Class 8: Breast Cancer Mini-Project

Kevin Tan (PID: A16774162)

About

In today's lab we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin.

Data Import

```
fna.data <- read.csv("WisconsinCancer.csv")
wisc.df <- data.frame(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius mean	texture mean	perimeter_mean	n area meai	n
842302	M	17.99	10.38	-	_	
842517	M	20.57	17.77	132.9	0 1326.0)
84300903	M	19.69	21.25	130.0	0 1203.0)
84348301	M	11.42	20.38	77.5	8 386.	1
84358402	M	20.29	14.34	135.1	0 1297.0)
843786	M	12.45	15.70	82.5	7 477.	1
	smoothness	s_mean compa	ctness_mean c	oncavity_mean	concave.po:	ints_mean
842302	0.	.11840	0.27760	0.3001		0.14710
842517	0.	. 08474	0.07864	0.0869		0.07017
84300903	0.	. 10960	0.15990	0.1974		0.12790
84348301	0.	. 14250	0.28390	0.2414		0.10520
84358402	0.	. 10030	0.13280	0.1980		0.10430
843786	0.	. 12780	0.17000	0.1578		0.08089
	symmetry_m	mean fractal	_dimension_me	an radius_se t	exture_se]	perimeter_se
842302	0.2	2419	0.078	71 1.0950	0.9053	8.589
842517	0.1	1812	0.056	67 0.5435	0.7339	3.398
84300903	0.2	2069	0.059	99 0.7456	0.7869	4.585

84348301	0.259		0.09744		1.1560	3.445
84358402	0.180		0.05883		0.7813	5.438
843786	0.208		0.07613		0.8902	2.217
	area_se smoo		compactness_se		concave.po	
842302	153.40	0.006399	0.04904			0.01587
842517	74.08	0.005225	0.01308	0.01860		0.01340
84300903	94.03	0.006150	0.04006	0.03832		0.02058
84348301	27.23	0.009110	0.07458	0.05661		0.01867
84358402	94.44	0.011490	0.02461	0.05688		0.01885
843786	27.19	0.007510	0.03345	0.03672		0.01137
	symmetry_se	fractal_di	mension_se rad:	ius_worst text	ture_worst	
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	
84300903	0.02250		0.004571	23.57	25.53	
84348301	0.05963		0.009208	14.91	26.50	
84358402	0.01756		0.005115	22.54	16.67	
843786	0.02165		0.005082	15.47	23.75	
	perimeter_wo	rst area_w	orst smoothnes:	s_worst compa	ctness_wors	st
842302	184	.60 20:	19.0	0.1622	0.665	56
842517	158	.80 19	56.0	0.1238	0.186	86
84300903	152	.50 170	09.0	0.1444	0.424	! 5
84348301	98	.87 50	67.7	0.2098	0.866	33
84358402	152	.20 15	75.0	0.1374	0.205	50
843786	103	.40 74	41.6	0.1791	0.524	19
	concavity_wo	rst concav	e.points_worst	symmetry_wors	st	
842302	0.7	119	0.2654	0.460	01	
842517	0.2	416	0.1860	0.275	50	
84300903	0.4	504	0.2430	0.36	13	
84348301	0.6	869	0.2575	0.663	38	
84358402	0.4	000	0.1625	0.236	64	
843786	0.5	355	0.1741	0.398	35	
	fractal_dime	nsion_wors	t			
842302		0.1189				
842517		0.0890	2			
84300903		0.0875	8			
84348301		0.1730	0			
84358402		0.07678	8			
843786		0.1244	0			

 $^{{\}bf Q}.$ How many observations/patients/indivduals/samples are in this dataset?

nrow(wisc.df)

```
[1] 569
     Q2. How many of the observations have a malignant diagnosis?
  table(wisc.df$diagnosis)
 В
      М
357 212
     Q3. How many variables/features in the data are suffixed with _mean?
  colnames(wisc.df)
                                 "radius_mean"
 [1] "diagnosis"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
                                 "concavity_mean"
 [7] "compactness_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness se"
[17] "compactness_se"
                                 "concavity_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
[27] "compactness_worst"
                                 "concavity_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
  inds <- grep("_mean", colnames(wisc.df))</pre>
  length(inds)
```

Initial Analysis

[1] 10

Before analysis I want to take out the expert diagnosis column (aka the answer) from our dataset.

diagnosis <- as.factor(wisc.df\$diagnosis) head(diagnosis)</pre>

[1] M M M M M M M Levels: B M

wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>

	radius_mean text	ure_mean	perimete	er_mean	area_mean	smoothr	ess_mean
842302	17.99	10.38	_	122.80	1001.0		0.11840
842517	20.57	17.77		132.90	1326.0		0.08474
84300903	19.69	21.25		130.00	1203.0		0.10960
84348301	11.42	20.38		77.58	386.1		0.14250
84358402	20.29	14.34		135.10	1297.0		0.10030
843786	12.45	15.70		82.57	477.1		0.12780
	compactness_mean	n concavi	ty_mean o	concave.	points_me	an symme	etry_mean
842302	0.27760)	0.3001		0.147	10	0.2419
842517	0.07864	ŀ	0.0869		0.070	17	0.1812
84300903	0.15990)	0.1974		0.127	90	0.2069
84348301	0.28390)	0.2414		0.105	20	0.2597
84358402	0.13280)	0.1980		0.104	30	0.1809
843786	0.17000)	0.1578		0.080	89	0.2087
	fractal_dimension	on_mean ra	adius_se	texture	e_se perim	eter_se	area_se
842302	(0.07871	1.0950	0.9	9053	8.589	153.40
842517	(0.05667	0.5435	0.7	7339	3.398	74.08
84300903	(0.05999	0.7456		7869	4.585	94.03
84348301	(0.09744	0.4956	1.1	1560	3.445	27.23
84358402	(0.05883	0.7572	0.7	7813	5.438	94.44
843786		0.07613	0.3345		3902	2.217	27.19
	smoothness_se co	_		-		_	
842302	0.006399	0.04	4904	0.0537	73	0.015	587
842517	0.005225	0.0	1308	0.0186	30	0.013	340
84300903	0.006150	0.04	4006	0.0383	32	0.020)58
84348301	0.009110	0.0	7458	0.0566	31	0.018	367
84358402	0.011490	0.0	2461	0.0568	38	0.018	885
843786	0.007510	0.03	3345	0.0367	72	0.011	.37
	symmetry_se frac	_	_	radius_	=	ture_wor	rst
842302	0.03003	(0.006193		25.38	17.	
842517	0.01389	(0.003532		24.99	23.	41

84300903	0.02250	0.0	004571	23.5	57	25.53
84348301	0.05963	0.0	009208	14.9	91	26.50
84358402	0.01756	0.0	005115	22.5	54	16.67
843786	0.02165	0.0	005082	15.4	17	23.75
	perimeter_worst	area_worst	smoothness	s_worst	compactne	ss_worst
842302	184.60	2019.0		0.1622		0.6656
842517	158.80	1956.0		0.1238		0.1866
84300903	152.50	1709.0		0.1444		0.4245
84348301	98.87	567.7		0.2098		0.8663
84358402	152.20	1575.0		0.1374		0.2050
843786	103.40	741.6		0.1791		0.5249
	concavity_worst	concave.poi	ints_worst	symmeti	ry_worst	
842302	0.7119		0.2654		0.4601	
842517	0.2416		0.1860		0.2750	
84300903	0.4504		0.2430		0.3613	
84348301	0.6869		0.2575		0.6638	
84358402	0.4000		0.1625		0.2364	
843786	0.5355		0.1741		0.3985	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

Clustering

We can try a kmeans() clustering first

```
km <- kmeans(wisc.data, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 438, 131

Cluster means:

```
radius_mean texture_mean perimeter_mean area_mean smoothness_mean
1 12.55630 18.57037 81.12347 496.0619 0.0948845
2 19.37992 21.69458 128.23130 1185.9298 0.1012946
compactness_mean concavity_mean concave.points_mean symmetry_mean
1 0.09109982 0.06243776 0.03343254 0.1780580
```

