Control Systems

G V V Sharma*

CONTENTS

1	Signal Flow Graph	1
2	Gain of Feedback Circuits 2.1 Estimation of Voltage Gain .	1 1 2
3	Bode Plot	4
4	Second order System	4
5	Routh Hurwitz Criterion	4
6	State-Space Model	4
7	Nyquist Plot	4
8	Compensators	4
9	Gain Margin	4
10	Phase Margin	4
11	Oscillator	4
12	Root Locus	4
13	Polar Plot	4
14	PID Controller	4

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1 Signal Flow Graph

2 Gain of Feedback Circuits

- 2.1 Estimation of Voltage Gain
- 2.1.1. Consider the Magnitude Bode Plot and Phase Bode Plot 2.1.1 of Open-Loop Transfer Function of an Amplifier. Estimate the Open-Loop Transfer Function. (Assume 'A' as 'G' and ' β ' as 'H')

Fig. 2.1.1: Magnitude and Phase Bode Plot

Solution: Let G(f) be the Open-Loop Transfer Function,

$$G(f) = \begin{cases} 100 & 0 < f < 10^5 \\ 200 - 20log(f) & 10^5 < f < 10^6 \\ 320 - 40log(f) & 10^6 < f < 10^7 \\ 460 - 60log(f) & 10^7 < f \end{cases}$$

$$(2.1.1.1)$$

$$\nabla G(f) = \frac{d(G(f))}{d(\log(f))} = \begin{cases} 0 & 0 < f < 10^5 \\ -20 & 10^5 < f < 10^6 \\ -40 & 10^6 < f < 10^7 \\ -60 & 10^7 < f \end{cases}$$
(2.1.1.2)

As we know that, When a pole is encountered the slope always decreases by 20 dB/decade and When a zero is encountered the slope always increases by 20 dB/decade. So, by observing 2.1.1 it can be concluded that we are having Poles at $f = 10^5 Hz$, $10^6 Hz$, $10^7 Hz$ and No Zeros.

So, the Open-Loop Transfer Function G(f) is

$$G(f) = \frac{10^5}{\left(1 + j\frac{f}{10^5}\right)\left(1 + j\frac{f}{10^6}\right)\left(1 + j\frac{f}{10^7}\right)}$$
(2.1.1.3)

2.1.2. Calculate the Phase of Open-Loop Transfer Function.

Solution:

Phase of Open-Loop Transfer Function = ϕ

$$\phi = -\left[\tan^{-1}\left(f/10^{5}\right) + \tan^{-1}\left(f/10^{6}\right) + \tan^{-1}\left(f/10^{7}\right)\right]$$
(2.1.2.1)

2.1.3. Determine the Closed-Loop Voltage Gain of the System assuming $|GH| \gg 1$ and also assuming the block diagram of Control System is 2.1.3

Fig. 2.1.3

Solution:

The Closed-Loop Voltage Gain of the Control System is

$$T = \frac{V_o}{V_s} = \frac{G}{1 + GH} \tag{2.1.3.1}$$

$$20\log(T) = 20\log(G) - 20\log(1 + GH)$$
(2.1.3.2)

Considering the assumption $|GH| \gg 1$, It can be written as

$$20\log(1+GH) = 20\log(GH) \qquad (2.1.3.3)$$

So.

$$20\log(T) = 20\log(G) - 20\log(GH) \quad (2.1.3.4)$$
$$20\log(T) = -20\log(H) \quad (2.1.3.5)$$

$$20\log(T) = 20\log(\frac{1}{H}) \ (2.1.3.6)$$

$$T = \frac{1}{H} (2.1.3.7)$$

So, The value of Closed-Loop Voltage Gain of the Control System under the assumption, $|GH| \gg 1$ is $T = \frac{1}{H}$

2.1.4. What is the value of Loop-Gain?

Solution:

The value of Loop-Gain can be calculated by the difference of 2-curves $20 \log |A|$ and $20 \log (\frac{1}{H})$. The difference between the two curves will be

$$20\log|G| - 20\log\frac{1}{H} = 20\log|GH| \quad (2.1.4.1)$$

2.1.5. Define Phase-Margin

Solution:

Phase-Margin: The phase margin is defined as the angle in degrees by which the phase angle is smaller than -180° at the gain crossover, the gain crossover being the frequency at which the open-loop gain first reaches 1.

