Multilevel Modeling of Arbellay et al 2017

Song S. Qian
October 14, 2017

Front Matters

Function for loading/installing packages:

```
> ## load/install packages
> packages<-function(x, repos="http://cran.r-project.org", ...){
+ x<-as.character(match.call()[[2]])
+ if (!require(x,character.only=TRUE)){
+ install.packages(pkgs=x, repos=repos, ...)
+ require(x,character.only=TRUE)
+ }
+ }</pre>
```

Set up working directory:

```
base <- getwd()
dataDIR <- paste(base, "data", sep="/")
## put your data set in the Data subdirectory
plotDIR <- paste(base, "Figs", sep="/")
## put created figures in the Figures subdirectory
setwd(base)</pre>
```

Load needed packages:

```
packages(lattice)
packages(arm)
packages(reshape2)
packages(tikzDevice)
```

Reading and Processing Data

Multilevel Model

Details of the model are in Qian (2016) [Environmental and Ecological Statistics with R (2nd Ed.), Chapman and Hall/CRC Press], Specifically, Section 10.3 (Multilevel ANOVA) and graphics code used here are similar to the code in Section 10.6 (Multilevel GLM).

```
tp_lmer1 <- lmer(log(value) ~ 1 + (1 | Events) + (1 | trt) + (1 | variable),
   data = tp_melt)
summary(tp_lmer1) ## This model assumes additive effects for all three factors
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(value) ~ 1 + (1 | Events) + (1 | trt) + (1 | variable)
     Data: tp_melt
##
##
## REML criterion at convergence: 5399.9
## Scaled residuals:
               1Q Median
                                3Q
       Min
                                       Max
## -5.5695 -0.5725 -0.0281 0.5711 3.9998
##
## Random effects:
                         Variance Std.Dev.
## Groups
            Name
             (Intercept) 0.004404 0.06636
## Events
## variable (Intercept) 6.911736 2.62902
## trt
             (Intercept) 0.262636 0.51248
## Residual
                         0.377114 0.61410
## Number of obs: 2872, groups: Events, 6; variable, 4; trt, 2
##
## Fixed effects:
##
               Estimate Std. Error t value
                0.3275
                            1.3639
## (Intercept)
tp_melt$EvTp <- paste(tp_melt$Events, tp_melt$trt)</pre>
tp_lmer2 <- lmer(log(value) ~ 1 + (1 | EvTp) + (1 | variable), data = tp_melt)
summary(tp_lmer2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(value) ~ 1 + (1 | EvTp) + (1 | variable)
##
     Data: tp_melt
##
## REML criterion at convergence: 5419.6
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -5.5404 -0.5847 -0.0388 0.5703 3.9981
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev.
## EvTp
             (Intercept) 0.1396
                                  0.3736
## variable (Intercept) 6.9118
                                  2.6290
## Residual
                         0.3755
                                  0.6128
## Number of obs: 2872, groups: EvTp, 12; variable, 4
## Fixed effects:
##
               Estimate Std. Error t value
```

```
## (Intercept)
                 0.3274
                            1.3190
                                      0.248
tp_melt$MeEvTp <- paste(tp_melt$variable, tp_melt$Events, tp_melt$trt)</pre>
tp_lmer3 <- lmer(log(value) ~ 1 + (1 | MeEvTp), data = tp_melt)</pre>
summary(tp_lmer3) ## interactions among all three factors (implicitly)
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(value) ~ 1 + (1 | MeEvTp)
##
      Data: tp_melt
##
## REML criterion at convergence: 5579.3
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
## -5.5463 -0.5491 -0.0054 0.5030 4.0534
##
## Random effects:
## Groups
             Name
                         Variance Std.Dev.
             (Intercept) 5.4097
                                  2.3259
## MeEvTp
## Residual
                         0.3656
                                  0.6046
## Number of obs: 2872, groups: MeEvTp, 48
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept)
                 0.3278
                            0.3359
```

Processing output

The three models all perform well. The estimated residual variances are all close to 0.36. Using the full model, we summarize the result graphically.

Plotting results

The function my.panel is written to add CIs to the estimated effects.

```
pch=pch)
}
est_low<-tapply(est$estimate-2*est$se2, est$method, min)</pre>
est_up <- tapply(est$estimate+2*est$se2, est$method, max)</pre>
est_range <- rbind(est_low, est_up)</pre>
##trellis.device(pdf, file=paste(plotDIR, "compareCL.pdf", sep="/"), height=3.5, width=7.5, color = T)
key <- simpleKey(levels(est$treatment), space="right")</pre>
dotplot(events~estimate|method, data=est,
        key=key,
        groups=treatment,
        col=key$points$col,
        pch=key$points$pch,
        layout=c(4,1),
        scales=list(x=list(relation="free")),
        panel=my.panel, xlab="log effects", ylab="events",
##
          scales=list(x=list(alternating=T)),
        xlim=list(est_range[,1], est_range[,2], est_range[,3], est_range[,4]))
```


##dev.off()