Проверка гипотез. Задача 2

```
import numpy as np
import scipy.stats as sts
from matplotlib import pyplot as plt
%matplotlib inline
```

1. Пусть X_1,\dots,X_n - выборка из распределения $N(\theta,1)$. Построим функцию мощности критерия Стьюдента проверки гипотезы $H_0: \theta=0$ уровня значимости 0.05 для $\theta\in[-10,10]$ для разных n.

Критерий имеет вид:

$$S = \left\{ \sqrt{n-1} \left| rac{\overline{X}}{s}
ight| > t_{0.975}
ight\},$$

где $s=\sqrt{\overline{X^2}-(\overline{X})^2}$, а $t_{0.975}$ - квантиль распределения Стьюдента T_{n-1} . В качесте оценки функции мощности $\beta(\theta,S)=P_{\theta}(X\in S)$ сгенерируем N выборок из нормального распределения с параметром θ и возьмем среднее по бернуллиевской выборке принадлежностей выборок к критическому множеству.

```
alpha = 0.05
N = 500
ns = [5, 10, 50, 100, 500]
thetas = np.linspace(-10, 10, 201)
plt.figure(figsize=(10, 4), dpi=200)
for n in ns:
    t = sts.t.ppf(1 - alpha / 2, n - 1)
    betas = []
    for theta in thetas:
        betas.append(get_prob(N, n, theta, 0, t))
    plt.plot(thetas, betas, label=str(n))
plt.xlabel(r'$\theta$')
plt.ylabel(r'$\beta(\theta, S)$')
plt.legend(title=r'$n$')
plt.show()
```


Видим, что при увеличении n функция мощности стремится к 1 для всех $\theta \neq 0$. Это означает, что критерий является состоятельным. Действительно, имеем $\overline{X} \stackrel{P_{\theta}}{\to} \theta \neq 0, s \stackrel{P_{\theta}}{\to} 1$, а значит, $\sqrt{n-1} \left| \frac{\overline{X}}{s} \right| \stackrel{P_{\theta}}{\to} \infty$, то есть $P_{\theta}(X \in S) \to 1, \ n \to \infty$.

2. Найдем такое минимальное n, что при $|\theta_0-\theta_1|=1$ при проверке гипотезы $H_0:\theta=\theta_0$ против $H_1:\theta=\theta_1$ критерием Стьюдента уровня значимости 0.05 вероятность ошибки второго рода станет меньше вероятности ошибки первого рода.

Вероятность ошибки первого рода равна $P_{\theta_0}(X \in S)$, а второго рода - $P_{\theta_1}(X \notin S) = 1 - P_{\theta_1}(X \in S)$. Найдем требуемое n для разных θ из сетки.

```
ns_min = []

for theta0 in thetas:
    diff = -1
    theta1 = theta0 + diff
    n = 5
    perr1 = 0
    perr2 = 1
    while perr1 <= perr2:
        n += 1
        t = sts.t.ppf(1 - alpha / 2, n - 1)
        perr1 = get_prob(N, n, theta0, theta0, t)
        perr2 = 1 - get_prob(N, n, theta1, theta0, t)

    ns_min.append(n)
# чередуем знак разности параметров
diff *= diff
```

```
unique = np.array(list(set(ns_min)))
plt.hist(ns_min, bins=unique + 0.5, ec='k')
plt.xticks(unique)
plt.show()
```


Видим, что значения для разных θ получаются около n=16, что не очень много. В качестве оценки можем взять максимальное число из полученного массива:

```
n_min = np.max(ns_min)
n_min
```

18

3. Вывод

Мы показали экспериментально состоятельность критерия Стьюдента. Вторая часть задачи показывает, что для $|\theta_0-\theta_1|=1$ состоятельность достигается довольно быстро, то есть уже при небольших n вероятность ошибки второго рода близка к нулю.