Inhaltsverzeichnis

1	Log	rik und Unterlagen	1	
	1.1	Prinzip des Indirekten Beweises	2	
	1.2	Zwei Prinzipen	3	
	1.3	Mengeoperationen	6	
	1.4	Abbildungen	8	
	1.5	Dedekind Schubladen Prinzip	10	
	1.6	Die Inverse Abbildung (Umkehrfunktion)	12	
2	Reele Zahlen, Euklidische Räume und Komplexe Zahlen			
	2.1	Elementare Zahlen	1	
	2.2	Die Reelen Zahlen	2	
	2.3	Infimum und Supremum	5	
	2.4	Euklidische Räume	9	
3	Cha	Chapter 3		
4	Chapter 4		1	
5	Chapter 5			
6	Integration			
	6.1	Riemann Integral	3	
	6.2	Differentiation und Integration	15	
	6.3	Partielle Integration	20	
	6.4	Methode der Substitution	26	
	6.5	Integration rationaler Funktionen (Partialbruchzerlegung)	29	
	6.6	Das Uneigentliche Integral	33	
7	Gev	Gewöhnliche Differenzialgleichungen		
	7.1	Lineare DGL mit konstante Koeffizienten	2	
	7.0	Inhomogono DCI	5	

INHALTSVERZEICHNIS

Logik und Unterlagen

Im Laufendes Semester werden wir viele mathematische Beweise einführen. Heute werden wir uns mit der Mathematische Logik beschäftiges.

In Mathematik stutzen wir uns auf gewisse Grundannahmen "Axiome", die wir als gegeben ansehen. Eine dieser Annahmen ist der

Satz von ausgeschlossenen Dritten

Eine zulässige mathematische Aussage ist entweder wahr oder falsch, jedoch nie beiden zugleich.

Beispiel

Logik ein:

- 1. 5 < 7 Wahr
- 2. 4 < 2 Falsch

In der Wirklichen Welt ist es anders , z.B. "Mathematik ist schön", wahr oder folgeb?

falsch?

Mit Aussagen kann man "rechnen". Wir führen nun ein Paar Notationen der ??gehäufige?? Page 1

Seien A, B Aussagen

- A und B wird mit $A \wedge B$ bezeichnet
- A oder B wird mit $A \vee B$ bezeichnet

Folgerung (eine wahre implikation)

- Aus A folgt B wird mit \Rightarrow bezeichnet
- Wenn A, dann B wird mit

WHAT??

- \bullet Die negation der Aussage A wird mit $\neg A$ bezeichnet
- A ist equivalent zu B wird mit $A \Leftrightarrow B$ bezeichnet
- $(A \Rightarrow B) \land (B \Rightarrow A)$ A wahr genau dann, wenn B wahr ist.

Bemerkung

Die Folgerung ist transitive. Wir wissen $A \Rightarrow B$ und $B \Rightarrow C$, dann wissen wir dass $A \Rightarrow C$.

Prinzip der Mathematischen Beweises

Wir können ber eine Kette von Folgerungen

$$A \Rightarrow B \Rightarrow C \cdots \Rightarrow S$$

einen mathematischen "Satz" S aus einen annahme A herleiten. (Ein Beweis ist eine Folge von Implikationen von Aussagen).

Kontroposition (Umkehrschluss)

 $A \Rightarrow B$ ist gleichbedeutend mit $\neg B \Rightarrow \neg A$.

Falls $A \Rightarrow B$, so kann A nicht wahr sein wenn B falsch ist (weil A wahr wäre, würde B auch wahr sein).

1.1 Prinzip des Indirekten Beweises

Zum Beweis der Aussage $A \Rightarrow B$ genügt es die Aussage $\neg B \Rightarrow \neg A$ zu zeigen, oder: die Annahme $A \land \neg B$ zum Wiederspruch zu führen.

Indirekten Beweis

Might require an enumerated list

Man fügt $\neg B$ als Annahme hinzu und kommt nach einer Kette von erlaubten schlüssen zu einer falschen Aussage.

Hieraus schliesst man, dass das zusatzannahme $\neg B$ nicht wahr ist.

Beispiel 1.1

A = "jede natürliche Zahl n hat einen Nachfolger n + 1"

B = "es gibt keine grösste Naturliche Zahl"

Wir beweisen dass aus A folgt B. Nehmen wir an, dass A wahr und B falsch ist.

 $\neg B = \text{es}$ gibt eine grösste Natürliche zahl N_0'' d.
h $N_0 > l$ für jedes $l \in \mathbb{N}.$

Mittels der Aussage A wissen wir dass N_0 einen Nachfolger $N_0 + 1$ hat. Dann $N_0 + 1 > N_0$. Dass ist ober ein Wiederspruch.

Definition 1.1

Eine Menge ist eine Zusammenfassung verschiedener Objekte zu einem Ganzen.

Die Objekte werden Elemente der Menge genannt.

KAPITEL 1. LOGIK UND UNTERLAGEN

Sei A eine Menge, dann "a ist element von A" wird mit " $a \in A$ " bezeichnet. Seien A, B Mengen, dann "jedes Element von A ist ein Element von B" wird mit " $A \subset B$ bezeichnet, und man sagt "A ist in B enthalten" (oder A ist teilmenge von B).

Falls zugleich $A \subset B$ und $B \subset A$ gilt, bezeichnet man A und B als gleich und schreibt A = B.

Beispiele 1.2

- 1. Die Menge $\mathbb{N} = \{0, 1, 2, \dots\}$ der Natürlichen zahlen.
- 2. Die leere Menge mit "Ø" bezeichnet. Sie ist in jeder Menge enthalten.
- 3. Die Menge $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ aller ganze Zahlen.
- 4. Meistens werden Mengen nicht durch die Liste ihre Elemente gegeben, sondern durch bestimmte Eigenschaften ihrer Elemente definiert

$$\mathbb{P} = \{2, 3, 4, 5, 7, 11, 13, \dots\}$$

die Menge aller Primzahlen $\mathbb{P}: \{p \in \mathbb{N} \mid p \text{ primzahl}\}$

1.2 Zwei Prinzipen

Wir werden 2 Methoden des Beweises häufig benutzen.

1. Prinzip des Indirekten Beweises

Zum Beweis der Aussage $A\Rightarrow B$ genügt es die Aussage $\neg B\Rightarrow \neg A$ zu zeigen, oder, die Annahme $A\wedge \neg B$ zum Wiederspruch zu führen.

2. Prinzip der Vollständigen Induktion

Sei für jedes $n \in \mathbb{N}$ eine Behauptung A(n) gegeben. Soll die Behauptung für alle natürlichen Zahlen $n \in \mathbb{N}$ bewiessen werden so genügen dazu zwei Beweisschritte:

- i) Der Beweis von A(0)
- ii) Für jedes $n \in \mathbb{N}$, der Beweis von A(n+1) unter der Voraussetzung, dass A(n) gilt.

Oft Behauptungen nicht von n = 0 antreten.

Soll die Gültigkeit von A(n) für alle $n \geq m$ bewiesen werden so genügen wieder zwei Schritte:

- i) Beweis von A(m)
- ii) Für jedes $n \geq m$ impliziert A(n) die Behauptung A(n+1)

Das Prinzip der Vollständige Induktion ist genau wie ein Dominoeffekt.

Sie stellen alle Dominosteinen eine nach der andere. Falls der erste Dominostein füllt (A(1) wahr) und falls wir die Dominosteinen genug nebeneinander gestellt haben, so dass ein fallender Dominostein den nächsten trifft $(A(k) \Rightarrow A(k+1))$ dann wissen wir, dass alle Dominosteinen fallen.

Beispiel 1.3 (Induktion)

1. Für alle $n \ge 1$ gilt:

$$1 + 3 + 5 + \dots (2n - 1) = n^2 A(n)$$

Beweis mittels Vollständige Induktion

- i) A(i) lautet $1 = 1^2$ und gilt.
- ii) Sei $n \geq 1$. Annahme: so gilt A(n). Die Linke Seite der Identität A(n+1) ist

$$1+3+\dots(2n-1)+(2n+1)=n^2+(2n+1)=(n+1)^2$$

ERRORE!!!!!!!!

womit A(n+1) bewiesen ist.

 Als zweite Beispiel für Vollständige Induktion beweisen wir den Fundamental Satz von Euklid:

Satz 1.4

Jede Natürliche Zahl $n \geq 2$ ist ein Produkt von Primzahlen, dass bis auf die Reihenfolge der Faktoren eindeutig ist. Wir werden uns hier nicht mit der eindeutigkeit befessen.

Beweis

Sei A(n) die Aussage: Jede Natürliche Zahlmmit $2 \leq m \leq n$ ist ein Produkt von Primzahlen

- i) A(2) gilt denn 2 ist Primzahl
- ii) Sei $n \geq 2$. Wir nehmen an, dass A(n) gilt. Für n+1 gibt es zwei Möglichkeiten
 - a) n+1 ist eine Primzahl und somit gilt A(n+1)
 - b) n+1 ist keine Primzahl d.h. es gibt $2 \le a \le n$ die n+1 teilt. Dann ist $b:=\frac{n+1}{a}$ auch ganz und zudem erfüllt $2 \le b \le n$. Aus A(n) folgt dass sowohl a wie b ein Produkt von Primzahlen sind somit n+1=ab ein product von Primzahlen ist.

Satz 1.5

Die Menge \mathbb{P} der Primzahlen ist unendlich.

Beweis

Nehmen wir an das gegenteil " \mathbb{P} ist endlich", d.h. $\mathbb{P} = \{p_1, p_2, \dots, p_m\}$ n aufsteigender Folge; also $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, \dots$ Wir betrachten die Zahl $k = p_1 \dots p_{m+1}$. Auf Satz 1.4 folgt dass so eine Primzahl p_i (aus der liste $p_1 \dots p_m$) gilt mit p_i teilt k. Da p_i offensichtlich $p_1 \dots p_m$ teilt, folgt dass p_i $k - p_1 \dots p_m = 1$ teilt. Das ist ein Widerspruch.

Teilbarkeit

Formale Definition

Eine Ganze Zahl a teilt eine ganze Zahl b genau dann, wenn es eine ganze Zahl n gibt, für die an=b ist.

Man sagt dann	Man schreibt
a teilt b	$a \mid b$
a ist teiler von b	
b ist teilbar durch a	
b ist Vielfaches durch a	

Eigenschaften der Teilbarkeit

- Gilt $a \mid b$ und $b \mid c$, so folgt $a \mid c$
- Für $k \in \mathbb{Z} \setminus \{0\}$ gilt: $a \mid b \iff ka \mid kc$
- $a \mid b \text{ und } c \mid d \Rightarrow ac \mid bd$
- $a \mid b \text{ und } a \mid c \Rightarrow a \mid kb + lc$, für alle $l, k \in \mathbb{Z}$
- 1. $k = (p_1 p_2 \dots p_i \dots p_m) + 1$ Es gibt eine Primzahl p_i dass k teilt. $p_i \mid k$ mittels Satz 1.4.
- 2. Sei $b = p_1 p_2 \dots p_i \dots p_m$ = produkt aller Primzahlen. Sei $a = p_i$, $n = p_1 p_2 p_{i-1} p_{i+1} \dots p_m$. Dann b = an. Dass heisst a ist Teiler von b, d.h. $p_i \mid (p_1 \dots p_m)$
- 3. $p_i \mid k \text{ und } p_i \mid (p_1 \dots p_m) \Rightarrow p_i \mid k (p_1 \dots p_m) = 1$. So erhalten wir einen Wiederspruch

Bemerkung

Letztes mal haben wir gesagt jedes element von A ist auch Element von B $(\forall x, x \in A \Rightarrow x \in B)$ wird mit $A \subset B$ (A ist in B enthalten, A ist Teilmenge von B) bezeichnet. Falls $A \subset B$ und eine Element $b \in B$ gibt mit $b \notin A$ sagen wir A ist eine "eigentliche Teilmenge" von B. Manchmal schreiben wir $A \subset B$ in diesem Fall.

Aggiungere un notequal sotto al simbolo in

Es gibt viele Bücher, mit der Folgenden Notation: jedes element von A ist ein element von B wird mit \subseteq bezeichnet. Und wenn $A \subseteq$ und $A \neq B$ dann benutzen sie $A \subseteq B$ statt . A = B falls $x \in A \Leftrightarrow x \in B$.

guardare ultimo todo

Satz

$$A = B \Leftrightarrow A \subset B \text{ und } B \subset A$$

Beweis

Annahme: A = B. Falls $x \in A$, dann mittels A = B, $x \in B$ gilt, damit gilt $A \subset B$ und falls $x \in B$, dann $x \in A$ gilt (mittels A = B) damit gilt $B \subset A$.

Wir haben bewiesen dass $A=B\Rightarrow A\subset B$ und $B\subset A$. Zunächst nehmen wir an dass $A\subset B$ und $B\subset A$. Wir möchten zeigen dass A=B.

Sei $x \in A$, mittels $A \subset B$, haben wir $x \in B$ somit $x \in A \Rightarrow x \in B$. (*)

Sei $x \in B$, mittels $B \subset A$, haben wir $x \in A$ somit $x \in B \Rightarrow x \in A$. (**)

(*) und (**) $\Rightarrow A = B$ per Definition.

1.3 Mengeoperationen

Zunächst erinnern wir kurz an die Definitionen der Elementaren Operationen auf Mengen.

Seien A und B Mengen. Wir können dann daraus folgende Mengen bilden:

- Die Vereinigung: $A \cup B = \{x \mid x \in A \text{ oder } x \in B\}$
- Der Durchschnitt: $A \cap B = \{x \mid x \in A \text{ und } x \in B\}$
- Die Differenz: $A \setminus B = \{x \mid x \in A \text{ und } x \notin B\}$
- Symmetrische Differenz: $A \triangle B = (A \backslash B) \cap (B \backslash A) = (A \cup B) \backslash (A \cap B)$

Wir haben dann folgende Eignschaften

Satz 1.6

Seien A, B, C Mengen.

1.
$$A \cap B = B \cap A$$
; $A \cup B = B \cup A$
 $A \cap \emptyset = \emptyset$; $A \cup \emptyset = A$

Bemerkung

- \bullet \cup verhaltet sich wie +
- \bullet \cap verhaltet sich wie Multiplikation
- $\bullet~\emptyset$ verhaltet sich wie Null element

2.
$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

3.
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

KAPITEL 1. LOGIK UND UNTERLAGEN

Beweis

Definition 1.7

Das Kartesische Produkt $A\times B$ der Mengen A,B ist die Menge der geordneten Paare (a,b) wobei $a\in A,b\in B$

Beispiel

 $\mathbb{Z}\times\mathbb{Z}=\{(a,b):a\in\mathbb{Z},b\in\mathbb{Z}\}.$ Falls \mathbb{Z} als "eindimensionalen" Gebilde dargestellt wird

-3 -2 -1 0 1 2 3

so wird $\mathbb{Z} \times \mathbb{Z}$ als "zweidimensionalen" Gebilde dargestellt

Um die Operationen auf mehrere Mengen zu Verallgemeinern sind die folgenden Quantoren nützlich (\ast)

- 1. ∀ "Für alle" (Allquantor)
- 2. \exists "Es gibt" (Existenz quantor)
- 3. $\exists !$ "Es gibt genau ein"

Sei nun I eine beliebige Menge (I=Indexmenge) und sei für alle $i\in I$ eine Menge A_i gegeben. Dann:

- $\bigcup A_i = \{x \mid \exists i \in I, x \in A_i\}$. Vereinigung besteht aus den Elementen x, für welche eine $i \in I$ gibt so dass x zu A_i gehört.
- $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I, x \in A_i\}$. Durchschnitt.

Wir noch das Kartesische Produkt endlich vieler Mengen $A_1 \dots A_n$ definiere — ?löhnen? page 15

$$A_1 \times A_n = \prod_{i=1}^n A_i = \{(x_1 \dots x_n) \mid x_i \in A_i\}$$

Satz 1.8

Seien $A_1 \dots A_k \subset x, k \in \mathbb{N}$. Es gilt

1.

$$\left(\bigcap_{i=1}^k A_i\right)^c = \bigcup_{i=1}^k A_i^c$$

2.

$$\left(\bigcup_{i=1}^{k} A_i\right)^c = \bigcap_{i=1}^{k} A_i^c$$

(*) Wir haben gesehen dass wir manchmal eine Aussage verneinen müssen. Deshalb müssen wir lernen wie man Aussage mit Quantoren verneinen kann.

$$\neg (\forall n : A(n)) \Leftrightarrow (\exists n : \neg A(n))$$
$$\neg (\exists n : A(n)) \Leftrightarrow (\forall n : \neg A(n))$$
$$\neg (\forall x \in \mathbb{R} : x^2 \ge 0) \Leftrightarrow \exists x \in \mathbb{R} : x^2 < 0$$

1.4 Abbildungen

Seien X, Y Mengen.

Definition 1.9

Eine Funktion oder Abbildung $f: X \to Y$ der Menge X in die Menge Y ist eine Vorschrift (ein Gesetz) die (das) jedem Element $x \in A$ genau ein Element $y = f(x) \in Y$ zuordnet.

Es gibt verschiedene wichtige Objekte die in Zusammenhang mit einem Abbildung auftreten

$$X =$$
 Definitionsbereich von f

$$Y =$$
 Die Ziel Menge

 $f(x) = \{f(x) \mid x \in X\}$ ist das Bild von f oder die Bildmenge

Beispiel 1.10

1. (Identität) Für jede Menge X, ist $id_X: X \to X$ definiert durch $id_{\overline{X}}(x) = x, \forall x \in X$

2. (Konstante) Sei X Menge und $c \in X$. Die konstante Abbildung mit wert c ist $f(x) = c, \forall x \in X$

3. Seien X, Y Mengen. Dann sind

$$pr_x: X \times Y \to X \qquad pr_y: X \times Y \to Y$$

 $(x,y) \to x \qquad (x,y) \to y$

die Projektionen auf dem ersten respektiv zweiten Faktoren.

