Greedy Algorithms: Prim's Algorithm

Textbook: Chapter 9.1

Context

- This is one of several "greedy algorithms" we will examine:
 - Minimum Spanning Tree of a graph
 - Prim's algorithm
 - Kruskal's algorithm
 - Shortest Paths from a Single Source in a graph
 - Dijkstra's algorithm
 - Graph coloring

Problem: Build a (physical) network

Wiring: Naïve approach

Expensive!

Wiring: Better approach

Minimize the total length of wire connecting the customers

Minimum Spanning Trees

- A minimum spanning tree (MST) is a subgraph of an undirected weighted graph G, such that
 - it is acyclic
 - it includes all the vertices
 - the total cost associated with the edges is the minimum among all possible spanning trees

MST may not be unique

MSTs (cont'd)

Consider all the spanning trees of G:

The weight of each spanning tree is given by the sum of its edges ...

Minimum Spanning Tree of G is this graph, and it has a weight of 4.

Prim's algorithm

```
Algorithm Prim(G)
V_{T} \leftarrow \{V_{0}\}
                                      // init tree with one (arbitrary) vertex
                                      // init tree with no edges
\mathbf{E}_{\pi} \leftarrow \emptyset
for i \leftarrow 0 to |v|-1 do // loop until all vertices added to tree
     find a min-weight edge e=(u,v) from E
         where u is in V_{\pi} (in the tree)
         and v is in V-V_{T} (not yet in the tree)
    V_{r} \leftarrow V_{r} \cup \{v\}
                                       // add the vertex v to the tree
                                       // add the edge (u,v) to the tree
     E_{\pi} \leftarrow E_{\pi} \cup \{e\}
return T = (V_T, E_T)
```

Example 1

Example 1

Example 2

How can we achieve this with MST?

Graph representation

- Vertices are all the nodes to be connected
- One edge for every possible connection
 - I.e. the complete graph of N vertices
- Each edge has a "weight" associated with it
 - Cost of running a wire from node A to node B
- Now find the MST
 - How does this solve the problem?
 - Spanning tree → all nodes are connected
 - Lowest cost tree \rightarrow cheapest possible network