МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ІКНІ Кафедра **ПЗ**

3BIT

До лабораторної роботи № 1 **З дисципліни:** " Основи програмування вбудованих систем" **На тему:** "Дослідження середовища Keil і бібліотек CMSIS і SPL"

	Лектор:
	доц. каф. пз
	Марусенкова Т.А.
	Виконав:
	ст. гр. ПЗ-32
	Бурець В.В.
	Прийняв:
	доц. каф. пз
	Крук О.Г.
	« » 2021 p.
	Σ=
Львів-2021	

Тема роботи: Дослідження середовища Keil і бібліотек CMSIS і SPL (на прикладі блимання світлодіодами).

Мета роботи: Ознайомитися з можливостями середовища Keil uVision.

ТЕОРЕТИЧНІ ВІДОМОСТІ

Варіант №1

1. Для яких мікроконтролерів призначена бібліотека CMSIS?

CMSIS — бібліотека, стандартна для всіх МК з ядром ARM Cortex. Стандартизується ARM Ltd. Різні виробники МК з цим ядром доповнюють CMSIS файлами з описом периферійних модулів, специфічних для МК, які вони випускають.

Завдання

1. Засвічення червоного та синього світлодіодів, після цього – зеленого та жовтого з інтервалом у 1 с, циклічно.

Рис. 1 Підключення світлодіодів до STM32F4DISCOVERY

ХІД РОБОТИ

Рис. 2. Вибір мікроконтроллера

Рис. 3. Buбip debugger`a

Рис. 4. Значення змінної delay_с під час відлагодження

Рис. 5. Значення змінної ODR під час відлагодження

Рис. 6. Значення змінної ODR під час відлагодження

Код програми:

```
#include <stm32f4xx.h>
uint16_t delay_c = 0;
void SysTick_Handler(void){
    if(delay_c > 0)
        delay_c--;
}

void delay_ms(uint16_t delay_t){
    delay_c = delay_t;
    while(delay_c){};
}
int main (void){
```

```
SysTick_Config(SystemCoreClock/1000);

RCC->AHB1ENR |= RCC_AHB1ENR_GPIODEN; //turn on timing

GPIOD->MODER = 0x55000000;

GPIOD->OTYPER = 0;

GPIOD->OSPEEDR = 0;

while(1){

GPIOD->ODR = 0xC000;

delay_ms(1000);

GPIOD->ODR = 0x3000;

delay_ms(1000);
}
```


Рис. 7. Завантаження бібліотек для мікроконтроллера

Options for Target 'Target 1'			×
Device Target Output Listing User	C/C++ Asm Linker Debug Utilities		
Preprocessor Symbols Define: define STM32F40_41xxx, Undefine:	USE_STDPERIPH_DRIVER		
Language / Code Generation			-
Execute-only Code	Strict ANSI C Warnings:	All Wamings ▼	
Optimization: Level 0 (-00) ▼	Enum Container always int	☐ Thumb Mode	
Optimize for Time	Plain Char is Signed	No Auto Includes	
Split Load and Store Multiple	Read-Only Position Independent	✓ C99 Mode	
✓ One ELF Section per Function	Read-Write Position Independent	✓ GNU extensions	
Include Paths Misc Controls	;.\Libraries\CMSIS\Device\ST\STM32F4xx\Include;.\Li	ibraries\CMSIS\De	
	M4.fp.sp -D_EVAL -g -O0apcs=interworksplit_section -I ./Libraries/CMSIS/Device/ST/STM32F4xx/Include -I		
	DK Cancel Defaults	Help	

Рис. 7. Задання параметрів роботи бібліотеки "stm32f4xx.h"

Рис. 8. Встановлення шляхів до файлів

```
Код програми з використанням SPL бібліотек
#include "stm32f4xx.h"
                              // Device header
RCC_ClocksTypeDef RCC_Clocks;
static __IO uint32_t TimingDelay;
void Delay(__IO uint32_t nTime)
{
 TimingDelay = nTime;
 while(TimingDelay != 0);
}
void TimingDelay_Decrement(void){
 if (TimingDelay != 0x00){
  TimingDelay--;
 }
}
void SysTick_Handler(void)
{
 TimingDelay_Decrement();
}
int main(void)
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_StructInit(&GPIO_InitStructure);
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15 | GPIO_Pin_14;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
```

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;

```
GPIO_Init( GPIOC, &GPIO_InitStructure);
       RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
       RCC_GetClocksFreq(&RCC_Clocks);
SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000);
       while(1){
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_15);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_14);
                      Delay(1000);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_15);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_14);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_13);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_12);
                      Delay(1000);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_13);
                      GPIO_ToggleBits(GPIOD, GPIO_Pin_12);
       }
}
```

ВИСНОВКИ

На даній лабораторній роботі я встановив середовище Keil, розробив програму для блимання червоного і синього світлодіодів кожних 1 с., а потім зеленого і жовтого теж з інтервалом 1 с. Під час відлагодження програми було досліджено, що я правильно встановив значення регістрів для виконання заданого завдання. А також було створенно два проекти для виконання встановленої задачі. Перший проект з використанням бібліотеки SPL, а другий з використанням сміз