Lagrangian Duality and Convex Optimization

David Rosenberg

New York University

February 7, 2016

Why Convex Optimization?

- Historically:
 - Linear programs (linear objectives & constraints) were the focus
 - Nonlinear programs: some easy, some hard
- Today:
 - Main distinction is between **convex** and **non-convex** problems
 - Convex problems are the ones we know how to solve efficiently
- Many techniques that are well understood for convex problems are applied to non-convex problems
 - e.g. SGD is routinely applied to neural networks

Your Reference for Convex Optimization

- Boyd and Vandenberghe (2004)
 - Very clearly written, but has a ton of detail for a first pass.
 - See my "Extreme Abridgement of Boyd and Vandenberghe".

Notation from Boyd and Vandenberghe

- $f: \mathbb{R}^p \to \mathbb{R}^q$ to mean that f maps from some *subset* of \mathbb{R}^p
 - namely **dom** $f \subset \mathbb{R}^p$, where **dom** f is the domain of f

Convex Sets

Definition

A set C is **convex** if for any $x_1, x_2 \in C$ and any θ with $0 \leqslant \theta \leqslant 1$ we have

$$\theta x_1 + (1-\theta)x_2 \in C.$$

Convex and Concave Functions

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if **dom** f is a convex set and if for all $x, y \in \mathbf{dom}\ f$, and $0 \leqslant \theta \leqslant 1$, we have

$$f(\theta x + (1 - \theta)y) \leqslant \theta f(x) + (1 - \theta)f(y).$$

Examples of Convex Functions on R

Examples

- $x \mapsto ax + b$ is both convex and concave on Rfor all $a, b \in \mathbb{R}$.
- $x \mapsto |x|^p$ for $p \geqslant 1$ is convex on R
- $x \mapsto e^{ax}$ is convex on **R** for all $a \in \mathbf{R}$

Maximum of Convex Functions is Convex

Theorem

If $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex, then their pointwise maximum

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}\$$

is also convex with domain $dom\ f = dom\ f_1 \cap \cdots \cap dom\ f_m$.

This result extends to sup over arbitrary [infinite] sets of functions.

Proof.

(For m = 2.) Fix an $0 \le \theta \le 1$ and $x, y \in \operatorname{dom} f$. Then

$$\begin{array}{lcl} f(\theta x + (1 - \theta) \, y) & = & \max\{f_1(\theta x + (1 - \theta) \, y), f_2(\theta x + (1 - \theta) \, y)\} \\ & \leqslant & \max\{\theta f_1(x) + (1 - \theta) \, f_1(y), \theta f_2(x) + (1 - \theta) \, f_2(y)\} \\ & \leqslant & \max\{\theta f_1(x), \theta f_2(x)\} + \max\{(1 - \theta) \, f_1(y), (1 - \theta) \, f_2(y)\} \\ & = & \theta f(x) + (1 - \theta) f(y) \end{array}$$

Convex Functions and Optimization

Definition

A function f is **strictly convex** if the line segment connecting any two points on the graph of f lies **strictly** above the graph (excluding the endpoints).

Consequences for optimization:

- convex: if there is a local minimum, then it is a global minimum
- strictly convex: if there is a local minimum, then it is the unique global minumum

General Optimization Problem: Standard Form

General Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

where $x \in \mathbb{R}^n$ are the **optimization variables** and f_0 is the **objective** function.

Assume domain $\mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \ f_i \cap \bigcap_{i=1}^{p} \mathbf{dom} \ h_i$ is nonempty.

General Optimization Problem: More Terminology

- The set of points satisfying the constraints is called the feasible set.
- A point x in the feasible set is called a **feasible point**.
- If x is feasible and $f_i(x) = 0$,
 - then we say the inequality constraint $f_i(x) \leq 0$ is **active** at x.
- The **optimal value** p^* of the problem is defined as

$$p^* = \inf\{f_0(x) \mid f_i(x) \leq 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}.$$

• x^* is an **optimal point** (or a solution to the problem) if x^* is feasible and $f(x^*) = p^*$.

The Lagrangian

Recall the general optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

Definition

The Lagrangian for the general optimization problem is

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x),$$

- λ_i 's and ν 's are called Lagrange multipliers
- \bullet λ and ν also called the **dual variables** .

The Lagrangian Encodes the Objective and Constraints

Supremum over Lagrangian gives back objective and constraints:

$$\sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu) = \sup_{\lambda \succeq 0, \nu} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x), \right)$$

$$= \begin{cases} f_0(x) & f_i(x) \leqslant 0 \text{ and } h_i(x) = 0, \text{ all } i \\ \infty & \text{otherwise.} \end{cases}$$

• Equivalent primal form of optimization problem:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

The Primal and the Dual

• Original optimization problem in **primal form**:

$$p^* = \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

• The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succ 0, \nu} \inf_{x} L(x, \lambda, \nu)$$

• We will show weak duality: $p^* \ge d^*$ for any optimization problem

Weak Max-Min Inequality

Theorem

For any $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, $W \subseteq \mathbb{R}^n$, or $Z \subseteq \mathbb{R}^m$, we have

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \leqslant \inf_{w \in W} \sup_{z \in Z} f(w, z).$$

Proof.

