Uso del Pumping Lemma per dimostrare che certi linguaggi non sono regolari:

- 1. Sia L il linguaggio di cui si voglia dimostrare la non regolarità;
- 2. Si fissi $n \ge 0$;
- 3. Si scelga una stringa z (in funzione di n) in L con $|z| \ge n$;
- 4. Si consideri un modo qualunque di spezzare la stringa z in u, v, w (cioè z = uvw) con $|uv| \le n$ e $|v| \ge 1$;
- 5. Si dimostri che esiste i tale che $uv^iw \notin L$.

Dimostriamo che il linguaggio $L = \{a^hb^k \mid h,k>0, h>k\}$ non e' regolare. Fissiamo $n \ge 0$.

Scegliamo $z=a^{n+1}b^n$ (in funzione di n): $z \in L$ e $|z|=2n+1 \ge n$.

Consideriamo un modo qualunque di spezzare la strina z in u, v, w (cioè z = uvw) con $|uv| \le n$ e $|v| \ge 1$. Poiché i primi n+1 simboli di z sono delle "a" e $|uv| \le n$ (cioè uv è un prefisso di z di lunghezza $\le n$), ne segue che $uv \in a^*$ da cui $v \in a^*$. Inoltre, $|v| \ge 1$ e quindi $v \in a^+$ (cioè v contiene soltanto delle "a" e ne contiene almeno una).

Dimostriamo che esiste i tale che $uv^iw \notin L$. Poniamo i=0 e consideriamo la stringa $uv^0w=uw$. Quante "a" contiene questa stringa? Un numero di "a" strettamente minore del numero di "a" che compaiono in z. Quindi uw contiene un numero di "a" $\leq n$. Quante "b" contiene questa stringa? Il numero di "b" che compaiono in uw è esattamente uguale al numero di "b" che compaiono in z, cioè n. Quindi uw contiene un numero di "a" minore o uguale rispetto al numero di "b" e quindi $uw \notin L$.