Deep Learning for Computer Vision

Libao Zhang, Jie Ma 2017.11.28

Content

- Neural Network
- Convolution Neural Network
- Deep Learning for Computer Vision

Content

• Neural Network
• Convolution Neural Network

— Back Propagation

Deep Learning for Computer Vision

• The XOR function ("exclusive or") is an operation on two binary values, x_1 and x_2 . When exactly one of these binary values is equal to 1, the XOR function returns 1. Otherwise, it returns 0.

Inp	Target Output	
x ₁	X ₂	у
0	0	0
1	1	0
1	0	1
0	1	1

- We can treat this problem as a regression problem and use a mean squared error(MSE) loss function.
- Target function:

$$y=f^*(x),$$
 where $f^*(1,0)=1, f^*(0,1)=1, f^*(1,1)=0, f^*(0,0)=0$

• Our model:

$$y = f(x, \vartheta)$$

MES loss function:

$$J(\boldsymbol{\theta}) = \frac{1}{4} \left(\sum_{i=1}^{4} \left[f(\boldsymbol{x}_{i}, \boldsymbol{\vartheta}) - f^{*}(\boldsymbol{x}_{i}) \right]^{2} \right)$$

 Suppose that we choose a linear model, with θ consisting of w and b. Our model is defined to be:

$$f(x; w, b) = x_1 * w_1 + x_2 * w_2 + b$$

$$= (w_1, w_2) * {x_1 \choose x_2} + b$$

$$= Wx + b$$

• Minimize $J(\theta)$, we obtain W=0, $b=\frac{1}{2}$

Input		Target Output	Regression by linear model		
X ₁	X ₂	y *	у		
0	0	0	0.5		
1	1	0	0.5		
1	0	1	0.5		
0	1	1	0.5		

We must use a nonlinear function to describe the features.

The network now contains two function:

$$\begin{bmatrix} h1 \\ h2 \end{bmatrix} = \begin{bmatrix} x_1 * w_{11} + x_2 * w_{12}, x_1 * w_{21} + x_2 * w_{22} \end{bmatrix}^T + b$$

$$= \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b = wx + b$$

$$y = h1 * W_1 + h_2 * W_2 + c = Wh + c$$

Rectified linear unit $g(z) = max\{0, z\}$

The whole model:

$$f(x; W, c, w, b) = W * max\{0, w * x + b\} + c$$

We can then specify a solution to the XOR problem:

$$\boldsymbol{w} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \boldsymbol{W} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad c = 0$$

Input		Target Output	Regression by linear model		
X ₁	X ₂	y*	У		
0	0	0	0		
1	1	0	0		
1	0	1	1		
0	1	1	1 8		

• There are n_l neurons in layer l, the output of layer l is:

$$m{a}^{(l)} = [m{a}_1^{(l)}, m{a}_2^{(l)}, \cdots, m{a}_{n_l}^{(l)}]^T$$

- Denote the weight associated with the connection between unit j in layer l, and unit i in layer $l+1:W^{(l)}=\left[w_{ij}^{(l)}\right]_{n_{l+1}*n_{i}}$
- The bias associated with unit i in layer $l+1:b_i^{(l)}$

Feedforward propagation algorithm:

$$z^{(l+1)} = W^{(l)}a^{(l)} + b^{(l)}$$
$$a^{(l+1)} = f(z^{(l+1)})$$

Example:

Input:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Layer1:
$$W^{(1)} = \begin{bmatrix} 0.1 & 0.7 \\ 0.2 & 0.8 \end{bmatrix}$$
, $b^{(1)} = \begin{bmatrix} -1 \\ -0.8 \end{bmatrix}$

Layer2:
$$W^{(2)} = [0.2 - 0.3], b^{(2)} = -0.5$$

Feedforward propagation:

$$z^{(2)} = W^{(1)}a^{(1)} + b^{(1)} = \begin{bmatrix} 0.1 & 0.7 \\ 0.2 & 0.8 \end{bmatrix} * \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} -1 \\ -0.8 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \qquad a^{(2)} = f(z^{(2)}) = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$$

$$a^{(2)} = f\left(z^{(2)}\right) = \begin{bmatrix} 0.5\\1 \end{bmatrix}$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)} = [0.2 - 0.3] * \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} + (-0.5) = -0.7 \qquad a^{(3)} = f(z^{(3)}) = 0$$

$$a^{(3)} = f(z^{(3)}) = 0$$

Neural Network: Back Propagation

Question:

How to obtain the appropriate parameters?

