TUGAS BESAR Bagian B: Implementasi Mini-batch Gradient Descent

IF3270 Pembelajaran Mesin

Disusun Oleh:

Gede Prasidha Bhawarnawa	13520004
Moh. Aghna Maysan Abyan	13521076
Yanuar Sano Nur Rasyid	13521110
Muhammad Naufal Nalendra	13521152

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG 2023/2024

IMPLEMENTASI

Berikut adalah penjelasan implementasi dari program yang telah dibuat.

MLPClassifier Model

```
iris = load_iris()
learning_data = np.array(iris.data)
learning_target = np.array(iris.target)
classifier = MLPClassifier(
   hidden_layer_sizes=(5,3,3),
   activation='relu',
   max_iter=1000,
   learning_rate='constant',
   learning_rate_init=0.001,
   random_state=1
classifier.fit(learning_data, learning_target)
y_pred = classifier.predict(learning_data)
print("SKLearn MLPClassifier with 5,3,3,2 hidden layers and relu activation
      function")
print(f"Prediction:\n{y_pred}")
print()
print(f"Target:\n{learning_target}")
print()
weight_data = classifier.coefs_
bias_data = classifier.intercepts_
print("layer count: {}".format(classifier.n_layers_))
print("iteration count: {}".format(classifier.n_iter_))
print("output count: {}".format(classifier.n_outputs_))
print("Weight Input: \n", weight_data[0])
print("Bias Input: \n", bias_data[0])
print("Weight Output: \n", weight_data[2])
print("Bias Output: \n", bias_data[2])
error = countSSError(y_pred, learning_target)
print(f"Error: {error / len(learning_data) * 100} %")
```

> Penjelasan

Kode di atas adalah contoh penggunaan MLPClassifier dari modul sklearn.neural_network untuk melakukan klasifikasi menggunakan *Artificial Neural Network* (Multilayer Perceptron) pada

dataset Iris

Berikut penjelasan untuk setiap bagian kode:

- 1. Import Library dan Dataset:
 - a. load iris() dari sklearn.datasets digunakan untuk memuat dataset Iris.
 - b. MLPClassifier dari sklearn.neural network digunakan untuk membuat model MLP.
 - c. np.array() dari numpy digunakan untuk mengonversi data dan target ke dalam array numpy.
- 2. Pelatihan Model:
 - a. MLPClassifier diinisialisasi dengan parameter:
 - i. hidden layer sizes=(5, 3, 3)
 - ii. activation='relu':
 - iii. max iter=1000:
 - iv. learning rate='constant':
 - v. learning rate init=0.001:
 - vi. random state=1:
 - b. Model kemudian dipelajari (fit()) dengan menggunakan data latih dan target.
- 3. Prediksi:
 - a. Model melakukan prediksi (predict()) terhadap data latih yang sama.
- 4. Menampilkan Hasil:
 - a. Hasil prediksi dan target kemudian ditampilkan beserta informasi seperti jumlah lapisan, jumlah iterasi, dan jumlah output.
 - b. Error dari model dihitung dan ditampilkan.

❖ Tensorflow Model

```
import ison
import tensorflow as tf
# Define the loss function
def loss_function(y_true, y_pred, activation_function):
    squared_error = tf.square(y_true - y_pred)
   loss = tf.reduce_sum(squared_error) / tf.cast(tf.shape(y_true)[0], tf.float32)
   return 0.5 * loss
# Load the JSON data
with open('testcase/softmax_two_layer.json') as f:
   data = json.load(f)
# Define the model architecture
class TensorModel(tf.keras.Model):
   def __init__(self, input_size, layers):
        super(TensorModel, self).__init__()
        self.dense_layers = []
        for i, layer in enumerate(layers):
```

```
activation_function = layer["activation_function"]
            num_neurons = layer["number_of_neurons"]
            self.dense_layers.append(tf.keras.layers.Dense(num_neurons,
                                      activation=activation_function, use_bias=False,
                                      name=f'dense_{i}'))
        self(tf.keras.Input(shape=(input_size,)))
    def call(self, inputs):
        x = inputs
        for layer in self.dense_layers:
            # Concatenate a column vector of ones to the input data
            x_{\text{with\_bias}} = \text{tf.concat}([\text{tf.ones}((\text{tf.shape}(x)[0], 1)), x], axis=1)
            x = layer(x_with_bias)
        return x
# Parse JSON data
input_size = data["case"]["model"]["input_size"]
layers = data["case"]["model"]["layers"]
# Extract input data from JSON and add bias
json_input = data["case"]["input"]
input_with_bias = json_input
input_data = tf.constant(input_with_bias, dtype=tf.float32)
# Extract target data from JSON and reshape it
json_target = data["case"]["target"]
target_data = tf.constant(json_target, dtype=tf.float32)
height, width = target_data.shape
target_data = tf.reshape(target_data, [1, height, width])
# Extract other parameters from JSON
initial_weights = [tf.constant(weights, dtype=tf.float32) for weights in
                  data["case"]["initial_weights"]]
learning_rate = data["case"]["learning_parameters"]["learning_rate"]
batch_size = data["case"]["learning_parameters"]["batch_size"]
max_iteration = data["case"]["learning_parameters"]["max_iteration"]
error_threshold = data["case"]["learning_parameters"]["error_threshold"]
# Initialize the model
model = TensorModel(input_size, layers)
# Set the initial weights for the dense layers
for i, weights in enumerate(initial_weights):
    model.dense_layers[i].set_weights([weights])
optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
# Training
for iteration in range(max_iteration):
    total_loss = 0
    for i in range(0, input_data.shape[0], batch_size):
        x_batch = input_data[i:i+batch_size]
        y_batch = target_data[i:i+batch_size]
```

```
with tf.GradientTape() as tape:
            predictions = model(x_batch, training=True)
            # activation_function = layers[i]["activation_function"]
            loss = loss_function(y_batch, predictions, activation_function)
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))
        total_loss += loss
   avg_loss = total_loss / (input_data.shape[0] / batch_size)
   # Check if the average loss is below the error threshold
   if avg_loss < error_threshold:</pre>
        print(f"Error threshold reached. Stopping training at iteration {iteration +
              1}.")
        break
# Print the final weights and check
final_weights = [layer.get_weights()[0] for layer in model.dense_layers]
expected_final_weights = data["expect"]["final_weights"]
print("Final Weights:")
for i, weights in enumerate(final_weights):
   print(f"Layer {i+1} weights:")
   print(weights)
print("Stopped by:", "max_iteration" if iteration == max_iteration - 1 else
      "error_threshold")
```

➤ Penjelasan

Kode di atas melakukan pelatihan neural network metode backpropagation menggunakan *library* tensorflow dengan arsitektur dari file JSON *test case* yang diberikan

Berikut penjelasan untuk setiap bagian kode:

- 1. Import *Library*: Mengimport modul json dan tensorflow
- 2. Mendefinisikan *loss function*: Fungsi *loss function* didefinisikan untuk menghitung loss model
- 3. Muat Data JSON: Data JSON dimuat dari directory yang ditentukan
- 4. Mendefinisikan Arsitektur Model: Kelas TensorModel didefinisikan untuk model neural network dengan backpropagation
- 5. Parse Data JSON: Data JSON di-*parse* untuk mendapatkan data yang dibutuhkan seperti ukuran input, lapisan-lapisan model, data input dan target, serta parameter pembelajaran lainnya.
- 6. Inisialisasi Model: Model dibuat menggunakan kelas TensorModel dengan bobot awal yang sudah ditentukan oleh data JSON

- 7. Inisialisasi Optimizer: Optimizer SGD (Stochastic Gradient Descent) diinisialisasi dengan *learning rate* yang diberikan.
- 8. Pelatihan Model: Model dilatih dengan menggunakan *loop* hingga jumlah iterasi maksimum atau *error threshold* dilampaui
- 9. Cetak Bobot Akhir: Menunjukkan bobot akhir model setelah diperbarui. Hasil ini menjadi pembantu untuk menentukan apakah pelatihan model sudah benar

