- **5p** | **1.** Să se determine numărul natural x din egalitatea 1+5+9+...+x=231.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $2x^2 5x + 3 \le 0$.
- **5p** 3. Să se determine inversa funcției bijective $f:(0,\infty)\to(1,\infty),\ f(x)=x^2+1$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, ..., 10\}$. Să se determine numărul submulțimilor cu trei elemente ale mulțimii A, care conțin elementul 1.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$, astfel încât distanța dintre punctele A(2,m) și B(m,-2) să fie 4.
- **5p 6.** Să se calculeze $\cos \frac{23\pi}{12} \cdot \sin \frac{\pi}{12}$.

SUBIECTUL I (30p) Varianta 2

- **5p** 1. Să se arate că numărul $(1-i)^{24}$ este real.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $\frac{3x-1}{x+1} + \frac{x+1}{2x-1} = 3$.
- **5p** 3. Să se determine inversa funcției bijective $f : \mathbb{R} \to (1, \infty)$, $f(x) = e^x + 1$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr \overline{ab} din mulțimea numerelor naturale de două cifre, să avem $a \neq b$.
- **5p** | **5.** Să se calculeze lungimea medianei din A a triunghiului ABC, unde A(-2,-1), B(2,0), C(0,6).
- **5p 6.** Fie vectorii $\vec{\mathbf{u}} = m\vec{\mathbf{i}} + 3\vec{\mathbf{j}}$ şi $\vec{\mathbf{v}} = (m-2)\vec{\mathbf{i}} \vec{\mathbf{j}}$. Să se determine m > 0 astfel încât vectorii $\vec{\mathbf{u}}$ şi $\vec{\mathbf{v}}$ să fie perpendiculari.

- **5p 1.** Să se ordoneze crescător numerele $\sqrt{2}$, $\sqrt[3]{4}$, $\sqrt[4]{5}$.
- **5p** 2. Să se determine valoarea minimă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^2 8x + 1$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\lg(x-1) + \lg(6x-5) = 2$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie pătrat perfect.
- **5p 5.** Să se determine ecuația dreptei care trece prin punctul A(6,4) și este perpendiculară pe dreapta d: 2x-3y+1=0.
- **5p 6.** Ştiind că $\sin \alpha = \frac{1}{3}$, să se calculeze $\cos 2\alpha$.

- **5p** 1. Să se arate că numărul $\left(\frac{1}{1-\mathbf{i}} \frac{1}{1+\mathbf{i}}\right)^2$ este real.
- **5p 2.** Să se arate că vârful parabolei $y = x^2 + 5x + 1$ este situat în cadranul III.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $9^x 10 \cdot 3^{x-1} + 1 = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă exact două cifre egale.
- 5p 5. Să se determine $\mathbf{a} \in \mathbb{R}$ pentru care vectorii $\mathbf{u} = \mathbf{a}\mathbf{i} + (\mathbf{a}+1)\mathbf{j}$ și $\mathbf{v} = -(5\mathbf{a}-1)\mathbf{i} + 2\mathbf{j}$ sunt perpendiculari.
- **5p 6.** Să se calculeze lungimea laturii **BC** a triunghiului ascuțitunghic ABC știind că AB = 6, AC = 10 și că aria triunghiului ABC este egală cu $15\sqrt{3}$.

SUBIECTUL I (30p) Varianta 5

- **5p 1.** Să se calculeze $\frac{1}{1+2i} + \frac{1}{1-2i}$.
- **5p** 2. Să se rezolve în \mathbb{Z} inecuația $\mathbf{x}^2 10\mathbf{x} + 12 \le 0$.
- **5p** 3. Să se determine inversa funcției bijective $f:(1,\infty) \to (0,\infty)$, $f(x) = 3\log_2 x$.
- **5p 4.** Să se determine numărul funcțiilor $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ cu proprietatea că f(1) = f(4).
- **5p 5.** Să se determine coordonatele vârfului **D** al paralelogramului **ABCD** știind că A(-2,9), B(7,-4), C(8,-3).
- **5p 6.** Triunghiul ABC are $B = \frac{\pi}{3}$ și lungimea razei cercului circumscris egală cu 1. Să se calculeze lungimea laturii AC.

- **5p 1.** Să se calculeze suma tuturor numerelor naturale de două cifre care se divid cu 11.
- **5p** 2. Să se determine funcția f de gradul al doilea știind că f(-1)=1, f(0)=1, f(1)=3.
- **5p** 3. Să se rezolve în mulțimea $(0,\pi)$ ecuația $\sin 3x = \sin x$.
- **5p 4.** Câte numere naturale de trei cifre distincte se pot forma cu elemente ale mulțimii {2,4,6,8}?
- **5p 5.** Se consideră triunghiul ABC cu vârfurile în A(1,2), B(2,-2) și C(4,6). Să se calculeze $\cos B$.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris triunghiului ABC știind că $C = \frac{\pi}{6}$ și AB = 6.

- **5p 1.** Să se calculeze modulul numărului complex $z = \frac{8+i}{7-4i}$.
- **5p** 2. Să se determine valoarea maximă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 6x 9$.
- **5p 3.** Să se rezolve în mulțimea $[0,2\pi)$ ecuația $\sin x = -\frac{1}{2}$.
- **5p 4.** Să se determine $n \in \mathbb{N}^*$ pentru care mulțimea $\{1, 2, ..., n\}$ are exact 120 de submulțimi cu două elemente.
- 5p 5. Se știe că, în triunghiul ABC, vectorii $\overrightarrow{AB} + \overrightarrow{AC}$ și $\overrightarrow{AB} \overrightarrow{AC}$ au același modul. Să se demonstreze că triunghiul ABC este dreptunghic.
- **5p 6.** Să se calculeze lungimea razei cercului înscris în triunghiul *ABC* care are lungimile laturilor egale cu 3, 4 și 5.

SUBIECTUL I (30p) Varianta 8

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $z^2 = -4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^2 + x + c$. Știind că punctele A(1,2) și B(0,3) aparțin graficului funcției f, să se determine numerele reale a și c.
- **5p** 3. Să se rezolve în multimea numerelor reale ecuația $\sqrt[3]{7x+1} x = 1$.
- **5p 4.** Câte numere naturale de patru cifre distincte se pot forma cu cifre din mulțimea {1,3,5,7,9}?
- 5p 5. Se consideră paralelogramul ABCD și punctele E și F astfel încât $\overrightarrow{AE} = \overrightarrow{EB}$, $\overrightarrow{DF} = 2\overrightarrow{FE}$. Să se demonstreze că punctele A, F și C sunt coliniare.
- **5p 6.** Fie triunghiul ABC. Să se calculeze lungimea înălțimii corespunzătoare laturii BC știind că AB = 13, AC = 14 și BC = 15.

- **5p 1.** Să se determine numărul natural x pentru care 1+3+5+...+x=225.
- **5p** 2. Să se determine valorile parametrului real **m** știind că graficul funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx 2m$ intersectează axa Ox în două puncte situate la distanța 3.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2(2^{-x+1}+1) = x$.
- **5p 4.** Să se arate că $C_{17}^3 > C_{17}^{15}$
- 5p | 5. Fie hexagonul regulat ABCDEF de latură 4. Să se calculeze modulul vectorului $\overrightarrow{AC} + \overrightarrow{BD}$.
- **5p 6.** Să se arate că $\sin^2 1^\circ + \sin^2 2^\circ + ... + \sin^2 90^\circ = \frac{91}{2}$

- **5p 1.** Ştiind că $z \in \mathbb{C}$ şi că $z^2 + z + 1 = 0$, să se calculeze $z^4 + \frac{1}{z^4}$.
- **5p** 2. Să se determine funcția f de gradul întâi, pentru care f(f(x)) = 2f(x) + 1, oricare ar fi $x \in \mathbb{R}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\lg(x+1) \lg 9 = 1 \lg x$.
- **5p 4.** Să se determine numărul termenilor raționali din dezvoltarea $(3+\sqrt[3]{3})^{10}$.
- **5p 5.** Să se determine coordonatele centrului de greutate al triunghiului ABC, știind că A(-1,0), B(0,2), C(2,-1).
- **5p 6.** Să se arate că unghiul vectorilor $\vec{u} = 5\vec{i} 4\vec{j}$ și $\vec{v} = 2\vec{i} + 3\vec{j}$ este obtuz.

SUBIECTUL I (30p) Varianta 11

- **5p 1.** Să se determine $a, b \in \mathbb{R}$ știind că numerele 2, a, b sunt în progresie geometrică și 2, 17, a sunt în progresie aritmetică.
- **5p** 2. Să se rezolve ecuația f(f(x)) = 0, știind că $f: \mathbb{R} \to \mathbb{R}$, f(x) = -3x + 2.
- **5p** | **3.** Să se rezolve în mulțimea $[0,2\pi)$ ecuația tg(-x) = 1 2tg x.
- **5p 4.** Să se determine numărul funcțiilor $f:\{0,1,2\} \rightarrow \{0,1,2\}$ care verifică relația f(2)=2.
- 5p 5. Se consideră triunghiul ABC și punctele D, E astfel încât $\overrightarrow{AD} = 2\overrightarrow{DB}$, $\overrightarrow{AE} = 2\overrightarrow{EC}$. Să se arate că dreptele DE și BC sunt paralele.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris triunghiului ABC, dacă $A = \frac{\pi}{4}$, $B = \frac{\pi}{6}$ și AB = 6.

- **5p 1.** Să se calculeze $\frac{1}{1+i} + \frac{1}{1-i}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $\frac{x+1}{x+2} + \frac{x+2}{x+3} = \frac{7}{6}$.
- **5p** 3. Să se rezolve în mulțimea $[0,2\pi)$ ecuația $\cos 2x = \frac{1}{2}$.
- **5p 4.** Să se determine a > 0 știind că termenul din mijloc al dezvoltării $\left(\sqrt[3]{a} + \frac{1}{\sqrt[4]{a}} \right)^{12}$ este egal cu 1848.
- **5p 5.** Să se determine ecuația simetricei dreptei d: 2x-3y+1=0 față de punctul A(-3,4).
- **5p 6.** Știind că $\operatorname{ctg} x = 3$, să se calculeze $\operatorname{ctg} 2x$.

- **5p 1.** Să se arate că numărul $(1+i\sqrt{3})^2 + (1-i\sqrt{3})^2$ este număr întreg.
- **5p 2.** Să se rezolve în $\mathbb{R} \times \mathbb{R}$ sistemul de ecuații $\begin{cases} x + y = 4 \\ xy = 3 \end{cases}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\mathbf{x} = 6(\sqrt{\mathbf{x} 2} 1)$.
- **5p 4.** Să se determine termenul care nu conține pe x din dezvoltarea $\left(x^2 + \frac{1}{x}\right)^9$.
- **5p 5.** Să se calculeze distanța de la punctul A(3,0) la dreapta d:3x-4y+1=0.
- **5p 6.** Triunghiul ABC are AB = 4, BC = 5 și CA = 6. Să se arate că $m(\prec B) = 2m(\prec C)$.

SUBIECTUL I (30p) Varianta 14

- **5p 1.** Să se calculeze $\lg \frac{1}{2} + \lg \frac{2}{3} + \lg \frac{3}{4} + ... + \lg \frac{99}{100}$.
- **5p** 2. Să se determine $\mathbf{a} \in \mathbb{R}^*$ pentru care $(\mathbf{a} 3)\mathbf{x}^2 \mathbf{a}\mathbf{x} \mathbf{a} < 0$, oricare ar fi $\mathbf{x} \in \mathbb{R}$.
- **5p** 3. Să se rezolve în multimea numerelor reale ecuația $\sqrt[3]{8-x} = \sqrt[3]{9-4x}$.
- **5p 4.** Să se determine numărul elementelor unei mulțimi știind că aceasta are exact 45 de submulțimi cu două elemente.
- **5p 5.** Să se determine ecuația dreptei AB știind că A(2,3) și B(-5,4).
- **5p 6.** Triunghiul ABC ascuţitunghic are $AC = 2\sqrt{3}$ şi lungimea razei cercului circumscris egală cu 2. Să se determine măsura unghiului B.

- **5p 1.** Să se calculeze $\log_3(5-\sqrt{7}) + \log_3(5+\sqrt{7}) \log_3 2$.
- **5p 2.** Să se determine funcția de gradul al doilea al cărei grafic este tangent la axa **Ox** în punctul (1,0) și trece prin punctul (0,2).
- **5p** 3. Să se rezolve în mulțimea $[0, 2\pi)$ ecuația $\sin x + \cos x = 0$.
- **5p 4.** Câte numere naturale de patru cifre se pot forma cu elemente ale mulțimii {1,3,5,7,9} ?
- **5p 5.** Să se determine ecuația dreptei care conține punctul A(-2,2) și este paralelă cu dreapta determinată de punctele C(2,1), D(-1,-3).
- **5p 6.** Fie $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ astfel încât $\cos \alpha = -\frac{5}{13}$. Să se calculeze $\sin \alpha$.

- 5p 1. Să se calculeze modulul numărului complex $z = \frac{2-i}{2+i}$.
- **5p** 2. Să se determine $\mathbf{a} \in \mathbb{R}$ pentru care $\mathbf{x}^2 + \mathbf{a}\mathbf{x} + 2 \ge 0$, oricare ar fi numărul real \mathbf{x} .
- **5p** 3. Să se rezolve în intervalul [-1,1] ecuația $\arcsin \frac{1}{2} + \arcsin x = \frac{\pi}{3}$.
- 5p 4. Să se rezolve ecuația $C_n^8 = C_n^{10}$, $n \in \mathbb{N}$, $n \ge 10$.
- **5p** | **5.** Să se afle măsura celui mai mare unghi al triunghiului ABC știind că A(2,-2), B(2,3), C(-2,3).
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ astfel încât $\sin \alpha = \frac{3}{5}$. Să se calculeze $\sin 2\alpha$.

SUBIECTUL I (30p) Varianta 17

- **5p** 1. Să se arate că numărul $(1+i\sqrt{3})^3$ este întreg.
- **5p 2.** Să se determine imaginea funcției $f : \mathbb{R} \to \mathbb{R}, f(x) = x^2 x + 2$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{-2x+1} = 5$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr \overline{ab} din mulțimea numerelor naturale de două cifre, să avem a + b = 4.
- **5p 5.** Să se determine ecuația dreptei care trece prin punctul A(-1,1) și este perpendiculară pe dreapta d:5x-4y+1=0.
- **5p 6.** Să se calculeze perimetrul triunghiului ABC știind că AB = 6, $B = \frac{\pi}{4}$ și $C = \frac{\pi}{6}$.

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $x^2 2x + 4 = 0$.
- **5p** 2. Să se afle valoarea minimă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$.
- **5p** 3. Să se rezolve în intervalul [-1,1] ecuația $\arcsin x + \arccos \frac{1}{\sqrt{2}} = \frac{\pi}{2}$.
- **5p 4.** Care este probabilitatea ca, alegând un număr k din mulțimea $\{0,1,2,...,7\}$, numărul C_7^k să fie prim.
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ pentru care vectorii $\vec{u} = a\vec{i} + 3\vec{j}$ și $\vec{v} = 4\vec{i} + (a+4)\vec{j}$ sunt coliniari.
- **5p 6.** Să se calculeze $\overline{AB} \cdot (\overline{AC} + \overline{BC})$, știind că A(-3,4), B(4,-3) și C(1,2).

- **5p 1.** Să se ordoneze crescător numerele $\sqrt{3}$, $\sqrt[3]{5}$, $\sqrt[4]{8}$.
- **5p** 2. Să se determine funcția $f : \mathbb{R} \to \mathbb{R}$ știind că graficul său și graficul funcției $g : \mathbb{R} \to \mathbb{R}$, g(x) = -3x + 3 sunt simetrice față de dreapta x = 1.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $3^{2x+1} 10 \cdot 3^{x+1} + 27 = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă toate cifrele pare.
- **5p 5.** Să se determine ecuația medianei duse din vârful A al triunghiului ABC, unde A(1,2), B(2,3) și C(2,-5).
- **5p 6.** Să se arate că ctg $2 = \frac{\text{ctg } 1 \text{tg } 1}{2}$

SUBIECTUL I (30p) Varianta 20

- **5p** 1. Să se arate că $2 \in (\log_3 4, \sqrt{5})$.
- **5p** 2. Să se rezolve în mulțimea numerelor complexe ecuația $x^2 2x + 2 = 0$.
- **5p** 3. Să se rezolve în $[0,2\pi)$ ecuația $\sin x + \cos x = -1$.
- **5p 4.** Să se calculeze $C_4^4 + C_5^4 + C_6^4$.
- **5p 5.** Pe laturile AB și AC ale triunghiului ABC se consideră punctele M, respectiv N astfel încât $\overline{AM} = 4\overline{MB}$ și MN || BC. Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât $\overline{CN} = \mathbf{m}\,\overline{AC}$.
- **5p 6.** Să se calculeze perimetrul triunghiului **OAB**, știind că O(0,0), A(-1,2) și B(-2,3).

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $x^2 8x + 25 = 0$.
- **5p** 2. Să se determine $a \in \mathbb{R}$, pentru care graficul funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (a+1)x^2 + 3(a-1)x + a 1$, intersectează axa Ox în două puncte distincte.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+8-6\sqrt{x-1}}=1$.
- **5p 4.** Să se calculeze $C_8^4 C_7^4 C_7^3$.
- **5p** | **5.** Să se determine ecuația perpendicularei duse din punctul A(1,2) pe dreapta d: x+y-1=0.
- **5p 6.** Ştiind că $\sin x = \frac{1}{3}$, să se calculeze $\cos 2x$.

- **5p 1.** Să se calculeze $1 + i + i^2 + ... + i^{10}$.
- **5p** 2. Se consideră funcțiile $f, g: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$, g(x) = 2x 1. Să se rezolve ecuația $(f \circ g)(x) = 0$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\lg(x+9) + \lg(7x+3) = 1 + \lg(x^2+9)$.
- **5p 4.** Să se rezolve inecuația $C_n^2 < 10$, $n \ge 2$, n natural.
- **5p 5.** Se consideră dreptele paralele de ecuații \mathbf{d}_1 : $\mathbf{x} 2\mathbf{y} = 0$ și \mathbf{d}_2 : $2\mathbf{x} 4\mathbf{y} 1 = 0$. Să se calculeze distanța dintre cele două drepte.
- **5p 6.** Să se calculeze $\sin 75^{\circ} + \sin 15^{\circ}$.

SUBIECTUL I (30p) Varianta 23

- **5p 1.** Să se calculeze suma primilor 20 de termeni ai progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_4 a_2 = 4$ și $a_1 + a_3 + a_5 + a_6 = 30$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $\frac{2x+3}{x+2} = \frac{x-1}{x-2}$.
- **5p** 3. Să se calculeze $\operatorname{tg}\left(\frac{\pi}{2} \operatorname{arctg}\frac{1}{2}\right)$.
- **4.** Să se determine probabilitatea ca, alegând un element **n** din mulțimea $\{1,2,3,...,40\}$, numărul $2^{n+2} \cdot 6^n$ să fie pătrat perfect.
- **5p 5.** Să se calculeze coordonatele centrului de greutate al triunghiului ABC, dacă A(5,-3), B(2,-1), C(0,9).
- **5p 6.** Știind că $tg\alpha = 2$, să se calculeze $sin 4\alpha$.

- 5p 1. Să se calculeze $z + \frac{1}{z}$ pentru $z = \frac{-1 + i\sqrt{3}}{2}$.
- **5p** 2. Să se determine funcția de gradul al doilea $f : \mathbb{R} \to \mathbb{R}$ pentru care f(-1) = f(1) = 0, f(2) = 6.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2 x + \log_4 x + \log_8 x = \frac{11}{6}$.
- **5p** 4. Să se demonstreze că dacă $\mathbf{x} \in \mathbb{R}$ și $|\mathbf{x}| \ge 1$, atunci $(1+\mathbf{x})^2 + (1-\mathbf{x})^2 \ge 4$.
- **5p** $\mathbf{5}$. Să se determine ecuația înălțimii duse din \mathbf{B} în triunghiul \mathbf{ABC} , știind că $\mathbf{A}(0,9)$, $\mathbf{B}(2,-1)$ și $\mathbf{C}(5,-3)$.
- **5p** 6. Să se calculeze $(2\vec{i} + 5\vec{j}) \cdot (3\vec{i} 4\vec{j})$.

- **5p 1.** Să se calculeze (1-i)(1+2i)-3(2-i).
- **5p** 2. Să se arate că pentru oricare $a \in \mathbb{R}^*$, dreapta y = x + 4 intersectează parabola $y = ax^2 + (a 2)x + 1$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2^{2x} 3 \cdot 2^{x+1} + 8 = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea $\{10,11,12,...,40\}$, suma cifrelor lui să fie divizibilă cu 3.
- **5.** În triunghiul ABC punctele M, N, P sunt mijloacele laturilor. Fie H ortocentrul triunghiului MNP. Să se demonstreze că AH = BH = CH.
- **5p 6.** Să se calculeze $\sin\left(\frac{\pi}{6} + \frac{\pi}{4}\right) + \sin\left(\frac{\pi}{6} \frac{\pi}{4}\right)$.

SUBIECTUL I (30p) Varianta 20

- **5p** | **1.** Fie \mathbf{z}_1 și \mathbf{z}_2 soluțiile complexe ale ecuației $2\mathbf{z}^2 + \mathbf{z} + 50 = 0$. Să se calculeze $|\mathbf{z}_1| + |\mathbf{z}_2|$.
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = 1 2x. Să se arate că funcția $f \circ f \circ f$ este strict descrescătoare.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = 2$.
- **5p 4.** Fie mulțimea $A = \{-2, -1, 0, 1, 2\}$ și o funcție bijectivă $f : A \rightarrow A$. Să se calculeze f(-2) + f(-1) + f(0) + f(1) + f(2).
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(-1, 3) și B(1, -1). Să se determine ecuația mediatoarei segmentului AB.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ cu $\sin \alpha = \frac{1}{3}$. Să se calculeze $\operatorname{tg} \alpha$.

- **5p 1.** Să se calculeze modulul numărului complex $z = 1 + i + i^2 + i^3 + ... + i^6$.
- **5p** 2. Să se determine valoarea maximă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -2x^2 + x$.
- **5p** | **3.** Să se rezolve în intervalul (0; ∞) ecuația $\lg^2 x + 5\lg x 6 = 0$.
- **5p** | **4.** Să se determine numărul funcțiilor $f:\{0,1,2,3\} \rightarrow \{0,1,2,3\}$ care au proprietatea f(0) = f(1) = 2.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele O(0, 0), A(1, 2) și B(3, 1). Să se determine măsura unghiului AOB.
- **5p 6.** Ştiind că $\alpha \in \mathbb{R}$ şi că $\sin \alpha + \cos \alpha = \frac{1}{3}$, să se calculeze $\sin 2\alpha$.

- **5p** 1. Să se calculeze $(1+i)^{10} + (1-i)^{10}$.
- **5p** 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 6x 3x^2$. Să se ordoneze crescător numerele $f(\sqrt{2})$, $f(\sqrt{3})$ și f(2).
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{2x-1} = 3$.
- **5p 4.** Să se determine numărul funcțiilor **f**: {0,1,2,3} → {0,1,2,3} care au proprietatea că **f** (0) este număr impar.
- 5p 5. Fie triunghiul ABC și $M \in (BC)$ astfel încât $\frac{BM}{BC} = \frac{1}{3}$. Să se demonstreze că $\overline{AM} = \frac{2}{3}\overline{AB} + \frac{1}{3}\overline{AC}$.
- **5p 6.** Știind că $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ și că $\sin \alpha = \frac{3}{5}$, să se calculeze $\operatorname{tg} \alpha$.

SUBIECTUL I (30p) Varianta 29

- **5p** 1. Să se demonstreze că numărul $\mathbf{a} = \sqrt{7 + 4\sqrt{3}} + \sqrt{7 4\sqrt{3}}$ este număr natural.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 5x + 2$. Să se rezolve inecuația $f(2x) \le 0$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\mathbf{x} = \sqrt{2-\mathbf{x}}$.
- **5p 4.** Să se calculeze probabilitatea ca, alegând o mulțime din mulțimea submulțimilor nevide ale mulțimii $A = \{1, 2, 3, 4, 5, 6\}$, aceasta să aibă toate elementele impare.
- **5p 5.** Fie punctele A(2,0), B(1,1) și C(3,-2). Să se calculeze $\sin \widehat{ACB}$.
- **5p 6.** Știind că $\alpha \in \left(0, \frac{\pi}{2}\right)$ și că $\operatorname{tg} \alpha + \operatorname{ctg} \alpha = 2$, să se calculeze $\sin 2\alpha$.

- **5p 1.** Să se demonstreze că numărul $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}$ este natural.
- **5p 2.** Se consideră funcția $\mathbf{f}: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 mx + 2$. Să se determine mulțimea valorilor parametrului real m pentru care graficul funcției f intersectează axa Ox în două puncte distincte.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_3(x+1) + \log_3(x+3) = 1$.
- **5p 4.** Să se calculeze probabilitatea ca, alegând o mulțime din mulțimea submulțimilor nevide ale mulțimii $A = \{1, 2, 3, 4, 5\}$, aceasta să aibă produsul elementelor 120.
- **5p 5.** Se consideră punctele A(0,2), B(1,-1) și C(3,4). Să se calculeze coordonatele centrului de greutate al triunghiului ABC.
- **5p 6.** Să se demonstreze că $\sin \frac{\pi}{8} = \frac{\sqrt{2-\sqrt{2}}}{2}$.

- **5p 1.** Ştiind că $\log_3 2 = \mathbf{a}$, să se arate că $\log_{16} 24 = \frac{1+3\mathbf{a}}{4\mathbf{a}}$.
- **5p** | **2.** Să se determine două numere reale care au suma 1 și produsul −1.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $2^{2x+1} + 2^{x+2} = 160$.
- **4.** Într-o clasă sunt 22 de elevi, dintre care 12 sunt fete. Să se determine în câte moduri se poate alege un comitet reprezentativ al clasei format din 3 fete și 2 băieți.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1) și C(1,3). Să se determine ecuația dreptei care trece prin punctul C și este paralelă cu dreapta AB.
- **5p 6.** Să se arate că $\sin 6 < 0$.

SUBIECTUL I (30p) Varianta 32

- **5p** 1. Se consideră numărul real $s = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{2009}}$. Să se demonstreze că $s \in (1; 2)$.
- 5p 2. Se consideră funcțiile $f, g: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1 și g(x) = -4x + 1. Să se determine coordonatele punctului de intersecție a graficelor celor două funcții.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin x = 1 + \cos^2 x$.
- **5p 4.** Fie mulțimea $A = \{-2, -1, 0, 1, 2\}$. Să se determine numărul funcțiilor pare $f : A \to A$.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1) și C(1,3). Să se determine coordonatele punctului D știind că patrulaterul ABCD este paralelogram.
- **5p 6.** Știind că $\mathbf{x} \in \left(\frac{\pi}{2}; \pi\right)$ și că $\sin \mathbf{x} = \frac{3}{5}$, să se calculeze $\sin \frac{\mathbf{x}}{2}$.

- **5p 1.** Să se arate că numărul $\log_4 16 + \log_3 9 + \sqrt[3]{27}$ este natural.
- **5p** 2. Să se determine valoarea minimă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 4x + 2$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $16^x + 3 \cdot 4^x = 4$.
- **5p 4.** Să se calculeze probabilitatea ca, alegând un element din mulțimea $\{\sqrt{n} \mid n \in \mathbb{N}, n < 100\}$, acesta să fie număr rațional.
- **5p 5.** În sistemul cartezian de coordonate **xOy** se consideră punctele A(2,-1), B(-1,1), C(1,3) și D(a,4), unde $a \in \mathbb{R}$. Să se determine $a \in \mathbb{R}$ astfel încât dreptele AB și CD să fie paralele.
- **5p 6.** Știind că $x \in \mathbb{R}$ și că tg $x = \frac{1}{2}$, să se calculeze tg $\left(x + \frac{\pi}{3}\right)$.

- **5p 1.** Să se calculeze modulul numărului complex $\mathbf{z} = (3+4\mathbf{i})^4$.
- **5p 2.** Să se arate că vârful parabolei asociate funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 + 2x + 1$ se găsește pe dreapta de ecuație x + y = 0.
- **5p** 3. Să se determine numărul soluțiilor ecuației $\sin x = \sin 2x$ din intervalul $[0, 2\pi)$.
- **5p 4.** Fie mulțimea $A = \{1, 2, 3, 4, 5\}$. Să se determine numărul funcțiilor bijective $f : A \rightarrow A$, cu proprietatea că f(1) = 2.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1), C(1,3) și D(a,4), $a \in \mathbb{R}$. Să se determine $a \in \mathbb{R}$ pentru care dreptele AB și CD sunt perpendiculare.
- **5p 6.** Se consideră triunghiul ascuțitunghic ABC în care are loc relația $\sin B + \cos B = \sin C + \cos C$. Să se demonstreze că triunghiul ABC este isoscel.

SUBIECTUL I (30p) Varianta 35

- **5p 1.** Să se calculeze modulul numărului $(2+i)^3 + (2-i)^3$.
- **5p 2.** Graficul unei funcții de gradul al doilea este o parabolă care trece prin punctele A(1,-3), B(-1,3), C(0,1). Să se calculeze valoarea funcției în punctul x=2.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $3 \cdot 4^x 6^x = 2 \cdot 9^x$.
- **4.** Se consideră mulțimea A = {0,1,2,..., 2009}. Să se determine probabilitatea ca, alegând un element din mulțimea A, acesta să fie divizibil cu 5.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(0,-3) și B(4, 0). Să se calculeze distanța de la punctul O la dreapta AB.
- **5p 6.** Să se calculeze aria unui paralelogram ABCD cu AB = 6, AD = 8 şi $m (\angle ADC) = 135^{\circ}$.

- **5p 1.** Se consideră numărul rațional $\frac{1}{7}$ scris sub formă de fracție zecimală infinită $\frac{1}{7} = 0, a_1 a_2 a_3 \dots$ Să se determine a_{60} .
- **5p** 2. Fie funcțiile $f, g: \mathbb{R} \to \mathbb{R}$, f(x) = 2 x, g(x) = 3x + 2. Să se calculeze $(f \circ g)(x) (g \circ f)(x)$.
- **5p** 3. Să se demonstreze că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^3 + 1$ este injectivă.
- **5p 4.** Să se calculeze probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să fie divizibil cu 50.
- **5p** | **5.** Să se determine $a \in \mathbb{R}$ pentru care punctele A(1,-2), B(4,1) și C(-1,a) sunt coliniare.
- **5p 6.** Fie *ABC* un triunghi care are AB = 3, AC = 5 şi BC = 7. Să se calculeze $\cos A$.

- **5p 1.** Să se calculeze suma 1+4+7+...+100.
- **5p** 2. Să se determine imaginea funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$.
- **5p** 3. Să se arate că numărul $\sin\left(\arcsin\frac{1}{2}\right) + \sin\left(\arccos\frac{\sqrt{3}}{2}\right)$ este natural.
- **5p 4.** Să se determine numărul termenilor raționali din dezvoltarea binomului $(\sqrt{2} + 1)^5$.
- **5p** | **5.** Fie ABCD un pătrat de latură 1. Să se calculeze lungimea vectorului $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$.
- **5p 6.** Să se arate că $\sin 105^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.

SUBIECTUL I (30p) Varianta 38

- **5p 1.** Să se arate că $\log_2 3 \in (1,2)$.
- **5p** 2. Să se determine valorile reale ale lui **m** pentru care $\mathbf{x}^2 + 3\mathbf{x} + \mathbf{m} > 0$, oricare ar fi $\mathbf{x} \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin x + \cos(-x) = 1$.
- **5p 4.** Să se arate că, pentru orice număr natural \mathbf{n} , $\mathbf{n} \ge 3$, are loc relația $\mathbf{C_n}^2 + \mathbf{C_n}^3 = \mathbf{C_{n+1}}^3$.
- 5p 5. Se consideră dreptele de ecuații $\mathbf{d}_1: 2\mathbf{x} + 3\mathbf{y} + 1 = 0$, $\mathbf{d}_2: 3\mathbf{x} + \mathbf{y} 2 = 0$ și $\mathbf{d}_3: \mathbf{x} + \mathbf{y} + \mathbf{a} = 0$. Să se determine $\mathbf{a} \in \mathbb{R}$ pentru care cele trei drepte sunt concurente.
- **5p** | **6.** Să se calculeze perimetrul triunghiului ABC, știind că AB = 4, AC = 3 și $m(\angle BAC) = 60^{\circ}$.

- **5p** 1. Se consideră numărul complex $z = \frac{-1 + i\sqrt{3}}{2}$. Să se demonstreze că $z^2 = \overline{z}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $-x^2 + 4x 3 \ge 0$.
- **5p** 3. Să se arate că funcția $f:(1,\infty) \to \mathbb{R}$, $f(x) = x + \frac{1}{x}$ este injectivă.
- **5p 4.** Să se determine numărul funcțiilor $f:\{1,2,3\} \rightarrow \{0,1,2,3\}$ pentru care f(1) este număr par.
- **5p** | **5.** Fie ABC un triunghi care are AB = 2, AC = 3 şi $BC = 2\sqrt{2}$. Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- **5p 6.** Să se arate că $\sin 15^{\circ} = \frac{\sqrt{6} \sqrt{2}}{4}$.

- **5p 1.** Se consideră $\mathbf{a} \in \mathbb{R}$ și numărul complex $\mathbf{z} = \frac{\mathbf{a} + 2\mathbf{i}}{2 + \mathbf{a}\mathbf{i}}$. Să se determine **a** pentru care $\mathbf{z} \in \mathbb{R}$.
- **5p 2.** Să se demonstreze că dreapta de ecuație y = 2x + 3 intersectează parabola de ecuație $y = x^2 4x + 12$ într-un singur punct.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{2x-1} = x$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, 4, 5, 6\}$. Să se determine probabilitatea ca, alegând o pereche (a, b) din produsul cartezian $A \times A$ să avem egalitatea a + b = 6.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele M (2,-1), A(1, 2) și B(4, 1). Să se determine lungimea vectorului $\overrightarrow{MA} + \overrightarrow{MB}$.
- **5p 6.** Să se arate că $\sin(a+b) \cdot \sin(a-b) = \sin^2 a \sin^2 b$, pentru oricare $a,b \in \mathbb{R}$.

SUBIECTUL I (30p)

Varianta 41

- **5p 1.** Să se arate că numărul $100^{\lg 2} + \sqrt[3]{-27}$ este natural.
- **5p** 2. Să se determine imaginea funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{2x}{x^2 + 1}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $3^{x+1} = -3^x + 8$.
- **5p** 4. Să se determine numărul funcțiilor $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ care au proprietatea că f(1)+f(3)=7.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1) și B(-1,1). Să se determine ecuația dreptei care trece prin originea axelor și este paralelă cu dreapta AB.
- **5p 6.** Fie **a** şi **b** numere reale astfel încât sin **a** + sin **b** = 1 şi cos **a** + cos **b** = $\frac{1}{2}$. Să se calculeze cos (**a b**).

SUBIECTUL I (30p)

Varianta 42

- **5p** 1. Să se calculeze partea întreagă a numărului $1 \frac{1}{3} + \frac{1}{3^2} \frac{1}{3^3}$.
- 5p 2. Să se rezolve în $\mathbb{R} \times \mathbb{R}$ sistemul $\begin{cases} y = x^2 3x + 1 \\ y = 2x^2 + x + 4 \end{cases}$
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\arctan x + \arctan \frac{1}{3} = \frac{\pi}{2}$.
- **5p 4.** Să se determine numărul termenilor raționali ai dezvoltării $(\sqrt[4]{5} + 1)^{100}$.
- **5p 5.** Să se arate că punctele A(-1, 5), B(1,1) și C(3,-3) sunt coliniare.
- **5p** | **6.** Să se calculeze lungimea razei cercului înscris în triunghiul care are lungimile laturilor 4, 5 și 7.

- **5p 1.** Să se determine valoarea de adevăr a propoziției: "Suma oricăror două numere iraționale este număr irational."
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 2. Să se rezolve ecuația $f(f(x)) = f^2(x)$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $4^x 2^x = 12$.
- 5p 4. Fie mulțimea $A = \{1, 2, 3, 4, 5, 6\}$. Să se calculeze probabilitatea ca, alegând o pereche (a, b) din mulțimea $A \times A$, produsul numerelor a și b să fie impar.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(1, 3) și C(-1, 1). Să se calculeze aria pătratului de diagonală AC.
- **5p 6.** Să se arate că $\sin 105^{\circ} + \sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{2}$.

SUBIECTUL I (30p) Varianta 44

- **5p 1.** Să se determine partea reală a numărului complex $z = \frac{1-i}{1+i}$.
- **5p** 2. Să se determine valorile reale ale lui **m** pentru care $\mathbf{x}^2 + \mathbf{m}\mathbf{x} + 1 \ge 0$, oricare ar fi $\mathbf{x} \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\arcsin 2x = -\frac{1}{2}$.
- **5p 4.** Se consideră mulțimea A = {0,1,2,3, ...,9}. Să se determine numărul submulțimilor mulțimii A care au 5 elemente, din care exact două sunt numere pare.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele B(-1, 2) și C(2, -2). Să se determine distanța de la punctul O la dreapta BC.
- **5p 6.** Știind că $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ și $\sin \alpha = \frac{3}{5}$, să se calculeze $\cot \alpha$.

- **5p 1.** Să se determine partea întreagă a numărului $\frac{7}{5\sqrt{2}-1}$.
- **5p** 2. Fie \mathbf{x}_1 și \mathbf{x}_2 soluțiile reale ale ecuației $\mathbf{x}^2 + \mathbf{x} 1 = 0$. Să se arate că $\frac{\mathbf{x}_1}{\mathbf{x}_2} + \frac{\mathbf{x}_2}{\mathbf{x}_1} \in \mathbb{Z}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2 \cdot 3^x + 3^{1-x} = 7$.
- **5p 4.** Se consideră mulțimile $A = \{1, 2, 3, 4\}$ și $B = \{1, 2, 3, 4, 5, 6\}$. Să se determine numărul funcțiilor strict crescătoare $f: A \rightarrow B$.
- **5p 5.** În sistemul cartezian de coordonate xOy se consideră punctele A(1, 3), B(-2, 1) și C(-3, -1). Să se calculeze lungimea înălțimii duse din vârful A în triunghiul ABC.
- **5p 6.** Să arate că $2 \cdot (\sin 75^\circ \sin 15^\circ) = \sqrt{2}$.

- **5p 1.** Fie $(\mathbf{a_n})_{\mathbf{n} \ge 1}$ o progresie aritmetică. Știind că $\mathbf{a_3} + \mathbf{a_{19}} = 10$, să se calculeze $\mathbf{a_6} + \mathbf{a_{16}}$.
- **5p 2.** Să se determine valorile parametrului real **m** pentru care ecuația $\mathbf{x}^2 \mathbf{m}\mathbf{x} + 1 \mathbf{m} = 0$ are două rădăcini reale distincte.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\lg^2 x + \lg x = 6$.
- **5p 4.** Se consideră mulțimile $A = \{1, 2, 3\}$ și $B = \{1, 2, 3, 4, 5\}$. Să se determine numărul funcțiilor strict descrescătoare $f : A \rightarrow B$, cu proprietatea că f(3) = 1.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele M(2,-1), N(-1,1) și P(0,3). Să se determine coordonatele punctului Q astfel încât MNPQ să fie paralelogram.
- **5p 6.** Să se calculeze lungimea medianei duse din A în triunghiul ABC, știind că AB = 2, AC = 3 și BC = 4.

SUBIECTUL I (30p) Varianta 47

- **5p** 1. Să se arate că numărul $(2+i)^4 + (2-i)^4$ este întreg.
- **5p** 2. Să se determine coordonatele punctelor de intersecție dintre dreapta de ecuație y = 2x + 1 și parabola de ecuație $y = x^2 + x + 1$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2x + \sqrt{16 + x^2} = 11$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de patru cifre, acesta să fie divizibil cu 9.
- 5p 5. În sistemul cartezian de coordonate xOy se consideră punctele A(-1, 1), B(1, 3) și C(3, 2). Fie G centrul de greutate al triunghiului ABC. Să se determine ecuația dreptei OG.
- **5p 6.** Să se arate că $2 \cdot (\cos 75^{\circ} + \cos 15^{\circ}) = \sqrt{6}$.

- **5p 1.** Să se determine partea reală a numărului complex $(\sqrt{3} + i)^6$.
- **5p** 2. Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{1}{\sqrt[3]{x}}$. Să se calculeze $(f\circ f)(512)$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\cos 2x + \sin x = 0$.
- **5p 4.** Se consideră mulțimea $M = \{0,1,2,3,4,5\}$. Să se determine numărul tripletelor (a,b,c) cu proprietatea că $a,b,c \in M$ și a < b < c.
- **5p** | **5.** Să se calculeze distanța dintre dreptele paralele de ecuații x + 2y = 6 și 2x + 4y = 11.
- **5p 6.** Paralelogramul *ABCD* are AB = 1, BC = 2 şi $m(\angle BAD) = 60^{\circ}$. Să se calculeze produsul

- **5p** 1. Să se arate că numărul $\log_9 \sqrt{3} + \log_4 \sqrt[3]{2}$ este rațional.
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 2mx + m 1$, $m \in \mathbb{R}^*$. Să se determine $m \in \mathbb{R}^*$ astfel încât $f(x) \le 0$, pentru orice $x \in \mathbb{R}$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2^x + 2^{x+1} + 2^{x-1} = 56$.
- **5p 4.** Fie mulțimea $A = \{1, 2, ..., 1000\}$. Să se calculeze probabilitatea ca, alegând un element din mulțimea $\{\sqrt[3]{n} \mid n \in A\}$, acesta să fie număr rațional.
- **5p 5.** Fie triunghiul ABC și $M \in (BC)$ astfel încât $\overline{MC} = -\frac{3}{4}\overline{CB}$. Să se demonstreze că $\overline{AM} = \frac{3}{4}\overline{AB} \frac{1}{4}\overline{CA}$.
- **5p 6.** Știind că $\mathbf{x} \in \left(0, \frac{\pi}{2}\right)$ și tg $\mathbf{x} = 3$, să se calculeze $\sin 2\mathbf{x}$.

Varianta 50

SUBIECTUL I (30p)

- **5p** 1. Să se determine $\mathbf{a} \in \mathbb{R}$ astfel încât numerele $2^{\mathbf{a}-1}$, $2^{-\mathbf{a}+2}+1$, $2^{\mathbf{a}+1}+1$ să fie în progresie aritmetică.
- **5p 2.** Să se arate că vârful parabolei $y = x^2 + (2a 1)x + a^2$, $a \in \mathbb{R}$, este situat pe dreapta de ecuație 4x + 4y = 1.
- **5p** 3. Să se arate că, dacă z este soluție a ecuației $z^2 + 2z + 4 = 0$, atunci $z^2 \frac{8}{z} = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea {11,12,...,50}, aceasta să fie divizibil cu 2 și cu 5.
- 5p | 5. Trapezul isoscel ABCD are bazele [AB] și [CD] și lungimea înălțimii egală cu 4. Să se calculeze $|\overrightarrow{AC} + \overrightarrow{BD}|$.
- **5p 6.** Să se calculeze $\operatorname{tg} 2\alpha$, știind că $\alpha \in \left(0, \frac{\pi}{2}\right)$ și $\sin \alpha = \frac{12}{13}$.

- **5p** | **1.** Să se determine numărul elementelor mulțimii $(A \setminus B) \cap \mathbb{Z}$ știind că A = (-3,4] și B = (1,5].
- **5p** 2. Să se determine coordonatele punctelor de intersecție a dreaptei y = 2x + 1 cu parabola $y = x^2 x + 3$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x-1} + \sqrt{2-x} = 1$.
- **5p 4.** Să se rezolve în mulțimea numerelor naturale inecuația $2^{x!} \le 2048$.
- **5p 5.** Să se calculeze distanța de la punctul A(1;1) la dreapta d:5x+12y-4=0.
- **5p 6.** Să se calculeze tg(a+b) știind că ctg a = 2 și ctg b = 5.

- **5p** 1. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = |4x-8|-2|4-2x| este constantă.
- **5p** 2. Să se determine $\mathbf{a} \in \mathbb{R}$ pentru care parabola $\mathbf{y} = \mathbf{x}^2 2\mathbf{x} + \mathbf{a} 1$ și dreapta $\mathbf{y} = 2\mathbf{x} + 3$ au două puncte distincte comune.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{x-1} + 1 = x$.
- **5p 4.** Să se determine numărul termenilor iraționali ai dezvoltării $(\sqrt{3} + 1)^9$.
- **5p 5.** Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât vectorii $\vec{\mathbf{u}} = (\mathbf{m} + 1)\vec{\mathbf{i}} + 8\vec{\mathbf{j}}$ și $\vec{\mathbf{v}} = (\mathbf{m} 1)\vec{\mathbf{i}} 4\vec{\mathbf{j}}$ să fie coliniari.
- **5p** | **6.** Triunghiul ABC are lungimile laturilor AB = 5, BC = 7 şi AC = 8. Să se calculeze $m(\angle A)$.

SUBIECTUL I (30p) Varianta 53

- **5p 1.** Să se calculeze $\left[\sqrt{2009}\right] + 3 \cdot \left\{-\frac{1}{3}\right\}$, unde $[\mathbf{x}]$ reprezintă partea întreagă a lui \mathbf{x} și $\{\mathbf{x}\}$ reprezintă partea fracționară a lui \mathbf{x} .
- **5p** 2. Să se determine imaginea intervalului [2,3] prin funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 3$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+8} \sqrt{x} = 2$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii divizorilor naturali ai numărului 56, acesta să fie divizibil cu 4.
- 5p | 5. Fie vectorii $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = \vec{i} \vec{j}$ și $\vec{u} = 6\vec{i} + 2\vec{j}$. Să se determine \vec{p} , $\vec{r} \in \mathbb{R}$ astfel încât $\vec{u} = \vec{pa} + \vec{rb}$.
- **5p** | **6.** Să se calculeze lungimea razei cercului circumscris unui triunghi care are lungimile laturilor 5 , 7 și 8.

