SUBSTRATE FOR LIQUID CRYSTAL PANEL, ITS PRODUCTION AND PROJECTION TYPE DISPLAY DEVICE

Publication number: JP10048667 Publication date: 1998-02-20

Inventor: YONEYAMA RYOICHI
Applicant: SEIKO EPSON CORP

Classification:

- international: G02F1/1343; G02F1/136; G02F1/1368; G02F1/13; (IPC1-7):

G02F1/136; G02F1/1343

- European:

Application number: JP19960204006 19960801 Priority number(s): JP19960204006 19960801

Report a data error here

Abstract of JP10048667

PROBLEM TO BE SOLVED: To suppress orientation defects and to improve reflectance by forming a flat insulating film on a first pixel electrode, forming a contact hole and then forming a second pixel electrode on the surface of the insulating film. SOLUTION: The first pixel electrode 11 is formed by opening a contact hole 10 through a gate insulating film 3a, first interlayer insulating film 5 and second insulating film 6 on the drain region of a polysilicon layer 2 by dry etching, then forming an ITO film by sputtering and patterning the film by selective etching. The second pixel electrode 12 is formed by applying, for example, polysilazane by spin coating on the first pixel electrode 11 and second insulating film 6, baking to form a flat SOG film 13, then opening a contact hole by dry etching at the same position as that of the contact hole 10, forming an ITO film by sputtering and patterning the film by etching.

Data supplied from the esp@cenet database - Worldwide

Family list
1 family member for: JP10048667
Derived from 1 application

Back to JP1

SUBSTRATE FOR LIQUID CRYSTAL PANEL, ITS PRODUCTION AND

PROJECTION TYPE DISPLAY DEVICE Inventor: YONEYAMA RYOICHI

Applicant: SEIKO EPSON CORP

EC:

IPC: G02F1/1343; G02F1/136; G02F1/1368 (+3)

Publication info: JP10048667 A - 1998-02-20

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-48667

(43)公開日 平成10年(1998) 2月20日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
G02F	1/136	500		G 0 2 F	1/136	500	
	1/1343				1/1343		

		審査請求	未請求 請求項の数11 OL (全 7 頁)		
(21)出願番号	特願平8-204006	(71)出願人	000002369 セイコーエプソン株式会社		
(22)出顧日	平成8年(1996)8月1日	(72)発明者	長野県諏訪市大和3丁目3番5号 セイコ		
		(74)代理人	ーエプソン株式会社内 弁理士 鈴木 喜三郎 (外2名)		

(54) 【発明の名称】 液晶パネル用基板およびその製造方法並びに投射型表示装置

(57)【要約】

【課題】 TFTを用いたアクティブマトリックスLC Dにおいては、配向不良を防止しまた反射型では反射効 率を高める上で画素電極ができるだけ広い範囲にわたっ て平坦であることが望まれる。ところが、従来のアクテ ィブマトリックスLCDは、TFTが形成される部分だ け盛り上がった断面構造を有しているため、画素電極や その上に形成される配向膜の表面の一部が傾斜し、斜面 に相当する部分で配向不良が生じたり、透過率や反射率 が低下するという問題点があった。

【解決手段】 TFTおよびITOからなる第1の画素 電極(11)を形成した後、その上にスピンコート等に より平坦な絶縁膜(13)を形成して上記第1画素電極 の一部にコンタクトホール (10) を開けてから上記絶 縁膜(13)の表面に上記第1画素電極と同一パターン の第2の画素電極(12)を形成するようにした。

2

【特許請求の範囲】

【請求項1】 半導体基板上に画素電極がマトリックス 状に形成されるとともに各画素電極に対応して各々トラ ンジスタが形成され、前記トランジスタを介して前記画 素電極に電圧が印加されるように構成された液晶パネル 用基板の製造方法において、

