

Heterogeneous Computing

Professor: Dr. Joel Fuentes - <u>ifuentes@ubiobio.cl</u>

Assistants:

- Daniel López <u>daniel.lopez1701@alumnos.ubiobio.cl</u> Sebastián González <u>sebastian.gonzalez1801@alumnos.ubiobio.cl</u>

Course Webpage: http://www.face.ubiobio.cl/~jfuentes/classes/ch

About us

- Joel Fuentes
 - Ph.D. in Computer Science. (California University, Irvine 2014-2019), Postdoc at Intel (2019-2020)
 - Research field: High-performance algorithms, compilers, and accelerators (GPUs, TPUs, multicore CPUs, etc.)
- Daniel López
 - Civil Engineering in Computer Science student, 5th year.
 - Civil Engineering in Computer Science Master's Degree student, 1st year.
- Sebastián González
 - Civil Engineering in Computer Science student, 4th year.

About the course

- Originates thanks to a partnership with Intel
- The first course of its kind in Latin America
- Students from
 - Civil Engineering in Computer Science (Chillán and Concepción)
 - Computer Science and Computer Engineering execution (Concepción)
- A paper will be written about the contents and the experience of this course
- All the resources will be available in both english and spanish
 - http://www.face.ubiobio.cl/~jfuentes/classes/ch
 - http://www.face.ubiobio.cl/~jfuentes/classes/hc

About the course

- Contents in the context of
 - Modern processors and accelerators
 - Programming languages (Data Parallel C++, CUDA, OpenMP)
 - Optimization and performance
- Trabajo experimental con procesadores y aceleradores reales
- Hands-on work with real-life accelerators and processors
 - DevCloud access
 - Servers with multi-core CPUs, GPUs, and FPGAs from different vendors
- We'll host talks featuring distinguished researchers and developers

About the course

- Elective theoretical-practical course for fifth-year students, where you'll learn concepts, design strategies, tools, and necessary APIs for the creation of algorithms in different types of heterogeneous architectures: CPUs, GPUs, and FPGAs.
- Contributes to the following competences to the graduate's profile:
 - GC.1
 - GC.2
 - GC.3
 - GC.4

Learning goals

Evaluate comparatively sequential and parallel algorithms for different types of heterogeneous architectures such as CPUs, GPUs, and FPGAs; differentiating between characteristics from computational and energetic efficiency.

Learning goals:

- LG1. Analyzes advantages and disadvantages of developing algorithms for heterogeneous architectures such as CPUs, GPUs, and FPGAs.
- LG2. Determines the most effective parallelism technique for a given problem, based on its algorithmic nature, parallelism complexity, and computational architecture.
- LG3. Builds algorithms for heterogeneous architectures based on a determined methodology, measuring its computational efficiency.

Planning

- Contents split across four units:
 - Heterogeneous Architectures
 - Programming Models
 - Algorithms
 - Optimization and performance

Planning

- Heterogeneous Architectures
 - 2 weeks
 - Exam at the end of the unit
- Programming models
 - 6 weeks
 - 1 laboratory
 - Exam at the end of the unit
- Algorithms
 - 4 weeks
 - 1 laboratory
 - Exam at the end of the unit
- Optimization and Performance
 - 3 weeks
 - Exam at the end of the unit

Assessments

Exams at the end of the unit(4)	40%
• Laboratories (2)	20%
Final Project	40%

Important dates

• Exams at the end of the unit (4)

• Exam 1	20/09/2021
• Exam 2	09/11/2021
• Exam 3	07/12/2021
• Exam 4	03/01/2022
Laboratories (2)	
• Lab 1	25/10/2021
• Lab 2	29/11/2021
Final Project	
 First installment 	22/11/2021
 Final installment 	04/01/2022

Schedule and platforms

- Schedule
 - Monday 10:20 AM 12:30 PM.
 - Tuesday 4:20 5:50 PM.
- Online platforms
 - M. Teams
 - Course Webpage
 - http://www.face.ubiobio.cl/~jfuentes/classes/ch
 - http://www.face.ubiobio.cl/~jfuentes/classes/hc

Bibliography and resources

- Almeida, F., Giménez, D., Mantas, J. M., & Vidal, A. M. (2008). Introducción a la programación paralela.
 Thompson Paraninfo.
- Silveira, A., Avila, R. B., Barreto, M. E., & Navaux, P. O. A. (2000). DPC++: Object-Oriented Programming Applied to Cluster Computing. In PDPTA.
- Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., & Tian, X. (2021). Data Parallel C++:
 Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL (p. 548). Springer Nature.
- Fox, G. C., Williams, R. D., & Messina, G. C. (2014). Parallel computing works!. Elsevier.
- Padua, D. (Ed.). (2011). Encyclopedia of parallel computing. Springer Science & Business Media.
- Herlihy, M., Shavit, N., Luchangco, V., & Spear, M. (2020). The art of multiprocessor programming. Newnes.