Diachrony of Spectra

Ikhan Choi

July 24, 2019

Definition

Let R be a commutative ring. The spectrum of R is the set of prime ideals of R.

Definition

Let R be a commutative ring. The spectrum of R is the set of prime ideals of R.

Example

$$\mathsf{Spec}(\mathbb{Z}) = \{ \, 2\mathbb{Z}, \, 3\mathbb{Z}, \, 5\mathbb{Z}, \, 7\mathbb{Z}, \, 11\mathbb{Z}, \, \cdots \}.$$

Definition

Let R be a commutative ring. The spectrum of R is the set of prime ideals of R.

Example

$$\mathsf{Spec}(\mathbb{Z}) = \{ \, 2\mathbb{Z}, \, 3\mathbb{Z}, \, 5\mathbb{Z}, \, 7\mathbb{Z}, \, 11\mathbb{Z}, \, \cdots \}.$$

Question

Why is it defined like this?

Contents

Hydrogen atom

Spectral theory of elliptic equations

Gelfand theory

Algebraic geometry

Hydrogen spectral series

Hydrogen spectral series

Hydrogen spectral series

Question

How can we explain and compute this phenomenon?

Bohr's postulates:

Bohr's postulates:

▶ The electrons are on certian stable orbits.

Bohr's postulates:

- ▶ The electrons are on certian stable orbits.
- ► The stationary orbits are computed by the old quantization assumption for angular momenta:

 $mvr = n\hbar$.

Bohr's postulates:

- ▶ The electrons are on certian stable orbits.
- ► The stationary orbits are computed by the old quantization assumption for angular momenta:

$$mvr = n\hbar$$
.

► An electron absorbs or emits light frequency f when they jump from an orbit to another, satisfying

$$\Delta E = hf$$
.

Bohr's postulates:

- ▶ The electrons are on certian stable orbits.
- ► The stationary orbits are computed by the old quantization assumption for angular momenta:

$$mvr = n\hbar$$
.

An electron absorbs or emits light frequency f when they jump from an orbit to another, satisfying

$$\Delta E = hf$$
.

The constant h is called the Planck constant and $\hbar := \frac{h}{2\pi}$.

From the three relations

$$\label{eq:mur} \text{mvr} = \text{nh}, \quad \frac{\text{mv}^2}{\text{r}} = -k\frac{(+e)(-e)}{\text{r}^2}, \quad \text{E} = \text{K} + \text{V} = \frac{1}{2}\text{mv}^2 - k\frac{e^2}{\text{r}},$$

From the three relations

$$mvr = n\hbar$$
, $\frac{mv^2}{r} = -k\frac{(+e)(-e)}{r^2}$, $E = K + V = \frac{1}{2}mv^2 - k\frac{e^2}{r}$,

we deduce

$$E = -\frac{k^2 e^4 m}{2 \hbar^2} \frac{1}{n^2} \approx -13.6 \frac{1}{n^2} \ (eV).$$

From the three relations

$$\label{eq:mur} m\nu r = n\hbar, \quad \frac{m\nu^2}{r} = -k\frac{(+e)(-e)}{r^2}, \quad E = K + V = \frac{1}{2}m\nu^2 - k\frac{e^2}{r},$$

we deduce

$$E = -\frac{k^2 e^4 m}{2\hbar^2} \frac{1}{n^2} \approx -13.6 \frac{1}{n^2} \text{ (eV)}.$$

Proposition (Rydberg formula)

The wavelengths λ of absorbed or emitted photons from a hydrogen atom is estimated by the following formula:

$$rac{1}{\lambda}=R\left(rac{1}{\mathfrak{n}_1^2}-rac{1}{\mathfrak{n}_2^2}
ight),\quad ext{for}\quad \mathfrak{n}_1,\mathfrak{n}_2\in\mathbb{N},$$

where $R := \frac{k^2 e^4 m}{4\pi \hbar^3 c}$ is the Rydberg constant.

More mathematically!

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for $(t,x)\in\mathbb{R}^{1+3}$

$$\label{eq:potential} i\hbar\frac{\partial}{\partial t}\Psi(t,x) = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x),$$

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for $(t, x) \in \mathbb{R}^{1+3}$

$$\begin{split} &i\hbar\frac{\partial}{\partial t}\Psi(t,x)=-\frac{\hbar^2}{2m}\nabla^2\Psi(t,x)+V(x)\Psi(t,x),\\ &\text{energy} &\text{kinetic energy} &\text{potential energy} \end{split}$$

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for $(t, x) \in \mathbb{R}^{1+3}$

$$i\hbar \frac{\partial}{\partial t} \Psi(t,x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x),$$

kinetic energy potential energy

where V is given by the Coulomb potential

$$V(x) = -\frac{1}{|x|}.$$

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for $(t, x) \in \mathbb{R}^{1+3}$

$$i\hbar \frac{\partial}{\partial t} \Psi(t,x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x),$$

energy kinetic energy potential energy

where V is given by the Coulomb potential

$$V(x) = -\frac{1}{|x|}.$$

Solving the eugation, we obtain the probability distribution function $|\Psi(t,x)|^2$ of the electron at time t!

