HW4

1. 아래의 데이터에 대하여 다음 물음에 답하시오.

일련번호	y (총 소요시간)	x_1 (적성검사점수)	x_2 (성별)	학력
1	17	151	남자	대
2	26	92	남자	고
3	21	175	남자	대
4	30	31	남자	고
5	22	104	남자	고
6	1	277	남자	대학원
7	12	210	남자	대학원
8	19	120	남자	대
9	4	290	남자	대학원
10	16	238	남자	대학원
11	28	164	여자	대학원
12	15	272	여자	대학원
13	11	295	여자	대학원
14	38	68	여자	고
15	31	85	여자	대
16	21	224	여자	대학원
17	20	166	여자	대
18	13	305	여자	대학원
19	30	124	여자	대
20	14	246	여자	대학원

- (1) x_1 을 x로 놓고 각 성별에 대하여 회귀모형을 적합하시오. 그런 후 두 회귀직선의 기울기가 같은지에 대한 가설검정을 하시오(5장 p12 : 두 회귀모형의 검정 참고).
- (2) 13장 강의노트 p.8 에 따르면 x_1, x_2 을 설명변수로 했을 때 적합 결과는

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$
$$= 33.8349 - 0.1009x_1 + 7.9340x_2$$

이었다. β_1 의 추정값 $\hat{\beta}_1$ 이 갖는 분산을 추정하고, β_1 의 95% 신뢰구간을 구하시오.

(3) 다음의 모형을 적합하시오.

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \epsilon_i$$

$$x_{3i} = \begin{cases} 1 & : 학력이 고졸 \\ 0 & : 기타 \end{cases}, \quad x_{4i} = \begin{cases} 1 & : 학력이 대졸 \\ 0 & : 기타 \end{cases}$$

- (4) 위의 모형에서 β_3 과 β_4 가 갖는 의미를 해석하시오.
- (5) 위의 β_3 과 β_4 의 최소제곱추정값 $\hat{\beta}_3$ 과 $\hat{\beta}_4$ 가 갖는 각각의 분산을 추정하시오. β_3 과 β_4 의 95% 신뢰구간을 구하시오.
- (6) 만약 적성검사점수와 성별, 적성검사점수와 학력, 성별과 학력간에 교호작용이 있다면, 다음의 반응함수를 가정할수 있다.

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$
$$+ \beta_5 x_1 x_2 + \beta_6 x_1 x_3 + \beta_7 x_1 x_4 + \beta_8 x_2 x_3 + \beta_9 x_2 x_4$$

데이터로부터 위의 반응함수를 적합하고, 다섯 개의 다음 가설을 유의수준 $\alpha=0.1$ 에서 검정하시오.

$$H_0: \beta_i = 0, \quad H_1: \beta_i \neq 0 \ (i = 5, 6, 7, 8, 9)$$

- (7) 위의 반응함수에 대하여 회귀분석을 통한 분산분석표를 작성하고, 회귀변동의 유의성을 F-검정하시오. 이때 F-검정의 귀무가설을 β_i 들로 표현하시오.
- 2. 아래의 데이터에 대하여 다음 물음에 답하시오.

x	1	2	2	3	4	5	5	6	7
У	2.0	3.2	3.4	4.1	5.2	7.0	7.4	9.7	11.5

- (1) x와 y에 대한 산점도를 그려보고, 어떤 x의 값 (x_w) 에서 구간을 두 개로 나누면 적절한지 논하시오.
- (2) 위의 (1)에서 얻은 점을 경계로 구간별 단순선형회귀선을 추정하시오. 사용되는 모형은

$$x_{2i} = \begin{cases} 1 & : 만약 \ x_{1i} > x_w$$
 이면 $0 & : 만약 \ x_{1i} \le x_w$ 이면

과 같다.

(3) 위의 (2)에 있는 모형에서 β_2 의 90% 신뢰구간을 구하고, 그 의미를 해석하시오.