

GRUPO 1

Sol Anselmo

Julián Sasso

Agustín Mattiussi

Camila Sierra Pérez

lan James Arnott

Juan Adolfo Rosauer Herrmann

Objetivo

- Se tiene un juego de rol que consiste en personajes que tienen cierta clase, ciertas propiedades y cierto equipamiento.
- El objetivo es lograr la mejor configuración de estos parámetros para optimizar el desempeño del personaje en el juego.
- Para ello se implementó un motor de algoritmos genéticos.

Estructura del individuo

Genotipo

Gen Fuerza Gen Agilidad Gen Pericia Gen Resistencia Gen Vida Gen Altura Gen Clase							
	Gen Fuerza	Gen Agilidad	Gen Pericia	Gen Resistencia	Gen Vida	Gen Altura	Gen Clase

Generaciones

Métodos de Se lección

Partiendo de una población, se seleccionan K padres para cruzarse

- Elite
- Ruleta
- Universal

- Boltzmann
- Torneo Determinístico
- Torneo Probabilístico
- Ranking

Métodos de Cruza

Una vez que se seleccionan los individuos, se los aparea y se realiza la recombinación de genes.

- Cruce de un punto: se elige un locus al azar y se intercambian los alelos a partir de ese locus.
- Cruce de dos puntos: se elige dos locus al azar y se intercambian los alelos entre ellos.
- Cruce anular: se elige un locus al azar P y una longitud L. Se intercambia el segmento de longitud L a partir de P.
- Cruce Uniforme: se produce un intercambio de alelos en cada gen con probabilidad P [0, 1]. (Por lo general P = 0.5)

Métodos de Mutación

Dado una probabilidad de mutación Pm:

- Un Gen: Se altera un solo gen con una probabilidad Pm.
- Multigen Limitada: Se selecciona una cantidad [1,M] (azarosa) de genes para mutar, con probabilidad Pm
- Multigen Uniforme: Cada gen tiene una probabilidad Pm de ser mutado.
- Completa: Con una probabilidad Pm se mutan todos los genes del individuo, acorde a la función de mutación definida para cada gen.

Métodos de Selección de Nueva Generación

- Use-All (Tradicional): La nueva generación se formará seleccionando N individuos del conjunto de [N (individuos de la generación actual) + K (hijos)]
- New-Over-Actual (Sesgo joven): Se seleccionan N individuos del conjunto de hijos. Si no fuera suficiente, se completa con los mejores padres hasta llegar a N.

Criterios de corte

- Cantidad de generaciones: Se alcanza un número de generación predefinido
- Por Estructura: Una parte relevante de la población no cambia en una cantidad de generaciones.
- Por Contenido: El mejor fitness no cambia en una cantidad de generaciones.
- Entorno a un Óptimo (Parametrizable): Se alcanza (un entorno de) un nivel de fitness predefinido

Resultados obtenidos

Consideraciones

Metodología:

- Dos datasets. Uno para cruces, otro para el resto
 - Dataset cruces con menor población en los experimentos
- Mutación de Gen sobre Items y Altura

Arquero

61.88 PERFORMANCE

• 74.931676 FUERZA

• 74.518173 AGILIDAD

• 0.546202 PERICIA

• 0.003202 RESISTENCIA

• 0.000747 VIDA

• 1.91 ALTURA

Hiperparámetros:

- Torneo Determinístico
- Cruce uniforme
- Multigen Uniforme

Sesgo Joven

Defensor

58.12 PERFORMANCE

- 0.005332 FUERZA
- 0.007252 AGILIDAD
- 0.651348 PERICIA
- 74.511523 RESISTENCIA
- 74.824544 VIDA
- 1.3 ALTURA

Hiperparámetros:

- Torneo Deterministico
- Cruce de un punto
- Multigen Uniforme
- Sesgo Joven

Infiltrado

53.75 PERFORMANCE

- 68.317834 FUERZA
- 67.387880 AGILIDAD
- 14.233418 PERICIA
- 0.059428 RESISTENCIA
- 0.001440 VIDA
- 1.91 ALTURA

Hiperparámetros:

- Torneo Deterministico
- Cruce de un punto
- Mutación de Gen (items)
- Sesgo joven

Guerrero

40.63 PERFORMANCE

• 68.959836 FUERZA

• 64.769591 AGILIDAD

• 16.162476 PERICIA

• 0.064849 RESISTENCIA

• 0.043249 VIDA

• 1.93 ALTURA

Hiperparámetros:

- Torneo Deterministico
- Cruce de dos puntos
- Mutación de Gen (items)

Sesgo joven

Analisis de Métodos

- Métodos de selección
- Métodos de cruce
- Métodos de mutación
- Métodos de generación

Métricas clave:

- Performance
- Cantidad de generaciones

Las pruebas fueron realizadas tomando un valor variable y todos los demás constantes para poder realizar una comparación.

Para poder ver las diferencias entre las configuraciones mejor, se filtraron los datos para el arquero. (la mejor configuracion)

Métodos de Selección

- Consideracion:
 - Método de selección homogéneo

- Los métodos probabilisticos no son muy performantes
- Los métodos mas determinísticos parecen ser mas afectados por otros métodos de la configuración

Métodos de Selección

- Consideracion:
 - Método de selección homogéneo
- Los métodos probabilísticos requieren de un mayor numero de generaciones
- Los métodos mas determinísticos utilizan menos generaciones, aunque con una distribución mas uniforme. (muestra efecto de otras configuraciones)

Métodos de Selección

Consideracion:

- Método de seleccion homogeneo
- Mutación uniforme y gen (item)
- Se aislan los casos de los metodos deterministicos donde la performance se distribuye en valores mas altos
- Los metodos probabilisticos se mantienen con una distribucion similar

Métodos de Cruce

- Notar: muchos datos (TCL), desviaciones similares
- Metodo uniforme muestra una distribucion mas performante

Métodos de Cruce

• Parecido a otros metodos probabilisticos, uniform utiliza un mayor numero de generaciones para llegar a su resultado

Métodos de Mutación

Solo la mutacion uniforme y por gen llegan a los resultados de mayor performance
 Aunque la mutacion del gen tiene una distribucion menos favorable

Métodos de Mutación

• La mutacion uniforme utiliza un mayor numero de generaciones

Métodos de Mutación (One-gen)

 Observando únicamente la mutación de gen sobre el Item (la única característica con impacto sobre la performance) podemos observar la ventaja de mutar el gen.

Métodos de Mutación (One-gen)

- Mutar el item tiene una distribucion mas predecible (tiene impacto en el algoritmo)
- Es mas eficiente respecto a las generaciones que la mutacion uniforme

Métodos de Reemplazo

- Mismos resultados de performance, o por lo menos indistinguibles con el análisis.
- Menor uso de recursos por parte de use_all

Métodos de Reemplazo

- Resultados parecidos en la cantidad de generaciones.
- Menor uso de recursos por parte de use_all

Conclusiones

En resumen, luego del análisis realizado, si tuvieramos que elegir una combinación de hiperparámetros para solucionar este problema de la mejor manera sería:

- Método de selección: torneo determinístico
- Método de cruza: cruce uniforme
- Método de mutación: multigen uniforme
- Método de reemplazo: sesgo joven

