

إصلاح اختبار الرياضيات دورة 2011

نجاحك يهمنا

التّمرين الأوّل:

(أ) 15 : العدد $3^{2010} + 3^{2010}$ يقبل القسمة على : 15

 $3^{2011} + 3^{2009} = 3^2 \times 3^{2009} + 3^{2009} \times 1 = 3^{2009} \times (3^2 + 1) = 10 \times 3^{2009}$

32009 + 32009 يقبل القسمة على 3 و على 5 و هما أوّليان في ما بينهما إذن فهو يقبل القسمة على 15.

a=6 و a=6 و a=6 و a=6 و a=6 و a=6 و a=6 (ج) a=6 العدد a=6 حيث a=6 و a=6 (ج) a=6 العدد a=6 متوازي أضلاع مركزه النّقطة a=6 .

إحداثيات النّقطة I في المعيّن (C,A,D) هي الزّوج:

3 2 1 2 0 0 B

 $\left(\begin{array}{c} \leftarrow \end{array} \right) \left(\frac{1}{2}, 0 \right)$

في المعيَّن (C,A,D)، النّقطة C هي أصل المعيّن و (CA) هو محور الفاصلات و (CD) هو محور النّرتيبات. النّقطة D تنتمي إلى محور الفاصلات إذن فترتيبتها تساوي D و بالتّالي D.

A- لتكن A و B نقطتين من مستقيم مدرّج فاصلتاهما $\sqrt{2}$ و 2 فإنّ البعد A يساوي : $\sqrt{2}$

 $AB = |x_B - x_A| = |-2 - (-\sqrt{2})| = |-2 + \sqrt{2}| = |\sqrt{2} - 2| = 2 - \sqrt{2}$

التّمرين الثّاني:

 $b = 3\sqrt{18} - \sqrt{32} + 7$ $a = (\sqrt{3} + 2)^2$

 $a = (\sqrt{3} + 2)^2 = \sqrt{3}^2 + 2 \times \sqrt{3} \times 2 + 2^2 = 3 + 4\sqrt{3} + 4 = 7 + 4\sqrt{3}$

 $b = 3\sqrt{18} - \sqrt{32} + 7 = 3\sqrt{9 \times 2} - \sqrt{16 \times 2} + 7 = 9\sqrt{2} - 4\sqrt{2} + 7 = 5\sqrt{2} + 7$

. $4\sqrt{3}\langle 5\sqrt{2}$ يعني $(4\sqrt{3})^2\langle (5\sqrt{2})^2$ إذن $\{(4\sqrt{3})^2 = 16 \times 3 = 48 * \{(5\sqrt{2})^2 = 25 \times 2 = 50\}$

. $a\langle b$ يعني $7+4\sqrt{3}\langle 7+5\sqrt{2}$ يعني $4\sqrt{3}\langle 5\sqrt{2}$ **

 $c = 7 - 4\sqrt{3} - 2$

أ- $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أ- $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أ- $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أ- $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$ أن $a \times c = (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1$

 $|bc\rangle$ و بالتّالي $|bc\rangle$ و بالتّالي $|bc\rangle$

 $\frac{a}{c} + \frac{c}{a} + 2 = \frac{a^2}{ac} + \frac{c^2}{ac} + 2 = \frac{a^2 + c^2}{ac} + 2 = a^2 + c^2 + 2 = (7 + 4\sqrt{3})^2 + (7 - 4\sqrt{3})^2 + 2 = -3$

 $7^2 + 2 \times 7 \times 4\sqrt{3} + (4\sqrt{3})^2 + 7^2 - 2 \times 7 \times 4\sqrt{3} + (4\sqrt{3})^2 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 - 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 2 = 49 + 28\sqrt{3} + 48 + 49 + 28\sqrt{3} + 48\sqrt{3} +$

 $196 = 2^2 \times 7^2 = (2 \times 7)^2 = 14^2$

و بالتّالي 14 = 14 عدد صحيح طبيعي. $\sqrt{\frac{a}{c} + \frac{c}{a} + 2}$ إذن $\sqrt{\frac{a}{c} + \frac{c}{a} + 2} = \sqrt{14^2} = 14$

نجاحك يهمنا

التّمرين الثّالث:

-1-2

 $. x \in IR \xrightarrow{} A = x^2 - 30x + 216$

 $A=15^2-30\times15+216=225-450+216=-9$ اذن x=15

. $A=12^2-30\times12+216=144-360+216=0$ بن x=12

 $(x-15)^2 = x^2 - 2 \times x \times 15 + 15^2 = x^2 - 30x + 225$

 $A = (x-15)^2 - 9$ $= x^2 - 30x + 225$ $A = (x-15)^2 - 9$ $= x^2 - 30x + 225 - 9$ $= x^2 - 30x + 216 = A$

 $A = (x-15)^2 - 9 = (x-15)^2 - 3^2 = (x-15-3)(x-15+3) = (x-18)(x-12)$

x=12 أو x=18 يعني x=18 أو x=18=0 يعني x=18 أو x=12=0 أو x=18 أو x=18 أو x=18 أو x=18 أو x=18

a+b=30 أ- إذا رمزنا بa+b=30 لأنّ نصف المستطيل و بb للبعد الثّاني فإنّ a+b=30 { لأنّ نصف المحيط يساوي 30 } a+b=30 .

 $a\times(30-a)=216$ يعني $a\times(30-a)$ يعني $a\times(30-a)$ إذن فمساحته هي $a\times(30-a)=216$ يعني

يعني $216-30a+a^2=0$ يعني $216-(30a-a^2)=0$ يعني $a\times 30-a\times a=216$ يعني

 $a^2 - 30x + 216 = 0$ هو حلّ للمعادلة $a^2 - 30a + 216 = 0$

ج- بما أنّ كلاً من بعدي المستطيل هو حلّ للمعادلة $x^2 - 30x + 216 = 0$ فبعدا المستطيل هما 18 و 12 $\{$ حسب السّؤال 2- د- $\}$

التّمرين الرّابع:

. AB=3 9 IB=4 -→

ن (AB)//(OJ) و بما أن $x_A = x_B = 5 - 2$

ABI فإنّ $(OI) \perp (OJ)$ و بالتّالي فالمثلّث $(OI) \perp (OJ)$

قائم الزّاوية في B إذن حسب نظريّة بيتاغور فإنّ

$$AI^2 = BA^2 + BI^2 = 3^2 + 4^2 = 9 + 16 = 25$$

$$AI = \sqrt{25} = 5$$
 و بالتّالى

.
$$ID = \frac{1}{3}IA$$
 يعني $IA = 3ID$ -3

 $(HD) \perp (OI)$ إذن (IB) إذن $(HD) \perp (OI)$ أ- $(HD) \perp (D)$

(HD)//(AB) إِذَن $\{(HD) \perp (OI)\}$

في المثلّث $D \in (IA)$ ، ABI و (HD)//(AB) و $H \in (IB)$ و $D \in (IA)$ ، ABI

$$.\frac{ID}{IA} = \frac{ID}{3ID} = \frac{1}{3}$$
 لأن $\frac{IH}{IB} = \frac{ID}{IA} = \frac{HD}{AB} = \frac{1}{3}$ فإن

$$IH = \frac{1}{3}IB = \frac{1}{3} \times 4 = \frac{4}{3}$$
 يعني $\frac{IH}{IB} = \frac{1}{3} * -$

$$HD = \frac{1}{3}AB = \frac{1}{3} \times 3 = 1$$
 يعني $\frac{HD}{AB} = \frac{1}{3} **$

نجاحك يهمنا

(HD)//(OJ) إذن (HD)//(OJ) -5

(JD)//(OI) إذن OJDH هو متوازي أضلاع و بالتالي OJDH إذن OJDH

$$x_D = x_H = OH = OI + IH = 1 + \frac{4}{3} = \frac{7}{3}$$
 الأذن (HD)//(OJ)

.
$$D(\frac{7}{3},1)$$
 و بالتّالي $y_D=y_J=1$ أذن $JD)//(OI)$

التّمرين الخامس: 1- أ-

ي-
$$AB^2 = BC^2$$
 و بالتّالي حسب عكس $AB^2 + AC^2 = BC^2$ إذن $AB^2 = 16$ و بالتّالي حسب عكس $AC^2 = 9$

