Algoritmus stabilitása

Definíció:

A *numerikus algoritmus* aritmetikai és logikai műveletek véges sorozata.

Definíció:

A numerikus algoritmus stabil, ha létezik olyan C>0 konstans, hogy a kétféle B_1,B_2 bemenő adatból kapott K_1,K_2 kimenő adatokra

$$||K_1 - K_2|| \le C \cdot ||B_1 - B_2||.$$

Példa

A Fibonacci sorozat rekurziója instabil. Lásd gyakorlaton.

lebegőpontos szám

Definíció: Normalizált lebegőpontos szám

Legyen
$$m=\sum\limits_{i=1}^t m_i\cdot 2^{-i}$$
, ahol $t\in\mathbb{N},\ m_1=1,m_i\in\{\,0,1\,\}.$

Ekkor az $a = \pm m \cdot 2^k$ ($k \in \mathbb{Z}$) alakú számot *normalizált lebegőpontos számnak* nevezzük.

m: a szám mantisszája, hossza t

k: a szám karakterisztikája, $k^- \le k \le k^+$

gépi szám

Jelölés:
$$a = \pm [m_1 \dots m_t | k] = \pm 0. m_1 \dots m_t \cdot 2^k$$
.

Jelölés: $M = M(t, k^-, k^+)$ a gépi számok halmaza, adott $k^-, k^+ \in \mathbb{Z}$ és $t \in \mathbb{N}$ esetén. (Általában $k^- < 0$ és $k^+ > 0$.)

Definíció: Gépi számok halmaza

$$M(t, k^{-}, k^{+}) =$$

$$= \left\{ a = \pm 2^{k} \cdot \sum_{i=1}^{t} m_{i} \cdot 2^{-i} : \begin{array}{c} k^{-} \leq k \leq k^{+}, \\ m_{i} \in \{0, 1\}, m_{1} = 1 \end{array} \right\} \bigcup \{0\}$$

Gyakorlatban még hozzávesszük: $\infty, -\infty$, NaN,...

input hiba

Tehát már az is egyfajta hibát okoz számításkor, hogy valós számokat számítógépre viszünk. . . de mekkorát?

Tétel: Input hiba

Minden $x \in \mathbb{R}_M$ esetén

$$|x-\mathit{fl}(x)| \leq \left\{ egin{array}{ll} arepsilon_0 & \mbox{ha } |x| < arepsilon_0, \ rac{1}{2}|x| \cdot arepsilon_1 & \mbox{ha } arepsilon_0 \leq |x| \leq M_\infty, \end{array}
ight.$$

Következmény: Input hiba

Ha $\varepsilon_0 \leq |x| \leq M_{\infty}$, akkor

$$\frac{|x-fl(x)|}{|x|} \leq \frac{1}{2} \cdot \varepsilon_1 = 2^{-t}.$$

A hiba tehát lényegében ε_1 -től, azaz t-től függ.

hiba jellemzés

Definíció: Hibák jellemzése

Legyen A egy pontos érték, a pedig egy közelítő értéke. Ekkor:

$$\Delta a := A - a$$
 a közelítő érték (pontos) hibája,

$$|\Delta a| := |A - a|$$
 a közelítő érték abszolút hibája,

$$\Delta_a \geq |\Delta a|$$
 az a egy abszolút hibakorlátja,

$$\delta a := \frac{\Delta a}{A} pprox \frac{\Delta a}{a}$$
 az a relatív hibája,

$$\delta_a \geq |\delta a|$$
 az a egy relatív hibakorlátja.

Példa

Nézzük végig a fogalmakat π két tizedesjegyre kerekített értékén, vagyis a 3.14 közelítésen!

hibakorlát

Tétel: az alapműveletek hibakorlátai

$$\Delta_{a\pm b} = \Delta_a + \Delta_b \qquad \qquad \delta_{a\pm b} = \frac{|a| \cdot \delta_a + |b| \cdot \delta_b}{|a \pm b|}$$

$$\Delta_{a\cdot b} = |b| \cdot \Delta_a + |a| \cdot \Delta_b \qquad \qquad \delta_{a\cdot b} = \delta_a + \delta_b$$

$$\Delta_{a/b} = \frac{|b| \cdot \Delta_a + |a| \cdot \Delta_b}{b^2} \qquad \qquad \delta_{a/b} = \delta_a + \delta_b$$

Megjegyzés: a kapott korlátok két esetben lehetnek nagyságrendileg nagyobbak, mint a kiindulási értékek hibái:

- $oldsymbol{0}$ $\delta_{a\pm b}$ esetén, amikor közeli számokat vonunk ki egymásból.
- \bigcirc $\Delta_{a/b}$ esetén, amikor kicsi számmal osztunk.

Ezeket az eseteket az algoritmusok implementálásakor el kell kerülni.

függvényérték hibája

1. Tétel: a függvényérték hibája

Ha $f \in \mathcal{C}^1(k_{\Delta_a}(a))$ és $k_{\Delta_a}(a) = [a - \Delta_a; a + \Delta_a]$, akkor

$$\Delta_{f(a)} = M_1 \cdot \Delta_a$$

ahol $M_1 = \max\{ |f'(\xi)| : \xi \in k_{\Delta_a}(a) \}.$

2. Tétel: a függvényérték hibája

Ha $f \in C^2(k_{\Delta_a}(a))$ és $k_{\Delta_a}(a) = [a - \Delta_a; a + \Delta_a]$, akkor

$$\Delta_{f(a)} = |f'(a)| \Delta_a + \frac{M_2}{2} \cdot \Delta_a^2,$$

ahol $M_2 = \max\{ |f''(\xi)| : \xi \in k_{\Delta_a}(a) \}.$

Következmény: függvényérték relatív hibája

Ha Δ_a kicsi, akkor $\delta_{f(a)} = \frac{|a||f'(a)|}{|f(a)|} \cdot \delta_a$.

