

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Implementation and Evaluation of a Persuasive Mobile Food Recommendation System

Muhammad Kabir Khan

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Implementation and Evaluation of a Persuasive Mobile Food Recommendation System

TODO: Titel der Abschlussarbeit

Author: Muhammad Kabir Khan Supervisor: Prof. Johann Schlichter, Ph.D.

Advisor: M.Sc. Bëatrice Lamche Submission Date: TODO: Submission date

I assure the single handed composition of this master supported by declared resources.	's thesis in informatics only
Munich, TODO: Submission date	Muhammad Kabir Khan

Abstract

Contents

A	Acknowledgments				
A	bstrac	ct		iv	
1	Intr	oductio	on	1	
	1.1	Motiv	ration	1	
	1.2	Goals		3	
	1.3	Outlin	ne	4	
2	Bac	kgroun	d and Related Work	6	
	2.1	Defin	itions	6	
		2.1.1	Recommender System	6	
		2.1.2	Contexts	8	
		2.1.3	User Profiling	11	
		2.1.4	Conversation-based Critiquing Recommenders	13	
		2.1.5	Active Learning	13	
		2.1.6	Persuasive Recommedations	15	
		2.1.7	Mobile Recommender Systems	17	
	2.2	Relate	ed Work	18	
		2.2.1	User's Food Preference Extraction for Personalised Cooking Recipe		
			Recommendation	18	
		2.2.2	Knowledge Base Framework for Development of Personalised		
			Food Recommendation System	19	
		2.2.3	Recommending Food: Reasoning on Recipes and Ingredients	20	
		2.2.4	Recipe recommendation using ingredient networks	20	
		2.2.5	Critique-Based Mobile Recommender Systems	21	
		2.2.6	Active Learning Strategies for Exploratory Mobile Recommender		
			Systems Interactive Explanations in Mobile Shopping Recom-		
			mender Systems	21	
		2.2.7	The Persuasive role of Explanations in Recommender Systems .	22	

Contents

3	Desi	ign Dec	cisions	23
	3.1	0	Profile	23
	3.2		Profile	24
	3.3	Conte		27
		3.3.1	User Context	28
		3.3.2	Accessibility Context	29
		3.3.3	Device Context	29
	3.4	Critiqu	uing	29
	3.5		asion	30
		3.5.1	Visualization or Presentation	31
		3.5.2	Explaination	31
4	Syst	em De	sign and Implementation	34
•	4.1		iew	34
	4.2		rment elicitation	34
		4.2.1	Functional Requirments	35
		4.2.2	Non Requirments	36
		4.2.3	Use-Cases	36
	4.3	Systen	n Architecture	40
		4.3.1	Working	40
		4.3.2	Class Drigram	40
		4.3.3	ERD	40
	4.4		n Services	40
		4.4.1	Service 1	40
5	Eval	uation	And Conclusion	41
6	Sum	ımarv a	and Future Work	42
	6.1	•	ary	42
	6.2		e Work	42
Lie	st of 1	Figures		43
		C		
Lis	st of [Tables		44
Bi	bliog	raphy		45

1 Introduction

The motivation behind this Master Thesis is to implement and evaluate a Healthy Food Recommendation System for Mobile. In the beginning, it provides overview and give the reasoning about the selection of system. Relevant background and related work is presented, Followed by the development and design process together with the evaluation process will be presented.

This chapter will enlighten the motivation behind developed system in Section 1.1. Followed by goals in Section 1.2. Whereas Section 1.3 will provide a brief outline on structure of thesis.

1.1 Motivation

Rapid innovation and significant advancement in the field of technology and scientific research has made smartphone a primary computing and communication device. Smartphone is now become a necessity of life and people use it as an assistant for their day to day work. According to latest survey more than half of Internet traffic is accounted by mobile device. Enhancement in communication technology and flexible data option provided by network operators has increase relevance of interactive mobile applications. Packed with hundreds of features smartphone use different applications for variety of functionalities which required internet connectivity. Furthermore, smartphone support touch screen and rich support of multimedia and other application take the user experience to the next level.

Suggestions are the important factor of our day-to-day life. From watching a movie, to cooking and to on shopping. We need valuable advice. Recommendations are always helpful in choosing a better alternative. It not only save time but also minimize the individual's effort.

Recommender system are increasingly popular now are days. Form e-comers to movie websites, they not only help to increase business but also behave an personalize user preference assistance. Another aspect of describing Recommend system is filtering technology that user to filter suggests the information to user according to his taste. In order words we can also say that Recommender systems are the smart search engine,

which suggest result by, compare different items with each other. Research and advancement are going on this domain in order to improve the quality of recommendations. The most important goal for recommendation system designers is user willingness to peruse recommendation provided by the system. Fundamental process of recommendation is finding and conceptualizing relationship of item, current context and how the message is communicated, opens up the way of persuasiveness in recommendations.

Services provided by recommendation system through e-commerce to cooking are numerous in nature. Searching of products returns an overwhelming set of options. For instance, Comparing and Filtering of products among irrelevant set and find the suitable product. Such techniques work fine with web interface, whereas, smartphones they are not very useful due to hardware limitations. Critique-based recommendation helps in revision and acquisition of user preference, in order to improve quality of recommendations.

One the basic need is Food among human. Good health represents proper dietary habit. However, diet plan is always based on person's physical conditions like gender, weight, age and health status. Furthermore, taste and food preference is differ among individuals. Therefore, creating balance dietary plan based on individuals taste and health preference is always challenging.

The World Health Organization [46] is predicting that the number of obese adults worldwide will reach 2.3 billion by 2015 and the issue is attracting increased attention. Therefore, electronic food management systems have become a hot topic and, are under consideration to replace traditional paper based program. Idea of using electronic devices for health related matter is not new; similar devices are in use by patients for medical reasons e.g. Glucometer, and blood pressure monitor. People want, to carry better life style and to live healthy. Therefore popularity of food monitoring systems is getting popular. These systems are not only providing valuable services but hold user preferences and keeps history to provide more personalize recommendations. Recommendations are based on food ratings and browsing histories.

Food recommendations have gotten a tremendous amount of success and still in research phase for further improvement. Along with significant advancement and feature set like similar recipes, recipe nutrition detail, where to buy ingredients from some research, some wholes are still remaining. Indeed recommendation techniques like collaborative, content and knowledge based filtering are good for job done. But food domain is not quite simple. User preference and taste not only change by their mood but much more depend upon their health. Therefore, Active learning and critiquing

techniques are required to improve better recommendation. So that user can give their feed back and get what ever his preferences are. Mostly approaches are done critiquing by using rating of recipes and generate their result by using celebrative or content based filtering. Similarly, knowledge based filter digs some more; here rating is based on ingredients. Furthermore, persuasion of recommendation is always not guarantied in all cases. Clearly the system is not able to provide the best recommendations due to its detachment from the current situation; what is lacking in these approaches are intersection of persuasiveness, active learning and critiquing and last but not the least user preference context.

This work focuses on generation of health food recommendation on a mobile platform. Recommendation relies on user context, which allow user to critique, based on ingredients and recipes depends on his health and taste through which system will perform active learning. Lastly all recommendations should be persuasive in nature. in order to achieve persuasiveness in recommendations, we focus on user interface and the explanation of recommendation. Which helps user to get an idea why system generates this recommendation to me.

The following short description of the target scenario will illustrate the driving idea behind this research project.

John is a software engineer and very health conscious. He has a tight schedule due to work and gym but loves to cook. He wants to keep track of his diet depends on his taste and preferences. Furthermore, he wants try out some new food base on his time schedule

1.2 Goals

On the basis of scenario, describes in last section, this work reflects the goals which are stated below:

A recommendation is valuable if it interests the user. To determine the generated recommendation is according to user interest entails to our first primary goal, which is offering Persuasive recommendations. Major factors should be considered before given suggestion is Message and Source. Therefore our Second goal is to implement Active Learning and Critiquing approach to justify our suggestion. Since Critiquing relies on context that's why it is important to understand the Consumption and Accessibility context which infers our third goals. Similarly understanding the food ontology refers

in scenario helps us to understand forth goal of system. Finally how the user will interact with his device conveys our last goals, which is Mobile user interface.

To achieve primary goals there are several other interesting secondary goals, which facilitate, how our primary goals should be achieved. Starting with the research phase, which includes question and answers to user how they want to use such system in order to achieve better usability. Next focus on existing search work how the other system implements food recommendation scenarios, finding out what are their weakness and strengths. Food ontologies understanding how they are interrelate with other. What factor in which recipes are dependent on in order to develop strong system. Understanding user context which time he prefers which recipe. Furthermore, it is important to research on what researches and related work are out there under Persuasive and Active learning and Critiquing system to grab the understanding, how we can get inspiration from their valuable approaches and work. Finally focus on user experience of such application is one of challenging task, how and where to show the important aspects of recipe in our interface, so that it is easy to learn and has improved usability in comparison with current market applications.

Once the research phase has done next step to collect the functional and non-functional requirement of the system, which is collected by interviewing friends and family voluntaries. Once the system is build it has been tested with gathered functional and non-functional requirement and find out the limitation or boundary conditions of system. More over iOS client needs to be test with given requirement additionally user satisfaction should be required for usability test.

Finally, evaluation of developed prototype by user study. In order to clarified the methodologies and processes followed by our selected approaches. After finishing the evaluation reflected results leads to potential improvements and opens up the new direction of research.

1.3 Outline

Division of this thesis is split up into six chapters. *Chapter1* contains introduced the ideas, motivations and goals.

Chapter2 starts with background in which some definitions and classification of recommendation systems, Followed by different types of profiling and contexts that impact on recommendations. Furthermore, in related work section, pervious work of

Persuasiveness, Critiquing and Personalized food recommendation techniques have been discussed.

Chapter3 explains the Profiling and Context in details along with factors of recommendations. Moreover it covers algorithms that are used to develop the system.

Chapter4 discuss the System design and architecture phase, which hold the all ERD, components view, servers on which system depend. In the end of the chapter API calls are mentioned which are provided by server.

Chapter5 elaborates how the user study has been conducted by mentioning the goals, methods, and testing framework along with the dataset. In the end of this chapter measured results and discussion is mention.

Chapter6 will summarizes the achievements and gives clues about further development and research.

2 Background and Related Work

This chapter will establish the foundation of Persuasive recommendation system along with active learning and critiquing approach. Prior to in depth analysis, it will provide important background information along with some required definitions. Additionally, related work will presented, as the chapter proceed further to the end.

2.1 Definitions

2.1.1 Recommender System

Recommender Systems (RS) are search tools, which supports user decision-making by providing the suggestion that, are according to their interests. Such systems are in widely use from social networking to e-commerce sites in order to achieve different purposes. In e-commerce site, they help not only to serve the customer by suggesting items according to their preferences but also support business to improve in its sale. On the other hand in social network site, to suggest friends or pages like according to user preferences. According to Ricci [28] "RS are information search tools that have been recently proposed to cope with the "information overload" problem, i.e., the typical state of a web user, of having too much information to make a decision". Proposed solution [27] is an intelligent system that suggests the product or service that fulfill the user's preference in given context or situation. Suggestions provided by such systems are depended on the model how they are keeping information. Majority of RS are typically community based. In this kind of modeling suggestions are depend about item popularity among the user. Where popularity is calculated by ratings. Important question that arise in such systems are to find item accuracy according user preferences. On the other hand Personalized models are used that depends on the various factors which includes user's preferences, history of bought/liked items, or the items the user has ranked in the past. Various techniques are use in the developing of recommender system. Classification of recommendation systems [30] will be discussed as follows.

Content-based filtering

In this technique recommendations are based on user preferences. System recommend items that similar to once's liked by user. Item similarity is calculated by features associated with the compared items [30]. For example, if a user has rated positively, recipe A under the category of sweets then next suggestion that is provided by the system is one which is similar to one user has liked before.

Collaborative-based

Collaborative filtering is a technique in which system find the correlation between item and user, based on other user's feedback having a similar taste in past [30]. Initially system calculates all similar taste users for the current user and calculate the recommended item that contains either rated or liked by other users having similar taste. Importantly in this approach item speciation will not be considered. For instance, if user like recipe A then next recommendation would be recipe that there are other users who liked recipe A also liked recipe B.

Demographic

Recommendations are generated according to user demographic profile. Recommendations can be produced for different demographic niches by combining the ratings of users in demographic clusters [18]. For example, suggestion provided by the systems are shown according to user's age.

Knowledge-based

In knowledge-based systems item recommendation is based on domain specific knowledge, which justifies how certain item features meet according to user's preferences [30]. Importantly, it uses predication techniques namely Case-based reasoning which reuses the cases past cases that are similar to current case in order to identify item set of recommendation.

Community-based

Type of recommendations provided by this kind of system based on preference of user friends. According to Ricci research [30], People tend to rely more on recommendations provided by friends rather than on recommendations from anonymous individual having similar taste. Such type of RS model relies on user's social relations including preference of user's friends. Suggestions depend on rating that is provided by user's friends.

Hybrid Recommender Systems

Hybrid system is a fusion of any two or more techniques motioned above. Ricci [30] explains the motivation behind such system to avoid the limitation of one technique. For instance, Collaborative filtering have cold startup problem i.e. they are unable to suggest those items, which have no ratings. On the other hand Content-based doesn't have such limitation by combination of both approach new hybrid system can be formed. Similarly, Burke and Robin [6] proposed the combination techniques to create a new hybrid system.

2.1.2 Contexts

Recommendation techniques used by traditional system relies on vector of item rating and user preferences. According to Suchman [36] these approaches ignores the notion of "situated actions" which infers that user have particular context and item preference within one context may be different from another context[2]. Absence of context may lose information predictive power because of aggregation of multiple contexts. For instance user wants to buy cloths for his child. Instead of given him child dress system suggests dresses according to user choice because of incomplete contextual information.

Since context is a multi dimension topic therefore vast amount of research has been done in area, narrowing down role of context in recommender system, context can be defined as all information according to given situation. One of the early definitions of context in terms of operation [33] defined as where you are, who you are with, and what resources are nearby. As research further increases, new and most sited definition of context according to Adomavicius [2] "Any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves". Also, Dourish, P. et al., [9] while observing the uses of context they classified into two views namely representation and interaction views. They assumed four key assumptions for describing representational view. Context is independent from underlying activity, delineable, stable and in a form of information. According to this view, context can be known prior as it is a set of observable attributes and structure of these attributes does not change with respect to time. Futhermore, [9] while observing the uses of context they classify into two views namely representation and interaction views. They assume four key assumptions for describing representational view context is independent from underlying activity, delineable, stable and in a form of information. According to this view, context can be known prior, as it is a set of observable attributes and structure of these attributes does not change with respect to time. On the other hand interactional view features are dynamic. It assumes that context and activity have a relationship.

Adomavicius [2] ascertain [9] claims on categories and explains recommender system can have different types of knowledge, which may include the exact list of all the relevant factors, their structure, and their values, about the contextual factors. He classifies the knowledge of a recommender system about the contextual factors into three categories;

Fully observable: refers to explicit knowledge of structure and values of contextual factors of application at the time when recommendations are made. These factors refer as Purchasing Purpose, Shopping Companion and time. For example, User wants to buy shirt, besides having information of selling point and item. Theses may include information about the time, for whom. Partially observable: application has some of information about the context explicitly. For instances, Purchasing Purpose, Shopping Companion and time, all information given but the structure is missing. Unobservable: no information regarding contextual information is provided explicitly. Utilizing only the latent knowledge of context in an implicit manner makes recommendations. For example, the recommender system may build a latent predictive model, such as hierarchical, linear or hidden Markov models, to estimate unknown ratings, where unobservable context is modeled using latent variables.

Furthermore, Adomavicius [2] find out the dependency of contextual factors over time and classify them into categories. *Static*: The relevant contextual factors and their structure remains the same (stable) over time. *Dynamic*: contextual factors change in some way.

How	Knowledge of the RS about the Contextual Factors		
Contextual Factors Change	Fully Observable	Partially Observable	Unobservable
Static	Everything Known about Context	Partial and Static Context Knowledge	Latent Knowledge of Context
Dynamic	Context Relevance Is Dynamic	Partial and Dynamic Context Knowledge	Nothing Is Known about Context

Figure 2.1: Contextual Information Dimensions.

