PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6 :

C12N 15/12, 15/63, 15/67, 15/86, C07K 14/705

(11) Numéro de publication internationale: WO 96/29400

(43) Date de publication internationale: 26 septembre 1996 (26.09.96)

(21) Numéro de la demande internationale: PCT/FR96/00437

(22) Date de dépôt international: 22 mars 1996 (22.03.96)

(30) Données relatives à la priorité: 95/03412 23 mars 1995 (23.03.95) FR

(71) Déposants (pour tous les Etats désignés sauf US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) [FR/FR]; 147, rue de l'Université, F-75341 Paris Cédex 07 (FR). CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cédex 16 (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): DEVAUCHELLE, Gérard [FR/FR]; 137, chemin de l'Espervette, F-30380 Saint-Christol-lès-Alès (FR). OGLIASTRO, Marie-Hélène [FR/FR]; 28, rue d'Avéjan, F-30100 Alès (FR). CERUTTI, Martine [FR/FR]; 2997, route de Montèze, F-30380 Saint-Christol-lès-Alès (FR).

(74) Mandataires: ORES, Irène etc.; Cabinet Ores, 6, avenue de Messine, F-75008 Paris (FR).

(81) Etats désignés: AU, CA, HU, JP, NZ, US, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée

Avec rapport de recherche internationale.

- (54) Title: METHOD FOR REGULATING THE EXPRESSION OF A GENE IN A BACULOVIRUS USING A RETINOIC ACID RECEPTOR BINDING SITE, AND VECTOR THEREFOR
- (54) Titre: PROCEDE DE REGULATION DE L'EXPRESSION D'UN GENE DANS UN BACULOVIRUS, PAR UN SITE DE FIXATION D'UN RECEPTEUR DE L'ACIDE RETINOIQUE, ET VECTEUR POUR LA MISE EN ŒUVRE DUDIT PROCEDE

(57) Abstract

A recombinant vector useful for regulating the expression of a gene controlled by a baculovirus polyhedrin promoter or P10 promoter, via a sequence forming an RAR-type hormone receptor binding site.

(57) Abrégé

L'invention est relative à un vecteur recombinant, utilisable pour réguler l'expression d'un gène placé sous contrôle du promoteur P10 ou du promoteur polyédrine du baculovirus, par l'intermédiaire d'une séquence constituant un site de fixation pour un récepteur hormonal du type RAR.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Arménie	GB	Royaume-Uni	MW	Malawi
AT	Autriche	GE	Géorgie	MX	Mexique
AU	Australie	GN	Guinée	NE	Niger
BB	Barbade	GR	Grèce	NL	Pays-Bas
BE	Belgique	HU	Hongrie	NO	Norvège
BF	Burkina Faso	IE	Irlande	NZ	Nouvelle-Zélande
BG	Bulgarie	IT	Italie	PL	Pologne
BJ	Bénin	JP	Japon	PT	Portugal
BR	Brésil	KE	Kenya	RO	Roumanie
BY	Bélanis	KG	Kirghizistan	RU	Fédération de Russie
CA	Canada	KP	République populaire démocratique	SD	Soudan
CF	République centrafricaine		de Corée	SE	Suède
CG	Congo	KR	République de Corée	SG	Singapour
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovaquie
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LR	Libéria	SZ	Swaziland
CS	Tchécoslovaquie	LT	Lituanie	TD	Tchad
CZ	République tchèque	LU	Luxembourg	TG	Togo
DE	Allemagne	LV	Lettonie	TJ	Tadjikistan
DE DK	Danemark	MC	Monaco	TT	Trinité-et-Tobago
EE	Estonie	MD	République de Moldova	UA	Ukraine
ES	Espagne	MG	Madagascar	UG	Ouganda
FI	Finlande	ML	Mali	US	Etats-Unis d'Amérique
FR	France	MN	Mongolie	UZ	Ouzbékistan
GA	Gabon	MR	Mauritanie	VN	Viet Nam

1

PROCEDE DE REGULATION DE L'EXPRESSION D'UN GENE DANS UN BACULOVIRUS, PAR UN SITE DE FIXATION D'UN RECEPTEUR DE L'ACIDE RETINOIQUE, ET VECTEUR POUR LA MISE EN OEUVRE DUDIT PROCEDE.

La présente Invention est relative à de nouveaux vecteurs d'expression obtenus à partir de baculovirus.

Les baculovirus, représentés par le virus de la polyédrose nucléaire Autographa californica (AcMNPV), possèdent plusieurs promoteurs, actifs à différentes phases du cycle de réplication virale. Certains de ces sont utilisés en génie génétique contrôler l'expression de gènes hétérologues insérés dans le génome du baculovirus. Parmi les plus couramment 15 employés, on citera deux promoteurs très tardifs forts : celui de la polyédrine (polh) et celui du polypeptide P10, qui ne sont actifs qu'en fin de cycle d'infection, après la réplication du génome viral, et qui permettent d'exprimer à un niveau élevé les gènes placés sous leur 20 contrôle.

Les promoteurs polh et P10 sont décrits de manière détaillée dans les publications suivantes : POSSEE et HOWARD [Nucleic Acid Research, vol. 10233-10248 (1987)], pour le promoteur de la polyédrine, et QIN et al. [J. Gen. Virol. vol. 70, p. 1273-1279, 25 (1989)] pour le promoteur P10. On définit généralement "promoteur de la polyédrine" la séquence localisée entre les positions (-71 et +1) définies par rapport au A(+1) de l'ATG de la polyédrine, et comme : 30 "promoteur P10" la séquence localisée entre les positions (-70 et +1) définies par rapport au A(+1) de l'ATG du polypeptide P10.

Pour obtenir, à partir d'un baculovirus, un vecteur capable d'exprimer un gène étranger sous contrôle transcriptionnel d'un promoteur dudit baculovirus, l'on procède généralement, selon des méthodes connues en

2

elles-mêmes, à la construction d'un vecteur de transfert renfermant ledit promoteur, puis à la recombinaison avec l'ADN du virus sauvage, et enfin à la sélection des recombinants.

Lors du cycle de réplication du baculovirus s'expriment d'abord les gènes précoces : la transcription de ces gènes fait intervenir l'ARN polymérase II de la cellule-hôte.

Ultérieurement, les gènes tardifs et très 10 tardifs comme polh et P10, sont transcrits par une ARN polymérase particulière, d'origine au moins en partie virale, insensible à l' α -amanitine.

Un motif A/GTAAG commun à tous les gènes tardifs. constitue le site d'initiation de la 15 transcription. Ce motif est indispensable la reconnaissance de ces promoteurs par l'ARN polymérase et à leur activité. Les mécanismes qui gouvernent l'activation transcriptionnelle ne sont toutefois encore précisément connus.

20 Des travaux précédents de l'équipe des Inventeurs ont montré qu'il est particulièrement intéressant, pour augmenter le niveau d'expression d'un gène hétérologue placé sous contrôle de l'un des deux promoteurs très tardifs forts polh ou P10, de construire 25 un baculovirus dans lequel un seul de ces deux promoteurs tardifs forts est inactivé, et de faire exprimer ledit gène sous contrôle du promoteur restant.

Ce principe a servi de base à la construction de plusieurs baculovirus modifiés [Demande Européenne 30 n° 91 913 605.1, aux noms de l'INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (I.N.R.A.) et du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.); CHAABIHI et al., J. Virol., 67, 2664-2671 (1993)], dans lesquels soit le promoteur P10 (baculovirus dénommé AcSLP33, par exemple), soit le promoteur de la polyédrine (baculovirus dénommé AcSLP10, par exemple) est inactivé par délétion.

3

Dans le cadre de la poursuite de leurs travaux sur la régulation de l'expression chez les baculovirus, les Inventeurs ont eu l'idée d'étudier l'influence de la séquence codante du gène P10 sur l'expression de celuici. Dans ce but, ils ont réalisé, à partir du baculovirus sauvage AcMNPV, des constructions comprenant rapporteur CAT inséré à l'une des positions +16, +150, ou +230 de la séquence codant pour la P10 (ces positions sont définies par rapport au A (+1) du codon d'initiation ATG de la P10), et ont étudié l'expression simultanée du gène rapporteur CAT et du gène de la polyédrine, dans les recombinants (dénommés respectivement AcCAT+16, AcCAT+150, et AcCAT+230) obtenus, par rapport baculovirus sauvage AcMNPV et au baculovirus modifié AcSLP33 (dans lequel le promoteur P10 est inactivé).

Les virus recombinants AcCAT+16, AcCAT+150, et AcCAT+230, sont schématisés à la Figure 1.

Inventeurs ont ainsi pu constater que Les lorsque le gène rapporteur est inséré en +16 (cette 20 insertion s'accompagne de la délétion d'une partie de la séquence codant pour la P10), l'expression rapporteur est faible et celle du gène de la polyédrine augmente très significativement, bien que le promoteur de la P10 soit intact, jusqu'à atteindre 25 comparable à celui observé dans un virus où le promoteur de la P10 est inactivé, tel que le virus AcSLP33.

En revanche, lorsque le gène rapporteur est inséré plus en aval (+150 ou +230), l'expression dudit gène augmente, et celle de la polyédrine diminue pour revenir à un niveau de base comparable à celui observé dans le baculovirus sauvage AcMNPV.

30

D'autre part, au cours d'autres expérimentations entreprises indépendamment, les Inventeurs ont cherché à exprimer les isoformes α et γ du récepteur humain de l'acide rétinoïque (hRAR) dans des cellules d'insectes, et ont dans ce but construit à

4

partir de baculovirus sauvages AcMNPV, des baculovirus recombinants qui expriment respectivement lesdites isoformes α ou γ sous contrôle du promoteur de la polyédrine. Or, au cours de ces expérimentations ils ont observé une surexpression inattendue du gène P10 dans ces baculovirus.

Cette activation se manifeste par un taux d'ARNm qui est 2 fois supérieur au témoin (constitué par le baculovirus sauvage AcMNPV,) dans le cas du récepteur 10 α , et 5 fois supérieur dans le cas du récepteur γ :: il s'agit donc d'une activation au niveau transcriptionnel.

D'autre part cette activation est observée non seulement lors de la transfection d'une cellule avec un virus double-recombinant, mais également lors de la cotransfection d'une cellule avec deux plasmides (l'un exprimant un RAR, et l'autre portant un domaine RARE localisé dans le gène P10) ; il s'agit donc d'une transactivation.

Les Inventeurs ont établi un rapprochement 20 entre les résultats des deux séries d'expérimentations relatées ci-dessus et ont procédé à l'analyse de la séquence de la région P10, afin de rechercher l'existence éventuelle de séquences apparentées à celles constituant des sites de fixation pour des récepteurs nucléaires, et en particulier pour des récepteurs rétinoïques.

Les récepteurs de l'acide rétinoïque (RARs) appartiennent à la famille des "récepteurs nucléaires", qui comprend également, par exemple, chez les vertébrés, les récepteurs de la vitamine D3, ou les récepteurs thyroïdiens. D'autres récepteurs, dénommés RXRs, et qui sont comme les RARs, activés par l'acide rétinoïque ou par d'autres rétinoïdes ont également été décrits.

On sait que les récepteurs nucléaires sont capables d'activer la transcription d'un gène-cible. Cette activation fait intervenir d'une part la liaison de ces récepteurs nucléaires avec leur ligand spécifique, et

35

5

d'autre part leur fixation à l'ADN, qui implique reconnaissance de courtes séquences consensus dénommées « éléments de réponse » généralement situées en amont du gène-cible. Les RARs et RXRs reconnaissent ainsi séquences consensus qui sont répétées une plusieurs fois. en tandem ou en palindrome, définissent des portions d'ADN dénommées respectivement éléments RARE ou RXRE [GORDMAN et al. Mol. Cell. Biol. 2, (1982)]. Différentes séquences consensus ont été identifiées. Par exemple, les éléments de réponse au récepteur RARβ, qui sont décrits dans la Demande PCT WO 91/07488, comprennent des répétitions en tandem de la séquence GTTCAC ; la Demande PCT WO 92/16658 décrit des éléments de réponse RXRE, et en particulier un élément RXRE obtenu à partir du promoteur du gène CRBPII de rat, qui comprend des répétitions en tandem de la séquences AGGTCA.

éléments Les de réponse aux récepteurs nucléaires ont une spécificité variable. Certains, comme les éléments de réponse au récepteur de 1'hormone thyroïdienne (TRE) répondent non seulement à leur propre récepteur mais également aux RARs et aux RXRs. D'autres sont plus spécifiques, comme les éléments de réponse au récepteur $RAR\beta$, qui ne répondent que faiblement aux RXRs. D'autres, comme l'élément RXRE qui est décrit dans la Demande PCT WO 92/16658 peuvent fixer des récepteurs RAR ou RXR, mais seuls ces derniers provoquent une réponse qui entraîne l'activation du promoteur placé en aval de cet élément RXRE. Cette trans-activation par les RXRs est 30 bloquée en présence de RARs.

Il existe également chez les insectes des protéines voisines des RARs ; il s'agit en particulier du récepteur hormonal de l'ecdysone (EcR) et de la protéine USP de la Drosophile. La Demande PCT WO 92/14695 décrit un récepteur de type RXR, dénommé XR2C, obtenu à partir de la drosophile.

