

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

Prova Escrita de Matemática A

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Prova 635/Época Especial

15 Páginas

Duração da Prova: 150 minutos. Tolerância: 30 minutos.

2015

—— Página em branco ————	

Utilize apenas caneta ou esferográfica de tinta azul ou preta, exceto nas respostas que impliquem construções, desenhos ou outras representações, que podem ser, primeiramente, elaborados a lápis e, a seguir, passados a tinta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

– Página em branco –—	

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha - amplitude, em radianos, do ângulo ao centro; r - raio)$$

Área lateral de um cone: $\pi rg(r - raio da base; g - geratriz)$

Área de uma superfície esférica: $4\pi r^2 (r - raio)$

Volume da pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume do cone: $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume da esfera: $\frac{4}{3}\pi r^3$ (r-raio)

Progressões

Soma dos *n* primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

 $tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \quad (k \in \{0, \dots, n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \notin N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

—— Página em branco ————	

GRUPO I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Seja Ω , conjunto finito, o espaço de resultados associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset \Omega \ e \ B \subset \Omega)$.

Sabe-se que:

- $P(A \cup B) = 0.7$
- P(B) = 0.4
- $P(A \cap B) = 0.2$

Qual é o valor de P(B|A) ?

- **(A)** 0,25
- **(B)** 0,3
- (C) 0.35
- **(D)** 0,4

2. Nove jovens, três rapazes e seis raparigas, vão dispor-se, lado a lado, para uma fotografia.

De quantas maneiras o podem fazer, de modo que os rapazes fiquem juntos?

- **(A)** 40 140
- **(B)** 30 240
- **(C)** 20 340
- **(D)** 10440

3. Seja a um número real.

Seja a função f, de domínio \mathbb{R}^+ , definida por $f(x) = e^{a \ln x}$

Considere, num referencial o.n. xOy, o ponto P(2,8)

Sabe-se que o ponto P pertence ao gráfico de f

Qual é o valor de a?

(A) 1

- **(B)** 2
- **(C)** 3

(D) 4

4. Na Figura 1, está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial f

Figura 1

Em qual das opções seguintes pode estar representada parte do gráfico da função f'', segunda derivada da função f?

(A)

(B)

(C)

(D)

5. Seja f uma função de domínio $\mathbb R$

Sabe-se que f'(2) = 6 (f') designa a derivada de f

Qual é o valor de $\lim_{x\to 2} \frac{f(x) - f(2)}{x^2 - 2x}$?

(A) 3

(B) 4

(C) 5

- **(D)** 6
- **6.** Na Figura 2, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo.

Os vértices deste quadrado são as imagens geométricas dos complexos $z_1,\ z_2,\ z_3$ e z_4

Qual das afirmações seguintes é falsa?

(B)
$$z_1 + z_4 = 2 \operatorname{Re}(z_1)$$

(C)
$$\frac{z_4}{i} = z_1$$

(D)
$$-\overline{z_1} = z_2$$

Figura 2

- 7. Os segmentos de reta [AB] e [BC] são lados consecutivos de um hexágono regular de perímetro 12 Qual é o valor do produto escalar \overrightarrow{BA} . \overrightarrow{BC} ?
 - **(A)** -3
 - **(B)** -2
 - **(C)** 2
 - **(D)** 3
- 8. De uma progressão geométrica (a_n) , sabe-se que o terceiro termo é igual a $\frac{1}{4}$ e que o sexto termo é igual a 2

Qual é o valor do vigésimo termo?

(A) 8192

(B) 16384

(C) 32 768

(D) 65 536

	- Página em branco -	

GRUPO II

Na resposta aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Em \mathbb{C} , conjunto dos números complexos, seja $z_1 = (1+i)^6$ e $z_2 = \frac{8i}{\operatorname{cis}(-\frac{6\pi}{5})}$

Sabe-se que as imagens geométricas dos complexos z_1 e z_2 são vértices consecutivos de um polígono regular de n lados, com centro na origem do referencial.

Determine, sem recorrer à calculadora, o valor de n

- **2.** Considere, num referencial o.n. Oxyz, o plano β definido pela condição 2x y + z 4 = 0
 - **2.1.** Considere o ponto P(-2,1,3a), sendo a um certo número real.

Sabe-se que a reta OP é perpendicular ao plano β , sendo O a origem do referencial.

Determine o valor de *a*

2.2. Considere o ponto A(1,2,3)

Seja B o ponto de intersecção do plano β com o eixo Ox

Seja C o simétrico do ponto B relativamente ao plano yOz

Determine a amplitude do ângulo BAC

Apresente o resultado em graus, arredondado às unidades.

