The surface

Cathy Hohenegger

Outline

- The problem
- Physical basis
- The surface subroutine in the UCLALES
- Future development

Why caring about the surface?

From a very pragmatic point of view:

Need to know the conditions at the bottom boundary to be able to integrate the relevant equations

Why caring about the surface?

From a less pragmatic point of view:

Surface influences the structure and evolution of the planetary boundary layer

- Friction: momentum flux: slows down wind
- Solar absorption: sensible heat flux: warms/cools overlying air
- Solar absorption: latent heat flux: water source for precipitation
- Introduces diurnal cycle

Partitions available energy between sensible and latent heat fluxes

Physical basis

The atmospheric boundary layer, J.R. Garratt

Physical basis

The atmospheric boundary layer, J.R. Garratt

Flow in the PBL is turbulent

$$\chi = \bar{\chi} + \chi'$$

$$\frac{\partial \bar{u}}{\partial t} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial z} + f\bar{v} - \frac{\partial \overline{u'w'}}{\partial z}$$

Variables to be determined

Surface stress in x

Surface stress in y

Surface sensible heat flux

Surface buoyancy flux

Surface latent heat flux

$$\tau_{x0} = -\rho \overline{u'w'}_0$$

$$\tau_{y0} = -\rho \overline{v'w'}_0$$

$$H_0 = \rho c_p \overline{w'\theta'}_0$$

$$H_{v0} = \rho c_p \overline{w'\theta'_{v0}}$$

$$LE_0 = \rho L_v \overline{w'q'}_0$$

How do we compute the fluxes?

Use of surface similarity theory:

- Only valid for the surface layer z₀ < z << h where fluxes remain constant
- Isolate the relevant scales that can fully characterize the flow in the surface layer
- Arrange them in dimensionless group to form appropriate relationships
- Use data for fitting

How do we compute the fluxes?

Use of surface similarity theory:

- Only valid for the surface layer z₀ < z << h where fluxes remain constant
- Isolate the relevant scales that can fully characterize the flow in the surface layer
- Arrange them in dimensionless group to form appropriate relationships
- Use data for fitting

In general: determine e.g. appropriate velocity and length scales to scale the wind profile to derive not only the wind profile law but also to use this to formulate a suitable drag law

Characteristic scales

$$u_{*0}^2 = \sqrt{(\overline{u'w'}_0)^2 + (\overline{v'w'}_0)^2} = -\overline{u'w'}_0$$

$$\theta_{*0} = \frac{-w'\theta'_0}{u_{*0}}$$

$$\theta_{v*0} = \frac{-w'\theta'_{v0}}{u_{*0}}$$

$$q_{*0} = \frac{-\overline{w'q'_0}}{u_{*0}}$$

Obukov stability length
$$L = \frac{u_{*0}^2 \overline{\theta_v}}{kq\theta_{v*0}}$$

$$L = \frac{u_{*0}^2 \overline{\theta_v}}{kg \theta_{v*0}}$$

Characteristic scales

$$u_{*0}^2 = \sqrt{(\overline{u'w'}_0)^2 + (\overline{v'w'}_0)^2} = -\overline{u'w'}_0$$

$$\theta_{*0} = \frac{-w'\theta'_0}{u_{*0}}$$

$$\theta_{v*0} = \frac{-w'\theta'_{v0}}{u_{*0}}$$

$$q_{*0} = \frac{-\overline{w'q'_0}}{u_{*0}}$$

Obukov stability length
$$L = \frac{u_{*0}^2 \overline{\theta_v}}{kq\theta_{v*0}}$$

$$L = \frac{u_{*0}^2 \overline{\theta_v}}{kg \theta_{v*0}}$$

Assume neutral and homogeneous atmosphere:

$$\overline{u'w'}_0 = -K_M \frac{\partial \bar{u}}{\partial z}$$

$$K_M \sim kzu_{*0} \qquad k = 0.4$$

$$\overline{u'w'}_0 = -u_{*0}^2$$

$$\frac{kz}{u_{*0}} \frac{\partial \bar{u}}{\partial z} = 1$$

$$\frac{k\bar{u}}{u_{*0}} = \ln\frac{z}{z_0}$$

Assume neutral and homogeneous atmosphere:

$$\overline{u'w'}_0 = -K_M \frac{\partial \bar{u}}{\partial z}$$

$$K_M \sim kzu_{*0}$$

$$\overline{u'w'}_0 = -u_{*0}^2$$

$$\frac{kz}{u_{*0}}\frac{\partial \bar{u}}{\partial z} = 1$$

$$\frac{k\bar{u}}{u_{*0}} = \ln\frac{z}{z_0}$$

In general:

$$\overline{u'w'}_0 = -u_{*0}^2 = -K_M \frac{\partial \bar{u}}{\partial z}$$
$$\frac{kz}{u_{*0}} \frac{\partial \bar{u}}{\partial z} = \Phi_M(\zeta) \quad \zeta = z/L$$

$$\frac{k\overline{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \int (1 - \Phi_M(\zeta')) d(\ln\zeta')$$
$$\frac{k\overline{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$$

In general:

$$\overline{u'w'}_0 = -u_{*0}^2 = -K_M \frac{\partial \bar{u}}{\partial z}$$
$$\frac{kz}{u_{*0}} \frac{\partial \bar{u}}{\partial z} = \Phi_M(\zeta) \quad \zeta = z/L$$

$$\overline{w'\theta'_{v_0}} = -u_{*0}\theta_{v*0} = -K_H \frac{\partial \bar{\theta}_v}{\partial z}$$
$$\frac{kz}{\theta_{v*0}} \frac{\partial \bar{\theta}_v}{\partial z} = \Phi_H(\zeta)$$

$$\frac{k\overline{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \int (1 - \Phi_M(\zeta')) d(\ln\zeta') \qquad \frac{k(\overline{\theta}_v - \overline{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \int (1 - \Phi_H(\zeta')) d(\ln\zeta')
\frac{k\overline{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta) \qquad \frac{k(\overline{\theta}_v - \overline{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$$

Businger et al. (1971)

$$\frac{kz}{u_{*0}} \frac{\partial \bar{u}}{\partial z} = \Phi_M(\zeta)$$
$$\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$$

Following Garrat:

$$\zeta < 0: \Phi_M(\zeta) = (1 - 16\zeta)^{-1/4}$$

$$\zeta > 0: \Phi_M(\zeta) = (1 + 5\zeta)$$

$$\zeta < 0: \Psi_M(\zeta) = 2\ln(\frac{1+x}{2}) + \ln(\frac{1+x^2}{2}) - 2\tan^{-1}(x) + \pi/2, \ x = (1-16\zeta)^{1/4}$$

$$\zeta > 0: \Psi_M(\zeta) = -5\zeta$$

Businger et al. (1971)

$$\frac{kz}{\theta_{v*0}} \frac{\partial \bar{\theta}_v}{\partial z} = \Phi_H(\zeta)$$
$$\frac{k(\bar{\theta}_v - \bar{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$$

Following Garrat:

$$\zeta < 0 : \Phi_H(\zeta) = (1 - 16\zeta)^{-1/2}$$

$$\zeta > 0 : \Phi_H(\zeta) = (1 + 5\zeta)$$

$$\zeta < 0: \Psi_H(\zeta) = 2\ln(\frac{1+x}{2}), x = (1-16\zeta)^{1/2}$$

$$\zeta > 0: \Psi_H(\zeta) = -5\zeta$$

Alternative: bulk transfer relations

$$\overline{u'w'}_0 = -u_{*0}^2 = -K_M \frac{\partial \bar{u}}{\partial z}$$
$$\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$$

$$\overline{w'\theta'_{v_0}} = -u_{*0}\theta_{v*0} = -K_H \frac{\partial \overline{\theta}_v}{\partial z}
\frac{k(\overline{\theta}_v - \overline{\theta}_{v_0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$$

Alternative: bulk transfer relations

$$\overline{u'w'}_0 = -u_{*0}^2 = -K_M \frac{\partial \overline{u}}{\partial z}$$
$$\frac{k\overline{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$$

$$\overline{w'\theta'_{v_0}} = -u_{*0}\theta_{v*0} = -K_H \frac{\partial \overline{\theta}_v}{\partial z}
\frac{k(\overline{\theta}_v - \overline{\theta}_{v_0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$$

$$\overline{u'w'}_0 = -u_{*0}^2 = -C_D \overline{u}^2$$

$$C_D = \frac{k^2}{(\ln(\frac{z}{z_0}) - \Psi_M(\zeta))^2}$$

$$\overline{u'w'}_0 = -u_{*0}^2 = -C_D \overline{u}^2 \qquad \overline{w'\theta'_{v_0}} = -u_{*0}\theta_{v*0} = -C_H \overline{u}(\overline{\theta}_v - \overline{\theta}_{v_0})
C_D = \frac{k^2}{(\ln(\frac{z}{z_0}) - \Psi_M(\zeta))^2} \qquad C_H = \frac{k^2}{(\ln(\frac{z}{z_0}) - \Psi_M(\zeta))(\ln(\frac{z}{z_T}) - \Psi_H(\zeta))}$$

