Optimization in General - (i.e, not just Deep Learning)

A/Prof Richard Yi Da Xu http://richardxu.com

University of Technology Sydney (UTS)

October 21, 2018

Gradient Descend: what is directional derivative

Your aim to find:

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} (f(\mathbf{x}))$$

- ▶ How? Solve $\nabla f(\mathbf{x}_n) = 0!$ But in many scenarios, this isn't easy!
- The rate of change of f(x, y) in the direction of the unit vector u = (a, b) is called the directional derivative $d_u f(x, y)$. The definition of the directional derivative is:

$$d_u f(x, y) = \lim_{h \to 0} \frac{f(x + ah, y + bh) - f(x, y)}{h}$$

▶ **Theorem** the minimum directional derivative of a differentiable function f at (x_0, y_0) is $-|\nabla f(x_0, y_0)|$ and occurs for u with the opposite direction as $\nabla f(x_0, y_0)$

Gradient Descend

Here is where **Gradient Descend** algorithm may help. The iterative algorithm looks something like:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha_n \nabla f(\mathbf{x}_n), \qquad n \geq 0$$

Moral of the story, you must know how to compute the objective function's derivative.

Newton methods

taylor expansion of $f(\mathbf{x})$ around \mathbf{x}_n in 1-D:

$$f(x_n + \Delta x) \approx f(x_n) + f'(x_n)\Delta x + \frac{1}{2}f''(x_n)\Delta x^2$$

• we need to find what is the "right" value of Δx that minimises f(.):

$$\frac{\mathrm{d}f(x_n + \Delta x)}{\mathrm{d}\Delta x} = \frac{\mathrm{d}}{\mathrm{d}\Delta x} \left(f(x_n) + f'(x_n) \Delta x + \frac{1}{2} f''(x_n) \Delta x^2 \right) = f'(x_n) + f''(x_n) \Delta x$$

$$f'(x_n) + f''(x_n) \Delta x = 0 \implies \Delta x = \frac{-f'(x_n)}{f''(x_n)}$$

$$x_{n+1} = x_n + \Delta x$$

$$= x_n - (f''(x_n))^{-1} f'(x_n)$$

taylor expansion of $f(\mathbf{x})$ **around** \mathbf{x}_n **in higher dimension:**

$$\implies \mathbf{x}_{n+1} = \mathbf{x}_n - \underbrace{\left(\nabla^2 f(\mathbf{x}_n)\right)^{-1}}_{\alpha_n} \nabla f(\mathbf{x}_n)$$

Newton methods (2)

knowing,

$$\frac{df(\mathbf{x}_n + \Delta \mathbf{x})}{d\Delta \mathbf{x}} = \mathbf{0}$$

$$\implies \mathbf{x}_{n+1} = \mathbf{x}_n - \underbrace{\left(\nabla^2 f(\mathbf{x}_n)\right)^{-1}}_{\alpha_n} \nabla f(\mathbf{x}_n)$$

- $ightharpoonup
 abla^2 f(\mathbf{x}_n)$ is called Hessian matrix.
- **bigger** steps in low-curvature (where $\nabla^2 f(\mathbf{x}_n)$ is small)
- **smaller** steps in high-curvature scenarios.

Conjugate Gradient Descend - why need conjugate?

- we have a 2-d function $f(x_1, x_2)$:
- ▶ suppose step k occurred along x_1 -axis, and led to position \mathbf{x}^{k+1}
- ▶ at \mathbf{x}^{k+1} , $f(\mathbf{x}^{k+1})$ is minimized in its x_1 component:

$$\frac{\partial f(\mathbf{x}^{k+1})}{\partial x_1} = 0$$

▶ next step is along x_2 -axis: that step leads to a position \mathbf{x}^{k+2} : we find the approprate step, such that:

$$\frac{\partial f(\mathbf{x}^{k+2})}{\partial x_2} = 0$$

• we know $\frac{\partial^2 f(\mathbf{x}^{k+2})}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_2} \left(\frac{\partial f(\mathbf{x}^{k+2})}{\partial x_1} \right)$, then:

$$\frac{\partial^2 f(\mathbf{x}^{k+2})}{\partial x_2 \partial x_1} \neq 0 \implies \frac{\partial f(\mathbf{x}^{k+2})}{\partial x_1} \neq 0$$

- in words, it says if \mathbf{x}^{k+2} is **not** overall stationery/saddle point, and we also know \mathbf{x}^{k+2} is stationery point in x_2 direction; then it **mustn't** be stationery point in x_1 direction
- we want to move along direction other than x_2 -axis, such that $\frac{\partial f(\mathbf{x}^{k+2})}{\partial x_1}$ remains zero

