*1ère PRO*Maths

Chapitre 2

Statistiques à 2 variables

Activité 2

Partie 1

Situation: La consommation d'un véhicule à essence (en L/100 km) dépend de sa vitesse (en km/h). Le tableau ci-dessous donne les consommations, à différentes vitesses stabilisées, pour un modèle de voiture donné.

Vitesse en km/h (x _i)	Consommation en L/100 km (y _i)
50	5,3
60	5,5
90	6,4
110	7
120	7,5
130	8,1

- 1. **Représenter graphiquement** la série statistique à deux variables, à <u>l'aide</u> de la calculatrice, un nuage de points associé à cette série statistique à deux variables quantitatives.
- 2. Le nuage de points permet-il d'envisager un ajustement affine ? Justifier.
- **3. Donner** les coordonnées du point moyen G (<u>arrondir à 0,1</u>)

4. Déterminer l'équation y = ax+b de la droite d'ajustement (arrondir les
valeurs de a et b à 0,1)
5. Vérifier que le point moyen G appartient à cette droite.
6. Quelle sera la consommation d'essence si on roule à 100 km/h ?
7. Quelle doit être la vitesse maximale si on ne veut pas dépasser une consommation de 6L/100km ?

Partie 2

	Situation : Pendant 6 semaines d'hiver,	
	chaque semaine on a enregistré la	
	température moyenne relevée à 7h du	
matin et la consommation hebdomadaire		
	de fioul d'un établissement scolaire.	
	Les résultats sont les suivants :	

Température relevée en °C (x _i)	Consommation de fioul en L, (y _i)
-7	570
-4	435
0	390
-5	520
2	370
8	185

- 1. Représenter graphiquement le nuage de points et la droite d'ajustement affine.
- 2. Indiquer les valeurs de a et b arrondies à l'unité.

a =

b =

3. Écrire l'équation de la droite d'ajustement :

.....

4. Utiliser l'équation de la droite d'ajustement pour déterminer la consommation hebdomadaire de fioul lorsque la température est de 6°C.

.....

5. Une période de grand froid est annoncée et le gestionnaire veut prévoir la consommation de fioul. La température moyenne prévue est de -10°C.

Déterminer la consommation de fioul prévisible :

.....