TIØ4317 Empirical and Quantitative Methods in Finance Exercise #6 – Spring 2016

Sandaker, Kristian

krisanda@stud.ntnu.no

March 3, 2016

Problem 1

a) In order to take a short position, the investor must place a certain amount of funds c in a specific collateral bank account that has the risk-free rate. The investor's short positions will have a total weighting of max. γc , with the parameter $\gamma \geq 1$. If the investor liquidates the short position, the collateral is freed and returned to the investor.

We employ **Model 3.2.4** Mean-variance efficient portfolios with trading size limits (Zenios, p. 80), and do relevant adjustments to find a proper optimization model for the problem.

Key figure	Name	Set relationship	Description
Sets:	$l \in L \\ i \in N$		The set of scenarios, indexed with l The set of risky assets, indexed with i
Parameters:	$C_0 \ge 0$ r_f $\xi_{il} \in \mathbf{\Xi}$ $\gamma \ge 1$ $\sigma_{ij}^2 \in \mathbf{\Sigma}$ $p_l : 1^T \mathbf{p} = 1$ μ λ	$\forall (i,j) \in N \times N$	The minimum amount of accepted collateral The risk-free rate Return of asset i in scenario l The shorting coefficient The covariance matrix of assets The probability of scenario l The target return for the portfolio Objective function weighting of variance to return
Variables:	$x_i \in \mathbf{x}$ x_i^+, x_i^- $x_i^+ - x_i^- = x_i$	$\forall i \in N$	Weighting of asset i in the portfolio
	$x_i^+ - x_i^- = x_i$ c $\zeta \in \mathbb{B}$	$\forall i \in N$	Variables for modeling short positions Weighting on collateral Decision variable of whether or not to use collateral

Now, following the formulation as in Model 3.2.4, we have the following optimization problem:

minimize
$$\lambda \mathbf{x}^T \mathbf{\Sigma} \mathbf{x} - (1 - \lambda) [\mathbf{p}^T \mathbf{\Xi}^T \mathbf{x} + cr_f]$$
 (1)

subject to
$$\xi_{\mathbf{l}}^T \mathbf{x} + c r_f \ge \mu \qquad \forall l \in L$$
 (2)

$$x_i = x_i^+ - x_i^- \qquad \forall i \in N \tag{3}$$

$$\sum_{i \in N} x_i + c = 1 \tag{4}$$

$$c \le \zeta \tag{5}$$

$$c \ge C_0 \zeta \tag{6}$$

$$\sum_{i \in N} x_i^- \le \gamma c \tag{7}$$

$$x_i^+, x_i^- \ge 0$$
 $\forall i \in \mathbb{N}$ (8)
 $\zeta \in \{0, 1\} \equiv \mathbb{B}$ (9)

$$\zeta \in \{0, 1\} \equiv \mathbb{B} \tag{9}$$

Finally, we also note the expected return weighting in the objective's similarity to Zenios' model:

$$(1 - \lambda)\mathbf{p}^T \mathbf{\Xi}^T \mathbf{x} = (1 - \lambda) \underbrace{\sum_{l \in L} p_l \sum_{i \in N} \xi_{il} x_i}_{R(\mathbf{x}:\bar{\mathbf{r}})}$$
(10)

b) We now formulate the model in case of constant and proportional transaction costs. In particular, for every asset $i \in N$, we model two cost regimes – as by Zenios (p. 81): Let $x_i^{0\{+,-\}}$ denote transactions up to \bar{x}_i , and $x_i^{1\{+,-\}}$ transactions above this threshold. Thus the total allocation of the i'th asset will be $x_i = x_i^{0+} + x_i^{0-} + x_i^{1+} + x_i^{1-}$. Let $z_i \in \mathbb{B}$ be as follows:

$$z_i = \begin{cases} 1 & \text{if asset } i \text{ is included in the portfolio with fixed charge } c_0 \\ 0 & \text{otherwise} \end{cases}$$

Making the necessary adjustments, our model will be as follows:

$$\underset{\{\mathbf{x},c\}}{\text{minimize}} \qquad \lambda \mathbf{x}^T \mathbf{\Sigma} \mathbf{x} - (1-\lambda) \bigg[\bigg\{ \sum_{l \in L} p_l \sum_{i \in N} \big[\bar{\xi}_{il} (x_i^{0+} - x_i^{0-}) \\$$

$$-c_0 z_i + (\bar{\xi}_{il} - c_1)(x_i^{1+} - x_i^{1-})] + cr_f$$
(11)

subject to
$$x_i^{0+} + x_i^{0-} + x_i^{1+} + x_i^{1-} = x_i$$
 $\forall i \in \mathbb{N}$ (12)

$$\bar{x}_i z_i \ge x_i^{0+} \ge 0 \qquad \forall i \in N \tag{13}$$

$$\bar{x}_i z_i \ge x_i^{0-} \ge 0 \qquad \forall i \in N \tag{14}$$

$$z_i \ge x_i^{1+} \ge 0 \qquad \forall i \in N \tag{15}$$

$$z_i \ge x_i^{1-} \ge 0 \qquad \forall i \in N \tag{16}$$

$$\sum_{i \in N} x_i + c = 1 \tag{17}$$

$$c \le \zeta \tag{18}$$

$$c \ge C_0 \zeta \tag{19}$$

$$\sum_{i \in N} (x_i^{0-} + x_i^{1-}) \le \gamma c \tag{20}$$

$$x_i^{0+}, x_i^{0-}, x_i^{1+}, x_i^{1-} \ge 0$$
 $\forall i \in \mathbb{N}$ (21)

$$\zeta \in \{0, 1\} \equiv \mathbb{B} \tag{22}$$

$$z_i \in \mathbb{B}$$
 $\forall i \in N$ (23)

Problem 2

Historic VaR of portfolios: We select to arbitrary assets A_1 and A_2 from the data set of index assets. Let P_1 be the portfolio consisting of 100% of A_1 , and P_2 be the portfolio consisting 100% of A_2 . We now consider the portfolio $\lambda P_1 + (1 - \lambda)P_2$, and calculate and draw the dependence of 95% VaR of this particular portfolio.

Recall the generic Value-at-Risk (VaR) optimization problem:

$$VaR(x;\alpha) \triangleq \min\{\zeta \in \mathbb{R} : \Psi(x,\zeta) \ge \alpha\},\tag{24}$$

where

$$\Psi(x,\zeta) \triangleq \sum_{\{l \in \Omega \mid L(x,P_l) \le \zeta\}} p^l$$

$$L(x;P_l) \triangleq V_0 - V(x;P_l) \equiv V_0 - \mathbf{x}^T \mathbf{P}_l.$$
(25)

$$L(x; P_l) \triangleq V_0 - V(x; P_l) \equiv V_0 - \mathbf{x}^T \mathbf{P}_l.$$
(26)

Now, to limit the set $\{l \in \Omega \mid L(x, P_l) \leq \zeta\}$ to allow only for a (sub)set of valid states s.t. $l \subseteq \Omega$, we introduce binary variables $z_l \in \mathbb{B}, \ \forall l \in \Omega$. Consequently, the VaR problem takes shape as the following linear program:

$$\underset{\{\zeta, \mathbf{z}\}}{\text{minimize}} \qquad \qquad \zeta \tag{27}$$

subject to
$$\sum_{l \in \Omega} p_l z_l \ge \alpha \tag{28}$$

$$\zeta - Mz_l \ge V_0 - \sum_{i \in N} x_i - M \qquad \forall l \in \Omega$$
 (29)

$$M = V_0 + \sum_{i \in N} \min\{p_{il} \ \forall l \in \Omega\}$$
(30)

$$x_1 = \lambda \in [0, 1] \tag{31}$$

$$x_2 = 1 - \lambda \in [0, 1] \tag{32}$$

$$z_l \in \mathbb{B}$$
 $\forall l \in \Omega,$ (33)

that is, holdings x_1, x_2 , of assets A_1, A_2 , respectively, are parameterized by λ . Note that $p_{il} \in \mathbf{P}$, i.e. the price matrix for each asset i given state l; whereas $p_l \in p$ is the probability vector over states $l \in \Omega$.

We simulate using the attached **R** code as by Listing 1 Value-at-Risk simulation code in R. Computing log returns for the two assets, MSDUUS.Index, MSEUSAG.Index, respectively, we sample an n=100 day vector of these log returns and scale them up with the initial portfolio value $V_0=1$. We do this $|\Omega| \equiv L = 100$ times, this representing our scenario set. Then the above VaR model is carried through. This simulation is repeated 5 times, yielding a relative VaR ζ as a function of the weighting λ by the respective assets. The dependence line for each simulation is as visualized in Figure 1 Plot of sample simulations – Relative Value-at-Risk ζ versus asset weighting λ .