6

Il a été proposé de placer des éléments de réponse aux RARs ou aux RXRs en amont du promoteur d'un gène, à une distance dudit promoteur comprise entre 30pb et 10000pb, afin d'obtenir l'activation dudit gène par l'intermédiaire de récepteurs RAR ou RXR exprimés dans la même cellule. Par exemple, la Demande PCT WO 91/07488 l'utilisation des éléments de réponse récepteur RARβ, pour activer la transcription de gènes dans des cellules de mammifères. La Demande PCT 10 92/16658 propose l'utilisation des éléments de réponse RXRE qu'elle décrit pour étudier la trans-activation de gènes par des récepteurs RXR, et le blocage de cette trans-activation en présence de récepteurs XRA dans des cellules de mammifères, d'oiseaux ou d'insectes. 15 Demande PCT WO 92/14695 mentionne plusieurs éléments de réponse qui seraient utilisables avec le récepteur XR2C ; en fait, elle ne décrit l'utilisation de ce récepteur qu'avec un élément de réponse TRE placé en amont du promoteur ADH de drosophile.

L'analyse de la séquence de la région P10, 20 effectuée par les Inventeurs a révélé l'existence dans le séquence P10, d'une intragénique qène de la GTTGACAGTGTTCA, similaire à une séquence consensus reconnue par les RARs, et constituant donc un élément RARE putatif. Cette séquence est localisée, chez AcMNPV 25 de type sauvage, en position +61 par rapport au A(+1) du codon d'initiation ATG de la P10.

Des expériences complémentaires effectuées par les Inventeurs ont permis de montrer que l'activation du gène P10, ou d'un gène rapporteur placé sous contrôle transcriptionnel du promoteur P10, en présence du produit d'un gène RAR placé sous contrôle du promoteur de la polyédrine, intervient à condition que le domaine de type RARE localisé dans le gène P10 soit présent. En outre, cette activation intervient également lorsque le domaine de type RARE est enlevé de sa position initiale et

30

7

replacé dans une autre position à proximité du promoteur P10, en amont ou en aval de ce promoteur. Enfin, si l'on place, de la même façon, le domaine de type RARE à proximité d'un autre promoteur, on observe l'activation de cet autre promoteur. Dans tous les cas, cet élément RARE est actif qu'il soit placé en amont ou en aval du promoteur, et quelle que soit son orientation par rapport à celui-ci.

L'analyse de séquence du gène P10 chez les 10 baculovirus Choristoneura fumiferana NPV et Bombyx mori NPV révèle la conservation du motif RARE. Ces baculovirus peuvent donc, au même titre que AcMNPV, être utilisés pour la mise en oeuvre de la présente Invention.

La mise en évidence par les Inventeurs, de 15 cette séquence intragénique de type RARE, et de son rôle effectif dans la régulation de l'expression du gène P10, permettent de proposer de nouveaux moyens de régulation de l'expression de gênes hétérologues codant pour des protéines d'intérêt, sous contrôle de promoteurs de 20 baculovirus.

La présente Invention concerne ces moyens de régulation, qui comportent plusieurs variantes.

Selon une première variante de l'Invention, l'activation d'un promoteur de baculovirus dans une cellule-hôte, en particulier d'un promoteur tardif fort tel que le promoteur P10 ou polh est obtenue en présence du produit d'un gène RAR dans la même cellule-hôte, et d'une séquence de type RARE, située en cis et à proximité dudit promoteur de baculovirus.

Au sens de la présente Invention, on considère qu'une séquence RARE est "à proximité d'un promoteur" si elle située en aval ou en amont dudit promoteur, à une distance comprise entre 10 et 10000 pb, de préférence inférieure à 1000pb, du site d'initiation de la transcription dudit promoteur.

8

La présente Invention a pour objet un procédé pour réquier l'expression d'un gène placé sous contrôle transcriptionnel d'un promoteur de baculovirus dans un vecteur d'expression comprenant une séquence de type RARE 5 située à proximité dudit promoteur de baculovirus, lequel procédé est caractérisé en ce que l'on procède à l'expression dudit gène en présence đu produit de traduction d'un gène codant pour un récepteur hormonal du type RAR.

Le promoteur de baculovirus peut par exemple 10 être le promoteur P10, le promoteur polh, l'un des des gènes IE1, IEN, promoteurs ou un promoteur synthétique. Avantageusement, il s'agit d'un promoteur tardif fort, tel que le promoteur P10, ou le promoteur polh. 15

De préférence, le récepteur hormonal du type RAR est un récepteur RARα, un récepteur RARβ, ou un récepteur RARγ, et la séquence d'ADN RARE est une séquence (identifiée dans la liste de séquence en annexe sous le numéro SEQ ID NO:1) répondant à la formule générale GTTGANNNNGTTCA où N représente A, ou C, ou G ou T, et en particulier la séquence GTTGACAGTGTTCA, identifiée dans la liste de séquence en annexe sous le numéro SEQ ID NO:2.

Selon un mode de mise en oeuvre préféré d'un procédé conforme à l'Invention, l'expression du gène placé sous contrôle transcriptionnel dudit promoteur de baculovirus est effectuée en présence, dans la même cellule, d'un gène exprimant un récepteur hormonal du 30 type RAR.

Le promoteur de baculovirus et le gène exprimant un récepteur hormonal du type RAR peuvent être portés par une même molécule d'ADN, ou bien par deux molécules d'ADN différentes.

Le gène exprimant un récepteur hormonal du type RAR peut être placé sous contrôle d'un promoteur

9

quelconque, pourvu que ledit promoteur s'exprime dans la cellule hôte. Avantageusement, il est placé sous contrôle d'un second promoteur de baculovirus; ce second promoteur et celui sous contrôle duquel est exprimé le gène d'intérêt, peuvent être identiques ou différents.

Pour la mise en œuvre d'un procédé conforme à l'invention, on peut par exemple utiliser des vecteurs d'expression, connus en eux-mêmes, qui ne portent pas de gène exprimant un récepteur hormonal du type RAR, et qui comprennent au moins la partie du gène P10 constituée par le promoteur dudit gène, suivi de la portion de séquence codant pour la protéine P10 qui comprend la séquence GTTGACAGTGTTCA, ledit promoteur et ladite codante étant disposés de manière identique à celle du Ces vecteurs gène P10 sauvage. sont utilisables présence, dans la même cellule hôte, d'une autre molécule d'ADN exprimant un récepteur hormonal du type RAR.