Q-conjugate

- the next four slides are heavily referenced using http://www.cs.cmu.edu/~pradeepr/convexopt/Lecture_Slides/ conjugate_direction_methods.pdf
- we need to search for new non-axis directions:
- $ightharpoonup \{d_1, d_2, \dots, d_n\}$ are said to be Q-conjugate, such that,

$$d_j^{\top} Q d_k = 0 \quad j \neq k$$

when Q is also symmetric, {λ_k, ν_k} are eigen-(value, vector) pair, we know all eigen-vectors are orthogonal:

$$\begin{aligned} Q v_k &= \lambda_k v_k \\ \implies v_j^\top Q v_k &= \lambda_k v_j^\top v_k = 0 \qquad j \neq k \end{aligned}$$

so eigen-vectors {v₁,...v_n} of symmetric matrix can be thought as special case of Q-conjugate vectors, where these vectors are ortho-normal without Q

CGD: Linear independence

- let Q be positive definite, then all its Q-conjugate vectors {d₁, d₂, ..., d_n} are linearly independent
- **proof by contradiction**, i.e., suppose one of its vector say d_k can be written in linear combination of d_1, \ldots, d_{k-1} :

$$d_k = \alpha_1 d_1 + \dots + \alpha_{k-1} d_{k-1}$$

$$\implies d_k^\top Q d_k = d_k^\top Q \left(\alpha_1 d_1 + \dots + \alpha_{k-1} d_{k-1} \right)$$

$$= d_k^\top Q \alpha_1 d_1 + \dots + d_k^\top Q \alpha_{k-1} d_{k-1}$$

$$= 0$$

contradiction part is, by definition of positive definiteness: $d_k^\top Q d_k > 0 \ \forall d_k \neq 0!$

compute α_k independently

if we are to minimize a quadratic problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\top Q \mathbf{x} - b^\top \mathbf{x} + c$$

▶ if matrix $Q \in \mathbb{R}^{n \times n}$ is positive definite, then minimal value \mathbf{x}^* is:

$$Qx^* = b$$

let $\{d_0, d_1, \dots, d_{n-1}\}$ be arbitary Q-conjugate set

$$\mathbf{x}^* = \alpha_0 d_0 + \dots + \alpha_{n-1} d_{n-1} \qquad \text{linearly-independent basis} \\ \implies d_k^\top Q \mathbf{x}^* = d_k^\top Q \left(\alpha_0 d_0 + \dots + \alpha_{n-1} d_{n-1} \right) \qquad \qquad \times \text{ by arbitrary } k^{\text{th}} \\ = \alpha_k d_k^\top Q d_k \\ \implies \alpha_k = \frac{d_k^\top Q \mathbf{x}^*}{d_k^\top Q d_k} = \frac{d_k^\top b}{d_k^\top Q d_k}$$

beauty is that we don't need to know \mathbf{x}^* to compute α_k , only Q-conjugacy is required

Conjugate Direction

$$\begin{aligned} \mathbf{x}^* &= \alpha_0 d_0 + \dots + \alpha_{n-1} d_{n-1} \\ &= \sum_{k=0}^{d-1} \frac{d_k^\top b}{d_k^\top Q d_k} d_k & \text{substitute } \alpha_k = \frac{d_k^\top b}{d_k^\top Q d_k} \end{aligned}$$

- \triangleright the above can be achieved in parallel, where each d_k does **not** minimizing anything
- also it is not an algorithm, it simply decomposes x*
- instead, we try to solve along a **path**, with an initial point **x**⁰:

$$\begin{aligned} \mathbf{X}_1 &= \mathbf{X}_0 + \alpha_0 d_0 \\ & \dots \\ \mathbf{X}_k &= \mathbf{X}_0 + \alpha_0 d_0 + \dots + \alpha_{k-1} d_{k-1} \\ & \dots \\ \mathbf{X}^* &= \mathbf{X}_0 + \alpha_0 d_0 + \dots + \alpha_{n-1} d_{n-1} \end{aligned}$$

 \blacktriangleright what about the new α_k to match with this path?

