

A11100 988680

NBS
PUBLICATIONS

U.S. DEPT. OF COMMERCE & TECH. R.D.C.
A11100988680
/NBS monograph
QC100 .U556 V25-18;1981 C.1 NBS-PUB-C 19

NBS MONOGRAPH 25-SECTION 18

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

QC
100
.U556
No. 18
SECT. 18
1981
c.2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities² — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering² — Mechanical Engineering and Process Technology² — Building Technology — Fire Research — Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234.

²Some divisions within the center are located at Boulder, CO 80303.

NBS monograph
...

NATIONAL BUREAU
OF STANDARDS
LIBRARY

OCT 22 1981

Standard X-ray Diffraction Powder Patterns Section 18 — Data for 58 Substances

Not an - 41
20 00
.4556
10. 25
Sect. 18
1981
C.2

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans,
Boris Paretzkin, Harry S. Parker, and Nicolas C. Panagiotopoulos

International Centre for
Diffraction Data

Camden R. Hubbard

National Measurement Laboratory
National Bureau of Standards
Washington, DC 20234

JCPDS®

International Centre for
Diffraction Data

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued October 1981

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25
Section 18—Data for 58 Substances
Nat. Bur. Stand. (U.S.), Monogr. 25—Sec. 18, 110 pages (Oct. 1981)
CODEN: NBSMA6

CONTENTS

	Page		Page
Introduction	1	Nickel titanium oxide, NiTiO_3	54
Experimental patterns:		Potassium fluoride hydrate, $\text{KF} \cdot 2\text{H}_2\text{O}$	55
Aluminum iron, AlFe	5	Potassium iron cyanide, $\text{K}_4\text{Fe}(\text{CN})_6$	56
Ammonium cerium nitrate, $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$	6	Potassium vanadium oxide, KVO_3	57
Ammonium tin fluoride, NH_4SnF_3	8	Silicon nitride, $\beta\text{-Si}_3\text{N}_4$	59
Arsenic bromide, AsBr_3	9	Silicon oxide (quartz, low), $\alpha\text{-SiO}_2$	61
Barium aluminum titanium oxide, $\text{Ba}_{1.23}\text{Al}_{2.46}\text{Ti}_{5.54}\text{O}_{16}$	10	Sodium aluminum oxide, $\beta\text{-NaAlO}_2$	62
Barium manganese oxide, BaMnO_4	11	Sodium borate, NaBO_2	63
Barium neodymium titanium oxide, $\text{BaNd}_2\text{Ti}_3\text{O}_{10}$	12	Sodium niobium oxide (lueshite), NaNbO_3	64
Benzidine hydrochloride, $\text{C}_{12}\text{H}_{12}\text{N}_2 \cdot 2\text{HCl}$	14	Sodium nitrosyl iron cyanide hydrate, $\text{Na}_2(\text{NO})\text{Fe}(\text{CN})_5 \cdot 2\text{H}_2\text{O}$	66
Beryllium nitride, Be_3N_2	15	Sodium vanadium oxide, $\alpha\text{-NaVO}_3$	67
Bismuth selenide (paraguanajuatite), Bi_2Se_3	16	Sodium vanadium oxide, $\beta\text{-NaVO}_3$	68
Calcium borate, CaB_2O_4	17	Strontium iron oxide, $\text{SrFe}_{12}\text{O}_{19}$	69
Calcium cyanamide, CaCN_2	19	Thorium carbide, ThC	71
Calcium iron oxide, CaFe_2O_4	20	Thorium nitrate hydrate, $\text{Th}(\text{NO}_3)_4 \cdot 5\text{H}_2\text{O}$	72
Calcium sulfate hydrate (bassanite), $\text{CaSO}_4 \cdot 0.5\text{H}_2\text{O}$	22	Titanium carbide, TiC	73
Carbamazepine, $\beta\text{-C}_{15}\text{H}_{12}\text{N}_2\text{O}$	24	Tungsten oxide, WO_2	74
Cerium niobium oxide CeNbO_4	25	Uranium nitride, UN	75
Cerium tantalum oxide, CeTaO_4	27	Uranyl acetate hydrate, $\text{C}_4\text{H}_6\text{O}_6\text{U} \cdot 2\text{H}_2\text{O}$	76
Cesium magnesium titanium oxide, $\text{Cs}_{1.45}\text{Mg}_{0.724}\text{Ti}_{7.27}\text{O}_{16}$	29	Yttrium, Y	77
Chromium boride, Cr_5B_3	30	Zinc acetate hydrate, $\text{C}_4\text{H}_6\text{O}_4\text{Zn} \cdot 2\text{H}_2\text{O}$	78
Cobalt fluoride, CoF_2	31	Zirconium fluoride, ZrF_4	79
Cobalt phosphide, Co_2P	32	Zirconium oxide chloride hydrate, $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$	81
Copper chloride hydrate (eriochalcite), $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$	33	Cumulative indices	
Iodoform, CHI_3	34	(Circular 539, Volumes 1-10 and Monograph 25, Sections 1-18 inclusive)	
Iron boride, FeB	35	1. Inorganic	82
Iron fluoride, FeF_3	36	2. Organic formula	99
Iron oxide (hematite), $\alpha\text{-Fe}_2\text{O}_3$	37	3. Organic name	101
Iron yttrium oxide, $\text{Fe}_5\text{Y}_3\text{O}_{12}$	38	4. Mineral	103
Lithium iodide hydrate, $\text{LiI} \cdot 3\text{H}_2\text{O}$	40		
Magnesium phosphate, $\alpha\text{-Mg}_2\text{P}_2\text{O}_7$	41		
Manganese, $\beta\text{-Mn}$	43		
Molybdenum oxide, MoO_2	44		
Neodymium tantalum oxide, NdTaO_4	46		
Neodymium titanium oxide, Nd_2TiO_5	48		
Neodymium titanium oxide, $\text{Nd}_2\text{Ti}_2\text{O}_7$	50		
Neodymium titanium oxide, $\text{Nd}_4\text{Ti}_9\text{O}_{24}$	52		

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Previous work has been published as a book entitled Powder Diffraction Data from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards (1976) (JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081). The volume is sold with an accompanying search manual, and contains 949 card images of patterns of experimental data, published originally as Circular 539 (vols. 1-10) and Monograph 25, Sections 1-12, and most of Section 13.

Individual copies of the Circular and Monograph are still available and may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. If a publication listed below is identified with a number, it must be used in ordering. All are available in hardcopy or microfiche; the price is not fixed and will be furnished on request.

NBS Publication	Number	NBS Publication	Number
Circular 539, Volume 1.....	PB 178 902	Monograph 25, Section 1.....	PB 178 429
Volume 2.....	PB 178 903	Section 2.....	PB 178 430
Volume 3.....	PB 178 904	Section 3.....	PB 178 431
Volume 4.....	PB 178 905	Section 4	
Volume 5.....	PB 178 906	Section 5	
Volume 6.....	PB 178 907	Section 6	
Volume 7.....	PB 178 908	Section 7	
Volume 8.....	PB 178 909	Section 8.....	PB 194 872
Volume 9.....	PB 178 910	Section 9.....	COM 72-50002
Volume 10.....	PB 178 911	Section 10.....	COM 72-51079
		Section 11.....	COM 74-50183
		Section 12.....	COM 75-50162
		Section 13.....	PB 254 073
		Section 14.....	PB 272 372
		Section 15.....	PB 287 182

Also, until the present supply is exhausted, the following issues are for sale from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Order by given catalog number, and add 25% to the price for other than U.S. mailing.

	<u>Catalog Number</u>	<u>Price</u>
Section 12.....	SN 003-003-01376-5	\$1.50
Section 13.....	SN 003-003-01629-2	1.80
Section 14.....	SN 003-003-01842-2	2.75
Section 15.....	SN 003-003-01986-1	4.00
Section 16.....	SN 003-003-02128-8	5.00
Section 17.....	No Catalog Number Issued	4.50

ERRATA

Monograph 25

- Section 9, pp. 73,74: Much of the data is incorrect. See a corrected pattern in this issue.
- Section 15, p. 136: The correct year should be 1970 for the reference to Fletcher et al.
- Section 17, p. 41: The color should be light grayish yellowish brown.
- p. 62: Under "Structure," the date should be 1967 for reference to Katz and Megaw.
- p. 64: Under "References," after J. Appl. Crystallogr., add 2, 89.
- p. 70: Under "Synonym," at line 1, delete hydrate.
- p. 70: Under "Lattice constants," the value for c should be 5.567.
- pp. 103,104: The text is out of order. Page 104 should precede page 103.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 18 --- Data for 58 Substances

by

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans,
Boris Paretzkin, Harry S. Parker, and Nicolas C. Panagiotopoulos
JCPDS--International Centre for Diffraction Data

and

Camden R. Hubbard
National Bureau of Standards

Standard x-ray powder diffraction patterns are presented for 58 substances. These experimental patterns, useful for identification, were obtained by diffractometer methods. The lattice constants were refined by least-squares methods, and reflections were assigned Miller indices consistent with space group extinctions. Relative intensities, calculated densities, literature references, and other relevant data are included.

Key words: Crystal structure; densities; lattice constants; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File (PDF) is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the JCPDS--International Centre for Diffraction Data,¹ the PDF is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the JCPDS, the program at the National Bureau of Standards contributes new or improved data to the PDF. Our work also aids in the development of diffraction techniques. This report presents information for 58 experimental patterns, and is the twenty-eighth of the series of Standard X-ray Diffraction Powder Patterns.²

EXPERIMENTAL POWDER PATTERNS

Names. The nomenclature follows the current practice of the PDF.

CAS registry number. The Chemical Abstracts Service Registry Number is included, when available, to help identify the sample. This number forms the basis for computer-aided searching of Chemical Abstracts.

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory.

¹JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Francaise de Minéralogie et de Cristallographie.

²See previous page for other published volumes.

Appropriate annealing or recrystallization of the samples improved the quality of many of the patterns. A check of phase purity was provided by indexing the x-ray pattern and by optical examination.

Optical data. When reported, optical measurements were made by grain immersion methods, in white light, using oils standardized in sodium light, in the refractive index range 1.49 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors are selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. All spacing determinations were made using an internal standard mixed with the sample, packed in a shallow holder. Choice of the standard was determined by the need for low angle and unobstructed reflections. The amount of standard was estimated so that the intensity of its strongest peak would be about equal to the intensity of the strongest peak of the sample. The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in Table 1; the 2θ angles were computed using cell dimensions uncorrected for index of refraction.

The internal standard Si powder is available as Standard Reference Material 640 [1974]. The lattice constant for the Si was refined from multiple powder data measurements made with tungsten as an internal standard [Swanson et al., 1966]. Single crystal cell parameter data were also collected. The lattice parameters from the two methods agreed within three parts in 10⁵ [Hubbard et al., 1975]. D-spacing results using SRM 640 will be in agreement with patterns recorded in this series of Monographs since 1966.

All patterns were recorded at 25 ± 1 °C on a diffractometer equipped with a focusing graphite or

lithium fluoride crystal monochromator located between the sample and the scintillation counter. Pulse height discrimination was used as well. All data were collected using copper radiation: $\lambda(\text{CuK}\alpha_1, \text{peak}) = 1.540598\text{\AA}$ [Deslattes and Henins, 1973].

Table 1

Calculated 2θ Angles, $\text{CuK}\alpha_1, \lambda = 1.540598\text{\AA}$			
hkl	W a=3.16524 \AA $\pm .00004$	Ag a=4.08651 \AA $\pm .00002$	Si a=5.43088 \AA $\pm .00004$
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.303
310	100.632		
311		77.390	56.123
222	114.923	81.533	
321	131.171		
400	153.535	97.875	69.131
331		110.499	76.377
420		114.914	
422		134.871	88.032
511/333		156.737	94.954
440			106.710
531			114.094
620			127.547
533			136.897
444			158.638

The readings of 2θ were taken at positions about 20% of the way down from the top, and in the center of the peak width. This avoided errors associated with aberrations at the very top of the peaks. The $\text{K}\alpha_2$ peaks were occasionally read to assist in establishing a $\text{K}\alpha_1$ peak position, but $\text{K}\alpha_2$ peaks are not reported.

At low angles, $\text{K}\alpha_1$ and $\text{K}\alpha_2$ peaks were unresolved for both the sample and the internal standard. The internal standard corrections were established from the theoretical values for $\text{K}\alpha_1$ and were applied to the unresolved low angle peaks, as well as to the resolved $\text{K}\alpha_1$ peaks in the higher angle regions. In general, if the internal standard correction varied along the length of the pattern, linear interpolations were used.

Structure, lattice constants. The space group symbols are given the short Hermann-Mauguin notation. Also given are the space group numbers listed in the International Tables for X-ray Crystallography, Vol. I [1965].

Orthorhombic cell dimensions are arranged according to the Dana convention $b > a > c$ [Palache et al., 1944]. Monoclinic and triclinic lattice constants are transformed if necessary in order to follow the convention of Crystal Data [1973]. The lattice constant ratios, a/b , c/b , and c/a , also follow the conventions used for the determinative ratios in Crystal Data [1973].

In most cases, preliminary lattice constants were available in the literature, and were used for the initial indexing and refinement. In cases where such data were not available, other methods were tried. If suitable single crystals were available, the lattice constants were obtained by use of a four-circle diffractometer. Axial ratios and densities from Groth [1908] were sometimes useful. Cell constants were also found in some instances by use of the Visser computer program [1969].

A least squares program [Evans et al., 1963] assigned hkl 's and refined the lattice constants. In indexing cubic patterns, for a given reflection multiple hkl 's were not utilized in the refinement or reported. Instead, the single appropriate index having the largest h was used. Cell refinement was based only upon 2θ values which could be indexed without ambiguity. The program minimized the value $\sum (\theta_{\text{obs}} - \theta_{\text{calc}})^2$. The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants published in this series prior to 1973. The e.s.d.'s in the least significant figures are given in parentheses following the lattice constants.

For each d-value, the number of significant figures was derived from the average error in $|2\theta_{\text{obs}} - 2\theta_{\text{calc}}|$ and the equation $\Delta d/d = -(cot\theta)\Delta\theta$. With these conditions, the rounded value of d agrees with its appropriate 2θ within the average error in 2θ . The value of $\Delta\theta$ varies with the symmetry and crystallinity of each sample.

Densities. These were calculated from the specified lattice constants, the Avogadro number 6.0220943×10^{23} [Deslattes et al., 1974] and 1977 atomic weights published by the International Union of Pure and Applied Chemistry [1979].

Figure of merit. Several figures of merit ratings are available for assessing indexed powder data. M_{20} [de Wolff, 1968] is a criterion for the reliability of the unit cell and indexing. A value of $M_{20} > 10$ will guarantee the essential correctness of the indexing provided there are not more than 2 spurious lines ($X_{20} \leq 2$) [de Wolff, 1968]. In general, patterns reported in this publication had $M_{20} > 20$ and $X = 0$. M_{20} is reported if a cell was derived only through computer indexing from powder data, without further confirmation.

The accuracy and completeness of measured interplanar spacings is conveniently reported as F_N [Smith and Snyder, 1979]. The format used in this publication is $F_N = \text{overall value } (|\Delta 2\theta|, N_{\text{poss}})$, where N , the number of observed reflections was chosen as 30, or the maximum number of lines of

the pattern if the entire pattern had fewer than 30 lines. The "overall value" is the figure of merit, F_N , as defined by Smith and Snyder [1979], and $|\Delta\theta|$ is the average absolute magnitude of discrepancy between observed and calculated 2θ values for each reported hkl . N_{poss} is the number of diffraction lines allowed in the space group, up to the N^{th} observed and indexed line. Co-positional lines such as the cubic 221 and 300 are counted as one possible line.

Intensity measurements. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentage of the strongest line. It has been found that samples which give satisfactory intensity patterns usually have an average particle size smaller than $10 \mu\text{m}$, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (see Figure 2). As a general practice, approximately 50 volume percent of finely ground silica-gel was added as a diluent. Occasionally, a rotating sample holder was used.

As a check on reproducibility, each sample was mounted at least 3 times. The intensity values were determined for each of the mountings. The reported I_{rel} value for each observed spacing is the average of 3 or more observations and is rounded to the nearest integer. Theta-compensating (variable divergence) slits were sometimes used to gather the intensity data. In that case, the average $I(\text{comp})$ for each spacing was converted to an equivalent fixed slit value, using the approximate equation:

$$I(\text{fixed}) = \frac{I(\text{comp})}{\sin \theta}$$

The estimated standard deviation, σ , in the relative intensity values was calculated from the values of the five strongest lines, excluding the line with $I_{\text{rel}}=100$.

$$\sigma_i^2 = \frac{1}{n-1} \sum_{k=1}^n (I_i^{\text{rel}}(k) - \langle I \rangle_i)^2$$

and

$$\sigma = \left\{ \frac{1}{m} \sum_{i=1}^m \sigma_i^2 \right\}^{1/2}$$

where

m is the number of strong lines (usually 5), and
 n is the number of independent observations i , per line.

Figure 1.

Figure 2.

Where conversion of intensities for effects of theta-compensating slits was required, each σ_i was multiplied by the conversion factor

$$f = \frac{I(\text{comp})}{I(\text{fixed})}$$

Reference intensity ratio, I/I_{corundum}

The reference intensity ratio, I/I_c , has been defined as the direct ratio of the intensity of the strongest reflection of a sample, to the intensity of the 113 (hexagonal) reflection of corundum ($\alpha\text{-Al}_2\text{O}_3$) [Visser and de Wolff, 1964]. In this publication the ratios I/I_c are tabulated for copper $K\alpha_1$ radiation, for a 1:1 mixture by weight of the sample and corundum. I/I_c was determined only for very common phases.

A procedure has been adopted, to achieve greater statistical accuracy [Hubbard and Smith, 1977]. For any weight fractions of sample and corundum, X_s and X_c ($X_s = 1 - X_c$), the intensities

for reflection \underline{h} of the sample and \underline{k} of corundum were measured for several combinations of \underline{h} and \underline{k} usually within the same region of 2θ , to provide indications of possible preferred orientation, extinction, or other systematic errors. The reference intensity ratio is then given by

$$\frac{I(h_o)}{I_c(113)} = \frac{x_c}{x_s} \cdot \frac{I_c^{\text{rel}}(\underline{k})}{I_s^{\text{rel}}(\underline{h})} \cdot \frac{I(\underline{h})}{I_c(\underline{k})}$$

where (h_o) indicates specifically which reflection was chosen for tabulation purposes. For each of our patterns, the reflection (h_o) will be the one with $I = 100$ since only copper radiation was used. Typically, at least 3 sets of reflections and 2 mountings of the mixture were used to obtain 6 or more values for the reference intensity ratio, I/I_c . These values yielded, the tabulated average $\langle I/I_c \rangle$. From these data, the standard deviation, σ , was obtained from

$$\sigma^2 = \frac{\sum_{i=1}^n \left((I/I_c)_i - \langle I/I_c \rangle \right)^2}{n(n-1)}$$

where n was the number of measurements of the reference intensity ratio. The standard deviation in the least significant figures is given in parentheses.

Format of tables. The printing of the data has been computerized. Superimposed reflections are treated in one of two ways. If a d-spacing has only two possible indices, an \underline{M} is added to the d-spacing which is repeated on the next line, but with the second index. However, if there are more than two possible indices, a plus sign is used in like manner. In both cases, the composite intensity is printed only once and aligned with the first reflection. The symbol "1L" in the intensity column is used to indicate "less than 1".

UNITS

In this publication the Ångström unit ($1\text{Å} = 100 \text{ pm}$) was selected for presentation of the d-spacings and lattice parameters. This maintained consistency with (a) the earlier publications of Standard X-ray Diffraction Powder Patterns (Circular 539 and Monograph 25), (b) the publications of the International Union of Crystallography, and (c) the continuing publication of cards and search manuals of the PDF (now consisting of over 35,000 entries). The PDF search manuals are based on the d-spacings in Å of the 3 strongest lines. Consistent with the choice of the Å unit for length, the volume of the unit cell is expressed in Å^3 ($1\text{Å}^3 = 1 \times 10^{-30} \text{ m}^3$). Densities are reported in g/cm^3 ($1 \text{ gm/cm}^3 = 10^3 \text{ kg/m}^3$).

ACKNOWLEDGMENTS

We would like to thank Carolyn Wingo of the JCPDS Associateship for her assistance, particularly for keyboarding the data and helping with the proofreading of this manuscript. Appreciation is also expressed to the Text Editing Facility of the National Measurement Laboratory of NBS for typing the manuscript.

REFERENCES

- Alexander, L., Klug, H. P., and Kummer, E. (1948). *J. Appl. Phys.*, 19, No. 8, 742.
- Crystal Data (1973). (3rd Ed. Published jointly by the U.S. Department of Commerce, National Bureau of Standards, Washington, D.C. 20234, and the Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA 19081).
- Deslattes, R. D. and Henins, A. (1973). *Phys. Rev. Lett.* 31, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Carroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J., and Shields, W. R. (1974). *Phys. Rev. Lett.* 33, 463.
- Evans, H. T., Jr., Appleman, and Handwerker, D. S. (1963). Report #PB216188, U.S. Dept. of Commerce, National Technical Information Center, 5285 Port Royal Rd., Springfield, VA 22151, \$3.50.
- Groth, P. (1908). Chemische Kristallographie II (Engelmann, Leipzig, Germany).
- Hartshorne, N. H. and Stuart, A. (1970). Crystals and the Polarizing Microscope (Edward Arnold and Co., London, 4th Ed.)
- Hubbard, C. R. and Smith, D. K. (1977). Advances in X-ray Analysis, (Plenum Publishing Corporation, 227 West 17th St., New York, NY 10011), 20, p. 27.
- Hubbard, C. R., Swanson, H. E., and Mauer, F. A. (1975). *J. Appl. Crystallogr.* 8, 45.
- International Tables for X-ray Crystallography, I (1965). (The Kynoch Press, Birmingham, Eng.).
- International Union of Pure and Applied Chemistry (1979). *Pure Appl. Chem.* 51, No. 2, 407.
- ISCC-NBS Centroid Color Charts, SRM 2106 (1965), or Color Kit, SRM 2107 (1977) which contains both SRM 2106 and Color, an NBS Special Publication #SP 440. These can be obtained from the National Bureau of Standards, Office of Standard Reference Materials, Washington, DC 20234. Current prices will be quoted on request.
- Palache, C., Berman, H., and Frondel, C. (1944). Dana's System of Mineralogy (John Wiley and Sons, New York, 7th Ed.), I, 6.
- Smith, G. S. and Snyder, R. L. (1979). *J. Appl. Crystallogr.* 12, 60.
- Standard Reference Material 640 (1974), Silicon Powder X-ray Diffraction Standard, obtainable from the National Bureau of Standards, Office of Standard Reference Materials, Washington, DC 20234. Current price will be quoted on request.
- Swanson, H. E., Morris, M. C., and Evans, E. H. (1966). *Natl. Bur. Stand. U.S. Monogr.* 25, Sec. 4, 3.
- Visser, J. W. and de Wolff, P. M. (1964). "Absolute Intensities," Report 641.109, Technisch Physische Dienst, Delft, Netherlands.
- Visser, J. W. (1969). *J. Appl. Crystallogr.* 2, 89.
- Wolff, de, P. M. (1968). *J. Appl. Crystallogr.* 1, 108.

Aluminum Iron, AlFe

Synonym

Iron aluminum

CAS registry no.
12042-17-0

Sample

The sample was obtained from the Metallurgy Section of the National Bureau of Standards. It had been heated to 800 °C for 5 days and cooled to room temperature in 4 days.

Color

Dark gray

Structure

Cubic, Pm3m (221), Z = 1. The structure was determined by Bradley and Jay [1932].

Lattice constant of this sample

a = 2.8954(2) Å

Volume °
24.274 Å³

Density

(calculated) 5.666 g/cm³

Figure of merit

F₁₀ = 52.9(0.017,11)

Additional pattern

PDF card 1-1257 [Hanawalt et al. 1938]

References

Bradley, A. J. and Jay, A. H. (1932). Proc. Roy. Soc. Ser. A, 136, 210.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C Internal standard W, a = 3.16524 Å				
d(Å)	I ^{rel}	hkl		2θ(°)
$\sigma = \pm 2$				
2.899	8	1	0	0
2.048	100	1	1	0
1.6722	3	1	1	1
1.4472	13	2	0	0
1.2949	2	2	1	0
1.1820	24	2	1	1
1.0238	8	2	2	0
.9650	1	3	0	0
.9157	9	3	1	0
.8358	4	2	2	2
				134.33

Ammonium Cerium Nitrate, $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$

Synonym

Diammonium hexanitratocerate

CAS registry no.

16774-21-3

Sample

The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ. The material is a strong oxidant, deliquescent, and unstable, causing some inconsistency in intensity measurements.

Color

Unground, vivid orange
Ground, vivid yellow

Structure

Monoclinic, $P2_1/n$ (14), $Z = 2$. The structure was determined by Beineke and Delgaudio [1968].

Lattice constants of this sample

$$a = 13.069(3) \text{ \AA}$$

$$b = 6.8461(12)$$

$$c = 8.1732(16)$$

$$\beta = 91.36(2)^\circ$$

$$a/b = 1.9090$$

$$c/b = 1.1938$$

Volume

$$731.06 \text{ \AA}^3$$

Density

$$(\text{calculated}) 2.490 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 42.9(0.016, 43)$$

Reference

Beineke, T. A. and Delgaudio, J. (1968).
Inorg. Chem. 7, 715.

$d(\text{\AA})$	I^{rel}	$\sigma = \pm 6$			$2\theta (\text{^\circ})$
		h	k	ℓ	
3.879	6	-3	0	1	22.91
3.807	5	3	0	1	23.35
3.676	27	3	1	0	24.19
3.511	9	0	1	2	25.35
3.408	26	-1	1	2	26.13
3.375M	23	-3	1	1	26.39
3.375M		1	1	2	26.39
3.328	6	3	1	1	26.77
3.269	3	4	0	0	27.26
3.160	1L	0	2	1	28.22
3.116	23	-2	1	2	28.62
3.068	28	2	1	2	29.08
3.032	9	2	2	0	29.44
2.946	15	4	1	0	30.31
2.852	1	-2	2	1	31.34
2.791	9	-4	1	1	32.04
2.757M	6	-3	1	2	32.45
2.757M		4	1	1	32.45
2.703	11	3	1	2	33.11
2.654	11	1	0	3	33.75
2.623	8	0	2	2	34.16
2.579M	13	-4	0	2	34.76
2.579M		-1	2	2	34.76
2.566M	17	-3	2	1	34.94
2.566M		1	2	2	34.94
2.545	11	3	2	1	35.24
2.471	11	5	0	1	36.33
2.447	23	-2	2	2	36.69
2.441	21	5	1	0	36.79
2.421	23	2	2	2	37.10
2.377	22	-2	1	3	37.81
2.364	23	4	2	0	38.04
2.343	15	2	1	3	38.39
2.335	11	-3	0	3	38.53
2.285	8	3	0	3	39.40
2.279	6	-4	2	1	39.51
2.260	6	4	2	1	39.86
2.248	15	1	3	0	40.08
2.197	6	0	3	1	41.04
2.177	7	6	0	0	41.44
2.132	3	0	2	3	42.37
2.110	15	-1	2	3	42.83
2.098	10	1	2	3	43.09
2.077M	10	2	3	1	43.53
2.077M		5	2	0	43.53
2.060	7	-4	2	2	43.92
2.031	12	4	2	2	44.57
2.021+	33	-5	2	1	44.80
2.021+		3	3	0	44.80
2.000	11	6	1	1	45.30

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}; \text{ temp. } 25 \pm 1^\circ \text{ C}$					
Internal standard Si, $a = 5.43088 \text{ \AA}$					
$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{^\circ})$
		h	k	ℓ	
7.00	100	-1	0	1	12.63
6.87	75	1	0	1	12.88
6.54	58	2	0	0	13.53
6.07	78	1	1	0	14.59
5.248	72	0	1	1	16.88
4.902	6	-1	1	1	18.08
4.849	5	1	1	1	18.28
4.731	3	2	1	0	18.74
4.122	38	-2	1	1	21.54
4.064	46	2	1	1	21.85

Ammonium Cerium Nitrate, $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$ - (continued)

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{\\circ})$
$\sigma = \pm 6$					
1.978	8	4	1	3	45.83
1.965M	10	-3	3	1	46.15
1.965M		1	3	2	46.15
1.941M	5	-1	1	4	46.76
1.941M		-6	0	2	46.76
1.929M	10	1	1	4	47.07
1.929M		-3	2	3	47.07
1.901M	8	3	2	3	47.82
1.901M		2	3	2	47.82
1.864M	4	5	0	3	48.83
1.864M		2	1	4	48.83
1.836	6	6	2	0	49.61
1.829M	8	-7	0	1	49.83
1.829M		-4	3	1	49.83
1.818	10	4	3	1	50.14
1.800+	10	-4	2	3	50.68
1.800+		-6	2	1	50.68
1.770M	8	3	1	4	51.59
1.770M		4	2	3	51.59
1.7484	6	0	3	3	52.28
1.7135	4	4	0	4	53.43
1.7096	3	-4	3	2	53.56
1.7026	2	-2	2	4	53.80
1.6835	4	2	3	3	54.46
1.6671	5	-5	2	3	55.04
1.6615+	9	4	1	4	55.24
1.6615+		-7	1	2	55.24
1.6557	5	2	4	0	55.45

Ammonium Tin Fluoride, NH_4SnF_3

Synonyms

Ammonium fluorostannite
Ammonium tin trifluoride
Ammonium trifluorostannate

Sample

The sample was obtained from ICN Pharmaceuticals, Inc., Plainview, NY.

Color

Pale yellow green

Optical data

Uniaxial (+) $N_{\varepsilon} = 1.564$, $N_o = 1.536$

Structure

Hexagonal, R^* , $Z = 6$. The cell was measured on a single crystal diffractometer by V. Himes at NBS. The value of Z was assumed from the reported density. Donaldson and O'Donoghue [1964] reported this phase as being orthorhombic.

Lattice constants of this sample

$a = 6.8426(9)\text{\AA}$
 $c = 15.925(3)$

$c/a = 2.3273$

Volume

645.73 \AA^3

Density

(calculated) 2.989 g/cm^3

Figure of merit

$F_{30} = 61.2(0.013, 38)$

Additional pattern

PDF card 16-747 [Donaldson and O'Donoghue, 1964]

Reference

Donaldson, J. D. and O'Donoghue, J. D. (1964). J. Chem. Soc. 1964, 271.

$\text{CuK}\alpha_1$ $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1^\circ\text{C}$ Internal standard Si, $a = 5.43088 \text{ \AA}$				
$d(\text{\AA})$	I^{rel}	hkl		$2\theta (^\circ)$
$\sigma = \pm 5$				
5.559	49	1 0 1		15.93
5.311	100	0 0 3		16.68
4.759	17	0 1 2		18.63
3.422	84	1 1 0		26.02
3.305	70	1 0 4		26.96
2.913	20	0 2 1		30.67
2.877	54	1 1 3		31.06
2.655	1L	0 0 6		33.73
2.377	50	0 2 4		37.81
2.217	16	2 1 1		40.66
2.170	5	2 0 5		41.59
2.154	1	1 2 2		41.90
2.124	17	1 0 7		42.53
2.097	14	1 1 6		43.10
1.975	17	3 0 0		45.92
1.951	39	2 1 4		46.50
1.8865	17	0 1 8		48.20
1.8515	16	3 0 3		49.17
1.8326	3	1 2 5		49.71
1.8045	15	0 2 7		50.54
1.7102	9	2 2 0		53.54
1.6530	8	2 0 8		55.55
1.6357	7	1 3 1		56.19
1.6288	8	2 2 3		56.45
1.5959	17	2 1 7		57.72
1.5854	3	3 0 6		58.14
1.5376	3	1 0 10		60.13
1.5188	9	1 3 4		60.95
1.4878	6	1 2 8		62.36
1.4376	2	2 2 6		64.80
1.4064	6	0 1 11		66.42

Arsenic Bromide, AsBr₃

Synonym

Arsenic tribromide

CAS registry no.

7784-33-0

Sample

The sample was obtained from the Alfa Products, Thiokol/Ventron Division, Danvers, MA. The compound decomposed rapidly in the atmosphere. Therefore, both experimental and calculated intensities are reported. Both gave the same 6 strongest lines, but their order was different. The calculated intensities are based on Trotter's structure.

Color

Colorless

Structure

Orthorhombic, P2₁2₁2₁ (19), Z = 4. The structure was determined by Trotter [1965] and Singh and Swaminathan [1967].

Lattice constants of this sample

a = 10.240(3) Å

b = 12.182(2)

c = 4.3226(9)

a/b = 0.8406

c/b = 0.3551

Volume

539.22 Å³

Density

(calculated) 3.896 g/cm³

Figure of merit

F₃₀ = 42.8(0.016,44)

References

Singh, A. K. and Swaminathan, S. (1967). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 124, 375.

Trotter, J. (1965). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 122, 230.

CuKα₁ λ = 1.540598 Å; temp. 25±1 °C

Internal standard W, a = 3.16524 Å

d _{obs}	I _{obs}	I _{calc} peaks	hkl	2θ _{obs}
7.85	1L	5	1 1 0	11.26
6.09	30	34	0 2 0	14.53
5.242	6	3	1 2 0	16.90
5.128	14	19	2 0 0	17.28
4.719	8	12	2 1 0	18.79

d _{obs}	I _{obs}	I _{calc} peaks	hkl	2θ _{obs}
4.077	12	18	0 1 1	21.78
3.980	10	16	1 0 1	22.32
3.917	10	11	2 2 0	22.68
3.783	65	100	1 1 1	23.50
3.527	25	25	0 2 1	25.23
3.335	14	12	1 2 1	26.71
3.290	18	20	3 1 0	27.08
3.185M	35	53	2 1 1	27.99
3.185M			2 3 0	27.99
3.043	100	48	0 4 0	29.33
2.974	70	76	3 2 0	30.02
2.960	40	-	0 3 1	30.17
2.904	65	78	2 2 1	30.76
2.843	55	50	1 3 1	31.44
2.680	10	10	3 0 1	33.41
2.616M	12	9	3 1 1	34.25
2.616M			3 3 0	34.25
2.562M	25	22	2 3 1	35.00
2.562M			4 0 0	35.00
2.504	10	9	4 1 0	35.83
2.419	20	14	1 4 1	37.14
2.370	12	6	1 5 0	37.93
2.273	4	3	3 4 0	39.62
2.237	8	7	3 3 1	40.29
2.202M	6	4	4 0 1	40.96
2.202M			2 5 0	40.96
2.167M	18	17	4 1 1	41.64
2.167M			4 3 0	41.64
2.162	18	16	0 0 2	41.75
2.122	5	2	0 5 1	42.56
2.078	25	13	1 5 1	43.52
2.037	6	3	0 2 2	44.44
2.011	12	8	3 4 1	45.05
1.991M	10	4	1 6 0	45.52
1.991M			2 0 2	45.52
1.983	15	10	3 5 0	45.72
1.961M	20	12	2 5 1	46.27
1.961M			4 4 0	46.27
1.941	8	-	5 2 0	46.76
1.936	12	9	4 3 1	46.90
1.892	8	6	2 2 2	48.05
1.888	8	-	2 6 0	48.15
1.875	6	3	1 3 2	48.51
1.849	14	13	5 0 1	49.23
1.838	8	3	0 6 1	49.55
1.826	6	3	3 0 2	49.89
1.808	16	9	1 6 1	50.42
1.805	14	-	3 1 2	50.51
1.785	6	4	4 4 1	51.12
1.763	35	27	0 4 2	51.82
1.7453	65	47	3 6 0	52.38
1.7294	25	12	2 6 1	52.90
1.7159	8	3	1 7 0	53.35

- Calc. peak unresolved

Barium Aluminum Titanium Oxide, Ba_{1.23}Al_{2.46}Ti_{5.54}O₁₆

Sample

The requisite materials were ground up in the ratio of 1m BaO, 1m Al₂O₃ and 4.5m TiO₂, heated at 800 °C for 26 hrs at 1000 °C for 5 days and at 1200 °C for 7 days with periodic grindings.

Color

Grayish white

Structure

Tetragonal, I4/m (87), Z = 1. The compound is of the hollandite structure type. Its unit cell was determined by Roth [1981] on the basis of a related hollandite type phase, whose structure was determined by Sinclair et al. [1980].

Lattice constants of this sample

$$a = 9.9619(5) \text{ \AA}$$

$$c = 2.9242(3)$$

$$c/a = 0.2935$$

Volume
290.20 \AA^3

Density

$$(\text{calculated}) 4.330 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 76.8(0.011, 35)$$

References

- Roth, R. S. (1981) private communication.
 Sinclair, W., McLaughlin, G. M., and Ringwood, A. E. (1980). Acta Crystallogr. B 36, 2913.

d(\AA)	I ^{rel}	hkl			2θ(°)
		2	0	0	
4.973	3	2	0	0	17.82
3.524	21	2	2	0	25.25
3.153	100	3	1	0	28.28
2.805	7	1	0	1	31.88
2.490	3	4	0	0	36.04
2.445	34	2	1	1	36.73
2.228	24	4	2	0	40.45
2.194	39	3	0	1	41.10
2.0082	8	3	2	1	45.11
1.9542	9	5	1	0	46.43
1.8629	25	4	1	1	48.85
1.7603	5	4	4	0	51.90
1.7084	5	5	3	0	53.60
1.6602	20	6	0	0	55.29
1.6462	2	4	3	1	55.80
1.5748	3	6	2	0	58.57
1.5631	30	5	2	1	59.05
1.4618	7	0	0	2	63.60
1.4317	3	1	1	2	65.10
1.4288	6	6	1	1	65.25
1.4087	2	5	5	0	66.30
1.4030	3	2	0	2	66.60
1.3736	21	5	4	1	68.22
1.3260	6	3	1	2	71.03
1.3239	5	6	3	1	71.16
1.3085	8	7	3	0	72.13
1.2798	1L	7	0	1	74.01
1.2609	3	4	0	2	75.31
1.2413	2	3	3	2	76.71
1.2396	2	7	2	1	76.84
1.2224	1	4	2	2	78.12
1.2082	1	8	2	0	79.22
1.1740	4	6	6	0	82.01
1.1707	3	5	1	2	82.29
1.1581	2	7	5	0	83.39
1.1383	2	7	4	1	85.17
1.1136	2	8	4	0	87.53
1.0999	4	9	1	0	88.91
1.0972	6	6	0	2	89.18
1.0830	2	8	3	1	90.67
1.0715	1L	6	2	2	91.93
1.0352	1L	9	0	1	96.16
1.0135	5	9	2	1	98.93

Barium Manganese Oxide, BaMnO₄

Synonym

Barium manganate

CAS registry no.

7787-35-1

Sample

The sample was prepared at NBS using the procedure given by Schlesinger and Siems [1924] and Jellinek [1960].

Color

Blackish purple

Structure

Orthorhombic, PbNm (62), Z = 4, iso-structural with BaSO₄. The structure was studied by Jellinek [1960].

Lattice constants of this sample

$$a = 7.3360(9) \text{ \AA}$$

$$b = 9.1101(12)$$

$$c = 5.4982(9)$$

$$a/b = 0.8053$$

$$c/b = 0.6035$$

Volume

$$367.45 \text{ \AA}^3$$

Density

$$(\text{calculated}) 4.633 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 78.6(0.011,36)$$

Additional pattern

PDF card 1-569 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Jellinek, F. (1960). J. Inorg. Nucl. Chem. 13, 329.

Schlesinger, H. I. and Siems, H. B. (1924). J. Am. Chem. Soc. 46, 1965.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$ Internal standard W, $a = 3.16524 \text{ \AA}$			
---	--	--	--

$d(\text{\AA})$	I^{rel}	hkl	$2\theta (^\circ)$
$\sigma = \pm 3$			

5.716	2	1 1 0	15.49
4.560	6	0 2 0	19.45
4.403	13	1 0 1	20.15
3.962	37	1 1 1	22.42
3.870	6	1 2 0	22.96

3.670	35	2 0 0	24.23
3.507	100	0 2 1	25.38
3.402	70	2 1 0	26.17
3.164	100	1 2 1	28.18
2.892	66	2 1 1	30.89

$d(\text{\AA})$	I^{rel}	hkl	$2\theta (^\circ)$
$\sigma = \pm 3$			
2.858	3	2 2 0	31.27
2.807	13	1 3 0	31.86
2.750	45	0 0 2	32.53
2.535	13	2 2 1	35.38
2.499	3	1 3 1	35.91
2.478	2	1 1 2	36.22
2.361	9	3 1 0	38.09
2.353	11	0 2 2	38.22
2.340	5	2 3 0	38.44
2.277	2	0 4 0	39.55
2.240	20	1 2 2	40.23
2.200	4	2 0 2	41.00
2.174	76	1 4 0	41.51
2.170	75	3 1 1	41.59
2.151	53	2 3 1	41.96
2.138	46	2 1 2	42.23
2.104	13	0 4 1	42.95
1.9642	7	1 3 2	46.18
1.9051	24	3 3 0	47.70
1.8340	6	4 0 0	49.67
1.7982	13	4 1 0	50.73
1.7683	3	1 5 0	51.65
1.7444	3	1 1 3	52.41
1.7058	28	1 4 2	53.69
1.7011M	26	4 2 0	53.85
1.7011M		0 2 3	53.85
1.6838	4	1 5 1	54.45
1.6566	10	1 2 3	55.42
1.6251	4	4 2 1	56.59
1.6136	7	2 1 3	57.03
1.5648M	22	3 3 2	58.98
1.5648M		2 5 1	58.98
1.5422	1	2 2 3	59.93
1.5261	2	4 0 2	60.63
1.5090	5	4 3 1	61.39
1.5050	5	4 1 2	61.57
1.4874M	3	1 5 2	62.38
1.4874M		1 6 0	62.38
1.4616	8	3 5 0	63.61
1.4470	8	4 2 2	64.33
1.4431	9	2 3 3	64.52
1.4350	10	1 6 1	64.93
1.4289	3	4 4 0	65.24
1.4174	4	5 0 1	65.84
1.4119	8	3 5 1	66.13
1.3965M	3	5 2 0	66.95
1.3965M		3 2 3	66.95
1.3823	5	4 4 1	67.73
1.3596	2	2 6 1	69.02
1.3535	5	5 2 1	69.38

Barium Neodymium Titanium Oxide, BaNd₂Ti₃O₁₀

Synonym

Barium neodymium titanate

Sample

Stoichiometric amounts of BaO, Nd₂O₃, and TiO₂ were ground together and heated at 1200 °C for one day, then at 1425 °C for 6 days and finally at 1500 °C for 7 days with intermittent grindings.

Color

Very pale violet

Structure

Orthorhombic Amam (63) Z = 4 [Kolar et al., 1981]. The structure is pseudo-orthorhombic, but the true symmetry is monoclinic with a double "c" [Olsen et al., 1981].

Lattice constants of this sample

$$a = 7.624(1) \text{ \AA}$$

$$b = 28.164(3)$$

$$c = 3.8654(6)$$

$$a/b = 0.2707$$

$$c/a = 0.1372$$

Volume

$$829.99 \text{ \AA}^3$$

Density

$$(\text{calculated}) 5.838 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 58.7(0.012, 43)$$

Additional pattern

Kolar et al. [1981]

Reference.

Olsen, A., Goodman, P., and Roth, R. S. (1981). Int. Union Crystallogr. Meeting, Ottawa.

Kolar, D., Gaberšček, S., Volavšek, B., Parker, H. S., and Roth, R. S. (1981). J. Solid State Chem. 38, (2), 158.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}$; temp. 25 ± 1 °C Internal standard Si, $a = 5.43088 \text{ \AA}$				
$d(\text{\AA})$	I^{rel}	hkl		$2\theta (\text{°})$
$\sigma = \pm 5$				
14.02	1L	0 2 0		6.30
5.172	1L	1 4 0		17.13
4.687	64	0 6 0		18.92
3.994	9	1 6 0		22.24
3.829	18	0 1 1		23.21
3.811	1L	2 0 0		23.32
3.573	1	0 3 1		24.90
3.520	1L	0 8 0		25.28
3.420	14	1 1 1		26.03
3.239	13	1 3 1		27.52
3.195	23	1 8 0		27.90
3.186	24	0 5 1		27.98
2.958	100	2 6 0		30.19
2.814	13	0 10 0		31.77
2.785	60	0 7 1		32.11
2.701	45	2 1 1		33.14
2.641	8	1 10 0		33.91
2.616	7	1 7 1		34.25
2.587	9	2 8 0		34.65
2.444	5	2 5 1		36.74
2.346	43	0 12 0		38.33
2.318	8	1 9 1		38.82
2.250	41	2 7 1		40.04
2.134	3	0 11 1		42.31
2.118	6	3 1 1		42.65
2.070	8	3 3 1		43.69
2.055	10	1 11 1		44.02
2.051	10	2 9 1		44.12
2.012	51	0 14 0		45.03
1.998	22	2 12 0		45.35
1.9330	18	0 0 2		46.97
1.9069	21	4 0 0		47.65
1.8898M	12	0 13 1		48.11
1.8898M		4 2 0		48.11
1.8351	1L	1 13 1		49.64
1.7873	7	0 6 2		51.06
1.7660	8	4 6 0		51.72
1.7600	6	0 16 0		51.91
1.7572	5	3 9 1		52.00
1.7234M	5	3 12 0		53.10
1.7234M		2 0 2		53.10
1.7153	5	1 16 0		53.37
1.6935M	49	0 8 2		54.11
1.6935M		2 13 1		54.11
1.6352M	7	4 5 1		56.21
1.6352M		3 11 1		56.21
1.6182	24	2 6 2		56.85
1.5979	3	2 16 0		57.64
1.5941	3	0 10 2		57.79
1.5735	20	4 7 1		58.62

Barium Neodymium Titanium Oxide, BaNd₂Ti₃O₁₀ - (continued)

d(Å)	I ^{rel}	h k l	2θ(°)
σ = ±5			
1.5650	7	0 18 0	58.97
1.5330	4	1 18 0	60.33
1.5231	3	0 17 1	60.76
1.4926M	7	1 17 1	62.14
1.4926M		0 12 2	62.14
1.4797	7	4 12 0	62.74
1.4476M	7	2 18 0	64.30
1.4476M		3 16 0	64.30
1.4079	3	0 20 0	66.34
1.3938	8	0 14 2	67.10
1.3892	10	2 12 2	67.35
1.3841M	22	0 19 1	67.63
1.3841M		4 14 0	67.63
1.3569	8	4 0 2	69.18
1.3421	4	4 13 1	70.05
1.3327M	3	4 4 2	70.62
1.3327M		3 18 0	70.62
1.3213	12	2 20 0	71.32
1.3036	8	4 6 2	72.44
1.3011	10	2 19 1	72.60

Benzidine Hydrochloride, C₁₂H₁₂N₂·2HCl

Synonym

(1-1-Biphenyl)-4,4-diamine dihydrochloride

CAS registry no.

531-85-1

Sample

The sample was obtained from Mallinckrodt Chemical Co., St. Louis, MO. Only one intensity pattern was made because the compound is carcinogenic.

Color

Colorless

Structure

Triclinic, P₁ (2), Z = 1. The structure was determined by Koo et al. [1942].

Lattice constants of this sample

$$a = 5.760(2) \text{ \AA}$$

$$b = 12.585(3)$$

$$c = 4.3533(11)$$

$$\alpha = 95.55(3)^\circ$$

$$\beta = 98.67(3)$$

$$\gamma = 101.55(3)$$

$$a/b = 0.4577$$

$$c/b = 0.3459$$

Volume

$$302.86 \text{ \AA}^3$$

Density

$$(\text{calculated}) 1.409 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 50.8(0.013, 33)$$

Additional pattern

PDF card 7-744 [Polytechnic Inst. of Brooklyn, Brooklyn, NY, 1955]

Reference

Koo, C. H., Kim, H. S., and Shin, H. S. (1972). Daehan Hwahak Hwoejee (J. Korean Chem. Soc.) 16, 18.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1^\circ\text{C}$				
Internal standard W, $a = 3.16524 \text{ \AA}$				
d(\AA)	I ^{rel}	hkl	2 θ ($^\circ$)	
12.18	10	0 1 0	7.25	
5.545	80	1 0 0	15.97	
4.689	8	1 1 0	18.91	
4.648	16	-1 2 0	19.08	
4.263	10	0 0 1	20.82	

d(\AA)	I ^{rel}	hkl	2 θ ($^\circ$)
4.201	30	0 -1 1	21.13
3.870	6	0 1 1	22.96
3.734	100	0 -2 1	23.81
3.583	18	-1 1 1	24.83
3.520	6	-1 -1 1	25.28
3.301	6	0 2 1	26.99
3.208	45	1 -1 1	27.79
3.160	25	0 -3 1	28.22
3.128M	30	1 0 1	28.51
3.128M		-1 -2 1	28.51
3.072	50	1 -2 1	29.04
2.987	14	1 3 0	29.89
2.963	8	-1 4 0	30.14
2.882	10	1 1 1	31.00
2.848	12	-2 1 0	31.38
2.774	25	0 3 1	32.25
2.703	10	-1 -3 1	33.11
2.655	2	0 -4 1	33.73
2.590	6	2 1 0	34.60
2.567	8	1 2 1	34.92
2.538	10	-2 0 1	35.33
2.474	4	1 -4 1	36.28
2.461	8	1 4 0	36.48
2.453	8	-2 2 1	36.61
2.444M	10	0 5 0	36.75
2.444M		-1 5 0	36.75
2.429	4	-2 -1 1	36.98
2.342M	12	2 2 0	38.41
2.342M		0 4 1	38.41
2.249	6	-2 -2 1	40.06
2.172	4	1 -5 1	41.54
2.150	4	0 -1 2	41.99
2.129	8	2 -3 1	42.43
2.120	10	-1 0 2	42.61
2.104	8	-1 -1 2	42.96
2.076	6	1 5 0	43.56
2.056	6	0 1 2	44.00
2.046	10	-2 -3 1	44.24
2.037	10	0 6 0	44.43
2.012M	2	-1 -5 1	45.03
2.012M		0 5 1	45.03
2.003	2	2 -4 1	45.24
1.939	2	0 -6 1	46.82
1.9179M	2	1 -1 2	47.36
1.9179M		-1 -3 2	47.36
1.9103	2	1 -6 1	47.56
1.8850	2	1 0 2	48.24
1.8795	2	-2 5 1	48.39
1.8636	4	2 4 0	48.83
1.8473M	6	-2 6 0	49.29
1.8473M		-2 -4 1	49.29
1.8431M	6	-2 1 2	49.41
1.8431M		-3 1 1	49.41

Beryllium Nitride, Be₃N₂

CAS registry no.
1304-54-7

Sample

The sample was obtained from Brush Beryllium Co., Cleveland, OH. The lattice constant reported here was obtained from a thin sample on a slide smeared with high vacuum grease. The peak positions from a thick sample are shifted to lower angles resulting from the penetration of the beam owing to the unusually low absorption of the sample. For a thick sample an apparent lattice parameter of 8.150 Å would be expected for lines below 100° 2θ.

