CADENAS DE MARKOV

Juan Carlos Aldana Bernal

Objetivo

 Entender los procesos estocásticos en donde los resultados de una etapa dependen solamente de los resultados de la etapa anterior

Procesos estocásticos

 También llamado proceso aleatorio, sucede cuando los resultados de una etapa de un proceso o sucesión de eventos que se desarrollan en el tiempo, contienen algún elemento que depende del azar.

Definición de Cadenas de Markov

Una cadena de Markov es una sucesión de ensayos similares u observaciones, en la cual cada ensayo tiene el mismo número finito de resultados posibles y en donde la probabilidad de cada resultado para un ensayo dado, depende sólo del resultado del ensayo inmediatamente precedente y no de cualquier resultado previo

Antecedentes

- Reciben su nombre del matemático ruso Andrei Andreevitch Markov (1856-1922), quien las desarrolló.
- Son cadenas que tienen memoria, recuerdan el último evento y eso condiciona las posibilidades de los eventos futuros.
- Las probabilidades de transición permanecen constantes.
- Este tipo de proceso presenta una forma de dependencia simple, pero muy útil en muchos modelos:
 - Una máquina que está funcionando bien en un período siga funcionando así en el siguiente período.
 - Describir la probabilidad que un cliente que compra la marca A en un período compre la marca B en el siguiente.
 - Si un grupo de personas están saludables en un año la probabilidad que sigan así en el siguiente año.

Ejemplo Cadena de Markov

- La sucesión del poder en un país en el cual sólo existen dos partidos políticos, el A y B, se puede presentar como:
 - A-B-A-A-B-B
- Si el partido A esta en el poder y existe una probabilidad de ¼ de que el partido A siga en el poder y ¾ que lo haga B.
- Si el partido B está en el poder y existe una probabilidad de 1/3 de que el partido A gané la elección y 2/3 que lo haga B.
- La sucesión de elecciones forman una cadena de Markov, dado que las probabilidades de los dos resultados de cada elección están determinadas por el resultado de la elección precedente.
- Se puede representar como:

Análisis de Cuota de mercado

 Se utiliza para analizar el comportamiento de los clientes respecto a las diferentes opciones de compra en los supermercados.

Ensayos del proceso

 Son los períodos semanales o eventos de compra del cliente

Estado del Sistema

- La opción o tienda seleccionada en cada compra
- Estado 1: Compra en Éxito
- Estado 2: compra en Jumbo

Probabilidades de transición

 Indican la probabilidad que un cliente realiza una transición de un estado en un período, a cada estado en el período siguiente

Ejemplo Cuota de mercado (3)

- Si también se conoce que $\Pi 1 + \Pi 2 = 1$ (3)
- Y reemplazando en (1) se obtiene:
- $\Pi 1 = 0.9 \Pi 1 + 0.2(1 \Pi 1)$
- Entonces $\Pi 1 = 2/3$ y reemplazando en (3) $\Pi 2 = 1/3$
- Si se tiene un mercado de 1000 clientes, identifica que a la larga con probabilidades de estado estacionario de Π1 = 2/3 y Π2 = 1/3, 667 clientes (1000*2/3) serán del Éxito y el resto (333) serán de Jumbo.

Ejercicio Cuota de mercado

- Los patrones de compra de dos marcas de pasta dental pueden expresarse como un proceso de Markov con las probabilidades de transición presentadas en la tabla.
- Qué marca parece tener mayor lealtad de los clientes, explique?
- Cuáles son las cuotas de mercado proyectadas de cada marca, si se inicia con Special B (1,0)?
- Se plantea una campaña de publicidad para MDA, a fin de atraer clientes de SpecialD. La gerencia cree que la nueva campaña incrementará la probabilidad a 0,2 de que un cliente cambie de SpecialD a MDA. Cuál es el efecto proyectado de la campaña publicitaria en las cuotas de mercado?

	A	
DE	Special D	MDA
Special B	0,9	0,1
MDA	0,05	0,95

Análisis de cuentas por cobrar

- Las cadenas de Markov tienen también aplicación en las provisiones de cuotas de dudoso recaudo de las empresas.
- Se establecen los períodos de cobro de acuerdo a las políticas de las empresas, ej:
 - CXC de 0-30 días de edad
 - CxC de 30-90 días de edad
- Se identifican los estados, ej:
 - Estado 1: Categoría de CXC pagadas
 - Estado 2: Categoría de CXC incobrable
 - Estado 3: Categoría de CXC de 0-30 días de edad
 - Estado 4: Categoría de CxC de 30-90 días de edad

Probabilidades en CXC

- Pij: probabilidad que un peso que esta en el estado i en una semana cambie al estado j en la siguiente
- Con esto y en base a datos históricos se construye la matriz de probabilidades de transición:

- Estado absorbente: cuando un peso hace transición al estado 1 o al estado 2, la probabilidad de hacer transición a cualquier otro estado es cero.
- Cada unidad siempre termina en un estado absorbente

Ejercicio: Probabilidades en CXC

 Tome la información del ejemplo presentado de Probabilidades en CxC, pero con las siguientes probabilidades de transición:

 Si la empresa tiene \$400 en la categoría de 0-30 días y \$5000 en la categoría de 31-90 días, cuál es la estimación de deudas incobrables que la empresa experimentará?

Ejercicio 2: Probabilidades en CXC

 Dada la siguiente matriz de transición con los estados 1 y 2 como estados absorbentes, cuál es la probabilidad que las unidades que están en los estados 3 y 4 terminen en los estados absorbentes:

Lecturas

- Agent-Based and Individual-Based Modeling, A prectical introduction. Steven Railsback and Volker Grimn. Se encuentran en la fotocopiadora de Edificio de Aulas de Ingeniería, como documentos del profesor Astaiza.
- Conforme una pareja con la cual realizará la presentación de un capitulo de este libro.