1

上記トランジスタおよび該トランジスタに接続された第 1の画素電極を形成した後、その上に絶縁膜を形成して 上記第1画素電極の一部に対応して上記絶縁膜にコンタ クトホールを開けてから、上記絶縁膜の表面に上記第1 画素電極に接続された第2画素電極を形成するようにし たことを特徴とする液晶パネル用基板の製造方法。

【請求項2】 上記第2画素電極は、上記第1画素電極と同一のエッチングマスクを用いて形成するようにしたことを特徴とする請求項1に記載の液晶パネル用基板の製造方法。

【請求項3】 半導体基板上に画素電極がマトリックス 状に形成されるとともに各画素電極に対応して各々トラ ンジスタが形成され、前記トランジスタを介して前記画 素電極に電圧が印加されるように構成された液晶パネル 用基板において、

上記トランジスタおよび該トランジスタに接続された第 1の画素電極の上に絶縁膜が形成され、上記第1画素電極の一部に対応して前記絶縁膜にはコンタクトホールが開口され、上記絶縁膜の表面に前記コンタクトホールにて上記第1画素電極に接触された第2の画素電極が形成されてなることを特徴とする液晶パネル用基板。

【請求項4】 上記第2画素電極は、上記第1画素電極とほぼ同一のパターンに形成されてなることを特徴とする請求項3に記載の液晶パネル用基板。

【請求項5】 上記第2画素電極とその下方の第1画素電極とのコンタクトホールと、上記第1画素電極と上記トランジスタのドレインもしくはソース領域またはドレインもしくはソース電極とのコンタクトホールが同一位置に形成されていることを特徴とする請求項3または4に記載の液晶パネル用基板。

【請求項6】 上記第2画素電極とその下方の第1画素電極とのコンタクトホールがトランジスタのゲート電極部もしくは走査線あるいは信号線の上方に設けられていることを特徴とする請求項3、4または5に記載の液晶パネル用基板。

【請求項7】 上記第1画素電極および第2画素電極が 共にITO膜で構成されていることを特徴とする請求項 3、4、5または6に記載の液晶パネル。

【請求項8】 上記第2画素電極がアルミニウム層で構成されていることを特徴とする請求項3、4、5または6に記載の液晶パネル。

【請求項9】 上記第1画素電極がアルミニウム層で構成されていることを特徴とする請求項8に記載の液晶パネル。

【請求項10】 請求項3、4、5、6、7、8または9に記載の液晶パネル用基板と、対向電極を有する透明基板とが適当な間隔をおいて配置されるとともに、上記液晶パネル用基板と上記透明基板との間隙内に液晶が封入されていることを特徴とする液晶パネル。

【請求項11】 光源と、前記光源からの光を変調して 透過もしくは反射する請求項10に記載の構成の液晶パネルと、これらの液晶パネルにより変調された光を集光 し拡大投射する投射光学手段とを備えていることを特徴 とする投射型表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶素子さらには液晶素子の平坦化技術に関し、特に絶縁基板上に形成されたTET(薄膜トランジスタ)によって画素電極を駆動するアクティブマトリックス型LCD(液晶表示装置)に利用して好適な技術に関する。

[0002]

【従来の技術】液晶テレビ等に使用される液晶表示装置として、格子状に配置された走査線と信号線の各交点に、画素電極とこれに電圧を印加するスイッチ素子としてのTFT(薄膜トランジスタ)とを形成したアクティブマトリックス型LCDが用いられている。また、アクティブマトリックス型LCDを光変調用のライトバルブとして使用したビデオプロジェクタが実用化されている。

[0003]

【発明が解決しようとする課題】上記TFTを用いたアクティブマトリックスLCDにおいては、配向不良を防30 止しまた反射型では反射効率を高める上で画素電極ができるだけ広い範囲にわたって平坦であることが望まれる。ところが、従来のアクティブマトリックスLCDは、図8に示すように、TFTが形成される部分だけ盛り上がった断面構造を有しているため、画素電極11やその上に形成される配向膜の表面の一部が傾斜し、斜面に相当する部分で配向不良が生じたり、透過率や反射率が低下するという問題点があった。

【0004】なお、図8において、1はガラス基板、2はポリシリコン層、3はゲート絶縁膜、4はゲート電極、5および6は層間絶縁膜、8は信号線である。

【0005】この発明の目的は、アクティブマトリックス型LCDにおいて、配向不良を減らすとともに、反射型においては画素電極を全体的に平坦化して反射率を向上させることができる技術を提供することにある。

【0006】この発明の他の目的は、アクティブマトリックス型LCDにおける開口率を高めることができる技術を提供することにある。

[0007]

【課題を解決するための手段】この発明は、上記目的を 達成するため、従来のプロセスによりTFTおよびIT O(酸化インジウム)からなる第1の画素電極を形成した後、その上にスピンコート等により平坦な絶縁膜を形成して上記第1画素電極の一部にコンタクトホールを開けてから上記絶縁膜の表面に第2の画素電極を形成するようにした。

【0008】これによって、上記第2の画素電極の上に 形成される配向膜を平坦化して配向不良を減らすことが できるとともに、反射型液晶パネルにおいては画素電極 を全体的に平坦化して反射率を向上させることができ る。

【0009】しかも、第2画素電極をその下方の第1画素電極と同一パターンに形成することでパターニングで使用するマスクを増加させることなく2つの画素電極を形成することができる。

【0010】また、第2画素電極とその下方の第1画素電極とのコンタクトホールを、第1画素電極とドレインもしくはソース領域とのコンタクトホールと同一位置に形成することにより、コンタクトホール形成のためのマスクを共通化できるとともに、ITO膜等からなる第1の画素電極がコンタクトホール形成の際のエッチストッパとして機能するため、ドレインもしくはソース領域にダメージを与えることなくSOG膜に対するコンタクトホール形成のためのエッチングを行なえる。

【0011】さらに、上記第2画素電極とその下方の第 1画素電極とのコンタクトホールをトランジスタのゲート電極部もしくは走査線あるいは信号線の上方に設けるようにする。第1画素電極とドレインもしくはソース領域とのコンタクトホールと第1画素電極と第2画素電極とのコンタクトホールと同一箇所に重ねて形成した場合、入射した光を散乱するため開口率を低下させる要因30となるおそれがあるが、上記構成によれば、ドレインもしくはソース領域以外の領域に第1画素電極と第2画素電極とのコンタクトホールが形成されるため、開口率を向上させることができる。

【0012】上記TFTは、ポリシリコンを能動層とするものあるいはアモルファスシリコンを能動層とするスタガ型、逆スタガ型、コプラナー型、逆コプラナー型等画素電極に電圧を印加するトランジスタであればどのような構造であっても本発明を適用することができる。

[0013]

【発明の実施の形態】以下、本発明の好適な実施例を図面に基づいて説明する。

【0014】図1および図2は、本発明を適用した液晶パネル用基板の第1の実施例の断面図および平面レイアウトを示す。なお、図1および図2にはマトリックス状に配置されている画素のうち一画素部分の断面およびレイアウトを示す。図1は図2におけるI-I線に沿った断面である。

【0015】図1において、1はガラス基板、2はこの ガラス基板1の表面に島状に形成された能動層となるポ 50 リシリコン層、3はポリシリコン層 2の表面に熱酸化により形成されたゲート絶縁膜である。上記ポリシリコン層 2は、先ずCVD法等により 1000 オングストロームのような厚さに形成され、これを熱酸化することによって、最終的に 350~450 オングストロームのような厚さにされる。このときゲート酸化膜 30 厚さは約 1250 オングストロームである。

【0016】4は、上記ポリシリコン層2のほぼ中央に ゲート絶縁膜3を介して形成された第2のポリシリコン 10 層からなるゲート電極兼走査線(以下、必要に応じて単 にゲート電極あるいは走査線と称する) である。このゲ ート電極4は、例えばCVD法等により3000~40 00オングストロームのような厚さに形成される。5お よび6は、上記ゲート電極4およびゲート絶縁膜3の上 方を覆うように形成された酸化シリコン等からなる第1 層間絶縁膜およびBPSG(ボロンとリンを含んだ酸化 シリコン) 等からなる第2層間絶縁膜である。上記第1 層間絶縁膜5は、例えばCVD法等によりそれぞれ80 00オングストロームのような厚さに形成される。第2 層間絶縁膜6は、第1層間絶縁膜5にアルミニウム等の 導電層からなる信号線8を形成した後に形成される。信 号線8は第1層間絶縁膜5およびゲート絶縁膜3にコン タクトホール9を開口してから蒸着等により約3500 オングストロームのような厚さに形成され、上記ポリシ リコン層2に接触される。酸化シリコン等からなる上記 第1層間絶縁膜5の上にBPSG等からなる第2層間絶 縁膜6を形成することにより、後に耐湿性の低い絶縁膜 が形成されても、信号線8に腐食等による断線が発生す るのを防止することができる。

【0017】11はITO膜からなる第1の画素電極、 12は同じく ITO膜からなる第2の画素電極で、上記 第1の画素電極11と第2の画素電極は同一パターンに 形成されている。第1の画素電極11は、上記ポリシリ コン層2のドレイン領域上方のゲート絶縁膜3、第1層 間絶縁膜5および第2絶縁膜6にかけてコンタクトホー ル10をドライエッチングで開口してから、ITO膜を スパッタリングで1500オングストロームのような厚 さに形成し選択エッチングによりパターニングを行なう ことで形成される。第2の画素電極12は、上記第1画 素電極11および第2絶縁膜6上にかけてスピンコート 40 で例えば東燃ポリシラザン(東燃株式会社の製品名)を 塗布し、ベーク処理(焼付け)を行なって形成した平坦
 なSOG膜13に、上記コンタクトホール10と同一位 置に重ねてコンタクトホールをドライエッチングで開口 してから、ITO膜をスパッタリングで1500オング ストロームのような厚さに形成し選択エッチングにより パターニングを行なうことで形成される。上記の場合、 絶縁膜3,5,6へのコンタクトホールの形成とSOG 膜13へのコンタクトホールの形成とで、共通のエッチ ングマスクを用いることができる。また、第1の画素電

極11と第2の画素電極12のパターニングとで、共通 のエッチングマスクを用いることができる。

【0018】さらに、上記画素電極12およびSOG膜13上にかけてはポリイミド等からなる配向膜を約2000~3000オングストロームのような厚さに形成して、ラビング(配向処理)を行なうことで液晶パネル用基板とされる。

【0019】この第1実施例においては、上記第1の画素電極11の上にSOG膜13を形成しているため、配向膜を平坦化して配向不良を減らすことができる。

【0020】しかも、第2画素電極12をその下方の第1画素電極11と同一パターンに形成することでパターニングで使用するマスクを増加させることなく2つの画素電極を形成することができる。絶縁膜3,5,6のコンタクトホールとSOG膜13のコンタクトホールを同一位置に形成しているため、共通のエッチングマスクを用いることができるとともに、SOG膜13にコンタクトホールを形成する際に、ポリシリコンに比べてSOG膜との選択比の大きなITO膜からなる第1の画素電極11がエッチストッパとして機能するため、ドレイン、ソース領域としてのポリシリコン層2にダメージを与えることなくSOG膜13に対するコンタクトホール形成のためのドライエッチングを行なえる。

【0021】図2は、第1実施例(図1)の平面レイアウト構成例を示す。図2において、ハッチングAが付されているゲート線4と信号線7との交点がトランジスタのチャネル部分である。