- 4. $f: \mathbb{R} \to [-1, 1]$ $x \to \sin x$
- 5. $f: \mathbb{R} \to \mathbb{R}$ $x \to x^2 + x$

Definition 1.11

Sei $f: X \to Y$ eine Abbildung

- 1. f heisst injektiv falls auf $f(x_1) = f(x_2)$ stets $x_1 = x_2$ folgt, falls jeder $y < \in Y$ höchstens ein Urbild hat.
- 2. f heisst surjektiv falls für jedes $y \in Y$ ein $x \in X$ gibt mit f(x) = y

$$\forall y \in Y, \exists x \in X : f(x) = y$$

wenn jedes Element $y \in Y$ mindestens ein Urbild hat.

3. f heisst bijektiv falls f injektiv und surjektiv ist, d.h. falls jedes $y \in Y$ genau ein Urbild hat.

Beispiel 1.12

Pages from 17.1 to 17.4 seem repetition, ask to be sure (document week2)

WRONG POSITION!!

unreadeable, page 18

Definition: Kardinalität

Wir sagen zwei Mengen X und Y sind gleichmächtig falls eine bijektive Abbildung $f:X\to Y$ gibt.

Mit dem ersten Contorschen Diagonalverfahren kann man die Rationalen zahlen abzählen, d.h. $\mathbb Q$ und $\mathbb N$ sind gleichmächtig

1. $id_X: X \to X$ bijektive.

2. Eine konstante Abbildung $f: X \to X, x \to c$ ist

• bijektive $\Leftrightarrow X = \{c\}$

• surjektive $\Leftrightarrow X = \{c\}$

3. Die Projektionen

• $pr_x: X \times Y \to X$

• $pr_y: X \times Y \to Y$

sind stets surjektive.

4. $f: \mathbb{R} \to [-1, 1]$ $x \to \sin x$ Surjektiv, nicht injektiv 1. $f: \mathbb{R} \to \mathbb{R}$ $x \to x^2$ Nicht surjektiv Nicht injektiv

 $2. \quad f: \mathbb{N} \to \mathbb{N}$ $n \to 2n$

ist Injektive. $f(\mathbb{N})$ ist die Menge aller geraden Zahlen

3. Eine Menge A hat n Elemente falls es eine bijektive $f:\{1,\ldots,n\}\to A$ gibt. Die Zahl n wird dann die Kardinalität von A genannt und mit bezeichnet, gelegentlich auch mit #A bezeichnet

1.5 Dedekind Schubladen Prinzip

Is this supposed to be a new chapter?? page 19

Sei $f:A\to B$ eine beliebige Abbildung zwischen endliche Mengen. Falls |B|<|A| dann ist f nicht injektiv, d.h. es gibt $b\in B$ und $a_1,a_2\in A$ mit

i) $a_1 \neq a_2$

ii) $f(a_1) = f(a_2) = b$

$$3 = |B| < 5 = |A|$$

Mit Abbildungen kann man "operieren". Die wichstige Operation ist die Verkettung (oder komposition) zweier Abbildungen.

KAPITEL 1. LOGIK UND UNTERLAGEN

Definition

Abbildungen $f: X \to, g: Y \to Z$ kann man miteinander ausführen. Dies ergibt eine neue Abbildung

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$F := g \circ f : X \to Z, x \to g(f(x))$$

Zwei Funktionen f und g können verkettet werden wenn der Wertebereich der ersten Funktion mit dem Definitionsbereich der zweiten Funktion übereinstimmt.

$$\operatorname{Man Sagt} \left\{ \begin{array}{c} g \text{ nach } f \text{ oder} \\ g \text{ komponiert mit } f \\ g \circ f \end{array} \right.$$

Zu Beachten: In dieser Notation steht die zuerst angewandte Abbildung rechts; das heisst bei $g \circ f$ wird zuerst die Funktion f angewandt und dann die Funktion q.

• Die Identische Abbildung verhölt sich bei der Komposition, für eine Funk--?neu?, page 19.2 top tion

$$f: X \to Y$$
 gilt also
$$f \circ id_X = f = id_Y \circ Y$$

wobei

$$id_X : \mathbb{X} \to \mathbb{X}$$
 $x \to x$
 $id_Y : Y \to Y$
 $y \to y$

• Die Komposition von Funktionen ist associativ, d.h. für Funktionen f, g, hgilt

$$(h \circ g) \circ f = h \circ (g \circ f)$$

• Aber die Komposition von Funktionen ist im Allgemeinen nicht kommutativ!

$$f \circ g \neq g \circ f$$

Zum Beispiel:

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \to x^2$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \to x+1$$

$$f \circ g = f(g(x)) = f(x+1) = (x+1)^2 = x^2 + 2x + 1$$

$$g \circ f = g(f(x)) = g(x^2) = x^2 + 1$$

1.6 Die Inverse Abbildung (Umkehrfunktion)

Sei $f: X \to Y$ eine bijektiven Funktion.

Die Inverse Funktion $g: Y \to X$, einer bijektiven Funktion $f: X \to Y$ ist die Funktion, die jedem Element y der Zielmenge seien eindeutig bestimmtes Urbildelement zuweist. (bei bijektiven Funktionen hat die Urbildmenge jedes Element y genau ein Element).

g(y):=x, eindeutig definierte $x\in X$, mit f(x)=y. Dann ist definitionsgemäss $(g\circ f)(x)=x$, d.h. $g\circ f:id_{\overline{X}}$. Die Eindeutig definierte Abbildung g wird (auch) mit f^{-1} bezeichnet und Inverse von f genannt.

Für $f \circ f^{-1}$: Sei $y \in Y$ und sei x mit f(x) = y. Dann ist $(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y$

$$f \circ f^{-1} = id_Y$$

Beispiel

1.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \to 2x + 3$$

bijektive

Umkehrfunktion ist gegeben durch

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$x \to \frac{x-3}{2}$$

2. Sei $\mathbb{R}^+ = [0,\infty]$ die Menge der nichtnegativen reelen Zahlen und

$$f: \mathbb{R}^+ \to \mathbb{R}^+$$

mit

$$x \to x^2$$

Dann ist f bijektive und die Umkehrfunktion

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+$$

ist gegeben durch

$$x \to \sqrt{x}$$

<u>Verallgemenerungen</u> Falls $f:X\to Y$ injektive ist, kann man die Umkehrabbildung

$$f^{-1}:f(X)\to X$$

definieren. Das heisst, die Funktion f^{-1} erfüllt: wenn f(x) = y, dann $f^{-1}(y) = x$

Vorsicht: $f^{-1} \circ f = id_{\mathbb{X}}$ aber $f \circ f^{-1} = id_{f(\mathbb{X})}$ und $f \circ f^{-1} = id_{Y}$ genau dann wenn f(X) = Y, d.h. f bijektive ist.

Reele Zahlen, Euklidische Räume und Komplexe Zahlen

2.1 Elementare Zahlen

Naturzahl $\mathbb{N}=\{0,1,2,\ldots\}$ addieren und multiplizieren LOOK TODO $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ subtrairen Rationalzahlen $\mathbb{Q}=\left\{\frac{p}{q}\,\middle|\,p,q\in\mathbb{Z},q\neq0\right\}$ dividieren

Viele gleichungen haben keine Lösung in Q.

Before set Z, can't read, page 22

Satz 2.1

Sei $p \in \mathbb{N}$ eine Primzahl. Dann hat $x^2 = p$ keine Lösung in \mathbb{Q}

Beweis

Zum Erinnerung zwei Natürlichen Zahlen a und b sind teilfrmd (oder relativ prim) wenn es keine Natürliche Zahl ausser der Eins gibt, die beiden Zahlen teilt.

$$((a,b)=1) \rightarrow$$
 grösste Gemeinsame Teiler

Indirekter Beweis

Wir nehmen an: es gibt $x=\frac{a}{b}\in\mathbb{Q}$ mit $x^2=p,$ wobei a,b teilfremd und ≥ 1 sind. Dann gilt

$$a^2 = pb^2$$

woraus folgt, dass p a teilt also ist a = pk, $k \in \mathbb{N}$ und somit

$$a^2 = p^2 k^2 = pb^2 \Rightarrow pk^2 = b^2$$

woraus folgt, dass p b teilt.

2.2 Die Reelen Zahlen

Wir werden jetzt das System von Axiomen beschreiben das die Menge der Reelen Zahlen "eindeutig" characterisiert.

Die Menge $\mathbb R$ der Reelen Zahlen ist mit zwei Verknüpfungen "+" (Addition) und "·" (Multiplikation) versehen sowie mit einer Ordnungsrelation \leq . Die axiome werden wie folgt gruppiert:

1. $(\mathbb{R}, +, \cdot)$ ist ein Koerper

Es gibt 2 Operationen (Zweistellige Verknüpfungen)

- $\bullet +: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $(a,b) \to a+b$
- $\times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $(a,b) \to a \cdot b$

und 2 ausgezeichnete Element 0 und 1 in $\mathbb R$ die folgenden Eigenschaften haben:

resize table

und Die Multiplikation ist verträglich it der Addition im Sinne des Distributivitäts-Gesetz (D)

$$\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$$

- $(\mathbb{R}, +)$ mit A1 \rightarrow A4 ist eine Abelische Gruppe bezüglich der Addition
- $(\mathbb{R}, +, \cdot)$ mit A1 \rightarrow A4, M1 \rightarrow M4 und D ist ein Zahlkörper.

Bemerkung 2.2

Eine Menge G versetzen mit Verknüpfung + und Neutrales Element O die den obigen Eigenschaften A2 \to A4 genügen heisst Gruppe.

Eine enge K versetzen mit Verknüpfung $+,\cdot$ und Elementen $0\neq 1$ die den obigen Eigenschaften A1 \to A4, M1 \to M4, D genügen heisst Körper.

Folgerung 2.3

Add Big curly brackets to enum list, page 25

Seien $a, b, c, d \in \mathbb{R}$

i) $a+b=a+c \Rightarrow b=c$ und O is eindeutig, d.h. Falls $z\in\mathbb{R}$ der Eigenschaften a+z=a $\forall a\in\mathbb{R}$ genügt, so folgt z=0

$KAPITEL\ 2.$ REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

- ii) $\forall a,b\mathbb{R},\ \exists !$ (eindeutig bestimmtes) $x\in\mathbb{R}:a+x=b.$ Wir schreiben x=b-a und 0-a=-a ist das additive Inverse zu a
- iii) b a = b + (-a)
- iv) -(-a) = a
- v) Falls ab=ac und $a\neq 0 \Rightarrow b=c$ und 1 ist eindeutig, d.h. falls $x\in\mathbb{R}$ der Eigenschaften ax=a $\forall a\in\mathbb{R}$ genügt so folgt x=1
- vi) $\forall a, b \in \mathbb{R}, a \neq 0, \exists ! x \in \mathbb{R} : ax = b$. Wir schreiben $x = \frac{b}{a}$ und $\frac{1}{7}a = a^{-1}$ ist das Multiplikativ Inverse zu a.
- vii) Falls $a \neq 0 \Rightarrow (a^{-1})^{-1} = a$
- viii) $\forall a \in \mathbb{R}, \ a \cdot 0 = 0$
- ix) Falls ab = 0 dann folgt a = 0 oder b = 0

Beweis 2.3

i) Sei a + b = a + c $A4 \Rightarrow \exists y \in \mathbb{R} : a + y = 0$ $a + b = a + c \Rightarrow y + (a + b) = y + (a + c)$ $\Rightarrow (y + a) + b = (y + a) + c$ $\Rightarrow 0 + b = 0 + c \Rightarrow b = c$

Nehmen wir an, dass es $0' \in \mathbb{R}$ gibt so dass x + 0' = x, $\forall x \in \mathbb{R}$, d.h. es gibt eine zweite neutrale Element für +.

add rules to top of arrows, page 26 top

Dann 0 + 0' = 0 aber auch $A3 \Rightarrow 0 + 0 = 0 \Rightarrow 0 + 0' = 0 + 0 \Rightarrow 0 = 0'$

- ii) Seien $a,b \in \mathbb{R}$, und sei $y \in \mathbb{R}$ mit a+y=0. Definieren wir $x:=y+b\Rightarrow a+x=a+(y+b)=(a+y)+b=0+b=b$ $\Rightarrow \exists$ mindestens eine Lösung der Gleichung a+x=b. Von i) folgt dass x eindeutig bestimmt ist $a+x=b=a+x'\Rightarrow x=x'$
- iii) Seien x = b a, y = b + (-a). Wir Wollen beweisen dass x = y.

Aus i) wissen wir dass b - a eine Lösung von a + x = b

$$y + a = (b + (-a)) + a = b + ((-a) + a) = b + 0 = 0$$

 $\Rightarrow y$ ist auch eine Lösung.

Weil die Lösung von a + x = b ist eindeutig bestimmt, ist y = x

- iv)
- $\mathbf{v})$
- vi) vii)
- viii) $\forall a \in \mathbb{R}, \ a \cdot 0 = 0$ $a \cdot 0 = a(0+0) = a \cdot 0 + a \cdot 0 \Rightarrow a \cdot 0 = 0$

ix) $ab = 0 \Rightarrow a = 0$ oder b = 0Wir nehmen an: $a \neq 0$ mit Inversen a^{-1} , (a^{-1} existiert mittels M4). So folgt $b = 1 \cdot b = (a^{-1} \cdot a)$ $b = a^{-1}(a \cdot b) = a^{-1} \cdot 0 = 0$

ASK FOR BEWEISE; PAGE 27 TOP

?multipli? page 27 middle to top

2. Ordnungsaxiome \leq

Auf $\mathbb R$ gibt es eine Relation, $\leq,$ genanten Ordnung, die folgenden Eigenschaften genügt

- (a) Reflexität: $\forall x \in \mathbb{R}, x \leq x$
- (b) Transitivität: $\forall x, y, z \in \mathbb{R}$: $x \leq y \land y \leq z \Rightarrow x \leq z$
- (c) Identivität: $\forall x, y \in \mathbb{R}, (x \leq y) \text{ und } (y \leq x) \Rightarrow x = y$
- (d) Die Ordnung ist total: $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

Die Ordnung ist konsistent mit +, und \cdot

- (a) $x \le y \Rightarrow x + z \le y + z$ $\forall x, y, z \in \mathbb{R}$
- (b) $x, y \ge 0 \Rightarrow xy \ge 0$

 $Mit \le hat man auch \ge, <, >$. Wir Verzichten auf eine Auflistung aller Folgerungen und beschränken uns auf einzige wichtige Folgerungen.

Folgerungen 2.4

- i) $x \le 0$ und $y \le 0 \Rightarrow xy \ge 0$
- ii) $x \le 0$ und $y \ge 0 \Rightarrow xy \le 0$
- iii) $x \le y$ und $z \ge 0 \Rightarrow xz \le yz$
- iv) 1 > 0
- v) $\forall x \in \mathbb{R}$ $x^2 > 0$
- vi) $0 < 1 < 2 < 3 < \dots$
- vii) $\forall x > 0 : x^{-1} > 0$

{Annahme: $x^{-1} \leq 0$. Nach Multiplikation mit x>0 folgt (mittels ii) $1=x^{-1}\cdot x \leq 0\cdot x=0$ }

Bemerkung 2.5

What? page 28 bottom

 \leq auf genügt den obigen Eigenschaften. Die entscheidende weitere Eigenschaft von $\mathbb R$ ist das.

3. Ordnungsvollständigkeit

Check for layout issues with title

Vollständigskeitaxiom:

Seien $A, B \subset \mathbb{R}$ nicht leere Teilmenge von \mathbb{R} , so dass $a \leq b$ für alle $a \in A, b \in B$. Dann gibt es $c \in \mathbb{R}$ mit $a \leq c \leq b$ $\forall a \in A, b \in B$

Bemerkung 2.6

What? page 29 bottom

erfüllt dieses Eigenschaft nicht!

Seien

$$A = \{ x \in \mathbb{Q} \mid x \ge 0, x^2 \le 2 \}$$

$$B = \{ y \in Q \mid y \ge 0, y^2 \ge 2 \}$$

$KAPITEL\ 2.$ REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

Dann gilt $a \leq b \ \forall a \in A \ b \in B$. ABer ein $c \in \mathbb{Q}$, mit $a \leq c \leq b$ würde dann $c^2 = 2$ erfüllen! In Satz 2.1 haben wir gesehen dass $x^2 = p$ keine Lösung in \mathbb{Q} hat.