- **5p** 1. Să se calculeze partea întreagă a numărului $(\sqrt{3} + \sqrt{7})^2$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $\frac{2x-1}{1-x} \ge \frac{3x+2}{1-2x}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{2-x} + x = 2$.
- **5p 4.** Se consideră dezvoltarea $(\sqrt[3]{x^2} + \sqrt{y})^{49}$. Să se determine termenul care îi conține pe x și y la același exponent.
- **5p 5.** Fie $\vec{r_A} = 2\vec{i} + \vec{j}$, $\vec{r_B} = \vec{i} + 3\vec{j}$ și $\vec{r_C} = 3\vec{i} + 2\vec{j}$ vectorii de poziție ai vârfurilor triunghiului ABC. Să se determine vectorul de poziție al centrului de greutate a triunghiului ABC.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris triunghiului ABC, știind că BC = 3 și $\cos A = \frac{1}{2}$.

- 5p | 1. Să se calculeze $[-\sqrt{8}]-\{-2,8\}$, unde [x] reprezintă partea întreagă a lui x și $\{x\}$ reprezintă partea fracționară a lui x.
- 5p 2. Să se rezolve în mulțimea $\mathbb{R} \times \mathbb{R}$ sistemul $\begin{cases} x^2 + y^2 = 13 \\ x + y = 5 \end{cases}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $4^x 5 \cdot 2^{x+1} + 16 = 0$.
- **5p** 4. Să se determine $x \in \mathbb{N}$, $x \ge 2$ astfel încât $C_x^2 + A_x^2 = 30$.
- **5p** | **5.** Fie punctele O(0;0), A(2;1) și B(-2;1). Să se determine cosinusul unghiului format de vectorii \overrightarrow{OA} și \overrightarrow{OB} .
- **5p 6.** Să se calculeze $\operatorname{tg} 2\mathbf{x}$, știind că $\operatorname{ctg} \mathbf{x} = 3$.

SUBIECTUL I (30p) Varianta 56

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația 2z + z = 3 + 4i.
- **5p** 2. Știind că \mathbf{x}_1 și \mathbf{x}_2 sunt rădăcinile ecuației $\mathbf{x}^2 + 3\mathbf{x} + 1 = 0$, să se calculeze $\mathbf{x}_1^3 + \mathbf{x}_2^3$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $1+5^x-2\cdot25^x=0$.
- **5p** 4. Se consideră dezvoltarea $\left(\mathbf{a}^2 + \frac{1}{\sqrt[3]{\mathbf{a}}}\right)^9$, $\mathbf{a} \neq 0$. Să se determine rangul termenului care-l conține pe \mathbf{a}^4 .
- 5p 5. Să se calculeze $\vec{\mathbf{u}}^2 \vec{\mathbf{v}}^2$ știind că $\vec{\mathbf{u}} \vec{\mathbf{v}} = 3\vec{\mathbf{i}} + 2\vec{\mathbf{j}}$ și $\vec{\mathbf{u}} + \vec{\mathbf{v}} = 2\vec{\mathbf{i}} + 3\vec{\mathbf{j}}$.
- **5p 6.** Să se calculeze lungimea razei cercului circumscris unui triunghi dreptunghic care are catetele de lungimi 5 și 12.

- **5p 1.** Să se arate că numărul $\sqrt{7+4\sqrt{3}}-\sqrt{3}$ este natural.
- **5p** 2. Să se arate că $(x^2 + 4x + 5)(x^2 + 2x + 2) \ge 1$, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2^2 x + \log_2(4x) = 4$.
- **5p** 4. Să se determine termenul independent de x din dezvoltarea $\left(\sqrt[3]{x} + \frac{2}{\sqrt{x}}\right)^{200}$, x > 0.
- **5p 5.** Se consideră dreapta d: 4x-8y+1=0 și punctul A(2;1). Să se determine ecuația dreptei care trece prin punctul A și este paralelă cu dreapta d.
- **5p** | **6.** Triunghiul ABC are AB = 2, AC = 4 și $m(A) = 60^\circ$. Să se calculeze lungimea medianei duse din A.

- **5p 1.** Să se calculeze partea reală a numărului complex $\frac{1+4i}{4+7i}$.
- **5p** 2. Să se determine axa de simetrie a graficului funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 6x + 1$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $3^{x+1} + 3^{1-x} = 10$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii A={1,3,5,...,2009}, acesta să fie multiplu de 3.
- 5p 5. Se consideră dreapta $\mathbf{d}: 2\mathbf{x} + \mathbf{y} 1 = 0$ și punctul $\mathbf{A}(3, 2)$. Să se determine ecuația dreptei care trece prin punctul \mathbf{A} și este perpendiculară pe dreapta \mathbf{d} .
- **5p 6.** Fie triunghiul ABC care are AB = AC = 5 şi BC = 6. Să se calculeze distanța de la centrul de greutate al triunghiului ABC la dreapta BC.

SUBIECTUL I (30p) Varianta 59

- **5p** 1. Să se arate că numărul $\lg\left(1-\frac{1}{2}\right) + \lg\left(1-\frac{1}{3}\right) + \lg\left(1-\frac{1}{4}\right) + \dots + \lg\left(1-\frac{1}{100}\right)$ este întreg.
- **5p 2.** Să se rezolve în mulțimea numerelor reale ecuația $|\mathbf{x} 3| + |4 \mathbf{x}| = 1$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_3 x + \frac{1}{\log_3 x} = \frac{5}{2}$
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii $A = \{2, 4, 6, ..., 2010\}$, acesta să fie divizibil cu 4, dar să nu fie divizibil cu 8.
- **5p 5.** Se consideră punctele A(2, m) și B(m, -2). Să se determine $m \in \mathbb{R}$ astfel încât AB = 4.
- **5p 6.** Să se calculeze $\sin^2 x$ știind că ctg x = 6.

- **5p 1.** Să se arate că $2(1+3+3^2+...+3^8) < 3^9$.
- **5p 2.** Fie $\mathbf{x}_1, \mathbf{x}_2$ soluțiile ecuației $x^2 + 5x 7 = 0$. Să se arate că numărul $x_1^3 + x_2^3$ este întreg.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_5 x + \log_x 5 = \frac{5}{2}$.
- **5p 4.** Să se determine $x \in \mathbb{N}$, $x \ge 3$ astfel încât $C_{2x-3}^2 = 3$.
- **5p 5.** Se consideră punctele A(2,3) și B(-3,-2). Să se scrie ecuația mediatoarei segmentului AB.
- **5p 6.** Fie vectorii \vec{u} și \vec{v} . Știind că $\vec{u} \cdot \vec{v} = 5$, $|\vec{u}| = 2$ și $|\vec{v}| = 3$ să se calculeze $\cos(\langle (\vec{u}, \vec{v}) \rangle)$.

- **5p** | **1.** Să se determine numărul real x știind că numerele x+1, 1-x și 4 sunt în progresie aritmetică.
- **5p** 2. Să se determine punctele de intersecție a parabolei $y = x^2 + 5x 6$ cu axele de coordonate.
- **5p** 3. Să se rezolve în mulțimea $[0,2\pi]$ ecuația $2\sin x + 1 = 0$.
- **5p 4.** Fie mulțimea M = {1,2,3,4,5,6}. Să se determine probabilitatea ca, alegând una dintre submulțimile mulțimii M, aceasta să aibă 2 elemente.
- 5. Punctele A, B și G au vectorii de poziție $\overrightarrow{r_A} = 4\overrightarrow{i} + 7\overrightarrow{j}$, $\overrightarrow{r_B} = 2\overrightarrow{i} \overrightarrow{j}$, $\overrightarrow{r_G} = 4\overrightarrow{i} + 4\overrightarrow{j}$. Să se determine vectorul de poziție a punctului C astfel încât punctul G să fie centrul de greutate al triunghiului ABC.
- **5p 6.** Fie vectorii $\vec{\mathbf{u}}$ și $\vec{\mathbf{v}}$. Dacă $|\vec{\mathbf{u}}| = 1$, $|\vec{\mathbf{v}}| = 2$ și măsura unghiului vectorilor $\vec{\mathbf{u}}$ și $\vec{\mathbf{v}}$ este $\frac{\pi}{3}$, să se calculeze $(2\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot (2\vec{\mathbf{v}} \vec{\mathbf{u}})$.

SUBIECTUL I (30p) Varianta 62

- **5p** 1. Să se determine x > 0 știind că numerele x, 6 și x 5 sunt în progresie geometrică.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x 2$. Să se calculeze $f(2 \cdot (f(-1)))$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\cos\left(2x + \frac{\pi}{2}\right) = \cos\left(x \frac{\pi}{2}\right)$.
- **5p** 4. Să se arate că $(n!)^2$ divide (2n)!, pentru oricare n natural.
- 5p 5. Se consideră punctele A(3,2) și B(6,5). Să se determine coordonatele punctelor M și N știind că acestea împart segmentul [AB] în trei segmente congruente, iar ordinea punctelor este A, M, N, B.
- **6.** Să se determine numerele naturale **a** pentru care numerele **a**, **a** +1 și **a** +2 sunt lungimile laturilor unui triunghi obtuzunghic.

- **5p** 1. Să se arate că șirul $(a_n)_{n \in \mathbb{N}}$, de termen general $a_n = \frac{4n}{n+3}$, este crescător.
- **5p** 2. Să se determine coordonatele punctelor de intersecție a parabolelor $y = x^2 + x + 1$ și $y = -x^2 2x + 6$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin\left(x \frac{\pi}{4}\right) = \sin\left(3x + \frac{\pi}{4}\right)$.
- **5p 4.** Suma coeficienților binomiali ai dezvoltării $(2x^2 5y)^n$ este egală cu 32. Să se determine termenul de rang patru.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$ astfel încât dreptele d_1 : mx + 3y + 2 = 0 și d_2 : 2x + y 8 = 0 să fie concurente.
- **5p 6.** Fie *ABCD* un patrulater. Să se arate că dacă $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$, atunci $AB^2 + CD^2 = AD^2 + BC^2$.

- **5p** 1. Să se arate că șirul $(a_n)_{n\geq 1}$, de termen general $a_n = n^2 n$, este strict monoton.
- **5p** 2. Se consideră funcțiile $\mathbf{f}: \mathbb{R} \to \mathbb{R}$ și $\mathbf{g}: \mathbb{R} \to \mathbb{R}$ definite prin $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 + 2\mathbf{x} + 1$ și $\mathbf{g}(\mathbf{x}) = \mathbf{x} 2009$. Să se demonstreze că, pentru orice $\mathbf{x} \in \mathbb{R}$, $(\mathbf{f} \circ \mathbf{g})(\mathbf{x}) \ge 0$.
- **5p** 3. Să se rezolve în $(0, \pi)$ ecuația $tg\left(x + \frac{\pi}{3}\right) = tg\left(\frac{\pi}{2} x\right)$.
- **5p 4.** Să se determine $x \in \mathbb{N}$, $x \ge 3$ știind că $C_x^{x-1} + C_{x-1}^{x-3} \le 9$.
- 5p 5. Să se determine $\mathbf{m} \in \mathbb{R}$ știind că dreptele \mathbf{d}_1 : $\mathbf{m}\mathbf{x} + (\mathbf{m} + 2)\mathbf{y} 1 = 0$ și \mathbf{d}_2 : $(\mathbf{m} + 2)\mathbf{x} + 4\mathbf{m}\mathbf{y} 8 = 0$ sunt paralele.
- **5p** | **6.** Fie ABC un triunghi cu tg A = 2, tg B = 3. Să se determine măsura unghiului C.

SUBIECTUL I (30p) Varianta 65

- **5p** 1. Să se determine primul termen al progresiei aritmetice $a_1, a_2, 13, 17, \dots$
- **5p** 2. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2\sin x$ este impară.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $3\sin x + \sqrt{3}\cos x = 0$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, acesta să aibă suma cifelor egală cu 2.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$ știind că dreptele d_1 : mx + 3y 2 = 0 și d_2 : 12x + 2y + 1 = 0 sunt perpendiculare.
- **5p 6.** Știind că $\operatorname{tg} \frac{\alpha}{2} = \frac{1}{\sqrt{3}}$, să se calculeze $\sin \alpha$.

- **5p** | 1. Să se calculeze (2+i)(3-2i)-(1-2i)(2-i).
- **5p** 2. Să se arate că $\frac{1}{3}$ este o perioadă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \{3x\}$, unde $\{a\}$ este partea fracționară a numărului a.
- **5p** 3. Să se rezolve în $[0,2\pi]$ ecuația $\sqrt{3} \sin x \cos x = 1$.
- **5p 4.** Să se calculeze $\frac{C_{20}^{10}}{C_{20}^{9}}$.
- **5p 5.** Se consideră punctele A(2,3), B(4,n), C(2,2) și D(m,5). Să se determine $m,n \in \mathbb{R}$ astfel încât patrulaterul ABCD să fie paralelogram .
- **5p 6.** Să se calculeze $\cos^2 x$, știind că tg x = 4.

- **5p** 1. Să se determine primul termen al progresiei geometrice cu termeni pozitivi b_1 , 6, b_3 , 24, ...
- **5p** 2. Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât funcția $\mathbf{f} : \mathbb{R} \to \mathbb{R}$, $\mathbf{f}(\mathbf{x}) = (3 \mathbf{m}^2)\mathbf{x} + 3$, să fie strict crescătoare.
- 5p 3. Să se calculeze $\sin \frac{\pi}{3} + \sin \frac{2\pi}{3} + \sin \frac{3\pi}{3} + \sin \frac{4\pi}{3}$.
- **5p 4.** Se consideră mulțimea M a tuturor funcțiilor definite pe $A = \{1, 2, 3\}$ cu valori în $B = \{5, 6, 7\}$. Să se calculeze probabilitatea ca, alegând o funcție din mulțimea M, aceasta să fie injectivă.
- 5p 5. Se consideră punctul G, centrul de greutate al triunghiului ABC. Prin punctul G se duce paralela la AB care intersectează dreapta BC în punctul P. Să se determine m∈ R astfel încât GP = mAB.
- **5p 6.** Să se calculeze $\cos 2\alpha$, știind că $\cos \alpha = \frac{1}{3}$.

SUBIECTUL I (30p) Varianta 68

- **5p** 1. Să se arate că numărul $\frac{25}{4+3i} + \frac{25}{4-3i}$ este întreg.
- **5p** 2. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (m^2 2)x 3$ să fie strict descrescătoare.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\arctan \frac{x}{3} + \arctan \frac{1}{\sqrt{3}} = \frac{\pi}{3}$.
- **5p 4.** Să se determine probabilitatea ca alegând un număr din mulțimea numerelor naturale pare de două cifre, acesta să fie divizibil cu 4.
- 5. Pe laturile AB și AC ale triunghiului ABC se consideră punctele M și respectiv N astfel încât $\overrightarrow{AM} = 3\overrightarrow{MB}$ și $\overrightarrow{AN} = \frac{3}{4}\overrightarrow{AC}$. Să se demonstreze că vectorii \overrightarrow{MN} și \overrightarrow{BC} sunt coliniari.
- **5p 6.** Să se calculeze $\sin \frac{11\pi}{12}$.

- **5p** 1. Să se determine $z \in \mathbb{C}$ știind că $\frac{z+7i}{z} = 6$.
- **5p** 2. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Să se calculeze f(1) + f(2) + f(3) + ... + f(50).
- **5p** | 3. Se consideră funcția $f: \mathbb{N} \to \mathbb{N}$, f(x) = 3x + 1. Să se demonstreze că funcția f este neinversabilă.
- **5p 4.** Să se calculeze probabilitatea ca, alegând o cifră din mulțimea $\{0,1,2,...,9\}$, aceasta să verifice inegalitatea $(x+1)! x! \le 100$.
- **5p 5.** Să se arate că dreptele de ecuații \mathbf{d}_1 : $2\mathbf{x} \mathbf{y} + 1 = 0$ și \mathbf{d}_2 : $2\mathbf{x} + \mathbf{y} 1 = 0$ sunt simetrice față de axa Oy.
- **5p 6.** Să se calculeze $\cos \frac{7\pi}{12}$.

- **5p** 1. Să se calculeze $(1+i)^{20}$.
- 5p 2. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \frac{1}{x}$. Să se calculeze suma S = f(f(-10)) + f(f(-9)) + ... + f(f(-1)) + f(f(1)) + ... + f(f(9)) + f(f(10)).
- $\mathbf{5p} \quad \boxed{ \mathbf{3.} \text{ Să se arate că funcția } \mathbf{f}: \mathbb{R} \to \mathbb{R} \,, \ \mathbf{f}(\mathbf{x}) = \log_2\left(3^{\mathbf{x}} + 1\right) \text{ este injectivă }. }$
- **5p 4.** Să se calculeze $A_5^3 6C_5^3$.
- **5p** | **5.** Să se determine $m \in \mathbb{R}$ știind că distanța de la punctul A(m, m+1) la dreapta d: 3x-4y-1=0 este 1.
- **5p 6.** Să se calculeze $\cos 75^{\circ} \cos 15^{\circ}$.

SUBIECTUL I (30p) Varianta 71

- **5p 1.** Să se calculeze $\log_7 2009 \log_7 287 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = x^2 \frac{1}{x^2}$. Să se arate că funcția f este pară.
- **5p 3.** Să se arate că valoarea maximă a funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 3 x^4$ este f(0).
- **5p** 4. Să se determine $n \in \mathbb{N}$, $n \ge 2$, astfel încât $3C_n^1 + 2C_n^2 = 8$.
- 5p 5. Se consideră triunghiul ABC și punctele A', B', C' astfel încât $\overline{A'C} = 2\overline{BA'}$, $\overline{B'C} = \frac{2}{5}\overline{AC}$, $\overline{C'A} = 3\overline{BC'}$. Să se arate că dreptele AA', BB' și CC' sunt concurente.
- **5p 6.** Să se determine ecuația medianei corespunzătoare laturii BC a triunghiului ABC, știind că A(2,2) și ecuațiile medianelor duse din B și C sunt 2x + y 2 = 0, respectiv x y + 2 = 0.

- **5p** 1. Să se arate că numărul $\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{100}$ este real.
- **5p** 2. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = x^3 \frac{1}{x}$. Să se arate că funcția f este impară.
- **5p 3.** Să se determine imaginea funcției $f:[1, 4] \to \mathbb{R}, f(x) = x^2 x$.
- **5p 4.** Să se calculeze $C_{2009}^0 \cdot 5^{2009} C_{2009}^1 \cdot 5^{2008} \cdot 4 + C_{2009}^2 \cdot 5^{2007} \cdot 4^2 \dots C_{2009}^{2009} \cdot 4^{2009}$
- **5p 5.** Se consideră punctul A(1, 2) și dreapta de ecuație d: 4x-2y+5=0. Să se determine ecuația perpendicularei duse din punctul A pe dreapta d.
- **5p 6.** Să se calculeze $\sin 75^{\circ} \cdot \cos 15^{\circ}$.

- **5p** | **1.** Să se calculeze |5-12i|-|12+5i|.
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x^4$. Să se calculeze $(f \circ f \circ f)(1)$.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $2^x + 4^x = 20$.
- **5p 4.** Să se determine probabilitatea ca, alegând un element al mulțimii $A = \{0,5,10,...,2010\}$, acesta să fie divizibil cu 25.
- 5p 5. Se consideră un triunghi ABC, cu lungimile laturilor AB = c, AC = b și un punct D astfel încât $\overrightarrow{AD} = b \overrightarrow{AB} + c \overrightarrow{AC}$. Să se arate că semidreapta [AD este bisectoarea unghiului BAC.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ astfel încât $\cos 2\alpha = \frac{1}{2}$. Să se calculeze $\cos \alpha$.

SUBIECTUL I (30p) Varianta 74

- **5p 1.** Să se rezolve în mulțimea numerelor complexe ecuația $z^2 + 3z + 4 = 0$.
- **5p** 2. Se consideră funcția $f:(0,\infty) \to \mathbb{R}$, f(x) = x 2m + 2. Să se determine $m \in \mathbb{R}$ astfel încât graficul funcției f să nu intersecteze axa Ox.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{2-x} + \sqrt[3]{x-2} = 0$.
- **5p 4.** Să se arate că $C_{a+b}^a = C_{a+b}^b$, pentru oricare $a,b \in \mathbb{N}^*$.
- **5p 5.** Să se determine $\mathbf{m} \in \mathbb{R}$ astfel încât punctele $\mathbf{A}(3,3)$, $\mathbf{B}(2,4)$ și $\mathbf{C}(2\mathbf{m},1-\mathbf{m})$ să fie coliniare.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ astfel încât $\cos 2\alpha = -\frac{1}{2}$. Să se calculeze $\sin \alpha$.

Varianta 75

SUBIECTUL I (30p)

- **5p** 1. Să se ordoneze crescător numerele $a = -\sqrt[3]{27}$, $b = \log_2 \frac{1}{16}$ și c = -2.
- **5p 2.** Să se determine valorile parametrului real m știind că parabola asociată funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + mx 2m$ se află situată deasupra axei Ox.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_2(\sqrt{x^2+x-2})=1$.
- **5p 4.** Se consideră dreptele paralele d_1 , d_2 și punctele distincte $A, B, C \in d_1$, $M, N, P, Q \in d_2$. Să se determine numărul triunghiurilor care au toate vârfurile în mulțimea celor șapte puncte date.
- **5p 5.** Să se determine coordonatele simetricului punctului A(-3;2) față de mijlocul segmentului [BC], unde B(1;-4) și C(-5,-1).
- **5p 6.** Să se calculeze aria triunghiului ABC în care AM = BC = 4, unde M este mijlocul lui (BC), iar $m(< AMC) = 150^{\circ}$.

- **5p 1.** Să se verifice dacă numărul $\sqrt{3-2\sqrt{2}}$ aparține mulțimii $\{a+b\sqrt{2} \mid a,b \in \mathbb{Z}\}$.
- **5p** 2. Se consideră ecuația $\mathbf{x}^2 3\mathbf{x} + 1 = 0$, cu rădăcinile \mathbf{x}_1 și \mathbf{x}_2 . Să se arate că $\mathbf{x}_1^2 + \mathbf{x}_2^2 \in \mathbb{N}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\arctan \sqrt{3} + \arctan x = \frac{\pi}{2}$.
- **5p 4.** Să se arate că oricare ar fi n natural, $n \ge 1$, are loc egalitatea $C_{2n}^n = 2 \cdot C_{2n-1}^n$.
- **5p 5.** Se consideră vectorii $\vec{u} = \vec{i} \vec{j}$ și $\vec{v} = 2\vec{i} + 4\vec{j}$. Să se calculeze modulul vectorului $\vec{u} + \vec{v}$.
- **5p 6.** Fie $\alpha \in \left(\frac{\pi}{2}, \pi\right)$, astfel încât $\sin \alpha = \frac{3}{5}$. Să se calculeze $\operatorname{tg} \frac{\alpha}{2}$.

