

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 392 423
A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90106764.5

(51) Int. Cl. 5: C07D 257/02, C07F 9/38,
A61K 49/02, A61K 43/00

(22) Anmeldetag: 09.04.90

(30) Priorität: 11.04.89 DE 3911816

(71) Anmelder: HOECHST AKTIENGESELLSCHAFT
Postfach 80 03 20
D-6230 Frankfurt am Main 80(DE)

(43) Veröffentlichungstag der Anmeldung:
17.10.90 Patentblatt 90/42

(72) Erfinder: Mäcke, Helmut, Dr.
Bergfriedweg 7
D-7850 Lörrach(DE)

(34) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(54) Substituierte 1,4,7,10-Tetraazacyclotridecane, Verfahren zu deren Herstellung sowie Verwendung derselben zur Markierung von Substanzen mit Radionukliden.

(57) Die Erfindung betrifft 1,4,7,10-Tetraazacyclotridecane der Formel I

in der R¹, R² und Z die angegebenen Bedeutungen haben. Die ernungsgemäßen Verbindungen eignen sich zur Markierung von Substanzen mit Radionukliden, insbesondere radioaktivem Technetium, Rhenium oder Indium.

EP 0 392 423 A2

Substituierte 1,4,7,10-Tetraazacyclotridecane, Verfahren zu deren Herstellung sowie Verwendung der selben zur Markierung von Substanzen mit Radionukliden

Gegenstand der Erfindung sind substituierte 1,4,7,10-Tetraazacyclotridecane, die sich zur Markierung von Substanzen mit Radionukliden, insbesondere radioaktivem Technetium, Rhenium- oder Indium eignen.

Die Anwendungsmöglichkeiten von Radionukliden in der Technik sind sehr vielfältig. Sie erstrecken sich beispielsweise auf die Prüfung einer Durchmischung, auf die verdünnungsanalytische Bestimmung von Mengen oder Volumina, auf die Messung der Strömungsgeschwindigkeit und Aufnahme der Verweilzeit an kontinuierlich arbeitenden Produktionsanlagen.

Meist genügt jedoch nicht die bloße Beimischung eines radioaktiven Nuklids, sondern beispielsweise bei der "Verfolgung" einer bestimmten Komponente eines Systems, muß das radioaktive Nuklid physikalisch oder besser noch chemisch an mindestens eine Verbindung der zu untersuchenden Komponente gekoppelt werden und dies nach Möglichkeit ohne die physikalischen und chemischen Eigenschaften der betreffenden Verbindung zu beeinflussen.

In den vergangenen Jahren wuchs das Verlangen, chemische Verbindungen mit radioaktiven Nukliden zu markieren. Vor allem im Bereich der medizinischen Diagnostik, wo pathologische Zustände bereits durch Substanzen angezeigt werden können, die im Organismus nur in ppm oder gar in noch geringeren Konzentrationen vorkommen, kann man heute nicht mehr auf radioaktiv markierte Substanzen verzichten. Insbesondere Technetium-99m ist wegen seiner günstigen physikalischen Eigenschaften (Fehlen einer Korpuskularstrahlung, γ -Energie von 140 keV und Halbwertszeit von 6 Stunden) und der damit verbundenen geringen Strahlenbelastung zum wichtigsten Radionuklid in der nuklearmedizinischen Diagnostik geworden.

Technetium-99m, das sich aus Nuklidgeneratoren gewinnen läßt, liegt zunächst als Pertechnetat vor, das in dieser Form, z.B. für die Schilddrüsen- und Hirnszintigraphie geeignet ist. Die Szintigraphie anderer Organe mittels Technetium-99m gelingt mit Hilfe bestimmter "Transportsubstanzen", die einerseits in der Lage sind Technetium zu binden, und andererseits das Radionuklid im Zielorgan mit hoher Selektivität anzureichern. Zur Markierung der organspezifischen "Transportsubstanz" mit Technetium-99m muß das aus dem Nuklidgenerator eluierte Pertechnetat zuerst in eine niedrigere Oxidationsstufe überführt werden. In dieser reduzierten Form bildet Technetium mit der organspezifischen Substanz mehr oder weniger stabile Verbindungen. Für die Knochenszintigraphie werden z.B. Tc-99m-Phosphorsäure-Derivate, vor allem organische Phosphonsäuren, eingesetzt. So liegt in der im Europäischen Patent 2485 beschriebenen Markierungseinheit das Natriumsalz der 3,3-Diphosphono-1,2-propanedicarbonsäure als organspezifische "Transportsubstanz" vor. In dem Europäischen Patent 108.253 werden Tc-99m-Tri- und Tetraphosphonsäuren zur szintigraphischen Darstellung des RES, insbesondere der Leber, beschrieben. Der Tc-99m-Komplex mit Diethylentriaminpentaessigsäure (DTPA) findet zur Diagnostik von Nierenerkrankungen bzw. pathologischen Hirnprozessen Anwendung.

Zur Markierung bestimmter Substanzen mit Technetium-99m und zur Herstellung von für den klinischen Routinebedarf geeigneten Testkits wurden spezielle Verfahren entwickelt und beschrieben. Zur Präparation von Markierungsbestecken für biologisch interessante Makromoleküle, insbesondere Porphyrine, Dextrans, Cytochrome und Myoglobin, wird eine Methode beschrieben (G.D. Zanelli, D. Ellison, M.P. Barrowcliffe, Nucl. Med. Commun. 8, 199-206, 1987), bei der die zu markierende Substanz zusammen mit p-Aminobenzoësäure und einer salzauren SnCl₂-Lösung lyophilisiert wird. Zur Rekonstitution und Markierung dieses Kits gibt man Tc-99m-Generatorenluat, das vorher mit genügend Pufferlösung, z.B. Citrat-Natriumchlorid-Puffer pH 9,5, verdünnt wurde, hinzu. Für säureempfindliche Substanzen ist diese Methode jedoch nicht geeignet.

Bei einem anderen Verfahren (E.K.J. Pauwels, R.I.J. Feitsma, Patentanmeldung Int. Publication No. WO 86/03010) wird durch vierstündiges Erhitzen in stark salzsaurer Lösung auf 140 °C Tc-99m-Pertechnet zuerst reduziert und an einer Verbindung, die eine Aminogruppe enthält, z.B. Dimethylformamid, gebunden. Das reaktionsfähige Tc-99m-markierte Zwischenprodukt, das als schwerlösliche kristalline Substanz ausfällt, wird in einer Pufferlösung, z.B. Natriumcarbonatlösung, durch einstündige Inkubation bei Raumtemperatur mit der zu markierenden Verbindung umgesetzt. Die Methode arbeitet zwar zinnfrei, ist aber wegen der aufwendigen Verfahrensschritte für die Routineanwendung kaum geeignet.

