

Math93.com

Fonctions sinus et cosinus

Terminale S

ROC

Les **ROC**, (**Restitution Organisée de Connaissances**), sont les démonstrations du cours à connaître indiquées explicitement dans le nouveau programme de terminale S entré en vigueur à la rentrée 2012. Ce chapitre ne compte pas de ROC.

I Définition et rappels

I.1 Repérage sur un cercle

I.1.1 Cercle trigonométrique

Définition 1 (Cercle trigonométrique)

Le plan est muni d'un repère orthonormal $(O, \overrightarrow{\iota}, \overrightarrow{J})$ Le **cercle trigonométrique** est le cercle $\mathscr C$ de centre O, de rayon 1 orienté dans le sens direct.

I.1.2 Enroulement de la droite réelle sur le cercle trigonométrique

Le plan est muni d'un repère orthonormal $(0, \vec{t}, \vec{j})$

La droite $\mathcal D$ est tangente en I au cercle trigonométrique $\mathscr C.$

A est le point de coordonnées (1;1). La droite $\mathcal D$ est munie du repère (I;A).

Par enroulement de la droite réelle ${\mathcal D}$ sur le cercle trigonométrique ${\mathcal C}$:

- à tout point de la droite d'abscisse x on peut associer un unique point M du cercle trigonométrique, image du réel x;
- tout point M du cercle trigonométrique est l'image d'une infinité de réels. Si le point M est associé à un réel x, alors il est associé à tout réel de la forme $x + k \times 2\pi$ où k est un entier relatif.

I.1.3 Mesure d'un angle en radian

Définition 2

Soit \mathscr{C} le cercle trigonométrique de centre O, de rayon 1.

1. Un radian est la mesure d'un angle au centre qui intercepte le cercle $\mathscr C$ suivant un arc de longueur 1.

2. La **mesure principale d'un angle orienté** est comprise dans l'intervalle $]-\pi;\pi]$.

Remarque

Les mesures en radians et en degrés d'un angle géométrique sont proportionnelles :

Degrés	0°	30°	45°	60°	90°	120°	180°
x en radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π

I.2 Cosinus et sinus d'un nombre réel

I.2.1 Définition

Propriété 1

Soit M le point du cercle trigonométrique associé à un réel x.

- Le cosinus du réel x, noté $\cos x$, est l'abscisse du point M.
- Le sinus du réel x, noté $\sin x$, est l'ordonnée du point M.

www.math93.com / M. Duffaud 2/8

I.2.2 Propriétés

Propriété 2

1. Pour tout réel x et pour tout entier relatif k,

$$\cos(x + k \times 2\pi) = \cos x$$
 et $\sin(x + k \times 2\pi) = \sin x$

2. Pour tout réel x,

$$-1 \le \cos x \le 1$$
 et $-1 \le \sin x \le 1$

3. Pour tout réel x,

$$\cos^2 x + \sin^2 x = 1$$

Exemple

Sachant que $\sin x = -\frac{\sqrt{5}}{3}$ avec $-\frac{\pi}{2} < x < 0$, déterminer la valeur exacte de $\cos x$. Pour tout réel x, $\cos^2 x + \sin^2 x = 1$ donc $\cos^2 x + \frac{5}{9} = 1$, soit $\cos^2 x = \frac{4}{9}$. Il existe deux valeurs possibles du cosinus :

$$\cos x = -\frac{2}{3} \qquad \text{ou} \qquad \cos x = \frac{2}{3}$$

Comme $-\frac{\pi}{2} < x < 0$, alors $\cos x > 0$ donc $\cos x = \frac{2}{3}$.

I.2.3 Valeurs remarquables

Propriété 3 (Valeurs remarquables)

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

I.2.4 Angles associés

Parité: pour tout réel *x*:

M et N sont symétriques par rapport à

Pour tout réel *x* :

$$\cos(\pi - x) = -\cos x$$
$$\sin(\pi - x) = \sin x$$

M et N sont symétriques par rapport à (OJ)

Pour tout réel *x* :

$$\cos(\pi + x) = -\cos x$$
$$\sin(\pi + x) = -\sin x$$

M et N sont symétriques par rapport à

Exemple

1.
$$\cos \frac{4\pi}{3} = \cos \left(\pi + \frac{\pi}{3}\right) = -\cos \frac{\pi}{3} = -\frac{1}{2}$$
2. $\sin \frac{3\pi}{4} = \sin \left(\pi - \frac{\pi}{4}\right) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

2.
$$\sin \frac{3\pi}{4} = \sin \left(\pi - \frac{\pi}{4}\right) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

I.2.5 Formules de trigonométrie: Mémo SI-CO-CO-SI / CO-CO-SI-SI

Propriété 4

Pour tous les réels a et b on a :

1. $\sin(a+b) = \sin a \cos b + \cos a \sin b$

2. cos(a+b) = cos a cos b - sin a sin b

3. $\sin(a-b) = \sin a \cos b - \cos a \sin b$

4. cos(a-b) = cos a cos b + sin a sin b

Mnémotechnique pour (1) et (2) : SI-CO-CO-SI/CO-CO-SI/Priorité sinus et addition / (-1) dernière

I.2.6 Équations

Propriété 5 (Équation $\cos x = \cos a$)

Soit a un réel donné. Les solutions dans $\mathbb R$ de l'équation $\cos x = \cos a$ sont pour k est un entier relatif. :

$$\cos x = \cos a \iff \begin{cases} x = a + 2k\pi \\ x = -a + 2k\pi \end{cases}, \quad k \in \mathbb{Z}$$

Terminale S Fonctions sinus et cosinus

Propriété 6 (Équation $\sin x = \sin a$)

Soit a un réel donné. Les solutions dans \mathbb{R} de l'équation $\sin x = \sin a$ sont pour k est un entier relatif :

$$\sin x = \sin a \iff \begin{cases} x = a + 2k\pi \\ x = \pi - a + 2k\pi \end{cases}, \quad k \in \mathbb{Z}$$

II Définition et dérivabilité

II.1 Définition

On se place dans tout le chapitre dans un repère orthonormé direct $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

Définition 3

- **1.** La **fonction sinus**, est la fonction définie sur \mathbb{R} par : $\sin : x \mapsto \sin x$.
- **2.** La **fonction cosinus**, est la fonction définie sur \mathbb{R} par : $\cos : x \mapsto \cos x$.

II.2 Dérivabilité

Propriété 7 (Dérivabilité en 0 (Admis))

Les fonctions cosinus et sinus sont dérivables en 0 et on a :

$$\cos'(0) = 0$$
 et $\sin'(0) = 1$

Propriété 8 (Dérivabilité (preuve à connaître))

Les fonctions sinus et cosinus sont **dérivables sur** \mathbb{R} , et pour tout réel x on a :

$$\cos'(x) = -\sin(x)$$
 et $\sin'(x) = \cos(x)$

Remarque : puisque les fonctions sont dérivables, elles sont continues sur $\mathbb R$.

Propriété 9 (Dérivabilité (preuve à connaître))

• La fonction définie sur \mathbb{R} par $f(x) = \sin(ax + b)$ est dérivable sur \mathbb{R} et pour tout réel x:

$$f'(x) = a\cos(ax + b)$$

• La fonction définie sur \mathbb{R} par $g(x) = \cos(ax + b)$ est dérivable sur \mathbb{R} et pour tout réel x:

$$g'(x) = -a\sin(ax+b)$$

• Plus généralement, si u est dérivable sur $\mathbb R$ on a :

$$(\sin u)' = \cos u \times u'$$
 et $(\cos u)' = -\sin u \times u'$

www.math93.com / M. Duffaud 5/8

Démonstration (à connaître) de la propriété 8

1. Soit *x* un nombre réel et *h* un nombre réel non nul. On a en appliquant les formules de trigonométrie de la propriété I.2.5 :

$$\frac{\cos(x+h) - \cos(x)}{h} = \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \frac{\cos x \left(\cos h - 1\right) - \sin x \sin h}{h}$$

$$= \cos x \times \frac{(\cos h - 1)}{h} - \sin x \times \frac{\sin h}{h}$$

$$= \cos x \times \frac{(\cos h - \cos 0)}{h} - \sin x \times \frac{\sin h - \sin 0}{h}$$

Or, cosinus et sinus sont dérivables en 0 de dérivées respectives 0 et 1 donc

$$\begin{cases} \lim_{h \to 0} \frac{(\cos h - \cos 0)}{h} = \cos' 0 = 0\\ \lim_{h \to 0} \frac{\sin h - \sin 0}{h} = \sin' 0 = 1 \end{cases}$$

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h} = \cos x \times \left(\lim_{h \to 0} \frac{(\cos h - \cos 0)}{h}\right) - \sin x \times \left(\lim_{h \to 0} \frac{\sin h - \sin 0}{h}\right)$$

$$= \cos x \times 0 - \sin x \times 1$$

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h} = \frac{-\sin x = \cos'(x)}{h}$$

2. Soit *x* un nombre réel et *h* un nombre réel non nul. On a en appliquant les formules de trigonométrie de la propriété I.2.5 :

$$\frac{\sin(x+h) - \sin(x)}{h} = \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \frac{\sin x \left(\cos h - 1\right) + \cos x \sin h}{h}$$

$$= \sin x \times \frac{(\cos h - 1)}{h} + \cos x \times \frac{\sin h}{h}$$

$$= \sin x \times \frac{(\cos h - \cos 0)}{h} + \cos x \times \frac{\sin h - \sin 0}{h}$$

Or, cosinus et sinus sont dérivables en 0 de dérivées respectives 0 et 1 donc

$$\lim_{h \to 0} \frac{(\cos h - \cos 0)}{h} = \cos' 0 = 0 \quad \text{ et } \quad \lim_{h \to 0} \frac{\sin h - \sin 0}{h} = \sin' 0 = 1$$

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \sin x \times \left(\lim_{h \to 0} \frac{(\cos h - \cos 0)}{h}\right) + \cos x \times \left(\lim_{h \to 0} \frac{\sin h - \sin 0}{h}\right)$$
$$= \lim_{h \to 0} \sin x \times 0 + \cos x \times 1$$
$$= \cos x = \sin^{x} x$$

Exemple

La fonction f définie sur \mathbb{R} par $f(x) = \cos\left(\frac{2x+1}{3}\right)$ est dérivable sur \mathbb{R} . Elle est de la forme $f(x) = \cos(ax+b)$, donc de dérivée $f(x) = -a\sin(ax+b)$. Pour tout réel x on a :

$$f'(x) = -\frac{2}{3}\sin\left(\frac{2x+1}{3}\right)$$

www.math93.com / M. Duffaud 6/8

Terminale S Fonctions sinus et cosinus

II.3 Application: Limite de $\frac{\sin x}{x}$

Propriété 10 (Limite de
$$\frac{\sin x}{x}$$
)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

F.

Démonstration (à connaître)

La fonction sinus est dérivable sur $\mathbb R$ donc d'après la propriété 8 on a :

$$\sin'(x) = \cos(x) \Longrightarrow \sin'(0) = \cos(0) = 1$$

Or

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \sin'(0) = \cos(0) = 1$$

III Les fonctions sinus et cosinus sur $[0; \pi]$

www.math93.com / M. Duffaud 7/8

IV Les fonctions sinus et cosinus sur \mathbb{R} , parité et périodicité

IV.1 Parité: définitions générales

Définition 4 (Fonctions paires)

1. Définition :

Un fonction f définie sur I est **paire** si :

- Pour tout réel x et I, alors $(-x) \in I$;
- et f(-x) = f(x)

2. Propriété:

Si on se place dans un repère orthogonal (O, \vec{t}, \vec{j}) , la courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Définition 5 (Fonctions impaires)

1. Définition:

Un fonction f définie sur I est **impaire** si :

- Pour tout réel x et I, alors $(-x) \in I$;
- et f(-x) = -f(x)

2. Propriété:

Si on se place dans un repère orthogonal $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$, la courbe représentative d'une fonction impaire est symétrique par rapport à l'origine O.

IV.2 Parité des fonctions sinus et cosinus

IV.2.1 Propriété

Propriété 13

1. La fonction cosinus est paire.

Donc dans un repère orthogonal $(0, \vec{i}, \vec{j})$, sa courbe représentative est **symétrique par rapport à l'axe des ordonnées**.

2. La fonction sinus est impaire.

Donc dans un repère orthogonal $(0, \vec{i}, \vec{j})$, sa courbe représentative est **symétrique par rapport à l'origine 0**.

Terminale S Fonctions sinus et cosinus

IV.2.2 Conséquence : Courbes représentatives sur $[-\pi; \pi]$

Fonction cosinus

Fonction sinus

IV.3 Périodicité des fonctions sinus et cosinus

Propriété 14 (Périodicité)

Pour tout réel x on a :

- $\sin(x+2\pi) = \sin(x)$
- $cos(x+2\pi) = cos(x)$

On dit que les fonction sinus et cosinus sont **périodiques de période** $T = 2\pi$.

Propriété 15 (Conséquence)

On se place dans un repère $(0, \vec{\iota}, \vec{\jmath})$.

Les fonction sinus et cosinus sont **périodiques de période** $T = 2\pi$ donc il y a invariance des courbes représentatives par translation de vecteur $2\pi \vec{i}$.

Pour faire simple, pour les courbes il y répétition du même motif « tous les 2π ».

Fonction sinus

Fonction cosinus

www.math93.com / M. Duffaud 9/8