

f(x) dx, correct to 2 decimal places. the volume of the solid of revolution formed by rotating the graph $= e^x$ and the lines x = 0 and x = 1 about the x-axis. equation of the parabola whose focus is (-1, -2) and directrix is and all real numbers which satisfy the equation: $x^4 = 72 - x^2$ the exact area enclosed between the curve $y = e^x$ ines x = 0 and x = 12.7 5.0 7. 6-1 we your answer in terms of π . 1:2 <u>1.8</u> mpson's rule to evaluate gives values for f(x)1.7 f(x)×

~ 01 ~

(336) (cont) 2 2 k+1 (k-1+k+1) +2 2 k x 2 k+1 +2 2 k x 2 k+2 + 2 2 k x 2 k+2 + 2 2 k x 2 k+2 + 2 3 k x 2 k+2 + 2 4 k x 2 k+2 + 2 4 k x 2 k+2 + 2 6 k x 3 k+1 +	Stepte: But, Bormya (s true when n= 1+1) Or n=2 : true when n= 2+1 Or n=3 et. -: Formula is true for all n Ou	6+ 275 3 = 2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Also LPTB = LTCB Also LPTB = LTCB ALternate segment Hear In ATCD LT+LC = LTDP (eat. LORA LT+LC = LTDP (eat. LORA Sumularly wi ATBP, LP = y-30 LCTD = LPP Sumularly wi ATBP, LP = y-30
$ \begin{array}{c c} (1) & (1) & (2$	= (2 tam-1 - 0) = (2 tam-1 - 0) = (2 tam-1 - 0) = 2× II - (0.9 e. 2 - (0.9 e.	C) Stp 1: Let n = 1 C) Stp 1: Let n = 1 RHS = (1-1) × 2 2 (11) + 2 .: true when n = 1	Stoa: Assume Brimula tru when n=k 1:e, 1:e,
4.a. 21. 3500 2.3	34m 2-2 - 34m 2.2 - 2.2 When 2 - 2.4 24m 22 = 24m 2.4 - 2.4 Sum 2 = 2 - 0.3736 Sum 4 he sign of 28m x = 2.4 then the solution has between 25 2 2 and 2 = 2.4 11) $F(x) = 38m x = 2.4$	\$ (α,) \$ (α,) \$ (α,) 3 swi(23) - (2.3) 3 cos\$.3) - 1	b)))d (2x tan 'x) dx (2x tan 'x) - (tom 'x) x 2 + 2x 1 - 2 tan 'x + 2x 1+x 1+x - 2 tan 'x = d (2x tan 'x) - 2x dx (2x tan 'x) - 2x
AC:5CB = 8:-1 AC:5CB	S = 2 S = 3 S	c) $\int_{0}^{\infty} \cos^{2}(\frac{1}{2}\alpha) d\alpha$ $\int_{0}^{\infty} \cos^{2}(\frac{1}{2}\alpha) d\alpha$ $\int_{0}^{\infty} \frac{1}{2} \cos^{2}(\frac{1}{2}\alpha) d\alpha$ $\int_{0}^{\infty} \frac{1}{2} \cos^{2}(\frac{1}{2}\alpha) d\alpha$	$= \frac{1}{2} \int_{\mathbb{R}} \frac{1}{(1 + \cos \alpha)} d\alpha$ $= \frac{1}{2} \int_{\mathbb{R}} \frac{1}{(1 + \sin \pi)} \int_{\mathbb{R}} 0$ $= \frac{1}{2} \left(\frac{1}{4} + \sin \pi \right) = 0$

Soo i) M = (200, 202) Q (200, 202) frame Soo i) M = (200, 202) frame Soo serve II) lot m = (1049), a (0242) Soo serve III) lot m = (1049) 202, 204 203, 204 204, P) 205, P) 206, P) 207, P) 208, P) 209, P) 200, P, P)	13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14
(1) doc = toming = 500 doc = toming = 500 doc = toming = 500 sec.9 doc = toming = 0 doc = toming = 0 doc = 500 x cos.9 doc = 500 x cos.9 doc = 500 x cos.9 doc = 20 doc = 20 doc = 20 doc = 20 doc = 20 doc = 20 doc = 20 doc = 20 doc = 20 doc = 200 doc	$\frac{9}{300} = \frac{1}{300} \times \frac{1}{300} = \frac{1}{300} = \frac{1}{300} = \frac{1}{300} = \frac{1}{300} = \frac{1}{300} = \frac{1}$
24 - 5) (cort) 1) By add by nothing graphs († 2) = 1 (= 2 (x) = 1 (= 3 (x)	(sin 1th graph: (sin 1x + cos 2x) da are at retangle with width and height II Are 1x I
(a) (cont) (b) () (c)	

turning 2box +	30 - 12a + 6b +3c +6 = 0 30 - c 12a + 6b +3c +6 = 0 12a - 4b + c = 0 10b + 2c +6 = 0	©+3© 12a -4b+c =0 -12a +6b-3c+6=0 2b-2c+6=0 PFs+3=0	5b+c+3+0 b=-(b+c+3+0 c=) (vb=0 ivb=0 ivc=-3 ivb=1mtb (c=-3 iva=-b+3+0 iva=-1	Craph looks in Turning penus
5	When te 3 T = 90 .: 90 = 30 + 120 e 3k 60 = 120 e 3k 0.5 = e 3k		= 60 () = 60 ()	1) P(a)= 4 d=4 P(a)=0 \$a+4b+3c+4=0@ Ha+2b+c+3=0 P(-2)=0 -8a+4b-3c+4=0@ -4a+2b=c+a=0
7 2 8	$(3x-1)^{2} - (3x+2)^{2} < 0.$ $(2x-1)^{2} - (3x+2)^{2} < 0.$ $(2x-1+3x+2)(2x+1-(3x+2)) < 0.$ $(5x+1)(-x-3) < 0.$ $(5x+1)(x+3) > 0.$	7 7 7 6	36 0 9	T= S+ Beth is a solution
(75 d) Some ABCD is a cyclic guad (A16c=180 6c=180-14 =2 tom C=-tom A (1) 0	Sumidarly tan D=-tan, B -: tan A + tan B - tan A - tan B = tan A + tan B - tan A - tan B	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	= T + 2nT	11) Pt. at. Intersection.

Trial HSC 1995	(0,2)			"	= 2(2+1) () (2+1=2	Ara 0500		(1+ g ay (1+ g a) g ay		-(e ² +2) - (e ² +0)	= 2+1	And of OSPO = 1 and of	rectorgle OSPR	3		
의	1) At P 4=2 (log ((x-1) = 2	$x_{-1} = e^{2}$ $x = e^{2} + 1 \bigcirc$	1. Pis (e*+1, 2)	1) y= loge (x=1)	1 - (db) - (1) (db)		dec 22-1	(-: graduant of normal is	Ega of normal:	y-y ₁ = m(α-χ ₁) y-ο=-1(χ-2)	0 - N 0 -	, a	- S has on the normal	@ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

A Course