Zur Markierung von Proteinen, insbesondere Antikörpern, kennt man zwei verschiedene Wege. Bei der direkten Methode wird das reduzierte Technetium-99m durch Donorgruppen (Amino-, Amid-, Thiol- etc.) des Proteins gebunden.

Solche Verfahren sind in dem Europäischen Patent 5638 und dem US-Patent 4.47B.015 beschrieben. Dort werden Zinn-II-Salze im Überschuß zur gleichzeitigen reduktiven Spaltung von Disulfid-Brücken und zur Reduktion des zugesetzten Tc-99m-Pertechnets benutzt. Im allgemeinen benötigt man zur Spaltung

der -S-S-Bindung längere Inkubationszeiten (24 Stunden), wobei $F(ab')_2$ -Fragmente partiell zu $F(ab')$ -Fragmenten gespalten werden. Neuere Literaturangaben (z.B. Journal of Nuclear Medicine 27 (1986), Seite 685 - 93 und 1315 - 20 sowie International Journal of Nuclear Medicine Biology 12 (1985) Seiten 3 - 8) zeigen, daß das Verhältnis der beiden Fragmente abhängig ist von der "Bezinnungsreaktion" und daß sich 5 das Verhältnis der beiden Komponenten nach der Tc-99m-Markierung nicht mehr nennenswert ändert, wobei die Hauptkomponente Tc-99m-markiertes $F(ab')$ ist. In allen Fällen mußte das markierte $F(ab')$ -Fragment nachgereinigt werden, da trotz mindestens 30-minütiger Reaktionszeit keine quantitative Umsetzung des Perotechnetats erreicht wurde.

Bei einer schnellen chemischen Methode zur Tc-99m-Markierung humaner Plasmaproteine (D.W. 10 Wong, F. Mishkin, T. Lee, J. Nucl. Med. 20, 967 - 72, 1979) wird Perotechnetat zuerst in saurer Lösung durch Zinn-II-Ionen reduziert und das reduzierte Technetium dann mit dem Protein umgesetzt.

Unter Zuhilfenahme von bifunktionalen Komplexbildnern läßt sich eine stabile Markierung von Substanzen mit Radioisotopen erreichen.

In dem US-Patent 4.479.930 Werden die cyclischen Anhydride von DTPA und EDTA als Chelatisierungsmittel nicht nur für In-111 und Ga-67, sondern auch für Tc-99m angeführt. In dem europäischen Patent 35765 wird die Verwendung von Deferoxamin als Komplexierungsagens für Technetium-99m an Proteine erwähnt. In der internationalen Patentanmeldung WO 85/3063 werden die partiell reduzierten Disulfid-Brücken im Antikörper mit dem Natriumsalz des Tetrachlormitrotechnetats, das durch Reaktion von Perotechnetat mit Natriumazid vorher präpariert werden muß, umgesetzt. In der europäischen Patentanmeldung 194853 benutzt man ebenfalls durch Reduktion in Antikörperfragmenten erzeugte freie Thiolgruppen 20 zur Bindung von [(7-Maleimidohexyl)imino-bis(ethylennitrilo)]tetraessigsäure als Chelatkomplex. Die Kupplung des Komplexes an den Antikörper erfolgt über die Reaktion der SH-Gruppen mit der Doppelbindung im Maleimidteil der Komplexverbindung, während das radioaktive Metallion über die Nitrilodiessigsäure-Reste komplexiert wird.

25 Metallothionein, ein metallbindendes Protein mit einem Molekulargewicht von 6000 und einem hohen Cysteinanteil im Molekül wurde als Komplexbildner in Antikörper eingeführt (G.L. Tolman, R.J. Hadjian, M.M. Morelock et al., J. Nucl. Med. 25, 20, 1984). Durch Austausch mit Tc-99m-Glucoheptonat ließ sich das Antikörper-Metallothionein-Konjugat mit Technetium markieren. Der Austausch blieb jedoch unvollständig, so daß eine Nachreinigung erforderlich war. Mehrere Bisthiocarbazon-Liganden wurden ebenfalls als 30 bifunktionelle Chelatbildner beschrieben (Y. Arano, A. Yokoyama, H. Magat et al., Int. J. Nucl. Med. Biol. 12, 425 - 30, 1986). p-Carboxyethylphenylglyoxal-di(N-methythiocarbazon) wurde mit humanem Serumalbumin konjugiert. Der Tc-99m-markierte 1:1-Komplex zeigte eine gewisse Instabilität, während Komplexe mit einem höheren Verhältnis als 1:1 eine vermehrte Leberspeicherung aufwiesen. Die Kopplung eines Diamid-dimercaptid-N₂S₂-Liganden an Proteine (A.R. Fritzberg, S. Kasina, J.M. Reno et al., J. Nucl. Med. 35 27, 957 - 958, 1986) erfolgt über eine zusätzliche funktionelle Gruppe. So wurde z.B. 4,5-Di(S-ethylcarbo-nylmercaptoacetamid)pentanoyl-N-hydroxysuccinimid mit einem anti-Melanomantikörper umgesetzt. Das entstandene Konjugat wurde bei pH 8 und 50 °C mit Tc-99m-Tartratlösung inkubiert. Nach einer Stunde waren 78 % des Technetiums vom Tartrat auf den Antikörper übertragen.

Um Technetium-99m diagnostisch breit nutzen zu können, ist es notwendig, dieses Nuklid in das zu untersuchende Organ selektiv zu transportieren. Aus anderen Organen oder Organsystemen sollte das 40 Technetium-99m wieder schnell eliminiert oder überhaupt nicht hingekommen werden, um jede unnötige Strahlenbelastung für den Patienten zu vermeiden. Zu diesem Zweck werden bisher vorwiegend Substanzen eingesetzt, die direkt mit Technetium-99m markierbar sind und eine hohe Organspezifität aufweisen. Darüber hinaus gibt es jedoch eine Reihe von Substanzen, die zwar eine hohe Organspezifität aufweisen, 45 aber nicht direkt markierbar sind. Dies können Proteine (Fibrinogen, Humanserumalbumin), Enzyme (Streptokinase, Lactatdehydrogenase), Zucker (Dextran, Glucose) oder auch Polymere sein. Dazu gehören ebenfalls niedermolekulare Substanzen wie etwa Fettsäuren, die durch den hohen Energiebedarf des Herzens sich im Myocardgewebe anreichern. Um diese Substanzen markieren zu können, werden sie mit Komplexbildnern gekoppelt, die ihrerseits Technetium-99m fest binden können.

50 Als geeignete Komplexbildner für die Komplexierung von Technetium- und Rheniumisotopen sind makrozyklische Amine, u.a. auch Cyclame, bekannt. Die Komplexierungsausbeute liegt für den Technetium-Cyclam-Komplex bei 99 % unter geeigneten Bedingungen. Einzelheiten über Technetium-Aminkomplexe sind in D.E. Troutner, J. Simon, A.R. Ketring, W.A. Volkert, R.A. Holmes, J. Nucl. Med. 21 (1980), 443 oder S.A. Zuckman, G.M. Freeman, D.E. Troutner, W.A. Volkert, R.A. Holmes, D.G. van der Keer, E.K. Barefield, 55 Inorg. Ch. 20 (1981), 3386 oder J. Simon, D. Troutner, W.A. Volkert, R.A. Holmes, Radiochem. Radioanal. Lett. 47 (1981), 111 erwähnt. Auch substituierte Cyclame sind sowohl am 1-Stickstoff, als auch am 6-Kohlenstoff substituiert, bekannt (A.R. Ketring, D.E. Troutner et al., Int. J. Nucl. Med. Biol. 11 (1984), 113 oder J. Simon. Diss. Abstr. Int. B42 (1981), 645 oder M. Struder, T.A. Kaden, Helv. Chim. Acta 69 (1986),

2067 oder E. Kimura, R. Machida, M. Kodama, J. Am. Chem. Soc. 106 (1984), 5497).

Alle bisherigen Versuche, Amin- und auch andere Liganden an Proteine zu konjugieren (s. Fritzberg et al., J. Nucl. Med. 27 (1986), 957 oder Tolman et al., J. Nucl. Med. 25 (1984), 20 oder Arano et al., Int. J. Nucl. Med. Biol. 12 (1986) 425) führten zu Produkten, die die hohen in vivo Stabilitätsansprüche nicht oder nur teilweise erfüllten.

In der DE-A 3728600 wurden N-alkyl bzw. N-aryl und C-substituierte Cyclame beschrieben, welche sich ebenfalls als Komplexierungsmittel für Radionuklide eignen.

Es wurden nun 1,4,7,10-Tetraazacyclotridecane gefunden, welche bevorzugt an den vier Stickstoffatomen mit Alkylphosphonaten und/oder -acetaten und/oder -sulfonaten und/oder -phenolaten und/oder -catecholaten und/oder -salicylaten substituiert sind und in 12-Positionen einen Rest tragen, der zur Bindung an eine zu markierende Substanz befähigt ist. Die erfundungsgemäßen 1,4,7,10-Tetraazacyclotridecane sind hervorragend zur Komplexierung von Radionukliden geeignet. Bevorzugt werden mit diesen Verbindungen die Radionuklide ^{111}In , ^{58}Ga , ^{67}Ga , ^{90}Y , ^{153}Sm , ^{52}Fe , ^{99m}Tc , ^{153}Gd , ^{186}Re oder ^{188}Re aber auch Metalle, die als NMR-Kontrastmittel eingesetzt werden können, wie Gd, Fe oder Mn, komplexiert.

Unter den "Substanzen" die mit Hilfe der erfundungsgemäßen Cyclotridecane markierbar sind, werden in erster Linie solche Verbindungen verstanden, die in der medizinischen Diagnostik als "Transportsubstanzen" eingesetzt werden können, also meist Verbindungen, die eine hohe Organspezifität aufweisen wie Antikörper, Antikörperfragmente wie $\text{F}(\text{ab}')_2$ - oder $\text{F}(\text{ab}')$ -Fragmente, Proteine wie Fibrinogen, Humanserumalbumin, Steroide, Lipide, Enzyme wie Streptokinase, Lactatdehydrogenase, Zucker wie Dextran, Glucose oder auch Polymere. Andererseits können aber auch generell solche Substanzen mit Hilfe der erfundungsgemäßen Cyclotridecane markiert werden, die mit der funktionellen Gruppe in 12-Position an der Seitenkette des makrocyclischen Amins unter Ausbildung einer chemischen Bindung reagieren. Gedacht ist hierbei an die "Überwachung" von chemischen Substanzen in Produktionsanlagen, die Bestimmung ihrer Konzentration, Strömungsgeschwindigkeit, Verweilzeit etc.

Die Erfindung betrifft somit 1,4,7,10-Tetraazacyclotridecane der Formel I

worin

Z CH_2 oder CO bedeutet und

40 R¹ eine Gruppe der Formel -X-NH₂, -X-NO₂, -X-NUS, -X-COOH, -X-OH, -X-N₂⁺ oder -X-COCl oder eine Gruppe der Formel X-Hal bedeutet, wobei Hal, Fluor, Chlor, Brom oder Jod bedeutet und X eine Alkylengruppe mit 1 bis 40 C-Atomen, eine ortho-, meta- oder para-Phenyl-, oder eine ortho-, meta- oder para-Phenyl-C₁-C₂-alkylengruppen bedeutet und

R² H oder -(CH₂)_n-R³ bedeutet wobei

n 1 oder 2 ist und

R³ -COOH, -PO₃H₂, -SO₃H

45

50

bedeutet

und wobei die vier R²-Reste verschieden sind oder 2, 3

oder alle R²-Reste identisch sind.

55 Insbesondere betrifft die Erfindung 1,4,7,10-Tetraazacyclotridecane der Formel I wie oben definiert, wobei jedoch mindestens eine der nachfolgenden Bedingungen erfüllt ist:

Z bedeutet CH₂

X bedeutet eine Alkylengruppe mit 1 bis 20 C-Atomen oder

X bedeutet eine para-Phenylengruppe oder
 X bedeutet eine para-Phenylmethylengruppe
 Hal bedeutet Chlor, Brom oder Jod
 n ist 1
 5 R³ bedeutet -COOH, -PO₃H₂ oder -SO₃H
 3 oder alle R²-Reste sind identisch.
 Ganz besonders bevorzugt sind 1,4,7,10-Tetraazacyclotridecane der Formel I wie oben definiert wobei jedoch mindestens eine der nachfolgenden Bedingungen erfüllt ist:
 Z bedeutet CH₂
 10 X bedeutet eine Alkylengruppe mit 1 bis 8 C-Atomen oder
 X bedeutet eine para-Phenylengruppe oder
 X bedeutet eine para-Phenylmethylengruppe
 Hal bedeutet Chlor, Brom oder Jod
 n ist 1
 15 R³ bedeutet -COOH oder PO₃H₂
 alle R²-Reste sind identisch.
 Bevorzugt ist in den erfindungsgemäßen Verbindungen immer ein R²-Substituent von H verschieden.
 Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen 1,4,7,10-Tetraazacyclotridecane, wobei man zunächst einen Malonsäuredialkylester der Formmel II

20

25

(II)

30 worin R⁴ C₁-C₄-Alkyl bedeutet,
 mit einer Verbindung der Formel III
 A - R¹ (III)
 worin R¹ die oben zu Formel I angegebenen Bedeutungen hat und A Chlor oder Brom bedeutet,
 umsetzt
 35 und anschließend die erhaltene Verbindung der Formel IV

40

45

(IV)

50

mit Triethylentetraamin der Formel V

55

umsetzt, die CO-gruppen in 11,13-Position zu CH₂-Gruppen reduziert oder nicht reduziert und anschließend
30 die erhaltene Verbindung der Formel VII

mit Verbindungen der Formel VIII
A - R²
worin A Chlor oder Brom bedeutet und R² die oben zu Formel I angegebenen Bedeutungen hat, zu
45 Verbindungen der Formel I umsetzt.

Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Cyclotridecane zur Komplexierung von Radionukliden sowie die Verwendung dieser Komplexe zur Markierung von Substanzen. Ebenso betrifft die Erfindung die Verwendung dieser markierten Substanzen, insbesondere in der medizinischen Diagnostik.

50 Alkylgruppen mit mehr als 2 C-Atomen können sowohl geradkettig als auch verzweigt sein. Bei der Alkylengruppe X handelt es sich bevorzugt um geradkettige Alkylene mit bis zu 40 C-Atomen, bevorzugt bis zu 20, besonders bevorzugt bis zu 8 C-Atomen.

55 Die erfindungsgemäßen Cyclotridecane besitzen in 12-Position einen Substituenten mit funktioneller Gruppe. Mit Hilfe dieser funktionellen Gruppe werden die erfindungsgemäßen Cyclotridecane an die zu markierende Substanz gebunden. Gegebenenfalls nach entsprechender Reinigung des Konjugats (z.B. durch Ultrafiltration oder Dialyse bei Proteinen oder Polymeren, durch Säulenchromatographie bei niedermolekularen Substanzen wie Steroiden oder Lipiden) wird das gewünschte Radionuklid zwecks Komplexierung hinzugegeben. Beispielsweise wird Technetium-99m in der Form von Pertechnetat bzw. Rhenium-186

oder -188 in der Form von Perrhenat und ein geeignetes Reduktionsmittel zur Reduktion des Pertechnetats bzw. Perrhenats in die für die Komplexierung benötigte Oxidationsstufe, in beliebiger Reihenfolge oder gemeinsam zugegeben. Das markierte Substrat wird gegebenenfalls nochmals gereinigt.

Alternativ kann auch zunächst der Radionuklidkomplex des Cyclotridecans hergestellt werden und dann 5 dieser mit der Substanz zum Konjugat umgesetzt werden.

Zur Herstellung der erfindungsgemäßen 1,4,7,10-Tetraazacyclotridecane geht man am besten so vor, daß man substituierte Malonsäurederivate (IV) mit Triethylentetramin (V) umsetzt, sofern gewünscht, die vorhandenen beiden CO-Gruppen reduziert und anschließend die gewünschten R²-Gruppen in das Molekül einführt (siehe Fig. 4; Reaktionsschema 1). Die entsprechend substituierten Malonsäurederivate erhält man 10 beispielsweise durch Umsetzung von Malonsäuredialkylester, bevorzugt Malonsäurediethylester mit einer Verbindung der Formel III, A-R¹ (III) wobei A Chlor oder Brom bedeutet und R¹ die oben zu Formel I angegebenen Bedeutungen hat. Bevorzugt wird die Reaktion in Gegenwart eines Lösungsmittels wie Tetrahydrofuran, unter gleichzeitiger Einwirkung eines protonenabspaltenden Mittels, wie einer Base, wie Lithiumdiisopropylamid durchgeführt. Die Reaktionstemperatur beträgt -80 bis +20 °C, bevorzugt -70 bis 15 -10 °C. Die Reaktionszeit beträgt 10 Min bis 2 Std., bevorzugt 10 Min bis 1 Std.

Das erhaltene substituierte Malonsäurederivat der Formel IV wird nun im folgenden Reaktionsschritt mit Triethylentetramin (V) umgesetzt. Auch diese Reaktion erfolgt bevorzugt in einem Lösungsmittel wie Methanol, Ethanol, i-Propanol. Die Reaktionstemperatur liegt hierbei zwischen 50 °C und dem Siedepunkt des Reaktionsgemisches, bevorzugt wird bei Siedetemperatur gearbeitet. Die Reaktionszeiten betragen 12 20 bis 240 Std., bevorzugt 24 bis 170 Std.

Sofern gewünscht können nun die beiden im Molekül befindlichen Ketogruppen zu Methylengruppen reduziert werden. Dazu wird das 11,13-Dion zweckmäßigerweise in einem Lösungsmittel wie THF mit einem Reduktionsmittel wie LiAlH₄, oder BH₃ versetzt. Die Umsetzung erfolgt bei Temperaturen von 50 °C bis zum Siedepunkt der Reaktionsmischung, bevorzugt in der Siedehitze. Die Reaktionszeiten betragen 5 bis 48 25 Std., bevorzugt 12 bis 24 Std.

Zur Überführung in die entsprechend R²-substituierten Cyclotridecane versetzt man entweder das 11,13-Dion oder das reduzierte Produkt mit den Verbindungen der Formel VIII. Dies geschieht bevorzugt in Gegenwart eines Lösungsmittels wie Wasser, i-Propanol oder Dimethylformamid bei gleichzeitiger Anwesenheit einer Base wie KOH, NaOH, Na₂CO₃ oder Li₂CO₃. Die Reaktionstemperatur beträgt 50 °C bis 30 Siedetemperatur des Reaktionsgemisches, bevorzugt 60 - 80 °C. Die Reaktionszeiten betragen 20 Min bis 140 Min, bevorzugt 60 bis 120 Min.

Die erhaltenen Endprodukte können beispielsweise mittels Ionenaustausch-Chromatographie gereinigt werden. Die zur Herstellung der erfindungsgemäßen Verbindungen notwendigen Ausgangssubstanzen sind entweder käuflich erhältlich oder nach literaturbekannten Verfahren leicht darzustellen.

Es ist außerordentliche überraschend, daß die erfindungsgemäßen 13-Ring-Cyclame im Vergleich zu 35 den bekannten, strukturell verwandten 12-Ring und 14-Ring Cyclamen eine höhere oder gar wesentlich höhere Komplexstabilität aufweisen. Dies geht aus Vergleichsversuchen mit 12-Ringcyclamen (DOTA; "Dodecatetraacetate") und 14-Ringcyclamen (TETA; "Tetradecantetraacetat") hervor (s. Fig. 1; als weitere Vergleichsstoff ist in der Figur 1 DTPA (Diethylentriaminpentaessigsäure) aufgeführt). Bei diesen 40 Vergleichsversuchen wurde ¹¹¹In sowohl mit den bekannten 12- und 14-Ring-Cyclamen als auch mit dem erfindungsgemäßen Cyclam aus Beispiel 1 komplexiert und anschließend jeweils der ¹¹¹In-Austausch gegen Transferrin - ein bekanntermaßen gutes Komplexierungsmittel - in humanem Serum bei 37 °C untersucht. Während das (die) 14-Ring-Cyclam(e) bereits nach 12 Stunden einen merklichen ¹¹¹In-Austausch erkennen ließ (ca. 10 % des zuvor vom 14-Ring-Cyclam komplexgebundenen ¹¹¹In wurde nach dieser Zeit freigesetzt 45 bzw. von Transferrin komplexiert), zeigte sich bei dem 12-Ring-Cyclam und bei dem erfindungsgemäßen 13-Ring-Cyclam nach dieser Zeit nur ein geringer ¹¹¹In-Austausch (ca. 0,3 % für das 12-Ring-Cyclam und < 0,1 % für das erfindungsgemäße 13-Ring-Cyclam). Die Überlegenheit der erfindungsgemäßen 13-Ring-Cyclame gegenüber den 12-Ring-Cyclamen und erst recht gegenüber den 14-Ring-Cyclamen wird nach längerer Einwirkzeit deutlich. So wurden nach 120 Stunden im Fall des 14-Ring-Cyclams schon über 30 % 50 des ¹¹¹In ausgetauscht, im Fall des 12-Ring-Cyclams waren es immerhin ca. 4 %, Während nur ca. 1 % des ¹¹¹In aus dem erfindungsgemäßen 13-Ring-Cyclam ausgetauscht wurden (s. Fig. 1). Selbst bei noch längeren Reaktionszeiten nimmt die ¹¹¹In-Austauschrate im Fall der erfindungsgemäßen 13-Ring-Cyclame nicht mehr wesentlich zu, während für die 12-Ring- und 14-Ring-Cyclame ein weiterer Anstieg des ¹¹¹In-Austauschs zu beobachten ist.

In Fig. 2 ist die ¹¹¹In-Komplexstabilität der erfindungsgemäßen Cyclotridecane im Vergleich zu Diethylentriamin-paranitrobenzyl-tetraessigsäure aufgeführt.

Im folgenden wird die Erfindung anhand von Beispielen näher erläutert und in den Patentansprüchen definiert.

Beispiel 1

Darstellung des 12-substituierten Cyclams 12-(p-Nitrobenzyl)-1,4,7,10-tetraacetat-1,4,7,10-tetraazacyclotridecan

a) Darstellung von Mono-p-nitrobenzylmalonsäurediethylester

Schema:

Ansatz:

0,181 mol
58,0 g Malonsäurediethylester (0,362 mol)
39,1 g p-Nitrobenzylbromid (0,181 mol)
21,4 g Lithiumdiisopropylamid (0,2 mol)

Ausbeute: 65 % (34,7 g)

Unter Stickstoff wird die Lithiumbase mit 210 ml wasserfreiem Tetrahydrofuran in einen gut getrockneten, mit Stickstoff ausgeblasen Dreihalskolben mit Rührer gegeben. Mit einem Tropftrichter wird nun bei Raumtemperatur der in 100 ml THF gelöste Malonester innerhalb 40 Min. zugetropft. Man erwärmt leicht, um nicht gelöstes Lithiumdiisopropylamid in Lösung zu bringen. Die nun orange-braune Reaktionslösung kühl man mit Trockeneis/Isopropanol auf -62 °C ab.

Das in THF gelöste p-Nitrobenzylbromid wird innerhalb 40 Min. unter starkem Rühren zugetropft. Man röhrt eine Stunde bei -62 °C und filtriert dann den gebildeten Festkörper (Smp. 235 °C) kalt ab. Das Filtrat wird am Rotavap eingedampft. Der Rückstand wird in ca. 300 ml Ethanol bei ca. 65 °C in Lösung gebracht. Dabei kommt ein nichtlöslicher Festkörper zum Vorschein (Smp. 160 °C; Disubstituiertes Nebenprodukt), den man warm abnässt. Man lässt im Kühlschrank auskristallisieren. Als Produkt erhält man 34,7 g schwach gelbliche Kristalle mit Smp. 57-58 °C.

Identifikation:

Schmelzpunkt 58 °C

IR:
1740 cm⁻¹ C=O
1530 cm⁻¹ as^{NO2}
1350 cm⁻¹ sym^{NO2}

¹H-NMR: (CDCl₃)
8,1 d 2H Bz

7,4 d 2H Bz
 4,1 q 4H -CH₂-CH₃
 3,6 t 1H CH
 3,3 d 1H Ar-CH₂-CH
 5 1,2 t 6H -CH₂-CH₃

10

	Elementaranalyse:	ber.	gef.
C	56,95	56,8	
H	5,80	5,8	
N	4,74	5,0	

15

DC:
 CHCl₃ / MeOH / NH₃ (2:2:1)
 Rf: 0,89
 EtOH
 Rf:
 Monosubstituiertes Produkt 0,93
 20 Disubstituiertes Produkt 0

25

40

Ansatz:
 0,067 mol
 20,0 g Mono-p-Nitrobenzylmalonsäurediethylester aus Beispiel 1a (0,067 mol)
 10,0 g Triethylenetetramin (0,068 mol)

45

Die Edukte werden in Ethanol gelöst und anschließend während 7 Tagen im Rückfluß gekocht.
 Innerhalb 7 Tagen bildet sich ein Niederschlag (=> Produkt), der nach Abkühlen der Reaktionslösung und anschließender Filtration gefäßt werden kann. Nach waschen mit Aceton erhält man ein feines, leicht gelbliches Pulver.

50

Ausbeute: 25 % der Theorie (5,9 g)

55

Identifikation:
 Schmelzpunkt: Zersetzung ab ca. 200 °C
 DC-System: MeOH / CHCl₃ / NH₃ (2:2:1)
 Rf-Wert = 0,9

5

Elementaranalyse:	ber.	gef.
C	54,36 %	54,23 %
H	6,71 %	6,80 %
N	19,81 %	19,89 %
H ₂ O	1,17 %	1,17 %

10

NMR-Spektren

15

¹H (400 MHz)
(CDCl₃)

20

25

30

35

40

45

50

55

5

10

2,6 - 3,6 m 15H

15

 ^{13}C (101 MHz)
(CDCl₃)

169,3 C=O

20

25

30

57,3 aliph. CH

35

40

45

50

55

c) Darstellung von 12-(p-Nitrobenzyl)-1,4,7,10-tetraazacyclotridecan

10 Ansatz:

0,0212 mol

7,4 g 12-(p-Nitrobenzyl)-1,4,7,10-tetraazacyclotridecane-11,13-dione aus Beispiel 1b (0,0212 mol)

220 ml BH_3 in THF (0,220 mol)

100 ml THF trocken

15 Das Edukt wird in 100 ml trockenem THF suspendiert und anschließend BH_3 in THF langsam zugegeben. ($\Rightarrow \text{H}_2$ -Bildung). Die Reaktionslösung wird auf Rückfluß erhitzt, wobei das Amid langsam in Lösung geht.

Reaktionszeit: 24 h unter Rückfluß.

20 Zur heißen Reaktionslösung wird in sehr kleinen Portionen 200 ml MeOH zugegeben um das überschüssige BH_3 zu entfernen.

Anschließend wird die Reaktionslösung 3x zur Trockne eingedampft und wieder mit MeOH aufgenommen (entfernen der Borester). Zur eingedampften Reaktionslösung werden 300 ml konz. HCl zugegeben und für 3 h auf Rückfluß erhitzt.

25 Nach Einengen der Reaktionslösung auf ca. 1/3 des Volumens, 200 ml MeOH zugeben und abkühlen lassen. Es bildet sich ein weißer Niederschlag, der abfiltriert und mit kaltem MeOH gewaschen werden kann (Produkt).

Ausbeute: 67 % der Theorie (6,9 g)**Identifikation:**

30 Mit CHCl_3 / MeOH / NH_3 2/2/1 : flammenförmiger Fleck (UV positiv) mit $\text{RF} = 0$

35

Elementaranalyse:	ber.	gef.
C	39,22 %	39,3 %
H	6,91 %	7,0 %
N	14,29 %	14,1 %
H_2O	4,64 %	4,6 %
Cl	28,94 %	29,1 %

40

45

50

55

NMR-Spektren

5 ^1H (400 MHz)
 (D₂O)

7,575 — d 2H aromat.
 7,554 —

10

8,166 — d 2H aromat.
 8,144 —

15

20

2,806 — t 1H -CH₂-CH
 2,813 —
 2,823 —

25

30

3,053 — d 2H -CH₂-CH
 3,035 —

35

~ 3,5 m 16H -CH₂-

40

45

50

55

	<u>^{13}C (101 MHz)</u>		
	(D ₂ O)		
5		149,36	2 aromat. C
		148,26	
10		133,06	2 aromat. CH
		126,84	
15		50,71	
		47,74	
20		47,44	5 aliph. CH ₂
		46,43	
		38,52	
25		37,92	1 aliph. CH
30			

d) Darstellung des 12-(p-Nitrobenzyl)-1,4,7,10-tetraacetat-1,4,7,10-tetraazacyclotridecans

Ansatz:

2,0 g 12-(p-Nitrobenzyl)tetraazacyclotridecan aus Beispiel 1c ($4,28 \times 10^{-3}$ mol) gelöst in 30 ml H₂O dest. mit KOH 6M auf pH 10,5

50 3,0 g Bromessigsäure ($2,14 \times 10^{-2}$ mol) gelöst in 20 ml H₂O dest.

12-(p-Nitrobenzyl)-tetraazacyclotidecan-hydrochlorid wurde in 30 ml H₂O dest. gelöst und mittels KOH 6M auf pH 10,5 gestellt.

Die Reaktionslösung wurde auf 75 °C erhitzt und die in 20 ml H₂O dest. gelöste Bromessigsäure während ca. 20 Min zugetropft.

55 Der pH wurde mittels eines pH-Staten und KOH 6M konstant gehalten. Nachrührzeit 2 h, anschließend Reaktionslösung zur Trockne eingedampft (Rückstand ca. 9,5 g).

Aufarbeitung:

Die Reinigung des Produkts von Salzen und Nebenprodukten erfolgte mittels Ionenaustausch-Chromatographie.

5 Ionenaustauscher: Dowex 1 x 4 20-50 mesh, Formiatform

Säule: 2,5 x 36 cm

Detektion: UV 275 nm

Der Festkörper wurde in 30 ml H₂O dest. aufgenommen und filtriert. Nur ca. 15 ml auf die Säule aufgetragen und mit H₂O dest. eluiert.

10 1. Peak: anorganisches Salz

2. Peak: Nebenprodukt (Tri acetat FAB-MS: M⁺ H = 496)

Das Produkt wurde mit 0,1 M Acetinsäure vom Ionenaustauscher eluiert (=> 3. Peak FAB-MS: M⁺ H = 554).

15

Elementaranalyse:		
C ₂₄ H ₃₅ N ₅ O ₁₀ • 0,64		
HBr • 0,9 H ₂ O		

20

	ber.	gef.
C	48,08	47,6
H	6,32	6,6
H ₂ O	2,7	2,7
N	11,7	11,67
Br	8,54	8,6

25

30

NMR-Spektren

1H (D₂O, 400 MHz)

35

40

45

2,5 t 1H aliphat.

50

2,7 - 3,9 m 26H aliphat.

55

	^{13}C (D_2O , 101 MHz)	179,7	-COOH
5		178,2	-COOH
10		149,735 149,424	2 aromat. C
15		133,016 126,845	2 aromat. CH
20		37,285 - 63,555	7 aliphat. CH ₂ 1 aliphat. CH
25			
30			

Beispiel 2

35 Darstellung von 12-(p-Nitrobenzyl)-1,4,7,10-tetramethylphosphonat-1,4,7,10-tetraazacyclotridecan

50 1,4 g 12-(p-Nitrobenzyl)-1,4,7,10-tetraazacyclotridecan hydrochlorid (aus Beispiel 1c) wurde mit 2 g H_3PO_3 in 20 ml H_2O und 20 ml HCl konz. auf nahe Siedetemperatur gebracht. Über 1 Std. wurden 15 ml CH_2O (35 % in H_2O) zugetropft. Es wurde 2 Std. am Rückfluß gekocht und nochmals 15 ml CH_2O zugegeben. Dann über Nach am Rückfluß gekocht. Das Reaktionsgemisch wurde dann eingedampft und mit absolutem EtOH (50 ml) ein gelber Festkörper extrahiert. Die EtOH-Lösung wurde auf 10 ml reduziert; nach Zugabe von Isopropanol fielen noch einmal 0,25 g Festkörper an. Die vereinigten Festkörper wurden in H_2O gelöst und via Anionenaustauscher (Dowex 1 x 4) mit einem Gradienten 0,1-0,5 M HCOOH eluiert. 3 Fraktionen wurden bei 270 nm detektiert wobei die zweite Fraktion dem trisubstituierten und die dritte Fraktion dem tetrasubstituierten Produkt entspricht.

55 $^1\text{H-NMR}$, 360 MHz:

3. Fraktion

7,5 d 2 aromat. Protonen
 8,2 d 2 aromat. Protonen
 2,6-3,8 m 27 Protonen
 2. Fraktion
 5 7,5 d 2 aromat. Protonen
 8,2 d 2 aromat. Protonen
 2,6-3,8 m 25 Protonen

10 Beispiel 3

Synthese eines $^{153}\text{Gd}^{3+}$ -Komplexes mit der Verbindung aus Beispiel 1

15 40 mg der Substanz aus Beispiel 1 und 100 μCi $^{153}\text{GdCl}_3$ werden in 10 ml 0,1 M Natriumacetat-Puffer (pH = 5) über Nacht bei 80 °C gehalten. Nach dieser Inkubationszeit wurde kein freies Gd^{3+} mehr gefunden.

Fig. 3 zeigt die Stabilität dieses Gd-Komplexes in Magensaft bei einem pH-Wert von 1,1. Die Trennung von freiem und noch gebundenem $^{153}\text{Gd}^{3+}$ erfolgte über einen Kationenaustauscher.

20

Ansprüche

1. 1,4,7,10-Tetraazacyclotridecane der Formel I

25

35 worin

Z CH_2 oder CO bedeutet und
 R¹ eine Gruppe der Formel -X-NH₂, -X-NO₂, -X-NCS, -X-COOH, -X-OH, -X-N₂⁺ oder -X-COCl oder eine Gruppe der Formel X-Hal bedeutet, wobei Hal, Fluor, Chlor, Brom oder Jod bedeutet und X eine Alkylengruppe mit 1 bis 40 C-Atomen, eine ortho-, meta- oder para-Phenylen-, oder eine ortho-, meta- oder para-Phenyl-C₁-C₂-alkylengruppe bedeutet und
 R² Wasserstoff oder -(CH₂)_n-R³ bedeutet, wobei n 1 oder 2 ist und
 R³ -COOH, -PO₃H₂, -SO₃H,

45

50

bedeutet
 und wobei die vier R²-Reste verschieden sind oder 2, 3
 oder alle R²-Reste identisch sind.
 55 2. 1,4,7,10-Tetraazacyclotridecane gemäß Formel I nach Anspruch 1, wobei mindestens eine der nachfolgenden Bedingungen erfüllt ist:
 Z bedeutet CH_2
 X bedeutet eine Alkylengruppe mit 1 bis 20 C-Atomen oder

X bedeutet eine para-Phenylengruppe oder
 X bedeutet eine para-Phenylmethylengruppe
 Hal bedeutet Chlor, Brom oder Jod
 n ist 1
 5 R³ bedeutet -COOH, -PO₃H₂ oder -SO₃H,
 3 oder alle R²-Reste sind identisch.
 3. 1,4,7,10-Tetraazacyclotridecane gemäß Formel I nach Anspruch 1 oder 2, wobei mindestens eine der
 nachfolgenden Bedingungen erfüllt ist:
 Z bedeutet CH₂

10 X bedeutet eine para-Phenylengruppe oder
 X bedeutet eine para-Phenylmethylengruppe oder
 X bedeutet eine Alkylengruppe mit 1 bis 8 C-Atomen
 Hal bedeutet Chlor, Brom oder Jod
 n ist 1
 15 R³ bedeutet -COOH, oder -PO₃H₂
 alle R²-Reste sind identisch.
 4. 1,4,7,10-Tetraazacyclotridecane nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekenn-
 zeichnet, daß mindestens ein R²-Substituent von Wasserstoff verschieden ist.
 5. Verfahren zur Herstellung von 1,4,7,10-Tetraazacyclotridecanen der Formel I gemäß Anspruch 1,
 20 dadurch gekennzeichnet, daß ein Malonsäuredialkylester der Formel II

worin R⁴ C₁-C₃-Alkyl bedeutet,
 mit einer Verbindung der Formel III
 A - R¹ (III)
 worin R¹ die in Anspruch 1 zu Formel I angegebenen Bedeutungen hat und A Chlor oder Brom bedeutet,
 35 umsetzt
 und anschließend die erhaltene Verbindung der Formel IV

mit Triethylentetraamin der Formel V

50

55

zu einer Verbindung der Formel VI

umsetzt,
die CO- Gruppen in 11,13-Position zu CH₂-Gruppen reduziert oder nicht reduziert und anschließend die
erhaltene Verbindung der Formel VII

40 mit Verbindungen der Formel VIII

A - R²

worin A Chlor oder Brom bedeutet und R² die in Anspruch 1 zu Formel I angegebenen Bedeutungen hat,
umgesetzt.

- 6. Komplexverbindung, enthaltend eine Verbindung nach Anspruch 1 und mindestens ein Zentralatom.
- 7. Komplexverbindung nach Anspruch 6, dadurch gekennzeichnet, daß das Zentralatom ausgewählt wird aus:
- ¹¹¹In, ⁶⁸Ga, ⁶⁷Ga, ⁹⁰Y, ¹⁵³Sm, ⁵²Fe, ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁵³Gd, Gd, Fe, Mn.
- 8. Konjugat, bestehend aus mindestens einer Komplexverbindung gemäß Anspruch 6 oder 7 und einer Transportsubstanz.
- 9. Konjugat nach Anspruch 8, dadurch gekennzeichnet, daß die Transportsubstanz ausgewählt wird aus: Antikörpern, Antikörperfragmenten, Proteinen, Steroiden, Lipiden, Enzymen, Zuckern, Polymeren.
- 10. Verfahren zur Markierung von Transportsubstanzen mit Radionukliden dadurch gekennzeichnet, daß
 - a) die zu markierende Transportsubstanz mit einer Verbindung der Formel I gemäß Anspruch 1 umgesetzt wird und das erhaltene Produkt dann mit dem Radionuklid versetzt wird, oder
 - b) die Verbindung der Formel I gemäß Anspruch 1 zunächst mit dem Radionuklid versetzt wird und anschließend das erhaltene Produkt mit der zu markierenden Transportsubstanz umgesetzt wird.
- 11. Verwendung der Konjugate gemäß Anspruch 8 oder 9 in der medizinischen Diagnostik.
- 12. Testkit, enthaltend mindestens ein Konjugat gemäß Anspruch 8 oder 9.

13. Testkit, enthaltend ein Konjugat, bestehend aus einer Verbindung der Formel I nach Anspruch 1 und einer Transportsubstanz.

Patentansprüche für folgende Vertragsstaaten: ES, GR

5

1. Verfahren zur Herstellung von 1,4,7,10-Tetraazacyclotridecanen der Formel I

worin

Z CH_2 oder CO bedeutet und
 20 R¹ eine Gruppe der Formel -X-NH₂, -X-NO₂, -X-NCS, -X-COOH, -X-OH, -X-N₂⁺ oder -X-COCl oder eine Gruppe der Formel X-Hal bedeutet, wobei Hal, Fluor, Chlor, Brom oder Jod bedeutet und X eine Alkylengruppe mit 1 bis 40 C-Atomen, eine ortho-, meta- oder para-phenyl-C₁-C₂-alkylengruppe bedeutet und
 25 R² Wasserstoff oder -(CH₂)_n-R³ bedeutet, wobei n 1 oder 2 ist und
 R³ -COOH, PO₃H₂, -SO₃H

30

bedeutet
 und wobei die vier R²-Reste verschieden sind oder 2, 3 oder alle R²-Reste identisch sind, dadurch
 35 gekennzeichnet, daß ein Malonsäuredialkylester der Formel II

40

45

worin R⁴ C₁-C₃-Alkyl bedeutet,
 mit einer Verbindung der Formel III
 A - R¹ (III)
 worin R¹ die in Anspruch 1 zu Formel I angegebenen Bedeutungen hat und A Chlor oder Brom bedeutet,
 50 umsetzt
 und anschließend die erhaltene Verbindung der Formel IV

55

10 mit Triethylentetraamin der Formel V

zu einer Verbindung der Formel VI

umsetzt,
die CO- Gruppen in 11,13-Position zu CH₂-Gruppen reduziert oder nicht reduziert und anschließend die
erhaltene Verbindung der Formel VII

50 mit Verbindungen der Formel VIII

A - R²
worin A Chlor oder Brom bedeutet und R² die in Anspruch 1 zu Formel I angegebenen Bedeutungen hat,
umsetzt.

