Algorytmy i Struktury Danych - ćwiczenia

Wojciech Typer

```
zadanie 1/ lista1
Zadanie sprowadza się do znalezenia najmniejszego n, takiego, że:
44n^2 < 2^n
najmniejszym takim n jest n=13
indukcyjnie można pokazać, że dla każdych następnych n
nierówność dalej będzie zachowana:
zał: 44n^2 < 2^n
krok indukcyjny:
44(k+1)^2 < 2^{k+1}
44(k^2 + 2k + 1) < 2^k * 2
44k^2 + 88k + 44 < 2^k * 2
z założenia mamy, że: 44k^2<2^k
więc musimy pokazać, że: 88k + 44 < 2^k (k \ge 13)
zadanie 2/ lista1
znając f(n) = t, musimy znależć n
przeliczmy jednostki czasu na mikrosekundy:
1s = 10^6 \mu s, 30min = 1.8 * 10^9 \mu s i 1wiek = 3.1 * 10^1 5 \mu s
log_{10}(n) = 10^6 \rightarrow n = 10^{60},
log_{10}(n) = 1.8 * 10^9 \rightarrow n = 10^1.8 * 10^9,
log_{10}(n) = 3.1 * 10^{15} \rightarrow n = 10^3.1 * 10^{15}
\sqrt(n) = 10^6 \to n = 10^{12}, sqrt(n) = 1.8 * 10^9 \to n = 3.24 * 10^{18},
\sqrt(n) = 3.1 * 10^{15} \rightarrow n = 9.61 * 10^{30}
2^n = 10^6 \rightarrow n = 19, 2^n = 1.8 * 10^9 \rightarrow n = 30.7, 2^n = 3.1 * 10^{15} \rightarrow n = 51
n! = 10^6 \rightarrow n = 9, n! = 1.8 * 10^9 \rightarrow n = 13, n! = 3.1 * 10^{15} \rightarrow n = 18
zadanie 3/ lista1
1. e^{\pi} \to O(1)
2. 7(log_{10}(n))^7 \to O((log(n))^7)
3. \sqrt{(2\pi n)} \to O(\sqrt{(n)})
4. 13n + 13 \rightarrow O(n)
5. 44n^2 * log(n) \rightarrow O(n^2 * log(n))
6. 10^n \to O(10^n)
7. 33^n \to O(33^n)
```