14. Legi de compoziție

M = multime nevidă

"* ": $M \times M \rightarrow M$; $(x, y) \rightarrow x * y$ se numește **lege de compoziție internă.**

Exemple: ,, + ": $\mathbb{R} \times \mathbb{R} (x, y) \rightarrow x + y$ adunarea pe \mathbb{R} ;

 $,\cdot$ ": $\mathbb{R} \times \mathbb{R}(x, y) \to x \cdot y$ înmulțirea pe \mathbb{R} .

Proprietăți:

1) Asociativitatea = (A) "*" este asociativă dacă

$$(\forall) x, y, z \in M: (x * y) * z = x * (y * z)$$

2) Comutativitatea = (C) "*" este comutativă dacă

$$(\forall) x, y \in M: x * y = y * x$$

3) Element neutru = (EN)

$$(\exists) e \in M$$
, astfel încât $x * e = e * x = x$, $(\forall) x \in M$

4) Un element este simetrizabil = (E.S.)

$$(\forall) x \in M, (\exists) x' \in M, \text{ astfel încât } x * x' = x' * x = e$$

Exemplu: $,, \cdot$ ": $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$

1) (A):
$$(x \cdot y) \cdot z = x \cdot (y \cdot z), (\forall) x, y, z \in \mathbb{R}$$
;

2) (C):
$$x \cdot y = y \cdot x$$
, $(\forall) x, y \in \mathbb{R}$;

3) (E.N.): " admite elementul neutru $1 \in \mathbb{R}$;

$$(\exists) \ 1 \in \mathbb{R} \text{ astfel încât } x \cdot 1 = 1 \cdot x = x, \ (\forall) \ x \in \mathbb{R};$$

4) (E.S.): orice element real nenul este simetrizabil

$$(\forall) x \in \mathbb{R}^*, (\exists) x' = \frac{1}{x} \in \mathbb{R} \text{ (inversul lui } x), \text{ astfel încât } x \cdot \frac{1}{x} = \frac{1}{x} \cdot x = 1.$$

Parte stabilă

 $M \neq \emptyset$ multime: ": $M \times M \rightarrow M$ lege de compoziție pe M

• $H \subset M$, $H \neq \emptyset$ este *parte stabilă* a lui M în raport cu ,,*" dacă:

$$(\forall) x, y \in H \text{ am } x * y \in H.$$

Exemplu: $(\mathbb{R}, +)$, $N \subset \mathbb{R}$, N parte stabilă a lui \mathbb{R} , în raport cu "+".

Monoizi

 $M \neq \emptyset$ mulțime "": $M \times M \rightarrow M$ lege de compoziție pe M

• (*M*, *) monoid:

,,*" este (A)
,,*" admite (E.N.)

• (M, *) monoid: comutativ

(M, *) monoid ,,*" este (C)

Exemple:

$$(\mathbb{N},+);(\mathbb{Z},+);(\mathbb{Q},+);(\mathbb{R},+);$$

$$(\mathbb{N},\cdot);(\mathbb{Z},\cdot);(\mathbb{Q},\cdot);(\mathbb{R},\cdot)$$

sunt monoizi comutativi.

Grupuri

 $G \neq \emptyset$ multime: ",*": $G \times G \rightarrow G$ lege de compoziție

(G, *) se numește grup dacă:

,, * " este (A)

"*" are (E.N.)

 $(\forall) x \in G \text{ este (E.S.)}$

(*G*, *) grup

,, * " este (C)

(G, *) se numește grup comutativ sau grup abelian **dacă**:

Exemple:

 $(\mathbb{Z}, +)$ grupul comutativ al numerelor întregi;

 (\mathbb{Q}^*, \cdot) grupul abelian al numerelor rationale nenule

Grupul claselor de resturi modulo n

 $\mathbb{Z}_n = \left\{ \hat{0}, \hat{1}, \hat{2}, ..., \widehat{n-1} \right\} \quad \text{,,+'':} \quad \mathbb{Z}_n \times \mathbb{Z}_n \longrightarrow \mathbb{Z}_n \quad \left(\hat{x}, \hat{y} \right) \longrightarrow \hat{x} + \hat{y} \quad \text{;} \quad (\mathbb{Z}_n, +) \quad \text{este grup abelian.}$

Subgrupuri

$$(G, *)$$
 grup, $H \subset G, H \neq \emptyset$

• H subgrup al lui G dacă "*" induce pe H o lege de compoziție astfel încât (H, *) grup.

