

Cours 1262.3 / ISC1

Systèmes numériques appliqués

module

Architecture des systèmes informatiques RS430.100.20.1262

Introduction au laboratoire

manon.meyer@he-arc.ch
yves.meyer@he-arc.ch

Unités d'enseignement :

			1		2		3		
		Période pédagogique (semestre)	1	2	3	4	5	6	
N°	Туре	Désignation							
1262.1	TP	Architecture des ordinateurs	4						
1262.2	TP	Systèmes numériques	4						
1262.3	PR	Systèmes numériques appliqués		2					
-	Examen								
		Total	8	2					

Indication en périodes d'enseignement hebdomadaires (45 min.)

Volume de travail:

	heures
Enseignement	112.5
Travail personnel	127.5
Travail total	240

Note finale du module :

$$M = \frac{2 \cdot m_{A\&O} + 2 \cdot m_{SN} + m_{SNA}}{5}$$

 $m_{A\&O}$ = moyenne des notes Architecture des ordinateurs

m_{SN} = moyenne des notes de Systèmes numériques

m_{SNA} = moyenne des notes Systèmes numériques appliqués

Toutes les notes et moyennes sont précisées au dixième de point.

Conditions de réussite :

Note finale du module $M \ge 4.0$ (arrondie au demi-point)

Moyenne de chacune des UE $m_i \ge 3.0$ (arrondies au dixième de point)

La note finale du module, calculée au dixième de point, permet d'établir la note ECTS.

Contenu et formes d'enseignement

Objectifs spécifiques	 Concevoir ou modifier un microprocesseur « maison » sur la base d'un cahier des charges Ecrire une application en assembleur dédié au processeur décrit ci-dessus Créer un banc de test permettant de valider le système avant l'implémentation Implémenter et tester le système numérique développé dans un circuit logique programmable FPGA 			
Modalités d'évaluation	1 ou 2 note(s) de laboratoire basée(s) sur l'évaluation du travail pratique par le professeur, un rapport écrit et/ou une présentation orale et/ou une interrogation écrite.			
Description du contenu (mots clés)	Conception, simulation, microprocesseur, assembleur, simulation, VHDL, FPGA			
Supports de cours	Cours pdf « Electronique numérique » Yves Meyer			
Outils utilisés	 Logiciel: Xilinx Vivado Matériel: kit Xilinx 7 à disposition durant le laboratoire 			

Etapes "front-end" indépendantes du matériel (circuit logique cible)

Etapes "back-end" dépendantes du matériel (circuit logique cible)

Qu'est ce qui va être réalisé dans ce cours :

Etude et modification d'un microcontrôleur basique (nanoControleur)

Deux Types d'architectures existent :

Architecture de type Harvard => deux bus adresses et données séparés et indépendants

Architecture de type Von Neuman => Bus commun pour programme et données

- Cahier des charges
- Jeu d'instructions
- Exemple de schéma bloc
- Projet Vivado fonctionnel

Pour rappel: ce projet met en application les connaissances acquises durant les cours :

- Systèmes numériques
- Architecture des ordinateurs

Il n'y aura donc pas de support de cours pour ce projet mis à part le cahier des charges mais vous pouvez vous référer à ceux fournis durant les deux cours mentionnés ci-dessus si l'une ou l'autre des notions n'est pas claire.

• Former les groupes

• Et ...

Au boulot