Trees and Tree-Based Algorithms

Dr. Robert Amelard (adapted from Dr. Igor Ivkovic)

ramelard@uwaterloo.ca

Objectives

- Introduction to Trees
- Binary Trees
- Binary Tree Traversals
- Binary Search Trees
- AVL Trees
- Heaps

Up Till Now...

- Linear data structures
 - List, Queue, Stack

- Time to explore non-linear data structures
 - Powerful for real-life algorithms (searching, sorting, etc.)
 - Graphical depiction/optimization

Trees: hierarchical

Hierarchical Data Structure Example

Hierarchical Data Structure Example

- Tree (T) is a hierarchical data structure composed of linked nodes connected by edges
 - There is one root node for the entire structure
 - Each node has zero or more nodes as its children
 - Each node has at most one parent node
 - All the nodes reachable from the current downwards to the bottom of the tree are its descendants
 - All the nodes reachable from the current upwards to the root of the tree are its ancestors
 - Typically, there is an unidirectional downwards relationship between a node and its descendants
 - A node may access its descendants but descendants cannot access their ancestors

Core Tree Terminology:

Tree Applications:

- In artificial intelligence, game trees are used to encode data regarding decision making
- In a game tree, the nodes represent the possible outcomes of making a move or decision
- At the same time, the edges between the nodes represent possible moves or decisions

Example: Tic-Tac-Toe Game Tree

■ TIP #1: A powerful outcome of using trees is they usually give us a runtime containing log(n). Why?

■ TIP #2: <u>visualgo.net</u> is a great resource for visualization tree operations (i.e., study guide)

Binary Tree /1

Binary Tree

 A finite set of nodes that is either empty or it consists of a root and two disjoint binary trees, T_L and T_R

Binary Tree /2

BinaryTreeNode Implementation:

```
-iData : int
-*leftChild : BinaryTreeNode
-*rightChild : BinaryTreeNode
+BinaryTreeNode()
+~BinaryTreeNode()
+left() : BinaryTreeNode
+right() : BinaryTreeNode
```

```
class BinaryTreeNode {
    int iData; //holds the data value at this tree node
    BinaryTreeNode *leftChild; //points to left child
    BinaryTreeNode *rightChild; //points to right child
public:
    BinaryTreeNode(); //default constructor
    ~BinaryTreeNode(); //destructor

BinaryTreeNode left(); //returns left child
BinaryTreeNode right(); //returns right child
};
```

Binary Tree /3

Binary Tree Node Depth

 The length of the path from the root to the current node (counting the edges)

Binary Tree Height

 The length of the longest path from the root to a leaf node (counting the edges)

Algorithm: Height(T) (recursive)

- Input: BinaryTreeNode T
- Output: the height of the binary tree T as an integer
- Steps:

```
int Height(BinaryTreeNode* T)
  if (T == NULL) return -1; // returns -1 for an empty tree
  else return 1 + max(Height(T->leftChild), Height(T->rightChild));
```

Complete Binary Tree /1

Complete Binary Tree:

- A binary tree that is completely filled at all levels with the exception of the bottom-most level
- At the bottom-most level, all leaf nodes are as far left as possible

Complete Binary Tree /2

Complete Binary Tree Access Formulas:

Root node: array index 1

Parent of node i: floor(i/2)

Left child of node i: floor(2i)

Right child of node i: floor(2i + 1)

■ Is node i a leaf: check if n < 2i

Complete Binary Tree /3

- Why are complete binary trees helpful?
 - Maintains non-linear hierarchical structure
 - Approximate knowledge of height
 - Compact array representation
- All helpful for runtime of algorithms!

Heap:

- A binary tree with keys or (key, value) pairs stored in its nodes
- A heap is a complete tree
- max-heap: all children smaller or equal to parent
- min-heap: all children larger or equal to parent

Max-Heap Example:

Not a Max-Heap:

(Max) Heap Properties:

- The root of a heap contains the largest key value
- The subtree rooted at any node of a heap is also a heap
- Remainder of array is "partially unsorted"
- A heap can be represented as an array with relations between nodes computed using array indices

Heap Applications:

- Sorting values since the largest value in a heap will always be at the top
- Priority queue, where a request of highest priority needs to be the dequeued first
- CPU scheduling
- Other?

Heap as an Array – Access Formulas:

- Root node:
- Parent of node i:
- Left child of node i:
- Right child of node i:
- Is node i a leaf:

index 1

floor(i/2)

floor(2i)

floor(2i + 1)

check if n < 2i

0	1	2	3	4	5	6
	10	5	7	4	2	1

Heap ADT Operations:

- Insert: insert a node into the heap
- Remove: remove a node from the heap
- Heapify: turn a binary tree into a heap

Insert(Node):

- Insert node as bottom-right-most leaf in the tree
- If the parent has a smaller value than the node, switch places with the parent
- Continue recursing upwards
 - Until the parent has a higher (or equal) value than the node, or
 - Until the inserted node becomes the root node

Insert(11) example:

- Insert 11 as the right-most leaf node
- Ensure heap property compliance in a bottom-up manner
- Swap 7 and 11 then 10 and 11 then terminate when 11 becomes the root node

Runtime?

- Remove(Node): (always remove the root node)
 - Replace the root node with the bottom-right-most leaf node in the tree
 - Switch the root node with the highest valued child
 - Continue recursing downwards until there is heap property compliance or until the bottom of the tree is reached

Remove(10) example:

- Swap 10 and 1 (bottom-right-most leaf node)
- Ensure heap property compliance in a top-down manner
- Swap 1 and 7 then terminate when the bottom is reached

Runtime?

This shows power of partially ordered tree! (when we insert into bottom right)

- Could insert item-by-item into a heap: O(nlogn)
 - Why O(nlogn)?
- But there's a better way (O(n)):
- Heapify(Tree):
 - Enumerate the <u>internal nodes</u> of the **existing tree** in <u>reverse</u> <u>level order</u>. That is, traverse all non-leaf and non-root nodes in using reverse level-based traversal
 - In the order of the enumerated list, ensure heap property compliance of each node in the list in a top-down manner
 - Ensure heap property compliance of the root node of the tree in a top-down manner, and then terminate

Heapify(Tree) Example:

- A primary application of heaps are priority queues
 - Fundamental in CPU scheduling, where the OS determined which process to execute on the CPU.

