INFORMACIÓN:

Hojas con texto "VISUALIZACIÓN" son para mostrar cómo debería verlo el operario

Hojas con texto "FÓRMULAS A EMPLEAR" son todas las fórmulas y notaciones completas

Hojas con texto "VARIABLES" son para indicar que variables van vinculadas a cada elemento

Hojas con texto "FÓRMULAS (VARIABLES)" son las fórmulas de antes pero con las variables indicadas.

VISUALIZACIÓN

CAMPOS EN AZUL: SENSORES

CAMPOS EN NARANJA: ENTRADA DATOS USUARIO

CAMPOS EN VERDE: CÁLCULOS DEL PROGRAMA (NO SE PUEDE MODIFICAR)

CAMPOS EN ROJO: ENTRADA DE DATOS DE CONTROL INSTALACIÓN

CAMPOS EN GRIS: VISUALIZACIÓN DE DATOS (NO SE PUEDE MODIFICAR)

VARIABLES

CAMPOS EN NEGRO: VARIABLES, VISUALIZACIÓN DE DATOS: [nombre_variable], unidades, tipo de dato

CAMPOS EN MORADO: VARIABLES, EDITABLE POR USUARIO: [nombre_variable], unidades, tipo de dato

Tipos de dato

Real: número real (con coma, de normal 2 cifras significativas, pero las que haga falta)

Int: número entero sin coma

String: cadena de caracteres.

Constantes Ensayo

Nº Experimento:

0

Diam_Reactor, cm

0.00

Resistencia,Ohm

0.00

Voltaje_Resist, VAC

0.00

Hum_Ext, %

0.00

Vel min fluid, m/s

0.00

Vel arrastre, m/s

0.00

SET Caudal vent, g/s

0.00

Datos del lecho

Clasificación: Grueso (2,5<Dp>4)

Masa, g

0.00

Altura, cm

0.00

Diam_part, mm

0.00

Dens_part, g/cm3

0.00

Hum_ini, %

0.00

Temp_ini, C

0.00

CONTROL RESISTENCIA

TIME (MIN)

POTENCIA CONTROLADOR TEMP

GRÁFICAS LECHO

CONCENTRACIÓN HUMEDAD

AGUA EVAPORADA AL AIRE

Q CEDIDO Y ABSOBIDO

GRÁFICAS REACTOR

FÓRMULAS A EMPLEAR

Cálculo previos al ensayo

 ε_{nb} : porosidad del lecho empaquetado (fijo).

$$\varepsilon_{pb} = 1 - \frac{4m_b}{\pi H_b D_b^2 \rho_p}$$

 m_h : masa del lecho seco, g

 H_b : altura del lecho, cm

 D_b : diámetro lecho, cm

 ρ_n : densidad de la partícula sólida, g/cm³

Cálculo del caudal másico del aire

$$h_1 = T_1 + 3.138 \cdot 10^{-5} T_1^2$$

 $h_1 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \qquad T_1: \text{temperatura del term\'ometro TEMP_1, °C} \; ; \; h_1: \text{entalp\'ia del aire en el punto 1, J/g} \; . \; \\ h_2 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \qquad T_2 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_3 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_4 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_5 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_7 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_7 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_7 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_7 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \; \\ h_7 = T_1 + 3.138 \cdot 10^{-5} T_1^2 \; . \; \\ h$

$$h_2 = T_2 + 3.138 \cdot 10^{-5} T_2^2$$

 $h_2 = T_2 + 3.138 \cdot 10^{-5} T_2^2 \quad T_2 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_2 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_2 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ia del aire en el punto 2, J/g} \; . \; T_3 : \text{temperatura del term\'ometro TEMP_2, °C} \; ; \; h_3 : \text{entalp\'ometro TEMP_2, °C} \; ; \; h_4 : \text{entalp\'ometro TEMP_2, °C} \; ; \; h_5 : \text{entalp\'ometro TEMP_2, °C} \; ; \; h_6 : \text{entalp\'ometro TEMP_2, °C} \; ; \; h_7 : \text{entalp\'ometro TEMP_2, °C} \; ; \; h_8 : \text{entalp\'ome$

$$\dot{m}_{as} = \frac{\dot{Q}_{res}}{h_2 - h_1}$$

 \dot{Q}_{res} : Potencia de la resistencia, W

 \dot{m}_{as} : Caudal másico de aire seco, g/s

FÓRMULAS A EMPLEAR

Balance de materia

$$p_{v3} = \exp(18.58 - \frac{3985}{T_3 + 233.4}) \rightarrow w_3 = 0.623 \frac{\phi_3 p_{v3}}{101.3 - \phi_3 p_{v3}}$$

$$p_{v4} = \exp(18.58 - \frac{3985}{T_4 + 233.4}) \rightarrow w_4 = 0.623 \frac{\phi_4 p_{v4}}{101.3 - \phi_4 p_{v4}}$$

3 y 4: Estado del aire en los puntos 3 y 4

 T_3 y T_4 : Temperatura medida por los sensores TEMP_3 y TEMP_4, °C

 p_{v3} y p_{v4} : Presión de vapor del agua en los estados 3 y 4, kPa

 ϕ_3 y ϕ_4 : Humedad relativa medida por los sensores HUM_REL_3 y HUM_REL_4, en fracción de 1

w₃ y w₄: Humedad específica del aire en los estados 3 y 4

$$\dot{m}_w = \dot{m}_{as}(w_4 - w_3) \ \dot{m}_w$$
: Agua evaporada hacia el aire, g/s

$$\dot{c} = -\dot{m}_w/m_b$$

 \dot{c} : variación de la humedad del lecho, s^{-1} ; m_b : Masa del lecho seco, g

$$c(p+1) = c(p) + \dot{c}(p)\Delta t$$

c(p): humedad del lecho en el instante $p \equiv t/\Delta t$, siendo t el tiempo transcurrido desde el comienzo del ensayo y Δt el tiempo de muestreo.

