Handwritten Digit Classification

Ahmed Bou-Rabee Stephen Boyd

EE103 Stanford University

August 24, 2014

Outline

Classification

k-means

Binary (two-way) classification

10-way classification

Classification with random features

Handwritten digit classification

▶ goal is to automatically determine what a handwritten digit image is (*i.e.*, 0, 1, ..., 8, or 9?)

Classifier

- ightharpoonup images are 16 imes 16 pixels, represented as 256-vectors
- \blacktriangleright values in [0,1] (0 is black, 1 is white)
- images were first de-slanted and size normalized
- our classifier is a function $f: \mathbf{R}^{256} \to \{0, 1, \dots, 9\}$
- our guess is $\hat{y} = f(x)$ for image x
- our classifier is wrong when $\hat{y} \neq y$

Data set

- NIST data from US Postal Service
- training set has N = 7291 images
 - we'll use this data set to develop our classifiers
- lacktriangle test set has $N^{
 m test}=2007$ images
 - we'll use this data set to test/judge our classifiers
- we'll look at error on training set and on test set

Outline

Classification

k-means

Binary (two-way) classification

10-way classification

Classification with random features

- \triangleright start with a collection of image 256-vectors x_1, \ldots, x_N
- run k-means algorithm to cluster into k groups, 10 times with random initial centroids
- use best of these 10 (in mean-square distance to closest centroid)
- ightharpoonup centroids/representatives z_1, \ldots, z_k can be viewed as images

Centroids, k=2

Centroids, k=10

Centroids, k = 20

Classification via k-means

- ▶ label k = 20 centroids by hand
- classify new image by label of nearest centroid
- ightharpoonup classification error rate (on test set): 24%

Classification via k-means

confusion matrix: true \downarrow predicted \rightarrow

	0	1	2	3	4	5	6	7	8	9
0	338	0	2	3	6	0	9	0	0	1
1	0	253	0	1	4	0	2	0	0	4
2	7	1	131	10	29	1	3	2	13	1
3	4	0	1	143	3	6	1	1	6	1
4	1	4	4	0	103	0	1	4	2	81
5	10	0	0	50	8	78	7	0	0	7
6	6	0	2	0	4	2	154	0	1	1
7	0	3	0	0	6	0	0	113	1	24
8	5	2	5	16	10	7	0	1	107	13
9	0	2	0	0	18	1	0	43	3	110

Outline

Classification

k-means

Binary (two-way) classification

10-way classification

Classification with random features

Binary classifier

- ightharpoonup a simpler problem: determine if an image x is digit k or not digit k
- we use label $y_i = 1$ if x_i is digit k and $y_i = -1$ if not
- classifier will have form

$$\hat{y} = \mathbf{sign}(w^T x + v)$$

w is weight 256-vector, v is offset

lacktriangle we'll use training set to choose w and v, and test the classifier on test data set

Least-squares binary classifier

- want w, v for which $y_i \approx \hat{y}_i = \mathbf{sign}(w^T x_i + v) = \mathbf{sign}(\tilde{y}_i)$
- ightharpoonup choose w, v to minimize

$$\sum_{i=1}^{N} (\tilde{y}_i - y_i)^2 + \lambda ||w||^2 = ||X^T w + v\mathbf{1} - y||^2 + \lambda ||w||^2$$

- $lacksquare X = [x_1 \cdots x_N]$ is matrix of training image vectors
- $\lambda > 0$ is regularization parameter

Least-squares binary classifier

classification error versus λ for predicting the digit 0

Weight vector

Outline

Classification

k-means

Binary (two-way) classification

10-way classification

Classification with random features

10-way classification

- let w_i , v_i be weight vector, offset for binary classification of digit i
- for image x, $\tilde{y}_i = w_i^T x + v_i$
- lacktriangle the larger $ilde{y}_i$ is, the more confident we are that image is digit i
- choose $\hat{y} = \operatorname{argmax}_i(\tilde{y}_i) = \operatorname{argmax}_i(w_i^T x + v_i)$
- lacktriangle use the same regularization parameter λ for each digit i
- \triangleright choose λ so that the total classification error on test set is small

Example

multi-class classification error versus λ

with $\lambda = 50$, test classification error is about 13%

Example

test confusion matrix $\mathsf{true} \downarrow \mathsf{predicted} \to$

	0	1	2	3	4	5	6	7	8	9
0	348	2	0	1	3	1	3	0	0	1
1	0	256	0	2	3	0	1	0	1	1
2	8	3	160	7	9	1	1	1	8	0
3	5	0	3	140	2	8	0	2	3	3
4	3	6	4	0	173	0	3	1	0	10
5	10	1	0	20	2	120	0	1	1	5
6	3	1	4	0	5	5	151	0	1	0
7	2	1	1	1	6	0	0	131	0	5
8	10	3	2	14	4	7	1	2	119	4
9	0	3	0	1	7	0	0	7	2	157

Outline

Classification

k-means

Binary (two-way) classification

10-way classification

Classification with random features

Doing even better

- ▶ in classes you'll take later (AI, statistics), you'll see (and construct) way better classifiers
- we'll look at a simple example here

Generating random features

- generate a random 2000×256 matrix R with entries +1 or -1
- ▶ scale R by $1/\sqrt{256}$, so each row has norm 1
- ightharpoonup create 2000 new features \tilde{x} from original x via

$$\tilde{x}_i = \max\{Rx, 0\}$$

lacktriangle now do least-squares classification with feature 2256-vectors (x_i, \tilde{x}_i)

Example

multi-class classification error versus λ

with $\lambda=1$, test classification error is about 5%

Example

test confusion matrix true \downarrow predicted \rightarrow

	0	1	2	3	4	5	6	7	8	9
0	352	0	3	0	2	0	1	0	0	1
1	0	256	0	0	4	0	3	1	0	0
2	1	0	187	3	2	0	0	1	4	0
3	1	0	4	150	0	7	0	0	3	1
4	0	1	3	0	188	0	1	0	1	6
5	2	0	0	3	1	149	0	0	1	4
6	3	0	3	0	2	1	161	0	0	0
7	0	0	1	0	6	0	0	138	1	1
8	3	0	3	3	0	1	2	0	154	0
9	0	0	0	0	3	1	0	1	1	171