Chapter 3. Basic Topology of R

Theorem. The open interval $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ is uncountable.

Proof.

We proceed by contradiction and assume that there exists a function $f: \mathbb{N} \to (0,1)$ that is 1-1 and onto. 1-1 implies that distinct elements have distinct images. Onto implies that every element in the co-domain has atleast one pre-image. For each $m \in \mathbb{N}$, f(m) is a real number between 0 and 1, and we represent it using the decimal notation

$$f(m) = .a_{m1}a_{m2}a_{m3}a_{m4}a_{m5} \dots$$

What is meant here is that for each $m, n \in \mathbb{N}$, a_{mn} is the digit from the set $\{0, 1, 2, 3, ..., 9\}$ that represents the nth digit in the decimal expansion of mth real number, f(m). The 1-1 correspondence between \mathbb{N} and (0,1) can be summarized in the doubly indexed array:

The key assumption about this correspondence is that **every** real number in (0, 1) is assumed to appear somewhere on this list.

Now for the pearl of the argument. Define a real number $x \in (0,1)$ with the decimal expansion $x = .b_1b_2b_3b_4...$ using the rule

$$b_n = \begin{cases} 2 & \text{if } a_{nn} \neq 2\\ 3 & \text{if } a_{nn} = 2 \end{cases}$$

Now, the real number $x = .b_1b_2b_3b_4...$ cannot be f(1), simply because its first digit b_1 differs from the first digit a_{11} of f(1). Similarly, the second digit b_2 differs from the second digit a_{22} of f(2). In general, the nth digit of x differs from the nth digit of x0. So, we have constructed a

real number x that is not in the set $\{f(1), f(2), f(3), \ldots, f(n)\}$. But, this is a contradiction. Hence, our initial assumption is false. The set of real numbers in (0,1) are uncountable.

Exercise. [Abbott, 1.6.4] Let S be the set consisting of all sequences of Os and Os. Observe that S is not a particular sequence, but rather a large set whose elements are sequences, namely:

$$S = \{(a_1, a_2, a_3, \dots) : a_n = 0 \text{ or } 1\}$$

As an example, the binary sequence $(1,0,1,0,1,0,\ldots)$ is an element of S as is the sequence $(1,1,1,1,1,\ldots)$. Give a rigorous argument showing that S is uncountable.

Proof.

Suppose that S - the set of all possible binary strings of infinite length is countable. Then, we can define a bijection $f: \mathbb{N} \to S$ between the natural numbers and S. For each $m \in \mathbb{N}$, f(m) is a binary string in S. Let us enlist the first few elements of this correspondence.

N		(0,1)								
1	\longleftrightarrow	f(1)	=	. a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a_{16}	•••
2	\longleftrightarrow	<i>f</i> (2)	=	$. a_{21}$	a ₂₂	a_{23}	a_{24}	a_{25}	a_{26}	•••
3	\longleftrightarrow	f(3)	=	$. a_{31}$	a_{32}	a ₃₃	a_{34}	a_{35}	a_{36}	•••
4	\longleftrightarrow	f(4)	=	$. a_{41}$	a_{42}	a_{43}	a ₄₄	a_{45}	a_{46}	•••
5	\longleftrightarrow	f(5)	=	$. a_{51}$	<i>a</i> ₅₂	a_{53}	a_{54}	a ₅₅	a_{56}	•••
6	\longleftrightarrow	<i>f</i> (6)	=	. a ₆₁	<i>a</i> ₆₂	a_{63}	a_{64}	a_{65}	a ₆₆	• • •
:		:	:	:	:	:	:	:	:	·

Define a binary sequence $x = (b_1, b_2, b_3, b_4, ...)$ such that

$$b_i = \begin{cases} 1 & \text{if } a_{ii} = 0 \\ 0 & \text{if } a_{ii} = 1 \end{cases}$$

Thus, the binary sequence $x = (b_1, b_2, b_3, b_4, \dots)$ has atleast one bit that differs from all of the elements in S. Consequently, $x \notin S$. This is a contradiction, as S is supposed to contain all binary strings. Hence, S is not countable.