Figure 1: Plot of sample simulations – Relative Value-at-Risk ζ versus asset weighting λ

Listing 1: Value-at-Risk simulation code in R

```
library("Rsolnp")
   library("lpSolve")
   library("fitdistrplus")
   # Set correct path in R
   setwd("/Users/Kristian/Kristian/Dropbox/Studier/8. semester/TIO4317 Empirisk
       finans/Assignments/Assignment 6")
   # Load the data set of stock and bond indices
   df <- read.table("StocksBonds.csv", header=TRUE, sep=",")</pre>
10
   ### PARAMETRIC INPUT
11
   assetNames <- c("MSDUUS.Index", "MSEUSAG.Index") # Assets to be compared
12
   alpha <- 0.95 # Alpha level VaR
13
   n_days <- 100 # Number of days to sample
14
   L <- 100 \mbox{\tt\#} Number of scenarios
15
   \mbox{n\_optimizations} <- 6 \mbox{\#} Number of optimizations and plots
   ### Model
```

```
20 P <- cbind(df[assetNames]) # Absolute price vector</pre>
21 r <- log(P[2:L,]) - log(P[1:(L-1),]) # Log returns
  r[mapply(is.infinite, r)] <- 0 # Fix problematic values
23
# Do several optimizations
  pdf(file = paste(getwd(), "/plots/var_plot_", n_optimizations, ".pdf", sep=""))
  par(mfcol=c(n_optimizations/2,2)) # Plotting grid
  par(mar=c(4,5,4,5))
  par(cex=0.5)
29
  for (k in 1:n_optimizations) {
30
31
    # Sample n-days log returns, L times, scale up
32
    R \leftarrow matrix(0, L, 2)
33
34
    for (i in 1:L) {
     r_1 <- sample(r[,1], n_days, replace = TRUE)</pre>
35
36
      r_2 \leftarrow sample(r[,2], n_days, replace = TRUE)
     R[i,] \leftarrow cbind(exp(sum(r_1)), exp(sum(r_2)))
37
38
39
40
     # Lambda linspace, [0,1]
41
    Lambda \leftarrow seq(0,1, length = 100)
42
43
44
     # Set up the initial decision variable vector
45
     objective.in \leftarrow t(t(c(1, rep(0, L))))
    binary.vec <- t(seq(2,(L+1)))
     # Initialize V_0
48
    V_0 <- 1
49
    # Calculating the correct M
51
    M \leftarrow V_0 + V_0 * sum(apply(R, 2, min))
52
53
54
     # Set up the coefficient matrix
55
    const.mat \leftarrow t(c(0, rep(1/L, L)))
    for (l in 1:L) {
56
      constrVec \leftarrow t(c(1, rep(0, L)))
57
      constrVec[1+1] <- -M</pre>
58
      const.mat <- rbind(const.mat, constrVec)</pre>
59
60
61
     # Setting up the equality vector
62
    const.dir <- t(rep(">=", (L+1)))
63
64
     # Optimization loop for every lambda
65
     Zeta <- t(rep(0, length(Lambda)))</pre>
69
    for (i in 1:length(Lambda)) {
      lambda <- Lambda[i]</pre>
70
      # Set up the constant RHS
71
      const.rhs <- t(alpha)</pre>
72
      for (l in 1:L) {
73
        const.rhs <- rbind(const.rhs, t(V_0 - M</pre>
74
75
           - lambda*V_0*R[1,1] - (1-lambda)*V_0*R[1,2]))
76
      zeta <- lp(direction = "min", objective.in = objective.in, const.mat =</pre>
          const.mat,
         const.dir = const.dir, const.rhs = const.rhs, binary.vec =
             binary.vec)$solution[1]
      Zeta[i] <- zeta
```

19

References

[1] Alexei Gaivoronski, Georg Pflug (2004). Value-at-Risk in Portfolio Optimization: Properties and Computational Approach. Journal of Risk, Vol. 7, No. 2, pp. 1-31, Winter 2004-2005. From http://homepage.univie.ac.at/georg.pflug/science/technicalreports/GaivoronskiPflugNew.pdf.