now we have \mathbf{x}_0

- ▶ $\mathbf{x}_0 \in \mathbb{R}^n$ be an arbitrary starting point:
- **>** so instead of writing $\mathbf{x}^* = \sum_{k=0}^{d-1} \alpha_k d_k$
- we also know $g_k \equiv \nabla f(\mathbf{x}_k) = Q\mathbf{x}_k b = Q\mathbf{x}_k Q\mathbf{x}^* = Q(\mathbf{x}_k \mathbf{x}^*)$
- instead of decompose \mathbf{x}^* , let's now try to decompose $\mathbf{x}^* \mathbf{x}_0$:

$$\mathbf{x}_{1} - \mathbf{x}_{0} = \underbrace{\mathbf{x}_{0} + \alpha_{0} d_{0}}_{\mathbf{x}_{1}} - \mathbf{x}_{0}$$

$$\mathbf{x}_{k} - \mathbf{x}_{0} = \underbrace{\mathbf{x}_{0} + \alpha_{0} d_{0} + \dots + \alpha_{k} d_{k-1}}_{\mathbf{x}_{k}} - \mathbf{x}_{0} = \alpha_{0} d_{0} + \dots + \alpha_{k-1} d_{k-1}$$

$$\mathbf{x}^{*} - \mathbf{x}_{0} = \underbrace{\mathbf{x}_{0} + \alpha_{0} d_{0} + \dots + \alpha_{n-1} d_{n-1}}_{\mathbf{x}^{*}} - \mathbf{x}_{0} = \alpha_{0} d_{0} + \dots + \alpha_{n-1} d_{n-1}$$

$$\implies d_{k}^{T} Q(\mathbf{x}^{*} - \mathbf{x}_{0}) = d_{k}^{T} Q(\alpha_{0} d_{0} + \dots + \alpha_{n-1} d_{n-1})$$

$$= d_{k}^{T} Q \alpha_{k} d_{k}$$

$$\implies \alpha_{k} = \frac{d_{k}^{T} Q(\mathbf{x}^{*} - \mathbf{x}_{0})}{d_{k}^{T} Q d_{k}}$$

$$= -\frac{d_{k}^{T} g_{0}}{d_{k}^{T} Q d_{k}}$$

• **recap**, for $\mathbf{x}^* = \alpha_0 d_0 + \cdots + \alpha_{n-1} d_{n-1}$:

$$\mathbf{x}^* = \sum_{k=0}^{d-1} \underbrace{\frac{d_k^\top b}{d_k^\top Q d_k}}_{\alpha_k} d_k$$

recap, for $\mathbf{x}^* = \alpha_0 d_0 + \cdots + \alpha_{n-1} d_{n-1} + \mathbf{x_0}$:

$$\mathbf{x}^* - \mathbf{x}_0 = \sum_{k=0}^{d-1} \underbrace{\frac{d_k^\top Q(\mathbf{x}^* - \mathbf{x}_0)}{d_k^\top Q d_k}}_{\alpha_k} d_k$$

$$\mathbf{x}^* = \sum_{k=0}^{d-1} \underbrace{-\frac{d_k^{\top} Q(\mathbf{x}^* - \mathbf{x}_0)}{d_k^{\top} Q d_k}}_{k} d_k + \mathbf{x}_0$$

• we will see that to write α_k in terms of $Q(\mathbf{x}^* - \mathbf{x}_0)$ may **not** be as useful as to write in terms of \mathbf{x}_k

Expanding subspace theorem

looking at:

$$d_{k}^{\top} Q(\mathbf{x}^{*} - \mathbf{x}_{0}) = d_{k}^{\top} Q(\mathbf{x}^{*} - \mathbf{x}_{k} + \mathbf{x}_{k} - \mathbf{x}_{0}) = d_{k}^{\top} Q(\mathbf{x}^{*} - \mathbf{x}_{k}) + d_{k}^{\top} Q(\mathbf{x}_{k} - Q\mathbf{x}_{0})$$

$$= d_{k}^{\top} Q(\mathbf{x}^{*} - \mathbf{x}_{k}) + d_{k}^{\top} Q(\alpha_{0} d_{0} + \dots + \alpha_{n-1} d_{n-1})$$

$$= d_{k}^{\top} Q(\mathbf{x}^{*} - \mathbf{x}_{k})$$

- \blacktriangleright noted that $d_k^\top Q(\mathbf{x}^* \mathbf{x}_0) = d_k^\top Q(\mathbf{x}^* \mathbf{x}_k) \implies Q(\mathbf{x}^* \mathbf{x}_0) = Q(\mathbf{x}^* \mathbf{x}_k)$
- think about the case:

[1 1]
$$v_1 = [1 1] v_2 = 5$$
 but $v_1 = [4 1]$ and $v_2 = [1 4]$ satisfy

therefore:

$$\alpha_k = \frac{d_k^\top Q(\mathbf{x}^* - \mathbf{x}_0)}{d_k^\top Q d_k} = -\frac{d_k^\top g_0}{d_k^\top Q d_k} = \frac{d_k^\top Q(\mathbf{x}^* - \mathbf{x}_k)}{d_k^\top Q d_k} = -\frac{d_k^\top g_k}{d_k^\top Q d_k}$$

- **recap**: we move from \mathbf{x}_0 by adding Q-conjugate directions $\{d_1, \ldots d_n\}$, each time by $\alpha_k = -\frac{a_k^T g_k}{d^T Q d_k}$ amount
- we need to prove why this movement is getting "better", i.e., each k step minimizes all previous directions

Looking at the algorithm closely

 $lackbox{ }$ to know if \mathbf{x}_k is minimizing dimensions along its path using step size $lpha_k = -rac{a_k^{ op}\,g_k}{a_k^{ op}\,\alpha g_k}$:

$$\mathbf{x}_k \xrightarrow{\alpha_k \times d_k} \mathbf{x}_{k+1} \qquad \mathbf{x}_{k+1} \xrightarrow{\alpha_{k+1} \times d_{k+1}} \mathbf{x}_{k+2}$$

where each \mathbf{x}_k is used to compute its corresponding $g_k \equiv \nabla(\mathbf{x}_k)$

starting in the first step, given arbitrary point x₀:

$$\mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 d_0$$
$$g_0 = Q\mathbf{x}_0 - b$$

- **b** obviously, we hope \mathbf{x}_1 to minimize the **line** (direction) $\mathbf{x}_0 + \alpha_0 d_0$
- ▶ this is equivalently saying, $g_1 \equiv \nabla f(\mathbf{x}_1) \perp (\mathbf{x}_0 + \alpha_0 d_0)$
- ▶ think this way, we now have changed the coordinates from one ortho-normal basis to another: $[x_1, x_2] \rightarrow [u, v]$ let:

$$(u = (\mathbf{x}_0 + \alpha_0 d_0) \quad \text{and} \quad v \perp u) \implies \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] = \left[0, \frac{\partial f}{\partial v}\right]$$

Looking at the algorithm closely

we have,

$$g_1 = \nabla f(\mathbf{x}_1) = Q\mathbf{x}_1 - b$$

$$= Q(\mathbf{x}_0 + \alpha_0 d_0) - b = (Q\mathbf{x}_0 - b) + \alpha_0 Qd_0$$

$$= g_0 + \alpha_0 Qd_0$$

• $g_1 \not\perp d_0$ in general, but we can show a particular choice α_0 makes it do, i.e., x_1 minimizes the line $\mathbf{x}_0 + \alpha_0 d_0$

$$\begin{split} d_0^\top g_1 &= d_0^\top g_0 + d_0^\top \alpha_0 Q d_0 & \times d_0^\top \text{ on each side} \\ &= d_0^\top g_0 + \alpha_0 d_0^\top Q d_0 & \\ &= d_0^\top g_0 - \frac{d_0^\top g_0}{d_0^\top Q d_0} d_0^\top Q d_0 & \text{sub } \alpha_0 &= -\frac{d_0^\top g_0}{d_0^\top Q d_0} \\ &= d_0^\top g_0 - d_0^\top g_0 &= 0 & \\ &\Rightarrow d_0 \perp g_1 & \end{split}$$

- ightharpoonup above shows the choice d_0 is also somewhat arbitrary
- **b** to understand by choose a different \mathbf{x}_0 , results a different g_0 , having an arbitrary (g_0, d_0) pair results a unique $\alpha_0 = -\frac{d_0^\top g_0}{d_0^\top Q d_0}$ making \mathbf{x}_1 the minimum of the line $\mathbf{x}_0 + \alpha_0 d_0$
- however, a sensible choice is $d_0 = -\nabla f(\mathbf{x}_0) = -g_0$

Expanding Subspace Theorem

knowing $g_1 \perp d_0$, we also can prove similarly that:

$$g_k \perp \operatorname{span}(\underbrace{d_0,\ldots,d_{k-1}}_{k \text{ terms}})$$

for example, if $\mathbf{x}_2 \perp (\mathbf{x}_0 + \alpha_0 d_0)$ and $\mathbf{x}_2 \perp (\mathbf{x}_1 + \alpha_1 d_1)$, we know that $\mathbf{x}_2 \perp a$ surface span of the two perpendicular lines d_0 and d_1 , we write this as:

$$g_2 \perp \operatorname{span}(\underbrace{d_0, d_1}_{2 \text{ terms}})$$

we can drop \mathbf{x}_0 and \mathbf{x}_1

- we can see that \mathbf{x}_k minimizes f over $\{\mathbf{x}_0 + \operatorname{span}(d_0, \dots, d_{k-1})\}$
- therefore, it's obvious"

