TRIGONOMETRY Chapter 13

2nd SECONDARY

GEOMETRÍA ANALÍTICA II

MOTIVATING STRATEGY

Pierre de Fermat (17 de agosto de 1601-12 de enero de 1665) fue un jurista y matemático francés apodado por el historiador de matemáticas escocés, Eric Temple Bell, con el remoquete de "Príncipe de los aficionados". Fermat fue junto a René Descartes y Johannes Kepler uno de los principales matemáticos de la primera mitad del siglo XVII. Fermat fue cofundador de la teoría de probabilidades junto a Blaise Pascal e independientemente de Descartes, descubrió el principio fundamental de la geometría analítica. Sin embargo, es más conocido por sus aportaciones a la teoría de números en especial por el conocido como último teorema de Fermat, que preocupó a los matemáticos durante aproximadamente 350 años hasta que fue demostrado en 1995 por Andrew Wiles

DISTANCIA HORIZONTAL (DH)

Dados dos puntos $A(x_1, y_1)$ y $B(x_2, y_2)$

$$si X_1 > X_2$$

$$DH = x_1 - x_2$$

DISTANCIA VERTICAL (DV)

Dados dos puntos $A(x_1; y_1)$ y $B(x_2; y_2)$

si
$$y_1 > y_2$$

$$DV = y_1 - y_2$$

DISTANCIA ENTRE DOS PUNTOS

La distancia d entre dos puntos cualquiera $P_1(\mathbf{x_{1;y_1}})$ y $P_2(\mathbf{x_2;y_2})$, se determina así:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Resuelva los siguientes ejercicios

(DH) entre los puntos A(7; -5)
 y B(-3; -5).

b) Halle la distancia vertical
 (DV) entre los puntos P(3; 5)
 y Q(3; -9).

RESOLUC

ión:
a) Calculando distancia horizontal (DH):

$$A(7; -5)$$
 y $B(-3; -5)$.

$$DH = (7) - (-3)$$

b) Calculando distancia vertical (DV):

$$DV = (5) - (-9)$$

01

Del gráfico, efectúe A = DV + DH.

RESOLUC

Calculando distancia vertical (DV):

$$DV = (7) - (-8)$$
 $DV = 15$

Calculando distancia horizontal (DH):

$$DH = (2) - (-4)$$
 $DH = 6$

Calculamos:

$$A = DV + DH$$

Del gráfico, calcule el perímetro del rectángulo ABCD.

RESOLUC

IQNcalculando distancia horizontal (DH):

$$DH = (5) - (-7)$$
 $DH = 12$

Calculando distancia vertical (DV):

$$DV = (3) - (-4)$$

Nos piden:

$$2p \square ABCD = 2(DH) + 2(DV)$$

$$\Rightarrow$$
 2p \square ABCD = 2(12) + 2(7)

Del gráfico, calcule tanβ.

RESOLUC

IÓbel gráfico:

$$\tan \beta = \frac{CO}{CA}$$
$$\tan \beta = \frac{DH}{DV}$$

Calculando distancia horizontal (DH):

$$DH = (5) - (-7)$$
 $DH = 12$

Calculando distancia vertical (DV):

$$DV = (6) - (-2)$$
 $DV = 8$

$$\tan\beta = \frac{DH}{DV} = \frac{\frac{3}{12}}{\frac{8}{2}}$$

Del gráfico, calcule la longitud de AB

Recordar:

$$d(\overline{PQ}) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Calculando distancia entre los puntos A y B:

$$d(\overline{AB}) = \sqrt{[(-7) - 5)]^2 + [(2) - (-3)]^2}$$

$$d(\overline{AB}) = \sqrt{[(-12)]^2 + [(5)]^2}$$

$$d(\overline{AB}) = \sqrt{144 + 25}$$

$$d(\overline{AB}) = \sqrt{169}$$

 $\therefore d(\overline{AB}) = 13u$

Calcule el perímetro del triangulo equilátero ABC si A(-4;3) y B(2;-5)

RESOLUC IÓN:

Recordar:

$$d(\overline{PQ}) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Calculando distancia entre los puntos A y B:

$$d(\overline{AB}) = \sqrt{[(-4)-2)]^2 + [(3)-(-5)]^2}$$

$$d(\overline{AB}) = \sqrt{[(-6)]^2 + [(8)]^2}$$

$$d(\overline{AB}) = \sqrt{36 + 64}$$

$$d(\overline{AB}) = \sqrt{100}$$

$$d(\overline{AB}) = 10$$

Nos piden: $2p \triangle ABC = 3[d(\overline{AB})]$

Observe el siguiente gráfico y determine:

- a. La distancia entre la librería y el colegio (en meros).
- b. La distancia entre el colegio y la iglesia (en metros).

RESOLUC

ONCalculando la distancia entre la Librería y el Colegio (d₁)

$$d_1 = \sqrt{[(-12) - 3)]^2 + [10 - 2]^2}$$

$$d_1 = \sqrt{[(-15)]^2 + [(8)]^2}$$

$$d_1 = \sqrt{225 + 64}$$

$$d_1 = \sqrt{289} \longrightarrow d_1 = 17 \text{ m}$$

 b. Calculando la distancia entre el Colegio y la Iglesia (d₂)

$$d_{2} = \sqrt{[3 - (-6)]^{2} + [2 - (-10)]^{2}}$$

$$d_{2} = \sqrt{[(9)]^{2} + [12]^{2}}$$

$$d_{2} = \sqrt{81 + 144}$$

$$d_{2} = \sqrt{225} \longrightarrow d_{2} = 15 \text{ m}$$