University of Illinois

Spring 2020

CS 446/ECE 449 Machine Learning Homework 2: Binary Logistic Regression

Due on Thursday February 13 2020, noon Central Time

1. [22 points] Binary Logistic Regression

We are given a dataset $\mathcal{D} = \{(-1, -1), (1, 1), (2, 1)\}$ containing three pairs (x, y), where each $x \in \mathbb{R}$ denotes a real-valued point and $y \in \{-1, +1\}$ is the point's class label.

We want to train the parameters $w \in \mathbb{R}^2$ (i.e., weight w_1 and bias w_2) of a logistic regression model

$$p(y|x) = \frac{1}{1 + \exp\left(-yw^{\top} \begin{bmatrix} x \\ 1 \end{bmatrix}\right)} \tag{1}$$

using maximum likelihood while assuming the samples in the dataset \mathcal{D} to be i.i.d.

(a)	(1 point) Instead of maximizing the likelihood we commonly minimize the negative log-
	likelihood. Specify the objective for the model given in Eq. (1). Don't use any regularizer
	or weight-decay.

	or weight-decay. Your answer:
(b)	(3 points) Compute the derivative of the negative log-likelihood objective in genera (the one specified in the previous question, <i>i.e.</i> , no regularizer or weight-decay). Sketch a simple gradient-descent algorithm using pseudo-code (use f for the function value $g = \nabla_w f$ for the gradient, w for the parameters, and show the update rule).
	Your answer:

٦	N T					
ı	N	Я	n	n	Δ	٠

(5 points) Implement the algorithm by completing A2_LogisticRegression.py. State the code that you implemented. What is the optimal solution w^* that your program				
t	ound?			
	Your answer:			
_	29			
	3 point) If the third datapoint $(2,1)$ was instead $(10,1)$, would this influence the bias v_2 much? How about if we had used linear regression to fit \mathcal{D} as opposed to logistic			
	regression? Provide a reason for your answer.			
	Your answer:			
	Tour answer.			
_	3 points) Instead of manually deriving and implementing the gradient we now want to			
	ake advantage of PyTorch auto-differentiation. Investigate A2_LogisticRegression2.py			
ć	and complete the update step using the 'optimizer' instance. What code did you add? If			
	you compare the result of A2_LogisticRegression.py with that of A2_LogisticRegressi			
2	after an equal number of iterations, what do you realize?			
	Your answer:			

f)	(5 points) Instead of manually implementing the cost function we now also want to take advantage of available functions in PyTorch, specifically torch.nn.BCEWithLogitsLoss Can we use the originally specified dataset $\mathcal D$ or do we need to modify it? How? What is the probability $p(y=1 x), p(y=0 x)$ and $p(y x)$ if we use torch.nn.BCEWithLogitsLoss
	i.e., how does it differ from Eq. (1)? (Hint: $w^{\top} \begin{bmatrix} x \\ 1 \end{bmatrix}$ still appears.)
	Your answer:
()	(2 points) Complete A2_LogisticRegression3.py and compare the obtained result after 100 iterations to the one obtained in previous functions. Does the result differ? Why? Why not?
	Your answer: