

finite changes in convergent series

Canonical name FiniteChangesInConvergentSeries

Date of creation 2013-03-22 19:03:10 Last modified on 2013-03-22 19:03:10

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 9

Author pahio (2872) Entry type Theorem Classification msc 40A05

Related topic SumOfSeriesDependsOnOrder

Related topic RiemannSeriesTheorem Related topic RatioTestOfDAlembert

The following theorem means that at the beginning of a convergent series, one can remove or attach a finite amount of terms without influencing on the convergence of the series – the convergence is determined alone by the infinitely long "tail" of the series. Consequently, one can also freely change the of a finite amount of terms.

Theorem. Let k be a natural number. A series $\sum_{n=1}^{\infty} a_n$ converges iff the

series $\sum_{n=1}^{\infty} a_n$ converges. Then the sums of both series are with

$$\sum_{n=k+1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{k} a_n.$$
 (1)

Proof. Denote the kth partial sum of $\sum_{n=1}^{\infty} a_n$ by S_k and the nth partial sum of $\sum_{n=k+1}^{\infty} a_n$ by S'_n . Then we have

$$S_n' = \sum_{n=k+1}^{k+n} a_n = S_{k+n} - S_k.$$
 (2)

1°. If $\sum_{n=1}^{\infty} a_n$ converges, i.e. $\lim_{n\to\infty} S_n := S$ exists as a finite number, then (2) implies

$$\lim_{n \to \infty} S'_n = \lim_{n \to \infty} S_{k+n} - \lim_{n \to \infty} S_k = S - S_k.$$

Thus $\sum_{n=k+1}^{\infty} a_n$ converges and (1) is true. 2°. If we suppose $\sum_{n=k+1}^{\infty} a_n$ to be convergent, i.e. $\lim_{n\to\infty} S'_n := S'$ exists as finite, then (2) implies that

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{k+n} = \lim_{n \to \infty} (S_k + S'_n) = S_k + S'.$$

This means that $\sum_{n=1}^{\infty} a_n$ is convergent and $S = S_k + S'$, which is (1), is in.