2 ENTRAÎNEMENT

Exercice 10. Justifier que les applications suivantes sont bien définies:

$$(i) \begin{array}{ccc} f: [0,1[& \longrightarrow \mathbb{R}_{-} \\ & x & \longmapsto \frac{1}{x-1} \end{array} & (iii) \begin{array}{ccc} h: \mathcal{P}(\llbracket 1,10 \rrbracket) & \longrightarrow \mathcal{P}(\llbracket 2,20 \rrbracket) \\ & A & \longmapsto \{2x: x \in A\} \end{array}$$

$$(i) \quad f: [0,1[\longrightarrow \mathbb{R}_{-} \\ x \longmapsto \frac{1}{x-1} \\ (ii) \quad A \longmapsto \{2x : x \in A\}$$
 une application et soient $A \subset \mathbb{R}_{+}$ et $B \subset F$. Montrer que
$$f: [0,1[\longrightarrow \mathbb{R}_{-} \\ A \longmapsto \{2x : x \in A\} \\ (ii) \quad g: \mathbb{R}_{+} \longrightarrow [0,1] \\ t \longmapsto \frac{\sqrt{t}}{1+t}$$

$$(iv) \quad i: \mathbb{R}^{2} \longrightarrow \mathbb{Z} \times \mathbb{R}_{+} \\ (x,y) \longmapsto (\lfloor x-y \rfloor, |x-y|)$$
 une application et soient $A \subset \mathbb{R}_{+}$ et $B \subset F$. Montrer que
$$f(A \cap f^{-1}(B)) = f(A) \cap B.$$

Exercice 11. Soit $f: E \to F$ une application et soient $A \subset E$

$$f(A \cap f^{-1}(B)) = f(A) \cap B$$

- **Exercice 12.** Soit E un ensemble et soient A et B deux parties de E. On note $\overline{A} = E \setminus A$.
 - 1. (a) Montrer que pour tout $x \in E$ on a $\mathbb{1}_{\overline{A}}(x) = 1 \mathbb{1}_A(x)$.
 - (b) Montrer que pour tout $x \in E$ on a $\mathbb{1}_{A \cap B}(x) = \mathbb{1}_A(x)\mathbb{1}_B(x)$.
 - (c) Montrer que pour tout $x \in E$ on a $\mathbb{1}_{A \cup B}(x) = \mathbb{1}_A(x) + \mathbb{1}_B(x) \mathbb{1}_A(x)\mathbb{1}_B(x)$.
 - 2. (a) Montrer que : $A \subset B \iff (\forall x \in E, \mathbb{1}_A(x) \leqslant \mathbb{1}_B(x))$.
 - (b) Montrer que : $A = B \iff (\forall x \in E, \mathbb{1}_A(x) = \mathbb{1}_B(x))$
- **Exercice 13.** Soient f_1, f_2, f_3 les trois applications définies par

$$f_1:]-2,2[\longrightarrow \mathbb{R}$$
 $f_2: \mathbb{R}^* \longrightarrow \mathbb{R}^*_+$ et $f_3: \mathbb{R} \setminus \{-1\} \longrightarrow \mathbb{R}$ $x \longmapsto \frac{1+x}{x^2-4},$ $x \longmapsto x^2+\frac{1}{x^2}$

- 1. Vérifier que chacune de ces applications est bien définie.
- 2. Quels sont les $i,j \in [\![1,3]\!]$ tels que $f_i \circ f_j$ existe? Le cas échéant, expliciter les ensembles de départ et d'arrivée de cette composée.
- **Exercice 14.** Soient $a, b, c, d \in \mathbb{R}$.
- 1. Montrer que les fonctions linéaires

$$f: \mathbb{R} \longrightarrow \mathbb{R} \quad \text{et} \quad g: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto ax \quad x \longmapsto bx$$

commutent, c'est-à-dire que $f \circ q = q \circ f$.

2. Donner une condition nécessaire et suffisante pour que les fonctions affines

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$
 et $i: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto ax + c$ $x \longmapsto bx + d$

commutent.

Exercice 15 (Associativité de la composition). Démontrer que si $f: A \to B, g: C \to D$ et $h: E \to F$ sont des applications entre des ensembles tels que $B \subset C$ et $D \subset E$, alors

$$(h \circ g) \circ f = h \circ (g \circ f).$$

- **Exercice 16.** Donner un exemple d'application $f: \mathbb{N} \to \mathbb{N}$ telle que $f \circ f = \mathrm{Id}_{\mathbb{N}}$ mais telle que $f \neq \mathrm{Id}_{\mathbb{N}}$.
- **Exercice 17.** On considère deux applications $f: E \to F$ et $g: F \to H$.
 - 1. Montrer que pour tout $A \subset E$ on a $(g \circ f)(A) = g(f(A))$.
 - 2. Montrer que pour tout $B \subset H$ on a $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$.
- **Exercice 19.** Donner un exemple :
 - (i) d'application surjective non injective.
- (ii) d'application injective non surjective.
- (iii) d'application ni injective ni surjective.

