1001513 – Aprendizado de Máquina 2 Turma A – 2023/2 Prof. Murilo Naldi

Agradecimentos

 Pessoas que colaboraram com a produção deste material: Diego Silva, Ricardo Cerri e Moacir Ponti

De Camadas Totalmente Conectadas para Convoluções

- Redes totalmente conectadas são mais adequadas para dados tabulados (registros):
 - Linhas representa exemplos de treinamento
 - Colunas representam características (atributos)
 - Pode haver interações entre os atributos
 - Porém, não assumimos a priori nenhuma estrutura correspondente a como os atributos interagem

O que eu quero pra aula de hoje?

Créditos Diego Silva

Sabemos trabalhar com dados estruturados

E o que fazemos com imagens?

MNIST dataset

https://ml4a.github.io/ml4a/looking_inside_neural_nets/

Exemplo de RNA em imagens - um parênteses

Exemplo de configuração de pesos

Visualização dos pesos

Se complicar só um pouquinho...

... já quebra tudo.

Por exemplo, o que fazer com canais de cores?

Se complicar só um pouquinho...

Exemplo: CIFAR-10

airplane automobile bird cat deer dog frog horse ship truck

6000 imagens 32x32 pixels 10 classes Classes balanceadas

Exemplo: CIFAR-10

Usar a imagem como **dado bruto** (o valor de cada *pixel* ser um valor de atributo) ignora completamente a dependência entre *pixels* vizinhos.

Uma forma (ou contorno, textura, etc) não é dada pelo valor de um *pixel*, mas sim por um **conjunto de** *pixels* **próximos** uns aos outros.

Alternativa: extração de características

Alternativa 2: aprender como extrair essas características

Exemplo: CIFAR-10

Public I	Leaderboar	d Private Leaderboard	d -				
			oproximately 97% of the test da board reflects the final standing			€ Refre	sh
#	△pub	Team Name	Notebook	Team Members	Score 2	Entries	Last
1	-	DeepCNet			0.95530	18	6у
2		jiki			0.94740	42	6у
3		Anil Thomas		(JE)	0.94300	3	6у
4	_	Frank Sharp			0.94190	13	6у
5	_	nagadomi			0.94150	16	6у
6	_	Phil & Triskelion & Kazar	nova		0.94120	107	6у
7	_	Daniel Nouri			0.93540	4	6у
8	200	Terry			0.93330	3	6у

As CNNs foram propostas para o reconhecimento visual, baseando-se em conceitos da visão humana

Considera a relação entre pixels vizinhos, dada por filtros, aplicados por uma operação de convolução.

- Basicamente, multiplicação com janela deslizante
- Camadas convolucionais tipicamente requerem bem menos parâmetros do que camadas totalmente conectadas
- Noção de localidade aonde considera uma pequena vizinha
 - Faz o papel similar a uma camada oculta

Cada região é chamada de local receptive field

- Para cada região, temos um neurônio da camada escondida
- Onde também é aplicada uma função de ativação

O mapeamento da entrada para a escondida é chamado de feature map

- Os pesos do feature map são os shared weights
- Esses pesos definem um kernel ou filtro

input neurons

Deslizando o filtro

input neurons

input neurons

Mas o que são esses "filtros"?

Esse é um bom filtro?

Mas o que são esses "filtros"?

Esse é um bom filtro?

Para uma imagem 2x2, com apenas + e -, possuímos 2⁴=16 possibilidades

Para uma imagem 2x2, com apenas + e -, possuímos 2⁴=16 possibilidades

- E se aumentarmos a matriz?
- E se forem modificadas tal que possamos ter valores reais arbitrários, como 1.2, -0.75, 0.98, ...?

A vantagem dos pesos compartilhados é a redução de parâmetros

- Supondo um filtro de tamanho 5
 - Cada neurônio escondido tem um bias e uma matriz de pesos 5x5 conectada a imagem (local receptive field)
 - Os mesmos pesos e bias são utilizados para cada um dos neurônios escondidos (shared weights)
- Para o j,k-ésimo neurônio escondido, a saída é dada por:

$$\sigma \left(b + \sum_{l=0}^{4} \sum_{m=0}^{4} w_{l,m} a_{j+l,k+m} \right)$$

Para cada filtro de 5x5 precisamos de 25 pesos mais o bias. Se utilizarmos 20 filtros, temos um total de 20 x 26 = 520 parâmetros definindo a camada convolucional

 Em uma rede convencional totalmente conectada, para a base MNIST teríamos 28x28 = 784 entradas.
Com 30 neurônios na camada escondida e 1 bias, teríamos 784x31+31 = 24304 parâmetros

Considere como entrada 3x3 e um filtro (kernel) de dimensão 2x2

- Começamos com o filtro no canto superior esquerdo
- Deslizamos da esquerda para a direita e de cima para baixo
- A submatriz de entrada e o filtro s\u00e3o multiplicados elemento a elemento
 - A matriz resultante é somada produzindo um único valor escalar.

Deslizamos através da matriz de entrada, da esquerda para a direita e de cima para baixo

1 1 1 0 0	1 0 0						
0 1 1 1 0	1 1 0			1, 1	1, 1, 0	0	
0 0 1 1 1	1 1 1	1 0 1		0, 1	l _{×1} 1 _{×0} 1	0	
0 0 1 1 0	1 1 0	0 1 0		0, ($\frac{1}{1}$ 1	1	
0 1 1 0 0	· · · · · · · · · · · · · · · · · · ·	1 0 1		0 0) 1 1	0	
			_	0 1	1 1 0	0	
For F. Torono Motolin		Image					
5 x 5 - Image Matrix	lage Matrix	3 x 3 – Filter Matrix			iiiugc		

Detecção de padrões

Vamos imaginar um kernel para identificar bordas em imagens:

- Detectar a borda do objeto encontrando o local de mudança de pixel
- Exemplo a imagem abaixo, representada por uma matriz
 - 0 representa a cor preta e 1 a cor branca

1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1

Detecção de padrões

Vamos utilizar um kernel de altura 1 e largura 2: [1, -1] Ao deslizarmos o kernel pela imagem, obtemos a seguinte matriz

1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	0	0	0	0	1	1

0	1	0	0	0	-1	0
0	1	0	0	0	-1	0
0	1	0	0	0	-1	0
0	1	0	0	0	-1	0
0	1	0	0	0	-1	0
0	1	0	0	0	-1	0

O filtro tem como saída o valor 1 para bordas de branco para preto, e -1 para bordas de preto para branco

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{array} \right]$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Convolução

Ativação

Padding

Como vimos, a dimensão da saída da camada convolucional é definida pela dimensão da entrada e pela dimensão do kernel de convolução

- Se a dimensão da entrada for $(n_h \times n_w)$, e a dimensão do kernel for $(k_h \times k_w)$, então a saída terá dimensão $(n_h-k_h+1)\times(n_w-k_w+1)$
- Podemos incorporar técnicas que afetam o tamanho da saída. Padding é uma delas

Padding

Motivação: quando aplicamos a convolução, há uma tendência a termos uma saída com dimensão consideravelmente menor do que a dimensão de entrada

- Com isso, tendemos a perder os pixels nas bordas das imagens
- Uma solução direta para este problema é adicionar pixels extras de preenchimento ao redor da borda da imagem de entrada, aumentando assim seu tamanho efetivo
- Tipicamente, adicionamos pixels de valor 0

Padding

Exemplo: preenchemos uma entrada 3 x 3, aumentando seu tamanho para 5 x 5, com saída aumentada em uma dimensão 4 x 4

Padding

De maneira geral, são adicionadas um total de p_h linhas de padding (metade em cima e metade em baixo), e um total de p_w colunas de padding (metade na esquerda e metade na direita). A dimensão da saída será então:

•
$$(n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)$$

Padding

Fonte: https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480

Stride

Nos referimos ao número de linhas e colunas percorridas a cada movimentação do filtro como *stride*. Até agora, usamos *stride* de tamanho 1, tanto para altura quanto para largura. Às vezes, podemos querer usar um *stride* maior.

