

Introduction to

Algorithm Design and Analysis

[3] Recursion

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the Last Class ...

- Asymptotic growth rate
 - \circ O, Ω , Θ
 - \circ 0, ω
- Brute force algorithms
 - By iteration
 - o By recursion

Recursion

- Recursion in algorithm design
 - The divide and conquer strategy
 - Proving the correctness of recursive procedures
- Solving recurrence equations
 - Some elementary techniques
 - Master theorem

Recursion in Algorithm Design

- Computing n! with Fac(n)
 - o if n=1 then return 1 else return Fac(n-1)*n

M(1)=0 and M(n)=M(n-1)+1 for n>0 (critical operation: multiplication)

- Hanoi Tower
 - if n=1 then move d(1) to peg3 else
 Hanoi(n-1, peg1, peg2); move d(n) to peg3; Hanoi(n-1, peg2, peg3)

M(1)=1 and M(n)=2M(n-1)+1 for n>1 (critical operation: move)

Recursion in Algorithm Design

Counting the Number of Bits

- Input: a positive decimal integer n
- Output: the number of binary digits in n's binary representation

Int BitCounting (int n)

- 1. If(n==1) return 1;
- 2. Else
- return BitCounting(n div 2) +1;

$$T(n) = \begin{cases} 0 & n = 1 \\ T(\lfloor n/2 \rfloor) + 1 & n > 1 \end{cases}$$

Divide and Conquer

Divide

Divide the "big" problem to smaller ones

Conquer

Solve the "small" problems by recursion

Combine

 Combine results of small problems, and solve the original problem

Divide and Conquer

```
The general pattern
                                                T(n)=B(n) for n \le small Size
solve(I)
   n=size(I);
   if (n≤smallSize)
                                               T(n)=D(n)+\sum_{i=1}^{n}T(size(I_i))+C(n)
       solution=directlySolve(I)
   else
       divide I into I_1, \dots I_k;
                                                                  for n>smallSize
       for each i \in \{1, ..., k\}
           S_i = \mathbf{solve}(I_i);
       solution=combine(S_1, \ldots, S_k);
   return solution
```


Examples

Max sum subsequence

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Part 1

Part 2

the sub with largest sum may be in:

or:

Examples

Arrays

3 5 7 8 9 12 15

Trees

Workhorse

"Hard division, easy combination"

"Easy division, hard combination"

Usually, the "real work" is in one part.

Correctness of Recursion

Analysis of Recursion

- Solving recurrence equations
- E.g., Bit counting
 - Critical operation: add
 - The recurrence relation

$$T(n) = \begin{cases} 0 & n = 1 \\ T(\lfloor n/2 \rfloor) + 1 & n > 1 \end{cases}$$

Analysis of Recursion

Backward substitutions

By the recursion equation : $T(n) = T\left(\left|\frac{n}{2}\right|\right) + 1$

For simplicity, let $n = 2^k (k \text{ is a nonnegative integer})$, that is, $k = \log n$

$$T(n) = T\left(\frac{n}{2}\right) + 1 = T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{8}\right) + 1 + 1 + 1 = \dots$$

$$T(n) = T\left(\frac{n}{2^k}\right) + \log n = \log n \quad (T(1) = 0)$$

$$T(n) = T\left(\frac{n}{2^k}\right) + \log n = \log n \quad (T(1)=0)$$

Smooth Functions

- f(n)
 - Nonnegative eventually non-decreasing function defined on the set of natural numbers
- f(n) is called smooth
 - \circ If $f(2n) \in \mathcal{O}(f(n))$.
- Examples of smooth functions
 - $\log n$, n, $n \log n$ and n^{α} ($\alpha \ge 0$)
 - E.g., $2n\log 2n = 2n(\log n + \log 2) \in \Theta(n\log n)$

Even Smoother

- Let f(n) be a smooth function, then, for any fixed integer $b \ge 2$, $f(bn) \in \Theta(f(n))$.
 - That is, there exist positive constants c_b and d_b and a nonnegative integer n_0 such that

$$d_b f(n) \le f(bn) \le c_b f(n)$$
 for $n \ge n_0$.

```
It is easy to prove that the result holds for b = 2^k, for the second inequality: f(2^k n) \le c_2^k f(n) \text{ for } k = 1,2,3... \text{ and } n \ge n_0. For an arbitrary integer b \ge 2, 2^{k-1} \le b \le 2^k Then, f(bn) \le f(2^k n) \le c_2^k f(n), we can use c_2^k as c_b.
```


