BACALAUREAT 2008 SESIUNEA IULIE

MT1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Fie fracția zecimală periodică $0, (769230) = 0, a_1 a_2 a_3 \dots$ Să se calculeze $a_1 + a_2 + a_3 + \dots + a_{2008}$.
- 2. Să se arate că dreapta de ecuație y = 2x 1 nu intersectează parabola de ecuație $y = x^2 + x + 1$.
- **3.** Să se rezolve în \mathbb{R} ecuația $\log_2 x + \log_4 x^2 = 6$.
- 4. Într-o clasă sunt 25 de elevi dintre care 13 sunt fete. Să se determine numărul de moduri în care se poate alege un comitet reprezentativ al clasei format din 3 fete și 2 băieți.
- 5. În sistemul cartezian de coordonate xOy se consideră punctele A(2,-1), B(-1,1), C(1,3) şi D(a,4), $a \in \mathbb{R}$. Să se determine a pentru care dreptele AB şi CD sunt perpendiculare.
- **6.** Ştiind că $\alpha \in \left(\pi, \frac{3\pi}{2}\right)$ şi că $\sin \alpha = -\frac{4}{5}$, să se calculeze tg $\frac{\alpha}{2}$

SUBIECTUL II

- 1. Fie matricea $A \in \mathcal{M}_2(\mathbb{R})$. Se notează cu X^t transpusa unei matrice pătratice X și cu Tr(X) suma elementelor de pe diagonala principală a matricei X.
 - a) Să se demonstreze că $Tr(A + A^t) = 2Tr(A)$.
 - **b)** Să se demonstreze că dacă $Tr(A \cdot A^t) = 0$, atunci $A = O_2$.
 - c) Să se demonstreze că dacă suma elementelor matricei $A \cdot A^t$ este egală cu 0, atunci $\det(A) = 0$.
- **2.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ și mulțimea $K = \{aI_2 + bA \mid a, b \in \mathbb{Q}\}$.
 - a) Să se arate că $A^2 \in K$.
 - b) Să se arate că mulțimea K este parte stabilă în raport cu înmulțirea matricelor din $\mathcal{M}_2(\mathbb{Q})$.
 - c) Să se arate că pentru orice $X \in K$, $X \neq O_2$ există $Y \in K$ astfel încât $X \cdot Y = I_2$.

SUBIECTUL III

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \, f(x) = \sqrt{x^2 + x + 1} \sqrt{x^2 x + 1}.$
 - a) Să se arate că graficul funcției f admite asimptotă orizontală spre $+\infty$.
 - b) Să se studieze monotonia funcției f.
 - c) Să se calculeze $\lim_{n\to\infty} \left(\frac{f(1)+f(2)+\ldots+f(n)}{n}\right)^n$.
- **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n=\int_0^1 x^n\sqrt{1-x^2}\ dx$.
 - a) Să se calculeze I_1 .
 - **b)** Să se arate că $(n+2)I_n = (n-1)I_{n-2}$ pentru orice $n \in \mathbb{N}, n \geq 3$.
 - c) Să se calculeze $\lim_{n\to\infty} I_n$.

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, specializarea toate calificările profesionale; profilul resurse, specializarea toate calificările profesionale; profilul tehnic, specializarea toate calificările profesionale.

SUBIECTUL I

- 1. Să se calculeze $\left(\frac{3}{2}\right)^{-1} \sqrt[3]{\frac{8}{27}}$.
- **2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 1 și $g: \mathbb{R} \to \mathbb{R}$, f(x) = 5 x. Să se determine coordonatele punctului de intersecție a graficelor funcțiilor f și g.
- 3. Să se rezolve ecuația $3^{1-x} = 9$.
- 4. Să se rezolve ecuația $\log_5(x+2) \log_5(2x-5) = 1$.
- 5. Să se determine ecuația dreptei care trece prin punctul A(1,-1) și este paralelă cu dreapta y=x.
- 6. Să se calculeze perimetrul unui triunghi echilateral care are aria egală cu $\sqrt{3}$.

SUBIECTUL II

- **1.** În $\mathcal{M}_3(\mathbb{R})$ se consideră matricele $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ și $B = I_3 + A$, unde $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - a) Să se calculeze $A \cdot B$.
 - b) Să se calculeze $A^2 + A^3$, unde $A^2 = A \cdot A$ și $A^3 = A^2 \cdot A$.
 - c) Să se demonstreze că dacă $X \in \mathcal{M}_3(\mathbb{R})$ și $A \cdot X = X \cdot A$, atunci există numerele reale a, b, c astfel încât $X = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}.$
- **2.** Se consideră polinomul $f = X^3 + aX^2 + bX + c$, cu $a, b, c \in \mathbb{R}$ având rădăcinile $x_1, x_2, x_3 \in \mathbb{R}$.
 - a) Să se determine numărul real c stiind că f(1) + f(-1) = 2a + 1.
 - b) Știind că a = -3, b = 1, c = 1, să se determine rădăcinile reale ale polinomului f.
 - c) Să se exprime în funcție de numerele reale a, b, c determinantul $D = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}$.

SUBIECTUL III

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x+1}{e^x}$
 - a) Să se verifice că $f'(x) = -\frac{x}{e^x}$ pentru orice $x \in \mathbb{R}$.
 - b) Să se determine asimptota către $+\infty$ la graficul funcției f.
 - c) Să se arate că $f(x) \leq 1$ pentru orice $x \in \mathbb{R}$.
- **2.** Pentru orice $n \in \mathbb{N}^*$ se consideră funcțiile $f_n : [0,1] \to \mathbb{R}, f_n(x) = \frac{1}{x^n + 4}$
 - a) Să se calculeze $\int (x+4)^2 \cdot f_1(x) \ dx$, unde $x \in [0,1]$.
 - **b)** Să se calculeze $\int_0^1 x f_2(x) dx$.
 - c) Să se arate că aria suprafeței plane cuprinse între graficul funcției f_{2008} , axa Ox și dreptele x=0 și x=1 este un număr din intervalul $\left[\frac{1}{5},\frac{1}{4}\right]$.

2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- 1. Să se determine $n \in \mathbb{N}$ pentru care $\sqrt{50} \sqrt{128} + \sqrt{200} = \sqrt{n}$
- 2. Să se determine $m \in \mathbb{R}$ astfel încât ecuația $x^2 + (m-1)x m = 0$ să aibă rădăcini reale egale.
- 3. Triunghiul ABC are AB = 10, $m(\triangleleft B) = 60^{\circ}$ și $m(\triangleleft C) = 45^{\circ}$. Să se calculeze lungimea laturii AC.
- **4.** Să se determine ecuația dreptei care trece prin punctele A(3, -3) şi B(1, 2).
- 5. Să se determine $x \in \mathbb{R}$ astfel încât numerele x + 2, 3x + 2, 6x + 5 să fie termeni consecutivi ai unei progresii aritmetice.
- **6.** Să se rezolve în \mathbb{R} ecuația $\lg^2 x + 5 \lg x + 6 = 0$.

SUBIECTUL II

Pe mulțimea numerelor reale se definește legea de compoziție $x \perp y = \frac{1}{2}(xy - x - y + 3), (\forall) \ x, y \in \mathbb{R}.$

- a) Să se demonstreze că $x \perp y = \frac{1}{2}(x-1)(y-1) + 1$, $(\forall) x, y \in \mathbb{R}$.
- b) Să se verifice că legea de compoziție " \perp " este asociativă pe \mathbb{R} .
- c) Se consideră mulțimea $M=(1,+\infty)$. Să se arate că pentru oricare $x,y\in M$, rezultă că $x\perp y\in M$.
- d) Să se rezolve în \mathbb{R} ecuația $5^x \perp 3^{x-3} = 1$.
- e) Să se rezolve în \mathbb{R} inecuația $(x+2) \perp (x-3) < 1$.
- **f)** Să se determine $n \in \mathbb{Z}$, astfel încât $x \perp x \perp x = 2^n \cdot (x-1)^3$, $(\forall) \ x \in \mathbb{R}$.

SUBIECTUL III

Se consideră matricele $A, I_3 \in \mathcal{M}_3(\mathbb{R}), A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ și $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

- a) Să se calculeze $A-2I_3$.
- b) Să se calculeze det(2A).
- c) Să se determine numărul real x pentru care $A^2 = A + xI_3$.
- d) Să se arate că matricea $\frac{1}{2}A \frac{1}{2}I_3$ este inversa matricei A.
- e) Să se determine matricea $X \in \mathcal{M}_{3,1}(\mathbb{R})$ din ecuația matriceală $A \cdot X = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix}$.

