Linear Algebra: Sheet 6

Present all your answers in complete sentences. There is also a Numbas quiz.

Hand-in question

Submit your solution on Blackboard by 1pm on Wednesday (Week 8) for feedback from your tutor.

1. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$, $x \mapsto Ax$ where

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \in M_2(\mathbb{R}).$$

- a) Compute the characteristic polynomial of A and so find the eigenvalues of A.
- b) For each eigenvalue λ of A, find the set $E(\lambda)$.
- c) In this case we can diagonalise A. To do so, we use $C := (v_1 \ v_2)$ where $\{v_1, v_2\}$ is a basis of eigenvectors.
 - (i) Construct the matrix C and directly compute $C^{-1}AC$.
 - (ii) Now replace C by $(v_2 \ v_1)$. Directly compute $C^{-1}AC$ in this case.
 - (iii) Consider why we get the answers found for (i) and (ii). Write a short explanation of this. ¹

Additional questions

Try these questions and look at the solutions for feedback. They might also be discussed in your tutorial.

- 2. Which of the following functions $f: \mathbb{R}^2 \to \mathbb{R}^2$ define an \mathbb{R} -linear map? Justify your answer in each case. For those that are linear, find their matrix form.
 - a) f(x,y) = (-y, -x) for all $x, y \in \mathbb{R}$.
 - b) $f(x,y) = (x+y, x \times y)$ for all $x, y \in \mathbb{R}$.
 - c) f(x,y) = (0,0) for all $x, y \in \mathbb{R}$.
 - d) f(x,y) = (0,0) if $(x,y) \in \mathbb{Q}^2$ and f(x,y) = (x,y) otherwise.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x,y) = (-x,-y) for all $x,y \in \mathbb{R}$.
 - a) Write f in standard basis form.
 - b) Write f in matrix form.
 - c) Using the matrix form, check that f is indeed an \mathbb{R} -linear map.
- 4. Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map with $g(e_1) = e_2$ and $g(e_2) = -e_1$.
 - a) Is g uniquely determined? Justify your answer.
 - b) Write g in algebraic form.
 - c) Write g in matrix form.
 - d) What transformation of \mathbb{R}^2 does g represent?
 - e) Using the standard basis form, together with linearity, find g^{-1} .
 - f) Confirm your answer by finding g^{-1} by:
 - (i) first finding the inverse of the 2×2 matrix from (c); and then
 - (ii) writing this linear map in standard basis form.
- 5. Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map given by $h(\mathbf{x}) = A\mathbf{x}$ where $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
 - a) Is h uniquely determined? Justify your answer.
 - b) Write h in standard basis form.
 - c) Write h in algebraic form.
 - d) What transformation of \mathbb{R}^2 does h represent?
 - e) By using the matrix forms of the maps, find $h \circ g$ and $g \circ h$ in algebraic form.

¹The explanation of diagonalisation in the lecture notes may help here.

- 6. Let $f_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates anti-clockwise by θ radians².
 - a) Find each of the following, in whichever order you prefer:
 - (i) The algebraic form of f_{θ} .
 - (ii) The matrix form of f_{θ} .
 - (iii) The standard basis form of f_{θ} .
 - b) Note, given $\theta, \phi \in \mathbb{R}$, that $f_{\theta} \circ f_{\phi} = f_{\phi} \circ f_{\theta} = f_{\theta + \phi}$.
 - (i) Using (a)(ii), write out the matrix form of $f_{\theta+\phi}$.
 - (ii) Using the matrix forms of f_{θ} and f_{ϕ} , find the matrix form of $f_{\theta} \circ f_{\phi}$.
 - (iii) Use (i) and (ii) to find identities relating to $\sin(\theta + \phi)$ and $\cos(\theta + \phi)$.
 - c) Observe that $f_{\theta}^{-1} = f_{-\theta}$. By comparing the matrix form of $f_{-\theta}$ and the inverse of the matrix form of f_{θ} , deduce one property of cos and one of sin.
- 7. Let $m, n \in \mathbb{N}$ and suppose that $f : \mathbb{Q}^n \to \mathbb{Q}^m$ satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{Q}^n$. Prove that f is a \mathbb{Q} -linear map.
- 8. Let $A \in M_n(\mathbb{C})$ have an eigenvalue $\lambda \in \mathbb{C}$. Note: for (a) and (c), recalling properties of the determinant is helpful.
 - a) Show that λ is an eigenvalue of A^t .
 - b) Consider the matrix A from \mathbb{R}^2 to \mathbb{R}^2 sending e_1 to e_1 and e_2 to $e_1 + e_2$. Are the eigenvectors of A and A^t the same?
 - c) Is $-\lambda$ is an eigenvalue of -A? (Consider the cases that n is even and odd.)
 - d) Using that $(A^t)^t = A$ and -(-A) = A, comment on the set of eigenvalues of A^t and -A compared to the set of eigenvalues for A.
 - e) Must the eigenvectors of A and -A be the same?
 - f) Imagine that A is antisymmetric (i.e., $A^t = -A$). What can we say about the set of eigenvalues of A?
 - g) If $A \in M_n(\mathbb{C})$ is antisymmetric and n odd, show that $\det(A) = 0$. Explain why A therefore has zero as an eigenvalue.
- 9. Let $A \in M_n(\mathbb{C})$ have the property that the sum of elements in every row equals the same number r, i.e., $\sum_i a_{ij} = r$ for each $i \in \{1, \ldots, n\}$.
 - a) Show that r is an eigenvalue of A and find a corresponding eigenvector³.
 - b) If $B \in M_n(\mathbb{C})$ instead has the property that the sum of elements in every column equals the same number r, must r be an eigenvalue of B?
- 10. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- a) Compute the characteristic polynomial of A and the eigenvalues of A.
- b) Compute a set of eigenvectors of A.
- c) Is A diagonalisable? If so, diagonalise A.
- 11. Consider the matrix

$$B = \begin{pmatrix} 1 & -1 & 5 \\ 0 & 1 & -2 \\ 0 & -2 & 4 \end{pmatrix}.$$

- a) Compute the characteristic polynomial of B and the eigenvalues of B.
- b) Compute a set of eigenvectors of B.
- c) Is B diagonalisable? If so, diagonalise B.

²It is helpful to know that the point given by rotating e_1 by θ radians is $(\cos \theta, \sin \theta)$.

 $^{^{3}}$ Hint: we want to consider a special vector to use as the eigenvector here, that somehow uses the property of A that we are given.