10

15

On peut également utiliser de nouveaux vecteurs recombinants, qui font partie de l'objet de la 20 présente Invention.

vecteurs recombinants conformes l'Invention, utilisables pour la mise en œuvre d'un procédé dans lequel le promoteur de baculovirus et gène exprimant un récepteur hormonal du type RAR sont 25 portés par deux molécules d'ADN différentes, sont constitués par des baculovirus recombinants, comprenant une séquence d'ADN constituant un site de fixation pour un récepteur hormonal du type RAR, placée à proximité d'un promoteur de baculovirus sous contrôle duquel on veut exprimer un gène codant pour une protéine d'intérêt, 30 à condition que, si le promoteur de baculovirus est le promoteur P10, et la séquence RARE est la séquence GTTGACAGTGTTCA, ladite séquence soit située, par rapport audit promoteur, à un emplacement différent de celui 35 qu'elle occupe dans le gène P10 sauvage, ou soit séparée

PCT/FR96/00437 WO 96/29400

10

dudit promoteur par une séquence différente de celle qui la sépare du promoteur P10 sauvage.

D'autres vecteurs recombinants conformes l'invention, utilisables pour la mise en œuvre d'un 5 procédé dans lequel le promoteur de baculovirus et le gène exprimant un récepteur hormonal du type RAR sont portés par la même molécule d'ADN, sont constitués par des baculovirus recombinants, comprenant une d'ADN RARE constituant un site de fixation pour 10 récepteur hormonal du type RAR, placée à proximité d'un premier promoteur de baculovirus, sous contrôle duquel on veut exprimer un gène codant pour une protéine d'intérêt, et une séquence d'ADN codant pour un récepteur hormonal du type RAR placée sous contrôle transcriptionnel d'un second promoteur de baculovirus.

Le premier et le second promoteur peuvent par exemple être le promoteur P10, le promoteur polh, gènes IE1, IEN, ou des promoteurs promoteurs des synthétiques. On peut également utiliser comme second 20 promoteur une copie du premier promoteur.

15

30

Avantageusement, le premier promoteur est le promoteur P10, et le second promoteur le promoteur polh, ou bien une seconde copie du promoteur P10. De manière avantageuse, le premier promoteur également 25 promoteur polh, et le second promoteur le promoteur P10, ou bien une seconde copie du promoteur polh.

De préférence, le récepteur hormonal du type RAR est un récepteur RARα, un récepteur RARβ, ou un récepteur RARy, et la séquence d'ADN RARE est une séquence telle que définie dans la liste de séquences en annexe, sous le numéro SEQ ID NO:1 ou SEQ ID NO:2.

Avantageusement, la séquence d'ADN RARE est placée en aval du premier promoteur.

Selon un mode de réalisation préféré, comprennent en outre au moins une séquence 35 vecteurs

11

hétérologue codant pour la protéine d'intérêt que l'on veut exprimer, placée sous contrôle transcriptionnel du premier promoteur, ou au moins un site pour l'insertion de ladite séquence.

Des vecteurs conformes à l'invention sont par exemple les virus double-recombinants, obtenus à partir des virus recombinants Ac+150 et Ac+230 décrits cidessus, par insertion d'un gène codant pour un des récepteurs RARa ou RARa de l'acide rétinoïque, sous contrôle du promoteur de la polyédrine.

5

10

15

Selon une deuxième variante de l'invention, une activation du promoteur polh similaire à celle observée dans les vecteurs d'expression où le promoteur P10 est inactivé est obtenue en utilisant des vecteurs d'expression dépourvus de la totalité de la séquence codant pour la protéine P10.

Conformément à cette deuxième variante, présente Invention a pour objet des recombinants, utilisables pour augmenter 1'expression 20 d'un gène sous contrôle transcriptionnel du promoteur polyédrine de baculovirus, et qui sont constitués par des baculovirus modifiés, comprenant un promoteur polyédrine et un promoteur P10 intacts et fonctionnels, et où le voisinage du promoteur P10 est dépourvu de toute séquence 25 constituant un site đе fixation pour un récepteur hormonal du type RAR.

Selon un mode de réalisation préféré des vecteurs conformes à cette deuxième variante de l'Invention, ils sont dépourvus de la totalité de la séquence codant pour la protéine P10.

Selon un autre mode de réalisation préféré des vecteurs conformes à cette variante de l'Invention, ils comprennent en outre au moins une séquence, codant pour une protéine hétérologue que l'on souhaite exprimer, placée sous contrôle transcriptionnel du promoteur de la

12

polyédrine, ou au moins un site pour l'insertion de ladite séquence.

Des vecteurs conformes à cette deuxième variante de l'invention peuvent par exemple être obtenus à partir d'un virus recombinant Ac+16.

Selon un autre mode de réalisation préféré des vecteurs conformes à cette deuxième variante de l'Invention, ils comprennent en outre une séquence d'ADN codant pour un récepteur hormonal du type RAR, laquelle séquence est placée sous contrôle transcriptionnel d'un promoteur de baculovirus autre que le promoteur P10.

10

En effet, les Inventeurs ont observé que lorsqu'un gène, (tel que par exemple le gène rapporteur CAT) est inséré sous contrôle transcriptionnel du promoteur P10, et en l'absence de la séquence RARE, on note non seulement une absence d'activation, mais même une inhibition de son expression lors de la co-expression avec les RARs.

Des vecteurs de ce type peuvent être obtenus à 20 partir de Ac+16 par insertion d'un gène codant pour un des récepteurs RARα ou RARγ de l'acide rétinoïque, sous contrôle du promoteur de la polyédrine;

Des vecteurs conformes à l'Invention, peuvent constituer des vecteurs de transfert ou des vecteurs d'expression. Ils peuvent être obtenus à partir de n'importe quel baculovirus ou construction (telle qu'un vecteur de transfert) dérivée de baculovirus, à condition que ledit baculovirus ou ladite construction comprenne les séquences constituant le promoteur de la P10, telles que définies ci-dessus.

La présente Invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples de construction et de mise en oeuvre de vecteurs d'expression conformes à l'Invention.

35 Il doit être bien entendu toutefois que ces exemples sont donnés uniquement à titre d'illustration de

13

l'objet de l'Invention dont ils ne constituent en aucune manière une limitation.

Les protocoles utilisés dans les exemples qui suivent font appel à des techniques classiques du génie génétique, telles que celles décrites par SAMBROOK et al.[Molecular cloning : A Laboratory Manual ; Second Edition, Cold Spring Harbor Laboratory, 1989], ou par O'REILLY et al. [Baculovirus Expression Vectors : A Laboratory Manual ; Freeman and Cie, New York, (1992)] o pour la manipulation de l'ADN de baculovirus. Les conditions particulières à chaque expérimentation sont, s'il y a lieu, précisées dans l'exemple correspondant.

