Algoritmos de ordenação

Vinicius A. Matias

May 14, 2021

1 Introdução

Ordnear elementos de uma estrutura de dados é uma das tarefas mais curiosas e da computação. Diferentes implementações podem ser realizadas, das mais triviais às mais eficientes, assumindo heurísticas dos algoritmos ou não, e cada um dos algoritmos tem seu valor para um melhor entendimento da complexidade computacional.

2 Insertion Sort

O método de ordenação por inserção é um dos maios simples. Ele consiste em verificar de dois em dois elementos se o valor corrente é maior que o valor antecessor no arranjo, e se for, trocar e repetir o processo até o arranjo ficar ordenado.

Esse algoritmo pode ser pensado no caso de segurarmos um conjunto de cartas em uma mão e queiramos ordená-las. Aplicando o algoritmo da ordenação por inserção, verificamos a segunda carta, vemos se a primeira é maior que ela e se sim, trocamos as cartas. Na terceira carta vemos se a segunda é maior, e se for, vericamos se ela também é maior que a primeira. Esse processo é repetido para todas as cartas, passando por cada carta da esquerda para a direita e comparando da direita para a esquerda.

2.1 Implementação iterativa

A implementação do algoritmo iterativo pode ser vista na Listing 1.

Como a operação de interesse desse algoritmo é a comparação entre elementos do arranjo e o valor corrente, devemos identificar que existem dois laços envolvidos para computar essa operação. O laço mais externo roda entre i=0 e i<len(A), ou seja, n-1 vezes. No melhor dos casos não haverá necessidade de trocar os elementos pois o arranjo já está ordenado, e nesse

caso só será realizada uma verificação por volta do laço, levando à $n\!-\!1$ iterações no melhor caso.

Listing 1: Insertion Sort iterativo

```
def insertion_sort(A):
        end = len(A)
        i = 0
        j = 0
        while i < end:
             value = A[i]
             while j>0 and A[j-1] > value:
                 A[j] = A[j{-}1]
10
                 j = j-1
11
             A[j] = value
12
13
14
        return A
```

No pior caso, para cada uma das n-1 voltas do laço será necessário verificar todos os elementos anteriores à posição atual (segundo laço). Isso implica que a primeira execução fará uma verificação, a segunda duas, a terceira três até a enésima, realizando n comparações. Somando o número de comparações teremos algo como 1+2+3+...+n-1, que pode ser vista como uma soma de Progressão Aritmética. A soma desta PA que cresce de 1 em um pode ser definida como $\frac{n(0+n-1)}{2} = \frac{n^2-n}{2}$, isto é, o algoritmo de ordenação por inserção iterativo tem crescimento assintótico $\mathcal{O}(n^2)$

2.2 Demonstração de crescimento assintótico $\mathcal{O}(n^2)$

 $f(n) = \frac{n^2 - n}{2} \in \mathcal{O}(n^2)$ se existem constantes $n_0 \ge 0$ e $c \ge 0$ que satisfazem a inequação: $0 \le \frac{n^2 - n}{2} \le cn^2$

Resolvendo $0 \leq \frac{n^2-n}{2}$ notamos que a inequação é verdadeira para qualquer $n \in \mathcal{R}$

Resolvendo $\frac{n^2-n}{2} \le cn^2$:

$$\begin{array}{l} \frac{n(n-1)}{2} \leq cn^2 \\ \frac{n-1}{2} \leq cn \\ \frac{-1}{2} \leq cn - \frac{n}{2} \\ \frac{-1}{2} \leq n(c - \frac{1}{2}) \end{array}$$

Para a inequação ser verdadeira, $c - \frac{1}{2} \ge 0$

deve ser verdade, logo, $c \ge \frac{1}{2}$. Assim, a inequação $\frac{-1}{2} \le n(c-\frac{1}{2})$ é verdadeira para qualquer valor $n \ge 0$ e $c \ge \frac{1}{2}$, como exem-

$$n_0 = 1 e c = 1$$

Isso prova que $\frac{n^2-n}{2} \in \mathcal{O}(n^2)$

2.3 Implementação recursiva

A listing 2 apresenta uma implementação recursiva do Insertion Sort.

O algoritmo é baseado na indução fraca, garantindo que sabe-se ordenar um arranjo com um elemento, pois ele já está ordenado (caso base). Cada chamada recursiva um dos n-1sub arranjos possíveis.