Color
Light gray

Structure

Cubic, Ia3 (206), Z = 16. The structure was determined by von Stackelberg and Paulus (1933).

Lattice constant of this sample
a = 8.1482(2) Å

Volume
540.98 Å³

Density
(calculated) 2.704 g/cm³

Polymorphism

There is a hexagonal β-form, prepared by heating the cubic form above 1400 °C.

Figure of merit
F₃₀ = 56.3(0.013,41)

Additional pattern

PDF card 4-786 [von Stackelberg and Paulus, 1933]

References

Eckerlin, P. and Rabenau, A. (1960). Z. Anorg. Allgem. Chem. 304, 218.

Stackelberg, von, M. and Paulus, R. (1933). Z. Phys. Chem. Leipzig B22, 305.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C Internal standard W, a = 3.16524 Å					
d(Å)	I ^{rel} σ = ±2'	hkl			2θ(°)
4.072	1L	2	0	0	21.81
3.328	17	2	1	1	26.77
2.351	100	2	2	2	38.25
2.178	5	3	2	1	41.43
2.037	5	4	0	0	44.43
1.9210	1	4	1	1	47.28
1.8223	1L	4	2	0	50.01
1.7367	9	3	3	2	52.66
1.5974	3	4	3	1	57.66
1.4883	1L	5	2	1	62.34
1.4404	36	4	4	0	64.66
1.3973	1L	4	3	3	66.91
1.3216	2	6	1	1	71.30
1.2571	2	5	4	1	75.58
1.2281	10	6	2	2	77.69
1.2015	3	6	3	1	79.75
1.1088	3	7	2	1	88.01
1.0348	2	6	5	1	96.21
1.0186	4	8	0	0	98.26
1.0031	1L	7	4	1	100.34
.9741	1L	6	5	3	104.52
.9604	1L	6	6	0	106.65
.9472	1L	7	4	3	108.82
.9347	5	6	6	2	110.99
.9228	1L	7	5	2	113.18
.8998	1L	8	3	3	117.76
.8890	1L	8	4	2	120.11
.8787	1L	7	6	1	122.49
.8589	1L	7	5	4	127.48
.8404	4	9	3	2	132.87
.8316	12	8	4	4	135.71
.8231	1L	9	4	1	138.75
.8148	1L	8	6	0	141.95
.8068	1	10	1	1	145.42
.7990	1L	10	2	0	149.21

Bismuth Selenide (Paraguanajuatite), Bi_2Se_3

CAS registry no.
12068-69-8

Sample

The sample was obtained from Alfa Products,
Thiokol/Ventron Division, Danvers, MA.

Color

Unground, gray metallic
Ground, dark gray

Structure

Hexagonal, $R\bar{3}m$ (166), $Z = 3$, isostructural
with tetradymite, $\text{Bi}_2\text{Te}_2\text{S}$. The structure
of Bi_2Se_3 was refined by Nakajima [1963],
following earlier work by Semiletov and
Pinsker [1955].

Lattice constants of this sample

$a = 4.1396(4)\text{\AA}$
 $c = 28.636(4)$

$c/a = 6.9176$

Volume
 424.97 \AA^3

Density

(calculated) 7.676 g/cm^3

Figure of merit

$F_{30} = 54.4(0.012, 44)$

Additional patterns

PDF card 12-732 [Thompson, R. M., Univ.
British Columbia, Vancouver, Canada]

Gobrecht et al. [1964]

Godovikov [1962]

References

Gobrecht, H., Boeters, K.-E., and Pantzer,
G. (1964). *Z. Phys.* 177, 68.

Godovikov, A. A. (1962). *Zh. Strukt. Khim.*
3, 44.

Nakajima, S. (1963). *J. Phys. Chem. Solids*
24, 479.

Semiletov, S. A. and Pinsker, Z. G. (1966).
Dokl. Akad. Nauk SSSR 100, 1079.

d(\text{\AA})	I^{rel}	hkl			$2\theta (\text{^\circ})$
		$\sigma = \pm 1$			
9.56	7	0	0	3	9.24
4.777	19	0	0	6	18.56
3.559	16	1	0	1	25.00
3.478	3	0	1	2	25.59
3.205	7	1	0	4	27.81
3.183	4	0	0	9	28.01
3.040	100	0	1	5	29.36
2.698	1L	1	0	7	33.18
2.534	2	0	1	8	35.39
2.386	1L	0	0	12	37.67
2.238	26	1	0	10	40.27
2.106	9	0	1	11	42.92
2.070	26	1	1	0	43.70
1.9085	8	0	0	15	47.61
1.8998	8	1	1	6	47.84
1.8780	2	1	0	13	48.43
1.7893	2	0	2	1	51.00
1.7782	1L	2	0	2	51.34
1.7392	2	0	2	4	52.58
1.7349	2	1	1	9	52.72
1.7102	10	2	0	5	53.54
1.6007	3	1	0	16	57.53
1.5909	1	0	0	18	57.92
1.5191	7	0	2	10	60.94
1.4770	1	2	0	11	62.87
1.4029	7	1	1	15	66.61
1.3636	1L	0	0	21	68.79
1.3296	4	0	1	20	70.81
1.3186	7	1	2	5	71.49
1.2667	2	0	2	16	74.91
1.2245	4	2	1	10	77.96
1.2019	3	1	2	11	79.72
1.1950	3	3	0	0	80.27
1.1763	1L	0	1	23	81.82

Calcium Borate, CaB₂O₄

Synonym

Calcium metaborate

CAS registry no.

13701-64-9

Sample

The sample was prepared by fusion of B₂O₃ and CaCO₃ using a small excess of fused B₂O₃. The sample was quenched. Later, it was annealed in a sealed platinum tube and held at 945 °C for 31 days, then quenched again.

Color

Colorless

Structure

Orthorhombic, Pnca (60), Z = 4. The structure was determined by Marezio et al. [1963].

Lattice constants of this sample

$$a = 6.2156(5) \text{ \AA}$$

$$b = 11.607(13)$$

$$c = 4.2828(6)$$

$$a/b = 0.5355$$

$$c/b = 0.3690$$

Volume
308.98 Å³

Density
(calculated) 2.702 g/cm³

Polymorphism

Calcium borate crystallizes in 4 forms, depending on the pressures used in its synthesis. Form I, described here, exists up to pressures of 12 kbars. Form II occurs at pressures of 12-15 kbars, form III at 15-25 kbars, and form IV at 25-40 kbars [Marezio et al., 1969].

Figure of merit

$$F_{30} = 55.5(0.013, 42)$$

Reference intensity

$$I/I_{\text{corundum}} = 1.11(2)$$

Additional patterns

PDF card 18-281 [Stojanovic, Inst. for Refractories, Kraljevo, Yugoslavia]

PDF card 23-407 [Fletcher et al., 1970]

Morris et al. [1978]

References

Fletcher, B. L., Stevenson, J. R., and Whitaker, A. (1970). J. Amer. Ceram. Soc. 53, 95.

Marezio, M., Plettinger, H. A., and Zachariasen, W. H. (1963). Acta Crystallogr. 16, 390.

Marezio, M., Remeika, J. P., and Dernier, P. D. (1969). Acta Crystallogr. 25B, 965.

Morris, M. C., McMurdie, H. F., Evans, E. H., Paretzkin, B., de Groot, J. H., Weeks, B., and Newberry, R. J. (1978). Natl. Bur. Stand. U.S. Monogr. 25, Sec. 15, 136.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}; \text{ temp. } 25 \pm 1 \text{ }^\circ\text{C}$ Internal standard Ag, $a = 4.08651 \text{ \AA}$				
$d(\text{\AA})$	I^{rel}	hkl		$2\theta (\text{ }^\circ)$
$\sigma = \pm 2$				
5.809	15	0 2 0		15.24
3.372	38	1 1 1		26.41
3.109	18	2 0 0		28.69
3.002	100	2 1 0		29.74
2.902	16	0 4 0		30.79
2.872	12	0 3 1		31.12
2.739	12	2 2 0		32.67
2.607	27	1 3 1		34.37
2.308	1	2 2 1		38.99
2.241	10	1 4 1		40.21
2.140	25	0 0 2		42.20
2.120	20	2 4 0		42.62
2.040	3	0 5 1		44.38
2.009	8	0 2 2		45.08
1.938	36	1 5 1		46.83
1.9107	6	1 2 2		47.55
1.9009	6	2 4 1		47.81
1.8604	3	2 5 0		48.92
1.8420	26	3 1 1		49.44
1.7641	3	2 0 2		51.78
1.7438	4	2 1 2		52.43
1.7234	3	0 4 2		53.10
1.6959	2	1 6 1		54.03
1.6872	5	2 2 2		54.33
1.6804	6	3 3 1		54.57
1.6424	6	2 6 0		55.94
1.6048	1	2 3 2		57.37
1.5689	1L	3 4 1		58.81
1.5533	1	4 0 0		59.46
1.5465	1	0 7 1		59.75
1.5339	1	2 6 1		60.29
1.5066	8	2 4 2		61.50
1.5006M	11	4 2 0		61.77
1.5006M		1 7 1		61.77
1.4770	1L	3 1 2		62.87

Calcium Borate, CaB₂O₄ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 2$					
1.4538	1	3	5	1	63.99
1.4418M	1	3	2	2	64.59
1.4418M		4	3	0	64.59
1.3701	1L	4	4	0	68.42
1.3393	1	0	3	3	70.22
1.3143	1	2	8	0	71.76
1.3091	3	1	3	3	72.09
1.3036	5	2	6	2	72.44
1.2392	1	3	7	1	76.87
1.2365	1	4	5	1	77.07
1.2292	2	4	2	2	77.61
1.2114M	4	4	6	0	78.97
1.2114M		1	9	1	78.97
1.1912	5	2	9	0	80.58
1.1874	3	5	1	1	80.89
1.1694M	2	3	1	3	82.40
1.1694M		5	2	1	82.40
1.1608	2	0	10	0	83.15
1.1539	2	4	4	2	83.76
1.1409	1	5	3	1	84.93
1.0877M	1	1	9	2	90.18
1.0877M		2	10	0	90.18
1.0607M	4	3	9	1	93.14
1.0607M		4	8	0	93.14
1.0359M	1	6	0	0	96.08
1.0359M		5	3	2	96.08
1.0318	1L	6	1	0	96.58
1.0197	3	6	2	0	98.12

Calcium Cyanamide, CaCN₂

CAS registry no.
27668-50-4

Sample

The sample was from Alfa Products, Thiokol/Ventron Division, Danvers, MA. The sample contained some graphite and the intensities may be somewhat in error.

Color
Black

Structure

Hexagonal, R̄3m (166), Z = 3. The structure of CaCN₂ was discussed by Bredig [1942] and Dehlinger [1942]. It was determined by Vannerberg [1962].

Lattice constants of this sample

a = 3.6961(6) Å
c = 14.743(3)

c/a = 3.9888

Volume °
174.42 Å³

Density
(calculated) 2.288 g/cm³

Figure of merit
 $F_{20} = 43.2(0.018, 26)$

Additional patterns
PDF card 16-685 [Vannerberg, 1962]

References

Bredig, M. A. (1942). J. Am. Chem. Soc.
64, 1730.

Dehlinger, U. (1942). Z. Kristallogr.
Kristallgeometric Kristallphys. Kristallchem.
65, 286.

Vannerberg, N-G. (1962). Acta Chem. Scand.
16, 2263.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C Internal standard Si, a = 5.43088 Å				
d(Å)	I ^{rel} σ = ±4	hkl	2θ(°)	
4.916	20	0 0 3	18.03	
2.936	100	0 1 2	30.42	
2.457	4	0 0 6	36.54	
2.416	23	1 0 4	37.19	
2.170	21	0 1 5	41.58	
1.848	28	1 1 0	49.26	
1.759	7	1 0 7	51.94	
1.730	6	1 1 3	52.87	
1.6389	1	0 0 9	56.07	
1.5964	3	0 1 8	57.70	
1.5648	7	2 0 2	58.98	
1.4764	2	1 1 6	62.90	
1.4686	2	0 2 4	63.27	
1.4060	3	2 0 5	66.44	
1.3390	3	1 0 10	70.24	
1.2742	1	0 2 7	74.39	
1.2288	1	0 0 12	77.64	
1.1942	4	1 2 2	80.34	
1.1491	1	2 1 4	84.19	
1.1192	1	1 2 5	86.98	

Calcium Iron Oxide, CaFe_2O_4

Synonym

Calcium ferrate

CAS registry no.

12013-33-1

Sample

The sample was prepared from stoichiometric amounts of CaCO_3 and $\alpha\text{-Fe}_2\text{O}_3$, blended by grinding in an agate mortar. Initial heat treatments at 600° , 800° , and 900°C for periods of 20 hrs. were used to drive off CO_2 from the mixture. Successively higher heat treatments at 1050°C for $6\frac{1}{2}$ days and 1200°C for 13 days, with periodic grinding were performed to ensure complete reaction.

Color

Unground, dark grayish red
Ground, medium brown

Structure

Orthorhombic, Pnam (62), $Z = 4$, isomorphous with β -calcium chromite. Structure determinations were made by Hill et al. [1956] and by Decker and Kasper [1957].

Lattice constants of this sample

$a = 9.2281(13)$ Å
 $b = 10.7052(12)$
 $c = 3.0185(5)$

$a/b = 0.8620$
 $c/b = 0.2820$

Volume
 298.19 Å^3
Density

(calculated) 4.806 g/cm^3

Figure of merit

$F_{30} = 48.9(0.015, 41)$

Additional patterns

PDF card 8-100 [Hadfields, Ltd., Sheffield, England]

PDF card 19-219 [Hughes et al., 1967]

Burdese [1952]

Decker and Kasper [1957]

References

Burdese, A. (1952). *Ric. Sci.* 22, 259.

Decker, B. F. and Kasper, J. S. (1957). *Acta Crystallogr.* 10, 332.

Hill, P. M., Peiser, H. S., and Rait, J. R. (1956). *Acta Crystallogr.* 9, 981.

Hughes, H., Roos, P., and Goldring, D. C. (1967). *Mineral. Mag.* 36, 280.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ Å}; \text{ temp. } 25 \pm 1^\circ\text{C}$ Internal standard Si, $a = 5.43088 \text{ Å}$				
$d(\text{\AA})$	I^{rel}	hkl	$2\theta (\text{)}^\circ$	
$\sigma = \pm 3$				
5.349	2	0 2 0	16.56	
4.612	20	2 0 0	19.23	
3.492	9	2 2 0	25.49	
3.329	2	1 3 0	26.76	
2.956	4	3 1 0	30.21	
2.905	6	0 1 1	30.75	
2.826	2	2 3 0	31.64	
2.770	4	1 1 1	32.29	
2.675	85	0 4 0	33.47	
2.668	100	3 2 0	33.56	
2.572	4	1 4 0	34.85	
2.527M	70	1 2 1	35.49	
2.527M		2 0 1	35.49	
2.331	2	3 3 0	38.59	
2.314	2	2 4 0	38.88	
2.305M	4	4 0 0	39.05	
2.305M		0 3 1	39.05	
2.254	4	4 1 0	39.97	
2.236	24	1 3 1	40.31	
2.118	16	4 2 0	42.66	
2.113	20	3 1 1	42.77	
2.086	3	1 5 0	43.35	
2.061	2	2 3 1	43.90	
1.999	2	3 2 1	45.34	
1.957	9	1 4 1	46.35	
1.942	1	2 5 0	46.73	
1.845	12	3 3 1	49.35	
1.837	37	2 4 1	49.59	
1.832	40	4 0 1	49.72	
1.807	10	4 1 1	50.47	
1.7581	2	3 5 0	51.97	
1.7528	3	1 6 0	52.14	
1.7463M	6	4 4 0	52.35	
1.7463M		0 5 1	52.35	
1.7349	2	4 2 1	52.72	
1.6640	10	2 6 0	55.15	
1.6325	2	2 5 1	56.31	
1.6301	2	4 3 1	56.40	
1.5432	12	3 6 0	59.89	
1.5376	13	6 0 0	60.13	
1.5231	2	6 1 0	60.76	
1.5186M	12	5 4 0	60.96	
1.5186M		3 5 1	60.96	
1.5150	27	1 6 1	61.12	
1.5086M	38	0 0 2	61.41	

Calcium Iron Oxide, CaFe₂O₄ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 3$					
1.5086M		1	7	0	61.41
1.4569	5	2	6	1	63.84
1.4410	1L	5	3	1	64.63
1.4352M	1	1	2	2	64.92
1.4352M		2	0	2	64.92
1.4115	1	4	6	0	66.15
1.3860	1L	2	2	2	67.53
1.3747M	2	1	3	2	68.16
1.3747M		3	6	1	68.16
1.3708	1	6	0	1	68.38
1.3499	2	1	7	1	69.59
1.3381	2	0	8	0	70.29
1.3335	5	6	4	0	70.57
1.3276	3	6	2	1	70.93
1.3242	3	1	8	0	71.14
1.3137	14	3	2	2	71.80
1.3015	1L	1	4	2	72.58
1.2850	1L	2	8	0	73.66
1.2795M	2	7	2	0	74.03
1.2795M		6	3	1	74.03
1.2785	2	4	6	1	74.10
1.2642	1L	2	4	2	75.08
1.2487	1	6	5	0	76.18
1.2289	1	4	2	2	77.63
1.2197	1L	6	4	1	78.33
1.2127	1L	1	8	1	78.87

Calcium Sulfate Hydrate (Bassanite), $\text{CaSO}_4 \cdot 0.5\text{H}_2\text{O}$

Synonym

Plaster of Paris

CAS registry no.

10034-76-1

Sample

The sample was prepared at NBS by adding H_2SO_4 to an aqueous solution of $\text{Ca}(\text{NO}_3)_2$ to form $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$. The wet fresh material was mixed with concentrated HNO_3 , heated at 80 °C, and held there for several days. Extremely fine crystals developed and were bottled while still moist. Just before measurements were taken, the crystals were dried in air at room temperature. The material was somewhat unstable, slowly changing to $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$ under conditions of high atmospheric humidity.

Consistent intensity data were difficult to obtain. The data here were measured on samples which had been side-drifted into holders, with no further packing or smoothing. Other measurements on packed samples showed different intensities; in particular, the reflection at $d=2.807$ showed values as low as 19, and at $d=1.847$, the packed samples had values as low as 29.

Color

Colorless

Structure

Pseudo-orthorhombic, I***, $Z = 12$. The literature on $\text{CaSO}_4 \cdot 0.5\text{H}_2\text{O}$ is extensive and confusing as noted by Gay [1965] and Clifton [1972]. The cell below was modified from one given by Gay [1965] who stated that the true symmetry was monoclinic, with $\beta \cong 90^\circ$. This NBS cell was also consistent with one found by use of the Visser program and associated refinement procedures. Bushuev [1980] reported a similar monoclinic cell for $\text{CaSO}_4 \cdot 0.67\text{H}_2\text{O}$ with $a=12.028$, $b=38.022$, $c=6.927$, $\gamma=90.21^\circ$, space group I2. There was no evidence to require the monoclinic cell for NBS data.

Lattice constants of this sample

$a = 12.031(4)$ Å
 $b = 12.695(6)$
 $c = 6.934(2)$

$a/b = 0.9477$
 $c/b = 0.5462$

Volume
 1059.1 Å³

Density
 (calculated) 2.731 g/cm³

Polymorphism

Two forms, α and β have been described by several authors, as noted by Clifton [1972]. He concluded that although slight differences have been observed between the properties of the two forms, it could not be conclusively determined whether the differences were sufficiently significant to consider the supposed α and β forms as separate entities.

Figures of merit

$$F_{30} = 17.6(0.017, 99)$$

$$M_{20} = 17.6$$

Additional patterns

PDF card 24-1067 [Rowe and Bigelow, 1972, The University of Michigan]

PDF card 24-1068. The data is attributed to Weiser et al. [1936] but differs from the journal reference quoted.

Powell [1962]

References

Bushuev, N. N. (1980). Dokl. Akad. Nauk. SSSR 225 (No. 5), 1104.

Clifton, J. R. (1972). J. Res. Natl. Bur. Stand. Sect. A 76A, 41.

Gay, P. (1965). Mineral. Mag. 35, 354.

Powell, D. A. (1962). Aust. J. Chem. 15, 868.

Weiser, H. B., Milligan, W. O., and Ekholm, W. C. (1936). J. Amer. Chem. Soc. 58, 1261.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{)}^\circ$
		$\sigma = \pm 4$			
6.00	70	1	0	1	14.76
4.360M	4	2	2	0	20.35
4.360M		1	2	1	20.35
4.283	2	2	1	1	20.72
3.989	1	1	3	0	22.27
3.826	1	3	1	0	23.23
3.613	1	0	3	1	24.62
3.469M	54	3	0	1	25.66
3.469M		0	0	2	25.66
3.225	1	1	1	2	27.64
3.042	15	0	2	2	29.34
3.006M	100	4	0	0	29.70
3.006M		2	0	2	29.70
2.807M	86	2	4	0	31.86
2.807M		1	4	1	31.86

Calcium Sulfate Hydrate (Bassanite), $\text{CaSO}_4 \cdot 0.5\text{H}_2\text{O}$ - (continued)

$d(\text{\AA})$	I^{rel}	hkl	$2\theta(^{\circ})$
$\sigma = \pm 4$			
2.717M	8	4 2 0	32.94
2.717M		2 2 2	32.94
2.617	1L	1 3 2	34.24
2.570	1L	3 1 2	34.88
2.343M	6	3 4 1	38.39
2.343M		0 4 2	38.39
2.273+	5	5 0 1	39.62
2.273+		4 0 2	39.62
2.228	2	3 3 2	40.46
2.184M	4	4 4 0	41.31
2.184M		2 4 2	41.31
2.139+	22	5 2 1	42.21
2.139+		4 2 2	42.21
2.117	8	0 6 0	42.68
2.028	1L	0 3 3	44.64
2.004	2	6 0 0	45.20
1.954	1	5 1 2	46.44
1.909	8	3 2 3	47.59
1.847M	56	4 4 2	49.31
1.847M		1 4 3	49.31
1.736	6	6 0 2	52.69
1.6947M	14	6 4 0	54.07
1.6947M		3 4 3	54.07
1.6674M	9	7 0 1	55.03
1.6674M		5 0 3	55.03
1.6123M	1	5 2 3	57.08
1.6123M		2 2 4	57.08
1.5789	1L	3 1 4	58.40
1.5495	1	5 6 1	59.62
1.5348+	1	6 5 1	60.25
1.5348+		2 8 0	60.25
1.5213	1	0 4 4	60.84
1.5035M	1L	6 1 3	61.64
1.5035M		8 0 0	61.64
1.4753M	3	5 4 3	62.95
1.4753M		2 4 4	62.95
1.4618	1L	4 2 4	63.60

Synonyms

5H-Dibenz(b,f)azepine-5-carboxamide

Carbamazepen

Carbazepine

Tegretal

CAS registry no.
298-46-4**Sample**

The sample was the U.S. Pharmacopoeia Reference Standard recrystallized from benzene.

Color

Colorless

Optical dataBiaxial. $N_{\alpha} = 1.600$, $N_{\beta} \approx 1.675$, $N_{\gamma} = 1.745$.
2V is very large.**Structure**Monoclinic, P2₁/n (14), Z = 4. The structure was determined by Himes et al. [1981].**Lattice constants of this sample** $a = 13.918(7)$ Å $b = 11.159(5)$ $c = 7.543(4)$ $\beta = 92.84(5)^\circ$ $a/b = 1.2472$ $c/b = 0.6760$ **Volume** 1170.1 Å³**Density**(calculated) 1.341 g/cm³**Polymorphism**This β -phase transforms above 180 °C to give an α -phase [De Camp, Brannon, and Maienthal, 1981].**Figure of merit** $F_{30} = 47.0(0.013, 49)$ **Intensities**The crystals were long needles which oriented strongly, and the quantity was limited. Two sets of intensities are presented here. The first set was measured from only one experimental pattern and may be distorted by orientation. The 2nd set of I's was calculated from the structure data of Himes et al. [1981]. At $2\theta = 24.37$, a calculated peak of intensity 3 was not observed on the experimental pattern.**References**

De Camp, W. H., Brannon, W. L., and Maienthal, M. M. (1981). Manuscript in preparation.

Himes, V., Mighell, A., and De Camp, W. H. (1981). To be published in Acta Crystallogr. B37.

CuK α $\lambda = 1.540598$ Å; temp. 25±1 °C Internal standard Si, $a = 5.43088$ Å					
d_{obs}	I_{obs}	I_{calc} peaks	hkl	$2\theta_{\text{obs}}$	
8.71	5	6	1 1 0	10.15	
6.94	37	11	2 0 0	12.74	
6.77	89	93	-1 0 1	13.07	
6.49	16	15	1 0 1	13.63	
6.24	24	27	0 1 1	14.18	
5.90	90	40	2 1 0	15.01	
5.786	100	100	-1 1 1	15.30	
5.604	54	13*	1 1 1	15.80	
5.576	57	59	0 2 0	15.88	
5.181	15	20	1 2 0	17.10	
4.741	35	39	-2 1 1	18.70	
4.549	63	41	2 1 1	19.50	
4.485	12	12	0 2 1	19.78	
4.346	38	30	2 2 0	20.42	
4.302	18	20	-1 2 1	20.63	
4.039	5	7	-3 0 1	21.99	
3.799	29	26	-3 1 1	23.40	
3.719	36	40	2 2 1	23.91	
3.593	53	30	1 3 0	24.76	
3.565M	61	53	0 1 2	24.96	
3.565M			3 2 0	24.96	
3.381	10	8	-2 0 2	26.34	
3.337	39	38	0 3 1	26.69	
3.277	75	43	2 3 0	27.19	
3.259	75	47	-1 3 1	27.34	
3.234	73	58	-2 1 2	27.56	
3.122	1L	2	0 2 2	28.57	
3.077	8	6	-1 2 2	29.00	
3.035	6	8	-2 3 1	29.41	
2.988	2	5	4 1 1	29.88	
2.953	1L	-	4 2 0	30.24	
2.900	5	-	3 3 0	30.81	
2.893M	6	6	-3 1 2	30.88	
2.893M			-2 2 2	30.88	
2.807	9	6	2 2 2	31.86	
2.790M	16	15	0 4 0	32.06	
2.790M			-4 2 1	32.06	
2.736M	2	3	-3 3 1	32.70	
2.736M			1 4 0	32.70	
2.651	3	1L	-5 0 1	33.79	
2.641	5	4	-3 2 2	33.92	
2.621	3	4	-4 0 2	34.18	
2.566M	7	7	5 0 1	34.94	
2.566M			1 4 1	34.94	
2.503M	1	1	-2 3 2	35.85	
2.503M			5 1 1	35.85	
2.394M	3	3	-5 2 1	37.54	
2.394M			1 1 3	37.54	

*This intensity is reported as integrated rather than peak height, which lacked resolution.

Cerium Niobium Oxide, CeNbO₄

Synonym

Cerium niobate

CAS registry no.

12014-72-1

Sample

The sample was prepared at NBS by heating CeO₂ and Nb₂O₅ at 1000 °C for 21 hours, at 1500 °C for 21 hours, and at 800 °C for 4 days under a high vacuum.

Color

Medium bright green

Structure

Monoclinic, I2/a (15), Z = 4. The structure of CeNbO₄ has been determined using neutron powder diffraction by Santoro et al. [1980]. This phase had earlier been reported to be in space group Ia(5) by Komkov [1959]. CeNbO₄ is isostructural with other rare earth niobates and tantalates [Roth et al., 1977]. The structure is a distorted scheelite type called beta-fergusonite-(Ce) or brocenite [Kuo et al., 1975].

Lattice constants of this sample

$$a = 5.5403(7) \text{ \AA}$$

$$b = 11.4087(14)$$

$$c = 5.1631(7)$$

$$\beta = 94.602(13)^\circ$$

$$a/b = 0.4856$$

$$c/b = 0.4526$$

Volume

$$325.30 \text{ \AA}^3$$

Density

$$(\text{calculated}) 6.065 \text{ g/cm}^3$$

Polymorphism

When heated to about 580 °C, CeNbO₄ undergoes a readily reversible phase change to a tetragonal structure of the fergusonite type, very similar to scheelite, CaWO₄ [Gingerich and Bair, 1963].

Figure of merit

$$F_{30} = 75.8(0.010, 40)$$

Additional patterns

PDF card 23-1047 [McCarthy, G., Pennsylvania State University, University Park, PA]

PDF card 29-402 [Kuo et al., 1973]

References

Gingerich, K. A. and Bair, H. E. (1963). Advan. X-Ray Anal. 7, 22.

Komkov, A. I. (1959). Sov. Phys. Crystallogr. 4, 796.

Roth, R. S., Negas, T., Parker, H. S., Minor, D. B., and Jones, C. (1977). Mat. Res. Bull. 12, 1173.

Santoro, A., Marezio, M., Roth, R. S., and Minor, D. (1980). J. Solid State Chem. 35, 167.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$ Internal standard Ag, $a = 4.08651 \text{ \AA}$					
$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{)}^\circ$
$\sigma = \pm 2$					
5.705	3	0	2	0	15.52
4.973	1	1	1	0	17.82
4.697	7	0	1	1	18.88
3.233	100	-1	2	1	27.57
3.133	7	1	3	0	28.47
3.059M	97	0	3	1	29.17
3.059M		1	2	1	29.17
2.852	31	0	4	0	31.34
2.761	18	2	0	0	32.40
2.574	15	0	0	2	34.83
2.462	1L	-2	1	1	36.47
2.357	5	-1	1	2	38.15
2.346	4	0	2	2	38.34
2.308M	5	-1	4	1	38.99
2.308M		2	1	1	38.99
2.242	6	1	4	1	40.19
2.0861	8	0	5	1	43.34
2.0343	14	-1	3	2	44.50
2.0019	1L	2	3	1	45.26
1.9841	27	2	4	0	45.69
1.9622	17	-2	0	2	46.23
1.9455	3	1	3	2	46.65
1.9111	20	0	4	2	47.54
1.9017	3	0	6	0	47.79
1.8557	1	-2	2	2	49.05
1.8112	12	2	0	2	50.34
1.7264	1	2	2	2	53.00
1.7114	16	-1	6	1	53.50
1.6982	17	-3	2	1	53.95
1.6840	11	1	6	1	54.44
1.6568M	1	3	3	0	55.41
1.6568M		-1	5	2	55.41
1.6392	2	2	5	1	56.06
1.6214	15	3	2	1	56.73
1.6169	16	-2	4	2	56.90
1.6087	11	-1	2	3	57.22
1.5633M	5	0	3	3	59.04
1.5633M		1	7	0	59.04
1.5429M	9	-3	1	2	59.90
1.5429M		1	2	3	59.90

Kuo, C., Wang, I., Wang, H., Wang, C., and Hou, H. (1973). Ti Chiu Hua Hsueh (Geochimica Peking) 2, 86.

Cerium Niobium Oxide, CeNbO₄ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 2$					
1.5291M	9	0	6	2	60.50
1.5291M		2	4	2	60.50
1.5090	1	-3	4	1	61.39
1.4995	1L	-2	1	3	61.82
1.4452	1	-1	4	3	64.42
1.4416	1L	-3	3	2	64.60
1.4321	6	3	1	2	65.08
1.4259	3	0	8	0	65.40
1.3806	3	4	0	0	67.83
1.3708	1	0	5	3	68.38
1.3494M	2	-1	7	2	69.62
1.3494M		3	3	2	69.62
1.3406M	2	-1	8	1	70.14
1.3406M		2	7	1	70.14
1.3228	1	1	7	2	71.23
1.2992M	3	-3	6	1	72.73
1.2992M		4	1	1	72.73
1.2870	4	0	0	4	73.53
1.2669	5	2	8	0	74.89
1.2635	5	3	6	1	75.13

Cerium Tantalum Oxide, CeTaO₄

Synonym

Cerium tantalate

CAS registry no.

12343-76-9

Sample

A 2:1 mixture of CeO₂ and Ta₂O₅ was heated at 1000 °C for 2½ hours, next at 1400 °C for 2 hours, then at 1500 °C for 17 hours. It was cooled and sealed in an evacuated glass tube. It was heated again at 800 °C for 6 days at a total pressure equal to or less than 2x10⁻⁶ Torr.

Color

Light olive

Structure

Monoclinic, P₂1/a (14), Z = 4, with LaTaO₄-type structure. The structure was refined by Santoro et al. [1980]. Neutron powder diffraction techniques were used.

Lattice constants of this sample

$$a = 7.7654(5)\text{\AA}$$

$$b = 5.5294(4)$$

$$c = 7.6230(6)$$

$$\beta = 100.865(7)^\circ$$

$$a/b = 1.4044$$

$$c/b = 1.3786$$

Volume

$$321.45\text{\AA}^3$$

Density

$$(\text{calculated}) 7.957 \text{ g/cm}^3$$

Polymorphism

A monoclinic to orthorhombic phase transition was observed at 820 °C in vacuum [Cava et al., 1978].

Figure of merit

$$F_{30} = 82.4(0.007,53)$$

Additional pattern

PDF card 23-148 [Bodiot, 1968]

References

Bodiot, D. (1968). Rev. Chim. Miner. 5, 569.

Cava, R. J., Negas, T., Roth, R. S., Parker, H. S., Minor, D. B., and Olson, C. D. (1978).

In The Rare Earths in Modern Science and Technology (Plenum Publishing Corp. New York, NY), p. 181.

Santoro, A., Marezio, M., Roth, R. S., and Minor, D. (1980). J. Solid State Chem. 35, 167.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$ Internal standard Ag, $a = 4.08651 \text{ \AA}$					
d(A)	I ^{rel}	hkl		2θ(°)	
$\sigma = \pm 4$					
7.500	1L	0	0	1	11.79
4.478	5	1	1	0	19.81
4.447	8	0	1	1	19.95
3.813	13	2	0	0	23.31
3.742	20	0	0	2	23.76
3.690	10	-2	0	1	24.10
3.138	81	2	1	0	28.42
3.100	100	0	1	2	28.78
3.070	42	-2	1	1	29.06
2.966	10	-2	0	2	30.11
2.764	35	0	2	0	32.36
2.747	15	2	1	1	32.57
2.613	19	-2	1	2	34.29
2.4513	12	2	0	2	36.63
2.3219	3	-3	1	1	38.75
2.2957	8	-2	0	3	39.21
2.2746	1	0	1	3	39.59
2.2388M	4	2	1	2	40.25
2.2388M		2	2	0	40.25
2.2240	9	0	2	2	40.53
2.2130	3	-2	2	1	40.74
2.2026	1L	-1	2	2	40.94
2.0815	7	2	2	1	43.44
2.0223	12	-2	2	2	44.78
1.9368	21	-4	0	1	46.87
1.9279	5	2	0	3	47.10
1.9073	2	4	0	0	47.64
1.8715M	7	0	0	4	48.61
1.8715M		3	2	0	48.61
1.8525	2	0	2	3	49.14
1.8459	2	-4	0	2	49.33
1.8337	20	2	2	2	49.68
1.8213M	8	-2	0	4	50.04
1.8213M		2	1	3	50.04
1.8025	4	4	1	0	50.60
1.7912	2	1	3	0	50.94
1.7724	18	0	1	4	51.52
1.7679M	17	4	0	1	51.66
1.7679M		-2	2	3	51.66
1.7303	1L	-2	1	4	52.87
1.6852	11	4	1	1	54.40
1.6755	3	-4	0	3	54.74
1.6593	11	2	3	0	55.32
1.6541	16	0	3	2	55.51
1.6495	11	-2	3	1	55.68

Cerium Tantalum Oxide, CeTaO₄ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 4$					
1.6443	5	-1	3	2	55.87
1.6028	14	-4	1	3	57.45
1.5926	13	2	3	1	57.85
1.5861	9	-4	2	1	58.11
1.5824M	8	4	0	2	58.26
1.5824M		2	2	3	58.26
1.5655	9	-2	3	2	58.95
1.5500	3	0	2	4	59.60
1.5346	2	-4	2	2	60.26
1.5211M	7	4	1	2	60.85
1.5211M		-2	2	4	60.85
1.5077	6	2	1	4	61.45
1.4919M	2	-2	0	5	62.17
1.4919M		3	3	0	62.17
1.4902	3	4	2	1	62.25
1.4414M	3	-2	1	5	64.61
1.4414M		-3	3	2	64.61
1.4331M	2	3	3	1	65.03
1.4331M		-4	2	3	65.03
1.4066	1L	3	2	3	66.41
1.3936	1	4	0	3	67.11
1.3822	3	0	4	0	67.74
1.3734	1	4	2	2	68.23
1.3631	2	2	2	4	68.82
1.3601	2	1	4	0	68.99
1.3511	4	4	1	3	69.52
1.3250	1L	4	3	0	71.09
1.3134M	5	-2	2	5	71.82
1.3134M		0	3	4	71.82
1.3027	2	-4	0	5	72.50
1.2996	2	2	4	0	72.70
1.2967	2	0	4	2	72.89
1.2947	2	-2	4	1	73.02
1.2764M	4	2	1	5	74.24
1.2764M		4	3	1	74.24
1.2677M	4	-4	1	5	74.84
1.2677M		-5	2	3	74.84
1.2599	5	-6	1	1	75.38
1.2530	1	-2	4	2	75.87
1.2477	4	0	0	6	76.25
1.2447	4	4	2	3	76.47
1.2394	4	-4	3	3	76.85
1.2301	1L	-6	0	3	77.54
1.2267	3	-2	1	6	77.80
1.2160M	1	-3	4	1	78.61
1.2160M		6	0	1	78.61
1.2039	2	2	4	2	79.56
1.2009M	3	-6	1	3	79.80
1.2009M		4	3	2	79.80
1.1942	1	2	3	4	80.34

Cesium Magnesium Titanium Oxide, $\text{Cs}_{1.45}\text{Mg}_{0.724}\text{Ti}_{7.27}\text{O}_{16}$

Synonym

Cesium magnesium titanate.

Sample

The sample was prepared at NBS by mixing stoichiometric proportions of cesium, magnesium, and titanium oxides. The mixture was heated at 750 °C for 18 hours, then re-heated with periodic grindings at 1200 °C for 5 hours. Finally, it was heated at 1200 °C in a sealed platinum tube for 5 days.

Color

Pale yellow

Structure

Tetragonal, I4/m (87), Z = 1. Roth [1981] determined by analogy that this compound is of the hollandite type structure. The structure of the related hollandite type phases was determined by Sinclair et al. [1980].

Lattice constants of this sample

$a = 10.2818(4)$ Å
 $c = 2.9717(3)$

$c/a = 0.2890$

Volume
 314.15 Å^3

Density

(calculated) 4.305 g/cm³

Figure of merit

$F_{30} = 84.4(0.010, 35)$
 $M_{20} = 128.4$

References

Roth, R. S. (1981) private communication.

Sinclair, W., McLaughlin, G. M., and Ringwood, A. E. (1980). Acta Crystallogr. B36, 2913.

d(Å)	I^{rel} $\sigma = \pm 1$	hkl			2θ(°)
		1	2	0	
7.27	1	1	1	0	12.17
5.148	2	2	0	0	17.21
3.636	27	2	2	0	24.46
3.254	100	3	1	0	27.39
2.856	3	1	0	1	31.30
2.570	2	4	0	0	34.88
2.497	18	2	1	1	35.94
2.299	25	4	2	0	39.15
2.246	19	3	0	1	40.12
2.0567	5	3	2	1	43.99
2.0163	11	5	1	0	44.92
1.9107	15	4	1	1	47.55
1.8179	6	4	4	0	50.14
1.7635	7	5	3	0	51.80
1.7135	22	6	0	0	53.43
1.6912	2	4	3	1	54.19
1.6261	2	6	2	0	56.55
1.6061	21	5	2	1	57.32
1.4857	2	0	0	2	62.46
1.4692	4	6	1	1	63.24
1.4559	2	1	1	2	63.89
1.4540	3	5	5	0	63.98
1.4270	2	2	0	2	65.34
1.4124	16	5	4	1	66.10
1.3624	2	6	3	1	68.86
1.3502	12	7	3	0	69.57
1.3172	1	7	0	1	71.58
1.2865	2	4	0	2	73.56
1.2754	2	7	2	1	74.31
1.2667	1	3	3	2	74.91
1.2467	2	8	2	0	76.32
1.2115	6	6	6	0	78.96
1.2038	1L	6	5	1	79.57
1.1963	1L	5	1	2	80.17
1.1950	3	7	5	0	80.27
1.1719	3	7	4	1	82.19
1.1495	2	8	4	0	84.15
1.1353	7	9	1	0	85.45
1.1226	3	6	0	2	86.66
1.1155	1	8	3	1	87.35
1.0969	1	6	2	2	89.22
1.0837	1	9	3	0	90.60
1.0664	1	9	0	1	92.50
1.0440	4	7	6	1	95.09
1.0392	1	5	5	2	95.68
1.0289	2	6	4	2	96.95
1.0283	2	8	6	0	97.02

Chromium Boride, Cr₅B₃

CAS registry no.
12007-38-4

Sample

The sample was obtained from Cerac, Inc., Menomonee Falls, WI. It contained about 15% CrB as a second phase which did not interfere with the measurements.

Color

Dark gray

Structure

Tetragonal, I4/mcm (140), Z = 4. The structure was determined by Bertaut and Blum [1953].

Lattice constants of this sample

$$a = 5.4735(5) \text{ \AA}$$

$$c = 10.1156(15)$$

$$c/a = 1.8481$$

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 4$					
1.7306	30	3	1	0	52.86
1.6858	10	0	0	6	54.38
1.6378	3	3	1	2	56.11
1.5597	2	2	1	5	59.19
1.4352	1	2	0	6	64.92
1.3162	11	4	1	1	71.64
1.2901	4	3	3	0	73.32
1.2714	3	2	2	6	74.58
1.2643	2	0	0	8	75.07
1.2498	3	3	3	2	76.10
1.2445	13	2	1	7	76.48
1.2354	12	4	1	3	77.15
1.2237	3	4	2	0	78.02
1.2078	10	3	1	6	79.25
1.1491	11	3	3	4	84.19

Volume A^3
303.06 A^3

Density
(calculated) 6.409 g/cm³

Figure of merit
 $F_{25} = 53.5(0.012, 38)$

Additional pattern
Kuz'ma et al. [1969]

References

Bertaut, F. and Blum, P. (1953). C. R. Acad. Sci. 236, 1055.

Kuz'ma, Yu. B., Telegus, V. S., and Kovalyk, D. A. (1969). Porosh Met. 5, 79.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$					
Internal standard Si, $a = 5.43088 \text{ \AA}$					
d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 4$					
3.073	21	1	1	2	29.03
2.739	9	2	0	0	32.67
2.528	14	0	0	4	35.48
2.409	29	2	0	2	37.30
2.380	55	2	1	1	37.76
2.117	23	1	1	4	42.68
1.9808	100	2	1	3	45.77
1.9341	15	2	2	0	46.94
1.8572	39	2	0	4	49.01
1.8085	1	2	2	2	50.42

Cobalt Fluoride, CoF_2

Synonym

Cobalt difluoride

CAS registry no.

10026-17-2

Sample

The sample obtained from the Apache Chemical Co., Seward, IL was heated at 180 °C.

Color

Strong pink

Structure

Tetragonal, $P4_2/mnm$ (136), $Z = 2$, iso-structural with TiO_2 , rutile. The structure was determined by Stout and Reed [1954] and refined by Baur [1958].

Lattice constants of this sample
 $a = 4.7106(3) \text{ \AA}$
 $c = 3.1691(5)$
 $c/a = 0.6728$
Volume
 70.322 \AA^3
Density
 (calculated) 4.578 g/cm^3
Figure of merit
 $F_{19} = 84.6(0.010, 22)$
Additional pattern

PDF card 3-409 [The Dow Chemical Co.]

PDF card 24-329 [Swanson et al., 1972]

References

 Baur, W. H. (1958). *Acta Crystallogr.* 11, 488.

 Stout, J. W. and Reed, A. (1954). *J. Am. Chem. Soc.* 76, 5279.

 Swanson, H. E., McMurdie, H. F., Morris, M. C., Evans, E. H., and Paretzkin, B. (1972). *Natl. Bur. Stand. U.S. Monogr.* 25, Sec. 10, 85.

d(Å)	I^{rel}	hkl			$2\theta(\text{°})$
		1	1	0	
$\sigma = \pm 3$					
3.332	100	1	1	0	26.73
2.631	50	1	0	1	34.05
2.355	7	2	0	0	38.18
2.297	24	1	1	1	39.19
2.1069	6	2	1	0	42.89
1.7547	56	2	1	1	52.08
1.6654	17	2	2	0	55.10
1.5844	9	0	0	2	58.18
1.4894	6	3	1	0	62.29
1.4307	14	1	1	2	65.15
1.4070	16	3	0	1	66.39
1.3484	1	3	1	1	69.68
1.3148	2	2	0	2	71.73
1.2662	1	2	1	2	74.94
1.2082	4	3	2	1	79.22
1.1776	1L	4	0	0	81.71
1.1481	7	2	2	2	84.28
1.1101	3	3	3	0	87.88
1.0852	3	3	1	2	90.44

Cobalt Phosphide, Co_2P

CAS registry no.
12134-02-0

Sample

The sample was obtained from ICN-K&K Laboratories, Plainview, NY. It contained a few percent of $\text{Co}_3(\text{PO}_4)_2$ which did not interfere with measurements.

Color

Black

Structure

Orthorhombic, Pnam (62), $Z = 4$, isostructural with Co_2Si . The structure was determined by Nowotny [1947]. It was refined by Rundqvist [1960] who stated that there is an extended homogeneity range at elevated temperatures; the widening of the range is apparently connected with random vacancies in the metal atom sites.

Lattice constants of this sample

$$a = 5.6465(8) \text{ \AA}$$

$$b = 6.6099(10)$$

$$c = 3.5130(7)$$

$$a/b = 0.8542$$

$$c/b = 0.5315$$

Volume \AA^3

$$131.11 \text{ \AA}^3$$

Density

$$(\text{calculated}) 7.540 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 48.8(0.013, 46)$$

Additional pattern

PDF card 6-0595 [Nowotny, 1947]

References

Nowotny, H. (1947). Z. Anorg. Allg. Chem. 254, 31.

Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1^\circ \text{C}$ Internal standard W, $a = 3.16524 \text{ \AA}$				
$d(\text{\AA})$	I^{rel}	$h k l$	$2\theta (\text{)}^\circ$	
$\sigma = \pm 2$				
3.309	3	0 2 0	26.92	
2.854	5	1 2 0	31.32	
2.826	4	2 0 0	31.64	
2.719	6	1 1 1	32.92	
2.214	100	1 2 1	40.73	
2.201	69	2 0 1	40.97	
2.147	11	2 2 0	42.06	
2.088	71	2 1 1	43.30	
2.053	33	1 3 0	44.08	
1.8675	26	0 3 1	48.72	
1.8326	8	2 2 1	49.71	
1.8102	23	3 1 0	50.37	
1.7715	19	1 3 1	51.55	
1.7562	29	0 0 2	52.03	
1.7370	11	2 3 0	52.65	
1.6524	8	0 4 0	55.57	
1.6354	17	3 2 0	56.20	
1.6094	4	3 1 1	57.19	
1.5856	2	1 4 0	58.13	
1.5573	6	2 3 1	59.29	
1.4309	2	3 3 0	65.14	
1.3802	1	4 1 0	67.85	
1.3596	1	2 2 2	69.02	
1.3342	7	1 3 2	70.53	
1.2981	4	4 2 0	72.80	
1.2867	2	1 5 0	73.55	
1.2844	3	4 1 1	73.70	
1.2605	6	3 1 2	75.34	
1.2371	5	0 5 1	77.02	
1.2350	7	2 3 2	77.18	
1.2181	1L	4 2 1	78.45	
1.1969M	9	2 5 0	80.12	
1.1969M		3 2 2	80.12	
1.1708	6	3 4 1	82.28	
1.1336	1	2 5 1	85.61	
1.0833	4	1 2 3	90.64	
1.0816+	6	3 5 0	90.83	
1.0816+		2 0 3	90.83	
1.0611	7	5 1 1	93.09	
1.0339M	6	0 3 3	96.33	
1.0339M		3 5 1	96.33	

Copper Chloride Hydrate (Eriochalcite), CuCl₂·2H₂O

Synonym

Cupric chloride dihydrate

CAS registry no.

13933-17-0

Sample

The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ. The sample was somewhat hygroscopic.

Color

Brilliant bluish green

Structure

Orthorhombic, Pbmn (53), Z = 2. The structure was determined by Harker [1936] and refined by Engberg [1970].

Lattice constants of this sample

$$a = 7.4164(6) \text{ \AA}$$

$$b = 8.0926(6)$$

$$c = 3.7494(4)$$

$$a/b = 0.9164$$

$$c/b = 0.4633$$

Volume

$$225.03 \text{ \AA}^3$$

Density

$$(\text{calculated}) 2.516 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 87.6(0.009, 37)$$

Additional pattern

PDF card 13-145 [Inst. of Physics, Univ. College, Cardiff, Wales]

References

Engberg, A. (1970). Acta Chem. Scand., 24, 3510.

Harker, D. (1936). Z. Kristallogr. Kristall-geometrie Kristallphys. Kristallchem. A93, 136.

d(\text{\AA})	I ^{rel}	hk\ell			2\theta(^{\circ})
		1	1	0	
5.467	100	1	1	0	16.20
4.050	56	0	2	0	21.93
3.750	11	0	0	1	23.71
3.708	6	2	0	0	23.98
3.346	21	1	0	1	26.62
3.093	40	1	1	1	28.84
2.734	14	2	2	0	32.73
2.638	82	2	0	1	33.96
2.578	18	1	2	1	34.77
2.534	17	1	3	0	35.39
2.365	9	3	1	0	38.02
2.2088	29	2	2	1	40.82
2.1004	13	1	3	1	43.03
2.0639	5	3	0	1	43.83
2.0240	22	0	4	0	44.74
2.0007	17	3	1	1	45.29
1.8744	5	0	0	2	48.53
1.8543	14	4	0	0	49.09
1.8389	5	3	2	1	49.53
1.8220	6	3	3	0	50.02
1.7808	4	0	4	1	51.26
1.7740	9	1	1	2	51.47
1.7312	5	1	4	1	52.84
1.7005	2	0	2	2	53.87
1.6860	9	4	2	0	54.37
1.6730	5	2	0	2	54.83
1.6624	3	4	0	1	55.21
1.6579	6	1	2	2	55.37
1.6389M	6	3	3	1	56.07
1.6389M		2	1	2	56.07
1.6048	23	2	4	1	57.37
1.5817	5	1	5	0	58.29
1.5070	3	1	3	2	61.48
1.4939	3	3	0	2	62.08
1.4686	3	3	1	2	63.27
1.4587	8	5	1	0	63.75
1.4569	4	1	5	1	63.84
1.4452	5	3	4	1	64.42
1.4015	6	3	2	2	66.68
1.3671	7	4	4	0	68.59
1.3600	3	5	1	1	69.00
1.3538	2	3	5	0	69.36

Iodoform, CHI₃

Synonym

Triiodomethane

CAS registry no.

75-47-8

Sample

The sample was obtained from Merck and Co., Inc., Rahway, NJ.

Color

Brilliant yellow

Structure

Hexagonal, P6₃ (173), Z = 2. The structure was determined by Huggins and Noble [1931].

Lattice constants of this sample

$$a = 6.8195(5) \text{ \AA}$$

$$c = 7.565(1)$$

$$c/a = 1.1093$$

Volume

$$304.68 \text{ \AA}^3$$

Density

$$(\text{calculated}) 4.292 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 62.4(0.011, 44)$$

Additional pattern

PDF card 2-329 [Crystallographic Laboratory, Cambridge, England]

Reference

Huggins, M. L. and Noble, B. A. (1931). Am. Mineral. 16, 519.

d(Å)	I ^{rel}	hkl			2θ(°)
		σ = ±3			
1.6535	3	1	1	4	55.53
1.6381	2	3	1	0	56.10
1.6010	3	3	1	1	57.52
1.5540	2	2	2	2	59.43
1.5033	3	3	1	2	61.65
1.4492	2	4	0	1	64.22
1.4431	2	2	1	4	64.52
1.4122	2	2	2	3	66.11
1.3831	3	1	1	5	67.69
1.3734	2	3	1	3	68.23
1.3636	3	3	0	4	68.79
1.3550	1	3	2	0	69.29
1.3467	1L	2	0	5	69.78
1.3338	2	3	2	1	70.55
1.2888	1L	4	1	0	73.41
1.2755	1	3	2	2	74.30
1.2744	1	4	0	3	74.38
1.2707	3	4	1	1	74.63
1.2606	1L	0	0	6	75.33
1.2382	1L	3	1	4	76.94
1.2201	1	4	1	2	78.30

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C				
Internal standard W, a = 3.16524 Å				
d(Å)	I ^{rel}	hkl	2θ(°)	
$\sigma = \pm 3$				
4.650	11	1 0 1	19.07	
3.781	39	0 0 2	23.51	
3.409	18	1 1 0	26.12	
3.107	100	1 1 1	28.71	
2.751	7	2 0 1	32.52	
2.531	16	1 1 2	35.44	
2.320	1	1 0 3	38.78	
2.230	6	2 1 0	40.41	
2.0270	22	1 1 3	44.67	
1.9674	11	3 0 0	46.10	
1.9222	7	2 1 2	47.25	
1.8913	3	0 0 4	48.07	
1.7456	12	3 0 2	52.37	
1.7049	1	2 2 0	53.72	
1.6629	9	2 2 1	55.19	

Iron Boride, FeB

CAS registry no.
12006-84-7

Sample

The sample was obtained from Cooper Metallurgical Associates, Cleveland, OH.

Color

Unground, shiny metallic gray in chunks
Ground, olive gray

Structure

Orthorhombic, Pbmm (62), Z = 4. The structure was determined by Bjurström and Arnfelt [1929].

Lattice constants of this sample

$a = 4.0587(3)\text{\AA}$
 $b = 5.5032(5)$
 $c = 2.9474(3)$

$a/b = 0.7375$
 $c/b = 0.5336$

Volume
 65.833 \AA^3

Density
(calculated) 6.725 g/cm^3

Figure of merit
 $F_{29} = 79.0(0.009, 39)$

Intensities

Owing to the difficulty of getting reproducible intensities, a comparison between experimental intensities and those calculated on the basis of the structure given in Pearson [1967] was made. In the calculated pattern, the four strongest lines were: $2.188(100)$, $1.904(67)$, $2.384(65)$, $2.011(65)$.

Additional pattern

PDF card 3-957 [Bjurström]

References

Bjurström, T. (1933). Ark. Kemi Mineral. Geol. 11A.

Bjurström, T. and Arnfelt, H. (1929). Z. Phys. Chem. B4, 869.

Pearson, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2, (Pergamon Press Ltd., Oxford, England) p. 409.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$				
Internal standard W, $a = 3.16524 \text{ \AA}$				
d(\AA)	I ^{rel}	hkl		2 θ ($^\circ$)
$\sigma = \pm 4$				
3.269	16	1	1	0
2.752	32	0	2	0
2.384	50	1	0	1
2.2768	33	1	2	0
2.1888	72	1	1	1
2.0116	100	0	2	1
1.9043	67	2	1	0
1.8018	28	1	2	1
1.6716	33	1	3	0
1.6335	5	2	2	0
1.5995	27	2	1	1
1.4736	22	0	0	2
1.4542	3	1	3	1
1.3435	3	1	1	2
1.3030	10	1	4	0
1.2993	6	0	2	2
1.2466	17	0	4	1
1.2374	16	1	2	2
1.2354	25	2	3	1
1.2297	8	3	0	1
1.2141	5	3	2	0
1.1999	12	3	1	1
1.1917	4	1	4	1
1.1653	22	2	1	2
1.1224	9	3	2	1
1.1054	9	1	3	2
1.0889	7	3	3	0
1.0621M	4	1	5	0
1.0621M		2	4	1
1.0147	6	4	0	0

Iron Fluoride, FeF_3

Synonym

Ferric fluoride

CAS registry no.

7783-50-8

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA. It was dried at 140° for 2-3 hours.

Color

Pale yellow green

Structure

Hexagonal, $\bar{R}\bar{3}c$ (167), $Z = 6$. The structure was determined by Hepworth et al. [1957].

Lattice constants of this sample

$a = 5.200(1) \text{ \AA}$

$c = 13.323(2)$

$c/a = 2.5621$

Volume
 311.94 \AA^3

Density

(calculated) 3.604 g/cm^3

Figure of merit

$F_{21} = 65.3(0.013, 25)$

Additional pattern

PDF card 2-0327 [Ebert, 1931]

References

Ebert, F. (1931). Z. Anorg. Chem. 186, 398.

Hepworth, M. A., Jack, K. H., Peacock, R. D., and Westland, G. J. (1957). Acta Crystallogr. 10, 63.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{^\circ})$
		$\sigma = \pm 1$			
3.731	100	0	1	2	23.83
2.678	15	1	0	4	33.43
2.602	7	1	1	0	34.44
2.244	14	1	1	3	40.15
2.133	2	2	0	2	42.34
1.8664	21	0	2	4	48.75
1.6889M	21	1	1	6	54.27
1.6889M		2	1	1	54.27
1.6486	10	1	2	2	55.71
1.5619	3	0	1	8	59.10
1.5157	6	2	1	4	61.09
1.5011	5	3	0	0	61.75
1.4346	1	1	2	5	64.95
1.3386	5	2	0	8	70.26
1.2996	2	2	2	0	72.70
1.2861	1	1	1	9	73.59
1.2777	3	1	0	10	74.15
1.2690	1	2	1	7	74.75
1.2434M	2	3	0	6	76.56
1.2434M		1	3	1	76.56
1.2276	5	3	1	2	77.73
1.1902	2	1	2	8	80.66
1.1692	1	1	3	4	82.42

Iron Oxide (Hematite), $\alpha\text{-Fe}_2\text{O}_3$

Synonyms

Iron sesquioxide
Diiiron trioxide
Ferric oxide

CAS registry no.
1309-37-1

Sample

The sample was obtained from Pfizer, Inc., New York, NY. It was heated at 800 °C for 3 days.

Color

Dark reddish brown

Structure

Hexagonal, R $\bar{3}c$ (167), Z = 6. The structure was determined by Pauling and Hendricks (1925) and refined by Blake et al. (1966). It is isostructural with $\alpha\text{-Al}_2\text{O}_3$, corundum.

Lattice constants of this sample

$a = 5.0356(1)$ Å
 $c = 13.7489(7)$

$c/a = 2.7303$

Volume
 $301.93 \text{ } \overset{\circ}{\text{A}}^3$

Density

(calculated) 5.270 g/cm³

Figure of merit

$F_{30} = 67.6(0.011, 40)$

Polymorphism

Three other forms of this compound have been reported. Delta- Fe_2O_3 crystallizes in a hexagonal form. Maghemite, $\gamma\text{-Fe}_2\text{O}_3$ has been reported in both a cubic and a tetragonal form.

Reference intensity

$I/I_{\text{corundum}} = 2.60(1)$

Additional patterns

PDF card 13-534 [Aravindaksman and Ali, Council of Sci. and Indust. Res., Central Fuel Res. Inst., Binat, India]

PDF card 24-72 [Smith et al., Penn. State U., University Park, PA]

References

Blake, R. L., Hessevick, R. E., Zoltai, T., and Finger, L. W. [1966]. Am. Mineral. 51, 123.

Pauling, L. and Hendricks, S. B. [1925]. J. Amer. Chem. Soc. 47, 781.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. 25 ± 1 °C					
Internal standard Ag, $a = 4.08651 \text{ \AA}$					
d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 2$					
3.684	30	0	1	2	24.14
2.700	100	1	0	4	33.15
2.519	71	1	1	0	35.61
2.292	3	0	0	6	39.28
2.207	22	1	1	3	40.86
2.0779	3	2	0	2	43.52
1.8406	39	0	2	4	49.48
1.6941	47	1	1	6	54.09
1.6367	1	2	1	1	56.15
1.6033	5	1	2	2	57.43
1.5992	10	0	1	8	57.59
1.4859	30	2	1	4	62.45
1.4538	30	3	0	0	63.99
1.3497	3	2	0	8	69.60
1.3115	10	1	0	10	71.94
1.3064	6	1	1	9	72.26
1.2592	8	2	2	0	75.43
1.2276	4	3	0	6	77.73
1.2141	2	2	2	3	78.76
1.1896	5	1	2	8	80.71
1.1632	5	0	2	10	82.94
1.1411	7	1	3	4	84.92
1.1035	7	2	2	6	88.54
1.0768	2	0	4	2	91.35
1.0557	7	2	1	10	93.71
1.0428	1L	1	1	12	95.24
1.0393	3	4	0	4	95.66
.9892	4	3	1	8	102.29
.9715	1L	2	2	9	104.92
.9606	5	3	2	4	106.63
.9581	4	0	1	14	107.03
.9516	5	4	1	0	108.09
.9318	2	4	1	3	111.51
.9206	2	0	4	8	113.60
.9081	5	1	3	10	116.04
.8998	1	3	0	12	117.75
.8954	3	2	0	14	118.69
.8789	6	4	1	6	122.44
.8648	1	2	3	8	125.94
.8543	3	4	0	10	128.77
.8436	5	1	2	14	131.87
.8392	3	3	3	0	133.24
.8089	4	3	2	10	144.44
.8014	4	2	4	4	147.96

Iron Yttrium Oxide, $\text{Fe}_5\text{Y}_3\text{O}_{12}$

Synonyms

YIG, Yttrium iron garnet, $\text{Y}_3\text{Fe}_2(\text{FeO}_4)_3$
Diiiron triyttrium trisferrate, $\text{Fe}_2\text{Y}_3(\text{FeO}_4)_3$

CAS registry no.

12063-56-8

Sample

The sample was obtained from Trans-Tech, Inc.,
Gaithersburg, MD.

Color

Medium olive

Structure

Cubic, Ia3d (230), $Z = 8$, garnet structure. The
structure was refined by Euler and Bruce [1965]
following earlier determinations [Geller and
Gilleo, 1957; Batt and Post, 1962].

Lattice constant of this sample

$a = 12.3774(2) \text{ \AA}$

Volume

1896.22 \AA^3

Density

(calculated) 5.170 g/cm^3

Polymorphism

Shimada et al. [1968] reported the existence
of a dense allotropic form.

Figure of merit

$F_{30} = 88.4(0.010, 35)$

Reference intensity

$I/I_{\text{corundum}} = 4.12(13)$

Additional pattern

PDF card 27-977 [B. Greenberg (1966). Poly-
technic Institute of New York, Brooklyn, NY]

References

Batt, A. and Post, B. (1962). Acta Crystallogr.
15, 1268.

Euler, F. and Bruce, J. A. (1965). Acta
Crystallogr. 19, 971.

Geller, S. and Gilleo, J. (1957). J. Phys.
Chem. Solids 3, 30.

Shimada, M., Kume, S., and Koizumi, M. (1968).
J. Amer. Ceram. Soc. 51, 713.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{\\circ})$
		$\sigma = \pm 2$			
5.055	6	2	1	1	17.53
4.377	1	2	2	0	20.27
3.307	3	3	2	1	26.94
3.093	32	4	0	0	28.84
2.768	100	4	2	0	32.32
2.639	2	3	3	2	33.94
2.527	44	4	2	2	35.50
2.428	4	4	3	1	37.00
2.259	10	5	2	1	39.87
2.188	2	4	4	0	41.23
2.0082	9	6	1	1	45.11
1.8261	1L	6	3	1	49.90
1.7870	14	4	4	4	51.07
1.7171	36	6	4	0	53.31
1.6840	3	7	2	1	54.44
1.6544	42	6	4	2	55.50
1.5718	1	7	3	2	58.69
1.5469	14	8	0	0	59.73
1.5236	1L	7	4	1	60.74
1.5013	1L	8	2	0	61.74
1.4791	1L	6	5	3	62.77
1.4589	1L	8	2	2	63.74
1.4382	1L	8	3	1	64.77
1.3840	8	8	4	0	67.64
1.3506	19	8	4	2	69.55
1.3345	1	9	2	1	70.51
1.3194	6	6	6	4	71.44
1.3047	1L	8	5	1	72.37
1.2764	2	9	3	2	74.24
1.2503	1	9	4	1	76.06
1.2255	1L	10	1	1	77.89
1.2138	2	10	2	0	78.78
1.1801	2	10	3	1	81.50
1.1492	22	10	4	0	84.18
1.1395	1L	10	3	3	85.06
1.1300	12	10	4	2	85.95
1.1026	2	11	2	1	88.63
1.0940	10	8	8	0	89.52
1.0691	1L	11	3	2	92.19
1.0612	1L	10	6	0	93.08
1.0387	1L	9	6	5	95.74
1.0314	5	12	0	0	96.64
1.0242	1L	11	4	3	97.55
1.0173	5	12	2	0	98.43
1.0107	2	11	5	2	99.31
1.0039	10	12	2	2	100.22
.9845	1L	11	6	1	102.96
.9608	2	11	6	3	106.59
.9383	1L	13	2	1	110.36
.9330	5	12	4	4	111.31

Iron Yttrium Oxide, $\text{Fe}_5\text{Y}_3\text{O}_{12}$ - (continued)

$d(\text{\AA})$	I^{rel}	hkl			$2\theta(\text{\\circ})$
$\sigma = \pm 2$					
.9277	1L	12	5	3	112.26
.9225	13	12	6	0	113.23
.9175	6	13	3	2	114.19
.9125	5	12	6	2	115.17
.8933	5	8	8	8	119.15
.8624	2	14	3	1	126.56
.8582	3	12	8	0	127.67
.8501	12	14	4	0	129.95
.8422	11	14	4	2	132.31

Lithium Iodide Hydrate, LiI·3H₂O

Synonym

Lithium iodide trihydrate

CAS registry no.

7790-22-9

Sample

The sample was from ICN Pharmaceuticals Inc., Plainview, NY. It was marked "Lithium Iodide Anhydrous." The material was hygroscopic and the intensities may be somewhat in error.

Color

Light brown

Structure

Hexagonal, P6₃mc (186), Z = 2. The structure of LiI·3H₂O was studied by Hendricks [1928] and discussed by West [1934].

Lattice constants of this sample

$$a = 7.4907(11) \text{ \AA}$$

$$c = 5.4859(11)$$

$$c/a = 0.7323$$

Volume
266.58 \AA^3

Density
(calculated) 2.341 g/cm³

Figure of merit
 $F_{27} = 59.9(0.015, 30)$

Additional pattern

PDF card 1-0411 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Hendricks, S. B. (1928). Am. J. Sci. 15, 403.

West, C. D. (1934). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 88, 198.

d(\AA)	I ^{rel} $\sigma = \pm 5$	hkl			2 θ ($^\circ$)
2.741	23	0	0	2	32.64
2.527	6	1	0	2	35.49
2.452	17	2	1	0	36.62
2.238	39	2	1	1	40.27
2.211	30	1	1	2	40.78
2.164	14	3	0	0	41.71
2.093	17	2	0	2	43.18
2.012	3	3	0	1	45.02
1.872	13	2	2	0	48.61
1.827	15	2	1	2	49.86
1.7992	4	3	1	0	50.70
1.7603	9	1	0	3	51.90
1.7102	28	3	1	1	53.54
1.6985	9	3	0	2	53.94
1.5931	10	2	0	3	57.83
1.5552	10	4	0	1	59.38
1.5474	9	2	2	2	59.71
1.5044	5	3	1	2	61.60
1.4661	7	2	1	3	63.39
1.4362	15	3	2	1	64.87
1.4157	8	4	1	0	65.93
1.3956	3	4	0	2	67.00

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$				
Internal standard Si, a = 5.43088 \AA				
d(\AA)	I ^{rel}	hkl		2 θ ($^\circ$)
$\sigma = \pm 5$				
6.50	7	1	0	0
4.186	100	1	0	1
3.743	57	1	1	0
3.242	19	2	0	0
2.793	92	2	0	1
				32.02

Magnesium Phosphate, α -Mg₂P₂O₇

Synonym

Magnesium pyrophosphate

Sample

The sample was prepared at NBS. The composition of a commercially available sample of magnesium phosphate (mixed phases) was adjusted with additions of (NH₄)H₂PO₄. The mixture was fused and resolidified to yield single phase α -Mg₂P₂O₇. After being ground, the sample was annealed at 140 °C for 5 hours and slowly cooled to room temperature.

Color

Colorless

Structure

Monoclinic, P₂₁/n (14), Z = 4. The structure was determined by Calvo [1967].

Lattice constants of this sample

a = 8.9124(16) Å
 b = 8.290(2)
 c = 6.9492(15)
 β = 111.70(1)°

a/b = 1.0751
 c/b = 0.8383

Volume °
 477.05 Å³

Density
 (calculated) 3.099 g/cm³

Polymorphism

A high-temperature β -form exists and is also monoclinic, with a and c roughly half as large as in the α -phase. The phase transformation was found to be reversible, and both phases coexist from 59 to 63 °C [Calvo et al., 1967].

Figure of merit

F₃₀ = 27.6(0.016,70)

Reference intensity

I/I_{corundum} = 1.72(3)

Additional pattern

PDF card 22-1152 [Swanson et al., 1971]. This pattern on the card and in the reference both have substantial errors.

References

Calvo, C. (1967). Acta Crystallogr. 23, 289.

Calvo, C., Datars, W. R., and Leung, J. S. (1967). J. Chem. Phys. 46, 796.

Swanson, H. E., McMurdie, H. F., Morris, M. C., Evans, E. H., and Paretzkin, B. (1971). Natl. Bur. Stand. U.S. Monogr. 25, Sec. 9, 73.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$					
Internal standard Ag, $a = 4.08651 \text{ \AA}$					
d(Å)	I ^{rel} $\sigma = \pm 1$	hkl			2θ(°)
6.37	2	-1	0	1	13.90
5.104	3	0	1	1	17.36
4.373	3	1	0	1	20.29
4.149	23	0	2	0	21.40
3.860	1	1	1	1	23.02
3.805	3	-2	1	1	23.36
3.710M	1	1	2	0	23.97
3.710M		2	1	0	23.97
3.492	3	0	2	1	25.49
3.181	6	-2	0	2	28.03
3.008M	100	0	1	2	29.68
3.008M		1	2	1	29.68
2.965M	44	-2	1	2	30.12
2.965M		-3	0	1	30.12
2.929	3	2	2	0	30.50
2.834	3	2	1	1	31.54
2.795	1L	-3	1	1	32.00
2.664	1	-1	2	2	33.62
2.620M	4	1	3	0	34.19
2.620M		3	1	0	34.19
2.534	7	-1	3	1	35.40
2.523	12	-2	2	2	35.55
2.411	6	-3	2	1	37.26
2.299M	1	2	3	0	39.16
2.299M		3	2	0	39.16
2.257	1L	1	2	2	39.91
2.149	4	-4	1	1	42.01
2.121	1L	-3	0	3	42.60
2.099	13	0	3	2	43.06
2.071+	6	-4	1	2	43.67
2.071+		4	0	0	43.67
2.053	3	-3	1	3	44.07
2.011M	4	-1	2	3	45.04
2.011M		1	4	0	45.04
1.980	1L	3	2	1	45.80
1.973	1L	0	4	1	45.97
1.953	1L	3	3	0	46.46
1.932	1L	2	2	2	46.99
1.928	1L	1	3	2	47.11
1.910	1L	0	2	3	47.57
1.907	1L	-3	3	2	47.65
1.886	1L	-3	2	3	48.21
1.873	6	1	4	1	48.57
1.869	6	1	1	3	48.68
1.851	8	4	2	0	49.17

Magnesium Phosphate, $\alpha\text{-Mg}_2\text{P}_2\text{O}_7$ - (continued)

$d(\text{\AA})$	I^{rel}	hkl			$2\theta(^{\circ})$
$\sigma = \pm 1$					
1.780	1L	-1	4	2	51.30
1.770	2	-5	0	1	51.61
1.7466	1	3	3	1	52.34
1.7364M	1	-2	0	4	52.67
1.7364M		-2	4	2	52.67
1.7333	1L	-4	3	1	52.77
1.7111	4	-4	2	3	53.51
1.6991M	6	-2	1	4	53.92
1.6991M		-3	4	1	53.92
1.6812	1	-3	3	3	54.54
1.6579M	1L	-3	1	4	55.37
1.6579M		3	4	0	55.37
1.6410+	2	1	4	2	55.99
1.6410+		2	1	3	55.99
1.6373	1	-5	0	3	56.13
1.6245	5	5	1	0	56.61
1.6214	4	-5	2	2	56.73
1.6138	5	0	0	4	57.02
1.6056M	4	-5	1	3	57.34
1.6056M		0	5	1	57.34
1.5889	2	-4	0	4	58.00
1.5752	11	1	3	3	58.55
1.5519	1L	2	2	3	59.52
1.5254	1	3	4	1	60.66
1.5222	2	-5	2	3	60.80
1.5035M	1	0	2	4	61.64
1.5035M		2	4	2	61.64
1.4825+	2	-6	0	2	62.61
1.4825+		-3	4	3	62.61
1.4751	2	0	5	2	62.96
1.4697M	4	-2	3	4	63.22
1.4697M		-2	5	2	63.22
1.4645	4	4	4	0	63.47
1.4546	1L	5	1	1	63.95
1.4333M	1L	3	1	3	65.02
1.4333M		-5	1	4	65.02

Manganese, β -Mn

CAS registry no.
7439-96-5

Sample

A sample of α -Mn from Fisher Scientific Co., Fair Lawn, NJ, was heated to 1065 °C in vacuum and annealed for 3 hours. It contained a small amount of MnO.

Color

Olive gray

Structure

Cubic, $P4_{1,3}32$ (212 or 213), $Z = 20$. The structure was determined by Westgren and Phragmén [1925].

Lattice constant of this sample

$a = 6.3116(3)$ Å

Volume

251.43 Å³

Density

(calculated) 7.270 g/cm³

Polymorphism

There are also α -, γ -, and δ -Mn, the most probable transition temperatures being $\alpha \xrightarrow{\text{?}} \beta$, 700 °C, $\beta \xrightarrow{\text{?}} \gamma$, 1079 °C, and $\gamma \xrightarrow{\text{?}} \delta$ 1143 °C [Sully, 1955].

Figure of merit

$F_{26} = 71.2(0.011, 33)$

Additional pattern

PDF card 1-1234 [Hanawalt, Rinn, and Frevel, 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Sully, A. H. (1955). Manganese (Butterworth Scientific Publications, London) p 127.

Westgren, A. and Phragmén, G. (1925). Z. Phys. 33, 777.

d(Å)	I^{rel}	CuK α_1 $\lambda = 1.540598$ Å; temp. 25 ± 1 °C			$2\theta(\circ)$
		Internal standard W, $a = 3.16524$ Å			
$\sigma = \pm 3$					
4.458	3	1	1	0	19.90
2.823	5	2	1	0	31.67
2.577	5	2	1	1	34.79
2.231	7	2	2	0	40.39
2.104	100	2	2	1	42.95
1.9965	62	3	1	0	45.39
1.9039	27	3	1	1	47.73
1.7509	2	3	2	0	52.20
1.6872	9	3	2	1	54.33
1.5307	1L	4	1	0	60.43
1.4874	6	3	3	0	62.38
1.4478	1L	3	3	1	64.29
1.4115	5	4	2	0	66.15
1.3775	1	4	2	1	68.00
1.3457	3	3	3	2	69.84
1.2880	3	4	2	2	73.46
1.2625	2	4	3	0	75.20
1.2377	26	5	1	0	76.98
1.2146	5	5	1	1	78.72
1.1721	19	5	2	0	82.17
1.1526	5	5	2	1	83.87
1.0824	2	5	3	0	90.74
1.0668	5	5	3	1	92.45
1.0518	8	4	4	2	94.17
1.0377	4	6	1	0	95.86
1.0237	3	6	1	1	97.61

Molybdenum Oxide, MoO₂

Synonym

Molybdenum dioxide

CAS registry no.

18868-43-4

Sample

The sample was made at NBS by H. S. Parker by heating MoO₃ in a Mo boat for 20 hours at 372 °C in an atmosphere of 95% N₂ and 5% H₂ gases. This was followed by heating at 590 °C for 90 hours under the same conditions.

Color

Black

Structure

Monoclinic, P2₁/n (14), Z = 4. Distorted rutile structure. The structure of MoO₂ was studied by Magnéli et al. [1952] and by Magnéli and Andersson [1955]. The structure was refined by Brandt and Skapski [1967]. The latter gave the structure using the P2₁/c form of the space group.

Lattice constants of this sample

a = 5.6068(7) Å

b = 4.8595(9)

c = 5.5373(9)

β = 119.37°

a/b = 1.1538

c/b = 1.1395

Volume

131.48 Å³

Density

(calculated) 6.463 g/cm³

Figure of merit

F₃₀ = 25.5(0.017,68)

Additional patterns

PDF card 5-452 [Magnéli et al., Univ. of Uppsala, Sweden]

Magnéli et al. [1952]

Brandt and Skapski [1967]

References

Brandt, B. G. and Skapski, A. C. (1967). Acta Chem. Scand. 21, 661.

Magnéli, A. and Andersson, G. (1955). Acta Chem. Scand. 9, 1378.

Magnéli, A., Andersson, G., Blomberg, B., and Kihlborg, L. (1952). Anal. Chem., 24, 1998.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C Internal standard Si, a = 5.43088 Å					
d(Å)	I ^{rel}	hkl		2θ(°)	
$\sigma = \pm 6$					
4.805	2	-1	0	1	18.45
3.420M	100	0	1	1	26.03
3.420M		-1	1	1	26.03
2.813	4	1	0	1	31.78
2.442	28	2	0	0	36.78
2.437	32	1	1	1	36.86
2.426	69	-2	1	1	37.03
2.403	34	-2	0	2	37.40
2.181	6	2	1	0	41.36
2.171M	2	0	2	1	41.57
2.171M		-1	2	1	41.57
2.156	5	-2	1	2	41.87
1.841	11	-3	0	1	49.48
1.725	28	2	1	1	53.04
1.723	34	2	2	0	53.11
1.711	41	-3	1	2	53.52
1.709	33	-2	2	2	53.58
1.6976	22	-2	1	3	53.97
1.6033	1	-3	0	3	57.43
1.5443	7	3	1	0	59.84
1.5360M	13	0	3	1	60.20
1.5360M		-1	3	1	60.20
1.5272	9	0	1	3	60.58
1.4676	4	-3	2	1	63.32
1.4057	4	2	0	2	66.46
1.4019M	21	-2	3	1	66.66
1.4019M		-4	0	2	66.66
1.3845	5	-2	0	4	67.61
1.3548	2	3	0	1	69.30
1.3448M	1	0	3	2	69.89
1.3448M		1	0	3	69.89
1.3381	1	-3	2	3	70.29
1.3033	5	-4	1	1	72.46
1.2912	5	-4	1	3	73.25
1.2829	1L	-3	1	4	73.80
1.2219	7	4	0	0	78.16
1.2175M	10	2	3	1	78.50
1.2175M		2	2	2	78.50
1.2146M	6	0	4	0	78.72
1.2146M		1	3	2,	78.72
1.2076	7	-2	3	3	79.27
1.2028M	4	-2	2	4	79.65
1.2028M		-4	0	4	79.65
1.1837	2	3	2	1	81.20
1.1764	1	1	2	3	81.81

Molybdenum Oxide, MoO₂ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 6$					
1.1485	2	3	3	0	84.24
1.1414	4	0	3	3	84.89
1.1155	1L	1	4	1	87.35
1.1113	2	-5	0	3	87.76
1.0911	6	4	2	0	89.82
1.0879M	10	2	4	0	90.16
1.0879M		-5	1	2	90.16
1.0849	8	0	4	2	90.47
1.0807	4	0	2	4	90.92
1.0780	8	-4	2	4	91.22

Neodymium Tantalum Oxide, NdTaO₄

Synonym

Neodymium tantalate

CAS registry no.

12344-26-4

Sample

The sample was prepared at NBS by heating Nd₂O₃ and Ta₂O₅ overnight at 1000 °C, grinding and reheating at 1600 °C for a period of 16-20 hours, and quenched.

Color

Very pale violet

Structure

Monoclinic, I2/a (15), Z = 4. The structure of NdTaO₄ has been determined using neutron powder diffraction by Santoro et al. [1980]. This phase was earlier reported to be in space group Ia(5) by Komkov [1959]. NdTaO₄ is isostructural with other rare earth niobates and tantalates [Roth et al., 1977]. The structure type is a distorted scheelite called beta-fergusonite (Ce) or brocenite. [Kuo et al., 1975].

Lattice constants of this sample

$$a = 5.5136(7) \text{ Å}$$

$$b = 11.2356(8)$$

$$c = 5.1151(5)$$

$$\beta = 95.717(11)^\circ$$

$$a/b = 0.4907$$

$$c/a = 0.4553$$

Volume

$$315.30 \text{ Å}^3$$

Density

$$(\text{calculated}) 8.199 \text{ g/cm}^3$$

Polymorphism

When heated to about 1320 °C NdTaO₄ undergoes a readily reversible phase change to a tetragonal structure of the fergusonite type, very similar to scheelite, CaWO₄ [Stubican, 1964].

Figure of Merit

$$F_{30} = 101.2(0.007, 41)$$

Additional pattern

PDF card 16-745 [Stubican, 1964]

References

Komkov, A. I. (1959). Sov. Phys. Crystallogr. 4, 796.
 Kuo, C., Wang, I., Wang, H., Wang, C., and Hou, H. (1973). Ti Chiu Hua Hsueh (Geochemica Peking) 2, 86.

Roth, R. S., Negas, T., Parker, H. S., Minor, D. B., and Jones, C. (1977). Mat. Res. Bull. 12, 1173.

Santoro, A., Marezio, M., Roth, R. S., and Minor, D. B. (1980). J. Solid State Chem. 35, 167.

Stubican, V. S. (1964). J. Amer. Ceram. Soc. 47, 55.

d(Å)	I ^{rel} σ = ±4	CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C			2θ(°)
		h	k	l	
5.619	5	0	2	0	15.76
4.930	8	1	1	0	17.98
3.221	100	-1	2	1	27.67
3.093	5	1	3	0	28.84
3.006	88	1	2	1	29.70
2.810	24	0	4	0	31.82
2.745	23	2	0	0	32.60
2.5447	21	0	0	2	35.24
2.4610	1L	-2	1	1	36.48
2.3191	1L	0	2	2	38.80
2.2047	1	1	4	1	40.90
2.1827	1	1	1	2	41.33
2.0925	1	-2	3	1	43.20
2.0797	2	1	5	0	43.48
2.0554	8	0	5	1	44.02
2.0218	3	-1	3	2	44.79
1.9718	11	2	3	1	45.99
1.9630	38	2	4	0	46.21
1.9130	3	1	3	2	47.49
1.8854	30	0	4	2	48.23
1.8730	2	0	6	0	48.57
1.8557	1	-2	2	2	49.05
1.7795	11	2	0	2	51.30
1.6950	21	-3	2	1	54.06
1.6912	20	-1	6	1	54.19
1.6775M	3	-2	5	1	54.67
1.6775M		0	1	3	54.67
1.6571	9	1	6	1	55.40
1.6408	3	-1	5	2	56.00
1.6141	10	2	5	1	57.01
1.6105	6	-2	4	2	57.15
1.6000M	29	3	2	1	57.56
1.6000M		-1	2	3	57.56
1.5812	2	1	5	2	58.31
1.5462M	4	2	6	0	59.76
1.5462M		-3	1	2	59.76
1.5406	5	1	7	0	60.00
1.5307	1	0	7	1	60.43
1.5184	12	1	2	3	60.97
1.5086	3	0	6	2	61.41

Neodymium Tantalum Oxide, NdTaO₄ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 4$					
1.5030M	8	2	4	2	61.66
1.5030M		-3	4	1	61.66
1.4342M	5	3	4	1	64.97
1.4342M		-1	4	3	64.97
1.4181	1	3	5	0	65.80
1.4042	2	0	8	0	66.54
1.4015	1	-2	3	3	66.68
1.3715	4	4	0	0	68.34
1.3545M	1	-2	7	1	69.32
1.3545M		0	5	3	69.32
1.3345	3	-1	7	2	70.51
1.3224	1	-1	8	1	71.25
1.3066	1L	1	8	1	72.25
1.3018	2	1	7	2	72.56
1.2895M	3	2	6	2	73.36
1.2895M		-3	6	1	73.36
1.2726	6	0	0	4	74.50
1.2609	6	-4	0	2	75.31

Neodymium Titanium Oxide, Nd_2TiO_5

Synonym

Neodymium titanate

CAS registry no.

12058-94-5

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA. The material was heated at 1450 °C for 5½ days, then reheated at 1550 °C for 6½ days in a platinum crucible. Material appears to be slightly rich in TiO_2 .

Color

Pale blue

Structure

Orthorhombic, Pnam (62), $Z = 4$, isostructural with La_2TiO_5 . The structure of Nd_2TiO_5 was determined by Müller-Buschbaum and Scheunemann (1973).

Lattice constants of this sample

$$a = 10.7251(9) \text{ Å}$$

$$b = 11.3407(10)$$

$$c = 3.8457(4)$$

$$a/b = 0.9457$$

$$c/b = 0.3391$$

Volume
 467.75 Å^3
Density

(calculated) 5.913 g/cm³

Figure of merit

$$F_{30} = 98.8(0.008, 36)$$

References

Müller-Buschbaum, Hk. and Scheunemann, K. [1973]. J. Inorg. Nucl. Chem. 35, 1091.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{^\circ})$
		$\sigma = \pm 3$			
7.78	15	1	1	0	11.36
5.669	5	0	2	0	15.62
5.359	6	2	0	0	16.53
5.010	11	1	2	0	17.69
4.847	9	2	1	0	18.29
3.895	7	2	2	0	22.81
3.642	5	0	1	1	24.42
3.566	25	1	3	0	24.95
3.449	8	1	1	1	25.81
3.409	5	3	1	0	26.12
3.126	100	2	0	1	28.53
3.089	76	2	3	0	28.88
3.051	13	1	2	1	29.25
3.023	21	3	2	0	29.52
3.014	17	2	1	1	29.62
2.836	3	0	4	0	31.52
2.743	4	1	4	0	32.62
2.736	4	2	2	1	32.70
2.695	41	0	3	1	33.21
2.683	19	4	0	0	33.37
2.616	19	1	3	1	34.25
2.609	18	4	1	0	34.34
2.598	13	3	3	0	34.50
2.550	6	3	1	1	35.16
2.4082	1	2	3	1	37.31
2.3763	10	3	2	1	37.83
2.2187	9	1	5	0	40.63
2.1588	9	4	1	1	41.81
2.1529	16	3	3	1	41.93
2.1078	4	5	1	0	42.87
2.1004	6	2	4	1	43.03
2.0510	11	4	2	1	44.12
2.0070	3	5	2	0	45.14
1.9478	5	4	4	0	46.59
1.9233+	26	3	4	1	47.22
1.9233+		0	0	2	47.22
1.9009	42	4	3	1	47.81
1.8901	6	0	6	0	48.10
1.8650	8	5	3	0	48.79
1.8607	16	1	6	0	48.91
1.8483	8	5	1	1	49.26
1.8354	1	2	5	1	49.63
1.8206	2	0	2	2	50.06
1.7955	2	1	2	2	50.81
1.7873M	3	6	0	0	51.06

Neodymium Titanium Oxide, Nd₂TiO₅ - (continued)

d(Å)	I ^{rel}	hkℓ			2θ(°)
$\sigma = \pm 3$					
1.7873M		2	1	2	51.06
1.7785	10	5	2	1	51.33
1.7657	2	6	1	0	51.73
1.7376	4	4	4	1	52.63
1.7248	2	2	2	2	53.05
1.7150	9	3	5	1	53.38
1.7105	7	5	4	0	53.53
1.7049	5	6	2	0	53.72
1.6927	6	1	3	2	54.14
1.6758M	18	1	6	1	54.73
1.6758M		3	1	2	54.73
1.6710	8	3	6	0	54.90
1.6320	23	2	3	2	56.33
1.6227	11	3	2	2	56.68
1.6164M	13	6	3	0	56.92
1.6164M		2	6	1	56.92
1.6046	8	6	1	1	57.38
1.5916	1	0	4	2	57.89
1.5787	2	4	5	1	58.41
1.5745	1	1	4	2	58.58
1.5626M	7	5	4	1	59.07
1.5626M		4	0	2	59.07
1.5588M	6	6	2	1	59.23
1.5588M		5	5	0	59.23
1.5481	6	4	1	2	59.68
1.5448M	8	3	3	2	59.82
1.5448M		4	6	0	59.82
1.5323	7	3	6	1	60.36
1.5184	5	7	1	0	60.97
1.5121	2	6	4	0	61.25
1.4932	2	0	7	1	62.11
1.4787M	4	7	2	0	62.79
1.4787M		1	7	1	62.79
1.4538	5	3	4	2	63.99
1.4445M	1	5	5	1	64.45
1.4445M		4	3	2	64.45
1.4384	3	2	7	1	64.76
1.4206M	3	5	1	2	65.67
1.4206M		7	3	0	65.67
1.4181M	3	5	6	0	65.80
1.4181M		0	8	0	65.80
1.4070	4	6	4	1	66.39
1.4042	3	6	5	0	66.54
1.3880	3	5	2	2	67.42
1.3807	3	7	2	1	67.82
1.3777	3	3	7	1	67.99
1.3685	3	4	4	2	68.51

Neodymium Titanium Oxide, $\text{Nd}_2\text{Ti}_2\text{O}_7$

Synonym

Neodymium titanate

CAS registry no.

12035-31-3

Sample

The sample was prepared at NBS by solid state reaction of stoichiometric amounts of Nd_2O_3 and TiO_2 . The mixture was heated at 1200 °C for 1 day, then ground and heated at 1425 °C for 6 days.

Color

Unground, light violet
Ground, very light purplish blue

Structure

Monoclinic, $P2_1$ (4), $Z = 4$. [Kimura et al., 1974].

Lattice constants of this sample

$a = 13.008(2)\text{\AA}$
 $b = 5.4648(7)$
 $c = 7.679(2)$
 $\beta = 98.56(2)^\circ$
 $a/b = 2.3803$
 $c/b = 1.4052$

Volume 539.79 \AA^3

Density

(calculated) 6.107 g/cm³

Figure of merit

$F_{30} = 41.7(0.012, 61)$

Additional pattern

PDF card 29-923 [Smith, C. and McCarthy (1977). Pennsylvania State Univ., University Park, PA]

Reference

Kimura, M., Nanamatsu, S., Kauamura, T., and Matsushita, S. (1974). Jpn. J. Appl. Phys. 13, 1473.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}; \text{ temp. } 25 \pm 1 \text{ }^\circ\text{C}$ Internal standard Ag, $a = 4.08651 \text{ \AA}$				
$d(\text{\AA})$ I^{rel} hkl $2\theta(\text{°})$ $\sigma = \pm 3$				

12.87	1L	1 0 0	6.86
7.03	1L	-1 0 1	12.59
6.43	9	2 0 0	13.76
6.15	1L	1 0 1	14.39
5.029	5	1 1 0	17.62

$d(\text{\AA})$	I^{rel}	hkl			$2\theta(\text{°})$
		$\sigma = \pm 3$			
4.432	1L	0	1	1	20.02
4.314	1L	-1	1	1	20.57
4.162	46	2	1	0	21.33
4.085	1	1	1	1	21.74
3.998	1	-3	0	1	22.22
3.797M	12	-1	0	2	23.41
3.797M		0	0	2	23.41
3.511M	1L	2	1	1	25.35
3.511M		-2	0	2	25.35
3.372	9	3	1	0	26.41
3.216	50	4	0	0	27.72
3.119M	26	-1	1	2	28.60
3.119M		0	1	2	28.60
3.077M	13	-3	0	2	29.00
3.077M		2	0	2	29.00
2.950M	100	-2	1	2	30.27
2.950M		1	1	2	30.27
2.770	29	4	1	0	32.29
2.732	35	0	2	0	32.75
2.681M	50	-3	1	2	33.40
2.681M		2	1	2	33.40
2.654M	24	-4	0	2	33.74
2.654M		3	0	2	33.74
2.571M	3	5	0	0	34.87
2.571M		0	2	1	34.87
2.556M	4	-1	0	3	35.08
2.556M		-5	0	1	35.08
2.548	3	-1	2	1	35.20
2.503	1	4	1	1	35.85
2.431	1L	-2	2	1	36.95
2.387M	1L	-4	1	2	37.65
2.387M		3	1	2	37.65
2.347	2	2	2	1	38.32
2.328	6	5	1	0	38.64
2.315M	3	-1	1	3	38.87
2.315M		-5	1	1	38.87
2.293M	2	-5	0	2	39.26
2.293M		4	0	2	39.26
2.256	3	-3	2	1	39.93
2.218M	18	-1	2	2	40.64
2.218M		0	2	2	40.64
2.154M	4	-2	2	2	41.90
2.154M		1	2	2	41.90
2.144	6	6	0	0	42.12
2.114M	12	-5	1	2	42.74
2.114M		4	1	2	42.74
2.082	26	4	2	0	43.43
2.043M	14	-3	2	2	44.30
2.043M		2	2	2	44.30
1.9961M	10	5	0	2	45.40

Neodymium Titanium Oxide, Nd₂Ti₂O₇ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 3$					
1.9961M		6	1	0	45.40
1.9605	1	4	2	1	46.27
1.9558	1	-5	0	3	46.39
1.9199M	28	-1	0	4	47.31
1.9199M		3	1	3	47.31
1.9043M	18	-4	2	2	47.72
1.9043M		3	2	2	47.72
1.8748	20	5	1	2	48.52
1.8682M	10	6	1	1	48.70
1.8682M		-1	2	3	48.70
1.8593	5	4	0	3	48.95
1.8403+	1	-5	1	3	49.49
1.8403+		-3	0	4	49.49
1.8368	1	7	0	0	49.59
1.8038	1L	1	3	0	50.56
1.7756M	4	-3	2	3	51.42
1.7756M		5	2	1	51.42
1.7708M	4	0	3	1	51.57
1.7708M		-6	0	3	51.57
1.7584	8	6	0	2	51.96
1.7531+	10	-4	0	4	52.13
1.7531+		2	3	0	52.13
1.7438M	13	-3	1	4	52.43
1.7438M		1	1	4	52.43
1.7282	1	7	0	1	52.94
1.6927	2	2	3	1	54.14
1.6872	4	6	2	0	54.33
1.6744M	7	-7	1	2	54.78
1.6744M		6	1	2	54.78
1.6688M	4	-4	1	4	54.98
1.6688M		2	1	4	54.98
1.6574	3	-3	3	1	55.39
1.6481M	13	7	1	1	55.73
1.6481M		3	0	4	55.73
1.6424M	10	-1	3	2	55.94
1.6424M		0	3	2	55.94
1.6164+	12	-2	3	2	56.92
1.6164+		1	3	2	56.92
1.6125M	6	-6	2	2	57.07
1.6125M		5	2	2	57.07
1.6084M	3	5	1	3	57.23
1.6084M		8	0	0	57.23
1.5901	2	-5	2	3	57.95
1.5846	6	4	3	0	58.17
1.5782M	9	-5	1	4	58.43
1.5782M		3	1	4	58.43
1.5706	20	-1	2	4	58.74
1.5679M	24	-3	3	2	58.85
1.5679M		2	3	2	58.85
1.5597M	4	-2	2	4	59.19

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 3$					
1.5597M		0	2	4	59.19
1.5422	5	8	1	0	59.93
1.5387	5	-6	0	4	60.08
1.5279M	2	6	0	3	60.55
1.5279M		8	0	1	60.55
1.5050	5	7	1	2	61.57
1.4861M	2	5	3	0	62.44
1.4861M		-6	2	3	62.44
1.4791M	5	-7	2	2	62.77
1.4791M		0	3	3	62.77
1.4713M	3	6	1	3	63.14
1.4713M		8	1	1	63.14
1.4295M	3	5	0	4	65.21
1.4295M		9	0	0	65.21

Neodymium Titanium Oxide, $\text{Nd}_4\text{Ti}_9\text{O}_{24}$

Synonym

Neodymium titanate

Sample

The sample was prepared at NBS using BaTiO_3 , TiO_2 , and very low alkaline content Nd_2O_3 . Stoichiometric amounts of the constituents were blended with mortar and pestle, then calcined in a platinum crucible, with periodic grindings. An initial calcine at 1250 °C for 1 day, followed by a second heating at 1350 °C for about 3 days was sufficient to yield a single phase product.

Color

Very light purplish blue

Structure

Orthorhombic, Fddd (70), determined from a single crystal, by Kolar et al. [1981]. $Z = 16$ is consistent with the density of 5.13, measured by Kolar et al. [1978].

Lattice constants of this sample

$a = 14.475(2)$ Å

$b = 35.304(5)$

$c = 13.996(2)$

$a/b = 0.4100$

$c/b = 0.3964$

Volume

7152.3 Å^3

Density

(calculated) 5.171 g/cm³

(observed) 5.13 [Kolar et al., 1978]

Figure of merit

$F_{30} = 53.1(0.011, 51)$

Additional patterns

Kolar et al. [1981]

Kolar et al. [1978], labeled $\text{Nd}_2\text{Ti}_4\text{O}_{11}$

References

Kolar, D., Gaberšček, S., Barbulescu, A., and Volavšek, B. (1978). J. Less-Common Metals 60, 137.

Kolar, D., Gaberšček, S., Volavšek, B., Parker, H. S., and Roth, R. S. (1981). J. Solid State Chem. 38, 158.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. 25±1 °C				
Internal standard Ag, $a = 4.08651 \text{ \AA}$				
d(A)	I ^{rel}	hkl		2θ(°)
$\sigma = \pm 3$				
9.70	4	1	1	9.11
6.71	4	2	2	13.19
6.51	4	0	2	13.60
5.775	10	1	5	15.33
5.029	10	2	0	17.62
4.512M	5	1	7	19.66
4.512M		0	6	19.66
4.412M	11	0	8	20.11
4.412M		1	1	20.11
4.373	6	2	4	20.29
4.157	5	1	3	21.36
3.759	3	1	5	23.65
3.655	2	1	9	24.33
3.617	2	4	0	24.59
3.500	3	0	0	25.43
3.382	17	3	7	26.33
3.347	100	4	4	26.61
3.317	46	2	8	26.86
3.251	92	0	4	27.41
3.225	9	3	3	27.64
3.172	18	2	10	28.11
3.151	12	0	10	28.30
3.102	4	2	2	28.76
3.056	4	1	11	29.20
3.030	18	3	5	29.46
2.974	25	3	9	30.02
2.941M	22	0	12	30.37
2.941M		1	9	30.37
2.823M	14	5	1	31.67
2.823M		4	6	31.67
2.793	14	3	7	32.02
2.778	5	2	6	32.20
2.741M	5	0	8	32.64
2.741M		1	1	32.64
2.677	3	1	3	33.45
2.623M	19	3	11	34.16
2.623M		1	13	34.16
2.601	5	1	11	34.45
2.549	5	3	9	35.18
2.540	19	2	12	35.31
2.516	26	4	0	35.66
2.488	4	4	2	36.07
2.419	1	4	4	37.14
2.391	9	6	2	37.59
2.379	3	4	10	37.79

Neodymium Titanium Oxide, Nd₄Ti₉O₂₄ - (continued)

$d(\text{\AA})$	I^{rel}	hkl	$2\theta(^{\circ})$
$\sigma = \pm 3$			
2.351	6	2 10 4	38.25
2.334	1	3 13 1	38.55
2.313M	6	4 6 4	38.90
2.313M		0 2 6	38.90
2.298	7	5 9 1	39.17
2.283	14	4 12 0	39.43
2.251M	9	0 12 4	40.02
2.251M		1 9 5	40.02
2.231	7	6 6 0	40.39
2.220	5	2 0 6	40.61
2.207M	14	6 4 2	40.85
2.207M		0 16 0	40.85
2.186	14	4 8 4	41.27
2.168	12	0 6 6	41.62
2.153	9	2 4 6	41.92
2.111	11	3 13 3	42.81
2.091	2	3 15 1	43.23
2.087	2	1 11 5	43.33
2.081	2	1 15 3	43.46
2.0431	1	7 1 1	44.30
2.0257	3	6 8 2	44.70
2.0206	5	2 16 2	44.82
1.9833M	10	5 3 5	45.71
1.9833M		2 8 6	45.71
1.9779	8	1 1 7	45.84
1.9730	8	6 2 4	45.96
1.9682	14	2 14 4	46.08
1.9650	11	7 5 1	46.16
1.9522M	3	1 3 7	46.48
1.9522M		5 11 3	46.48
1.9466	7	0 10 6	46.62
1.9268	3	3 15 3	47.13
1.9062	2	1 5 7	47.67
1.8938	7	2 18 0	48.00
1.8887+	12	0 18 2	48.14
1.8887+		7 1 3	48.14
1.8813M	9	6 6 4	48.34
1.8813M		1 17 3	48.34
1.8672M	3	7 3 3	48.73
1.8672M		0 16 4	48.73
1.8611	1	4 6 6	48.90
1.8441M	3	3 1 7	49.38
1.8441M		1 7 7	49.38
1.8237M	5	3 3 7	49.97
1.8237M		5 13 3	49.97
1.8091	17	8 0 0	50.40
1.8028	17	6 12 2	50.59
1.7718M	20	8 4 0	51.54
1.7718M		2 12 6	51.54
1.7491	9	0 0 8	52.26

$d(\text{\AA})$	I^{rel}	hkl	$2\theta(^{\circ})$
$\sigma = \pm 3$			
1.7435M	7	6 14 0	52.44
1.7435M		8 2 2	52.44
1.7309	8	6 10 4	52.85
1.7138M	21	1 19 3	53.42
1.7138M		4 10 6	53.42
1.7032	9	7 9 3	53.78
1.6878	6	3 15 5	54.31
1.6767	8	6 0 6	54.70
1.6707M	6	3 9 7	54.91
1.6707M		2 4 8	54.91
1.6577M	5	4 16 4	55.38
1.6577M		1 21 1	55.38
1.6470+	1L	6 4 6	55.77
1.6470+		7 3 5	55.77
1.6437	1L	5 1 7	55.89
1.6338M	2	7 13 1	56.26
1.6338M		2 6 8	56.26
1.6290+	7	5 3 7	56.44
1.6290+		7 11 3	56.44
1.6251	7	3 19 3	56.59
1.6167	3	5 13 5	56.91
1.6005+	5	8 2 4	57.54
1.6005+		1 13 7	57.54
1.5864+	5	2 8 8	58.10
1.5864+		4 20 0	58.10
1.5814	12	8 4 4	58.30
1.5762M	10	3 17 5	58.51
1.5762M		0 20 4	58.51
1.5718	5	1 21 3	58.69
1.5677M	12	6 8 6	58.86
1.5677M		2 22 0	58.86
1.5641M	7	0 22 2	59.01
1.5641M		5 7 7	59.01
1.5504M	7	4 4 8	59.58
1.5504M		8 6 4	59.58
1.5481M	6	4 14 6	59.68
1.5481M		4 20 2	59.68
1.5413	2	8 12 0	59.97
1.5318M	3	2 10 8	60.38
1.5318M		7 9 5	60.38
1.5284	2	2 22 2	60.53
1.5188	1L	9 1 3	60.95

Nickel Titanium Oxide, NiTiO₃

Synonyms

Nickel titanate
Nickel metatitanate

CAS registry no.
12035-39-1

Sample

The sample obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA was a mixture of oxides. It was heated at 1050 °C for 4½ days in order to obtain a single phase.

Color

Medium yellow

Structure

Hexagonal, R̄3 (148), Z = 6, isostructural with FeTiO₃, Taylor [1930]. The structure of NiTiO₃ was determined by Sullivan and Pavlovic [1962].

Lattice constants of this sample

a = 5.0302(2) Å
c = 13.7905(11)

c/a = 2.7415

Volume °
302.19 Å³

Density

(calculated) 5.097 g/cm³

Figure of merit

F₃₀ = 66.9(0.012, 39)

Additional patterns

PDF card 17-617 [Skapski, Imperial College of Sci. and Tech., London, Eng., Thesis, priv. comm.]

Barth and Posnjak [1934]

References

Barth, T. F. W. and Posnjak, E. (1934). Z. Kristallogr. Kristalloggeom. Kristallphys. Kristallchem. 88A, 271.

Sullivan, D. G. and Pavlovic, A. S. (1962). Proc. W. V. Acad. Sci. 34, 173.

Taylor, N. W. (1930). Z. Phys. Chem. Leipzig B9, 241.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C					
Internal standard W, a = 3.16524 Å					
d(Å)	I ^{rel}	hkl		2θ(°)	
σ = ±1					
4.598	2	0	0	3	19.29
3.685	41	0	1	2	24.13
2.705	100	1	0	4	33.09
2.516	70	1	1	0	35.65
2.332	7	0	1	5	38.58
2.299	3	0	0	6	39.15
2.207	30	1	1	3	40.86
2.151	1	0	2	1	41.96
2.077	3	2	0	2	43.53
1.8417	36	0	2	4	49.45
1.7949	1	1	0	7	50.83
1.6962	53	1	1	6	54.02
1.6352	1	2	1	1	56.21
1.6025M	9	0	1	8	57.46
1.6025M		1	2	2	57.46
1.5327	1L	0	0	9	60.34
1.4859	26	2	1	4	62.45
1.4522	28	3	0	0	64.07
1.4138	1	1	2	5	66.03
1.3518	3	2	0	8	69.48
1.3146	10	1	0	10	71.74
1.3086	3	1	1	9	72.12
1.2632	1	2	1	7	75.15
1.2575	7	2	2	0	75.55
1.2275	3	3	0	6	77.74
1.2129	2	2	2	3	78.85
1.1903M	4	1	2	8	80.65
1.1903M		3	1	2	80.65
1.1650	5	0	2	10	82.78
1.1492	1	0	0	12	84.18
1.1405	6	1	3	4	84.97
1.1032	7	2	2	6	88.57
1.0757	1L	0	4	2	91.46
1.0570	7	2	1	10	93.56
1.0385	3	4	0	4	95.76
.9894	3	3	1	8	102.26
.9721	2	2	2	9	104.82
.9598	6	3	2	4	106.75
.9506	4	4	1	0	108.26
.9309	1	4	1	3	111.68
.9207	1	0	4	8	113.58
.9088	5	1	3	10	115.90

Potassium Fluoride Hydrate, $\text{KF} \cdot 2\text{H}_2\text{O}$

Synonym

Potassium fluoride dihydrate

CAS registry no.

7789-23-3

Sample

The sample was obtained from the Fisher Scientific Co., Fair Lawn, NJ. It was somewhat deliquescent.

Color

Colorless

Structure

Orthorhombic, Pb_{21}m (26), $Z = 2$. The structure was determined by Anderson and Lingafelter [1951].

Lattice constants of this sample

$$a = 5.1848(7) \text{ \AA}$$

$$b = 8.8328(12)$$

$$c = 4.0850(6)$$

$$a/b = 0.5870$$

$$c/b = 0.4625$$

Volume

$$187.08 \text{ \AA}^3$$

Density

$$(\text{calculated}) 1.671 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 110.4(0.009, 32)$$

Additional pattern

PDF card 1-854 [Hanawalt et al., 1938]

References

Anderson, T. H. and Lingafelter, E. C. (1951). *Acta Crystallogr.* 4, 181.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). *Ind. Eng. Chem. Anal. Ed.* 10, 457.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{^\circ})$
		$\sigma = \pm 5$			
5.181	5	1	0	0	17.10
4.469	22	1	1	0	19.85
4.414	36	0	2	0	20.10
4.083	10	0	0	1	21.75
3.363	52	1	2	0	26.48
3.209	39	1	0	1	27.78
3.015	100	1	1	1	29.61
2.999	8	0	2	1	29.77
2.598	50	1	2	1	34.50
2.561	35	1	3	0	35.01
2.487	8	2	1	0	36.08
2.2356	5	2	2	0	40.31
2.2083	3	0	4	0	40.83
2.1692	25	1	3	1	41.60
2.1249	58	2	1	1	42.51
2.0426	23	0	0	2	44.31
2.0322	10	1	4	0	44.55
1.9618	9	2	2	1	46.24
1.9455	26	2	3	0	46.65
1.9427	35	0	4	1	46.72
1.9009	3	1	0	2	47.81
1.8579	7	1	1	2	48.99
1.8536	7	0	2	2	49.11
1.8193	4	1	4	1	50.10
1.7578	5	2	3	1	51.98
1.7453	8	1	2	2	52.38
1.7282	1	3	0	0	52.94
1.6962	11	3	1	0	54.02
1.6815	1L	2	4	0	54.53
1.6722	1L	1	5	0	54.86
1.6089	3	3	2	0	57.21
1.5969	8	1	3	2	57.68
1.5782	3	2	1	2	58.43
1.5662	1L	3	1	1	58.92
1.5075	1	2	2	2	61.46
1.4978	6	3	2	1	61.90
1.4599	5	2	5	0	63.69
1.4406	4	1	4	2	64.65
1.4157	1	1	6	0	65.93
1.4088	5	2	3	2	66.29
1.4001	4	3	3	1	66.76
1.3847	4	0	6	1	67.60

Potassium Iron Cyanide, $K_4Fe(CN)_6$

Synonym

Potassium ferrocyanide

CAS registry no.
13943-58-3

Sample

The sample was prepared by heating reagent $K_4Fe(CN)_6 \cdot H_2O$ at 115 °C for 3 weeks.

Color

Pale yellow

Structure

Orthorhombic, Bmmm (65), Z = 4. The cell was found by use of the Visser program [1969]. The space group was assigned by consideration of the absences in the powder pattern.

Lattice constants of this sample

$$a = 14.010(7) \text{ Å}$$

$$b = 21.027(6)$$

$$c = 4.1751(13)$$

$$a/b = 0.6663$$

$$c/a = 0.1986$$

Volume
 368.35 Å^3

Density
(calculated) 1.989 g/cm³

Figures of merit

$$F_{30} = 24.1(0.015, 83)$$

$$M_{20} = 20.7$$

Additional pattern

PDF card 1-0877 [Hanawalt et al., 1938]

References

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Visser, J. W. (1969). J. Appl. Crystallogr. 2, 89.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{\\circ})$
		$\sigma = \pm 1$			
10.51	5	0	2	0	8.41
6.66	7	2	1	0	13.29
5.254	10	0	4	0	16.86
4.957	12	2	3	0	17.88
4.201M	16	0	5	0	21.13
4.201M		2	4	0	21.13
3.999	6	1	0	1	22.21
3.929	13	1	1	1	22.61
3.739	11	1	2	1	23.78
3.604	89	2	5	0	24.68
3.500M	24	0	6	0	25.43
3.500M		4	0	0	25.43
3.477	22	1	3	1	25.60
3.134M	47	2	6	0	28.46
3.134M		4	3	0	28.46
3.078	39	3	1	1	28.99
2.985	100	3	2	1	29.91
2.844	65	3	3	1	31.43
2.759	22	2	7	0	32.43
2.626	2	0	8	0	34.11
2.501	7	3	5	1	35.88
2.402	10	1	7	1	37.41
2.206	22	5	3	1	40.88
2.197	35	1	8	1	41.05
2.129	32	5	4	1	42.43
2.102M	11	0	10	0	43.00
2.102M		4	8	0	43.00
2.087	20	0	0	2	43.31
2.040	21	6	5	0	44.36
2.015	8	2	10	0	44.95
2.009	8	3	8	1	45.09
1.943M	7	4	9	0	46.71
1.943M		6	6	0	46.71
1.842	7	6	7	0	49.43
1.807	16	2	5	2	50.47
1.8031	18	4	10	0	50.58
1.7453M	8	6	8	0	52.38
1.7453M		8	1	0	52.38

Potassium Vanadium Oxide, KV₃O₈

Synonym

Potassium vanadate

Sample

The sample was prepared at NBS by fusing K₂CO₃ and V₂O₅.

Color

Greyish pink

Structure

Orthorhombic, Pmab (57), Z = 4, isostructural with NH₄VO₃ [Evans and Block, 1954]. The structure was determined by Petrášová et al. [1958].

Lattice constants of this sample

a = 5.6955(12) Å

b = 10.7961(10)

c = 5.1796(3)

a/b = 0.5276

c/a = 0.4798

Volume

318.49 Å³

Density

(calculated) 2.879 g/cm³

Figure of merit

F₃₀ = 107.3(0.007,41)

Additional pattern

PDF card 26-1342 [Feigelson et al., 1972]

References

Evans, H. T. Jr. and Block, S. (1954). Am. Mineral. 39, 326.

Feigelson, R. S., Martin, G. W., and Johnson, B. C. (1972). J. Cryst. Growth 13-14, 686.

Petrášová, M., Maďar, J., and Hanič, F. (1958). Chem. Zvestí 12, 410.

d(Å)	I ^{rel}	hkl			2θ(°)
		σ = ±2			
5.397	9	0	2	0	16.41
5.181	18	0	0	1	17.10
4.672	1L	0	1	1	18.98
3.917	16	1	2	0	22.68
3.737	18	0	2	1	23.79
3.612	6	1	1	1	24.63
3.125	100	1	2	1	28.54
2.955	3	0	3	1	30.22
2.847	45	2	0	0	31.40
2.700	9	0	4	0	33.15
2.623	15	1	3	1	34.16
2.590	18	0	0	2	34.61
2.5185M	2	2	2	0	35.62
2.5185M		0	1	2	35.62
2.4391	18	1	4	0	36.82
2.3946	7	0	4	1	37.53
2.3353	6	0	2	2	38.52
2.3031	10	1	1	2	39.08
2.2063	2	1	4	1	40.87
2.1608	1	1	2	2	41.77
2.1018	4	0	3	2	43.00
2.0505	3	2	3	1	44.13
1.9932	3	0	5	1	45.47
1.9594	15	2	4	0	46.30
1.9164	5	2	0	2	47.40
1.8813	3	1	5	1	48.34
1.8686	3	0	4	2	48.69
1.7992	2	0	6	0	50.70
1.7753	6	1	4	2	51.43
1.7261	1	0	0	3	53.01
1.7040	9	0	1	3	53.75
1.6999	10	0	6	1	53.89
1.6915M	10	3	2	1	54.18
1.6915M		2	3	2	54.18
1.6585	1	0	5	2	55.35
1.6446	2	0	2	3	55.86
1.6328M	2	1	1	3	56.30
1.6328M		2	5	1	56.30
1.6290	2	1	6	1	56.44
1.5926	2	1	5	2	57.85
1.5799	6	1	2	3	58.36
1.5624	3	2	4	2	59.08
1.5571	3	0	3	3	59.30
1.5531	3	3	4	0	59.47
1.5206	2	2	6	0	60.87

Potassium Vandium Oxide, KV₀₃ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 2$					
1.5011	2	1	3	3	61.75
1.4774+	2	0	7	1	62.85
1.4774+		0	6	2	62.85
1.4591	7	2	6	1	63.73
1.4550	8	0	4	3	63.93
1.4233M	5	2	2	3	65.53
1.4233M		4	0	0	65.53
1.4090M	2	1	4	3	66.28
1.4090M		3	3	2	66.28
1.3661	2	2	3	3	68.65
1.3489M	1	0	8	0	69.65
1.3489M		0	5	3	69.65
1.3129	5	1	8	0	71.85
1.2949M	1L	2	4	3	73.01
1.2949M		0	0	4	73.01
1.2856	2	0	1	4	73.62
1.2729	2	1	8	1	74.48
1.2591M	2	4	4	0	75.44
1.2591M		0	2	4	75.44
1.2540	1	1	1	4	75.80
1.2459	3	0	6	3	76.38
1.2431	3	3	2	3	76.58
1.2296	1L	1	2	4	77.58
1.2184M	1	2	5	3	78.43
1.2184M		0	3	4	78.43

Silicon Nitride, β -Si₃N₄

Synonym
Trisilicon tetranitride

CAS registry no.
12033-89-5

Sample

The sample was prepared at NBS by J. Waring by heating Si₃N₄ obtained from GTE Products, Towanda, PA to 1785 °C for 1 hr at 15 psig. The sample was contained in a Si₃N₄ crucible within a molybdenum crucible.

Color
Greyish white

Structure
Hexagonal, P6₃/m (176), Z = 2. The structure was determined by Hardie and Jack [1957] and confirmed by Borgen and Seip [1961].

Lattice constants of this sample

$$a = 7.6044(2) \text{ Å}$$

$$c = 2.9075(1)$$

$$c/a = 0.3823$$

Volume
145.61 Å^3

Density
(calculated) 3.200 g/cm³

Polymorphism

Turkdogan and Ignatowicz (1957) established the existence of two forms of Si₃N₄. These two forms α and β generally occur together. Ruddlesden and Popper (1958) reported the possibility of a third form having still a different stacking sequence.

Figure of merit
 $F_{30} = 108.2(0.009, 32)$

Additional patterns

PDF card 9-259 [Decker, General Elec. Co., NY, priv. comm.]

PDF card 29-1132 [Morris et al., 1977]

Hardie and Jack [1957]

Ruddlesden and Popper [1958]

Narita and Mori [1959]

References

Borgen, O. and Seip, H. M. (1961). Acta Chem. Scand. 15, 1789.

Hardie, D. and Jack, K. H. (1957). Nature London 180, 332.

Morris, M. C., McMurdie, H. F., Evans, E. H., Paritzkin, B., de Groot, J. H., Newberry, R., Hubbard, C. R., and Carmel, S. J. (1977). Natl. Bur. Stand. U.S. Monogr. 25, Sec. 14, 116.

Narita, K. and Mori, K. (1959). Bull. Chem. Soc. Jpn. 32, 417.

Ruddlesden, S. N. and Popper, P. (1958). Acta Crystallogr., 11, 465.

Turkdogan, E. T. and Ignatowicz, S. (1957). J. Iron Steel Inst. London 185, 200.

d(Å)	I^{rel}	$\frac{\text{CuK}\alpha_1}{\text{Internal standard Si}}$			$2\theta(\text{°})$
		$\sigma = \pm 2$			
6.583	34	1	0	0	13.44
3.800	35	1	1	0	23.39
3.293	100	2	0	0	27.06
2.660	99	1	0	1	33.67
2.489	93	2	1	0	36.05
2.310	9	1	1	1	38.95
2.1939	10	3	0	0	41.11
2.1797	31	2	0	1	41.39
1.9013	8	2	2	0	47.80
1.8916	5	2	1	1	48.06
1.8275	12	3	1	0	49.86
1.7525	37	3	0	1	52.15
1.5911	12	2	2	1	57.91
1.5467	6	3	1	1	59.74
1.5108	15	3	2	0	61.31
1.4534	15	0	0	2	64.01
1.4368	8	4	1	0	64.84
1.4325	5	4	0	1	65.06
1.4197	1	1	0	2	65.72
1.3579	1	1	1	2	69.12
1.3408	39	3	2	1	70.13
1.3299	6	2	0	2	70.79
1.3173	5	5	0	0	71.57
1.2883	18	4	1	1	73.44
1.2675	7	3	3	0	74.85
1.2554	16	2	1	2	75.70
1.2447	1	4	2	0	76.47
1.1998	2	5	0	1	79.89
1.1831	2	5	1	0	81.25
1.1618	1L	3	3	1	83.06
1.1551	2	2	2	2	83.65
1.1445	3	4	2	1	84.60
1.1377	3	3	1	2	85.23
1.0957	4	5	1	1	89.34
1.0828	3	4	3	0	90.70
1.0545	1L	5	2	0	93.85
1.0476	6	3	2	2	94.66
1.0269	1L	6	0	1	97.20
1.0219	4	4	1	2	97.84
1.0147	1	4	3	1	98.78

Silicon Nitride, β -Si₃N₄ - (continued)

d(A) $\sigma = \pm 2$	I ^{rel}	hkl	2θ(°)
1.0043	2	6 1 0	100.17
.9914	3	5 2 1	101.97
.9761	4	5 0 2	104.21
.9589	3	1 0 3	106.90
.9554	5	3 3 2	107.46
.9492	8	6 1 1	108.49
.9455	1	4 2 2	109.12
.9408	1	5 3 0	109.93
.9298	2	2 0 3	111.89
.9175	1	5 1 2	114.19
.9132	3	6 2 0	115.02
.9034	4	4 4 1	117.00
.8950	3	5 3 1	118.78
.8866	5	3 0 3	120.65
.8722	6	7 1 0	124.06
.8712	5	6 2 1	124.29
.8682	5	4 3 2	125.05
.8634	1	2 2 3	126.29
.8561	1	3 1 3	128.27
.8537	2	5 2 2	128.93

Silicon Oxide (Quartz-low), α -SiO₂

Synonym

Silicon dioxide

CAS registry no.

7631-86-9

Sample

The sample was obtained from the Glass Section at NBS. The material was ground single crystals of optical quality.

Color

Colorless

Structure

Hexagonal, P3₁21 (152), Z = 3, Bragg and Gibbs [1925]. Iwai et al. [1969] and Smith and Alexander [1963] refined the structure. Thermal effects have also been studied by these authors.

Lattice constants of this sample

a = 4.9133(2) Å

c = 5.4053(4)

c/a = 1.1001

Volume

113.00 Å³

Density

(calculated) 2.649 g/cm³

Polymorphism

Silicon oxide, SiO₂, crystallizes in many other polymorphic forms.

Figure of merit

F₃₀ = 77.6(0.013,31)

Reference intensity

I/I_{corundum} = 4.32(3)

Additional pattern

PDF card 5-490 [Swanson et al., 1954], pattern redone to reflect improved techniques for measuring intensities. Citation to many additional patterns is made in the above reference.

References

Bragg, W. H. and Gibbs, R. E. (1925). Proc. Roy. Soc. London A109, 405.

Iwai, et al. (1969). Yogyo Kyokai Shi (J. Ceram. Assoc. Japan) 77, 172.

Smith, G. S. and Alexander, L. (1963). Acta Crystallogr. 16, 462.

Swanson, H. S., Fuyat, R. K., and Ugrinic, G. M. (1954). Natl. Bur. Stand. U.S. Circ. 539, 3, 24.

d(Å)	I ^{rel} $\sigma = \pm 1$	hkl			2θ(°)
		1	0	0	
4.257	22	1	0	0	20.85
3.342	100	1	0	1	26.65
2.457	8	1	1	0	36.54
2.282	8	1	0	2	39.46
2.237	4	1	1	1	40.29
2.127	6	2	0	0	42.47
1.9792	4	2	0	1	45.81
1.8179	14	1	1	2	50.14
1.8021	1L	0	0	3	50.61
1.6719	4	2	0	2	54.87
1.6591	2	1	0	3	55.33
1.6082	1L	2	1	0	57.24
1.5418	9	2	1	1	59.95
1.4536	1	1	1	3	64.00
1.4189	1L	3	0	0	65.76
1.3820	6	2	1	2	67.75
1.3752	7	2	0	3	68.13
1.3718	8	3	0	1	68.32
1.2880	2	1	0	4	73.46
1.2558	2	3	0	2	75.67
1.2285	1	2	2	0	77.66
1.1999	2	2	1	3	79.88
1.1978	1	2	2	1	80.05
1.1843	3	1	1	4	81.15
1.1804	3	3	1	0	81.47
1.1532	1	3	1	1	83.82
1.1405	1L	2	0	4	84.97
1.1143	1L	3	0	3	87.46
1.0813	2	3	1	2	90.86
1.0635	1L	4	0	0	92.82
1.0476	1	1	0	5	94.66
1.0438	1L	4	0	1	95.12
1.0347	1L	2	1	4	96.22
1.0150	1	2	2	3	98.74
.9898	1	4	0	2	102.20
.9873	1	3	1	3	102.56
.9783	1L	3	0	4	103.88
.9762	1	3	2	0	104.20
.9636	1L	2	0	5	106.14
.9607	1	3	2	1	106.61
.9284	1L	4	1	0	112.13
.9181	1L	3	2	2	114.08
.9161	1	4	0	3	114.46
.9151	1L	4	1	1	114.66
.9089	1L	2	2	4	115.89

Sodium Aluminum Oxide, β -NaAlO₂

Synonym

Sodium aluminate

CAS registry no.

1302-42-7

Sample

The sample was obtained from ICN-K&K Laboratories, Inc., Plainview, NY. It was partially hydrated and was heated in air to 875 °C for 1 hour. It changed back readily to a hydrate.

Color

Colorless

Structure

Orthorhombic, Pna2₁ (33), Z = 4, isostructural with orthorhombic sodium ferrite, β -NaFeO₂. The unit cell and space group were determined by Théry and Briançon [1964].

Lattice constants of this sample

$$a = 5.3868(11) \text{ Å}$$

$$b = 7.0334(15)$$

$$c = 5.2182(10)$$

$$a/b = 0.7659$$

$$c/b = 0.7419$$

Volume
197.70 Å^3

Density

$$(\text{calculated}) 2.754 \text{ g/cm}^3$$

Polymorphism

There is a tetragonal γ -form, stable at high temperatures. The temperature of transformation $\beta \rightarrow \gamma$ is 470 °C [ibid.].

Figure of merit

$$F_{30} = 58.6(0.013, 39)$$

Additional pattern

PDF card 19-1177 [ibid.]

Reference

Théry, J. and Briançon, D. (1964). Rev. Int. Hautes Temp. Refract. 1, 221.

CuK α_1 $\lambda = 1.540598 \text{ Å}$; temp. 25 ± 1 °C					
Internal standard Si, a = 5.43088 Å					
d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 1$					
4.283	35	1	1	0	20.72
4.195	34	0	1	1	21.16
3.306	4	1	1	1	26.95
2.946	84	1	2	0	30.31
2.695	74	2	0	0	33.22
2.609	94	0	0	2	34.34
2.564	100	1	2	1	34.96
2.515	7	2	1	0	35.67
2.393	14	2	0	1	37.55
2.267	4	2	1	1	39.72
2.227	5	1	1	2	40.47
2.148	10	1	3	0	42.03
2.139M	12	0	3	1	42.21
2.139M		2	2	0	42.21
2.096	2	0	2	2	43.13
1.987	8	1	3	1	45.62
1.953	24	1	2	2	46.47
1.8740	16	2	0	2	48.54
1.8108	3	2	1	2	50.35
1.7695	8	2	3	0	51.61
1.7578	24	0	4	0	51.98
1.7395	4	3	1	0	52.57
1.6886	3	0	1	3	54.28
1.6741	5	2	3	1	54.79
1.6591	4	1	3	2	55.33
1.6541	5	2	2	2	55.51
1.5989	33	3	2	0	57.60
1.5286	8	3	2	1	60.52
1.4974	35	1	2	3	61.92
1.4722	15	2	4	0	63.10
1.4581	22	0	4	2	63.78
1.4170	13	2	4	1	65.86
1.3971	2	0	3	3	66.92
1.3754	3	3	3	1	68.12
1.3631	25	3	2	2	68.82
1.3039M	10	0	0	4	72.42
1.3039M		4	0	1	72.42
1.2823M	9	2	4	2	73.84
1.2823M		4	1	1	73.84
1.2475	3	1	1	4	76.26
1.2217	2	3	4	1	78.18
1.2057	2	1	4	3	79.42

Sodium Borate, NaBO₂

Synonym

Sodium metaborate

Sample

The sample was prepared by dehydrating NaBO₂·4H₂O obtained from the Fisher Scientific Co., Fair Lawn, NJ.

Color

Colorless

Structure

Hexagonal, R3c (167), Z = 18. The structure was redetermined by Marezio et al. [1963]. The structure had been determined earlier by Fang [1937], [1938].

Lattice constants of this sample

a = 11.9217(7) Å
c = 6.4182(5)

c/a = 0.5384

Volume
789.99 Å³

Density

(calculated) 2.490 g/cm³

Figure of merit

F₃₀ = 64.8(0.012,39)

Additional patterns

PDF card 12-383 [Pistorius, Inst. Geophysics, U. Calif., Los Angeles, CA] labeled anhydrous but appears to be 4H₂O.

PDF card 12-492 [Norment et al., 1960]

PDF card 16-267 [Bouaziz, 1962]

Coles, Scholes, and Amberg [1937]

References

Bouaziz, R. (1962). Bull. Soc. Chim. Fr. 7, 1451.

Coles, S. S., Scholes, S. R., and Amberg, C. R. (1937). J. Amer. Ceram. Soc. 20, 215.

Fang, S. M. (1937). J. Amer. Ceram. Soc. 20, 214.

Fang, S. M. (1938). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 99A, 1.

Marezio, M., Plettlinger, H. A., and Zachariasen, W. H. (1963). Acta Crystallogr. 16, 594.

Norment, H. G., Henderson, P. I., and South, R. L. (1960). Anal. Chem. 32, 796.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C				
Internal standard Si, a = 5.43088 Å				
d(Å)	I ^{rel}	hkl		2θ(°)
$\sigma = \pm 2$				
5.953	3	1	1	0
3.441	1L	3	0	0
3.063	100	0	1	2
2.982	2	2	2	0
2.724	76	2	0	2
2.614	73	1	3	1
2.478	19	1	2	2
2.253	8	4	1	0
2.221	54	3	2	1
2.136	20	3	1	2
2.013M	49	1	1	3
2.013M		0	4	2
1.9870	43	3	3	0
1.9054	5	2	3	2
1.8672	23	2	4	1
1.7815	16	5	1	1
1.7370M	9	2	2	3
1.7370M		5	0	2
1.6674	6	4	2	2
1.6527	3	5	2	0
1.6408	6	4	3	1
1.6053	5	1	5	2
1.5854	5	1	0	4
1.5509	14L	4	1	3
1.5318	7	0	2	4
1.5002	1L	3	4	2
1.4836	1	2	1	4
1.4374	4	3	5	1
1.4136	1L	6	1	2
1.3997	2	1	3	4
1.3629	1L	4	0	4
1.3401	6	0	7	2
1.3283	1L	3	2	4
1.3074	1	2	6	2
1.2672	2	0	5	4
1.2393	2	2	4	4
1.2224M	5	4	4	3
1.2224M		4	5	2
1.2136	1	5	1	4
1.1974	2	8	0	2
1.1740	5	7	2	2
1.1713	5	3	1	5
1.1647	2	4	6	1
1.1521	3	7	1	3
1.1472	8	9	0	0
1.1311	3	1	8	2
1.1285	2	2	3	5
1.1110	2	6	4	2
1.0861	2	3	5	4
1.0725	1	4	2	5
1.0698	2	0	0	6
				92.11

Sodium Niobium Oxide (Lueshite), NaNbO_3

Synonym

Sodium niobate

CAS registry no.

12034-09-2

Sample

The sample was obtained from Shieldalloy Corp., Newfield, NJ. It was annealed at 1275 °C for 4 days.

Color

Colorless

Structure

Orthorhombic, Pbma (57), $Z = 8$. It has a distorted perovskite structure which was refined by Sakowski-Cowley et al. [1969] after earlier work [Vousden, 1951; Wells and Megaw, 1958].

Lattice constants of this sample

$a = 5.5687(5)$ Å
 $b = 15.523(2)$
 $c = 5.5047(6)$

$a/b = 0.3587$
 $c/b = 0.3546$

Volume
 475.84 Å^3

Density

(calculated) 4.575 g/cm^3

Polymorphism

NaNbO_3 becomes tetragonal at about 225 °C, and cubic near 435 °C [Wood, 1951]. Wood et al. [1962] described a field-induced ferroelectric polymorph which has a cell similar to the orthorhombic phase except that the c is halved. Bulakh et al. [1962] described a new mineral, natroniobite, which is principally NaNbO_3 and presumably monoclinic.

Figure of merit

$F_{30} = 35.1(0.010, 82)$

Additional patterns

PDF card 14-603 [Wood, E., Bell Telephone Lab., Murray Hill, NJ]

PDF card 19-1221 [Parker et al., 1962]

References

Bulakh, A. G., Kukharenko, A. A., Knipovich, Yu. N., Kondrat'eva, V. V., Baklanova, K. A., and Baranova, E. N. (1960). Inform. Sb. Vses. Nauch. Issled. Geol. Inst. p. 114.

Parker, Adams, and Hildebrand (1962). U.S. Geol. Surv. Prof. Pap. 450C, 4.

Vousden, P. (1951). Acta Crystallogr. 4, 545.

Wells, M. and Megaw, H. D. (1958). Acta Crystallogr. 11, 858.

Wood, E. (1951). Acta Crystallogr. 4, 353.

Wood, E. A., Miller, R. C., and Remeika, J. P. (1962). Acta Crystallogr. 15, 1273.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$				
Internal standard Si, $a = 5.43088 \text{ \AA}$				
$d(\text{\AA})$	I^{rel}	hkl	$2\theta ({}^\circ)$	
$\sigma = \pm 2$				
3.912	89	1 0 1	22.71	
3.882	45	0 4 0	22.89	
3.797	1	1 1 1	23.41	
3.122	1L	1 3 1	28.57	
2.785	24	2 0 0	32.11	
2.754M	100	1 4 1	32.49	
2.754M		0 0 2	32.49	
2.468	1	1 0 2	36.37	
2.453M	1	2 1 1	36.61	
2.453M		2 3 0	36.61	
2.435	1	1 1 2	36.88	
2.366	1	2 2 1	38.00	
2.351	1	1 2 2	38.25	
2.342	1	0 6 1	38.41	
2.263	1	2 4 0	39.81	
2.245	2	0 4 2	40.13	
2.0930	1L	2 4 1	43.19	
1.9574	25	2 0 2	46.35	
1.9400M	16	0 8 0	46.79	
1.9400M		2 5 1	46.79	
1.7857M	1	0 2 3	51.11	
1.7857M		1 6 2	51.11	
1.7591	7	3 0 1	51.94	
1.7478M	12	3 1 1	52.30	
1.7478M		2 4 2	52.30	
1.7432	14	1 0 3	52.45	
1.7385	16	1 8 1	52.60	
1.6652	1	3 3 1	55.11	
1.6593	1	0 4 3	55.32	
1.6018	11	3 4 1	57.49	
1.5894	20	1 4 3	57.98	
1.5780	1	1 9 1	58.44	
1.5314M	1	2 0 3	60.40	
1.5314M		3 1 2	60.40	
1.5252M	1	1 8 2	60.67	

Sakowski-Cowley, A. C., Lukaszewicz, K., and Megaw, H. D. (1969). Acta Crystallogr. B25, 851.

Sodium Niobium Oxide (Lueshite), NaNbO_3 - (continued)

$d(\text{\AA})$	I^{rel}	hkl	$2\theta(^{\circ})$
$\sigma = \pm 2$			
1.5252M		2 1 3	60.67
1.4947	1L	0 10 1	62.04
1.3923	3	4 0 0	67.18
1.3779M	13	3 7 1	67.98
1.3779M		2 8 2	67.98
1.3745	8	2 5 3	68.17
1.3445M	1L	4 1 1	69.91
1.3445M		4 3 0	69.91
1.3362	1L	1 0 4	70.41
1.3164M	1L	1 2 4	71.63
1.3164M		2 10 1	71.63
1.3105	1	4 4 0	72.00
1.3032	4	3 8 1	72.47
1.2965M	5	0 4 4	72.90
1.2965M		1 8 3	72.90
1.2935M	3	0 12 0	73.10
1.2935M		1 3 4	73.10
1.2649	1L	3 3 3	75.03
1.2424	2	4 0 2	76.63
1.2385	3	4 1 2	76.92
1.2369	3	3 4 3	77.04
1.2336	3	2 0 4	77.28
1.2283	5	1 12 1	77.68
1.1831	1L	4 4 2	81.25
1.1757	1	2 4 4	81.87
1.1706	1	0 12 2	82.30
1.1311	1	4 8 0	85.85

Sodium Nitrosyl Iron Cyanide Hydrate, $\text{Na}_2(\text{NO})\text{Fe}(\text{CN})_5 \cdot 2\text{H}_2\text{O}$

Synonyms

Sodium nitroprusside dihydrate
Sodium nitroferricyanide dihydrate
Sodium nitrosylpentacyanoferate dihydrate.

CAS registry no.
13755-38-9

Sample

The sample was obtained from Alfa Products,
Thiokol/Ventron Division, Danvers, MA.

Color

Unground, deep reddish brown
Ground, light yellow pink

Structure

Orthorhombic, $Pnmn$ (58), $Z = 4$. [Cooke,
1946]. The structure was determined by
Manoharan and Hamilton [1963].

Lattice constants of this sample

$a = 11.908(4)\text{\AA}$
 $b = 15.564(4)$
 $c = 6.2031(14)$

$a/b = 0.7651$
 $c/b = 0.3986$

Volume
 1149.7 \AA^3

Density

(calculated) 1.721 g/cm^3

Figure of merit

$F_{30} = 36.6(0.012, 68)$

Additional pattern

PDF card 1-289 [Hanawalt et al., 1938]

References

Cooke, P. W. (1946). Nature London 157,
518.

Hanawalt, J. D., Rinn, H. W., and Frevel,
L. K. (1938). Ind. Eng. Chem. Anal. Ed.
10, 457.

Manoharan, P. T. and Hamilton, W. C. (1963).
Inorg. Chem. 2, 1043.

d(\AA)	I^{rel}	$h k l$			$2\theta (\text{)}^\circ$
		$\sigma = \pm 4$	$\sigma = \pm 4$	$\sigma = \pm 4$	
7.79	33	0	2	0	11.35
5.969	4	2	0	0	14.83
5.760	40	0	1	1	15.37
5.507	2	1	0	1	16.08
4.726	83	2	2	0	18.76
4.492	10	1	2	1	19.75
4.296	1	2	0	1	20.66
4.139	100	2	1	1	21.45
3.982	12	0	3	1	22.31
3.894	16	0	4	0	22.82
3.847	3	3	1	0	23.10
3.346	7	3	0	1	26.62
3.311	15	2	3	1	26.91
3.258	12	2	4	0	27.35
3.150	2	3	3	0	28.31
3.004	9	1	0	2	29.72
2.947	4	1	1	2	30.30
2.884M	95	2	4	1	30.98
2.884M		0	2	2	30.98
2.810	5	3	3	1	31.82
2.710M	19	1	5	1	33.03
2.710M		2	1	2	33.03
2.644	2	4	1	1	33.87
2.593M	22	0	6	0	34.56
2.593M		2	2	2	34.56
2.536M	31	4	2	1	35.37
2.536M		3	4	1	35.37
2.425	5	0	4	2	37.04
2.414	5	3	1	2	37.21
2.383	20	4	3	1	37.72
2.346	2	1	6	1	38.33
2.333	2	3	2	2	38.56
2.247	3	2	4	2	40.10
2.147	21	4	0	2	42.06
2.093	1	0	7	1	43.20
2.033	13	4	5	1	44.53
1.9714	7	1	2	3	46.00
1.9455	12	0	8	0	46.65
1.9384	6	2	1	3	46.83
1.9195	6	0	3	3	47.32
1.8868	8	2	6	2	48.19
1.8271	1	2	3	3	49.87
1.8045	3	1	4	3	50.54
1.7792	3	3	6	2	51.31
1.7760	4	6	3	1	51.41
1.7221	5	0	5	3	53.14
1.6988M	5	5	4	2	53.93
1.6988M		4	0	3	53.93
1.6878M	7	4	1	3	54.31
1.6878M		5	6	1	54.31

Sodium Vanadium Oxide, α -NaVO₃

Synonym

Alpha-sodium metavanadate

CAS registry no.

11126-25-3

Sample

The sample was contributed by Riedel-de Haën, Hannover, West Germany. It was labeled NaVO₃·H₂O.

Color

Colorless

Structure

Monoclinic, I2/a (15), Z = 8. [Marumo et al., 1974]. This phase has been reported to be in space group Cc (9) [Feigelson et al., 1972].

Lattice constants of this sample

a = 10.333(2) Å
b = 9.473(2)
c = 5.880(2)
 β = 104.20(2) $^\circ$

a/b = 1.0908
c/b = 0.6207

Volume
557.90 Å³

Density
(calculated) 2.903 g/cm³

Polymorphism

Beta NaVO₃ changes irreversibly to α -NaVO₃ at about 404 °C. [Lukacs and Strusievici, 1962].

Figure of merit

F₃₀ = 43.2(0.014,48)

Additional patterns

PDF card 20-1168 [Lelong, 1966]

PDF card 27-828 [Feigelson et al., 1972]

PDF card 30-1259 [Kolta et al., 1973]

PDF card 30-1258 [Perraud, 1974]

Lukacs and Strusievici, [1962]

References

Feigelson, R. S., Martin, G. W., and Johnson, B. C. (1972). J. Cryst. Growth 13-14, 686.

Kolta, G. A., Hewaidy, I. F., Felix, N. S., and Gergis, N. N. (1973). Thermochim. Acta 6, 165.

Lelong, L. (1966). Rev. Chim. Miner. 3, 259.

Lukacs, I. and Strusievici, C. (1962). Z. Anorg. Allg. Chem. 315, 323.

Marumo, F., Isobe, M., and Iwai, S. (1974). Acta Crystallogr. B30, 1628.

Perraud, J. (1974). Rev. Chim. Miner. 11, 302.

d(Å)	I ^{rel} $\sigma = \pm 4$	CuK α_1 $\lambda = 1.540598$ Å; temp. 25±1 °C			2θ(°)
		Internal standard Ag, a = 4.08651 Å			
6.87	2	1	1	0	12.87
5.007	41	2	0	0	17.70
4.736	18	0	2	0	18.72
3.931	3	-2	1	1	22.60
3.612	62	-1	2	1	24.63
3.439	26	2	2	0	25.89
3.261	100	1	2	1	27.33
3.179	28	2	1	1	28.05
3.147	71	3	1	0	28.34
3.010	2	1	3	0	29.66
2.848	14	0	0	2	31.39
2.788	38	-2	0	2	32.08
2.764	11	0	3	1	32.37
2.680	33	-3	2	1	33.41
2.447	12	-4	1	1	36.70
2.409	3	-3	1	2	37.30
2.367	1	0	4	0	37.99
2.304	6	2	3	1	39.06
2.295	8	3	3	0	39.22
2.251	10	2	0	2	40.03
2.179	16	-1	4	1	41.40
2.150	3	-1	3	2	41.99
2.140	4	2	4	0	42.19
2.097	6	1	4	1	43.10
2.060	4	4	1	1	43.91
2.033	2	2	2	2	44.52
1.959	16	5	1	0	46.30
1.914	4	-3	4	1	47.47
1.863M	5	0	1	3	48.86
1.863M		1	5	0	48.86
1.8337	4	-5	1	2	49.68
1.8220	5	0	4	2	50.02
1.8091	21	-1	2	3	50.40
1.7550M	12	3	4	1	52.07
1.7550M		4	3	1	52.07
1.7212	2	4	4	0	53.17
1.6924M	1	-6	1	1	54.15
1.6924M		5	3	0	54.15
1.6699	2	6	0	0	54.94
1.6547	2	-2	3	3	55.49
1.6475	5	3	5	0	55.75
1.6245	2	-6	0	2	56.61
1.5792	2	0	6	0	58.39
1.5272	3	1	5	2	60.58
1.5108	13	-6	3	1	61.31
1.5086M	11	-1	4	3	61.41
1.5086M		-3	5	2	61.41
1.4602M	9	2	3	3	63.68
1.4602M		5	1	2	63.68
1.4151	4	7	1	0	65.96

Sodium Vanadium Oxide, β -NaVO₃

Synonym

Beta-sodium metavanadate

CAS registry no.

11126-25-3

Sample

The sample was prepared from NaVO₃ \cdot H₂O, which was crystallized from an aqueous solution, by heating at 300 °C for 4 days.

Color

Colorless

Structure

Orthorhombic, Z = 4. [Perraud, 1974]

Lattice constants of this sample

a = 5.3625(15) Å

b = 14.155(6)

c = 3.6499(11)

a/b = 0.3788

c/b = 0.2579

Volume

277.06 Å³

Density

(calculated) 2.923 g/cm³

Polymorphism

Beta-NaVO₃ changes irreversibly to α -NaVO₃ at about 404 °C. [Lukacs and Strusievici, 1962]

Figure of merit

F₂₈ = 17.8(0.018,88)

Additional patterns

PDF card 1-246 [Hanawalt et al.], pattern mislabeled NaVO₃ \cdot H₂O.

PDF card 27-824 [Perraud, 1974]

PDF card 30-1260 [Feigelson et al., 1972]

Lukacs and Strusievici [1962]

References

Feigelson, R. S., Martin, G. W., and Johnson, B. C. (1972). J. Cryst. Growth 13-14, 686.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Lukacs, I. and Strusievici, C. (1962). Z. Anorg. Allgem. Chem. 315, 323.

Perraud, J. (1974). Rev. Chim. Miner. 11, 302.

d(Å)	I ^{rel}	hkℓ			2θ(°)
		σ = ±2	0	2	
7.09	11		0	2	12.48
5.01	100		1	1	17.68
4.283	6		1	2	20.72
3.542M	24		1	3	25.12
3.542M			0	4	25.12
3.248	18		0	2	27.44
3.019	13		1	0	29.57
2.954M	35		1	4	30.23
2.954M			1	1	30.23
2.683	12		2	0	33.37
2.635	2		2	1	34.00
2.541M	7		1	3	35.29
2.541M			0	4	35.29
2.506M	5		2	2	35.80
2.506M			1	5	35.80
2.360	2		0	6	38.10
2.333	4		2	3	38.56
2.295	5		1	4	39.22
2.067	1		2	2	43.76
1.965	5		2	3	46.17
1.892	5		1	7	48.06
1.824	6		0	0	49.95
1.771	3		2	6	51.56
1.732	1		3	2	52.80
1.716	5		1	1	53.36
1.679M	2		1	7	54.62
1.679M			1	2	54.62
1.6051	4		3	0	57.36
1.5944M	7		3	1	57.78
1.5944M			2	6	57.78
1.5521	1		1	4	59.51
1.5090M	2		1	9	61.39
1.5090M			2	0	61.39
1.4745	3		1	5	62.99
1.3942M	2		1	9	67.08
1.3942M			1	6	67.08

Strontium Iron Oxide, $\text{SrFe}_{12}\text{O}_{19}$

Synonyms

Strontium hexaferrite
Dodecairon strontium 19-oxide

CAS registry no.
12023-91-5

Sample

The sample was prepared at NBS from a stoichiometric mixture of SrCO_3 and Fe_2O_3 , heated at 1000 °C for 1 day, then at 1200 °C for 5 days with periodic grinding. It was then held at 1390 °C for 8 h and cooled at 2° per hour to 500 °C.

Color

Blackish blue

Structure

Hexagonal, $P6_3/mmc$ (194), $Z = 2$, isostructural with magnetoplumbite, $\text{PbFe}_{12}\text{O}_{19}$, [Adelsköld 1938]. Stacking faults seemed to occur in the 00ℓ direction, without final annealing of the sample.

Lattice constants of this sample

$a = 5.8868(5)\text{\AA}$
 $c = 23.037(2)$

$c/a = 3.9133$

Volume
 691.38 \AA^3

Density

(calculated) 5.100 g/cm^3

Figure of merit

$F_{30} = 53.2(0.011, 51)$

Additional pattern

PDF card 24-1207 [Smith, Allen Clark Research Centre, Plessey Co. Ltd., Towcester, Northants, U.K.]

Reference

Adelsköld, V. (1938). Ark. Kemi Mineral. Geol. 12A, #29, 9.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$				
Internal standard Ag, $a = 4.08651 \text{ \AA}$				
d(\text{\AA})	I ^{rel}	hkl	2θ(°)	
$\sigma = \pm 2$				
11.49	1L	0 0 2	7.69	
5.753	2	0 0 4	15.39	
4.665	6	1 0 2	19.01	
4.249	3	1 0 3	20.89	
3.839	10	0 0 6	23.15	
3.070	4	1 0 6	29.06	
2.945	42	1 1 0	30.33	
2.878	21	0 0 8	31.05	
2.765	95	1 0 7	32.35	
2.621	100	1 1 4	34.18	
2.550	13	2 0 0	35.16	
2.534	14	2 0 1	35.40	
2.508	15	1 0 8	35.77	
2.490	4	2 0 2	36.04	
2.420	47	2 0 3	37.12	
2.336	7	1 1 6	38.50	
2.304	1L	0 0 10	39.06	
2.232	32	2 0 5	40.38	
2.124	21	2 0 6	42.52	
2.0159	2	2 0 7	44.93	
1.9376	5	1 0 11	46.85	
1.8145	2	1 1 10	50.24	
1.8061	3	2 0 9	50.49	
1.7962	2	1 0 12	50.79	
1.7221	2	2 1 6	53.14	
1.7090	6	2 0 10	53.58	
1.6993	8	3 0 0	53.91	
1.6629	33	2 1 7	55.19	
1.6454	10	0 0 14	55.83	
1.6296	22	3 0 4	56.42	
1.6182	48	2 0 11	56.85	
1.6079	5	1 1 12	57.25	
1.6015	10	2 1 8	57.50	
1.5667	1	1 0 14	58.90	
1.5538	2	3 0 6	59.44	
1.5387	1L	2 1 9	60.08	
1.5330	6	2 0 12	60.33	
1.4715	44	2 2 0	63.13	
1.4550	4	2 0 13	63.93	
1.4398	2	0 0 16	64.69	
1.4264	1L	2 2 4	65.37	
1.4180	3	2 1 11	65.81	
1.3823	12	2 0 14	67.73	
1.3743	1	2 2 6	68.18	
1.3598	1	2 1 12	69.01	

Strontium Iron Oxide, SrFe₁₂O₁₉ - (continued)

d(Å)	I ^{rel}	h k l	2θ(°)
$\sigma = \pm 2$			
1.3100M	6	2 2 8	72.03
1.3100M		1 0 17	72.03
1.2990	12	3 1 7	72.74
1.2935	2	1 1 16	73.10
1.2797	1L	0 0 18	74.02
1.2723M	4	4 0 1	74.52
1.2723M		3 0 12	74.52
1.2691	4	3 1 8	74.74
1.2572	4	4 0 3	75.57
1.2415	4	1 0 18	76.70
1.2095	1L	4 0 6	79.12
1.2009	1L	2 1 15	79.80
1.1966	1L	2 0 17	80.14
1.1738	4	1 1 18	82.03
1.1519	1L	0 0 20	83.94

Thorium Carbide, ThC

Synonym

Thorium monocarbide

CAS registry no.

12012-16-7

Sample

The sample was obtained from Alfa Products Thiokol/Ventron Division, Danvers, MA. It contained some semi-amorphous carbon and was somewhat unstable; therefore the intensities are subject to some error.

Color

Grey

Structure

Cubic, Fm3m (225), Z = 4. [Wilhelm and Chiotti, 1950]. ThC has a NaCl type structure.

Lattice constant of this sample

$$a = 5.3313(7) \text{ \AA}$$

Volume

$$151.53 \text{ \AA}^3$$

Density

$$(\text{calculated}) 10.698 \text{ g/cm}^3$$

Figure of merit

$$F_{10} = 58.1(0.017, 10)$$

Additional pattern

PDF card 15-36 [Kempter and Krikorian, 1962]

References

Kempter, C. P. and Krikorian, N. H. (1962). J. Less-Common Metals 4, 244.

Wilhelm, H. A., Chiotti, P. (1950). Trans. Amer. Soc. Metals 42, 1295.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$				
Internal standard Si, $a = 5.43088 \text{ \AA}$				
d(\AA)	I ^{rel}	hkl		2 θ ($^\circ$)
$\sigma = \pm 6$				
3.075	100	1	1	1
2.666	70	2	0	0
1.886	60	2	2	0
1.6071	70	3	1	1
1.5387	25	2	2	2
1.3322	12	4	0	0
1.2232	30	3	3	1
1.1923	30	4	2	0
1.0884	25	4	2	2
1.0260	20	5	1	1
				97.32

Thorium Nitrate Hydrate, Th(NO₃)₄·5H₂O

Synonym

Thorium nitrate pentahydrate

Sample

The sample was obtained from Allied Chemical, General Chemical Division, New York, NY. It was labeled Th(NO₃)₄·4H₂O.

Color

Colorless

Structure

Orthorhombic, Fdd2 (43), Z = 8, [Staritsky, 1956]. The structure of Th(NO₃)₄·5H₂O was determined by Taylor et al. [1966] and Ueki et al. [1966].

Lattice constants of this sample

a = 11.201(2) Å
b = 22.896(5)
c = 10.593(2)

a/b = 0.4892
c/b = 0.4627

Volume
2716.7 Å³

Density

(calculated) 2.788 g/cm³

Figure of merit

F₃₀ = 54.7(0.016,35)

Additional pattern

PDF card 9-36 [Staritsky, 1956]

References

Staritsky, E. (1956). Anal. Chem. 28, 2021.

Taylor, J. C., Miller, M. H., and Hitterman, R. L. (1966). Acta Crystallogr. 20, 842.

Ueki, T., Zalkin, A., and Templeton, D. H. (1966). Acta Crystallogr. 20, 836.

CuKα ₁ λ = 1.540598 Å; temp. 25±1 °C				
Internal standard W, a = 3.16524 Å				
d(Å)	I ^{rel}	hkl	2θ(°)	
σ = ±3				
7.30	100	1 1 1	12.11	
5.73	39	0 4 0	15.45	
5.42	58	1 3 1	16.33	
5.035	44	2 2 0	17.60	
4.810	54	0 2 2	18.43	
4.005	3	2 4 0	22.18	
3.938	24	1 5 1	22.56	
3.852	7	2 0 2	23.07	
3.652	1	2 2 2	24.35	
3.482	20	3 1 1	25.56	

d(Å)	I ^{rel}	hkl			2θ(°)
σ = ±3					
3.331	12	1	1	3	26.74
3.193M	28	3	3	1	27.92
3.193M		2	4	2	27.92
3.156	4	2	6	0	28.25
3.096	31	0	6	2	28.81
3.084	18	1	3	3	28.93
3.012	10	1	7	1	29.64
2.862	5	0	8	0	31.23
2.800	18	4	0	0	31.94
2.793	17	3	5	1	32.02
2.714	10	1	5	3	32.98
2.651	6	0	0	4	33.79
2.550M	11	3	1	3	35.16
2.550M		2	8	0	35.16
2.516	6	4	4	0	35.65
2.431	13	3	3	3	36.95
2.419	23	4	2	2	37.14
2.403	22	0	4	4	37.40
2.397	22	3	7	1	37.49
2.347	20	1	7	3	38.32
2.342	11	2	2	4	38.41
2.297	14	2	8	2	39.19
2.239	5	3	5	3	40.24
2.207	1	2	4	4	40.85
2.181	12	5	1	1	41.37
2.119	8	2	10	0	42.64
2.106	8	5	3	1	42.92
2.101	10	0	10	2	43.02
2.073	12	1	1	5	43.63
2.061	8	3	9	1	43.90
2.028	21	2	6	4	44.65
2.007	9	1	3	5	45.13
2.002	10	4	8	0	45.27
1.976	7	5	5	1	45.88
1.943	6	0	8	4	46.70
1.924	5	4	0	4	47.20
1.907	2	0	12	0	47.64
1.895	4	1	5	5	47.98
1.885	4	5	1	3	48.23
1.842	6	6	2	0	49.44
1.837+	9	3	1	5	49.58
1.837+		2	8	4	49.58
1.822	8	5	7	1	50.02
1.807M	4	3	9	3	50.47
1.807M		2	12	0	50.47
1.792M	7	3	11	1	50.93
1.792M		3	3	5	50.93
1.771	4	1	11	3	51.58
1.761	3	6	0	2	51.89
1.756	4	1	7	5	52.04

Titanium Carbide, TiC

CAS registry no.
12070-08-5

Sample
The sample was obtained from Kennametal,
Latrobe, PA.

Color
Dark gray

Structure
Cubic, Fm3m (225), Z = 4. The structure of
titanium carbide was qualitatively determined
by von Schwarz and Summa [1932].

Lattice constant of this sample

$$a = 4.3274(2) \text{ \AA}$$

Volume Å^3
81.037 Å^3

Density
(calculated) 4.911 g/cm³

Figure of merit
 $F_{10} = 121.6(0.008, 10)$

Additional pattern
PDF card 6-614 [Cadoff and Nielsen, 1953]

References

Cadoff, I. and Nielsen, J. P. (1953). Trans.
AIME 197, 248.

Schwarz, von, M. and Summa, O. (1932). Z.
Elektrochem. 38, 743.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1^\circ \text{C}$					
Internal standard W, $a = 3.16525 \text{ \AA}$					
$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{)}^\circ$
		$\sigma = \pm 3$			
2.499	78	1	1	1	35.90
2.1637	100	2	0	0	41.71
1.5302	60	2	2	0	60.45
1.3047	30	3	1	1	72.37
1.2492	17	2	2	2	76.14
1.0818	10	4	0	0	90.80
.9927	13	3	3	1	101.78
.9677	25	4	2	0	105.50
.8834	23	4	2	2	121.38
.8327	16	5	1	1	135.34

Tungsten Oxide, WO_2

Synonym

Tungsten dioxide

CAS registry no.

12036-22-5

Sample

The sample was made at NBS by H. S. Parker by heating WO_3 in a W boat for 20 hours at 372 °C in an atmosphere of 95% N_2 and 5% H_2 gas. This was followed by heating at 590 °C for 90 hours under the same conditions.

Color

Dark brown

Structure

Monoclinic, $P2_1/n$ (14), $Z = 4$. Distorted rutile structure. The structure was studied by Magnéli et al. [1952] and by Magnéli and Andersson [1955]. The structure was discussed by Roger et al. [1969].

Lattice constants of this sample

$a = 5.5754(7) \text{ \AA}$

$b = 4.8995(12)$

$c = 5.5608(9)$

$\beta = 118.869(12)^\circ$

$a/b = 1.1380$

$c/b = 1.1350$

Volume

133.03 \AA^3

Density

(calculated) 10.78 g/cm^3

Figure of merit

$F_{30} = 28.8(0.016, 67)$

Additional pattern

PDF card 5-431 [Magnéli et al., Univ. of Uppsala, Sweden]

References

Magnéli, A. and Andersson, G. (1955). Acta Chem. Scand. 9, 1378.

Magnéli, A., Andersson, G., Blomberg, B., and Kihlborg, L. (1952). Anal. Chem. 24, 1998.

Roger, D. B., Shannon, R. D., Sleight, A. W., and Gillson, J. L. (1969). Inorg. Chem. 8, 841.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. 25 ± 1 °C					
Internal standard Si, $a = 5.43088 \text{ \AA}$					
d(A)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 3$					
4.795	1	-1	0	1	18.49
3.452	100	0	1	1	25.79
2.831	2	1	0	1	31.58
2.449M	20	1	1	1	36.66
2.449M		0	2	0	36.66
2.442	30	2	0	0	36.77
2.437	27	0	0	2	36.86
2.423	34	-2	1	1	37.07
2.398	17	-2	0	2	37.48
2.184	2	2	1	0	41.30
2.154	1	-2	1	2	41.91
1.853	2	1	2	1	49.13
1.833	3	-3	0	1	49.70
1.7324M	18	2	1	1	52.80
1.7324M		1	1	2	52.80
1.7282	31	2	2	0	52.94
1.7167	14	-3	1	1	53.32
1.7123M	10	-2	2	2	53.47
1.7123M		-1	1	3	53.47
1.5987	1	-3	0	3	57.61
1.5481M	10	1	3	0	59.68
1.5481M		0	3	1	59.68
1.5448	10	3	1	0	59.82
1.5408	10	0	1	3	59.99
1.4670	2	-3	2	1	63.35
1.4157	3	2	0	2	65.93
1.4094	5	-2	3	1	66.26
1.3934	4	-4	0	2	67.12
1.3900	5	-2	0	4	67.31
1.3588	1	3	0	1	69.07
1.3388	1	-3	2	3	70.25
1.2993	2	-4	1	1	72.72
1.2856	3	-4	1	3	73.62
1.2251+	5	2	3	1	77.92
1.2251+		0	4	0	77.92
1.2171	2	0	0	4	78.53
1.2140	3	-2	3	3	78.77
1.2109	3	-4	2	2	79.01
1.2087	3	-2	2	4	79.18
1.1982	2	-4	0	4	80.01
1.1879M	2	1	4	0	80.85
1.1879M		0	4	1	80.85
1.1529	2	3	3	0	83.85
1.1513	5	0	3	3	83.99

Uranium Nitride, UN

Synonym

Uranium mononitride

CAS registry no.

25658-43-9

Sample

The sample was obtained from the Battelle Memorial Institute, Columbus, OH.

Color

Dark gray

Structure

Cubic, Fm3m (225), Z = 4. The structure was determined by Rundle et al. [1948] and confirmed by Mueller and Knott [1958].

Lattice constant of this sample
 $a = 4.8897(2) \text{ \AA}$
Volume
 116.91 \AA^3
Density

 (calculated) 14.318 g/cm^3
Figure of merit
 $F_{13} = 93.2(0.011, 13)$
Additional patterns

PDF card 11-315 [Mueller and Knott, Argonne National Laboratory, Lemont, IL]

Kempfer et al. [1959]

References

Kempfer, C. P., McGuire, J. C., and Nadler, M. R. (1959). *Anal. Chem.* 31, 156.

Mueller, M. H. and Knott, H. W. (1958). *Acta Crystallogr.* 11, 751.

Rundle, R. E., Baenziger, N. C., Wilson, A. S., and McDonald, R. A., (1948). *J. Amer. Chem. Soc.* 70, 98.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$					
Internal standard W, $a = 3.16524 \text{ \AA}$					
d(\AA)	I ^{rel}	hkl			2 θ ($^\circ$)
$\sigma = \pm 3$					
2.825	100	1	1	1	31.65
2.445	82	2	0	0	36.72
1.7291	52	2	2	0	52.91
1.4749	58	3	1	1	62.97
1.4119	18	2	2	2	66.13
1.2224	11	4	0	0	78.12
1.1219	22	3	3	1	86.72
1.0935	25	4	2	0	89.57
.9981	19	4	2	2	101.02
.9410	22	5	1	1	109.89
.8644	8	4	4	0	126.04
.8265	26	5	3	1	137.50
.8149	20	6	0	0	141.90

Uranyl Acetate Hydrate, $C_4H_6O_6U \cdot 2H_2O$

Synonym

Uranyl acetate dihydrate

CAS registry no.

20154-66-9

Sample

The sample was obtained from the J. T. Baker Chemical Co., Phillipsburg, NJ.

Color

Bright greenish yellow

Structure

Orthorhombic, Pna_2_1 (33), $Z = 4$. [Mentzen and Giorgio, 1970] [Amirthalingham et al., 1959]

Lattice constants of this sample

$$a = 9.630(2) \text{ \AA}$$

$$b = 14.883(2)$$

$$c = 6.823(2)$$

$$a/b = 0.6470$$

$$c/b = 0.4584$$

Volume

$$977.91 \text{ \AA}^3$$

Density

$$(\text{calculated}) 2.881 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 38.7(0.016, 49)$$

Additional patterns

PDF card 14-744 [Hanawalt et al., 1938]

PDF card 23-714 [Mentzen and Giorgio, 1970]

References

Amirthalingham, V., Chandran, O. V., and Padmanabham, V. M. (1959). Acta Crystallogr. 12, 821.

Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457.

Mentzen, B. and Giorgio, G. (1970). J. Inorg. Nucl. Chem. 32, 1509.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta(^{\circ})$
		$\sigma = \pm 6$			
3.706	43	1	3	1	23.99
3.470	22	1	4	0	25.65
3.456	18	2	3	0	25.76
3.410	37	0	0	2	26.11
3.140M	13	1	1	2	28.40
3.140M		3	1	0	28.40
3.092	9	1	4	1	28.85
2.949M	24	1	2	2	30.28
2.949M		3	2	0	30.28
2.852	7	3	1	1	31.34
2.845	7	1	5	0	31.42
2.737	28	2	1	2	32.69
2.727	30	0	5	1	32.81
2.703	31	2	4	1	33.12
2.698M	28	1	3	2	33.18
2.698M		3	3	0	33.18
2.606	1L	2	2	2	34.39
2.532	21	2	5	0	35.43
2.510	17	3	3	1	35.75
2.481	9	0	6	0	36.17
2.430	11	3	4	0	36.96
2.408	38	4	0	0	37.32
2.374M	1L	4	1	0	37.86
2.374M		2	5	1	37.86
2.292	3	4	2	0	39.28
2.265	9	1	6	1	39.77
2.245	20	4	1	1	40.14
2.230M	10	3	2	2	40.42
2.230M		2	4	2	40.42
2.189	7	1	1	3	41.20
2.122	15	1	2	3	42.57
2.099	11	2	6	1	43.07
2.076	9	1	7	0	43.56
2.057	10	2	0	3	43.99
2.031	13	0	7	1	44.58
2.020	19	1	3	3	44.83
2.006	10	0	6	2	45.16
1.986	8	1	7	1	45.65
1.980	14	3	4	2	45.80
1.963M	14	1	6	2	46.20
1.963M		3	6	0	46.20
1.910	5	5	1	0	47.58
1.865	1L	5	2	0	48.78
1.860	4	0	8	0	48.92
1.841	4	3	1	3	49.47
1.826	3	1	8	0	49.90
1.804	14	4	5	1	50.54
1.800M	17	3	2	3	50.68
1.800M		2	4	3	50.68
1.796	17	5	3	0	50.79

$CuK\alpha_1 \lambda = 1.540598 \text{ \AA}; \text{ temp. } 25 \pm 1 \text{ }^{\circ}\text{C}$					
Internal standard Ag, $a = 4.08651 \text{ \AA}$					
$d(\text{\AA})$	I^{rel}	hkl			$2\theta(^{\circ})$
		$\sigma = \pm 6$			
8.09	63	1	1	0	10.93
7.44	15	0	2	0	11.89
6.22	94	0	1	1	14.22
5.90	65	1	2	0	15.01
5.221	22	1	1	1	16.97
4.581	100	2	1	0	19.36
4.462	47	1	2	1	19.88
4.412	31	1	3	0	20.11
3.936	60	2	0	1	22.57
3.805	3	2	1	1	23.36

Yttrium, Y

CAS registry no.
7440-65-5

Sample

The sample was obtained from the United Mineral and Chemical Corp., New York, NY. The part used was filed off with a file cleaned by dipping it for 10 seconds in a nitric acid solution.

Color

Dark gray

Structure

Hexagonal, Pb_3/mmc (194), $Z = 2$. The structure was done by Bommer [1939].

Lattice constants of this sample

$a = 3.6471(3) \text{ \AA}$
 $c = 5.7285(6)$

$c/a = 1.5707$

Volume

65.988 \AA^3

Density

(calculated) 4.474 g/cm^3

Figure of merit

$F_{21} = 89.6(0.011,22)$

Additional pattern

PDF card 12-702 [U.S. Bureau of Mines, Albany, OR].

Reference

Bommer, H. (1939). Z. Elektrochem. 45, 357.

$d(\text{\AA})$	I^{rel} $\sigma = \pm 1$	CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1^\circ \text{C}$			$2\theta (\text{)}^\circ$
		Internal standard Ag, $a = 4.08651 \text{ \AA}$			
3.159	26	1	0	0	28.23
2.865	25	0	0	2	31.19
2.765	100	1	0	1	32.35
2.122	12	1	0	2	42.58
1.8234	14	1	1	0	49.98
1.6338	12	1	0	3	56.26
1.5797	2	2	0	0	58.37
1.5378	14	1	1	2	60.12
1.5229	11	2	0	1	60.77
1.4323	2	0	0	4	65.07
1.3831	2	2	0	2	67.69
1.3041	2	1	0	4	72.41
1.2171	3	2	0	3	78.53
1.1937	1	2	1	0	80.38
1.1685	5	2	1	1	82.48
1.1262	3	1	1	4	86.31
1.1019	1	2	1	2	88.70
1.0770	2	1	0	5	91.32
1.0610	1	2	0	4	93.10
1.0529	1	3	0	0	94.04
1.0121	3	2	1	3	99.12

Zinc Acetate Hydrate, $C_4H_6O_4Zn \cdot 2H_2O$

Synonym

Zinc acetate dihydrate

CAS registry no.

5970-45-6

Sample

The sample was obtained from J. T. Baker Chemical Co., Phillipsburg, NJ.

Color

Colorless

Optical data

Biaxial (+), $N_\alpha = 1.49$, $N_\beta = 1.490$, $N_\gamma = 1.556$.
2V is large

Structure

Monoclinic, C2/c (15), Z = 4. [Whitney and Corvin, 1949]. The structure was determined by Van Niekerk et al. [1953].

Lattice constants of this sample

$a = 14.431(5) \text{ \AA}$

$b = 5.340(3)$

$c = 10.981(4)$

$\beta = 99.88(3)^\circ$

$a/b = 2.7024$

$c/b = 2.0564$

Volume cm^3

833.6 \AA^3

Density

(calculated) 1.749 g/cm³

Figure of merit

$F_{30} = 28.4(0.014, 74)$

Additional pattern

PDF card 14-902 [Whitney and Corvin, 1949]

Mislabeled $Zn(C_2H_3O_2) \cdot 2H_2O$

References

Van Niekerk, J. N., Schoening, F. R. L., and Talbot, J. H. (1953). *Acta Crystallogr.* **6**, 720.

Whitney, J. and Corvin, I. (1949). *Anal. Chem.* **21**, 645.

$d(\text{\AA})$	I^{rel}	hkl			$2\theta (\text{)}^\circ$
		$\sigma = \pm 2$			
7.10	100	2	0	0	12.46
5.411	2	0	0	2	16.37
5.004	3	1	1	0	17.71
4.714	8	-2	0	2	18.81
4.645	9	-1	1	1	19.09
4.436	23	1	1	1	20.00
3.987	21	2	0	2	22.28
3.789	10	-1	1	2	23.46
3.545	23	3	1	0	25.10
3.245	20	3	1	1	27.46
3.158	7	-3	1	2	28.24
2.846	3	1	1	3	31.41
2.805	1	3	1	2	31.88
2.688	4	-2	0	4	33.30
2.509	2	5	1	0	35.76
2.421	4	-5	1	2	37.10
2.403	3	2	2	1	37.39
2.366	4	5	1	1	38.00
2.296	2	-3	1	4	39.21
2.223	1	-5	1	3	40.54
2.155	4	5	1	2	41.89
2.137	3	-4	2	1	42.25
2.054	4	4	2	1	44.06
2.030	11	-1	1	5	44.59
1.997M	4	2	2	3	45.38
1.997M		-5	1	4	45.38
1.961	2	-3	1	5	46.26
1.924	2	-7	1	1	47.20
1.8203	1	7	1	1	50.07
1.8038M	2	-7	1	3	50.56
1.8038M		0	0	6	50.56
1.7827	1	2	2	4	51.20
1.7600	1	4	2	3	51.91
1.7135	2	6	2	1	53.43

Zirconium Fluoride, ZrF_4

Synonym

Zirconium tetrafluoride

CAS registry no.

7783-64-4

Sample

The sample was from Alfa Products, Thiokol/Ventron Division, Danvers, MA. It was heated to 300 °C for 3 days to dehydrate a small amount of the hydrate which was present.

Color

Colorless

Structure

Monoclinic, I2/a (15), $Z = 12$ [Schulze, 1934, Zachariasen, 1949]. The structure was determined by Burbank and Bensey [1956].

Lattice constants of this sample

$$a = 9.5585(13) \text{ \AA}$$

$$b = 9.9512(13)$$

$$c = 7.7071(14)$$

$$\beta = 94.520(1)^\circ$$

$$a/b = 0.9605$$

$$c/b = 0.7745$$

Volume

$$730.81 \text{ \AA}^3$$

Density

$$(\text{calculated}) 4.559 \text{ g/cm}^3$$

Polymorphism

Gaudreau [1965] prepared two other forms of ZrF_4 by heating $(\text{NH}_4)_3 \text{ ZrF}_7$ under various conditions. These forms were called alpha and gamma. Gaudreau called the form reported in the present work beta.

Figure of merit

$$F_{30} = 74.9(0.010, 40)$$

Additional patterns

PDF card 17-926 [Burbank and Bensey, 1956]

Amirthalirgam and Muralidharan [1964]

Brunton [1965]

References

Amirthalirgam, V. and Muralidharan, K. V. (1964). J. Inorg. Nucl. Chem. 26, 2038.

Brunton, G. (1965). J. Inorg. Nucl. Chem. 27, 1173.

Burbank, R. D. and Bensey, F. N. (1956). AEC Report K1280.

Gaudreau, B. (1965). Rev. Chim. Miner. 2, 1.

Schulze, G. E. R. (1934). Z. Kristallogr. Kristallgeometrie Kristallphys. Kristallchem. 89, 477.

Zachariasen, W. H. (1949). Acta Crystallogr. 2, 388.

CuK α_1 $\lambda = 1.540598 \text{ \AA}$; temp. $25 \pm 1 \text{ }^\circ\text{C}$					
Internal standard Ag, $a = 4.08651 \text{ \AA}$					
$d(\text{\AA})$	I^{rel} $\sigma = \pm 3$	hkl			$2\theta (\text{)}^\circ$
		1	1	0	
6.88	18	1	1	0	12.86
6.083	12	0	1	1	14.55
4.971	3	0	2	0	17.83
4.762	15	2	0	0	18.62
3.889	94	-1	2	1	22.85
3.875	100	-2	1	1	22.93
3.842	12	0	0	2	23.13
3.641	55	2	1	1	24.43
3.441M	99	2	2	0	25.87
3.441M		-1	1	2	25.87
3.276	36	1	1	2	27.20
3.133	7	1	3	0	28.47
3.112	17	-2	0	2	28.66
3.043M	38	0	3	1	29.33
3.043M		0	2	2	29.33
3.025	25	3	1	0	29.50
2.638	1L	-2	2	2	33.95
2.582	3	-3	2	1	34.71
2.530	2	2	3	1	35.45
2.494	5	2	2	2	35.98
2.479M	5	0	1	3	36.21
2.479M		3	2	1	36.21
2.470	3	-3	1	2	36.35
2.461	2	-1	3	2	36.48
2.382	2	4	0	0	37.74
2.310	1	-1	4	1	38.96
2.294M	1L	3	1	2	39.24
2.294M		3	3	0	39.24
2.284	1L	1	4	1	39.42
2.272	1L	-2	1	3	39.64
2.267	1L	-4	1	1	39.73
2.251	1L	-1	2	3	40.02
2.205	1	2	4	0	40.90
2.1722	1	4	1	1	41.54
2.1344	2	2	1	3	42.31
2.0994	1	-4	0	2	43.05
2.0883	1	0	4	2	43.29
2.0266	3	0	3	3	44.68
2.0218	4	-3	3	2	44.79
1.9566	13	4	0	2	46.37
1.9482	8	1	5	0	46.58
1.9423	8	-2	4	2	46.73
1.9349	16	-4	2	2	46.92
1.9264	12	0	5	1	47.14
1.9199M	34	0	0	4	47.31

Zirconium Fluoride, ZrF₄ - (continued)

d(Å)	I ^{rel}	hkl			2θ(°)
$\sigma = \pm 3$					
1.9199M		-3	4	1	47.31
1.9085	29	-2	3	3	47.61
1.8824	5	2	4	2	48.31
1.8715	14	5	1	0	48.61
1.8483	21	4	3	1	49.26
1.8316	12	-2	0	4	49.74
1.8258	10	2	3	3	49.91
1.7919M	41	3	2	3	50.92
1.7919M		0	2	4	50.92
1.7873	26	-4	1	3	51.06
1.7740	18	2	5	1	51.47
1.7625	7	-5	2	1	51.83
1.7484	20	-1	5	2	52.28
1.7367M	16	1	4	3	52.66
1.7367M		-5	1	2	52.66
1.7206	2	4	4	0	53.19
1.7064	5	5	2	1	53.67
1.6872	1L	3	5	0	54.33
1.6801	6	-3	1	4	54.58
1.6588	4	0	6	0	55.34
1.6527	5	5	3	0	55.56

Zirconium Oxide Chloride Hydrate, $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$

Synonym

Zirconium oxychloride octahydrate

Sample

The sample was made by slow evaporation at room temperature of an aqueous solution of ZrOCl_2 .

Color

Colorless

Structure

Tetragonal, $P4_21c$ (114), $Z = 8$. [Clearfield and Vaughan, 1956]. The structure was refined by Mak [1968].

Lattice constants of this sample

$$a = 17.094(3) \text{ \AA}$$

$$c = 7.713(2)$$

$$c/a = 0.4512$$

Volume

$$2253.8$$

Density

$$(\text{calculated}) 1.899 \text{ g/cm}^3$$

Figure of merit

$$F_{30} = 35.2(0.015, 58)$$

Reference intensity

$$I/I_{\text{corundum}} = 1.22(12)$$

Additional pattern

PDF card 21-1499 [Dept. of Physics, University College, Cardiff, Wales]

References

Clearfield, A. and Vaughan, P. A. (1956). Acta Crystallogr. 9, 555.

Mak, T. C. W. (1968). Can. J. Chem. 46, 3491.

$\text{CuK}\alpha_1 \lambda = 1.540598 \text{ \AA}; \text{ temp. } 25 \pm 1^\circ \text{C}$				
Internal standard Ag, $a = 4.08651 \text{ \AA}$				
$d(\text{\AA})$	I^{rel}	hkl	$2\theta (\text{^\circ})$	
$\sigma = \pm 4$				
12.10	100	1 1 0	7.30	
8.53	15	2 0 0	10.36	
7.66	4	2 1 0	11.55	
7.03	65	1 0 1	12.58	
6.05	10	2 2 0	14.63	
5.417	11	3 1 0	16.35	
4.739	1	3 2 0	18.71	
4.429	7	3 1 1	20.03	
4.141	8	4 1 0	21.44	
4.028	52	3 3 0	22.05	

$d(\text{\AA})$	I^{rel}	hkl	$2\theta (\text{^\circ})$
$\sigma = \pm 4$			
3.857	14	0 0 2	23.04
3.828	12	4 2 0	23.22
3.679	17	1 1 2	24.17
3.423M	27	4 2 1	26.01
3.423M		4 3 0	26.01
3.356	4	5 1 0	26.54
3.192	10	3 0 2	27.93
3.173	21	5 2 0	28.10
3.126	43	4 3 1	28.53
3.021	11	4 4 0	29.54
2.936	10	5 2 1	30.42
2.848	9	6 0 0	31.39
2.810	3	6 1 0	31.82
2.740	10	5 3 1	32.65
2.672M	1	6 0 1	33.51
2.672M		5 4 0	33.51
2.641	2	6 1 1	33.91
2.558	7	4 3 2	35.05
2.547	5	6 3 0	35.21
2.525	5	5 4 1	35.53
2.451	4	5 2 2	36.64
2.419M	3	6 3 1	37.14
2.419M		7 1 0	37.14
2.378	5	4 4 2	37.80
2.345	5	3 0 3	38.36
2.327	7	7 0 1	38.66
2.321	8	3 1 3	38.76
2.291	4	6 0 2	39.30
2.267	9	6 4 1	39.73
2.259	13	3 2 3	39.88
2.245M	6	7 2 1	40.13
2.245M		7 3 0	40.13
2.205	5	4 0 3	40.90
2.189	6	6 5 0	41.21
2.155	2	7 3 1	41.88
2.133	10	4 2 3	42.34
2.124	12	6 3 2	42.52
2.119	12	7 4 0	42.63
2.053	13	4 3 3	44.07
2.047	16	5 5 2	44.20
2.014	2	6 6 0	44.98
2.007	6	7 2 2	45.14
2.000	6	8 3 0	45.30
1.987	5	7 5 0	45.62
1.933	9	5 3 3	46.98
1.925	8	7 5 1	47.17
1.854	8	7 6 0	49.10
1.834	3	9 1 1	49.66
1.811	8	8 5 0	50.34

INORGANIC NAMES

	Vol. or Sec.	Page		Vol. or Sec.	Page
Aluminum, Al	1	11	Ammonium aluminum fluoride, $(\text{NH}_4)_3\text{AlF}_6$	9m	5
Aluminum antimony, AlSb	4	72	Ammonium aluminum selenate hydrate, $\text{NH}_4\text{Al}(\text{SeO}_4)_2 \cdot 12\text{H}_2\text{O}$	9m	6
Aluminum bismuth oxide, $\text{Al}_4\text{Bi}_2\text{O}_9$	11m	5	Ammonium aluminum sulfate, $\text{NH}_4\text{Al}(\text{SO}_4)_2$	10m	5
Aluminum borate, $\text{Al}_{18}\text{B}_4\text{O}_{33}$	17m	5	Ammonium aluminum sulfate hydrate (tschermigite), $\text{NH}_4\text{Al}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	3
Aluminum chloride, AlCl_3	9m	61	Ammonium azide, NH_4N_3	9	4
Aluminum chloride hydrate (chloraluminite), $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$	7	3	Ammonium beryllium fluoride, $(\text{NH}_4)_2\text{BeF}_4$	3m	5
Aluminum copper, Al_4Cu_9	11m	79	Ammonium borate hydrate, $\text{NH}_4\text{B}_5\text{O}_8 \cdot 4\text{H}_2\text{O}$	17m	7
Aluminum fluoride hydroxide silicate, topaz, $\text{Al}_2(\text{F},\text{OH})_2\text{SiO}_4$	1m	4	Ammonium boron fluoride, NH_4BF_4	3m	6
Aluminum iron, AlFe	18m	5	Ammonium bromide, NH_4Br	2	49
Aluminum iron antimony oxide, bahianite, $\text{Al}_{5.66}\text{Fe}_{0.09}\text{Sb}_{2.95}\text{O}_{16}$	16m	87	Ammonium cadmium bromide, $(\text{NH}_4)_4\text{CdBr}_6$	15m	9
Aluminum iron oxide, AlFeO_3	15m	7	Ammonium cadmium chloride, NH_4CdCl_3	5m	6
Aluminum lithium, Al_4Li_9	10m	98	Ammonium cadmium sulfate, $(\text{NH}_4)_2\text{Cd}_2(\text{SO}_4)_3$	7m	5
Aluminum nickel, AlNi	6m	82	Ammonium cadmium sulfate hydrate, $(\text{NH}_4)_2\text{Cd}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	5
Aluminum nitride, AlN	12m	5	Ammonium calcium sulfate, $(\text{NH}_4)_2\text{Ca}_2(\text{SO}_4)_3$	8m	7
Aluminum nitrate hydrate, $\text{Al}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$	11m	6	Ammonium cerium nitrate, $(\text{NH}_4)_2\text{Ce}(\text{NO}_3)_6$	18m	6
Aluminum oxide (corundum), $\alpha\text{-Al}_2\text{O}_3$..	9	3	Ammonium chlorate, NH_4ClO_4 (orthorhombic)	7	6
Aluminum oxide hydrate (boehmite), $\alpha\text{-Al}_2\text{O}_3 \cdot \text{H}_2\text{O}$	3	38	Ammonium chloride (salammoniac), NH_4Cl	1	59
Aluminum oxide hydrate, diaspore, $\beta\text{-Al}_2\text{O}_3 \cdot \text{H}_2\text{O}$	3	41	Ammonium chromium sulfate hydrate, $\text{NH}_4\text{Cr}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	7
Aluminum phosphate, $\text{Al}(\text{PO}_4)_3$	2m	3	Ammonium cobalt (II) chloride, NH_4CoCl_3	6m	5
Aluminum phosphate (berlinite), AlPO_4 (trigonal)	10	3	Ammonium cobalt fluoride, NH_4CoF_3	8m	9
Aluminum phosphate, AlPO_4 (orthorhombic)	10	4	Ammonium copper bromide hydrate, $(\text{NH}_4)_2\text{CuBr}_4 \cdot 2\text{H}_2\text{O}$	10m	6
Aluminum plutonium, Al_3Pu	15m	77	Ammonium copper chloride, NH_4CuCl_3	7m	7
Aluminum rhenium, AlRe	15m	79	Ammonium copper chloride hydrate, $(\text{NH}_4)_2\text{CuCl}_4 \cdot 2\text{H}_2\text{O}$	12m	6
Aluminum rhenium, Al_{12}Re	15m	80	Ammonium copper fluoride, NH_4CuF_3	11m	8
Aluminum rhodium, AlRh	15m	82	Ammonium gallium sulfate hydrate, $\text{NH}_4\text{Ga}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	9
Aluminum ruthenium, AlRu	15m	83	Ammonium germanium fluoride, $(\text{NH}_4)_2\text{GeF}_6$	6	8
Aluminum ruthenium, Al_6Ru	15m	84	Ammonium hydrogen arsenate, $\text{NH}_4\text{H}_2\text{AsO}_4$	16m	9
Aluminum samarium, AlSm_2	15m	86	Ammonium hydrogen carbonate (teschemacherite), $(\text{NH}_4)\text{HCO}_3$	9	5
Aluminum samarium, AlSm_3	15m	88	Ammonium hydrogen phosphate, $\text{NH}_4\text{H}_2\text{PO}_4$	4	64
Aluminum samarium, Al_2Sm	15m	90	Ammonium iodate, NH_4IO_3	10m	7
Aluminum samarium, Al_3Sm	15m	91	Ammonium iodide, NH_4I	4	56
Aluminum silicate (mullite), $\text{Al}_6\text{Si}_2\text{O}_{13}$	3m	3	Ammonium iridium chloride, $(\text{NH}_4)_2\text{IrCl}_6$	8	6
Aluminum sulfate, $\text{Al}_2(\text{SO}_4)_3$	15m	8	Ammonium iron chloride hydrate, $(\text{NH}_4)_2\text{FeCl}_5 \cdot \text{H}_2\text{O}$	14m	7
Aluminum technetium, Al_6Tc	15m	93	Ammonium iron fluoride, $(\text{NH}_4)_3\text{FeF}_6$	9m	9
Aluminum terbium, Al_2Tb	15m	95	Ammonium iron sulfate, $\text{NH}_4\text{Fe}(\text{SO}_4)_2$	10m	8
Aluminum terbium, Al_2Tb_3	15m	96	Ammonium iron sulfate hydrate, $\text{NH}_4\text{Fe}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	10
Aluminum thorium uranium, Al_6ThU	15m	98	Ammonium lead chloride, $(\text{NH}_4)_2\text{PbCl}_6$	11m	10
Aluminum tungsten, Al_5W , δ -phase	15m	100	Ammonium magnesium aluminum fluoride, $\text{NH}_4\text{MgAlF}_6$	10m	9
Aluminum tungsten oxide, $\text{Al}_2(\text{WO}_4)_3$..	11m	7			
Aluminum vanadium, Al_{10}V	15m	102			
Aluminum vanadium, $\text{Al}_{10.25}\text{V}$	15m	104			
Aluminum vanadium, Al_{23}V_4	15m	106			
Aluminum vanadium, Al_{45}V_7 , α' -phase ..	15m	108			
Aluminum ytterbium, Al_2Yb	15m	111			
Aluminum yttrium, Al_3Y	15m	112			

Further work on this program is in progress, and it is anticipated that additional sections will be issued. Therefore, the cumulative index here is not necessarily the concluding index for the project.

m - Monograph 25.

A mineral name in () indicates a synthetic sample.

	Vol. or Sec.	Page		Vol. or Sec.	Page
Ammonium magnesium chromium oxide hydrate, $(\text{NH}_4)_2\text{Mg}(\text{CrO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	10	Antimony cobalt, CoSb_2	15m	122
Ammonium magnesium phosphate hydrate (struvite), $\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O}$	3m	41	Antimony cobalt, CoSb_2	15m	122
Ammonium manganese chloride hydrate, $(\text{NH}_4)_2\text{MnCl}_4 \cdot 2\text{H}_2\text{O}$	11m	11	Antimony cobalt titanium, CoSbTi ..	15m	124
Ammonium manganese(II) fluoride, NH_4MnF_3	5m	8	Antimony cobalt vanadium, CoSbV ...	15m	125
Ammonium manganese sulfate, $(\text{NH}_4)_2\text{Mn}_2(\text{SO}_4)_3$	7m	8	Antimony dysprosium, DySb	4m	41
Ammonium manganese sulfate hydrate, $(\text{NH}_4)_2\text{Mn}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	12	Antimony erbium, ErSb	4m	41
Ammonium mercury chloride, NH_4HgCl_3	8m	14	Antimony(III) fluoride, SbF_3	2m	4
Ammonium molybdenum oxide phosphate hydrate, $(\text{NH}_4)_3(\text{MoO}_3)_{12}\text{PO}_4 \cdot 4\text{H}_2\text{O}$..	8	10	Antimony gadolinium, GdSb	4m	42
Ammonium nickel(II) chloride, NH_4NiCl_3	6m	6	Antimony gallium, GaSb	6	30
Ammonium nickel chromium oxide hydrate, $(\text{NH}_4)_2\text{Ni}(\text{CrO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	16	Antimony gold (aurostibite), AuSb_2	7	18
Ammonium nickel sulfate hydrate, $(\text{NH}_4)_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	17m	9	Antimony indium, InSb	4	73
Ammonium nitrate (nitrammite), NH_4NO_3	7	4	Antimony(III) iodide, SbI_3	6	16
Ammonium osmium bromide, $(\text{NH}_4)_2\text{OsBr}_6$	3	71	Antimony iron titanium oxide hydroxide, derbylite, $\text{SbFe}_4\text{Ti}_3\text{O}_{13}(\text{OH})$	16m	89
Ammonium osmium chloride, $(\text{NH}_4)_2\text{OsCl}_6$	1m	6	Antimony lanthanum, LaSb	4m	42
Ammonium palladium chloride, $(\text{NH}_4)_2\text{PdCl}_4$	6	6	Antimony neodymium, NdSb	4m	43
Ammonium palladium chloride, $(\text{NH}_4)_2\text{PdCl}_6$	8	7	Antimony(III) oxide (senarmontite), Sb_2O_3 (cubic)	3	31
Ammonium platinum bromide, $(\text{NH}_4)_2\text{PtBr}_6$	9	6	Antimony(III) oxide, valentinite, Sb_2O_3 (orthorhombic)	10	6
Ammonium platinum chloride, $(\text{NH}_4)_2\text{PtCl}_6$	5	3	Antimony(IV) oxide (cervantite), Sb_2O_4	10	8
Ammonium potassium iron chloride hydrate (kremersite), $(\text{NH}_4,\text{K})_2\text{FeCl}_5 \cdot \text{H}_2\text{O}$	14m	8	Antimony oxide, Sb_6O_{13}	16m	14
Ammonium rhenium oxide, NH_4ReO_4 ...	9	7	Antimony praseodymium, PrSb	4m	43
Ammonium selenium bromide, $(\text{NH}_4)_2\text{SeBr}_6$	8	4	Antimony scandium, SbSc	4m	44
Ammonium silicon fluoride (cryptohalite), $(\text{NH}_4)_2\text{SiF}_6$	5	5	Antimony selenide, Sb_2Se_3	3m	7
Ammonium strontium chromium oxide, $(\text{NH}_4)_2\text{Sr}(\text{CrO}_4)_2$	14m	9	Antimony silver sulfide, AgSbS_2 (cubic)	5m	48
Ammonium strontium sulfate, $(\text{NH}_4)_2\text{Sr}(\text{SO}_4)_2$	15m	11	Antimony silver sulfide (miargyrite), AgSbS_2 (monoclinic)	5m	49
Ammonium sulfate (mascagnite), $(\text{NH}_4)_2\text{SO}_4$	9	8	Antimony silver sulfide (pyrargyrite), Ag_3SbS_3 (trigonal)	5m	51
Ammonium sulfate, $(\text{NH}_4)_2\text{S}_2\text{O}_3$	17m	11	Antimony silver telluride, AgSbTe_2	3m	47
Ammonium sulfate, $(\text{NH}_4)_2\text{S}_2\text{O}_8$	17m	13	Antimony(III) sulfide (stibnite), Sb_2S_3	5	6
Ammonium tellurium bromide, $(\text{NH}_4)_2\text{TeBr}_6$	8	5	Antimony telluride, Sb_2Te_3	3m	8
Ammonium tellurium chloride, $(\text{NH}_4)_2\text{TeCl}_6$	8	8	Antimony terbium, SbTb	5m	61
Ammonium tin chloride, $(\text{NH}_4)_2\text{SnCl}_6$	5	4	Antimony thorium, SbTh	4m	44
Ammonium tin fluoride, NH_4SnF_3	18m	8	Antimony thulium, SbTm	4m	45
Ammonium titanium fluoride, $(\text{NH}_4)_2\text{TiF}_6$	16m	10	Antimony tin, SbSn	16m	15
Ammonium vanadium oxide, NH_4VO_3 ...	8	9	Antimony ytterbium, SbYb	4m	45
Ammonium zinc chloride, $(\text{NH}_4)_3\text{ZnCl}_5$	15m	12	Antimony yttrium, SbY	4m	46
Ammonium zinc fluoride, NH_4ZnF_3 ...	8m	18	Arsenic, As	3	6
Ammonium zirconium fluoride, $(\text{NH}_4)_3\text{ZrF}_7$	6	14	Arsenic bromide, AsBr_3	18m	9
Antimony cobalt, CoSb	15m	121	Arsenic cerium, AsCe	4m	51
			Arsenic(III) iodide, AsI_3	13m	7
			Arsenic oxide (arsenolite), As_2O_3 (cubic)	1	51
			Arsenic oxide, claudetite, As_2O_3 (monoclinic)	3m	9
			Barium, Ba	4	7
			Barium aluminum oxide, BaAl_2O_4	5m	11
			Barium aluminum oxide, $\text{Ba}_3\text{Al}_2\text{O}_6$	12m	7
			Barium aluminum titanium oxide, $\text{Ba}_{1.23}\text{Al}_{2.46}\text{Ti}_{5.54}\text{O}_{16}$	18m	10
			Barium arsenate, $\text{Ba}_3(\text{AsO}_4)_2$	2m	6
			Barium borate, Ba_4O_7	4m	6
			Barium borate, high form, BaB_2O_4 ..	4m	4
			Barium borate, $\text{BaB}_8\text{O}_{13}$	7m	10
			Barium bromate hydrate, $\text{Ba}(\text{BrO}_3)_2 \cdot \text{H}_2\text{O}$	8m	19
			Barium bromide, BaBr_2	10m	63
			Barium bromide fluoride, BaBrF	10m	10
			Barium bromide hydrate, $\text{BaBr}_2 \cdot \text{H}_2\text{O}$	3m	10

	Vol. or Sec.	Page		Vol. or Sec.	Page
Barium bromide hydrate, $\text{BaBr}_2 \cdot 2\text{H}_2\text{O}$	16m	16	Barium strontium nitrate, $\text{Ba}_{.75}\text{Sr}_{.25}(\text{NO}_3)_2$	12m	42
Barium cadmium chloride hydrate, $\text{BaCdCl}_4 \cdot 4\text{H}_2\text{O}$	15m	14	Barium sulfate (baryte), BaSO_4	10m	12
Barium calcium nitrate, $\text{Ba}_{.25}\text{Ca}_{.75}(\text{NO}_3)_2$	12m	38	Barium sulfide, BaS	7	8
Barium calcium nitrate, $\text{Ba}_{.50}\text{Ca}_{.50}(\text{NO}_3)_2$	12m	38	Barium thiosulfate hydrate, $\text{BaS}_2\text{O}_3 \cdot \text{H}_2\text{O}$	16m	20
Barium calcium nitrate, $\text{Ba}_{.75}\text{Ca}_{.25}(\text{NO}_3)_2$	12m	38	Barium tin oxide, BaSnO_3	3m	11
Barium calcium tungsten oxide, Ba_2CaW_6	9m	10	Barium titanium oxide, BaTiO_3	3	45
Barium carbonate (witherite), BaCO_3 (orthorhombic)	2	54	Barium titanium silicate (fresnoite), $\text{Ba}_2\text{TiSi}_2\text{O}_8$	9m	14
Barium carbonate, BaCO_3 (cubic) at 1075 °C	10	11	Barium tungsten oxide, BaWO_4	7	9
Barium chlorate, $\text{Ba}(\text{ClO}_3)_2$	16m	17	Barium tungsten oxide, Ba_2W_5	12m	14
Barium chlorate hydrate, $\text{Ba}(\text{ClO}_3)_2 \cdot \text{H}_2\text{O}$	8m	21	Barium vanadium oxide, $\text{Ba}_3(\text{VO}_4)_2$	14m	10
Barium chlorate hydrate, $\text{Ba}(\text{ClO}_4)_2 \cdot 3\text{H}_2\text{O}$	2m	7	Barium zirconium oxide, BaZrO_3	5	8
Barium chloride, BaCl_2 , (cubic) ...	9m	13	Beryllium, alpha, Be	9m	64
Barium chloride, BaCl_2 , (orthorhombic)	9m	11	Beryllium aluminum oxide (chrysoberyl), BeAl_2O_4	9	10
Barium chloride fluoride, BaClF ...	10m	11	Beryllium aluminum silicate, beryl, $\text{Be}_3\text{Al}_2(\text{SiO}_3)_6$	9	13
Barium chloride hydrate, $\text{BaCl}_2 \cdot 2\text{H}_2\text{O}$	12m	9	Beryllium calcium iron magnesium aluminum phosphate hydroxide hydrate, roscherite (monoclinic), $\text{Be}_2\text{Ca}(\text{Fe}_{.3}\text{Mg}_{.7})_2\text{Al}_{.67}(\text{PO}_4)_3(\text{OH})_3 \cdot 2\text{H}_2\text{O}$	16m	96
Barium chromium oxide, $\text{Ba}_3(\text{CrO}_4)_2$	15m	16	Beryllium calcium manganese aluminum iron phosphate hydroxide hydrate, roscherite (triclinic), $\text{Be}_4\text{Ca}_2(\text{Mn}_{.91}\text{Mg}_{.04}\text{Ca}_{.05})(\text{Al}_{.13}\text{Fe}_{.42}$	16m	100
Barium fluoride, BaF_2	1	70	$\text{Mn}_{.12})(\text{PO}_4)_6(\text{OH})_4 \cdot 6\text{H}_2\text{O}$	16m	
Barium hydroxide phosphate, $\text{Ba}_5(\text{OH})(\text{PO}_4)_3$	11m	12	Beryllium calcium oxide, $\text{Be}_{17}\text{Ca}_{12}\text{O}_{29}$	7m	89
Barium iodide, BaI_2	10m	66	Beryllium chromium oxide, BeCr_2O_4	10	12
Barium iodide hydrate, $\text{BaI}_2 \cdot 2\text{H}_2\text{O}$..	16m	18	Beryllium cobalt, BeCo	5m	62
Barium lead chloride, BaPbCl_4	11m	13	Beryllium germanium oxide, Be_2GeO_4	10	13
Barium lead nitrate, $\text{Ba}_{.33}\text{Pb}_{.67}(\text{NO}_3)_2$	12m	40	Beryllium lanthanum oxide, $\text{Be}_2\text{La}_2\text{O}_5$	9m	65
Barium lead nitrate, $\text{Ba}_{.67}\text{Pb}_{.33}(\text{NO}_3)_2$	12m	40	Beryllium niobium, Be_2Nb	7m	92
Barium manganese oxide, BaMnO_4	18m	11	Beryllium nitride, Be_3N_2	18m	15
Barium manganese oxide, $\text{Ba}(\text{MnO}_4)_2$	15m	17	Beryllium oxide (bromellite), BeO	1	36
Barium molybdenum oxide, BaMoO_4 ...	7	7	Beryllium palladium, BePd	5m	62
Barium molybdenum oxide, Ba_2MoO_5 ..	12m	10	Beryllium silicate, phenakite, Be_2SiO_4	8	11
Barium neodymium titanium oxide, $\text{BaNd}_2\text{Ti}_3\text{O}_{10}$	18m	12	Beryllium sulfate, BeSO_4	15m	20
Barium nitrate (nitrobarite), $\text{Ba}(\text{NO}_3)_2$	11m	14	Bismuth, Bi	3	20
Barium nitrite hydrate, $\text{Ba}(\text{NO}_2)_2 \cdot \text{H}_2\text{O}$	15m	18	Bismuth bromide oxide, BiOBr	8	14
Barium oxide, BaO	9m	63	Bismuth cerium, BiCe	4m	46
Barium oxide, BaO_2	6	18	Bismuth chloride oxide (bismoclite), BiOCl	4	54
Barium phosphate, $\text{Ba}_2\text{P}_2\text{O}_7$, (high form)	16m	19	Bismuth dysprosium, BiDy	4m	47
Barium phosphate, $\text{Ba}_3(\text{PO}_4)_2$	12m	12	Bismuth erbium, BiEr	4m	47
Barium selenide, BaSe	5m	61	Bismuth fluoride, BiF_3	1m	7
Barium silicate, $\beta\text{-BaSiO}_3$	13m	8	Bismuth holmium, BiHo	4m	48
Barium silicate (sanbornite), $\beta\text{-BaSi}_2\text{O}_5$	13m	10	Bismuth(III) iodide, BiI_3	6	20
Barium silicate, Ba_2SiO_4	13m	12	Bismuth iodide oxide, BiOI	9	16
Barium silicate, $\text{Ba}_2\text{Si}_3\text{O}_8$	13m	13	Bismuth lanthanum, BiLa	4m	48
Barium silicate, Ba_3SiO_5	13m	15	Bismuth neodymium, BiNd	4m	49
Barium silicate, $\text{Ba}_3\text{Si}_5\text{O}_{13}$	13m	17	Bismuth oxide (bismite), $\alpha\text{-Bi}_2\text{O}_3$..	3m	17
Barium silicon fluoride, BaSiF_6 ...	4m	7	Bismuth phosphate, BiPO_4 (monoclinic)	3m	11
Barium strontium nitrate, $\text{Ba}_{.25}\text{Sr}_{.75}(\text{NO}_3)_2$	12m	42	Bismuth phosphate, BiPO_4 (trigonal)	3m	13
Barium strontium nitrate, $\text{Ba}_{.50}\text{Sr}_{.50}(\text{NO}_3)_2$	12m	42	Bismuth praseodymium, BiPr	4m	49
			Bismuth selenide (paraguanajuatite), Bi_2Se_3	18m	16
			Bismuth sulfide (bismuthinite), Bi_2S_3	5m	13
			Bismuth telluride, BiTe	4m	50
			Bismuth telluride (tellurobis-muthite), Bi_2Te_3	3m	16

	Vol. or Sec.	Page		Vol. or Sec.	Page
Bismuth vanadium oxide, high form, BiVO_4 (monoclinic)	3m	14	Calcium carbonate (aragonite), CaCO_3 (orthorhombic, calculated pattern)	14m	44
Bismuth vanadium oxide, low form, BiVO_4 (tetragonal)	3m	14	Calcium carbonate (calcite), CACO_3 (hexagonal)	2	51
Boron oxide, B_2O_3 , phase 1	10m	70	Calcium chloride (hydrophilite), CaCl_2	11m	18
Cadmium, Cd	3	10	Calcium chloride fluoride, CaClF ..	10m	17
Cadmium ammine chloride, $\text{Cd}(\text{NH}_3)_2\text{Cl}_2$	10m	14	Calcium chloride hydrate, $\text{CaCl}_2 \cdot 4\text{H}_2\text{O}$	11m	73
Cadmium borate, CdB_4O_7	16m	24	Calcium chloride hydrate (antarcticite), $\text{CaCl}_2 \cdot 6\text{H}_2\text{O}$	12m	16
Cadmium bromate hydrate, $\text{Cd}(\text{BrO}_3) \cdot 2\text{H}_2\text{O}$	17m	14	Calcium chromium germanium oxide, $\text{Ca}_3\text{Cr}_2(\text{GeO}_4)_3$	10	16
Cadmium bromide, CdBr_2	9	17	Calcium chromium iron titanium oxide, loveringite, $\text{Ca}_{.72}\text{RE}_{.33}(\text{Y},$ $\text{Th},\text{U},\text{Pb})_{.05}\text{Ti}_{12.48}\text{Fe}_{3.38}\text{Cr}_{2.24}$ $\text{Mg}_{.92}\text{Zr}_{.58}\text{Al}_{.39}\text{V}_{.21}\text{Mn}_{.04}\text{O}_{38}$	16m	106
Cadmium bromide chloride, CdBrCl ..	11m	15	Calcium chromium oxide (chromatite), CaCrO_4	7	13
Cadmium carbonate (otavite), CdCO_3 ..	7	11	Calcium chromium oxide, $\text{Ca}_3(\text{CrO}_4)_2$..	15m	22
Cadmium cerium, CdCe	5m	63	Calcium chromium silicate (uvarovite), $\text{Ca}_3\text{Cr}_2(\text{SiO}_4)_3$	10	17
Cadmium chlorate hydrate, $\text{Cd}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$	3m	19	Calcium cyanamide, CaCN_2	18m	19
Cadmium chloride, CdCl_2	9	18	Calcium fluoride (fluorite), CaF_2 ..	1	69
Cadmium chromium oxide, CdCr_2O_4 ..	5m	16	Calcium fluoride phosphate (fluorapatite), $\text{Ca}_5\text{F}(\text{PO}_4)_3$	3m	22
Cadmium copper, Cd_8Cu_5	11m	81	Calcium fluoride phosphate hydrate, $\text{CaFPO}_3 \cdot 2\text{H}_2\text{O}$	15m	24
Cadmium cyanide, $\text{Cd}(\text{CN})_2$	2m	8	Calcium gallium germanium oxide, $\text{Ca}_3\text{Ga}_2(\text{GeO}_4)_3$	10	18
Cadmium fluoride, CdF_2	10m	15	Calcium hydrogen phosphate hydrate, $\text{Ca}_8\text{H}_2(\text{PO}_4)_6 \cdot 5\text{H}_2\text{O}$	13m	21
Cadmium iron oxide, CdFe_2O_4	9m	16	Calcium hydrogen phosphate sulfate hydrate, $\text{Ca}_2\text{HPO}_4\text{SO}_4 \cdot 4\text{H}_2\text{O}$	16m	109
Cadmium lanthanum, CdLa	5m	63	Calcium hydroxide (portlandite), $\text{Ca}(\text{OH})_2$	1	58
Cadmium manganese oxide, CdMn_2O_4 ..	10m	16	Calcium iodate (lautarite), $\text{Ca}(\text{IO}_3)_2$	14m	12
Cadmium molybdenum oxide, CdMoO_4 ..	6	21	Calcium iodate hydrate, $\text{Ca}(\text{IO}_3)_2 \cdot 6\text{H}_2\text{O}$	14m	13
Cadmium nitrate hydrate, $\text{Cd}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$	7m	93	Calcium iron germanium oxide, $\text{Ca}_3\text{Fe}_2(\text{GeO}_4)_3$	10	19
Cadmium oxide, CdO	2	27	Calcium iron oxide, CaFe_2O_4	18m	20
Cadmium oxide, CdO (ref. standard)	8m	2	Calcium iron silicate (andradite), $\text{Ca}_3\text{Fe}_2\text{Si}_3\text{O}_12$	9	22
Cadmium phosphate, $\text{Cd}_2\text{P}_2\text{O}_7$	16m	26	Calcium iron silicate hydroxide, julgoldite, $\text{Ca}_2\text{Fe}_3\text{Si}_3\text{O}_{10}(\text{OH},\text{O})_2(\text{OH})_2$	10m	72
Cadmium phosphate, $\text{Cd}_3(\text{PO}_4)_2$	16m	27	Calcium lead nitrate, $\text{Ca}_{.33}\text{Pb}_{.67}(\text{NO}_3)_2$	12m	44
Cadmium praseodymium, CdPr	5m	64	Calcium lead nitrate, $\text{Ca}_{.67}\text{Pb}_{.33}(\text{NO}_3)_2$	12m	44
Cadmium selenide (cadmoselite), CdSe (hexagonal)	7	12	Calcium magnesium silicate (diopside), $\text{CaMg}(\text{SiO}_3)_2$	5m	17
Cadmium silicate, Cd_2SiO_4	13m	19	Calcium molybdenum oxide (powellite), CaMoO_4	6	22
Cadmium silicate, Cd_3SiO_5	13m	20	Calcium nitrate, $\text{Ca}(\text{NO}_3)_2$	7	14
Cadmium sulfate, CdSO_4	3m	20	Calcium oxide (lime), CaO	1	43
Cadmium sulfate hydrate, $\text{CdSO}_4 \cdot \text{H}_2\text{O}$	6m	10	Calcium oxide (lime), CaO (calculated pattern)	14m	49
Cadmium sulfate hydrate, $3\text{CdSO}_4 \cdot 8\text{H}_2\text{O}$	6m	8	Calcium oxide phosphate, $\text{Ca}_4\text{O}(\text{PO}_4)_2$..	12m	17
Cadmium sulfide (greenockite), CdS ..	4	15	Calcium phosphate, $\beta\text{-Ca}_2\text{P}_2\text{O}_7$	7m	95
Cadmium telluride, CdTe	3m	21	Calcium platinum oxide, Ca_4PtO_6 ..	10m	18
Cadmium titanium oxide, CdTiO_3 ..	15m	21	Calcium selenide, CaSe	5m	64
Cadmium tungsten oxide, CdWO_4	2m	8			
Calcium, Ca	9m	68			
Calcium aluminum germanium oxide, $\text{Ca}_3\text{Al}_2(\text{GeO}_4)_3$	10	15			
Calcium aluminum hydroxide, $\text{Ca}_3\text{Al}_2(\text{OH})_{12}$	11m	16			
Calcium aluminum iron oxide (brownmillerite), $\text{Ca}_4\text{Al}_2\text{Fe}_2\text{O}_{10}$..	16m	28			
Calcium aluminum oxide, $\text{Ca}_3\text{Al}_2\text{O}_6$..	5	10			
Calcium aluminum oxide (mayenite), $\text{Ca}_{12}\text{Al}_{14}\text{O}_{33}$	9	20			
Calcium aluminum sulfate hydrate (ettringite), $\text{Ca}_6\text{Al}_2\text{S}_3\text{O}_{18} \cdot 3\text{H}_2\text{O}$..	8	3			
Calcium borate, CaB_2O_4	18m	17			
Calcium borate, CaB_2O_4 (calculated pattern)	15m	136			
Calcium borate hydrate, hexahydroboroborite, $\text{Ca}[\text{B}(\text{OH})_4]_2 \cdot 2\text{H}_2\text{O}$	16m	104			
Calcium boride, CaB_6	16m	29			
Calcium bromide, CaBr_2	11m	70			
Calcium bromide hydrate, $\text{CaBr}_2 \cdot 6\text{H}_2\text{O}$	8	15			
Calcium carbonate (aragonite), CaCO_3 (orthorhombic)	3	53			

	Vol. or Sec.	Page		Vol. or Sec.	Page
Calcium strontium nitrate, $\text{Ca}_{.33}\text{Sr}_{.67}(\text{NO}_3)_2$	12m	46	Cesium chromium sulfate hydrate, $\text{CsCr}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	8	21
Calcium strontium nitrate, $\text{Ca}_{.67}\text{Sr}_{.33}(\text{NO}_3)_2$	12m	46	Cesium cobalt(II) chloride, CsCoCl_3	6m	11
Calcium sulfate (anhydrite), CaSO_4	4	65	Cesium cobalt chloride, Cs_2CoCl_4	11m	19
Calcium sulfate hydrate (bassanite), $\text{CaSO}_4 \cdot 0.5\text{H}_2\text{O}$	18m	22	Cesium copper(II) chloride, CsCuCl_3	5m	22
Calcium sulfate hydrate (gypsum), $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$	17m	16	Cesium copper chloride, Cs_2CuCl_4	11m	20
Calcium sulfide (oldhamite), CaS	7	15	Cesium copper sulfate hydrate, $\text{Cs}_2\text{Cu}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	14
Calcium telluride, CaTe	4m	50	Cesium fluoride, CsF	3m	26
Calcium tin oxide, CaSnO_3	17m	18	Cesium gallium sulfate hydrate, $\text{CsGa}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	8	23
Calcium titanium oxide (perovskite), CaTiO_3	9m	17	Cesium germanium fluoride, Cs_2GeF_6	5	17
Calcium tungsten oxide, Ca_3W_6	9m	19	Cesium iodate, CsIO_3	15m	26
Calcium tungsten oxide, scheelite, CaWO_4	6	23	Cesium iodide, CsI	4	47
Carbon, diamond, C	2	5	Cesium iodine bromide, CsI_2Br	7m	103
Cerium arsenate, CeAsO_4	4m	8	Cesium iodine chloride, CsICl_2	3	50
Cerium(III) chloride, CeCl_3	1m	8	Cesium iron chloride hydrate, $\text{Cs}_2\text{FeCl}_5 \cdot \text{H}_2\text{O}$	14m	14
Cerium cobalt, CeCo_2	13m	50	Cesium iron sulfate hydrate, $\text{Cs}_2\text{Fe}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	16
Cerium cobalt, $\text{Ce}_{24}\text{Co}_{11}$	13m	51	Cesium iron sulfate hydrate, $\text{CsFe}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	28
Cerium copper, CeCu_6	7m	99	Cesium lead(II) chloride, CsPbCl_3 (tetragonal)	5m	24
Cerium(III) fluoride, CeF_3	8	17	Cesium lead fluoride, CsPbF_3	8m	26
Cerium gallium, CeGa_2	13m	54	Cesium lithium cobalt cyanide, $\text{CsLiCo}(\text{CN})_6$	10m	79
Cerium magnesium, CeMg	5m	65	Cesium lithium fluoride, CsLiF_2	7m	105
Cerium magnesium, CeMg_3	13m	56	Cesium magnesium chromium oxide, $\text{Cs}_2\text{Mg}_2(\text{CrO}_4)_3$	8m	27
Cerium nickel, CeNi_2	13m	58	Cesium magnesium chromium oxide hydrate, $\text{Cs}_2\text{Mg}(\text{CrO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	29
Cerium niobium oxide, CeNbO_4	18m	25	Cesium magnesium sulfate hydrate, $\text{Cs}_2\text{Mg}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	18
Cerium niobium titanium oxide (aeschnyrite), CeNbTiO_6	3m	24	Cesium magnesium titanium oxide, $\text{Cs}_{1.45}\text{Mg}_{0.724}\text{Ti}_{7.27}\text{O}_{16}$	18m	29
Cerium nitrate hydrate, $\text{Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$	17m	20	Cesium manganese fluoride, CsMnF_3	10m	21
Cerium nitride, CeN	4m	51	Cesium manganese sulfate hydrate, $\text{Cs}_2\text{Mn}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	20
Cerium(IV) oxide (cerianite), CeO_2	1	56	Cesium mercury chloride, CsHgCl_3	7m	22
Cerium phosphide, CeP	4m	52	Cesium nickel(II) chloride, CsNiCl_3	6m	12
Cerium tantalum oxide, CeTaO_4	18m	27	Cesium nickel sulfate hydrate, $\text{Cs}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	23
Cerium thallium, CeTl	13m	59	Cesium nitrate, CsNO_3	9	25
Cerium thallium, CeTl_3	13m	60	Cesium osmium(IV) bromide, Cs_2OsBr_6	2m	10
Cerium thallium, Ce_3Tl	13m	61	Cesium osmium chloride, Cs_2OsCl_6	2m	11
Cerium(III) vanadium oxide, CeVO_4	1m	9	Cesium platinum bromide, Cs_2PtBr_6	8	19
Cerium zinc, CeZn	5m	65	Cesium platinum chloride, Cs_2PtCl_6	5	14
Cerium zinc, CeZn_3	14m	50	Cesium platinum fluoride, Cs_2PtF_6	6	27
Cerium zinc, CeZn_5	14m	53	Cesium selenium bromide, Cs_2SeBr_6	8	20
Cerium zinc, $\text{Ce}_2\text{Zn}_{17}$	14m	55	Cesium silicon fluoride, Cs_2SiF_6	5	19
Cesium aluminum sulfate hydrate, $\text{CsAl}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	25	Cesium strontium chloride, CsSrCl_3	6m	13
Cesium antimony fluoride, CsSbF_6	4m	9	Cesium sulfate, Cs_2SO_4	7	17
Cesium beryllium fluoride, CsBeF_3	9m	69	Cesium tellurium bromide, Cs_2TeBr_6	9	24
Cesium boron fluoride, CsBF_4	8	22	Cesium tin chloride, Cs_2SnCl_6	5	16
Cesium bromate, CsBrO_3	8	18	Cesium vanadium sulfate hydrate, $\text{CsV}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	1m	11
Cesium bromide, CsBr	3	49	Cesium zinc sulfate hydrate, $\text{Cs}_2\text{Zn}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	25
Cesium cadmium bromide, CsCdBr_3 (hexagonal)	10m	20	Chromium, Cr	5	20
Cesium cadmium chloride, CsCdCl_3 (hexagonal)	5m	19	Chromium boride, $\xi\text{-CrB}$	17m	22
Cesium calcium chloride, CsCaCl_3	5m	21	Chromium boride, Cr_5B_3	18m	30
Cesium calcium fluoride, CsCaF_3	8m	25	Chromium chloride, CrCl_2	11m	77
Cesium calcium sulfate, $\text{Cs}_2\text{Ca}_2(\text{SO}_4)_3$	7m	12	Chromium chloride, CrCl_3	17m	23
Cesium cerium chloride, Cs_2CeCl_6	14m	58	Chromium chloride hydrate, $\text{CrCl}_3 \cdot 6\text{H}_2\text{O}$	16m	31
Cesium chlorate, CsClO_3	8	20	Chromium cobalt niobium, CoCrNb	15m	140
Cesium chlorate, CsClO_4 , (orthorhombic)	1m	10			
Cesium chloride, CsCl	2	44			
Cesium chromium oxide, Cs_2CrO_4	3m	25			

	Vol. or Sec.	Page		Vol. or Sec.	Page
Chromium cobalt silicide, $\text{Co}_9\text{Cr}_{15}\text{Si}_6$	14m	62	Cobalt germanium niobium, $\text{Co}_{16}\text{Ge}_7\text{Nb}_6$	14m	71
Chromium cobalt tantalum, CoCrTa ..	15m	142	Cobalt germanium oxide, Co_2GeO_4 ...	10	27
Chromium fluoride, CrF_2	10m	81	Cobalt germanium tantalum, $\text{Co}_{1.5}\text{Ge}_{0.5}\text{Ta}$	15m	152
Chromium fluoride, Cr_2F_5	7m	108	Cobalt germanium tantalum, $\text{Co}_{16}\text{Ge}_7\text{Ta}_6$	14m	73
Chromium(III) fluoride hydrate, $\text{CrF}_3 \cdot 3\text{H}_2\text{O}$	5m	25	Cobalt germanium titanium, Co_2GeTi	13m	80
Chromium iridium, Cr_3Ir	6m	14	Cobalt hafnium tin, Co_2HfSn	14m	75
Chromium iron oxide, $\text{Cr}_{1.3}\text{Fe}_{0.7}\text{O}_3$	17m	24	Cobalt holmium, Co_2Ho	14m	76
Chromium oxide, CrO_3	17m	25	Cobalt holmium, $\text{Co}_{9.2}\text{Ho}_{12}$	15m	154
Chromium(III) oxide, Cr_2O_3	5	22	Cobalt hydroxide, $\beta\text{-Co(OH)}_2$	15m	29
Chromium phosphate, $\alpha\text{-CrPO}_4$	2m	12	Cobalt indium, CoIn_3	13m	81
Chromium phosphate, $\beta\text{-CrPO}_4$	9	26	Cobalt iodide, CoI_2	4m	52
Chromium phosphate hydrate, $\text{CrPO}_4 \cdot 6\text{H}_2\text{O}$	15m	27	Cobalt iron arsenide (safflorite), CoFeAs_4	10	28
Chromium rhodium, Cr_3Rh	6m	15	Cobalt iron oxide, CoFe_2O_4	9m	22
Chromium silicide, Cr_3Si	6	29	Cobalt iron sulfide, Co_8FeS_8	14m	77
Chromium sulfate, $\text{Cr}_2(\text{SO}_4)_3$	16m	33	Cobalt iron vanadium, $\text{Co}_{4.35}\text{Fe}_{13.47}\text{V}_{12.18}$	14m	79
Cobalt, Co (cubic)	4m	10	Cobalt lanthanum, CoLa_3	13m	83
Cobalt aluminum oxide, CoAl_2O_4	9	27	Cobalt lutetium, Co_2Lu	13m	86
Cobalt ammine iodide, $\text{Co}(\text{NH}_3)_6\text{I}_3$..	10m	83	Cobalt magnesium, Co_2Mg	15m	156
Cobalt antimony oxide, CoSb_2O_6	5m	26	Cobalt manganese silicide, Co_2MnSi	14m	81
Cobalt arsenide, CoAs_2	4m	10	Cobalt mercury thiocyanate, $\text{Co}[\text{Hg}(\text{CNS})_4]$	2m	13
Cobalt arsenide (skutterudite), CoAs_3	10	21	Cobalt molybdenum, Co_2Mo	14m	82
Cobalt borate, $\text{Co}_3(\text{BO}_3)_2$	12m	20	Cobalt molybdenum, Co_2Mo_3	15m	158
Cobalt bromide hydrate, $\text{CoBr}_2 \cdot 6\text{H}_2\text{O}$	12m	21	Cobalt molybdenum, Co_7Mo_6	15m	160
Cobalt(II) carbonate (sphaero- cobaltite), CoCO_3	10	24	Cobalt molybdenum silicide, $\text{Co}_3\text{Mo}_2\text{Si}$	15m	162
Cobalt chlorate hydrate, $\text{Co}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$	3m	28	Cobalt neodymium, Co_2Nd	13m	87
Cobalt chloride hydrate, $\text{CoCl}_2 \cdot 2\text{H}_2\text{O}$	11m	22	Cobalt nickel tin, $\text{Co}_{.75}\text{Ni}_{.75}\text{Sn}_{.75}$	13m	88
Cobalt chloride hydrate, $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$	11m	23	Cobalt niobium silicide, $\text{Co}_3\text{Nb}_4\text{Si}_7$	15m	164
Cobalt chromium oxide, CoCr_2O_4	9m	21	Cobalt niobium tin, Co_2NbSn	15m	166
Cobalt copper tin, CoCu_2Sn	14m	64	Cobalt nitrate hydrate, $\alpha\text{-Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$	12m	22
Cobalt dysprosium, Co_2Dy	13m	63	Cobalt(II) oxide, CoO	9	28
Cobalt erbium, Co_2Er	13m	64	Cobalt(II,III) oxide, Co_3O_4	9	29
Cobalt erbium, Co_7Er_2	13m	65	Cobalt phosphate, $\text{Co}(\text{PO}_3)_2$	13m	23
Cobalt fluoride, CoF_2	18m	31	Cobalt phosphide, CoP	14m	83
Cobalt fluoride, CoF_2 (calculated pattern)	10m	85	Cobalt phosphide, CoP_3	14m	85
Cobalt fluoride hydrate, $\text{CoF}_2 \cdot 4\text{H}_2\text{O}$	11m	24	Cobalt phosphide, Co_2P	18m	32
Cobalt gadolinium, CoGd_3	13m	68	Cobalt platinum, CoPt (disordered)	15m	167
Cobalt gadolinium, Co_2Gd	13m	71	Cobalt platinum, CoPt (ordered) ...	15m	168
Cobalt gadolinium, Co_7Gd_2	13m	72	Cobalt platinum, CoPt_3 (disordered)	15m	169
Cobalt gallium hafnium, Co_2GaHf ..	14m	65	Cobalt platinum, CoPt_3 (ordered) ..	15m	170
Cobalt gallium manganese, Co_2GaMn	13m	75	Cobalt plutonium, CoPu_2	14m	87
Cobalt gallium niobium, $\text{Co}_{1.5}\text{Ga}_{0.5}\text{Nb}$	15m	144	Cobalt plutonium, CoPu_3	15m	171
Cobalt gallium niobium, Co_2GaNb ...	14m	66	Cobalt plutonium, CoPu_6	14m	89
Cobalt gallium oxide, CoGa_2O_4	10	27	Cobalt plutonium, Co_2Pu	14m	91
Cobalt gallium tantalum, $\text{Co}_{1.5}\text{Ga}_{0.5}\text{Ta}$	15m	146	Cobalt plutonium, Co_3Pu	14m	92
Cobalt gallium tantalum, Co_2GaTa	13m	76	Cobalt plutonium, $\text{Co}_{17}\text{Pu}_2$	14m	94
Cobalt gallium titanium, Co_2GaTi ..	13m	77	Cobalt praseodymium, Co_2Pr	14m	97
Cobalt gallium vanadium, Co_2GaV ...	13m	78	Cobalt rhodium sulfide, Co_8RhS_8 ...	14m	98
Cobalt germanium, Co_3Ge_2	14m	67	Cobalt ruthenium sulfide, Co_8RuS_8 ..	14m	100
Cobalt germanium, Co_5Ge_7	15m	148	Cobalt samarium, Co_2Sm	15m	173
Cobalt germanium hafnium, $\text{Co}_{16}\text{Ge}_7\text{Hf}_6$	14m	69	Cobalt samarium, Co_5Sm	13m	90
Cobalt germanium manganese, Co_2GeMn	13m	79	Cobalt silicate, Co_2SiO_4 (orthorhombic)	4m	11
Cobalt germanium niobium, $\text{Co}_{1.5}\text{Ge}_{0.5}\text{Nb}$	15m	150	Cobalt silicon fluoride hydrate, $\text{CoSiF}_6 \cdot 6\text{H}_2\text{O}$	3m	27
			Cobalt sulfate, $\beta\text{-CoSO}_4$	2m	14

	Vol. or Sec.	Page	Vol. or Sec.	Page	
Cobalt tantalum silicide, $\text{Co}_{16}\text{Ta}_6\text{Si}_7$	14m	102	Erbium telluride, ErTe	4m	55
Cobalt thorium, $\text{Co}_{17}\text{Th}_2$	12m	64	Erbium vanadium oxide, ErVO_4	5m	29
Cobalt tin, Co_3Sn_2	13m	92	Europium arsenate, EuAsO_4	3m	32
Cobalt tin oxide, Co_2SnO_4	15m	30	Europium(III) chloride, EuCl_3	1m	13
Cobalt tin vanadium, Co_2SnV	15m	174	Europium chloride oxide, EuClO	1m	13
Cobalt tin zirconium, Co_2SnZr	15m	175	Europium gallium oxide, $\text{Eu}_3\text{Ga}_5\text{O}_{12}$	2m	17
Cobalt titanium oxide, CoTiO_3	4m	13	Europium nitride, EuN	4m	56
Cobalt titanium silicide, $\text{Co}_{16}\text{Ti}_6\text{Si}_7$	14m	104	Europium oxide, EuO	4m	56
Cobalt tungsten oxide, CoWO_4	4m	13	Europium phosphate, EuPO_4	11m	26
Cobalt vanadium silicide, Co_2VSi ..	15m	176	Europium(III) vanadium oxide, EuVO_4 ..	4m	16
Copper, Cu	1	15	Gadolinium arsenate, GdAsO_4	4m	17
Copper ammine selenate, $\text{Cu}(\text{NH}_3)_4\text{SeO}_4$	10m	87	Gadolinium arsenide, GdAs	4m	57
Copper ammine sulfate hydrate, $\text{Cu}(\text{NH}_3)_4\text{SO}_4 \cdot \text{H}_2\text{O}$	10m	90	Gadolinium chloride hydrate, $\text{GdCl}_3 \cdot 6\text{H}_2\text{O}$	7m	118
Copper antimony oxide, CuSb_2O_6	5m	27	Gadolinium chloride oxide, GdClO ..	1m	17
Copper arsenate (trippkeite), CuAs_2O_4	16m	120	Gadolinium fluoride, GdF_3	1m	14
Copper(I) bromide, CuBr	4	36	Gadolinium gallium oxide, $\text{Gd}_3\text{Ga}_5\text{O}_{12}$	2m	18
Copper(I) chloride (nantokite), CuCl	4	35	Gadolinium indium, GdIn	5m	67
Copper chloride hydrate (eriochalcite), $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$	18m	33	Gadolinium nitride, GdN	4m	57
Copper fluoride hydrate, $\text{CuF}_2 \cdot 2\text{H}_2\text{O}$	11m	25	Gadolinium oxide, Gd_2O_3	1m	16
Copper hydrogen phosphite hydrate, $\text{CuHPO}_3 \cdot 2\text{H}_2\text{O}$	11m	83	Gadolinium silver, GdAg	6m	87
Copper hydroxide carbonate, azurite, $\text{Cu}_3(\text{OH})_2(\text{CO}_3)_2$	10	30	Gadolinium titanium oxide, Gd_2TiO_5 ..	8m	32
Copper hydroxide carbonate (malachite), $\text{Cu}_2(\text{OH})_2\text{CO}_3$	10	31	Gadolinium vanadium oxide, GdVO_4 ..	5m	30
Copper hydroxide phosphate (libethenite), $\text{Cu}_2(\text{OH})\text{PO}_4$	17m	30	Gallium, Ga	2	9
Copper(I) iodide (marshite), CuI ..	4	38	Gallium arsenide, GaAs	3m	33
Copper lead hydroxide sulfate, linarite, $\text{CuPb}(\text{OH})_2(\text{SO}_4)$	16m	34	Gallium lutetium oxide, $\text{Ga}_5\text{Lu}_3\text{O}_{12}$..	2m	22
Copper(I) oxide (cuprite), Cu_2O ..	2	23	Gallium magnesium, Ga_2Mg	12m	48
Copper(II) oxide (tenorite), CuO ..	1	49	Gallium magnesium, Ga_5Mg_2	12m	51
Copper phosphate, $\text{Cu}(\text{PO}_3)_2$	14m	15	Gallium neodymium oxide, $\text{Ga}_5\text{Nd}_3\text{O}_{12}$..	1m	34
Copper phosphate, $\alpha\text{-Cu}_2\text{P}_2\text{O}_7$	7m	113	Gallium oxide, $\alpha\text{-Ga}_2\text{O}_3$	4	25
Copper sulfate (chalcocyanite), CuSO_4	3m	29	Gallium phosphate (α -quartz type), GaPO_4	8	27
Copper(II) sulfide (covellite), CuS	4	13	Gallium phosphate hydrate, $\text{GaPO}_4 \cdot 2\text{H}_2\text{O}$	8m	34
Copper uranium oxide, CuUO_4	10m	93	Gallium samarium oxide, $\text{Ga}_5\text{Sm}_3\text{O}_{12}$..	1m	42
Dichlorotetraquaquochromium (III) chloride dihydrate, [$\text{Cr}(\text{H}_2\text{O})_4\text{Cl}_2$] $\text{Cl} \cdot 2\text{H}_2\text{O}$	16m	31	Gallium ytterbium oxide, $\text{Ga}_5\text{Yb}_3\text{O}_{12}$..	1m	49
Dysprosium arsenate, DyAsO_4	3m	30	Gallium yttrium oxide, $\text{Ga}_5\text{Y}_3\text{O}_{12}$..	1m	50
Dysprosium arsenide, DyAs	4m	53	Germanium, Ge	1	18
Dysprosium gallium oxide, $\text{Dy}_3\text{Ga}_5\text{O}_{12}$	2m	15	Germanium iodide, GeI_2	4m	58
Dysprosium gold, DyAu	5m	66	Germanium(IV) iodide, GeI_4	5	25
Dysprosium nitride, DyN	4m	53	Germanium oxide, GeO_2 (hexagonal) (low form)	1	51
Dysprosium oxide, Dy_2O_3	9	30	Germanium oxide, GeO_2 (tetragonal) (high form)	8	28
Dysprosium silver, DyAg	5m	66	Gold, Au	1	33
Dysprosium telluride, DyTe	4m	54	Gold chloride, AuCl	16m	37
Dysprosium vanadium oxide, DyVO_4 ..	4m	15	Gold(I) cyanide, AuCN	10	33
Erbium arsenate, ErAsO_4	3m	31	Gold holmium, AuHo	5m	68
Erbium arsenide, ErAs	4m	54	Gold magnesium, AuMg	6m	83
Erbium gallium oxide, $\text{Er}_3\text{Ga}_5\text{O}_{12}$..	1m	12	Gold niobium, AuNb_3	6m	16
Erbium manganese oxide, ErMnO_3	2m	16	Gold potassium cyanide, $\text{AuK}(\text{CN})_2$..	8m	36
Erbium nitride, ErN	4m	55	Gold tin, AuSn	7	19
Erbium oxide, Er_2O_3	8	25	Gold titanium, AuTi_3	6m	17
Erbium phosphate, ErPO_4	9	31	Gold vanadium, AuV_3	6m	18
Erbium silver, ErAg	5m	67	Hafnium, Hf	3	18
			Holmium arsenate, HoAsO_4	3m	34
			Holmium fluoride, HoF_3	10m	23
			Holmium nitride, HoN	4m	58
			Holmium oxide, Ho_2O_3	9	32
			Holmium selenide, HoSe	4m	59
			Holmium silver, HoAg	5m	68
			Holmium vanadium oxide, HoVO_4	4m	18
			Hydrazinium sulfate, $(\text{NH}_3)_2\text{S}_2\text{O}_4$	17m	38
			Hydrogen amidosulfate, $\text{H}_2\text{NSO}_3\text{H}$	7	54

	Vol. or Sec.	Page		Vol. or Sec.	Page
Hydrogen arsenate, $H_5As_3O_{10}$	7m	84	Lanthanum selenide, LaSe	4m	61
Hydrogen borate, $\beta\text{-HBO}_2$ (monoclinic)	9m	71	Lanthanum titanium oxide, $La_2Ti_2O_7$	15m	35
Hydrogen borate (metaborite), HBO_2 (cubic)	4m	27	Lanthanum zinc, LaZn	5m	70
Hydrogen iodate, HIO_3	5	28	Lead, Pb	1	34
Hydrogen iodate, HI_3O_8	8m	104	Lead borate, PbB_4O_7	4m	19
Hydrogen phosphate hydrate, $H_3PO_4 \cdot 0.5H_2O$	12m	56	Lead bromide, $PbBr_2$	17m	43
Hydrogen tellurate, H_6TeO_6	12m	34	Lead bromide chloride, $PbBrCl$	11m	33
Indium, In	3	12	Lead bromide fluoride, $PbBrF$	10m	25
Indium arsenide, InAs	3m	35	Lead bromide hydroxide, $PbBr(OH)$..	16m	40
Indium oxide, In_2O_3	5	26	Lead bromide oxide, $Pb_3O_2Br_2$	5m	32
Indium phosphate, $InPO_4$	8	29	Lead carbonate (cerussite), $PbCO_3$	2	56
Indium sulfide, In_2S_3	11m	30	Lead chloride (cotunnite), $PbCl_2$..	12m	23
Iodine, I_2	3	16	Lead chloride fluoride (matlockite), $PbClF$	13m	25
Iridium, Ir	4	9	Lead chromium oxide, Pb_2CrO_5	14m	16
Iridium niobium, $IrNb_3$	6m	19	Lead fluoride, $\alpha\text{-PbF}_2$ (orthorhombic)	5	31
Iridium oxide, IrO_2	4m	19	Lead fluoride, $\beta\text{-PbF}_2$ (cubic)	5	33
Iridium titanium, $IrTi_3$	6m	20	Lead fluoride iodide, $PbFI$	10m	26
Iridium vanadium, IrV_3	6m	21	Lead hydrogen arsenate (schultenite), $PbHAsO_4$	14m	18
Iron, $\alpha\text{-Fe}$	4	3	Lead hydrogen phosphate, $PbHPO_4$	15m	37
Iron arsenide, FeAs	1m	19	Lead hydroxide phosphate, $Pb_5OH(PO_4)_3$	8	33
Iron arsenide (loellingite), $FeAs_2$	10	34	Lead iodate, $Pb(IO_3)_2$	17m	45
Iron boride, FeB	18m	35	Lead (II) iodide, PbI_2	5	34
Iron bromide, $FeBr_2$	4m	59	Lead molybdenum oxide (wulfenite), $PbMoO_4$	7	23
Iron carbonate, siderite, $FeCO_3$...	15m	32	Lead nitrate, $Pb(NO_3)_2$	5	36
Iron chloride hydrate (rokuhnite), $FeCl_2 \cdot 2H_2O$	11m	32	Lead oxide (litharge), PbO (red, tetragonal)	2	30
Iron chloride hydrate (hydromolysite), $FeCl_3 \cdot 6H_2O$	17m	40	Lead oxide (massicot), PbO (yellow, orthorhombic)	2	32
Iron fluoride hydrate, $FeF_2 \cdot 4H_2O$	11m	90	Lead(II,III) oxide (minium), Pb_3O_4	8	32
Iron fluoride, FeF_3	18m	36	Lead oxide sulfate, $Pb_5O_5SO_4$	10m	27
Iron fluoride hydrate, $\beta\text{-FeF}_3 \cdot 3H_2O$	17m	41	Lead selenide (clausthalite), $PbSe$	5	38
Iron hydroxide sulfate hydrate, butlerite, $Fe(OH)SO_4 \cdot 2H_2O$	10m	95	Lead strontium nitrate, $Pb_{.33}Sr_{.67}(NO_3)_2$	12m	53
Iron iodide, FeI_2	4m	60	Lead strontium nitrate, $Pb_{.67}Sr_{.33}(NO_3)_2$	12m	53
Iron oxide (hematite), $\alpha\text{-Fe}_2O_3$	18m	37	Lead sulfate (anglesite), $PbSO_4$	3	67
Iron(II,III) oxide (magnetite), Fe_3O_4	5m	31	Lead sulfide (galena), PbS	2	18
Iron phosphate, $FePO_4$	15m	33	Lead tin oxide, Pb_2SnO_4	10m	29
Iron phosphate hydrate (vivianite), $Fe_3(Po_4)_2 \cdot 8H_2O$	16m	38	Lead titanium oxide (macedonite), $PbTiO_3$	5	39
Iron sulfate, $Fe_2(SO_4)_3$	16m	39	Lead tungsten oxide (stolzite), $PbWO_4$ (tetragonal)	5m	34
Iron sulfate hydrate (melanterite), $FeSO_4 \cdot 7H_2O$	8m	38	Lead uranium oxide, Pb_3UO_6	8m	109
Iron sulfide (pyrite), FeS_2	5	29	Lithium aluminum fluoride, $\alpha\text{-Li}_3AlF_6$	8m	111
Iron thorium, $Fe_{17}Th_2$	12m	67	Lithium arsenate, Li_3AsO_4	2m	19
Iron titanium oxide (ilmenite), $FeTiO_3$	15m	34	Lithium azide, LiN_3	8m	113
Iron yttrium oxide, $Fe_5Y_3O_{12}$	18m	38	Lithium barium fluoride, $LiBaF_3$	5m	35
Lanthanum arsenate, $LaAsO_4$	3m	36	Lithium beryllium fluoride, Li_2BeF_4	7m	126
Lanthanum arsenide, LaAs	4m	60	Lithium borate, $Li_2B_4O_7$	8m	114
Lanthanum borate, $LaBO_3$	1m	20	Lithium bromide, $LiBr$	4	30
Lanthanum chloride, $LaCl_3$	1m	20	Lithium calcium aluminum boron hydroxy silicate, liddicoatite, $Ca(Li,Al)_3Al_6B_3Si_6O_{27}(O,OH)_3(OH,F)$	16m	42
Lanthanum chloride oxide, $LaClO$...	7	22	Lithium carbonate, Li_2CO_3	8m	42
Lanthanum fluoride, LaF_3	7	21	Lithium chlorate hydrate, $LiClO_4 \cdot 3H_2O$	8	34
Lanthanum magnesium, $LaMg$	5m	69	Lithium chloride, $LiCl$	1	62
Lanthanum nickel platinum, $LaNi_{0.25}Pt_{4.75}$	17m	42	Lithium chromium oxide hydrate, $Li_2CrO_4 \cdot 2H_2O$	16m	44
Lanthanum niobium titanium oxide, $LaNbTiO_6$	3m	37	Lithium fluoride, LiF	1	61
Lanthanum nitrate hydrate, $La(NO_3)_3 \cdot 6H_2O$	8m	40			
Lanthanum nitride, LaN	4m	61			
Lanthanum oxide, La_2O_3	3	33			
Lanthanum phosphide, LaP	5m	69			

	Vol. or Sec.	Page		Vol. or Sec.	Page
Lithium gallium oxide, LiGaO_2	10m	31	Magnesium cerium nitrate hydrate, $\text{Mg}_3\text{Ce}_2(\text{NO}_3)_12 \cdot 24\text{H}_2\text{O}$	10	20
Lithium hydroxide, LiOH	17m	46	Magnesium chlorate hydrate, $\text{Mg}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	30
Lithium hydroxide hydrate, $\text{LiOH} \cdot \text{H}_2\text{O}$	11m	92	Magnesium chloride (chloro- magnesite), MgCl_2	11m	94
Lithium iodate, LiIO_3 (hexagonal)	7	26	Magnesium chloride hydrate, $\text{MgCl}_2 \cdot 12\text{H}_2\text{O}$	7m	135
Lithium iodate, LiIO_3 (tetragonal)	10m	33	Magnesium chloride hydrate (bischofite), $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$	11m	37
Lithium iodide hydrate, $\text{LiI} \cdot 3\text{H}_2\text{O}$..	18m	40	Magnesium chromium oxide (magnesiochromite), MgCr_2O_4 ..	9	34
Lithium molybdenum oxide, Li_2MoO_4 (trigonal)	1m	23	Magnesium chromium oxide hydrate, $\text{MgCrO}_4 \cdot 5\text{H}_2\text{O}$	15m	39
Lithium niobium oxide, LiNbO_3	6m	22	Magnesium fluoride (sellaite), MgF_2	4	33
Lithium nitrate, LiNO_3	7	27	Magnesium fluoride silicate (humite), $\text{Mg}_2\text{F}_2\text{Si}_3\text{O}_{12}$	1m	30
Lithium oxide, Li_2O	1m	25	Magnesium fluoride silicate (norbergite), $\text{Mg}_3\text{F}_2\text{SiO}_4$	10	39
Lithium phosphate, high form, Li_3PO_4	3m	39	Magnesium gallium oxide, MgGa_2O_4 ..	10	36
Lithium phosphate, low form (lithiophosphate), Li_3PO_4	4m	21	Magnesium germanium oxide, Mg_2GeO_4 (cubic)	10	37
Lithium phosphate hydrate, $\text{Li}_3\text{P}_3\text{O}_9 \cdot 3\text{H}_2\text{O}$	2m	20	Magnesium germanium oxide, Mg_2GeO_4 (orthorhombic)	10	38
Lithium potassium sulfate, KLiSO_4	3m	43	Magnesium hydrogen phosphate hydrate, newberyite, $\text{MgHPO}_4 \cdot 3\text{H}_2\text{O}$	7m	139
Lithium rubidium fluoride, LiRbF_2	7m	128	Magnesium hydroxide (brucite), Mg(OH)_2	6	30
Lithium selenide, Li_2Se	10m	100	Magnesium iodate hydrate, $\text{Mg}(\text{IO}_3)_2 \cdot 4\text{H}_2\text{O}$	17m	48
Lithium silicate, Li_2SiO_3	14m	19	Magnesium iron hydroxide carbonate hydrate, pyroaurite, $\text{Mg}_6\text{Fe}_2(\text{OH})_{16}\text{CO}_3 \cdot 4\text{H}_2\text{O}$ (rhomb.)	10m	104
Lithium silver bromide,			Magnesium iron hydroxide carbonate hydrate, sjögrenite, $\text{Mg}_6\text{Fe}_2(\text{OH})_{16}\text{CO}_3 \cdot 4\text{H}_2\text{O}$, (hexag.) ...	10m	103
$\text{Li}_{2.2}\text{Ag}_{.8}\text{Br}$	12m	55	Magnesium lanthanum nitrate hydrate, $\text{Mg}_3\text{La}_2(\text{NO}_3)_12 \cdot 24\text{H}_2\text{O}$	1m	22
Lithium silver bromide, $\text{Li}_{.4}\text{Ag}_{.6}\text{Br}$	12m	55	Magnesium manganese oxide, MgMn_2O_4	10m	35
Lithium silver bromide, $\text{Li}_{.6}\text{Ag}_{.4}\text{Br}$	12m	55	Magnesium mercury, MgHg	6m	84
Lithium silver bromide, $\text{Li}_{.8}\text{Ag}_{.2}\text{Br}$	12m	55	Magnesium molybdenum oxide, MgMoO_4	7m	28
Lithium sodium aluminum fluoride, cryolithionite, $\text{Li}_3\text{Na}_3\text{Al}_2\text{F}_{12}$	9m	23	Magnesium nickel oxide, MgNiO_2	10m	36
Lithium sodium sulfate, LiNaSO_4 ..	6m	24	Magnesium oxide (periclase), MgO ..	1	37
Lithium sulfate, Li_2SO_4	6m	26	Magnesium phosphate, $\text{Mg}(\text{PO}_3)_2$	13m	26
Lithium sulfate hydrate, $\text{Li}_2\text{SO}_4 \cdot \text{H}_2\text{O}$	4m	22	Magnesium phosphate, $\alpha\text{-Mg}_2\text{P}_2\text{O}_7$	18m	41
Lithium sulfide, Li_2S	10m	101	Magnesium selenide, MgSe	5m	70
Lithium tantalum oxide, LiTaO_3	14m	20	Magnesium selenite hydrate, $\text{MgSeO}_3 \cdot 6\text{H}_2\text{O}$	8m	116
Lithium telluride, Li_2Te	10m	102	Magnesium silicate, enstatite, MgSiO_3	6	32
Lithium tin oxide, Li_2SnO_3	16m	45	Magnesium silicate (forsterite), Mg_2SiO_4	1	83
Lithium tungsten oxide, Li_2WO_4 (trigonal)	1m	25	Magnesium sulfate hydrate (kieserite), $\text{MgSO}_4 \cdot \text{H}_2\text{O}$	16m	46
Lithium tungsten oxide hydrate, $\text{Li}_2\text{WO}_4 \cdot 0.5\text{H}_2\text{O}$	2m	20	Magnesium sulfate hydrate (epsomite), $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$	7	30
Lithium uranium fluoride, LiUF_5 ..	7m	131	Magnesium sulfide, MgS	7	31
Lutetium arsenate, LuAsO_4	5m	36	Magnesium sulfite hydrate, $\text{MgSO}_3 \cdot 6\text{H}_2\text{O}$	9m	26
Lutetium manganese oxide, LuMnO_3 ..	2m	23	Magnesium tin, Mg_2Sn	5	41
Lutetium nitride, LuN	4m	62	Magnesium tin oxide, Mg_2SnO_4	10m	37
Lutetium oxide, Lu_2O_3	1m	27	Magnesium titanium oxide (geikielite), MgTiO_3	5	43
Lutetium vanadium oxide, LuVO_4	5m	37	Magnesium titanium oxide, Mg_2TiO_4	12m	25
Magnesium, Mg	1	10	Magnesium tungsten oxide, MgW_4	13m	27
Magnesium aluminum oxide (spinel), MgAl_2O_4	9m	25	Manganese, $\alpha\text{-Mn}$ (calculated pattern)	7m	142
Magnesium aluminum silicate (low cordierite), $\text{Mg}_2\text{Al}_4\text{Si}_5\text{O}_{18}$ (orthorhombic)	1m	28			
Magnesium aluminum silicate (indialite) $\text{Mg}_2\text{Al}_4\text{Si}_5\text{O}_{18}$ (hexagonal)	1m	29			
Magnesium aluminum silicate (pyrope), $\text{Mg}_3\text{Al}_2(\text{SiO}_4)_2$	4m	24			
Magnesium borate, MgB_4O_7	17m	47			
Magnesium borate, $\text{Mg}_2\text{B}_2\text{O}_5$ (triclinic)	4m	25			
Magnesium bromide, MgBr_2	4m	62			
Magnesium bromide hydrate, $\text{MgBr}_2 \cdot 6\text{H}_2\text{O}$	11m	35			
Magnesium carbonate (magnesite), MgCO_3	7	28			

	Vol. or Sec.	Page		Vol. or Sec.	Page
Manganese, α -Mn	17m	50	Molybdenum, Mo	1	20
Manganese, β -Mn	18m	43	Molybdenum arsenide, Mo_2As_3	10m	115
Manganese aluminum oxide (galaxite), MnAl_2O_4	9	35	Molybdenum osmium, Mo_3Os	6m	28
Manganese bromide, MnBr_2	4m	63	Molybdenum oxide, MoO_2	18m	44
Manganese(II) carbonate (rhodochrosite), MnCO_3	7	32	Molybdenum oxide (molybdite), MoO_3	3	30
Manganese chloride (scacchite), MnCl_2	8m	43	Molybdenum sulfide (molybdenite), MoS_2	5	47
Manganese chloride hydrate, $\text{MnCl}_2 \cdot 2\text{H}_2\text{O}$	11m	38	Neodymium arsenate, NdAsO_4	4m	28
Manganese chloride hydrate, $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$	9m	28	Neodymium arsenide, NdAs	4m	64
Manganese cobalt oxide, MnCo_2O_4	9m	30	Neodymium borate, NdBO_3	1m	32
Manganese fluoride, MnF_2	10m	105	Neodymium chloride, NdCl_3	1m	33
Manganese iodide, MnI_2	4m	63	Neodymium chloride oxide, NdOCl	8	37
Manganese iron oxide (jacobsite), MnFe_2O_4	9	36	Neodymium fluoride, NdF_3	8	36
Manganese(II) oxide (manganosite), MnO	5	45	Neodymium oxide, Nd_2O_3	4	26
Manganese oxide (pyrolusite), $\beta\text{-MnO}_2$	10m	39	Neodymium phosphate, NdPO_4	11m	40
Manganese oxide (bixbyite), $\alpha\text{-Mn}_2\text{O}_3$	11m	95	Neodymium selenide, NdSe	5m	71
Manganese oxide (hausmannite), Mn_3O_4	10m	38	Neodymium silver, NdAg	5m	71
Manganese oxide hydroxide, groutite, $\alpha\text{-MnOOH}$	11m	97	Neodymium tantalum oxide, NdTaO_4	18m	46
Manganese phosphate, $\text{Mn}(\text{PO}_3)_2$	14m	21	Neodymium titanium oxide, Nd_2TiO_5	18m	48
Manganese phosphate, $\text{Mn}_2\text{P}_2\text{O}_7$	15m	41	Neodymium titanium oxide, $\text{Nd}_2\text{Ti}_2\text{O}_7$	18m	50
Manganese phosphate, $\text{Mn}_3(\text{PO}_4)_2$	16m	47	Neodymium titanium oxide, $\text{Nd}_4\text{Ti}_9\text{O}_{24}$	18m	52
Manganese selenide, MnSe	10	41	Neodymium vanadium oxide, NdVO_4	4m	30
Manganese sulfate hydrate (szmikite), $\text{MnSO}_4 \cdot \text{H}_2\text{O}$	16m	49	Neptunium nitride, NpN	4m	64
Manganese sulfide (alabandite), $\alpha\text{-MnS}$	4	11	Nickel, Ni	1	13
Manganese titanium oxide (pyrophanite), MnTiO_3	15m	42	Nickel aluminum oxide, NiAl_2O_4	9	42
Manganese(II) tungsten oxide (huebnerite), MnWO_4	2m	24	Nickel arsenide (rammelsbergite), NiAs_2	10	42
Manganese vanadium oxide, $\text{Mn}_2\text{V}_2\text{O}_7$	9m	75	Nickel arsenic sulfide (gersdorffite), NiAsS	1m	35
Mercury amide chloride, HgNH_2Cl	10m	40	Nickel bromide, NiBr_2	10m	119
Mercury ammine chloride, $\text{Hg}(\text{NH}_3)_2\text{Cl}_2$	11m	39	Nickel(II) carbonate, NiCO_3 (trigonal)	1m	36
Mercury bromate, $\text{Hg}(\text{BrO}_3)_2$	10m	107	Nickel chloride, NiCl_2	9m	81
Mercury bromide, HgBr_2	10m	110	Nickel chloride hydrate, $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$	11m	42
Mercury bromide, Hg_2Br_2	7	33	Nickel fluoride, NiF_2	10m	121
Mercury chloride, HgCl_2	13m	29	Nickel fluoride hydrate, $\text{NiF}_2 \cdot 4\text{H}_2\text{O}$	11m	43
Mercury chloride (calomel), Hg_2Cl_2	13m	30	Nickel gallium oxide, NiGa_2O_4	10	45
Mercury chloride sulfide, $\alpha\text{-Hg}_3\text{Cl}_2\text{S}_2$	8m	118	Nickel germanium oxide, Ni_2GeO_4	9	43
Mercury(II) cyanide, $\text{Hg}(\text{CN})_2$	6	35	Nickel iron oxide (trevorite), NiFe_2O_4	10	44
Mercury(II) fluoride, HgF_2	2m	25	Nickel nitrate hydrate, $\text{Ni}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$	12m	26
Mercury hydroxide nitrate, $\text{Hg}(\text{OH})\text{NO}_3$	17m	52	Nickel(II) oxide (bunsenite), NiO	1	47
Mercury(I) iodide, HgI	4	49	Nickel sulfide, millerite, NiS	1m	37
Mercury(II) iodide, HgI_2 (tetragonal)	7m	32	Nickel titanium oxide, NiTiO_3	18m	54
Mercury(II) oxide (montroydite), HgO	9	39	Nickel tungsten oxide, NiWO_4	2m	27
Mercury(II) selenide (tiemannite), HgSe	7	35	Nickel yttrium, Ni_3Y	10m	123
Mercury sulfate, HgSO_4	16m	50	Niobium boride, $\zeta\text{-NbB}$	17m	54
Mercury sulfate, Hg_2SO_4	16m	52	Niobium chloride oxide, NbCl_3O	7m	148
Mercury(II) sulfide (cinnabar), HgS (hexagonal)	4	17	Niobium osmium, Nb_3Os	6m	30
Mercury(II) sulfide (metacinnabar), HgS (cubic)	4	21	Niobium platinum, Nb_3Pt	6m	31
			Niobium silicide, NbSi_2	8	39
			Niobium silicide, $\alpha\text{-Nb}_5\text{Si}_3$	15m	43
			Niobium silicide, $\beta\text{-Nb}_5\text{Si}_3$	15m	44
			Osmium, Os	4	8
			Osmium titanium, OsTi	6m	85
			Palladium, Pd	1	21
			Palladium hydride, $\text{PdH}_{0.706}$	5m	72

	Vol. or Sec.	Page		Vol. or Sec.	Page
Palladium oxide, PdO	4	27	Potassium chromium oxide sulfate, $K_2(CrO_4)_{.67}(SO_4)_{.33}$	12m	27
Palladium selenium (palladseite), $Pd_{17}Se_{15}$	16m	139	Potassium chromium sulfate, $KCr(SO_4)_2$	16m	58
Palladium vanadium, PdV ₃	6m	32	Potassium chromium sulfate hydrate, $KCr(SO_4)_2 \cdot 12H_2O$	6	39
Phosphorus bromide, PBr ₇	7m	150	Potassium cobalt(II) fluoride, $KCoF_3$	6m	37
Phosphorus oxide (stable form I), P_2O_5 (orthorhombic)	9m	86	Potassium cobalt fluoride, K_2CoF_4	11m	46
Phosphorus oxide (stable form II), P_2O_5 (orthorhombic)	9m	88	Potassium cobalt nitrite, $K_3Co(NO_2)_6$	9	45
Phosphorus oxide (metastable form), P_4O_{10} (rhombohedral)	9m	91	Potassium cobalt(II) sulfate, $K_2Co_2(SO_4)_3$	6m	35
Platinum, Pt	1	31	Potassium copper chloride, $KCuCl_3$	7m	41
Platinum titanium, PtTi ₃	6m	33	Potassium copper chloride hydrate (mitscherlichite), $K_2CuCl_4 \cdot 2H_2O$..	9m	34
Platinum vanadium, PtV ₃	6m	34	Potassium copper(II) fluoride, $KCuF_3$	6m	38
Plutonium arsenide, PuAs	4m	65	Potassium cyanate, KCNO	7	39
Plutonium phosphide, PuP	4m	65	Potassium cyanide, KCN	1	77
Plutonium telluride, PuTe	4m	66	Potassium fluoride, KF	1	64
Potassium aluminum sulfate, $KAl(SO_4)_2$	9m	31	Potassium fluoride hydrate, $KF \cdot 2H_2O$..	18m	55
Potassium aluminum sulfate hydrate (potash alum), $KAl(SO_4)_2 \cdot 12H_2O$...	6	36	Potassium germanium fluoride, K_2GeF_6	6	41
Potassium arsenic fluoride, $KAsF_6$	17m	57	Potassium hydrogen arsenate, KH_2AsO_4	1m	38
Potassium barium chromium oxide, $K_2Ba(CrO_4)_2$	14m	23	Potassium hydrogen iodate, $KH(IO_3)_2$	17m	58
Potassium barium iron titanium oxide, $K_{1.16}Ba_{0.72}Fe_{0.36}Ti_{5.58}O_{13}$	16m	147	Potassium hydrogen phosphate, KH_2PO_4	3	69
Potassium barium molybdenum oxide, $K_2Ba(MoO_4)_2$	14m	24	Potassium hydroxide, KOH at 300 °C	4m	66
Potassium barium nickel nitrite, $K_2BaNi(NO_2)_6$	9m	32	Potassium iodate, KIO_3	15m	48
Potassium borate hydroxide hydrate, $K_2B_4O_5(OH)_4 \cdot 2H_2O$	15m	46	Potassium iodate, KIO_4	7	41
Potassium boron hydride, KBH ₄	9	44	Potassium iodide, KI	1	68
Potassium bromate, KBrO ₃	7	38	Potassium iron chloride hydrate (erythrosiderite), $K_2FeCl_5 \cdot H_2O$	14m	27
Potassium bromide, KBr	1	66	Potassium iron cyanide, $K_3Fe(CN)_6$	9m	35
Potassium bromide chloride, $KBr_{0.5}Cl_{0.5}$	8m	46	Potassium iron cyanide, $K_4Fe(CN)_6$	18m	56
Potassium bromide iodide, $KBr_{.33}I_{.67}$	11m	44	Potassium iron(II) fluoride, $KFeF_3$	6m	39
Potassium bromide iodide, $KBr_{.67}I_{.33}$	11m	45	Potassium iron fluoride, K_3FeF_6	9m	37
Potassium cadmium fluoride, KCdF ₃	8m	47	Potassium iron sulfate (yavapaitite), $KFe(SO_4)_2$	16m	59
Potassium cadmium sulfate, $K_2Cd_2(SO_4)_3$	7m	34	Potassium lead chloride, KPb_2Cl_5	13m	33
Potassium calcium carbonate (fairchildite), $K_2Ca(CO_3)_2$	8m	48	Potassium lead chromium oxide, $K_2Pb(CrO_4)_2$	14m	28
Potassium calcium chloride, $KCaCl_3$	7m	36	Potassium lead molybdenum oxide, $K_2Pb(MoO_4)_2$	14m	29
Potassium calcium fluoride, $KCaF_3$	8m	49	Potassium lead phosphate, $K_2Pb(PO_3)_4$	15m	50
Potassium calcium magnesium sulfate, $K_2CaMg(SO_4)_3$	7m	37	Potassium lead selenate, $K_2Pb(SeO_4)_2$	15m	52
Potassium calcium nickel nitrite, $K_2CaNi(NO_2)_6$	9m	33	Potassium lead sulfate (palmierite), $K_2Pb(SO_4)_2$	14m	30
Potassium calcium sulfate, $K_2Ca_2(SO_4)_3$	7m	39	Potassium magnesium chloride hydrate (carnallite), $KMgCl_3 \cdot 6H_2O$	8m	50
Potassium calcium sulfate hydrate (syngenite), $K_2Ca(SO_4)_2 \cdot H_2O$	14m	25	Potassium magnesium chromium oxide, $K_2Mg_2(CrO_4)_3$	8m	52
Potassium cerium fluoride, $\beta\text{-}KCeF_4$	12m	59	Potassium magnesium fluoride, $KMgF_3$	6m	42
Potassium chlorate, $KClO_3$	3m	42	Potassium magnesium fluoride, K_2MgF_4	10m	42
Potassium chlorate, $KClO_4$	6	43	Potassium magnesium selenate hydrate, $K_2Mg(SeO_4)_2 \cdot 6H_2O$	10m	43
Potassium chloride (sylvite), KCl	1	65	Potassium magnesium sulfate (langbeinite), $K_2Mg_2(SO_4)_3$	6m	40
Potassium chromium oxide, K_3CrO_8	3m	44	Potassium magnesium sulfate hydrate (picromerite), $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54
Potassium chromium oxide (lopezite), $K_2Cr_2O_7$	15m	47			
Potassium chromium oxide sulfate, $K_2(CrO_4)_{.33}(SO_4)_{.67}$	12m	28			

	Vol. or Sec.	Page	Vol. or Sec.	Page	
Potassium manganese(II) fluoride, KMnF_3	6m	45	Potassium strontium sulfate (kalistrontite), $\text{K}_2\text{Sr}(\text{SO}_4)_2$	14m	31
Potassium manganese oxide, KMnO_4	7	42	Potassium sulfate, $\text{K}_2\text{S}_2\text{O}_7$	9m	99
Potassium manganese(II) sulfate (manganolangbeinite), $\text{K}_2\text{Mn}_2(\text{SO}_4)_3$	6m	43	Potassium sulfate, $\text{K}_2\text{S}_2\text{O}_8$	17m	64
Potassium molybdenum oxide, K_2MoO_4	15m	53	Potassium sulfate (arcanite), K_2SO_4	3	62
Potassium molybdenum oxide phos- phate hydrate, $\text{K}_3(\text{MoO}_3)_{12}\text{PO}_4 \cdot 4\text{H}_2\text{O}$	8	43	Potassium sulfide, K_2S	10m	127
Potassium nickel fluoride, KNiF_3	7m	42	Potassium telluride, K_2Te	10m	128
Potassium nickel fluoride, K_2NiF_4	10m	45	Potassium thiocyanate, KCNS	8	44
Potassium nickel(II) sulfate, $\text{K}_2\text{Ni}_2(\text{SO}_4)_3$	6m	46	Potassium tin chloride, K_2SnCl_6	6	38
Potassium niobium fluoride, K_2NbF_7	8m	120	Potassium titanium fluoride, K_2TiF_6	7	40
Potassium niobium oxide, KNbO_3	17m	62	Potassium tungsten oxide, K_2WO_4	11m	47
Potassium nitrate (niter), KNO_3	3	58	Potassium vanadium oxide, KV_3	18m	57
Potassium nitrite, KNO_2	9m	38	Potassium vanadium oxide, KV_3O_8	8m	56
Potassium nitrosyl ruthenium chloride, $\text{K}_2\text{NORuCl}_5$	16m	61	Potassium zinc bromide hydrate, $\text{KZnBr}_3 \cdot 2\text{H}_2\text{O}$	11m	104
Potassium oxide, K_2O	10m	125	Potassium zinc fluoride, KZnF_3	5	51
Potassium platinum bromide, K_2PtBr_6	8	40	Potassium zinc fluoride, K_2ZnF_4	10m	46
Potassium platinum chloride, K_2PtCl_6	13m	34	Potassium zinc iodide hydrate, $\text{KZnI}_3 \cdot 2\text{H}_2\text{O}$	11m	107
Potassium platinum fluoride, K_2PtF_6	6	42	Potassium zinc sulfate, $\text{K}_2\text{Zn}_2(\text{SO}_4)_3$	6m	54
Potassium rhenium chloride, K_2ReCl_6	2m	28	Potassium zinc sulfate hydrate, $\text{K}_2\text{Zn}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	43
Potassium rhenium oxide, KReO_4	8	41	Potassium zinc vanadium oxide hydrate, $\text{K}_2\text{Zn}_2\text{V}_{10}\text{O}_{28} \cdot 16\text{H}_2\text{O}$	3m	45
Potassium rubidium chloride, $\text{K}_{0.5}\text{Rb}_{0.5}\text{Cl}$	8m	76	Potassium zirconium fluoride, K_3ZrF_7	9	46
Potassium rubidium chromium oxide, KRbCrO_4	12m	29	Praseodymium arsenate, PrAsO_4	4m	32
Potassium ruthenium chloride, K_2RuCl_6	10	46	Praseodymium arsenide, PrAs	4m	67
Potassium ruthenium oxide chloride hydrate, $\text{K}_4\text{Ru}_2\text{OCl}_{10} \cdot \text{H}_2\text{O}$	10	47	Praseodymium chloride, PrCl_3	1m	39
Potassium selenate, K_2SeO_4	9m	41	Praseodymium chloride oxide, PrOCl	9	47
Potassium selenide, K_2Se	10m	126	Praseodymium fluoride, PrF_3	5	52
Potassium selenium bromide, K_2SeBr_6	8	41	Praseodymium sulfide, PrS	4m	67
Potassium silicon fluoride (hieratite), K_2SiF_6	5	50	Praseodymium vanadium oxide, PrVO_4	5m	40
Potassium silver cyanide, $\text{KAg}(\text{CN})_2$	8m	78	Praseodymium zinc, PrZn	5m	72
Potassium sodium aluminum fluoride (elpasolite), K_2NaAlF_6	9m	43	Rhenium, Re	2	13
Potassium sodium bromide, $\text{K}_{2-}\text{Na}_{.8}\text{Br}$	12m	62	Rhodium, Rh	3	9
Potassium sodium bromide, $\text{K}_{.4}\text{Na}_{.6}\text{Br}$	12m	62	Rhodium vanadium, RhV_3	6m	56
Potassium sodium bromide, $\text{K}_{.6}\text{Na}_{.4}\text{Br}$	12m	62	Rubidium aluminum sulfate hydrate, $\text{RbAl}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	44
Potassium sodium bromide, $\text{K}_{.8}\text{Na}_{.2}\text{Br}$	12m	62	Rubidium amide, RbNH_2	5m	73
Potassium sodium chloride, $\text{K}_{2-}\text{Na}_{.8}\text{Cl}$	12m	63	Rubidium barium chromium oxide, $\text{Rb}_{2}\text{Ba}(\text{CrO}_4)_2$	14m	32
Potassium sodium chloride, $\text{K}_{.4}\text{Na}_{.6}\text{Cl}$	12m	63	Rubidium barium molybdenum oxide, $\text{Rb}_{2}\text{Ba}(\text{MoO}_4)_2$	15m	59
Potassium sodium chloride, $\text{K}_{.6}\text{Na}_{.4}\text{Cl}$	12m	63	Rubidium bromate, RbBrO_3	8	45
Potassium sodium chloride, $\text{K}_{.8}\text{Na}_{.2}\text{Cl}$	12m	63	Rubidium bromide, RbBr	7	43
Potassium sodium sulfate, $\text{K}_{.67}\text{Na}_{1.33}\text{SO}_4$	6m	48	Rubidium cadmium chloride, high form, RbCdCl_3 (tetragonal)	5m	43
Potassium sodium sulfate, KNaSO_4 ..	6m	50	Rubidium cadmium chloride, low form, RbCdCl_3 (orthorhombic)	5m	41
Potassium sodium sulfate (aphthitalite), $\text{K}_3\text{Na}(\text{SO}_4)_2$	6m	52	Rubidium cadmium sulfate, $\text{Rb}_2\text{Cd}_2(\text{SO}_4)_3$	7m	45
Potassium strontium chromium oxide, $\text{K}_2\text{Sr}(\text{CrO}_4)_2$	15m	57	Rubidium calcium chloride, RbCaCl_3	7m	47
Potassium strontium selenate, $\text{K}_2\text{Sr}(\text{SeO}_4)_2$	15m	58	Rubidium calcium fluoride, RbCaF_3	8m	57
			Rubidium calcium sulfate, $\text{Rb}_2\text{Ca}_2(\text{SO}_4)_3$	7m	48
			Rubidium chlorate, RbClO_3	8	47
			Rubidium chlorate, RbClO_4	2m	30
			Rubidium chloride, RbCl	4	41
			Rubidium chromium oxide, Rb_2CrO_4 ..	3m	46
			Rubidium chromium oxide, $\text{Rb}_2\text{Cr}_2\text{O}_7$..	15m	60
			Rubidium chromium sulfate hydrate, $\text{RbCr}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	47
			Rubidium cobalt(II) chloride, RbCoCl_3	6m	57
			Rubidium cobalt fluoride, RbCoF_3 ..	8m	58

	Vol. or Sec.	Page	Vol. or Sec.	Page	
Rubidium cobalt sulfate, $\text{Rb}_2\text{Co}_2(\text{SO}_4)_3$	8m	59	Samarium tin oxide, $\text{Sm}_2\text{Sn}_2\text{O}_7$	8m	77
Rubidium copper chloride hydrate, $\text{Rb}_2\text{CuCl}_4 \cdot 2\text{H}_2\text{O}$	10m	47	Samarium vanadium oxide, SmVO_4	5m	47
Rubidium copper sulfate hydrate, $\text{Rb}_2\text{Cu}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	61	Scandium arsenate, ScAsO_4	4m	35
Rubidium fluoride, RbF	8m	63	Scandium arsenide, ScAs	4m	68
Rubidium iodate, RbIO_3	15m	62	Scandium boride, ScB_2	17m	66
Rubidium iodate, RbIO_4	2m	31	Scandium oxide, Sc_2O_3	3	27
Rubidium iodide, RbI	4	43	Scandium phosphate, ScPO_4	8	50
Rubidium iron chloride hydrate, $\text{Rb}_2\text{FeCl}_5 \cdot \text{H}_2\text{O}$	14m	33	Scandium silicate (thortveitite), $\text{Sc}_2\text{Si}_2\text{O}_7$	7m	58
Rubidium iron sulfate hydrate, $\text{Rb}_2\text{Fe}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	64	Selenium, Se	5	54
Rubidium lead chromium oxide, $\text{Rb}_2\text{Pb}(\text{CrO}_4)_2$	14m	34	Selenium oxide (selenolite), SeO_2	7m	60
Rubidium lead molybdenum oxide, $\text{Rb}_2\text{Pb}(\text{MoO}_4)_2$	15m	63	Silicon, Si	13m	35
Rubidium magnesium chromium oxide, $\text{Rb}_2\text{Mg}_2(\text{CrO}_4)_3$	8m	66	Silicon, Si (reference standard) ..	12m	2
Rubidium magnesium chromium oxide hydrate, $\text{Rb}_2\text{Mg}(\text{CrO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	68	Silicon nitride, $\beta\text{-Si}_3\text{N}_4$	18m	59
Rubidium magnesium sulfate, $\text{Rb}_2\text{Mg}_2(\text{SO}_4)_3$	7m	50	Silicon nitride, $\beta\text{-Si}_3\text{N}_4$ (calculated pattern)	14m	116
Rubidium magnesium sulfate hydrate, $\text{Rb}_2\text{Mg}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	70	Silicon oxide (α or low cristobalite), SiO_2 (tetragonal)	10	48
Rubidium manganese(II) fluoride, RbMnF_3	5m	44	Silicon oxide (α or low cristobalite), SiO_2 (tetragonal) (calculated pattern)	15m	180
Rubidium manganese sulfate, $\text{Rb}_2\text{Mn}_2(\text{SO}_4)_3$	7m	52	Silicon oxide (quartz, low), $\alpha\text{-SiO}_2$	18m	61
Rubidium nickel(II) chloride, RbNiCl_3	6m	58	Silicon oxide, α or low quartz, SiO_2 (hexagonal)	3	24
Rubidium nickel sulfate, $\text{Rb}_2\text{Ni}_2(\text{SO}_4)_3$	8m	72	Silicon oxide (β or high cristobalite), SiO_2 (cubic)	1	42
Rubidium nickel sulfate hydrate, $\text{Rb}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	74	Silver, Ag	1	23
Rubidium nitrate, RbNO_3 (trigonal)	5m	45	Silver, Ag (reference standard) ..	8m	2
Rubidium platinum chloride, Rb_2PtCl_6	5	53	Silver arsenate, Ag_3AsO_4	5	56
Rubidium platinum fluoride, Rb_2PtF_6	6	48	Silver arsenic sulfide, xanthoconite, Ag_3AsS_3	8m	126
Rubidium selenate, Rb_2SeO_4	9m	44	Silver bromate, AgBrO_3	5	57
Rubidium silicon fluoride, Rb_2SiF_6	6	49	Silver bromide (bromargyrite), AgBr	4	46
Rubidium strontium chloride, RbSrCl_3	7m	54	Silver carbonate, Ag_2CO_3	13m	36
Rubidium strontium chromium oxide, $\text{Rb}_2\text{Sr}(\text{CrO}_4)_2$	15m	64	Silver chlorate, AgClO_3	7	44
Rubidium strontium sulfate, $\text{Rb}_2\text{Sr}(\text{SO}_4)_2$	15m	65	Silver chloride (chlorargyrite), AgCl	4	44
Rubidium sulfate, Rb_2SO_4	8	48	Silver chromium oxide, Ag_2CrO_4	12m	30
Rubidium tellurium bromide, Rb_2TeBr_6	8	46	Silver cyanide, AgCN	9m	48
Rubidium tellurium chloride, Rb_2TeCl_6	8	48	Silver fluoride, Ag_2F	5m	53
Rubidium tin chloride, Rb_2SnCl_6 ...	6	46	Silver iodate, AgIO_4	9	49
Rubidium zinc fluoride, RbZnF_3 ...	7m	57	Silver iodide (iodargyrite), AgI (hexagonal)	8	51
Rubidium zinc sulfate hydrate, $\text{Rb}_2\text{Zn}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	55	Silver iodide, $\gamma\text{-AgI}$ (cubic)	9	48
Ruthenium, Ru	4	5	Silver manganese oxide, AgMnO_4	7m	155
Ruthenium titanium, RuTi	6m	86	Silver mercury iodide, $\beta\text{-Ag}_2\text{HgI}_4$..	17m	67
Samarium arsenate, SmAsO_4	4m	33	Silver molybdenum oxide, Ag_2MoO_4 ..	7	45
Samarium arsenide, SmAs	4m	68	Silver nitrate, AgNO_3	5	59
Samarium chloride, SmCl_3	1m	40	Silver nitrite, AgNO_2	5	60
Samarium chloride oxide, SmOCl	1m	43	Silver oxide, Ag_2O	1m	45
Samarium fluoride, SmF_3	1m	41	Silver(II) oxide nitrate, $\text{Ag}_7\text{O}_8\text{NO}_3$..	4	61
Samarium oxide, Sm_2O_3 (cubic)	4m	34	Silver phosphate, Ag_3PO_4	5	62
Samarium silver, SmAg	5m	73	Silver rhenium oxide, AgReO_4	8	53
			Silver selenate, Ag_2SeO_4	2m	32
			Silver sodium chloride, $\text{Ag}_{0.5}\text{Na}_{0.5}\text{Cl}$	8m	79
			Silver sulfate, Ag_2SO_4	13m	37
			Silver sulfide (acanthite), Ag_2S ..	10	51
			Silver terbium, AgTb	5m	74
			Silver thiocyanate, AgCNS	16m	62
			Silver thulium, AgTm	5m	74
			Silver yttrium, AgY	5m	75
			Sodium, Na	9m	105
			Sodium aluminum chloride silicate, sodalite, $\text{Na}_8\text{Al}_6\text{Cl}_2(\text{SiO}_4)_6$	7m	158
			Sodium aluminum fluoride (chiolite), $\text{Na}_5\text{Al}_3\text{F}_{14}$	16m	63

	Vol. or Sec.	Page		Vol. or Sec.	Page
Sodium aluminum oxide, β -NaAlO ₂ ...	18m	62	Sodium hydrogen fluoride, NaHF ₂ ...	5	63
Sodium aluminum sulfate hydrate (soda alum), NaAl(SO ₄) ₂ ·12H ₂ O	15m	68	Sodium hydrogen phosphate, Na ₃ H(PO ₃) ₄	10m	130
Sodium azide, α -NaN ₃ , at -90 to -100 °C	8m	129	Sodium hydrogen silicate hydrate, Na ₂ H ₂ SiO ₄ ·4H ₂ O	7m	163
Sodium azide, β -NaN ₃	8m	130	Sodium hydrogen sulfate hydrate, NaHSO ₄ ·H ₂ O	9m	52
Sodium beryllium calcium aluminum fluoride oxide silicate, meliphanite, (Na _{0.63} Ca _{1.37})Be(Al _{0.13} Si _{1.87}) (F _{0.75} O _{6.25})	8m	135	Sodium hydroxide, NaOH at 300 °C ..	4m	69
Sodium beryllium calcium fluoride silicate, leucophanite, NaBeCaFSi ₂ O ₆	8m	138	Sodium iodate, NaIO ₃	7	47
Sodium borate, NaBO ₂	18m	63	Sodium iodate, NaIO ₄	7	48
Sodium borate, Na ₂ B ₄ O ₇	16m	64	Sodium iodate hydrate, NaIO ₃ ·H ₂ O ..	17m	73
Sodium borate, Na ₂ B ₈ O ₁₃	7m	160	Sodium iodide, NaI	4	31
Sodium borate hydroxide hydrate (borax), Na ₂ B ₄ O ₅ (OH) ₄ ·8H ₂ O	16m	66	Sodium iron fluoride, Na ₃ FeF ₆	9m	54
Sodium boron hydride, NaBH ₄	9	51	Sodium lanthanum fluoride silicate, (Na ₂ La ₈)F ₂ (SiO ₄) ₆	7m	64
Sodium bromate, NaBrO ₃	5	65	Sodium lanthanum molybdenum oxide, NaLa(MoO ₄) ₂	10m	49
Sodium bromide, NaBr	3	47	Sodium magnesium aluminum boron hydroxide silicate, dravite, NaMg ₃ Al ₆ B ₃ (OH) ₄ Si ₆ O ₂₇	3m	47
Sodium bromide chloride, NaBr _{0.33} Cl _{0.67}	11m	49	Sodium magnesium carbonate (eitelite), Na ₂ Mg(CO ₃) ₂	11m	56
Sodium bromide chloride, NaBr _{0.67} Cl _{0.33}	11m	50	Sodium magnesium sulfate (vanthoffite), Na ₆ Mg(SO ₄) ₄	15m	72
Sodium calcium aluminum fluoride hydrate, thomsenolite, NaCaAlF ₆ ·H ₂ O	8m	132	Sodium magnesium sulfate hydrate, bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63
Sodium calcium carbonate hydrate, pirssonite, Na ₂ Ca(CO ₃) ₂ ·2H ₂ O	9m	106	Sodium magnesium sulfate hydrate (loeweite), Na ₁₂ Mg ₇ (SO ₄) ₁₃ ·15H ₂ O	14m	35
Sodium calcium phosphate, β -NaCaPO ₄	15m	69	Sodium manganese(II) fluoride, NaMnF ₃	6m	65
Sodium calcium silicate, Na ₂ CaSiO ₄	10m	48	Sodium manganese sulfate hydrate, Na ₁₂ Mn ₇ (SO ₄) ₁₃ ·15H ₂ O	14m	37
Sodium calcium sulfate (glauberite), Na ₂ Ca(SO ₄) ₂	6m	59	Sodium mercury(II) chloride hydrate, NaHgCl ₃ ·2H ₂ O	6m	66
Sodium carbonate hydrate (thermo- natrite), Na ₂ CO ₃ ·H ₂ O	8	54	Sodium molybdenum oxide, Na ₂ MoO ₄ ..	1m	46
Sodium carbonate sulfate, Na ₄ CO ₃ SO ₄	11m	51	Sodium molybdenum oxide, Na ₂ Mo ₂ O ₇	9m	110
Sodium carbonate sulfate (burkeite), Na ₆ CO ₃ (SO ₄) ₂	11m	52	Sodium neodymium fluoride silicate, (Na ₂ Nd ₈)F ₂ (SiO ₄) ₆	7m	66
Sodium carbonate sulfate, Na ₆ CO ₃ (SO ₄) ₂	11m	53	Sodium nickel(II) sulfate hydrate, Na ₂ Ni(SO ₄) ₂ ·4H ₂ O	6m	68
Sodium carbonate sulfate, Na ₈ (CO ₃) ₂ SO ₄	11m	54	Sodium niobium oxide (lueshite), NaNbO ₃	18m	64
Sodium chlorate, NaClO ₃	3	51	Sodium nitrate (soda niter), NaNO ₃	6	50
Sodium chlorate, NaClO ₄ (orthorhombic)	7	49	Sodium nitrite, NaNO ₂	4	62
Sodium chlorate hydrate, NaClO ₄ ·H ₂ O	17m	68	Sodium nitrosyl iron cyanide hydrate, Na ₂ (NO)Fe(CN) ₅ ·2H ₂ O	18m	66
Sodium chloride (halite), NaCl	2	41	Sodium oxide, Na ₂ O	10m	134
Sodium chromium oxide, Na ₂ CrO ₄	9m	48	Sodium phosphate, Na ₃ P ₃ O ₉	3m	49
Sodium chromium oxide hydrate, Na ₂ CrO ₄ ·4H ₂ O	9m	50	Sodium phosphate hydrate, Na ₃ P ₃ O ₉ ·H ₂ O	3m	50
Sodium chromium oxide hydrate, Na ₂ Cr ₂ O ₇ ·2H ₂ O	7m	62	Sodium phosphate hydrate, α -Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic)	13m	39
Sodium chromium oxide sulfate, Na ₄ (CrO ₄)(SO ₄)	11m	55	Sodium phosphate hydrate, β -Na ₄ P ₄ O ₁₂ ·4H ₂ O (triclinic)	2m	35
Sodium cobalt nitrite, Na ₃ Co(NO ₂) ₆	15m	70	Sodium phosphate hydrate, Na ₆ P ₆ O ₁₈ ·6H ₂ O	5m	54
Sodium cobalt(II) sulfate hydrate, Na ₂ Co(SO ₄) ₂ ·4H ₂ O	6m	61	Sodium praseodymium fluoride silicate, (Na ₂ Pr ₈)F ₂ (SiO ₄) ₆	7m	68
Sodium cyanate, NaCNO	2m	33	Sodium selenate, Na ₂ SeO ₄	9m	55
Sodium cyanide, NaCN (cubic)	1	78	Sodium selenide, Na ₂ Se	10m	135
Sodium cyanide, NaCN (orthorhombic) at 6 °C	1	79	Sodium silicate, α (III), Na ₂ Si ₂ O ₅ ..	8m	141
Sodium fluoride (villiaumite), NaF	1	63	Sodium silicate, β -Na ₂ Si ₂ O ₅	10m	136
Sodium hydrogen carbonate hydrate, trona, Na ₃ H(CO ₃) ₂ ·2H ₂ O	15m	71	Sodium silicon fluoride (malladrite), Na ₂ SiF ₆	16m	68
			Sodium sulfate, Na ₂ SO ₄	11m	57
			Sodium sulfate (thenardite), Na ₂ SO ₄	2	59

Vol. or
Sec. Page

Vol. or
Sec. Page

Sodium sulfate hydrate, $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$	17m	74	Strontium silicate, Sr_3SiO_5	13m	44
Sodium sulfide, Na_2S	10m	140	Strontium sulfate (celestite), SrSO_4	2	61
Sodium sulfite, Na_2SO_3	3	60	Strontium sulfide, SrS	7	52
Sodium telluride, Na_2Te	10m	141	Strontium telluride, SrTe	4m	69
Sodium tin fluoride, NaSn_2F_5	7m	166	Strontium tin oxide, SrSnO_3	8m	80
Sodium titanium oxide, $\text{Na}_2\text{Ti}_3\text{O}_7$	16m	69	Strontium titanium oxide, SrTiO_3	3	44
Sodium tungsten oxide, Na_2WO_4	1m	47	Strontium tungsten oxide, SrWO_4	7	53
Sodium tungsten(VI) oxide hydrate, $\text{Na}_2\text{WO}_4 \cdot 2\text{H}_2\text{O}$	2m	33	Strontium tungsten oxide, Sr_2WO_5	12m	32
Sodium vanadium oxide, $\alpha\text{-NaVO}_3$	18m	67	Strontium vanadium oxide, $\text{Sr}_3(\text{VO}_4)_2$	15m	73
Sodium vanadium oxide, $\beta\text{-NaVO}_3$	18m	68	Strontium zirconium oxide, SrZrO_3	9	51
Sodium zinc fluoride, NaZnF_3	6m	74	Sulfamic acid, $\text{H}_2\text{NSO}_3\text{H}$	7	54
Sodium zinc sulfate hydrate, $\text{Na}_2\text{Zn}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$	6m	72	Sulfur, S (orthorhombic)	9	54
Sodium zirconium fluoride, $\text{Na}_7\text{Zr}_6\text{F}_{31}$	8m	144	Tantalum, Ta	1	29
Strontium aluminum hydroxide, $\text{Sr}_3\text{Al}_2(\text{OH})_{12}$	10m	50	Tantalum silicide, TaSi_2	8	59
Strontium aluminum oxide, $\text{Sr}_3\text{Al}_2\text{O}_6$	10m	52	Tellurium, Te	1	26
Strontium arsenate, $\text{Sr}_3(\text{AsO}_4)_2$	2m	36	Tellurium(IV) oxide (paratellurite), TeO_2 (tetragonal)	7	56
Strontium azide, $\text{Sr}(\text{N}_3)_2$	8m	146	Tellurium(IV) oxide, paratellurite, TeO_2 (tetragonal)	10	55
Strontium borate, SrB_2O_4	3m	53	Tellurium(IV) oxide, tellurite, TeO_2 (orthorhombic)	9	57
Strontium borate, SrB_4O_7	4m	36	Terbium arsenate, TbAsO_4	3m	54
Strontium bromate hydrate, $\text{Sr}(\text{BrO}_3)_2 \cdot \text{H}_2\text{O}$	17m	76	Terbium arsenide, TbAs	5m	75
Strontium bromide fluoride, SrBrF	10m	54	Terbium nitride, TbN	4m	70
Strontium bromide hydrate, $\text{SrBr}_2 \cdot 6\text{H}_2\text{O}$	4	60	Terbium phosphide, TbP	5m	76
Strontium carbonate (strontianite), SrCO_3	3	56	Terbium selenide, TbSe	5m	76
Strontium chloride, SrCl_2	4	40	Terbium sulfide, TbS	5m	77
Strontium chloride fluoride, SrClF	10m	55	Terbium telluride, TbTe	5m	77
Strontium chloride hydrate, $\text{SrCl}_2 \cdot 2\text{H}_2\text{O}$	11m	58	Terbium vanadium oxide, TbVO_4	5m	56
Strontium chloride hydrate, $\text{SrCl}_2 \cdot 6\text{H}_2\text{O}$	4	58	Thallium, $\alpha\text{-Tl}$	16m	73
Strontium chloride hydroxide phosphate, $\text{Sr}_5\text{Cl}_{6.5}(\text{OH})_{3.5}(\text{PO}_4)_3$	11m	60	Thallium aluminum sulfate hydrate, $\text{TlAl}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	53
Strontium chromium oxide, SrCr_2O_7	17m	77	Thallium(I) arsenate, Tl_3AsO_4	2m	37
Strontium chromium oxide, Sr_2CrO_4	16m	71	Thallium azide, TlN_3	8m	82
Strontium chromium oxide hydrate, $\text{SrCr}_2\text{O}_7 \cdot 3\text{H}_2\text{O}$	17m	79	Thallium(I) bromate, TlBrO_3	8	60
Strontium fluoride, SrF_2	5	67	Thallium bromide, TlBr	7	57
Strontium hydroxide, $\text{Sr}(\text{OH})_2$	13m	41	Thallium cadmium sulfate, $\text{Tl}_2\text{Cd}_2(\text{SO}_4)_3$	8m	83
Strontium hydroxide hydrate, $\text{Sr}(\text{OH})_2 \cdot \text{H}_2\text{O}$	13m	42	Thallium(I) chlorate, TlClO_4	2m	38
Strontium hydroxide hydrate, $\text{Sr}(\text{OH})_2 \cdot 8\text{H}_2\text{O}$	13m	43	Thallium(I) chlorate, TlClO_3	8	61
Strontium indium hydroxide, $\text{Sr}_3\text{In}_2(\text{OH})_{12}$	6m	76	Thallium(I) chloride, TlCl	4	51
Strontium iodide hydrate, $\text{SrI}_2 \cdot 6\text{H}_2\text{O}$	8	58	Thallium chromium oxide, Tl_2CrO_4	3m	54
Strontium iron oxide, $\text{SrFe}_{12}\text{O}_{19}$	18m	69	Thallium chromium sulfate hydrate, $\text{TlCr}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	55
Strontium manganese oxide, SrMnO_3 (cubic)	10m	56	Thallium cobalt sulfate, $\text{Tl}_2\text{Co}_2(\text{SO}_4)_3$	8m	85
Strontium manganese oxide, SrMnO_3 (hexagonal)	10m	58	Thallium cobalt sulfate hydrate, $\text{Tl}_2\text{Co}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	70
Strontium molybdenum oxide, SrMoO_4	7	50	Thallium copper sulfate hydrate, $\text{Tl}_2\text{Cu}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	72
Strontium nitrate, $\text{Sr}(\text{NO}_3)_2$	12m	31	Thallium fluoride, TlF	16m	74
Strontium oxide, SrO	5	68	Thallium gallium sulfate hydrate, $\text{TlGa}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$	6	57
Strontium oxide, SrO_2	6	52	Thallium(I) iodate, TlIO_3	8	62
Strontium oxide hydrate, $\text{SrO}_2 \cdot 8\text{H}_2\text{O}$	11m	61	Thallium(I) iodide, TlI (orthorhombic)	4	53
Strontium phosphate, $\alpha\text{-Sr}_2\text{P}_2\text{O}_7$	11m	62	Thallium iron sulfate hydrate, $\text{Tl}_2\text{Fe}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	8m	87
Strontium phosphate, $\alpha\text{-Sr}_3(\text{PO}_4)_2$	11m	64	Thallium lead sulfate, $\text{Tl}_2\text{Pb}(\text{SO}_4)_2$	15m	74
Strontium scandium oxide hydrate, $\text{Sr}_3\text{Sc}_2\text{O}_6 \cdot 6\text{H}_2\text{O}$	6m	78	Thallium magnesium chromium oxide, $\text{Tl}_2\text{Mg}_2(\text{CrO}_4)_3$	8m	89
			Thallium magnesium sulfate hydrate, $\text{Tl}_2\text{Mg}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	74
			Thallium manganese sulfate, $\text{Tl}_2\text{Mn}_2(\text{SO}_4)_3$	7m	76
			Thallium nickel sulfate hydrate, $\text{Tl}_2\text{Ni}(\text{SO}_4)_2 \cdot 6\text{H}_2\text{O}$	7m	78

