Speaker Recognition

Software project progress report

Abrougui Rim Balard Srilakshmi Srivastava Prerak Yang Ruoxiao

October 2, 2019

Background of Group Members

Outline

- Abstract
- Application
- Important Terms
- Baseline Models
- Objectives
- Our Approach
- Timelines
- Further Work

Abstract

- Popular technique
- Sub areas:
 - Speaker identification
 - Speaker verification
- Motivation
- Data:
 - Voxforge
- Purpose of our work:
 - Train our model in French corpus for now
- The method:
 - Deep Neural Network Embeddings (i-vectors)
 - Transferring learning (kaldi tool)

Applications

- Secure access control by voice
 - Voice dialing, banking transaction over telephone, database access, multi-speaker tracking, etc.
- Verification of identity in e-commerce
- Make daily life more convenient

Important Terms

- Data Augmentation
- Variable-length Utterance
- Text Dependent and Text Independent
- In-Domain data and Out Of Domain Data
- Channel Variabilities
- Mel Frequency Cepstral Coefficient (MFCC)

Baseline (i-vector Model)

- It is based on Gaussian mixture model-universal background model (GMM-UBM)
- The I-vector is a compact representation that summarizes what is happening in a given speech recording
- it's a discrete spectrogram
- I-vector extraction is essentially a dimensionality reduction of the GMM supervector
- It factorizes the speech signal into the phonetic factor and the speaker factor

Comparison Between GMM-UBM v/s TDNN GMM

X-vectors

Our Approach

Evaluation

- **Precision:** how relevant are the positive detection
- **Recall:** probability of detection
- Average accuracy
- **F-score:** relation between data positive label and those given by classifier based on per-class average

Kaldi Tool Robust Usage

Milestones

Future Work With Variational Autoencoder

GitLab Repo

https://gitlab.com/prerakshrivastava/asr-sv

The project structure of this repo as of now

- Data
- Models
- Utils
- Docs/Reports
- Kaldi
- Plots

Bibliography

- Snyder, David, Daniel Garcia-Romero, Gregory Sell, Daniel Povey and Sanjeev Khudanpur. "X-Vectors: Robust DNN Embeddings for Speaker Recognition." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018): 5329-5333.
- Snyder, David, Daniel Garcia-Romero, Daniel Povey and Sanjeev Khudanpur. "Deep Neural Network Embeddings for Text-Independent Speaker Verification." INTERSPEECH (2017).
- Wang, X., Li, L., & Wang, D. (2019). VAE-based Domain Adaptation for Speaker Verification. ArXiv:1908.10092 [Cs, Eess]. Retrieved from http://arxiv.org/abs/1908.10092
-

Thank you!

Merci de votre attention!

Milestones

- October:
 - Bibliography
 - o Kaldi
 - Corpora
- November:
 - Neural network
- December:
 - Evaluation, realization and preparing the report and defense
- January:
 - Report submission and defense