Chapter 9

Arithmetic and Logic Unit

Arithmeic and Logic Unit

- Deals with the calculation and processing.
- Consists of 2 parts.
- 1. Arithmetic Unit:
 - -deals with the arithmetic operations of i/ps.
- 2. Logic Unit:
 - -deals with the logical operations of i/ps.

Eight different arithmetic operations

• The different operations are:

$$F=A+B$$
 $F=A+B+1$
 $F=A+B'$ $F=A+B'+1$
 $F=A+0's$ $F=A+0's+1$
 $F=A+1's$ $F=A+1's+1$
 $F=A+1's+1$

Design of Arithmetic Circuit

- The block diagram of arithmetic circuit is as shown in figure along side.
- Its design include the design of combinational circuit before the parallel adder.
- The design starts with the specification or function table given.

Function table;

	Fun	ction	n table	
	SI	So	Cin	F.
	0	0	0	A: > A:+ all o's
-	0	0	1	A:+1 > A:+all o's+1
	0	1	0 .	A:+B:
	0	1	1	A°+B°+1
	1	0	0	$A_i + \overline{B_i}$
	1	0	1	Ai+Bi+1 > Ai-Bi
	1	1	0	A+ all 1's => A9-1
	1	1	1	$A+all 1!s+1 \Rightarrow A^{\circ}$

Truthtable of the combinational logic:

Truthtable of the combinational circuit

3,	So A: Bi	Xi Yi	Remarks
000	0 0 0 0	0 0 0	A: +0's
0000	1 1 0 1 0 1 1 0 0 1 1	0 0 0 0 0 0 0	Ai +Bi
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	A:+B:
\\ \frac{1}{1}	1 0 1 1 0 0 0 1 1	0 1 5	Ai + 1is
	111	$\begin{bmatrix} T & T \\ T & T \end{bmatrix}$	

Circuit diagram of the 4 bit arithmetic circuit:

Design of Logic Unit:

• Select variables:

S2 -> mode select S1,S0 -> function select

- Let the logical operations be: OR,XOR,AND,NOT
- For design, lets take a 4×1 MUX.

Fu	Function table:			
5,	So	Function	operation	
		A:+B:	OR	
0	1	A: @B:	XOR	
1	0	A: B:	AND	
1	1	B:	NOT	

Single stage ALU:

- Now combining both arithmetic and logic units we can draw or design ALU.
- The single stage ALU is as shown along side.

Design of Shifter:

- Transfers the o/p of ALU to the bus.
- It is a shift register with parallel load.
- The circuit diagram and the function table is as shown in the figure.

The function table of the 4 bit shifter is as:

	Function table:				
	HI	Ho	Operation	Function	
	0	0	S+F	Function Transfer F to S	
	0	1	Seshr F	Shift right F to S	
da s	1	0	SKSHIF	Shift left F to S	
	1	1	S < 0	Transfer O's into S	

Status register

- Bit C (carry) is set if o/t carry of ALU is
 1. It is cleared if the o/p is 0.
- Bit S (sign) is set if the highest order bit of the ALU o/p(the sign bit) is 1. It is cleared if the highest order bit is 0.
- Bit Z(zero) is set if o/p of ALU contains all 0's and cleared otherwise.
- Bit V (overflow) is set if the XOR of C8 and C9 is 1. This is the condition of overflow when the numbers are in sign 2's complement form.

Design of Accumulator

- Some processor units distinguish one register from all others and call it an accumulator register.
- Bidirectional register with parallel load connected to ALU.
- The accumulator an its associated logic constitute a sequential circuit.
- It consists n-stages and n-flip flops.
- Register A is referred to as accumulator and sometime denoted by AC.
- It is a multifunction register that can perform all the microoperations.
- Microoperations of an AC depends on the particular processor

The block diagram and the different micro operations of an accumulator is as shown

Control variables	Microoperations	Name
P1	A < A+B	Add
P_2	A < 0	Clear
P3	$A \leftarrow A^{1}$	complement
P ₄	A < A ^ B	AND
P ₅	ALAVB	OR
PG	A < A & B	XOR
P ₇	A < ShrA	Shift right
P ₈	A < ShI A	shift left
Pg	1+A > A	Increment

Processor unit

- Selection variables in a processor unit control the micro-operations executed within the processor during a CP.
- Selection variables control the buses, ALU, shifter and the destination register.
- Processor unit consists of registers and status register. The o/p of register go thru 2 MUX to select the i/p of ALU.
- I/p data from external source are also selected by the same MUX.
- O/p of ALU goes to the registers or external destination thru shifter.
- There are 16 selection variables in the unit and their operations are controlled by a control word.

Processor unit continue...

- 16 bit control word, when applied, specifies a micro operation.
- Bit of A selects source register for the i/p to left side of ALU and Bits of B selects the source register for i/p to right side of ALU.
- D field selects the destination register.
- F field together with Cin select a function for ALU.
- H field selects the type of shift in the shifter.
- All 16 bit control words are stored in control memory and each word specify a micro operation.
- The sequence of control word is read from the memory, one at a time, to initiate a desired micro operation. This type of control operation is called micro programming.

The diagram of a processor unit is shown below:

