

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019 - 2020)

Enthusiast, Leader & Achiever Course

PHASE : ALL PHASE TARGET : PER-MEDICAL 2020

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 10-09-2020

1201 5/112 1 10 00 2020																														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	2	3	1	1	4	2	2	1	3	3	2	1	4	1	4	4	3	3	1	2	3	1	3	4	3	1	1	1	1	3
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Α.	2	1	3	1	2	3	3	3	2	2	3	2	1	2	4	1	3	1	4	3	4	2	1	2	1	2	3	3	4	4
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Α.	3	1	1	1	4	2	3	2	4	1	1	3	1	4	3	1	2	4	1	2	4	2	3	2	2	2	2	2	3	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Α.	4	1	4	2	4	2	4	1	2	1	2	2	3	3	3	2	3	2	2	4	4	3	2	3	2	3	3	4	3	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	4	4	3	2	4	3	2	2	4	1	4	3	1	3	4	4	3	1	3	2	2	4	1	1	3	2	1	4	2	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	2	2	1	2	3	1	4	2	3	1	3	1	2	3	3	1	2	1	4	3	2	1	4	4	4	3	2	1	2	2

HINT - SHEET

1. Ans (2)

Here one end is at 2f distance and other end is

at
$$2f - \frac{f}{3} = \frac{5f}{3}$$
 distance from mirror.

so
$$u = -\frac{5f}{3}$$
, use mirror formula

$$\frac{1}{v} + \frac{1}{-5f/3} = \frac{1}{-f}$$

$$\frac{1}{v} = -\frac{1}{f} + \frac{3}{5f}$$

$$v = -\frac{5f}{2}$$

Length of image =
$$\left| 2f - \frac{5f}{2} \right| = \frac{f}{2}$$

$$v_{rel} = 2vcos\theta$$

3. Ans (1)

$$u = -\infty$$
, $v = -200$ cm = -2 m
 $P = \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{-1}{2} - 0 = D$

4. Ans (1)

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mqv}}$$

$$\lambda \propto \frac{1}{\sqrt{v}}$$
 and slope is $\frac{h}{\sqrt{2mq}}$

slope of B is greater than slope of A

so
$$m_A > m_B$$

5. Ans (4)

 $T^2 \propto (\text{Radius of the orbit})^3$

$$\therefore \quad \frac{T_1^2}{T_2^2} = \frac{R^3}{(4R)^3} = \frac{1}{64}$$

or
$$\frac{T_1}{T_2} = \frac{1}{8}$$

6. Ans (2)

$$R = \frac{dN}{dt} \propto N \Rightarrow \frac{R_2}{R_1} = \frac{N_2}{N_1}$$
, $n = \frac{t}{t_{1/2}}$

But

$$\frac{N_2}{N_1} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{25}{200} = \frac{1}{8} = \left(\frac{1}{2}\right)^3 \Rightarrow \frac{t}{t_{1/2}} = 3$$

7. Ans (2)

Use
$$\frac{Q}{t} = KA \frac{\Delta T}{\ell}$$

8. Ans (1)

$$Q = eA \sigma (T^4 - T_0^4) = ms \frac{\Delta \theta}{\Delta t}$$

Q is same for solid & hollow sphere but mass of solid sphere is greater so rate of cooling $\left(\frac{\Delta\theta}{\Delta t}\right)$ is greater for hollow sphere.

9. Ans (3)

$$Q = \left(\frac{f}{2} + 1\right) n R\Delta T$$

Here n = 1 for all three

$$F_{poly} > f_{dia} > f_{mono}$$

 $a \rightarrow polyatomic$

 $b \rightarrow diatomic$

 $c \rightarrow mono atomic$

10. Ans (3)

$$\frac{50}{100} = 1 - \frac{500}{T_{\text{source}}}$$

$$\Rightarrow T_{\text{source}} = 1000 \text{ K}$$

$$\Rightarrow \frac{60}{100} = 1 - \frac{T_{\sin k}}{1000}$$

 \Rightarrow T_{sink} = 400 K

11. Ans (2)

$$F = \frac{\left(\frac{4}{3}\pi R^3 \rho\right) \left(\frac{4}{3}\pi R^3 \rho\right) G}{4R^2}$$
$$\Rightarrow F = \frac{4}{3}\pi^2 \rho^2 R^4 G$$

12. Ans (1)

$$E \times 2\pi r = \pi a^{2} \frac{dB}{dt}$$

$$E = \frac{a^{2} dB/dt}{2r} = \frac{\left(5 \times 10^{-2}\right)^{2} \times 4}{2 \times 10 \times 10^{-2}}$$

$$E = \frac{25 \times 10^{-4} \times 4}{2 \times 10^{-1}} = \frac{100}{2} \times 10^{-3}$$

$$= \frac{10^{-1}}{2} = 0.05 \text{ V/m}$$

13. Ans (4)

$$\Delta = d\sin\theta - \mu(t-1)$$

values of d, θ , μ & t are not given.

