### Quadra Energy Prediction of energy losses based on EinsMan

### CONTENTS OF THIS TEMPLATE

- 1. Introduction
- 2. EDA
- 3. Models
- 4. Pros and cons of different models
- 5. Weather forecast API
- 6. Future work

Introduction

### Introduction

### Energy market:

- Energy market is a very complex market
- Predict the right amount of energy produced
- Wrong predictions cost more money

### EinsMan

- Last measure to use to overcome a bottleneck
- Protect individual sections of a distribution or transmission network
- Blades of wind turbines have to be turned out of the wind

Exploratory Data Analysis

### Correlation matrix for best features



### Power used vs power available - mean over month



### Power available vs. power used for October mean over hours



### Wind speed 100 m vs. power available in October - mean over hours



### Wind speed 100m vs. target loss in October - mean over hours



# 03 Modelling

### Error of different supervised models Different starting points and 48 hour forecast





## Error of Naive, ARIMA and LSTM Different starting points and 48 hour forecast





Pros and cons of different models

### Pros and cons of different models

Supervised models - Pros:

Supervised models - Cons:

Unsupervised models - Pros:

Unsupervised models - Cons:

-

Weather forecast API

### Weather forecast API to predict EinsMan





Future work

### Future work

- Gridsearch to optimize the parameter for each model
- Get more EinsMan data to predict for other Regions
- Train API models with historical data
- Build a dashboard with Einsman forecast for different Regions

Thank you for your attention