EXEMPLE 1

15

1) ADN plasmidiques et vecteurs de transfert

Une série de trois vecteurs de transfert dénommés respectivement pMH16, pMH150, et pMH230, a été construite, afin d'introduire le gène bactérien codant pour la CAT (Chloramphénicol Acétyl Transférase) dans la séquence codant pour la P10, aux positions +16, +150, et +230.

La Figure 2 représente une carte de la région *P10*, montrant les positions concernées.

Dans ces trois constructions, le codon ATG de 25 la P10 a été muté en AGC, et un site de restriction <u>Pvu</u>II a été créé (séquence ATG TCA mutée en AGC TGA).

- pMH16

Le plasmide pMH16 est dérivé du vecteur de transfert pGm16. Le vecteur pGm16 contient un insert 30 obtenu à partir du fragment EcoRI-P du baculovirus GmMNPV, muté comme indiqué ci-dessus au niveau du site d'initiation de la traduction de P10, et où la séquence comprise entre les bases +16 et +265 du gène P10, a été délétée, et remplacée par un lieur BglII.

Pour obtenir pMH16, un fragment <u>Hind</u>III-<u>Nsi</u>I de 1900 pb, isolé à partir du fragment <u>Hind</u>III-Q de

14

ACMNPV, qui contient les séquences hr5 et le gène p26, a été introduit entre les sites <u>Hind</u>III et <u>Nsi</u>I de pGm16.

Le fragment <u>BglII-BanI</u> de 790 pb obtenu à partir du plasmide pBLCAT2 (LUCKOW and SCHUTZ, Nucleic 5 Acid Res., 15, (13) 5940 (1987), et comprenant la séquence codant pour la CAT, a ensuite été introduit dans le plasmide, au site <u>BglII</u>.

- pMH150 et pMH230 :

Les plasmides pMH150 et pMH230 dérivent d'une même construction, qui a été réalisée en insérant un fragment NsiI-EcoRI de 1900 pb portant les mutations indiquée ci-dessus du fragment EcoRI-P de AcMNPV, entre les sites NsiI et KpnI du fragment HindIII-Q de AcMNPV, préalablement cloné dans le vecteur pUC18.

Pour obtenir le plasmide pMH150, le fragment BglII-BanI de pBLCAT2 comprenant la séquence codant pour la CAT, a été introduit au site BglII situé en position +150 dans la séquence codant pour la P10. Pour obtenir le plasmide pMH230, ledit fragment BglII-BanI a été introduit au site HindIII situé en position +230 dans la séquence codant pour la P10.

La Figure 3 représente schématiquement les inserts des plasmides pMH16, pMH150, et pMH230.

- Plasmide pPH-RARα et pPH-RARγ

Un fragment <u>KpnI-StuI</u> de 1518 pb, ou un fragment <u>NcoI-SmaI</u> de 1564 pb, comprenant la totalité des séquences codant respectivement pour les éléments hRARα [PETROVITCH et al. Nature, vol. 330, p. 444-450 (1987)] et hRARγ [BENBROOK et al., Nature, vol. 333, p. 669-672 (1988)] ont été introduits en aval du promoteur de la polyédrine, dans le site <u>SmaI</u> du plasmide pGmAc34T [DAVRINCHE et al. Biochem. Biophys. Res. Com., vol 195, p. 469-477].

15

- Plasmides pRARα(P10) et pRARγ(P10)

De la même manière, les séquences codant pour les éléments hRAR ont été introduites au site <u>Bgl</u>II du plasmide pMH16.

5

2) Obtention de baculovirus recombinants :

Pour chacun des vecteurs de transfert décrits ci-dessus 4.10⁶ cellules Sf9 sont co-transfectées par lipofection (DOTAP, BOEHRINGER MANNHEIM), avec 10µg de vecteur, et 1µg d'ADN viral.

Les recombinaisons au site de la polyédrine 10 sont effectuées en co-transfectant le plasmide concerné avec de l'ADN de virus AcMNPV sauvage, tandis que les recombinaisons au site P10 effectuées sont cotransfectant le plasmide concerné avec 1'ADN d'un baculovirus modifié (AcSLP10) dans lequel le promoteur et le gène de la polyédrine ont été excisés, et la séquence codant pour la polyédrine replacée sous contrôle du promoteur P10.

Deux clones de chaque recombinant ont été 20 purifiés indépendamment.

Figure 4 représente schématiquement les différents virus recombinants obtenus. Les promoteurs (P10 et polyédrine) sont représentés par un rectangle de couleur noire unie, la séquence P10 est représentée par 25 un rectangle de couleur blanche unie, la séquence codant pour la polyédrine est représentée par un rectangle en pointillés serrés(), les séquences codant pour les RARs représentées par un rectangle en pointillés espacés(🌑), la séquence codant pour la CAT est représentée par un rectangle hachuré.

La Figure 4A représente, de haut en bas :

- le virus AcMNPV sauvage ;
- un virus dépourvu du promoteur et du gène polyédrine (AcD3) ;
- un virus obtenu après recombinaison d'un plasmide pPH-RAR avec l'ADN de virus sauvage (AcRARP10);

16

- un virus obtenu après recombinaison d'un plasmide pPH-RAR avec l'ADN de virus dépourvu du promoteur et du gène P10(AcRARΔP10);
- un virus obtenu après recombinaison d'un 5 plasmide pRAR(P10) avec l'ADN de virus dépourvu du promoteur polyédrine (AcSLP10RAR);
 - un virus obtenu après recombinaison d'un plasmide pRAR(P10) avec l'ADN de virus sauvage (AcPHRAR).
- La Figure 4B représente schématiquement les 10 recombinants portant le gène CAT à différentes positions à l'intérieur de la séquence P10 (+16, +150 et +230), et le gène RARα ou γ au locus polyédrine :

15

- un virus obtenu après recombinaison d'un des plasmides pMH16, pMH150, ou pMH230 avec l'ADN de virus sauvage (AcP10CAT);
- un virus obtenu après recombinaison d'un plasmide pPH-RAR avec l'ADN de virus AcP10CAT (AcRARCAT);

EXEMPLE 2 : EXPRESSION DE P10 DANS LES RECOMBINANTS RAR.

Les cellules (Spodoptera frugiperda Sf9) sont maintenues à 28°C dans du milieu TC100 (GIBCO/BRL) supplémenté avec 5% de sérum de veau foetal inactivé par la chaleur.

Les cellules sont infectées par une suspension virale (AcMNPV sauvage, ou recombinant à tester) avec une multiplicité d'infection de 10 PFU (Plage Forming Units) par cellule. Après une heure d'adsorption, l'inoculum viral est remplacé par un milieu de culture frais.

