Летний коллоквиум по математическому анализу

hse-ami-open-exams

Содержание

1	Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых	
	рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак	
	сходимости числового ряда.	2
	1.1 Понятие числового ряда, его частичной суммы.	2
	1.2 Сходимость и расходимость числовых рядов	2
	1.3 Примеры сходящихся и расходящихся числовых рядов	2
	1.4 Необходимый признак сходимости числового ряда	2
2	Критерий Коши сходимости числового ряда. Доказать расходимость гармонического	
	ряда.	3
	2.1 Критерий Коши сходимости числового ряда	3
	2.2 Доказать расходимость гармонического ряда	3

- 1 Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак сходимости числового ряда.
- 1.1 Понятие числового ряда, его частичной суммы.

Определение 1. Числовая последовательность a_k , рассматриваемая вкупе с последовательностью

$$S_n = \sum_{k=1}^n a_k$$

ее частичных сумм, называется числовым рядом.

1.2 Сходимость и расходимость числовых рядов.

Определение 2. Числовой ряд называется сходящимся, если

$$\exists \lim_{n \to \infty} S_n = S < \infty$$

и расходящимся иначе. Число S называется суммой ряда.

- 1.3 Примеры сходящихся и расходящихся числовых рядов.
 - 1. $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится (гармонический ряд)
 - 2. $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{сходится}$
 - $3. \sum_{n=1}^{\infty} \frac{1}{e^n} \text{сходится}$
 - 4. $\sum_{n=1}^{\infty} n$ расходится
- 1.4 Необходимый признак сходимости числового ряда.

Теорема 1. Необходимым условием сходимости числового ряда является стремление κ θ его n-го члена a

Доказательство. Действительно, в противном случае не выполняется критерий Коши для числовой последовательности S_n .

2 Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.

2.1 Критерий Коши сходимости числового ряда.

Теорема 2. Числовой ряд сходится тогда и только тогда, когда он удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Следует из критерия Коши сходимости числовой последовательности S_n .

2.2 Доказать расходимость гармонического ряда.

Теорема 3. Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Доказательство. Воспользуемся критерием Коши:

$$\exists \varepsilon > 0 \forall N \exists n \geqslant N \exists p \in \mathbb{N} |S_{n+p} - S_n| \geqslant \varepsilon$$

Пусть p = n. Тогда

$$S_{n+p}-S_n=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geqslant\frac{n}{2n}=\frac{1}{2}=\varepsilon$$