

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C07D 207/40, 209/96, 401/12, 307/94, A01N 43/38, 43/12

(11) Internationale Veröffentlichungsnummer: WO 96/25395

(43) Internationales

Veröffentlichungsdatum:

22. August 1996 (22.08.96)

(21) Internationales Aktenzeichen:

PCT/EP96/00382

A1

(22) Internationales Anmeldedatum: 31. Januar 1996 (31.01.96)

(30) Prioritätsdaten:

195 04 621.8 195 43 864.7 13. Februar 1995 (13.02.95)

DE 24. November 1995 (24.11.95) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): FISCHER, Reiner [DE/DE]; Nelly-Sachs-Strasse 23, D-40789 Monheim (DE). BRETSCHNEIDER, Thomas [DE/DE]; Talstrasse 29b. D-53797 Lohmar (DE). HAGEMANN, Hermann [DE/DE]; Kandinsky-Strasse 52, D-51375 Leverkusen (DE). LIEB. Folker [DE/DE]; Alfred-Kubin-Strasse 1, D-51375 Leverkusen (DE). LUI, Norbert [DE/DE]; Roggendorfstrasge 55, D-51061 Köln (DE). RUTHER, Michael [DE/DE]; Grabenstrasse 23, D-40789 Monheim (DE). WIDDIG. Arno [DE/DE]; Eifgenstrasse 8, D-51519 Odenthal (DE). ERDELEN, Christoph [DE/DE]; Unterbüscherhof 15, D-42799 Leichlingen (DE). WACHENDORFF-NEUMANN, Ulrike [DE/DE]; Oberer Markenweg 85, D-56566 Neuwied

(DE). SANTEL, Hans-Joachim [DE/DE]; Grünstrasse 9a, D-51371 Leverkusen (DE). DOLLINGER, Markus [DE/DE]; Burscheider Strasse 154b, D-51381 Leverkusen (DE). DAHMEN, Peter [DE/DE]; Altebrückerstrasse 63, D-41470 Neuss (DE). MENCKE, Norbert [DE/DE]; Gründermühle 2, D-51381 Leverkusen (DE). TURBERG, Andreas [DE/DE]; Naheweg 19, D-40699 Erkrath (DE).

(74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, LK, MX, NO, NZ, PL, RO, RU, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: 2-PHENYL-SUBSTITUTED HETEROCYCLIC 1,3-KETONOLS AS HERBICIDES AND PESTICIDES

(54) Bezeichnung: 2-PHENYLSUBSTITUIERTE HETEROCYCLISCHE 1,3-KETOENOLE ALS HERBIZIDE UND PESTIZIDE

(57) Abstract

The present invention relates to novel compounds of the formula (I) in which X, Y and Z have the meanings given in the specification and Het stands for one of the groups (1), (2), (3), (4), (5) or (6), in which A, B, D and G have the meanings given in the specification, several process for their production and their use as pesticides and herbicides.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft neue Verbindungen der Formel (I), in welcher X, Y und Z die in der Beschreibung angegebene Bedeutung haben und Het für eine der Gruppen (1), (2), (3), (4), (5) oder (6) steht, worin A, B, D und G die in der Beschreibung angegebene Bedeutung haben, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Herbizide.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neusceland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dånemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

10

15

20

25

30

2-PHENYLSUBSTITUIERTE HETEROCYCLISCHE 1,3-KETOENOLE ALS HERBIZIDE UND PESTIZIDE

Die Erfindung betrifft neue phenylsubstituierte cyclische Ketoenole, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenylpyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger (Liebigs Ann. Chem. 1985, 1095) synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A-0 262 399 und GB-A-2 266 888 werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist. Bekannt mit herbizider, insektizider oder akarizider Wirkung sind unsubstituierte, bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-355 599 und EP-415 211) sowie substituierte monocyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-377 893 und EP-442 077).

Weiterhin bekannt sind polycyclische 3-Arylpyrrolidin-2,4-dion-Derivate (EP-442 073) sowie 1H-Arylpyrrolidin-dion-Derivate (EP-456 063, EP-521 334, EP-596 298, EP-613 884, EP-613 885, WO 94/01 997 und WO 95/01358).

Es ist bekannt, daß bestimmte substituierte Δ^3 -Dihydrofuran-2-on-Derivate herbizide Eigenschaften besitzen (vgl. DE-A-4 014 420). Die Synthese der als Ausgangsverbindungen verwendeten Tetronsäurederivate (wie z.B. 3-(2-Methyl-phenyl)-4-hydroxy-5-(4-fluorphenyl)- Δ^3 -dihydrofuranon-(2)) ist ebenfalls in DE-A-4 014 420 beschrieben. Ähnlich strukturierte Verbindungen ohne Angabe einer insektiziden und/oder akariziden Wirksamkeit sind aus der Publikation Campbell et al., J. Chem. Soc., Perkin Trans. 1, 1985, (8) 1567-76 bekannt. Weiterhin sind 3-Aryl- Δ^3 -dihydrofuranon-Derivate mit herbiziden, akariziden und insektiziden Eigenschaften aus EP-528 156 und EP 647 637bekannt, jedoch ist die dort beschriebene Wirkung nicht immer ausreichend.

Aus der Literatur sind ferner bestimmte 3H-Pyrazol-3-on-Derivate, wie beispiels-weise 1,2-Diethyl-1,2-dihydro-5-hydroxy-4-phenyl-3H-pyrazol-3-on oder {[5-Oxo-

15

20

25

1,2-diphenyl-4-(p-sulfophenyl)-3-pyrazolin-3-yl]-oxy}-dinatriumsalz oder p-(3-Hydroxy-5-oxo-1,2-diphenyl-3-pyrazolin-4-yl)-benzolsulfonsäure bekannt (vgl. J. Heterocycl. Chem., 25(5), 1301-1305, 1988 oder J. Heterocycl. Chem., 25(5), 1307-1310, 1988 oder Zh. Obshch. Khim., 34(7), 2397-2402, 1964). Eine biologische Wirkung dieser Verbindungen wird aber nicht beschrieben.

Weiterhin ist bekannt, daß das Trinatriumsalz der 4,4',4"-(5-Hydroxy-3-oxo-1H-pyrazol-1,2,4(3H)-triyl)-tris-benzolsulfonsäure pharmakologische Eigenschaften besitzt (vgl. Farmakol. Toksikol. (Moscow), 38(2), 180-186, 1976). Seine Verwendung im Pflanzenschutz ist aber nicht bekannt.

Außerdem sind in EP-508 126 und in WO 92/16 510 4-Arylpyrazolidin-3,5-dion-Derivate mit herbiziden, akariziden und insektiziden Eigenschaften beschrieben.

Bestimmte, im Phenylring unsubstituierte Phenyl-pyron-Derivate sind bereits bekannt geworden (vgl. A.M. Chirazi, T. Kappe und E. Ziegler, Arch. Pharm. 309, 558 (1976) und K.-H. Boltze und K. Heidenbluth, Chem. Ber. 91, 2849), wobei für diese Verbindungen eine mögliche Verwendbarkeit als Schädlingsbekämpfungsmittel nicht angegeben wird. Im Phenylring substituierte Phenyl-pyron-Derivate mit herbiziden, akariziden und insektiziden Eigenschaften sind in EP-588 137 beschrieben.

Bestimmte, im Phenylring unsubstituierte 5-Phenyl-1,3-thiazin-Derivate sind bereits bekannt geworden (vgl. E. Ziegler und E. Steiner, Monatsh. 95, 147 (1964), R. Ketcham, T. Kappe und E. Ziegler, J. Heterocycl. Chem. 10, 223 (1973)), wobei für diese Verbindungen eine mögliche Anwendung als Schädlingsbekämpfungsmittel nicht angegeben wird. Im Phenylring substituierte 5-Phenyl-1,3-thiazin-Derivate mit herbizider, akarizider und insektizider Wirkung sind in WO 94/14 785 beschrieben.

Die Wirksamkeit und Wirkungsbreite dieser Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und Konzentrationen nicht immer voll zufriedenstellend. Weiterhin ist die Pflanzenverträglichkeit dieser Verbindungen nicht immer ausreichend.

Es wurden nun neue Verbindungen der Formel (I)

gefunden,

in welcher

- 5 X für Halogen, Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Halogenalkyl, Halogenalkenyl, Halogenalkenyl, Halogenalkenyloxy, Nitro, Cyano oder jeweils gegebenenfalls substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio steht,
- Y für Wasserstoff, Halogen Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy,
 Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Halogenalkyl, Halogenalkenyl,
 Halogenalkoxy, Halogenalkenyloxy, Nitro oder Cyano steht,
- für Wasserstoff, Halogen, Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Halogenalkenyl, Alkoxy, Alkenyloxy, Halogenalkoxy, Halogenalkenyloxy, Nitro oder Cyano steht, wobei mindestens einer der Substituenten X und Y nicht für Halogen, Alkyl, Halogenalkyl oder Alkoxy steht,

Het für eine der Gruppen

15

20

25

worin

A für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gesättigtes oder ungesättigtes, gegebenenfalls substituiertes Cycloalkyl, in welchem gegebenenfalls mindestens ein Ringatom durch ein Heteroatom ersetzt ist, oder jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Cyano oder Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

10 B für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten, gegebenenfalls mindestens ein Heteroatom enthaltenden unsubstituierten oder substituierten Cyclus stehen,

D für Wasserstoff oder gegebenenfalls substituierte Reste aus der Reihe Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein Heteroatom unterbrochenes gesättigtes oder ungesättigtes Cycloalkyl, Arylalkyl, Aryl, Hetarylalkyl oder Hetaryl steht oder

A und D gemeinsam mit den Atomen an die sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls mindestens ein Heteroatom enthaltenden unsubstituierten oder substituierten Cyclus stehen,

G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

10

15

steht,

worin

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht,
 - M für Sauerstoff oder Schwefel steht,
 - R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen, Alkyl oder Alkoxy substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,
 - R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,
 - R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio und für jeweils gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,
- 20 R⁶ und R⁷ unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen, oder gemeinsam mit dem

10

N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen.

Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.

Unter Einbeziehung der Bedeutungen (1) bis (6) der Gruppe Het ergeben sich folgende hauptsächliche Strukturen (I-1) bis (I-6):

15 worin

A, B, D, G, X, Y und Z die oben angegebene Bedeutung haben.

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-1-a) bis (I-1-g), wenn Het für die Gruppe (1) steht,

(I-1-e):

(I-1-d):

$$B \xrightarrow{A} N \xrightarrow{D} O$$
 R^3-SO_2-O
 $Z \xrightarrow{} Z$

(I-1-1):

worin

A, B, D, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-2-a) bis (I-2-g), wenn Het für die Gruppe (2) steht,

(I-2-a):

(I-2-c):

(I-2-e):

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(I-2-b):

$$R^{1}$$
 A
 O
 X
 Y

(I-2-d):

$$\begin{array}{c|c} A & O-SO_2-R^3 \\ \hline A & X \\ \hline O & Z \end{array}$$

(I-2-f):

$$\begin{array}{c|c}
A & X \\
O & Z
\end{array}$$

(I-2-g):

$$\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\$$

worin

A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebene Bedeutung haben.

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-3-a) bis (I-3-g), wenn Het für die Gruppe (3) steht,

(I-3-a):

10

(1-3-c):

(I-3-b):

$$\begin{array}{c|c}
 & O \\
 & A \\
 & A \\
 & S \\
 & O \\
 & Z
\end{array}$$

(I-3-d):

$$\begin{array}{c|c}
A & O-SO_2-R^3 \\
X & X \\
O & Z
\end{array}$$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(l-3-f):

$$\begin{array}{c|c}
 & O - E \\
 & X \\
 & S - V
\end{array}$$

(I-3-g):

$$\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\$$

5 worin

A, B, E, L, M, X, Y, Z, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^7 die oben angegebenen Bedeutung besitzen.

Die Verbindungen der Formel (I-4) können in Abhängigkeit von der Stellung des Substituenten G in den zwei isomeren Formen (I-4)_a und (I-4)_b vorliegen,

10

was durch die gestrichelte Linie in der Formel (I-4) zum Ausdruck gebracht werden soll:

Die Verbindungen der Formeln (1-4)_a und (1-4)_b können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der

10

Formel (I-4)_a und (I-4)_b lassen sich gegebenenfalls in an sich bekannter Weise durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden.

Aus Gründen der besseren Übersichtlichkeit wird im folgenden jeweils nur eines der möglichen Isomeren aufgeführt. Das schließt nicht aus, daß die Verbindungen gegebenenfalls in Form der Isomerengemische oder in der jeweils anderen isomeren Form vorliegen können.

Unter Einbeziehung der verschiedenen Bedeutungen (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-4-b) bis (I-4-g), wenn Het für die Gruppe (4) steht,

(I-4-c):

$$\begin{array}{c|c}
A & O & X \\
N & & & \\
D & N & & \\
D & & & \\
& & & \\
M - R^2
\end{array}$$

(I-4-d):

$$R^3-SO_2-O$$
 Z
 X
 Z
 Y

$$(I-4-e):$$

$$\begin{array}{c|c}
A & D \\
N-N & D
\end{array}$$

$$\begin{array}{c|c}
A & D \\
N-N & Z
\end{array}$$

$$\begin{array}{c|c}
X & Z
\end{array}$$

15 (I-4-f):

(I-4-g):

worin

A, D, E, L, M, X, Y, Z, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^7 die oben angegebenen Bedeutungen besitzen.

Die Verbindungen der Formel (I-5) können in Abhängigkeit von der Stellung des Substituenten G in den zwei isomeren Formen der Formeln (I-5)_a und (I-5)_b vorliegen,

$$D \xrightarrow{A} O X$$

$$C = A O X$$

$$C =$$

was durch die gestrichelte Linie in der Formel (I-5) zum Ausdruck gebracht werden soll.

- Die Verbindungen der Formeln (I-5)_a und (I-5)_b können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formeln (I-5)_a und (I-5)_b lassen sich gegebenenfalls in an sich bekannter Weise durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden.
- Aus Gründen der besseren Übersichtlichkeit wird im folgenden jeweils nur eines der möglichen Isomeren aufgeführt. Das schließt nicht aus, daß die Verbindungen gegebenenfalls in Form der Isomerengemische oder in der jeweils anderen isomeren Form vorliegen können.
- Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-5-a) bis (I-5-g), wenn Het für die Gruppe (5) steht,

(I-5-c):

$$R^2-M$$
 D
 O
 X
 Z

5 (I-5-e):

(I-5-g):

worin

(I-5-b):

(I-5-d):

(I-5-f):

10 A, D, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.

Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (1-6-a) bis (I-6-g), wenn Het für die Gruppe (6) steht,

(I-6-a): (l-6-b):

(I-6-e): (I-6-f):

$$\begin{array}{c}
A \\
> = N \\
S \\
> = N
\\
X \\
E-O
\end{array}$$

$$\begin{array}{c}
X \\
E-O
\end{array}$$

(I-6-g):

$$\begin{array}{c}
A \\
S \\
S \\
R^7 - N, \\
R^6
\end{array}$$

worin

A, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.

Weiterhin wurde gefunden, daß man die neuen Verbindungen der Formel (I) nach einem der im folgenden beschriebenen Verfahren erhält:

(A) Man erhält substituierte 3-Phenylpyrrolidin-2,4-dione bzw. deren Enole der Formel (I-1-a)

10

in welcher

A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

wenn man

N-Acylaminosäureester der Formel (II)

in welcher

A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

und

5 R⁸ für Alkyl (bevorzugt C₁-C₆-Alkyl) steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B) Außerdem wurde gefunden, daß man substituierte 3-Phenyl-4-hydroxy-Δ³-dihydrofuranon-Derivate der Formel (1-2-a)

in welcher

A, B, X, Y und Z die oben angegebenen Bedeutungen haben,

erhält, wenn man

Carbonsäureester der Formel (III)

$$A CO_2R^8$$

$$X (III)$$

in welcher

A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(C) Weiterhin wurde gefunden, daß man substituierte 3-Phenyl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I-3-a)

in welcher

10 A, B, X, Y und Z die oben angegebenen Bedeutungen haben,

erhält, wenn man

B-Ketocarbonsäureester der Formel (IV)

$$A \rightarrow B$$
 $X \rightarrow X$
 $X \rightarrow$

in welcher

A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben und

W für Wasserstoff, Halogen, Alkyl (bevorzugt C_1 - C_6 -Alkyl) oder Alkoxy (bevorzugt C_1 - C_8 -Alkoxy) steht,

- in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Säure intramolekular cyclisiert.
 - (E) Weiterhin wurde gefunden, daß man die neuen substituierten 3-Phenylpyron-Derivate der Formel (I-5-a)

in welcher

10 A, D, X, Y und Z die oben angegebenen Bedeutungen haben,

erhält, wenn man

Carbonylverbindungen der Formel (VIII)

in welcher

15 A und D die oben angegebenen Bedeutungen haben,

oder deren Silylenolether der Formel (VIIIa)

CHA
$$II$$
 $D-C-OSi(R^8)_3$
(VIIIa)

in welcher

A, D und R⁸ die oben angegebene Bedeutung haben,

mit Ketensäurehalogeniden der Formel (V)

in welcher

5 X, Y und Z die oben angegebenen Bedeutungen haben und

Hal für Halogen (vorzugsweise für Chlor oder Brom) steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.

(F) Weiterhin wurde gefunden, daß man die neuen substituierten Phenyl-1,3-thiazin-Derivate der Formel (I-6-a)

$$A \xrightarrow{N} O X$$

$$S \xrightarrow{OH} Z$$

$$(I-6-a)$$

in welcher

A, X, Y und Z die oben angegebenen Bedeutungen haben,

erhält, wenn man Thioamide der Formel (IX)

$$\begin{array}{c} & & & S \\ & & || \\ & & H_2 \text{N-C-A} \end{array} \tag{IX}$$
 in welcher

A die oben angegebene Bedeutung hat,

15

mit Ketensäurehalogeniden der Formel (V)

in welcher

Hal, X, Y und Z die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.

Außerdem wurde gefunden,

(G) daß man die Verbindungen der oben gezeigten Formeln (I-1-b) bis (I-3-b), (I-5-b) und (I-6-b), in welchen A, B, D, R¹, X, Y und Z die oben angebenen Bedeutungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-3-a), (I-5-a) und (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, und daß man Verbindungen der oben gezeigten Formel (I-4-b), in welcher A, D, R¹, X, Y und Z die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (I-4-a)

$$\begin{array}{c|c}
A & O & X \\
I & O & X
\end{array}$$

$$\begin{array}{c|c}
O & X \\
O & Z
\end{array}$$

$$\begin{array}{c|c}
Y & (I-4-a)
\end{array}$$

in welcher

A, D, X, Y und Z die oben angegebene Bedeutung haben, jeweils

α) mit Säurechloriden der Formel (X)

$$Hal \bigvee_{Q} R^{1}$$
 (X)

in welcher

R¹ die oben angegebene Bedeutung hat und

Hal für Halogen (insbesondere Chlor oder Brom) steht

5 oder

B) mit Carbonsäureanhydriden der Formel (XI)

$$R^1$$
-CO-O-CO- R^1 (XI)

in welcher

R¹ die oben angegebene Bedeutung hat,

- gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;
 - (H) daß man die Verbindungen der oben gezeigten Formeln (I-1-c) bis (I-6-c), in welchen A, B, D, R², M, X, Y und Z die oben angegebenen Bedeutungen haben und L für Sauerstoff steht, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils

mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (XII)

$$R^2$$
-M-CO-Cl (XII)

in welcher

15

R² und M die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

- (I) daß man Verbindungen der oben gezeigten Formeln (I-1-c) bis (I-6-c), in welchen A, B, D, R², M, X, Y und Z die oben angegebenen Bedeutungen haben und L für Schwefel steht, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
 - α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (XIII)

 $\begin{array}{ccc}
CI & M-R^2 \\
S & (XIII)
\end{array}$

in welcher

M und R² die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

15 oder

B) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (XIV)

 R^2 -Hai (XIV)

in welcher

20 R² die oben angegebene Bedeutung hat und

Hal für Chlor, Brom oder Iod steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base umsetzt,

15

(J) daß man Verbindungen der oben gezeigten Formeln (I-1-d) bis (I-6-d), in welchen A, B, D, R³, X, Y und Z die oben angegebenen Bedeutungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils

mit Sulfonsäurechloriden der Formel (XV)

$$R^3$$
-SO₂-Cl (XV)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

(K) daß man Verbindungen der oben gezeigten Formeln (I-1-e) bis (I-6-e), in welchen A, B, D, L, R⁴, R⁵, X, Y und Z die oben angegebenen Bedeutungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils

mit Phosphorverbindungen der Formel (XVI)

in welcher

20 L, R⁴ und R⁵ die oben angegebenen Bedeutungen haben und

Hal für Halogen (insbesondere Chlor oder Brom) steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

10

20

(L) daß man Verbindungen der oben gezeigten Formeln (I-1-f) bis (I-6-f), in welchen A, B, D, E, X, Y und Z die oben angegebenen Bedeutungen haben, erhält, wenn man Verbindungen der Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils

mit Metallverbindungen oder Aminen der Formeln (XVII) oder (XVIII)

$$Me(OR^{10})_t$$
 (XVII) R^{10} R^{11} (XVIII)

in welchen

- Me für ein ein- oder zweiwertiges Metall (bevorzugt ein Alkali- oder Erdalkalimetall wie Lithium, Natrium, Kalium, Magnesium oder Calcium),
 - t für die Zahl 1 oder 2 und
 - R^{10} , R^{11} , R^{12} unabhängig voneinander für Wasserstoff oder Alkyl (bevorzugt C_1 - C_8 -Alkyl) stehen,
- gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,
 - (M) daß man Verbindungen der oben gezeigten Formeln (I-1-g) bis (I-6-g), in welchen A, B, D, L, R⁶, R⁷, X, Y und Z die oben angegebenen Bedeutungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
 - α) mit Isocyanaten oder Isothiocyanaten der Formel (XIX)

$$R^6-N=C=L$$
 (XIX)

in welcher

20

R⁶ und L die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt oder

ß) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel
 (XX)

$$R^6$$
 CI (XX)

in welcher

L, R⁶ und R⁷ die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt.

Die erfindungsgemäßen Verbindungen der Formeln (I-1-a), (I-2-a), (I-3-a), (I-5-a) und (I-6-a) sind somit wichtige Zwischenprodukte für die Herstellung der erfindungsgemäßen Verbindungen der Formeln (I-1), (I-2), (I-3), (I-4), (I-5) und (I-6), in welchen G jeweils für eine der Gruppen b), c), d), e), f) oder g) steht.

Weiterhin wurde gefunden, daß die neuen Verbindungen der Formel (I) eine sehr gute Wirksamkeit als Schädlingsbekämpfungsmittel, vorzugsweise als Insektizide, Akarizide und Herbizide aufweisen.

Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert:

steht <u>bevorzugt</u> für Halogen, C_1 - C_6 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyloxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Alkylsulfinyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Halogenalkoxy, C_3 - C_6 -Halogenalkenyloxy, Nitro, Cyano oder jeweils

gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio.

- steht <u>bevorzugt</u> für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Halogenalkoxy, C₃-C₆-Halogenalkenyloxy, Nitro oder Cyano.
- steht <u>bevorzugt</u> für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Halogenalkenyloxy, Nitro oder Cyano.

Het steht bevorzugt für eine der Gruppen

steht <u>bevorzugt</u> für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-

Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, Cyano oder Nitro substituiertes C_6 - oder C_{10} -Aryl, Hetaryl mit 5 bis 6 Ringatomen oder C_6 - oder C_{10} -Aryl- C_1 - C_6 -alkyl.

- B steht <u>bevorzugt</u> für Wasserstoff, C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy-C₁-C₆-alkyl oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, stehen <u>bevorzugt</u> für gesättigtes oder ungesättigtes C₃-C₁₀-Cycloalkyl, in welchem gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls einfach oder mehrfach durch C₁-C₈-Alkyl, C₃-C₁₀-Cycloalkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylthio, Halogen oder Phenyl substituiert ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>bevorzugt</u> für C₃-C₆-Cycloalkyl, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- und/oder Schwefelatome enthaltende Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Ring bildet oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>bevorzugt</u> für C₃-C₈-Cycloalkyl oder C₅-C₈-Cycloalkenyl, in welchen zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für jeweils gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiertes C₃-C₆-Alkandiyl, C₃-C₆-Alkendiyl oder C₄-C₆-Alkandiendiyl stehen, worin gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
- steht <u>bevorzugt</u> für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder

15

jeweils gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Hetaryl mit 5 oder 6 Ringatomen, Phenyl- C_1 - C_6 -alkyl mit 5 oder 6 Ringatomen oder

A und D stehen gemeinsam <u>bevorzugt</u> für jeweils gegebenenfalls substituiertes C₃-C₆-Alkandiyl oder C₃-C₆-Alkendiyl,

wobei als Substituenten jeweils in Frage kommen:

Halogen, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_1 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio, C_3 - C_7 -Cycloalkyl, Phenyl oder Benzyloxy, oder eine weitere C_3 - C_6 -Alkandiylgruppierung, die gegebenenfalls durch C_1 - C_6 -Alkyl substituiert ist oder in der gegebenenfalls zwei benachbarte Substituenten mit den Kohlenstoffatomen, an die sie gebunden sind, einen weiteren gesättigten oder ungesättigten Cyclus mit 5-bis 6-Ringatomen bilden, der Sauerstoff oder Schwefel enthalten kann, oder worin gegebenenfalls eine der folgenden Gruppen

$$c^{OR^{15}}_{OR^{16}}$$
; $c^{SR^{15}}_{SR^{16}}$; $c^{R^{17}}_{OR^{18}}$;

enthalten ist.

steht bevorzugt im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

5 in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht.
- steht <u>bevorzugt</u> für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls mindestens ein Ringglied durch Sauerstoff und/oder Schwefel ersetzt ist,
- für gegebenenfalls durch Halogen, Cyano, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylsulfonyl substituiertes Phenyl,
- für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes Phenyl-C₁-C₆-alkyl,

für gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes 5- oder 6-gliedriges Hetaryl,

für gegebenenfalls durch Halogen oder C_1 - C_6 -Alkyl substituiertes Phenoxy- C_1 - C_6 -alkyl oder

für gegebenenfalls durch Halogen, Amino oder C_1 - C_6 -Alkyl substituiertes 5- oder 6-gliedriges Hetaryloxy- C_1 - C_6 -alkyl.

steht <u>bevorzugt</u> für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl,

für gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy substituiertes C_3 - C_8 -Cycloalkyl oder

- für jeweils gegebenenfalls durch Halogen, Cyano, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl oder Benzyl,
- steht <u>bevorzugt</u> für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,
- R⁴ und R⁵ stehen <u>bevorzugt</u> unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈-alkyl)amino, C₁-C₈-Alkylthio, C₂-C₈-Alkenylthio, C₃-C₇-Cycloalkylthio oder für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio
- R⁶ und R⁷ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₈-Halogenalkyl, C₁-C₈-Alkyl oder C₁-C₈-Alkoxy substituiertes Phenyl, gegebenenfalls durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₈-Alkoxy substituiertes Benzyl oder zu-

sammen für einen C_3 - C_6 -Alkylenrest, in welchem gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist.

- steht bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder C₁-C₈-Alkoxy, für gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist, oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₄-alkyl oder Phenyl-C₁-C₄-alkoxy.
 - R¹⁴ steht <u>bevorzugt</u> für Wasserstoff oder C₁-C₈-Alkyl oder
 - R¹³ und R¹⁴ stehen gemeinsam <u>bevorzugt</u> für C₄-C₆-Alkandiyl.
 - R¹⁵ und R¹⁶ sind gleich oder verschieden und stehen <u>bevorzugt</u> für C₁-C₆-Alkyl oder
- 15 R¹⁵ und R¹⁶ stehen gemeinsam <u>bevorzugt</u> für einen C₂-C₄-Alkandiylrest, der gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder durch gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.
- 20 R¹⁷ und R¹⁸ stehen unabhängig voneinander <u>bevorzugt</u> für Wasserstoff, für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder
- R¹⁷ und R¹⁸ stehen gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für eine Carbonylgruppe oder für gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₅-C₇-Cycloalkyl, in dem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.

- R^{19} und R^{20} stehen unabhängig voneinander <u>bevorzugt</u> für C_1 - C_{10} -Alkyl, C_2 - C_{10} -Alkenyl, C_1 - C_{10} -Alkoxy, C_1 - C_{10} -Alkylamino, C_3 - C_{10} -Alkenylamino, Di- $(C_1$ - C_{10} -alkyl)amino oder Di- $(C_3$ - C_{10} -alkenyl)amino.
- Steht besonders bevorzugt für Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy, C₁-C₄-Alkyl-thio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkyl, C₃-C₄-Halogenalkenyloxy, Nitro, Cyano oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio.
- Y steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkoxy, C₃-C₄-Halogenalkoxy, C₃-C₄-Halogenalkoxy, Nitro oder Cyano.
 - z steht <u>besonders bevorzugt</u> für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₃-C₄-Halogenalkenyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy, C₁-C₄-Halogenalkoxy, C₃-C₄-Halogenalkenyloxy, Nitro oder Cyano.

Het steht besonders bevorzugt für eine der Gruppen

A
$$O-G$$
B $O-G$
C $O-$

- steht besonders bevorzugt für Wasserstoff, jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₁-C₈-Alkoxy-C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₈-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Thiazolyl, Thienyl oder Phenyl-C₁-C₄-alkyl.
 - B steht <u>besonders bevorzugt</u> für Wasserstoff, C₁-C₁₀-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, stehen besonders bevorzugt für gesättigtes oder ungesättigtes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₃-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor, Chlor oder Phenyl substituiert ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen besonders bevorzugt für C₅-C₆-Cycloalkyl, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- oder Schwefelatome enthaltende Alkylendiyl- oder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Ring bildet oder
 - A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>besonders bevorzugt</u> für C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, in welchen zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden

sind, für jeweils gegebenenfalls durch C_1 - C_5 -Alkyl, C_1 - C_5 -Alkoxy, Fluor, Chlor oder Brom substituiertes C_3 - C_5 -Alkandiyl, C_3 - C_5 -Alkendiyl oder Butadiendiyl stehen, worin gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.

steht besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl oder C₁-C₈-Alkylthio-C₂-C₆-alkyl, für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiertes C₃-C₇-Cyclo-alkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Imidazolyl, Pyridyl, Thiazolyl, Pyrazolyl, Pyrimidyl, Pyrrolyl, Thienyl, Triazolyl oder Phenyl-C₁-C₄-alkyl oder

A und D stehen gemeinsam <u>besonders bevorzugt</u> für jeweils gegebenenfalls substituiertes C₃-C₅-Alkandiyl oder C₃-C₅-Alkendiyl, wobei als Substituenten jeweils in Frage kommen:

Fluor, Chlor, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy oder worin gegebenenfalls eine der folgenden Gruppen:

$$c^{OR^{15}}_{OR^{16}}$$
 oder $c^{SR^{15}}_{SR^{16}}$

enthalten ist;

oder A und D stehen (im Fall der Verbindungen der Formel (I-1)) gemeinsam mit den Atomen, an die sie gebunden sind, für eine der Gruppen AD-1 bis AD-27

AD-1 AD-2 AD-3

AD-1 AD-2 AD-3

AD-4 AD-5 AD-6

5

AD-7 AD-8 AD-9

$$AD-10 AD-11 AD-12$$

$$AD-10 AD-13 AD-14 AD-15$$

AD-16 AD-17 AD-18

$$AD-16 AD-17 AD-18$$

$$AD-19 AD-20 AD-21$$

5 G steht <u>besonders bevorzugt</u> im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

in welchen

10 E für ein Metallionäquivalent oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht.

steht besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder gegebenenfalls durch Fluor, Chlor, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind,

20

25

für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkyl-thio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl oder C_1 - C_3 -Halogenalkoxy substituiertes Phenyl- C_1 - C_4 -alkyl,

für jeweils gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Pyrazolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl,

für gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Phenoxy-C₁-C₅-alkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Amino oder C_1 - C_4 -Alkyl substituiertes Pyridyloxy- C_1 - C_5 -alkyl, Pyrimidyloxy- C_1 - C_5 -alkyl oder Thiazolyloxy- C_1 - C_5 -alkyl.

steht <u>besonders bevorzugt</u> für jeweils gegebenenfalls durch Fluor oder

Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆
alkyl, Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl,

für gegebenenfalls durch Fluor, Chlor, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes C_3 - C_7 -Cycloalkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkyl oder C_1 - C_3 -Halogenalkoxy substituiertes Phenyl oder Benzyl.

R³ steht <u>besonders bevorzugt</u> für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,

R⁴ und R⁵ stehen <u>besonders bevorzugt</u> unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkylamino, Di-(C₁-C₆-alkyl)amino, C₁-C₆-Alkylthio, C₃-

 C_4 -Alkenylthio, C_3 - C_6 -Cycloalkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Alkyl oder C_1 - C_3 -Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.

- R⁶ und R⁷ stehen unabhängig voneinander <u>besonders bevorzugt</u> für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, für gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl, oder zusammen für einen C₃-C₆-Alkylenrest, in welchem gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist.
- steht besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, für gegebenenfalls durch Fluor, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₃-alkyl oder Phenyl-C₁-C₂-alkyloxy.
 - R¹⁴ steht <u>besonders bevorzugt</u> für Wasserstoff oder C₁-C₆-Alkyl oder
 - R^{13} und R^{14} stehen gemeinsam besonders bevorzugt für C_4 - C_6 -Alkandiyl.
 - R^{15} und R^{16} sind gleich oder verschieden und stehen besonders bevorzugt für C_1 - C_4 -Alkyl oder
- 25 R¹⁵ und R¹⁶ stehen zusammen <u>besonders bevorzugt</u> für einen C₂-C₃-Alkandiylrest, der gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder durch gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.

20

- X steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, Vinyl, Ethinyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Allyloxy, Methallyloxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Methylthio, Methylsulfinyl, Methylsulfonyl, Nitro, Cyano oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Propoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio.
- steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom,
 Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Vinyl,
 Ethinyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Allyloxy, Methallyloxy,
 Trifluormethyl, Methylthio, Methylsulfinyl, Methylsulfonyl, Difluormethoxy, Trifluormethoxy, Nitro oder Cyano.
- steht ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom,
 Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Vinyl,
 Ethinyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Allyloxy, Methallyloxy,
 Difluormethoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano.

Het steht ganz besonders bevorzugt für eine der Gruppen

- A steht ganz besonders bevorzugt für Wasserstoff, jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₆-Alkylthio-C₁-C₄-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl.
- B steht ganz besonders bevorzugt für Wasserstoff, C₁-C₈-Alkyl oder C₁-C₄-Alkoxy-C₁-C₂-alkyl oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, stehen ganz besonders bevorzugt für gesättigtes oder ungesättigtes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, Cyclopropyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für C₅-C₆-Cycloalkyl, welches durch eine gegebenenfalls ein Sauerstoff- oder Schwefelatom enthaltende Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis sechsgliedrigen Ring bildet oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, in dem zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für C₃-C₄-Alkandiyl, C₃-C₄-Alkendiyl oder Butadiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
 - D steht ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-

20

Alkinyl, C_1 - C_6 -Alkoxy- C_2 - C_4 -alkyl, Poly- C_1 - C_4 -alkoxy- C_2 - C_4 -alkyl, C_1 - C_4 -Alkylthio- C_2 - C_4 -alkyl oder C_3 - C_6 -Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Thienyl oder Benzyl,

oder

A und D stehen gemeinsam ganz besonders bevorzugt für jeweils gegebenenfalls substituiertes C₃-C₄-Alkandiyl oder C₃-C₄-Alkendiyl, worin gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist und welche jeweils gegebenenfalls durch Fluor, Chlor, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy substituiert sind oder

worin jeweils gegebenenfalls eine der folgenden Gruppen

$$\begin{array}{cccc} C & OR^{15} & OR^{16} & OR^{16} & C & SR^{15} & OR^{16} & OR^{16}$$

enthalten ist,

oder A und D stehen im Fall der Verbindungen der Formel (I-1) gemeinsam mit den Atomen, an die sie gebunden sind, für eine der folgenden Gruppen:

Steht ganz besonders bevorzugt, im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht,

- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht.
- steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind,
- für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl oder Ethylsulfonyl substituiertes Phenyl,
 - für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Benzyl,

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanyl, Thienyl, Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl,

für gegebenenfalls durch Fluor, Chlor, Methyl oder Ethyl substituiertes
Phenoxy-C₁-C₄-alkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl oder Thiazolyloxy- C_1 - C_4 -alkyl.

steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder

Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆
alkyl, Poly-C₁-C₄-alkoxy-C₂-C₆-alkyl,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C_3 - C_6 -Cycloalkyl,

oder für jeweils gegebenenfalls durch Fluor, Chlor, Cyano, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl oder Benzyl.

- steht ganz besonders bevorzugt für gegebenenfalls durch Fluor oder Chlor substituiertes Methyl, Ethyl, Propyl, Isopropyl oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Isopropoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,
- R⁴ und R⁵ stehen ganz besonders bevorzugt unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, C₁-C₄-Alkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio oder C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio.
- 15 R⁶ und R⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy substituiertes Benzyl, oder zusammen für einen C₅-C₆-Alkylenrest, in welchem gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist.
- steht ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, für C₃-C₆-Cycloalkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, iso-Propoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₂-alkyl oder Benzyloxy.
- 30 R^{14} steht ganz besonders bevorzugt für Wasserstoff oder C_1 - C_4 -Alkyl oder R^{13} und R^{14} stehen gemeinsam ganz besonders bevorzugt für C_4 - C_6 -Alkandiyl.

25

- R¹⁵ und R¹⁶ sind gleich oder verschieden ganz besonders bevorzugt für Methyl oder Ethyl oder
- R¹⁵ und R¹⁶ stehen zusammen ganz besonders bevorzugt für einen C₂-C₃-Alkandiylrest, der gegebenenfalls durch Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl oder durch gegebenenfalls durch Fluor, Chlor, Methoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.

Dabei gilt jeweils, daß mindestens einer der Substituenten X und Y nicht für Halogen, Alkyl, Halogenalkyl oder Alkoxy steht.

- Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.
- Erfindungsgemäß <u>bevorzugt</u> werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.
 - Erfindungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
- 20 Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.
 - Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.
 - Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (I-1-a) genannt:

<u>Tabelle 1:</u> $X = CH_3$, Y = CN, $Z = CH_3$.

A	В	D
CH ₃	Н	Н
C ₂ H ₅	Н	Н
C ₃ H ₇	Н	Н
i-C ₃ H ₇	Н	Н
C ₄ H ₉	Н	Н
i-C ₄ H ₉	Н	Н
s-C ₄ H ₉	Н	Н
t-C ₄ H ₉	Н	Н
CH ₃	CH ₃	Н
C₂H₅	CH ₃	Н
C ₃ H ₇	CH ₃	Н
i-C ₃ H ₇	CH ₃	Н
C₄H ₉	CH ₃	Н
i-C ₄ H ₉	CH ₃	Н
s-C ₄ H ₉	CH ₃	Н

A	В	D
t-C ₄ H ₉	CH ₃	Н
C ₂ H ₅	C ₂ H ₅	Н
C ₃ H ₇	C ₃ H ₇	Н
Δ_	CH ₃	Н
	CH ₃	Н
\bigcirc	СН ₃ .	Н
-(CH ₂) ₂ -		Н
-(CH ₂) ₄ -		Н
-(CH ₂) ₅ -		Н
-(CH ₂) ₆ -		Н
-(CH ₂) ₇ -		Н
-(CH ₂) ₂ -O-(CH ₂) ₂ -		Н
-(CH ₂) ₂ -S-(CH ₂) ₂ -		Н
-CH ₂ -CHCH ₃ -(CH ₂) ₃ -		Н
-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н
-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		Н
-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		Н
-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		Н
-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		Н

Α	В	D
-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -		Н
-(CH ₂) ₂ -CHC	OC ₃ H ₇ -(CH ₂) ₂ -	Н
-(CH ₂) ₂ -CHi-	-C ₃ H ₇ -(CH ₂) ₂ -	Н
-(CH ₂) ₂ -C(C	CH ₃) ₂ -(CH ₂) ₂ -	Н
-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	Н
-сн ₂ -сн-	(CH ₂) ₂ —CH— -CH ₂ —	Н
—CH₂—CH— —(C	CH-CH ₂	Н
— CH ₂ — CH——(CH	CH — (CH ₂) ₂ —	Н
		Н
		Н
-(C	CH ₂) ₃ -	Н
-(0	CH ₂) ₄ -	Н
-CH ₂ -CH	HCH ₃ -CH ₂ -	Н
-CH ₂ -CI	H ₂ -CHCH ₃ -	Н

A		
A	В	D
-CH ₂ -CHCH ₃ -CHCH ₃ -		Н
-CH ₂ -	S-CH ₂ -	Н
	-(CH ₂) ₂ -	Н
-(CH ₂) ₂ -S-CH ₂ -		Н
—CH ₂ —CH——CH—		Н
Н	CH ₃	Н
Н	C ₂ H ₅	Н
Н	C ₃ H ₇	Н
Н	i-C ₃ H ₇	Н
Н	Δ_	Н
Н		н
Н	<u> </u>	Н
CH ₃	CH ₃	Н
CH ₃	C ₂ H ₅	Н
CH ₃	C ₃ H ₇	Н
CH ₃	i-C ₃ H ₇	Н
CH ₃	_	Н

A	В	D
CH ₃		Н
CH₃		Н
C ₂ H ₅	CH ₃	Н
C ₂ H ₅	C ₂ H ₅	Н

- Tabelle 2: A, B und D wie in Tabelle 1 angegeben $X = C_2H_5$, Y = CN, $Z = CH_3$
- <u>Tabelle 3:</u> A, B und D wie in Tabelle 1 angegeben $X = C_2H_5$; Y = CN, $Z = C_2H_5$
- 5 Tabelle 4: A, B und D wie in Tabelle 1 angegeben X = CN; $Y = CH_3$, $Z = CH_3$
 - <u>Tabelle 5:</u> A, B und D wie in Tabelle 1 angegeben X = CN; $Y = C_2H_5$; $Z = CH_3$
- Tabelle 6: A, B und D wie in Tabelle 1 angegeben X = CN; $Y = C_2H_5$; $Z = C_2H_5$
 - Tabelle 7: A, B und D wie in Tabelle 1 angegeben X = CN; $Y = CH_3$; $Z = C_2H_5$
 - <u>Tabelle 8:</u> A, B und D wie in Tabelle 1 angegeben X = CN, $Y = CH_3$, Z = H

Tabelle 9: A, B und D wie in Tabelle 1 angegeben
$$X = CH_3$$
; $Y = CN$; $Z = H$

Tabelle 10: A, B und D wie in Tabelle 1 angegeben
$$X = CN$$
; $Y = C_2H_5$; $Z = H$

5 Tabelle 11: A, B und D wie in Tabelle 1 angegeben
$$X = C_2H_5$$
; $Y = CN$; $Z = H$

Tabelle 12: A, B und D wie in Tabelle 1 angegeben
$$X = OCHF_2$$
; $Y = CH_3$; $Z = CH_3$

Tabelle 13: A, B und D wie in Tabelle 1 angegeben
$$X = O-CH_2CF_3$$
; $Y = CH_3$; $Z = CH_3$

Tabelle 14: A, B und D wie in Tabelle 1 angegeben
$$X = OCHF_2$$
, $Y = CH_3$, $Z = H$

Tabelle 15: A, B und D wie in Tabelle 1 angegeben
$$X = OCH_2CF_3$$
; $Y = CH_3$; $Z = H$

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (1-2-a) genannt:

<u>Tabelle 16:</u> $X = CH_3$, Y = CN, $Z = CH_3$.

Α	В
CH ₃	Н
C ₂ H ₅	Н
C ₃ H ₇	Н
i-C ₃ H ₇	Н
C ₄ H ₉	Н
i-C ₄ H ₉	Н
s-C ₄ H ₉	Н
t-C₄H ₉	Н
CH ₃	CH ₃
C ₂ H ₅	CH ₃
C ₃ H ₇	CH ₃
i-C ₃ H ₇	CH ₃
C₄H ₉	CH ₃
i-C ₄ H ₉	CH ₃
s-C ₄ H ₉	CH ₃
t-C ₄ H ₉	CH ₃
C ₂ H ₅	C ₂ H ₅

Α	В	
C ₃ H ₇	C ₃ H ₇	
Δ_	CH ₃	
	CH ₃	
	CH ₃	
-(CF	I ₂) ₂	
-(CH ₂) ₄ -		
-(CH ₂) ₅ -		
-(CH ₂) ₆ -		
-(CH ₂) ₇ -		
-(CH ₂) ₂ -O-(CH ₂) ₂ -		
-(CH ₂) ₂ -S-(CH ₂) ₂ -		
-СН ₂ -СНСН ₃ -(СН ₂) ₃ -		
-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		
-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		
-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		
-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		
-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		
-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -		
-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -		

Tabelle 17: A und B wie in Tabelle 16 angegeben $X = C_2H_5$; Y = CN; $Z = CH_3$

<u>Tabelle 18:</u> A und B wie in Tabelle 16 angegeben $X = C_2H_5$; Y = CN; $Z = C_2H_5$

5 Tabelle 19: A und B wie in Tabelle 16 angegeben X = CN; $Y = CH_3$; $Z = CH_3$

Tabelle 20: A und B wie in Tabelle 16 angegeben
$$X = CN$$
; $Y = C_2H_5$, $Z = CH_3$

Tabelle 21: A und B wie in Tabelle 16 angegeben
$$X = CN$$
; $Y = C_2H_5$; $Z = C_2H_5$

5 Tabelle 22: A und B wie in Tabelle 16 angegeben
$$X = CN$$
; $Y = CH_3$; $Z = C_2H_5$

Tabelle 23: A und B wie in Tabelle 16 angegeben
$$X = CN$$
; $Y = CH_3$; $Z = H$

Tabelle 24: A und B wie in Tabelle 16 angegeben
$$X = CH_3$$
; $Y = CN$; $Z = H$

Tabelle 25: A und B wie in Tabelle 16 angegeben
$$X = CN$$
; $Y = C_2H_5$; $Z = H$

Tabelle 26: A und B wie in Tabelle 16 angegeben
$$X = C_2H_5$$
; $Y = CN$; $Z = H$

15 Tabelle 27: A und B wie in Tabelle 16 angegeben
$$X = OCHF_2$$
; $Y = CH_3$; $Z = CH_3$

Tabelle 28: A und B wie in Tabelle 16 angegeben
$$X = O-CH_2CF_3$$
; $Y = CH_3$; $Z = CH_3$

Tabelle 29: A und B wie in Tabelle 16 angegeben
$$X = OCH_2CF_3$$
; $Y = CH_3$; $Z = H$

Tabelle 30: Y und B wie in Tabelle 16 angegeben
$$X = OCH_2F$$
; $Y = CH_3$; $Z = H$

Verwendet man gemäß Verfahren (A) N-[(2-Methylthio-4-methoxy)-phenylacetyl]l-amino-4-ethyl-cyclohexan-carbonsäureethylester als Ausgangsstoff, so kann der
Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B) O-[(2-Chlor-4-sulfonylmethyl)-phenylacetyl]-hydroxyessigsäureethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahrer. (C) 2-[(2-Methoxy-4-sulfinylmethyl)-phenyl]-4-(4-methoxy)-benzylmercapto-4-methyl-3-oxo-valeriansäure-ethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

$$\begin{array}{c|c} & H_3C \\ & & \\$$

Verwendet man beispielsweise gemäß Verfahren (E) (Chlorcarbonyl)-2-[(2-methyl-thio-4-methoxy)-phenyl]-keten und Aceton als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Reaktionsschema wiedergegeben werden:

Verwendet man beispielsweise gemäß Verfahren (F) (Chlorcarbonyl)-2-[(2-methoxyl-6-methylthio)-phenyl]-keten und Thiobenzamid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (Ga) 3-[(2-Chlor-4-cyano)-phenyl]-5,5-dimethyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

$$10 \qquad \begin{array}{c} H_3C \qquad OH \qquad \\ H_3C \qquad HN \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \\$$

Verwendet man gemäß Verfahren (G) (Variante ß) 3-[(4-Chlor-2-cyano)-phenyl]-4-hydroxy-5-phenyl- Δ^3 -dihydrofuran-2-on und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (H) 8-[(2,4-Dicyano)-phenyl]-1,2-diaza-bicyclo-(4,3,0^{1,2})-nonan-7,9-dion und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (I), Variante α 3-[(2-Chlor-4-nitro)-phenyl]-4-hydroxy-6-(3-pyridyl)-pyron und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf folgendermaßen wiedergegeben werden:

Verwendet man gemäß Verfahren (K), Variante ß 5-[(2-Cyano-4-chlor)-phenyl]-6-hydroxy-2-(4-chlorphenyl)-thiazin-4-on, Schwefelkohlenstoff und Methyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

15 CI OH SMe

$$CI \rightarrow CI \rightarrow CI \rightarrow CI \rightarrow CI \rightarrow CN$$
 $CI \rightarrow CN$
 CN
 CN

Verwendet man gemäß Verfahren (J) 2-[(2-Chlor-4-sulfonylmethyl)-phenyl]-3-hydroxy-4,4-(3-methoxy)-pentamethylen- Δ^3 -dihydrofuran-2-on und Methansulfon-

10

15

säurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (K) 2-[(2-Chlor-4-cyano)-phenyl]-3-hydroxy-5,5-dimethyl- Δ^2 -pyrrolidin-2,4-dion und Methanthio-phosphonsäurechlorid-(2,2,2-tri-fluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

$$H_3C$$
 CH_3
 OCH_2CF_3
 OCH_2CF_3
 OCH_3
 OCH_3

Verwendet man gemäß Verfahren (L) 3-[(2,4-Dicyano)-phenyl]-5-cyclopropyl-5-methyl-pyrrolidin-2,4-dion und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Na(+)

$$H_3C$$
 H_3C
 H_3C

Verwendet man gemäß Verfahren (M) Variante α 3-[(2-Methylthio-4-methoxy)-phenyl]-4-hydroxy-5-tetramethylen- Δ^3 -dihydro-furan-2-on und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (M) Variante ß 3-[(2-Chlor-4-cyano)-phenyl]-5-methyl-pyrrolidin-2,4-dion und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

5
$$H_3C$$

OH CI

CN

CH₃

C

Die beim erfindungsgemäßen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

10 A, B, D, X, Y, Z und R⁸ die oben angegebene Bedeutungen haben, sind neu.

Man erhält die Acylaminosäureester der Formel (II) beispielsweise, wenn man Aminosäurederivate der Formel (XXI)

$$\begin{array}{c|c}
A & CO_2R^8 \\
B & NH
\end{array}$$
(XXI)

in welcher

5 A, B, R⁸ und D die oben angegebenen Bedeutungen haben,

mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)

in welcher

X, Y und Z die oben angegebenen Bedeutungen haben und

10 Hal für Chlor oder Brom steht,

acyliert (Chem. Reviews $\underline{52}$, 237-416 (1953); Bhattacharya, Indian J. Chem. $\underline{6}$, 341-5, 1968)

oder wenn man Acylaminosäuren der Formel (XXIII)

15 in welcher

A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

verestert (Chem. Ind. (London) 1568 (1968)).

Die Verbindungen der Formel (XXIII)

in welcher

5 A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

sind neu.

Man erhält die Verbindungen der Formel (XXIII), wenn man Aminosäuren der Formel (XXIV)

10 in welcher

A, B und D die oben angegebenen Bedeutungen haben,

mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)

in welcher

15 X, Y und Z die oben angegebenen Bedeutungen haben und

Hal für Chlor oder Brom steht,

nach Schotten-Baumann acyliert (Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1977, S. 505).

Die Verbindungen der Formel (XXII) sind teilweise bekannt oder lassen sich nach bekannten Verfahren darstellen (s. z.B. H. Henecka, Houben-Weyl, Methoden der Organischen Chemie, Bd. 8, S. 467-469 (1952)).

Verbindungen der Formel (XXII-a)

in welcher

Hal für Chlor oder Brom steht und

10 Y und Z die oben angegebenen Bedeutungen haben, aber nicht gleichzeitig für Wasserstoff stehen,

sind neu.

Man erhält die Verbindungen der Formel (XXII-a) beispielsweise, indem man substituierte Phenylessigsäuren der Formel (XXVIII-a)

15
$$Y \longrightarrow CO_2H$$
 (XXVIII-a)

in welcher

Y und Z die oben angegebene Bedeutung haben,

mit Halogenierungsmitteln (z.B. Thionylchlorid, Thionylbromid, Oxalylchlorid, Phosgen, Phosphortrichlorid, Phosphortribromid oder Phosphorpentachlorid) gege-

benenfalls in Gegenwart eines Verdünnungsmittels (z.B. gegebenenfalls chlorierten aliphatischen oder aromatischen Kohlenwasserstoffen wie Toluol oder Methylen-chlorid) bei Temperaturen von -20°C bis 150°C, bevorzugt von -10°C bis 100°C, umsetzt.

5 Die Verbindungen der Formel (XXVIII-a) sind neu.

Man erhält die Verbindungen der Formel (XXVIII-a) beispielsweise, indem man substituierte Phenylessigsäureester der Formel (XXX-a)

$$\begin{array}{c} CN \\ Y - \begin{array}{c} \\ \\ \\ Z \end{array} \\ CO_2R^8 \end{array}$$
 (XXX-a)

in welcher

15

10 Y, Z und R⁸ die oben angegebene Bedeutung haben,

in Gegenwart einer Säure (z.B. einer anorganischen Säure wie Chlorwasserstoffsäure) oder einer Base (z.B. eines Alkalihydroxids wie Natrium- oder Kaliumhydroxid) und gegebenenfalls eines Verdünnungsmittels (z.B. eines wässrigen Alkohols wie Methanol oder Ethanol) bei Temperaturen zwischen 0°C und 150°C, bevorzugt zwischen 20°C und 100°C, hydrolysiert.

Die Verbindungen der Formel (XXX-a) sind neu.

Man erhält Verbindungen der Formel (XXX-a)

$$Y \longrightarrow Z O R^8$$
 (XXX-a)

in welcher

20 Y, Z und R⁸ die oben angegebene Bedeutung haben,

wenn man ortho-Halogenphenylessigsäureester der Formel (XXXIII-a)

in welcher

Y, Z und R⁸ die oben angegebene Bedeutung haben, und

5 Hal für Chlor, Brom, Iod, insbesondere für Brom steht,

mit Kupfercyanid in Gegenwart eines Verdünnungsmittels wie z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Sulfolan bei Temperaturen von 50°C bis 250°C, vorzugsweise bei 80°C bis 200°C, umsetzt.

Die Verbindungen der Formel (XXXIII), in welcher Y und Z für Alkyl stehen, sind Gegenstand der deutschen Patentanmeldung der Anmelderin mit dem Aktenzeichen 19523850.8 vom 30.06.1995.

Verbindungen der Formel (XXII-b)

in welcher

15 Hal für Chlor oder Brom steht und

X und Z die oben angegebenen Bedeutungen haben,

sind neu.

Man erhält die Verbindungen der Formel (XXII-b) beispielsweise, indem man substituierte Phenylessigsäuren der Formel (XXVIII-b)

$$NC \xrightarrow{X} CO_2H$$
 (XXVIII-b)

in welcher

10

20

5 X und Z die oben angegebene Bedeutung haben,

mit Halogenierungsmitteln (z.B. Thionylchlorid, Thionylbromid, Oxalylchlorid, Phosgen, Phosphortrichlorid, Phosphortribromid oder Phosphorpentachlorid) gegebenenfalls in Gegenwart eines Verdünnungsmittels (z.B. gegebenenfalls chlorierten aliphatischen oder aromatischen Kohlenwasserstoffen wie Toluol oder Methylenchlorid) bei Temperaturen von -20°C bis 150°C, bevorzugt von -10°C bis 100°C, umsetzt.

Die Verbindungen der Formel (XXVIII-b) sind neu.

Man erhält die Verbindungen der Formel (XXVIII-b) beispielsweise, indem man substituierte Phenylessigsäureester der Formel (XXX-b)

$$NC \xrightarrow{X} CO_2R^8$$
 (XXX-b)

in welcher

X, Z und R⁸ die oben angegebene Bedeutung haben,

in Gegenwart einer Säure (z.B. einer anorganischen Säure wie Chlorwasserstoffsäure) oder einer Base (z.B. eines Alkalihydroxids wie Natrium- oder Kaliumhydroxid) und gegebenenfalls eines Verdünnungsmittels (z.B. eines wässrigen Alko-

hols wie Methanol oder Ethanol) bei Temperaturen zwischen 0°C und 150°C, bevorzugt zwischen 20°C und 100°C, hydrolysiert.

Die Verbindungen der Formel (XXX-b) sind neu.

Man erhält Verbindungen der Formel (XXX-b)

5

$$NC \longrightarrow X$$
 $C \longrightarrow C$
 R^8
 $(XXX-b)$

in welcher

X, Z und R⁸ die oben angegebene Bedeutung haben,

wenn man para-Halogenphenylessigsäureester der Formel (XXXIII-b)

Hal
$$CO_2R^8$$
 (XXXIII-b)

10 in welcher

15

X, Z und R⁸ die oben angegebene Bedeutung haben, und

Hal für Chlor, Brom, Iod, insbesondere für Brom steht,

mit Kupfercyanid in Gegenwart eines Verdünnungsmittels wie z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Sulfolan bei Temperaturen von 50°C bis 250°C, vorzugsweise bei 80°C bis 200°C, umsetzt.

Die Verbindungen der Formel (XXXIII-b), in welcher X und Z für Alkyl stehen, sind Gegenstand der deutschen Patentanmeldung der Anmelderin mit dem Aktenzeichen 19523850.8 vom 30.06.1995.

Verbindungen der Formel (XXII-c)

$$\begin{array}{c} X \\ Y \longrightarrow \begin{array}{c} X \\ O \\ \end{array}$$
 (XXII-c)

in welcher

Hal für Chlor oder Brom steht,

5 X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die oben angegebenen Bedeutungen haben, aber nicht gleichzeitig für Wasserstoff stehen.

sind neu.

Man erhält die Verbindungen der Formel (XXII-c) beispielsweise, indem man substituierte Phenylessigsäuren der Formel (XXVIII-c)

$$Y - \left(\begin{array}{c} X \\ CO_2H \end{array} \right)$$
 (XXVIII-c)

in welcher

X für OCHF₂ oder OCH₂CF₃ steht und Y und Z die oben angegebene Bedeutung haben,

mit Halogenierungsmitteln (z.B. Thionylchlorid, Thionylbromid, Oxalylchlorid, Phosgen, Phosphortrichlorid, Phosphortribromid oder Phosphorpentachlorid) gegebenenfalls in Gegenwart eines Verdünnungsmittels (z.B. gegebenenfalls chlorierten aliphatischen oder aromatischen Kohlenwasserstoffen wie Toluol oder Methylenchlorid) bei Temperaturen von -20°C bis 150°C, bevorzugt von -10°C bis 100°C, umsetzt.

Die Verbindungen der Formel (XXVIII-c) sind neu.

Man erhält die Verbindungen der Formel (XXXIII-c)

$$Y \longrightarrow Z$$
 CO_2H $(XXVIII-c)$

in welcher

5 X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die oben angegebene Bedeutung haben,

wenn man Phenylacetaldehyde der Formel (XXXIV-c)

$$Y \longrightarrow X$$
 CHO $(XXXIV-c)$

in welcher

15

10 X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die oben angegebene Bedeutung haben,

in Gegenwart eines Oxidationsmittels z.B. Natriumchromat, Natriumchlorit oder Sauerstoff in Gegenwart eines Katalysators, in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Puffers bei -50°C bis 150°C, bevorzugt bei 0°C bis 100°C, umsetzt.

Die Verbindungen der Formel (XXXIV-c) sind neu.

Man erhält Phenylacetaldehyde der Formel (XXXIV-c)

in welcher

X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die oben angegebene Bedeutung haben,

5 wenn man (2-Propen)-phenylether der Formel (XXXV-c)

$$Y - \bigvee_{Z} X \qquad (XXXV-c)$$

in welcher

15

X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die oben angegebene Bedeutung haben,

in Gegenwart von Ozon in einem Lösungsmittel z.B. Dichlormethan bei -120°C bis 0°C, bevorzugt bei -80°C bis -20°C, umsetzt und das entstandene Produkt mit einem Reduktionsmittel z.B. Dimethylsulfid reduziert.

Die Verbindungen der Formel (XXXV-c) sind neu, lassen sich aber nach im Prinzip bekannten Verfahren durch Frigenierung aus den Phenolen in einfacher Weise, z.B. (Rico J., Wakselman, C., J. Fluorine Chem. 20 765-70 (1982)) oder durch nucleophile Substitution an Phenolaten darstellen, z.B. (Crossland, Wells, Shiner, J. AM. Chem. Soc. 93 4217 (1971)).

Die Verbindungen der Formel (XXI) und (XXIV) sind teilweise bekannt und/oder lassen sich nach bekannten Verfahren darstellen (siehe z.B. Compagnon, Miocque Ann. Chim. (Paris) [14] 5, S. 11-22, 23-27 (1970)).

Die substituierten cyclischen Aminocarbonsäuren der Formel (XXIVa), in der A und B einen Ring bilden, sind im allgemeinen nach der Bucherer-Bergs-Synthese oder nach der Strecker-Synthese erhältlich und fallen dabei jeweils in unterschiedlichen Isomerenformen an. So erhält man nach den Bedingungen der Bucherer-Bergs-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als β bezeichnet), in welchen die Reste R und die Carboxylgruppe äquatorial stehen, während nach den Bedingungen der Strecker-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als α bezeichnet) anfallen, bei denen die Aminogruppe und die Reste R äquatorial stehen.

Bucherer-Bergs-Synthese (β-Isomeres)

Strecker-Synthese (α-Isomeres)

(L. Munday, J. Chem. Soc. 4372 (1961); J.T. Eward, C. Jitrangeri, Can. J. Chem. 53, 3339 (1975).

Weiterhin lassen sich die bei dem obigen Verfahren (A) verwendeten Ausgangsstoffe der Formel (II)

$$\begin{array}{c|c}
A & CO_2R^8 \\
B & X \\
D & X
\end{array}$$
(II)

in welcher

A, B, D, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,

20 herstellen, wenn man Aminonitrile der Formel (XXV)

$$H - N C \equiv N$$
 (XXV)

in welcher

A, B und D die oben angegebenen Bedeutungen haben,

mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)

in welcher

5

X, Y, Z und Hal die oben angegebenen Bedeutungen haben,

zu Verbindungen der Formel (XXVI)

$$Y - \bigvee_{Z} \bigvee_{O} \bigvee_{N} c \equiv N$$

$$(XXVI)$$

10 in welcher

A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

umsetzt,

und diese anschließend einer sauren Alkoholyse unterwirft.

Die Verbindungen der Formel (XXVI) sind ebenfalls neu.

Die bei dem erfindungsgemäßen Verfahren (B) als Ausgangstoffe benötigten Verbindungen der Formel (III)

$$A CO_2R^8$$

$$X$$

$$Q$$

$$Z$$

$$Y$$
(III)

in welcher

5 A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,

sind neu.

Sie lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen.

So erhält man O-Acyl- α -hydroxycarbonsäureester der Formel (III) beispielsweise, wenn man

10 2-Hydroxycarbonsäureester der Formel (XXVII)

in welcher

A, B und R⁸ die oben angegebenen Bedeutungen haben,

mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)

in welcher

15

X, Y, Z und Hal die oben angegebenen Bedeutungen haben,

acyliert (Chem. Reviews 52, 237-416 (1953)).

Weiterhin erhält man Verbindungen der Formel (III), wenn man

substituierte Phenylessigsäuren der Formel (XXVIII)

 $Y - \bigvee_{Z}^{X} CO_{2}H$ (XXVIII)

in welcher

5

X, Y und Z die oben angegebenen Bedeutungen haben,

mit α-Halogencarbonsäureestern der Formel (XXIX)

10 in welcher

A, B und R⁸ die oben angegebenen Bedeutungen haben und

Hal für Chlor oder Brom steht,

alkyliert.

15

Die Verbindungen der Formel (XXVIII) sind teilweise bekannte Verbindungen und/oder lassen sich nach bekannten Verfahren in einfacher Weise herstellen, beispielsweise durch Verseifung von Phenylessigsäurenitrilen in Gegenwart von Säuren oder Basen oder durch Reduktion von Mandelsäureestern oder Phenylglyoxylsäuren mit Wasserstoff (vgl. Kindler et al., Chem. Ber. 76, 308, 1943). Die Verbindungen der Formel (XXIX) sind käuflich.

Die bei dem obigen Verfahren (C) als Ausgangsstoffe benötigten Verbindungen der Formel (IV)

in welcher

5 A, B, W, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben, sind neu.

Sie lassen sich nach im Prinzip bekannten Methoden herstellen.

Man erhält die Verbindungen der Formel (IV) beispielsweise, wenn man substituierte Phenylessigsäureester der Formel (XXX)

$$Y - \left(\sum_{Z}^{X} CO_{2}R^{B}\right)$$
(XXX)

10

in welcher

X, Y, R⁸ und Z die oben angegebenen Bedeutungen haben,

mit 2-Benzylthio-carbonsäurehalogeniden der Formel (XXXI)

in welcher

A, B und W die oben angegebenen Bedeutungen haben und

Hal für Halogen (insbesondere Chlor oder Brom) steht,

in Gegenwart von starken Basen acyliert (siehe z.B. M.S. Chambers, E.J. Thomas, D.J. Williams, J. Chem. Soc. Chem. Commun., (1987), 1228).

Die Verbindungen der Formel (XXX) sind teilweise neu. Man erhält Verbindungen der Formel (XXX) beispielsweise, wenn man Verbindungen der Formel (XXVIII)

10

$$Y - \bigvee_{Z}^{X} CO_{2}H$$
 (XXVIII)

in welcher

X, Y und Z die oben angegebene Bedeutung haben,

in Gegenwart von Alkoholen und wasserentziehenden Mitteln (z.B. konz. Schwefelsäure) verestert,

oder Alkohole mit Verbindungen der Formel (XXII)

in welcher

X, Y, Z und Hal die oben angegebenen Bedeutungen haben

acyliert (Chem. Reviews 52, 237-416 (1953)).

Die Benzylthio-carbonsäurehalogenide der Formel (XXXI) sind teilweise bekannt und/oder lassen sich nach bekannten Verfahren herstellen (J. Antibiotics (1983), 26, 1589).

Die bei dem obigen Verfahren (E) als Ausgangsstoffe benötigten Halogencarbonylketene der Formel (V) sind neu. Sie lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen (vgl. beispielsweise Org. Prep. Proced. Int., 7, (4), 155-158, 1975 und DE 1 945 703). So erhält man z.B. die Verbindungen der Formel (V)

in welcher

X, Y und Z die oben angegebenen Bedeutungen haben und

15 Hal für Chlor oder Brom steht,

wenn man

substituierte Phenylmalonsäuren der Formel (XXXII)

in welcher

X, Y und Z die oben angegebenen Bedeutungen haben,

mit Säurehalogeniden, wie beispielsweise Thionylchlorid, Phosphor(V)chlorid, Phosphor(III)chlorid, Oxalylchlorid, Phosgen oder Thionylbromid gegebenenfalls in Gegenwart von Katalysatoren, wie beispielsweise Diethylformamid, Methyl-Sterylformamid oder Triphenylphosphin und gegebenenfalls in Gegenwart von Basen wie z.B. Pyridin oder Triethylamin, umsetzt.

Die substituierten Phenylmalonsäuren der Formel (XXXII) sind neu und lassen sich in einfacher Weise nach bekannten Verfahren herstellen (vgl. z.B. Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1977, S. 517 ff).

Die für das erfindungsgemäße Verfahren (E) als Ausgangsstoffe benötigten Carbonylverbindungen der Formel (VIII)

in welcher

A und D die oben angegebenen Bedeutungen haben,

oder deren Silylenolether der Formel (VIIIa)

CHA
$$\parallel

D-C-OSi(R8)3$$
(VIIIa)

in welcher

A, D und R⁸ die oben angegebenen Bedeutungen haben,

sind käufliche, allgemeine bekannte oder nach bekannten Verfahren zugängliche Verbindungen.

Die Herstellung der zur Durchführung des erfindungsgemäßen Verfahrens (F) als Ausgangsstoffe benötigten Ketensäurechloride der Formel (V) wurden bereits beim

erfindungsgemäßen Verfahren (E) beschrieben. Die zur Durchführung des erfindungsgemäßen Verfahrens (F) benötigten Thioamide der Formel (IX)

$$H_2N$$
 $C-A$ (IX)

in welcher

5 A die oben angegebene Bedeutung hat,

sind allgemein in der organischen Chemie bekannte Verbindungen.

Die beim Verfahren (G) als Ausgangsstoffe benötigten Verbindungen der Formel (I-4-a) sind bekannt und/oder lassen sich in einfacher Weise nach bekannten Methoden herstellen (vgl. and WO 92/16510).

10 Man erhält die Verbindungen der Formel (I-4-a) beispielsweise, wenn man

Verbindungen der Formel (V)

in welcher

X, Y und Z die oben angegebenen Bedeutungen haben

15 und

Hal für Halogen (insbesondere Chlor oder Brom) steht,

oder

Verbindungen der Formel (VI)

WO 96/25395

$$Y \xrightarrow{Z} CH COR^{8}$$

$$X COR^{8}$$

$$X COR^{8}$$

$$X COR^{8}$$

in welcher

R⁸, X, Y und Z die oben angegebenen Bedeutungen haben,

mit Hydrazinen der Formel (VII)

5 A-NH-NH-D (VII)

in welcher

10

15

20

25

A und D die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels,

wobei verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie, nur im Fall, daß Verbindungen der Formel (VI) eingesetzt werden, Alkohole wie Methanol, Ethanol, Propanol, Iso-Propanol, Butanol, Iso-Butanol und tert.-Butanol, und gegebenenfalls in Gegenwart einer Base, wobei in dem Fall, daß Verbindungen der Formel (V) eingesetzt werden, anorganische Basen, insbesondere Alkali- oder Erdalkalicarbonate wie Natriumcarbonat, Kaliumcarbonat oder Calciumcarbonat sowie organische Basen wie beispielsweise Pyridin oder Triethylamin in Betracht kommen und in dem Fall, daß Verbindungen der Formel (VI) eingesetzt werden, Alkalimetall- und Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können, Alkalimetalle wie

Natrium oder Kalium, Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natriummethylat, Natriumethylat und Kalium-tert-butylat in Betracht kommen, bei Temperaturen zwischen -20°C und 250°C, vorzugsweise zwischen 0°C und 150°C umsetzt.

Die Malonsäureester der Formel (VI)

$$Y - \left(\begin{array}{c} X \\ CO_2R^8 \end{array} \right)$$

$$CO_2R^8$$

$$CO_2R^8$$

in welcher

R⁸, X, Y und Z die oben angegebenen Bedeutungen haben, sind neu.

Sie lassen sich nach allgemein bekannten Methoden der Organischen Chemie darstellen (vgl. z.B. Tetrahedron Lett. 27, 2763 (1986) und Organikum VEB Deutscher Verlag der Wissenschaften, Berlin 1977, S. 587 ff.).

Die Hydrazine der Formel (VII)

A-NH-NH-D (VII),

15 in welcher

20

A und D die oben angegebenen Bedeutungen haben,

sind teilweise bekannt und/oder nach literaturbekannten Methoden herstellbar (vgl. beispielsweise Liebigs Ann. Chem. <u>585</u>, 6 (1954); Reaktionen der organischen Synthese, C. Ferri, Seite 212, 513; Georg Thieme Verlag Stuttgart, 1978; Liebigs Ann. Chem. <u>443</u>, 242 (1925); Chem. Ber. <u>98</u>, 2551 (1965), Ep 508 126).

Die zur Durchführung der erfindungsgemäßen Verfahren (G), (H), (I), (J), (K), (L) und (M) außerdem als Ausgangsstoffe benötigten Säurehalogenide der Formel (X), Carbonsäureanhydride der Formel (XI), Chlorameisensäureester oder Chlorameisens

10

15

20

25

30

sensäurethioester der Formel (XII), Chlormonothioameisensäureester oder Chlordithioameisensäureester der Formel (XIII), Alkylhalogenide der Formel (XIV), Sulfonsäurechloride der Formel (XV), Phosphorverbindungen der Formel (XVI) und Metallhydroxide, Metallalkoxide oder Amine der Formel (XVII) und (XVIII) und Isocyanate der Formel (XIX) und Carbamidsäurechloride der Formel (XX) sind allgemein bekannte Verbindungen der organischen bzw. anorganischen Chemie.

Die Verbindungen der Formeln (VII), (VIII), (IX) bis (XXI), (XXIV) und (XXXII) bis (XXXIV) sind darüber hinaus aus den eingangs zitierten Patentanmeldungen bekannt und/oder lassen sich nach den dort angegebenen Methoden herstellen.

Das Verfahren (A) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (II), in welcher A, B, D, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben, in Gegenwart einer Base einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie Alkohole wie Methanol, Ethanol, Propanol, Iso-Propanol, Butanol, Iso-Butanol und tert.-Butanol.

Als Base (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natrium-methylat, Natrium-ethylat und Kalium-tert.-butylat einsetzbar.

15

20

25

30

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formel (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren bis doppeltäquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (B) ist dadurch gekennzeichnet, daß Verbindungen der Formel (III), in welcher A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben, in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (B) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. Weiterhin können Alkohole wie Methanol, Ethanol, Propanol, Iso-Propanol, Butanol, Iso-Butanol und tert.-Butanol eingesetzt werden.

Als Base (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (B) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natrium-

15

20

25

30

amid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natrium-methylat, Natrium-ethylat und Kalium-tert-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (B) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (B) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (B) setzt man die Reaktionskomponenten der Formel (III) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine
oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (IV) in welcher A, B, W, X, Y, Z und R⁸ die oben angegebene Bedeutung haben, in Gegenwart einer Säure und gegebenenfalls in Gegenwart eines Verdünnungsmittels intramolekular cyclisiert.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner halogenierte Kohlenwasserstoffe wie Dichlormethan, Chloroform, Ethylenchlorid, Chlorbenzol, Dichlorbenzol, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. Weiterhin können Alkohole wie Methanol, Ethanol, Propanol, iso-Propanol, Butanol, Isobutanol, tert.-Butanol eingesetzt werden.

Gegebenenfalls kann auch die eingesetzte Säure als Verdünnungsmittel dienen.

Als Säure können bei dem erfindungsgemäßen Verfahren (C) alle üblichen anorganischen und organischen Säuren eingesetzt werden wie z.B. Halogenwasserstoffsäuren, Schwefelsäure, Alkyl-, Aryl- und Haloalkylsulfonsäuren, insbesondere halogenierte Alkylcarbonsäuren wie z.B. Trifluoressigsäure.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) setzt man die Reaktionskomponenten der Formeln (IV) und die Säure z.B. in äquimolaren Mengen ein. Es ist jedoch gegebenenfalls auch möglich, die Säure als Lösungsmittel oder als Katalysator zu verwenden.

Das erfindungsgemäße Verfahren (E) ist dadurch gekennzeichnet, daß man Carbonylverbindungen der Formel (VIII) mit Ketensäurehalogeniden der Formel (V) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.

- Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (E) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid oder N-Methyl-pyrrolidon.
- Als Säureakzeptoren können bei der Durchführung der erfindungsgemäßen Verfahrensvariante E) alle üblichen Säureakzeptoren verwendet werden.
 - Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecan (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin.
- Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen Verfahrensvariante E) innerhalb eines größeren Bereiches variiert werden. Zweckmäßigerweise arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 220°C.

15

25

Das erfindungsgemäße Verfahren (E) wird zweckmäßigerweise unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (E) setzt man die Reaktionskomponenten der Formeln (VIII) und (V), in welchen A, D, X, Y und Z die oben angegebenen Bedeutungen haben und Hal für Halogen steht, und gegebenenfalls die Säureakzeptoren im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 5 Mol) zu verwenden.

Das erfindungsgemäße Verfahren (F) ist dadurch gekennzeichnet, daß man Thioamide der Formel (IX) mit Ketensäurehalogeniden der Formel (V) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.

Als Verdünnungsmittel können bei der erfindungsgemäßen Verfahrensvariante F) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon.

Als Säureakzeptoren können bei der Durchführung des erfindungsgemäßen Verfahrens (F) alle üblichen Säureakzeptoren verwendet werden.

Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecan (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (F) innerhalb eines größeren Bereiches variiert werden. Zweckmäßigerweise arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 20°C und 220°C.

Das erfindungsgemäße Verfahren (F) wird zweckmäßigerweise unter Normaldruck durchgeführt.

10

15

20

25

30

Bei der Durchführung des erfindungsgemäßen Verfahrens (F) setzt man die Reaktionskomponenten der Formeln (IX) und (V), in welchen A, X, Y und Z die oben angegebenen Bedeutungen haben und Hal für Halogen steht und gegebenenfalls die Säureakzeptoren im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 5 Mol) zu verwenden.

Das Verfahren (Gα) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Carbonsäurehalogeniden der Formel (X) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Gα) alle gegenüber den Säurehalogeniden inerten Solventien eingesetzt werden Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, Nitrile wie Acetonitril, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Gα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Gα) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

10

15

20

25

30

Bei der Durchführung des erfindungsgemäßen Verfahrens (Ga) werden die Ausgangsstoffe der Formeln (I-1-a) bis (I-6-a) und das Carbonsäurehalogenid der Formel (X) im allgemeinen jeweils in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäurehalogenid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (GB) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) mit Carbonsäureanhydriden der Formel (XI) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Gß) vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

Als gegebenenfalls zugesetzte Säurebindemittel kommen beim Verfahren (Gß) vorzugsweise diejenigen Säurebindemittel in Frage, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Gß) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Gß) werden die Ausgangsstoffe der Formeln (I-1-a) bis (I-6-a) und das Carbonsäureanhydrid der Formel (XI) im allgemeinen in jeweils angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch

10

15

20

25

Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (H) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (XII) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (H) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBU, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkalimetalloxide, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (H) alle gegenüber den Chlorameisensäureestern bzw. Chlorameisensäurethiolestern inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, Nitrile wie Acetonitril, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüber hinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (H) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (H) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (H) werden die Ausgangsstoffe der Formeln (I-1-a) bis (I-6-a) und der entsprechende Chlorameisen-

10

15

20

30

säureester bzw. Chlorameisensäurethiolester der Formel (XII) im allgemeinen jeweils in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Das erfindungsgemäße Verfahren (I) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit (Iα) Verbindungen der Formel (XIII) in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels oder (Iβ) Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (XIV) umsetzt.

Beim Herstellungsverfahren (Iα) setzt man pro Mol Ausgangsverbindung der Formeln (I-1-a) bis (I-6-a) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (XIII) bei 0 bis 120°C, vorzugsweise bei 20 bis 60°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Nitrile, Ketone, Carbonsäureester, Amide, Sulfone, Sulfoxide, aber auch Halogenalkane.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Ethylacetat, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B. Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindungen (I-1-a) bis (I-6-a) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (Iβ) setzt man pro Mol Ausgangsverbindungen der Formeln (I-1-a) bis (I-6-a) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50°C und insbesondere bei 20 bis 30°C.

- Oft ist es zweckmäßig zunächst aus der Verbindungen der Formeln (I-1-a) bis (I-6-a) durch Zusatz einer Base (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindungen (I-1-a) bis (I-6-a) solange mit Schwefelkohlenstoff um, bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.
- Als Basen können weiterhin beim Verfahren (Iβ) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetallhydride, Alkalimetallakoholate, Alkali- oder Erdalkalimetallcarbonate oder -hydrogencarbonate oder Stickstoffbasen. Genannt seien beispielsweise Natriumhydrid, Natriummethanolat, Natriumhydroxid, Calciumhydroxid, Kaliumcarbonat, Natriumhydrogencarbonat, Triethylamin, Dibenzylamin, Diisopropylamin, Pyridin, Chinolin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) und Diazabicycloundecen (DBU).

Als Verdünnungsmittel können bei diesem Verfahren alle üblichen Lösungsmittel verwendet werden.

- Vorzugsweise sind verwendbar aromatische Kohlenwasserstoffe wie Benzol oder Toluol, Alkohole wie Methanol, Ethanol, Isopropanol oder Ethylenglykol, Nitrile wie Acetonitril, Ether wie Tetrahydrofuran oder Dioxan, Amide wie Dimethylformamid oder andere polare Lösungsmittel wie Dimethylsulfoxid oder Sulfolan.
- Die weitere Umsetzung mit dem Alkylhalogenid der Formel (XIV) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

20

Das erfindungsgemäße Verfahren (J) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Sulfonsäurechloriden der Formel (XV) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Beim Herstellungsverfahren (J) setzt man pro Mol Ausgangsverbindung der Formel (I-1-a bis I-6-a) ca. 1 Mol Sulfonsäurechlorid der Formel (XV) bei -20 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Ketone, Carbonsäureester, Nitrile, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe wie Methylenchlorid.

Vorzugsweise werden Dimethylsulfoxid, Ethylacetat, Acetonitril, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindungen (I-1-a) bis (I-6-a) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Das erfindungsgemäße Verfahren (K) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Phosphorverbindungen der Formel (XVI) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Beim Herstellungsverfahren (K) setzt man zum Erhalt von Verbindungen der Formeln (1-1-e) bis (1-6-e) auf 1 Mol der Verbindungen (1-1-a) bis (1-6-a), 1 bis 2,

10

15

20

25

30

vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (XVI) bei Temperaturen zwischen -40°C und 150°C, vorzugsweise zwischen -10 und 110°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel in Frage wie Ether, Amide, Ketone, Carbonsäureester, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Ethylacetat, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate oder Amine. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Das Verfahren (L) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) mit Metallhydroxiden bzw. Metallalkoxiden der Formel (XVII) oder Aminen der Formel (XVIII), gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (L) vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (L) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (M) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit (Mα) Verbindungen der Formel (XIX) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gege-

benenfalls in Gegenwart eines Katalysators oder (Mβ) mit Verbindungen der Formel (XX) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Bei Herstellungsverfahren (Mα) setzt man pro Mol Ausgangsverbindung der Formeln (I-1-a) bis (I-6-a) ca. 1 Mol Isocyanat der Formel (XIX) bei 0 bis 100°C, vorzugsweise bei 20 bis 50°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Ketone, Carbonsäureester, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren (Mβ) setzt man pro Mol Ausgangsverbindung der Formeln (I-1-a) bis (I-6-a) ca. 1 Mol Carbamidsäurechlorid der Formel (XX) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Ketone, Carbonsäureester, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Ethylacetat, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung (I-1-a) bis (I-6-a) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin oder Pyridin genannt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

15 Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratorio migratorio des, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp..

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius,

Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis,

Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

- Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.
- Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varive stis, Atomaria spp., Oryzaephilus surinamensis, Antho nomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono derus spp., Melolontha melolontha, Amphimallon solsti tialis, Costelytra zealandica.
- Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

25

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten, wie beispielsweise gegen die Larven des Meerettichblattkäfers (Phaedon cochleariae) oder gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) gegen die Raupen der Kohlschabe (Plutella maculipennis).

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

<u>Dikotyle Unkräter der Gattungen:</u> Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotola, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

10

15

20

25

30

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cycnodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Sachharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindunngen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Wirkstoffe eignen sich sehr gut zur selektiven Bekämpfung monokotyler Unkräuter in dikotylen Kulturen im Vor- und Nachlaufverfahren. Sie können beispielsweise in Baumwolle oder Zuckerrüben mit sehr gutem Erfolg zur Bekämpfung von Schadgräser eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

10

15

20

25

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall-phthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

20

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

10 Besonders günstige Mischpartner sind z.B. die folgenden:

Fungizide:

2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-methyl-4'-trifluoromethoxy-4'-trifluoro-methyl-1,3-thiazol-5-carboxanilid; 2,6-Dichloro-N-(4-trifluoromethylbenzyl)-benzamid; (E)-2-Methoxyimino-N-methyl-2-(2-

phenoxyphenyl)-acetamid; 8-Hydroxyquinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyano-phenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino-[alpha-(o-tolyloxy)-o-tolyl]acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaconazol,

Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,

Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,

Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb,

Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon,

Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,

Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam,

Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyclox,

Guazatine.

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan, Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,

Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,

Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Phthalid, Pimaricin, Piperalin,
Polycarbamate, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb,
Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon,
Quintozen (PCNB),

Schwefel und Schwefel-Zubereitungen,

Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen,

Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,

Validamycin A, Vinclozolin, Zineb, Ziram.

20 Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

- Abamectin, Abamectin, AC 303 630, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,
 - Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxin,
- Butylpyridaben,
 Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157
 419, CGA 184699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin,
- 35 Cypermethrin, Cyromazin,

Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton,

Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Etho-5 prophos, Etrimphos,

Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluzzinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,

10 HCH, Heptenophos, Hexaflumuron, Hexythiazox, Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivemectin, Lamda-cyhalothrin, Lufenuron,

Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin,

15 Monocrotophos, Moxidectin,

Naled, NC 184, NI 25, Nitenpyram,

Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,

Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamdon, Phoxim, Pirimicarb, Pirimiphos M, Primiphos A, Profenofos,

Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, 20 Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,

RH 5992.

Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,

Tebufenozid, Tebufenpyrad, Tebupirimphos, Teflubenzuron, Tefluthrin, Temephos, 25 Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Triazuron, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, XMC, Xylylcarb, YI 5301 / 5302, Zetamethrin.

30 Herbizide:

beispielsweise Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlorpicolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4 D, 2,4 DB, 2,4 DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxy-phenoxyalkansäureester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifop-butyl,

Haloxyfop-methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und 35 Norflurazon; Carbamate, wie z.B. Chlorpropham, Desmedipham, Phenmedipham

und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metolachlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen, Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und 5 Methabenzthiazuron; Hydroxylamine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und Ioxynil; Oxyacetamide, wie z.B. Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, 10 Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuronethyl, Thifensulfuron-methyl, Triasulfuron und Tribenuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, 15 Metamitron und Metribuzin, Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane.

- Der erfindungsgemäße Wirkstoff kann ferner in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.
- Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

10

15

30

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygieneund Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:

Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp..

Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..

Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..

Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..

Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..

Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..

Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otabius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemaphysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..

10

15

20

25

30

Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..

Beispielsweise zeigen sie eine hervorragende Wirksamkeit gegen Boophilus microplus.

Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.

Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der Formel (I) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.

10

Außerdem wurde gefunden, daß die erfindungsgemäßen Verbindungen der Formel I eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.

Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:

Käfer wie

Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.

Hautflügler wie

Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.

15 Termiten wie

Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.

Borstenschwänze

20 wie Lepisma saccharina.

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz und Holzverarbeitungsprodukte und Anstrichmittel.

Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um Holz und Holzverarbeitungsprodukte.

Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen: Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen,

Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungsbzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.

- Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
- Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.
- Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

25

30

Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

- In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.
- Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, daß das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und daß das Insektizid-Fungizid-Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.

Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.

10

15

20

25

30

Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.

Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällem vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und gegebenenfalls noch ein oder mehrere Fungizide enthalten.

10

Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 genannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.

Als ganz besonders bevorzugte Zumischpartner seien Insektizide, wie Chlorpyriphos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermethrin, Deltamethrin, Permethrin, Imidacloprid, NI-25, Flufenoxuron, Hexaflumuron und Triflumuron,

sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolylfluanid, 3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N-octylisothiazolin-3-on, genannt.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe gehen aus den nachfolgenden Beispielen hervor.

10

Herstellungsbeispiele

Beispiel (I-1-a-1)

3,2 g (0,028 Mol) Kalium-tert.-butylat werden in 10 ml abs. Tetrahydrofuran (THF) vorgelegt. Bei Rückflußtemperatur tropft man 5,1 g (0,0127 Mol) der Verbindung gemäß Beispiel (II-1) in 30 ml abs. Toluol zu und rührt noch 1,5 Stunden unter Rückfluß. Dann gibt man 20 ml Wasser zu, trennt die Phasen, extrahiert die Toluolphase mit 10 ml Wasser und wäscht die vereinigten Wasserphasen mit Toluol. Die wäßrige Phase wird bei 15°C bis 20°C mit ca. 2,3 ml konz. Salzsäure angesauert. Der Niederschlag wird abgesaugt, gewaschen, getrocknet und aus Methyl-tert.-butylether (MTB-Ether)/n-Hexan umkristallisiert. Ausbeute: 4,4 g (93 % d.Th.), Fp. 222°C.

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung wurden die in der folgenden Tabelle aufgeführten Verbindungen der Formel (I-1-a) hergestellt:

15

Bsp Nr.	X	Y	Z	A	В	D	Fp.°C	Iso- mer
l-1-a-2	CH ₃	CN	CH ₃	CH ₃ CH ₃		Н	>220	-
l-1-a-3	CN	CH ₃	CH ₃	CH ₃	CH ₃		>220	-
I-1-a-4	CN	CH ₃	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -			>220	β
1-1-a-5	C ₂ H ₅	CN	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	>220	β
l-1-a-6	CH ₃	CN	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	>220	β
I-1-a-7	C ₂ H ₅	CN	C ₂ H ₅	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	>220	β
I-1-a-8	OCH ₂ CF ₃	CH ₃	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	>220	β

10 **Beispiel (I-1-b-1)**

2,03 g der Verbindung gemäß Beispiel (I-1-a-7) und 8,5 ml Triethylamin in 50 ml Methylenchlorid werden bei 0°C bis 10°C mit 0,8 ml 4-Chlorbenzoylchlorid in 5 ml Methylenchlorid versetzt und bis zum Reaktionsende (DC-Kontrolle) bei Raumtemperatur gerührt. Man wäscht 2 mal mit 30 ml 0,5 N NaOH, trocknet und engt ein. Der Rückstand wird aus MTB-Ether/n-Hexan umkristallisiert.

Man erhält 1,6 g (55 % der Theorie) vom Fp.: >220°C.

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung erhält man die folgenden Verbindungen der Formel (I-1-b):

10

15

$$\begin{array}{c|c}
 & O \\
 & R^1 \\
 & X \\
 & D \\
 & D \\
 & Z
\end{array}$$
(I-1-b)

Bsp Nr.	х	Y	Z	Α	В	D	R ¹	Fp. [°C]	Iso- mer
l-1-b-2	C ₂ H ₅	CN	C ₂ H ₅	-(CH ₂) ₂ -(CHCH ₃ -(CH ₂) ₂ -	Н	i-C ₃ H ₇	>220	В
1-1-b-3	C ₂ H ₅	CN	C ₂ H ₅	-(CH ₂) ₂ -(CHCH ₃ -(CH ₂) ₂ -	Н	C ₂ H ₅ -O-CH ₂ -	214	ß
I-1-b-4	C ₂ H ₅	CN	C ₂ H ₅	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		н	CI N	>220	ß

Beispiel (I-1-c-1)

3,33 g (0,009 Mol) der Verbindung gemäß Beispiel (I-1-a-1) in 50 ml abs. Methylenchlorid werden zunächst mit 1,3 ml Triethylamin und dann bei 0°C bis 10°C mit 0,9 ml Chlorameisensäureethylester in 5 ml abs. Methylenchlorid versetzt. Man rührt bei Raumtemperatur bis die Umsetzung beendet ist (DC-Kontrolle). Dann wäscht man 2 mal mit 50 ml 0,5 N NaOH trocknet und dampft ein. Der Rückstand wird aus MTB-Ether/n-Hexan umkristallisiert.

Ausbeute: 2,50 g (62 % d.Th.), Fp. 211°C.

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung wurden die folgenden Verbindungen der Formel (I-1-c) erhalten:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Bsp.-X Y Z Α В D $R^{\mathbf{2}}$ L М Fp. Iso-Nr. [°C] mer I-1-c-2 C2H5 CN C₂H₅ -(CH₂)₂-CHCH₃-(CH₂)₂-Н 0 0 Benzyl 209 ß I-1-c-3 C₂H₅ CN C₂H₅ -(CH₂)₂-CHCH₃-(CH₂)₂-Н 0 0 Benzyl >220 ß

Beispiel I-2-a-1

7,7 g (0,02 mol) der Verbindung gemäß Beispiel (III-1) gelöst in wenig THF werden zu 3,4 g (0,03 mol) Kalium-tert.-butylat in 50 ml THF getropft. Anschließend rührt man über Nacht bei Raumtemperatur. Dann gießt man auf Wasser, säuert an und extrahiert mit Methylenchlorid, trocknet die organische Phase und engt ein. Das Rohprodukt wird mit Ether verrieben und abgesaugt. Zur weiteren Reinigung wird an Kieselgel mit dem Laufmittel Cyclohexan/Essigester 1/1 chromatographiert.

Beispiel I-2-a-2

Analog zu Beispiel I-2-a-1 erhält man die folgende Verbindung:

Fp. 185 bis 187°C

5 Beispiel I-2-b-1

1,2 g (3,5 mmol) der Verbindung gemäß Beispiel I-2-a-1, 0,4 g (3,9 mmol) Triethylamin und eine Spur DABCO werden in 20 ml THF vorgelegt. Dazu tropft man bei 0°C bis 10°C 0,43 g (3,5 mmol) Pivalinsäurechlorid und rührt über Nacht unter Rückfluß. Man engt ein, verteilt zwischen Wasser und Methylenchlorid, trocknet die organische Phase und engt ein. Ausbeute 1,23 g (83 % der Theorie), Fp. 144°C.

Beispiel 1-2-b-2

10

Analog zu Beispiel I-2-b-1 erhält man die Verbindung:

Fp. 143 bis 147°C

Beispiel I-2-b-3

5

10

Analog zu Beispiel I-2-b-1 erhält man die Verbindung:

Beispiel II-1 (β)

6,77 g (0,0396 Mol) 4-Methylcyclohexylamin-1-carbonsäuremethylester in 65 ml abs. THF werden mit 9,13 ml (0,065 Mol) Triethylamin versetzt. Nach 5 min gibt man 8,1 g (0,0325 Mol) 2-Chlor-4-methylsulfonyl-phenylessigsäure gemäß Beispiel (XXVIII-1) zu, rührt 15 min bei Raumtemperatur, gibt 12,74 ml (0,091 Mol) Triethylamin zu und tropft sofort 3,06 ml Phosphoroxychlorid so zu, daß die Lösung mäßig siedet. Man rührt 30 min unter Rückfluß, gießt auf 300 ml Eiswasser, extrahiert mit Methylenchlorid, trocknet und dampft ein. Der Rückstand

10

wird durch Säulenchromatographie an Kieselgel (Laufmittel Methylenchlorid/Essigester 5/1) gereinigt.

Ausbeute: 5,1 g (39 % d.Th.), Öl.

¹H-NMR (200 MHz, CDCl₃): $\delta = 0.89$ (d, 3H), 3,05 (s, 3H), 3,67 (s, 3H), 3,75 (s, 2H), 5,95 (br, 1H), 7,6 (d, 1H), 7,8 (dd, 1H) 7,97 (d, 1H).

Beispiel (II-2)

$$H_3C - CH_2 - CO - NH - C(CH_3)_2 - CO - OCH_3$$
 CH_3

7 g 2-Cyano-4,6-dimethylphenylessigsäure und 8,2 ml Thionylchlorid werden bei 80°C gerührt, bis die Gasentwicklung beendet ist. Das überschüssige Thionylchlorid wird abdestilliert und der Rückstand in 30 ml trockenem THF aufgenommen. Diese Lösung tropft man bei 0°C bis 10°C zum Gemisch von 8,52 g der Verbindung der Formel

und 17 ml Triethylamin in 120 ml wasserfreiem THF und rührt eine Stunde bei Raumtemperatur. Anschließend wird eingedampft, der Rückstand in Methylenchlorid aufgenommen, mit 0,5 N HCl gewaschen, getrocknet und erneut eingedampft. Der Rückstand wird aus MTB-Ether/n-Hexan umkristallisiert.

