Note

On Subsets of Abelian Groups with No 3-Term Arithmetic Progression

P. FRANKL*

C.N.R.S., Paris, France

R. L. GRAHAM

AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, New Jersey 07974

AND

V. Rödl*

FJFI CVUT, Prague, Czechoslovakia

Communicated by the Managing Editors

Received October 25, 1986

A short proof of the following result of Brown and Buhler is given: For any $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ such that if A is an abelian group of odd order $|A| > n_0$ and $B \subseteq A$ with $|B| > \varepsilon |A|$, then B must contain three distinct elements x, y, z satisfying x + y = 2z. © 1987 Academic Press, Inc.

1. Introduction

Let N denote the set of positive integers, and for $n \in N$, let [n] denote the set $\{1, 2, ..., n\}$. A well-known theorem of Roth [R] asserts that if $P \subseteq N$ contains no 3-term arithmetic progression, then P has upper density zero. That is, for every $\varepsilon > 0$, $|P \cap [n]| < \varepsilon n$ holds for all sufficiently large n.

Brown and Buhler [BB1] proved the following generalization of Roth's result.

^{*} This work was performed while the authors were visiting AT&T Bell Laboratories.

Theorem 1. For every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ with the following property. Suppose A is an abelian group of odd order, $|A| > n_0$. Then every subset $B \subset A$ with $|B| > \varepsilon |A|$ contains three distinct elements x, y, z with x + y = 2z.

For a finite set X, define $\binom{X}{k} := \{F \subseteq X: |F| = k\}$. A family $\mathbf{F} \subseteq \binom{X}{k}$ is called a k-graph. It is called *linear* if $|F \cap G| \le 1$ holds for all distinct $F, G \in \mathbf{F}$. Three distinct edges, F, G, H of a linear k-graph are said to form a triangle if the three intersections $F \cap G, G \cap H, H \cap F$ are all non-empty and distinct.

THEOREM 2 (Ruzsa-Szemerédi [RS]). Suppose that \mathbf{F} is a linear 3-graph on n vertices which contains no triangle. Then $|\mathbf{F}| = o(n^2)$.

For a simple proof of Theorem 2, see [EFR]. Here we show that Theorem 1 follows easily from Theorem 2.

2. Proof of Theorem 1

Suppose A is an abelian group of odd order and $B \subseteq A$ contains no three distinct elements x, y, z with x + y = 2z. Define $X = A \times [3]$ to be the 3|A|-element set with general element (a, i), $a \in A$, $1 \le i \le 3$. Now define a 3-graph \mathbf{F} as

$$\mathbf{F} := \{ \{ (a, 1), (a+b, 2), (a+2b, 3) \} : a \in A, b \in B \}.$$

Clearly, $|\mathbf{F}| = |A| |B|$. Also, \mathbf{F} is linear since any two elements of an edge uniquely determine the edge.

Suppose now to the contrary that F contains a triangle, say

$$\{(a_i, 1), (a_i + b_i, 2), (a_i + 2b_i, 3)\}, i = 1, 2, 3.$$

By symmetry, we may assume that

$$a_1 = a_2$$
, $a_1 + b_1 = a_3 + b_3$, $a_2 + 2b_2 = a_3 + 2b_3$.

However, these equations imply

$$2b_2-2b_3=a_3-a_2=a_3-a_1=b_1-b_3$$

i.e.,

$$2b_2 = b_1 + b_3$$
.

By the choice of B, this implies $b_1 = b_2 = b_3$ and thus, $a_1 = a_2 = a_3$, a contradiction. Thus, F contains no triangle.

Hence, by Theorem 2,

$$|\mathbf{F}| = |A| |B| = o(|A|^2),$$

i.e.,

$$|B| = o(|A|)$$
 as desired.

Remark. The same proof can be used in the case when A is a d-dimensional affine space over $GF(2^t)$, $t \ge 2$. For the definition of edges in the proof, one replaces a + 2b by $a + \gamma b$ where $\gamma \ne 0$, 1 is an arbitrary element of $GF(2^t)$. The conclusion then becomes: B contains three points on a line.

3. Some Lower Bounds

The most important special cases of Theorem 1 are when A is a cyclic group (corresponding to Roth's theorem) and when A is an affine space A(d, q) of dimension d over GF(q).

In both cases, stronger theorems are known. Szemerédi's theorem [S] asserts that sets with positive upper density contain arithmetic progressions of arbitrary length, while a recent result of Furstenberg and Katznelson [FK] implies that for any $\varepsilon > 0$ and any prime power q there exists $d_0 = d_0(\varepsilon, q)$ so that the following is true: Every subset $B \subseteq A(d, q)$ with $|B| > \varepsilon q^d, d > d_0$, contains all the points of some line in A(d, q).

In view of [BB2] this implies the same statement if we replace lines by planes, spaces, etc.

Let $a_q(d)$ denote the maximum of |B| where $B \subseteq A(d, q)$ contains no line. In the case of the integers, Behrend [B] showed that for every $\delta > 0$ and $n > n_0(\delta)$ there exists $B \subseteq [n]$ with $|B| > n^{1-\delta}$ so that B contains no 3-term arithmetic progression. We do not know if the corresponding statement holds for affine spaces.

PROBLEM. Is it true that for every $\delta > 0$, $q \ge 3$ and $d > d_0(\delta, q)$, there exists $B \subseteq A(d, q)$ which contains no line and satisfies $|B| > (q - \delta)^d$.

It is easy to construct such a B with $|B| = (q-1)^d$; simply take

$$B = \{(b_1, ..., b_d) : b_i \in GF(q) \setminus \{0\}, i = 1, ..., d\}.$$

To improve on this bound note that if $x \in GF(q)$ is fixed and $\{(b_1^{(i)},...,b_d^{(i)}), i=1,...,q\}$ forms a line then the sets $F_i = \{j: b_j^{(i)} = x\}$ form a sunflower of size q, that is, $F_1 \cap \cdots \cap F_q = F_j \cap F_{j'}$ holds for all $1 \le j < j' \le q$.

Let $f_q(d, r)$ denote the maximum of |F| where $F \subseteq \binom{[d]}{r}$, and F contains no sunflower of size q.

PROPOSITION. For all positive integrs n, r, d, one has

$$a_q(n) \geqslant f_q(n, r)(q-1)^{n-r}$$
 and $a_q(nd) \geqslant a_q(n)^d$. (2)

Proof. Let $\mathbf{F} \subseteq \binom{[n]}{r}$ be a family without sunflowers of size q which satisfies $|\mathbf{F}| = f_q(n, r)$.

Fix an element $x \in GF(q)$. For $\mathbf{b} = (b_1, ..., b_n) \in A(n, q)$, define $F(\mathbf{b}) := \{j: b_i = x\}$ and

$$B := \{ \mathbf{b} \in A(n, q) \colon F(\mathbf{b}) \in \mathbf{F} \}.$$

Then B contains no line. To prove the second assertion, one simply notes that if B contains no line then

$$B \oplus \cdots \oplus B \subseteq A(n, q) \oplus \cdots \oplus A(n, q) = A(dn, q)$$

contains no line either.

If we knew the value of $f_q(n, r)$, then probably we could get fairly good lower bounds on $a_q(n)$.

Although this problem goes back to Erdös and Rado [ER], very little is known about $f_o(n, r)$.

For q odd, n=2q and r=2, one can take two disjoint complete graphs on q vertices each. This shows $f_q(2q,2) \ge q(q-1)$. Actually one has equality, but we do not need it. Using (1) we obtain

$$a_q(2dq) \geqslant (q-1)^{2dq} \left(\frac{q}{q-1}\right)^d$$
.

Using the fact that there is a collection of 300 6-element subsets of [18] without a sunflower of size three, one obtains $a_3(18) \ge 300 \cdot 12^{12}$ and thus $a_3(d) \ge (2.179)^d$ for $d > d_0$.

REFERENCES

- [B] F. A. BEHREND, On sets of integers which contain no three elements in arithmetic progression, *Proc. Nat. Acad. Sci.* 23 (1946), 331-332.
- [BB1] T. C. Brown and J. P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory A 32 (1982), 20-34.
- [BB2] T. C. Brown and J. P. Buhler, Lines imply spaces in density Ramsey Theory, J. Combin. Theory A 36 (1984), 214-220.
- [EFR] P. Erdős, P. Frankl, and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combine 2 (1986), 113-121.

- [ER] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
- [FK] H. FÜRSTENBERG AND Y. KATZNELSON, An ergodic Szemerédi theorem for ℙ-systems and combinatorial theory, J. Anal. Math. 45 (1985), 117–168.
- [R] K. F. ROTH, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
- [RS] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Colloq. Math. Soc. Janos Bolyai 18 (1978), 939-945.
- [S] E. SZEMERÉDI, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975) 199-245.