

Examen

16 de diciembre de 2021 Profesores: Marco Bucchi - Gabriel Diéguez - Fernando Suárez

Instrucciones

- La duración del examen es de 2:30 horas.
- Durante la evaluación **no puede** hacer uso de sus apuntes o slides del curso.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.
- Escriba sus respuestas con lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.

Pregunta 1 - Materia I1 (vistas en clases)

- a) Demuestre que $\{\neg, \rightarrow\}$ es funcionalmente completo.
- b) Sea \sim una relación de equivalencia sobre un conjunto A. Demuestre que:
 - 1. $\forall x \in A, x \in [x]$.
 - 2. $x \sim y$ si y sólo si [x] = [y].
 - 3. Si $[x] \neq [y]$ entonces $[x] \cap [y] = \emptyset$.

Solución

a) Como sabemos que $C = \{\neg, \land, \lor\}$ es funcionalmente completo, demostraremos por inducción que toda fórmula construida usando sólo los conectivos anteriores es lógicamente equivalente a otra fórmula que solo usa $\neg y \rightarrow$. Con esto, queda demostrado que $C' = \{\neg, \rightarrow\}$ es funcionalmente completo.

BI: Si $\varphi = p$, con $p \in P$, la propiedad se cumple trivialmente.

HI: Supongamos que $\varphi, \psi \in L(P)$, que sólo usan conectivos en C, son tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$, donde φ', ψ' sólo usan conectivos en C'.

TI: Sea θ una fórmula construida con los pasos inductivos para los operadores en C:

i) $\theta = (\neg \varphi) \stackrel{HI}{\equiv} (\neg \varphi')$, y como φ' sólo usa conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

$$ii) \theta = \varphi \wedge \psi \stackrel{HI}{\equiv} \varphi' \wedge \psi'$$

Usando las leyes de doble negación, De Morgan y de implicancia:

$$\theta \equiv \neg(\neg(\varphi' \land \psi')) \equiv \neg((\neg\varphi') \lor (\neg\psi')) \equiv \neg(\varphi' \to (\neg\psi'))$$

Y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

conectivos en
$$C'$$
.
 $iii) \theta = \varphi \lor \psi \stackrel{HI}{\equiv} \varphi' \lor \psi'$

Usando la ley de implicancia:

$$\theta \equiv (\neg \varphi') \to \psi'$$

Y como φ', ψ' sólo usan conectivos en C', θ es equivalente a una fórmula que sólo usa conectivos en C'.

- b) 1. Como \sim es una relación de equivalencia, es refleja. Por lo tanto, $\forall x \in A, x \sim x$. Luego, por definición de una clase de equivalencia, tenemos que $\forall x \in A, x \in [x]$.
 - 2. (\Rightarrow) : Suponiendo que $x \sim y$, debemos demostrar que [x] = [y]. Esto significa que debemos demostrar que $[x] \subseteq [y]$ y $[y] \subseteq [x]$:
 - $[x] \subseteq [y]$: por definición, $[x] = \{z \mid x \sim z\}$. Sabemos que $x \sim y$, y como \sim es una relación de equivalencia, es simétrica, y luego $y \sim x$. Ahora, también es cierto que \sim es transitiva, y por lo tanto $\forall z \in [x], y \sim z$. Finalmente, por definición de clases de equivalencia, tenemos que $\forall z \in [x], z \in [y]$.
 - $[y] \subseteq [x]$: por definición, $[y] = \{z \mid y \sim z\}$. Por otro lado, sabemos que $x \sim y$, y como \sim es una relación de equivalencia, es transitiva, y por lo tanto $\forall z \in [y], x \sim z$. Finalmente, por definición de clases de equivalencia, tenemos que $\forall z \in [y], z \in [x]$.

- (\Leftarrow): Suponiendo que [x] = [y], debemos demostrar que $x \sim y$. Sea $z \in [x]$. Por definición de clases de equivalencia: $x \sim z$ (1). Como [x] = [y], sabemos que $z \in [y]$, y por lo tanto $y \sim z$, y por simetría $z \sim y$ (2). Finalmente, por transitividad entre (1) y (2), concluimos que $x \sim y$.
- 3. Por contrapositivo, supongamos que $[x] \cap [y] \neq \emptyset$. Como la intersección de ambas clases de equivalencia no es vacía, existe z tal que $z \in [x]$ y $z \in [y]$. Aplicando la definición de clase de equivalencia, tenemos que $x \sim z$ (1) e $y \sim z$, y por simetría se cumple que $z \sim y$ (2). Por transitividad entre (1) y (2) se tiene que $x \sim y$, y por la parte 2 del teorema se cumple que [x] = [y]. Por lo tanto, queda demostrado el resultado.

Pauta (6 pts.)

- a) Base de inducción: 0,5 ptos.
 - Hipótesis de inducción: 0,5 ptos.
 - Tesis de inducción: 2 ptos.
- b) 1. 1 pto.
 - 2. 0,5 ptos. por cada dirección.
 - 3. 1 pto.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 2 - Materia I2 (vistas en clases)

- a) Demuestre que el intervalo real $(0,1) \subseteq \mathbb{R}$ es infinito pero no enumerable.
- b) Demuestre que si $f(n) = \log_a(n)$ con a > 1, entonces para todo b > 1 se cumple que f es $\Theta(\log_b(n))$.

Solución

a) Por contradicción, supongamos que (0,1) es enumerable, y entonces existe una lista infinita de los reales en (0,1):

$$r_0, r_1, r_2, r_3, \dots$$

donde cada real en (0,1) aparece exactamente una vez.

Notemos que cada r_i es un número decimal de la forma

$$r_i = 0, d_{i0}d_{i1}d_{i2}d_{i3}\dots$$
, con $d_{ij} \in \{0,\dots,9\}$

Para cada
$$i \ge 0$$
, definimos $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$

Sea ahora el número real $r = 0, d_0d_1d_2d_3d_4d_5d_6...$ ¿Aparece r en la lista?

- $ir = r_0$? No, porque difieren en el primer dígito decimal.
- $ir = r_1$? No, porque difieren en el segundo dígito decimal.
- **.** . . .
- $i, r = r_i$? No, porque el *i*-ésimo digito de r es distinto al de r_i :

$$d_i \neq d_{ii}$$

Por lo tanto, r no aparece en la lista, lo que es una contradicción. Finalmente, como (0,1) no puede ponerse en una lista, no es enumerable.

A continuación se ve una representación tabular de la lista y cómo se eligen los dígitos en la diagonal:

Reales	Representación decimal							
r_0	0,			d_{02}			• • •	
r_1	0,	$\overline{d_{10}}$	d_{11}	d_{12}	d_{13}	d_{14}	• • •	
r_2	0,	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	• • •	
r_3	0,	d_{30}	d_{31}	d_{32}	d_{33}	d_{34}	• • •	
r_4	0,	d_{40}	d_{41}	d_{42}	d_{43}	d_{44}	• • •	
:		:	:	:	:	:	٠	

b) Sean $x = \log_a(n)$ e $y = \log_b(n)$. Esto es equivalente a que $a^x = n$ y $b^y = n$, y por lo tanto $a^x = b^y$. Aplicando \log_a a ambos lados, obtenemos que $x = \log_a(b^y)$, y por propiedad de logaritmo se tiene que $x = y \cdot \log_a(b)$. Reemplazando de vuelta x e y, tenemos que $\log_a(n) = \log_b(n) \cdot \log_a(b)$, y por lo tanto para todo $n \ge 1$:

$$\log_a(n) \le \log_a(b) \cdot \log_b(n)$$
$$\wedge \log_a(n) \ge \log_a(b) \cdot \log_b(n)$$

Tomamos entonces $n_0 = 1$ y $c = \log_a(b)$ y tenemos que

$$\forall n \ge n_0 \log_a(n) \le c \cdot \log_b(n) \Leftrightarrow \log_a(n) \in O(\log_b(n))$$

$$\forall n \ge n_0 \log_a(n) \ge c \cdot \log_b(n) \Leftrightarrow \log_a(n) \in \Omega(\log_b(n))$$

de donde concluimos que $\log_a(n) \in \Theta(\log_b(n))$.

Pauta (6 pts.)

3 ptos. cada subpregunta.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 3 - Materia nueva (vistas en clases)

- a) Recuerde que un grafo T = (V, E) en el que entre cada par de vértices $x, y \in V$ existe un único camino es un **árbol**.
 - Demuestre que un grafo T = (V, E) es un árbol si y sólo si es conexo y acíclico.
- b) Sean $a, b \in \mathbb{Z}$. Demuestre que si b > 0, entonces $MCD(a, b) = MCD(b, a \mod b)$.

