Discretized Streams

An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion Stoica

Motivation

- Many important applications need to process large data streams arriving in real time
 - User activity statistics (e.g. Facebook's Puma)
 - Spam detection
 - Traffic estimation
 - Network intrusion detection

 Our target: large-scale apps that must run on tens-hundreds of nodes with O(1 sec) latency

Challenge

- To run at large scale, system has to be both:
 - Fault-tolerant: recover quickly from failures and stragglers
 - Cost-efficient: do not require significant hardware beyond that needed for basic processing

Existing streaming systems don't have both properties

- "Record-at-a-time" processing model
 - Each node has mutable state
 - For each record, update state & send new records

Fault tolerance via replication or upstream backup:

Fault tolerance via replication or upstream backup:

Only need 1 standby, but slow to recover

Fault tolerance via replication or upstream backup:

Observation

- Batch processing models for clusters (e.g. MapReduce) provide fault tolerance efficiently
 - Divide job into deterministic tasks
 - Rerun failed/slow tasks in parallel on other nodes

- Idea: run a streaming computation as a series of very small, deterministic batches
 - Same recovery schemes at much smaller timescale
 - Work to make batch size as small as possible

Discretized Stream Processing

Parallel Recovery

- Checkpoint state datasets periodically
- If a node fails/straggles, recompute its dataset partitions in parallel on other nodes

Faster recovery than upstream backup, without the cost of replication

How Fast Can It Go?

 Prototype built on the Spark in-memory computing engine can process 2 GB/s (20M records/s) of data on 50 nodes at sub-second latency

Max throughput within a given latency bound (1 or 2s)

How Fast Can It Go?

Recovers from failures within 1 second

Sliding WordCount on 10 nodes with 30s checkpoint interval

Programming Model

- A discretized stream (*D-stream*) is a sequence of immutable, partitioned datasets
 - Specifically, resilient distributed datasets (RDDs),
 the storage abstraction in Spark

 Deterministic transformations operators produce new streams

API

- LINQ-like language-integrated API in Scala
- New "stateful" operators for windowing

```
pageViews = readStream("...", "1s")
ones = pageViews.map(ev => (ev.url, 1))
counts = ones.runningReduce(_ + _)
```

Scala function literal

Incremental version with "add" and "subtract" functions

Other Benefits of Discretized Streams

• Consistency: each record is processed atomically

- Unification with batch processing:
 - Combining streams with historical data

```
pageViews.join(historicCounts).map(...)
```

Interactive ad-hoc queries on stream state

```
pageViews.slice("21:00", "21:05").topK(10)
```

Conclusion

- D-Streams forgo traditional streaming wisdom by batching data in small timesteps
- Enable efficient, new parallel recovery scheme
- Let users seamlessly intermix streaming, batch and interactive queries

Related Work

- Bulk incremental processing (CBP, Comet)
 - Periodic (~5 min) batch jobs on Hadoop/Dryad
 - On-disk, replicated FS for storage instead of RDDs
- Hadoop Online
 - Does not recover stateful ops or allow multi-stage jobs
- Streaming databases
 - Record-at-a-time processing, generally replication for FT
- Parallel recovery (MapReduce, GFS, RAMCloud, etc)
 - Hwang et al [ICDE'07] have a parallel recovery protocol for streams, but only allow 1 failure & do not handle stragglers

Timing Considerations

- D-streams group input into intervals based on when records arrive at the system
- For apps that need to group by an "external" time and tolerate network delays, support:
 - Slack time: delay starting a batch for a short fixed time to give records a chance to arrive
 - Application-level correction: e.g. give a result for time t at time t+1, then use later records to update incrementally at time t+5

D-Streams vs. Traditional Streaming

Concern	Discretized Streams	Record-at-a-time Systems
Latency	0.5 – 2s	1-100 ms
Consistency	Yes, batch-level	Not in msg. passing systems; some DBs use waiting
Failures	Parallel recovery	Replication or upstream bkp.
Stragglers	Speculation	Typically not handled
Unification with batch	Ad-hoc queries from Spark shell, join w. RDD	Not in msg. passing systems; in some DBs