

Course > Unit 6: ... > Lec. 12:... > 13. Exe...

13. Exercise: The variance of a sum

Exercises due Mar 25, 2020 05:29 IST Completed

Exercise: The variance of a sum

1/1 point (graded)

The random variables X_1,\ldots,X_8 satisfy ${f E}\,[X_i]=1$ and ${\sf Var}\,(X_i)=4$ for $i=1,2,\ldots,8$. Also, for $i\neq j$, ${f E}\,[X_iX_j]=3$. Then,

$$\mathsf{Var}\left(X_1+\cdots+X_8
ight)= oxed{144}$$
 $lacktriangledown$ Answer: 144

Solution:

For $i \neq j$, we have $\mathsf{Cov}\left(X_i, X_j\right) = \mathbf{E}\left[X_i X_j\right] - \mathbf{E}\left[X_i\right] \cdot \mathbf{E}\left[X_j\right] = 3 - 1 = 2$. Thus,

$$Var(X_1 + \cdots + X_8) = 8 \cdot Var(X_1) + 56 \cdot Cov(X_1, X_2) = 32 + 112 = 144.$$

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 6: Further topics on random variables:Lec. 12: Sums of independent r.v.'s; Covariance and correlation / 13. Exercise: The variance of a sum

Show all posts

by recent activity 🗸

Q	<u>question about number before covariance in explanation</u> <u>I'm trying to be spoiler free, so this might not make complete sense. I got most of the work right for this</u>	
?	question are we assuming here zero means?	3
٩	<u>Use python</u> It's nice to use python and do a quick nested loop to solve this problem!	4
-	No Python needed The previous lecture gives you the formulas. Find cov(Xi, Xj) and voila.	į
2	Hint: Don't assume zero mean while calculating the covariance.	

© All Rights Reserved