- For a regression or classification task, we have dataset with input feature and ground truth.
- Divide the dataset into 2 parts, one for training and one for testing.
- In training set **D**, we want to minimize the difference between the label of training data and the model's predictions.
- MSE loss function:

$$J(\theta) = \sum_{i \in D} \frac{1}{2} ||f(x_i; \theta) - y_i||^2$$

Cross-entropy loss function:

$$J(\theta) = -\sum_{i \in D} \sum_{j=1}^{k} 1\{y_i = k\} ln(f_k(x_i; \theta))$$

 It's very difficult to find the minimum by traditional gradient-based method.

So we utilize gradient descent algorithm:

Batch Gradient Descent

$$\theta^{(k+1)} = \theta^{(k)} - \alpha \left. \sum_{i=1}^{N} \frac{\partial j(x_i; \theta)}{\partial \theta} \right|_{\theta = \theta^{(k)}}$$

gradient descent algorithm-

$$j(x_i; \theta) = \frac{1}{2} ||f(x_i; \theta) - y_i||^2$$

Stochastic Gradient Descent

$$\left. \boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \alpha \frac{\partial j(\boldsymbol{x_i}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(k)}}$$

Mini-batch Gradient Descent $\mathbf{D} = [\mathbf{D}_1, \mathbf{D}_2, \cdots, \mathbf{D}_M]$

$$\theta^{(k+1)} = \theta^{(k)} - \alpha \sum_{i \in D_i} \frac{\partial j(x_i; \theta)}{\partial \theta} \bigg|_{\theta = \theta^{(k)}}$$

Neural Network: Summary

- Step1: Construct a neural network, confirm the number of neurons in each layer.
- Step2: Confirm the loss function: MSE, Cross-entropy.
- Step3: Confirm the optimization method: batch size and epochs.
- Step4: Random initialize the parameters (weights and bias).
- Step5: Divide the dataset into two part, train: test=4:1 or 9:1.
- Step6: Training model.
- Step7: Evaluate model, by loss or accuracy.

Neural Network: Experiment

Neural Network: Result

```
20 neurons
                                                                                            512neurons
                                                                   VS
epoch1 loss: 0.5601 - acc: 0.8527 - val loss: 0.3027 - val acc: 0.9148
                                                                     loss: 0.2734 - acc: 0.9208 - val loss: 0.1291 - val acc: 0.9622
epoch2 loss: 0.2874 - acc: 0.9183 - val_loss: 0.2617 - val_acc: 0.9256
                                                                     loss: 0.1179 - acc: 0.9653 - val loss: 0.1007 - val acc: 0.9694
epoch3 loss: 0.2540 - acc: 0.9273 - val_loss: 0.2380 - val_acc: 0.9300
                                                                     loss: 0.0819 - acc: 0.9749 - val loss: 0.0764 - val acc: 0.9769
epoch4 loss: 0.2300 - acc: 0.9343 - val_loss: 0.2193 - val_acc: 0.9368
                                                                     loss: 0.0635 - acc: 0.9810 - val loss: 0.0757 - val acc: 0.9763
epoch5 loss: 0.2108 - acc: 0.9395 - val_loss: 0.2152 - val_acc: 0.9363
                                                                     loss: 0.0507 - acc: 0.9843 - val loss: 0.0630 - val acc: 0.9809
epoch6 loss: 0.1963 - acc: 0.9439 - val_loss: 0.1940 - val_acc: 0.9414
                                                                     loss: 0.0426 - acc: 0.9871 - val loss: 0.0636 - val acc: 0.9802
epoch7 loss: 0.1853 - acc: 0.9466 - val_loss: 0.1952 - val_acc: 0.9436 loss: 0.0355 - acc: 0.9891 - val_loss: 0.0633 - val_acc: 0.9816
epoch8 loss: 0.1764 - acc: 0.9488 - val_loss: 0.1835 - val_acc: 0.9460 loss: 0.0325 - acc: 0.9904 - val_loss: 0.0616 - val_acc: 0.9830
epoch9 loss: 0.1691 - acc: 0.9511 - val_loss: 0.1856 - val_acc: 0.9452 loss: 0.0272 - acc: 0.9918 - val_loss: 0.0625 - val_acc: 0.9819
epoch10 loss: 0.1629 - acc: 0.9525 - val loss: 0.1747 - val acc: 0.9494 loss: 0.0233 - acc: 0.9925 - val loss: 0.0640 - val acc: 0.9816
        val_loss: 0.1747 - val_acc: 0.9494 val_loss: 0.0640 - val_acc: 0.9816
```

Content

- Neural Network
- Convolution Neural Network
- Deep Learning for Computer Vision

Motivation

Convolutional layer

Max-pooling layer

Classical CNN

Convolutional Neural Network: Motivations

- There are two approach to reduce the number of parameters:
- Receptive field.
- Sharing weights.

- Fully connected network:
- With larger images (e.g., 96x96 images), there are about 10⁴ input units, and assuming you want to learn 100 features, you would have on the order of 10⁶ parameters to learn.
- Locally connected network:
- Each hidden unit will connect to only a small contiguous region of pixels in the input.

Natural images have the property of being stationary

- The statistics of one part of the image are the same as any other part.
- This suggests that the features that we learn at one part of the image can also be applied to other parts of the image, and we can use the same features at all locations.

Locally connected

without sharing weights

with sharing weights

Convolution for single-channel:

$$f(x, y) \circ w = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x-s, y-t)$$

rotate the kernel 180° & correlation

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Convolution for multi-channel:

Supposing that there are n_{m-1} channels in layer m-1 and n_m channels in layer m and there are kernels with size $s \times t$, the number of parameters of layer m-1 and layer m is $n_{m-1} \times n_m \times s \times t + n_m$.

layer m-I hidden layer m

The number of paramaters of layer m-1 and layer m is 4*2*2*2+2=34.

Convolutional Neural Network: Max-pooling Layer

- For a input gray image with 96*96, if we use 400 8*8 kernels to obtain feature maps, we will get 400 feature maps with size (96-8+1)*(96-8+1).
- It means we have 400*(96-8+1)*(96-8+1)=3168400 features!!
 - Max-pooling
 - Mean-pooling

Convolutional Neural Network: Experiment

```
model = Sequential()
Input C1
                                                model.add(Conv2D(10,(3,3),activation='relu',input_shape=input_shape))
                                                model.add(MaxPooling2D(pool_size=(2, 2)))
                                                model.add(Conv2D(10,(3,3),activation='relu',input_shape=input_shape))
                                 F7
            S2 C3
                                                model.add(MaxPooling2D(pool size=(2, 2)))
                                                model.add(Conv2D(10,(3,3),activation='relu',input shape=input shape))
                     S4 C5
                                                model.add(MaxPooling2D(pool size=(2, 2)))
                             S6
                                               model.add(Flatten())
                                                model.add(Dense(10))
                                               model.add(Activation('softmax'))
                                               model.summary()
                                               model.compile(loss='categorical crossentropy'.
                                                             optimizer=RMSprop(),
                                                             metrics=['accuracy'])
                                               history = model.fit(X_train, Y_train,
       The architecture of CNN
                                                                   batch size = batch size,
                                                                   nb = poch = nb = poch,
```