	Vol. or Sec.	Page		Vol. or Sec.	Page
Thallium(I) nitrate, TlNO ₃	6	58	Ytterbium oxide, Yb ₂ O ₃	6m	80
Thallium oxide (avicennite), Tl ₂ O ₃	16m	77	Ytterbium selenide, YbSe	5m	79
Thallium(III) oxide, Tl ₂ O ₃	2	28	Ytterbium telluride, YbTe	5m	79
Thallium(I) phosphate, Tl ₃ PO ₄	7	58	Ytterbium(III) vanadium oxide, YbVO ₄	5m	58
Thallium(III) phosphate, TlPO ₄	7	59	Yttrium, Y	18m	77
Thallium platinum chloride, Tl ₂ PtCl ₆	5	70	Yttrium arsenate, YAsO ₄	2m	39
Thallium silicon fluoride, Tl ₂ SiF ₆	6	56	Yttrium arsenide, YAs	4m	74
Thallium strontium sulfate, Tl ₂ Sr(SO ₄) ₂	15m	75	Yttrium chloride oxide, YClO	1m	51
Thallium(I) sulfate, Tl ₂ SO ₄	6	59	Yttrium oxide, Y ₂ O ₃	3	28
Thallium(I) thiocyanate, TlCNS	8	63	Yttrium phosphate (xenotime), YPO ₄	8	67
Thallium tin chloride, Tl ₂ SnCl ₆	6	54	Yttrium sulfide, YS	5m	80
Thallium(I) tungsten oxide, Tl ₂ WO ₄	1m	48	Yttrium telluride, YTc	4m	75
Thallium zinc sulfate hydrate, Tl ₂ Zn(SO ₄) ₂ ·6H ₂ O	7m	80	Yttrium titanium oxide, Y ₂ TiO ₅	11m	113
Thorium arsenide, ThAs	4m	70	Yttrium vanadium oxide, YVO ₄	5m	59
Thorium carbide, ThC	18m	71	Zinc, Zn	1	16
Thorium nitrate hydrate, Th(NO ₃) ₄ ·5H ₂ O	18m	72	Zinc aluminum oxide (gahnite), ZnAl ₂ O ₄	2	38
Thorium oxide (thorianite), ThO ₂	1	57	Zinc ammine bromide, Zn(NH ₃) ₂ Br ₂	11m	68
Thulium arsenate, TmAsO ₄	3m	56	Zinc ammine chloride, Zn(NH ₃) ₂ Cl ₂	10m	59
Thulium arsenide, TmAs	4m	71	Zinc antimony oxide, ZnSb ₂ O ₄	4m	39
Thulium nitride, TmN	4m	71	Zinc borate, Zn ₄ B ₆ O ₁₃	13m	48
Thulium oxide, Tm ₂ O ₃	9	58	Zinc carbonate, smithsonite, ZnCO ₃	8	69
Thulium telluride, TmTe	4m	72	Zinc chlorate hydrate, Zn(ClO ₄) ₂ ·6H ₂ O	16m	79
Thulium vanadium oxide, TmVO ₄	5m	57	Zinc chromium oxide, ZnCr ₂ O ₄	9m	59
Tin, α-Sn (cubic)	2	12	Zinc cobalt oxide, ZnCo ₂ O ₄	10m	60
Tin, β-Sn (tetragonal)	1	24	Zinc cyanide, Zn(CN) ₂	5	73
Tin arsenide, SnAs	4m	37	Zinc fluoride, ZnF ₂	6	60
Tin arsenide, Sn _{3.8} As ₃	15m	76	Zinc fluoride hydrate, ZnF ₂ ·4H ₂ O	11m	69
Tin chloride hydrate, SnCl ₂ ·2H ₂ O	17m	84	Zinc germanium oxide, Zn ₂ GeO ₄	10	56
Tin(II) fluoride, SnF ₂	3m	51	Zinc hydroxide silicate hydrate, hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ ·H ₂ O	2	62
Tin hydrogen phosphate, SnHPO ₄	13m	46	Zinc iodide, ZnI ₂	9	60
Tin(IV) iodide, SnI ₄	5	71	Zinc iron oxide (franklinite), ZnFe ₂ O ₄	9m	60
Tin(II) oxide (romarchite), SnO	4	28	Zinc manganese oxide (hetaerolite), ZnMn ₂ O ₄	10m	61
Tin(IV) oxide (cassiterite), SnO ₂	1	54	Zinc molybdenum oxide, Zn ₂ Mo ₃ O ₈	7m	173
Tin sulfide (berndtite), β-SnS ₂	9m	57	Zinc nitrate hydrate, α-Zn(NO ₃) ₂ ·6H ₂ O	12m	36
Tin(II) telluride, SnTe	7	61	Zinc oxide (zincite), ZnO	2	25
Titanium, Ti	3	4	Zinc phosphate, α-Zn ₃ (PO ₄) ₂	16m	80
Titanium carbide, TiC	18m	73	Zinc phosphate, β-Zn ₃ (PO ₄) ₂	16m	81
Titanium(III) oxide, TiO _{1.515}	9	59	Zinc phosphate, γ-Zn ₃ (PO ₄) ₂	16m	83
Titanium oxide (anatase), TiO ₂	7m	82	Zinc phosphate hydrate (hopeite), Zn ₃ (PO ₄) ₂ ·4H ₂ O	16m	85
Titanium oxide, brookite, TiO ₂ (orthorhombic)	3m	57	Zinc selenide, ZnSe	3	23
Titanium oxide (rutile), TiO ₂	7m	83	Zinc silicate (willemite), Zn ₂ SiO ₄	7	62
Titanium silicide, Ti ₅ Si ₃	8	64	Zinc silicon fluoride hydrate, ZnSiF ₆ ·6H ₂ O	8	70
Titanium sulfide, TiS ₂	4m	72	Zinc sulfate (zinkosite), ZnSO ₄	7	64
Titanium sulfide, Ti ₂ S	8m	149	Zinc sulfate hydrate (goslarite), ZnSO ₄ ·7H ₂ O	8	71
Tungsten, W	1	28	Zinc sulfide (wurtzite), α-ZnS (hexagonal)	2	14
Tungsten, W (reference standard) ..	8m	2	Zinc sulfide (sphalerite), β-ZnS (cubic)	2	16
Tungsten oxide, WO ₂	18m	74	Zinc telluride, ZnTe	3m	58
Tungsten sulfide (tungstenite), WS ₂	8	65	Zinc tin oxide, Zn ₂ SnO ₄	10m	62
Uranium nitride, UN	18m	75	Zinc titanium oxide, ZnTiO ₃	13m	49
Uranium oxide, UO	5m	78	Zinc titanium oxide, Zn ₂ TiO ₄	12m	37
Uranium oxide (uraninite), UO ₂	2	33	Zinc tungsten oxide (sanmartinitite), ZnWO ₄	2m	40
Uranium selenide, USe	5m	78	Zirconium, α-Zr	2	11
Uranium telluride, UTe	4m	73	Zirconium fluoride, ZrF ₄	18m	79
Vanadium, V	9m	58	Zirconium hydride, ZrH ₂	5m	60
Vanadium(V) oxide (shcherbinaite), V ₂ O ₅	8	66			
Vanadium sulfide, α-V ₃ S	14m	118			
Vanadium sulfide, β-V ₃ S	14m	120			
Ytterbium arsenate, YbAsO ₄	4m	38			
Ytterbium arsenide, YbAs	4m	73			
Ytterbium nitride, YbN	4m	74			

Vol. or
Sec. Page

Zirconium iodate, $\text{Zr}(\text{IO}_3)_4$	1m	51
Zirconium nitride, ZrN	5m	80
Zirconium oxide, ZrO	5m	81
Zirconium oxide chloride hydrate, $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$	18m	81
Zirconium phosphide, ZrP	4m	75
Zirconium silicate, zircon, ZrSiO_4	4	68
Zirconium silicide, ZrSi_2	17m	86
Zirconium sulfate hydrate (zircosulfate), $\text{Zr}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$	7	66

CUMULATIVE ORGANIC FORMULA INDEX

	Vol. or Sec.	Page
CHI ₃	Iodoform	18m 34
CH ₄ N ₂ O	Urea	7 61
CH ₄ N ₂ S	Thiourea	17m 83
CH ₅ NO ₂	Ammonium formate	11m 9
CH ₅ N ₃ ·HCl	Guanidinium chloride	17m 35
CH ₅ N ₃ S	Thiosemicarbazide	17m 81
C ₂ Ag ₂ O ₄	Silver oxalate	9m 47
C ₂ FeO ₄ ·2H ₂ O	Iron oxalate hydrate (humboldtine)	10m 24
C ₂ HNaO ₄ ·H ₂ O	Sodium hydrogen oxalate hydrate	17m 72
C ₂ H ₂ CaO ₄	Calcium formate	8 16
C ₂ H ₂ O ₄ ·2H ₂ O	Oxalic acid hydrate	16m 55
C ₂ H ₂ O ₄ Pb	Lead formate	8 30
C ₂ H ₂ O ₄ Sr	Strontium formate	8 55
C ₂ H ₂ O ₄ Sr·2H ₂ O	Strontium formate hydrate (orthorhombic)	8 56
C ₂ H ₃ KO ₄	Potassium formate-formic acid complex	9m 93
C ₂ H ₃ NaO ₂ ·3H ₂ O	Sodium acetate hydrate	15m 66
C ₂ H ₄ N ₂ O ₂	Glyoxime	8m 102
C ₂ H ₅ NO ₂	α-Glycine	17m 34
C ₂ H ₇ NO ₂	Ammonium acetate	8m 95
C ₂ H ₈ N ₂ O ₄ ·H ₂ O	Ammonium oxalate hydrate (oxammite)	7 5
C ₂ K ₂ O ₄ ·H ₂ O	Potassium oxalate hydrate	9m 39
C ₂ Li ₂ O ₄	Lithium oxalate	10m 34
C ₂ Na ₂ O ₄	Sodium oxalate	6m 70
C ₂ O ₄ Rb ₂ ·H ₂ O ₂	Rubidium oxalate perhydrate	9m 102
C ₃ H ₇ NO ₂	L-Alanine	8m 93
C ₃ H ₇ NO ₂ S	L-Cysteine	11m 86
C ₃ H ₁₀ ClN	Trimethylammonium chloride	9m 113
C ₄ H ₃ KO ₈ ·2H ₂ O	Potassium hydrogen oxalate hydrate	17m 60
C ₄ H ₄ CaO ₅ ·2H ₂ O	Calcium malate hydrate	10m 76
C ₄ H ₄ KNaO ₆ ·4H ₂ O	Potassium sodium tartrate hydrate	15m 55
C ₄ H ₄ NO ₈ Y·H ₂ O	Ammonium yttrium oxalate hydrate	8m 97
C ₄ H ₄ Na ₂ O ₆ ·2H ₂ O	Sodium D-tartrate hydrate	11m 110
C ₄ H ₆ CoO ₄ ·4H ₂ O	Cobalt acetate hydrate	12m 19
C ₄ H ₆ Hg ₂ O ₄	Mercury acetate	17m 51
C ₄ H ₆ NiO ₄ ·4H ₂ O	Nickel acetate hydrate	13m 31
C ₄ H ₆ O ₄ Zn·2H ₂ O	Zinc acetate hydrate	18m 78
C ₄ H ₆ O ₆	D-Tartaric acid	7m 168
C ₄ H ₆ O ₆ U·2H ₂ O	Uranyl acetate hydrate	18m 76
C ₄ H ₇ N ₃ O	Creatinine	15m 31
C ₄ H ₈ N ₈ O ₈	α-HMX	11m 100
C ₄ H ₈ N ₈ O ₈	β-HMX	11m 102
C ₄ H ₈ N ₈ O ₈	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, alpha-	11m 100
C ₄ H ₈ N ₈ O ₈	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, beta-	11m 102
C ₄ H ₂₂ B ₂ O	bis-(o-Dodecacarborane)	6m 7
C ₅ H ₄ N ₄ O ₃	Uric acid, phase 1 (calc. pattern)	8m 154
C ₅ H ₄ N ₄ O ₃	Uric acid, phase 1	16m 78
C ₅ H ₇ CuNO ₄ ·2H ₂ O	Copper glutamate hydrate	7m 110
C ₅ H ₇ NO ₄ Zn·2H ₂ O	Zinc glutamate hydrate	7m 170
C ₅ H ₈ NNaO ₄ ·H ₂ O	Sodium glutamate hydrate	17m 70
C ₅ H ₉ NO ₄	β-L-Glutamic acid	17m 32
C ₅ H ₁₂ O ₄	Pentaerythritol	17m 55
C ₆ H ₃ N ₃ O ₇	Picric acid	16m 56
C ₆ H ₅ NO ₂	Nicotinic acid	16m 54
C ₆ H ₆ O ₂	γ-Hydroquinone	8m 107
C ₆ H ₈ Cl ₂ N ₄ Zn	Zinc diimidazole chloride	7m 123
C ₆ H ₈ N ₂ ·HCl	Phenylhydrazine hydrochloride	17m 56
C ₆ H ₈ O ₆	L-Ascorbic acid	8m 99
C ₆ H ₁₂ N ₄	Hexamethylenetetramine	17m 37
C ₆ H ₁₂ O ₆	Dextrose	11m 28
C ₆ H ₁₂ O ₆	α-D-Glucose	11m 28
C ₆ H ₁₅ HO ₁₂ S ₃ ·9H ₂ O	Holmium ethylsulfate hydrate	1m 18

	Vol. or Sec.	Page
C ₆ H ₁₅ NdO ₁₂ S ₃ ·9H ₂ O	Neodymium ethylsulfate hydrate	9
C ₇ H ₅ BrO ₂	o-Bromobenzoic acid	16m
C ₇ H ₅ ClO ₂	m-Chlorobenzoic acid	16m
C ₇ H ₅ FO ₂	p-Fluorobenzoic acid	16m
C ₇ H ₉ NO ₂ S	Methyl sulfonanilide	9m
C ₇ H ₁₂ O ₄	Pimelic acid	7m
C ₈ H ₄ Hg ₂ O ₄	Mercury o-phthalate	10m
C ₈ H ₅ KO ₄	Potassium hydrogen o-phthalate	4m
C ₈ H ₅ O ₄ Tl	Thallium hydrogen phthalate	16m
C ₈ H ₇ N ₃ O ₇	2,4,6-Trinitrophenetole	8m
C ₈ H ₈ O ₃	p-Anisic acid	16m
C ₈ H ₉ NO	Acetanilide (calc. pattern)	14m
C ₈ H ₉ NO	Acetanilide	16m
C ₈ H ₁₁ N ₂ NaO ₃	Sodium barbital	16m
C ₈ H ₁₂ N ₂ O ₃	Barbital, form I	15m
C ₈ H ₁₂ N ₂ O ₃	Barbital, form II	15m
C ₈ H ₁₂ N ₂ O ₃	Barbital, form IV	15m
C ₉ H ₁₄ N ₂ O ₃	Metharbital	15m
C ₁₀ H ₁₂ N ₂ O ₃	Allobarbital	14m
C ₁₀ H ₁₆ ClNO	(-)-Ephedrine hydrochloride	16m
C ₁₁ H ₁₆ N ₂ O ₃	Vinbarbital, form I	16m
C ₁₁ H ₁₈ N ₂ O ₃	Amobarbital, form I	15m
C ₁₁ H ₁₈ N ₂ O ₃	Amobarbital, form II	15m
C ₁₂ H ₁₀ N ₂	Azobenzene	7m
C ₁₂ H ₁₂ N ₂ ·2HCl	Benzidine hydrochloride	18m
C ₁₂ H ₁₂ N ₂ O ₃	Phenobarbital, form III	16m
C ₁₂ H ₁₆ Cl ₂ CuN ₈	Copper tetrapyrazole chloride	8m
C ₁₂ H ₁₆ Cl ₂ N ₈ Ni	Nickel tetrapyrazole chloride	8m
C ₁₂ H ₁₆ CuN ₁₀ O ₆	Copper tetraimidazole nitrate	13m
C ₁₂ H ₁₆ N ₂	(N,N)-Dimethyltryptamine	14m
C ₁₂ H ₁₆ N ₂ O	Bufotenine	15m
C ₁₂ H ₁₆ N ₂ O	Psilocin	16m
C ₁₂ H ₂₂ O ₁₁	Sucrose	11m
C ₁₂ H ₂₆ N ₂ O ₄	Hexamethylenediammonium adipate	7m
C ₁₃ H ₂₁ ClN ₂ O ₂	Procaine hydrochloride	16m
C ₁₃ H ₂₁ N ₂ O ₄ P	Psilocybin methanolate	16m
C ₁₄ H ₁₁ FO	4-Acetyl-2'-fluorodiphenyl	8m
C ₁₄ H ₂₀ ClN ₃ S	Methapyrilene hydrochloride	14m
C ₁₅ H ₁₂ N ₂ O	β-Carbamazepine	18m
C ₁₅ H ₁₂ O ₂	Dibenzoylmethane	7m
C ₁₆ H ₁₃ ClN ₂ O	Diazepam	14m
C ₁₆ H ₁₃ N	N-Phenyl-2-naphthylamine	6m
C ₁₇ H ₁₉ ClN ₂ S	Chlorpromazine	14m
C ₁₇ H ₂₀ ClNO ₃ ·3H ₂ O	Morphine hydrochloride hydrate	16m
C ₁₇ H ₂₂ ClNO ₄	L-Cocaine hydrochloride	16m
C ₁₇ H ₂₆ ClN	Phencyclidine hydrochloride	16m
C ₁₈ H ₂₂ BrNO ₃ ·2H ₂ O	Codeine hydrobromide hydrate	16m
C ₁₈ H ₂₄ CdN ₁₄ O ₆	Cadmium hexaimidazole nitrate	8m
C ₁₈ H ₂₄ N ₁₄ NiO ₆	Nickel hexaimidazole nitrate	7m
C ₁₈ H ₂₈ N ₂ O ₄ S	(+)-Amphetamine sulfate	15m
C ₁₉ H ₂₂ ClNO ₄ ·2H ₂ O	Naloxone hydrochloride hydrate	16m
C ₁₉ H ₂₂ N ₂ O	Cinchonine	17m
C ₁₉ H ₂₅ ClN ₂	Imipramine hydrochloride	16m
C ₂₀ H ₂₆ ClNO ₃	Benactyzine hydrochloride	16m
C ₂₀ H ₃₄	α-Dihydrophyllocladene, hartite (or bombiccite)	16m
C ₂₁ H ₂₃ ClFNO ₂	Haloperidol	16m
C ₂₁ H ₃₀ O ₂	Cannabidiol	16m
C ₂₂ H ₂₅ ClN ₂ OS·2H ₂ O	Clopenthixol hydrate	17m
C ₂₂ H ₃₀ O ₄	Δ ⁹ -Tetrahydrocannabinolic acid B	16m
C ₂₄ H ₃₂ N ₂ O ₂ Pd	Palladium bis-(N-isopropyl-3- ethylsalicylaldiminate)	7m
C ₂₅ H ₁₅ N ₆	N-Methylphenazinium-7,7,8,8- tetracyanoquinodimethanide	7m
C ₃₃ H ₄₀ N ₂ O ₉	Reserpine	8m

CUMULATIVE ORGANIC NAME INDEX

		Vol. or Sec.	Page
Acetanilide	C ₈ H ₉ NO (calc. pattern)	14m	38
Acetanilide	C ₈ H ₉ NO	16m	7
4-Acetyl-2'-fluorodiphenyl	C ₁₄ H ₁₁ FO	8m	91
Alanine, L-	CH ₃ CHNH ₂ CO ₂ H	8m	93
Allobarbital	C ₁₀ H ₁₂ N ₂ O ₃	14m	41
Amobarbital, form I	C ₁₁ H ₁₈ N ₂ O ₃	15m	114
Amobarbital, form II	C ₁₁ H ₁₈ N ₂ O ₃	15m	117
Ammonium acetate	NH ₄ ·CH ₃ CO ₂	8m	95
Ammonium formate	NH ₄ HCO ₂	11m	9
Ammonium oxalate hydrate (oxammite)	(NH ₄) ₂ C ₂ O ₄ ·H ₂ O	7	5
Ammonium yttrium oxalate hydrate	NH ₄ Y(C ₂ O ₄) ₂ ·H ₂ O	8m	97
Amphetamine sulfate, (+)-	C ₁₈ H ₂₈ N ₂ O ₄ S	15m	119
p-Anisic acid	C ₈ H ₈ O ₃	16m	11
Ascorbic acid, L-	C ₆ H ₈ O ₆	8m	99
Azobenzene	C ₆ H ₅ NNC ₆ H ₅	7m	86
Barbital, form I	C ₈ H ₁₂ N ₂ O ₃	15m	126
Barbital, form II	C ₈ H ₁₂ N ₂ O ₃	15m	128
Barbital, form IV	C ₈ H ₁₂ N ₂ O ₃	15m	130
Benactyzine hydrochloride	C ₂₀ H ₂₆ ClNO ₃	16m	92
Benzidine hydrochloride	C ₁₂ H ₁₂ N ₂ ·2HCl	18m	14
o-Bromobenzoic acid	C ₇ H ₅ BrO ₂	16m	22
Bufofenine	C ₁₂ H ₁₆ N ₂ O	15m	133
Cadmium hexaimidazole nitrate	Cd(C ₃ H ₄ N ₂) ₆ (NO ₃) ₂	8m	23
Calcium formate	Ca(HCO ₂) ₂	8	16
Calcium malate hydrate	Ca(O ₂ C) ₂ (CH ₂ CHOH)·2H ₂ O	10m	76
Cannabidiol	C ₂₁ H ₃₀ O ₂	16m	111
Carbamazepine, β-	C ₁₅ H ₁₂ N ₂ O	18m	24
m-Chlorobenzoic acid	C ₇ H ₅ ClO ₂	16m	30
Chlorpromazine	C ₁₇ H ₁₉ ClN ₂ S	14m	60
Cinchonine	C ₁₉ H ₂₂ N ₂ O	17m	26
Cloperthixol hydrate	C ₂₂ H ₂₅ ClN ₂ O ₅ ·2H ₂ O	17m	28
Cobalt acetate hydrate	Co(C ₂ H ₃ O ₂) ₂ ·4H ₂ O	12m	19
Cocaine hydrochloride, L-	C ₁₇ H ₂₂ ClNO ₄	16m	114
Codeine hydrobromide hydrate	C ₁₈ H ₂₂ BrNO ₃ ·2H ₂ O	16m	117
Copper glutamate hydrate	Cu(O ₂ C) ₂ (H ₂ NCH ₂ CH ₂)·2H ₂ O	7m	110
Copper tetraimidazole nitrate	Cu(C ₃ H ₄ N ₂) ₄ (NO ₃) ₂	13m	24
Copper tetrapyrazole chloride	Cu(C ₃ H ₄ N ₂) ₄ Cl ₂	8m	31
Creatinine	C ₄ H ₇ N ₃ O	15m	31
Cysteine, L-	HSCH ₂ ·CH(NH ₂)·COOH	11m	86
Dextrose	C ₆ H ₁₂ O ₆	11m	28
Diazepam	C ₁₆ H ₁₃ ClN ₂ O	14m	106
Dibenzoylmethane	(C ₆ H ₅ CO) ₂ CH ₂	7m	115
Dihydrophyllocladene, α-, hartite (or bombiccite)	C ₂₀ H ₃₄	16m	122
(N,N)-Dimethyltryptamine	C ₁₂ H ₁₆ N ₂	14m	109
bis-(o-Dodecacarbonorane)	C ₄ B ₂₀ H ₂₂	6m	7
Ephedrine hydrochloride, (-)-	C ₁₀ H ₁₆ ClNO	16m	124
p-Fluorobenzoic acid	C ₇ H ₅ FO ₂	16m	36
Glucose, α-D-	C ₆ H ₁₂ O ₆	11m	28
Glutamic acid, β-L-	C ₅ H ₉ NO ₄	17m	32
Glycine, α-	C ₂ H ₅ NO ₂	17m	34
Glyoxime	H ₂ C ₂ (NOH) ₂	8m	102
Guanidinium chloride	CH ₅ N ₃ ·HCl	17m	35
Haloperidol	C ₂₁ H ₂₃ ClFNO ₂	16m	127
Hexamethylenediammonium adipate	(CH ₂) ₄ (CO ₂ H ₃ N) ₂ (CH ₂) ₆	7m	121
Hexamethylenetetramine	C ₆ H ₁₂ N ₄	17m	37
HMX, α-	C ₄ H ₈ N ₈ O ₈	11m	100
HMX, β-	C ₄ H ₈ N ₈ O ₈	11m	102
Holmium ethylsulfate hydrate	Ho[(C ₂ H ₅)SO ₄] ₃ ·9H ₂ O	1m	18
Hydroquinone, γ-	HOC ₆ H ₄ OH	8m	107
Imipramine hydrochloride	C ₁₉ H ₂₅ ClN ₂	16m	129
Iodoform	CHI ₃	18m	34

	Vol. or Sec.	Page
Iron oxalate hydrate (humboldtine)	$\text{FeC}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$	10m 24
Lead formate	$\text{Pb}(\text{HCO}_2)_2$	8 30
Lithium oxalate	$\text{Li}_2\text{C}_2\text{O}_4$	10m 34
Mercury acetate	$\text{C}_4\text{H}_6\text{Hg}_2\text{O}_4$	17m 51
Mercury o-phthalate	$\text{C}_6\text{H}_4(\text{CO}_2\text{Hg})_2$	10m 113
Methapyrilene hydrochloride	$\text{C}_{14}\text{H}_{20}\text{ClN}_3\text{S}$	14m 112
Metharbital	$\text{C}_9\text{H}_{14}\text{N}_2\text{O}_3$	15m 177
Methyl sulfonanilide	$\text{C}_6\text{H}_5\text{NHSO}_2\text{CH}_3$	9m 78
N-Methylphenazinium-7,7,8,8-tetra-cyanoquinodimethanide	$\text{C}_{25}\text{H}_{15}\text{N}_6$	7m 146
Morphine hydrochloride hydrate	$\text{C}_{17}\text{H}_{20}\text{ClNO}_3 \cdot 3\text{H}_2\text{O}$	16m 133
Naloxone hydrochloride hydrate	$\text{C}_{19}\text{H}_{22}\text{ClNO}_4 \cdot 2\text{H}_2\text{O}$	16m 136
2-Naphthylamine, N-phenyl-	$\text{C}_{10}\text{H}_7\text{NHC}_6\text{H}_5$	6m 29
Neodymium ethylsulfate hydrate	$\text{Nd}[(\text{C}_2\text{H}_5)\text{SO}_4]_3 \cdot 9\text{H}_2\text{O}$	9 41
Nickel acetate hydrate	$\text{Ni}(\text{C}_2\text{H}_3\text{O}_2)_2 \cdot 4\text{H}_2\text{O}$	13m 31
Nickel hexaimidazole nitrate	$\text{Ni}(\text{C}_3\text{H}_4\text{N}_2)_6(\text{NO}_3)_2$	7m 27
Nickel tetracyrazole chloride	$\text{Ni}(\text{C}_3\text{H}_4\text{N}_2)_4\text{Cl}_2$	8m 44
Nicotinic acid	$\text{C}_6\text{H}_5\text{NO}_2$	16m 54
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (α -HMX)	$\text{C}_4\text{H}_8\text{N}_8\text{O}_8$	11m 100
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β -HMX)	$\text{C}_4\text{H}_8\text{N}_8\text{O}_8$	11m 102
Oxalic acid hydrate	$\text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$	16m 55
Palladium bis-(N-isopropyl-3-ethylsalicylaldiminate)	$\text{Pd}(\text{C}_{12}\text{H}_{16}\text{NO})_2$	7m 144
Pentaerythritol	$\text{C}_5\text{H}_{12}\text{O}_4$	17m 55
Phencyclidine hydrochloride	$\text{C}_{17}\text{H}_{26}\text{ClN}$	16m 141
Phenobarbital, form III	$\text{C}_{12}\text{H}_{12}\text{N}_2\text{O}_3$	16m 144
Phenylhydrazine hydrochloride	$\text{C}_6\text{H}_8\text{N}_2 \cdot \text{HCl}$	17m 56
Picric acid	$\text{C}_6\text{H}_3\text{N}_3\text{O}_7$	16m 56
Pimelic acid	$(\text{CH}_2)_5(\text{CO}_2\text{H})_2$	7m 153
Potassium formate-formic acid complex	$\text{KO}_2\text{CH} \cdot \text{HO}_2\text{CH}$	9m 93
Potassium hydrogen o-phthalate	$\text{C}_6\text{H}_4(\text{COOH})(\text{COOK})$	4m 30
Potassium hydrogen oxalate hydrate	$\text{C}_4\text{H}_3\text{KO}_8 \cdot 2\text{H}_2\text{O}$	17m 60
Potassium oxalate hydrate	$\text{K}_2\text{C}_2\text{O}_4 \cdot \text{H}_2\text{O}$	9m 39
Potassium oxalate perhydrate	$\text{K}_2\text{C}_2\text{O}_4 \cdot \text{H}_2\text{O}_2$	9m 96
Potassium sodium tartrate hydrate	$\text{C}_4\text{H}_4\text{KNaO}_6 \cdot 4\text{H}_2\text{O}$	15m 55
Procaine hydrochloride	$\text{C}_{13}\text{H}_{21}\text{ClN}_2\text{O}_2$	16m 149
Psilocin	$\text{C}_{12}\text{H}_{16}\text{N}_2\text{O}$	16m 152
Psilocybin methanolate	$\text{C}_{13}\text{H}_{21}\text{N}_2\text{O}_4\text{P}$	16m 154
Reserpine	$\text{C}_{33}\text{H}_{40}\text{N}_2\text{O}_9$	8m 123
Rubidium oxalate perhydrate	$\text{Rb}_2\text{C}_2\text{O}_4 \cdot \text{H}_2\text{O}_2$	9m 102
Silver oxalate	$\text{Ag}_2\text{C}_2\text{O}_4$	9m 47
Sodium acetate hydrate	$\text{C}_2\text{H}_3\text{NaO}_2 \cdot 3\text{H}_2\text{O}$	15m 66
Sodium barbital	$\text{C}_8\text{H}_{11}\text{N}_2\text{NaO}_3$	16m 157
Sodium glutamate hydrate	$\text{C}_5\text{H}_8\text{NNaO}_4 \cdot \text{H}_2\text{O}$	17m 70
Sodium hydrogen oxalate hydrate	$\text{C}_2\text{HNaO}_4 \cdot \text{H}_2\text{O}$	17m 72
Sodium oxalate	$\text{Na}_2\text{C}_2\text{O}_4$	6m 70
Sodium D-tartrate hydrate	$(\text{CHOH}-\text{CO}_2\text{Na})_2 \cdot 2\text{H}_2\text{O}$	11m 110
Strontium formate	$\text{Sr}(\text{CHO}_2)_2$	8 55
Strontium formate hydrate	$\text{Sr}(\text{CHO}_2)_2 \cdot 2\text{H}_2\text{O}$ (orthorhombic)	8 56
Sucrose	$\text{C}_{12}\text{H}_{22}\text{O}_{11}$	11m 66
Tartaric acid, D-	$(\text{CHOHCO}_2\text{H})_2$	7m 168
Δ^9 -Tetrahydrocannabinolic acid B	$\text{C}_{22}\text{H}_{30}\text{O}_4$	16m 160
Thallium hydrogen phthalate	$\text{C}_8\text{H}_5\text{O}_4\text{Tl}$	16m 75
Thiosemicarbazide	$\text{CH}_5\text{N}_3\text{S}$	17m 81
Thiourea	$\text{CH}_4\text{N}_2\text{S}$	17m 83
Trimethylammonium chloride	$(\text{CH}_3)_3\text{NHCl}$	9m 113
2,4,6-Trinitrophenetole	$\text{C}_2\text{H}_5\text{OC}_6\text{H}_2(\text{NO}_2)_3$	8m 152
Uranyl acetate hydrate	$\text{C}_4\text{H}_6\text{O}_6\text{U} \cdot 2\text{H}_2\text{O}$	18m 76
Urea	$\text{CO}(\text{NH}_2)_2$	7 61
Uric acid, phase 1, (calc. pattern)	$\text{C}_5\text{H}_4\text{N}_4\text{O}_3$	8m 154
Uric acid (phase 1)	$\text{C}_5\text{H}_4\text{N}_4\text{O}_3$	16m 78
Vinbarbital, form I	$\text{C}_{11}\text{H}_{16}\text{N}_2\text{O}_3$	16m 162
Zinc acetate hydrate	$\text{C}_4\text{H}_6\text{O}_4 \cdot 2\text{H}_2\text{O}$	18m 78
Zinc diimidazole chloride	$\text{Zn}(\text{C}_3\text{H}_4\text{N}_2)_2\text{Cl}_2$	7m 123
Zinc glutamate hydrate,	$\text{Zn}(\text{O}_2\text{CCHNH}_2\text{CH}_2\text{CH}_2\text{CO}_2)_2 \cdot 2\text{H}_2\text{O}$	7m 170

CUMULATIVE MINERAL INDEX

	Vol. or Sec.	Page		Vol. or Sec.	Page
Acanthite, Ag ₂ S	10	51	Clinobisvanite, BiVO ₄	3m	14
Aeschynite CeNbTiO ₆	3m	24	Copper, Cu	1	15
Alabandite, MnS	4	11	Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m	28
Anatase, TiO ₂	7m	82	Corundum, Al ₂ O ₃	9	3
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Cotunnite, PbCl ₂	12m	23
Anglesite, PbSO ₄	3	67	Covellite, CuS	4	13
Anhydrite, CaSO ₄	4	65	Cristobalite (α or low) SiO ₂ (tetragonal)	10	48
Antarcticite, CaCl ₂ ·6H ₂ O	12m	16	Cristobalite (α or low) SiO ₂ (tetragonal, calculated pattern)	15m	180
Antimony, Sb	3	14	Cristobalite (β or high) SiO ₂ (cubic)	1	42
Aphthitalite, K ₃ Na(SO ₄) ₂	6m	52	Cryolithionite, Li ₃ Na ₃ Al ₂ F ₁₂	9m	23
Aragonite, CaCO ₃	3	53	Cryptohalite, (NH ₄) ₂ SiF ₆	5	5
Aragonite, CaCO ₃ (calculated pattern)	14m	44	Cuprite, Cu ₂ O	2	23
Arcanite, K ₂ SO ₄	3	62	*Derbylite, SbFe ₄ Ti ₃ O ₁₃ (OH)	16m	89
Arsenic, As	3	6	*Diamond, C	2	5
Arsenolite, As ₂ O ₃	1	51	*Diaspore, Al ₂ O ₃ ·H ₂ O	3	41
Aurostibite, AuSb ₂	7	18	Diopside, CaMg(SiO ₃) ₂	5m	17
Avicennite, Tl ₂ O ₃	16m	77	*Dravite, NaMg ₃ Al ₆ B ₃ Si ₆ O ₂₇ (OH) ₄	3m	47
*Azurite, Cu ₃ (OH) ₂ (CO ₃) ₂	10	30	Eitelite, Na ₂ Mg(CO ₃) ₂	11m	56
*Bahanite, Al _{5.66} Fe _{0.09} Sb _{2.95} O ₁₆	16m	87	Elpasolite, K ₂ NaAlF ₆	9m	43
Baryte, BaSO ₄	10m	12	*Enstatite, MgSiO ₃	6	32
Bassanite, CaSO ₄ ·0.5H ₂ O	18m	22	Epsomite, MgSO ₄ ·7H ₂ O	7	30
Berlinite, AlPO ₄	10	3	Eriochalcite, CuCl ₂ ·2H ₂ O	18m	33
Berndtite, SnS ₂	9m	57	Erythrosiderite, K ₂ FeCl ₅ ·H ₂ O	14m	27
*Beryl, Be ₃ Al ₂ Si ₆ O ₁₈	9	13	Eskolaite, Cr ₂ O ₃	5	22
Bischofite, MgCl ₂ ·6H ₂ O	11m	37	Ettringite, Ca ₆ Al ₂ S ₃ O ₁₈ ·31H ₂ O	8	3
Bismite, α -Bi ₂ O ₃	3m	17	Fairchildite, K ₂ Ca(CO ₃) ₂	8m	48
Bismoclite, BiOCl	4	54	Fluorapatite, Ca ₅ F(PO ₄) ₃	3m	22
Bismuth, Bi	3	20	Fluorite, CaF ₂	1	69
Bismuthinite, Bi ₂ S ₃	5m	13	Forsterite, Mg ₂ SiO ₄	1	83
Bixbyite, α -Mn ₂ O ₃	11m	95	Franklinite, ZnFe ₂ O ₄	9m	60
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63	Fresnoite, Ba ₂ TiSi ₂ O ₈	9m	14
Boehmite, Al ₂ O ₃ ·H ₂ O	3	38	Gahnite, ZnAl ₂ O ₄	2	38
*Bombiccite, C ₂₀ H ₃₄	16m	122	Galaxite, MnAl ₂ O ₄	9	35
Borax, Na ₂ B ₄ O ₅ (OH) ₄ ·8H ₂ O	16m	66	Galena, PbS	2	18
Bromargyrite, AgBr	4	46	Gaspeite, NiCO ₃	1m	36
Bromellite, BeO	1	36	Geikielite, MgTiO ₃	5	43
*Brookite, TiO ₂	3m	57	Gersdorffite, NiAsS	1m	35
Brownmillerite, Ca ₄ Al ₂ Fe ₂ O ₁₀	16m	28	Glauberite, Na ₂ Ca(SO ₄) ₂	6m	59
Brucite, Mg(OH) ₂	6	30	Gold, Au	1	33
Bunsenite, NiO	1	47	Goslarite, ZnSO ₄ ·7H ₂ O	8	71
Burkeite, Na ₆ CO ₃ (SO ₄) ₂	11m	52	Greenockite, CdS	4	15
*Butlerite, Fe(OH)SO ₄ ·2H ₂ O	10m	95	*Groutite, MnO(OH)	11m	97
Cadmoselite, CdSe	7	12	Gypsum, CaSO ₄ ·2H ₂ O	17m	16
Calcite, CaCO ₃	2	51	Halite, NaCl	2	41
Calomel, Hg ₂ Cl ₂	13m	30	*Hartite, C ₂₀ H ₃₄	16m	122
Carnallite, KMgCl ₃ ·6H ₂ O	8m	50	Hausmannite, Mn ₃ O ₄	10m	38
Carrobbiite, KF	1	64	Hematite, α -Fe ₂ O ₃	18m	37
Cassiterite, SnO ₂	1	54	*Hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ ·H ₂ O	2	62
Celestite, SrSO ₄	2	61	Hetaerolite, ZnMn ₂ O ₄	10m	61
Cerianite, CeO ₂	1	56	*Hexahydroborite, Ca[B(OH) ₄] ₂ ·2H ₂ O	16m	104
Cerussite, PbCO ₃	2	56	Hieratite, K ₂ SiF ₆	5	50
Cervantite, Sb ₂ O ₄	10	8	Hopeite, Zn ₃ (PO ₄) ₂ ·4H ₂ O	16m	85
Chalcocyanite, CuSO ₄	3m	29	Huebnerite, MnWO ₄	2m	24
Chernovite, YAsO ₄	2m	39	Humboldtine, FeC ₂ O ₄ ·2H ₂ O	10m	24
Chiolite, Na ₅ Al ₃ F ₁₄	16m	63	Humite, Mg ₇ F ₂ Si ₃ O ₁₂	1m	30
Chloraluminite, AlCl ₃ ·6H ₂ O	7	3	Hydromolysite, FeCl ₃ ·6H ₂ O	17m	40
Chlorargyrite, AgCl	4	44	Hydrophilite, CaCl ₂	11m	18
Chloromagnesite, MgCl ₂	11m	94	Ilmenite, FeTiO ₃	15m	34
Chromatite, CaCrO ₄	7	13	Indialite, Mg ₂ Al ₄ Si ₅ O ₁₈	1m	29
Chrysoberyl, BeAl ₂ O ₄	9	10	Iodargyrite, AgI	8	51
Cinnabar, HgS	4	17	Iron, α -Fe	4	3
Claudetite, As ₂ O ₃	3m	9	Jacobsite, MnFe ₂ O ₄	9	36
Clausthalite, PbSe	5	38	*Julgoldite, Ca ₂ Fe ₃ Si ₃ O ₁₀ (OH,O) ₂	10m	72

*Natural mineral

	Vol. or Sec.	Page		Vol. or Sec.	Page
Kalistrontite, $K_2Sr(SO_4)_2$	14m	31	*Phenakite, Be_2SiO_4	8	11
Kieserite, $MgSO_4 \cdot H_2O$	16m	46	Picromerite, $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54
Kremersite, $(NH_4, K)_2FeCl_5 \cdot H_2O$	14m	8	*Pirssonite, $Na_2Ca(CO_3)_2 \cdot 2H_2O$	9m	106
Langbeinite, $K_2Mg_2(SO_4)_3$	6m	40	Platinum, Pt	1	31
Lautarite, $Ca(IO_3)_2$	14m	12	Portlandite, $Ca(OH)_2$	1	58
Lead, Pb	1	34	Potash alum, $KAl(SO_4)_2 \cdot 12H_2O$	6	36
*Leucophanite, $NaCaBeFSi_2O_6$	8m	138	Powellite, $CaMoO_4$	6	22
Libethenite, $Cu_2(OH)PO_4$	17m	30	Pyrargyrite, Ag_3SbS_3	5m	51
*Liddicoatite, $Ca(Li, Al)_3Al_6B_3Si_6O_{27}$ $(O, OH)_3(OH, F)$	16m	42	Pyrite, FeS_2	5	29
Lime, CaO	1	43	*Pyroaurite, $Mg_6Fe_2CO_3(OH)_16 \cdot 4H_2O$	10m	104
Lime, CaO (calculated pattern)	14m	49	Pyrolusite, $\beta-MnO_2$	10m	39
*Linarite, $CuPb(OH)_2(SO_4)$	16m	34	Pyrope, $Mg_3Al_2(SiO_4)_3$	4m	24
Litharge, PbO (red)	2	30	Pyrophilite, $MnTiO_3$	15m	42
Lithiophosphate, Li_3PO_4	4m	21	*Quartz, SiO_2 (α or low)	3	24
Loellingite, $FeAs_2$	10	34	Quartz, low, $\alpha-SiO_2$	18m	61
Loeweite, $Na_{12}Mg_7(SO_4)_{13} \cdot 15H_2O$	14m	35	Rammelsbergite, $NiAs_2$	10	42
Lopezite, $K_2Cr_2O_7$	15m	47	Retgersite, $NiSO_4 \cdot 6H_2O$	7	36
*Loveringite, $Ca_{.72}RE_{.33}(Y, Th, U,$ $Pb)_{.05}Ti_{12.48}Fe_{3.38}Cr_{2.24}Mg_{.92}$ $Zr_{.58}Al_{.39}V_{.21}Mn_{.04}O_{.38}$	16m	106	Rhodochrosite, $MnCO_3$	7	32
Lueshite, $NaNbO_3$	18m	64	Rokuhnite, $FeCl_2 \cdot 2H_2O$	11m	32
Macedonite, $PbTiO_3$	5	39	Romarchite, SnO	4	28
Magnesiochromite, $MgCr_2O_4$	9	34	*Roscherite, (monoclinic), $Be_2Ca(Fe_{.3}Mg_{.7})_2Al_{.67}(PO_4)_3 \cdot 2H_2O$	16m	96
Magnesite, $MgCO_3$	7	28	*Roscherite, (triclinic), Be_4Ca_2 $(Mn_{3.91}Mg_{.04}Ca_{.05})(Al_{.13}Fe_{.42}Mn_{.12})$ $(PO_4)_6(OH)_4 \cdot 6H_2O$	16m	100
Magnetite, Fe_3O_4	5m	31	Rutile, TiO_2	7m	83
Malachite, $Cu_2(OH)_2CO_3$	10	31	Safflorite, $CoFeAs_4$	10	28
Malladrite, Na_2SiF_6	16m	68	Salammoniac, NH_4Cl	1	59
Manganolangbeinite, $K_2Mn_2(SO_4)_3$	6m	43	Sanbornite, $\beta-BaSi_2O_5$	13m	10
Manganosite, MnO	5	45	Sanmartinitite, $ZnWO_4$	2m	40
Marshite, CuI	4	38	Scacchite, $MnCl_2$	8m	43
Mascagnite, $(NH_4)_2SO_4$	9	8	*Scheelite, $CaWO_4$	6	23
Massicot, PbO (yellow)	2	32	Schultenite, $PbHAsO_4$	14m	18
Matlockite, $PbFCl$	13m	25	Selenium, Se	5	54
Matteuccite, $NaHSO_4 \cdot H_2O$	9m	52	Selenolite, SeO_2	7m	60
Mayenite, $Ca_{12}Al_{14}O_{33}$	9	20	Sellaite, MgF_2	4	33
Melanterite, $FeSO_4 \cdot 7H_2O$	8m	38	Senarmontite, Sb_2O_3	3	31
*Meliphaneite, $Na_{.63}Ca_{1.37}BeAl_{.13}Si_{1.87}O_{6.25}F_{.75}$	8m	135	Shcherbinaite, V_2O_5	8	66
Metaborite, HBO_2	4m	27	*Siderite, $FeCO_3$	15m	32
Metacinnabar, HgS	4	21	Silver, Ag	1	23
Miargyrite, $AgSbS_2$	5m	49	Silver, Ag (reference standard)	8m	2
*Millerite, NiS	1m	37	*Sjögrenite, $Mg_6Fe_2CO_3(OH)_{16} \cdot 4H_2O$	10m	103
Minium, Pb_3O_4	8	32	Skutterudite, $CoAs_3$	10	21
Mitscherlichite, $K_2CuCl_4 \cdot 2H_2O$	9m	34	*Smithsonite, $ZnCO_3$	8	69
Molybdenite, MoS_2	5	47	Soda alum, $NaAl(SO_4)_2 \cdot 12H_2O$	15m	68
Molybdite, MoO_3	3	30	*Sodalite, $Na_8Si_6Al_6O_{24}Cl_2$	7m	158
Monteponite, CdO	2	27	Soda niter, $NaNO_3$	6	50
Montroydite, HgO	9	39	Sphaerocobaltite, $CoCO_3$	10	24
Mullite, $Al_6Si_2O_{13}$	3m	3	Sphalerite, ZnS	2	16
Nantokite, $CuCl$	4	35	Spinel, $MgAl_2O_4$	9m	25
*Newberryite, $MgHPO_4 \cdot 3H_2O$	7m	139	Stibnite, Sb_2S_3	5	6
Niter, KNO_3	3	58	Stilleite, $ZnSe$	3	23
Nitrammite, NH_4NO_3	7	4	Stolzite, $PbWO_4$	5m	34
Nitrobarite, $Ba(NO_3)_2$	11m	14	Strontianite, $SrCO_3$	3	56
Norbergite, $Mg_3F_2SiO_4$	10	39	Struvite, $MgNH_4PO_4 \cdot 6H_2O$	3m	41
Oldhamite, CaS	7	15	Sulfur, S (orthorhombic)	9	54
Otavite, $CdCO_3$	7	11	Sylvite, KCl	1	65
Oxammite, $(NH_4)_2C_2O_4 \cdot H_2O$	7	5	Syngenite, $K_2Ca(SO_4)_2 \cdot H_2O$	14m	25
Palladium, Pd	1	21	Szmikite, $MnSO_4 \cdot H_2O$	16m	49
Palladseite, $Pd_{17}Se_{15}$	16m	139	Tellurantimony, Sb_2Te_3	3m	8
Palmierite, $K_2Pb(SO_4)_2$	14m	30	*Tellurite, TeO_2	9	57
Paraguanajuatite, Bi_2Se_3	18m	16	Tellurium, Te	1	26
*Paratellurite, TeO_2	10	55	Tellurobismuthite, Bi_2Te_3	3m	16
Paratellurite, TeO_2	7	56	Tenorite, CuO	1	49
Periclase, MgO	1	37	Teschemacherite, NH_4HCO_3	9	5
Perovskite, $CaTiO_3$	9m	17	Thenardite, Na_2SO_4	2	59
			Thermonatrite, $Na_2CO_3 \cdot H_2O$	8	54

Vol. or
Sec. Page

*Thomsenolite, $\text{NaCaAlF}_6 \cdot \text{H}_2\text{O}$	8m	132
Thorianite, ThO_2	1	57
Thortveitite, $\text{Sc}_2\text{Si}_2\text{O}_7$	7m	58
Tiemannite, HgSe	7	35
Tin, α -Sn (cubic)	2	12
Tin, β -Sn (tetragonal)	1	24
*Topaz, $\text{Al}_2\text{SiO}_4(\text{F},\text{OH})_2$	1m	4
Trevorite, NiFe_2O_4	10	44
Trippkeite, CuAs_2O_4	16m	120
*Trona, $\text{Na}_3\text{H}(\text{CO}_3)_2 \cdot 2\text{H}_2\text{O}$	15m	71
Tschermigite, $\text{NH}_4\text{Al}(\text{SO}_4)_2 \cdot 12\text{H}_2\text{O}$...	6	3
Tungstenite, WS_2	8	65
Unnamed mineral, $\text{K}_{1.16}\text{Ba}_{.72}\text{Fe}_{.36}\text{Ti}_{5.58}\text{O}_{13}$	16m	147
Uraninite, UO_2	2	33
Uvarovite, $\text{Ca}_3\text{Cr}_2(\text{SiO}_4)_3$	10	17
*Valentinite, Sb_2O_3	10	6
Vanthoffite, $\text{Na}_6\text{Mg}(\text{SO}_4)_4$	15m	72
Villiaumite, NaF	1	63
Vivianite, $\text{Fe}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O}$	16m	38
Wakefieldite, YVO_4	5m	59
Willlemite, Zn_2SiO_4	7	62
Witherite, BaCO_3	2	54
Wulfenite, PbMoO_4	7	23
Wurtzite, ZnS	2	14
*Xanthoconite, Ag_3AsS_3	8m	126
Xenotime, YPO_4	8	67
Yavapaiite, $\text{KFe}(\text{SO}_4)_2$	16m	59
Zinc, Zn	1	16
Zincite, ZnO	2	25
Zinkosite, ZnSO_4	7	64
*Zircon, ZrSiO_4	4	68
Zircosulfate, $\text{Zr}(\text{SO}_4)_2 \cdot 4\text{H}_2\text{O}$	7	66

*U.S. GOVERNMENT PRINTING OFFICE : 1981 O-340-997// 1826

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET (See instructions)		1. PUBLICATION OR REPORT NO. Monogr. 25--Sect. 18	2. Performing Organ. Report No.	3. Publication Date October 1981
4. TITLE AND SUBTITLE Standard X-ray Diffraction Powder Patterns Section 18 - Data for 58 Substances				
5. AUTHOR(S) Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, Nicolas C. Panagiotopoulos, and Camden R. Hubbard				
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234		7. Contract/Grant No. JCPDS - International Centre for Diffraction Data Swarthmore, PA 19081		
8. Type of Report & Period Covered Final				
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)				
10. SUPPLEMENTARY NOTES Library of Congress Catalog Card Number: 53-61386 <input type="checkbox"/> Document describes a computer program; SF-185, FIPS Software Summary, is attached.				
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here) Standard x-ray powder diffraction patterns are presented for 58 substances. These experimental patterns, useful for identification, were obtained by diffractometer methods. The lattice constants were refined by least-squares methods, and reflections were assigned Miller indices consistent with space group extinctions. Relative intensities, calculated densities, literature references, and other relevant data are included.				
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) Crystal structure; densities; lattice constants; powder patterns; reference intensities; standard; x-ray diffraction.				
13. AVAILABILITY <input checked="" type="checkbox"/> Unlimited <input type="checkbox"/> For Official Distribution. Do Not Release to NTIS <input checked="" type="checkbox"/> Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D C 20402. <input type="checkbox"/> Order From National Technical Information Service (NTIS), Springfield, VA. 22161		14. NO. OF PRINTED PAGES 110 15. Price		

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non-NBS media. Issued six times a year. Annual subscription: domestic \$13; foreign \$16.25. Single copy, \$3 domestic; \$3.75 foreign.

NOTE: The Journal was formerly published in two sections: Section A "Physics and Chemistry" and Section B "Mathematical Sciences."

DIMENSIONS/NBS—This monthly magazine is published to inform scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing. Annual subscription: domestic \$11; foreign \$13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington, DC 20234

POLSTAGE AND FEES PAID
U. S. DEPARTMENT OF COMMERCE
COM-215

OFFICIAL BUSINESS

Penalty for Private Use, \$300

THIRD CLASS
