Линейная алгебра, 3 модуль, лекция 16

18.01.2016

Вспомним предыдущую лекцию и кое-что дополним

Замечание.

- 1. Элемент $0 e \partial u$ нственный
- 2. Элемент –а тоже единственный
- 3. Элемент 1 тоже единственный
- 4. Элемент a^{-1} тоже единственный

Легко увидеть, что пункты 2 и 4 доказываются одинаково с точностью до замены операции, как и пункты 1 и 3

Доказательство. Докажем пункт 3. Если существует 1' — ещё одна единица, тогда по аксиомам $1' = 1' \cdot 1 = 1$.

Докажем теперь пункт 4. Пусть b и c таковы, что $b \neq c$ и ba = ab = ac = ca = 1. Тогда

$$bac = (ba) c = b (ac) = 1 \cdot c = c = 1 \cdot b = b$$

To есть b=c.

Комплексные числа (продолжение)

Предложение. Пусть $z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2).$ Тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Иными словами, при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Доказательство. Просто раскроем скобки и приведём подобные

$$z_1 z_2 = |z_1||z_2| \left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i \left(\cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1\right)\right) =$$
$$= |z_1||z_2| \left(\cos \left(\varphi_1 + \varphi_2\right) + i \sin \left(\varphi_1 + \varphi_2\right)\right)$$

Следствие. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos{(\varphi_1 - \varphi_2)} + i\sin{(\varphi_1 - \varphi_2)})$

Следствие (Формула Муавра). . Пусть $z=|z|(\cos\varphi+i\sin\varphi)$. Тогда

$$z^{n} = |z|^{n} (\cos(n\varphi) + i\sin(n\varphi)) \forall n \in \mathbb{Z}$$

1

Замечание. В комплексном анализе функция $\exp x\colon \mathbb{R} \to \mathbb{R}$ доопределяется до $\exp z\colon \mathbb{C} \to \mathbb{C}$ следующим образом

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

H тогда оказывается, что $\exp z$ обладает теми же свойствами, кроме того

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \ \forall \varphi \in \mathbb{C}$$

Всякое $z \in \mathbb{C}$ можно представить в виде $z = |z|e^{i\varphi}$, где $\varphi \in \mathrm{Arg}\ (z)$. Тогда формула Муавра приобретает совсем очевидный вид

$$|z_1|e^{i\varphi_2} \cdot |z_2|e^{i\varphi_2} = |z_1||z_2|e^{i(\varphi_1+\varphi_2)}$$

Замечание. Отображение $R_{\varphi} \colon \mathbb{C} \to \mathbb{C}, \ z \to ze^{i\varphi}, \ \varphi \in \mathbb{R}$ определяет поворот на угол φ вокруг θ .

Корни из комплексного числа

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Определение. Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}$$

Если z=0, то |z|=0, а значит |w|=0, w=0. Получается, 0 — единственное комплексное число, у которого корень определён однозначно.

Далее рассмотрим случай $z \neq 0$.

$$z = |z| (\cos \varphi + i \sin \varphi)$$

$$w = |w| (\cos \theta + i \sin \theta)$$

$$z = w^n \Leftrightarrow \begin{cases} |z| = |w|^n \\ n\theta \in \operatorname{Arg}(z) \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ n\theta = \varphi + 2\pi k, \ k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \theta = \frac{\varphi + 2\pi k}{n}, \end{cases}$$

С точностью до кратного 2π различные значения в формуле $\theta = \frac{\varphi + 2\pi k}{n}$ получаются при $k = 0, 1, \ldots, n-1$. Значит z имеет ровно n корней n-й степени.

$$\sqrt[n]{z} = \left\{ |z| \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n - 1 \right\}$$

Замечание. Точки из мн-ва $\sqrt[n]{z}$ при $z \neq 0$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{z}$.

Пример. $z = -1 = \cos \pi + i \sin \pi$.

$$\sqrt[3]{z} = \left\{ \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}; \cos\pi + i\sin\pi; \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} \right\}$$

Решение квадратных уравнений с комплексными коэффициентами

Пусть дано квадратное уравнение $az^2+bz+c=0,\,a,b,c\in\mathbb{C},\,a\neq0.$ Тогда будем иметь

$$z^{2} + \frac{b}{a} + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a} + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения - это $z1,z2=\frac{-b+d_1,d_2}{2a},$ где $\{d_1,d_2\}=\sqrt{b^2-4ac},$ в частности, квадратное уравнение всегда имеет комплексный корень. При $b^2-4ac\neq 0$ корней 2.

Теорема (Основная теорема алгебры). Всякий многочлен $P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ ствени $n, \ \textit{rde } n \geqslant 1, \ a_n \neq 0, \ u \ a_0, \ldots, a_n \in \mathbb{C}$ имеет корень.

1 Векторные пространства над произвольным полем

Вспомним, что такое векторное пространство

- ullet Некоторое множество V
- Операция сложения $V \times V \to V$

- \bullet Операция умножения на скаляр $F\times V\to V$
- 8 аксиом

Все основные понятия и результаты теории векторных пространств из прошлого полугодия можно перенести на случай произвольного поля F без изменений.

Пример. Пусть V- векторное пространство над полем из двух элементов, $\dim V=n$. Тогда $|V|=2^n$. Действительно, каждое конечномерное пространство обладает базисом (в данном случае e_1,\ldots,e_n). Тогда $V=\{k_1e_1+k_2e_2+\ldots+k_ne_n\mid k_i\in F\}$. Но очень легко заметить, что всего таких линейных комбинаций 2^n