Rappel de cours :

Baricentre

- Si $\sum_{i=1}^{n} m_i \overrightarrow{IA_i} = \overrightarrow{0}$ alors $I = Bari(A_i, m_i)$).
- Si le point I est le milieu d'un segment AB alors $k\overrightarrow{IA} + k\overrightarrow{IB} = \overrightarrow{0}$, donc I = Bari((A, k), (B, k)).
- Si $Bari((A, m_a), (A, n_a), ...) = Bari((A, m_a + n_a), ...).$
- Baricentre partiel. Si $F = Bari((B_i, n_i))$ alors $Bari((A_i, m_i), (B_i, n_i)) = Bari((A_i, m_i), (F, \sum n_i))$
- G est un centre de gravité des points A_i si $G = Bari((A_i, m))$.

Expression des transformations en complexe:

- s est une translation d'affixe a alors $s: z \mapsto z + a$
- s est une rotation de centre C d'affixe c et d'angle θ alors $s: z \mapsto c + e^{i\theta}(z-c)$
- s est la symétrie centrale de centre \mathcal{C} d'affixe c alors $s: z \mapsto -z + 2c$ (car c est le mileu de s(z)z)
- la réflexion d'axe $\mathcal{O}x$ est $s: z \mapsto \bar{z}$
- s est l'homothétie de centre \mathcal{C} d'affixe c et de rapport λ alors $s: z \mapsto c + \lambda(z-c)$

Classification des isométries (transformation qui conserve les longueurs)

Supposons que φ et ψ soit 2 isométries, alors

- si φ et ψ sont des déplacements (isométries qui conservent les angles) alors $\varphi \circ \psi$ est un déplacement
- si φ et ψ sont des antidéplacements (isométries qui inversent les angles) alors $\varphi \circ \psi$ est un déplacement
- si φ est un déplacement et ψ un antidéplacement alors $\varphi \circ \psi$ est un antidéplacement
- si φ est un antidéplacement et ψ un déplacement alors $\varphi \circ \psi$ est un antidéplacement

Question 1.a

Les distances AB et A'B' sont identiques, montrons qu'il existe une isométrie $\phi(z) = az + b$ qui transforme $A' = \phi(A)$ et $B' = \phi(B)$

- soit a = 1, donc la transformation ϕ est la translation $\overrightarrow{AA'}$.
- soit $a \neq 1$. Il existe un angle θ tel que $a = e^{i\theta}$. Pour que ϕ soit une rotation alors $\phi(z) = c + d(z c) = dz + c(1 d)$. Prenons, $d = a = e^{i\theta}$ et b = c(1 d) = c(1 a). Alors ϕ est la rotation de centre c et d'angle θ .

Les valeurs de a et b sont uniques donc la transformation ϕ est unique.

Question 1.b

La transformation ϕ est une translation lorsque $a=1=e^{i\theta}$. Donc $\theta=0$, par conséquent les droites AB et A'B' sont paralléles.

Question 1.c

On prend un repére orthonormé centré sur le point A'. L'isome'trie est compos'ee d'une rotation r pour aligner les deux segments et d'une translation t.

Soit φ l'angle orienté entre $(\vec(A'B'), \vec(AB))$, et la rotation de centre A' (ie O) d'angle φ , $r: z \mapsto e^{i\varphi}z$.

Soit t la translation de vecteur $\overrightarrow{A'A}$. Le vecteur $\overrightarrow{A'A}$ est d'affixe a car A' est l'origine du repère. Donc $t: z \mapsto z + a$.

La transformation $s = t \circ r = e^{i\varphi} + a$. Donc, l'angle θ de la rotation s est égal à φ .

Question 1.d

La rotation de centre c d'angle θ est égale à $c + e^i \theta(z - c) = e^{i\theta}z + c(e^{i\theta} - 1)$. La rotation $s = e^{i\varphi} + a$. Ce qui fait, $a = c(e^{i\theta} - 1)$ donc $c = \frac{a}{e^{i\theta} - 1}$.

Question 1.e

 ϕ est une isométrie donc AB=A'B', Soit $D=\phi(D)$, on a AD=AC et BD=BC car ϕ est une isométrie. De même, l'angle (AB,AC)=(A'B',A'D). D est le point tel que AD=AC et (AB,AC)=(A'B',A'D). Donc $\phi(C)=D=C'$.

Question 2.a

La transformation est une translation.

Question 2.b

Question 3

Soit s la réflexion d'axe \mathbb{D} . La rotation ϕ de centre O et d'angle $-\theta$ de la droite \mathbb{D} est l'axe des abscisses. La réflexion sur l'axe des abscisses, ϕ_a d'un point A est le conjugué du point A, $\phi_a(A) = \overline{(A)}$. Donc en utilisant le principe de conjugaison on a

$$\phi_a = \phi \circ s \circ \phi^{-1}$$
$$\phi^{-1} \circ \phi_a \circ \phi = s$$
$$s = e^{i\theta} \cdot (e^{-i\theta}z0)$$

Question 4

QED