نظرية بيتاغور فالمثلّث ABC قائم الزّاوية في A. المثلّث ABC قائم الزّاوية في A و H هي مسقطها ABCالعمودي على (BC) إذن $AB \times AC = BC \times AH$ يعني

$$AH = \frac{AB \times AC}{BC} = \frac{3 \times 4}{5} = \frac{12}{5} = 2.4$$

** المثلُّث ACH قائم الزّ اوية في H إذن حسب نظريّة بيتاغور *فإنّ

$$HC^2 = AC^2 - HA^2 = 3^2 - (2.4)^2$$
 $= 9 - 5.76 = 3.24$ $AC^2 = HA^2 + HC^2$

 $HC = \sqrt{3.24} = 1.8$ و بالتّالي

ب- المثلَّث AHB قائم الزّ اوية في H و [HI] هو الموسّط

$$. HI = \frac{AB}{2} = \frac{4}{2} = 2$$
 إذن $[AB]$ الموافق للوتر

 $(IJ)/\!/(AC)$ و [BC] و [AB] و [AB] و [AB] و المثلّث [BC] و المثلّث عناصف و [AB]في المثلّث $E \in (HI)$ ، IJH و CE)//(IJ) و $C \in (HJ)$ و $E \in (HI)$ ، IJH

$$\cdot \frac{HE}{HI} = \frac{HC}{HJ}$$
 و بالتّالي $\frac{HE}{HI} = \frac{HC}{HJ} = \frac{CE}{IJ}$: فإنّ $\cdot \frac{HE}{HI} = \frac{HC}{HJ} = \frac{CE}{IJ}$: فإنّ $\cdot \frac{HE}{HJ} = \frac{HC}{HJ} = 2 \times \frac{1.8}{2.5 - 1.8} = 2 \times \frac{1.8}{0.7} = \frac{36}{7}$ يعني $\frac{HE}{HI} = \frac{HC}{HJ}$

ABC . $(II) \pm (AB)$ قائم الزّاوية في A إذن $AC) \pm (AC) \pm (AC)$ و بما أنّ ABC قائم الزّاوية في Aطريقة أولى : في المثلّث IJB ، IJB ، IJB و IJB و IJB) إذن بتطبيق نظريّة طالس في

هذا المثلّث فإنّ
$$\frac{IK}{IJ} = \frac{IK}{IJ} = \frac{IK}{IJ}$$
 لأنّ $IA = IB$ و بما أنّ هذا المثلّث فإنّ $IK = IJ$ و بما أنّ

 $I \in [JK]$ فإنّ الله منتصف $I \in [JK]$

قطرا الرباعي AKBI يتقاطعان في منتصفهما إذن فهو متوازي أضلاع و بما أنهما متعامدان فهو معيّنٌ.

طريقة ثانية: IA= IB إذن [AB] إذن

 \widehat{AB} . $\widehat{A$

IB=IA إذن المثلّثان IB و IB متقايسان حسب الحالة الأولى لتقايس المثلّثات. $IB=K\hat{I}A$ $J\hat{I}B=K\hat{I}A$

I = IK و I = IK و بما أنّ I = IK فإنّ I = I فإنّ I = I و بما أنّ I = I فإنّ I = I منتصف I = I

قطر الرّباعي AKBI يتقاطعان في منتصفهما إذن فهو متوازي أضلاع و بما أنّهما متعامدان فهو معين .

AK = JC إذن AK = JC هو متوازي أضلاع و بالتّالي AK = JC إذن AK = JC هو متوازي أضلاع و بالتّالي

إذن AK = JB و بما أنّ AK = JM فإنّ AKBI هو متوازي أضلاع و لأنّ قطريه AK = JB إذن AK = JB و بما أنّ AK = JM هم معيّن.

 $\frac{AB \times JK}{2} = \frac{AB \times AC}{2} = \frac{4 \times 3}{2} = 6 \text{ cm}^2$: ** مساحة المعيّن **

من لم يثبت أنّ AKJC هو متوازّي أضلاع $\{$ لم يتّبع الطّريقة الثّالثة $\}$ يمكنه أن يحسب مساحة المعيّن كما يلي : في المثلّث I ، I هي منتصف I هي منتصف I المعيّن كما يلي : في المثلّث I ، I هي منتصف I هي منتصف

. $JK = 2IJ = 2 \times 1.5 = 3$ و بالتّالي $IJ = \frac{AC}{2} = \frac{3}{2} = 1.5$

 $\frac{AB \times JK}{2} = \frac{4 \times 3}{2} = 6 \text{ cm}^2$ مساحة المعيّن AKBJ تساوي