What Are The Effects Of Different Types Of The Government Expenditures And Investment On The Kenya's Economic Growth?

Mungyu Yang

Table of Contents

- 1. Background (Why is this topic interesting?)
- 2. Literature Review
- 3. Contributions to Existing Literatures
- 4. Raw Data
- 5. Data/Variables/Model Description
- 6. Hypothesis
- 7. Computational Result R and Excel
- 8. Checking for Multicollinearity (VIF) R
- 9. Result Interpretation R and Excel
- 10. Conclusion
- 11. Limitations of the Research
- 12. Reference

Why Is This Topic Interesting?

- Kenya is one of the countries that has the emerging economy in Africa, which is evidenced by 5% GDP growth by 2023.
- From the **private and public sectors**, different types of government expenditures and investments have been going on in Kenya that can potentially contribute to **its economic growth.**
- For example, Kenyan government has allocated \$132 million USD on the development of ICT sector according to Kenya's *national budget allocations for FY 2022/2023.* Also, the average FDI inflows in Kenya increased by 35% between 2019 and 2021.
- Therefore, with different types of government expenditures and investments in Kenya going on for its economic growth, I would like to assess the effects of different types of government expenditures and investments in Kenya on its economic growth.

Literature Review

The effect of foreign direct investment on the economic growth of Sub-Saharan African countries: An empirical approach (2022)

- The study aims to assess the impact of foreign direct investment on the economic growth of Sub-Saharan African countries. The study examined panel data from 22 nations in Sub-Saharan Africa from 1988 to 2019.
- The finding of study suggests that the positive and statistically significant relationship between increase of foreign direct investment in Sub-saharan economies and economic growth. The 1% increase of foreign direct investment means the increase of economic growth of sub-Saharan African countries by 0.138%.

Population dynamics and economic growth in Kenya (2021)

- The study used a Kenyan population dynamic, economic growth and social expenditure time series dataset for the period of 2000–2018 to evaluate the effect of changes in population size and structure on Kenya's economic growth, taking into account the contributions of social expenditure including healthcare spending.
- The finding of study reveals the **negative** and **statistically significant** relationship between the social expenditure and the economic growth.

Information and communication technology penetration level as an impetus for economic growth and development in Africa (2020)

- The study aims to examine the effect of the performance of ICT on economic growth and development in Africa through assessing the relationship between ICT penetration indicators (mobile telephone, fixed-line telephone and Internet access subscriptions) and economic growth indicator (GDP - real gross domestic product)
- The finding of the study suggests that ICT penetration has the positive impact on economic growth and development in African countries.

Contributions to Existing Literatures

Contribution 1

There are not have been much of empirical researches with constructing the statistical model on how different areas and types of investments in Kenya have impacted its economic growth. Therefore, I would like to do it by constructing a statistical model to explore the relationship between the economic growth and the various types of investments and government expenditures

Contribution 2

Also, I plan to include variables of investments and that have not been addressed much for economic growth in Kenya in existing literatures such as the investment on telecommunication service

Raw Data

	NAME OF TAXABLE PARTY.	GDP_per_capita			Telecommunication_Investment
	2001	408.3606087	53.02622939		2947.69
	2002				3468.06
	2003	441.3914117	817.3824264	289.9747899	7913.09
	2004	462.6182158	460.6393145	297.7209045	4438.55
	2005	522.7768371	212.116854	332.5303492	6781.49
	2006	699.3997381	506.7472518	369.9866897	7928.85
	2007	840.1916319	7290.44146	479.282657	6269.03
	2008	915.9989157	955.8568023	547.1893352	7447.16
	2009	1049.121794	1162.57609	561.5862121	5145.31
	2010	1093.639628	1780.646068	618.7769338	7121.64
	2011	1099.315465	14504.74757	699.133242	5821.7
	2012	1289.780795	13801.73662	889.0787415	8003.59
	2013	1376.829206	11188.25	1024.308351	3939.02
	2014	1489.919724	8209.375984	1236.100016	4381.21
	2015	1496.653568	6197.24465	1315.408755	5163.32
	2016	1562.076611	4695.333107	1473.916813	3811.08
	2017	1675.98843	13460.85345	1121.396935	3772.52
	2018	1845.783413	7677.615067	1371.427194	5675.94
	2019	1970.080063	4699.402668	1472.809615	3718.7
	2020	1936.250752	4263.051894	1687.002987	4308.77

Data/Variables/Model Description

Data

 The period of data is from 2001 to 2020

Variables

- Dependent variable-GDP per capita (in USD)
- Independent variable
 - Foreign direct investment net inflow (per million USD)
 - Annual Investment in Telecommunication Service (per million USD)
 - Health Expenditure Government Scheme (per million USD)

Model

- Significance level $(\alpha) = 0.05$
- Y (GDP per capita) = β0 (Intercept) + β1*x1
 (Foreign direct investment)+β2*x2 (Government health expenditure) + β3*x3(Investment in telecommunication services)

Hypothesis

Hypothesis 1

Null Hypothesis (H0): The statistical model equation is not significant

Alternative Hypothesis (H1): The statistical model equation is significant

Hypothesis 2

Null Hypothesis (H0): The corresponding population value of each partial regression coefficients is equal to 0. ($\beta i=0$)

Alternative Hypothesis (H1): The corresponding population value of each partial regression coefficients is not equal to 0. (βi≠0)

*(i=1,2,3 in this model)


```
Call:
lm(formula = GDP_per_capita ~ Foreign_Direct_Investment + Government_Health_Expenditure +
   Telecommunication_Investment, data = rm2)
Residuals:
   Min
            10 Median
-207.48 -74.45 -29.59 81.06 233.68
Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            1.217e+02 1.411e+02 0.863
                            1.219e-02 7.145e-03 1.706
Foreign Direct Investment
Government_Health_Expenditure 1.028e+00 7.886e-02 13.032 6.17e-10 ***
Telecommunication Investment 1.990e-02 2.002e-02 0.994
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 () 1
Residual standard error: 134.8 on 16 degrees of freedom
 (1 observation deleted due to missingness)
Multiple R-squared: 0.9458, Adjusted R-squared: 0.9357
F-statistic: 93.16 on 3 and 16 DF, p-value: 2.408e-10
```

SUMMARY OUTPUT								
Regression Statisti	CS							
Multiple R	0.97254746							
R Square	0.945848563							
Adjusted R Square	0.935695168							
Standard Error	134.7842019							
Observations	20							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	3	5077028	1692343	93.15589597	2.4083E-10			
Residual	16	290668.5	18166.78					
Total	19	5367697						
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	121.7065099	141.0507	0.862857	0.400965267	-177.30751	420.7205	-177.3075112	420.720531
Foreign_Direct_Investment	0.012189339	0.007145	1.705883	0.107362801	-0.0029584	0.027337	-0.002958389	0.027337067
Government_Health_Expenditure	1.027710786	0.078863	13.03162	6.17399E-10	0.86052896	1.194893	0.86052896	1.194892612
Telecommunication_Investment	0.019904462	0.020024	0.994046	0.334996768	-0.0225438	0.062353	-0.022543833	0.062352758

Checking the Multicollinearity (VIF)

```
> library(car)
> mod2<-vif(mod1)

> mod2
Foreign_Direct_Investment Telecommunication_Investment Government_Health_Expenditure

1.325903
1.163475
1.510718
```

No major
multicollinearity issue
detected as all of
independent
variables' VIF values
are less than 10.

Result Interpretation 1 - Correlation

Regression Statistics					
Multiple R	0.97254746				
R Square	0.945848563				
Adjusted R Square	0.935695168				
Standard Error	134.7842019				
Observations	20				

Multiple R-squared value signifies the magnitude of the correlation between independent variables and dependent variable in the model. According to the model result, it implies that three independent variables in the model has a high (0.9725) correlation with the dependent variable

Result Interpretation 2 - Model Variability

```
Call:
lm(formula = GDP_per_capita ~ Foreign_Direct_Investment + Government_Health_Expenditure +
   Telecommunication_Investment, data = rm2)
Residuals:
           10 Median
-207.48 -74.45 -29.59 81.06 233.68
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
(Intercept)
                          1.217e+02 1.411e+02 0.863
Government Health Expenditure 1.028e+00 7.886e-02 13.032 6.17e-10 ***
Telecommunication Investment 1.990e-02 2.002e-02 0.994
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ( , 1
Residual standard error: 134.8 on 16 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.9458, Adjusted R-squared: 0.9357
F-statistic: 93.16 on 3 and 16 DF, p-value: 2.408e-10
```

Adjusted R-squared value signifies how much changes in independent variables explain the dependent variable.