2	0.	14861298	0.17693	947	0.100698	878 0.	1915397	
	fractal_dimension_mean radius_se texture_se perimeter_se area_se							
1		0.0634	5402 0.304	1909 1.2	15153	2.152881 2	3.78529	
2		0.0606	0290 0.742	8038 1.2	22538	5.250580 9	5.67817	
:	${ t smoothne}$	ss_se comp	actness_se	concavity	_se concav	e.points_s	e symmetry	_se
1	0.0071	73263	0.02347469	0.02874	551	0.0106363	0.02061	358
2	0.0065	98687	0.03217669	0.04241	977	0.0156739	0.02030	397
	fractal_	dimension_	se radius_	worst text	ure_worst]	-		_worst
1		0.0037475	14.	04390	24.70954	91.	93751 61	9.6479
2		0.0039533	889 23.	70947	28.91267	158.	49618 175	3.0229
:	${ t smoothne}$	ss_worst c	compactness	_worst con	cavity_wor	st concave	.points_wo	rst
1	0	.1299591	0.2	233118	0.21921	49	0.09132	984
2	0	.1404247	0.3	577577	0.44930	61	0.19243	107
\$	symmetry	_worst fra	ctal_dimen	sion_worst				
1	0.2	835537		0.08328194	:			
2	0.3	118817		0.08616550	1			
Clı	_	vector:	0.4000000	0.40.4000.4	0.4050.400	0.4070.0	044050	04450000
	842302	842517	84300903		84358402	843786	844359	84458202
	2	2	2	1	2	1	2	1
	844981	84501001	845636	84610002	846226	846381	84667401	84799002
	1	1	1	2	2	1	1	1
	848406	84862001	849014	8510426	8510653	8510824	8511133	851509
	1	2	2	1	1	1	1	2
	852552	852631	852763	852781	852973	853201	853401	853612
	2	2	1	2	2	2	2	1
8	5382601	854002	854039	854253	854268	854941	855133	855138
	2	2	2	2	1	1	1	1
	855167	855563	855625	856106	85638502	857010	85713702	85715
	1	1	2	1	1	2	1	1
	857155	857156	857343	857373	857374	857392	857438	85759902
	1	1	1	1	1	2	1	1
	857637	857793	857810	858477	858970	858981	858986	859196
	2	1	1	1	1	1	1	1
8!	5922302	859283	859464	859465	859471	859487	859575	859711
	1	1	1	1	1	1	2	1
	859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
	2	1	1	2	1	2	2	1
	861103	8611161	8611555	8611792	8612080			86135502
	1	1	2	2	1		1	2
					861853			
		1			1			2
					862717			
		00001	552100	552510	~~=! =!		552550	002000

1	1	1	1	1	1	1	1
862989	863030	863031	863270	86355	864018	864033	86408
1	1	1	1	2	1	1	1
86409	864292	864496	864685	864726	864729	864877	865128
1	1	1	1	1	1	2	2
865137	86517	865423	865432	865468	86561	866083	866203
1	2	2	1	1	1	1	2
866458	866674	866714	8670	86730502	867387	867739	868202
1	2	1	1	1	1	2	1
868223	868682	868826	868871	868999	869104	869218	869224
1	1	1	1	1	2	1	1
869254	869476	869691	86973701	86973702	869931	871001501	871001502
1	1	1	1	1	1	1	1
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
1	1	1	1	2	1	1	1
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
1	2		1				2
8712766	8712853	87139402			871641	871642	872113
2	1	1	1	1	1	1	1
872608	87281702	873357	873586	873592	873593	873701	873843
1	1						
873885	874158	874217		874662	874839	874858	875093
1	1			1			
875099	875263	87556202	875878	875938	877159	877486	877500
1	1		1				1
877501	877989	878796					879830
1	2	_	_				_
8810158		881046502					
1	1	_			1		
8811523	8811779	8811842					8812877
1	1	_	2	1			
8813129		88147101					
1	_	1	_	_	_	_	_
88203002		882488					
1			1				2
		883852					
1	1						1
		884948					
1	1		1		2		1
		887181					
2	1		1				1
		8910251				_	
2	2	1	1	1	1	1	1

8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
2	1	2	1	1	2	1	1
8912049	8912055	89122	8912280	8912284	8912521	8912909	8913
2	1	2	1	1	1	1	1
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	1	1	1	1	1	1	1
891936	892189	892214	892399	892438	892604	89263202	892657
1	1	1	1	2	1	2	1
89296	893061	89344	89346	893526	893548	893783	89382601
1	1	1	1	1	1	1	1
89382602	893988	894047	894089	894090		894329	894335
1	1	1	1	1	2	1	1
894604	894618	894855	895100	89511501	89511502	89524	895299
1	2	1	2	1	1	1	1
8953902	895633	896839	896864	897132	897137	897374	89742801
1	1	1	1	1	1	1	2
897604	897630	897880	89812	89813	898143	89827	898431
1	2	1	2	1	1	1	2
89864002	898677	898678	89869	898690	899147	899187	899667
1	1	1	1	1	1	1	1
899987	9010018	901011	9010258	9010259	901028	9010333	901034301
2	1	1	1	1	1	1	1
901034302	901041	9010598	9010872	9010877	901088	9011494	9011495
1	1	1	1	1	2	2	1
9011971	9012000	9012315	9012568	9012795	901288	9013005	901303
2	2	1	1	2	2	1	1
901315	9013579	9013594	9013838	901549	901836	90250	90251
1	1	1	1	1	1	1	1
902727	90291	902975	902976	903011	90312	90317302	903483
1	1	1	1	1	2	1	1
903507	903516	903554	903811	90401601	90401602	904302	904357
2	2	1	1	1	1	1	1
90439701	904647	904689	9047	904969	904971	905189	905190
2	1	1	1	1	1	1	1
90524101	905501	905502	905520	905539	905557	905680	905686
2	1	1	1	1	1	1	1
905978	90602302	906024	906290	906539	906564	906616	906878
1	2			1		1	1
907145	907367	907409	90745	90769601	90769602	907914	907915
1	1	1	1	1	1	1	1
908194	908445	908469	908489	908916	909220	909231	909410
2	2						
909411	909445	90944601	909777	9110127	9110720	9110732	9110944