Ausbeute: 7,6 g (71 % der Theorie), Fp. 141°C.

Analog bzw. gemäß den allgemeinen Angaben zur Herstellung wurden die in der folgenden Tabelle aufgeführten Verbindungen der Formel II synthetisiert.

10

15

$$B \xrightarrow{A} ND \xrightarrow{O} X$$

$$CO_2R^8 \xrightarrow{Z} Y$$
(II)

Bsp Nr.	х	Y	Z	A	В	D	R ⁸	Fp.°C	Iso- mer
11-3	CH ₃	CN	CH ₃	CH ₃	CH ₃	Н	CH ₃	132	
II-4	CN	CH ₃	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	CH ₃	164	β
II-5	CH ₃	CN	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	CH ₃	195	β
11-6	C ₂ H ₅	CN	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	CH ₃	161	β
11-7	OCHF ₂	CH ₃	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	CH ₃	121	β
11-8	OCH ₂ CF ₃	CH ₃	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	CH ₃	142	ß
II-9	C ₂ H ₅	CN	C ₂ H ₅	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		Н	CH ₃	167	β

Beispiel (III-1)

5,33 g (0,031 mol) 1-Hydroxycyclohexancarbonsäureethylester und 7,7 g (0,031 mol) des Carbonsäurechlorids der Formel

(auf übliche Weise aus der Verbindung gemäß Beispiel XXVIII-c-1 erhalten) werden in 50 ml Toluol über Nacht unter Rückfluß gekocht, anschließend wird eingeengt. Ausbeute 11,9 g (quant.) eines Öls.

Beispiel III-2

Analog zu Beispiel III-1 erhält man die Verbindung

als Öl (Ausbeute 93 % der Theorie).

Beispiel (XXVIII-1)

5

10

15

21,3 g (0,1 Mol) 2-Chlor-4-methylsulfonyltoluol (bekannt z.B. aus DE 39 37 282) werden in 43 ml Tetrachlorkohlenstoff gelöst und bei Raumtemperatur 18,3 g (0,1 Mol) N-Bromsuccinimid zugegeben. Danach werden noch 0,1 g AIBN (Azoisobutyronitril) zudosiert und der Ansatz 7 Stunden unter Rückfluß gerührt. Anschließend wird abgesaugt und die Mutterlauge eingeengt. Man erhält 31,3 g 2-Chlor-4-methylsulfonylbenzylbromid mit einer Reinheit von 78,6 % (87 % d.Th.).

31,3 g (87 mMol) 2-Chlor-4-methylsulfonyl-benzylbromid werden mit 1,6 g Tetra-butylammoniumsulfat in 92 ml Methylenchlorid gelöst und bei Raumtemperatur eine Lösung aus 17 g Kaliumcyanid in 70 ml Wasser zugetropft. Man läßt über Nacht bei Raumtemperatur nachrühren, trennt anschließend die Phasen und engt die organische Phase ein. Nach Reinigung über Kieselgel (Laufmittel Methylenchlorid) erhält man 10,5 g 2-Chlor-4-methylsulfonyl-benzylcyanid mit einer Reinheit von 69 % (37 % d.Th.).

In eine Lösung aus 28,1 ml konzentrierter Schwefelsäure und 33,8 ml Wasser werden bei 80-90° 10 g (30 mMol) 2-Chlor-4-methylsulfonyl-benzylcyanid eingetragen und 2 Stunden unter Rückfluß gerührt. Man läßt auf Raumtemperatur abkühlen und gießt den Ansatz auf 75 ml Eiswasser. Der unlösliche Anteil wird ab-

gesaugt, mit Eiswasser gewaschen, getrocknet. Man erhalt 3,3 g 2-Chlor-4-methylsulfonyl-phenylessigsäure mit einer Reinheit von 91 % (40,2 % d.Th.).

Beispiel (XXVIII-c-1)

5 Diese Verbindung wurde auf dem folgenden Weg hergestellt:

10

15

20

Allyl-(3,5-dimethylphenyl)ether (B)

Es wurden 1 000 g 3,5-Dimethylphenol (A) in 1 000 ml Aceton gelöst, 980 g Allylbromid zugetropft und dann 114.8 g Kaliumcarbonat zugesetzt. Die Mischung wurde 18 Stunden zum Rückfluß erhitzt und abgekühlt. Das Kaliumcarbonat wurde filtriert und das Filtrat mit 3 000 ml Wasser versetzt. Es wurde dreimal mit tert.-Butyl-methylether extrahiert, die organischen Phasen vereinigt und zweimal mit je 300 ml 10 %iger Natronlauge gewaschen. Die organischen Phase wurde über Kaliumcarbonat getrocknet, filtriert und eingeengt. Nach Destillation wurden 837 g (64 % der Theorie) Allyl-(3,5-dimethylphenyl)ether mit einem Siedepunkt von 98 bis 110°C bei 10 mbar erhalten.

¹H-NMR (CDCl₃): $\delta = 6.61$ (s, 1H), 6.57 (s, 2H), 6.06 (ddt. 1H), 5.51-5.20 (m, 2H), 4.51 (dm, 2H), 2.30 ppm (s, 3H).

3,5 Dimethyl-2-(2-propenyl-1)-phenol (C)

Es wurden 837 g Allyl-(3,5-dimethylphenyl)ether (B) in 1 500 ml Mesitylen gelöst und zwei Tage zum Rückfluß erhitzt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit tert.-Butylmethylether aufgenommen. Es wurde mehrfach mit Natronlauge extrahiert, die wäßrigen Phasen vereinigt und mit Salzsäure angesäuert. Das sich abscheidende Produkt wurde in tert.-Butylmethylether aufgenommen, über Magnesiumsulfat getrocknet, eingeengt und destilliert. Es wurden insgesamt 619 g (74 % der Theorie) 3,5-Dimethyl-2-(2-propenyl-1)-phenol mit einem Siedepunkt von 145°C bei 30 mbar und einem Schmelzpunkt von 51°C erhalten.

10

15

20

¹H-NMR (CDCl₃): $\delta = 6.61$ (s, 1H), 6.51 (s, 1H), 6.10-5.84 (m, 1H), 5.14-4.95 (m, 2H), 3.39 (d, 2H), 2.25 ppm (s, 7H).

3,5-Dimethyl-2-(2-propenyl-1)-phenyldifluormethylether (XXXV-c-1)

Zu 100 g 3,5 Dimethyl-2-(2-propenyl-1)-phenol (C) in 700 ml Toluol wurden 125 g 45 %ige Natronlauge und 10 g Tetrabutylammoniumbromid zudosiert. Die Mischung wurde auf 90°C erwärmt und anschließend wurden 110 g Chlordifluormethan eingeleitet. Nach dem Abkühlen auf Raumtemperatur wurden 300 ml Wasser zugefügt und die Toluolphase abgetrennt. Die wäßrige Phase wurde zweimal mit 200 ml tert.-Butylmethylether extrahiert und die vereinigten organischen Phasen über Natriumsulfat getrocknet. Es wurde eingeengt und nach der Destillation wurden 58,5 g (45 % der Theorie) 3,5-Dimethyl-2-(2-propenyl-1)-phenyldifluormethylether mit einem Siedepunkt von 55-65°C bei 0,15 mbar erhalten.

¹H-NMR (CDCl₃): $\delta = 6.83$ (s, 1H), 6.75 (s, 1H), 6.37 (t, 1H), 5.91-5.80 (m, 1H), 4.96 (dm, 1H), 4.86 (dm, 1H), 3.48 (d, 2H), 2.26 (s, 3H), 2.24 ppm (s, 3H).

2-Difluormethyloxy-4,6-dimethylphenylacetaldehyd (XXXIV-c-1)

Es wurden 16,5 g 3,5-Dimethyl-2-(2-propenyl-1)-phenyldifluormethylether in 50 ml Dichlormethan gelöst und auf -70°C abgekühlt. Durch die Lösung wurde eine Stunde Ozon geleitet, bis das Olefin nicht mehr zu detektieren war. Anschließend wurde mit einem Stickstoffstrom gespült, 13,7 g Dimethylsulfid zugetropft und 30 min weitergerührt. Die Lösung wurde auf Raumtemperatur

15

erwärmt und noch weitere 30 min nachgerührt. Nachdem die Lösung frei von Peroxiden war, wurde eingeengt und der Rückstand ohne weitere Reinigung in die nächste Reaktion eingesetzt. Es wurden 19,2 g 2-Difluormethyloxy-4,6-dimethylphenylacetaldehyd als Rohprodukt erhalten.

¹H-NMR (CDCl₃): δ = 9,67 (t, 1H), 6,90 (s, 1H), 6,81 (s, 1H), 6,47 (t, 1H), 3,78 (d, 2H) 2,32 (s, 3H), 2,28 ppm (s, 3H)

2-Difluormethyloxy-4,6-dimethylphenylessigsäure (XXVIII-c-1)

Es wurden 19,2 g 2-Difluormethyloxy-4,6-dimethylphenylacetaldehyd (XXXIV-c-1) als Rohprodukt in 270 ml tert.-Butanol gelöst, mit 90,4 g 2-Methyl-2-buten vermischt und anschließend eine Lösung aus 90 g Natriumdihydrogenphosphat und 42 g Natriumchlorit in 353 ml Wasser bei Raumtemperatur zugetropft. Die Mischung wurde vier Stunden gerührt, dann in 400 ml Essigester eingerührt und die Phasen getrennt. Die wäßrige Phase wurde noch zweimal mit Essigester extrahiert, die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und eingeengt. Nach dem Verrühren mit Hexan wurden 11 g Feststoff isoliert, aus denen 2,5 g (14 % der Theorie über 2 Stufen) 2-Difluormethyloxy-4,6-dimethylphenylessigsäure gewonnen wurden, mit einem Schmelzpunkt von 124-127°C.

¹H-NMR (CDCl₃): $\delta = 9,50-8,00$ (m, 1H), 6,89 (s, 1H), 6,81 (s, 1H), 6,44 (t, 1H), 3,74 (s, 2H), 2,30 (s, 3H), 2,28 ppm (s, 3H).

10

Beispiel (XXXV-c-2)

3,5-Dimethyl-2-(2-propenyl-1)phenyl-(2,2,2-trifluorethyl)ether (XXXV-c-2)

Zu einer Mischung aus 50 g 3,5-Dimethyl-2-(2-propenyl-1)-phenol (C) und 86 g 2,2,2-Trifluorethyltosylat in 450 ml N-Methylpyrrolidon bei 120°C wurden 17 g Natriumhydroxid zudosiert. Es wurde 16 Stunden bei 120°C nachgerührt und anschließend auf 2 l Wasser gegossen. Mit 6 N Salzsäure wurde ein pH-Wert von 2 eingestellt und mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, das Lösungsmittel im Vakuum entfernt und der Rückstand destilliert. Es wurden 32 g (43 % der Theorie) 3,5-Dimethyl-2-(2-propenyl-1)phenyl-(2,2,2-trifluorethyl)ether mit einem Siedepunkt von 100°C bei 1 mbar erhalten.

Beispiel (XXIV-c-2)

erhalten analog zu Beispiel XXIV-c-1.

Rohausbeute: 28,5 g.

Beispiel (XXVIII-c-2)

Erhalten analog zu Beispiel (XXVIII-c-1).

Ausbeute: 12,2 g (52 % der Theorie über 2 Stufen)

5 Fp. 123-126°C

10

15

¹H-NMR (CDCl₃): $\delta = 6.73$ (s, 1H), 6.53 (s, 1H), 4.32 (q, 2H), 3.72 (s, 2H), 2.30 (s, 3H), 2.26 ppm (s, 3H).

Beispiel (XXX-b-1)

4-Cyano-2-ethyl-6-methylphenylessigsäuremethylester

$$CH_3$$
 C_2H_5
 $COOCH_3$
 $CXXX-b-1$

Es wurden 7,5 g 4-Brom-2-ethyl-6-methylphenylessigsäuremethylester in 140 ml Dimethylformamid gelöst, mit 5,5 g Kupfercyanid versetzt und 18 Stunden auf 130°C erhitzt, bis zum vollständigen Umsatz. Danach wurde auf Raumtemperatur gekühlt, mit Wasser verdünnt und das Produkt mehrfach mit tert.-Butyl-methylether extrahiert. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet, eingeengt und destilliert. Es wurden 3,4 g (52 % der Theorie) 4-Cyano-2-ethyl-6-methylphenylessigsäuremethylester mit einem Siedepunkt von 123-130°C und einem Schmelzpunkt von 65-72°C erhalten.

¹H-NMR (CDCl₃): δ = 7,36 (s, 1H), 7,33 (s, 1H), 3,75 (s, 2H), 3,70 (s, 3H, 2,68 (q, 2H), 2,34 (s, 3H), 1,22 ppm (t, 3H).

Analog erhielt man

Beispiel (XXX-b-2)

4-Cyano-2,6-dimethylphenylessigsäuremethylester

Ausbeute: 17,5 g (45 % der Theorie)

5 Kp. 122-123°C bei 0,09 mbar, Fp. = 50-53°C

¹H-NMR (CDCl₃): $\delta = 7.32$ (s, 2H), 3,73 (s, 2H), 3,70 (s, 3H), 2,34 ppm (s, 6H)

Beispiel (XXX-b-3)

4-Cyano-2,6-diethylphenylessigsäuremethylester

Kp. 123-133°C / 0,02 mbar; Fp.: 78-81°C

10 und

Beispiel (XXX-a-1)

2-Cyano-4,6-dimethylphenylessigsäuremethylester

Ausbeute: 25,3 g (66 % der Theorie)

Kp. 78-81°C

¹H-NMR (CDCl₃): $\delta = 7.32$ (s, 1H), 7.23 (s, 1H), 3.88 (s, 2H), 3.72 (s, 3H), 2.33 (s, 3H), 2.29 ppm (s, 3H).

10

Beispiel (XXVIII-a-1)

2-Cyano-4,6-dimethylphenylessigsäure

Es wurden 3 g 2-Cyano-4,6-dimethylphenylessigsäuremethylester (XXX-a-1) in 50 ml Tetrahydrofuran gelöst, mit einer Lösung von 355 mg Lithiumhydroxid in 50 ml Wasser versetzt und 18 Stunden bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt, der Rückstand in Wasser aufgenommen und die Neutralstoffe durch Extraktion mit tert.-Butylmethylether entfernt. Die wäßrige Phase wurde auf 0°C abgekühlt und mit 3 molarer Salzsäure sauer gestellt. Das ausgefallene Produkt wurde abgesaugt, mit Wasser gewaschen und getrocknet. Es wurden 2,5 g (86 % der Theorie) 2-Cyano-4,6-dimethylphenylessigsäure mit einem Schmelzpunkt von 155-157°C isoliert.

¹H-NMR (CDCl₃): $\delta = 7.32$ (s, 1H), 7,23 (s, 1H), 3,92 (s, 2H), 2,33 (s, 3H), 2,31 ppm (s, 3H).

15 Analog erhielt man

Beispiel (XXVIII-b-1)

4-Cyano-2-ethyl-6-methylphenylessigsäure

Ausbeute: 1,8 g (64 % der Theorie)

 $Fp = 157-161^{\circ}C$

20 IR: 2222 cm⁻¹ (CN)

¹H-NMR (CDCl₃): δ = 7,38 (s, 1H), 7,34 (s, 1H), 3,77 (s, 2H), 2,68 (q, 2H), 2,35 (s, 3H), 1,22 ppm (t, 3H)

Beispiel (XXVIII-b-2)

4-Cyano-2,6-dimethylphenylessigsäure (XXVIII-b-2)

Ausbeute: 11,8 g (91 % der Theorie)

Fp. = 202-206°C

5 ¹H-NMR (CDCl₃): $\delta = 7.34$ (s, 2H), 3,77 (s, 2H), 2,36 ppm (s, 6H)

und

Beispiel (XXVIII-b-3)

4-Cyano-2,6-diethylphenylessigsäure

Fp.: 158-162°C.

<u>Anwendungsbeispiele</u>

Beispiel A

Plutella-Test

Lösungsmittel:

7 Gewichtsteile

Dimethylformamid

5 Emulgator:

15

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

10 Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella maculipennis) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Raupen abgetötet wurden, 0 % bedeutet, daß keine Raupen abgetötet wurden.

In diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen I-1-a-1 und I-1-c-1 bei einer beispielhaften Wirkstoffkonzentration von 0,1 % eine Abtötung von mindestens 85 % nach 7 Tagen.

Beispiel B

Nephotettix-Test

Lösungsmittel:

7 Gewichtsteile

Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Grünen Reiszikase (Nephotettix cinticeps) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet; daß keine Zikaden abgetötet wurden.

In diesem Test bewirkte z.B. die Verbindung gemäß den Herstellungsbeispielen I-1-a-1, I-1-a-4, I-1-a-5 und I-1-a-6 bei einer beispielhaften Wirkstoffkonzentration von 0,1 % eine Abtötung von 100 % nach 6 Tagen.

Beispiel C

Pre-emergence-Test

Lösungsmittel:

3 Gewichtsteile

Aceton

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)
100 % = totale Vernichtung

100 % = totale Vernichtung

In diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen I-1-a-1 und I-1-c-1 bei einer beispielhaften Aufwandmenge von 4000 g/ha bei guter Verträglichkeit durch Beta vulgaris eine Schädigung von 80 % gegenüber Alopecurus myosuroides.

Die Verbindung gemäß Herstellungsbeispiel I-1-a-6 bewirkte bei einer beispielhaften Aufwandmenge von 250 g/ha bei guter Verträglichkeit durch Mais eine Schädigung von 80 % gegenüber Abutilon.

Die Verbindung gemäß Herstellungsbeispiel I-1-a-4 bewirkte bei einer beispielhaften Aufwandmenge von 250 g/ha bei guter Verträglichkeit durch Soja eine Schädigung von jeweils 100 % gegenüber Alopecusus, Digitatia, Echinocloa, Chenopodium und Veronica.

Beispiel D

Myzus-Test

Lösungsmittel:

7 Gewichtsteile

Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea), die stark von der grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Blattläuse abgetötet wurden, 0 % bedeutet, daß keine Blattläuse abgetötet wurden.

In diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen I-1-a-4, I-1-a-5 und I-1-a-6 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von mindestens 95 % nach 6 Tagen.

Beispiel E

Tetranychus-Test (OP-resistent)

Lösungsmittel:

7 Gewichtsteile

Dimethylformamid

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Bohnentriebe (Phaseolus vulgaris), die stark von der gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden in eine Wirkstoffzubereitung der gewünschten Konzentration getaucht.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden, 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

In diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen I-1-a-4, I-1-a-5 und I-1-a-6 bei einer beispielhaften Wirkstoffkonzentration von 0,1 % eine Wirkung von 100 % nach 13 Tagen.

Beispiel F

Test mit Boophilus microplus resistent/SP-resistenter Parkhurst-Stamm

Testtiere:

adulte gesogene Weibchen

Lösungsmittel:

Dimethylsulfoxid

5 20 mg Wirkstoff werden in 1 ml Dimethylsulfoxid gelöst, geringere Konzentrationen werden durch verdünnen in dem gleichen Lösungsmittel hergestellt.

Der Test wird in 5-fach-Bestimmung durchgeführt. 1 µl der Lösungen wird in das Abdomen injiziert, die Tiere in Schalen überführt und in einem klimatisierten Raum aufbewahrt. Die Wirkung wird über die Hemmung der Eiablage bestimmt.

