AMAT583 (8433) Midterm I

Problem 1. (3 points) Let $S = \{A, B\}$. Write the following sets explicitly.

- a. $S \cup \emptyset = S = \{A, B\}$
- b. $S \cap S = S = \{A, B\}$
- c. $S \cap \emptyset = \emptyset$
- d. $S \cup S = S = \{A, B\}$
- e. $S \times S = \{(A, A), (A, B), (B, A), (A, B)\}$

Problem 2. (2 points) Let S and T be sets with $S \cap T = \{2,7\}$, $S \setminus T = \{1,8\}$ and $S \cup T = \{1,2,3,7,8\}$. Find S and T.

Solution: $S = \{1, 2, 7, 8\}$ and $T = \{2, 3, 7\}$. (2 and 7 are in both of S and T, while 1, 3 and 8 have to be in exactly one of S and T. Since $S \setminus T = \{1, 8\}$, 1 and 8 are the elements that are only in S, so 3 is only in T.)

Problem 3. (2 points) Find three intervals I, J and K such that $I \cap J = \{1\}$ and $J \cap K = \{2\}$.

Solution: J has to be [1, 2], and we can for instance choose I = [0, 1] and K = [2, 3].

Problem 4. (2 points) Write out the power set $\mathcal{P}(\{1,3,4\})$ explicitly.

Solution:

$$\mathcal{P}(\{1,3,4\}) = \{\{1,3,4\},\{1,3\},\{1,4\},\{3,4\},\{1\},\{3\},\{4\},\emptyset\}$$

Problem 5. (3 points) Let $f: \mathbb{Z} \to \mathbb{Z}$ be given by $f(x) = x^3$.

- a. What is im(f)?
- b. Is f injective? Why/why not?
- c. Is f surjective? Why/why not?
- d. Is f bijective? Why/why not?

Solution:

- a. $\operatorname{im}(f) = \{x^3 \mid x \in \mathbb{Z}\}$
- b. Yes, because if $x \neq y$, then $f(x) \neq f(y)$. (This follows for example from x^3 being strictly increasing in x.)
- c. No. 2 is in the codomain \mathbb{Z} , but not in $\operatorname{im}(f)$, since it is not equal to x^3 for any integer x.
- d. No. It is not surjective, so it is not bijective.

Problem 6. (2 points) Define an equivalence relation on \mathbb{Z} with two equivalence classes.

Solution: If \sim is defined by $x \sim y$ if x - y is even, then \sim has two equivalence classes: the set of even integers, and the set of odd integers.

Alternatively, one can simply define the equivalence classes S and $T := \mathbb{Z} \setminus S$ of \sim directly. Then \sim is defined by $x \sim y$ if x and y are either both in S or both in T. For example: $S = \{0\}$ and $T = \mathbb{Z} \setminus \{0\}$, or $S = \mathbb{N}$ and $T = \mathbb{Z} \setminus \mathbb{N}$.

Problem 7. (3 points) Draw three trees with five vertices each such that none of the trees are isomorphic.

Solution: See the trees in Fig. 1. To see that these are not isomorphic, note that the maximal degree of a vertex is 4 in T_1 , 3 in T_2 and 2 in T_3 .

Figure 1

Figure 2: G

Problem 8. (3 points) Let G be the graph in Fig. 2.

- a. What is the diameter of G?
- b. What is the closeness centrality of b?
- c. Draw all the spanning trees of G.

Hint: Closeness centrality was defined using a formula of this form:

$$\frac{n-1}{\sum \dots}.$$

Solution: Let d(u, v) be the length of the shortest path between two vertices u and v.

- a. 3. We have d(a, c) = 3 (the shortest path is a, b, d, c), and there is no other pair of vertices with a larger distance.
- b. What is the closeness centrality of b?

$$\frac{5-1}{d(b,a)+d(b,e)+d(b,d)+d(b,c)} = \frac{4}{1+1+1+2} = \frac{4}{5}.$$

c. See Fig. 3.

Figure 3

Problem 9. (2 points) Let (S,d) be a metric space, and let $d': S \times S \to [0,\infty)$ be defined by d'(x,y) = 3d(x,y) for all $x,y \in S$. Show that d' is a metric on S.

Solution: Using $d(x,y) = 0 \Leftrightarrow x = y$ for the metric d, we get

$$d'(x,y) = 0$$

$$\Leftrightarrow 3d'(x,y) = 0$$

$$\Leftrightarrow d(x,y) = 0$$

$$\Leftrightarrow x = y.$$

Using d(x,y) = d(y,x) for the metric d, we get

$$d'(x,y) = 3d(x,y) = 3d(y,x) = d'(y,x).$$

Using the triangle equality for d, we get

$$d'(x,y) + d'(y,z) = 3(d(x,y) + d(y,z)) \le 3d(x,z) = d'(x,z).$$

Thus, all the conditions for d' being a metric are satisfied.

Problem 10. (3 points) Let $S = \{(-1.5, 0), (0, 0), (1, 0), (1, 1)\} \subseteq \mathbb{R}^2$, and let d be the Euclidean metric on \mathbb{R}^2 . Draw $N(S)_{\epsilon}$ for $\epsilon = 0, 1, 2$.

Solution:

Figure 4