$$\mathbf{x}_n = \underset{\mathbf{x} \in \{\mathbf{x}_0 + \operatorname{span}(d_0, \dots, d_{n-1})\}}{\operatorname{arg min}} \frac{1}{2} \mathbf{x}^\top Q \mathbf{x} - b^\top \mathbf{x}$$

determine directions

- one more thing missing, we know it works well for any arbitrary Q-conjugate vectors $\{d_0, \ldots, d_n\}$:
- ▶ a sensible guess of d_1 wouldbe (we already used $d_0 = -\nabla f(\mathbf{x}_0) = -g_0$:

$$d_1 = -\nabla f(\mathbf{x}_1) + \beta_0 d_0 = -g_1 + \beta_0 d_0$$

use definition of conjugacy:

$$\begin{aligned} d_1^\top Q d_0 &= 0 \\ \Longrightarrow (-g_1 + \beta_0 d_0)^\top d_0 &= 0 \\ -g_1^\top Q d_0 + \beta_0 d_0^\top Q d_0 &= 0 \\ \beta_0 &= \frac{g_1^\top Q d_0}{d_0^\top Q d_0} \end{aligned}$$

Conjugate Gradient Algorithm

1. let f be a quadratic function:

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} + b^{\top}\mathbf{x} + c$$

- 2. **initialize**: Let i = 0 and $\mathbf{x}_i = \mathbf{x}_0$, $d_i = d_0 = \nabla f(\mathbf{x}_0)$
- 3. compute α_0 to minimize the function $f(\mathbf{x}_i + \alpha d_i)$:

$$\begin{split} \alpha_k &= -\frac{d_k^\top (Q\mathbf{x}_k + b)}{{d_k^\top Q} d_k} \\ &= -\frac{d_k^\top g_k}{d_k^\top Q d_k} \end{split}$$

4. update

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{d}_k$$

5. update the direction:

$$\beta_k = \frac{g_{k+1}^\top Q d_k}{d_k^\top Q d_k}$$

6. Repeat steps 2-4 until we have looked in *n* directions, where $\mathbf{x} \in \mathbb{R}^n$

A quick demo to show Stochastic Gradient Descent (1)

A simple example:

$$F(\theta) = \|\mathbf{x}^T \theta - \mathbf{y}\|^2 = \sum_{i=1}^N \left(x_i^T \theta - y_i \right)^2$$
$$\nabla F(\theta) = 2\mathbf{x}^T (\mathbf{x}\theta - \mathbf{y})$$
$$\propto \mathbf{x}\theta - \mathbf{y}$$
$$= \sum_{i=1}^N x_i^T \theta - y_i$$

- ► Traditional gradient descent approach: $\theta_{n+1} = \theta_n \alpha_n \left(\sum_{i=1}^N x_i^T \theta y_i \right)$
- However, think about what if N is 1,000,000, which happens often in the BIG DATA era.
- Stochastic Gradient Descent HELPS!

A quick demo to illustrate Stochastic Gradient Descent (2)

Idea, instead of

$$\theta_{n+1} = \theta_n - \alpha_n \left(\sum_{i=1}^N x_i^T \theta - y_i \right)$$

Each iteration, we select randomly a data point pair (x_j, y_j) , and do:

$$\theta_{n+1} = \theta_n - \alpha_n \left(\mathbf{x}_j^T \theta - \mathbf{y}_j \right) \quad j \sim U(1, \dots N)$$

It surprisingly works quite well in many settings. See demo

q-norm Regulariser

The objective function:

$$E_D(\mathbf{w}) + \alpha E_W(\mathbf{w})$$

Example:

$$\frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right)^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} \implies \mathbf{w}_{\mathsf{ML}} = \left(\alpha \mathbf{I} + \Phi^T \Phi \right)^{-1} \Phi^T \mathbf{t}$$

A generalised example:

$$\frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right)^2 + \frac{\alpha}{2} \sum_{j=1}^{M} |w_j|^q \implies \mathbf{w}_{\mathsf{ML}} \text{ not so easy to obtain}$$

Diagrams of ϕ_i and struggle between $E_D(\mathbf{w})$ and $\alpha E_W(\mathbf{w})$

Plot of various norm functions: q-norm $\|\mathbf{w}\|_q := \left(\sum_{i=1}^n |w_i|^q\right)^{1/q} = 1$:

minimise $E_D(\mathbf{w}) + \alpha E_W(\mathbf{w})$ becomes the "tradeoff" between the two:

