Object Detection

CV Project - Team "Kuch bhi"

Team Members:

2018101033 - Jay Sharma

2018102021 - Tanmay Garg

2018102040 - Shantanu Agrawal

2020900019 - Anirudh Polatpally

RCNN - Method - Overview

R-CNN: Regions with CNN features

Fig 1: RCNN workflow Source: [1]

Region Proposals

- → Used Selective Search Algorithm
- → Foreground: IoU greater than 0.8
- → Background: IoU lesser than 0.3
- → Proposal dimensions 224, 224, 3

Fig 2: Selective Search at different scales Source: [2]

Feature Extraction - CNN

- Used VGG-16 as backbone feature extractor.
- 3×3 convolutional layers stacked on top of each other
- Max-pooling to reduce volume in between
- Fully Connected layers at the end followed by softmax.
- → Final layers changed to perform classification and localisation.

Fig 3: VGG16, Source: [3]

Drawbacks of R-CNN

- → Extremely large amount of time
- → 2 hours per epoch
- → ~8 days for 200 epochs
- → Prediction time very high (1-2 mins per image)

Fast R-CNN

Fig 4: Fast R-CNN, Source: [4]

Fast R-CNN

- Directly feed Input image to CNN
- → Obtain Feature Map
- Identify and warp features
- --> Perform Rol Pooling for fixed shape
- → Predict Class label using Softmax layer
- → Predict Bounding Box using Bounding Box Regression

Improvement:

- Each epoch takes around 60 seconds now
- i.e. 3.33 hours per model.
- i.e. 20 hours for classification and regression for all 3 models (2*3 = 6 models).

Classification Head

- Perform Classification
- → Final output scores for each of the classes in consideration (21 in our case)

Fig 4: Classification Head

Regression Head

- → Perform Bounding Box Regression
- → Final output Predicted Bounding Box (4 values)

Fig 5: Regression Head

Non Maximum Suppression

- → Remove multiple bounding boxes
- Remove boxes with low confidence
- → Select a box with highest confidence
- Removes lower scoring boxes which have an IoU greater than iou_threshold with the highest scoring box

Training

- → Obtained feature vectors for each image in training set
- Obtained proposals from these vectors using selective search
- Trained model using these proposals
- Initially trained classification head
- → Subsequently trained regression head.

Classification Accuracy Curves

Classification Loss Curves

Regression Loss Curves

Metrics

64.5%

60.1%

55.1%

59.9%

56.4%

52.3%

57.1%

53.7%

48.6%

Resnet50

MobileNet

VGG16

V2

Model Backbone	Train Accuracy	Val Accuracy	Test Accuracy	Classifier Loss (Train)	Classifier Loss (Val)	Regressor Loss (Train)	Regressor Loss (Val)	mAP

0.335

0.369

0.371

0.362

0.384

0.419

0.385

0.438

0.441

62.8%

59.4%

55.9%

0.297

0.311

0.323

Results

Results

Inferences

- We could not not achieve the results as good as the original paper, which can be attributed equally to having less experience with hyper-parameter tuning and limited computational resources.
- In general, the results are in the order: Resnet50 > VGG16 > MobileNetV2
- Fast RCNN is much more feasible to train compared to RCNN, with no significant hit to accuracy.
- Faster RCNN is supposed to even better, but we could not get it to work.

Reference(s)

- 1. Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik (CVPR 2014) <u>Link</u>
- 2. Selective Search for Object Recognition Uijlings, Jasper & Sande, K. & Gevers, T. & Smeulders, A.W.M. (IJCV 2013) Link
- 3. Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman (ICLR 2014) <u>Link</u>
- 4. Fast R-CNN Ross Girshick (ICCV 2015), 2015 Link

The End