Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Автоматизированные системы обработки информации и управления»

Отчет Лабораторная работа № 1

По курсу «Технологии машинного обучения»

иС	полнитель:
I	Горбатенко И.А. Группа ИУ5-64
1111	_2020 г.
ПРЕП	ЮДАВАТЕЛЬ: Гапанюк Ю.Е.
1111	2020 г.

Москва 2020

Лабораторная работа №1 по курсу "Технологии машинного обучения"

Горбатнко И.А. ИУ5-64

Цель лабораторной работы: изучение различных методов визуализация данных.

Задание:

**Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов здесь. Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из Scikit-learn. Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Выполнение:

1) Текстовое описание набора данных

В качестве набора данных возьмем базу данных наблюдаемых пациентов с возможным сердечно-сосудистым заболеванием. База состоит из 14 атрибутов:

- age возраст пациента
- gender пол пациента (0 или 1)
- chest_pain_type тип боли в груди (значения от 0 до 3)
- blood_pressure кровяное давление в состоянии покоя в мм.рт.ст.
- cholestoral количество холестерина в мг/дл
- sugar количество сахара в крови (1, если >120мг/дл, 0, если <=120мг/дл)
- ЕСС электрокардиографические результаты в состоянии покоя (значения от 0 до 2)
- max_heart_rate максимальное зафиксированное значение пульса
- stenocardia наличие стенокардии или ее отсутствие после физической нагрузки (0 или 1)
- ST_depression депрессия ST, вызванная физической нагрузкой относительно покоя
- slope наклон пикового значения ST при нагрузке (от 0 до 2)
- vessels количество крупных сосудов, показанных на флюороскопии (от 0 до 3)
- thal 3 = нормальный; 6 = исправленный дефект; 7 = обратимый дефект
- target наличие или отсутствие сердечно-сосудистого заболевания у пациента (1 или 0)

Конечной целью (target) является значение 0 или 1 (соответственно отсутствие сердечнососудистого заболевания или его наличие). Будем решать задачу классификации и задачу регрессии. В качестве целевого признака для решения задачи классификации будем использовать "target". "target" принимает значения только 0 или 1, значит это задача бинарной классификации. В качестве целевого признака для решения задачи регресии будем использовать "max_heart_rate". Датасет состоит из одного файла "Heart_Desease.csv", содержащий 303 строки. Импортируем библиотеки с помощью команды:

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   sns.set(style="ticks")
```

Загрузим данные датасета:

```
In [4]: data = pd.read_csv('Heart_Desease.csv', sep=",")
```

Проверим корректность загрузки:

```
In [5]: data.head()
```

Out[5]:

	age	gender	chest_pain_type	blood_pressure	cholestoral	sugar	ECG	max_heart_rate	stenoca
0	61	1	0	148	203	0	1	161	
1	54	1	2	125	273	0	0	152	
2	71	0	2	110	265	1	0	130	
3	54	1	0	110	239	0	1	126	
4	66	1	0	112	212	0	0	132	

Уточним размер датасета:

```
In [6]: data.shape
Out[6]: (303, 14)
```

Список атрибутов:

```
In [7]: data.dtypes
Out[7]: age
                               int.64
        gender
                               int64
        chest_pain_type
                               int64
        blood pressure
                               int64
        cholestoral
                               int64
        sugar
                               int64
        ECG
                               int64
        max_heart_rate
                               int64
        stenocardia
                               int64
        ST depression
                             float64
        slope
                               int64
        vessels
                               int64
        thal
                               int64
        target
                               int64
        dtype: object
```

Проверка датасета на наличие пустых значений:

```
In [8]: for col in data.columns:
            temp_null_count = data[data[col].isnull()].shape[0]
            print('{} - {}'.format(col, temp_null_count))
        age - 0
        gender - 0
        chest pain type - 0
        blood pressure - 0
        cholestoral - 0
        sugar - 0
        ECG - 0
        max_heart_rate - 0
        stenocardia - 0
        ST depression - 0
        slope - 0
        vessels - 0
        thal - 0
        target - 0
```

Основные статистические характеристки набора данных:

```
In [9]: data.describe()
```

Out[9]:

	age	gender	chest_pain_type	blood_pressure	cholestoral	sugar	ECG
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000

Проверим уникальные значения для целевого признака:

```
In [11]: data['target'].unique()
Out[11]: array([0, 1])
```

2) Визуальное исследование датасета

```
In [15]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='blood_pressure', y='cholestoral', data=data)
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1d524b10>

Можно видеть что между атрибутами blood_pressure и cholestoral пристутствует какая-то связь, очень и очень отдаленно напоминающая линейную зависимость.

Введем в эту зависимость целевой признак:

```
In [16]: fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='blood_pressure', y='cholestoral', data=data, hue=
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1d6e61d0>

Можем наглядно оценить, например, распределение возрастов пациентов:

```
In [20]: fig, ax = plt.subplots(figsize=(15,15))
sns.distplot(data['age'], color="r")
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1e4aae90>

In [22]: sns.jointplot(x='blood_pressure', y='cholestoral', data=data, kind="hex")

Out[22]: <seaborn.axisgrid.JointGrid at 0x1a1e8f4450>


```
In [23]: sns.jointplot(x='blood_pressure', y='cholestoral', data=data, kind="kde")
```

Out[23]: <seaborn.axisgrid.JointGrid at 0x1a1eb0abd0>

Парные диаграммы:

In [24]: sns.pairplot(data)

Out[24]: <seaborn.axisgrid.PairGrid at 0x1aledfac10>

In [25]: sns.pairplot(data, hue="target")

Out[25]: <seaborn.axisgrid.PairGrid at 0x1a24eacb50>

Отобразим одномерное распределение вероятности:

```
In [27]: sns.boxplot(x=data['age'], color="r")
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2d58fd90>

Скрипичные диаграммы:

```
In [32]: sns.violinplot(x=data['age'], color="purple")
```

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2f3fec90>

Сгруппируем по целевому признаку:

```
In [36]: # Распределение параметра Humidity сгруппированные по Оссиралсу. sns.violinplot(x='target', y='age', data=data)
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2f77f0d0>

3) Информация о корреляции признаков

In [37]: data.corr()

Out[37]:

	age	gender	chest_pain_type	blood_pressure	cholestoral	sugar	
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.11
gender	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.05
chest_pain_type	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.04
blood_pressure	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.11
cholestoral	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.15
sugar	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.08
ECG	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.00
max_heart_rate	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.04
stenocardia	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.07
ST_depression	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.05
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.09
vessels	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.07
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.01
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.13

In [38]: data.corr(method='pearson')

Out[38]:

	age	gender	chest_pain_type	blood_pressure	cholestoral	sugar	
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.11
gender	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.05
chest_pain_type	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.04
blood_pressure	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.11
cholestoral	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.15
sugar	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.08
ECG	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.00
max_heart_rate	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.04
stenocardia	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.07
ST_depression	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.05
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.09
vessels	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.07
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.01
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.13

In [39]: data.corr(method='kendall')

Out[39]:

	age	gender	chest_pain_type	blood_pressure	cholestoral	sugar	
age	1.000000	-0.082272	-0.071577	0.201071	0.135062	0.094595	-0.10
gender	-0.082272	1.000000	-0.057955	-0.044438	-0.124104	0.045032	-0.04
chest_pain_type	-0.071577	-0.057955	1.000000	0.027548	-0.069899	0.083862	0.06
blood_pressure	0.201071	-0.044438	0.027548	1.000000	0.086474	0.127574	-0.10
cholestoral	0.135062	-0.124104	-0.069899	0.086474	1.000000	0.015140	-0.13
sugar	0.094595	0.045032	0.083862	0.127574	0.015140	1.000000	-0.08
ECG	-0.109349	-0.048085	0.060839	-0.105147	-0.132664	-0.080996	1.00
max_heart_rate	-0.280009	-0.032817	0.246160	-0.027760	-0.031437	-0.011749	0.07
stenocardia	0.074427	0.141664	-0.390708	0.044419	0.075044	0.025665	-0.07
ST_depression	0.193269	0.086437	-0.125081	0.109103	0.035176	0.024342	-0.06
slope	-0.147713	-0.024333	0.145796	-0.070360	-0.010039	-0.044546	0.11
vessels	0.273255	0.112199	-0.189400	0.070387	0.088549	0.126434	-0.09
thal	0.070722	0.244164	-0.188999	0.049028	0.066255	-0.006559	-0.01
target	-0.197857	-0.280937	0.430506	-0.102064	-0.099131	-0.028046	0.14

In [40]: data.corr(method='spearman')

Out[40]:

	age	gender	chest_pain_type	blood_pressure	cholestoral	sugar	
age	1.000000	-0.099131	-0.087494	0.285617	0.195786	0.113978	-0.13
gender	-0.099131	1.000000	-0.062041	-0.052941	-0.151342	0.045032	-0.04
chest_pain_type	-0.087494	-0.062041	1.000000	0.035413	-0.091721	0.089775	0.06
blood_pressure	0.285617	-0.052941	0.035413	1.000000	0.126562	0.151984	-0.12
cholestoral	0.195786	-0.151342	-0.091721	0.126562	1.000000	0.018463	-0.16
sugar	0.113978	0.045032	0.089775	0.151984	0.018463	1.000000	-0.08
ECG	-0.132769	-0.048389	0.065640	-0.125841	-0.161933	-0.081508	1.00
max_heart_rate	-0.398052	-0.039868	0.324013	-0.040407	-0.046766	-0.014273	0.08
stenocardia	0.089679	0.141664	-0.418256	0.052918	0.091514	0.025665	-0.07
ST_depression	0.268291	0.100715	-0.161449	0.154267	0.045260	0.028363	-0.07
slope	-0.184048	-0.025010	0.159478	-0.086570	-0.012551	-0.045786	0.11
vessels	0.340955	0.119368	-0.216006	0.090140	0.111981	0.134513	-0.09
thal	0.087254	0.250821	-0.207840	0.059673	0.083628	-0.006737	-0.01
target	-0.238400	-0.280937	0.460860	-0.121593	-0.120888	-0.028046	0.14

Визуализируем корреляционную матрицу:

```
In [55]: fig, ax = plt.subplots(figsize=(15,10))
sns.heatmap(data.corr(), annot=True, fmt='.2f', cmap='GnBu')
```

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x1a31986710>

In []: