

ETC3550 Applied forecasting for business and economics

Ch2. Time series graphics OTexts.org/fpp3/

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Class packages

```
# Data manipulation and plotting functions
library(tidyverse)
# Time series manipulation
library(tsibble)
# Forecasting functions
library(fable)
# Time series graphics and statistics
library(feasts)
# Tidy time series data
library(tsibbledata)
# Lots more time series data (ts objects)
library(fma)
```

tsibble objects

A tsibble allows storage and manipulation of time series in R.

It contains:

- Measured variable(s): numbers of interest
- Key variable(s): unique identifiers for each series
- An index: time information about the observation

tsibble objects

Example

```
library(tsibble)
v <- tsibble(year = 2012:2016,</pre>
 y = c(123,39,78,52,110), index = year)
٧
## # A tsibble: 5 x 2 [1Y]
##
    year
## <int> <dbl>
## 1 2012 123
## 2 2013 39
## 3 2014 78
## 4 2015
          52
```

The tsibble index

Common time index variables can be created with these functions:

Frequency	Function	
Annual	start:end	
Quarterly	yearquarter()	
Monthly	yearmonth()	
Weekly	yearweek()	
Daily	as_date(), ymd()	
Sub-daily	as_datetime()	

The key to many time series

Year	Length	Sex	Time
1896	100m	men	12.0
1928	100m	women	12.2
1900	200m	men	22.2
1948	200m	women	24.4
1896	400m	men	54.2
1964	400m	women	52.0

The key to many time series

```
olympic running %>% as_tsibble(
 key = id(Length, Sex), index = Year)
## # A tsibble: 312 x 4 [4Y]
## # Key: Length, Sex [14]
##
    Year Length Sex Time
     <dbl> <fct> <chr> <dbl>
##
## 1 1896 100m
                men 12
## 2 1900 100m men 11
## 3 1904 100m
                men 11
## 4 1908 100m
                men 10.8
```

Australian GDP

```
aus_economy <- global_economy %>%
 filter(Code == "AUS")
## # A tsibble: 58 x 9 [1Y]
## # Key: Country [1]
##
     Country Code Year GDP Growth
                                       CPI
     <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
   1 Austra~ AUS 1960 1.86e10 NA 7.96
##
   2 Austra~ AUS 1961 1.96e10 2.49 8.14
##
##
   3 Austra~ AUS
                   1962 1.99e10 1.30
                                      8.12
##
   4 Austra~ AUS
                   1963 2.15e10 6.21
                                      8.17
   5 Austra~ AUS
                   1964 2.38e10 6.98
                                      8.40
##
##
   6 Austra~ AUS
                   1965 2.59e10
                                 5.98
                                      8.69
##
   7 Austra~ AUS
                   1966 2.73e10
                                 2.38
                                      8.98
```

Australian GDP

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Time plots

```
ansett %>%
  filter(Airports=="MEL-SYD", Class=="Economy") %>%
  autoplot(Passengers)
```


Time plots

```
a10 <- PBS %>%
 filter(ATC2 == "A10") %>%
 summarise(Cost = sum(Cost))
## # A tsibble: 204 x 2 [1M]
        Month Cost
##
        <mth> <dbl>
##
## 1 1991 Jul 3526591
## 2 1991 Aug 3180891
  3 1991 Sep 3252221
##
## 4 1991 Oct 3611003
```

44 F 1001 Nav. 2FCF0C0

Time plots

```
a10 %>% autoplot(Cost/1e6) +
  ylab("$ million") + xlab("Year") +
  ggtitle("Antidiabetic drug sales")
```


Your turn

- Create plots of the following time series:
 fma::dole, Bricks from aus_production, pelt,
 Google from gafa_stock
- Use help() to find out about the data in each series.
- For the last plot, modify the axis labels and title.

```
elecdaily %>%
  autoplot(Temperature) +
  xlab("Week") + ylab("Max temperature")
```



```
elecdaily %>%
  ggplot(aes(x = index, y = Temperature)) +
  geom_point() +
  xlab("Week") + ylab("Max temperature")
```


Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Seasonal plots

```
a10 %>% ggseasonplot(Cost/1e6, labels = "both") +
  ylab("$ million") +
  ggtitle("Seasonal plot: antidiabetic drug sales")
```


Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot()

Seasonal subseries plots

```
a10 %>%
   ggsubseriesplot(Cost/1e6) + ylab("$ million") +
   ggtitle("Subseries plot: antidiabetic drug sales")
```


Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: ggsubseriesplot()

Quarterly Australian Beer Production

```
beer <- aus_production %>%
   select(Quarter, Beer) %>%
   filter(year(Quarter) >= 1992)
beer %>% autoplot(Beer)
```


Quarterly Australian Beer Production

beer %>% ggseasonplot(Beer, labels="right")

Quarterly Australian Beer Production

beer %>% ggsubseriesplot(Beer)

Your turn

The arrivals.csv data set comprises quarterly international arrivals (in thousands) to Australia from Japan, New Zealand, UK and the US.

