Modeling Housing Violations in New York City

Ben Horvath

December 12, 2018

Question

What is the relationship between the number of 311 calls from geographic area and the number of housing violations that occur within it?

311

311 is a phone number in New York City that allows citizens can to report civil, non-emergency events, e.g., graffiti or noise complaints

Goal

- ► The end goal is to build a model to predict housing violations
- A successful model could potentially
 - Allow the city government to plan and target housing inspections faster and more efficiently
 - ► Help civil rights to detect potential discrimination

Data

311 Calls

- NYC Open Data web site: data.cityofnewyork.us houses a log of every 311 call made since 2010, and updated daily
- Accessible via API endpoint
- Millions of 311 calls are made each year, so I limit this project to the year 2014 only
- Records contain geographic information (address, borough, latitude and longitude), creation and close date, and compaint type

Housing Violations

- Also archived by NYC Open Data, and accessible by API endpoint
- 23 thousand housing violations reported in 2014
- Important columns here include various dates (of inspection, certification, etc.), geographic information (address, lat/long, Census tract, etc.), a description of the violation, and violation status

Demographic Data

- Available via an easy-to-use R package called tidycensus: https://walkerke.github.io/tidycensus/ – which wraps the Census Bureau's API (requires token)
- Census data can be aggregated at various geographical levels – I chose zip code
- There are hundreds of possible variables from the Census, but to keep it simple, I focused on measures of a zip code's:
 - ► Education
 - Language
 - Income
 - Age
 - Race/ethnicity

Demographic Data

▶ Beware of multicollinearity: Most of these variables are related to eachother

Dependent Variable

► The number of housing violations per zip code per month

zip	epoch	violations
10001	2014-01-01	4
10001	2014-02-01	10
10001	2014-03-01	0
10001	2014-04-01	0
10001	2014-05-01	1
:	:	:

Independent Variable: 311 Calls

Aggregated to number of 311 calls per zip code per month

zip	epoch	calls
00083	2014-01-01	2
00083	2014-02-01	5
00083	2014-03-01	8
00083	2014-04-01	14
00083	2014-05-01	9
:	:	:

Independent Variables: Demographics

- ▶ Transform to percentage of total population per zip code
- ► E.g., 27.7 percent of residents in zip code have a bachelors degree, and 73 percent speak English

Exploratory Data Analysis

Scatterplot of (calls, violations)

Correlations

Models

Evaluation

- ▶ Split into train and test sets (70 percent, 30 percent)
- ▶ Evaluate on mean squared error MSE (and R^2)

```
mse <- function(m) mean(resid(m)^2)

calc_r2 <- function(y, y_hat) {
   rss <- sum((y_hat - y)^2)
   tss <- sum((y - mean(y_hat))^2)
   return(1 - (rss/tss))
}</pre>
```

*M*₀: Dummy Model

- Predicts the mean of violations
- Useful to establish a baseline

```
m0 <- lm(violations ~ 1, train)
```

M_1 : Simple Linear Regression

Use all variables to predict violations in straight forward model

M_2 : Regression + Month

- Examining the residuals, it became clear the observations this model had the most trouble with were in the winter—January and February
- Remedy by adding a month factor variabel

M₃: Mixed Effects Panel Model

- ▶ In fact, linear regression is inappopriate for this data set
- Linear regression assumes each observation is independent of eachother
- Because each subject (zip code) is sampled numerous times, this assumption is violated

M₃: Mixed Effects Panel Model

► This can be remedied by using a mixed effects model via R package lmer4

```
library(lmer4)
m3 <- lmer(violations ~ calls + bach degree +
             bachelors + below poverty +
             grad degree + hs + income high +
             married + median age + no hs +
             pop black + pop hispanic + pop white +
             speak english + speak spanish +
             total pop + (1 | zip) + (1 | month),
           data=train)
```

M_4 : Dealing with Multicollinearity

- Including so many variables that are correlated to eachother can cause the model to misestimate parameter values, reducing its predictive capability
- ► *M*₄ is also a mixed effects model, but eliminates some of the most correlated independent variables

M₅: Zero-Inflated Poisson Regression

NOTE: This is new territory for me, just trying it out for the first time!

- ► The dependant variable violations is actually a count, suggesting a Poisson regression may be more appropriate
- violations has a lot of zeros, so use this this special Poisson model

Model Evaluation

Test Set MSE

	Туре	MSE
M_0	Dummy	2657
M_1	Simple LR	1849
M_2	LR + Month	1305
M_3	Mixed Effects	1306
M_4	Mixed Effects -	1303
M_5	0-Inflated Poisson	758

Test Set R^2

	Туре	R^2
$\overline{M_0}$	Dummy	0
M_1	Simple LR	0.30
M_2	LR + Month	0.51
M_3	Mixed Effects	0.51
M_4	Mixed Effects -	0.51
M_5	0-Inflated Poisson	0.72

Lessons

- ► Examining a model's residuals can suggest simple ways to greatly improve the model, as with the month variable that increased R² by 70 percent
- ▶ Even though M_4 and M_3 had the same performance, their parameter estimates were very different because of the adjustments I made to counter multicollinearity
- It is important to understand your data and pick the appropriate modelling framework

Findings

- Every model found a highly significant and positive relationship between the number of calls to 311 and housing violations in New York City zip codes
- ▶ The best model, the zero-inflated Poisson model M_5 , estimates that every 1175 calls to 311 is associated with one housing violation
- ➤ The proportion of residents living below the poverty line is also positively and significantly associated with housing violations
- A big thank you to whomever made tidycensus for making this project immensely easier