Wir definieren jetzt für $x, y \in \mathbb{R}$

$$\max\{x,y\} = \begin{cases} x \text{ falls } y \le x \\ y \text{ falls } x \le y \end{cases}$$

Insbesondere ist der Absolutbetrag einer zahl $x \in \mathbb{R}, |x|$

$$|x|: \max\{x, -x\}$$

Für diesen gilt folgender Wichtiger Satz

Satz 2.7

- i) $|x+y| \le |x| + |y|$ (Dreiecks Ungleichung)
- ii) |xy| = |x| |y|

Beweis 2.7

- $\begin{array}{l} \mathrm{i)} \ \ x \leq |x| \, , -x \leq |x| \\ y \leq |y| \, , -y \leq |y| \\ \mathrm{und} \ x + y \leq |x| + |y| \, , -(x+y) \leq |x| + |y| \\ \mathrm{woraus} \ |x+y| \leq |x| + |y| \ \mathrm{folgt} \end{array}$
- ii) ASK FOR BEWEIS

ASK FOR BEWEIS

Satz (Young)

Für alle $a,b\in\mathbb{R}.\ \delta>0$ gilt $2\,|ab|\leq \delta a^2+\frac{b^2}{\delta}$

2.3 Infimum und Supremum

In Zusammenhang mit der Ordnung führen wir einige Wichtige Definitionen ein:

Definition 2.8

Sei $\mathbb{X} \subset \mathbb{R}$ eine Teilmenge

- a) X ist nach oben beschränkt falls es $c \in \mathbb{R}$ gibt $x \leq c, \forall x \in X$. Jeder derartige c heisst eine Obere Schranke für X.
- b) X ist nach unten beschränkt, falls es $c \in \mathbb{R}$ gibt, mit $x \geq c$, $\forall x \in X$. Jeder derartige c heisst untere Schranke für X.
- c) X ist beschränkt falls es nach oben und unten beschränkt ist.
- d) Ein element $a \in X$ ist ein maximales Element (oder Maximum) von X falls $x \leq a$, $\forall x \in X$. Falls ein Maximum (resp. minimum) existiert, wird es mit max X (min X) bezeichnet. Falls X keine obere schränke hat, ist X nach oben unbeschränkt (analog für obere sch.).

KAPITEL 2. REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

Beispiel 2.9

WHAT? Page 32 top

- 1. $A = \{x \in \mathbb{R} \mid x > 0\}$ ist nach oben unbeschränkt. A ist nach unten beschränkt. Jedes ≤ 0 ist eine untere Schranke.
- 2. B = [0, 1] ist nach oben und nach unten beschränkt.
 - \bullet 0 ist ein minimum von B
 - 1 ist ein maximum von B
- 3. C = [0, 1) ist nach oben und nach unten beschränkt, $0 = \min(A)$. C hat kein Maximum.

Folgender Satz ist von Zentraler Bedeutung und eine Folgerung der Ordnungsvollständigkeitaxiom.

Satz 2.10

- i) Jede nicht leere nach oben beschränkte Teilmenge $A \subset B$ besitzt eine kleinste obere Schranke c. Die Kleinste obere schranke c ist eindeutig bestimmt und heisst Supremum von A, mit sup A bezeichnet.
- ii) Jede nicht leere nach unten beschränkt Teilmenge $A \subset \mathbb{R}$ besitzt eine grösste untere Schranke d und heisst Infimum von A, mit inf A bezeichnet.

Beweis

i) Sei $\emptyset \neq A \subset B$ nach oben beschränkt. Sei $B := \{b \in \mathbb{R} \mid b \text{ ist obere Schranke für } A\}$. Dann $B \neq \emptyset$ und $a \leq b, \forall a \in A \ b \in B$

Mit Ordnungsvollständigkeit Axiom folgt die Existens eine Zahl $c\in\mathbb{R}$ mit $a\leq c\leq b\ \forall a\in A,\ b\in B.$

Es ist klar dass c ist eine obere Schranke für A. Also $c \in B$. Da $c \leq b$ $\forall b \in B$, ist c die kleinste obere Schranke für A. Hierdurch c ist eindeutig bestimmt.

(Seien c und c' zwei Supremum von A, c ist die kleinste obere Schranke und c' ist eine obere Schranke $\Rightarrow c \leq c'$. Das gleiche Argument mit c,c' ausgetauscht liefert $c' \leq c$)

ii) Sei A nach unten beschränkte, nicht leere Menge. Sei $-A := \{-x \mid x \in A\}$ die Menge der additive Inversen von A. Dann $-A \neq \emptyset$ und nach oben beschränkt. i) $\Rightarrow \exists s = \sup(-A) \Rightarrow -s$ ist das Infimum von A

Korollar 2.11

- 1. Falls $E \subset F$ und F nach oben beschränkt ist, gilt sup $E \leq \sup F$
- 2. Falls $E \subset F$ und F nach unten beschränkt ist, gilt inf $F \leq \inf E$
- 3. Falls $\forall x \in E, \forall y \in F \text{ gilt } x \leq y \text{ dann folgt sup } E \leq \inf F$

KAPITEL 2. REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

is clipped, page 34

- 4. Seien $E, F \neq \emptyset, E, F, \subset \mathbb{R}, h \in \mathbb{R}, h > 0$
 - (i) Falls E ein sup. besitzt $\Rightarrow \exists x \in E \text{ mit } x > \sup E$

can't read, is it E-h? page 34 bottom

(ii) Falls E ein Inf besitzt $\Rightarrow \exists y \in y < \inf E + h$. Das Supremum, $\sup X = \sigma$ der Menge X ist folgendermassen characterisiert: Es gibt in X keine Zahlen $> \sigma$; aber für jede Toleranz h > 0 gibt es in X Zahlen $> \sigma - h$

Es gibt in X keine Zahlen < inf X =aber für jede Toleranz h>0 gibt es in X Zahlen $< \inf X + h$

faded color, can't read, page 34.1 middle to bottom

(iii) Sei $E+F=\{e+f:e\in E,f\in F\}$. Falls E und F ein Sup. besitzen $\Rightarrow E+F$ besitzt ein Sup und $\sup(E+F)=\sup(E)+\sup(F)$. (Analog mit Inf.)

Beweis

Ask for full Beweis!!

Beispiel

- 1. $E = (+\infty, 2) \subset F(-\infty, 4]$ $\sup E = 2, \sup F = 4 = \max F$ E hat kein Max: $\sup E \leq \sup F$
- 2. $G:[4,5)\subset H=(3,6)$ $\min E = \inf G = 4 \ge \inf H = 3$
- 3. $K = (3, \infty), E = (-\infty, 2)$ $\forall x \in E, y \in K \text{ gilt } x \leq y$ $2=\sup E\leq 3=\inf K$
- 4. $A\{\sin x \mid x \in \mathbb{R}\}$ $\inf S = -1 = \min A$ $\sup A = 1 = \max A$
- 5. $A = \{(1+\frac{1}{n})^n \mid n \in \mathbb{N}\}$. Wir werden sehen dass A ist nach unten und nach unten beschränkt.

 $\inf A = \min A = 2$, $\sup A = e = 2.718...$ Vereinbarung

Check for better layout

Für nach oben unbeschränkte Mengen $A \neq \emptyset$ setzen wir sup $A = \infty$ unendlich. Analog fer nach unten unbeschränkte Menge $\emptyset \neq A$ setzen wir $\inf A = -\infty$

Die Folgende Satz zeigt wie die Ordnungsvollständigkeit von $\mathbb R$ die Lösbarkeit gewisser Gleichungen in \mathbb{R} garantiert.

Satz 2.12

Für jedes x>0 gibt es genau ein y>0 mit $y^2=x$. Diese Lösung wird mit \sqrt{x} bezeichnet.

(Im Allgemein: Für jedes x>0 und $n\geq 1,\ n\in\mathbb{R}$ gibt es genau ein y>0 mit $y^2=0$. Diese Lösung wird mit $\sqrt[n]{x}$ bezeichnet)

Beweis

Not sure, page 35 bottom

Sei x > 1, und $A := \{z \in \mathbb{R} \mid z > 0 \text{ mit } z^2 \le x\}$. Dann ist A nach oben beschränkt und $A \neq \emptyset(1 \in A)$. $\Rightarrow A$ besitzt ein Supremum. Sei $y := \sup A$. Wir zeigen dass $y^2 = x$

• Schnitt 1: Annahme $y^2 < x$. Sei $0 \le h \le 1$. Wir nehmen

$$(y+h)^{2} = y^{2} + 2hy + h^{2}$$
$$= y^{2} + h(2y+h)$$
$$\leq y^{2} + h(2y+1)$$
$$= y^{2} + h((y+1)^{2} - y^{2})$$

Weil $y^2 < x$ ist, $\frac{x-y^2}{(y+1)^2-y^2} > 0$ und daher gibt es $h \in \mathbb{R}$, h > 0, $h \le \frac{x-y^2}{(y+1)^2-y^2}$ (sei $h = \min\{1, \frac{x-y^2}{2x+1}\}$)

Für solche h gilt

$$(y+h)^2 \le y^2 + \left(\frac{x-y^2}{(y+1)^2 - y^2}\right) \left((y+1)^2 - y^2\right) =$$

chopped result, page 35.1

_Also $y + h \in A$ und y + h > y. Ein widerspruch: y ist eine obere schranke für A, d.h., z < y $\Rightarrow y^2 \ge x$ Analog beweist man $y^2 \le x$

$$(y-h)^2 = y^2 - 2hy + h^2 > y^2 - 2hy = y^2 - (y^2 - 2hy)$$

Chopped, page 35.2 top

 $\Rightarrow y - h$ ist eine Obere Schranke für A

$$(\forall z \in A, z^2 \le x \text{Da } (y-h)^2 > x \text{ ist, } (y-h)^2 > x \ge z^2 \text{Damit } y-h > z, \forall z \in A)$$

break into three lines, page 35.2

_Aber y - h < y, wiederspruch zur Minimalität von y.

Falls
$$0 < x < 1$$
, dann $\frac{1}{x} > 1$
 $\Rightarrow \exists u \in \mathbb{R}$, mit $u^2 = \frac{1}{x}$
Somit $\left(\frac{1}{u}\right)^2 = x$ und $y = \frac{1}{u}$ ist eine Lösung von $y^2 = x$.

Zum Abschluss dieses Themas erwähren wir noch eine Wichtige Eigenschaft der Reelen Zahlen

KAPITEL 2. REELE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

Satz 2.13 (Archimedische Eigenschaft)

Zu jeder Zahl $0 < b \in \mathbb{R}$ gibt es ein $n \in \mathbb{N}$ mit b < n.

Beweis (Indirekt)

Andernfalls gibt es $b \in \mathbb{R}$ mit $n \leq b, \forall n \in \mathbb{N}$

$$(\neg (\exists n \in \mathbb{N} : b < n) = (\forall n \in \mathbb{N} : b \ge n))$$

Dann ist b eine obere Schranke für N und es existiert $c = \sup \mathbb{N} \in \mathbb{R}$. Mit $n \in \mathbb{R}$ ist jedoch auch $n+1 \in \mathbb{N}$.

Also: $n+1 \leq c, \forall n \in \mathbb{N}$. Somit folgt $n \leq c-1, \forall n \in \mathbb{N}$ ein widerspruch zur

Chopped content, page 36 bottom

Korollar 2.14

- 1. Seien x > 0 und $y \in \mathbb{R}$ gegeben. Dann gibt es $n \in \mathbb{Z}$ mit y < nx
- 2. Falls $x, y, a \in \mathbb{R}$ die ungleichkeiten $a \leq x \leq a + \frac{y}{n}, \forall n \in \mathbb{N}$ erfüllen, ist

Beweis

1. ASK FOR BEWEIS

Ask for beweis

2. $a < x \Rightarrow x - a > 0 \Rightarrow \exists n \in \mathbb{N}$ $\Rightarrow x > a + \frac{y}{n}$ Widerspruch

Wir wissen dass gewisse Gleichungen in \mathbb{R} Lösbar ist: z.B. $y^2 = a, \forall a > 0$. Aber man kann nicht alle G
Leichugen in $\mathbb R$ lösen, z.B. $x^2+1=0.$ Da für alle $x\in\mathbb R,$ $x^2 > 0$, ist $x^2 = -1$ nicht lösbar. Um eine Lösung für diese Gleichung zu finden, müssen wir die komplexen Zahlen betrachten.

Zuerst, werden wir die Euklidischen Räume \mathbb{R}^n einführen

2.4 Euklidische Räume

Von der Mengentheorie können wir die Kartesische Produkt zweier Mengen; es Lässt sich ohne schwierigkeiten zu endlichen Familien A_1, \ldots, A_n verallgemeinen: nähmlich

$$A_1 \times \cdots \times A_n := \{(x_1, \dots, x_n) : x_i \in A_i\}$$

ist die Menge der geordneten n-tuple von Elementen aus A_1, \ldots, A_n .

Für beliebige $n \geq 1$ betrachten wir $\mathbb{R}^n := \mathbb{R} \times \cdots \times \mathbb{R}$ und untersuchen Seine Add n-mal to under-Struktur. Auf \mathbb{R}^n haben wir zwei Verknüpfungen

brace

• $+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ Addition.

Chapter 3

Chapter 4

Chapter 5

Integration

I) a) Gegeben sei eine stetige Funktion $f:[a,b]\to\mathbb{R}$. Gesucht ist eine differenzierbare Funktion $F:[a,b]\to\mathbb{R}$ mit

$$F'(t) = f(t), \forall t \in [a, b]$$

b) Für Naturwissenschaft und technik ist die Folgende Verallgemeinung von a) wichtig:

Sei $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ gegeben. Gesucht ist eine differenzierbare Funktion $\varphi:[a,b]\to\mathbb{R}$ mit

$$\varphi'(t) = f(t, \varphi(t)), t \in [a, b]$$

Man nennt ein solches φ eine Lösung der Differentialgleichung

$$y' = f(x, y)$$

II) Viele in der Natur und Ingenieurwissenschaften auftretenden Grössen benötigen zu ihrer exakten Definition einen Grenzprozess der Folgenden art:

Wirkt eine konstante Kraft f
 längs eines weges der Länge s, und zwar längs der x-Achse vom Punkt a bis zum Punkt b:=a+s, so versteht man unter der von der Konstanten Kraft f
 geleisteten Arbeit das Produkt f $\times s=f(b-a)$.

Ist die Kraft f jedoch örtlich variable, d.h. $f:[a,b]\to\mathbb{R}$ eine Funktion des Ortes $x\in[a,b]$, so wird man folgendermasse vorgehen.

Zerlege das Interval [a,b] in kleine Teilintervalle I_1,\ldots,I_n . Wähle in jedem Interval $I_k:=[x_{k-1},x_k]$ einen punkt ξ aus. Man wird dann die "Riemannische Summe"

$$A \sim \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$$

als Näherung für die gesuchte Arbeit A ansehen. Hierzu wird man insbesondere dann berechtigt sein, wenn man mit jeder genüge feinen zerlegung des Intervals I, einem festen wert A beliebig nahe kommt.

III) Sei $f:[a,b]\to [0,\infty]$ eine (stetige) Funktion. Gesucht ist eine vernünftige Definition des Flächeninhalts A des Gebietes zwischen der x-Achse und dem Graphen von f

Dies ist sehr einfach, wenn die Funktion f überall den konstanten wert f(x)=c hat für eine feste reelle Zahl $c\in\mathbb{R}$. In diesem Fall ist die Fläche unter dem Graphen von f ein Rechteck und wir definieren dessen Flächeninhalt einfach als Breite mal Höhe, also das Product A=(b-a)c. Man beachte, dass die zahl c auch negativ sein darf und dann ist auch A negativ.

Eine Einfache Formel ergibt sich auch für eine Funktion, die sich aus konstanten Funktionen auf endlich vielen Teilintervalle von [a,b] zusammensetzen lässt.

Für allgemeine beschränkte Funktionen kann man nun wie in II) vorgehen.

subscript of b=?

Wir wählen eine Aufteilung (Zerlegung, Einteilung, Partition) des Intervals I = [a, b] in endlich viele Teilintervale.

Aus jedem dieser Teilinterval I_k ersetzen f durch eine Funktion die auf diesem Teilinterval konstant ist und in einem noch zu klärenden Sinn nicht allzu stark von f abweicht. Dann bilden wir die Summe der Flächeninhalte der auf diese Weise erhalteren Rechtecke. Diese Summe ist als Näherungswert für das gewünschte Fläche zu verstehen.

Um den genauen Wert der Fläche festzulegen bilden wir immer feiner zerlegungen des Intervals. Es ist dann das Grenzwertverhalten der diesen Summen zu unterstehen.

6.1 Riemann Integral

1. Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte Funktion.

Definition 6.1

Eine Partition (oder Zerlegung, Einteilung, Unterteilung) eines Intervals [a,b] ist eine endliche Menge $P=\{a=x_0,x_1,\ldots,x_n=b\},x_0< x_1< x_2<\cdots< x_n$

 $P(I) := \{P \subset I \mid a,b \in P, P \text{ ist endlich}\}$ die Menge alle Partitionen

Die Freiheit der zerlegung P ist dabei definiert durch

$$\delta(P) := max(x_i - x_{i-1}), 1 \le i \le n$$

d.h. $\delta(P)$ ist die Länge des grössten Teilintervals $I_i := [x_i, x_{i-1}], k = i, \ldots, n$

2. Wahl ξ_i von Zwischenpunkten $x_{i-1} \leq \xi_i \leq x_i, 1 \leq i \leq n$. Jede Summe der Form

$$S(f, P, \xi) := \sum_{T=i}^{n} f(\xi_i)(x_i - x_{i-1})$$

nennt man eine **Riemannsche Summe** der Zerlegung P und $\xi.$ Die Summe

$$U(f,P) := \sum_{i=1}^{n} \left(\inf_{[x_i, x_{i-1}]} f \right) (x_i - x_{i-1})$$

nennt man die **Untersumme** von f(x) zur Zerlegung P, und

$$O(f, P) := \sum_{i=1}^{n} f(\sup_{[x_{i-1}, x_i]})(x_i - x_{i-1})$$

nennt man die **Obersumme** von f(x) zur Zerlegung P.

Bemerkung 6.2

Aus den Definitionen folgt direkt

- a) Für eine feste Zerlegung P gilt stets $U(f,P) \leq S(f,P,\xi) \leq O(f,P)$
- b) Für zwei Partitionen $P,Q\in P(I)$ gilt die ungleichung $P\subset Q\Rightarrow U(f,P)\leq U(f,Q)\leq O(f,Q)\leq O(f,P).$

KAPITEL 6. INTEGRATION

Beweis

Um dies zu verstehen, ist es nützlich, den Fall zu betrachten, dass die Zerlegung Q genau einen punkt mehr enthält als P.

Sei $P = \{x_0, \ldots, x_N\}$ und $Q = P \cup \{\xi\}$, wobei ξ ein neuer Unterteilungspunkt, also nicht gleich einem der elemente von P ist. Dann gibt es genau ein $l \in \{1, \ldots, N\}$ so dass $x_{l-1} < \xi < x_l$ ist. Damit erhält man

$$(\sup_{[x_{l-1},\xi]} f)(\xi - x_{l-1}) + (\sup_{[\xi,x_l]} f)(x_l - \xi) \le (\sup_{[x_{l-1},x_l]} f)(x_l - x_{l-1})$$

Addiert man dazu alle Summanden in

$$O(f, P) = \sum_{i} (\sup_{[x_{i-1}, x_i]} f)(x_i - x_{i-1})$$

mit $t \neq l$ so ergibt sich die Ungleichung

Ebenso beweist man $U(f,Q) \geq U(f,P)$. Damit ist b) für den Fall beweisen, dass Q genau ein Element mehr als P enthält. Der allgemeine Fall lässt sich hierauf leicht durch vollständige Induktion zurückführen.

Lemma 6.3

Sei $f:I:=[a,b]\to\mathbb{R}$ eine beschränkte Funktion. Dann gilt

$$\sup_{P \in P(I)} U(f, P) \le \inf_{P \in P(I)} O(f, P)$$

Beweis

Aus

$$P \subset Q \Rightarrow U(f, P) \leq U(f, Q) \leq O(f, Q) \leq O(f, P)$$

folgt, dass die Zahl O(f,Q) für jede Partition $Q \in P(I)$ eine obere Schranke für die Menge $\{U(f,P) \mid P \in P(I)\}$ ist. Also folgt aus der Definition des Supremums als kleinste obere Schranke, das sup $U(f,P) \leq O(f,Q)$ ist.

Diese Ungleichung gilt für jede Partition $Q \in P(I)$. Das heisst wiederum, dass die Zahl sup U(f,P) eine untere schranke füt die Menge $\{O(f,Q) \mid Q \in P(I)\}$ ist.

Also folgt aus der Definition der Infimum als grösste untere Schranke, dass die Gleichung $\sup_{P\in P(I)}U(f,P)\leq \inf_{Q\in P(I)}O(f,Q)$ ist. Damit Lemma 6.3 ist bewiesen.

Definition 6.4

1) Für beschränktes $f = [a, b] \to \mathbb{R}$ bezeichnen

$$\int\limits_{\underline{a}}^{b}fdx=\sup\{U(f,P):P\in P(I)\}$$

$$\int_{a}^{\overline{b}} f dx = \inf\{O(f, P) : P \in P(I)\}$$

das Untere und Obere Integral von f.

2) Ein solches f heisst über [a, b] Riemann - Integrabel falls

$$\int_{a}^{b} f dx = \int_{a}^{\overline{b}} f dx$$

In diesem Fall heisst $A = \int_a^b f dx$ das Riemann Integral von f über den Interval [a,b]

Beispiel 6.5

1) Sei $c \in \mathbb{R}$, $f: I \to \mathbb{R}$ die Konstante Funktion mit dem wert c, dass heisst $f(x) = x, \forall x \in I$. Dann gilt

$$U(f, P) = O(f, P) = (b - a)c, \forall P \in P(I)$$

 $\Rightarrow f$ ist Riemann Integrierbar und

$$\int_{a}^{b} f dx = \int_{a}^{b} c dx = c(b - a)$$

In diesem einfachen Fall stimmt als unsere Definition mit der Interpretation des Flächeninhalts als Breite mal Höhe überein. Man beachte, dass die Konstante c auch negative sein darf.

KAPITEL 6. INTEGRATION

2)
$$f(x) = \begin{cases} 0 & \text{für } x \neq x_0 \\ 1 & \text{für } x = x_0 \end{cases} x_0 \in [a, b]$$

Dann ist f integrierbar mit

$$\int_{a}^{b} f(x)dx = 0$$

denn es gilt U(f, P) = 0 und $0 < O(f, P) \le 2\delta(P), \forall P$.

O(f,P) kann, durch geeignete Wahl der Partition,
beliebig klein gewählt werden. z.B. $P_n = \{a, a + \frac{(b-a)}{n}, \dots, b\} \Rightarrow \delta(P) = \frac{b-a}{n}, \inf_{P \in P(I)} O(f,P) = 0$

3)
$$f(x) := \begin{cases} 1 \text{ für } x \in [a, b] \setminus Q \\ 0 \text{ für } x \in [a, b] \cap Q \end{cases}$$

Dann gilt U(f, P) = 0 und $O(f, P) = 1, \forall P \in P(I)$ $\Rightarrow f$ ist nicht integrierbar.

Satz 6.6 (Riemannsches Kriterium für integrierbarkeit)

Sei $f:I\to\mathbb{R}$ eine beschränkte Funktion. Dann sind folgende Aussagen äquivalent

- 1. f(x) ist integrierbar über [a, b]
- 2. Für jedes $\varepsilon > 0$ existiert eine Partition $Q \in P(I)$ mit

$$O(f,Q) - U(f,Q) < \varepsilon$$

Beweis

$$((a)\Rightarrow(b))$$

Sei fRiemann integrierbar, $A:=\int\limits_a^bf(x)dx=\sup U(f,P)=\inf O(f,P)$

Nach definition von sup und inf folgt dass zwei Partitionen $P_1, P_2 \in P(I)$ existieren, so dass

(i)
$$A - \frac{\varepsilon}{2} < U(f, P_1)$$

(ii)
$$O(f, P_2) < A + \frac{\varepsilon}{2}$$

(iii)
$$U(f, P_1) \le U(f, Q) < O(f, Q) \le O(f, P_2)$$

Definiere $Q := P_1 \cup P_2$. Dann $P_1 \subset Q$ und $P_2 \subset Q$. Nach Bemerkung 6.2b) folgt

$$(i), (ii), (iii) \Rightarrow A - \frac{\varepsilon}{2} < U(f, Q) \le O(f, Q) < A + \frac{\varepsilon}{2}$$

 $\Rightarrow O(f, Q) - U(f, Q) < \varepsilon$

 $((b)\Rightarrow(a))$ Für alle $P \in P(I)$

$$0 \le \underbrace{\int_{\underline{a}}^{b} f(x)dx}_{\inf O(f,P)} - \underbrace{\int_{\underline{a}}^{\overline{b}} f(x)dx}_{\sup U(f,P)} \le O(f,P) - U(f,P)$$

Aus (b) folgt das $\forall \varepsilon > 0$

$$0 < \int_{a}^{\overline{b}} f(x)dx - \int_{a}^{b} f(x)dx < \varepsilon \Rightarrow \int_{a}^{\overline{b}} f(x)dx = \int_{a}^{b} f(x)dx$$

 $\Rightarrow f$ ist integrierbar.

Satz 6.7

- 1. Jede Stetige Funktion $f: I \to \mathbb{R}$ ist R. Integrierbar.
- 2. Jede Monotone Funktion ist R. Integrierbar.

Beweis

1. $f: I \to \mathbb{R}$ stetig, I = [a, b] kompakt, $\Rightarrow f$ gleichmässig stetig. d.h. zu jedem $\varepsilon > 0$. gibt es $\delta > 0$ mit

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b - a}$$

Für eine $P \in P(I)$ mit Feinheit $\delta(P) < \delta$ gilt dann

$$O(f,P) - U(f,P) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} \right) (x_{i-1} - x_i)$$

$$\leq \sum_{i=1}^{n} \frac{\varepsilon}{b-a} (x_i - x_{i-1}) = \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon$$

Somit ist f nach Riemannsche Kriterium integrierbar.

2. Sei f monoton wachsend, $P \in P(I)$ eine uniforme Partition mit

$$x_i = a + \left(\frac{b-a}{n}\right)i, 0 \le i \le n$$

KAPITEL 6. INTEGRATION

$$O(f,P) - U(f,P) = \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))(x_{i+1} - x_i)$$

$$= \frac{b-a}{n} \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))$$

$$= \frac{b-a}{n} (f(b) - f(a)) < \varepsilon$$

Für jede $\varepsilon > 0$, haben wir $\frac{(b-a)(f(b)-f(a))}{n} < \varepsilon$. Nach dem Riemannschem Kriterium ist f Integrierbar. (Monoton fallend ist analog).

Satz 6.8 (Riemannsche Summe)

Sei $f:I\to\mathbb{R}$ eine beschränkte Funktion. Folgende Aussagen sind äquivalent.

- I) f ist Riemann Integrierbar und $A := \int_{a}^{b} f(x)dx$
- II) Für jedes $\varepsilon > 0$, existiert eine Zahl $\xi > 0$, so dass für jede Partition $P_i = \{x_0, x_1, \dots, x_N\}$ von I und alle $\xi_i, \dots, \xi_N \in \mathbb{R}$ gilt

$$\left. \begin{array}{l} \delta(P) < \delta \\ x_{k-1} \le \xi_k \le x_k, \forall k \end{array} \right. \Rightarrow \left| A - \sum_{k=1}^N f(\xi_k)(x_k - x_{k-1}) \right| < \varepsilon$$

Dieser Satz lässt sich auch so formulieren: Eine beschränkte Funktion $f:I\to\mathbb{R}$ ist genau dann Riemann integrierbar wenn der Grenzwert

$$\lim_{\substack{\delta(P) \to 0 \\ \xi_k \in [x_{k-1}, x_k]}} \sum_{k=1}^N f(\xi_k) (x_k - x_{k-1})$$

und dann haben wir

$$A = \int_{a}^{b} f(x)dx = \lim_{\delta(P) \to 0} S(f, P, \delta)$$

Beweis

Siehe D.Salomon: Das Riemannsche Integrale (Satz 3.1).

Korollar 6.8

Seien $f:[a,b]\to\mathbb{R}$ eine beschränkte und integrierbare Funktion. $\{P^{(n)}\}$ eine Folge von Partitionen der Intervals [a,b] mit $\delta(P^{(n)})\to 0$ für $n\to\infty$ und $\{\xi^{(n)}\}$ eine Feste Wahl von Zwischenpunkten zur Partition $P^{(n)}$. Dann ist

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S(f, P^{(n)}, \xi^{(n)})$$

Beweis

Wegen Satz 6.8 existiert zu jedem $\varepsilon > 0$, ein $\delta > 0$ derart, das für alle Partitionen $\delta(P) < \delta$ die Ungleichung

$$\left| S(f, P, \xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

gilt und zwar bei beliebiger Wahl der Zwischenpunkten.

Wegen $\delta(P^{(n)}) \to 0$ existiert ein $N \in \mathbb{N}$ mit $\delta(P^{(n)}) < \delta$ für alle $n \geq N$. Für jedes $n \geq N$ ist daher

$$\left| S(f, P^{(n)}, \xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

voraus sich die Behauptung unmittelbar ergibt.

Beispiel

$$\int_{0}^{1} (x^{2} - x) dx = ?$$

$$f(x) = x^2 - x$$
 stetig $\Rightarrow f$ integrierbar

Wir wenden Korollar 6.8 an. Wir betrachten die Folge $\{P^{(n)}\}$ von äquidistanten Partition des intervals [0,1] mit

$$x_k^{(n)} := \frac{k}{n}, \quad \forall k = 0, 1, \dots, n$$

Dann $\delta(P^{(n)}) = \frac{1}{n} \to 0$ für $n \to \infty$. Wir wählen die Zwischenpunkte

$$\xi_k^{(n)} := \frac{k}{n}, \quad \forall k = 1, \dots, n$$

Die $\xi_k^{(n)}$ sind die rechten Endpunkte der Teilintervale $I_{k-1}:=[\frac{k-1}{n},\frac{k}{n}]$. Hiermit folgt

$$S(f, P^{(n)}, \xi^{(n)}) = \sum_{k=1}^{n} f(\xi_k^{(n)}) (x_k^{(n)} - x_{k-1}^{(n)})$$

$$= \sum_{k=1}^{n} \left(\frac{k^2}{n^2} - \frac{k}{n}\right) \left(\frac{k}{n} - \frac{k-1}{n}\right)$$

$$= \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k^2}{n^2} - \frac{k}{n}\right)$$

$$= \frac{1}{n^3} \sum_{k=1}^{n} k^2 - \frac{1}{n^2} \sum_{k=1}^{n} k$$

$$= \frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \right) - \frac{1}{n^2} \left(\frac{n(n+1)}{2} \right)$$

$$\to \frac{2}{6} - \frac{1}{2} = -\frac{1}{6}$$

$$\Rightarrow \int_0^1 (x^2 - x) dx = -\frac{1}{6}$$

Eigenschaften des Integrals

Satz 6.9

Seien a < c < b und $\alpha, \beta \in \mathbb{R}$ und $f, g: I = [a, b] \to \mathbb{R}$ zwei Reimann Integrierbare Funktionen. Dann gilt folgendes:

1. Die Funktion $\alpha f + \beta g$ ist integrierbar mit

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2. Wenn f, g die Ungleichung $f(x) \leq g(x), \forall x \in [a, b]$ erfüllen, dann gilt

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

3. |f| sind R. Integrierbar und

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

4. Das Produkt fg ist Integrierbar.

Bemerkung 6.10

Wir bezeichnen die Menge aller Riemann integrierbaren Funktionen $f:I\to\mathbb{R}$ mit $R(I):=\{f:I\to\mathbb{R}\mid f$ R.Integrierbar $\}$. Nach Satz 6.9 i), ist dies ein reeler Vektorraum. R(I) ist ein Unterraum des Vektorraumes aller reelwertigen Funktion

$$F(I) := \{ f : I \to \mathbb{R} \}$$

$$C(I) := \{ f : I \to \mathbb{R} \mid f \text{ stetig} \}$$

ist ein Unterraum von R(I)

$$C(I)\subset R(I)\subset F(I)$$

Beweis 6.9

1. Setze $h := \alpha f + \beta g$ und sei $\varepsilon > 0$ beliebig gegeben. Da f und g integrierbar sind, existieren wegen Riem. Kriterium (Satz 6.6). Partitionen P_1 und $P_2 \in P(I)$ mit

$$O(f, P_1) - U(f, P_1) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

und

$$O(g, P_2) - U(g, P_2) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

Aus der Definition von h folgt zunächst

$$|h(x) - h(y)| \le |\alpha| |f(x) - f(y)| + |\beta| |g(x) - g(y)|$$

Mit der verfeinerte Partition $P := P_1 \cup P_2$ ergibt sich unter Verwendung von (Λ) , wobei

(*)
$$\sup_{x \in I} h(x) - \inf_{x \in I} h(x) = \sup \{ h(x) - h(y) \mid x, y \in I \}$$

Für beschränkte funktion h auf einen intervall I gilt

$$O(h, P) - U(h, P) = \sum_{k=1}^{n} \left(\sup_{[x_{k-1}, x_k]} h - \inf_{[x_{k+1}, x_k]} \right) (x_k - x_{k-1})$$

$$\stackrel{*}{=} \sum_{x, y \in I_k} \sup |h(x) - h(y)| (x_k - x_{k-1})$$

$$\leq |\alpha| \sum \sup_{x, y \in I_k} |f(x) - f(y)| (x_k - x_{k-1}) + |\beta| \sum \sup_{x, y \in I_k} |g(x) - g(y)| (x_k - x_{k-1})$$

$$= |\alpha| \sum_{k=1}^{n} (\sup f - \inf f) (x_k - x_{k-1}) + |\beta| \sum_{k=1}^{n} (\sup g - \inf g) (x_k - x_{k-1})$$

$$= |\alpha| \left[O(f, P) - U(f, P) \right] + |\beta| \left[O(g, P) - U(g, P) \right]$$

$$< |\alpha| \frac{\varepsilon}{(|\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{(|\alpha| + |\beta|)} = \varepsilon$$

Nach Bmk. 6.2 $P_1 \subset P$

$$\Rightarrow U(f, P_1) < U(f, P)$$

und

$$O(f, P) < O(f, P_1)$$

Dann

$$-U(f,P) < -U(f,P_1)$$

und

$$O(f,P) - U(f,P) < O(f,P_1) - U(f,P_1) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

2. Seien $f, g: I \to \mathbb{R}$ integrierbar mit $f(x) \leq g(x), \forall x \in I$. Die Funktion h:=g-f ist wegen (1.) Integrierbar. Sei nur $P=\{x_0,x_1,\ldots,x_n\}$ eine beliebige Partition von [a,b] folgt dann inf $h(x) \geq 0, \forall k=0,1,\ldots,n$ und daher

$$U(h, P) = \sum_{P} (\inf h)(x_k - x_{k-1}) \ge 0$$

Was wiederum $\int_{a}^{b} h(x)dx = \sup U(h, P) \ge 0$ impliziert.

