Markov Regenerative Process - steady-state analysis

MVT exam

Stefano MARTINA Tommaso Papini stefano.martina@stud.unifi.it tommaso.papini1@stud.unifi.it

Definition

A Markov Regenerative Process (MRP) is a stochastic process that sooner or later, with probability one, will reach a regenerative state (will be regenerated).

Regenerative state

Definition

A Markov Regenerative Process (MRP) is a stochastic process that sooner or later, with probability one, will reach a regenerative state (will be regenerated).

Regenerative state

Definition

A Markov Regenerative Process (MRP) is a stochastic process that sooner or later, with probability one, will reach a regenerative state (will be regenerated).

Regenerative state

Definition

A Markov Regenerative Process (MRP) is a stochastic process that sooner or later, with probability one, will reach a regenerative state (will be regenerated).

Regenerative state

Definition

A Markov Regenerative Process (MRP) is a stochastic process that sooner or later, with probability one, will reach a regenerative state (will be regenerated).

Regenerative state

Transient probabilities

The probability distribution that the process will be in a certain state, after given t time.

Steady-state

- √ ORIS current state:
 - Transient analysis for Markov Regenerative Process (MRP)
 - Steady-state analysis for everything else
- ✓ Until now! 🖰
- √ Warning: we assume that the MRP is ergodic

Transient probabilities

The probability distribution that the process will be in a certain state, after given t time.

Steady-state

- √ ORIS current state:
 - Transient analysis for Markov Regenerative Process (MRP)
 - Steady-state analysis for everything else
- ✓ Until now! 🖰
- √ Warning: we assume that the MRP is ergodic

Transient probabilities

The probability distribution that the process will be in a certain state, after given t time.

Steady-state

- ✓ ORIS current state:
 - Transient analysis for Markov Regenerative Process (MRP)
 - Steady-state analysis for everything else
- ✓ Until now! 🖰
- √ Warning: we assume that the MRP is ergodic

Transient probabilities

The probability distribution that the process will be in a certain state, after given t time.

Steady-state

- √ ORIS current state:
 - Transient analysis for Markov Regenerative Process (MRP)
 - Steady-state analysis for everything else
- ✓ Until now! 🖰
- √ Warning: we assume that the MRP is ergodic

Transient probabilities

The probability distribution that the process will be in a certain state, after given t time.

Steady-state

- √ ORIS current state:
 - Transient analysis for Markov Regenerative Process (MRP)
 - Steady-state analysis for everything else
- √ Warning: we assume that the MRP is ergodic

Transient probabilities

The probability distribution that the process will be in a certain state, after given t time.

Steady-state

- √ ORIS current state:
 - Transient analysis for Markov Regenerative Process (MRP)
 - Steady-state analysis for everything else
- ✓ Until now! 🖰
- √ Warning: we assume that the MRP is ergodic!

- 1. Calculate the embedded DTMC steady-state on the regenerative states
- 2. Calculate the sojourn times in each marking, after each regenerative state
- 3. Combine the two above in order to calculate the MRP steady-state

- 1. Calculate the embedded DTMC steady-state on the regenerative states
- Calculate the sojourn times in each marking, after each regenerative state
- 3. Combine the two above in order to calculate the MRP steady-state

- 1. Calculate the embedded DTMC steady-state on the regenerative states
- 2. Calculate the sojourn times in each marking, after each regenerative state
- 3. Combine the two above in order to calculate the MRP steady-state

- 1. Calculate the embedded DTMC steady-state on the regenerative states
- 2. Calculate the sojourn times in each marking, after each regenerative state
- 3. Combine the two above in order to calculate the MRP steady-state

Main classes implemented

- √ class EmbeddedDTMC
 - written from scratch
 - calculate embedded DTMC steady-state
- √ class RegenerativeSteadyStateAnalysis
 - based on class RegenerativeTransientAnalysis
 - calculate MRP steady-state

Steady-state of the embedded DTMC on regenerative states

Steady-state in Discrete Time Markov Process (DTMC)

If the steady-state of a Discrete Time Markov Process (DTMC) exists and is unique (if is ergodic), then it's calculated by solving for ν the linear system:

$$\begin{cases} v = vP \\ |v| = 1 \end{cases}$$

- √ We want to calculate the steady-state of the embedded DTMC of the
 MRP in the regenerative states
- ✓ But we don't have P! ::

Steady-state of the embedded DTMC on regenerative states

Steady-state in Discrete Time Markov Process (DTMC)

If the steady-state of a Discrete Time Markov Process (DTMC) exists and is unique (if is ergodic), then it's calculated by solving for v the linear system:

$$\begin{cases} v = vP \\ |v| = 1 \end{cases}$$

- √ We want to calculate the steady-state of the embedded DTMC of the
 MRP in the regenerative states
- ✓ But we don't have P! ::

Steady-state of the embedded DTMC on regenerative states

Steady-state in Discrete Time Markov Process (DTMC)

If the steady-state of a Discrete Time Markov Process (DTMC) exists and is unique (if is ergodic), then it's calculated by solving for v the linear system:

$$\begin{cases} v = vP \\ |v| = 1 \end{cases}$$

- √ We want to calculate the steady-state of the embedded DTMC of the
 MRP in the regenerative states
- ✓ But we don't have P! ∴

Reaching probability feature

- √ We add a new reaching probability feature to each state: class ReachingProbabilityFeature
- ✓ Inside SteadyStateInitialStateBuilder: set it to 1
- ✓ Inside SteadyStatePostProcessor: multiply the parent's reaching probability by the probability to chose a certain child

If we run a transient analysis on the Petri Net (PN) we get:

- √ regenerationClasses
- √ Map<DeterministicEnablingState,Map<DeterministicEnablingState,Set<State>>>
- \checkmark sum reaching probability feature of each State to compute elements of P

Now we can solve the linear system:

$$\begin{cases} v = vP \\ |v| = 1 \end{cases} = \begin{cases} (P' - I)v' = 0 \\ \sum_{i} v_{i} = 1 \end{cases}$$

- √ RealMatrix & RealVector
- √ QR decomposition solver
 - DecompositionSolver solver = new QRDecomposition(coefficients).getSolver();
 - RealVector steadyState = solver.solve(constants);
- √ Convert steadyState into a

 Map<DeterministicEnablingState,BigDecimal>

Sojourn time aij

Definition

The sojourn time a_{ij} represents the average time spent in the j-th marking after the (last) i-th regeneration.

How to compute a_{ij} ?

a_{ij} is:

- \checkmark sum of avg time spent in marking j occurrences
 - sum of avg time before each variable fires
 - ★ condition each variable to be the minimum (i.e. the one that fires)
 - ★ compute avg time before that variable fires (thanks Marco!)

When to compute a_{ij} ?

During the transient analysis!

- \checkmark transient analysis generates succession trees for each regenerative state
 - regenerative state as root
 - following regenerative states as leaves
 - reachable markings as inner nodes
- \checkmark during the tree generation compute and accumulate a_{ij} for each marking occurrence found

$$\pi_j = \frac{\sum_i v_i a_{ij}}{K}$$

- \checkmark We multiply the sojourn time in the marking j after the regeneration i by the probability of reaching the i-th regeneration
- \checkmark We do this for each regeneration that leads to the marking j before another regeneration
- \checkmark K is a normalization factor calculated as the sum of π_i

$$\pi_j = \frac{\sum_i v_i a_{ij}}{K}$$

- \checkmark We multiply the sojourn time in the marking j after the regeneration i by the probability of reaching the i-th regeneration
- \checkmark We do this for each regeneration that leads to the marking j before another regeneration
- \checkmark K is a normalization factor calculated as the sum of π_i

$$\pi_j = \frac{\sum_i v_i a_{ij}}{K}$$

- \checkmark We multiply the sojourn time in the marking j after the regeneration i by the probability of reaching the i-th regeneration
- \checkmark We do this for each regeneration that leads to the marking j before another regeneration
- \checkmark K is a normalization factor calculated as the sum of π_i

$$\pi_j = \frac{\sum_i v_i a_{ij}}{K}$$

- \checkmark We multiply the sojourn time in the marking j after the regeneration i by the probability of reaching the i-th regeneration
- \checkmark We do this for each regeneration that leads to the marking j before another regeneration
- \checkmark K is a normalization factor calculated as the sum of π

$$\pi_j = \frac{\sum_i v_i a_{ij}}{K}$$

- \checkmark We multiply the sojourn time in the marking j after the regeneration i by the probability of reaching the i-th regeneration
- \checkmark We do this for each regeneration that leads to the marking j before another regeneration
- \checkmark K is a normalization factor calculated as the sum of π_i