

fox(itex=1; (ter <= N-1; (ter++) {	itev: 1	2	3	4	5	6
print (A [row] [wl])	404. 0	1	2	3	4	5
row ++	ωl; ≤	5	5	5	5	5
_ L		1		ļ	1	
,	6	12	13	24	30	

for(ite=1; (ter <= N-1; (ter++) {

peint (A [row] [w])

col-
sc: O(1)

for(iter=1; (ter <= N-1; (ter++) {

peint (A [row) [wl]

row -}


```
mw=0, 60(=0
While (N >1) &
   for(iter=1; (ter <= N-1; (ter++) {
     print (Alrow) [cold)
    for(iter=1; (ter <= N-1; (ter++) {
         print (A [now] [wl])
            row ++
    for(iter=1; (ter <= N-1; (ter++) {
        paint (A [40w] [6]
     for(iter=1; (ter <= N-1; (ter++) {
         peint (Alrow) [66]
            20w - -
       now ++ , olt+
         N - = 2
 if (N==1) & paint Alrow [60] }
```


5:0123 1 for (s=0; s<= N-k; s+t) { e: 3 4 5 6 e= k+s-1 paint (s, e) 3 6 1 3 5 $\frac{2}{9}$ $\frac{4}{7}$ $\frac{5}{8}$ $\frac{6}{8}$ $\frac{6}{8}$ $\frac{1}{8}$

```
(94) Find mex sum subarray for all subarrays of size=k
                                 No of subarrage: N-K+1 = 6
     N=9 R=4
                        An: 11)
         merwum = -0
      for (s=0; s<= N-k; s+t) {
            e= k+s-1
                                          0((N-k) x k
             Sum = 0
               # sum between (s c)
             for (i=s; i <= e; i++) {
                     Sum = Sum + Ali]
                                                if (sum > monsum) {
            marsum = mar (marsum, sum) 3
                                                      mer sum = Jun
                              TC: O((N-k) x k)
         K=1
         L=V
                      O(N^2)
                                       K=N/L
                                       \left(N-\frac{N}{2}\right)\times\frac{N}{2}=\frac{N^{2}}{2}
```


Measur =
$$-\infty$$

for $(s=0; s <= N-k; s+t) \notin$
 $e=k+s-1$

Sum = 0

sum between $t : c3$

for $(i=s; i <= e; i+t) \notin$
 $sum = sum + Ati$

massum = max (massum, sum) $\frac{3}{4}$

for
$$(S=0)$$
; $S \leftarrow N-K$; $S+1$) ξ

$$e = k+S-1$$

$$Sum = 0$$

$$TC: O(N)$$

$$SC: O(N)$$

$$mansum = man (mansum, sum) $\xi$$$

k= 9

S & C
$$0 - 3$$
 $A(0) + A(1) + A(2) + A(2) = 7$
 $+ A(2) - A(3) = 7 - 5 + 6 = 8$
 $+ A(3) - A(2) = 7 - 1 - (-2)$
 $= 8$
 $+ A(3) - A(2) = 8 + 4 - 1$
 $= 11$
 $= 11$
 $= 11$
 $= 11$
 $= 11$
 $= 11$
 $= 11$
 $= 11$
 $= 11$
 $= 11$

$$[0 \ \underline{c}] =) k$$

e-0+1 = ke=k-1

```
morsum = -00
Sum = 0
for (i=0; i<=k-1; i++) {
   Sum = sum + A[i)
 marsum = mar (masum, sum)
   5=1
   e = k
  while ( TODO ) {
     sum = sum + Ales - Als-B
      marsum = mar (masum, sum)
      9+=1
      C+=1
  return man sum
```

Done!

φ_{s}	Given	an ar	ay of	size N	and	a	number	B	
	return	min	s t num kei	0 ofs	wahs r	equired	to		
	lering	all	elements	less	than	V 	egnal	to	
		togethu					<i>V</i>		
		0				B=6			
	A :	§ 1 10	12 14	3 1	5 }				
			/						
			\nearrow						
								7	