Name: Zane Vijay Falcau

Rollno: 9603

AI

Assignment -1

- 4) Trade alls & resources constaints: Rational agents must often make trade als due to limited resources such as time energy or expected to yield highest whithy our payoff
- Experiences to improve their future decision maling. this recurring process involves identifying patterns in data adjusting strategies. Experiences the models of the environments

Rationality

Croal dureded behaviour

Decision making under uncentaunity

Adoption to changing environment

Trade offs & resource constaurate

Leaving & improvement

(P.2) The nature of environment in which intelligent argents operate remains worderly depending an opphication domain. There are several key characebrushous that define an environment & significantly influence the design and behaviour of agents.

	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Carles a desert
CHARACTERETICS	DESCRIPTION	EXAMPLES
Obsuw able		Ches (full observedo
	to complete intomoution about	self-druing com
	the state of onewon ment	partially obsermable)
Deleuministic	wheather the outrome of astron	
	is entury predictable on it	
1 to 1	them is randoners or unertrinity	(Stochastie)
	in the outcomes.	
Episode	wheather each interaction	chers (cpisochie)
	between the argent & the	mare ravigelson.
	environment is self contained	(sequential).
	or if there is a so year of	Steps
	a chom of states.	
Dynamie	who they the environment	tinancial mouleets
	changes over time with	(dynamic.);
	response to agent actions	
	or externed factors.	,
Discrede	whether the state &	heard numes
		Board gours es (distrete de)
		Robotics
La Figure UX		(continuous)
l		- Crecific

Example of diff-types of environments of challenges they present

TYPE	EXAMPLE	CHAUENGES POR ALENTS
Board games	Chers, go	Voist search, space, optimed desision making uneutainty.
Roboties	Manufacturing Aloovs	Serson precaption path planning object manipulation.
Natural language processing	Text (speech recognition.	contextual understanding ambiguity resolution.

- (9.3)
 The typical components of an intelligent agent binductest

 i) Perception'— This components is responsible for seeing

 Eq precious the environment. It gethers information
 from sensors which would be physical sensors like

 Cambra Eq microphones in robotics or abstract sensors

 like data input in softwere agents.
 - 2) Actuation: The actuation components stores the agents to interact with the environment. It consists of effects which are mechanisms through which the agents can exent control over intuence its surroundings.

3) knowledge baser This component stores he agent internal represention of the woold including its belief, goals, plans and past experiences. The knowledge have is essential for deers rom making and quiding the agents beheurisour 4) Resoning - The reasoning components processerinto from the perception module as the knowledge base to make decusions and choose decisions that are expected to acheive the agent goods Learning agents: Improve their performan over time by leaviling from experience Intelligent Agent Perception Actuation knowledgeb are Keasoning agents Adaption deusion molling agents Agents Utility based

- Qu') Duthine of process of problem solveney by searching O Problem formulation: Problem solving agents begin by defying the problem they need to solve This involves indentifying the initial state, the possible actions on operators available to the agent: the goal state our state that the agentain.
- Deposition representation's once the problem is formulated problem solving agents represent the a suitable tormatism such as a state space a graph on a set of logical propositions.
- a grouph on a set of logical propositions.

 3) Search Storage scleckiont Problem solving agents
 then choose a search stretgy to explore the
 problem space & find a solution
- Search process. Begins the search process from the initial phases of systematrically explores the problem space by applying the choosen search strategy.
- 5 Solution reconstruction. Once a good is reached the problem solveney agent reconstruct the solution path by trading back. Through the sequence of actions on states, their lead to the good.

Ilstrative example:

Problem formulation: Initial state (Stanting position in the mare I actions (mounts in four duretion up, done, 1ett, right) good state destination in the mare)

*	problem representation: Still space representation
	where each state corresponds to a possible
	in the mase
	Scarch shabegy : Depth first search on breadth
	Anst securch to explore the mare by moving
- 30	from one position to another, avoiding obstades
	until it reaches the goal positions.
	Problem formulation
	Problem representation
	1
	Search Shallegy schedion
	1
	Seauch Process
	Solution Reconstruction
-	
-	
11	