

3 Lab: Modelação do domínio com classes

3.1 Enquadramento

Objetivos de aprendizagem

- Identificar conceitos/classes na descrição de um problema.
- Caraterizar as estruturas de dados de um problema como classes e associações.
- Utilizar associações "simples", agregações, composições e generalizações.

Preparação

— Informação tutorial: "What is Class Diagram?"

3.2 Análise por objetos de um domínio

No modelo do domínio estamos à procura de "categorias de coisas", ou conceitos, que são representadas como classes. Para cada categoria vamos encontrar alguns atributos (dados que devem ser memorizados no sistema de informação). Nesta fase, o analista não está preocupado em representar métodos/funções nas classes (como é próprio da programação).

Os conceitos estão relacionados entre si, formando uma rede de conceitos, ligados por associações. O Diagrama de Classes fornece os elementos de modelação para construir esse mapa, seguindo a técnica de análise por objetos.

3.2.1 Conceitos associados a um concurso de programação

- a) Faça uma leitura interpretativa do diagrama junto (explique o diagrama por palavras suas. E.g. "Cada Equipa tem um Professor responsável."
- b) Considerando o modelo representado no diagrama, explique se as seguintes afirmações têm ou não suporte no modelo, isto é, se são V/F face ao que está no diagrama.
 - a) Todas as Equipas precisam de indicar um Professor responsável.
 - b) Podem existir Professores que não coordenam nenhuma Equipa.
 - c) A Entrega (submissão) é feita por vários Alunos.
 - d) Uma Submissão é avaliada por um Membro do CC.
 - e) Uma Equipa poder ser composta por alunos de várias Instituições (i.e., a Equipa não é de uma Instituição).
 - f) Um Membro do CC só pode avaliar entregas resolvidas com linguagens de programação para as quais é especialista.
 - g) As Entregas de uma Equipa são sempre feitas pelo capitão da equipa.
 - h) As Entregas de uma Equipa relativa a um Desafio podem ser avaliadas por Docentes diferentes.

Modelo de classes relativo à organização de concursos de programação; CC: Conselho científico das provas. [In: Borges et al, "Modelação de Dados em UML: uma abordagem por problemas."]

3.2.2 Conceitos associados ao funcionamento da Biblioteca

Pesquise os seguintes livros no catálogo da Biblioteca da UA:

- "UML Distilled", de Martin Fowler (3a edição).
- "Use case driven object modeling with UML", de D. Rosemberg (2007).

Crie um diagrama UML para mapear os **conceitos do domínio** relativo ao funcionamento da biblioteca¹, com base na informação consultada e o seguinte conhecimento da área do problema:

- a) as obras podem ter vários autores. Para desambiguar os autores, usa-se o nome e o ano de nascimento.
- b) os utilizadores pesquisam obras por autor, título, ano, ou uma combinação desses elementos.
- c) Um livro pode ser classificado em diferentes tópicos (ou descritores).
- d) para cada obra, podem existir vários exemplares, com cota e código de barras únicos, que podem ser levantados pelos utilizadores, em regime de empréstimo.
- e) existem multas para devoluções tardias, mas nem todos os utilizadores têm o mesmo

¹ Neste exercício, pretende-se esboçar o mapa de conceitos. O mais importante é identificar os conceitos e as associações. Por isso, intencionalmente, pode-se omitir a especificação detalhada das classes (i.e.: lista complete de atributos, tipos de dados,...).

- tempo para reter os livros em empréstimo domiciliário. Há que distinguir entre utilizadores que são alunos, professores ou utilizadores externos. O tempo de empréstimo normal é de 15, 90 e 30 dias respetivamente. Todos os utilizadores têm um número mecanográfico alfanumérico.
- f) Para inscrever um utilizador externo, é necessário confirmar a sua identidade (contra a apresentação do cartão de cidadão) e a morada (com a apresentação de uma fatura, titulada ao utilizador, do fornecimento de eletricidade, água ou serviço similar).
- g) Os utilizadores podem também pedir a reserva de obras para utilização numa data futura (sendo atribuído o primeiro exemplar disponível).
- h) Existem vários polos (e.g.: Biblioteca Campus Santiago, Mediateca, Biblioteca ESTGA,...) nos quais se encontram os exemplares. Cada polo tem o seu próprio horário de funcionamento.

