Przedmiot:	Widzenie Komputerowe				
Rok	2020/2021	Semestr	lato	Nr lab	5
Temat	Badanie algorytmów przepływu optycznego				

Cel laboratorium: Celem zajęć jest zapoznanie z metodami modelowania tła dostępnymi w OpenCV.

Zadania do wykonania:

- Proszę przeanalizować tutorial do OpenCV dotyczący przepływu optycznego
 https://opencv-pythontutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.
 html
- Napisać funkcję wizualizującą mapę przepływu optycznego, która w siatce regularnej o ustalonym wymiarze pokaże wektory przesunięć punktów pomiędzy parą obrazów, jak na rysunku poniżej

- 3. Na dowolnym strumieniu video przedstawiającym ruchome obiekty na scenie (kamera stała, brak znacznych wahań oświetlenia) wykonać:
 - a. Sprawdzić działanie algorytmu Lukasa-Kanade z domyślnymi parametrami i punktami charakterystycznymi wybranymi metodą Shi-Tomasi (rzadki przepływ optyczny)
 - b. Sprawdzić działanie algorytmu Gunnera Farnebacka z domyślnymi parametrami (gęsty przepływ optyczny)
 - c. Wykonać punkty 3.a i 3.b dla obrazów RGB (niezależnie dla każdego kanału) opisać obserwacje
 - d. Wybrać losowo 100, 400 i 10.000 punktów z obrazu i sprawdzić działanie algorytmu LK na obrazie w odcieniach szarości porównać z wynikami z p. 3.a
 - e. Wybrać równomiernie rozłożone 100, 400 i 10.000 punktów z obrazu (funkcje z numpy np.mgrid, np.linspace) i sprawdzić działanie algorytmu LK na obrazie w odcieniach szarości porównać z wynikami z p. 3.a i 3.e
- 4. Opisać krótko obserwacje i wnioski