Math 105A	Student's Name (Print):	
Fall 2017	,	
Midterm Exam	Student's ID:	
Fri Nov 3 2017		
12.00pm	Discussion Section Code:	
•		

Print your name and student ID on the top of this page.

This exam contains 6 pages (including this cover page) and 5 problems. You may *not* use your books, notes, or any calculator in this exam. Do not write in the grading table below.

The following rules apply to the answers you provide in this exam:

- Organize your work, in a neat and coherent way.
- Unsupported answers will not receive full credit. Calculation or verbal explanation is expected.
- If you need more space, use the back of the pages; clearly indicate when you have done this.
- Box your final answer for full credit.

Points	Score
10	
10	
5	
10	
20	
55	
	10 10 5 10 20

1. (a) (5 points) Consider the sequence $\{p_n\}$ defined by

$$p_n = \sum_{k=1}^n \frac{1}{k}.$$

This sequence diverges (to see this intuitively note that $p_n \approx \int_1^\infty dx/x$ for large n). Show that, nevertheless,

$$\lim_{n \to \infty} (p_n - p_{n-1}) = 0.$$

Less: Be mindful of this when testing for convergence in your iterative algorithms!

(b) (5 points) Show that $p_n = 10^{-2^n}$ converges quadratically.

2. (10 points) Find the unique fixed point of $g(x) = 1 + \sqrt{x}$.

3. (5 points) Find all values of α for which the following system has no solutions. Explain your answer.

$$2x - y + 3z = 5$$

$$4y - 4z = -4$$

$$(5+\alpha)z = 8+\alpha$$

4. (10 points) Use Gaussian Elimination to compute the determinant of

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{array} \right].$$

5. (20 points) Use partial pivoting to compute a PLU factorization of

$$A = \left[\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & 1 & -1 \end{array} \right].$$

(You may use this page to complete your solution to Q5.)