Билет 59

Построение графиков функций с помощью дифференциального исчисления: локально-выпуклые и локально-вогнутые функции *Билет не просмотрен Ксюшей*, но проверен Артёмом

Определение

 \Box функция y = f(x) определена и непрерывна на X. Говорят, что эта функция является локально выпуклой (выпуклой вниз), если $\forall x_1, x_2 \in X, \ x_1 < x_2 : f(q_1x_1 + q_2x_2) \le q_1f(x_1) + q_2f(x_2), \ \forall q_1, q_2 > 0 : \ q_1 + q_2 = 1.$

Если $f(q_1x_1+q_2x_2)\geq q_1f(x_1)+q_2f(x_2)$ для $\forall x_1,x_2\in X,$ то f(x) – локально вогнутая (выпуклая вверх) на X.

$$(\cdot)A:(x,f(q_1x_1+q_2x_2))$$

 $(\cdot)B:(x,q_1f(x_1)+q_2f(x_2))$ график!!!

Это определение не использует понятие производной.

Определение

y=f(x) — дифференцирована в $(\cdot)c$. Кривая y=f(x) — локально выпуклая в $(\cdot)c$, если \exists окрестность $O\varepsilon$ этой точки $O\varepsilon=(c-\varepsilon,c+\varepsilon)$, такая, что для $\forall x\in O\varepsilon$ точки кривой лежат над касательной кривой в $(\cdot)c$.

Если же точки лежат под касательной прямой в окрестности $O\varepsilon$, то говорят, что кривая является локально вогнутой в $(\cdot)c$.

два графика:

- 1. локально выпуклая в $(\cdot)c$
- 2. локально вогнутая в $(\cdot)c$

Пусть f — определена на (a,b) и $l(x)=\frac{f(x_2)(x-x_1)+f(x_1)(x_2-x)}{x_2-x_1}$ — прямая, проходящая через точки $A(x_1,f(x_1))$ и $B(x_2,f(x_2))$

Теорема

y = f(x) имеет непрерывную вторую производную в $(\cdot)c$, тогда, если f''(c) > 0 (< 0), то кривая в $(\cdot)c$ – локально выпуклая (локально вогнутая).

Доказательство

Воспользуемся теоремой о производной n-го порядка и точке перегиба: $\Box f''(c)>0, \ \Box h>0$ и c+h>c. Тогда по формуле Тейлора: $f(c+h)=f(c)+\frac{h}{1!}\cdot f'(c)+\frac{h^2}{2!}\cdot f''(c+\theta h)$ По условию f''(c)>0, тогда по непрерывности f''(x) $f''(c+\theta h)>0$ для достаточно малых h. $\Rightarrow f(c+h)-f(c)-h\cdot f'(c)=\frac{h^2}{2!}\cdot f''(c+\theta h)>0$ $\Rightarrow f(c+h)-f(c)>0$ $\Rightarrow f(c)=0$ $\Rightarrow f(c)=0$

Аналогично, для случая, когда f''(c) < 0.

Определение

Если y = f(x) является локально выпуклой в каждой точке из промежутка X (локально вогнутой), то говорят, что f(x) – выпуклая (вогнутая) на промежутке X.