Relational Colour Refinement for Non-Relational Signatures

Theodor Jurij Teslia RWTH Aachen University

September 5, 2025

Introduction

- Colour Refinement is an important and interesting algorithm
- Applied in modern isomorphism solvers
- Can be characterised logically and combinatorially
- Extension to more than graphs seems desirable
- Scheidt and Schweikardt, 2025 introduced Relational Colour Refinement
- Conceptually similar to classical Colour Refinement
- Also has a logical and a combinatorial characterisation

Contents of this presentation

- 1. Classical Colour Refinement
- 2. Relational Colour Refinement
- 3. Relational Colour Refinement for Structures With Functions
- 4. Restricting RCR to Subclasses of Relational Structures
- 5. Conclusion

Classical Colour Refinement

Colour Refinement

- Also called CR or 1-dimensional Weisfeiler-Leman algorithm
- Iterative graph algorithm
- Constructs colour for every vertex, based on colours of neighbours
- Initial colour for every $v \in V$: $C_0(v) = 0$
- Next rounds: $C_{i+1}(v) := (C_i(v), \{\!\{C_i(u) : \{v, u\} \in E\}\!\})$
- CR distinguishes two graphs G and H, if
 - there exists $C_i(v)$ in colouring of G or H, such that the number of vertices with colour $C_i(v)$ is different in G than in H

Characterisations of CR

- There are equivalent characterisations for CR
- Logical characterisation: CR distinguishes G and H if, and only if, there exists $\varphi \in C_2$, such that $G \models \varphi$ and $H \not\models \varphi$
- Combinatorial characterisation: CR distinguishes G and H if, and only if, there exists tree T, such that $hom(T,G) \neq hom(T,H)$

Relational Colour Refinement

Relational Colour Refinement (RCR)

- Applies variant of classical Colour Refinement on tuples of structure
- Uses set of relations that contain tuple as part of initial colouring
- Uses pairs of indices as edges to mark shared elements of tuples
- Formally:

$$\mathsf{atp}(\mathbf{a}) = \{ R \in \sigma : \mathbf{a} \in R \}$$

and

$$\mathsf{stp}(\mathbf{a},\mathbf{b}) = \{(i,j) \in [n] \times [m] : a_i = b_j\}$$

- For relational structure $\mathfrak A$ and all tuples $\mathbf a \in \mathbf A$:
- Initial colour: $\varrho_0(\mathbf{a}) = (\operatorname{atp}(\mathbf{a}), \operatorname{stp}(\mathbf{a}, \mathbf{a}))$
- For the next rounds: $\varrho_{i+1}(\mathbf{a}) = (\varrho_i(\mathbf{a}), \{\{(\operatorname{stp}(\mathbf{a}, \mathbf{b}), \varrho_i(\mathbf{b})) : \operatorname{stp}(\mathbf{a}, \mathbf{b}) \neq \emptyset\}\})$

An Example for RCR

• Structure $\mathfrak{A} = (A, R^{\mathfrak{A}}, T^{\mathfrak{A}})$

- $\varrho_0((a,b)) = (\{R\}, \{(1,1), (2,2)\})$ and $\varrho_0((a,c,d)) = \varrho_0((b,c,d)) = (\{T\}, \{(1,1), (2,2), (3,3)\})$
- $\varrho_1((a,c,d)) = (\varrho_0((a,c,d)), \{\{(\{(1,1)\}, \varrho_0((a,b))), \dots\}\})$ and $\varrho_1((b,c,d)) = (\varrho_0((b,c,d)), \{\{(\{(1,2)\}, \varrho_0((a,b))), \dots\}\})$

Distinguishing Relational Structures with RCR

• RCR distinguishes, if some colour appears differently often in the structures

• $\varrho_1((a,c,d))$ appears in colouring of left structure but not in right

Guarded Fragment of Counting Logic

- C₂ characterises CR on graphs
- Guarded fragment of counting logic GF(C) characterises RCR

