Mathematik 2 (Analysis)

Zusammenfassung

Fabian Damken
6. November 2022

Inhaltsverzeichnis

1	Allg	emein	4					
	1.1	Definitionen	4					
	1.2	Sätze	4					
		1.2.1 Eulersche Formel	4					
		1.2.2 Eulersche Potenz	4					
2	Folg	an a	5					
_	_	Definitionen	5					
	2.1	Grenzwertsätze	5					
	2.3	Landau-Symbolik	6					
	2.3	Häufungswerte	6					
	2.5	Banach'scher Fixpunktsatz	7					
	2.6	Wichtige Folgen	7					
	2.0	wichtige roigen	/					
3	Reih		8					
	3.1	Definitionen	8					
	3.2	Konvergenzkriterien	8					
	3.3	Cauchy-Produkt	9					
	3.4	Wichtige Reihen	9					
4	Pote	Potenzreihen 10						
•	4.1	Definitionen						
	4.2	Konvergenzkriterien						
	4.3	Differenzierung						
	1.0	Zincienzierung						
5	Funk		11					
	5.1	Definitionen						
	5.2	Grenzwert						
	5.3	Grenzwertsätze						
	5.4	Stetigkeit						
	5.5	Extrema (lokal/global)						
		5.5.1 Definitionen						
		5.5.2 Bestimmung der Extrema						
		5.5.3 Zwischenwertsatz						
	5.6	Taylor						
		5.6.1 Definitionen						
		5.6.2 Satz von Taylor	15					
		Wightiga Eurlytianan						

6	Diffe	Differentialrechnung 1					
	6.1	Definitionen	16				
	6.2	Sätze	16				
		6.2.1 Mittelwertsatz der Differentialrechnung	16				
		6.2.2 Satz von Rolle					
		6.2.3 Zusammenhang mit der Monotonie	16				
		6.2.4 Gleichheit der Ableitung					
	6.3	Ableitungen	17				
		6.3.1 Regeln	17				
	6.4	Partielle Ableitungen	18				
	6.5	Wichtige Ableitungen	18				
7	Inte	gralrechnung	19				
	7.1	Ober-/Untersumme und	19				
	7.2	Sätze	19				
		7.2.1 Hauptsatz der Analysis					
	7.3	Integration					
		7.3.1 Integrierbarkeit					
		7.3.2 Integrationstechniken					
		7.3.3 Uneigentliche Integrale					
	7.4	Fourierreihen					
8	Differentialgleichungen 21						
	8.1	Typen	22				
	8.2	Fundamentalsystem					
	8.3	Sätze					
	0.0	8.3.1 Satz von Picard-Lindelöff					
	8.4	Lösungsmethoden					
9	Tria	onometrie/Hyperfunktionen	24				
-	_	Komplexe Zahlen					
	, · <u>+</u>	9.1.1 Darstellungen					

1 Allgemein

1.1 Definitionen

Skalarprodukt Sei V eim \mathbb{R} -Vektorraum. Eine Abbildung $(\cdot|\cdot):V\times V\to\mathbb{R}$ heißt Skalarprodukt gdw.

- $\forall x \in V : (x|x) \ge 0 \land ((x|x) = 0 \iff x = 0)$ (Definitheit)
- $\forall x, y \in V : (x|y) = (y|x)$ (Symmetrie)
- $\forall x,y,z\in V: \forall \alpha,\beta\in\mathbb{R}: (\alpha x+\beta y|z)=\alpha(x|z)+\beta(y|z)$ (Linearität im ersten Argument)

1.2 Sätze

1.2.1 Eulersche Formel

Es gilt für alle $\varphi \in \mathbb{C}$

$$e^{\varphi i} = \cos(\varphi) + i \cdot \sin(\varphi)$$

1.2.2 Eulersche Potenz

Es gilt für alle $a,b \in \mathbb{R}$

$$a^b = e^{\ln(a) \cdot b}$$

2 Folgen

Eine Folge (a_n) in \mathbb{K} ist, naiv gesprochen, eine Funktion $a : \mathbb{N} \to \mathbb{K}$, welche die natürlichen Zahlen auf einen Zahlenraum \mathbb{K} abbildet.

2.1 Definitionen

Konvergenz Eine Folge (a_n) konvergiert gegen a gdw. $\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : |a_n - a| < \varepsilon$. Dieses a wird *Grenzwert* oder *Limes* von (a_n) genannt $(\lim_{n \to \infty} a_n = a)$.

Cauchy-Folge Eine Folge (a_n) in \mathbb{K} heißt Cauchy-Folge gdw.

$$\forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n, m \ge n_0 : |a_n - a_m| < \varepsilon$$

Satz: Jede konvergente Folge in $\mathbb K$ ist eine Cauchy-Folge.

Vollständig normierter Ein Raum \mathbb{K} wird als *vollständig normiert* bezeichnet, wenn jede Cauchy-Folge in \mathbb{K} Raum konvergiert.

Banachraum Ein Raum wird als *Banachraum* bezeichnet, wenn dieser einen *vollständig normieter Vektorraum* darstellt.

Hilbert-Raum Ein Raum wird als *Hilbert-Raum* bezeichnet, wenn dieser einen Banachraum mit einer über *das Skalarprodukt induzierten Norm* darstellt.

2.2 Grenzwertsätze

Seien $(a_n), (b_n)$ zwei konvergente Folgen in \mathbb{K} .

