Билет 25

Предел суперпозиции функции

Определение суперпозиции

Пусть
$$f:X \to Y$$
 и $g:Y \to Z$

$$h:X\to Z,\,h(x)=g(f(x))$$
 — суперпозиция (сложная функция) функций g и f

Обозначение: $h = g \circ f$

Теорема

$$\exists \lim_{x \to x_0} g(x) = y_0 \land \exists \lim_{y \to y_0} f(y) = L$$

 y_0 — точка сгущения области определения f

 $g(x) \neq y_0$ в \dot{S} — проколотой окрестности x_0

Тогда
$$\exists \lim_{x \to x_0} f(g(x)) = g$$

Доказательство

Возьмём произвольную $\{x_n\}\subset \dot{S}$, сходящуюся к x_0 , по определению предела

$$\lim_{n \to \infty} g(x_n) = y_0 \qquad (\forall n \in \mathbb{N}) \ x_n \in \dot{S} \Rightarrow g(x_n) \neq y_0$$

Тогда последовательность $\{g(x_n)\}$ тоже соответсвует определению предела

$$\lim_{n \to \infty} g(x_n) = y_0 \land (\forall n \in \mathbb{N}) \ g(x_n) \neq y_0 \Rightarrow \lim_{n \to \infty} f(g(x_n)) = L \Rightarrow$$
$$\Rightarrow \forall \{x_n\} ((\forall n \in \mathbb{N}) \ x_n \in \dot{S} \land x_n \to x_0) f(g(x_n)) = L \Rightarrow \lim_{x \to x_0} f(g(x)) = L \Box.$$