Da h aber integrierbar ist, folgt hieraus

$$0 \le \int_{\underline{a}}^{b} h(x)dx = \int_{a}^{b} h(x)dx$$
$$= \int_{a}^{b} (g(x) - f(x))dx = \int_{a}^{b} g(x)dx - \int_{a}^{b} f(x)dx \ge 0$$

Dies liefert die Behauptung

3. Nun gilt $-|f(x)| \le f(x) \le |f(x)|, \forall x \in I$ Nach (2) folgt daraus die Ungleichung

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x) dx|$$

Diese Ungleichung ist äquivalent zu

$$\left| \int_{a}^{b} f(x) dx \right| < \int_{a}^{b} |f(x)| dx$$

4. Als Integrierbare Funktionen sind f und g beschränkt. Also existieren die Konstanten

$$\alpha := \sup_{x \in [a,b]} |f(x)| \text{ und } \beta := \sup_{x \in [a,b]} |g(x)|$$

Wegen Riem. Kriterium (Satz 6.6) gibt es Partitionen P_1, P_2 mit

$$O(f, P_1) - U(f, P_1) < \frac{\varepsilon}{(\alpha + \beta)}, \ O(g, P_2) - U(g, P_2) < \frac{\varepsilon}{(\alpha + \beta)}$$

Setzen wir h := fg so gilt

$$|h(x) - h(y)| \le |f(x)| |g(x) - g(y)| + |g(y)| |f(x) - f(y)|$$

 $\le \alpha |g(x) - g(y)| + \beta |f(x) - f(y)|, \forall x, y \in [a, b]$

Sei $P = P_1 \cup P_2$.

Wie in dem Beweis von (1.) ergibt sich unter verwendung von

$$\sup_{x\in I}h-\inf_{x\in I}h=\sup\left\{\left|h(x)-h(y)\right|x,y\in I\right\}$$

dann

$$O(h, P) - U(h, P)$$

$$= \sum_{k=1}^{n} (\sup h - \inf h)(x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} \sup_{x,y \in I_k} |h(x) - h(y)| (x_k - x_{k-1})$$

$$\leq |\beta| \sum_{I_k} \sup_{I_k} |f(x) - f(y)| (x_k - x_{k-1}) + |\alpha| \sum_{I_k} \sup_{I_k} |g(x) - g(y)| (x_k - x_{k-1})$$

$$= |\beta| \sum_{I_k} (\sup_{I_k} f - \inf_{I_k} f)(x_k - x_{k-1}) + |\alpha| \sum_{I_k} (\sup_{I_k} g - \inf_{I_k} g)(x_k - x_{k-1})$$

$$= |\beta| [O(f, P) - U(f, P)] + |\alpha| [O(g, P) - U(g, P)] < \varepsilon$$

Satz 6.10 (Standardabschätzungen)

Sei f integrierbar über [a, b]. Dann gelten die Abschätzungen

$$(b-a)\inf_{[a,b]} f \le \int_{a}^{b} f(x)dx \le (b-a)\sup_{[a,b]} f$$

Beweis

Für die Partition $P = \{a, b\}$ von [a, b] folgt sofort

$$(b-a)\inf_{[a,b]} f = U(f,P) \le \int_a^b f(x)dx < O(f,P) = (b-a)\sup_{[a,b]} f$$

Satz 6.11

Sei $f:[a,b]\to\mathbb{R}$ integrierbar. Dann ist f auch auf jedem Teilinterval $[c,d]\subseteq [a,b]$ integrierbar.

Beweis

f ist auf [a,b] integrierbar wegen Satz 6.6. Zu jedem $\varepsilon>0$, existiert eine Partition P' von [a,b]mit

$$O(f, P') - U(f, P') < \varepsilon$$

Wir betrachten dann die Verfeinerung

$$P'' := P' \cup \{c, d\}$$

Wegen Bmk. 6.2 haben wir

$$O(f, P'') - U(f, P'') < \varepsilon$$

Sei nun $P:=P''\cap [c,d]$ die Restriktion der Partition P'' auf [c,d]. Dann gilt mit $g:=f|_{[c,d]}$ die Abschätzung

$$O(g, P) - U(g, P) = \sum_{P} (M_k(g) - m_k(g))(x_k - x_{k-1})$$

$$= \sum_{P} (M_k(f) - m_k(f))(x_k - x_{k-1})$$

$$\leq \sum_{P''} (M''_k(f) - m''_k(f))(x_k - x_{k-1})$$

$$O(f, P'') - U(f, P'') < \varepsilon$$

wobei

$$M_k(f) := \sup_{I_k \subset P} f \quad m_k(f) := \inf_{I_k \subset P} f$$

und, analog

$$M_{k}^{"}\left(f\right) = \sup_{I_{k} \in P''} f$$

Satz 6.12

Seien $a \leq b \leq c$. Die funktion $f:[a,c] \to \mathbb{R}$ ist genau dann integrierbar falls beide Einschrankungen $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar sind. In diesem Fall gilt

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Konvention 6.13

1) Sei f integrierbar auf einem interval I. Für $a \leq b$ in I definiert man

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Mit diesem Konvention gelten alle bisherigen Eigenschaften. z.B.

$$\forall a, b, c \in I : \int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

2)

$$\int_{a}^{a} f(x)dx = 0$$

6.2 Differentiation und Integration

In diesem Kapitel wird dem Zusammenhang zwischen Differentiation und Integration hergestellt. Zu diesem Zweck beginnen wir mit dem folgenden Satz, Mittelwertsatz der Integralrechnung.

Satz 6.14 (Mws. der Integralrechnung)

Sei $f:[a,b] \to \mathbb{R}$ eine stetige Funktion. Dann existiert ein $\xi \in [a,b]$ mit

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

Geometrisch:

Beweis

Wir setzen

$$m := \min\{f(x) \mid x \in [a, b]\} = f(x_{-})$$

$$M := \max\{f(x) \mid x \in [a, b]\} = f(x_+)$$

Wegen Satz 6.10

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

$$f(x_{-}) = m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M = f(x_{+})$$

Also $\frac{1}{b-a}\int\limits_a^bf(x)dx\leq M$ für ein $M\in[m,M]$. Da f stetig ist, wegen Zwischenwertsatz gibt es $\xi\in[a,b]$ mit $f(\xi)=\frac{1}{b-a}\int\limits_a^bf(x)dx$. Nun kommt die erste Hauptsatz der Diff- und Integralrechnung.

Satz 6.15 (Hauptsatz A)

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Definiere für jeder $x\in[a,b]$

$$F(x) := \int_{x}^{b} f(t)dt$$

Dann ist $F: I \to \mathbb{R}$ differenzierbar und $F'(x) = f(x), \forall x \in [a, b]$.

Beweis

Für jedes $h \neq 0$ ist

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt \right] \stackrel{6.12}{=} \frac{1}{h} \int_{a}^{x+h} f(t)dt$$

Nach dem Mws der Integralrechnung existiert zu jedem solchen $h \neq 0$ ein Zwischenpunkt $\xi_h \in [x, x+h]$ (bzw. $\xi_h \in [x+h, x]$ falls h < 0) mit

$$\int_{x}^{x+h} f(t)dt = (h)f(\xi_h)$$

Nun ist $\xi_h \to x$ für $h \to 0$. Da f stetig ist

$$f(\xi_h) \to f(x)$$
 für $h \to 0$

Damit erhalten wir

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt = \lim_{h \to 0} \frac{1}{h} (hf(\xi_h)) = f(x)$$

Folgender Begriff ist dann naheliegend.

Definition 6.16

Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Ein Stammfunktion von f (auf a,b) ist ein differenzierbare Funktion $F:[a,b]\to\mathbb{R}$ mit F'(x)=f(x).

Wegen Satz 6.15, hat jede stetige Funktion mindestens eine Stammfunktion. Mit Ausnahme einer additiven Konstante, die beim Differenzieren ja wegfällt, ist die Stammfunktion auch eindeutig bestimmt. Dies ist der Inhalt des folgendes Satzes.

Satz 6.17

Seien $I \subset \mathbb{R}$ ein beliebiges Interval und $F: I \to \mathbb{R}$ eine Stammfunktion von $f: I \to \mathbb{R}$. Dann gelten:

- (a) Die Funktion F + c ist für jede Konstante $c \in \mathbb{R}$ ebenfalls eine Stammfunktion von f.
- (b) Ist $G: I \to \mathbb{R}$ eine weitere Stammfunktion von f, so gibt es eine Konstante $c \in \mathbb{R}$ mit G = F + c

Beweis

- (a) Offenbar ist mit F auch F+c differenzierbar und es gilt (F+c)'=F'=f
- (b) Da F und G Stammfunktionen von f sind, gilt F' = f, G' = f. Also (F G)' = 0 und F G = konstante Funktion.

Definition 6.18

Eine Stammfunktion von f heisst auch unbestimmtes Integral von f und wird bezeichnet mit $\int f(x)dx$. Mittels einer Stammfunktion lässt sich das Integral einer gegebenen Abbildung sehr leicht berechnen. Dies ist der Inhalt des Hauptsatz B.

Satz 6.19 (Hauptsatz der Diff- und Integralberechnung Version B)

Sei $f:I\to\mathbb{R}$ eine stetige Funktion und Feine beliebige Stammfunktion von f. Dann gilt

$$\int_{a}^{b} f(x)dx = F(b) - F(a) := F(x)|_{a}^{b}, \quad \forall a, b \in I$$

Beweis

Für $x \in I$ definieren wor

$$F_0(x) := \int_{-\infty}^{x} f(t)dt$$

Dann ist $F_0: I \to \mathbb{R}$ wegen Satz 6.15 eine (Spezielle) Stammfunktion von f mit

$$F_0(0) = 0$$
 $F_0(b) = \int_{0}^{b} f(t)dt$

Für die beliebige Stammfunktion F gilt somit $F-F_0=c$ für eine Konstante $c\in\mathbb{R}.$ Deshalb ist

$$F(b) - F(a) = F_0(b) - F_0(a) = F_0(b) = \int_a^b f(t)dt$$

womit alles bewiesen ist.

Der Satz 6.19 ist das zentrale Ergebnis und zur Berechnung konkreter Integral. Man Benötigt nur eine Stammfunktion uns hat von dieser lediglich die Differenz der Funktionswerte zwischen den beiden Endpunkten des Intervals [a,b] zu bilden. Insbesondere spielt es keine Rolle, welche Werte die Stammfunktion im Inneren des Intervals [a,b] annimmt.

Beispiele von Stammfunktionen

Beispiel 6.20

Definitions Bereich	Funktion f	Stammfunktion F
$(0,\infty)$	$x^{\alpha}, \ \alpha \in \mathbb{R}$	$\frac{x^{\alpha+1}}{\alpha+1} + c, \alpha \neq -1$
		$\log x + c, \alpha = -1$
R	$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + c, n \in \mathbb{N}$
R	e^x	$e^x + c$
R	$\sin x$	$-\cos x + c$
R	$\cos x$	$\sin x + c$
(-1,1)	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + c$
(-1,1)	$\frac{-1}{\sqrt{1-x^2}}$	$\arccos x + c$
R	$\frac{1}{\sqrt{1+x^2}}$	$\arctan x + c$
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\tan x$	$-\ln \cos x + c$
$(0,\pi)$	$\cot x$	$\ln \sin x + c$
\mathbb{R}	$\sinh x$	$\cosh x + c$
\mathbb{R}	$\cosh x$	$\sinh x + c$
\mathbb{R}	$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arcsinh} x + c$
$(1,\infty)$	$\frac{1}{\sqrt{x^2-1}}$	$\operatorname{arccosh} x + c$
[-1, 1]	$\frac{1}{1-x^2}$	$\operatorname{arctanh} x + c$

Beispiel

$$F(x) = -\ln|\cos x| = -\frac{1}{2}\ln(\cos x)^2$$

und die Ableitung ist (nach Kettenregel):

$$F'(x) = -\frac{1}{2} \frac{1}{\cos(x)^2} (2\cos x)(-\sin x) = \frac{\sin x}{\cos x} = \tan x$$

6.3 Partielle Integration

Da das Integration die Umkehrung von differenzieren ist, liefert jede Ableitungsregel eine für das Integrieren.

Partielle Integration ist eine Umkehrung der Leibnizschen Produktregel und besagt für unbestimmte bzw. das bestimmte Integral:

$$(uv)' = u'v + uv'$$

$$\Rightarrow \int uv' = uv - \int u'v + c$$

Satz 6.21 (Partielle Integration)

Seien $f, g: [a, b] \to \mathbb{R}$ zwei stetig differenzierbare Funktionen. Dann gilt

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

und

$$\int_{a}^{b} f(x)g'(x)dx = |f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Beispiel 6.22

1.
$$\int \underbrace{x}_{u} \underbrace{e^{x}}_{v'} dx = xe^{x} - \int 1e^{x} dx = xe^{x} - e^{x} \begin{cases} f(x) = x & g'(x) = e^{x} \\ f'(x) = 1 & g(x) = e^{x} \end{cases}$$

2.
$$\int \underbrace{x^n}_u \underbrace{e^x}_{v'} dx = x^n e^x - \int nx^{n-1} e^x dx$$

Durch Induktion über $n \in \mathbb{Z}^{\geq 0}$ folgert man daraus das Resultat

$$\int x^n e^x dx = (-1)^n n! \sum_{k=0}^n \frac{(-x)^k}{k!} e^x + c$$

3. Partielle Integration eignet sich gut dazu, Logarithmische terme zu eliminieren.

Manchmal muss man dazu den Integranden erst künstich als Produkt schreiben

$$\int \log x dx = \int \underbrace{(\log x)}_{x} \underbrace{(1)}_{x'} dx$$

$$= (\log x)x - \int \frac{1}{x}x dx = x \log x - x + c$$

4. Manchmal führt wiederholte partielle Integration auf den ursprünglichen Ausdruck zurück. Mit Glück kann man dann noch diesem auflösen

$$\int \sin^2 x dx = \int \underbrace{(\sin x)}_u \underbrace{(\sin x)}_{v'} dx$$

$$= -\sin x \cos x + \int \cos^2 x dx$$

$$= -\sin x \cos x + \int (1 - \sin^2 x) dx$$

$$= -\sin x \cos x + x - \int \sin^2 x dx$$

$$\Rightarrow 2 \int \sin^2 x dx = x - \sin x \cos x$$

$$\Rightarrow \int \sin^2 x dx = \frac{1}{2} (x - \sin x \cos x)$$

Andere möglichkeit:

$$\cos 2x = 1 - 2\sin^2 x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

mit

$$\cos 2x = \left(\frac{\sin 2x}{2}\right)'$$

Dann:

$$\int \sin^2 x = \frac{1}{2} \int 1 - \cos 2x dx$$
$$= \frac{1}{2} \left[x - \int \cos 2x dx \right]$$
$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right] + c$$
$$\sin 2x = 2 \sin x \cos x$$

Beispiel 6.23

$$\int_{0}^{\pi/2} (\sin x)^{k+1} dx = \int_{0}^{\pi/2} \underbrace{(\sin x)^{k}}_{u} \underbrace{(\sin x)}_{v'} dx$$

$$= \underbrace{(\sin x)^{k}}_{u} \underbrace{(-\cos x)}_{v} \Big|_{0}^{\pi/2} - \int_{0}^{\pi/2} \underbrace{k(\sin x)^{k-1}(\cos x)}_{u'} \underbrace{(-\cos x)}_{v} dx$$

$$VI - 21$$

$$= 0 + k \int_{0}^{\pi/2} (\sin x)^{k-1} \left[1 - \sin^{2} x \right] dx$$
$$= k \int_{0}^{\pi/2} (\sin x)^{k-1} - k \int_{0}^{\pi/2} (\sin x)^{k+1} dx$$

Also:

$$\int_{0}^{\pi/2} (\sin x)^{k+1} dx = \frac{k}{(1+k)} \int_{0}^{\pi/2} (\sin x)^{k-1} dx$$

Falls k + 1 = 2n:

$$\int_{0}^{\pi/2} (\sin x)^{2n} dx = \frac{2n-1}{2n} \int_{0}^{\pi/2} (\sin x)^{2(n-1)} dx$$
$$= \frac{2n-1}{2n} \frac{2n-3}{2n-2} \dots \frac{1}{2} \int_{0}^{\pi/2} 1 dx$$
$$= \frac{(2n)(2n-1)(2n-2)\dots 1}{[(2n)(2n-2)\dots 2]^2} \frac{\pi}{2}$$
$$= \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$

Analog:

$$\int_{0}^{\pi/2} (\sin x)^{2n+1} dx = \frac{(2^{n} n!)^{2}}{(2n+1)!}$$

Beachte: der π -Term kommt im Zweiten Fall nicht vor!

Dies benutzen wir wie folgt um ein "Formel" für π aufzustellen.

Für $0 \le x \le \pi/2$:

$$(\sin x)^k - (\sin x)^{k+1} = (\sin x)^k [1 - \sin x] \ge 0$$

$$\Rightarrow (\sin x)^k \ge (\sin x)^{k+1} \qquad (k \ge 0, 0 \le x \le \pi/2)$$

Also:

$$\int_{0}^{\pi/2} (\sin x)^{2n+1} dx \le \int_{0}^{\pi/2} (\sin x)^{2n} dx \le \int_{0}^{\pi/2} (\sin x)^{2n-1} dx$$

d.h.

$$\frac{(2^n n!)^2}{(2n+1)!} \le \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2} \le \frac{\left(2^{n-1} (n-1)!\right)^2}{(2n-1)!}$$

Also:

$$\frac{\left(2^{n} n!\right)^{4}}{(2n+1)!} \cdot \frac{2}{(2n)!} \le \pi \le \frac{\left(2^{n} n!\right)^{4}}{\left(2n n!\right)^{2}} \cdot \frac{2}{2n}$$

$$\frac{(2^{n}!)^{4}}{(2n+1)} \cdot \frac{2}{((2n)!)^{2}} \le \pi \le \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \cdot \frac{2}{2n}$$

$$\Rightarrow \pi = \lim_{n \to \infty} \frac{1}{n} \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \quad \text{Wallische Formel.}$$

Beispiel 6.24 (Stirlingsche Formel)

Für $n \ge 2$ sei $\ln(n!) = \sum_{k=2}^{n} \ln(k)$. Wir zeigen dass man kann $\ln |k|$ sehr gut durch $\int_{k-1/2}^{k+1/2} \ln x dx$ approximieren.