Representing and Modeling Context

Classical recommendation system has the prediction problem in which user's rating for item reflects the degree of user preferences. Therefore, a recommender system tries to estimate a rating function.

$$R: UsersxItems \rightarrow Ratings$$
 (2.1)

It's a 2D matrix of user-item to an ordered set of rating values. Where "R" a general-purpose *utility* (or preference). Since the value of "R" is partial function therefore rating of all user-item are not known which invokes the predication problem.

$$R: UsersxItemsxContexts \rightarrow Ratings$$
 (2.2)

In contrast, context aware recommenders have additional evidence to estimate user preference on unseen item. Contextual evidence can be applies to input function and viewed as "multidimensional". Where, any information related to data and user can be refer as Contextual information

Paradigms for Using Contextual Information

According on algorithm approaches of context aware recommendation, represents in form of $U \times I \times C \times R$, Where "U" is for User, "R" denotes rating, "C" is contextual dimension, and produce contextual recommendations list i1, i2, i3 ... for each user "U". Figure 2.2 illustrates the paradigms used in processing Contextual Information. These are categorize as follows:

Contextual prefiltering: In this filtering Context is applied an input. With the help of any classical 2D recommendation data selection approach, applies current context which is used for selection of relevant ratings and dataset.

Contextual postfiltering: Prediction of rating is applied with the help of traditional 2D recommender system technique. On the resultant set of recommendation applies the context for each user.

Contextual modeling: Directly integrates the contextual information in the modeling technique as part of the rating estimation. .

Figure 2.2: Paradigms for Incorporating Context in Recommender Systems. [2]

2.1.3 User Profiling

User profiling is process of acquiring information about the user, which helps in constructing the user model. Rate of acceptance and effectiveness of recommendation will effect how much system has information about the user. Tang [40] explained, In the context of software applications, a user profile or user model comprehends essential information about the user. It also refers to digital representation of person in a system and hold the person's preferences. Variations in user profile content depend on application. Some applications depend on demographic information of user while other relies on rating, liking, disliking or other preferences. Also, consideration of user interaction and behavior take plays an important role for providing precise recommendations.

Schiaffino [32] stated that discovery of differences and similarities in interests among users is a key to provide personalized recommendations. Which implies that application users have different preferences and interests to achieve their goals which leads to importance of creation of user profile in order to find out relationship between users according to their interests. Content of user profile depends on application domain

and variations are presents in application. Categorically there are two methods to gather content of user profile. First method is manually, in this technique users are being interviewed, fill some forms or questionnaires. For instance asking about his demographic profile like where he is from, which dishes he likes or rating based questions like how frequently he eat junk food? On the other hand by mean of implicit learning about user preference which requires artificial intelligence (AI) technique like Case-based reasoning, Bayesian Networks, Artificial neural networks. Most of these techniques are beyond the scope of this work so they will not be described in more details. Fundamentally there are two different alternatives to build a user profile; either the information is obtained explicitly from user or implicitly through the observation of user's actions. The next section describes these alternatives.

Explicit Profiling

Explicit profiling often known as explicit user feedback is the simplest way of gathering information about users. In this technique, user has to fill questioners in order to develop profiles. Profiles developed by this techniques are totally depends on the questioner. Normally, data contains demographic information regarding the user like name, age, location and other preferences. Gauch [32] suggests input methods that allows user to rate item according to their interest. Alternatively system can provide check box and text field in order to get preference of user. HTML forms, Questionnaires, Rating, User preference and Touch sensors are some techniques user to obtain explicit profile. Whereas, the limitation of this technique is that it requires user time and willingness to provide their data. Some user has reservation in regards to provide their personal information because of potential privacy concern. However user's preference can always be determine via this technique.

Implict Profiling

Implicit profiling is also known, as implicit user feedback is another approach for building user profile. It is popular and widely used methodology to develop user profile based on user 's acquired information. Mostly profiles are derived form monitoring or observing user activities. Information acquires by the system helps them to ensure the given recommendation is according to user interest. For example popular website for watching videos, "YouTube". It's recommendations are made on similar to those videos that were watched by user in the past. Single-sign-on (SSO) [hursti1997single] one the most common methodology for user registration. Since the information is implicit, they

may contains user demographic information. Similarly user preference likes, dislikes, locations can be fetch by integration of related third party services. Information obtain from this mechanism plays an important role in personalized recommendation system. *Search logs, Browser cache and User monitoring agents* are some techniques used to generate implicit profile. Main advantage of this technique is user doesn't have to fill the forms and provide their information. Kelly [32] provides an overview of standard techniques that helps to build user profile and information types about the user that can be inferred from user's behavior.

2.1.4 Conversation-based Critiquing Recommenders

Recommender systems may also vary in the function to the extent that user can get engage in the dialogues. In traditional techniques data was collected once and terminate after recommendations are made. Assumption of these approaches are user know all his preferences at the beginning, which was not the case. Whereas, user taste may change over time and he want to interact with different option. Smyth [19] handles this problem and called "Conversational recommendation system" (CRS). He states that CRS have their origins in conversational case-based reasoning (CCBR) which apply similar techniques to elicit query information in problem solving domains and diagnostic tasks." It is an interactive approach in which user preferences are establish through conversation session. At first initial set of recommendations are given to the user. System adapts the user feedback to further enhance the recommendations. Smyth [19] distributed feedback into three categories. *Rating-based* in this approach user provides rating for an specific item. *Critique-based* where user add constrain over item features. *Preference-based* in which user indicates its preference for one particular item over the others.

2.1.5 Active Learning

Active learning (AL) is a methodology to learn about user's preference by asking him/her to rate a number of item known as training point [31]. Data is formed by model that approximates user's preference. It is useful where user's preferences are change with respect to context. Rashid [26] explains that objective of AL may varies according to objectives of recommendation systems. For example, what is important in the recommender system being built? The difficulty of signing-up (user effort)? If the user is happy with the service (user satisfaction)? How well the system can predict a user's preferences (accuracy)? Furthermore, this approach can solve cold startup

problem in an effective manner. Figure 2.3 explains how interactive process works in order to obtain training data, unlike passive learning, where data is simply given to system in a linear fashion. Rubens [31] categorized AL method according to their primary goal.

Figure 2.3: Active vs Passive Learning [31]

Instance-based Methods

In this kind of approach points selection relies on their properties in an attempt to predict user's rating by the closest match to other user, without have explicit knowledge about underlying model [3]. Whereas, it assumes that under considered model, any data and rating predictions are accessible.

Model-based Methods

In this methodology point selection is based on best construct model that explains data supplied by the user to predict user ratings [3]. Similarly, select point are used to maximize the reduction of expected error of the model. Whereas, it assumes that in addition to any data available to instance-based methods, the model and its parameters are also available.

Modes of Active Learning: Batch and Sequential

Since the expectation of user is to high for the system while they are performing interaction. They expect immediate output from the system. One common approach is to recalculate the rating of item once user rated that specific item, known as sequential mode. However another possibility is that to allow user to rate several features of items

or rate several item before model readjustment, known as batch mode. As immediate reflection of data in sequential mode is an advantage but cost of interaction will always effect. Therefore, trade-off exists between Batch and Sequential AL; the usefulness of the data vs. the number of interactions with the user.

2.1.6 Persuasive Recommedations

Traditionally, prevalent research in recommender systems has been focused on algorithms development and evaluation that provide precise recommendations[47]. The presumption behind the algorithm that its accuracy contribute to the quality and acceptance of the recommender systems has been changed lately[22]. Context and profiling techniques are also emerged as an important pillars. Additional factors which are important and should be focused on is presentation of recommendation so that user can interact with the system in more convenient fashion[22], transparency of system or explain working of system to the end user[35], persuasion[25] and recommendation's novelty[8]. Fogg [11] defines persuasion as the attempt of changing people's attitudes or behaviors or both. However, explanation of recommendation also have influence on user [21] [14].

Persuasion factors

Aristotle [13] was the first one who talked about persuasion. He claims *ethos/character* of the speaker, message's receiver pathos/emotions and textitlogos/argument are the main elements that plays an important role in persuasion. Since, difference of opinion exists in factor of recommendation. The most cited one is Cialdini's [7] known as "6 Influence Principles (also known as Six Weapons of Influence)". If they implemented in a system then effect of persuasion increase. Theses principle include; *Reciprocity* (humans have the tendency to return favours), *Commitment* (or consistency: people's tendency to be consistent with their first opinion), *Social proof* (people tend to do what others do), *Scarcity* (people are inclined to consider more valuable whatever is scarce), textit Liking (people are influenced more by persons they like) and *Authority* (people have a sense of duty or obligation to people who are in positions of authority). Where Figure 2.4 indicates effect of Communication Persuasion Paradigm[48].