Guarded Fragment of Counting Logic

- Everything except for quantifiers defined as in classical counting logic
- For atomic formula $\Delta \in GF(C)$ and formula $\varphi \in GF(C)$, we call Δ a guard for φ , if $free(\Delta) \supseteq free(\varphi)$
- Quantifiers appear only in form $\exists^{\geq i} \mathbf{v} . (\Delta \wedge \varphi)$, where Δ is guard for φ and $\mathsf{set}(\mathbf{v}) \subseteq \mathsf{free}(\Delta)$
- Examples:
 - $\circ \exists^{\geq 2}(x,y).(E(x,y) \land T(y)) \in \mathsf{GF}(\mathsf{C})$
 - $\circ \exists^{\geq 3}(x,y,z).(E(x,y) \land E(y,z) \land E(z,x)) \notin \mathsf{GF}(\mathsf{C})$

Characterising RCR Using Logic

Theorem B (Scheidt and Schweikardt, 2025)

Let ${\mathfrak A}$ and ${\mathfrak B}$ be two relational structures. Then the two following statements are equivalent.

- 1. RCR distinguishes $\mathfrak A$ and $\mathfrak B$
- 2. There exists a sentence in GF(C) that is satisfied by $\mathfrak A$, but not by $\mathfrak B$

Example for Logical Characterisation of RCR

- We have seen RCR distinguishes the structures
- Formula $\exists^{\geq 1}(x,y,z)$. $(T(x,y,z) \land \exists^{\geq 1}(y).(R(x,y)))$ satisfied by left and not by right structure

Acyclic Structures

- Counting homomorphisms from trees characterises CR on graphs
- Abstraction from trees to relational structures is needed: α -acyclic structures (in the following only acyclic structures)

Acyclic Structures

- ullet Relational structure ${\mathfrak C}$ is acyclic if it has a join tree J
- Join tree J is tree with $V(J) = \bigcup_{R \in \sigma} R^{\mathfrak{C}}$ and fulfils join-tree-property:
 - \circ For every $e \in C$, the set $\{\mathbf{x} \in V(J) : e \in \mathsf{set}(\mathbf{x})\}$ induces a connected subtree

Examples for Acyclic Structures

No:

Examples for Acyclic Structures

Yes:

Characterising RCR Using Homomorphism Counting

Theorem A (Scheidt and Schweikardt, 2025)

Let ${\mathfrak A}$ and ${\mathfrak B}$ be relational structures. Then the two following statements are equivalent.

- 1. RCR distinguishes $\mathfrak A$ and $\mathfrak B$
- 2. There exists an acyclic relational structure $\mathfrak C$, such that it distinguishes $\mathfrak A$ and $\mathfrak B$ by homomorphism count

Example for Combinatorial Characterisation of RCR

- J is join tree for \mathfrak{B} , therefore \mathfrak{B} is acyclic
- ullet Identity is homomorphism, so ${\mathfrak B}$ has at least one homomorphism to itself
- ullet ${\mathfrak B}$ has no homomorphisms to ${\mathfrak A}$

Relational Colour Refinement for Structures

With Functions

Relational Colour Refinement for Structures With Functions

- Many interesting structures use functions
- Colour Refinement algorithm for such structures seems desirable
- Will use the results of Scheidt and Schweikardt and investigate how robust they are
- Following structure:
 - 1. Presentation of two approaches for Colour Refinement for non-relational signatures
 - 2. Logical characterisation of both approaches
 - 3. Discussion on combinatorial characterisation

Naive RCR

- Goal: Encode non-relational structures and signatures as relational ones
- Functions can directly be interpreted as relations:

$$f(\mathbf{x}) = y \iff (\mathbf{x}y) \in R_f$$

- For non-relational signature σ define relational signature σ' :
 - \circ Inherit relation symbols from σ
 - \circ Function symbol $f \in \sigma$ of arity $n \to \text{introduce } R_f \in \sigma'$ of arity n+1
- Encode σ -structure $\mathfrak A$ as σ' -structure $\mathfrak A'$:
 - \circ Relations like in $\mathfrak A$
 - For function symbol $f \in \sigma$: $R_f^{\mathfrak{A}'} := \{(\mathbf{x}y) : f^{\mathfrak{A}}(\mathbf{x}) = y\}$
- ullet We say naive RCR distinguishes ${\mathfrak A}$ and ${\mathfrak B}$, if RCR distinguishes the encodings

