CSCI E-89C Deep Reinforcement Learning

Harvard Summer School

Dmitry Kurochkin

Summer 2020 Lecture 7

- 🚺 Quiz Review
 - Quiz 6
- Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- Approximate Solution Methods
 - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_π
 - ullet Semi-gradient 1-step TD for Estimating v_π
 - Semi-gradient 1-step 1D for Estimating v_{τ}
 - \bullet Semi-gradient n-step TD for Estimating v_π
 - Control with Approximation
 - ullet Semi-gradient SARSA for Estimating q_*
 - ullet Semi-gradient n-step SARSA for Estimating q_*

- 🕕 Quiz Review
 - Quiz 6
- 2 Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- 3 Approximate Solution Methods
 - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_π
 - ullet Semi-gradient 1-step TD for Estimating v_π
 - ullet Semi-gradient n-step TD for Estimating v_π
 - Control with Approximation
 - ullet Semi-gradient SARSA for Estimating q_*
 - ullet Semi-gradient n-step SARSA for Estimating q_*

Question 1

/4 pts

The environment has three states: s_A , s_B , and s_C . In each state there are two actions, a_1 and a_2 , available.

Suppose we want to estimate v_{π} (s) using the 1-step TD learning, where the policy π is to select action a_1 in all states.

We generate the sequence under this policy π and observe:

$$s_A,a_1,R_1=5,s_B,\dots$$

If $\alpha=0.1$, $\gamma=0.9$, and initial values are $V\left(s_A\right)=1$, $V\left(s_B\right)=2$, and $V\left(s_C\right)=3$, what is $V\left(s_A\right)$ after the first update according to the 1-step TD method?

Hint: use the following n-step on-policy TD updates:

$$V_{t+n}(S_t) = V_{t+n-1}(S_t) + \alpha \left[G_{t:(t+n)} - V_{t+n-1}(S_t) \right]$$

with n=1

Correct!

1.58

Question 1

/4 pts

The environment has three states: s_A , s_B , and s_C . In each state there are two actions, a_1 and a_2 , available.

Suppose we want to estimate v_{π} (s) using the 1-step TD learning, where the policy π is to select action a_1 in all states.

We generate the sequence under this policy π and observe:

$$s_A,a_1,R_1=5,s_B,\ldots$$

If $\alpha=0.1, \gamma=0.9$, and initial values are $V(s_A)=1, V(s_B)=2$, and $V(s_C)=3$, what is $V(s_A)=1$ after the first update according to the 1-step TD method?

$$V_1(S_0) = V_0(S_0) + \alpha \left[\overbrace{R_1 + \gamma V_0(S_1)}^{G_{0:1}} - V_0(S_0) \right]$$

$$= V_0(s_A) + \alpha \left[R_1 + \gamma V_0(s_B) - V_0(s_A) \right]$$

$$= 1 + 0.1 \left[5 + 0.9 \cdot 2 - 1 \right]$$

$$= 1.58$$

Quiz 6

Question 5

/ 4 pts

4

The environment has two states: s_A and s_B . In each state there are two actions, a_1 and a_2 , available.

The sample below is generated under policy b with $b(a_1|s_A)=0.2$ and $b(a_1|s_B)=0.3$:

$$s_A,a_1,R_1=7,s_B,\ldots$$

Suppose we want to estimate $v_{\pi}(s)$ using the 1-step off-policy TD learning, where the policy π is to select action a_1 in all states.

If $lpha=0.1, \gamma=0.9$, and initial values are $V\left(s_A\right)=10$ and $V\left(s_B\right)=20$, what is $V\left(s_A\right)$ after the first update?

Hint: use the following n-step off-policy TD updates:

$$V_{t+n}(S_t) = V_{t+n-1}(S_t) + \alpha \left[\frac{\rho_{t:(t+n-1)}}{\rho_{t:(t+n-1)}} G_{t:(t+n)} - V_{t+n-1}(S_t) \right]$$

with n=1.

Here,
$$ho_{t:h} \doteq \prod_{k=t}^{\min\{h,T-1\}} rac{\pi(A_k|S_k)}{b(A_k|S_k)}.$$

Correct!

21.5

Question 5

/4 pts

4

The environment has two states: 8_A and 8_B . In each state there are two actions, a_1 and a_2 , available,

The sample below is generated under policy b with $b(a_1|s_A) = 0.2$ and $b(a_1|s_B) = 0.3$:

$$s_A,a_1,R_1=7,s_B,\dots$$

Suppose we want to estimate $v_{\pi}(s)$ using the 1-step off-policy TD learning, where the policy π is to select action a_1 in all states.

If $lpha=0.1, \gamma=0.9$, and initial values are $V\left(s_{A}
ight)=10$ and $V\left(s_{B}
ight)=20$, what is $V\left(s_{A}
ight)$ after the first update?

$$V_{1}(S_{0}) = V_{0}(S_{0}) + \alpha \left[\frac{\pi(A_{0}|S_{0})}{b(A_{0}|S_{0})} \left(R_{1} + \gamma V_{0}(S_{1}) \right) - V_{0}(S_{0}) \right]$$

$$= V_{0}(s_{A}) + \alpha \left[\frac{\pi(a_{1}|s_{A})}{b(a_{1}|s_{A})} \left(R_{1} + \gamma V_{0}(s_{B}) \right) - V_{0}(s_{A}) \right]$$

$$= 10 + 0.1 \left[\frac{1}{0.2} \left(7 + 0.9 \cdot 20 \right) - 10 \right]$$

$$= 21.5$$

- - Quiz 6
- Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_{π}
 - ullet Semi-gradient 1-step TD for Estimating v_{π}

 - Semi-gradient n-step TD for Estimating v_{π}
 - Control with Approximation
 - Semi-gradient SARSA for Estimating q_*
 - Semi-gradient n-step SARSA for Estimating a_*

Tabular Methods

Tabular methods require to estimate

- |S| entries of $v_{\pi}(s)$ in case of prediction
- ② $\sum_{s \in \mathbb{S}} |\mathcal{A}(s)|$ entries of $q_*(s,a)$ in case of control (i.e. $\propto |\mathcal{S}| \times |\mathcal{A}|$)

- - Quiz 6
- Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_{π}
 - ullet Semi-gradient 1-step TD for Estimating v_{π}
 - Semi-gradient n-step TD for Estimating v_{π}
 - Control with Approximation
 - Semi-gradient SARSA for Estimating q_*
 - Semi-gradient n-step SARSA for Estimating a_*

Example: Atari Breakout

Example: Atari Breakout

The solution via approximation of $q_*(s, a)$:

NIPS 2013, DeepMind, Playing Atari with Deep Reinforcement Learning, https://arxiv.org/abs/1312.5602

- 🕕 Quiz Review
 - Quiz 6
- Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- 3 Approximate Solution Methods
 - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_π
 - ullet Semi-gradient 1-step TD for Estimating v_π
 - Somi gradient notes TD for Estimating of
 - ullet Semi-gradient n-step TD for Estimating v_π
 - Control with Approximation
 - lacktriangle Semi-gradient SARSA for Estimating q_*
 - ullet Semi-gradient n-step SARSA for Estimating q_*

Function Approximations

Given policy π , assume that for some weights $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ (usually $d \ll |\mathcal{S}|$) we can approximate:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}).$$

Function Approximations

Given policy π , assume that for some weights $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ (usually $d \ll |\mathcal{S}|$) we can approximate:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}).$$

Examples:

1 $S = \{s_A, s_B, s_C\}$:

$$\hat{v}(s, \mathbf{w}) = w_1 \cdot \mathbb{1}_{(s=s_A)} + w_2 \cdot \mathbb{1}_{(s=s_B)} + w_3 \cdot \mathbb{1}_{(s=s_C)}$$

2 $S = \{s_1, s_2, \dots, s_n\}$:

$$\hat{v}(s_k, \mathbf{w}) = w_1 + w_2 \cdot k$$
 for all $k \in \{1, 2, \dots, n\}$

