Algebra and Number Theory

Solve every problem.

Problem 1.

- (a) Let $p(x) = a_n x^n + \dots + a_1 x + a_0 \in R[x]$ be a polynomial over an integral domain R. Let K denote the fraction field of R. Suppose $a/b \in K$ is a root of p(x), where $a, b \in R$ and are relatively prime. Then, show that $a|a_0$ and $b|a_n$.
- **(b)** Prove that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$.

Problem 2. Let R be an integral domain with the fraction field K. An R-module P is projective if there is an R-module Q such that $P \oplus Q \cong F$ for some free R-module F. A fractional ideal A is an R-submodule of K such that $A = d^{-1}I$ for some ideal I of R and a nonzero element $d \in R$. A fractional ideal A is called invertible if AB = R for some fractional ideal B.

Show that an invertible fractional ideal *A* is a projective *R*-module.

Problem 3. Give a *direct* proof that the Lie algebra $\mathfrak{Sl}(4, \mathbb{C})$ is isomorphic to the Lie algebra $\mathfrak{So}(6, \mathbb{C})$. (You should construct a Lie algebra homomorphism and prove that it is an ismorphism; you should not use Dynkin diagrams or the classification theory of simple Lie algebras.)

Problem 4. Let $A = \mathcal{O}_K$ be the ring of integers of a number field K. Given a nonzero ideal $\mathfrak{a} \subset A$ and an arbitrary nonzero element $a \in \mathfrak{a}$, show that there exists $b \in \mathfrak{a}$ such that a and b generate \mathfrak{a} (in particular, every ideal is 2-generated).

Problem 5. Let p be a prime number and ζ_p be a primitive p-th root of unity. Let $K = \mathbb{Q}(\zeta_p)$.

- (a) Show that $\Phi_p = \sum_{i=0}^{p-1} X^i$ is the minimal polynomial of ζ_p over **Q**.
- **(b)** Compute the trace $\mathrm{Tr}_{K/\mathbf{Q}}(1-\zeta_p)$ and the norm $\mathcal{N}_{K/\mathbf{Q}}(1-\zeta_p)$.
- (c) Show that $(1 \zeta_p)\mathcal{O}_K \cap \mathbf{Z} = p\mathbf{Z}$ and deduce that for all $y \in \mathcal{O}_K$, we have

$$\mathrm{Tr}_{K/\mathbb{Q}}(y(1-\zeta_p))\in p\mathbf{Z}.$$

(d) Determine explicitly the ring of integers of *K*.

Problem 6. Let $\theta \in \overline{\mathbf{Q}}$ be a root of the polynomial $f(X) = X^3 + 12X^2 + 8X + 1$. Let $K = \mathbf{Q}(\theta)$.

- (a) Let $g(X) = X^3 + pX + q \in \mathbb{Z}[X]$. Compute the discriminant disc(g) of g(X) in terms of p, q.
- **(b)** Show that f(X) is irreducible over **Q**.
- (c) Compute the discriminant $d_K(1, \theta, \theta^2)$. Please provide necessary details.
- (d) For any arbitrary number field F of degree n, let $a_1, a_2, \ldots, a_n \in \mathcal{O}_F$. Find and verify a sufficient condition in terms of the discriminant $d_F(a_1, \ldots, a_n)$ that the a_1, \ldots, a_n form an integral basis of F.
- (e) Write down an explicit integral basis of K in terms of θ by using the above sufficient condition you have found. Please justify your arguments.