# PLSC476: Empirical Legal Studies

Christopher Zorn

January 28, 2021

#### R and RMarkdown

- RMarkdown is "an authoring framework for data science" that facilitates literate programming and reproduceable research
- Purpose: To allow for the creation of reproduceable, dynamic documents, presentations, and web pages.
- Similar to Markdown (and other lightweight, literate markup languages)
- Combines text, R code, and R output
- Outut formats: PDF, HTML, Word, Shiny (for interactive web apps), others
- These slides were created using RMarkdown; the code for doing so is available on the course github repository

# Why Plot?

- Know your data
- Catch mistakes
- Learn something. . .

### Running Example: COVID-19 in PA

- N = 67 counties
- Current as of yesterday (1/27/2021)
- Source: PA Department of Health

#### Variables:

- County Name
- Latitude/Longitude
- FIPS code
- Date
- New Cases
- 7-Day Average of New Cases
- Total/Cumulative Cases
- County Population

- New Case Rate (per 100K population)
- 7-Day Average of New Case Rate
- Cumulative Case Rate (per 100K population)
- New Deaths
- Total/Cumulative Deaths
- Cumulative Death Rate (per 100K population)

Table 1: PA COVID-19 Data, 1/27/2021

|      | FIPS  | Date       | County    | New.Cases | New.Cases.7dayAvg | Cumulative.Cases |
|------|-------|------------|-----------|-----------|-------------------|------------------|
| 360  | 42001 | 01/27/2021 | Adams     | 47        | 50.4              | 6446             |
| 693  | 42003 | 01/27/2021 | Allegheny | 350       | 344.0             | 68445            |
| 1026 | 42005 | 01/27/2021 | Armstrong | 21        | 20.7              | 4560             |
| 1359 | 42007 | 01/27/2021 | Beaver    | 68        | 52.0              | 10833            |
| 1692 | 42009 | 01/27/2021 | Bedford   | 13        | 18.7              | 3587             |
| 2025 | 42011 | 01/27/2021 | Berks     | 185       | 198.0             | 30822            |
| 2358 | 42013 | 01/27/2021 | Blair     | 31        | 41.0              | 9817             |
| 2691 | 42015 | 01/27/2021 | Bradford  | 33        | 25.6              | 3866             |
| 3024 | 42017 | 01/27/2021 | Bucks     | 279       | 242.6             | 38977            |
| 3357 | 42019 | 01/27/2021 | Butler    | 77        | 74.0              | 12566            |
| 3690 | 42021 | 01/27/2021 | Cambria   | 30        | 44.6              | 10664            |
| 4023 | 42023 | 01/27/2021 | Cameron   | 0         | 2.3               | 237              |

# **Data Summary**

| FIPS              | Date                | County            | New.Cases           |
|-------------------|---------------------|-------------------|---------------------|
| Min. :42001       | Length:67           | Length:67         | Min. : 0            |
| 1st Qu.:42034     | Class :character    | Class : character | 1st Qu.: 13         |
| Median :42067     | Mode :character     | Mode :character   | Median : 33         |
| Mean :42067       |                     |                   | Mean : 86           |
| 3rd Qu.:42100     |                     |                   | 3rd Qu.: 75         |
| Max. :42133       |                     |                   | Max. :571           |
| New.Cases.7dayA   | vg Cumulative.Cases | Population        | New.Case.Rate       |
| Min. : 1          | Min. : 237          | Min. : 4447       | Min. : 0.0          |
| 1st Qu.: 14       | 1st Qu.: 2472       | 1st Qu.: 42025    | 1st Qu.: 26.8       |
| Median : 37       | Median : 5846       | Median : 84629    | Median: 35.2        |
|                   | Mean : 12305        |                   |                     |
| 3rd Qu.: 86       | 3rd Qu.: 12457      | 3rd Qu.: 208270   | 3rd Qu.: 44.1       |
| Max. :420         | Max. :102870        | Max. :1584064     | Max. :194.5         |
|                   |                     |                   | de Latitude         |
| Min. : 11.8       | Min. : 367          | '5 Min. :-        | 80.4 Min. :39.9     |
| 1st Qu.: 31.7     | 1st Qu.: 568        | 39 1st Qu.:-      | 79.1 1st Qu.:40.4   |
| Median : 37.9     | Median : 659        |                   | 77.4 Median:40.8    |
| Mean : 41.0       | Mean : 665          | 55 Mean :-        | 77.6 Mean :40.8     |
|                   |                     |                   | 76.2 3rd Qu.:41.3   |
|                   |                     |                   | 75.0 Max. :42.0     |
| Georeferenced.L   | atLong New.Dea      | ths Total.Deat    | hs Total.Death.Rate |
| Length:67         |                     |                   | 7 Min. : 79         |
| Class : characte: | r 1st Qu.:0         | 0.000 1st Qu.: 7  | '2 1st Qu.:138      |
| Mode :characte    | r Median :0         | 0.000 Median : 15 | 1 Median :168       |
|                   | Mean :0             |                   | .8 Mean :173        |
|                   | 3rd Qu.:0           | •                 | 5 3rd Qu.:191       |
|                   | Max. :1             | .000 Max. :287    | 9 Max. :327         |

