

Introducción a Data Mining – 2022

Trabajo Práctico Nº 4 - Análisis de Conglomerados

Nota: Realizar los ejercicios sin recurrir a software de data mining

- 1) Computar la distancia Minkowski entre {1,2} y {3,4} para h=1, 2, ∞.
- 2) Computar la similitud del coseno y el coeficiente de Jaccard entre los conjuntos {A, B, C} y {A, C, D, E}.
- 3) Divida las muestras del dataset en 2 clústeres utilizando el algoritmo K-means. Como centroides tome las dos observaciones más alejadas.

¿Es mejor dividir la muestra en 3 clústeres? Justifique.

Observación	Sueldo en miles	Antigüedad Laboral
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

- 4) Dado el dataset {1, 5, 8, 10, 2} utilice el Algoritmo Aglomerativo de Clustering con *link complete* y distancia Euclidiana para establecer las relaciones jerárquicas entre los grupos. ¿Cuántos Clústeres encuentra? ¿Cuál es la relación entre cada uno?
- 5) Clustering Jerárquico es utilizado a veces para generar K clústeres, K> 1 tomando los clústeres al nivel Kth del dendograma. (La raíz es el nivel 1). Mirando los clústeres producidos de este modo, podemos evaluar el comportamiento de Clustering Jerárquico en diferentes tipos de datos y clústeres, y también comparar Clustering Jerárquico con K-means.

El siguientes un conjunto unidimensional de puntos {6, 12, 18, 24,30, 42, 48}

- a. Para cada uno de los siguientes conjuntos de centroides iniciales, crear dos clústeres asignando cada punto al centroide más cercano, y luego calcular el error cuadrático total para cada uno de los dos clústeres. Muestre los dos clústeres y luego el error total cuadrático para cada uno de los centroides.
 - i. {18, 45}
 - ii. {15, 40}
- b. ¿Los dos centroides dados representan una solución estable, por ejemplo, si el algoritmo K-means fuera corrido en este conjunto de puntos utilizando los centroides dados como los centroides iniciales, habría algún cambio en los clústeres generados?
- c. ¿Cuáles con los clústeres generados utilizando single link?
- d. ¿Cuál técnica, K-means o singlelink, parece producir los clústeres "más naturales" (Para K-means considere los clústeres con menor error cuadrático)?
- 6) Nuestra tarea de minería de datos consiste en conglomerar los siguientes ocho puntos (x,y) que representan una ubicación en el espacio R², en tres conglomerados.

A1 (2,10), A2 (2,5), A3 (8,4), B1 (5,8), B2 (7,5), B3 (6,4), C1 (1,2), C2 (4,9)

Emplee la función de distancia *Euclidea y* suponga que inicialmente asignamos A1, B1 y C1 como los centros de cada conglomerado. Emplee *K-medias* para mostrar *solamente*:

- a) Los tres centros de los conglomerados luego de la primera ronda de movimientos y
- b) Los tres conglomerados finales.