Homework n.5 a.a. 2023-2024

Monte Carlo method and simulation

1) Evaluate the integral $I = \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$ using two Monte Carlo methods:

- A) miss or hit
- B) the mean method.
- C) From the obtained value, considering that $I=\pi$, get an estimate of the irrational number π .

Monte Carlo method and simulation

2) Generate a histogram with 10000 events extracted from the $f_1(E)$ part of the energy spectrum f(E) of Homework n.1 (consider only $f(E) = f_1(E)$) including the effect of a gaussian resolution $\sigma(E)/E = 10\%/\sqrt{E(MeV)}$. Consider that to implement the resolution, each energy value E_i extracted from the spectrum f(E) has to be smeared for the resolution $\sigma(E_i)$.

Hint: fill the histogram with the smeared energy according to resolution:

$$E_{i}' = g[E_{i}; \sigma(E_{i})] = E_{i} + \sigma(E_{i}) g[0;1]$$

where g[0;1] is a random variable distributed as a gaussian with zero mean and unitary standard deviation.

Compare qualitatively the histogram with the result obtained evaluating the convolution integral.

Monte Carlo method and simulation

3) Reproduce the experimental distribution of the KL impact points on the calorimeter and decay distances from the IP in Homework n.4.

Simulate:

- angular distribution of KL (neglect the Phi boost): $dN/d\Omega \propto \sin^2(\theta)$
- decays of KL according to an exponential law and distribution of the impact points and times of arrival of KL on the surface of the calorimeter; approximate the internal surface of the calorimeter as a cylinder of radius 200 cm and height 340 cm, centered at IP, and with the axis along the beam; for times, consider as T₀ the production of KL at IP. Include resolution effects according to detector performance (assume gaussian resolutions see last slide).
- distribution of KL decay vertices in the DC volume (assume a resolution of 1.5 cm on the x,y, z coordinates of the reconstructed vertex).
 Neglect interaction of KL with beam pipe and DC inner wall.

Homework n.5 a.a. 2023-2024

Monte Carlo method and simulation

Evaluate:

- the geometrical acceptance for KS-tag using "KL-crash" on the calorimeter. Take into account also the cuts implemented in the analysis (e.g. $\theta > 21^{\circ}$) in Homework n.4.
- the distribution of time of arrival of KL on the calorimenter.
- the distribution of the decay length (from IP) for KL decaying inside the DC volume (approximate the DC volume as the cylinder considered for the internal surface of the calorimeter).
- the distribution of the transverse distance from IP (transverse with respect to the beam direction along the z axis) for KL decaying inside the DC volume.
- the geometrical acceptance for KL decays inside the DC volume.

Calorimeter

Lead-Scintillating fibers calorimeter Read-out through 4880 PMTs Energy and time resolutions

$$\frac{\sigma(E)}{E} \cong \frac{5.7\%}{\sqrt{E(GeV)}} ;$$

$$\sigma(t) \cong \frac{54 ps}{\sqrt{E(GeV)}} \oplus 100 ps$$

For barrel cluster position resolution in the direction along the fibers:

$$\sigma(z) \cong \frac{1.2 \ cm}{\sqrt{E(GeV)}}$$

in the direction transverse to fibers:

$$\sigma(x,y) \cong 1.3 \ cm$$

For End-caps:

direction along the fibers:

$$\sigma(y) \cong \frac{1.2 \ cm}{\sqrt{E(GeV)}}$$

direction transverse to fibers:

$$\sigma(x,z) \cong 1.3 c \mathfrak{P}_{17/24}$$