

substitute(t)

a factorisation equivalence

If the root has arity n, and $1 \le i < j \le n$, then all ports of the *j*-th subterm of the root are after all ports of the *i*-th subterm of the root

satisfies (*)

violates (*)

a register update

its dual

Variable *i.j* represents register *i* in the *j*-th argument of the reigster update.

In the dual, this variable is mapped to the *i*-th edge which enters the *j*-th port of the reducer.

factors with branching nodes

a term of matrix powers

its term unfolding

λ-term of type *o*

 λx .

its representation as a λ -term

a branch can be visualised as a term with a distinguished root-to-port path

a tuple of *k* identity terms with all their ports folded into one

$$\Sigma = \{ \bigcirc, \bigcirc, \bigcirc \}$$
 $a \in \Sigma^{[2]}$ $b \in \Sigma^{[2]}$

each placeholder of *t* is replaced by a port applied to its children using @

a term

its λ -representation

a register update

its λ -representation

tree with a path from *x* to *y*

word corresponding to the path

exactly once as a second child a first child

