

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Вычислительная математика»

Студент	Лебедева Мария Дмитриевна					
Группа	РК6-52Б					
Тип задания	лабораторная работа					
Тема лабораторной работы	Интерполяция в условиях измерений с					
	неопределенностью					
Студент		<u>Лебедева М.Д.</u>				
	подпись, дата	фамилия, и.о.				
Преподаватель		_				
	подпись, дата	фамилия. и.о.				

Оглавление

Зад	дание на лабораторную работу	3
Це	ль выполнения лабораторной работы	5
Вь	полненные задачи	5
1.	Вычисление коэффициентов естественного кубического сплайна	
2.	Вычисление значения кубического сплайна и его производной	7
3.	Построение аппроксимационной зависимости уровня	5
4.	Базисный полином Лагранжа	5
5.	Интерполяционный полином Лагранжа	5
6.	Влияние погрешности при изменении координаты x _i	6
7.	Влияние погрешности при изменении координаты у _і	7
8.	Интерполяция кубическим сплайном	9
Заг	ключение	15
Сп	исок использованных источников	15

Задание на лабораторную работу

Базовая часть

- 1. Разработать функцию *qubic_spline_coeff(x_nodes, y_nodes)*, которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна. Для простоты, решение матричного уравнения можно производить с помощью вычисления обратной матрицы с использованием функции *numpy.linalg.inv()*.
- 2. Написать функции $qubic_spline(x, qs_coeff)$ и $d_qubic_spline(x, qs_coeff)$, которые вычисляют соответственно значение кубического сплайна и его производной в точке x (qs_coeff обозначает матрицу коэффициентов).

Рис. 1: Поверхность вязкой жидкости (серая кривая), движущейся сквозь некоторую среду (например, пористую). Её значения известны только в нескольких точках (красные узлы).

3. Используя данные в таблице 1, требуется построить аппроксимацию зависимости уровня поверхности жидкости h(x) от координаты x (см. рисунок 1) с помощью кубического сплайна и продемонстрировать ее на графике вместе с исходными узлами.

Таблица 1: Значения уровня поверхности вязкой жидкости (рис.1)

i	1	2	3	4	5	6	7	8	9	10	11
x_i	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
h_i	3.37	3.95	3.73	3.59	3.15	3.15	3.05	3.86	3.60	3.70	3.02

Продвинутая часть

- 1. Разработать функцию $l_i(i, x, x_nodes)$, которая возвращает значение i- го базисного полинома Лагранжа, заданного на узлах с абсциссами x_nodes , в точке x.
- 2. Написать функцию $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами y_nodes , в точке x.
- 3. Известно, что при измерении координаты x_i всегда возникает погрешность, которая моделируется случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} . Требуется провести следующий анализ, позволяющий выявить влияние этой погрешности на интерполяцию:
 - а) Сгенерировать 1000 векторов значений $[\tilde{x}_1, \cdots \tilde{x}_{11}]^T$, предполагая, что $\tilde{x}_i = x_i + Z$, где x_i соответствует значению в таблице 1 и Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} .
 - b) Для каждого из полученных векторов построить интерполянт Лагранжа, предполагая, что в качестве абсцисс узлов используются значения \tilde{x}_i , а ординат $-h_i$ из таблицы 1. В результате вы должны иметь 1000 различных интерполянтов.
 - с) Предполагая, что все интерполянты представляют собой равновероятные события, построить такие функции $\tilde{h}_i(x)$ и $\tilde{h}_u(x)$, где $\tilde{h}_i(x) < \tilde{h}_i(x)$ для любого $x \in [0; 1]$ что вероятность того, что значение интерполянта в точке x будет лежать в интервале $[\tilde{h}_i(x); \tilde{h}_u(x)]$ равна 0.9.
 - d) Отобразить на едином графике функции [$\tilde{h}_i(x)$, $\tilde{h}_u(x)$] усредненный интерполянт и узлы из таблицы 1.
 - e) Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям?

4. Повторить анализ, описанный в предыдущем пункте, в предположении, что координаты h_i вам известны точно, в то время как измерения уровня поверхности h имеют ту же погрешность, что и в предыдущем пункте. Изменились ли выводы вашего анализа?5. Повторить два предыдущие пункта для случая интерполяции кубическим сплайном. Какие выводы вы можете сделать, сравнив результаты анализа для интерполяции Лагранжа и интерполяции кубическим сплайном?

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — изучение интерполяции в целом и анализирование влияния неопределенности на предсказания интерполяции.

Выполненные задачи

- 1. Разработана функция, которая вычисляет коэффициенты естественного кубического сплайна.
- 2. Разработана функция, для вычисления значения кубического сплайна и его производной.
- 3. Построена аппроксимационная зависимость уровня поверхности h(x) от координаты x используя данные в таблице 1.
- 4. Разработана функция для нахождения *i-го* базисного полинома Лагранжа.
- Разработана функция для нахождения интерполяционного полинома Лагранжа.
- 6. Проведен анализ, для выявления влияния погрешности, при изменении координаты x_i , моделирующейся случайной величиной с нормальным распределением с нулевым нулевым математическим ожиданием и стандартным отклонением 10^{-2} . И рассмотрели, какие участки наиболее чувствительны к погрешностям.

- 7. Проведен анализ, для выявления влияния погрешности, при изменении координаты y_i моделирующейся случайной величиной с нормальным распределением с нулевым нулевым математическим ожиданием и стандартным отклонением 10^{-2} . И рассмотрели, какие участки наиболее чувствительны к погрешностям.
- 8. Сравнили и проанализировали результаты для интерполяции Лагранжа и интерполяции кубическим сплайном.

1. Вычисление коэффициентов естественного кубического сплайна

Кубический многочлен задается 4 константами, поэтому необходимо определить 4(n-1) констант, где n – интерполяционные узлы. Так как кубический многочлен $S_i(x)$ на отрезке $[x_i, x_{i+1}]$ имеет форму

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x)^2 + d_i(x - x)^3.$$
 (1)

Из лекций по вычислительной математике $^{[1]}$, знаем, что коэффициенты a_i , b_i , d_i кубического сплайна можно найти так:

$$a_{i} = S_{i} = f(x_{i}),$$

$$b_{i} = \frac{1}{h_{i}}(a_{i+1} - a_{i}) - \frac{h_{i}}{3}(c_{i+1} + 2c_{i}),$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h_{i}}.$$

Программная реализация:

for i in range(0, n - 1):

 $a[i] = y_nodes[i]$

c[i] = C[i]

 $b[i] = (y_nodes[i+1] - y_nodes[i]) / h[i] - h[i] * (C[i+1] + 2 * C[i]) / 3$

d[i] = (C[i+1] - C[i]) / 3 / h[i]

А коэффициент c_i находится c помощью доказательства теоремы о единственности кубического сплайна. Записав матричное уравнение $\mathbf{Ac}=\mathbf{b}$, где $\mathbf{c}=[c_1,\ldots,c_n]^T$, находим \mathbf{c}_i

2. Вычисление значения кубического сплайна и его производной.

Для вычисления значения кубического сплайна в (1) подставляем коэффициенты

Программная реализация:

def qubic_spline(xx, qs_coeff, x_nodes):

for i in range(0, len(x_nodes)-1):

if $xx < x_nodes[i + 1]$:

 $s = qs_coeff[i][0] + qs_coeff[i][1] * (xx - x_nodes[i]) + qs_coeff[i][2] * \\$

 $pow(xx - x_nodes[i], 2) + qs_coeff[i][3] * pow(xx - x_nodes[i], 3)$

return s

 $s = qs_coeff[-1][0] + qs_coeff[-1][1] * (xx - x_nodes[-2]) + qs_coeff[-1][2] * pow(xx - x_nodes[-2], 2) + qs_coeff[-1][3] * pow(xx - x_nodes[-2], 3) return s A производная <math>S(x)$:

$$S_i(x) = b + 2cx - 2cx_i + 3dx^2 - 6dxx_i + 3dx_i^2$$

Программная реализация:

def d_qubic_spline(xx, qs_coeff, x_nodes):
 for i in range(0, len(x_nodes)-1):
 if xx > x_nodes[i]:
 d_s = qs_coeff[i][1] + 2 * qs_coeff[i][2] * xx + 2 * qs_coeff[i][2] *

 $d_s = qs_coeff[i][1] + 2 * qs_coeff[i][2] * xx + 2 * qs_coeff[i][2] * x_nodes[i] + 3 * qs_coeff[i][3] * pow($

xx, 2) - 6 * qs_coeff[i][3] * xx * x_nodes[i] + 3 * qs_coeff[i][3] * pow(x_nodes[i], 2)

return d_s

 $d_s = qs_coeff[-1][1] + 2 * qs_coeff[-1][2] * xx + 2 * qs_coeff[-1][2] * x_nodes[-2] + 3 * qs_coeff[-1][3] * pow($

xx, 2) - 6 * qs_coeff[-1][3] * xx * x_nodes[-2] + 3 * qs_coeff[-1][3] * pow(x_nodes[-2], 2) return d_s

3. Построение аппроксимационной зависимости уровня поверхности жидкости.

Рис. 2: Зависимость аппроксимации уровня поверхности жидкости h(x) от координаты x (см. рисунок 1) с помощью кубического сплайна и исходные узлы.

4. Базисный полином Лагранжа

Базисный полином Лагранжа определяется по формуле:

$$l_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$

Программная реализация:

```
def bazis_polinom(i, x, x_nodes):
    1 = 1
    for j in range(0, len(x_nodes)):
        if i != j:
            1 = 1 * ((x - x_nodes[j]) / (x_nodes[i] - x_nodes[j]))
        return l
```

5. Интерполяционный полином Лагранжа

Интерполяционный полином Лагранжа определяется по формуле:

$$L(x) = \sum_{i=1}^{n} f(x_i) l_i,$$

где l_i – базисный полином Лагранжа из пункта 4.

Программная реализация:

```
def interpoi_polinom(x, x_nodes, y_nodes):
    L = 0
    for i in range(0, len(x_nodes)):
        L = L + y_nodes[i] * bazis_polinom(i, x, x_nodes)
    return L
```

6. Влияние погрешности при изменении координаты хі.

Сначала генерируем 1000 векторов значений $[\widetilde{x_1},\dots,\widetilde{x_{11}}]^T$ пологая, что $\widetilde{x_i}=x_i+Z$, где х — значения в таблице 1, а Z — случайная величина с отклонением 10^{-2} для дальнейшей задачи 1000 сплайнов.

Затем из полученных векторов строим 1000 интерполянтов Лагранжа

Рис 3. 1000 интерполянтов Лагранжа, построенные для векторов $[\widetilde{x_1}, \dots, \widetilde{x_{11}}]^T$

Так как все интерполянты представляют собой равновероятностные события, то можно построить функции с доверительным интервалом 0.9.

Доверительный интервал можно находить либо через дисперсию, либо аналитически. Так как он у нас равен 0.9, то его строить по точкам с концов отсчитывая по 5%, по этому необходимо взять 50 и 950 узлы итрерполянта.

Программная реализация:

```
for j in range(0, n):
    sum_y = 0
    cur_y = np.zeros(n)
    for i in range(0, n):
        cur_y[i] += all_y[i][j]
        sum_y += all_y[i][j]
    middle_Y[j] = sum_y / n
    cur_y.sort()
    h_u[j] = cur_y[math.floor(n * 0.05)]
    h_l[j] = cur_y[math.floor(n * 0.95)]
```


Рис 4: Доверительная полоса с изменением х

На рисунке 4 можно заметить, что начало и конец интерполянта наиболее чувствительны к погрешностям, это происходит, потому что выбраны не оптимальные узлы и из-за этого накапливаются паразитные осцилляции.

7. Влияние погрешности при изменении координаты уі.

В этом пункте необходимо сделать тоже самое, что и в пункте 6, только для изменения координаты y_i

Программная реализация:

```
for j in range(0, n):
    sum_y = 0
    cur_y = np.zeros(n)
    for i in range(0, n):
        cur_y[i] += all_y[i][j]
        sum_y += all_y[i][j]
    middle_Y[j] = sum_y / n
    cur_y.sort()
    h_u[j] = cur_y[math.floor(n * 0.05)]
    h_l[j] = cur_y[math.floor(n * 0.95)]
```


Рис 5. 1000 интерполянтов Лагранжа, построенные для векторов $[\widetilde{y_1}, \dots, \widetilde{y_{11}}]^T$

Рис 4: Доверительная полоса с изменение у

Доверительная полоса сузилась на краях аппроксимации, поэтому можно понять, что интерполяция менее чувствительна к погрешностям при изменении координаты у.

8. Интерполяция кубическим сплайном

Рис 4: 1000 интерполянтов построенные с помощью кубического сплайна, для векторов $[\widetilde{x_1},\dots,\widetilde{x_{11}}]^T$

Рис 4: Доверительная полоса и среднее значение

Рис 4: 1000 интерполянтов построенные с помощью кубического сплайна, для векторов $[\widetilde{y_1}, \dots, \widetilde{y_{11}}]^T$

Рис 4: Доверительная полоса и среднее значение

Проанализировав интерполяции Лагранжем и кубическим сплайном, можем заметить, что при интерполяции кубическим сплайном доверительная полоса намного уже.

Заключение

Сравнив результаты анализа для интерполяции Лагранжа и интерполяции кубическим сплайном можно выделить плюсы и минусы этих подходов. Плюсами интерполяции Лагранжа является то, что его график проходит через каждую точку массива, имеет непрерывные производные, а так же заданным массивом интерполяционный многочлен определён однозначно. Однако, у данного метода есть и минусы, например то, что изменение хотя бы одного узла, требует полного пересчета коэффициентов. Также минусом является и то, что степень интерполяционного многочлена Лагранжа зависит т числа узлов, и чем больше число, тем выше степень интерполяционного многочлена, и тем больше требуется вычислений.

Что касается итрерполяции кубическим сплайном, то он также проходит через каждую точку массива и построенная функция определена однозначно, также, степень многочленов не зависит от числа узлов и следовательно не изменяется при его увеличении, а также построенная функция обладает хорошими аппроксимационными свойствами.

Список использованных источников

1. **Першин Ф.Ю.** Лекции по вычислительной математике. [Электронный ресурс] // Наименование журнала. Кафедра РК6, МГТУ им. Н.Э. Баумана, 2020, 145.¹

¹Оформляется согласно ГОСТ 7.1-2003 «Библиографическая запись. Библиографическое описание. Общие требования и правила составления», и ГОСТ 7.82-2001 «Библиографическая запись. Библиографическое описание электронных ресурсов. Общие требования и правила составления»