Convolutional Neural Network: Experiment

```
20 neurons
                                                                                                      CNN
                                                                    VS
epoch1 loss: 0.5601 - acc: 0.8527 - val_loss: 0.3027 - val_acc: 0.9148
                                                                      loss: 1.0958 - acc: 0.6510 - val loss: 0.4778 - val acc: 0.8579
         loss: 0.2874 - acc: 0.9183 - val_loss: 0.2617 - val_acc: 0.9256
                                                                      loss: 0.3964 - acc: 0.8837 - val_loss: 0.2943 - val_acc: 0.9148
         loss: 0.2540 - acc: 0.9273 - val_loss: 0.2380 - val_acc: 0.9300
                                                                      loss: 0.2926 - acc: 0.9128 - val loss: 0.2399 - val acc: 0.9277
         loss: 0.2300 - acc: 0.9343 - val_loss: 0.2193 - val_acc: 0.9368
                                                                      loss: 0.2453 - acc: 0.9257 - val loss: 0.2042 - val acc: 0.9392
         loss: 0.2108 - acc: 0.9395 - val_loss: 0.2152 - val_acc: 0.9363
                                                                      loss: 0.2138 - acc: 0.9355 - val_loss: 0.2097 - val_acc: 0.9372
         loss: 0.1963 - acc: 0.9439 - val_loss: 0.1940 - val_acc: 0.9414
                                                                      loss: 0.1895 - acc: 0.9424 - val_loss: 0.1813 - val_acc: 0.9436
epoch6
         loss: 0.1853 - acc: 0.9466 - val_loss: 0.1952 - val_acc: 0.9436
                                                                      loss: 0.1724 - acc: 0.9477 - val loss: 0.1529 - val acc: 0.9545
epoch7
         loss: 0.1764 - acc: 0.9488 - val_loss: 0.1835 - val_acc: 0.9460
                                                                      loss: 0.1569 - acc: 0.9523 - val_loss: 0.1454 - val_acc: 0.9564
         loss: 0.1691 - acc: 0.9511 - val_loss: 0.1856 - val_acc: 0.9452 loss: 0.1440 - acc: 0.9558 - val_loss: 0.1523 - val_acc: 0.9540
epoch9
epoch10 loss: 0.1629 - acc: 0<u>.</u>9525 - val_loss: 0.1747 - val_acc: 0.9494 loss: 0.1354 - acc: 0<u>.</u>9582 - val_loss: 0.1236 - val_acc: 0.9620
        val_loss: 0.1747 - val_acc: 0.9494 val_loss: 0.1236 - val acc: 0.9620
              28*28*20+20 = 15700 parameters
                                                                                             2030 parameters
                                                                    VS
```

Classical CNN model

- Lenet——1998
- Alexnet——2012
- VGG-net——2014

Classical CNN model——Lenet

• 7 layers:

• Input layer: 1@32*32

• layer1: 6@5*5 kernel

layer2: 2*2 max-pooling

layer3: 16 feature map_

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	X	Χ	Χ		Χ	Χ
1	X	X				X	X	X			\mathbf{X}	X	X	X		X
2	X	X	X				X	X	X			X		X	X	Χ
3		X	X	X			X	X	X	X			X		X	X
4			X	X	X			X	X	X	\mathbf{X}		X	\mathbf{X}		X
5				X	X	X			X	X	X	X		X	X	Χ

feature map1: 6@28*28

feature map2: 6@14*14

Classical CNN: Lenet

layer4: max-pooling

layer5: fully connected-120

layer6: fully connected-84

• layer7: Gaussian conections

feature map4: 16@5*5

feature map: 120

featuremap:84

feature map:10

Classical CNN: Lenet

• Demo from http://yann.lecun.com/exdb/lenet/multiples.html

Classical CNN model——Alexnet |M GENET

- The champion of LSVRC2010, top 5 error:15.3%, top 1 error:37.5%.
- 1.2 million high resolution image, 1000 classes.
- 60 million parameters, 650,000 neurons, 8 learning layers.

Classical CNN: Alexnet

11 layers:

Input layer: 3@224*224

layer1:96@11*11 kernels,stride4

layer2:max-pooling 3*3, stride 2

layer3:256@ 5*5 kernels

layer4:max-pooling 3*3, stride 2

layer5:384@ 5*5 kernels

feature map1:96@55*55

feature map2:96@27*27

feature map3: 256@27*27

feature map4:256@13*13

feature map5: 384@13*13

Classical CNN: Alexnet

layer6:384@ 5*5 kernels

layer7:256@ 5*5 kernels

layer8:max-pooling 3*3, stride 2

layer9:fc7-4096

layer10:fc7-4096

fc11+softmax: output 1000

feature map6: 384@13*13

feature map7: 256@13*13

feature map8:256@6*6

feature map9: 4096

feature map10: 4096

Classical CNN model——VGGnet IM GENET

• The champion of LSVRC2014, top 5 error:6.8%, top 1 error:23.7%.

