Kaggle competition

HuBMAP + HPA - Hacking the Human Body

Segment multi-organ functional tissue units

고민수, 박수영, 서동관, 윤태우

Summary

Problem

- Image's size
- apply to model

Works

- crop
- model search

Problem

Discription

FTU

: Functional Tissue units

Body

- Body
- · Kidney (Left, Right)
- Aorta
- Renal artery
- Renal vein
- Ureter

Organ

- Renal capsule
- · Renal pyramid
- Renal cortex
- Renal medulla
- Renal calyx
- Renal pelvis

Functional Tissue Unit

Nephron

2.5 mm

- Renal corpuscle
- Proximal convoluted tubule
 Efferent arteriole
- Loop of Henle
- Distal convoluted tubule
- Connecting tubule

FTU Sub-structure(s) Cellular

- Bowman's capsule
- Glomerulus

25 µm

- Afferent arteriole

- Parietal epithelial cell Capillary endothelial cell
- Mesangial cell
- Podocyte

Evaluation & Judges

Model evaluation: Dice coefficient

The area of Overlap divided by the total number of pixels in both the images

Evaluation & Judges

Judges

- Are the statistical and modeling methods appropriate for the task?
- Are metrics provided that help interpret the results achieved by the segmentation methods?
- Is the presented characterization of FTUs useful for understanding individual differences?
- Is it possible to predict FTU area size distribution, given age and sex info across all organs?
- Did the team validate their methods and algorithm implementations and provide information on algorithm performance and limitations?
- Did the team document their method and code appropriately?
- Did the team develop a creative or novel method to segment FTUs?
- Did the team provide insights that would be useful for generating reference FTUs for inclusion into a Human Reference Atlas?

Evaluation & Judges

Judges

□ Diversity and Presentation (30 points)

- Does the team embrace diversity and equity, welcoming team members of different ages, genders, ethnicities, and with multiple backgrounds and perspectives?
- Did the authors effectively communicate the details of their method for segmenting FTUs, and the quality and limitations of their results?
- Are the important results easily understood by the average person?

Data

□ Train / Test .csv

- Total data: 351
- id:image_id
- organ: [kidney, large intestine, lung, spleen, prostate
- img_height, img_widht: [2300 ~ 3000], Height and width are same
- data_sourcs: [HPA or HuBMAP], All data in dataframe are from HPA
- pixel_size: [0.4(µm)], The data in HuBMAP is different.
- tissue_thickness: [4(µm)], The data in HuBMAP is different.
- rle: Target (training set only)
- age: [20~84], Patient's age (training set only)
- sex: [Male, Female], Patient's sex (training set only)

LSubmission .csv

- Total data: 1
- id:image_id
- rle : Target

Frequency of data by organ

Image size distribution

Bubble Chart Showing The Various Image Sizes

Age distribution

Number of Segmentation Masks Per Age Bin by Organ Type

Sex distribution

Distribution of organ data by gender

FTU bounding box Crop by organ

Crop FTU images with json

∟ Kidney FTU image counts : 337

L largeintestine FTU image counts : 3117

L lung FTU image counts : 191

∟ prostate FTU image counts : 1097

L spleen FTU image counts : 167

Remove very small images

prostate

spleen

kidney

lung

L largeintestine FTU image counts : 14

L lung FTU image counts

Average FTUs bounding box size by organ

Organ	Avg_area	Avg_area_µm	Avg_height	Avg_width	Avg_shape_µm	Count
Kidney	106690.4	17070.4	456.5	303.5	(182.6, 121.4)	337
Largeintestine	50862.1	8137.9	357.0	143.5	(142.8, 57.4)	3103
Lung	119583.7	19133.3	299.5	140.5	(119.8, 56.2)	188
Prostate	193169.8	30907.1	421.5	433.5	(168.6, 173.4)	1097
Spleen	438419.0	70147.0	675.0	400.0	(270.0, 160.0)	167

- Is the presented characterization of FTUs useful for understanding individual differences?
- Is it possible to predict FTU area size distribution, given age and sex info across all organs?

Difference between rle_maks and json_mask

Modeling

Baseline

Backbone : Unet + EfficientnetB7

Loss : Dice_loss + Binary_crossentropy

Image size : 3000

Resize : 160

Number of Images: • prostate - 79 images

spleen - 45 images

lung
 40 images

kidney - 84 images

largeintestine - 49 images

Augmentation : Horizontal, Vertical Filp on all image

Baseline result

prostate

spleen

lung

kidney

largeintestine

Improvement strategy

Backbone : DeepLabV3+

Loss : Dice_loss + Weighted_BCE_loss (Each Organ)

Image size : 500 (3000 / 6)

Resize : 480

Number of Images: • prostate - 79 * 34 images

spleen - 45 * 34 images

lung
 40 * 34 images

kidney - 84 * 34 images

largeintestine - 49 * 34 images

Augmentation : Horizontal, Vertical Filp on all image, color(stained tissue)

Improvement Strategy

Improvement strategy 1

Backbone : DeepLabV3+ -> Unet + EfficientnetB0

Loss : Dice_loss + Weighted_BCE_loss (Each Organ)

Image size : 500 (3000 / 6)

Resize : 480 -> 224

Number of Images : • prostate - 79 * 34 images

spleen - 45 * 34 images

lung
 40 * 34 images

kidney
 84 * 34 images

largeintestine - 49 * 34 images

Augmentation : Horizontal, Vertical Filp on all image, color(stained tissue)

epochs : 60

Cropped image result

prostate_original

prostate_cropped

predict

lung_original

predict

lung_cropped

predict

DeepLabV3

