Computer-Aided Program Design Spring 2015, Rice University

Unit 2

Swarat Chaudhuri

January 27, 2015

Symbolic transition systems

- A symbolic transition system (STS) is a representation of programs that makes logical reasoning easier.
- ▶ Formally, a structure $\mathcal{M} = (Var, In, T)$, where
 - ▶ *Var* is a set of *variables* (atomic propositions). We let $Var' = \{x' \mid x \in Var\}.$
 - ▶ In, a propositional logic formula over Var, is an initial condition
 - ▶ *T* is a *symbolic transition relation*, defined by a formula over $(Var \cup Var')$.

Questions

▶ How do you encode a finite automaton as an STS?

Questions

- ▶ How do you encode a finite automaton as an STS?
- ▶ How do you compile a C program down to this notation?

```
void foo (bool x1, bool x0) {
  assume (x1 | x0);
L0:  y = x0;
L1:  while (!y) {
L2:    if (x1)
L3:        y = x1 & y;
    }
}
```

Semantics: Concrete transition systems

- ► The semantics of an STS is given by a "concrete" transition system (States, InitStates, --->):
 - States is a set of states, where a state is an interpretation over atomic propositions Var.
 - ▶ Each state in *InitStates* is an initial state
 - ► --→ is a binary relation over States.
- ► This transition system defines *exactly* how states change.

Semantics: Concrete transition systems

- ► The semantics of an STS is given by a "concrete" transition system (States, InitStates, --->):
 - States is a set of states, where a state is an interpretation over atomic propositions Var.
 - Each state in *InitStates* is an initial state
 - ► --→ is a binary relation over States.
- ► This transition system defines *exactly* how states change.
- ▶ How do we define such a transition system?

The verification question

The (safety) verification question for an STS is:

Let P be a correctness property written in propositional logic.

Is there a state that: (1) does not satisfy P, and (2) reachable from an initial state in the concrete transition system?

Is there a state that: (1) does not satisfy P, and (2) reachable from an initial state in the concrete transition system in k steps or less?

- Let us create (k+1) "versions" of each variable x:
- ▶ $T_{i,i+1}$ represents T where for each x, x is replaced by x_i and x' is replaced by x_{i+1} .
- ▶ In_0 is In with each x replaced by x_0 .

- Let us create (k+1) "versions" of each variable x:
- ▶ $T_{i,i+1}$ represents T where for each x, x is replaced by x_i and x' is replaced by x_{i+1} .
- ▶ In_0 is In with each x replaced by x_0 .
- ▶ The set of states reachable in *k* steps is captured by:

$$In_0 \wedge T_{0,1} \wedge T_{1,2} \wedge \cdots \wedge T_{(k-1),k}$$

- Let us create (k+1) "versions" of each variable x:
- ▶ $T_{i,i+1}$ represents T where for each x, x is replaced by x_i and x' is replaced by x_{i+1} .
- ▶ In_0 is In with each x replaced by x_0 .
- ▶ The set of states reachable in *k* steps is captured by:

$$In_0 \wedge T_{0,1} \wedge T_{1,2} \wedge \cdots \wedge T_{(k-1),k}$$

▶ The property P fails in one of the cycles $1 \dots k$:

$$\neg P_0 \lor \neg P_1 \lor \cdots \lor \neg P_k$$
.

► To find if the property is violated in *k* steps or less, check satisfiability of:

$$B(k) = In_0 \wedge \bigwedge_{i=0}^{k-1} T_{i,i+1} \wedge \bigvee_{i=0}^{k} \neg P_i$$

► To find if the property is violated in *k* steps or less, check satisfiability of:

$$B(k) = In_0 \wedge \bigwedge_{i=0}^{k-1} T_{i,i+1} \wedge \bigvee_{i=0}^{k} \neg P_i$$

► Can you extract a concrete error trace using this method?

► To find if the property is violated in *k* steps or less, check satisfiability of:

$$B(k) = In_0 \wedge \bigwedge_{i=0}^{k-1} T_{i,i+1} \wedge \bigvee_{i=0}^{k} \neg P_i$$

- Can you extract a concrete error trace using this method?
- ▶ An algorithm for verification: iterate over *k*

Classic example: two-bit counter

► Two bits: *I* and *r*

Classic example: two-bit counter

- ► Two bits: / and r
- ▶ Initial condition: $(\neg I \land \neg r)$
- ▶ Transition: $I' = (I \neq r) \land r' = \neg r$
- ▶ Property: $(\neg I \lor \neg r)$
- Use bounded model checking to verify or find bugs!

▶ Is it true that when a bug exists, we can always find it for some k?

- ▶ Is it true that when a bug exists, we can always find it for some *k*?
- Yes, for finite-state systems (what we have here).

- Is it true that when a bug exists, we can always find it for some k?
- ▶ Yes, for finite-state systems (what we have here).
- ▶ What is the maximum *k* up to which we need to iterate?

- ▶ Is it true that when a bug exists, we can always find it for some k?
- Yes, for finite-state systems (what we have here).
- ▶ What is the maximum *k* up to which we need to iterate?
- Diameter: Longest shortest path between an initial state and a reachable state.

Bounded model checking: resources

- Original paper by Biere et al: http://repository.cmu.edu/compsci/451/.
- 2. The CBMC system: http://www.cprover.org/cbmc/.