3.1 Discussion: The Cantor Set.

What follows is a fascinating mathematical construction, due to Georg Cantor, which is extremely useful for extending the horizons of our intuition about the nature of subsets of the real line. Cantor's name has already appeared in the first chapter in our discussion of uncountable sets. Indeed, Cantor's proof that ${\bf R}$ is uncountable occupies another spot on the short list of the most significant contrubutions towards the understanding of the mathematical infinite. In the words of the mathematician David Hilbert, "No one shall expel us from the paradise that Cantor has created for us."

Let C_0 be the closed interval [0,1] and define C_1 to be the set that results when the open middle one third is removed that is,

$$C_1 = C_0 \setminus \left(\frac{1}{3}, \frac{2}{3}\right) = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$$

Now, construct C_2 in a similar way by removing the open middle third of each of the two components of C_1 :

$$C_2 = \left(\left[0, \frac{1}{9} \right] \cup \left[\frac{2}{9}, \frac{3}{9} \right] \right) \cup \left(\left[\frac{6}{9}, \frac{7}{9} \right] \cup \left[\frac{8}{9}, 1 \right] \right)$$

If we continue this process inductively then for each $n=0,1,2,\ldots$ we get a set of C_n consisting of 2^n closed intervals each having length $1/3^n$. Finally, we define the Cantor set C to be the intersection

$$C = \bigcap_{n=0}^{\infty} C_n$$

Defining the Cantor set

It may be useful to understand C as the remainder of the inerval [0,1] after the interative process of removing open middle one thirds is taken to infinity.

$$C = [0,1] - \left[\left(\frac{1}{3}, \frac{2}{3} \right) \cup \left(\frac{1}{9}, \frac{2}{9} \right) \cup \left(\frac{7}{9}, \frac{8}{9} \right) \cup \dots \right]$$

There is some initial doubt whether anything remains at all, but notice that because we are always removing open middle one thirds, then for every $n \in \mathbb{N}$, $0 \in C_n$ and hence $0 \in C$. The same argument shows that $1 \in C$. In fact, if y is the endpoint of some closed interval of some particular set C_n , then it is also an enpoint of one of the intervals of C_{n+1} . Because at each stage, the endpoints are never removed, it follows that $y \in C_n$ for all n. Thus, C atleast contains the endpoints of all of the intervals that make up each of the sets C_n .

Is there anything else? Is C countable? Does C contain any intervals? Any irrational numbers? These are difficult questions at the moment. All of the endpoints mentioned earlier are rational numbers (they have the form $m/3^n$), which means that if it is true that C consists of only these endponts, then C would be a subset of Q and hence countable. We shall see about this. There is some strong evidence that not much is left in C if we consider the total length of the intervals removed. To form C_1 , an open interval of length 1/3 was taken out. In the second step, we removed two intervals of length 1/9 and to construct C_n , we removed 2^{n-1} middle theirds of length $1/3^n$. There is some logic, then to defining the length of C to be 1 minus the total

$$\frac{1}{3} + 2\left(\frac{1}{9}\right) + 4\left(\frac{1}{27}\right) + \dots + 2^{n-1}\left(\frac{1}{3^n}\right) + \dots = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = 1$$

The Cantor set has zero length.

To this point, the information we have collected suggests a mental picture of C as relatively small. For these reasons, the set C is often referred to as Cantor dust. But, there are some strong counterarguments that imply a very different picture. First C is actually *uncountable*, with cardinality equal to the cardinality of \mathbf{R} . One slightly intuitive but convincing way to see this is to create a 1-1 correspondence between C and the sequences of the form $(a_n)_{n=1}^{\infty}$, where $a_n=0$ or 1. For each $c \in C$, set $a_1=0$ if c falls in the left-hand component and set $a_1=1$ if c falls in the right hand component. Having established where in C_1 , the point c is located, there are now two possible components of c0 that might contain c0. This time, we set a0 or a1 depending on whether a2 falls in the left of right half of these two components of a3, a4, a5. Ontinuing in this way, we come to see that every element a5 yields a sequence a6, a7, a8, a9, a9. On a9 yields a sequence a9, a9

What does this imply.? In the first place, because the end point