【0022】なお、特に限定されないが、この実施例では、トランジスタ(TFT)のドレインに接続される容量を増加させるため、能動層を構成する1層目のポリシ30リコン層2を、2aのように信号線8および隣接する画素(図では上側)の走査線4を構成する2層目のポリシリコン層に沿って延設するとともに、当該走査線4を構成する2層目のポリシリコン層の一部を、4aのように信号線7に沿って延設するように構成されている。これによって、信号線7の下方に形成された1層目と2層目のポリシリコン層間の容量(ゲート絶縁膜3を誘電体とする)が、保持容量として各画素電極に電圧を印加するTFTのドレイン(ソースと呼ばれることもある)に接続されることとなる。

【0023】図3および図4は、本発明を適用した液晶パネル用基板の第2の実施例の断面図および平面レイアウトを示す。図3は図4におけるIIIーIII線に沿った断面である。

【0024】本発明においては、第1画素電極と第2画素電極とを同一パターンに形成しているため、どの箇所においても第1画素電極と第2画素電極との接続を行なうことができる。そこで、この第2の実施例では、例えば図4に符号Bで示されているように、第2画素電極12と第1画素電極11の一部に信号線8と交差する突出50

部を設ける。そして、2つの画素電極11と12のコンタクトホール10°を、この突出部に設けるようにした。これによって、ドレイン領域の上方にコンタクトホールを重ねて形成した第1実施例の液晶パネル用基板を用いたLCDに比べて、コンタクトホールでの散乱を減少させ、開口率を向上させることができる。ただし、上記コンタクトホール10°は、TFTのチャネル部上方あるいは走査線の上方に設けるようにしても良い。

【0025】図5および図6は、本発明を逆スタガ型T 10 FTを画素電極に電圧を印加するスイッチ素子とするL CDに適用した実施例を示す。

【0026】図5および図6において、21はガラス基板1上にスパッタリングで形成された厚さ約1300オングストロームのTa(タンタル)層からなるゲート電極、22はその表面を熱酸化することで形成された1000~2000オングストローム程度の厚さを有するゲート酸化膜(TaOx)、23はプラズマCVD法により3000オングストローム程度の厚さに形成された窒化シリコン膜からなるゲート絶縁膜、24はチャネル領域となるノンドープのアモルファスシリコン層、25 はよるノンドープのアモルファスシリコン層24の表面に接触するように形成されたソース、ドレイン領域となるN型アモルファスシリコン層である。これらのアモルファスシリコン層24および25a、25bは例えばプラズマCVD法により各々3000オングストロームおよび500オングストロームのような厚みとされる。

【0027】また、図5および図6において、26a, 26bは上記N型アモルファスシリコン層25a, 25bの表面に接触するように形成されたチタン (Ti)層からなるソース、ドレイン電極、27は上記N型アモルファスシリコン層25a, 25bおよびソース、ドレイン電極26a, 26bを分離する際のエッチストッパとなる窒化シリコン等からなるチャネル保護膜である。このチャネル保護膜27は、例えばプラズマCVD法により、2000オングストロームのような厚さに形成される。

【0028】図5に示されている実施例では、ITO膜からなる第1画素電極11がドレイン電極26bの表面に接触するように形成され、この第1画素電極11の上に平坦化膜としてSOG膜13が形成され、さらにこのSOG膜13にコンタクトホール10を開口してから第2画素電極12となるITO膜を同一パターンに形成することで図1の実施例と同一の効果が得られるように構成されている。

【0029】一方、図6に示されている実施例では、ITO膜からなる第1画素電極11がアモルファスシリコン層24よりも前に形成され、ゲート絶縁膜23にコンタクトホール10を形成して第1画素電極11の表面にドレイン電極26bが接触するように構成されている。そして、このドレイン電極26bの上にSOG膜13が