- 🕕 Quiz Review
 - Quiz 6
- Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- 3 Approximate Solution Methods
 - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_π
 - ullet Semi-gradient 1-step TD for Estimating v_π
 - ullet Semi-gradient n-step TD for Estimating v_π
 - Control with Approximation
 - ullet Semi-gradient SARSA for Estimating q_*
 - ullet Semi-gradient n-step SARSA for Estimating q_*

Stochastic gradient Descent (SGD) Method

Given policy π , assume that for some weights $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ (usually $d \ll |\mathcal{S}|$) we can approximate:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}).$$

Stochastic gradient Descent (SGD) Method

Given policy π , assume that for some weights $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ (usually $d \ll |\mathcal{S}|$) we can approximate:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}).$$

The <u>Stochastic</u> gradient descent (SGD) method that minimizes the mean-squared error

$$J(\mathbf{w}) \doteq E_{\pi} \left[\left(v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}) \right)^2 \right]$$

is then

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2$$
$$= \mathbf{w}_t + \alpha \left[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

Stochastic gradient Descent (SGD) Method

Since we do not know $v_{\pi}(S_t)$, we use an approximation U_t of the state value function (for example G_t in case of MC). The weights then can be obtained as follows:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[\underbrace{\frac{\mathbf{U}_t}{\approx v_{\pi}(S_t)}} - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

SGD Constant-lpha MC for Estimating v_{π}

Let $U_t \doteq G_t$:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[\underbrace{\mathbf{G}_t}_{\approx v_{\pi}(S_t)} - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

Algorithm:

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T$ using π

Loop for each step of episode, t = 0, 1, ..., T - 1:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G_t - \hat{v}(S_t, \mathbf{w}) \right] \nabla \hat{v}(S_t, \mathbf{w})$$

Semi-gradient 1-step TD for Estimating v_π

Let
$$U_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)$$
:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[\underbrace{\frac{\mathbf{R}_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)}{\approx v_{\pi}(S_t)}} - \hat{v}(S_t, \mathbf{w}_t)\right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

Algorithm:

```
Semi-gradient TD(0) for estimating \hat{v} \approx v_{\pi}
```

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v}: S^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$

 $S \leftarrow S'$

until S is terminal

4 D > 4 A > 4 B > 4 B > B = 900

Semi-gradient n-step TD for Estimating v_π

Let
$$U_t \doteq G_{t:(t+n)}(\mathbf{w}_{t+n-1})$$
, where
$$G_{t:(t+n)}(\mathbf{w}_{t+n-1}) \doteq R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n \hat{v}(S_{t+n}, \mathbf{w}_{t+n-1})$$
:
$$\mathbf{w}_{t+n} \doteq \mathbf{w}_{t+n-1} + \alpha \underbrace{\left[\underbrace{G_{t:(t+n)}(\mathbf{w}_{t+n-1})}_{\approx v_{\tau}(S_t)} - \hat{v}(S_t, \mathbf{w}_{t+n-1})\right]} \nabla \hat{v}(S_t, \mathbf{w}_{t+n-1})$$

Algorithm:

```
n-step semi-gradient TD for estimating \hat{v} \approx v_{\pi}
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: S^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal.}) = 0
Algorithm parameters; step size \alpha > 0, a positive integer n
Initialize value-function weights w arbitrarily (e.g., w = 0)
All store and access operations (S_t and R_t) can take their index mod n + 1
Loop for each episode:
   Initialize and store S_0 \neq terminal
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
           Take an action according to \pi(\cdot|S_t)
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then T \leftarrow t+1
       \tau \leftarrow t - n + 1 (\tau is the time whose state's estimate is being updated)
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i

If \tau + n < T, then: G \leftarrow G + \gamma^n \hat{v}(S_{\tau+n}, \mathbf{w})
           \mathbf{w} \leftarrow \mathbf{w} + \alpha [G - \hat{v}(S_{-} \mathbf{w})] \nabla \hat{v}(S_{-} \mathbf{w})
   Until \tau = T - 1
```

