CS498 Applied Machine Learning HW6 Report

1. Latitude: Linear regression: $R^2 = 0.2928092$, max Lambda = 2

Longitude: Linear regression: $R^2 = 0.3645767$, max Lambda = 0.989899

Plots: Latitude: 117before.png, 117boxcox.png, 117after.png

Longitude: 118before.png, 118boxcox.png, 118after.png

After box-cox: Latitude: $R^2 = 0.4147814$ Longitude: $R^2 = 0.3916395$

It is slightly better then the raw data because it does normalization

2. Lambda.min after box-cox transformation

Latitude:
$$L1 = 2.24$$
, $L2 = 41.02$, $L0.25 = 8.96$, $L0.5 = 4.91$, $L0.75 = 2.98$

Longitude:
$$L1 = 0.2958$$
, $L2 = 4.09$, $L0.25 = 0.89$, $L0.5 = 0.40$, $L0.75 = 0.475$

Mean-square-error:

Latitude:

Longitude:

Based on the mean-square-error, L0.25 and L0.5 works better than other alpha value

3. For the logistic regression, please see the plots:

P2L1.png

P2L2.png

P2L025.png

P2L05.png

P2L075.png

As above, L2 regression seems to work the best, with lambda.min = 0.01323468