The Romer Model of Growth

Chad Jones and Dietrich Vollrath

Introduction to Economic Growth

Setup

Idea Accumulation

5,114111100

Do Do Caladia

Productivity growth

Productivity is central to GDP per capita in the Solow:

- ▶ The growth rate, g_A , determines the long-run growth rate
- ▶ The level of productivity, A_0 , is important for level of GDP per capita

Understanding what drives productivity growth is thus central to understanding economic growth

Setup

dea Accumulation

Dynamics

Aggregate outcome

Romer's model of growth

We want a model of growth that:

- Has all the elements of the Solow model
- Is specific about what A means in that model
- ightharpoonup Explains the dynamics of A and g_A
- ightharpoonup Explains why g_A is constant along a BGP
- lacktriangle Requires effort to create the new ideas that drive A and g_A
- Explains the choice involved in making that effort

Setup

dea Accumulation

3,110111100

Aggregate outcome

The Solow part

Much of the model starts with familiar items. Production is

$$Y_t = K_t^{\alpha} (A_t L_{Yt})^{1-\alpha} \tag{1}$$

where L_{Yt} are workers employed in producing goods and services. L_{Rt} are people engaged in R&D producing ideas, and

$$L_t = L_{Yt} + L_{Rt}. (2)$$

denoting the ratio of R&D workers as

$$s_R = \frac{L_{Rt}}{L_t}. (3)$$

Setup

Dynamics

R&D Decision

Market Structure

Aggregate outcomes

The Solow part

Standard parts:

- ▶ Capital accumulates in the same way as in the Solow (depends on K/AL)
- Population growth is the same as in the Solow (exogenous at g_L)

Assuming that g_A ends up constant (which we'll see) then economy ends up at steady state with a constant K/AL ratio as usual.

Setup

Idea Accumulation

Dynamics

Marian Orana

Aggregate outcome

The relevant part of this Romer model is the accumulation of ideas. We start with pure mechanics.

$$dA = \theta L_{Rt}^{\lambda} A_t^{\phi}. \tag{4}$$

The change in ideas (= productivity), dA, depends on

- lacktriangledown eta. A parameter that governs how fast ideas accumulate
- L_{Rt}, the number of R&D workers. More researchers, more ideas are found
- A_t, the existing stock of ideas. This could make new ideas easier or harder to find.

Setub

Idea Accumulation

Dynamics

R&D Decision

Aggregate outcomes

R&D Solut

Adding to ideas

Same equation:

$$dA = \theta L_{Rt}^{\lambda} A_t^{\phi}. \tag{5}$$

Two interesting parmeters.

- ▶ $0 < \lambda < 1$ measures how sensitive dA is to L_{Rt} .
- ▶ If λ is close to zero, then researchers "crowd" each other
- $\blacktriangleright -\infty < \phi < 1$ measure the effect of productivity on idea accumulation
- ▶ We'll see why ϕ < 1 is crucial to stable outcomes
- ▶ If $0\phi < 1$ higher prod makes new ideas easier (e.g. Al)
- If $\phi < 0$ higher prod makes new ideas harder (e.g. calculus is harder than the wheel)

Setup

Idea Accumulation

Dynamics

R&D Decision

Aggregate outcomes

Adding to ideas

Same equation:

$$dA = \theta L_{Rt}^{\lambda} A_t^{\phi}. \tag{6}$$

Two interesting parmeters.

- ▶ $0 < \lambda < 1$ measures how sensitive dA is to L_{Rt} .
- ▶ If λ is close to zero, then researchers "crowd" each other
- $\blacktriangleright -\infty < \phi < 1$ measure the effect of productivity on idea accumulation
- ▶ We'll see why ϕ < 1 is crucial to stable outcomes
- ▶ If $0\phi < 1$ higher prod makes new ideas easier (e.g. Al)
- If $\phi < 0$ higher prod makes new ideas harder (e.g. calculus is harder than the wheel)

Setup

Idea Accumulation

Dynamics

&D Decision

Aggregate outcomes

Growth rate of ideas

Divide both sides by A

$$g_A = \frac{dA}{A_t} = \theta s_R^{\lambda} \frac{L_t^{\lambda}}{A_t^{1-\phi}}.$$
 (7)

The growth rate, g_A , depends on a ratio

- $ightharpoonup L_t^{\lambda}/A_t^{1-\phi}$ is "researcher per idea" we employ
- $ightharpoonup g_A$ is higher the bigger is this ratio
- Like capital growth, productivity growth depends negatively on productivity level
- ightharpoonup Analyze dynamics via how g_A responds to the ratio

Idea Accumulation

Dynamics

K&D Decision

Aggregate outcomes

Tricky dynamics

Given this:

$$g_A = \theta s_R^{\lambda} \frac{L_t^{\lambda}}{A_t^{1-\phi}}.$$
 (8)

We want to graph the growth rate of both parts of the ratio:

- Numerator growth rate is λg_L . Given.
- ▶ Denominator growth rate is $(1 \phi)g_A$. Endogenous to ratio.