Idea of the Transitive Expansion

- Approach is only defined for unary function symbols
- Encoding emulates the nesting of function applications
- Encode function f as family of relations R_{f^1}, R_{f^2}, \ldots , where $(x, y) \in R_{f^i}$ if $\underbrace{f(f(\ldots f(x)))}_{i \text{ times}} = y$
- In the following: $f^i(x)$ written for $\underbrace{f(f(...f(x)))}_{i \text{ times}}$
- ullet For multiple functions, also encode alternations, for example R_{fg} or $R_{g^2f^3}$

Transitive Expansion i

Alternations of Function Applications

- Let σ be signature with unary function symbols
- Define set of all allowed function application alternations Alters $_n^k$ as all sequences of up to k function symbols, where
 - 1. Every function symbol has exponent in [n]
 - 2. Two succeeding function symbols are different
- Example:

$$\circ \sigma = \{f/1, g/1\}$$

$$\circ \mathsf{Alters}_2^2(\sigma) = \underbrace{\{\mathsf{id}\}}_{k=0} \cup \underbrace{\{f, f^2, g, g^2\}}_{k=1} \cup \underbrace{\{fg, fg^2, f^2g, f^2g^2, gf, \dots\}}_{k=2}$$

Transitive Expansion ii

Transitive Expansion

- For alternation depth k and σ -structure $\mathfrak A$ with $|\mathfrak A|=n$ define signature $\widetilde{\sigma}$ and transitive expansion $\widetilde{\mathfrak A}$ as $\widetilde{\sigma}$ -structure
- For all $\alpha, \beta, \alpha_1, \ldots, \alpha_\ell \in \mathsf{Alters}^k_n(\sigma)$ and relation symbol $R \in \sigma$ of arity ℓ , insert relation symbol $\mathsf{Eq}_{\alpha,\beta}$ of arity 2 and relation symbol $R_{\alpha_1,\ldots,\alpha_\ell}$ of arity ℓ into $\widetilde{\sigma}$
- Define $\mathsf{Eq}_{\alpha,\beta}^{\widetilde{\mathfrak{A}}} \coloneqq \{(x,y) : \alpha^{\mathfrak{A}}(x) = \beta^{\mathfrak{A}}(y)\}$ and $R_{\alpha_{1},\dots,\alpha_{\ell}}^{\widetilde{\mathfrak{A}}} \coloneqq \{(x_{1},\dots,x_{\ell}) : (\alpha_{1}^{\mathfrak{A}}(x_{1}),\dots,\alpha_{\ell}^{\mathfrak{A}}(x_{\ell})) \in R^{\mathfrak{A}}\}$
- For $k \in \mathbb{N}$ we say that RCR_k distinguishes structures $\mathfrak A$ and $\mathfrak B$, if RCR distinguishes the transitive expansions with alternation depth k

Example for the Transitive Expansion

- Structure $\mathfrak{A} = (A, R^{\mathfrak{A}}, f^{\mathfrak{A}}, g^{\mathfrak{A}})$
- k = 1 and n = 2: Alters $\frac{1}{2}(\sigma) = \{id, f, f^2, g, g^2\}$
- $\bullet \ \ \widetilde{\sigma} = \{R_{\mathsf{id}}, R_f, R_{f^2}, R_g, R_{g^2}, \mathsf{Eq}_{\mathsf{id},\mathsf{id}}, \mathsf{Eq}_{\mathsf{id},f}, \mathsf{Eq}_{\mathsf{id},f^2}, \dots, \mathsf{Eq}_{g^2,g^2}\}$
- Examples:
 - $\circ \ R_f^{\widetilde{\mathfrak{A}}} = \{b\}$
 - $\circ \ \mathsf{Eq}^{\widetilde{\mathfrak{A}}}_{f^2,\mathsf{id}} = \{(a,a),(b,b)\}$
 - $\circ \ \mathsf{Eq}^{\widetilde{\mathfrak{A}}}_{g,f} = \{(a,b),(b,a)\}$

Naive Encoding versus Transitive Expansion

- Cannot be distinguishes by naive RCR: Encodings result in regular graphs
- But: Distinguished by Transitive Expansion Encoding
 - $\circ \ \mbox{We find that} \ \mbox{Eq}_{f^1, \mbox{id}}^{\widetilde{\mathfrak{A}}} = \mbox{Eq}_{f^4, \mbox{id}}^{\widetilde{\mathfrak{A}}}, \ \mbox{not for} \ \widetilde{\mathfrak{B}}$
 - $\circ \ \, \mathsf{Sentence} \,\, \exists^{\geq 6}(x,y) \, . \, \big(\mathsf{Eq}_{f^1,\mathsf{id}}(x,y) \, \land \, \mathsf{Eq}_{f^4,\mathsf{id}}(x,y)\big) \in \mathsf{GF}(\mathsf{C}) \,\, \mathsf{distinguishes} \,\, \mathsf{encodings}$

