Esame di Progettazione di Sistemi Digitali

26 gennaio 2021 - canale MZ - prof.ssa Massini

Cognome _____ Nome ____ Matricola____

Esercizio 1 (5 punti)

Analizzare la rete sequenziale mostrata in figura. Stendere la tavola degli stati futuri e di uscita e disegnare l'automa (il diagramma di transizione degli stati).

Esercizio 2 (8 punti)

Progettare un circuito sequenziale con un ingresso x e due uscite z1 e z0. L'uscita z1 deve essere uguale a 1 se gli ultimi tre bit di ingresso contengono almeno due 1, mentre z0 deve essere 1 se gli ultimi 3 bit sono uguali. Non si considerino le sovrapposizioni.

Esempio x 01011111110000011

z1 0001001001000001

z0 0000001000001000

Esercizio 3 (1+2+1 punti)

- Rappresentare X = -92 e Y = 45 in Ca2, ognuno con il minimo numero di bit.
- Dopo aver calcolato il numero di bit necessario per rappresentare sia la somma X+Y che la differenza X-Y, portare X e Y alla lunghezza necessaria ed eseguire le due operazioni.
- Infine, verificare i risultati ottenuti.

Esercizio 4 (3 punti)

Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$\overline{a \oplus b} + \overline{(\overline{a}c + b)}(a + bc) = a + \overline{b}$$

Esercizio 5 (6 punti)

Si progetti la rete di interconnessione tale che:

- in R₄ viene trasferita la somma aritmetica tra R₁ e R₂ se il contenuto di R₄ non è multiplo di 4, la differenza tra R₁ e R₂ altrimenti;
- R₄ viene trasferito in R₅ se R₁ e R₂ sono entrambi pari, in R₆ se R₁ e R₂ sono entrambi dispari, sia in R₇ che in R₈ se R₁ e R₂ sono uno pari e uno dispari.

Tutti i trasferimenti sono abilitati se R₅ e R₆ sono discordi.

Esercizio 6 (1+2+1 punti)

Dati i numeri X=C240 e Y=4140 nella rappresentazione esadecimale, passare alla rappresentazione binaria e considerare le sequenze ottenute come valori nella rappresentazione in virgola mobile half precision IEEE 754.

- (a) Convertire X e Y in base 10
- (b) Eseguire l'operazione X+Y e rappresentare il risultato secondo lo standard IEEE 754
- (c) Rappresentare il risultato sia in decimale che in esadecimale.

A

Esame di Progettazione di Sistemi Digitali

26 gennaio 2021 - canale MZ - prof.ssa Massini

Cognome	Nome	Matricola

Esercizio 1 (5 punti)

Analizzare la rete sequenziale mostrata in figura. Stendere la tavola degli stati futuri e di uscita e disegnare l'automa (il diagramma di transizione degli stati).

Esercizio 2 (8 punti)

Progettare un circuito sequenziale con un ingresso x e due uscite z1 e z0. L'uscita z1 deve essere uguale a 1 se gli ultimi tre bit di ingresso rappresentano un numero negativo in Ca2, mentre z0 deve essere 1 se gli ultimi 3 bit contengono almeno due 0. Non si considerino le sovrapposizioni.

Esempio x 0101111111000001100

z1 000001001000000001

z0 001000000001001001

Esercizio 3 (1+2+1 punti)

- Rappresentare X = -42 e Y = 95 in Ca2, ognuno con il minimo numero di bit.
- Dopo aver calcolato il numero di bit necessario per rappresentare sia la somma X+Y che la differenza X-Y, portare X e Y alla lunghezza necessaria ed eseguire le due operazioni.
- Infine, verificare i risultati ottenuti.

Esercizio 4 (3 punti)

Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$\overline{(\bar{b}+c)(a+b\bar{c})} + (\bar{a}c+b)\overline{(a\oplus bc)} = \bar{a}+b$$

Esercizio 5 (6 punti)

Si progetti la rete di interconnessione tale che:

- in R_4 viene trasferito R_0 se R_4 e R_5 sono entrambi negativi, R_1 se R_4 e R_5 sono entrambi non negativi, R_2 se R_4 è negativo e R_5 non negativo, R_3 se R_4 è non negativo e R_5 negativo;
- R₄ viene trasferito in R₆ se R₄ è pari, in R₇ altrimenti;
- in R₅ viene trasferito il max tra R₆ e R₇.

Tutti i trasferimenti sono abilitati se R5 non è multiplo di 4.

Esercizio 6 (1+2+1 punti)

Dati i numeri X=C9B0 e Y=4890 nella rappresentazione esadecimale, passare alla rappresentazione binaria e considerare le sequenze ottenute come valori nella rappresentazione in virgola mobile half precision IEEE 754.

- (a) Convertire X e Y in base 10
- (b) Eseguire l'operazione X+Y e rappresentare il risultato secondo lo standard IEEE 754
- (c) Rappresentare il risultato sia in decimale, che in esadecimale.

R