Exemplo: stride 3 na vertical e 2 na horizontal

Stride

O número de linhas e colunas percorridas a cada movimentação do filtro é o *stride*. Até aqui usamos *stride* 1, mas podemos usar, por exemplo, *stride* 3 na vertical e 2 na horizontal

Stride

De maneira geral, quando a altura do *stride* é s_h , e a largura do *stride* é s_w , a dimensão da saída é dada por:

- $[(n_h-k_h+p_h+s_h)/s_h] \times [(n_w-k_w+p_w+s_w)/s_w]$
- Por padrão, geralmente o *padding* é igual a 0 e o *stride* é igual a 1. Na prática, geralmente não usa-se *strides* e *padding* heterogêneos. Ou seja, geralmente usa-se $p_h = p_w$ e $s_h = s_w$

Padding e Stride

O padding pode aumentar a altura e a largura da saída. Isso pode ser usado para dar à saída a mesma altura e largura da entrada, e ajuda a considerar as bordas das imagens.

- O stride pode reduzir a resolução da saída
- Padding e stride podem ser usados para ajustar a dimensionalidade dos dados

Até agora, simplificamos todos os nossos exemplos trabalhando com apenas uma única entrada e um único canal de saída. Isso nos permitiu pensar em nossas entradas, *kernels* de convolução e saídas como sendo bidimensionais.

- No entanto, uma imagem pode ter múltiplos canais, por exemplo 3 canais RGB para indicar as quantidades de vermelho, verde e azul.
- Nesse caso, adicionando os canais, cada imagem de entrada vai ter dimensão. Esse eixo de tamanho 3 é definido como a dimensão

do canal.

Convolução (3 canais)

0	0	0	0	0	0	****
0	156	155	156	158	158	***
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	***
0	145	143	143	148	158	
	200	100	***	242	***	***

0	0	0	0	0	0	-
0	167	166	167	169	169	-
0	164	165	168	170	170	-
0	160	162	166	169	170	
0	156	156	159	163	168	-
0	155	153	153	158	168	-
	344	200	***	***	inc	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

Bias = 1

Quando os dados de entrada contêm vários canais, precisamos construir um kernel de convolução com o mesmo número de canais de entrada que os dados de entrada.

- Temos um kernel k_h x k_w para cada canal de entrada. Com c_i canais, a concatenação resulta em um kernel de dimensão c_i x k_h x k_w
- É realizada a convolução entre cada kernel e matriz de entrada para cada canal

Os *c_i* resultados são agregados, resultando na saída bidimensional

Exemplo:

• $(1\times1 + 2\times2 + 4\times3 + 5\times4) + (0\times0 + 1\times1 + 3\times2 + 4\times3) = 56$

Independentemente do número de canais de entrada, até agora sempre acabamos com um canal de saída.

- No entanto, aumentamos a dimensão do canal conforme a camada da rede neural fica mais profunda e, ao mesmo tempo, reduzimos a resolução para compensar a resolução espacial por maior profundidade de canal
- Intuitivamente, você pode pensar em cada canal como respondendo a algum conjunto diferente de atributos.

Seja c_i e c_o o número de canais de entrada e saída, respectivamente, e seja k_h e k_w a altura e largura do kernel.

- Para uma saída com múltiplos canais, é necessário um kernel com dimensão $c_i \times k_h \times k_w$ para cada canal de saída
- Eles são concatenados à dimensão do canal de saída, dando origem a um kernel de convolução de dimensão $c_o \times c_i \times k_h \times k_w$

O resultado em cada canal de saída é calculado a partir do kernel de convolução correspondente a esse canal de saída, obtendo sua entrada de todos os

canais da entrada

Exemplo: entrada 32 x 32 x 3

- Filtro (kernel) ou neurônio convolucional
 - w com k x k x c, e.g. 5 x 5 x 3

- Cada neurônio realiza a convolução da entrada e gera um volume (matriz/tensor) de saída
- Se analisarmos um pixel específico, temos:
 - $-\mathbf{w}^{\mathsf{t}}\mathbf{x}+b$
 - Sim, temos bias...

Mapas de ativação (ou características) são obtidos após convolução e função de ativação (e.g. ReLU);

 Empilhados formam um tensor que será a entrada da próxima camada

$$(32 \times 32 \times 3)$$

camada convolucional 10 filtros $5 \times 5 \times 3$

36

Pooling

A medida que processamos imagens queremos reduzir gradualmente a resolução espacial das representações ocultas

- Geralmente queremos responder a uma pergunta mais global, por exemplo, se a imagem contém um gato
- Ao agregar informações produzindo mapas cada vez menores, alcançamos esse objetivo de aprender uma representação global
- Ajuda as representações a serem mais invariantes à translação

Pooling

Pooling consiste em aplicar uma janela de formato fixo deslizada sobre todas as regiões na entrada de acordo o stride, computando uma única saída

- A camada de pooling n\u00e3o cont\u00e9m par\u00e3metros (n\u00e3o h\u00e1 kernel)
- Determinísticos, normalmente calculando o valor máximo ou médio dos elementos na janela

Pooling

Pooling reduz a informação (dimensionalidade) agregando valores

Exemplo: Max pooling

Single depth slice

×	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4
·				
				У

max pool with 2x2 filters and stride 2

6	8
3	4

Montando uma Rede Neural Convolucional

Vamos apresentar aqui a LeNet, uma das primeiras CNNs publicadas para tarefas de visão computacional

- O modelo foi introduzido por Yann LeCun, então pesquisador da AT&T Bell Labs, com o objetivo de reconhecer dígitos manuscritos em imagens (LeCun et al., 1998).
- Na época, a LeNet alcançou resultados excelentes comparados ao desempenho das SVMs, então uma abordagem dominante no aprendizado supervisionado

Montando uma Rede Neural Convolucional

De maneira geral, a LeNet (LeNet-5) possui duas partes: i) um codificador convolucional, consistindo de duas camadas de convolução; e ii) um bloco denso, consistindo de três camadas completamente conectadas

Montando uma Rede Neural Convolucional

Uma camada de convolução com um kernel 5x5, com função de ativação sigmoidal, seguida de uma operação de average pooling (2x2) com stride 2. A primeira camada convolucional tem 6 canais de saída, enquanto a segunda tem 16.

Passando pela rede uma única imagem (28x28 pixel) de 1 canal (branco e preto), podemos verificar a dimensão da saída de cada camada

- A primeira camada convolucional usa 2 pixels de padding para compensar a redução na altura e largura que, de outra forma, resultaria do uso de um kernel 5x5
- A segunda camada convolucional dispensa o *padding* e, portanto, a altura e a largura são reduzidas em 4 pixels
- Veja que conforme a profundidade aumenta, o número de canais aumenta, indo de 1 até 16, porém a altura e largura são diminuídas pelo pooling
- Finalmente as camadas totalmente conectadas reduzem a dimensionalidade até obter um número de saídas que corresponde ao número de classes

Outros modelos:

- AlexNet (2012)
- VGG 19 (2014)
- GoogLeNet (2014)
- ResNet 34 (2015)
- Densenet (2016)
- Se Net (2018)
- CBAM (2018)
- Channel Boosting (2018)
- NASNet (2018)
- ShuffleNet (2018)
- EfficientNet (2019)
- Trabalhos mais recentes que melhoram essas arquiteturas

Agora já sabemos criar modelos para classificar isso

ou não!