

Lecture 13: Wires

Outline

- Introduction
- Interconnect Modeling
 - Wire Resistance
 - Wire Capacitance
- Wire RC Delay
- ☐ Crosstalk
- ☐ Wire Engineering
- Repeaters

Introduction

- ☐ Chips are mostly made of wires called *interconnect*
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- □ Wires are as important as transistors
 - Speed
 - Power
 - Noise
- □ Alternating layers run orthogonally

Wire Geometry

- \Box Pitch = w + s
- ☐ Aspect ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2

Pack in many skinny wires

Layer Stack

- AMI 0.6 μm process has 3 metal layers
 - M1 for within-cell routing
 - M2 for vertical routing between cells
 - M3 for horizontal routing between cells
- Modern processes use 6-10+ metal layers
 - M1: thin, narrow (< 3λ)
 - · High density cells
 - Mid layers
 - Thicker and wider, (density vs. speed)
 - Top layers: thickest
 - For V_{DD}, GND, clk

Example

1 μm

Intel 90 nm Stack

Intel 45 nm Stack

[Thompson02]

[Moon08]

Interconnect Modeling

- Current in a wire is analogous to current in a pipe
 - Resistance: narrow size impedes flow
 - Capacitance: trough under the leaky pipe must fill first
 - Inductance: paddle wheel inertia opposes changes in flow rate
 - Negligible for most wires

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

- \Box 3-segment π -model is accurate to 3% in simulation
- ☐ L-model needs 100 segments for same accuracy!
- \Box Use single segment π -model for Elmore delay

Wire Resistance

 \square ρ = resistivity (Ω *m)

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\mathsf{W}} \frac{l}{w}$$

- \square R_{\square} = sheet resistance (Ω/\square)
 - □ is a dimensionless unit(!)
- Count number of squares

 $-R = R_{\square} * (\# \text{ of squares})$

Choice of Metals

- ☐ Until 180 nm generation, most wires were aluminum
- ☐ Contemporary processes normally use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ • cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0

Contacts Resistance

- \Box Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Copper Issues

- ☐ Copper wires diffusion barrier has high resistance
- ☐ Copper is also prone to *dishing* during polishing
- ☐ Effective resistance is higher

$$R = \frac{\rho}{\left(t - t_{\text{dish}} - t_{\text{barrier}}\right)} \frac{l}{\left(w - 2t_{\text{barrier}}\right)}$$

Example

Compute the sheet resistance of a 0.22 μm thick Cu wire in a 65 nm process. The resistivity of thin film Cu is 2.2 x 10-8 Ω•m. Ignore dishing.

$$R_{\rm W} = \frac{2.2 \times 10^{-8} \ \Omega \text{gm}}{0.22 \times 10^{-6} \ \text{m}} = 0.10 \ \Omega/\text{W}$$

 \Box Find the total resistance if the wire is 0.125 μm wide and 1 mm long. Ignore the barrier layer.

$$R = (0.10 \ \Omega/\text{W}) \frac{1000 \ \mu\text{m}}{0.125 \ \mu\text{m}} = 800 \ \Omega$$

Wire Capacitance

- □ Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- $\Box C_{total} = C_{top} + C_{bot} + 2C_{adj}$

Capacitance Trends

- \Box Parallel plate equation: $C = \varepsilon_{ox}A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- ☐ Dielectric constant
 - $\epsilon_{ox} = k\epsilon_0$
 - $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
 - $k = 3.9 \text{ for } SiO_2$
- ☐ Processes are starting to use low-k dielectrics
 - k ≈ 3 (or less) as dielectrics use air pockets

Capacitance Formula

Capacitance of a line without neighbors can be approximated as

$$C_{tot} = \varepsilon_{ox} l \left[\frac{w}{h} + 0.77 + 1.06 \left(\frac{w}{h} \right)^{0.25} + 1.06 \left(\frac{t}{h} \right)^{0.5} \right]$$

☐ This empirical formula is accurate to 6% for AR < 3.3

M2 Capacitance Data

- \Box Typical dense wires have ~ 0.2 fF/ μ m
 - Compare to 1-2 fF/μm for gate capacitance

Diffusion & Polysilicon

- \Box Diffusion capacitance is very high (1-2 fF/ μ m)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Wire RC Delay

□ Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 1 mm wire. Assume wire capacitance is 0.2 fF/ μ m and that a unit-sized inverter has R = 10 KΩ and C = 0.1 fF.

- t_{pd} = (1000 Ω)(100 fF) + (1000 + 800 Ω)(100 + 0.6 fF) = 281 ps

Wire Energy

- □ Estimate the energy per unit length to send a bit of information (one rising and one falling transition) in a CMOS process.
- \Box E = (0.2 pF/mm)(1.0 V)² = 0.2 pJ/bit/mm
 - = 0.2 mW/Gbps/mm

Crosstalk

- □ A capacitor does not like to change its voltage instantaneously.
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1,
 the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- ☐ Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- ☐ Effective C_{adi} depends on behavior of neighbors
 - Miller effect

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C_{gnd}	0
Switching opposite A	$2V_{DD}$	C _{gnd} + 2 C _{adj}	2

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- ☐ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

Driven Victims

- ☐ Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, agg. in saturation
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

Coupling Waveforms

 \Box Simulated coupling for $C_{adj} = C_{victim}$

Noise Implications

- □ So what if we have noise?
- ☐ If the noise is less than the noise margin, nothing happens
- □ Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- ☐ Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

- Layer
- Shielding

Repeaters

- ☐ R and C are proportional to I
- □ RC delay is proportional to *l*²
 - Unacceptably great for long wires
- ☐ Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- ☐ How many repeaters should we use?
- ☐ How large should each one be?
- Equivalent Circuit
 - Wire length I/N
 - Wire Capacitance C_w*I/N, Resistance R_w*//N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Results

- □ Write equation for Elmore Delay
 - Differentiate with respect to W and N
 - Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{I} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_{w}C_{w}}$$

~40 ps/mm

in 65 nm process

$$W = \sqrt{\frac{RC_w}{R_w C'}}$$

Repeater Energy

- □ Energy / length $\approx 1.87 C_w V_{DD}^2$
 - 87% premium over unrepeated wires
 - The extra power is consumed in the large repeaters
- ☐ If the repeaters are downsized for minimum EDP:
 - Energy premium is only 30%
 - Delay increases by 14% from min delay