Modelo Relacional

Lenguajes de manejo de datos (DMLs)

Bibliografía: Fundamentos de bases de datos Korth , Silberschatz

Lenguajes de manejo de datos

Los Lenguajes se clasifican en:

- algebraicos: aplican operadores sobre relaciones (ISBL)
- de cálculo: especifican un predicado que las tuplas deben satisfacer
 - relacional de tuplas (QUEL)
 - relacional de dominios (QBE)
- Intermedios: SQUARE y SEQUEL (SQL)

Lenguajes de manejo de datos

- DML es una notación para expresar
 - -consultas.
 - -actualización,
 - -inserción y
 - -borrado.
- Un lenguaje de consulta es un lenguaje en el que un usuario solicita información de la BD.

Lenguajes de manejo de datos

Pueden clasificarse en:

- procedimentales
 - el usuario da instrucciones al sistema para que realice una secuencia de operaciones en la BD para calcular el resultado.
 - Álgebra relacional
- no procedimentales
 - el usuario describe la información deseada sin dar un procedimiento específico para obtener esa información
 - Cálculo relacional

Álgebra relacional

- Es un lenguaje de consulta **procedimental**.
- Consta de un conjunto de operaciones que toman una o dos relaciones como entrada y producen una nueva relación como resultado.
- Las operaciones fundamentales del AR son suficientes para expresar cualquier consulta.

Álgebra relacional

Las operaciones adicionales son:

- intersección
- producto natural
- división
- asignación
- Se definen en términos de las operaciones fundamentales.
- No añaden potencia al AR pero simplifican consultas comunes.

Álgebra relacional

Las operaciones fundamentales son:

- selección
- proyección
- producto cartesiano (de relaciones)
- unión
- · diferencia ó resta
- renombrar
- Si nos restringimos sólo a estas operaciones algunas consultas son largas de expresar ⇒ se definen operaciones adicionales.

AR: Operaciones fundamentales

Las operaciones seleccionar, proyectar y renombrar se llaman operaciones unarias, ya que operan sobre una relación.

Las otras tres operaciones: unión, resta y producto cartesiano, operan sobre pares de relaciones y, por tanto, se llaman operaciones binarias.

AR: Operaciones fundamentales

Sean r y s las siguientes relaciones:

A	В	C
a	b	c
d	a	f
c	b	d

Relación r

Relación s

AR: Operaciones fundamentales

Unión:

a	b	С
d	a	f
c	b	d
b	g	a

 $r \cup s$

A	В	C
a	b	c
d	a	f
c	b	d
Relación r		

Relación s

AR: Operaciones fundamentales

Diferencia:

a	b	c
c	b	d

AR: (Operaci	iones	fund	lam	ental	es
-------	---------	-------	------	-----	-------	----

Proyección:

royection:
$$\begin{array}{c|cccc}
A & C \\
\hline
a & c \\
d & f \\
c & d
\end{array}$$

A	В	C
a	b	С
d	a	f
c	b	d
Relación r		

Relación s

A	В	С
a	b	c
d	a	f
c	b	d
Relación r		

D	Е	F
b	g	a
d	a	f

Relación s

AR: Operaciones fundamentales

Selección:

$$\sigma_{B="b"}(r) \qquad \begin{array}{c|ccc} A & B & C \\ \hline a & b & c \\ c & b & d \end{array}$$

AR: Operación selección

Selecciona tuplas que satisfacen un predicado dado.

$$\sigma_{F}(r)$$

- Se usa la letra griega minúscula sigma (σ) para indicar la selección.
- El **predicado F** aparece como subíndice de σ .
- La **relación** argumento (\mathbf{r}) se escribe a continuación de σ entre paréntesis

AR: Operaciones fundamentales

Relación s

AR: Operación selección Ejemplos

 Seleccionar las tuplas de la relación préstamo en las que la sucursal es Perryridge

σ nombre-sucursal = "Perryridge" (préstamo)

