Linear models

Gabriela Ciołek

Testing multiple linear restrictions: the F test

- We wish to test multiple hypotheses about underlying parameters β_1, \dots, β_k . We want to test whether a set of independent variables has no partial effect on a dependent variable.
- Unresticted model with k independent variables

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

Number of parameteres in unrestiricted model is k + 1.

• The null hypothesis is stated as

$$H_0: \beta_{k-q+1}=0,\cdots,\beta_k=0,$$

which puts *q* restrictions on the model.

- H_1 : H_0 is not true.
- Restricted model

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_{k-q} x_{k-q} + u.$$

F test

•

0

•

$$F := \frac{(SSR_r - SSR_ur)/q}{SSR_ur/(n-k-1)},$$

where SSR_r is the sum of squared residuals from the resticted model and SSR_u r is the sum of squared residuals from the unrestricted model.

$$q = numerator degrees of freedom = df_r - df_ur$$

$$n-k-1 = denominator degrees of freedom = df_ur$$

- One can show that under H_0 , F is distributed as an F random variable with (q, n k 1) degrees of freedom
- We will reject H_0 in favor of H_1 when F is 'sufficiently' large (how large it depends of chosen significance level). The critical value depends on q and n-k-1

F test

• Once c has been computed, we reject H_0 in favor of H_1 at the chosen significance level if

$$F > c$$
.

- If H_0 is rejected, than we say that x_{k-q+1}, \dots, x_k are jointly statistically significant at the appropriate significance level.
- Remark: The test alone does not allow us to say which of the variables has a partial effect on y; they may all affect y or maybe just only one affects y. If H_0 is not rejected, then the variables are jointly insignificant

Computing *p*-values for *F* Tests

For reporting the outcomes of F tests, p-values are especially useful. Since the F distribution depends on the numerator and denominator df, it is difficult to get a feel for how strong or weak the evidence is against the null hypothesis simply by looking at the value of the F statistic and one or two critical values. In the F testing context, the p-value is defined as

$$p-value = \mathbb{P}(\mathcal{F} > F),$$

where \mathcal{F} is an F random variable with (q, n-k-1) degrees of freedom, and F is actual value of the test statistic.

• The same interpretation as it did for t statistics: it is the probability of observing a value of the F at least as large as we did, given that the null hypothesis is true. A small p-value is evidence against H_0 .

Binary observations

Qualitative factors often come in the form of binary information: a person is female or male; a person does or does not own a personal computer; a firm offers a certain kind of employee pension plan or it does not; a state administers capital punishment or it does not. In all of these examples, the relevant information can be captured by defining a binary variable or a zero-one variable. In econometrics, binary variables are most commonly called dummy variables, although this name is not especially descriptive.

Example

Consider the following simple model of hourly wage determination:

$$wage = \beta_0 + \delta_0 female + \beta_1 educ + u.$$

We use δ_0 as the parameter on female in order to highlight the interpretation of the parameters multiplying dummy variables; later, we will use whatever notation is most convenient. In above model, only two observed factors affect wage: gender and education. Since female=1 when the person is female, and female=0 when the person is male, the parameter δ_0 has the following interpretation: δ_0 is the difference in hourly wage between females and males, given the same amount of education (and the same error term u). Thus, the coefficient δ_0 determines whether there is discrimination against women: if $\delta_0 < 0$, then, for the same level of other factors, women earn less than men on average.

Interactions

- Sometimes it is natural for the partial effect, elasticity, or semi-elasticity of the dependent variable with respect to an explanatory variable to depend on the magnitude of yet another explanatory variable.
- Consider

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i x_j + \dots + \beta_j x_j + \dots + \beta_k x_k$$

• the partial effect of x_i on y is

$$\frac{\delta(y)}{\delta(x_i)} = \beta_i + \beta_j x_j$$

- If $\beta_i > 0$, then, there is an interaction effect between x_i and x_j .
- We want to test if $\beta_j = 0$.

- Consider the model $log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + u$.
- Test $H_0: \beta_1 = \beta_2$
- Use F—test to test H_0 .
- Compute SSR_{ur}
- Compute SSR_r Note that in order to compute SSR_r we consider the model $log(wage) = \beta_0 + \beta_1 tenure + u$.
- compute *F*-statistic
- note that th denominator degree of freedom is n-4 and q=2.
- Compute p-value
- Code : k0 = 4 $p = fdis_prb(F, 2, n - k0)$

Do we reject or accept H_0 ?

- Test H_0 : $\beta_{educ} = 0$.
- Use F—test to decide if H_0 should be rejected or accepted.
- The unrestricted model is the same as in Excercise 1
- The restricted model $log(wage) = \beta_0 + \beta_1 exper + \beta_2 tenure + u$.
- Calculate SSR_r.
- Compute *F*− statistic
- k0 = 4, q = 1) $p = fdis_prb(F, 1, n - k0)$

- load wage1.raw
- Consider the model

$$log(wage) = \beta_0 + \beta_1 female + \beta_2 married + \beta_3 educ + \beta_4 exper + \beta_5 tenure + u$$

• Test $\beta_{female} = 0$.

Exercise 4 -Interactions

- Estimate a model that allows for wage differences among four groups: married men, married women, single men, and single women.
- To do this, we must select a base group; choose single men.
- Define dummy variables for each of the remaining groups: marrmale, marrfem, and singfem (see next slide).

Create the variables

- $marmale = (1 female) \times married$
- marrfem = female × married
- $singfem = female \times (1 married)$

Creation of variables

```
educ = X(:, 2);
         exper = X(:,3);
         tenure = X(:,4);
         female = X(:,5);
        married = X(:, 6);
marrmale = (1 - female). * married;
   marrfem = female. * married:
singfem = female. * (1 - married);
```

Do a regression for the model

$$log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure$$

 $+ \beta_4 marrmale + \beta_5 marrfem + \beta_6 singfem + u$

- Calculate SSR_{ur}
- Test if being a women has an effect on the wage
- Do a regression for restricted model:

$$log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \beta_4 marrmale + u$$

- Compute SSR_r .
- Calculate *F*-statistic
- Is being a women has an effect on wage?

• Add an interaction term between female and education to the model

$$log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \beta_4 female + \beta_5 femeduc + u$$

- femeduc = female. * educ
- This allows the education premumium depend on gender
- Test $\beta_{female} = \beta_{femeduc}$.