Лекции по алгебре 4 модуль.

Андрей Тищенко

Лекция 3 апреля

Квадратичные формы

Определение: Многочлен второй степени от n переменных, то есть выражение вида

$$q(x_1, \dots, x_n) = \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Где $a_{ij} \in \mathbb{R}$, называют квадратичной формой.

Замечание: Многочлен q(x) называется однородным степени k, если

$$\forall \alpha \quad q(\alpha x) = \alpha^k q(x)$$

Замечание: Квадратичная форма - это отображение $q:V\longrightarrow \mathbb{R}$ (вектор в число)

Рассмотрим n-мерное вектороное пространство V над \mathbb{R} . Зафиксируем в нём базис e_1, \ldots, e_n :

Тогда у любого $x \in V$ есть набор координат в этом базисе x_1, \ldots, x_n .

To есть $\forall x \in V : x = x_1 e_1 + \dots + x_n e_n$

Пусть
$$x^e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Rightarrow q(x)$$
 можно представить в виде $q(x) = (x^e)^T A x^e$, где

 $A = (a_{ij})$ матрица квадратичной формы q(x) в базисе e_1, \ldots, e_n, a_{ij} - коэффициенты квадратичной формы.

Пример: В \mathbb{R}^3

$$q(x) = x_1^2 + 8x_1x_3 = x_1^2 + 4x_1x_3 + 4x_3x_1 = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 4 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Замечание: Матрица квадратичной формы всегда симметрическая. То есть

$$A^T = A$$

Замечание: По любой билинейной форме можно построить квадратичную форму, взяв $q(x)=b(x,\ x)$. Тогда $a_{ij}=\frac{b_{ij}+b_{ji}}{2}$

Пример: $b(x, y) = x_1y_1 + ex_1y_3 + 5x_3y_1 \Rightarrow q(x) = b(x, x) = x_1^2 + 8x_1x_3$

Определение: Билинейная форма называется симметрической, если

b(x, y) = b(y, x), например, скалярное произведение

Называется кососиметрической, если

$$b(x, y) = -b(y, x)$$

Пример: Кососиметрическая билинейная форма с матрицей $B=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow$ $\Rightarrow B^T=-B$

Замечание: По любой квадратичной форме можно построить симметрическую билинейную форму. Это называется поляризацией квадратичной формы.

$$b(x, y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$$

Полярная билинейная форма к q(x) (имеет ту же матрицу, что и q(x), b(x, x) = q(x))

Утверждение: При переходе от базиса e к базису e' в линейном пространстве V матрица квадратичной формы меняется так:

 $A' = C^T \cdot A \cdot C,$ "Стас" без рофлов, реально Стасямба конкретная

 A^\prime - матрица квадартичной формы в новом базисе e^\prime C - матрица перехода от базиса e к базису e^\prime

Доказательство: Свзять координат вектора:

x = Cx', так как $x' = C^{-1}x$ - формула изменения координат вектора при замене базиса.

Тогда $\forall x \quad q(x) = x^T A x = (Cx')^T A (Cx') = (x')^T C^T A C x' = (x')^T A' x',$ значит $A' = C^T A C$ (Можно в качестве x брать все векторы канонического базиса $(0,\dots 0,\ 1,\ 0,\dots,\ 0)$ и показать совпадение матричных элементов)

Определение: Если квадратичная форма в некотором базисе записана в виде $q(x) = x^T A x$, то есть если A - матрица квадратичной формы в некотором базисе, то $\operatorname{Rg} A$ называется рангом квадратичной формы q(x).

Почему это определение корректно? То есть почему $\operatorname{Rg} A$ не зависит от базиса.

Лемма: Пусть $A, U \in M_n(\mathbb{R}), \det U \neq 0$. Тогда $\operatorname{Rg} A \cdot U = \operatorname{Rg} A = \operatorname{Rg} U \cdot A$, то есть при умножении на невырожденную матрицу ранг не меняется.

Доказательство: $\operatorname{Rg} A \cdot U \leqslant \operatorname{Rg} A$, так как столбцы матрицы AU есть линейные комбинации столбцов матрицы A.

Ранг матрицы по теореме о ранге матрицы равен максимальному числу линейно независимых столбцов не могло вырасти, так как все столбцы AU линейно выражаются через столбцы исходной матрицы. Покажем $\operatorname{Rg} A \cdot U \geqslant \operatorname{Rg} A$.

$$\operatorname{Rg} A = \operatorname{Rg} A(U \cdot U^{-1}) = \operatorname{Rg}(AU)U^{-1} \leqslant \operatorname{Rg}(AU)$$

$$\operatorname{Rg} U \cdot A = \operatorname{Rg}(UA)^T = \operatorname{Rg} A^T U^T = \operatorname{Rg} A^T = \operatorname{Rg} A = \operatorname{Rg} A U$$

Утверждение: (об инвариантности ранга квадратичной формы)

Пусть q(x) - квадратичная форам на линейном пространстве V.

Пусть $a = (a_1, \ldots, a_n)$ и $b = (b_1, \ldots, b_n)$ - базисы в V.

Пусть A - матрица квадратичной формы в базисе a

Пусть B - матрицы квадратичной формы в базисе b

Тогда $\operatorname{Rg} A = \operatorname{Rg} B$ и ранг квадратичной формы корректно определен.

Доказательство: Было доказано, что $B=C^TAC\Rightarrow$ по лемме, так как мы умножаем матрицу A на матрицы C^T слева и на C справа, то ${\rm Rg}\,B={\rm Rg}\,A,$ ч.т.д.

Определение: квадратичную форму q(x) будем назвать положительно определённой, если

$$\forall x \neq 0 \quad q(x) > 0$$

отрицательно определённой, если

$$\forall x \neq 0 \quad q(x) < 0$$

знакопеременной, если

$$\exists x, \ y \in V : q(x) < 0 < q(y)$$

Пример: $q_1(x) = x_1^2 + 2x_2^2 + 5x_3^2$ на \mathbb{R}^3 - положительно определена $q_2(x) = x_1^2 - x_3^2$ - знакопеременна $\left(y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \ x = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \Rightarrow q(x) < 0 < q(y) \right)$. $q_3(x) = -x_1^2 - 2x_2^2 - 3x_3^2$ - отрицательно определена на \mathbb{R}^3 , но $q_3'(x) = -x_1^2 - 3x_3^2$ - не является отрицательно определённой, так как $q_3'\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$ - это неположительно определённая квадратная форма.

Теорема: (Критерий Сильвестра положительной определённости) Пусть A - матрица квадратичной формы q(x) в некотором базисе. Тогла

q(x) положительно определена $\Leftrightarrow \frac{\text{последовательность главных угловых}}{\text{миноров в A строго положительна}}$

То есть
$$\begin{cases} \Delta_1 = a_{11} > 0 \\ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0 \\ \dots \\ \Delta_n = \det A > 0 \end{cases}$$

Следствие:

Квадратичная форма отрицательно определена
$$\Leftrightarrow$$

$$\begin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \\ \dots \\ (-1)^n \Delta_n > 0 \end{cases}$$

То есть знаки главных угловых миноров чередуются, начиная с минуса.

Доказательство: Так как A - отрицательно определена $\Leftrightarrow -A$ положительно определена $\det(-A) = (-1)^n \det A$, ч.т.д.

Пример: $q(x) = -x_1^2 - x_2^2 - \dots - x_n^2$ - отрицательно определённая $A = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 \end{pmatrix}$

Определение: Квадратичную форму $q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2$, где $\alpha_i \in \mathbb{R}, \ i = \overline{1, \ n}$, то есть в квадратичной форме нет попарных произведений вида Cx_ix_j , называют квадратичной формой каноничесмкого вида. Если $\alpha_i \in \{-1, \ 0, \ 1\}$, то канонический вид называют нормальным.

Замечание: Матрица квадратичной формы в каноническом виде является диагональной.