Exercice 18. On considère l'application

$$f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \setminus \{1\}$$
$$x \longmapsto \frac{x}{x-1}$$

et pour tout $n \in \mathbb{N}^*$, on note $f_n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}$.

- 1. Vérifier que f et les f_n sont bien définies.
- 2. Pour tout $x \in \mathbb{R} \setminus \{1\}$, calculer $f_2(x)$ puis $f_3(x)$, puis déterminer $f_n(x)$ pour tout $n \in \mathbb{N}^*$.
- **Exercice 20.** L'application partie entière

$$f: \mathbb{R} \longrightarrow \mathbb{Z}$$
$$x \longmapsto \lfloor x \rfloor$$

est-elle injective? surjective? bijective?

- **Exercice 21.** Soient E un ensemble et $A \subset E$.
- 1. Donner une condition nécessaire et suffisante pour que la fonction indicatrice $\mathbb{1}_A$ soit injective.
- 2. Donner une condition nécessaire et suffisante pour que $\mathbb{1}_A$ soit surjective.
- 3. Donner une condition nécessaire et suffisante pour que $\mathbb{1}_A$ soit bijective.
- **Exercice 22.** Montrer que

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 3 + \frac{1}{x} & \text{si } x \neq 0 \\ 3 & \text{si } x = 0 \end{cases}$$

est bijective.

Exercice 23. Les applications

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 et $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x-y,x^2-y^2)$ $(x,y) \longmapsto (x-y,2xy)$

sont-elles injectives? surjectives? bijectives?

Exercice 24. Soit $f: E \to F$ une application et soient

- 1. Montrer que g est injective si et seulement si f l'est.
- 2. Montrer que g n'est pas surjective dès lors que $|F| \ge 2$.
- 3. Montrer que h est injective si et seulement si f l'est.
- 4. Montrer que h est surjective si et seulement si f l'est.
- **Exercice 25.** Soit E un ensemble et soit $f: E \to E$ une application vérifiant $f \circ f = f$. Montrer que f est injective si et seulement si elle est surjective, et que dans ce cas on a $f = \mathrm{Id}_E$.

Exercice 26. Soit $f: E \to F$ une application bijective entre deux ensembles E et F. Montrer que si $B \subset F$, l'image réciproque de B par f est l'ensemble image de B par f^{-1} , c'est-à-dire que

$${x \in E : f(x) \in B} = {f^{-1}(y), y \in B}.$$

Cette question a pour but de justifier que le fait d'utiliser la notation $f^{-1}(B)$ pour désigner ces deux ensembles n'induit pas d'ambiguïté.

- **Exercice 27.** Soit $f: A \to B$ une application. Montrer que s'il existe $g: B \to A$ telle que $g \circ f = \operatorname{Id}_A$ et $f \circ g = \operatorname{Id}_B$, alors f est bijective et $g = f^{-1}$.
- **Exercice 28.** Montrer que chacune des applications suivantes est bien définie et bijective, et en donner la réciproque :

(i)
$$f_1: \mathbb{R}_+ \longrightarrow [0,1[\\ x \longmapsto \frac{x}{1+x}$$
 (iii)
$$f_3: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (3x+2y, x-y+1)$$

(ii)
$$f_2: \mathbb{R}_+ \longrightarrow [1, +\infty[\\ x \longmapsto \sqrt{1+x^2}$$
 (iv)
$$f_4: \mathcal{P}(\llbracket 1, 100 \rrbracket) \longrightarrow \{B \subset \llbracket 0, 100 \rrbracket : 0 \in B\}$$
$$A \longmapsto A \cup \{0\}$$

- **Exercice 29.** Soient A et B deux ensembles finis. On note n = |A| et p = |B|, et on écrit A sous la forme $A = \{x_1, \ldots, x_n\}$.
- 1. Montrer que l'application

$$\Phi: \mathcal{F}(A,B) \longrightarrow B^n$$

$$f \longmapsto (f(x_1), \dots, f(x_n))$$

est une bijection.

2. En déduire le cardinal de l'ensemble $\mathcal{F}(A, B)$.

 \blacksquare **Exercice 30.** Soit E un ensemble. Montrer que l'application

$$\varphi: \mathcal{P}(E) \longrightarrow \mathcal{F}(E, \{0, 1\})$$

$$A \longmapsto \mathbb{1}_A$$

est bijective, puis en déduire le cardinal de $\mathcal{P}(E)$ lorsque E est fini.