Тема уроку.Гідроліз солей.

Матеріал теми допоможе вам:

- пригадати відомості про гідроліз органічних речовин;
- дізнатися про гідроліз солей певного типу;
- прогнозувати характер середовища водного розчину солі.

Гідролізом солі називається взаємодію йонів солі з йонами води, яка приводить до утворення слабкого електроліту і зміни рН середовища.

Гідролізу піддаються солі, до складу яких входять катіони слабких основ, або аніони слабких кислоти, або і ті, і інші одночасно. Ці йони зв'язуються з йонами води Н⁺ або ОН⁻ з утворенням слабкого електроліту, в результаті чого порушується рівновага електролітичноїдисоціації води

$$H_2O \rightleftharpoons H^+ + OH^-$$

У розчині накопичуються йони H^+ або OH^- , надаючи йому кислу або лужну реакцію.

Типи гідролізу солей:

Сіль утворена слабкою основою і сильною кислотою

AlBr3 → Al³+ + 3Br

Al ³+ + H-OH → AlOH²+ + H+

pH < 7

AlBr3 + H-OH → AlOHBr2 + HBr

eldpoats
sa κamlonom

кисле середовище

Сіль утворена <mark>слабкою основою і слабкою кислотою</mark>

CH3COONH4 → CH3COO + NH4+

CH3COO + H-OH→ CH3COOH + OH

NH4+ + H-OH → NH4OH + H- нейтральне середовище

CH3COONH4 + H-OH → CH3COOH +

NH4OH

гідроліз за катіоном і аніоном

Сіль утворена сильною основою і <mark>слабкою</mark> кислотон

CH3COONa = CH3COO + Na+

CH3COO + H-OH = CH3COOH + OH - pH

> 7

CH3COONa + HOH = CH3COOH + NaOH

A CH3COONa + HOH = CH3COOH + NaOH

Li2S = ZLi+ + S2

S² + HOH - HS + **OH** pH > 7 Li2S + HOH - LiHS + LiOH autonom

Солі, утворені сильною основою і сильною кислотою,

NaCl + H2O

Гідроліз не відбувається

Повний (необоротний) гідроліз солей

еякі повністю розкладаються водою

таблиці розчинності вони позначені # Al2S3 + 6 H2O= 2Al(OH)3 + 3 H2S

В реакціях обміну такі солі не утворюються, оскільки тразу розкладаються водою:

AI(NO3)3 + 3Na2S + 6 H2O = 2 AI(OH)3 + 3H2S + 6 NaNe

Сол	Підсул і утворені	Тип гідролізу	Тип середовища
Сильною основою	Слабкою кислотою	За аніоном	<i>Лужене,</i> pH > 7
Слабкою основою	Сильною кислотою	За катіоном	Кисле, рН <7
Слабкою основою	Слабкою кислотою	Гідроліз за катіоном і за аніоном	Залежить від сили кислоти та основи
Сильною основою	Сильною кислотою	Не піддаються гідролізу	Нейтральне, pH =7

Гідроліз застосовують у промисловому виробництві багатьох речовин, зокрема етанолу, метанолу, глюкози, скипидару. У сільському господарстві — для визначення реакції ґрунтових розчинів, у медицині, лабораторіях.

• Знаючи рН ґрунтових розчинів, можна поліпшити якість ґрунтів і підвищити урожайність сільськогосподарської продукції.

Перегляньте відео:

https://www.youtube.com/watch?v=In3CJ9pyJIA

Опрацюйте § 13.

Виконайте вправи:
1. Укажіть сіль, утворену сильною основою та сильною кислотою.
A K ₂ CO ₃
Б Na ₂ S
B NaNO₃
Γ Na₂SO₃
2. Укажіть сіль, утворену сильною основою та слабкою кислотою.
A LiCI
Б K₂SO₃
B KNO ₃
Γ BaCl₂
3 Позначте сіль, розчин якої матиме лужну реакцію.
A KCI
6 Na ₂ S
B NaNO₃
Γ Na₂SO₄