数据寻址2 (偏移寻址)

1

2

偏移寻址
基址寻址 EA=(BR)+A 区别在于偏移的"起点" 不一样 变址寻址 EA=(IX)+A 相对寻址 EA=(PC)+A

基址寻址:以程序的起始存放地址作为"起点" 变址寻址:程序员自己决定从哪里作为"起点" 相对寻址:以程序计数器PC所指地址作为"起点"

_

	-		寻址的作	14	
		主存 指令		省令	N.V. offer
for(int i=0; i<10; i++){		地址	操作码	地址码	注释
sum += a[i];	立即寻址 -	0	取数到ACC	#0	立即数 0 → ACC
}		1	取数到IX	#0	立即数 0 → IX
	变址寻址	2	ACC加法	7(数组始址)	(ACC)+(<mark>7+(IX)</mark>)→ ACC
	立即寻址 【	3	IX加法	#1	(IX) + 1 → IX
ACC 0		4	IX比较	#10	比较10-(IX)
	直接寻址	5	条件跳转	2	若结果>0 则PC跳转到2
	且按寸址	6	从ACC存数	17	(ACC)→ sum变量
IX 10		7	随便什么值		a[0]
		8	随便什么值		a[1]
在数组处理过程中,可设定A为数组的 首地址,不断改变变址寄存器IX的内		9	随便	什么值	a[2]
				•••	•••
容,便可很容易形成数组中任一数据 的地址,特别 适合编制循环程序 。			随便	什么值	a[9]
			初	/始为0	sum变量

变址寻址

变址寻址:有效地址EA等于指令字中的形式地址A与变址寄存器IX的内容相加之和,即EA= (IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器。

注:变址寄存器是**面向用户的**,在程序执行过程中,**变址寄存器的内容可由用户改变** (作为偏移量),形式地址A不变(作为基地址)。

优点:在数组处理过程中,可设定A为数组的首地址,不断改变变址寄存器IX的内容,便可很容易形成数组中任一数据的地址,特别<mark>适合编制循环程序</mark>。

王道考研/CSKAOYAN.COM

12

	/	アドベログ	寻址的作	/ 	
for(int i=0; i<10; i++){	for循环主体 一 直接寻址	主存	指令		N) of the
		地址	操作码	地址码	注释
sum += a[i];		0	取数到ACC	#0	立即数 0 → ACC
}		1	取数到IX	#0	立即数 0 → IX
问题:随着代码越写越多,你想挪动for循环的位置 注:站在 汇编语言 程序员的 角度思考		2	ACC加法	7(数组始址)	(ACC)+(<mark>7+(IX)</mark>)→ ACC
		3	IX加法	#1	(IX) + 1 → IX
		4	IX比较	#10	比较10-(IX)
		5	条件跳转	2	若结果>0 则PC跳转到2
		6	从ACC存数	17	(ACC)→ sum变量
		7	随便什么值		a[0]
		8	随便	什么值	a[1]
		9	随便	什么值	a[2]
					•••
		16	随便	什么值	a[9]
		17	初	/始为0	sum变量

主存地址		1令	
	10 /LT		
	操作码	地址码	注释
0	取数到ACC	#0	立即数 0 → ACC
1	取数到IX	#0	立即数 0 → IX
2		•••	其他代码
3		•••	其他代码
4		•••	其他代码
5	••	•••	其他代码
		•••	其他代码
M	ACC加法	7(数组始址)	(ACC)+(<mark>7+(IX)</mark>)→ ACC
M+1	IX加法	#1	(IX) + 1 → IX
MI 2	IX比较	#10	比较10-(IX)
	条件跳转	2	若结果>0 则PC跳转到2
M+4			
	2 3 4 5 M M+1 M+2 M+3	2 3 4 5 M ACC加法 M+1 IX加法 M+2 IX比较 M+3 条件跳转	2 3 4 5 M ACC加法 7 (数组始址) M+1 IX比较 #1 M+2 IX比较 #10 M+3 条件跳转 2

本节回顾

寻址方式	有效地址	访存次数(指令执行期间)
隐含寻址	程序指定	0
立即寻址	A即是操作数	0
直接寻址	EA=A	1
一次间接寻址	EA=(A)	2
寄存器寻址	EA=R _i	0
寄存器间接一次寻址	EA=(R _i)	1
转移指令 相对寻址	EA=(PC)+A	1
多道程序 基址寻址	EA=(BR)+A	1
循环程序 变址寻址 数组问题	EA=(IX)+A	1

偏移寻址

注意: 取出当前指令后, PC会指向下一条指令, 相对寻址是相对于下一条指令的偏移

硬件如何实现数的"比较"

主存

16

17

王道考研/CSKAOYAN.COM

注释

注: 无条件转移指令 jmp 2, 就

不会管PSW的各种标志位

19

高级语言视角:

if (a>b){

汇编语言中,<mark>条件跳转指令</mark>有 很多种,如 je 2 表示当比较结

} else { 果为 a=b 时跳转到2 jg 2 表示当比较结果为a>b时跳 转到2

硬件视角:

• 通过"cmp指令"比较 a 和 b (如 cmp a, b) ,实质上是用 a-b

• 相减的结果信息会记录在程序 状态字寄存器中(PSW)

• 根据PSW的某几个标志位进行 条件判断,来决定是否转移

有的机器把 PSW称为"标 志寄存器"

PSW中有几个比特位记录上次运算的结果

- 进位/借位标志 CF: 最高位有进位/借位时CF=1
- 零标志 ZF: 运算结果为0则 ZF=1, 否则ZF=0
- 符号标志 SF: 运算结果为负, SF=1, 否则为0
- 溢出标志 OF: 运算结果有溢出OF=1否则为0

地址	操作码	地址码	注释
0	取数到ACC	#0	立即数 0 → ACC
1	取数到IX	#0	立即数 0 → IX
2	ACC加法	7(数组始址)	(ACC)+(7+(IX))→ ACC
3	IX加法	#1	(IX) + 1 → IX
4	IX比较	#10	比较10-(IX)
5	条件跳转	2	若结果>0 则PC跳转到2
6	从ACC存数	17	(ACC)→ sum变量
7	随便	什么值	a[0]
8	随便	什么值	a[1]
9	随便	什么值	a[2]
			•••

指令

随便什么值

初始为0

sum变量 王道考研/CSKAOYAN.COM

10

a[9]

20