Alternative: aerodynamic resistance

$$\overline{u'w'}_0 = -u_{*0}^2 = -K_M \frac{\partial \bar{u}}{\partial z}$$
$$\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$$

$$\overline{w'\theta'_{v_0}} = -u_{*0}\theta_{v*0} = -K_H \frac{\partial \overline{\theta}_v}{\partial z}
\frac{k(\overline{\theta}_v - \overline{\theta}_{v_0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$$

$$\overline{u'w'}_0 = -u_{*0}^2 = -C_D \overline{u}^2$$

$$C_D = \frac{k^2}{(\ln(\frac{z}{z_0}) - \Psi_M(\zeta))^2}$$

$$\overline{u'w'}_0 = -u_{*0}^2 = -C_D \overline{u}^2 \qquad \overline{w'\theta'_{v_0}} = -u_{*0}\theta_{v*0} = -C_H \overline{u}(\overline{\theta}_v - \overline{\theta}_{v_0})$$

$$C_D = \frac{k^2}{(\ln(\frac{z}{z_0}) - \Psi_M(\zeta))^2} \qquad C_H = \frac{k^2}{(\ln(\frac{z}{z_0}) - \Psi_M(\zeta))(\ln(\frac{z}{z_T}) - \Psi_H(\zeta))}$$

$$\overline{u'w'}_0 = \frac{-\overline{u}}{r_{aM}}$$

$$r_{aM} = \frac{1}{C_D \overline{u}}$$

$$\overline{w'\theta'_{v0}} = \frac{\bar{\theta}_{v0} - \bar{\theta}_{v}}{r_{aH}}$$
$$r_{aH} = \frac{1}{C_{H}\bar{u}}$$

Case default:

sensible and latent heat fluxes prescribed, moment fluxes diagnosed from $\frac{k\bar{u}}{u_{*0}}=\ln(\frac{z}{z_0})-\Psi_M(\zeta)$

Case default:

sensible and latent heat fluxes prescribed, moment fluxes diagnosed from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

Case 1:

gradient in temperature and moisture prescribed, sensible and latent heat fluxes from $\frac{k(\bar{\theta}_v - \bar{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$ momentum fluxes from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

Case default:

sensible and latent heat fluxes prescribed, moment fluxes diagnosed from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

Case 1:

gradient in temperature and moisture prescribed, sensible and latent heat fluxes from $\frac{k(\bar{\theta}_v - \bar{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$ momentum fluxes from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

• Case 2:

surface temperature and moisture prescribed sensible and latent heat fluxes from $\frac{k(\bar{\theta}_v - \bar{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$ momentum fluxes from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

Case default:

sensible and latent heat fluxes prescribed, moment fluxes diagnosed from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

Case 1:

gradient in temperature and moisture prescribed, sensible and latent heat fluxes from $\frac{k(\bar{\theta}_v - \bar{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$ momentum fluxes from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

• Case 2:

surface temperature and moisture prescribed sensible and latent heat fluxes from $\frac{k(\bar{\theta}_v - \bar{\theta}_{v0})}{\theta_{v*0}} = \ln(\frac{z}{z_T}) - \Psi_H(\zeta)$ momentum fluxes from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

Case 3:

 C_D , $C_{H,}$ surface temperature and moisture prescribed sensible and latent heat fluxes from $u_{*0}\theta_{v*0}=C_H\bar{u}(\bar{\theta}_v-\bar{\theta}_{v0})$ momentum fluxes from $u_{*0}^2=C_D\bar{u}^2$

Case 4:

Buoyancy flux prescribed moment fluxes diagnosed from $\frac{k\bar{u}}{u_{*0}} = \ln(\frac{z}{z_0}) - \Psi_M(\zeta)$

To note:

• Need to know z_0 and z_T . Currently $z_0 = z_T = z_T$ arough. If zrough sets to a value smaller or equal to zero, then

$$z_0 = \frac{0.016}{g} u_{*0}^2 \qquad \text{true for ocean}$$

- Cases 2, 3 and 4 assume to be over the ocean, i.e. q_o=q_{sat}(SST)
- First point should be in the surface layer but higher than z₀

Namelist options with the cases

	isfctyp	dthcon	drtcon	zrough	sst
Default	0	Sensible heat flux Wm ⁻²	Latent heat flux Wm ⁻²	Roughness length	Not needed
Case 1	1	Temperature gradient K m ⁻¹	Moisture gradient kg kg ⁻¹ m ⁻¹	Roughness length	Not needed
Case 2	2	Not needed	Not needed	Roughness length	Sea surface temperature
Case 3	3	Сн	C_q	C _D	Sea surface temperature
Case 4	4	Buoyancy flux Wm ⁻²	Not needed	Roughness length	Sea surface temperature

Future development

At the moment, we cannot compute the fluxes interactively for land points

Latent heat flux is the sum of evaporation and transpiration.
 Evaporation and transpiration are computed according to:

$$\frac{\rho L_v}{r_{aH} + r_s} (q_{sat}(\bar{T}_0) - \bar{q})$$

 A land surface model provides surface and vegetation resistances as well as surface temperature