Normiertes Argument

$$\lim_{n \to \infty} \|a_n\| = \left\| \lim_{n \to \infty} a_n \right\|$$

Additives Argument

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

Konstanten-Argument Sei $\lambda \in \mathbb{K}$.

$$\lim_{n \to \infty} \lambda a_n = \lambda \lim_{n \to \infty} a_n$$

Multiplikatives Argument

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

Potenz-Argument

$$\lim_{n \to \infty} a_n^k = (\lim_{n \to \infty} a_n)^k$$

Kehrwert-Argument Falls $\lim_{n\to\infty} b_n \neq 0$ und $\forall n \in \mathbb{N} : b_n \neq 0$.

$$\lim_{n\to\infty}\frac{1}{b_n}=\frac{1}{\lim_{n\to\infty}b_n}$$

Divisions-Argument Falls $\lim_{n\to\infty} b_n \neq 0$ und $\forall n \in \mathbb{N} : b_n \neq 0$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Redizierungs-Argument Falls $\forall n \in \mathbb{N} : a_n \leq 0$. Sei $k \in \mathbb{N}$.

$$\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n \to \infty} a_n}$$

Monotonie-Regel Gilt $a_n \leq b_n$ für fast alle $n \in \mathbb{N}$, so gilt:

$$\lim_{n\to\infty}a_n\leq\lim_{n\to\infty}b_n$$

2.3 Landau-Symbolik

Definition: $F_+ := \{(a_n) \text{ Folge in } \mathbb{R} : a_n > 0 \text{ für alle } n \in \mathbb{N} \}$. Sei $(b_n) \in F_+$, dann gilt für die Landau-Symbole:

$$O(b_n) \coloneqq \{(a_n) \in F_+ : (\frac{a_n}{b_n})_{n \in \mathbb{N}} \text{ beschränkt}\}$$
 (Groß-O von b_n)

$$o(b_n) \coloneqq \{(a_n) \in F_+ : \lim_{n \to \infty} \frac{a_n}{b_n} = 0\}$$
 (Klein-O von b_n)

Somit gilt $o(b_n) \subseteq O(b_n)$.

2.4 Häufungswerte

Sei (a_n) eine Folge in \mathbb{K} .

Ein Wert p heißt $H\ddot{a}ufungswert$ von (a_n) gdw. in jeder noch so kleinen Umgebung unendlich viele Folgenglieder liegen. Die Menge der Häufungswerte einer Folge wird als $HW(a_n)$ bezeichnet.

Das Gegenstück zu einem Häufungswert ist ein *isolierter Wert q*, das heißt es existiert eine Umgebung, in der außer q keine weiteren Elemente aus \mathbb{K} liegen.

Eine konvergente Folge hat genau einen Häufungswert, welcher dem Grenzwert entspricht.

Eine divergente Folge kann beliebig viele Häufungswerte besitzen, gegen welche Teilfolgen konvergieren.

Beispiel Sei

$$(a_n) := \begin{cases} \frac{1}{n} & \text{für } n \text{ gerade} \\ 1 & \text{sonst} \end{cases}$$

Die Teilfolge a_{2n} konvergiert gegen 0, also $0 \in HW(a_n)$. Die Teilfolge a_{2n+1} konvergiert gegen 1, also $1 \in HW(a_n)$. Die Folge (a_n) selbst divergiert.

2.5 Banach'scher Fixpunktsatz

Sei $(V, \|\cdot\|_V)$ ein Banachraum, $M \subseteq V$ abgeschlossen und $f: M \to M$ eine Funktion. Weiter existiert ein $q \in (0, 1)$, sodass für alle $x, y \in M$

$$||f(x) - f(y)||_V \le q \cdot ||x - y||_V$$

gilt.

Dann gelten folgende Aussagen:

- Es existiert genau ein $v \in M$ mit f(v) = v (Fixpunkt). Das heißt es existiert genau ein Fixpunkt in M.
- Für jedes $x_0 \in M$ konvergiert die Folge $(x_{n+1} = f(x_n))_{n \in \mathbb{N}}$ gegen v und es gelten die folgenden Fehlerabschätzungen für jedes $n \in \mathbb{N}^*$:

$$||x_n - v||_V \le \frac{q^n}{1 - q} ||x_1 - x_0||_V$$
 (A-priori-Abschätzung)
$$||x_n - v||_V \le \frac{q}{1 - q} ||x_n - x_{n-1}||_V$$
 (A-posteriori-Abschätzung)

2.6 Wichtige Folgen

- $\lim_{n\to\infty} c = c, c \in \mathbb{R}$
- $\lim_{n \to \infty} \frac{1}{n^k} = 0$, $k \in \mathbb{N}$ (Harmonische Folge)
- $\lim_{n\to\infty} \frac{1}{\sqrt[k]{n}} = 0, k \in \mathbb{N}$
- $\lim_{n\to\infty}q^n=0$, $q\in\mathbb{K}, |q|<1$ (Geometrische Folge)
- $\lim_{n\to\infty} \sqrt[n]{c} = 1, c \in \mathbb{R}, c > 0$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$,
- $\lim_{n\to\infty}\frac{n^k}{z^k}=0$, $k\in\mathbb{N}$, $z\in\mathbb{R}$, |z|>1
- $\lim_{n\to\infty} n^k q^n = 0, k \in \mathbb{N}, q \in \mathbb{R}, |q| < 1$
- $\lim_{n\to\infty} \frac{z^n}{n!} = 0$, $z \in \mathbb{R}$, |z| > 1
- $\lim_{n\to\infty} \frac{n!}{n^n} = 0$
- $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$ (Eulersche Folge)
- $\lim_{n\to\infty} (1-\frac{1}{n})^n = \frac{1}{e}$ (Eulersche Folge Kehrwert)

3 Reihen

Eine Reihe $\sum_{n=0}^{\infty}(a_n)$ beschreibt die unendliche Summe der Folgenglieder einer Folge (a_n)

3.1 Definitionen

Partialsumme Die Partialsummen einer Reihe $\sum_{n=0}^{\infty} a_n$ sind darstellbar als eine Folge $b_k := \sum_{n=0}^k (a_n)$. **Reihenwert** Der Wert einer Reihe ist definiert als $\sum_{n=0}^{\infty} a_n := \lim_{n \to \infty} b_n$.

3.2 Konvergenzkriterien

Trivialkriterium Sei $\sum_{n=0}^{\infty} a_n$ eine Reihe in \mathbb{K} . Ist (a_n) keine Nullfolge, so divergiert die Reihe $\sum_{n=0}^{\infty} a_n$.

