Task 3.5

Let a discrete stationary random process x (ζ , t).

The outcomes of the process are the values $x_1=-1, x_2=0 \ \ and \ x_3=1$ The probabilities of the occurrence of those outcomes are

$$P(\{x(\zeta, t + \tau) = x_i\} | \{x(\zeta, t) = x_j\}) = \begin{cases} \frac{1}{3} (1 + 2e^{-|\tau|}) & for \ i = j \\ \frac{1}{3} (1 - e^{-|\tau|}) & for \ i \neq j \end{cases}$$
 $i, j = 1, 2, 3$

a) Calculate the probabilities

$$P({x(\zeta, t) = x_i})$$
 for $i = 1,2,3$.

b) Calculate the ACF $s_{xx}(\tau)$

Task 3.6

a) Given is the following signal x (t):

Sketch the autocorrelation function $\tilde{s}_{\chi\chi}(\tau)$.

b) Let two deterministic signals x (t) and y (t) of finite energy.

Sketch the cross-correlation function $\tilde{s}_{\chi y}(\tau)$.