SUBIECTUL I (30p) Varianta 77

- **5p** | **1.** Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ de rație 2 și cu $a_3+a_4=8$. Să se determine a_1 .
- **5p** 2. Fie $f: \mathbb{R} \to \mathbb{R}$, f(x) = 1 + x. Să se calculeze f(-1) + f(-2) + f(-3) + ... + f(-10).
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $4^x 2^x = 56$.
- **5p 4.** Să se calculeze $A_4^3 A_3^2 C_4^2$.
- 5. Fie *ABC* un triunghi și *G* centrul său de greutate. Se consideră punctul *M* definit prin $\overrightarrow{MB} = -2\overrightarrow{MC}$. Să se arate că dreptele *GM* și *AC* sunt paralele.
- **5p 6.** Fie $\alpha \in \left(0, \frac{\pi}{2}\right)$, astfel încât $\sin \alpha = \frac{3}{4}$. Să se calculeze $tg\alpha$.

- **5p 1.** Să se calculeze $10^{\lg 7} \sqrt[3]{343}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale inecuația $2x^2 3x + 1 \le 0$.
- **5p** 3. Să se arate că funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \log_3 2^x x$ este injectivă.
- **5p 4.** Să se calculeze numărul diagonalelor unui poligon convex cu 8 laturi.
- **5p 5.** Fie ABCD un paralelogram și P un punct astfel ca $\overrightarrow{BP} = 2\overrightarrow{PD}$. Să se arate că $\overrightarrow{BP} = \frac{2}{3}(\overrightarrow{BA} + \overrightarrow{BC})$.
- **5p 6.** Fie $\mathbf{a}, \mathbf{b} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, astfel încât $\mathbf{a} + \mathbf{b} = \frac{\pi}{4}$. Să se arate că $tg\mathbf{a}tg\mathbf{b} + tg\mathbf{a} + tg\mathbf{b} = 1$.

- **5p** 1. Să se arate că $\left(-\infty, \frac{3}{2}\right) \cap \left(\log_2 3, \infty\right) = \emptyset$.
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 3$. Să se determine abscisele punctelor de intersecție a graficului funcției f cu axa Ox.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x} + \sqrt{1-x} = 1$.
- **5p 4.** Să se determine $n \in \mathbb{N}$, $n \ge 3$, astfel încât C_n^3 să dividă C_{n+1}^3 .
- **5p 5.** Fie punctele A(1,2), B(-1,3) și C(0,4). Să se calculeze lungimea înălțimii duse din vârful A al triunghiului ABC.
- **5p 6.** Fie $x \in \mathbb{R}$, astfel încât $tg^2x = 6$. Să se calculeze $\cos^2 x$.

SUBIECTUL I (30p) Varianta 80

- **5p 1.** Să se calculeze $(1-i)(1-i^2)(1-i^3)...(1-i^{2009})$.
- **5p** 2. Se consideră funcțiile $f : \mathbb{R} \to \mathbb{R}$, f(x) = 1 x și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 2x 1. Să se arate că funcția $f \circ g$ este descrescătoare.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale inecuația $\sqrt[3]{2-x^2} \ge 1$.
- **5p 4.** Să se calculeze numărul funcțiilor injective $f:\{1,2,3\} \rightarrow \{1,2,3,4,5\}$ cu proprietatea că $f(1) \neq 1$.
- **5p 5.** Să se determine ecuația dreptei care trece prin punctul P(4,-1) și este paralelă cu dreapta x-2y+1=0.
- **5p 6.** Fie $\mathbf{x} \in \mathbb{R}$ astfel încât $\sin \mathbf{x} = \frac{1}{2} + \cos \mathbf{x}$. Să se calculeze $\sin 2\mathbf{x}$.

- **5p 1.** Să se calculeze partea întreagă a numărului $\log_2 500$.
- **5p** 2. Se consideră ecuația $\mathbf{x}^2 2\mathbf{x} + \mathbf{m} = 0$, $\mathbf{m} \in \mathbb{R}$, care are rădăcinile reale \mathbf{x}_1 și \mathbf{x}_2 . Știind că $|\mathbf{x}_1 \mathbf{x}_2| = 1$, să se determine \mathbf{m} .
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[3]{1-x} = 1+x$.
- **5p 4.** Să se calculeze $C_{16}^0 + C_{16}^2 + C_{16}^4 + ... + C_{16}^{16}$.
- **5p** | **5.** Să se determine $\mathbf{a} \in \mathbb{R}$ știind că dreptele $\mathbf{x} + \mathbf{y} = 1$ și $3\mathbf{x} \mathbf{a}\mathbf{y} = 2$ sunt paralele.
- **5p 6.** Fie $\mathbf{a}, \mathbf{b} \in \mathbb{R}$, astfel încât $a + b = \frac{\pi}{2}$. Să se arate că $\sin 2a + \sin 2b = 2\cos(a b)$.

- **5p 1.** Să se verifice că numărul 1+i este rădăcină a ecuației $z^4 + 4 = 0$.
- **5p 2.** Să se arate că vârful parabolei asociate funcției $\mathbf{f}: \mathbb{R} \to \mathbb{R}$, $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 4\mathbf{x} + 9$ se află pe dreapta de ecuație $\mathbf{x} + \mathbf{y} = 7$.
- **5p** | **3.** Fie $f:\{1,2,3\} \rightarrow \{4,5,6\}$ o funcție injectivă. Să se arate că f(1) + f(2) + f(3) = 15.
- **5p 4.** Să se calculeze probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă ambele cifre impare.
- **5p** | **5.** Se consideră punctele A(1,0), B(2,3) și C(-1,4). Să se calculeze $\overline{AB} \cdot \overline{AC}$.
- **5p 6.** Fie $\mathbf{a} \in \mathbb{R}$, astfel încât sin $\mathbf{a} = \frac{1}{4}$. Să se calculeze sin 3a.

SUBIECTUL I (30p) Varianta 83

- **5p 1.** Să se arate că numărul $\sqrt[3]{3}$ aparține intervalului $(\sqrt{2}, \log_2 5)$.
- **5p** 2. Să se determine valorile reale ale lui **m** știind că $\mathbf{x}^2 + 3\mathbf{x} + \mathbf{m} \ge 0$, oricare ar fi $\mathbf{x} \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin\left(\mathbf{x} + \frac{\pi}{6}\right) + \cos\left(\frac{\pi}{3} \mathbf{x}\right) = 1$.
- **5p 4.** Într-o urnă sunt 49 de bile, inscripționate cu numerele de la 1 la 49. Să se calculeze probabilitatea ca, extrăgând o bilă din urnă, aceasta să aibă scris pe ea un pătrat perfect.
- 5p | 5. Să se determine $\mathbf{m} \in \mathbb{R}$ știind că vectorii $\vec{\mathbf{u}} = 2\vec{\mathbf{i}} 3\vec{\mathbf{j}}$ și $\vec{\mathbf{v}} = m\vec{\mathbf{i}} + 4\vec{\mathbf{j}}$ sunt perpendiculari.
- **5p 6.** Să se arate că $tg1^{\circ} \cdot tg2^{\circ} \cdot tg3^{\circ} \cdot ... \cdot tg89^{\circ} = 1$.

- **5p 1.** Fie $z \in \mathbb{C}$. Să se arate că dacă $2z + 3\overline{z} \in \mathbb{R}$, atunci $z \in \mathbb{R}$.
- **5p** 2. Să se determine funcția de gradul al doilea al cărei grafic conține punctele (0,4), (1,-2) și (-1,1).
- **5p** 3. Se se arate că funcția $f:(0,\infty) \to (1,3)$, $f(x) = \frac{x+3}{x+1}$ este bijectivă.
- **5p** | **4.** Să se determine numerele naturale n, $n \ge 5$, astfel încât $C_n^3 = C_n^5$.
- **5p** | **5.** Se consideră punctele A, B, C, D astfel încât $\overline{AB} = \overline{CD}$. Să se arate că $\overline{AC} + \overline{DB} = \vec{0}$.
- **5p 6.** Fie $a,b \in \mathbb{R}$, astfel încât $a-b=\pi$. Să se arate că are loc relația $\cos a \cdot \cos b \le 0$.

- **5p** 1. Fie $z \in \mathbb{C}$. Să se arate că numărul $i(z-\overline{z})$ este real.
- **5p 2.** Să se determine $m \in \mathbb{R}$ pentru care parabola asociată funcției $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + (m+1)x + m$ este tangentă la axa Ox.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+1} = 5 x$.
- **5p 4.** Câți termeni ai dezvoltării $(1+2)^7$ sunt divizibili cu 14?
- **5p 5.** Fie ABC un triunghi echilateral de arie $\sqrt{3}$. Să se calculeze $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- **5p 6.** Fie $\mathbf{a}, \mathbf{b} \in \mathbb{R}$, astfel încât $\mathbf{a} + \mathbf{b} = \frac{3\pi}{2}$. Să se arate că sin $2\mathbf{a} \sin 2\mathbf{b} = 0$.

SUBIECTUL I (30p) Varianta 86

- **5p** 1. Să se arate că numărul $\frac{1+3i}{1-3i} + \frac{1-3i}{1+3i}$ este real.
- **5p** 2. Numere reale a și b au suma 5 și produsul 2. Să se calculeze valoarea sumei $\frac{a}{b} + \frac{b}{a}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\sin\left(x + \frac{\pi}{3}\right) = \cos\left(x \frac{\pi}{6}\right)$.
- **5p 4.** Câte elemente ale mulțimii $A = \{x \mid x = C_7^k, k \in \mathbb{N}, k \le 7\}$ sunt divizibile cu 7?
- **5p** | **5.** Fie ABCD un dreptunghi cu $\overrightarrow{AB} = 3$ şi $\overrightarrow{AD} = 6$. Să se calculeze modulul vectorului $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$.
- **5p 6.** Să se calculeze suma $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 179^{\circ}$.

- **5p 1.** Fie $z \in \mathbb{C}$ o rădăcină de ordin 3 a unității, diferită de 1. Să se calculeze $1+z+z^2$.
- **5p** 2. Să se determine soluțiile întregi ale inecuației $x^2 + x 6 \le 0$.
- **5p** 3. Fie funcția $f:(1,\infty)\to(2,\infty)$, $f(x)=x^2+1$. Să se arate că funcția f este bijectivă.
- **5p 4.** Câte numere naturale de la 1 la 100 sunt divizibile cu 6 și cu 8?
- **5p 5.** Să se determine $a \in \mathbb{R}$ pentru care vectorii $\overrightarrow{v_1} = a\overrightarrow{i} + (a+1)\overrightarrow{j}$ şi $\overrightarrow{v_2} = 3\overrightarrow{i} + 5\overrightarrow{j}$ sunt coliniari.
- **5p 6.** Triunghiul ABC are laturile AB = 3, BC = 5 şi AC = 7. Să se calculeze lungimea razei cercului înscris în triunghiul ABC.

Varianta 88

SUBIECTUL I (30p)

- **5p 1.** Să se ordoneze crescător numerele $\mathbf{a} = \lg 2 \lg 20$, $\mathbf{b} = \mathbf{C}_3^2 \mathbf{C}_4^2$ și $\mathbf{c} = -\sqrt[3]{4\sqrt{4}}$.
- **5p 2.** Să se determine $a \in \mathbb{R}$ știind că distanța de la vârful parabolei de ecuație $y = x^2 + 2x + a$ la axa **0x** este egală cu 1.
- **5p** 3. Numerele reale \mathbf{x} și \mathbf{y} verifică egalitatea $\arctan \mathbf{y} = \frac{\pi}{2}$. Să se arate că $\mathbf{x} \cdot \mathbf{y} = 1$.
- **5p 4.** Să se arate că numărul A_n^3 , $n \in \mathbb{N}$, $n \ge 3$ este divizibil cu 3.
- 5p | 5. Punctele E, F, G, H sunt mijloacele laturilor [BC], [DA], [AB], respectiv [CD] ale patrulaterului ABCD. Să se demonstreze că $\overrightarrow{EF} + \overrightarrow{HG} = \overrightarrow{CA}$.
- **5p 6.** Să se calculeze $\operatorname{tg} \mathbf{x}$, știind că $\mathbf{x} \in \left(\frac{3\pi}{4}, \pi\right)$ și $\sin 2\mathbf{x} = -\frac{3}{5}$.

