Lending Club Case Study

Exploratory Data Analysis On Loan

Author – Ayan Mitra

Date – 24th Feb, 2024

Genesis of the Analysis

- We have received ~40k loan records for analysis
- The data is cleaned by taking out the unnecessary columns, and by formatting important numeric and date columns
- Derived values are created before analysis
- A subset of data is taken by income groups for the defaulters to perform various analysis
- Various charts and graphs are produced to describe the data
- A conclusion is given at the end of each analysis

Analyzing Data for Defaulters

Analysis of Defaulters by Home Ownership

Objective – Find if people are failing to payoff their loan because of their home ownership status

Strategy:

- Grouped the defaulters by their home ownership and stored them into a different dataset
- Used the dataset to generate a bar chart

Findings:

 People with rented and mortgaged house are defaulting their loan more than people with own house

Conclusion:

- The lending club should prefer giving loans to those who have their own house than people renting houses or having a mortgage on their home.

Analysis of Defaulters by Income Class

Objective – Find if people are failing to payoff their because of their income class

Strategy:

- Grouped the defaulters by their annual income category in 6 classes
 - Very poor (up to \$10,000)
 - Poor (\$10,001 to \$30,000)
 - Lower-Middle (\$30,001 to \$100,000)
 - Higher-Middle (\$100,001 to \$500,000)
 - Rich (\$500,001 to \$1,000,000)
 - Very-Rich (Greater than \$1,000,000)

Findings:

 People in the Lower-Middle Income class tends to default on their loan more than other income classes

Conclusion:

 Although, the number of loan-takers are more in this category, the lending club should pay caution while disbursing loan to people in this income range

Analysis of Defaulters in Lower-Middle Income Class w.r.t. Interest Rates

Objective – Since we know the largest population of loan defaulters are in lower-middle income category, does the interest rates play any role for defaulting the loan

Strategy:

- Grouped the interest rates under which the loan is taken for the people in the lower-middle class income category in the following buckets
 - Upto 5%
 - 6% to 10%
 - 11% to 15%
 - 16% to 20%
 - 21% to 25%

Findings:

- People who have taken loan with a rate of interest between 11% to 15% are defaulting on their loan more

- Although, the number of loan-takers are more with the rate of interest between 11% to 15%, but we can see the count from other categories is still higher.
- The lending club can be cautious deciding the rate of interest for loan-takers in the income category

Analysis of Defaulters in Lower-Middle Income Class w.r.t. Installment Amount

Objective – Since we know the largest population of loan defaulters are in lower-middle income category, does the installment amount play any role for defaulting the loan

Strategy:

- Grouped the installment payment for the lower-middle class income category in the following buckets
 - Upto \$300
 - \$301 to \$600
 - \$601 to \$900
 - \$901 to \$1200
 - > \$1200

Findings:

- Surprisingly, people with a smaller loan installment are defaulting the loan more

- The results are a bit contradictory. It seems people with a smaller installment to pay are tending to default on their loan more than people with bigger installment to pay
- The lending club should recalibrate their installment payment formulas so that it stands >\$600 per month

Analysis of Defaulters in Lower-Middle Income Class for a correlation between monthly installment and interest rate

Objective – Since we know the largest population of loan defaulters are in lower-middle income category, is there a correlation between the monthly installment amount and interest rate.

Strategy:

 Taken the installment amount and interest rates to plot a scatterplot to find the correlation

Findings:

- The highest density was found \$100 to \$400 range with interests between 7.5% to 17.5%

Conclusion:

- Loan takers who typically pay a lower monthly installment with an interest rate between 10% to 17% are defaulting on their loan more than the rest of the group

Analysis of Defaulters on Loan-Terms

Objective – Find if the loan term makes any difference for defaulting the loan

Strategy:

Take the loan-term field and plot a bar chart to see the distribution

Findings:

- The number of defaulters appeared to be slightly high in the 36 months loan term, but it is not very different from 60 months

Conclusion:

The loan term doesn't seem to have an impact on defaulting a loan

Analysis on Employer Category

Objective – Find if the employer's category has any role on defaulting on loan

Strategy:

- For this analysis only those employers are taken where there are more than 5 loan defaulters
- Cleansed the employer title data for better analysis (e.g. employers like Walmart, US Postal Services etc. are named differently in various records)
- Next grouped the data by the employers and categorized them in 22 different buckets
- Finally plotted a pie chart to see the distribution

Findings:

- People who are unemployed tends to be defaulting on their loans the most
- However, in the employed category, people whose employers are in Defense, Retail, and Postal service categories are defaulting more than the rest of the population

- The lending club must be very careful granting loans to unemployed
- The lending club must pay caution while lending loans to those people who employers are in Defense, Retail, or Postal service

Analysis of Defaulters against their employment length

Objective – Find how the employment length impacts on loan defaulters

Strategy:

- Taken the employment length and plotted a bar chart to find the distribution

Findings:

- People with 10+ years employment length are the highest loan defaulters
- In the group of people with less than 10 years of service, the highest loan defaulters falls into the <1 year of employment length category

- While the population of defaulters is largest in 10+ years employment length category, it is obvious that people are taking and defaulting on loan if they have <1 year of service.
- The lending club need to pay caution while lending loans to people with
 4 year of employment
- People with 6 to 9 years of employment length tend to be defaulting less on their loan

Analysis of Loan Verification Status and Purpose

Objective – Find out the defaulters are distributed among the income verification status and the purpose for which the loan is being taken.

Strategy:

- Categorized the data by loan verification status and purpose of the loan
- Plotted a boxplot graph to see the distribution of the data

Findings:

- Income verification seems to be not playing any major role on the loan being defaulted
- People taken loan for debit consolidation are the highest among defaulters
- The 25th and 75th quartiles of those defaulters who have taken loan for credit cards and small business are about the same

Conclusion:

- The lending club need to very careful while lending loan to those who are taking it for debit consolidation

Analysis between Loan Amount, Annual Income, Installment & DTI

Objective – Is there a correlation between Loan Amount, Annual Income, Installment & DTI among the defaulters group

Strategy:

- Taken the Loan Amount, Annual Income, Installment & DTI fields
- Derived the correlation between these fields
- Plotted a heatmap to find the correlation

Findings:

- Installment amount and loan amount are highly correlated
- Annual income and DTI are not correlated

- The lending club need to very careful while determining the loan amount and the installment amount
- The installment amount is also correlated with annual income of the person

Analysis the data by determining a credit score

Objective – Determine a credit score and see the distribution among the complete dataset

Strategy:

- Taken the Loan Amount, Annual Income, Installment & DTI as individual dimensions
- Computed a credit score by normalizing the data in the above dimensions
- Determined a credit score category between Poor, Fair, Good and Excellent
- Plotted a stacked chart to find the distribution of credit rating

Findings:

 There is a large number of members who are poorly rated on their credit but still granted a loan

Conclusion:

The lending club must use a scoring mechanism (like credit rating) before granting a loan to its members

Analyzing Data for Current Loan Accounts

Analysis on the loan collected

Objective – Determine how much of the current loan is already collected

group_count	completed_term_percentage_group	
0	0-25	0
0	26-50	1
0	51-75	2
1140	76-99	3

Strategy:

- Calculate the completed term percentage by taking total received principle divided by the funded amount.
- Then divide them in four buckets with ranges from 0-25%, 26%-50%, 51%-75%, and 76%-99%
- Take pivot on this buckets to find the counts

Findings:

- There are no loan where the term complete is less than 75%

Conclusion:

 76% to 99% of all lend loan is already collected which is a good indication

Analysis on the outstanding and late fee to funded ratios

Objective – Determine outstanding to funded, and late fee to funded ratio in percentages to find out the risk profile of all current loans

	outstanding_per_bin	mem_count
0	0%-25%	1140
1	26%-50%	0
2	51%-75%	0
3	76%-100%	0

Outstanding Amount to Fund Ratio

	lat_fee_per_bin	mem_count
0	0%-25%	1140
1	26%-50%	0
2	51%-75%	0
3	76%-100% Late Fee to Fund Ra	O atio

Strategy:

- Calculate the outstanding amount, and late fee to fund ratio by taking those amounts divided by the funded amount.
- Then divide them in four buckets with ranges from 0-25%, 26%-50%, 51%-75%, and 76%-100%
- Take pivot on this buckets to find the counts

Findings:

- There are no loan where the outstanding amount, and late fee ratio are greater than 25%

Conclusion:

The outstanding amount to funded amount and late fee to funded amount ratios within 0%-25% indicates a low risk profile

Analysis on the payment received vs. interest received

Objective – Determine if the interests are received along with payments and they are correlated

Strategy:

- Taken the total interest received and the total payment received columns
- Plotted a scatterplot to find the correlation

Findings:

 We can see the interests are matching with payment received and the scatterplot denotes almost a straight line.

- It seems borrower has paid off all accrued interest charges up to the current date.
- This suggests that the borrower is making timely and sufficient payments to cover both the principal amount and the interest charges, which is a positive indicator of loan performance

Analysis Past 2 years Delinquency count w.r.t. Installment Payment

Objective – Determine if the number of times a borrower is being delinquent in the past 2 years has any bearing on their installment amount

Strategy:

- Taken the number of times members being delinquent in the past 2 years
- Grouped their installments in 4 buckets
- Plotted a stack bar chart to see the correlation.

Findings:

- In the last 2 years, the highest number of times borrowers being delinquent is 1 time
- Borrowers who are paying an installment between 301 to 600 dollars are highest among the delinquents

- It seems borrowers who are paying an installment amount <=\$600 are being delinquent at least once.
- The lending club may communicate the late /delinquency fee policies to such borrowers

Analyzing Data for Fully Paid Accounts

Analysis the home ownership of the fully paid loans

Objective – Determine how the home ownership impacts on the fully paid loans

Strategy:

- Taken all the paid off loans
- Grouped the data by home ownership on the paid of loan dataset
- Grouped the data by home ownership on the entire dataset
- Merged the datasets and plotted a bar chart

Findings:

- Borrowers are the largest where the home ownership is either Mortgage or Rent.

Conclusion:

~82% of all borrowers in each home ownership category have paid off their loans.

Analysis the employment length of the fully paid loans

Objective – Determine how the employment length impacts on the fully paid loans

	emp_length	mem_count_original	mem_count_paid	percentage
10	9 years	1258	1068	84.90
2	2 years	4388	3724	84.87
1	< 1 year	4583	3869	84.42
3	3 years	4095	3457	84.42
4	4 years	3436	2880	83.82
6	1 year	3240	2713	83.73
7	6 years	2229	1861	83.49
5	5 years	3282	2736	83.36
9	8 years	1479	1232	83.30
8	7 years	1773	1448	81.67
0	10+ years	8879	7157	80.61

Strategy:

- Taken all the paid off loans
- Grouped the data by employment length on the paid of loan dataset
- Grouped the data by employment length on the entire dataset
- Displayed the result

Findings:

Borrowers who have more than 10+ years of employment are the lowest to pay off their loans.

Conclusion:

 >80% of all borrowers in each employment length category have paid off their loans.

Analysis the revolving line utilization rate by loan status

Objective – Determine the distribution of the amount of credit the borrower is using relative to all available revolving credit under different loan status

Strategy:

- Taken all the records in the entire dataset
- Converted the revolving utilization rate to a float value
- Plotted a box plot and a bar chart under each loan status

Findings:

 Charged off loans are using the higher percentage of revolving line utilization rate

- A revolving line utilization rate typically denotes the ratio of a person's credit debt to their total credit limit.
- We can see, the median of the revolving line utilization rate for the fully paid and current loans are almost same, however it is much higher for the charged off loans.
- As a result the lending club may pay caution while granting loan to those borrowers whose revolving line utilization rate is higher than 50%, because they are most likely become defaulters

Thank you