66	NR -	Circu	itos	Floctr	ónicos	1
UU.	uo -	· Circu	ILOS	ciecu	DHICUS	

66.08 - Circuitos Electrónico	os I	Primer Parcial 2017/1 - tercera fecha - 9/6/1					
APELLIDO	NOMBRE	PADRON	TURNO	Nº de HOJAS	Corrección		
e1 . #			TN				

FOTACIONION

- 1.- Se suponen conocidos todos los elementos del circuito de la figura y las características del TBJ.
- a) Analizar el proceso de estabilización de Ico si se reemplaza al transistor por un ejemplar cuyo BF2 es el doble del original β_{F1}. Hacerlo cualitativamente, justificando por qué existe estabilización de I_{CO} en base a la observación del circuito. ¿Qué ocurre con IBQ?. Colocar el signo que corresponda (mayor, menor o igual) entre los siguientes pares de valores:

$$\begin{split} &I_{CQ2} & \ \ \, \dot{\epsilon}? & \ \ \, I_{CQ1} \\ &I_{BQ2} & \ \ \, \dot{\epsilon}? & \ \ \, I_{BQ1} \\ &\Delta I_{CQ}/I_{CQ1} & \ \ \, \dot{\epsilon}? & \Delta \beta_F/\beta_{F1} \end{split}$$

b) Analizar cuál debería ser la relación entre R_B y R_E para mejorar la estabilidad en continua. ¿Qué inconvenientes acarrea para la polarización del transistor y cómo degrada los parámetros de señal del amplificador?. ¿Cómo se debería modificar el circuito para maximizar la estabilidad en continua de acuerdo a los inconvenientes indicados?. Dibujar el circuito resultante.

2.-
$$\beta$$
 = 200; $V_A \rightarrow \infty$; r_x = 100 Ω ; V_P = -3V; I_{DSS} = 12mA; rds = rgs $\rightarrow \infty$

- a) Obtener los puntos de reposo de los transistores, si se ajusta R_{E2} de modo que resulte $V_{OQ} = -1V$ (tensión de reposo sobre R_L).
- b) Dibujar el circuito de señal sin reemplazar los transistores por su modelo circuital, indicando en él todos los sentidos de referencia necesarios para las definiciones siguientes. Definir, obtener por inspección y calcular los valores de la amplificación de tensión total Av, Ri, Ro y Avs.

- Hallar el valor de frecuencia de corte inferior aproximada para Avs.
- d) Hallar la Vo pico máxima sin recorte a la salida. Obtener la correspondiente Vi pico máxima.
- e) Justificar cualitativamente cómo se modificarán los valores de continua y señal calculados en el circuito original, si se reemplaza T2 por un TBJ NPN en igual configuración.