Class ActivationFunctions

```
class ActivationFunctions:
   @staticmethod
   def linear(x, derivative=False):
        if derivative:
            return 1
        return x
   @staticmethod
   def relu(x, derivative=False):
        if derivative:
            return np.where(x \leq 0, 0, 1)
        return np.maximum(0, x)
   @staticmethod
   def sigmoid(x, derivative=False):
        if derivative:
            return x * (1 - x)
        return 1 / (1 + np.exp(-x))
   @staticmethod
   def softmax(x, derivative=False):
        if derivative:
            return x * (1 - x)
        return np.exp(x) / np.sum(np.exp(x), axis=0, keepdims=True)
```

> Penjelasan

Kode di atas memiliki semua metode statik untuk tiap fungsi aktivasi yang digunakan pada *neural networks*.

Berikut penjelasan untuk setiap bagian kode:

- 1. linear: Implementasi fungsi aktivasi linear.
- 2. relu: Implementasi fungsi aktivasi ReLU.
- 3. sigmoid: Implementasi fungsi aktivasi sigmoid.
- 4. softmax: Implementasi fungsi aktivasi softmax.

Class NN

```
class NN:
   def __init__(self, model_config, initial_weights):
        self.input_size, self.layers = parse_model(model_config)
        self.weights = np.array(initial_weights)
        self.bias = 1
        self.learning_rate = None
        self.batch_size = None
        self.max_iteration = None
        self.error_threshold = None
   def forward_propagation(self, x):
        input_data = np.array(x)
        for layer, weight in zip(self.layers, self.weights):
            input_data = np.append(self.bias, input_data)
            activation_function = getattr(ActivationFunctions,
                                  layer['activation_function'])
            output = activation_function(np.dot(input_data, weight))
            input_data = output
        return output
   def train(self, input_data, target, learning_rate, batch_size, max_iteration,
              error_threshold):
        self.learning_rate = learning_rate
        self.batch_size = batch_size
        self.max_iteration = max_iteration
        self.error_threshold = error_threshold
        for epoch in range(max_iteration):
            total_error = 0.0
            for i in range(0, len(input_data), batch_size):
                batch_input = input_data[i:i+batch_size]
                batch_target = target[i:i+batch_size]
                batch error = 0.0
                deltas = [None] * len(self.layers)
                for x, t in zip(batch_input, batch_target):
                    delta = 0
                    output = self.forward_propagation(x)
                    # Compute error
                    error = t - output
                    batch_error += np.sum(error ** 2 / 2)
                    # Backpropagation
                    delta = - error
```

```
for idx, layer in enumerate(self.layers[::-1]):
                activation = getattr(ActivationFunctions,
                             layer['activation_function'])
                error = -1 * np.log(output) if activation == "softmax" else
                delta_output = delta * activation(output, derivative=True)
                dw = np.append(self.bias, x)
                delta_output = learning_rate * np.outer(delta_output, dw)
                if idx > 0 and deltas[-idx] is not None:
                    delta_output = np.dot(self.weights[-idx][ 1:].T,
                                   deltas[-idx])
                if deltas[-idx-1] is None:
                    deltas[-idx-1] = delta_output
                else:
                    deltas[-idx-1] += delta_output
        total_error += batch_error
        # Update weights
        for idx, delta in enumerate(deltas):
            self.weights[idx] -= delta.T
   avg_error = total_error / len(input_data)
   print(f"Epoch {epoch + 1}/{max_iteration}, Average Error: {avg_error}")
   if avg_error < error_threshold:</pre>
        print("Training stopped: Error threshold reached.")
        break
print("Training complete.")
```

> Penjelasan

Kode di atas melakukan seluruh proses terkait feed forward neural network (FFNN)

Berikut penjelasan untuk setiap bagian kode:

- 1. init : Inisialisasi semua atribut yang dibutuhkan.
- 2. forward_propagation: Melakukan *propagation* pada input data melalui *neural network*, seperti proses pada layer, memasukan nilai bias, menerapkan fungsi aktivasi, serta meng-*update* input.
- 3. train: Melakukan pelatihan *neural network* dengan input data yang ada serta nilai targetnya, seperti melakukan iterasi epoch, pemrosesan batch, perhitungan error,

backpropagation, dan meng-update bobot.

HASIL PENGUJIAN

Hasil pengujian melalui perhitungan manual pada Google Spreadsheets dapat dilihat pada *link* berikut :

 $\underline{https://docs.google.com/spreadsheets/d/1BokxcCFVVMqee4Me-yi_3ygKHWefYMaPos2YZVXc-sQ/edit?usp=sharing}\\$

1	(Activation)	Output O2 (Activation)	Output O3 (Activation)			TARGET 011	TARGET 012	TARGET 013					
2	0.7	-1.1	0.5			1.3	-0.7	0.1					
	Error o1	Error 02	Error o3	Error Total									
	0.18	0.08	0.08	0.34									
	JEHO M	JE110-12	45/40-42		10.44/40-44	10.12/411-12	102/48/-12		101-14/-0104	481-447-000	451-447-0000		
	dE/dOut1 -0.6	dE/dOut2 -0.4	dE/dOut3 0.4		dOut1/dNet1	dOut2/dNet2	dOut2/dNet3		dNet1/dW01	dNet1/dW02	dNet1/dW03 2		
	-0.0	-0.4	0.4			'	'		'	'	2		
	dE/dW01	dE/dW02	dE/dW03						dNet2/dW11	dNet2/dW12	dNet2/dW13		
)	-0.6	-0.6	-1.2						1	1	2		
	dE/dW11	dE/dW12	dE/dW13										
	-0.4	-0.4	-0.8						dNet3/dW21	dNet3/dW22	dNet3/dW23		
	dE/dW21	dE/dW22	dE/dW23						1	1	2		
	0.4	0.4	8.0										
						dW01+	dW02+	dW03+		W01+	W02+	W03+	
						-0.06	-0.06	-0.12		0.22	0.64	0.28	FINA
,						dW11+	dW12+	dW13+		W11+	W12+	W13+	
3						-0.04	-0.04	-0.08		0.36	0.3	-0.7	RESU
)						dW21+ 0.04	dW22+ 0.04	dW23+ 0.08		W21+ 0.11	W22+ -0.89	W23+ 0.37	
1						0.04	0.04	0.00		0.11	-0.03	0.51	
2					total	dW01+	dW02+	dW03+					
3						-0.12	-0.24	-0.18					
						dW11+	dW12+	dW13+					
5						-0.06	-0.1	-0.1					
5						dW21+	dW22+	dW23+					
7						0.09	0.19	0.13					

```
linear_small_lr.json
```

30	Output O1 (Activation)	Output O2 (Activation)	Output 03 (Activation)			TARGET 011	TARGET 012	TARGET 013					
31	0.7	-1.1	0.5			1.3	-0.7	0.1					
32													
33	Error o1	Error 02	Error o3	Error Total									
34	0.18	0.08	0.08	0.34									
35													
36	dE/dOut1	dE/dOut2	dE/dOut3		dOut1/dNet1	dOut2/dNet2	dOut2/dNet3		dNet1/dW01	dNet1/dW02	dNet1/dW03		
37	-0.6	-0.4	0.4		1	1	1		1	1	2		
38													
39	dE/dW01	dE/dW02	dE/dW03						dNet2/dW11	dNet2/dW12	dNet2/dW13		
40	-0.6	-0.6	-1.2		dW01+	dW02+	dW03+		1	1	2		
41	dE/dW11	dE/dW12	dE/dW13		-0.0006	-0.0006	-0.0012						
42	-0.4	-0.4	-0.8		dW11+	dW12+	dW13+		dNet3/dW21	dNet3/dW22	dNet3/dW23		
43	dE/dW21	dE/dW22	dE/dW23		-0.0004	-0.0004	-0.0008		1	1	2		
44	0.4	0.4	8.0		dW21+	dW22+	dW23+						
45					0.0004	0.0004	0.0008			W01+	W02+	W03+	
46					total					0.1012	0.4024	0.1018	
47					dW01+	dW02+	dW03+			W11+	W12+	W13+	FINAL
48					-0.0012	-0.0024	-0.0018			0.3006	0.201	-0.799	RESULT
49					dW11+	dW12+	dW13+			W21+	W22+	W23+	
50					-0.0006	-0.001	-0.001			0.1991	-0.7019	0.4987	
51					dW21+	dW22+	dW23+						
52					0.0009	0.0019	0.0013						

```
Epoch 1/1, Average Error: 0.3325
Training complete.
[[[ 0.1012  0.3006  0.1991]
      [ 0.4024  0.201  -0.7019]
      [ 0.1018  -0.799  0.4987]]]
```

