Pumas.jl Workshop Solutions

Chris Rackauckas, Vijay Ivaturi

August 11, 2020

1 Problem 1: Simulate a first-order absorption model with linear elimination after a 100 mg oral dose in 24 subjects

Parameters are: Ka = 1 hr-1, CL = 1 L/hr, V = 20 L/hr.

1.1 Part 1: Setup the population

using Pumas, Plots, CSV, Random Random.seed!(0)

single_dose_regimen = DosageRegimen(100, time=0)
first(single_dose_regimen.data)

	time	cmt	amt	evid	ii	addl	rate	duration	SS
	Float64	Int64	Float64	Int8	Float64	Int64	Float64	Float64	Int8
1	0.0	1	100.0	1	0.0	0	0.0	0.0	0

to build a single subject

s1 = Subject(id=1, events=single_dose_regimen, covariates=(Wt=70,))

```
Subject
   ID: 1
   Events: 1
   Covariates: Wt

let's first define a function to choose body weight randomly
choose_covariates() = (Wt = rand(55:80),)
choose_covariates (generic function with 1 method)
```

Then, we use it to generate a population of subjects with a random weight generated from the covariate function above

```
pop = Population(map(i -> Subject(id = i, events=single_dose_regimen,
covariates=choose_covariates()),1:24))

Population
   Subjects: 24
   Covariates: Wt
```

You can view the generated population using by calling a random subject by index and look at the subject's

- covariates
- events
- id numbers
- observations
- time

Let us us peek at the first subject's covariates

```
pop[1].covariates
```

Pumas.ConstantCovar{NamedTuple{(:Wt,),Tuple{Int64}}}((Wt = 74,))

1.2 Part 2: Write the model

```
\begin{array}{llll} \operatorname{mymodel} &= \operatorname{@model} & \operatorname{begin} \\ &\operatorname{@param} & \operatorname{begin} \\ &\operatorname{tvcl} \in \operatorname{RealDomain}(\operatorname{lower=0}, \operatorname{init} = 1.0) \\ &\operatorname{tvv} \in \operatorname{RealDomain}(\operatorname{lower=0}, \operatorname{init} = 20) \\ &\operatorname{tvka} \in \operatorname{RealDomain}(\operatorname{lower} = 0, \operatorname{init=1}) \\ &\Omega \in \operatorname{PDiagDomain}(\operatorname{init=[0.09,0.09, 0.09]}) \\ &\sigma_{\operatorname{prop}} \in \operatorname{RealDomain}(\operatorname{lower=0,init=0.04}) \\ &\operatorname{end} \\ &\operatorname{@random begin} \\ &\eta \sim \operatorname{MvNormal}(\Omega) \\ &\operatorname{end} \\ &\operatorname{@pre begin} \\ &\operatorname{CL} = \operatorname{tvcl} * (\operatorname{Wt/70}) \cap 0.75 * \exp(\eta[1]) \\ &\operatorname{Vc} = \operatorname{tvv} * (\operatorname{Wt/70}) * \exp(\eta[2]) \\ \end{array}
```

```
Ka = tvka * exp(\eta[3])
  @covariates Wt
  Odynamics Depots1Central1
    #@dynamics begin
       Depot' = -Ka*Depot
      Central' = Ka*Depot - (CL/V)*Central
  @derived begin
      cp = 0. 1000*(Central / Vc)
      dv ~ @. Normal(cp, sqrt(cp^2*σ_prop))
    end
end
PumasModel
 Parameters: tvcl, tvv, tvka, \Omega, \sigma_prop
 Random effects: \eta
 Covariates: Wt
 Dynamical variables: Depot, Central
 Derived: cp, dv
  Observed: cp, dv
```

Note that above, we are using the analytical solution in **@dynamics**. You can switch to using the differential equation system if you prefer.

1.3 Part 3: Simulate

Let's first extract the model parameters

Then using the simobs function, carry out the simulation and visualize the simulation output

```
obs = simobs(mymodel, pop, param, obstimes=0:1:72)
plot(obs)
```

where

- mymodel is the model setup in the Part 2,
- pop is the population of subjects that was setup in Part 1
- param is the specified set of model parameters
- obstimes specifies the simulation time period.

2 Problem 2: Peform Non-compartmental analysis

We will start by generating a dataframe of the resuls from the simulation step

```
simdf = DataFrame(obs)
first(simdf, 6)
```

	id	time	cp	dv	amt	evid	cmt	rate	Wt
	String	Float64	Float64?	Float64?	Float64	Int8	Int64?	Float64	Int64
1	1	0.0	missing	missing	100.0	1	1	0.0	74
2	1	0.0	0.0	0.0	0.0	0	missing	0.0	74
3	1	1.0	2136.14	1928.23	0.0	0	missing	0.0	74
4	1	2.0	2803.41	3018.93	0.0	0	missing	0.0	74
5	1	3.0	2977.33	3186.01	0.0	0	missing	0.0	74
6	1	4.0	2986.35	2872.35	0.0	0	missing	0.0	74

For the purpose of NCA, let us use the cp (output without residual error) as our observed value

To prepare the dataset for NCA analysis, let us use the read_nca function. The NCA datasets in Pumas requires a route specification which can either be iv or ev. Since this is an oral drug administration, lets add that to the simdf.

```
simdf[!, :route] .= "ev"
1776-element Array{String,1}:
"ev"
 "ev"
```

Next we can define time, concentration and dose units so the report includes the units for the pharmacokinetic parameters. The general syntax for units are u followed by the unit in quotes "".

```
timeu = u"hr"
concu = u"mg/L"
amtu = u"mg"

mg

ncadf = read_nca(simdf, id=:id, time=:time, conc=:cp, amt=:amt,
    route=:route,timeu=timeu, concu=concu, amtu=amtu, lloq=0.4concu)

NCAPopulation (24 subjects):
    ID: ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
```

```
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24"] concentration: mg L^-1 time: hr auc: mg hr L^-1 aumc: mg hr^2 L^-1 \lambdaz: hr^-1 dose: mg
```

You can view the concentration-time plots by doing plot(ncadf)

You can then generate cmax and auc for each subject auc = NCA.auc(ncadf)

	id	auc
	String	Quantit
1	1	132198.0 mg hr L-1
2	2	$102079.0~\mathrm{mg}$ hr L-1
2 3	3	106989.0 mg hr L-1
4	4	$57458.7~\mathrm{mg}$ hr L -1
5	5	$71282.8~\mathrm{mg}$ hr L -1
6	6	$96739.3~\mathrm{mg}$ hr L -1
7	7	$161621.0~\mathrm{mg}$ hr L -1
8	8	$72576.2~\mathrm{mg}$ hr L -1
9	9	$61923.5~\mathrm{mg}$ hr L -1
10	10	$132283.0~\mathrm{mg}$ hr L -1
11	11	$157841.0~\mathrm{mg}$ hr L -1
12	12	$124295.0~\mathrm{mg}$ hr L -1
13	13	$109570.0~\mathrm{mg}$ hr L-1
14	14	$110130.0~\mathrm{mg}$ hr L-1
15	15	$83332.2~\mathrm{mg}$ hr L -1
16	16	$118001.0~\mathrm{mg}~\mathrm{hr}~\mathrm{L\^{-}}1$
17	17	$81171.9~\mathrm{mg}$ hr L -1
18	18	$119144.0~\mathrm{mg}$ hr L-1
19	19	$210948.0~\mathrm{mg}$ hr L-1
20	20	$90731.3~\mathrm{mg}$ hr L -1
21	21	169402.0 mg hr L-1
22	22	$139547.0~\mathrm{mg}$ hr L -1
23	23	124435.0 mg hr L-1
24	24	$108008.0~\mathrm{mg}$ hr L-1

cmax = NCA.cmax(ncadf)

	id	cmax
	String	Quantit
1	1	2986.35 mg L1
2	2	$4845.71~\mathrm{mg}$ L-1
3	3	$3300.26~\mathrm{mg}$ L-1
4	4	$3188.57~\mathrm{mg}$ L-1
5	5	$4587.95~\mathrm{mg}$ L-1
6	6	$3826.88~\mathrm{mg}$ L-1
7	7	$3786.89~\mathrm{mg}$ L-1
8	8	$3206.47~\mathrm{mg}$ L-1
9	9	$4795.85~\mathrm{mg}$ L-1
10	10	$5447.36~\mathrm{mg}$ L-1
11	11	$2948.35~\mathrm{mg}$ L-1
12	12	$7299.77~\mathrm{mg}$ L-1
13	13	$4210.48~\mathrm{mg}$ L-1
14	14	$4776.76~\mathrm{mg}$ L-1
15	15	$6813.03~\mathrm{mg}$ L-1
16	16	$5285.48~\mathrm{mg}$ L-1
17	17	$3288.68~\mathrm{mg}$ L-1
18	18	4481.94 mg L1
19	19	$8022.22~\mathrm{mg}$ L-1
20	20	$4503.52~\mathrm{mg}$ L-1
21	21	$3520.06~\mathrm{mg}$ L-1
22	22	$5590.86~\mathrm{mg}$ L-1
23	23	$6493.77~\mathrm{mg}$ L-1
24	24	$5435.34~\mathrm{mg}$ L-1

Or generate the entire NCA report using

report = NCAReport(ncadf)
first(report,6)

	id	doseamt	tlag	tmax	cmax	tlast	clast	${\rm clast}_$
	String	Quantit	Quantit	Quantit	Quantit	Quantit	Quantit	Quan
1	1	100.0 mg	0.0 hr	4.0 hr	2986.35 mg L1	72.0 hr	566.15 mg L1	566.267 1
2	2	100.0 mg	$0.0 \ \mathrm{hr}$	$4.0 \ \mathrm{hr}$	4845.71 mg L-1	72.0 hr	$93.876~\mathrm{mg}~\mathrm{L\^{-}1}$	94.0492 1
3	3	100.0 mg	$0.0 \ \mathrm{hr}$	$3.0 \ \mathrm{hr}$	$3300.26~\mathrm{mg}$ L-1	72.0 hr	$326.361~\mathrm{mg}$ L-1	326.425 1
4	4	100.0 mg	$0.0 \ \mathrm{hr}$	$4.0 \ \mathrm{hr}$	$3188.57~\mathrm{mg}$ L-1	72.0 hr	$26.0065~\mathrm{mg}$ L-1	26.0723 1
5	5	100.0 mg	$0.0 \ \mathrm{hr}$	$3.0 \ \mathrm{hr}$	$4587.95~\mathrm{mg}$ L-1	72.0 hr	$20.3659~\mathrm{mg}$ L-1	20.3848 1
6	6	$100.0~\mathrm{mg}$	$0.0 \ \mathrm{hr}$	$4.0 \ \mathrm{hr}$	$3826.88~\mathrm{mg}$ L-1	72.0 hr	$166.316~\mathrm{mg}~\mathrm{L\^-1}$	166.438 1

3 Problem 3: Estimate using Non-linear mixed effects

We can use the simulated dataset in the Problem 1 for our estimation. We need a couple of data manipulation steps

- 1. missing cmt should be converted to 2 to reflect central compartment
- 2. data rows where time = 0, and cp=0 should be removed

```
simdf.cmt = ifelse.(ismissing.(simdf.cmt), 2, simdf.cmt)
est_df = simdf[.!((simdf.dv .== 0.0) .& (simdf.cmt .==2)),:]
first(est_df,6)
```

	id	$_{ m time}$	cp	dv	amt	evid	cmt	rate	Wt	route
	String	Float64	Float64?	Float64?	Float64	Int8	Int64	Float64	Int64	String
1	1	0.0	missing	missing	100.0	1	1	0.0	74	ev
2	1	1.0	2136.14	1928.23	0.0	0	2	0.0	74	ev
3	1	2.0	2803.41	3018.93	0.0	0	2	0.0	74	ev
4	1	3.0	2977.33	3186.01	0.0	0	2	0.0	74	ev
5	1	4.0	2986.35	2872.35	0.0	0	2	0.0	74	ev
6	1	5.0	2941.06	2521.28	0.0	0	2	0.0	74	ev

3.1 Part 1: Read datasets for NLME estimation

We can use the read_pumas function to prepare the dataset for NLME estimation data = read_pumas(est_df, covariates=[:Wt], observations=[:dv])

Population

Subjects: 24 Covariates: Wt Observables: dv

where

- covariates is a symbol that maps to the columns of covariates
- observations is a symbol that maps to the columns of dependent variables
- since the dataframe has time as the variable, the function does not need a specific input

3.2 Part 2: Perform a model fit

We now use the

- mymodel model that we wrote earlier
- the set of parameters specified in param as initial estimates
- data that was read in using the read_pumas function

to fit the model.

```
* time: 0.22821497917175293
```

3 1.134846e+04 1.467966e+01

* time: 0.3383779525756836

4 1.134813e+04 2.651939e+00

* time: 0.40964698791503906

5 1.134812e+04 2.339406e+00

* time: 0.48030900955200195

6 1.134809e+04 1.934372e+00

* time: 0.5583829879760742

7 1.134805e+04 3.034282e-01

* time: 0.6122348308563232

8 1.134805e+04 2.558618e-01

* time: 0.661628007888794

9 1.134804e+04 8.600182e-02

* time: 0.7146708965301514

10 1.134804e+04 2.772043e-02

* time: 0.7851088047027588

11 1.134804e+04 9.824259e-03

* time: 0.8478918075561523

12 1.134804e+04 4.457464e-03

* time: 0.9215497970581055

13 1.134804e+04 1.025930e-03

* time: 0.9732668399810791

14 1.134804e+04 8.285445e-05

* time: 1.0309419631958008

FittedPumasModel

Successful minimization:

true

Likelihood approximation:		Pumas.FOCEI
Log-likelihood value:		-11348.038
Number of subjects:		24
Number of parameters:	Fixed	Optimized
	0	5
Observation records:	Active	Missing
dv:	1728	0
Total:	1728	0

	Estimate
tvc1 tvv tvka Ω_1 ,_1 Ω_2 ,_2 Ω_3 ,_3 σ_{prop}	0.96606 20.124 0.89507 0.10253 0.077902 0.074778 0.038981

3.3 Part 3: Infer the results

infer provides the model inference

infer(res)

Calculating: variance-covariance matrix. Done. Asymptotic inference results

Successful minimization:		true
Likelihood approximation: Log-likelihood value:		Pumas.FOCEI -11348.038
Number of subjects: Number of parameters:	Fixed 0	24 Optimized 5
Observation records: dv: Total:	Active 1728 1728	Missing 0 0

	Estimate	SE	95.0% C.I.
tvcl	0.96606	0.063144	[0.8423 ; 1.0898]
tvv	20.124	1.1628	[17.845 ; 22.403]
tvka	0.89507	0.066005	[0.7657 ; 1.0244]
$\Omega_1, 1$	0.10253	0.026178	[0.05122 ; 0.15384]
Ω_2 ,_2	0.077902	0.020065	[0.038576 ; 0.11723]
$\Omega_3, 3$	0.074778	0.04165	[-0.0068549; 0.15641]
$\sigma\mathtt{_prop}$	0.038981	0.0015704	[0.035903 ; 0.042059]

3.4 Part 4: Inspect the results

inspect gives you the

- model predictions
- residuals
- Empirical Bayes estimates

preds = DataFrame(predict(res))
first(preds, 6)

	id	time	evid	$d\mathbf{v}$	dv_pred	dv_ipred	Wt
	String	Float64	Int64	Float64	Float64	Float64	Int64
1	1	1.0	0	1928.23	2705.81	1956.5	74
2	1	2.0	0	3018.93	3686.23	2724.75	74
3	1	3.0	0	3186.01	3967.48	2997.53	74
4	1	4.0	0	2872.35	3968.57	3064.41	74
5	1	5.0	0	2521.28	3860.47	3046.41	74
6	1	6.0	0	3474.89	3712.77	2994.1	74

resids = DataFrame(wresiduals(res))
first(resids, 6)

	id	$_{ m time}$	dv_wres	dv_iwres	wres_approx	Wt
	String	Float64	Float64	Float64	FOCEI	Int64
1	1	1.0	-0.411365	-0.073188	FOCEI()	74
2	1	2.0	0.187917	0.546827	FOCEI()	74
3	1	3.0	-0.0281296	0.318467	FOCEI()	74
4	1	4.0	-0.642131	-0.317451	FOCEI()	74
5	1	5.0	-1.17404	-0.87309	FOCEI()	74
6	1	6.0	0.535575	0.813335	FOCEI()	74

ebes = DataFrame(empirical_bayes(res))
first(ebes, 6)

	Array
1	[-0.290432, 0.320516, -0.0259105]
2	[0.151995, 0.00669468, -0.0850562]
3	[0.0315156, 0.407506, -0.0865642]
4	[0.688058, 0.303218, -0.362252]
5	[0.334693, -0.183283, 0.16122]
6	[0.0829534, 0.123602, -0.17294]

There is an inspect function that provides all the results at once

Note that this function below fails to convert into a dataframe due to a bug. Will be fixed soon

```
resout = DataFrame(inspect(res))
first(resout, 6)
```