<u>1^a questão</u> (15 pontos): Uma bola de futebol sofre quatro deslocamentos sucessivos representados pelos vetores \vec{d}_1 , \vec{d}_2 , \vec{d}_3 , \vec{d}_4 que estão apresentados no diagrama a seguir:

Qual deve ser o deslocamento resultante da bola, $\vec{d} = \vec{d_1} + \vec{d_2} - \vec{d_3} + \vec{d_4} - \vec{d_5}$? Mostre o vetor resultante no gráfico, tomando como origem o ponto O e calcule o seu módulo.

<u>2^a questão</u> (15 pontos): Sejam os vetores $\vec{a} = (1, -m, -3)$, $\vec{b} = (m+3, 4-m, 1)$ e $\vec{c} = (m, -2, 7)$. Determinar m para que: $\vec{a} \cdot \vec{b} = (\vec{a} + \vec{b}) \cdot \vec{c}$ Resp.: $\mathbf{m} = \mathbf{2}$

<u>3ª questão</u> (20 pontos): Dados os vetores $\vec{u} = (2, 1, -1)$ e $\vec{v} = (m, -1, 3)$, calcular o(s) valor(es) de m para que a área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} seja igual a $\sqrt{62}$ unidades de área.

Resp.: m = -9 ou m = 1

 $\underline{4^{\text{a}} \text{ questão}}$ (20 pontos): Sabe-se que o versor \hat{t} faz ângulo de 60° com os vetores \vec{i} e \vec{j} . Sabe-se ainda que o vetor \vec{t} possui módulo igual a 4 e ângulo obtuso com o vetor \vec{k} .

- a) Encontre o vetor \vec{t} . Resp.: $\vec{t} = (2, 2, -2\sqrt{2})$
- b) Represente graficamente o vetor \vec{t} , indicando seus ângulos diretores.

5^a questão (30 pontos):

Seja um triângulo, onde as coordenadas dos vértices são A(2, -2, 0), B(-1, 0, 2) e C(1, 3, 1).

- a) Encontre os componentes do vetor \overrightarrow{CH} , sabendo-se que H é o pé da altura relativa ao vértice B.
- b) Encontre a altura h, relativa ao vértice B.
- c) Encontre o perímetro do triângulo.
- d) Encontre a área do triângulo.

Resp.: a)
$$\overrightarrow{CH} = (4/9, -20/9, -4/9)$$
; b) $h = \sqrt{702/81}) \cong 2,94u.c.$

c) Perímetro \approx 13,06 u.c.; d) Área \approx 7,64 u.a.