1	2	1	1	2	1	2	1
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
1	2	1	2	1	1	1	1
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
1	1	1	1	2	2	1	1
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
1	1	1	1	2	1	1	1
911384	9113846	911391	911408	911654	911673	911685	911916
1	_						-
912193	91227	912519	912558	912600	913063	913102	913505
1	1	1	1	1	1	1	2
913512	913535	91376701	91376702	914062	914101	914102	914333
1	1			2		1	
914366	914580	914769	91485	914862	91504		
1	1	2	2	1	1	1	2
915186	915276	91544001				91550	915664
1	_			1			_
915691	915940	91594602			916838		
1	1	_			_	_	
917092	91762702	91789	917896	917897	91805	91813701	91813702
1	2				1		
918192	918465						
1	_						2
91979701	919812	921092	921362	921385	921386	921644	922296
1	1	=	_	_	_	_	_
922297	922576	922577			923465	923748	923780
1	1	1	1		_		_
924084	924342	924632	924934	924964	925236	925277	925291
1	1	1	_	1	_	_	_
925292	925311				926682	926954	
1	1	1	2	2	2	1	2
92751							
1							

Within cluster sum of squares by cluster:

[1] 28559677 49383423

(between_SS / total_SS = 69.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

```
table(km$cluster)
  1
      2
438 131
Cross-table
  table(km$cluster, diagnosis)
   diagnosis
      В
           М
  1 356
         82
       1 130
Let's try hclust() the key input required for hclust() is a distance matrix as produced by
the dist() function
  hc <- hclust(dist(wisc.data))</pre>
I cna make a tree like figure
```

plot(hc)

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Do we need to scale the data?

We can look a the sd of each column (original variable)

4:	++	
radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	${\tt smoothness_mean}$	${\tt compactness_mean}$
352	0	0
concavity_mean	concave.points_mean	symmetry_mean
0	0	0
fractal_dimension_mean	radius_se	texture_se
0	0	1
perimeter_se	area_se	smoothness_se
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	fractal_dimension_se	radius_worst
0	0	5

```
texture_worst perimeter_worst area_worst
6 34 569
smoothness_worst compactness_worst concavity_worst
0 0 0
concave.points_worst symmetry_worst fractal_dimension_worst
0 0 0
```

Yes we need to scale. We will run prcomp() with scale=TRUE.

```
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                          PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Standard deviation
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
                                           PC17
                                                   PC18
                                                           PC19
                          PC15
                                  PC16
                                                                   PC20
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)...

```
library (ggplot2)

res <- as.data.frame(wisc.pr$x)
ggplot(res) +
   aes(x=PC1, y=PC2, col = diagnosis) +</pre>
```

geom_point()

Combining Methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

We need 7 PCs to account for 90% of the variability

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership factor I need to "cut" the tree with the ${\tt cutree}$ () function.

```
grps <- cutree(hc, k=2)

Q. How many patients are in each cluster group?

table(grps)

grps
1    2
203 366

plot(res$PC1, res$PC2, col=grps)</pre>
```


Prediction

We can use our PCA result (model) to do predictions, that is take new unseen data and project it onto our new PC variables

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
     2.576616 -3.135913
                         1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
           PC8
                     PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
                                                                       PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                         PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
                     PC22
                                 PC23
                                            PC24
                                                        PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121
                                                             0.078884581
```

```
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238

PC27 PC28 PC29 PC30

[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029

[2,] -0.001134152 0.09638361 0.002795349 -0.019015820

plot(res$PC1, res$PC2, col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], labels=c(1,2), col="white")
```


Q18. Which of these patients should we prioritize for follow up?

Patient 2

Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. This is used to reduce the dimensions that you are measuring. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.