Relational Colour Refinement for Structures

With Functions

Logical Characterisations for Both Approaches

Nesting-Free Guarded Fragment of Counting Logic

nfGF(C)

- Extends given definition of GF(C) for non-relational signatures
- Allow atomics of the following forms
 - Relation symbols and variable equations like in GF(C)
 - For function symbol f of arity ℓ and variables x_1, \ldots, x_ℓ, y : $f(x_1, \ldots, x_\ell) = y \in \mathsf{nfGF}(\mathsf{C})$
- Forbid nesting of terms, for example f(g(x), y) = z
- Informally: Usage of function symbols like relation symbols

Characterising Naive RCR Logically

Logical Characterisation of Naive RCR

Let $\mathfrak A$ and $\mathfrak B$ be structures.

Naive RCR distinguishes $\mathfrak A$ and $\mathfrak B$ iff.

There exists a sentence $\varphi \in nfGF(C)$ which is fulfilled by $\mathfrak A$, but not by $\mathfrak B$

Proof idea:

- Naive RCR distinguishes structures iff. RCR distinguishes encodings iff. there
 exists a sentence in GF(C) that distinguishes the encodings
- Define translation of GF(C) to and from nfGF(C)
 - Replace $R_f(\mathbf{x}y)$ by $f(\mathbf{x}) = y$

GF(C) with alternation depth k ($GF(C)_k$)

GF(C) with alternation depth k

- Fixate $k \in \mathbb{N}$
- Atomics are defined like in natural extension to non-relational signatures, with one restriction
- For every formula in $GF(C)_k$ and every term t that appears in it, there must exist a $n \in \mathbb{N}$, such that $t = \alpha$ for a $\alpha \in Alters_n^k(\sigma)$
- Restrict number of alternations of function applications to k
- No restriction of number of application of same function in series
- Examples:
 - $\circ f^2(g(h^3(x))) = y \notin GF(C)_2, \text{ but in } GF(C)_3$
 - $\circ f^i(x) = y \in GF(C)_1 \text{ for all } i \in \mathbb{N}$

Characterising RCR_k Logically

Logical Characterisation of RCR_k

Let $k \in \mathbb{N}$ and let \mathfrak{A} and \mathfrak{B} be two structures.

 RCR_k distinguishes $\mathfrak A$ and $\mathfrak B$ iff.

There exists a sentence in $GF(C)_k$ that is fulfilled by \mathfrak{A} , but not by \mathfrak{B}

- 1. to 2.: Similar to before, translation from GF(C) to $GF(C)_k$ very simple
- 2. to 1.:
 - \circ Assume $n = |\mathfrak{A}| = |\mathfrak{B}|$
 - Translate and replace all atomic subformulae by formula that:
 is equivalent for all structures with n elements
 - only contains terms $f^{i}(s(x))$ with $i \leq n$
 - Rearrange resulting formula to get valid GF(C)_k-sentence
 - Results in equivalent formula for structures with n elements and for every term t there exists an $\alpha \in \mathsf{Alters}_n^k(\sigma)$, such that $t = \alpha$
 - \circ Can easily be translated into sentence in GF(C) of signature $\widetilde{\sigma}$

Relational Colour Refinement for Structures With Functions

Discussion on the Combinatorial Characterisation

Total and Functional Structures

- ullet Let σ be a signature, σ' its naive encoding and \mathfrak{A}' a σ' -structure
- We call \mathfrak{A}' total if for every function symbol $f \in \sigma$ and every tuple \mathbf{x} there is a y, such that $(\mathbf{x}y) \in R_f^{\mathfrak{A}'}$
- We call \mathfrak{A}' functional if for every function symbol $f \in \sigma$ there are no two tuples $(\mathbf{x}y), (\mathbf{x}z) \in R_f^{\mathfrak{A}'}$

Non-Relational Acyclic Structures

• Will define acyclicity w.r.t. the naive encoding

Non-Relational Acyclic Structures

- \bullet Let ${\mathfrak A}$ be a non-relational structure
- \bullet We call ${\mathfrak A}$ acyclic, if its naive encoding ${\mathfrak A}'$ is acyclic

Total and Functional Structures as Encodings

• Desired equivalence:

Non-relational, acyclic structure distinguishes ${\mathfrak A}$ and ${\mathfrak B}$ by homomorphism count ?

