Other decompositions of ${f X}$

Eigen decomposition of covariance matrix of $oldsymbol{X}$

There is another matrix factorization method known as Eigen Decomposition.

Eigen decomposition, unlike SVD, only works on symmetric matrices M:

$$M=W\Lambda W^T$$

where $WW^T=I$

We can obtain the PCA from the Eigen Decomposition of $\mathbf{X}\mathbf{X}^T$

- ullet the covariance matrix of old X (i.e., original feature covariance)
- the covariance matrix is symmetric, as required

We can relate the SVD of \mathbf{X} to the Eigen decomposition of $\mathbf{X}\mathbf{X}^T$ as follows:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \Sigma U^T U \Sigma \mathbf{V}^T$$
 from SVD $\mathbf{X} = U \Sigma V^T$
 $\mathbf{X}^T \mathbf{X} = \mathbf{V} \Sigma \Sigma^T \mathbf{V}^T$ since $U^T U = I$

Similarly, we can show

$$\mathbf{X}\mathbf{X}^T = U\Sigma\Sigma^TU^T ext{since } \mathbf{V}\mathbf{V}^T = I$$

Setting

- ullet $\Lambda = \Sigma \Sigma^T$
- ullet W=U=V we get ${f X}=W\Lambda W^T$, the Eigen Decomposition of ${f X}{f X}^T$.

The V that transforms ${f X}$ (original features) to $ilde{{f X}}={f X}{f V}$ (synthetic features)

- Can be computed directly from SVD Or by creating covariance matrix $\mathbf{X}\mathbf{X}^T$ and using Eigen decomposition.

SVD is more commonly used

- There are many fast implementations of SVD
- ullet There is no need to compute the big covariance matrix ${f X}{f X}^T$

Other factorization methods

- CUR method $\mathrm{CUR}(\mathbf{X}) = C \cdot U \cdot R$ • C chosen from Columns of \mathbf{X}
- ullet R chosen from Rows of ${f X}$

```
In [4]: print("Done")
```

Done