EXERCICES D'APPLICATION

GROUPE - MORPHISME DE GROUPES

EXERCICE 01

 $E = \{(x; y) \in \mathbb{R}^2 / x^2 - y^2 = 1\}$ Soit:

Pour tout $(x; y) \in E$ et $(x'; y') \in E$, on pose:

$$(x;y)T(x';y') = (xx' + yy'; xy' + yx')$$

- 1) Montrer que T est une loi de composition interne dans E.
- 2) Montrer que (E;T) est un groupe commutatif.

EXERCICE 02

On considère l'intervalle $I=\left]-1;1\right[$ de $\mathbb R$.

- 1) Montrer que: $(\forall (a;b) \in I^2) -1 < \frac{a+b}{1+ab} < 1$
- 2) On définit sur *I* une loi de composition interne * $(\forall (a;b) \in I^2)$ $a*b = \frac{a+b}{1+ab}$ Montrer que (I;*) est un groupe commutatif.

EXERCICE 03

On définit sur l'ensemble $G = \mathbb{R}^* \times \mathbb{R}$ une loi de composition interne comme suit:

$$(a;b)*(c;d) = (ac;bc+d)$$

- 1) Montrer que (G;*) est un groupe.
- 2) On considère l'ensemble :

$$H = \left\{ \left(1; x\right) \in G \mid x \in \mathbb{R} \right\}$$

Montrer que H est un sous-groupe de(G;*).

EXERCICE 04

On considère l'ensemble $E=\mathbb{R}^* imes\mathbb{R}$. On définit sur $\it E$ une loi de composition interne * comme suit :

Pour tous
$$(x;y)$$
 et $(z;t)$ de E :

$$(x;y)*(z;t) = (xz; xt + z^n y)$$

où n est un entier naturel supérieur ou égal à 2, Montrer que (E;*) est un groupe non commutatif

EXERCICE 05

 $\operatorname{Soit}(G;*)$ un groupe d'élément neutre e .

On note a^{-1} le symétrique de a.

On considère l'application f définie de G dans G_{par_i}

$$f(a) = a^{-1}$$

Montrer que f est un isomorphisme si, et seulementsi, le groupe (G;*) est commutatif.

EXERCICE 06

On considère l'ensemble:

$$E = \left\{ M(x) = \begin{pmatrix} 1 & 0 & x \\ -x & 1 & -\frac{x^2}{2} \\ 0 & 0 & 1 \end{pmatrix} / x \in \mathbb{R} \right\}$$

- 1) Calculer $M(x) \times M(x')$ pour tout $(x,x') \in \mathbb{R}^2$.
- 2) Montrer que $(E; \times)$ est un groupe.

EXERCICE 07

(E;st) est un groupe d'élément neutre e .

Pour un élément $a \in E$ donné $(a \neq e)$, on définit |a|loi T sur E par : $(\forall (x; y) \in E^2)$ $x \top y = x * y * d$

Montrer que (E;T) est un groupe commutatif.

EXERCICE 08

Soit (G;*) un groupe d'élément neutre e.

On note a^{-1} le symétrique de a. Soit H un sous g^{roup} de (G, x)de(G;*) et $n \in G$ (n donné). Montrer que l'ensemble H = G $H_n = \left\{ n * h * n^{-1} \right\} \text{ est un sous-groupe de} \left(G; *\right)$

with e^{tq} deux nombres premiers positifs distincts. with $H = \{p^m q^n / (m; n) \in \mathbb{Z}^2\}$

 stun sous-groupe $\operatorname{de}(\mathbb{R}^*;\times)$.

 $\operatorname{\mathit{gat}fun}$ morphisme de groupe $(G;\mathsf{T})$ dans un groupe $[G';\bot]$. Soit H' un sous-groupe $\operatorname{de}(G';\bot)$. Nontrer que $f^{-1}(H')$ est un sous-groupe de(G;T).

EXERCICE 12

 $_{
m munit}$ ${\mathbb R}$ d'une loi de composition interne * comme suit: $(\forall (x; y) \in \mathbb{R}^2)$ $x * y = x\sqrt{y^2 + 1} + y\sqrt{x^2 + 1}$ $_{ ext{eton}}$ considère l'application s définie de $\mathbb R$ dans $\mathbb R$

$$s(x) = \frac{e^x - e^{-x}}{2}$$

1) Montrer que s est un isomorphisme de $(\mathbb{R};+)$ dans $(\mathbb{R};*)$.