Les cellules respectivement infectées avec 30 AcMNPV, AcRARαP10, AcRARγP10, AcRARαP10, AcRARγD10, AcRARγΔP10, ont été récoltées 48 heures après infection, lavées dans du tampon PBS froid, puis re-suspendues dans du tampon d'échantillon et portées à ébullition pendant 5 mm. La même préparation est effectuée à partir de cellules non-infectées.

17

Les protéines totales de chaque préparation sont analysées par SDS-PAGE, sur un gel de polyacrylamide à 12%. Les gels sont colorés avec du bleu de Coomassie.

La comparaison des profils électrophorétiques 5 des protéines totales de cellules infectées avec les recombinants RAR (AcRARαP10 et AcRARγP10), avec le profil électrophorétique de protéines totales des infectées avec le baculovirus de type sauvage AcMNPV, montre qu'une protéine d'un poids moléculaire apparent de 10 10 kDa est surproduite dans les cellules infectées avec recombinants RAR. Cette surproduction particulièrement importante dans les cellules infectées le recombinant ACRARYP10. La bande moléculaire apparent 10 kDa n'apparaît pas dans le profil 15 des protéines totales de cellules infectées avec des recombinants AcRARαΔP10 et AcRARγΔP10.

Pour vérifier si les observations ci-dessus reflètent une augmentation de la transcription du gène P10, les ARN cytoplasmiques totaux ont été isolés, à 0 partir des cellules infectées, 48 h et 72 h après l'infection, et analysées par hybridation "dot-blot", en utilisant des sondes d'ARN marquées au P32, complémentaires des séquences P10 et 39K, et obtenues en utilisant le kit PROMEGA RIBOPROBE (PROMEGA, France).

Le comptage est fait dans un compteur à scintillation.

Les résultats sont illustrés par le tableau I ci-dessous, qui se réfère aux vecteurs représentés sur les figures 4A et 4B.

PCT/FR96/00437

18

TABLEAU I

	cpm					
Virus	Pi	LO	39K			
	48 h	72 h	48 h	72 h		
Aucun	370 ± 10	1010 ± 40	390 ± 12	530 ± 25		
AcMNPV	32900 ± 580	26290 ± 450	7390 ± 370	6050 ± 310		
AcD3	31450 ± 800	37970 ± 720	7580 ± 420	8520 ± 470		
RARa1	73920 ± 1300	96740 ± 880	8840 ± 450	11980 ± 630		
RARa2	79530 ± 1500	93120 ± 950	9810 ± 600	11500 ± 600		
RAR∆p10	10950 ± 550	11200 ± 600	9550 ± 720	5770 ± 220		
RARγ1	98290 ± 1100	146230 ± 1200	5300 ± 350	5820 ± 280		
RARy2	138090 ± 1450	142000 ± 1380	6080 ± 290	6400 ± 300		

L'examen des valeurs moyennes mesurées 48 h 5 après infection révèle que la quantité d'ARNm de P10 produite par les recombinants AcRARαP10 et AcRARγP10 est respectivement, deux fois et quatre fois plus élevée, que celle observée avec le baculovirus sauvage, ou avec le baculovirus AcD3 dépourvu du promoteur de la polyédrine. Les résultats obtenus 72 heures après l'infection sont 10 similaires à ceux observés 48 heures après très infection. Dans le même temps on n'observe pas différence significative entre les différents vecteurs, au niveau de la production de l'ARNm de 39K, mesurée à titre de contrôle interne. 15

EXEMPLE 3 : EXPRESSION DU GENE RAPPORTEUR CAT SOUS CONTROLE DU PROMOTEUR P10

Les baculovirus AcP10CAT16, AcP10CAT150, AcP10CAT230 contiennent respectivement le gène rapporteur CAT en position +16, +150 et +230 dans la séquence codant 20 pour la P10, et le gène codant pour la polyédrine sous contrôle de son propre promoteur ; les baculovirus ACRARαCAT16, ACRARγCAT16, AcRARαCAT150, AcRARγCAT150, AcRARaCAT230, et AcRARyCAT230 contiennent respectivement le gène rapporteur CAT en position +16, +150 et +230 dans

la séquence codant pour la P10, et, en outre, le gène codant pour un récepteur α ou γ de l'acide rétinoïque sous contrôle du promoteur de la polyédrine. Ces différents vecteurs sont obtenus comme décrit à l'exemple 1 cidessus.

La présence de la protéine CAT ainsi que l'activité CAT sont recherchées sur les extraits cellulaires préparés à partir des cellules Sf9 infectées par ces différents vecteurs et récoltées 48 heures après infection.

10

L'expression du gène CAT est déterminée après transfert immunoélectrophorètique : les protéines totales sont analysées par SDS-PAGE comme décrit à l'exemple 1 ci-dessus, et transférées sur membrane de nitrocellulose. 15 est détectée avec des anticorps anti-CAT (5 PRIME>3 PRIME INC.), ou par mesure de l'activité CAT, selon la méthode classique décrite par GORMAN et al. Cell. Biol. n° 2, 1044-1051 (1982). Les formes acétylées du substrat (Ac-CM) sont séparées du substrat 20 (CM), par chromatographie ascendante sur couche mince de silice.

Dans le cas des cellules infectées par les vecteurs de type +150 et +230, et co-exprimant un gène codant pour un récepteur α ou γ de l'acide rétinoïque.on 25 constate en immuntransfert, pour les virus AcRARαCAT150, AcRARγCAT150, AcRARαCAT230, et AcRARγCAT230, une très nette augmentation du signal correspondant à la CAT par rapport aux virus AcP10CAT150 et AcP10CAT230. Les résultats observés sont confirmés par la mesure de 30 l'activité CAT.

LISTE DE SEQUENCES

- (1) INFORMATIONS GENERALES:
- (i) DEPOSANT:
 - (A) NOM: INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE I.N.R.A.
 - (B) RUE: 147, RUE DE L'UNIVERSITE
 - (C) VILLE: PARIS CEDEX 07
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75341
- (A) NOM: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
 - C.N.R.S.
 - (B) RUE: 3, RUE MICHEL ANGE
 - (C) VILLE: PARIS CEDEX 16
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75794
- (A) NOM: DEVAUCHELLE GERARD
 - (B) RUE: 137, CHEMIN DE L'ESPERVETTE
 - (C) VILLE: SAINT-CHRISTOL-LEZ-ALES
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 30380
- (A) NOM: OGLIASTRO MARIE-HELENE
 - (B) RUE: 28, RUE D'AVEJAN
 - (C) VILLE: ALES
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 30100
- (A) NOM: CERUTTI MARTINE
 - (B) RUE: 2997, ROUTE DE MONTEZE
 - (C) VILLE: SAINT-CHRISTOL-LES-ALES
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 30380
- (ii) TITRE DE L' INVENTION: PROCEDE DE REGULATION DE L'EXPRESSION D'UN GENE DANS UN BACULOVIRUS, PAR UN SITE DE FIXATION D'UN RECEPTEUR DE L'ACIDE RETINOIQUE, ET VECTEUR POUR LA MISE EN OEUVRE DUDIT PROCEDE.

- (iii) NOMBRE DE SEQUENCES: 2
- (iv) FORME DECHIFFRABLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)
- (vi) DONNEES DE LA DEMANDE ANTERIEURE:
 - (A) NUMERO DE LA DEMANDE: 95 03412
 - (B) DATE DE DEPOT: 23-MAR-1995
- (2) INFORMATIONS POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

GTTGANNNNG TTCA 14

- (2) INFORMATIONS POUR LA SEQ ID NO: 2:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: double
 - (D) CONFIGURATION: linéaire
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

GTTGACAGTG TTCA 14

REVENDICATIONS

- 1) Procédé pour réguler l'expression d'un gène placé sous contrôle transcriptionnel d'un promoteur de baculovirus dans un vecteur d'expression comprenant une séquence de type RARE située à proximité dudit promoteur de baculovirus, lequel procédé est caractérisé en ce que l'on procède à l'expression dudit gène en présence du produit de traduction d'un gène codant pour un récepteur hormonal du type RAR.
- 2) Procédé selon la revendication 1, caractérisé en ce que ledit promoteur de baculovirus est le promoteur *P10* ou le promoteur *polh*.
 - 3) Procédé selon une quelconque des revendications 1 ou 2 caractérisé en ce que le récepteur hormonal du type RAR est un récepteur RARα, un récepteur RARβ, ou un récepteur RARγ.
 - 4) Procédé selon une quelconque des revendications 1 à 3, caractérisé en ce que la séquence d'ADN RARE est une séquence, identifiée dans la liste de séquence en annexe sous le numéro SEQ ID NO :1, répondant à la formule générale GTTGANNNNGTTCA, où N représente A, ou C, ou G, ou T.
- Vecteur utilisable pour réguler 5) l'expression d'un gène sous contrôle transcriptionnel d'un promoteur de baculovirus, caractérisé en ce qu'il 25 est constitué par un baculovirus recombinants, comprenant une séquence d'ADN constituant un site de fixation pour un récepteur hormonal du type RAR, placée à proximité d'un promoteur de baculovirus sous contrôle duquel on 30 veut exprimer un gène codant pour une protéine d'intérêt, à condition que, si le promoteur de baculovirus est le promoteur P10, et la séquence RARE est la séquence GTTGACAGTGTTCA, ladite séquence soit située, par rapport audit promoteur, à un emplacement différent de celui 35 qu'elle occupe dans le gène P10 sauvage, ou soit séparée

dudit promoteur par une séquence différente de celle qui la sépare du promoteur *P10* sauvage.

- 6) Vecteur utilisable pour réquler l'expression d'un gène sous contrôle transcriptionnel 5 d'un promoteur de baculovirus, caractérisé en ce qu'il est constitué par un baculovirus recombinant, comprenant une séquence d'ADN RARE constituant un site de fixation récepteur hormonal du pour un type RAR, placée à proximité d'un premier promoteur de baculovirus, sous 10 contrôle duquel on veut exprimer un gène codant pour une protéine d'intérêt, et une séquence d'ADN codant pour un récepteur hormonal du type RAR placée sous contrôle transcriptionnel d'un second promoteur de baculovirus.
- 7) Vecteur selon une quelconque des 15 revendications 5 ou 6, caractérisé en ce qu'il comprend en outre au moins une séquence codant pour une protéine hétérologue, ou au moins un site pour l'insertion de ladite séquence, sous contrôle transcriptionnel du promoteur à proximité duquel est placée la séquence RARE.
- 20 Vecteur recombinant, utilisable augmenter l'expression d'un gène sous transcriptionnel du promoteur polhđе baculovirus, caractérisé en ce qu'il est constitué par un baculovirus modifié, comprenant la totalité des séquences constituant le promoteur de polh, et la totalité des séquences 25 constituant le promoteur du polypeptide P10, et dont le voisinage du promoteur P10 est dépourvu de toute séquence constituant site un đe fixation pour un hormonal du type RAR.
- 9) Vecteur selon la revendication 8, caractérisé en ce qu'il est dépourvu de la totalité de la séquence codante de la P10.

revendications 8 ou 9, caractérisé en ce qu'il comprend en outre au moins une séquence, codant pour une protéine hétérologue que l'on souhaite exprimer, placée sous contrôle transcriptionnel du promoteur de la polyédrine, ou au moins un site pour l'insertion de ladite séquence.

FIGURE 1

2/4

FIGURE 2

3/4

FIGURE 3

4/4

FIGURE 4

Inter nal Application No PCT/FR 96/00437

CLASSIFICATION OF SUBJECT MATTER PC 6 C12N15/12 C12N15/63 C12N15/86 C07K14/705 C12N15/67 IPC 6 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category 1-9 WO,A,92 16658 (SALK INST FOR BIOLOGICAL Α STUDI) 1 October 1992 cited in the application see the whole document 1-9 WO,A,92 01801 (AGRONOMIQUE INST NAT RECH A :CENTRE NAT RECH SCIENT (FR)) 6 February 1992 cited in the application see the whole document 1-9 WO,A,91 14695 (SALK INST FOR BIOLOGICAL Α STUDI) 3 October 1991 cited in the application see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Х * Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 9.07.96 28 June 1996 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31.70) 340-2040, Tx. 31 651 epo nl, Hornig, H Fax: (+31-70) 340-3016

1

Inte mal Application No
PCT/FR 96/00437

C.(Continua	DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,91 07488 (SALK INST FOR BIOLOGICAL STUDI) 30 May 1991 cited in the application see the whole document	1-9
A	WO,A,89 12687 (JOLLA CANCER RES FOUND) 28 December 1989 see the whole document	1-9
A	EP,A,O 345 152 (AGRONOMIQUE INST NAT RECH ;CENTRE NAT RECH SCIENT (FR)) 6 December 1989 see the whole document	1-9
A	EP,A,O 325 849 (SALK INST FOR BIOLOGICAL STUDI) 2 August 1989 see the whole document	1-9
A	NATURE, vol. 339, 29 June 1989, MACMILLAN JOURNALS LTD., LONDON,UK, pages 714-717, XP002006997 A. ZALENT ET AL.: "Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin" see the whole document	1-9
A	BIOCHEM. AND BIOPHYS. RES. COMMUNICATIONS, vol. 195, no. 1, 31 August 1993, ACADEMIC PRESS, NEW YORK, US, pages 469-477, XP002006998 C. DAVRINCHE ET AL.: "Expression of human cytomegalovirus immediate early protein IE1 in insect cells: Splicing of RNA and recognition by CD4+ T-cell clones" cited in the application see the whole document	1-9

information on patent family members

Inter nal Application No PCT/FR 96/00437

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9216658	01-10-92	AU-B- 1648492 CA-A- 2100582 EP-A- 0575528 JP-T- 6508507	21-10-92 19-09-92 29-12-93 29-09-94
WO-A-9201801	06-02-92	FR-A- 2664905 AU-B- 660419 AU-B- 8232491 CA-A- 2087270 EP-A- 0651815 JP-T- 6500010	24-01-92 29-06-95 18-02-92 19-01-92 10-05-95 06-01-94
WO-A-9114695	03-10-91	AU-B- 655417 AU-B- 7668391 CA-A- 2075192 EP-A- 0522054	22-12-94 21-10-91 23-09-91 13-01-93
WO-A-9107488	30-05-91	US-A- 5091518 AU-B- 637871 AU-B- 6956891 CA-A- 2072644 EP-A- 0502979 JP-T- 5504474	25-02-92 10-06-93 13-06-91 17-05-91 16-09-92 15-07-93
WO-A-8912687	28-12-89	AU-B- 4035889	12-01-90
EP-A-0345152	06-12-89	FR-A- 2631974 AU-B- 626867 AU-B- 3529189 JP-A- 2035092 PT-B- 90687	01-12-89 13-08-92 07-12-89 05-02-90 31-10-94
EP-A-0325849	02-08-89	US-A- 4981784 AT-T- 124721 AU-B- 628312 AU-B- 2818889 AU-B- 665039 AU-B- 3026892 DE-D- 3854120 DE-T- 3854120	01-01-91 15-07-95 17-09-92 05-07-89 14-12-95 22-04-93 10-08-95 11-01-96

information on patent family members

Inte mal Application No PCT/FR 96/00437

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0325849	<u> </u>	EP-A-	0540065	05-05-93
		ES-T-	2073408	16-08-95
		JP-T-	3503597	15-08-91
		WO-A-	8905355	15-06-89
		US-A-	5171671	15-12-92
		US-A-	5274077	28-12-93

Form PCT/ISA/210 (patent family annex) (July 1992)

'e Internationale No PCT/FR 96/00437

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12N15/12 C12N15/63

C12N15/67

C12N15/86

C07K14/705

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) C12N C07K CIB 6

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	WO,A,92 16658 (SALK INST FOR BIOLOGICAL STUDI) 1 Octobre 1992 cité dans la demande voir le document en entier	1-9
Α	WO,A,92 01801 (AGRONOMIQUE INST NAT RECH ;CENTRE NAT RECH SCIENT (FR)) 6 Février 1992 cité dans la demande voir le document en entier	1-9
A	WO,A,91 14695 (SALK INST FOR BIOLOGICAL STUDI) 3 Octobre 1991 cité dans la demande voir le document en entier	1-9

Yoir la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de brevets sont indiqués en annexe
ou apres cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais	T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X' document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y' document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &' document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 28 Juin 1996	Date d'expédition du présent rapport de recherche internationale 0 9, 07, 96
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Hornig, H

1

De e Internationale No
PCT/FR 96/00437

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinen	no. des revendications visées
4	WO,A,91 07488 (SALK INST FOR BIOLOGICAL STUDI) 30 Mai 1991 cité dans la demande voir le document en entier	1-9
A	WO,A,89 12687 (JOLLA CANCER RES FOUND) 28 Décembre 1989 voir le document en entier	1-9
4	EP,A,O 345 152 (AGRONOMIQUE INST NAT RECH ;CENTRE NAT RECH SCIENT (FR)) 6 Décembre 1989 voir le document en entier	1-9
A	EP,A,O 325 849 (SALK INST FOR BIOLOGICAL STUDI) 2 Août 1989 voir le document en entier	1-9
А	NATURE, vol. 339, 29 Juin 1989, MACMILLAN JOURNALS LTD., LONDON,UK, pages 714-717, XP002006997 A. ZALENT ET AL.: "Cloning of murine alpha and beta retinoic acid receptors and a novel receptor gamma predominantly expressed in skin" voir le document en entier	1-9
A	BIOCHEM. AND BIOPHYS. RES. COMMUNICATIONS, vol. 195, no. 1, 31 Août 1993, ACADEMIC PRESS, NEW YORK, US, pages 469-477, XP002006998 C. DAVRINCHE ET AL.: "Expression of human cytomegalovirus immediate early protein IE1 in insect cells: Splicing of RNA and recognition by CD4+ T-cell clones" cité dans la demande voir le document en entier	1-9

Renseignements relatifs au., inembres de familles de brevets

De e Internationale No PCT/FR 96/00437

Document brevet cité au rapport de recherche	Date de publication	Membre(famille de		Date de publication
WO-A-9216658	01-10-92	AU-B- CA-A- EP-A- JP-T-	1648492 2100582 0575528 6508507	21-10-92 19-09-92 29-12-93 29-09-94
WO-A-9201801	06-02-92	FR-A- AU-B- AU-B- CA-A- EP-A- JP-T-	2664905 660419 8232491 2087270 0651815 6500010	24-01-92 29-06-95 18-02-92 19-01-92 10-05-95 06-01-94
₩O-A-9114695	03-10-91	AU-B- AU-B- CA-A- EP-A-	655417 7668391 2075192 0522054	22-12-94 21-10-91 23-09-91 13-01-93
WO-A-9107488	30-05-91	US-A- AU-B- AU-B- CA-A- EP-A- JP-T-	5091518 637871 6956891 2072644 0502979 5504474	25-02-92 10-06-93 13-06-91 17-05-91 16-09-92 15-07-93
WO-A-8912687	28-12-89	AU-B-	4035889	12-01-90
EP-A-0345152	06-12-89	FR-A- AU-B- AU-B- JP-A- PT-B-	2631974 626867 3529189 2035092 90687	01-12-89 13-08-92 07-12-89 05-02-90 31-10-94
EP-A-0325849	02-08-89	US-A- AT-T- AU-B- AU-B- AU-B- AU-B- DE-D- DE-T-	4981784 124721 628312 2818889 665039 3026892 3854120 3854120	01-01-91 15-07-95 17-09-92 05-07-89 14-12-95 22-04-93 10-08-95 11-01-96

Renseignements relatifs a. ...nembres de familles de brevets

De e Internationale No PCT/FR 96/00437

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
FP-A-0325849		EP-A-	0540065	05-05-93
2.		ES-T-	2073408	16-08-95
		JP-T-	3503597	15-08-91
		WO-A-	8905355	15-06-89
		US-A-	5171671	15-12-92
		US-A-	5274077	28-12-93