COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

NEW APPROACHES TO NOWHERE-ZERO FLOW PROBLEMS

Master Thesis

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

NEW APPROACHES TO NOWHERE-ZERO FLOW PROBLEMS

MASTER THESIS

Study Programme: Computer Science Field of Study: Computer Science

Department: Department of Computer Science

Supervisor: Mgr. Jozef Rajník, PhD.

Bratislava, 2026 Lukáš Gáborik

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:	Bc. Lukáš Gáborik
-----------------------------	-------------------

Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)

Študijný odbor:informatikaTyp záverečnej práce:diplomováJazyk záverečnej práce:anglickýSekundárny jazyk:slovenský

Názov: New approaches to nowhere-zero flow problems

Nové prístupy k problémom o nikde-nulových tokoch

Anotácia: Táto práca nadväzuje na výsledky bakalárskej práce rovnakého autora. Novo

zavedený pojem viacrozmerných Manhattanských a Čebyševovských tokov ponecháva priestor pre ďalší výskum, ako napríklad hľadanie dolných odhadov pre tokové čísla. Jedným z hlavných výsledkov spomínanej bakalárskej práce je predstavenie hypotézy tvrdiacej, že každý bezmostový graf pripúšťa (1,2)-cirkulačnú dekompozíciu, t. j. 2-cirkuláciu a 4-cirkuláciu takú, že zakaždým keď je 2-cirkulácia nulová na nejakej hrane, tak 4-cirkulácia nemôže nadobúdať 0, +1 alebo -1. To ponúka bohatý priestor na výskum vrátane rôznych zovšeobecnení, v ktorých kladieme ďalšie požiadavky na tokové hodnoty.

Ciel':

- 1. Dokázať netriviálne dolné odhady pre dvojrozmerné Čebyševovské tokové číslo grafu.
- 2. Preskúmať možné spôsoby, ako dokázať hypotézu, že každý bezmostový graf pripúšťa (1, 2)-cirkulačnú dekompozíciu, a iné súvisiace hypotézy. Dokázať túto hypotézu pre niektoré nekonečné triedy snarkov, prípadne pre niektoré snarky, ktoré majú ďaleko od toho, aby boli zafarbiteľné (napr. s nepárnosťou
- 2, indexom perfektného párenia 4, ...).
- 3. Preskúmať ďalšie zovšeobecnenia tokov potenciálne užitočné v kontexte vyššie uvedenej hypotézy.

Vedúci: Mgr. Jozef Rajník, PhD.

Katedra: FMFI.KI - Katedra informatiky **Vedúci katedry:** prof. RNDr. Martin Škoviera, PhD.

Dátum zadania: 21.11.2024

Dátum schválenia: 05.12.2024 prof. RNDr. Rastislav Kráľovič, PhD.

garant študijného programu

študent	vedúci práce

Comenius University Bratislava Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Lukáš Gáborik

Study programme: Computer Science (Single degree study, master II. deg., full

time form)

Field of Study: Computer Science Type of Thesis: Diploma Thesis

Language of Thesis: English **Secondary language:** Slovak

Title: New approaches to nowhere-zero flow problems

Annotation: This work builds on the results of the bachelor thesis of the same author. The

newly introduced notion of multidimensional Manhattan and Chebyshev flows still leaves some possibilities for further research like finding lower bounds on flow numbers. One of the main results of the mentioned bachelor thesis is the introduction of the conjecture asserting that each bridgeless graph admits a (1,2)-circulation decomposition, that is a 2-circulation and a 4-circulation such that whenever the 2-circulation is zero on any edge, the 4-circulations can not attain 0, +1 or -1. This offers wide possibilities of exploration including various

generalisations where further requirements are posed on the flow values.

Aim: 1. Prove nontrivial lower bounds on 2-dimensional Chebyshev flow number of

a graph.

2. Explore possible ways of proving the conjecture that each bridgeless graph admits a (1, 2)-circulation decomposition, and other related conjectures. Prove this conjecture for some infinite families of snarks, eventually for some snarks that are far from being colourable (e.g. with oddness 2, perfect matching index

4, ...)

3. Research other generalisation of flows potentially useful in the context of the

abovementioned conjecture.

Supervisor: Mgr. Jozef Rajník, PhD.

Department: FMFI.KI - Department of Computer Science

Head of prof. RNDr. Martin Škoviera, PhD.

department:

Assigned: 21.11.2024

Approved: 05.12.2024 prof. RNDr. Rastislav Kráľovič, PhD.

Guarantor of Study Programme

Student	Supervisor

 ${\bf Acknowledgments:}$

Abstrakt

Kľúčové slová:

Abstract

Keywords:

Contents

Introduction	1
Conclusion	•

Introduction

2 INTRODUCTION

Conclusion

4 CONCLUSION