ShapeOpt

Generated by Doxygen 1.8.6

Thu Jun 11 2015 00:56:18

Contents

1	Intro	duzion	е														1
	1.1	Descri	zione								 	 	 		 		 1
	1.2	Dipend	lenze								 	 	 		 		 1
	1.3	Compi	lazione .								 	 	 		 		 1
	1.4	Installa	zione								 	 	 		 		 2
	1.5	Impost	azione de	ei para	ametri						 	 	 		 		 2
	1.6	Esegui	!								 	 	 		 		 3
2	Hier	archica	Index														5
	2.1	Class I	Hierarchy								 	 	 		 	 	 5
3	Clas	s Index															7
	3.1	Class I	_ist								 	 	 		 	 	 7
4	File	Index															9
	4.1	File Lis	st								 	 	 		 		 9
5	Clas	s Docu	mentatior	n													11
	5.1	Bound	aryDisplac	ceme	nt Clas	ss Re	feren	ce .			 	 	 		 		 11
		5.1.1	Detailed	l Desc	cription	٠					 	 	 		 		 12
		5.1.2	Construc	ctor 8	Destr	uctor	Docu	ımen	tatio	1	 	 	 		 		 12
			5.1.2.1	Boi	undary	Displ	acem	ent			 	 	 		 		 12
		5.1.3	Member	Fund	ction D	ocum	entat	ion			 	 	 		 		 13
			5.1.3.1	cor	mputeP	'ertur	bation	n			 	 	 		 		 13
			5.1.3.2	арр	olyPert	urbati	ion .				 	 	 		 		 13
	5.2	Design	Element (Class	Refere	ence					 	 	 		 		 13
		5.2.1	Detailed	l Desc	cription	١					 	 	 		 		 15
		5.2.2	Construc	ctor 8	Destr	uctor	Docu	ımen	tatio	١	 	 	 		 		 15
			5.2.2.1	De	signEle	ement	t				 	 	 		 		 15
		5.2.3	Member	Fund	ction D	ocum	entat	ion			 	 	 		 		 15
			5.2.3.1	cor	nputeP	'ertur	bation	n			 	 	 		 		 15
			5.2.3.2	app	olyPerti	urbati	ion .				 	 	 		 		 16
			5.2.3.3	psi							 	 	 		 		 16

iv CONTENTS

		5.2.3.4	psilnv	16
		5.2.3.5	deform	16
5.3	Elastic	ityHE Clas	ss Reference	17
	5.3.1	Detailed	Description	18
	5.3.2	Construc	ctor & Destructor Documentation	18
		5.3.2.1	ElasticityHE	18
5.4	Elastic	ityState Cl	lass Reference	18
	5.4.1	Detailed	Description	20
	5.4.2	Construc	ctor & Destructor Documentation	20
		5.4.2.1	ElasticityState	20
	5.4.3	Member	Function Documentation	20
		5.4.3.1	evaluateElasticityTensor	20
5.5	FFD C	lass Refer	ence	20
	5.5.1	Detailed	Description	22
	5.5.2	Construc	ctor & Destructor Documentation	22
		5.5.2.1	FFD	22
	5.5.3	Member	Function Documentation	23
		5.5.3.1	computePerturbation	23
		5.5.3.2	applyPerturbation	23
		5.5.3.3	basisFunction	23
		5.5.3.4	psi	23
		5.5.3.5	psilnv	24
		5.5.3.6	deform	24
5.6	FFD_L	S Class R	deference	24
	5.6.1	Detailed	Description	26
	5.6.2	Construc	ctor & Destructor Documentation	26
		5.6.2.1	FFD_LS	26
	5.6.3	Member	Function Documentation	27
		5.6.3.1	computePerturbation	27
5.7	Proble	m Class R	eference	27
	5.7.1	Detailed	Description	28
	5.7.2	Construc	ctor & Destructor Documentation	28
		5.7.2.1	Problem	28
	5.7.3	Member	Function Documentation	28
		5.7.3.1	resolveStateAndAdjointEquation	28
		5.7.3.2	evaluateCostFunction	29
		5.7.3.3	computeGradient	29
		5.7.3.4	sqrGradient	29
		5.7.3.5	harmonicExtension	29
		5.7.3.6	toBeMoved	30

CONTENTS

		5.7.3.7	fixCP	30
		5.7.3.8	lagrangeMult	30
		5.7.3.9	get_mesh	30
		5.7.3.10	get_name	31
5.8	Probler	mElasticity	Class Reference	31
	5.8.1	Detailed	Description	32
	5.8.2	Construc	tor & Destructor Documentation	32
		5.8.2.1	ProblemElasticity	32
	5.8.3	Member	Function Documentation	32
		5.8.3.1	resolveStateAndAdjointEquation	32
		5.8.3.2	evaluateCostFunction	33
		5.8.3.3	computeGradient	33
		5.8.3.4	sqrGradient	33
		5.8.3.5	harmonicExtension	34
		5.8.3.6	toBeMoved	35
		5.8.3.7	fixCP	35
		5.8.3.8	lagrangeMult	35
5.9	Probler	mStokesEi	nergy Class Reference	35
	5.9.1	Detailed	Description	36
	5.9.2	Construc	tor & Destructor Documentation	37
		5.9.2.1	ProblemStokesEnergy	37
	5.9.3	Member	Function Documentation	37
		5.9.3.1	resolveStateAndAdjointEquation	37
		5.9.3.2	evaluateCostFunction	37
		5.9.3.3	computeGradient	37
		5.9.3.4	sqrGradient	38
		5.9.3.5	harmonicExtension	39
		5.9.3.6	toBeMoved	39
		5.9.3.7	fixCP	39
		5.9.3.8	lagrangeMult	39
5.10	Shape	Optimizatio	on Class Reference	39
	5.10.1	Detailed	Description	41
	5.10.2	Construc	tor & Destructor Documentation	41
		5.10.2.1	ShapeOptimization	41
	5.10.3	Member	Function Documentation	42
		5.10.3.1	computePerturbation	42
		5.10.3.2	applyPerturbation	42
		5.10.3.3	updateLagrange	42
		5.10.3.4	getVolume	42
5.11	Stokes	EneravAdi	ioint Class Reference	43

vi CONTENTS

		5.11.1 Detailed Description	44
		5.11.2 Constructor & Destructor Documentation	44
		5.11.2.1 StokesEnergyAdjoint	44
	5.12	StokesEnergyBC Class Reference	44
		5.12.1 Detailed Description	45
		5.12.2 Constructor & Destructor Documentation	45
		5.12.2.1 StokesEnergyBC	45
		5.12.3 Member Function Documentation	46
		5.12.3.1 operator()	46
		5.12.3.2 clone	46
	5.13	StokesEnergyHE Class Reference	46
		5.13.1 Detailed Description	48
		5.13.2 Constructor & Destructor Documentation	48
		5.13.2.1 StokesEnergyHE	48
	5.14	StokesEnergyState Class Reference	48
		5.14.1 Detailed Description	49
		5.14.2 Constructor & Destructor Documentation	49
		5.14.2.1 StokesEnergyState	49
6	Eilo I	Documentation	51
٠	6.1		51 51
	0.1		52
	6.2	·	52 52
	0.2	-	53
	6.3	·	53
	0.0		54
	6.4		55
		-	55
	6.5	·	56
			56
	6.6		57
			58
	6.7		58
			59
	6.8		59
			60
	6.9		60
			61
	6.10		61
		6.10.1 Detailed Description	63

CONTENTS	vii
Index	64

Chapter 1

Introduzione

1.1 Descrizione

Questo programma permette di risolvere problemi di ottimizzazione di forma facendo ricorso a diverse tecniche.

Tutti i sorgenti e gli header sono scritti in linguaggio C++11.

Il software è stato progettato per l'utilizzo su un sistema operativo Unix-like.

1.2 Dipendenze

Il software richiede che sul sistema siano installate le seguenti dipendenze (tra parentesi la versione minima richiesta):

- CMake (versione 2.8), un tool di configurazione multi-piattaforma;
- Make (versione 3.8.1), un tool utilizzato per la compilazione dei sorgenti;
- GCC (versione 4.8), la suite di compilatori GNU Compiler Collection;
- Eigen (version 3.2), per gestire matrici, vettori e algebra lineare;
- libMesh (versione 0.9.3), un framework per risolvere problemi alle derivate parziali tramite il metodo degli elementi finiti.

Viene inoltre utilizzata la seguente libreria, fornita nella cartella include/:

• GetPot (versione 1.0), per effettuare il parsing da riga di comando e di file di configurazione.

1.3 Compilazione

Per generare l'eseguibile, aprire il file *CMakeLists.txt* (presente nella cartella principale) e, se necessario, modificarlo secondo le proprie esigenze.

Creare dunque una cartella di compilazione e aprirla:

```
$ mkdir build
$ cd build
```

Adesso il sistema è pronto per la configurazione:

```
$ cmake ..
```

2 Introduzione

Note

oppure, per generare anche i simboli per il debug:

```
$ cmake -DCMAKE_BUILD_TYPE=Debug ..
```

Inoltre, l'opzione:

```
-DCMAKE_INSTALL_PREFIX=my_dir
```

consentirà di specificare la directory d'installazione, che di default si trova in /usr/local.

Infine:

\$ make

genererà l'eseguibile *test* e la libreria condivisa *shapeopt* nelle cartelle *bin/* e *lib/* (o in quelle specificate nel file *CMakeLists.txt*) rispettivamente.

1.4 Installazione

Se si desidera installare:

- l'eseguibile, in \${CMAKE_INSTALL_PREFIX}/bin/;
- la libreria condivisa, in \${CMAKE INSTALL PREFIX}/lib/;
- gli header, in \${CMAKE_INSTALL_PREFIX}/include/shapeopt/;

occorre eseguire il comando:

```
# make install
```

È possibile disinstallare tramite:

```
# make uninstall
```

Se Doxygen (versione 3.8.6) e GraphViz sono installati sul sistema, il seguente comando genererà questa documentazione nella cartella *doc/* (o in quella specificata in *CMakeLists.txt*):

```
$ make doc
```

1.5 Impostazione dei parametri

Note

La cartella di configurazione di default è config/.

Prima di poter eseguire il programma, occorre settare il file di configurazione (default: *config.pot*). Al suo interno sarà possibile modificare una lista di parametri, ciascuno dei quali è commentato per spiegarne il significato.

Ad esempio, si potrà specificare: la mesh da utilizzare (in formato Gmsh), la directory in cui salvare i file delle soluzioni, il problema da risolvere e la tecnica di ottimizzazione di forma da utilizzare.

È possibile creare diversi file di configurazione, ciascuno con i propri valori per i parametri: di volta in volta il file da usare può essere specificato da riga di comando prima di eseguire il programma.

1.6 Esegui! 3

1.6 Esegui!

Per eseguire utilizzando il file di configurazione predefinito (*config.pot*), spostarsi nella cartella in cui si trova l'eseguibile e digitare:

```
$ ./test
```

Di default, il file di configurazione viene cercato nella cartella ../config.

Per specificare un diverso file di configurazione precedentemente salvato in questa directory:

```
$ ./test -f configuration_filename
```

oppure:

```
$ ./test --file configuration_filename
```

La variabile configuration_filename non deve contenere il path al file.

Warning

È anche possibile specificare una diversa directory in cui cercare il file di configurazione (attraverso un path relativo o assoluto rispetto alla cartella attuale), utilizzando il comando:

```
$ ./test -d configuration_directory

oppure:
$ ./test --directory configuration_directory
```

Una volta terminato il programma, i risultati verranno salvati nella cartella di output (relativa alla directory corrente) impostata nel file di configurazione.

Introduzione

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Assembly	
ElasticityHE	. 17
ElasticityState	
StokesEnergyAdjoint	. 43
StokesEnergyHE	. 46
StokesEnergyState	. 48
FunctionBase	
StokesEnergyBC	. 44
Problem	27
ProblemElasticity	. 31
ProblemStokesEnergy	. 35
ShapeOptimization	39
BoundaryDisplacement	. 11
DesignElement	. 13
FFD	. 20
FFD_LS	. 24

6 **Hierarchical Index**

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BoundaryDisplacement	
Classe che eredita da ShapeOptimization. Utilizza la tecnica del boundary local displacement per eseguire l'ottimizzazione di forma	11
DesignElement	
Classe che eredita dalla classe ShapeOptimization, utilizza il metodo del Design Element descrivendo il bordo superiore e quello inferiore con polinomi di grado arbitrario	13
ElasticityHE	
Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema dell'elasticità	17
ElasticityState	
Classe contenente i metodi necessari per calcolare lo stato (il sistema è autoaggiunto) nel problema dell'elasticità	18
FFD	
Classe che eredita dalla classe ShapeOptimization, utilizza il metodo della Free Form Deformation utilizzando come funzioni di base le B-Spline	20
FFD_LS	
Classe che eredita dalla classe FFD, utilizza il metodo dei minimi quadrati con rilassamento per calcolare gli spostamenti da applicare ai control point	24
Problem	
Classe astratta comune a tutti i problemi su cui si applica l'ottimizzazione	27
Classe che eredita da Problem e che rappresenta il problema dell'elasticità lineare	31
ProblemStokesEnergy	
Classe che eredita da Problem e che rappresenta il problema di Stokes	35
ShapeOptimization	
Classe astratta comune a tutte le tecniche di ottimizzazione	39
StokesEnergyAdjoint	
Classe contenente i metodi necessari per calcolare l'aggiunto nel problema di Stokes	43
StokesEnergyBC	
Classe contenente i metodi necessari per imporre le condizioni al bordo nel problema di Stokes	44
StokesEnergyHE	
Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema di Stokes	46
StokesEnergyState	
Classe contenente i metodi necessari per calcolare lo stato nel problema di Stokes	48

8 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

src/BoundaryDisplacement.cc	??
src/BoundaryDisplacement.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	51
src/DesignElement.cc	??
src/DesignElement.h	
·	52
src/ FFD.cc	??
src/FFD.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	53
src/FFD_LS.cc	??
src/FFD_LS.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	55
src/Problem.cc	??
src/Problem.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	56
src/ProblemElasticity.cc	??
src/ProblemElasticity.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	57
src/ProblemStokesEnergy.cc	??
src/ProblemStokesEnergy.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	58
src/ShapeOptimization.cc	??
src/ShapeOptimization.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	59
src/ShapeOptimizationBase.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	60
src/typedefs.h	
Confronto tra alcune tecniche per l'ottimizzazione di forma	61
test/test.cc	??

10 File Index

Chapter 5

Class Documentation

5.1 Boundary Displacement Class Reference

Classe che eredita da ShapeOptimization. Utilizza la tecnica del boundary local displacement per eseguire l'ottimizzazione di forma.

#include <BoundaryDisplacement.h>

Inheritance diagram for BoundaryDisplacement:

Collaboration diagram for BoundaryDisplacement:

Public Member Functions

BoundaryDisplacement (const Problem &, const std::string &, const Real &, const Index &, const Real &, const Beal &=1.0e-4)

Costruttore.

- virtual void computePerturbation (EquationSystems &, EquationSystems &)
 - Calcola la deformazione della mesh.
- virtual void applyPerturbation (const EquationSystems &)

Applica la deformazione alla mesh.

Additional Inherited Members

5.1.1 Detailed Description

Classe che eredita da ShapeOptimization. Utilizza la tecnica del boundary local displacement per eseguire l'ottimizzazione di forma.

Definition at line 28 of file BoundaryDisplacement.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 BoundaryDisplacement (const Problem & problem, const std::string & directory, const Real & step, const Index & maxIterationsNo, const Real & tolerance, const bool & volume_constraint, const Real & armijoSlope = 1.0e-4)

Costruttore
Parameters

in	problem	: Problema sul quale si vuole applicare la Shape Optimization
in	directory	: Directory in cui salvare i file di output
in	step	: Passo iniziale per il metodo di discesa del gradiente
in	maxIterationsNo	: Numero massimo di iterazioni
in	tolerance	: Tolleranza per il test d'arresto dell'incremento relativo
in	volume	: Specifica se applicare o meno il vincolo di volume
	constraint	
in	armijoSlope	: Coefficiente di rilassamento per la regola di Armijo.

Definition at line 3 of file BoundaryDisplacement.cc.

5.1.3 Member Function Documentation

5.1.3.1 void computePerturbation (EquationSystems & perturbation, EquationSystems & stateAdj) [virtual]

Calcola la deformazione della mesh.

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto

Implements ShapeOptimization.

Definition at line 6 of file BoundaryDisplacement.cc.

5.1.3.2 void applyPerturbation (const EquationSystems & perturbation) [virtual]

Applica la deformazione alla mesh.

Parameters

in	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh

Implements ShapeOptimization.

Definition at line 11 of file BoundaryDisplacement.cc.

The documentation for this class was generated from the following files:

- src/BoundaryDisplacement.h
- src/BoundaryDisplacement.cc

5.2 DesignElement Class Reference

Classe che eredita dalla classe ShapeOptimization, utilizza il metodo del Design Element descrivendo il bordo superiore e quello inferiore con polinomi di grado arbitrario.

#include <DesignElement.h>

Inheritance diagram for DesignElement:

Collaboration diagram for DesignElement:

Public Member Functions

Costruttore.

- DesignElement (const Problem &, const std::string &, const Real &, const Index &, const Real &, const Beal &, const Std::pair
 Point, Point > &, const Index &, const Real &=1.0e-4)
- virtual void computePerturbation (EquationSystems &, EquationSystems &)

Metodo astratto per calcolare la deformazione della mesh.

- virtual void applyPerturbation (const EquationSystems &)
 - Metodo astratto per applicare la deformazione alla mesh.
- Point psi (const Point &) const

mappa la scatola nel quadrato unitario

- Point psilnv (const Point &) const
 - mappa il quadrato unitario nel rettangolo di partenza
- Point deform (const Point &) const

applica la deformazione al punto

Protected Attributes

Mesh reference mesh

mesh di riferimento

VectorXp reference nodes

vettore contenente i nodi del bordo nella mesh di riferimento

std::pair< Point, Point > boundingBox_

coppia contenente i punti nord est e sud ovest che definiscono la scatola

VectorXr mu

vettore contenente i coefficienti dei polinomi f_{up}, f_{down}

VectorXr gradJ_

vettore contenente il gradiente ridotto rispetto a mu

MatrixXr P_

matrice di proiezione per fissare gli estremi

bool firstTime_

booleano: vero se è la prima volta che calcola la perturbazione dell'identità

5.2.1 Detailed Description

Classe che eredita dalla classe ShapeOptimization, utilizza il metodo del Design Element descrivendo il bordo superiore e quello inferiore con polinomi di grado arbitrario.

Definition at line 28 of file DesignElement.h.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 DesignElement (const Problem & problem, const std::string & directory, const Real & step, const Index & maxIterationsNo, const Real & tolerance, const bool & volume_constraint, const std::pair < Point, Point > & boundingBox, const Index & order, const Real & armijoSlope = 1 . 0e-4)

Costruttore.

Parameters

1	•	
in	problem	: Problema sul quale si vuole applicare la Shape Optimization
in	directory	: Directory in cui salvare i file di output
in	step	: Passo iniziale per il metodo di discesa del gradiente
in	maxIterationsNo	: Numero massimo di iterazioni
in	tolerance	: Tolleranza per il test d'arresto dell'incremento relativo
in	volume	: Specifica se applicare o meno il vincolo di volume
	constraint	
in	boundingBox	: Punti a nord est e a sud ovest indicanti il range della bounding box
in	order	: Grado del polinomio secondo cui vengono deformati i bordi superiore e infe-
		riore del dominio
in	armijoSlope	: Coefficiente di rilassamento per la regola di Armijo.

Definition at line 3 of file DesignElement.cc.

5.2.3 Member Function Documentation

5.2.3.1 void computePerturbation (EquationSystems & perturbation, EquationSystems & stateAdj) [virtual]

Metodo astratto per calcolare la deformazione della mesh.

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto

Implements ShapeOptimization.

Definition at line 35 of file DesignElement.cc.

5.2.3.2 void applyPerturbation (const EquationSystems & perturbation) [virtual]

Metodo astratto per applicare la deformazione alla mesh.

Parameters

in	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
----	--------------	---

Implements ShapeOptimization.

Definition at line 153 of file DesignElement.cc.

5.2.3.3 Point psi (const Point & point) const

mappa la scatola nel quadrato unitario

Parameters

in	point	: punto nella scatola da trasformare
----	-------	--------------------------------------

Returns

le cordinate del punto nel quadrato unitario

Definition at line 213 of file DesignElement.cc.

5.2.3.4 Point psilnv (const Point & ref_point) const

mappa il quadrato unitario nel rettangolo di partenza

Parameters

in ref_point : punto nel quadrato di riferimento da trasformare

Returns

le cordinate del punto nel rettangolo di partenza

Definition at line 228 of file DesignElement.cc.

5.2.3.5 Point deform (const Point & point) const

applica la deformazione al punto

Parameters

in	point	: punto in cui calcolare la deformazione

Returns

punto deformato

Definition at line 240 of file DesignElement.cc.

The documentation for this class was generated from the following files:

- src/DesignElement.h
- src/DesignElement.cc

5.3 ElasticityHE Class Reference

Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema dell'elasticità

#include <ProblemElasticity.h>

Inheritance diagram for ElasticityHE:

Collaboration diagram for ElasticityHE:

Public Member Functions

ElasticityHE (EquationSystems &, EquationSystems &, const Real &, const ProblemElasticity &)
 Costruttore.

• void assemble ()

Assembla le matrici e i vettori per calcolare l'estensione armonica nel problema dell'elasticità

Private Attributes

• EquationSystems & perturbation_

Sistemi d'equazioni per gestire lo spostamento della mesh.

EquationSystems & stateAdj_

Sistemi d'equazioni contenente lo stato e l'aggiunto.

· Real lagrange_

Moltiplicatore di lagrange.

· const ProblemElasticity & problem_

Riferimento costante al problema dell'elasticità

5.3.1 Detailed Description

Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema dell'elasticità Definition at line 97 of file ProblemElasticity.h.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 ElasticityHE (EquationSystems & perturbation, EquationSystems & stateAdj, const Real & lagrange, const ProblemElasticity & problem)

Costruttore.

Parameters

in	perturbation	: Riferimento ai sistemi d'equazioni per lo spostamento della mesh
in	stateAdj	: Riferimento ai sistemi d'equazioni contenente lo stato e l'aggiunto
in	lagrange	: Moltiplicatore di lagrange
in	problem	: Riferimento costante al problema dell'elasticità

Definition at line 261 of file ProblemElasticity.cc.

The documentation for this class was generated from the following files:

- src/ProblemElasticity.h
- src/ProblemElasticity.cc

5.4 ElasticityState Class Reference

Classe contenente i metodi necessari per calcolare lo stato (il sistema è autoaggiunto) nel problema dell'elasticità #include FroblemElasticity.h>

Inheritance diagram for ElasticityState:

Collaboration diagram for ElasticityState:

Public Member Functions

- ElasticityState (EquationSystems &, const ProblemElasticity &)
 Costruttore.
- void assemble ()

Assembla le matrici e i vettori per calcolare lo stato nel problema dell'elasticità

• Real evaluateElasticityTensor (Index i, Index j, Index k, Index l) const Calcola il valore del tensore elasticità negli indici desiderati.

Private Attributes

- EquationSystems & stateAdj_ Sistemi d'equazioni contenente lo stato e l'aggiunto.
- const ProblemElasticity & problem_

Riferimento costante al problema dell'elasticità

5.4.1 Detailed Description

Classe contenente i metodi necessari per calcolare lo stato (il sistema è autoaggiunto) nel problema dell'elasticità Definition at line 125 of file ProblemElasticity.h.

5.4.2 Constructor & Destructor Documentation

5.4.2.1 ElasticityState (EquationSystems & stateAdj, const ProblemElasticity & problem)

Costruttore.

Parameters

in	stateAdj	: Riferimento ai sistemi d'equazioni contenente lo stato e l'aggiunto
in	problem	: Riferimento costante al problema dell'elasticità

Definition at line 380 of file ProblemElasticity.cc.

5.4.3 Member Function Documentation

5.4.3.1 Real evaluateElasticityTensor (Index i, Index j, Index k, Index l) const

Calcola il valore del tensore elasticità negli indici desiderati.

Parameters

in	i	: Primo indice del tensore
in	j	: Secondo indice del tensore
in	k	: Terzo indice del tensore
in	1	: Quarto indice del tensore

Returns

$$D_{i,j,k,\ell} = \lambda \, \delta_{ij} \delta_{k\ell} + \mu (\delta_{ik} \delta_{j\ell} + \delta_{i\ell} \delta_{jk})$$

Definition at line 563 of file ProblemElasticity.cc.

The documentation for this class was generated from the following files:

- src/ProblemElasticity.h
- src/ProblemElasticity.cc

5.5 FFD Class Reference

Classe che eredita dalla classe ShapeOptimization, utilizza il metodo della Free Form Deformation utilizzando come funzioni di base le B-Spline.

#include <FFD.h>

5.5 FFD Class Reference 21

Inheritance diagram for FFD:

Collaboration diagram for FFD:

Public Member Functions

- FFD (const Problem &, const std::string &, const Real &, const Index &, const Real &, const bool &, const std::pair< Point, Point > &, const std::pair< Index, Index > &, const Real &=1.0e-4)
 - Costruttore.
- virtual void computePerturbation (EquationSystems &, EquationSystems &)
 - Calcola la deformazione della mesh.
- virtual void applyPerturbation (const EquationSystems &)
 - Applica la deformazione alla mesh.
- virtual Real basisFunction (const Point &, const Index &, const Index &) const calcola la funzione di base k, I per il punto x

· Point psi (const Point &) const

mappa la scatola nel quadrato unitario

· Point psilnv (const Point &) const

mappa il quadrato unitario nel rettangolo di partenza

• Point deform (const Point &) const

applica la deformazione al punto

Protected Attributes

Mesh reference mesh

mesh di riferimento

VectorXp reference_nodes_

vettore contenente i nodi del bordo nella mesh di riferimento

std::pair< Point, Point > boundingBox_

coppia contenente i punti nord est e sud ovest che definiscono la scatola

std::pair< Index, Index > sub_

coppia di numeri indicanti il numero di suddivisioni in orizzontale e in verticale

MatrixXp CP_grid_

matrice contenente i control point

MatrixXp mu

matrice contenente gli spostamenti desiderati per i control point

MatrixXp gradJ_

matrice contenente il gradiente in funzione dei control point

bool firstTime

booleano: vero se è la prima volta che calcola la perturbazione dell'identità

5.5.1 Detailed Description

Classe che eredita dalla classe ShapeOptimization, utilizza il metodo della Free Form Deformation utilizzando come funzioni di base le B-Spline.

Definition at line 28 of file FFD.h.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 FFD (const Problem & problem, const std::string & directory, const Real & step, const Index & maxIterationsNo, const Real & tolerance, const bool & volume_constraint, const std::pair < Point, Point > & boundingBox, const std::pair < Index, Index > & sub, const Real & armijoSlope = 1 . 0 e - 4)

Costruttore.

Parameters

in	problem	: Problema sul quale si vuole applicare la Shape Optimization
in	directory	: Directory in cui salvare i file di output
in	step	: Passo iniziale per il metodo di discesa del gradiente
in	maxIterationsNo	: Numero massimo di iterazioni
in	tolerance	: Tolleranza per il test d'arresto dell'incremento relativo

5.5 FFD Class Reference 23

in	volume	: Specifica se applicare o meno il vincolo di volume
	constraint	
in	boundingBox	: Punti a nord est e a sud ovest indicanti il range della bounding box
in	sub	: Coppia contenente il numero di intervalli in cui suddividere la base e l'altezza
		della bounding box
in	armijoSlope	: Coefficiente di rilassamento per la regola di Armijo.

Definition at line 3 of file FFD.cc.

5.5.3 Member Function Documentation

5.5.3.1 void computePerturbation (EquationSystems & perturbation, EquationSystems & stateAdj) [virtual]

Calcola la deformazione della mesh.

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto

Implements ShapeOptimization.

Reimplemented in FFD_LS.

Definition at line 31 of file FFD.cc.

5.5.3.2 void applyPerturbation (const EquationSystems & perturbation) [virtual]

Applica la deformazione alla mesh.

Parameters

in	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
----	--------------	---

Implements ShapeOptimization.

Definition at line 143 of file FFD.cc.

5.5.3.3 Real basisFunction (const Point & point, const Index & k, const Index & I) const [virtual]

calcola la funzione di base k, I per il punto x

Parameters

in	point	: punto in cui calcolare la funzione di base
in	k	: indice orizzontale della griglia
in	1	: indice verticale della griglia

Returns

il valore della funzione

Definition at line 215 of file FFD.cc.

5.5.3.4 Point psi (const Point & point) const

mappa la scatola nel quadrato unitario

Parameters

in	point	: punto nella scatola da trasformare

Returns

le cordinate del punto nel quadrato unitario

Definition at line 224 of file FFD.cc.

5.5.3.5 Point psilnv (const Point & ref_point) const

mappa il quadrato unitario nel rettangolo di partenza

Parameters

in	ref_point	: punto nel quadrato di riferimento da trasformare
----	-----------	--

Returns

le cordinate del punto nel rettangolo di partenza

Definition at line 239 of file FFD.cc.

5.5.3.6 Point deform (const Point & point) const

applica la deformazione al punto

Parameters

ſ	in	point	: punto in cui calcolare la deformazione

Returns

punto deformato

Definition at line 251 of file FFD.cc.

The documentation for this class was generated from the following files:

- src/FFD.h
- src/FFD.cc

5.6 FFD_LS Class Reference

Classe che eredita dalla classe FFD, utilizza il metodo dei minimi quadrati con rilassamento per calcolare gli spostamenti da applicare ai control point.

#include <FFD_LS.h>

Inheritance diagram for FFD_LS:

Collaboration diagram for FFD_LS:

Public Member Functions

- FFD_LS (const Problem &, const std::string &, const Real &, const Index &, const Real &, const bool &, const std::pair< Point, Point > &, const std::pair< Index, Index > &, const Real &, const Real &=1.0e-4)
 Costruttore.
- virtual void computePerturbation (EquationSystems &, EquationSystems &)

 Calcola la deformazione della mesh.

Protected Attributes

Real beta

Parametro di rilassamento per il metodo dei minimi quadrati.

std::vector< Point > border ref

Vettore contenente i punti del bordo.

MatrixXr B x

Matrice con righe pari al numero di punti sul bordo e colonne pari al numero totale di control point. Rappresenta $\left(b_{k,\ell}^{K,L}(\vec{\psi}(\vec{x}))\mathfrak{B}\right)_{\underline{u}}$ per i nodi del bordo.

MatrixXr B v

Matrice con righe pari al numero di punti sul bordo e colonne pari al numero totale di control point. Rappresenta $\left(b_{k,\ell}^{K,L}(\vec{\psi}(\vec{x}))\mathfrak{B}\right)_{_{V}}$ per i nodi del bordo.

LDLT< MatrixXr > solver x

Robust Cholesky Decomposition con pivoting della matrice $\beta B_{x}^{T} B_{x} + (1 - \beta)I$.

LDLT < MatrixXr > solver_y

Robust Cholesky Decomposition con pivoting della matrice $\beta B_y^T B_y + (1 - \beta)I$.

5.6.1 Detailed Description

Classe che eredita dalla classe FFD, utilizza il metodo dei minimi quadrati con rilassamento per calcolare gli spostamenti da applicare ai control point.

La perturbazione dell'identità è rappresentata nel caso bidimensionale da $\vec{\theta}_{FFD} = (\theta_{FFD,x}, \theta_{FFD,y})^T \in \mathbb{R}^2$

$$ec{ heta}_{FFD}(ec{x},ec{\mu}) = \sum_{k=0}^K \sum_{\ell=0}^L b_{k,\ell}^{K,L}(ec{\psi}(ec{x})) \mathfrak{B} ec{\mu}_{k,\ell}$$

Ora se uniamo la tripla sommatoria e trasformiamo in un vettore $\vec{\mu}_{k,\ell}$ e se consideriamo solo i NB nodi del bordo possiamo esprimere, definendo LL = K x L, la precedente formula con delle matrici $B_x, B_y \in \mathbb{R}^{NB \times LL}$ ottenendo

$$\vec{\theta}_{FFD}_{i} = B_{i}\vec{\mu}_{i}$$

Definition at line 39 of file FFD_LS.h.

5.6.2 Constructor & Destructor Documentation

5.6.2.1 FFD_LS (const Problem & problem, const std::string & directory, const Real & step, const Index & maxIterationsNo, const Real & tolerance, const bool & volume_constraint, const std::pair < Point, Point > & boundingBox, const std::pair < Index, Index > & sub, const Real & beta, const Real & armijoSlope = 1 . 0 e - 4)

Costruttore.

Parameters

in	problem	: Problema sul quale si vuole applicare la Shape Optimization
in	directory	: Directory in cui salvare i file di output
in	step	: Passo iniziale per il metodo di discesa del gradiente
in	maxIterationsNo	: Numero massimo di iterazioni
in	tolerance	: Tolleranza per il test d'arresto dell'incremento relativo
in	volume	: Specifica se applicare o meno il vincolo di volume
	constraint	

in	boundingBox	: Punti a nord est e a sud ovest indicanti il range della bounding box
in	sub	: Coppia contenente il numero di intervalli in cui suddividere la base e l'altezza
		della bounding box
in	beta	: Parametro di rilassamento per il metodo dei minimi quadrati
in	armijoSlope	: Coefficiente di rilassamento per la regola di Armijo.

Definition at line 3 of file FFD_LS.cc.

5.6.3 Member Function Documentation

5.6.3.1 void computePerturbation (EquationSystems & perturbation, EquationSystems & stateAdj) [virtual]

Calcola la deformazione della mesh.

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto

Reimplemented from FFD.

Definition at line 47 of file FFD_LS.cc.

The documentation for this class was generated from the following files:

- src/FFD_LS.h
- src/FFD_LS.cc

5.7 Problem Class Reference

Classe astratta comune a tutti i problemi su cui si applica l'ottimizzazione.

#include <Problem.h>

Inheritance diagram for Problem:

Public Member Functions

• Problem (Mesh)

Costruttore.

virtual ∼Problem ()=default

Distruttore (defaulted)

virtual void resolveStateAndAdjointEquation (EquationSystems &stateAdj, const Index &maxIterationsNo) const =0

Metodo astratto per risolvere lo stato e l'aggiunto.

• virtual Real evaluateCostFunction (EquationSystems &stateAdj) const =0

Metodo astratto per calcolare il valore del funzionale costo.

virtual Real computeGradient (EquationSystems &stateAdj, const Point &p) const =0

Metodo astratto per calcolare il valore del gradiente del funzionale costo in un punto.

• virtual Real sqrGradient (EquationSystems &stateAdj) const =0

Metodo astratto per calcolare la norma L^2 del gradiente.

 virtual void harmonicExtension (EquationSystems &perturbation, EquationSystems &stateAdj, const Real &lagrange) const =0

Metodo astratto per calcolare l'estensione armonica qualora fosse previsto dalla tecnica di ottimizzazione di forma.

virtual bool toBeMoved (const Node &node) const =0

Metodo astratto per valutare se un nodo può essere spostato o deve rimanere fisso.

• virtual void fixCP (const MatrixXp &CP_grid, MatrixXp &mu) const =0

Metodo astratto per vincolare l'eventuale spostamento di control point.

virtual Real lagrangeMult (EquationSystems &stateAdj) const =0

Metodo astratto che calcola il moltiplicatore di lagrange.

• std::shared_ptr< Mesh > get_mesh () const

Restituisce un puntatore alla mesh del problema.

• std::string get name () const

Restituisce il nome del sistema.

Protected Attributes

std::shared_ptr< Mesh > mesh_

puntatore alla mesh su cui è definito il problema

std::string name_

nome del problema che si vuole risolvere

5.7.1 Detailed Description

Classe astratta comune a tutti i problemi su cui si applica l'ottimizzazione.

Definition at line 29 of file Problem.h.

5.7.2 Constructor & Destructor Documentation

5.7.2.1 Problem (Mesh mesh)

Costruttore.

Parameters

incom : participo dia mesmo di quale e delimito il problema	in	mesh	: puntatore alla mesh sul quale è definito il problema
---	----	------	--

Definition at line 3 of file Problem.cc.

5.7.3 Member Function Documentation

5.7.3.1 virtual void resolveStateAndAdjointEquation (EquationSystems & stateAdj, const Index & maxIterationsNo) const [pure virtual]

Metodo astratto per risolvere lo stato e l'aggiunto.

Parameters

out	stateAdj	: Sistema d'equazioni che conterrà lo stato e l'aggiunto
in	maxIterationsNo	: Numero massimo di iterazioni

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.2 virtual Real evaluateCostFunction (EquationSystems & stateAdj) const [pure virtual]

Metodo astratto per calcolare il valore del funzionale costo.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto
----	----------	--

Returns

il valore del funzionale costo

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.3 virtual Real computeGradient (EquationSystems & stateAdj, const Point & p) const [pure virtual]

Metodo astratto per calcolare il valore del gradiente del funzionale costo in un punto.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto
in	р	: Punto in cui calcolare il gradiente

Returns

il valore del gradiente nel punto

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.4 virtual Real sqrGradient (Equation Systems & *stateAdj* **) const** [pure virtual]

Metodo astratto per calcolare la norma L^2 del gradiente.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto

Returns

il valore della norma L^2 del gradiente

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.5 virtual void harmonicExtension (EquationSystems & perturbation, EquationSystems & stateAdj, const Real & lagrange) const [pure virtual]

Metodo astratto per calcolare l'estensione armonica qualora fosse previsto dalla tecnica di ottimizzazione di forma.

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto
in	lagrange	: lagrangiano

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.6 virtual bool toBeMoved (const Node & node) const [pure virtual]

Metodo astratto per valutare se un nodo può essere spostato o deve rimanere fisso.

Parameters

in	node	: nodo sul quale si vuole avere l'informazione

Returns

vero se il nodo può essere spostato

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.7 virtual void fixCP (const MatrixXp & CP_grid, MatrixXp & mu) const [pure virtual]

Metodo astratto per vincolare l'eventuale spostamento di control point.

Parameters

in	CP_grid	: la griglia dei control point
in	mu	: matrice contenente lo spostamento di ciascun control point nelle due direzioni

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.8 virtual Real lagrangeMult (EquationSystems & stateAdj) const [pure virtual]

Metodo astratto che calcola il moltiplicatore di lagrange.

Parameters

in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto

Returns

il moltiplicatore di lagrange, che in particolare è l'integrale del gradiente moltiplicato per lo spostamento in direzione normale sul bordo diviso l'integrale degli spostamenti in direzione normale sul bordo

Implemented in ProblemElasticity, and ProblemStokesEnergy.

5.7.3.9 std::shared_ptr< Mesh > get_mesh() const [inline]

Restituisce un puntatore alla mesh del problema.

Returns

il puntatore alla mesh

Definition at line 135 of file Problem.h.

5.7.3.10 std::string get_name() const [inline]

Restituisce il nome del sistema.

Returns

il nome del sistema

Definition at line 140 of file Problem.h.

The documentation for this class was generated from the following files:

- src/Problem.h
- src/Problem.cc

5.8 ProblemElasticity Class Reference

Classe che eredita da Problem e che rappresenta il problema dell'elasticità lineare.

#include <ProblemElasticity.h>

Inheritance diagram for ProblemElasticity:

Collaboration diagram for ProblemElasticity:

Public Member Functions

• ProblemElasticity (Mesh, const Real &, const Real &)

Costruttore.

virtual void resolveStateAndAdjointEquation (EquationSystems &, const Index &) const

Metodo per risolvere lo stato e l'aggiunto.

• virtual Real evaluateCostFunction (EquationSystems &) const

Calcola il funzionale costo $\int_1 u_v d\sigma$.

· virtual Real computeGradient (EquationSystems &, const Point &) const

Metodo per calcolare il valore del gradiente del funzionale costo in un punto.

virtual Real sqrGradient (EquationSystems &) const

Metodo per calcolare la norma L^2 del gradiente.

• virtual void harmonicExtension (EquationSystems &, EquationSystems &, const Real &) const

Metodo astratto per calcolare l'estensione armonica qualora fosse previsto dalla tecnica di ottimizzazione di forma.;

- virtual bool toBeMoved (const Node &) const
- virtual void fixCP (const MatrixXp &, MatrixXp &) const
- virtual Real lagrangeMult (EquationSystems &) const

Protected Attributes

Real coeff lambda

Coefficiente di Lamé λ .

Real coeff_mu_

Coefficiente di Lamé µ.

Friends

- · class ElasticityHE
- · class ElasticityState

5.8.1 Detailed Description

Classe che eredita da Problem e che rappresenta il problema dell'elasticità lineare.

Definition at line 27 of file ProblemElasticity.h.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 ProblemElasticity (Mesh mesh, const Real & lambda, const Real & mu)

Costruttore.

Parameters

in	mesh	: puntatore alla mesh sul quale è definito il problema
in	lambda	: Coefficiente di Lamé λ
in	mu	: Coefficiente di Lamé μ

Definition at line 3 of file ProblemElasticity.cc.

5.8.3 Member Function Documentation

5.8.3.1 void resolveStateAndAdjointEquation (EquationSystems & stateAdj, const Index & n) const [virtual]

Metodo per risolvere lo stato e l'aggiunto.

Parameters

out	stateAdj	: Sistema d'equazioni che conterrà lo stato e l'aggiunto
in	n	: Numero massimo di iterazioni

Implements Problem.

Definition at line 9 of file ProblemElasticity.cc.

5.8.3.2 Real evaluateCostFunction (EquationSystems & stateAdj) const [virtual]

Calcola il funzionale costo $\int_1 u_y d\sigma$.

Parameters

out	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto

Returns

il valore del funzionale costo

Implements Problem.

Definition at line 41 of file ProblemElasticity.cc.

5.8.3.3 Real computeGradient (EquationSystems & stateAdj, const Point & p) const [virtual]

Metodo per calcolare il valore del gradiente del funzionale costo in un punto.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto
in	р	: Punto in cui calcolare il gradiente

Returns

il valore del gradiente nel punto

In questo caso il valore di $-2\mu |arepsilon(u)|^2 - \lambda (tr(arepsilon(u))^2)$ in un punto

Implements Problem.

Definition at line 92 of file ProblemElasticity.cc.

5.8.3.4 Real sqrGradient (EquationSystems & *stateAdj* **) const** [virtual]

Metodo per calcolare la norma L^2 del gradiente.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto
----	----------	--

Returns

il valore della norma L^2 del gradiente

Implements Problem.

Definition at line 111 of file ProblemElasticity.cc.

5.8.3.5 void harmonicExtension (EquationSystems & perturbation, EquationSystems & stateAdj, const Real & lagrange) const [virtual]

Metodo astratto per calcolare l'estensione armonica qualora fosse previsto dalla tecnica di ottimizzazione di forma.;

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto
in	lagrange	: lagrangiano;

Implements Problem.

Definition at line 159 of file ProblemElasticity.cc.

5.8.3.6 bool toBeMoved (const Node &) const [virtual]

Implements Problem.

Definition at line 189 of file ProblemElasticity.cc.

5.8.3.7 void fixCP (const MatrixXp & CP_grid, MatrixXp & mu) const [virtual]

Implements Problem.

Definition at line 194 of file ProblemElasticity.cc.

5.8.3.8 Real lagrangeMult (EquationSystems & stateAdj) const [virtual]

Implements Problem.

Definition at line 211 of file ProblemElasticity.cc.

The documentation for this class was generated from the following files:

- src/ProblemElasticity.h
- src/ProblemElasticity.cc

5.9 ProblemStokesEnergy Class Reference

Classe che eredita da Problem e che rappresenta il problema di Stokes.

#include <ProblemStokesEnergy.h>

Inheritance diagram for ProblemStokesEnergy:

Collaboration diagram for ProblemStokesEnergy:

Public Member Functions

• ProblemStokesEnergy (Mesh, const Real &, const Real &)

Costruttore

• virtual void resolveStateAndAdjointEquation (EquationSystems &, const Index &) const

Metodo per risolvere lo stato e l'aggiunto.

virtual Real evaluateCostFunction (EquationSystems &) const

Metodo astratto per calcolare il valore del funzionale costo.

• virtual Real computeGradient (EquationSystems &, const Point &) const

Metodo per calcolare il valore del gradiente del funzionale costo in un punto.

virtual Real sqrGradient (EquationSystems &) const

Metodo per calcolare la norma L^2 del gradiente.

• virtual void harmonicExtension (EquationSystems &, EquationSystems &, const Real &) const

Metodo astratto per calcolare l'estensione armonica qualora fosse previsto dalla tecnica di ottimizzazione di forma.;

- virtual bool toBeMoved (const Node &) const
- virtual void fixCP (const MatrixXp &, MatrixXp &) const
- virtual Real lagrangeMult (EquationSystems &) const

Protected Attributes

• Real ux_

Componente lungo l'asse x della velocità in ingresso.

· Real uy_

Componente lungo l'asse y della velocità in ingresso.

Friends

- · class StokesEnergyHE
- class StokesEnergyState
- class StokesEnergyAdjoint

5.9.1 Detailed Description

Classe che eredita da Problem e che rappresenta il problema di Stokes.

Definition at line 26 of file ProblemStokesEnergy.h.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 ProblemStokesEnergy (Mesh mesh, const Real & ux, const Real & uy)

Costruttore.

Parameters

in	mesh	: puntatore alla mesh sul quale è definito il problema
in	ux	: Componente lungo l'asse x della velocità in ingresso
in	uy	: Componente lungo l'asse y della velocità in ingresso

Definition at line 3 of file ProblemStokesEnergy.cc.

5.9.3 Member Function Documentation

5.9.3.1 void resolveStateAndAdjointEquation (EquationSystems & stateAdj, const Index & n) const [virtual]

Metodo per risolvere lo stato e l'aggiunto.

Parameters

out	stateAdj	: Sistema d'equazioni che conterrà lo stato e l'aggiunto
in	n	: Numero massimo di iterazioni

Implements Problem.

Definition at line 9 of file ProblemStokesEnergy.cc.

5.9.3.2 Real evaluateCostFunction (EquationSystems & stateAdj) const [virtual]

Metodo astratto per calcolare il valore del funzionale costo.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto

Returns

il valore del funzionale costo

Implements Problem.

Definition at line 128 of file ProblemStokesEnergy.cc.

5.9.3.3 Real computeGradient (EquationSystems & stateAdj, const Point & p) const [virtual]

Metodo per calcolare il valore del gradiente del funzionale costo in un punto.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto
in	р	: Punto in cui calcolare il gradiente

Returns

il valore del gradiente nel punto

Implements Problem.

Definition at line 166 of file ProblemStokesEnergy.cc.

5.9.3.4 Real sqrGradient (Equation Systems & *stateAdj*) **const** [virtual]

Metodo per calcolare la norma L^2 del gradiente.

Parameters

in	stateAdj	: Sistema d'equazioni che contiene lo stato e l'aggiunto
----	----------	--

Returns

il valore della norma L^2 del gradiente

Implements Problem.

Definition at line 177 of file ProblemStokesEnergy.cc.

5.9.3.5 void harmonicExtension (EquationSystems & perturbation, EquationSystems & stateAdj, const Real & lagrange) const [virtual]

Metodo astratto per calcolare l'estensione armonica qualora fosse previsto dalla tecnica di ottimizzazione di forma.;

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto
in	lagrange	: lagrangiano;

Implements Problem.

Definition at line 225 of file ProblemStokesEnergy.cc.

5.9.3.6 bool to BeMoved (const Node & node) const [virtual]

Implements Problem.

Definition at line 255 of file ProblemStokesEnergy.cc.

5.9.3.7 void fixCP (const MatrixXp & CP_grid, MatrixXp & mu)const [virtual]

Implements Problem.

Definition at line 261 of file ProblemStokesEnergy.cc.

5.9.3.8 Real lagrangeMult (EquationSystems & stateAdj) const [virtual]

Implements Problem.

Definition at line 278 of file ProblemStokesEnergy.cc.

The documentation for this class was generated from the following files:

- src/ProblemStokesEnergy.h
- src/ProblemStokesEnergy.cc

5.10 ShapeOptimization Class Reference

Classe astratta comune a tutte le tecniche di ottimizzazione.

#include <ShapeOptimization.h>

Inheritance diagram for ShapeOptimization:

Collaboration diagram for ShapeOptimization:

Public Member Functions

• ShapeOptimization (const Problem &, const std::string &, const Real &, const Index &, const Real &, const Real &=1.0e-4)

Costruttore.

virtual ∼ShapeOptimization ()=default

Distruttore (defaulted)

• void apply ()

Esegue il ciclo d'ottimizzazione.

- virtual void computePerturbation (EquationSystems &perturbation, EquationSystems &stateAdj)=0 Metodo astratto per calcolare la deformazione della mesh.
- virtual void applyPerturbation (const EquationSystems &perturbation)=0

Metodo astratto per applicare la deformazione alla mesh.

- void updateLagrange (const Real &)
 - Aggiorna il valore del moltiplicatore di lagrange $l_{k+1} = \frac{l+l_k}{2} + \frac{V-V_0}{V_0}$.
- Real getVolume () const

Misura l'area della mesh.

· void checkDomain () const

Controlla se non si sono invertiti dei triangoli della mesh in seguito alla deformazione.

Protected Attributes

· const Problem & problem_

problema che si vuole ottimizzare

std::string plotName_

nome utilizzato nella generazione dei file di output

std::shared_ptr< Mesh > mesh_

puntatore alla mesh su cui è definito il problema

· Real step_

passo utilizzato per il metodo di discesa del gradiente

Index maxIterationsNo

numero massimo di iterazioni

Real tolerance

tolleranza per il test d'arresto dell'incremento relativo

bool volume constraint

specifica se applicare o meno il vincolo di volume

Real armijoSlope

coefficiente di rilassamento per la regola di Armijo

· Real old_lagrange_

valore del lagrangiano al passo d'ottimizzazione precedente

· Real actual_lagrange_

valore del lagrangiano al passo d'ottimizzazione attuale

Real initialVolume_

area iniziale della mesh

5.10.1 Detailed Description

Classe astratta comune a tutte le tecniche di ottimizzazione.

Definition at line 34 of file ShapeOptimization.h.

5.10.2 Constructor & Destructor Documentation

5.10.2.1 ShapeOptimization (const Problem & problem, const std::string & directory, const Real & step, const Index & maxIterationsNo, const Real & tolerance, const bool & volume_constraint, const Real & armijoSlope = 1.0e-4)

Costruttore.

Parameters

in	problem	: Problema sul quale si vuole applicare la Shape Optimization
in	directory	: Directory in cui salvare i file di output
in	step	: Passo iniziale per il metodo di discesa del gradiente
in	maxIterationsNo	: Numero massimo di iterazioni

in	tolerance	: Tolleranza per il test d'arresto dell'incremento relativo
in	volume	: Specifica se applicare o meno il vincolo di volume
	constraint	
in	armijoSlope	: Coefficiente di rilassamento per la regola di Armijo.

Definition at line 3 of file ShapeOptimization.cc.

5.10.3 Member Function Documentation

5.10.3.1 virtual void computePerturbation (EquationSystems & perturbation, EquationSystems & stateAdj) [pure virtual]

Metodo astratto per calcolare la deformazione della mesh.

Parameters

out	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh
in	stateAdj	: Sistema d'equazioni contenente stato e aggiunto

Implemented in FFD_LS, DesignElement, FFD, and BoundaryDisplacement.

5.10.3.2 virtual void applyPerturbation (const EquationSystems & perturbation) [pure virtual]

Metodo astratto per applicare la deformazione alla mesh.

Parameters

	1	
in	perturbation	: Sistema d'equazioni contenente gli spostamenti da applicare alla mesh

Implemented in DesignElement, FFD, and BoundaryDisplacement.

5.10.3.3 void updateLagrange (const Real & lagrange)

Aggiorna il valore del moltiplicatore di lagrange $l_{k+1} = \frac{l+l_k}{2} + \frac{V-V_0}{V_0}$.

Parameters

in	lagrange	: media del gradiente sul bordo $l=rac{\int_{\partial\Omega}- abla Jd\sigma}{\int_{\partial\Omega}d\sigma}$

Definition at line 169 of file ShapeOptimization.cc.

5.10.3.4 Real getVolume () const

Misura l'area della mesh.

Returns

il valore dell'area della mesh

Definition at line 175 of file ShapeOptimization.cc.

The documentation for this class was generated from the following files:

- src/ShapeOptimization.h
- · src/ShapeOptimization.cc

5.11 StokesEnergyAdjoint Class Reference

Classe contenente i metodi necessari per calcolare l'aggiunto nel problema di Stokes.

#include <ProblemStokesEnergy.h>

Inheritance diagram for StokesEnergyAdjoint:

Collaboration diagram for StokesEnergyAdjoint:

Public Member Functions

- StokesEnergyAdjoint (EquationSystems &, const ProblemStokesEnergy &)
 Costruttore.
- void assemble ()

Assembla le matrici e i vettori per calcolare l'aggiunto nel problema di Stokes.

Private Attributes

• EquationSystems & stateAdj_

Sistemi d'equazioni contenente lo stato e l'aggiunto.

const ProblemStokesEnergy & problem_

Riferimento costante al problema di Stokes.

5.11.1 Detailed Description

Classe contenente i metodi necessari per calcolare l'aggiunto nel problema di Stokes.

Definition at line 143 of file ProblemStokesEnergy.h.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 StokesEnergyAdjoint (EquationSystems & stateAdj, const ProblemStokesEnergy & problem)

Costruttore.

Parameters

in	stateAdj	: Riferimento ai sistemi d'equazioni contenente lo stato e l'aggiunto
in	problem	: Riferimento costante al problema di Stokes

Definition at line 587 of file ProblemStokesEnergy.cc.

The documentation for this class was generated from the following files:

- src/ProblemStokesEnergy.h
- src/ProblemStokesEnergy.cc

5.12 StokesEnergyBC Class Reference

Classe contenente i metodi necessari per imporre le condizioni al bordo nel problema di Stokes.

#include <ProblemStokesEnergy.h>

Inheritance diagram for StokesEnergyBC:

Collaboration diagram for StokesEnergyBC:

Public Member Functions

- StokesEnergyBC (const Index &u_var, const Index &v_var, const Real &ux, const Real &uy)

 Costruttore
- virtual Number operator() (const Point &, const Real=0)

Operatore() non implementato.

- virtual void operator() (const Point &p, const Real time, DenseVector < Number > &output)
 Operatore() che restituisce il valore delle condizioni al bordo.
- · virtual AutoPtr< FunctionBase
 - < Number > > clone () const

Metodo per clonare l'oggetto.

Private Attributes

· const Index u_var_

Indice della variabile che fa riferimento alla componente x della velocità

const Index v_var_

Indice della variabile che fa riferimento alla componente Y della velocità

· const Real ux_

Componente lungo l'asse x della velocità in ingresso.

· const Real uy_

Componente lungo l'asse y della velocità in ingresso.

5.12.1 Detailed Description

Classe contenente i metodi necessari per imporre le condizioni al bordo nel problema di Stokes.

Definition at line 167 of file ProblemStokesEnergy.h.

5.12.2 Constructor & Destructor Documentation

5.12.2.1 StokesEnergyBC (const Index & u_var , const Index & v_var , const Real & ux, const Real & uy) [inline]

Costruttore.

Parameters

in	u_var	: Indice della variabile che fa riferimento alla componente \boldsymbol{x} della velocità
in	v_var	: Indice della variabile che fa riferimento alla componente y della velocità
in	ux	: Componente lungo l'asse x della velocità in ingresso
in	uy	: Componente lungo l'asse y della velocità in ingresso

Definition at line 178 of file ProblemStokesEnergy.h.

5.12.3 Member Function Documentation

5.12.3.1 virtual void operator() (const Point & p, const Real time, DenseVector< Number> & output) [inline], [virtual]

Operatore() che restituisce il valore delle condizioni al bordo.

Parameters

in	р	: Punto del bordo in cui valutare le condizioni al bordo	
in	time	: Istante temporale considerato	
out	output	: Vettore contenente le componenti delle condizioni al bordo nel punto e	
		all'istante considerato	

Definition at line 200 of file ProblemStokesEnergy.h.

5.12.3.2 virtual AutoPtr<FunctionBase<Number>> clone()const [inline],[virtual]

Metodo per clonare l'oggetto.

Returns

una nuova copia dell'oggetto attuale.

Definition at line 216 of file ProblemStokesEnergy.h.

The documentation for this class was generated from the following file:

• src/ProblemStokesEnergy.h

5.13 StokesEnergyHE Class Reference

Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema di Stokes.

#include <ProblemStokesEnergy.h>

Inheritance diagram for StokesEnergyHE:

Collaboration diagram for StokesEnergyHE:

Public Member Functions

- StokesEnergyHE (EquationSystems &, EquationSystems &, const Real &, const ProblemStokesEnergy &)
 Costruttore.
- void assemble ()

Assembla le matrici e i vettori per calcolare l'estensione armonica nel problema dell'elasticità

Private Attributes

- EquationSystems & perturbation_
 - Sistemi d'equazioni per gestire lo spostamento della mesh.
- EquationSystems & stateAdj_
 - Sistemi d'equazioni contenente lo stato e l'aggiunto.
- · Real lagrange_

Moltiplicatore di lagrange.

const ProblemStokesEnergy & problem_

Riferimento costante al problema di Stokes.

5.13.1 Detailed Description

Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema di Stokes.

Definition at line 91 of file ProblemStokesEnergy.h.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 StokesEnergyHE (EquationSystems & perturbation, EquationSystems & stateAdj, const Real & lagrange, const ProblemStokesEnergy & problem)

Costruttore.

Parameters

in	perturbation	: Riferimento ai sistemi d'equazioni per lo spostamento della mesh
in	stateAdj	: Riferimento ai sistemi d'equazioni contenente lo stato e l'aggiunto
in	lagrange	: Moltiplicatore di lagrange
in	problem	: Riferimento costante al problema di Stokes

Definition at line 331 of file ProblemStokesEnergy.cc.

The documentation for this class was generated from the following files:

- src/ProblemStokesEnergy.h
- src/ProblemStokesEnergy.cc

5.14 StokesEnergyState Class Reference

Classe contenente i metodi necessari per calcolare lo stato nel problema di Stokes.

#include <ProblemStokesEnergy.h>

Inheritance diagram for StokesEnergyState:

Collaboration diagram for StokesEnergyState:

Public Member Functions

- StokesEnergyState (EquationSystems &, const ProblemStokesEnergy &)
 Costruttore.
- void assemble ()

Assembla le matrici e i vettori per calcolare lo stato nel problema di Stokes.

Private Attributes

- EquationSystems & stateAdj_ Sistemi d'equazioni contenente lo stato e l'aggiunto.
- const ProblemStokesEnergy & problem_

Riferimento costante al problema di Stokes.

5.14.1 Detailed Description

Classe contenente i metodi necessari per calcolare lo stato nel problema di Stokes.

Definition at line 119 of file ProblemStokesEnergy.h.

5.14.2 Constructor & Destructor Documentation

5.14.2.1 StokesEnergyState (EquationSystems & stateAdj, const ProblemStokesEnergy & problem)

Costruttore.

Parameters

in	stateAdj	: Riferimento ai sistemi d'equazioni contenente lo stato e l'aggiunto
in	problem	: Riferimento costante al problema di Stokes

Definition at line 446 of file ProblemStokesEnergy.cc.

The documentation for this class was generated from the following files:

- src/ProblemStokesEnergy.h
- src/ProblemStokesEnergy.cc

Chapter 6

File Documentation

6.1 src/BoundaryDisplacement.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "ShapeOptimization.h"
Include dependency graph for BoundaryDisplacement.h:

This graph shows which files directly or indirectly include this file:

Classes

· class BoundaryDisplacement

Classe che eredita da ShapeOptimization. Utilizza la tecnica del boundary local displacement per eseguire l'ottimizzazione di forma.

52 File Documentation

6.1.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file BoundaryDisplacement.h.

6.2 src/DesignElement.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "ShapeOptimization.h"
Include dependency graph for DesignElement.h:

This graph shows which files directly or indirectly include this file:

Classes

· class DesignElement

Classe che eredita dalla classe ShapeOptimization, utilizza il metodo del Design Element descrivendo il bordo superiore e quello inferiore con polinomi di grado arbitrario.

6.2.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file DesignElement.h.

6.3 src/FFD.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "ShapeOptimization.h"
Include dependency graph for FFD.h:

54 File Documentation

This graph shows which files directly or indirectly include this file:

Classes

· class FFD

Classe che eredita dalla classe ShapeOptimization, utilizza il metodo della Free Form Deformation utilizzando come funzioni di base le B-Spline.

6.3.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file FFD.h.

6.4 src/FFD_LS.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "FFD.h"

Include dependency graph for FFD_LS.h:

This graph shows which files directly or indirectly include this file:

Classes

class FFD_LS

Classe che eredita dalla classe FFD, utilizza il metodo dei minimi quadrati con rilassamento per calcolare gli spostamenti da applicare ai control point.

6.4.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

56 File Documentation

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file FFD_LS.h.

6.5 src/Problem.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "typedefs.h"
Include dependency graph for Problem.h:

This graph shows which files directly or indirectly include this file:

Classes

class Problem

Classe astratta comune a tutti i problemi su cui si applica l'ottimizzazione.

6.5.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file Problem.h.

6.6 src/ProblemElasticity.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "Problem.h"

Include dependency graph for ProblemElasticity.h:

This graph shows which files directly or indirectly include this file:

Classes

· class ProblemElasticity

Classe che eredita da Problem e che rappresenta il problema dell'elasticità lineare.

· class ElasticityHE

Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema dell'elasticità

· class ElasticityState

Classe contenente i metodi necessari per calcolare lo stato (il sistema è autoaggiunto) nel problema dell'elasticità

58 File Documentation

6.6.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file ProblemElasticity.h.

6.7 src/ProblemStokesEnergy.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

#include "Problem.h"
Include dependency graph for ProblemStokesEnergy.h:

This graph shows which files directly or indirectly include this file:

Classes

· class ProblemStokesEnergy

Classe che eredita da Problem e che rappresenta il problema di Stokes.

• class StokesEnergyHE

Classe contenente i metodi necessari per calcolare l'estensione armonica nel problema di Stokes.

· class StokesEnergyState

Classe contenente i metodi necessari per calcolare lo stato nel problema di Stokes.

class StokesEnergyAdjoint

Classe contenente i metodi necessari per calcolare l'aggiunto nel problema di Stokes.

• class StokesEnergyBC

Classe contenente i metodi necessari per imporre le condizioni al bordo nel problema di Stokes.

6.7.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

```
Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it
```

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file ProblemStokesEnergy.h.

6.8 src/ShapeOptimization.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

```
#include "typedefs.h"
#include "Problem.h"
#include "ProblemElasticity.h"
#include "ProblemStokesEnergy.h"
Include dependency graph for ShapeOptimization.h:
```


60 File Documentation

This graph shows which files directly or indirectly include this file:

Classes

· class ShapeOptimization

Classe astratta comune a tutte le tecniche di ottimizzazione.

6.8.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

```
Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it
```

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file ShapeOptimization.h.

6.9 src/ShapeOptimizationBase.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

```
#include "BoundaryDisplacement.h"
#include "DesignElement.h"
#include "FFD.h"
#include "FFD_LS.h"
#include "GetPot.h"
```

Include dependency graph for ShapeOptimizationBase.h:

This graph shows which files directly or indirectly include this file:

6.9.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file ShapeOptimizationBase.h.

6.10 src/typedefs.h File Reference

Confronto tra alcune tecniche per l'ottimizzazione di forma.

62 File Documentation

```
#include <iostream>
#include <fstream>
#include <memory>
#include <boost/math/special_functions/binomial.hpp>
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include "libmesh/dirichlet_boundaries.h"
#include "libmesh/distributed_vector.h"
#include "libmesh/dof_map.h"
#include "libmesh/enum_solver_type.h"
#include "libmesh/equation_systems.h"
#include "libmesh/fe.h"
#include "libmesh/libmesh.h"
#include "libmesh/linear_implicit_system.h"
#include "libmesh/linear_solver.h"
#include "libmesh/mesh.h"
#include "libmesh/quadrature gauss.h"
#include "libmesh/sparse_matrix.h"
#include "libmesh/vtk_io.h"
#include "libmesh/zero_function.h"
#include "GetPot.h"
Include dependency graph for typedefs.h:
```


This graph shows which files directly or indirectly include this file:

Typedefs

• using Real = double

Typedef for real numbers.

```
• using Index = ptrdiff_t
```

Typedef for indexing variables.

• using MatrixXp = Matrix < Point, Dynamic, Dynamic >

Typedef for dense dynamic-sized matrices of points.

using VectorXp = Matrix< Point, Dynamic, 1 >

Typedef for dense dynamic-sized column vectors of points.

• using MatrixXr = Matrix < Real, Dynamic, Dynamic >

Typedef for dense real-valued dynamic-sized matrices.

using VectorXr = Matrix < Real, Dynamic, 1 >

Typedef for dense real-valued dynamic-sized column vectors.

• using SparseXr = Eigen::SparseMatrix< Real >

Typedef for sparse real-valued dynamic-sized matrices.

6.10.1 Detailed Description

Confronto tra alcune tecniche per l'ottimizzazione di forma.

Author

```
Pasquale Claudio Africa pasquale.africa@mail.polimi.it, Luca Ratti luca3.ratti@mail.-polimi.it, Abele Simona abele.simona@mail.polimi.it
```

Date

2015

Questo file fa parte del progetto "ShapeOpt".

Copyright

Copyright © 2014 Pasquale Claudio Africa, Luca Ratti, Abele Simona. All rights reserved. This project is released under the GNU General Public License.

Definition in file typedefs.h.

Index

applyPerturbation	evaluateElasticityTensor
BoundaryDisplacement, 13	ElasticityState, 20
DesignElement, 16	
FFD, 23	FFD, 20
ShapeOptimization, 42	applyPerturbation, 23
	basisFunction, 23
basisFunction	computePerturbation, 23
FFD, 23	deform, 24
BoundaryDisplacement, 11	FFD, 22
applyPerturbation, 13	FFD, 22
BoundaryDisplacement, 12	psi, 23
BoundaryDisplacement, 12	psilnv, 24
computePerturbation, 13	FFD_LS, 24
computer crtarbation, 10	computePerturbation, 27
clone	FFD_LS, 26
StokesEnergyBC, 46	FFD_LS, 26
computeGradient	fixCP
•	Problem, 30
Problem, 29	ProblemElasticity, 35
ProblemElasticity, 33	ProblemStokesEnergy, 39
ProblemStokesEnergy, 37	TroblemotokesEnergy, 39
computePerturbation	get_mesh
BoundaryDisplacement, 13	Problem, 30
DesignElement, 15	get_name
FFD, 23	Problem, 30
FFD_LS, 27	getVolume
ShapeOptimization, 42	ShapeOptimization, 42
	ShapeOptimization, 42
deform	harmonicExtension
DesignElement, 16	Problem, 29
FFD, 24	ProblemElasticity, 33
DesignElement, 13	ProblemStokesEnergy, 39
applyPerturbation, 16	Troblemotoriose fields, 50
computePerturbation, 15	lagrangeMult
deform, 16	Problem, 30
DesignElement, 15	ProblemElasticity, 35
DesignElement, 15	ProblemStokesEnergy, 39
psi, 16	
psilnv, 16	operator()
	StokesEnergyBC, 46
ElasticityHE, 17	37 ,
ElasticityHE, 18	Problem, 27
ElasticityHE, 18	computeGradient, 29
ElasticityState, 18	evaluateCostFunction, 29
ElasticityState, 20	fixCP, 30
ElasticityState, 20	get_mesh, 30
evaluateElasticityTensor, 20	get_name, 30
evaluateCostFunction	harmonicExtension, 29
Problem, 29	lagrangeMult, 30
ProblemElasticity, 33	Problem, 28
ProblemStokesEnergy, 37	resolveStateAndAdjointEquation, 28
~ · ·	• • • • • • • • • • • • • • • • • • • •

INDEX 65

sqrGradient, 29 toBeMoved, 30 ProblemElasticity, 31 computeGradient, 33 evaluateCostFunction, 33 fixCP, 35 harmonicExtension, 33 lagrangeMult, 35 ProblemElasticity, 32 ProblemElasticity, 32 resolveStateAndAdjointEquation, 32 sqrGradient, 33	StokesEnergyAdjoint, 44 StokesEnergyBC, 44 clone, 46 operator(), 46 StokesEnergyBC, 45 StokesEnergyBC, 45 StokesEnergyHE, 46 StokesEnergyHE, 48 StokesEnergyHE, 48 StokesEnergyState, 48 StokesEnergyState, 49 StokesEnergyState, 49
toBeMoved, 35	to Do Moyard
ProblemStokesEnergy, 35	toBeMoved
computeGradient, 37	Problem, 30
evaluateCostFunction, 37	ProblemElasticity, 35
fixCP, 39	ProblemStokesEnergy, 39
harmonicExtension, 39	updateLagrange
lagrangeMult, 39 ProblemStokesEnergy, 37	ShapeOptimization, 42
ProblemStokesEnergy, 37 ProblemStokesEnergy, 37	
resolveStateAndAdjointEquation, 37	
sqrGradient, 37	
toBeMoved, 39	
psi	
DesignElement, 16	
FFD, 23	
psilnv	
DesignElement, 16	
FFD, 24	
,	
resolveStateAndAdjointEquation	
Problem, 28	
ProblemElasticity, 32	
ProblemStokesEnergy, 37	
ShanaOntimization 20	
ShapeOptimization, 39	
applyPerturbation, 42 computePerturbation, 42	
getVolume, 42	
ShapeOptimization, 41	
ShapeOptimization, 41	
updateLagrange, 42	
sqrGradient	
Problem, 29	
ProblemElasticity, 33	
ProblemStokesEnergy, 37	
src/BoundaryDisplacement.h, 51	
src/DesignElement.h, 52	
src/FFD.h, 53	
src/FFD_LS.h, 55	
src/Problem.h, 56	
src/ProblemElasticity.h, 57	
src/ProblemStokesEnergy.h, 58	
src/ShapeOptimization.h, 59	
src/ShapeOptimizationBase.h, 60	
src/typedefs.h, 61	
StokesEnergyAdjoint, 43	
StokesEnergyAdjoint, 44	