 \emptyset En déduire la structure de $(\mathbb{R};*)$ en déterminant son élément neutre et le symétrique de tout élément $dans(\mathbb{R};*)$.

 $\Re \operatorname{Pourtout} x \in \mathbb{R}$ et pour tout entier $n \ge 2$, on pose :

$$x^{(n)} = \underbrace{x * x * \dots * x}_{n \text{ fois}}$$

Calculer $x^{(n)}$.

FRERCICE 13

 $^{
ho_{
m munit}}$ le plan ${\mathcal P}$ d'un repère $ig(O;ec{i}\;;ec{j}ig)$.

 $^{\mathrm{lout}}$ tout $a\in\mathbb{R}_{+}^{*}$, on considère l'application $arphi_{a}$ définie

$$\varphi_{a} \colon \mathscr{D} \to \mathscr{D}$$

$$M(x; y) \mapsto M'(x'; y')$$

$$\varphi_{\text{considère l'ense}} \quad \text{et} \quad y' = ay$$

$$\varphi_{\text{considère l'ense}} \quad \text{for } y \in A$$

 $\text{In } considère l'ensemble: \quad F = \left\{ \varphi_a \ / \ a \in \mathbb{R}_+^* \right\}$

 $\begin{cases} \int_{\text{Montrer que la composition des applications } G(a) & \text{on } G(a) \\ & \text{on } G(a) \end{cases}$ $^{\rm est}$ une \log de composition interne dans F .

2) On considère l'application :

$$f: \mathbb{R}^*_+ \to F$$

$$a \mapsto \varphi_a$$

- a) Montrer que f est un isomorphisme $de(\mathbb{R}_+^*; \times)$ dans(F;o).
- b) En déduire la structure de (F; o).
- c) Déterminer le symétrique de φ_a dans (F;o), pour tout $a \in \mathbb{R}^*$.

EXERCICE 15

On considère l'ensemble : $E = \left\{ \frac{1+2p}{1+2q} / (p;q) \in \mathbb{Z}^2 \right\}$

Montrer que $(E; \times)$ est un sous-groupe de $(\mathbb{Q}; \times)$.

EXERCICE 16

1) Soit A, J et I les trois matrices carrées d'ordre 2 définies par :

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \; ; \; J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \; ; \; I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- a) Déterminer $(a;b) \in \mathbb{R}^2$ tel que : A = aJ + bI
- b) Calculer J^2 en fonction de J.
- c) A l'aide d'un raisonnement par récurrence, établir pour tout $n \in \mathbb{N}$, la relation suivante :

$$A^{n} = (-2)^{n} I + \frac{1}{2} (4^{n} - (-2)^{n}) J$$

- d) Donner l'expression explicite de A^n sous forme d'une matrice carrée d'ordre 2.
- e) Montrer que A est inversible et donner A^{-1} .
- 2) On note (v_n) et (w_n) les deux suites définies par : $v_0=3$, $w_0=3$ et les relations suivantes : $(n\in\mathbb{N})$ $\begin{cases} v_{n+1} = v_n + 3w_n \\ w_{n+1} = 3v_n + w_n \end{cases} \text{ et on pose} : X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$
 - a) Montrer que : $(\forall n \in \mathbb{N}) X_n = A^n X_0$
 - b) En déduire l'expression de X_n en fonction de n.
 - c) Calculer les valeurs de v_n et w_n en fonction de n.

EXERCICES DE PERFE

On considère les matrices suivantes :

On considere les matrices sur
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \; ; \; B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \; ; \; I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Calculer B^2 et B^n pour tout entier $n \ge 2$.
- 2) a) Exprimer A en fonction de I et B .
 - b) En déduire A^n en fonction de $n \in \mathbb{N}^*$.

On considère les deux matrices suivantes : $(a \in \mathbb{R}^*)$

$$D = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \quad \text{et} \quad N = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 1) a) Calculer N^2 et N^3 .
 - b) Vérifier que : ND = DN
- 2) On considère la matrice : A = N + D

Exprimer A^n en fonction de a et n. $(n \in \mathbb{N}^*)$

On considère dans $\mathbb{M}_{_3}(\mathbb{R})$ l'ensemble suivant :

$$G = \left\{ M = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} / (x; y; z) \in \mathbb{R}^3 \right\}$$

- 1) Montrer que G est stable dans $(\mathbb{M}_3(\mathbb{R}); \times)$.
- 2) Montrer que $(G; \times)$ est un groupe.
- 3) Déterminer l'ensemble ${\cal C}$ défini par :

$$C = \{ A \in G \mid \forall M \in G; AM = MA \}$$

Soit H et K deux sous-groupes d'un groupe (G;*).

Montrer que : $H \cup G$ est un sous-groupe $\operatorname{de} \big(G ; * \big)$ si,

et seulement si : $H \subset G$ ou $G \subset H$

Soit K un ensemble fini tel que $(K;+;\times)$ est $u_{n_{Cop_{K}}}$

commutatif. On pose: $K^* = K - \{0\}$

Montrer que : $\prod_{x} x = -1$

 $\operatorname{Soit}(G;*)$ un groupe d'élément $\operatorname{neutre} e$.

Pour tout $x \in G$, on note $x^2 = x * x$ et x' le symétrique le symétrique de x dans (G;*)

Montrer que si l'une des conditions suivantes est satisfaite:

C₁)
$$(\forall (a;b) \in G^2) (a*b)^2 = a^2 * b^2$$
.

$$C_2) (\forall a \in G) \quad a^2 = e.$$

C₃)
$$(\forall a \in G)$$
 $a' = a$.

alors le groupe (G;*) est commutatif.

On considère l'ensemble:

$$E = \left\{ M_a = \begin{pmatrix} 2^a & 0 \\ a2^a & 2^a \end{pmatrix} / a \in \mathbb{Z} \right\}$$

- 1) Montrer que (E; imes) est un groupe commutatif isomorphe à $(\mathbb{Z};+)$.
- 2) Montrer que pour tout $p \in \mathbb{Z}$: $(M_a)^p = M_{qp}$
- 3) Soit $(a;b) \in \mathbb{Z}^2$ et on considère l'ensemble:

$$F_{(a;b)} = \left\{ \left(M_a \right)^p \times \left(M_b \right)^q / \left(p;q \right) \in \mathbb{Z}^2 \right\}$$

- a) Montrer que $F_{(a;b)}$ est un sous-groupe de (E;x).
- b) Soit $c \in \mathbb{Z}$. Montrer que: $M_c \in F_{(a;b)} \Leftrightarrow (c \text{ divise } a \wedge b)$ c) En déduire que : $F_{(a;b)} = E \Leftrightarrow a \wedge b = 1$

monsidere l'ensemble
$$E$$
 définie par :
$$E = \left\{ M(x) = \begin{pmatrix} x & 0 \\ x \ln x & x \end{pmatrix} / x \in \mathbb{R}_+^* \right\}$$

$$\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty}$$

$$\psi: \mathbb{R}_+^* \to E$$

$$x \mapsto M(x)$$

 $_{1}$ Modifier que ψ est un isomorphisme de $(\mathbb{R}_{+}^{*}; \times)$

$$_{\text{dams}}(E;\times).$$

I) Quelle est la structure de $(E; \times)$?

$$\text{Soft} x \in \mathbb{R}^* \text{ et } n \in \mathbb{N}^*.$$

Calculer les matrices : $(M(x))^{-1}$ et $(M(x))^n$

ETERCICE 40

 $\mathfrak{Soit}I$ et J les deux matrices de $\mathbb{M}_{2}\left(\mathbb{R}
ight)$ données :

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad J = \begin{pmatrix} 0 & p \\ 1 & 0 \end{pmatrix} \quad \text{où } p \in \mathbb{R}$$

û considère l'ensemble :

$$E = \left\{ M(x; y) = \begin{pmatrix} x & py \\ y & x \end{pmatrix} / (x; y) \in \mathbb{R}^2 \right\}$$

1) Vérifier que $J^2 = pI$ puis montrer que $(E; +; \times)$ est

est un anneau commutatif unitaire.

