STA3010 Regression Analysis

Feng Yin

The Chinese University of Hong Kong (Shenzhen)

March 19, 2020

General Linear Model

We consider a more general multiple linear regression model:

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{1}$$

where we assume

$$\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}, \quad Cov(\boldsymbol{\varepsilon}) = \sigma^2 V \tag{2}$$

with

 σ^2 being unknown, V being known.

Note:

 $V \in \mathbb{R}^{n \times n}$ is assumed to be a positive definite matrix, revealing the structure of variances and covariances among random errors in ε .

Transformation

Since V is non-singular and positive definite, we can factorize it as

$$V = K^T K = KK, (3)$$

where K is the symmetric, square-root of V, which is also positive definite.

Due to the above factorization, we transform the data as

$$\mathbf{z} = K^{-1}\mathbf{y}, \quad B = K^{-1}X, \quad \mathbf{g} = K^{-1}\varepsilon,$$
 (4)

and obtain a new multiple linear regression model:

$$\mathbf{z} = \mathbf{B}\boldsymbol{\beta} + \mathbf{g},\tag{5}$$

for which we can prove that

$$\mathbb{E}(\boldsymbol{g}) = \boldsymbol{0}, \quad Cov(\boldsymbol{g}) = \sigma^2 \boldsymbol{I}$$

Generalized LS (GLS) Estimator of β

The GLS model parameter estimator $\hat{oldsymbol{eta}}$ is obtained as

$$\hat{\boldsymbol{\beta}} = S(\boldsymbol{\beta}) \equiv \underset{\boldsymbol{\beta}}{\operatorname{arg \, min}} \ (\boldsymbol{z} - \boldsymbol{B}\boldsymbol{\beta})^{T} (\boldsymbol{z} - \boldsymbol{B}\boldsymbol{\beta})$$

$$= \underset{\boldsymbol{\beta}}{\operatorname{arg \, min}} \ (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{T} V^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$
(6)

Similarly, taking the derivative of the cost function $S(\beta)$ w.r.t β and setting it equal to zero, yields

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^{T} \boldsymbol{V}^{-1} \boldsymbol{y}. \tag{7}$$

Feng Yin (CUHK(SZ))

We can derive the following properties of $\hat{\beta}$:

- $\mathbb{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$,
- $Cov(\hat{\beta}) = \sigma^2(X^T V^{-1} X)^{-1}$.

Note:

When we assume $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 V)$, then $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2 (X^T V^{-1} X)^{-1})$.

GLS estimator of σ^2

We define SS_{Res} as

$$SS_{Res} = (\mathbf{z} - \hat{\mathbf{z}})^{T} (\mathbf{z} - \hat{\mathbf{z}})$$
$$= \mathbf{y}^{T} \mathbf{A} \mathbf{y}$$
 (8)

where $A \triangleq (V^{-1} - V^{-1}X(X^TV^{-1}X)^{-1}X^TV^{-1}).$

Theorem (Normal distribution is NOT assumed!)

If ${\bf A}$ is a $k \times k$ matrix of constants, and ${\bf y}$ is a $k \times 1$ random vector with mean ${\bf \mu}$ and non-singular covariance matrix ${\bf \Sigma}$, then

•
$$\mathbb{E}(\mathbf{y}^T \mathbf{A} \ \mathbf{y}) = \text{trace}(\mathbf{A} \mathbf{\Sigma}) + \boldsymbol{\mu}^T \mathbf{A} \ \boldsymbol{\mu}.$$

We apply the above theorem and obtain

$$\mathbb{E}(SS_{Res}) = tr(\sigma^2 V \cdot \mathbf{A}) + (X\beta)^T \mathbf{A} X\beta$$
$$= \sigma^2 (n - p)$$
(9)

• We let $MS_{Res} = \frac{SS_{Res}}{n-p} = \frac{\mathbf{y}^T \mathbf{A} \mathbf{y}}{n-p}$ to be the GLS estimator of σ^2 . It can shown that $\mathbb{E}(MS_{Res}) = \sigma^2 \rightarrow (\text{unbiased estimator of } \sigma^2)$.

7 / 9

Generalized Gauss-Markov Theorem

- $\hat{\boldsymbol{\beta}} = (X^T V^{-1} X)^{-1} X^T V^{-1} \boldsymbol{y}$ is the BLUE estimator, when $\mathbb{E}(\boldsymbol{\varepsilon}) = \boldsymbol{0}$, $Cov(\boldsymbol{\varepsilon}) = \sigma^2 V$, and there is no model mismatch.
- Yet another version: $\hat{\boldsymbol{\beta}} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} \boldsymbol{y}$ is the BLUE estimator, when $\mathbb{E}(\varepsilon) = \boldsymbol{0}$, $Cov(\varepsilon) = \Sigma$, and there is no model mismatch.
- Proof can be found in our textbook, see appendix C11.

Special Cases

Example (Two spacial cases:)

- V = I, which boils down to "ordinary" LS.
- **2** $V = \text{diag}(\frac{1}{w_1}, \frac{1}{w_2}, \dots, \frac{1}{w_n})$, with $w_i > 0$, $\forall i = 1, 2, \dots, n$ (uncorrelated random error terms with non-constant variance)

Note that the second case is also called "weighted LS" (WLS) in the textbook.

For this case, we could simply let $W=V^{-1}=\operatorname{diag}(w_1,w_2,\ldots,w_n)$, then

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{y}$$