GATE ASSIGNMENT-2

AI25BTECH11004-B.JASWANTH

	Gen	eral Aptitude (GA)		
1) The fishermen,	the flood victims owed	I their lives, were rewarded by the	he government.	(GATE ST 2019)
a) whom	b) to which	c) to whom	d) that	
(1) Some who were inv(2) No student was invo(3) At least one student	s true, which of the following olved in the strike were stude		cessary?	(GATE ST 2019)
a) 1 and 2	b) 3	c) 4	d) 2 and	3
3) The radius as well as the	ne height of a circular cone in	acreases by 10%. The percentage	e increase in its volur	me is (GATE ST 2019)
a) 17.1	b) 21.0	c) 33.1	d) 72.8	
 No two odd or even The second number f 	numbers are next to each other from the left is exactly half of sexactly twice the right-mos	f the left-most number.	ollowing the direction	s given below: (GATE ST 2019)
a) 2	b) 4	c) 7	d) 10	
5) Until Iran came along,	India had never been	in kabaddi.		(GATE ST 2019)
a) defeated	b) defeating	c) defeat	d) defeati	st
making a demand to rein interest rates on small Which one of the followa) Whenever the Reservb) Interest rates on small c) The government some small saving schemes d) A reduction in interes. 7) In a country of 1400 m	duce interest rates on small s ill saving schemes to bring the wing statements can be inferre e Bank of India reduces the rall saving schemes are always etimes takes into consideration at rates on small saving scheme illion population, 70% own n	on in repo rate by the Reserve Ba aving schemes. Finally, the govern on par with fixed deposit intended from the given passage? repo rate, the interest rates on somaintained on par with fixed den the demands of banking institutes follow only after a reduction mobile phones. Among the mobile yogods from e-commerce portage.	ernment announced y erest rates. mall saving schemes a eposit interest rates ations before reducing in repo rate by the Rele phone owners, only	(GATE ST 2019) are also reduced g the interest rates on eserve Bank of India y 294 million access
a) 10.50	b) 14.70	c) 15.00	d) 50.00	
as baanis. Terms like gay of music education the lineage, including discip	yaki and baaj were used to refe	over the centuries. Since the medier to vocal and instrumental styles able. Gharana originally referred	s, respectively. With the	ne institutionalization

9) Two trains started at 7AM from the same point. The first train travelled north at a speed of 80 km/h and the second train

(GATE ST 2019)

travelled south at a speed of 100 km/h. The time at which they were 540 km apart is ______ AM.

d) gharana, lineage

(GATE ST 2019)

