Test di Normalità di Shapiro-Wilks

• La verifica della normalità avviene confrontando due stimatori alternativi della varianza σ^2 : uno stimatore non parametrico basato sulla combinazione lineare dei percentili di una variabile aleatoria normale al numeratore, e il consueto stimatore parametrico, ossia la varianza campionaria, al denominatore.

$$W = \frac{\left(\sum_{i=1}^{n} a_{i} x_{(i)}\right)^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

dove $x_{(i)}$ è l'i-esimo valore più piccolo (rango i) del campione, $\overline{x} = (x_1 + \dots + x_n)/n$ è la media aritmetica del campione e le costanti a_i sono ottenute tenendo conto di una stima della variabilità casuale

- La statistica W può assumere valori da 0 a 1. Qualora il valore della statistica W sia "molto" piccolo, il test rifiuta l'ipotesi nulla che i valori campionari siano distribuiti come una variabile casuale normale.
- La statistica W può essere interpretata come il quadrato del coefficiente di correlazione in un diagramma quantile-quantile cioè calcolato tra quantili empirici e quantili teorici della normale standardizzata.

(DSS)

Test di Normalità di Shapiro-Wilks

Esempio delle altezze degli alberi su scala log

```
pp=seq(0.0001,0.8,length=100) #sequenza dei percentili da calcolare
 qn1=qnorm(pp)#quantili teorici
qa=quantile(alberi.log[,2],prob=pp) #quantili osservati
cor(qa,qn1)^2 #correlazione tra quantili osservati e quantili teori
[1] 0.8540894
shapiro.test(alberi.log[,2])
```

data: alberi.log[, 2] W = 0.8979, p-value = 1.865e-07

Shapiro-Wilk normality test

a.a. 2013-2014 2 / 6

Test di Normalità di Shapiro-Wilks

Theoretical Ouantiles

Test del χ^2 per tabelle di contingenza

Alcohol	Nicotine	(mg/day)		
(oz/day)	None	1 to 15	Over 15	
None	105	7	11	123
0.01 to 0.10	58	5	13	76
0.11 to 0.99	84	37	42	163
1.00 or more	57	16	17	90
Tot.	304	65	83	452

Domanda: Il consumo di nicotina e il consumo di alcool dipendono l'uno

dall'altro?

 H_0 : sono indipendenti H_1 : sono dipendenti

(DSS) a.a. 2013-2014 4 / 6

Test del χ^2 per tabelle di contingenza

Per poter verificare se H_0 è vera o meno costruisco la tabella di indipendenza o tabella dei valori attesi:

Alcohol	Nicotine	(mg/day)		
(oz/day)	None	1 to 15	Over 15	
None	$\frac{123\cdot304}{452} = 82.73$	$\frac{123.65}{452} = 17.688$	$\frac{123.83}{452} = 22.586$	123
0.01 to 0.10	$\frac{452}{76 \cdot 304} = 51.115$	$\frac{76.65}{452} = 17.000$ $\frac{76.65}{452} = 10.929$ $163.65 = 22.440$	$\frac{452}{76.83} = 22.300$	76
0.11 to 0.99	$\frac{163.304}{452} = 109.628$		$\frac{163.83}{452} = 29.931$	163
1.00 or more	$\frac{90.304}{452} = 60.531$	$\frac{-452}{90.65} = 23.440$ $\frac{90.65}{452} = 12.942$	$\frac{90.83}{452} = 16.527$	90
Tot.	304	65	83	452

Calcolo la distanza media tra questa tabella e quella osservata:

$$\chi^2 = \sum \frac{(oss. - atteso)^2}{atteso}$$

Questa è la statistica test che nel nostro esempio vale $\chi^2=42.25$. Questa statistica va confrontata con la distribuzione chi-quadrato

DSS) a.a. 2013-2014 5 / 6

Test del χ^2 per tabelle di contingenza

distribuzione chi-quadro con diversi gradi di libertà. I gradi di libertà sono determinati dal numero di righe (r) e di colonne (c) della tabella che stiamo studiando, ovvero df=(r-1)(c-1). Quindi nel nostro esempio $\chi^2_{(4-1)(3-1)=6}$. Il $p-value=1.64\cdot 10^{-07}$ concludiamo che c'è dipendenza.

DSS) a.a. 2013-2014 6 / 6