# **Univariate Graphics**

- Dotcharts / Barcharts
- Histograms
- Density Plots
- Boxplots
- Q-Q Plots
- Others...

#### A Dotchart



Figure 1: New COVID-19 Cases by County

### A Sorted Dotchart



Figure 2: New COVID-19 Cases by County

### A (Sorted) Barchart



Figure 3: New COVID-19 Cases by County

### The Histogram: Cumulative Case Percentages

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 67 6.66 1.76 6.59 6.54 1.11 3.67 17.3 13.6 3.09 17.3 0.22



Figure 4: Cumulative Cases, as a Percentage of Population

### "Kernel Density" Plot



Figure 5: Cumulative Cases, as a Percentage of Population

### Density + Histogram



Figure 6: Cumulative Cases, as a Percentage of Population

### A Boxplot



Figure 7: Cumulative Cases, as a Percentage of Population

### Multiple Boxplots in One Figure



Figure 8: Two Boxplots

# Quantile-Quantile (Q-Q) Plots

- Plots two sets of quantiles against each other...
- Can be used to compare two variables' distributions to each other
- Can also compare the *empirical* distribution of a variable to a *theoretical* distribution
- If the two are the same, the quantiles will lie on a straight line

### One Density...



Figure 9: New Cases per 100K Population

### One-Variable Normal Q-Q Plot



Figure 10: New Cases per 100K Population

#### Two Densities...



Figure 11: New and Cumulative Cases per 100K Population

Cumulative COVID Cases per 100

New COVID Cases per 100K

### Two-Variable Q-Q Plot



Figure 12: New and Cumulative Cases per 100K Population

## Other Univariate Plots

- Pie charts (please don't...)
- "Donut" plots (same)
- "Stem-and-leaf" plots (very old-school)
- Stripplots
- Time-Series Plots. . .

#### A Time Series Plot



Figure 13: Daily COVID Cases in Centre County, 3/1/2020-1/27/2021

### Add a "Smoother"



Figure 14: Daily COVID Cases in Centre County, 3/1/2020-1/27/2021

### **Bivariate Plots: The Scatterplot**



Cumulative.Case.Rate

Figure 15: Case Rates vs. Death Rates

### A Better Scatterplot



Cumulative Cases per 100K

Figure 16: Case Rates vs. Death Rates

### Rescaling Axes (Log Scales)



Figure 17: Case Rates vs. Death Rates

### **Adding Lines**



Figure 18: New Cases vs. Population

### How Not To Draw A Scatterplot



Figure 19: Urban/Rural vs. Cumulative Case Percent

#### Better...



Figure 20: Cumulative Cases: Percent of the Population

### Or:



Figure 21: Cumulative Cases: Percent of the Population

### Multivariate Plots: Scatterplot Matrix



Figure 22: COVID in Pennsylvania (1/27/2021)

### **Conditioned Scatterplots**



Figure 23: Case and Death Rates, by Urban/Rural

# Other Cool Visualizations

- Contour / Wireframe Plots ("3D")
- Radar plots
- Parallel coordinates plots
- MAPS...
- Dynamic / interactive graphics
- Many more. . .