2.1.6. Find the frequencies for which phase margins are 90° and 45° respectively?

Solution:

Let Phase Margin be $\alpha = 90^{\circ}$. Then,

$$\alpha = \phi - (-180^{\circ}) \tag{2.1.6.1}$$

$$\phi = -180^{\circ} + \alpha \tag{2.1.6.2}$$

$$\phi = -90^{\circ} \tag{2.1.6.3}$$

So, by the definition of Phase-Margin, at $\phi = -90^{\circ}$, |GH| = 1. The value of $\phi = -90^{\circ}$ between poles $f = 10^{5}Hz$, $10^{6}Hz$. Assuming the Poles are farther apart,

$$\tan^{-1}(\frac{f}{10^7}) \approx 0 \tag{2.1.6.4}$$

where $10^5 < f < 10^6$ So,

$$-\tan^{-1}(f/10^{5}) - \tan^{-1}(f/10^{6}) = -90$$

$$(2.1.6.5)$$

$$\tan^{-1}(f/10^{5}) + \tan^{-1}(f/10^{6}) = 90$$

$$(2.1.6.6)$$

$$\tan^{-1}(f/10^{5}) = 90 - \tan^{-1}(f/10^{6})$$

$$(2.1.6.7)$$

$$\tan^{-1}(f/10^{5}) = \cot^{-1}(f/10^{6})$$

$$(2.1.6.8)$$

$$\tan^{-1}(f/10^{5}) = \tan^{-1}(10^{6}/f)$$

$$(2.1.6.9)$$

$$f^{2} = 10^{11}$$

$$(2.1.6.10)$$

$$f = 3.162 \times 10^{5}$$

$$(2.1.6.11)$$

So, the approximate value of f at which Phase Margin is 90° is $f = 3.162 \times 10^{5} Hz$.

Similarly let Phase Margin be $\alpha = 45^{\circ}$. Then,

$$\alpha = \phi - (-180^{\circ}) \tag{2.1.6.12}$$

$$\phi = -180^{\circ} + \alpha \tag{2.1.6.13}$$

$$\phi = -135^{\circ} \tag{2.1.6.14}$$

So, by the definition of Phase-Margin, at $\phi = -135^{\circ}$, |GH| = 1. The value of $\phi = -135^{\circ}$ approximately at poles $f = 10^{6}Hz$.

So, the approximate value of f at which Phase Margin is 45° is $f = 10^{6}$.

2.1.7. Find the minimum values of Closed-Loop Voltage Gain for which phase margins are 90° and 45° respectively

Solution:

For $\alpha = 90^{\circ}$.

$$f = 3.162 \times 10^5 \tag{2.1.7.1}$$

By substituting f in Open-Loop Gain G(f)

(assuming poles are far part),

$$G(f) = 200 - 20log(3.162 \times 10^5)$$
 (2.1.7.2)

$$G(f) = 90dB$$
 (2.1.7.3)

$$G = 3.1625 \times 10^4 \quad (2.1.7.4)$$

At that $f = 3.162 \times 10^5$,

$$H = \frac{1}{G}$$
 (2.1.7.5)

$$H = 3.162 \times 10^{-5} \tag{2.1.7.6}$$

The minimum value of Closed-Loop Gain occurs at $|GH| \gg 1$ and the value of Closed-Loop Gain is $T = \frac{1}{H}$

$$T = \frac{1}{H} = 3.1625 \times 10^4 \tag{2.1.7.7}$$

So, The minimum value of Closed-Loop Gain with Phase Margin equal to $\alpha = 90^{\circ}$ is $T_{min} = 3.1625 \times 10^{4}$.

For $\alpha = 45^{\circ}$,

$$f = 10^6 \tag{2.1.7.8}$$

By substituting f in Open-Loop Gain G(f) (assuming poles are far part),

$$G(f) = 200 - 20log(10^6)$$
 (2.1.7.9)

$$G(f) = 80dB$$
 (2.1.7.10)

$$G = 10^4 \qquad (2.1.7.11)$$

At that $f = 10^6$,

$$H = \frac{1}{G} \tag{2.1.7.12}$$

$$H = 10^{-4} \tag{2.1.7.13}$$

The minimum value of Closed-Loop Gain occurs at $|GH| \gg 1$ and the value of Closed-Loop Gain is $T = \frac{1}{H}$

$$T = \frac{1}{H} = 10^4 \tag{2.1.7.14}$$

So, The minimum value of Closed-Loop Gain with Phase Margin equal to $\alpha = 45^{\circ}$ is $T_{min} = 10^{4}$.

- 3 Bode Plot
- 4 Second order System
- 5 Routh Hurwitz Criterion
 - 6 STATE-SPACE MODEL
 - 7 Nyquist Plot
 - 8 Compensators
 - 9 Gain Margin
 - 10 Phase Margin
 - 11 Oscillator
 - 12 Root Locus
 - 13 Polar Plot
 - 14 PID Controller