Théorie des Langages 1

Cours 4 : Automates déterministes

L. Rieg (thanks M. Echenim)

Grenoble INP - Ensimag, 1re année

Année 2020-2021

Définition

Définition (Automate déterministe)

Un automate déterministe est un automate fini $\langle Q,V,\delta,I,F\rangle$ sans ε -transition tel que :

- I contient un unique élément
- Pour tout état $p \in Q$ et tout symbole $a \in V$, il existe au plus un état $q \in Q$ tel que $(p,a,q) \in \delta$

Définition

Définition (Automate déterministe)

Un automate déterministe est un automate fini $\langle Q,V,\delta,I,F\rangle$ sans $\varepsilon\text{-transition}$ tel que :

- I contient un unique élément
- Pour tout état $p \in Q$ et tout symbole $a \in V$, il existe au plus un état $q \in Q$ tel que $(p,a,q) \in \delta$

Conséquences de la définition

- L'automate a un seul état initial
- δ est une fonction partielle : $Q \times V \rightharpoonup Q$: Si $(p, a, q) \in \delta$, on pourra noter $\delta(p, a) = q$

Définition

Un automate déterministe est complet si δ est une fonction totale $\delta: Q \times V \to Q$.

Définition

Un automate déterministe est complet si δ est une fonction totale $\delta: Q \times V \to Q.$

Remarque

L'algorithme de déterminisation d'un automate qui va être présenté construit un automate déterministe complet.

Définition

Un automate déterministe est complet si δ est une fonction totale $\delta: Q \times V \to Q.$

Remarque

L'algorithme de déterminisation d'un automate qui va être présenté construit un automate déterministe complet.

Remarque

Dans la suite de ce cours, **sauf mention explicite**, quand on parlera d'automates déterministes, on supposera toujours qu'ils sont complets.

Définition

Un automate déterministe est complet si δ est une fonction totale $\delta: Q \times V \to Q.$

Remarque

L'algorithme de déterminisation d'un automate qui va être présenté construit un automate déterministe complet.

Remarque

Dans la suite de ce cours, **sauf mention explicite**, quand on parlera d'automates déterministes, on supposera toujours qu'ils sont complets.

Questions : Pourquoi déterminiser un automate?

Veut-on toujours le faire?

Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD (complet). On définit la fonction $\delta^*:Q\times V^*\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD (complet). On définit la fonction $\delta^*:Q\times \red{V^*}\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

•
$$\delta^*(p,\varepsilon) = p$$

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD (complet). On définit la fonction $\delta^* : Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD (complet). On définit la fonction $\delta^* : Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\delta^*(p, aw) = \delta^*(\delta(p, a), w)$

Exemple

Définition

Soit $A=\langle Q,V,\delta,I,F\rangle$ un AFD (complet). On définit la fonction $\delta^*:Q\times \red{V^*}\to Q$ par induction de la façon suivante : pour tout $p\in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Exemple

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD (complet). On définit la fonction $\delta^*: Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\delta^*(p, aw) = \delta^*(\delta(p, a), w)$

Exemple

Définition

Soit $A = \langle Q, V, \delta, I, F \rangle$ un AFD (complet). On définit la fonction $\delta^*: Q \times V^* \to Q$ par induction de la façon suivante : pour tout $p \in Q$,

- $\delta^*(p,\varepsilon) = p$
- $\bullet \ \delta^*(p,aw) = \delta^*(\delta(p,a),w)$

Exemple

L'extension de la fonction de transition est parfois notée δ au lieu de δ^* .

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

$$\mathcal{L}(A) = \{ w \in V^* \mid \delta^*(q_0, w) \in F \}$$

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

$$\mathcal{L}(A) = \{ w \in V^* \mid \delta^*(q_0, w) \in F \}$$

L'automate A est initialement connecté si et seulement si

Définitions équivalentes

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$

ullet Langage reconnu par A

$$\mathcal{L}(A) = \{ w \in V^* \mid \delta^*(q_0, w) \in F \}$$

L'automate A est initialement connecté si et seulement si

$$\forall p \in Q, \ \exists w \in V^*, \ \delta^*(q_0, w) = p$$

$$L = \{a, b\}^* \, \{a\}^+$$

$$L = \{a, b\}^* \{a\}^+$$

 $bbaba \in L$

$$L = \{a, b\}^* \{a\}^+$$

$$b \qquad q_0 \qquad a \qquad q_1$$

 $bbaba \in L \iff \delta^*(q_0, bbaba) \in F$

$$L = \{a, b\}^* \{a\}^+$$

 $bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$

$$L = \{a, b\}^* \{a\}^+$$

$$b \stackrel{\downarrow}{\bigcirc} q_0 \stackrel{b}{\bigcirc} q_1 \stackrel{\downarrow}{\bigcirc} q_1 \stackrel{b}{\bigcirc} q_1 \stackrel{\downarrow}{\bigcirc} q_1 \stackrel{\downarrow}{$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$b \stackrel{\downarrow}{\bigcirc} q_0 \stackrel{b}{\bigcirc} q_1 \stackrel{\downarrow}{\bigcirc} 0$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$b \stackrel{b}{\rightleftharpoons} q_0 \stackrel{a}{\downarrow} q_1$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F \\ \iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F \\ \iff \delta^*(q_0, a) \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$b \stackrel{\downarrow}{\bigcirc} q_0 \stackrel{b}{\bigcirc} q_1 \stackrel{\downarrow}{\bigcirc} q_1 \stackrel{b}{\bigcirc} q_1 \stackrel{\downarrow}{\bigcirc} q_1 \stackrel{\downarrow}{$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$b \longrightarrow q_0 \qquad a \qquad q_1 \qquad a$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F' \iff \delta^*(q_0, baba) \in F'$$

$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$

$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F \iff q_1 \in F$$

$$L = \{a, b\}^* \{a\}^+$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F \iff q_1 \in F$$

 $\begin{aligned} & \textbf{fonction} \text{ reconnaître}(q: \texttt{\'etat}, w: \texttt{mot}) \text{ } \textbf{renvoie Bool\'een} = \\ & \textbf{tant que } w \neq \varepsilon \text{ faire} \\ & s \leftarrow \texttt{premier_symbole}(w) \\ & w \leftarrow \texttt{reste_mot}(w) \\ & q \leftarrow \delta(q, s) \end{aligned}$

fin tant que renvoyer $(q \in F)$

$$L = \{a, b\}^* \{a\}^+$$

$$bbaba \in L \iff \delta^*(q_0, bbaba) \in F \iff \delta^*(q_0, baba) \in F$$
$$\iff \delta^*(q_0, aba) \in F \iff \delta^*(q_1, ba) \in F$$
$$\iff \delta^*(q_0, a) \in F \iff \delta^*(q_1, \varepsilon) \in F \iff q_1 \in F$$

 $\begin{aligned} & \textbf{fonction} \text{ reconnaître}(q: \texttt{\'etat}, w: \texttt{mot}) \text{ } \textbf{renvoie Bool\'een} = \\ & \textbf{tant que } w \neq \varepsilon \text{ faire} \\ & s \leftarrow \texttt{premier_symbole}(w) \\ & w \leftarrow \texttt{reste_mot}(w) \end{aligned}$

 $q \leftarrow \delta(q, s)$ fin tant que renvoyer $(q \in F)$

 $\forall w \in V^*, w \in \mathcal{L}(A)$ si et seulement si reconnaître $(q_0, w) = \mathbf{vrai}$

Idée : suivre tous les chemins en parallèle

Idée : suivre tous les chemins en parallèle

Exemple: L'automate suivant reconnaît-il aab?

 $\mathsf{OK}: aab \in \mathcal{L}(A)$

Idée : suivre tous les chemins en parallèle

Définition

Définition (Automate des parties)

Etant donné un automate $A = \langle Q, V, \delta_A, I, F_A \rangle$ sans ε -transition, on construit l'automate $B = \langle \mathcal{P}(Q), V, \delta_B, \{I\}, F_B \rangle$, où :

ullet δ_B est défini par

$$\forall P \subseteq Q, \, \forall a \in V, \, \delta_B(P, a) = \{ q \in Q \mid \exists p \in P : (p, a, q) \in \delta_A \}$$

• $F_B = \{ P \subseteq Q \mid P \cap F_A \neq \emptyset \}$

Définition

Définition (Automate des parties)

Etant donné un automate $A = \langle Q, V, \delta_A, I, F_A \rangle$ sans ε -transition, on construit l'automate $B = \langle \mathcal{P}(Q), V, \delta_B, \{I\}, F_B \rangle$, où :

ullet δ_B est défini par

$$\forall P \subseteq Q, \, \forall a \in V, \, \delta_B(P, a) = \{ q \in Q \mid \exists p \in P : (p, a, q) \in \delta_A \}$$

• $F_B = \{ P \subseteq Q \mid P \cap F_A \neq \emptyset \}$

Remarques

- $\bullet \ P \subseteq Q \iff P \in \mathcal{P}(Q) \qquad \text{et} \qquad \emptyset \subseteq Q \ : \text{un \'etat puits de } B$
- Certains $P \subseteq Q$ peuvent ne pas être accessibles depuis I donc on construit B de proche en proche à partir de I.