20

形成され、このSOG膜13にコンタクトホール10'を開口してから第2画素電極12となるITO膜を同一パターンに形成することで図1の実施例と同一の効果が得られるように構成されている。図6の実施例においては、コンタクトホール10と10'をずらして形成しているが、同一位置に設けることも可能である。また、図6の実施例では、ガラス基板1からゲート電極21へのアルカリ性イオン等の不純物の拡散を防止するためTFTの下方にのみ絶縁膜20を設けるようにしている。この絶縁膜20は、図5の実施例においても設けるようにしても良い。

【0030】なお、図5および図6の実施例における第1画素電極11、第2画素電極12およびSOG膜13の形成方法および厚み等の条件は、第1の実施例と同様である。また、図5および図6に示されているいずれの実施例においても、上記第2画素電極12からSOG膜13の表面にかけて、特に限定されないが窒化シリコンからなる配向膜28が形成されている。

【0031】以上、第2画素電極12を透明なITO膜 で形成した透過型LCDの液晶パネル用基板の実施例に ついて説明したが、第2画素電極12をアルミニウム等 反射率の高い導電膜で形成し、これを反射電極として利 用する反射型LCD用の基板にも適用することができ る。その場合、第1画素電極12もアルミニウム等の導 電膜で形成することが可能である。反射型の場合、第2 画素電極が全体的に平坦化されるため、反射率を向上さ せることができる。また、第1画素電極と第2画素電極 とコンタクトホールをゲート電極もしくは走査線あるい は信号線の上方に形成した場合、第1画素電極11とド レイン領域とのコンタクトホール10はドレイン領域の 上方に形成されるが、このコンタクトホール10は、図 3に示されているように、平坦な第2画素電極12によ って覆われるため、開口率を低下させる要因とならな V1

【0032】上記各実施例の液晶パネル用基板は、その表面側に、LCコモン電位が印加される透明導電膜(ITO)からなる対向電極を有する入射側のガラス基板が適当な間隔をおいて配置され、周囲をシール材で封止された間隙内にTN(TwistedNematic)型液晶またはSH(Super Homeotropic)型液晶などが充填されて液晶パネルとして構成される。

【0033】図7には上記実施例の液晶パネルをライト バルブとして応用した投射型表示装置の一例としてビデ オプロジェクタの構成例が示されている。

【0034】図7において、370はハロゲンランプ等の光源、371は放物ミラー、372は熱線カットフィルター、373,375,376はそれぞれ青色反射、緑色反射、赤色反射のダイクロイックミラー、374,377は反射ミラー、378,379,380は上記実施例の液晶パネルからなるライトバルブ、383はダイ 50

クロイックプリズムである。

【0035】この実施例のビデオプロジェクタにおいては、光源370から発した白色光は放物ミラー371により集光され、熱線カットフィルター372を通過して赤外域の熱線が遮断されて、可視光のみがダイクロイックミラー系に入射される。そして先ず、青色反射ダイクロイックミラー373により、青色光(概ね50nm以下の波長)が反射され、その他の光(黄色光)は透過する。反射した青色光は、反射ミラー374により方向を変え、青色変調ライトバルブ378に入射する。

【0036】一方、上記青色反射ダイクロイックミラー373を透過した光は緑色反射ダイクロイックミラー375に入射し、緑色光(概ね500~600nmの波長)が反射され、その他の光である赤色光(概ね600nm以上の波長)は透過する。ダイクロイックミラー375で反射した緑色光は、緑色変調ライトバルブ379に入射する。また、ダイクロイックミラー375を透過した赤色光は、反射ミラー376,377により方向を変え、赤色変調ライトバルブ380に入射する。

【0037】ライトバルブ378,379,380は、図示しないビデオ信号処理回路から供給される青、緑、赤の原色信号でそれぞれ駆動され、各ライトバルブに入射した光はそれぞれのライトバルブで変調された後、ダイクロイックプリズム383で合成される。ダイクロイックプリズム383で合成されている。そして、ダイクロイックプリズム383で合成されたカラー画像は、投射レンズ384によってスクリーン上に拡大投射され、表示される。

【0038】前記実施例の液晶パネル用基板は高い透過率および開口率を有するため、これを使用した液晶パネルをライトバルブとした上記ビデオプロジェクターあっては、小口径の投射レンズを用いても明るくコントラストの高い表示を得ることができる。

[0039]

【発明の効果】以上説明したように、この発明は、TFTおよび第1の画素電極を形成した後、その上にスピンコート等により平坦な絶縁膜を形成して上記第1画素電極の一部にコンタクトホールを開けてから上記絶縁膜の表面に上記第1画素電極に接続された第2の画素電極を形成するようにしたので、上記第2の画素電極の上に形成される配向膜を平坦化して配向不良を減らすことができるとともに、反射型液晶パネルにおいては画素電極を全体的に平坦化して反射率を向上させることができる。

【0040】しかも、第2画素電極をその下方の第1画素電極と同一パターンに形成することでパターニングで使用するマスクを増加させることなく2つの画素電極を形成することができる。

【0041】また、第2画素電極とその下方の第1画素電極とのコンタクトホールを、第1画素電極とドレイン

もしくはソース領域とのコンタクトホールと同一位置に 形成することにより、コンタクトホール形成のためのマ スクを共通化できるとともに、SOG膜と選択比の大き な I T O 膜等からなる第1の画素電極がエッチストッパ として機能するため、その下の導電層(ドレイン領域と してのポリシリコン層 2) にダメージを与えることなく SOG膜に対するコンタクトホール形成のためのドライ エッチングを行なえる。

9

【0042】さらに、上記第2画素電極とその下方の第 1 画素電極とのコンタクトホールをトランジスタのゲー 10 6 第2層間絶縁膜 ト電極部もしくは走査線あるいは信号線の上方に設ける ようにしたので、第1画素電極とドレインもしくはソー ス領域とのコンタクトホールと第1画素電極と第2画素 電極とのコンタクトホールと同一箇所に重ねて形成した 場合に比べて、開口率を向上させることができる。

【図面の簡単な説明】

【図1】本発明を適用した液晶パネル用基板の第1の実 施例を示す断面図。

【図2】本発明を適用した液晶パネル用基板の第1の実 施例の平面レイアウト図。

【図3】本発明を適用した液晶パネル用基板の第2の実 施例を示す断面図。

【図4】本発明を適用した液晶パネル用基板の第2の実 施例の平面レイアウト図。

【図5】本発明を適用した液晶パネル用基板の第3の実 施例を示す断面図。

【図6】本発明を適用した液晶パネル用基板の第4の実 施例を示す断面図。

【図7】実施例の液晶パネル用基板を用いたLCDをラ*

* イトバルブとして応用した投射型表示装置の一例として ビデオプロジェクタの概略構成図。

【図8】従来の液晶パネル用基板の一例を示す断面図。 【符号の説明】

- 1 ガラス基板
- 2 ポリシリコン層
- 3 ゲート絶縁膜
- 4 ゲート電極(走査線)
- 5 第1層間絶縁膜
- - 8 信号線
 - 9, 10, 10' コンタクトホール
 - 11 第1の画素電極(ITO膜)
 - 12 第2の画素電極(ITO)
 - 13 平坦化膜(SOG膜)
 - 21 ゲート電極
 - 22 ゲート酸化膜 (TaOx)
 - 24 アモルファスシリコン層
 - 25a, 25b N型アモルファスシリコン層 (ソー
- 20 ス、ドレイン領域)
 - 26a, 26b ソース、ドレイン電極
 - 27 チャネル保護膜
 - 28 配向膜
 - 370 ランプ
 - 373, 375, 376 ダイクロイックミラー
 - 374, 377 反射ミラー
 - 378, 379, 380 ライトバルブ
 - 383 ダイクロイックプリズム
 - 384 投射レンズ

【図1】

【図2】

