Linear Time Properties.

Definition 1. Let Σ be an alphabet (*i.e.* a set).

- 1. A ω -word on Σ is a function $\sigma : \mathbb{N} \to \Sigma$. We denote Σ^{ω} for the set of ω -words on Σ .
- 2. We define $\Sigma^{\infty} := \Sigma^{\omega} \cup \Sigma^{\star}$ the set of finite or infinite words.
- 3. Given $\hat{\sigma} \in \Sigma^*$ and $\sigma \in \Sigma^{\infty}$, we say that $\hat{\sigma}$ is a prefix of σ , written $\hat{\sigma} \subseteq \sigma$, whenever

$$\forall i < \mathsf{length}(\hat{\sigma}), \quad \hat{\sigma}(i) = \sigma(i).$$

4. Given $\sigma \in \Sigma^{\infty}$, we define

$$\operatorname{Pref}(\sigma) := \{ \hat{\sigma} \in \Sigma^* \mid \hat{\sigma} \subseteq \sigma \},\$$

which we extend to sets of words: for $E \subseteq \Sigma^{\infty}$,

$$\operatorname{Pref}(E) := \bigcup_{\sigma \in E} \operatorname{Pref}(\sigma).$$

- **Remark 1.** \triangleright The prefix order \subseteq on Σ^* is generally a partial order: there are $u, v \in \Sigma^*$ such that $u \not\subseteq v$ and $v \not\subseteq u$.
 - \triangleright Given $\sigma \in \Sigma^{\infty}$, the prefix order \subseteq on Prefix(σ) is a linear (or total order).

1 Linear-time properties.

Let AP be a set of atomic propositions.

Figure 1 | Transition system for the BVM with labels

Definition 2. A linear-time property (sometimes written LT property) on AP is a set $P \subseteq (\mathbf{2}^{AP})^{\omega}$.

The idea is that a linear-time property $A: \mathbb{N} \to \mathbf{2}^{AP}$ specifies, for each $i \in \mathbb{N}$, a set $\sigma(i) \subseteq AP$ of all atomic propositions are assumed at time i.

Example 1. For the Beverage vending machine (shown in figure 1), we can have the following linear-time properties:

- $\quad \triangleright \ \, \{\sigma \in (\mathbf{2}^{\mathrm{AP}})^\omega \mid \forall n \in \mathbb{N}, \mathsf{drink} \in \sigma(n) \implies \exists k < n, \mathsf{paid} \in \sigma(k)\},$
- $\quad \ \, \vdash \ \, \{\sigma \in (\mathbf{2}^{\mathrm{AP}})^{\omega} \mid \forall n \in \mathbb{N}, \#\{k \leq n \mid \mathsf{drink} \in \sigma(k)\} \leq \#\{k \leq n \mid \mathsf{paid} \in \sigma(k)\}\},$
- $\, \triangleright \ \, \{\sigma \in (\mathbf{2}^{\mathrm{AP}})^\omega \mid (\exists^\infty t, \mathsf{paid} \in \sigma(i)) \implies (\exists^\infty t, \mathsf{drink} \in \sigma(t))\},$
- $\quad \triangleright \ \, \{\sigma \in (\mathbf{2}^{\mathrm{AP}})^\omega \mid (\forall^\infty t, \mathsf{paid} \not \in \sigma(t)) \implies (\forall^\infty t, \mathsf{drink} \not \in \sigma(t))\}.$

Remark 2. The notations \exists^{∞} and \forall^{∞} are "infinitely many" and "ultimately all" quantifiers:

- $\,\,\triangleright\,\,\forall^\infty t, P(t) \text{ is, by definition, } \forall N \in \mathbb{N}, \exists t \geq N, P(t);$
- $\quad \ \, \ni^{\infty}t,P(t) \text{ is, by definition, } \exists N\in\mathbb{N},\forall t\geq N,P(t).$

Hugo Salou – *M1 ens lyon*

Definition 3. A (finite or infinite) path in TS is a finite or infinite sequence $\pi = (s_i)_i \in S^{\infty}$ which respects transitions: for all i, we have $s_i \stackrel{\mathbf{a}}{\to} s_{i+1}$ for some $\mathbf{a} \in \operatorname{Act}$.

A path $\pi = (s_i)_i$ is initial if $s_0 \in I$.

Definition 4 (Trace). 1. The *trace* of a path $\pi = (s_i)_i$ is the (finite or infinite) word

$$L(\pi) := (L(s_i))_i \in L^{\infty}.$$

- 2. We define
 - $ightharpoonup \operatorname{Tr}(TS) := \{L(\pi) \mid \pi \text{ is a finite or infinite path in } TS\};$
 - $\triangleright \operatorname{Tr}^{\omega}(TS) := \{ L(\pi) \mid \pi \text{ is a infinite path in } TS \};$
 - $Tr_{fin}(TS) := \{ L(\pi) \mid \pi \text{ is a finite path in } TS \}.$

Definition 5 (Satisfaction of a LT property). We say that a transition system TS over AP satisfies a LT property P on AP, written $TS \approx P$, when $\operatorname{Tr}^{\omega}(TS) \subseteq P$.

Example 2. The BVM satisfies all the properties from example 1.