Definíció: Az f függvény a-beli kondíciószáma

A $c(f,a) = \frac{|a||f'(a)|}{|f(a)|}$ mennyiséget az f függvény a-beli kondíciószámának nevezzük.

Tétel: emlékeztető Mat.alapokból

Gauss elim

Tétel: A Gauss-elimináció általános lépése

Ha $a_{k,k}^{(k-1)} \neq 0$, akkor a k. lépés képletei

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \cdot a_{kj}^{(k-1)} \qquad \begin{array}{l} k = 1, \dots, n-1; \\ i = k+1, \dots, n; \\ j = k+1, \dots, n, n+1. \end{array}$$

A visszahelyettesítés

$$x_n = \frac{a_{nn+1}^{(n-1)}}{a_{nn}^{(i-1)}},$$

$$x_i = \frac{1}{a_{ii}^{(i-1)}} \left(a_{in+1}^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} \cdot x_j \right) \qquad (i = n-1, \dots, 1).$$

Tétel:

A GE elvégezhető sor és oszlopcsere nélkül $\Leftrightarrow a_{kk}^{(k-1)} \neq 0 \ (k = 1, 2, ..., n-1).$

Tétel: A Gauss-elimináció műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Tétel: A visszahelyettesítés műveletigénye

$$n^2 + \mathcal{O}(n)$$

LU

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n-1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n-1).
- Ha det(A) ≠ 0, akkor a felbontás egyértelmű.

Tétel: az LU-felbontás "közvetlen" kiszámítása

Az L és U mátrixok elemei a következő képletekkel számolhatók:

$$i \le j$$
 (felső)
$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj},$$

$$i > j \text{ (alsó)} \qquad l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot u_{kj} \right).$$

Ha jó sorrendben számolunk, mindig ismert az egész jobb oldal.

Tétel: Az LU-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

pozitiv definit matrix

Definíció: szimmetrikus mátrixok

Az A mátrix szimmetrikus, ha $A = A^{T}$.

Definíció: pozitív definit mátrixok

Az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix pozitív definit, ha

- 2 minden főminorára $D_k = \det(A_k) > 0$; vagy
- 3 minden sajátértéke pozitív.

Állítás: pozitív definit mátrixok ekvivalens jellemzése

Az előző 1. 2. 3. feltételek ekvivalensek.

matrix

Definíció:

Az A mátrix szigorúan diagonálisan domináns a soraira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ij}|$ (i = 1, ..., n).

Definíció:

Az A mátrix szigorúan diagonálisan domináns az oszlopaira, ha $|a_{ii}| > \sum_{j=1, j \neq i} |a_{ji}|$ (i = 1, ..., n).

Definíció:

Az A mátrix fél sávszélessége $s \in \mathbb{N}$, ha

$$\forall i, j : |i - j| > s : a_{ij} = 0 \text{ és}$$

 $\exists k, l : |k - l| = s : a_{kl} \neq 0.$

Definíció:

Az A mátrix **profilja** sorokra a (k_1, \ldots, k_n) , oszlopokra az (l_1, \ldots, l_n) szám n-sek, melyekre

$$\forall j = 1, ..., k_i : a_{ij} = 0 \text{ és } a_{i,k_i+1} \neq 0,$$

 $\forall i = 1, ..., l_i : a_{ij} = 0 \text{ és } a_{l_i+1, j} \neq 0.$

Soronként és oszloponként az első nem nulla elemig a nullák száma.

Schur

Definíció: Schur-komplementer

Tegyük fel, hogy $A_{11} \in \mathbb{R}^{k \times k}$ invertálható mátrix. Az A mátrix A_{11} -re vonatkozó Schur-komplementere az

$$[A|A_{11}] := A_{22} - A_{21}A_{11}^{-1}A_{12}$$

$$(n-k) \times (n-k)$$
-s mátrix.

megmaradási tétel

Tétel: megmaradási tételek a GE-ra

A GE során a következő tulajdonságok öröklődnek A-ról a Schur-komplementerre:

- $oldsymbol{0}$ A szimmetrikus \Rightarrow $[A|A_{11}]$ szimmetrikus
- **6** A pozitív definit \Rightarrow [A|A₁₁] pozitív definit
- **4** A szig. diag. dom. \Rightarrow [A|A₁₁] szig. diag. dom.
- ⑤ [A|A₁₁] fél sávszélessége ≤ A fél sávszélessége
- 6 A GE során a profilnál a soronkénti és oszloponkénti nullák az első nem nulla elemig megmaradnak.

Algoritmus: progonka módszer

1. lépés:
$$f_1 := -\frac{\gamma_1}{\alpha_1}$$
, $g_1 := \frac{b_1}{\alpha_1}$

$$i = 2, \dots, n-1 : \quad f_i := -\frac{\gamma_i}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_i := \frac{b_i - \beta_{i-1} g_{i-1}}{\alpha_i + \beta_{i-1} f_{i-1}}$$

$$g_n := \frac{b_i - \beta_{n-1} g_{n-1}}{\alpha_n + \beta_{n-1} f_{n-1}}$$

2. lépés:
$$x_n := g_n$$
 $i = n - 1, n - 2, ..., 1$: $x_i = f_i x_{i+1} + g_i$

Összesen:

$$2 + 6(n-2) + 5 + 2(n-1) = 8n - 7 = 8n + O(1)$$
 művelet.

Definíció: vektorok "hossza"

Az $x \in \mathbb{R}^n$ vektor hagyományos értelemben vett hosszát, avagy "kettes normáját" jelölje $\|.\|_2$.

A következőképpen számolható:

$$\|x\|_2 := \sqrt{\langle x, x \rangle} = \sqrt{x^\top x} = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}.$$

Definíció: vektornorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\|: \mathbb{R}^n \to \mathbb{R}$ leképezést vektornormának nevezzük, ha:

- **2** $||x|| = 0 \iff x = 0$,

Állítás: skaláris szorzat által generált vektornorma

Ha adott az $\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ skaláris szorzat, akkor az $f(x) := \sqrt{\langle x,x \rangle}$ függvény *norma*. Jele: $\|x\|_2$.

Állítás: Cauchy-Bunyakovszki-Schwarz-egyenlőtlenség (CBS)

$$|\langle x, y \rangle| \le ||x||_2 \cdot ||y||_2 \quad (x, y \in \mathbb{R}^n)$$

cauchy

Állítás: Gyakori vektornormák $(1,2,\infty)$

A következő formulák vektornormákat **definiálnak** \mathbb{R}^n felett:

- $\|x\|_1 := \sum_{i=1}^n |x_i|$ (Manhattan-norma),
- $\|x\|_2 := \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ (Euklideszi-norma),
- $\|x\|_{\infty} := \max_{i=1}^{n} |x_i|$ (Csebisev-norma).

Állítás: p-normák

A következő $\mathbb{R}^n \to \mathbb{R}$ függvények is vektornormákat **definiálnak**:

$$\|x\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \qquad (p \in \mathbb{R}, \ 1 \le p < \infty).$$

Állítás: normák közötti egyenlőtlenségek

- $||x||_{\infty} \le ||x||_{1} \le n \cdot ||x||_{\infty}$,
- $||x||_{\infty} \le ||x||_2 \le \sqrt{n} \cdot ||x||_{\infty}$,
- $||x||_2 \le ||x||_1 \le \sqrt{n} \cdot ||x||_2$,
- sőt ezek alapján $||x||_{\infty} \le ||x||_2 \le ||x||_1$.

Definíció: ekvivalens normák

Az $\|.\|_a$ és $\|.\|_b$ vektornormák *ekvivalensek*, ha $\exists c_1, c_2 \in \mathbb{R}^+$, hogy $c_1 \cdot \|x\|_b \leq \|x\|_a \leq c_2 \cdot \|x\|_b \qquad (\forall x \in \mathbb{R}^n).$

Állítás: végesdimenziós normák ekvivalenciája

Tetszőleges \mathbb{R}^n -en értelmezett vektornorma ekvivalens az Euklideszi-vektornormával. (Azaz adott végesdimenziós térben minden norma ekvivalens.)

Definíció: konvergencia vektornormában

Az $(x_k)\subset\mathbb{R}^n$ sorozat konvergens, ha létezik $x^*\in\mathbb{R}^n$ melyre

$$\lim_{k\to\infty} \|x_k - x^*\| = 0.$$

x* a sorozat határértéke.

Ekvivalens átfogalmazások a konvergenciára:

- Az $(x_k) \subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^* \in \mathbb{R}^n$ melyre $\forall \varepsilon > 0 \ \exists \ N_0 \in \mathbb{N} \ \forall \ k \geq N_0 : \ \|x_k x^*\| < \varepsilon.$
- Az $(x_k) \subset \mathbb{R}^n$ sorozat konvergens, ha létezik $x^* \in \mathbb{R}^n$ melyre $\forall \varepsilon > 0 \; \exists \; N_0 \in \mathbb{N} \; \; \forall \; k \geq N_0 : \; \; x_k \in \mathcal{K}_{\varepsilon}(x^*).$

Definíció: mátrixnorma

Legyen $n \in \mathbb{N}$ rögzített. Az $\|.\|: \mathbb{R}^{n \times n} \to \mathbb{R}$ leképezést mátrixnormának nevezzük, ha:

- **2** $||A|| = 0 \iff A = 0$,
- **4** $||A + B|| \le ||A|| + ||B|| \quad (\forall A, B \in \mathbb{R}^{n \times n}),$

Definíció: Frobenius-norma

A következő függvényt Frobenius-normának nevezzük:

$$||.||_F: \mathbb{R}^{n \times n} \to \mathbb{R}, \qquad ||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

Állítás: Frobenius-norma

A ||.||_F függvény valóban mátrixnorma.

Definíció: indukált norma, természetes mátrixnormák

Legyen $\|.\|_{v}: \mathbb{R}^{n} \to \mathbb{R}$ tetszőleges vektornorma. Ekkor a

$$||.||: \mathbb{R}^{n \times n} \to \mathbb{R}, \qquad ||A||:= \sup_{x \neq 0} \frac{||Ax||_{v}}{||x||_{v}}$$

függvényt a $\|.\|_v$ vektornorma által indukált mátrixnormának hívjuk. Egy mátrixnormát természetesnek nevezünk, ha van olyan vektornorma, ami indukálja.

Tétel: indukált normák

Az "indukált mátrixnormák" valóban mátrixnormák.

Definíció: illeszkedő normák

Ha egy mátrix- és egy vektornormára

$$||Ax||_{V} \le ||A|| \cdot ||x||_{V}$$
 $(\forall x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n})$

teljesül, akkor illeszkedőknek nevezzük őket.

Állítás: természetes mátrixnormák illeszkedéséről

A természetes mátrixnormák illeszkednek az őket indukáló vektornormákhoz.

Tétel: Nevezetes mátrixnormák $(1,2,\infty)$

A $\left\|.\right\|_p$ $(p=1,2,\infty)$ vektornormák által indukált mátrixnormák:

- $||A||_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|$ (oszlopnorma),
- $\|A\|_{\infty} = \max_{i=1}^n \sum_{j=1}^n |a_{ij}|$ (sornorma),
- $\|A\|_2 = \left(\max_{i=1}^n \lambda_i(A^\top A)\right)^{1/2}$ (spektrálnorma).

Definíció: spektrálsugár

Egy $A \in \mathbb{R}^{n \times n}$ mátrix spektrálsugara $\varrho(A) := \max_{i=1}^{n} |\lambda_i(A)|$.

Megj.: A spektrálnormát a spektrálsugárral is meg tudjuk adni:

$$\|A\|_2 = \sqrt{\varrho(A^\top A)}.$$

Állítás:

Egy $A \in \mathbb{R}^{n \times n}$ szimmetrikus (önadjungált) mátrix spektrálnormája

$$\|A\|_2 = \varrho(A).$$

Biz.: Trivi.

Mátrixnormák további tulajdonsága

Állítás:

Ha A normális ($A^*A = AA^*$), akkor $||A||_2 = \varrho(A)$. (Spec.: ha A önadjungált, akkor normális.)

Definíció: mátrixok kondíciószáma

Adott $A \in \mathbb{R}^{n \times n}$ invertálható mátrix és $\|.\|$ mátrixnorma esetén a cond $(A) := \|A\| \cdot \|A^{-1}\|$ mennyiséget az A mátrix kondíciószámának nevezzük. (Jele néha $\kappa(A)$. [kappa])

Állítás: a kondíciószám tulajdonságai – 1. rész

- a Indukált mátrixnorma esetén cond $(A) \ge 1$.
- **6** cond $(c \cdot A) = \text{cond } (A), \quad (c \in \mathbb{R}, c \neq 0).$
- Ha Q ortogonális, akkor cond $_2(Q)=1$.

Állítás: a kondíciószám tulajdonságai - 2. rész

- 1 Ha A szimmetrikus, akkor cond $_2(A) = \frac{\max |\lambda_i(A)|}{\min |\lambda_i(A)|}$
- **6** Ha A szimm., pozitív definit, akkor cond $_2(A) = \frac{\max \lambda_i(A)}{\min \lambda_i(A)}$.
- **1** Ha A invertálható, akkor cond $(A) \ge \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$

Tétel: LER érzékenysége a jobb oldal pontatlanságára

Ha A invertálható és $b \neq 0$, akkor illeszkedő normákban

$$\frac{1}{\|A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta b\|}{\|b\|} \le \frac{\|\Delta x\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \cdot \frac{\|\Delta b\|}{\|b\|},$$

azaz

$$\frac{1}{\operatorname{cond}(A)} \cdot \delta b \le \delta x \le \operatorname{cond}(A) \cdot \delta b.$$

Tétel: LER érzékenysége a mátrix pontatlanságára

Ha A invertálható, $b \neq 0$ és $\|\Delta A\| \cdot \|A^{-1}\| < 1$, akkor indukált mátrixnormában

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A\| \cdot \|A^{-1}\|}{1 - \|\Delta A\| \cdot \|A^{-1}\|} \cdot \frac{\|\Delta A\|}{\|A\|}.$$

Lemma

Ha $\|M\| < 1$, akkor (I + M) invertálható és indukált mátrixnormában

$$||(I+M)^{-1}|| \leq \frac{1}{1-||M||}.$$

Tétel: Becslés polinom gyökeinek elhelyezkedésére

A $P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$ polinom esetén, ha $a_0 \neq 0$ és $a_n \neq 0$, akkor P bármely x_k gyökére:

$$r < |x_k| < R$$

ahol

$$R = 1 + \frac{\max_{i=0}^{n-1} |a_i|}{|a_n|}, \quad r = \frac{1}{\max_{i=1}^{n} |a_i|}.$$

$$1 + \frac{\max_{i=1}^{n} |a_i|}{|a_0|}.$$

horner

Definíció: Horner-algoritmus

A $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ polinom adott ξ helyen vett helyettesítési értéke számolható a következő módon:

$$\mathbf{0} \ a_n^{(1)} := a_n,$$

2
$$a_k^{(1)} := a_k + \xi \cdot a_{k+1}^{(1)} \quad (k = n - 1, \dots, 1, 0),$$

ekkor $P(\xi) = a_0^{(1)}$.

Állítás: A Horner-algoritmus műveletigénye

Egy n-edfokú polinom adott helyen felvett értéke kiszámítható n szorzás és n összeadás által, azaz $\mathcal{O}(n)$ művelettel.

Állítás: Horner-algoritmus és a derivált

A P polinom felírható a következő alakban:

$$P(x) = a_0^{(1)} + (x - \xi) \cdot \overbrace{(a_1^{(1)} + \dots + a_n^{(1)} x^{n-1})}^{P_1(x)},$$

ahol az $a_i^{(1)}$ $(i=0,\ldots,n)$ értékeket a Horner-algoritmus adja. Továbbá

$$P'(\xi) = P_1(\xi) = a_1^{(2)}$$
.

Állítás: Horner-algoritmus és a magasabbrendű deriváltak

A P polinom felírható a következő alakban:

$$P(x) = a_0^{(1)} + a_1^{(2)}(x - \xi) + a_2^{(3)}(x - \xi)^2 + \dots + a_n^{(n+1)}(x - \xi)^n,$$

ahol az $a_i^{(j+1)}$ $(j=0,\ldots,n;\ i=j,\ldots,n)$ értékeket a Horner-módszer adja. Továbbá:

$$\frac{P^{(j)}(\xi)}{j!} = P_j(\xi) = a_j^{(j+1)},$$

ahol
$$P_j(x) = a_i^{(j)} + \cdots + a_n^{(j)} x^{n-j}$$
.

Bolzano

Tétel: Bolzano-tétel

Ha $f \in C[a; b]$ és $f(a) \cdot f(b) < 0$, akkor $\exists x^* \in (a; b) : f(x^*) = 0$.

Tétel: gyök egyértelmű létezéséről

- **1** Ha $f \in C[a; b], f(a) \cdot f(b) < 0,$
- 2 valamint $f \in D(a; b)$ és f' > 0 (vagy < 0),

akkor $\exists ! \ x^* \in (a; b) : f(x^*) = 0.$

fixpont

Emlékeztető: fixpont

Az $x^* \in \mathbb{R}^n$ pontot a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Emlékeztető: kontrakció

A $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ leképezés *kontrakció*, ha $\exists q \in [0,1)$, hogy

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Állítás

 \bullet $\varphi \colon [a;b] \to \mathbb{R}$ függvény, $\varphi \in C^1[a;b]$ és

2 $|\varphi'(x)| < 1 \ (\forall \ x \in [a; b]),$

akkor φ kontrakció [a; b]-n.

Brouwer

Tétel: Brouwer-féle fixponttétel

1 Ha φ : $[a;b] \rightarrow [a;b]$

2 és $\varphi \in C[a; b]$,

akkor $\exists x^* \in [a; b] : \varphi(x^*) = x^*$.

Banach

Tétel: Banach-féle fixponttétel [a; b]-re

Ha a φ : $[a;b] \to [a;b]$ függvény kontrakció [a;b]-n q kontrakciós együtthatóval, akkor

- 2 $\forall x_0 \in [a; b]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 3 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a),$
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

Következmény: iteráció konvergenciájának elégséges feltétele

- $\varphi \in C^1[a;b]$ és
- $|\varphi'(x)| < 1 \quad \forall \ x \in [a; b],$

akkor az $x_{k+1} = \varphi(x_k)$ iteráció konvergens $\forall x_0 \in [a; b]$ esetén.

lokális

Tétel Lokális fixponttétel

Legyen $\varphi \colon [a;b] \to \mathbb{R}$ függvény.

- Ha $\varphi \in C^1[a; b]$ és
- **2** $\exists \xi \in [a; b]$ és $\delta > 0$, melyre

$$|\varphi'(x)| \le q < 1 \quad \forall x \in [\xi - \delta; \xi + \delta] \subset [a; b].$$

$$|\varphi(\xi) - \xi| \le (1 - q)r,$$

(azaz ξ a fixpont egy elég jó közelítése,) akkor φ kontrakció $[\xi-r;\xi+r]$ -n és

$$\forall x \in [\xi-r;\xi+r]: \ \varphi(x) \in [\xi-r;\xi+r].$$

Következmény:

Ha a lokális fixponttétel feltételei teljesülnek, akkor valójában a Banach-féle fixponttétel feltételei teljesülnek az $[\xi-r;\xi+r]$ intervallumra, így

- **1** ∃! $x^* \in [\xi r; \xi + r]$: $x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 $\forall x_0 \in [\xi r; \xi + r]$ esetén az $x_{k+1} = \varphi(x_k), k \in \mathbb{N}_0$ sorozat konvergens és $\lim_{k \to \infty} x_k = x^*$,
- 6 továbbá a következő hibabecslések teljesülnek:
 - $|x_k x^*| \le q^k \cdot |x_0 x^*| \le q^k (b a),$
 - $|x_k x^*| \le \frac{q^k}{1 q} \cdot |x_1 x_0|$.

konvergencia

Definíció: konvergencia rend

Az (x_k) konvergens sorozat – határértékét jelölje x^* – p-edrendben konvergens, ha $\exists c \in (0; +\infty) \subset \mathbb{R}$, hogy

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = c.$$

Tétel: p-edrendben konvergens iterációk

- **1** Legyen $\varphi \colon \mathbb{R} \to \mathbb{R}$, $\varphi \in C^p[a; b]$ és
- 2 az $x_{k+1} = \varphi(x_k)$ sorozat konvergens, határértéke x^* .
- **3** Ha $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor a konvergencia p-edrendű és hibabecslése:

$$|x_{k+1}-x^*| \leq \frac{M_p}{p!} |x_k-x^*|^p$$

$$\text{ahol } M_p = \max_{\xi \in [a;b]} \left| \varphi^{(p)}(\xi) \right|.$$

Következmény

- **1** Ha φ : $[a;b] \rightarrow [a;b]$ kontrakció,
- $\mathbf{2} \ x^*$ a φ fixpontja és
- **3** $\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$, de $\varphi^{(p)}(x^*) \neq 0$,

akkor

- 1 a fixpont egyértelmű,
- 3 és a következő hibabecslés teljesül: $|x_{k+1} x^*| \le \frac{M_p}{p!} |x_k x^*|^p$.

newton

Definíció: Newton-módszer

Adott $f: \mathbb{R} \to \mathbb{R}$ differenciálható függvény és $x_0 \in \mathbb{R}$ kezdőpont esetén a *Newton-módszer* alakja:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, ...).$

Tétel: monoton konvergencia tétele

Ha $f \in C^2[a;b]$ és

- $\mathbf{9} \ f'$ és f'' állandó előjelű,

akkor az x_0 pontból indított Newton-módszer (által adott (x_k) sorozat) monoton konvergál x^* -hoz.