 $^{2}]0_{\Pi} \operatorname{suppose} \operatorname{que} p < 0 \text{ et on pose}: E^* = E - \{O\}$

 $^{0\mathrm{n}\,\mathrm{consid\`ere}}$ l'application arphi de E^* dans \mathbb{C}^* définie

$$(\forall M(x;y) \in E^*) \varphi(M(x;y)) = x + iy\sqrt{-p}$$

$$M_{\text{ontrer on}}$$

 $^{4)}$ Montrer que φ est un isomorphisme de $\left(E^*;\times\right)$

 $^{\mathsf{dans}}(\mathbb{C}^{\boldsymbol{\cdot}};\times).$

 $^{b)}$ Quelle est la structure de $(E^*; \times)$?

 $\int_{0}^{e_{velopper}} \left(\sqrt{-p} + i \right)^2$ puis en déduire les solu-

 $d_{\text{ons}} d_{\text{ans}} E^* de l'équation : X^2 = (-p-1)I + 2J$

On définit sur $E=\mathbb{R}^* \times \mathbb{R}$ une loi de composition

$$(x;y)*(x';y') = \left(xx';\frac{y'}{x}+x'y\right)$$

1) Montrer que (E;*) est un groupe.

Le groupe (E;*) est-il commutatif? Justifier.

2) Soit f une fonction définie sur \mathbb{R}^* et on pose :

$$\Gamma(f) = \{(x; f(x)) \mid x \in \mathbb{R}^*\}$$

a) Montrer que $\Gamma(f)$ est une partie stable de(E;*)si, et seulement si :

$$\left(\forall (x;y) \in \left(\mathbb{R}^*\right)^2\right) f(xy) = \frac{1}{x} f(y) + yf(x)$$

b) Soit f_{k} la fonction définie sur \mathbb{R}^{*} par :

$$f_k(x) = k\left(x - \frac{1}{x}\right)$$
 où $k \in \mathbb{R}$

Montrer que $(\Gamma(f_k);*)$ est un sous-groupe de (E;*).

c) Montrer que si $\Gamma(f)$ est stable de(E;*), alors :

$$\left(\forall (x;y) \in \left(\mathbb{R}^*\right)^2\right) \left(y - \frac{1}{y}\right) f(x) = \left(x - \frac{1}{x}\right) f(y)$$

d) Montrer que $(\Gamma(f)$; *) est un sous-groupe de

(E;*) si, et seulement si : $(\exists k \in \mathbb{R}) f = f_k$

DEBROICE 42

On considère l'ensemble F définie par :

$$F = \left\{ \begin{pmatrix} x & 2y \\ y & x \end{pmatrix} / (x; y) \in \mathbb{Q}^2 \right\}$$

1) Montrer que (F;+) est un groupe commutatif.

2) Montrer que $(F;+;\times)$ est un anneau unitaire.

3) a) Soit $(x; y) \in \mathbb{Q}^2$. Montrer l'équivalence suivante :

$$x^2 = 2y^2 \iff x = y = 0$$

b) Montrer que $(F;+;\times)$ est un corps commutatif.

c) Résoudre dans F l'équation suivante :

$$(X \in F) : X^2 - 4X + 3I = O$$

(O est la matrice nulle et $\it I$ est la matrice identité)

EXERCICE 43

Solt $a \in \mathbb{C} \setminus \mathbb{R}$ tel que :

$$a = re^{i\theta}$$
 avec: $|a| = r$ et $\alpha \neq k\pi$ $(k \in \mathbb{Z})$

Pour tout $(x; y) \in \mathbb{R}^2$, on pose:

$$M(x;y) = \begin{pmatrix} x & y \\ -r^2 y & x + 2ry \cos \alpha \end{pmatrix}$$

Solt E l'ensemble : $E = \{M(x; y) / (x; y) \in \mathbb{R}^2\}$

- 1) a) Montrer que (E;+) est un groupe commutatif.
 - b) Montrer que $(E;+;\times)$ est un corps commutatif.
- 2) a) Montrer que:

$$(\forall z \in \mathbb{C})(\exists !(x;y) \in \mathbb{R}^2) / z = x + ay$$

On pose donc: M(x; y) = M(z)

b) Solt φ l'application définie de $\mathbb C$ dans E par :

$$(\forall z \in \mathbb{C}) \ \varphi(z) = M(z)$$

Montrer que φ est un morphisme de $(\mathbb{C};\times)$ $dans(E;\times)$.

c) Calculer $(\varphi(a))^n$ pour tout $n \in \mathbb{N}$.

EXERCICE 44

Partie A:

 $\operatorname{Soit}(G;st)$ un groupe commutatif et f une bijection de

 ${\cal G}$ dans un ensemble ${\cal H}$. On considère la loi de composition interne T définie sur ${\cal H}$ par :

$$(\forall (x; y) \in H^2) \ x \top y = f(f^{-1}(x) * f^{-1}(y))$$

- 1) Montrer que f est un isomorphisme $\operatorname{de}(G;st)\operatorname{dans}$ (H;T).
- 2) En déduire la structure de (H;T).

Partie B:

Soit a un réel et g la bijection de $\mathbb R$ dans $\mathbb P$ A G

$$(\forall x \in \mathbb{R}) \ g(x) = x + a$$

- 1) Déterminer $g^{-1}(x)$ pour tout $x \in \mathbb{R}$
- 2) Soit * la loi de composition interne définie sur à par: $(\forall (x; y) \in \mathbb{R}^3) x * y = x + y = 0$
 - a) Montrer que (R;*) un groupe commutatif,
 - b) Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on $\mathsf{pos}_{\mathfrak{g}_1}$

$$\alpha'' = \alpha * \alpha * \dots * \alpha$$

Calculer lpha " en fonction de n ,

3) Soit T la loi de composition interne définle sur $E = \mathbb{R} - \{a\}$ par:

$$(\forall (x; y) \in E^2)$$
 $x \top y = (x-a)(y-a)+a$

- a) Montrer que $(E;\mathsf{T})$ est un groupe commutatif et déterminer son élément neutre.
- b) Soit $\beta \in E$. Pour tout $n \in \mathbb{N}^*$, on pose;

$$\beta^n = \underbrace{\beta T \beta T ... T \beta}_{n \text{ his}}$$

Calculer $\beta^{\prime\prime}$ en fonction de n .

Partie C:

Soit $m \in \mathbb{R}_+^*$. On pose I =]-m; m[et on considère la

fonction $f_{\scriptscriptstyle \mathsf{IM}}$ définie sur $\mathbb R$ par :

$$(\forall x \in \mathbb{R})$$
 $f_m(x) = m\left(\frac{e^{2mx}-1}{e^{2mx}+1}\right)$

- 1) Montrer que $f_{_{ exttt{ iny m}}}$ est bijective de $\mathbb R$ $ext{dans} I$.
- 2) Déterminer $f_m^{-1}(x)$ pour tout $x \in I$.
- 3) Calculer $f_m\left(f_m^{-1}(x)+f_m^{-1}(y)\right)$ pour tout $(x;y)^{\ell}$
- 4) Pour tout $(x; y) \in I^2$, on pose:

$$x * y = \frac{m^2 (x+y)}{m^2 + xy}$$

Montrer que (I;*) est un groupe commutații.

EXERCICE 17

Soit T et⊥ deux lois de composition interne dans ℝ définies par : Pour tout $(x; y) \in \mathbb{R}^2$, $x \perp y = 2y - x$ et $x \top y = \frac{1}{2}(x + y)$

$$x \perp y = 2y - x$$
 et $x \top y = \frac{1}{2}(x + y)$

- 1) Étudier les propriétés des lois T et 🕹 . 2) a) Montrer que la loi T est distributive par rapport
- à la loi⊥.
 - b) Montrer que la loi⊥ est distributive par rapport à la loi T.

On définit sur \mathbb{R}^2 deux lois de composition interne $+\operatorname{\mathsf{et}} imes \operatorname{\mathsf{comme}} \operatorname{\mathsf{suit}} \colon \operatorname{\mathsf{Pour}} \operatorname{\mathsf{tous}} ig(a;big) \operatorname{\mathsf{et}} ig(a';b'ig) \operatorname{\mathsf{de}} \ \mathbb{R}^2$,

$$(a;b)+(a';b')=(a+a';b+b')$$

$$(a;b)\times(a';b')=(aa';ab'+ba')$$

Montrer que $(\mathbb{R}^2;+;\times)$ est un anneau commutatif unitaire.

On définit sur l'ensemble \mathbb{Z} deux lois de composition interne T et * comme suit : Pour tout $(x; y) \in \mathbb{Z}^2$,

$$x T y = x + y + 3$$
 et $x * y = xy + 3x + 3y + 6$

- 1) Montrer que $(\mathbb{Z};\mathsf{T})$ est un groupe commutatif.
- 2) Montrer que $(\mathbb{Z}; T; *)$ est un anneau commutatif.

On munit \mathbb{Z}^2 de deux lois de composition interne + $\mathsf{et} imes \mathsf{comme} \, \mathsf{suit} : \mathsf{Pour} \, \mathsf{tous} ig(a; b ig) \, \mathsf{et} ig(a'; b' ig) \, \mathsf{de} \, \mathbb{Z}^2$,

$$(a;b)+(a';b') = (a+a';b+b')$$

$$(a;b)\times(a'\cdot b')$$

 $(a;b)\times(a';b')=(aa'+2bb';ab'+ba')$ Montrer que $(\mathbb{Z}^2;+;\times)$ est un anneau commutatif.

On définit sur A une loi de composition interne ? comme suit: $(\forall (x;y) \in A^2)$ $x \uparrow_{y = xy - yz}$ 1) Montrer que: $(\forall (x;y) \in A^2)$ $x \uparrow y = (y \uparrow y)$ $x \uparrow y = (y \uparrow y)$

- 2) Montrer que la loi T n'est pas associative 3) Montrer que (A;T) n'admet pas d'élément neutre
- 4) Montrer que T est distributive par rapport à la la
- 5) Montrer que pour tout $(x;y;z) \in A^1$: xT(yTz)+yT(zTx)+zT(xTy)=0et que: yT(xTz) = xT(yTz) - (xTy)Tz

 $\operatorname{Soit}(A;+; imes)$ un anneau unitaire tel que pour tout $_{z}$ $x^{12}=x$. On note 0_A le zéro de A et 1_A son élément

- 1) Montrer que : $(\forall x \in A) x = -x$
- 2) Montrer que: $(\forall x \in A) x^8 + x^4 = 0_A$ (Remarquer que: $(x+1_A)^{12} = x+1_A$)
- 3) Montrer que: $(\forall x \in A) x^2 = x$

EXERCICE 23

On considère l'ensemble :

$$E = \left\{ \begin{pmatrix} a & b \\ 7b & a \end{pmatrix} / (a;b) \in \mathbb{Z}^2 \right\}$$

- 1) Montrer que $(E;+;\times)$ est un anneau commuta
- 2) Soit a et b deux éléments de \mathbb{Z} . Montrer que:

$$a^2 - 7b^2 = 0 \Leftrightarrow (a = 0 \text{ ou } b = 0)$$

3) Montrer que l'anneau $(E;+;\times)$ est intègre.

On considère l'ensemble :

$$K = \left\{ a + b\sqrt{5} / a \in \mathbb{Q} \text{ et } b \in \mathbb{Q} \right\}$$

Montrer que $(K;+;\times)$ est un corps commutatif.

propidere l'ensemble Z/6Z. Montrer que l'ensemble des solutions de l'équation de l'équation 3 dans Z/6Z est vide.

I dans Z/6Z est vide. onsidère l'ensemble $A = \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.

munit A des deux lois de composition interne :

$$\lim_{\substack{\text{on munit } A \text{ des deux lois accessory} \\ (x_1; y_1) \oplus (x_1; y_1) = (x_1 + x_2; y_1 + y_2)}$$

$$(x_1; y_1) \oplus (x_1; y_1) = (x_1 + 2y_1 + 2y_2; x_1 y_2 + x_2 y_1)$$

$$(x_1; y_1) \otimes (x_1; y_1) = (x_1 x_2 + 2y_1 y_2; x_1 y_2 + x_2 y_1)$$

$$(x_1; y_1) \otimes (x_1; y_1) = (x_1 x_2 + 2y_1 y_2; x_1 y_2 + x_2 y_1)$$
(x_1; y_1) \oldow (x_1; y_1) = (x_1 x_2 + 2y_1 y_2; x_1 y_2 + x_2 y_1)
(x_1; y_1) \oldow (x_1; y_1) \oldow (x_1; y_1) = (x_1 x_2 + 2y_1 y_2; x_1 y_2 + x_2 y_1)
(x_1; y_1) \oldow (x_1; y_1) \oldow (x_1; y_1) = (x_1 x_2 + 2y_1 y_2; x_1 y_2 + x_2 y_1)
(x_1; y_1) \oldow (x_1; y_1) \oldow (x_1; y_1) = (x_1 x_2 + 2y_1 y_2; x_1 y_2 + x_2 y_1)