Dabei bedeutet 100 %, daß keine Zecke gelegt hat.

In diesem Test zeigte z.B. die Verbindung gemäß den Herstellungsbeispiel I-1-a-1 bei einer beispielhaften Wirkstoffkonzentration von 20 μ g/Tier eine Wirkung von 100 %.

Beispiel G

Post-emergence-Test

Lösungsmittel:

5 Gewichtsteile

Aceton

Emulgator:

1 Gewichtsteil

Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 515 cm haben, so daß die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, daß in 2 000 l Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle.

15 Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle) 100 % = totale Vernichtung

In diesem Test bewirkte z.B. die Verbindung gemäß den Herstellungsbeispiel I-1-a-5 bei einer beispielhaften Aufwandmenge von 125 g/ha bei guter Verträglichkeit durch Soja eine Schädigung von mindestens 80 % gegenüber Alopecurus, Avenafatua und Setaria.

Patentansprüche

1. Verbindungen der Formel (I)

$$\begin{array}{c} X \\ \\ Y \end{array} \hspace{0.2cm} (I)$$

in welcher

5 X für Halogen, Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyloxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Halogenalkyl, Halogenalkenyl, Halogenalkoxy, Halogenalkenyloxy, Nitro, Cyano oder jeweils gegebenenfalls substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio stent,

10 Y für Wasserstoff, Halogen Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkenyl, Alkylsulfinyl, Alkylsulfonyl, Halogenalkyl, Halogenalkenyl, Halogenalkoxy, Halogenalkenyloxy, Nitro oder Cyano steht,

für Wasserstoff, Halogen, Alkyl, Alkenyl, Alkinyl, Halogenalkyl,
Halogenalkenyl, Alkoxy, Alkenyloxy, Halogenalkoxy, Halogenalkenyloxy, Nitro oder Cyano steht, wobei mindestens einer der Substituenten X und Y nicht für Halogen, Alkyl, Halogenalkyl oder Alkoxy steht,

Het für eine der Gruppen

worin

A für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gesättigtes oder ungesättigtes, gegebenenfalls substituiertes Cycloalkyl, in welchem gegebenenfalls mindestens ein Ringatom durch ein Heteroatom ersetzt ist, oder jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Cyano oder Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

B für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder

- A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten, gegebenenfalls mindestens ein Heteroatom enthaltenden unsubstituierten oder substituierten Cyclus stehen.
- D für Wasserstoff oder gegebenenfalls substituierte Reste aus der Reihe Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein

5

10

15

Heteroatom unterbrochenes gesättigtes oder ungesättigtes Cycloalkyl, Arylalkyl, Aryl, Hetarylalkyl oder Hetaryl steht oder

5

A und D gemeinsam mit den Atomen an die sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls mindestens ein Heteroatom enthaltenden unsubstituierten oder substituierten Cyclus stehen,

10

G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

steht,

worin

15

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht,
- M für Sauerstoff oder Schwefel steht.

20

R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen, Alkyl oder Alkoxy substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,

25

10

15

30

- R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,
- R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio und für jeweils gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen,
- R⁶ und R⁷ unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen.

Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

- für Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Halogenalkoxy, Nitro, Cyano oder jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio steht,
 - für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Halogenalkenyloxy, Nitro oder Cyano steht,

10

15

20

für Wasserstoff, Halogen, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Halogenalkyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Halogenalkenyloxy, Nitro oder Cyano steht, wobei mindestens einer der Substituenten X und Y nicht für Halogen, Alkyl, Halogenalkyl oder Alkoxy steht,

Het für eine der Gruppen

für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Cyano oder Nitro substituiertes C₆- oder C₁₀-Aryl, Hetaryl mit 5 bis 6 Ringatomen oder C₆- oder C₁₀-Aryl-C₁-C₆-alkyl steht,

B für Wasserstoff, C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy-C₁-C₆-alkyl steht oder

- A, B und das Kohlenstoffatom, an das sie gebunden sind, für gesättigtes oder ungesättigtes C₃-C₁₀-Cycloalkyl stehen, in welchem gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls einfach oder mehrfach durch C₁-C₈-Alkyl, C₃-C₁₀-Cycloalkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylthio, Halogen oder Phenyl substituiert ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₃-C₆-Cycloalkyl stehen, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- und/oder Schwefelatome enthaltende Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Ring bildet oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₃-C₈-Cycloalkyl oder C₅-C₈-Cycloalkenyl stehen, in welchen zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für jeweils gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiertes C₃-C₆-Alkandiyl, C₃-C₆-Alkendiyl oder C₄-C₆-Alkandiendiyl stehen, worin gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
- D für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_{12} -Alkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, C_1 - C_{10} -Alkoxy- C_2 - C_8 -alkyl, Poly- C_1 - C_8 -alkoxy- C_2 - C_8 -alkyl, C_1 - C_{10} -Alkylthio- C_2 - C_8 -alkyl, gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkyl substituiertes C_3 - C_8 -Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder jeweils gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Hetaryl mit 5 oder 6 Ringatomen, Phenyl- C_1 - C_6 -alkyl oder Hetaryl- C_1 - C_6 -alkyl mit 5 oder 6 Ringatomen steht oder
 - A und D gemeinsam für jeweils gegebenenfalls substituiertes C₃-C₆-Alkandiyl oder C₃-C₆-Alkendiyl stehen, wobei als Substituenten jeweils in Frage kommen:

5

15

20

25

30

Halogen, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_1 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylthio, C_3 - C_7 -Cycloalkyl, Phenyl oder Benzyloxy, oder eine weitere C_3 - C_6 -Alkandiylgruppierung, C_3 - C_6 -Alkendiylgruppierung oder eine Butadienylgruppierung, die gegebenenfalls durch C_1 - C_6 -Alkyl substituiert ist oder in der gegebenenfalls zwei benachbarte Substituenten mit den Kohlenstoffatomen, an die sie gebunden sind, einen weiteren gesättigten oder ungesättigten Cyclus mit 5- bis 6-Ringatomen bilden, der Sauerstoff oder Schwefel enthalten kann, oder worin gegebenenfalls eine der folgenden Gruppen

$$c^{OR^{15}}_{OR^{16}}$$
; $c^{SR^{15}}_{SR^{16}}$; $c^{R^{17}}_{OR^{18}}$

enthalten ist,

G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

5

10

15

$$R^1$$
 (b). R^2 (c). $SO_{\overline{2}}R^3$ (d). R^5 (e). R^5 (e). R^6 (g) steht.

in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht,
 - für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Al-kyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl steht, in welchem gegebenenfalls mindestens ein Ringglied durch Sauerstoff und/oder Schwefel ersetzt ist,

für gegebenenfalls durch Halogen, Cyano, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Halogen, Nitro, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl- C_1 - C_6 -alkyl,

für gegebenenfalls durch Halogen oder C_1 - C_6 -Alkyl substituiertes 5-oder 6-gliedriges Hetaryl,

für gegebenenfalls durch Halogen oder C_1 - C_6 -Alkyl substituiertes Phenoxy- C_1 - C_6 -alkyl oder

für gegebenenfalls durch Halogen, Amino oder C_1 - C_6 -Alkyl substituiertes 5- oder 6-gliedriges Hetaryloxy- C_1 - C_6 -alkyl steht,

5

10

15

20

R² für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Al-kyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl,

für gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy substituiertes C_3 - C_8 -Cycloalkyl oder

für jeweils gegebenenfalls durch Halogen, Cyano, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Halogenalkoxy substituiertes Phenyl oder Benzyl steht,

- für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
- R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈-alkyl)amino, C₁-C₈-Alkylthio, C₂-C₈-Alkenylthio, C₃-C₇-Cycloalkylthio oder für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
- R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₈-Halogenalkyl, C₁-C₈-Alkyl oder C₁-C₈-Alkoxy substituiertes Phenyl, gegebenenfalls durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₈-Alkoxy substituiertes Benzyl oder zusammen für einen C₃-C₆-Alkylenrest stehen, in welchem gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist,
 - R¹³ für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder C₁-C₈-Alkoxy, für gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₈-Cyc-

10

5

15

20

25

30

loalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist, oder für jeweils gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl- C_1 - C_4 -alkyl oder Phenyl- C_1 - C_4 -alkoxy steht,

5

R¹⁴ für Wasserstoff oder C₁-C₈-Alkyl steht oder

R¹³ und R¹⁴ gemeinsam für C₄-C₆-Alkandiyl stehen,

R¹⁵ und R¹⁶ gleich oder verschieden sind und für C₁-C₆-Alkyl stehen oder

10

R¹⁵ und R¹⁶ gemeinsam für einen C₂-C₄-Alkandiylrest stehen, der gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder durch gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist,

15

R¹⁷ und R¹⁸ unabhängig voneinander für Wasserstoff, für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl stehen oder

20

R¹⁷ und R¹⁸ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für eine Carbonylgruppe oder für gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₅-C₇-Cycloalkyl stehen, in dem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und

25

 R^{19} und R^{20} unabhängig voneinander für $C_1\text{-}C_{10}\text{-}Alkyl,\ C_2\text{-}C_{10}\text{-}Alkenyl,\ }C_1\text{-}C_{10}\text{-}Alkoxy,\ }C_1\text{-}C_{10}\text{-}Alkylamino,\ }C_3\text{-}C_{10}\text{-}Alkenylamino,\ }Di\text{-}(C_1\text{-}C_{10}\text{-}alkyl)$ amino oder $Di\text{-}(C_3\text{-}C_{10}\text{-}alkenyl)$ amino stehen.

3.

Verbindungen der Formel (1) gemäß Anspruch 1, in welcher

für Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkyl, C₃-C₄-Halogenalkenyl, C₁-C₄-Halogenalkenyloxy, Nitro, Cyano oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio steht,

für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₂-C₄-Alkenyl,

C₂-C₄-Alkinyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy, C₁-C₄-Alkylsthio,

C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Halogenalkyl, C₃-C₄-Halogenalkenyl,

C₄-Halogenalkenyl, C₁-C₄-Halogenalkoxy, C₃-C₄-Halogenalkenyloxy, Nitro oder Cyano steht,

für Wasserstoff, Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₃-C₄-Halogenalkenyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyloxy, C₁-C₄-Halogenalkoxy, C₃-C₄-Halogenalkoxy, Nitro oder Cyano steht, wobei mindestens einer der Substituenten X und Y nicht für Halogen, Alkyl, Halogenalkyl oder Alkoxy steht,

20 Het für eine der Gruppen

10

15

- für Wasserstoff, jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₁-C₈-Alkoxy-C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₈-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Thiazolyl, Thienyl oder Phenyl-C₁-C₄-alkyl steht,
- B für Wasserstoff, C_1 - C_{10} -Alkyl oder C_1 - C_6 -Alkoxy- C_1 - C_4 -alkyl steht oder
- A, B und das Kohlenstoffatom an das sie gebunden sind, für gesättigtes oder ungesättigtes C₃-C₈-Cycloalkyl steht, in welchem gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₃-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor, Chlor oder Phenyl substituiert ist oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₅-C₆-Cycloalkyl stehen, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- oder Schwefelatome enthaltende Alkylendiyl- oder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Ring bildet oder
 - A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl stehen, in welchen zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für jeweils gegebenenfalls durch C₁-C₅-Alkyl, C₁-C₅-

Alkoxy, Fluor, Chlor oder Brom substituiertes C3-C5-Alkandiyl, C3-C₅-Alkendiyl oder Butadiendiyl stehen, worin gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,

D für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor 5 substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl oder C₁-C₈-Alkylthio-C2-C6-alkyl, für gegebenenfalls durch Fluor, Chlor, C1-C4-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel 10 ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Imidazolyl, Pyridyl, Thiazolyl, Pyrazolyl, Pyrimidyl, Pyrrolyl, Thienyl, Triazolyl oder Phenyl-C1-C4-alkyl steht oder

> A und D gemeinsam für jeweils gegebenenfalls substituiertes C₃-C₅-Alkandiyl oder C₃-C₅-Alkendiyl stehen, wobei als Substituenten jeweils in Frage kommen:

Fluor, Chlor, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C3-C6-Cycloalkyl, Phenyl oder Benzyloxy oder worin gegebenenfalls eine der folgenden Gruppen:

$$C^{OR}^{15}$$
 oder C^{SR}^{15}

enthalten ist;

oder A und D (im Fall der Verbindungen der Formel (I-1)) gemeinsam mit den Atomen, an die sie gebunden sind, für eine der Gruppen AD-1 bis AD-27 stehen

15

20

25

10

G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

$$R^{1}$$
 (b), R^{2} (c), R^{3} (d), R^{5} (e), R^{5} (e), R^{7} (g) steht,

in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht,

für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder gegebenenfalls durch Fluor, Chlor, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind,

für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Fluor, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl oder C_1 - C_3 -Halogenalkoxy substituiertes Phenyl- C_1 - C_4 -alkyl,

für jeweils gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Pyrazolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl,

für gegebenenfalls durch Fluor, Chlor, Brom oder C_1 - C_4 -Alkyl substituiertes Phenoxy- C_1 - C_5 -alkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Amino oder C_1 - C_4 -Alkyl substituiertes Pyridyloxy- C_1 - C_5 -alkyl oder Thiazolyloxy- C_1 - C_5 -alkyl steht,

R² für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl,

für gegebenenfalls durch Fluor, Chlor, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes C_3 - C_7 -Cycloalkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C_1 - C_4 -Alkyl, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkyl oder C_1 - C_3 -Halogenalkoxy substituiertes Phenyl oder Benzyl steht,

10

5

15

20

25

- R³ für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
- R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆-alkyl)amino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 - R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, für gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl, oder zusammen für einen C₃-C₆-Alkylenrest stehen, in welchem gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist,
 - für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, für gegebenenfalls durch Fluor, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₃-alkyl oder Phenyl-C₁-C₂-alkyloxy steht,
 - R¹⁴ für Wasserstoff oder C₁-C₆-Alkyl steht oder
- 30 R¹³ und R¹⁴ gemeinsam für C₄-C₆-Alkandiyl stehen,
 - R^{15} und R^{16} gleich oder verschieden sind und für C_1 - C_4 -Alkyl stehen oder

20

25

10

15

20

25

R¹⁵ und R¹⁶ zusammen für einen C₂-C₃-Alkandiylrest stehen, der gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder durch gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.

4. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher

- X für Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, Vinyl, Ethinyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Allyloxy, Methallyloxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Methylthio, Methylsulfinyl, Methylsulfonyl, Nitro, Cyano oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Propoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl, Phenoxy, Phenylthio, Benzyloxy oder Benzylthio steht,
- Y für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Vinyl, Ethinyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Allyloxy, Methallyloxy, Trifluor-methyl, Methylthio, Methylsulfinyl, Methylsulfonyl, Difluor-methoxy, Trifluormethoxy, Nitro oder Cyano steht,
- Z für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Vinyl, Ethinyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Allyloxy, Methallyloxy, Difluor-methoxy, Trifluormethoxy, Trifluormethyl, Nitro oder Cyano steht, wobei mindestens einer der Substituenten X und Y nicht für Halogen, Alkyl, Halogenalkyl oder Alkoxy steht,

Het für eine der Gruppen

10

15

20

für Wasserstoff, jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₆-Alkylthio-C₁-C₄-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,

B für Wasserstoff, C₁-C₈-Alkyl oder C₁-C₄-Alkoxy-C₁-C₂-alkyl steht oder

A, B und das Kohlenstoffatom an das sie gebunden sind, für gesättigtes oder ungesättigtes C₃-C₈-Cycloalkyl stehen, in welchem gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, Cyclopropyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert ist oder

10

15

20

25

30

- A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₅-C₆-Cycloalkyl stehen, welches durch eine gegebenenfalls ein Sauerstoff- oder Schwefelatom enthaltende Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis sechsgliedrigen Ring bildet oder
- A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl stehen, in dem zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für C₃-C₄-Alkandiyl, C₃-C₄-Alkendiyl oder Butadiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
- für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₂-C₄-alkyl, C₁-C₄-Alkyl-thio-C₂-C₄-alkyl oder C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Thienyl oder Benzyl steht

oder

A und D gemeinsam für jeweils gegebenenfalls substituiertes C₃-C₄-Alkandiyl oder C₃-C₄-Alkendiyl stehen, worin gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist und welche jeweils gegebenenfalls durch Fluor, Chlor, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy substituiert sind oder

worin jeweils gegebenenfalls eine der folgenden Gruppen

10

enthalten ist,

oder A und D im Fall der Verbindungen der Formel (I-1) gemeinsam mit den Atomen, an die sie gebunden sind, für eine der folgenden Gruppen stehen:

10

15

20

G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen

$$R^1$$
 (b). R^2 (c). R^3 (d). R^5 (e) R^5 (e)

in welchen

- E für ein Metallionäquivalent oder ein Ammoniumion steht,
- L für Sauerstoff oder Schwefel steht und
- M für Sauerstoff oder Schwefel steht,

für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls bis zu zwei Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind,

für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl oder Ethylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Benzyl,

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanyl, Thienyl, Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl,

5

für gegebenenfalls durch Fluor, Chlor, Methyl oder Ethyl substituiertes Phenoxy- C_1 - C_4 -alkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl oder Thiazolyloxy- C_1 - C_4 -alkyl steht,

10

 \mathbb{R}^2

für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_{14} -Alkyl, C_2 - C_{14} -Alkenyl, C_1 - C_4 -Alkoxy- C_2 - C_6 -alkyl, Poly- C_1 - C_4 -alkoxy- C_2 - C_6 -alkyl,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C_3 - C_6 -Cycloalkyl,

15

oder für jeweils gegebenenfalls durch Fluor, Chlor, Cyano, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl oder Benzyl steht,

20

R³ für gegebenenfalls durch Fluor oder Chlor substituiertes Methyl, Ethyl, Propyl, Isopropyl oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Isopropoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,

25

R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, C₁-C₄-Alkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Fluoralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio oder C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

- R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy substituiertes Benzyl, oder zusammen für einen C₅-C₆-Alkylenrest stehen, in welchem gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist,
- für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, für C₃-C₆-Cycloalkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, iso-Propoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₂-alkyl oder Benzyloxy steht,
 - R¹⁴ für Wasserstoff oder C₁-C₄-Alkyl steht oder
 - R¹³ und R¹⁴ gemeinsam für C₄-C₆-Alkandiyl stehen,
 - R¹⁵ und R¹⁶ gleich oder verschieden sind und für Methyl oder Ethyl stehen oder
- 20 R¹⁵ und R¹⁶ zusammen für einen C₂-C₃-Alkandiylrest, der gegebenenfalls durch Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl oder durch gegebenenfalls durch Fluor, Chlor, Methoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.
- Verfahren zur Herstellung von Verbindungen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man zum Erhalt von
 - (A) Verbindungen der Formel (I-1-a)

in welcher

A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

N-Acylaminosäureester der Formel (II)

$$A \xrightarrow{CO_2R^8} B$$

$$D \xrightarrow{N} O Z$$

$$X$$

$$Y$$
(II)

in welcher

A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,

und

R⁸ für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,

(B) Verbindungen der Formel (I-2-a)

$$\begin{array}{c|cccc}
A & HO & X \\
\hline
O & Z
\end{array}$$

5

in welcher

A, B, X, Y und Z die oben angegebenen Bedeutungen haben,

Carbonsäureester der Formel (III)