Context medium, timing and repetition of message, audience reactions ---**▶** *Target* ➤ Effect → Message change attitude expertise discrepancy intelligence reject message trustworthifear appeal involvement counterargue 1-sided or 2-sided ness forewarned suspend judgment derogate source

Figure 2.4: Communication Persuasion Paradigm [48]

Explanations in Recommender Systems

An explanation consider an additional information provided by system output to achieve certain goals [43]. Explanation persuade user to try or buy recommended item[44]. Several aspects should be considered in order to introduce explanation into the system. Following are the seven goals for explanation in recommendation system[42].

- 1. **Transparency** in recommendation system helps to understand how the recommendations are generated and how overall system mechanics[42]. Furthermore, it allow user to check the quality of system and in case of anomalies user have an idea why system has given this result. Let's consider an example, suppose system recommends a movie in comedy genre for a particular actor although user is not interested in it. System will provide an explanation you like some movies of this actor that's why it is in your recommendation.
- 2. **Scrutability** allows user to correct misguided assumptions made by system. Since user preferences may always change due to contextual factors. Therefore, it is important that explanations enable the user to understand what is going on in the system and let them exert control over the type of recommendations. Scrutability is related to the established usability principle of User Control[23].
- 3. Trust increases user's confidence in the system[42]. Trust could also relies on recommendation algorithm[20]. Studies suggested that trust is related to transparency and increase the possibility of interaction with the system.[10]. If users find system trustworthy then they are intent to return back to the system[10].

- 4. **Persuasiveness** convince users to try or buy [42], where as it may increase user evolution of the system. It allow user to gain benefits form the system rather than relied on other individuals.
- 5. **Effectiveness** helps user to make good decision [42]. Effectiveness is totally depends on recommendation algorithm. It also helps user to evaluate the quality of recommendation according to their preferences and also discard those item, which are not related to taste.
- 6. **Efficiency** help users make decisions faster [42]. Nielsen describe efficiency is an establish usability principle and explain it is ability of system to help user in fast decision making while selection of best suited item[23].
- 7. **Satisfaction** is the ability to make system fun while user is interacting with the system [42]. Similarly, providing poor recommendation tends to decrease a user's interest [39] or acceptance of a system[14].

2.1.7 Mobile Recommender Systems

With the technical advancement and features like computers, mobile phones have become a primary platform. By Combining with recommendation system it become a key tool for business and users. Due to this trend personalization in recommendation become more focused. Hence, it is important to understand the capabilities of mobile and how the information will access and displayed on mobile phone for usability prospective[23]. Schiller [34] describe the mobile recommendation system in three dimensions. According to him each one has its own impact on system usage and functionality. Furthermore, these dimensions are independent but there are examples for all the possible combinations of these dimensions, are stated as follows:

- 1. **Device portability** describes as information can be access from any location without bounding it to any specific location. Furthermore, user experience will be the same regardless of the location it is being accessed from.
- 2. **User mobility** refers to information is access from mobile device, like smartphone and tablets. On the other hand there are some constrains regarding the screen sizes and how information will be displayed on such devices.
- 3. **Wireless connectivity** refers to all the information, which is access by the mobile, is via wireless technology such as wifi, 3G and LTE.

General Issues

Besides, all the advancements and opportunities provided by mobile devices. Some limitations are exists and stated as follows:

1. Resource limitation

Mobile devices offer less memory and power consumption as computer to standard computing machine for example desktop computers.[28].

2. Connectivity

Since the communication in mobile system is depends on wireless connectivity therefore, high level interruption and noise occured. Additionally, data rate is also very low as compare to standard wire communication.[28].

3. Battery life

Although significant research and improvement has been performed in battery life of mobile device but a lot needs to be done for providing longer battery life.[28].

4. Fragmentation

Fragmentation refers to different screen sizes of devices. Since there are more than thousands of devices that exist having different screen size and resolutions. It is a challenge for developer to support all of them.[28].

2.2 Related Work

This section gives an overview of previous work and related papers on the respective domain.

2.2.1 User's Food Preference Extraction for Personalised Cooking Recipe Recommendation

Mayumi, M. et al., [45] design system to enlighten importance of personalized recipe recommendation system which is based on user's food preferences. In this research user's preferences are gathered by his browsing and cooking history. Recommendations provided by this system is not depends on what user ate in past. Moreover, system does not require particular action of user to collect his preferences. Figure 2.5 illustrate the idea estimating user's favorite ingredients. Their approach breakdowns the recipes into like and dislike ingredients set. It calculate ingredient the score by incorporating the frequency of that ingredient in the dishes that has eaten by user and consider them in

like ingredient. Whereas, ingredient is consider as dislike by user if he never browsed the recipe details or never cooked. Since system is working on implicit profiling therefore unable to consider addition context and preference of user while generating recommendations.

Figure 2.5: Extracting the favorite ingredients using cooking history [45]

2.2.2 Knowledge Base Framework for Development of Personalised Food Recommendation System

Suksom, N. et al., [37] focus on personalized food recommendation system aims to provide dietary recommendation based on individual diet and preferences by using knowledge base recommendation technique. Where as, knowledge based depends on ontology and rule-based knowledge development. Figure 2.6 gives an overview of system. All user preferences are set initially and recommendations are based on his heath preference infers system not supports critiquing approach.

Figure 2.6: Knowledge-based framework for the food recommender system [37]

2.2.3 Recommending Food: Reasoning on Recipes and Ingredients

Focus of the research is to investigate recipe recommendation system techniques by applying different recommendation techniques [12]. Initially with collaborative filter approach with simple break down to relate recipe and ingredients result were not so good but by applying content based approach there were significant improvements in result. For optimal solution they used hybrid approach of content-based and collaborative filter. Summary of their work is stated as after breaking down the recipes into ingredients, give and compute score ingredient score, applying collaborative filter to narrow down the ingredient score and finally applying content based approach in which prediction of recipe rating is examine by the score of individual ingredients. This approach conveys the basic idea recipe recommendation system. With the addition of user preference and their feedback it could achieve more.

2.2.4 Recipe recommendation using ingredient networks

Teng, C. et al.,[41] research permits collaborative recipe generation and modification. Recipes data are gathered according to regional preferences and modification is done by individual ingredient preferences. By this approach two kinds of networks are created one is ingredient complement and other is ingredients substitution. The network

suggests which substitution of ingredient increases the taste of the recipe and gives those recipes, which is high rated by user. System uses collaborative filter approach along with data mining techniques. System does not have diet specific recipes according to user preference nor consider any user context.

2.2.5 Critique-Based Mobile Recommender Systems

Ricci [29] illustrates the critique based mobile base recommendation in the domain of travel. Motivation behind this research to collect collects user preferences via critique with low amount of user effort. According to this research it is an advantage to collect user preference via critiquing and it is relatively fast. Figure ?? shows how the critiquing is perform. On the other hand it does not support reactiveness if use preferences has changed. It gives the basic idea how to gather information regarding user preferences in our system.

Figure 2.7: Critique-Based recommendation model [29]

2.2.6 Active Learning Strategies for Exploratory Mobile Recommender Systems Interactive Explanations in Mobile Shopping Recommender Systems

Motivation behind this approach to developed a explorative shopping mobile recommendation system by using conversation-based active learning approach [16]. It uses the utility-based context and critiquing for feedback. Recommendations improvements are done by two-step critiquing process which illustrating in at Figure 2.8a. Critiquing process is relies on either positive or negative feedback. Figure 2.8b show the refine

model of recommendation in a system. On the other hand it does not deals with the context and tell user why this recommendation is given to him.

Figure 2.8: Active Learning Strategies

2.2.7 The Persuasive role of Explanations in Recommender Systems

Ricci, F. et al.,[13] design and analyze a movie recommendation system in which they tried to recommend those movies that are according user's interest. It helps them to understand the persuasion effect that users are willing to accept recommendation or not. System is design to suggest persuasion recommendation based on Kaptein's [15] methodology and follows the approach of six(6) best-matching explanation ?? to provide Persuasion Principle. This approach is does not support active learning and critiquing approach not handling of current context.

Influence	Explanations
Strategy	
Reciprocity	A Facebook friend, who saw the movie that you suggested him/her in
	past, recommends you this movie
Scarcity	The recommended movie will be available to view from $15/1/2014$ to
	31/1/2014 on cinemas
Authority	The recommended movie won 3 Oscars
Social Proof	76% users rated this movie with 4 to 5 stars
Liking	Your Facebook friends like this movie
Commitment	Watch this movie and you may change your mind about this kind of
	movies

Table 2.1: Best-matching Explanations on each Influence Strategy

3 Design Decisions

This chapter will provide the explanation about the design decisions that we have made to develoed our system. It will also highlight how they intereact with each other in order to achieve the goals of this thesis. The chapter begins with explanation of profiling approaches, followed by impacts of context, critiquing and persuasion.

