专业: 电气工程及其自动化

姓名: __严旭铧

学号: 3220101731

日期: _2024.4.2

地点:紫金港东三 406

浙江大学实验报告

实验名称: _____滤波器设计____实验类型: _模电实验_____同组学生姓名: 褚玘铖

实验 6 滤波器设计

一、实验目的

- 1. 掌握有源滤波器的分析和设计方法;
- 2. 学习有源滤波器的调试方法和幅频特性的测量方法;
- 3. 了解滤波器的结构和参数对滤波器性能的影响;
- 4. 学习用仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。

二、实验要求

- 1. 在实验板上安装所设计的电路。
- 2. 有源滤波器的静态调零。
- 3. 测量滤波器的通带增益 A_{un} 、通带截止频率 f_n 。
- 4. 测量滤波器的频率特性。
- 5. 改变电路参数,研究品质因数0对滤波器频率特性的影响。

三、 基本实验原理

设计滤波器的核心问题,就是求出一个在物理上可以实现的系统H(s),使其频率特性 $H(j\omega)$ 尽量逼近理想滤波器的频率特性,以满足所给定的滤波参数的要求。

分析滤波电路,就是求解电路的频率特性。

对于 LPF、HPF、BPF 和 BEF,就是求解出**A up**、 **f p**和过渡带的斜率。

四、 实验内容

1. 简单二阶 LPF

(1) 仿真电路图

(2) 实际实验数据

i. $R1 = 10k\Omega$, C = 0.1uF

ii. $R1 = 10k\Omega$, C = 0.1uF

(3) 数据分析与处理

R1/kΩ	C/uF	仿真 Aup	实测 Aup	f 仿真/Hz	f 实测/Hz	Q
10	0.1	6.0073	6.07	59.440	58.4	0.943
10	0.01	6.0162	6.03	596.596	584.3	0.952

2. 压控电压源(VCVS)二阶LPF

(1) 仿真电路

(2) 实际实验数据

i. R1=10k Ω , C=0.1uF

ii. R1=10k Ω , C=0.01uF

(3) 数据分析与处理

$R1/k\Omega$	C/uF	仿真 Aup	实测 Aup	f 仿真/Hz	f 实测/Hz	Q
10	0.1	6.0457	6.22	201.928	199.5	0.995
10	0.01	6.018	6.04	2012.2	1995	/

3. 多路负反馈二阶LPF(MFB)

(1) 仿真电路图

(2) 实际实验数据

i.
$$R1 = R2 = 10k\Omega$$
, $C = 0.1uF$

(3) 数据分析与处理

C1	R1/kΩ	R2/kΩ	仿真 Aup	实测 Aup	f 仿真/Hz	f 实测/Hz	Q
0.1u	10	10	0.014	0.05	653.653	631	1.05
1u	10	10	0.008	0.28	243.063	251.2	/

4. 压控电压源(VCVS)二阶HPF

(1) 仿真电路图

(2) 实际实验数据

(2)	*於 +1日 八 +1C 1-1-1 H -1 H -1 H
(3)	数据分析与处理

R3/kΩ	R4/kΩ	仿真 Aup	实测 Aup	f 仿真/Hz	f 实测/Hz	Q
10	10	/	5.98	125.097	125.9	0.991
15.1	15.1	/	4.96	107.8	105.9	/

5. 多路负反馈二阶HPF(MFB)

(1) 仿真电路图

(2) 实际实验数据

i. $R3=2k\Omega$, $Rf1=10k\Omega$

ii. R3=1k Ω , Rf1 = 20k Ω

(3) 数据分析与处理

R3/kΩ	$Rf1/k\Omega$	仿真 Aup	实测 Aup	f 仿真/Hz	f 实测/Hz	Q
2	10	/	0.07	338.899	335	0.69
1	20	0.04	0.20	249.186	237.1	/

- 6. 有源带通滤波器
 - (1) 仿真电路图

(2) 实际实验数据

i.
$$C2 = C3 = 1uF$$

ii. C2 = C3 = 0.1 uF

250°

200

150

100

0

- -150

-200

(3) 数据分析与处理

C2=C3/uF	实测 Aup	fL 仿真/Hz	fH 仿真/Hz	fL 实测/Hz	fH 实测/Hz
1	0.6	41.365	591.618	33.5	668.3
0.1	/	316.401	769.372	316.2	749.9

五、 实验体会与思考

- 1. 总的来说,这次实验虽然比较耗时,线路比较复杂容易接错,但是我们还是顺利地完成了仿真实验和实际接线的工作,实际连接得到的滤波器与设计值比较接近,滤波的效果基本达到预期。
- 2. 这次实验让我对常见滤波器的几种结构有了更为深刻的认识,对滤波器的参数和性能指标有了 更直观的了解。