Example 3. We use a different transition system BVM' to model the beverage vending machine, as seen in figure 2. The two transition systems are equivalent in the sense that:

$$\operatorname{Tr}^{\omega}(BVM') = \operatorname{Tr}^{\omega}(BVM),$$

so, for any LT Property $P \subseteq (\mathbf{2}^{AP})^{\omega}$,

$$BVM' \approx P$$
 iff $BVM \approx P$.

Figure 2 | Transition system for the alternative BVM

We have a very simple result, which we will (probably) prove in the tutorials.

Proposition 1. Given two transition systems TS_1 and TS_2 over AP, then the following are equivalent:

$$\qquad \qquad \vdash \operatorname{Tr}^{\omega}(TS_1) \subseteq \operatorname{Tr}^{\omega}(TS_2),$$

$$\triangleright \forall P \subseteq (\mathbf{2}^{\mathrm{AP}})^{\omega}, \, TS_2 \approx P \implies TS_1 \approx P.$$

2 Decomposition of a linear-time property.

In this section, we introduce the notions of a "safety property" and a "liveness property" such that, for any LT property P,

1. there exists a safety property P_{safe} and a liveness property P_{liveness} such that

$$P = P_{\text{safe}} \cap P_{\text{liveness}};$$

2. P is a liveness and a safety property if and only if $P = (\mathbf{2}^{AP})^{\omega}$.

2.1 Safety properties.

The idea of a safety property is to ensure that "nothing bad is going to happen."

Definition 6. We say that $P \subseteq (\mathbf{2}^{AP})^{\omega}$ is a *safety property* if there exists a set $P_{\text{bad}} \subseteq (\mathbf{2}^{AP})^{\star}$ such that

$$\sigma \in P \iff \operatorname{Pref}(\sigma) \cap P_{\operatorname{bad}} = \emptyset.$$

Example 4. Considering the examples of LT-properties from example 1,

▶ Property (1) is a safety property: we can consider

$$P_{\mathrm{bad}}^{(1)} = \{ \hat{\sigma} \in \Sigma^{\star} \mid \mathrm{drink} \in \hat{\sigma}(n) \land \forall i < n, \mathrm{paid} \not \in \hat{\sigma}(i) \},$$

where n is the length of $\hat{\sigma}$.

▶ Property (2) is a safety property: we can consider

$$P_{\mathrm{bad}}^{(2)} = \{ \hat{\sigma} \in \Sigma^\star \mid \#\{t \mid \mathsf{paid} \in \hat{\sigma}(t)\} < \#\{t \mid \mathsf{drink} \in \hat{\sigma}(t)\} \}.$$

▷ Properties (3) and (4) are not safety properties: for any finite word $\hat{\sigma} \in (\mathbf{2}^{AP})^{\omega}$, there exists $\sigma \in (\mathbf{2}^{AP})^{\omega}$ such that $\hat{\sigma} \subset \sigma$ and $\sigma \in P$.

Example 5 (Traffic Light). We consider a traffic light as a transition system over $AP = \{G, Y, R\}$, as shown in figure 3. An example of a safety property is

$$\forall n, R \in \sigma(n) \implies n > 0 \text{ and } Y \in \sigma(n-1).$$

Figure 3 | Transition system for the traffic light

Figure 4 | Transition system for the traffic light

Example 6. Consider the transition system shown in figure 4, a safety property P with $P_{\text{bad}} = \{a\}^*\{b\}$ is satisfied: $TS \approx P$. This is true since $\text{Tr}^{\omega}(TS) = \{a\}^{\omega}$. However, when we consider *finite* (instead of infinites) traces, we have that $\text{Tr}_{\text{fin}}(TS) \cap P_{\text{bad}} \neq \emptyset$.

Definition 7 (Terminal state). A state $s \in S$ of a transition system TS is terminal if

$$\forall s' \in S, \quad \forall \alpha \in Act, \quad s \not\xrightarrow{\alpha} s'.$$

Proposition 2. Let TS be a transition system without terminal states, and a safety property P with the set of "bad behaviours" is written P_{bad} . Then,

$$TS \bowtie P$$
 if and only if $\operatorname{Tr}_{\operatorname{fin}}(TS) \cap P_{\operatorname{bad}} = \emptyset$.

Proof. See the course notes in section § 3.2.3.

2.2 Safety properties and trace equivalences.

Lemma 1. Let TS and TS' be two transition systems over AP without terminal states. Then, the following are equivalent:

$$ightharpoonup \operatorname{Tr}_{\operatorname{fin}}(TS) \subseteq \operatorname{Tr}_{\operatorname{fin}}(TS');$$

 \triangleright for any safety property $P, TS' \approx P$ implies $TS \approx P$.

Proof. \triangleright " \Longrightarrow ". This is true by the last proposition.

 \triangleright " \Longleftarrow ". Let P be a safety property with

$$P_{\mathrm{bad}} = (\mathbf{2}^{\mathrm{AP}})^{\star} \setminus \mathrm{Tr}_{\mathrm{fin}}(TS').$$

So, $TS' \approx P$ hence $TS \approx P$ by assumption. Therefore, $\operatorname{Tr}_{\operatorname{fin}}(TS) \subseteq \operatorname{Tr}_{\operatorname{fin}}(TS')$ by the last proposition.