

Goi Eskola Politeknikoa

Fundamentos para la validación de modelos

Fundamentos del Aprendizaje Automático

- Evaluar la calidad del modelo
- 2. Seleccionar el modelo que mejor funcione con datos nuevos
- 3. Evitar overfitting y underfitting
 - I. Overfitting:
 - I. Captura de ruido
 - II. Captura de patrones que no generalizan bien con nuevos datos.
 - El modelo funciona extremadamente bien con los datos de entrenamiento
 - El modelo no da buenos resultados en el conjunto de datos de test.
 - II. Underfitting: no se capturan suficientes patrones en los datos. El modelo funciona pobremente en los datos de entrenamiento y validación

- Ejemplo: el modelo pasa directamente por los datos, sin tenerlos en cuenta!
 - Low variance:
 - El modelo no es dependiente de los datos
 - High **bias** (sesgo):
 - Se hace una fuerte asunción: los datos siguen una distribución lineal

- Se sobresimplifica el modelo

- Ejemplo: el modelo tiene en cuenta todos los puntos de entrenamiento:
 - High variance:
 - El modelo es extremadamente dependiente de los datos => dependiente del ruido
 - El modelo cambiará significativamente si cambiamos los datos
 - Low bias (sesgo):
 - No se hace una fuerte asunción sobre los datos

- Bias => Varianza
- Varianza => Bias

-Sesgo bajo -Varianza baja

- Si tuviéramos que elegir…
 - ¿Elegiríamos el modelo con la mejor "puntuación" en el conjunto de entrenamiento?
- ¡Validación!

Proceso de creación de un modelo

Scikit-learn

Definiciones

- Accuracy:
 - La proporción de clasificaciones correctas sobre todas las clasificaciones
 - Métrica fácil e intuitiva...
 - Pero problemática (to be seen...)

	Predicted True	Predicted False
Real True	850	35
Real False	45	70

$$\frac{70 + 850}{1000} = 92\%$$

Definiciones

- El accuracy score no es buen indicador de la precisión cuando las clases no están balanceadas
 - Se debe completar con otros métodos y métricas de evaluación:
 - Matriz de confusión
 - F1 score (F1)
 - Especificidad
 - Área bajo la curva (Area under curve (ROC))

• ¿Cómo decidimos si un modelo es una buena solución a nuestro problema?

- Opciones:
 - Conocimiento experto
 - Automatización del trabajo de evaluación del experto

- Muchos paradigmas diferentes entre los que elegir
- Cada uno con uno o más parámetros que prefijar

- Muchos paradigmas diferentes entre los que elegir
- Cada uno con uno o más **parámetros** que prefijar

- Procedimiento estadístico:
 - Normalmente el conjunto de datos se divide aleatoriamente en conjunto de entrenamiento y test con un ratio de 70 - 30 o 80 - 10.

 Estadística: modelos robustos que son lineares por naturaleza: no hay problemas de varianza / sesgo altos.

ML: (Entrenamiento + validación) + test

Goi Eskola Politeknikoa

Unibertsitatea

crear conjuntos de entrenamiento y test

```
X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.2)
print (X_train.shape, y_train.shape)
print (X_test.shape, y_test.shape)
(353, 10) (353,)
(89, 10) (89,)
```

entrenar el modelo

```
Im = linear_model.LinearRegression()
model = Im.fit(X_train, y_train)
predictions = Im.predict(X_test)
```

Score => predictions vs y_test

Cross-validation

- Objetivo:
 - Asegurar robustez
 - Normalmente:
 - Modelo creado en conjunto de entrenamiento
 - Evaluado en conjunto de test

Cross-validation

- Objetivo:
 - Asegurar robustez
 - Normalmente:
 - Modelo creado en conjunto de entrenamiento
 - Evaluado en conjunto de test

Puede que los datos de entrenamiento y test no hayan sido seleccionados **homogéneamente**

- Evitar sesgo en la muestra:
 - Datos fuera del entrenamiento
 - Complejidad del dataset

from sklearn.model_selection import KFold # importar KFold X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) # creamos un array y = np.array([1, 2, 3, 4]) # creamos otro array kf = KFold(n_splits=2) # Definimos el número de particiones

KFold(n_splits=2, random_state=None, shuffle=False)

Cross-validation: ventajas

- Utilización de todos los datos
 - i. Cuando hay pocos datos: la división train / test puede dejarnos con pocos datos de test
 - a. Si el conjunto de test es pequeño: el resultado obtenido con el conjunto de test puede ser **fruto del azar**
 - b. Problemas multiclase: pocas muestras por clase
 - ii. Utilizando K modelos diferentes
 - i. Hacemos predicciones en todos **nuestros** datos

- 2. Creando y testeando el modelo con K modelos
 - i. Aseguramos un mejor rendimiento
 - i. En una sola evaluación podríamos obtener un resultado causado por el azar o causado por el sesgo en el conjunto de test

Cross-validation: ventajas

Parameter tuning

Ejemplo, buscar la mejor K:

cv_scores = []

for k in neighbors:

knn = KNeighborsClassifier(n_neighbors=k)

scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')

cv_scores.append(scores.mean())

Cross-validation: desventajas

- Sesgo pesimista en resultado de rendimiento:
 - Normalmente el modelo mejorará con el entrenamiento con todo el conjunto

- Clasificación binaria / multiclase:
 - Estratificada por defecto en scikit-learn

- Se deja 1 punto fuera de los datos de entrenamiento
 - Núm. de datos para entrenamiento ⇒ N − 1
 - Validación: en el punto dejado fuera
 - Se repite esto parar todas las combinaciones donde la muestra original se puede separar
 - Resultado (score): media de cada iteración
 - Combinación total: número de datos total (n)

Ventajas:

 Sesgo reducido: la diferencia entre el conjunto de entrenamiento entero y el utilizado para cada fold es mínima

Desventajas:

- Costoso computacionalmente
- Solapamiento entre conjuntos de entrenamiento: varianza

Grid search

- Una forma de "tunear" los hiperparámetros de un modelo
 - Objetivo: encontrar la mejor combinación

Parameter tuning

Ejemplo de hiperparámetros:

c/ass sklearn.neighbors. KNeighborsClassifier ($n_neighbors=5$, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, $n_jobs=None$, **kwargs) [source]

 $\textit{class} \;\; \textit{sklearn.svm.} \;\; \textbf{SVC} \;\; (\textit{C=1.0}, \textit{kernel='rbf'}, \textit{degree=3}, \textit{gamma='auto_deprecated'}, \textit{coef0=0.0}, \textit{shrinking=True}, \\ \textit{probability=False}, \;\; \textit{tol=0.001}, \;\; \textit{cache_size=200}, \;\; \textit{class_weight=None}, \;\; \textit{verbose=False}, \;\; \textit{max_iter=-1}, \\ \textit{decision_function_shape='ovr'}, \;\; \textit{random_state=None})$

entrenamiento del modelo
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
Parámetros
knn.fit(X_train, y_train)

predicciones en el conjunto de test
y_pred = knn.predict(X_test)

Parameter tuning

Manual:

Se eligen los hiperparámetros basándonos en la experiencia/intuición

2. Grid search

Establecemos un grid con hiperparámetros con todas las combinaciones

3. Random search

 Grid con los valores de los hiperparámetros y seleccionamos combinaciones aleatorias

4. Automatizado

 Se pueden utilizar métodos como gradient descent, Optimización Bayesiana o algoritmos evolutivos

- 1. Por cada modelo:
 - Por cada combinación de parámetros
 - Cross-validation
 - Guardamos el score

2. Visualizamos y comparamos los resultados

Aitor Agirre / Carlos Cernuda aaguirre@mondragon.edu