Problem A: Mod-10 synchronous JK counter

Construct a mod-10 (counts up to decimal 9 / binary 1001, then loops back to 0) counter) using JK flip flops. It must be synchronous — no glitch states! Use JK in "toggle" mode. The below configuration has been provided for you as a starting point.

Problem B: Custom synchronous 3-bit counter

Given this state table, construct a **synchronous custom counter** using **D-type flip flops**. Hint: Construct Karnaugh maps by filling in where D_c , D_b , and D_a are 0, 1 or x respectively.

Note: None of the t_n states of the counter have a t_{n+1} state of 010 or 110. However, if the counter were to ever enter those states (say, a random glitch happened), it should return to the sequence and not get stuck in those states.

		tn					t_{n+1}	
\mathbf{Q}_{c}	Q_b	Qa	D_c	D_b	Da	Q_c	Q_b	\mathbf{Q}_{a}
0	0	1	1	0	0	1	0	0
1	0	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0
0	0	0	0	1	1	0	1	1
0	1	1	1	0	1	1	0	1
1	0	1	0	0	1	0	0	1
0	1	0	Х	Х	х	Х	Х	х
1	1	0	Х	Х	х	Х	X	Х

Dc

Qc\QbQa	00	01	11	10
0	0	1	1	х
1	1	0	0 (Х

!QcQa + Qc!Qa Qc XOR Qa

Db

Qc\QbQa	00	01	11	10
0	1	0	0	Х
1	1	0	0	х

!Qb!Qa + Qb!Qa = !Qa

Da

Qc\QbQa	00	01	11	10
0	1	0	1	×
1	1	1	0	/×

!Qa + !QcQb + Qc!Qb !Qa + Qc XOR Qb

