Probability and Measure by Billingsley

Solutions by James K. Pringle

September 7, 2013

Section 1

Problems 1, 2, 3, 4, 5, 6, 7

1.1 (a) Show that a discrete probability space (see Example 2.8 for the formal definition) cannot contain an infinite sequence A_1, A_2, \ldots of independent events each of probability $\frac{1}{2}$. Since A_n could be identified with heads on the nth toss of a coin, the existence of such a sequence would make this section superfluous.

Proof. Apply 1.1(b). Let $p_n = 0.5$. Therefore $\alpha_n = \min\{0.5, 0.5\} = 0.5$ and $\sum_n \alpha_n$ diverges. Hence a discrete probability space cannot contain independent events A_1, A_2, \ldots each with probability $\frac{1}{2}$.

(b) Suppse that $0 \le p_n \le 1$, and put $\alpha_n = \min\{p_n, 1 - p_n\}$. Show that if $\sum_n \alpha_n$ diverges, then no discrete probability space can contain independent events A_1, A_2, \ldots such that A_n has probability p_n .

Proof. Suppose B_i is A_i or A_i^c . Note $\alpha_n \leq P(B_n) \leq 1 - \alpha_n$. It follows that

$$0 \le P(B_1 \cap \dots \cap B_n) = P(B_1) \cdots P(B_n) \tag{1}$$

$$\leq \prod_{i=1}^{n} (1 - \alpha_i) \tag{2}$$

$$\leq \exp\left[-\sum_{i=1}^{n} \alpha_i\right]$$
(3)

Inequality (3) comes from combining several $1 + x \le e^x$ with the added condition that $0 \le 1 + x$. Since $\sum_n \alpha_n$ diverges, $\exp\{-\sum_{i=1}^n \alpha_i\} \downarrow 0$. Taking the limit in n of the inequality above,

$$0 \le P\left(\bigcap_{i=1}^{\infty} B_i\right) \le 0. \tag{4}$$

For all i, each ω in the sample space is in A_i or A_i^c . Therefore, for all n, each ω is in $\bigcap_{i=1}^n B_i$. Thus, $\omega \in \bigcap_{i=1}^\infty B_i$ and

$$P(\omega) \le P(\cap_{i=1}^{\infty} B_i) = 0 \tag{5}$$

Supposing that Ω were a discrete space leads to the conclusion that

$$1 = P(\Omega) = \sum_{\omega \in \Omega} P(\omega) = \sum_{\omega \in \Omega} 0 = 0, \tag{6}$$

a contradiction. Thus no discrete probability space can contain independent events A_1, A_2, \ldots such that A_n has probability p_n .

1.2 Show that N and N^c are dense [A15] in (0,1].

Proof. The definition of *dense*: The set A is *dense* in the set B if for each x in B and each open interval J containing x, J meets A ($J \cap A \neq \emptyset$).

Part 1, N is dense: From Theorem 1.2, N has negligible complement, and therefore P(N)=1. Suppose N is not dense. Then there exists an open interval $J=(a,b)\in (0,1]$ (with $a\neq b$) such that $J\cap N=\emptyset$. Since this section discusses probabilities of intervals open on the left and closed on the right, take $J'=(a,\frac{a+b}{2}]\subset J$. It follows that $J'\cap N=\emptyset$. Therefore, since $N\subset (0,1]\setminus J'=(0,a]\cup (\frac{a+b}{2},1]$,

$$P(N) \le P((0,1] \setminus J') = P\left((0,a] \cup \left(\frac{a+b}{2},1\right]\right) \tag{7}$$

$$= P((0,a]) + P\left(\left(\frac{a+b}{2},1\right]\right) \tag{8}$$

$$= a + \left(1 - \frac{a+b}{2}\right) \tag{9}$$

$$=1+\frac{a}{2}-\frac{b}{2} \tag{10}$$

$$<1, \tag{11}$$

a contradiction, since P(N) = 1. Therefore N is dense.

Part 2, N^c is dense: Let J be a non-trivial open interval (a,b) in (0,1]. Let $K = \min\{k : 2^{-k} < (b-a)/2, \ k \in \mathbb{Z}^+\}$. By definition, K is constructed such that the length of a dyadic interval of rank K is the largest dyadic interval length less than $\frac{b-a}{2}$. This choice of K guarantees that at least one of the 2^K dyadic intervals of rank K that decompose the unit interval is contained in J. In other words for some integer n with $0 \le n \le 2^K - 1$, it follows that $I = (n/2^K, (n+1)/2^K] \subset J$. Note, $\omega \in I$ means that

 $d_i(\omega)$ is fixed for $i \leq K$. Next, consider a finite sequence, S, of 0's and 1's—not all 0's—the mean of which is $\mu \neq \frac{1}{2}$. For the purposes of this proof, let $S_1 = 1, S_2 = 1, S_3 = 0$. Choose the $\omega \in I$ such that $d_{K+n}(\omega) = S_{K+n \mod |S|} = S_{K+n \mod 3}$ for $n \in \mathbb{Z}^+$. Calculating,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} d_i(\omega) = \lim_{n \to \infty} \frac{1}{n|S|} \sum_{i=1}^{n|S|} d_i(\omega)$$
(12)

$$= \lim_{n \to \infty} \frac{1}{n|S|} \left(\sum_{i=1}^{K} d_i(\omega) + \sum_{i=K+1}^{n|S|} d_i(\omega) \right)$$
 (13)

$$= \lim_{n \to \infty} \frac{1}{n|S|} \sum_{i=1}^{K} d_i(\omega) + \lim_{n \to \infty} \frac{1}{n|S|} \sum_{i=K+1}^{n|S|} d_i(\omega)$$
 (14)

$$= 0 + \mu \tag{15}$$

$$\neq \frac{1}{2} \tag{16}$$

Since the series of partial sums converges to a limit on the left-hand side, all subsequences converge to that same limit, thus justifying (12). By construction, ω is in J, and by (16), $\omega \in N^c$ and thus N^c is dense in (0,1].

- 1.3 \uparrow Define a set A to be *trifling* if for each ϵ there exists a *finite* sequence of intervals I_k satisfying (1.22) and (1.23). This definition and the definition of negligibility apply as they stand to all sets on the real line, not just to subsets of (0, 1].
 - (a) Show that a trifling set is negligible

Proof. Definition of **negligible**: A subset A of Ω is negligible if for each positive ϵ there exists a finite or countable collection I_1, I_2, \ldots of intervals (they may overlap) satisfying

$$A \subset \bigcup_{k} I_{k} \tag{17}$$

and

$$\sum_{k} |I_k| < \epsilon \tag{18}$$

For trifling set A, take the finite sequence of intervals I_k and use them for the finite or countable collection of intervals for the definition of negligible. Therefore A is also negligible.

(b) Show that the closure of a trifling set is also trifling.

Proof. Suppose A is trifling and let A^- be its closure. Given $\epsilon > 0$, choose intervals $(a_k, b_k], k = 1, \ldots, n$, such that $A \subset \bigcup_{k=1}^n (a_k, b_k]$ and $\sum_{k=1}^n (b_k - a_k) < \epsilon/2$. Let $x_k = a_k - \epsilon/2$. Then $A^- \subset \bigcup_{k=1}^n (x_k, b_k]$ and $\sum_{k=1}^n (b_k - x_k) < \epsilon$.

(c) Find a bounded negligible set that is not trifling.

$$\square$$

- (d) Show that the closure of a neglibigle set may not be negligible.
- (e) Show that finite unions of trifling sets are trifling but that this can fail for countable unions.
- 1.4 \uparrow For i = 0, ..., r 1, let $A_r(i)$ be the set of numbers in (0, 1] whose nonterminating expansions in the base r do not contain digit i.
 - (a) Show that $A_r(i)$ is trifling.
 - (b) Find a trifling set A such that every point in the unit interval can be represented in the form x + y with x and y in A.
 - (c) Let $A_r(i_l, ..., i_k)$ consist of the numbers in the unit interval in whose base-r expansion the digits $i_l, ..., i_k$ nowhere appear consecutively in that order. Show that it is trifling. What does this imply about the monkey that types at random?
- 1.5 \uparrow The Cantor set C can be defined as the closure of $A_3(1)$.
 - (a) Show that C is uncountable but trifling.
 - (b) From [0,1] remove the open middle third $(\frac{1}{3},\frac{2}{3})$; from the remainder, a union of two closed intervals, remove the two open middle thirds $(\frac{1}{9},\frac{2}{9})$ and $(\frac{7}{9},\frac{8}{9})$. Show that C is what remains when this process is continued ad infinitum.
 - (c) Show that C is perfect [A15].
- 1.6 Put $M(t) = \int_0^1 e^{ts_n(\omega)} d\omega$, and show by successive differentiation under the integral that

$$M^{(k)}(0) = \int_0^1 s_n^k(\omega) d\omega. \tag{19}$$

Over each dyadic interval of rand n, $s_n(\omega)$ has a constant value of the form $\pm 1 \pm 1 \pm \cdots \pm 1$, and therefore $M(t) = 2^{-n} \sum \exp t(\pm 1 \pm 1 \pm \cdots \pm 1)$, where the sum extends over all 2^n n-long sequences of ± 1 's and ± 1 's. Thus

$$M(t) = \left(\frac{e^t + e^{-t}}{2}\right)^n = (\cosh t)^n.$$
 (20)

Use this and (1.38) to give new proofs of (1.16), (1.18), and (1.28). (This, the moethod of moment generating functions, will be investigated systematically in Section 9).

1.7 \uparrow By an argument similar to that leading to (1.39) show that the Rademacher functions satisfy

$$\int_0^1 \exp\left[i\sum_{k=1}^n a_k r_k(\omega)\right] d\omega = \prod_{k=1}^n \frac{e^{ia_k} + e^{-ia_k}}{2}$$
(21)

$$= \prod_{k=1}^{n} \cos a_k. \tag{22}$$

Take $a_k = t2^{-k}$, and from $\sum_{k=1}^{\infty} r_k(\omega) 2^{-k} = 2\omega - 1$ deduce

$$\frac{\sin t}{t} = \prod_{k=1}^{n} \cos \frac{t}{2^k} \tag{23}$$

by letting $n \to \infty$ inside the integral above. Derive Vieta's formula

$$\frac{2}{\pi} = \frac{\sqrt{2}}{2} \frac{\sqrt{2 + \sqrt{2}}}{2} \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots$$
 (24)