1. Résoudre l'équation $e^z+e^{-z}=0$ d'inconnue $z\in\mathbb{C}.$

2. Justifier la dérivabilité de $f: x \mapsto \ln\left(1+\sqrt{1-x^2}\right)$ sur un ensemble à déterminer et calculer sa dérivée.

3. Déterminer en détaillant $\lim_{x\to +\infty} xe^{-\sqrt{\ln x}}$.

4.	Compléter en	précisant	l'ensemble de	définition et	t l'image,	le d	domaine	de	e dérivabilité et l'expression de la dérivé	e.
----	--------------	-----------	---------------	---------------	------------	------	---------	----	---	----

La fonction $\arcsin: \dots \longrightarrow$ est dérivable $\sup: \dots \longrightarrow$ et $\arcsin'(x) = \dots \longrightarrow$

La fonction $\arctan: \dots \longrightarrow$ est dérivable $\sup \dots$ et $\arctan'(x) = \dots$

5. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x} \end{array} \right.$ On admet que f est de classe \mathcal{C}^{∞} sur \mathbb{R}^* . Donner une expression de $f^{(\mathfrak{n})}(x)$ pour $x \in \mathbb{R}^*$ et $\mathfrak{n} \in \mathbb{N}$. On exige une démonstration.

6. Déterminer les limites en $-\infty$ et $+\infty$ de la fonction th. On exige une démonstration.