GEV6135 Deep Learning for Visual Recognition and Applications

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Sep 29, 2022

Assignment 3

- Due Monday 10/10, 11:59pm KST
- Training linear classifiers (Lec 3) with
 - SVM/Softmax loss (Lec 3)
 - SGD (Lec 4)

Kibok Lee

- If you feel difficult, consider to take option 2.
- Please read the instruction carefully!
 - Do not write or modify any code outside of the designated blocks.
 - Do not add or delete cells from the notebook.
 - Do not import additional libraries.
 - + Do not use torch.nn unless instructed.
 - Run all cells, and do not clear out the outputs, before submitting.
 - Do not zip by yourself, run the provided code.

Assignment 4

- Will be released around Tuesday 10/4
- Expected due Monday 10/17
- Training two-layer neural networks (Lec 5) with
 - Softmax loss (Lec 3)
 - SGD (Lec 4)

A1 grading by this weekend?

Where we are:

- 1. Use **Linear Models** for image classification problems
- 2. Use **Loss Functions** to express preferences over different choices of weights
- 3. Use **Regularization** to prevent overfitting to training data
- 4. Use **Stochastic Gradient Descent** to minimize our loss functions and train the model

$$s = f(x; W) = Wx$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$

```
v = 0
for t in range(num_steps):
   dw = compute_gradient(w)
   v = rho * v + dw
   w -= learning_rate * v
```


Kibok Lee

Problem: Linear Classifiers aren't that powerful

Geometric Viewpoint

Visual Viewpoint

One template per class: Can't recognize different modes of a class

One solution: Feature Transforms

Image Features: Color Histogram

Frog image is in the public domain

Image Features: Histogram of Oriented Gradients (HoG)

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented Gradients (HoG)

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Weak edges

Strong diagonal edges

Edges in all directions

Captures
texture and
position,
robust to
small image
changes

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Bag of Words (Data-Driven!)

Image Features

Example: Winner of 2011 ImageNet challenge

Low-level feature extraction ≈ 10k patches per image

SIFT: 128-dim
 color: 96-dim

reduced to 64-dim with PCA

FV extraction and compression:

- N=1,024 Gaussians, R=4 regions \Rightarrow 520K dim x 2
- compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features

Image Features vs Neural Networks

Kibok Lee

10 numbers giving scores for classes

training

This image is CC0 1.0 public domain

Input: $x \in \mathbb{R}^D$ Output: $s(x) \in \mathbb{R}^C$ Activation function: f

Before: Linear Classifier: s(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $s(x) = W_2 f(W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $s(x) \in \mathbb{R}^C$ Activation function: f

Before: Linear Classifier: s(x) = Wx + bLearnable parameters: $W \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^C$

Feature Extraction
Linear Classifier

Now: Two-Layer Neural Network: $s(x) = W_2 f(W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Input: $x \in \mathbb{R}^D$ Output: $s(x) \in \mathbb{R}^C$ Activation function: f

Before: Linear Classifier: s(x) = Wx + b

Learnable parameters: $W \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^{C}$

Now: Two-Layer Neural Network: $s(x) = W_2 f(W_1 x + b_1) + b_2$ Learnable parameters: $W_1 \in \mathbb{R}^{H \times D}$, $b_1 \in \mathbb{R}^H$, $W_2 \in \mathbb{R}^{C \times H}$, $b_2 \in \mathbb{R}^C$

Or Three-Layer Neural Network:

$$s(x) = W_3 f(W_2 f(W_1 x + b_1) + b_2) + b_3$$

Before: Linear classifier

$$s(x) = Wx + b$$

Now: 2-layer Neural Network $s(x) = W_2 f(W_1 x + b_1) + b_2$

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Before: Linear classifier

$$s(x) = Wx + b$$

Now: 2-layer Neural Network
$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

Element (i, j) of W₁ gives the effect on h_i from x_i

Element (i, j) of W₂ gives the effect on s_i from h_i

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Kibok Lee

Before: Linear classifier

$$s(x) = Wx + b$$

Now: 2-layer Neural Network
$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

Element (i, j) of W₁ gives the effect on h_i from x_i

> All elements of x affect all elements of h

Fully-connected neural network Also "Multi-Layer Perceptron" (MLP)

Element (i, j) of W₂ gives the effect on s_i from h_i

> All elements of h affect all elements of s

Linear classifier: One template per class

(Before) Linear score function:

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Neural net: first layer is bank of templates; Second layer recombines templates

(Before) Linear score function:

$$x \in \mathbb{R}^D$$
, $W_1 \in \mathbb{R}^{H \times D}$, $W_2 \in \mathbb{R}^{C \times H}$

Can use different templates to cover multiple modes of a class!

(Before) Linear score function:

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Distributed representation": Most templates not interpretable!

(Before) Linear score function:

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Deep Neural Networks

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$s(x) = W_2(W_1x + b_1) + b_2$$

Activation Functions

2-layer Neural Network

The function $ReLU(z) = \max(0, z)$ is called "Rectified Linear Unit"

$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$s(x) = W_2(W_1x + b_1) + b_2$$

= $(W_1W_2)x + (W_2b_1 + b_2)$

A: We end up with a linear classifier!

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$$

ReLU

 $\max(0,x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

ELU

$$\begin{cases} x & x > 0 \\ \alpha(e^x - 1) & x \le 0 \end{cases}$$

GELU

$$= 0.5x [1 + \operatorname{erf}(x/\sqrt{2})]$$

$$\approx x\sigma(1.702x)$$

Neural Net in <20 lines!


```
import numpy as np
    from numpy.random import randn
 3
    N, Din, H, Dout = 64, 1000, 100, 10
    x, y = randn(N, Din), randn(N, Dout)
    w1, w2 = randn(Din, H), randn(H, Dout)
    for t in range(10000):
      h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
      y_pred = h_dot(w2)
       loss = np.square(y_pred - y).sum()
10
      dy_pred = 2.0 * (y_pred - y)
11
      dw2 = h.T.dot(dy_pred)
12
      dh = dy_pred.dot(w2.T)
13
      dw1 = x.T.dot(dh * h * (1 - h))
14
      w1 = 1e-4 * dw1
15
      w2 = 1e-4 * dw2
16
```

Neural Net in <20 lines!


```
from numpy.random import randn
                         N, Din, H, Dout = 64, 1000, 100, 10
Initialize weights
                         x, y = randn(N, Din), randn(N, Dout)
and data
                         w1, w2 = randn(Din, H), randn(H, Dout)
                         for t in range(10000):
                           h = 1.0 / (1.0 + np.exp(-x.dot(w1)))
Compute loss
                           y_pred = h_dot(w2)
(sigmoid activation,
L2 loss)
                           loss = np.square(y_pred - y).sum()
                           dy_pred = 2.0 * (y_pred - y)
                           dw2 = h.T.dot(dy_pred)
       Compute
       gradients
                           dh = dy_pred.dot(w2.T)
                           dw1 = x.T.dot(dh * h * (1 - h))
                           w1 -= 1e-4 * dw1
          SGD
          step
                           w2 = 1e-4 * dw2
```

import numpy as np

Attendance Check

<u>This image</u> by <u>Fotis Bobolas</u> is licensed under <u>CC-BY 2.0</u>

Our brains are made of Neurons

euron image by Felipe Perucher is licensed under CC-BY 3.0

Biological Neurons: Complex connectivity patterns

This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Kibok Lee

Biological Neurons: Complex connectivity patterns

This image is CCO Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", ICCV 2019

Be very careful with brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex nonlinear dynamical system
- Abstracting a neuron by "firing rate" isn't enough; temporal sequences of activations matter too (spiking neural networks)

[Dendritic Computation. London and Hausser]

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Points not linearly separable in original space Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx)Where x, h are both 2-dimensional

Setting the number of layers and their sizes

More hidden units = more capacity

Don't regularize with size; instead use stronger L2

$$\lambda = 0.001$$

$$\lambda = 0.01$$

$$\lambda = 0.1$$

(Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

A neural network with one hidden layer can approximate any function f: R^N -> R^M with arbitrary precision*

^{*}Many technical conditions: Only holds on compact subsets of R^N; function must be continuous; need to define "arbitrary precision"; etc

Example: Approximating a function f: R -> R with a two-layer ReLU network

h1 = max(0, w1 * x + b1) h2 = max(0, w2 * x + b2) h3 = max(0, w3 * x + b3) y = u1 * max(0, w1 * x + b1) + u2 * max(0, w2 * x + b2) + u3 * max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)+ u3 * max(0, w3 * x + b3) Output is a sum of shifted, scaled ReLUs:

Flip left / right based on sign of w_i

Example: Approximating a function f: R -> R with a two-layer ReLU network

Example: Approximating a function f: R -> R with a two-layer ReLU network

Kibok Lee

Example: Approximating a function f: R -> R with a two-layer ReLU network

y = u1 * h1 + u2 * h2 + u3 * h3 + p

h3 = max(0, w3 * x + b3)

Example: Approximating a function f: R -> R with a two-layer ReLU network

+ p

y = u1 * h1 + u2 * h2 + u3 * h3 + p

Example: Approximating a function f: R -> R with a two-layer ReLU network

+ p

y = u1 * h1 + u2 * h2 + u3 * h3 + p

Kibok Lee

Example: Approximating a function f: R -> R with a two-layer ReLU network

Kibok Lee

Example: Approximating a function f: R -> R with a two-layer ReLU network

$$h1 = max(0, w1 * x + b1)$$

 $h2 = max(0, w2 * x + b2)$
 $h3 = max(0, w3 * x + b3)$
 $y = u1 * max(0, w2 * x + b2)$
 $+ u2 * max(0, w2 * x + b2)$
 $+ u3 * max(0, w3 * x + b3)$
 $y = u1 * h1 + u2 * h2 + u3 * h3 + p$

What about...

- Gaps between bumps?
- Other nonlinearities?
- Higher-dimensional functions?

See Nielsen, Chapter 4

Example: Approximating a function f: R -> R with a two-layer ReLU network

Reality check: Networks don't really learn bumps!

Approximate functions with bumps!

Example: Approximating a function f: R -> R with a two-layer ReLU network

Universal approximation tells us:

Neural nets can represent any function

Universal approximation DOES NOT tell us:

- Whether we can actually learn any function with SGD
- How much data we need to learn a function

Remember: kNN is also a universal approximator!

Reality check: Networks don't really learn bumps!

Extra topic: Convex Functions

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,
$$f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$$

Example: $f(x) = x^2$ is convex:

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Example: $f(x) = x^2$ is convex:

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

Example: $f(x) = \cos(x)$ is not convex:

A function
$$f:X\subseteq\mathbb{R}^N\to\mathbb{R}$$
 is **convex** if for all $x_1,x_2\in X,t\in[0,1]$,
$$f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

Kibok Lee

^{*}Many technical details inside!

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

Linear classifiers optimize a convex function!

$$s = f(x; W) = Wx$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$
 Softmax

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM

$$L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$$

R(W) = L2 or L1 regularization

Kibok Lee

^{*}Many technical details inside!

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

^{*}Many technical details inside!

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

^{*}Many technical details inside!

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

*Many technical details inside!

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

^{*}Many technical details inside!

A function $f:X\subseteq\mathbb{R}^N\to\mathbb{R}$ is **convex** if for all $x_1,x_2\in X,t\in[0,1]$, $f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2)$

Intuition: A convex function is a (multidimensional) bowl

Generally speaking, convex functions are **easy to optimize**: can derive theoretical guarantees about **converging to global minimum***

Most neural networks need nonconvex optimization

- Few or no guarantees about convergence
- Empirically it seems to work anyway
- Active area of research

*Many technical details inside!

Convexity

- Most linear classifiers optimize a convex function
 - Linear layer

$$s = f(x; W) = Wx$$

Cross-entropy loss

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

SVM

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- L1/L2 regularization $L = rac{1}{N} \sum_{i=1}^{N} L_i + R(W)$
- Most neural networks need non-convex optimization
 - Few or no guarantees about convergence (mostly falls in a local optimum)
 - Empirically it seems to work anyway
 - Active area of research

Feature transform + Linear classifier allows nonlinear decision boundaries

Neural Networks as learnable feature transforms

From linear classifiers to fully-connected networks

$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

Linear classifier: One template per class

Neural networks: Many reusable templates

From linear classifiers to fully-connected networks

$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

Neural networks loosely inspired by biological neurons but be careful with analogies

From linear classifiers to fully-connected networks

$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

Space Warping

Universal Approximation

Nonconvex

Problem: How to compute gradients?

$$s = W_2 f(W_1 x + b_1) + b_2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Per-element data loss

$$R(W) = \sum_{k} W_k^2$$

Kibok Lee

L2 Regularization

$$L(W_1, W_2, b_1, b_2) = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss

If we can compute $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial W_2}$, $\frac{\partial L}{\partial b_1}$, $\frac{\partial L}{\partial b_2}$ then we can optimize with SGD

Next: Backpropagation