Analisi Matematica I (A.A. 2010/2011)

Docente: Fabio Camilli

Esercizi su Insiemi numerici, Induzione, Successioni e Serie

Esercizio 1. Determinare, se esistono, il minimo, il massimo, l'estremo inferiore e l'estremo superiore degli insiemi

$$A := \left\{ \frac{(-1)^n}{2 + n^2} \,\middle|\, n \in \mathbb{N} \right\}, \qquad B := \left\{ \frac{m}{n} + \frac{n}{m} \,\middle|\, m, n \in \mathbb{N} \right\}^*, \qquad C := \left\{ (-1)^n + \frac{1}{2^n} \,\middle|\, n \in \mathbb{N} \right\},$$

$$D := \left\{ n^2 - \frac{3}{n} \,\middle|\, n \in \mathbb{N} \right\}, \qquad E := \left\{ \frac{m}{n} - \frac{n}{m} \,\middle|\, m, n \in \mathbb{N} \right\}, \qquad F := \left\{ \frac{|3 - n|}{3 + n} \,\middle|\, n \in \mathbb{N} \right\}.$$

(* Usare $x + \frac{1}{x} \ge 2$ per ogni x > 0.)

Esercizio 2. Verificare per induzione le seguenti affermazioni per ogni $n \in \mathbb{N}, n \ge 1$:

$$\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right), \qquad \sum_{k=2n+1}^{3n} k = \frac{n(5n+1)}{2},$$

$$n! \ge 2^{n-1}, \qquad \frac{6^{2n} - 3^n}{11} \quad \text{è un numero naturale.}$$

Esercizio 3. Calcolare, se esistono, i seguenti limiti:

$$\lim_{n \to \infty} n \left(\sqrt{5} - \sqrt{5 - \frac{2}{n}} \right), \qquad \lim_{n \to \infty} \left(1 + \frac{1}{n^n} \right)^{n!}, \qquad \lim_{n \to \infty} \frac{n^n}{(n!)^2}, \qquad \lim_{n \to \infty} \left(\frac{n^2 + n}{n^2 + n + 1} \right)^{2n^2},$$

$$\lim_{n \to \infty} \frac{(n+1)^{11} - (n-1)^{11}}{n^{10}}, \qquad \lim_{n \to \infty} \sqrt[n]{\frac{n!}{2^n + 1}}, \qquad \lim_{n \to \infty} \sqrt[n^2]{n!}, \qquad \lim_{n \to \infty} \frac{n^{n+1}}{(n+1)^n},$$

$$\lim_{n \to \infty} \sqrt[n]{a^{n!}} \quad (a > 0), \qquad \lim_{n \to \infty} \frac{e^n n^{2n}}{(n!)^3}, \qquad \lim_{n \to \infty} \sqrt[n]{2^n + 3^n}, \qquad \lim_{n \to \infty} \sqrt[n]{\frac{2n}{n}}.$$

Esercizio 4**. Sia $a_0 := 1$ e $a_{n+1} := \sqrt{1 + a_n}$ per ogni $n \in \mathbb{N}$.

- (a) Verificare per induzione che $(a_n)_{n\in\mathbb{N}}$ è crescente.
- (b) Verificare per induzione che $1 \le a_n \le 2$ per ogni $n \in \mathbb{N}$.
- (c) Dimostrare che $(a_n)_{n\in\mathbb{N}}$ è convergente e determinare $\lim_{n\to\infty} a_n$.

(** Esercizio facoltativo.)

Esercizio 5. Verificare la convergenza delle seguenti serie:

$$\sum_{k=1}^{\infty} \frac{\sqrt{k+1} - \sqrt{k}}{k}, \qquad \sum_{k=0}^{\infty} 2^k \cdot \binom{2k}{k}^{-1}, \qquad \sum_{k=1}^{\infty} (-1)^k \left(\sqrt{k+1} - \sqrt{k}\right), \qquad \sum_{k=1}^{\infty} \left(\frac{\sqrt{k} - 1}{k}\right)^k,$$

$$\sum_{k=1}^{\infty} \left(\frac{2k^3 + 2k + 2}{3k^3 - 3k - 3}\right)^k, \qquad \sum_{k=1}^{\infty} 2^k \cdot \left(\frac{k}{k+2}\right)^{k^2 + 2}, \qquad \sum_{k=1}^{\infty} \frac{3k - 3^k}{5^k - 5k}, \qquad \sum_{k=1}^{\infty} \frac{2^k k!}{k^k},$$

$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{1 + k^2}, \qquad \sum_{k=1}^{\infty} \frac{k! + 2}{(k+2)!}, \qquad \sum_{k=1}^{\infty} (-1)^k \frac{5^{2k+1}}{(2k+1)!}, \qquad \sum_{k=1}^{\infty} \frac{1}{e^k - k^e}.$$