Solución

- a) (\Rightarrow) Primero si T es un árbol es por definición conexo, nos falta demostrar entonces que un árbol no puede tener ciclos. Supongamos que T tuviese un ciclo, y sea C un ciclo en T que pasa por los vértices u y v. Supongamos que C parte (y termina) en u, entonces C es de la forma (u, ..., v, ..., u), por lo que se puede dividir en dos porciones, una para ir de u a v, digamos p_1 , y otra (distinta ya que un ciclo no repite aristas) para ir de v a u, digamos p_2 . Resulta entonces que p_1 y p_2 son dos caminos distintos entre u y v en T, lo que contradice el hecho de que T es un árbol. Finalmente T no puede tener ciclos.
 - (\Leftarrow) Como T es conexo, para cada par de vértices existe un camino que los une. Falta demostrar que ese camino es único. Supongamos entonces que T no tiene ciclos pero que sin embargo existe un par de vértices con dos caminos distintos uniéndolos en T. Sean u y v estos vértices y sean p_1 y p_2 los dos caminos distintos en T que unen a u con v. Dado que estos caminos son distintos entonces ambos tienen al menos tres vértices.
 - Sea x el vértice anterior al primer vértice que diferencia a p_1 y p_2 (note que x está en p_1 y en p_2). Sea y el vértice siguiente a x que pertenece simultáneamente a p_1 y p_2 . El camino entre x e y a través de p_1 junto con el camino entre x e y a través de p_2 forman un ciclo en T lo que contradice nuestra hipótesis de que T no tiene ciclos. Finalmente no pueden existir dos caminos distintos entre u y v, de donde concluimos que para todo par de vértices en T existe un único camino que los une y por lo tanto T es un árbol.
- b) Demostraremos que un entero c divide a a y a b si y sólo si divide a b y a mod b. De esto se concluye el resultado.
 - En primer lugar, sabemos que $a = k \cdot b + a \mod b$ (1).
 - (\Rightarrow) Suponemos que $c \mid a \ y \ c \mid b$. Si despejamos $a \ \text{mod} \ b$ desde (1), obtenemos que $a \ \text{mod} \ b = a k \cdot b$, de donde se concluye que $c \mid a \ \text{mod} \ b$.
 - (\Leftarrow) Suponemos que $c \mid b \ y \ c \mid a \ \text{mod} \ b$. De (1) se concluye que $c \mid a$.

Pauta (6 pts.)

- a) 1,5 ptos. cada dirección.
- b) 3 ptos.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 4 - Materia nueva

La clase de complejidad CO-NP contiene a todos los problemas de decisión π para los cuales se cumple lo siguiente:

Existe un algoritmo tal que para todo $w \in I_{\pi}$, si $w \notin L_{\pi}$, entonces existe un *certificado* c(w), de tamaño polinomial respecto a w, tal que el algoritmo usando c(w) puede determinar en tiempo polinomial si $w \notin L_{\pi}$.

- a) Demuestre que $P \subseteq \text{CO-NP}$.
- b) Sea P un conjunto de variables proposicionales. Considere el problema de decisión TAUT:
 - $I_{\text{TAUT}} = \{ \varphi \mid \varphi \in L(P) \}$
 - $L_{\text{TAUT}} = \{ \varphi \mid \varphi \text{ es una tautología} \}$

Demuestre que TAUT \in co-NP.

Solución

- a) Sea $\pi \in P$ un problema cualquiera tal que $\pi = (L_{\pi}, I_{\pi})$. Mostraremos que $\pi \in \text{co-NP}$. Sea $w \in L_{\pi}$. Como π está en P sabemos que existe un algoritmo \mathcal{A} que lo resuelve en tiempo polinomial. Luego, podemos verificar que $w \notin L_{\pi}$ utilizando al algoritmo \mathcal{A} y el certificado $c = \emptyset$. Concluimos que π debe estar en co-NP y por lo tanto $P \subseteq \text{co-NP}$.
- b) Sea $\varphi \in L(P)$ tal que no pertenezca al lenguaje L_{TAUT} . Buscamos un algoritmo polinomial \mathcal{A} que dado un certificado polinomial $c(\varphi)$ pueda verificar que φ no es una tautología. Dado que φ no pertenece a L_{TAUT} , podemos tomar como certificado a una valuación σ que haga falsa a φ , y el siguiente algoritmo para verificar que φ no es una tautología:

$$\mathcal{A}(\varphi, \sigma)$$
:
1: **return** $\sigma(\varphi) == 0$

Es claro que el certificado es de tamaño polinomial respecto al tamaño de las fórmulas; de hecho, el tamaño de una valuación es fijo para un P dado, mientras que una fórmula puede ser arbitrariamente larga. Como verificar si una valuación satisface a una fórmula

también toma tiempo polinomial¹, tenemos que \mathcal{A} toma tiempo polinomial en verificar si $\varphi \notin L_{\text{TAUT}}$ dado un certificado de tamaño polinomial, y por lo tanto TAUT \in co-NP.

Pauta (6 pts.)

- a) 3 ptos.
- b) 1 pto. por dar el certificado.
 - 1 pto. por dar el algoritmo (no es necesario que sea en pseudocódigo).
 - 1 pto. por justificar tamaño y tiempo polinomial y concluir.

Puntajes parciales y soluciones alternativas a criterio del corrector.

¹Discutido ampliamente en clases.