SUBIECTUL I (30p) Varianta 89

- 5p 1. Să se determine numerele complexe z care verifică relația $z + 3i = 6 \cdot \overline{z}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația |1-2x| = |x+4|.
- **5p** 3. Să se determine imaginea funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{1+4x^2}$.
- **5p 4.** Să se determine numărul funcțiilor strict monotone $f:\{1,2,3\} \rightarrow \{5,6,7,8\}$.
- 5p 5. Să se demonstreze că pentru orice punct M din planul paralelogramului ABCD are loc egalitatea $\overline{MA} + \overline{MC} = \overline{MB} + \overline{MD}$.
- **5p 6.** Fie **a** şi **b** numere reale, astfel încât $\mathbf{a} + \mathbf{b} = \frac{\pi}{3}$. Să se arate că $\sin 2\mathbf{a} \sin 2\mathbf{b} \sin (\mathbf{a} \mathbf{b}) = 0$.

- **5p 1.** Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ cu rația 3. Știind că suma primilor 10 termeni ai progresiei este 150, să se determine a_1 .
- **5p** 2. Să se determine toate perechile (a,b) de numere reale pentru care $a^2 + b^2 = a + b = 2$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\lg x + \lg(9-2x) = 1$.
- **5p 4.** Să se determine probabilitatea ca, alegând un număr din mulțimea {1,2,3,...,100}, acesta să **nu** fie divizibil cu 7.
- **5p 5.** Se consideră punctele A(0,2), B(1,-1) și C(5,1). Să se determine ecuația dreptei duse din vârful A, perpendiculară pe dreapta BC.
- **5p 6.** Să se arate că $1 + \cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} + \cos \frac{6\pi}{5} + \cos \frac{8\pi}{5} = 0$.

- **5p 1.** Să se calculeze modulul numărului complex $\mathbf{z} = (\sqrt{2} 1 + \mathbf{i}(\sqrt{2} + 1))^2$.
- **5p** 2. Să se determine numerele reale x şi y ştiind că x + 2y = 1 şi $x^2 6y^2 = 1$.
- **5p** 3. Să se arate că funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$ nu este injectivă.
- **5p 4.** Să se calculeze $C_{10}^3 C_9^3$.
- 5p 5. Fie ABCD un paralelogram. Știind că vectorii $\overrightarrow{AB} + \overrightarrow{AD}$ și $\overrightarrow{AB} \overrightarrow{AD}$ au același modul, să se arate că ABCD este dreptunghi.
- **5p 6.** Să se arate că $\sin 40^{\circ} \cdot \sin 140^{\circ} = \cos^2 130^{\circ}$.

SUBIECTUL I (30p) Varianta 92

- 5p 1. Numerele reale pozitive a,b,c,d sunt în progresie geometrică. Știind că d-a=7 și c-b=2, să se determine rația progresiei.
- **5p** 2. Să se determine valorile reale nenule ale lui **m** știind că $mx^2 + x 2 \le 0$, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în intervalul (0,5) ecuația $\sin\left(2\mathbf{x} + \frac{\pi}{6}\right) = -\frac{1}{2}$.
- **5p 4.** Să se determine numărul $\mathbf{n} = \mathbf{C}_{10}^0 \mathbf{C}_{10}^2 + \mathbf{C}_{10}^4 \mathbf{C}_{10}^6 + \mathbf{C}_{10}^8$.
- 5p 5. Să se determine $\mathbf{a} \in \mathbb{R}$ pentru care vectorii $\vec{\mathbf{u}} = (\mathbf{a} 1)\vec{\mathbf{i}} (2\mathbf{a} + 2)\vec{\mathbf{j}}$ și $\vec{\mathbf{v}} = (\mathbf{a} + 1)\vec{\mathbf{i}} \vec{\mathbf{j}}$ sunt perpendiculari.
- **5p 6.** Fie $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ astfel încât $\cos \alpha = -\frac{1}{3}$. Să se calculeze $\sin 2\alpha$.

- **5p 1.** Să se calculeze modulele rădăcinilor complexe ale ecuației $z^2 + 2z + 4 = 0$.
- **5p** 2. Să se determine funcțiile de gradul întâi $f : \mathbb{R} \to \mathbb{R}$, care sunt strict crescătoare și îndeplinesc condiția f(f(x)) = 4x + 3, oricare ar fi $x \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $2^x + 4^{\frac{x+1}{2}} = 12$.
- **4.** Care este probabilitatea ca, alegând un număr din mulțimea numerelor naturale de la 1 la 1000, acesta să fie cub perfect?
- **5p** | **5.** Se consideră punctele A(1,2) și B(3,4). Să se calculeze distanța de la originea axelor la dreapta AB.
- **5p** | **6.** Să se determine $\alpha \in (0, 2\pi)$ astfel ca tg $\alpha = \sin \alpha$.

5p 1. Să se calculeze
$$\left(\frac{(1-2i)(3i-1)}{5}\right)^4$$
.

- **5p** 2. Să se arate că funcția $f:(-1,1) \to \mathbb{R}$, $f(x) = \ln \frac{1-x}{1+x}$ este impară.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $5^x + 5^{-x} = 2$.
- **5p 4.** Care este probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, prima sa cifră să fie număr prim?
- 5p 5. Fie ABC un triunghi și O centrul cercului circumscris lui. Știind că $\overrightarrow{BO} = \overrightarrow{OC}$, să se arate că triunghiul ABC este dreptunghic.
- **5p** | **6.** Fie $\alpha \in \mathbb{R}$, astfel încât $\sin \alpha + \cos \alpha = 1$. Să se calculeze tg 2α .

SUBIECTUL I (30p) Varianta 95

- **5p 1.** Să se calculeze partea întreagă a numărului $\frac{10}{\sqrt{2}-1}$.
- **5p** 2. Să se rezolve în mulțimea numerelor reale ecuația $\mathbf{x} + \frac{1}{|1+\mathbf{x}|} = 1$.
- **5p** 3. Să se studieze monotonia funcției $f:(0,\infty) \to \mathbb{R}$, $f(x) = 2009^x + \log_{2009} x$.
- **5p 4.** Care este probabilitatea ca, alegând un număr din mulțimea numerelor naturale de trei cifre, produsul cifrelor sale să fie impar?
- 5p 5. Să se demonstreze că vectorii $\vec{\mathbf{u}} = 3\vec{\mathbf{i}} + a\vec{\mathbf{j}}$ și $\vec{\mathbf{v}} = (a+1)\vec{\mathbf{i}} + a\vec{\mathbf{j}}$ nu pot fi perpendiculari pentru nicio valoare reală a numărului a.
- **5p** | **6.** Să se arate că sin $\mathbf{x} + \sin 3\mathbf{x} + \sin 5\mathbf{x} = (1 + 2\cos 2\mathbf{x}) \cdot \sin 3\mathbf{x}$, oricare ar fi $\mathbf{x} \in \mathbb{R}$.

- 5p 1. Fie a,b,c numere naturale nenule în progresie geometrică. Știind că a + b + c este un număr par, să se arate că numerele a,b,c sunt pare.
- **5p** 2. Fie funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 3x + 2$. Să se arate că $f(a) + f(a+1) \ge 0$, oricare ar fi $a \in \mathbb{R}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale inecuația $\log_2 x + \log_4 x > 3$.
- **5p 4.** Să se determine numerele naturale **n**, $n \ge 2$, pentru care $C_n^1 + C_n^2 = 120$.
- 5p | 5. Să se arate că unghiul vectorilor $\vec{\mathbf{u}} = 2\vec{\mathbf{i}} a\vec{\mathbf{j}}$ și $\vec{\mathbf{v}} = \vec{\mathbf{i}} + \vec{\mathbf{j}}$ este obtuz dacă și numai dacă $\mathbf{a} > 2$.
- **5p 6.** Fie ABC un triunghi cu sin $A = \frac{1}{2}$, sin B = 1 şi BC = 4. Să se calculeze aria triunghiului ABC.

- **5p 1.** Să se ordoneze crescător numerele 3!, $\sqrt[3]{100}$, $\log_2 32$.
- **5p** 2. Să se arate că $x^2 + 3xy + 4y^2 \ge 0$, oricare ar fi $x, y \in \mathbb{R}$.
- **5p** | **3.** Să se rezolve în mulțimea numerelor reale ecuația $\sin 2x = \cos x$.
- **5p 4.** Să se calculeze $A_5^3 4C_6^2$.
- 5p 5. În sistemul de coordonate xOy se consideră punctele A,B,C astfel încât A(1,3), B(2,5) și $\overline{AC} = 2\overline{AB}$. Să se determine coordonatele punctului C.
- **5p 6.** Fie ABC un triunghi care are BC = 8 şi $\cos A = \frac{3}{5}$. Să se calculeze lungimea razei cercului circumscris triunghiului ABC.

SUBIECTUL I (30p) Varianta 98

- 5p 1. Fie $z \in \mathbb{C}$ astfel încât $z + 2\overline{z} = 3 + i$. Să se calculeze modulul numărului z.
- **5p** 2. Să se dea un exemplu de ecuație de gradul al doilea cu coeficienți întregi care are o soluție egală cu $\sqrt{3}$.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_x 2 + \log_{\sqrt{x}} 2 = 9$.
- **5p 4.** Să se determine numărul submulțimilor cu trei elemente ale mulțimii {1,2,3,4,5} care conțin cel puțin un număr par.
- 5p | 5. Fie G centrul de greutate al triunghiului ABC. Să se determine $a,b \in \mathbb{R}$ astfel încât să aibă loc egalitatea $a\overline{GA} + b\overline{GB} = \overline{GC}$.
- **5p 6.** Ştiind că $\mathbf{a} \in \left(\frac{\pi}{2}, \pi\right)$ şi $\sin \mathbf{a} = \frac{3}{5}$, să se calculeze tg \mathbf{a} .

- **5p 1.** Să se calculeze partea întreagă a numărului $\frac{1}{\sqrt{3}-\sqrt{2}}$.
- 5p 2. Fie f o funcție de gradul întâi. Să se arate că funcția $f \circ f$ este strict crescătoare.
- **5p** 3. Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = \frac{4}{9}$.
- **5p 4.** Câte funcții $f:\{1,2,3,...,10\} \rightarrow \{0,1\}$ au proprietatea că f(1)+f(2)+f(3)+...+f(10)=2?
- **5p 5.** Se consideră punctele M(1,2), N(2,5) și $P(3,m), m \in \mathbb{R}$. Să se determine valorile reale ale lui m astfel încât $\overline{MN} \cdot \overline{MP} = 5$.
- **5p 6.** Să se determine cel mai mare element al mulțimii {cos 1, cos 2, cos 3}.

- **5p** 1. Să se arate că $\sqrt{6+4\sqrt{2}} \in \left\{ a+b\sqrt{2} \mid a,b \in \mathbb{Z} \right\}$.
- **5p 2.** Să se rezolve în mulțimea numerelor reale ecuația |1+x|=1-x.
- **5p 3.** Să se rezolve în mulțimea numerelor reale ecuația $\sqrt[6]{x^2 2x + 1} = \sqrt[3]{3 x}$.
- **5p 4.** Să se arate că 11 divide numărul $C_{11}^1 + C_{11}^2 + ... + C_{11}^{10}$.
- **5p 5.** Fie ABC un triunghi și G centrul său de greutate. Știind că A(1,1), B(5,2) și G(3,4), să se calculeze coordonatele punctului C.
- **5p 6.** Fie $a \in \mathbb{R}$ cu tg $a = \frac{2}{5}$. Să se calculeze $|\sin a|$.