STAT0032: Exercise Sheet #6

The exercises in this sheet focus on model selection and sparse regression. As in the previous sheet, some of the questions are from James et al., "An Introduction to Statistical Learning" (ISLR).

- 1. (Exercise 1 of Chapter 6, ISLR.) We perform best subset, forward stepwise, and backward stepwise selection on a single data set. For each approach, we obtain p+1 models, containing $0, 1, 2, \ldots, p$ predictors. Explain your answers:
 - (a) Which of the three models with k predictors has the smallest training RSS?
 - (b) Which of the three models with k predictors has the smallest test RSS?
 - (c) True or False:
 - i. The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k+1)-variable model identified by forward stepwise selection.
 - ii. The predictors in the k-variable model identified by backward stepwise are a subset of the predictors in the (k + 1)-variable model identified by backward stepwise selection.
 - iii. The predictors in the k-variable model identified by backward stepwise are a subset of the predictors in the (k+1)-variable model identified by forward stepwise selection.
 - iv. The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k+1)-variable model identified by backward stepwise selection.
 - v. The predictors in the k-variable model identified by best subset are a subset of the predictors in the (k+1)-variable model identified by best subset selection.
- 2. (Exercise 2 of Chapter 6, ISLR.) For parts (a) through (c), indicate which of i. through iv. is correct. Justify your answer.
 - (a) The lasso, relative to least squares, is:
 - i. More flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance.
 - ii. More flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.
 - iii. Less flexible and hence will give improved prediction accuracy when its increase in bias is less than its decrease in variance.

- iv. Less flexible and hence will give improved prediction accuracy when its increase in variance is less than its decrease in bias.
- (b) Repeat (a) for ridge regression relative to least squares.
- (c) Repeat (a) for non-linear methods relative to least squares.
- 3. (Adapted from Exercise 3 of Chapter 6, ISLR.) Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^n \left(y_i - eta_0 - \sum_{j=1}^p eta_j x_{ij}
ight)^2$$
 subject to $\sum_{j=1}^p |eta_j| \leq s$

for a particular value of s. For parts (a) through (e), indicate which of i. through v. is correct. Justify your answer.

- (a) As we increase s from 0, the training RSS will:
 - i. Increase initially, and then eventually start decreasing in an inverted U shape.
 - ii. Decrease initially, and then eventually start increasing in a U shape.
 - iii. Steadily increase.
 - iv. Steadily decrease.
 - v. Remain constant.
- (b) Repeat (a) for test RSS.
- (c) Repeat (a) for variance.
- (d) Repeat (a) for (squared) bias.
- 4. (Adapted from Exercise 4 of Chapter 6, ISLR.) Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

for a particular value of λ . For parts (a) through (e), indicate which of i. through v. is correct. Justify your answer.

- (a) As we increase λ from 0, the training RSS will:
 - i. Increase initially, and then eventually start decreasing in an inverted U shape.
 - ii. Decrease initially, and then eventually start increasing in a U shape.
 - iii. Steadily increase.
 - iv. Steadily decrease.
 - v. Remain constant.

- (b) Repeat (a) for test RSS.
- (c) Repeat (a) for variance.
- (d) Repeat (a) for (squared) bias.
- 5. (Exercise 5 of Chapter 6, ISLR.) It is well-known that ridge regression tends to give similar coefficient values to correlated variables, whereas the lasso may give quite different coefficient values to correlated variables. We will now explore this property in a very simple setting. Suppose that n=2, p=2, $x_{11}=x_{12}$, $x_{21}=x_{22}$. Furthermore, suppose that $y_1+y_2=0$ and $x_{11}+x_{21}=0$ and $x_{12}+x_{22}=0$, so that the estimate for the intercept in a least squares, ridge regression, or lasso model is zero: $\hat{\beta}_0=0$.
 - (a) Write out the ridge regression optimization problem in this setting.
 - (b) Argue that in this setting, the ridge coefficient estimates satisfy $\hat{\beta}_1 = \hat{\beta}_2$.
 - (c) Write out the lasso optimization problem in this setting.
 - (d) Argue that in this setting, the lasso coefficients $\hat{\beta}_1$ and $\hat{\beta}_2$ are not unique in other words, there are many possible solutions to the optimization problem in (c). Describe these solutions.
- 6. (Exercise 6 of Chapter 6, ISLR.) We will now explore (6.12) and (6.13) further:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \qquad (6.12)$$

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \qquad (6.13)$$

- (a) Consider (6.12) with p=1. For some choice of y_1 , x_1 , and $\lambda>0$, plot (6.12) as a function of β_1 . Your plot should confirm that (6.12) is solved by (6.14).
- (b) Consider (6.13) with p=1. For some choice of y_1 , x_1 , and $\lambda > 0$, plot (6.12) as a function of β_1 . Your plot should confirm that (6.13) is solved by (6.15).
- 7. (COMPUTER IMPLEMENTATION) Exercise 8 of Chapter 6, ISLR.
- 8. (COMPUTER IMPLEMENTATION) Exercise 9 (except items (e) and (f)) of Chapter 6, ISLR.
- 9. (COMPUTER IMPLEMENTATION) Exercise 10 of Chapter 6, ISLR.
- 10. (COMPUTER IMPLEMENTATION) Exercise 11 (except subitems involving PCR) of Chapter 6, ISLR.