Standard Random Variables

Notation: $P\{X\} / P(X)$, E[X] / E(X), assume *independent* and identical distribution (iid). Python: np.random

	PMF Prob. Mass Function Valid $i. \forall x_i. \ P\{X = x_i\} \ge 0$ $ii. \sum_{i=0}^{\infty} P\{X = x_i\} = 1$ (density sum to 1)	CDF Cumulative Distribution $F_X(x) = P\{X \le \lfloor x \rfloor \}, \ 1 - P\{X > x\}, \\ P\{X = K\} = P\{X \le k\} - P\{X \le k - 1\}$	$E[X] = \sum_{i=0}^{\infty} x_i P\{X = x_i\}$	$Var[X] = E[X^2] - E[X]^2$ $LOTUS, E[g(X)] = \sum_{x} g(x)P\{X = k\}$
Bernoulli trial $X \sim Bern(p)$	$P\{X\} = p, \ P\{\bar{X}\} = q$	q = (1 - p)	p	pq
Binomial with replace $X \sim Bin(n, p)$ #successes in n Bern (p) trials $X \sim Bin(1, p)$, $(0-1)$ distribution if $n=1$	$P\{X = k\} = \binom{n}{k} p^k q^{n-k}$ $P\{X = k\} = p^k q^{1-k}$	Normal Approximation Poisson $n \to \infty, p \to 0, \lambda = np \text{ is moderate}$	np	npq
Geometric / Negative Binomial $X \sim Geom(p)$, $X \sim NegBin(r, p)$ in n $Bern(p)$ trials until $1^{st}/r$ successes	$P\{X = k\} = q^{k}p, \qquad k = \#failures$ $P\{X = k\} = \binom{n-1}{r-1}q^{k-1}p^{r}, k = \#trials$	$1 - q^{k+1}, x > 0$ $[Exp(\lambda)]$ Approximation	$\frac{q}{p}$, $\frac{1 \cdot r}{p}$	$\frac{(1-p)\cdot \mathbf{r}}{p^2}$
Poisson $X \sim Pois(\lambda), \ \lambda = np > 0$ memoryless #events in a fixed interval of time t	$P\{X = k\} = \frac{e^{-\lambda}\lambda^k}{k!}$ Pois(\lambda t) given Exp(\lambda) as waiting time interval	by def	λ	λ
[Negative] HyperGeometric no replace $X \sim NHGemo(w, b, n)$, total $N = w + b$ #successes in n draws / until n failures	$P\{X=k\} = \frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{n}}$	/	$np = n\frac{w}{N}$ $n\frac{w}{b+1}$	$\left \frac{N-n}{N-1} npq \right $
Joint Prob	$P_{ij} = P_{X,Y} \left\{ X = x_i, Y = y_j \right\}$	$F_{X,Y}(x,y) = \sum_{i=0}^{\lfloor x_i \rfloor} \sum_{j=0}^{\lfloor y_j \rfloor} P_{ij}$ = $P_{X,Y} \{ X \le x_i, Y \le y_j \}$	$\sum_{i=0}^{\underline{valid}} \sum_{j=0}^{\infty} P_{ij} = 1$	
Marginal Prob marginalize over another variable	$P_X\{X = x_i\} = \sum_{y} P_{X,Y} \left\{ X = x_i, Y = y_j \right\}$ $= \sum_{j=1}^{\infty} P_{ij}$	$F_X(x) = P_X\{X \le x\} = F_{X,Y}(x, \infty)$ $= \sum_{x_i \le x} \sum_{j=0}^{\infty} P_{ij}$	$\forall i, j. \ P_{ij} \geq 0$	

		Υ				Marginals for X
		1	2	3		$g(x) = \sum f(x, y)$
	1	0.32	0.03	0.01	0.36	y (11)
Х	2	0.06	0.24	0.02	0.32	
	3	0.02	0.03	0.27	0.32	
Marginals for		0.40	0.30	0.30	1 4	$\sum_{X} \sum_{Y} f(x, y) = 1$
$h(y) = \sum_{x} f(x)$	x, y					•

the joint density function

Joint Prob	$f_{X,Y}(x,y) = \frac{\partial}{\partial x \partial y} F_{X,Y}(x,y)$	$F_{X,Y}(x,y) = \iint_{B} f_{X,Y}(x,y) dxdy$ $= \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) dudv$	$\frac{\text{Valid}}{F_{X,Y}(-\infty,\infty)} = 1$	
Marginal Prob	$f_X(x) = \int_{y=-\infty}^{\infty} f_{X,Y}(x,y) dy$	$F_X(x) = P_X\{X \le x\} = F_{X,Y}(x, \infty)$ $= \int_{-\infty}^x f_X(x) dx$	$\forall x, y. \ f_{X,Y}(x,y) \ge 0$	
$\frac{Continuous}{X \in R}$ Distribution	PDF Prob Density Function Valid $i \cdot \forall x. \ f_X(x) \ge 0$ $ii. \int_{-\infty}^{\infty} f_X(x) dx = 1$ (density sum to 1)	CDF Cumulative Distribution $F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt \text{ , complement, LoTP}$ $f_X(x) = \frac{d}{dx} F_X(x)$	$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$	$\begin{aligned} & \textit{Var}[\textit{X}] \\ & \textit{LOTUS}, E[g(\textit{X})] = \\ & \int_{x} g(x) f(x) dx \end{aligned}$
Uniform $X \sim U(a,b) = \mathrm{e}^{-\lambda Exp(\lambda)}$ a completely random point in $[low, high]$	$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & otherwise \end{cases}$	$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1, & x > b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential $X \sim Exp(\lambda)$, $rate \ \lambda = \frac{1}{\theta} > 0$ <i>memoryless</i> waiting time between 2 successive events	$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & otherwise \end{cases}$	$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & otherwise \end{cases}$	$\theta = \frac{1}{\lambda}$ integrate by part	$\theta^2 = \frac{1}{\lambda^2}$ /tabular
Pareto $X \sim Pareto(shape = \alpha) = e^{Exp(\lambda)}$ cascade events, wealth, $x_m = 1$. Loglinearity	$f_X(x) = \begin{cases} \alpha x_m^{\alpha} x^{-(\alpha+1)}, & x \ge x_m \\ 0, & x < x_m \end{cases}$	$F_X(x) = \begin{cases} 1 - \left(\frac{x_m}{x}\right)^{\alpha}, & x \ge x_m \\ 0, & x < x_m \end{cases}$	$\begin{cases} \frac{\alpha x_m}{\alpha - 1}, & \alpha > 1 \\ \infty, & \alpha \le 1 \end{cases}$	$\begin{cases} valid, \ \alpha > 2 \\ \infty, \ \alpha \le 2 \end{cases}$
Normal / Gaussian $X \sim N(0,1)$ Standard $X \sim N(\mu, \sigma^2)$ $normal(loc = \mu, scale = \sigma)$	$f_X(x) = ce^{-\frac{x^2}{2}}, x \in R, c = \frac{1}{\sqrt{2\pi\sigma}}$ $f_X(x) = ce^{-\frac{(x-\mu)^2}{2\sigma^2}} = ce^{-\frac{(\frac{x-\mu}{\sigma})^2}{2}}$	$\Phi_X(x) = c \int_{-\infty}^x e^{-\frac{x^2}{2}} dx$ $\Phi_{\frac{X-\mu}{\sigma}}(z) \text{ CLT}$	μ	σ^2
Beta $X \sim Beta(\alpha, \beta) = \frac{\Gamma(\alpha, 1)}{\Gamma(\alpha, 1) + \Gamma(\beta + 1)}$ As prior for Bayesian	$f_X(x) = \begin{cases} \frac{1}{B} x^{\alpha - 1} (1 - x)^{\beta - 1}, & x \in [0, 1] \\ 0, & otherwise \end{cases}$	$B = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Gamma $X \sim \Gamma(k, 1)$, $shape k > 0$ $X \sim \Gamma(k, \lambda)$, $scale = 1/\lambda > 0$ $Y X \sim N(\mu, \frac{1}{\lambda X})$	$f_X(x) = \frac{1}{\Gamma(k)} x^{k-1} e^{-x} , x > 0$ $f_X(x) = \frac{1}{\Gamma(k)} \frac{(\lambda x)^k}{x} e^{-\lambda x} , x > 0$	$\Gamma(k) = (k-1)! , k \in \mathbb{N}$ $\Gamma(k) = \int_0^\infty e^{-x} x^{k-1} dx , k \in \mathbb{R}^+$ $\Gamma(1,\lambda) = Exp(\lambda), -\frac{1}{\lambda} \log(U)$	<u>k</u> λ	$\frac{k}{\lambda^2}$