3.2.3

Considerando as necessidades de informação associadas à gestão de projetos de desenvolvimento de software:

- a) Os projetos têm uma duração prevista, com data de início e de fim bem definidas.
- b) O projeto tem um *Project Leader* atribuído (que é um funcionário) e um departamento responsável. O Eng. Casimiro está responsável pelo projeto "Stock-RFID+" dada a sua especialização em sistemas embebidos.
- c) Cada projeto é organizado em várias tarefas (ou atividades), com uma duração prevista definida. As tarefas são sempre referentes a um projeto, no qual estão definidas.
- d) Um projeto vai ter uma equipa de funcionários atribuída, entre *developers*, especialistas de interação e especialistas de DevOps. No entanto, os funcionários podem estar associados a um projeto por um tempo inferior à sua duração, sendo importante saber o período em que cada um trabalhou nesse.
- e) Também é necessário saber quem esteve envolvido na realização de cada tarefa (uma tarefa pode envolver diferentes pessoas).
- f) Os projetos externos (ao contrário dos projetos internos), têm um cliente bem definido.
- g) Uma tarefa tem de ter uma descrição clara, para todos a entender de forma objetiva. Para além disso, tem uma data de início, de fim, e uma duração esperada. Uma tarefa pode ser dividida em outras tarefas, que a compõe, se ajudar no planeamento e monitorização do projeto.
- h) No contexto de uma tarefa, há lugar a vários registos de intervenção, i.e., um *log* das atualizações/ações que cada funcionário fez no contexto daquela tarefa (e.g.: refinar modelo de casos de uso, versão inicial do UI,...). Em cada intervenção, o funcionário explica o que foi feito e o nr de horas gastas.
- i) As tarefas evoluem de acordo com estados bem definidos: "Em aberto", "Em progresso", "Concluída", ou "Cancelada".
- j) O Eng. Casimiro está a analisar o desempenho da equipa no projeto "Stock-RFID+"; concluiu que os tempos médios, para cada estado, foram: "Em aberto", 2 dias; "Em progresso", 4.5 dias. 60% das tarefas encontram-se concluídas.

Construa um modelo para representar o mapa de informação que se depreende do texto. Concretize tipos de dados para os atributos. Para além das associações, procure oportunidades para usar: enumerados, atributos derivados, operações (se relevantes para a fase de análise).

3.3 Modelo do domínio da encomenda online de comida

Este "atividade-projeto" deve dar origem a um relatório e ser submetido no Moodle. [template disponível no Moodle]

3.3.1

Considere a área das encomendas de comida online. Sugere-se, para o efeito, focar a análise num serviço concreto, possivelmente um que já lhe seja familiar.

Desenvolva um modelo do domínio para o caso de estudo que escolheu. O seu modelo do domínio deve ter a capacidade expressiva suficiente para permitir captar/memorizar a informação necessária aos processos de encomenda e entrega de comida.

Explore o seu caso de estudo e procure desenvolver **um mapa completo e representativo da informação necessária**. Veja, por exemplo, em um ou mais sites a informação envolvida.

(Considere as técnicas exploratórias apresentadas na secção 3.4 para fazer o levantamento de conceitos candidatos.)

Analise o seu modelo. Certifique-se que a capacidade expressiva do modelo é suficiente para responder aos seguintes requisitos:

- a) Os clientes pesquisam online a oferta de menus/opções e compõem o seu pedido.
- b) A oferta pode envolver diferentes restaurantes parceiros, que é possível pesquisar de forma integrada. (Embora um pedido concreto deva ser confecionado por um único restaurante.)
- c) O pedido (encomenda) origina um pagamento e uma entrega que é assegurada por um estafeta.
- d) Os clientes podem seguir o progresso do seu pedido, desde que foi criado até que seja satisfeito.
- e) Os menus oferecidos pelos restaurantes parceiros mudam; a própria lista de restaurantes parceiros muda.
- f) O preço dos menus pode mudar de acordo com promoções limitadas no tempo.
- g) Os responsáveis [da plataforma] consultam a evolução diária das encomendas, quer globalmente, quer por código postal.

