Review Questions: Also study quizzes and homework.

I. Let
$$\mathbf{a} = \langle \frac{1}{2}, -1, 0 \rangle, \mathbf{b} = \langle 4, 1, -1 \rangle,$$

and

$$\mathbf{r}(t) = \langle e^{2t}, \ln(t+1), t + \sec(t) + 2 \rangle.$$

- 1. _____ Find comp_ba.
- 2. _____ Find $\cos \theta$ where θ is the angle between **a** and **b**.
- 3. _____ Find the tangent vector to $\mathbf{r}(t)$ at t = 0.
- 4. _____ Find $(\mathbf{b} \times \mathbf{a}) \cdot \mathbf{a}$.
- 5. _____ Find the unit tangent to $\mathbf{r}(t)$ at t = 0.
- 6. _____ Find $\frac{1}{2}$ **b** 2**a**.
- 7. _____ Find a vector parallel to **a** but twice as long as **a**.
- 8. _____ Find the area of the parallelogram with sides the vectors **a** and **b**.

II. Let
$$P = (0, -1, 2), Q = (2, 1, -1),$$

and

$$\mathbf{r}(t) = \langle \cos(1 - e^t), \ t \ln(1 - t), \ t^2 + 2t \rangle.$$

- 1. _____ Find symmetric equations for the line through points P and Q The vector $\overrightarrow{PQ} =$ _____.
- 2. The vector $\mathbf{r}'(0) = \underline{\hspace{1cm}}$.
- 3. _____ Find parametric equations for the line through P and perpendicular to the plane 7 3z = 0. The normal vector of the plane 7 3z = 0 is:

The normal vector of the plane t = 92 = 0 is.

- 4. _____ Find the plane containing P and perpendicular to \overrightarrow{QP} . The normal vector $\overrightarrow{QP} =$ _____.
- 5. _____ Find the plane through the point Q and perpendicular to $\mathbf{r}(0)$. The normal vector $\mathbf{r}(0) = \underline{\qquad}$.

Version A

2

III.

Let
$$\mathbf{r}(t) = \langle e^{2t}, 2 \tan t, \ln(t+1) \rangle$$
.

6. _____ Find the normal component of acceleration, $a_N(0)$ of $\mathbf{r}(t)$.

$$\mathbf{r}''(0) = \underline{\hspace{1cm}}.$$

7. _____ Find the curvature $\kappa(0)$ of $\mathbf{r}(t)$.

$$\mathbf{r}'(0) \times \mathbf{r}''(0) = \underline{\hspace{1cm}}$$

8. _____ Find the tangential component of acceleration, $a_T(0)$ of $\mathbf{r}(t)$.

$$\mathbf{r}'(0) = \underline{\hspace{1cm}}.$$

9.

Given
$$\mathbf{r}(t) = \left\langle 5e^{2\tan t}, \ 1 + \frac{t^3}{t+1}, \ t3^t \right\rangle.$$

Find the tangent line to the curve $\mathbf{r}(t)$ at t=0. Give parametric equations for the line.

10.

Given
$$P = (1, 2, 2); Q = (0, 1, 0); R = (0, 2, 2).$$

Find the plane through these three points. Simplify the plane equation so that all constants are combined on the right hand side.

11.

Given
$$\mathbf{a} = \langle 1, 1, 3 \rangle$$
 and $\mathbf{b} = \langle 1, 0, 0 \rangle$.

Find the area of the triangle with these vectors (arrows) as two of its sides. Give your answer as a real number; you may leave any roots as you found them. (4 pts)

12. Given

$$\mathbf{r}(t) = \langle \ln t, 2, t^2 + t \rangle \text{ and } \mathbf{r}'(t) = \langle \frac{1}{t}, 0, 2t + 1 \rangle \text{ and } \mathbf{r}''(t) = \langle \frac{-1}{t^2}, 0, 2 \rangle$$

Find $\mathbf{v}(1)$, $\mathbf{a}(1)$, $a_T(1)$, $a_N(1)$, $\kappa(1)$.

13. Given

$$\mathbf{r}'(2) = \langle 0, 0, 3 \rangle, \mathbf{T}'(2) = \langle 1, 3, 0 \rangle, \text{ and } a_T(2) = 5$$

Find **N**(2), **a**(2), $a_N(2)$, $\kappa(2)$.

14. Study all quiz questions!

Version A

3

Answers:

- I.
- 1. $\frac{1}{3\sqrt{2}}$
- 2. $\frac{2}{3\sqrt{10}}$
- 3. (2, 1, 1)
- 4. 0
- 5. $\frac{1}{\sqrt{6}} \langle 2, 1, 1 \rangle$
- 6. $\langle 1, \frac{5}{2}, \frac{-1}{2} \rangle$
- 7. (1, -2, 0)
- 8. $\frac{\sqrt{86}}{2}$

II.

- 1. $\frac{x}{2} = \frac{y+1}{2} = \frac{z-2}{-3}$
- 2. $\{x=1; y=0; z=2t\}$
- 3. $\{x=0; y=-1; z=-3t+2\}$
- 4. -2x 2y + 3z = 8
- 5. x = 2
- 6. $\frac{2\sqrt{26}}{3}$
- 7. $\frac{2\sqrt{26}}{27}$
- 8. $\frac{7}{3}$
- 9. $\{x = 10t + 5; y = 1; z = t\}$
- 10. 2y z = 2
- 11. $\frac{\sqrt{10}}{2}$
- 12. $\mathbf{v}(1) = \langle 1, 0, 3 \rangle$; $\mathbf{a}(1) = \langle -1, 0, 2 \rangle$; $a_T(1) = \frac{5}{\sqrt{10}}$; $a_N(1) = \frac{5}{\sqrt{10}}$; $\kappa(1) = \frac{1}{2\sqrt{10}}$
- 13. $\mathbf{N}(2) = \frac{1}{\sqrt{10}} \langle 1, 3, 0 \rangle$; $\mathbf{a}(2) = \langle 3, 9, 5 \rangle$; $a_N(2) = \frac{\sqrt{10}}{3}$; $\kappa(2) = 3\sqrt{10}$;