For any $w_0 \in W$ and $z_0 \in Z$, we clearly have

$$\inf_{w \in W} f(w, z_0) \leqslant f(w_0, z_0) \leqslant \sup_{z \in Z} f(w_0, z).$$

Since this is true for all w_0 and z_0 , we must also have

$$\sup_{z_0 \in Z} \inf_{w \in W} f(w, z_0) \leqslant \inf_{w_0 \in W} \sup_{z \in Z} f(w_0, z).$$

Weak Duality

 For any optimization problem (not just convex), weak max-min inequality implies weak duality:

$$\begin{split} p^* &= \inf_{x} \sup_{\lambda \geqslant 0, \nu} \left[f_0(x) + \sum_{l=1}^m \lambda_i f_l(x) + \sum_{i=1}^p \nu_i h_i(x) \right] \\ &\geqslant \sup_{\lambda \geqslant 0, \nu} \inf_{x} \left[f_0(x) + \sum_{l=1}^m \lambda_i f_l(x) + \sum_{i=1}^p \nu_i h_i(x) \right] = d^* \end{split}$$

- The difference $p^* d^*$ is called the **duality gap**.
- For *convex* problems, we often have **strong duality**: $p^* = d^*$.

The Lagrange Dual Function

The Lagrangian dual problem:

$$d^* = \sup_{\lambda \succeq 0, \nu} \quad \underbrace{\inf_{\underline{x}} L(x, \lambda, \nu)}_{\text{Lagrange dual function}}$$

Definition

The Lagrange dual function (or just dual function) is

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right).$$

• The dual function may take on the value $-\infty$ (e.g. $f_0(x) = x$).

The Lagrange Dual Problem

In terms of Lagrange dual function, we can write weak duality as

$$p^* \geqslant \sup_{\lambda \geqslant 0, \nu} g(\lambda, \nu) = d^*$$

• So for any (λ, ν) with $\lambda \geqslant 0$, Lagrange dual function gives a lower bound on optimal solution:

$$g(\lambda, \nu) \leqslant p^*$$

The Lagrange Dual Problem

The Lagrange dual problem is a search for best lower bound:

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$.

- (λ, ν) dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$.
- (λ^*, ν^*) are **dual optimal** or **optimal Lagrange multipliers** if they are optimal for the Lagrange dual problem.
- Lagrange dual problem often easier to solve (simpler constraints).
- d^* can be used as stopping criterion for primal optimization.
- Dual can reveal hidden structure in the solution.

Convex Optimization Problem: Standard Form

Convex Optimization Problem: Standard Form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $a_i^T x = b_i, i = 1,...p$

where f_0, \ldots, f_m are convex functions.

Note: Equality constraints are now linear. Why?

Strong Duality for Convex Problems

- For a convex optimization problems, we usually have strong duality, but not always.
 - For example:

minimize
$$e^{-x}$$

subject to $x^2/y \le 0$
 $y > 0$

• The additional conditions needed are called constraint qualifications.

Slater's Constraint Qualifications for Strong Duality

- Sufficient conditions for strong duality in a convex problem.
- Roughly: the problem must be strictly feasible.
- Qualifications when problem domain $\mathcal{D} \subset \mathbb{R}^n$ is an open set:
 - $\exists x$ such that Ax = b and $f_i(x) < 0$ for i = 1, ..., m
 - For any affine inequality constraints, $f_i(x) \leq 0$ is sufficient
- Otherwise, x must be in the "relative interior" of \mathcal{D}
 - See notes, or BV Section 5.2.3, p. 226.

Complementary Slackness

- Consider a general optimization problem (i.e. not necessarily convex).
- If we have strong duality, we get an interesting relationship between
 - ullet the optimal Lagrange multiplier λ_i and
 - the *i*th constraint at the optimum: $f_i(x^*)$
- Relationship is called "complementary slackness":

$$\lambda_i^* f_i(x^*) = 0$$

 Lagrange multiplier is zero unless the constraint is active at the optimum.

Complementary Slackness Proof

- Assume strong duality: $p^* = d^*$ in a general optimization problem
- Let x^* be primal optimal and (λ^*, ν^*) be dual optimal. Then:

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leqslant f_{0}(x^{*}) + \sum_{i=1}^{m} \underbrace{\lambda_{i}^{*} f_{i}(x^{*})}_{\leqslant 0} + \sum_{i=1}^{p} \underbrace{\nu_{i}^{*} h_{i}(x^{*})}_{=0}$$

$$\leqslant f_{0}(x^{*}).$$

Each term in sum $\sum_{i=1}^{\infty} \lambda_i^* f_i(x^*)$ must actually be 0. That is

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

This condition is known as complementary slackness.