Let S_1^{n-1} be the unit sphere with respect to the norm $\| \cdot \|_1$, namely

$$S_1^{n-1} = \{ x \in E \mid ||x||_1 = 1 \}.$$

Now S_1^{n-1} is a closed and bounded subset of a finite-dimensional vector space, so by Heine-Borel (or equivalently, by Bolzano-Weiertrass), S_1^{n-1} is compact. On the other hand, it is a well known result of analysis that any continuous real-valued function on a nonempty compact set has a minimum and a maximum, and that they are achieved. Using these facts, we can prove the following important theorem:

Theorem 9.5. If E is any real or complex vector space of finite dimension, then any two norms on E are equivalent.

Proof. It is enough to prove that any norm $\| \|$ is equivalent to the 1-norm. We already proved that the function $x \mapsto \|x\|$ is continuous with respect to the norm $\| \|_1$, and we observed that the unit sphere S_1^{n-1} is compact. Now we just recalled that because the function $f: x \mapsto \|x\|$ is continuous and because S_1^{n-1} is compact, the function f has a minimum m and a maximum M, and because $\|x\|$ is never zero on S_1^{n-1} , we must have m>0. Consequently, we just proved that if $\|x\|_1=1$, then

$$0 < m \le ||x|| \le M,$$

so for any $x \in E$ with $x \neq 0$, we get

$$m \le ||x/||x||_1|| \le M$$
,

which implies

$$m\left\|x\right\|_{1}\leq\left\|x\right\|\leq M\left\|x\right\|_{1}.$$

Since the above inequality holds trivially if x=0, we just proved that $\|\ \|$ and $\|\ \|_1$ are equivalent, as claimed.

Remark: Let P be a $n \times n$ symmetric positive definite matrix. It is immediately verified that the map $x \mapsto ||x||_P$ given by

$$||x||_P = (x^\top P x)^{1/2}$$

is a norm on \mathbb{R}^n called a *quadratic norm*. Using some convex analysis (the Löwner–John ellipsoid), it can be shown that *any* norm $\| \| \|$ on \mathbb{R}^n can be approximated by a quadratic norm in the sense that there is a quadratic norm $\| \|_P$ such that

$$||x||_P \le ||x|| \le \sqrt{n} ||x||_P$$
 for all $x \in \mathbb{R}^n$;

see Boyd and Vandenberghe [29], Section 8.4.1.

Next we will consider norms on matrices.