14. Ans (1)

$$\begin{split} \sin\theta &= \frac{\Delta}{a} = \frac{n\lambda}{a} \\ \sin\theta &= \frac{4\times4\times10^{-7}}{0.2\times10^{-3}} \\ \sin\theta &= 8\times10^{-3} \left[\theta = \sin^{-1}(8\times10^{-3})\right] \end{split}$$

15. Ans (4)

$$10 \times 10^{-3} R = 6 - 2 \text{ volt}$$

 $R = 400 \Omega$

16. Ans (4) $\left(\frac{10\lambda D}{d}\right)_{Int.} = \left(\frac{2\lambda D}{b}\right)_{diff.}$ $\frac{10}{1mm} = \frac{2}{b}$

17. Ans (3)

b = 0.2 mm

When particle enters at angle other than 0° or 90° or 180° , path followed is helix.

18. Ans (3)

$$B = \left(\frac{\mu_0 I}{4\pi d}\right) \left[\sin\alpha + \sin\beta\right]$$

Here
$$\alpha = -\frac{\pi}{4}$$
 and $\beta = \frac{\pi}{2}$

$$= \frac{\mu_0 I}{4\pi} \times \frac{\sqrt{2}}{R} \left[\sin\left(-\frac{\pi}{4}\right) + \sin 90 \right]$$

$$= \frac{\mu_0 I}{4\pi R} \times \sqrt{2} \left[1 - \frac{1}{\sqrt{2}} \right]$$

$$= \frac{\mu_0 I}{4\pi R} \times \left[\sqrt{2} - 1 \right] \text{ Out of plane of paper.}$$

19. Ans (1)

In given plane horizontal component of magnetic field is zero.

20. Ans (2)

$$L = I\omega$$
$$= 0.06 \times 5 \times 2\pi$$
$$= 0.6 \pi$$

21. Ans (3)

$$v \propto \sqrt{a}$$

$$\frac{v}{v_R} = \sqrt{\frac{a}{a_R}} & & a_R = \frac{g \sin \theta}{1 + \frac{I}{mR^2}} = \frac{g \sin \theta}{2}$$

$$a = g \sin\theta \implies v_R = \frac{v}{\sqrt{2}}$$

22. Ans (1)

Here
$$V_{AB} = V_{AD}$$

so if current in 1Ω is I_1 then current in 3Ω is

$$\frac{I_1}{3}$$

and
$$V_{BC} = V_{DC}$$

so if current in 2Ω is I_2

then current in 4 Ω is $\frac{I_2}{2}$

By KC1
$$I_1 + \frac{I_1}{3} = I_2 + \frac{I_2}{2}$$

i.e. total current through battery

so
$$\frac{4I_1}{3} = \frac{3I_2}{2}$$

or
$$8I_1 = 9I_2$$
(1)

we have to find I₃, by KCl

$$I_3 = I_1 - I_2 \text{ or } I_3 = \frac{I_2}{2} - \frac{I_1}{3} \dots (2)$$

Use KVL along loop ABC A through battery

$$25 - I_1 - 2I_2 = 0$$
(3)

$$25 = I_1 + 2I_2 = I_1 + 2\left(\frac{8}{9}I_1\right)$$

$$\Rightarrow 25 = \frac{25}{9} I_1 \Rightarrow I_1 = 9 A \dots (4)$$

by eq (4) & (1),
$$I_2 = 8A$$

by eq (2)
$$I_3 = 9 - 8 = 1A$$

23. Ans (3)

In parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

multiply by V²

$$\frac{V^2}{R} = \frac{V^2}{R_1} + \frac{V^2}{R_2}$$

$$\Rightarrow P = P_1 + P_2$$

24. Ans (4)

$$\begin{split} [K] &= \frac{[V\,][Y_2]}{\big[x_{\,2}\big]^4} = \, \frac{[M^{\,0}\,L^3\,T^{\,-1}][L]}{\big[L^4\big]} \\ [K] &= [M^0L^0T^{-1}] \end{split}$$

25. Ans (3)

$$a = V \frac{dv}{dx}$$

$$(180 - 16x)^{\frac{1}{2}} \times \frac{1}{2} (180 - 16x)^{-\frac{1}{2}} (-16)$$

$$= -8 \text{ m/s}^2$$

26. Ans (1)

$$V_1 + V_2 = \frac{200}{10}$$

$$V_1 - V_2 = \frac{200}{20}$$

$$V_1 + V_2 = 20$$

$$V_1 - V_2 = 10$$

$$2V_1 = 30$$

$$V_1 = 15 \text{ m/s}$$

$$V_2 = 5 \text{ m/s}$$

27. Ans (1)

$$\begin{split} &V_0 = \sqrt{2gh_0} \\ &V_n = e^n V_0 \\ &\sqrt{2gh_n} = e^n \, \sqrt{2gh_0} \\ &e^n = \sqrt{\frac{h_n}{h_0}} \end{split}$$

28. Ans (1)

$$U = \left(\frac{1}{2} \epsilon_0 E^2\right) a^3 \quad \dots (1)$$

$$E = \frac{\sigma}{2\epsilon_0} \quad \text{put in (1)}$$

$$U = \frac{1}{8} \quad \frac{\sigma^2 a^3}{\epsilon_0}$$

29. Ans (1)

$$v = \left(\frac{qE}{m}\right) \cdot t$$

$$KE = \frac{1}{2}mv^{2} = \frac{1}{2}m\frac{q^{2}E^{2}t^{2}}{m^{2}} = \frac{1}{2}\frac{q^{2}E^{2}t^{2}}{m}$$

$$KE \propto \frac{q^{2}}{m}$$

$$\frac{(KE)_{1}}{(KE)_{2}} = \frac{q_{1}^{2}}{q_{2}^{2}} \times \frac{m_{2}}{m_{1}} = \left(\frac{2q}{2q}\right)^{2} \times \frac{2m}{m} = \frac{2}{1}$$

30. Ans (3)

Ar =
$$\frac{75}{100}$$
 × 0.02 = 0.015, from rarer medium,
y = 0.015 sin $8\pi \left(t + \frac{x}{20}\right)$

31. Ans (2)

$$\frac{v}{2\ell_1} - f = 5 \dots(1)$$

$$f - \frac{v}{2\ell_2} = 5 \dots(2)$$

$$by (1) + (2), \quad \frac{v}{2} \left(\frac{1}{95} - \frac{1}{100}\right) \times 100 = 10$$

$$\frac{v}{2} \times \frac{5}{95} = 10 \implies v = 380 \text{ m/s}$$

$$f = 5 + \frac{v}{2\ell_2} = 5 + \frac{380}{2 \times 100 \times 10^{-2}}$$

$$f = 195 \text{ Hz}$$

32. Ans (1)

$$F + F + 2F = 60 \text{ kg f}$$

 $F = 15 \text{ kg f}$

33. Ans (3)

FBD 1N 2kg T 3kg 8 $f_{max}=2$ $f_{max}=6$

Net force without friction on system is '7N' in right side so first maximum friction will come on 3 kg block.

1 2kg 2 3kg 8
So
$$f_1 = 1 \text{ N}, f_2 = 6 \text{ N}, T = 2\text{N}$$

 $f_1 = 1 \text{ N}, f_2 = 6 \text{ N}, T = 2\text{N}$

34. Ans (1)

$$K = \frac{1}{B}, B = \frac{-\Delta P v}{\Delta v}$$

$$K = -\frac{\Delta v}{v \Delta P}$$

$$-\Delta V = K V \Delta P$$

$$= \frac{4 \times 10^{-5}}{\text{atmospr}} \times (100 \text{ cc}) \times (100 \text{ atm pr})$$

35. Ans (2)

= 0.4 cc

$$E_{\text{mech}} = K_A + U_{gA} + U_{sA} = 0 + mgx_A + \frac{1}{2} kx_A^2$$

$$= 25 \times 10 \times (-0.100) + \frac{1}{2} \times 2.5 \times 10^4 \times (-0.100)^2$$

$$= -25 + 125 = 100 \text{ J}$$

36. Ans (3)

$$T = 2\pi \sqrt{\frac{m}{K}}$$

$$T' = 2\pi \sqrt{\frac{m}{4K}} = \frac{2\pi}{2} \sqrt{\frac{m}{K}} = \frac{T}{2}$$

When spring is cut into four part spring constant of each part is 4K.

