House Sales in King County

Will analyse and predict housing prices using attributes or features such as square footage, number of bedrooms, number of floors and so on.

Import libraries

In [14]:

```
import pandas as pd
```

Create a dataframe

In [15]:

```
HS_df = pd.read_csv('kc_house_data.csv')
HS_df.head()
```

Out[15]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floor
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.

5 rows × 21 columns

Display the data types of each column

In [16]:

HS_df.dtypes

Out[16]:

id	int64
date	object
price	float64
bedrooms	int64
bathrooms	float64
sqft_living	int64
sqft_lot	int64
floors	float64
waterfront	int64
view	int64
condition	int64
grade	int64
sqft_above	int64
sqft_basement	int64
yr_built	int64
yr_renovated	int64
zipcode	int64
lat	float64
long	float64
sqft_living15	int64
sqft_lot15	int64
dtype: object	

Drop the columns "id" and "date"

In [17]:

```
HS_df.drop(['id', 'date'], axis = 1, inplace = True)
HS_df.describe()
```

Out[17]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
count	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	21613.000000
mean	5.400881e+05	3.370842	2.114757	2079.899736	1.510697e+04	1.494309
std	3.671272e+05	0.930062	0.770163	918.440897	4.142051e+04	0.539989
min	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	1.000000
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000
4						>

Houses with unique floor values

In [18]:

```
HS_df['floors'].value_counts().to_frame()
```

Out[18]:

	floors
1.0	10680
2.0	8241
1.5	1910
3.0	613
2.5	161
3.5	8

Produce a plot that can be used to determine whether houses with a waterfront view or without a waterfront view have more price outliers

In [25]:

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

sns.set_style("whitegrid")
sns.boxplot(x = 'waterfront', y = 'price', data = HS_df)
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x22dad0df128>

Determine if the feature sqft_above is negatively or positively correlated with price.

In [28]:

```
sns.regplot(x="sqft_above", y="price", data=HS_df);
```


Fit a linear regression model to predict the price using the feature 'sqft living' then calculate the R^2.

In [29]:

```
import numpy as np
from sklearn.linear_model import LinearRegression
```

In [31]:

```
lm = LinearRegression()
X = HS_df[['sqft_living']]
Y = HS_df['price']
```

In [32]:

```
lm.fit(X,Y)
```

Out[32]:

In [34]:

```
r_sq = lm.score(X,Y)
print('coefficient of determination:', r_sq)
```

coefficient of determination: 0.49285321790379316

Fit a linear regression model to predict the 'price' using the list of features: then calculate the R^2.

"floors" "waterfront" "lat" "bedrooms" "sqft_basement" "view" "bathrooms" "sqft_living15" "sqft_above" "grade" "sqft_living"

```
In [38]:
```

```
Z = HS_df[['floors', 'waterfront', 'lat', 'bedrooms', 'sqft_basement', 'view', 'bathrooms',
'sqft_living15','sqft_above','grade','sqft_living']]
```

In [39]:

```
lm.fit(Z, HS_df['price'])
```

Out[39]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

In [40]:

```
r_sq = lm.score(Z, HS_df['price'])
print('coefficient of determination:', r_sq)
```

coefficient of determination: 0.6577147048948742

Create a pipeline object that scales the data performs a polynomial transform and fits a linear regression model. Fit the object using the above features above, then fit the model and calculate the R^2.

In [50]:

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
```

In [57]:

```
Input= [('scale', StandardScaler()), ('polynomial', PolynomialFeatures(degree=2)), ('model'
,LinearRegression())]
```

In [58]:

```
Pipe = Pipeline(Input)
```

```
In [60]:
```

```
Pipe.fit(Z, HS df['price'])
C:\Users\aksha\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py:6
45: DataConversionWarning: Data with input dtype int64, float64 were all c
onverted to float64 by StandardScaler.
  return self.partial fit(X, y)
C:\Users\aksha\Anaconda3\lib\site-packages\sklearn\base.py:467: DataConver
sionWarning: Data with input dtype int64, float64 were all converted to fl
oat64 by StandardScaler.
  return self.fit(X, y, **fit_params).transform(X)
Out[60]:
Pipeline(memory=None,
     steps=[('scale', StandardScaler(copy=True, with_mean=True, with std=T
rue)), ('polynomial', PolynomialFeatures(degree=2, include_bias=True, inte
raction_only=False)), ('model', LinearRegression(copy_X=True, fit_intercep
t=True, n_jobs=None,
         normalize=False))])
In [62]:
r_sq = Pipe.score(Z, HS_df['price'])
print('coefficient of determination:', r_sq)
coefficient of determination: 0.7491783035196988
C:\Users\aksha\Anaconda3\lib\site-packages\sklearn\pipeline.py:511: DataCo
```

Create and fit a **Ridge regression** object using the training data, setting the regularization parameter to 0.1 and calculate the R^2 using the test data.

nversionWarning: Data with input dtype int64, float64 were all converted t

In [75]:

o float64 by StandardScaler.
Xt = transform.transform(Xt)

```
from sklearn.linear_model import Ridge
rm=Ridge(alpha=0.1)
```

In [76]:

```
rm.fit(Z,Y)
r_sq = rm.score(Z,Y)
print('coefficient of determination:', r_sq)
```

coefficient of determination: 0.6577150926380133

Perform a **second order polynomial transform** on both the training data and testing data. Create and fit a Ridge regression object using the training data, setting the regularisation parameter to 0.1. Calculate the R^2 utilising the test data provided

In [77]:

```
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split( Z, Y, test_size=0.3, random_state=
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
```

Train set: (15129, 11) (15129,) Test set: (6484, 11) (6484,)

In [78]:

```
pr=PolynomialFeatures(degree=2)
X_train_pr=pr.fit_transform(X_train)
```

In [79]:

```
from sklearn.linear_model import Ridge
rm=Ridge(alpha=0.1)
```

In [80]:

```
rm.fit(X_train_pr, y_train)
r_sq = rm.score(X_train_pr, y_train)
print('coefficient of determination:', r_sq)
```

coefficient of determination: 0.7401029209453733