Breeding strategies for early maturity in beef cattle

Silvan Wyss

11/22/2018

Content

- Present Master Thesis
- ► Material and Method to get first Results
- ► First Results
- Outlook

Master Thesis

Predicting: Which strategy is suitable to breed for early maturity in beef cattle?

Definition

How early ready for slaughter.

Relevance

▶ Increased performance in early maturity −> decreased costs.

Master Thesis

Four Strategies with increasing complexity:

- 1. Carcass fat as auxilliary trait.
- 2. Index over carcass traits.
- 3. "Deviation in age at slaughter" from Berry, Cromie, and Judge (2017).
- 4. Growth models.

Starting with Strategies one and two.

Master Thesis

- ► Index as selection criterion
- ► Selecting for most economic animal
- Main result until this stage of master thesis

Index

$$I = a^T u$$

where

a is the vector of economic weights -> not available,

u is the vector of estimated breeding values -> available.

- Carcass conformation, carcass weight and carcass fat for calves and adults
 - Six economic weights

Economic Weights

- ▶ Definition: Change in profit per change in carcass trait.
- Simplification:
 - Costs constant
 - Price per kg carcass weight as Profit
- Prices from August 2018.

Traits

- Carcass fat -> Visual fat coverage
- Carcass conformation -> Visual meat
- Carcass weight -> How heavy?

Carcass Fat

Carcass Fat Classes 1 and 4 Image source: Proviande

Carcass Fat

Carcass conformation

From left to right decreasing carcass conformation.

Image source: Proviande

Carcass conformation

Carcass weight

Material Groups

- ► Calves are less than 180 d old
- Adults are between 180 and 701 d old
- Different prices and distributions

Material Breeds

- ► Same prices, different distributions
- Base population from animals in 2010 2015

Method

- Model potential increase in population mean -> scaling up to one unit
- ▶ Prices from August 2018.

Method

Results

Angus	Limousin
0.47	0.31
0.26	0.14
0.32	0.45
-0.05	0.10
-1.23	-2.13
-0.12	-0.10
	0.47 0.26 0.32 -0.05 -1.23

Outlook

- Evaluation of Strategies
- ► Tool: Genetic Gain
- ► Genetic Gain -> Improvement of carcass traits per year
- ► Characterization of 2 other Strategies

Thank you

References

Berry, D. P., A. R. Cromie, and M. M. Judge. 2017. "Rapid communication: Large exploitable genetic variability exists to shorten age at slaughter in cattle." *Journal of Animal Science* 95 (10): 4526–32. doi:10.2527/jas2017.2016.