安徽大学 20_21_一20_22_学年第_1_学期

《 数字逻辑 》期中考试试卷 (闭卷 时间120分钟)

考场登记表序号_____

题 号	_	=	=	四	五	六	七	总分
得 分								
阅卷人								

—,	解答题	(共50	分)
•		\/\ JU	, ,, ,

亭

姓络线

专业

系/系

Ÿ

超羧

得分

1. 完成下列的数制转换。(6分)

$$(3FF)_{16} = ($$
 $)_{2} = ($ $)_{10} = ($ $)_{8421BCD}$ $(1000\ 0011\ 0111)_{8421BCD} = ($ $)_{10} = ($ $)_{2} = ($ $)_{16}$

2. 已知 A=-110010, B=+101110, 用补码求 A+B 的值, A+B 的 10 进制真值为多少? (5 分) 解答:

3. 用代数法求解逻辑函数 $F(A,B,C,D) = A\overline{C} + ABC + AC\overline{D} + BCD$ 的最简与或式。(5 分)解答:

4. 写出 $F = \overline{AC + ABC} + \overline{BC} + ABC$ 的对偶函数,并使用代数法化简该对偶函数。(8 分)解答:

5. 使用公式法化简逻辑函数,写出最简表达式。(6 分) $F(A,B,C) = \sum m(0,2,3,4,6) \cdot \sum m(4,5,6,7)$

解答:

6. 画出下式的卡诺图,并求最简 "与或式"和最简 "或与式"。(6 分) $F(A,B,C,D) = A\overline{B}CD + AB\overline{D} + A\overline{B} + A\overline{D} + A\overline{B}C$ 解答:

7. 使用卡诺图法求函数的最简 "与或式",并用 "与非门"实现。(7分) $F(A,B,C,D) = \sum m(0,2,5,6,12,13) + \sum d(3,4,7,11,15)$ 解答:

解答:

新

装

製

二、应用题(共10分)

得分

某同学做实验的时候,发现没有反相器(非门),但是有与非门、或非门和异或门。请问能否将与非门、或非门、异或门当做反相器使用?如果可以,应如何连接?请画出逻辑图并说明。

三、电路分析题1(共12分)

得分

分析如图所示组合逻辑电路的功能。

(1) 写出 F 的逻辑函数表达式。(6分)

(2) 填写真值表。(4分)

Α	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(3)分析电路的逻辑功能。(2分)

四、电路分析题 2 (共 13 分)

得分

图中 C1 和 C2 被称为使能端,请写出在不同的 C1C2 组合下,输出函数 L 的逻辑表达式,并说明该电路的逻辑功能。

(1) 写出逻辑函数 L 的表达式。(5 分)

姓名线

专业数为超频

(2) 写出 C1C2 分别为 00, 01, 10, 11 时, L 的表达式, 并分析对应的逻辑功能。(8分)

五、综合题(共15分)

左图为一个工业用水容器示意图,图中虚线表示水位,A,B,C 电极被水浸没的时候,会有信号输出,控制电路如右图所示。其中,超过对应水位线输入变量值为 1,低于水位线值为 0;R、Y 和 G 三个变量分别为红灯(危险)、黄灯(异常)和绿灯(正常),数值 0表示灯灭,1表示灯亮起。

(1) 写出逻辑函数 R, Y, G 的表达式。(6分)

(2) 填写真值表。(6分)

Α	В	C	R	Y	G
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

(3) 试分析电路的控制过程。(3分)