Da

$$x \ln x - x$$

Stammfunktion von ln(x) ist, folgt

$$\int_{k-1/2}^{k+1/2} \ln x dx = x \ln x - x \Big|_{k-1/2}^{k+1/2}$$

Darin kommen also $\ln\left(k+\frac{1}{2}\right)$ sowie $\ln\left(k-\frac{1}{2}\right)$ vor. Wir benutzen nun Taylor:

Falls $g(x) = \ln(x)$ sei

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \frac{g''(x_0)}{2!}(x - x_0)^2 + \frac{g^{(3)}(\xi)}{3!}(x - x_0)^3$$

mit ξ zwischen x und x_0 .

Auf $x = k + \frac{1}{2}$ $x_0 = k$ aufgewendet ergibt:

$$\ln\left(k + \frac{1}{2}\right) = \ln k + \frac{1}{2k} - \frac{1}{8k^2} + t_k$$

wobei

$$t_k = \frac{2}{\xi^3} \frac{1}{3!} \left(\frac{1}{2}\right)^3 = \frac{1}{24\xi^3}$$
$$|t_k| \le \frac{1}{24k^3} \qquad \xi \in \left[k, k + \frac{1}{2}\right]$$

Analog:

$$\ln\left(k - \frac{1}{2}\right) = \ln k - \frac{1}{2k} - \frac{1}{8k^2} + t'_k$$
$$|t'_k| \le \frac{1}{24\left(k - \frac{1}{2}\right)^3}$$

Also:

$$\int_{k-1/2}^{k+1/2} x \ln x - x dx = \left(k + \frac{1}{2}\right) \left(\ln k + \frac{1}{2k} - \frac{1}{8k^2} + t_k\right) - \left(k + \frac{1}{2}\right)$$

$$- \left[\left(k - \frac{1}{2}\right) \left(\ln k - \frac{1}{2k} - \frac{1}{8k^2} + t_k'\right) - \left(k - \frac{1}{2}\right)\right]$$

$$= \ln k - \frac{1}{8k^2} + \left(k + \frac{1}{2}\right) t_k - \left(k - \frac{1}{2}\right) t_k'$$

$$= \ln k + r_k \qquad |r_k| \le \frac{c}{k^2}$$

Nun folgt:

$$\ln n! = \sum_{k=2}^{n} \ln k \stackrel{(*)}{=} \sum_{k=2}^{n} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x dx - \sum_{k=2}^{n} r_k \quad \text{mit } (*) = \left(\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x dx = \ln k + r_k \right)$$

$$= \underbrace{\int_{1}^{n+\frac{1}{2}} \ln x dx - \int_{1}^{\frac{3}{2}} \ln x dx - \sum_{k=2}^{n} r_k}_{(*)}$$

$$(*) = \int_{1}^{n+\frac{1}{2}} \ln x dx = x \ln x - x \Big|_{1}^{n+\frac{1}{2}} = \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) - \left(n + \frac{1}{2}\right) + 1$$
$$= \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) - n + \frac{1}{2}$$

Ersetzen wir $\ln\left(n+\frac{1}{2}\right) = \ln n + \frac{1}{2n} - \frac{1}{8n^2} + t_n$ so folgt:

$$(*) = \left(n + \frac{1}{2}\right) \ln n - n + \left(n + \frac{1}{2}\right) \left\{\frac{1}{2n} - \frac{1}{8n^2} + t_n\right\} + \frac{1}{2}$$

$$= \left(n + \frac{1}{2}\right) \ln n - n + \frac{1}{2} - \frac{1}{8n^2} + nt_n + \frac{1}{4n} - \frac{1}{16n^2} + \frac{1}{2}t_n + \frac{1}{2}$$

$$= \left(n + \frac{1}{2}\right) \ln n - n + 1 + \frac{1}{8n} + nt_n - \frac{1}{16n^2} + \frac{1}{2}t_n$$

Also:

$$\ln(n!) = n \ln n + \frac{1}{2} \ln n - n + a_n$$

wobei

$$a_n = \frac{1}{4n} + \left(n + \frac{1}{2}\right) \left(-\frac{1}{8n^2} + t_n\right) + \sum_{k=2}^n r_k - \int_1^{\frac{3}{2}} \ln x dx$$

und
$$|r_k| \leq \frac{c}{k^2} \Rightarrow \sum_{k=2}^n r_k$$
 konvergiert.

Sei $a := \lim a_n$, $b = e^a$ und $b_n = e^{a_n}$. Also:

$$\log n! = \left(n + \frac{1}{2}\right) \log n - n + a_n = \log n^{n + \frac{1}{2}} - n + a_n$$

folgt

$$n! = n^{n + \frac{1}{2}} e^{-n} e^{a_n} = \sqrt{n} n^n e^{-n} e^{a_n} \Rightarrow b_n = \frac{n!}{\sqrt{n} n^n e^{-n}}$$

Wir möchten jetzt $b := e^a$ bestimmen:

$$b = \lim b_n = \lim_{n \to \infty} \frac{b_n^2}{b_{2n}} = \lim \left(\frac{n!}{\sqrt{n}n^n e^{-n}}\right)^2 \left(\frac{\sqrt{2n}(2n)^{2n}e^{2n}}{(2n)!}\right)$$
$$= \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} \sqrt{\frac{2}{n}} \frac{(2n)^{2n}}{n^{2n}} = \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} \sqrt{\frac{2}{n}} 2^{2n} = \lim_{n \to \infty} \frac{(2^n n!)^n}{(2n)!} \cdot \frac{\sqrt{2}}{\sqrt{n}}$$
$$= \sqrt{2\pi}$$

Also $b = \sqrt{2\pi}$ womit

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$
 Stirling's formel

Beispiel: Der Satz von Taylor

Die Taylor - Entwicklung eine Funktion $f \in C^{n+1}$ um x_0 erhält man durch n-fache partielle Integration:

$$f(x) - f(x_0) = \int_{x_0}^x f'(t)dt = \int_{x_0}^x \underbrace{(x - t)^0}_{v'} \underbrace{f'(t)}_u dt$$

$$= (x - x_0)f'(x_0) + \int_{x_0}^x \underbrace{(x - t)'}_{v'} \underbrace{f''(t)}_u dt$$

$$= (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \frac{1}{2} \int_{x_0}^x (x - t)^2 f'''(t) dt$$

$$\vdots$$

$$= \sum_{k=1}^n (x - x_0)^k \frac{f^{(k)}(x_0)}{k!} + \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt$$

Aus Mittelwertsatz der Integralrechnung bekommt man die Lagrange Restgliedformel.

$$\frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t)dt = \frac{1}{(n+1)!} f^{n+1}(\xi)(x-x_0)^{n+1} \text{ für ein } \xi \in [x_0, x]$$

6.4 Methode der Substitution

Methode der Substitution ist eine Umkehrung der Kettenregel.

Satz 6.25 (Substitutionsregel)

Sei

- $f:[a,b]\to\mathbb{R}$ stetig
- $q: [\alpha, \beta] \to \mathbb{R}$ der klasse C'

Sowie $t_0 \leq t_1$ in $[\alpha, \beta]$ so dass $g([t_0, t_1]) \subset [a, b]$. Dann gilt

$$\int_{g(t_0)}^{g(t_1)} f(x)dx = \int_{t_0}^{t_1} f(g(t)) g'(t) dt$$

Beweis

Sei $F:[a,b]\to\mathbb{R}$ eine Stammfunktion für f. Dann gilt (nach Hauptsatz B)

$$\int_{g(t_0)}^{g(t_1)} f(x)dx = F(g(t_1)) - F(g(t_0))$$

Nach der Kettenregel, haben wir

$$(F \circ g)'(t) = F'(g(t))g'(t) = f(g(t))g'(t)$$

d.h. $F\circ g$ ist eine Stammfunktion für f(g(t))g'(t). Woraus mit dem Hauptsatz B folgt

$$\int_{t_0}^{t_1} f(g(t))g'(t)dt = (F \circ g)(t_1) - (F \circ g)(t_0) = F(g(t_1)) - F(g(t_0))$$

$$= \int_{g(t_0)}^{g(t_1)} f(x)dx$$

$$\int f(x)dx = \int f(g(t))g'(t)dt + C$$

Dies Formel bedeutet folgenden: Die Linke Seite als Funktion von x ist gleich der rechten Seite als Funktion von t vermöge der Relation

$$x = g(t)$$

$$dx = g'(t)dt$$

$$VI-26$$

Für die Substitutionsregel

$$\int_{t_0}^{t_1} f(g(t)) g'(t) dt = \int_{g(t_0)}^{g(t_1)} f(x) dx$$

gibt es im Prinzip zwei lesarten. Mann kann sie entweder von links nach rechts oder von rechts nach links anwenden:

1. (links \rightarrow rechts) Liegt ein Integral explizit in der Form

$$\int_{t_0}^{t_1} f(g(t)) g'(t) dt \text{ vor,}$$

so können wir die Substitutionsregel von links nach rechts abwende

Beispiel

(a)

$$\int_{0}^{1} (1+t^{2})^{4} (2t)dt$$

Setzt man nämlich $f(x) := x^4$ und $g(t) := 1 + t^2$. So folgt:

$$\int_{0}^{1} (1+t^{2})^{4}(2t)dt = \int_{0}^{1} f(g(t)) g'(t)dt$$

$$= \int_{g(0)}^{g(1)} f(x)dx = \int_{1}^{2} x^{4}dx = \left[\frac{1}{5}x^{5}\right]_{1}^{2}$$

$$= \frac{32}{5} - \frac{1}{5} = \frac{31}{5}$$

(b)

$$\int \sin^3 t \cos t dt$$

Die substitution $x = \sin t \text{ mit } \frac{dx}{dt} = \cos t \Rightarrow dx = \cos t dt \text{ liefert}$

$$\int x^3 dx = \frac{x^4}{4} + C = \frac{\sin^4 t}{4} + C$$

(c)

$$\int \tan t dt = \int \frac{\sin t}{\cos t} dt$$

Die Substitution $x = \cos t \frac{dx}{dt} = -\sin t, dx = -\sin t dt$

$$\int \tan t dt = -\int \frac{1}{\cos t} (-\sin t) dt = -\int \frac{1}{x} dx = -\log|x| + C$$
$$= -\log|\cos t| + C$$

2. (rechts \rightarrow links)

Ein integral liegt der Gestalt $\int_{\alpha}^{\beta} f(x)dx$ mit gewissen Grenzen $\alpha, \beta \in \mathbb{R}$ vor, das schwer zu berechnen scheint, versucht man dann mittels geeigneten Substitution x = g(t), dieses Integral umzuformulieren, so dass die Substitutionsregel anwendbar ist, wobei $g(t_0) = \alpha$ und $g(t_1) = \beta$ gelten muss.

Beispiel 6.26

(a)

$$\int\limits_{0}^{1}\sqrt{1-x^{2}}dx$$

Also $f(x) = \sqrt{1-x^2}$. Mit der Substituten $x = g(t) = \sin t, t \in [0, \pi/2], dx = \cos t dt$ ist dann $g(0) = 0, g(\frac{\pi}{2}) = 1$ und

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{g(0)}^{g(\pi/2)} f(x) dx = \int_{0}^{\pi/2} f(g(t)) g'(t) dt$$

$$= \int_{0}^{\pi/2} \sqrt{1 - \sin^{2} t} \cos t dt \stackrel{(*)}{=} \int_{0}^{\pi/2} \cos^{2} dt = \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2t) dt$$

$$= \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\pi/2} = \frac{1}{2} \left(t + \sin t \cos t \right) \Big|_{0}^{\pi/2} = \frac{\pi}{2}$$

mit

(*)

$$\cos^2(t) = \frac{1 + \cos 2t}{2}$$

(b)

$$\int \frac{x}{\sqrt{2x-3}} dx \begin{cases} u = \sqrt{2x-3} \\ du = \frac{1}{2} (2x-3)^{-1/2} 2 dx = \frac{dx}{\sqrt{2x-3}} \\ u^2 = 2x-3 \\ \frac{u^2+3}{2} = x \end{cases}$$

$$\int \frac{x}{\sqrt{2x-3}} dx = \int \left(\frac{u^2+3}{2}\right) du = \frac{1}{2} \int (u^2+3) du$$

$$VI - 28$$

$$= \frac{1}{2} \left(\frac{u^3}{3} + 3u \right) = \frac{u}{2} \left(\frac{u^2}{3} + 3 \right) = \frac{\sqrt{2x - 3}}{2} \left[\frac{2x - 3}{3} + 3 \right] + C$$
$$= \sqrt{2x - 3} \left(\frac{x}{3} + 1 \right) + C$$

Beispiel: Flächeninhalt einer Ellipse

$$F = 4 \int_0^a b \sqrt{1 - \frac{x^2}{a^2}} dx$$

mit x = au, dx = adu

$$F = 4 \int_0^1 b\sqrt{1 - u^2} a du$$
$$= 4ab \int_0^1 \sqrt{1 - u^2} du$$

 $mit u = \sin t, du = \cos t dt$

$$4ab \int_0^{\pi/2} \sqrt{1-\sin^2 t} \cos t dt$$

$$= 4ab \int_0^{\pi/2} \cos^2 t dt = \frac{4ab}{2} (t+\sin t \cos t) \Big|_0^{\pi/2}$$

$$= \pi ab$$

6.5 Integration rationaler Funktionen (Partialbruchzerlegung)

Sei $R(x) = \frac{P(x)}{Q(x)}$ eine Rationale Funktion, d.h. P,Q sind polynome mit reelen Koeffizienten. Die Partialbruchzerlegung ist eine Darstellung von R(x) als summe von "elementaren" rationale Funktionen. Sie basiert auf einem Korollar des Fundamentales Satzes der Algebra, das sagt, dass jedes reelle Polynom ein Produkt von linearen und quadratischen Polynomen mit $\mathbb R$ Koeffizienten.

Satz 6.27

Sei $R(x) = \frac{P(x)}{Q(x)}$ eine rationale Funktion. Dann

$$R(x) = P_1(x) + \sum_{i=1}^{n} R_i(x) + \sum_{j=1}^{m} S_j(x)$$

wobei $P_1 = \text{polynom}$

$$R_i(x) = \frac{a_{i1}}{(x - x_i)} + \frac{a_{i2}}{(x - x_i)^2} + \dots + \frac{a_{ir_i}}{(x - x_i)^{r_i}}$$

$$S_{j}(x) = \frac{b_{j1}x + d_{j1}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)} + \frac{b_{j2}x + d_{j2}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)^{2}} + \dots + \frac{b_{jm_{j}}x + d_{jm_{j}}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)^{m_{j}}}$$

Die $\frac{1}{(x-a)}$, $\frac{bx+d}{((x-a)^2+\beta^2)^m}$ werden "elementare rationale Funktionen" genannt und wir wollen dafür Stammfunktionen bestimmen.

Bemerkung

- 1. Das Polynom $P_1(x)$ tritt nur auf, falls $\deg P > \deg Q$. In diesem Fall berechnet mann $P_1(x)$ mit Polynom division und es gilt $p(x) = P_1(x) Q(x) + P_2(x)$ mit $\deg P_2 < \deg Q$
- 2. Das nennerpolynom Q(x) besitze
 - ullet Die reelen Nullstellen x_i mit Vielfachheit r_i
 - Die Komplexe Nullstellen $z_j=\alpha_j+i\beta_j$ mit Vielfachheit m_j und damit komplex Konjugierte Nullstellen $\overline{z_j}=\alpha_j-i\beta_j$
- 3. Unbekannte Parameter, die bestimmt werden müssen

$$a_{ik}$$
 $k = 1, \dots, r_i$ $i = 1, \dots, n$
 β_{jl}, α_{jl} $l = 1, \dots, m_j$ $j = 1, \dots, m$

Diese Parameter werden durch Koeffizientenvergleich berechnet, die rechte Seite wird dabei auf den Hauptnenner gebracht.