Tétel: lokális konvergencia tétele

Ha $f \in C^2[a; b]$ és

- g f' állandó előjelű,
- $m_1 = \min_{x \in [a:b]} |f'(x)| > 0,$
- $M_2 = \max_{x \in [a;b]} |f''(x)| < +\infty, \text{ innen } M = \frac{M_2}{2 \cdot m_1}.$
- **6** $x_0 \in [a; b] : |x_0 x^*| < r := \min \left\{ \frac{1}{M}, |x^* a|, |x^* b| \right\},$

akkor az x_0 pontból indított Newton-módszer másodrendben konvergál a gyökhöz, és az

$$|x_{k+1} - x^*| \le M \cdot |x_k - x^*|^2$$

hibabecslés érvényes.

Definíció: húrmódszer

Az $f \in C[a; b]$ függvény esetén, ha $f(a) \cdot f(b) < 0$, akkor a húrmódszer alakja:

$$x_0 := a, \quad x_1 := b,$$

 $x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_s)}{f(x_k) - f(x_s)}$
 $(k = 0, 1, 2, ...),$

ahol s a legnagyobb olyan index, amelyre $f(x_k) \cdot f(x_s) < 0$.

Tétel: a húrmódszer konvergenciája

Ha $f \in C^2[a;b]$ és

- $f(a) \cdot f(b) < 0$
- $M \cdot (b-a) < 1$

akkor a húrmódszer elsőrendben konvergál az x* gyökhöz és

$$|x_k - x^*| \le \frac{1}{M} \cdot (M \cdot |x_0 - x^*|)^k$$

teljesül, ahol $M=\frac{M_2}{2\cdot m_1}$ ugyanúgy, mint korábban.

szelő

Definíció: szelőmódszer

Az $f \in C[a; b]$ függvény esetén a szelőmódszer alakja:

$$x_0, x_1 \in [a; b],$$

 $x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$
 $(k = 0, 1, 2, ...).$

Tétel: a szelőmódszer konvergenciája

Ha $f \in C^2[a;b]$ és

- 6 f' állandó előjelű,
- **6** $x_0, x_1 \in [a; b]$:

$$\begin{vmatrix} x_0 - x^* | \\ |x_1 - x^* | \end{vmatrix}$$
 $< r := \min \left\{ \frac{1}{M}, |x^* - a|, |x^* - b| \right\},$

akkor a szelőmódszer $p=\frac{1+\sqrt{5}}{2}$ rendben konvergál az x^* gyökhöz. (M a szokásos.)

többváltozós newton

Definíció: a többváltozós Newton-módszer képlete

$$x^{(k+1)} = x^{(k)} - \left(F'(x^{(k)})\right)^{-1} \cdot F(x^{(k)})$$

Definíció: Az interpoláció alapfeladata

Adottak az $x_0, x_1, \ldots, x_n \in [a; b]$ különböző alappontok, $y_0, y_1, \ldots, y_n \in \mathbb{R}$ függvényértékek. Olyan $p_n \in P_n$ polinomot keresünk, melyre

$$p_n(x_i) = y_i, (i = 0, 1, ..., n).$$

A feltételnek eleget tevő polinomot interpolációs polinomnak nevezzük. P_n a legfeljebb n-edfokú polinomok halmaza.

Tétel: Az interpolációs polinom létezése és egyértelműsége

$$\exists ! \ p_n \in P_n : \ p_n(x_i) = y_i, \ (i = 0, 1, ..., n)$$

lagrange

Definíció: Lagrange-alappolinomok

Az x_0, x_1, \ldots, x_n különböző alappontok által meghatározott Lagrange-alappolinomok a következők:

$$\ell_k(x) = \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j} \quad (k = 0, 1, ..., n).$$

Tétel: A Lagrange-alappolinomok tulajdonságai

0

$$\ell_k(x_i) = \delta_{ki} = \begin{cases} 1 & k = i \\ 0 & k \neq i \end{cases}$$

0

$$\ell_k(x) = \frac{\omega_n(x)}{(x - x_k)\omega_n'(x_k)}$$
, ahol $\omega_n(x) = \prod_{j=0}^n (x - x_j)$

6

$$L_n(x) := \sum_{k=0}^n y_k \ell_k(x) \equiv p_n(x)$$

L_n-t az interpolációs polinom Lagrange-alakjának nevezzük.

newton alak

Tétel: Newton-alak

$$N_n(x) := f(x_0) + \sum_{k=1}^n f[x_0, x_1, \dots, x_k] \cdot \omega_{k-1}(x) \equiv L_n(x)$$

 N_{n} -t az interpolációs polinom *Newton-alakjának* nevezzük. A rekurzív formula új x_{n+1} alappont hozzávétele esetén:

$$N_{n+1}(x) = N_n(x) + f[x_0, x_1, \dots, x_{n+1}] \cdot \omega_n(x).$$

Tétel: Hibaformula

- Legyen $x \in \mathbb{R}$ tetszőleges,
- Θ [a; b] az x_0, x_1, \dots, x_n és x által kifeszített intervallum,
- \emptyset továbbá $f \in C^{n+1}[a;b]$.
- **1** Ekkor $∃ ξ_x ∈ [a; b]$, melyre

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \cdot \omega_n(x).$$

A hibabecslés

$$|f(x) - p_n(x)| \le \frac{M_{n+1}}{(n+1)!} \cdot |\omega_n(x)|, \text{ ahol}$$

 $M_{n+1} := ||f^{(n+1)}||_{\infty} := ||f^{(n+1)}||_{\mathcal{C}[x;b]} := \max_{\xi \in [x;b]} |f^{(n+1)}(\xi)|.$

Tétel: Hibaformula a Newton-alakra

- Legyen x ∈ ℝ tetszőleges, x ≠ x_i.
- Ekkor

$$f(x) - N_n(x) = f[x, x_0, x_1, \dots, x_n] \cdot \omega_n(x).$$

Tétel: Következmény a hibaformulákból

- Legyen x ∈ R tetszőleges, x ≠ x_i
- [a; b] az x_0, x_1, \dots, x_n és x által kifeszített intervallum,
- 6 továbbá $f \in C^{n+1}[a;b]$.

Ekkor $\exists \xi_x \in [a; b]$, melyre

$$f[x, x_0, x_1, \ldots, x_n] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}.$$

csebisev

Definíció: Csebisev-polinom

A $T_n(x) := \cos(n \cdot \arccos(x))$, $x \in [-1; 1]$ függvényt n-edfokú (elsőfajú) Csebisev-polinomnak nevezzük.

1. Tétel: Rekurzió

$$\begin{split} T_0(x) &:= 1, \quad T_1(x) := x, \\ T_{n+1}(x) &:= 2x \cdot T_n(x) - T_{n-1}(x), \quad (n = 1, 2, \ldots). \end{split}$$

2. Tétel:

 $T_n \in P_n$ és főegyütthatója: 2^{n-1} $(n \ge 1)$ -re.

Definíció:

$$\widetilde{T}_n := \frac{1}{2^{n-1}} T_n(x)$$

az 1 főegyütthatós Csebisev-polinom. $\widetilde{T}_n \in P_n^{(1)}$, ahol $P_n^{(1)}$: az 1 főegyütthatós *n*-edfokú polinomok halmaza.

3. Tétel:

- T_n -nek n db különböző valós gyöke van [-1;1]-en.
- A gyökök a 0-ra szimmetrikusan helyezkednek el.
- Ha n páros, akkor T_n páros függvény,
 ha n páratlan, akkor T_n páratlan függvény.

4. Tétel:

 T_n -nek n+1 db szélsőérték helye van [-1;1]-en.

5. Tétel: $(T_n, n \in \mathbb{N})$ ortogonális polinomrendszer

A Csebisev-polinomok ortogonális rendszert alkotnak [-1;1]-en a $w(x):=\frac{1}{\sqrt{1-x^2}}$ súlyfüggvénnyel, azaz

$$\langle T_n, T_k \rangle_w = \int_{-1}^1 \frac{T_n(x) \cdot T_k(x)}{\sqrt{1 - x^2}} dx = 0 \quad n \neq k.$$

6. Tétel: Csebisev-tétel

A $(T_n, n \in \mathbb{N})$ rendszer extremális tulajdonsága:

$$\min_{\widetilde{Q} \in P_n^{(1)}} \|\widetilde{Q}\|_{\infty} = \|\widetilde{T}_n\|_{\infty} = \frac{1}{2^{n-1}},$$

ahol $\|\widetilde{Q}\|_{\infty} := \|\widetilde{Q}\|_{C[-1;1]}$.

6. Tétel: Az interpoláció hibája [-1; 1]-en

A [-1;1]-en vett interpoláció és $f \in C^{(n+1)}[-1;1]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok a Csebisev-polinom gyökei. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot ||\widetilde{T}_{n+1}||_{\infty} = \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n}.$$

7. Tétel: Az interpoláció hibája [a; b]-n

Az [a; b]-n vett interpoláció és $f \in C^{(n+1)}[a; b]$ függvény esetén az interpoláció hibája pontosan akkor minimális, ha az alappontok az [a; b]-be transzformált Csebisev gyökök. Ekkor

$$||f - L_n||_{\infty} \le \frac{M_{n+1}}{(n+1)!} \cdot \left(\frac{b-a}{2}\right)^{n+1} \cdot ||\widetilde{T}_{n+1}||_{\infty} =$$

$$= \frac{M_{n+1}}{(n+1)!} \cdot \frac{1}{2^n} \cdot \left(\frac{b-a}{2}\right)^{n+1}.$$

Tétel:

1 Tegyük fel, hogy $f \in C^{\infty}[a; b]$ és

$$\exists M > 0: \|f^{(n)}\|_{\infty} \leq M^n \ (\forall n \in \mathbb{N}).$$

Ekkor $\forall (x_k^{(n)}: k = 0, 1 \dots, n)$ alappontrendszer sorozat esetén

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0.$$

Tétel: Marcinkiewicz

 $\forall f \in C[a; b]$ esetén $\exists (x_k^{(n)} : k = 0, 1, ..., n)$ alappontrendszer sorozat, hogy

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} = 0.$$

Tétel: Faber

 $\forall (x_k^{(n)}: k = 0, 1, ..., n)$ alappontrendszer sorozat esetén $\exists f \in C[a; b]$, hogy

$$\lim_{n\to\infty} \|f-L_n\|_{\infty} \neq 0.$$

lebesque

Definíció: Lebesque-függvény

Legyen $x_0, \ldots, x_n \in [a; b]$, az

$$L_n(x) := \sum_{k=0}^n |\ell_k(x)|, \ x \in [a; b].$$

függvényt Lebesque-függvénynek nevezzük.

Definíció: Lebesque-állandó

A Legesque-állandó a Lebesgue-függvény ∞ normája:

$$\Lambda_n := \max_{x \in [a;b]} \mathbb{E}_n(x) = \|\mathbb{E}_n\|_{\infty}.$$

Tétel: A Lebesque-állandó becslése

$$\Lambda_n \geq \frac{2}{\pi} \ln(n+1) + c, \quad (n \in \mathbb{N})$$

ahol $c \in \mathbb{R}$ állandó.

legkisebb négyezetek

Definíció: A legkisebb négyzetek módszerének alapfeladata

Adottak az $x_1, \ldots, x_N \in [a; b]$ különböző alappontok, $y_1, \ldots, y_N \in \mathbb{R}$ függvényértékek vagy mérési eredmények. Olyan $p_n \in P_n$ polinomot keresünk $(n+1 \leq N, \text{ általában } N \gg n)$, melyre

$$\sum_{i=1}^{N} (y_i - p_n(x_i))^2 \text{ minimális.}$$

A p_n polinomot négyzetesen legjobban közelítő polinomnak nevezzük.

kvadratúra

Definíció: Interpolációs kvadratúra formulák

- **1** A $\sum_{k=0}^{n} A_k f(x_k)$ formulát kvadratúra formulának nevezzük.
- **2** A kvadratúra formula *interpolációs típusú*, ha $A_k = \int_a^b \ell_k(x) w(x) dx \ (k = 0, ..., n).$

Tétel: Pontossági tétel

$$\forall f \in P_n \text{-re } \int_a^b f(x)w(x) \, dx = \sum_{k=0}^n A_k f(x_k)$$

$$\Leftrightarrow A_k = \int_a^b \ell_k(x)w(x) \, dx \ (k = 0, \dots, n)$$

Következmény:

 $\mathbf{0}$ $f \equiv 1$ -re pontos a formula:

$$\sum_{k=0}^{n} A_k = \int_{a}^{b} w(x) dx =: \mu_0.$$

 Θ Ha $w(x) \equiv 1$, akkor

$$\sum_{k=0}^{n} A_k = b - a.$$

newton-cotes

Tétel:

 $\sum_{k=0}^{n} B_k = 1$

9
$$B_k = B_{n-k}, \ k = 0, \ldots, n$$

érintő

Érintő formula (Ny(0))

$$\int_{a}^{b} f \approx (b-a) \cdot f\left(\frac{a+b}{2}\right) =: E(f)$$

trapéz

Trapéz formula (Z(1))

$$\int_a^b f \approx \frac{b-a}{2} \cdot (f(a) + f(b)) =: T(f)$$

Simpson

Simpson formula (Z(2))

$$\int_{a}^{b} f \approx \frac{b-a}{6} \cdot \left(f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b) \right) =: S(f)$$

Tétel (Emlékeztető): Az integrálszámítás középértéktétele

Ha $f \in C[a; b]$ és $g \ge 0$, ekkor $\exists \xi \in (a; b)$:

$$\int_a^b fg = f(\xi) \cdot \int_a^b g.$$

Tétel: Az érintő formula hibája

Ha $f \in C^2[a; b]$, ekkor $\exists \eta \in [a; b]$:

$$\int_{a}^{b} f - E(f) = \frac{(b-a)^{3}}{24} \cdot f''(\eta).$$

Tétel: A trapéz formula hibája

Ha $f \in C^2[a; b]$, ekkor $\exists \eta \in [a; b]$:

$$\int_{a}^{b} f - T(f) = -\frac{(b-a)^{3}}{12} \cdot f''(\eta).$$

Tétel: A Simpson formula hibája

Ha $f \in C^4[a; b]$, ekkor $\exists \eta \in [a; b]$:

$$\int_{a}^{b} f - S(f) = -\frac{(b-a)^{5}}{2880} \cdot f^{(4)}(\eta).$$

Tétel: A N-C formulák hibája

Jelölje I(f) jelöli a N-C kvadratúra formulát.

1 Ha *n* páratlan és $f \in C^{n+1}[a;b]$, akkor létezik $\xi \in [a;b]$:

$$\int_{a}^{b} f - I(f) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \int_{a}^{b} \omega_{n}(x) dx.$$

2 Ha *n* páros és $f \in C^{n+2}[a;b]$, akkor létezik $\xi \in [a;b]$:

$$\int_{a}^{b} f - I(f) = \frac{f^{(n+2)}(\xi)}{(n+2)!} \int_{a}^{b} x \cdot \omega_{n}(x) dx.$$

Trapéz összetett formula (Trapéz szabály)

$$\int_{a}^{b} f \approx \frac{b-a}{2m} \cdot \left(f(a) + 2 \sum_{k=1}^{m-1} f(x_{k}) + f(b) \right) =: T_{m}(f)$$

Tétel: A trapéz összetett formula hibája

Ha $f \in C^2[a; b]$, ekkor $\exists \eta \in [a; b]$:

$$\int_{a}^{b} f - T_{m}(f) = -\frac{(b-a)^{3}}{12m^{2}} \cdot f''(\eta).$$

A Simpson összetett formula (Simpson szabály)

$$S_m(f) := \frac{b-a}{3m} \cdot \left(f(a) + 4 \sum_{k=1}^{\frac{m}{2}} f(x_{2k-1}) + 2 \sum_{k=1}^{\frac{m}{2}-1} f(x_{2k}) + f(b) \right)$$
$$\int_a^b f \approx S_m(f)$$

Tétel: A Simpson összetett formula hibája

Ha $f \in C^4[a; b]$, ekkor $\exists \eta \in [a; b]$:

$$\int_{a}^{b} f - S_{m}(f) = -\frac{(b-a)^{5}}{180m^{4}} \cdot f^{(4)}(\eta).$$

A trapéz szabály javító formulája

$$\frac{1}{3}(4T_{2m}(f)-T_m(f))=S_m(f)$$

A közelítés hibája $O(h^4)$.

A Simpson szabály javító formulája

$$\frac{1}{15} \left(16 \, S_{2m}(f) - S_m(f) \right)$$

A közelítés hibája $O(h^6)$.

Richardson

Tétel:

• Ha f" korlátos [a; b]-n, akkor

$$\left|\int_a^b f - T_m(f)\right| \leq |T_m(f) - T_{2m}(f)|.$$

• Ha $f^{(4)}$ korlátos [a;b]-n, akkor

$$\left|\int_a^b f - S_m(f)\right| \leq |S_m(f) - S_{2m}(f)|.$$