Smoothness Rule

- Let T(n) be an eventually non-decreasing function and f(n) be a smooth function.
 - If $T(n) \in \Theta(f(n))$ for values of n that are powers of $b(b \ge 2)$, then $T(n) \in \Theta(f(n))$.

```
Just proving the big - Oh part:

By the hypothsis: T(b^k) \le cf(b^k) for b^k \ge n_0.

By the prior result: f(bn) \le c_b f(n) for n \ge n_0.

Let n_0 \le b^k \le n \le b^{k+1},

T(n) \le T(b^{k+1}) \le cf(b^{k+1}) = cf(bb^k) \le cc_b f(b^k) \le cc_b f(n)
```

Computing the Fibonacci Number

$$f_1 = 0$$
 $f_2 = 1$
 $f_n = f_{n-1} + f_{n-2}$

$$a_n = r_1$$
 $a_{n+1} + r_2 a_{n+2} + \dots + r_m a_{n+k}$

is called linear homogeneous relation of degree k.

For the special case of Fibonacci: $a_n = a_{n-1} + a_{n-2}$, $r_1 = r_2 = 1$

Characteristic Equation

For a linear homogeneous recurrence relation of degree
 k

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

the polynomial of degree k

$$x^{k} = r_{1}x^{k-1} + r_{2}x^{k-2} + \dots + r_{k}$$

is called its characteristic equation.

• The characteristic equation of linear homogeneous recurrence relation of degree 2 is:

$$x^2 - r_1 x - r_2 = 0$$

Solution of Recurrence Relation

• If the characteristic equation $x^2 - r_1 x - r_2 = 0$ of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots s_1 and s_2 , then

$$a_n = us_1^n + vs_2^n$$

where u and v depend on the initial conditions, is the explicit formula for the sequence.

• If the equation has a single root s, then, both s_1 and s_2 in the formula above are replaced by s

Proof of the Solution

Remember equation : $x^2 - r_1x - r_2 = 0$ We need to prove that : $us_1^n + vs_2^n = r_1a_{n-1} + r_2a_{n-2}$

$$us_{1}^{n} + vs_{2}^{n} = us_{1}^{n-2}s_{1}^{2} + vs_{2}^{n-2}s_{2}^{2}$$

$$= us_{1}^{n-2}(r_{1}s_{1} + r_{2}) + vs_{2}^{n-2}(r_{1}s_{2} + r_{2})$$

$$= r_{1}us_{1}^{n-1} + r_{2}us_{1}^{n-2} + r_{1}vs_{2}^{n-1} + r_{2}vs_{2}^{n-2}$$

$$= r_{1}(us_{1}^{n-1} + vs_{2}^{n-1}) + r_{2}(us_{1}^{n-2} + vs_{2}^{n-2})$$

$$= r_{1}a_{n-1} + r_{2}a_{n-2}$$

Back to Fibonacci Sequence

$$f_0=0$$
 $f_1=1$
 $f_n=f_{n-1}+f_{n-2}$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Explicit formula for Fibonacci Sequence The characteristic equation is x^2 -x-1=0, which has roots:

$$s_1 = \frac{1+\sqrt{5}}{2}$$
 and $s_2 = \frac{1-\sqrt{5}}{2}$

Note: (by initial conditions) $f_1 = us_1 + vs_2 = 1$ and $f_2 = us_1^2 + vs_2^2 = 1$

which results:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Guess and Prove

- Example: $T(n)=2T(\lfloor n/2 \rfloor) + n$
- Guess
 - $\circ T(n) \in O(n)$?
 - $T(n) \le cn$, to be pro-
 - $\circ T(n) \in O(n^2)$?
 - $T(n) \le cn^2$, to be prove
 - \circ Or maybe, $T(n) \in O(n\log n)$
 - $T(n) \le cn \log n$, to be prove
- Prove
 - o by substitution

Try to prove $T(n) \le cn$:

However:

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2(c \lfloor n/2 \rfloor \log (\lfloor n/2 \rfloor)) + n$$

$$\leq cn \log (n/2) + n$$

- $= cn \log n cn \log 2 + n$
- $= cn \log n cn + n$
- $\leq c n \log n \text{ for } c \geq 1$

Divide and Conquer Recursions

- Divide and conquer
 - Divide the "big" problem to smaller ones
 - Solve the "small" problems by recursion
 - Combine results of small problems, and solve the original problem
- Divide and conquer recursion

Recursion Tree

The recursion tree for T(n) = 2T(n/2) + n

Recursion Tree

Node

- o Non-leaf
 - Non-recursive cost
 - Recursive cost
- o Leaf
 - Base case
- Edge
 - o Recursion

Recursion Tree

Sum of Row-sums

 $T(n)=3T(\lfloor n/4 \rfloor)+\Theta(n^2)$

T(1) T(1)

Note: $3^{\log_4 n} = n^{\log_4 3}$ Lectures on Algorithm Design & Analysis (LADA) 2017

Total: $\Theta(n^2)$

Solving the Divide-and-Conquer Recurrence

- The recursion equation for divide-and-conquer, the general case: T(n)=bT(n/c)+f(n)
- Observations:
 - Let base-cases occur at depth D(leaf), then $n/c^D=1$, that is $D=\log(n)/\log(c)$
 - Let the number of leaves of the tree be L, then $L=b^D$, that is $L=b^{(\log(n)/\log(c))}$.
 - o By a little algebra: $L=n^E$, where $E=\log(b)/\log(c)$, called *critical exponent*.

Recursion Tree for

$$T(n)=bT(n/c)+f(n)$$

Divide-and-Conquer - the Solution

- The solution of divide-and-conquer equation is the non-recursive costs of all nodes in the tree, which is the sum of the row-sums
 - The recursion tree has depth $D=\log(n)/\log(c)$, so there are about that many row-sums.
- The 0th row-sum
 - \circ is f(n), the nonrecursive cost of the root.
- The D^{th} row-sum
 - o is n^E , assuming base cases cost 1, or $\Theta(n^E)$ in any event.

Solution by Row-sums

- [Little Master Theorem] Row-sums decide the solution of the equation for divide-and-conquer:
 - Increasing geometric series: $T(n) \in \Theta(n^E)$
 - Constant: $T(n) \in \Theta(f(n) \log n)$
 - Decreasing geometric series: $T(n) \in \Theta(f(n))$

This can be generalized to get a result not using explicitly row-sums.

Master Theorem

• Loosening the restrictions on f(n)

- Case 1: $f(n) \in O(n^{E-\varepsilon})$, (ε >0), then: $T(n) \in \Theta(n^{E})$
- Case 2: $f(n) \in \Theta(n^E)$, as all node depth contribute about equally:

$$T(n) \in \Theta(f(n)\log(n))$$

○ case 3: $f(n) \in \Omega(n^{E+\varepsilon})$, (ε >0), and if $bf(n/c) \le \theta f(n)$ for some constant θ < 1 and all sufficiently large n, then:

$$T(n) \in \Theta(f(n))$$

The positive ϵ is critical, resulting gaps between cases as well

Using Master Theorem

- Example 1: $T(n) = 9T(\frac{n}{3}) + n$ $b = 9, c = 3, E = 2, f(n) = n = O(n^{E-1})$ Case 1 applies: $T(n) = \Theta(n^2)$
- Example 2: $T(n) = T(\frac{2}{3}n) + 1$ $b = 1, c = \frac{3}{2}, E = 0, f(n) = 1 = \Theta(n^E)$ Case 2 applies: $T(n) = \Theta(\log n)$
- Example 3: $T(n) = 3T(\frac{n}{4}) + n \log n$ $b = 3, c = 4, E = \log_4 3, f(n) = \Omega(n^{E+\epsilon})$ $bf(\frac{n}{4}) = \frac{3}{4}n \log n - \frac{3}{2}n$ Case 3 applies: $T(n) = \Theta(n \log n)$

Looking at the Gap

• Often, none of the 3 cases in the Master Theorem apply.

Your task:
Design such a recursion

Thank you!

Q & A

Yu Huang

yuhuang@nju.edu.cn http://cs.nju.edu.cn/yuhuang