d) 11.30

1) Evaluate $\lim_{n\to\infty} \sum_{n\to\infty} $	leads he could gather $\frac{n}{2k-1} \frac{n}{n^2+k^2}$		(GATE ST	2019)
a) $\frac{e}{3}$	b) $\frac{5}{6}$	c) $\frac{3}{4}$	d) $\frac{\pi}{4}$	
2) Let $\mathbf{F} = (x - y + z)$ and (5,5,0) travers	$(\hat{i} + \hat{j})$ be a vector field on \mathbb{R}^3 . The ed in that order is	e line integral $\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$, where C is	s the triangle with vertices (0,0,0), (GATE ST	(5,0,0) (2019)
a) -25	b) 25	c) 50	d) 5	
$A_1 = \{1, 2\}, A_2 = \{2, 3\}$ a) A_1 and A_2 are n b) A_3 and A_4 are n c) A_1 and A_4 are n d) A_2 and A_4 are in	$\{2,3\}, A_3 = \{3,4\}, A_4 = \{1,2,3\}.$ Whoot independent. Independent. Independent. Independent. Independent.	nich of the following statements is	$P({3}) = P({4}) = 1/4$. Suppose true? (GATE ST) s 1, the expected value of the sum (GATE ST)	2019) of the
a) 4	b) 4.5	c) 3	d) 5.5	
5) The dimension of zero is	the vector space of 7×7 real sy	mmetric matrices with trace zero	and the sum of the off-diagonal ele (GATE ST	
a) 47	b) 28	c) 27	d) 26	
S) Let A be a 6×6 c	complex matrix with $A^3 \neq 0$ and $A^3 \neq 0$	$A^4 = 0$. Then the number of Jordan	n blocks of A is: (GATE ST	2019)
a) 1 or 6	b) 2 or 3	c) 4	d) 5	
		rm distribution defined over $(0, \theta)$ the covariance between $X_{(n)}$ and $\frac{X_{(n)}}{X_{(n)}}$), where $\theta > 0$ and $n \ge 2$. Let Ω is: (GATE ST	
a) 0	b) $n(n+1)\theta$	c) nθ	d) $n^2(n+1)\theta$	
	a random sample drawn from a pen likelihood estimator of θ is:	opulation with probability density	function $f(x; \theta) = \theta x^{\theta-1}, 0 \le x \le 1,$ (GATE ST	
a) $-\frac{n}{\sum_{i=1}^{n} \log X_i}$	b) $-\frac{\sum_{i=1}^{n}\log X_{i}}{n}$	c) $\left(\prod_{i=1}^n X_i\right)^{1/n}$	d) $\frac{\prod_{i=1}^{n} X_i}{n}$	
with mean 0 and $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ are unbia	$+\beta_2 x_{2i} + \epsilon_i, i = 1,, 10$, where x_{1i} unknown variance σ^2 . Here β_0, β	x_{1i} 's and x_{2i} 's are fixed covariates a x_{1i} , β_2 are unknown parameters. Further, x_{1i} , x_{2i}	and ϵ_i 's are uncorrelated random varither, define $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$, or of σ^2 is: (GATE ST	where
a) $\frac{\sum_{i=1}^{10} (Y_i - \hat{Y}_i)^2}{10}$ b) $\frac{\sum_{i=1}^{10} (Y_i - \hat{Y}_i)^2}{7}$		c) $\frac{\sum_{i=1}^{10} (Y_i - \hat{Y}_i)^2}{8}$ d) $\frac{\sum_{i=1}^{10} (Y_i - \hat{Y}_i)^2}{9}$		
normal random va		on parameters. Given the observation	ndent and identically distributed state on (GATE ST	
a) 1.5	b) 1	c) 1.8	d) 2.1	·
Consider a discrete	e time Markov chain on the state spaying statements is true?	pace $\{1, 2, 3\}$ with one-step transition	on probability matrix $P = \begin{pmatrix} 0.7 & 0.3 \\ 0 & 0.6 \\ 0 & 0 \\ \text{(GATE ST)} \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0.4 \\ 1 \\ 2019 \end{pmatrix}$

c) 11

10) "I read somewhere that in ancient times the prestige of a kingdom depended upon the number of taxes that it was able to levy

b) 10

on its people. It was very much like the prestige of a head-hunter in his own community."

Based on the paragraph above, the prestige of a head-hunter depended upon _

a) 9

a) the prestige of the kingdomb) the prestige of the heads

c) the number of taxes he could levy

- a) States 1, 3 are recurrent and state 2 is transient.
- b) State 3 is recurrent and states 1, 2 are transient.
- c) States 1, 2, 3 are recurrent.
- d) States 1, 2 are recurrent and state 3 is transient.
- 12) The minimal polynomial of the matrix $\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ is: (GATE ST 2019)
 - a) (x-1)(x-2)
 - b) $(x-1)^2(x-2)$
 - c) $(x-1)(x-2)^2$
 - d) $(x-1)^2(x-2)^2$
- 13) Let (X_1, X_2, X_3) be a trivariate normal random vector with mean vector (-3, 1, 4) and variance-covariance matrix

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & -3 \\ 0 & -3 & 4 \end{pmatrix}.$$

Which of the following statements are true?

(GATE ST 2019)

- (1) X_2 and X_3 are independent.
- (2) $X_1 + X_3$ and X_2 are independent.
- (3) (X_2, X_3) and X_1 are independent.
- (4) $\frac{1}{2}(X_2 + X_3)$ and X_1 are independent.
- a) (1) and (3)

c) (1) and (4)

b) (2) and (3)

- d) (3) and (4)
- 14) A 2^3 factorial experiment with factors A, B, C is arranged in two blocks of four plots each as follows: (Below (1) denotes the treatment in which A, B, C are at the lower level, ac denotes treatment in which A and C are at the higher level and B is at the lower level, and so on.)

Block 1	(1)	ab	ac	bc
Block 2	a	b	С	abc

The treatment contrast that is confounded with the blocks is:

(GATE ST 2019)

a) *BC*

b) AC

c) AB

d) ABC

15) Consider a fixed effects two-way analysis of variance model

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk},$$

where i = 1, ..., a; j = 1, ..., b; k = 1, ..., r, and the ϵ_{ik} 's are independent and identically distributed normal random variables with mean zero and constant variance. Then the degrees of freedom available to estimate the error variance is zero when:

(GATE ST 2019)

- a) a = 1
- b) b = 1
- c) r = 1
- d) None of the above
- 16) For k = 1, 2, ..., 10, let the probability density function of the random variable X_k be

$$f_{X_k}(x) = \begin{cases} \frac{e^{-x/k}}{k}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

Then $E\left(\sum_{k=1}^{10} kX_k\right)$ is equal to ...

(GATE ST 2019)

17) The probability density function of the random vector (X, Y) is given by

$$f_{X,Y}(x,y) = \begin{cases} c, & 0 < x < y < 1\\ 0, & \text{otherwise} \end{cases}$$

Then the value of c is equal to ...

(GATE ST 2019)

18) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed normal random variables with mean 4 and variance 1. Then

$$\lim_{n \to \infty} P\left(\frac{1}{n} \sum_{i=1}^{n} X_i > 4.0006\right)$$

is equal to ... (GATE ST 2019)

19) Let (X_1, X_2) be a random vector following a bivariate normal distribution with mean vector (0, 0), variances $Var(X_1) = Var(X_2) = Var(X_2)$ 1, and correlation coefficient ρ , where $|\rho| < 1$. Then $P(X_1 + X_2 > 0)$ is equal to ... (GATE ST 2019)

- 20) Let $X_1, ..., X_n$ be a random sample from a normal distribution with mean μ and variance 1. Let Φ be the cumulative distribution function of the standard normal distribution. Given $\Phi(1.96) = 0.975$, the minimum sample size required such that the length of the 95% confidence interval for μ does NOT exceed 2 is ... (GATE ST 2019)
- 21) Let X be a random variable with probability density function

$$f(x; \theta) = \theta e^{-\theta x}, where x \ge 0, \theta > 0.$$

To test $H_0: \theta = 1$ against $H_1: \theta > 1$, the following test is used:

Reject H_0 if and only if $X > \log 20$. Then the size of the test is ...

(GATE ST 2019)

22) Let $\{X_n\}_{n\geq 0}$ be a discrete time Markov chain on the state space $\{1,2,3\}$ with one-step transition probability matrix

$$\begin{pmatrix} 0.4 & 0.3 & 0.3 \\ 0.5 & 0.2 & 0.3 \\ 0.2 & 0.4 & 0.4 \end{pmatrix}$$

and initial distribution $P(X_0 = 1) = 0.5$, $P(X_0 = 2) = 0.2$, $P(X_0 = 3) = 0.3$. Then $P(X_1 = 2, X_2 = 3, X_3 = 1)$ (rounded off to three decimal places) is equal to ... (GATE ST 2019)

23) Let f be a continuous and positive real-valued function on [0, 1]. Then

$$\int_0^{\pi} f(\sin x) \cos x \, dx$$

is equal to ... (GATE ST 2019)

- 24) A random sample of size 100 is classified into 10 class intervals covering all the data points. To test whether the data comes from a normal population with unknown mean and unknown variance, the chi-squared goodness of fit test is used. The degrees of freedom of the test statistic is equal to ... (GATE ST 2019)
- 25) For i = 1, 2, 3, 4, let $Y_i = \alpha + \beta x_i + \epsilon_i$, where x_i 's are fixed covariates and ϵ_i 's are uncorrelated random variables with mean 0 and variance 3. Here α and β are unknown parameters. Given the observations: . . . (GATE ST 2019)

Y_i	2	2.5	-0.5	1
x_i	3	2	-4	-1

the variance of the least squares estimator of β is equal to

26) Let $a_n = \frac{(-1)^{n+1}}{n!}, n \ge 0$, and $b_n = \sum_{k=0}^n a_k, n \ge 0$. Then, for |x| < 1, the series

$$\sum_{n=0}^{\infty} b_n x^n$$

converges to (GATE ST 2019)

a)
$$-\frac{e^{-x}}{1+x}$$

b)
$$-\frac{e^{-x}}{1-x^2}$$

c)
$$-\frac{e^{-x}}{1-x}$$

d)
$$-(1 + x)e^{-x}$$

27) Let $\{X_k\}_{k\geq 1}$ be a sequence of independent and identically distributed Bernoulli random variables with success probability $p \in (0,1)$. Then, as $n \to \infty$,

$$\frac{1}{n}\sum_{k=1}^{n}X_{k}$$

converges almost surely to

(GATE ST 2019)

b)
$$\frac{1}{1-n}$$

c)
$$\frac{1-p}{p}$$

d) 1

- 28) Let *X* and *Y* be two independent random variables with χ_m^2 and χ_n^2 distributions, respectively, where *m* and *n* are positive integers. Then which of the following statements is true? (GATE ST 2019)
 - a) For m < n, $P(X > a) \ge P(Y > a)$ for all $a \in \mathbb{R}$.
 - b) For m > n, $P(X > a) \ge P(Y > a)$ for all $a \in \mathbb{R}$.
 - c) For m < n, P(X > a) = P(Y > a) for all $a \in \mathbb{R}$.
 - d) None of the above.
- 29) The matrix $\begin{pmatrix} 1 & x & z \\ 0 & 2 & y \\ 0 & 0 & 1 \end{pmatrix}$ is diagonalizable when (x, y, z) equals (GATE ST 2019)

a)
$$(0,0,1)$$

b) (1, 1, 0)

- c) $(\sqrt{2}, \sqrt{2}, 2)$
- d) $(\sqrt{2}, \sqrt{2}, \sqrt{2})$
- 30) Suppose that P_1 and P_2 are two populations with equal prior probabilities having bivariate normal distributions with mean vectors (2,3) and (1,1), respectively. The variance-covariance matrix of both the distributions is the identity matrix. Let $z_1 = (2.5,2)$ and $z_2 = (2,1.5)$ be two new observations. According to Fisher's linear discriminant rule: (GATE ST 2019)
 - a) z_1 is assigned to P_1 , and z_2 is assigned to P_2 .
 - b) z_1 is assigned to P_2 , and z_2 is assigned to P_1 .
 - c) z_1 is assigned to P_1 , and z_2 is assigned to P_1 .
 - d) z_1 is assigned to P_2 , and z_2 is assigned to P_2 .

31) Let X_1, \ldots, X_n be a random sample from a population having probability density function

$$f_X(x;\theta) = \frac{2x}{\theta^2}, \quad 0 < x < \theta.$$

Then the method of moments estimator of θ is

(GATE ST 2019)

a)
$$\frac{3\sum_{i=1}^{n}X_i}{2n}$$

b)
$$\frac{3\sum_{i=1}^{n}X_{i}^{2}}{2n}$$

c)
$$\frac{\sum_{i=1}^{n} X_i}{n}$$

d)
$$\frac{3\sum_{i=1}^{n}X_{i}(X_{i}-1)}{2n}$$

32) Let X be a normal random variable having mean θ and variance 1, where $1 \le \theta \le 10$. Then X is

(GATE ST 2019)

- a) sufficient but not complete
- b) the maximum likelihood estimator of θ
- c) the uniformly minimum variance unbiased estimator of θ
- d) complete and ancillary
- 33) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables with mean θ and variance θ , where $\theta > 0$.

$$\frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i^2}$$

is a consistent estimator of

(GATE ST 2019)

a)
$$\frac{1}{1+\theta}$$

b)
$$\frac{1+\theta}{\theta}$$

c)
$$\frac{1}{6}$$

d)
$$\frac{\theta}{1+\theta}$$

34) Let X_1, \ldots, X_{10} be a random sample from a population with probability density function

$$f(x; \theta) = e^{-|x-\theta|}/2, \quad -\infty < x < \infty, -\infty < \theta < \infty.$$

Then the maximum likelihood estimator of θ

(GATE ST 2019)

