Examen HMIN211 – partie traitement linéaire des images.

Tout document autorisé. Aucune réponse ne sera considérée sans explication.

1 Convolution sur les images.

10	4	6	8	12	14	18	24
8	4	6	4	0	4	6	4
12	6	24	28	12	0	0	2
12	14	16	14	10	12	14	12
6	8	16	12	10	8	8	6
0	4	12	8	8	6	2	0

0	0,1	0	
0,2	0,4	0,2	
0	0,1	0	

Figure 1 : Image a convoluer

Figure 2 : noyau de convolution

1.1 Propriété des noyaux de convolution.

Expliquez ce qu'est un noyau de convolution et ce que réalise (à votre avis) le noyau de convolution de la Figure 2.

1.2 Calcul de la convolution.

En supposant que l'on convolue l'image de la Figure 1 avec ce noyau de convolution de la Figure 2, donnez les valeurs des pixels de la 3^{ième} ligne et 4^{ième} colonne, de la 4^{ième} ligne et 6^{ième} colonne et enfin de la 2^{ième} ligne et 6^{ième} colonne.

1.3 Effet de bord.

Expliquez quelles sont les méthodes utilisées pour réaliser l'estimation des pixels de bord de l'image (par exemple celui de la 2^{ième} ligne et 1^{ième} colonne).

2 Transformée de Fourier.

2.1 Définition.

Rappelez ce qu'est la transformée de Fourier d'une image.

2.2 Spectre d'un motif de rayures.

Voici une image a niveau de gris comportant une texture régulière.

Ci-dessous sont représentées les modules de quatre transformées. Laquelle lui correspond et pourquoi ?

2.3 Spectre d'un motif de damier.

Voici deux images de damier et leur transformée de Fourier. Quel est la bonne combinaison ? (A1, B2) ou (A2, B1) ? Pourquoi ?

3 Dérivation.

3.1 Définition.

Expliquez ce que l'on appelle « dérivée d'une image ». Quel autre nom lui donne-t-on ?

3.2 Calcul.

Quelle méthode emploi-t-on pour calculer une telle image.

3.3 Utilisation.

Donnez un ou deux exemples d'utilisation de la dérivée d'une image.