Montrer que $(A; \oplus; \otimes)$ est un anneau commutatif.

 $_{\mathfrak{J}}$ Soit $B=\mathbb{Z}/6\mathbb{Z} imes\left\{\overline{0}\right\}$. Trouver un morphisme de B

$$_{\rm dans}(\mathbb{Z}/6\mathbb{Z}\;;+\;;\times).$$

TURCICE 26

On considère l'ensemble :

$$E = \left\{ M(x; y) = \begin{pmatrix} x & y \\ -y & x + y \end{pmatrix} / (x; y) \in \mathbb{R}^2 \right\}$$

1) Montrer que E est une partie stable pour l'addition etla multiplication dans $\mathbb{M}_{2}\left(\mathbb{R}
ight) .$

 $\mathfrak{P}_{Montrer}$ que $(E;+;\times)$ est un anneau commutatif

 $\operatorname{L'anneau}(E;+;\times)$ est-il intègre ? Justifier

 $^{3)}$ Montrer que $(E;+;\times)$ est un corps commutatif.

f Résoudre dans E l'équation : $-X^2 + 4X - 3I = 0$

EXERCICE 27

 $^{0\!n}$ définit sur l'ensemble $\mathbb C$ une loi de composition interne * comme suit :

$$(\forall (z;z') \in \mathbb{C}^2)$$
 $z*z'=z-z'-i$

 $^{1)}$ Montrer que (\mathbb{C} ; *) est un groupe commutatif.

 $^{(3)}$ Soit $m \in \mathbb{C}^*$. On définit sur \mathbb{C} une loi de composition interne T comme suit:

Comme suit:

$$\forall (z;z') \in \mathbb{C}^2$$
 $\exists T z' = mizz' + m(z+z') + i(1-m)$

A) Montrer que T

^{a) Montrer} que T est commutative et distributive

par rapport à la loi * dans C.

b) Montrer que (\mathbb{C} ;*;T) est un corps commutatif.

EXERCICE 28

On considère l'ensemble :

$$K = \left\{ M(x; y) = \begin{pmatrix} x & x \\ -5y & x+2y \end{pmatrix} / (x; y) \in \mathbb{R}^2 \right\}$$

Montrer que $(K;+;\times)$ est un corps commutatif.

EXERCICE 29

On considère l'ensemble :

$$L = \left\{ \begin{pmatrix} x & y & z \\ 2x & x & y \\ 2y & 2z & x \end{pmatrix} \middle/ (x; y; z) \in \mathbb{R}^2 \right\}$$

Montrer que $(L;+;\times)$ est un corps commutatif.

EXERCICE 30

Soit $(A;+;\times)$ un anneau unitaire d'élément unité 1.

Soit $(a;b) \in A^2$ tel que 1-ab admet un inverse dans A.

- 1) Calculer (1+bca)(1-ba) et (1-ba)(1+bca) pour tout $c \in A$.
- 2) En déduire que 1-ba est inversible dans A et que son inverse: $(1-ba)^{-1} = 1+b(1-ab)^{-1}a$

EXERCICE 31

On considère l'ensemble : $\mathbb{Z}[i] = \{a+ib/(a;b) \in \mathbb{Z}^2\}$

- 1) Montrer que $\mathbb{Z}[i]$ est une partie stable de $(\mathbb{C};+)$ et de $(\mathbb{C}; \times)$.
- 2) Montrer que $(\mathbb{Z}[i]; \times)$ est un anneau commutatif
- 3) Soit ${\mathcal U}$ l'ensemble des éléments inversibles dans $(\mathbb{Z}[i]; \times)$. On pose: $(\forall z \in \mathbb{C}) N(z) = z \times \overline{z} = |z|^2$
 - a) Soit $x \in \mathbb{Z}[i]$. Montrer que : $x \in \mathcal{U} \Leftrightarrow N(x) = 1$
 - b) En déduire que : $\mathcal{U} = \{1; -1; i; -i\}$

