```
stepy
      import fandas aspol
     animal.data = .pd. sead-cov('animal', cev')
  Step 1 a
        annul-data
              Sklearn. preprocessing import tabel Encoder
         (afel_eruder: Label Encodor()
      animal - data ["Label"] = label - ercodor. fit - transform (animal - data
      animal-data
      Categories = list (label encoder. Priesse - transform ([0,1])))
      Contegos Pes
    X = arrival_data. drop(['babel', 'species], axis=)
        = arinal_data.Label
   dom skleammodel. selection import train_test_split
   from sklearn bree Propert Beckstorthee classifier
    from steam. Wetice import occuracy since, classification-report
    X-toom, X-test, X-test, y-test = train-test-split (X, y, test-stree=0.33)
                                                        nardom state 20)
    clb = Decision Freeclossifter (Gillerion = lentopy), max depth =4,
                                                  random_State=flag
     Clb. for (x train, y train)
    y-pod = Cifipsodici (x-test)
      y-p-sold
   print ("Accuracy of brain." Ch sure (x train, y train))
    print (M. Accersacy of test: ", Uf. Store (x-test, y-tost))
   beent (, 10,)
     print (classifications separt (y test, y pred))
```

Scanned with CamScanner

Objectives

In this lab, you will build ID3 and CART Decision Tree to classify whether an animal is a Mammal or Reptile.

Learning Outcomes

After completing this lab, you will be able to

- Create and import training dataset and test dataset
- Create ID3 Decision Tree using Entropy metric
- Create CART Decision Tree using Gini metric
- Visualize graph using graphviz

Step1. [Create Dataset]

Create the following dataset using Excel and save it as CSV file.

Toothed	hair	breathes legs		species
TRUE	TRUE	TRUE TRUE		Mammal
TRUE	TRUE	TRUE	TRUE	Mammal
TRUE	FALSE	TRUE	FALSE	Reptile
FALSE	TRUE	TRUE	TRUE	Mammal
TRUE	TRUE	TRUE	TRUE	Mammal
TRUE	TRUE	TRUE	TRUE	Mammal
TRUE	FALSE	FALSE	FALSE	Reptile
TRUE	FALSE	TRUE	FALSE	Reptile
TRUE	TRUE	TRUE	TRUE Mammal	
FALSE	FALSE	TRUE	TRUE	Reptile

Step2. [Model building using ID3]

- Import your data set
- Create DT model using 'entropy' criterion
- Perform training and testing
- Print accuracy and classification report.
- Interpret your results
- Visualize your DT model using graphviz

Install necessary package for visualization. The following sample code will help you to understand visualization.

```
with open("tree1.dot", 'w') as f:
     f = tree.export graphviz(dtc_entropy1,
                               out_file=f,
                              max depth = 4
                               impurity = False,
                               feature_names = X.columns.values,
                               class names = ['Reptile', 'Mammal'],
                               filled= True )
```

Note: Once dot file is created, then you can visualize online at http://www.webgraphviz.com/. Open and copy dot file contents and paste it here. You can view your graph.

Step3. [Create a Test Set]

Create a testing csv file with 3 samples as below. (columns 2, 3, 4, 5 only)

from Acteans Pompost tree from stolearn. free impost export-graphuiz with open ("free dot", "w") as h: & = tree = export-graphviz(ch, out spile=1, max-depth=4, Pinpuritys talse, feature names 2) Arother Way to Wayalize? drom Iclean Propert Lee % metphology Entine tree. plot tree (CH) ustep: 3 Pmpost CSV fields = ['name', 'texthod', 'Hais', 'Breathes', 'tegs', 'species'] rous of CSV file
rous = ['taxAPL, 'FALSE', 'FALSE', 'FALSE', 'REPHIL!,

I Blue Waler, 'FALSE', 'TRUE', 'TRUE', ITRUE', Manual) data rows of car fle 0 2 'Cooldite', 'FRICE', 'FRICE', 'TRUE', 'PROPE', ' filename = 1 testing. CSU" 0 E. With gen (Sterame) () or file: 3 Writer = CSUO Writer File) Writer = worterout fields) 6 Water. Waterous (sows) test-Sct = pd. read-serv(1 testing.csv)) test- set test_ sot ["fabel"] = label=enoder. fit -transform (test set species) teste set.

FALSE	FALSE	TRUE	FALSE	Reptile
TALSE	TALSE		TRUE	Mammal
FALSE	TRUE	TRUE	TRUE	IVIaiiiiiai
			TDUE	Reptile
TRUE	FALSE	TRUE	TRUE	Reptile
	FALSE FALSE TRUE	FALSE TRUE	FALSE TRUE TRUE	FALSE TRUE TRUE TRUE

Step4. [Perform prediction]

Use your ID3 DT model that you created before and predict labels for this test set. Check your predictions. Correct?

Step5. [Build CART Decision Tree Model]

- Now, you are going to build a new CART decision tree using criterion='gini'.
- Train you model with full training data (No, train test split, this time)
- Predict samples for the test file
- Visualize your CART DT using graphviz

Step6. [Buid DT with Zoo dataset]

- Download full animal dataset at https://archive.ics.uci.edu/ml/datasets/Zoo
- Import, build model using ID3 and CART, train and test accuracy. Print classification report.
 Visualize your trees.

Stopy = feet. set . drop (['Noune', 'species', 'fabel'], ax is =) y-pred = et, predect (404) accurally - sore test-set-Label, y-pred) Step: 5 C16-1 = Decheron Free classified Criterion = "gra", mex-depth =1, random_State=12) CH- 1-47 (MY) Decision Tocaclassiper (may aboth = 4, random-state =42) ·cifit . predect (CAPA) with open ("free is, txt", 'w') as f: of = tree export - graphw92 (clb-1, out-file=fimax-depth-d),
Another way to visualize: impurity = False, Fagtinesinames from splearn impost tree DEPT OF DATA SCIENCE | BISHOP HEBER COLLEGE | TRICH DR.K.RAJKUMAR

step; 6 animal - 2 = pd. saad = cev (" 200. cev") animal 2, head () angual-2-shape arrial-2. Pobol) XI = animal-2.drop(['name', type']; axis=) y1 = animal=2. type X-tourn, X-test, y-train, y-test = train-test-9pt (X), y1, test-size 23 clf-2 = Decision reclassification = lentopy , max -depth=3, random state ztal) (1/2-12) (x +2003 n/ y - from) Clf-2. prodict(x-text) Cif-3 = Decretont ree classified Contexton = grigginar. dopth st. sardom.-State=42) CHD-3-49+ (x-train, y-train) of pred = CH-3. predPcd(X-test) N-bred from Statemen. preporting. Proposal standard Scalar Spale = Standardealer() S = Scale - St - Hoursform (x Jean) SSI = Sealo fransform(x-test) print ("model accuracy:", accumuy_score(y_test,y_pred)) paint ("train accusacy", ; Of: -3, scord ss, y-train)) print (" Test accuracy"; ", Clf-3, Scord Schry-test)) aremal_2. type. Value-Lounts (doopra= False)

with gen (" t-rees-txt", "w") as f:

d = Exce export-graphitz (ctt-grant-tile=f, max-depth =16,

maarty=talse,

print (classification-report (y-test,y-pool))

from Xloan Emport tree

trace, plat- trace (CH-3)

DEPT OF DATA SCIENCE | BISHOP HEBER COLLEGE | TRICHY