Chapter-01

Relation and Function

TYPES OF RELATIONS:

- A relation R in a set A is called reflexive if $(a, a) \in R$ for every $a \in A$.
- A relation R in a set A is called symmetric if (a1, a2) ∈ R implies that (a2, a1) ∈ R, for all a1,
 a2 ∈
- A relation R in a set A is called transitive if (a1, a2) ∈ R, and (a2, a3) ∈ R together imply that (a1
- all a1, a2, a3 ∈ A.

EQUIVALENCE RELATION

• A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

Equivalence Classes

- Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (Ai) called partitions or subdivisions of X satisfying the following conditions:
- All elements of Ai are related to each other for all i
- No element of Ai is related to any element of Aj whenever i ≠ j
- $Ai \cup Ai = X$ and $Ai \cap Ai = \Phi$, $i \neq j$. These subsets $((A_i))$ are called equivalence classes.
- For an equivalence relation in a set X, the equivalence class containing $a \in X$, denoted by [a], is the subset of X containing all elements b related to a.
 - **Function: Arelation f: A \longrightarrow B is said to be a function if every clement of A is correlated to a

Unique element in B.

- *Aisdomain
- * Biscodomain