55 2. Verfahren nach Anspruch 1, wobei mindestens eine der nachfolgenden Bedingungen erfüllt ist:

Z bedeutet CH₂

X bedeutet eine Alkylengruppe mit 1 bis 20 C-Atomen oder

X bedeutet eine para-Phenylengruppe oder

X bedeutet eine para-Phenylmethylengruppe
Hal bedeutet Chlor, Brom oder Jod
n ist 1
R³ bedeutet -COOH, -PO₃H₂ oder -SO₃H,

5 3 oder alle R²-Reste sind identisch.
3. Verfahren nach Anspruch 1 oder 2, wobei mindestens eine der nachfolgenden Bedingungen erfüllt ist:
Z bedeutet CH₂
X bedeutet eine para-Phenylengruppe oder

10 X bedeutet eine para-Phenylmethylengruppe oder
X bedeutet eine Alkylengruppe mit 1 bis 8 C-Atomen
Hal bedeutet Chlor, Brom oder Jod
n ist 1
R³ bedeutet -COOH, oder -PO₃H₂,

15 alle R²-Reste sind identisch.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens ein R²-Substituent von Wasserstoff verschieden ist.
5. Komplexverbindung, enthaltend eine Verbindung, erhältlich nach Anspruch 1 und mindestens ein Zentralatom.

20 6. Komplexverbindung nach Anspruch 5, dadurch gekennzeichnet, daß das Zentralatom ausgewählt wird aus:
¹¹¹In, ⁶⁸Ga, ⁶⁷Ga, ⁹⁰Y, ¹⁵³Sm, ⁵²Fe, ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁵³Gd, Gd, Fe, Mn.

7. Konjugat, bestehend aus mindestens einer Komplexverbindung gemäß Anspruch 5 oder 6 und einer Transportsubstanz.

25 8. Konjugat nach Anspruch 7, dadurch gekennzeichnet, daß die Transportsubstanz ausgewählt wird aus: Antikörpern, Antikörperfragmenten, Proteinen, Steroiden, Lipiden, Enzymen, Zuckern, Polymeren.

9. Verfahren zur Markierung von Transportsubstanzen mit Radionukliden dadurch gekennzeichnet, daß

a) die zu markierende Transportsubstanz mit einer Verbindung der Formel I, erhältlich gemäß Anspruch 1, umgesetzt wird und das erhaltene Produkt dann mit dem Radionuklid versetzt wird, oder

30 b) die Verbindung der Formel I, erhältlich gemäß Anspruch 1, zunächst mit dem Radionuklid versetzt wird und anschließend das erhaltene Produkt mit der zu markierenden Transportsubstanz umgesetzt wird.

10. Verwendung der Konjugate gemäß Anspruch 7 oder 8 in der medizinischen Diagnostik.

11. Testkit, enthaltend mindestens ein Konjugat gemäß Anspruch 7 oder 8.

12. Testkit, enthaltend ein Konjugat, bestehend aus einer Verbindung der Formel I, erhältlich nach

35 Anspruch 1 und einer Transportsubstanz.

40

45

50

55

Indium-Austausch gegen Transferrin in humanem Serum

FIG. 1

Reaktionsschema 1

FIG. 4

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 392 423 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90106764.5

(51) Int. Cl. 5: C07D 257/02, C07F 9/38,
A61K 49/02, A61K 43/00

(22) Anmeldetag: 09.04.90

(30) Priorität: 11.04.89 DE 3911816

(71) Anmelder: HOECHST AKTIENGESELLSCHAFT
Postfach 80 03 20
W-6230 Frankfurt am Main 80(DE)

(43) Veröffentlichungstag der Anmeldung:
17.10.90 Patentblatt 90/42

(72) Erfinder: Mäcke, Helmut, Dr.
Bergfriedweg 7
W-7850 Lörrach(DE)

(64) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(68) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 22.05.91 Patentblatt 91/21

(54) Substituierte 1,4,7,10-Tetraazacyclotridecane, Verfahren zu deren Herstellung sowie Verwendung
derselben zur Markierung von Substanzen mit Radionukliden.

(57) Die Erfindung betrifft 1,4,7,10-Tetraazacyclotidecane der Formel I

in der R¹, R² und Z die angegebenen Bedeutungen haben. Die erfindungsgemäßen Verbindungen eignen sich
zur Markierung von Substanzen mit Radionukliden, insbesondere radioaktivem Technetium, Rhenium oder
Indium.

EP 0 392 423 A3

Indium-Austausch gegen Transferrin in humanem Serum

Europäisches
Patentamt

EUROPÄISCHER
RECHERCHENBERICHT

Nummer der Anmeldung

EP 90 10 6764

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)		
X	WO-A-8 808 422 (SCHERING) "Beispiel 17; Ansprüche" -----	1-13	C 07 D 257/02 C 07 F 9/38 A 61 K 49/02 A 61 K 43/00		
A	EP-A-0 238 196 (CELLTECH) "Beispiele; Ansprüche" -----	1-13			
A	WO-A-8 901 476 (CELLTECH) "Beispiele; Ansprüche" -----	1-13			
A	GB-A-1 529 150 (IWAO TABUSMI) "Whole document" -----	1-13			
P,A	JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, 15. Juni 1989, Seiten 792-794; J.R. MORPHY et al.: "Towards tumour targetting with copper radiolabelled macrocycle-antibody conjugates" "Whole article" -----	1-13			
			RECHERCHEIERTE SACHGEBIETE (Int. Cl.5)		
			C 07 D 257/00 C 07 F 9/00		
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt					
Racherchenort	Abschlußdatum der Recherche	Prüfer			
Den Haag	04 März 91	HELPS I.M.			
KATEGORIE DER GENANNTEN DOKUMENTE					
X: von besonderer Bedeutung allein betrachtet					
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie					
A: technologischer Hintergrund					
O: nichtschriftliche Offenbarung					
P: Zwischenliteratur					
T: der Erfindung zugrunde liegende Theorien oder Grundsätze					
E: älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist					
D: in der Anmeldung angeführtes Dokument					
L: aus anderen Gründen angeführtes Dokument					
&: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument					