Bac Sciences Mathématiques National 2018

EXERCICE 1: (3,5 points)

On rappelle que $(\mathbb{C},+,\times)$ est un corps commutatif et que $(M_2(\mathbb{R}),+,\times)$ est un anneau unitaire, de zéro la matrice nulle $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ et d'unité la matrice $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et que $(M_2(\mathbb{R}), +, \cdot)$ est un espace vectoriel réel. Pour tout couple $(x, y) \in \mathbb{R}^2$, on pose $M(x, y) = \begin{pmatrix} x & -2y \\ y & x + 2y \end{pmatrix}$ et on considère l'ensemble $E = \{M(x, y)/(x, y) \in \mathbb{R}^2\}$ 0,25 1- Montrer que E est un sous-groupe du groupe $(M_2(\mathbb{R}),+)$ 2- a) Montrer que E est un sous-espace vectoriel de l'espace vectoriel 0,25 $(M_2(\mathbb{R}),+,\bullet)$ b) On pose J = M(0,1). Montrer que (I,J) est une base de l'espace vectoriel 0,5 réel (E,+,.)3- a) Montrer que *E* est une partie stable de $(M_2(\mathbb{R}),\times)$ 0,5 b) Montrer que $(E,+,\times)$ est un anneau commutatif. 0,5 4- Soit φ l'application de \mathbb{C}^* vers $M_2(\mathbb{R})$ définie par : $\left(\forall (x,y) \in \mathbb{R}^2 - \left\{(0,0)\right\}\right) \; ; \; \varphi(x+iy) = M(x+y,-y) = \begin{pmatrix} x+y & 2y \\ -y & x-y \end{pmatrix}$ 0,5 a) Montrer que φ est un homomorphisme de (\mathbb{C}^*,\times) vers $(M_2(\mathbb{R}),\times)$ b) On pose $E^* = E - \{O\}$. Montrer que $\varphi(\mathbb{C}^*) = E^*$ 0,5

EXERCICE 2: (3 points)

0,25

0,25

	Soit p un nombre premier tel que : $p = 3 + 4k$ $(k \in \mathbb{N}^*)$
0,5	1- Montrer que pour tout entier relatif x , si $x^2 \equiv 1[p]$ alors $x^{p-5} \equiv 1[p]$
	2- Soit <i>x</i> un entier relatif vérifiant : $x^{p-5} \equiv 1[p]$
0,5	a) Montrer que x et p sont premiers entre eux.
0,5	b) Montrer que : $x^{p-1} \equiv 1[p]$.

c) En déduire que (E^*,\times) est un groupe commutatif.

5- Montrer que $(E, +, \times)$ est un groupe commutatif.

0,5	c) Vérifier que : $2+(k-1)(p-1)=k(p-5)$
0,5	d) En déduire que : $x^2 \equiv 1[p]$
0,5	3- Résoudre dans \mathbb{Z} l'équation : $x^{62} \equiv 1[67]$

EXERCICE 3: (3,5 points) Soit m un nombre complexe. On considère dans l'ensemble complexes \mathbb{C} l'équation (E_m) d'inconnue z: $z^{2} + (im + 2)z + im + 2 - m = 0$ 0,25 1- a) Vérifier que $\Delta = (im - 2i)^2$ est le discriminant de l'équation (E_m) 0,5 b) Donner, suivant les valeurs de m, l'ensemble des solutions de l'équation (E_m) 2- Pour $m = i\sqrt{2}$, écrire les deux racines de l'équation (E_m) sous la forme 0,5 exponentielle. Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) II-On considère les points A, Ω , M et M' d'affixes respectifs a=-1-i, $\omega=i$, met m' = -im - 1 + i1- Soit R la rotation d'angle $-\frac{\pi}{2}$ qui transforme M en M' 0,25 a) Vérifier que Ω est le centre de R0,5 b) Déterminer l'affixe b de B, où B est le point tel que : A = R(B)2- a) Vérifier que : $m' - a = \frac{\omega - a}{\omega - b} (m - b)$ 0,5 b) En déduire que les points A, M et M' sont alignés si et seulement si les 0,5 points A, B, Ω et M sont cocycliques. 0,5 c) Montrer que l'ensemble des points M tel que les points A, M et M' soient alignés

EXERCICE 4: (7,5 points)

	Partie I:
0,5	1- a) Montrer que : $(\forall x \in]0, +\infty[)$; $\int_0^x \frac{t}{1+t} dt = x - \ln(1+x)$
	b) En utilisant le changement de variable $u = t^2$, montrer que :
0,5	$(\forall x \in]0, +\infty[)$; $\int_0^x \frac{t}{1+t} dt = \frac{1}{2} \int_0^{x^2} \frac{1}{1+\sqrt{u}} du$

Est un cercle dont on déterminera le centre et le rayon.

c) En déduire que :
$$(\forall x \in]0, +\infty[)$$
 ; $\frac{1}{2(1+x)} \le \frac{x - \ln(1+x)}{x^2} \le \frac{1}{2}$

0,25

2- Déterminer
$$\lim_{x\to 0^+} \frac{x - \ln(1+x)}{x^2}$$

Partie II :

On considère la fonction
$$f$$
 définie sur $]0,+\infty[$:
$$\begin{cases} f(x) = \left(\frac{x+1}{x}\right) \ln(1+x) & ; \quad x \neq 0 \\ f(0) = 1 \end{cases}$$

et soit (C) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j})

0,25

0,5

b) Montrer que f est dérivable à droite en 0 (On pourra utiliser le résultat de la question I.2)

0,75

c) Calculer: $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis interpréter graphiquement le résultat obtenu.

0,5

2- a) Montrer que
$$f$$
 est dérivable sur $]0,+\infty[$, puis vérifier que :

$$(\forall x \in]0,+\infty[)$$
 ; $f'(x) = \frac{x - \ln(1+x)}{x^2}$

0,25 0,25

- b) En déduire que f est strictement croissante sur $[0,+\infty[$
- c) Vérifier que : $f([0,+\infty[)=[1,+\infty[$

0,5

3- Représenter graphiquement la courbe (C) (On construira la demi-tangente à droite au point d'abscisse 0)

Partie III :

0,5

1- On considère la fonction g définie sur $]0,+\infty[$ par : g(x)=f(x)-x

a) Montrer que : $(\forall x \in]0, +\infty[)$; $0 < f'(x) \le \frac{1}{2}$

0,5

b) En déduire que g est strictement décroissante sur $]0,+\infty[$ puis montrer que $g(]0,+\infty[)=]-\infty,1[$

0,25

c) Montrer que l'équation f(x) = x admet une solution unique α sur $[0, +\infty[$

2- Soit *a* un réel de l'intervalle $]0,+\infty[$.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = a$ et $(\forall n \in \mathbb{N})$; $u_{n+1} = f(u_n)$

0,25

a) Montrer que :
$$(\forall n \in \mathbb{N})$$
 ; $u_n > 0$

0,5	b) Montrer que : $(\forall n \in \mathbb{N})$; $ u_{n+1} - \alpha \le \frac{1}{2} u_n - \alpha $
0,5	c) Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $ u_n - \alpha \le \left(\frac{1}{2}\right)^n a - \alpha $
0,25	d) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α

EXERCICE 5: (2,5 points)

	On considère la fonction F définie sur \mathbb{R} par : $F(x) = \int_0^x e^{t^2} dt$
0,5	1- Montrer que F est continue et strictement croissante sur \mathbb{R}
0,5	2- a) Montrer que : $(\forall x \in]0, +\infty[)$; $F(x) \ge x$. En déduire $\lim_{x \to +\infty} F(x)$
0,5	b) Montrer que F est impaire, en déduire $\lim_{x\to -\infty} F(x)$
0,5	c) Montrer que F est une bijection de \mathbb{R} dans \mathbb{R}
0,5	d) Montrer que la bijection réciproque G de la fonction F est dérivable en 0 ,
	puis calculer $G'(0)$