AR: Operación selección Ejemplos

La relación Préstamo es:

nombre-sucursal	número-préstamo	nombre-cliente	cantidad
Downtown	17	Jones	1000
Mianus	93	Curry	500
Perryridge	15	Hayes	1500
Round Hill	11	Turner	900
Perryridge	25	Glenn	2500
Redwood	23	Smith	2000
Brighton	10	Brooks	2200
Downtown	14	Jackson	1500
Pownal	29	Williams	1200
North Town	16	Adams	1300
Downtown	18	Johnson	2000

AR: Operación selección Ejemplos

 Encontrar todas las tuplas en las que la cantidad prestada es más de 1200 dólares

 $\sigma_{cantidad > 1200}$ (préstamo)

En general, se permiten las comparaciones usando

= ≠ < ≤ > ≥

en el predicado de selección.

AR: Operación selección Ejemplos

La relación que resulta de la consulta

σ nombre-sucursal = "Perryridge" (préstamo)

es:

nombre-sucursal	número-préstamo	nombre-cliente	cantidad
Perryridge	15	Hayes	1500
Perryridge	25	Glenn	2500

AR: Operación selección Ejemplos

 Encontrar las tuplas en préstamo de más de 1200 dólares hechas por la sucursal Perryridge

onombre-sucursal = "Perryridge" ∧ cantidad > 1200 (préstamo)

Λ

Se pueden combinar varios predicados usando los conectores

V

AR: Operación selección Ejemplos

Supongamos que se tiene el esquema de relación que indica

que un cliente tiene un "banquero personal" servicio (nombre-cliente, nombre-banquero)

Nombre-cliente	Nombre-banquero
Turner	Johnson
Hayes	Jones
Johnson	Johnson

 Encontrar los clientes que tienen el mismo nombre que su banquero personal

AR: Operación proyección

 Es una operación unaria que devuelve su relación argumento con ciertas columnas omitidas.

$$\pi_{i1,...,ik}(\mathbf{r})$$

- Se listan los **atributos** que se desea que aparezcan en el resultado como **subíndices** de π .
- Dado que el resultado es una relación, se eliminan todas las filas duplicadas.

AR: Operación selección Ejemplos

• Encontrar los clientes que tienen el mismo nombre que su banquero personal.

σ nombre-cliente = nombre-banquero (servicio)

Nombre-cliente	Nombre-banquero
Johnson	Johnson

El predicado de selección puede incluir comparaciones entre dos atributos.

AR: Operación proyección Ejemplos

 Obtener una relación que muestre los clientes y las sucursales en las que tienen préstamos, pero no la cantidad del préstamo, ni el número del préstamo.

 π nombre-sucursal, nombre-cliente (préstamo)

AR: Operación proyección Ejemplos

El resultado es:

nombre-sucursal	nombre-cliente
Downtown	Jones
Mianus	Curry
Perryridge	Hayes
Round Hill	Turner
Perryridge	Glenn
Redwood	Smith
Brighton	Brooks
Downtown	Jackson
Pownal	Williams
North Town	Adams
Downtown	Johnson

AR: Operación proyección Ejemplos

- Sería preferible una relación de un atributo sobre (nombrecliente) que liste todos aquellos que tengan el mismo nombre que su banquero personal.
- La operación **proyectar** nos permite producir esta relación.

 $\pi_{\text{nombre-cliente}}$ ($\sigma_{\text{nombre-cliente=nombre-banquero}}$ (servicio))

 El argumento de la proyección puede ser el resultado de otra operación.

AR: Operación proyección Ejemplos

• Encontrar a los clientes que tienen el mismo nombre que su banquero personal.

Como vimos, esta consulta produce el siguiente resultado:

Nombre-cliente	Nombre-banquero
Johnson	Johnson

 Es redundante listar dos veces el nombre de la persona.

AR: Operación producto cartesiano

 Es una operación binaria que permite combinar relaciones.

rxs

AR: Operación producto cartesiano

Queremos encontrar a todos los **clientes** del banquero Johnson, y las **ciudades** en las que viven estos clientes.

