

Wintersemester 2024/2025

Version 2024-12-20 16:07

Prof. Dr. Sebastian Wild Dr. Nikolaus Glombiewski Übungen zur Vorlesung
Effiziente Algorithmen

Abgabe: 17.01.2024, bis **spätestens** 19:00 Uhr über die ILIAS Plattform

Übungsblatt 9

Aufgabe 9.1: Starke Zusammenhangskomponenten (2+3)

(5 Punkte)

- a) Wie kann sich die Anzahl der starke Zusammenhangskomponenten in einem gerichteten Graphen durch das Einfügen einer neuen Kante verändern? Begründen Sie Ihre Antwort.
- b) Wir bezeichnen einen gerichteten Graph G=(V,E) als semi-zusammenhängend wenn für jedes Knotenpaar $u,v\in V$ ein Pfad von u nach v oder ein Pfad von v nach u existiert. Entwickeln Sie einen effizienten Algorithmus, der bestimmt ob ein gerichteter Graph G semi-zusammenhängend ist. Begründen Sie die Korrektheit Ihres Algorithmus und analysieren Sie die Laufzeit.

Aufgabe 9.2: Ford-Fulkerson (4+1)

(5 Punkte)

Gegeben sei das folgende Flussnetzwerk.

- a) Bestimmen Sie den maximalen Fluss f von s nach t mit Hilfe der Ford-Fulkerson-Methode. Geben Sie als Rechenweg in jedem Schritt an, welcher s-t-Pfad verwendet wird, den Wert des Flusses über diesen Pfad, sowie den resultierenden Restflussgraph.
- b) Geben Sie einen minimalen s-t-Schnitt an, d.h. Mengen S und T, sodass die Kapazität von f über (S,T) dem Wert des maximalen Flusses entspricht.

Aufgabe 9.3: Flussnetzwerke (2+3)

(5 Punkte)

- a) Beweisen oder widerlegen Sie folgende Aussage:
 - Sei (A, B) ein minimaler s-t-Schnitt in einem Flussnetzwerk G mit Quelle s und Senke t, in welchem jede Kantenkapazität ganzzahlig ist. Wenn das Flussnetzwerk G' dadurch entsteht, dass jede Kantenkapazität von G um genau 1 erhöht wird, dann ist (A, B) auch ein minimaler s-t-Schnitt für G'.
- b) Gegeben sei ein Flussnetzwerk G=(V,E), wobei jede Kante $e\in E$ die Kantenkapazität c(e)=1 hat, sowie $s,t\in V$ und $k\in \mathbb{N}_{\geq 1}$. Geben Sie einen effizienten Algorithmus an, der k Kanten aus G löscht, sodass der maximale s-t-Fluss so klein wie möglich ist. Begründen Sie die Korrektheit Ihrer Lösung.

Aufgabe 9.4: Modellierung (3+2)

(5 Punkte)

Nach einer Naturkatastrophe gibt es n Verletzte, die über eine Region verteilt sind. Rettungskräfte müssen diese in nahe Krankenhäuser transportieren. Eine verletzte Person kann nur in ein Krankenhaus transportiert werden, welches innerhalb von 30 Minuten erreicht werden kann. Zusätzlich kann ein Krankenhaus j höchstens c_j viele Verletzte behandeln.

Sie können davon ausgehen, dass c_j bekannt ist und dass zu jeder Person p_i die Menge von Krankenhäusern S_i gegeben ist, welche p_i in 30 Minuten erreichen können.

- a) Geben Sie (mit Hilfe eines geeigneten und beschrifteten Beispielbildes) an, wie man das beschriebene Problem als ein Maximum-Flow-Problem modellieren kann. Geben Sie auch an, wie man der Lösung Ihres Flussproblems entnehmen kann, ob es eine mögliche Verteilung gibt, sodass in jedem Krankenhaus k_j maximal c_j Verletzte eingeliefert werden und jede verletzte Person in ein Krankenhaus transportiert wird, welches innerhalb von 30 Minuten erreicht werden kann.
- b) Zusätzlich zu allen obigen Bedingungen gibt es nun die Information, ob ein Krankenhaus ein städtisches Krankenhaus oder ein Universitätskrankenhaus ist. Die Verletzten sollen nun zusätzlich so verteilt werden, dass $\lfloor n/2 \rfloor$ Verletze in städtischen Krankenhäusern und $\lceil n/2 \rceil$ Verletzte in Universitätskrankenhäusern untergebracht werden. Geben Sie auch hier (mit Hilfe eines geeigneten und beschrifteten Beispielbildes) an, wie man diese Erweiterung des Problems als ein Maximum-Flow-Problem modellieren kann.