Эконометрическое исследование зависимости стоимости недвижимости в Санкт-Петербурге от характеристик объекта

Исследование подготовили:

Денисенко Дмитрий Сергеевич Шестяев Егор Алексеевич Пилюгин Василий Германович

Оглавление

Актуальность темы исследования	2
Формулировка гипотез	
Методы исследования	
Основная часть исследования - построение регрессионной мо	дели, ее
тестирование и эндогенность	11
Проверка гипотез	19

Актуальность темы исследования

Санкт-Петербург является вторым по величине жилищным рынком страны - объем предложения только первичного жилья в Питере превышает 3 млн. кв.м. Средневзвешенная цена "квадрата" жилой площади к концу 2024 г. достигала примерно 263 тыс. руб. и за последние 5 лет выросла практически вдвое.

Макроэкономические и регуляторные условия, безусловно, находятся в постоянной динамике: завершение льготных ипотечных программ, ужесточение семейной ипотеки и рост рыночных ставок резко снизили долю ипотечных сделок до 44 % - минимального уровня последних лет. А новые градостроительные правила и ограничения на строительство в историческом центре постоянно меняют "ценовую карту" города.

Однако неизменными детерминантами стоимости недвижимости остаются характеристики объекта: престижность района, в котором находится тот или объект, его удаленность от метро, общая площадь квартиры, жилая площадь, площадь кухни, число комнат, этаж, год постройки дома, его тип и тип отделки в квартире.

Также стоит отметить и то, что недвижимость является одним из главных инвестиционных активов российских домохозяйств, поэтому четкое понимание влияния той или иной детерминанты на стоимость объектов позволит населению принимать более обоснованные решения о вложении в тот или иной объект, снижая риск возникновения "пузырей" на рынке недвижимости. В то же время прозрачность факторов ценообразования повышает доверие к рынку и снижает информационное неравенство между профессиональными игроками и обычными гражданами.

Источники:

- <u>https://www.rbc.ru/spb_sz/07/12/2024/6751b4799a79471d1ad6dba5</u>
- <u>https://stroygaz.ru/news/dwelling/za-pyat-let-novostroyki-v-peterburge-podorozhali-bolee-chem-v-dva-raza</u>
- https://nikoliers.ru/analytics/itogi-2024-rossiya-sankt-peterburg-zhilaya-nedvizhimost

Формулировка гипотез

В ходе нашего исследования мы с командой планируем проверить следующие гипотезы:

- "Премия исторического центра" объекты, находящиеся в пределах исторического и культурного "центра" Санкт-Петербурга будут стоить дороже, чем объекты, находящиеся в иных районах города ввиду ограниченности предложения, высокой культурной и инфраструктурной ценности локаций и постоянно вводимых ограничений на строительство новых объектов в исторических районах города
- "Средняя этажность детерминант высокой стоимости жилья" квартиры, находящиеся на не самых низких и в то же время на не самых высоких этажах будут иметь более высокую стоимость, чем недвижимость на первых или последних этажах дома. Внизу шум и пыль, а вверху ветер, долгое ожидание лифта и нагрев крыши в теплое время года
- "Историческая и ценовая значимость памятников архитектуры" в центральных районах города наибольшую ценность, которая выражается в более высокой стоимости, имеют дореволюционные дома, которые являются памятниками уникальной архитектуры Санкт-Петербурга. А на окраинах города ситуация обратная: там большую ценность имеют новостройки, так как старый фонд не несет никакого культурного "шарма".

Данные

Выборка представляет из себя набор данных об объявлениях о продаже недвижимости в Санкт-Петербурге (1380 объектов), размещенных на крупнейшем российском сервисе по подбору недвижимости "Циан" на момент 13.04.2025 (тип данных: cross-section).