3.1 User Profile

One the core component of a system is to recommend user food that suits to his preferences, which can be gathered by profiling a user. In our system we followed a hybrid approach to build a user profile. Demographic information of a user is implicitly fetched from his Facebook account. The reason behind following implicit profiling approaches is to get user information without bothering them. This allows system to have up to date information about them. However, it has been noticed that people are reluctant to those systems that request permission to access their social network activity information. Knowing these concerns, we only ask users to permit access to their basic information. Following are the acquired attributes from Facebook profile.

- 1. Birthday
- 2. Email
- 3. FirstName
- 4. LastName
- 5. Gender
- 6. Name
- 7. Profile Link
- 8. UserId

Moreover, explicit profiling techniques are used to gather users' contextual information and their preferences. While explicit profiling reveals accurate information, there

however exist shortcomings in this technique. It demands user's time and willingness to provide the data by filling the long forms, which seems to be tedious to the users. As the system is Knowledge based Personalized recommender, this problem has to be dealt efficiently because the recommendations produced by the system are highly influenced by user feedback. Therefore instead of making a user to provide all the information, we collect this data by using interactive forms based, which includes simple toggling, rating and selection mechanism that also increase the usability of the system.

3.2 Food Profile

Food recommendation is the basic research area of this thesis. Based on this approach our research is to provide recommendation according to both individual's dietary needs and preferences. Understanding food domain is very complex and challenging task when its come to recommender domain. User's selection of a recipe is highly depends on it's ingredients. Also there are some other factors which includes cooking methods, ingredient costs and availability, complexity of cooking, preparation time, nutritional breakdown, ingredient combination effects, as well as cultural and social factors [12]. Our research starts with in finding out how popular websites are dealing in this domain and structuring the recipes. So that we can get inspiration about the important features that user are looking for while he interacts with such system. Next chore of our research is to build a recipe database therefore we need a provider-API that ensures a large number of recipes. Among these APIs two notables with impressive meta-data about recipes are:

- 1. Yummly API.
- 2. BigOven API.

Both services are crowd-source driven, highly recommended in food domain and are offering almost the same data set. Next step to find the best suited API for our research therefore we preformed some experiments targeted to comparison between both selected API. Result of this experiment showed that Yummly API is not providing cooking description. On the other hand BigOven API doesn't support recipe's nutritional information and have limited number of calls per hour for student account. Regarding selection of API our focus was, it should provide all the relevant information about the recipes required by our research, in order to avoid any dependency. Considering mentioned fact we decided to choose BigOven API.

Concerning about the attributes of food profile we followed the common approach that recipe have some important key attributes like cooking methods, ingredient preparation time, nutritional breakdown [12]. However we are unable to get nutritional information due to API's constrain, as discussed early, but in our data model we are considering it for future research purpose. Figure 3.1 illustrates the key attributes of food profile which is a common fashion for representing a recipe. We followed an hybrid approach [37] [41] [12] for our personalize knowledge bases food recommendation system. Recipe's ingredients are the primary factor on which recommendations are relied.

Figure 3.1: Attributes in Food Profile

Assumption

In order to simplify evaluation of recipe recommendation, System assumed that liking and disliking of ingredients by user is based on his dietary needs and health preferences. Suppose user does not like a particular ingredient let's say "X", therefore system learns from user's critique and eventually avoids such recipes, which have "X" as an ingredient in it.

BigOven API

BigOven API provides all the information about the recipe in a well-structured and well documented manner. Along with the high number of recipes, they offer functionalities including *Search*, *Display Recipes*, *Recipe review*, *Grocery List and Rest-based API support*. For this thesis we focus only few of them to develop a database of your system. Following are some API calls that are implemented in our system.

1. Reading a Recipe.

The Recipe object refers to a recipe within the BigOven collection.

URL request:

GET http://api.bigoven.com/recipe/id?api_key="bigOvenApiKey"

Parameter	Description	Required
id	Primary key(ID) of recipe	Yes
api_key	Your api key issued to you by BigOven	Yes

Table 3.1: Bigoven- Reading a Recipe.

2. Recipe Search Results.

The Recipe Search Result object is a collection of results for a given recipe search query.

URL request:

GET http://api.bigoven.com/recipes?title_kw=" keyword"&pg="page"&rpp="resultPerPage" &api_key="bigOvenApiKey"

Parameter	Description	Required
title_kw	Title keyword being searched for	No
pg	Cureent Page to be fetched	No
rpp	Number of results in page	No
api_key	Your api key issued to you by	Yes
	BigOven	

Table 3.2: Bigoven- Recipe Search Results

3.3 Contexts

Any information that can be used to characterized the situation of entity known as Context. For instance person, place[1]. Incorporation of context in recommendation system leads to improve the quality of recommendation. System that uses context to provide relevant information is called context-awear system. Lee, H. et al., [17] classified context based on existing classification and definition in mobile domain. He categorized contextual information into five categories and further divided in to sub categories Figure 3.2 is a illustration of his classification.

Figure 3.2: Context hierarchy of the Mobile Web. [17]

Location not only refers to user's current location but also what objects are nearby to user such as destination, restaurants and local services. Also it tells about the state of the user like he is moving to staying with respect to specific place, such as home or office. Identity is the representation of person's interests e.g. emotional state, preferred keyword, usage history and social network. Activity describe current usage of a mobile device, for instance which services are using by user. Time refers to the current time as per system clock e.g. time of device, also time elaborates in terms of day, week, month of the year. Device is a combination of hardware, software and network features that are provided by mobile for example Operating system version, Camera and Color. Network explains as cellular technology and wireless interface such as 3G, LTE and Bluetooth.

Considering Lee, H. et al., 's classification [17] as a foundation, different attributes of context used in our system are discussed in the following forthcoming section.

3.3.1 User Context

As discussed in earlier section, user context create huge impact while recommendations are made. Briefly, user context refers to the current activities of user. for example, what is the user during a specific circumstances. *Cuisine's Recipe and User Health and taste* are considered as user interest in our system. User need to define *Cuisine's Recipe* while he wants to interact with the system in order to narrow down the recommendation according to selected food type. Since all the recipes are categorize as, drinks, breakfasts and appetizer. Also *User Health and taste* context is gathered by user feedback. Considering user health and taste preferences system will not add those recipes, which do not matches to his profile.

User's Health Context

Elaborating more about user's health. Definition of health is totally depending on in which perspective it is evaluating. Initially we want to calculate health by the help of nutrition information provided by the recipe but due to API constrains we are unable to define in this manner. However we come with another approach, which sound more intuitive and simple to measure health i.e. BMI (Body Mass Index). BMI depends on Person's age, height and weight. It is use to measure body fatness and health of individual. By the BMI we can record how much calories he eat and how much he required maintaining his BMI. We mocked the information of calories and exercise information in our explanation to measure the effect of persuasion.

3.3.2 Accessibility Context

Accessibility context is a combination of "Activity" and "Time" according to above mentioned classification [17]. Following are the attributes which are related to our system: Cooking Time indicates that how much time user have for cooking, so that system can recommend him only those recipes which are related to user's preferred cooking time. Recipe's Next Cooking Time assume the recipe that user most likely to cook. System will not recommend the particular recipe which is already cooked by the user during a week. Assumption behind one-week cooking gap for a cooked recipe was to provide verity of recipes to user to maintain his interest.

3.3.3 Device Context

Focus of this research is requires a mobile platform. Android, iOS and Windows phones are the three considered option. We selected iOS platform and chose iPhone as a selected device for developing our prototype. The reason behind the selection of iOS, was to develop a high fidelity UI which is intuitive and useable, by considering all the User interface guide lines provided by Apple Inc. iOS version that is required by our app is minimum 8.3. However, client side code written in swift programming language, highly recommended by Apple Inc.

3.4 Critiquing

Elicitation of user preference is the key step of recommendation system. There are many simple approaches for accusation of user preferences and transform it into user model. Traditionally, these were acquired explicitly where user need to fill a form and mentioned his wants and need. However, it has been noticed users avoid in filling information about themselves. Using these approaches result less knowledge about user preference and poor recommendations. To solve these problems two methodologies have been suggested. In first approach accusation of user's preferences takes place by analyzing of user's navigation behavior. This assumption that user always visit his interested item. Advantage is requiring lower user effort. While shortcomings are: (1) It depends understating of domain specific knowledge because user actions are translated into user preferences model. (2) Noise existence because preference and context of a person may differs from another person.

Second is conversational approach a new paradigm for the collection of user preference and redefines human-computer interaction. Such systems are based on interaction cycles in order to gather preferences about the users. At interaction cycle, the system

can either ask the user a preference or propose a product to the user. The user can reply either by answering to the question posed or by criticizing the system proposal.[29]

Moreover, Critiquing by conversational approach is not enough in our case. It can answer to the cold startup problem and are unable to deliver quick results. Therefore Active Learning (AL) is the additional approach, which is used by our system in order to quickly deliver good results without preexisting knowledge about user preferences. [16]. We followed Model-based AL methodology in order to construct user model regarding ingredient and recipe selection, avoid expected error in model. As far as AL mode is concerned we followed the Sequential model states as: recalculate the rating of item once user rated that specific item. In our case ingredients and recipe [26].

Following our goal to develop the user profile over time using active learning methods in recipe recommendation scenario. Training points of our application is recipe rating, ingredient like/dislike that will build over time in order to make accurate suggestion. Initially when we have no training point based on conversational approach our system recommends top ten recipes according to given contextual information based on Cuisine and Current Preferred cooking time of user. As it is unlikely that user always wish to eat same type of food and have same cooking time. At some point user have a tough schedule due to other activities and have less time to cook. Similarly eating preferences changes with respect to meal 's time like breakfast, lunch, dinner and drinks. Considering the dynamic behavior of user and interest conversational approach is more suited. We followed Knowledge based recommendation approach, as our system is more specific to user's health and taste and the more knowledge about the user have more strong recommendation would be. We also consider content-based approach in our system in order to select popular recipes among the users to drag the attention of user. Initially when system does not have user preference, it follows collaborative filter approach by suggestion him top ten recipes of system. In order to improve the critiquing we are categorized in two manners, First, How much to like the recipe based on star rating. Second user likes particular ingredient or not which is Boolean in nature. Where system categories each ingredients in three state like, dislike and neutral (these are neither like nor dislike by user).

3.5 Persuasion

Developing persuasive recommendation system (RS) is mainstream of this research. Traditionally, RS has been more focused towards algorithmic approaches and relied on them for providing accurate recommendations. As there was an assumption that the accuracy of algorithm is the key factor that affects the quality of recommenda-

tion. Recent studies shows there are other factors that plays a significant role in the acceptance of recommendation. Main factors are User-centric design for presenting recommendation, transparency of system (explain user how system works) via message and source. An other important factor that way influenced on acceptance is explanation of recommendation[13]. In order to achieve Persuasion in our system we focus on "Visualization or Presentation [22] [24] and "Explanation of recommendation[7][11]".

3.5.1 Visualization or Presentation

While investigating persuasion impact on recommendation our focus in terms of modality and organization of recommended items in order to achieve user satisfaction. Hence, various recipe and food systems are compared in order to follow the social-orientation methodology, as it is part of user-centric approach and studies parameter that affects user preference and satisfaction [38]. After getting an idea about what are key factors in displaying recipes and what user expect form such system. We structure our recommendations to increase the efficiency in selecting a recommended item and build trust and user satisfaction based on qualitative characteristics. Following are the approaches that we follow in organization of recommendations.

- 1. Primary factors that consider while structuring recommendation item is user context to increase and maintain user interests in to the system to make system *transparency and efficiency*.
- 2. Recommended item have recipe review count, rating and category and subcategory of recipe, recipe avatar, ordered by recipe title to achieve *effectiveness and satisfaction*

3.5.2 Explaination

Although presentation and visualization will have an impact on persuasion but the key element in order to persuade something is the explanation about that recommended item. Any type of information additional information along with system's output to achieve certain objective. In our system our task is to persuade recipes, which suits according to user taste and heath preference. However, there is no clear indication in extant literature about what type of explanations can actually lead to persuasion and at what extend. Aim of providing the explanation to measure intensity of trust, credibility, satisfaction, accuracy and transparency of system. We started our research by finding the key element on which our explanation will depends by following Aristotle's elements that helps in persuasion [13]. Following are the explanation of each element with respect to our system. *Ethos/Character of the speaker* refers to motivate user to

cooking that recipe by getting the recipe for credible sources and convey message to user that our system cares him a lot by suggest him recipes according to his preferences. *Message's receiver pathos/emotions* Plays a vital role in persuading item. Health, taste and cooking preference are the primary consideration of user emotion. Our assumption was our system user are the diet conscious and want to live a better life. *Logos/Argument* is reasoning why this particular recipe is given to him what are assumptions of system while considering this recipe. After finding out the key elements on which explanation is based on. Next step to apply the Cialdin's Influence Principle[7] broadly used and verified for persuasion. Following are the description how we are applying each of the factor in our experiment.

- 1. Reciprocity describes as humans have the tendency to return favors. In our system we are achieving the mechanism of rating of recipe. We assumed that by rating the recipe user is not only providing his feedback but also helps community in selection of that particular. However, we also though about integrating user's friends that will recommend him recipe based on his taste. Furthermore, we want to add dietitian that user can follow that will suggest him heath plan and based on that plan our system will recommend him recipe but this though is out of scope for this thesis.
- 2. *Scarcity* refers to people are inclined to consider more valuable whatever is scarce. In our system we implement this approach by the help of consumption context or categorizing the recipe according to consumption of recipe for instance breakfast's recipes, juices etc.
- 3. *Authority* is implemented by the popularity of recipe among that course of recipe how much star it have and how user think about that recipe.
- 4. *Liking* is implemented in two ways in our system. First by overall recipe rating and second is based on ingredients choices that are according to the taste of user.
- 5. *Commitment* is implemented by the considering the user preference. All recipes are that recommended to user have at least one of his favorite ingredient and his timing. Furthermore, we also mock exercise time to consume that recipe to keep focus on user's health.

Explanation of recommended item depends on: (1) How much calories are contained by recommended recipe (2) How much user needs to do exercise to burn such amount of calories. . (3) Factors why this particular recipe in user's recommended item set. Let's discuss each item hypothesis behind each of discuss item. Calories are important factor that person has to major if he wants to live healthier. To deal with health factor we have

to provide calories information so that he can keep track of his consumption of calories. After given information about calories it is also important to highlight how much he have to workout to burn calories. Idea behind this to integrate app with another health or medical app and based on his health condition recommend him recipes. Moreover, it is also important to keep aware of user why system is recommending him such item. For this reason we consider user preferences about recipe and ingredients. More specifically every recipe which is recommended to user contains atleast one of his favorite ingredient. Additionally organized by cooking time which is provided by user according to his preference.

4 System Design and Implementation

This chapter describes of the system. It starts by providing overview of the system, followed by requirement elicitation to build prototype. Furthermore, it also provide deeper understanding of architectural paradigm by discussing each module and their interconnection.

4.1 Overview

Pervious chapter limits our discussion about the design decision and describe the essential component of the system. Since the concept is quite abstract and does not dictate any implementation details. In order to challenge the relevance and capability of the concept, a prototype app, tailored to a real world scenario, should be developed as a "proof of concept". Our system is divided in to two components: (1) Rest based web application follows modular principle of system design i.e. functionality of a system is divided into multiple concurrent modules. Where coordination of modules depend on database. Each module has its own Data Access Object (DAO) through with communication take place. Module query existing data with the help of DAO perform their task and update afterward. (2) iOS client provides all the required interface to communicate with the server. It aims to collect information that needs to build user profile and allow active learning and critiquing mechanism to update user profile and increase the trust between user and system by conveying the idea how much system cares about user and his need.

4.2 Requirment elicitation

This section represents user's viewpoint of the system. It also describes the purpose of the system by identifying the Functional, non-functional requirements and description of use case in the form of scenarios. It is important to mention here that all the scenarios are developed to evaluate the prototype and are not meant for production purpose.

4.2.1 Functional Requirments

FoodForMe is a mobile food recommender system that user iOS platform. It purpose to facilitate user to find the food what to cook that matches their personal preferences. Idea behind this prototype application is to proof the concept a combination of Persuasion and critique-based recommender system lead to better recommender and have an impact on user decision making process. Therefore all the functionality in a design is bounded to this purpose. There are two cases of interaction with the system. In case one user need login via Facebook so that system can get its demographic profile instead of asking him to fill out his personal information. Demographic information contains name, birthday, email, name and link of his profile picture. By default system keeps his cooking time preference and course selection preference. User can change these preferences from the setting screen. In second case user can interact without login and having same default preference. As it is notice that some user hesitate to provide their information without having a trust in a system. However, in this particular case user can only view the information. Our rest of discussion will relate do case one.

After getting login and change his preference. User will able to view recipes according to his preference. Each recipe shows the name, star rating, main categories, sub categories, number of reviews and recipe picture. Once the user tap on any recipe, user is able to view detail of selected recipe. Detail screen consists on 3 to 4 sections depends on screen type. Section 1 contains the generic information about the recipe same as discuss above accept it provide large Image of recipe. In Section 2 is related to recipe ingredients, each ingredient item have its name and quantity. Section 3 is about preparation/direction means its guide user how to cook that recipe. Section 4 is an option selection and it will appear as per screen type. In this section system will provide why system think this recipe is according to user preference. User is able to see two screens that display recipes list. First one will display the popular recipes of the system. Recipe course and popularity are the factors on which this will depends on. Motivation behind this to aware user what's new and hot in system and allow user to change his taste. On the other hand second list will depends only user preference. On detail screen of each recipe system will provide explanation, which tells user what system will think about him and why these recipe recommend to him.

On the detail screen of selected recipe user can criticized on showed item. User can critique on list of indigents by mentioning them he like that ingredient or not. Also he might be able to critique on recipe by given star according to his choice. Additional system allow user to change his personal preferences these include cooking time and course selection.

4.2.2 Non Requirments

From usability to performance aspect of a system Non-functional requirement can apply in many ways. However it is our assumption that this app is a prototype and will only use for evaluation purpose but we have to consider User interface, performance and supportable requirements [5]. Following are some few non-functional requirements that should guide to development process:

- 1. App must not be crash.
- 2. Any mobile user can use the application and have a clear understanding of app without facing any problem.
- 3. App should provide consistence user interface with respect to colors, fonts and theme.
- 4. App should follow the Application User interface guideline provided by apple.
- 5. For app start to critiquing or selection of preference must be reachable at any time.
- 6. Processing time of app may not exceed to 1 second.
- 7. Server calls should not take more 30 sec.

4.2.3 Use-Cases

Figure 4.1 illustrates foodforme uses cases. These include importing of user demographic information via Facebook, logout user form application, user can change his preference according to his convenience, browsing of recipes, critiquing on recipe based on ingredients and rating and selection of recipe to cook. To discuss the use cases we follow the scenario based approach. [4].

Figure 4.1: FoodForMe use case diagram

The first use case, determine user login via Facebook to get his Facebook profile to avoid filling his demographic information by his own. Login flow should provide good user experience and follows the standard practices. Use case start any point of time after app launch and user click on main menu and ends once user can see his name and profile picture at menu screen. Table 4.1 provides the scenario description.

Use case name	Determine stereotype
Participating actor	Initiated by User
Flow of events	(1). User starts app. (2). Click on menu button. (3). Tap on
	login via Facebook button to import his Facebook profile.
Entry condition	User starts app
Exit condition	User can see his Facebook profile image and name on ap-
	plication slide menu.
Quality requirements	(1) Import user profile via Facebook SDK. (2) Profile should
	be import in one click excluding of Facebook login process.
	(3) It should take more than 30 seconds.

Table 4.1: Use case 1:Import user demographic information

The second use case, application allow user to logout from application by providing standard mechanism provided by Facebook. After login he is not able to see his

personal information in app. Table 4.2 determines the event flow.

Use case name	Determine stereotype
Participating actor	Initiated by User
Flow of events	1. User starts app.
	2. Click on menu button.
	3. Tap on logout via Facebook button to logout his Facebook
	profile.
	4. App shows logout confirmation which includes logout
	and cancle
Entry condition	User starts app
Exit condition	User can logout form application and unable to his profile
	picture and name on app menu.
Quality requirements	1. User able to logout from system in two clicks.
	2. It should take more than 30 seconds.

Table 4.2: Use case 2: Logout use

Table 4.3 describe use case regarding recipe browsing. According to this user can browse the recipes list that is recommended to him by scrolling up and down. Where recipe list have star rating, recipe name, recipe's category, review count of recipe.

Use case name	Determine stereotype
Participating actor	Initiated by User
Flow of events	1. User can tap on popular/ recommend recipes view.
	2. User can see the list of recipes.
	3. User can perform scrolling to view more recipes.
Entry condition	User starts app
Exit condition	User can found his favorite recipe to cook.
Quality requirements	1. Scrolling of recipes should be sleek. 2. Each item should
	have name, star rating, avatar or recipe, review count and
	primary catagory.

Table 4.3: Use case 3: Recipe browsing

Use case 4 is regarding the showing the detail of selected recipe. This use case is depended use case 3. On detail screen user can view large image of recipe including all the parameters that is use case 3. Moreover it should display the ingredients along with their quantity. Finally it displays preparation method means how to cook that

recipe. Senerios is describe in Table4.4

	D
Use case name	Determine stereotype
Participating actor	Initiated by User
Flow of events	1. User selects recipe from list (Use case 3)
	2. User can see ingredients of selected recipe along with quantity.
	3. User can cooking method
Entry condition	User select a recipe from recommended item
Exit condition	User can found his favorite recipe to cook.
Quality requirements	1. Scrolling of recipe should be sleek. 2. Each item should have cooking method and set of ingredients along with
	quantity

Table 4.4: Use case 4: Recipe Detail

Use case 5 of our system is critiquing a recipe. System allows user to critique on user's recommend recipe so that system will aware about user taste and his health need. In our system critiquing of recipe and its ingredient is down by separately so that we can evaluate user taste more specifically. It might be possible that user doesn't like the recipe but his likes the ingredient and those ingredients are the essential one for his dietary need. Therefore, recipe critiquing is done via star rating where ingredient can be critique by like/dislike. Table 4.5 discuss the event flow of this use case.

Use case name	Determine stereotype
Participating actor	Initiated by User
Flow of events	1. User is viewing recipe detail He wants to give his feed
	back about recommend recipe. 2. He taps on Critique
	button at top right corner of recipe detail screen. 3. On
	critique screen he may like/dislike ingredients. 4. He may
	rate recipe by selecting stars.
Entry condition	use case 1, 3, 4
Exit condition	User can found his favorite recipe to cook.
Quality requirements	1. Like/dislike have differnt color 2. Rating of recipe is
	done via stars selection

Table 4.5: Use case 5: Recipe Critique

4.3 System Architecture

- 4.3.1 Working
- 4.3.2 Class Drigram
- 4.3.3 ERD
- 4.4 System Services
- **4.4.1** Service 1

5 Evaluation And Conclusion

6 Summary and Future Work

- 6.1 Summary
- **6.2** Future Work

List of Figures

2.1	Contextual Information Dimensions	9
2.2	Paradigms for Incorporating Context in Recommender Systems	11
2.3	Active vs Passive Learning	14
2.4	Communication Persuasion Paradigm	16
2.5	Extracting the favorite ingredients using cooking history	19
2.6	Knowledge-based framework for the food recommender system	20
2.7	Critique-Based recommendation model	21
2.8	Active Learning Strategies	22
3.1	Attributes in Food Profile	25
3.2	Context hierarchy of the Mobile Web.	27
4.1	FoodForMe use case diagram	37

List of Tables

2.1	Best-matching Explanations on each Influence Strategy	22
3.1	Bigoven- Reading a Recipe	26
3.2	Bigoven- Recipe Search Results	27
4.1	Use case 1:Import user demographic information	37
4.2	Use case 2: Logout use	38
4.3	Use case 3: Recipe browsing	38
4.4	Use case 4: Recipe Detail	39
4.5	Use case 5: Recipe Critique	39

Bibliography

- [1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles. "Towards a better understanding of context and context-awareness." In: *Handheld and ubiquitous computing*. Springer. 1999, pp. 304–307.
- [2] G. Adomavicius and A. Tuzhilin. "Context-aware recommender systems." In: *Recommender systems handbook*. Springer, 2011, pp. 217–253.
- [3] G. Adomavicius and A. Tuzhilin. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions." In: *Knowledge and Data Engineering, IEEE Transactions on* 17.6 (2005), pp. 734–749.
- [4] B. Bruegge and A. H. Dutoit. *Object-Oriented Software Engineering Using UML, Patterns and Java-(Required)*. Prentice Hall, 2004.
- [5] S. Burigat, L. Chittaro, and L. De Marco. "Bringing dynamic queries to mobile devices: a visual preference-based search tool for tourist decision support." In: *Human-Computer Interaction-INTERACT* 2005. Springer, 2005, pp. 213–226.
- [6] R. Burke. "Hybrid web recommender systems." In: *The adaptive web*. Springer, 2007, pp. 377–408.
- [7] R. B. Cialdini and L. James. *Influence: Science and practice*. Vol. 4. Pearson education Boston, MA, 2009.
- [8] P. Cremonesi, F. Garzotto, and R. Turrin. "Investigating the persuasion potential of recommender systems from a quality perspective: An empirical study." In: *ACM Transactions on Interactive Intelligent Systems (TiiS)* 2.2 (2012), p. 11.
- [9] P. Dourish. "What we talk about when we talk about context." In: *Personal and ubiquitous computing* 8.1 (2004), pp. 19–30.
- [10] A. Felfernig and B. Gula. "An empirical study on consumer behavior in the interaction with knowledge-based recommender applications." In: *E-Commerce Technology*, 2006. The 8th IEEE International Conference on and Enterprise Computing, *E-Commerce*, and *E-Services*, The 3rd IEEE International Conference on. IEEE. 2006, pp. 37–37.

- [11] B. J. Fogg. "Persuasive computers: perspectives and research directions." In: *Proceedings of the SIGCHI conference on Human factors in computing systems*. ACM Press/Addison-Wesley Publishing Co. 1998, pp. 225–232.
- [12] J. Freyne and S. Berkovsky. "Recommending food: Reasoning on recipes and ingredients." In: *User Modeling, Adaptation, and Personalization*. Springer, 2010, pp. 381–386.
- [13] S. Gkika and G. Lekakos. "The persuasive role of Explanations in Recommender Systems." In: *Proceedings of the Second International Workshop on Behavior Change Support Systems (BCSS2014), Padova, Italy.* 2014.
- [14] J. L. Herlocker, J. A. Konstan, and J. Riedl. "Explaining collaborative filtering recommendations." In: *Proceedings of the 2000 ACM conference on Computer supported cooperative work*. ACM. 2000, pp. 241–250.
- [15] M. Kaptein, B. De Ruyter, P. Markopoulos, and E. Aarts. "Adaptive persuasive systems: a study of tailored persuasive text messages to reduce snacking." In: *ACM Transactions on Interactive Intelligent Systems (TiiS)* 2.2 (2012), p. 10.
- [16] B. Lamche, U. Trottmann, and W. Wörndl. "Active learning strategies for exploratory mobile recommender systems." In: *Proceedings of the 4th Workshop on Context-Awareness in Retrieval and Recommendation*. ACM. 2014, pp. 10–17.
- [17] H. J. Lee, J. Y. Choi, and S. J. Park. "Context-aware recommendations on the mobile web." In: *On the Move to Meaningful Internet Systems* 2005: *OTM* 2005 *Workshops*. Springer. 2005, pp. 142–151.
- [18] T. Mahmood and F. Ricci. "Towards Learning User-Adaptive State Models in a Conversational Recommender System." In: *LWA*. Citeseer. 2007, pp. 373–378.
- [19] L. McGinty and B. Smyth. "On the role of diversity in conversational recommender systems." In: *Case-based reasoning research and development*. Springer, 2003, pp. 276–290.
- [20] S. M. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. "Interfaces for eliciting new user preferences in recommender systems." In: *User Modeling* 2003. Springer, 2003, pp. 178–187.
- [21] D. McSherry. "Explanation in recommender systems." In: *Artificial Intelligence Review* 24.2 (2005), pp. 179–197.
- [22] T. Nanou, G. Lekakos, and K. Fouskas. "The effects of recommendations' presentation on persuasion and satisfaction in a movie recommender system." In: *Multimedia systems* 16.4-5 (2010), pp. 219–230.

- [23] J. Nielsen and R. Molich. "Heuristic evaluation of user interfaces." In: *Proceedings of the SIGCHI conference on Human factors in computing systems*. ACM. 1990, pp. 249–256.
- [24] P. Pu and L. Chen. "Trust building with explanation interfaces." In: *Proceedings of the 11th international conference on Intelligent user interfaces*. ACM. 2006, pp. 93–100.
- [25] P. Pu, L. Chen, and R. Hu. "Evaluating recommender systems from the user's perspective: survey of the state of the art." In: *User Modeling and User-Adapted Interaction* 22.4-5 (2012), pp. 317–355.
- [26] A. M. Rashid, G. Karypis, and J. Riedl. "Learning preferences of new users in recommender systems: an information theoretic approach." In: *ACM SIGKDD Explorations Newsletter* 10.2 (2008), pp. 90–100.
- [27] P. Resnick and H. R. Varian. "Recommender systems." In: *Communications of the ACM* 40.3 (1997), pp. 56–58.
- [28] F. Ricci. "Mobile recommender systems." In: *Information Technology & Tourism* 12.3 (2010), pp. 205–231.
- [29] F. Ricci and Q. N. Nguyen. "Critique-based mobile recommender systems." In: *OEGAI Journal* 24.4 (2005), pp. 1–7.
- [30] F. Ricci, L. Rokach, and B. Shapira. "Introduction to recommender systems handbook." In: *Recommender systems handbook*. Springer, 2011, pp. 1–35.
- [31] N. Rubens, D. Kaplan, and M. Sugiyama. "Active learning in recommender systems." In: *Recommender Systems Handbook*. Springer, 2011, pp. 735–767.
- [32] S. Schiaffino and A. Amandi. "Intelligent user profiling." In: *Artificial Intelligence An International Perspective*. Springer, 2009, pp. 193–216.
- [33] B. N. Schilit and M. M. Theimer. "Disseminating active map information to mobile hosts." In: *Network, IEEE* 8.5 (1994), pp. 22–32.
- [34] J. H. Schiller. *Mobile communications*. Pearson Education, 2003.
- [35] R. Sinha and K. Swearingen. "The role of transparency in recommender systems." In: *CHI'02 extended abstracts on Human factors in computing systems*. ACM. 2002, pp. 830–831.
- [36] L. Suchman and H.-M. Reconfigurations. "Plans and situated actions." In: *New York, Cambridge University* (1986).
- [37] N. Suksom, M. Buranarach, Y. M. Thein, T. Supnithi, and P. Netisopakul. "A Knowledge-based Framework for Development of Personalized Food Recommender System." In: *Proc. of the 5th Int. Conf. on Knowledge, Information and Creativity Support Systems.* 2010.

- [38] K. Swearingen and R. Sinha. "Interaction design for recommender systems." In: *Designing Interactive Systems*. Vol. 6. 12. Citeseer. 2002, pp. 312–334.
- [39] K. Tanaka-Ishii and I. Frank. "Multi-agent explanation strategies in real-time domains." In: *Proceedings of the 38th Annual Meeting on Association for Computational Linguistics*. Association for Computational Linguistics. 2000, pp. 158–165.
- [40] J. Tang, L. Yao, D. Zhang, and J. Zhang. "A combination approach to web user profiling." In: *ACM Transactions on Knowledge Discovery from Data (TKDD)* 5.1 (2010), p. 2.
- [41] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic. "Recipe recommendation using ingredient networks." In: *Proceedings of the 3rd Annual ACM Web Science Conference*. ACM. 2012, pp. 298–307.
- [42] N. Tintarev and J. Masthoff. "A survey of explanations in recommender systems." In: *Data Engineering Workshop*, 2007 IEEE 23rd International Conference on. IEEE. 2007, pp. 801–810.
- [43] N. Tintarev and J. Masthoff. "Designing and evaluating explanations for recommender systems." In: *Recommender Systems Handbook*. Springer, 2011, pp. 479–510.
- [44] N. Tintarev and J. Masthoff. "Evaluating the effectiveness of explanations for recommender systems." In: *User Modeling and User-Adapted Interaction* 22.4-5 (2012), pp. 399–439.
- [45] M. Ueda, M. Takahata, and S. Nakajima. "User's food preference extraction for personalized cooking recipe recommendation." In: *Semantic Personalized Information Management: Retrieval and Recommendation SPIM 2011* (2011), p. 98.
- [46] W. H. O. (WHO) et al. "Information available at http://www. who. int/media-centre/factsheets/fs311/en/index. html." In: *Accessed November* (2008).
- [47] B. Xiao and I. Benbasat. "E-commerce product recommendation agents: use, characteristics, and impact." In: *Mis Quarterly* 31.1 (2007), pp. 137–209.
- [48] K.-H. Yoo, U. Gretzel, and M. Zanker. *Persuasive recommender systems: conceptual background and implications*. Springer Science & Business Media, 2012.