Beispiel

$$R(x) = \frac{1-x}{x^2(x^2+1)}$$
Ansatz:

$$R(x) = \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{b_1 x + d_1}{x^2 + 1}$$
$$\Rightarrow 1 - x = x(x^2 + 1)a_1 + a_2(x^2 + 1) + x^2(b_1 x + d_1)$$

Ausmultiplizieren:

$$1 - x = (a_1 + b_1)x^3 + (a_2 + d_1)x^2 + a_1x + a_2$$

Koeffizientenvergleich:

$$a_1 + b_1 = 0$$
 $a_2 + d_1 = 0$ $a_1 = -1$ $a_2 = 1$

Partialbruchzerlegung:

$$\frac{1-x}{x^2(x^2+1)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{x-1}{x^2+1}$$

Grundtypen der Integration rationaler Funktionen

• Typ O: Polynom:

$$\int \sum a_n x^n dx = \sum a_n \frac{x^{n+1}}{n+1} + c$$

• Typ I: Inverse Potenzen

$$\int \frac{dx}{(x-x_0)^r} = \begin{cases} \log|x-x_0| + c & \text{für } = 1\\ \frac{1}{(1-r)} \frac{1}{(x-x_0)^{r-1}} & \text{für } \ge 2 \end{cases}$$

• Typ II:

$$\int \frac{bx+d}{\left[\left(x-\alpha\right)^2+\beta^2\right]^m}dx$$

Substitution: $x - \alpha = \beta t$, $dx = \beta dt$ ergibt

$$\int \frac{b[\beta t + \alpha] + d}{(t^2 + 1)^m \beta^{2m}} \beta dt$$

Dies hat die allgemeine Form

$$\int \frac{ct+b}{(t^2+1)^m} dt = c \int \frac{t}{(t^2+1)^m} dt + \int \frac{b}{(t^2+1)^m} dt$$

$$\int \frac{t}{(t^2+1)^m} dt \qquad \text{mit } t^2+1 = u, 2t dt = du$$

$$= \frac{1}{2} \int \frac{du}{u^m} = \begin{cases} \frac{u^{-m+1}}{2(1-m)} & , m \ge 2\\ \frac{1}{2} \ln|u| & , m = 1 \end{cases} = \begin{cases} \frac{1}{2(1-m)} \frac{1}{(t^2+1)} (1-m) & , m \ge 2\\ \frac{1}{2} \ln|u| & , m = 1 \end{cases}$$

Sei

$$I_m:=\int\frac{dt}{(t^2+1)^m}$$
 Für $m=1$:
$$I_1=\int\frac{dt}{(t^2+1)}=\arctan t+C$$
 Für $m\geq 1$:
$$I_m:=\int\frac{dt}{(t^2+1)^m}$$

Partielle Integration ergibt:

$$I_m := \int \underbrace{1}_{v'} \cdot \underbrace{\frac{1}{(t^2+1)^m}}_{u} dt = \frac{t}{(t^2+1)^m} + \int \frac{t \cdot 2m \cdot t}{(t^2+1)^{m+1}} dt$$
$$= \frac{t}{(t^2+1)^m} + 2m \int \frac{t^2+1-1}{(t^2+1)^{m+1}} dt$$
$$\frac{t}{(t^2+1)^m} + 2m \int \frac{1}{(t^2+1)^m} dt - 2m \int \frac{1}{(t^2+1)^{m+1}} dt$$
$$VI - 31$$

$$\Rightarrow I_m = \frac{t}{(t^2+1)^m} + 2m\{I_m - I_{m+1}\}$$
 woraus
$$I_{m+1} = \frac{1}{2m} \left[\frac{t}{(t^2+1)^m} + \left(\frac{2m-1}{2m} \right) I_m \right]$$
 z.B.
$$I_2 = \int \frac{dt}{(t^2+1)^2} = \frac{1}{2} \left[\frac{t}{(t^2+1)} + \frac{1}{2} I_1 \right]$$

$$= \frac{1}{2} \left[\frac{t}{(t^2+1)^2} + \frac{1}{2} \arctan t \right] + C$$

Beispiel 6.28

1.
$$\frac{1}{x^2 - 3x - 4} = \frac{1}{(x - 4)(x + 1)} = \frac{A}{x - 4} + \frac{B}{x + 1}$$

$$\Rightarrow A(x + 1) + B(x - 4) = 1$$

$$x = 4 \Rightarrow A \cdot 5 = 1 \Rightarrow A = \frac{1}{5}$$

$$x = -1 \Rightarrow B \cdot (-5) = 1 \Rightarrow B = -\frac{1}{5}$$

$$\int \frac{1}{x^2 - 3x - 4} dx = \frac{1}{5} \int \left(\frac{1}{x - 4} - \frac{1}{x + 1}\right) dx = \frac{1}{5} \ln \left|\frac{x - 4}{x + 1}\right| + c$$
2.
$$\frac{9}{x^3 - 3x - 2} = \frac{9}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{Bx + C}{(x + 1)^2}$$

$$A(x + 1)^2 + (Bx + C)(x - 2) = 9$$

$$x = -1 \Rightarrow (-B + C)(-3) = 9$$

$$x = 2 \Rightarrow A(9) = 9 \Rightarrow A = 1$$

$$x = 0 \Rightarrow A + C(-2) = 9 \Rightarrow -2C = 8 \Rightarrow C = -4$$

$$(-B + C) = -3 \Rightarrow B = C + 3 = -1$$

$$\Rightarrow \frac{9}{x^3 - 3x - 2} = \frac{1}{x - 2} + \frac{-x - 4}{(x + 1)^2}$$

$$\int \frac{9}{x^3 - 3x - 2} dx = \int \left(\frac{1}{x - 2} + \frac{-x - 1}{(x + 1)^2} - \frac{3}{(x + 1)^2}\right) dx$$

$$= \ln|x - 2| - \ln|x + 1| + \frac{3}{x + 1} + c$$

$$= \ln\left|\frac{x - 2}{x + 1}\right| + \frac{3}{x + 1} + c$$

6.6 Das Uneigentliche Integral

Sei f eine unbeschränkte Funktion. Dann ist f nicht R. Integrierbar, z.B. $\int_0^1 \frac{1}{\sqrt{x}} dx$ hat keinen Sinn. Aber $\forall \varepsilon > 0$ ist $\frac{1}{\sqrt{x}} \in [\varepsilon, 1]$ stetig also Integrierbar. Der Wert des Integral ist

$$\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{\varepsilon}^{1} = 2 - 2\sqrt{\varepsilon}$$

also existiert

$$\lim_{\varepsilon \searrow 0} \int_{0}^{1} \frac{1}{\sqrt{x}} dx = 2$$

Dies ist ein Beispiel von uneigentlichen R. Integral.

Definition 6.29

Sei f eine Funktion auf einem offenen Interval (a,b), deren Einschränkung auf jedes kompakte Teilinterval [a',b'] integrierbar ist. Dann das uneigentliche Integral von f von a bis b definiert als

$$\int_{a}^{b} f(x)dx := \lim_{a' \searrow a} \lim_{b' \nearrow b} \int_{a'}^{b'} f(x)dx$$

falls diese Grenzwerte existieren (a und b können $\pm \infty$ sein)

Bemerkung 6.30

- 1. Ist f schon auf [a, b] definiert und integrierbar, so existiert das Uneigentliche Integral und stimmt mit dem üblichen bestimmten Integral überein.
- 2. Ist f schon [a,b) definiert und auf jedem kompakten Teilinterval der Form [a,b'] integrierbar, so gilt schon

$$\int_{a}^{b} f(x)dx = \lim_{b' \nearrow b} \int_{a}^{b} f(x)dx$$

Beispiel

$$\int_{0}^{\infty} e^{-x} = \lim_{b \to \infty} \int_{0}^{b} e^{-x} dx = \lim \left(-e^{-x} \Big|_{0}^{b} \right) = \lim_{b \to \infty} \left(-e^{-b} + 1 \right) = 1$$

3. Vorsicht: Die beiden Grenzwerte müssen im allgemeinen unabhängig voneinander genommen werden.

Beispiel

$$\int_{-b}^{b} x dx = 0 \qquad \forall b > 0, \text{ und daher}$$

$$\lim_{b \to \infty} \int_{-b}^{b} x dx = \lim \left(\frac{b^2}{2} - \frac{b^2}{2} \right) = \lim_{b \to \infty} 0 = 0$$

Die einzelnen Grenzwerte von $\int\limits_a^b x dx$ für $b\to\infty$ und $a\to-\infty$ existieren dagegen nicht

$$\left(\int_{a}^{b} x dx = \left. \frac{x^{2}}{2} \right|_{a}^{b} = \frac{b^{2}}{2} - \frac{a^{2}}{2} \right)$$

und somit auch nicht das uneigentliche Integral $\int\limits_{-\infty}^{\infty}xdx$

4. Alle Grundeigenschaften und Integrationstechniken für das bestimmte Integral gelten ebenso für das uneigentliche Integral.

Als Beispiel beweisen wir folgendes nützliches Konvergenzkriterium für Reihen

Satz 6.30

Sei $f:[1,\infty)\to\mathbb{R}_+$ monoton fallend. Dann konvergiert $\sum_{k=1}^{\infty}f(k)$ genau dann wann $\int\limits_{1}^{\infty}f(x)dx$ existiert. In diesem Fall gilt:

$$0 \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x)dx \le f(1)$$

Beweis

$$f(1) + f(2) + \ldots + f(n-1) \ge \int_{1}^{n} f(x)dx \ge f(2) + \ldots + f(n)$$

VI - 34

$$\sum_{k=1}^{n} f(k) - f(n) = \sum_{k=1}^{n-1} f(x) \ge \int_{1}^{n} f(x) dx \ge \sum_{k=1}^{n-1} f(k+1) = \sum_{k=1}^{n} f(x) - f(1)$$

$$\sum_{k=1}^{n} f(k) - f(n) \ge \int_{1}^{n} f(x) dx \ge \sum_{k=1}^{n} f(k) - f(1) \qquad (*)$$

$$\Rightarrow 0 < f(n) \le \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x) dx \le f(1)$$

Aus

$$\sum_{k=1}^{n-1} f(k) \ge \int_{1}^{n} f(x) dx$$

folgt das,

$$\sum_{k=1}^{\infty} f(k) < \infty \Rightarrow \int_{1}^{\infty} f(x) dx < \infty$$

und, aus

$$\int_{1}^{n} f(x)dx \ge \sum_{k=1}^{n-1} f(k+1)$$

folgt dass

$$\int_{1}^{\infty} f(x)dx < \infty \Rightarrow \sum_{k=1}^{\infty} f(k) < \infty$$

Aus (*) folgt:

$$0 < f(n) \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x) dx \le f(1)$$

Beispiel 6.31

1.
$$\sum (s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$$
 existiert für alle $s > 1$

$$\int_{1}^{\infty} \frac{1}{x^{s}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-s} dx = \lim_{s \to \infty} \begin{cases} \log|b| & s = 1\\ \frac{x^{-s+1}}{1-s} \Big|_{1}^{b} & s > 1 \end{cases}$$

$$= \begin{cases} \text{divergent falls } s = 1\\ \text{konvergent gegen } \frac{1}{s-1} \end{cases}$$

und

$$0 \le \sum_{n=1}^{\infty} n^{-s} - \int_{1}^{\infty} f(x)dx \le f(1) = 1$$
$$\Rightarrow \frac{1}{s-1} \sum_{n=1}^{\infty} n^{-s} \le 1 + \frac{1}{s-1} = \frac{s}{s-1}$$

2

$$\int_{-\infty}^{\infty} |x| e^{-x^2} dx = -\int_{-\infty}^{0} x e^{-x^2} dx + \int_{0}^{\infty} x e^{-x^2} dx = 2 \int_{0}^{\infty} x e^{-x^2} dx$$

$$\int_{0}^{b} x e^{-x^2} dx = \frac{1}{2} \int_{0}^{b^2} e^{-u} du \qquad \text{mit } u = x^2, du = 2x dx$$

$$= \frac{1}{2} \left(1 - e^{-b^2} \right) \to \frac{1}{2} \text{ für } b \to \infty$$

Somit gilt

$$\int_{-\infty}^{\infty} |x| \, e^{-x^2} dx = 1$$

3. Wir haben die folgende einfache aber wichtige Beispiele

(a)

$$\int_{a}^{\infty} \frac{dx}{x^{s}} = \begin{cases} & \frac{a^{1-s}}{s-1} & \text{für } s > 1\\ & \infty & \text{für } s \leq 1 \end{cases}$$

(b) Für alle a < b und $s \in \mathbb{R}$ gilt

$$\int_{a}^{b} \frac{dx}{(x-a)^{s}} = \begin{cases} \frac{(b-a)^{1-s}}{1-s} & \text{für } s < 1 \\ \infty & \text{für } s \ge 1 \end{cases}$$

Satz 6.32 (Majorantenkriterium)

a) Sei $f:[a,\infty)\to\mathbb{R}$ stetig. Dann gilt

$$\forall x : |f(x)| < g(x)$$

und $\int\limits_a^\infty g(x)$ konvergent $\Rightarrow \int f(x) dx$ (absolut) konvergent.

b) Weiterhin gilt folgende Umkehrung: $\forall x: 0 \leq g(x) \leq f(x)$ und $\int_a^\infty g(x)$ divergent $\Rightarrow \int_a^\infty f(x)$ divergent.

Beispiel 6.33

1.

$$\int_{0}^{\infty} \frac{t^{2}}{(1+6t^{2})^{5/3}} dt < \int_{0}^{\infty} \frac{t^{2}}{(6t^{2})^{5/3}} dt < \int \frac{c}{t^{4/3}} dt < \infty$$

$$\Rightarrow \int_{0}^{\infty} \frac{t^{2}}{(1+6t^{2})^{5/2}} dt \text{ konvergient}$$

2.

$$\int_0^\infty \frac{t^2}{(1+6t^2)^{3/2}} dt$$

$$\frac{t^2}{(1+6t^2)^{3/2}} > \frac{t^2}{(12t^2)^{3/2}} > \frac{c}{t} \qquad t \ge 1$$

$$\Rightarrow \int_0^\infty \frac{t^2}{(1+6t^2)^{5/2}} dt \text{ divergient weil } \int_0^\infty \frac{c}{t} dt \text{ divergient}$$

3. Exponentialintegral:

$$E_i(x) := \int_{-\infty}^{x} \frac{e^t}{t} dt \text{ für } x < 0$$

Da $\lim_{t\to -\infty}te^t=0$, gibt es c>0 mit $|te^t|\leq c$, $\forall t\in [-\infty,x]$, und somit gilt

$$\left| \frac{e^t}{t} \right| = \left| \frac{te^t}{t^2} \right| \le \frac{c}{t^2}$$

Mit der Konvergenz des Integrals $\int\limits_{-\infty}^x \frac{1}{t^2} dt$ folgt die (Absolut) Konvergenz des $E_i(x)$ für alle x<0

Kapitel 7

Gewöhnliche Differenzialgleichungen

Eine Gleichung, in der Ableitungen einer gesuchte Funktionen auftreten, nennt man Differentialgleichung.

$$y'(t) = y + y^2$$

$$\left(y'(t)\right)^2 = y(t) + 2$$

Hängt die gesuchte Funktion in der DGL nur von einer einzigen variablen ab, so spricht man von einer "gewöhnliche DGL".

Hängt hingegen die gesuchte Funktion von mehrere Variabeln ab, d.h. kommen partielle Ableitungen in der Differentialgleichung vor, so liegt eine "Partielle DGL" vor. Viele physikalische Prozesse lassen sich oft durch Differenzialgleichungen bescreiben.

Besipiel

1. Ein lineares Federpendel wird durch folgende DGL beschrieben

$$m\frac{d^2x}{dt^2} = -Kx$$
 mit K = Federkonstante

Unbekannt ist hier die Auslenkung x in Abhängigkeit von der Zeit t

2. Beim radioaktiven Zerfall, haben wir

$$\frac{df(t)}{dt} = -\alpha f \qquad f(0) = f_0$$

wobei f(t)= die noch vorhande
den Masse eines Stoffes. Pro zeiteinheit zerfallende Masse ist proportional zur noch vorhandene Masse

3. Freier Fall mit Reibung

Sei m eine Massepunkt der Unter Einfluss der Schwerkraft fällt. Es kann auch ein Reibungskraft geben.

Die grösse der Reibungskraft ist proportional zur Geschwindigkeit. Dann ist, nach der zweiten Newtonische Gesetzt

$$m\ddot{x} = mg - a\dot{x}$$
 $v = \frac{dx}{dt}$

Beim 2., haben wir schon letze Semester gesehen dass

$$\frac{df(t)}{dt} = -\alpha f$$

als eine Lösung $Ke^{-\alpha t}$, $K \in \mathbb{R}$

$$f' = -\alpha t \Rightarrow \frac{f'}{f} = -\alpha$$

$$\int \frac{f'(t)}{f(t)} dt = -\int \alpha dt$$

$$\ln|f(t)| = -\alpha t + C$$

$$\Rightarrow f(t) = Ke^{-\alpha t} \text{ mit } K = e^{t^C}$$

Alle 3 Beispiele sind Lineare DGL mit konstanten Koeffizienten.

7.1 Lineare DGL mit konstante Koeffizienten

Definition 7.1

Eine lineare Differentialgleichung n—ter Ordnung hat die Gestalt

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$$

mit $a_i(x), i = 0, \dots, n-1, b(x)$ Funktionen.

ere is the end of the nition??

Ist das so genannte Störfunktion b(x) konstant gleich 0, so heisst die DGL homogen, andernfalls inhomogen. Im Falle $a_i(x) = a_i$ Konstanten, heisst die LDG, LDG mit Konstanten koeffizioenten.

In diesem Abschnitt betrachten wir DGL mit konstanten Koeffizienten. Eine DGL ist genau dann linear wenn alle Potenzen der gesuchte Funktion und deren Ableitung(en) nur mit Potenz 1 vorkommen. z.B.:

- $(y')^2 + y^2 = 1$ ist nicht linear
- y' = 2xy ist linear
- $y' = \sqrt{y} + 1$ ist nicht linear
- y'' + 2y' + x = 0 ist linear

Zum nächst betrachten wir Homogene LDG mit konstanten Koeffizienten. Sei

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0 = 0$$
 (H)

wobei $a_i \in \mathbb{R}$ $i = 0, \dots, n-1$

Definition 7.2

Das charakteristische Polynom der Gleichung (H) ist gegeben durch

$$p(t) := t^n + a_{n-1}t^{n-1} + \dots + a_0$$

Lemma 7.3

Die Funktion $y(x) = e^{\lambda x}$ ist genau dann Lösung von (H) falls $p(\lambda) = 0$

Beweis

$$y(x) = e^{\lambda x}$$
$$y'(x) = \lambda e^{\lambda x}$$
$$y^{j}(x) = \lambda^{j} e^{\lambda x}$$

Also mit

$$= y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_0 = (\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0)e^x =$$

$$\Leftrightarrow \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0 = p(\lambda) = 0$$

Satz 7.4

Sei $p(\lambda) = \prod_{i=1}^{l} (\lambda - \lambda_i)^{m_i}$ mit $\lambda_j \in \mathbb{C}$, $\lambda_i \neq \lambda_j (i \neq j)$. Dann ist jede Lösung der zugehörigen HDGL darstellbar als Linearkombination der n linear unabhängigen Funktionen $y_{ik}(x) = x^k e^{\lambda_i x}$,

Can't understand limits, page 81 bottom

Bemerkung 7.5

1. Falls die characteristischen Polynom n verschiedene reelle Nullstelle $\lambda_1, \ldots, \lambda_n$ besitzt, so bilden $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_n x}$ eine Basis des Vektorraums der Lösungen, das heisst für jede Lösung y(x)gibt es c_1, c_2, \ldots, c_n so dass

$$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \ldots + c_n e^{\lambda_n x}$$

2. Sei λ eine k-fache reelle Nullstelle das charakteristisches polynoms. Dann sind

$$e^{\lambda x}, xe^{\lambda x}, \dots, x^{k-1}e^{\lambda x}$$

k linear unabhängige Lösungen.

