- **6.1.** Пусть X нормированное пространство, $x_1, \ldots, x_n \in X$ линейно независимые векторы. Докажите, что для любого набора чисел c_1, \ldots, c_n найдется такой $f \in X^*$, что $f(x_i) = c_i$ для всех $i = 1, \ldots, n$.
- **6.2.** Пусть X и Y нормированные пространства, $X_0 \subset X$ векторное подпространство и $T_0 \colon X_0 \to Y$ ограниченный линейный оператор. Обязательно ли T_0 продолжается до ограниченного линейного оператора $T \colon X \to Y$?
- **6.3.** Пусть X сепарабельное нормированное пространство. Не пользуясь леммой Цорна (см. доказательство теоремы Хана—Банаха с лекции), докажите, что для любого векторного подпространства $X_0 \subseteq X$ и любого $f_0 \in X_0^*$ существует такой $f \in X^*$, что $f|_{X_0} = f_0$ и $||f|| = ||f_0||$.
- **6.4.** Пусть S поглощающее множество в векторном пространстве X над полем $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Обозначим через p_S функционал Минковского множества S. Докажите следующие утверждения:
 - 1) $p_S(\lambda x) = \lambda p_S(x)$ для всех $x \in X, \ \lambda \geqslant 0$.
 - 2) Если S выпукло, то $p_S(x+y) \leq p_S(x) + p_S(y)$ для всех $x, y \in X$.
 - 3) Если S закруглено, то $p_S(\lambda x) = |\lambda| p_S(x)$ для всех $x \in X, \ \lambda \in \mathbb{K}$.
 - 4) Если S выпукло, то $\{x: p_S(x) < 1\} \subseteq S \subseteq \{x: p_S(x) \leqslant 1\}.$
- **6.5.** Докажите, что
 - 1) сумма любого семейства выпуклых множеств выпуклое множество;
 - 2) пересечение любого семейства выпуклых множеств выпуклое множество;
 - 3) образ и прообраз выпуклого множества при линейном отображении выпуклые множества;
 - 4) замыкание и внутренность выпуклого множества в нормированном пространстве выпуклые множества;
 - 5) аналогичные утверждения справедливы для закругленных множеств.

Определение 6.1. Пусть X — множество, $\ell^{\infty}(X)$ — пространство всех ограниченных \mathbb{C} -значных функций на X. Линейный функционал $m \colon \ell^{\infty}(X) \to \mathbb{C}$ называется *положительным*, если $m(f) \geqslant 0$ при $f \geqslant 0$.

6.6. 1) Докажите, что положительный функционал m на $\ell^{\infty}(X)$ ограничен, и что ||m|| = m(1). **2)** Докажите, что ограниченный линейный функционал m на $\ell^{\infty}(X)$, удовлетворяющий условию ||m|| = m(1), положителен.

Указание. В п. 1 воспользуйтесь тем, что формула $\langle f, g \rangle = m(f\bar{g})$ задает неотрицательно определенную эрмитову форму на $\ell^{\infty}(X)$. В п. 2 достаточно показать, что если ||m|| = m(1) = 1, то для $f \geqslant 0$ число m(f) принадлежит любому кругу, содержащему множество значений f.

Определение 6.2. Пусть G — полугруппа. Для любой функции f на G и любого $x \in G$ определим функцию $L_x f$ формулой $(L_x f)(y) = f(xy)$. Полугруппа G называется аменабельной, если на $\ell^{\infty}(G)$ существует положительный линейный функционал m, удовлетворяющий условиям m(1) = 1 и $m(L_x f) = m(f)$ для всех $f \in \ell^{\infty}(G)$ и всех $x \in G$. Любой такой функционал m называется инвариантным средним.

- 6.7. Докажите, что любая конечная группа аменабельна.
- **6.8.** Докажите, что группа \mathbb{Z} аменабельна.
- **6.9.** Докажите, что полугруппа $\mathbb N$ аменабельна, причем для любого инвариантного среднего m на ℓ^∞ и любой сходящейся числовой последовательности $x=(x_n)$ справедливо равенство $m(x)=\lim_{n\to\infty}x_n$.

6.10-ь. Докажите, что свободная группа с двумя образующими не аменабельна.

Информация к размышлению. Известно, что любая абелева полугруппа аменабельна. С другой стороны, свободная группа с n > 1 образующими не аменабельна. Инвариантные средние и аменабельные группы имеют многочисленные приложения в различных областях математики. См. по этому поводу книги Φ . Гринлифа «Инвариантные средние на топологических группах» (М.: Мир, 1973); S. Wagon, "The Banach–Tarski Paradox" (Cambridge Univ. Press, 1985); V. Runde, "Lectures on amenability" (Springer, 2002).

- **6.11.** Докажите, что любое банахово пространство X изометрически изоморфно факторпространству пространства $\ell^1(S)$ для некоторого множества S. (Указание: в качестве S можно взять единичный шар пространства X.)
- **6.12.** Докажите, что любое нормированное пространство X изометрически вкладывается в $\ell^{\infty}(S)$ для некоторого множества S. (Указание: в качестве S можно взять единичный шар пространства X^* .)

Определение 6.3. Нормированное пространство Y называется unvermuehum, если для любого нормированного пространства X и любого векторного подпространства $X_0 \subset X$ каждый ограниченный линейный оператор $T_0 \colon X_0 \to Y$ продолжается до ограниченного линейного оператора $T \colon X \to Y$. Если вдобавок существует такое C > 0, что оператор T можно выбрать так, чтобы выполнялось неравенство $||T|| \leqslant C||T_0||$, то Y называется C-инvermuehum.

Из теоремы Хана-Банаха следует, что основное поле \mathbb{K} ($\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$) 1-инъективно.

- 6.13-ь. Докажите, что инъективное нормированное пространство полно.
- **6.14-b.** Докажите, что банахово пространство $\ell^{\infty}(S)$ 1-инъективно для любого множества S.
- **6.15-b.** Докажите, что если банахово пространство инъективно, то оно C-инъективно для некоторой константы C.

Определение 6.4. Банахово пространство Y называется *проективным*, если для любого банахова пространства X и любого замкнутого векторного подпространства $X_0 \subset X$ каждый ограниченный линейный оператор $T_0 \colon Y \to X/X_0$ поднимается до ограниченного линейного оператора $T \colon Y \to X$ в том смысле, что следующая диаграмма коммутативна:

Если вдобавок существует такое C > 0, что для каждого $\varepsilon > 0$ оператор T можно выбрать так, чтобы выполнялось неравенство $||T|| \leq (C + \varepsilon)||T_0||$, то Y называется C-проективным.

- **6.16-b.** Докажите, что банахово пространство $\ell^1(S)$ 1-проективно для любого множества S.
- **6.17-b.** Докажите, что если банахово пространство проективно, то оно C-проективно для некоторой константы C.

- **7.1.** 1) Докажите, что в конечномерном векторном пространстве над \mathbb{R} любые два непересекающихся выпуклых множества разделены гиперплоскостью.
- **2)** Приведите пример двух замкнутых выпуклых непересекающихся подмножеств в \mathbb{R}^2 , не разделенных гиперплоскостью строго.
- **7.2.** Приведите пример двух непересекающихся выпуклых подмножеств в каком-либо вещественном векторном пространстве, не разделенных гиперплоскостью.
- **7.3-b.** Приведите пример двух непересекающихся замкнутых выпуклых подмножеств в вещественном гильбертовом пространстве ℓ^2 , не разделенных замкнутой гиперплоскостью.
- **Определение 7.1.** Пусть X векторное пространство над \mathbb{R} , и пусть $S \subseteq X$. Назовем точку $x \in S$ линейно внутренней для S, если множество S-x поглощающее. Назовем S линейно открытым, если все его точки линейно внутренние.
- **7.4.** 1) Докажите, что семейство всех линейно открытых множеств в произвольном векторном пространстве X задает топологию на X.
- **2)** Докажите, что топология из п. 1 не слабее топологии, порожденной любой нормой на X.
- 3) Докажите, что если $\dim X > 1$, то операция сложения в топологии из п. 1 не является непрерывной и, следовательно, эта топология строго сильнее, чем топология, порожденная любой нормой на X.
- **7.5.** Докажите следующую разновидность теоремы об отделении выпуклых множеств (ср. теорему с лекции): если X векторное пространство над \mathbb{R} и $A, B \subset X$ выпуклые непересекающиеся множества, причем линейная внутренность одного из них непуста, то A и B разделены гиперплоскостью.
- 7.6. Выведите теорему Хана-Банаха из теоремы, сформулированной в предыдущей задаче.
- **7.7-b** (*теорема Хелли*). Пусть дано семейство выпуклых компактных подмножеств в \mathbb{R}^n , любые n+1 из которых имеют непустое пересечение. Докажите, что тогда и все семейство имеет непустое пересечение.