linear_two_iteration.json

87	Output O1 (Activation)	Output O2 (Activation)	Output O3 (Activation)			TARGET 011	TARGET 012	TARGET 013				
88	1.42	-0.74	-0.04			1.3	-0.7	0.1				
89												
90	Error o1	Error 02	Error o3	Error Total								
91	0.0072	0.0008	0.0098	0.0178								
92												
93	dE/dOut1	dE/dOut2	dE/dOut3		dOut1/dNet1	dOut2/dNet2	dOut2/dNet3		dNet1/dW01	dNet1/dW02	dNet1/dW03	
94	0.12	-0.04	-0.14		1	1	1		1	1	2	
95												
96	dE/dW01	dE/dW02	dE/dW03		dW01+	dW02+	dW03+		dNet2/dW11	dNet2/dW12	dNet2/dW13	
97	0.12	0.12	0.24		0.012	0.012	0.024		1	1	2	
98	dE/dW11	dE/dW12	dE/dW13		dW11+	dW12+	dW13+					
99	-0.04	-0.04	-0.08		-0.004	-0.004	-0.008		dNet3/dW21	dNet3/dW22	dNet3/dW23	
100	dE/dW21	dE/dW22	dE/dW23		dW21+	dW22+	dW23+		1	1	2	
101	-0.14	-0.14	-0.28		-0.014	-0.014	-0.028					
102					total				W01+	W02+	WO3+	
103					dW01+	dW02+	dW03+		0.166	0.502	0.214	
104					0.054	0.138	0.066		W11+	W12+	W13+	FINAL
105					dW11+	dW12+	dW13+		0.338	0.226	-0.718	RESULT
106					0.022	0.074	0.018		W21+	W22+	W23+	
107					dW21+	dW22+	dW23+		0.153	-0.789	0.427	
108					-0.043	-0.101	-0.057					

```
Epoch 1/2, Average Error: 0.3325

Epoch 2/2, Average Error: 0.090925000000000002

Training complete.

[[[ 0.166  0.338  0.153]
       [ 0.502  0.226 -0.789]
       [ 0.214 -0.718  0.427]]]
```

relu_b.json

30	Output O1	Output O2	Output O3										
30	(Activation)	(Activation)	(Activation)			TARGET 011	TARGET 012	TARGET 013					
31	0.21	1.05	0.35			0.1	0.1	1					
32													
33	Error o1	Error 02	Error o3	Error Total									
34	0.00605	0.45125	0.21125	0.66855									
35													
36	dE/dOut1	dE/dOut2	dE/dOut3		dOut1/dNet1	dOut2/dNet2	dOut2/dNet3		dNet1/dW01	dNet1/dW02	dNet1/dW03		
37	0.11	0.95	-0.65		1	1	1		1	-0.3	-1		
38													
39	dE/dW01	dE/dW02	dE/dW03						dNet2/dW11	dNet2/dW12	dNet2/dW13		
40	0.11	-0.033	-0.11		dW01+	dW02+	dW03+		1	-0.3	-1		
41	dE/dW11	dE/dW12	dE/dW13		0.011	-0.0033	-0.011						
42	0.95	-0.285	-0.95		dW11+	dW12+	dW13+		dNet3/dW21	dNet3/dW22	dNet3/dW23		
43	dE/dW21	dE/dW22	dE/dW23		0.095	-0.0285	-0.095		1	-0.3	-1		
44	-0.65	0.195	0.65		dW21+	dW22+	dW23+						
45					-0.065	0.0195	0.065			W01+	W02+	W03+	
46										-0.211	0.3033	-0.489	
47				total	dW01+	dW02+	dW03+			W11+	W12+	W13+	FINAL
48					0.011	-0.0033	-0.011			0.105	0.5285	-0.905	RESULT
49					dW11+	dW12+	dW13+			W21+	W22+	W23+	
50					0.095	-0.0285	-0.095			0.885	0.3005	0.291	1
51					dW21+	dW22+	dW23+						
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50					0.115	0.1995	0.209						

sigmoid.json

465											
466	Epoch	Bias	X1	X2		W01	W02	W03		Learning Rate	
467	10	1	0	0.5		0.2392995654	0.1358761819	0.8337736008		0.1	
468						W11	W12	W13			
469	Sum O1	Sum O2				0.0639296315	0.6436190709	0.2383457449			
470	0.6561863658	0.1831025039									
471											
472											
473	Output O1 (Activation)	Output O2 (Activation)				TARGET OUT1	TARGET OUT2				
474	0.6584031888	0.5456481618				1	0				
475											
476	Error o1	Error 02		Error Total							
477	0.0583441907	0.1488659583		0.207210149							
478											
479	dE/dOut1	dE/dOut2			dOut1/dNet1	dOut2/dNet2			dNet1/dW01	dNet1/dW02	dNet1/dW0
480	-0.3415968112	0.5456481618			0.2249084298	0.2479162453			1	0	0.5
481											
482	dE/dW01	dE/dW02	dE/dW03						dNet2/dW11	dNet2/dW12	dNet2/dW1
483	-0.07682800241	0	-0.03841400121						1	0	0.5
484	dE/dW11	dE/dW12	dE/dW13								
485	0.1352750435	0	0.06763752177								
486						W01	W02	W03			
487					FINAL	0.2329117629	0.1288408806	0.8376150009	RESULT		
488					LINAL	W11	W12	W13	RESULI		
489						0.0601534562	0.6484947354	0.2315819927			

mlp.json

57	Output O1 (Activation)	Output O2 (Activation)				TARGET 011	TARGET 012			
58	0	0.12				0.1	1			
59										
60	Error o1	Error o2		Error Total						
61	0.005	0.3872		0.3922						
62										
63	dE/dOut1	dE/dOut2			dOut1/dNet1	dOut2/dNet2		dNet1/dW21	dNet1/dW22	dNet1/dW2
64	-0.1	-0.88			0	1		1	-0.36	-0.2
65										
66	dE/dW21	dE/dW22	dE/dW23		W01	W02	W03	dNet2/dW31	dNet2/dW32	dNet2/dW3
67	0	0	0		0.08592	-0.33872	0.449984	1	-0.36	-0.2
68	dE/dW31	dE/dW32	dE/dW33		W11	W12	W13			
69	-0.88	0.3168	0.176		0.32276	0.46172	0.440072			
70										
71	dE/dH1	dE/dH2						dNet1/dW01	dNet1/dW02	dNet1/dW0
72	0.44	-0.704						1	0.2	-1
73										
74	dE/dW01	dE/dW02	dE/dW03					dNet2/dW11	dNet2/dW12	dNet2/dW1
75	0.44	880.0	-0.44					1	0.2	-1
76	dE/dW11	dE/dW12	dE/dW13		W21	W22	W23			
77	-0.704	-0.1408	0.704		0.2748	0.435904	0.68504			
78					W31	W32	W33			
79					0.188	-0.53168	0.7824			

softmax.json

```
Epoch 1/10, Average Error: 0.6626829218214885
Epoch 2/10, Average Error: 0.6497532419843801
Epoch 3/10, Average Error: 0.6363579868724346
Epoch 4/10, Average Error: 0.622602255574003
Epoch 5/10, Average Error: 0.6086185574566528
Epoch 6/10, Average Error: 0.5945610927498114
Epoch 7/10, Average Error: 0.5805961840120056
Epoch 8/10, Average Error: 0.5668899957351127
Epoch 9/10, Average Error: 0.5535956018123217
Epoch 10/10, Average Error: 0.5408418171596572
Training complete.
[-0.18370219 0.75633116 0.2249669 ]
 [ 0.31604839 -0.75296816  0.33318705]
 [ 0.40542907  0.58987544 -0.39566149]
 [ 0.46957724  0.49230158  0.5346057 ]
 [-0.6407751 0.43246096 0.60751439]
 [-0.70024868 -0.32084212 0.71881792]
  [ 0.74063868  0.22981958 -0.77298742]
  [ 0.85639344 -0.06579594  0.00836027]]]
```

PERBANDINGAN DENGAN PENGGUNAAN LIBRARY TENSORFLOW

1. Linear

2. Linear Small LR

3. Linear Two Iteration

4. ReLU B

```
Final Weights:
Layer 1 weights:
[[-0.211     0.10500001     0.885     ]
[ 0.30330002     0.5285     0.30049998]
[-0.489     -0.90500003     0.291     ]]
Stopped by: max_iteration
```

5. Sigmoid

```
Final Weights:
Layer 1 weights:
[[0.23291178 0.06015345]
[0.12884086 0.6484948 ]
[0.837615 0.23158205]]
Stopped by: max_iteration
```

6. MLP

```
Final Weights:
Layer 1 weights:
[[ 0.08592001  0.32276  ]
  [-0.33872002  0.46172  ]
  [ 0.449984   0.440072  ]]
Layer 2 weights:
[[ 0.2748   0.188  ]
  [ 0.435904 -0.53168  ]
  [ 0.68504   0.7824  ]]
Stopped by: max_iteration
```

7. Softmax

```
Final Weights:
Layer 1 weights:

[[ 0.08524656  0.91434073 -0.09958734]
  [-0.16459174  0.76558226  0.1990096 ]
  [ 0.34101456 -0.73986727  0.2988528 ]
  [ 0.4088521  0.5913957 -0.4002476 ]
  [ 0.49454123  0.505306  0.5001527 ]
  [-0.6362934  0.4352783  0.6010152 ]
  [-0.68642676 -0.31319353  0.69962037]
  [ 0.7592804  0.23958053 -0.79886097]
  [ 0.8613458 -0.06242719  0.00108119]]
Stopped by: max_iteration
```

8. Softmax Two Layer

```
Final Weights:
Layer 1 weights:
[[ 0.1 -0.12026902 0.1
                                    -0.10067384]
[-0.1
              0.01912663 -0.1
                                     0.09731138]
0.1
              0.04000372 -0.1
                                    -0.10199457]]
Layer 2 weights:
[[ 4.8625828e-03 1.5137411e-02]
 [-1.2000000e-01 1.0000000e-01]
[ 7.8998387e-02 -5.8998372e-02]
 [-1.2000000e-01 1.0000000e-01]
 [ 1.9898925e-02 1.0107547e-04]]
Stopped by: max iteration
```

Dari percobaan diatas, semua perhitungan dari program yang telah kami buat mendapatkan hasil yang sama dengan nilai target/expected, kecuali pada program softmax dan mlp. Hal ini terjadi karena masih ada kesalahan perhitungan pada mlp pada bagian error hidden layer yang masih belum sempurna, sedangkan pada softmax terdapat kesalahan pada perhitungan turunan fungsi aktivasi.

PEMBAGIAN TUGAS

NIM	Nama	Pembagian Tugas
13520004	Gede Prasidha Bhawarnawa	Backpropagation
13521076	Moh. Aghna Maysan Abyan	Laporan, perhitungan manual
13521110	Yanuar Sano Nur Rasyid	Backpropagation, perhitungan manual
13521152	Muhammad Naufal Nalendra	Tensorflow, laporan