 Se necesita información de la relación servicio y de la relación cliente.

u = servicio x cliente

El resultado de

servicio x cliente

es:

Nombre-cliente	banquero	Nombre-cliente	Cane	Ciddad-ciiciic
Turner	Johnson	Jones	Main	Harrison
Turner	Johnson	Smith	North	Rye
Turner	Johnson	Hayes	Main	Harrison
Turner	Johnson	Curry	North	Rye
Turner	Johnson	Lindsay	Park	Pittsfield
Turner	Johnson	Turner	Ptitnam	Starriford
Turner	Johnson	Williams	Nassau	Princeton
Turner	Johnson	Adams	Spring	Pittsfield
Turner	Johnson	Johnson	Alma	Palo Alto
Turner	Johnson	Glenn	Sand Hill	Woodside
Turner	Johnson	Brooks	Senator	Brooklyn
Turner	Johnson	Green	Walnut	Stamford
Hayes	Jones	Jones	Main	Harrison
Hayes	Jones	Smith	North	Rye
Hayes	Jones	Hayes	Main	Harrison
Hayes	Jones	Curry	North	Rye
Hayes	Jones	Lindsay	Park	Pittsfield
Hayes	Jones	Turner	Putnam	Stamford
Hayes	Jones	Williams	Nassau	Princeton
Hayes	Jones	Adams	Spring	Pittsfield
Hayes	Jones	Johnson	Alma	Palo Alto
Hayes	Jones	Glenn	Sand Hill	Woodside
Hayes	Jones	Brooks	Senator	Brooklyn
Hayes	Jones	Green	Walnut	Stamford
Johnson	Johnson	Jones	Main	Harrison
Johnson	Johnson	Smith	North	Rye
Johnson	Johnson	Hayes	Main	Harrison
Johnson	Johnson	Curry	North	Rye
Johnson	Johnson	Lindsay	Park	Pittsfield
Johnson	Johnson	Turner	Putnam	Stamford
Johnson	Johnson	Williams	Nassau	Princeton
Johnson	Johnson	Adams	Spring	Pittsfield
Johnson	Johnson	Johnson	Alma	Palo Alto
Johnson	Johnson	Glenn	Sand Hill	Woodside
Johnson	Johnson	Brooks	Senator	Brooklyn
Johnson	Johnson	Grcen	Wainut	Stamford

AR: Operación producto cartesiano

u (servicio.nombre-cliente, servicio.nombre-banquero, cliente.nombre-cliente, cliente.calle, cliente.ciudad-cliente)

- Se **listan** todos los **atributos de las dos relaciones**, con el nombre de la relación de la que cada atributo procede.
- Se necesita el nombre de la relación para evitar ambigüedad:

servicio.nombre-cliente ≠ cliente.nombre-cliente

 Para aquellos atributos que sólo aparecen en uno de los dos esquemas, no es necesario el prefijo.

AR: Operación producto cartesiano

¿Qué tuplas aparecen en r x s ?

- Se construye una tupla por cada par posible de tuplas
 - Para el ejemplo una de la relación servicio y otra de la relación cliente.
- Si se tienen n1 tuplas en servicio y n2 en cliente. Entonces existen n1n2 formas de elegir un par de tuplas; de forma que hay n1n2 tuplas en r.

AR: Operación producto cartesiano

Grado de una relación es la cantidad de atributos.