37. Ans (3)

$$\begin{split} &\omega_{min} = \frac{2\pi}{60} \, rad / \, min \, \, and \\ &\omega_{hr} = \frac{2\pi}{12 \times 60} \, rad / \, min \\ &\frac{\omega_{min}}{\omega_{hr}} = \frac{2\pi}{60} \, \times \frac{12 \times 60}{2\pi} = 12:1 \end{split}$$

38. Ans (3)

Heat
$$dc = i^2R = (4)R$$

Heat ac =
$$i_{rms}^2 R = (\sqrt{2})^2 R = 2R$$

39. Ans (2)

Equivalent diagram

40. Ans (2)

During the growth of current in L-R circuit is given by:

$$I = I_0 \left(I - e^{-\frac{R}{L}t} \right)$$
or
$$I = \frac{E}{R} \left(I - e^{-\frac{R}{L}t} \right) = \frac{5}{5} \left(I - e^{-\frac{5}{10} \times 2} \right)$$

$$I = (I - e^{-1})$$

41. Ans (3)

42. Ans (2)

Theory

43. Ans (1)

Because film tries to cover minimum surface area.

44. Ans (2)

$$\frac{P}{m} = x \xrightarrow{x} (r-x) \xrightarrow{9m}$$

$$\frac{GM}{x^2} = \frac{G(9m)}{(r-x)^2}$$

$$r - x = 3x$$

$$4x = r$$

$$x = r/4$$

$$\begin{split} V_p &= \frac{-GM}{r/4} + \left(\frac{-G\left(9m\right)}{\frac{3r}{4}}\right) \\ V_p &= \frac{-16GM}{r} \end{split}$$

45. Ans (4)

 $AB \rightarrow isochoric process \leftarrow CD$

$$W_{AB} = 0 \qquad ; \quad W_{CD} = 0$$

$$W_{BC} = nR(T_1 - T_2)$$

$$W_{DA} = nR(T_3 - T_4)$$

$$W_{\text{cyclic}} = nR(T_1 + T_3 - T_2 - T_4)$$

46. Ans (1)

Activation energy increases rate constant decreases. As K' < K", $E_a^{'}>$ $E_a^{''}$

47. Ans (3)

Partial pressure

no. of moles of gas \times P_{total}

total no. of moles

$$2.5 = \frac{5 \times P_{T}}{2 + 3 + 5 + 10}$$

$$10_{\text{atm}} = P_{\text{T}}$$

48. Ans (1)

Let there be $Cu^+ = x$ moles

$$Cu^{+2} = (1.8 - x)$$
 moles

$$x + 2(1.8 - x) = +2$$

$$x + 3.6 - 2x = 2$$

$$1.6 = x$$

% of
$$Cu^+ = \frac{1.6}{1.8} \times 100 = 88.88\%$$

49. Ans (4)

Wt. of phenol (W_A) = 15×10^{-3} kg = 15 g

Wt. of benzene $(W_B) = 1 \text{ kg}$

$$\Delta T_f = i K_f m$$

$$i = \frac{\Delta T_f}{K_f m} = \frac{0.69}{5.12 \times \left(\frac{15}{94}\right)} = i = 0.845$$

$$2A \rightleftharpoons A_2$$

$$1-x = \frac{x}{2}$$

$$i = 1 - x + \frac{x}{2} = 1 - \frac{x}{2}$$

$$0.845 = 1 - \frac{x}{2}$$

$$\frac{x}{2} = (1 - 0.845)$$

$$x = 0.31$$

31%

50. Ans (3)

The electrode with high R.P. will act as a cathode and electrode with more –ve R.P. acts as anode

51. Ans (4)

$$Moles of N = \frac{28}{14} = 2$$

Moles of O =
$$\frac{64}{16}$$
 = 4

∴ Formula, N₂O₄

53. Ans (1)

$$N_1V_1 = N_2V_2$$

2 × 1 = N_2 × 10
0.2 = N

$$\Delta H = \Delta E + \Delta n_g RT$$
 If $\Delta n_g > 0$ i.e., $n_P > n_R$ then $\Delta H > \Delta E$

$$P_{1} = \frac{nRT}{V_{1}}$$

$$= \frac{1 \times 0.0821 \times 243.6}{20} = 1 \text{ atm}$$

$$\Delta S = nR \ln \frac{P_{1}}{P_{2}}$$

$$= 1 \times 2 \times \ln \frac{1}{0.25}$$

$$= 2 \times 2 \ln 2$$

$$= 4 \times 0.693$$

$$= 2.77 \text{ cal/K}$$

56. Ans (2)

Homogeneous catalysis : In which same physical state of reactant and catalyst are present.

57. Ans (3)

Acetone & chloroform solution shows –ve deviation

$$CH_3$$
 $C=O----H-C$
 Cl
 Cl
 Cl

58. Ans (3)

$$K_P = K_C(RT)^{\Delta_{ng}}$$
; $\Delta ng = 3$
 $K_P = 1.2 \times 10^{-5} (0.082 \times 673)^3$
 $T = 400^{\circ}C$
 $= 673 \text{ K}$
 $= \frac{1.2 \times 10^{-5}}{(0.082 \times 673)^{-3}}$

59. Ans (4)

If
$$Q < K$$
: $Q \uparrow$ as time spent
If $Q > K_C$: $Q \downarrow$ as time spent
If $Q = K$: $Q \vdash$ remain same

$$BaCl_{2}(aq)+Na_{2}SO_{4}(aq) \longrightarrow BaSO_{4}(s)+2NaCl(aq) \tag{ppt}$$
 m.mol M×V M×V
$$0.2\times40 \quad 0.3\times40 \\ = 8 \quad = 12$$
 After
$$Rxn, \quad 0 \quad 12-8$$

$$[SO_4^{2-}] = \frac{\text{m. mole}}{\text{volume (in ml)}}$$

= $\frac{4}{40 + 40} = \frac{4}{80} = 0.05 \text{ M}$

61. Ans (3)

S²⁻ are in CCP

Zn²⁺ are in alternate T.H.V.

62. Ans (1)

 $KMnO_4 + KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$

63. Ans (1)

Linkage isomerism \Rightarrow (NO₂) \Rightarrow (ONO)

64. Ans (1)

Polarity of bond $\propto \Delta EN$

65. Ans (4)

Ca → Brick's red

Na → Golden yellow

 $K \rightarrow Violet$

Ba → Apple green

66. Ans (2)

Thermal stability \propto Lattice energy $\propto \frac{1}{\text{size}}$

67. Ans (3)

Gravity separation used when ore's have difference in density.

68. Ans (2)

For solubility

Solvation energy > Lattice energy

71. Ans (1)

 $Mn^{+2} = 3d^5 4s^0$ (Maximum unpaired $e^{-1}s$)

$$Fe^{+2} = 3d^6 4s^0$$

$$Cr^{+3} = 3d^3 4s^0$$

$$Ni^{+2} = 3d^8 4s^0$$

73. Ans (1)

Chlorides of Ag are insoluble, while chlorides of Ba and Ca imparts colour to Bunsen flame. Thus Mg is correct.

74. Ans (4)

$$\begin{array}{c} H_3BO_3 \xrightarrow{\Delta} HBO_2 \xrightarrow{\Delta} H_4B_2O_7 \xrightarrow{\Delta} \\ B_2O_3 + 2H_2O \end{array}$$

75. Ans (3)

[Pt(Cl) (py) (NH₃) (NH₂OH)]⁺
$$\Rightarrow$$
 [M abcd]

$$\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} \begin{bmatrix} a \\ d \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} \begin{bmatrix} a \\ d \end{bmatrix}$$
No. of geometrical isomers = 3

76. Ans (1)

Back bond formation tendency decreases so lewis acidic strength increases.

77. Ans (2)

Tenth element (Ne) is noble gas, hence it resembles with second element (He) which is also a noble gas.

78. Ans (4)

79. Ans (1)

Cyclopentadiene is stronger acid than Propyne as its conjugate Base is aromatic.

i.e., cyclopentadiene anion (aromatic) will not converted into cyclopentadiene (non aromatic)

80. Ans (2)

That's why ring chain isomers.

81. Ans (4)

Due to intermolecular hydrogen bonding in alcohols boiling points of alcohol is much higher than ether.