Teoremă: $H \subset G$ subgrup al grupului (G, *) dacă și numai dacă sunt îndeplinite: $(\forall) x, y \in H \Rightarrow x * y \in H;$ $(\forall) x \in H \Rightarrow x' \in H \text{ (unde } x' \text{ este simetricul lui } x \text{ în raport cu legea },,*").$

```
Exemple: (\mathbb{Z}, +) subgrup al lui (\mathbb{Q}, +) (\mathbb{Q}, +) subgrup al lui (\mathbb{R}, +) (\mathbb{Z}^*, \cdot) subgrup al lui (\mathbb{Q}^*, \cdot) subgrup al lui (\mathbb{R}^*, \cdot)
```

- Fie (G, *) grup. (H, *) subgrup al lui (G, *). Avem:
- Elementul neutru al lui H coincide cu elementul neutru al lui G;

$$(\forall)x \in H \Rightarrow x' \in H;$$

- Sunt echivalente afirmațiile:
- H subgrup al lui G;

$$(\forall) x, y \in H \Rightarrow xy' \in H;$$

$$(\forall) x, y \in H \Rightarrow xy \in H \text{ si } x' \in H.$$

Ordinul unui element: (G, *) grup cu elementul neutru $e, x \in G$.

• Cel mai mic număr natural $n \in \mathbb{N}^*$, cu proprietatea $x^n = e$, se numește ordinul elementului x, în grupul G.

Exemple:
$$(\mathbb{Z}_4, +), e = \hat{0}: \hat{1} + \hat{1} + \hat{1} + \hat{1} = \hat{0} \text{ ord } (\hat{1}) = 4; \hat{2} + \hat{2} = \hat{0} \text{ ord } (\hat{2}) = 2.$$

$$(\mathbb{Z}_5, \cdot), e = \hat{1}: \hat{2}^4 = \hat{1} \Rightarrow \text{ord } (\hat{2}) = 4;$$

$$\hat{3}^4 = \hat{1} \Rightarrow \text{ord } (\hat{3}) = 4;$$

$$\hat{4}^2 = \hat{1} \Rightarrow \text{ord } (\hat{4}) = 2.$$

Morfisme şi izomorfisme de grupuri

Fie $(G_1,*)$ și (G_2,\circ) grupuri.

- $f: G_1 \to G_2$ se numește **morfism** de grupuri dacă $f(x * y) = f(x) \circ f(y)$.
- Dacă $G_1 = G_2$, atunci f se numește endomorfism.
- $f: G_1 \to G_2$ morfism de grupuri, e_1 , e_2 sunt elemente neutre din grupurile G_1 şi G_2 . Atunci:
 - 1) $f(e_1) = e_2$;
 - 2) f(x') = (f(x))', $(\forall) x \in G_1$;
 - 3) $f(x^n) = (f(x))^n$, $(\forall) x \in G_1$; $(\forall) n \in \mathbb{Z}$
 - $(G_1,*)$ și (G_2,\circ) grupuri. $f:G_1\to G_2$ se numește **izomorfism** de grupuri dacă:
 - 1) f este bijectivă;
 - 2) f este morfism de grupuri.
- Dacă $G_1 = G_2$, $f: G_1 \to G_1$ îndeplinește condițiile de mai sus, se numește automorfism al lui G_1 .
 - $f: G_1 \to G_2$ izomorfism de grupuri, atunci $f^1: G_2 \to G_1$ izomorfism de grupuri.

Inele

Fie $I \neq \emptyset$.

 $(I, *, \circ)$ se numește inel dacă:

$$(I, *) \text{ grup abelian}$$

$$(I, \circ) \text{ monoid}$$

$$, \circ \text{" distributivă față de }, * \text{"} \rightarrow$$

$$\Rightarrow \text{ adică: } \begin{cases} x \circ (y * z) = x \circ y * x \circ z \\ (y * z) \circ x = y \circ x * z \circ x \end{cases} (\forall) x, y, z \in I$$

Observații: Dacă (I, \circ) monoid comutativ, atunci I se numește inel comutativ.

Exemplu: $(\mathbb{Z}, +, \cdot)$ inel comutativ; $(\mathbb{R}, +, \cdot)$ inel comutativ.

