

NCERT Solutions For Class 10 Chapter 6 Triangles Exercise 6.5

- 1. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
- (i)7 cm, 24 cm, 25 cm
- (ii) 3 cm, 8 cm, 6 cm
- (iii)50 cm, 80 cm, 100 cm
- (iv)13 cm, 12 cm, 5 cm
- **Ans. (i)** Let a = 7 cm, b = 24 cm and c = 25 cm Here the larger side is c = 25 cm.

We have,
$$a^2 + b^2 = 7^2 + 24^2 = 49 + 576 = 625 = c^2$$

So, the triangle with the given sides is a right triangle. Its hypotenuse = 25 cm

(ii) Let
$$a = 3$$
 cm, $b = 8$ cm and $c = 6$ cm

Here the larger side is b = 8 cm.

We have,
$$a^2 + c^2 = 3^2 + 6^2 = 9 + 36 = 45 \neq b^2$$

So, the triangle with the given sides is not a right triangle.

(iii) Let a = 50 cm, b = 80 cm and c = 100 cm. Here the larger side is c = 100 cm.

We have,

$$a^2 + b^2 = 50^2 + 80^2 = 2500 + 6400 = 8900 \neq c^2$$

So, the triangle with the given sides is not a right triangle.

(iv) Let a = 13 cm, b = 12 cm and c = 5 cm Here the larger side is a = 13 cm.

We have,
$$b^2 + c^2 = 12^2 + 5^2 = 144 + 25 = 169 = a^2$$

So, the triangle with the given sides is a right triangle. Its hypotenuse = 13 cm

2. PQR is a triangle right angled at P and M is a point on QR such that PM^{\perp} QR. Show that $PM^2 = QM.MR$.

Ans. Given: PQR is a triangle right angles at P and PM^{\perp} QR

To Prove: PM² = QM.MR

Proof: Since $PM^{\perp}QR$

 \triangle PQM~ \triangle PRM

$$\Rightarrow \frac{PM}{QM} = \frac{MR}{PM}$$

$$\Rightarrow PM^2 = QM.MR$$

- **3.** In figure, ABD is a triangle right angled at A and AC^{\perp} BD. Show that:
- (i) $AB^2 = BC.BD$
- (ii) $AC^2 = BC.DC$
- (iii) AD² = BD.CD

Ans. Given: ABD is a triangle right angled at A and AC^{\perp} BD.

To Prove: (i) $AB^2 = BC.BD$, (ii) $AC^2 = BC.DC$, (iii) $AD^2 = BD.CD$

Proof:(i) Since AC⊥ BD

 $\therefore \ \Delta$ ABC~ Δ ADC and each triangle is similar to Δ ABD

∴ Δ ABC~ Δ ABD

$$\Rightarrow \frac{AB}{BD} = \frac{BC}{AB}$$

$$\Rightarrow AB^2 = BC.BD$$

(ii)Since \triangle ABC \sim \triangle ADC

$$\Rightarrow \frac{AC}{BC} = \frac{DC}{AC}$$

$$\Rightarrow AC^2 = BC.DC$$

(iii) Since △ ACD~ △ ABD

$$\Rightarrow \frac{AD}{CD} = \frac{BD}{AD}$$

$$\Rightarrow AD^2 = BD.CD$$

4. ABC is an isosceles triangle right angled at C. Prove that $AB^2 = 2AC^2$.

Ans. Since ABC is an isosceles right triangle, right angled at C.

$$\Rightarrow AB^2 = AC^2 + BC^2$$

$$\Rightarrow AB^2 = AC^2 + AC^2$$
 [BC = AC, given]

$$\Rightarrow AB^2 = 2AC^2$$

5. ABC is an isosceles triangle with AC = BC. If $AB^2 = 2AC^2$, prove that ABC is a right triangle.

Ans. Since ABC is an isosceles right triangle with AC = BC and $AB^2 = 2AC^2$

$$\Rightarrow AB^2 = AC^2 + AC^2$$

$$\Rightarrow AB^2 = AC^2 + BC^2$$
 [BC = AC, given]

 \triangle ABC is right angled at C.

6. ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Ans. Let ABC be an equilateral triangle of side 2a units.

Draw AD^{\perp} BC. Then, D is the mid-point of BC.

$$\Rightarrow$$
 BD = $\frac{1}{2}$ BC = $\frac{1}{2} \times 2a = a$

Since, ABD is a right triangle, right triangle at D.

$$\therefore AB^2 = AD^2 + BD^2$$

$$\Rightarrow (2a)^2 = AD^2 + (a)^2$$

$$\Rightarrow AD^2 = 4a^2 - a^2 = 3a^2$$

$$\therefore$$
 Each of its altitude = $\sqrt{3}a$

7. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of squares of its diagonals.

Ans. Let the diagonals AC and BD of rhombus ABCD intersect each other at O. Since the diagonals of a rhombus bisect each other at right angles.

$$\therefore$$
 $\angle AOB = \angle BOC = \angle COD = \angle DOA = 90^{\circ}$ and $AO = CO$, $BO = OD$

Since AOB is a right triangle, right angled at O.

$$\therefore AB^2 = OA^2 + OB^2$$

$$\Rightarrow AB^2 = \left(\frac{1}{2}AC\right)^2 + \left(\frac{1}{2}BD\right)^2$$

[: OA = OC and OB = OD]

$$\Rightarrow$$
 $4AB^2 = AC^2 + BD^2$ (1)

Similarly, we have $4BC^2 = AC^2 + BD^2$ (2)

$$4CD^2 = AC^2 + BD^2$$
(3)

$$4AD^2 = AC^2 + BD^2$$
(4)

Adding all these results, we get

$$4(AB^2 + BC^2 + CD^2 + DA^2) - 4(AC^2 + BD^2)$$

$$\Rightarrow AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$$

8. In figure, O is a point in the interior of a triangle ABC, OD^{\perp} BC,

 OE^{\perp} AC and OF^{\perp} AB. Show that:

(i)
$$OA^2 + OB^2 + OC^2 - OD^2 - OE^2 - OF^2$$
 = $AF^2 + BD^2 + CE^2$

(ii)
$$AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$$

Ans. Join AO, BO and CO.

(i) In right ∆ s OFA, ODB and OEC, we have

$$OA^2 = AF^2 + OF^2$$
 , $OB^2 = BD^2 + OD^2$ and $OC^2 = CE^2 + OE^2$

********* END *******