3

f) Să se determine $x \in \mathbb{R}$ pentru care $\det(A + xI_3) = x^3$.

SESIUNEA AUGUST

MT1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Să se rezolve în mulțimea numerelor complexe ecuația $z^2 = -9$.
- 2. Să se determine $a \in \mathbb{R}^*$ pentru care ecuația $ax^2 + (3a 1)x + a + 3 = 0$ are soluții reale.
- 3. Să se rezolve în mulțimea $[0, 2\pi]$ ecuația $\cos 4x = 1$.
- **4.** Să se determine numărul funcțiilor $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ cu proprietatea că f(1) = f(2).
- 5. Să se calculeze lungimea razei cercului înscris într-un triunghi care are lungimile laturilor 13, 14, 15.
- **6.** Triunghiul ABC are $B = \frac{\pi}{6}$, $C = \frac{\pi}{4}$. Să se demonstreze că $\frac{AB}{AC} = \sqrt{2}$.

SUBIECTUL II

- 1. Se consideră matricea $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
 - a) Să se calculeze $\det(A)$.
 - **b)** Să se determine A^{-1} .
 - c) Să se arate că $(I_3 + A)^n = 2^{n-1}(I_3 + A), (\forall) n \in \mathbb{N}^*.$
- **2.** Pentru fiecare $n \in \mathbb{N}^*$ considerăm polinomul $f_n = X^{3n} + 2X^2 4X 1 \in \mathbb{C}[X]$.
 - a) Să se arate că f_1 nu este divizibil cu polinomul g = X 2.
 - b) Să se determine suma coeficienților câtului împărțirii polinomului f_3 la X-1.
 - c) Să se arate că restul împărțirii polinomului f_n la polinomul $h = X^2 + X + 1$ nu depinde de n.

SUBIECTUL III

- 1. Se consideră funcția $f:(0,\infty)\to\mathbb{R},\, f(x)=a^x-x^a,\, a>0.$
 - a) Să se calculeze f'(1).
 - b) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă x = a.
 - c) Să se arate că, dacă $f(x) \ge 0$, $(\forall) \ x > 0$, atunci a = e.
- 2. Se consideră șirul $(I_n)_{n\geq 1}$, $I_n=\int_1^e \ln^n x\ dx$.
 - a) Să se calculeze I_1 .
 - **b)** Să se arate că $I_n = e nI_{n-1}$, $(\forall) n \geq 2$.
 - c) Să se arate că șirul $(I_n)_{n\geq 1}$ este convergent.

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, specializarea toate calificările profesionale; profilul resurse, specializarea toate calificările profesionale; profilul tehnic, specializarea toate calificările profesionale.

SUBIECTUL I

- 1. Să se calculeze suma 1 + 5 + 9 + 13 + ... + 25
- 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 mx + 2$, $m \in \mathbb{R}^*$. Să se determine numărul real nenul m știind că valoarea minimă a funcției este egală cu 1.
- 3. Să se calculeze $\log_2(\operatorname{tg} 45^\circ) + \log_2(\operatorname{ctg} 45^\circ)$.
- 4. Să se calculeze probabilitatea ca alegând un număr din mulțimea $A = \{\sqrt{2}, \sqrt{3}, \sqrt{4}, \dots, \sqrt{11}\}$, acesta să fie irațional.
- 5. Să se determine ecuația dreptei care conține punctul A(2, -3) și este paralelă cu dreapta x + 2y + 5 = 0.
- 6. Să se calculeze lungimea laturii BC a triunghiului ABC știind că AB = 6, AC = 10 și $m(\triangleleft A) = 60^{\circ}$.

SUBIECTUL II

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & a & 1 \\ 0 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ și $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
 - a) Să se scrie sistemul asociat ecuației matriceale $A \cdot X = B$.
 - **b)** Să se determine $a \in \mathbb{R}$ pentru care $\det(A) = 0$.
 - c) Dacă $a \in \mathbb{R} \setminus \{2,6\}$ și (x_0,y_0,z_0) este soluția sistemului $\begin{cases} x+2y-z=1\\ 2x+ay+z=1\\ 2y+3z=1 \end{cases}$, să se demonstreze că $\frac{x_0}{z_0}$ nu depinde de a.
- **2.** Se consideră polinomul $f = (X+1)^{2008} + (X-1)^{2008}$ având forma algebrică $f = a_{2008}X^{2008} + ... + a_1X + a_0$, unde $a_0, a_1, ..., a_{2008}$ sunt numere reale.
 - a) Să se calculeze f(-1) + f(1).
 - b) Să se determine suma coeficienților polinomului f.
 - c) Să se determine restul împărțirii lui f la $X^2 1$.

SUBIECTUL III

- 1. Se consideră funcția $f:(0,+\infty)\to\mathbb{R},\, f(x)=x\ln x-x.$
 - a) Să se verifice că $f'(x) = \ln x$ pentru orice x > 0.
 - b) Să se scrie ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$.
 - c) Să se demonstreze că funcția f este convexă pe $(0, +\infty)$.
- **2.** Pentru orice $n \in \mathbb{N}^*$ se consideră funcțiile $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = x^n + 1$.
 - a) Să se determine $\int f_1(x) dx$, unde $x \in [0, 1]$.
 - b) Să se calculeze aria suprafeței plane cuprinse între graficul funcției $g:[0,1]\to\mathbb{R},\ g(x)=\sqrt{f_1(x)},\ \text{axa }Ox$ și dreptele de ecuații x=0 și x=1.

5

c) Să se arate că $\int_0^1 \sqrt{f_n(x)} dx \le \sqrt{2}$ pentru orice $n \in \mathbb{N}^*$.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- 1. Să se rezolve sistemul $\begin{cases} x+y=1\\ xy=0 \end{cases}, \ x,\,y\in\mathbb{R}.$
- **2.** Să se calculeze $S = \log_3 27 + \log_{\frac{1}{3}} 3 \log_{\sqrt{3}} 1 + \log_3 \sqrt{3}$.
- 3. Să se afle suma primilor 10 termeni ai unei progresii aritmetice $(a_n)_{n>1}$, știind că $a_1=3$ și $a_5=11$.
- 4. Să se determine ecuația dreptei care trece prin punctul A(1,-1) și este perpendiculară pe dreapta de ecuație x+y+1=0.
- 5. Să se rezolve în mulțimea numerelor reale ecuația $(0,5)^{x^2-4} = (0,125)^{2+x}$.
- **6.** Să se calculeze perimetrul triunghiului ABC, știind că BC = 12, $m(\triangleleft A) = 60^{\circ}$, $m(\triangleleft B) = 75^{\circ}$.

SUBIECTUL II

Pe mulțimea $H = \{x \in \mathbb{N} \mid x \text{ este civizor al lui } 12\}$ se definește legea de compoziție $x \star y = \text{c.m.m.d.c } (x,y), \ (\forall) \ x, y \in H.$

- a) Să se precizeze elementele mulțimii H.
- b) Să se arate că pentru oricare $x, y \in H$, rezultă că $x \star y \in H$.
- c) Să se verifice că $[(12 \star 6) \star 4] \star 2 = 12 \star [6 \star (4 \star 2)].$
- d) Să se rezolve ecuația $6 \star x = 2$.
- e) Să se demonstreze că legea de compoziție " \star " este asociativă pe H.
- f) Să se demonstreze că legea de compoziție " \star " are element neutru pe H.

SUBIECTUL III

Se consideră mulțimea de matrice $M=\left\{A(a)\in\mathcal{M}_2(\mathbb{R})\ A(a)=\begin{pmatrix}a^2-4&-1\\a-2&2a-1\end{pmatrix},a\in\mathbb{R}\right\}$ și matricele $B=\begin{pmatrix}-3&-1\\7&1\end{pmatrix},I_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$

- a) Să se determine $a \in \mathbb{R}$ pentru care $A(a) = \begin{pmatrix} 5 & -1 \\ 1 & 5 \end{pmatrix}$.
- **b)** Să se calculeze $C = 2 \begin{pmatrix} -3 & -1 \\ 7 & 1 \end{pmatrix} + \begin{pmatrix} 5 & -1 \\ 1 & 5 \end{pmatrix}$.
- c) Să se verifice că $B^2 = -2B 4I_2$.
- d) Să se calculeze det A(3).
- e) Să se arate că dacă matricea $X \in \mathcal{M}_2(\mathbb{R})$ îndeplinește condiția $X^2 + 2X + 4I_2 = O_2$, atunci $X^3 = 8I_2$.

6

f) Să se determine $a \in \mathbb{R}$ cu proprietatea că det A(3) = 0.