MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

Belawadi, Naguvanahalli Post, Srirangapatna Taluk, Mandya – 571477

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE)

Mini Project Approval Letter

From:	Date: 15-11-2024
10111	2000110 11 2021

Name: Rushika K Shankar

5th Sem, Sec: A
Dept. of CSE-AI
MIT Mysore

USN: 4MH22CA041

Through:

Prof. Navya S Batch No: 12

To:

Dr. Victor A. I. Mini Project Coordinator, Dept of CSE-AI, MIT Mysore.

Respected Sir,

Sub: Requisition for the finalization of Mini Project Topic

The topic titled "Bee Image Classification using a CNN to detect Varroa Mite" is finalized in consultation with the guide. The synopsis is attached herewith.

Please do the needful.

Guide's Name with Signature

Student's Names with Signature

1.Rohan D N

2. Rushika K Shankar

3.Sagar H R

4.Spoorthi H R

SYNOPSIS

Project Title: Bee Image Classification using a CNN to detect Varroa Mite

Introduction:

Honey bees play a vital role in pollination, which is essential for the reproduction of many

plants, including numerous crops that humans rely on for food. It is estimated that one-third of

the food we consume each day relies on pollination, primarily by bees. The decline in bee

populations due to factors such as Varroa mites, pesticides, habitat loss, and climate change poses

a significant threat to global food security and biodiversity.

Varroa mites pose a significant threat to honeybee populations worldwide. Early detection

of these parasites is crucial for effective management and prevention of colony collapse.

Traditional methods of detection, such as visual inspection, can be time-consuming, labor-

intensive, and often inaccurate.

Technical Terms:

• Convolutional Neural Network (CNN): A type of artificial neural network specifically

designed to process visual imagery.

• **Image Classification:** The process of assigning a class label to an input image.

• Feature Extraction: The process of identifying relevant features within an image, such

as edges, textures, and shapes.

• Overfitting: A phenomenon in machine learning where a model becomes too specialized

in the training data and performs poorly on unseen data.

Data Augmentation: A technique used to artificially increase the size and diversity of a

dataset.

Project Field:

This project falls under the field of **Computer Vision** and **Agricultural Technology**. It combines

the power of deep learning with real-world applications to address a pressing issue in agriculture.

Motivation:

The global decline of honeybee populations poses a significant threat to agriculture and ecosystems. Varroa mites, a parasitic pest, are a major contributor to this decline. Early detection and effective management of Varroa mite infestations are crucial for the survival of honeybee colonies. Traditional methods of detection are often time-consuming, labor-intensive, and require expert knowledge.

By leveraging the power of computer vision and deep learning, we aim to develop a reliable and efficient automated system for Varroa mite detection. This system will empower beekeepers to monitor their colonies proactively, take timely action, and ultimately contribute to the preservation of honeybee populations.

Objectives:

- **Develop a robust CNN model:** To accurately classify bee images as infested or healthy.
- Improve detection accuracy: To achieve high precision and recall in identifying Varroa mites.
- **Streamline beekeeping practices:** To provide beekeepers with a tool for early detection and timely intervention.

Justification:

Varroa mites pose a significant threat to honeybee populations. Early detection and effective management are crucial for bee health. This project aims to develop an automated system to assist beekeepers in identifying Varroa mite infestations, ultimately contributing to the preservation of honeybee populations and ensuring sustainable agriculture.

Literature Review:

S/No	Author(s),	Title	Problem	Dataset used/	Method(ology)	Observations
•	Journal		Identified	Description	Used	(Strengths,
	Name, Year					Limitations)
	of					
	Publication					
	(YOP)					
[1]	A. Kumar,	Honey Bee	Early	A custom	Convolutional Neural	Achieved high
	S. Kumar,	Colony	detection of	dataset of bee	Networks	accuracy in
	and	Health	bee diseases	images with	(CNNs)	detecting
	R.Singh,	Monitoring	and pests	and without		various bee
	Internationa	Using Deep		diseases		diseases,
	l Journal of	Learning				including
	Computer					Varroa mites.
	Application					However, the
	s, 2018					dataset size
						and diversity
						were limited.
[2]	M.A.	Varroa Mite	Accurate	A custom	Computer	Demonstrated
	Nielsen,J.	Detection in	and efficient	dataset of bee	vision	promising results in
	C. Nieh,	Honey Bee	detection of	images with	techniques and	detecting
	and A. J.	Colonies	Varroa	and without	machine	Varroa mites, but the method
	Davis,	Using	mites	Varroa mites	learning	relied on
	Journal of	Computer			algorithms	specific image
	Insect	Vision				processing techniques and
	Science,					may not be
	2019					robust to variations in
	2019					image quality.
[3]	M.	Deep	.Application	Review of	Literature	Comprehensiv
	Kamilaris	Learning	of deep	existing	review and	e overview of
	and A. X.	for	learning techniques	literature on	analysis	deep learning
	Pratikakis,	Precision	in	deep learning		techniques in
	Computers	Agriculture:	agriculture,	applications in		agriculture,
	and	A Review	including	agriculture		highlighting
	Electronics		pest anddisease	_		their potential
	in		detection			for pest disease
	Agriculture,					detection.
	2014					

	K.	A Survey of	Advances in	Review of	Literature	Presents a
[4]	Simonyan	Deep	deep	various deep	review and	detailed survey
	and A.	Learning	learning for	learning	analysis	of deep
	Zisserman,	Techniques	image	architectures		learning
	arXiv	for Image	classificatio	and techniques		techniques,
	preprint	Classificatio	n tasks			including
	arXiv:1409.	n				CNNs, and
	1556, 2014					their
						application to
						image
						classification
						tasks.
						However, the
						specific focus
						on Varroa mite
						detection is
						limited.

Fig1.1: Literature Review table

Feasibility Study:

The global decline of honeybee populations poses a significant threat to agriculture and ecosystems. Varroa mites, a parasitic pest, are a primary contributor to this decline. Early detection and effective management of Varroa mite infestations are crucial for the survival of honeybee colonies. Traditional methods of detection, such as visual inspection, can be time-consuming, labor-intensive, and often inaccurate.

Feasibility Analysis

1. Technical Feasibility:

• **Data Availability:** A sufficient amount of labeled image data is available from various sources, including online databases and research institutions.

- **Technology Maturity:** Deep learning, particularly CNNs, has matured significantly and proven effective in image classification tasks.
- **Computational Resources:** The required computational resources, such as GPUs, are readily accessible.

2. Economic Feasibility:

- Cost-Benefit Analysis: The potential benefits of early detection and effective management of Varroa mites far outweigh the costs of developing and deploying the system.
- **Resource Allocation:** The project requires minimal financial resources, primarily for data acquisition and computational power.

3. Operational Feasibility:

- **User Acceptance:** Beekeepers are likely to adopt a tool that can save time and improve colony health.
- **Integration:** The system can be integrated into existing beekeeping practices and potentially be used in conjunction with other monitoring technologies.

4. Legal and Ethical Feasibility:

- **Data Privacy:** The project will adhere to relevant data privacy regulations and ensure the confidentiality of any sensitive information.
- Ethical Considerations: The development and deployment of the system will be conducted ethically, with careful consideration of potential impacts on bee health and the environment.

References

- Varroa mite detection using deep learning techniques: https://www.unirioja.es/cu/jodivaso/publications/2023/HAIS_23_varroa.pdf
- Detection of Varroa destructor Infestation of Honeybees Based on Segmentation and Object Detection Convolutional Neural ¹ Networks: https://www.mdpi.com/2624-7402/5/4/102
- Deep Learning Beehive Monitoring System for Early Detection of the Varroa Mite: https://www.mdpi.com/2624-6120/3/3/30
- Honey Bee Colony Health Monitoring Using Deep Learning: [invalid URL removed]

• Bee Image Classification using a CNN and Keras: https://medium.com/@mahdis.pw/bee-					
image-classification-using-a-cnn-and-keras-5fd5ed90a37b					