 $У \kappa a з a н u e$. Сведите утверждение к случаю, когда семейство конечно. Если оно содержит N=n+2 множества, то проведите индукцию по n и воспользуйтесь теоремой об отделении выпуклых множеств. Если оно содержит N>n+2 множеств, проведите индукцию по N.

- Пусть X векторное пространство над \mathbb{R} , $S\subseteq X$ выпуклое множество и f_0,\ldots,f_n выпуклые функции на S. Задачей выпуклого программирования называется задача отыскания минимума f_0 на множестве $S\cap \{x: f_i(x)\leqslant 0\ \forall i=1,\ldots,n\}$. Функцией Лагранжа этой задачи называется функция $\mathcal{L}: S\times \mathbb{R}^{n+1}\to \mathbb{R},\ \mathcal{L}(x,\lambda)=\sum_{i=0}^n \lambda_i f_i(x)$.
- **7.8-b** (*теорема Куна-Таккера*). Пусть $x_0 \in S$ решение описанной выше задачи выпуклого программирования. Докажите, что существует такое $\lambda = (\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ (набор *множите-лей Лагранжа*), $\lambda \neq 0$, что
 - 1) $\lambda_i \geqslant 0$ для всех $i = 0, \ldots, n$;
 - 2) $\lambda_i f_i(x) = 0$ для всех i = 1, ..., n;
 - 3) (x_0, λ) точка минимума \mathscr{L} на S.
- **7.9-b** (*теорема о минимаксе*). Пусть $A, B \subset \mathbb{R}^n$ непустые выпуклые компакты (множества стратегий двух игроков), и пусть $\varphi \colon A \times B \to \mathbb{R}$ непрерывная функция, выпуклая по первому аргументу и вогнутая по второму (функция платы сумма, которую заплатит 2-й игрок 1-му, если 1-й будет играть по стратегии x, а 2-й по стратегии y). Докажите, что существует $(x_0, y_0) \in A \times B$ (оптимальная пара стратегий), для которой

$$\max_{x \in A} \min_{y \in B} \varphi(x, y) = \varphi(x_0, y_0) = \min_{y \in B} \max_{x \in A} \varphi(x, y).$$

