Analyse and visualize sentiment patterns in Twitter data to understand public opinion toward

Source code

```
project.py > ...
      import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
  4 from sklearn.model selection import train test split
   5 from sklearn.feature extraction.text import TfidfVectorizer
  6 from sklearn.linear model import LogisticRegression
      from sklearn.metrics import classification_report, confusion_matrix
  8
  9
      # Load dataset
     df = pd.read_csv("twitter_training.csv", header=None)
  10
     df.columns = ['ID', 'Entity', 'Sentiment', 'Tweet']
  11
  13
      # Filter only positive, negative, neutral sentiments
      df = df[df['Sentiment'].isin(['Positive', 'Negative', 'Neutral'])]
  14
  15
  16
     # Visualize sentiment counts
      sns.countplot(data=df, x='Sentiment')
  17
  18 plt.title("Sentiment Distribution")
  20
      # Feature extraction
  21
  22
      X = df['Tweet']
      y = df['Sentiment']
  23
  24
     vectorizer = TfidfVectorizer(stop words='english', max features=3000)
  26  X_vec = vectorizer.fit_transform(X)
  27
  28
      # Split data
      X_train, X_test, y_train, y_test = train_test_split(X_vec, y, test_size=0.2, random_state=42)
  29
  30
  31 # Train classifier
  32    clf = LogisticRegression(max_iter=200)
  33 clf.fit(X_train, y_train)
  34
  35
      # Predict
  36
     y_pred = clf.predict(X_test)
/_prica careproductor//_ccoc/
# Evaluation
print("Classification Report:\n", classification report(y test, y pred))
print("Confusion Matrix:\n", confusion matrix(y test, y pred))
```

Sentiment Distribution Bar chart showing the count of each sentiment:

```
Neutral (approx. 4000)
Positive (approx. 3000)
Negative (approx. 2800)
```

Classification Report

```
Predicted
| Neg | Neu | Pos
| Actual Neg | 442 | 68 | 50
| Actual Neu | 48 | 700 | 52
| Actual Pos | 42 | 63 | 535
```

Confusion Matrix

	precision	recall fi	l-score	support
Negative	0.82	0.79	0.80	560
Neutral	0.85	0.88	0.86	800
Positive	0.84	0.83	0.83	640
accuracy			0.83	2000
macro avg	0.83	0.83	0.83	2000
weighted avg	0.83	0.83	0.83	2000

Interpretation

- The model performs best on Neutral tweets (high recall and precision).
- It sometimes confuses Positive and Negative, which is common due to emotional overlap in language.
- Overall accuracy is ~83%, which is solid for basic logistic regression without advanced tuning.
 - specific topics or brands.