• Si gr(r)=n y gr(s)=m \rightarrow $gr(r \times s)=n+m$

En general, dadas dos relaciones r(R) y s(S)

r x s

es una relación cuyo **esquema** es la **concatenación de R y S**

Servicio. Nombre-cliente	Nombre-banquero	Cliente. Nombre-cliente	Calle	Ciudad-cliente
Turner	Johnson	Jones	Main	Harrison
Turner	Johnson	Smith	North	Rye
Turner	Johnson	Hayes	Main	Harrison
Turner	Johnson	Curry	North	Rye
Turner	Johnson	Lindsay	Park	Pittsfield
Turner	Johnson	Turner	Putnam	Stamford
Turner	Johnson	Williams	Nassau	Princeton
Turner	Johnson	Adams	Spring	Pittsrield
Turner	Johnson	Johnson	Alma	Palo Alto
'I'urner	Johnson	Glenn	Sand Hill	Woodside
Turner	Johnson	Brooks	Senator	Brooklyn
Turner	Johnson	Green	Walnut	Stamford
Johnson	Johnson	Jones	Main	llarrison
Johnson	Johnson	Snith	North	Rye
Johnson	Johnson	Hayes	Main	Harrison
Johnson	Johnson	Curry	North	Rye
Johnson	Johnson	Lindsay	Park	Pittsfield
Johnson	Johnson	Turner	Putnam	Stamford
Johnson	Johnson	Williams	Nassau	Princeton
Johnson	Johnson	Adams	Spring	Pittsfield
Johnson	Johnson	Johnson	Alma	Palo Alto
Johnson	Johnson	Gienn	Sand Hill	Woodside
Johnson	Johnson	Brooks	Senator	Brooklyn
Johnson	Johnson	Green	Walnut	Stamford

AR: Operación producto cartesiano

Continuamos con el ejemplo:

• Encontrar a todos los clientes del **banquero Johnson** y la **ciudad en la que viven**.

Lo resolvemos por etapas:

 $\sigma_{nombre-banquero = "Johnson"}$ (servicio x cliente)

- El producto cartesiano toma todos los pares posibles de una tupla de servicio con una tupla de cliente.
- cliente.nombre-cliente puede contener clientes de banqueros que no sean Johnson.
- servicio.nombre-cliente contiene sólo clientes de Johnson.

• Para obtener la **ciudad** del cliente, interesarán las tuplas en las que:

servicio.nombre-cliente = cliente.nombre-cliente

Así si se escribe

 $\sigma_{\text{servicio.nombre-cliente=cliente.nombre-cliente}} \\ (\sigma_{\text{nombre-banquero="Johnson"}} (\text{servicio x cliente}))$

 Finalmente, como sólo se desea nombre-cliente y ciudad-cliente, se hace una proyección:

 $\pi_{\text{ servicio.nombre-cliente, ciudad-cliente}}$ $(\sigma_{\text{ servicio.nombre-cliente}} = \text{cliente.nombre-cliente}$ $(\sigma_{\text{ nombre-banquero}} = \text{"Johnson"} \text{ (servicio x cliente)))$

 El resultado de esta expresión es la respuesta correcta a la pregunta.

Servicio. Nombre-cliente	Ciudad-cliente
Turner	Stamford
Johnson	Palo Alto

AR: Operación unión Ejemplo

 Encontrar a todos los clientes de la sucursal Perryridge.

Es decir, encontrar a las personas que tienen un **préstamo**, una **cuenta**, o **ambos**.

Se necesita información de

- -Préstamo
- -Depósito

AR: Operación unión

- Es una operación binaria cuyo resultado es una relación
 - cuyo esquema es idéntico al de r ó s y
 - cuyo cuerpo está formado por todas las tuplas
 t pertenecientes a r ó a s ó a las dos.

$r \cup s$

- Para que sea válida se exige que se cumplan dos condiciones:
 - r y s deben tener el mismo número de atributos.
 - Dominios del i-ésimo atributo de r y s deben ser iguales

AR: Operación unión Ejemplo

• Para encontrar a los clientes con **préstamo** en Perryridge:

 $\pi_{\text{nombre-cliente}} (\sigma_{\text{nombre-sucursal}} = \text{"Perryridge"}(\text{préstamo}))$

• Y para encontrar a los clientes con **cuenta** en Perryridge:

 $\pi_{\text{nombre-cliente}}$ ($\sigma_{\text{nombre-sucursal}} = \text{"Perryridge"}$ (depósito))

Para contestar la consulta, se necesita la **unión** de estos 2 conjuntos

AR: Operación unión Ejemplo

Es decir, todos los clientes que aparecen en cualquiera de las dos relaciones o en ambas.

$$\pi_{\text{nombre-cliente}}$$
 ($\sigma_{\text{nombre-sucursal}} = \text{"Perryridge"}$ (préstamo))

 \cup

 $\pi_{\text{nombre-cliente}}$ ($\sigma_{\text{nombre-sucursal}} = \text{"Perryridge"}$ (depósito))

• La relación que resulta es:

Nombre-cliente
Hayes
Glenn
Williams

 Las relaciones son conjuntos ⇒ se eliminan valores duplicados.

AR: Operación renombre Ejemplo

 Encontrar los clientes que viven en la misma calle y en la misma ciudad que Smith.

Se puede obtener la calle y la ciudad de Smith escribiendo

 π calle, ciudad-cliente (σ nombre-cliente = "Smith" (cliente))

AR: Operación renombre

• Asigna un nuevo nombre x a una relación r

$$\rho_x(r)$$

Para eliminar ambigüedades se nombraron atributos mediante

nombre-relación.nombre-atributo

Otra forma de ambigüedad surge cuando la misma relación aparece más de una vez en una pregunta.

AR: Operación renombre Ejemplo

Para encontrar otros clientes con esa calle y esa ciudad, debemos hacer **referencia una segunda vez** a la relación cliente:

$$\sigma_{P} \text{ (cliente } \textbf{X}$$
 ($\pi_{calle, ciudad\text{-cliente}} \text{ (} \sigma_{nombre\text{-cliente}} \text{ = "Smith"} \text{ (cliente)))}$

donde **P** es un predicado de selección que requiere que los valores de **calle** y de **ciudad-cliente** sean **iguales**.

AR: Operación renombre Ejemplo

Para especificar a qué valor de calle nos referimos, no podemos usar **cliente.calle = cliente.calle**, ya que ambos valores de calle se toman de la **misma** relación **cliente**.

Una dificultad parecida existe para cliente.ciudad.

Este problema **se resuelve** usando la operación **ρ** para cambiar el nombre una vez a cliente y así poder hacer referencia a la relación dos veces sin ambigüedad.

AR: Operación resta

Permite encontrar tuplas que estén en una relación pero no en otra.

r - s

- La relación resultante contiene aquellas tuplas que están en r pero no en s.
- Para que sea válida se exige que se cumplan dos condiciones:
 - r y s deben tener el **mismo número de atributos**.
 - Los dominios del i-ésimo atributo de r y de s deben ser los mismos.

AR: Operación renombre Ejemplo

- Se asigna el nombre cliente2 a la relación cliente,
- y se refiere a cliente2 al calcular la calle y la ciudad de Smith.

 $\pi_{\text{ cliente.nombre-cliente}}$ $(\sigma_{\text{cliente2.calle=cliente.calle} \land \text{cliente2.ciudad-cliente=cliente.ciudad-cliente}$ $(\text{cliente x } (\pi_{\text{calle,ciudad-cliente}} (\sigma_{\text{nombre-cliente="Smith"}}(\rho_{\text{ cliente2}}(\text{cliente})))))))$

El resultado de esta consulta es:

Nombre-cliente
Smith
Curry

AR: Operación resta Ejemplo

• Encontrar los clientes de la sucursal Perryridge que tienen una cuenta allí, pero no un préstamo

 π nombre-cliente (σ nombre-sucursal = "Perryridge" (depósito))

 π nombre-cliente (σ nombre-sucursal = "Perryridge" (préstamo))

La relación que resulta para esta consulta es:

Nombre-cliente
Williams

AR: Otro ejemplo

- Encontrar el mayor saldo de cuenta en el banco.
 - Esta consulta puede expresarse usando funciones de agregación, por ejemplo MAX().
 - Pero podemos escribirla usando solamente las operaciones fundamentales:
- 1. Calcular una relación con saldos que no son los más grandes:

$$\pi_{\text{dep\'osito.saldo}}(\sigma_{\text{dep\'osito.saldo} < \text{d.saldo}}(\text{dep\'osito X} \rho_{\text{d}}(\text{dep\'osito})))$$

El resultado contiene todos los saldos **excepto el mayor** de todos.

2. Tomar la diferencia de conjuntos entre la relación depósito y el resultado anterior.

siendo el resultado de esta consulta:

• El resultado contiene todos los saldos excepto el mayor de todos.

Es decir:

_	
	Saldo
	500
	700
	400
	350
	750
	850

Definición formal del álgebra relacional

 Una expresión general en el AR se construye a partir de subexpresiones.

Sean E1 y E2 expresiones del AR.

Entonces las siguientes son todas expresiones del AR:

- F1 ∪ F2
- E1 E2
- E1 x E2
- $-\sigma_P$ (E1), donde P es predicado con atributos de E1
- $-\pi_{S}(E1)$, donde S es una lista de atributos de E1
- $-\rho_x$ (E1), donde x es el nuevo nombre de E1.

Operaciones adicionales

- Las operaciones fundamentales del AR son suficientes para expresar cualquier consulta.
- Si nos restringimos solo a las fundamentales algunas consultas son largas de expresar,
- por tanto se definen operaciones adicionales que no añaden potencia pero que simplifican consultas.
- Para cada nueva operación se da una expresión equivalente usando sólo las fundamentales.

AR: Operación intersección

D	Е	F
b	g	a
d	a	f

Relación s

$$\begin{array}{cccc} \hline d & a & f \\ \hline & \mathbf{r} \cap \mathbf{s} \end{array}$$

AR: Operación intersección

 $r \cap s$

- · Es una relación
 - cuya cabecera es idéntica a la de r ó s y
 - cuyo cuerpo está formado por tuplas t pertenecientes tanto a r como a s.
- Es una operación binaria.
- Para que sea válida, las relaciones deben tener el mismo número de atributos, definidos en los mismos dominios.
- La intersección equivale a:

$$r \cap s = r - (r - s)$$

AR: Operación intersección

• Encontrar a todos los clientes con un préstamo y una cuenta en la sucursal Perryridge.

$$\pi_{\text{nombre-cliente}}(\sigma_{\text{nombre-sucursal="Perryridge"}}(\text{préstamo}))$$

 $\pi_{\text{nombre-cliente}}(\sigma_{\text{nombre-}})$ sucursal="Perryridge" (depósito))

La relación que resulta es: Nombre-cliente

AR: Operación producto natural

Producto α ó α -join

$$r |x| s = \sigma_{i \alpha (n+j)} (r x s)$$

donde:

 α es operador de comparación (> < = etc.) \mathbf{i} = atributos de r \mathbf{j} = atributos de s \mathbf{gr} (r) = n

AR: Operación producto natural Ejemplo

• Encontrar clientes que tienen un préstamo y las ciudades en las que viven.

π préstamo.nombre-cliente,ciudad-cliente

(σ_{préstamo.nombre-cliente= cliente.nombre-cliente}(préstamo x cliente))

Equivalentemente usando el **producto natural** :

π nombre-cliente, ciudad-cliente (préstamo |x| cliente))

AR: Operación producto natural

Equi-join : Cuando α es el operador igual (=).

Natural-join ó producto natural : Cuando se tienen dos relaciones con una o más columnas con el mismo nombre.

- Se representa $|\mathbf{r}| |\mathbf{x}| |\mathbf{s}|$
- Equivale a:
 - realizar un producto cartesiano de sus 2 argumentos,
 - realizar una selección forzando la igualdad en atributos comunes
 - y, finalmente, quitar las columnas duplicadas.

Nombre-cliente	Ciudad-cliente
Jones	Harrison
Smith	Rye
Hayes	Harrison
Curry	Rye
Гurner	Stamford
Williams	Princeton
Adams	Pittsfield
Johnson	Palo Alto
Glenn	Woodside
Brooks	Brooklyn

Definición del producto natural

Sean las dos **relaciones r(R) y s(S)**, el **producto natural r** |**x**| **s** es:

- la **proyección** sobre $R \cup S$
- de una **selección**, donde el predicado requiere que r.A=s.A para cada atributo A en R \cap S.
- en **r x s**

$$r|x|s=\pi_{R\cup S}(\sigma_{r.A1=S.A1 \land r.A2=S.A2 \land \land r.An=S.An} (r x s))$$

donde $R \cap S = \{A1, A2, ..., An\}$ y el esquema resultante es $R \cup S$

AR: Operación producto natural Ejemplo

 Encontrar a todos los clientes que tienen una cuenta y un préstamo en la sucursal Perryridge.

$$\pi_{nombre-cliente}(\sigma_{nombre-sucursal="Perryridge"}(préstamo|x|depósito)$$

Esta expresión equivale a la intersección:

$$\pi_{\text{nombre-cliente}}$$
 ($\sigma_{\text{nombre-sucursal}} = \text{"Perryridge"}$ (préstamo))

$$\pi_{\text{nombre-cliente}}(\sigma_{\text{nombre-sucursal}} = \text{"Perryridge"})$$

En general en el AR es posible escribir varias **expresiones equivalentes** que son bastante diferentes entre sí.

AR: Operación producto natural Ejemplo

- Encontrar el activo y el nombre de todas las sucursales que tienen depositantes
 - es decir, clientes con una cuenta, que viven en Stamford.

 π nombre-sucursal, activo (σ ciudad-cliente="Stamford" (cliente|x|depósito |x| sucursal))

La relación que resulta es:

Nombre-sucursal	Activo
Round Hill	8000000
Brighton	7100000
Downtown	9000000

AR: Operación producto natural

Observación:

Sean **r(R)** y **s(S)** relaciones sin **ningún atributo en común**,

es decir, $\mathbf{R} \cap \mathbf{S} = \emptyset$ (conjunto vacío.)

Entonces r |x| s = r x s.

AR: Operación división

Sean los esquemas de relación:

$$r(X_1,...,X_m,Y_1,...Y_n)$$
 y $s(Y_1,...,Y_n)$

Llamemos X al atributo compuesto $X_1,...,X_m$ Y al atributo compuesto $Y_1,...,Y_n$

La división **r/s** es una relación con

- esquema X
- cuerpo formado por todas las tuplas x tales que aparece una tupla (x,y) en r para todas las tuplas y de s

AR: Operación división

• Sean las relaciones **a** (dividendo) y **b** (divisor)

S#	P#
S1	P1
S 1	P2
S 1	P3
S 1	P4
S 1	P5
S 1	P6
S2	P1
S2	P2
S3	P2
S4	P2
S4	P4
S4	P5

AR: Operación división

$$\mathbf{r} / \mathbf{s}$$

x / (x,y) aparece en r \forall y en s

- Se establece para aquellas consultas que incluyen la frase «para todos».
- r representa al Dividendo
- s representa al Divisor

AR: Operación división

• Sean las relaciones **a** (dividendo) y **b** (divisor)

S#	P#	
S1	P1	
S 1	P2	
S 1	P3	
S 1	P4	/
S 1	P5	/
S 1	P6	
S2	P1	
S2	P2	
S 3	P2	
S4	P2	
S4	P4	
S4	P5	

AR: Operación división Ejemplo

• Encontrar los clientes que tienen una cuenta en todas las sucursales que están en Brooklyn.

Podemos obtener todas las sucursales en Brooklyn mediante :

$$r1 = \pi_{nombre-sucursal}(\sigma_{ciudad-sucursal="Brooklyn"}(sucursal))$$

resultando:

Nombre-sucursal **Brighton** Downtown

Ahora se desea encontrar a los clientes que aparecen en r2 con cada nombre de sucursal en r1.

- La operación que proporciona exactamente esos clientes es la operación de dividir.
- Esto es. hacer : r2 / r1

π_{nombre-sucursal} (σ _{ciudad-} sucursal="Brooklin"</sub>(sucursal))

• El resultado es una relación que tiene el esquema (nombre-cliente) y contiene la tupla (Green).

Se puede encontrar todos los pares nombre-cliente, nombresucursal

con:

r2= $\pi_{\text{nombre-cliente, nombre-sucursal}}$ (depósito)

resultando:

Nombre-cliente	Nombre-sucursal
Johnson	Downtown
Smith	Mianus
Hayes	Perryridge
Turner	Round Hill
Williams	Perryridge
Lindsay	Redwood
Green	Brighton
Green	Downtown

Ahora se desea encontrar a los clientes que aparecen en r2 con cada nombre de sucursal en r1.

- La operación que proporciona exactamente esos clientes es la operación de dividir.
- Esto es, hacer: r2 / r1

$$\pi_{\text{nombre-cliente, nombre-sucursal}}$$
 (depósito)

 $\pi_{\text{nombre-sucursal}}$ ($\sigma_{\text{ciudad-}}$ sucursal="Brooklin" (sucursal))

El resultado es una relación que

Nombre-cliente - tiene el esquema (nombre-cliente) Green

- contiene la tupla (Green).

AR: Operación división

Formalmente:

Sean r(R) y s(S) relaciones, y S \subseteq R.

- La relación r / s tiene esquema R S
- Una tupla \mathbf{t} está en \mathbf{r} / \mathbf{s} si para cada tupla $\mathbf{t}_{\mathbf{s}}$ en \mathbf{s} existe una tupla $\mathbf{t}_{\mathbf{r}}$ en \mathbf{r} que satisface las dos condiciones siguientes:

$$r/s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \times s) - r)$$

$$\pi_{R-S}$$
 (r) x s

es una relación de esquema R que empareja cada tupla de $\pi_{R-S}(\mathbf{r})$ con cada tupla en **s**.

$$(\pi_{R-S}(r) \times s) - r$$

da los pares de tuplas de $\pi_{R-S}(r)$ y **s** que **no aparecen** en **r**. Si una tupla de t está en:

$$\pi_{R-S}((\pi_{R-S}(r) \times s) - r)$$

- entonces existe alguna tupla en **s** que no se combina con la tupla **t** para formar una tupla en **r**.
- ∴ t contiene un valor para los atributos R S que no tiene que aparecer en r / s.
- Estos son valores que se eliminan (al restar) de $\pi_{B-S}(r)$.

AR: Operación división

 La operación división puede definirse en términos de las operaciones fundamentales.

Sea r(R) y s(S), con S \subseteq R.

$$r/s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \times s) - r)$$

donde:

- π_{R-S} (r) da todas las tuplas que satisfacen la segunda condición de la definición de división (t_r[R - S] = t[R - S]).
- π_{R-S} ((π_{R-S} (r) x s) r) elimina aquellas tuplas que no satisfagan la primera condición ($t_r[S] = t_s[S]$).

Veamos cómo se hace esto ...

AR: Operación asignación

A veces conviene escribir una expresión del AR por partes

usando la **asignación** a una **variable de relación temporal**.

Por ejemplo: r/s puede escribirse como

temp
$$\leftarrow \pi_{R-S}(r)$$

temp - $\pi_{R-S}(temp \times s)$ - r)

- La evaluación de una asignación no da como resultado una relación que se presenta al usuario.
- El resultado de la expresión a la derecha de ← es asignado a la variable de relación a la izquierda
- Esta variable de relación puede usarse en subsiguientes expresiones

Definición:

Un **lenguaje es relacionalmente completo** si es al menos **tan expresivo** como el **álgebra**.

Es decir,

si sus expresiones permiten la definición de cualquier relación que pueda definirse mediante expresiones del álgebra.