Introduction à l'Intelligence Artificielle

Cours 2 - mercredi 05 octobre 2022

Adrien Revault d'Allonnes

ara@up8.edu

Université Paris 8 - Vincennes à Saint-Denis

IIA - sept. à déc., 2022

Résolution du problème

- Trouver une séquence d'actions pour mener de l'état initial à un état but
 - construction d'un graphe d'états
- Stratégies de résolution
 - méthodes exhaustives : parcours systématique de l'espace des états
 - méthode aléatoire
 - recherche en largeur
 - recherche en profondeur
 - méthodes informées ou heuristiques : parcours de l'espace des états guidé par une connaissance
 - utilisation d'une heuristique
 - algorithme glouton
 - algorithme A*

Méthodes informées ou heuristiques

- 'A process that may solve a given problem, but offers no guarantee of doing so, is called a **heuristic** for that problem' (Newel, Shaw & Simon, 1963)
- Améliorer la recherche en utilisant des connaissances du domaine
 - évaluer les états lors de la recherche d'un chemin vers la solution
- \Rightarrow Fonction d'évaluation h des états pour en guider l'examen
 - $h: \text{États} \longrightarrow \mathbb{R}^+$
 - si h(e)=0, alors e est un état but
 - si $h(e) = +\infty$, alors e est un état interdit ou sans successeurs
 - $\forall e \in \text{États}, h(e)$ donne une **estimation** de la distance de e au but
 - Remarques
 - il n'est généralement pas facile de déterminer une fonction h
 - h doit s'appuyer sur des connaissances que l'on a sur le problème
 - on dit que h est une fonction heuristique
 - h sert donc à guider la recherche du chemin vers la solution

A. Revault d'Allonnes

IIA - 3

Méthode heuristique : un premier algorithme

- But : améliorer l'examen des états grâce à une fonction d'évaluation
- Algorithme glouton == Greedy algorithm
 - toujours faire le choix localement optimal
- Étant donné une fonction heuristique h: États $\longrightarrow \mathbb{R}^+$
 - pour tout e, h(e) donne une **estimation** de la distance de e au but
 - idée : toujours essayer de s'avancer vers le but
 - toujours réduire sa distance au but en choisissant l'action qui nous en rapproche le plus
- Algorithme glouton : à chaque étape, choisir le minimum local
 - tant qu'il reste des états non visités
 - soit e l'état courant et E les états déjà visités
 - soit $S = \{e' \notin E, \text{tel que } e \longrightarrow e'\}$
 - choisir $e' \in S$ tel que $h(e') = \min\{h(s), s \in S\}$
 - si $h(e') = +\infty$, alors arrêt, sinon e' devient l'état courant

Exemple de recherche gloutonne

- Rendu de monnaie
 - atteindre la somme d donnée, à l'aide de pièces de 1, 2 et 5 centimes
- Modélisation du problème
 - états : somme $x \in \mathbb{N}$, état initial $x_0 = 0$
 - actions : +1, +2, +5
 - but : atteindre la somme d
- Fonction heuristique : $h : \text{États} \longrightarrow \mathbb{R}^+$

$$- h(x) = \begin{cases} d - x, & \text{si } x \le d \\ +\infty & \text{sinon} \end{cases}$$

- Algorithme glouton
 - mise en œuvre : choisir toujours la pièce la plus haute
- Exemple de résolution
 - rendre 13 centimes
 - $-0 \longrightarrow 5 \longrightarrow 5+5 \longrightarrow 5+5+2 \longrightarrow 5+5+2+1$

Méthode heuristique : l'algorithme glouton

- Limites
 - problèmes s'il faut commencer par s'éloigner du but pour l'atteindre
 - l'algorithme échoue sur certains problèmes
 - choisir un minimum local à chaque étape ne permet pas forcément d'atteindre le minimum global
 - par exemple, pour le rendu de monnaie
 - rendre d=6 centimes avec des pièces de 2 et 5
- Il manque un mécanisme de « retour arrière » pour revenir explorer des choix mis de côté

Méthode heuristique : l'algorithme A*

- Idées :
 - garder une trace des évaluations déjà rencontrées et les utiliser pour choisir son chemin
- L'algorithme A*
 - algorithme de recherche « meilleur d'abord »
 - exploration « par sauts » du graphe de recherche
- Principes
 - coût d'un état e: f(e) = g(e) + h(e)
 - q(e) : coût mesuré pour venir de l'état initial à l'état courant e
 - h(e) : coût estimé pour aller de e à l'état final (heuristique)
 - une heuristique h est admissible si elle ne surestime jamais le coût pour atteindre le but

Méthode heuristique l'algorithme A*

- Initialisation
 - soit
 - e₀ : l'état initial
 - $F = \emptyset$: file d'attente des états à évaluer
 - $V=\varnothing$: états évalués
 - init : $F \longleftarrow (e_0, f(e_0))$ (NB : on a $g(e_0) = 0$ donc $f(e_0) = h(e_0)$)
- ullet tant que e n'est pas terminal et que F n'est pas vide
 - $e \leftarrow$ PlusPetitCout(F)
 - enlever(F, (e, f(e)))
 - ajouter(V, (e, f(e)))
 - pour chaque successeur s de e
 - calculer f(s) et ajouter(F,(s,f(s)))
 - fin pour
- fin tant que
- si e est terminal reconstituer le chemin de e_0 à e
 - succès
- sinon, si F est vide
 - échec

Méthode heuristique l'algorithme A*

- Terminaison : si le graphe des états est fini, alors A* s'arrête
 - la file d'états est vide, si et seulement s'il n'existe pas de chemin de l'état initial à la solution
- Exemple d'application : le taquin
 - passer de $e_0 = [283; 164; 705]$ à $e_T = [123; 804; 765]$
 - 0 représente la case vide
 - fonction d'évaluation
 - g(e) : nombre de coups pour passer de e_0 à e
 - h(e) : nombre de cases non nulles mal placées
- Exercice :
 - dérouler l'algorithme A* pour trouver la séquence de coups permettant d'aller de e_0 à e_T
 - construire le graphe des états explorés correspondant

$$e_{T} = \begin{bmatrix} 1 & 2 & 3 \\ 8 & 4 \\ 7 & 6 & 5 \end{bmatrix}$$
$$f(e) = g(e) + h(e)$$

$$e_T = \begin{bmatrix} 8 & 4 \\ 8 & 4 \\ 7 & 6 & 5 \end{bmatrix}$$
$$f(e) = g(e) + h(e)$$

