

Leveraging Big Data - AWS S3, Athena, Sagemaker and QuickSight

TEAM 12

Motivation

Why inventory management analysis?

Target Audience

Who can benefit most from our project?

Business Impact

What is the business value of our project?

Technologies

Why AWS? Why is it superior for smart inventory management involving big data?

Process Flow

what is the general procedure of smart inventory management?

Our Use case

Description of dataset; Results: Feature engineering, modeling, visualisation

01 OUR MOTIVATION

The inability to handle big data leads to the following problems in inventory management:

- Poor service quality,
- Unsatisfied customers,
- Excess/inadequate amount of stock

Hence, deploying a robust analytical framework is extremely important for smart inventory management.

02 TARGET AUDIENCE

Big-data related inventory management has wide applications across industries.

Examples:

Physical Retail stores involving:

- Food and beverage
- Apparel ...

E-Commerce platforms:

- Amazon
- Best Buy ...

PAST

Challenges faced by traditional systems

- Inability to handle high data volumes
- Costly storage
- High Latency due to low computational power
- Poor Integrability with various systems/data sources

NOW

How Big Data solves the challenges?

The value of big data is how quickly patterns and trends can be identified

- Rapid analysis of vast amounts of information at substantially faster speeds.
- Reduced Costs By Migrating to the Cloud
- Seamlessly integrated into existing systems at low costs.

03 BUSINESS IMPACT

- Improved operational efficiency
- Improved customer satisfaction
- Optimized storage costs
- Avoid over or under stocking

WHY AWS? Advantages of AWS

WHY AWS? AWS vs Other Technologies

Comparison Analysis - Monthly basis

On-premise \$33+ per TB AWS S3 \$30 per TB Tableau \$35

Quicksight \$18

Storage

Visualization

04 TECHNOLOGIES

05 PROCESS FLOW

05 PROCESS FLOW

06 OUR USE CASE

Stage 1 - Dataset Stage 2 - Feature Engineering & Modeling Stage 3 -Visualization

DATASET

- Historical sales transactions for bakery goods (BIMBO) in Mexico
- Training data: 7 weeks
- Testing data: 2 weeks
- Data fields:
 - week number
 - sales channel
 - sales depot (id, location town, state)
 - client (id, client name)
 - product (id, product name)

FEATURE ENGINEERING & MODELLING

- Feature processing with Scikit-Learn on Sagemaker notebook
- Prediction using estimators in Sagemaker
- End to end deployment using Amazon Sagemaker Inference pipelines- model computations done in minutes

VISUALIZATIONS

Business Performance Overview

Avg.Units Sold Per Week

78.4M

Avg.Sales Per Week

548.9M

Key Accounts & Top Selling Products

Distribution Highlights

Sales Forecasting for the Upcoming Weeks

Better Arrange Products Based on Forecast

FUTURE SCOPE

- Redshift for data-warehousing
- PetaByte scale capacity

- Kinesis for real time inventory management
- Captures gigabytes of data per second from hundreds of sources

THANKS

Deepak Vohra | vohra016@umn.edu Rishab Prashanth | prash011@umn.edu Sidharth Manne | manne098@umn.edu

Xue Ni | ni000054@umn.edu Xuan Ji | ji000084@umn.edu Ainya Na | namin003@umn.edu

TEAM 12

BIBLIOGRAPHY

- 1. https://aws.amazon.com/s3/
- https://aws.amazon.com/athena/
- 3. https://aws.amazon.com/sagemaker/
- 4. https://aws.amazon.com/quicksight/
- 5. https://channels.theinnovationenterprise.com/articles/how-big-data-is-improving-inventory-management-across-industries
- 6. https://insidebigdata.com/2018/10/18/predictive-analytics-used-inventory-management/
- 7. https://hbr.org/2015/06/inventory-management-in-the-age-of-big-data
- 8. https://www.eazystock.com/blog/4-ways-big-data-is-changing-how-companies-manage-inventory/
- 9. https://www.orderhive.com/how-big-is-big-data-in-inventory-management
- 10. https://www.warehouseanywhere.com/resources/big-data-in-the-supply-chain/