BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS FIRST SEMESTER 2021-22 COURSE HANDOUT (PART-II)

Date: 20-08-2021

In addition to Part I (General Handout for all the courses appended to the time table), this portion gives further specific details regarding the course.

Course No.	EEE F416			
Course Title	Digital Communications			
Instructor-in-charge	Dr. Subhradeep Pal			
Course Description	This course covers the topics on digital communications and basics of information theory. Theoretical explanation of various source and channel coding algorithms and transmission of information through channels along with different modulation mechanisms are also included.			
Scope and Objective	The objective of the course is to impart knowledge of the basic tools for the design of digital communication system and to provide methods and procedures suitable for a variety of modulation techniques to transmit information over channels. The course also provides basic understanding of information theory and wireless communications including emerging trends in these fields.			

Text Books:

T1: John G. Proakis, and M. Salehi, "Digital Communications," 5th Edition, McGraw Hill.

T2: Ranjan Bose, "Information Theory, Coding and Cryptography," 3rd Edition, McGraw Hill.

T3: B. Sklar and P. K. Ray, "Digital Communications: Fundamentals and Applications," 2nd Edition, Pearson.

Reference Books:

R1: Robert G. Gallager, "Principles of Digital Communication," Cambridge University Press.

R2: David Tse, and Pramod Viswanath, "Fundamentals of Wireless Communication," Cambridge University Press.

R3: B. P. Lathi, "Modern Digital and Analog Communications Systems," 3rd Edition, Oxford University Press.

R4: Simon Haykin, "Digital Communication Systems," Wiley.

R5: I. Glover and P. Grant, "Digital Communications," 3rd Edition, Pearson.

Course Plan

Lect.	Learning Objectives	Topics to be covered	Chapter in
No.	Learning Objectives	Topics to be covered	the Text Book
1	Introduction and modelling and characterization of information sources	Introduction to digital communication and information theory. Mathematical models for information sources, logarithmic measure of information, concept of entropy	T1:6.1 to 6.3 T2:1.1 to 1.3 T3: 13
2-3	Algorithms for source coding and analog output sources	Huffman coding, Shannon-Fano-Elias Coding, Arithmetic Coding, Lempel-Ziv Algorithm, Run-length coding	T1 : 6.3-2 T2 : 1.6 to 1.10 T3 : 13
4-18	Information transmission through AWGN channels using digital modulation methods and BER estimation;	Pulse Amplitude Modulation, Digital Phase Modulation: PSK, BPSK, QPSK, OQPSK, DPSK, Quadrature Amplitude Modulation, Frequency Shift Keying: Modulation and Demodulation Schemes.	T1 : 3 T3 : 4
19-29	Digital communication through band limited Gaussian noise channels	Characterization of band-limited channels, Signal design, ISI and Nyquist Criterion, Optimum Receiver, Linear Equalization, Adaptive Equalization	T1:9 T1:10 T3: 16
30-31	Channel coding and decoding	Error Correcting Codes, Linear Block Codes, Parity Check Code, Hamming Code, Cyclic Code	T1: 7 T2: 3, 4 T3: 6
32-35	Wireless communication channels: its characterization and modulation schemes for such channels	Characterization of fading multipath channels, Statistical Models, Linear Modulation Schemes, Constant Envelope Modulations, Combined linear and constant envelope modulation schemes, Modulation performance.	T1 : 13 T3 : 15
36-40	Emerging trends	MIMO Systems: Analysis	T1 : 15

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Assignment(s)/ Quiz(s) (2 Nos.)	-	30%	To be announced	Open Book
Mid Semester Examination	90 Minutes	35%	22/10/2021 9.00 - 10.30AM	Open Book
Comprehensive Exam	120 minutes	35%	22/12 FN	Open Book
Total		100%		

Notices: All notices will be uploaded in Google Classroom for the respective course.

Make-up Policy: There will be make-up only for the Mid-Semester and End-Semester examination subject to prior approval taken from the IC.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.