Therefore, we can interpret the result as the changes in three independent variables explain approximately 93.6% of the dependent variable

Result Interpretation 3 - ANOVA test

```
Call:
lm(formula = GDP_per_capita ~ Foreign_Direct_Investment + Government_Health_Expenditure +
   Telecommunication Investment, data = rm2)
Residuals:
   Min
            10 Median
-207.48 -74.45 -29.59 81.06 233.68
Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            1.217e+02 1.411e+02 0.863
Foreign Direct Investment
                           1.219e-02 7.145e-03 1.706
Government Health Expenditure 1.028e+00 7.886e-02 13.032 6.17e-10 ***
Telecommunication Investment 1.990e-02 2.002e-02 0.994
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 () 1
Residual standard error: 134.8 on 16 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.9458, Adjusted R-squared: 0.9357
F-statistic: 93.16 on 3 and 16 DF, p-value: 2.408e-10
```

By looking at the F-statistics and its p-value, we can check whether we can reject the null hypothesis from Hypothesis 1 (from slide 8) or not (The statistical model equation is significant or not). According to the p-value, it's less than 0.05.

Therefore, we have sufficient evidence to reject the null hypothesis that the statistical model equation is not significant

Result Interpretation 4 - Independent

Variables

```
Call:
lm(formula = GDP per capita ~ Foreign Direct Investment + Government Health Expenditure +
   Telecommunication Investment, data = rm2)
Residuals:
            10 Median
   Min
-207.48 -74.45 -29.59 81.06 233.68
Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                             1.217e+02 1.411e+02
                                                   1.706
Foreign Direct Investment
                            1.219e-02 7.145e-03
Government Health_Expenditure 1.028e+00 7.886e-02 13.032 6.17e-10
Telecommunication Investment 1.990e-02 2.002e-02
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 () 1
Residual standard error: 134.8 on 16 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared: 0.9458, Adjusted R-squared: 0.9357
F-statistic: 93.16 on 3 and 16 DF, p-value: 2.408e-10
```

Among all of independent variables, only government health expenditure can reject the null hypothesis from Hypothesis 2 (from slide 8) with p-value less than 0.05. Therefore, we have sufficient evidence to conclude that the the population value of government health expenditure variable is not 0.

The interpretation of the coefficient for government health expenditure variable:

For given levels of the foreign direct investment and investment in telecommunication services, another increase of \$1 (million) of government health expenditure increases the GDP per capita by 1.028\$.

Conclusion

- Statistical model used in the research is **significant**.
- Government health expenditure can be the significant predictor for the economic growth in Kenya.
- However, the Inflow of foreign direct investment and the investment in telecommunication services cannot be the significant predictors for the economic growth in Kenya.

Limitations of the Research

- Small sample size (n=20)
- Lack of variabilities of independent variables in the model (Only three independent variables)
- Lack of specification on individual variables
 - For example, inflow of foreign direct investment can be separated into the inflow of the foreign direct investment to infrastructure or agriculture

Reference

- Kenya Economy: Over 306 Royalty-Free Licensable Stock Vectors & Vector Art. (n.d.). Shutterstock. Retrieved November 26, 2023, from https://www.shutterstock.com/search/kenya-economy?image_type=vector
- Cooke, E. (2023, May 9). The FDI landscape in Kenya in 2023. Investment Monitor. https://www.investmentmonitor.ai/features/the-fdi-landscape-in-kenya-in-2023/?cf-view
- International Trade Administration. (2021, September 13). Kenya Information, Communications and Technology (ICT). Www.trade.gov. https://www.trade.gov/country-commercial-guides/kenya-information-communications-and-technology-ict
- Obialor, Dr. M. C., Nzotta, Prof. S. M., & Obialor, C. B.-M. (2017). Effect of Government Agriculture Investment on Economic Growth in Sub-Saharan Africa: Evidence from Nigeria, South Africa and Ghana. International Journal of Trend in Scientific Research and Development, Volume-1(Issue-5), 1059–1070. https://doi.org/10.31142/ijtsrd243
- Juma Maket, I. (2021). Population dynamics and economic growth in Kenya. Hungarian Statistical Review, 4(2), 18–33. https://doi.org/10.35618/hsr2021.02.en018
- David, O. O., & Grobler, W. (2020). Information and communication technology penetration level as an impetus for economic growth and development in Africa. Economic Research-Ekonomska Istraživanja, 33(1), 1394–1418. https://doi.org/10.1080/1331677x.2020.1745661
- World Bank. (2022). DataBank | The World Bank. Worldbank.org. https://databank.worldbank.org/home.aspx
- Data explorer ITU DataHub. (n.d.). Datahub.itu.int. Retrieved December 2, 2023, from https://datahub.itu.int/data/
- World Health Organization. (2019). Global Health Observatory. Who.int. https://www.who.int/data/gho
- Weiers, R. M., Gray, B., & Al, E. (2008). Introduction to business statistics (7th ed.). 2008 South-Western, Cengage Learning.