Naive RCR distinguishes ${\mathfrak A}$ and ${\mathfrak B}$

- Result: Forward direction holds, backwards does not
- First step: Reformulate first statement:

Some non-relational, acyclic structure dist. ${\mathfrak A}$ and ${\mathfrak B}$ by hom. count iff.

Some total, functional and acyclic structure dist. encodings \mathfrak{A}' and \mathfrak{B}' by hom. count

Enforcing Functionality

• We can show:

Acyclic σ' -structure dist. \mathfrak{A}' and \mathfrak{B}' by hom. count iff.

Functional and acyclic σ' -structure dist. \mathfrak{A}' and \mathfrak{B}' by hom. count

Proof idea:

- Backwards direction is obvious
- Forwards direction eliminates collisions of the form $(xy), (xz) \in R_f$ by contracting y and z
- This can be done while maintaining the homomorphisms and acyclicity and can be repeated until no collisions remain

Non-Enforceability of Totality

- There are structures that are distinguished by naive RCR, but there is no acyclic and total structure that distinguishes the encodings by homomorphism count
- Define signature $\sigma = \{E/2, f/1\}$
- Two families of σ -structures $(\mathfrak{A}_i)_{i\in\mathbb{N}_{\geq 4}}$ and $(\mathfrak{B}_i)_{i\in\mathbb{N}_{\geq 4}}$
- For all $i \in \mathbb{N}_{\geq 4}$: Naive RCR distinguishes \mathfrak{A}_i and \mathfrak{B}_i , but no total and acyclic structure can distinguish the encodings by hom. count

Non-Enforceability of Totality ii

Non-Enforceability of Totality ii

Non-Enforceability of Totality iii

- Obviously distinguished by naive RCR
- If structure has R_f -loops or R_f -2-cycles, then no homomorphisms to either structure
- ullet Because total, it has to contain larger R_f -cycles, but then cannot be acyclic

Results of combinatorial characterisation of naive RCR

We have the following results:

Naive RCR distinguishes $\mathfrak A$ and $\mathfrak B$

1

There exists acyclic structure that dist. encodings \mathfrak{A}' and \mathfrak{B}' by hom. count

1

There exists functional and acyclic structure that dist. encodings by hom. count

↑, but ∦

There exists *total*, functional and acyclic structure that dist. encodings by hom. count

 \downarrow

There exists *non-relational* and acyclic structure that dist. $\mathfrak A$ and $\mathfrak B$ by hom. count

Restricting RCR to Subclasses of Relational

Structures

Restricting the Class of Structures

ullet For what subclass ${\cal S}$ of relational structures do we have the following equivalence:

Two structures from $\mathcal S$ get distinguished by RCR iff.

There exists an acyclic structure from ${\cal S}$ that dist. the structures by hom. count

- Does not hold for class of total structures
 - Encodings of families of structures from before are total, but no total and acyclic structure dist. them by hom. count
- Another class to investigate: Class of symmetric structures

Restriction to Symmetric Structures

• Relational Structure is symmetric, if for every relation R and for every tuple $\mathbf{x} \in R$, every permutation of the elements in \mathbf{x} is also in R

Restriction to Symmetric Structures

- Relational Structure is symmetric, if for every relation R and for every tuple $x \in R$, every permutation of the elements in x is also in R
- For two symmetric structures we can show
 - There exists acyclic structure that dist. the structures by hom. count iff.
 - There exists symmetric and acyclic structure that dist. the structure by hom. count
- From this, restriction to symmetric structures is possible

Conclusion

Conclusion

- We presented classical CR and Scheidt's and Schweikardt's RCR algorithm
- We defined two possible ways to apply their algorithm to non-relational signatures
- We showed a logical characterisation for each of the approaches
- We disproved the characterisation by homomorphism counting
- We showed results for the restriction to two subclasses of the relational structures