Geodesic Patterns

Alan Rynne September 2018

UPC - MPDA'18

Index

- 1. Objective
- 2. Background
- 3. Construction technique
- 4. Algorithmic strategies
- 5. Shape optimization
- 6. Analysis
- 7. Conclusion

Objective

Discretize a given freeform surface into panels with the following properties:

- 1. Panels must be *developable* (Shelden 2002)
- 2. Panels should be of approximate equal width
- 3. Panels should be as straight as possible
- 4. Panels should **bend by their weak axis** to approximate the surface.

Background

The use of straight developable planks is widely used in:

Figure 1: Traditional boat building

Also common practice in naval engineering industry:

Figure 2: Connected developable patches for boat hull design

Frank Ghery

This techniques have also been used in the architecture world, mainly by **Frank Ghery**.

His façades are usually a collection of connected developable surfaces.

Latest architectural work following this techniques was:

Figure 3: Burj Khalifa by Frank Ghery

It was designed as a collection of:

- Developable surfaces
 - Which can be covered by equal width planks
- Surfaces of constant curvature
 - Which can be covered by repeating the same profile

Figure 4: Burj Khalifa final panel solution

Construction technique

Geodesic curves

A geodesic curve is the generalization of a *straight line* into *curved spaces*.

Straightest geodesics

In this research, we concentrate on the concept of *straightest geodesics*.

Developable surfaces

Figure 6: Surfaces with *0 gaussian curvature*. Meaning, they can be flattened onto a plane *without distortion*

Developable surfaces

- surfaces that can be flattened.
- can be generated by a single curve.

Geodesic curves

• are straight lines in a curved space.

If Panels are generated using geodesic curves on the surface

Then Resulting panels will be *developable* and mostly *straight* when flat.

In other words

We wish to cover a given freeform surface with a pattern of **geodesic curves** with equal spacing.

This can only be achieved if the provided surface is already developable.

A compromise exists between the *curve spacing* and the *curves geodesic property*

Algorithmic strategies

Obtaining Geodesic Patterns

These are the main methods for the obtaining successful geodesic patterns:

- 1. The *parallel transport* method
- 2. The **evolution** method
 - 2.1 The *piecewise geodesic* evolution method
- 3. The *level-set* method

The parallel transport method

Vector parallel transport

Figure 7: Parallel transport of a vector over a path on a sphere

P.T. Example

Figure 8: Parallel transport method over a positive curvature surface

P.T. Implementation

PLACE P.T. ALGORITHM HERE!!!

P.T. Results

Figure 9: TNB generated panels & distance to original mesh

The Evolution Method

Evolution Implementation

PLACE ALGORITHM HERE!!

Evolution Method Results

Figure 10: Evolution method example

Figure 11: Evolution method problems

The Piecewise Evolution Method

Piecewise Ev. Implementation

Piecewise Ev. Results

The level set method

Level-set Implementation

Results

Modeling planks

Tangent developable method

Bi-Normal method

Comparison

Optimization

Piecewise geodesic vector-fields

Developability of triangle meshes

Analysis

Gaps in panelization

Stress in panels

888

Conclusion

Thanks

Appendix

Resources

 $PUT\ LINKS\ TO\ GH\ COMPONENTS\ HERE+OTHER$ $NICE\ SOFTWARE!$

References i

Shelden, Dennis Robert. 2002. "Digital Surface Representation and the Constructibility of Gehry's Architecture." PhD thesis, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/16899.