Balance de energía

$$T_b = \frac{T_5 + T_6}{2}$$

 T_b : Temperatura media del lecho, °C

$$\dot{Q} = \dot{m}_{as}[(1+1.87w_3)T_3 - [(1+1.87w_4)T_4]]$$

Q: Calor cedido por el aire, W

$$\dot{Q}_{ev} = 2340 \, \dot{m}_w$$

 \dot{Q}_{ev} : Calor absorbido por la evaporación, W

$$\dot{Q}_s = \dot{Q} - \dot{Q}_{ev}$$

 \dot{Q}_s : Calor sensible para calentamiento lecho, W

Listado de Variables

Nº Experimento -> [N_exp], n/a,int	Q
Diam_Reactor, cm -> [D_reac], cm, real	Po
Resistencia,Ohm -> [R], Ohm, real	Ve
Voltaje_Resist, VAC -> [V_r], VAC, real	C
Hum_Ext, % -> [H_Ext], %, real	P
Vel min fluid, m/s -> [V_mf], m/s, real	SI
Vel arrastre, m/s -> [V_t], m/s, real	TI
SET Caudal vent, g/s -> [M_vent], g/s, real	TI
Clasificación -> [clas], n/a, string (min 18 chars)	TI
Masa, g -> [M_I], g,real	TI
Altura, cm -> [alt_l], cm, real	TI
Diam_part, mm -> [D_part], mm, real	TI

Hum_ini, %-> [H_ini], %, real

Temp_ini, C-> [T_ini], C, real

Hum_lecho, % -> [H_I], %, real

Q aire seco, W-> [Q as], W, real

Agua_evap, g/s -> [M_w], g/s, real

Variables que solo aparecen en config Entalpia del aire -> h1, J/g, real Entalpia del aire -> h2, J/g, real Presion vapor -> Pv3, kpa, real Presion vapor -> Pv4, kpa, real Hum especifica aire -> W3, n/a, real Hum especifica aire -> W4, n/a, real Variación hum lecho -> C, s⁻¹, real Auxiliar para iteración -> hl_aux, %, real Temp media lecho -> tb, C, real Calor sensible para calentamiento del lecho -> Qs, W, real

Tiempo de muestreo (el indicado en pa-

nel frontal) -> t_muest

Ventana EMERGENTE: Variables

Constantes Ensayo	
[N_exp], n/a,int	0
[D_reac], cm, real	0.00
[R], Ohm, real	0.00
[V_r], VAC, real	0.00
[H5], %, real	0.00
[V_mf], m/s, real	0.00
[V_t], m/s, real	0.00
[M_vent], g/s, real	0.00

Datos del lecho	
[clas], n/a, string	
[M_l], g,real	0.00
[alt_l], cm, real	0.00
[D_part], mm, real	0.00
[Dens_part], g/cm3 , real	0.00
[H_ini], %, real	0.00
[T_ini], C, real	0.00

POTENCIA CONTROLADOR TEMP

GRÁFICAS LECHO Variables

CONCENTRACIÓN HUMEDAD

AGUA_EVAPORADA

Q CEDIDO Y ABSOBIDO

Variables

FÓRMULAS (VARIABLES)

```
[V r] = 1 - ((4* [M I])/(\pi * [alt I] * ([D reac])^2 * [Dens part]
     Porosidad
                           h1 = [T1] + 3.138*10^{-5}* ([T1])^{2}
                           h2 = [T2] + 3.138*10^{-5}* ([T2])^{2}
     Caudal másico
                           [M_as] = ([Q_res]/(h2 - h1))
                        pv3 = exp(18.58-(3985/([T3] + 233.4))
                        W3 = 0.623*(([H3]*pv3)/(101.3 - [H3]*pv3))
                         pv4 = exp(18.58-(3985/([T4] + 233.4))
Balance de materia
                        W4 = 0.623*(([H4]*pv4)/(101.3 - [H4]*pv4))
                        [M \ w] = [M \ as] * ( w4 - w3 )
                        C = -([M \ w]/[M \ I])
                        [H_I] = hl_aux + C * t_muest
                        hl_aux = [H_I] (solamente cada ciclo de muestreo)
                      tb = ([T5] + [T6])/2
                      [Q_as] = [M_as] * ((1+1.87*W3)*[T3] - (1+1.87W4)*[T4]))
Balance de energía
                      [Q_ev] = 2340* [M_w]
                      Qs = [Q as] - [Q ev]
```