		ConvNet C	onfiguration						
A	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers				
input (224 \times 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
			pool						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512 conv3-512	conv3-512				
conv3-512	conv3-512 co	conv3-512	conv3-512 conv3-512		conv3-512				
	conv1-512 conv3-512 conv								
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
			4096						
			4096						
FC-1000									
soft-max _{t,t.p.} ://blog.csdp.pet/muy									

conv3-64

Why did they choose kernel with size 3*3 rather than 7*7 or 11*11?

Classical CNN: Alexnet

Why did they choose kernel with size 3*3 rather than 7*7 or 11*11?

- Reducing paramter.
 - \triangleright A stack of two 3 \times 3 conv. layers (without spatial pooling in between) has an effective receptive field of 5 \times 5.
 - \triangleright Three such layers have a 7 \times 7 effective receptive field.

- Increasing the nonlinearity of the decision function.
 - With 3 Relu nonlinear function.

Content

Neural Network

Convolution Neural Network

Deep Learning for Computer Vision-

AutoEncoder

Denoising AutoEncoder

- So far, we have described the application of neural networks to supervised learning, in which we have labeled training examples.
- Now suppose we have only a set of unlabeled training data $\{x^{(1)}, x^{(2)}, x^{(3)}, \cdots\}$. An autoencoder neural network is an unsupervised learning algorithm that applies backpropagation, setting the target values to be equal to the inputs.

$$y^{(i)} = x^{(i)}$$

- The AutoEncoder tries to learn a function $f(x,\theta) = x$
- Suppose the inputs x are the pixel intensity values from a 10*10 image. so $n_1 = 100$, and there are $n_2 = 50$ hidden units in layer2.
- Note that we also have $y \in \Re^{100}$. Since there are only 50 hidden units, the network is forced to learn a compressed representation of the input.

- Visualizing a trained Autoencoder:
- We will visualize the function computed by hidden unit i ——which depends on the paramaters weight $W^{(1)}{}_{ij}$

Stack AutoEncoder

Stack AutoEncoder: Experiment

```
model = Sequential()
model.add(Conv2D(10,(3,3),activation='relu',border mode='same',input shape=input shape))
                                                                                         #10@28*28
model.add(MaxPooling2D(pool size=(2, 2)))
                                                                                         #10@14*14
                                                                                                               Encoder
model.add(Conv2D(20,(3,3),activation='relu',border mode='same',input shape=input shape))
                                                                                         #10@14*14
model.add(MaxPooling2D(pool size=(2, 2)))
                                                                                         #10@7*7
model.add(Conv2D(30,(3,3),activation='relu',border_mode='same',input_shape=input_shape))
                                                                                        #1007*7
model.add(UpSampling2D(size=(2, 2)))
                                                                                     #10@14*14
model.add(Conv2D(20,(3,3),activation='relu',border mode='same',input_shape=input_shape)) #10@14*14
                                                                                                               Decoder
model.add(UpSampling2D(size=(2, 2)))
                                                                                     #10028*28
model.add(Conv2D(10,(3,3),activation='relu',border mode='same',input shape=input shape)) #10*28*28
model.add(Conv2D(1,(3,3),activation='relu',border mode='same',input shape=input shape))
model.compile(loss='mse',
             optimizer=RMSprop().
             metrics=['accuracy'])
history = model.fit(X train, X train,
                   batch size = batch size,
                   nb epoch = nb epoch,
                   verbose = 1.
                   validation data = (X test, X test))
```

Stack AutoEncoder: Experiment

Original image

decode image

Question:

How to learn more robust features?

• In order to obtain more robust feature, we use damaged input to reconstruct the image.

$$x \xrightarrow{\mathsf{destory} \; \mathsf{image}} \widehat{x} \xrightarrow{\mathsf{reconstruct}} \hat{x}$$

AutoEncoder

Denosing AutoEncoder

Comparision between AutoEncoder and Denosing AutoEncoder.

Summary

• Neural Network — — — Discussion from XOR — — Forward Propagation — Back Propagation

Convolution Neural Network

Motivation
Convolutional layer
Max-pooling layer
Classical CNN
VGG

Deep Learning for Computer Vision

—AutoEncoder — Stack AutoEncoder— Denoise AutoEncoder

Public email address

deeplearning_class@163.com