- a) does not exist
- b) is not unique
- c) is the sample mean
- d) is the smallest observation
- 35) Consider the model

$$Y_i = \beta + \epsilon_i$$

where ϵ_i 's are independent normal random variables with zero mean and known variance $\sigma_i^2 > 0$ for i = 1, ..., n. Then the best linear unbiased estimator of the unknown parameter β is (GATE ST 2019)

a)
$$\frac{\sum_{i=1}^{n} \frac{Y_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$

b)
$$\frac{\sum_{i=1}^{n} Y_i}{n}$$

c)
$$\frac{\sum_{i=1}^{n} \frac{Y_i}{\sigma_i}}{n}$$

d)
$$\frac{\sum_{i=1}^{n} \frac{Y_i}{\sigma_i}}{\sum_{i=1}^{n} \frac{1}{\sigma_i}}$$

36) Let (X, Y) be a bivariate random vector with probability density function

$$f_{X,Y}(x,y) = \begin{cases} e^{-y}, & 0 < x < y \\ 0, & \text{otherwise} \end{cases}.$$

Then the regression of Y on X is given by

(GATE ST 2019)

a)
$$X + 1$$

b)
$$\frac{X}{2}$$

c)
$$\frac{Y}{2}$$

d)
$$Y + 1$$

37) Consider a discrete time Markov chain on the state space {1,2} with one-step transition probability matrix

$$P = \begin{pmatrix} 0.2 & 0.8 \\ 0.3 & 0.7 \end{pmatrix}.$$

Then

$$\lim_{n\to\infty} P^n$$

is

(GATE ST 2019)

a)
$$\begin{pmatrix} \frac{3}{11} & \frac{8}{11} \\ \frac{3}{11} & \frac{8}{11} \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

d)
$$\begin{pmatrix} \frac{8}{11} & \frac{3}{11} \\ \frac{8}{11} & \frac{3}{11} \end{pmatrix}$$

38) Let (X_1, X_2) be a random vector with variance-covariance matrix

$$\begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$
.

The two principal components are

(GATE ST 2019)

- a) X_1 and X_2
- b) $-X_1$ and X_2
- c) X_1 and $-X_2$
- d) $X_1 + X_2$ and X_2

39) Consider the objects $\{1, 2, 3, 4\}$ with the distance matrix

$$\begin{pmatrix} 0 & 1 & 11 & 5 \\ 1 & 0 & 2 & 3 \\ 11 & 2 & 0 & 4 \\ 5 & 3 & 4 & 0 \end{pmatrix}.$$

Applying the single-linkage hierarchical procedure twice, the two clusters that result are

(GATE ST 2019)

a) {2,3} and {1,4}

c) $\{1, 3, 4\}$ and $\{2\}$

b) {1, 2, 3} and {4}

- d) {2, 3, 4} and {1}
- 40) The maximum likelihood estimates of the mean vector and the variance-covariance matrix of a bivariate normal distribution based on the realization $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ of a random sample of size 3, are given by (GATE ST 2019)
 - a) (3,3) and $\begin{pmatrix} 2 & 1 \\ 1 & \frac{2}{3} \end{pmatrix}$ b) (3,3) and $\begin{pmatrix} 2 & 1 \\ 1 & \frac{3}{2} \end{pmatrix}$

- c) (3,3) and $\begin{pmatrix} 3 & \frac{3}{2} \\ \frac{3}{2} & \frac{2}{3} \end{pmatrix}$ d) (3,3) and $\begin{pmatrix} 3 & \frac{3}{2} \\ \frac{2}{3} & 1 \end{pmatrix}$
- 41) Consider a fixed effects one-way analysis of variance model

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij},$$

for i = 1, ..., a; j = 1, ..., r, where the ϵ_{ij} are independent and identically distributed normal random variables with mean zero and variance σ^2 . Here, r and a are positive integers. Let

$$\bar{Y}_{i\cdot} = \frac{1}{r} \sum_{j=1}^{r} Y_{ij}.$$

Then \bar{Y}_{i} is the least squares estimator for

(GATE ST 2019)

a) $\mu + \frac{\tau_i}{2}$

b) τ_i

c) $\mu + \tau_i$

- d) μ
- 42) Let A be an $n \times n$ positive semi-definite matrix with eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$, and with α as the maximum diagonal entry. We can find a vector x such that $x^t x = 1$, where t denotes transpose, and (GATE ST 2019)
 - a) $x^t A x > \lambda_1$
 - b) $x^t A x < \lambda_n$
 - c) $\lambda_n \le x^t A x \le \lambda_1$
 - d) $x^t A x > n\alpha$
- 43) Let X be a random variable with uniform distribution on the interval (-1,1) and let $Y = (X+1)^2$. Then the probability density function f(y) of Y, over the interval (0,4), is (GATE ST 2019)
 - a) $\frac{3\sqrt{y}}{16}$