- **8.1.** Пусть μ комплексная мера на алгебре $\mathscr A$ подмножеств множества X.
- 1) Докажите, что ее вариация $|\mu|$ также является мерой.
- **2)** Докажите, что если μ σ -аддитивна, то и $|\mu|$ σ -аддитивна.
- **8.2.** Пусть μ комплексная мера на алгебре \mathscr{A} подмножеств множества X. Назовем подалгебру $\mathscr{B}\subset\mathscr{A}$ плотной относительно μ , если для каждого $A\in\mathscr{A}$ и каждого $\varepsilon>0$ найдется такое $B \in \mathscr{B}$, что $|\mu|(A\triangle B) < \varepsilon$. Докажите, что если \mathscr{B} плотна в \mathscr{A} относительно μ , то для любого $B \in \mathscr{B}$ справедливо равенство $|\mu|(B) = |\mu|_{\mathscr{B}}|(B)$.
- 8.3. Восполните детали в доказательстве теоремы Хильдебрандта-Канторовича об изометрическом изоморфизме между $M(\mathscr{A})$ и $B_{\mathscr{A}}(X)^*$ (см. лекцию).
- **8.4. 1)** Докажите, что каждая функция из $C^1[a,b]$ имеет ограниченную вариацию.
- **2)** Приведите пример непрерывной функции на [a, b] неограниченной вариации.
- **3)** Приведите пример дифференцируемой функции на [a,b] неограниченной вариации.
- 8.5. Пусть φ кусочно постоянная функция на [a,b]. Как устроена соответствующая ей мера Лебега-Стилтьеса?
- **8.6.** Пусть φ функция ограниченной вариации на [a,b], непрерывная справа на (a,b) и такая, что $\varphi(a) = 0$. Пусть μ_{φ} — соответствующая ей мера Лебега—Стилтьеса. Вычислите (в терминах функции φ) значения μ_{φ} на всевозможных интервалах, полуинтервалах, отрезках и одноточечных множествах.
- 8.7. Докажите σ -аддитивность меры Лебега-Стилтьеса на алгебре подмножеств отрезка [a,b], порожденной отрезками [a, t] $(a < t \le b)$.
- **8.8.** Для каждого из следующих функционалов f на пространстве C[-1,1] опишите соответствующую меру $\mu \in M[-1,1]$ и функцию ограниченной вариации $\varphi \in BV_0[-1,1]$. Вычислите вариацию $V_{-1}^1(\varphi)$ и убедитесь, что она равна ||f||.
- 1) f(x) = x(-1); 2) f(x) = x(-1/2) + 2x(0) + 3x(1/2); 3) f(x) = x(-1/2) x(1/2); 4) $f(x) = \int_{-1}^{1} tx(t) dt;$ 5) $f(x) = \int_{-\varepsilon}^{\varepsilon} x(t) dt;$ 6) $f(x) = x(-1) 2\int_{-1}^{1} x(t) dt + 3x(0).$
- **8.9.** Пусть (X,μ) пространство с мерой. Зафиксируем $f \in L^1(X,\mu)$ и обозначим через ν_f комплексную меру с плотностью f относительно μ . Докажите, что $\|\nu_f\| = \|f\|_1$.
- **8.10.** Для каждых $\lambda=(\lambda_0,\ldots,\lambda_{n-1})\in\mathbb{K}^n$ и $\mu\in M[a,b]$ обозначим через $F_{\lambda,\mu}$ линейный функционал на пространстве $C^n[a,b]$, заданный формулой

$$F_{\lambda,\mu}(f) = \sum_{k=0}^{n-1} \lambda_k f^{(k)}(a) + \int_a^b f^{(n)} d\mu.$$

Докажите, что $(\lambda, \mu) \mapsto F_{\lambda, \mu}$ — топологический изоморфизм между $\mathbb{K}^n \oplus M[a, b]$ и $C^n[a, b]^*$.

- **8.11-b** (представляющие меры). Пусть $K \subset \mathbb{C}$ компакт и $\mathscr{A}(K)$ подалгебра в C(K), состоящая из функций, голоморфных во внутренности K и непрерывных на K.
- 1) Пусть $z_0 \in K$. Докажите, что существует вероятностная борелевская мера μ на ∂K , такая, что для каждой функции $f \in A$ справедлива формула $f(z_0) = \int_{\partial K} f \, d\mu$.
- **2)** (мера Пуассона). Найдите меру μ из п. 1 в явном виде для случая, когда $K = \{z \in \mathbb{C} : |z| \leqslant 1\}$ — замкнутый единичный круг. (Указание: в этом случае μ абсолютно непрерывна относительно меры Лебега на окружности; найдите явную формулу для ее плотности.)
- 3) Докажите, что для круга K мера Пуассона из п. 2 это единственная вероятностная борелевская мера, удовлетворяющая условиям п. 1. (Указание: можно воспользоваться теоремой Вейерштрасса, согласно которой любая непрерывная функция f на $[-\pi,\pi]$, удовлетворяющая условию $f(-\pi) = f(\pi)$, равномерно аппроксимируется тригонометрическими многочленами.)