- Use autoplot() and ggseasonplot() to compare the differences between the arrivals from these four countries.
- Can you identify any unusual observations?

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
as_tsibble(fma::elec) %>%
filter(index >= 1980) %>%
autoplot(value) + xlab("Year") + ylab("GWh") +
ggtitle("Australian electricity production")
```



```
aus_production %>%
  autoplot(Bricks) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
```



```
as_tsibble(fma::hsales) %>%
autoplot(value) +
ggtitle("Sales of new one-family houses, USA") +
xlab("Year") + ylab("Total sales")
```



```
as_tsibble(fma::ustreas) %>%
autoplot(value) +
ggtitle("US Treasury Bill Contracts") +
xlab("Day") + ylab("price")
```


Time series patterns

```
pelt %>%
  autoplot(Lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```


Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Example: Beer production

```
new_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
new_production
```

```
# A tsibble: 74 x 7 [10]
##
        Ouarter Beer Tobacco Bricks Cement
##
          <qtr> <dbl>
                       <dbl>
                              <dbl>
                                    <dbl>
##
##
        1992 Q1 443
                        5777
                               383
                                     1289
        1992 02 410
                        5853
                               404
                                     1501
##
##
   3
        1992 Q3 420
                        6416
                            446
                                     1539
                               420
##
   4
        1992 Q4 532
                        5825
                                     1568
   5
##
        1993 Q1
                 433
                        5724
                               394
                                     1450
                                     1668
##
        1993 02
                 421
                        6036
                               462
```

40

Example: Beer production

new_production %>% gglagplot(Beer)

Example: Beer production

new_production %>% gglagplot(Beer, type='point')

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-2}
- y_t and y_{t-3}
- etc.

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

- \mathbf{r}_1 indicates how successive values of y relate to each other
- r₂ indicates how y values two periods apart relate to each other
- r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Results for first 9 lags for beer data:

new_production %>% ACF(Beer, lag_max = 9)

```
## # A tsibble: 9 x 2 [10]
     lag acf
##
## <lag> <dbl>
## 1
    10 -0.102
## 2 2Q -0.657
## 3 30 -0.0603
## 4
       40 0.869
## 5
       5Q -0.0892
## 6
       60 -0.635
       70 -0.0542
## 7
       80 0.832
## 8
## 9
       90 -0.108
```

Results for first 9 lags for beer data:

```
new_production %>% ACF(Beer, lag_max = 9) %>% autoplot()
```


- r_4 higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the autocorrelation or ACF.
- The plot is known as a correlogram

ACF

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Aus monthly electricity production

```
elec2 <- as_tsibble(fma::elec) %>%
  filter(year(index) >= 1980)
elec2 %>% autoplot(value)
```


Aus monthly electricity production

```
elec2 %>% ACF(value, lag_max=48) %>%
autoplot()
```


Aus monthly electricity production

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

Google stock price

```
google_2015 <- gafa_stock %>%
 filter(Symbol == "GOOG", year(Date) == 2015)
google_2015
## # A tsibble: 252 x 8 [1D]
## # Key:
              Symbol [1]
     Symbol Date Open
                             High Low Close
##
##
     <fct> <date> <dbl> <dbl> <dbl> <dbl> <dbl>
   1 GOOG 2015-01-02 526, 528, 521,
                                        522.
##
   2 G00G
         2015-01-05 520, 521, 510,
                                        511.
##
   3 GOOG 2015-01-06 512, 513, 498.
                                        499.
##
   4 G00G
##
            2015-01-07 504, 504, 497,
                                        498.
                                             54
##
   5 G00G
            2015-01-08
                       495.
                             501.
                                  488.
                                        500.
```

Google stock price

google_2015 %>% autoplot(Close)

Google stock price

google_2015 %>% ACF(Close, lag_max=100) %>%
autoplot()

Your turn

We have introduced the following functions:

- gglagplot
- ACF

Explore the following time series using these functions. Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

- fma::hsales
- fma::usdeaths
- Bricks from aus_production
- sunspotarea (unavailable)

gasoline (unavailable)

57

Which is which?

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Lag plots and autocorrelation
- 6 White noise

Example: White noise

Example: White noise

- 9 0.1425886
- 10 -0.1109695

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the *critical values*.

Example:

T = 36 and so critical values at $\pm 1.96/\sqrt{36} = \pm 0.327$.

0.2 -

noise. (More precisely,

distinguished from white noise.)

the data cannot be

-0.2 5 10 lag [1]

```
pigs2 <- as_tsibble(fma::pigs) %>%
  filter(year(index) >= 1990)
pigs2 %>% autoplot(value) +
   xlab("Year") + ylab("thousands") +
  ggtitle("Number of pigs slaughtered in Victoria")
```


pigs2 %>% ACF(value) %>% autoplot()

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

These show the series is **not** a white noise series.

Your turn

You can compute the daily changes in the Google stock price using

```
dgoog <- google_2015 %>%
mutate(diff = difference(Close))
```

Does dgoog look like white noise?