Like with K/AL, we'll plot the growth rate of numerator and denominator against the ratio

Setup

Idea Accumulation

Dynamics

Made Decision

Warker Structure

Dynamics of productivity

Patents Issued in the United States, by Country of Origin

Setup

Idea Accumulation

Dynamics

nad Decisio

Aggregate outcomes

No matter the initial ratio $L_0^{\lambda}/A_0^{1-\phi}$ the dynamics

- Push the ratio towards a steady state where curves cross
- ▶ This happens because g_A rises with ratio, but g_L stays constant
- At that steady state $(1 \phi)g_A = \lambda g_L$
- Like with capital, the growth rate of the endogenous thing depends on the growth rate of the exogenous thing

Long-run growth rate

The long-run growth rate of productivity is

$$g_A^{ss} = \frac{\lambda}{1 - \phi} g_L \tag{9}$$

Setup

Idea Accumulation

Dynamics

4-1-1-0

Aggregate outcomes

We just saw given our dynamics for ideas that

$$g_A^{ss} = \frac{\lambda}{1 - \phi} g_L \tag{10}$$

The growth rate of productivity depends on the *growth rate* of population. This is the non-rivalry of ideas eliminating the dilution of population growth (like on capital).

Note what does *not* influence the growth rate:

- R&D intensity, s_R
- ► The size of the labor force, *L*
- The level of GDP per capita

Idea Accumulation

Dynamics

R&D Decision

Market Structure

Shocks and responses

Like with the Solow we can investigate shocks to parameters. What is commit more resources to R&D?

- Specifically, what if s_R goes up?
- ▶ In the long-run, we know that the growth rate g_A won't be different
- ▶ But in the short-run, that will raise the number of R&D workers, raising g_A
- How do the dynamics explain the return to the long-run result?
- What happens to the level of productivity in response?

Idea Accumulation

Dynamics

larket Structure

Dynamics of g_A

The Dynamics of an Increase in s_R

Setup

Idea Accumulation

Dynamics

nad Decision

Aggregate outcomes

Romer

Dynamics of g_A

The Growth Rate of Productivity over Time

Setu

Idea Accumulation

Dynamics

HAD DECISION

Level effects

The Level of Productivity over Time

Setup

Idea Accumulation

Dynamics

TIGO DOGISIO

Aggregate outcomes

The level of productivity

 s_R influences the level of A. Make this explicit. We know in steady state:

$$g_A^{ss} = \theta s_R \frac{L_t^{\lambda}}{A_t^{1-\phi}},\tag{11}$$

and we can turn this around into a level of prod along a BGP

$$A_t^{BGP} = \left(\frac{\theta s_R L_t^{\lambda}}{g_A^{s_S}}\right)^{\frac{1}{1-\phi}} \tag{12}$$

in log terms this is

$$\ln A_t^{BGP} = \frac{1}{1 - \phi} \frac{\theta s_A^{\lambda}}{g_A^{ss}} + \frac{\lambda}{1 - \phi} \ln L_0 + \frac{\lambda}{1 - \phi} g_L t \qquad (13)$$

The level of A depends on the initial size of the economy, determined by L_0 .

Setup

Idea Accumulation

Dynamics

Market Structu

Aggregate outcon

The level of GDP per capita

Recall that the level of GDP per capita is

$$y_t^{BGP} = \left(\frac{s_I}{g_A + g_L + \delta}\right)^{\frac{\alpha}{1 - \alpha}} (1 - s_R) A_t \tag{14}$$

which depends on A_t and $(1-s_R)$. If you use A_t^{BGP} for this it gets messy but

$$\ln y_t^{BGP} = \frac{\alpha}{1-\alpha} \log \left(\frac{s_I}{g_A + g_L + \delta} \right) + \ln(1 - s_R)$$

$$+ \frac{1}{1-\phi} \frac{\theta s_R^{\lambda}}{g_A^{ss}} + \frac{\lambda}{1-\phi} \ln L_0 + \frac{\lambda}{1-\phi} g_L t$$

and GDP per capita depends on initial market size, L_0 .

Dynamics
R&D Decision
Market Structure

The role of s_R

Looking back at the level of GDP per capita, see two effects of $s_{\it R}$

- If s_R goes up, that raises productivity, and hence GDP per capita
- If s_R goes up, that *lowers* workers engaged in production, lowering GDP per capita
- There is an intermediate value of s_R that maximizes GDP per capita
- It isn't true that $s_R = 1$ (all R&D all the time) is best
- Return to this in Chapter 6

Idea Accumulation

Dynamics

Market Structure

Aggregate outcomes

The choice of R&D

All the long-run results hold regardless of the choice of s_R . But s_R determines the level of productivity and GDP per capita. What determines s_R ?

- How do firms make the decision to do R&D? Fixed cost versus flow of profits
- What determines the fixed cost?
- What determines the flow of profits?

This requires an explicit description of an imperfect market which allows market power and profits.

Setup

Dynamics

R&D Decision

R&D Solution

For a potential firm, the fixed cost of finding a new idea to implement is

$$F_t = w_t \frac{L_{Rt}}{dA},\tag{15}$$

- lacktriangle w_t is the wage they have to pay to people to do R&D
- $ightharpoonup L_{Rt}/dA$ is how many workers it takes *per idea*
- Potential firms take this ratio as given, determined in the aggregate
- Hence F is wages/worker times worker/idea = wages/idea

Idea Accumulation

R&D Decision

Market Structure

The benefit of R&D

For a potential firm, if they do have an idea they can earn some flow of profits each period. They care about the present discounted value of those profits, V, and will compare that to F.

$$V_0 = \pi_0 + \frac{\pi_0(1+g_\pi)}{1+r} + \frac{\pi_0(1+g_\pi)^2}{(1+r)^2} + \frac{\pi_0(1+g_\pi)^3}{(1+r)^3} + \dots$$

where π_0 is profits today, r is the rate of return, and the growth rate of profits, g_{π} .

$$V_0 = \pi_0 \sum_{t=0}^{\infty} \left(\frac{1 + g_{\pi}}{1 + r} \right)^t.$$

which solves to

$$V_0 = \frac{\pi_0}{r - g_\pi}. (16)$$

Setup

.

R&D Decision

Aggregate outcomes

The benefit of R&D

Given this valuation

$$V_0 = \frac{\pi_0}{r - g_\pi}. (17)$$

An idea is more valuable:

- If initial profits are large link this to market power
- ► If r is low. r is discount rate on the future and/or return on alternative assets.
- g_{π} is high link this to growth of economy

Setup

Idea Accumulation

Dynamics

R&D Decision

Warker Structure

We have lots of potential firms, and so long as $V_0 > F$ they will continue to do R&D. Assume they enter until $V_0 = F$,

$$\frac{\pi_t}{r - g_{\pi}} = w_t \frac{L_{Rt}}{dA}.$$

Ultimately we want to solve this for s_R , which recall is $L_{Rt} = s_R L_t$, so really we are solving for L_{Rt} . But we need

- Initial profits
- Growth rate of profits
- Wage

Setup

dea Accumulation

R&D Decision

Market Structure

Aggregate outcomes

Overview

The overall structure of this economy is more complex than Solow. An overview:

- At the "top" there are a set of final goods firms (e.g. Target). They stock intermediate goods that consumers purchase (e.g. Diet Coke, toothbrushes, t-shirts).
- Final good firms are competitive (no profits) and there is no innovation here. They stock goods only.
- Final good firms like to stock a variety of goods
- Intermediate good firms supply the individual goods to final good firms (e.g. Coca-Cola, Oral-B, Hanes)
- Intermediate firms are monopolists (e.g. only Coca-Cola can sell Coke) and earn profits
- A new idea represents a new variety of intermediate good which can earn those profits

Setup

Idea Accumulation

Jynamics

Market Structure

Aggregate outcome

Final good firms

The final good firms produce GDP using

$$Y = L_Y^{1-\alpha} \sum_{j=1}^A x_j^{\alpha}.$$

- L_Y are production workers (not R&D workers)
- $ightharpoonup x_j$ is the amount of each product they stock
- A is the *number* of products they stock
- $ightharpoonup \alpha$ captures how much they like variety.

Note that this Y is GDP because intermediate good sales to the final good firm are explicitly not accounted for in GDP.

Setup

Idea Accumulation

Dynamics

TION DECISION

Market Structure

Aggregate outcomes

Final good maximization

We assume final good firms maximize profits. They are competitive so profits end up at zero, but they still try. To do this they set marginal product equal marginal cost. For labor:

$$w = (1 - \alpha) \frac{Y}{L_Y},\tag{18}$$

and for an individual product j

$$p_j = \alpha L_Y^{1-\alpha} x_j^{\alpha-1}. \tag{19}$$

this is the equation of a demand curve for product j. The higher p_j , the lower demand.

Idea Accumulation

Dynamics

Market Structure

Aggregate outcomes

Intermediate good firms

Each intermediate firm produces their good using the function $x_j = K_j$, using only capital, which costs r per unit of capital. Their profits are:

$$\pi_j = p_j x_j - r x_j.$$

They are a monopolist, so they know how p_j responds to their choice of x_j . That is, they know what the demand curve of final good firms looks like. They set marginal revenue equal to marginal cost

$$p + \frac{\partial p}{\partial x}x = r.$$

Idea Accumulation

Dynamics

Market Structure

Intermediate good firms

Take the MR = MC condition

$$p + \frac{\partial p}{\partial x}x = r.$$

divide by p

$$1 + \frac{\partial p}{\partial x} \frac{x}{p} = \frac{r}{p}.$$

and the ratio on the left is the elasticity of price with respect to quantity, which from final goods firms is equal to $\alpha-1$. So

$$1 + (\alpha - 1) = \frac{r}{p}$$

and

$$p = \frac{1}{\alpha}r. (20)$$

Setup

dea Accumulation

Dynamics

Market Structure

Aggregate outcomes

Intermediate good firms

Given the pricing result

$$p = \frac{1}{\alpha}r\tag{21}$$

this represents a *markup* of the price over the marginal cost. If α goes to one, the final good firm doesn't care about variety, and the markup is lower (and vice versa).

This market power is what will drive profits and make innovation to create a new intermediate good worth it. This matches the intuition from Chapter 4 that innovation depends on charging a price higher than marginal cost.

Setup

Idea Accumulation

Dynamics

R&D Decision

Market Structure

Aggregate outcomes

Adding up

Given the "micro" results on final good firms and intermediate firms.

- \blacktriangleright Each intermediate firm has an identical technology, so $p_j=r/\alpha$ for all
- \blacktriangleright Because they are identical, they demand identical amounts of capital, $x_j=K/A$

so final good firms produce

$$Y = L_Y^{1-\alpha} A x^{\alpha}. (22)$$

which solves to

$$Y = L_Y^{1-\alpha} A \left(\frac{K}{A}\right)^{\alpha}$$
$$= K^{\alpha} (AL_Y)^{1-\alpha}. \tag{23}$$

Despite the complexity, GDP has a similar function to the Solow

Setup

dea Accumulatio

R&D Decision

Market Structure

Aggregate outcomes

Wages and profits

Solve for things we need to know. Start with the wage. Given the first order condition from final good firms:

$$w_t L_{Yt} = (1 - \alpha) Y_t,$$

 $(1-\alpha)$ of GDP gets spent on workers. The other α must get spent on intermediate goods (final good firms don't have profits). The revenues of any given intermediate firm are thus

$$p_j x_j = \frac{\alpha Y_t}{A_t} \tag{24}$$

or the A firms split the αY_t in total profits

ea Accumulation
vnamics
&D Decision

Aggregate outcomes

Profits per firm

What are profits for a firm?

$$\pi_t = p_t x_t - r_t x_t$$

$$= (p_t - \alpha p_t) x_t$$

$$= (1 - \alpha) p_t x_t,$$

and plug in for firm revenues $p_j x_j = rac{lpha Y_t}{A_t}$

$$\pi_t = (1 - \alpha)\alpha \frac{Y_t}{A_t}. (25)$$

are profits per intermediate firm. This is the initial profits that go into the valuation of an idea.

Setup

dea Accumulatio

Dynamics

10000000

Aggregate outcomes

Growth rate of profits

How fast do profits grow? Profits are

$$\pi_t = (1 - \alpha)\alpha \frac{Y_t}{A_t}. (26)$$

so profits grow at the rate (along a BGP) of

$$g_{\pi} = g_Y - g_A.$$

but we know along a BGP that $g_Y = g_L + g_A$ so

$$g_{\pi} = g_L \tag{27}$$

or profits grow as fast as the market.

Setup

idea Accumi

, y 11 d 11 11 00

.

Aggregate outcomes

Solving for s_R

We have all the pieces to go back to this condition for innovation:

$$\frac{\pi_t}{r - g_{\pi}} = w_t \frac{L_{Rt}}{dA}.$$

so

$$\frac{\alpha(1-\alpha)\frac{Y_t}{A_t}}{r-g_L} = (1-\alpha)\frac{Y_t}{L_{Yt}}\frac{L_{Rt}}{g_A A_t}.$$

which solves for

$$\frac{s_R}{1 - s_R} = \frac{\alpha(1 - \alpha)}{(1 - \alpha)} \frac{g_A}{r - g_L}.$$
 (28)

Idea Accumulation

Dynamics

Market Structure
Aggregate outcomes

Solving for s_R

Given the solution

$$\frac{s_R}{1-s_R} = \frac{\alpha(1-\alpha)}{(1-\alpha)} \frac{g_A}{r-g_L}.$$
 (29)

 s_R is higher:

- ▶ If g_A is higher. If innovations come quickly, it pays to hire R&D workers
- If r is lower. If the future matters more, it pays to do R&D
- If g_L is higher. If the market will grow quickly, it pays to do R&D
- If $\alpha(1-\alpha)$ (profits as a share of GDP) is higher
- If (1α) (wages as a share of GDP) is lower

Idea Accumulation

Dynamics

Market Structure