SE PRÉPARER AUX DEVOIRS

Les Parties A), B) et C) sont indépendantes,

proved $G = \mathbb{R}^* \times \mathbb{R}$ une loi de com(n définit sur l'ensemble $G = \mathbb{R}^* \times \mathbb{R}$ une loi de com-

prelition interne comme suit : $p_{\text{our tous}}(a;b)$ et (c;d) de G:

$$(a;b)*(c;d)=(ac;ad+b)$$

1) Montrer que * est associative dans G .

La loi * est-elle commutative ?

2) Montrer que (G;*) est un groupe.

3) On pose:

In pose:

$$H = \left\{ (x, 0) / x \in \mathbb{R}^* \right\} \text{ et } K = \left\{ (1, x) / x \in \mathbb{R} \right\}$$

- a) Montrer que H et K sont des parties dans (G;*).
- b) Montrer que (H;*) et (K;*) sont des groupes commutatifs.
- c) *est-elle une loi de composition interne sur $H \cup K$? Justifier
- 4) On considère l'ensemble :

$$E = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} / (a;b) \in G \right\}$$

- a) Montrer que E est stable dans $(\mathbb{M}_2(\mathbb{R}); \times)$.
- b) Montrer que $(E; \times)$ est un groupe.

Partie B:

0n considère l'ensemble :

$$E = \left\{ M(a;b) = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix} / (a;b) \in \mathbb{R}^2 \right\}$$

$$\text{et on pose}: J = M(1;0) \text{ et } L = M(0;1)$$

$$\text{1) Montrer quark } E$$

 $^{1)}$ Montrer que(E;+) est un sous-groupe du groupe $(M_2(\mathbb{R});+)$ des matrices carrées d'ordre 2.

2) a) Calculer: L²; J²; JL; LJ.

b) Montrer que $(E;+;\times)$ est un anneau commutatif.

3) a) Déterminer les diviseurs de zéro dans l'anneau $(E;+;\times).$

b) L'anneau $(E;+;\times)$ est-il intègre ? Est-il un corps

4) Soit $(a;b) \in \mathbb{R}^2$. Montrer que pour tout $n \in \mathbb{N}^*$:

$$\left(M\bigl(a;b\bigr)\right)^n=2^{n-1}M\bigl(a^n;b^n\bigr)$$

Partie C:

Soit $\alpha \in \mathbb{R}^*$. On définit sur l'ensemble $E = \mathbb{R} - \left\{ \frac{1}{\alpha} \right\}$

une loi de composition interne * comme suit :

$$(\forall (x; y) \in E^2)$$
 $x * y = x + y - \alpha xy$

On considère l'application f définie de E sur \mathbb{R}^{\bullet} par :

$$f(x) = 1 - \alpha x$$

1) a) Montrer que f est un isomorphisme de (E;*) $dans(\mathbb{R}^*;*).$

b) En déduire la structure de (E;*) en déterminant son élément neutre e.

2) On note par x^{-1} le symétrique de x dans (E;*).

On pose:

$$x^0 = e$$
 et $(\forall n \in \mathbb{N}^*)$ $x^n = \underbrace{x * x * \dots * x}_{n \neq 0}$

et
$$(\forall n \in \mathbb{Z}^-)$$
 $x^n = (x^{-1})^{-n}$

On admet qu'on a pour tout $(m; n) \in \mathbb{Z}^2$:

$$x^{n} * x^{m} = x^{n+m}$$
 et $(x * y)^{n} = x^{n} * y^{n}$
 $C = \begin{cases} x^{n} / n \in \mathbb{Z} \end{cases}$ où $x \in E$

On pose enfin: $G = \{x^n / n \in \mathbb{Z}\}\$ où $x \in E$

a) Montrer que: $G = \left\{ \frac{1}{\alpha} \left(1 - \left(1 - \alpha x \right)^n \right) / n \in \mathbb{Z} \right\}$

b) Montrer que G est un sous-groupe de(E;*).