b) $\frac{1}{4\sqrt{y}}$

c) $\frac{1}{6\sqrt{v}}$

- d) $\frac{1}{\sqrt{y}}$
- 44) Let S be the solid whose base is the region in the xy-plane bounded by the curves

$$y = x^2$$
 and $y = 8 - x^2$,

and whose cross-sections perpendicular to the x-axis are squares. Then the volume of S (rounded off to two decimal places) is (GATE ST 2019)

45) Consider the trinomial distribution with the probability mass function

$$P(X = x, Y = y) = \frac{7!}{x!y!(7 - x - y)!} (0.6)^{x} (0.2)^{y} (0.2)^{7 - x - y},$$

and $x \ge 0, y \ge 0$, and $x + y \le 7$. Then $E(Y \mid X = 3)$ is equal to ...

(GATE ST 2019)

46) Let $Y_i = \alpha + \beta x_i + \epsilon_i$, where $i = 1, 2, 3, 4, x_i$'s are fixed covariates and ϵ_i 's are independent and identically distributed standard normal random variables. Here α and β are unknown parameters. Let Φ be the cumulative distribution function of the standard normal distribution and $\Phi(1.96) = 0.975$. Given the following observations:

Y_i	2	2.5	-0.5	1
x_i	3	2	-4	-1

The length (rounded off to two decimal places) of the shortest 95% confidence interval for β based on its least squares estimator is equal to ... (GATE ST 2019)

 $0.2 \quad 0.8$ 47) Consider a discrete time Markov chain on the state space {1, 2, 3} with one-step transition probability matrix | 0.5 0 0.5 0.6 0.4 0

Then the period of the Markov chain is ...

(GATE ST 2019)

- 48) Suppose customers arrive at an ATM facility according to a Poisson process with rate 5 customers per hour. The probability (rounded off to two decimal places) that no customer arrives at the ATM facility from 1:00 pm to 1:18 pm is ... (GATE ST 2019)
- 49) Let X be a random variable with characteristic function $\phi_X(\cdot)$ such that $\phi_X(2\pi) = 1$. Let \mathbb{Z} denote the set of integers. Then $P(X \in \mathbb{Z})$ is equal to ... (GATE ST 2019)
- 50) Let X_1 be a random sample of size 1 from uniform distribution over (θ, θ^2) , where $\theta > 1$. To test $H_0: \theta = 2$ against $H_1: \theta = 3$, reject H_0 if and only if $X_1 > 3.5$. Let α and β be the size and the power, respectively, of this test. Then $\alpha + \beta$ (rounded off to two decimal places) is equal to ... (GATE ST 2019)
- 51) Let $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, ..., n, where x_i 's are fixed covariates and ϵ_i 's are uncorrelated random variables with mean zero and constant variance. Suppose that $\hat{\beta}_0$ and $\hat{\beta}_1$ are the least squares estimators of the unknown parameters β_0 and β_1 , respectively. If $\sum_{i=1}^n x_i = 0$, then the correlation between $\hat{\beta}_0$ and $\hat{\beta}_1$ is equal to ... (GATE ST 2019)
- 52) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = (3x^2 + 4)\cos x.$$

Then (GATE ST 2019)

$$\lim_{h \to 0} \frac{f(h) + f(-h) - 8}{h^2}$$

is equal to ...

- 53) The maximum value of $(x-1)^2 + (y-2)^2$ subject to the constraint $x^2 + y^2 \le 45$ is equal to ... (GATE ST 2019)
- 54) Let $X_1, ..., X_{10}$ be independent and identically distributed normal random variables with mean 0 and variance 2. Then $E\left(\frac{X_1^2}{X_1^2 + \cdots + X_{10}^2}\right)$ is equal to ...

 (GATE ST 2019)
- 55) Let *I* be the 4×4 identity matrix and $v = (1, 2, 3, 4)^t$, where *t* denotes transpose. Then the determinant of $I + v v^t$ is equal to ... (GATE ST 2019)