Wag the Tails

Jean-Jacques Forneron, Boston University November 2022

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)
- Solution: robust estimation

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)
- Solution: robust estimation
 - hard to compute (NP hard),
 - inconsistent without symmetry assumptions

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)
- Solution: robust estimation
 - hard to compute (NP hard),
 - inconsistent without symmetry assumptions
- Here, we'll try to find estimates that are:

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)
- Solution: robust estimation
 - hard to compute (NP hard),
 - inconsistent without symmetry assumptions
- Here, we'll try to find estimates that are:
 - o robust to a small amounts of large contamination

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)
- Solution: robust estimation
 - hard to compute (NP hard),
 - inconsistent without symmetry assumptions
- Here, we'll try to find estimates that are:
 - 1 robust to a small amounts of large contamination
 - adjusted for asymmetry bias

- Robustness checks commonly used, no systematic approach
 - outliers (e.g. 2020 recession)
 - misspecification for some obs. (e.g. zero market shares/lower bound)
- Solution: robust estimation
 - hard to compute (NP hard),
 - inconsistent without symmetry assumptions
- Here, we'll try to find estimates that are:
 - 1 robust to a small amounts of large contamination
 - adjusted for asymmetry bias
 - not too hard to compute

• Focus on two aspects:

- Focus on two aspects:
 - Diagnostics: useful to visualize issues

- Focus on two aspects:
 - Diagnostics: useful to visualize issues
 - Robust estimation: systematic approach
 - Huber loss (Huber, 1964)
 - MM-estimator (Yohai, 1987)

- ...

- Focus on two aspects:
 - Diagnostics: useful to visualize issues
 - Robust estimation: systematic approach
 - Huber loss (Huber, 1964)
 - MM-estimator (Yohai, 1987)
 - ..
 - Jaeckel (1971): asymmetric contamination \Rightarrow bias

- Focus on two aspects:
 - Diagnostics: useful to visualize issues
 - Robust estimation: systematic approach
 - Huber loss (Huber, 1964)
 - MM-estimator (Yohai, 1987)
 - ...
 - Jaeckel (1971): asymmetric contamination \Rightarrow bias
- Economic data:
 - often skewed (e.g. price, volume, income)
 - \Rightarrow robust estimates are biased, e.g. $|\text{median}(x_i) \mathbb{E}(x_i)| \leq \sigma_x$

- Focus on two aspects:
 - Diagnostics: useful to visualize issues
 - Robust estimation: systematic approach
 - Huber loss (Huber, 1964)
 - MM-estimator (Yohai, 1987)
 - ...
 - Jaeckel (1971): asymmetric contamination \Rightarrow bias
- Economic data:
 - often skewed (e.g. price, volume, income) \Rightarrow robust estimates are biased, e.g. $|\text{median}(x_i) \mathbb{E}(x_i)| \leq \sigma_x$
 - few large outliers (e.g. Black Monday)

- Focus on two aspects:
 - Diagnostics: useful to visualize issues
 - Robust estimation: systematic approach
 - Huber loss (Huber, 1964)
 - MM-estimator (Yohai, 1987)
 - ..
 - Jaeckel (1971): asymmetric contamination \Rightarrow bias
- Economic data:
 - often skewed (e.g. price, volume, income)
 - \Rightarrow robust estimates are biased, e.g. $|\text{median}(x_i) \mathbb{E}(x_i)| \leq \sigma_x$
 - few large outliers (e.g. Black Monday)
- **Approach:** "Kernel" to downweight outliers, derive bias expression, bias correction procedure

- Romer (1993): "Openness and Inflation: Theory and Evidence"
- Simple IV regression:

$$inflation_i = \beta_0 + \beta_1 openness_i + u_i$$

• Instrument using log-land area as an instrument

- Romer (1993): "Openness and Inflation: Theory and Evidence"
- Simple IV regression:

$$inflation_i = \beta_0 + \beta_1 openness_i + u_i$$

- Instrument using log-land area as an instrument
- Just like OLS, we have:

$$y = X\hat{\beta}_n + \hat{u}_n$$

- Romer (1993): "Openness and Inflation: Theory and Evidence"
- Simple IV regression:

$$inflation_i = \beta_0 + \beta_1 openness_i + u_i$$

- Instrument using log-land area as an instrument
- Just like OLS, we have:

$$y = X\hat{\beta}_n + \hat{u}_n$$

• ...and the following identity:

$$\hat{\beta}_n = \hat{\beta}_n + (Z'X)^{-1} \sum_{i=1}^n z_i \hat{u}_i$$

- Romer (1993): "Openness and Inflation: Theory and Evidence"
- Simple IV regression:

$$inflation_i = \beta_0 + \beta_1 openness_i + u_i$$

- Instrument using log-land area as an instrument
- Just like OLS, we have:

$$y = X\hat{\beta}_n + \hat{u}_n$$

• ...and the following identity:

$$\hat{\beta}_n = \hat{\beta}_n + \underbrace{(Z'X)^{-1} \sum_{i=1}^n z_i \hat{u}_i}_{=0}$$

• Each $(Z'X)^{-1}\sum_{i=1}^n z_i \hat{u}_i$ measures contribution of i to $\hat{\beta}_0$ and $\hat{\beta}_1$

Diagnostics: coefficient-wise influence plot

Diagnostics: coefficient-wise influence plot

Effect of trade openness on inflation

ullet Drop observations with influence on eta_1 greater than 1

	_cons	openness
	Full Sample	
$\hat{\beta}_n$	29.61	-33.29
SE	7.10	14.69
	Influence ≤ 1	
$\hat{\beta}_n$	17.63	-12.80
SE	1.78	3.72

- ullet Estimates change by \simeq 2SEs, standard errors more than quartered
- Remove 12 obs., n = 114

• Suppose $x_i \sim F$ iid, want to estimate:

$$\mu = \mathbb{E}(x_i)$$

eventually we want θ s.t. $\mu(\theta)=0$

• Suppose $x_i \sim F$ iid, want to estimate:

$$\mu = \mathbb{E}(x_i)$$

eventually we want θ s.t. $\mu(\theta) = 0$

Start with a shrinkage estimator

• Suppose $x_i \sim F$ iid, want to estimate:

$$\mu = \mathbb{E}(x_i)$$

eventually we want θ s.t. $\mu(\theta) = 0$

- Start with a shrinkage estimator
- Pick any $\lambda > 0$:

$$\hat{\mu}_{n\lambda} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i}{1 + ||x_i||^2 / \lambda}$$

• Suppose $x_i \sim F$ iid, want to estimate:

$$\mu = \mathbb{E}(x_i)$$

eventually we want θ s.t. $\mu(\theta) = 0$

- Start with a shrinkage estimator
- Pick any $\lambda > 0$:

$$\hat{\mu}_{n\lambda} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i}{1 + ||x_i||^2 / \lambda}$$

Notice:

$$x_i = \pm \infty \Rightarrow \frac{x_i}{1 + ||x_i||^2 / \lambda} = 0$$

discards extreme observations

• Suppose $x_i \sim F$ iid, want to estimate:

$$\mu = \mathbb{E}(x_i)$$

eventually we want θ s.t. $\mu(\theta) = 0$

- Start with a shrinkage estimator
- Pick any $\lambda > 0$:

$$\hat{\mu}_{n\lambda} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i}{1 + ||x_i||^2 / \lambda}$$

Notice:

$$x_i = \pm \infty \Rightarrow \frac{x_i}{1 + ||x_i||^2 / \lambda} = 0$$

discards extreme observations

• $\hat{\mu}_{n\lambda}$ has some interesting properties

• For any $x, \lambda > 0$:

$$\left\| \frac{x}{1 + \|x\|^2 / \lambda} \right\|_{\infty} \le \frac{\sqrt{\lambda}}{2}$$

the influence function is bounded by $\sqrt{\lambda}/2$

• For any $x, \lambda > 0$:

$$\left\| \frac{x}{1 + \|x\|^2 / \lambda} \right\|_{\infty} \le \frac{\sqrt{\lambda}}{2}$$

the **influence function** is bounded by $\sqrt{\lambda}/2$

• Bernstein's inequality (scalar):

$$\mathbb{P}\left(\sqrt{n}|\hat{\mu}_{n\lambda} - \mu_{\lambda}| \ge t\right) \le 2\exp\left(-\frac{t^2}{2\sigma_{\lambda}^2 + \frac{t}{12}\sqrt{\lambda/n}}\right)$$

where
$$\mu_{\lambda} = \mathbb{E}(\hat{\mu}_{n\lambda})$$
, $\sigma_{\lambda}^2 = n \cdot \text{var}(\hat{\mu}_{n\lambda})$