3.3.2

Verifique se, no seu modelo, há situações em que seja oportuno mostrar a evolução do estado associado a um conceito, i.e., se existem entidades com um ciclo de vida associado. Modele, para essas entidades, a máquina de estados associada (com um Diagrama de estados).

No caso do problema dos cheques-dentista, abordado em outros exemplos, há um ciclo de vida associado: começa por ser Emitido; depois, entre Em Utilização, em várias consultas; depois, evolui ara Utilizado (na última consulta); depois, fica Pendente para pagamento (ao dentista), e a seguir Pago. Mas, depois de Emitido, também pode transitar para o estado Cancelado.

3.4 Material suplementar

<u>Larman</u> refere duas estratégias para pesquisar conceitos (objetos do domínio): seguir uma lista de categorias; procurar nomes na descrição do problema (e.g.: na narrativa dos casos de utilização).

Pesquisa de conceitos numa lista de categorias

Categoria (de classes conceptuais)	Exemplos
Transacções comerciais	

Orientação: Estas são essenciais (envolvem dinheiro), por isso comece com as transacções.	Sale, Payment Reservation
As entradas no registo de uma transação ("linhas" da transação)	SalesLineItem
Orientação: As transações vêm frequentemente com itens relacionados, por isso considere estes a seguir.	
Produto ou serviço relacionado transacionado	Item
Orientação: As transações comportam "coisas" individuais (um produto ou serviço). Considere-as a seguir.	Flight, Seat, Meal
 onde é que a transação é registada? Orientação: Importante. 	Register, Ledger FlightManifest
 papéis das pessoas ou organizações relacionadas com a transação; atores no caso de utilização 	Cashier, Customer, Store Passenger, Airline
Orientação: Normalmente precisamos de ter conhecimento sobre as partes envolvidas numa transação.	
local da transação; ponto de serviço	Store
	Airport, Plane, Seat
 eventos que merecem destaque, muitas vezes com uma hora ou lugar que precisamos de guardar 	Sale, Payment Flight
objetos físicos	Item, Register
Orientação: É especialmente relevante na criação de software de controlo de dispositivos, ou simulações.	Airplane
contentores de coisas (físicas ou informação)	Store, Bin Airplane
coisas dentro de um "contentor"	Item Passenger
registos contabilísticos, de trabalho, contratos, matéria jurídica	Receipt, Ledger MaintenanceLog
instrumentos financeiros	Check, LineOfCredit TicketCredit
 horários, manuais, documentos que são regularmente referidos para a realização de trabalhos 	DailyPriceChangeList RepairSchedule

Pesquisa de conceitos por análise textual

Outra técnica útil (devido à sua simplicidade) é a análise linguística: identificar os substantivos nas descrições textuais de um domínio e considerá-los como classes conceptuais ou atributos candidatos

Alguns destes substantivos são classes conceptuais candidatas, alguns podem referir-se a classes conceptuais que são ignoradas nesta iteração, e alguns podem ser simplesmente atributos de classes.

Um ponto fraco desta abordagem é a imprecisão da linguagem natural; substantivos diferentes podem representar a mesma classe conceptual ou atributo, entre outras ambiguidades.

Fluxo Básico:

- 1. O <u>Cliente</u> chega a uma <u>caixa POS</u> com <u>artigos</u> para comprar.
- 2. Caixa inicia uma nova venda.
- 3. Caixa introduz o identificador do artigo.
- 4. O sistema regista a <u>linha de venda</u> e apresenta a <u>descrição do item</u>, o <u>preço</u>, e o <u>total</u> provisório. O preço é calculado a partir de um conjunto de regras de preços.

. . .