Varme- og fuktighetsberegninger

Haidar Hosamo

October 3, 2024

 ${\it Kilde: Beregning \ av \ U-verdier \ etter \ NS-EN \ ISO \ 6946, \ Byggforsk}$

Definisjoner av begreper

- Varmegjennomgangskoeffisient (U-verdi): U-verdi, U (W/(m²K)), eller varmegjennomgangskoeffisient, er et standardisert mål på hvor lett en bygningsdel slipper gjennom varme. U-verdien angir hvor mye varme som strømmer gjennom et areal på 1 m² per tidsenhet og per grad temperaturforskjell mellom omgivelsene på hver side av bygningsdelen. Varmestrøm per tidsenhet måles i watt (W) og temperaturforskjellen i kelvin.
- Total varmemotstand (Rtot): Total varmemotstand, Rtot (m²K/W), er den samlede varmemotstanden for alle sjikt i en bygningsdel, inkludert varmeovergangsmotstanden på begge sider av bygningsdelen.
- Termisk motstand (R): Varmemotstanden (R) for et materialsjikt angir hvor godt materialsjiktet isolerer mot varmegjennomgang. Det beregnes som tykkelsen av materialet delt på dets varmeledningsevne. ($\mathbf{R} = \mathbf{d}/\lambda$).
- Varmeledningsevne (λ -verdi): Varmeledningsevnen angir hvor effektivt et materiale leder varme. Lavere λ -verdi betyr bedre isolasjonsevne. Dette brukes som et mål på varmetransport ved ledning og stråling i materialer.
- Vanndamptrykk (ρ): Trykket som skyldes vanndamp til stede i luften. I byggfysikk handler det om vanndamptrykket inne i materialer eller sjikt.
- Vanndampmotstand $(\zeta \rho)$: Dette er en egenskap ved materialer som beskriver hvor motstandsdyktig et materiale er mot vanndampdiffusjon.
- Forskjell i vanndamptrykk ($\Delta \rho_i$): Forskjellen i vanndamptrykk mellom det innvendige og utvendige sjiktet, som påvirker fukttransporten.
- Trykk (P(x)): Trykket ved en gitt temperatur x, som kan brukes til å beregne relativ fuktighet ved forskjellige temperaturer.
- Relativ fuktighet: Prosentandelen vanndamp i luften i forhold til den maksimale mengden vanndamp som kan være til stede ved en gitt temperatur.

Formler

Formel 1: Beregning av U-verdi

$$U = \frac{1}{R_T} + \Delta U$$

- U: Varmegjennomgangskoeffisient (U-verdi). R_T : Total termisk motstand.
- ΔU : Endring eller tillegg i U-verdi.

Formel 2: Temperaturforskjell innvendig

$$\Delta T_i = \frac{t_i - t_u}{R_T} \cdot R_i$$

- ΔT_i : Temperatur
forskjell innvendig. - t_i : Innvendig temperatur. - t_u : Utvendig temperatur. - R_T : Total termisk motstand. - R_i : Termisk motstand på hvert sjikt.

Formel 3: Beregning av varmeledningsevne

$$\lambda_F = \lambda_a \cdot A_a \% + \lambda_b \cdot A_b \%$$

- λ_F : Total varmeledningsevne (lambda-verdi). - λ_a : Varmeledningsevne for materiale a. - A_a %: Arealprosent for materiale a. - λ_b : Varmeledningsevne for materiale b. - A_b %: Arealprosent for materiale b.

Formel 4: Justert total termisk motstand

$$R_T' = R_{T\emptyset} = \frac{\Sigma A}{\frac{A_a\%}{R_{Ta}} + \frac{A_b\%}{R_{Tb}}}$$

- R_T' : Justert total termisk motstand. - $R_{T\emptyset}$: Total termisk motstand for øvre verdi. - ΣA : Sum av arealene. - $\frac{A_a\%}{R_{Ta}}$: Andel av termisk motstand for materiale a. - $\frac{A_b\%}{R_{Tb}}$: Andel av termisk motstand for materiale b.

Formel 5: Gjennomsnittlig termisk motstand

$$R_T = \frac{R_{TN} + R_{T\emptyset}}{2}$$

- R_T : Gjennomsnittlig termisk motstand. - R_{TN} : Termisk motstand for nedre verdi. - $R_{T\emptyset}$: Termisk motstand for øvre verdi.

Formel 6: Forskjell i vanndamptrykk

$$\Delta \rho_i = \frac{\rho_i - \rho_e}{\Sigma \zeta \rho} \cdot \zeta \rho_i$$

- $\Delta \rho_i$: Forskjell i vanndamptrykk. - ρ_i : Vanndamptrykk i det innvendige sjiktet. - ρ_e : Vanndamptrykk i det utvendige sjiktet. - $\Sigma \zeta \rho$: Sum av vanndampmotstand. - $\zeta \rho_i$: Vanndampmotstand i hvert sjikt.

Formel 7: Metningstrykk

$$P(x) = P_1 + \left(\frac{P_2 - P_1}{x_2 - x_1}\right) \cdot (x - x_1)$$

Hvor:

- P(x) er trykket ved x grader Celsius.
- P_1 er trykket ved x_1 grader Celsius (2195 ved 19 grader).
- $\bullet~P_2$ er trykket ved x_2 grader Celsius (2335 ved 20 grader).
- x er den ønskede temperaturen (for eksempel 19.2 grader).