

0.1 Continuité en un point - Continuité sur un intervalle

0.1.1 Continuité en un point

Définition 1

Soit f une fonction numérique définie sur un intervalle ouvert I, et $x_0 \in I$. On dit que f est continue au point x_0 si et seulement si $\lim_{x \to x_0} f(x) = f(x_0)$

0.1.2 Continuité à droite et à gauche en un point.

Définition 2

Soit f une fonction définie sur l'intervalle $[x_0; x_0 + \alpha[; (]x_0 - \alpha; x_0])$ où $\alpha > 0$

* On dit f est continue à droite $\left(\begin{array}{c} a \text{ gauche} \end{array}\right)$ en x_0 si $\lim_{x \to x_0^+} f(x) = f(x_0)$: $\left(\lim_{x \to x_0^-} f(x) = f(x_0)\right)$

Propriété

La fonction f est continue en x_0 \Leftrightarrow $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$

0.1.3 Continuité sur un intervalle.

Définition 3

On dit qu'une fonction f est continue sur [a,b] si elle est continue en tout élément de l'intervalle [a,b] et continue à droite en a et à gauche en b

Remarque

De la même façon, On définit la continuité d'une fonction sur les intervalles $[a,b[\ ,]a,b],[a,+\infty[$ et $]-\infty,b]$

0.1.4 Continuité des fonctions usuelles

Conséquence

Les fonctions polynômes, Rationnelles ; $x \to \sqrt{x}$; $x \to \cos x$; $x \to \sin x$ et $x \to \tan x$; sont continue sur chaque intervalle inclus dans leur ensemble de définition

0.1.5 Opération sur les fonctions Continue

Propriété

Si f et g sont continues sur I, alors : f + g, $f \times g$; kf sont continues sur I

Si f et g sont continues sur I, avec $\left(\forall x \in I, g(x) \neq 0\right)$ alors : $\frac{f}{g}$; $\frac{1}{g}$ sont continues sur I

0.2 Image d'un intervalle par une fonction continue.

Définition

L'image d'un intervalle I par une fonction f est l'ensemble de tous les nombres avec x dans I. On note f(I).

Propriété 1

L'image d'un segment (intervalle) par une fonction continue est un segment (intervalle).

$$f([a;b]) = [m;M]$$
 avec $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$

0.2.1 Image d'un intervalle par une fonction continue et strictement monotone.

Soit f une fonction continue et strictement monotone sur l'intervalle I ; On a les résultats suivants

	L'image de $f(I)$		
	f est strictement croissante	f est strictement décroissante	
[a;b]	[f(a);f(b)]	[f(b);f(a)]	
]a;b[$\lim_{x \to a^+} f(x); \lim_{x \to b^-} f(x)$	$\lim_{x \to b^{-}} f(x); \lim_{x \to a^{+}} f(x)$	
[a;b[$\left[f(a); \lim_{x \to b^{-}} f(x) \right[$	$\left[\lim_{x \to b^{-}} f(x); f(a) \right]$	
$]-\infty;a]$	$\left[\lim_{x \to -\infty} f(x); f(a) \right]$	$\left[f(a); \lim_{x \to -\infty} f(x) \right[$	
] <i>a</i> ;+∞[$\left[\lim_{x \to a^{+}} f(x); \lim_{x \to +\infty} f(x) \right]$	$\lim_{x \to +\infty} f(x); \lim_{x \to a^{+}} f(x) $	
\mathbb{R}	$\left[\int_{x \to -\infty}^{1} f(x); \lim_{x \to +\infty} f(x) \right]$	$\left[\lim_{x \to +\infty} f(x); \lim_{x \to -\infty} f(x) \right]$	

0.3 Théorème des valeurs intermédiaires.

Propriété

Soit f une fonction continue sur [a;b]; alors $\forall k \in f([a;b])$, il existe au moins une un réel c dans l'intervalle [a;b], tel que f(c)=k

Conséquence 1

Soit f une fonction continue sur [a;b] et $f(a) \times f(b) < 0$, alors l'équation f(x) = 0 admet au moins une solution dans l'intervalle [a;b].

Conséquence 2

Soit f une fonction continue et strictement monotone sur [a;b]; alors pour tout $k \in f([a;b])$, il existe une seul réel $c \in [a;b]$, tel que f(c) = k

0.4 Continuité de la composée de deux fonctions.

Conséquence 2

Soit f une fonction continue sur I et g une fonction continue sur J et tel que $f(I) \subset J$, alors gof est continue sur I

0.5 Fonction réciproque

Propriété 1

Si f est une fonction continue et strictement monotone sur I , alors f admet une fonction réciproque,notée f^{-1} définie sur f(I)=J vers I

Propriété 2

*

$$\begin{cases} f(y) = x \\ y \in I \end{cases} \Leftrightarrow \begin{cases} f^{-1}(x) = y \\ x \in f(I) \end{cases}$$

- $* (\forall x \in I); f^{-1} \circ f(x) = x$
- $* (\forall x \in f(I)); f \circ f^{-1}(x) = x$
- * La fonction f^{-1} est continue et monotonie sur f(I).
- * Cf^{-1} est symétrique de Cf par rapport à la droite d'équation y=x dans un repère orthonormé.

0.6 Fonction racine n- iéme

Définition

La fonction réciproque de la fonction définie sur $[0+\infty[$; par: $x\mapsto x^n$ avec $n\in\mathbb{N}^*$ est appelée fonction racine n-ième; notée $x\mapsto \sqrt[n]{x}$

Propriété

- * La fonction $x \mapsto \sqrt[n]{x}$ est continue et strictement croissante sur l'intervalle $[0+\infty[$; et $\lim_{x\to+\infty} \sqrt[n]{x} = +\infty$
- * les deux courbes C_f et C_f^{-1} sont symétrique par rapport à la première bissectrice d'équation y = x.

Propriété

 $\forall n \in \mathbb{N}^*$ et $\forall (a;b) \in \mathbb{R}^2_+$

Propriété (Opérations sur les racines nième)

 $\forall (n;m) \in \mathbb{N}^* \quad \text{ et } \quad \forall (a;b) \in \mathbb{R}^2_+$

Propriété

 $p \in \mathbb{Z}^*$; $p \in \mathbb{N}^*$ et $\forall x \in \mathbb{R}^+$: $\sqrt[q]{x^p} = x^{\frac{p}{q}}$ Cas particulier: $\sqrt[q]{x} = x^{\frac{1}{q}}$ et $\sqrt[q]{x} = x^{\frac{1}{2}}$

0.7 L'équation $x^n = a/n \in \mathbb{N}^*; x \in \mathbb{R}; a \in \mathbb{R}$

	a > 0	a = 0	a < 0
n est paire	$x = \sqrt[n]{a}$ ou $x = -\sqrt[n]{a}$	x = 0	
<i>n</i> est impaire	$x = \sqrt[n]{a}$	x = 0	$x = -\sqrt[n]{ a }$

Des Remarques

$$a \in \mathbb{R}^{*}_{+}; b \in \mathbb{R}^{*}_{+}$$

$$\sqrt[3]{a} - \sqrt[3]{b} = \frac{a - b}{\sqrt[3]{a^{2}} + \sqrt[3]{ab} + \sqrt[3]{b^{2}}} / \sqrt[3]{a} + \sqrt[3]{b} = \frac{a + b}{\sqrt[3]{a^{2}} - \sqrt[3]{ab} + \sqrt[3]{b^{2}}}$$