82. Ans (2)

$$\begin{array}{c}
NH_2 & \bigoplus_{N \equiv NCI} \\
O + NaNO_2 + HCI & O C \\
\hline
& O C
\end{array}$$
Benzene diazonium

83. Ans (3)

$$CH_{3}-CH_{2}-CH_{2}-CH_{2}-CI\xrightarrow{AlCl_{3}} CH_{3}-CH_{2}-CH_{2}-CH_{2}$$

$$\downarrow l,2-H^{\circ} shift$$

$$CH_{3}-CH_{2}-CH-CH_{3}$$

$$E^{\circ}$$

$$CH_{3}-CH_{2}-CH-CH_{3}$$

$$CH_{3}-CH_{2}-CH_{3}$$

84. Ans (2)

$$Ph \xrightarrow{H^{\oplus}} Ph \xrightarrow{1, 2H^{\ominus}} Ph \xrightarrow{-H^{\oplus} \mid H_2O} OH$$

$$Ph \xrightarrow{H^{\oplus}} Ph$$

85. Ans (2)

$$H_2O + \overset{\circ}{C}Cl_2 \rightarrow :CCl_2 \text{ (Electrophile)}$$

86. Ans (2)

$$\begin{array}{c|cccc} CH_3 & CH_3 \\ Br & H & Aq\ KOH \\ \hline & CH_2CH_3 & CH_2CH_3 \\ \hline & 'R' & 'S' \end{array}$$

S_N2 reaction inversion of configuration.

89. Ans (3)

94. Ans (2) NCERT-XI; Page No # 325

96. Ans (2) NCERT-XI; Page No # 271

97. Ans (4) NCERT-XI; Page No # 294, 293

99. Ans (2) NCERT-XI; Page No # 304

100. Ans (1) NCERT-XII; Page No # 29(E), 31(H)

102. Ans (2) NCERT-XII ; Page No # 22(E), 23(H)

103. Ans (3) NCERT-XII; Page No # 37(E), 39(H)

106. Ans (2) NCERT-XI; Page No. #75

107. Ans (3) NCERT-XI ; Page No. # 80

108. Ans (2) NCERT-XI; Page No. # 90, 91, 92, 93

109. Ans (2) NCERT-XI ; Page No. # 85

110. Ans (4) NCERT-XI; Page No. #91 111. Ans (4)
NCERT-XII; Page No. # 138 to 140; Para - 7.8

113. Ans (2) NCERT-XII; Page No. # 131; Para - 7.3

115. Ans (2) NCERT-XII; Page No. # 136; Para - 7.6

125. Ans (4) NCERT-XII; Page No. # 81, 82(E)

128. Ans (2) NCERT-XII; Page No. # 171(E)

131. Ans (4) NCERT-XII; Page No. # 211

134. Ans (3) NCERT-XI; Page No # 129

135. Ans (4) NCERT-XI; Page No # 129

136. Ans (4) NCERT-XI; Page No # 35

137. Ans (3) NCERT-XI; Page No # 31, 32

138. Ans (1) NCERT-XI; Page No # 37, 38

139. Ans (2) NCERT-XI; Page No # 129

140. Ans (2) NCERT-XI; Page No. # 138 (E); 137, 138 (H)

142. Ans (4) NCERT-XI ; Page No. # 132 (E) ; 132, 133 (H)

146. Ans (2) NCERT-XI ; Page No. # 143 (E + H)

147. Ans (1) NCERT-XI; Page No. # 145 (E + H)

148. Ans (4) NCERT-XI; Page No # 236

149. Ans (2)

NCERT-XI; Page No # 204

152. Ans (2)

NCERT-XI; Page No # 243

153. Ans (1)

NCERT-XI; Page No # 230

155. Ans (3)

NCERT-XII; Page No. # 281

156. Ans (1)

NCERT-XII; Page No. # 232

159. Ans (3)

NCERT-XII; Page No. # 243

162. Ans (1)

NCERT-XII; Page No. # 225, 226

164. Ans (3)

NCERT-XII; Page No. # 227

166. Ans (1)

NCERT XI; Page No # 101

167. Ans (2)

NCERT XI; Page No # 48

170. Ans (3)

NCERT XI; Page No # 112

171. Ans (2)

NCERT XI; Page No # 115

172. Ans (1)

NCERT XI; Page No # 33

173. Ans (4)

NCERT-XII; Page No. # 74(E)

176. Ans (3)

NCERT-XII; Page No. # 187

180. Ans (2)

NCERT-XII ; Page No. # 129 ; Para - 7.3