

PreguntasdeTeorialGLeccion11.pdf

Anónimo

Informática Gráfica

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

MÁSTEREN

Inteligencia Artificial & Data Management

MADRID

Esto no son apuntes pero tiene un 10 asegurado (y lo vas a disfrutar igual).

Abre la **Cuenta NoCuenta** con el código <u>WUOLAH10</u>, haz tu primer pago y llévate 10 €.

Me interesa

Este número es indicativo del riesgo del producto, siendo 1/6 indicativo de menor riesgo y 6/6 de mayor riesgo.

ING BANK NV se encuentra adherido al Sistema de Garantía de Depósitas Hondies con una garantía de hasta 100.000 euros por depositante. Consulta más información en ing.es

Preguntas Teóricas - Lección 11: Detección de Colisiones, Simulación Física y Animación

Pregunta 1: ¿Qué es la detección de colisiones y por qué es importante?

Respuesta: La detección de colisiones es un problema geométrico que consiste en determinar si dos objetos están en contacto o se solapan. Es importante porque:

- Permite simular interacciones físicas realistas entre objetos.
- Es fundamental en aplicaciones como videojuegos, simulaciones físicas y diseño asistido por computadora (CAD).

Pregunta 2: ¿Qué técnicas se utilizan para optimizar la detección de colisiones?

Respuesta: Para optimizar la detección de colisiones, se utilizan:

- Volúmenes envolventes: Elementos geométricos simples (cajas, esferas, cápsulas) que contienen al objeto y facilitan pruebas rápidas de intersección.
- Jerarquías de volúmenes: Dividen los objetos en partes más pequeñas con volúmenes envolventes anidados, reduciendo el número de comparaciones.
- Índices espaciales: Dividen el espacio en celdas (por ejemplo, cuadrículas o árboles espaciales) para descartar objetos que no están cerca.

Pregunta 3: ¿Qué problemas pueden surgir en la detección de colisiones en sistemas dinámicos?

Respuesta: En sistemas dinámicos, donde los objetos están en movimiento, pueden surgir los siguientes problemas:

- Fallo de detección: Si los objetos se mueven rápidamente, pueden "atravesarse" entre un fotograma y otro.
- Resolución temporal: Es necesario calcular colisiones entre trayectorias para obtener el punto y tiempo exacto de colisión.
- Coste computacional: Los sistemas dinámicos suelen requerir más cálculos para manejar colisiones precisas.

Pregunta 4: ¿Qué es la simulación física y qué elementos incluye?

Respuesta: La simulación física reproduce el comportamiento dinámico y cinemático de los objetos. Incluye:

- Estado de los objetos: Posición, velocidad, aceleración, momento angular.
- Propiedades físicas: Masa, densidad, elasticidad, coeficiente de fricción.
- Resolución de ecuaciones: Resolución de las ecuaciones de la mecánica clásica mediante integración temporal.

Pregunta 5: ¿Cuáles son las ecuaciones principales en simulación física?

Respuesta: Las ecuaciones principales incluyen:

- Velocidad: $\mathbf{v} = \frac{d\mathbf{s}}{dt}$
- Aceleración: $\mathbf{a} = \frac{d\mathbf{v}}{dt}$
- Fuerza: $\mathbf{F} = m\mathbf{a}$
- Fricción: $\mathbf{f} = \mu \mathbf{n}$
- Ley de Hooke: $\mathbf{F} = -k\Delta \mathbf{X}$

Pregunta 6: ¿Qué técnicas de animación existen?

Respuesta: Las principales técnicas de animación son:

- Fotogramas clave (keyframe): El animador define poses clave, y el sistema interpola los fotogramas intermedios.
- Esqueletos (rigging): Se añade un esqueleto al modelo, permitiendo la edición de poses mediante articulaciones.
- Captura de movimiento: Transferencia de movimientos de un actor real a un modelo 3D mediante sistemas de tracking.
- Cinemática inversa: Calcula la configuración de un modelo articulado para alcanzar una posición deseada.
- Animación procedural: Genera movimientos mediante algoritmos que simulan comportamientos plausibles.

