SECTION 2-2: THE LIMIT OF A FUNCTION

1. DEFINITION: two-sided limit

Notation:

lim f(x) = L and L are numbers.

Words: the limit of f(x) as x approaches a is L

as x-values get closer and closer to the number a, the y-values of f(x) are getting arbitrarily close to the number L.

2. Example 1: Evaluate $\lim_{x\to 2} \frac{x^2-4}{x-2}$ numerically.

				1.999						
$y = \frac{x^2 - 4}{x - 2}$	3	3.5	3.9	3.999	DNE	4.001	4.1	4.5	5	
<i>y</i>	approach y=H									

3. Example 2: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$ numerically.

answer: $\lim_{x \to \infty} \frac{\sin(x)}{x} = 1$

	X	- 0.5	- 0.1	-0.01	-0.001	0	0.001	0.01	0.1	6.5
Sir	(X)	0.950	0.998334	0.9999	0.9999	DNE	0.9999	0.99990	0,99	0,950
·	4		2. Limite de	3	3	appro 1	wich 98	त. • अनु	34/6	

4. Example 3: Limits do not always exist. Evaluate each limit below numerically and explain why the limits do not exist.

(a)
$$\lim_{x \to 2} \frac{|x-2|}{x-2}$$

$$X | 1 | 1.9 | 1.999 | 2 | 2.001 | 2.1 | 3$$

$$Y = \frac{|x-2|}{x+2} - | -| -| | | | | | + | + | + | + |$$
(b) $\lim_{x \to 0} \frac{1}{x^2}$

Answer: $\lim_{X\to 2} \frac{|x-2|}{x-2}$ does not exist because the left-side and the right-side are not the same.

Answer: $\lim_{x\to 0} \frac{1}{x^2}$ does not exist because $\lim_{x\to 0} \frac{1}{x^2}$ does not exist because the y-values are unbounded. One can write $\lim_{x\to 0} \frac{1}{x^2} = \infty$

Geometrically, we know $f(x) = \frac{1}{x^2}$ has a vertical asymptote 2-2 The Limit of a Function at x = 0.

It is possible to have one-sided limits. Example 4a at the bottom of page 1 illustrates this.

5. Notation:

$$x o 2^- \, \mathrm{means}$$
 $imes$ approaches 2 on the left or from values a bit smaller than 2

and

and
$$x \to 2^+$$
 means \times approaches 2 on the right or from values a bit larger than 2.

(a)
$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2} = -1$$

(b)
$$\lim_{x \to 2^+} \frac{|x-2|}{x-2} = +$$

These come from the calculations in table for Example 4a

Limits can also be evaluated graphically.

6. The function g(x) is graphed below. Use the graph to fill in the blanks.

(a)
$$\lim_{x \to 4^{-}} g(x) = \frac{16}{4}$$

(b) $\lim_{x \to 4^{+}} g(x) = \frac{4}{4}$
(c) $\lim_{x \to 4} g(x) = \frac{2NE}{4}$

(b)
$$\lim_{x \to 4^+} g(x) = 4$$

(c)
$$\lim_{x \to 4} g(x) =$$
 DNE

(d)
$$g(4) = _{\underline{\hspace{1cm}}}$$

(d)
$$g(4) = \frac{16}{16}$$

(e) $\lim_{x \to 8} g(x) = \frac{-5}{16}$

7. The function
$$h(x)$$
 is graphed below. Use the graph to fill in the blanks.

$$\lim_{x \to 4^{-}} h(x) = \underline{+ \omega}$$

(b)
$$\lim_{x \to 4^+} h(x) =$$

(c)
$$\lim_{x \to 4} h(x) = \underline{\text{DNE}}$$

(d)
$$h(4) = - b N E$$

(e)
$$\lim_{x \to 8} h(x) =$$

8. Find any vertical asymptotes of $f(x) = \frac{2}{x+5}$ and *justify* your answer using a limit.

Justification:

$$\lim_{X \to -5^+} \frac{2}{x+5} = +\infty$$

as
$$x = -5^+$$
 (#\$ like -4.9,-4.99)
 $x + 5 = 0^+$

9. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

$$\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3 \quad \lim_{x \to 4^{+}} f(x) = 0$$

$$f(0) = -2 \qquad f(4) = 1$$