Leibniz-Kriterium Sei (a_n) eine Folge in \mathbb{K} . Ist (a_n) monoton falled, so konvergiert die Reihe $\sum_{n=0}^{\infty} (-1)^{n+k} a_n$, $k \in \{0,1\}$.

Majorantenkriterium Seien $(a_n), (b_n)$ Folgen in \mathbb{K} und $n_0 \in \mathbb{N}$. Gilt $|a_n| \leq b_n$ für alle $n \geq n_0$ und konvergiert die Reihe $\sum_{n=0}^{\infty} b_n$, so konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ absolut.

Minorantenkriterium Seien $(a_n), (b_n)$ Folgen $\mathbb K$ und $n_0 \in \mathbb N$. Gilt $a_n \geq b_n \geq 0$ für alle $n \geq n_0$ und divergiert die Reihe $\sum_{n=0}^{\infty} b_n$, so divergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$.

Wurzelkriterium Sei (a_n) eine Folge in \mathbb{K} . Existiert der Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|} = a$, so ist die Reihe $\sum_{n=0}^{\infty} a_n$:

 $\begin{cases} \text{absolut konvergent} & \text{falls } a < 1 \\ \text{divergent} & \text{falls } a > 1 \end{cases}$

Gilt a = 1, so kann keine Aussage getroffen werden.

Quotientenkriterium Sei (a_n) eine Folge in \mathbb{K} . Existiert der Grenzwert $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = a$, so ist die Reihe $\sum_{n=0}^{\infty} a_n$:

 $\begin{cases} \text{absolut konvergent} & \text{falls } a < 1 \\ \text{divergent} & \text{falls } a > 1 \end{cases}$

Gilt a = 1, so kann keine Aussage getroffen werden.

3.3 Cauchy-Produkt

Seien $\sum_{n=0}^{\infty}a_n,\sum_{n=0}^{\infty}b_n$ Reihen in \mathbb{K} . Dann ist gilt für das Produkt $(\sum_{n=0}^{\infty}a_n)(\sum_{n=0}^{\infty}b_n)$ (Cauchy-Produkt):

$$(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Sind $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut konvergent, so konvergiert auch die Reihe $\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$ absolut und es gilt für die Reihenwerte:

$$(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

3.4 Wichtige Reihen

- $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$, $x \in \mathbb{R}$ (Eulersche Reihe)
- $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \ln(1+x)$, $x \in (-1,1]$ (Logarithmus)
- $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sin(x)$ (Sinus)
- $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos(x)$ (Kosinus)
- $\sum_{n=0}^{\infty}a_0q^n=rac{a_0}{1-q},\,q\in\mathbb{R},|q|<1$ (Geometrische Reihe)
- $\sum_{n=0}^{\infty}\frac{1}{n^k}=\infty$, $k\in\mathbb{R}, k\leq 1$ (Harmonische Reihe) Falls k=2, gilt $\sum_{n=0}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$
- $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n} = \ln(2)$ (Alternierende harmonische Reihe)
- $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} = \frac{\pi}{4}$ (Leibnizreihe)

4 Potenzreihen

Eine Potenzreihe ist eine Reihe der Form $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ mit (a_n) Folge in \mathbb{K} , $x \in \mathbb{K}$ und dem Entwicklungspunkt x_0 .

4.1 Definitionen

Konvergenzradius Der *Konvergenzradius* oder auch *Konvergenzbereich r* besagt, dass die Potenzreihe für alle $|x-x_0| < r$ konvergiert und für alle $|x-x_0| > r$ divergiert. Für $|x-x_0|$ kann keine Aussage getroffen werden.

4.2 Konvergenzkriterien

Wurzelkriterium Sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe.

Dann gilt für den Konvergenzradius:

$$\sigma \coloneqq \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$r = \begin{cases} 0 & \text{falls } \lim_{n \to \infty} \sqrt[n]{|a_n|} \text{ nicht existiert} \\ \infty & \text{falls } \sigma = 0 \\ \frac{1}{\sigma} & \text{sonst} \end{cases}$$

Quotientenkriterium Sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine Potenzreihe.

Dann gilt für den Konvergenzradius:

$$\sigma \coloneqq \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$r = \begin{cases} 0 & \text{falls } \lim_{n \to \infty} \sqrt[n]{|a_n|} \text{ nicht existiert} \\ \infty & \text{falls } \sigma = 0 \\ \frac{1}{\sigma} & \text{sonst} \end{cases}$$

4.3 Differenzierung

Sei f(x) eine Funktion mit einer Potenzreihe $\sum_{n=0}^{\infty}a_n(x-x_0)^n$, sodass gilt $f(x)=\sum_{n=0}^{\infty}a_n(x-x_0)^n$, so gilt für die Ableitung f'(x)

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$$

5 Funktionen

5.1 Definitionen

Sei $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ eine Funktion.

Häufungspunkt x_0 ist ein Häufungspunkt von D, falls es eine Folge (a_n) in D mit $a_n \neq x_0$ für ale $n \in \mathbb{N}$ gibt, welche gegen x_0 konvergiert.

Isolierter Punkt Ein isolierte Punkt q stellt das Gegenstück zu einem Häufungspunkt dar, das heißt es existiert eine Umgebung, in der außer q keine weiteren Elemente aus $\mathbb R$ liegen.

Monotonie Die Funktion f ist (streng) monoton steigend (bzw. fallend) auf D gdw. $f(x) \leq f(x+h)$ (bzw. $f(x) \geq f(x+h)$) für alle $x \in D$ und $h \in \{r \in \mathbb{R} : r > 0\}$. Im Falle einer strengen Monotonie gilt dies für f(x) < f(x+h) (bzw. f(x) > f(x+h)).

5.2 Grenzwert

Linksseitiger Grenzwert Ist x_0 ein Häufungspunkt von $D_- := \{x \in D : x < x_0\}$, so hat f den linksseitigen Grenzwert y, wenn für jede Folge (a_n) in D_+ , welche gegen x_0 konvergiert mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$, gilt, dass die Folge $(f(a_n))$ gegen y konvergiert.

$$\lim_{x \to x_0 -} := \lim_{n \to \infty} f(a_n) = y$$

Rechtsseitiger Grenzwert Ist x_0 ein Häufungspunkt von $D_+ := \{x \in D : x > x_0\}$, so hat f den rechtsseitigen Grenzwert y, wenn für jede Folge (a_n) in D_+ , welche gegen x_0 konvergiert mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$, gilt, dass die Folge $(f(a_n))$ gegen y konvergiert.

$$\lim_{x \to x_0 +} := \lim_{n \to \infty} f(a_n) = y$$

Grenzwert Ist x_0 ein Häufungspunkt von D, so hat f den Grenzwert y, wenn für jede Folge (a_n) in D, welche gegen x_0 konvergiert mit $a_n \neq x_0$ für alle $n \in \mathbb{N}$, gilt, dass die Folge $(f(a_n))$ gegen y konvergiert.

$$\lim_{x \to x_0} f(x) := \lim_{n \to \infty} f(a_n) = y$$

Dieser Grenzwert existiert nur dann, wenn sowohl der linksseitige als auch der rechtsseitige Grenzwert existiert und diese identisch sind. Dann gilt:

$$\lim_{x \to x_0 -} f(x) = \lim_{x \to x_0 +} f(x) = \lim_{x \to x_0} f(x)$$

5.3 Grenzwertsätze

Seien $f: D \to \mathbb{R}, g: D \to \mathbb{R}, h: D \to \mathbb{R}, D \subseteq \mathbb{R}$ drei Funktionen, sodass die Grenzwerte $\lim_{x \to x_0} f(x)$ und $\lim_{x \to x_0} \exp(-ix)$ existieren.

Additives Argument

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

Multiplikatives Argument

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Betrags-Argument

$$\lim_{x \to x_0} |f(x)| = \left| \lim_{x \to x_0} f(x) \right|$$

Komparations-Argument

$$(\forall x \in D \setminus \{x_0\} : f(x) \le g(x)) \implies (\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x))$$

Zwischenwert-Argument Gilt $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)$ und gilt

$$f(x) \le h(x) \le g(x)$$
 für alle $x \in D \setminus \{x_0\}$

dann gilt auch:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) \lim_{x \to x_0} h(x)$$

Satz von l'Hoŝpital Seien $f:D\to\mathbb{R},g:D\to\mathbb{R},D\subseteq\mathbb{R}$ zwei Funktionen.

Sind sowohl f als auch g stetig und $g(x) \neq 0$ für alle $x \in D$ und konvergieren beide Folgen gegen 0 ($\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$) oder divergieren beide Folgen bestimmt, so gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

5.4 Stetigkeit

Eine Funktion $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ ist stetig im Punkt x_0 gdw. die folgenden äquivalenten Aussagen gelten:

- $\forall \varepsilon > 0 : \exists \delta > 0 : (|x x_0| < \delta \implies |f(x) f(x_0)| < \varepsilon)$
- Für jede Folge (a_n) in D, die gegen x_0 konvergiert, konvergiert auch die Folge $(f(a_n))$ und es gilt $\lim_{n\to\infty} f(a_n) = f(x_0)$.

Die Funktion f ist stetig (auf D) gdw. f in allen Punktwn $x \in D$ stetig ist.

Lipschitz-Stetigkeit Eine Funktion $f: D \to \mathbb{R}$, $Dsubseteq\mathbb{R}$ ist Lipschitz-stetig auf D gdw. ein L > 0 existiert mit:

$$\forall x, y \in D : |f(x) - f(y)| \le L|x - y|$$

Die Lipschitz-Stetigkeit ist ein strengerer Begriff für die Stetigkeit, das heißt:

f Lipschitz-stetig auf $D \implies f$ stetig auf D

5.5 Extrema (lokal/global)

Sei $f: D \to \mathbb{R}$, $Dsubseteg\mathbb{R}$ eine Funktion.

5.5.1 Definitionen

Globales Extrema f hat ein globales Maxima (bzw. Minima) in $x_0 \in D$ gdw. $f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$) für alle $x \in D$ gilt.

Lokales/Relatives f hat ein lokales (oder auch relatives) Maxima (bzw. Minima) in $x_0 \in D$ gdw. ein **Extrema** $\delta > 0$ existiert mit $f(x) \leq f(x_0)$ (bzw. $f(x) \geq f(x_0)$) für alle $x \in D$ mit $|x - x_0| < \delta$.

Kritischer Punkt f hat einen kritischen Punkt in $x_0 \in D$ gdw. gilt $f'(x_0) = 0$.

Konvex Die Funktion f heißt konvex (bzw. konkav) gdw. $f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$ (bzw. $f(tx+(1-t)y) \ge tf(x)+(1-t)f(y)$) für alle $x,y \in D$ und für alle $t \in [0,1]$ gilt. Intuitiv gesprochen bedeuted dies, dass jede Verbindung von zwei auf dem Graph der Funktion liegenden Punkten den Graph der Funktion nicht schneidet. Der komplette Zwischengraph liegt unterhalb (bzw. oberhalb) der Linie. Anders ausgedrückt: Der Epigraph (bzw. Hypograph) der Funktion ist konvex.

Gerade Die Funktion f heißt gerade gdw. $\forall x \in D : f(x) = f(-x)$ (die Funktion ist Achsensymmetrisch zur y-Achse).

Ungerade Die Funktion f heißt ungerade gdw. $\forall x \in D : f(x) = -f(-x)$ (die Funktion ist Punktsymmetrisch zum Ursprung).

Injektivität/Surjektivität
Bijektivität Sei $f:A \rightarrow B$ eine Funktion.

5.5.2 Bestimmung der Extrema

Sei $f: D^p \to \mathbb{R}, D \subseteq \mathbb{R}, p \in \mathbb{N}^*$ eine Funktion mit einem kritischen Punkt in x_0 .

$$p = 1$$

Gilt nun $f'(x) = \cdots = f^{n-1}(x_0) = 0$, aber $f^n(x_0) \neq 0$, so gilt:

$$\begin{cases} f \text{ hat Maxima in } x_0 & \text{falls } f^n(x) < 0 \\ f \text{ hat Minima in } x_0 & \text{falls } f^n(x) > 0 \end{cases}$$

Gilt dies nicht, so ist x_0 kein Extrema (Sattelpunkt).

sonst

Wird x_0 in die Hesse-Matrix $H_f(x)$ eingesetzt und die Definitheit bestimmt, so gilt:

```
\begin{cases} f \text{ hat Maxima in } x_0 & \text{falls } H_f(x_0) \text{ negativ definit} \\ f \text{ hat Minima in } x_0 & \text{falls } H_f(x_0) \text{ positiv definit} \\ f \text{ hat Maxima oder ist Sattelpunkt in } x_0 & \text{falls } H_f(x_0) \text{ negativ semidefinit} \\ f \text{ hat Minima oder ist Sattelpunkt in } x_0 & \text{falls } H_f(x_0) \text{ positiv semidefinit} \\ f \text{ hat Sattelpunkt in } x_0 & \text{falls } H_f(x_0) \text{ indefinit} \end{cases}
```

5.5.3 Zwischenwertsatz

Seien $a, b \in \mathbb{R}, a < b$ gegeben und $f \in C([a, b])$. Ist $y_0 \in \mathbb{R}, f(a) \le y_0 \le f(b)$, so existiert ein $x_0 \in [a, b]$ mit $f(x_0) = y_0$.

Nullstellen von Banzano Seien $a, b \in \mathbb{R}, a < b \text{ und } f \in C([a, b])$. Ferner gelte f(a)f(b) < 0. Dann existiert ein $x_0 \in [a, b]$ mit $f(x_0) = 0$.

5.6 Taylor

5.6.1 Definitionen

Sei $I \subseteq \mathbb{R}$ eine offenes Intervall, $x, x_0 \in I$ und $f \in C^{\infty}(I)$.

Taylorreihe Die Taylorreihe wird definiert als die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

um den Entwicklungspunkt x_0 .

Taylorpolynom Das Taylorpolynom wird definiert für jedes $k \in \mathbb{N}$ als

$$T_{k;f}(x,x_0) := \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$

um den Entiwcklungspunkt x_0 .

Restglied Das Restglied des k-ten Taylorpolynoms ($k \in \mathbb{N}$) ist definiert als

$$R_{k,f}(x;x_0) := \frac{f^{(k+1)}(\xi)}{(k+1)!} (x-x_0)^{k+1}$$

um den Entwicklungspunkt x_0 .

5.6.2 Satz von Taylor

Seien $I\subseteq\mathbb{R}$ ein offenes Intervall, $x,x_0\in I$ und für ein $k\in\mathbb{N}$ $f:I\to\mathbb{R}$ eine (k+1)-mal differenzierbare Funktion.

Dann existiert ein ξ zwischen x und x_0 , sodass gilt:

$$f(x) = T_{k,f}(x; x_0) + R_{k,f}(x; x_0)$$

5.7 Wichtige Funktionen

Funktion	Ableitung	Stammfunktion
$f(x) \coloneqq \sin(x)$	$f'(x) = \cos(x)$	$F(x) = -\cos(x)$
$f(x) := \cos(x)$	$f'(x) = -\sin(x)$	$F(c) = \sin(x)$
$f(x) \coloneqq \tan(x)$	$f'(x) = \frac{1}{\cos^2(x)}$	$F(x) = -\ln(\cos(x))$
$f(x) \coloneqq \cot(x)$	$f'(x) = -\frac{1}{\sin^2(x)}$	$F(x) = \ln(\sin(x))$
$f(x) \coloneqq \arcsin(x)$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$	$F(x) = x \cdot \arcsin(x) + \sqrt{1 - x^2}$
$f(x) \coloneqq \arccos(x)$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$	$F(x) = x \cdot \arccos(c) - \sqrt{1 - x^2}$
$f(x) \coloneqq \arctan(x)$	$f'(x) = \frac{1}{1+x^2}$ $f'(x) = ke^{kx}$	$F(x) = x \cdot \arctan(x) - \frac{\ln(x^2+1)}{2}$
$f(x) \coloneqq e^{kx}$	$f'(x) = ke^{kx}$	$F(x) = \frac{1}{k}e^{kx}$
$f(x) \coloneqq \sinh(x)$	$f'(x) = \cosh(x)$	$F(x) = \sinh(x)$
$f(x) \coloneqq \cosh(x)$	$f'(x) = \sinh(x)$	$F(x) = \cosh(x)$
$f(x) \coloneqq \tanh(x)$	$f'(x) = \frac{1}{\cosh^2(x)}$	$F(x) = \ln(\cosh(x))$
$f(x) \coloneqq \operatorname{arcsinh}(x)$	$f'(x) = \frac{1}{\sqrt{1+x^2}}$	$F(x) = x \cdot \operatorname{arcsinh}(x) - \sqrt{x^2 + 1}$
$f(x) \coloneqq \operatorname{arccosh}(x)$	$f'(x) = \frac{\sqrt{1+x}}{\sqrt{x^2-1}}$	$F(x) = x \cdot \operatorname{arccosh}(x) - \sqrt{x-1}\sqrt{x+1}$
$f(x) \coloneqq \operatorname{arctanh}(x)$	$f'(x) = \frac{1}{1 - x^2}$	$F(x) = \frac{\ln(1-x^2)}{2} + x \cdot \operatorname{arctanh}(x)$
$f(x) \coloneqq \ln(x)$	$f'(x) = \frac{1}{x}$	$F(x) = x(\ln(x) - 1)$
$f(x) \coloneqq \ln_a(x)$	$f'(x) = \frac{1}{x \cdot \ln(a)}$	$F(x) = \frac{x(\ln(x) - 1)}{\ln(a)}$

Tabelle 5.1: Wichtige Funktionen

6 Differentialrechnung

Sei $I \subseteq \mathbb{R}$ ein Intervall.

6.1 Definitionen

Differenzierbarkeit Sei $x_0 \in I$. Eine Funktion $f: I \to \mathbb{R}$ heißt differenzierbar in x_0 gdw. der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existiert. Dieser Grenzwert wird *Ableitung* genannt und als $f'(x_0)$ bezeichnet. Eine Funktion f heißt differenzierbar auf I gdw. diese in allen Punkten x_0 differenzierbar ist. In diesem Fall wird durch $x\mapsto f'(x)$ für $x\in I$ eine Funktion $f':I\to\mathbb{R}$ definiert. Diese Funktion heißt Ableitung von f.

6.2 Sätze

6.2.1 Mittelwertsatz der Differentialrechnung

Seien $a, b \in \mathbb{R}, a < b$ und sei $f \in C([a, b])$ differenzierbar auf (a, b). Dann existiert ein $\xi \in (a, b)$, sodass gilt:

$$\frac{f(b)-f(a)}{b-a}=f'(\xi)$$
 bzw. gleichbedeutend $f(b)-f(a)=f'(\xi)(b-a)$

6.2.2 Satz von Rolle

Seien $a,b \in \mathbb{R}, a < b$ und sei $f \in C([a,b])$. Ist f auf (a,b) differenzierbar und gilt f(a) = f(b), so existiert ein $\xi \in (a,b)$ mit $f'(\xi) = 0$.

6.2.3 Zusammenhang mit der Monotonie

Sei $f: I \to \mathbb{R}$ differenzierbar auf I. Dann gilt:

 $\text{Die Funktion } f \text{ ist auf } I \begin{cases} \text{konstant} & \text{falls } f' = 0 \\ \text{streng monoton wachsend} & \text{falls } f' > 0 \\ \text{streng monoton fallend} & \text{falls } f' < 0 \\ \text{monoton wachsend} & \text{falls } f' \geq 0 \\ \text{monoton fallend} & \text{falls } f' \leq 0 \end{cases}$

6.2.4 Gleichheit der Ableitung

Seien $f,g:I\to\mathbb{R}$ differenzbierbar auf I und gilt f'=g' auf I, so existiert eine Konstante $c\in\mathbb{R}$, sodass f(x)=g(x)+c für alle $x\in I$ gilt.

6.3 Ableitungen

Seien f, b, h Funktionen, $c \in \mathbb{R}$ und $n \in \mathbb{N}$.

6.3.1 Regeln

Ableitung einer Konstanten

$$f(x) = c \to f'(x) = 0$$

Ableitung von x

$$f(x) = x \to f'(x) = 1$$

Potenzregel

$$f(x) = x^n \to f'(x) = n \cdot x^{n-1}$$

Exponentialregel

$$f(x) = n^x \to f'(x) = n^x \cdot \ln(n)$$

Faktorregel

$$f(x) = c \cdot g(x) \to f'(x) = c \cdot g'(x)$$

Summenregel

$$f(x) = g(x) + h(x) \to f'(x) = g'(x) + h'(x)$$

Differenzregel

$$f(x) = g(x) - h(x) \to f'(x) = g'(x) - h'(x)$$

Produktregel

$$f(x) = g(x) \cdot h(x) \to f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

Quotientenregel

$$f(x) = \frac{g(x)}{h(x)} \to f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{(h(x))^2}$$

Kettenregel

$$f(x) = g(h(x)) \to f'(x) = g'(h(x)) \cdot h'(x)$$

Radixregel

$$f(x) = \sqrt[n]{x} \to f'(x) = \frac{1}{n \cdot \sqrt[n]{x}}$$

6.4 Partielle Ableitungen

Sei $f: I^n \to \mathbb{R}^m$ eine Funktion.

Dann wird $\partial_k f_l$ ($1 \le k \le n, 1 \le l \le m$) Die 1. Ableitung der l-ten Komponente in Richtung der k-te Variable genannt.

Jacobi-Matrix Die Matrix der ersten partiellen Ableitungen wird Jacobi-Matrix genannt und ist wie folgt definiert:

$$J_f := \begin{pmatrix} \partial_1 f_1 & \cdots & \partial_m f_1 \\ \vdots & \ddots & \vdots \\ \partial_1 f_n & \cdots & \partial_m f_n \end{pmatrix}$$

Gradient $\nabla_k f$ bezeichnet den k-ten Zeilenvektor der Jacobi-Matrix. Gilt n=1, so kann das k weg gelassen werden und es gilt $\nabla f = J_f$.

Hesse-Matrix Sei n = 1.

Die Matrix der zweiten partiellen Ableitungen wird Hesse-Matrix genannt und ist wie folgt definiert:

$$H_f := \begin{pmatrix} \partial_1 \partial_1 f & \cdots & \partial_m \partial_1 f \\ \vdots & \ddots & \vdots \\ \partial_1 \partial_m f & \cdots & \partial_m \partial_m f \end{pmatrix}$$

6.5 Wichtige Ableitungen

Siehe 5.7.

7 Integralrechnung

7.1 Ober-/Untersumme und

Seien $a, b \in \mathbb{R}, a < b, Z$ eine Zerlegung von [a, b] und $f : [a, b] \to \mathbb{R}$ beschränkt. Ferner seien $I_j := [x_{j-1}, x_j], |I_j| := x_j - x_{j-1}, m_j := \inf f(I_j)$ und $M_j := \sup f(I_j)$.

Untersumme Die Summe $\underline{s}_f(Z) \coloneqq \sum_{j=1}^n m_j |I_j|$ heißt die *Untersumme* von f zu Z.

Obersumme Die Summe $\overline{s}_f(Z) \coloneqq \sum_{j=1}^n M_j |I_j|$ heißt *Obersumme* von f zu Z.

7.2 Sätze

7.2.1 Hauptsatz der Analysis

Seien $a,b \in \mathbb{R}, a < b \text{ und } c \in [a,b]$, sowie eine stetige Funktion $f:[a,b] \to \mathbb{R}$ gegeben. Dann gelten folgende Aussagen:

- Die Funktion $F:[a,b]\to\mathbb{R}$ mit $F(x):=\int_c^x f(s)\,\mathrm{d} s,\,x\in I$, ist eine Stammfunktion von f.
- Ist $\Phi:[a,b]\to\mathbb{R}$ eine Stammfunktion von f, so gilt

$$\Phi(x) = \Phi(c) + \int_{c}^{x} f(s) ds$$
 für alle $x \int [a, b]$

7.3 Integration

7.3.1 Integrierbarkeit

Unterintegral $\int_a^b \! f(x) \, \mathrm{d}x \coloneqq \sup \left\{ \underline{s}_f(Z) : Z \text{ Zerlegung von } [a,b] \right\}$

Oberintegral $\overline{\int_a^b} f(x) dx := \inf \{ \overline{s}_f(Z) : Z \text{ Zerlegung von } [a, b] \}$

Ferner heißt die Funktion f auf [a,b] (Riemann-) Integrierbar, wenn

$$\int_{a}^{b} f(x) dx = \overline{\int_{a}^{b}} f(x) dx := \int_{a}^{b} f(x) dx$$

•

7.3.2 Integrationstechniken

Partielle Integration Seien $f, g \in C^1(I)$, $I \subseteq \mathbb{R}$ ein Intervall.

Dann gilt:

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$$

und:

$$\int_a^b f(x) \cdot g'(x) \, \mathrm{d}x = f(x) \cdot g(x) \Big|_a^b - \int_a^b f'(x) \cdot g(x) \, \mathrm{d}x$$

Sei $f:I\to\mathbb{C}$ stetig und $\varphi:[a,b]\to I$ stetig differenzierbar.

Dann gilt:

$$\int f(\varphi(x)) \cdot \varphi'(x) \, \mathrm{d}x = \int f(u) \, \mathrm{d}u \Big|_{u = \varphi x}$$

und:

$$\int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x) \, \mathrm{d}x = \int_{\varphi(a)}^{\varphi b} f(u) \, \mathrm{d}u$$

7.3.3 Uneigentliche Integrale

Integrale der Form

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x$$

heißen uneigentliche Integrale und es gilt:

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x \coloneqq \lim_{b \to \infty} \int_{a}^{b} f(x) \, \mathrm{d}x$$

7.4 Fourierreihen

Seien $N \in \mathbb{N}$, $\omega > 0$ und (a_n) , (b_n) Reihen in \mathbb{R} mit a_N , $b_n \neq 0$.

Dann heißt

$$P(x) = \frac{a_0}{2} \sum_{k=1}^{N} (a_n \cos(n\omega x) + b_n \sin(n\omega x))$$

ein Trigonometrisches Polynom des Grades Nmit der Frequenz $\omega.$

Sei im folgenden $T:=\frac{2\pi}{\omega}\iff\omega=\frac{2\pi}{T}$ (Periode). Es gilt zur Approximation einer Funktion f(x) mit der Periode T $(n\in\mathbb{N})$:

$$(a_n) \coloneqq \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos(n\omega x) dx$$

$$(b_n) \coloneqq \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin(n\omega x) dx$$

Das entstehende trigonometrische Polynom heißt $F_{f,N}(x)$ (N ist der Grad des Polynoms) und es gilt für $N = \infty$: $f(x) = F_{f,\infty}(x)$.

8 Differentialgleichungen

Eine Gleichung der Form

$$0 = F(t, y(t), \cdots, y^{(n)}(t))$$

heißt (gewöhnliche) Differentialgleichung der Ordnung n. Meist sind Differentialgleichungen nach der höchsten Ableitung aufgelöst:

$$y^{(n)}(t) = f(t, y(t), \dots, y^{(n-1)}(t))$$

Sind an einer Stelle t_0 bestimmte Anfangswerte

$$y(t_0) = y_0, \cdots, y^{(n-1)}(t_0) = y_{n-1}$$

gegeben, so wird dies ein Anfangswertproblem genannt.

Lineare Differentialgleichungen erster Ordnung Eine lineare Differentialgleichung erster Ordnung hat die allgemeine Form y'(t) + a(t)y(t) = b(t).

Lineare Systeme erster Ordnung mit konstanten Koeffizienten Ein System lineare Differentialgleichungen mit konstanten Koeffizienten hat die allgemeine Form

$$y'(t) = Ay(t) + b(t)$$

auf einem Intervall $I \subseteq \mathbb{R}$ mit einer stetigen Funktion $b: I \to \mathbb{R}^N$ und einer Matrix $A \in \mathbb{R}^{N \times N}$.

Differentialgleichungen höherer Ordnung Differentialgleichungen der Ordnung $n \geq 2$ lassen sich immer auf ein System von Differentialgleichungen erster Ordnung reduzieren.

Sei $y^{(n)}(t) = F(t, y(t), y'(t), \cdots, y^{(n-1)}(t))$ eine Differentialgleichung mit $n \ge 2$ und $F: I \times \mathbb{R}^n \to \mathbb{R}$ stetig. Sei $v: I \to \mathbb{R}^n$ eine Funktion mit

$$v_1 = y, v_2 = y', \cdots, v_n = y^{(n-1)}$$

für welche dann gilt:

$$v'(t) = \begin{pmatrix} v'_1(t) \\ v'_2(t) \\ \vdots \\ v'_{n-1}(t) \\ v'_n(t) \end{pmatrix} = \begin{pmatrix} y'(t) \\ y''(t) \\ \vdots \\ y^{(n-1)}(t) \\ y^{(n)}(t) \end{pmatrix} = \begin{pmatrix} v_2(t) \\ v_3(t) \\ \vdots \\ v_n(t) \\ F(t, v_1(t), \dots, v_n(t2)) \end{pmatrix}$$

8.1 Typen

autonom $y^{(n)}(t)$ heißt *autonom* gdw. diese nicht von t abhängt.

homogen y'(t) heißt *homogen* gdw. diese nur von $\frac{y(t)}{t}$ abhängt, das heißt ex existiert eine Funktion $g: \mathbb{R} \to \mathbb{R}$, sodass $y'(t) = f(t, y(t)) = g(\frac{y(t)}{t})$. Lineare Differentialgleichungen heißen *homogen* gdw. für alle $t \in I$ gilt b(t) = 0.

inhomogen Lineare Differentialgleichungen heißen *inhomogen* gdw. nicht für alle $t \in I$ gilt g(t) = 0.

linear Siehe 8.

8.2 Fundamentalsystem

Homogene lineare Systeme Sei y'(t) = Ay(t) ein homogenes lineares System mit der konstanten Matrix $A \in \mathbb{R}^{N \times N}$, dann bildet die Matrix e^{tA} ein Fundamentalsystem.

Ist A diagonalisierbar mit den Eigenwerte $\lambda_1, \cdots, \lambda_N$ mit den Eigenvektoren v_1, \cdots, v_N . Dann ist

$$\{e^{t\lambda_1}v_1,\cdots,e^{t\lambda_N}v_N\}$$

eine Fundamentalsystem der Gleichung y'(t) = Ay(t).

Inhomogene lineare Systeme Sei y'(t) = Ay(t) + b(t) ein inhomogenes lineares System mit dem Anfangswert $y(t_0) = y_0$.

Dann lautet die eindeutige globale Lösung:

$$y(t) = e^{(t-t_0)A}y_0 + e^{tA} \int_{t_0}^t e^{-sA}b(s) \, ds = e^{(t-t_0)A}y_0 + \int_{t_0}^t e^{(t-s)A}b(s) \, ds$$

8.3 Sätze

8.3.1 Satz von Picard-Lindelöff

Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ stetig, $t_0 \in I$ und $y_0 \in \mathbb{R}^n$. Ist nun f Lipschitz-stetig, d.h. es existiert ein L > 0, sodass für alle $t \in I$ und $y_1, y_2 \in \mathbb{R}^n$ gilt

$$||f(t,y_1) - f(t,y_2)|| \le L||y_1 - y_2||$$

dann existiert ein kompaktes Intervall $J \subseteq I$ mit $t_0 \in J$, sodass das Anfangswertproblem

AWP
$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

eindeutig lösbar ist.

8.4 Lösungsmethoden

Trennung der Variablen Sei auf einem Intervall $I \subseteq \mathbb{R}$ mit stetigen Funktionen $f : \mathbb{R} \to \mathbb{R}$, $g : I \to \mathbb{R}$, sowie $t_0 \in I$ und $y_0 \in \mathbb{R}$ das Anfangswertproblem

AWP
$$\begin{cases} y'(t) = g(t) \cdot f(y(t)) \\ y(t_0) = y_0 \end{cases}$$

gegeben.

Ist $f(t_0) \neq 0$, so gilt:

$$y(t) = F^{-1}(G(t)) \quad \text{mit} \quad G(t) \coloneqq \int_{t_0}^t g(\tau) \, \mathrm{d}\tau \quad \text{und} \quad F(y) \coloneqq \int_{y_0}^y \frac{1}{f(\eta)} \, \mathrm{d}\eta$$

Alternativ kann y(t) berechnet werden durch $\int_{y_0}^{y(t)} \frac{1}{f(\eta)} d\eta = \int_{t_0}^t g(\tau) d\tau$. Ist kein Anfangswert gegeben, so werden unbestimme Integrale genutzt. Das Ergebnis enthält dann eine Konstane c, welche durch den Anfangswert bestimmt werden kann.

Variation der Konstanten Sei auf einem Intervall $I \subseteq \mathbb{R}$ mit $a,b \in C(I)$, sowie $t_0 \in I$ und $y_0 \in \mathbb{R}$ das lineare Anfangswertproblem

AWP
$$\begin{cases} y'(t) + a(t)y(t) = b(t) \\ y(t_0) = y_0 \end{cases}$$

gegeben.

Dann existiert genau eine globale Lösung, welche durch

$$y(t) = e^{-A(t)}y_0 + e^{-A(t)} \int_{t_0}^t b(s)e^{A(s)} ds$$
 mit $A(t) := \int_{t_0}^t a(s) ds$

gegeben ist.

9 Trigonometrie/Hyperfunktionen

9.1 Komplexe Zahlen

Sei *i* die imaginäre Zahl.

9.1.1 Darstellungen

Eine komplexe Zahl $z \in \mathbb{C}$ kann unterschiedlich Dargestellt werden. Die gebräuchlichsten Darstellungen ist die der kartesischen Koordinaten und die Darstellung durch Polarkoordinaten.

Kartesische Koordinaten Die Darstellung z = a + bi wird die kartesiche Darstellung genannt. Zur Umwandlung von Polarkoordinaten in kartesische Koordinaten gilt:

$$a = r \cdot \cos(\varphi)$$
$$b = r \cdot \sin(\varphi)$$

Polarkoordinaten Die Darstellung $z=(r,\varphi)$ (oder auch $z=r\cdot e^{\varphi}$) wird die Darstellung durch Polarkoordinaten genannt. Für φ muss ein Intervall der größe 2π festgelegt werden, da beispielsweise $(1,\pi)=(1,3\pi)$, was verwirren kann. Meist wird mit $(-\pi,\pi]$ oder $[0,2\pi)$ gearbeitet.

Zur Umwandlung von kartesischen Koordinaten in Polarkoordinaten gilt:

Umrechnung Für die Umrechnung von $z \in \mathbb{C}$ zwischen z = a + bi $(a, b \in \mathbb{R})$ und $z = (r, \varphi)$ $(r \in \mathbb{R}, \varphi \in (-\pi, \pi])$ gilt:

$$\begin{split} a &= r \cdot cos(\varphi) \\ b &= r \cdot sin(\varphi) \\ r &= \sqrt{a^2 + b^2} \\ \varphi &= \begin{cases} arctan(\frac{b}{a}) & \text{falls } x > 0 \\ arctan(\frac{b}{a}) + \pi & \text{falls } x < 0 \land y \geq 0 \\ arctan(\frac{b}{a}) - \pi & \text{falls } x < 0 \land y < 0 \\ \frac{\pi}{2} & \text{falls } x = 0 \land y > 0 \\ -\frac{\pi}{2} & \text{falls } x = 0 \land y < 0 \end{cases} \end{split}$$