9.1. Пусть X — нормированное пространство, $i_X : X \to X^{**}$ — каноническое вложение. Докажите, что для любого оператора $T \in \mathcal{B}(X,Y)$ следующая диаграмма коммутативна:

$$X \xrightarrow{X^{**}} Y^{**}$$

$$i_X \uparrow \qquad \uparrow i_Y$$

$$X \xrightarrow{T} Y$$

- **9.2.** Докажите, что
 - 1) композиция канонического вложения $c_0 \to (c_0)^{**}$ и стандартного изоморфизма $(c_0)^{**} \cong \ell^{\infty}$ это тождественное вложение c_0 в ℓ^{∞} ;
 - **2)** композиция канонического вложения $\ell^1 \to (\ell^1)^{**}$ и стандартного изоморфизма $(\ell^1)^{**} \cong (\ell^\infty)^* \cong M(2^\mathbb{N})$ это вложение ℓ^1 в $M(2^\mathbb{N})$, сопоставляющее каждой последовательности $x \in \ell^1$ меру μ_x , заданную формулой $\mu_x(A) = \sum_{n \in A} x_n$.
- 9.3. Докажите, что
 - 1) гильбертово пространство рефлексивно;
 - **2)** пространства $L^{p}(X, \mu)$ (1 < $p < +\infty$) рефлексивны;
 - **3)** пространство c_0 нерефлексивно;
 - **4)** пространство ℓ^1 нерефлексивно;
 - **5)** пространство $L^1(X,\mu)$ нерефлексивно (за исключением случая, когда оно конечномерно);
 - **6)** пространство C[a,b] нерефлексивно.
- **9.4.** Пусть X нормированное пространство, $i_X \colon X \to X^{**}$ каноническое вложение. Исследуйте взаимосвязь между операторами $i_{X^*} \colon X^* \to X^{***}$ и $i_X^* \colon X^{***} \to X^*$.
- **9.5. 1)** Докажите, что банахово пространство X рефлексивно $\iff X^*$ рефлексивно.
- **2)** Выведите отсюда нерефлексивность ℓ^1 , ℓ^∞ , $L^\infty[a,b]$ и M[a,b].
- 9.6. Докажите, что размерность бесконечномерного банахова пространства несчетна.
- 9.7. Приведите пример бочки в нормированном пространстве, не содержащей окрестности нуля.
- **9.8.** Приведите пример нормированного пространства X и последовательности функционалов (f_n) в X^* , ограниченной на каждом векторе, но не ограниченной по норме.
- **9.9.** Пусть X, Y, Z нормированные пространства, причем X либо Y полно.
- 1) Докажите, что любой раздельно непрерывный билинейный оператор $X \times Y \to Z$ непрерывен. (Указание: воспользуйтесь теоремой Банаха–Штейнгауза).
- 2) Верно ли утверждение из п. 1 без предположения о полноте?
- **9.10-b.** Пусть G компактная топологическая группа и π ее представление в банаховом пространстве X, непрерывное в том смысле, что отображение $G \times X \to X$, $(g,x) \mapsto \pi(g)x$, непрерывно. Докажите, что на X существует эквивалентная норма, относительно которой все операторы $\pi(g)$ изометричны. (Указание: проще всего воспользоваться теоремой Банаха—Штейнгауза. Впрочем, можно сделать эту задачу и «в лоб», не пользуясь полнотой X см. контрольную за 1 модуль.)
- 9.11. 1) Выведите теорему об открытом отображении из теоремы об обратном операторе.
- 2) Выведите теорему об обратном операторе из теоремы о замкнутом графике.
- **9.12.** Приведите пример банахова пространства X, нормированного пространства Y и биективного оператора $T \in \mathcal{B}(X,Y)$, обратный к которому не является непрерывным.
- **9.13-b.** Приведите пример нормированного пространства X, банахова пространства Y и биективного оператора $T \in \mathcal{B}(X,Y)$, обратный к которому не является непрерывным.
- **9.14-b.** Приведите пример абсолютно выпуклого поглощающего множества в банаховом пространстве, не содержащего окрестности нуля.