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\begin{array}{c}
CO_2R^8
\end{array}$$

$$\begin{array}{c}
X \\
CIII
\end{array}$$

5

in welcher

A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,

(C) Verbindungen der Formel (I-3-a)

10

in welcher

A, B, X, Y und Z die oben angegebenen Bedeutungen haben,

B-Ketocarbonsäureester der Formel (IV)

15

$$\mathbb{R}^{\mathbb{R}^{\mathbb{R}}}$$
 $\mathbb{R}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{R}}$

in welcher

A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben und

W für Wasserstoff, Halogen, Alkyl oder Alkoxy steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Säure intramolekular cyclisiert,

(E) Verbindungen der Formel (1-5-a)

$$D \xrightarrow{O} X$$

$$A \qquad OH \qquad Z \qquad (I-5-a)$$

in welcher

A, D, X, Y und Z die oben angegebenen Bedeutungen haben,

Carbonylverbindungen der Formel (VIII)

in welcher

A und D die oben angegebenen Bedeutungen haben,

oder deren Silylenolether der Formel (VIIIa)

CHA
$$D-C-OSi(R^8)_3$$
(VIIIa)

in welcher

A, D und R⁸ die oben angegebene Bedeutung haben,

mit Ketensäurehalogeniden der Formel (V)

in welcher

X, Y und Z die oben angegebenen Bedeutungen haben und

Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt,

(F) Verbindungen der Formel (I-6-a)

$$A \xrightarrow{N} O X$$

$$S \xrightarrow{OH} Z$$

$$(I-6-a)$$

in welcher

15

10

A, X, Y und Z die oben angegebenen Bedeutungen haben,

10

15

Thioamide der Formel (IX)

in welcher

A die oben angegebene Bedeutung hat,

mit Ketensäurehalogeniden der Formel (V)

$$\begin{array}{c|c} X & COHal \\ & | \\ C=C=O \end{array} \hspace{0.5cm} (V)$$

in welcher

Hal, X, Y und Z die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt,

und gegebenenfalls die so erhaltenen Verbindungen der Formeln (I-1-a), (I-2-a), (I-3-a), (I-5-a), (I-6-a) oder Verbindungen der Formel (I-4-a)

$$\begin{array}{c|c}
A & O & X \\
N & & & \\
O & X \\
O & & & \\
\end{array}$$

$$\begin{array}{c}
O & X \\
O & & \\
\end{array}$$

$$\begin{array}{c}
O & X \\
O & & \\
\end{array}$$

$$\begin{array}{c}
O & X \\
O & & \\
\end{array}$$

$$\begin{array}{c}
O & X \\
O & & \\
\end{array}$$

$$\begin{array}{c}
O & X \\
O & & \\
\end{array}$$

$$\begin{array}{c}
O & X \\
O & & \\
\end{array}$$

in welcher

A, D, X, Y und Z die oben angegebene Bedeutung haben, jeweils

(Gα) mit Säurechloriden der Formel (X)

$$Hal \bigvee_{O} R^{1}$$
 (X)

in welcher

R1 die oben angegebene Bedeutung hat und

Hal für Halogen steht

oder

β) mit Carbonsäureanhydriden der Formel (XI)

$$R^1$$
-CO-O-CO- R^1 (XI)

in welcher

5

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt oder

(H) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (XII)

15

10

$$R^2$$
-M-CO-Cl (XII)

in welcher

R² und M die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt oder

20

(Iα) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (XIII)

$$CI \longrightarrow M-R^2$$
 (XIII)

in welcher

M und R² die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (XIV)

 R^2 -Hal (XIV)

in welcher

R² die oben angegebene Bedeutung hat und

Hal für Chlor, Brom oder Iod steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base umsetzt oder

(J) mit Sulfonsäurechloriden der Formel (XV)

$$R^3$$
-SO₂-CI (XV)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt oder

(K) mit Phosphorverbindungen der Formel (XVI)

$$Hal - P \qquad (XVI)$$

$$\downarrow I \qquad R^5$$

5

in welcher

L, R⁴ und R⁵ die oben angegebenen Bedeutungen haben und

Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt oder

10 (L) mit Metallverbindungen oder Aminen der Formeln (XVII) oder (XVIII)

$$Me(OR^{10})_t$$
 (XVII) R^{10} N (XVIII)

in welchen

Me für ein ein- oder zweiwertiges Metall,

15 t für die Zahl 1 oder 2 und

R¹⁰, R¹¹, R¹² unabhängig voneinander für Wasserstoff oder Alkyl stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt oder

 $(M\alpha)$ mit Isocyanaten oder Isothiocyanaten der Formel (XIX)

10

$$R^6$$
-N=C=L (XIX)

in welcher

R⁶ und L die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt oder

 β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XX)

$$\begin{array}{c|c}
R^{6} & \downarrow & \downarrow \\
R^{7} & & CI
\end{array} (XX)$$

in welcher

L, R⁶ und R⁷ die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt.

6. Verbindungen der Formel (II)

in welcher

A, B, D, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben und

R⁸ für Alkyl steht.

10

15

7. Verbindungen der Formel (XXIII)

$$\begin{array}{c} A \\ B \\ D \\ \end{array} \begin{array}{c} X \\ X \\ \end{array}$$

$$\begin{array}{c} X \\ X \\ \end{array}$$

$$\begin{array}{c} X \\ X \\ \end{array}$$

$$\begin{array}{c} X \\ Y \\ \end{array}$$

in welcher

A, B, D, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben.

8. Verbindungen der Formel (XXVI)

$$Y - \bigvee_{Z} O \bigvee_{N} C \equiv N$$

$$(XXVI)$$

in welcher

A, B, D, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben.

9. Verbindungen der Formel (III)

$$A CO_2R^8$$

$$X$$

$$CIII)$$

in welcher

A, B, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben und

 R^8

für Alkyl steht.

10. Verbindungen der Formel (IV)

in welcher

5 A, B, X, Y und Z die oben angegebenen Bedeutungen haben,

R⁸ für Alkyl steht und

W für Wasserstoff, Halogen, Alkyl oder Alkoxy steht.

11. Verbindungen der Formel (V)

in welcher

15

X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben und

Hal für Chlor oder Brom steht.

12. Schädlingsbekämpfungsmittel und Unkrautbekämpfungsmittel, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel (I) gemäß Anspruch 1.

10

15

- Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen und Unkräutern.
- 14. Verfahren zur Bekämpfung von Schädlingen und Unkräutern, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum einwirken läßt oder auf Unkräuter und/oder ihren Lebensraum einwirken läßt.
 - 15. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln und Unkrautbekämpfungsmitteln, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.
 - Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Herstellung von Schädlingsbekämpfungsmitteln und Unkrautbekämpfungsmitteln.
 - 17. Verbindungen der Formel (XXII-a)

Y O (XXII-a)

in welcher

Hal für Chlor oder Brom steht und

Y und Z die in Anspruch 1 angegebenen Bedeutungen haben, aber nicht gleichzeitig für Wasserstoff stehen.

20 18. Verbindungen der Formel (XXVIII-a)

10

$$Y \longrightarrow CO_2H$$
 (XXVIII-a)

in welcher

Y und Z die in Anspruch 1 angegebene Bedeutung haben.

19. Verbindungen der Formel (XXX-a)

$$Y \longrightarrow CO_2R^8$$
 (XXX-a)

in welcher

Y und Z die in Anspruch 1 angegebene Bedeutung haben und

R⁸ für Alkyl steht.

20. Verbindungen der Formel (XXII-b)

$$NC \xrightarrow{X} O$$

$$(XXII-b)$$

in welcher

Hal für Chlor oder Brom steht und

X und Z die in Anspruch 1 angegebenen Bedeutungen haben.

21. Verbindungen der Formel (XXVIII-b)

15

$$NC \xrightarrow{X} CO_2H$$
 (XXVIII-b)

in welcher

X und Z die in Anspruch 1 angegebene Bedeutung haben.

22. Verbindungen der Formel (XXX-b)

 $NC \xrightarrow{X} CO_2R^8$ (XXX-b)

in welcher

X und Z die oben angegebene Bedeutung haben und

R⁸ für Alkyl steht.

23. Verbindungen der Formel (XXII-c)

in welcher

Hal für Chlor oder Brom steht,

X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die in Anspruch 1 angegebenen Bedeutungen haben, aber nicht gleichzeitig für Wasserstoff stehen.

24 Verbindungen der Formel (XXVIII-c)

$$Y \longrightarrow X$$
 CO_2H
 $(XXVIII-c)$

in welcher

X für OCHF₂ oder OCH₂CF₃ steht und

5 Y und Z die in Anspruch 1 angegebene Bedeutung haben.

25. Verbindungen der Formel (XXXIV-c)

in welcher

 ${\rm X} \qquad {\rm für} \,\, {\rm OCHF}_2 \,\, {\rm oder} \,\, {\rm OCH}_2 {\rm CF}_3 \,\, {\rm steht} \,\, {\rm und}$

10 Y und Z die in Anspruch 1 angegebene Bedeutung haben.

26. Verbindungen der Formel (XXXV-c)

$$Y - \bigvee_{Z} X$$
 (XXXV-c)

in welcher

X für OCHF₂ oder OCH₂CF₃ steht und

Y und Z die in Anspruch 1 angegebene Bedeutung haben.

Is attornal Application No PCT/EP 96/00382

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C07D207/40 C07D209/96 C07D401/12 C07D307/94 A01N43/38 A01N43/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP,A,O 613 885 (BAYER AG) 7 September 1994 cited in the application see the whole document	1-24
X,P	EP,A,O 647 637 (BAYER AG) 12 April 1995 cited in the application see the whole document	1-24
X	EP,A,O 508 126 (BAYER AG) 14 October 1992 cited in the application see the whole document	1-24
X	EP,A,0 442 077 (BAYER AG) 21 August 1991 cited in the application see the whole document	1-24
	-/	

A work document are made in the continuation of box C.	X Patent taminy memoers are instead in annex.
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance. E* earlier document but published on or after the international filing date. L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). O* document referring to an oral disclosure, use, exhibition or other means. P* document published prior to the international filing date but later than the priority date claimed.	To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art.
Date of the actual completion of the international search 30 May 1996	Date of mailing of the international search report 07.06.96
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tz. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer Kissler, B

Form PCT/ISA/210 (second sheet) (July 1992)

It atonal Application No PCT/EP 96/00382

		PC1/EP 96/00382
C.(Continu	uson) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P	US,A,5 393 729 (FISCHER REINER ET AL) 28 February 1995 cited in the application see the whole document	1-24
X	EP,A,O 521 334 (BAYER AG) 7 January 1993 cited in the application see the whole document	1-24
X	EP,A,O 528 156 (BAYER AG) 24 February 1993 cited in the application see the whole document	1-24
X	EP,A,O 456 063 (BAYER AG) 13 November 1991 cited in the application see the whole document	1-24
	}	

International application No.

PCT/ EP: 96/ 00382

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
 This inte	emational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ւ. 🔲	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: 1-24
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	See attached sheet ./.
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	·
ı. 🗀	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.
	poyment of additional scales tees.

٠.

Lack of precise definition

The definition of the following substituent(s) is too general and/or covers to wide a range of chemically different groups, and is only partially supported by examples in the description:

HET, A, B, G, X, Y, Z.

The large number of theoretically conceivable compounds which could be derived by combining all the claimed substituents in the above list precludes a comprehensive search.

(Cf. PCT Articles 6 and 15, Rule 33, and PCT Search Guidelines, Part B, Chapter III, 3.6, 3.7).

b ational Application No PCT/EP 96/00382

		10171	.P 90/0030E
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0613885	07-09-94	DE-A- 4306257 BR-A- 9400755 JP-A- 6256307	08-09-94 01-11-94 13-09-94
EP-A-0647637	12-04-95	DE-A- 4337853 AU-B- 7159994 BR-A- 9403768 CN-A- 1103642 JP-A- 7179450 ZA-A- 9407183	23-03-95 30-03-95 16-05-95 14-06-95 18-07-95 11-05-95
EP-A-0508126	14-10-92	DE-A- 4109208 JP-A- 5117240 US-A- 5474974 US-A- 5332720 US-A- 5358924	24-09-92 14-05-93 12-12-95 26-07-94 25-10-94
EP-A-0442077	21-08-91	DE-A- 4004496 DE-D- 59009858 JP-A- 4211056	22-08-91 14-12-95 03-08-92
US-A-5393729	28-02-95	DE-A- 4308451 AU-B- 4489393 BR-A- 9303748 CA-A- 2105614 CN-A- 1085554 CZ-A- 9301748 EP-A- 0588137 HU-A- 68668 JP-A- 6220036 NZ-A- 248594 SK-A- 97393	14-04-94 17-03-94 15-03-94 11-03-94 20-04-94 18-05-94 23-03-94 28-07-95 09-08-94 27-01-95 06-04-94
EP-A-521334	07-01-93	DE-A- 4121365 CA-A- 2072280 JP-A- 5221971	14-01-93 29-12-92 31-08-93
EP-A-0528156	24-02-93	DE-A- 4216814 AU-B- 645701 AU-B- 1959992	21-01-93 20-01-94 21-01-93

is ational Application No PCT/EP 96/00382

Patent document cited in search report	Publication date	Patent memi		Publication date 09-11-93 16-11-93
EP-A-0528156		JP-A- US-A-	5294953 5262383	
EP-A-0456063	13-11-91	DE-A- AU-B- AU-B- CA-A- JP-A- US-A-	4107394 635421 7649191 2041939 4226957 5258527	14-11-91 18-03-93 05-12-91 11-11-91 17-08-92 02-11-93

in stronates Aktenzeichen PCT/EP 96/00382

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07D207/40 C07D209/96 C07D401/12 C07D307/94 A01N43/38 A01N43/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindessprüfstoff (Klassifikationssystem und Klassifikationssymbole)

1PK 6 C07D

Recherchierte aber nicht zum Mindestprüßtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie*	Bezeichnung der Veröffentlichung, sowat erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
х	EP,A,O 613 885 (BAYER AG) 7.September 1994 in der Anmeldung erwähnt siehe das ganze Dokument	1-24
X,P	EP,A,0 647 637 (BAYER AG) 12.April 1995 in der Anmeldung erwähnt siehe das ganze Dokument	1-24
X	EP,A,O 508 126 (BAYER AG) 14.0ktober 1992 in der Anmeldung erwähnt siehe das ganze Dokument	1-24
X	EP,A,O 442 077 (BAYER AG) 21.August 1991 in der Anmeldung erwähnt siehe das ganze Dokument	1-24
	-/	

Weitere Veröffentlichungen und der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
Besondere Kategorien von angegebenen Veröffentlichungen: 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist. E' ålteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist. 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem inkernationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist.	 To Spätere Veröffentlichung, die nach dem internationalen Anmededatum oder dem Prioritätsdamm veröffentlicht worden ist und mat der Anmeldung nicht kollidiert, sondern nur zum Verständus des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theore angegeben ist. Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung meht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden. Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichung nieser Kategorie in Verbundung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist. Veröffentlichung, die Mitglied derselben Patentfamilie ist.
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
30.Mai 1996	07.06.96
Name und Postanschrift der Internationale Recherchenbehörde	Bevollmächtigter Botiensteter
Europáisches Patentami, P.B. 5818 Patentiaan 2 NL - 2280 HV Riprojk Tel. (+31-70) 340-2040, Tr. 31 651 epo ni, Faz. (+31-70) 340-3016	Kissler, B

tr. shonales Aktenzeichen
PCT/EP 96/00382

		CT/EP 96/00382	96/00382		
	(Fortestung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommen	ten Teile Betr. Anspruc	h Nr.		
X,P	US,A,5 393 729 (FISCHER REINER ET AL) 28.Februar 1995 in der Anmeldung erwähnt siehe das ganze Dokument	1-24	1		
X	EP,A,O 521 334 (BAYER AG) 7.Januar 1993 in der Anmeldung erwähnt siehe das ganze Dokument	1-24	1		
X	EP,A,O 528 156 (BAYER AG) 24.Februar 1993 in der Anmeldung erwähnt siehe das ganze Dokument	1-24	ı		
X	EP,A,O 456 063 (BAYER AG) 13.November 1991 in der Anmeldung erwähnt siehe das ganze Dokument	1-24	l		

:rnationales Aktenzeichen

PCT/EP 96/00382

Feld I	Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)
Gemäß /	Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. 🗆	Ansprüche Nr. weil Sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2.	Ansprüche Nr. 1-24 weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich Bitte siehe anliegendes Blatt ./.
3.	Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II	Bemerkungen bei mangelnder Einheitlichkeit der E-findung (Fortsetzung von Punkt 2 auf Blatt 1)
Die inter	rnationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält
1.	Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.
2.	Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3.	Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4.	Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerio	Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

Internationales Aktenzeichen PCT/EP96/00382

WEITERE ANGABEN

PCT/ISA/

Mangelnde Genauigkeit

Die Definition des/der folgenden Substitünten ist zu allgemein und/oder umfasst einen zu grossen Bereich von chemisch grundverschiedenen Resten und ist nur teilweise durch Beispiele in der Beschreibung gestützt:

HET, A, B, G, X, Y, Z

Die grosse Zahl der sich aus der Kombination aller beanspruchten Substitünten der obigen Liste ergebenden, theoretisch denkbaren Verbindungen schliesst eine umfassende Recherche aus.

(Cf. Arts. 6, 15 and Rule 33 PCT, und Richtlinien zur Durchführung Teil B, Kapitel III, 3.6, 3.7).

In stonales Aktenzeichen
PCT/EP 96/00382

		1 701/2	.P 90/0030E
Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP-A-0613885	07-09-94	DE-A- 4306257 BR-A- 9400755 JP-A- 6256307	08-09-94 01-11-94 13-09-94
EP-A-0647637	12-04-95	DE-A- 4337853 AU-B- 7159994 BR-A- 9403768 CN-A- 1103642 JP-A- 7179450 ZA-A- 9407183	23-03-95 30-03-95 16-05-95 14-06-95 18-07-95
EP-A-0508126	14-10-92	DE-A- 4109208 JP-A- 5117240 US-A- 5474974 US-A- 5332720 US-A- 5358924	24-09-92 14-05-93 12-12-95 26-07-94 25-10-94
EP-A-0442077	21-08-91	DE-A- 4004496 DE-D- 59009858 JP-A- 4211056	22-08-91 14-12-95 03-08-92
US-A-5393729	28-02-95	DE-A- 4308451 AU-B- 4489393 BR-A- 9303748 CA-A- 2105614 CN-A- 1085554 CZ-A- 9301748 EP-A- 0588137 HU-A- 68668 JP-A- 6220036 NZ-A- 248594 SK-A- 97393	14-04-94 17-03-94 15-03-94 11-03-94 20-04-94 18-05-94 23-03-94 28-07-95 09-08-94 27-01-95 06-04-94
EP-A-521334	07-01-93	DE-A- 4121365 CA-A- 2072280 JP-A- 5221971	14-01-93 29-12-92 31-08-93
EP-A-0528156	24-02-93	DE-A- 4216814 AU-B- 645701 AU-B- 1959992	21-01-93 20-01-94 21-01-93

ď

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffendichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP-A-0528156		JP-A- US-A-	5294953 5262383	09-11-93 16-11-93
EP-A-0456063	13-11-91	DE-A- AU-B- AU-B- CA-A- JP-A- US-A-	4107394 635421 7649191 2041939 4226957 5258527	14-11-91 18-03-93 05-12-91 11-11-91 17-08-92 02-11-93

