

Recurrent Neural Networks (Part I)

SOUJANYA PORIA

50.038 Computational data science

Objectives

- Understand the limitations of feed-forward neural networks
- Understand how a Recurrent Neural Network (RNN) works
- Able to list the types of RNNs in terms of input/outputs

Recap on Perceptron

Inputs Weights Sum Non-Linearity Output

Recap on MLP

Multiple perceptrons, aka a Multi-layer Perceptron (MLP)

Recap on Word2Vec

Continuous Bag of Words (CBOW) and Skip-gram

word2vec approach to represent the meaning of word

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word
- Faster and can easily incorporate a new sentence/document or add a word to the vocabulary

Represent the meaning of word – word2vec

- o 2 basic neural network models:
 - Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in window.

Word2vec – Continuous Bag of Word

- E.g. "The cat sat on floor"
 - Window size = 2

v = vocab size, n = hidden layer dimension

We can consider either W or W' as the word's representation. Or even take the average.

Some interesting results

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

Word analogies

Represent the meaning of sentence/text

- Simple approach: take avg of the word2vecs of its words
- Another approach: Paragraph vector (2014, Quoc Le, Mikolov)
 - Extend word2vec to text level
 - Also two models: add paragraph vector as the input

Applications

- Search, e.g., query expansion
- Sentiment analysis
- Classification
- Clustering

Recap on CNN

- "Shallow" CNN on sentences represented by word embeddings
 - Sentence represented as $n \times k$ matrix (n words and embedding dimension k)

Word2vec Embedding

n x k representation of sentence with static and non-static channels

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*(pp. 1746-1751).

- "Shallow" CNN on sentences represented by word embeddings
 - Apply convolutional filters that cover 2,3,n words at a time (with width k)

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*(pp. 1746-1751).

- "Shallow" CNN on sentences represented by word embeddings
 - Apply max pooling to select highest value, and flatten layer

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*(pp. 1746-1751).

- "Shallow" CNN on sentences represented by word embeddings
 - Final softmax layer to determine most likely class

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*(pp. 1746-1751).

Exercise 1: Standard Neural Networks

- So far, we have covered topics on the single perceptron, MLP, and CNN.
- What is the common characteristic and limitation of these neural networks?

Temporal Sequences

"This morning I took the dog for a walk."

Sentences

Heart-rates

Audio Recordings

Sequence Modelling Problem

E.g., Sentence completion

Sequence Modelling Problem

E.g., Sentence completion

"This morning I took the dog for a walk."

given these words

predict what comes next?

Exercise 2: Approaches to Sequence Modelling Problem

- Using a Sentence Completion example, what are the possible problems?
 - Solution 1: Using a fixed window of preceding words

```
"This morning I took the dog for a walk."

given these 2
words, predict
the next word
```

Solution 2: Model entire sentence as Bag-of-words

```
This morning I took the dog for a

[0100100...00110001]
```

Solution 3: Like solution 1 but with a very large window

Motivations behind RNN

- Inputs and output may not be of a fixed length
 - E.g., An input paragraph of variable word count
- Want to model temporal aspect (sequence order) as context
 - E.g., language translation or stock prediction
- Hard to determine appropriate window size for context
 - E.g., past 3 days VS 6 months, previous word VS last 8th word
- Want to share parameters across sequence
 - E.g, patterns that appear in different parts of the temporal sequence

Standard Neural Networks generate a single output

 Recurrent Neural Networks aim to process a sequence of inputs to generate a sequence of outputs at different time steps

 Recurrent Neural Networks aim to process a sequence of inputs to generate a sequence of outputs at different time steps

 RNNs process a sequence of inputs X using a recurrence formula at each time-step t

$$h_t = f_W(h_{t-1}, x_t)$$

 RNNs process a sequence of inputs X using a recurrence formula at each time-step t

 Each time-step t depends on its previous timestep t-1

Recurrent Neural Networks

- RNNs process a sequence of inputs X using a recurrence formula at each time-step t
 - The same function f_W and parameters W are shared across time-steps

$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = W_{oldsymbol{hy}} h_t$$

- Start from time-step 1
 - Output y₁,

- Start from time-step 1, then time-step 2,
 - Output y₁, y₂ generated

- Start from time-step 1, then time-step 2, until time-step T
 - Output y_1 , y_2 , ..., y_T generated

Same weights W used throughout all time-steps

- Same weights W used throughout all time-steps
 - Learn weights by minimizing overall loss L from all time-steps

- Problem: Trying to predict a sequence of characters
 - Assuming a vocabulary of [h,e,l,o]

- Problem: Trying to predict a sequence of characters
 - Assuming a vocabulary of [h,e,l,o]

- Problem: Trying to predict a sequence of characters
 - Assuming a vocabulary of [h,e,l,o]

- Problem: Trying to predict a sequence of characters
 - Assuming a vocabulary of [h,e,l,o]

- Problem: Trying to predict a sequence of characters
 - Assuming a vocabulary of [h,e,l,o]

- Problem: Trying to predict a sequence of characters
 - Assuming a vocabulary of [h,e,l,o]

Exercise 3: Types of RNN

 Based on the input/output sequence, we have previously examined a many-to-many type of RNN. What other types can you think of?

One-to-many: Image Captioning

Many-to-one: Sentiment Classification

Many-to-many: Language Translation

many to many

(Sutskever et al., 2014)

Many-to-many: Video Classification

Recap on Training MLP

Backpropagation through time

Forward pass through entire sequence to calculate loss

Backward pass to calculate gradient and update weights

- Truncated Backpropagation through time
 - Instead of the entire sequence, break it up into smaller sub-sequences

- Truncated Backpropagation through time
 - Perform the forward/backward pass for each sub-sequence

Truncated Backpropagation through time

Problems with Vanilla RNNs

Vanishing and Exploding Gradients

Unable to remember inputs from long ago

I live in **<u>France</u>** I speak fluent **<u>French</u>**.

