Circuit Verification

CS386 Assignment: Group 12

Assignment Specifications

- > A circuit is defined by its input, output, gates and connectivity.
- There is circuit specific knowledge and circuit independent knowledge.
- Circuit independent knowledge is properties of gates (AND, OR, NOT etc) and the meaning of connectivity. You should read all this knowledge into the PROLOG memory.
- > However, keep the circuit independent knowledge memory resident.
- ➤ The final goal is to verify the input and output in each row of the truth table

Rules Defined

- type(X, a).
 - a: 'AND', 'OR', 'NOT', 'XOR'
 - Represents type of gate X
- no_of_inputs(X, val).
 - val : 1, 2,
 - Gate X has val inputs
- count_1s(X, num_inputs, val, acc).
 - Counts number of 1s as input to gate X
 - num_inputs: input index to gate X
 - acc: accumulator variable(initialised to zero)
 - val: final result is stored in this variable
- signal(x_n,a).
 - Signal at x_n is a $(x_n$ is input to circuit)

Rules Defined

- in(n,X, val).
 - nth input to gate 'X' is 'val'
- in(n,X).
 - nth input to gate 'X'
- connected(x1, x2).
 - Used to specify connections in the circuit
 - Eg: connected(x1,in(1,a1))
 - x1 is connected to 1st input of gate a1
- out(X,Val).
 - Output of gate 'X' is stored in 'Val'
- out(X).
 - Output of gate 'X'

5-input Palindrome Circuit

Output=
$$(x_0 \oplus x_4) \cdot (x_1 \oplus x_3)$$

5-input Weighted Majority Circuit