Fie e_1 elementul neutru al legii "*" (al primei legi) și e_2 elementul neutru al legii "°" (al celei de-a doua legi).

- I este inel fără divizori ai lui zero dacă $x \neq e_1$ și $y \neq e_1 \Rightarrow x \circ y \neq e_1$;
- I este inel comutativ cu cel puțin două elemente și fără divizori ai lui zero, atunci I se numește domeniu de integritate.

Reguli de calcul într-un inel

 $(I, *, \circ)$ inel.

- 1) $(\forall) x \in I, e_1 \circ x = x \circ e_1 = e_1;$
- 2) $e_1 \neq e_2$ (e_1 elementul neutru al primei legi; e_2 elementul neutru al celei de-a doua legi)
- 3) Regula semnelor:
- $(\forall) x, y \in I; (-x) \circ y = x \circ (-y) = -x \circ y;$
- $(-x) \circ (-y) = x \circ y$, unde (-x) este elementul simetrizabil al lui x în raport cu prima lege "*"
 - 4) $(\forall) x, y, z \in I, x \circ (y-z) = x \circ y x \circ z;$ $(y-z) \circ x = y \circ x - z \circ x.$
- 5) *I* inel fără divizori ai lui zero, $(\forall) x, y, z \in I; x \neq e_1; x \circ y = x \circ z$ sau $y \circ x = z \circ x$, atunci y = z.

Subinele

 $(I, *, \circ)$ inel. $M \subset I, M \neq \emptyset$ se numește subinel al inelului I, dacă $(M, *, \circ)$ inel.

Exemple:
$$(\mathbb{Z}^*, +, \cdot)$$
 subinel al inelului $(\mathbb{C}^*, +, \cdot)$; $(\mathbb{Q}, +, \cdot)$ subinel al inelului $(\mathbb{R}, +, \cdot)$

Morfisme și izomorfisme de inele

 (I_1, \perp, Δ) şi $(I_2, *, \circ)$ două inele.

- $f: I_1 \rightarrow I_2$ este morfism de inele dacă:
 - $f(x \perp y) = f(x) * f(y), (\forall) x, y \in I_1;$
 - $f(x \Delta y) = f(x) \circ f(y), (\forall) x, y \in I_1;$
- $f: I_1 \rightarrow I_1$ morfism de inele se numește **endomorfism** al inelului I_1 ;
- $f: I_1 \rightarrow I_2$ surjectivă, atunci f se numește **morfism unitar** de inele;
- $f: I_1 \rightarrow I_2$ morfism bijectiv, atunci f se numește **izomorfism** de inele;
- $f: I_1 \rightarrow I_1$ izomorfism, atunci f se numeşte **automorfism**.

Exemplu: $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$ funcția identică pe A; 1_A este automorfism între $(\mathbb{R}, +, \cdot)$ și $(\mathbb{R},\,+,\cdot)$.

Corpuri

Fie K multime nevidă care conține cel puțin două elemente.

 $(K, *, \circ)$ corp dacă:

"°" distributivă față de "*"

Obs.: (K, \circ) grup abelian $\Rightarrow (K, *, \circ)$ se numeşte *corp comutativ*.

Exemple: $(\mathbb{Q}^*, +, \cdot)$ corp comutativ; $(\mathbb{R}^*, +, \cdot)$ corp comutativ;

Proprietăți:

- 1) Un corp nu are divizori ai lui zero (este domeniu de integritate);
- 2) Orice domeniu de integritate finit este corp.

Morfisme şi izomorfisme de corpuri

$$(K_1, \perp, \Delta)$$
 şi $(K_2, *, \circ)$ corpuri.

- $f: K_1 \to K_2$ este morfism de corpuri dacă:
 - $f(x \perp y) = f(x) * f(y), \quad (\forall x, y \in K_1);$
 - $f(x \Delta y) = f(x) \circ f(y), \quad (\forall x, y \in K_1)$
- $f: K_1 \to K_2$ morfism bijectiv de corpuri, atunci f este **izomorfism** de corpuri;
- $f: K_1 \to K_1$ morfism, se numește **endomorfism** al corpului K_1 ;
- $f: K_1 \to K_1$ izomorfism, se numește **automorfism** al corpului K_1 .

Teoremă: Orice morfism de corpuri este injectiv.