Devoir surveillé nº 3 - MPI

Samedi 18 octobre 2025.

Ce devoir surveillé, d'une durée de 4h est constitué de deux problèmes tout à fait indépendants issus des concours. Le premier est commun avec les MPI*. On attachera une attention particulière au soin et à la présentation, et à la rigueur de l'argumentation, tout en évitant les lourdeurs inutiles.

On maintient la petite règle supplémentaire du dernier devoir : ne pas répondre à une question si vous n'êtes pas sûr de le faire soigneusement, et avec les idées à peu près claires. Bon courage!

Problème 1 : Étude d'une famille de séries entières

Dans tout le problème, α désigne un nombre réel. On note \mathbb{D}_{α} l'ensemble des réels x pour lesquels la série entière $\sum_{n\geq 1}\frac{x^n}{n^{\alpha}}$ est convergente et on pose, pour tout $x\in\mathbb{D}_{\alpha}$:

$$f_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}$$

Objectifs:

Ce problème est composé de deux parties indépendantes.

Dans la **partie I**, on étudie quelques propriétés élémentaires des fonctions f_{α} .

L'objectif de la partie II est de construire un logarithme complexe.

I. Quelques propriétés des fonctions f_{α}

- Q1. Déterminer le rayon de convergence R commun aux séries entières définissant les fonctions f_{α} .
- **Q2.** Déterminer, suivant les valeurs du réel α , le domaine de définition \mathbb{D}_{α} de la fonction f_{α} . On distinguera les cas $\alpha \in]-\infty,0]$, $\alpha \in]0,1]$ et $\alpha \in]1,+\infty[$.
- **Q3.** On suppose dans cette question $\alpha > 0$. Déterminer, pour tout $x \in \mathbb{D}_{\alpha}$, le signe de $f_{\alpha}(x)$.
- **Q4.** Expliciter f_0 , f_{-1} et f_1 .
- **Q5.** Soit $\alpha > 1$. Prouver que f_{α} est continue sur \mathbb{D}_{α} .
- **Q6.** Soit $\alpha \leq 1$. Prouver que $\lim_{x\to 1^-} f_{\alpha}(x) = +\infty$. On pourra comparer f_{α} à f_1 .

II. Un logarithme complexe

Q7. Donner sans démonstration le développement en série entière au voisinage de 0 de la fonction qui à $x \in]-1,1[$ associe $\ln(1+x)$.

Pour tout nombre complexe z, tel que la série $\sum_{n\geqslant 1}\frac{(-z)^n}{n}$ est convergente, on note :

$$S(z) = -\sum_{n=1}^{+\infty} \frac{(-z)^n}{n}$$

Q8. Donner le rayon de convergence R de la série entière définissant S. Pour tout x réel élément de]-R,R[, déterminer la valeur de $\exp(S(x))$.

Soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. On considère la série entière de la variable réelle t suivante :

$$\sum_{n \ge 1} (-1)^{n-1} \frac{z_0^n}{n} t^n.$$

En cas de convergence, on note g(t) sa somme.

On a donc, pour $t \in \mathbb{R}$ tel que la série est convergente, $g(t) = S(tz_0)$.

- **Q9.** Déterminer le rayon de convergence de la série entière définissant g.
- **Q10.** Prouver que g est définie et de classe \mathcal{C}^{∞} sur [0,1]. Déterminer, pour tout $t \in [0,1], g'(t)$.
- **Q11.** On pose $h = \exp \circ g$. Prouver que pour tout $t \in [0, 1]$:

$$h'(t) = \frac{z_0}{1 + tz_0}h(t).$$

Q12. Résoudre l'équation différentielle de la question précédente et en déduire que :

$$\exp(S(z_0)) = z_0 + 1.$$

Problème 2 : Séries de Taylor et développement en série entière

Dans ce problème, toutes les fonctions considérées sont définies sur un intervalle I de $\mathbb R$ et à valeurs réelles.

Les questions **Q2.** et **Q9.** introduisent des intégrales sur $]0, +\infty[$, ce que nous n'avons pas encore étudié cette année. La mention (5/2) sur ces questions indiquent donc que pour avoir tous les points, certaines justifications ne sont attendues que pour les étudiants 5/2.

Partie préliminaire

Dans cette partie, les questions sont indépendantes les unes des autres et leurs résultats peuvent être admis dans la suite du problème.

- **Q1.** Justifier, pour tout réel $x \in]-1,1[$, l'existence de $\sum_{n=1}^{+\infty} nx^{n-1}$ et donner sa valeur.
- **Q2.** (5/2) On rappelle que la fonction Γ est définie pour tout réel $x \in]0, +\infty[$ par :

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} \, \mathrm{d}t.$$

Démontrer que, pour tout réel $x \in]0, +\infty[$, $\Gamma(x+1) = x\Gamma(x)$ et en déduire, pour tout entier naturel n non nul, la valeur de $\Gamma(n)$.