Définition

Définition (Automate des parties)

Etant donné un automate $A = \langle Q, V, \delta_A, I, F_A \rangle$ sans ε -transition, on construit l'automate $B = \langle \mathcal{P}(Q), V, \delta_B, \{I\}, F_B \rangle$, où :

ullet δ_B est défini par

$$\forall P \subseteq Q, \, \forall a \in V, \, \delta_B(P, a) = \{ q \in Q \mid \exists p \in P : (p, a, q) \in \delta_A \}$$

• $F_B = \{ P \subseteq Q \mid P \cap F_A \neq \emptyset \}$

Remarques

- $\bullet \ P \subseteq Q \iff P \in \mathcal{P}(Q) \qquad \text{et} \qquad \emptyset \subseteq Q \ : \text{un \'etat puits de } B$
- Certains $P \subseteq Q$ peuvent ne pas être accessibles depuis I donc on construit B de proche en proche à partir de I.

Proposition

L'automate B est un automate fini déterministe complet.

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

• $w = \varepsilon$:

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- $w = \varepsilon$:
 - $\bullet \ \delta_B^*(P,\varepsilon) = P$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- $w = \varepsilon$:

 - ▶ $\{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } \varepsilon\} = P$ (car A est un automate sans ε -transition)

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

• w = aw':

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- \bullet w = aw':
 - ▶ Posons $P' \stackrel{\mathsf{def}}{=} \delta_B(P, a) = \{q \in Q \mid \exists p \in P, (p, a, q) \in \delta_A\}$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- \bullet w = aw':
 - ▶ Posons $P' \stackrel{\text{def}}{=} \delta_B(P, a) = \{q \in Q \mid \exists p \in P, (p, a, q) \in \delta_A\}$ $\delta_B^*(P, aw') = \delta_B^*(\delta_B(P, a), w') = \delta_B^*(P', w')$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- \bullet w = aw':
 - $\begin{array}{l} \blacktriangleright \text{ Posons } P' \stackrel{\mathsf{def}}{=} \delta_B(P,a) = \{q \in Q \mid \exists p \in P, (p,a,q) \in \delta_A\} \\ \delta_B^*(P,aw') = \delta_B^*(\delta_B(P,a),w') = \delta_B^*(P',w') \\ \stackrel{\mathsf{HI}}{=} \{q' \in Q \mid \exists p' \in P', \exists \text{ un chemin de } p' \text{ à } q' \text{ de trace } w'\} \end{array}$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- w = aw':
 - ▶ Posons $P' \stackrel{\text{def}}{=} \delta_B(P,a) = \{q \in Q \mid \exists p \in P, (p,a,q) \in \delta_A\}$ $\delta_B^*(P,aw') = \delta_B^*(\delta_B(P,a),w') = \delta_B^*(P',w')$ $\stackrel{\text{H}}{=} \{q' \in Q \mid \exists p' \in P', \exists \text{ un chemin de } p' \text{ à } q' \text{ de trace } w'\}$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- w = aw':
 - ▶ Posons $P' \stackrel{\text{def}}{=} \delta_B(P,a) = \{q \in Q \mid \exists p \in P, (p,a,q) \in \delta_A\}$ $\delta_B^*(P,aw') = \delta_B^*(\delta_B(P,a),w') = \delta_B^*(P',w')$ $\stackrel{\text{H}}{=} \{q' \in Q \mid \exists p' \in P', \exists \text{ un chemin de } p' \text{ à } q' \text{ de trace } w'\}$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- w = aw':
 - $\begin{array}{l} \blacktriangleright \ \ \mathsf{Posons} \ P' \stackrel{\mathsf{def}}{=} \delta_B(P,a) = \{q \in Q \mid \exists p \in P, (p,a,q) \in \delta_A\} \\ \delta_B^*(P,aw') = \delta_B^*(\delta_B(P,a),w') = \delta_B^*(P',w') \\ \stackrel{\mathsf{H}}{=} \{q' \in Q \mid \exists p' \in P', \exists \ \mathsf{un \ chemin \ de \ } p' \ \mathsf{\`a} \ q' \ \mathsf{de \ trace} \ w'\} \end{array}$

Proposition

Pour tout $w \in V^*$ et pour tout $P \subseteq Q$, on a $\delta_B^*(P,w) = \{q \in Q \mid \exists p \in P, \exists \text{ un chemin dans } A \text{ de } p \text{ à } q \text{ de trace } w\}.$

- w = aw':
 - ▶ Posons $P' \stackrel{\text{def}}{=} \delta_B(P,a) = \{q \in Q \mid \exists p \in P, (p,a,q) \in \delta_A\}$ $\delta_B^*(P,aw') = \delta_B^*(\delta_B(P,a),w') = \delta_B^*(P',w')$ $\stackrel{\text{H}}{=} \{q' \in Q \mid \exists p' \in P', \exists \text{ un chemin de } p' \text{ à } q' \text{ de trace } w'\}$

Théorème

L'automate B est équivalent à A.

Théorème

L'automate B est équivalent à A.

$$w \in \mathcal{L}(A) \iff \exists p \in I, \exists q \in F_A, \exists \text{ un chemin de } p \text{ à } q \text{ de trace } w$$

Théorème

L'automate B est équivalent à A.

$$w \in \mathcal{L}(A) \iff \exists p \in I, \exists q \in F_A, \exists \text{ un chemin de } p \text{ à } q \text{ de trace } w$$
$$\iff \delta_B^*(I, w) \cap F_A \neq \emptyset$$

Théorème

L'automate B est équivalent à A.

$$w \in \mathcal{L}(A) \iff \exists p \in I, \exists q \in F_A, \exists \text{ un chemin de } p \text{ à } q \text{ de trace } w$$
$$\iff \delta_B^*(I, w) \cap F_A \neq \emptyset$$
$$\iff \delta_B^*(I, w) \in F_B$$

Théorème

L'automate B est équivalent à A.

$$\begin{array}{lll} w \in \mathcal{L}(A) & \iff & \exists p \in I, \, \exists q \in F_A, \, \exists \text{ un chemin de } p \text{ à } q \text{ de trace } w \\ & \iff & \delta_B^*(I,w) \cap F_A \neq \emptyset \\ & \iff & \delta_B^*(I,w) \in F_B \\ & \iff & w \in \mathcal{L}(B) \end{array}$$

Exercice 1

Construire un AFD (complet) équivalent à :

Exercice 1

Construire un AFD (complet) équivalent à :

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0, q_3\}$
	$\{q_0,q_1\}$		
	$\{q_0, q_3\}$		

	$\mathcal{P}(Q)$	a	b	
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$	
	$\{q_0,q_1\}$	$\{q_0,q_1\}$		
	$\{q_0, q_3\}$			

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3\}$
	$\{q_0,q_3\}$		
	$\{q_0,q_2,q_3\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	
	$\{q_0,q_2,q_3\}$		
	$\{q_0,q_1,q_4\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$		
	$\{q_0, q_1, q_4\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	
	$\{q_0, q_1, q_4\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{a_0, a_1, a_4\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0, q_1, q_4\}$	$\{q_0, q_1\}$	

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q$	$\{q_0, q_2, q_3, q_4\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q$	$\{q_0, q_2, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0$	$\{q_1, q_2, q_3, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3,q_4\}$
	$\{q_0, q_3, q_4\}$		

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0$	$\{q_0, q_2, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3,q_4\}$
	$\{q_0, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	

	$\mathcal{P}(Q)$	a	b
\mathcal{I}	$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
	$\{q_0,q_3\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3\}$
	$\{q_0, q_2, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
	$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0$	$\{q_1, q_2, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3,q_4\}$
	$\{q_0, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0, q_3, q_4\}$

Construire un AFD (complet) équivalent à :

$\mathcal{P}(Q)$	a	b
$\mathcal{I} \qquad \{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0,q_3\}$
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0,q_2,q_3\}$
$\{q_0, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0, q_2, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0, q_2, q_3, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3,q_4\}$
$\{q_0,q_3,q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3,q_4\}$

Pas d'autre état accessible

Construire un AFD (complet) équivalent à :

$\mathcal{P}(Q)$	a	b
$\mathcal{I} \qquad \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
$\{q_0, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0, q_2, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0, q_1, q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0, q_2, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3,q_4\}$
$\{q_0,q_3,q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3,q_4\}$

Pas d'autre état accessible

7 états accessibles (sur 32 potentiels)

Construire un AFD (complet) équivalent à :

$\mathcal{P}(Q)$	a	b
$\mathcal{I} = \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3\}$
$\{q_0, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0, q_2, q_3, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3,q_4\}$
$\{q_0,q_3,q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0, q_3, q_4\}$

Pas d'autre état accessible

7 états accessibles (sur 32 potentiels)

Construire un AFD (complet) équivalent à :

$\mathcal{P}(Q)$	a	b
$\mathcal{I} = \{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_3\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2,q_3\}$
$\{q_0, q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_4\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_4\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$\{q_0, q_2, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_0,q_3,q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0,q_3,q_4\}$

Pas d'autre état accessible

7 états accessibles (sur 32 potentiels) 5 états acceptants accessibles (sur 24 potentiels)

Solution

On considère le langage

 $L = \{w \in V^* \mid \text{le 3}^{\text{e}} \text{ symbole en partant de la fin est un } b\}.$ Un automate non-déterministe qui le reconnaît est :

Solution