• For any $x, \lambda > 0$:

$$\left\| \frac{x}{1 + \|x\|^2 / \lambda} \right\|_{\infty} \le \frac{\sqrt{\lambda}}{2}$$

the **influence function** is bounded by $\sqrt{\lambda}/2$

• Bernstein's inequality (scalar):

$$\mathbb{P}\left(\sqrt{n}|\hat{\mu}_{n\lambda} - \mu_{\lambda}| \ge t\right) \le 2\exp\left(-\frac{t^2}{2\sigma_{\lambda}^2 + \frac{t}{12}\sqrt{\lambda/n}}\right)$$

where $\mu_{\lambda} = \mathbb{E}(\hat{\mu}_{n\lambda})$, $\sigma_{\lambda}^2 = n \cdot \text{var}(\hat{\mu}_{n\lambda})$

In finite samples, behaves like:

$$2\exp\left(-rac{t^2}{2\sigma_\lambda^2}
ight) ext{ for } t\simeq 0, \quad 2\exp\left(-rac{t}{12\sqrt{\lambda/n}}
ight) ext{ for } t o \infty$$

sub-exponential for large deviations

• If $\mathbb{E}||x_i|| < \infty$

$$\mu_{\lambda} = \mu - \frac{1}{\lambda} \mathbb{E} \left(\frac{x_i \|x_i\|^2}{1 + \|x_i\|^2 / \lambda} \right)$$

bias = 0 if F symmetric around 0

• If $\mathbb{E}||x_i|| < \infty$

$$\mu_{\lambda} = \mu - \frac{1}{\lambda} \mathbb{E} \left(\frac{x_i \|x_i\|^2}{1 + \|x_i\|^2 / \lambda} \right)$$

bias = 0 if F symmetric around 0

• Finite + bounded moments imply:

$$\begin{aligned} |\mathsf{bias}| &= O(\lambda^{-1}) \text{ if } \mathbb{E} \|x_i\|^3 < \infty, \\ |\mathsf{bias}| &= O(\lambda^{-\frac{1}{2}}) \text{ if } \mathbb{E} \|x_i\|^2 < \infty \end{aligned}$$

• If $\mathbb{E}||x_i|| < \infty$

$$\mu_{\lambda} = \mu - \frac{1}{\lambda} \mathbb{E} \left(\frac{x_i ||x_i||^2}{1 + ||x_i||^2 / \lambda} \right)$$

bias = 0 if F symmetric around 0

• Finite + bounded moments imply:

$$\begin{aligned} |\mathsf{bias}| &= O(\lambda^{-1}) \text{ if } \mathbb{E} \|x_i\|^3 < \infty, \\ |\mathsf{bias}| &= O(\lambda^{-\frac{1}{2}}) \text{ if } \mathbb{E} \|x_i\|^2 < \infty \end{aligned}$$

• Bias reduction:

$$2\mu_{\lambda} - \mu_{\lambda/2} = \mu - \frac{2}{\lambda^2} \mathbb{E}\left(\frac{x_i \|x_i\|^4}{(1 + \|x_i\|^2/\lambda)(1 + 2\|x_i\|^2/\lambda)}\right),$$

if $x_i \sim \delta_x$ (mass) then bias $\approx x$ as $x \to \pm \infty$

• Repeat the reduction:

$$\begin{split} 2[2\mu_{\lambda} - \mu_{\lambda/2}] - [2\mu_{\lambda/2} - \mu_{\lambda/4}] \\ &= \mu - \frac{4}{\lambda^2} \mathbb{E} \left(\frac{xi \|x_i\|^4 (2\|x_i\|^2/\lambda - 1)}{(1 + \|x_i\|^2/\lambda)(1 + 2\|x_i\|^2/\lambda)(1 + 4\|x_i\|^2/\lambda)} \right) \\ \text{if } x_i \sim \delta_x \text{ (mass) then bias} = 0 \text{ if } x \in \{0, \pm \sqrt{\lambda/2}\} \end{split}$$

A shrinkage estimator: outliers

• Contamination: $x_1, \ldots, x_N \sim (\mu, \sigma^2)$, x_{N+1}, \ldots, x_{N+M} arbitrary

$$\sqrt{n}(\hat{\mu}_{n\lambda} - \mu_{\lambda}) = \sqrt{n}(\hat{\mu}_{N\mu} - \mu_{N\lambda}) + o(1),$$

if
$$n = N + M$$
 s.t. $M/n \rightarrow 0$ and $M = o(\sqrt{n/\lambda})$

A shrinkage estimator: outliers

• Contamination: $x_1, \ldots, x_N \sim (\mu, \sigma^2)$, x_{N+1}, \ldots, x_{N+M} arbitrary

$$\sqrt{n}(\hat{\mu}_{n\lambda}-\mu_{\lambda})=\sqrt{n}(\hat{\mu}_{N\mu}-\mu_{N\lambda})+o(1),$$

if
$$n = N + M$$
 s.t. $M/n \rightarrow 0$ and $M = o(\sqrt{n/\lambda})$

ullet Issues: $\hat{\mu}_{n\lambda}$ is not location, scale invariant

• Similar idea find μ s.t.:

$$\sum_{i=1}^{n} \frac{x_i - \hat{\mu}_{n,\lambda}}{1 + \|x_i - \hat{\mu}_{n,\lambda}\|_{\Sigma^{-1}}^2 / \lambda} = 0$$

(FOC for multivariate Student with dof λ)

• Similar idea find μ s.t.:

$$\sum_{i=1}^{n} \frac{x_i - \hat{\mu}_{n,\lambda}}{1 + \|x_i - \hat{\mu}_{n,\lambda}\|_{\Sigma^{-1}}^2 / \lambda} = 0$$

(FOC for multivariate Student with dof λ)

• Problem: = 0 for $\|\hat{\mu}_{n,\lambda}\| = \infty$;

• Similar idea find μ s.t.:

$$\sum_{i=1}^{n} \frac{x_i - \hat{\mu}_{n,\lambda}}{1 + \|x_i - \hat{\mu}_{n,\lambda}\|_{\Sigma^{-1}}^2 / \lambda} = 0$$

(FOC for multivariate Student with dof λ)

• **Problem:** = 0 for $\|\hat{\mu}_{n,\lambda}\| = \infty$; issue for computation and ULLN

• Similar idea find μ s.t.:

$$\sum_{i=1}^{n} \frac{x_i - \hat{\mu}_{n,\lambda}}{1 + \|x_i - \hat{\mu}_{n,\lambda}\|_{\Sigma^{-1}}^2 / \lambda} = 0$$

(FOC for multivariate Student with dof λ)

- **Problem:** = 0 for $\|\hat{\mu}_{n,\lambda}\| = \infty$; issue for computation and ULLN
- Instead, minimize over (μ, Σ) :

$$\log |\Sigma| + \frac{\lambda + p}{n} \sum_{i=1}^{n} \left[\log \left(1 + \frac{\|x_i - \mu\|_{\Sigma^{-1}}^2}{\lambda} \right) \right] + \frac{\kappa_1}{\lambda} \|\mu\|_{\Sigma^{-1}}^2 + \frac{\kappa_2}{\lambda} \operatorname{trace}(\Sigma)$$

• Similar idea find μ s.t.:

$$\sum_{i=1}^{n} \frac{x_i - \hat{\mu}_{n,\lambda}}{1 + \|x_i - \hat{\mu}_{n,\lambda}\|_{\Sigma^{-1}}^2 / \lambda} = 0$$

(FOC for multivariate Student with dof λ)

- **Problem:** = 0 for $\|\hat{\mu}_{n,\lambda}\| = \infty$; issue for computation and ULLN
- Instead, minimize over (μ, Σ) :

$$\log |\Sigma| + \frac{\lambda + \rho}{n} \sum_{i=1}^{n} \left[\log \left(1 + \frac{\|x_i - \mu\|_{\Sigma^{-1}}^2}{\lambda} \right) \right] + \frac{\kappa_1}{\lambda} \|\mu\|_{\Sigma^{-1}}^2 + \frac{\kappa_2}{\lambda} \operatorname{trace}(\Sigma)$$

Penalty + bounded influence function imply:

$$\|\Sigma^{-1/2}\mu\|_{\infty} \le \frac{\lambda^{3/2}}{2\kappa_1}, \quad \|\Sigma\|_2 \lesssim \lambda^{3/2}$$

with probability 1, for any dataset

Monte Carlo + Empirical

Application

Monte Carlo

Heteroskedastic design:

$$y=\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3+\sigma(x)u_i$$
 where $\sigma(x)=C\sqrt{1+|x'\beta|}$ s.t. $\mathbb{E}(\sigma(x)^2)=1$, $u_i\sim(\chi_1^2-1)$, $x_1,\ldots,x_3\sim\chi_1^2$

- For i = 1, ..., 10: $x_1, x_2 = 4x_1, 4x_2, y = -3x'\beta + \sigma(x)u_i$
- Use n = 500
- Moment equation:

$$\mu(\beta) = \mathbb{E}(x_i[y_i - x_i'\beta]) = 0$$

- Compare different estimates:
 - OLS without $i \in \{1, \dots, 10\}$ (clean),
 - OLS with all $i \in \{1, \dots, n\}$ (full),
 - Huber estimates (RLM in R),
 - Bias (un)corrected estimates $\hat{\beta}_{n,\lambda}$, $\tilde{\beta}_{n,\lambda}$, $\tilde{\tilde{\beta}}_{n,\lambda}$

Monte Carlo (n = 500) - No outliers

		Sto	dev		Rejection rate (5%)				
	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	
$\hat{\beta}_{clean}$	-	-	-	-	-	-	-	-	
$\hat{eta}_{ extsf{full}}$	0.099	0.066	0.058	0.059	0.051	0.082	0.079	0.095	
\hat{eta}_{huber}	0.065	0.034	0.031	0.032	0.649	0.534	0.315	0.352	
$\hat{\beta}_{n\lambda}$	0.073	0.047	0.041	0.042	0.053	0.439	0.370	0.387	
$\tilde{eta}_{n\lambda}$	0.079	0.050	0.044	0.045	0.126	0.335	0.276	0.298	
$\tilde{eta}_{n\lambda}$	0.085	0.054	0.048	0.049	0.160	0.208	0.174	0.193	

Legend: 1000 MC replications, $\hat{\beta}_{clean}$ without outliers, $\hat{\beta}_{full}$ full sample, $\hat{\beta}_{huber}$ Huber loss (rlm), $\hat{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$ estimates using penalized Student mean estimates for $\overline{g}_n(\beta)$, corrected and twice corrected. $\lambda = n^{2/3}$

Monte Carlo (n = 500) - Contaminated

		Sto	dev		Rejection rate (5%)				
	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3	
$\hat{\beta}_{clean}$	0.100	0.066	0.061	0.058	0.049	0.086	0.097	0.077	
$\hat{eta}_{\mathit{full}}$	0.951	0.748	0.517	0.180	0.417	0.312	0.334	0.020	
\hat{eta}_{huber}	0.081	0.043	0.043	0.032	0.250	0.758	0.580	0.324	
$\hat{eta}_{n\lambda}$	0.077	0.045	0.043	0.043	0.025	0.220	0.179	0.266	
$\tilde{eta}_{n\lambda}$	0.086	0.048	0.046	0.047	0.038	0.130	0.103	0.181	
$\tilde{eta}_{n\lambda}$	0.096	0.053	0.052	0.052	0.041	0.061	0.049	0.101	

Legend: 1000 MC replications, $\hat{\beta}_{clean}$ without outliers, $\hat{\beta}_{full}$ full sample, $\hat{\beta}_{huber}$ Huber loss (rlm), $\hat{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$ estimates using penalized Student mean estimates for $\overline{g}_n(\beta)$, corrected and twice corrected. $\lambda = n^{2/3}$

Effect of trade openness on inflation

		$\lambda = n^{2/3}$		$\lambda = \sqrt{2}n^{2/3}$				
	cons	$eta_{ m openness}$	ESS	cons	$eta_{ m openness}$	ESS		
\hat{eta}_{2SLS}	29.607	-33.287	114					
P2SLS	(6.699)	(13.681)						
$\hat{\beta}_{n\lambda}$	15.800	-9.731	106.3	17.243	-11.977	108.6		
$\rho_{n\lambda}$	(2.105)	(4.321)		(2.612)	(5.413)			
$\tilde{\beta}_{n\lambda}$	17.259	-11.415	108.8	19.179	-14.483	110.5		
$\rho_{n\lambda}$	(2.456)	(4.971)		(3.093)	(6.410)			
$\tilde{\tilde{\beta}}_{n\lambda}$	19.359	-13.804	107.9	21.839	-18.074	109.5		
$\rho_{n\lambda}$	(2.903)	(5.958)		(3.689)	(7.749)			

$$\begin{split} \text{Legend: } n = 114, \ \lambda = n^{2/3} = 23.51, \ \lambda = \sqrt{2} n^{2/3} = 33.25, \\ \text{ESS} = \text{Effective Sample Size} = (\sum \omega_i)^2/(\sum \omega_i^2) \end{split}$$

Implied weights: $\tilde{eta}_{n\lambda} = (\sum_i \omega_{i\lambda} z_i x_i')^{-1} \sum_i \omega_{i\lambda} z_i y_i$

References

- Huber, P. J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35(1):73 – 101.
- Jaeckel, L. A. (1971). Robust estimates of location: Symmetry and asymmetric contamination. The Annals of Mathematical Statistics, 42(3):1020–1034.
- Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of statistics, pages 642–656.

Conclusion

- Contamination with asymmetric data
 - robust to small amounts of outliers
 - bias = f(moments)
 - bias-correction
- Algorithm for minimizing the penalized t-distribution
- To do: detailed finite sample/asymptotic analysis for the t-estimator

Example 1: RDD

Diagnostics: effect of i on $\hat{\beta}_n$

• For OLS, we have:

$$Y = X\hat{\beta}_n + \hat{u}_n$$

Which implies:

$$\hat{\beta}_n = \hat{\beta}_n + (X'X)^{-1} \sum_{i=1}^n x_i \hat{u}_i$$

• $(X'X)^{-1} \sum_{i=1}^{n} x_i \hat{u}_i$ measures relative contribution of i, for each coefficient

• Regression discontinuity design:

$$vote_i = \beta_0 + \beta_1 d_i + \beta_2 margin_i + \beta_3 margin_i^2 + u_i$$

	_cons	d	margin	margin ²									
		Full Sample											
$\hat{\beta}_n$	45.4912	5.4912 7.4005		0.0048									
SE	(1.1211)	(1.6514)	(0.1330)	(0.0118)									
	Remove influential obs. on β_d												
$\hat{\beta}_n$	45.9675	6.8223	0.2476	0.0022									
SE	(1.0241)	(1.5543)	(0.1275)	(0.0114)									
	Remov	e influentia	al obs. on	β_{margin^2}									
$\hat{\beta}_n$	45.2824	7.6631	0.1681	0.0090									
SE	(1.0993)	(1.6269)	(0.1266)	(0.0110)									

Example 1: RDD

		$\lambda =$	$n^{2/3}$			$\lambda = v$	$\sqrt{2}n^{2/3}$	
	cons	$eta_{ extbf{d}}$	eta_{margin}	$\beta_{\rm margin^2}$	cons	β_{d}	eta_{margin}	$\beta_{\rm margin^2}$
\hat{eta}_{ols}	45.491	7.400	0.209	0.005				
\wp ols	(1.121)	(1.651)	(0.133)	(0.012)				
\hat{eta}_{huber}	46.177	6.620	0.196	0.001				
Phuber	(0.960)	(1.533)	(0.125)	(0.011)				
$\hat{\beta}_{n\lambda}$	45.795	7.029	0.160	0.005	45.708	7.153	0.168	0.005
$\rho_{n\lambda}$	(0.930)	(1.402)	(0.110)	(0.010)	(0.971)	(1.459)	(0.114)	(0.010)
$\tilde{\beta}_{n\lambda}$	45.518	7.476	0.155	0.005	45.474	7.512	0.168	0.006
$\rho_{n\lambda}$	(1.042)	(1.562)	(0.119)	(0.010)	(1.063)	(1.586)	(0.122)	(0.011)
$\tilde{eta}_{n\lambda}$	45.288	7.809	0.161	0.006	45.322	7.714	0.178	0.007
$\rho_{n\lambda}$	(1.105)	(1.644)	(0.125)	(0.011)	(1.108)	(1.640)	(0.128)	(0.011)

Monte Carlo (n = 500) - No outliers

		Media	n Bias		Rejection rate (5%)			
	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
\hat{eta}_{clean}	-	-	-	-	-	-	-	-
$\hat{eta}_{\mathit{full}}$	-0.000	-0.003	-0.005	-0.007	0.051	0.083	0.078	0.095
\hat{eta}_{huber}	-0.140	-0.068	-0.042	-0.044	0.649	0.534	0.315	0.352
$\hat{eta}_{n\lambda}$	0.009	-0.071	-0.054	-0.057	0.053	0.439	0.370	0.387
$\tilde{eta}_{n\lambda}$	0.063	-0.060	-0.048	-0.050	0.126	0.335	0.276	0.298
$\tilde{eta}_{n\lambda}$	0.084	-0.043	-0.034	-0.036	0.160	0.208	0.174	0.193

Legend: 1000 MC replications, $\hat{\beta}_{clean}$ without outliers, $\hat{\beta}_{full}$ full sample, $\hat{\beta}_{huber}$ Huber loss (rlm), $\hat{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$ estimates using penalized Student mean estimates for $\overline{g}_n(\beta)$, corrected and twice corrected. $\lambda = n^{2/3}$

Monte Carlo (n = 500) - Contaminated

		Median Bias					Rejection rate (5%)			
	β_0	eta_1	β_2	β_3	β_0	β_1	β_2	β_3		
\hat{eta}_{clean}	0.008	-0.006	-0.006	-0.004	0.049	0.086	0.097	0.077		
$\hat{eta}_{\mathit{full}}$	1.633	-1.083	-0.853	-0.024	0.417	0.312	0.334	0.020		
\hat{eta}_{huber}	-0.075	-0.114	-0.091	-0.045	0.250	0.758	0.580	0.324		
$\hat{eta}_{n\lambda}$	-0.001	-0.067	-0.055	-0.051	0.025	0.220	0.179	0.266		
$\tilde{\beta}_{n\lambda}$	0.045	-0.058	-0.050	-0.040	0.038	0.130	0.103	0.181		
$\tilde{eta}_{n\lambda}$	0.049	-0.042	-0.040	-0.023	0.041	0.061	0.049	0.101		

Legend: 1000 MC replications, $\hat{\beta}_{clean}$ without outliers, $\hat{\beta}_{full}$ full sample, $\hat{\beta}_{huber}$ Huber loss (rlm), $\hat{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$, $\tilde{\beta}_{n\lambda}$ estimates using penalized Student mean estimates for $\overline{g}_n(\beta)$, corrected and twice corrected. $\lambda = n^{2/3}$

Non-shrinkage estimator (n = 125)

		Sto	dev		Rejection rate (5%)			
	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
\hat{eta}_{clean}	0.202	0.141	0.122	0.126	0.037	0.105	0.108	0.084
$\hat{eta}_{\mathit{full}}$	1.274	1.023	0.698	0.478	0.652	0.564	0.558	0.032
\hat{eta}_{huber}	1.037	0.993	0.661	0.142	0.117	0.175	0.151	0.069
$\hat{eta}_{n\lambda}$	0.154	0.093	0.095	0.089	0.023	0.052	0.032	0.133
$\tilde{eta}_{n\lambda}$	0.189	0.108	0.127	0.095	0.009	0.029	0.025	0.083
$\tilde{eta}_{n\lambda}$	0.287	0.195	0.229	0.112	0.015	0.015	0.028	0.043

Non-shrinkage estimator (n = 250)

		Stdev				Rejection rate (5%)				
	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3		
\hat{eta}_{clean}	0.144	0.093	0.087	0.085	0.057	0.110	0.108	0.096		
$\hat{eta}_{\mathit{full}}$	1.127	0.915	0.624	0.294	0.540	0.407	0.451	0.034		
\hat{eta}_{huber}	0.163	0.094	0.107	0.051	0.099	0.504	0.381	0.184		
$\hat{eta}_{n\lambda}$	0.109	0.065	0.058	0.061	0.036	0.155	0.116	0.233		
$\tilde{eta}_{n\lambda}$	0.123	0.070	0.063	0.065	0.020	0.090	0.078	0.178		
$\tilde{eta}_{n\lambda}$	0.144	0.079	0.074	0.073	0.018	0.048	0.034	0.105		