Q3. Démontrer la formule de Taylor avec reste de Laplace (ou reste intégral) : Si I est un intervalle contenant le réel a, si f est une fonction de I dans \mathbb{R} de classe \mathcal{C}^{∞} sur I, alors pour tout réel $x \in I$ et pour tout entier naturel n, on a:

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_{a}^{x} \frac{(x-a)^n}{n!} f^{(n+1)}(t) dt.$$

ON RAPELLE LE THÉORÈME SUIVANT :

Si une fonction f admet un développement en série entière sur l'intervalle]-a,a[, alors :

- la fonction f est de classe C^{∞} sur]-a,a[,
- son développement en série entière est unique et donné par la série de Taylor de la fonction f à l'origine :

$$\forall x \in]-a, a[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

I. Quelques exemples d'utilisation de ce théorème

- **Q4.** On considère la fonction f définie par : f(0) = 1 et, pour tout réel $x \neq 0$, $f(x) = \frac{\sin(x)}{x}$. Démontrer que la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- **Q5.** Expliciter une fonction f de classe C^{∞} sur un voisinage de 0 et vérifiant, pour tout entier naturel n, l'égalité $f^{(n)}(0) = n$ n!.
- Q6. Un théorème des moments.

Soit f une fonction développable en série entière sur]-R,R[avec R>1:

$$\forall x \in]-R, R[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

On suppose que, pour tout entier naturel n, $\int_0^1 x^n f(x) dx = 0$.

L'obectif de cette question est de montrer que f est identiquement nulle sur]-R,R[.

- a) Démontrer que la série $\sum_{n\geqslant 0} f(x) \frac{f^{(n)}(0)}{n!} x^n$ converge normalement sur l'intervalle [0,1].
- b) à l'aide du calcul de $\int_0^1 (f(x))^2 dx$, démontrer que la fonction f est nulle sur l'intervalle [0,1].
- c) Démontrer que la fonction f est nulle sur l'intervalle]-R,R[.

II. Contre-exemples

- **Q7.** Donner un exemple de fonction f à la fois de classe \mathcal{C}^{∞} sur un intervalle I et développable en série entière au voisinage de l'origine, mais qui ne coïncide pas avec sa série de Taylor en 0 sur I tout entier.
- Q8. Un exemple de fonction ne coïncidant avec sa série de Taylor en 0 sur aucun voisinage de 0.

On considère la fonction f définie sur \mathbb{R} par : f(0) = 0 et $\forall x \neq 0, f(x) = \exp\left(-\frac{1}{x^2}\right)$.

- a) Montrer que f est continue et dérivable en 0, et dessiner sans justification l'allure de sa courbe représentative.
- b) Par les théorèmes généraux, la fonction f est de classe \mathcal{C}^{∞} sur $]0, +\infty[$. Démontrer que, pour tout entier naturel n, il existe un polynôme P_n tel que, pour tout $x \in]0, +\infty[$, $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp\left(-\frac{1}{x^2}\right)$.
- c) Démontrer que la fonction f est de classe C^{∞} sur $[0, +\infty[$ avec, pour tout entier naturel n, $f^{(n)}(0) = 0$.

Par parité, la fonction f ainsi définie est de classe \mathcal{C}^{∞} sur \mathbb{R} .

- d) La fonction f est-elle développable en série entière sur un intervalle]-r,r[?] Justifier soigneusement votre réponse.
- Q9. Un exemple où la série de Taylor de la fonction f en 0 a un rayon nul.

Pour tout réel
$$x$$
, on pose : $f(x) = \int_0^{+\infty} \frac{e^{-t}}{1 + tx^2} dt$.

- a) (5/2) Justifier que, pour tout réel x, la fonction $t \mapsto \frac{e^{-t}}{1+tx^2}$ est bien intégrable sur $[0, +\infty[$, puis démontrer que la fonction f est de classe \mathcal{C}^1 sur \mathbb{R} . On admettra que la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que l'on obtient les dérivées successives en dérivant sous le signe intégrale.
- b) Pour $t \in]0, +\infty[$, calculer, au moyen d'une série entière, les dérivées successives en 0 de la fonction $x \longmapsto \frac{e^{-t}}{1 + tx^2}$ pour en déduire l'expression de $f^{(n)}(0)$ pour tout entier naturel n.
- c) Quel est le rayon de la série entière $\sum_{n\geqslant 0} \frac{f^{(n)}(0)}{n!} x^n$?
 La fonction f est-elle développable en série entière à l'origine?

III. Condition suffisante

On se propose, dans cette partie, d'étudier une condition suffisante pour qu'une fonction de classe \mathcal{C}^{∞} sur un intervalle centré en 0 soit développable en série entière au voisinage de 0.

- **Q10.** Soient a un réel strictement positif et f une fonction de classe C^{∞} sur l'intervalle]-a,a[. On suppose qu'il existe un réel M>0 tel que, pour tout $x\in]-a,a[$ et pour tout entier naturel $n,|f^{(n)}(x)|\leqslant M.$
 - a) Démontrer que la fonction f est développable en série entière au voisinage de l'origine.
 - b) Donner un exemple simple de fonction pour laquelle ce résultat s'applique.