Nociones previas

Robustificación de medidas no aditivas mediante la variación total

Otras aplicaciones

David Nieto-Barba nietodavid@uniovi.es

Ignacio Montes imontes@uniovi.es

Enrique Miranda mirandaenrique@uniovi.es

XLI Congreso Nacional de Estadística e Investigación Operativa

Motivación

$$\mathcal{X} = \{x_1, x_2, x_3\}, \quad (\nu, \overline{\nu}), \quad P$$

Nociones previas

$$\mathcal{X} = \{x_1, x_2, x_3\}, \quad (\nu, \overline{\nu}), \quad P$$

Nociones previas

$$\mathcal{X} = \{x_1, x_2, x_3\}, \quad (\nu, \overline{\nu}), \quad P$$

- Nociones previas
- 2 Distorsiones de juegos
- 3 Otras aplicaciones
- 4 Conclusiones y líneas futuras

- Nociones previas
- 2 Distorsiones de juegos
- 3 Otras aplicaciones
- 4 Conclusiones y líneas futuras

Sea $\mathcal{X} = \{x_1, \dots, x_n\}$ y $\mathbb{P}(\mathcal{X})$ el conjunto de probabilidades sobre $\mathcal{P}(\mathcal{X})$.

Definición (Juego y core)

Se dice juego cooperativo (normalizado) a $\nu:\mathcal{P}(\mathcal{X})\to[0,1]$ tal que $\nu(\emptyset)=0$ y $\nu(\mathcal{X})=1$, el cual es monótono, balanceado, exacto, resp., si:

$$A\subseteq B\Rightarrow \nu(A)\leq \nu(B),\quad \operatorname{core}(\nu)\neq\emptyset,\quad \nu(A)=\min_{P\in\operatorname{core}(\nu)}P(A),$$

 $\forall A,B\subseteq\mathcal{X}$, donde el core de ν recoge las soluciones compatibles con ν :

$$core(\nu) := \{ P \in \mathbb{P}(\mathcal{X}) \mid P(A) \ge \nu(A) \quad \forall A \subseteq \mathcal{X} \}.$$

Dado ν , se define su juego conjugado como: $\overline{\nu}(A) = 1 - \nu(A^c) \ \forall A \subseteq \mathcal{X}$.

Partiremos de juegos normalizados y monótonos, recogidos en $\mathbb{P}(\mathcal{X})$ (a.k.a. capacidades normalizadas, medidas difusas o probabilidades imprecisas).

Entre los casos particulares de juegos balanceados, cabe destacar:

- Convexos: $\nu(A \cup B) \ge \nu(A) + \nu(B) \nu(A \cap B) \quad \forall A, B \subseteq \mathcal{X}$.
- *k-monótonos*: Para cada $k \geq 3$, $1 \leq p \leq k \in \mathbb{N}$ y $A_1, \ldots, A_p \subseteq \mathcal{X}$:

$$\nu\left(\bigcup_{i=1}^p A_i\right) \geq \sum_{I\subseteq \{1,\dots p\}} (-1)^{|I|+1} \nu\left(\bigcap_{i\in I} A_i\right).$$

- *Minitivos*: $\nu(A \cap B) = \min\{\nu(A), \nu(B)\} \quad \forall A, B \subseteq \mathcal{X}$.
- **P-box**: existe $(\underline{\mathcal{F}}, \overline{\mathcal{F}})$ tal que, sea $A_i = \{x_1, \dots, x_i\}$:

$$core(\nu) = \{ P \in \mathbb{P}(\mathcal{X}) \mid \underline{\mathcal{F}}(A_i) \le F_P(A_i) \le \overline{\mathcal{F}}(A_i) \ \forall i \in \{1, \dots, n\} \}.$$

• *Intervalos de probabilidad*: ν exacto y tal que:

$$core(\nu) = \{ P \in \mathbb{P}(\mathcal{X}) \mid \nu(\{x\}) \le P(\{x\}) \le \overline{\nu}(\{x\}) \ \forall x \in \mathcal{X} \}.$$

• Probabilidades precisas: $\nu = P \in \mathbb{P}(\mathcal{X}) \subset \mathbb{P}(\mathcal{X})$.

En el marco de las probabilidades imprecisas, se dan las visiones de ν :

- Epistémica: cota inferior a una "verdadera" probabilidad en $core(\nu)$.
- Comportamental: supremo precio de compra aceptable de apuestas.

Definición (Previsión inferior)

Una **previsión inferior** es un funcional real sobre $\mathcal{K} \subseteq \mathcal{L}(\mathcal{X}) := \{g : \mathcal{X} \to \mathbb{R}\}.$

Definición (Extensión natural, envolvente por abajo)

La extensión natural de ν se define como $\underline{E}_{\nu}:\mathcal{L}(\mathcal{X}) \to \mathbb{R}$ tal que

$$\underline{E}_{\nu}(f) = \min_{P \in \mathit{core}(\nu)} E_P(f) \quad \forall f \in \mathcal{L}(\mathcal{X}), \quad \mathit{si core}(\nu) \neq \emptyset.$$

La **envolvente por abajo** de core $\subseteq \mathbb{P}(\mathcal{X})$ cerrado, convexo y no vacío se define como:

$$\underline{E}(f) := \min_{P \in \mathit{core}} E_P(f), \quad \forall f \in \mathcal{L}(\mathcal{X}).$$

Sean $P_0 \in \mathbb{P}(\mathcal{X})$, $\delta \geq 0$ y $d : \mathbb{P}(\mathcal{X}) \times \mathbb{P}(\mathcal{X}) \to [0, +\infty)$, se define:

$$B_d^{\delta}(P_0) := \{ P \in \mathbb{P}(\mathcal{X}) \mid d(P, P_0) \le \delta \}.$$

Proposición

 $d(\cdot,\!P_0) \; \textit{continua,convexa} \Rightarrow B_d^\delta(P_0) = \textit{core}(\underline{E}), \; \underline{E}(f) = \min_{P \in B_d^\delta(P_0)} E_P(f).$

Definición (Variación Total)

$$d_{\mathrm{TV}}(Q, P_0) := \max_{A \subseteq \mathcal{X}} |Q(A) - P_0(A)|, \quad \forall Q, P_0 \in \mathbb{P}(\mathcal{X}).$$

Proposición

Si $\delta \in (0,1)$, la restricción a eventos de la envolvente por abajo de $B_{dry}^{\delta}(P_0)$ coincide con $\nu \in \underline{\mathbb{P}}(\mathcal{X})$ dado por:

$$\nu(A) = \max\{P_0(A) - \delta, 0\}, \quad \forall A \neq \emptyset, \mathcal{X}.$$

- Nociones previas
- 2 Distorsiones de juegos
- 3 Otras aplicaciones
- 4 Conclusiones y líneas futuras

Distorsiones y entornos de juegos

Definición (Distorsión como transformación directa)

Sea $\{\phi_{\delta}: [0,1] \to [0,1]\}_{\delta \in \Lambda}$ una familia de funciones no decrecientes acotadas por la identidad en [0,1]. Dados $\nu \in \underline{\mathbb{P}}(\mathcal{X})$ y $\delta \in \Lambda$, se define $\mu_{\delta}[\nu]: \mathcal{P}(\mathcal{X}) \to [0,1]$ como:

$$\mu_{\delta}[\nu](A) := (\phi_{\delta} \circ \nu)(A) = \phi_{\delta}(\nu(A)) \quad \forall A \neq \emptyset, \mathcal{X}.$$

Ejemplo

- (I)TVM: $\Lambda = [0, +\infty), \ \phi_{\delta}(t) = \max\{t \delta, 0\}.$
- (I)LV: $\Lambda = [0, +\infty), \ \phi_{\delta}(t) = \max\{(1 \delta)t, 0\}.$
- (I)PMM: $\Lambda = [0, +\infty), \ \phi_{\delta}(t) = \max\{(1+\delta)t \delta, 0\}.$

Posibles propiedades

Sea $\{\mu_{\delta}[\cdot]\}_{\delta\in\Lambda}$, $\Lambda=[0,+\infty)$, y $\nu\in\underline{\mathbb{P}}(\mathcal{X})$ cualquiera:

- $\textbf{ (Expansión) } \delta_1 \leq \delta_2 \Rightarrow \mu_{\delta_2}[\nu] \leq \mu_{\delta_1}[\nu].$
- (Semigrupo)
 - a $\mu_{\delta_0}[\nu] = \nu$ para $\delta_0 = 0$,
 - $\bullet \mu_{\delta_2+\delta_1}[\nu] = \mu_{\delta_2}[\mu_{\delta_1}[\nu]] \ \forall \delta_1, \delta_2 \in \Lambda.$
- **3** (Preservación de estructuras) $\nu \in \mathcal{H} \subseteq \underline{\mathbb{P}}(\mathcal{X}) \Rightarrow \mu_{\delta}[\nu] \in \mathcal{H} \ \forall \delta \in \Lambda$.
- **4** (Reversibilidad) A partir del par $(\delta, \mu_{\delta}[\nu])$ puede recuperarse ν .
- **6** (Invarianza) bajo marginalización, permutaciones y condicionamiento.

Proposición

Si para toda $P \in \mathbb{P}(\mathcal{X})$ se preserva la exactitud, entonces también se preserva esta propiedad para cualquier $\nu \in \mathbb{P}(\mathcal{X})$.

Modelo de entorno generalizado

 $\textbf{ (Modelo de entorno generalizado) } \exists d: \mathbb{P}(\mathcal{X}) \times \underline{\mathbb{P}}(\mathcal{X}) \to \mathbb{R} \text{ tal que}$

$$\operatorname{core} \bigl(\mu_{\delta}[\nu] \bigr) = \{ Q \in \mathbb{P}(\mathcal{X}) \mid d(Q,\nu) \leq \delta \} =: B_d^{\delta}(\nu), \quad \forall \delta \in \Lambda.$$

9 (Conmutatividad débil en puntos extremos) Si ν es exacto:

$$\mu_{\delta}[\nu](A) = \inf\bigg\{Q(A) \mid Q \in \bigcup_{P \in \mathsf{ext}(\mathsf{core}(\nu))} \mathsf{core}\big(\mu_{\delta}[P]\big)\bigg\}, \quad \forall \delta \in \Lambda.$$

• (Conmutatividad fuerte) Si ν es exacto:

$$\operatorname{core} \bigl(\mu_{\delta}[\nu]\bigr) = \bigcup_{P \in \operatorname{core}(\nu)} \operatorname{core} \bigl(\mu_{\delta}[P]\bigr) \quad \forall \delta \in \Lambda.$$

El caso del ITVM

Definición (ITVM)

Dados $\nu \in \mathbb{P}(\mathcal{X})$ y $\delta \geq 0$, se define:

$$\mu_{\delta}[\nu](A) = \max \{\nu(A) - \delta, 0\} \quad \forall A \neq \emptyset, \mathcal{X}.$$

Propiedad	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
ITVM	✓	1	\sim^{*1}	✓ *2	1	1	X	1	1	✓ *3

- *1: balanceados, exactos, convexos, minitivos (✓); k-monótonos, intervalos de probabilidad, p-box (x)
- *2: si $\delta < \min_{x \in \mathcal{X}} \nu(\{x\})$.
- *3: si ν es convexo.

Si ν es balanceado:

$$d'_{\mathrm{TV}}(Q,\nu) := \max_{A \subseteq \mathcal{X}} \left(\nu(A) - Q(A) \right) = \max_{A \subseteq \mathcal{X}} \min_{P \in \mathsf{core}(\nu)} |P(A) - Q(A)|$$

У

$$Q \in \mathsf{core}(\mu_{\delta}[\nu]) \Leftrightarrow d'_{\mathrm{TV}}(Q,\nu) \leq \delta,$$

mientras que:

$$\begin{split} Q \in \bigcup_{P \in \mathsf{core}(\nu)} \mathsf{core} \big(\mu_{\delta}[P] \big) &\Leftrightarrow \min_{P \in \mathsf{core}(\nu)} \max_{A \subseteq \mathcal{X}} |P(A) - Q(A)| \leq \delta \\ &\Leftrightarrow d^{\min}_{\mathsf{TV}}(Q, \nu) := \min_{P \in \mathsf{core}(\nu)} d_{\mathsf{TV}}(Q, P) \leq \delta. \end{split}$$

Teorema

Si ν es convexo, entonces se satisface:

$$d'_{\mathrm{TV}}(Q, \nu) = d^{\min}_{\mathrm{TV}}(Q, \nu) \quad \forall Q \in \mathbb{P}(\mathcal{X}).$$

N.b. En general, los modelos de entorno difieren a nivel apuestas.

Otros modelos

- a ILV, IPMM y otras extrapolaciones directas.
- **6** Funciones de distorsión dependientes de eventos:

$$d'_{\mathrm{PTV}}(Q,\nu) := \max_{\emptyset \neq A \subseteq \mathcal{X}} \frac{\nu(A) - Q(A)}{|A|}$$

$$d_{\infty}^{\min}(Q,\nu) := \min_{P \in \mathsf{core}(\nu)} d_{\infty}(Q,P) = \min_{P \in \mathsf{core}(\nu)} \max_{\emptyset \neq A \subseteq \mathcal{X}} \frac{|P(A) - Q(A)|}{|A|}$$

0

$$d_{\mathrm{TV}}^{\mathrm{máx}}(Q,\nu) := \max_{P \in \mathsf{core}(\nu)} d_{\mathrm{TV}}(P,Q).$$

d Distorsiones a nivel apuestas.

- Nociones previas
- 2 Distorsiones de juegos
- Otras aplicaciones
- 4 Conclusiones y líneas futuras

Definición (Valores probabilísticos)

$$S(\nu)(\{x\}) = \sum_{A|x \notin A} p_A^x \left(\nu(A \cup \{x\}) - \nu(A)\right),\,$$

donde para cada $x \in \mathcal{X}$, los valores $\{p_A^x : x \notin A\}$ dan lugar a una probabilidad sobre la familia de coaliciones en las que x no está incluido.

Definición (Valor de Shapley)

$$\Phi(\nu)(\{x\}) = \sum_{A \mid \neg A = A} \frac{|A|!(n - |A| - 1)!}{n!} (\nu(A \cup \{x\}) - \nu(A)).$$

Proposición

Sea $\{\mu_{\delta}[\cdot]\}_{\delta\geq 0}$ el ITVM y $\nu\in \underline{\mathbb{P}}(\mathcal{X})$. Si $\delta<\min_{x\in\mathcal{X}}\nu(\{x\})$ y S es un valor probabilístico tal que $p^x_\emptyset=p^x_{\{x\}^c}\ \forall x\in\mathcal{X}$, entonces $S(\nu)=S(\mu_{\delta}[\nu])$.

Definición (Strong and weak δ -core)

Dados ν , con core(ν) = \emptyset , $\delta > 0$, su strong δ -core y weak δ -core se definen, resp., como:

$$\mathit{core}^S_\delta(\nu) = \{P \in \mathbb{P}(\mathcal{X}) \mid P(A) \geq \nu(A) - \delta \quad \forall A \neq \emptyset, \mathcal{X}\},$$

Otras aplicaciones

$$core_{\delta}^{W}(\nu) = \{ P \in \mathbb{P}(\mathcal{X}) \mid P(A) \ge \nu(A) - \delta |A| \quad \forall A \ne \emptyset, \mathcal{X} \}.$$

Proposición

$$\operatorname{core} \bigl(\mu_{\delta}^{d'_{\operatorname{TV}}}[\nu] \bigr) = \operatorname{core}_{\delta}^{S}(\nu) \quad \text{y} \quad \operatorname{core} \bigl(\mu_{\delta}^{d'_{\operatorname{PTV}}}[\nu] \bigr) = \operatorname{core}_{\delta}^{W}(\nu) \quad \forall \delta \geq 0.$$

- Nociones previas
- 2 Distorsiones de juegos
- 3 Otras aplicaciones
- 4 Conclusiones y líneas futuras

Conclusiones y líneas futuras

- Extrapolación de modelos clásicos y otros resultados generales.
- Más propiedades de otros modelos $(d_{\mathrm{TV}}^{\mathrm{máx}}, d_{\infty}^{\mathrm{mín}}, d_{\mathrm{PTV}}' \ldots)$.
- Distorsiones a nivel apuestas.
- Otras conexiones con teoría de juegos.
- Medidas de disimilitud o conflicto entre modelos imprecisos.
- Reglas de agregación en situaciones de conflicto global.

Referencias

Grabisch, M.: Set functions, games and capacities in decision making. Springer (2016)

Miranda, E., Montes, I.: Centroids of the core of exact capacities: a comparative study. Annals of Operations Research 321, 409-449 (2023)

Otras aplicaciones

Montes, I., Miranda, E., Destercke, S.: Unifying neighbourhood and distortion models: Part I- New results on old models. International Journal of General Systems 49(6), 602-635 (2020)

Moral, S.: Discounting imprecise probabilities, In: Gil, E., Gil, E., Gil, J., Gil, M. (eds.) The Mathematics of the Uncertain, Studies in Systems, Decision and Control, vol. 142, Springer (2018)

Nieto-Barba, D., Miranda, E., Montes, I.: The total variation distance for comparing non-additive measures. Submitted (2025)

Nieto-Barba, D., Montes, I., Miranda, E.: The imprecise total variation model and its connections with game theory. Fuzzy Sets and Systems 517, 109448 (2025)

Shapley, L., Shubik, M.: Quasi-cores in a monetary economy with nonconvex preferences. Econometrica 34(4). 805-827 (1966)

Financiación

Proyecto PID2022-140585NB-I00 financiado por MICIU/AEI/10.13039/501100011033 y por FEDER, UE

Robustificación de medidas no aditivas mediante la variación total

Otras aplicaciones

David Nieto-Barba nietodavid@uniovi.es

Ignacio Montes imontes@uniovi.es

Enrique Miranda mirandaenrique@uniovi.es

XLI Congreso Nacional de Estadística e Investigación Operativa