Listing 2: Insertion Sort recursivo

```
def insertion_sort_rec(A, n):
1
            if n == 1: return
2
3
            insertion\_sort\_rec(A, n-1)
            \mathsf{i}=\mathsf{n}-\mathsf{1}
            \mathsf{aux} = \mathsf{0}
6
            while i > 0 and A[i-1] > A[i]:
                   aux = A[i]
                   \mathsf{A}[\mathsf{i}] = \mathsf{A}[\mathsf{i}{-}1]
10
                   A[i-1] = aux
11
12
13
            return A
```

Considerando que a operação de interesse é a comparação entre elementos do arranjo A[i -1 > A[i], podemos definir duas equações de recorrência, uma para o melhor caso e outra para o pior caso.

Melhor caso: O arranjo está ordenado, portanto serão feitas n-1 chamadas recursivas para um arranjo de tamanho n, e uma comparação em cada uma dessas chamadas. Para o caso base não é feita nenhuma comparação entre elementos do arranjo.

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

A resolução dessa equação de recorrência diz que T(n) = n - 1

Pior caso: São feitas n-1 comparação para cada n passado na recorrência.

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + n - 1, & n > 1 \end{cases}$$

E a resolução dessa equação de recorrência resulta em $T(n) = (n^2 - n)/2$, e que $T(n) \in$ $\mathcal{O}(n^2)$

Equação de recorrência para o pior caso

Demonstraremos que o resultado da equação de recorrência abaixo é $T(n) \in \mathcal{O}(n^2)$

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + n - 1, & n > 1 \end{cases}$$

Notando que T(n) varia as chamadas recursivas de 1 em 1, calcularemos as equações de recorrência para n-1, n-2 e n-3

$$T(n) = T(n-1) + n - 1$$

$$T(n-1) = T(n-1-1) + n - 1 - 1 = T(n-2) + n - 2$$

$$T(n-2) = T(n-2-1) + n - 2 - 1 = T(n-3) + n - 3$$

$$T(n-3) = T(n-3-1) + n-3-1 = T(n-4) + n-4$$

Podemos aplicar esses valores na equação de recorrência T(n):

$$\begin{split} T(n) &= T(n-1) + n - 1 \\ T(n) &= T(n-2) + n - 2 + n - 1 \\ T(n) &= T(n-2) + 2n - 2 - 1 \\ T(n) &= T(n-3) + n - 3 + 2n - 2 - 1 \\ T(n) &= T(n-3) + 3n - 3 - 2 - 1 \\ T(n) &= T(n-4) + n - 4 + 3n - 3 - 2 - 1 \\ T(n) &= T(n-4) + 4n - 4 - 3 - 2 - 1 \\ [...] \end{split}$$

 $T(n) = T(n-i) + in + \sum_{j=1}^{i} -j$ A operação $\sum_{j=1}^{i} -j$ é uma soma de Progressão Aritmética, podendo ser reescrita como $\frac{i*(-1-i)}{2}$

Assim,
$$T(n) = T(n-i) + in + \frac{i*(-1-i)}{2}$$

Quando $i = n$:

$$T(n) = T(n-i) + in + \frac{i*(-1-i)}{2}$$

$$T(n) = T(n-n) + n^2 + \frac{n*(-1-n)}{2}$$

$$T(n) = T(0) + n^2 + \frac{(-n-n^2)}{2}$$

$$T(n) = n^2 + \frac{(-n-n^2)}{2}$$

```
T(n) = \frac{(-n-n^2+2n^2)}{2} T(n) = \frac{(n^2-n)}{2} E como foi demonstrado no item 2.2, \frac{(n^2-n)}{2} \in \mathcal{O}(n^2), \text{ portanto:} T(n) \in \mathcal{O}(n^2)
```

3 Selection Sort

Listing 3: Selection Sort iterativo

```
def selection_sort(A):
            n = len(A)
            \mathsf{fim} = \mathsf{n}{-}1
            while fim > 0:
                   \mathbf{max} = \mathsf{fim}
                   \quad \textbf{for j in range}(\mathsf{fim}):
                         if A[j] > A[max]:
                               max = j
                   if fim != max:
10
                         \mathsf{temp} = \mathsf{A}[\mathsf{fim}]
11
                         A[fim] = A[max]
12
                         \mathsf{A}[\text{max}] = \mathsf{temp}
13
                   fim -= 1
14
15
            return A
16
```