DATOS PARA ALUMNOS, P1 – EDOSD (parte de EDO), curso 2021–22.

Tablas para el ejemplo de prueba n.º 2 de la P1, es decir, para el PVI siguiente:

$$\begin{cases} y_1' = 2xy_4y_1, \\ y_2' = 10xy_4y_1^5, \\ y_3' = 2xy_4, \\ y_4' = -2x(y_3 - 1), \end{cases} x \in [0,1],$$

con la condición inicial $y_1(0) = 1$, $y_2(0) = 1$, $y_3(0) = 1$, $y_4(0) = 1$.

La solución exacta es

$$y_1(x) = \exp(\sin(x^2)), y_2(x) = \exp(5\sin(x^2)), y_3(x) = \sin(x^2) + 1, y_4(x) = \cos(x^2).$$

Los resultados numéricos que siguen han sido obtenidos para los criterios de convergencia determinados por los valores $\varepsilon=\delta=10^{-14}$.

RESULTADOS OBTENIDOS CON EL θ -método PARA $\theta=0.6$:

N	Norma 2 del error en $x = 1$	Norma 2 del error en $x = 1$
	empleando punto fijo	empleando Newton
10	5.712119	5.712119
100	5.950971×10^{-1}	5.950971×10^{-1}
1000	5.939813×10^{-2}	5.939813×10^{-2}
10000	5.938407×10^{-3}	5.938407×10^{-3}

RESULTADOS OBTENIDOS CON LA REGLA DEL TRAPECIO (θ -método con $\theta = \frac{1}{2}$):

N	Norma 2 del error en $x = 1$	Norma 2 del error en $x = 1$
	empleando punto fijo	empleando Newton
10	6.377401×10^{-1}	6.377401×10^{-1}
100	5.456552×10^{-3}	5.456552×10^{-3}
1000	5.360231×10^{-5}	5.360231×10^{-5}
10000	5.350602×10^{-7}	5.350602×10^{-7}