2.3. Determine uma equação da superfície esférica de centro na origem do referencial, que é tangente ao plano β

Na resolução deste item, tenha em conta que o raio relativo ao ponto de tangência é perpendicular ao plano $\,eta\,$

- 3. Um saco contém nove bolas numeradas de 1 a 9, indistinguíveis ao tato.
 - **3.1.** Retiram-se, sucessivamente e ao acaso, três bolas do saco. As bolas são retiradas com reposição, isto é, repõe-se a primeira bola antes de se retirar a segunda e repõe-se a segunda bola antes de se retirar a terceira.

Qual é a probabilidade de o produto dos números das três bolas retiradas ser igual a 2?

Apresente o resultado na forma de fração irredutível.

3.2. Considere agora a seguinte experiência aleatória: retiram-se, simultaneamente e ao acaso, duas bolas do saco, adicionam-se os respetivos números e colocam-se novamente as bolas no saco.

Considere que esta experiência é repetida dez vezes.

Seja X o número de vezes em que a soma obtida é igual a $\,7\,$

A variável aleatória X tem distribuição binomial, pelo que

$$P(X=n) = {}^{10}C_n \left(\frac{1}{12}\right)^n \left(\frac{11}{12}\right)^{10-n} \left(n \in \{0,1,...,10\}\right)$$

Elabore uma composição em que explique:

- como se obtém o valor $\frac{1}{12}$ (probabilidade de sucesso);
- o significado de $\frac{11}{12}$, no contexto da situação descrita;
- ullet o significado da expressão $^{10}C_n$, tendo em conta a sequência das dez repetições da experiência.
- **4.** Admita que, ao longo dos séculos XIX, XX e XXI, o número de habitantes, N, em milhões, de uma certa região do globo é dado aproximadamente por

$$N = \frac{200}{1 + 50e^{-0.25t}} \quad (t \ge 0)$$

em que t é o tempo medido em décadas e em que o instante t=0 corresponde ao **final** do ano 1800.

4.1. Determine a taxa média de variação da função N no intervalo [10, 20]

Apresente o resultado arredondado às unidades.

Interprete o resultado, no contexto da situação descrita.

4.2. Mostre que
$$t = \ln \left(\frac{50N}{200 - N} \right)^4$$

5. Seja f a função, de domínio \mathbb{R}_0^+ , definida por $f(x) = x^2 e^{1-x}$

Resolva os itens 5.1. e 5.2. recorrendo a métodos analíticos, sem utilizar a calculadora.

- **5.1.** Estude a função f quanto à existência de assíntota horizontal.
- **5.2.** Estude a função f quanto à monotonia e quanto à existência de extremos relativos.
- **5.3.** Considere, num referencial o.n. xOy, três pontos, A, B e C, tais que:
 - ullet os pontos A e B pertencem ao gráfico da função f
 - ullet a abcissa do ponto B é maior do que a abcissa do ponto A
 - os pontos A e B têm a mesma ordenada, a qual é igual a 1,2
 - o ponto C pertence ao eixo Ox e tem abcissa igual à do ponto B

Determine, recorrendo à calculadora gráfica, a área do quadrilátero [OABC], sendo O a origem do referencial.

Na sua resposta:

- reproduza, num referencial, o gráfico da função f no intervalo [0,5]
- apresente o desenho do quadrilátero [OABC]
- indique as abcissas dos pontos A e B arredondadas às milésimas;
- apresente a área do quadrilátero arredondada às centésimas.
- **6.** Seja *a* um número real.

Considere a função f, de domínio \mathbb{R} , definida por $f(x) = a \operatorname{sen} x$

Seja r a reta tangente ao gráfico de f no ponto de abcissa $\frac{2\pi}{3}$

Sabe-se que a inclinação da reta $\,r\,$ é igual a $\,\frac{\pi}{6}\,$ radianos.

Determine o valor de a

FIM

	- Página em branco —	

COTAÇÕES

GRUPO I

1. a 8. (8 × 5 pontos)	40 pontos	
		40 pontos
GRUPO II		
1	15 pontos	
2.		
2.1.	5 pontos	
2.2.	10 pontos	
2.3.	15 pontos	
3.		
3.1.	15 pontos	
3.2.	15 pontos	
4.		
4.1.	10 pontos	
4.2.	15 pontos	
7161	TO PONTOS	
5.		
5.1	15 pontos	
5.2.	15 pontos	
5.3	15 pontos	
6	15 pontos	
		160 pontos
TOTAL		200 pontos