Описание переменных представлено в таблице ниже:

Группа переменных	Переменная	Описание
Идентификация	url	Уникальная ссылка на объявление
	author, author_type	Имя продавца и его тип (developer, real_estate_agent, realtor, representative_developer, homeowner)
Локация	district	Городской район СПб
	street, house_number	Адрес объекта
	metro	Ближайшая станция метро
	residental_complex	Название ЖК, если объект находится в новостройке
"Физические" характеристики	total_meters, living_meters, kitchen_meters	Общая, жилая площадь и площадь кухни
	rooms_count	Число комнат (студия: -1, 1, 2, 3+ комнаты)
	floor, house_floors_total	Этаж квартиры и этажность здания
	year_of_construction	Год постройки дома
	house_material_type	Тип дома (монолитный,

		панельный, кирпичный, смешанные варианты)
	finish_type	Отделка квартиры (чистовая, без отделки и т.д.)
Целевая переменная	price	Запрашиваемая цена за объект недвижимости

Таблица 1: "Описание переменных"

Описание выборки:

- Тип продавца: 53% девелоперы / официальные представители, 21% профессиональные агенты / риэлторы, 3% собственники, 1% объявления с нераспознанным типом агента
- **Материал здания по декларируемому описанию:** 746 объектов "монолит" / "монолит-кирпич", 65 объектов "панель", 569 объектов остальные / не указано
- Отделка: 288 объектов "чистовая", 133 объекта "предчистовая", 205 объектов "без отделки" / "черновая", 377 объектов комбинированные варианты (не содержат явного описания).

Разведочный анализ данных (EDA)

Предварительная обработка данных:

- **Приведение типов** для потенциально числовых столбцов нами была предпринята попытка перевести каждое значение в число (если не получается, то в NaN)
- **Категоризация и явное указание типов** "категоризовали" признаки-категории (district, metro и др.) с помощью astype()
- Пропущенные значения очистили датасет от пропусков, заполнили медианными значениями
- Добавили новые признаки арифметически нашли стоимость недвижимости за кв. м. (price_per_meter) и "возраст дома" (construction_age), добавили бинарные переменные: central (центральный район СПб), middle_floor ("средний этаж") выше первого, но ниже последнего, old_house старый жилой фонд (дома с возрастом > 100 лет), и new_build новострой (отрицательный год постройки), также добавили логарифм цены log_price

Основные дескриптивные статистики:

Переменная	Число наблюдений	Ср. знач.	Станд. отклон.	Минимум	Максимум
total_meters	1380	49	24	14	218
living_meters	1146	22	15	8	120
kitchen_meters	1022	15	8	4	99
rooms_count	1380	1	1	-	3
floor	1380	5	5	-	26
house_floors_total	1380	12	7	3	29
year_of_constructi on	1342	2016	26	1823	2032
construction_age	1342	9	26	-	202
price	1379	14049255	21053037	3550000	271200000

price_per_meter 1379 247406 149707 45165 1500000
--

Таблица 2: "Основные описательные статистики"

Графический EDA:

График 1: "Распределение цены недвижимости в СПб за кв. м."

График 2: "Цена за кв. м. недвижимости в СПб по районам"

График 3: "Взаимосвязь цены и общей площади недвижимости в СПб"

График 4: "Корреляционная матрица переменных"

Предварительные заключения из EDA:

- Вполне логично и ожидаемо, что распределение цен имеет длинные хвосты и без трансформаций они будут "тянуть" оценку OLS. Самый простой способ побороть это взять логарифм от цены либо же отрезать верхний 1% наблюдений
- Район (district) самый значимый "неметровый" фактор
- Вероятно, при добавлении в модель чего-либо "метрового", кроме total_meters **приведет к мультиколлинеарности.** Можно попробовать побороть это при помощи регуляризации
- Гетероскедастичность и выбросы на скаттере (График 3) видно, что разброс цен растет с площадью. Можно попробовать использовать робастные ошибки, WLS или тесты BP/White
- Наблюдается слабый, но **нестандартный эффект возраста дома**. Такое лучше улавливается нелинейными эффектами.

Методы исследования

- Потенциальные методы исследования оценка "чистого" эффекта факторов на цену (классическая OLS/GLS-модель), учет пространственной зависимости (SAR/SEM, GWR), применение методов многоуровневой иерархии (Mixed-effects, random intercept/slope и др.), изучение неоднородных эффектов вдоль распределения цен (квантильная регрессия QR), использование поправок на селекционное смещение (например, Heckman / Propensity score weighting)
- **Борьба с эндогенностью** планируются к проведению DWH-тесты, а также тесты на инструментальную значимость переменных (F-тесты, правило Staiger-Stock >= 10 и др.). Также, возможно, будет смысл сравнить робастные и IV-оценки друг с другом
- Источники с "технической" информацией, которая может оказаться полезной при применении того или иного метода:
 - Гедоническая регрессия https://www.sciencedirect.com/science/article/pii/S2212609016300
 383
 - Инструментальные переменные -<u>https://www.nzae.org.nz/wp-content/uploads/2019/07/JamesGraha</u>
 <u>m_HousePricesConsumptionBartikInstrument.pdf</u>
 - SAR / SEM https://www.sciencedirect.com/science/article/pii/S2211381911000

 348
 - Geographically Weighted Regression (GWR) https://www.sciencedirect.com/science/article/abs/pii/S0264837722
 002101
 - **Многоуровневая модель** <u>https://www.researchgate.net/publication/330572553_Analysis_of_</u> Prices in the Housing Market Using Mixed Models
 - Селективность выборки https://www.jstor.org/stable/44095499

Основная часть исследования - построение регрессионной модели, ее тестирование и эндогенность

Модель:

В процессе работы изначально планировалось проверить несколько различных спецификаций регрессионных моделей (LAD / Median Regression, Log-Log, Gls / WLS).

Однако результаты классической OLS модели показали, что для наших данных о недвижимости **модель является** одновременно и консистентной, и наиболее **эффективной**:

Dep. Variable:	log	_price			0.823	
Model: Method:	Loost C	0LS		:	0.822	
Method: Date:		iquares	F-statistic: Prob (F-statis	tic):	331.7 5.06e-314	
Time:):50:15			-140.46	
No. Observations:	13	1379	AIC:	•	298.9	
Df Residuals:		1370	BIC:		346.0	
Df Model:		8	5201		3.010	
Covariance Type:		HC1				
	coef	std er	======================================	P> z	[0.025	0.975]
const	15.1735	0.02	 9 525.083	0.000	15.117	15.230
total_meters	0.0175	0.00	1 31.463	0.000	0.016	0.019
floor	-0.0005	0.00	1 -0.306	0.760	-0.003	0.002
house_floors_total	-0.0005	0.00	1 -0.498	0.619	-0.003	0.002
central	0.7277	0.04	3 16.959	0.000	0.644	0.812
middle_floor	0.0494	0.01	7 2.989	0.003	0.017	0.082
old_house	-0.1642	0.16	1 -1.018	0.309	-0.480	0.152
central_old	-0.1809	0.19		0.351	-0.561	0.199
outsk_new 	-0.0118	0.01	4 -0.849	0.396	-0.039 	0.015
Omnibus:		.40.680	Durbin-Watson:		1.541	
Prob(Omnibus):		0.000	Jarque-Bera (J	B):	352.059	
Skew:		0.572	Prob(JB):		3.56e-77	
Kurtosis:		5.195	Cond. No.		1.50e+03	

Таблица 3: "Результаты оценки OLS-модели"

• R^2 = 0.823 свидетельствует о том, что модель объясняет 82.3% дисперсии логарифма цены - это очень хороший показатель, наша модель весьма неплохо справляется с описанием данных.

- Скорректированный Adj. $R^2 = 0.822$ говорит о том же, учитывая то, что наша OLS-модель включает в себя несколько предикторов
- F-Stat = 331.7 и p-value, стремящееся к нулю говорят о том, что в целом предложенная модель является статистически значимой, а нулевая гипотеза о том, что все коэффициенты, кроме константы, равны нулю отвергается с достаточно высокой уверенностью
- **Гетероскедастичность присутствует**, частично побороть ее помогло использование робастных (White/HC1) ошибок SE
- Оценка коэффициентов модели привела к следующим результатам:

Переменная	p-value	Интерпретация
const	0.000	Константа - значима
total_meters	0.000	Увеличение общей площади на 1 кв.м. повышает логарифм цены на 0.0175, значимо
floor	0.760	Этаж не влияет на стоимость недвижимости, незначимо
house_floors_total	0.619	Общее число этажей в доме не имеет статистически значимого влияния на стоимость жилья
central	0.000	Факт нахождения жилья в центре города положительно влияет на стоимость, значимо
middle_floor	0.003	Факт нахождения жилья на "среднем" этаже хоть и незначительно, но увеличивает стоимость жилья, значимо
old_house	0.309	"Старость" дома -

		незначима
central_old	0.351	"Центр+Старый дом" - незначимо
outsk_new	0.396	"Окраина+Новый дом" - незначимо

^{*}central_old и outsk_new являются "переменными взаимодействия" для проверки гипотез

Таблица 4: "Оценки коэффициентов модели и их интерпретация"

Тестирование - мультиколлинеарность:

Диагностика мультиколлинеарности при помощи VIF показала, что инфляция ошибок из-за коррелирующих регрессоров отсутствует - все VIF < 10:

Признак	Значение VIF
total_meters	1.49
floor	1.39
house_floors_total	1.51
central	1.68
middle_floor	1.15
old_house	7.2
central_old	7.36
outsk_new	1.16

Таблица 5: "Результаты VIF-тестирования"

Тестирование - эндогенность переменных:

Изначально мы предположили, что при проверке на эндогенность "под подозрением" может оказаться общая площадь объекта (total_meters) в силу ряда причин:

- Теория гедонических цен гласит, что в классической спецификация цена есть функция от качества, размера, локации и т. п. Размер и цена формально "совместно определяются" покупателем и продавцом. У покупателя есть бюджет и предпочтения он одновременно решает, сколько метров может / хочет купить и сколько готов заплатить. Такого рода "совместное решение" покупателя и продавца в теории может коррелировать с компонентой ошибки ненаблюдаемым "уровнем платежеспособности" конкретного покупателя, общим состоянием рынка и др.
- Некоторая автоселекция по сегменту более просторные квартиры, как правило, относятся к дорогому сегменту, находятся в лучших локациях и имеют более качественную отделку, а эти характеристики частично скрыты в "эпсилон"-ошибке. Если эти "скрытые" качества не полностью контролируются в X-матрице, то площадь улавливает их и, как следствие, возникает эндогенность
- У нас есть living_meters и kitchen_meters они сильно коррелируют с total_meters (значение коэффициента корреляции Пирсона: 0.74 и 0.38 соответственно), что вполне логично. Считать living_meters и kitchen_meters драйверами стоимости жилья не принято, если в уравнении регрессии уже присутствует общая площадь объекта. Поэтому естественным кажется проводить тесты на эндогенность именно относительно общей площади (total_meters).

Результаты двухэтапного DWH-теста показали, что признаков эндогенности общей площади объекта (total_meters) в нашей выборке не наблюдается:

• **1-ый этап DWH-теста** - регрессировали X = total_meters на инструменты и получили остатки Ui = X1i - X1i^, после чего проверили силу инструментов при помощи F-теста, по результатам которого "сила" инструментов была подтверждена (F-Stat = 778 >> 10) по правилу Staiger-Stock:

	0L	S Regress	ion Results			
Dep. Variable:	total	 _meters	R-squared:		0.836	
Model:		0LS	Adj. R-square	ed:	0.835	
Method:	Least	Squares	F-statistic:		778.2	
Date:	Sat, 17 M	lay 2025	Prob (F-stati	istic):	0.00	
Time:	1	9:56:28	Log-Likelihoo	od:	-5102.5	
No. Observations:		1379	AIC:		1.022e+04	
Df Residuals:		1369	BIC:		1.028e+04	
Df Model:		9				
Covariance Type:	no	nrobust				
	coef	std er	 r t	P> t	[0.025	0.975]
const	5.5571	0.97	 4 5.704	0.000	3.646	7.468
living_meters	1.2294	0.02	2 55.373	0.000	1.186	1.273
kitchen_meters	1.2399	0.04	4 28.047	0.000	1.153	1.327
floor	-0.0914	0.06	3 -1.442	0.150	-0.216	0.033
house_floors_total	-0.0782	0.04	9 -1.587	0.113	-0.175	0.018
central	10.3196	1.04	9.916	0.000	8.278	12.361
middle_floor	0.5736	0.63	4 0.905	0.366	-0.670	1.817
old_house	-2.1790	4.96	2 -0.439	0.661	-11.912	7.554
central_old	-3.0803	5.37	9 -0.573	0.567	-13.633	7.472
outsk_new	-1.3074	0.60	5 -2.160	0.031	-2.495	-0.120
Omnibus:		945.766	======= Durbin-Watsor	======== 1:	1.844	
Prob(Omnibus):		0.000	Jarque-Bera (22249.704	
Skew:		2.850	Prob(JB):		0.00	
Kurtosis:		21.835	Cond. No.		833.	
=======================================		======				

Таблица 6: "Результаты 1-го этапа DWH-теста"

• 2-ой этап DWH-теста - расширенное структурное уравнение, в котором к исходному уравнению лог-цены добавляется Ui[^]. Также в параметрах тестов мы использовали ковариационную матрицу HC1, чтобы не полагаться на гомоскедастичность. Далее при помощи t-теста мы проверили нулевую гипотезу gamma = 0 (т. е. total_meters является переменной экзогенной) - смотрим на переменную fs_resid. P > |z| = 0.44 > 0.05, а значит, что H0 - не отвергается, следовательно, связи между площадью и ошибкой структурной регрессии нет и OLS-коэффициент по площади несмещен. Вторая, «классическая» форма DWH-теста (Hausman-F по разнице OLS vs IV-параметров) дает то же самое: Hausman-p > 0.3:

	coef	std err	Z	P> z	[0.025	0.975]
 const	15.1860	0.032	481.525	0.000	15.124	15.248
total_meters	0.0172	0.001	27.303	0.000	0.016	0.018
floor	-0.0004	0.001	-0.281	0.779	-0.003	0.002
house_floors_total	-0.0006	0.001	-0.573	0.567	-0.003	0.001
central	0.7384	0.046	16.056	0.000	0.648	0.829
middle_floor	0.0505	0.017	3.017	0.003	0.018	0.083
old_house	-0.1584	0.159	-0.997	0.319	-0.470	0.153
central_old	-0.1863	0.192	-0.970	0.332	-0.563	0.190
outsk_new	-0.0130	0.014	-0.935	0.350	-0.040	0.014
fs_resid	0.0011	0.001	0.772	0.440	-0.002	0.004

Таблица 7: Результаты 2-го этапа DWH-теста"

Тестирование - возможное смещение OLS:

Мы решили провести дополнительное тестирование смещения OLS-модели при помощи IV-методов 2SLS, так как IV-оценка остается консистентной, даже когда OLS смещена (в теории смещена). Для этого мы прошли по следующим шагам:

- **Шаг 1** спрогнозировали площадь инструментами, предварительно определив подозрительный RHS-фактор total_meters и нашли правдоподобные инструменты living_meters и kitchen_meters и все прочие экзогенные регрессоры
- Шаг 2 заменили фактическую площадь на её прогноз в уравнении цены и сравнили результаты 2SLS с OLS, получив практически идентичные коэффициенты это значит, что наша изначальная OLS-модель несмещена и тестировать какие-либо иные спецификации особого смысла нет (Hausman-статистика также не отвергает OLS):

IV-/2SLS-оценка (робастные SE): OLS Regression Results Dep. Variable: log_price R-squared: 0.744 Model: 0LS Adj. R-squared: 0.743 Method: Least Squares F-statistic: Date: Sat, 17 May 2025 Prob (F-statistic): 5.10e-244 Time: 20:02:23 Log-Likelihood: -394.75 No. Observations: Df Residuals: 1379 807.5 Df Model: 8 HC1 Covariance Type: std err [0.025 15.266 15.1860 0.041 373.255 0.000 15.106 const total_meters_hat 0.001 0.000 -0.0004 0.002 -0.230 0.818 -0.004 0.003 house_floors_total -0.0006 0.001 -0.4660.641 -0.0030.002 0.000 0.7384 0.068 10.816 0.605 0.872 central middle_floor 0.0505 0.020 2.573 0.010 0.012 0.089 old_house -0.1584 0.177 -0.896 0.370 -0.505 0.188 central old -0.18630.213 -0.8740.382 -0.6040.231 -0.0130 0.016 -0.822 0.411 -0.044 0.018 outsk_new Omnibus: 328.560 Durbin-Watson: 1.534 Prob(Omnibus): Jarque-Bera (JB): 1354.615 0.000 Skew: 1.084 Prob(JB): 7.07e-295 Kurtosis: 1.48e+03 7.345 Cond. No. [1] Standard Errors are heteroscedasticity robust (HC1) [2] The condition number is large, 1.48e+03. This might indicate that there are strong multicollinearity or other numerical problems.

F-статистика 1-й стадии (Staiger-Stock): 778.16

Таблица 8: "Результаты тестирования через 2SLS-методы"

Проверка гипотез

- "Премия исторического центра" гипотеза подтверждена. Квартиры в четырех «центральных» районах Санкт-Петербурга (Адмиралтейский, Центральный, Петроградский, Василеостровский) действительно стоят дороже. Центр СПб сочетает в себе как ограниченное предложение (разного рода "охранные зоны", запреты на высотное строительство и др.), так и высокую концентрацию офисов, сервисов, разного рода культурных объектов, что делает перечисленные районы крайне привлекательными для жизни и обеспечивает высокий спрос на жилье в этой части города. Оцененный коэффициент в лог-модели оказался равен 0.7277, что в "классической" шкале означает +107% к цене относительно аналогичного объекта за пределами центра. Это, кстати, достаточно близко к надбавке к оценкам других российских и европейских городов (80-120%)
- "Средняя этажность детерминант высокой стоимости жилья" гипотеза также подтверждена. Низшие этажи "страдают" от шума и пыли, самые верхние от ветра, жары, долгого ожидания лифта и др. Оцененный коэффициент при регрессии составил 0.0494, что свидетельствует о примерно 5%-ой премии к стоимости жилья на "средних" этажах
- "Историческая и ценовая значимость памятников архитектуры" не подтверждена. Данную гипотезу мы проверяли "перекрестным" образом при помощи переменных взаимодействия "старый_фонд+центр" и "новострой+окраина". Коэффициенты при обеих переменных статистически неотличимы от нуля. Такой результат может быть связан, как вариант, с сильной гетерогенностью нашей "шарм-премии" дореволюционный дом может быть как отреставрированным «до бриллианта», так и требовать капитальных вложений. Также стоит отметить и то, что наша классификация old_house по критерию возраста дома (>= 100 лет) могла оказаться слишком грубой и туда попали не только архитектурные шедевры Санкт-Петербурга, но и аварийные постройки. А еще эффект уже мог быть учтен переменной central: модель могла «забрать» всю премию локации в основной коэффициент, а дополнительная разница «старое vs не старое»

оказалась сравнительно слабой.