

Problem Statement:

- THE GOAL OF THIS PROJECT IS TO GROUP COMPANIES BASED ON THEIR FINANCIAL PERFORMANCE.
- USED CLUSTERING (UNSUPERVISED LEARNING) TO IDENTIFY PATTERNS IN HOW COMPANIES BEHAVE FINANCIALLY.
- DATA COMES FROM THE 2023 JPMORGAN QUANT CHALLENGE AND INCLUDES FEATURES LIKE EQUITY, LIABILITIES, REVENUE, DIVIDENDS, ETC.
- THIS PROJECT FOCUSES ON COMPANY-LEVEL
- **INSIGHTS**, NOT STOCK PRICES.

Dataset Overview

Source: JPMorgan Chase Quant Challenge 2023

- Features Used:
 - liabilities
 - equity
 - total_assets
 - current_assets • current_liabilities
 - total_revenue
 - net_income
 - dividend
 - shares_outstanding

15,000 ROWS

12

FEATURES

	Datas <class Range Data</class 				
	#	Column	Non-N	ull Count	Dtype
	0	Date		non-null	object
	1	Stock	15000	non-null	object
	2	liabilities	15000	non-null	float64
	3	equity	15000	non-null	float64
	4	total_assets	15000	non-null	float64
	5	current_assets	15000	non-null	float64
	6	current_liabilities	15000	non-null	float64
	7	total_revenue	15000	non-null	float64
	8	net_income	15000	non-null	float64
	9	dividend	15000	non-null	float64
	10	shares_outstanding	15000	non-null	int64
	11	price	15000	non-null	float64
dtypes: float64(9), int64(1), object(2)					

Objective

→ COMPANIES BASED ON FINANCIAL PERFORMANCE BY USING UNSUPERVISED LEARNING TO SUPPORT INVESTMENT ANALYSIS.

WHILE THE DATASET IS ORGANIZED

AROUND INDIVIDUAL STOCKS, THE FEATURES REFLECT THE FINANCIAL CONDITION OF UNDERLYING COMPANIES.

Data Preprocessing

Scaling:

- Scaling with StandardScaler
- Distribution is normal preserve zero mean
- Mean of 0 and SD of 1

Feature Selection:

- Selected only the features that would cluster companies/stocks based on financial health & performance liabilites, equity, total_assets,
- current_assets, current_liabilities, total_revenue, net_income, dividend, and shares_outstanding

Rationale K-Means Clustering

Model Selection

- Fast, good for compact clusters
- Hierarchical Clustering Captures structure, good
- for exploring data

Approach Used Elbow method for optimal k

Implementation

- PCA used for 2D visualization
- Silhouette score used to evaluate clustering
- quality

PCA plots

Key Findings

- Cluster Summary Table
- Cluster 1 had the strongest financials
 - Cluster 2 had the weakest
- Silhouette Scores: K-Means: 0.168
- Hierarchical: 0.127
- Visualizations Elbow Method for Optimal k

110000 100000

dividend shares_outstanding

1.047988e+06

1.049094e+06

1.054778e+06

1.052632e+06

5.678993

Cluster 1

hierarchical_cluster 633.855606 0 605.043777 585.171609 1190.215386 660.835718 527.916273 1020.488555 534.621129 555.910062 2 335.348976 343.553484 343.458725 357.791344 3 791.277593 807.309345 1598.586937 1068.924726 1149.771700 # 2. Silhouette Score (How "good" the clusters are)

liabilities

Model Performance

Metrics

from sklearn.metrics import silhouette_score # K-Means Silhouette kmeans_silhouette = silhouette_score(X_train_set_scaled, training_set['cluster']) print(f"K-Means Silhouette Score: {kmeans_silhouette}") # Hierarchical Silhouette hc_silhouette = silhouette_score(X_train_set_scaled, training_set['hierarchical_cluster']) print(f"Hierarchical Silhouette Score: {hc_silhouette}") K-Means Silhouette Score: 0.1681088062988105 Hierarchical Silhouette Score: 0.12725926833984824

equity total_assets current_liabilities total_revenue net_income

494.261314 -67.335028

535.376841

717.134727 218.764025 55.129956

-74.223652

6.628353 17.351257

- Summary and Challenges Faced
 - Applied unsupervised learning techniques -KMeans and Hierarchical Clustering

• Grouping was validated using PCA visualizations,

• Can serve as a foundation for further investment

• Identified four distinct groups of companies

Cluster Summaries, and Silhouette Scores

analysis Challenges:

- Low Silhouette Scores not a strong separation
- Choosing k • "Elbow point" was not very obvious (k=3 or k=4)

- Future Improvements
 - Use Dimensionality Reduction to improve separation
- Try Different Clustering Models • Evaluate with More Metrics
- Transition to Supervised Learning • Use clustered labels as input for future price
- prediction models, combining both clustering and
 - regression

Interpretation:

NOTE: Assuming all features weigh equally

Best -> Worst: Blue -> Orange -> Red -> Green

Cluster 0 (Red): Performs Okay

Cluster 1 (Blue): Performs Best

Cluster 2 (Green): Performs Worst

Cluster 3 (Orange): Performs Good