Schrödinger equation:

$$i\hbar\frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x).$$

Schrödinger equation:

$$i\hbar \frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x)\Psi(t,x).$$

"Mathematization":

$$i \partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

Schrödinger equation:

$$i\hbar\frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x).$$

"Mathematization":

$$\label{eq:delta_t} \text{id}_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

Ansatz: if the solutions has the form $\Psi(t,x)=\varphi(t)\psi(x),$ then

Schrödinger equation:

$$i\hbar\frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x). \label{eq:psi_def}$$

"Mathematization":

$$i \partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

Ansatz: if the solutions has the form $\Psi(t,x)=\varphi(t)\psi(x)$, then

$$\frac{i \vartheta_t \varphi(t)}{\varphi(t)} = \frac{-\Delta \psi(x) + V(x)}{\psi(x)}$$

Schrödinger equation:

$$\label{eq:definition} i\hbar\frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x).$$

"Mathematization":

$$i \eth_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

Ansatz: if the solutions has the form $\Psi(t,x)=\varphi(t)\psi(x)$, then

$$\frac{i\partial_t \varphi(t)}{\varphi(t)} = \frac{-\Delta \psi(x) + V(x)}{\psi(x)} = E.$$

Schrödinger equation:

$$\label{eq:energy_equation} i\hbar\frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x).$$

"Mathematization":

$$\label{eq:delta_t} \mathrm{i} \vartheta_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

Ansatz: if the solutions has the form $\Psi(t,x)=\varphi(t)\psi(x)$, then

$$\frac{i\partial_t \varphi(t)}{\varphi(t)} = \frac{-\Delta \psi(x) + V(x)}{\psi(x)} = \mathsf{E}.$$

We have two eigenvalue problems with shared eigenvalue E:

Schrödinger equation:

$$\label{eq:energy_equation} i\hbar\frac{d\Psi(t,x)}{dt} = -\frac{\hbar^2}{2m}\nabla^2\Psi(t,x) + V(x)\Psi(t,x).$$

"Mathematization":

$$i \partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

Ansatz: if the solutions has the form $\Psi(t,x)=\varphi(t)\psi(x)$, then

$$\frac{i\partial_t \varphi(t)}{\varphi(t)} = \frac{-\Delta \psi(x) + V(x)}{\psi(x)} = \mathsf{E}.$$

We have two eigenvalue problems with shared eigenvalue E:

$$\begin{split} &i\frac{d}{dt}\varphi(t)=\mathsf{E}\varphi(t),\\ &(-\Delta+V(x))\psi(x)=\mathsf{E}\psi(x). \end{split}$$

Suppose we already have found the solutions $\varphi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

Suppose we already have found the solutions $\phi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

► All functions of the form

$$\sum_{E} c_E \psi_E(t) \varphi_E(x)$$

Suppose we already have found the solutions $\phi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

► All functions of the form

$$\sum_{E} c_{E} \psi_{E}(t) \varphi_{E}(x)$$

are solutions of the original Schrödinger equation.

► For a given E, ϕ_E and ψ_E are of course not unique. In fact they form a vector space which is called the eigenspace.

Suppose we already have found the solutions $\phi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

All functions of the form

$$\sum_{E} c_{E} \psi_{E}(t) \varphi_{E}(x)$$

- ► For a given E, ϕ_E and ψ_E are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution $\psi_E(x)$ that satisfies $\int |\psi_E(x)|^2 dx = 1$: the eigenspace is trivial.

Suppose we already have found the solutions $\phi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

► All functions of the form

$$\sum_{\text{E}} c_{\text{E}} \psi_{\text{E}}(t) \varphi_{\text{E}}(x)$$

- ► For a given E, ϕ_E and ψ_E are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution $\psi_E(x)$ that satisfies $\int |\psi_E(x)|^2 dx = 1$: the eigenspace is trivial.
- \blacktriangleright Since $\varphi_E(t) \propto e^{-iEt}$ is easily solved, the main difficulty is $\psi_E.$

Suppose we already have found the solutions $\phi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

► All functions of the form

$$\sum_{\text{E}} c_{\text{E}} \psi_{\text{E}}(t) \varphi_{\text{E}}(x)$$

- ► For a given E, ϕ_E and ψ_E are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution $\psi_E(x)$ that satisfies $\int |\psi_E(x)|^2 dx = 1$: the eigenspace is trivial.
- \blacktriangleright Since $\varphi_E(t) \propto e^{-iEt}$ is easily solved, the main difficulty is $\psi_E.$

Suppose we already have found the solutions $\phi_E(t)$, $\psi_E(x)$ of the eigenvalue problems for each complex number E.

All functions of the form

$$\sum_{E} c_E \psi_E(t) \varphi_E(x)$$

are solutions of the original Schrödinger equation.

- ► For a given E, ϕ_E and ψ_E are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution $\psi_E(x)$ that satisfies $\int |\psi_E(x)|^2 dx = 1$: the eigenspace is trivial.
- ▶ Since $\phi_E(t) \propto e^{-iEt}$ is easily solved, the main difficulty is ψ_E .

Remark

The first one is not mathematically correct statement because we should resolve some technical issues on convergence.

So, what we need to investigate seriously is:

So, what we need to investigate seriously is: what are the eigenvalues and eigenvectors of the operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(\mathbf{x}) := (-\Delta - |\mathbf{x}|^{-1})\psi(\mathbf{x})?$$

Also, how can we compute them?

So, what we need to investigate seriously is: what are the eigenvalues and eigenvectors of the operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(\mathbf{x}) := (-\Delta - |\mathbf{x}|^{-1})\psi(\mathbf{x})?$$

Also, how can we compute them?

The Beginning of Spectral Theory

By long long calculations, we can obtain the following heuristically:

Proposition

The eigenvalues of $\mathfrak{H} = -\Delta - |\mathbf{x}|^{-1}$ is

Separation of variables

Spectral theorem of normal matrices

Spectral theorem of compact operators

Spectral theorem of elliptic operators

Banach algebras and C*-algebras

Example 1 : Bounded operators

Example 2 : Continuous functions

Spectra, multiplicative homomorphisms, maximal ideals

Gelfand-Naimark theorem

Algebraic variety

Coordinate ring

Maximal ideal is a point

Problem of unified codomains

Functoriality