What ?? page 82 bottom

3. Sind $\lambda = \alpha + i\beta$, $\overline{\lambda} = \alpha - i\beta$, ein Paar konjugiert komplexer k- fache nullstellen, so sind die Funktionen

$$e^{\alpha x}\cos(\beta x)$$
 $e^{\alpha x}\sin(\beta x)$
 \vdots \vdots
 $x^{k-1}e^{\alpha x}\cos(\beta x)$ $x^{k-1}e^{\alpha x}\sin(\beta x)$

2klinear unabhängige Lösungen der DGL

$$\left(e^{(\alpha+i\beta)x} = e^{\alpha x} \cdot e^{i\beta x} = e^{\alpha x} \cos(\beta x) + ie^{\alpha x} \sin(\beta x)\right)$$

Besipiel 7.6

1.

$$y'' - y = 0$$

 $p(\lambda) = \lambda^2 - 1 = 0 = (\lambda - 1)(\lambda + 1)$
 $y(x) = c_1 e^x + c_2 e^{-x}$

2.

$$y'' + y = 0$$
$$p(\lambda) = \lambda^2 + 1 = (\lambda + 1)(\lambda - 1)$$
$$y(x) = c_1 \cos x + c_2 \sin x$$

3.

$$y^{(4)} + 2y^{(2)} + y = 0$$
$$p(\lambda) = \lambda^4 + 2\lambda^2 + 1 = 0 = (\lambda^2 + 1)^2 = (\lambda - i)^2 (\lambda + i)^2$$

is there subscript like $y_1(x)$?? page 84 middle

Also, $\cos x$, $\sin x$, $x \cos x$, $x \sin x$ sind Lösungen.

$$y(x) = c_1 \cos x + c_2 x \cos x + c_3 \sin x + c_4 x \sin x$$

$$y^{(4)} - y = 0$$

$$p(\lambda) = t^4 - 1 = (t^2 - 1)(t^2 + 1) = (t+1)(t-1)(t+i)(t-i)$$

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 \sin x + c_4 \cos x$$

5.

$$2y'' + 20y' + 48y = 0$$
$$p(\lambda) = 2\lambda^2 + 20\lambda + 48 = 0 \Rightarrow \lambda_{1,2} = -4, -6$$

Die Lösung ist

$$y(x) = c_1 e^{-4x} + c_2 e^{-6x}$$

7.2 Inhomogene DGL

Bisher haben wir nur Homogene Lineare DGL mit konstanten Koeffizienten betrachtet. Sehr oft treten auch Zusatzterme in den Gleichung auf. Wir haben der Folgende Allgemeine Satz für die Lösungsstruktur linearer DGL

Satz 7.7

Die allgemeine Lösung einer inhomogenen DGL

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = b(x)$$

ist die Summe einer "spezielle" Lösung der inhomogenen DGL und der allgemeinen Lösung der zugehörigen homogenen DGL

$$\underbrace{y_A(x)}_{\text{Allgemeine Losung}} = \underbrace{y_S(x)}_{\text{Spezielle Losung}} + \underbrace{y_{AH}(x)}_{\text{Allgemeine Losung}}$$
der inhomogene DGL der Homogene DGL

Besipiel

$$y'' + y = \sin x$$

Um diese inhomogene DGL zu lösen, benötigen wir die allgemeine Lösung der zugehörigen homogene DGL y'' + y = 0

$$p(\lambda) = \lambda^2 + 1 = 0 \Rightarrow y_{AH}(x) = c_1 \sin x + c_2 \cos x$$

Nun wird noch eine spezielle Lösung der inhomogene DGL $y''+y=\sin x$ benötigt. Wir verifizieren dass $y(x)=-\frac{1}{2}x\cos x$ eine derartige Lösung ist

$$y'(x) = -\frac{1}{2}\cos x + \frac{1}{2}x\sin x$$
$$y''(x) = \frac{1}{2}\sin x + \frac{1}{2}\sin x + \frac{1}{2}x\cos x = \sin x + \frac{1}{2}x\cos x$$
$$y''(x) + y(x) = \sin x + \frac{1}{2}x\cos x - \frac{1}{2}x\cos x = \sin x$$

Die allgemeine Lösung der inhomogenes DGL ist damit

$$y(x) = \underbrace{-\frac{1}{2}x\cos x}_{\text{Spezielle Losung der inhomogene DGL}} + \underbrace{c_1\sin x + c_2\cos x}_{\text{Allgemeine Losung der Homogene DGL}}$$

Bemerkung

Man kann als Speziell Lösung der inhomogenes DGL auch

$$y(x) = -\frac{1}{2}x\cos x + 5\sin x$$

wählen. Dann gilt auch hier $y'' + y = \sin x$. Die allgemeine Lösung der inhomogenes DGL

$$y(x) = \underbrace{-\frac{1}{2}x\cos x + 5\sin x}_{\text{Spezielle L\"osung inhomogenes DGL}} + \underbrace{k_1\sin x + k_2\cos x}_{\text{Allgemeine L\"osung homogenes DGL}}$$

Sie unterscheidet sich nicht von der Lösung

$$y(x) = -\frac{1}{2}x\cos x + c_1\sin x + c_2\cos x$$
$$c_1 = 5 + k$$

Frage:

Wie kann man eine spezielle Lösung finden?

Antwort:

Zur Lösung der inhomogenes DGL kann man in vielen Fällen einen so genannte "Ansatz vom Typ der rechten Seite" wählen. Hier geht man davon aus, dass die Lösung die gleiche Gestalt wie die Störfunktion haben wird.

z.B.: ist die Störfunktion ein Polynom, so nimmt man an, dass die spezielle Lösung auch ein polynom sein wird. Ist die Störfunktion ein exponentialfunktion so nimmt man an, dass die Lösung auch ein exponentialfunktion sein wird.

Besipiel 7.8

1. Wir betrachten die DGL

$$y'' + y' - 6y = 3e^{-4x}$$

Die Zugehörige homogenes DGL

$$y'' + y' - 6y = 0$$

$$p(\lambda) = \lambda^2 + \lambda - 6 = 0$$
 $\lambda_{1,2} = 2, -3$

Die Allgemeine Lösung der Homogenes DGL ist

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$

Zur Lösung der inhomogenes DGL verwenden wir einen "Ansatz vom Typ der Rechten Seite", gehen also davon aus, dass die spezielle Lösung der inhomogenes DGL die ähnliche Gestalt hat (als die Störfunktion)

$$y_s(x) = Ke^{-4x}$$

Für die Ableitungen des Ansatzes haben wir

$$y_s'(x) = -4Ke^{-4x}$$

$$y_s''(x) = 16Ke^{-4x}$$

Eingesetzt in die homogenes DGL ergibt sich

$$y'' + y' - 6y = 16Ke^{-4x} - 4Ke^{-4x} - 6Ke^{-4x} = 6Ke^{-4x} = 3e^{-4x}$$

Also $6K=3 \Rightarrow K=\frac{1}{2}$. Damit ist $y_s(x)=\frac{1}{2}e^{-4x}$ und die allgemeine Lösung der DGL

$$y(x) = \frac{1}{2}e^{-4x} + c_1e^{-3x} + c_2e^{2x} \qquad c_1, c_2 \in \mathbb{R}$$

2.

$$y'' + y' - 6y = 50\sin x$$

Wählen wir als "Ansatz vom Typ der rechten Seite"

$$y_s(x) = K_1 \sin x + K_2 \cos x$$
$$y'_s(x) = K_1 \cos x - K_2 \sin x$$
$$y''_s(x) = -K_1 \sin x - K_2 \cos x$$

 $y'' + y' - 6y = -K_1 \sin x - K_2 \cos x + K_1 \cos x - K_2 \sin x + 6K_1 \sin x + 6K_2 \cos x$ $= (-7K_1 - K_2) \sin x + (-7K_2 + K_1) \cos x$ $= 50 \sin x$

$$\Rightarrow -7K_2 + K_1 = 0 \Rightarrow K_1 = 7K_2$$

$$-7K_1 - K_2 = 50 \Rightarrow -49K_2 - K_2 = 50$$

$$\Rightarrow K_2 = -1, K_1 = -7$$

$$y_s(x) = -7\sin x - \cos x$$

Damit ist die allgemeine Lösung der inhomogenes DGL

$$y(x) = -7\sin x - \cos x + c_1 e^{-3x} + c_2 e^{2x}$$

Ein problem ergibt sich, wenn als Störfunktion eine Lösung der homogenes DGL erscheint:

3.

$$y'' + y' - 6y = e^{2x}$$

"Der Ansatz vom Typ der rechten Seite"

$$y(x) = Ke^{2x}$$

führt nicht weiter da dieser Ansatz eingesetzt in homogenes DGL 0 ergeben muss und nicht e^{2x} . Wir führen nun der Ansatz

$$y(x) = Kxe^{2x}$$

$$VII-7$$

$$y'(x) = Ke^{2x} + 2Kxe^{2x}$$

$$y''(x) = 2Ke^{2x} + 2Ke^{2x} + 4Kxe^{2x}$$

$$y'' + y' - 6y = 4Kxe^{2x} + 4Kxe^{2x} + Ke^{2x} + 2Kxe^{2x} - 6Kxe^{2x}$$

$$= 5Ke^{2x} = 10e^{2x}$$

$$\Rightarrow K = 2$$

Der Ansatz führte also auf die Lösung

$$y_s(x) = 2xe^{2x}$$

Ingesamt:

$$y(x) = 2xe^{2x} + c_1e^{-3x} + c_2e^{2x}$$
 $c_1, c_2 \in \mathbb{R}$

3.

$$y'' + y = \sin x$$

$$y_H = c_1 \sin x + c_2 \cos x$$

Für die Spezielle Lösung zu finden, wählen wir den Ansatz vom Typ der rechten Seite

$$y_s(x) = x \left(K_1 \sin x + K_2 \cos x \right)$$

$$y_s'(x) = (K_1 \sin x + K_2 \cos x) + x (K_1 \cos x - K_2 \sin x)$$

$$y_s''(x) = K_1 \cos x - K_2 \sin x + K_1 \cos x - K_2 \sin x + x (-K_1 \sin x - K_2 \cos x)$$

Eingesetzt in die DGL ergibt sich

$$y_s''(x) + y(x) = 2K_1 \cos x - 2K_2 - x(K_1 \sin x + K_2 \cos x) + x(K_1 \sin x + K_2 \cos x)$$

$$= 2K_1 \cos x - 2K_2 \sin x = \sin x$$

$$\Rightarrow 2K_1 = 0, -2K_2 = 1 \Rightarrow K_1 = -\frac{1}{2}$$

$$\Rightarrow y_s(x) = -\frac{1}{2}x \cos x$$

$$y_A = -\frac{1}{2}x \cos x + c_1 \sin x + c_2 \cos x$$

Zur Lösung der Inhomogene Differentialgleichung mit konstanten Koeffizienten, kann man einen "Ansatz vom Typ der rechten Seite" wählen. Die Idee ist dass die Lösungsfunktion und Störfunktion ähnlich sind.

Störfunktion	Ansatz für Lösung $y_s(x)$
$P_n(x)$	$Q_n(x) = a_n x^n + \dots + a_0$
Ke^{ax}	Ke^{ax}
$A\sin bx$	$K_1\sin bx + K_2\cos bx$
$A\cos bx$	
$Ae^{\alpha x}\sin\beta x$	$K_1 e^{\alpha x} \sin \beta x + K_2 e^{\alpha x} \cos \beta x$
$Be^{\alpha x}\cos\beta x$	
$P_n(x)e^{\alpha x}\sin\beta x$	$e^{\alpha x}[R_n(x)\sin\beta x + S_n(x)\cos\beta x]$

wobei P_n, Q_n, S_n, R_n Polynome von Grad n sind.

Bemerkung 7.9

1. Liegt eine Linearkombination der Störfunktion vor, so hat man auch als Where is the end of this Ansatz eine entsprechende Linearkombination zu wählen. Dies ist Super- list?? prinzip

not sure about positioning, check later

Beispiel

Die DGL $y'' + y' - 6y = 50 \sin x$ hat die spezielle Lösung

$$y_s(x) = -7\sin x - \cos x$$

und die DGL $y'' + y' - 6y = 10e^{2x}$ hat die spezielle Lösung

$$y_s(x) = 2xe^{2x}$$

Die DGL $y^{\prime\prime}+y^{\prime}-6y=50\sin x+10e^{2x}$ hat die spezielle Lösung

$$y_s(x) = -7\sin x - \cos x + 2xe^{2x}$$

Die allgemenine Lösung

$$y(x) = -7\sin x - \cos x + 2xe^{2x} + c_1e^{-3x} + c_2e^{2x}$$

Superpositionsprinzip

Ist $y_1(c)$ eine spezielle Lösung der L. Differentialgleichung

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_0(x)y = b_1(x)$$

und $y_2(x)$ eine spezielle Lösung der LDGL

$$y^n(x) + \dots + a_0(x)y = b_2(x)$$

dann ist $y_1(x) + y_2(x)$ eine Spezielle Lösung der DGL

$$y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_0(x)y = b_1(x) + b_2(x)$$

2. Falls $\lambda=\alpha+i\beta$ (β kann null sein) eine m-fache Nullstelle der characteristichen Polynoms von (Resonanzfall)

(H)
$$y^{n}(x) + a_{n}y^{(n-1)} + \dots + a_{0} = 0$$

so muss man den Ansatz für $y_s(x)$ mit dem Faktor x^m multiplizieren.

check centering of for-

Beispiel

 $y'' + y = \sin x$ hat die spezielle Lösung $y_s = -\frac{1}{2}x \cos x$

Zusatzbedingungen einer DGL. Anfangs und Randbedingungen

Die in der allgemeinen Lösung einer DGL n-ter Ordnung auftretenden parameter lassen sich durch Zusatzbedingungen festlegen. Physikalische sinnvolle Zusatzbedingungen werden maist in der Form von Anfangsbedingungen oder Randbedingungen vorgegeben.

Durch Vorgabe von derartigen Bedingungen eliminiert man die Parameter aus der allgemeinen Lösung der DGL und erhölt damit eine partikuläre Lösung.

Besipiel 7.10

Freifall mit Reibung

 $m\ddot{x} = mg - a\dot{x}$. Anfangsbedingungen: x(0) = 0; $v(0) = \dot{x}(0) = 0$

$$mx''(t) + ax'(t) = mg$$

$$(H) \qquad mx''(t) + ax'(t) = 0$$

$$p(\lambda) = m\lambda^2 + a\lambda = 0 \Rightarrow \lambda = 0, \lambda = -\frac{a}{m}$$

$$x_h(t) = c_1 + c_2 e^{-\frac{a}{m}t}$$

Für die spezielle Lösung, wählen wir als Ansatz $x_s(t) = kt$

Add big bracket page

do y and x have anything on top?? page 101

$$x'(t) = k x''(t) = 0$$

$$mx''(t) + ax'(t) = ak = mg \Rightarrow k = \frac{mg}{a}$$

Allgemeine Lösung

$$x(t) = x_h(t) + x_s(t) = c_1 + c_2 e^{-\frac{a}{m}t} + \frac{mg}{a}t$$

Anfangsbedingungen

$$x(0) = 0 = c_1 + c_2 = 0$$

$$x'(t) = c_2 \left(-\frac{a}{m} \right) e^{-\frac{a}{m}t} + \frac{mg}{a} = 0$$

$$x'(0) = 0 \Rightarrow c_2 \left(-\frac{a}{m} \right) + \frac{mg}{a} = 0$$

$$c_2 = \frac{m^2g}{a^2} \qquad c_1 = -\frac{m^2g}{a^2}$$

$$\Rightarrow x(t) = -\frac{m^2g}{a^2} + \frac{m^2g}{a^2} e^{-\frac{a}{m}t} + \frac{mg}{a}t$$

$$x(t) = \frac{mg}{a}t - \frac{m^2g}{a^2} \left[1 - e^{-\frac{a}{m}t} \right]$$

Eine partihuläre Lösung einer DGL n-ter Ordnung

$$y'(n) + a_n x^{n-1} + \dots + a_0 = b(x)$$

kann man aus der allgemeine Lösung

$$y(x) = y(x, c_1, c_2, \dots, c_n)$$

der DGL erhalten

• Durch die Vorgabe von Anfangsbedingungen

$$y(x_0) = A_0$$
$$y'(x_0) = A_1$$
$$y^{(n-1)}(x_0) = A_n$$

(Funktionswert und weitere Ableitungen bis zur (n-1)—ten an einer speziellen stelle x_0 .

• Durch die Vorgabe von Randbedingungen

$$y(x_1) = B_1, y(x_2) = B_2, \dots, y(x_n) = B_n$$

Funktionswerte an n verschiedene Stellen

Beispiel 7.11

Lineares Federpendel:

$$mx''(t) + K_1 x = 0, \omega^2 = \frac{K}{m}$$
$$x''(t) + \omega^2 x = 0 \qquad (H)$$