség az elágazásra a befűzésnél.

Fejelemes lista esetén a fejelem címét megadó paraméter nem cím szerint adódik át, hiszen a fejelem nem változtatja meg a címét, így az arra mutató pointer biztosan nem fog változni!

insertIntoH1L(L: E1*, dataToInsert: T)

Törlés: indulás hasonlóan, itt sem kell elágazás a kifűzésnél, mert *pe* nem lehet Null értékű.

Egyelemű lista megfordítása: mintha egy verembe raknánk be a lista elemeit, az eredmény listának mindig az elejére fűzzük be az eredeti lista aktuális elemét.

H1L szétfűzése két listába

Adott egy H1L lista, egész számokat tartalmaz, a fejelemre L1 mutat. Fűzzük ketté az elemeket: L1-ben maradjanak a páros elemek, egy új L2 H1L listába fűzzük át a páratlan elemeket. Az eredi sorrendet tartsuk meg, azaz átfűzésnél mindig a lista végére kell majd fűzni. L1 listát egyszer lehet bejárni, L2-be a befűzés konstans műveletigényű legyen!

Szétfűz(L1:E1*): E1*

L2 := new E1	$//L2 \rightarrow next=0$	
u:=L2		
pe:= L1; p:=L1 \rightarrow next		
p ≠ 0		
$p \rightarrow \text{key mod } 2 = 0$		
pe:=p	$pe \rightarrow next := p \rightarrow next$	
$p:=p \rightarrow next$	$u \rightarrow next:= p$	
	$p \rightarrow next := 0$	
	u:=p	
	p:= pe → next	
return L2		

Első lépésként egy új H1L létrehozását mutatjuk be. Kihasznájuk, hogy E1 konstruktora az elem next pointerét 0-ra állítja! u mindig L2 utolsó elemére fog mutatni, ez kezdetben a fejelem. pointerek L1 bejárásához

Ha páratlan kulcsú elemmel találkozunk, a lépések:

p kifűzése

p befűzése L2 végére

mivel p az L2 utolsó eleme, 0-ra állítjuk a next pointerét

módosítjuk u-t

p-vel L1 következő elemére állunk

Prímszita egyszerű listán

Készítsünk egy listát, mely 2-től n-ig tartalmazza a prímeket, az Erasztothenészi szita algoritmus ötletét felhasználva. Töltsünk fel egy egyszerű listát 2..n természetes számokkal. Az első elem prím, azokat, melyek oszthatók ezzel az elemmel, töröljük a listából. A következő megmaradt szám megint prím. Többszöröseit ismét töröljük. A végén a prímek maradnak a listánkban.

Primszita(n:N): E1*

Generálunk egy egyszerű listát 2..n természetes számokból.

p mindig a következő, még a szitában lévő prímszámra mutat
(elsőként a 2-re). Amíg ez nem 0 ...

q-val a p utáni elemeket fogjuk bejárni, és kifűzzük p → key többszöröseit

Ha p→key osztója q→key-nek, a q című elemet

töröljük a láncból. Ehhez szükségünk

van q elem előzőjére, ez lesz a qe pointerben.

ha p című elem többszöröseit töröltük, a következő elem megint prím lesz.

generál(n:N): E1*

	L:= 0
	i = n downto 2
	p:= new E1
	p → key:= i
	$p \rightarrow next:=L$
	L:=p
	return L

Egyszerű lista feltöltése 2..n természetes számokkal. Trükk: a ciklust csökkenőleg futtatjuk, így mindig a lista elejére kell befűzni.

Házi feladatok:

1. Egy rendezetlen egyirányú fejelemes listában (H1L) keressük meg a 2. legnagyobb elemet, egyszeri bejárással. Feltehető, hogy a listánknak legalább két eleme van (a fejelemen kívül).

másodikLegnagyobb(L:E1*,&maxp:E1*,&max2p:E1*)

Fontos az előfeltétel: a listának legalább két eleme van!
p a fejelem utáni második elemre mutat! (Ha esetleg
üres a lista, ez elszállna!)

Elindulás az első két elem alapján:
maxp a nagyobbik, max2p a másik
elemre mutat.

- 2. Rendezzünk egy H1L listát maximum kiválasztó rendezéssel. Ügyeljünk, hogy a megoldó algoritmus üres listára is működjön.
 - a. Ötlet: megkeressük és kifűzzük a lista legnagyobb elemét. A kifűzött elemekből egy egyszerű listát kezdünk építeni úgy, hogy mindig a lista elejére fűzzük be a rendezendő listából kifűzött elemet, nevezzük az így kapott listát segéd listának. Ez a segéd lista nyilván valóan növekvően rendezett lesz. Amikor a rendezni kívánt listának már csak egy eleme maradt, hozzáláncoljuk a segéd listánkat az utolsónak megmaradt elemhez, és készen vagyunk.

maxKivRend(L:E1*)

Üres listát külön kezeljük a ciklusfeltétel miatt.
q mutat a rendezett elemekből álló egyszerű lista első elemére.
amíg legalább két elemet tartalmaz a lista...
megkeressük, és kifűzzük a lista legnagyobb kulcsú elemét
q című egyszerű lista elejére fűzzük a kapott elemet

Amikor L már csak egy elemet tartlmaz, a segéd listát befűzzük az első elem után.

Észrevehető, hogy egy elemű lista esetén a jobb ág gyorsan és helyesen lefut, így nem indokolt ennek külön esetként történő feldolgozása.

A legnagyobb elemet megkereső, és kifűző algoritmus:

maxElem(L:E1*): E1*

Megkeresi és kűzi a lista egyik legnagyobb elemét.

Előfeltétel, hogy legalább egy eleme legyen a listának. maxp tartja nyilván a legnagyobb elemet, maxpe az előtte lévőt. pe, és p pointerekkel járjuk be a listát.

Menet közben karban tartjuk maxpe és maxp pointereinket:

ha nagyobb kulcsot találunk, mint az eddigi legnagyobb,

maxpe-t pe-re és maxp-t p-re állítjuk.

Kifűzzük a maxp című elemet, és visszatérünk a címével.