Interpolare

1 Introducere Interpolare Polinomiala

1.1 Notiuni generale

Fie o functie $f:[a,b]\to\mathbb{R}$. Cunoastem valorile functiei intr-un numar redus de puncte $(x_i,f(x_i)),\ i=\overline{0,n}$. Punctele x_0,x_1,\ldots,x_n se numesc noduri si formeaza suportul interpolarii.

Pornind de la un set discret de puncte, dorim sa construim o functie (polinom) care va trece prin toate aceste puncte.

1.2 Motivatie

- In Computer Science se lucreaza in general cu date discrete.
- Functii complexe ca forma se pot simplifica, alegand cateva puncte $(x_i, f(x_i))$ si construind pe baza lor niste aproximari cu ajutorul unor polinoame.
- Polinoamele sunt usor de evaluat, derivat, integrat, deci interpolarea polinomiala are un avantaj.

1.3 Idee

Sa presupunem ca se cunoaste valoarea functiei f(x) in (n+1) puncte. Asadar, suportul interpolarii va arata astfel: $S = [(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))]$. Deci, (n+1) puncte in care stim valorile functiei pe care dorim sa o aproximam cu un polinom de grad (cel mult) n.

La modul general, un polinom de interpolare este o combinatie liniara de functii, de forma: $P_n(x) = a_0 \cdot u_0(x) + a_1 \cdot u_1(x) + \cdots + a_n \cdot u_n(x)$. Functiile $u_0(x), u_1(x), \dots, u_n(x)$ sunt liniar independente si formeaza baza interpolarii. a_0, a_1, \dots, a_n reprezinta coeficientii care trebuie determinati.

1.4 Conditii de interpolare

Polinomul de interpolare construit $P_n(x)$ trebuie sa coincida cu functia initiala pe suportul interpolarii. Matematic, afirmatia devine: $P_n(x_i) = f(x_i), \forall i = \overline{0,n}$.

1.5 Teorema Weierstrass

Fie o functie continua $f:[a,b]\to\mathbb{R}$ si $\epsilon>0$ (toleranta). Atunci $\exists P(x)\in\mathbb{R}^n$, a.î. $|f(x)-P(x)|<\epsilon$, $\forall x\in[a,b]$.

Asadar, teorema ne asigura ca pentru orice functie continua pe un interval [a, b], exista un polinom cu care putem aproxima functia.

1.6 Tipuri de interpolari abordate

- Interpolare polinomiala de tip:
 - Vandermonde
 - Lagrange
 - Newton (Diferente Divizate)
- Interpolare folosind functii spline:
 - Liniare
 - Cubice de clasa C^1
 - Cubice de clasa C^2

1.7 Aplicatii din viata reala care folosesc interpolarea

• Image scaling

Exemplu: Daca avem o imagine (cu un singur canal de culoare) de dimensiune 2×2 pixeli si dorim sa o marim de 2 ori, ne putem folosi de tehnica de interpolare.

Pentru acest exemplu s-a aplicat o interpolare biliniara $\frac{1}{1}$ cu coeficientii $\frac{1}{3}$ si $\frac{2}{3}$.

• Filling missing values

Exemplu: O firma isi monitorizeaza vanzarile zilnic, timp de o saptamana, insa in ziua a 5-a a omis masuratoarea. Ce cantitate de produse (aproximativ) a vandut in ziua a 5-a?

Sa presupunem ca graficul vanzarilor arata astfel:

Folosind o interpolare polinomiala, gasim un polinom care trece prin cele 6 puncte cunoscute si astfel putem aproxima cantitatea de produse vanduta in ziua a 5-a.

1.8 Pregatirea terenului

Inainte de a discuta despre fiecare tip de interpolare, prezentam cadrul discutiei:

- Pornim de la o functie continua $f:[a,b]\to\mathbb{R}$ careia ii cunoastem valorile in (n+1) puncte.
- Asadar, suportul interpolarii va fi de forma: $S = [(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))].$
- Dorim sa gasim un polinom de grad (cel mult) n care sa aproximeze functia f(x).

¹ https://en.wikipedia.org/wiki/Bilinear_interpolation

2 Interpolare Vandermonde

2.1 Baza de interpolare

Interpolarea Vandermonde foloseste ca baza de interpolare, baza polinoamelor: $\{1, x, x^2, \dots, x^n\}$.

Deci, polinomul de interpolare Vandermonde arata astfel: $P_n(x) = a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_n \cdot x^n$

Pentru a determina coeficientii a_0, a_1, \dots, a_n , punem conditiile de interpolare: $P_n(x_i) = f(x_i), \forall i = \overline{0, n}$

$$\begin{cases} Pentru & i = 0 : P_n(x_0) = f(x_0) \iff a_0 + a_1 \cdot x_0 + a_2 \cdot x_0^2 + \dots + a_n \cdot x_0^n = f(x_0) \\ Pentru & i = 1 : P_n(x_1) = f(x_1) \iff a_0 + a_1 \cdot x_1 + a_2 \cdot x_1^2 + \dots + a_n \cdot x_1^n = f(x_1) \\ \dots \\ Pentru & i = n : P_n(x_n) = f(x_n) \iff a_0 + a_1 \cdot x_n + a_2 \cdot x_n^2 + \dots + a_n \cdot x_n^n = f(x_n) \end{cases}$$

Sistemul de mai sus poate fi scris sub forma matriceala, astfel:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

$$A \qquad x \qquad b$$

Asadar, avem de rezolvat un sistem de forma $A \cdot x = b$.

Matricea A (de tip Vandermonde) este nesingulara 2, deci sistemul are solutie unica, ceea ce conduce la uniticitatea polinomul de interpolare 3.

2.2 Exemplu numeric

Sa consideram cunoscute urmatoarele puncte din plan: $\{(1,1),(2,8),(3,27)\}$.

Suportul interpolarii este S = [(1, 1), (2, 8), (3, 27)].

Asadar, avand 3 puncte in suportul interpolarii, cautam un polinom de interpolare de grad 2. Deci, polinomul cautat are forma: $P_2(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2$.

Punand conditiile de interpolare, vom avea de rezolvat urmatorul SEL (sistem de ecuatii liniare):

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{bmatrix} \iff \begin{bmatrix} 1 & 1 & 1^2 \\ 1 & 2 & 2^2 \\ 1 & 3 & 3^2 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 27 \end{bmatrix} \xrightarrow{(\dots)} \begin{cases} a_0 = 6 \\ a_1 = -11 \\ a_2 = 6 \end{cases}$$

$$\Rightarrow P_2(x) = 6 - 11 \cdot x + 6 \cdot x^2 \Rightarrow P_2(x) = 6 \cdot x^2 - 11 \cdot x + 6$$

https://math.stackexchange.com/questions/426932/why-are-vandermonde-matrices-invertible

³ https://en.wikipedia.org/wiki/Polynomial_interpolation#Uniqueness_of_the_interpolating_polynomial

2.3 Concluzii

Asadar, folosind baza de interpolare Vandermonde $\{1, x, x^2, \dots, x^n\}$, obtinem sistemul:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

- \ominus Matricea Vandermonde A este o matrice rau conditionata.
- \ominus Pentru un numar mare de puncte (n mare), matricea A devine matrice plina mare, ceea ce conduce la numar de conditionare mare.
 - ⊖ Numarul de conditionare mare implica instabilitate numerica.

In concluzie, interpolarea Vandermonde nu este utilizata in practica \rightarrow Cautam alte baze de interpolare.

3 Interpolare Lagrange

3.1Baza de interpolare

Interpolarea Lagrange foloseste (n+1) polinoame $L_k(x)$, $i=\overline{0,n}$. $L_k(x)$ sunt polinoame de grad (cel mult) n si se numesc multiplicatori Lagrange.

Matematic, multiplicatorul Lagrange se defineste astfel:
$$L_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i}, \ k = \overline{0,n}$$
 Deci, polinomul de interpolare Lagrange se poate scrie:
$$P_n(x) = \sum_{k=0}^n L_k(x) \cdot f(x_k)$$

$$P_n(x) = \sum_{k=0}^{n} L_k(x) \cdot f(x_k)$$

Pentru a intelege mai bine, particularizam problema la 2 puncte in suportul interpolarii (n = 1): $\Rightarrow S = [(x_0, f(x_0), (x_1, f(x_1))].$

Astfel, multiplicatorii Lagrange vor fi: $L_0(x) = \frac{x-x_1}{x_0-x_1}$ si $L_1(x) = \frac{x-x_0}{x_1-x_0}$. Tinand cont de forma generala a polinomului de interpolare Lagrange, putem particulariza pe exemplu nostru: $P_1(x) = L_0(x) \cdot f(x_0) + L_1(x) \cdot f(x_1) \iff P_1(x) = \frac{x-x_1}{x_0-x_1} \cdot f(x_0) + \frac{x-x_0}{x_1-x_0} \cdot f(x_1)$.

Observatie: Multiplicatorul Lagrange la forma generala $L_k(x_i)$ poate fi privit ca un intrerupator, deoarece pentru i = k, acesta este 0 (**OFF**), iar pentru $i \neq k$ este 1 (**ON**).

De exemplu:

•
$$L_0(x_i) \stackrel{\text{def}}{=} \prod_{\substack{i=0\\i\neq 0}}^n \frac{x_{-x_i}}{x_0 - x_i} \iff L_0(x_i) = \frac{x_{-x_1}}{x_0 - x_1} \cdot \frac{x_{-x_2}}{x_0 - x_2} \dots \frac{x_{-x_n}}{x_0 - x_n} \iff L_0(x_i) = \begin{cases} 0, & i = 0\\ 1, & i \neq 0 \end{cases}$$

• Procedand analog, obtinem generalizarea:
$$L_k(x_i) = \begin{cases} 0, & i = k \\ 1, & i \neq k \end{cases}$$
 (*)

Un alt aspect important este respectarea conditiilor de interpolare. Este usor de observat faptul ca polinomul de interpolare Lagrange respecta conditiile de interpolare:

Stim ca, la modul general, polinomul de interpolare Lagrange este: $P_n(x) \stackrel{\text{def}}{=} \sum_{k=0}^n L_k(x) \cdot f(x_k)$

- Pentru $x = x_0$: $P_n(x_0) = L_0(x_0) \cdot f(x_0) + L_1(x_0) \cdot f(x_1) + \dots + L_n(x_0) \cdot f(x_n)$ Conform (*): $L_0(\mathbf{x_0}) = 1$; $L_1(x_0) = 0$; $L_2(x_0) = 0$; $L_3(x_0) = 0$; ...; $L_n(x_0) = 0$ $\Longrightarrow |P_n(x_0) = f(x_0)|$
- Pentru $x = x_1$: $P_n(x_1) = L_0(x_1) \cdot f(x_0) + L_1(x_1) \cdot f(x_1) + \cdots + L_n(x_1) \cdot f(x_n)$ Conform (*): $L_0(x_1) = 0$; $L_1(\mathbf{x_1}) = 1$; $L_2(x_1) = 0$; $L_3(x_1) = 0$; ...; $L_n(x_1) = 0$ $\Longrightarrow P_n(x_1) = f(x_1)$

4

• ...

• Pentru $x = x_n$: $P_n(x_n) = L_0(x_n) \cdot f(x_0) + L_1(x_n) \cdot f(x_1) + \dots + L_n(x_n) \cdot f(x_n)$ Conform (*): $L_0(x_n) = 0$; $L_1(x_n) = 0$; $L_2(x_n) = 0$; $L_3(x_n) = 0$; ...; $\mathbf{L_n}(\mathbf{x_n}) = \mathbf{1}$ $\Rightarrow P_n(x_n) = f(x_n)$

Asadar, $P_n(x_i) = f(x_i), \forall i = \overline{0,n} \implies$ Conditiile de interpolare se verifica.

3.2 Exemplu numeric

Sa consideram cunoscute urmatoarele puncte din plan: $\{(1,1),(2,8),(3,27)\}$.

Suportul interpolarii este S = [(1, 1), (2, 8), (3, 27)].

Asadar, avand 3 puncte in suportul interpolarii, cautam un polinom de interpolare de grad 2.

Tinand cont de forma generala a polinomului de interpolare Lagrange, putem particulariza pe exemplul nostru, astfel: $P_2(x) = L_0(x) \cdot f(x_0) + L_1(x) \cdot f(x_1) + L_2(x) \cdot f(x_2)$

Scriem desfasurat fiecare multiplicator Lagrange, tinand cont de valorile efective ale nodurilor:

•
$$L_0(x) \stackrel{\text{def}}{=} \frac{(x-x_1)\cdot(x-x_2)}{(x_0-x_1)\cdot(x_0-x_2)} = \frac{(x-2)\cdot(x-3)}{(1-2)\cdot(1-3)} = \frac{(x-2)\cdot(x-3)}{2}$$

•
$$L_1(x) \stackrel{\text{def}}{=} \frac{(x-x_0)\cdot(x-x_2)}{(x_1-x_0)\cdot(x_1-x_2)} = \frac{(x-1)\cdot(x-3)}{(2-1)\cdot(2-3)} = -(x-1)\cdot(x-3)$$

•
$$L_2(x) \stackrel{\text{def}}{=} \frac{(x-x_0)\cdot(x-x_1)}{(x_2-x_0)\cdot(x_2-x_1)} = \frac{(x-1)\cdot(x-2)}{(3-1)\cdot(3-2)} = \frac{(x-1)\cdot(x-2)}{2}$$

$$\implies P_2(x) = 1 \cdot \frac{(x-2) \cdot (x-3)}{2} + 8 \cdot -(x-1) \cdot (x-3) + 27 \cdot \frac{(x-1) \cdot (x-2)}{2} \implies$$

$$\implies P_2(x) = \frac{1}{2} \cdot (x-2)(x-3) - 8 \cdot (x-1)(x-3) + \frac{27}{2} \cdot (x-1)(x-2)$$

3.3 Fenomenul Runge

Functia Runge $\boxed{4}$ se defineste astfel: $f:[-1,1]\to\mathbb{R},\ f(x)=\frac{1}{1+25\cdot x^2}$

Aplicand tehnica de interpolare Lagrange si considerand pe rand 5, 10, 15 si apoi 20 puncte (echidistante) in suportul de interpolare, obtinem urmatoarele polinoame de interpolare:

⁴ https://en.wikipedia.org/wiki/Runge%27s_phenomenon

Asadar, cu cat numarul de puncte din suportul interpolarii creste $(n \uparrow)$, gradul polinomului de interpolare creste si polinomul oscileaza in capete, adica eroarea de interpolare creste. Acest fenomen este cunoscut sub denumirea de fenomen Runge. Animatie

Observatie: Daca punctele din suportul interpolarii ar fi fost alese la intamplare (sa nu fie echidistante), polinomul ar fi oscilat si mai mult in capete.

O solutie de atenuare a oscilatiilor este schimbarea modului de distribuire a nodurilor din suportul de interpolare. Un exemplu clasic este setul de noduri Chebyshev [5] pentru care eroarea maximala de aproximare a functiei Runge se diminueaza odata cu cresterea gradului polinomului de interpolare.

Discutia in amanunt a atenuarii oscilatiilor polinomului de interpolare Lagrange nu este de interes in acest moment.6

3.4 Concluzii

- \oplus Metoda Lagrange este mai robusta decat Vandermonde.
- \oplus Folosita in cadrul academic.
- ⊖ Instabila numeric pentru calculul polinomului.
- \ominus Polinomul de interpolare oscileaza in capete.

⁵ https://en.wikipedia.org/wiki/Chebyshev_nodes

⁶ https://en.wikipedia.org/wiki/Runge%27s_phenomenon#Mitigations_to_the_problem

Interpolare Newton (Differente Divizate)

Baza de interpolare 4.1

• La interpolarea Newton, scriem polinomul de interpolare in functie de $|(x-x_i)|$ in loc de x.

• Deducerea formulelor:

- Interpolare polinomiala **liniara** \rightarrow Suportul de interpolare este format din 2 puncte: $S = [(x_0, f(x_0)), (x_1, f(x_1))].$

Polinomul de interpolare va avea urmatoarea forma:

 $P_1(x) = a_0 + a_1 \cdot (x - x_0)$, unde a_0 si a_1 sunt cei 2 coeficienti care trebuie determinant

Punem conditiile de interpolare:
$$\begin{cases} P_{1}(x_{0}) = f(x_{0}) \\ P_{1}(x_{1}) = f(x_{1}) \end{cases} \iff \begin{cases} a_{0} + a_{1} \cdot (x_{0} - x_{0}) = f(x_{0}) \\ a_{0} + a_{1} \cdot (x_{1} - x_{0}) = f(x_{1}) \end{cases}$$
$$\iff \begin{cases} a_{0} = f(x_{0}) \stackrel{\text{not}}{=} F_{0}[x_{0}] \\ a_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} \stackrel{\text{not}}{=} F_{1}[x_{0}, x_{1}] \end{cases} \implies P_{1}(x) = F_{0}[x_{0}] + F_{1}[x_{0}, x_{1}] \cdot (x - x_{0})$$

 Interpolare polinomiala patratica → Suportul de interpolare este format din 3 puncte: $S = [(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))].$

Polinomul de interpolare va avea urmatoarea forma:

 $P_2(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1)$, unde a_0, a_1 si a_2 sunt cei 3 coeficienti care trebuie determinati.

Punem conditiile de interpolare: $\begin{cases} P_2(x_0) = f(x_0) \\ P_2(x_1) = f(x_1) \\ P_2(x_2) = f(x_2) \end{cases}$

$$\begin{cases} P_2(x_1) = f(x_1) \\ P_2(x_2) = f(x_2) \end{cases}$$

$$\iff \begin{cases} a_0 + a_1 \cdot (x_0 - x_0) + a_2 \cdot (x_0 - x_0) \cdot (x_0 - x_1) = f(x_0) \\ a_0 + a_1 \cdot (x_1 - x_0) + a_2 \cdot (x_1 - x_0) \cdot (x_1 - x_1) = f(x_1) \\ a_0 + a_1 \cdot (x_2 - x_0) + a_2 \cdot (x_2 - x_0) \cdot (x_2 - x_1) = f(x_2) \end{cases}$$

$$\left(P_{2}(x_{2}) = f(x_{2})\right)$$

$$\iff \begin{cases}
a_{0} + a_{1} \cdot (x_{0} - x_{0}) + a_{2} \cdot (x_{0} - x_{0}) \cdot (x_{0} - x_{1}) = f(x_{0}) \\
a_{0} + a_{1} \cdot (x_{1} - x_{0}) + a_{2} \cdot (x_{1} - x_{0}) \cdot (x_{1} - x_{1}) = f(x_{1}) \\
a_{0} + a_{1} \cdot (x_{2} - x_{0}) + a_{2} \cdot (x_{2} - x_{0}) \cdot (x_{2} - x_{1}) = f(x_{2})
\end{cases}$$

$$\iff \begin{cases}
a_{0} = f(x_{0}) & \text{not } F_{0}[x_{0}] \\
a_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} & \text{mot } F_{1}[x_{0}, x_{1}] \\
a_{2} = \frac{\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{0}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}}{x_{2} - x_{0}} & \text{mot } F_{2}[x_{0}, x_{1}, x_{2}]
\end{cases}$$

$$\implies P_{2}(x) = F_{0}[x_{0}] + F_{1}[x_{0}, x_{1}] \cdot (x - x_{0}) + F_{2}[x_{0}, x_{1}, x_{2}] \cdot (x - x_{0}) \cdot (x - x_{1})$$

$$\Longrightarrow P_2(x) = F_0[x_0] + F_1[x_0, x_1] \cdot (x - x_0) + F_2[x_0, x_1, x_2] \cdot (x - x_0) \cdot (x - x_1)$$

• Generalizare:

- Baza de interpolare Newton:

$$\{1, (x-x_0), (x-x_0) \cdot (x-x_1), \dots, (x-x_0) \cdot (x-x_1) \cdot \dots \cdot (x-x_{n-1})\}$$

Polinomul de interpolare Newton va fi de forma:

$$P_n(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1) + \dots + a_n \cdot (x - x_0) \cdot (x - x_1) + \dots + (x - x_{n-1})$$

- Diferentele divizate | reprezinta un algoritm recursiv pentru a calcula coeficientii unui polinom de interpolare in forma Newton.

unui polinom de interpolare in forma Newton.
$$F_0[x_0] = f(x_0)$$

$$F_1[x_0, x_1] = \frac{F_0[x_0] - F_0[x_1]}{x_0 - x_1}$$

$$F_0[x_1] = f(x_1)$$

$$F_1[x_1, x_2] = \frac{F_0[x_1] - F_0[x_2]}{x_1 - x_2}$$

$$F_1[x_1, x_2] = \frac{F_0[x_1] - F_0[x_2]}{x_1 - x_2}$$

$$F_1[x_2, x_3] = \frac{F_0[x_2] - F_0[x_3]}{x_2 - x_3}$$

⁷ https://www.geeksforgeeks.org/newtons-divided-difference-interpolation-formula/

4.2 Exemplu numeric

Sa consideram cunoscute urmatoarele puncte din plan: $\{(1,1),(2,8),(3,27)\}$:

Suportul interpolarii este S = [(1, 1), (2, 8), (3, 27)].

Asadar, avand 3 puncte in suportul interpolarii, cautam un polinom de interpolare de grad 2.

Tinand cont de forma generala a polinomului de interpolare Newton, putem particulariza pe exemplul nostru, astfel: $P_2(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1)$, unde:

$$\begin{cases} a_0 = F_0[x_0] \\ a_1 = F_1[x_0, x_1] \\ a_2 = F_2[x_0, x_1, x_2] \end{cases}; \begin{cases} x_0 = 1 \\ x_1 = 2 \\ x_2 = 3 \end{cases}$$

$$F_{0}[x_{0}] = f(x_{0}) = \boxed{1}$$

$$F_{1}[x_{0}, x_{1}] = \frac{F_{0}[x_{0}] - F_{0}[x_{1}]}{x_{0} - x_{1}} = \frac{1 - 8}{1 - 2} = \boxed{7}$$

$$F_{0}[x_{1}] = f(x_{1}) = 8$$

$$F_{1}[x_{1}, x_{2}] = \frac{F_{0}[x_{1}] - F_{0}[x_{2}]}{x_{0} - x_{2}} = \frac{8 - 27}{2 - 3} = 19$$

$$F_{0}[x_{2}] = f(x_{2}) = 27$$

$$\Longrightarrow P_2(x) = 1 + 7 \cdot (x - 1) + 6 \cdot (x - 1) \cdot (x - 2)$$

4.3 Concluzii

 \oplus Putem adauga incremental puncte noi in suportul interpolarii si avem de calculat doar un coeficient nou \Rightarrow Foarte rapid.

 \ominus Echivalent cu Lagrange in rest.

5 Concluzii Interpolarea Polinomiala

5.1 Comparatii intre tipurile de interpolare polinomiala

Asadar, cele 3 metode de interpolare exemplificate anterior (Vandermonde, Lagrange si Newton) produc acelasi polinom de interpolare, dar prin tehnici diferite.

5.2 Ce putem imbunatati?

- Asa cum am vazut in exemplele anterioare, gradul polinomului de interpolare creste odata cu cresterea numarului de puncte din suportul interpolarii.
- Acest lucru conduce la marirea erorii de aproximare si oscilatii ale polinomului de interpolare.
- Pentru a mentine gradul polinomului de interpolare cat mai mic, introducem in discutie functiile spline (functii de grad mic, definite pe subintervale).

Introducere Interpolare Cu Functii Spline

6.1 Notiuni generale

In continuare, consideram o functie $f:[a,b]\to\mathbb{R}$. Cunoastem valorile functiei si valorile derivatei intr-un numar redus de puncte $(x_i, f(x_i)), i = \overline{0, n}$. Dorim sa interpolam aceste puncte cu o functie spline.

Functiile spline sunt functii definite pe subintervale:
$$S(x) = \begin{cases} S_0(x), & x \in [x_0, x_1] \\ S_1(x), & x \in [x_1, x_2] \\ \dots \\ S_i(x), & x \in [x_i, x_{i+1}] \\ \dots \\ S_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$$

6.2 Motivatie

Dorim sa eliminam oscilatia polinomului de interpolare, folosind functii de grad mic.

Sa consideram ca exemplu functia Heaviside (functia treapta): Vom interpola pe rand:

- Folosind functii spline liniare
- Folosind functii spline cubice

Daca folosim spline liniar, vom avea 5 polinoame de gradul I, iar daca folosim spline cubic, vom avea 5 polinoame de gradul III (cate unul intre fiecare 2 puncte consecutive).

Asadar, putem folosi polinoame de grad I sau III pe subintervale, in loc sa interpolam cu un polinom de grad mare pe tot intervalul. Practic, impartim problema in probleme mai mici.

Interpolare cu functii spline liniare

1 Modul de determinare

Pornim de la forma generala a functiei spline $S(x) = \begin{cases} S_0(x), & x \in [x_0, x_1] \\ \dots \\ S_i(x), & x \in [x_i, x_{i+1}] \\ \dots \\ S_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$

Alegem $S_i(x)$ de forma $a_i \cdot x + b_i$, deci o functie liniara.

Asadar, pornim de la forma $S_i(x) = a_i \cdot x + b_i, i = 0 : n - 1$

Pentru a determina constantele a_i si b_i , avem nevoie de $(2 \cdot n)$ ecuatii:

Conditii de **interpolare**: Conditii de racordare (de continuitate): $S_i(x_i) = f(x_i), i = 0: n-1$ $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), i = 0: n-2$ $S_{n-1}(x_n) = f(x_n)$

$$\xrightarrow{(\dots)} \begin{cases} a_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \\ b_i = \frac{x_{i+1} \cdot f(x_i) - x_i \cdot f(x_{i+1})}{x_{i+1} - x_i} \end{cases}, i = 0: n-1$$

Exemplu numeric 7.2

Sa consideram cunoscute urmatoarele puncte din plan: $\{(1,1),(2,2),(3,0),(4,1)\}$:

Suportul interpolarii este S = [(1, 1), (2, 2), (3, 0), (4, 1)].

Suportul interpolarii este S = [(1,1), (2,2), (3,0), (x,z)].Particularizand (**), obtinem spline-ul: $S(x) = \begin{cases} S_0(x), & x \in [1,2] \\ S_1(x), & x \in [2,3] \\ S_2(x), & x \in [3,4] \end{cases}$, unde $S_i(x) = a_i \cdot x + b_i$

• Pentru
$$i = 0$$
:
$$\begin{cases} a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{2 - 1}{2 - 1} = 1\\ b_0 = \frac{x_1 \cdot f(x_0) - x_0 \cdot f(x_1)}{x_1 - x_0} = \frac{2 \cdot 1 - 1 \cdot 2}{2 - 1} = 0 \end{cases} \Rightarrow S_0(x) = x$$

$$\begin{cases} S_2(x), \ x \in [3, 4] \end{cases}$$
• Pentru $i = 0$:
$$\begin{cases} a_0 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{2 - 1}{2 - 1} = 1 \\ b_0 = \frac{x_1 \cdot f(x_0) - x_0 \cdot f(x_1)}{x_1 - x_0} = \frac{2 \cdot 1 - 1 \cdot 2}{2 - 1} = 0 \end{cases} \Rightarrow S_0(x) = x$$
• Pentru $i = 1$:
$$\begin{cases} a_1 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{0 - 2}{3 - 2} = -2 \\ b_1 = \frac{x_2 \cdot f(x_1) - x_1 \cdot f(x_2)}{x_2 - x_1} = \frac{3 \cdot 2 - 2 \cdot 0}{3 - 2} = 6 \end{cases} \Rightarrow S_1(x) = 6x - 2 \Rightarrow \begin{cases} S(x) = \begin{cases} x \cdot x \in [1, 2] \\ 6 \cdot x - 2, \ x \in [2, 3] \\ x - 3, \ x \in [3, 4] \end{cases} \end{cases}$$
• Pentru $i = 2$:
$$\begin{cases} a_2 = \frac{f(x_3) - f(x_2)}{x_3 - x_2} = \frac{1 - 0}{4 - 3} = 1 \\ b_2 = \frac{x_3 \cdot f(x_2) - x_2 \cdot f(x_3)}{x_3 - x_2} = \frac{4 \cdot 0 - 3 \cdot 1}{4 - 3} = -3 \end{cases} \Rightarrow S_2(x) = x - 3$$

• Pentru
$$i = 2$$
:
$$\begin{cases} a_2 = \frac{f(x_3) - f(x_2)}{x_3 - x_2} = \frac{1 - 0}{4 - 3} = 1\\ b_2 = \frac{x_3 \cdot f(x_2) - x_2 \cdot f(x_3)}{x_3 - x_2} = \frac{4 \cdot 0 - 3 \cdot 1}{4 - 3} = -3 \end{cases} \Rightarrow S_2(x) = x - 3$$

7.3 Concluzii

- Dispare fenomenul de oscilatie prin mentinerea gradului polinomului de interpolare mic.
- ⊖ Derivata de ordin I nu este o functie continua ⇔ Nu se face o trecere neteda in capetele subintervalelor.

Interpolare cu functii spline cubice C1

De ce spline-uri cubice? 8.1

Tinand cont ca am discutat despre spline-uri liniare si acum discutia se indreapta catre spline-uri cubice, intrebarea fireasca este "De ce cubice si nu patratice?". La nivel simplist, raspunsul este simplu: Folosim spline-uri cubice in locul celor patratice, deoarce:

- 3 este cel mai mic grad al unui polinom care permite o inflexiune.
- 3 nu este un grad foarte mare \Rightarrow Polinomul de interpolare nu oscileaza in capete.

8.2 Modul de determinare

La modul general, o functie spline cubica scrisa in functie de $x - x_i$, arata astfel:

$$S_i(x) = a_i + b_i \cdot (x - x_i) + c_i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3, \ i = 0 : n - 1$$

Se pune problema determinarii coeficientilor a_i, b_i, c_i, d_i . Spline-urile de clasa C^1 necesita cunoasterea derivatei in suportul interpolarii. Asadar, pentru a determina coeficientii, punem conditii de interpolare (de tip Hermite) si conditii de racordare:

- Conditii de interpolare de tip Hermite:
 - Fiecare spline trece prin punctul sau de interpolare:
 - $\Rightarrow (n+1)$ ecuatii

- Fiecare spline are aceeasi panta cu functia pe care o aproximeaza:

$$\begin{cases} S'_i(x) = f'(x_i), \ i = 0 : n - 1 \\ S'_{n-1}(x_n) = f'(x_n) \end{cases}$$

- Conditii de racordare:
 - Racordam functiile (Unde se termina S_i , incepe S_{i+1}): $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), i = 0 : n-2$

 $\Rightarrow (n+1)$ ecuatii

- Spline-urile au acceasi panta in punctele de contact: $S'_i(x_{i+1}) = S'_{i+1}(x_{i+1}), i = 0: n-2$

$$\Rightarrow (n-1)$$
 ecuatii

Din conditiile de mai sus, obtinem $(4 \cdot n)$ ecuatii.

Astfel, putem sa determinam cele $(4 \cdot n)$ necunoscute $(a_i, b_i, c_i, d_i, i = 0 : n - 1)$.

Forma parametrica

Pentru a ne apropia de o rezolvare computationala, introducem forma parametrica a functiei spline cubice.

Pornim de la forma generala a spline-ului cubic: $S_i(x) = a_i + b_i \cdot (x - x_i) + c_i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3$ si notam $x - x_i = h_i \cdot t \iff t = \frac{x - x_i}{h_i}$, unde $h_i = x_{i+1} - x_i$ (lungimea intervalului $[x_i, x_{i+1}]$) si $t \in [0, 1]$. $\Rightarrow S_i(t) = a_i + b_i \cdot h_i \cdot t + c_i \cdot h_i^2 \cdot t^2 + d_i \cdot h_i^3 \cdot t^3$.

Asadar, la modul general, forma parametrica a unei functii spline cubice, arata astfel:

Asadar, la modul general, forma parametrica a unei functii spline cubice, arata astfel:
$$\begin{bmatrix} S_i(t) = a_i + b_i \cdot h_i \cdot t + c_i \cdot h_i^2 \cdot t^2 + d_i \cdot h_i^3 \cdot t^3 \\ i = 0 : n - 1 \\ h_i = x_{i+1} - x_i \text{ (lungimea intervalului } [x_i, x_{i+1}] \text{)} \end{bmatrix}$$

Polinoamele Bernstein

Introducem in cadrul discutiei **polinoamele Bernstein** 8 de grad n, deoarece sunt utilizate pentru a eficientiza procesul de calculare al coeficientilor functiilor spline cubice in forma parametrica.

$$B_{i,n}(t) \stackrel{\text{def}}{=} C_n^i \cdot (1-t)^{n-i} \cdot t^i, t \in [0,1], i = \overline{0,n}.$$

Pentru a intelege mai bine, exemplificam primele polinoame:

 $^{||^{8}}$ https://mathworld.wolfram.com/BernsteinPolynomial.html

Grad 2:
$$\begin{cases} B_{0,2}(t) = C_2^0 \cdot (1-t)^{2-0} \cdot t^0 = (1-t)^2 \\ B_{1,2}(t) = C_2^1 \cdot (1-t)^{2-1} \cdot t^1 = 2 \cdot (1-t) \cdot t \\ B_{2,2}(t) = C_2^2 \cdot (1-t)^{2-2} \cdot t^2 = t^2 \end{cases}$$

Grad 3:
$$\begin{cases} B_{0,3}(t) = C_3^0 \cdot (1-t)^{3-0} \cdot t^0 = (1-t)^3 \\ B_{1,3}(t) = C_3^1 \cdot (1-t)^{3-1} \cdot t^1 = 3 \cdot (1-t)^2 \cdot t \\ B_{2,3}(t) = C_3^2 \cdot (1-t)^{3-2} \cdot t^2 = 3 \cdot (1-t) \cdot t^2 \\ B_{3,3}(t) = C_3^2 \cdot (1-t)^{3-3} \cdot t^3 = t^3 \end{cases}$$

Folosind polinoamele Bernstein de grad n=3, obtinem forma parametrica a spline-ului cu care vom lucra de acum inainte:

$$S_i(t) = a_i' \cdot (1-t)^3 + b_i' \cdot 3 \cdot t \cdot (1-t)^2 + c_i' \cdot 3 \cdot t^2 \cdot (1-t) + d_i' \cdot t^3, \ i = 0 : n-1, \ t \in [0,1]$$

$$\underbrace{\begin{array}{c} \underline{\text{Se impun conditiile}} \\ \underline{\text{prezentate anterior}} \end{array}} = \begin{cases} a'_i = f(x_i), \ i = 0 : n - 1 \\ d'_i = f(x_{i+1}), \ i = 0 : n - 1 \\ c'_i = f(x_{i+1}) - \frac{h_i}{3} \cdot f'(x_{i+1}), \ i = 0 : n - 1 \\ b'_i = f(x_i) + \frac{h_i}{3} \cdot f'(x_i), \ i = 0 : n - 1 \end{cases}$$

In cele din urma, forma in variabila x pentru fiecare functie spline cubica de clasa C^1 se obtine prin schimbarea de variabila $t = \frac{x - x_i}{h_i}$

8.5 Exemplu numeric

 \Rightarrow Avem urmatoarele noduri: $x_0 = 1$; $x_1 = 2$; $x_2 = 4$.

Tinand cont de forma unei functii spline, putem particulariza pe exemplul nostru: $S(x) = \begin{cases} S_0(x), & x \in [1, 2] \\ S_1(x), & x \in [2, 4] \end{cases}$

8.5.1 Metoda 1 - Utilizand forma generala

Avem n=3 puncte in suportul interpolarii, deci vom avea 2 subintervale. Pornim de la forma generala a functiei spline si derivam expresia:

$$S_i(x) = a_i + b_i \cdot (x - x_i) + c_i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3, \ i = 0:1$$
 |()'
$$S_i'(x) = b_i + 2 \cdot c_i \cdot (x - x_i) + 3 \cdot d_i \cdot (x - x_i)^2, \ i = 0:1$$

• Punem conditiile de *interpolare* de tip Hermite:

- Fiecare spline trece prin punctul sau de interpolare: $\begin{cases} S_0(x_0) = f(x_0) \iff S_0(1) = f(1) = 3 \\ S_1(x_1) = f(x_1) \iff S_1(2) = f(2) = 4 \\ S_1(x_2) = f(x_2) \iff S_1(4) = f(4) = 6 \end{cases}$

- Fiecare spline are aceeasi panta cu functia pe care o aproximeaza: $\begin{cases} S_0'(x_0) = f'(x_0) \iff S_0'(1) = f'(1) = 0 \\ S_1'(x_1) = f'(x_1) \iff S_1'(2) = f'(2) = 2 \\ S_1'(x_2) = f'(x_2) \iff S_1'(4) = f'(4) = 5 \end{cases}$

• Punem conditiile de racordare:

- Racordam functiile (Unde se termina S_0 , incepe S_1): $S_0(x_1) = S_1(x_1) \iff S_0(2) = S_1(2) = 4$

- Spline-urile au aceeasi panta in punctele de contact: $S_0'(x_1) = S_1'(x_1) \iff S_0'(2) = S_1'(2) = 2$

Se rezolva sistemul de 8 ecuatii cu 8 necunoscute \Longrightarrow Coeficientii: $\begin{cases} a_0 = 3 \\ b_0 = 0 \\ c_0 = 1 \end{cases}; \begin{cases} a_1 = 4 \\ b_1 = 2 \\ c_1 = -3 \\ d = 5 \end{cases}$

$$\begin{cases} a_0 = 3 \\ b_0 = 0 \\ c_0 = 1 \\ d_0 = 0 \end{cases}; \begin{cases} a_1 = 4 \\ b_1 = 2 \\ c_1 = -3 \\ d_1 = \frac{5}{4} \end{cases}$$

$$\Longrightarrow S(x) = \begin{cases} 3 + 0 \cdot (x - 1) + 1 \cdot (x - 1)^2 + 0 \cdot (x - 1)^3, & x \in [1, 2] \\ 4 + 2 \cdot (x - 2) - 3 \cdot (x - 2)^2 + \frac{5}{4} \cdot (x - 2)^3, & x \in [2, 4] \end{cases}$$

Metoda 2 - Utilizand forma parametrica 8.5.2

Pornim de la forma parametrica dedusa cu ajutorul polinoamelor Bernstein de grad 3:

$$S_i(t) = a_i' \cdot (1-t)^3 + b_i' \cdot 3 \cdot t \cdot (1-t)^2 + c_i' \cdot 3 \cdot t^2 \cdot (1-t) + d_i' \cdot t^3, \ i = 0 : n-1, \ t \in [0,1]$$

De data aceasta, pentru determinarea coeficientilor, folosim formulele:
$$\begin{cases} a_i' = f(x_i), \ i = 0: n-1 \\ d_i' = f(x_{i+1}), \ i = 0: n-1 \\ c_i' = f(x_{i+1}) - \frac{h_i}{3} \cdot f'(x_{i+1}), \ i = 0: n-1 \\ b_i' = f(x_i) + \frac{h_i}{2} \cdot f'(x_i), \ i = 0: n-1 \end{cases}$$

Tinem cont de faptul ca
$$\begin{cases} h_0 = x_1 - x_0 = 2 - 1 = 1 \\ h_1 = x_2 - x_1 = 4 - 2 = 2 \end{cases}$$

Aplicam formulele mentionate anterior si obtinem coeficientii:

$$\begin{cases} a'_0 = f(x_0) = f(1) = 3 \\ a'_1 = f(x_1) = f(2) = 4 \end{cases} \qquad \begin{cases} d'_0 = f(x_1) = f(2) = 4 \\ d'_1 = f(x_2) = f(4) = 6 \end{cases}$$
$$\begin{cases} c'_0 = f(x_1) - \frac{h_0}{3} \cdot f'(x_1) = 4 - \frac{1}{3} \cdot 2 = \frac{10}{3} \\ c'_1 = f(x_2) - \frac{h_1}{3} \cdot f'(x_2) = 6 - \frac{2}{3} \cdot 5 = \frac{8}{3} \end{cases} \qquad \begin{cases} b'_0 = f(x_1) = f(2) = 4 \\ d'_1 = f(x_2) = f(4) = 6 \end{cases}$$
$$\begin{cases} b'_0 = f(x_0) + \frac{h_0}{3} \cdot f'(x_0) = 3 + \frac{1}{3} \cdot 0 = 3 \\ b'_1 = f(x_1) + \frac{h_1}{3} \cdot f'(x_1) = 4 + \frac{2}{3} \cdot 2 = \frac{16}{3} \end{cases}$$

Deci, pentru primul spline: $S_0(t)$, avem coeficientii: $a_0' = 3$, $b_0' = 3$, $c_0' = \frac{10}{3}$, $d_0' = 4$. Facand schimbarea de variabila: $t = \frac{x - x_0}{h_0} \iff t = \frac{x - 1}{1} \iff \boxed{t = x - 1}$ $\implies \boxed{S_0(x) = 3 \cdot (2 - x)^3 + 9 \cdot (x - 1) \cdot (2 - x)^2 + 10 \cdot (x - 1)^2 \cdot (2 - x) + 4 \cdot (x - 1)^3, \ x \in [1, 2]}$

Procedand in mod analog, obtinem:

$$\implies S_1(x) = 4 \cdot \left(\frac{4-x}{3}\right)^3 + 16 \cdot \left(\frac{x-2}{2}\right) \cdot \left(\frac{4-x}{2}\right)^2 + 8 \cdot \left(\frac{x-1}{2}\right)^2 \cdot \left(\frac{4-x}{2}\right) + 6 \cdot \left(\frac{x-2}{2}\right)^3, \ x \in [2,4]$$

In forma finala, functia spline cubica de clasa C^1 care interpoleaza cele 3 puncte din exemplul nostru, arata astfel:

$$S(x) = \begin{cases} S_0(x) = 3 \cdot (2-x)^3 + 9 \cdot (x-1) \cdot (2-x)^2 + 10 \cdot (x-1)^2 \cdot (2-x) + 4 \cdot (x-1)^3, & x \in [1,2] \\ S_1(x) = 4 \cdot (\frac{4-x}{3})^3 + 16 \cdot (\frac{x-2}{2}) \cdot (\frac{4-x}{2})^2 + 8 \cdot (\frac{x-1}{2})^2 \cdot (\frac{4-x}{2}) + 6 \cdot (\frac{x-2}{2})^3, & x \in [2,4] \end{cases}$$

Asa cum ne-am fi asteptat, in mod evident, cele 2 metode converg la aceeasi functie spline cubica, diferenta fiind facuta de modul in care se ajunge la rezultat.

8.6 Concluzii

- Dispare fenomenul de oscilatie prin mentinerea gradului polinomului de interpolare mic.
- De data aceasta, in capetele intervalelor se face o trecere neteda, deoarce se impun niste conditii de racordare mai puternice.
 - ⊖ Este necesar sa se cunoasca valorile derivatei I in punctele din suportul interpolarii.

Interpolare cu functii spline cubice C2 9

9.1Modul de determinare

Pornim de la forma generala:
$$S_i(x) = a_i + b_i \cdot (x - x_i) + c_i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3, i = 0 : n - 1$$

Comparativ cu cele de clasa C^1 , functiile spline de clasa C^2 au proprietatea ca sunt derivabile de 2 ori si au derivatele continue.

Vom deduce in cele ce urmeaza conditiile care trebuie puse pentru a determina coeficientii a_i, b_i, c_i, d_i :

- Conditii de interpolare de tip Lagrange:
 - Fiecare spline trece prin punctul sau de interpolare: $\begin{cases} S_i(x_i) = f(x_i), i = 0 : n 1 \\ S_{n-1}(x_n) = f(x_n) \end{cases}$ $\Rightarrow (n+1)$ ecuatii
- Conditii de racordare:
 - Racordam functiile (Asiguram continuitatea C^0): $S_i(x_{i+1}) = S_{i+1}(x_{i+1}), i = 0 : n-2$
 - Functiile au aceeasi panta in punctele de contact (Asiguram C^1): $S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}), i = 0: n-2$
 - Functiile au aceeasi convexitate in punctele de contact (Asiguram C^2): $S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}), i = 0: n-2$ $\Rightarrow (n-1)$ ecuatii
- Pana acum avem $(n+1)+3\cdot(n-1)=4n-2$ ecuatii, pentru 4n necunoscute. Pentru ultimele 2 ecuatii, putem pune urmatoarele conditii in capete, in functie de tipul de spline ales:

 - Spline **natural**: $\begin{cases} S_0''(x_0) = 0 \\ S_{n-1}''(x_n) = 0 \end{cases}$ Spline **tensionat**: $\begin{cases} S_0'(x_0) = f'(x_0) \\ S_{n-1}'(x_n) = f'(x_n) \end{cases}$

Astfel, am cumulat (4n-2)+2=4n ecuatii pentru 4n necunoscute.

Observatie: Spline-ul tensionat ofera o aproximare mai buna, insa necesita cunoasterea derivatei I in capetele suportului de interpolare.

Din punct de vedere al automatizarii, conditiile care trebuie puse nu sunt de folos. Astfel, prelucrand ecuatiile obtinute prin punerea conditiilor, obtinem urmatoarele relatii:

Coeficientii functiilor spline cubice de clasa C^2 sunt dati de relatiile:

$$a_i = f(x_i), \ i = 0:n$$

$$d_i = \frac{c_{i+1} - c_i}{3 \cdot h_i}, \ i = 0 : n - 1$$

$$b_i = \frac{a_{i+1} - a_i}{h_i} - \frac{h_i}{3} \cdot (2 \cdot c_i + c_{i+1}), \ i = 0 : n - 1$$

Coeficientii c_i , i = 0: n-1 se obtin prin rezolvarea unui sistem tridiagonal de forma:

• Pentru spline C² natural:

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \dots & \dots & \mathbf{0} \\ \mathbf{h_0} & \mathbf{2}(\mathbf{h_0} + \mathbf{h_1}) & \mathbf{h_1} & \dots & \dots & \vdots \\ \mathbf{0} & \mathbf{h_1} & \mathbf{2}(\mathbf{h_1} + \mathbf{h_2}) & \mathbf{h_2} & \dots & \mathbf{0} \\ & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \mathbf{h_{n-2}} & \mathbf{2}(\mathbf{h_{n-2}} + \mathbf{h_{n-1}}) & \mathbf{h_{n-1}} \\ \mathbf{0} & \dots & \dots & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{0} \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

• Pentru spline C² tensionat:

$$\begin{bmatrix} \mathbf{2h_0} & \mathbf{h_0} & \mathbf{0} & \dots & \dots & \mathbf{0} \\ \mathbf{h_0} & \mathbf{2(h_0 + h_1)} & \mathbf{h1} & \dots & \dots & \vdots \\ \mathbf{0} & \mathbf{h_1} & \mathbf{2(h_1 + h_2)} & \mathbf{h_2} & \dots & \mathbf{0} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \mathbf{h_{n-2}} & \mathbf{2(h_{n-2} + h_{n-1})} & \mathbf{h_{n-1}} \\ \mathbf{0} & \dots & \dots & \mathbf{0} & \mathbf{h_{n-1}} & \mathbf{2h_{n-1}} \end{bmatrix} \cdot \begin{bmatrix} \frac{\frac{3}{h_0}(a_1 - a_0) - 3f'(a)}{\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)} \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1}) \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Observatie: Functia spline S_n a fost introdusa pentru a ajuta la calcuarea functiilor spline S_i , i = 0: n-1.

9.2Exemplu numeric

Sa consideram cunoscute urmatoarele puncte din plan: $\frac{x \quad -1 \quad 0 \quad 1 \quad 2}{f(x) \quad -2 \quad -1 \quad 2 \quad 4}$

 \Rightarrow Avem urmatoarele noduri: $x_0=-1;\; x_1=0;\; x_2=1;\; x_3=2.$

Tinand cont de forma unei functii spline, putem particulariza pe exemplul nostru: $S(x) = \begin{cases} S_0(x), & x \in [-1, 0] \\ S_1(x), & x \in [0, 1] \\ S_2(x), & x \in [1, 2] \end{cases}$

Metoda 1 - Punand conditiile 9.2.1

Pornim de la forma generala a functiei spline si derivam expresia de 2 ori:

$$S_{i}(x) = a_{i} + b_{i} \cdot (x - x_{i}) + c_{i} \cdot (x - x_{i})^{2} + d_{i} \cdot (x - x_{i})^{3}, \ i = 0 : 2 \ |()'$$

$$S'_{i}(x) = b_{i} + 2 \cdot c_{i} \cdot (x - x_{i}) + 3 \cdot d_{i} \cdot (x - x_{i})^{2}, \ i = 0 : 2 \ |()'$$

$$S''_{i}(x) = 2 \cdot c_{i} + 6 \cdot d_{i} \cdot (x - x_{i}), \ i = 0 : 2$$

- Conditii de *interpolare* de tip Lagrange:
 - Fiecare spline trece prin punctul sau de interpolare:

$$\begin{cases} S_0(x_0) = f(x_0) \iff S_0(-1) = f(-1) = -2 \\ S_1(x_1) = f(x_1) \iff S_1(0) = f(0) = -1 \\ S_2(x_2) = f(x_2) \iff S_2(1) = f(1) = 2 \\ S_2(x_3) = f(x_3) \iff S_2(2) = f(2) = 4 \end{cases}$$

- Conditii de racordare:
 - Racordam functiile (Asiguram continuitatea C^0): $\begin{cases} S_0(x_1) = S_1(x_1) \iff S_0(0) = S_1(0) \\ S_1(x_2) = S_2(x_2) \iff S_1(1) = S_2(1) \end{cases}$

 - Functiile au aceeasi panta in punctele de contact (C^1) : $\begin{cases} S_0'(x_1) = S_1'(x_1) \iff S_0'(0) = S_1'(0) \\ S_1'(x_2) = S_2'(x_2) \iff S_1'(1) = S_2'(1) \end{cases}$ Functiile au aceeasi convexitate in punctele de contact (C^2) : $\begin{cases} S_0''(x_1) = S_1''(x_1) \iff S_0''(0) = S_1''(0) \\ S_1''(x_2) = S_2''(x_2) \iff S_1''(1) = S_2''(1) \end{cases}$
- Pentru ultimele 2 ecuatii, punem urmatoarele conditii in capete, in functie de tipul de spline

 - Spline **natural**: $\begin{cases} S_0''(x_0) = 0 \iff S_0''(-1) = 0 \\ S_2''(x_3) = 0 \iff S_2''(2) = 0 \end{cases}$ Spline **tensionat**: $\begin{cases} S_0'(x_0) = f'(x_0) \iff S_0'(-1) = f'(-1) = 3 \\ S_2'(x_3) = f'(x_3) \iff S_2'(2) = f'(2) = 2 \end{cases}$

Rezolvam sistemul de 12 ecuatii cu 12 necunoscute si astfel determinam coeficientii celor 3 spline-uri S_0 , S_1 si S_2 .

Observatie: Pentru spline-ul tensionat s-a tinut cont de valorile derivatei I in capete suportului de interpolare.

9.2.2 Metoda 2 - Rezolvand sistemul tridiagonal

In continuare, vom determina coeficientii spline-urilor, rezolvand sistemul tridiagonal. Prezentam rezolvarea pentru spline C^2 natural (analog se procedeaza si pentru spline C^2 tensionat).

Coeficientii functiilor spline cubice de clasa \mathbb{C}^2 sunt dati de relatiile:

$$a_{i} = f(x_{i}), \ i = 0:3 \iff \begin{cases} a_{0} = f(x_{0}) \iff a_{0} = f(-1) = -2 \\ a_{1} = f(x_{1}) \iff a_{1} = f(0) = -1 \\ a_{2} = f(x_{2}) \iff a_{2} = f(1) = 2 \\ a_{3} = f(x_{3}) \iff a_{3} = f(2) = 4 \end{cases} \implies \begin{cases} a_{0} = -2 \\ a_{1} = -1 \\ a_{2} = 2 \\ a_{3} = 4 \end{cases}$$

In continuare, avem nevoie de lungimile subintervalelor: $\begin{cases} h_0 = x_1 - x_0 \iff h_0 = 0 - (-1) = 1 \\ h_1 = x_2 - x_1 \iff h_1 = 1 - 0 = 1 \\ h_2 = x_3 - x_2 \iff h_2 = 2 - 1 = 1 \end{cases}$

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & 0 & 0 \\ \mathbf{h_0} & \mathbf{2}(\mathbf{h_0} + \mathbf{h_1}) & \mathbf{h_1} & 0 \\ 0 & \mathbf{h_1} & \mathbf{2}(\mathbf{h_1} + \mathbf{h_2}) & \mathbf{h_2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a - 1) - \frac{3}{h_0}(a_1 - a_0) \\ \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ 0 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \iff$$

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & 0 & 0 \\ \mathbf{1} & \mathbf{4} & \mathbf{1} & 0 \\ 0 & \mathbf{1} & \mathbf{4} & \mathbf{1} \\ 0 & 0 & \mathbf{0} & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 6 \\ -3 \\ 0 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} \Longrightarrow \begin{bmatrix} c_0 = 0 \\ c_1 = \frac{9}{5} \\ c_2 = -\frac{6}{5} \\ c_3 = 0 \end{bmatrix}$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3 \cdot h_{i}}, \ i = 0 : 2 \Longrightarrow \begin{cases} d_{0} = \frac{c_{1} - c_{0}}{3h_{0}} \iff d_{0} = \frac{\frac{9}{5} - 0}{3 \cdot 1} = \frac{3}{5} \\ d_{1} = \frac{c_{2} - c_{1}}{3h_{1}} \iff d_{1} = -\frac{\frac{6}{5} - \frac{9}{5}}{3 \cdot 1} = -1 \\ d_{2} = \frac{c_{3} - c_{2}}{3h_{2}} \iff d_{2} = \frac{0 + \frac{6}{5}}{3 \cdot 1} = \frac{2}{5} \end{cases} \Longrightarrow \begin{cases} d_{0} = \frac{3}{5} \\ d_{1} = -1 \\ d_{2} = \frac{2}{5} \end{cases}$$

$$b_{i} = \frac{a_{i+1} - a_{i}}{h_{i}} - \frac{h_{i}}{3} \cdot (2 \cdot c_{i} + c_{i+1}), \ i = 0 : 2 \Longrightarrow \begin{cases} b_{0} = \frac{a_{1} - a_{0}}{h_{0}} - \frac{h_{0}}{3} (2c_{0} + c_{1}) = \frac{-1+2}{1} - \frac{1}{3} (2 \cdot 0 + \frac{9}{5}) \\ b_{1} = \frac{a_{2} - a_{1}}{h_{1}} - \frac{h_{1}}{3} (2c_{1} + c_{2}) = \frac{2+1}{1} - \frac{1}{3} (2 \cdot \frac{9}{5} - \frac{6}{5}) \\ b_{2} = \frac{a_{3} - a_{2}}{h_{2}} - \frac{h_{2}}{3} (2c_{2} + c_{3}) = \frac{4-2}{1} - \frac{1}{3} (2 \cdot \frac{-6}{5} + 0) \end{cases} \Longrightarrow \begin{cases} b_{0} = \frac{2}{5} \\ b_{1} = \frac{11}{5} \\ b_{2} = \frac{14}{5} \end{cases}$$

Astfel, am determinat coeficientii celor 3 spline-uri C^2 naturale. Evident, ambele metode conduc la acelasi rezultat (acelasi spline de interpolare), cu precizarea ca metoda 2 poate fi aplicata intr-un algoritm.

9.3 Concluzii

- \oplus Dispare fenomenul de oscilatie (la fel ca la C^1).
- \oplus Se impun conditii de racordare mai puternice decat la C^1 , astfel spline-ul va reda mai bine realitatea.
- \oplus Este necesar sa se cunoasca valorile derivatei I in capetele suportului de interpolare (**doar** pentru spline-urile tensionate).

10 Curbe Bézier

10.1 Notiuni generale

O curba Bézier este o curba parametrica cu importante aplicatii in grafica pe calculator. Primeste ca input niste puncte in plan $(P_0, P_1, \ldots, P_{n-1}, P_n)$:

- Punctele P_0 si P_n se numesc puncte de interpolare (anchor points), deoarece curba Bézier trece prin ele (incepe in P_0 si se termina in P_1).
- Punctele P_1, \ldots, P_{n-1} se numesc puncte de control (handle points), deoarece ele influenteaza path-ul curbei Bézier.

La modul general, curba Bézier de grad
$$n$$
 este definita astfel: $B_n(t) = \sum_{i=0}^n P_i \cdot B_{i,n}(t), \ t \in [0,1]$, unde:

 P_i sunt punctele de intrare

 $B_{i,n}(t)$ sunt polinoamele Bernstein de grad n: $B_{i,n}(t) \stackrel{\text{def}}{=} C_n^i \cdot (1-t)^{n-i} \cdot t^i$

$$B_{i,n}(t) \stackrel{\text{def}}{=} C_n^i \cdot (1-t)^{n-i} \cdot t^i$$

10.2 Modul de determinare

Particularizam forma generala a curbei Bézier pentru n = 1, n = 2 si n = 3:

- Curba Bézier Liniara (n = 1) Animatie Este similara cu interpolarea liniara sau parametrizarea segmentului. $B_1(t) = P_0 \cdot B_{0,1}(t) + P_1 \cdot B_{1,1}(t) \Rightarrow B_1(t) = (1-t) \cdot P_0 + P_1, \ t \in [0,1]$
- Curba Bézier Patratica (n = 2) Animatie $B_2(t) = P_0 \cdot B_{0,2}(t) + P_1 \cdot B_{1,2}(t) + P_2 \cdot B_{2,2}(t) \Rightarrow B_2(t) = (1-t)^2 \cdot P_0 + 2 \cdot t \cdot (1-t) \cdot P_1 + t^2 \cdot P_2, \ t \in [0,1]$
- Curba Bézier Cubica (n = 3) Animatie $B_3(t) = P_0 \cdot B_{0,3}(t) + P_1 \cdot B_{1,3}(t) + P_2 \cdot B_{2,3}(t) + P_3 \cdot B_{3,3}(t)$ $\Rightarrow B_3(t) = (1-t)^3 \cdot P_0 + 3 \cdot t \cdot (1-t)^2 \cdot P_1 + 3 \cdot t^2 \cdot (1-t) \cdot P_2 + t^3 \cdot P_3, \ t \in [0,1]$

Pentru explicatii suplimentare referitoare la modul de constructie al curbelor Bézier: 9

In mod uzual, se folosesc curbe Bézier cubice determinate de 4 puncte P_0, P_1, P_2, P_3 , avand forma parametrica determinata anterior:

$$B_{3}(t) = (1-t)^{3} \cdot P_{0} + 3 \cdot t \cdot (1-t)^{2} \cdot P_{1} + 3 \cdot t^{2} \cdot (1-t) \cdot P_{2} + t^{3} \cdot P_{3}, \ t \in [0,1]$$

$$\Longrightarrow \begin{bmatrix} B_{3}(t) = \begin{bmatrix} t^{3} & t^{2} & t & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \end{bmatrix}, \ t \in [0,1]$$

Observati cum se schimba path-ul curbei Bézier odata cu modificarea pozitiei punctelor de control 10

Observatie: Pentru puncte in spatiu, notiunea de curba Bézier se extinde la suprafata Bézier 11 Asadar, pentru a determina curba Bézier de grad n, ne folosim de polinoamele Bernstein de grad n. Asa cum am vazut, polinoamele Bernstein se pot calcula si recurent.

Pentru a facilita calculul computerizat al curbei Bézier, introducem algoritmul De Casteljau.

⁹ https://www.youtube.com/watch?v=pnYccz1Ha34

¹⁰ https://www.desmos.com/calculator/gptceium9j

¹¹ https://bit.ly/2W60onD

11 Algoritmul De Casteljau

11.1 Notiuni generale

Intr-o abordare directa, calcularea unui punct aflat pe o curba Bézier se obtine folosind ecuatia parametrica $B_n(t) = \sum_{i=0}^n P_i \cdot B_{i,n}(t), \ t \in [0,1].$

Aceasta metoda este ineficienta, deoarece este instabila numeric (numerele mici ridicate la puteri mari, genereaza erori).

Algoritmul De Casteljau este o metoda recursiva de calcul a polinoamelor Bernstein folosite in determinarea curbelor Bézier.

- Date de *intrare*: Punctele P_0, P_1, \ldots, P_n .
- Se foloseste relatia de recurenta:

$$P_i^{(0)} = P_i, \ i = 0 : n$$
for $j = 1 : n$
for $i = 0 : n - j$

$$P_i^{(j)} = P_i^{(j-1)} \cdot (1 - t) + P_{i+1}^{(j-1)} \cdot t$$

• Date de *iesire*: $P_0^{(n)}$

Observatie: $P_i^{(j)}$ reprezinta punctul P_i la pasul j.

Fie $P_i^{(0)}$ si $P_{i+1}^{(0)}$ doua puncte succesive si $P_i^{(1)}$ un punct care imparte segmentul $P_i^{(0)}P_{i+1}^{(0)}$ in raportul $\frac{t}{1-t}$. Atunci, $P_i^{(1)}$ este o combinatie liniara intre punctele $P_i^{(0)}$ si $P_{i+1}^{(0)}$, adica: $P_i^{(1)} = (1-t) \cdot P_i^{(0)} + t \cdot P_{i+1}^{(0)}$. Se formeaza in acest fel poligonul $P_0^{(1)}, P_1^{(1)}, \dots, P_{n-1}^{(1)}$. Se aplica relatia de recurenta noului poligon, obtinandu-se poligonul $P_0^{(2)}, P_1^{(2)}, \dots, P_{n-2}^{(2)}$. Repetand procesul de n ori, se obtine un singur punct $P_0^{(n)}$. Acest punct obtinut se afla pe curba Bézier.

Pentru a intelege mai bine cum functioneaza algoritmul, vom particulariza n=3, adica vom construi o curba Bézier de grad 3. Ideea din spatele algoritmului este prezentata grafic aici [12].

Pentru n = 3, procesul de obtinere al punctului $P_1^{(3)}(x)$, este prezentat mai jos (indexarea din exemplu este facuta de la 1):

$$P_{1}^{(0)}(x) \equiv P_{1}$$

$$P_{1}^{(1)}(x) \equiv P_{12}$$

$$P_{2}^{(0)}(x) \equiv P_{2}$$

$$P_{2}^{(1)}(x) \equiv P_{23}$$

$$P_{3}^{(1)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{4}$$

$$P_{1}^{(0)}(x) \equiv P_{23}$$

$$P_{2}^{(1)}(x) \equiv P_{2334}$$

$$P_{3}^{(1)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{4}$$

$$P_{1}^{(0)}(x) \equiv P_{23}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{4}$$

$$P_{1}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{4}$$

$$P_{1}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{4}$$

$$P_{1}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{2}^{(0)}(x) \equiv P_{2334}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{34}$$

$$P_{1}^{(0)}(x) \equiv P_{34}$$

$$P_{2}^{(0)}(x) \equiv P_{34}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{4}^{(0)}(x) \equiv P_{34}$$

$$P_{1}^{(0)}(x) \equiv P_{34}$$

$$P_{2}^{(0)}(x) \equiv P_{34}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{1}^{(0)}(x) \equiv P_{34}$$

$$P_{2}^{(0)}(x) \equiv P_{34}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{1}^{(0)}(x) \equiv P_{34}$$

$$P_{2}^{(0)}(x) \equiv P_{34}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

$$P_{1}^{(0)}(x) \equiv P_{34}$$

$$P_{2}^{(0)}(x) \equiv P_{34}$$

$$P_{3}^{(0)}(x) \equiv P_{34}$$

11.2 Concluzii

- \oplus Algoritm stabil numeric.
- ⊖ Mai lent decat abordarea directa (non-recursiva).

¹² https://www.youtube.com/watch?v=YATikPP2q70

12 Probleme Propuse

12.1 Problema 1

Scrieti un program Octave care interpoleaza un set de date, folosind interpolarea Vandermonde. Descarca scriptul: $\stackrel{\bullet}{L}$

```
function [P] = vandermonde(x, y)
    % Input:
              Coordonatele punctelor din suportul de interpolare (x, y)
    % Output:
              Coeficientii polinomului de interpolare Vandermonde
    % Asigura dimensiunea (n, 1) pentru vectorii input
     [n m] = size(x);
    if (n == 1) % Vector linie
     x = x';
      n = m;
11
    endif
12
13
    [p q] = size(y);
if (p == 1) % Vector linie
14
15
      y = y';
16
      p = q;
17
18
     endif
19
20
    P = [];
    % Constructie matrice A (matrice Vandermonde)
21
    % TODO
22
23
    % Constructie vector coeficienti
24
    % TODO
25
    % Rezolvam sistemul A * P_coef = y
27
28
    % TODO
    % Hint: Output-ul este reprezentat de vectorul de coeficienti P (P_coef)
29
30
31
```

Pentru testarea programului, puteti folosi urmatoarea functie: Descarca scriptul: \red

```
function [] = test_vandermonde()
     % Suportul de interpolare
     x = [-3 \ 0 \ 2 \ 5 \ 7 \ 11 \ 14];
     y = [5 -3 1 3 8 4 -10];
     % Polinomul de interpolare
     P = vandermonde(x, y);
     \% Grafic puncte + polinom de interpolare obtinut
     xx = linspace(min(x), max(x)); % Generare 100 de puncte intre min(x)si max(x) yy = polyval(P, xx); % Evaluare polinom de interpolare in cele 100 de puncte
12
13
     % Grafic polinom
14
     plot(xx, yy);
15
     hold on;
16
17
     % Grafic punctele din suportul interpolarii
     plot(x, y, 'o');
19
20
     hold off;
21
     legend('Vandermonde', 'Suportul interpolarii', 'location', 'northwest');
22
```

Pentru verificare, puteti compara rezultatul vostru cu graficul de aici:
Extra: Puteti rezolva problema si pe hartie si astfel determinati coeficientii polinomului de interpolare.

12.2 Problema 2

Scrieti un program Octave care interpoleaza un set de date, folosind interpolarea Lagrange. Descarca scriptul: 🕹

```
function y0 = lagrange(x, y, x0)
2
    % Input:
              Coordonatele punctelor din suportul de interpolare (x, y)
3
              Punctul (x0) in care dorim sa aflam valoarea dupa interpolare
    % Output:
              Valoarea (y0) in punctul dorit (x0)
6
    y0 = 0; % Valoarea polinomului Lagrange in punctul dorit x0
8
    L = ones(length(x), 1); % Multiplicator Lagrange
10
11
    % Calculare polinom de interpolare Lagrange
    for i = 1 : length(x)
12
13
      % Calculare multiplicator Lagrange
14
      % TODO
15
16
17
      % Actualizare valoare polinom Lagrange
18
      % TODO
19
20
      % Hint: y0 += ...
21
    endfor
22
23
24 endfunction
```

Pentru testarea programului, puteti folosi urmatoarea functie: Descarca scriptul: \red

```
function [] = test_lagrange()
    \% Suportul de interpolare
    x = [-3 \ 0 \ 2 \ 5 \ 7 \ 11 \ 14];
    y = [5 -3 1 3 8 4 -10];
    % Grafic puncte + polinom de interpolare obtinut
7
    xx = linspace(min(x), max(x)); % Generare 100 de puncte intre min(x)si max(x)
     for i = 1 : 100
      yy(i) = lagrange(x, y, xx(i)); % Calculare valoare in punctele xx
10
11
12
    % Grafic polinom
13
14
    plot(xx, yy);
    hold on;
15
16
17
    \% Grafic punctele din suportul interpolarii
    plot(x, y, 'o');
18
19
    hold off;
20
    legend('Lagrange', 'Suportul interpolarii', 'location', 'northwest');
21
22
23 endfunction
```

Pentru verificare, puteti compara rezultatul vostru cu graficul de aici: 🕹
Extra: Puteti rezolva problema si pe hartie si astfel determinati coeficientii polinomului de interpolare.

12.3 Problema 3

Scrieti un program Octave care interpoleaza un set de date, folosind interpolarea **Newton**. Descarca scriptul: \ddot

```
function [P] = newton(x, y)
2
     % Input:
              Coordonatele punctelor din suportul de interpolare (x, y)
    % Output:
4
              Polinomul de interpolare Newton (P)
     % Asigura dimensiunea (n, 1) pentru vectorii input
     [n m] = size(x);
8
     if (n == 1) % Vector linie
9
     x = x';
10
11
      n = m;
     endif
12
13
     [p q] = size(y);
if (p == 1) % Vector linie
14
15
      y = y';
16
      p = q;
17
     endif
18
19
     % Calculam recurent diferentele divizate (D)
20
21
     D = zeros(n, n);
     D(:, 1) = y;
22
     % TODO
23
24
     % Constructie polinom de interpolare Newton (P)
25
26
     P = [];
27
     P = D(n, n);
     % TODO
28
     for k = n-1 : -1 : 1
29
       % Hints:
30
         % poly(x(k)) - creeaza un polinom de gr 1 a carui radacina este x(k)
31
         % conv(P, poly(x(k))) - inmulteste cele 2 polinoame
32
33
34
     endfor
36 endfunction
```

Pentru testarea programului, puteti folosi urmatoarea functie: Descarca scriptul: $\mbox{\cline Δ}$

```
function [] = test_newton()
     % Suportul de interpolare
     x = [-3 \ 0 \ 2 \ 5 \ 7 \ 11 \ 14];
     y = [5 -3 1 3 8 4 -10];
     % Polinomul de interpolare
     P = newton(x, y);
     \% Grafic puncte + polinom de interpolare obtinut
10
     xx = linspace(min(x), max(x)); % Generare 100 de puncte intre min(x)si max(x) yy = polyval(P, xx); % Evaluare polinom de interpolare in cele 100 de puncte
11
12
     % Grafic polinom
14
     plot(xx, yy);
15
     hold on;
16
17
     % Grafic punctele din suportul interpolarii
18
19
     plot(x, y, 'o');
     hold off;
20
21
     legend('Newton', 'Suportul interpolarii', 'location', 'northwest');
22
```

Pentru verificare, puteti compara rezultatul vostru cu graficul de aici:
Extra: Puteti rezolva problema si pe hartie si astfel determinati coeficientii polinomului de interpolare.

12.4 Problema 4

Scrieti un program Octave care interpoleaza un set de date, folosind functii **Spline C** 2 **Natural**. Descarca scriptul: \ddots

```
function y0 = splineC2_natural(x, y, x0)
    % Input:
              Coordonatele punctelor din suportul de interpolare (x, y)
              Punctul x0 in care se doreste valoarea dupa interpolare
    % Output:
              Valoarea dorita (y0) in punctul x0
6
    % Asigura forma de vector coloana pentru vectorii de input
8
    [n m] = size(x);
if (n == 1) % Vector linie
9
10
11
      x = x';
      n = m;
12
    endif
13
14
    [p q] = size(y);
15
    if (p == 1) % Vector linie
16
     y = y';
p = q;
17
18
    endif
19
20
    y0 = 0;
21
    % Avem de rezolvat un sistem de forma A * x = b, unde A - 3diag
22
    % Setare lungime intervale: h(i) = x(i+1) - x(i)
23
24
    % TODO
25
26
    % Setare coeficienti a(i) (pentru spline-uri)
27
    % TODO
28
    % Setare coeficienti pentru vectorul de termeni liberi (g)
29
    for i = 2 : n - 1
30
     % TODO
31
     endfor
32
33
    \% Setare cele 3 diagonale din matricea A
34
    % dd - Subdiagonala
35
    % TODO
36
37
    % aa - Diagonala principala
38
    for i = 2 : n-1
39
     % TODO
40
    endfor
41
42
43
    % cc - Supradiagonala
    % TODO
44
45
    % Rezolvare sistem A * x = b (A - 3diag)
46
    % TODO
47
    % => Coeficientii c(i) pentru fiecare spline
49
50
    \% Calculam coeficientii ramasi (b(i), d(i)) pentru fiecare spline
51
    52
53
54
       % TODO
55
       % Pentru 'b' - folosim relatia: b(j+1) = b(j) + 2*c(j)*h(j) + 3*d(j)*h(j)^2
56
       % TODO
57
58
     endfor
59
    % Determinare subinterval [x(i), x(i+1)]
60
61
    % in care se afla x0 (puctul dorit)
62
    for i = 1 : n-1
      if((x(i) <= x0) && (x0 <= x(i+1)))</pre>
63
64
        % TODO
        \% Hint: Pur si simplu, aplica formula de la forma generala \% a spline-ului cubic cu a(i), b(i), c(i), d(i) determinati anterior
65
66
67
        break:
68
69
       endif
70
    endfor
71
72 endfunction
```

Pentru testarea programului, puteti folosi urmatoarea functie: Descarca scriptul: \red

```
1 function [] = test_splineC2_natural()
    % Suportul de interpolare
    x = [-3 \ 0 \ 2 \ 5 \ 7 \ 11 \ 14];
    y = [5 -3 1 3 8 4 -10];
    \% Suport de interpolare - Logo MN
8
    % x = [0.526 \ 1.617 \ 2.583 \ 3.550 \ 4.547 \ 5.389 \ 6.387 \ 7.384 \ 8.382 \ 9.286 \ 10.315 \ 11.344
      12.217 12.996];
    % y = [0.177 5.165 8.782 9.654 6.163 6.069 8.782 5.227 0.800 13.146 7.877 5.165
      9.654 15.017];
    % Grafic puncte + polinom de interpolare obtinut
11
    xx = linspace(min(x), max(x)); % Generare 100 de puncte intre min(x)si max(x)
12
    for i = 1 : 100
13
      yy(i) = splineC2_natural(x, y, xx(i)); % Calculare valoare in punctele xx
14
    endfor
15
16
    % Grafic spline C2
17
    plot(xx, yy);
18
19
    hold on;
20
21
    \% Grafic punctele din suportul interpolarii
22
    plot(x, y, 'o');
    hold off;
23
24
25
    legend('Spline C2 natural', 'Suportul interpolarii', 'location', 'southwest');
26
```

Pentru verificare, puteti compara rezultatul vostru graficul de aici: ₹ Extra: Puteti rezolva problema si pe hartie si astfel determinati coeficientii spline-urilor.

12.5 Extra

In incheiere, puteti lectura un material referitor la utilizarea interpolarii intr-o aplicatie din viata reala (Heat Transfer): \square