Tutorial 3 Solutions

CSN-351/AID-523 Database Management Systems

1. Redundancies among values across different attributes :

Customer ID —> Customer Name

Product ID -> Product Name

Eg. ABC-13 —> Amul Milk (500ml)

Possible decomposition:

Customer (Customer ID, Customer Name)

Product(Product ID, Product Name)

Purchase(Customer ID, Product ID, Time)

- 2. a. No redundancy, Lossless, Dependency Preserving.
 - b. Normalization.
 - c. Update anomaly, Insertion anomaly, Deletion anomaly.
- 3. Lossy decomposition. As the common attribute B is not a super key of any of the tables.

Possible lossless decomposition: R1(AB), R2(AC)

Α	В
1	2
2	2
3	1
Α	С
1	1
2	2
3	2

- 4. a. Lossless :: C is a superkey in R2
 - b. Lossy
 - c. Lossy
- d. Lossless :: B is superkey between R1, R2 and C is superkey between R12, R3
- 5. R1(ABC), R2(ACDE), R3(ADG)
- 6. Yes, this is a dependency preserving decomposition.
- 7. No, this is not dependency preserving decomposition. As AB —> C is not possible to make from this decomposition. Hence AB—> CD will not be recovered.