Prof. Dr. Jan Rolfes, Ehsan Waiezi, Lars Weidner Winter term 23/24

Mathematics of Learning – Sheet 1 – Discussion on October 19/20th, 2023

Some information:

- The exercise sheets will be uploaded every Monday. Solution sketches will be uploaded one week later.
- You can hand in your own solutions via StudOn and we correct them this is not mandatory. Please hand in in small groups of 2-3 students.
- For questions, please use the forum on StudOn since other students may have similar questions. If you have a more personal question about the exercises please send an email to ehsan.waiezi@fau.de or lars.weidner@fau.de respectively.

Basics [Solving linear equation systems.]¹

Solve the linear equation system Ax = b. A and b are given as

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix}.$$

Control yourself, if your solution is right. If you need some practice, generate some random linear equation systems and solve them.

Basics [Norms.]

A mapping $\|\cdot\|$ from any (real) vector space V to the non-negative real numbers \mathbb{R} is called a norm, whenever the following three properties hold:

$$(1) \|v + w\| \le \|v\| + \|w\|,$$

$$(2) \|v\| = 0 \implies v = 0_V,$$

$$(3) \|\lambda v\| = |\lambda| \|v\|$$

for all
$$\lambda \in \mathbb{R}, v, w \in V$$
.

Prove for the following statements if they are true or false.

1. Let $V = \mathbb{R}^n$ for some $n \in \mathbb{N}$. The euclidean norm

$$\|v\|_2 := \sqrt{\sum_{i=1}^n v_i^2}$$

is a norm.

¹There are lots of nice tutorial books for linear algebra and analysis available in our library. For a less formal introduction, you can, e.g., also consult wikipedia;)

2. Let $V = \mathbb{R}^n$ for some $n \in \mathbb{N}$. The mapping

$$\|v\|_{\frac{1}{2}} := (\sum_{i=1}^{n} \sqrt{|v_i|})^2$$

is a norm.

3. Let *V* be the space of convergent sequences. The mapping

$$||v||_{lim} := \lim_{n \to \infty} v_n$$

is a norm.

Bonus exercise: find a mapping to the real numbers, which has the three properties and takes some negative values, or show that it is impossible.

Basics [Big-O (Landau) Notation.]

a) Express the relationships of the functions n^{1000} , 2^n , e^n , e^{n^2} , n! and n^n with the help of Landau's notation (i.e., prove, if $f \in \mathcal{O}(g)$, $f \in \Omega(g)$ or $f \in \Theta(g)$ for every pair of the functions above). Prove your statements.

b) An equivalence relation is a homogeneous relation over some set M^2 , which is

1. Reflexive: $m_1 \simeq m_1$,

2. Symmetric: $m_1 \simeq m_2$ implies $m_2 \simeq m_1$,

3. Transitive: If $m_1 \simeq m_2$ and $m_2 \simeq m_3$ then $m_1 \simeq m_3$

for all $m_1, m_2, m_3 \in M$. For example, the relation \simeq on \mathbb{R}^n , $v \simeq w$ if and only if $v_1 = w_1$ is an equivalence relation.

Prove or disprove, that \simeq_L which we define as

$$f \simeq_L g$$
 if and only if $f \in \Theta(g)$

is an equivalence relation on the set of mappings from \mathbb{N} to $\mathbb{R}_{>0}$.

²i.e. \simeq : $M \times M \to \{0,1\}$; one would rather write $m_1 \simeq m_2$ instead of $\simeq (m_1, m_2) = 1$ and $m_1 \not\simeq m_2$ instead of $\simeq (m_1, m_2) = 0$.