- 🕕 Quiz Review
 - Quiz 6
- Curse of Dimensionality
 - Tabular Methods
 - Example: Atari Breakout
 - Function Approximations
- 3 Approximate Solution Methods
 - Prediction with Approximation
 - ullet SGD Constant-lpha MC for Estimating v_π
 - ullet Semi-gradient 1-step TD for Estimating v_π
 - ullet Semi-gradient n-step TD for Estimating v_{π}
 - Control with Approximation
 - Control with Approximation
 - ullet Semi-gradient SARSA for Estimating q_*
 - ullet Semi-gradient n-step SARSA for Estimating q_*

Semi-gradient SARSA for Estimating q_*

Let
$$U_t \doteq R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t)$$
:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_t + \alpha \left[\underbrace{\frac{\mathbf{R}_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t)}_{\approx q_{\pi}(S_t, A_t)} - \hat{q}(S_t, A_t, \mathbf{w}_t)\right] \nabla \hat{q}(S_t, A_t, \mathbf{w}_t)$$

Algorithm:

```
Episodic Semi-gradient Sarsa for Estimating \hat{q} \approx q_*
Input: a differentiable action-value function parameterization \hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}
Algorithm parameters: step size \alpha > 0, small \varepsilon > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
S, \mathcal{A} \leftarrow \text{initial state and action of episode (e.g., \varepsilon\text{-greedy})}
Loop for each step of episode:
Take action A, observe R, S'
If S' is terminal:
\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})
Go to next episode
Choose A' as a function of \hat{q}(S', \cdot, \mathbf{w}) (e.g., \varepsilon-greedy)
\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})
S \leftarrow S'
A \leftarrow A'
```

Source: Reinforcement Learning: An Introduction by R. Sutton and A. Barto

Semi-gradient n-step SARSA for Estimating q_*

Let
$$U_t \doteq G_{t:(n+1)}(\mathbf{w}_{t+n-1})$$
, where
$$G_{t:(t+n)}(\mathbf{w}_{t+n-1}) \doteq R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n \hat{q}(S_{t+n}, A_{t+n}, \mathbf{w}_{t+n-1})$$
:
$$\mathbf{w}_{t+n} \doteq \mathbf{w}_{t+n-1} + \alpha \left[\underbrace{G_{t:(t+n)}(\mathbf{w}_{t+n-1})}_{\approx q_{\pi}(S_t, A_t)} - \hat{q}(S_t, A_t, \mathbf{w}_{t+n-1})\right] \nabla \hat{q}(S_t, A_t, \mathbf{w}_{t+n-1})$$

Algorithm:

```
Episodic semi-gradient n-step Sarsa for estimating \hat{q} \approx q_s or q_1
Input: a differentiable action-value function parameterization \hat{a}: S \times A \times \mathbb{R}^d \to \mathbb{R}
Input: a policy \pi (if estimating q_{\pi})
Algorithm parameters: step size \alpha > 0, small \varepsilon > 0, a positive integer n
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
All store and access operations (S_t, A_t, \text{ and } R_t) can take their index mod n + 1
Loop for each episode:
    Initialize and store S_0 \neq \text{terminal}
   Select and store an action A_0 \sim \pi(\cdot|S_0) or \varepsilon-greedy wrt \hat{q}(S_0, \cdot, \mathbf{w})
    Loop for t = 0, 1, 2, ...:
        If t < T, then:
            Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
             If S_{t+1} is terminal, then:
                  Select and store A_{t+1} \sim \pi(\cdot|S_{t+1}) or \varepsilon-greedy wrt \hat{q}(S_{t+1}, \cdot, \mathbf{w})
        \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
            G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1}R_i

If \tau + n < T, then G \leftarrow G + \gamma^n \hat{q}(S_{\tau+n}, A_{\tau+n}, \mathbf{w})
             \mathbf{w} \leftarrow \mathbf{w} + \alpha \left[G - \hat{q}(S_{\tau}, A_{\tau}, \mathbf{w})\right] \nabla \hat{q}(S_{\tau}, A_{\tau}, \mathbf{w})
```