#### Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**
- 9. Be **inclusive** and **accepting**





#### Learning Objectives

- 1. Describe the basic concept of perceptron
- 2. Explain an activation function and why it's needed
- 3. Describe the concept of gradient descent
- 4. Explain backpropagation and the basics of a dense neural net
- 5. Apply concepts like learning rate, and optimization

https://tinyurl.com/4xzn34as



Neural nets have been revolutionizing the field of protein structure prediction and design



# Neural nets have been revolutionizing the field of protein structure prediction and design





# Neural nets have been revolutionizing the field of protein structure prediction and design

Nature 2020: "It will change everything!"

Forbes 2021: "AlphaFold is the most important achievement in Al ever"

Deepmind 2020: "AlphaFold - a solution to a 50 year-old grand challenge in biology"

EMBL 2021: "Great expectations - The potential impact of AlphaFold DB"

Science 2021: "Researchers unveil phenomenal new AI for predicting protein structures"

Despite its rise in the last decade, neural nets and machine learning are old ideas



### Despite its rise in the last decade, neural nets and machine learning are old ideas



1940

D.O. Hebb

**Hebbian learning** 

### The simplest building block of neural nets are called *perceptrons*



# The simplest building block of neural nets are called *perceptrons*





### The simplest building block of neural nets are called *perceptrons*







## In a perceptron, each input "stimulus" gets a weight





#### Weights and bias are the *parameters* of the model that need to be initiated





# The overall input of each neuron (z) is the sum of the inputs with a *bias* term





#### In-class activity

#### Sum of linear functions





### An activation function allows neural nets to learn more complex patterns





# An activation function allows neural nets to learn more complex patterns





#### In-class activity

#### **Exploring activation functions**





#### Many activation functions can be used for neural nets

#### **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

#### tanh

tanh(x)

#### ReLU

 $\max(0, x)$ 







#### Leaky ReLU

 $\max(0.1x, x)$ 



#### **Maxout**

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

#### **ELU**

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$





Ivakhneko & Lapa

First functional networks with many layers













# Feed-forward is the process of calculating the final output from the inputs





#### In-class activity

Effects of adding an additional layer





# Deep neural nets are better than single layer neural nets for prediction





# Deep neural nets are better than single layer neural nets for prediction





### Deep neural nets are better than single layer neural nets for prediction





## We can assess performance of the network through loss calculation









#### Regression

MSE (Mean Squared Error)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2 
onumber 
onum$$





#### Classification



#### Classification



0.2 \* 0.8 \* 0.6 \* 0.4 = 0.0384 -ln(0.2) - ln(0.8) - ln(0.6) - ln(0.4) 1.61+ 0.22 + 0.51 + 0.92 = 3.26

#### Classification



0.7 \* 0.2 \* 0.8 \* 0.6 = 0.0672 -ln(0.7) - ln(0.2) - ln(0.8) - ln(0.6) 0.36 + 1.61 + 0.22 + 0.51 = 2.7

#### Classification



0.7 \* 0.2 \* 0.8 \* 0.6 = 0.0672 -ln(0.7) - ln(0.2) - ln(0.8) - ln(0.6) 0.36 + 1.61 + 0.22 + 0.51 = 2.7

#### Classification

Cross-entropy
Categorical cross-entropy

#### In order for the network to learn, it needs to use the loss to adjust itself





#### Loss function can guide the network to get better





#### Loss function can guide the network to get better





#### Loss function can guide the network to get better





### Backpropagation is the process of using the value of the loss to adjust the weights in layers



#### Gradient descent is used to find the best weights





#### Gradient descent is used to find the best weights





#### Gradient descent is used to find the best weights





### The direction of the move is defined by the slope of the function, aka its derivative





#### Loss function should be continuous





### Starting with the right weights help with more efficient convergence





#### Step size is important in the success of gradient descent





#### Step size is important in the success of gradient descent







### The parameter that describes this step is called *learning rate*







#### Finding the best answer is not always guaranteed







#### The importance of scaling the input data

Gradient descent without scaling



Gradient descent after scaling variables

$$0 \le x_1 \le 1$$
$$0 \le x_2 \le 1$$





#### In-class activity

**Gradient descent** 

https://tinyurl.com/2p82ey97





#### In-class activity

#### **Gradient descent**





Gradient descent

$$W_{new} = W_{old} - \alpha * \frac{\partial(Loss)}{\partial(W_{old})}$$

- Gradient descent
  - a. Pros:
    - Easy to understand
    - Easy to implement
  - b Cons
    - Slow
    - Computationally expensive
    - Large memory

$$W_{new} = W_{old} - \alpha * \frac{\partial(Loss)}{\partial(W_{old})}$$

- Gradient descent
- 2. Stochastic gradient descent (SGD)





- Gradient descent
- Stochastic gradient descent (SGD)
  - a. Pros:
    - Frequent update of parameters
    - Less memory
    - Can work in large datasets
  - b. Cons:
    - Noisy gradients
    - Computationally expensive
    - High variance



- Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent





- Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
  - a. Pros:
    - More stable convergence
    - More efficient
    - Less memory
  - b. Cons:
    - Does not guarantee good convergence
    - Very dependent on learning rate



- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum

$$\nu_{new} = \eta * \nu_{old} - \alpha * \frac{\partial(Loss)}{\partial(W_{old})}$$





- Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
  - a. Pros:
    - Reduces the noise
    - Smoothens the curve
  - b. Cons:
    - Extra hyper-parameter is added



- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
- 5. AdaGrad (Adaptive gradient descent)

$$W_{new} = W_{old} + \frac{\alpha}{\sqrt{cache_{new}} + \epsilon} * \frac{\partial(Loss)}{\partial(W_{old})}$$



- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
- 5. AdaGrad (Adaptive gradient descent)
  - a. Pros:
    - Learning rate is updated adaptively
    - Can be used on sparse data
  - b. Cons:
    - For very deep neural nets, the rate becomes very low
      - → dead neurons



 $W_{new} = W_{old} + \frac{\alpha}{\sqrt{cache_{new}} + \epsilon} * \frac{\partial(Loss)}{\partial(W_{old})}$ 

- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
- 5. AdaGrad (Adaptive gradient descent)
- 6. RMS-prop



- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
- AdaGrad (Adaptive gradient descent)
- 6. RMS-prop
- 7. AdaDelta



- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
- 5. AdaGrad (Adaptive gradient descent)
- 6. RMS-prop
- 7. AdaDelta
- 8. Adam (Adaptive Momentum Optimization)

$$w_t \! = \! w_{t-1} \! - \! \frac{\eta}{\sqrt{S_{dw_t} \! - \! \varepsilon}} \! * \! V_{dw_t}$$

$$b_{\mathrm{t}} = b_{\mathrm{t}-1} - \frac{\eta}{\sqrt{\mathbf{S}_{db_{\mathrm{t}}} - \varepsilon}} * \mathbf{V}_{db_{\mathrm{t}}}$$



- 1. Gradient descent
- 2. Stochastic gradient descent (SGD)
- 3. Mini-batch gradient descent
- 4. SGD with momentum
- 5. AdaGrad (Adaptive gradient descent)
- 6. RMS-prop
- 7. AdaDelta
- 8. Adam (Adaptive Momentum Optimization)
  - a. Easy to implement, efficient, little memory requirement

$$w_t\!=\!w_{t-1}\!-\!\frac{\eta}{\sqrt{S_{dw_t}\!-\!\varepsilon}}\!*\!V_{dw_t}$$

$$b_{t} = b_{t-1} - \frac{\eta}{\sqrt{S_{db_{t}} - \varepsilon}} * V_{db_{t}}$$





# Next lecture: Fully connected dense neural nets





| Earth Day of Service |                                                                                                                                                                                                                                                                                                    |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What:                | Volunteer opportunity for students to work alongside one of our many different community partners in the Eugene/Springfield area. All students are welcome, regardless of previous volunteering experience, and can receive community service hours that work toward any student org requirements! |  |
| When:                | <ul> <li>Saturday, April 23<sup>rd</sup></li> <li>9:00am to 12:00pm</li> </ul>                                                                                                                                                                                                                     |  |
| Register:            | <ul> <li>Click Here!</li> <li>Or visit: <a href="https://holden.uoregon.edu/daysofservice">holden.uoregon.edu/daysofservice</a> to learn more</li> </ul>                                                                                                                                           |  |
| Deadline:            | <ul> <li>Registration is open until April 21<sup>st</sup> at 11:59pm OR when max<br/>capacity is reached</li> </ul>                                                                                                                                                                                |  |



| Emerging Leadership Project[HW3] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What:                            | Year-long, cohort-based program blending leadership development and community service. Students will spend the first half of the year developing and exploring their leadership skills, and the second half of the term implementing their own service project. Students will build connections with their fellow cohort members and have the opportunity to work closely with a professional mentor.  The primary learning outcomes are centered around the following,  Leadership Skill Development  Direct Community Service Experience  Career Readiness  Community & Connections |  |
| When:                            | 2022-2023 academic year, beginning fall term and ending in the spring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Apply:                           | <ul> <li>Click Here!</li> <li>Or visit: <a href="https://doi.org/10.1007/journal.com/">holden.uoregon.edu/elp</a> for more information</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Deadline:                        | Sunday, May 1 <sup>st</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

