Minimering n-dimensionelle funktioner

Lad $f(x_1, ..., x_n)$ være en to gange differentiabel n-dimensionel funktion defineret på området $[l_1, u_1] \times \cdots \times [l_n, u_n]$. Hvis den har et minimum, er det enten et kritisk punkt eller et kantpunkt.

1. Et kritisk punkt er et punkt hvor gradienten er 0

$$\nabla f(x_1, \dots, x_n) = 0 \tag{1}$$

2. Et kantpunkt opfylder at mindst en af koordinaterne ligger yderst i sit interval. Det vil sige at der eksisterer et i, så $x_i = l_i$ eller $x_i = u_i$.

Udtrykket i (1) er det samme som

$$\left(\frac{\partial}{\partial x_1}f \quad \dots \quad \frac{\partial}{\partial x_n}f\right) = 0 \tag{2}$$

Et kritisk punkt er et minimum hvis Hessian-matricen er positiv definit (men det er ikke et tjek der er nødvendigt for os at lave).

1-dimensionel tabel

For at minimere en 1-dimensionel tabel skal man finde eventuelle kritiske punkter i hver celle og man skal tjekke kantpunkterne. En celle er kendetegnet ved dets domæne $[l_1, u_1]$. For at finde de kritiske punkter skal man løse

$$\nabla f(x) = \frac{\partial}{\partial x} f(x) = 0 \tag{3}$$

for alle celler. Hvis ikke en løsning til (3) ligger i sin celle, er det ikke et kritisk punkt. Fordi f er et tredjegradspolynomium er ∇f et andengradspolynomium $(ax^2 + bx + c)$ har det to analytiske løsninger

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{4}$$

Efter man har fundet en række kritiske punkter x_1, \ldots, x_m , skal man se hvilken f værdi, de har for at afgøre hvilket et er mindst. Man skal også sammenligne med f værdien for de to kantpunkter. Alle de punkter man skal tjekke kalder vi minimumskandidater. Altså er minimum

$$\min\{f(x_1), \dots, f(x_m), f(l_1), f(u_1)\}\tag{5}$$

2-dimensionelle tabeller

Det globale minimum

For at finde minimum af en todimensionel interpolationstabel skal man igen finde kritiske punkter i hver celle og tjekke randpunkterne. I en todimensionel tabel er en celle defineret ved dets domæne på formen $[l_1, u_1] \times [l_2, u_2]$. Dvs. man skal løse

$$\nabla f(x,y) = (0,0) \tag{6}$$

for hver celle. Hvis en løsning til (6) ikke ligger i sin celle, er det ikke et kritisk punkt. Da f er todimensionel er det ikke sikkert der er en analytisk løsning til (6). Da skal man bruge en numerisk løsning (måske Newton-Rhapson).

For at tjekke kantpunkterne skal vi finde alle minimumskandidater af de 4 funktioner

$$f(x, l_2)$$
 som funktion af x (7)

$$f(x, u_2)$$
 som funktion af x (8)

$$f(l_1, y)$$
 som funktion af y (9)

$$f(u_1, y)$$
 som funktion af y (10)

Det gøres som beskrevet i sektionen 1-dimensionel tabel. Til sidst tager man alle minimumkandidater fra hhv (6), (7), (8), (9) og (10) og finder minimum blandt dem.

De betingede minimum

Vi holder nu en variabel fast (fx $y = y_0$) og vi prøver at finde minimum over den anden variabel. Dvs. vi er interesseret i at finde

$$\min_{x \in [l_1, u_1]} f(x, y_0) \tag{11}$$

Da vi ikke kender værdien af y_0 , bliver minimummet (11) nødt til at afhænge af y_0 . Når vi ikke kender y_0 bliver det svært at finde ud af hvilket af minimumskandidaterne, der giver minimum. Derfor foreslår jeg at vi kun udregner minimumskandidaterne og lader udregning af minimum foregå i browseren. For at finde minimumskandidaterne skal vi finde de kritiske punkter samt kantpunkter.

Når vi er i en todimensionel tabel er $f(x, y_0)$ et tredjegradspolynomium og så findes en analytisk løsning til gradienten $\frac{\partial}{\partial x} f(x, y_0) = 0$. Der er også kun 2 kantpunkter (l_1 og u_1), så mængden af minimumskandidater bliver altså

- 1. l_1
- 2. u_1
- 3. De to løsninger til $\frac{\partial}{\partial x} f(x, y_0) = 0$ udtrykt som funktion af y_0 .