

STANKING WILLIAM BESTAND BESTAND BESTAND BESTAND BESTAND BESTAND BESTAND BESTAND

Report No. CG-D-8-87

GUIDELINES FOR THE SELECTION OF CHEMICAL PROTECTIVE CLOTHING,

3rd Edition Volume II

A. D. Schwope, P. P. Costas, J. O. Jackson,

J. O. Stull, and D. J. Weitzman

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Department of Transportation United States Coast Guard

Office of Research and Development Washington, D.C. 20593

Approved for public released
Distribution Unlimited

i 38

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
CG-D-8-87	AD-A179164		
4. Title and Subtitle		5. Report Date	
GUIDELINES FOR THE SELECTION OF CHEMICAL PROTECTIVE CLOTHING, 3RD EDITION, VOLUME II		February 1987	
		6. Performing Organization Code	
		8. Performing Organization Report No.	
7. Author(s) A.D.SCHWOPE, P.P. COSTAS, J.O. JACKSON, J.O. STULL, AND D.J. WEITZMAN			
9. Performing Organization Name and Address ARTHUR D. LITTLE, INC. 15 Acorn Park		10. Work Unit No. (TRAIS)	
		4155.5.2	
		11. Contract or Grant No.	
Cambridge, MA 02140		DTCG23-85-F-20032	
and Los Alamos National Laboratory		13. Type of Report and Period Covered Field Guide, January 1985 to March 1987	
12. Sponsoring Agency Name and Address			
U. S. Coast Guard (G-DMT-3) 2100 Second Street, S. W.			
			Washington, D. C.
		j	
15. Supplementary Notes			
Information in this reno	rt is in performance of Cont	ract No. DTCC23_85_F_20032	

16. Abstract

wariety of protective clothing items are commercially available for emergency response and other applications where chemical hazards may be encountered. Data and information for selecting chemical protective clothing is either not available or is inconsistant from source to source. In 1983, the U. S. Environmental Protection Agency sponsored the development of chemical protective clothing selection guidelines to assist their own Office of Health and Safety in providing guidance to personnel, primarily EPA employees and contractors, working on hazardous waste sites. These guidelines allowed a user to select an 'appropriate' protective material for a specific chemical, select a clothing item (glove, suit, etc.), and then determine which manufacturers offered the clothing item in the recommended material.

The U. S, Coast Guard Office of Research and Development and the EPA have supplemented these guidelines with additional data on material chemical resistance, material physical properties, clothing design features, and specific vendor products. A chapter has been added for selecting chemical protective suits. These guidelines contain data for over 750 chemicals and 700 clothing products. Volume I provides performance information and recommendations for selecting different types of protective clothing. Volume II contains a detailed technical discussion, and the data on which Volume I recommendations are based. The U. S. Coast Guard intends to use these guidelines for protective clothing selection by its National Strike Force and Marine Safety Offices.

17. Key Words Chemical Protective Clothing Clothing Selection/Recommendations Chemical Resistance Data; Material Physical Property Data Manufacturer Clothing Descriptions		18. Distribution Statement This document is available to the U. S. public through the National Technical Information Service, Springfield, VA 22161		
19. Security Classif. (of this report)	20. Security Class	sif, (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassif	ied	228	

Volume II: Technical and Reference Manual

Guidelines for the Selection of Chemical Protective Clothing

3rd Edition

A.D. Schwope, Arthur D. Little, Inc.
P.P. Costas, Arthur D. Little, Inc.
J.O. Jackson, Los Alamos National Laboratory
J.O. Stull, U.S. Coast Guard
D.J. Weitzman, U.S. Environmental Protection Agency

February 1987

Prepared by: Arthur D. Little, Inc.

Cambridge, MA 02140

Sponsor: U.S. Environmental Protection Agency

U.S. Coast Guard

Prime Contractor: Los Alamos National Laboratory

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report do not necessarily reflect the official view or policy of the Coast Guard; and they do not constitute a standard, specification, or regulation.

This report, or portions thereof may not be used for advertising or sales promotion purposes. Citation of trade names and manufacturers does not constitute endorsement or approval of such products.

DISCLAIMER

Arthur D. Little, Inc., prepared this document with what it believes is the best currently available information. The document is subject to revision as additional knowledge and experience are gained. Arthur D. Little cannot guarantee the accuracy of information used to develop the chemical protective clothing recommendations contained herein, and the mention of company names or products does not constitute endorsement by Arthur D. Little. Arthur D. Little accepts no responsibility for damages or liabilities of any kind which may be claimed to result from the use of this document.

ACKNOWLEDGEMENTS

This Guidelines for the Selection of Chemical Protective Clothing was prepared by Arthur D. Little, Inc. (Cambridge, Massachusetts), under subcontract to Los Alamos National Laboratory (New Mexico) for the U.S. Environmental Protection Agency (EPA) and the U.S. Coast Guard. Particularly helpful in the preparation of this, the third edition of the Guidelines were J.F. Stampfer and H.J. Ettinger (Los Alamos National Laboratory) and Krister Forsberg. Mr. Forsberg of the Royal Institute of Technology (Stockholm) reviewed each line of data presented in Appendix A of Volume II for consistency with the original literature sources. We also thank Dr. Douglas Walters of the National Toxicology Program for contributing an extensive compilation of glove permeation data generated for the NTP by the Radian Corporation.

The text, except for the addition of Chapter 5--Full-Body Protection to Volume I, remains essentially the same (although updated) as the first EPA and ACGIH editions for which we note the support and review comments of W. Aaroe, B.E. Benson, S.P. Berandinelli, R. Ellis, E.R. Hoyle, K. Hunninen, R.F. Kent, W.F. Keffer, A.P. Nielson, R.C. Magor, M.D. Royer, A. Smith, R.S. Stricoff, F. Thompson, R.D. Turpin, L. Walz, and R.W. Weeks. In addition, we appreciate the assistance of encapsulating ensemble manufacturers in the preparation of Appendix G of Volume I.

The authors also acknowledge the contributions of the Arthur D. Little project team which included William Hawes, whose programming skills greatly facilitated the information organization task and T. Carroll, C. Luciano, M. Rourke, and D. Ryan, who assisted us in gathering and inputing the information. Finally, we thank the typists and report production specialists who assembled the document.

SPECIAL NOTE TO USERS

This document contains comprehensive tables of recommendations to aid and facilitate the selection of chemical protective clothing (CPC). The recommendations are based on an extensive compilation and analysis of CPC vendors' literature and experimental test data published in technical journals and reports. It is imperative that users of the recommendation tables familiarize themselves with the background information that precedes and accompanies the tables. The selection of CPC must take into account the potential hazard and the conditions of useneither is considered in this document. The recommendations are not nor do they imply a guarantee of safety.

Although every effort has been made to prepare this document as accurately as possible, errors can and do occur. Users of this document are asked to notify Lt. Jeffrey O. Stull, Commandant (G-DMT-3), U.S. Coast Guard, 2100 Second Street, S.W., Washington, D.C. 20593 (202-267-0853), or Mr. David Weitzman, U.S. Environmental Protection Agency, Office of Occupational Health and Safety, Room 3503, Waterside Mall, 401 M Street, S.W., Washington, D.C. 20460 (202-382-3647) of errors so that they can be corrected.

TABLE OF CONTENTS

VOLUME II

		<u>Page</u>
CHAPTER	1 - OBJECTIVES, LIMITATIONS AND ASSUMPTIONS FOR THE GUIDELINES	1-1
λ.	INTRODUCTION	1-1
В.	OBJECTIVES	1-1
c.	LIMITATIONS	1-2
D.	ASSUMPTIONS	1-3
E.	INSTRUCTIONS FOR GUIDELINES USE	1-3
CHAPTER	2 - PERMEATION THEORY	2-1
λ.	INTRODUCTION	2-1
В.	IDEAL PERMEATION	2-1
c.	ANOMALOUS PERMEATION	2-5
D.	PERSISTENT PERMEATION	2-6
E.	CHEMICAL CLASSIFICATION AND SOLUBILITY PARAMETER	2-6
CHAPTER	3 - TEST METHODS	3-1
Α.	INTRODUCTION	3-1
В.	SOLUBILITY	3-1
c.	DEGRADATION	3-2
D.	PERMEATION	3-2
E.	VISIBILITY	3-5
F.	PENETRATION	3-5
G.	OTHER FACTORS	3-6

TABLE OF CONTENTS (CONTINUED)

	<u>Page</u>
CHAPTER 4 - ANALYSIS OF THE VENDORS' LITERATURE	4-1
A. INTRODUCTION	4-1
B. REVIEW OF VENDORS' LITERATURE	4-1
C. PERSPECTIVES ON VENDORS' LITERATURE	4-4
D. CONCLUSION	4-5
CHAPTER 5 - SOURCES OF CHEMICAL PROTECTIVE CLOTHING INFORMATION	5-1
A. INDUSTRY	5-1
B. GOVERNMENT	5-1
C. PROFESSIONAL ORGANIZATIONS	5-2
D. TECHNICAL LITERATURE	5-2
BIBLIOGRAPHY	R-1
APPENDICES - DESCRIPTION OF COLUMN HEADINGS FOR APPENDICES A THROUGH E	
APPENDIX A - PERMEATION DATA	A-1
APPENDIX B - WEIGHT CHANGE DATA	B-1
APPENDIX C - SWELLING DATA	C-1
APPENDIX D - DIFFUSION COEFFICIENTS	D-1
APPENDIX E - TENSILE DATA	E-1
APPENDIX F - PERMEATION DATA FOR MULTI-COMPONENT LIQUIDS	F-1
APPENDIX G - VENDOR CODES FOR USE WITH DATA SUMMARIES IN APPENDICES A THROUGH E	G-1
APPENDIX H - RATIONALE FOR RECOMMENDATIONS IN MATRIX A	H-:

CHAPTER 1

OBJECTIVES, LIMITATIONS, AND ASSUMPTIONS FOR THE GUIDELINES

A. INTRODUCTION

The selection of the best chemical protective clothing (CPC) for use against a particular chemical can be a difficult and perplexing task. A principal reason for this situation is that the necessary information, if any is available, has not been organized. Vendors' recommendations tables provide guidance but there is little or no basis on which to compare products. Technical reports of CPC performance have increased in number in recent years, but are scattered through the literature, and again, there is no standard format for reporting data.

The EPA's Occupational Health and Safety staff has repeatedly faced this situation in its attempts to provide guidance to field personnel involved in the clean-up of hazardous waste sites. Furthermore, the U.S. Coast Guard has particular needs for consolidating information on full-body protective ensembles. We, therefore, have developed this two-volume Guidelines for the Selection of Chemical Protective Clothing. This third edition of the Guidelines has been completely updated from those of 1983 and 1985. The key objectives, limitations, assumptions, and instructions for use of this publication are described in the following paragraphs.

B. OBJECTIVES

The main objective of the Guidelines is that it be a concise, up-to-date source for information relative to selection of personal protective clothing. Its principal focus is clothing for protection against chemicals which are potentially harmful to humans. More specifically, the Guidelines addresses the chemical resistance of protective clothing materials and the design features of full-body protective ensembles and splash suits. The Guidelines is designed to:

- Educate (or review for) the user the technical concepts associated with the chemical resistant clothing. The goal is to provide the Guidelines user the background necessary to make the best possible decisions relative to selecting and using CPC.
- Bring together and compare the considerable amount of vendors' chemical resistance information with data published in the technical literature pertinent to CPC performance. The goal is to provide consensus recommendations as to the most appropriate clothing for the chemicals of interest.

- Provide listings of CPC products and a directory of CPC vendors.
- Provide specific, detailed information on full-body protective clothing.
- Aid further study of CPC by inclusion of a comprehensive reference listing.
- Be readily updateable as more information becomes available.

C. LIMITATIONS

The scope of the Guidelines is limited to gloves, garments, boots, and lenses and face shields. Respirators are not covered. The chemicals are principally liquids, but a small number of gases and some solids with high vapor pressures are included. The chemicals were selected from the listings of Clean Water Act (CWA) Sections 311 and 307a, Clean Air Act (CAA) Section 112, and Resource Conservation and Recovery Act (RCRA) Sections P, U, F, and K. Also addressed were any other chemicals for which there were CPC manufacturers' or vendors' recommendations or technical reports of permeation or compatibility test results.

Regarding the CPC manufacturers and vendors referred to in the directory, the listing is not all inclusive. The objective, however, is to include at least one source for any given item of CPC. In other words, it is unlikely that all distributors of certain brands/lines of CPC are mentioned. The listing is designed such that it can be readily expanded to cover additional manufacturers or distributors as they become known.

The recommendations, which compose Matrices A and B, Volume I, Chapter 8, are the result of comparative analysis of both the vendors' and technical literature in combination with technical judgment. For many chemicals the information available was sufficient for there to be a high level of confidence in the recommendations; these recommendations are listed as double upper case letters in the Matrices. For other chemicals there was less information and the recommendations are listed in lower case. For many chemicals there was no information and no recommendation is given.

A further limitation is that the Guidelines does not address multi-component solutions in-depth. Such mixtures, especially where several organic solvents are involved can have greater permeation than any one of the components alone. Special care must be taken when solutions are involved. Furthermore, the Guidelines does not consider all the possible applications to which CPC will be put.

D. ASSUMPTIONS

The Guidelines is developed under three key assumptions:

- Its users would have a background in the physical sciences and, specifically, chemistry.
- Its users would have some information about the identity of the chemicals to which the CPC may be exposed.
- Its users would have some information about the degree of hazard with which the worker may be faced. The Guidelines provides ratings of the expected performance of the materials of construction of CPC. The Guidelines does not prescribe the level of clothing necessary for a given task, although Appendix I of Volume I provides some assistance in this regard.

E. INSTRUCTIONS FOR GUIDELINES USE

The Guidelines is divided into two volumes. Volume I is directed more towards day-to-day field use, while Volume II is designed more as a reference manual. The individual responsible for selecting CPC at the hazardous waste site should be familiar with all aspects of Volume I. It provides:

- Basic discussions of chemical resistance and permeation of CPC materials.
- Recommendations for CPC for 509 chemicals or aqueous solutions.
- Detailed descriptions of full-body encapsulating ensembles.
- Sources for acquisition of recommended clothing.

The responsible on-site individual should also be aware of Volume II and its contents. Volume II, however, was designed principally to be used by the occupational health and safety professional providing further guidance to field personnel.

The volumes are in loose-leaf format to allow for rapid update in response to additional information on CPC performance and user comments. In this regard, all Guidelines users are asked to inform Lt. Jeffrey O. Stull, Commandant (G-DMT-3), U.S. Coast Guard, 2100 Second Street, S.W., Washington, D.C. 20593 (202-267-0853), or Mr. David Weitzman, U.S. Environmental Protection Agency, Office of Occupational Health and Safety, Room 3503, Waterside Mall, 401 M Street, S.W., Washington, D.C. 20460 (202-382-3647) of problems in understanding or using the Guidelines.

CHAPTER 2

PERMEATION THEORY

A. INTRODUCTION

The purpose of the Guidelines is to facilitate the selection of CPC on the basis of its effectiveness as a barrier to potentially hazardous chemicals. Since chemical resistance is the focus, it is appropriate to include a discussion of permeation theory. In Chapter 3, Volume I, a brief overview of the key aspects of the theory is presented. The present chapter contains a more in-depth discussion of the subject. In addition several other theoretical factors which were considered in developing the CPC recommendations are summarized.

B. IDEAL PERMEATION

Permeation of a chemical through a barrier is a three-step transport process involving (1) the sorption of molecules of the chemical at the contacted surface of the barrier, (2) the diffusion of the sorbed molecules through the barrier, and (3) the desorption of the molecules from the opposite surface of the barrier. 83,84 In cases involving direct liquid contact with a clothing material, the diffusion step is the rate controlling step in the permeation process and, therefore, is the topic of the remainder of the discussion.

The rate of mass diffusion through a unit surface area of a clothing barrier (or membrane) is proportional to the concentration gradient of the chemical (permeant) across the barrier. This relationship is most often expressed by Fick's Law:

$$J - D \frac{dc}{dx}$$
 (1)

where

J is the mass flux, $\mu g/min/cm^2$;

D is the diffusion coefficient, cm²/min;

c is the concentration in the membrane, $\mu g/cm^3$; and

x is the distance, in cm, from the contacted membrane surface.

The minus sign in the equation accounts for a decreasing c as x increases.

Integration of equation (1) results in a relationship which is useful for determining the diffusion coefficient from test data. Once D is known for a given chemical/material pair, then the chemical flux can be

estimated over a wide range of thicknesses and challenge concentration conditions. Such a prediction is appropriate since permeation criteria for protective clothing might ultimately be specified as a maximum allowable flux rather than a breakthrough time, as is more commonly the case today.

Where D is not a function of chemical concentration, membrane thickness, or contact time (such as during the steady-state permeation of a non-reactive gas), this integration is straightforward and yields equation (2):

$$J - D \frac{C_1 - C_2}{a}$$
 (2)

where

 C_1 is the permeant concentration in the upstream (higher concentration) surface of the membrane (at x = 0);

 C_2 is the permeant concentration in the downstream surface of the membrane (at $x = \ell$); and

l is the membrane thickness.

In cases where D is a function of concentration, an integral diffusion coefficient \overline{D} can be defined as:

$$\overline{D} = \frac{1}{C_1 - C_2} \qquad \int_{C_2}^{C_1} Ddc$$
 (3)

Examples of \overline{D} as a function of concentration would include:

$$\overline{D} = D_o (1 + f (c))$$

$$\overline{D} = D_o e^{f(c)}$$
(4)

where D is the zero-concentration diffusion coefficient. Such a concentration dependence may occur when organics, such as solvent liquids, diffuse through polymeric materials. The result of integrating equation (1) with an integral diffusion coefficient is Equation (5):

$$J = \overline{D} \frac{c_1 - c_2}{t} \tag{5}$$

It should be noted here that many polymers swell--thereby changing their thickness--upon the invasion of a permeating chemical. Crank discusses this on page 28 of <u>The Mathematics of Diffusion</u>. So Conventional practice is to disregard this change in the above integration and subsequent calculation of D.

D or \overline{D} can be determined by measuring both C_1 and the permeation flux. C_2 is considered to be 0 when permeation tests are carried out such that downstream membrane surface (at $x=\ell$) is continuously exposed to and flushed by a fluid in which the concentration of the permeant is far below saturation. In the case of the diffusion of a neat chemical, C_1 is the solubility of the compound in the polymer (i.e., $C_1=C_2$) and can be determined by a separate, long-term immersion experiment. The rate of permeation is typically determined by analytical methods such as GC, IR, UV, or scintillation counting (in the case that the permeant is radio-labeled) of a collecting fluid that contacts the downstream surface of the membrane. ASTM Method F739-85 is an appropriate procedure for such testing. A graphical, idealized representation of chemical permeation through a membrane is presented in Figure 1 in terms of measured concentration versus contact time.

In practice, the determination of the diffusion coefficient is not always straightforward. Consequently, techniques have been developed for estimating this parameter at particular stages of the permeation process. Of particular importance because of the relative ease of their determination and their utility in predictive models are the steady-state diffusior coefficient, D, and the lag time diffusion coefficient, D. In the following paragraphs, the significance of these diffusion coefficients and methods for their determination are described. Other, more complex, methods for estimating D are presented by Crank⁸⁵ and Crank and Park.⁸⁴

Steady-State Diffusion Coefficient (D_s)

In ideal diffusion, a constant concentration gradient develops across the membrane and the flux becomes constant (i.e., steady-state permeation) following the transition period after breakthrough. (In many cases involving CPC, non-ideal diffusion occurs and a steady state does not develop. 22) A steady-state diffusion coefficient, D_s , can be calculated directly from equation (6):

$$D_{S} - \frac{J\ell}{C_{1}} \tag{6}$$

assuming C_2 is small compared to C_1 .

The steady-state coefficient may be useful in the selection of clothing materials in cases where some limited exposure to a permeating chemical may be acceptable.

FIGURE 1 IDEAL PERMEATION THROUGH A POLYMERIC MEMBRANE - FIXED COLLECTION VOLUME

Lag Time Diffusion Coefficient (D_L)

Another technique for calculating a diffusion coefficient is the lag time method. The lag time coefficient, $D_{\underline{I}}$, is determined by extending the steady-state portion of the permeation curve (see Figure 1) to the time axis. The time, $T_{\underline{I}}$, at the intercept is substituted into equation (7):

$$D_{L} - \frac{\ell^2}{6T_{L}} \tag{7}$$

and D_L calculated. D_L may then be used in equation (2), but this is strictly valid only for those barriers in which the diffusion coefficient is constant. In many cases, D_L is a good approximation for D_S and in some cases a fair approximation to \overline{D} for those barriers in which the diffusion coefficient is variable.

In conclusion, it must be noted that at present there is no overall theory that allows the prediction of the permeability of CPC. Some of the problems faced in developing predictive methods are discussed in the next paragraph.

C. ANOMALOUS PERMEATION

In the previous paragraph ideal permeation was described as a diffusion process in which the breakthrough time is followed by a period of smooth transition to a steady-state situation in which the permeation rate does not change with time. Ideal diffusion is likely to occur with many of the chemical/material pairs experienced on a hazardous waste site. It should be recognized, however, that deviations (i.e., anomalies) from the ideal may occur in a large fraction of the cases. As the name implies, anomalous permeation is not predictable. However, there are several general conditions under which the probability of non-ideal permeation is increased:

- where there may be a reaction of the chemical with the plastic/ elastomer of the CPC or some other component of the material. In some cases the reaction will lengthen the breakthrough time and reduce permeation rate by consuming chemical. In other cases the reaction will reduce the barrier effectiveness of the CPC by degrading its properties.
- where the chemical, merely by its being absorbed, changes the properties of the CPC. Many organic liquids are known to craze (produce surface cracks) in the hard, clear plastics used for lenses and face shields.

where the chemical extracts components from the CPC materials.
 For example, leaching of plasticizer from PVC clothing will significantly affect its barrier as well as functional properties.

Nelson et al.²²², Weeks et al.⁸²⁶, ⁸²⁷, and Crank and Park⁸⁴ present additional discussions of this subject.

D. PERSISTENT PERMEATION

Once a chemical has begun to diffuse into a plastic/elastomer, it will continue to diffuse even after the chemical on the surface is removed. This is due to the concentration gradient that develops within the CPC and the natural tendency for a gradient to equilibrate with its surroundings. This phenomenon has significant implications relative to decontamination and reuse of CPC.

First, in the case of CPC which has not suffered chemical breakthrough but has absorbed some chemical before the chemical is removed from the surface, the chemical may eventually appear on its inside surface. The amount of chemical reaching the inside will be dependent upon the amount of chemical absorbed and its permeation rate. For example, where the absorbed amount is small and the rate slow, it is likely that a large fraction of the absorbed chemical will return to the outside surface where, if it is volatile, it will evaporate to the air, and little or no chemical will reach the inside surface. On the other hand where the permeation rate is fast, there is the potential that a large amount of chemical will appear on the inside surface, perhaps after overnight storage in a locker. 116

Second, in order to achieve complete decontamination of the CPC, both surface and absorbed chemical must be removed. Since the absorbed chemical will leave the CPC only by a diffusional process, either very long times or conditions which accelerate diffusion are required. These would include high temperatures, vacuum, or perhaps a dry-cleaning process in which a chemical non-degrading to the CPC is used to extract the hazardous chemical. Because of this problem of persistent permeation, extreme caution is advised when using CPC that has been exposed to highly toxic chemicals. In fact, where such chemicals are involved, it may be prudent practice to use disposable clothing.

E. CHEMICAL CLASSIFICATION AND SOLUBILITY PARAMETER

The Guidelines provides CPC recommendations for 509 chemicals or aqueous solutions. For those chemical/material pairs for which no recommendations are given, it is suggested that CPC can be selected on the basis of the family to which the chemicals belong. The premise, which is substantiated in permeation literature, is that chemicals of similar composition

or functional groups tend to permeate a given material at relatively similar rates. Extensions and refinements of this premise are that: 262 , 315

- higher molecular weight members of a homologous series of chemicals permeate at slower rates than lower molecular weight members.
- pendant groups (which increase the size of a molecule) tend to slow the permeation rate relative to that of the simple molecule.
- permeation rate tends to decrease with increasing boiling point.
- polar chemicals tend to permeate polar materials more rapidly than non-polar chemicals, and the converse is true.

The 509 chemicals or aqueous solutions were categorized into 29 main classes and 67 subclasses according to structure and functional groups. 177 For example, hydrocarbons is a main class which is divided into aliphatic, aromatic, and polynuclear aromatic subclasses. The classes are listed in Table 8.1, Chapter 8 of Volume I. The class into which each chemical was placed can be determined from Appendix B of Volume I.

Upon review of those classes which contain a sufficient number of chemicals on which to base a conclusion, the above generalizations relative to the chemical resistance of materials would appear to apply for most of the chemical/material pairs addressed in this study.

A second means for predicting the chemical resistance of CPC materials is through the use of solubility parameter theory. This theory attempts to quantify the qualitative nature of the above generalizations. According to the theory, the physical and chemical properties of a chemical can be combined mathematically to yield a parameter that is then compared to an empirically determined parameter for the plastic/elastomer. In cases where the parameter of the chemical approximates that of the material, the chemical is predicted to have a high solubility in, or dissolve the material. In other words "likes dissolve likes." Extrapolation of this theory to CPC implies that a material is not likely to be resistant to a chemical having a similar solubility parameter. An especially attractive feature of the theory is that solubility parameters can be calculated for multi-component solutions by weighting the individual parameters according to the relative concentrations of each component in the solution. Consequently, there is the potential for making decisions relative to selecting CPC for the virtually limitless number of solutions that may be encountered.

Typical variations of the theory relate to the factors that are included in the calculation of the solubility parameter and how these parameters are weighted. One of the more widely accepted concepts is the three-component parameter which combines factors for the hydrogen bonding, polarity and dispersion forces of the chemical to yield its overall solubility parameter. Other systems deal with two of these factors. Still other systems favor the single-component solubility parameter and then make adjustments for polarity or hydrogen bonding depending on the application. Similar considerations are also required for the plastic/rubber of CPC.

The results of a limited number of tests of the theory relative to CPC materials show some promise for its application to CPC selection. 287 Henriksen has reviewed the theory in considerable detail, and applied it to the data of Nelson et al. and his own data for epoxy solutions. 147 Christensen 70 has also subjected the data of Nelson et al. to an analysis based on solubility parameter. The data of Nelson are particularly useful in this regard since they result from a large number of experiments with a broad variety of chemicals with well-specified CPC. However, it is important to note that the theory is just that, "a theory," and that there are many variations of the theory, several of which are reviewed by Barton 38 and more recently by L. Snyder. 283, 284

Although solubility parameter theory offers promise for predicting CPC performance, the application of the theory to CPC is in its early stages. Significant problems must be solved before the theory can be applied to the confident selection of CPC. For example, methods must be developed for estimating the two- and/or three-component factors for chemicals other than relatively simple solvents. Similarly, methods are required for estimating the solubility parameters of CPC materials. Perkins et al. have estimated the solubility parameters of selected CPC materials. Similarly, it must be remembered that solubility parameter theory is an equilibrium concept. It does not take into account the dynamics of the permeation process. Also needed are approaches to predicting the time-containing element of the permeation equation, i.e., the diffusion coefficient.

CHAPTER 3

TEST METHODS

A. INTRODUCTION

The barrier effectiveness of a particular item of clothing to a particular chemical/mixture is dependent on the specific interactions between the clothing material and the chemical/mixture. This in turn is determined by the formulation of the clothing material, its method of manufacture, and its thickness. Temperature and other conditions of use also influence clothing barrier properties. Finally, the composition of the chemical/mixture is of major importance since relatively small percentages of a second, third, etc., component can drastically alter the way in which a chemical interacts with a material.

With the above in mind it is highly desirable that protective clothing selection decisions be based on the results of testing of the chemical/clothing material pair of interest. The objective of such testing is to quantify the key parameters discussed in Chapter 2. Of particular concern are:

- The solubility of the chemical/mixture in the clothing material.
- The breakthrough time of the chemical for the material.
- The permeation rate of the chemical through the material.

B. SOLUBILITY

Solubility is the weight of chemical absorbed by a known weight of material. In general, chemicals having solubilities > 10% rapidly permeate the rubber or plastic. ASTM Method D471-79 and ISO Method 2025 (International Standards Organization) describe methods for determining solubility. The procedure simply involves immersing the material in the chemical. In case of multi-layered clothing materials, only the normally outside surface should be exposed to chemical. If the solubility values are to be later used in calculating permeation rates, then each material of the multi-layer system should be tested separately. Periodically the material is removed, patted dry and weighed until a constant weight is obtained. In addition to noting weight changes, the chemical and the material should be inspected for discoloration, indicative of decomposition of the clothing material. Also the clothing material should be examined for physical degradation using a knife, spatula, or other probe.

Solubility testing is simple and can readily be performed wherever at least a two decimal place balance is available. Multiple tests can be

performed simultaneously using as little as 0.5 g and as much as 100 g of clothing material per test, depending on the sensitivity of the balance.

Solubility testing represents the minimum level of evaluation that can be performed for any unknown or multi-component hazardous waste.

C. DEGRADATION

The physical and/or aesthetic qualities of CPC can be significantly and and undesirably changed due to exposure to chemicals. Chemical degradation testing simply involves measuring the properties or qualities of interest before and after exposure to the chemical. The results are compared and the change, if there is any, judged as to its acceptability for the intended application of the item of clothing. ASTM Method D543 describes one such method for plastic materials. ASTM Committee F-23 is presently developing a method specifically focussed on clothing materials.

Similar to solubility testing, degradation can be performed in the field and can be used as a means for screening candidate clothing materials prior to more involved and expensive testing such as the permeation test described below.

D. PERMEATION

Breakthrough time and permeation rate are determined by means of a permeation test. ASTM Method F739-85 was specifically developed for the evaluation of protective clothing materials. 149 (A printed copy of this method is available from ASTM, 1916 Race Street, Philadelphia, PA 19103.) The method uses a test cell which is divided into two chambers at the midline by the clothing material to be tested. (See Figure 2.) The potentially hazardous chemical is placed in one chamber and the other chamber (i.e., the collection chamber) is monitored for the chemical of interest. As shown, the cell is assembled for a liquid challenge chemical. Gaseous chemicals can also be tested by forming the cell from two collection chambers. The test gas is then flowed continuously through the challenge chamber. Of interest are the time the chemical is first detected (i.e., breakthrough time) and the subsequent rate of permeation. Of critical importance in conducting the test is that the collecting medium not interact with the clothing material; air, nitrogen, helium, or water are preferred collection media.

The detection of breakthrough is dependent on the sensitivity of the analytical method used for measuring the chemical in the collection medium. Typical preferred analytical methods include gas, liquid and ion chromatography, analysis for total combustible organics, ultraviolet and infrared spectrophotometry, and radioanalysis. The properties of the chemical, the sensitivity requirements for the test, and cost are the

FIGURE 2. SKETCH OF ASTM F739-85
PERMEATION TEST CHAMBER

principal factors considered in selecting an analytical method. For relatively volatile chemicals, gas chromatography and infrared spectro-photometry are the preferred methods. Liquid chromatography is used for relatively nonvolatile organic compounds. Ion chromatography is particularly useful for inorganic acids and salts. Finally, radiolabelled compounds may be preferred where high sensitivity and specificity is required; furthermore, if the compound of interest is readily available in radiolabelled form, radiochemical methods may be significantly less costly than the development and use of the other techniques.

Permeation testing of protective clothing materials has increased significantly during the past five years. The Journal of the American Industrial Hygiene Association has become the principal vehicle for dissemination of test findings. (See Bibliography.) Also of note is Standard Technical Publication 900 of the ASTM which contains several pertinent articles. In addition permeation data are available from several clothing and clothing material vendors. 45,80,107,213,227,236

The International Standards Organization (ISO) has promulgated two other methods for evaluating chemical protective clothing:

- Method 6529 Protective Clothing Resistant to Penetration by Dangerous Liquid Chemicals.
- Method 6530 Clothing for Limited (ed.) Protection Against Dangerous Liquid Chemicals.

Neither method is recommended since the results are difficult to interpret relative to the selection of CPC. Presently ISO is in the final stages of developing a standard permeation test. This standard is analogous to ASTM Method F739.

A notable difference between the ASTM and ISO standards is the inclusion of clothing labelling (marking) instructions in the ISO method. The label must indicate the performance of the clothing material as a barrier to the test chemicals. Such labeling is an aid to those considering the use of the clothing much the same as fire extinguisher labels are.

With the significant increase in permeation data in recent years, the need and opportunity for data interpretation and comparison have also increased. Permeation test results are highly dependent on the experimental procedure, generic material, cell configuration, and analytical sensitivity. ASTM Committee F-23 is presently developing a specification for data reporting that will facilitate interpretation and comparison of test results. This same committee has promulgated a list of fifteen chemicals (ASTM F1001-86) that can serve as a standard battery for ranking clothing barrier properties. The fifteen chemicals represent a wide range of chemical families and are: acetone, acetonitrile, carbon disulphide, dichloromethane, diethylamine, dimethylformamide, ethyl

acetate, n-hexane, methanol, nitrobenzene, 50% sodium hydroxide, sulfuric acid, tetrachloroethylene, tetrahydrofuran, and toluene.

E. VISIBILITY

Face shields and lenses, in addition to being chemical barriers, must provide clear, undistorted vision to the wearer. Hard, inflexible face shields and lenses may be subject to crazing (i.e., surface cracking) upon contact with certain chemicals. Crazing renders the surface foggy and can drastically reduce vision. Since chemical contact with the face shield or lens is more likely to occur in uncontrolled or emergency situations when reduced vision would be an additional severe hazard, shields and lens materials should be tested for resistance to chemical attack. Crazing can also reduce the impact strength of the material.

ANSI/ASTM Method F484-77 describes a procedure for measuring stress crazing by chemicals. A method for assessing the effect of chemicals on clear plastics is by measuring the transparency of the plastic before and after exposure to the chemical; ASTM D1746 describes one such method. While both these methods will adequately show up potential incompatibilities, they require equipment that is not likely to be available in field or chemistry laboratories. A simpler test, which could be performed on site, requires only a placard on which are printed letters ranging from large to small in size. Analogous to a common vision test, the placard is read through an unexposed face shield or lens material, with a distance of 10 to 15 feet between the plastic and the placard. Note is made of the ease with which the letters can be read and the minimum size letter which can be read. The face shield or lens material is then swabbed or immersed in the chemical of interest for at least one hour. (Note, if the face shield or lens has different coatings or plastic layers on the inside and outside surfaces, only the outside surface should be exposed to the chemical.) Remove the material from the chemical and allow to air dry. Inspect the material and repeat the placard reading test.

F. PENETRATION

In addition to permeation, which occurs by molecular diffusion, liquid chemicals can cross a CPC barrier by penetration. Penetration is the movement of chemical through holes such as at seams, zippers, and other closures as well as through flaws in the CPC. Penetration can also occur through porous woven and non-woven fabrics and through fabrics based on microporous films. Gore-Tex[®] is one brand of such microporous film-based fabric.

ASTM Committee F-23 has promulgated method F903-84 for the evaluation of the penetration resistance of CPC and its materials of construction. Briefly, a swatch of material or seam or closure is clamped in a two-

chambered cell. The chemical of concern is charged to one chamber and pressure applied. The unexposed surface in the second chamber is observed for appearance of the chemical.

G. OTHER FACTORS

The focus of the Guidelines and the above discussion is chemical resistance of clothing materials. It is important to consider, however, that in the selection and use of protective clothing other factors may be of equal or greater importance. For example, gloves must provide the wearer some minimum level of dexterity, and the fabrics must have some level of tear resistance. The relative importance of the performance factors is largely dependent on the work tasks to be carried out.

At present there is no standard, overall protocol for evaluating protective clothing or clothing materials for all the performance parameters of importance to workers on hazardous waste sites. Instead, individual tests appropriate for the evaluation of specific parameters must be selected from the volumes of procedures promulgated by federal, military, and standards organizations. A 1978 NIOSH study addressed this problem and resulted in a listing of test methods especially pertinent to protective clothing. That compilation has been expanded where appropriate and is presented herein as Table 3.1. For completeness, the chemical resistance methods mentioned above are included in the Table. In addition to this listing, several tests specific to full-body protective clothing are discussed in Chapter 5 of Volume I.

TABLE 3.1

TEST METHODS FOR CHEMICAL PROTECTIVE CLOTHING*

	Characteristics	Test
A.	Chemical Resistance	
	1. Permeation Resistance	ASTM F739-81: Resistance of Protective Clothing Materials to Permeation by Hazardous Liquid Chemicals
	2. Swelling and Solubility	ASTM D471-79: Rubber Property Effects of Liquids
	3. Strength Degradation	ASTM D543: Resistance of Plastics to Chemical Reagents
	4. Crazing	ASTM F484-77: Stress Crazing of Acrylic Plastics in Contact With Liquid or Semi-Liquid Compounds
	5. Transparency	ASTM 1746-70: Transparency of Plastic Sheeting
	6. Penetration Resistance	ASTM F903-84: Resistance of Protective Clothing Materials to Penetration by Liquids
В.	Strength	
	1. Tear Resistance and Strength	ASTM D751-73: Testing of Coated Fabrics
		ASTM D412-75: Rubber Properties in Tension
		Fed. 191A-5102 (ASTM D1682): Strength and Elongation, Breaking of Woven Cloth: Cut Strip Method
		Fed. 191A-5134 (ASTM D2261): Tearing Strength of Woven Fabrics by the Tongue Method
	2. Puncture Resistance	See Reference 78
	3. Abrasion Resistance	ASTM D1175: Abrasion Resistance of Textile Fabrics

TABLE 3.1 (Continued)

TEST METHODS FOR CHEMICAL PROTECTIVE CLOTHING*

	Characteristics	Test
c.	Dexterity/Flexibility	
	1. Dexterity (gloves only)	See References 78, 122, 289
	2. Flexibility	ASTM D1388: Stiffness of Fabrics, Cantilever Test Method
D.	Aging Resistance	
	1. Ozone Resistance	ASTM D3041-72: Coated Fabrics Ozone Cracking in a Chamber
		ASTM D1149-64: Rubber DeteriorationDynamic Ozone Cracking in a Chamber
	2. UV Resistance	ASTM G27: Operating Xenon-Arc Type Apparatus for Light Exposure of Non-Metallic MaterialsMethod AContinuous Exposure to Light

^{*}Physical property tests are listed in Tables 5.2 and 5.3 of Volume I.

CHAPTER 4

ANALYSIS OF THE VENDORS' LITERATURE

A. INTRODUCTION

Chapter 7 of Volume I contains an overview of the major strengths and weaknesses of the literature supplied by CPC vendors. The purpose and strength of this literature is to describe the composition, styles, and sizes of protective clothing. In recent years the literature of several clothing manufacturers has also become an important source of chemical resistance information, particularly permeation data. However, much of the literature remains weak in its level of documentation as to the basis for the qualitative chemical resistance tables. As noted in Volume I, ratings tables are intended for and should be used only for guidance in the selection of CPC. This chapter extends the depth of the Volume I discussion of the present vendors' chemical resistance tables and discusses their future.

B. REVIEW OF VENDORS' LITERATURE

The catalogues of 150 CPC vendors and materials suppliers were reviewed during the preparation of the Guidelines. Twenty-six of these documents included chemical resistance ratings charts for some or all of the products listed. These tables encompassed both qualitative and quantitative ratings. In only a few cases was the rationale for the qualitative ratings described in the catalogues. The rationale is necessary for any attempt to form conclusions regarding the expected performance of CPC and to compare products. Consequently, telephone interviews were conducted with the CPC vendors who provided qualitative ratings. The telephone interviews yielded little information that would further aid the utilization of the qualitative ratings. The overall impression was that most vendors are either not testing clothing or are not willing to share their results.

The situation is much different for the chemical resistance tables that are based on permeation test results. Virtually all vendors who provide such data followed ASTM Method F739, or a similar procedure.

Permeation Testing

Permeation data are supplied or available on request from at least ten CPC vendors or materials suppliers. This number is up from six in 1985. Furthermore, the number of chemicals and range of products have increased significantly, and this increase can be expected to continue. CPC users have become more demanding of the vendors and the vendors have found that test data are useful as points of product differentiation.

However, the increased availability of test results carries with it the problems associated with comparing and interpreting data. The vendors do not use a standard format for presenting the data and, as discussed earlier, the test results can be highly dependent on the testing procedure. In order to compare breakthrough times, it is necessary to know the sensitivity of the detector, the surface area of the clothing material, and the collection medium volume if the test is performed in a closed-loop mode or the collection medium flowrate if the test is performed in an open-loop mode. The following discussion provides some insights into reviewing and utilizing published breakthrough time and permeation rate data.

Test results are available from the following vendors: Ansell, Best, ChemFab, Comasec, DuPont, Edmont, MSA, North, Pioneer, and Playtex. (see the Appendix D of Volume I for the complete corporate name and address.) All except Best provide breakthrough time data; Best ranks by breakthrough time the materials tested. All except MSA report permeation rate data. The units used by all except Edmont for permeation rate are $mg/m^2/s$; Edmont reports values $\mu g/cm^2/min$, consistent with ASTM F739. Multiply the Edmont values by 0.167 to convert them to mg/m^/s. Only Best and ChemFab report the sensitivity of the instrument used to detect breakthrough. Only MSA provides information on the mode of testing (open-loop) and the collection medium flowrate. Some of the others provide information on the mode of testing but not the collection medium volume or flowrate. Consequently, it is not possible to rigorously compare breakthrough time data from vendor to vendor. As suggested above and by the vendors themselves the data should be used for guidance only and imply no guarantee of protection.

Immersion Testing

Most qualitative recommendations tables appear to be based on simple immersion tests in which the material was merely <u>observed</u> after some time period. There is no standard time for immersion and, of course, the rating associated with any given test is likely to vary from observer to observer. Furthermore, in some cases materials that were swelled by chemicals may have been given an acceptable recommendation if upon drying they returned to their original size and appearance. Obviously a material which is visibly swelled by a chemical will not be a barrier to that chemical and should be given a "not recommended" rating.

At present there is no standard immersion test for CPC. ASTM Committee F-23 is considering several, but final acceptance is not expected before 1988. It is likely that the procedure will specify the immersion time and two or three properties to be measured before and after immersion. Initially a standard immersion test will be useful for identifying chemical/material pairs that are grossly incompatible. In time, once larger amounts of data become available from standard immersion and permeation tests, correlations may be developed that will allow more sensitive prediction of CPC performance from immersion test data alone.

3. Applicability of Ratings Tables

The degree of applicability of some of the ratings tables to presently available CPC is somewhat limited by two factors: age and materials composition. Many of the tables are more than ten years old. Between the time that the tables were generated and now, it is probable that the actual elastomer/plastic formulation used in the CPC has been changed. This may have resulted from a CPC manufacturer switching raw materials suppliers or modifying the formulation to meet changed processing, use or cost requirements. Changes to, for example, the plasticizer, lubricant, filler, and so forth, level in a elastomer/plastic formulation can in some cases significantly influence the chemical resistance of the final product.

Significant differences exist between various vendors' ratings for nominally the same CPC chemical/material pair. While this may be due to the subjectivity of the test methods, there also may be real differences between products. The difference may in part be due to the fact that the different formulations of the same base elastomer/plastic material may perform differently, and in part due to the manufacturing methods. In other words, it is possible for one supplier to have a more chemically resistant material (e.g., PVC or butyl rubber, etc.) than another supplier. This point has been documented in the literature.²⁶⁸

Similarly, most of the ratings charts appear to have been developed for a general class of material (for example, natural rubber or PVC) and not the specific formulations used for protective clothing. Thus, the ratings may or may not be directly applicable to CPC.

The form of the elastomer/plastic can also influence the results on which recommendations may be based. For example, a molded neoprene rubber can have significantly different properties from those of a neoprene prepared from a latex. Within the realm of CPC, it has recently been suggested that gloves prepared by a latex process may perform differently from gloves prepared by a solvent-dip process, but that additional evaluation was required before definite conclusions could be reached. It is not clear whether the recommendations of manufacturers which have switched from solvent to latex processing during the past 10 to 15 years have been modified to reflect any performance differences that may have resulted.

The temperature range over which the ratings apply is not generally stated. CPC users should note that there can be significant temperature effects on permeation over the temperature range likely to be encountered in the field. For example, the breakthrough times for benzene through a 0.08 cm neoprene were found to be 40 min at 7° C, 24 min at 22° C, and 16 min at 37° C. 78

Finally, the sensitivity, if any, of the ratings to lot-to-lot variations in the products are not provided. Also some manufacturers rate several grades or thicknesses of a given CPC material as if they all performed

similarly. In these cases, the CPC user must carefully scrutinize the catalogues in order to differentiate among the products and make the best selection for the application at hand.

4. Multi-component Solutions

Multi-componet solutions represent a potentially large and difficult area for CPC selection and use. In general most vendors address only aqueous solutions in their ratings tables. Several vendors are careful to designate a concentration range for each recommendation; many do not. Small fractions of particularly permeable chemicals in a solution can severely degrade clothing materials or can provide pathways for the movement of other components of the solutions. Furthermore, there is an unlimited number of solution compositions possible. Generally, the vendors recommend that the CPC buyer conduct his own tests with the specific solutions of concern. Multi-component solutions are of growing interest to the research community and others. 104, 124, 278, 302

5. Experience

Several manufacturers reported that some of the recommendations appearing in their tables were based on experience rather than testing. This may or may not be appropriate depending on how the experience was judged. For example, in many cases an item of CPC may be considered good for a particular application because it does not fall apart or because it returns to its original shape/size upon evaporation of absorbed chemical. Obviously such criteria are not appropriate if skin contact with the chemical is a primary concern.

On the other hand, experience can be a suitable basis for a recommendation when it originates from careful observation of worker well-being. For example, a particular type of glove may prevent contact dermatitis where all other gloves fail.

C. PERSPECTIVES ON VENDORS' LITERATURE

Although the above findings and comments can be rather perplexing, for those responsible for selecting CPC, the situation is changing rapidly for the better:

- There is a growing general understanding among CPC buyers that chemicals can permeate CPC without there being any outward sign of degradation or swelling of the material.
- There is growing technical/scientific interest in CPC performance. Many of the larger chemical companies, several independent testing laboratories, and some universities now have groups evaluating CPC materials. Furthermore, the federal government has become keenly aware of the need for rigorous

analysis of CPC performance, as evidenced by this publication and an increase in government sponsored research and development.

- The general acceptance of a standard permeation test method.
- e Vendors are becoming more comfortable with the liability aspects of publishing test data. In fact publishing data obtained under well-specified conditions may be less risky than the promulgation of qualitative recommendations tables. Vendors routinely print disclaimers along with their test data which caution that they may not apply to the particular condition to which the buyer intends to subject CPC. The buyer is also advised to perform his own testing with the actual chemical/chemical mixtures at the use temperatures.

D. CONCLUSION

The primary sources of information pertinent to the chemical resistance of CPC are the CPC vendors and manufacturers. This is not likely to change in the near future. Users of the vendors' recommendations and data tables must always bear in mind the limitations of the charts, as described above. The tables are for <u>guidance</u> only. That is the charts are a good place to start the CPC selection process, but they are not guarantees of safety. Whenever possible, the potential CPC user should evaluate candidate products against the particular chemicals and solutions of concern. Final selection must take into account the CPC application.

During the next several years, other sources for CPC recommendations can be expected to increase. Such sources, of which this publication is an example, will be based on the compilation of both manufacturers' recommendations and the scientific literature. It is reasonable to predict and it is hoped that the existence of one or more key secondary sources will stimulate more testing and quantitative reporting of CPC performance by both the vendors and the technical community at large. The result will be more firmly based CPC selection decisions.

CHAPTER 5

SOURCES FOR CHEMICAL PROTECTIVE CLOTHING INFORMATION

A. INDUSTRY

By far the best source for information on CPC is the CPC vendors. The large, full-line vendors and the specialty products manufacturers generally have tested their products against a wide range of chemicals. Furthermore, they have years of experience with their products, and typically have a very good understanding of the products' capabilities and limitations. A listing of vendors is given in Volume I, Appendix D.

A second source of information is the chemical manufacturers. These organizations provide clothing for their workers and often conduct their own analysis of protective clothing performance for their chemical products.

B. GOVERNMENT

Principal sources of CPC information within federal government agencies are:

EPA - Office of Occupational Health and Safety, Room 3503, Waterside Mall, 401 M Street, S.W., Washington, D.C. 20460. Telephone 202-382-3647 (David Weitzman).

Federal Emergency Management Agency (FEMA) - United States Fire Administration, Office of Firefighter Health and Safety, 16825 South Seton Avenue, Emmitsburg, MD 21727. Telephone 301-447-1182 (Robert McCarthy).

OHSA - Technical Assistance, Room N3657, 200 Constitution Avenue, NW Washington, D.C. 20210. Telephone 202-523-7505 (Ching Bien).

NIOSH - Division of Safety Research, Testing and Criteria Branch, ASI Section, 944 Chestnut Ridge Road, Morgantown, WV 26505. Telephone 304-291-4339 (Stephen Berardinelli).

U.S. Coast Guard - Headquarters, Office of Research and Development, Commandant, G-DMT-3, 2100 Second Street, S.W., Washington, D.C. 20593. Telephone 202-267-0853 (Lt. Jeffrey Stull).

These agencies are involved in the study, development, and utilization of protective clothing.

C. PROFESSIONAL ORGANIZATIONS

In the United States, three professional organizations have committees directly focused on protective clothing. ASTM formed Committee F-23 in 1977 for the purpose of developing standard test methods for protective clothing. Subcommittees of F-23 are addressing the chemical resistance of clothing, the physical properties of clothing, clothing classification methods, and the performance of full-body protective ensembles. The committee is composed of industry, government, and general interest members. It meets twice a year and is a forum for discussing protective clothing test methods. In addition in 1984 and in 1987 Committee F-23 sponsored international symposia on all aspects of protective clothing. Proceedings of the symposia are published by ASTM as Standard Technical Publications. For further information, telephone ASTM headquarters (215-299-5579).

The American Industrial Hygiene Association addresses CPC through its technical committee Personal Protective Devices (other than respirators). The committee meets once a year in coincidence with the American Industrial Hygiene Conference. This week-long conference typically includes one or two sessions devoted to protective clothing. At these sessions, technical papers are presented describing research, evaluation or use of protective clothing. Information on this and other AIHA activities may be obtained from AIHA headquarters (216-762-7924).

The National Fire Protection Association (NFPA) formed a subcommittee on Hazardous Chemical Protective Clothing in 1986. This subcommittee was established under the NFPA Technical Committee on Protective Equipment for Firefighters. The subcommittee is engaged in writing performance oriented (manufacturing) standards on chemical protective suits for emergency response personnel. Its membership is composed of representatives from users, manufacturers, testing laboratories, and government. It meets three times a year and plans to complete proposed standards for chemical protective suits by December 1987. For further information, contact Bruce Teele of the NFPA (617-770-3000).

D. TECHNICAL LITERATURE

In recent years, the principal sources of published technical papers and reports on personal protective clothing have been the:

- American Industrial Hygiene Association Journal, a monthly publication. AIHA, 475 Wolf Ledges Park, Akron, OH 44311-1087.
 Telephone 216-762-7924.
- National Technical Information Service (NTIS). Essentially all federal government sponsored studies may be obtained through NTIS. NTIS, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. Telephone 703-487-4650.

A new journal, <u>Applied Industrial Hygiene</u>, has been started by the American Conference of Governmental Industrial Hygienist (ACGIH), 6500 Glenway Avenue, Bldg. D-7, Cincinnati, OH 45211. Telephone 513-661-7881. Also articles on protective clothing are usually included in the proceedings of Hazardous Materials Management Conference (Tower Conference Management Company, Wheaton, IL 60187) and the Hazardous Material Spills Conference (Government Industries, Inc., Rockville, MD 20850).

A bibliography of publications related to chemical protective clothing follows.

BIBLIOGRAPHY

- 1 Abernathy, R.N., R.B. Cohen, and J.J. Shirtz Measurements of Hypergolic Fuels and Oxidants Permeation Through Commercial Protective Materials--Part I: Inhibited Red Fuming Nitric Acid and Unsymmetrical Dimethylhydrazine Am. Ind. Hyg. Assoc. J. 44(7), pp. 505-513 (1983)
- 2 Acme Mills Company Catalogue 1986
- 3 Aitken, A., and R.M. Barrer Transport and Solubility of Isomeric Paraffins in Rubber Trans. Faraday Soc. 51(385), pp. 116-130 (January 1955)
- 4 Algera, R.
 Development of a Hazardous Chemical Protective
 Ensemble: Phase I Interim Report
 This report available as:
 Stull, J., Early Development of a Hazardous Chemical
 Protective Ensemble, Final Report U.S. Coast Guard
 Contract DTCG23-81-C-20003, AD A174 885 (October 1986)
- 5 Alliance Supply, Inc. Catalogue 1986
- 6 Allied Glove & Safety Products Corp. Catalogue 1986
- 7 American Scientific Products Catalogue 1984
- 8 Andover Industries, Inc. Catalog 1986
- 9 Angelica Uniform Group Catalogue 1986
- 10 Anon.
 Foot and Leg Protection
 National Safety News, pp. 176-182 (March 1962)

11 Anon.

A Summary of the Record of the NIOSH Open Meeting on Chemical Protective Clothing Rockville, Maryland, (June 3, 1981)

12 Anon.

Balancing the Scales Between Protection and Economy National Safety News, pp. 36-39 (April 1982)

13 Anon.

Protective Clothing Studies Reveal Wearer Preferences Agrichemical Age, (June 1981)

14 Anon.

Protective Clothing for Chlorine, Edition 1 Chlorine Institute Pamphlet 65, The Chlorine Institute, Inc. New York, New York, (June 1978)

15 Anon.

Best Safety Directory, Vol. I A.M. Best Company, Oldwick, New Jersey 08858

16 Anon

Health and Safety Market Guide '82 Ayde Marketing Limited, 2 Castle Street, Aylesbury, Bucks HP20 20RF England

17 Anon.

Industry's Persistent Problem: Occupational Dermatitis National Safety News, pp. 33-37 (November 1982)

18 Anon.

Dress Right for Safety: Foot Protection: Shoes National Safety News, pp. 66-67 (March 1983)

19 Anon.

Dress Right for Safety: Hand Protection National Safety News, pp. 62-65 (March 1983)

20 Anon.

Dress Right for Safety: General Body Protection National Safety News, pp. 54-57 (March 1983)

engentage operators operators of the second of the second of the second operators operator

- 21 Anon.
 Dress Right for Safety: Disposable Apparel
 National Safety News, pp. 57-59 (March 1983)
- 22 Anon.

 Dress Right for Safety: Eye and Face Protection
 National Safety News, pp. 41-44 (March 1983)
- 23 Anon. A Shift Toward Protective Gear Business Week, p. 56 (April 13, 1981)
- 24 Anon.
 Safety Spinoffs From Space
 National Safety News, pp. 30-32 (February 1984)
- 25 Anon. Hazardous Waste Workers Are Seen Underprotected by Union, Congressmen, Chemical Marketing Reporter, pp. 5,40 (April 1, 1985)
- 26 Ansell Industrial Products Catalogue 1986
- 27 ARAMSCO Catalogue 1986
- 28 Arbill Inc. Catalogue 1986
- 29 Armin Corp. Catalogue 1986
- 30 Arrowhead Products Catalogue 1986
- 31 Aydelotte, C.L. Consider Hazards Facing Worker in Making Proper Glove Selections, Occupational Health & Safety, pp. 54,56

KEKKO KEUNISINO KANTITINO KAKEKUN

- 32 Barker, R.L., and Coletta, G.C.
 Performance of Protective Clothing
 ASTM STP 900, ASTM PCN 04-900000-55, Philidelphia, PA
 (1986)
- 33 Barnes, J.D., G.M. Martin, and F.L. McCrackin Performance of Plastic Packaging for Hazardous Materials Transportation. IV NTIS Report No. DOT/MTB/OHMO-77/5, PB298047 (1979)
- 34 Barnhart, W.L., C.R. Tony, and L.A. Nicodemus Catalog of Available Protective Clothing Supplement to Final Report: 'Protective Clothing - Assessment of Need' NIOSH Publication PB-276344 (August 1974)
- 35 Barnhart, W.L., C.R. Toney, and L.A. Nicodemus Protective Clothing--Assessment of Need, Vol. I Final Report prepared by Bendix Corporation, Launch Support Division under the United States Department of Health, Education, and Welfare - Public Health Service, Center for Disease Control, NIOSH-TR-75.01, PB241107 (August 1974)
- 36 Barrer, R.M., and R.R. Fergusson Diffusion of Benzene in Rubber and Polyethylene Trans. Faraday Soc., 54(427) pp. 989-1000 (1958)
- 37 Barry Manufacturing Co. Ltd. Catalogue 1986

- 38 Barton, A. M.
 Solubility Parameters
 Chemical Reviews, 75(6), pp. 731-749 (1975)
- 39 Barton, A.F.M.
 Handbook of Solubility Parameters and Other Cohesion
 Parameters
 CRC Press, Boca Raton, FL (1983)
- 40 Bel-Art Products Catalogue 1981
- 41 Berardinelli, S.
 Chemical Protective Clothing Standard Test Method
 Development Final Report No. 1: Penetration Test Method
 NIOSH Contract No. 200-84-2702

- 42 Berardinelli, S.P., R.L. Mickelsen, and M.M. Roder Chemical Protective Clothing: A Comparison of Chemical Permeation Test Cells and Direct-Reading Instruments Am. Ind. Hyg. Assoc. J. 44(12), pp. 886-889 (1983)
- 43 Berardinelli, S.P., and R. Hall Site-Specific Whole Glove Chemical Permeation Am. Ind. Hyg. Assoc. J., 46, pp. 60-64, (February 1985)
- 44 Beret, S., and S.L. Hager
 Ethylene Solubility and Diffusion in Low Density
 Polyethylene and Ethylene Polymers
 J. Appl. Poly. Sci., 24, pp. 1787-1796 (1979)
- 45 Best Manufacturing Company Catalogue 1986
- 46 Best, A.M., Company
 Best's Safety Directory, 2 Volumes
 24th Edition, 1984
- 47 Body-Guard Catalogue 1984
- 48 Boss Manufacturing Company Catalogue No. 20-4-81 1985
- 49 Bosserman, M.W. How to Test Chemical-Resistance of Protective Clothing National Safety News, pp. 51-53 (September 1979)
- 50 Brandrup, J. and E.H. Immergut Polymer Handbook John Wiley & Sons, New York (1966)
- 51 Broner Glove Company Catalogue 1983
- 52 Bush, D.G., L.E. Tersegno, J.E. Winter, and D.H. Schoch A Method for Testing Permeability of Protective Clothing to Acids and Bases Industrial Hygiene Section Eastman Kodak Company Rochester, NY (June 1982)

- 53 Butt, L.T., J. Pacitti, and J.R. Scott Chemical Resistance Data Sheets, Vols. I and II Rubber and Plastics Research Association (RAPRA), Shawbury, Shrewsbury, SY4 4NR England
- 54 Calingaert, G., and H. Shapiro
 Permeability of Protective Glove Materials to
 Tetraethyllead and Ethylene Bromide
 Industrial and Engineering Chemistry, 40(2), p. 332 (1948)
- 55 Calingaert, G., and H. Shapiro
 Permeability of Protective Glove Materials to Tetraethyllead
 and Ethylene Bromide
 Industrial and Engineering Chemistry, 40(2), pp. 332-335
 (February 1948)
- 56 Cesco Safety Products Catalogue 1986
- 57 Charkate Catalogue 1986
- 58 Chemical Engineering New Wardrobe for CPI Workers pp. 14-15 (August 19, 1985)
- 59 Chemical Fabrics Corporation Catalogue 1986
- 60 Cheron, J.
 Resistance des Gants de Protection aux Solvents
 Industriels Resultats Obtenus Avec L'Acetone Sur Une
 Centaine de Gants du Commerce
 Travail et Securite, No. 527, Oct. 1975, Institut National
 de Recherche et de Securite, 75680, Paris, Cedex 14
- 61 Cheron, J.
 Resistance des Gants de Protection Aux Solvants
 Industriels Resultats Obtenus Avec le Trichlorethane Sur
 Une Centaine de Gants du Commerce
 Travail et Securite, No. 502, Oct. 1973, Institut National
 de Recherche et de Securite, 75680, Paris, Cedex 14

62 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec L'Acetate D'Ethyle Sur Une Centaine de Gants du Commerce Travail et Securite, No. 547, Sept. 1976, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

63 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec L'Ethanol Sur Une Centaine de Gants du Commerce Travail et Securite, No. 550, Nov. 1976, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

64 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec le Toluene Sur Une Centaine de Gants du Commerce Travail et Securite, No. 503, Jan. 1975, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

65 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec le Trichlorethylene Sur Une Centaine de Gants du Commerce Travail et Securite, No. 491, Oct. 1972, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

66 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec le Perchlorethylene Sur Une Centaine de Gants du Commerce Travail et Securite, No. 498, June 1973, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

67 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec le Cyclohexane Sur Une Centaine de Gants du Commerce Travail et Securite, No. 521, Jan. 1975, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

68 Cheron, J.

Resistance des Gants de Protection Aux Solvants Industriels - Resultats Obtenus Avec le White-Spirit Sur Une Centaine de Gants du Commerce Travail et Securite, No. 506, June 1974, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14

- 69 Cheron, J., J.-P. Guenier, B. Moncelon and Lima Resistance des Gants de Protection Aux Solvants Industriels - Tableaux Recapitulatifs Travail et Securite, No.573, Dec. 1976, Institut National de Recherche et de Securite, 75680, Paris, Cedex 14
- 70 Christensen, U.L.
 Handsker sikre/usiker (in Danish)
 English summary available from Institute of Work
 Environment, Denmark Institute of Technology,
 DK-2800 Lyngby (April 1983)
- 71 Clean Room Products, Inc. Catalogue 1986
- 72 Cofish International, Inc. Catalogue 1986
- 73 Coletta, G.C.
 Chemical Protective Clothing: Technology Will Shape the Future, Occupational Health & Safety, pp. 50-54 (September 1985)
- 74 Coletta, G.C.
 Chemical Protective Clothing: Determining Good Performance
 Occupational Health & Safety, pp. 20-22 (April 1985)
- 75 Coletta, G.C.
 Chemical Protective Clothing: Testing Strategy and Test
 Methods, Occupational Health & Safety, pp. 49-52 (May 1985)
- 76 Coletta, G.C.
 Chemical Protective Clothing: Laboratory vs. Field
 Performance, Occupational Health & Safety, pp. 85-87
 (June 1985)
- 77 Coletta, G.C.
 Chemical Protective Clothing: The Influence of Federal Agencies, Occupational Health & Safety, pp. 27-29
 (July 1985)
- 78 Coletta, G.C., A.D. Schwope, I. Arons, J. King, and A. Sivak Development of Performance Criteria for Protective Clothing Used Against Carcinogenic Liquids Arthur D. Little, Inc., Report to NIOSH under contract 210-76-0130 (October 1978)

- 79 Colonial Glove & Garment Inc. Catalogue 1986
- 80 Comasec, Inc. Catalogue 1986
- 81 Costello, R.J., and M.V. King Protecting Workers Who Clean Up Hazardous Waste Sites Am. Ind. Ayg. Assoc. J., 43, p. 12 (January 1982)
- 82 Coyne Safety Equipment, Inc. Catalogue 1986
- 83 Crank, J.

 Mathematics of Diffusion
 Second Edition, Claredon Press (1975)
- 84 Crank, J., and G. Park Diffusion In Polymers Academic Press, N.Y. (1968)
- 85 Crowe, W.H., and A.M. Marysiuk How to Work Safely With HF Alkylation Hydrocarbon Proc., 44(5), p. 192 (1965)
- 86 Cullinane, J.
 Evaluation of the Permeation Resistance of Polymer Gloves
 to an Organophosphorus Pesticide and Pesticide Carrier
 Solvents
 IT Corporation, Report to EPA under contract 68-03-3069,
 (May 1985)
- 87 Daffin Disposables, Inc. Catalogue 1986
- 88 Davis, S.L., C.E. Feigley, and G.A. Dwiggins
 Comparison of Two Methods Used to Measure Permeation of
 Glove Materials by a Complex Organic Mixture
 Performance of Protective Clothing, ASTM STP 900, R.L.
 Barker and G.C. Coletta, Eds., American Society for Testing
 and Materials, Philadelphia, pp. 7-21 (1986)

- 89 Dayton Flexible Products, Inc. Catalogue 1984
- 90 Defense Apparel, Inc. Catalogue 1986
- 91 Denney, D.
 ASTM Eyes Plans, Seeks Input for Protective Clothing Data
 File, Occupational Health & Safety, pp. 57-61
 (July/August 1984)
- 92 Dickson, G.G.
 Chemical Protective Clothing
 Best's Safety Directory 1984
 A.M. Best Co., Oldwick, NJ 08858, pp. 392-394
- 93 Dillon, I.G.
 Permeation of Condensable Gases and Organic Liquids through
 Polymeric Materials
 National Aeronautics and Space Administration
 Contract No. NAG-10-0001
 Final Report
- 94 Dillon, I.G., and E. Obasuyi Permeation of Hexane Through Butyl Nomex Am. Ind. Hyg. Assoc. J., 46(5), pp. 233-235 (May 1985)
- 95 Dionne, E.D. Specialized Protective Apparel - An Item to Fit Every Need National Safety News, p. 51 (May 1982)
- 96 Dionne, E.D.
 A Glove Affair
 National Safety News, (September 1982)
- 97 Direct Safety Company, Inc. Catalogue 1986
- 98 Disposables Inc. Catalogue 1986

- 99 Dorsey Safety Products Co. Catalog 1986
- 100 Dow Chemical Company Selection of Gloves for Use With Chlorinated Solvents Chlorinated Solvents Information Midland, Michigan 48640
- 101 Duffy, R.M., A.R.Beer, and J.C. Sawicki
 U.S.Research in Depth on Protective Clothing
 Fire International, pp. 41-43 (August/September 1985)
- 102 Dunham, T.D., W.J. Astleford, R.L. Bessey, and J.J. Kulesz Recommended Standard for Occupational and Educational Eye and Face Protection Final Report NIOSH Contract HSM-99-73-17, SwRI Project 02-3703
- 103 E.D. Bullard Company Catalogue 1986
- 104 E.I. du Pont de Nemours & Company Spunbonded Product Division Guide E-64312 1986
- 105 E.I. du Pont de Nemours & Company Industrial and Speciality Polymers Catalogue E-26276
- 106 Eastco Industrial Safety Corp. Catalogue 1985
- 107 Edmont Division of Becton, Dickinson Company Catalogue
 1986
- 108 Elliott Glove Company, Inc. Catalogue 1986

109 Ellis, A.C.

Hazardous Waste Site Clean-Up A 'Hot' Problem

National Safety News, pp. 38-41 (July 1984)

- 110 Encon Manufacturing Company Catalogue 1986
- 111 Engle, R.L., and V.A. Nusbaum Selecting Protective Gloves. The Importance of Chemical Permeation Testing Professional Safety, pp. 32-35 (September 1984)
- 112 Erista, Inc. Catalogue
- 113 Exxon Chemical Company Polymers Group Elastomers - Design Materials Catalogue SYN-75-1751, 1975
- 114 Fairway Products Catalogue 1984
- 115 Falcon Industries, Inc. Catalogue 1981
- 116 Feigley, C.E.
 Personal Communication
 Dept. of Envir. Health Sciences
 University of South Carolina
 Columbia, S.C. 29208
 (October 1982)
- 117 Fels, M., and R.Y.M. Huang
 Diffusion Coefficients of Liquids in Polymer Membranes by
 a Desorption Method
 J. Appl. Poly. Sci., 14, pp. 523-536 (1970)
- 118 Ferguson, J.S., and W.F Martin
 An Overview of Occupational Safety and Health Guidelines
 for Superfund Sites, Am. Ind. Hyg. Assoc. J., 46(4),
 pp. 175-180 (1985)
- 119 Figard, William H.
 Permeation: An Important Factor in
 Hand Protection Selection
 Occupational Health and Safety
 (December 1982)

- 120 Fisher Scientific Company Catalogue 1981
- 121 Flynn, J.H.
 A Collection of Kinetic Data for the Diffusion of Organic
 Compounds in Polyolefins
 Polymer, 23, pp. 1325-1344 (August 1982)
- 122 Forsberg, K.

 Development of Safety Gloves. Gloves For Printers
 ERGOLAB Report S 81:10
 Stockholm/Goteborg, Sweden
 (November 1981)
- 123 Forsberg, K., and K.G. Olsson
 Faststallande av riktlinjer for val av
 kemikalieskyddshandskar
 ASF-kontrakt 83-0750
- 124 Forsberg, K., and S. Faniadis
 The Permeation of Multi-Component Liquids Through New and
 Pre-Exposed Glove Materials
 Am. Ind. Hyg. Assoc. J., 47(3), pp. 189-193 (March 1986)
- 125 Frederick, E.B., and M.C. Henry
 A Study of Seam Leakage in Coated Fabrics
 J. Coated Fibrous Materials, 1, p. 18 (1971)
- 126 Friel, J.V., M.J. McGoff, and S.J. Rodgers
 Material Development Study for a Hazardous Chemical
 Protective Clothing Outfit
 MSA Research Corp. for United States Coast Guard
 Report No. CG-D-58-80 (August 1980)
- 127 Frommelt Industries, Inc. Catalogue 1986
- 128 Fyrepel Products, Inc. Catalogue 1986
- 129 Galic, George J.
 Polycarbonate Lenses--New Technology in Eye Protection
 National Safety News
 July, 1981

- 130 Gallagher, R.
 Beat Corrosion With Rubber Hose
 Chem. Engr., p. 105 (September 8, 1980)
- 131 Garland, C.E.

 New Developments in Materials and Chemical Compatibilities

 Proceedings of The Fourth Annual Hazardous Materials

 Management Conference, Atlantic City, NJ (June 2-4, 1986)
- 132 Garland, C.E., L.E. Goldstein, and C. Cary
 Testing Fully Encapsulated Chemical Suits in a Simulated
 Work Environment
 Performance of Protective Clothing, ASTM STP 900, R.L.
 Barker and G.C. Coletta, Eds., American Society for Testing
 and Materials, Philadelphia, pp. 276-285 (1986)
- 133 General Scientific Safety Equipment Company Catalogue 1986
- 134 Glover Latex, Inc. Catalogue 1986
- 135 Goldberg, H. M., and S. Herszenson Cutting Oil Dermatitis: Sharpening Worker Defenses Occupational Health and Safety, p. 30 (May 1982)
- 136 Goodall Rubber Company Catalogue 1986
- 137 Goodyear Rubber Products Corp. Catalogue 1985
- 138 Gough, T.A., K.S. Webb, and M.F. McPhail
 Diffusion of Nitrosamines through Protective Gloves
 Environmental Aspects of N-Nitroso Compounds, (E.A. Walker
 M. Castegnaro, L. Griciute, and R.E. Lyle, eds.)
 pp. 531-534, Lyon International Agency for Research
 on Cancer (1978)
- 139 Granet, Inc. Catalogue 1982

- 140 Green, J., N.B. Levine, and R.C. Keller Elastomers for Liquid Rocket Fuel and Oxidizer Application I&EC Product Research and Development, 2, p. 126 (1963)
- 141 Greene Rubber Company, Inc. Catalogue 1984
- 142 Haas, T.J., R.B. Gaines, and K.J. Patterson
 Permeation Testing of Certain Personal Protective Clothing
 Materials by Hazardous Liquid Chemicals
 1984 Hazardous Material Spills Conference Proceedings,
 Nashville, TN, April 9-12 (1984)
- 143 Halprin Supply Co. Catalogue 1981

- 144 Hammer, W.M., and K.R. Nicholson
 Survey of Personnel Protective Clothing and Respiratory
 Apparata for use by Coast Guard Personnel in Response to
 Discharges of Hazardous Chemicals
 Pollution Prevention Projects, Branch Office of Research
 and Development, U.S. Coast Guard, Washington, D.C.
- 145 Hayes, M.J., and G.S. Park
 The Diffusion of Benzene in Rubber Part I
 Trans. Faraday Soc., 51(392), p. 1134 (1955)
- 146 Heck, W.B., and R.L. Johnson Aluminum Alkyls Safe Handling Ind. and Engr. Chem., 54(12), p. 35 (1962)
- 147 Henriksen, H. R.
 Selection of Materials for Protective Gloves. Polymer
 Membranes to Protect Against Contact With Epoxy Products
 Danish Directorate of Labor Inspection Services, Cophenhagen
 (1982)
- 148 Henry, N.W. III

 How Protective is Protective Clothing?

 Performance of Protective Clothing. ASTM STP 900, R.L.

 Barker and G.C. Coletta, Eds., American Society for Testing and Materials, Philadelphia, pp. 51-58 (1986)
- 149 Henry, N.W., and C.N. Schlatter
 The Development of a Standard Method for Evaluating Chemical
 Protective Clothing to Permeation by Liquids
 Am. Ind. Hyg. Assoc. J., 42, p. 202 (1981)

- 150 Henry, N.W., and J.F. Matheson
 Dupont Monograph: Gloves-Their Selection and Testing
 Haskell Laboratory for Toxicology and Industrial Medicine
 Dupont Company, Wilmington, DE
 (August 12, 1980)
- 151 Hodgman, Inc. Catalogue 1986
- 152 Hogstedt, C., and R. Stahl
 Skin Absorption and Protective Gloves in Dynamite Work
 Am. Ind. Hyg. Assoc. J., 41, p. 367 (1980)
- 153 Holcomb Safety Garment Company Catalogue 1984
- 154 Holland Safety Supply Company Catalogue 1986
- 155 Hopfenburg, H.B.
 Permeability of Plastic Film and Coatings
 Plenum Press, N.Y. (1974)
- 156 Hub Safety Equipment, Inc. Catalogue 1985
- 157 Hy-Test Safety Shoes, Inc. Catalogue 1986
- 158 ILC Dover Division of ILC Industries, Inc.
 Data Sheet
 1986
- 159 IPES Company, Inc. Catalogue 1986
- 160 Inco Safety Products Company Catalogue 1981

- 161 Industrial Products Company, Inc. Catalogue 1984
- 162 Industrial Safety and Security Company Catalogue 1986
- 163 Interex Corp. Catalogue 1986
- 164 Intermarket Latex, Inc. Catalogue 1985
- 165 International Playtex, Inc., Industrial Glove Division Catalogue 1986
- 166 Iron Age Protective Company Catalogue 1986
- 167 Jaxco, Inc. Catalogue 1986
- 168 Johnson, K.E., and M.D. Lowish Protection Should Fit Worker, Job Occupational Health and Safety (August 1983)
- 169 Jomac Products, Inc. Catalogue 1985
- 170 Jones Safety Supply, Inc. Catalogue 1986
- 171 Jordan David Safety Products Catalogue 1981

- 172 Kappler Disposables, Inc. Catalogue 1984
- 173 Kashi, K.P., M. Muthu, and S.K. Majumder Rapid Evaluation of Phosphine Permeability through Various Flexible Films and Coated Fabrics Pestic. Sci., 8, pp. 492-496 (1977)
- 174 Keller Glove Manufacturing Company Catalogue 1982
- 175 Keystone Protection Corp. Catalogue 1986
- 176 Kimberly-Clark Corp. Catalogue 1985
- 177 Kodak
 Functional Group Index of
 KODAK Laboratory Chemicals
 Kodak Publication No. JJ-1F (January 1981)
- 178 Kokes, R.J., and F.A. Long
 Diffusion of Organic Vapors into Polyvinyl Acetate
 J. Amer. Chem. Soc., 75, p. 6142 (1953)
- 179 LRC Safety Products Company Catalogue 1984
- 180 La Crosse Footwear, Inc. Catalogue 1986
- 181 Latex Glove Company, Inc. Catalogue 1986
- 182 Lehigh Safety Shoe Company Catalogue 1986

- 183 Leonard Safety Equipment, Inc. Catalogue 1986
- 184 Levine, S.P., and Martin, W.F.
 Protecti ., Personnel at Hazardous Waste Sites
 Butterworth Publishers, Stoneham, MA, 1985
- 185 Lilani, H.N.
 Non-Asbestos Fabrics Perform Against Heat and Metal
 Splashes, Occupational Health & Safety, pp. 58-61
 (January 1986)
- 186 Linnarson, A.
 Penetration of Solvents Through Plastic Material
 Lagersrapport, Forsvarets Forskningsanstalt, Stockholm
 pp. 17 (1977)
- 187 Linnarson, A., and K. Halvarson Study of Polymer Material Permeability for Organic Compounds FOA Report C-20414-H2, Progress Report, Stockholm, 1981
- 188 Lion Uniform, Inc. Catalogue 1985
- 189 Lloyd, G.A.
 Summarized Results of Permeation Tests on Protective Clothing Materials
 Ministry of Agriculture Fisheries and Food, Operator Protection Research Group, Information Sheet No. 19, (June 1986)
- 190 Lloyd, G.A.

 Efficiency of Protective Clothing for Pesticide Spraying
 Performance of Protective Clothing, ASTM STP 900, R.L.
 Barker and G.C. Coletta, Eds., American Society for Testing
 and Materials, Philadelphia, pp. 121-135 (1986)
- 191 Lynch, A.L.
 Protective Clothing in Handbook of Laboratory Safety
 2nd Edition, N.V. Steeve editor
 CRC Press, Boca Raton, FL (1971)
- 192 Lynch, P.
 Matching Protective Clothing to Job Hazards
 Occupational Health and Safety, p. 30 (January 1980)

PERSONAL PROPERTY OF THE PERSONAL PROPERTY OF

- 193 MacDonald, R.W., and R.Y.M. Huang
 Permeation of Gases Through Modified Polymer Films V.
 Permeation and Diffusion of Helium, Nitrogen, Methane
 Ethane, and Propane through gamma-Ray Crosslinked
 Polyethylene
 J. Appl. Poly. Sci., 26, pp. 2239-2263 (1981)
- 194 Magid Glove and Safety Manufacturing Company Catalogue 1985
- 195 Major Safety Service, Inc. Catalogue 1984
- 196 Mar-Mac Manufacturing Company, Inc. Catalogue 1986
- 197 Marathon Rubber Catalogue 1986
- 198 Martone, J.A., and Bergen, G.A.
 A Rocket Propellant Handler's Suit for Protection from Chlorine Trifluoride and Elemental Fluorine
 Technical Report AFRPL-TR-71-44 (August 1971)
 NTIS AD731556
- 199 Masterman's Catalogue 1986
- 200 Mathias, C.G.T.

 Managing Hand Dermatitis in the Workplace
 Occupational Health and Safety, p. 46 (May 1982)
- 201 McFee, D.R. How Well Do Gloves Protect Hands Against Solvents A.S.S.E. Journal, 9, p. 11 (May 1964)
- 202 McGuffey, J.R., R. Paluzelle, and W.E. Muldrew Handling Gaseous Fluorine in Industry Ind. and Engr. Chem., 54(5), p. 46 (1962)

- 203 McNaughton, K.J.

 The ABCs of Occupational Skin Disease Part II
 Chem. Engr., p. 149 (April 19, 1982)
- 204 Meade, J., W. Ellis, and J. Ludington
 Evaluation of the Resistance of a Chlorinated Polyethylene
 Protective Garment Material to Permeation and Degradation by
 Liquid Chemicals
 U.S. Environmental Protection Agency Contract No. 68-03-3113
 (1985)
- 205 Meares, P. Transient Permeation of Organic Vapors through Polymer Membranes J. of Applied Polymer Science, 9, p. 917 (1965)
- 206 Melco, Inc. Catalogue 1986
- 207 Memphis Glove Company Catalogue 1986
- 208 Middleton, H. W.
 Glove Corrosive Liquid Immersion and Permeability Study
 Report on U. S. Energy Research and Development
 Administration contract EY-76-C-04-0656 (August 1977)
- 209 Mihal, C.P., Jr.
 Effect of Heat Stress of Physiological Factors for
 Industrial Workers Performing Routine Work and Wearing
 Impermeable Vapor-Barrier Clothing
 Am. Ind. Hyg. Assoc. J., (February 1981)
- 210 Mikatavage, M., S.S. Que Hee, and H.E. Ayer Permeation of Chlorinated Aromatic Compounds Through Viton and Nitrile Glove Materials Am. Ind. Hyg. Assoc. J., 45(9), pp. 617-621 (1984)
- 211 Mikkelson, T.J., S. Watanabe, J.H. Rytting, and T. Higuchi Effect of Self-Association of Phenol on Its Transport Across Polyethylene Film J. Pharm. Sci., 69, p. 133 (1980)
- 212 Miller Products Company, Inc. Catalogue 1986

- 213 Mine Safety Appliances Company Data Sheets 13-00-07, 13-00-17, and 13-00-18 1986
- 214 Monte Glove Company Catalogue 1981
- 215 Morrow, R.W., and J.H. Hamilton Moca Permeation of Protective Clothing Prepared for Department of Energy Under U.S. Government Contract W-7405 eng. 26
- 216 Moursiden, J.T., and O. Faber
 Penetration of Protective Clothing By Allergens and
 Irritants
 Trans. St. John's Hosp. Dermatol. Soc., 59, p. 230 (1973)
- 217 Mueller, W.J.
 Permeability of Rubber to Organic Liquids
 Rubber Age, p. 982 (September 1957)
- 218 National Draeger, Inc. Catalogue 1986
- 219 National Research Council
 Prudent Practices for Handling Hazardous Chemicals in
 Laboratories
 National Academy Press, Washington, DC (1981)
- 220 National Safety Wear, Inc. Catalogue 1984
- 221 National Tech. Info. Service
 Protective Clothing: Industrial Environments.
 Protective Clothing for Industrial Atmospheres Including
 Protection from Explosive Materials and Fuels
 U.S. Department of Commerce, NTIS, PB83-804922
- 222 Nelson, G.O., B. Lum, G. Carlson, C. Wong, and J. Johnson Glove Permeation by Organic Solvents
 Am. Ind. Hyg. Assoc. J., 42(3), p. 217 (1981)

- 223 Nelson, G.O., G.J. Carlson, and A.L. Buerer Glove Permeation by Shale Oil and Coal Tar Extract Lawrence Livermore Laboratory, UCRL 52893 (1980)
- 224 Nesse Industries, Inc. Catalogue 1984
- 225 Newns, A.C., and G.S. Park The Diffusion Coefficient of Benzene in a Variety of Elastomeric Polymers J. Polymer Sci. Part C, 22(2), pp. 927-937 (1969)
- 226 Niles, H.M.
 Selecting Gloves for Handling Toxic Liquids Involves
 Several Factors, Occupational Health & Safety, pp. 34-36
 (December 1985)
- 227 North Hand Protection, Div. of Siebe North, Inc. Catalogue
 1986
- 228 O'Brien, J.
 Proper Sole Selection Key to Safety Footwear Comfort,
 Protection, Occupational Health & Safety, pp. 52-53
 (February 1986)
- 229 O.K.I. Supply Company Catalogue 1981
- 230 Oak Medical Supply Company Catalogue 1981
- 231 Oak Technical, Inc. Catalogue 1986
- 232 PPG Industries, Inc. Catalogue A-691-45C, 10M, 179, 1986
- 233 Panelgraphic Corporation Catalogue 1986

SECTOR OF SECTIONS FOR SECTIONS OF SECTIONS FOR SECTIONS FOR SECTIONS OF SECTI

- 234 Pendergast Safety Equipment Company Catalogue 1984
- 235 Perkins, J.L., and A.D. Tippit
 Use of Three-Dimensional Solubility Parameter to Predict
 Glove Permeation
 Am. Ind. Hyg. Assoc. J., 46, pp. 455-459 (August 1985)
- 236 Pioneer Industrial Products, Division of Brunswick Corp. Catalogue M-104-1 1986
- 237 Plastex Protective Products, Inc. Catalogue 1986
- 238 Plastimayd Corp. Catalogue 1986
- 239 Podkowka, J., and Puchalik, A.
 Comparative Evaluation of Diffusion Coefficients
 for Gases and Vapors of Organic Substances through
 Polyethylene Membranes Determined by Absorption and
 Desorption Upstream Time Lag Method
 J. Appl. Poly. Sci., 27, pp. 1471-1478 (1982)
- 240 Polakoff, P.L. Chemical Mixture Hazard Evaluation Differs from that of Single Substances, Occupational Health & Safety, pp. 55-56 (September 1985)
- 241 Prager, S., and F.A. Long
 Diffusion of Hydrocarbons in Polyisobutylene
 J. Amer. Chem. Soc., 73, p. 4072 (1951)
- 242 Protech Safety Equipment, Inc. Catalogue 1986
- 243 Protexall Company Catalogue 1986
- 244 Pulmosan Safety Equipment Corp. Catalogue 1984

- 245 Rainfair, Inc. Catalogue 1986
- 246 Ranger Catalogue 1985
- 247 Record Industries Company Catalogue 1986
- 248 Renco Corp. Catalogue 1984
- 249 Richards, R.W.

 The Permeability of Polymers to Gases, Vapors and Liquids
 Tech. Report No. 135, Ministry of Defense Explosives
 Research and Development Establishment (March 1973)
- 250 Riley, M.W., D.J. Cochran, and C.A. Schanbacher Force Capability Differences Due to Gloves Ergonomics, 28(2) pp. 441-447 (1985)
- 251 Robar Protective Products Catalogue 1981
- 252 Rockford Medical & Safety Company Catalogue 1986
- 253 Rogers, C.E., V. Stannett, and M. Szwarc The Sorption, Diffusion, and Permeation of Organic Vapors in Polyethylene J. Poly. Sci., 45, pp. 61-82 (1960)
- 254 Ronco Textile Products, Inc. Catalogue 1986
- 255 Ronk, R., M.K. White, and H. Linn Personal Protective Equipment for Hazardous Materials Incidents: A Selection Guide, NIOSH, DHHS (NIOSH) Publication No. 84-114, (October 1984)

- 256 SGL Homalite Division of SGL Industries, Inc. Catalogue 0776-5M
- 257 Safeco, Inc. Catalogue 1986
- 258 Safety Engineering & Supply Company Catalogue 1986
- 259 Safety First, Industries Catalogue 1986
- 260 Sager Corporation, Racine Glove Division Catalogue 1986
- 261 Salame, M., and S. Steingiser
 Barrier Polymers
 Presented at the Am. Chem. Soc. Symposium in New York City
 (May 1976)
- 262 Salame, S.
 The Prediction of Liquid Permeation in Polyethylene and Related Polymers
 SPE Transactions (October 1961)
- 263 Salisbury, W.H. & Company Catalogue 1986
- 264 Sansone, E.B., and L.A. Jonas Resistance of Protective Clothing Materials to Permeation by Solvent "Splash" Environmental Res., 26, pp. 340-346 (1981)
- 265 Sansone, E.B., and L.A. Jonas The Effect of Exposure to Daylight and Dark Storage on Protective Clothing Material Permeability Am. Ind. Hyg. Assoc. J., 42(11), pp. 841-843 (1981)
- 266 Sansone, E.B., and Y.B. Tewari
 The Permeability of Laboratory Gloves to Selected Solvents
 Am. Ind. Hyg. Assoc. J., 39(2), p. 169 (1978)

- 267 Sansone, E.B., and Y.B. Tewari The Permeability of Laboratory Gloves to Selected Nitrosamines Environmental Aspects of N-Nitroso Compounds (E. A. Walker M. Castegnaro, L. Griciute and R.E. Lyle, eds.), Lyon International Agency for Research on Cancer pp. 517-529 (1978)
- 268 Sansone, E.B., and Y.B. Tewari
 Differences in the Extent of Solvent Penetration Through
 Natural Rubber and Nitrile Gloves From Various Manufacturers
 Am. Ind. Hyg. Assoc. J., 41, pp. 527-528 (July 1980)
- 269 Sansone, E.B., and Y.B. Tewari The Permeability of Protective Clothing Materials to Benzene Vapor Am. Ind. Hyg. Assoc. J., 41(3), pp. 170-174 (1980)
- 270 Sansone, E.B., and Y.B. Tewari Penetration of Protective Clothing Materials by 1,2-Dibromo-3-Chloropropane, Ethylene Dibromide, and Acrylonitrile Am. Ind. Hyg. Assoc. J., 39, pp. 921-922 (November 1978)
- 271 Sawyer-Tower Catalogue 1986
- 272 Schlatter, C.N.
 Permeation Resistance of Gloves After Repeated Cleaning and Exposure to Liquid Chemicals
 Edmont Division, Becton, Dickinson and Company
- 273 Schlatter, C.N., and D.J. Miller Influence of Film Thickness on the Permeation Resistance Properties of Unsupported Glove Films Performance of Protective Clothing, ASTM STP 900, R.L. Barker and G.C. Coletta, Eds., American Society for Testing and Materials, Philadelphia, pp. 75-81 (1986)
- 274 Schoch, D.H., L.K. Tersegno, J.E. Winter, D.G. Bush, and R.L. James Testing of "Impervious" Gloves for Permeation by Organic Solvents, American Industrial Hygiene Conference, Cincinnati, OH (June 6-11, 1982)
- 275 Schwope, A.D.
 The Effectiveness of TYVEK Composites as Barriers To
 AROCLOR 1254 (PCB), Trichlorobenzene, and Mineral Spirts
 Report to Textile Fibers Dept., The Dupont Company
 from Arthur D. Little (1979)

- 276 Schwope, A.D., M.A. Randel, and M.G. Broome Dimethyl Sulfoxide Permeation through Glove Materials Am. Ind. Hyg. Assoc. J., 42(10), pp. 722-725 (1981)
- 277 Shelby-Wolverine Glove Company Catalogue 1986
- 278 Silkowski, J.B., S.W. Horstman, and M.S. Morgan Permeation Through Five Commercially Available Glove Materials by Two Penachlorophenol Formulations Am. Ind. Hyg. Assoc. J., 45, pp. 501-504 (August 1984)
- 279 Singer Safety Company Catalogue 1985
- 280 Smith, I.D., and J. Roepke
 Personnel Protection Equipment for Use With Laser Chemicals
 NASA and LEMSCO, White Sands Test Facility, AD-P004-490
 (May 1984)
- 281 Smolander, J., V. Louhevaara, and Korhonen, O. Physiological Strain in Work with Gas Protective Clothing at Low Ambient Temperature, Am. Ind. Hyg. Assoc. J., 46, pp. 720-723 (December 1985)
- 282 Snyder, F.J., C.F. Macy, L.A. Spane, and V.D. Iacono Protection Capability of U.S. Army's POTMC Against Hazards Posed by 900 Hazardous Chemicals U.S. Army Natick R&D Command, 1976
- 283 Snyder, L.
 Solutions to Solution Problems--1
 Chemtech
 (December 1979)
- 284 Snyder, L.
 Solutions to Solution Problems--2
 Chemtech
 (March 1980)
- 285 Soles, E., J.M. Smith, and W.R. Parrish Gas Transport through Polethylene Membranes AIChE Journal, 28(3), pp. 474-479 (1982)

- 286 Spain, W.H., and J.L. Burson Selective Protective Clothing with Six C's Occupational Health and Safety, pp. 17-23 (September 1983)
- 287 Spence, M. W.

 Chemical Permeation through Protective Clothing Material:

 An Evaluation of Several Critical Variables

 Paper Presented at the American Industrial Hygiene

 Conference, Portland, OR (May 1981)
- 288 Spence, M.W.
 Glove Materials for Chlorinated Solvents: Permeation
 Resistance Comparison for Four Solvents
 American Industrial Hygiene Conference, Detroit, MI
 (May 21-25, 1984)
- 289 Sperling, L., B. Jonsson, I. Holmer, and T. Lewin Test Program for Work Gloves Department of Occupational Safety, Division for Occupational Medicine, Labor Physiology Unit in Umea, Sweden, Research Report 1980:18 (1980) (translated from Swedish)
- 290 Stampfer, J.F., M.J. McLeod, A.M. Martinez, M.R. Betts, and S.P. Berardinelli
 Permeation of Polychlorinated Biphenyls and Solutions of These Substances Through Selected Protective Clothing Materials
 Am. Ind. Hyg. Assoc. J., 45(9), pp. 634-641 (1984)
- 291 Stampfer, J.F., M.J. McLeod, M.R. Betts, A.M. Martinez, and S.P. Berardinelli
 The Permeation of Eleven Protective Garment Materials by Four Organic Solvents
 Am. Ind. Hyg. Assoc. J., 45, pp. 642-654 (1984)
- 292 Stampfer, J.F., M.J. McLeod, M.R. Betts, A.M. Martinez, and S.P. Berardinelli Chemical Permeation - A Summary Report of Recent NIOSH-Directed Studies at the Los Alamos National Laboratory Am. Ind. Hyg. Assoc. J., 45, pp. B-10 to B-12 (January 1984)
- 293 Stampfer, J.F., and R.J. Beckman
 A Screening Test for Selecting Chemical Protective Clothing
 Los Alamos National Laboratory, Los Alamos, NM
- 294 Standard Glove & Safety Equipment Corp. Catalogue 1986

THE RECEDENCE AND A COURT PROPERTY OF SOUTH PARTY OF THE

- 295 Standard Safety Equipment Company Catalogue 1986
- 296 Stannett, V., and H. Yasuda
 Liquid Versus Vapor Permeation Through Polymer Films
 J. Poly. Sci. Part B, Poly. Letters, 1(6), pp. 289-293
 (1963)
- 297 Stauffer Manufacturing Company Catalogue 1986
- 298 Steel Grip Safety Apparel Company, Inc. Catalogue 1986
- 299 Steele & Associates, Inc. Catalogue 1986

- 300 Stokoe, A.L., and K.J. Ledbury
 Permeability of Polymers to Organic Fluids
 Tech. Report No. 18, Ministry of Technology Explosives
 Research and Development Establishment
 Waltham Abby, Essex, England (February 1970)
- 301 Streng, D.R., W.F. Martin, L.P. Wallace, and G. Kleiner Hazardous Waste Sites and Hazardous Substance Emergencies Worker Bulletin DHHS (NIOSH) Publication No. 83-100
- 302 Stull, J.O., V.L. Man, V.A. Bastecki, and A.P. Bentz A Comprehensive Materials Evaluation Program to Support the Development and Selection of Chemical Protective Clothing 1986 Hazardous Material Spills Conference Proceedings, St. Louis, Missouri (May 5-8, 1986)
- 303 Stull, Jeffrey
 Personal Communication.
 U.S. Department of Transportation, Coast Guard
 (August 1986)
- 304 Superior Surgical Manufacturing Company, Inc. Catalogue
 1986

- 305 Sweeting, O.J. (editor)
 The Science and Technology of Polymer Films
 Volume II, Wiley-Interscience, New York (1970)
- 306 Texier, H. Glove Company, Inc. Catalogue 1985
- 307 3M Company Catalogue 1986
- 308 Tingley Rubber Corp. Catalogue 1985
- 309 Tracies Co., The Catalogue 1986
- 310 Trelleborg, A.B.
 Resistance Table
 Trelleborg A.B. (Sweden)
- 311 Trelleborg, Inc. Catalogue 1986
- 312 United States Plastic Corp. Catalogue 1986
- 313 United States Safety Service Company Catalogue 1986
- 314 Vaccari, J.A.
 Guide to Selecting Elastomers
 Product Engineering, p.36 (July 1978)
- 315 Van Amerongen, G.J.
 Diffusion in Elastomers
 Rubber and Chem. Tech. Rubber Reviews for 1964, 37(5),
 pp. 1065-1152 (1964)

- 316 Varos, J.
 Consider Abrasion Risk, Chemicals When Choosing Gloves
 Occupational Health & Safety, pp. 60,62 (March 1986)
- 317 Vidaro Corp. Catalogue 1981
- 318 Vrentas, J.S., H.T. Liu, and J.L. Duda Effect of Solvent Size on Diffusion in Polymer-Solvent Systems J. Appl. Poly. Sci., 25, pp. 1793-1797 (1980)
- 319 Vrentas, J.S., and J.L. Duda Diffusion of Large Penetrant Molecules in Amorphous Polymers J. Poly. Sci., Phys. Ed., 17, pp. 1085-1096 (1979)
- 320 Waack, R., N.H. Alex, H.L. Frisch, V. Stannett, and M.Szwarc Permeability of Polymer Films to Gases and Vapors Ind. and Engr. Chem., 47(12), pp. 2524-2527 (1955)
- 321 Wakefield, M.E., and M.S. Hall
 Development of a Specification for an Improved Ensemble
 for Propellant Handlers
 Final Report on NASA Contract NAS10-9714, MCR-80-647
 (December 1980)
- 322 Walker, E.A., M. Castegnaro, L. Garren, and B. Pignatelli Limitations to the Protective Effect of Rubber Gloves for Handling Nitrosamines
 Environmental Aspects of N-Nitrosamines Compounds
 (E.A. Walker, M. Castegnaro, L. Griciute, and R.E. Lyle, eds.), Lyon International Agency for Research on Cancer, pp. 535-542 (1978)
- 323 Walters, D.
 Personal Communication. National Toxicology Program
 Glove Performance Study Performed by Radian
 Corporation, Austin, Texas (June 1986)
- 324 Weaver, L.A.

 Hazardous Site Water Restrictions Pose Problem for Exposed
 Workers, Occupational Health & Safety, pp. 54-58 (May 1985)
- 325 Weeks, R.W., Jr., and B.J. Dean
 Permeation of Methanolic Aromatic Amine Solutions Through
 Commercially Available Glove Materials
 Am. Ind. Hyg. Assoc. J., 38, pp. 721-725 (1977)

A STATE OF THE PROPERTY OF THE PARTY OF THE

- 326 Weeks, R.W., Jr., and M.J. McLeod
 Permeation of Protective Garment Material by Liquid
 Halogenated Ethanes and a Polychlorinated Biphenyl
 U.S. Dept. of Health & Human Services, NIOSH Publication
 No. 81-110 (January 1981)
- 327 Weeks, R.W., Jr., and M.J. McLeod Permeation of Protective Garment Material By Liquid Benzene and by Tritiated Water Am. Ind. Hyg. Assoc. J., 43, pp. 201-211 (1982)
- 328 Weitzman, D., and L.C. Jonas Industrial Hygiene Program for Hazardous Waste Site Investigations Am. Ind. Hyg. Assoc. J., 42, pp. 653-655 (1981)
- 329 Wells, Dr. J.W., Equipment Innovations Cut Risks for Divers in Polluted Waters, Sea Technology, p.22-23 (December 1984)
- 330 Wheeler Protective Apparel, Inc. Catalogue G12, 1986
- 331 Wheeler, C.P., and Goldberg, H.M.
 Hazard Education Must Overcome Generalities
 Occupational Health and Safety, pp. 31-34 (September 1983)
- 332 Wilcher, F.E.
 ISEA Forms Unit to Certify Personal Protective
 Equipment
 National Safety News, p. 36 (September 1981)
- 333 Williams, J.R.
 Permeation of Glove Materials by Physiologically
 Harmful Chemicals
 Am. Ind. Hyg. Assoc. J., 40(10), pp. 877-882 (1979)
- 334 Williams, J.R. Chemical Permeation of Protective Clothing Am. Ind. Hyg. Assoc. J., 41, pp. 884-887 (1980)
- 335 Williams, J.R.
 Evaluation of Intact Gloves and Boots for
 Chemical Permeation
 Am. Ind. Hyg. Assoc. J., 42, pp. 468-471 (1981)

THE SECRETARY OF SECTION OF SECTION SECTIONS

- 336 Willson Safety Products Catalogue 1985
- 337 Wittenberg, L.J.
 Experimental Verification of Tritium Control by Glove-Box
 Containment
 Nuclear Technology, 38, pp. 434-440 (May 1978)
- 338 Wolfe, P.R., and L.A. Rich FEMA's Strategy for Emergency Response Chemical Week, p. 15 (July 3, 1985)
- 339 Worklon Catalogue 1981
- 340 Zippler, D.B.
 Personal Protective Clothing
 1984 Occupational Health and Safety Symposium, Wilmington,
 DE (October 3-5, 1984)

APPENDICES

DESCRIPTION OF COLUMN HEADINGS FOR APPENDICES A THROUGH E

Chemical Name: Alphabetical listing of chemicals as

shown in Appendix B of Volume I. Synonym, if given, in parentheses.

CAS No: Chemical Abstract Service (CAS)

Registry Number.

Resistant Material: The normally outside material of the

CPC (i.e., the chemical contact surface). See Appendix E of Volume I.

Product Description: See column 1 of Appendix E in

Volume I.

Vendor: See Appendix E of Volume II.

UNK - Unknown.

Breakthrough Time: See Appendix A of Volume I.

Permeation Rate: See Appendix A of Volume I.

Percent Weight Change/ Change in weight of CPC specimen

Immersion Time: due to immersion in chemical for

time indicated.

Percent Swell/ Volume change due to immersion in

Immersion Time: chemical for time indicated.

Diffusion Coefficient: a x 10^b cm²/sec.

Temperature: Test temperature, if reported; other-

wise assumed to be 25°C.

Thickness: Initial thickness of test specimen,

if reported; otherwise no value is

given.

Ref Number: Source of data. See Bibliography.

APPENDIX A

PERMEATION DATA

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME		TION RATE	TEMP DEG C	THICKNESS CH	REF
Acetaldehyde										_
000750700	BUTYL	014	118		9.58 9.60		.40		.04	323
	CPE	060	113	.17 -	.50		.40		45	227
	3. 3	•••	UNK	• • •	.66			25.	.07	302
			V 111		.28			23. 23.		142
	MATURAL RUBBER	001	103		.20		48.10			142
		017	100		.12	90.18 -	901.80		OE.	045
	NEOPRENE	002	100		.28	901.80	9,018.00		.05	107
		018	100		.20	901.00	199.00		05	107
		• • • • • • • • • • • • • • • • • • • •			.17	901.80 -	9,018.00		.05	323
		125	103		• • • •	901.60	72.14		.04	107
	NITRILE	019	103				529.06			045
		•	118	<	.01		967.93			045
				•	.07		967.93		.03	323
	NITRILE+PVC	058	100		.05	901.80 -	9,018.00		.04	227
	PE	076	100		.05	901.80	•			107
	PV ALCOHOL	102	100		.27	901.80	9,018.00	23.		107
	PVC	007	103		.21		282.56	23.	.03	323
	, , ,	077	100		.05	9.02 -	264.53	23.		045
		•••	100		.08		90.18	23.		107
	SILVER SHIELD	122	118	>	6.00	901.80 -	9,018.00	23.		107
	TEFLON	069	510	•	3.00	_		23.	.01	227
	VITON	009	118	ί.	.01	<	.02	23.	.05	303
	VITON/CHLOROBUTYL	112	113	.50 -	.66		1,694.78		.03	323
	VI TONY ONE ONO DOTTE	116	UNK	.50 -	3.00			25.	.04	302
				•	3.00			23.		142
Acetic Acid										
000641970	CPE	06 0	113	>	3.00			25.	.07	302
					3.95			23.	.05	204
					2.40		42.08	23.	.05	204
	NATURAL RUBBER	001	UNK		.68			23.		052
		015	UNK		.85			23.	.04	052
		017	100		2.25			23.	.05	107
			102		4.50			23.	.05	026
					2.50			23.	.05	026
					1.50			23.	.05	026
					2.00			23.	.05	026
	NEOP+NAT RUBBER	026	102		1.50			23.	.06	026
					1.50			23.	.04	026
					3.50			23.	.05	026
			121		1.27		96.19	23.	.05	237
	NEOP/NAT RUBBER	008	102		3.50		70.17	23.	.03	026
			UNK	>	1.00			23.		
	NEOPRENE	002	100	>	6.00			23.		052 107
		=	210	-	6.00			23.		080
		018	100		7.00			23. 23.	۸,	
		→. •	UNK	>	1.00				.04	107
			•	,	1.00			23. 23	.06	052
	NITRILE	005	210	•	6.00	<	0.5	23.	.09	052
	***********	019	100		4.50	•	.02	23.	A.	080
		917		_				23.	.06	107
			UNK	>	1.00			23.	.05	052

NITRILE+PVC	057									
WIIKILEYPVC		210			6.00					
	058	100			.27	•	.02	23. 23.		080 107
PE	076	100			.25			23.		107
•	0.0	127			5.00			23.		104
PVC	003	UNK			.08			23.	.02	052
	007	100			3.00					107
		210			4.00		12.02			080
		UNK	,	•	1.00					052
	077	100			.75					107
					.10			23.		107
SARANEX	061	127	,	•	66.67			23.		104
TEFLON	069	510	3	•	4.00	<	.02	25.	.05	303
VITON	009	UNK	,	•	1.00			23.		052
VITON/CHLOROBUTYL	112	113	3	•	3.00			25.	.04	302
×										
NATURAL RUBBER	001	120			.35		18.04	23,	.05	236
NITRILE	005	120			1.97		1,328.65	23.	.06	236
PVC	003	120			1.42		1.80	23.	.08	236
•										
BUTYL	014	118	;	>	8.00	<	.02	23.	.09	323
CPE	060	113			1.25			23.	.05	204
					1.20		54.11	23.	.05	204
NATURAL RUBBER	001	250			.05		10.02	20.	.02	323
NEOPRENE	018	100			3.50		6.01	20.	.05	323
PVC	007	100			.07		120.24	20.	.02	323
TEFLON	069	510	;	>	3.00	<	.02	23.	.05	303
BUTYL	014	118	;	>	20.33			23.	.08	323
			:	>	17.00			23.	.04	227
		216	:	>	4.00			21.	.07	124
CPE	060	113		•	.42			25.	.07	302
										302
			.45	•						302
										204
					.25				.05	504
NATURAL RUBBER	001									04
										080
	***								.12	27
	017	100				Ac 1-				222
						90.18				10
		102								020
										020
										020
		400								020
										22
										55
		504								55
		4 44.44								55
						•				27 22
	SARANEX TEFLON VITON VITON VITON/CHLOROBUTYL X NATURAL RUBBER NITRILE PVC BUTYL CPE NATURAL RUBBER NEOPRENE PVC TEFLON	007 SARANEX 061 TEFLON 069 VITON 009 VITON/CHLOROBUTYL 112 X NATURAL RUBBER 001 NITRILE 005 PVC 003 BUTYL 014 CPE 060 NATURAL RUBBER 001 NEOPRENE 018 PVC 007 TEFLON 069 BUTYL 014 CPE 060 NATURAL RUBBER 001 NEOPRENE 018 PVC 007 TEFLON 069 BUTYL 014 CPE 060	DO7 100 210 UNK 077 100 SARANEX 061 127 TEFLON 069 510 VITON 009 UNK VITON/CHLOROBUTYL 112 113 XX NATURAL RUBBER 001 120 NITRILE 005 120 PVC 003 120 BUTYL 014 118 CPE 060 113 NATURAL RUBBER 001 250 MEOPRENE 018 100 PVC 007 100 TEFLON 069 510 BUTYL 014 118 CPE 060 113 NATURAL RUBBER 001 250 MEOPRENE 018 100 PVC 107 100 TEFLON 069 510 BUTYL 014 118 CPE 060 113 NATURAL RUBBER 001 103 210 UNK 017 100 102	DO7 100 210 UNK 077 100 SARANEX 061 127 TEFLON 069 510 VITON 009 UNK VITON/CHLOROBUTYL 112 113 X NATURAL RUBBER 001 120 MITRILE 005 120 PVC 003 120 BUTYL 014 118 CPE 060 113 NATURAL RUBBER 001 250 MEOPRENE 018 100 PVC 007 100 TEFLON 069 510 BUTYL 014 118 CPE 060 113 .33 .53 .45 NATURAL RUBBER 001 103 210 UNK 017 100 102	NATURAL RUBBER O1	NATURAL RUBBER O1	NATURAL RUBBER O1 120 1.20	NATURAL RUBBER 001 250	NATURAL RUBBER O1 120	MATURAL RUBBER 001 120 250

and the standard and the standard and the standard and and and and a standard and

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR			GH TIME			ION RATE	TEMP	THICKNESS	REF
CASHO	MIERIAL	DESC CODE		•	OURS		UG/	CM=	*2/MIN	DEG C	CM	NUM
000676410	NEOP+NAT RUBBER	026	102			.12			8.42	23.	.06	026
						.08			12.63	23.	.04	026
						.13			4.81	23.	.05	026
			121			.05			126.25	23.	.05	237
	NEOP/NAT RUBBER	800	102			.13			4.81	23.		026
			114			.13			46.09	25.	.05	222
			UNK			.13		>	150.30	23.	.05	274
	NEOPRENE	002	100			.17	90.18	•	901.80	23.		107
						.04			180.36	25.	.08	2 22
			120			.04			310.62	25.	.07	222
			210			.10			72.14	23.		080
		018	100			.23			334.27		.05	323
						.08	90.18	•	901.80		.04	107
			118			.95			8 6.17		.08	222
			120			.32			140.28		.05	222
						.53			170.34		.07	222
						.55			90.18		.05	222
						.27			140.28		.03	222
			UNK		>	1.00				23.	.09	274
		400				.43			120.24		.06	274
	4177004	125	103						1,557.11			045
	NITRILE	005	210			.33			480.96			080
		019	100			.09			2,004.00		.04	222
						.22		<	801.60		.06	222
			444			.08		<	801.60		.04	222
			181			.07			801.60		.03	222
			503			.05			1,503.00		.03	222
			UNK			.08		>	150.30		.05	274
	NITO ILE DIVO	057	240			.10		>	110.22		.05	274
	NITRILE+PVC PE	057	210			.25			312.62			080
	PE	006	100		>	1.00		<	30.06		.01	222
		07/	505			.07			2.00		.01	222
	DV ALCOHOL	076	100			.05	9.02	•	90.18	23.		107
	PV ALCOHOL	004	100		>	4.00				21.		124
		100	UNK			.50		>	60.12		.12	274
	PVC	102 007	100			.07			13.83		.04	323
	PVC	007	210			.30			541.08	23.		080
	SARANEX	061	UNK 127			.15		>	140.28		.16	274
	SILVER SHIELD	122			_	.55			19.84	23.	•	104
	TEFLON	069	118 510		>	6.00				23.	.01	227
	TETEON	009	210		>	3.00		<	.02		.05	303
	VITON	009	118		>	3.50		<	.02		.05	303
	711UN	UUY	UNK		<	.01 .03			4,843.87		.02	323
	VITON/CHLOROBUTYL	112		47				>	150.30		.03	274
	TATION/ CREUKOSUTTE	112	113	.87 1.58		1.28				25.	.04	302
				1.58		1.63 .88				20.	.04	302
				.88		1.02				27. 25.	.04 .04	302 302
Acetonitrile												
000750580	BUTYL	014	118		>	8.00				23.	.07	323
					>	8.00				23.	.04	227
		064	117		>	8.00				23.	.02	213

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR			JGH TIME	PERMEATION RATE	TEMP	THICKNESS	REF
	MATERIAL	DESC CODE			IOURS		UG/CM**2/MIN	DEG C	CH	NUM
000750580	BUTYL	064	117		>	8.00		23.	-01	213
	MITH AUTODOLUT	440	44=		>	8.00		23.	.02	213
	BUTYL/NEOPRENE CPE	110	117	4 77	>	8.00		23.	.02	213
	NATURAL RUBBER	060 001	113 103	1.33	•	1.42	454 54	25.	.07	302
	MATURAL RUBBER	001	506		<	.01	150.30			045
	NEOPRENE	018	100			1.27	117.23 10.82		.01	323
	Was a second	093	117		<	.18	10.02	23.	.06 .02	323 213
		125	103		•		72.14		.02	045
		138	117			.58	75.14	23.	.03	213
		139	117			.83		23.	.01	213
	NITRILE	019	103				66.13		.01	045
	PE	076	117		<	.01	551.15	23.	.02	213
	PV ALCOHOL	102	100		>	8.00		23.	.04	323
	PVC	007	103				66.13			045
		049	117			.05	23.13	23.	.01	213
	SARANEX	061	117		>	8.00		23.	.01	213
	SILVER SHIELD	122	118		>	8.00		23.	.01	227
	TEFLON	069	510		>	4.50	< .02		.05	303
	VITON	145	117		>	8.00		23.	.01	213
	VITON/CHLOROBUTYL	112	113	1.50	•	1.75		25.	.04	302
	VITON/NEOPRENE	111	117			.75		23.	.02	213
Acetophenone										
000988620	TEFLON	069	510		>	92.00	< .02	25.	.05	303
Acetyl Chloride										
000753650	SARANEX	061	127			.62	1.10	23.		104
	TEFLON	069	510		>	3.10	< .02	23.	.05	303
Acrolein										
001070280	BUTYL	014	118		>	15.00		23.	.06	3 23
	CPE	06 0	UNK			.13		23.		142
	M100					.92		23.		142
	NITRILE	019	100			.07	966.13		.04	323
	PV ALCOHOL	102	100			.25	3.01		.03	323
	VITON	009	118		<	.01	432.86		.02	323
	VITON/CHLOROBUTYL	112	UNK		>	3.00		23.		142
Acrylic Acid 000791070	TEFLON	040	540			7.00				
000791070	IEFLON	069	510		>	3.00	< .02	23.	.05	303
Acrylonitrile 001071310	CDE	070								
OV 101 13 10	CPE .	070 074	UNK			.28		23.	.05	004
	PE	076 041	127			.08	< .02			104
	SARANEX TEFION	061 069	127 510			.38 .90	< .02 .08			104 303
Allyl Alcohol										
001071860	BUTYL	014	UNK		>	8.17		25.		287
		064	117		>	8.00		23.	.02	213
					>	8.00		23.	.01	213
					>	8.00		23.	.02	213

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
001071860	BUTYL/NEOPRENE	110	117	<u> </u>	8.00			.02	
001071880	CPE	070	UNK		2.00		23. 23.	.02	213 004
	MEOPRENE	002	UNK		2.35	1.44	25. 25.	.03	287
	MEGALVENE	093	117		1.58	1.94	23.	.02	213
		138	117		6.08		23.	.02	213
		139	117		3.42		23.	.02	213
	PE	076	117		1.67		23.	.02	213
	PV ALCOHOL	004	UNK		.24	33.07		.01	287
	PVC	049	117		1.75	33.07	23.	.01	213
		077	117	<	.08		23.	.01	213
	SARANEX	061	117	>	8.00		23.	.01	213
	TEFLON	069	510	>	3.10	< .02		.05	303
	VITON	145	117	>	8.00	.02	23.	.03	213
	VITON/NEOPRENE	111	117	>	8.00		23.	.02	213
Allylamine									
001071190	BUTYL	014	118		3.92	70.14	20.	.06	323
	NATURAL RUBBER	001	250	<	.02	6,633.24		.01	323
	PV ALCOHOL	102	100	•	.20	12,114.18		.07	323
	PVC	007	100	<	.02	9,829.62		.02	323
Allyl Chloride									
001070510	CPE	070	UNK		1.25		23.	.05	004
	TEFLON	069	510		1.70	< .02		.05	303
			2.0		2.76	< .02		.05	303
Ammonium Fluori	ide, 30-70%								
121250182	NATURAL RUBBER	017	100	>	6.00		23.	.05	107
	NEOPRENE	002	100	>	6.00		23.		107
		018	100	>	6.00		23.	.04	107
	WITRILE	019	100	>	6.00		23.	.06	107
	PVC	007	100	>	6.00		23.		107
Ammonium Hydrox	ki de								
013362160	NATURAL RUBBER	001	210		2.00		23.		080
	NEOP+NAT RUBBER	026	121		.45	18.04		.05	237
	NEOPRENE	002	210		6.00	< .02			080
	NITRILE	005	210		6.00	< .02			080
	NITRILE+PVC	057	210		3.00		23.		080
	- -	058	100		.18		23.		107
	PE	076	100		.07		23.		107
	PVC	007	210		.75		23.		080
		077	100	>	6.00		23.		107
	•				.30		23.		107
Ammonium Hydro:	xíde, <30%								
013362161	NATURAL RUBBER	0 01	UNK	>	1.00		23.		052
		017	100		1.75		23.		107
	NEOPRENE	002	100	>	6.00		23.		107
					6.00		23.	.04	10
		018	100	,	0.00				
		018	100 UNK	>					
		018	UNK	>	1.00		23. 23.	.06	052 052

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME			ON RATE 2/MIN	TEMP DEG C	THICKNESS CM	RE F
013362161	NITRILE	019	UNK		1.00				23.	.05	052
	PVC	003	UNK		.02				23.	.02	052
		007	100		4.00				23.		107
	VITON	009	UNK	>	1.00				23.	.03	052
Ammonium Hydrox	ide, 30-70%										
013362162	PE	076	127	<	.02			10.32	23.		104
Amyl Acetate (P	entyl Acetate)										
006286370	NATURAL RUBBER	001	210		.20			60.12	23.		080
	NEOPRENE	002	210		.25			66.13	23.		080
	NITRILE	005	210		.67			30.06	23.		080
		019	100		1.00	9.02	•	90.18	23.	.06	107
	NITRILE+PVC	057	210		.83			42.08	23.		080
	PE	076	100	<	.05	9.02	-	90.18	23.		107
	PV ALCOHOL	004	100	>	6.00		<	.90	23.		107
	PVC	007	210		.50			48.10	23.		080
Amyl Alcohol (P	entanol)										
000714100	BUTYL	014	118	>	8.00		<	.02	23.	.07	323
	NATURAL RUBBER	017	100		.12	.90	•	9.02	23.	.05	107
	NEOPRENE	002	100	>	6.00		<	.90	23.		107
		018	100	>	6.00		<	.90	23.	.04	107
					5.35			.20	23.	.05	323
	NITRILE	019	100		.50		<	.90	23.	.06	107
				>	8.00		<	.02		.04	323
	NITRILE+PVC	058	100		.08	.90	-	9.02			107
	PE	076	100		.20		<	.90			107
	PV ALCOHOL	004	100		3.50		<	.90			107
	PVC	007	100		.20		<	.90			107
		077	100	.17 -	.54			9.02			107
	VITON	009	118	>	.17 8.00		< <	.90 .02		.05	107 323
				·	0.00			.02	23.	.03	JEJ
Aniline (Benzam 000625330	nine) BUTYL	012	UNK	>	6.50			1.99	25.	.04	273
000027000	50112	0,12	UNA	>	6.50			1.99		.04	273
					22.00		<	.02		.06	273
					22.00		`	.02		.06	273
				•	7.00		`	.02		.04	273
					7.00		<	.02		.04	273
				>	23.00		<	.02		.06	273
					23.00		<	.02		.06	273
					7.00			1.20		.04	273
					7.00		<	.02		.04	273
				>	8.00		<	.02		.06	273
				>	8.00		<	.02		.06	273
		014	118	>	8.00				23.	.03	323
				>	8.00				23.	.04	227
		064	117	>	8.00				23.	.02	213
				>	8.00				23.	.01	213
				>	8.00				23.	.02	213
	BUTYL/NEOPRENE	110	117	>	8.00				23.	.02	213

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME			ON RATE 2/MIN	TEMP DEG C	THICKNESS CM	RE
000625330	NATURAL RUBBER	001	210		1.00			6.01	23.		08
			UNK		.53				23.	.12	27
		017	100	>	1.00		<	40.08		.03	22
					.50	.90	-	9.02	23.	.05	10
			120	>	1.00		<	40.08	25.	.02	22
			504	>	1.00		<	40.08	25.	.05	22
				>	1.00		<	40.08	25.	.06	22
			UNK		.50		>	10.02	23.	.04	27
	NEOP+NAT RUBBER	026	121		1.00			252.50	23.	.05	23
	NEOP/NAT RUBBER	800	114		.09			15.03	25.	.05	22
			UNK	>	1.00				23.	.05	27
	NEOPRENE	002	100		3.00	.90	•	9.02			10
			120	>	1.00		<	40.08		.07	22
			210		.50			12.02			80
		018	100		.58	.90	•	9.02		.04	10
			120	>	1.00		<	40.08		.05	2 2
				>	1.00		<	40.08		.05	22
			4 10 10	>	1.00		<	40.08		.03	22
			UNK	>	1.00				23.	.06	27
				>	1.00			4.04	23.	.09	27
					.50			6.01		.04	27
					1.00			6.01		.04	27
					2.00			3.01		.06	27
		093	117		2.50			9.02		.06	27
		138	117		1.73				23.	.02	21
		139	117		4.33 2.75				23.	.03	21
	NITRILE	005	210		2.75			70.04	23.	.02	21
	NITRICE	019	100		1.60			30.06 120.24		0/	80
		0.7	118		1.05			270.54		.04 .04	22 32
					1.10			270.54		.04	22
			503		.30			180.36		.03	22
			UNK	>	1.00			100.50	23.	.05	27
			- '	>	1.00				23.	.05	27
					1.50			3.01		.04	27
					1.50			3.01		.04	27
					2.50			3.01		.06	27
					5.42			3.01		.06	27
	NITRILE+PVC	057	210		6.00		<	.02			08
		058	100		.17	.90	•	9.02			10
	PE	006	100	>	1.00		<	40.08		.01	22
			505		.05				25.	.01	22
		076	100		.07	.90	-	9.02			10
	•		117		6.58				23.	.01	21
	PV ALCOHOL	004	100		1.50	.90	•	9.02	23.		10
			UNK	>	1.00				23.	.12	27
		102	100	>	16.00				23.	.03	32
	PVC	003	120		.05			180.36	25.	.01	22
					.30			160.32	25.	.03	22
					.15			160.32	25.	.02	22
		007	100		3.00	.90	•	9.02	23.		10
			210		4.00			8.42	23.		80
			UNK	>	1.00				23.	.16	27

CHEMICAL NAME/ CASNO	RESISTANT NATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	H TIME			ION RATE '2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
000625330	PVC	049	117		1.25				23.	.01	213
		077	100		.33	.90	•	9.02	23.	•••	107
	AARANEV	0/4	447		.50	.90	•	9.02			107
	SARANEX SILVER SHIELD	061 133	117	>	8.00				23.	.01	213
	SILVER SHIELD TEFLON	122 069	118 510	>	8.00		_	00	23.	.01	227
	VITON	009	118	>	3.30 .10		<	.02		.05	303
	VIION	009	110		.17			112.42 112.42		.03 .02	323
			UNK	>	1.00			112.42	23.	.02	227 274
		145	117	•	.83				23.	.03	213
	VITON/NEOPRENE	111	117	>	8.00				23.	.02	213
Benzal dehyde											
001005270	BUTYL	014	118	>	9.00				23.	.07	323
	NATURAL RUBBER	017	100		.23	9.02		90.18		.05	107
	NEOPRENE	018	100		.65			24.05	23.	.05	323
	NITRILE	019	100		.40			25.85	23.	.03	323
	PE	076	100		.17	9.02	•	90.18	23.		107
	PV ALCOHOL	004	100	>	6.00		<	.90	23.		107
		102	100	>	16.00				23.	.03	323
	VITON	009	118		9.93			24.05	23.	.03	323
Benzene											
000714320	BUTYL	014	118		.52			194.19	23.	.04	3 23
					.52			194.19		.04	227
			UNK		.33				23.	.02	327
		034	UNK		1.47			130.26		.08	078
		064	117		.08				23.	.02	213
				>	.08				23.	.01	213
			507		.67			00.40	23.	.02	213
			507		1.00			90.18		.06	078
	BUTYL/NEOPRENE	110	UNK	>	.13				23.	.04	327
	CPE	07 0	117 UNK	,	8.00 .43				23.	.02	213
	EVA	074	UNK		.43				23. 23.	.05 .02	004 327
	NATURAL RUBBER	001	210		.18			396.79		.02	080
	WITTONIE HOUSEN	017	100		.04			3,206.40		.03	222
			120		.03			5,611.20		.02	222
			502		.05			2,605.20		.05	222
			504		.06			2,204.40		.05	222
					.12			1,603.20		.06	222
			508		.03			501.00		.03	078
			UNK		.01				23.	.05	327
					.02				23.	.02	327
	NEOP+NAT RUBBER	026	102		.05			2,805.60		.04	222
			121		.05			2,254.50	23.	.05	237
	NEOP/NAT RUBBER	800	114		.09			2,004.00	25.	.05	222
					.05			400.80	22.	.05	078
	NEOPRENE	002	100		. 25			80.16	22.	.07	078
					.02			951.90		.08	222
			120		.40			300.60		.07	222
			210		.25			559.12			080
			UNK		.29			517.03	22.	.11	333

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUG HOURS	GH TIME		TION RATE **2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
000714320	NEOPRENE	002	UNK		.14		1,167.33	22.		===
		010	120		.11		521.04		.08	333
		018	100		.28		165.93		.04 .05	078
					.10		300.60		.04	323 078
			120		.19		1,002.00		.05	222
					.27		1,102.20		.07	222
					.27		801.60		.05	222
					.08		1,803.60		.03	222
			UNK		.12		.,	22.	.04	333
					.10			22.	.05	333
					.19		1,893.78		.05	333
					.33		•	23.	.06	327
		031	UNK		3.10		50.10		.24	078
					1.00		80.16		.16	078
					.41		230.46		.08	078
					.27		330.66		.08	078
					.67		190.38		.08	078
					.40		230.46		.08	078
					.11		501.00		.04	078
		093	117	<	.08			23.	.02	213
		138	117	<	.08			23.	.03	213
		139	117	>	8.00			23.	.02	213
	NITRILE	005	210		.33		901.80			08 0
			503		.10		501.00	22.	.02	078
		019	100		.32		.03	23.	.04	323
					1.05		400.80	25.	.04	2 22
					.77		511.02	25.	.06	2 22
					.32		851.70	25.	.05	222
			181		.15		1,102.20	25.	.03	222
			503		.07		1,302.60	25.	.03	222
			UNK		.17			23.	.04	327
					.23		870.74	22.	.04	333
					.32		939.88	22.	.04	333
		033	UNK		.08		501.00	2 2.	.04	078
	NITRILE+PVC	057	210		.75		180.36	23.		080
		058	100		.03	901.80 -	9,018.00			107
	NONWOVEN PE	071	UNK		.01			23.	.01	327
	PE	006	100	<	.01		250.50		.01	222
			209	<	.02		350.70		.01	078
		242	505		.07		50.10		.01	555
		042	UNK	<	.03			23.	.01	327
		076	100		.03	90.18 -	901.80	23.		107
			117		.08			23.	.01	213
	•		UNK		.01			23.	.01	327
	BOI VINETUANT	05.0	430		.02		220.44	22.	.01	078
	POLYURETHANE	05 0	178		.03		110.22		.02	078
	PV ALCOHOL	004	100		.12	•	.90			107
			4 66.00		.17		8.02		.02	078
			UNK	>	33.33			22.	.09	333
		035	1844		.33		-	23.	.02	327
		035	UNK		.05		39.08	22.	.01	078
	PVC	102 003	100	_	.82	<	.02		.03	323
	FVG	0 03	100	<	.01		1,182.56	23.	.02	323

physical control of the control of t

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS	REF
LASRU		DESC CODE					DEG C		
000714320	PVC	003	120	-	.01	3,507.00		.01	222
					.01	4,108.20		.01	222
					.04	1,503.00		.03	2 22
					.04	1,603.20		.02	222
			500	<	.01	4,709.40		.01	222
			501		.01	3,607.20		.01	222
				<	.01	4,909.80		.02	555
			UNK		.02		23.	.01	327
		007	210		.50	240.48			080
			UNK		.30	481.96		.10	333
					.17	599.20		.11	333
					.31	421.84		.11	333
		049	117		.10		23.	.01	213
		077	117	<	.16	454 54	23.	.01	213
			168		.10	150.30		.04	078
	SARANEX	061	117		.25		23.	.01	213
			UNK		.17		23.	.01	327
	SILVER SHIELD	122	118	>	8.00		23.	.01	227
	TEFLON	036	UNK		.17	-	23.	.01	327
		069	510	>	3.20	< .03		.05	303
			***	>	3.00	< .03		.05	303
	VITON	009	118		5.93	.07		.02	323
			*****		6.00	.07		.02	227
			UNK		.50		23.	.02	327
		032	UNK		15.00	.50		.16	078
	VITON/NEOPRENE	145 111	117 117	>	8.00 3.50		23. 23.	.01 .02	213 213
Benzenesul foni	ic Acid								
000986790	NEOPRENE	018	100	>	20.00		23.	.05	123
000,001,70	NITRILE	020	216	>	4.00		23.		123
Benzethonium (Chloride								
001215400	BUTYL	014	118	>	8.00	< .0	2 22.	.06	323
	NATURAL RUBBER	001	250	>	8.00	< .0			323
	NEOPRENE	018	100	>	8.00	< .0	2 19.	.05	323
	PVC	007	100	>	8.00	< .0			323
Benzonitrile									
001004700	BUTYL	014	118	>	8.00		23.	.06	323
	NATURAL RUBBER	001	506	<	.01	24.0	5 23.	.01	323
	PV ALCOHOL	102	100	>	8.00		23.	.03	323
	NOTIV	009	118		.93	24.0	5 23.	.03	323
Benzoyl Chlor	ide								
000988840	BUTYL	014	118		6.28	99.8			
	HYPALON	108	210		.33		23.	06	123
	NEOPRENE	018	100		.25		23.		123
	PV ALCOHOL	102	100	>	8.00		23	05	323
	PVC	003	100	<	.01	596.3			
	VITON	009	118	>	8.00		23.	02	323
					.75		23	03	123

CHEMICAL NAME, CASNO	MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHRO Hours	UGH TIME	PERMEATI UG/CH**		TEMP DEG C	THICKNESS	R
Benzyl Alcohol										
001005160	BUTYL	014	216	>	4.00			23.	.07	12
	VITON	009	118	>	20.00			23.	.03	17
Benzyl Chloric	de (Chloromethyl Benz	rene)								
001004470	CPE	070	UNK		.78			23.	.05	00
	TEFLON	069	510	>	3.20	<	.02		.05	30
is(2-Ethylhex	yl) Phthalate									
01178170	BUTYL	014	118	>	8.00			23.	.09	32
	NATURAL RUBBER	017	100	>	6.00	<	.90		.05	10
	NEOPRENE	002	100		2.00		.90		.05	11
		018	100	>	6.00	<	.90		.04	11
	NITRILE	019	100	>	6.00	<	.90		.06	10
					4.33	-	12.02		.05	3
	PV ALCOHOL	004	100		.50	90.18 -	901.80		.03	1
	PVC	003	100		.03		12.02		.02	3
	VITON	009	118	>	8.00		12.02	23.	.05	3
Boric Acid										
00433530	BUTYL	014	118	,	8.00	<	.02	20.	.07	3
	NEOPRENE	018	100	>	8.00	` `	.02		.07	
	NITRILE	019	100	>	8.00	` `	.02		.04	3
	VITON	009	118	>	8.00	·	.02		.03	3
romine										
77269560	PE	076	127	<	.02			23.		1
romoacetonitr	ile									
05901700	BUTYL	014	118							_
••••	NATURAL RUBBER	001	506	>	8.00			23.	.06	3
	PV ALCOHOL	102	100	,	.01 8.00		57.11		.01	3
	VITON	009	118	,	8.00			23. 23.	.03 .02	3
romobenzene										
01088610	BUTYL	014	118		27		270 20			
0.0000.0	NITRILE	019	118		.53		239.28		.06	3
	PV ALCOHOL	102	100	_	.22 8.00		54.71		.04	3
	VITON	009	118	>	8.00			23. 23.	.02 .03	3
-Bromoethanol 05405120	BUTYL	014	118		8.00					_
	NATURAL RUBBER	001	250	>				23.	.09	3
	PVC	003	100		.02 .03		66.13		.02	3
	VITON	009	118	>	8.00		456.91	23. 23.	.02 .05	3
·Bromo·2·prop	eno!									
·вгожо·г·ргор 2686738 0	BUTYL	014	118	>	8.00			23.	.06	3
	NATURAL RUBBER	001	506	-	.02		45.69		.00	3
	PV ALCOHOL	102	100	>	8.00		72.07	23.	.02	3
	VITON	009	118		8.00			23.	. ٧٤	

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	RE!
3-Bromo-1-propa	nol					· · · · · · · · · · · · · · · · · · ·			_
006271890	BUTYL	014	118	>	8.00		23.	.06	323
	NEOPRENE	018	100	>	8.00		23.	.05	323
	PV ALCOHOL	102	100	>	8.00		23.	.03	32
	VITON	009	118	>	8.00		23.	.02	32
Butadiene									
001069900	BUTYL	014	118	>	8.00		23.	.07	32
	NATURAL RUBBER	001	250	<	.02	637.27	23.	.02	32
	NEOPRENE	018	100		.78	1.80	23.	.05	32
	PVC	003	100	<	.02	126.25	23.	.02	32
	VITON	009	118	>	8.00		23.	.05	32:
	ethylpropanol, 2-,2								
000756500	BUTYL	014	118	>	8.00		23.	.07	32
	NATURAL RUBBER	001	250		.02	18.04		.02	32
	NEOPRENE	018	100		2.75	.05		.05	32
	PVC	007	100		.08	18.04	23.	.02	32:
Butyl Acetate									
01238640	BUTYL	014	118		1.90	45.76		.04	22
	NATURAL RUBBER	004	242		1.53	36.07		.05	08
	MAIDRAL KORREK	001	210		.13	216.43			08
		017	100		.07	1,402.80		.03	22
			102		.07	72.14		.05	020
					.07	72.14		.05	026
					.07	72.14		.05	02
			120		.07 .03	72.14		.05	026
			502		.11	2,905.80		.02	22
			504		.13	941.88 881.76		.05	22
			304		.23	511.02		.05	22
	NEOP+NAT RUBBER	026	102		.11	641.28		.06 .05	22
					.07	72.14		.06	026
					.07	72.14		.04	020
					.07	72.14		.05	020
	NEOP/NAT RUBBER	800	102		.07	72.14		.03	02
			114		.15	641.28		.05	22
	NEOPRENE	002	100		.09	220.44		.08	22
			120		.06	320.64		.07	22
			210		.25	72.14			08
		018	100		.32	210.42		.06	08
			118	>	1.00	< 21.04		.08	22
			120		.48	320.64		.05	22
					.87	320.64		.07	22
				>	1.00	< 21.04		.05	22
					.18	831.66		.03	22
	MITRILE	005	210		1.33	90.18		•	08
		019	100		.55	480.96		.04	22
					1.25	90.18 - 901.80		.06	10
					.97	250.50		.06	22
					.67	450.90			22

CHEMICAL NAME/		PRODUCT	VENDOR	BREAKTHROUGH	TIME	PERM	EAT	ION RATE	TEMP	THICKNESS	RE
CASNO	MATERIAL	DESC CODE		HOURS		UG/	CM*	*2/MIN	DEG C	CM	M
001238640	NITRILE	019	100	-	1.08			102.20	23.	.06	_ 08
			118		.48			327.05		.04	22
					.25			300.60		.04	08
			120		.53			217.10		.05	Ol
			503		.33			350.70		.03	2
		020	503		.32			150.30		.04	0
	NITRILE+PVC	057	210		.67			60.12			0
	PE	006	100		.03			20.04	25. 25.	01	
	· -	000	505		.20			6.01		.01	2
			512		.03			66.13		.01	2
		076	100			9.02				.01	0
	PV ALCOHOL				.17	9.02		90.18	•		1
	PV ALCOHOL	004	100	>	6.00		<	.90			1
	PVL	003	120		.02			6,012.00		.01	2
					.02			6,913.80		.01	2
					.04			3,306.60		.03	2
					.03			4,308.60		.02	2
			500		.01				25.	.01	2
			501		.03			6,412.80	25.	.01	2
					.03			4,108.20	25.	.02	2
		007	210		.33			72.14	23.		0
	SILVER SHIELD	122	118	>	6.00				23.	.01	2
	TEFLON	069	510	>	3.00		<	.02	23.	.05	3
	VITON	009	118		.23			318.97		.04	0
Butyl Acrylate	•										
001413220	TEFLON	069	510	>	3.00		<	.02	23.	.05	3
Butyl Alcohol	(Butanol, 1)										
000713630	NATURAL RUBBER	001	210		2.00			12.02	23.		0
		017	100		.25	9.02		90.18		.05	1
	NEOP+NAT RUBBER	026	121		.58		>	6.01		.05	2
	NEOPRENE	002	100	>	8.00		<	.90		•	1
			210		6.00		<	.02			C
		018	100		4.00	.90		9.02		.04	1
	NITRILE	005	210		6.00	.,,	<	.02		.04	Ċ
		019	100	>	6.00		`	.90		04	
	NITRILE+PVC	057	210	•	6.00			.90		.06	1
	WIIKILEYPYC	058	100		.58	.90	<				0
	PE					.90		9.02			1
	PE	076	100	>	6.00		<	.90			1
	511 41 55 151		127	>	8.00		<	30.06			1
	PV ALCOHOL	004	100		.50	9.02	•	90.18			1
				>	8.00				23.		1
				>	4.00				21.		1
	PVC .	007	100		3.00	.90	•	9.02	23.		1
			210		2.00			15.03	23.		0
		077	100		.42		<	.90	23.		1
					.67	9.02	•	90.18			1
	TEFLON	069	510	>	15.60		<	.02		.05	3
Butylamine											
	BUTYL	014	118		1.73			501.00	15.	.10	3
001097390	BO114	017						301.00		. 10	_
001097390	CPE	060	UNK		.50			301.00	23.	. 10	1

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME		ION RATE	TEMP DEG C	THICKNESS CM	REF NUM
001097390	CPE	070	UNK		.33					
	NATURAL RUBBER	001	250		.02		7,745.46	23. 20.	.05 .02	004
	NEOPRENE	018	100		.20		2,474.94		.02	323 323
	PVC	007	100		.02		5,531.04		.02	323
	TEFLON	069	510	>	3.00	<	.02		.05	303
	VITON/CHLOROBUTYL	112	UNK		.50	,	.02	23.	.03	142
iso-Butylamine	(Methylpropylamine,	2-)								
000788190	BUTYL	014	118		3.70		60.12	28.	.09	323
	CPE	060	UNK		2.28			23.		142
					2.42			23.		142
	NEOPRENE	018	100		.32		889.78	26.	.05	323
		138	117	<	.08			23.	.03	213
	PV ALCOHOL	102	100		.32		835.67	23.	.07	323
	PVC	007	100		.02		3,432.85	28.	.02	323
	VITON/CHLOROBUTYL	112	UNK		1.25			23.		142
sec-Butylamine										
139528460	BUTYL	014	118		2.68		180.36	21.	.09	323
	NEOPRENE	018	100		.27		1,402.80	25.	.05	323
	NITRILE	019	100		.33		1,482.96	14.	.04	323
	PVC	007	100		.01		4,529.04	24.	.02	323
tert-Butylamine										
000756490	BUTYL	014	118	>	8.00	<	.02	15.	.09	323
	NEOPRENE	018	100		1.17		360.72	23.	.05	323
	NITRILE	019	100		1.40		240.48	21.	.04	323
	PVC	007	100		.03		3,036.06	20.	.02	323
	ve (Butoxyethanol, 2)									
0 01117620	NITRILE	019	100		.45			37.	.06	107
					.35			37.	.06	107
			118	>	4.00			22.	.03	122
					.15		200.40	34.	.04	122
	PV ALCOHOL	004	100	>	18.00			22.	.04	122
n-Butyl Chlorid 001096930	e (Chlorobutane,1-)	•••								
001070730	NITRILE PV ALCOHOL	019	100		.20		661.32		.05	323
	PVC	004	100	>	8.00	<			.08	323
	VITON	003 009	100 118		.20 7.42		2,278.55 3.01		.02 .05	323 323
n-Butyl Phthala	••									
000847420	BUTYL .	014	118	> '	16.00			23.	.04	323
					16.00			23.	.04	227
	MATURAL RUBBER	017	100		.28			23.	.05	107
	NEOPRENE	002	100		5.00	.90 -	9.02			107
		018	100		2.00	<	.90		.04	107
		125	103			<	.02		•••	045
	NITRILE	019	100	>	6.00	<	.90		.06	107
			103			<	.02		,,,	045
			118	> 1	16.00			23.	.03	323
				> 1	16.00			23.	.04	227

PE 076 100 > 6.00 2 2 2 2 2 2 2 2 2	303 303 301 302 304 305 304 305 304 305
PE 076 100 > 6.00 2 2 2 2 2 2 2 2 2	303 303 301 303 302 304 305 304 305 304 305
PV ALCOHOL 004 100 > 6.00 < .90 2 102 100 > 16.00 2 2 2 2 3 ILVER SHIELD 122 118 > 6.00 2 3 VITON 009 118 > 8.00 2 3 P-tert-Butyl Toluene 2 271302120 BUTYL 014 118 1.78 48.10 2 48.10 2 48.10 2 48.10 2 48.10 2 48.10 2 48.10 2 5 VITON 102 100 1.22 421.44 2 6 VITON 102 100 7.00 2 7 VITON 109 118 8.00 2 8 VITON 109 118 8.00 2 8 VITON 109 118 8.00 2 8 VITON 3 8 VITON 4 8 VIT	303 301 303 302 302 304 305 304 305 304 303
102 100 > 16.00 20 20 20 20 20 20 20	303 301 303 302 302 306 304 305 304 303
PVC 077 100	301 303 302 302 304 305 304 305 304
SILVER SHIELD 122 118 > 6.00 22	301 303 302 302 306 304 305 304 303
SILVER SHIELD 122 118 > 6.00 VITON 009 118 > 8.00 P-tert-Butyl Toluene 271302120 BUTYL 014 118 1.78 48.10 2 NEOPRENE 018 100 1.22 421.44 2 NITRILE 019 100 > 6.00 PV ALCOHOL 102 100 > 7.00 SILVER SHIELD 122 118 > 8.00 VITON 009 118 > 8.00 28Butyraldehyde 2901237280 BUTYL 014 118 > 15.00	301 303 302 306 304 305 304 305 304
VITON 009 118 > 8.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	302 302 306 304 305 304 303
> 8.00 P-tert-Butyl Toluene 271302120 BUTYL 014 118 1.78 48.10 2	302 306 304 305 304 303
P-tert-Butyl Toluene 271302120 BUTYL 014 118 1.78 48.10 2	306 304 305 304 303
271302120 BUTYL 014 118 1.78 48.10 2 1.70 48	304 305 304 303 301
### 1.78	304 305 304 303 301
1.70	304 305 304 303 301
NEOPRENE 018 100 1.22 421.44 2 NITRILE 019 100 > 6.00 2 PV ALCOHOL 102 100 > 7.00 2 SILVER SHIELD 122 118 > 8.00 2 VITON 009 118 > 8.00 2 Sutyraldehyde 001237280 BUTYL 014 118 > 15.00	305 304 303 301
NITRILE 019 100 > 6.00 PV ALCOHOL 102 100 > 7.00 SILVER SHIELD 122 118 > 8.00 VITON 009 118 > 8.00 Sutyraldehyde 001237280 BUTYL 014 118 > 15.00	304 303 301
PV ALCOHOL 102 100 > 7.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	303 301
SILVER SHIELD 122 118 > 8.00 2 VITON 009 118 > 8.00 2 8utyraldehyde 001237280 BUTYL 014 118 > 15.00	301
VITON 009 118 > 8.00 2	
> 8.00 2 Butyraldehyde 001237280 BUTYL 014 118 > 15.00	2 00
Butyraldehyde 001237280 BUTYL 014 118 > 15.00 2	
001237280 BUTYL 014 118 > 15.00	JUZ
NEODENIC 200	
NEGROPHE BAG AGE	307
NEOPRENE 018 100 .73 75.75 2	305
BU ALCOUOL 400 400	303
TPPI ALL	305
117701	303
Carbon Disulfide (Carbon Bisulfide) 200751500 BUTYL 014 118 ns southe a	
.07	306
86P 848 449	304
ATA	507
AMBRICA AND AND AND AND AND AND AND AND AND AN	305
	305
	306
	304
Am Am Am	304
611 AL 661161	3.
AAA	3.
	303
	305
	305
	305
	405
	405
	405
	405
	303
	302
	504
anhon Tahanahi asida (Tahanahi asamah sara)	
arbon Tetrachloride (Tetrachloromethane) 00562350	
	305
3.45 78.16 2	305

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME			ON RATE 2/MIN	TEMP DEG C	THICKNESS CM	REF
000562350	MATURAL RUBBER	017	100		.06			1,603.20	25.	.03	222
			120		.03			6,012.00		.02	222
			502		.08			5,110.20		.05	222
			504		.50			801.60		.05	222
					.18			1,603.20		.06	222
	NEOP+NAT RUBBER	026	102		.07			4,609.20		.05	222
	NEOP/NAT RUBBER	800	114		.17			3,106.20		.05	222
	NEOPRENE	002	100		.50			100.20		.08	222
			120		.08			501.00		.07	222
			UNK		.24			300.60		.11	333
					.17			619.24	22.	.08	333
		018	118	>	1.00		<	6.01	25.	.08	222
			120		.57			801.60	25.	.05	222
					.68			901.80	25.	.07	222
					.38			901.80	25.	.05	222
					.22			801.60	25.	.03	222
			UNK		.14			2,244.48	22.	.05	333
					.32			1,756.51	22.	.05	333
					.24			1,997.99	22.	.04	333
	NITRILE	019	100	>	1.00		<	6.01	25.	.04	222
					2.50	9.02		90.18	23.	.06	107
				>	1.00		<	-1,669.98	25.	.06	222
				>	1.00		<	6.01	25.	.04	222
			118		3.40			30.06		.04	227
			181	>	1.00		<	6.01	25.	.03	222
			503	>	1.00		<	6.01	25.	.03	222
			UNK	>	3.33				22.	.04	333
				>	3.33				22.	.04	333
	NITRILE+PVC	058	100		.05	9.02	•	90.18		•••	107
	PE	006	100		.03			501.00		.01	222
			505		.13			80.16		.01	222
		076	100		.08	9.02		90.18		•••	107
	PV ALCOHOL	004	100	>	6.00		<	.90			107
			UNK	>	3.33			3.01	22.	.09	333
		102	100	>	8.00				23.	.04	323
	PVC	003	120		.01			1,002.00	25.	.01	222
					.03			2,004.00		.01	222
					.14			601.20		.03	222
					.04			801.60		.02	222
			500		.02			2,104.20		.01	222
			501		.02			2,505.00		.01	222
					.02			2,004.00		.02	222
		007	100		.42	90.18		901.80			107
			UNK		.22			496.99		.11	333
					.66			203.41		.11	333
					.51			250.50		.10	333
		077	100		.12	9.02	•	90.18			107
					.25	9.02		90.18	23.		107
	SILVER SHIELD	122	118	>	6.00	_			23.	.01	227
	TEFLON	069	510	>	3.00		<	.02		.05	303
	VITON	009	118		13.00				23.	.02	227

Chlorine

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION UG/CM**2/		TEMP DEG C	THICKNESS CM	REF NUM
077825050	BUTYL	064	117		8.00			- 23.		213
				>	8.00			23.	.01	213
				>	8.00			23.	.02	213
	BUTYL/NEOPRENE	110	117	>	8.00			23.	.02	213
	NEOPRENE	093	117	>	8.00			23.	.02	213
		138	117	>	8.00			23.	.03	213
		139	117	>	8.00			23.	.02	213
	PE	076	117		.08			23.	.01	213
	PVC	049	117		.92			23.	.01	213
					.08			23.	.01	213
		053	117	<	.08			23.	.02	213
	SARANEX	061	117	>	8.00			23.	.01	213
	VITON	145	117	>	8.00			23.	.01	213
	VITON/NEOPRENE	111	117	>	8.00			23.	.02	213
Chloroscetic Ac										
000791180	PE	076	127	>	8.00			23.		104
	CARAMEY	244			.08			65.		104
	SARANEX	061	127		1.00			65.		104
Chloroacetonitr										
001071420	BUTYL	014	118	>	8.00			23.	.06	323
	NATURAL RUBBER	001	506	<	.01		75.75	23.	.01	323
	PV ALCOHOL	102	100	>	8.00			23.	.03	323
	VITON	009	118	>	8.00			23.	.03	323
Chlorobenzene										
001089070	BUTYL	014	118		.58	3	,086.16	23.	.07	323
	NEOPRENE	002	UNK		.18			23.	.05	186
	NITRILE	005	229		.21		940.21	23.	.11	210
		019	120		.25		960.25	23.	.04	210
	PE	076	100		.07	90.18 -	901.80	23.		107
	PV ALCOHOL	004	100		.25	9.02 -	90.18	23.		107
		102	100	>	8.00	<	.02	23.	.08	3 23
	PVC	007	100		.03	3	,757.50	23.	.02	3 23
			UNK		. 15			23.	.05	186
	**************************************				.31			23.	.07	186
	TEFLON	069	510	>	3.00	<	.02		.05	303
	VITON	009	118	>	4.00			23.	.03	210
				>	8.00	<	.02	23.	.03	323
	tadiene (Chloropren									
001269980	NEOPRENE	002	UNK		.05	1	,764.52	2 2.	.08	333
	•				.05		783.56	22.	.11	333
		018	UNK		.07			22.	.04	333
					.11			22.	.05	3 33
					.10		, 164 . 32	22.	.05	333
	NITRILE	019	UNK		.06	2	,329.65	22.	.04	333
	6 14 A 4 G 5.115.				.12	2	,077.15	22.	.04	333
	PV ALCOHOL	004	UNK	> 1	6.67			22.	.09	333
	PVC	007	UNK		.08		669.34	22.	.11	333
					.09		851.70	22.	.10	333
					.07		954.91	22.	.11	333

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	RE
Chlorodibromome	thene				_				
001244810	BUTYL	012	118		3.27	149.75	23.	.10	72
	PV ALCOHOL	004	100		.60	.02		.07	32:
	PVC	003	100		.03				32:
	VITON	009	118	>	8.00	1,106.21	23. 23.	.02 .04	32: 32:
Chloroform (Tri	chloromethane)								
000676630	CPE	060	113	.50 -	.58		25.	.07	30
		070	UNK		.20		23.	.05	00
	NATURAL RUBBER	017	100		.03	4,008.00		.03	22
			120		.01	15,030.00		.02	22
			502		.04	7,615.20		.05	22
			504		.05	5,611.20		.05	22
					.05	7,014.00		.06	22
	NEOP+NAT RUBBER	026	102		.05	7,014.00		.05	22
	NEOP/NAT RUBBER	800	114		.11	4,408.80		.05	22
	NEOPRENE	002	100		.02	2,705.40		.08	22
			120		.01	6,813.60		.07	22
		018	118		.36	2,004.00		.08	22
			120		.16	3,206.40		.05	22
					.23	2,805.60		.07	22
					.17	2,505.00		.05	22
					.06	4,408.80		.03	22
		031	UNK		.20	1,100.00	23.	.04	18
	NITRILE	019	100		.08	9,418.80		.04	22
					.21	5,611.20		.06	22
					.04	9,919.80		.04	22
			118		.07	2,116.22		.04	22
			503		.07	7,014.00		.03	22
		033	UNK		.16	7,014.00	23.	.05	18
	PE	006	100		.01	1,603.20		.01	22
			505		.05	1,003.20	25.	.01	22
		056	UNK		.07		23.	.01	18
		076	100		.10	9.02 - 90.18		.01	10
		0,0	127	<	.02	348.70			
	PV ALCOHOL	004	100	>	6.00	< .90			10 10
		102	100	>	8.00	• • • • • • • • • • • • • • • • • • • •	23.	0.3	
	PVC	003	120	•	.01	15,030.00		.03 .01	32
		000	.20		.01	> 16,699.98			22
					.01	5,410.80		.01	22
								.03	22
			500		.01	11,022.00		.02	22
			501		.01	15,030.00		.01	22
	•		301		.01	12,024.00		.01	22
		04.0	IMP		.01	13,026.00		.02	22
	PARAMEY	049	UNK	_	.14	***	23.	.03	18
	SARANEX	061	127	<	.02	201.40			10
	SILVER SHIELD	122	118	_	.17	.05		.01	22
	TEFLON	069	510	>	3.60	< .02		.05	30
	VITON	009	118		9.50	2.77		.02	22
	VITON/CHLOROBUTYL	112	113	>	3.00		25.	.04	30

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
005634730	BUTYL	014	118		.50	120.24	23.	.06	323
	PV ALCOHOL	004	100		.03	80.16		.04	323
	PVC	007	100		.01	120.24		.02	323
	WITON	009	118		3.83	30.06		.03	323
Chloronaphthale	nes (all isomers)								
255864300	NITRILE	019	118		2.90	> 7.93	23.	.04	227
	PV ALCOHOL	004	100	>	6.00	< .90	23.		107
	SILVER SHIELD	122	118	>	8.00		23.	.01	227
	VITON	009	118	>	16.00	< -1,669.98		.02	227
!-Chloro-2-nitr	opropane								
05947180	BUTYL	012	118	>	8.00	< .02	23.	.09	323
	NATURAL RUBBER	017	506		.02	270.54	23.	.02	323
	PV ALCOHOL	004	100	>	8.00	< .02	23.	.07	323
	VITON	009	118		2.05	120.24	23.	.04	323
-Chloro-2-prop	anol								
01270040	BUTYL	014	118	>	8.00		23.	.06	323
	NATURAL RUBBER	001	506	<	.01		23.	.01	323
	PVC	003	100		.02	230.86	23.	.02	323
	VITON	009	118	>	8.00		23.	.03	323
B-Chloro-1-prop	anol								
006273050	BUTYL	014	118	>	8.00		23.	.06	323
	PV ALCOHOL	102	100		.80	92.58	23.	.04	323
	PVC	003	100		.18	409.42		.02	323
	VITON	009	118	>	8.00		23.	.03	323
Chlorosulfonic	Acid								
77909450	PE	076	127		1.05		23.		104
	SARANEX	061	127		5.83		23.		104
-Chlorotoluene									
00954980	NITRILE	005	229		.29	1,163.99	23.	.11	210
		019	120		.88	988.64	23.	.04	210
	VITON	009	118	>	4.00		23.	.03	210
o-Chlorotoluene									
01064340	NITRILE	005	229		.25	1,224.11	23.	.11	210
		019	120		.42	890.11	23.	.04	210
	VITON	009	118	>	4.00		23.	.03	210
hromic Acid									
11157450	NATURAL RUBBER	001	210		1.17		23.		08 0
	NEOPRENE	002	210		1.25		23.		080
	WITRILE	005	210		6.00	< .02			080
	WITRILE+PVC	057	210		6.00	< .02	23.		080
		058	100	>	6.00		23.		107
	PE	076	100	>	6.00		23.		107
	PVC	007	210		6.00	< .02	23.		080
		077	100	>	6.00		23.		107
				>	6.00		23.		107

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR :	BREAKTHROU HOURS		PERMEATION RAT		EMP EG C	THICKNESS CM	RE
Chromic Acid, <	30%									_
111157451	NEOP+NAT RUBBER	026	121	>	8.00	<	.02	23.	.05	23
Chromic Acid, 3										
111157452	NITRILE	019	100		4.00			23.	.06	10
	PVC	007	100	>	6.00			23.		10
Citric Acid, <3	0%									
000779291	NATURAL RUBBER	017	100	>	6.00			23.	.05	10
	NEOPRENE	002	100	>	6.00			23.	.03	10
		018	100	>	6.00			23.	.04	10
	NITRILE	019	100	>	6.00			23.	.04	10
	NITRILE+PVC	058	100	>	6.00			23.		10
	PE	076	100	>	6.00			23.		10
	PV ALCOHOL	004	100		.83			23.		10
	PVC	007	100	>	6.00			23.		10
		077	100	>	6.00			23.		10
				>	6.00			23.		10
Creosote										-
creosote 080015890	BUTYL	034	i Milv		00.00			•-		
	NEOPRENE		UNK	>	90.00			22.		07
	NEOPRENE VITON	031 032	UNK		4.50			22.	.08	07
	,, . va	032	UNK	>	96.00			22.	.04	07
reosote, Wood										
80213940	NEOPRENE	018	100	>	4.00			23.	.05	12
	VITON	009	118	>	19.00			23.	.03	12
a.Craeol									-	_
n-Cresol 001083940	NATURAL RUBBER	017	100					•-		
	MATORAL KUBBER	UIT	100		.60			25.	.03	22
			120 502		.23		5.03	25.	.02	22
			502 504		.50		2.00	25.	.05	22
			504	>	1.00		1.00	25.	.05	22
	NEOP+NAT RUBBER	024	100	>	1.00			25.	.06	22
		026 008	102 114	-	.50			25.	.05	22
•	NEOP/NAT RUBBER NEOPRENE	800 002	114	>	1.00			25.	.05	22
	NEOF REME	002	100	>	1.00			25.	.08	22
		018	118	>	1.00			25.	.08	22
			120	>	1.00			25.	.05	22
				>	1.00			25.		22
				>	1.00			25.		22
	MITOTIE	010	100	>	1.00			25.		223
	NITRILE	019	100	>	1.00			25.		22
				>	1.00			25.		22
			EAT	>	1.00			25.		22
	ĐE	004	503 100	>	1.00			25.		22
	PE	006	100 505	>	1.00			25.		22
	8VC	AA=	505	>	1.00			25.		55
	PVC	003	120		.20			25.		22
					.23			25.		22
				>	1.00 .23			25. 25		55
					.23	63	3.13	25.	.02	22
				A-21						

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CH	RE NL
001083940	PVC	003	500		.13	44.09	25.	.01	22
			501		.13	55.11		.01	22
					.12	56.11		.02	22
	TEFLON	069	510	>	4.00	< .02		.05	30
resols									
13197730	PE	076	127	.67 -	1.00	.40	23.		10
	SARANEX	061	127	>	2.00	< .13	23.		10
	(Butenal, trans-2)								
41703030	BUTYL	014	118	>	8.00		23.	.07	32
	CPE	070	UNK		.63		23.	.05	00
	NEOPRENE	018	100		.35	209.22		.05	37
	PV ALCOHOL	102	100	<	.01	57.72		.03	32
	TEFLON	U69	510	>	3.10	< .02		.05	30
	VITON	009	118		.12	313.83	23.	.03	3
umene (Methyle	•	_							
00988280	CPE	070	UNK		1.30		23.	.05	0
yclohexane									
1108270	BUTYL	014	118		1.15	122.04		.07	3
					1.10	122.04		.04	2
	NATURAL RUBBER	001	210		.10	2,044.08			(
		017	100			10.02		.03	Z
			120		.03	1,503.00		.02	2
			502		.13	1,302.60		.05	2
			504		.16	1,102.20		.05	7
		•••			.30	801.60		.06	7
	NEOP+NAT RUBBER	026	102		.08	1,402.80		.05	2
	NEOPRENE	002	120		.16	70.14		.07	
		040	210		.10	1,082.16			(
		018	100		.95	.18		.04	3
			120	>	1.00	< 10.02		.05	3
					.48	100.20		.05	3
	11.1.20.1.C	205	240		1.20	100.20		.03	3
	NITRILE	005	210	_	6.00	< .03		•	(
		019	100	>	6.00	. 40.0	23.	.04	•
				>	1.00	< 10.07		.04	;
				>	1.00	< 1.00		.06	
			484	>	1.00	< 1.00		.04	- 7
			181 503	>	1.00	< 1.00		.03	
	M1781+E+RUE	057	503 210	>	1.00 3.00	< 10.0		.03	1
	MITRILE+PVC	057			.03	12.0			(
	PE	006	100 505		.03	100.20		.01	
	64/ A1 60001	102	505			28.00		.01	•
	PV ALCOHOL	102	100		.78 .03	.0. 501.00		.03	;
	PVC	003	120		.03	501.00 340.60		.01	3
					.27	100.20		.01 .03	
					.09	200.40		.03	
			500		.03	310.6		.02	
			200		.va	310.00	. e.	.01	•

TO THE POST OF THE

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUG HOURS	H TIME			TION RATE	TEMP DEG C	THICKNESS CM	RE
001108270	PVC	003	501		.04			300.60	25.		
		007	210		.55			216.43	23.	.02	22
	SILVER SHIELD	122	118	>	6.00			210,43	23.	.01	227
	TEFLON	069	510	>	3.40		<	.02		.05	303
	VITON	009	118	>	7.00				23.	.02	323
				>	7.00				23.	.02	22
Cyclohexanol											
001089300	BUTYL	014	118	>	11.00				23.	.07	323
				>	11.00				23.	.04	227
	NATURAL RUBBER	001	210		.42			72.14	23.		080
		017	100		.25	9.02	•	90.18	23.	.05	107
	NEOPRENE	002	100		3.00		<	.90	23.		107
			210		3.80			60.12	23.		080
		018	100		2.50	.90	٠	9.02	23.	.04	107
			UNK	>	8.00				23.	.08	323
		031	511	•	8.00	*****	•	-1,669.98	23.	-01	323
	NITRILE	005	210		6.00		<	.02	23.		080
		019	100	>	6.00		<	.90	23.	-06	107
			118	>	16.00				23.	.03	323
				>	16.00				23.	-04	227
	NITRILE+PVC	057	210		6.00		<	.02	23.		080
		058	100		.25	.90	•	9.02	23.		107
	PE	076	100	>	6.00		<	.90	23.		107
	PV ALCOHOL	004	100		6.0 0		<	.90	23.		107
	bu e	102	100	>	16.00				23.	-03	323
	PVC	007	100		6.00		<	.90	23.		107
			210		6.00		<	.02	23.		080
		077	100		1.00		<	.90	23.		107
	SILVER SHIELD	400	440	>	6.00		<	. 9 0	23.		10
	VITON	122 009	118	>	6.00				23.	.01	55.
	VIION	009	118	>	8.00 8.00				23. 23.	.03 .02	32: 22:
Cyclohexanone										.02	•
001089410	BUTYL	014	118	>	16.00				27		•
		• • • • • • • • • • • • • • • • • • • •		>	16.00				23.	. 05	32
	NEOP+NAT RUBBER	026	121	_	.28			132.26	23. 23.	.04	22
	NITRILE	019	118		.48			518.84	23. 23.	. 05	23
	PV ALCOHOL	102	100	>	7.00			310.04	23. 23.	. 03	27
	SILVER SHIELD	122	118	>	6.00				23.	03	٦,
	VITON	009	118		.48			518.84	23	ί.	3.
Cyclohexylamine											
001089180	BUTYL	014	118		2.93			300 -	• -		
· · · - ·	NATURAL RUBBER	001	250		.02			290.58	Σ:	₽e	1
	NEOPRENE	018	100		.60			8 077 07	2		7
	WITRILE	019	100		1.02			1,322 64 1 841 64			
Decanal (all iso											
Decanal (all 180 001123120	misers) BUTYL	064	117	>	8.00						
		√	* * *	,	8.00						
				,	o . UU						

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF MUM
001123120	BUTYL/NEOPRENE	110	117		2.50		23.	.02	213
	NEOPRENE	093	117		4.00		23.	.02	213
		138	117	>	8.00		23.	.03	213
		139	117	>	8.00		23.	.02	213
	PE	076	117	>	8.00		23.	.01	213
	PVC	049	117	<	.08		23.	.01	213
	SARANEX	061	117	>	8.00		23.	.01	213
	VITON	145	117	>	8.00		23.	.01	213
	VITON/NEOPRENE	111	117	>	8.00		23.	.02	213
Diallyamine									
001240270	BUTYL	014	118		3.33	90.18	21.	.09	323
	PV ALCOHOL	004	100		7.08	20.04		.08	323
	PVC	007	100		.02	2,364.72		.02	323
	VITON	009	118		4.62	•	19.	.03	323
1,3-Diaminoprop	pane								
001097620	BUTYL	014	118	>	8.00	< .02	22.	.06	323
	NATURAL RUBBER	001	250		.05	440.88	25.	.02	323
	NEOPRENE	018	100		4.53	33.40	23.	.05	323
	PVC	007	100		.11	103.54	21.	.02	323
oi-n-amylamine									
020509220	NEOPRENE	018	100		2.15	110.22	16.	.05	323
	NITRILE	019	100	>	8.00	< .02	20.	.04	32
	PVC	007	100		.12	280.56	13.	.02	32
	VITON	009	118	>	8.00	< .02	16.	.03	32:
Dibutylamine									
001119220	NITRILE	019	100	>	8.00	< .02	24.	.04	323
	PV ALCOHOL	102	100	>	8.00	< .02	23.	.08	323
	PVC	007	100		.05	741.48	20.	.02	323
	VITON	009	118	>	8.00	< .02	20.	.03	323
Dichloromcetyl	Chloride								
000793670	BUTYL	014	118		3.92	72.14	23.	.09	323
	PV ALCOHOL	102	100		3.47		23.	.07	32
	PVC	003	100		.03	438.88	23.	.02	323
	VITON	009	118	>	8.00		23.	.03	32
Dichlorobenzene	•								
253212260	CPE	070	UNK		.65		23.	.05	004
1,2-Dichlorober	nzene '								
000955010	MITRILE	005	229		.33	1,015.36		.11	216
		019	120		.63	1,140.61	23.	.04	210
	VITON	009	118	>	4.00		23.	.03	210
1,3-Dichlorober	nzene								
005417310	NITRILE	005	229		.28	1,130.59	23.	.11	216
		019	120		.50	1,157.31	23.	.04	210
	VITON	009	118	>	4.00		23.	.03	210

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH TIME HOURS	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS	RE ML
Dichlorobromome:	thane							_
000752740	BUTYL	014	118	.68	1,897.80	23.	07	74
	PVC	007	100	.02	6,943.86		.07 .02	32
	VITON	009	118	7.83	.37		.03	32
	VITON/BUTYL	100	102	1.78	.02		.08	32
,4-Dichloro-2-I	butene							
01105760	BUTYL	064	UNK	> 24.00		23.	.07	33
	CPE	060	UNK	.58	400.80		.05	33
		070	UNK	.75		23.	.05	00
	NEOPRENE	002	UNK	1.10		22.	.12	33
				.77		22.	.10	33
				.22		22.	.08	3
				.17		22.	.07	3
				.57	118.24		.11	3:
				.36	51.10		.08	3
				.45	31.06		.10	3
				.68	27.05		.12	3
				.80	27.05		.14	3
		018	UNK	.49	126.25	22.	.05	3
				.37		22.	.05	3
				.35		22.	.05	3
				.26		22.	.04	3
				.23	41.08	22.	.05	3
				.30	38.08		.04	3
		031	UNK	1.38	80.16		.14	3
				.97	80.16		.13	3
				1.23	121.24		.13	3
		081	UNK	1.97	101.20		.15	3:
				3.35	40.08		.18	3
				2.97	41.08		.20	3
				1.60	121.24		.14	3
				.92	113.23		.14	3:
	NITRILE	019	UNK	.43	156.31		.04	3
				.33	150.51	22.	.04	3.
				.27		22.	.04	3
				.33		22.	.04	3:
				.44	156.31		.04	3
		078	UNK	.04	330.66		.03	3
	PE	006	UNK	> 24.00	330.00	23.	.01	3
		075	UNK	.04	33.07		.03	3
		076	127	1.25	55.01	23.		1
			UNK	> 24.00		23.	.01	3
	PV ALCOHOL	004	UNK	> 83.33		22.	.09	3
	PVC	007	UNK	.37		22.	.11	3
	. • •	•••		.58	72.14		.11	3
				.52	108.22		.10	
				.58	87.17		.10	3
				.60	or.17	22. 22.		3
				.58	71 04		.12	3
				.50	31.06 30.06		.10 .11	3:
					5U 06		11	₹.

CASNO	NAME/ RESISTANT PRODUCT VENDOR BREAKTHROUGH TI NATERIAL DESC CODE HOURS		TIME	PERMEATION RATE UG/CH**2/MIN	TEMP DEG C	THICKNESS CM	REF		
001105760	PVC	049	UNK		.05	370.74	23.	.04	334
					2.87	144.29		.20	334
		053	UNK		.06	400.80		.03	334
					.09	250.50		.05	334
					.13	330.66		.05	334
		077	UNK		.02	430.86		.02	334
		083	UNK		6.43	81.16	23.	.26	335
					2.73	122.24	23.	.20	335
	SARANEX	061	UNK	> ,	24.00		23.	.02	334
	VITON	009	UNK	>	8.30		23.	.03	335
		090	UNK	>	24.00		23.	.02	334
ichloroethane									
013002160	TEFLON	069	510	>	5.70	< .02	23.	.05	303
				>	3.00	< .02	25.	.05	303
is-Dichloroethy									
01565920	BUTYL	014	118		.32	2,925.84	23.	.07	323
	PV ALCOHOL	004	100		.08	3,547.08	23.	.05	323
	PVC	007	100		.02	3,316.62	23.	.02	323
	VITON	009	118		1.68	30.06		.03	323
,2-Dichloroethy									
05405900	NITRILE	019	100		.12	781.56	29.	.04	323
	PV ALCOHOL	004	100		.23	.50	23.	.04	323
	PVC	007	100	<	.01	841.68		.02	323
	VITON	009	118		.95	50.10	23.	.03	323
r ans-1,2 -Dichlo	roethylene								
01566050	BUTYL	014	118		.13	14,739.42	23.	.06	323
	PV ALCOHOL	004	100		2.63	1,142.28		.09	323
	PVC	007	100		.02	6,262.50		.02	323
	VITON	009	118		1.18	20.04	23.	.03	323
2,21-Dichloroeth	yl Ether								
01114440	CPE	06 0	113		1.20		23.	.05	204
					1.45	480.96	23.	.05	204
		07 0	UNK		1.33		23.	.05	004
	TEFLON	069	510	>	3.00	< .02	23.	.05	303
ichloropropane									
66381970	CPE	07 0	UNK		.60		23.	.05	004
	TEFLON	069	510	>	3.10	< .02	23.	.05	303
ichloropropane-									
80031980	TEFLON	069	510	>	3.00	< .02	23.	.05	303
,3-Dichloro-1-p	ropene								
00788860	BUTYL	014	118		1.90	140.28	23.	.09	323
	PV ALCOHOL	102	100	>	8.00	< .02		.09	323
	PVC	007	100		.02	5,330.64		,02	323
	VITON	009	118	>	8.00	< .02		.03	323

CASHO	RESISTANT MATERIAL			BREAKTHROUGH TIME HOURS		PERMEATION RATE UG/CH**2/HIN		TEMP DEG C	THICKNESS CM	REI NUI
1,3-Dichloropro	pene									_
005427560	BUTYŁ	014	118		1.30		320.64	23.	.07	32
	PV ALCOHOL	102	100	>	8.00	<	.02	23.	.07	32
	PVC	007	100		.02		6,513.00	23.	.02	32
	VITON	009	118	>	8.00	<	.02		.03	32
Diethanolamine										
001114220	BUTYL	014	118	>	8.00			24.	.09	32
	NEOPRENE	018	100	>	8.00			22.	.05	32
	NITRILE	019	100	>	8.00			26.	.04	32
	TEFLON	069	510	>	3.00	<	.02	23.	.05	30
	VITON	009	118	>	8.00			27.	.03	32
iethylamine										
01098970	BUTYL	014	118		.78		460.92	23.	.09	32
	NATURAL RUBBER	901	103				534.40	23.		04
	NEOPRENE	125	103				396.79	23.		04
	NITRILE	019	100		.75	90.18 -	901.80	23.	.06	10
					.20		1,332.66	24.	.04	32
			103				583.16	23.		04
	PE	076	100		.08	90.18 -	901.80	23.		10
	PVC	007	100		.02		3,707.40	24.	.02	3
			103				414.83	23.		04
	SARANEX	061	127		.73		38.08	23.		10
	SILVER SHIELD	122	118	>	8.00			23.	.01	22
	VITON	009	118		.58		8,537.04	20.	.03	32
	VITON/CHLOROBUTYL	112	113	.45 -	.50			25.	.04	30
iethyl <mark>amin</mark> oetha 01003780										
0 1003760	BUTYL	014	118	>	8.00	<	.02	22.	.07	32
	NITRILE	019	118	>	8.00	<	.02	22.	.04	32
	PV ALCOHOL VITON	102 009	100 118	>	8.00 8.00	< <	.02 .02	23. 22.	.09 .03	32 32
iethylenetriam	i.a.									-
01114000	BUTYL	014	***							
	NEOPRENE	018	118 100	>	8.00 8.00	«	.02		.08	32
	PVC	007	100	,	.63	<	.02	22.	.05	3
	VITON	009	118	>	8.00	<	3.01 .02	22. 23.	.02 .03	3
iisobutylamine										
01109630	NEOPRENE	018	100		.87		138.28	22.	.05	32
	NITRILE	019	100	>	8.00		,50.20	20.	.04	32
	PV ALCOHOL	102	100	>	8.00			23.	.08	32
	VITON	009	118	>	8.00			22.	.02	32
iisobutyl Ketor	ne									
01088380	NATURAL RUBBER	001	210		.25		583.16	23.		Ol
	NEOPRENE	002	210		.25		450.90	23.		Ol
	NITRILE	005	210		4.75	•	30.06	23.		O
		019	100		2.00	90.18 -	901.80	23.	.06	10
	NITRILE+PVC	057	210		1.25		3.01	23.	-	O

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN		TEMP DEG C	THICKNESS CM	RE
001088380	PE	076	100		.08	9.02 -	90.18	23.		10
	PV ALCOHOL	004	100	>	6.00	<	.90	23.		1
	PVC	007	210		1.00		8.42	23.		0
Diisobutyl Keto	ne, >70%									
001088383	BUTYL	014	118		3.27		247.69	23.	.04	3
					3.30		247.69	23.	.04	1
	NITRILE	019	118		2.93		294.59	23.	.03	:
	DV 44 00404	400			3.00		293.99		.03	
	PV ALCOHOL	102	100		16.00			23.	.03	
	SILVER SHIELD VITON	122 009	118 118	>	6.00			23.	.01	
	VIION	009	110		1.13 1.20		544.69 544.69		.03 .02	
ii.	_									
)iisopropylamin)01081890	e NEOPRENE	018	100		.67		450.90	12.	.05	
	NITRILE	019	100		3.25		90.18		.04	
	PVC	007	100		.03		1,322.64	11.	.02	
	TEFLON	069	510	>	4.50	<	.02		.05	
	VITON	009	118	>	8.00	<	.02		.03	
I,N-Dimethylace	tamide									
001271950	CPE	070	UNK		.67			23.	.05	
	SARANEX	061	127		1.07		2.00	23.		
imethylamine										
001244030	BUTYL	014	118	>	8.00	<	.02	2 2.	.06	
	NATURAL RUBBER	001	250		.03		80.16	20.	.02	
	NEOPRENE	018	100	>	8.00	<	.02	22.	.05	
	PV ALCOHOL	102	100		.28		40.08	23.	.07	
	PVC	007	100		.10		20.04	20.	.02	
imethylaminopr	opylamine									
01095570	BUTYL	014	118	>	8.00	<	.02	16.	.09	
	NATURAL RUBBER	001	250		.01		2,114.22	16.	.02	
	NEOPRENE	018	100		.48		470.94		.05	
	PVC	077	100		.03		2,189.37	20.	.02	
	ethylbenzyl Hydrope									
000801590	TEFLON	069	510	>	3.50	<	.02	23.	.05	
imethylbutylam										
001080980	BUTYL	014	118		1.68		320.64		.06	
	MITRILE	019	100		1.35		711.42		.04	
	PV ALCOHOL	102	100		.33		140.28		.08	
	PVC	007	100		.05		2,575.14	21.	.02	
imethylethanol	emine									
00108 0100	BUTYL	014	118	>	8.00	<	.02		.09	
	NATURAL RUBBER	001	250		.08		100.20		.02	
	NEOPRENE	018	100		3.92		30.06		.05	
	MITRILE	019	100	>	8.00	<	.02	9.	.04	

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	IGH TIME			ION RATE 2/MIN	TEMP DEG C	THICKNESS CM	REI
Dimethyl formami	ide										
000681220	BUTYL	012	UNK		22.00		<	.02		.04	273
					23.00		<	.02		.04	273
				>	71.00		<	.02		.06	273
				>	71.00		<	.02		.06	273
				>	24.00		<	.02		.04	273
				>	24.00		<	.02		.04	273
				, ,	24.00 24.00		٠	.02		.06	27:
				>	6.00		<	.02		.06	27.
				>	6.00			1.20		.04	27.
				>	7.00		<	1.20		.04	273
				>	7.00		~			.06	273
		014	118	>	8.00		•	1,007.70	25. 23.	.06	273
			• • •	>	8.00				23.	.04 .04	323
		107	UNK	>	8.00				25. 25.	.04	227
				>	8.00				25.	.04	149
				>	8.00				25.	.04	149
	NATURAL RUBBER	001	210		1.00			721.44	23.	.04	080
		017	100		.50	90.18		901.80	23.	.05	10
	NEOP+NAT RUBBER	026	121		.62			66.13	23.	.05	23
	NEOPRENE	002	100		1.00	9.02		90.18	23.	,	10
			210		.13			96.19	23.		08
		018	100		.85			66.13	23.	.05	323
					.17	9.02	•	90.18	23.	.04	107
			UNK		3.00			1.20		.04	273
					3.50			1.20		.04	273
				>	5.50		<	.02	25.	.06	273
				>	6.00		<	.02	25.	.06	273
		031	UNK		.02			18.04	25.	.04	149
					.57			47.09	25.	.04	149
					1.10			74.15	25.	.04	149
					.10			20.04	25.	.04	149
	******	125	103					54.11	23.		045
	NITRILE	005	120		.58			54.11	23.	.06	236
			210		1.00			120.24	23.		080
		019	103					114.23	23.		045
			118		.15			90.18	23.	.04	323
					.22		>	90.18	23.	.04	227
			UNK		3.50			10.82	25.	.04	273
					3.50			12.02	25.	.04	273
				>	5.00			10.82	25.	.06	273
	MITRI EADUR	057	210	>	5.00			10.22	25.	.06	27:
	NITRILE+PVC PE	057 074	210		1.50			132.26	23.		080
	PV ALCOHOL	076 075	100		.50		<	.90	23.		107
	PT ALCOHOL	035	UNK		.08			900.80	25.	.07	149
					.37			1,057.78	25.	.07	149
					.33			48.10	25.	.07	149
		402	400		.12			2,191.37	25.	.07	149
		102	100		.33			78.16	23.	.04	323
	PVC	007	210		.20			24.65	23.	.03	323
	F76	007	210		1.00			138.28	23.		080

CHEMICAL NAME/ CASHO	RESISTANT NATERIAL	PRODUCT DESC CODE	VENDOR		THROL OURS	IGH TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CH	REF
000681220	SILVER SHIELD	122	118		>	8.00		23.	.01	227
	TEFLON	069	510		>	11.20	< .02		.05	303
	VITON	009	118			.13	39.08		.03	323
						.13	39.08		.02	227
	VITON/CHLOROBUTYL	112	113		>	3.00		25.	.04	302
	razine (Dimethylhydr									
000571470	BUTYL	014	118		>	1.50		23.	.03	0 01
					>	1.50		23.	.04	001
					>	1.50		23.	.08	001
		034	UNK	23.00	•	27.00	2.91		.08	078
	CHLOROBUTYL	052	205		>	1.50		23.	.05	001
	CPE	060	113			.50		23.	.05	001
	NATURAL RUBBER	017	100			.17		23.	.04	001
						.23		23.	.05	001
						.06		23.	.02	001
						.18		23.	.04	001
			404			.06		23.	.02	001
			101			.10		23.	.05	001
	MEGO MAT BURDED	000	110			.22		23.	.05	001
	NEOP/NAT RUBBER	800	114			.03		23.	.04	001
						.15		23.	.04	001
	MEGORENE	000	400			.15		23.	.04	001
	NEOPRENE	902	100			1.12		23.	.12	001
		018	100		>	1.50		23.	.13	001
		018 031		/3		.63	450.00	23.	.05	001
	NITRILE	019	UNK 100	.42	•	.67	450.90	-	.08	078
	WITKILE	019	100			.15		23.	.04	001
						.23		23.	.04	001
			118			.10		23.	.03	001
	PV ALCOHOL	004	100			.12		23.	.03	001
	PVC	003	120			.13		23.	.09	001
	746	003	120			.22 .68		23.	.05	001
						.03		23.	.10	001
		007	100			.47		23.	.03	001
		007	100			.58		23.	.09	001
						.28		23.	.11	001
		053	189			.05		23.	.10	001
		0,13	107			.16		23. 23.	.06	001
						.33			.07	001
		054	189			.53		23. 23.	.05	001
		0 ,4	107			.02		23. 23.	.05	001
		077	168	.08		.17	190.38		.05 .04	00°
		U 11	212	.00	-	.08	170.30	23.	.03	00
	VITON	009	118			.20		23.	.03	00
Dimethyl Sulfox	ide									
000676850	CPE	0 60	113		>	3.00		25.	.07	30
	NATURAL RUBBER	001	210		-	1.33	721.44		.07	302 080
	WATERIAS NOBEL		UNK	1.50		2.00	761.99	25. 25.	.02	276
		017	100		,	1.00	< 10.02		.02	222
		+ · · ·	. 50		-		- 10.02			26

CARMO MATERIAL DESC CODE NOURS DIG COPE CR	CHEMICAL NAME		PRODUCT	VENDOR	BREAKTHROUGH	TIME	PERMEATION RATE		TEMP	THICKNESS	REF
MECOP/MAT RUBBER 0.08 11	CASNO	MATERIAL	DESC CODE		HOURS		UG/CM++2/M	IN	DEG C	CM	NUM
MECOP/MAT RUBBER 008	000676850	NATURAL RUBBER	017	120		1.00		10.02	25		222
											222
NECOPINAT RUBBER 008 114					>						222
MEOPREME		NEOP/NAT RUBBER	800	114							276
		NEOPRENE	002	100	>	8.00					276
					>	3.00	9.02 -	90.18			107
NITRILE NITRILE NITRILE				120	>	1.00	<	10.02	25.	.07	222
				210		6.00	<	.02	23.		080
						1.77			23.	.05	186
MITRILE			018		>		<	.90	23.	.04	107
MITRILE				120	>		<	10.02	25.	.05	222
MITRILE							<			.05	222
NITRILE+PVC 07 100 11.00 11.00 25. 0.4 0.4 0.5					>		<			.03	222
		WITKILE									080
NITRILE-PVC 057 210			019	100			<	10.02			222
NITRILE-PVC 057 210 1.33 4.81 23 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.01 25 0.05 25 0.					-		•				276
NITRILE-PVC 057 210				101	>						107
PE		NITRILE+DUC	057				•			.03	222
PVC											080
Natural Rubber 100 110		_									222
			003	120							222
NITON/CHLOROBUTYL 110											222
NITON/CHLOROBUTYL 112 113 NITON NITRILE NITR			007	100						.02	222 107
NITRILE			•••				.70				080
NITRILE		VITON/CHLOROBUTYL	112		>					.04	302
NITRILE	Dimethylvinyl	chloride									
PV ALCOHOL 004 100 1.18 6.01 23. .08			019	100		.15		3 54 71	25	05	323
PVC 003 100 .02 420.84 23. .02		PV ALCOHOL					•				323
Di-n-octyl Phthalate		PVC	003								323
001178400 MITRILE+PVC 058 100 .42 23. PE 076 100 .08 23. PVC 077 100 .42 23. 1,4-Dioxane (Diethylene Dioxide,1,4) 001239110 BUTYL 014 118 > 20.00 2307 MATURAL RUBBER 017 100 .15 420.84 2503 120 .08 90.18 90.18 901.80 2305 120 .04 801.60 2502 502 .20 340.68 2505 504 .17 280.56 2505 504 .17 280.56 2505 MEOP+NAT RUBBER 026 102 .28 340.68 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505		VITON	009	118							323
001178400 MITRILE+PVC 058 100 .42 23. PE 076 100 .08 23. PVC 077 100 .42 23. 1,4-Dioxane (Diethylene Dioxide,1,4) 001239110 BUTYL 014 118 > 20.00 2307 MATURAL RUBBER 017 100 .15 420.84 2503 120 .08 90.18 90.18 901.80 2305 120 .04 801.60 2502 502 .20 340.68 2505 504 .17 280.56 2505 504 .17 280.56 2505 MEOP+NAT RUBBER 026 102 .28 340.68 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505	Di-n-octyl Ph	thalate									
PE 076 100 .08 23. PVC 077 100 .42 23. - 6.00 < .90 23. 1,4-Dioxane (Diethylene Dioxide,1,4) 001239110 BUTYL 014 118 > 20.00 2307 - 20.00 2304 NATURAL RUBBER 017 100 .15 420.84 2503 1,20 .08 90.18 901.80 2305 120 .04 801.60 2502 120 .04 801.60 2502 502 .20 340.68 2505 504 .17 280.56 2505 504 .17 280.56 2505 MEOP+NAT RUBBER 026 102 .28 340.68 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505 MEOPPRENE 002 100 .14 .20.44 2508	•		058	100		.42			23		107
PVC 077 100 .42 23. 1,4-Dioxane (Diethylene Dioxide,1,4) 001239110 BUTYL 014 118 > 20.00 23. 07 NATURAL RUBBER 017 100 .15 420.84 2503 NATURAL RUBBER 017 100 .15 420.84 2503 120 .04 801.60 2502 502 .20 340.68 2505 504 .17 280.56 2505 504 .17 280.56 2505 MEOP+NAT RUBBER 026 102 .28 340.68 2505 NEOP/NAT RUBBER 008 114 .30 220.44 2505 NEOP/NAT RUBBER 008 114 .30 220.44 2505 NEOPRENE 002 100 .14 220.44 2505		PE	076	100							107
1,4-Dioxane (Diethylene Dioxide,1,4)		PVC									107
001239110 BUTYL 014 118 > 20.00					>		<	.9 0			107
001239110 BUTYL 014 118 > 20.00	1,4-Dioxane (Diethylene Dioxide,1,4)								
> 20.00 2304 NATURAL RUBBER 017 100 .15 420.84 2503 .08 90.18 901.80 2305 120 .04 801.60 2502 502 .20 340.68 2505 504 .17 280.56 2505 .45 150.30 2506 NEOP+NAT RUBBER 026 102 .28 340.68 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505 MEOPPRENE 002 100 .14 220.44 2508				118	> 2	20.00			23.	. 07	323
NATURAL RUBBER 017 100 .15 420.84 2503 -08 90.18 901.80 2305											227
120		NATURAL RUBBER	017	100				420.84			222
120 .04 801.60 2502 502 .20 340.68 2505 504 .17 280.56 2505 .45 150.30 2506 MEOP+NAT RUBBER 026 102 .28 340.68 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505 MEOPRENE 002 100 .14 220.44 2508											107
502 .20 340.68 2505 504 .17 280.56 2505 .45 150.30 2506 MEOP+NAT RUBBER 026 102 .28 340.68 2505 MEOP/NAT RUBBER 008 114 .30 220.44 2505 MEOPRENE 002 100 .14 220.44 2508		•		120							222
504 .17 280.56 2505 .45 150.30 2506 NEOP+NAT RUBBER 026 102 .28 340.68 2505 NEOP/NAT RUBBER 008 114 .30 220.44 2505 NEOPRENE 002 100 .14 220.44 2508						.20					222
MEOP+NAT RUBBER 026 102 .28 340.68 25. .05 MEOP/NAT RUBBER 008 114 .30 220.44 25. .05 MEOPRENE 002 100 .14 220.44 25. .08				504			;	280.56	25.		222
NEOP/NAT RUBBER 008 114 .30 220.44 25. .05 NEOPRENE 002 100 .14 220.44 25. .08							•	150.30	25.	.06	222
MEOPRENE 002 100 .14 220.44 2508									25.	.05	222
										.05	222
120 .09 330.66 2507		NEOPRENE	002							.08	222
AAA										.07	555
018 100 .27 560.92 2305			018	100		.27	•	560.92	23.	.05	323

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU HOURS	JGH TIME		ITION RATE	TEMP DEG C	THICKNESS CM	REF
001239110	NEOPRENE	018	118	 -	1.78		450.70			
		U	120		.73		150.30		.08	222
					.73		300.60 240.48		.05	222
					.47		370.74		.07	222
					.25		551.10	25. 25	.05	222
		125	103		•67		360.72		.03	222
	NITRILE	019	100		.42		861.72		٥,	045
					1.05		3.01		.04	222
					.45		821.64	25.	.06 .04	222
			103		• • • •		2,068.13	23.	.04	222
			118		.40		463.53	23.	.04	045
					.47		463.53	23.	.04	323
			503		.28		711.42	25.	.03	227
	PE	006	100		.02		300.60	25.	.03	222
			505		.17		60.12	25.	.01	222
		076	100		.05	.90 -	9.02	23.	.01	222
	PV ALCOHOL	102	100	>	16.00	.,,	7.02	23.		107
	PVC	003	120		.03		3,707.40	25. 25.	.03	323
					.01		4,008.00	25.		222
					.11		1,503.00	25. 25.	.01	222
					.06		1,102.20	25. 25.	.03	222
			500		.02		5,010.00	25. 25.	.02	222
			501		.02		3,807.60	25. 25.	.01	222
			- • •		.02		4,008.00	25. 25.	.01	222
		007	103				402.80	23.	.02	222
	SARAHEX	061	127		.83		17.43	23. 23.		045
	SILVER SHIELD	122	118	>	8.00		17.43	23.	01	104
	TEFLON	069	510	>	3.20	<	.02	23.	.01	227
	VITON	009	118		.38	•	161.12	23.	.05 .03	303
					.38		161.12	23.	.02	323 227
Dipropylamine										
001428470	TEFLON	069	510	>	3.00	<	.02	23.	.05	303
Divinyl Benzene										
013217400	BUTYL	014	118		2.22		1,430.86	23.	.05	323
					2.20		1,430.86	23.	.04	227
	NITRILE	019	100		1.00		2,703.60	23.	.04	323
	PV ALCOHOL	102	100	>	18.00			23.	.03	323
	SILVER SHIELD	122	118	>	8.00			23.	.01	227
	VITON	009	118	>	17.00 17.00			23.	.02	323
				·				23.	.02	227
Epichlorohydrin										
001068980	BUTYL	014	118		24.00			23.	.04	291
					24.00			23.	.04	291
					24.00			23.	.04	291
					24.00			23.	.04	291
				>	8.00		-1,669.98	23.	.07	323
				>	8.00	<	-1,669.98	23.	.07	323
	MARILMAN	034	UNK		79.00		.20	22.	.08	078
	NATURAL RUBBER	001	250	<	.02		504.34	23.	.02	323
				<	.02		504.34	23.	.02	323

College Colleg

CHEMICAL NAME/ CASNO	RESISTANT	PRODUCT	VENDOR	BREAKTHROU	GH TIME		ION RATE	TEMP	THICKNESS	REF
CASHU	MATERIAL	DESC CODE		HOURS		UG/CH*	*2/MIN	DEG C	CH	NUM
001068980	NATURAL RUBBER	017	UNK		.05		130.26		.02	291
	MEADELLE				.06		138.28		.02	291
	NEOPRENE	018	100		.33		362.72		.04	291
		074	l muss	4.00	.25		314.63		.04	291
	NITRILE	031	UNK	1.00 -	1.33		110.22		.08	078
	MITRILE	020	503		.42		1,252.50		.04	291
	PE	007	400		.33		1,152.30		.04	291
	76	006	100		.05		9.45		.01	291
	PV ALCOHOL	075	1 10 10		.05		9.74	23.	.01	291
	PV ACCORDE	035 102	UNK	<	.08		130.26		.01	078
		102	100		.05		127.25		.05	291
					.02		105.21		.05	291
					5.82		.30		.07	323
	PARAMEY	0/1	407		5.82		.30		.07	323
	SARANEX	061	127		1.00		3.32		.02	291
					1.00		3.44		.02	291
	TES OU	A7.	•••		.95		52.30			104
	TEFLON	036	214		7.00		.02		.01	291
		0/0			7.00		.02		.01	291
	1/1704	069	510	>	3.40	<	.02		.05	303
	VITON	009	118		1.00		51.20		.02	291
					1.00		51.90		.02	291
					1.00		50.70		.02	291
					2.05		6.13		.03	323
					2.05		6.13	23.	.03	323
1,2-Epoxybutane	•									
001068870	BUTYL	014	118		.75		20.04	23.	.06	323
	NEOPRENE	018	100		.07		20.04		.05	323
	PV ALCOHOL	004	100	>	8.00	<	.02		.04	323
	VITON	009	118		.03		20.04	23.	.03	323
Ethanolamine (A	Aminoethanol.2)									
001414350	BUTYL	014	118	>	8.00			26.	.07	323
	MATURAL RUBBER	001	210	•	4.50		6.61		.07	080
		017	100		3.50	.9 0 -	9.02		.05	107
	NEOPRENE	002	100	>	6.00	.,,,	.90		.07	107
			210	-	6.00	<	.02			080
		018	100	>	6.00		.90		.04	107
				>	8.00	•	.70	20.	.05	323
	NITRILE	005	210	•	6.00	<	.02		.03	080
		019	100	>	6.00		.90		.06	107
	NITRILE+PVC	057	210	•	5.00	•	4.21		.06	080
		058	100	>	6.00		4.21			
	PE	076	100	>	6.00			23.		107
	PV ALCOHOL	004	100	•	2.50	.9 0 -	0.03	23.		107
	PVC	007	100	>	6.00		9.02			107
	, 10	007	100	>		<	.90			107
			210	,	8.00 2.00		7 4-	25.	.02	323
		077	100				7.82			080
		0//	100	>	6.00 6.00			23.		107
	VITON	000	110					23.		107
	ATION	009	118	>	8.00			22.	.05	323

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR		THROUGH OURS	TIME			ION RATE *2/MIN	TEMP DEG C	THICKNESS CM	REF
Ethyl Acetate						_						
001417860	BUTYL	014	118			7.60			20.44	23.	.04	227
	CPE	060	113	.97	•	1.17				25.	.07	302
	NATURAL RUBBER	001	210			.18			54.11		•••	080
		017	100			.08	9.02	•	90.18	23.	.05	107
	NEOPRENE	002	100			.33	9.02	•	90.18	23.		10
			210			.20			48.10	23.		080
		018	100			.25	9.02	•	90.18	23.	.04	10
	NITRILE	005	210			.50			66.13	23.		080
		019	118			.13			871.74	23.	.04	227
	NITRILE+PVC	057	210			.50			48.10	23.		080
	PE	076	100			.07	9.02	•	90.18	23.		107
	PV ALCOHOL	004	100		>	6.00		<	.90	23.		107
	PVC	007	210			.33			78.16	23.		080
	SARANEX	061	127			.60			6.61	23.		104
	SILVER SHIELD	122	118		>	6.00				23.	.01	227
	TEFLON	069	510		>	3.10		<	.02	23.	.05	303
					>	4.30		<	.02	24.	.05	303
	VITON/CHLOROBUTYL	112	113	.33	•	.66				25.	.04	302
	(Ethoxyethanol, 2)											
001108050	BUTYL	014	118		>	8.00				23.	.06	323
					>	8.00				23.	.08	323
	NATURAL RUBBER	0 01	103						1.20	23.		045
			250			.02			72.14	23.	.02	323
			506		<	.01			49.30	23.	.01	323
	NEOPRENE	018	100			4.08			18.64	23.	.06	323
		125	103						6.01	23.		045
	NITRILE	019	100			1.53			56.51	23.	.04	323
	*** ** *****		103						54.11	23.		045
	PV ALCOHOL	102	100			.05			132.26	23.	.08	323
	PVC	007	100			.07			162.32	23.	.02	323
			103						6.01	23.		045
thyl Acrylate												
01408850		250	250			.02			1,040.08	23.	.02	323
	BUTYL	014	118		>	8.00				23.	.09	323
		064	117			.67				23.	.02	213
						.88				23.	.01	213
						.67				23.	.02	213
	BUTYL/NEOPRENE	110	117			1.00				23.	.02	213
	CPE	060	113	1.08	•	1.17				25.	.07	302
			UNK			.50				23.		142
						1.42				23.		142
	*******	070	UNK			-40				23.	.05	004
	NEOPRENE	093	117		<	.08				23.	.02	213
		138	117			.08				23.	.03	213
		139	117		<	.25				23.	.02	213
	PE	076	117		<	.08				23.	.01	213
	PV ALCOHOL	102	100		>	8.00				23.	.08	323
	PVC	003	100			.03			1,040.08	23.	.02	323
		049	117			.05				23.	.01	213

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR		THRO	UGH TIME			ION RATE	TEMP DEG C	THICKNESS CM	RE:
001408850	SARANEX	061	117			1.33						_
	TEFLON	069	510		>	17.00		_		23.	.01	21:
	VITON	145	117		~	.08		<	.02		.05	303
	VITON/CHLOROBUTYL	112	113	.23		.53				23.	.01	213
		1.4	UNK	.23						25.	.04	302
	VITON/NEOPRENE	111	117		>	3.00 .20				23. 23.	.02	142 213
Ethyl Alcohol (E	Ethanol)											• • •
000641750	NATURAL RUBBER	001	210			1.50			4.01	22		
		017	100			.47			6.01	23.		080
		_				.50	00		4.01	25.	.03	222
			120			.20	.90	•	9.02	23.	.05	107
			502		>	1.00			14.03	25.	.02	222
			504		>	1.00		<	4.01	25.	.05	222
					>			«	4.01	25.	.05	222
	NEOP+NAT RUBBER	026	121		-	1.00		<	4.01	25.	.06	222
	NEOP/NAT RUBBER	008	114			.37		>	.33	23.	.05	237
	NEOPRENE	002	100		>	1.00	-	<	4.01	25.	.05	222
		002	100		_	3.00	.90	•	9.02	23.		107
			120		>	1.00		<	4.01	25.	.08	2.22
			210		>	1.00		<	4.01	25.	.07	555
		018	100			2.00			3.01	23.		080
		010				1.50	.90	•	9.02	23.	.04	107
			118		>	1.00		<	4.01	25.	.08	222
			120		>	1.00		<	4.01	25.	.05	222
					>	1.00		<	4.01	25.	.07	222
					>	1.00		<	4.01	25.	.05	222
		074	-44		>	1.00		<	4.01	25.	.03	222
	NITRILE	031	511		•	.82		•	1.80	23.		323
	MITRILE	005	210			6.00		<	.02	23.		080
		019	100		>	1.00		<	4.01	25.	.04	222
						4.00	.9 0	•	9.02	23.	.06	107
					>	1.00		<	4.01	25.	.06	222
					>	1.00		<	4.01	25.	.04	222
	ALTRU P. D. C.		503		>	1.00		<	4.01	25.	.03	222
	NITRILE+PVC	057	210			6.00		<	.02	23.		080
	D.C.	058	100			.25	.9 0	•	9.02	23.		107
	PE	006	505		>	1.00		<	4.01	25.	.01	222
		076	100			.05		>	9,018.00	23.		107
	PV ALCOHOL	004	100			1.67			55.11	23.		123
						1.67			5.51	21.		124
	PVC	003	120			.05			43.09	25.	.01	222
						.08			37.07	25.	.01	222
						.33			28.06	25.	.03	222
	•					.18			43.09	25.	.02	222
			500			.06			28.06	25.	.01	222
			501			.05			34.07	25.	.01	222
						.03			57.11	25.	.02	222
		007	100			1.00	.90		9.02	23.		107
			210			2.50			6.01	23.		080
		077	100			.25		<	.90	23.		107
						.50	.90		9.02	23.		107
	TEFLON	069	510			3.00			.02			

والإنتان والمراب المراب والمراب والمرا

70% BUTYL NITRILE SILVER SHIELD TEFLON	014 019	•							
BUTYL HITRILE SILVER SHIELD									_
SILVER SHIELD		118	>	12.00		-1,669.98	23.	.04	
		118		1.10	•	180.96		.04	22 22
	122	118		.47		36.07			
	069	510	>	3.00	<	.02		.01 .05	22 30
PV ALCOHOL	102	100		.55			23.	.08	32
TEFLON	069	510	>	3.00	<	.02		.05	30
NEOPRENE	018	100		.07		1.322.64	23.	nμ	3
PV ALCOHOL	102	100				•			32
PVC	003	100	<						32
VITON	009	118		1.43		30.06		.04	3
ine									
NITRILE	019	100		1.22		210.42	24.	, n ∡	32
PV ALCOHOL	102	100							32
PVC	007	100				_			32
VITON	009	118		3.80		1,482.96		.03	3
Propionitrile)									
BUTYL	014	118		-40		167 73	23	04	32
NATURAL RUBBER	001		<						3
PV ALCOHOL	102					.,.50			3
PVC	003	100	<	.01		18.04		.02	3
hydrin (Chloroethan	nol)								
BUTYL	014	118	>	8.00	<	.02	23.	06	32
NEOPRENE	018	100							37
PV ALCOHOL	102	100				-			32
VITON	009	118	>	8.00	<	.02	23.	.05	32
(Diaminoethane, 1, 2)								
BUTYL	014	118	>	8.00	<	.02	18	07	32
CPE	060				-	.02			20
		- -				36.07			20
NATURAL RUBBER	001	250							32
NEOPRENE									32
PE								.03	10
PVC								0.2	
			>					.02	37
TEFLON	069	510	>	3.20	•	.02	23.	.05	10 30
ide (Dibromoethane.	1.2)								
•	-	118		1.70		75.15	27	0/	20
==::=	-17								29
									25
	044	117				30.0/			32
	•••	111							21
									21 21
	NEOPRENE PV ALCOHOL PVC VITON Ine MITRILE PV ALCOHOL PVC VITON Propionitrile) BUTYL NATURAL RUBBER PV ALCOHOL PVC hydrin (Chloroethan BUTYL NEOPRENE PV ALCOHOL VITON (Disminoethane, 1, 2 BUTYL CPE NATURAL RUBBER NEOPRENE PE PVC SARANEX TEFLON	NEOPRENE 018 PV ALCOHOL 102 PVC 003 VITON 009 VITON 003 VITON 003 VITON 003 VITON 004 VITON 009 VITON	NEOPRENE 018 100 PV ALCOHOL 102 100 PVC 003 100 VITON 009 118 NITRILE 019 100 PV ALCOHOL 102 100 PVC 007 100 VITON 009 118 Propionitrile 014 118 NATURAL RUBBER 001 506 PV ALCOHOL 102 100 PVC 003 100 Alcohol 102 100 PVC 003 100 Alcohol 102 100 PVC 003 100 Alcohol 102 100 VITON 009 118 Chiaminoethane, 1, 2) BUTYL 014 118 CPE 060 113 NATURAL RUBBER 001 250 NEOPRENE 018 100 PE 076 127 PVC 007 100 SARANEX 061 127 TEFLON 069 510 Ide (Dibromoethane, 1, 2) BUTYL 014 118 Contact 127 TEFLON 069 510 Ide (Dibromoethane, 1, 2) BUTYL 014 118 Contact 127 Contact 128 Contact 127 Contact 127 Contact 128 Contact 127 Contact 128 Contact 128	NEOPRENE 018 100	MEOPRENE 018 100 .07 PV ALCOMOL 102 100 1.07 PVC 003 100 < .02 VITON 009 118 1.43 Sine MITRILE 019 100 6.72 PVC 007 100 .06 VITON 009 118 3.80 Propionitrile) BUTYL 014 118 .40 MATURAL RUBBER 001 506 < .01 PVC 003 100 < .01 hydrin (Chloroethanol) BUTYL 014 118 > 8.00 PVC 003 100	MEOPRENE 018 100 .07 PV ALCOHOL 102 100 1.07 PVC 003 100 < .02 VITON 009 118 1.43 VITON 009 118 3.80 Propionitrile 001 102 100 .06 VITON 009 118 3.80 Propionitrile 014 118 .40 MATURAL RUBBER 001 506 < .01 PV ALCOHOL 102 100 > 8.00 PVC 003 100 < .01 Mydrin (Chloroethanol) BUTYL 014 118 > 8.00 < .01 Mydrin (Chloroethanol) BUTYL 014 118 > 8.00 < .01 MHOPRENE 018 100 44.98 PV ALCOHOL 102 100 1.85 VITON 009 118 > 8.00 < .00 VITON 009 118 > 8.00 < .00 VITON 009 118 > 8.00 < .00 MATURAL RUBBER 001 250 .08 MEOPRENE 018 100 6.65 PE 060 113 2.00 MATURAL RUBBER 001 250 .08 MEOPRENE 018 100 6.65 PE 076 127 .25 PVC 007 100 .17 SARAMEX 061 127 > 8.00 < .00 VITON 069 510 > 3.20 < .00 VITON 069 510 > 3.20 < .00 VITON 069 510 > 3.33 O64 117 .555 .38	NEOPRENE 018 100 .07 1,322.64 PV ALCOHOL 102 100 1.07 .42 PVC 003 100 < .02 2,104.20 VITON 009 118 1.43 30.06 ITITE NITRILE 019 100 1.22 210.42 PV ALCOHOL 102 100 6.72 20.04 VITON 009 118 3.80 1,482.96 Propionitrile) BUTYL 014 118 .40 167.73 NATURAL RUBBER 001 506 < .01 779.36 PV ALCOHOL 102 100 > 8.00 PVC 003 100 < .01 18.04 hydrin (Chloroethanol) BUTYL 014 118 > 8.00 < .02 HEOPRENE 018 100 4.98 .70 PV ALCOHOL 102 100 1.85 20.04 VITON 009 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 015 118 > 8.00 < .02 (Diaminoethane, 1, 2) BUTYL 016 117 .25 10.22 PVC 007 100 .17 80.16 PFE 076 127 .25 10.22 TEFLON 069 510 > 3.20 < .02 Idde (Dibromoethane, 1, 2) BUTYL 014 118 1.70 75.15 1.83 79.16 3.33 3.30 .07	MEOPRENE 018 100 .07 1,322.64 23. PV ALCONOL 102 100 1.07 .42 25. PVC 003 100 < .02 2,104.20 23. VITOM 009 118 1.43 30.06 23. Sine MITRILE 019 100 1.22 210.42 24. PV ALCONOL 102 100 6.72 20.04. PV ALCONOL 102 100 .06 2,648.62 24. VITOM 009 118 3.80 1,482.96 23. PPOPURED 007 100 .06 2,648.62 24. VITOM 009 118 3.80 1,482.96 23. Propionitrile) BUTYL 014 118 .40 167.73 23. MATURAL RUBBER 001 506 < .01 79.36 23. PV ALCONOL 102 100 > 8.00 25. PVC 003 100 < .01 18.04 23. hydrin (Chloroethanol) BUTYL 014 118 > 8.00 < .02 23. HOPPERNE 018 100 4.98 .70 23. PV ALCONOL 102 100 1.85 20.04 23. VITOM 009 118 > 8.00 < .02 23. (Diaminoethane, 1, 2) BUTYL 014 118 > 8.00 < .02 23. MATURAL RUBBER 001 250 .08 501.00 20. MATURAL RUBBER 018 100 6.65 20.04 18. PPE 076 127 .25 10.22 23. MATURAL RUBBER 018 100 6.65 20.04 18. PPE 076 127 .25 10.22 23. VITOM 069 510 3.20 < .02 23. VITELOM 069 510 3.20 < .02 23. VICIGNOMORENE 018 100 6.55 20.04 18. PPE 076 127 .25 10.22 23. VITOM 069 510 3.20 < .02 23. VITELOM 069 510 3.20 < .02 23. VITELOM 069 510 3.20 < .02 23. VICIGNOMORENE 018 100 6.55 20.04 18. PPE 076 127 .25 10.22 23. VITELOM 069 510 3.20 < .02 23. VICIGNOMORENE 018 100 6.55 20.04 18. PPE 076 127 .25 10.22 23. VITELOM 069 510 3.20 < .02 23. VICIGNOMORENE 018 100 6.55 20.04 18. PPE 076 127 .25 10.22 23. VITELOM 069 510 3.20 < .02 23. VICIGNOMORENE 018 100 6.55 20.04 18. PPE 076 127 .25 10.22 23. VITELOM 069 510 3.20 < .02 23. VICIGNOMORENE 018 100 75.15 23. VICIGNOMORENE 018 100 75.15 23. VICIGNOMORENE 018 118 1.70 75.15 23. VICIGNOMORENE 014 118 1.70 75.15 23. VICIGNOMORENE 015 118 1.70 75.15 23. VICIGNOMORENE 016 117 .55 23. VICIGNOMORENE 017 118 1.70 75.15 23. VICIGNOMORENE 018 118 118 1.70 75.15 23. VICIGNOMORENE 018 118 118 1.70 75.15 23. VICIGNOMORENE 018 118 1.70 75.15 23. VICIGNOMORENE 018 118 118 1.70 75.15 23. VICIGNO	MEOPREME 018 100

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	IGH TIME	PERMEAT UG/CM**	ION RATE *2/MIN	TEMP DEG C	THICKNESS CH	REF
001069340	BUTYL/NEOPRENE	110	117		.08					
	CPE	070	UNK	•	.73			23. 23.	.02	213
	NATURAL RUBBER	017	UNK	<	.02	>	731.46		.05 .02	004 201
				<	.02	>	731.46		.02	291 291
	NEOPRENE	018	100		.13	>	731.46		.04	291
					.20	>	731.46		.04	291
		093	117	<	.33			23.	.02	213
		125	103				354.71	23.		045
		139	117		.08			23.	.02	213
	NITRILE	019	103				583.16	23.		045
		020	503		.58	>	731.46	23.	.04	291
	PE	201	400		.45	>	731.46	23.	.04	291
	PE	006	100	<	.03		158.32	23.	.01	291
		076	447	<	.03		141.28	23.	.01	291
	PV ALCOHOL	102	117 100		.75			23.	.01	213
	TV ALCOHOL	102	100	>	24.00			23.	.05	291
				>	24.00 8.00			23.	.05	291
	PVC	007	100		.03		1 /0/ 01	23.	.08	323
		•••	103		.03		1,406.81 294.59	23.	.02	323
		049	117		.12		274.39	23. 23.	A 4	045
	SARANEX	061	117		.55			23. 23.	.01	213
			127		.17		49.10	23.	.01 .02	213 291
					.13		49.10	23.	.02	291
	TEFLON	036	214		1.00		47110	23.	.01	291
				>	24.00			23.	.01	291
				>	24.00			23.	.01	291
		069	510	>	3.40	<	.02	23.	.05	303
	VITON	009	118	>	24.00			23.	.02	291
				>	24.00			23.	.02	291
				>	8.00			23.	.03	323
	****	145	117		.58			23.	.01	213
	VITON/NEOPRENE	111	117		1.08			23.	.02	213
Ethylene Dichlor 001070620	ride (Dichloroetham									
001070020	BUTYL	014	118		2.98		531.06	23.	.06	323
					2.90		318.64	23.	.04	227
		04/	UNK		2.33			23.	.06	326
	CPE	064 070	UNK UNK		1.17			23.	.04	326
	NATURAL RUBBER	070	250		.25			23.	.05	004
	HATTER RODUCT	017	100		.01		350.70	23.	.02	323
		017	120		.01 .02		1,603.20	25. ~~	.03	222
			502		.08		3,106.20	25. ~	.02	222
			504		.06		1,302.60	25. 36	.05	222
					.16		2,505.00 8 01.60	25. 25.	.05	222
			UNK		.03		GC 1.60	23.	.06 .02	2 22 3 26
	NEOP+NAT RUBBER	026	102		.08		1,302.60	25.	.02	2 22
	NEOP/NAT RUBBER	800	114		.01		1,302.60	25.	.05	222
	NEOPRENE	002	100		.03		701.40	25.	.08	222
			120		.04		801.60	25.	.07	222
		018	118		.70		501.00	25.	.08	222
			120		.27		701.40	25.	.05	5 55

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME		TION RATE	TEMP DEG C	THICKNESS CM	REF
001070620	MEOPRENE	018	120		.47		801.60	25.	.07	222
					.14		1,002.00		.05	222
					.06		1,803.60	25.	.03	222
			UNK		.33		•	23.	.06	326
	NITRILE	019	100		.11		3,807.60	25.	.04	222
					.28		2,605.20		.06	222
					.12		3,907.80		.04	222
			118		.13		1,869.73	23.	.04	227
			503		.08		3,907.80	25.	.03	222
			UNK		.04			23.	.02	326
		020	UNK		.04			23.	.03	326
	PE	006	100		.02		10.02	25.	.01	222
			505		.09		10.02	25.	.01	222
		042	UNK		.04			23.	.01	326
		076	100		.05	.90 -	9.02	23.		107
	PV ALCOHOL	004	100	>	3.00	.90 -	9.02	23.		107
				>	8.00	<	.02	23.	.03	323
		102	100	>	8.00			23.	.04	323
					5.50			23.	.05	323
			UNK		.37			23.	.04	326
	PVC	003	120		.01		11,022.00	25.	.01	222
					.01		9,719.40	25.	.01	222
					.03		4,509.00	25.	.03	222
					.02		6,913.80	25.	.02	222
			500		.01			25.	.01	222
			501		.01		13,026.00	25.	.01	222
					.01		7,815.60	25.	.02	222
	SILVER SHIELD	122	118	>	6.00			23.	.01	227
	TEFLON	036	UNK	>	24.00			23.	.01	326
		044	UNK		1.50			23.	.01	326
	VITON	009	118		6.90		4.88	23.	.02	227
				>	8.00	<	.02	23.	.03	323
			UNK		13.67			23.	.03	326
Ethylene Glycol										
0 01072110	NATURAL RUBBER	001	210		6.00	<	.02	23.		080
		017	100	>	1.00	<	10.02		.03	222
				>	6.00	<	.90	23.	.05	107
			120	>	1.00	<	10.02	25.	.02	222
			502	>	1.00	<	10.02	25.	.05	222
			504	>	1.00	<	10.02	25.	.05	222
				>	1.00	<	10.02		.06	222
	NEOP+NAT RUBBER	026	102	>	1.00	<	10.02		.05	222
	•		121	>	8.00	<	.02		.05	237
	NEOP/NAT RUBBER	800	114	>	1.00	<	10.02	25.	.05	222
	NEOPRENE	002	100	>	6.00	<	.90	23.		107
				>	1.00	<	10.02	25.	.08	222
			210		6.00	<	.02	23.		080
		018	100	>	6.00	<	.90	23.	.04	107
			118	>	1.00	<	10.02	25.	.08	222
			120	>	1.00	<	10.02	25.	.05	222
				>	1.00	<	10.02	25.	.07	222
				>	1.00	<	10.02	25.	.05	222

CASNO CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME		TION RATE **2/MIN	TEMP DEG C	THICKNESS CM	i
001072110	NEOPRENE	018	120		1.00		10.00			
	NITRILE	005	210	•	6.00	•			.03	
	***************************************	019	100	_		•				
		017	100	>	1.00	•			.04	
				>	6.00	•	•••		.06	
			207	>	1.00	•			.04	
	MITRIL P. D.		503	>	1.00	•			.03	
	NITRILE+PVC	057	210		6.00	•				
		058	100	>	6.00	•	.90	23.		
	PE	006	100	>	1.00	•	10.02	25.	.01	
			5 05	>	1.00	•	.10	25.	.01	
		076	100	>	6.00	•	.90	23.		
	PV ALCOHOL	004	100		2.00	.90 -	9.02	23.		
	PVC	003	120	>	1.00	•	10.02		.01	
				>	1.00			25.	.01	
				>	1.00	•	10.02		.03	
				>	1.00	•			.03	
			500	>	1.00					
			501	•	1.00				.01	
			201	>	1.00				.01	
		007	100	,	6.00	•			.02	
		007	210	•		<	•			
		077			6.00	•				
		077	100		.75	. 9 0 ·				
	TEFLON	040		>	6.00	•				
	TEFLON	069	510	>	16.80	•	.02	23.	.05	
Ethylene Oxide	(Oxirane)									
000752180	NITRILE	019	103				.37	23.		
Ethylenimine (A	ziridine)									
001515640	BUTYL	034	UNK	10.00 -	16.00		4.51	22.	.08	
	NEOPRENE	010	120	<	.08		4.51	22.	.02	
Ethyl Ether										
000602970	BUTYL	014	118		.13		554.31			
	NATURAL RUBBER	001	210		.17			23.	.04	
	NEOPRENE	002	100			0.00	1,563.12	23.		
	HEO! KENE	002			.17	9.02 -				
		018	210		.20		1,232.46			
			100		.17	9.02 -			.04	
	MITRILE	125	103				330.66			
	NITRILE	005	210		2.30		84.17			
		019	100		2.00	9.02 -	90.18	23.	.06	
			103				264.53			
			118		.23		131.06		.04	
	NITRILE+PVC	057	210		.42		1,863.72	23.		
	PE	076	100		.03	90.18 -	901.80	23.		
	PV ALCOHOL	004	100	>	6.00	<		23.		
		102	100	>	8.00			23.	.04	
	PVC	007	210		.33		2,104.20	23.	•••	
	SILVER SHIELD	122	118	>	6.00		=,:::::	23.	.01	
	TEFLON	069	510	>	3.00	<	.02	23.	.05	
				· •	3.00			23.		
	VITON	009	118	-	.20	•	129.26	23. 23.	.05 .03	
									115	
		33,			.20		129.26	23.	.02	

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUG HOURS	H TIME		EATION RATE CM**2/MIN	TEMP DEG C	THICKNESS CM	RI
000602970	VITON/CHLOROBUTYL	112	113	.02 -	.17				.04	3(
2-Ethylhexanoic	Acid									
001495750	MEOPRENE	018	100	>	4.00			••		
	WITRILE	019	100	>	4.00			23.	.05	12
	PVC	003	215	>	4.00			23. 23.	.04 .04	12
2-Ethyl-1-Hexam	ol									
001047670	BUTYL	014	118	>	8.00					
	NEOPRENE	018	100	>	8.00			23.	.07	3
	PV ALCOHOL	102	100	>	8.00			23.	.05	3
	VITON	009	118	,	8.00			23. 23.	.09 .03	3; 3;
Ethylidene Dichl	loride (Dichloroetha	na 1 1\								
000753430	BUTYL	012	118		4					
	PV ALCOHOL	004	100		1.52		186.37		.09	32
	PVC	003			2.73			23.	.08	3
	PVC	003	100		.02		1,902.46	23.	.02	3
	VITON	000	446		.03		1,929.85	23.	.02	3
	VITON	009	118		2.43		3 6.07	23.	.04	3
thyl Methacryla										
000976320	BUTYL	014	118		6.57		12.02	23.	.09	3
	CPE	070	UNK		.53			23.	.05	0
	NITRILE	019	100		.38		186.37	23.	.05	3
	PV ALCOHOL	102	100	>	8.00			23.	.06	3
	PVC	003	100		.03		84.17	23.	.02	3
Formaldehyde, <	57% (Formalin)									
000500000	BUTYL	014	118	>	16.00			23.	.04	32
				>	16.00			23.	.04	22
	CPE	070	UNK	>	3.00			23.	.05	00
	NATURAL RUBBER	. 001	506		.20		.02	23.	.02	32
		017	100		1.00	.90	- 9.02	23.	.05	10
			UNK		.10		3.34	26.	.02	14
	NEOPRENE	002	100		2.00	.90	. 9.02	23.	.02	
		018	100		2.00		< .90	23.	0/	10
		125	103		2.00		< .02	23. 23.	.04	10
	NITRILE	019	100	>	6.00		< .90		0/	04
			103	•	0.00			23.	.06	10
			118	>	21.00		< .02	23.		04
			1.0	>	21.00			23.	.04	32
			UNK	>	6.00			23.	.04	22
	NITRILE+PVC	058	100				< .02	26.	.03	14
	PE .	076	100	_	.50	.90	9.02	23.		10
	· •	070	127	>	6.00		< .90	23.		10
	PVC	003	100	>	8.00		< .02	23.		10
		003 007	100		.07		.05	23.	.02	32
		4 07			1.33	.90		23.		10
		677	103				< .02	23.		04
		077	100		.33	.90		23.		10
		465	44-		6.00	9.02	90.18	23.		10
	SILVER SHIELD	122	118	>	6.00			23.	.01	22
	TEFLON	069	510	>	3.00	•	.02	23.	.05	30
	VITON	009	118	>	16.00			23.	.02	32

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	GH TIME			ION RATE 2/MIN	TEMP DEG C	THICKNESS CM	RE ML
000500000	VITON	009	118	>	16.00				23.	.02	22
Formic Acid (Me	thanoic Acid)										
000641860	PE	076	127		.07			.03	23.		10
formic Acid, >7	0%										
000641863	NATURAL RUBBER	017	100		2.00				23.	.05	11
	NEOP+NAT RUBBER	026	121		3.20			12.02		.05	2
	NEOPRENE	002	100	>	6.00				23.	.03	1
		018	100	>	6.00				23.	.04	1
	NITRILE	019	100		4.00				23.	.06	1
	NITRILE+PVC	058	100		.50				23.	.00	1
	PE	076	100		.20				23.		
	PVC	007	100	>	6.00				23.		1
		077	100	•	.67				23.		1
		• • • • • • • • • • • • • • • • • • • •			1.25				23.		1
reon TF											
00761310	MATURAL RUBBER	017	100		.15			1,002.00	25.	.03	2
			120		.04			3,006.00		.02	2
			502		.28			821.64		.05	Z
			504		.27			701.40		.05	2
					.48			591.18		.06	2
	NEOP+NAT RUBBER	026	102		.27			701.40			
		723	121		.27			474.95		.05	7
	NEOP/NAT RUBBER	008	114		.27			791.58		.05	i
	NEOPRENE	002	100		2.00	.90		9.02		.05	7
		702	100	>	1.00	.70	₹	10.02		•	1
			120	•	3.00		•			.08	2
		018	100				_	20.04		.07	2
		010	118	_	4.00		<	.90		.04	1
				>	1.00		<	10.02		.08	2
			120	>	1.00		<	10.02		.05	2
				>	1.00		<	10.02		.07	2
				>	1.00		<	10.02		.05	2
				>	1.00		<	10.02	25.	.03	2
	NITRILE	019	100	>	1.00		<	10.02		.04	2
				>	6.00		<	.90	23.	.06	1
				>	1.00		<	10.02	25.	.06	2
				>	1.00		<	10.02		.04	2
			503	>	1.00		<	10.02	25.	.03	2
	NITRILE+PVC	058	100		.25	90.18	•	901.80	23.		1
	PE	006	100		.08			10.02	25.	.01	2
			505	>	1.00		<	1.00	25.	.01	2
	•	076	100		.13	9.02	•	90.18			1
	PV ALCOHOL	004	100		.50	.90	•	9.02			1
	PVC	003	120		.04			3,406.80		.01	2
					.09			2,204.73		.01	2
					.18			190.38		.03	2
					.13			240.48		.02	2
			500		.04			2,605.20		.01	2
			501		.04			3,006.00		.01	2
					.05			1,903.80		.02	2
								A PALLY MAIL			

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME		-	ION RATE *2/MIN	TEMP DEG C	THICKNESS CM	REF
000761310	PVC	077	100		1.00	9.02	•	90.18	23.		107
Freon TMC											
577623190	NATURAL RUBBER	017	100		.05	901.80		9,018.00	23.	.05	107
	NEOPRENE	002	100		.17			901.80	23.		107
		018	100		.05	901.80	-	9,018.00	23.	.04	107
	NITRILE	019	100		.17	901.80		9,018.00	23.	.06	107
	PV ALCOHOL	004	100	>	6.00		<	.90			107
Furan (Furfuran	1)										
001100090	BUTYL	014	118		1.35			60.12	23.	.09	323
	PV ALCOHOL	102	100		1.89			.08	23.	.09	323
	PVC	003	100		.02			2,951.89	23.	.02	323
	VITON	009	118		.33			138.28	23.	.05	323
Furfural											
000980110	BUTYL	014	118	>	16.00				23.	.04	323
				>	16.00				23.	.04	227
	NATURAL RUBBER	001	210		.25			30.06	23.		080
		017	100		.25	9.02	•	90.18	23.	.05	107
	NEOPRENE	002	100		2.00	9.02	•	90.18	23.		107
			210		.50			18.04	23.		080
		018	100		.33	9.02	•	90.18	23.	.04	10
	NITRILE	005	210		.92			156.31	23.		08
		019	118		.40			1,591.38	23.	.03	32:
					.47			1,593.18		.04	22
	NITRILE+PVC	057	210		.67			144.29	23.		08
	PE	076	100		.08		<	.90			10
	PV ALCOHOL	004	100	>	6.00		<	.90			10
		102	100	>	16.00				23.	.03	32
	PVC	007	210		1.17			108.22			80
	SILVER SHIELD	122	118	>	8.00				23.	.01	22
	TEFLON	069	510	>	1.00		<	.02		.05	303
	VITON	009	118		3.50 3.60			8 8.98 8 8.98		.03 .02	32: 22:
0											
Gasoline 080066190	BUTYL	064	117		.58				23.	.02	21:
	SUTYL/NEOPRENE	110	117		.33				23.	.02	21
	NEOP+NAT RUBBER	026	121		.07			1,076.15		.05	23
	NITRILE	019	100	>	6.00		<	.90		.06	10
	NITRILE+PVC	058	100		.08	90.18		901.80			10
	PE	076	100		.05	90.18		901.80			10
	PV ALCOHOL	004	100	>	6.00		<	.90			10
	PVC	077	100		.07	9.02		90.18			10
					.08	90.18		901.80			10
	VITON/NEOPRENE	111	117	>	8.00				23.	.02	21
Glutaraldehyde											
001113080	BUTYL	014	118	>	8.00		<	.02	23.	.09	32
	NEOPRENE	018	100	>	8.00		<	.02	23.	.05	32
	PVC	003	100		1.17			6.01	23.	.02	32
	VITON	009	118		8.00			.02	23.	.04	32

DITYL DITY	CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEAT UG/CH*	ION RATE *2/MIN	TEMP DEG C	THICKNESS	RE
PY ALCOHOL 102 100 > 8.00 2307 32 PYC 007 10003 4,064.11 2302 32 PYC 100 11862 432.86 2307 32 eptane 01428250 NATURAL RUBBER 001 210 .10 703.07 2300	Halothane										
PVC	001516770	BUTYL	014	118		3.07		138.28	23.	.09	32
## OFFICE		PV ALCOHOL	102	100	>	8.00			23.	.07	32
### ### ### ### ### ### ### ### ### ##		PVC	007	100		.03		4,064.11	23.	.02	323
101428250 NATURAL RUBBER 001 210 .10 .703.07 23. 08		VITON	009	118		.62		432.86	23.	.05	323
UMIK	Neptane										
MEOP/HAT RUBBER 008	001428250	NATURAL RUBBER	001	210		.10		703.07	23.		080
MEOP/NAT RUBBER 008 UNIX				UNK			>	521.04	23.	.12	274
MEOPRENE 002 210 .75 499.00 23. 08. 08. 018 UNK > 1.00 23. 06 27. 09 27.							>			.04	27
### NITRILE		•					>	526.05	23.	.05	27
### MITRILE		NEOPRENE		210		.75		499.00	23.		08
NITRILE 005 210 6.00 < 0.2 23. 05 27. 08. 09. 09. 09. 09. 09. 23. 05 27. 09. 09. 09. 09. 09. 09. 09. 09. 09. 09			018	UNK	>				23.	.06	274
### STATE ST					>					.09	27
NITRILE-PVC 057 210 3.00 18.04 23. 05 27		NITRILE					<	.02			80
MITRILE+PVC 057 210 3.00 18.04 23. 08 PVC 007 210 5.50 180.36 23. 08 UNK .255 > 450.90 23. 1.6 27 VITOM 009 UNK > 1.00 23. 03 27 exachlorocyclopentadiene 00774740 8UTYL 014 118 > 8.00 < .02 2306 32 PV ALCOHOL 102 100 > 8.00 < .02 2308 32 PV ALCOHOL 102 100 > 8.00 < .02 2308 32 VITOM 009 118 > 8.00 < .02 2308 32 PV ALCOHOL 102 100 > 8.00 < .02 2308 32 PV ALCOHOL 102 100 > 8.00 < .02 2308 32 WITOM 009 118 > 8.00 < .02 2308 32 PV ALCOHOL 102 100 > 8.00 < .02 2308 32 PV BUTYL 034 UNK 1.00 - 1.50			019	UNK							27
PVC 007 210 .50 180.36 23. 08					>					.05	27
VITON ONK .25 > 450.90 23. .16 27									_		80
VITON 009		PVC	007								80
exachlorocyclopentadiene 00774740							>	450.90			
00774740 BUTYL 014 118 > 8.00		VITON	009	UNK	>	1.00			23.	.03	27
HITRILE 019 100 > 8.00 < .02 2304 32 PV ALCOHOL 102 100 > 8.00 < .02 2304 32 PV ALCOHOL 102 100 > 8.00 < .02 2308 32 VITON 009 118 > 8.00 < .02 2303 32 PV ALCOHOL 102 100 PE 0.06803190 BUTYL 034 UNK 1.00 - 1.50 13.03 2209 07 PE 006 209 .2542 4.01 2201 07 PE 006 209 .2542 4.01 2201 07 PE 006 209 .2542 4.01 2201 07 PE 0.06 209 .2504 209 .25 -		•									
PV ALCOHOL 102 100 > 8.00 < .02 2308 32 VITON 009 118 > 8.00 < .02 2308 32 VITON 009 118 > 8.00 < .02 2303 32 examethylphosphoamide 06803190 BUTYL 034 UNK 1.00 - 1.50 13.03 2209 07 PE 006 209 .2542 4.01 2201 07 PE 006 209 .2542 4.01 2201 07 PE 01105430 BUTYL 012 UNK 1.13 > 2,344.68 2504 27 .17 1,923.84 2506 27 .33 1,833.66 2506 27 .33 1,833.66 2506 27 .17 2,344.68 2506	000774740				>	8.00	<	.02	23.	.06	32
VITON 009 118 > 8.00					>	8.00	<	.02	23.	.04	32
examethylphosphoamide 06803190 BUTYL 034 UNK 1.00 - 1.50 13.03 2209 07 PE 006 209 .2542 4.01 2201 07 exame 01105430 BUTYL 012 UNK .13 .2,344.68 2504 27 .33 1,833.66 2506 27 .42 1,7238.47 2506 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2506 27 .17 2,344.68 2504 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .17 2,344.68 2506 27 .18 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .33 1,172.34 2506 27 .34 .35 .37 .38 .38 .38 .38 .38 .38 .38 .38 .38 .38					>		<	.02	23.	.08	32
06803190 BUTYL 034 UNK 1.00 - 1.50 13.03 2208 07 PE 006 209 .2542 1.13 2,344.68 2504 27 .17 1,923.84 2506 27 .42 1,238.47 2506 27 .33 1,833.66 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,344.68 2504 27 2,344.68 2504 27 2,3		VITON	009	118	>	8.00	<	.02	23.	.03	32
MITRILE 033 UNK 1.00 - 1.50 13.03 2209 07 PE 006 209 .2542 4.01 2201 07 PE 006 209 .2542 4.01 2201 07 PE 00105430 BUTYL 012 UNK .13 > 2,344.68 2504 27 .33 1,833.66 2506 27 .42 1,238.47 2506 27 .42 1,238.47 2506 27 .42 1,238.47 2506 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .17 2,344.68 2504 27 .17 2,344.68 2504 27 .17 2,344.68 2504 27 .17 > 2,344.68 2504 27 > 2,344.6	Hexamethylphosp	ho a mide									
PE 006 209 .25 .42 4.01 2201 07 exame 01105430 BUTYL 012 UNK .13 > 2,344.68 2504 27 .17 1,923.84 2504 27 .33 1,833.66 2506 27 .42 1,238.47 2506 27 .42 1,238.47 2506 27 .17 2,314.62 2504 27 .17 2,314.62 2504 27 .50 1,370.74 2506 27 .50 1,370.74 2506 27 .50 1,226.45 2504 27 .112 > 2,344.68 2504 27 .12 > 2,344.68 2504 27 .13 1,172.34 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .34 1,490.98 2506 27 .35 1,490.98 2506 27 .37 2,344.68 2506 27 .38 2,344.68 2506 27 .39 2,344.68 2506 27 .30 2,344.68 2506 27 .31 2,344.68 2506 27 .32 3,446.89 2506 27 .33 1,490.98 2506 27 .34 256.11 2528 .35 23 .04 06 .17 45 .04 06 .17 45 .04 06 .17 45 .04 06 .17 45 .04 06 .17 45 .04 06 .17 25 .07 30 .17 25 .07 30 .18 25 .07 30 .18 25 .07 30	006803190	BUTYL	034	UNK	1.00 -	1.50		.02	22.	.08	07
exane 01105430 BUTYL 012 UNK .13 > 2,344.68 2504 27 .17		NITRILE	033	UNK	1.00 -	1.50		13.03	2 2.	.09	
01105430 BUTYL 012 UMK .13 > 2,344.68 2504 27		PE	006	209	.25 ·	.42		4.01	22.	.01	07
.17 1,923.84 2504 27 .33 1,833.66 2506 27 .42 1,238.47 2506 27 .03 > 2,344.68 2504 27 .17 2,314.62 2504 27 .50 1,370.74 2506 27 .50 1,226.45 2506 27 .12 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2506 27 .17 > 2,344.68 2506 27 .33 1,172.34 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .34 1,490.98 2506 27 .35 2506 27 .36 26 27 .37 2506 27 .38 2506 27 .39 2506 27 .39 2506 27 .30 2507 30 .30 2507 30 .31 2507 30 .32 2507 30 .33 2507 30 .34 2507 30 .35 2507 30	iexane										
.33 1,833.66 2506 27 .42 1,238.47 2506 27 .03 > 2,344.68 2504 27 .17 2,314.62 2506 27 .50 1,370.74 2506 27 .50 1,226.45 2506 27 .12 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2506 27 .17 > 2,344.68 2506 27 .18 2506 27 .19 20 2506 27 .10 UNK .04 256.11 2506 27 .10 UNK .35 .23 .04 06 .17 4 UNK .35 .25 .26 .36 .37 .17 25 .36 .37 .36 .37 .37 .38 .38 .38 .38 .38 .38 .38 .38 .38 .38	001105430	BUTYL	012	UNK			>				27
.42 1,238.47 2506 27 .03 > 2,344.68 2504 27 .17 2,314.62 2504 27 .50 1,370.74 2506 27 .50 1,226.45 2504 27 .12 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2506 27 .19										.04	27
.03 > 2,344.68 2504 27 .17 2,314.62 2504 27 .50 1,370.74 2506 27 .50 1,226.45 2506 27 .12 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .17 > 2,344.68 2506 27 .33 1,172.34 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .34 256.11 2526 .35 256.11 2526 .37 256.11 2526 .38 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .39 256.11 2526 .30 256.11 256.11 .30 256.11 256.11 .30 256.1										.06	27
.17											27
.50 1,370.74 2506 25 .50 1,226.45 2506 25 .12 > 2,344.68 2504 25 .17 > 2,344.68 2504 25 .33 1,172.34 2506 25 .33 1,490.98 2506 25 .33 1,490.98 2506 25 .33 2,490.98 2506 25 .34 26.11 2526 .35 2536 25 .37 2538 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2538 25 .38 2							>			.04	2
.50 1,226.45 2506 25 .12 > 2,344.68 2504 25 .17 > 2,344.68 2504 25 .17 > 2,344.68 2506 25 .33 1,172.34 2506 25 .33 1,490.98 2506 25 .33 1,490.98 2506 25 .33 2,490.98 2506 25 .34 256.11 2526 .35 23 .04 05 .37 4504 05 .37 4504 05 .38 2507 30 .39 2507 30 .30 2507 30 .30 2507 30								-		.04	2
.12 > 2,344.68 2504 27 .17 > 2,344.68 2504 27 .33 1,172.34 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .34 1,490.98 2506 27 .35 1,490.98 2506 27 .36 25 26.11 2526 .37 25 25 .04 05 .38 25 .04 05 .39 25 .07 30 .40 25 .07 30 .07 30 .07 30 25 .07 30 .										.06	27
.17 > 2,344.68 2504 27 .33 1,172.34 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .34 1,490.98 2506 27 .35 1,490.98 2506 27 .36 256.11 2526 .37 26.11 2526 .38 256.11 2526 .39 256.11 2504 05 .17 4504 05 .17 4504 05 .17 2507 30 .18 2507 30 .18 2507 30 .18 2507 30 .18 2507 30 .18 2507 30 .18 2507 30											27
.33 1,172.34 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .33 1,490.98 2506 27 .34 256.11 2526 .35 2304 06 .17 4504 06 .17 4504 06 .17 4504 06 .17 2507 30 .18 ATURAL RUBBER 001 210 .08 751.50 2308		•					>				
.33 1,490.98 2506 27 014 UNK .04 256.11 25. 26 107 UNK .35 2304 05 .17 4504 05 CPE 060 113 > 3.00 2507 30 MATURAL RUBBER 001 210 .08 751.50 23. 08							>				
014 UNK .04 256.11 25. 28 107 UNK .35 2304 05 .17 4504 05 CPE 060 113 > 3.00 2507 30 NATURAL RUBBER 001 210 .08 751.50 23. 08											
107 UNK .35 2304 05 .17 4504 05 CPE 060 113 > 3.00 2507 30 NATURAL RUBBER 001 210 .08 751.50 23. 08			_							.06	
.17 4504 05 CPE 060 113 > 3.00 2507 30 MATURAL RUBBER 001 210 .08 751.50 23. 08								256.11			
CPE 060 113 > 3.00 2507 30 MATURAL RUBBER 001 210 .08 751.50 23. 08			107	UNK						.04	
MATURAL RUBBER 001 210 .08 751.50 23. 08											09
					>					.07	30
MEOPRENE 002 100 1.50 9.02 · 90.18 23. 10											80
		NEOPRENE	002	100		1.50	9.02 ·	90.18	23.		10

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGI HOURS	H TIME	PERMEAT I		TEMP DEG C	THICKNESS CM	REI
001105430	NEOPRENE	002	210		.67		576.15	23.		080
00.105450	WEW NEWS	00L	UNK		.86		376.13	23.	.05	186
					.06	•	27.66		.03	287
		018	100		.75		.03		.05	323
					.75	90.18 -	901.80		.04	107
			UNK		1.00		121.44		.04	27:
					1.00		75.15		.04	27:
					1.00		91.38		.06	27.
					1.00		52.91		.06	27.
		031	UNK		.33			37.	.04	18
		125	103				12.02	23.		04
	NITRILE	005	210		6.00	<	.02	23.		080
		019	100	>	4.00			23.	.04	32
				>	6.00	<	.90	23.	.06	107
			103				6.01	23.		045
			UNK	>	7.00	<	.02	25.	.04	27.
				>	18.00	<	.02	25.	.04	27.
				>	17.00	<	.02	25.	.06	27.
				>	17.00	<	.02	25.	.06	27
		033	UNK		1.31			37.	.05	18
	NITRILE+PVC	057	210		1.50		42.08	23.		08
		058	100		.07	90.18 -	901.80	23.		10
	PE	056	UNK		.07			37.	.01	18
		076	100		.01	90.18 -	901.80	23.		10
	PV ALCOHOL	004	100	>	6.00	<	.90	23.		10
			UNK	>	8.17			25.		28
		102	100	>	14.00			23.	.03	32
	PVC	007	103				90.18			04
			210		.42		270.54			80
			UNK		.31			23.	.05	18
					.62			23.	.07	18
		049	UNK		.48			37.	.03	18
	SILVER SHIELD	122	118	>	6.00			23.	.01	22
	TEFLON	069	510	>	5.00	<	.02		.05	30
	111 5011	***	444	>	5.00	<	.02		.05	30
	VITON	009	118	>	11.00			23.	.02	32
	VITON /AND ARABITS	443	447	>	11.00			23.	.02	22
	VITON/CHLOROBUTYL	112	113	>	3.00			25.	.04	30
				>	3.00			25.	.04	30
Mydrazine (Diam	tina)									
003020120	SUTYL	014	118					22		
TOSVEV IEV	NEOPRENE	018	100	>	8.00 16.00			23. 23.	.04	32
	NITRILE	019	118	,	8.00				.05	32
	PVC	003	100	,	8.00			23. 23.	.04	32
	· • •	•••	100	•	5.00			చ.	.03	32
Hydrazine, 30-7	70%									
003020122	BUTYL	014	118	>	8.00	<	.02	23.	.04	22
	MATURAL RUBBER	017	100	•	6.00	` `	.90		.05	10
	MEOPRENE	002	100	>	6.00	` `	.90		.07	10
		018	100	,	6.00	` `	.90		.04	10
	NITRILE	019	100	>	6.00		.90		.06	10
		-				•	. 70		.00	17

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM°*2/MIN	TEMP DEG C	THICKNESS CH	RE
003020122	NITRILE+PVC	058	100		6.00	-	23.		10
	PE	076	100	>	6.00		23.		10
	PVC	007	100	>	6.00	< .90			10
		077	100	>	6.00		23.		10
				>	6.00		23.		10
	SILVER SHIELD	122	118		2.10	6.01		.01	22
Mydrochloric Ac	id								
076470100	BUTYL	064	117	>	8.00		23.	.02	21
				>	8.00		23.	.01	21
				>	8.00		23.	.02	21
	BUTYL/NEOPRENE	110	117	>	8.00		23.	.02	21
	CPE	070	UNK	>	3.00		23.	.05	00
	NATURAL RUBBER	001	210		6.00	< .02	23.		08
	NEOP+NAT RUBBER	026	121		4.42	12.02	23.	.05	23
	NEOPRENE	002	210		6.00	< .02	23.		08
		093	117	>	8.00		23.	.02	21
		138	117	>	8.00		23.	.03	21
	NEOPRENE+PVC	127	117	>	8.00		23.	.02	21
	NITRILE	005	210		6.00	< .02			08
	NITRILE+PVC	057	210		6.00	< .0			80
		058	117		1.75		23.	.01	21
	PVC	007	210		6.00	< .02			80
		049	117	>	8.00		23.	.01	21
				>	8.00		23.	.01	21
		053	117		5.17		23.	.02	21
		077	117	<	5.00		23.	.01	21
					2.92		23.	.01	21
		144	117		4.33		23.	.02	21
	SARANEX	061	117		5.00		23.	.01	21
	VITON	145	117	>	8.00		23.	.02	21
	VITON/NEOPRENE	111	117	>	8.00		23.	.02	21
Mydrochloric Ac	id. <30%								
076470101	NATURAL RUBBER	017	100	>	6.00		23.	.05	10
			102	>	8.00		23.	.05	02
				>	8.00		23.	.05	02
				>	8.00		23.	.05	02
				>	8.00		23.	.05	02
	NEOP+NAT RUBBER	026	102	>	8.00		23.	.06	02
				>	8.00		23.	.04	02
				>	8.00		23.	.05	02
	NEOP/NAT RUBBER	908	102	>	8.00		23.		02
	NEOPRENE	002	100	>	6.00		23.		10
		018	100	>	6.00		23.	.04	10
	MITRILE	019	100	>	6.00		23.	.06	10
	WITRILE+PVC	058	100	>	6.00		23.		10
	PE	076	100	>	6.00		23.		10
	PVC	007	100	>	6.00		23.		10
		077	100	>	6.00		23.		10
			· - -		6.00		23.		• • •

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	R
076470102	MATURAL RUBBER	001	UNK		1.00				-
		015	UNK	>	1.00		23. 23.	04	(
		017	100	>	5.00		23. 23.	.04 .05	1
			102	>	8.00		23.	.05	(
					5.50		23.	.05	ď
				>	8.00		23.	.05	(
				>	8.00		23.	.05	,
	NEOP+NAT RUBBER	026	102	>	2.50		23.	.06	(
				>	8.00		23.	.04	
				>	8.00		23.	.05	ĺ
	NEOP/NAT RUBBER	800	102	>	8.00		23.		Ì
			UNK	>	1.00		23.		(
	NEOPRENE	002	100	>	6.00		23.		ì
		018	100	>	6.00		23.	.04	1
			UNK	>	1.00		23.	.06	(
	NITRILE	019	100	>	6.00		23.	.06	•
			UNK	>	1.00		23.	.05	(
	PE	076	127		.58		23.		1
	PVC	003	UNK		.40		23.	.02	(
		007	100	>	5.00		23.		1
			UNK	>	1.00		23.		(
	SARANEX	061	127	>	46.67	< .02	23.		1
	SILVER SHIELD	122	118	>	6.00		23.	.01	2
	VITON	009	UNK	>	1.00		23.	.03	(
<mark>lydroc</mark> hloric Ac 076470103	id, >70% NATURAL RUBBER	017	400	_					
770-70103	MATUKAL RUBBER	017	102	>	6.00		23.	.05	(
				_	5.50		23.	.05	(
				>	6.00		23.	.05	(
	NEOP+NAT RUBBER	026	102	>	5.50 2.50		23.	.05	(
	NEOF HAT ROBBER	020	102	•	5.50		23.	.06	(
				>			23.	.04	(
	NEOP/NAT RUBBER	800	102	>	6.00 6.00		23. 23.	.05	(
lydrocyanic Aci	đ								
00749080	BUTYL	034	UNK		1.00	< _02	****	.04	1
	PE	076	UNK		1.00		****	.02	1
	PVC	049	UNK		.50		****	.08	1
	id (Hydrogen Fluoric	de)							
76643930	BUTYL	064	117	>	8.00		23.	.02	2
				>	8.00		23.	.01	;
	-				7.08		23.	.02	2
	BUTYL/NEOPRENE	110	117	>	8.00		23.	.02	
	NEOPRENE	093	117	>	8.00		23.	.02	
		138	117		4.25		23.	.03	
		139	117	>	8.00		23.	.02	
	NEOPRENE+PVC	127	117		3.50		23.	.02	į
	NITRILE+PVC	058	117		1.08		23.	.01	;
	PE	076	117		1.50		23.	.01	
	PVC	049	117	>	8.00		23.	.01	
					2.17		23.	.01	į

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	RE
076643930	PVC	053	117		2.08		23.	.02	2
					1.67		23.	.02	2
		077	117	<	.08		23.	.01	2
					.92		23.	.01	2
		144	117		.42		23.	.02	2
	SARANEX	061	117		3.17		23.	.01	2
	VITON VITON/NEOPRENE	145 111	117 117	>	8.00 8.00		23. 23.	.01 .02	2
ydrofluoric A	cid 30.70%								
7664 3 932	NATURAL RUBBER	017	100		3.50				
	HATTONNE ROPPER	0.7	102	>	8.00		23.	.05	1
			102	•	1.50		23.	.05	C
				>			23.	.05	0
				,	8.00		23.	.05	0
	NEOP+NAT RUBBER	026	102		4.50		23.	.05	0
	HEOFTHAT RUBBER	025	102		3.00		23.	.06	0
				_	3.50		23.	.04	0
			121	>	8.00		23.	.05	0
	NEOP/NAT RUBBER	008	102	>	8.00	< .02		.05	2
	NEOPRENE	002	102	>	8.00		23.		0
	NEOFRENE	018	100		1.25		23.		1
	NITRILE	019	100		1.00		23.	.04	1
	NITRILE+PVC	058	100		2.00		23.	.06	1
	PE	076	100	_	.08		23.		1
	**	076	127	>	6.00		23.		1
	PVC	007	100	>	.50	< .10			1
	PVC	077	100		.67		23.		1
		077	100		2.00		23.		1
	SARANEX	061	127	>	1.50 .50	< .10	23. 23.		1
lydrofluoric A	cid. >70%								
76643933	NATURAL RUBBER	017	102		4.00		23.	AE.	•
	William Record	0.1	102		1.50		23. 23.	.05	0
					4.00			.05	0
					1.50		23.	.05	0
	NEOP+NAT RUBBER	026	102		1.50		23. 23.	.05	0
		V2.			1.50		23.	.06	0
					4.00		23. 23.	.04 .05	0
	NEOP/NAT RUBBER	800	102		4.00		23.	.03	0
ydrogen Perox	ide, 30-70%								
77228412	NATURAL RUBBER	017	100	>	6.00		23.	.05	1
	•		102	>	8.00		23.	.05	C
			-	>	8.00		23.	.05	0
				>	8.00		23.	.05	0
				>	8.00		23.	.05	0
	NEOP+NAT RUBBER	026	102	>	8.00		23.	.06	C
			·	>	8.00		23.	.04	C
				· •	8.00		23.	.05	0
	NEOP/NAT RUBBER	800	102	>	8.00		23.		0
	NEOPRENE	002	100		. 12		23.		1

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	HOURS	JGH TIME	PERMEATION UG/CM**2,		TEMP DEG C	THICKNESS	REF
077228412	NITRILE	019	100	 >	6.00				.06	107
	PVC	007	100	>	6.00			23.	, ,	107
Hydrogen Phospi	nide (Phosphine)									
078035120	NATURAL RUBBER	087	UNK		.50	<	.02	23.	.05	173
	NEOPRENE	031	UNK		.42	<	.02	23.	.05	173
		093	UNK		.17	<	.02	23.	.03	173
	PE	091	UNK		.33	<	.02	23.	.04	173
					.42	<	.02	23.	.04	173
	PVC	054	UNK		1.67	<	.02		.02	173
					.67	<	.02	23.	.02	173
Hydroquinone										
001233190	NITRILE+PVC	058	100	>	6.00			23.		107
	PE	076	100	>	6.00			23.		107
	PVC	077	100	>	6.00			23.		107
				>	6.00			23.		107
Hydroquinone,	<30%									
001233191	NATURAL RUBBER	017	100	>	6.00	<	.90	23.	.05	107
	NEOPRENE	002	100	>	6.00	<	.90	23.		107
		018	100	>	6.00	<	.90	23.	.04	107
	NITRILE	019	100	>	6.00	<	.90	23.	.06	107
	PVC	007	100	>	6.00	<	.90	23.		107
Iminobispropyla	amine									
000561880	BUTYL	014	118	>	8.00			28.	.09	323
	NATURAL RUBBER	001	250		.10		84.17	26.	.02	323
	NEOPRENE	018	100	>	8.00			27.	.05	323
	VITON	009	118	>	8.00			27.	.04	323
b-Tonone										
149010760	BUTYL	014	118	>	9.00			23.	.06	323
	PV ALCOHOL	102	100	>	14.00			23.	.04	323
				>	8.00			23.	.03	323
			118	>	8.00			23.	.03	323
Isoamyl Acetate	•									
001239220	BUTYL	107	120		.03		1,903.80	25.	.02	222
	HYPALON	108	120		.50		350.70		.05	222
	NATURAL RUBBER	017	100		.09		1,102.20		.03	222
			502		.16		791.58		.05	222
			504		.17		661.32		.05	222
	•				.32		470.94	2 5.	.06	222
	NEOP+NAT RUBBER	026	102		.16		761.52	25.	.05	222
	MEOP/NAT RUBBER	800	114		.20		731.46	25.	.05	222
	NEOPRENE	002	100		.20		140.28	25.	.08	222
			120		.09		120.24	25.	.07	222
		018	118	>	1.00			25.	.08	222
			120		.50		310.62		.05	222
					.27		541.08		.03	222
	WITRILE	019	100	>	1.00			25.	.04	555
				>	1.00			25.	.06	222

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME		ATION RATE M**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
001239220	NITRILE	019	100		1.08		63.13	25.	.04	222
			191		.70		130.26	25.	.03	222
	PE	006	100		.03		20.04	25.	.01	222
			505	>	1.00		< 10.02	25.	.01	222
	PVC	003	120		.02		3,306.60	25.	.01	222
					.02		3,306.60	25.	.01	222
					.08		1,603.20		.03	222
					.06		2,505.00		.02	222
			500		.02		•	25.	.01	222
			501		.02		4,509.00		.01	222
					.03		2,104.20	25.	.02	222
Isoamylnitrile										
001104630	NEOPRENE	018	100		.78		224.25	23.	.05	000
	NITRILE	019	100		2.93		9.62	23.	.04	323
	PV ALCOHOL	102	100	>	8.00			23.	.03	323
	VITON	009	118		1.13		55.31	23.	.02	323
Isobutyl Acryla	ate									
001066380	BUTYL	014	118	>	8.00			23.	.09	323
	NITRILE	019	100		1.13		126.25	23.	.05	323
	PV ALCOHOL	102	100	>	8.00			23.	.08	323
	PVC	003	100		.02		204.41	23.	.02	323
Isobutyl Alcoho	ા									
000788310	BUTYL	014	118	>	8.00			23.	.07	323
	NATURAL RUBBER	001	210		2.00		4.51	23.		080
		017	100		.42	9.02	- 90.18	23.	.05	107
	NEOPRENE	002	100	>	6.00		< .90	23.		107
			210		6.00		< .02	23.		080
		018	100		.17		< .90	23.	.04	107
	_			>	8.00			23.	.05	323
	NITRILE	005	210		6.00		< .02	23.		08 0
		019	100	>	6.00		< .90	23.	.06	107
			118	>	8.00			23.	.05	323
	NITRILE+PVC	057	210		4.00		4.81	23.		080
		058	100		.12	.90				107
	PE	076	100		.05	.90				107
	PVC	007	100		.17		< .90			107
			210		2.00		4.51			08 0
		077	100		.50		< .90			107
	VITON	009	118	>	2.00 8.00	.9 0	- 9.02	23. 23.	.05	107 3 23
	•								.03	,,,
Isobutyl Nitrit 005425630	e Butyl	014	118		1.30		470 64		•	
	NITRILE	019	100		1.63		132.26	23.	.04	323
	PVC	003	100				6.01	23.	.06	323
	VITON	009	118		.03 .33		1,454.90 619.24	23. 23.	.02 .04	323 323
		 ,					017.24	٤3.	.04	323
Isobutyraldehyd 000788420		^ */	444	_						
UUU / 004 ZU	BUTYL	014	118	>	8.00			23.	.06	323
	NEOPRENE	018	100		.42		48.70	23.	.05	323

Description of the section of the se

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME			ON RATE 2/MIN	TEMP DEG C	THICKNESS CM	REI
000788420	PV ALCOHOL	102	100		.02			1.57	23.		323
	VITON	009	118		.07			69.14	23.	.03	323
Isooctane											
266356430	NATURAL RUBBER	001	103					294.59	23.		045
	NEOPRENE	002	100		6.00		<	.90			107
		018	100		1.00	9.02		90.18	23.	.04	10
		125	103				<	.02		•••	04!
	NITRILE	019	100		6.00		<	.90		.06	10
			103				<	.02			04
	NITRILE+PVC	058	100		.28	.90	•	9.02	23.		107
	PE	076	100		.23	9.02	•	90.18	23.		107
	PV ALCOHOL	004	100		.67	.90	•	9.02	23.		107
	PVC	007	103					3.01	23.		045
		077	100		.25	.90	•	9.02	23.		10
					1.25	.90	•	9.02	23.		10
soprene											
000787950	NEOPRENE	018	100		.27			192,38	23.	.05	32
	NITRILE	019	100		.87			27.66	23.	.04	32
	PV ALCOHOL	102	100	>	12.00			2.100	23.	.03	32
	VITON	009	118		6.20			1.14	23.	.03	32
sopropyl Alcoh	ol (Propanol, 2-)										
00676300	CPE	060	113	>	8.00				27	25	20
	NATURAL RUBBER	001	210	•	1.50			12.63	23.	.05	20
		017	100		.12		<	.90	23. 23.	05	80
		• • • • • • • • • • • • • • • • • • • •	102		.25		•	.12		.05	10
					.17			1.80		.05 .05	02 02
					.25			.12		.05	02
					.37			1.20	23. 23.		
	NEOP+NAT RUBBER	026	102		.15			1.20	23. 23.	.05	02
					.23			1.20	23.	.06	02
					.25			.12	23. 23.	.04 .05	02 02
			121		.52			6.01	23.		23
	NEOP/NAT RUBBER	800	102		.25			.12		.05	
	NEOPRENE	002	100	>	6.00		<	.90			10
			210		2.00		•	4.81			08
		018	100	>	6.00		<	.90	23.	.04	10
	NITRILE	005	210		6.00		`	.02	23.		08
		019	100	>	6.00		`	.90	23.	.06	10
	NITRILE+PVC	057	210		6.00		<	.02	23.	.00	08
		058	100		.58	.90		9.02	23.		10
	PE ·	076	100		.17	.90		9.02	23.		10
	PVC	007	100		2.50		<	.90	23.		10
			210		2.17			12.02	23.		08
		077	100		.50	.90		9.02	23.		10
					.50			9.02	23.		10
	TEFLON	069	510	>	3.00		<	.02	23.	.05	30
sopropylamine											
00753100	BUTYL	014	118		4.08			36.07	24.	.09	32
								01	-7.	.07	JE.

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME			ON RATE	TEMP DEG C	THICKNESS CM	R
000753100	PVC	007	100		.03			4,671.32	18.		_
	TEFLON	069	510	>	3.00		<	.02		.02 .05	3: 3:
	VITON	009	118	_	.18			3,342.67		.04	3
Isopropyl Ether											
01082030	CPE	070	UNK	>	3.00				23.	06	•
	NATURAL RUBBER	017	UNK	•	.06		>	480.96	23. 23.	.05	0
	NEOP/NAT RUBBER	800	UNK		.12		>	501.00	23.	.04 .05	2
	NEOPRENE	018	UNK	>	1.00			301.00	23.	.09	2
					.71		>	10.02	23.	.06	2
	NITRILE	019	UNK	>	1.00		-		23.	.05	2
	PV ALCOHOL	004	UNK	>	1.00				23.	.12	2
	PVC	007	UNK		.25		>	501.00	23.	.16	2
	VITON	009	UNK	>	1.00		-	301.00	23.	.03	2
sopropylmethac	rvlate										
46553490	BUTYL	014	118	>	8.00				23.	.09	3
	NITRILE	019	100	·	1.88			36.07	23.	.05	3
	PV ALCOHOL	102	100	>	8.00			30.07	23.	.09	1
	PVC	003	100		.02			354.71	23.	.02	1
erosene											
30082060	NATURAL RUBBER	017	100		.50	.90		9.02	23.	.05	
	NEOP+NAT RUBBER	026	121		.60			12.02	23.	.05	:
	NEOPRENE	002	100	>	6.00		<	.90	23.		
		018	100	>	6.00		<	.90	23.	.04	
	NITRILE	019	100	>	6.00		<	.90	23.	.06	
	NITRILE+PVC	058	100		1.25	9.02		90.18	23.		
	PE	076	100		.20	9.02		90.18	23.		
	PV ALCOHOL	004	100	>	6.00		<	.90	23.		
	PVC	007	100	>	6.00		<	.90	23.		
		077	100		.50	9.02		90.18	23.		
					3.00	9.02	•	90.18	23.		
etic Acid, >7	0%										
00793343	NATURAL RUBBER	017	100	>	6.00		<	.90	23.	.05	
	NEOPRENE	002	100	>	6.00		<	. 9 0		***	
		018	100	>	6.00		<	.90		.04	
	WITRILE	019	100	>	6.00		<	.90		.06	
	NITRILE+PVC	058	100	>	6.00		<	.90			
	PE	076	100	>	6.00		<	.90			
	PV ALCOHOL	004	100	>	6.00		<	.90			
	PVC	007	100	>	6.00		<	.90			
	•	077	100	>	6.00		<	.90			
				>	6.00		<	.90			
uric Acid, 30	· 70%										
1430772	MATURAL RUBBER	017	100	>	6.00				23.	.05	•
	MEOPRENE	002	100	>	6.00				23.		•
		018	100	>	6.00				23.	.04	•
	MITOLIE	019	100	>	6.00					.06	1
	NITRILE	017	100	•	0.00				23.	.00	

CASNO	MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU HOURS	GH TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	R
d-Limonene (Men	thediene								-
059 8 92750	BUTYL	014	118		• ••				
J7072170	NEOPRENE	014		>	8.00		23.	.02	3
			100		1.08		23.	.05	3
	NITRILE	019	100	>	20.00		23.	.04	3
	PV ALCOHOL	102	100	>	8.00		23.	.03	3
laleic Acid, >7	0%								
01101673	NATURAL RUBBER	017	100	>	6.00		23.	.05	
	NEOPRENE	002	100	>	6.00		23.		
		018	100	>	6.00		23.	.04	
	NITRILE	019	100	>	6.00		23.	.06	
	NITRILE+PVC	058	100	>	6.00		23.	.00	
	PE	076	100	>	6.00		23.		1
	PVC	007	100	>	6.00		23.		
		077	100	>	6.00				
		***		,	6.00		23. 23.		
esityl Oxide (1 01417970	Methylpentenone, 4-,	•							
01417970	CPE	0 60	UNK		1.83		23.		
	M1204 (044 0000)				.33		23.		
	VITON/CHLOROBUTYL	112	UNK	>	3.00		23.		
ethacrylonitri	ie								
1269870	BUTYL	014	118	>	8.00		23.	.09	
	MATURAL RUBBER	001	250	<	.02	1,803.60		.02	
	PV ALCOHOL	102	100		.40	.48	23.	.06	
	PVC	003	100		.03	1,142.28		.02	
eth anes ulfonic	Anta								
00757520	NEOPRENE	018	100	_					
00737320	PVC		100	>	4.00		23.	.05	
	PVC	003	215	>	4.00		23.	.05	
ethanol (Methyl	Alcohol)								
0675610	BUTYL	064	117	>	8.00		23.	.02	
				>	8.00		23.	.01	
				>	8.00		23.	.02	
	BUTYL/NEOPRENE	110	117	>	8.00		23.	.02	
	CPE	060	113	>	3.00		25.	.07	
	NATURAL RUBBER	001	210		6.00	< .02			1
		017	100		.33	8.02		.03	
					.22	< .90		.05	
			102		.25	1.20		.05	(
	•				.25	1.20		.05	Ì
					.25	1.20		.05	
					.25	1.20		.05	,
			120		.03	18.04	25. 25.		1
			502	>	1.00	< 4.01		.02	
			504	•	.30			.05	;
			J. 54			4.01	25.	.05	1
			IMIY	>	1.00	< 4.01	25.	.06	
	MECOAMAT BURBER	034	UNK	>	1.00	<u>. </u>	23.	.04	1
	NEOP+NAT RUBBER	026	102		.25	1.20	23.	.06	-

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME		ATION RATE M**2/MIN	TEMP DEG C	THICKNESS CM	REF
000675610	NEOP+NAT RUBBER	026	102		.25		1.20	23.	.05	026
			121		.30		> 6.01		.05	237
	NEOP/NAT RUBBER	800	102		.25		1.20		.03	026
			114		.40		4.01		.05	222
			UNK	>	1.00		4.6.	23.	.05	274
	NEOPRENE	002	100		.25		< .90			107
					.29		6.01		.08	222
			120		.38		5.01		.07	222
			210		6.00		< .02		•••	080
		018	100		1.00		< .90		.04	107
			118	>	1.00		< 4.01		.08	222
			120	>	1.00		< 4.01		.05	222
				>	1.00		< 4.01	25.	.07	222
				>	1.00		< 4.01	25.	.05	222
				>	1.00		< 4.01	25.	.03	222
			UNK	>	1.00			23.	.09	274
				>	1.00			23.	.06	274
		031	UNK		1.03			23.	.04	187
		093	117		5.92			23.	.02	213
		138	117		5.00			23.	.03	213
		139	117	>	8.00			23.	.02	213
	NITRILE	005	210		6.00	•	< .02	23.		080
		019	100		1.15		23.05	25.	.04	222
					.18	90.18	901.80	23.	.06	107
				>	1.00	•	< 4.01	25.	.06	222
					.90		36.07	25.	.04	222
			503		.65		29.06	25.	.03	222
			UNK	>	1.00			23.	.05	274
		033	UNK		.91			23.	.05	187
	NITRILE+PVC	057	210		6.00		< .02	23.		080
		058	100		.33	.90	9.02	23.		107
	PE	006	100	>	1.00	•	< 4.01	25.	.01	222
			505	>	1.00	•	< 4.01	25.	.01	222
		076	100		.22	•	< . 9 0	23.		107
	DV 41 001101		117	>	8.00			23.	.01	213
	PV ALCOHOL	004	100		.02		124.75	23.		123
					.02		124.75	21.		124
	D) (0	-07	UNK		.04	3		23.	.12	274
	PVC	003	120		.03		36.07	25.	.01	222
					.03		34.07	25.	.01	222
					.05		18.04	25.	.03	222
			E00		.05		23.05	25,	.02	222
	-		500 501		.03		34.07	25.	.01	222
			501		.02		38.08	25.	.01	222
		007	400		.04		30.06	25.	.02	222
		007	100		.75	9.02		23.		107
			210		6.00	•	.02	23.		080
			UNK		1.00			23.	.16	274
					1.50			23.	.07	186
		040	117		.77			23.	.05	186
		049	117		.83			23.	.01	213
		677	UNK		.68		_	23.	.03	187
		077	100		.17	•	.90	23.		107

It is a first the state of the

CASNO	RESISTANT Material	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	GH TIME			ION RATE *2/MIN	TEMP DEG C	THICKNESS CM	
000675610	PVC	077	100		.50	9.02	•	90.18			•
			117	<	.08				23.	.01	;
	SARANEX	061	117	>	8.00				23.	.01	
	TEFLON	069	510	>	14.20		<	.02	23.	.05	•
				>	5.00		<	.02	24.	.05	;
	VITON	009	UNK	>	1.00				23.	.03	
		145	117		.83				23.	.01	
	VITON/CHLOROBUTYL	112	113	>	3.00				25.	.04	1
	VITON/NEOPRENE	111	117	>	8.00				23.	.02	
4-Methoxy-4-met	thyl-2-pentanone										
001077000	BUTYL	014	118	>	13.00				23.	.07	
	NEOPRENE	018	100		1.65			33.07	23.	.05	•
	PV ALCOHOL	102	100	>	14.00			33.01	23.	.03	•
	VITON	009	118		.40			116.03	23.	.03	•
Methyl Acetate											
000792090	BUTYL	014	118	>	8.00				23.	.09	:
	NATURAL RUBBER	001	250	<	.02			6,012.00	23.	.02	
	PE	076	100		.07	.90	-	9.02	23.		
	PV ALCOHOL	102	100		.68			12.02	23.	.07	•
	PVC	003	100	<	.02			6,012.00	23.	.02	1
Methyl Acrylate	:										
J00963330	BUTYL	014	118	>	8.00				23.	.09	3
	NATURAL RUBBER	001	250		.02			625.25	23.	.02	3
	NEOPRENE	018	100		.25			3,168.32	23.	.05	•
	PV ALCOHOL	102	100		1.50			1.80	23.	.07	3
	TEFLON	069	510	>	3.00		<	.02	23.	.05	7
Methylamine (Mo	nomethylamine)										
000748950	NATURAL RUBBER	017	100		.42	9.02		90.18	23.	.05	
	NEOPRENE	002	100		6.00	7.02	<	.90	23.	.05	1
		018	100		4.50	9.02		90.18	23.	.04	1
	NITRILE	019	100	>	6.00	7.02		.90	23.	.04	1
	PVC	007	100		2.25	.90		9.02	23.	.00	1
Methylamine, 30	- 70%										
000748952	BUTYL	014	118	>	15.00		<	.02	23.	.04	2
	NITRILE	019	118	>	8.00		-	.02	23. 23.	.04	2
	NITRILE+PVC	058	100	-	.50	9.02		90.18	23.	.04	1
	PE	076	100		.17	9.02		90.18	23.		1
	PVC	077	100		.17		<	.90	23.		1
			=		1.00	.90		9.02	23.		1
	SILVER SHIELD	122	118		1.90	-,-		12.02	23.	.01	2
	VITON	009	118	>	16.00		<	.02	23.	.02	7
B-Methylaminopr	opylamine										
062918450	BUTYL	014	118	>	8.00		<	.02	20.	.07	3
	NATURAL RUBBER	001	250	-	.05		•	731.46	16.	.02	
	NEOPRENE	018	100		1.05					.05	3
	MEAL WEILE	010	100		רנו, ו			160.32	16.		

Marthyl Bromide (Bromomethame) 127	CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH 1 HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS	RE NU
Nethyl Calibabive (Mathoxyethanol, 2)	•		041	427		• ••				
MITTALE 014 118	000746390	BAKAREX	VOI	127	,	5.00		23.		10
MECP-MAT RUBBER 026	Methyl Cellosol	ve (Methoxyethanol,	2)							
NITRILE 019 100 .67 60.12 23. Methyl Chloroscetate DOOP63440 SARAHEX 061 127 > 8.00 18.04 23. Methyl Chloroform (Trichloroethane,1,1,1) DOO715560 BUTL 014 118 .48 918.50 2504 1.00 2505 1.00	001098640	BUTYL	014	118	> 20	0.00		23.	.05	12
Methyl Chloroscetate 000963440 SARAMEX 061 127 > 8.00 18.04 23. Methyl Chloroform (Trichloroethane,1,1,1) 000715560 BUTYL 014 118 .48 918.50 2504 .100 .255 .05 .05 .06 .100 .210 .130 .255 .05 .05 .05 .06 .100 .210 .255 .05 .05 .05 .05 .05 .05 .05 .05 .05 .		NEOP+NAT RUBBER	026	121		.58	6.0	1 23.	.05	23
Methyl Chloroform (Trichloroethane,1,1,1) Matural Rubber 0.01 118 .48 .48 .918.50 .504 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .0071560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .00715560 .0071560 .00		NITRILE	019	100		.67	60.1	2 23.		12
Methyl Chloroform (Trichloroethane,1,1,1)	Methyl Chlorosc	etate								
DODT15560 BUTYL	000963440	SARANEX	061	127	> (8.00	18.0	4 23.		10
MOT15560 BUTYL	lethyl Chlorofo	orm (Trichloroethane	.1 1.1)							
MATURAL RUBBER 004 UNIK .42 2505				118		.48	918.5	0 25.	.04	2
NATURAL RUBBER 001 210 131 901.80 25. .05				UNK						1
MATURAL RUBBER 001 210 .13 .901.80 2504										3
MATURAL RUBBER 001 210 .13 .901.80 23.			064	UNK						3
017 100 .06 2,605.20 2503 120 .03 5,711.40 2502 502 .12 .1,803.60 2505 504 .12 .1,803.60 2505		NATURAL RUBBER	001	210			901.8		•••	0
120			017	100					.03	2
SO2				120			· · · · · · · · · · · · · · · · · · ·			2
NEOP+MAT RUBBER 0.26 10.2 1.803.60 25. 0.5 0.6 0.22 1.202.40 25. 0.6 0.25 0.05							-			2
1,002,40 25. 0.66							•			2
UNK .07 .25 .02 .02 .05							•			2
NEOP+NAT RUBBER 026 102 .113 3,006.00 2505 NEOP/NAT RUBBER 008 114 .17 2,404.80 2505 NEOPRENE 002 100 .07 1,002.00 2506 120 .04 701.40 2507 120 .20 .781.56 23. 010 100 .40 .895.12 2505 018 100 .32 .745.49 2305 120 .32 .1,002.00 2505 .80 .801.60 .2505 .42 .901.80 2505 .42 .901.80 2505 .42 .901.80 2505 .42 .901.80 2505 .42 .901.80 2505 .42 .901.80 2505 .42 .901.80 2505 .42 .901.80 2505 .43 .901.80 .901.80 .25 .44 .901.80 .25 .05 .45 .901.80 .901.80 .25 .06 .46 .903 .901.80 .901.80 .25 .06 .47 .901.80 .901.80 .25 .06 .48 .499.32 .25 .06 .49 .901.80 .901.80 .25 .06 .40 .901.80 .901.80 .25 .05 .40 .901.80 .901				UNK			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3
MEOP/NAT RUBBER 008		NEOP+NAT RUBBER	026				3.006.0			2
NEOPRENE 002 100 .07 1,002.00 2508 120 .04 701.40 2507 210 .20 781.56 23. 010 100 .40 895.12 2505 018 100 .32 745.49 2305 120 .32 1,002.00 2505 120 .32 1,002.00 2505 120 .32 1,002.00 2505 120 .32 1,002.00 2505 120 .27 1,002.00 2505 127 1,002.00 2505 127 2506 NITRILE 005 210 2.00 601.20 23. 1019 100 .18 4,108.20 2506 118 .60 901.80 9,018.00 2306 2.00 901.80 9,018.00 2506 118 .62 459.32 2304 118 .62 459.32 2304 118 .62 459.32 2304 118 .62 459.32 2304 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .62 2503 118 .60 2503 11							•			2
120		•					•			2
210		-								2
010 100 .40 .895.12 2505 018 100 .32 .745.49 2305 120 .32 .1,002.00 2505 .80 .801.60 2507 .42 .901.80 2505 .27 .1,002.00 2503 .27 .1,002.00 2503 .27 .27 .1,002.00 2503 .27 .27 .25 .06 .27 .25 .06 .27 .25 .06 .27 .25 .06 .27 .20 .00 .601.20 2305 .27 .25 .06 .20 .901.80 .9,018.00 2306 .20 .901.80 .9,018.00 2306 .20 .901.80 .9,018.00 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .93 < 50.10 2506 .94 .901.80 .901.80 .901.80 .901.80 .901.80 .901.80 .901.80 2303									•••	0
018 100 .32 745.49 2305 120 .32 1,002.00 2505 .80 801.60 2507 .42 901.80 2505 .27 1,002.00 2503 .27 1,002.00 2505 .27 1,002.00 2503 .27 2506 .27 2506 .27 2506 .27 2506 .27 2506 .27 2506 .27 2506 .27 2506 .20 901.80 4,108.20 2504 .20 901.80 9,018.00 2306 .20 901.80 9,018.00 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 2506 .20 901.80 901.80 901.80 2503 .20 100 2502 .20 2503 .20 100 28 282.56 2303 .20 100 28 282.56 2303 .20 100 28 282.56 2303 .20 100 28 282.56 2303 .20 100 28 282.56 2303 .20 100 28 901.80 901.80 23.			010						.05	2
120										3
180 801.60 25. .07 .42 901.80 25. .05 .27 1,002.00 25. .03 .27 1,002.00 25. .03 .27 1,002.00 25. .05 .27 25. .06 .27 25. .06 .27 25. .06 .27 25. .06 .28 282.56 23. .04 .20 100 .28 .282.23 25. .03 .28 .282.23 25. .03 .28 .282.23 25. .03 .28 .282.23 25. .03 .29 .20 .83 .96.19 23. .20 .20 .83 .96.19 23. .20 .20 .83 .96.19 23. .20 .20 .83 .96.19 23. .20 .20 .83 .96.19 .23. .20 .20 .83 .96.19 .23. .20 .20 .83 .96.19 .23. .20 .20 .21 .83 .96.19 .23. .20 .20 .21 .83 .96.19 .23. .20 .20 .21 .83 .96.19 .23. .20 .20 .21 .83 .96.19 .23. .20 .20 .21 .83 .96.19 .23. .20 .20 .21 .83 .96.19 .23. .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20										2
100 100										2
UNIK .40 895.79 2305 .75 2506 NITRILE 005 210 2.00 601.20 23019 100 .18 4,108.20 2504 .200 901.80 901.80 9,018.00 2306 .200 901.80 50.10 2506 .73										2
UNIX .40 895.79 2305 .75 2506 NITRILE 005 210 2.00 601.20 23. 019 100 .18 4,108.20 2504 2.00 901.80 9,018.00 2306 > 1.00 < 10.02 2506 .93 < 50.10 2504 .118 .62 459.32 2304 .118 .62 459.32 2304 .181 .60 2503 .181 .60 2503 .503 .06 2,605.20 2503 UMK .50 2503 UMK .50 2503 .04 2503 NITRILE+PVC 057 210 .83 96.19 23. .058 100 .15 90.18 901.80 23. .10 901.80 9,018.00 23.										2
NITRILE 005 210 2.00 601.20 23. 06 019 100 .18 4,108.20 2504 2.00 901.80 - 9,018.00 2306 > 1.00 < 10.02 2506 > 1.00 < 10.02 2506 .93 < 50.10 2504 .118 .62 459.32 2304 .181 .62 459.32 2304 .181 .60 2503 503 .06 2,605.20 2503 UNK .50 2503 UNK .50 2503 NITRILE+PVC 057 210 .83 96.19 23. NITRILE+PVC 057 210 .83 90.18 901.80 23. 058 100 .15 90.18 901.80 23. .10 901.80 9,018.00 23.				UNK						1
NITRILE 005 210 2.00 601.20 23. 019 100 .18 4,108.20 2504 2.00 901.80 - 9,018.00 2306 > 1.00 < 10.02 2506 > 901.80 - 9,018.00 2306 > 1.00 < 10.02 2506 .93 < 50.10 2504 .118 .62 459.32 2304 .181 .60 2504 .181 .60 2503 .045 2503 .058 100 .28 282.23 2503 .058 100 .15 90.18 - 901.80 23. .10 901.80 - 9,018.00 23.				•			•			3
100		NITRILE	005	210	;		601.2			0
2.00 901.80 9,018.00 23. .06					·				.04	2
> 1.00					;					1
118										2
118										2
181 .60 2503 .04 .60 .2503 .05 .				118						3
181 .60 .2503 503 .06 .2,605.20 .2503 UNK .50 .28 .282.56 .2303 020 100 .28 .282.23 .2503 NITRILE+PVC 057 210 .83 .96.19 .23. 058 100 .15 90.18 - 901.80 .2310 901.80 - 9,018.00 .23.										2
100 100		-		181			7376			2
UMK .50 2502 .28 282.56 2303 020 100 .28 282.23 2503 NITRILE+PVC 057 210 .83 96.19 23. 058 100 .15 90.18 901.80 2310 901.80 9,018.00 23.							2.605.2			2
.28 282.56 2303 020 100 .28 282.23 2503 NITRILE+PVC 057 210 .83 96.19 23. 058 100 .15 90.18 - 901.80 2310 901.80 - 9,018.00 23.							2,505.			3
020 100 .28 282.23 2503 NITRILE+PVC 057 210 .83 96.19 23. 058 100 .15 90.18 - 901.80 2310 901.80 - 9,018.00 23.							282			1
NITRILE+PVC 057 210 .83 96.19 23. 058 100 .15 90.18 - 901.80 23. .10 901.80 - 9,018.00 23.			020	100						2
058 100 .15 90.18 · 901.80 23. .10 901.80 · 9,018.00 23.		MITRII F+DVC							.03	(
.10 901.80 - 9,018.00 23.		MIINILLYPY								1
			030	100						
PE 006 100 .03 130.26 2501		80	004	100			•			1

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU HOURS	GH TIME		TION RATE	TEMP DEG C	THICKNESS CM	REF
000715560	PE	006	100		.02		154.48	25.	.01	-
			505	-	.20		30.06		.01	288 222
			UNK	<	.02		154.48		.01	100
		042	UNK		.05		154.40	25.	.01	326
		076	100		.13	.90 -	9.02			107
					.02	90.18 -	901.80			107
			UNK		.20			25.	.01	326
	POLYURETHANE	050	UNK		.03			25.	.01	326
	PV ALCOHOL	004	100		1.00	•	.90			107
		102	100	>	8.00			23.	.03	323
				>	6.00			25.	.05	288
			UNK	>	8.00			23.	.05	100
	PVC	003	118		.02		1,593.18	25.	.01	288
			500		.01		3,206.40	25.	.01	222
			501		.01		4,008.00	25.	.02	222
			UNK		.02		1,593.18	23.	.01	100
		007	210		.50		120.24	23.		080
		077	100		.10	9.02 -	90.18	23.		107
					.25	9.02 -	90.18	23.		107
					.03	90.18 -	901.80	23.		107
			UNK		.05			25.	.03	326
	SILVER SHIELD	122	118	>	6.00			23.	.01	227
	TEFLON	069	510	>	3.00	<	.02	23.	.05	303
	VITON	009	118	>	15.17			23.	.03	323
				>	15.00			23,	.02	227
				>	6.00			25.	.02	288
			UNK	>	8.00			23.	.02	100
				>	24.00			25.	.03	326
	de (Dibromomethane)	•••								
000749530	PE	076	100		.03	9.02 -	90.18			107
	PV ALCOHOL	004	100	>	6.00	<	.90	23.		107
	ide (Dichloromethane)									
000750920	BUTYL	014	118		.17		698.06	25.	.04	288
			UNK		.17		696.39	23.	.04	100
	CPE	060	113	.25 ·	.42			25.	.07	302
	NATURAL RUBBER	001	210		.10		1,803.60			080
			UNK		.03	>			.12	274
		017	100		.02		8,216.40		.03	222
			120		.01		13,026.00		.02	2 22
			502		.05		4,308 .60		.05	222
			504		.03		4,809.60		.05	555
	•				.05		3,807.60		.06	222
	MPAG.MAR BUCCO		UNK		.03	>			.04	274
	NEOP+NAT RUBBER	920	102		.05		4,609.20		.05	222
		***	121		.03		1,274.54		.05	237
	MEOP/NAT RUBBER	800	114		.07		3,406.80		.05	222
		***	UNK		.03	>			.05	274
	NEOPRENE	002	100		.13		1,102.20		.08	222
			120		.01		2,805.60		.07	222
		•••	210		.08		1,803.60			080
		010	100	<	.02		2,688.70	25.	.05	288

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME		TION RATE	TEMP DEG C	THICKNESS CM	RE
000750920	NEOPRENE	018	118	•			2,004.00	25 .	.08	22
			120		.07		3,507.00		.05	22
					. 15		2,605.20		.07	22
					.11		2,805.60		.05	22
					.03		4,809.60	25.	.03	22
			UNK	<	.02		2,687.36		.05	10
					.21	>	150.30		.09	27
					.08	>	140.28	23.	.06	27
		125	103			1,881.76 -	.02			04
	NITRILE	005	210		3.00		5,410.80			30
		019	100		.04		12,024.00	25.	.04	22
					.11		8,216.40	25.	.06	22
					.04		13,026.00	25.	.04	22
			103				4,016.02	23.		04
			118		.07		4,605.19	23.	.04	22
			503		.03		1,903.80		.03	22
			UNK	<	.02		5,639.26	23.	.03	10
					.04	>	125.25	23.	.05	2
					.03	>	150.30	23.	.05	2
		020	100	<	.02		5,644.60	25.	.03	2
	NITRILE+PVC	057	210		.20		2,645.28	23.		0
	PE	006	100		.01		30 0.60		.01	2
				<	.02		420.84		.01	2
			505		.03		100.20	25.	.01	2
			UNK	<	.02		420.84		.01	1
		076	100		.02	90.18 -	901.80			1
	PV ALCOHOL	004	100		.28	<	.90			1
			UNK	>	1.00			23.	.12	2
		102	100	>	8.00			23.	.04	3
				>	6.00			25.	.05	2
	6 1/0	-07	UNK	>	8.00			23.	.05	1
	PVC	003	118	<	.02			25.	.01	2
			120		.01			25.	.01	2
					.01	>	16,699.98	25.	.01	2
					.02		12,024.00		.03	2
			500		.01		16,699.98		.02	2
			500 501		.01	>	16,699.98	25.	.01	2
			301		.01	>	16,699.98	25.	.01	27
			UNK	_	.01	>	16,699.98	25.	.02	2
		007	103	<	.02		2 555 40	23.	.01	10
		007	210		.10		2,555.10			04
			UNK		.17	>	3,486.96 150.30		• •	O
	SILVER SHIELD	122	118		1.90	,			.16	2
	TEFLON	069	510		.78		.02		.01	27
		₩ ,	210		.84		.02 .02		.05	30
					.92		.02		.05	30
					.62		.02	23. 24.	.05	30
					.62			24. 24.	.05	30
					.58			24. 24.	.05	30
					.75			24. 24.	.05	30 30
	VITON	009	118		1.00		44.00	23.	.05 .02	
					1.38		23.38	25. 25.	.02	22

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTH HOU		TIME	PERMEAT UG/CM°	ION RATE *2/MIN	TEMP DEG C	THICKNESS CM	RE
000750920	VITON	009	UNK			1.38		22.85	23.	.02	100
						.95	>	10.02		.03	27
	VITON/CHLOROBUTYL	112	113	.42 -	•	.60			25.	.04	30
				1.03 -		1.12			15.	.04	302
				.30 -		.47			25.	.04	302
				.15 -		.23			35.	.04	30
n-Methylethanol	emine										
0010983 10	BUTYL	014	118	>	,	8.00	<	.02	19.	.07	323
	CELLULOSE ACETATE	099	118	>		8.00	<	.02	20.	.03	32
	NATURAL RUBBER	001	250			.08		150.30	20.	.02	323
	NEOPRENE	018	100	>	•	8.00	<	.02	20.	.06	323
Methyl Ethyl Ke	tone (Butanone,2)										
000789330	BUTYL	014	118	>	. ;	8.00	<	.02	23.	.06	323
			216	>		4.00	•	.02	23.	.06	123
				>		4.00			21.	.07	124
		064	117			1.67			23.	.02	213
						2.33			23.	.01	213
						2.00			23.	.02	213
	BUTYL/NEOPRENE	110	117			.08			23.	.02	213
	CPE	060	113	.47 -		.58			25.	.07	302
	NATURAL RUBBER	001	103					925.85	23.		045
								517.03	23.		045
			210			.10		1,022.04	23.		080
			250			.02		100.20	23.	.01	323
		017	100			.04		601.20	25.	.03	222
						.17	901.80 -	9,018.00	23.	.05	107
			120			.02		801.60	25.	.02	222
			502			.12		320.64	25.	.05	222
			504			.13		400.80	25.	.05	222
						.27		200.40	25.	.06	222
	NEOP+NAT RUBBER	026	102			.09		310.62	25.	.05	222
			121			.08		1,004.00	23.	.05	237
	NEOP/NAT RUBBER	800	114			.15		230.46	25.	.05	222
	NEOPRENE	002	100			.28		200.40	25.	.08	222
			120			.04		501.00	25.	.07	222
			210			.12		721.44	23.		080
		018	100			.22		3,066.12	23.	.05	323
			118			.65		230.46	25.	.08	222
			120			.13		601.20	25.	.05	222
						.45		330.66	25.	.07	222
						.17		601,20	25.	.05	222
	•					.07		901.80	25.	.03	222
		093	117	<		.08			23.	.02	213
		125	103					.60	23.		045
		138	117	<		.08			23.	.03	213
		139	117	<		.08			23.	.02	213
	NITRILE	005	210			.33		492.98	23.		080
		019	100			.11		3,106.20	25.	.04	222
						.20		1,903.80	25 .	.06	222
						.10		2,204.40	25.	.04	222
			103					1.20	23.		045

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION RATE UG/CH**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
000789330	MITRILE	019	181		.06	2,805.60	25.	.03	
000107330	W. 1 N. L. L.	0.7	503		.16	1,503.00		.03	222 222
	NITRILE+PVC	057	210		.15	607.21		.03	080
	PE	006	100	>	.02	10.02		.01	222
			505	-	.16	< 3.01		.01	222
		076	100		.05	9.02 · 90.18		.01	107
		0.0	117		.03	,,,,,	23.	.01	213
	PV ALCOHOL	004	100		.50	9.02 - 90.18		.01	107
		102	100		5.37	.19		.07	323
	PVC	007	103			4.8		•••	045
			210		.27	721.44			080
		049	117		.08		23.	.01	213
	SARANEX	061	117		.15		23.	.01	213
		•••	127		.48	7.82		.01	104
	TEFLON	069	510	>	3.00	< .02		.05	303
	VITON	145	117	«	.16		23.	.03	213
	VITON/CHLOROBUTYL	112	113	.42 -	.66		25. 25.		
	VITON/NEOPRENE	111	117	.46	.07			.04	302
	VIION/REOFRERE	111	117		.07		23.	.02	213
Methyl Ethyl Ke 013382340	tone Peroxide BUTYL	014	118	,	4 00		22		
013302340	NATURAL RUBBER	001		•	4.00	4.00	23.	.07	323
			250	_	.75	6.01		.02	323
	NEOPRENE	018	100	>	4.00		23.	.05	323
	VITON	009	118	>	4.00		23.	.04	323
Methylhydrazine 000603440	BUTYL	044							
000003440	BUITE	014	118	>	2.00		22.	.23	321
		064	447	>	2.00		22.	.04	321
		085	113	_	.01		22.	.03	321
	CHLOROBUTYL	052	211	>	2.00		22.	.11	321
			205	>	2.00		23.	.04	321
	CPE	060	113		.87		22.	.05	321
	on 30	070	113		1.10		22.	.05	321
	CR 39	095	122	>	2.00		22.	.17	321
	PVC	003	103		.52		22.	.13	321
					1.90		22.	.13	321
		053	126	>	2.00		22.	.05	321
		083	211	>	2.00		22.	.20	321
	TEFLON	055	210	<	.01		22.	.02	321
		062	UNK	<	.01		22.	.02	321
		067	UNK	<	.01		22.	.02	321
		068	UNK	<	.01		22.	.02	321
		069	UNK	<	.01		22.		321
	VITON.	009	118		1.50		22.	.05	321
Methyl Iodide									
000748840	BUTYL	014	118		.92	492.9	3 23.	.09	323
	NATURAL RUBBER	017	100		.03	13,026.0	25.	.03	222
			120		.03	> 16,6 9 9.9	3 25.	.02	222
			502		.05	8,116.2	25.	.05	222
			504		.04	9,218.4	25.	.05	2 22
					.06	6,913.8	25.	.06	222
	NEOP+NAT RUBBER	026	102		.03	8,917.8	25.	.04	222

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH TIME HOURS	PERMEATION RATE UG/CH**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
000748840	NEOP/NAT RUBBER	908	114	.09	5,310.60	 25.	.05	222
	NEOPRENE	002	100	.25	1,402.80		.08	222
			120	.01	4,609.20		.07	222
		018	100	.10	7,893.76		.05	323
			118	.28	2,905.80		.08	222
			120	.07	6,312.60		.05	222
				.20	3,707.40		.07	222
				.07	5,611.20		.05	222
				.04	7,915.80		.03	222
	NITRILE	019	100	.01	6,613.20		.03	222
				.13	8,016.00	25.	.05	222
				.09	6,012.00	25.	.04	222
			181		8,216.40	25.	.03	222
			503	.03	11,022.00	25.	.03	222
	PE	006	100	.01	1,102.20	25.	.01	222
			505	.04	300.60	25.	.01	222
	PV ALCOHOL	102	100	> 8.00		23.	.07	323
	VITON	009	118	6.35	4.21	23.	.04	323
	Ketone (Methylpent)					
001081010	BUTYL	012	UNK	1.50	19.24	25.	.04	273
				2.67	22.24	25.	.04	273
				5.00	52.30	25.	.06	273
				4.50	39.08	25.	.06	273
				1.50	36. 07	25.	.04	273
				2.17	40.88	25.	.04	273
				5.00	4.81	25.	.06	273
				5.67	1.20	25.	.06	273
				.17	30.06	25.	.04	273
				.83	70.34		.04	273
				3.00	16.83		.06	273
				3.75	7.82		.06	273
	MATURAL GURDON	014	118	4.07	6.01		.05	086
	NATURAL RUBBER	001	210	.25	420.84	23.		080
	MEGOREUE	017	100	.10	90.18 - 901.80		.05	107
	NEOPRENE	002	210	.25	541.08	23.		08 0
		010	120	.62	277.22		.06	086
		018	100	.47	529.39		.06	086
			UNK	.33	303.61		.04	273
				.33 .50	284.37		.04	273
				.53	298.80		.06	273
	NITRILE	005	210	1.67	277.75		.06	273
		019	100	.80	841.68 402.47	23.	A 4	080
	•	U 17	118	.20	402.47		.06	086
			120	.35	492.65 848.36	23.	.04	086
			UNK	.50	304.81		.05	086 277
			VAN	.50	290.38		.04	273
				1.17	290.38 290.38	25. 25	.04	273
				1.17	290.38 256.71	25. 25	.06	273
		020	503	.32	1,033.73		.06	273
	NITRILE+PVC	057	210	.30	781.56		.04	086
					701.30	٤٥.		080

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME			ION RATE	TEMP DEG C	THICKNESS CM	R
001081010	PE	076	100		.03	9.02	•	90.18	23.		-
	PV ALCOHOL	004	100	>	6.00	7.02	· <	.90	23. 23.		10
	PVC	007	210	•	.50		•	991.98	23.		1
	TEFLON	069	510	>	3.00		<	.02	23.	^=	0
	VITON	009	118	•	.20			1,743.48	23.	.05 .04	3
Methyl Isocyana	te										
06248390	BUTYL	014	118		.72				13.	.06	3
				1,0	12.00			90.18	23.	.07	3
	NATURAL RUBBER	001	250		.01				20.	.02	3
					.02			10,641.24	23.	.01	3
	NEOPRENE	018	100		.01				20.	.05	3
					.02			2,254.50	23.	.04	3
	PV ALCOHOL	004	100	>	8.00		<	.02	23.	.03	3
				>	8.00		<	.02	23.	.05	3
	VITON	009	118		.02				21.	.03	3
					.07			1,212.42	23.	.03	3
ethyl Methacry											
00806260	BUTYL	014	118		4.98			24.05	23.	.09	3
	NATURAL RUBBER	001	250	<	.02			9,619.20	23.	.02	3
	PE	076	100		.03	9.02	•	90.18	23.		1
	PV ALCOHOL	004	100	>	6.00		<	.90	23.		1
		102	100	>	8.00				23.	.06	3
	PVC	003	100	<	.02			9,619.20	23.	.02	3
	TEFLON	069	510	>	3.10		<	.02	23.	.05	3
lethyl-vinyl-ke		• • •									
00789440	CPE	06 0	UNK		.50				23.		1
	VITON/CHLOROBUTYL	112	IMP	_	1.67				23.		1
	VIION/CHLOROBOTYL	112	UNK	>	3.00				23.		1
lineral Spirits 180524130	NEOP+NAT RUBBER	026	121		.22			138.28	23.	.05	2
	NEOPRENE	002	100	>	6.00		<			.05	
		018	100	•	1.50	.90		9.02	23.	.04	1
	NITRILE	019	100	>	6.00	.,,	<	.90	23.	.04	1
	NITRILE+PVC	058	100		.10	9.02		90.18		.00	1
	PE	076	100		.10	9.02		90.18	23.		
	-	3.0	127	<	.08	7.06		7.01			1
	PV ALCOHOL	004	100	•	6.00		<	.90			
	PVC	007	100	-	2.50	.90		9.02			1
	. • •	077	100		.10	.90		9.02			1
		•.,	100		.10	9.02		90.18			1
	SARANEX	061	127	>	.17	7.02	<	.20			1
lono i sopropano i	amine										
00789660	BUTYL	014	118	>	8.00				25.	.07	3
	NEOPRENE	018	100	>	8.00				24.	.05	3
	PVC	007	100	>	8.00				25.	.02	3
	VITON	009	118	>	8.00				25.	.04	3

Morpholine

CASHO	MATERIAL	DESC CODE		HOURS	JGH TIME			ION RATE *2/MIN	TEMP DEG C	THICKNESS CM	RE!
001109180	BUTYL	014	118	-	16.00				23.		323
				>	16.00				23.	.04	227
	MATURAL RUBBER	017	100		.50	.90	•	9.02		.05	107
	WITRILE	019	118		.73			1,240.28	23.	.03	323
					.80			1,238.47	23.	.04	22
	PV ALCOHOL	004	100		3.00		<	.90	23.		107
		102	100		6.17			25.25	23.	.03	323
	SILVER SHIELD	122	118	>	8.00				23.	.01	227
	VITON	009	118		1.80			581.36	23.	.02	323
					1.90			583.16	23.	.02	227
N-Methyl-2-pyrr	olidone										
008725040	NATURAL RUBBER	001	103					3.61	23.		045
	NEOPRENE	125	103					6.01	23.		04!
	NITRILE	019	103					24.05	23.		045
	PVC	007	103					24.05	23.		045
Naphtha, V.M.&	P (Ligroine)										
080323240	CPE	070	UNK	>	3.00				23.	.05	004
	NEOP+NAT RUBBER	026	121		.07			96.19	23.	.05	23
	NEOPRENE	002	100	>	6.00		<	.90	23.	.07	10
		018	100		.25	90.18		901.80	23.	.04	10
	NITRILE	019	100	>	6.00	70.10	<	.90	23.	.06	
	NITRILE+PVC	058	100		.15	9.02		90.18	23.	.00	10
	PE	076	100		.05			901.80			10
	PV ALCOHOL	004	100	>	7.00	70.10	<	.90			10
	PVC	007	100	•	2.00		`	.90			10
		077	100		.08	.90		9.02			10
		• • •	.00		.33	9.02		90.18	-		10 10
Nitric Acid											
076973720	BUTYL	064	117	>	8.00				23.	.02	21:
				>	8.00				23.	.01	21:
				>	8.00				23.	.02	21:
	BUTYL/NEOPRENE	110	117	>	8.00				23.	.02	21
	CPE	070	UNK	>	3.00				23.	.05	00
	NATURAL RUBBER	001	210		2.00				23.	.05	
	NEOP+NAT RUBBER	026	121	>	8.00		<	.02		.05	08 23
	NEOPRENE	002	210		2.00		•	.02	23.	.05	
		093	117		2.67				23.	01	08
		138	117		1.33					.01	21:
		139	117		3.08				23.	.03	21:
	NEOPRENE+PVC	127	117		1.08				23.	.02	21:
	NITRILE	005	210		4.00				23.	.02	21:
	NITRILE+PVC	057	210		4.50				23.		080
		058	117		.42				23.	**	080
	PE	076	117		8.00				23.	.01	213
	PVC	007	210		3.75				23.	.01	213
		049							23.		080
		047	117		3.00				23.	.01	213
		067	447	_	.42				23.	.01	213
		053 077	117	<	.33				23.	.02	213
		077	117	<	.08				23.	.01	213
					.75				23.	.01	21

Social de locations de la compacta del la compacta de la compacta del la compacta de la compacta del la compacta de la compacta de la compacta de la compacta de la compacta del la compacta d

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	RE NU
076973720	PVC	144	117		.58				_
0.07.3.20	SARANEX	061	117		5.00		23. 23.	.02	21
	SILVER SHIELD	122	118	>	6.00		23. 23.	.01 .01	21
	VITON	145	117	>	8.00		23.	.01	22 ¹
	VITON/NEOPRENE	111	117	>	8.00		23.	.02	21
Nitric Acid, <3									
076973721	NATURAL RUBBER	017	100	>	6.00		23.	.05	10
			102	>	8.00		23.	.05	02
				>	8.00		23.	.05	02
				>	8.00		23.	.05	02
	NEODANAT BURDED	027	400	>	8.00		23.	.05	02
	NEOP+NAT RUBBER	026	102	>	8.00		23.	.06	02
				>	8.00		23.	.04	02
	NEOP/NAT RUBBER	000	402	>	8.00		23.	.05	02
	NEOPRENE	008 002	102 100	>	8.00		23.		02
	HEOFRENE	018	100	>	6.00		23.		10
	NITRILE	019	100	>	6.00		23.	.04	10
	NITRILE+PVC	058	100	>	6.00 6.00		23.	.06	10
	PE	076	100	,	.75		23.		10
	PVC	007	100	>	6.00		23.		10
		077	100	>	6.00		23. 23.		10
		31 ,	100		4.75		23.		10 10
Nitric Acid, 30	-70%								
076973722	NATURAL RUBBER	017	102	>	6.00		23.	.05	02
					3.00		23.	.05	02
					5.50		23.	.05	02
				>	8.00		23.	.05	02
	NEOP+NAT RUBBER	026	102	>	3.00		23.	.06	02
					2.00		23.	.04	02
				>	6.00		23.	.05	02
	NEOP/NAT RUBBER	800	102	>	6.00		23.		02
	NEOPRENE	002	100	>	6.00		23.		10
	22	018	100		2.33		23.	.04	10
	PE	076	127		.83		23.		10
	PVC SARANEX	007 0 61	100 127		5.75 46.67		23.		10
		40 1	121		40.07	< .02	2 23.		10
litric Acid, >70 176973723		***							
110413153	MATURAL RUBBER	001	UNK	>	1.00		23.		05
	W200 (I)	015	UNK	>	1.00		23.	.04	05
	NEOP/NAT RUBBER	800	UNK	>	1.00		23.		05
	NEOPRENE	018	UNK	>	1.00		23.	.09	05
	NITRILE	010	111111	>	1.00		23.	.06	05
	NITRILE+PVC	019 058	UNK	>	1.00		23.	.05	05
	PE PE	076	100		.10		23.		10
	PVC	003	100		.22		23.		10
	7 76	003	UNK		.10		23.	.02	05
			UNK	>	1.00		23.		05
	SARANEX	061	127		1.78		23.		10

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS	REI
Nitric Acid, Fu	ming Red								
080075870	BUTYL	014	118	>	1.50		23.	.03	00
				>	1.50		23.	.04	00.
				>	1.50		23.	.08	001
	CHLOROBUTYL	052	205	>	1.50		23.	.05	00.
	CPE	060	113		.45		23.	.05	00
	NATURAL RUBBER	017	100	>	1.50		23.	.04	00
				>	1.50		23.	.05	00
				>	1.50		23.	.04	00
			101	>	1.50		23.	.05	00
			110	>	1.50		23.	.05	00
	NEOP/NAT RUBBER	008	114	>	1.50		23.	.04	00
				>	1.50		23.	.04	00
				>	1.50		23.	.04	00
	NEOPRENE	002	100	>	1.50		23.	.13	00
				>	1.50		23.	.13	00
		018	100	>	1.50		23.	.05	00
	NITRILE	019	100	>	1.50		23.	.04	00
				>	1.50		23.	.04	00
				>	1.50		23.	.03	00
			118	>	1.50		23.	.03	00
	PV ALCOHOL	004	100	<	.01		23.	.09	0
	PVC	003	120		.20		23.	.05	00
					.57		23.	.10	00
					.07		23.	.03	00
		007	100		.92		23.	.09	00
					.67		23.	.11	00
					.43		23.	.10	00
		053	189		.37		23.	.07	00
					.07		23.	.06	00
					.25		23.	.07	00
		054	189		.04		23.	.05	00
					.01		23.	.05	0
		077	212		.12		23.	.03	00
	SILVER SHIELD	122	118		.58		23.	.01	22
	VITON	009	118	>	1.50		23.	.03	00
litrobenzene									
000989530	BUTYL	014	118		23.00		23.	.06	32
				>	23.00		23.	4.00	22
		064	117	>	8.00		23.	.01	21
	CPE	060	113		1.03		25.	.07	30
	•	070	UNK		1.03		23.	.05	0
	NATURAL RUBBER	017	100		.08	9.02 - 90.		.05	1
	NEOPRENE	018	100		.75	1.		.05	3
		031	511	•	.67	• 132.			3
	WITRILE	019	118		.48	10.3		.04	3
					.55	10.3	22 23 .	.04	2
	PV ALCOHOL	004	100	>	6.00	٠. ٠	23.		1
		102	100	>	16.00		23.	.03	3
	SILVER SHIELD	122	118	>	8.00		23.	.01	2
	TEFLON	069	510	>	3.00	۱. >	02 23.	.05	3

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUG Hours	TIME	PERMEATION RA' UG/CM**2/MIN	-	TEMP DEG C	THICKNESS CH	RE
000989530	TEFLON	069	510		3.00		.02	24.	.05	30
	VITON	009	118	>	8.00			23.	.03	37
				>	8.00			23.	.02	27
	VITON/CHLOROBUTYL	112	113	2.83 -	3.00			25.	.04	30
Nitroethane										
000792430	BUTYL	014	118	>	8.00			23.	.09	32
	NATURAL RUBBER	001	250		.03	18	6.37	23.	.02	3
	NEOPRENE	018	100		.82	10	2.20	23.	.04	3
	PV ALCOHOL	102	100		3.52	;	2.40	23.	.07	3
litr oge n Tetrox	ide									
05447260	BUTYL	014	118	>	2.00			22.	.23	5
					.68			22.	.05	3
		064	113		.60			22.	.03	3
		085	211	>	2.00			22.	.11	3
	CHLOROBUTYL	052	205	>	2.00			23.	.04	3
	CPE	060	113		1.15			22.	.05	3
		070	113		1.25			22.	.06	3
	CR 39	095	122	>	2.00			22.	.17	3
	PE	091	UNK		1.17			22.	.04	3
	PVC	003	103		.33			22.	.13	3
		A	404		.20			22.	.13	3
		053	126		.65			22.	.05	3
	TEFLON	083	211	>	2.00			22.	.19	3
	IEFLOR	062	UNK	<	.01			23.	.02	3
		067	UNK	<	.01			23.	.02	3
		069	UNK	<	.01			23.	.02	3
	VITON	009	118	<	.01 .77			23. 22.	.02 .03	3
itromethane										
00755250	BUTYL	014	118	>	8.00			23.	.09	3
	NATURAL RUBBER	001	250	· <	.02	0	6.19	23.	.02	3
		017	100	•	.07	<	.90	23.	.02	1
	NEOPRENE	002	100		1.50	<	.90	23.	.05	1
		018	100		1.00		9.02	23.	.04	1
					1.07		3.01	23.	.05	3
	NITRILE	019	100		.50		1.80		.06	1
	PE	076	100	>	6.00	, , , , , , , , , , , , , , , , , , ,	.90		.00	1
	PV ALCOHOL	004	100	>	6.00	<	.90	23.		1
		102	100		.17		0.06	23.	.07	3
itropropane										
53220140	BUTYL	014	118	>	8.00	4	.02	23.	.04	2
		034	UNK	>	101.00			22.	.08	(
	NITRILE	019	118		.27	17	7.35	23.	.04	2
		033	UNK	.42 -	.83	20	0.40	22.	.09	C
	NITRILE+PVC	058	100	<	.08	9.02 - 9	0.18	23.		1
	PE	076	100		.05	9.02 - 9	0.18	23.		1
	PV ALCOHOL	035	UNK	<	.08	4	4.09	22.	.02	C
	SILVER SHIELD	122	118	>	8.00			23.	.01	2
	VITON	009	118		.35	7.	3.41	23.	2.00	2

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUG Hours	H TIME		IEATION CH**2/I		TEMP DEG C	THICKNESS CM	REF
1-Nitropropane											
001080320	BUTYL	014	118	>	8.00				23.	٥,	
	NITRILE	019	118		.20			177.35		.04 .04	323 323
	PV ALCOHOL	102	100	>	15.00			111.33	23.	.03	323
	TEFLON	069	510	>	3.00		<	.02		.05	303
	VITON	009	118		.28			156.91	23.	.03	323
2-Nitropropane											
000794690	BUTYL	014	118	>	8.00				23.	.08	3 23
	NATURAL RUBBER	001	250		.03			192.38	23.	.02	323
	NEOPRENE	018	100		.72			144.29	23.	.04	323
	PV ALCOHOL	102	100	>	8.00				23.	.06	323
n-Nitrosodimeth	ylamine										
0 00551850	CPE	060	113		.50				23.	.05	204
					.70			438.88	23.	.05	204
Nonyiphenoi											
251545230	NEOPRENE	018	100	>	20.00				23.	.05	123
	NITRILE	019	100	>	4.00				23.	.04	123
n-Octane											
001116590	NATURAL RUBBER	001	210		.33			120.24	23.		080
	NEOPRENE	002	210		7.00			216.43	23.		080
	NITRILE	005	210		6.00		<	.02			080
	NITRILE+PVC	057	210		4.75			72.14	23.		080
	PVC	007	210		.92			108.22			080
n-Octanol											
29063283 0	NATURAL RUBBER	001	210		.75			10.22	23.		080
		017	100		1.00		<	.90	23.	.05	107
	NEOPRENE	002	100	>	7.00		<	.90	23.		107
			210		6.00		<	.02	23.		080
		018	100		7.00		<	.90	23.	.04	107
	NITRILE	005	210		6.00		<	.02	23.		080
		019	100	>	6.00		<	.90		.06	107
	NITRILE+PVC	057	210		6.00		<	.02	23.		080
	PV ALCOHOL	004	100		4.00		<	.90	23.		107
	PVC	007	100	>	6.00		<	.90			107
			210		6.00		<	.02	23.		08 0
Dleic Acid											
001128010	MATURAL RUBBER	017	100		.50	.90	•	9.02	23.	.05	107
	NEOPRENE	002	100		2.50		<	.90	23.		107
		018	100		1.00	.90	•	9.02	23.	.04	107
	NITRILE	019	100	>	6.00		<	.90	23.	.06	107
	NITRILE+PVC	058	100	>	6.00		<	.90	23.		107
	PE	076	100	>	6.00		<	.90	23.		107
	PV ALCOHOL	004	100		1.00		<	.90	23.		107
	PVC	007	100		1.50	.90		9.02	23.		107
		077	100	>	6.00		<	.90	23.		107
				>	6.00		<	.90	23.		107

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEAT UG/CH*	ION RATE *2/MIN	TEMP DEG C	TH1CKNESS CM	REF
Oxalic Acid							<u> </u>			
001446270	BUTYL	014	118	>	8.00	<	.02	19.	.07	323
	NATURAL RUBBER	001	210		6.00	<	.02	23.		080
		017	100	>	6.00			23.	.05	107
	NEOPRENE	002	100	>	6.00			23.		107
			210		6.00	<	.02	23.		080
		018	100	>	6.00			23.	.04	107
				>	8.00	<	.02	19.	.05	323
	WITRILE	005	210		6.00	<	.02	23.		080
		019	100	>	6.00			23.	.06	107
				>	8.00	<	.02	19.	.04	323
	NITRILE+PVC	057	210		6.00	<	.02			080
		058	100	>	6.00			23.		107
	PE	076	100	>	6.00			23.		107
	PVC	007	100	>	6.00			23.		107
			210		6.00	<	.02	23.		080
		077	100	>	6.00			23.		107
				>	6.00			23.		107
	VITON	009	118	>	8.00	<	.02	20.	.03	32:
Palmitic Acid										
000571030	NATURAL RUBBER	017	100		.08			23.	.05	10
	NEOPRENE	002	100	>	6.00			23.		10
		018	100	>	6.00			23.	.04	10
	NITRILE	019	100		.50			23.	.06	10
	PVC	007	100		1.25			23.		10
Pentach Lorophe	nol									
000878 650	NEOPRENE	002	100		.10	<	.90			10
		018	100		.10	<	.90		.04	10
	NITRILE	019	100	>	6.00	<	.90		.06	10
	PV ALCOHOL	004	100		.12	90.18 -	901.80			10
	PVC	007	100		3.00	<	.90	23.		10
Pentane										
001096600	NATURAL RUBBER	001	210		.05		913.82			08
		017	100		.03		2,705.40		.03	22
			120		.01		5,711.40		.02	22
			502		.06		1,803.60		.05	22
			504		.06		1,803.60		.05	22
					.09		1,603.20		.06	22
	NEOP+NAT RUBBER	026	102		.07		1,803.60		.05	22
	NEOP/NAT RUBBER	800	114		.03		2,304.60		.05	22
	NEOPRENE	002	100		.75	.90 -	9.02			10
			400		.11		25.05		.08	22
			120		.11		24.05		.07	22
			210		.50		667.33			08
		018	100		.08		.28		.05	00
					.50	90.18 -	901.80		.04	10
			118	>	1.00	<	2.00		.08	22
			120		1.08		10.02		.05	22
				>	1.00		2.00	25.	.07	22

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME		TION RATE	TEMP DEG C	THICKNESS CM	REF
001096600	NEOPRENE	018	120		.63		16.03	25.	.05	222
					.33		21.04		.03	222
	NITRILE	005	210		6.00	•	.02	23.		080
		019	100		.03	•	.02	23.	.04	323
				>	1.00	•	2.00	25.	.04	222
				>	6.00	•	.90	23.	.06	107
				>	1.00	•	2.00	25.	.06	222
				>	1.00	•	2.00	25.	.04	222
			503		.09		10.02		.03	222
	NITRILE+PVC	057	210		1.25		90.18			080
	ΡE	058	100		.18	9.02				107
	PE .	006	100		.01		400.80		.01	222
		07/	505		.05		70.14	-	.01	233
	By ALCOHOL	076	100		.08	90.18	,,,,,,,			107
	PV ALCOHOL	004 102	100	>	6.00	•	• • • • • • • • • • • • • • • • • • • •			107
	PVC	003	100 120		.25 .01	•			.03	323
	7 40	003	120		.01		1,102.20		.01	222
					.15		811.62		.01	222
					.04		100.20 250.50		.03	222
			500		.01				.02	222
			501		.01		721.44		.01	222
			J 01		.02		1,603.20 1,603.20		.01	222
		007	210		.33		210.42		.02	222
	SILVER SHIELD	122	118	>	6.00		210.42	23.	.01	080 227
	VITON	009	118	>	8.00			23.	.02	323
			-	>	8.00			23.	.02	227
Perchloric Acid	ı									
076019030	NATURAL RUBBER	001	210		6.00	•	.02	23.		080
	NEOPRENE	002	210		6.00	•	.02	23.		080
	NITRILE	005	210		6.00	•	.02	23.		080
	NITRILE+PVC	057	210		6.00	•	.02	23.		080
		058	100	>	6.00			23.		107
	PE	076	100	>	6.00			23.		107
	PVC	007	210		6.00	•	.02			080
		077	100	>	6.00			23.		107
				>	6.00			23.		107
Perchloric Acid		4								
076019032	NATURAL RUBBER	017	100	>	6.00			23.	.05	107
	NEOPRENE	002	100	>	6.00			23.		107
	4.20.0	018	100	>	6.00			23.	.04	107
	NITRILE	019	100	>	6.00			23.	.06	107
	PVC	007	100	>	6.00			23.		107
Phenol (Carboli		• • •								
001089520	CPE	060	113		3.40			23.	.05	204
	Matina a a a				2.92		60.12		.05	204
	NATURAL RUBBER	001	210		.58		_	23.		080
		017	100	>	1.00	•			.03	222
					1.00	9.02 -			.05	107
			120		.27		15.03	25.	.02	222

CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	BREAKTHROUGH	TIME	PERMEAT	ION RATE	TEMP	THICKNESS	REF
CASNO	MATERIAL	DESC CODE		HOURS		UG/CM*	*2/MIN	DEG C	CM	NUM
001089520	NATURAL RUBBER	017	502		1.67		3.01	25.	.05	222
			504	>	1.00	<	3.01		.05	222
				>	1.00	<	3.01		.06	222
	NEOP+NAT RUBBER	026	102	>	1.00	<	3.01		.05	222
	NEOP/NAT RUBBER	800	114	>	1.00	<	3.01		.05	222
	NEOPRENE	002	100	>	6.50	<	.90			107
				>	1.65	<	3.01		.08	222
			210		.67			23.		080
		018	100		3.00	9.02 -	90.18	23.	.04	107
			118	>	1.00	<	3.01	25.	.08	222
			120	>	1.00	<	3.01	25.	.05	222
				>	1.00	<	3.01	25.	.07	222
				>	1.00	<	3.01	25.	.05	222
				>	1.00	<	3.01	25.	.03	222
	NITRILE	005	210		.67			23.		080
		019	100		.93		300.60	25.	.04	222
				>	1.00	<	3.01	25.	.06	222
					.53		300.60	25.	.04	222
			503		.60	>	250.50	25.	.03	222
	NITRILE+PVC	057	210		2.00			23.		08 0
	PE	006	100	>	1.00	<	3.01	25.	.01	222
			505		1.00		3.01	25.	.01	222
	PV ALCOHOL	004	100		.50	9.02 -	90.18	23.		107
	PVC	003	120		.05		190.38	25.	.01	2 22
					.13		120.24	25.	.01	222
					.53		77.15	25.	.03	222
					.25		100.20		.02	222
			500		.10		130.26		.01	2 22
			501		.10		120.24		.01	2 22
					.06		120.24		.02	222
		007	100		1.25	.90 -	9.02			107
	2001.044		210		1.33			23.		080
	TEFLON	069	510	>	3.00	<	.02	23.	.05	3 03
Phenol, >70%										
001089523	BUTYL	014	118	> :	20.00			23.	.06	323
					20.00			23.	.04	227
	NEOPRENE	018	100	> '	10.67			23.	.05	000
		125	103			<	.02			045
	NITRILE	019	103				18.04			045
			118		.58		1,274.54	23.	.03	323
					.65	>	9,018.00	23.	.04	227
	NITRILE+PVC	058	100		.83	.9 0 -	9.02	23.		107
	PE ·	076	100		6.00	<	.90			107
	PVC	007	103				18.04			045
		077	100		.50	.90 -	9.02			107
					1.50	.90 -	9.02			107
	VITON	009	118	> '	15.00			23.	.03	323
				> '	15.00	<	.02	23.	.02	227
Phenolphthalein										
000770980	NATURAL RUBBER	017	506	>	8.00			23.	.02	323
900110700										

CASNO CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF
000770980	NITRILE	019	100		8.00		23.		323
	PVC	003	100	>	8.00		23.	.02	323
Phosphoric Acid	1								
076643820	NATURAL RUBBER	001	210		6.00	< .02	23.		080
	NEOPRENE	002	210		6.00	< .02			080
	NITRILE	005	210		6.00	< .02			080
	NITRILE+PVC	057	210		6.00	< .02			080
	PE	076	127	>	14.00		23.		104
	PVC	007	210		6.00	< .02			080
	SARANEX	061	127	>	14.00		23.		104
Phosphoric Acid	I. >70%								
076643823	NATURAL RUBBER	017	100	>	6.00		23.	.05	107
0.00.000			102	>	6.00		23.	.05	026
				>	6.00		23.	.05	026
				,	6.00		23.	.05	026
				>	6.00		23.	.05	026
	NEOP+NAT RUBBER	026	102	>	6.00		23.	.06	026
		-		>	6.00		23.	.04	020
				>	6.00		23.	.05	020
	NEOP/NAT RUBBER	800	102	>	6.00		23.	.07	026
	NEOPRENE	002	100	>	6.00		23.		107
		018	100	>	6.00		23.	.04	107
	NITRILE	019	100	>	6.00		23.	.06	10
	NITRILE+PVC	058	100	>	6.00		23.		107
	PE	076	100	>	6.00		23.		107
	PVC	007	100	>	6.00		23.		107
		077	100	>	6.00		23.		107
				>	6.00		23.		107
Phosphorus Oxyo	hloride								
100258730	CPE	060	UNK		.83		23.		051
	NEOPRENE	002	UNK	<	.01		23.		052
	MEGY KENE	018	UNK	•	1.00		23. 23.	~	052 052
		0.0	5 111	•	.57		23.	.09	
	NITRILE+PVC	058	UNK		.48		23.	.06	052 052
	NONWOVEN PE	071	UNK		.08		23.		052
	PV ACETATE	124	UNK		.03		23.		052
	PVC	007	UNK	<	.03		23.		
	SARANEX	061	UNK	•	.84		23.		052 052
	VITON	009	UNK		.26		23.	.03	052
1-Piperazineeth	anami na								
001403180	BUTYL	014	118	>	4.00		23.	.05	123
								•••	. —
Polychlorinated 013363630	Biphenyls (PCBs) (BUTYL	Aroclor) 014	118		24.00		22	6 /	90.
♥ 1330303V	BUTTE	014	110		24.00		23. 23.	.04 .04	290 290
	CPE	070	UNK	>	3.00		23.	.05	004
	MATURAL RUBBER	017	UNK	-	1.00		23.	.02	290
			•				-J.		E71
					.08		23.	.02	290

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR		OURS	UGH TIME	PERMEATION UG/CH**2/		TEMP DEG C	THICKNESS CM	R
013363630	NEOPRENE	010	UNK		>	24.00			23.	.03	2
		0.0	JAN.		>	24.00			23.	.03	2
					>	24.00			23.	.03	2
		018	100		>	24.00			23.	.03	2
					>	24.00			23.	.04	2
						24.00			23.	.04	
						24.00			23.	.04	:
	PE	006	100			1.00			23.	.01	
						1.00			23.	.01	
		076	127		<	1.00	<	.02	23.	•••	•
	PV ALCOHOL	102	100		>	24.00			23.	.05	
					>	24.00			23.	.05	
	SARANEX	061	127	1.00	•	2.00	<	.02		• • • • • • • • • • • • • • • • • • • •	
						6.00			23.	.02	
						7.00			23.	.02	
						7.00			23.	.02	
	TEFLON	036	UNK		>	24.00			23.	.01	
					>	24.00			23.	.01	
					>	24.00			23.	.01	
	VITON	009	118		>	24.00			23.	.02	;
					>	24.00			23.	.02	
					>	24.00			23.	.02	į
otassium Hydro	•										
13105832	NATURAL RUBBER	001	210			1.33			23.		
		017	100		>	6.00			23.	.05	
	NEOP+NAT RUBBER	026	121		>	8.00	<	.02	23.	.05	
	NEOPRENE	002	100		>	6.00			23.		
			210			3.00			23.		
		018	100		>	6.00			23.	.04	
	NITRILE	005	210			6.00	<	.02			-
		019	100		>	6.00			23.	.06	
	WITRILE+PVC	057	210			6.00	<	.02			(
		058	100		>	6.00			23.		
	PE	076	100		>	6.00			23.		
	PVC	007	100		>	6.00			23.		
			210			6.00	<	.02			1
		077	100		>	6.00 6.00			23. 23.		
									LJ.		
romethazinehydi 00583330	rochloride BUTYL	014	118			8.00			••	A .	
	NEOPRENE	018	100		>	8.00	«	.02	19.	.06	
	NITRILE	019	100		,	8.00	< <	.02 .02	19. 22.	.02	;
	PVC	007	100		>	8.00	•	.02		.02 .05	!
eta-Propiolacto										,,,	
eta-Propiolacto 00575780	NATURAL RUBBER	017	500	96		7-					
	PE	017	508	.25		.33		4.31	22.	.03	1
	POLYURETHANE	00 6 05 0	209 178	.17	•	.50 .08		1.20	22.	.01	1
	, we two times	0,70				.00		831.66	22.	.01	(
ropionaldehyde											

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	GH TIME			ION RATE *2/MIN	TEMP DEG C	THICKNESS CM	REF
001233860	NEOPRENE	018	100		.20			67.94	23.	.05	323
	PV ALCOHOL	102	100	<	.01			27.05	23.	.04	323
	VITON	009	118	<	.01			85.37		.03	323
Propionic Acid											
000790940	PE	076	127		.05			1.62	23.		104
	TEFLON	069	510	>	3.00		<	.02	23.	.05	303
Propionic Anhy	dride										
001236260	PE	076	127		.08			76.35	23.		104
Propyl Acetate											
001096040	BUTYL	014	118		2.70			17.20	23.	.04	227
	NATURAL RUBBER	017	100		.08	90.18		901.80		.05	107
	NITRILE	019	100		.33	9.02	•	90.18		.06	107
			118		.28			435.87		.04	227
	PE	076	100		.05	.90		9.02			107
	PV ALCOHOL	004	100		2.00	.90	•	9.02			107
	SILVER SHIELD	122	118	>	6.00				23.	.01	227
Propyl Alcohol	*										
000712380	NATURAL RUBBER	001	210		1.17			9.02	23.		080
		017	100		.33	.90	٠	9.02	23.	.05	107
	NEOPRENE	002	100	>	6.00		<	.9 0			107
			210		1.50			6.01			080
		018	100		2.50		<	.90		.04	107
	NITRILE	005	210		6.00		<	.02			080
		019	100	>	6.00		<	.90		.06	10
	NITRILE+PVC	057	210		6.00		<	.02			080
		058	100		.05	.90	•	9.02			10
	PE	076	100		.05	.90	•	9.02			107
	PVC	007	100		1.50	.90	•	9.02			10
			210		2.00			9.02		•	080
		077	100		.33	.90		9.02			10
	TEFLON	069	510	>	.25 3.00	.90	•	9.02 .02		.05	103 303
n-Propylamine											
001071080	CPE	070	UNK		.15				27	0 5	-00
001071080	TEFLON				10.20		_	01	23.	.05	004
	TEPLON	069	510	>	10.20		<	.02	23.	.05	3 0:
Propylenediami			445	_					. 4=	•-	
000789000	BUTYL	014	118	>	8.00		<	.02		.07	32
	NEOPRENE	018	100	>	8.00		<	.02		.05	32
	PVC VITON	007 009	100 118	>	.30 8.00		<	9.02 .02		.02 .02	32: 32:
Dennylana Alak	looide /Dichlosss	1 3°									
000788750	loride (Dichloroprop BUTYL	oane 1,2) 014	118		2.15			190.38	23.	.08	32:
	PV ALCOHOL	102	100	>	8.00		<			.07	32
	PVC	007	100	-	.03		•	11,452.86		.02	32
	·	J.,						, ~> 2.00			36

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CH**2/MIN	TEMP DEG C	THICKNESS CH	RE
Propylene Glyco	N						_		
000575560	NATURAL RUBBER	001	503	>	3.00				
		017	120	>	3.00		23.	.06	08
	NEOP/NAT RUBBER	008	114	>	3.00		23. 23.	.05	08
	NITRILE+PVC	058	100	>	6.00		23.	.06	08
	PE	006	512	>	3.00		23.	.01	10 08
		076	100	>	6.00		23. 23.	.01	10
	PVC	077	100	>	6.00		23.		10
				>	6.00		23.		10
Propylene Oxide	•								
000755690	BUTYL	014	118		2.20	42.08	23.	.06	32
	NATURAL RUBBER	001	506	<	.01	1,973.14	23.	.02	32
	PE	076	100		.05	9.02 - 90.18	23.		10
	PV ALCOHOL	004	100		.58	9.02 - 90.18	23.		10
		102	100		.07	.90	23.	.03	32
	TEFLON	069	510		2.28	.02	23.	.03	30
					2.83	.02	23.	.05	30
	VITON	009	118		.02	10,769.30	23.	.03	3
,3-Propylene C									
05033000	BUTYL	014	118		1.13	561.12	23.	.07	3
	NATURAL RUBBER	001	250	<	.01	30.06	23.	.02	3
	PV ALCOHOL	004	100		.17	3.01	23.	.03	3
	VITON	009	118		.03	30.06	23.	.03	32
ropylmethacryl									
22102880	BUTYL	014	118		6.83	48.10	23.	.08	32
	NITRILE	019	100		1.00	150.30	23.	.04	32
	PV ALCOHOL PVC	004 003	100 100	>	8.00 .03	< .02 462.92	23. 23.	.07 .02	32
yridine									
01108610	NATURAL RUBBER	017	100		.04	701.40	25.	.03	22
			120		.03	1,202.40	25.	.02	23
			502		.13	400.80	25.	.05	22
			504		.20	501.00	25.	.05	22
					.43	30 0.60	25.	.06	22
	NEOP+NAT RUBBER	026	102		.14	400.80	25.	.05	22
	NEOP/NAT RUBBER	800	114		. 23	300.60	25.	.05	22
	NEOPRENE	002	100		.65	200.40	25.	.08	22
			120		.03	701.40	25.	.07	22
		018	118		.85	400.80	25.	.08	2
			120		.33	901.80	25,	.05	2
					.63	601.20	25.	.07	2
					.43	701.40	25.	.05	2
					.07	1,703.40	2 5.	.03	2
	NITRILE	019	100		.18	3,206.40	25.	.04	22
				•	.25	3,006.00	25.	.06	22
					.16	3,507.00	25.	.04	22
			181		.09	4,008.00	25,	.03	22
			503		.17	2,404.80	25.	.03	22

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION UG/CH**2/I		TEMP DEG C	THICKNESS CM	REF Num
001108610	PE	006	100	>	1.00	<	100.20	25.	.01	222
			505	>	1.00	<	10.02	25.	.01	222
Sodium Cyanide,	<30%									
001433391	PE	076	127		6.00	<	.02	60.		104
Sodium Cyanide,	30-70%									
001433392	PE	076	127	<	4.00	<	.02	70.		104
Sodium Hydroxid	le									
013107320	CPE	060	113	>	3.00			25.	.07	302
	NITRILE+PVC	058	100	>	6.00			23.		107
	PE	076	100	>	6.00			23.		107
	PVC	077	100	>	6.00			23.		107
				>	6.00			23.		107
	SILVER SHIELD	122	118	>	6.00			23.	.01	227
	VITON/CHLOROBUTYL	112	113	>	3.00			25.	.04	302
Sodium Hydroxid	le, <30%									
013107321	NEOP+NAT RUBBER	026	121	>	8.00	<	.02	23.	.05	237
Sodium Hydroxid	le, 30-70%									
013107322	BUTYL	064	117	>	8.00			23.	.02	213
				>	8.00			23.	.01	213
	BUTYL/NEOPRENE	110	117	>	8.00			23.	.02	213
	NATURAL RUBBER	001	210		6.00	<	.02			080
			UNK	>	1.00			23.		052
		015	UNK	>	1.00			23.	.04	052
		017	100	>	6.00			23.	.05	107
	NEOP/NAT RUBBER	800	UNK	>	1.00			23.		052
	NEOPRENE	002	100	>	6.00			23.		107
			210		6.00	<	.02	23.		080
		018	100	>	6.00			23.	.04	107
			UNK	>	1.00			23.	.09	052
				>	1.00			23.	.06	052
		093	117	>	8.00			23.	.02	213
		138	117	>	8.00			23.	.03	213
		139	117	>	8.00			23.	.01	213
	NEOPRENE+PVC	127	117	>	8.00			23.	.02	213
	NITRILE	005	210		6.00	<	.02			08 0
		019	100	>	6.00			23.	.06	107
			UNK	>	1.00			23.	.05	052
	MITRILE+PVC	057	210		6.00	<	.02			080
	•	058	117	>	8.00			23.	.01	213
	NONWOVEN PE	071	127	<	.17		.63			104
	PE	076	117	>	8.00			23.	.01	213
			127	>	8.00	<	.02			104
	PVC	003	UNK	>	1.00			23.	.02	052
		007	100	>	6.00			23.		107
			210		6.00	<	.02			080
			UNK	>	1.00			23.		052
		049	117	>	8.00			23.	.01	213
				>	8.00			23.	.01	213

CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	BREAKTHROUG	H TIME		ION RATE	TEMP	THICKNESS	RE
CASNO	MATERIAL	DESC CODE		HOURS		UG/CM*	*2/MIN	DEG C	CM	NL
013107322	PVC	053	117		8.00			23.	.02	21
		144	117	>	8.00			23.	.02	21
	SARANEX	061	117	>	8.00			23.	.01	21
			127	>	8.00			23.		10
	TEFLON	069	510	>	71.00	<	.02	16.	.05	30
	VITON	009	UNK	>	1.00			23.	.03	05
		145	117	>	8.00			23.	.01	2'
	VITON/NEOPRENE	111	117	>	8.00			23.	.02	21
Sodium Hypochlo	rite, 30-70%									
076815292	NATURAL RUBBER	001	210		6.00	<	.02	23.		08
	NEOPRENE	002	210		6.00	<	.02			0
	NITRILE	005	210		6.00	<	.02			0
	NITRILE+PVC	057	210		6.00	<	.02			0
	PVC	007	210		6.00	<	.02	23.		O
Styrene										
001004250	CPE	060	113	1.00 -	1.17			25.	.07	3
	NATURAL RUBBER	001	210		.17		348.70	23.		0
	NEOPRENE	002	210		.20		517.03	23.		0
		125	103				30.06	23.		0
	NITRILE	005	210		.50		733.46	23.		0
		019	103				456.91	23.		0
	NITRILE+PVC	057	210		.67		186.37	23.		0
		058	100		.07	9.02 -	90.18	23.		1
	PE	076	100		.17	9.02 -	90.18	23.		1
	PV ALCOHOL	004	100	>	6.00	<	.90	23.		1
	PVC	007	103				156.31	23.		0
			210		.33		216.43	23.		0
	SARANEX	061	127		.72		69.74	23.		1
	TEFLON	069	510	>	4.00	<	.02	23.	.05	3
	VITON/CHLOROBUTYL	112	113	>	3.00			25.	.04	3
Sulfuric Acid										
76649390	BUTYL	064	117	>	8.00			23.	.02	2
				>	8.00			23.	.01	2
				>	8.00			23.	.02	2
	BUTYL/NEOPRENE	110	117	>	8.00			23.	.02	2
	CPE	0 60	113	>	3.00			25.	.07	3
		07 0	UNK	>	3.00			23.	.05	0
	NATURAL RUBBER	001	210		1.33			23.		0
	NEOP+NAT RUBBER	026	121		1.53		462.92	23.	.05	2
	NEOPRENE	002	210		2.50			23.		C
	•	093	117		1.17			23.	.02	2
		138	117		2.25			23.	.03	2
		139	117		3.67			23.	.02	2
	NEOPRENE+PVC	127	117		1.33			23.	.02	2
	NITRILE	005	210		6.00	<	.02			C
	NITRILE+PVC	057	210		4.00			23.		C
		058	117		.42			23.	.01	2
	NONWOVEN PE	071	127	<	.08		3,006.00			1
	PE	076	117	>	8.00		*	23.	.01	2
	PVC	007	210		1.75			23.	• - •	0

CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	BREAKTHROUG	H TIME	PERMEATION RATE	TEMP	THICKNESS	RE
CASNO	MATERIAL	DESC CODE		HOURS		UG/CM**2/MIN	DEG C	CM	NU
076649390	PVC	049	117		1.33		23.	.01	21
					.42		23.	.01	21
		053	117		.42		23.	.02	21
				<	.42		23.	.02	21
		077	117	<	.08		23.	.01	21
					.33		23.	.01	21
		144	117		.42		23.	.02	21
	SARANEX	061	117	>	8.00		23.	.01	21
			127	>	8.00		23.		10
	SILVER SHIELD	122	118	>	6.00		23.	.01	22
	VITON	145	117	>	8.00		23.	.01	21
	VITON/CHLOROBUTYL	112	113	>	3.00		25.	.04	30
	VITON/NEOPRENE	111	117	>	8.00		23.	.02	21
Sulfuric Acid,	<30%								
076649391	NITRILE+PVC	058	100		2.00		23.		10
	NONWOVEN PE	071	127		.50	.92			10
	PE	076	100	>	5.00		23.		10
			127	>	8.00	< .02			10
	PVC	077	100		3.00		23.		10
					2.33		23.		10
	SARANEX	061	127	>	8.00	< .02			10
ulfuric Acid,	30-70%								
76649392	CPE	070	UNK	>	3.00				
	NATURAL RUBBER	017	102	>	6.00		23.	.05	00
		• • • • • • • • • • • • • • • • • • • •	102	>	6.00		23.	.05	02
				>	6.00		23.	.05	02
				>	6.00		23. 23.	.05	02
	NEOP+NAT RUBBER	026	102	>	6.00			.05	02
				>	6.00		23. 23.	.06	02
				>	6.00		23.	.04	02
	NEOP/NAT RUBBER	800	102	>	6.00		23.	.05	02
	NONWOVEN PE	071	127	•	.10	4.51			02
	PE	076	127	>	8.00	< .02			10
	SARANEX	061	127	>	8.00	< .02			10
Sulfuric Acid,	>70 ∀								
76649393	NATURAL RUBBER	001	UNK	>	1.00		23.		۸۶
		015	UNK	>	1.00		23.	0/	05
	NEOP/NAT RUBBER	008	UNK	>	1.00		23. 23.	.04	05
	NEOPRENE	002	100	>	6.00		23.		05
		018	100		3.00		23.	.04	10 10
	•		UNK	>	1.00		23.	.09	05
				>	1.00		23.	.06	
	WITRILE	019	UNK	>	1.00		23.	.05	05 05
	NITRILE+PVC	058	100		.62		23.	.07	10
	NONWOVEN PE	071	127	<	.08	38.38			10
	PE	076	100	>	6.00	30.30	23.		10
			127	>	8.00	< .02			10
				>	2.00	< .02			
	PVC	003	UNK		. 15	.02	23.	0.2	10- 05:
		007	100		3.67		23.	.02	ŲΣ

O ESSASSADA POSSOSO DESCOSOS E SECRESOS SASSADAS DESCOSOSO PERSOSOS DE CONTRADO PERSOSOS DE ESSAS DE SESES DESCOS

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	RE NU
076649393	DVC				1.00				_
0/0049393	PVC	007 077	UNK 100	,	.25		23. 23.		05
		077	100		1.00		23. 23.		10
	SARANEX	061	127		5.50		65.		10 10
	ORRANCA	001	127	>	8.00	٠.	02 23.		10
	TEFLON	069	510		72.00	_	02 2 5.	.05	30
	VITON	009	UNK	>	1.00	•	23.	.03	05
	1110H	007	Onk	_	1100		LJ.	.03	0,
Tannic Acid									
014015540	NITRILE+PVC	058	100	>	6.00		23.		10
	PE	076	100	>	6.00		23.		10
	PVC	077	100	>	6.00		23.		10
				>	6.00		23.		10
ennic Acid, 30									
)14015542	NATURAL RUBBER	017	100	>	6.00		90 23.	.05	10
	NEOPRENE	002	100	>	6.00		90 23.		10
		018	100	>	6.00		90 23.	.04	10
	NITRILE	019	100	>	6.00		90 23.	.06	10
	PVC	007	100	>	6.00	٠.	90 23.		10
1,1,1,2·Tetrach	incoethana								
006302060	BUTYL	014	118		2.30	138.	28 23.	.07	3
	PV ALCOHOL	102	100	>	8.00	.55.	23.	.08	3
	PVC	007	100		.05	330.		.02	3
	VITON	009	118	>	8.00		23.	.03	3
1,1,2,2-Tetrach									
000793450	BUTYL	014	118		4.60	70.		.07	3
	NATURAL RUBBER	017	100		.11	2,605.		.03	2
			120		.03	5,611.		.02	2
			502		.09	2,905.		.05	2
			504		.17	1,402.		.04	2
					.35	1,302.		.06	2
	NEOP+NAT RUBBER	026	102		.15	3,206.		.05	2
	NEOPRENE	002	100		.10	501.		.08	2
		040	120	_	.09	601.		.07	2
		018	118	>	1.07	< 20.			2
			120		.53	1,102		.05	2
					.83	1,002			2
					.30	1,402			2
	NITRILE	019	100		.16	2,204			2
	MIIKILE	UIY	100		.37 1.23	3,206 > 300			2
					.22	3,106			2
			503		.32	2,204			2
	PE	006	100		.07	10:			2
	r L	000	114		.31	1,402			2
			505	>	1.00		00 25.		2
	PV ALCOHOL	004	100	>	8.00		02 23.		3
	PVC	003	120	•	.02	5,410			2
	. • •								
					.02	6,012	00 25.	.01	2

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU! HOURS	GH TIME		ATION RATE M**2/MIN	TEMP DEG C	THICKNESS CM	RE NU
000793450	PVC	003	120		.04		4,008.00	25.	.02	22
			500		.01		4,000.00	25.	.01	22
			501		.02		4,108.20		.01	22
					.03		3,106.20		.01	22
		007	100	<	.01		70.14		.02	32
	TEFLON	069	510	>	15.20		.02		.05	30
	VITON	009	118	>	8.00	•	.02		.03	32
	lene (Perchloroethy									
001271840	BUTYL	014	118		.17	;			.04	29
					.17	;			.04	29
					.13		895.12		.04	28
			UNK		.13		895.79		.04	10
	CPE	070	UNK		1.07			23.	.05	00
	NATURAL RUBBER	001	210		.10		601.20			80
		017	UNK	<	.02	:			.02	29
		224	454	<	.02	;	751.50		.02	29
	NEOP+NAT RUBBER	026	121		.05		1,478.95		.05	23
	NEOPRENE	002	210		.12		571.14			80
		010	100		.20		980.29		.05	28
		018	100		.10		641.28		.04	29
			1 10 112		.13	;	641.28		.04	29
	NITRILE	005	UNK		.20		979.96		.05	10
	MITKILE	019	210 100		4.00		6.01			08
		019	118		5.00	.90			.06	10
			110		1.28		33.07		.04	32
			UNK		1.30		33.07		.04	22
		020	100		3.52		28.26		.03	10
		020	191		3.52 7.25		28.22		.03	28
			171		5.33		47.09		.04	29
	NITRILE+PVC	057	210		6.20		41.08		.04	29
	MITRILLIPVO	058	100		.08	90.18	90.18 901.80			08
	PE	006	100	<	.02				04	10
	· •	000	100		.02		686.37686.37		.01	29
				· ·	.02	•	769.87		.01	29
			UNK		.02		769.54		.01 .01	28 10
		076	100	`	.08	90.18			.01	10
	PV ALCOHOL	004	100		5.00		· • • • • • • • • • • • • • • • • • • •			
	* * * * * * * * * * * * * * * * * * * *	102	100	>	16.00		,.	23.	.04	10 32
				•	.60		2.00		.05	29
					.35		11.62		.05	29
					.80		1.20		.05	29
				>	6.00		1.20	25.	.05	28
			UNK	>	8.00			23.	.05	10
	PVC	003	100	· <	.01		180.96		.02	32
		•	118	<	.02		744.82		.01	28
			UNK	<	.02		745.49		.01	10
		007	210	-	.75		114.23		.01	08
	SARANEX	061	127		.27		1.14			10
			-		.08		10.02		.02	29
					.03		20.04		.02	29
	SILVER SHIELD	122	118	>	6.00		24.07	23.	.01	22

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	JGH TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
001271840	TEFLON	036	214		.43	2.30	23.	.01	291
•				>	24.00		23.	.01	291
		069	510	>	10.40	< .02	23.	.05	303
					1.80		25.	.05	303
	VITON	009	118	>	17.00		23.	.03	323
				>	17.00		23.	.02	227
					3.17	4.21	45.	.02	291
					3.00	4.21	45.	.02	291
				>	24.00		23.	.02	291
				>	24.00		23.	.02	291
				>	24.00		10.	.02	291
				>	24.00		10.	.02	291
				>	6.00		25.	.02	288
			UNK	>	8.00		23.	.02	100
Tetraethylenepe	entamine								
001125720	BUTYL	012	118	>	8.00		25.	.09	323
	NATURAL RUBBER	017	506		1.77	12.02	28.	.02	323
	NEOPRENE	018	100	>	8.00		27.	.05	323
	VITON	009	118	>	8.00		23.	.04	3 23
Tetrafluoroethy	/Lene								
001161430	BUTYL	014	118	>	8.00		23.	.06	323
	NEOPRENE	018	100	>	8.00		23.	.06	323
	PV ALCOHOL	102	100	>	8.00		23.	.03	323
	VITON	009	118	>	8.00		23.	.03	323
Tetrahydrofuran	1								
001099990	BUTYL	014	118		.45	671.54	23.	.07	323
					.52	673.34	23.	.04	227
		064	117		.12		23.	.02	213
					.10		23.	.01	213
					.08		23.	.02	213
	BUTYL/NEOPRENE	110	117	<	.08		23.	.02	213
	CPE	060	113	.45 •	.05		25.	.07	302
		070	UNK		.20		23.	.05	004
	NATURAL RUBBER	017	100		.04	> 16,699.98		.03	222
			120		.02	> 16,699.98		.02	222
			502		.06	> 16,699.98		.05	222
			504		.04	3,507.00		.05	222
					.11	2,404.80		.06	222
	NEOP+NAT RUBBER	026	102		.06	> 16,699.98	25.	.05	222
	NEOP/NAT RUBBER	800	114		.02	> 16,699.98	25.	.05	222
	NEOPRENE	002	100		.03	8,016.00	25.	.08	222
			120		.02	9,619.20	25.	.07	222
		018	118		.33	9,018.00	25.	.08	222
			120		.09	16,032.00	25.	.05	222
					.23	11,022.00		.07	222
					.08	14,028.00		.05	222
					.05	> 16,699.98		.03	222
		093	117		.03	•	23.	.02	213
		125	103			829.66			045
		138	117	<	.08		23.	.03	213

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
001099990	NEOPRENE	139	117		.10		23.	.02	213
••••	NITRILE	019	100		.10	3,707.40		.04	222
					.10	2,705.40		.06	222
					.08	4,308.60		.04	222
			103			931.86			045
			118	<	.01	1,005.81		.04	323
					.07	1,004.00		.04	227
			503		.04	3,507.00		.03	222
	PE	006	100		.01	200.40		.01	222
			505		.05	4.01		.01	222
		076	100		.25	.90 - 9.02			107
			117		.10		23.	.01	213
	PV ALCOHOL	102	100		4.72	2.52		.03	323
	PVC	003	120		.01		25.	.01	222
					.01		25.	.01	222
					.03		25.	.03	222
					.02		25.	.02	222
			500		.01		25.	.01	222
			501		.01		25.	.01	222
		049	117	<	.16		23.	.01	213
	SARANEX	061	117		.03		23.	.01	213
	TEFLON	069	510	>	5.50	< .02	25.	.05	303
	VITON	009	118	<	.01	1,964.09	23.	.03	323
					.07	1,965.92	23.	.02	227
		145	117		.08		23.	.01	213
	VITON/CHLOROBUTYL	112	113	.15 ·	.18		25.	.04	302
	VITON/NEOPRENE	111	117		.17		23.	.02	213
N,N,N',N'-Tetra	methylenediamine								
001101890	BUTYL	012	118		1.08	48.10	20.	.07	323
		014	118		1.08	48.10	23.	.07	323
	NITRILE	019	100		1.80	90.18	23.	.05	323
					1.80	90.18	24.	.05	323
	PVC	003	100		.03	1,923.84	23.	.02	323
	VITON	009	118		.43	1,725.44		.04	323
					.43	1,725.44	24.	.04	323
Thiophenol (Ber	nzenethiol)								
001089850	BUTYL	014	118		.28	2,024.04	21.	.05	124
	PV ALCOHOL	004	100	>	4.00		21.		124
Toluene									
001088830	BUTYL	012	UNK		.17	273.5	25.	.04	273
	•				.33	254.31	25.	.04	273
					.50	277.7	25.	.06	273
					.50	276.55	25.	.06	273
					.17	267.53	25.	.04	273
					.25	304.8	25.	.04	273
					.50	281.30	25.	.06	273
					.67	251.30		.06	273
					.17	245.29		.04	273
					.17	253.7		.04	273
					.33	300.60	25.	.06	273

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME		ATION RATE M**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
001088830	BUTYL	012	UNK		.50		281.36	25.	.06	273
		014	118		.35		132.87		.06	323
					.28		1,503.00		.05	122
			216		.15		•	37.	.06	122
		107	UNK		.18		59.12		.04	149
					.47		69.14		.04	149
					.18		1,503.00	25.	.04	149
					.15		167.33	25.	.04	149
					.70		141.28	25.	.04	149
	CPE	060	113	1.15 -	1.25			25.	.07	302
	NATURAL RUBBER	001	210		.15		637.27	23.		08 0
			UNK		.01		> 521.04	23.	.12	274
					.28		649.30	25.	.19	088
					.30		913.82		.24	880
		017	100		.03		4,709.40		.03	222
			120		.01		9,218.40	25.	.02	222
			502		.06		2,705.40		.05	222
			504		.05		3,607.20		.05	222
					.07		2,805.60		.06	222
			UNK		.01		> 521.04		.04	274
	NEOP/NAT RUBBER	800	114		.08		4,709.40		.05	222
	NEODOENE	000	UNK		.07		> 541.08		.05	274
	NEOPRENE	002	100		.03		1,002.00		.08	222
			120		.02		2,605.20		.07	222
			210		.15		499.00			080
		040	UNK		.21			23.	.05	186
		018	100		.20		131.06		.05	323
			118 120		.53		701.40		.08	222
			120		.23		1,402.80		.05	222
					.43		1,302.60		.07	222
					.28 .07		901.80		.05	222
			509		.52		2,505.00 > 1,503.00		.03	222
			UNK		.46		> 1,503.00 > 526.05		.09	122
					.21		> 520.03		.09	274 274
					.08		274.75		.06 .04	273
					.08		240.48		.04	273
					.25		274.75		.06	273
					.33		235.67		.06	273
		031	UNK		.08		3,509.00		.04	149
					.12		767.53		.04	149
					.02		400.80		.04	149
					.37		2,143.28		.04	149
					.12		2,732.45		.04	149
					.31		• -	23.	.04	187
	NITRILE	005	210		1.00		330.66			080
		019	100		.38		300.60		.04	122
					.32		701.40		.04	222
					.17	90.18	- 901.80	23.	.06	107
					.45			37.	.06	122
					.35			37.	.06	122
					1.20		400.80		.06	122
				>	1.00		< 300.60	25.	.06	2 22

SOSSIO DODDENO ESPECICIO ESCALADO SERSESTA DESCALADO ESCALAGOS MESTACASES DE CALAGOS MARAGAS O PRESENTA ESPA

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUG HOURS	H TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF Num
001088830	NITRILE	019	100		.24	200.40	34.	.04	122
					.25	300.60		.04	122
					.16	300.00	37.	.04	122
					.60	501.00		.04	222
			118		.18	409.42		.04	227
					.25	200.40		.03	122
					.13		37.	.04	122
					.28	200.40		.04	122
			181			400.80		.03	222
			503		.17	801.60		.03	222
			509		.55	300.60		.06	122
			UNK		.36	> 526.05		.05	274
				>	1.00		23.	.05	274
					.33	260.32	25.	.04	273
					.33	201.40	25.	.04	273
					.58	211.62	25.	.06	273
					.67	238.68	25.	.06	273
		020	216		.12	601.20	22.	.03	122
					.10		37.	.04	122
					.11	701.40	34.	.04	122
					.68	501.00	22.	.09	122
			UNK		.13	1,184.36	25.	.03	088
					. 13	1,244.48	25.	.03	880
	MITRI P. A.	033	UNK		.23		23.	.05	187
	NITRILE+PVC	057	210		.67	365.73			080
	PE	006	100		.01	2,204.40		.01	222
		05.	505		.03	601.20		.01	222
		056	UNK		.12		23.	.01	187
		076	100		.02	.90 - 9.02			107
	PV ALCOHOL	00/	127	<	.08	165.33			104
	PY ALCOHOL	004	100	>	25.00		22.	.04	122
			4 4414		.25	.90 - 9.02			107
		035	UNK	>	1.00		23.	.12	274
		035	UNK		1.02	11.02		.07	149
					2.30	90.18		.07	149
					.02	4.01	25.	.07	149
	PVC	003	120	_	.02	317.63		.07	149
		003	120	«	.01	8,817.60	25.	.01	555
				<	.01	5,110.20	25.	.01	222
					.05	2,104.20	25.	.03	222
			215		.06	1,803.60	25.	.02	222
			500	_	.20	> 1,503.00	22.	.06	122
			500 501	«	.01	5,310.60		.01	222
			JU 1		.01	5,911.80	25.	.01	222
		007	129		.01 .20	4,809.60		.02	222
		301	167		.13	300 40	37.	.05	122
					.13	300.60		.06	122
					.13	200.40	22.	.07	122
			210		. 13	300.60	34.	.05	122
			UNK		.23	426.85	23.	4.0	080
			VAR		.23 .28	> 526.05	23.	.16	274
							23.	.07	186
					. 14		23.	.05	186

CASNO	RESISTANT Material	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEAT!		TEMP DEG C	THICKNESS CM	REI
001088830	PVC	007	UNK	-	.15		829.66	25.	.13	088
					.15		859.72	25.	.13	088
					.09		898.79	25.	.10	088
					.08		829.66	25.	.11	088
		049	UNK		.38			23.	.03	187
	SARANEX	061	127	<	.08		20.04	23.		104
	SILVER SHIELD	122	118	>	6.00			23.	.01	227
	TEFLON	069	510	>	3.00	<	.02	23.	.05	303
					18.50	<	.02	25.	.05	303
	VITON	009	118	>	16.00	<	.02	23.	.02	227
					.58			37.	.02	122
				>	3.30			34.	.03	122
				>	4.50			22.	.03	122
				>	7.00			22.	.03	122
	VITON/CHLOROBUTYL	443	UNK	>	1.00			23.	.03	274
	VITON/CHLOROBUTYL VITON/NEOPRENE	112 022	113	>	3.00			25.	.04	302
	VII UM/ REUTKENE	UEC	216		1.67		***	37.	.06	122
					4.20		200.40	22.	.06	122
Toluene Diisoc 264716250	yanate BUTYL	014	440	_						
2047 10230	BUITE	014	118	>	8.00			23.	.04	323
	CPE	070	IMP	>	8.00			23.	.04	227
	NATURAL RUBBER	017	UNK 100	,	3.00	0.00		23.	.05	004
	NITRILE	005	120	>	.12 8.00	9.02 -	90.18		.05	107
	MILKILL	019	118	,	3.86		40.00	23.	.06	236
		017	110		3.70		10.82		.03	323
	PE	076	100		1.00	.90 -	10.82		.04	227
	PV ALCOHOL	004	100	>	6.00	.90 -	9.02 .90			10
		102	100		16.00	•	.90	23. 23.	07	10
	SILVER SHIELD	122	118	>	8.00			23. 23.	.03 .01	32: 22:
	TEFLON	069	510	>	3.30	<	.02		.05	303
	VITON	009	118		16.00	•	.02	23.	.03	303
					16.00			23.	.03	22
p-Toluenesulfo	nic Acid									
001041540	CPE	070	UNK	>	3.00			23.	.05	00/
	NEOPRENE	018	100	>	4.00			23.	.05	123
	PVC	003	215	>	4.00			23.	.05	123
o-Toluidine										
000955340	TEFLON	069	510	>	3.30	<	.02	23.	.05	303
Triallylamine										
001027050	NEOPRENE	018	100		1.05		561.12	19.	.05	323
	NITRILE	019	100	>	8.00	<	.02		.04	323
	PVC	007	100		.08		621.24	20.	.02	323
	VITON	009	118	>	8.00	<	.02		.03	323
Trichloroacetal	dehyde (Chloral)									
000758760	BUTYL	014	118		3.32		50.10	23.	.07	323
	PV ALCOHOL	102	100	>	8.00	<	.02		.08	323
	PVC	007	100		.07		2,845.68			

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGI HOURS	H TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	
000758760	VITON	009	118		7.28	< .02	23.	.03	. :
Trichloroaceto	nitrile								
005450620	BUTYL	014	118		1.98	247.00			
	NEOPRENE	018	100		1.12	316.23		.06	3
	PV ALCOHOL	102	100	>		927.65		.06	3
	VITON	009	118	,	8.00 1.00	46/ 57	23.	.06	3
		•••	110		1.00	184.57	23.	.03	3
1,2,4-Trichlor									
01208210	BUTYL	014	UNK		.08		23.	.04	;
	******				.08		23.	.04	;
	NATURAL RUBBER	017	UNK		.08		23.	.02	1
					.08		23.	.02	
	NEOPRENE	010	UNK		4.00		23.	.03	
					5.00		23.	.03	
		018	UNK		1.00		23.	.04	
	PE	006	UNK		.17		23.	.01	
					.17		23.	.01	
		076	127	<	.25	5.01	23.		
	PV ALCOHOL	102	UNK		1.00		23.	.05	
					1.00		23.	.05	
	SARANEX	061	127	.25 -	1.00	.10	23.		
			UNK		1.00		23.	.02	
					1.00		23.	.02	
	TEFLON	036	UNK		1.00		23.	.01	
					8.00		23.	.01	
	VITON	009	UNK		.17		23.	.02	
					.17		23.	.02	
,1,2-Trichlore	ethane								
00790050	BUTYL	014	118		5.78	42.08			
			UNK		.83	42.00	23.	.09	
		064	UNK		.as		23.	.06	
	NATURAL RUBBER	017	UNK		.02		23.	.04	
	NEOPRENE	018	UNK		.12		23.	.02	
	NITRILE	019	UNK		.03		23.	.06	
	PE	042	UNK		.06		23.	.02	
	POLYURETHANE	050	UNK	<	.02		23.	.01	
	PV ALCOHOL	102	100	>	8.00		23.	.01	
		.02	UNK	,			23.	.07	
	PVC	003	118		.25		23.	.04	
	TEFLON	036	UNK	_	.03	1,238.47	23.	.02	
	15.50	044		>	24.00		23.	.01	
	VITON -	009	UNK		2.92		23.	.01	:
	*1.0M	009	118 UNK	>	8.00 24.00		23.	.05	
			OHK		24.00		23.	.03	
2,2-Trichloro									
1152080	SARANEX	061	127		.32	13.23	23.		•
	na /Taichlessachana	\							
richloroethyle	ne (irichtoroethene:								
	BUTYL	014	118		.23	3.308.40	23.	.04	,
richloroethyle 00790160			118		.23 .08	3,308.40 > 826.65	23. 23.	.06 .04	3

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME		TION RATE **2/MIN	TEMP DEG C	THICKNESS CM	REF
000790160	BUTYL	014	118	 _	.08		2,037.40	25.	.04	288
					.22		3,306.60		.04	227
			UNK		.08		2,044.08		.04	100
	CPE	070	UNK		.20		•	23.	.05	004
	NATURAL RUBBER	001	210		.10		1,262.52			080
		017	100		.03		9,418.80		.03	222
			120		.01	>	16,699.98		.02	222
			502		.05		7,615.20		.05	222
			504		.05		6,813.60		.05	222
					.08		5,310.60		.06	222
			UNK	<	.02	>	656.31		.02	291
				<	.02	>			.02	291
	NEOP+NAT RUBBER	026	102		.05		7,314.60		.05	222
	NEOP/NAT RUBBER	800	114		.08		5,911.80	25.	.05	222
	NEOPRENE	002	100		.03		1,903.80	25.	.08	222
			120		.03		1,803.60	25.	.07	222
			210		.13		1,160.32	23.		080
			UNK		.23			23.	.05	186
		010	100		.08		2,187.70	25.	.05	288
		018	100		.05	>	566.13	23.	.04	291
				<	.07	>	566.13	23.	.04	291
			118		.38		1,302.60	25.	.08	222
			120		.14		2,304.60	25.	.05	222
					.25		2,104.20	25.	.07	222
					.20		1,903.80	25.	.05	222
					.06		4,208.40	25.	.03	222
			UNK		.78		2,194.38	23.	.05	100
		031	UNK	.17 •	.25		53.11	22.	.08	078
		125	103				823.64	23.		045
	NITRILE	005	210		.33		1,106.21			080
		019	100		.15		2,004.00		.04	222
					.43		901.80		.06	222
					.16		2,104.20		.04	222
			103				1,791.58			045
			118		.07		1,701.40		.04	323
					.13		1,701.40		.04	227
			503		.13		1,603.20		.03	222
		020	UNK		.16		1,647.29		.03	100
		020	100		.16		1,646.62		.03	288
			503	<	.25	>			.04	291
		077	r mus	47	.18	>	020.05		.04	291
	NITRILE+PVC	033 057	UNK	.17 -	.25		60.12		.09	078
		05 <i>1</i> 058	210		.50	001.00	1,244.48	23.		080
	PE	906	100		.05	901.80 -	9,018.00			107
	v.	VV0	100	<	.02	>	657.31		.01	291
				<	.02	>	657.31	23.	.01	291
					.01		1,503.00	25.	.01	222
			IMIV	<	.02		1,394.45	25.	.01	288
		074	UNK		-	0.00	1,394.78	23.	.01	100
	BV ALCOHOL	076	100		.08	9.02 •	90.18	23.		107
	PV ALCOHOL	004	100	_	.50	<		23.		107
		035	UNK	<	.25		8.02	22.	.01	078
		102	100	>	16.00			23.	.04	323

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	GH TIME	PERMEAT!		TEMP DEG C	THICKNESS CH	RI
000790160	PV ALCOHOL	102	100		24.00			23.	.05	2
					24.00			23.	.05	2
					24.00			10.	.05	2
					24.00			10.	.05	2
					24.00			45.	.05	2
					24.00			45.	.05	2
•				>	6.00			25.	.05	2
			UNK	>	8.00			23.	.05	1
	PVC	003	118	<	.02		1,015.36		.01	2
			120		.01		11,022.00	25.	.01	2
					.01		9,018.00		.01	Z
					.05		3,807.60	25.	.03	2
					.01		8,216.40	25.	.02	2
			500		.01		13,026.00	25.	.01	2
			501		.01		13,026.00	25.	.01	2
					.01		6,212.40	25.	.02	2
			UNK	<	.02		1,016.03	23.	.01	1
		007	103				901.80	23.		(
			210		.33		1,256.51	23.		(
			UNK		.16			23.	.07	•
					.08			23.	.05	
		077	100		.07	90.18 -	901.80	23.		
					.05	901.80 -	9,018.00	23.		
	SARANEX	061	127	<	.02	>	310.62	23.	.02	
				<	.02	>	290.58	23.	.02	
	SILVER SHIELD	122	118	>	6.00			23.	.01	
	TEFLON	036	214	>	24.00			23.	.01	
				>	24.00			23.	.01	
		069	510		2.38		.03		.05	
					2.43		.03		.05	
					2.60		.03		.05	
	VITON	009	118		7.35		1.44		.03	
				>	24.00			10.	.02	
				>	24.00			10.	.02	
					.80		23.05		.02	
					.80		21.04		.02	
					7.40		1.40		.02	- 1
					10.00	>	1.60		.02	i
					12.00	>	1.70		.02	7
				>	6.00			25.	.02	7
			UNK	>	8.00			23.	.02	1
,2,3-Trichloro	propene									
00961840	BUTYL	014	118	>	8.00	<	.02	23.	.06	
	NITRILE	019	100		.35	·	20.04		.04	•
	PV ALCOHOL	004	100	>	8.00	<	.02		.03	:
	VITON	009	118	>	8.00	<	.02		.03	3
• • •										
ricresyl Phosp 13307850	hate (Tritolyl Phos BUTYL	iphate) 012	110						4=	
13301930	NATURAL RUBBER	012	118 100	>	8.00	_	^~	23.	.07	
				_	.75	<	.90		.05	
	NEOPRENE	002	100	>	6.00	<	.90			•
		018	100	>	6.00	<	.90	23.	.04	

CALO INTERESTOR ZECECCECA GENERALO POR PORTE CALA DESCENSOR INVESTADA ECONOMISMO POR PORTE SPORTE DE PROPERTO DE PARTE D

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CH++2/MIN	TEMP DEG C	THICKNESS	REF
047707050									_
013307850	MITRILE	019	100	>	6.00	۰. , ,		.06	107
	NITRILE+PVC PE	058 076	100	>	6.00		23.		107
	_		100	>	6.00		23.		107
	PV ALCOHOL	004	100	>	6.00	۶. >			107
	PVC	003	100	>	8.00 8.00		23.	.08	323
	710	007	100	,			23.	.02	323
		077	100	,	6.00 6.00	۰. ۲			107
		0//	100	,	6.00		23.		107
	VITON	009	118	,	8.00		23. 23.	.04	107 3 23
Triethanolamine	•								
001027160	NITRILE+PVC	058	100	>	6.00		23.		107
	PE	076	100	>	6.00		23.		107
	PVC	077	100	>	6.00		23.		107
				>	6.00		23.		107
Triethanolamine	·, >70%								
001027163	NATURAL RUBBER	017	100		1.00	۰. ،	0 23.	.05	107
	NEOPRENE	002	100	>	6.00	٠. ، ،	0 23.		107
		018	100	>	6.00	٠, ٠,٠	0 23.	.04	107
	NITRILE	019	100	>	6.00	٠. ،	0 23.	.06	107
	PV ALCOHOL	004	100	>	6.00	٠. >	0 23.		107
	PVC	007	100	>	6.00	٠. ٠	0 23.		107
Triethylamine									
001214480	CPE	070	UNK	>	3.00		23.	.05	004
	NEOPRENE	018	100		.62	811.6		.05	323
	NITRILE	019	118	>	8.00	٠. ،		.04	323
	PVC	020 007	216 100	>	4.00		23.	.04	123
	VITON	007	118	>	.07 8.00	290.! < .!	8 2 0. 2 24.	.02 .03	323 323
Triethylenetetr	aamine								
001122430	BUTYL	014	118	>	8.00	٠. (2 20.	.06	323
	NEOPRENE	018	100	>	8.00		2 19.	.05	32
	NITRILE	019	100	>	8.00		2 16.	.04	323
	VITON	009	118	>	8.00		2 20.	.03	323
Trifluoroethano	ot								
000758980	NATURAL RUBBER	017	100	>	1.00	< 4.0	1 25.	.03	222
			120	>	1.10	< 4.1		.02	222
			502	>	1.33	< 4.0	1 25.	.05	222
			504	>	1.07	< 4.0		.05	222
				>	1.65	< 4.0	1 25.	.06	222
	NEOP+NAT RUBBER	026	102	>	1.65	< 4.0	1 25.	.05	222
	NEOP/NAT RUBBER	800	114	>	1.02	< 4.0	1 25.	.05	222
	MEOPRENE	002	100	>	1.00	< 4.1	1 25.	.08	222
			120	>	1.00	< 4.0		.07	222
		018	118	>	1.00	< 4.6		.08	22
			120	>	1.00	< 4.0		.05	223
				>	1.00	< 4.0		.07	22
				>	1.00	< 4.0	1 25.	.05	22

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH HOURS	TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
000758980	NEOPRENE	018	120		1.00	< 4.01	25.	.03	222
	NITRILE	019	100		.33	1,903.80		.04	222
			•••		.97	1,102.20		.06	222
					.28	2,304.60		.04	222
			503		.12	3,106.20		.03	222
	PE	006	100	>	1.00	< 4.01		.01	222
			505	>	1.00	< 4.01		.01	222
		076	127	>	8.00	< .02		•••	104
	PVC	003	120		.08	1,202.40		.01	222
					.12	1,903.80		.01	222
					.25	1,302.60		.03	222
					.11	1,102.20		.02	222
			500		.04	1,002.00	25.	.01	222
			501		.07	300.60	25.	.01	222
					.05	901.80	25.	.02	222
Tri-n-propylami									
001026920	NEOPRÈNE	018	100	>	8.00		23.	.05	323
	NITRILE	019	100	>	8.00		23.	.04	323
	PV ALCOHOL	102	100	>	8.00		23.	.06	323
	VITON	009	118	>	8.00		23.	.04	323
Turpentine									
080066420	NEOP+NAT RUBBER	026	121		.07	264.53		.05	237
	NITRILE	019	100		.50	< .90		.06	107
	PV ALCOHOL	004	100		6.00	< .90			107
	TEFLON	069	510	>	3.60	< .02	23.	.05	303
Valeronitrile 001105980	5.15. 41	•••							
001103960	BUTYL	014	118	>	8.00	< .02		.07	323
	NATURAL RUBBER	017	506		.03	126.25		.02	323
	NEOPRENE PV ALCOHOL	018 004	100 100	>	.68 8.00	126.25 < .02		.05 .07	323 323
Vinyl Acetate									
001080540	TEFLON	069	510		1.23	.05	23.	.05	303
					2.28	.05	23.	.05	303
Vinyl Chloride	(Chloroethene)								
000750140	CPE	070	UNK	>	3.00		23.	.05	004
	NITRILE	019	103			.02	23.		045
			118		5.70	.84	23.	.04	227
	SILVER SHIELD	122	118	>	6.00		23.	.01	227
	VITON	009	118		4.40	.58	23.	.04	227
4-Vinyl-1-cyclo	hexane								
001004030	BUTYL	012	1:3		.52	354.71	23.	.07	323
	WITRILE	019	100		6.53	1.20	23.	.04	323
	PV ALCOHOL	004	100		.90		23.	.09	323
	VITON	009	118	>	8.00		23.	.04	323
Vinylidene Fluo									
	BUTYL	014	UNK		8.00		23.		323

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROUGH Hours	TIME		ATION RATE 4**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
000753870	NATURAL RUBBER	001	250	<	.02		6.01	23.	.02	323
	NEOPRENE	018	100	>	5.00			23.	.05	323
				<	.02		.37		.05	323
	PVC	003	100	<	.02		1.80		.02	323
	VITON	009	118	>	8.00			23.	.04	323
Xylene										
001332070	NATURAL RUBBER	001	210		.12		444.89	23.		080
		017	100		.04		3,406.80	25.	.03	222
			120		.02		5,811.60	25.	.02	222
			502		.08		3,707.40	25.	.05	222
			504		.08		2,805.60	25.	.05	222
					.13		2,404.80	25.	.06	222
	NEOP+NAT RUBBER	026	102		.07		30.06	23.	.06	026
					.07		30.06	23.	.05	026
	NEOP/NAT RUBBER	800	102		.07		30.06	23.		026
			114		.12		2,505.00	25.	.05	222
	NEOPRENE	002	100		.06		501.00	2 5.	.08	222
			120		.05		601.20	25.	.07	222
			210		.13		408.82	23.		080
		018	118		.73		701.40	25.	.08	222
			120		.23		1,302.60	25.	.05	222
					.30		1,402.80	25.	.07	222
					.38		801.60	25.	.05	222
					.09		3,406.80	25.	.03	222
		031	511	•	.27		492.98			323
		125	103				30.06			045
	NITRILE	005	210		1.67		300.60			080
		019	100		.80		100.20	25.	.04	222
					1.25	90.18			.06	107
				>	1.00		< 50.10		.06	222
					.95		100.20		.04	222
					.45		168.34		.05	323
			103				84.17			045
			503		.47		300.60		.03	222
	NITRILE+PVC	057	210		.75		330.66			080
		058	100	>	.05	9.02				107
	PE	006	505		.07		100.20		.01	222
		076	100		.08	9.02			•••	107
	PV ALCOHOL	004	100	>	6.00		< .90			107
		102	100	>	8.00		• • • • • • • • • • • • • • • • • • • •	23.	.09	323
	PVC	003	100	•	.02		192.38		.02	323
			120		.03		3,006.00		.01	222
			.=-		.02		3,507.00		.01	222
					.08		1,703.40		.02	222
			500		.01		4,509.00		.02	222
			501		.01		3,507.00		.01	222
			JU 1		.03		2,104.20		.02	
		007	103		.03		72.14		.02	222 045
		5 07	210		.66		389.11			080
	TEFLON	069	510	>	3.00		.02		.05	303

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	BREAKTHROU Hours	JGH TIME	PERMEATION RATE UG/CM**2/MIN	TEMP DEG C	THICKNESS CM	REF NUM
									
m-Xylene									
001083830	BUTYL	014	118		.65	87.78	23.	.06	323
					.17	228.79	23.	.05	086
	NEOPRENE	018	100		.23	198.55	23.	.06	086
	NITRILE	019	100		1.03	188.78	23.	.04	323
					1.62	72.14	23.	.06	086
			118		.27	396.79	23.	.04	086
			120		.65	198.73	23.	.05	086
		020	503		.55	180.36	23.	.04	086
	PV ALCOHOL	102	100	>	12.67		23.	.03	323
	VITON	009	118	>	16.00		23.	.03	323
					8.00		23.	.04	086
o-Xylene									
000954760	BUTYL	014	118		.87	116.63	23.	.07	323
	CPE	060	113		1.20		23.	.05	204
					1.05	186.37		.05	204
	NITRILE	019	100		.20	179.76	23.	.04	323
	PV ALCOHOL	102	100	>	12.67		23.	.03	323
	VITON	009	118	>	8.00		23.	.03	323
p-Xylene									
001064230	BUTYL	014	118		.45	90.78	23.	.07	323
	NITRILE	019	100		.87	85.97		.04	323
	PV ALCOHOL	102	100	>	14.00	•	23.	.03	323
	PVC	003	100	<	.01	185.17		.02	323
	VITON	009	118	>	16.00		23.	.03	323

APPENDIX B

WEIGHT CHANGE DATA

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT	WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
07///474	n.e	0/4			•		-		
076644171	PE	041 042	UNK	<	.01	8,760.00	23.		305
		048	UNK	< <	.01 .01	8,760.00 8,760.00	23. 23.		305 305
Acetic Acid									
000641970	CPE	060	113		27.00	24.00	23.	.05	204
					28.00	24.00	23.	.05	204
					31.00	24.00	23.	.05	204
	NATURAL RUBBER	001	UNK		-1.00	1.00	25.		208
	NEOPRENE	002	UNK		4.00	1.00	25.		208
	NITRILE	005	UNK		-2.00	1.00	25.		208
Acetic Acid, <3									
000641971	PE	041	UNK		.90	8,760.00	23.		305
		042	UNK		.80	8,760.00	23.		305
		048	UNK		.8 0	8,760.00	23.		305
Acetic Acid, 30		001	430		4.00				
000641972	NATURAL RUBBER	001	120		1.00	.50	23.	.05	236
				<	.01	.08	23.	.05	236
					1.00	1.00	23.	.05	236
	NEODDENE	010	420	_	8.00	4.00	23.	.05	236
	NEOPRENE	010	120	<	.01	.08	23.	.06	236
				_	2.00	.50	23.	.06	236
				<	.01	1.00	23.	.06	236
	NITRILE	005	120		2.00	4.00	23.	.06	236
	MITRILE	005	120		1.00	.08	23.	.06	236
					3.00	.50	23.	.06	236
					4.00 10.00	1.00	23.	.06	236
	PVC	003	120			4.00	23.	.06	236
	PVC	003	120		3.00 1.00	4.00 1.00	23.	.08	236
				_		.50	23.	.08	236
				<	1.00	.08	23. 23.	.08 .08	23 <i>6</i>
Acetic Anhydrid	le								
001082470	BUTYL	014	118		1.00	8.00	23.	.09	323
	CPE	060	113		6.10	24.00	23.	.05	204
					2.70	24.00	23.	.05	204
					8.20	24.00	23.	.05	204
	NATURAL RUBBER	001	250		4.00	8.00	20.	.02	323
	NEOPRENE	018	100		16.00	8.00	20.	.05	323
	PVC	007	100		-12.00	8.00	20.	.02	323
Acetone									
000676410	BUTYL	014	UNK		.90	24.00	22.		201
	CPE	060	113		50.00	.58	23.	.05	204
					58.00	.25	23.	.05	204
					64.00	.25	23.	.05	204
	NATURAL RUBBER	001	120		3.00	.08	23.	.05	236
					4.00	.50	23.	.05	236

LOUI FOLLOCADO DOS DESCRICOS CONTROS CONTROS DE CONTROS CONTROS CONTROS DE CO

CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME	TEMP	THICKNESS	REF
CASNO	MATERIAL	DESC CODE			HOURS	DEG C	CM	NUM
000676410	NATURAL RUBBER	001	120	4.00	1.00	23.	.05	236
				3.00	4.00	23.	.05	236
			UNK	-2.00	1.00	25.		208
		017	UNK	-2.00	24.00	22.		201
	NEOPRENE	002	UNK	-3.00	1.00	25.		208
		010	120	1.00	.08	23.	.06	236
				7.00	.50	23.	.06	236
				8.00	1.00	23.	.06	236
				4.00	4.00	23.	.06	236
		018	UNK	-1.40	24.00	22.		201
				30	24.00	22.		201
				-8.00	24.00	22.		201
				70	24.00	22.		201
	NITRILE	005	120	9.00	4.00	23.	.06	236
				55.00	1.00	23.	.06	236
				32.00	.50	23.	.06	236
				17.00	.08	23.	.06	236
			UNK	-3.00	1.00	25.		208
		020	UNK	2.70	24.00	22.		201
	PE	041	UNK	1.00	8,760.00	23.		305
		042	UNK	1.20	8,760.00	23.		305
		048	UNK	1.20	8,760.00	23.		305
	PV ALCOHOL	102	UNK	-15.70	24.00	22.		201
	PVC	003	120	2.00	4.00	23.	.08	236
				29.00	1.00	23.	.08	
				30.00	.50	23.	.08	236
				14.00	.08	23.	.08	236 236
			UNK	-16.10	24.00	22.	.00	201
Acetonitrile								
000750580	NEOPRENE	010	120	. 01				
***************************************	NEW KENE	010	120	< .01	.08	23.	.06	236
				1.00	.50	23.	.06	236
				< .01	1.00	23.	.06	236
				1.00	4.00	23.	.06	236
Allylamine								
001071190	BUTYL	014	118	15.00	8.00	20.	.06	323
	NATURAL RUBBER	001	250	34.00	8.00	20.	.01	323
	PV ALCOHOL	102	100	14.00	8.00	23.	.07	323
	PVC	007	100	-6.00	8.00	20.	.02	323
Allyl Glycidyl	Ether							
001069230	BUTYL	014	UNK	1.00	24.00	22.		201
	NATURAL RUBBER	017	UNK	7.00	24.00	22.		201
	NEOP/NAT RUBBER	008	UNK	9.40	24.00	22.		201
	NEOPRENE	018	UNK	1.40	24.00	22.		201
	•		•	12.90	24.00	22.		201
				·.50 · .50	24.00	22 .		201
	NITRILE	020	UNK	3.20	24.00	22.		201
	PV ALCOHOL	102	UNK	5.20	24.00	22.		201

Ammonium Hydroxide, <30%

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIG	HT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF
013362161	MATURAL RUBBER	001	120		1.00	4.00	23.	.05	236
					1.00	1.00	23.	.05	236
				<	.01	.50	23.	.05	236
				<	.01	.08	23.	.05	236
	NEOPRENE	010	120	•	1.00	.08	23.	.06	236
	NEW NEWS	0.0		<	.01	.50	23.	.06	230
				•	1.00	1.00	23.		
					1.00	4.00	23. 23.	.06 .06	236 236
	NITRILE	005	120		2.00	4.00			
	WITKILL	005	120				23.	.06	23
					2.00	1.00	23.	.06	23
					1.00	.50	23.	.06	23
			400		1.00	.08	23.	.06	23
	PVC	003	120	<	.01	.08	23.	.08	236
					1.00	.50	23.	.08	23
					1.00	1.00	23.	.08	23
					1.00	4.00	23.	.08	230
Ammonium Hydrox									
013362162	NATURAL RUBBER	001	UNK		-1.00	1.00	25.		20
	NEOPRENE	002	UNK	<	.01	1.00	25.		20
	NITRILE	005	UNK	<	.01	1.00	25.		20
Amyl Acetate (F	Pentyl Acetate)								
006286370	NATURAL RUBBER	001	UNK		-2.00	1.00	25.		20
	NEOPRENE	002	UNK		-4.00	1.00	25.		20
	NITRILE	005	UNK		-1.00	1.00	25.		20
Amyl Alcohol (P	Pentanol)								
000714100	BUTYL	014	118		.40	8.00	23.	.07	32
	NEOPRENE	018	100		4.00	8.00	23.	.05	32
	NITRILE	019	100		9.00	8.00	23.	.04	32
	VITON	009	118		4.00	8.00	23.	.05	32
Aniline (Benzam	nine)								
000625330	NATURAL RUBBER	001	120		2.00	.50	23.	.05	23
					3.00	1.00	23.	.05	23
					5.00	4.00	23.	.05	23
					2.00	.08	23.	.05	23
	NEOPRENE	010	120		9.00	4.00	23.	.06	23
					5.00	1.00	23.	.06	23
					4.00	.50	23.	.06	23
					5.00	.08	23.	.06	23
	NITRILE	005	120		38.00	1.00	23.	.06	23
					126.00	4.00	23.	.06	23
					24.00	.50	23.		23
					15.00	.08	23.		23
	PVC	003	120		4.00	.08			
	F 46	003	120				23.	.08	23
					12.00	1.00	23.	.08	23
					20.00	4.00	23.	.08	23
					10.00	.50	23.	.08	23
Benzene 000714320	BUTYL	014	118		117.00	168.00	23.		32

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REI
					mouk3			NU!
000714320	BUTYL	034	UNK	60.00	168.00	22.		078
				12.00	3.00	25.		120
		064	UNK	55.50	168.00	23.		327
	EVA	074	100	254.00	168.00	23.		327
	NATURAL RUBBER	017	100	309.00	168.00	23.		327
				310.00	168.00	23.		327
			214	286.00	168.00	23.		32
			508	320.00	168.00	22.		07
			UNK	362.00	168.00	23.		32
				351.00	168.00	23.		32
	NEGO (NAT. BUIDDED	000	•••	346.00	168.00	23.		32
	NEOP/NAT RUBBER	800	114	280.00	168.00	22.		07
	NEOPRENE	018	100	262.00	168.00	23.		32
			120	190.00	168.00	23.		32
			UNK	176.00	168.00	23.		32
	M1781.2	031	UNK	90.00	168.00	22.		07
	NITRILE	019	100	161.00	168.00	23.		32
			120	150.00	168.00	23.		32
			166	165.00	168.00	23.		32
		02 0	UNK	104.00	168.00	23.		32
				104.00	168.00	23.		32
		033	UNK	110.00	168.00	22.		07
	NONWOVEN PE	071	100	218.00	168.00	23.		32
		***	UNK	162.00	168.00	23.		32
	PE	006	209	30.00	168.00	22.		07
		042	100	32.70	168.00	23.		32
			400	113.00	168.00	23.		32
	AND MINESTILLIE	075	100	257.00	168.00	23.		32
	POLYURETHANE	050	178	60.00	168.00	22.		07
	PV ALCOHOL	004	100	3.00	168.00	22.		07
	PVC	003	100	-15.10	168.00	23.		32
			120	-8.00	168.00	23.		32
				-12.40	168.00	23.		32
			247	-8.10	168.00	23.		32
	SARANEX	044	214	·.50	168.00	23.		32
		061 074	200	93.00	168.00	23.		32
	TEFLON VITON	036 009	214 118	4.90	168.00 168.00	23.		32
	ATION	032		20.00		23.		32
		032	UNK	4.00	168.00	22.		07
oric Acid								
00433530	BUTYL	014	118	2 00	• ^^	30		-
UCCCCPOO	WEOPRENE	014	100	2.00	8.00	20.	.07	3
	WITRILE	018	100	2.00	8.00 8.00	19.	.05	32
	VITON	019	118	2.00		21.	.04	32
	VIION	UUY	116	.20	8.00	20.	.03	3
-Bromoethanol								
05405120	BUTYL	014	118	.20	8.00	23.	.09	3
	NATURAL RUBBER	001	250	2.00	8.00	23.	.02	3
	PVC	003	100	• .20	8.00	23.	.02	3
	, 			.60			. VL	-

Butyl Acetate

CASNO CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
001238640	PE	041	UNK	3,40	8,760.00			305
001230040	re	042	UNK	3.40 3.40	8,760.00 8,760.00	23. 23.		
		048	UNK	3.40 4.10	8,760.00 8,760.00	23.		305 305
					2,			
Butylamine	ALIEW.	047	440	40.00				
001097390	BUTYL	014	118	62.00	8.09	15.	.10	323
	NATURAL RUBBER	001	250	148.00	8.00	20.	.02	323
	NEOPRENE PVC	018 007	100 100	166.00 62.00	8.00	18.	.05	323
	740	007	100	62.00	8.00	18.	.02	323
•	(Methylpropylamine,							
000788190	BUTYL	014	118	37.00	8.00	28.	.09	323
	NEOPRENE	018	100	50.00	8.00	26.	.05	323
	PV ALCOHOL	102	100	-8.00	8.00	23.	.07	323
	PVC	007	100	13.00	8.00	28.	.02	323
sec-Butylamine								
139528460	BUTYL	014	118	83.00	8.00	21.	.09	323
	NEOPRENE	018	100	122.00	8.00	25.	.05	323
	NITRILE	019	100	108.00	8.00	14.	.04	323
	PVC	007	100	-4.00	8.00	24.	.02	323
tert-Butylamine	1							
000756490	BUTYL	014	118	23.00	8.00	15.	.09	323
	NEOPRENE	018	100	55.00	8.00	23.	.05	323
	NITRILE	019	100	69 .00	8.00	21.	.04	323
	PVC	007	100	-20.00	8.00	20.	.02	323
n-Butvl Chlorid	le (Chlorobutane,1-)	1						
001096930	NITRILE	019	100	100.00	8.00	23.	.05	323
	PV ALCOHOL	004	100	-5.00	8.00	23.	.80	323
	PVC	003	100	-11.00	8.00	23.	.20	323
	VITON	009	118	6.00	8.00	23.	.05	323
S utyraldehyde								
001237280	BUTYL	034	UNK	7.70	3.00	25.		126
				12.50	20.00	25.		126
Carbon Disulfic	de (Carbon Bisulfide	•)						
000751500	BUTYL	034	UNK	74.00	3.00	25.		126
	NITRILE	005	120	7.00	4.00	23.	.06	236
				21.00	1.00	23.	.06	236
				16.00	.50	23.	.06	236
				8.00	.08	23.	.06	236
	PE	041	UNK	12.90	8,760.00	23.		305
		042	UNK	21.40	8,760.00	23.		305
		048	UNK	36.80	8,760.00	23.		305
Carbon Tatasahi	or ide (Tetra chlorom	methane\						
000562350	CPE	060	113	107.00	1.83	23.	.05	204
		•		116.00	1.83	23.	.05	204
				106.00	1.83	23.	.05	204
						-		

MITRILE 005 120 120 21.00 4.00 23. 0.6 23.	CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME	TEMP	THICKNESS	REF
NITRILE	CASNO	MATERIAL	DESC CODE			HOURS	DEG C	CH	NUH
NITRILE 005 120 120 21.00 4.00 23. 0.6 23.	000562350	NEOPRENE	010	120	28.00	.50	23.	.06	236
NITRILE					13.00	.08			
NITRILE									
PE		NITRILE	005	120					
PE									
PE 041 UNIX 16.30 8,760.00 23. 305 048 UNIX 22.80 8,760.00 23. 305 048 UNIX 22.80 8,760.00 23. 305 048 UNIX 22.80 8,760.00 23. 305 048 UNIX 37.90 8,760.00 23. 305 Chlorodenzene 001089070 BUTTL 014 118 169.00 8.00 2307 323 PVC 007 100 101.00 8.00 2308 323 PVC 007 100 101.00 8.00 2303 323 Chlorodibromomethane 001244810 BUTTL 012 118 382.00 8.00 2307 323 PVC 003 100 385.00 8.00 2307 323 PVC 003 100 385.00 8.00 2307 323 VITOM 099 118 1.00 8.00 2302 323 VITOM 099 118 1.00 8.00 2306 326 Chloroform (Trichloromethane) 006676630 BUTTL 034 UNIX 9.00 3.00 25. 126 006676630 BUTTL 041 UNIX 9.00 3.00 25. 126 006776630 BUTTL 054 UNIX 9.00 3.00 25. 3.00 23									
PE 041 UMK 16.30 8,760.00 23. 305 042 UMK 22.80 8,760.00 23. 305 Chlorobenzene 001089070 BUTYL 014 118 169.00 8.00 2300 323 PV ALCOMOL 102 100 -4.00 8.00 2300 323 PV LOWN 007 100 101.00 8.00 2302 323 PV LOWN 009 118 2.00 8.00 2303 323 Chlorodipromomethane 001244810 BUTYL 012 118 382.00 8.00 2301 323 PVC 035 100 365.00 8.00 2302 323 Chlorodipromomethane 000676630 BUTYL 034 UMK 9.00 3.00 25. 126 MEDPRENE 010 120 25.00 .88 2306 236 NECOPRENE 010 120 25.00 .88 2306 236 PE 041 UMK 9.00 3.00 2506 236 110.00 1.00 2306 236 PE 041 UMK 12.00 8,760.00 2305 236 3-Chloro-2-methylpropene 00554730 BUTYL 014 118 142.00 8,760.00 2305 236 PVC 007 100 20.00 8,760.00 2305 236 PVC 007 100 20.00 8,760.00 2305 236 PVC 007 100 20.00 8,760.00 2306 236 PVC 007 100 20.00 8,00 2306 236 PVC 007 100 20.00 8,00 2306 236 PVC 007 100 20.00 8,00 2303 305 Chloro-2-methylpropene 005674730 BUTYL 014 118 142.00 8,00 2306 236 PVC 007 100 2.00 8,00 2303 323 C-Chloro-2-nitropropene 005987180 BUTYL 014 118 2.00 8,00 2305 323 PVC 07 100 2.00 8,00 2303 323 C-Chloro-2-nitropropene 005987180 BUTYL 014 118 2.00 8,00 2303 323 C-Chloro-2-nitropropene 005987180 BUTYL 014 118 2.00 8,00 2303 323 C-Chloro-2-nitropropene 005987180 BUTYL 015 118 2.00 8,00 2303 323 C-Chloro-2-nitropropene 005987180 BUTYL 017 506 94,00 8,00 2300 323 PVC 007 100 2.00 8,00 2302 325 PVC 007 100 2.00 8,00 2300 325 PVC 007 100 2.00 8,00 23									
042		DF	041	UNK					
Chlorodenzene O01089070 BulTYL 014 118 169.00 8.00 2307 323 PV ALCOMOL 102 100 4.00 8.00 2308 323 PVC 007 100 101.00 8.00 2302 323 PVC 007 100 101.00 8.00 2302 323 PV ALCOMOL 009 118 2.00 8.00 2302 323 PV C 003 100 385.00 8.00 2310 323 PV ALCOMOL 004 100 -3.0 8.00 2307 323 PV ALCOMOL 004 100 -3.0 8.00 2307 323 PV C 033 100 385.00 8.00 2307 323 PV C 033 100 385.00 8.00 2307 323 PV C 033 100 385.00 8.00 2306 234 PV C 034 100 120 23.00 8.00 2306 235 PV C 035 100 8.00 2306 235 NEOPREME 010 120 23.00 .08 2306 236 110.00 1.00 2306 236 PE 041 UMK 12.00 8.760.00 2306 236 PE 041 UMK 12.00 8.760.00 23305 PV ALCOMOL 004 118 118 142.00 8.00 2306 236 PV ALCOMOL 004 118 120 8.760.00 23305 3-Chloro-2-methylpropene 00554730 BuTYL 014 118 142.00 8.00 2306 323 PV ALCOMOL 004 100 28.00 8.00 2303 323 2-Chloro-2-mitropropene 005947180 BuTYL 012 118 2.00 8.00 2309 323 PV ALCOMOL 004 100 28.00 8.00 2302 323 PV ALCOMOL 004 100 8.00 2303 323 2-Chloro-2-mitropropene 005947180 BuTYL 012 118 2.00 8.00 2309 323 PV ALCOMOL 004 100 8.00 2309 323 PV ALCOMOL 004 100 8.00 2300 3302 323 PV ALCOMOL 004 100 8.00 8.00 2302 323 PV ALCOMOL 004 100 8.00 8.00 2302 323 PV ALCOMOL 004 100 8.00 8.00 2300 2300 323 PV ALCOMOL 004 100 8.00 8.00 2300 2300 2300 323 PV ALCOMOL 004 100 8.00 8.00 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 230		• •				•			
001089070 BUTYL 014 118 169.00 8.00 2307 323 PV ALCONOL 102 100 -4.00 8.00 2308 323 PVC 007 100 101.00 8.00 2308 323 PVC 007 100 101.00 8.00 2302 323 Chlorodibromomethane 001244810 BUTYL 012 118 382.00 8.00 2307 323 PVC 003 100 .385.00 8.00 2307 323 PVC 003 100 .385.00 8.00 2307 323 PVC 003 100 .385.00 8.00 2304 323 PVC 005676630 BUTYL 034 UNK 9.00 3.00 2506 236 325 NEOPRENE 010 120 23.00 .08 2306 236 325 NEOPRENE 010 120 23.00 .08 2306 236 325 NEOPRENE 010 120 23.00 .08 2306 236 35.00 REOPRENE 010 120 23.00 .08 2306 236 35.00 REOPRENE 010 120 25.00 .08 2306 236 35.00 REOPRENE 010 120 25.00 .08 2306 236 35.00 REOPRENE 010 120 25.00 REOPRENE 010 120 25.00 .08 2306 236 35.00 REOPRENE 010 120 25.00 REOPRENE 010 120 2506 236 35.00 REOPRENE 010 REOPRENE 010 120 REOPRENE 010 150 REOPRENE 010 150 REOPRENE 010 REOPRENE						=			
PV ALCONOL 102 100 4.00 8.00 23. 08 323 PVC 007 100 101.00 8.00 23. 0.8 323 PVC 007 100 101.00 8.00 23. 0.2 323 Chlorodibronomethane 001244810 BUTYL 012 118 382.00 8.00 25. 10 323 PV ALCONOL 004 100 .350 8.00 25. 0.2 325 VITON 009 118 1.00 8.00 25. 0.2 325 Chloroform (Trickloromethane) 000676630 BUTYL 034 UMK 9.00 3.00 25. 0.6 236 110.00 25. 0.6 236 110.00 1.00 25. 0.00 25.	Chlorobenzene								
PY ALCOHOL 102 100	001089070	BUTYL	014	118	169.00	8.00	23.	.07	323
PVC		PV ALCOHOL	102	100					
Chlorodibromomethane D01244810 BUTYL 012 118 382.00 8.00 2303 323 PV ALCONOL 004 100 .30 8.00 2307 323 PV ALCONOL 009 118 1.00 8.00 2307 323 PVC 003 100 385.00 8.00 2302 323 VITON 009 118 1.00 8.00 2304 323 Chloroform (Trichloromethane) D00676630 BUTYL 034 UMK 9.00 3.00 2506 236 MEOPREME 010 120 23.00 .08 2506 236 110.00 1.00 2306 236 PE 041 UMK 12.00 8,760.00 2306 2306 236 PE 041 UMK 12.00 8,760.00 2306 236 PE 041 UMK 12.00 8,760.00 2306 236 O48 UMK 25.10 8,760.00 23305 3-Chloro-2-methylpropene D05634730 BUTYL 014 118 142.00 8.00 2306 323 PVA LCONOL 004 100 28.00 8.00 2306 323 PVA LCONOL 004 100 28.00 8.00 2303 323 2-Chloro-2-methylpropene D056947180 BUTYL 014 118 2.00 8.00 2303 323 2-Chloro-2-nitropropene D05947180 BUTYL 012 118 2.00 8.00 2303 323 2-Chloro-2-nitropropene D05947180 BUTYL 012 118 2.00 8.00 2303 323 Chromic Acid, 30-70X ITINITATE PVA LCONOL 004 100 -8.00 8.00 2302 323 PVA LCONOL 004 100 -8.00 8.00 2303 323 Chromic Acid, 30-70X ITINITATE PVC 003 120 4.01 0.08 2306 236 A.00 2306 236 DPVC 03 120 4.01 0.08 2306 236 A.00 2306 236 A.00 2306 236 DPVC 03 120 4.01 0.08 2306 236 A.00 2306 236									
D01244810 BUTYL D12 118 382.00 8.00 23. 10 323 23. 20 323 20 20		VITON	009	118					
PV ALCOHOL 004 10030 8.00 2307 323 PVC 003 100 385.00 8.00 2302 325 VITON 009 118 1.00 8.00 2304 325 O00676630 BUTYL 034 UNK 9.00 3.00 50 2306 236 110.00 1.00 2306 236 110.00 1.00 2306 236 110.00 1.00 2306 236 PE	Chlorodibromome	thane							
PV ALCOHOL 004 10030 8.00 2307 323 PVC 003 100 385.00 8.00 2302 323 225 VITON 009 118 1.00 8.00 2304 323 225 VITON 009 118 1.00 8.00 2304 323 225 225 225 225 225 225 225 225 225	001244810	BUTYL	012	118	382.00	8.00	23.	. 10	323
PVC 003 100 385.00 8.00 2302 323 VITON 009 118 1.00 8.00 2304 323 Chloroform (Trichloromethane) 000676630 BUTYL 034 UMK 9.00 3.00 25. 126		PV ALCOHOL	004	100	30				
VITON 009 118 1.00 8.00 2304 323 Chloroform (Trichloromethane) 000676630 BUTYL 034 UNK 9.00 3.00 25. 126 NEOPRENE 010 120 25.00 .08 2306 236 110.00 1.00 2306 236 PE 041 UNK 12.00 8,760.00 2306 236 048 UNK 25.10 8,760.00 23. 305 3-Chloro-2-methyl propene 005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2306 323 PV C 007 100 2.00 8.00 2303 2-Chloro-2-nitropropane 005947180 BUTYL 012 118 2.00 8.00 2303 323 PV ALCOHOL 004 100 2.00 8.00 2303 323 Chromic Acid, 30-70X Chromic Acid, 30-70X 111157452 HITRILE 05 120 4.00 8.00 2306 236 PVC 003 120 18.00 8.00 2306 236 PVC 003 120 18.00 8.00 2306 236 PVC 003 120 18.00 8.00 2306 323 Chromic Acid, 30-70X 111157452 HITRILE 05 120 4.00 8.00 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 6.00 2306 236		PVC	003	100					
DODG-76630 BUTYL DOGG DOGG-76630 BUTYL DOGG-76630 DOGG-76630 BUTYL DOGG-76630		VITON							
DODG-76630 BUTYL DOGG DOGG-76630 BUTYL DOGG-76630 DOGG-76630 BUTYL DOGG-76630	Chloroform (Tri	chloromethane)							
NEOPRENE 010 120 23.00 .08 2306 236 39.00 .50 2306 236 110.00 1.00 2306 236 110.00 1.00 2306 236 110.00 1.00 2306 236 236 236 236 236 236 236 236 236 23			034	UNK	9.00	3.00	25		126
39.00 .50 2306 236 110.00 1.00 2306 236 110.00 1.00 2306 236 35.00 4.00 2306 236 PE								n4	
PE 041 UMK 12.00 8,760.00 2306 236 PE 041 UMK 12.00 8,760.00 23305 042 UMK 16.20 8,760.00 23305 048 UMK 25.10 8,760.00 23305 3-Chloro-2-methylpropene 005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropene 005947180 BUTYL 012 118 2.00 8.00 2303 323 PV ALCOHOL 004 100 -8.00 2303 323 PV ALCOHOL 004 100 -8.00 2303 323 Chromic Acid, 30-70X 111157452 MITRILE 005 120 < .01 .08 2306 236 PVC 003 120 4.00 5.00 2306 236 PVC 003 120 18.00 .50 2306 236 PVC 003 120 18.00 .50 2306 236 PVC 003 120 18.00 .50 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2306 236		NEW NENE	0.0	120					
PE 041 UMK 12.00 8,760.00 2306 236 042 UMK 16.20 8,760.00 23305 048 UMK 25.10 8,760.00 23305 3-Chloro-2-methylpropene 005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropene 005947180 BUTYL 012 118 2.00 8.00 2303 323 AATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2302 323 Chromic Acid, 30-70X 111157452 MITRILE 005 120 < .01 .08 2306 236 PVC 003 120 < .01 .08 2306 236 PVC 003 120 18.00 .50 2306 236 PVC 003 120 18.00 .50 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2306 236									
PE 041 UNK 12.00 8,760.00 23. 305 042 UNK 16.20 8,760.00 23. 305 048 UNK 25.10 8,760.00 23. 305 3-Chloro-2-methylpropene 005634730 BUTYL 014 118 142.00 8.00 23. 06 323 PV ALCOHOL 004 100 28.00 8.00 23. 04 323 PVC 007 100 2.00 8.00 23. 02 323 VITON 009 118 7.00 8.00 23. 03 323 2-Chloro-2-nitropropene 005947180 BUTYL 012 118 2.00 8.00 23. 09 323 NATURAL RUBBER 017 506 94.00 8.00 23. 09 323 PV ALCOHOL 004 10080 8.00 23. 07 323 VITON 009 118 70.00 8.00 23. 02 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236									
042 UNK 16.20 8,760.00 23. 305 3-Chloro-2-methylpropene 005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropane 005947180 BUTYL 012 118 2.00 8.00 2309 323 RATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2302 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 4.00 .50 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236		DE	04.1	IMK				.00	
3-Chloro-2-methylpropene 005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropene 005947180 BUTYL 012 118 2.00 8.00 2309 323 RATURAL RUBBER 017 506 94.00 8.00 2309 323 PV ALCOHOL 004 10080 8.00 2307 323 PV ALCOHOL 004 10080 8.00 2307 323 Chromic Acid, 30-70X 111157452 NITRILE 005 120 < .01 .08 2306 236 PVC 003 120 4.00 5.0 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236		* L				=			
005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 .02 323 .03 323			=			-			
005634730 BUTYL 014 118 142.00 8.00 2306 323 PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 .02 323 .03 323	3.Chloro.2.meth	v/nronene							
PV ALCOHOL 004 100 28.00 8.00 2304 323 PVC 007 100 2.00 8.00 2302 323 VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropane 005947180 BUTYL 012 118 2.00 8.00 2309 323 RATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2307 323 VITON 009 118 70.00 8.00 2304 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 4.00 .50 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236			014	118	142.00	. 00	27	04	727
PVC 007 100 2.00 8.00 2302 323 VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropane 005947180 BUTYL 012 118 2.00 8.00 2309 323 NATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2307 323 VITON 009 118 70.00 8.00 2307 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 4.00 .50 2306 236 4.00 .50 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236	003034130								
VITON 009 118 7.00 8.00 2303 323 2-Chloro-2-nitropropene 005947180 BUTYL 012 118 2.00 8.00 2309 323									
005947180 BUTYL 012 118 2.00 8.00 2309 323 NATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2307 323 VITON 009 118 70.00 8.00 2304 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 3.00 1.00 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236 1.00 1.00 2308 236									
005947180 BUTYL 012 118 2.00 8.00 2309 323 NATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2307 323 VITON 009 118 70.00 8.00 2304 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 3.00 1.00 2306 236 PVC 003 120 18.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236 1.00 1.00 2308 236	2.Chloro.2.nier	20020000							
NATURAL RUBBER 017 506 94.00 8.00 2302 323 PV ALCOHOL 004 10080 8.00 2307 323 VITON 009 118 70.00 8.00 2304 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 4.00 .50 2306 236 3.00 1.00 2306 236 PVC 003 120 18.00 4.00 2308 236 PVC 100 120 18.00 4.00 2308 236			642	110	2.00		27	^^	722
PV ALCOHOL 004 10080 8.00 2307 323 VITON 009 118 70.00 8.00 2304 323 Chromic Acid, 30-70% 120 < .01 .08 2306 236 4.00 .50 2306 236 4.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236 1.00 1.00 2308 236 1.00 1.00 2308 236	UUJ747 10U								
VITON 009 118 70.00 8.00 23, .04 323 Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 23, .06 236 4.00 .50 23, .06 236 3.00 1.00 23, .06 236 4.00 4.00 23, .06 236 PVC 003 120 18.00 4.00 23, .08 236									
Chromic Acid, 30-70% 111157452 NITRILE 005 120 < .01 .08 2306 236 4.00 .50 2306 236 3.00 1.00 2306 236 4.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236 1.00 1.00 2308 236									
111157452 NITRILE 005 120 < .01 .08 2306 236 4.00 .50 2306 236 3.00 1.00 2306 236 4.00 4.00 2306 236 4.00 4.00 2306 236 4.00 4.00 2306 236 4.00 4.00 2308 236 4.00 1.00 1.00 2308 236	- · · · · · · ·	·							
4.00 .50 23. .06 236 3.00 1.00 23. .06 236 4.00 4.00 23. .06 236 PVC 003 120 18.00 4.00 23. .08 236 1.00 1.00 23. .08 236				48.					
3.00 1.00 2306 236 4.00 4.00 2306 236 PVC 003 120 18.00 4.00 2308 236 1.00 1.00 2308 236	111157452	MITRILE	005	120					
4.00 4.00 23. .06 236 PVC 003 120 18.00 4.00 23. .08 236 1.00 1.00 23. .08 236									
PVC 003 120 18.00 4.00 2308 236 1.00 1.00 2308 236									
1.00 1.00 2308 236									
		PVC	003	120					
< .01 .50 2308 236								.08	236
					< .01	.50	23.	.08	236

Citrie Acid, 30%	CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
DOOTYY291 PE	111157452	PVC	003	120	< .01	.08	23.		236
DOOTYY291 PE	Citric Acid, <3	0%							
Comparison	000779291	PE	041	UNK	< .01	8.760.00	23.		305
Cyclohexylamine			042	UNK	< .01	=			
001089180 BUTYL 014 118 95.00 8.00 2006 322 MATURAL RUBBER 010 250 299.00 8.00 2002 323 00 8100 22404 323			048	UNK	< .01				305
MATURAL RUBBER 01 250 299.00 8.00 20. 02 322 REOPREY 018 100 294.00 8.00 22. 05 323 REOPREY 018 100 244.00 8.00 22. 05 323 REOPREY 018 100 244.00 8.00 24. 04. 323 REORDEY 014 100 240.00 8.00 24. 04. 323 REORDEY 015 REORDEY 015 REORDEY 016 REORDEY 017 100 20.00 8.00 22. 06. 323 REORDEY 017 REORDEY 017 100 20.00 8.00 22. 06. 323 REORDEY 017 REORDEY 018 REORDEY 018 REORDEY 019 REORDEY 0100 22.00 8.00 25. 05. 323 REORDEY 019 REORDEY 0100 22.00 8.00 25. 05. 323 REORDEY 019 REORDEY 0100 22.00 8.00 25. 05. 323 REORDEY 019 REORDEY 0100 22.00 8.00 25. 05. 323 REORDEY 019 REORDEY 0100 22.00 8.00 20. 04. 323 REORDEY 0100 22.00 8.00 20. 04. 323 REORDEY 0100 22.00 8.00 20. 04. 323 REORDEY 0100 22.00 8.00 23. 05. 323 REORDEY 0100 22.00 8.00 20. 04. 323 REORDEY 0100 22.00 8.00 23. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 05. 05. 05. 323 REORDEY 0100 25. 00. 05. 05. 05. 05. 323 REORDEY 0100 25. 05. 05. 05. 05. 05. 05. 323 REORDEY 0100 25. 05. 05. 05. 05. 05. 05. 323 REORDEY 0100 25. 05. 05. 05. 05. 05. 05. 05. 05. 05. 0	Cyclohexylamine								
MATURAL RUBBER 018 250 299,00 8.00 20. 0.2 322 322 322 322 322 323	001089180	BUTYL	014	118	95.00	8.00	20.	.06	323
MEOPREME 018 100 294,00 8.00 22, .05 323		NATURAL RUBBER	001	250	299.00	8.00			323
Diallyamine 001240270 BUTYL 014 118 44.00 8.00 2109 323 PV ALCOROL 004 100 -20.00 8.00 2109 323 PV ALCOROL 007 100 -26.00 8.00 2202 323 1,3-Diaminopropane 001097620 BUTYL 014 118 30.00 8.00 2206 323 MATURAL RUBBER 001 250 18.00 8.00 2506 323 MEOPERIE 018 100 22.00 8.00 2102 323 MEOPERIE 018 100 22.00 8.00 2102 323 PVC 007 100 24.00 8.00 2102 323 DI-n-amylamine 020509220 MEOPERE 018 100 74.00 8.00 1605 323 MITRILE 019 100 2.00 8.00 1605 323 MITRILE 019 100 2.00 8.00 1605 323 PVC 007 100 23.00 8.00 1603 323 Dichlorosacetyl Chloride 000793670 BUTYL 014 118 164.00 8.00 2309 323 PVC 003 100 320.00 8.00 2302 323 Dichlorosacetyl Chloride 000793670 BUTYL 014 118 164.00 8.00 2309 323 PVC 003 100 320.00 8.00 2302 323 Dichlorobromomethane 000792740 BUTYL 014 118 347.00 8.00 2302 323 Dichlorobromomethane 000792740 BUTYL 014 118 347.00 8.00 2302 323 VITON 009 118 2.00 8.00 2508 323 Dichlorobromomethane 001160760 BUTYL 014 118 347.00 8.00 2307 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 Dichlorobromomethane 001105760 BUTYL 014 118 12.00 8.00 2508 323 I,4-Dichloro-2-butene 001105760 BUTYL 014 118 196.00 8.00 2508 323 I,4-Dichloroethylene 0011655920 BUTYL 014 118 196.00 8.00 2307 323 PV ALCOROL 004 100 358.00 8.00 2307 323		NEOPRENE	018	100	294.00	8.00	22.		323
DO1240270 BUTYL		NITRILE	019	100	247.00	8.00	24.		323
PV ALCOHOL 004 100 -20.00 8.00 23. 08 323 PVC 007 100 -26.00 8.00 22. 02 323 PVC 007 100 -26.00 8.00 22. 02 323 PVC 007 100 -26.00 8.00 19. 03 323 1,3-Diaminopropane	Diallyamine								
PV ALCOHOL Q04 100 -20.00 8.00 23. 0.8 323 PVC Q07 100 -26.00 8.00 22. .00 323 .20 323 .20 .	001240270	BUTYL	014	118	44.00	8.00	21.	.09	323
VITON 009 118					-20.00	8.00	23.		323
1,3-Diaminopropane 001097620 BUTYL 014 118 30.00 8.00 22. 06 323 MEOPRENE 018 100 22.00 8.00 23. 05 323 MEOPRENE 018 100 22.00 8.00 21. 02 323 Di-n-amylamine 020509220 NEOPRENE 018 100 74.00 8.00 16. 05 323 MITRILE 019 100 2.00 8.00 20. 04 323 PVC 007 100 2.00 8.00 13. 02 323 UITON 009 118 20 8.00 16. 03 323 Dichloroacetyl Chloride 000793670 BUTYL 014 118 164.00 8.00 23. 09 323 PV ALCOHOL 102 100 8.00 23. 09 323 PVC 003 100 23.00 8.00 23. 09 323 PVC 003 100 23.00 8.00 23. 07 323 PVC 003 100 230.00 8.00 23. 07 323 PVC 003 100 230.00 8.00 23. 02 323 UITON 009 118 347.00 8.00 23. 03 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 23. 07 323 PVC 007 100 328.00 8.00 23. 07 323 PVC 007 100 328.00 8.00 23. 03 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 23. 07 323 PVC 007 100 328.00 8.00 23. 03 323 I,4-Dichloro-2-butene 01700 102 100 2.00 8.00 23. 08 323 1,4-Dichloro-2-butene 01700 328.00 8.00 23. 08 323 I,4-Dichloro-2-butene 01700 8UTYL 034 UNK 19.00 20.00 25. 126 Cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 23. 07 323 PV ALCOHOL 004 100 358.00 8.00 23. 07 323		PVC	007	100	-26.00	8.00	22.	.02	323
DOTO DOTO BUTYL		VITON	009	118	4.00	8.00	19.	.03	323
NATURAL RUBBER 001 250 18.00 8.00 25. 02 323 18.00 8.00 25. 02 323 18.00 18.00 8.00 25. 02 323 18.00 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00 25. 02 323 18.00 18.00		ane							
NEOPRENE 018 100 22.00 8.00 23. .05 323 225 22	001097620	BUTYL	014	118	30.00	8.00	22.	.06	323
Di-n-amylamine 020509220		NATURAL RUBBER	001	250	18.00	8.00	25.	.02	323
Di-n-amylamine 020509220 NEOPRENE 018 100 74.00 8.00 1605 323		NEOPRENE	018	100	22.00	8.00	23.	.05	323
Dichloroscetyl Chloride D18 D18 D18 D18 D19 D10 D19 D1		PVC	007	100	24.00	8.00	21.	.02	323
HITRILE 019 100 2.00 8.00 20. 0.4 323 PVC 007 100 -23.00 8.00 13. 02 323 VITON 009 118 .20 8.00 1603 323 Dichloroscetyl Chloride 000793670 BUTYL 014 118 164.00 8.00 2307 323 PVC 003 100 230.00 8.00 2302 323 VITON 009 118 -9.00 8.00 2302 323 VITON 009 118 347.00 8.00 2303 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 2302 323 VITON 009 118 2.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 I,4-Dichloro-2-butene 001105760 BUTYL 034 UMK 19.00 20.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323	Di-n-amylamine								
PVC 007 100 -23.00 8.00 1302 323 VITON 009 118 .20 8.00 1603 323 Dichloroacetyl Chloride 000793670 BUTYL 014 118 164.00 8.00 2309 323 PV ALCOHOL 102 100 -8.00 8.00 2307 323 PVC 003 100 230.00 8.00 2302 323 VITON 009 118 -9.00 8.00 2303 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 2307 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323	020509220	NEOPRENE	018	100	74.00	8.00	16.	.05	323
PVC 007 100 -23.00 8.00 1302 323 Dichloroacetyl Chloride 000793670 BUTYL 014 118 164.00 8.00 2309 323 PV ALCOHOL 102 100 -8.00 8.00 2307 323 PVC 003 100 230.00 8.00 2302 323 PVC 003 100 230.00 8.00 2302 323 PVC 007 118 -9.00 8.00 2303 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 2302 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 VITON 009 118 2.00 8.00 2303 323 VITON 009 118 100 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2308 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		NITRILE	019	100	2.00	8.00	20.	.04	323
Dichloroacetyl Chloride 000793670		PVC	007	100	-23.00	8.00	13.	.02	323
Dicklorobromomethane		VITON	009	118	.20	8.00	16.	.03	323
PV ALCOHOL 102 100 -8.00 8.00 2307 323 PVC 003 100 230.00 8.00 2302 323 VITON 009 118 -9.00 8.00 2303 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 2307 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2303 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UMK 19.00 20.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		Chloride							
PVC 003 100 230.00 8.00 2302 323 23	000793670	BUTYL	014	118	164.00	8.00	23.	.09	323
VITON 009 118 -9.00 8.00 2303 323 Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 2307 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2308 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		PV ALCOHOL	102	100	-8.00	8.00	23.	.07	323
Dichlorobromomethane 000752740 BUTYL 014 118 347.00 8.00 2307 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2308 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323						8.00	23.	.02	323
000752740 BUTYL 014 118 347.00 8.00 2307 323 PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2308 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		VITON	009	118	-9.00	8.00	23.	.03	323
PVC 007 100 328.00 8.00 2302 323 VITON 009 118 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2308 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		thane							
VITON 009 118 2.00 8.00 2303 323 VITON/BUTYL 100 102 -2.00 8.00 2308 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323	000752740			118	347.00	8.00	23.	.07	323
VITON/BUTYL 100 102 -2.00 8.00 23. .08 323 1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 23. .07 323 PV ALCOHOL 004 100 358.00 8.00 23. .05 323			007	100	328.00	8.00	23.	.02	323
1,4-Dichloro-2-butene 001105760 BUTYL 034 UNK 19.00 20.00 25. 126 17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323				118	2.00	8.00	23.	.03	323
001105760 BUTYL 034 UNK 19.00 20.00 25. 126 17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		VITON/BUTYL	100	102	-2.00	8.00	23.	.08	323
17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323		•							
17.00 3.00 25. 126 cis-Dichloroethylene 001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323	0 01105760	BUTYL	034	UNK		20.00	25.		126
001565920 BUTYL 014 118 198.00 8.00 2307 323 PV ALCOHOL 004 100 358.00 8.00 2305 323					17.00	3.00			126
PV ALCOHOL 004 100 358.00 8.00 2305 323	cis-Dichloroethy	ylene							
PV ALCOHOL 004 100 358.00 8.00 2305 323	001565920		014	118	198.00	8.00	23.	.07	323
		PV ALCOHOL	004	100	358.00	8.00			323
		VITON	009	118	9.00	8.00		.03	323

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
005405900	NITRILE	019	100	265.00	8.00	29.	.04	323
	PV ALCOHOL	004	100	-29.00	8.00	23.	.04	323
	PVC	007	100	.50	8.00	23.	.02	323
	VITON	009	118	9.00	8.00	23.	.03	323
trans-1,2-Dichl	proethylene							
001566050	BUTYL	014	118	3.00	8.00	23.	.06	323
	PV ALCOHOL	004	100	-30.00	8.00	23.	.09	323
	PVC	007	100	-7.00	8.00	23.	.02	323
	VITON	009	118	8.00	8.00	23.	.03	323
2,2'-Dichloroet	hyl Ether							
001114440	BUTYL	034	UNK	11.00	20.00	25.		126
				3.80	3.00	25.		126
	CPE	060	113	129.00	.83	23.	.05	204
				125.00	.83	23.	.05	204
				123.00	.83	23.	.05	204
2,3-Dichloro-1-	propene							
000788860	BUTYL	014	118	66.00	8.00	23.	.09	323
	PV ALCOHOL	102	100	2.00	8.00	23.	.09	323
	PVC	007	100	76.00	8.00	23.	.02	323
	VITON	009	118	4.00	8.00	23.	.03	323
1,3-Dichloropro	pene							
005427560	BUTYL	014	118	65.00	8.00	23.	.07	323
	PV ALCOHOL	102	100	-2.00	8.00	23.	.07	323
	PVC	007	100	199.00	8.00	23.	.02	323
	VITON	009	118	3.00	8.00	23.	.03	323
Diethanolamine								
001114220	BUTYL	014	118	2.00	8.00	24.	.09	323
	NEOPRENE	018	100	5.00	8.00	22.	.05	323
	NITRILE	019	100	14.00	8.00	26.	.04	323
	VITON	009	118	3.00	8.00	27.	.03	323
Diethylamine								
001098970	BUTYL	014	118	88.00	8.00	23.	.09	323
	NITRILE	019	100	55.00	8.00	24.	.04	323
	PVC	007	100	-26.00	8.00	24.	.02	323
	VITON	009	118	83.00	8.00	20.	.03	323
Diethylaminoetha	nol							
001003780	BUTYL	014	118	2.00	8.00	22.	.07	323
	MITRILE	019	118	12.00	8.00	22.	.04	323
	PV ALCOHOL	102	100	-19.00	8.00	23.	.09	323
	VITON	009	118	5.00	8.00	22.	.03	323
Diethylenetriemi	ne							
001114000	BUTYL	014	118	8.00	8.00	24.	.08	323
	NEOPRENE	018	100	12.00	8.00	22.	.05	323
	PVC	007	100	19.00	8.00	22.	.02	323
	VITON	009	118	8.00	8.00	23.	.03	323

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF MUM
Diisobutylamine								
001109630	MEOPRENE	018	100	57.00	8.00	22.	.05	323
001107030	MITRILE	019	100	-1.00	8.00	20.	.04	323
	PV ALCOHOL	102	100	4.00	8.00	20. 23.	.08	323
	VITON	009	118	-2.00	8.00	22.	.02	3 23
Diisopropylamin	e e							
001081890	NEOPRENE	018	100	51.00	8.00	12.	.05	323
	NITRILE	019	100	6.00	8.00	10.	.04	323
	PVC	007	100	-23.00	8.00	11.	.02	323
	VITON	009	118	1.00	8.00	12.	.03	323
K,N-Dimethylace	tamide							
001271950	NATURAL RUBBER	001	120	18.00	4.00	23.	.05	236
				15.00	1.00	23.	.05	236
				21.00	.50	23.	.05	236
				32.00	.08	23.	.05	236
	NEOPRENE	010	120	36.00	4.00	23.	.06	236
				12.00	1.00	23.	.06	236
				12.00	.50	23.	.06	236
				5.00	.08	23.	.06	236
	NITRILE	005	120	18.00	.08	23.	.06	236
				53.00	.50	23.	.06	236
				21.00	1.00	23.	.06	236
				186.00	4.00	23.	.06	236
Dimethylamine								
001244030	BUTYL	014	118	.80	8.00	22.	.06	323
	NATURAL RUBBER	001	250	10.00	8.00	20.	.02	323
	NEOPRENE	018	100	12.00	8.00	22.	.05	323
	PV ALCOHOL	102	100	-6.00	8.00	23.	.07	323
	PVC	007	100	3.00	8.00	20.	.02	323
Dimethylaminopr	opylamine							1
001095570	BUTYL	014	118	22.00	8.00	16.	.09	323
	NATURAL RUBBER	001	250	114.00	8.00	16.	.02	323
	NEOPRENE	018	100	184.00	8.00	20.	.05	3 23
	PVC	077	100	126.00	8.00	20.	.02	323
Dimethylbutylam								
001080980	BUTYL	014	118	67.00	8.00	24.		323
	NITRILE	019	100	76.00	8.00	19.	.04	323
	PV ALCOHOL	102	100	-22.00	8.00	23.	.08	323
	PVC	007	100	-3.00	8.00	21.	.02	3 23
Dimethylethanol								
001080100	BUTYL	014	118	.80	8.00	12.		323
	NATURAL RUBBER	001	250	17.00	8.00	19.	.02	323
	NEOPRENE	018	100	57.00	8.00	21.	.05	323
	NITRILE	019	100	34.00	8.00	9.	.04	323

Dimethyl formamide

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
000681220	NATURAL RUBBER	001	120	1.00	.08	23.	.05	236
				2.00	.50	23.	.05	236
				4.00	1.00	23.	.05	236
				4.00	4.00	23.	.05	
	MEOPRENE	010	120	2.00	.08	23.	.06	236
				7.00	.50	23.		236
				9.00	1.00		.06	236
				9.00	4.00	23. 23.	.06 .06	236 236
1,1-Dimethylhyd	razine (Dimethylhyd	Irazine, unsym	·)					
000571470	BUTYL	034	UNK	10.00	168.00	22.		078
	NEOPRENE	031	UNK	30.00	168.00	22.		078
	NITRILE	033	UNK	38.00	168.00	22.		078
	PVC	077	168	35.00	168.00	22.		078
Dimethyl Sulfox	ide							
000676850	NATURAL RUBBER	001	120	2.00	4.00	23.	.05	236
				2.00	.08	23.	.05	236
				2.00	.50	23.	.05	236
				3.00	1.00	23.	.05	236
	NEOPRENE	010	120	1.00	.08	23.	.06	236
				1.00	.50	23.	.06	
				1.00	1.00			236
				3.00	4.00	23.	.06	236
	NITRILE	005	120	39.00	4.00	23.	.06	236
				19.00	1.00	23.	.06	236
				9.00		23.	.06	236
				4.00	.50	23.	.06	236
	PVC	003	120		.08	23.	.06	236
	, ,,,	003	120	14.00	4.00	23.	.08	236
				12.00	1.00	23.	.08	236
				9.00 8.00	.50 .08	23. 23.	.08 .08	236 236
Dimethylvinylch	lorida							
005133710	NITRILE	019	400	100.00				
003133770	PV ALCOHOL		100	100.00	8.00	23.	.05	323
	PVC	004	100	-10.00	8.00	23.	.08	323
		003	100	-23.00	8.00	23.	.02	3 23
	VITON	009	118	8.00	8.00	23.	.04	323
Dipropylamine 001428470	DIITVI	07/	1 10.114		• ••			
W 172077U	BUTYL	034	UNK	61.00	3.00	25.		126
	POLYCARBONATE	098	UNK	10	3.00	25.		126
Epichlorohydrin		***	444					
001068980	BUTYL	014	118	3.00	24.00	23.	.04	291
				1.00	8.00	23.	.07	323
		**		1.00	8.00	23.	.07	323
		034	UNK	5.00	168.00	22.		078
	MATURAL RUBBER	0 01	250	13.00	8.00	23.	.02	323
				13.00	8.00	23.	.02	323
		017	UNK	30.00	24.00	23.	.02	291
	NEOPRENE	018	100	100.00	24.00	23.	.04	291
		031	UNK	44.00	168.00	22.		078

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT	WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
001068980	NITRILE	020	503		340.00	24.00	23.		291
		033	UNK		28.00	168.00	22.		078
	PE	006	100	<		24.00	23.	.01	291
			209		12.00	168.00	22.	•••	078
	POLYURETHANE	05 0	178		270.00	168.00	22.		078
	PV ALCOHOL	035	UNK	<	1.00	168.00	22.		078
		102	100		-7.00	24.00	23.	.05	291
					-3.00	8.00	23.	.07	323
					-3.00	8.00	23.	.07	323
	PVC	077	168		103.00	168.00	22.		078
	TEFLON	036	214	<	.01	24.00	23.	.01	291
	VITON	009	118		20.00	24.00	23.	.02	291
					16.00	8.00	23.	.03	323
					16.00	8.00	23.	.03	323
		032	UNK		42.00	168.00	22.		078
1,2-Epoxybutane									
001068870	BUTYL	014	118		50.00	8.00	23.	.06	323
	NEOPRENE	018	100		150.00	8.00	23.	.05	323
	PV ALCOHOL	004	100		-3.00	8.00	23.	.04	323
	VITON	009	118		94.00	8.00	23.	.03	323
Ethanol, 30-70%									
000641752	PE	041	UNK		.10	8,760.00	23.		305
		042	UNK		.10	8,760.00	23.		305
		048	UNK		.10	8,760.00	23.		305
Ethanol, >70%									
000641753	PE	041	UNK		.20	8,760.00	23.		305
		042	UNK		.20	8,760.00	23.		305
		048	UNK	<	.01	8,760.00	23.		3 05
Ethanolamine (A									
001414350	BUTYL	014	118		2.00	8.00	26.	.07	323
	NEOPRENE	018	100		7.00	8.00	20.	.05	3 23
	PVC	007	100		12.00	8.00	25.	.02	323
	VITON	009	118		6.00	8.00	22.	.05	323
	cetate (Cellosolve								
001111590	NATURAL RUBBER	0 01	120		12.00	4.00	23.	.05	236
					11.00	1.00	23.	.05	236
					6.00	.50	23.	.05	236
					5.00	.08	23.	.05	236
	NEOPREŅE	010	120		17.00	4.00	23.	.06	236
					12.00	1.00	23.	.06	236
					4.00	.50	23.	.06	236
					3.00	.08	23.	.06	23 6
	NITRILE	005	120		10.00	.08	23.	.06	236
					16.00	.50	23.	.06	236
					23.00 36.00	1.00 4.00	23. 23.	.06	236 236

Ethyl Acetate

MANAGEMENT FAIRFRACE SECRECACIONE DANS SANSON DISCOL

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REI
					HOOKS	שנה כ	CA	NU
001417860	NEOPRENE	010	120	11.00	4.00	23.	.06	23
				16.00	1.00	23.	.06	23
				13.00	.50	23.	.06	236
				3.00	.08	23.	.06	23(
	PE	041	UNK	2.50	8,760.00	23.		305
		042	UNK	2.50	8,760.00	23.		305
		048	UNK	2.80	8,760.00	23.		309
Ethyl Cellosol	ve (Ethoxyethanol, 2	:)						
001108050	BUTYL	014	118	.70	8.00	23.	.08	323
	NATURAL RUBBER	001	250	17.00	8.00	23.	.02	323
	PV ALCOHOL	102	100	-19.00	8.00	23.	.08	323
	PVC	007	100	17.00	8.00	23.	.02	323
Ethyl Acrylate								
0 014 088 50		250	250	67.00	8.00	23.	.02	323
	BUTYL	014	118	13.00	8.00	23.	.09	323
	PV ALCOHOL	102	100	-9.00	8.00	23.	.08	323
	PVC	003	100	74.00	8.00	23.	.02	323
Ethyl Alcohol (
000641750	NATURAL RUBBER	001	120	1.00	.08	23.	.05	236
				< .01	.50	23.	.05	236
				1.00	1.00	23.	.05	236
				1.00	4.00	23.	.05	236
	NEOPRENE	010	120	1.00	4.00	23.	.06	236
				< .01	1.00	23.	.06	236
				< .01	.50	23.	.06	236
				< .01	.08	23.	.06	236
	WITRILE	005	120	2.00	.08	23.	.06	236
				4.00	4.00	23.	.06	236
				8.00	1.00	23.	.06	236
	21/2			3.00	.50	23.	.06	230
	PVC	003	120	1.00	.08	23.	.08	236
				< .01	.50	23.	.08	536
				1.00 1.00	1.00 4.00	23 <i>.</i> 23.	.08 .08	230
				1.00	4.00	es.	.00	236
Ethyl Benzene 001004140	PV ALCOHOL	102	100	/*				
501004140	PV ALCOHOL	102	100	.40	8.00	23.	.08	323
Ethyl Bromide								
000749640	NEOPRENE	018	100	231.00	8.00	23.	.04	323
	PV ALCOHOL	102	100	-14.00	8.00	23.	.08	323
	PVC	003	100	132.00	8.00	23.	.02	323
	VITON	009	118	13.00	8.00	23.	.04	32:
Ethyl-n-butylan	ine							
133606390	NITRILE	019	100	36.00	8.00	24.	.04	323
	PV ALCOHOL	102	100	-24.00	8.00	23.	.09	32
	PVC	007	100	-31.00	8.00	24.	.02	323
	VITON	009	118	17.00	8.00	23.	.03	323

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP Deg C	THICKNESS CM	RE F Num
Ethylene Chloro	hydrin (Chloroethan	nol)						
001070730	BUTYL	014	118	.10	8.00	23.	.06	323
	NEOPRENE	018	100	6.00	8.00	23.	.05	323
	PV ALCOHOL	102	100	-7.00	8.00	23.	.09	323
	VITON	009	118	.60	8.00	23.	.05	323
Ethylenediamine	: (Diaminoethane,1,2	:)						
001071530	BUTYL	014	118	2.00	8.00	18.	.07	323
	CPE	0 60	113	-5.00	24.00	23.	.05	204
				13.00	24.00	23.	.05	204
				-6.40	24.00	23.	.05	204
	NATURAL RUBBER	001	250	9.00	8.00	20.	.01	323
	NEOPRENE	018	100	9.00	8.00	18.	.05	323
	PVC	007	100	.80	8.00	16.	-02	323
	nide (Dibromoethane,	•						
001069340	BUTYL	014	118	65.00	24.00	23.	.04	291
				59.00	8.00	23.	.07	323
	NATURAL RUBBER	017	UNK	480.00	24.00	23.	.02	291
	NEOPRENE	018	100	500.00	24.00	23.	.04	291
	NITRILE	020	503	580.00	24.00	23.	.04	291
	PE	006	100	20.00	24.00	23.	.01	291
	PV ALCOHOL	102	100	4.00	24.00	23.	.05	291
	DVC	007	444	.80	8.00	23.	.08	3 23
	PVC	007	100	258.00	8.00	23.	.02	323
	TEFLON VITON	036	214	2.00	24.00	23.	.01	291
	ATION	009	118	3.00 2.00	24.00 8.00	23. 23.	.02 .03	291 323
Ethylana Dichlo	ri de (Dic hloroethar	1 2\						
001070620	BUTYL	014	440	7/ 00				
007070020	BOTTE	014	118 UNK	36.00	8.00	23,	.06	323
			UNK	34.00 34.00	24.00	23.		326
		064	UNK	24.00	168.00	23.		326
		554	UNK	27.00	24.00 168.00	23,		326
	NATURAL RUBBER	001	250	213.00	8.00	23. 23.	00	326
		017	UNK	226.00	168.00	23.	.02	323
		• • • • • • • • • • • • • • • • • • • •		211.00	24.00	23.		326
	NEOPRENE	018	UNK	190.00	168.00	23.		326
			••••	182.00	24.00	23.		326 326
	NITRILE	019	UNK	655.00	24.00	23.		326
				> 1,000.00	168.00	23.		326
		020	UNK	440.00	168.00	23.		326
				340.00	24.00	23.		326
	PE	041	UNK	5.00	8,760.00	23.		305
		042	UNK	16.00	168.00	23.		326
				.20	24.00	23.		326
				5.40	8,760.00	23.		305
		048	UNK	6.90	8,760.00	23.		305
		076	UNK	74.00	24.00	23.		326
				100.00	168.00	23.		326
	POLYURETHANE	05 0	UNK	26.00	24.00	23.		326

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE F
001070620	POLYURETHANE	050	UNK	86.00	168.00	23.		326
	PV ALCOHOL	004	100	.40	8.00	23.	.03	323
		102	UNK	.30	24.00	23.		326
				.40	168.00	23.		326
	PVC	077	UNK	265.00	168.00	23.		326
				251.00	24.00	23.		326
	TEFLON	036	UNK	1.00	168.00	23.		326
			•	.20	24.00	23.		326
	VITON	009	118	5.00	8.00	23.	.03	323
	******		UNK	6.00	168.00	23.	.03	326
				6.00	24.00	23.		326
Ethylene Glycol								
001072110	NATURAL RUBBER	001	120	1.00	.50	23.	.05	236
				1.00	.08	23.	.05	236
				2.00	1.00	23.	.05	236
				< .01	4.00	23.	.05	236
	NEOPRENE	010	120	18.00	4.00	23.	.06	236
				< .01	1.00	23.	.06	236
				6.00	.50	23.	.06	236
				< .01	.08	23.	.06	236
	NITRILE	005	120	2.00	4.00	23.	.06	236
				1.00	1.90	23.	.06	236
				1.00	.50	23.	.06	236
				1.00	.08	23.	.06	236
	PE	041	UNK	< .01	8,760.00	23.		305
		042	UNK	< .01	8,760.00	23.		30
		048	UNK	< .01	8,760.00	23.		305
	PVC	003	120	3.00	4.00	23.	.08	236
				2.00	1.00	23.	.08	23
				8.00	.50	23.	.08	23
				< .01	.08	23.		23
Ethylenimine (/								
001515640	BUTYL	034	UNK	14.00	168.00	22.		078
	NATURAL RUBBER	017	508	15.00	168.00	22.		07
2-Ethyl-1-Hexar 001047670	nol BUTYL	014	118	4.00	8.00	23.	.07	32:
· · · · · · ·	NEOPRENE	018	100	3.00	8.00	23.		32
	PV ALCOHOL	102	100	·.30	8.00	23.		32
	VITON	009	118	3.00	8.00	23.		32
	nloride (Dichloroeth	nane,1,1)						
000753430	BUTYL	012	118	66.00	8.00	23.	.09	32
	PV ALCOHOL	004	100	-5.00	8.00	23.	.08	32
	PVC	003	100	65.00	8.00	23.	.02	32
				3.00	8.00	23.	.02	32
	VITON	009	118	12.00	8.00	23.		32
Ethyl Methacryl		***	44-					
000976320	BUTYL	014	118	33.00	8.00	23.		32:
	MITRILE	019	100	109.00	8.00	23.	.05	32:

PVC 003 100 115,00 8.00 23c FORMALGENYCIE, <37X (FORMALIN) 000500000 MATURAL RUBBER 001 120 2.00 4.00 23c 1.00 1.00 23c 1.00 1.00 23c 1.00 1.00 23c 1.00 .50 23c 2.00 .68 23c 2.00 1.00 23c 2.00 1.00 23c 1.00 4.00 23c 2.00 1.00 23c 2.00 1.00 23c 2.00 1.00 23c 2.00 1.00 23c 2.00 5.0 23c 2.00 1.00 23c 2.00 1.00 23c 2.00 4.00 23c 1.00 0.8 23c 17.00 0.8 23c 17.00 0.8 23c 17.00 1.00 23c 2.00 4.00 23c 17.00 1.00 23c 2.00 4.00 23c 17.00 1.00 23c 2.00 4.00 23c 2.00 4.00 23c 2.00 4.00 23c 17.00 1.00 23c 2.00 4.00 23c 2.00 5.0 23c 2.00 5		RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
PVC 003 120 115.00 8.00 23c Formal dehyde, <37X (Formal In) 000500000 MATURAL RUBBER 001 120 2.00 4.00 23c 1.00 1.00 23c 1.00 1.00 23c 1.00 1.00 23c 1.00 1.00 23c 1.00 .50 23c 1.00 .50 23c 2.00 1.00 23c 2.00 1.00 23c 2.00 1.00 23c 1.00 4.00 23c 2.00 1.00 23c 2.00 1.00 23c 1.00 4.00 23c 2.00 1.00 23c 2.00 50 23c 1.00 68 23c 2.00 50 23c 2.00 1.00 23c 2.00 50 23c 2.00 1.00 23c 2.00 4.00 23c 2.00 4.00 23c 1.00 0.8 23c 1.00 0.8 23c 1.00 1.00 23c 2.00 4.00 23c 1.00 1.00 23c 1.00 1.00 23c 2.00 4.00 23c 2.00 6.00 23c	320	PV ALCOHOL	102	100	-4.00	8.00	23.	.06	323
MATURAL RUBBER 001 120 2.00 4.00 23. 0.00 1.00 1.00 1.00 23. 0.00 1.00 1.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00 0.00 23. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		PVC	003	100	115.00	8.00		.02	323
NEOPRENE 010 120 2.00 .08 23. .0 .0 .0 .0 .0 .0 .0	dehyde, <37	7% (Formalin)							
1.00	000	NATURAL RUBBER	001	120	2.00	4.00	23.	.05	236
1.00								.05	236
MEOPRENE 010 120 2.00 .08 23								.05	236
NEOPRENE 010 120 2.00 .08 23 .0 .0 .200 .50 .23 .0 .0 .200 .100 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .000 .25 .0 .0 .0 .0 .25 .0 .0 .0 .0 .25 .0 .0 .0 .0 .0 .25 .0 .0 .0 .0 .0 .25 .0 .0 .0 .0 .0 .0 .0 .					< .01			.05	236
NITRILE		NEOPRENE	010	120	2.00	.08		.06	236
NITRILE					2.00	.50	23.	.06	236
NITRILE 005 120 2.00 1.00 230 2.00 .50 230 1.00 .08 230 1.00 .08 230 2.00 4.00 230 2.00 4.00 230 2.00 4.00 230 2.00 17.00 .08 230 17.00 .08 230 17.00 .08 230 17.00 .08 230 17.00 .08 230 17.00 1.00 230 2.00 4.00 230 1.00 1.00 230 2.00 4.00 230 1.00 1.00 230 2.00 4.00 230 2.00 4.00 230 2.00 4.00 230 2.00 4.00 230 2.00 4.00 230 2.00 23.					2.00	1.00	23.	.06	236
PE					1.00	4.00	23.	.06	236
1.00		NITRILE	005	120	2.00	1.00	23.	.06	236
PE 048 UNK .10 8,760.00 230 PVC 003 120 < .01 .50 230 17.00 .08 230 17.00 1.00 230 17.00 1					2.00	.50	23.	.06	236
PE 048 UNK .10 8,760.00 230 PVC 003 120 < .01 .50 230 17.00 .08 230 17.00 .08 230 17.00 .1.00 230 2.00 4.00 230 2.00 4.00 230 2.00 4.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 2.00 230 2.00 2.00 230 2.00 2.00 230 2.00 2.00 23.						.08	23.	.06	236
PVC 003 120 < .01 .50 230 17.00 .08 230 1.00 1.00 230 2.00 4.00 230 1.00 1.00 230 2.00 4.00 230 2.00 4.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 230 2.00 230 2.00 230 2.00 230 2.00 1.00 230 2.00 230 2.00 1.00 230 2.00 1.00 230 2.00 1.00 230 2.00 30 2.00 30 2.00 30 2.00 30 2.00 30 2.00 30 2.00 230 2.00 30 2.00 230 2.00 30					2.00	4.00	23.	.06	236
Freen TF 000761310 NEOPRENE 010 120 4.00 4.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 50 23 1.00 50 23 1.00 50 23 1.00 50 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 2.01 50 23 1.00 1.00 23 2.00 1.00 23 1.00 1.00 23 2.00					.10	8,760.00	23.		305
Freon TF 000761310 NEOPRENE 010 120 4.00 4.00 23		PVC	003	120		.50	23.	.08	236
Freen TF 000761310 NEOPRENE 010 120 4.00 4.00 23							23.	.08	236
Freon TF 000761310 NEOPRENE 010 120 4.00 4.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 50 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 1.00 23 1.00 23.								.08	236
DOD761310 NEOPRENE D10 120 4.00 4.00 23. C					2.00	4.00	23.	.08	236
1.00	TF								
NITRILE 005 120 1.00 .50 23. .00 .00 .23. .00 .00 .23. .00 .00 .23. .00 .00 .23. .00 .00 .23. .00 .00 .23. .00 .00 .23. .00 .00 .23. .00 .00 .00 .23. .00 .00 .00 .23. .00 .	310	NEOPRENE	010	120	4.00	4.00	23.	.06	236
NITRILE 005 120 1.00 .50 230 1.00 1.00 230 1.00 1.00 230 1.00 1.00 230 1.00 .08 230 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .0 1.00 .00 .00 .00 .0					1.00	1.00	23.	.06	236
NITRILE 005 120 1.00 4.00 230 1.00 1.00 230 1.00 1.00 230 1.00 1.00 230 1.00 .08 2					< .01	.08	23.	.06	236
1.00					1.00	.50	23.	.06	236
Furan (Furfuran) 001100090 BUTYL 014 118 46.00 8.00 230 PV ALCOHOL 102 100 -22.00 8.00 230 PVC 003 100 -49.00 8.00 230 VITON 009 118 17.00 8.00 230 Gesoline 080066190 MEOPRENE 010 120 2.00 .08 230 8.00 .50 230 7.00 1.00 230 9.00 4.00 230 9.00 4.00 230 1.00 .08 230 9.00 4.00 230 9.00 4.00 230 1.00 .08 230 9.00 4.00 230 9		NITRILE	005	120	1.00	4.00	23.	.06	236
Furan (Furfuran) 001100090 BUTYL 014 118 46.00 8.00 23						1.00	23.	.06	236
Furan (Furfuran) 001100090 BUTYL 014 118 46.00 8.00 23 PV ALCOHOL 102 100 -22.00 8.00 23 PVC 003 100 -49.00 8.00 23 VITON 009 118 17.00 8.00 23 Gasoline 080066190 NEOPRENE 010 120 2.00 .08 23 7.00 1.00 23 9.00 4.00 23 9.00 4.00 23 1.00 NITRILE 005 120 1.00 2.00 9.00 4.00 23 2.00 9.00 4.00 23 4.00 4.00 23 2.00 1.00 23 2.00 1.00 23 2.00 1.00 23 2.00 3 4.00 4.00 23 4.00 4.00 23 9.042 UNK 8.80 8,760.00 23 048 UNK 13.50 8,760.00 23.							23.	.06	236
001100090 BUTYL 014 118 46.00 8.00 23C PV ALCOHOL 102 100 -22.00 8.00 23C PVC 003 100 -49.00 8.00 23C VITON 009 118 17.00 8.00 23C Gesoline 080066190 MEOPRENE 010 120 2.00 .08 23C					1.00	.08	23.	.06	236
PV ALCOHOL 102 100 -22.00 8.00 23C PVC 003 100 -49.00 8.00 23C VITON 009 118 17.00 8.00 23C Gasoline 080066190 NEOPRENE 010 120 2.00 .08 23C	(Furfuran)								
PV ALCOHOL 102 100 -22.00 8.00 23 PVC 003 100 -49.00 8.00 23 VITON 009 118 17.00 8.00 23 Gasoline 080066190 NEOPRENE 010 120 2.00 .08 23 7.00 1.00 23 9.00 4.00 23 9.00 4.00 23 NITRILE 005 120 1.00 .08 23 2.00 9.00 4.00 23 2.00 PE 041 UNK 6.70 8,760.00 23 042 UNK 8.80 8,760.00 23 048 UNK 13.50 8,760.00 23.	090	BUTYL	014	118	46.00	8.00	23.	.09	323
PVC VITON 009 118 17.00 8.00 23 Gasoline OB0066190 NEOPRENE 010 120 2.00 .08 23	1	PV ALCOHOL	102	100	-22.00	8.00		.09	323
VITON 009 118 17.00 8.00 23 Gasoline 080066190 NEOPRENE 010 120 2.00 .08 23 8.00 .50 23 7.00 1.00 23 9.00 4.00 23 9.00 4.00 23 2.00 .50 23 2.00 .50 23 2.00 1.00 23 4.00 4.00 23 4.00 4.00 23 PE 041 UNK 6.70 8,760.00 23. 042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.	!	PVC	003	100	-49.00	8.00		.02	323
080066190 NEOPRENE 010 120 2.00 .08 2300 8.00 .50 2300 8.00 .50 2300 7.00 1.00 2300 9.00 4.00 2300 2300 2300 2.00 .50 2300 2.00 .50 2300 2.00 1.00 2300 2.00 1.00 2300 2.00 1.00 2300 4.00 2300 4.00 2300 4.00 23	,	VITON	009	118	17.00	8.00		.05	323
080066190 NEOPRENE 010 120 2.00 .08 2300 8.00 .50 2300 8.00 .50 2300 7.00 1.00 2300 9.00 4.00 2300 2300 2300 2.00 .50 2300 2.00 .50 2300 2.00 1.00 2300 2.00 1.00 2300 2.00 1.00 2300 4.00 2300 4.00 2300 4.00 23	ne								
8.00 .50 230 7.00 1.00 230 9.00 4.00 230 1.00 .08 230 2.00 .50 230 2.00 1.00 230 4.00 4.00 230 4.00 4.00 230 4.00 4.00 230 4.00 4.00 230 042 UHK 8.80 8,760.00 23. 048 UHK 13.50 8,760.00 23.		NEOPRENE	010	120	2.00	na na	23	.06	236
7.00 1.00 230 9.00 4.00 230 1.00 .08 230 2.00 .50 230 2.00 1.00 230 2.00 1.00 230 4.00 4.00 230 4.00 4.00 230 9.00 1.00 230 4.00 4.00 230 9.00 1.00 230 1								.06	236
PE 041 UNK 6.70 8,760.00 23. 048 UNK 13.50 8,760.00 23. 9.00 4.00 230 2.00 .50 230 4.00 4.00 230 4.00 230 2.00 1.00 230 4.00 230 2.00 1.00 230 4.00 230 2.00 240 2.00 250 2.00 250 2.00 250 2.00 250 2.00 250 2.00 250 2.00 250 2.00 250 2.00 250 2.00 250 2.00 25.								.06	236
NITRILE 005 120 1.00 .08 230 2.00 .50 230 2.00 1.00 230 4.00 4.00 230 PE 041 UNK 6.70 8,760.00 23. 042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.								.06	236
2.00 .50 230 2.00 1.00 230 4.00 4.00 230 4.00 4.00 230 042 UNK 6.70 8,760.00 23. 042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.	(MITRILE	005	120				.06	236
2.00 1.00 230 4.00 4.00 230 4.00 8,760.00 230 042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.								.06	236
4.00 4.00 230 PE 041 UNK 6.70 8,760.00 23. 042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.								.06	236
PE 041 UNK 6.70 8,760.00 23. 042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.								.06	236
042 UNK 8.80 8,760.00 23. 048 UNK 13.50 8,760.00 23.	(PE	041	UNK					305
048 UNK 13.50 8,760.00 23.			042	UNK	8.80				305
			048	UNK	13.50	8,760.00			305
4	- dan yasa								
		BUTYL	014	118	1.00	8.00	23.	.09	323

The thirty of the transfer of

CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME	TEMP	THICKNESS	REF
CASNO	MATERIAL	DESC CODE			HOURS	DEG C	CH	MUH
001113080	NEOPRENE	018	100	4.00	8.00	23.	.05	32
	PVC	003	100	7.00	8.00	23.	.02	32
	VITON	009	118	4.00	8.00	23.	.04	323
Halothane								
001516770	BUTYL	014	118	210.00	8.00	23.	.09	323
	PV ALCOHOL	102	100	-22.00	8.00	23.	.07	323
	PVC	007	100	-35.00	8.00	23.	.02	32
	VITON	009	118	81.00	8.00	23.	.05	32
<u>Heptane</u>								
001428250	PE	041	UNK	.70	8,760.00	23.		700
		042	UNK	6.90	8,760.00	23.		305
		048	UNK	10.00	8,760.00	23.		305 305
Hexachlorocyclo	nentadi ene							
000774740	BUTYL	014	118	24 00	• 00	~~		
	NITRILE	019	100	26.00 19.00	8.00	23.	.06	323
	PV ALCOHOL	102	100	19.00	8.00 8.00	23.	.04	323
	VITON	009	118	2.00	8.00	23. 23.	.08 .03	323 323
				2.00	0.00	٤.,	.03	32.
Hexamethylphospi 006803190	hoamide BUTYL	034	11616	• •				
000003170	NEOPRENE		UNK	8.00	168.00	22.		078
	NITRILE	031	UNK	272.00	168.00	22.		07
		033	UNK	78.00	168.00	22.		078
	PE POLYUPETUANS	006	209	22.00	168.00	22.		078
	POLYURETHANE VITON	050 032	178 UNK	242.00 250.00	168.00 168.00	22.		078
		732	Onk	, 250.00	166.00	22.		078
Hexane	NEODREUE	040	400					
001105430	NEOPRENE	010	120	4.00	4.00	23.	.06	236
				28.00	1.00	23.	.06	236
				1.00	.50	23.	.06	236
	NITRILE	005	400	1.00	.08	23.	.06	236
	MIIKILE	005	120	1.00	.08	23.	.06	236
				< .01	.50	23.	.06	236
				< .01 1.00	1.00 4.00	23. 23.	.06	236
				1.00	4.00	23.	.06	236
Mydrochloric Aci 076470100	id Butyl	07/	1 10.00					
U. 00 1 U 1 U U	J UITE	034	UNK	11.00	20.00	25.		126
	POLYCARBONATE	098	UNK	.90	3.00	25.		126
	POLICARBONATE	U70	OWK	< .01 < .01	3.00 20.00	25. 25.		126
				- •••	20.00	ε		126
Mydrochloric Aci	•	A						
076470101	PE	041	UNK	< .01	8,760.00	23.		305
		042	UNK	.01	8,760.00	23.		305
		048	UNK	• .20	8,760.00	23.		305
tydrochloric Aci	a, 30-70%							
Hydrochloric Aci 076470102	NATURAL RUBBER	001	120	1.00	.08	23.	.05	236

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
076470102	NATURAL RUBBER	001	120	3.00	1.00	23.	.05	236
				5.00	4.00	23.	.05	236
	NEOPRENE	010	120	1.00	.08	23.	.06	236
				1.00	.50	23.	.06	236
				1.00	1.00	23.	.06	236
				2.00	4.00	23.	.06	236
	NITRILE	005	120	1.00	.08	23.	.06	236
				2.00	.50	23.	.06	236
				2.00	1.00	23.	.06	236
				3.00	4.00	23.	.06	236
	PVC	003	120	< .01	.08	23.	.08	236
				1.00	.50	23.	.08	236
				1.00	1.00	23.	.08	236
				2.00	4.00	23.	.08	236
	id (Hydrogen Fluori							
07664393 0	BUTYL	034	UNK	123.00	3.00	25.		126
	POLYCARBONATE	098	UNK	.30	3.00	25.		126
				1.00	20.00	25.		126
Hydrofluoric Ac								
076643932	NATURAL RUBBER	001	120	< .01	4.00	23.	.05	236
				< .01	1.00	23.	.05	236
				1.00	.50	23.	.05	236
				1.00	.08	23.	.05	236
	NEOPRENE	010	120	2.00	.08	23.	.06	236
				4.00	.50	23.	.06	236
				4.00	1.00	23.	.06	236
	NITRII P	005	420	8.00	4.00	23.	.06	236
	NITRILE	005	120	2.00	.08	23.	.06	236
				6.00	.50	23.	.06	236
				7.00	1.00	23.	.06	236
	PVC	003	120	11.00	4.00	23.	.06	236
	710	003	120	1.00	.08	23.	.08	236
				2.00 2.00	.50	23.	.08	236
				2.00	1.00 4.00	23. 23.	.08 .08	236 236
				2.00	4.00	LJ.		230
Nydrogen Peroxi 077228412	de, 30·70% PE	041	UNK	< .01	8,760.00	23.		305
		042	UNK	.10	8,760.00	23.		305
		048	UNK	< .01	8,760.00	23.		305
Iminobispropyla	mine							
000561880	BUTYL	014	118	4.00	8.00	28.	.09	323
	NATURAL RUBBER	001	250	21.00	8.00	26.	.02	32 3
	NEOPRENE	018	100	24.00	8.00	27.	.05	323
	VITON	009	118	3.00	8.00	27.	.04	32 3
Isobutyl Acryla	te							
001066380	BUTYL	014	118	16.00	8.00	23.	.09	323
	NITRILE	019	100	103.00	8.00	23.		323
	PV ALCOHOL	102	100	-2.00	8.00	23.	.08	323

PZZ ŁOWSKIO PROJUKA (PASKORIA) PRZEKIA PO POWERZA PO PROKORIA

				FORMANCE DETA WEIGHT CHANGE				
CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT W	EIGHT CHANGE	IMMERSION TIME	TEMP DEG C	THICKNES:
001066380	PVC	003	100		94.00	8.00		.02
Isobutyl Alcoho	t							
000788310	BUTYL	014	118		.06	8.00	23.	.07
	NEOPRENE	018	100		-3.00	8.00	23.	.05
	NITRILE	019	118		7.00	8.00	23.	.05
	VITON	009	118		.02	8.00	23.	.05
Isobutyl Nitrit	e							
005425630	BUTYL	014	118		81.00	8.00	23.	.04
	NITRILE	019	100		38.00	8.00	23.	.06
	PVC	003	100		-31.00	8.00	23.	.02
	VITON	009	118		50.00	8.00	23.	.04
Isopropyl Alcoh	ol (Propenol, 2-)							
000676300	CPE	060	113		3.10	24.00	23.	.05
					3.70	24.00	23.	.05
					3.50	24.00	23.	.05
	NATURAL RUBBER	001	120		1.00	.08	23.	.05
					1.00	.50	23.	.05
					1.00	1.00	23.	.05
					1.00	4.00	23.	.05
	NEOPRENE	010	120	<	.01	.08	23.	.06
					1.00	.50	23.	.06
				<	.01	1.00	23.	.06
	MITALLE	005	400	<	.01	4.00	23.	.06
	NITRILE	005	120		2.00	4.00	23.	.06
					2.00	1.00	23.	.06
					2.00 1.00	.50 .08	23.	.06
	PVC	003	120	<	.01	4.00	23. 23.	.06 .08
				<	.01	1.00	23.	.08
					1.00	.50	23.	.08
				<	.01	.08	23.	.08
teeneend enine								
1sopropylamine 000753100	BUTYL	014	118		28.00	8.00	2/	**
	NEOPRENE	018	100		60.00	8.00	24. 21.	.09 .05
	PVC	007	100		-18.00	8.00	18.	.02
	VITON	009	118		67.00	8.00	26.	.04
Isopropylmethac	rulata							
046553490	BUTYL	014	118		36.00	8.00	27	~~
	NITRILE	019	100		69.00	8.00	23. 23.	.09 .05
	PV ALCOHOL	102	100		-3.00	8.00	23. 23.	.09
	PVC	003	100		63.00	8.00	23.	.02
Vanacass								
Kerosene 080082060	NEOPRENE	010	120		1.00	.08	97	A /
		- 10	129		1.00	.50	23. 23.	.06 .06
					1.00	1.00	23. 23.	.06
					3.00	4.00	23.	.06
	NITRILE	005	120		1.00	.08	23.	.06
				B-19				

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE Nu
080082060	NITRILE	005	120	1,00	.50	23.	.06	236
				1.00	1.00	23.	.06	23
				2.00	4.00	23.	.06	23
Methacrylonitril	•							
0 01269870	BUTYL	014	118	-1.00	8.00	23.	.09	32
	NATURAL RUBBER	001	250	7.00	8.00	23.	.02	32
	PV ALCOHOL	102	100	-6.00	8.00	23.	.06	32
	PVC	003	100	10.00	8.00	23.	.02	32:
Methanol (Methyl	Alcohol)							
000675610	NATURAL RUBBER	001	120	1.00	.08	23.	.05	23
				2.00	1.00	23.	.05	236
				2.00	4.00	23.	.05	23
				1.00	.50	23.	.05	230
	NEOPRENE	010	120	< .01	.08	23.	.06	23
				< .01	.50	23.	.06	23
				1.00	1.00	23.	.06	23
				1.00	4.00	23.	.06	23
	NITRILE	005	120	7.00	4.00	23.	.06	23
				6.00	1.00	23.	.06	23
				3.00	.50	23.	.06	23
				3.00	.08	23.	.06	23
Methanol, <30%		•••						
000675611	PE	041	UNK	.10	8,760.00	23.		30
		042 048	UNK	< .01	8,760.00	23.		30
		V40	UNK	< .01	8,760.00	23.		30
Methanol, >70%								
000675613	PE	041	UNK	.10	8,760.00	23.		30
		042	UNK	.10	8,760.00	23.		30
		048	UNK	< .01	8,760.00	23.		30
Methyl Acetate								
000792090	BUTYL	014	118	1.00	8.00	23.	.09	32
	NATURAL RUBBER	001	250	-20.00	8.00	23.	.02	32
	PV ALCOHOL	102	100	-25.00	8.00	23.	.07	32
	PVC	003	100	12.00	8.00	23.	.02	32
Methyl Acrylate								
000963330	BUTYL	014	118	5.00	8.00	23.	.09	32
	NATURAL RUBBER	001	250	54.00	8.00	23.	.02	323
	NEOPRENE	018	100	50.00	8.00	23.	.05	323
	PV ALCOHOL	102	100	-4.00	8.00	23.	.07	32
- B-Methylaminoprop	pylamine							
062918450	BUTYL	014	118	5.00	8.00	20.	.07	323
	NATURAL RUBBER	001	250	30.00	8.00	16.	.02	323
	NEOPRENE	018	100	70.00	8.00	16.	.05	32
	PVC	007	100	45.00	8.00	14.	.02	323

Methyl Chloroform (Trichloroethane,1,1,1)

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT	WEIGHT CHANGE	IMMERSION TIME NOURS	TEMP DEG C	THICKNESS CM	RE
000715560	BUTYL	014	UNK		80.00	168.00			32
					80.00	24.00	25.		320
					5.50	24.00	22.		201
		064	UNK		47.00	24.00	25.		326
					49.00	168.00	25.		326
	NATURAL RUBBER	017	UNK		464.00	24.00	25.		326
					.30	24.00	22.		201
					473.00	168.00	25.		326
	NEOP/NAT RUBBER	800	UNK	30 -	.30	24.00	22.		201
	NEOPRENE	010	120		21.00	.08	23.	.06	236
					78.00	.50	23.		
					86.00	1.00	23.	.06	236
					92.00	4.00		.06	236
		018	UNK		291.00		23.	.06	236
		0.0	UNIX			168.00	25.		326
					290.00 45.50	24.00	25.		326
				50 -	15.50 .50	24.00	22.		201
				50 -		24.00	22.		201
	NITRILE	005	420		2.80	24.00	22.		201
	HIIKILE	005	120		36.00	4.00	23.	.06	236
					82.00	1.00	23.	.06	236
					62.00	.50	23.	.06	236
		212			25.00	.08	23.	.06	236
		019	UNK	>	1,000.00	24.00	25.		326
		020	UNK		2.50	24.00	22.		201
	PE	042	UNK		16.00	168.00	25.		326
					5.00	24.00	25.		326
		076	UNK		131.00	24.00	25.		326
					147.00	168.00	25.		326
	POLYURETHANE	050	UNK		58.00	24.00	25.		326
					79.00	168.00	25.		326
	PV ALCOHOL	102	UNK	•	.80	24.00	25.		326
					6.90	24.00	22.		201
					.9 0	168.00	25.		326
	PVC	003	UNK		-2.50	24.00	22.		201
		077	UNK		227.00	24.00	25.		326
					273.00	168.00	25.		326
	TEFLON	036	UNK		.30	24.00	25.		326
					.40	168.00	25.		326
	WITON	009	UNK		4.00	24.00	25.		326
					5.00	168.00	25.		326
Methyl Chlorofo									
000792210	BUTYL	034	UNK		13.00	20.00	25.		126
	-				11.00	3.00	25.		126
	ide (Dichloromethand								
000750920	NATURAL RUBBER	001	UNK		-3.00	1.00	25.		208
	NEOPRENE	002	UNK		-3.00	1.00	25.		208
		010	120		17.00	.08	23.	.06	236
					25.00	.50	23.	.06	236
					20.00	1.00	23.	.06	236
					4.00	4.00	23.	.06	236
	NITRILE	005	UNK		-3.00	1.00	25.		208

CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REI
n-Hethylethanol								_
001098310	BUTYL	014	118	2.00	8.00	19.	.07	323
	CELLULOSE ACETATE	099	118	9.00	8.00	20.	.03	323
	NATURAL RUBBER	001	250	8.00	8.00	20.	.03	323
	NEOPRENE	018	100	4.00	8.00	20.	.06	323
Methyl Ethyl Ke	tone (Butanone,2)							
000789330	BUTYL	014	118	6.00	8.00	23.	.06	323
	NATURAL RUBBER	001	120	10.00	.50	23.	.05	236
				6.00	4.00	23.	.05	236
				8.00	.08	23.	.05	236
				12.00	1.00	23.	.05	236
			250	37.00	8.00	23.	.01	323
			UNK	-2.00	1.00	25.		208
	NEOPRENE	002	UNK	-3.00	1.00	25.		208
		010	120	8.00	4.00	23.	.06	236
				16.00	1.00	23.	.06	236
				14.00	.50	23.	.06	236
				5.00	.08	23.	.06	236
		018	100	88.00	8.00	23.	.05	323
	NITRILE	005	UNK	-2.00	1.00	25.		208
	PV ALCOHOL	102	100	-14.00	8.00	23.	.07	323
Methylhydrazine								
000603440	BUTYL	034	UNK	6.70	20.00	25.		120
				3.40	3.00	25.		126
Methyl Iodide								
000748840	BUTYL	014	118	208.00	8.00	23.	.09	323
	NEOPRENE	018	100	511.00	8.00	23.	.05	323
	PV ALCOHOL	102	100	-18.00	8.00	23.	.07	323
	VITON	009	118	4.00	8.00	23.	.04	323
Methyl Isocyana								
006248390	BUTYL	014	118	32.00	8.00	13.	.06	323
				32.00	8.00	23.	.07	323
	NATURAL RUBBER	001	250	49.00	8.00	20.	.02	323
				49.00	8.00	23.	.01	323
	NEOPRENE	018	100	90.00	8.00	20.	.05	323
	PV ALCOHOL	004	100	6.00	8.00	23.	.03	323
	VITON	009	118	74.00 74.00	8.00 8.00	21. 23.	.03 .03	323 323
	•				5.50		.03	<i>-</i>
Methyl Methacry								
000806260	BUTYL	014	118	23.00	8.00	23.	.09	323
	NATURAL RUBBER	001	250	112.00	8.00	23.	.02	323
	PV ALCOHOL	102	100	-7.00	8.00	23.	.06	323
	PVC	003	100	102.00	8.00	23.	.02	323
tono i sopropeno Le								
000789660	BUTYL	014	118	2.00	8.00	25.	.07	323
	NEOPRENE	018	100	6.00	8.00	24.	.05	323

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF Num
000789660	PVC	007	100	6.00	8.00	25.	.02	323
	VITON	009	118	7.00	8.00	25.	.04	3 23
Nitric Acid, >7)%							
076973723	NATURAL RUBBER	001	120	6.00	.50	23.	.05	236
				3.00	.08	23.	.05	236
				8.00	1.00	23.	.05	236
	NEODDENE	242	400	12.00	4.00	23.	.05	236
	NEOPRENE	010	120	1.00	.08	23.	.06	236
				2.00	.50	23.	.06	236
				3.00 7.00	1.00	23.	.06	236
	NITRILE	005	120	9.00	4.00 .08	23.	.06	236
	***************************************	003	120	17.00	.50	23. 23.	.06	236
				20.00	1.00	23. 23.	.06	236
				34.00	4.00	23. 23.	.06 .06	236 236
	PE	041	UNK	1.40	8,760.00	23. 23.	.00	305
		042	UNK	1.90	8,760.00	23.		305
		048	UNK	4.80	8,760.00	23.		305
				4.80	8,760.00	23.		305
	PVC	003	120	2.00	.08	23.	.08	236
				3.00	.50	23.	.08	236
				4.00	1.00	23.	.08	236
				5.00	4.00	23.	.08	236
Nitrobenzene								
000989530	BUTYL	034	UNK	15.00	20.00	25.		126
				4.20	3.00	25.		126
Nitroethane								
000792430	BUTYL	014	118	.30	8.00	23.	.09	323
	NATURAL RUBBER	001	250	2.00	8.00	23.	.02	323
	NEOPRENE	018	100	23.00	8.00	23.	.04	323
	PV ALCOHOL	102	100	-1.00	8.00	23.	.07	323
Nitromethane								
000755250	BUTYL	014	118	50	8.00	23.	.09	323
	NATURAL RUBBER	001	25 0	-4.00	8.00	23.	.02	323
	NEOPRENE	018	100	4.00	8.00	23.	.05	323
	PV ALCOHOL	102	100	-2.00	8.00	23.	.07	323
Nitropropane								
253220140	BUTYL	034	UNK	2.00	168.00	22.		078
	NEOPRENE	031	UNK	23.00	168.00	22.		078
	NITRILE	033	UNK	72.00	168.00	22.		078
	PE SON VIRETHANS	006	209	7.00	168.00	22.		078
	POLYURETHANE PV ALCOHOL	050 075	178	99.00	168.00	22.		078
	PVC	035 077	UNK	< 1.00 (2.00	168.00	22.		078
	VITON	077 032	168	42.00	168.00	22.		078
	71104	032	UNK	107.00	168.00	22.		078
2-Nitropropane								

CASNO CASNO	RÉSISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
000794690	NATURAL RUBBER	001	250	18.00	8.00	23.	.02	323
	NEOPRENE	018	100	53.00	8.00	23.	.04	323
	PV ALCOHOL	102	100	-2.00	8.00	23.	.06	323
n-Nitrosodimeth	ylamine							
000551850	CPE	0 60	113	115.00	.83	23.	.05	204
				112.00	.83	23.	.05	204
				109.00	.33	23.	.05	204
o-Nitrotoluene								
000887220	BUTYL	034	UNK	15.20	20.00	25.		126
				9.90	3.00	25.		126
p-Nitrotoluene								
000999900	BUTYL	034	UNK	.10	3.00	25.		126
				.20	20.00	25.		126
	POLYCARBONATE	098	UNK	.20	3.00	25.		126
				2.00	20.00	25.		126
Oleic Acid								
001128010	PE	041	UNK	1.40	8,760.00	23.		305
		042	UNK	1.70	8,760.00	23.		305
		048	UNK	2.40	8,760.00	23.		305
Oxalic Acid								
001446270	BUTYL	014	118	1.00	8.00	19.	.07	323
	NEOPRENE	018	100	3.00	8.00	19.	.05	323
	NITRILE	019	100	2.00	8.00	19.	.04	323
	VITON	009	118	.90	8.00	20.	.03	323
Phenol (Carboli								
001089520	CPE	060	113	9.10	24.00	23.	.05	204
				68.00	24.00	23.	.05	204
				25.00	24.00	23.	.05	204
	NATURAL RUBBER	001	120	12.00	4.00	23.	.05	236
				2.00	1.00	23.	.05	236
				3.00	.50	23.	.05	236
	MEGABEUE	010	400	2.00	.08	23.	.05	236
	NEOPRENE	010	120	5.00	4.00	23.	.06	236
				1.00	1.00	23.	.06	236
				2.00	.50	23.	.06	236
				2.00	.08	23.	.06	236
Phenol, <30%								
001089521	PE	041	UNK	.20	8,760.00	23.		305
		042	UNK	.10	8,760.00	23.		305
		048	UNK	.20	8,760.00	23.		305
Phenyl Glycidyl								
001226010	BUTYL	014	UNK	.40	24.00	22.		201
	NATURAL RUBBER	017	UNK	6.00	24.00	22.		201
	NEOP/NAT RUBBER	800	UNK	30.00	24.00	22.		201
	NEOPRENE	018	UNK	37.70	24.00	22.		201

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT	WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
001226010	NEOPRENE	018	UNK		23.00	24.00	22.		201
					33.10	24.00	22.		201
	NITRILE	020	UNK		103.50	24.00	22.		201
	PV ALCOHOL	102	UNK		3.80	24.00	22.		201
	PVC	003	UNK		41.40	24.00	22.		201
Phosphoric Acid	, >70%								
076643823	NATURAL RUBBER	001	120		3.00	4.00	23.	.05	236
					3.00	1.00	23.	.05	236
					2.00	.50	23.	.05	236
					1.00	.08	23.	.05	236
	NEOPRENE	010	120	<		.08	23.	.06	236
				<	•	.50	23.	.06	236
				<		1.00	23.	.06	236
	NITRILE	005	420	<		4.00	23.	.06	236
	MIIKILE	005	120	<	.01 1.00	.08	23.	.06	236
					4.00	.50 1.00	23.	.06	236
					5.00	4.00	23. 23.	.06	236
	PVC	003	120		1.00	.08	23. 23.	.06 .08	236
	***	003	120		2.00	.50	23.	.08	236 236
					2.00	1.00	23.	.08	236
					2.00	4.00	23.	.08	236
Potassium Hydro	xide, 30-70%								
013105832	NATURAL RUBBER	001	120		2.00	4.00	23.	.05	236
					2.00	1.00	23.	.05	236
					2.00	.50	23.	.05	236
				1.00 -	.01	.08	23.	.05	236
	NEOPRENE	010	120	•	.01	4.00	23.	.06	236
				•	.01	1.00	23.	.06	236
				•	.01	.50	23.	.06	236
				<		.08	23.	.06	236
	NITRILE	005	120		1.00	.08	23.	.06	236
					1.00	.50	23.	.06	236
					1.00	1.00	23.	.06	236
		***		•		4.00	23.	.06	236
	PVC	003	120		1.00	4.00	23.	.08	236
				<		1.00	23.	.08	236
					1.00 1.00	.50 .08	23. 23.	.08 .08	236 236
hada Baratatara									
beta-Propiolact 000575780		07/	1805		• 00	440 00	22		
VVVJ1310U	BUTYL ' NATURAL RUBBER	034 017	UNK 508		1.00 9.00	168.00	22.		078
	NEOPRENE	017	UNK		31.00	168.00 168.00	22.		078
	NITRILE	033			29.00	168.00	22.		078
	PE	006	UNK 209		18.00	168.00	22. 22.		078
	POLYURETHANE	050	178			168.00	22. 22.		078 078
	PVC	077	168		185.00 15.00	168.00	22.		078

CHEMICAL NAME/ CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	INMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF
001071080	BUTYL	034	UNK	17.00	20.00	25.		126
				14.00	3.00	25.		126
Propylenediamin	•							
000789000	BUTYL	014	118	-3.00	8.00	17.	.07	323
	NEOPRENE	018	100	1.00	8.00	24.	.05	323
	PVC	007	100	5.00	8.00	17.	.02	323
	VITON	009	118	8.00	8.00	25.	.02	323
Propylene Dichle	ori de (Dichloroprop	pane 1,2)						
000788750	BUTYL	014	118	70.00	8.00	23.	.08	323
	PV ALCOHOL	102	100	-2.00	8.00	23.	.07	323
	PVC	007	100	105.00	8.00	23.	.02	323
	VITON	009	118	7.00	8.00	23.	.03	323
1,3-Propylene 0	xide							
005033000	BUTYL	014	118	21.00	8.00	23.	.07	323
	NATURAL RUBBER	001	250	58.00	8.00	23.	.02	323
	PV ALCOHOL	004	100	-9.00	8.00	23.	.03	323
	VITON	009	118	94.00	8.00	23.	.03	323
Propylmethacryl	ate							
022102880	BUTYL	014	118	38.00	8.00	23.	.08	323
	NITRILE	019	100	152.00	8.00	23.	.04	323
	PV ALCOHOL	004	100	60	8.00	23.	.07	323
	PVC	003	100	106.00	8.00	23.	.02	323
Sodium Hydroxid	e. <30%							
013107321	PE	041	UNK	.10	8,760.00	23.		305
				.10	8,760.00	23.		305
		042	UNK	< .01	8,760.00	23.		305
				< .01	8,760.00	23.		305
		048	UNK	< .01	8,760.00	23.		305
				.10	8,760.00	23.		305
Sodium Hydroxid	le, 30-70%							_
013107322	NATURAL RUBBER	001	120	2.00	4.00	23.	.05	236
				1.00	1.00	23.	.05	236
				2.00	.50	23.	.05	236
				2.00	.08	23.	.05	236
			UNK	-1.00	1.00	25.		208
	NEOPRENE	002	UNK	-1.00	1.00	25.		208
		010	120	2.00	4.00	23.	.06	236
	•			4.00	1.00	23.	.06	236
				3.00	.50	23.		236
				1.00	.08	23.	.06	236
	NITRILE	005	120	2.00	.08	23.	.06	236
				7.00	.50	23.	.06	236
				3.00	1.00	23.	.06	236
				3.00	4.00	23.	.06	236
			UNK	1.00	1.00	25.		208
	PVC	003	120	8.00	.08	23.	.08	236
				6.00	.50	23.	.08	236

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT	WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE!
013107322	PVC	003	120		7.00	1.00	23.	.08	23
					3.00	4.00	23.	.08	23
Sulfuric Acid,	<30%								
076649391	PE	041	UNK		.10	8,760.00	23.		309
		042	UNK	<	.01	8,760.00	23.		30
		048	UNK	<	.01	8,760.00	23.		30
Sulfuric Acid,	30-70%								
076649392	NATURAL RUBBER	001	120		2.00	4.00	23.	.05	23
					1.00	1.00	23.	.05	23
					2.00	.50	23.	.05	23
					1.00	.08	23.	.05	236
	NEOPRENE	010	120		2.00	.08	23.	.06	236
					3.00	.50	23.	.06	236
					1.00	1.00	23.	.06	236
					1.00	4.00	23.	.06	236
	NITRILE	005	120		1.00	.08	23.	.06	236
					2.00	.50	23.	.06	236
				<	.01	1.00	23.	.06	236
					1.00	4.00	23.	.06	236
	PE	041	UNK	<	.01	8,760.00	23.	•••	305
		042	UNK	<	.01	8,760.00	23.		305
		048	UNK	<	.01	8,760.00	23.		
	PVC	003	120	-	1.00	.08	23.	ne	305
				<	.01	.50		.08	236
				•	1.00	1.00	23.	.08	236
					1.00	4.00	23. 23.	.08 .08	236 236
Tannic Acid, >7	0%								
014015543	NATURAL RUBBER	001	UNK		10.00	4 00	25		
	NEOPRENE	002	UNK		7.00	1.00	25.		208
	NITRILE	005	UNK		56.00	1.00 1.00	25. 25.		208
1,1,1,2·Tetrach	l annath ann								
006302060	BUTYL	01/	446		400 00				
000302000	PV ALCOHOL	014	118		128.00	8.00	23.	.07	323
	PVC	102	100		-3.00	8.00	23.	.08	323
	VITON	007 009	100 118		83.00 2.00	8.00 8.00	23. 23.	.02 .03	323 323
						0.00	23.	.03	36.
1,1,2,2-Tetrach									
000793450	BUTYL	014	118		167.00	8.00	23.	.07	323
	PV ALCOHOL	004	100		.10	8.00	23.	.04	323
	PVC ·	007	100		247.00	8.00	23.	.02	323
	VITON	009	118		.80	8.00	23.	.03	323
	lene (Perchloroethy	lene)							
001271840	BUTYL	014	118		510.00	24.00	23.	.04	291
	NATURAL RUBBER	017	UNK		770.00	24.00	23.	.02	29
	NEOPRENE	018	100		360.00	24.00	23.	.04	291
	NITRILE	005	120		8.00	.08	23.	.06	236
					11.00	.50	23.	.06	236
					11.00		<i>r</i> 3.	. 1.85	

CASNO CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE F
001271840	NITRILE	005	120	22.00	4.00	23.	.06	236
		020	191	95.00	24.00	23.	.04	230 291
	PE	006	100	15.00	24.00	23.	.01	291
	PV ALCOHOL	102	100	-6.00	24.00	23.	.05	291
	TEFLON	036	214	< .01	24.00	23.	.01	291
	VITON	009	118	4.00	24.00	23.	.02	291
Tetraethylenepe	ntamine							
001125720	BUTYL	012	118	3.00	8.00	25.	.09	323
	NATURAL RUBBER	017	506	17.00	8.00	28.	.02	323
	NEOPRENE	018	100	11.00	8.00	27.	.05	323
	VITON	009	118	3.00	8.00	23.	.04	323
	methylenediamine							
001101890	BUTYL	012	118	156.00	8.00	20.	.07	323
		014	118	156.00	8.00	23.	.07	3 23
	NITRILE	019	100	37.00	8.00	23.	.05	323
				37.00	8.00	24.	.05	323
	PVC	003	100	3.00	8.00	23.	.02	323
	VITON	009	118	31.00	8.00	23.	.04	323
				31.00	8.00	24.	.04	323
oluene								
01088830	BUTYL	014	UNK	2.00	24.00	22.		201
	NATURAL RUBBER	001	UNK	-2.00	1.00	25.		208
		017	UNK	.04	24.00	22.		201
	NEOP/NAT RUBBER	008	UNK	04	24.00	22.		201
	NEOPRENE	002	UNK	-3.00	1.00	25.		208
		018	UNK	.50	24.00	22.		201
				5050	24.00	22.		201
	NITRILE	005	420	.80	24.00	22.		201
	MILKIFE	005	120	25.00	1.00	23.	.06	236
				33.00	.50	23.	.06	236
				17.00	.08	23.	.06	236
			IIII	27.00	4.00	23.	.06	236
		020	UNK	-1.00	1.00	25.		208
	PE	041	UNK	2.50	24.00	22.		201
	76	042	UNK	7.50	8,760.00	23.		305
		048	UNK	9.80 15.10	8,760.00	23.		305
	PV ALCOHOL	102	UNK	10.50	8,760.00	23.		305
	PVC	003	UNK	-29.00	24.00 24.00	22. 22.		201 201
oluene Diisocy	anate :							
264716250	NATURAL RUBBER	001	120	25.00	4.00	23.	.05	236
				15.00	1.00	23.	.05	236
				9.00	.50	23.	.05	236
				4.00	.08	23.	.05	236
	PVC	003	120	32.00	4.00	23.	.08	236
				26.00	1.00	23.	80.	236
				14.00	.50	23.	.08	236
				6.00	.08	23.	.08	236

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE F
•								_
Triallylamine	NEODDENE	010	400	74 00				
001027050	NEOPRENE	018	100	31.00	8.00	19.	.05	323
	NITRILE	019	100	4.00	8.00	22.	.04	323
	PVC VITON	007 009	100 118	-20.00 1.00	8.00 8.00	20. 17.	.02 .03	323 323
Trichloroscetal	dehyde (Chloral)							
000758760	BUTYL	014	118	105.00	8.00	23.	.07	323
000.00.00	PV ALCOHOL	102	100	30	8.00	23.	.08	323
	PVC	007	100	125.00	8.00	23.	.02	
	VITON	009	118	19.00	8.00	23.	.03	323 323
1,1,2-Trichloro	ethane							
000790050	BUTYL	014	118	80.00	8.00	23.	.09	3 23
		~· ~	UNK	8 0.00	24.00	23. 23.	.09	326
				80.00	168.00	23. 23.		
		064	UNK	49.00	168.00	23. 23.		326 326
		•••	OHA	47.00 47.00	24.00	23. 23.		
	NATURAL RUBBER	001	UNK	-2.00				326
	WATORAL ROBBER	017	UNK	473.00	1.00	25.		208
		017	UNK		168.00	23.		326
	NEOPRENE	002	UNK	464.00	24.00	23.		326
	RECYKERE	018		-3.00	1.00	25.		208
		018	UNK	290.00	24.00	23.		326
	NITRILE	205	1 1111	291.00	168.00	23.		326
	MILKILE)05 010	UNK	-3.00	1.00	25.		208
		019	UNK	> 1,000.00	168.00	23.		326
	D F	0/2		> 1,000.00	24.00	23.		326
	PE	042	UNK	5.00	24.00	23.		326
		A7.		16.00	168.00	23.		326
		076	UNK	131.00	24.00	23.		326
				147.00	168.00	23.		326
	POLYURETHANE	050	UNK	79.00	168.00	23.		326
				58.00	24.00	23.		326
	PV ALCOHOL	102	100	-2.00	8.00	23.	.07	371
			UNK	.8 0	24.00	23.		326
				.90	168.00	23.		326
	PVC	003	118	238.00	8.00	23.	.02	3.
		077	UNK	227.00	24.00	23		12
				273.00	168.00	23.		3.
	TEFLON	036	UNK	.40	168.00	23		1
				.30	24.00	23		*
	VITON	009	118	3.00	8.00	23	(**	ŧ
	-		UNK	5.00	168.00	23		`
				4.00	24.00	21		1
	ne (Trichloroethene		445		.			
000790160	BUTYL	014	118	440.00	24.00	2.4	•	•
		034	UNK	148.00	168.00	27		
	NATURAL RUBBER	001	UNK	-3.00	1.00	.**		
		017	UNK	700.00	24 . 00	: `		
	NEOPRENE	002	UNK	∙3.00	1.00	.**		
		018	100	400.00	24 00	. •		

DOOTYPO160 MITRILE	CHEMICAL NAME/	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS	REF
NITRILE									
S1.00	000/90/00					-		04	
Section Sect		W11W166	00,	120					
Martin M									
MINE									
PE				UNK			_		
PE			020	503				.04	
PE			033	UNK				•••	
POLYTURETHAME		PE	006	100				.01	
POLYMETHAME 050 178				209	6.00				
PV ALCONOL		POLYURETHANE	050	178	115.00		22.		
102 100 -2.00 24.00 25. .05 291		PV ALCOHOL	035	UNK					
TEFLON			102	100	-2.00	24.00		.05	291
VITON		PVC	077	168	14.00	168.00	22.		078
1,2,3-Trichtoropropane 000961840 BUTYL 014 118 19.00 8.00 2306 323		TEFLON	036	214	< .01	24.00	23.	.01	291
1,2,3-Trichtoropropene 000961840		VITON	009	118	8.00	24.00	23.	.02	291
MITRILE			032	UNK	2.00	168.00	22.		078
MITRILE 019 100 182.00 8.00 23. .04 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 323 .05 .0	1,2,3-Trichlord	ppropane							
PV ALCOHOL 004 100 4.00 8.00 23. .03 323 .03 323 .03 323 .03 323 .03 323 .03 323 .03 323 .03 323 .03 323 .03 .	000961840	BUTYL	014	118	19.00	8.00	23.	.06	323
VITOM 009 118		NITRILE	019		182.00	8.00	23.	.04	323
Tricresyl Phosphate (Tritolyl Phosphate) 013307850 BUTL 012 118 1.00 8.00 23. 07 232 252 20 110N 009 118 2.00 8.00 23. 04 23. 23. 232 232 232 232 232 232 232 232			= -			8.00	23.	.03	323
013307850 BUTYL 012 118 1.00 8.00 23 .07 323 .07 323 .07 .		VITON	009	118	.50	8.00	23.	.03	323
PVC 003 100 .40 8.00 2302 323 VITON 009 118 2.00 8.00 2304 323 7.00 3									
VITON 009 118 2.00 8.00 25 .04 323	013307850							.07	323
Triethylamine 001214480									
D01214480 MEOPRENE D18 100 70.00 8.00 2005 323 NITRILE D19 D18 D19		VITON	009	118	2.00	8.00	23.	.04	323
NITRILE 019 118 6.20 8.00 19. 0.4 323 PVC 007 100 -28.00 8.00 20. 0.2 323 VITON 009 118 2.00 8.00 24. 0.3 323 Triethylenetetramine	•								
PVC 007 100 -28.00 8.00 2002 323 VITON 009 118 2.00 8.00 2403 323 Triethylenetetraumine 001122430	001214480								
VITON 009 118 2.00 8.00 2403 323 Triethylenetetramine 001122430 BUTYL 014 118 3.00 8.00 2006 323									
Triethylenetetramine 001122430									
D01122430 BUTYL		ATTON	009	118	2.00	8.00	24.	.03	323
NEOPRENE 018 100 6.00 8.00 19. .05 323 1171LE 019 100 23.00 8.00 16. .04 323 171 171 171 172 173 174 175									
NITRILE 019 100 23.00 8.00 1604 323 VITON 009 118 6.00 8.00 2003 323 Tri-n-propylamine 001026920 NEOPRENE 018 100 15.00 8.00 2305 323 NITRILE 019 100 .70 8.00 2304 323 PV ALCOHOL 102 100 14.00 8.00 2306 323 VITON 009 118 1.00 8.00 2304 323 Turpentine 080066420 NEOPRENE 010 120 1.00 .08 2306 236 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.	001122430								
Tri-n-propylamine 001026920 NEOPRENE 018 100 15.00 8.00 2305 323 NITRILE 019 100 .70 8.00 2304 323 PV ALCOHOL 102 100 .14.00 8.00 2306 323 VITON 009 118 .1.00 8.00 2304 323 Turpentine 080066420 NEOPRENE 010 120 1.00 .08 2306 236 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.									
Tri-n-propylamine 001026920									
001026920 NEOPRENE 018 100 15.00 8.00 2305 323 NITRILE 019 100 .70 8.00 2304 323 PV ALCOHOL 102 100 .14.00 8.00 2306 323 VITON 009 118 .1.00 8.00 2304 323 .05 325 .05 325		VITON	009	118	6.00	8.00	20.	.03	323
NITRILE 019 100 .70 8.00 2304 323 PV ALCOHOL 102 100 -14.00 8.00 2306 323 VITON 009 118 -1.00 8.00 2304 323 Turpentine 080066420 NEOPRENE 010 120 1.00 .08 2306 236 3.00 .50 2306 236 4.00 1.00 2306 236 10.00 4.00 2306 236	• • •								
PV ALCOHOL 102 100 -14.00 8.00 2306 323 VITON 009 118 -1.00 8.00 2304 323 Turpentine 080066420 NEOPRENE 010 120 1.00 .08 2306 236 3.00 .50 2306 236 4.00 1.00 2306 236 10.00 4.00 2306 236	001026920								
VITON 009 118 -1.00 8.00 2304 323 Turpentine 080066420 MEOPRENE 010 120 1.00 .08 2306 236 3.00 .50 2306 236 4.00 1.00 2306 236 10.00 4.00 2306 236									
Turpentine 080066420 MEOPRENE 010 120 1.00 .08 2306 236 3.00 .50 2306 236 4.00 1.00 2306 236 10.00 4.00 2306 236									
080066420 NEOPRENE 010 120 1.00 .08 2306 236 3.00 .50 2306 236 4.00 1.00 2306 236 10.00 4.00 2306 236		VITON	009	118	-1.00	8.00	23.	.04	323
3.00 .50 23. .06 236 4.00 1.00 23. .06 236 10.00 4.00 23. .06 236	=								
4.00 1.00 2306 236 10.00 4.00 2306 236	050066420	NEOPRENE	010	120					
10.00 4.00 2306 236									
MITRILE 005 120 < .01 .08 2306 236			***						
		NITRILE	005	120	< .01	.08	23.	.06	236

Kennedo executado posiciones do presidente o presidente de la comercia de presidente de securidades de securidades de la considerada de securidades de la considerada de securidades de se

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT WEIGHT CHANGE	IMMERSION TIME NOURS	TEMP DEG C	THICKNESS CM	REF NUM
080066420	MITRILE	005	120	1.00	.50	23.	.06	236
				1.00	1.00	23.	.06	236
				1.00	4.00	23.	.06	236
	PE	041	UNK	7.20	8,760.00	23.		305
		042	UNK	9.10	8,760.00	23.		305
		048	UNK	14.50	8,760.00	23.		305
Valeronitrile								
001105980	BUTYL	014	118	.70	8.00	23.	.07	323
	NATURAL RUBBER	017	506	32.00	8.00	23.	.02	323
	NEOPRENE	018	100	58.00	8.00	23.	.05	323
	PV ALCOHOL	004	100	-4.00	8.00	23.	.07	323
4-Vinyl-1-cycle	ohexane							
001004030	BUTYL	012	118	102.00	8.00	23.	.07	323
	NITRILE	019	100	21.00	8.00	23.	.04	323
	PV ALCOHOL	004	100	-1.00	8.00	23.	.09	323
	VITON	009	118	.60	8.00	23.	.04	323
Xylene								
001332070	NITRILE	005	120	10.00	.08	23.	.06	236
				19.00	.50	23.	.06	236
				27.00	1.00	23.	.06	236
				35.00	4.00	23.	.06	236
		019	100	82.00	8.00	23.	.05	323
	PE	041	UNK	7.90	8,760.00	23.		305
		042	UNK	10.30	8,760.00	23.		305
		048	UNK	15.40	8,760.00	23.		305
	PV ALCOHOL	102	100	-4.00	8.00	23.	.09	323
	PVC	003	100	-7.00	8.00	23.	.02	323
	VITON	009	118	1.00	8.00	23.	.04	323
o-Xylene								
000954760	CPE	060	113	116.00	.60	23.	.05	204
				112.00	.60	23.	.05	204
				109.00	.73	23.	.05	204

APPENDIX C

SWELLING DATA

State de la companie de la companie

CASNO CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	SWELL (PERCENT VOLUME)	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF
								_
Benzene 000714320	BUTYL	014	UNK	124.00	24.00	27		727
000714320	BOTTE	064	UNK	82. 00	24.00 24.00	23. 23.		327 327
	NATURAL RUBBER	017	UNK	377.00	24.00	23.		327
			••••	383.00	24.00	23.		327
	NEOPRENE	018	UNK	284.00	24.00	23.		327
	WITRILE	019	UNK	182.00	24.00	23.		327
	NONWOVEN PE	071	UNK	166.00	24.00	23.		327
	PE	042	UNK	37.00	24.00	23.		327
		076	UNK	14.00	24.00	23.		327
	PVC	003	UNK	-18.00	24.00	23.		327
	SARANEX	061	UNK	71.00	24.00	23.		327
	TEFLON	036	UNK	6.40	24.00	23.		327
	VITON	009	UNK	18.00	24.00	23.		327
Dibutylamine								
001119220	NITRILE	019	100	28.00	8.00	24.	.04	323
	PV ALCOHOL	102	100	-26.00	8.00	23.	.08	323
	PVC	007	100	-26.00	8.00	20.	.02	323
	VITON	009	118	.40	8.00	20.	.03	323
Epichlorohydri								
001068980	BUTYL	014	118	.01	24.00	23.	.04	291
	NATURAL RUBBER	017	UNK	30.00	24.00	23.	.02	291
	NEOPRENE	018	100	120.00	24.00	23.	.04	291
	NITRILE	020	503	240.00	24.00	23.	.04	291
	PE	006 102	100	15.00	24.00	23.	.01	291
	PV ALCOHOL Teflon	036	100 214	-7.00	24.00	23.	.05	291
	VITON	009	118	< .01 35.00	24.00 24.00	23. 23.	.01 .02	291 291
Ethylene Dibro	mide (Dibromoethane	.1.2)						
001069340	BUTYL	014	118	30.00	24.00	23.	.04	291
	NATURAL RUBBER	017	UNK	240.00	24.00	23.	.02	291
	NEOPRENE	018	100	> 1,000.00	24.00	23.	.04	291
	NITRILE	020	503	230.00	24.00	23.	.04	291
	PE	006	100	35.00	24.00	23.	.01	291
	PV ALCOHOL	102	100	< .01	24.00	23.	.05	291
	TEFLON	036	214	. 01	24.00	23.	.01	291
	VITON	009	118	< .01	24.00	23.	.02	291
Ethylene Dichl	oride (Dichloroetha	ne,1,2)						
001070620	BUTYL	014	UNK	19.00	24.00	23.		326
				19.00	4.00	23.		326
				19.00	1.00	23.		326
		064	UNK	25.00	24.00	23.		326
				25.00	4.00	23.		326
				25.00	1.00	23.		326
	MATURAL RUBBER	017	UNK	118.00	1.00	23.		326
				124.00	24.00	23.		326
		.		118.00	4.00	23.		326
	NEOPRENE	018	UNK	141.00	4.00	23.		326

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	SWELL (PERCENT VOLUME)	IMMERSION TIME HOURS	TEMP 1	THICKNESS CM	REF NUM
001070620	NEOPRENE	018	UNK	142.00	24.00	23.		326
				123.00	1.00	23.		326
	NITRILE	019	UNK	275.00	4.00	23.		326
				286.00	24.00	23.		326
				259.00	1.00	23.		326
		020	UNK	252.00	1.00	23.		326
				254.00	24.00	23.		326
				252.00	4.00	23.		326
	PE	042	UNK	8.00	1.00	23.		326
				20.00	24.00	23.		326
				20.00	4.00	23.		326
		076	UNK	4.30	1.00	23.		326
				9.00	4.00	23.		326
				9.00	24.00	23.		326
	POLYURETHANE	050	UNK	< .01	24.00	23.		326
				1.50	4.00	23.		326
				.30	1.00	23.		326
	PV ALCOHOL	102	UNK	.30	1.00	23.		326
				1.50	4.00	23.		326
				1.00	24.00	23.		326
	PVC	077	UNK	> 1,000.00	1.00	23.		326
	TEFLON	036	UNK	< .01	24.00	23.		326
				< .01	1.00	23.		326
				< .01	4.00	23.		326
	VITON	009	UNK	9.00	4.00	23.		326
				< .01	1.00	23.		326
				11.00	24.00	23.		326
Methyl Chlorofo	rm (Trichloroethane	:,1,1,1)						
000715560	BUTYL	014	UNK	249.00	1.00	25.		326
				260.00	4.00	25.		326
				263.00	24.00	25.		326
		064	UNK	11.00	1.00	25.		326
				153.00	4.00	25.		326
				181.00	24.00	25.		326
	NATURAL RUBBER	017	UNK	334.00	1.00	25.		326
				429.00	4.00	25.		326
				425.00	24.00	25.		326
	NEOPRENE	018	UNK	213.00	1.00	25.		326
				239.00	4.00	25.		326
				246.00	24.00	25.		326
	NITRILE	019	UNK	182.00	1.00	25.		326
				208.00	4.00	25.		326
	•			214.00	24.00	25.		326
	PE	042	UNK	9.60	1.00	25.		326
				9.60	4.00	25.		326
				9.60	24.00	25.		326
		076	UNK	-5.00	1.00	25.		326
				13.30	4.00	25.		326
				12.30	24.00	25.		326
	POLYURETHANE	0 50	UNK	14.30	1.00	25.		326
				15.70	4.00	25.		326
				13.70	24.00	25.		326

1,1,2-Trichloroethane 000790050 BUTYL 014 UNK -1.00 24.00 23. 7.00 4.00 23. 7.00 4.00 23. 44.00 44.00 4.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 154.00 24.00 23. 154.00 24.00 23. NEOPRENE 018 UNK 158.00 100 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 155.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 23. 277.00 1.00 23. 23. 23. 270.00 24.00 23. 23. 270.00 24.00 23. 23. 23. 270.00 24.00 23. 23. 23. 270.00 24.00 23. 23. 23. 270.00 24.00 23. 23. 23. 270.00 24.00 23. 23. 23. 23. 24.00 23. 23. 23. 24.00 23. 23. 23. 24.00 23. 23. 23. 24.00 23. 23. 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23. 24.00 23.	CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	SWELL (PERCENT	VOLUME)	IMMERSION TIME HOURS	TEMP DEG C	TH1CKNESS CM	R
PVC	000715560	PV ALCOHOL	102	UNK		-01	1.00			3
PVC 077										3
PMC 077 UMK 4 .01 1.00 25.										3
TEFLON 036 UNK		PVC	077	UNK	<					3
TEFLON					<					3
TEFLON 036 UNK										3
VITON OO9		TEFLON	036	UNK	<					3
VITON 009 UNK					<					3
VITON 009 UNK < 0.01 1.00 25. 8.60 4.00 25. 20.50 24.00 25. POLYCHIOFINATE BIPMEN (PCBB) (Aroclor) 103363630 BUTYL 014 118 14.00 24.00 23. MATURAL RUBBER 017 UNK 200.00 24.00 23. PE 006 100 35.00 24.00 23. PE 006 100 35.00 24.00 23. POLYCHIOTOSETHYLENE 018 100 10.00 24.00 23. PE 006 100 35.00 24.00 23. PE 01271840 BUTYL 014 118 280.00 24.00 23. MATURAL RUBBER 017 UNK 530.00 24.00 23. MCOPRENE 018 100 320.00 24.00 23. MCOPRENE 018 100 320.00 24.00 23. MCOPRENE 018 100 320.00 24.00 23. MCOPRENE 018 100 35.00 24.00 23. MCOPRENE 018 100 320.00 24.00 23. MCOPRENE 018 100 320.00 24.00 23. MCOPRENE 018 100 35.00 24.00 23. MCOPRENE 018 100 35.00 24.00 23. MCOPRENE 018 100 35.00 24.00 23. MCOPPENE 006 100 85.00 24.00 23. MCOPPENE 006 100 12.00 24.00 23. MCOPPENE 006 100 100 24.00 23. MCOPPENE 006 100 100 24.00 23. MCOPPENE 018 UNK 11.00 24.00 23. MCOPPENE 018 UNK 11.00 24.00 23. MATURAL RUBBER 017 UNK 146.00 1.00 23. MATURAL RUBBER 017 UNK 146.00 1.00 23. MCOPPENE 018 UNK 158.00 24.00 23. MCOPPENE 018 UNK 158.00 1.00 23. MCOPPENE 018 UNK 158.00 24.00 23. MCOPPENE 018 UNK 158.00 1.00 23. MCOPPENE 018 UNK 158.00 24.00 23. MCOPPENE 018 UNK 158.00 1.00 24.00 23. MCOPPEN					<					3
B.60 4.00 25.		VITON	009	UNK	<					3
20.50 24.00 25.										3
NATURAL RUBBER 017						20.50				3
MATURAL RUBBER 017 UNK 200.00 24.00 23. MEOPRENE 018 100 10.00 24.00 23. PE 006 100 35.00 24.00 23. PV ALCOHOL 102 100 4.00 24.00 23. ***etrachloroethylene** (Perchloroethylene**) 01271840 BUTYL 014 118 280.00 24.00 2302 ***MEOPRENE 018 100 320.00 24.00 2302 ***MEOPRENE 018 100 320.00 24.00 2302 ***MEOPRENE 018 100 320.00 24.00 2304 ***MITRILE 020 191 66.00 24.00 2304 ***PF 006 100 85.00 24.00 2305 ***PF 006 100 85.00 24.00 2305 ***TICKLONOL 102 100 -12.00 24.00 2305 ***TICKLONOL 102 100 24.00 24.00 2305 ***TICKLONOL 102 100 24.00 2505 ***TICKLONOL 102 100 24.00 2600 2305 ***TICKLONOL 102 100 24.00 2700 24.00 2800 2900 2		l Biphenyls (PCBs) ((Aroclor)							
MATURAL RUBBER 017 UNK 200.00 24.00 23. MEOPRENE 018 100 10.00 24.00 23. PE 006 100 35.00 24.00 23. PV ALCOHOL 102 100 4.00 24.00 23. etrachloroethylene (Perchloroethylene) 01271840 BUTYL 014 118 280.00 24.00 2304 MEOPRENE 018 100 320.00 24.00 2304 MEOPRENE 018 100 320.00 24.00 2304 MITRILE 020 191 66.00 24.00 2304 PE 006 100 85.00 24.00 2305 PE 006 100 85.00 24.00 2305 TEFLON 036 214 < .01 24.00 2305 TEFLON 036 214 < .01 24.00 2305 TEFLON 036 214 < .01 24.00 2302 ALZ-Trichloroethane 00790050 BUTYL 014 UNK 1.00 24.00 2302 ALZ-Trichloroethane 00790050 BUTYL 014 UNK 1.00 24.00 23. MATURAL RUBBER 017 UNK 146.00 1.00 23. MEOPRENE 018 UNK 156.00 1.00 23. MEOPRENE 018 UNK 156.00 1.00 23. MITRILE 019 UNK 156.00 1.00 23. MITRILE 019 UNK 355.00 24.00 23. PE 042 UNK 156.00 24.00 23. PE 042 UNK 16.00 4.00 23.	13363630		014	118		14.00	24.00	23.		2
MEOPRENE 018 100 10.00 24.00 23.		NATURAL RUBBER	017	UNK						2
PE 006 100 35.00 24.00 23. PV ALCOHOL 102 100 4.00 24.00 23. **etrachloroethylene** (Perchloroethylene**) **D01271840 BUTYL 014 118 280.00 24.00 2500 **MATURAL RUBBER 017 UNK 530.00 24.00 2302 **MEOPRENE 018 100 320.00 24.00 2304 **PE 006 100 \$20.00 24.00 2304 **PP 006 100 \$5.00 24.00 2301 **PV ALCOHOL 102 100 -12.00 24.00 2301 **PV ALCOHOL 102 100 -12.00 24.00 2301 **PV ALCOHOL 102 100 -12.00 24.00 2301 **TEFLON 036 214 < .01 24.00 2301 **VITON 009 118 < .01 24.00 2302 **OFFICIAL OF THE OFFICE OF THE		NEOPRENE	018	100			-			2
PV ALCOHOL 102 100 4.00 24.00 23. **etrachloroethylene** (Perchloroethylene**) **D1271840** BUTYL 014 118 280.00 24.00 2304 **MATURAL RUBBER 017 UNK 530.00 24.00 2302 **MEOPRENE 018 100 320.00 24.00 2304 **MITRILE 020 191 60.00 24.00 2304 **PE 006 100 85.00 24.00 2301 **PV ALCOHOL 102 100 -12.00 24.00 2301 **VITON 009 118 < .01 24.00 2302 **J.2-Trichloroethane **O0790050** BUTYL 014 UNK -1.00 24.00 23. **PO 4.00 2302 **J.2-Trichloroethane **O0790050** BUTYL 014 UNK -1.00 24.00 23. **A4.00 4.00 23. **MATURAL RUBBER 017 UNK 146.00 1.00 23. **MATURAL RUBBER 018 UNK 158.00 1.00 23. **MEOPRENE 018 UNK 158.00 1.00 23. **MEOPRENE 019 UNK 355.00 24.00 23. **MITRILE 019 UNK 355.00 24.00 23. **PE 042 UNK -16.00 4.00 23. **PE 043 UNK -16.00 4.00 23. **PE 044 UNK -16.00 23. **PE 042 UNK -16.00 4.00 23. **PE 042 UNK -16.00 4.00 23. **PE 043 UNK -16.00 4.00 23. **PE 044 UNK -16.00 23. **PE 045 UNK -16.00 4.00 23. **PE 046 UNK -16.00 23. **PE 047 UNK -16.00 4.00 23. **PE 048 UNK -16.00 23. **PE 049 UNK -16.00 24.00 23. **PE 040 23. **PE 041 UNK -16.00 4.00 23. **PE 042 UNK -16.00 24.00 23. **PE 044.00 UNK -16.00 24.00 23. **PE 045 UNK -16.00 24.00 23. **PE 046.00 24.00 23. **PE 047 UNK -16.00 24.00 23. **PE 047 UNK -16.00 24.00 23. **PE 048 UNK -16.00 24.00 23. **PE 049 UNK -16.00 24.00 23. *		PE	006							2
DI271840 BUTYL		PV ALCOHOL	102					_		;
MATURAL RUBBER 017 UMK 530.00 24.00 23. 0.04 MITRILE 020 191 60.00 24.00 23. 0.04 PE 006 100 85.00 24.00 23. 0.01 PV ALCOHOL 102 100 -12.00 24.00 23. 0.01 TEFLOM 036 214 < 0.01 24.00 23. 0.01 VITON 009 118 < 0.01 24.00 23. 0.02 1,2-Trichloroethane 00790050 BUTYL 014 UMK -1.00 24.00 23. 064 UMK 44.00 24.00 23. NATURAL RUBBER 017 UMK 146.00 1.00 23. NATURAL RUBBER 018 UMK 158.00 1.00 23. NEOPRENE 018 UMK 158.00 24.00 23. NEOPRENE 018 UMK 158.00 24.00 23. NITRILE 019 UMK 355.00 24.00 23. NITRILE 019 UMK 355.00 24.00 23. PE 042 UMK -16.00 4.00 23. PE 043 UMK -16.00 4.00 23. PE 044 UMK -16.00 4.00 23. PE 042 UMK -16.00 4.00 23. PE 042 UMK -16.00 4.00 23. PE 043 UMK -16.00 4.00 23. PE 044 UMK -16.00 4.00 23.	etrachloroethy	lene (Perchloroethy	(lene)							
MATURAL RUBBER 017 UNK 530.00 24.00 23. 02 MEOPRENE 018 100 320.00 24.00 23. 0.4 MITRILE 020 191 60.00 24.00 23. 0.4 PE 006 100 85.00 24.00 23. 0.5 PV ALCOHOL 102 100 -12.00 24.00 23. 0.5 TEFLON 036 214 < .01 24.00 23. 0.5 TEFLON 009 118 < .01 24.00 23. 0.0 PV ALCOHOL 009 118 < .01 24.00 23. 0.0 ALCOHOL 009 118 < .01 24.00 23. 0.0 ALCOHOL 009 118 < .01 24.00 23. 0.0 ALCOHOL 009 118	01271840	BUTYL	014	118		280.00	24.00	23	04	ž
MEOPRENE 018 100 320.00 24.00 23. 0.04 MITRILE 020 191 60.00 24.00 23. 0.04 PE 006 100 85.00 24.00 23. 0.05 PPE 006 100 102 100 12.00 24.00 23. 0.05 TEFLON 036 214 0.01 24.00 23. 0.05 TEFLON 036 214 0.01 24.00 23. 0.05 VITON 009 118 0.01 24.00 23. 0.05 0.02 0.0790050 BUTYL 014 UNK 1.00 24.00 23. 0.05 0.09 0.0790050 BUTYL 014 UNK 1.00 24.00 23. 0.05 0.09 0.09 0.00 23. 0.00 0.00 23. 0.00 0.00 23. 0.00 0.00		NATURAL RUBBER	017	UNK						2
MITRILE 020 191 60.00 24.00 23. 0.04 PE 006 100 85.00 24.00 23. 0.01 PV ALCOHOL 102 100 -12.00 24.00 23. 0.5 TEFLON 036 214 < .01 24.00 2305 VITON 009 118 < .01 24.00 2302 7.7.2-Trichloroethane 20799050 BUTYL 014 UNK -1.00 24.00 23. 064 UNK 44.00 24.00 23. MATURAL RUBBER 017 UNK 146.00 1.00 23. 154.00 24.00 23. MEOPRENE 018 UNK 158.00 1.00 23. MITRILE 019 UNK 158.00 1.00 23. MITRILE 019 UNK 355.00 24.00 23. MITRILE 019 UNK 355.00 24.00 23. PE 042 UNK -16.00 4.00 23. PE 042 UNK -16.00 4.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23.		NEOPRENE	018	100						
PE 006 100 85.00 24.00 2301 PV ALCOHOL 102 100 -12.00 24.00 2305 TEFLON 036 214 < .01 24.00 2305 VITON 009 118 < .01 24.00 2302 1,2-Trichloroethane DOTPO050 BUTYL 014 UNK -1.00 24.00 23. 064 UNK 44.00 24.00 23. 44.00 4.00 23. MATURAL RUBBER 017 UNK 146.00 1.00 23. MEOPRENE 018 UNK 158.00 1.00 23. MEOPRENE 018 UNK 158.00 1.00 23. NITRILE 019 UNK 355.00 24.00 23. NITRILE 019 UNK 355.00 24.00 23. PE 042 UNK 16.00 1.00 23. 2777.00 1.00 23.		NITRILE	020	191						2
PV ALCONOL 102 100 -12.00 24.00 2305 TEFLON 036 214 < .01 24.00 2301 VITON 009 118 < .01 24.00 2302 1,2-Trichloroethane 00790050 BUTYL 014 UNK -1.00 24.00 23. 064 UNK -1.00 24.00 23. 064 UNK 44.00 24.00 23. 42.00 1.00 23. NATURAL RUBBER 017 UNK 146.00 1.00 23. NEOPRENE 018 UNK 158.00 1.00 23. NEOPRENE 019 UNK 355.00 24.00 23. NITRILE 019 UNK 355.00 24.00 23. PE 042 UNK 355.00 24.00 23. PE 042 UNK -16.00 4.00 23. PE 042 UNK -16.00 4.00 23. PE 042 UNK -16.00 4.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23.		PE	006							7
TEFLON 036 214		PV ALCOHOL	102	100						2
VITON 009 118 < .01 24.00 2302 .1,2-Trichloroethane 00790050 BUTYL 014 UMK -1.00 24.00 23. .064 UMK 44.00 24.00 23. .064 UMK 44.00 24.00 23. .064 UMK 44.00 1.00 23. .064 UMK 146.00 1.00 23. .065 400 23. .066 UMK 146.00 1.00 23. .066 UMK 146.00 1.00 23. .066 UMK 146.00 1.00 23. .066 UMK 158.00 24.00 23. .066 UMK 158.00 24.00 23. .066 UMK 158.00 24.00 23. .066 UMK 355.00 24.00 23. .066 UMK 158.00 24.00 23. .077.00 1.00 23. .077.00 1.00 23. .077.00 1.00 23. .078 UMK 11.00 24.00 23. .079 UMK 11.00 24.00 23. .079 UMK 11.00 24.00 23. .079 UMK 11.00 24.00 23.		TEFLON	036	214	<					2
DOTPOOSO BUTYL 014 UMK -1.00 24.00 23. 10.00 1.00 23. 7.00 4.00 23. 7.00 4.00 23. 7.00 4.00 23. 44.00 24.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 42.00 24.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 23. 42.00 24.00 23. 42.00 23. 42.00 23. 42.00 24.00 23. 42.00 23.		VITON	009	118	<				.02	2
10.00 1.00 23. 7.00 4.00 23. 7.00 4.00 23. 44.00 24.00 23. 44.00 4.00 23. 44.00 1.00 23. 42.00 1.00 23. 42.00 1.00 23. 154.00 24.00 23. 154.00 24.00 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 158.00 1.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 277.00 1.00 23.	,1,2-Trichloro	ethane								
10.00	00790050	BUTYL	014	UNK		-1.00	24.00	23		3
NATURAL RUBBER 017							_			3
064 UNK 44.00 24.00 23. 44.00 4.00 23. 42.00 1.00 23. 42.00 1.00 23. 154.00 24.00 23. 154.00 24.00 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 158.00 1.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 277.00 24.00 23. 270.00 24.00 23.										3
HATURAL RUBBER 017 UNK 146.00 1.00 23. NATURAL RUBBER 017 UNK 146.00 1.00 23. 154.00 24.00 23. 154.00 4.00 23. 154.00 4.00 23. NEOPRENE 018 UNK 158.00 1.00 23. 140.00 4.00 23. 158.00 24.00 23. NITRILE 019 UNK 355.00 24.00 23. 277.00 1.00 23. PE 042 UNK 16.00 4.00 23. PE 042 UNK 16.00 4.00 23. 076 UNK 1.00 24.00 23. 076 UNK 1.00 24.00 23.			064	UNK						_
MATURAL RUBBER 017 UNK 146.00 1.00 23. 154.00 24.00 23. 154.00 4.00 23. 154.00 4.00 23. 158.00 1.00 23. 140.00 4.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23.										3
NATURAL RUBBER 017 UNK 146.00 1.00 23. 154.00 24.00 23. 154.00 4.00 23. 154.00 1.00 23. 158.00 1.00 23. 140.00 4.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. PE 042 UNK -16.00 4.00 23. -23.00 1.00 23. -20.00 24.00 23. -20.00 24.00 23. -20.00 24.00 23. -20.00 24.00 23. -20.00 24.00 23.										3
154.00 24.00 23. 154.00 4.00 23. 154.00 4.00 23. 154.00 4.00 23. 158.00 1.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 158.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00 1.00 23. 277.00		NATURAL RUBBER	017	UNK						3
NEOPREME 018 UNK 158.00 4.00 23. 158.00 1.00 23. 140.00 4.00 23. 158.00 24.00 23. NITRILE 019 UNK 355.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. PE 042 UNK -16.00 4.00 23. -23.00 1.00 23. -20.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.				•						3
MEOPRENE 018 UNK 158.00 1.00 23. 140.00 4.00 23. 158.00 24.00 23. NITRILE 019 UNK 355.00 24.00 23. 277.00 1.00 23. 277.00 1.00 23. PE 042 UNK -16.00 4.00 23. -23.00 1.00 23. -20.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.										3
HITRILE 019 UNK 355.00 24.00 23. PE 042 UNK -16.00 4.00 23. -23.00 1.00 23. -23.00 1.00 23. -20.00 24.00 23. -20.00 24.00 23. -20.00 24.00 23. -20.00 24.00 23. -20.00 24.00 23.		NEOPRENE	018	UNK						3
NITRILE 019 UNK 355.00 24.00 23. 339.00 4.00 23. 277.00 1.00 23. PE 042 UNK -16.00 4.00 2323.00 1.00 2320.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.		•		••						3
NITRILE 019 UNK 355.00 24.00 23. 339.00 4.00 23. 277.00 1.00 23. PE 042 UNK -16.00 4.00 23. -23.00 1.00 23. -20.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.										3
PE 042 UNK -16.00 24.00 23. -277.00 1.00 23. -23.00 1.00 23. -20.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.		NITRILE	019	LIMK						3
277.00 1.00 23. PE 042 UNK -16.00 4.00 2323.00 1.00 2320.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.		- -								3
PE 042 UNK -16.00 4.00 2323.00 1.00 2320.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.										3
-23.00 1.00 23. -20.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.		PE	04.2	IMY						3
-20.00 24.00 23. 076 UNK -1.00 24.00 23. 4.00 4.00 23.		- -	W-E	OH K						3
076 UNK -1.00 24.00 23. 4.00 4.00 23.										3
4.00 4.00 23.			074							3
			0/0	UNK						3
										3
14.00 1.00 23. POLYURETHANE 050 UNK -5.00 4.00 23.		BOI VIESTUANS	•							3

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	SWELL	(PERCEN	it vo lume)	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE F
000790050	POLYURETHANE	050	UNK			-5.00	1.00	23.		326
						-5.00	24.00	23.		326
	PV ALCOHOL	102	UNK			5.00	24.00	23.		326
						5.00	4.00	23.		326
					<	.01	1.00	23.		326
	PVC	077	UNK		> 1	,000.00	1.00	23.		326
	TEFLON	036	UNK		<	.01	1.00	23.		326
					<	.01	4.00	23.		326
					<	.01	24.00	23.		326
	VITON	009	UNK			16.00	4.00	23.		326
						16.00	1.00	23.		326
						19.00	24.00	23.		326
Trichloroethyle	ne (Trichloroethene	:)								
000790160	BUTYL	014	118			320.00	24.00	23.	.04	291
	NATURAL RUBBER	017	UNK			580.00	24.00	23.	.02	291
	NEOPRENE	018	100			410.00	24.00	23.	.04	291
	NITRILE	020	503			220.00	24.00	23.	.04	291
	PE	006	100			70.00	24.00	23.	.01	291
	PV ALCOHOL	102	100			-10.00	24.00	23.	.05	291
	TEFLON	036	214		<	.01	24.00	23.	.01	291
	VITON	009	118			20.00	24.00	23.	.02	291

APPENDIX D DIFFUSION COEFFICIENTS

SUMMARY OF PERFORMANCE DETAIL TESTS DIFFUSION COEFFICIENTS

PVC 007 129 7.00 7.00 37. 7.00 7.00 22. 7.00 7.00 7.00 22. 7.00 7.00 7.00 22. 7.00		THICKNE	TEMP DEG C	CM**2/SEC b	COEFFICIENT	DIFFU	VENDOR	PRODUCT DESC CODE	RESISTANT MATERIAL	CASNO
Marth										
Deliano	178		40.	-11.00	1.30		UNK	124	PV ACETATE	
Benzene										Allyl Chloride
DOD714320 BUTYL	178		40.	-11.00	1.30		UNK	124	PV ACETATE	001070510
EVA 064 UNIX 5.30 -7.00 23. EVA 074 UNIX 1.90 -6.00 23. NATURAL RUBBER 017 UNIX 1.55 -6.00 23.										Benzene
EVA 074 UNIK 1.90 -6.00 23. MATURAL RUBBER 017 UNIK 1.45 -6.00 23.	327		23.	-8.00	4.33		UNK	014	BUTYL	000714320
MATURAL RUBBER 017	327		23.	-7.00	5.30		UNK	064		
1.60	327		23.	-6.00	1.90		UNK	074	EVA	
NEOPREME 018	327		23.	-6.00	1.45		UNK	017	NATURAL RUBBER	
MEOPREME 018	327		23.	-5.00	1.60					
NITRILE	225		25.	-7.00	1.50		UNK			
NOMADOVEN PE	327		23.	-7.00	5.70			018		
PE	327		23.		3.50		UNK			
048	327		23.		1.13		UNK			
Description	327		23.	-9.00	8.33				PE	
PV ACETATE 124	253		0.	-9.00	1.90					
PV ALCOHOL 004	327		23.		8.80					
PVC	178		40.	-13.00						
SARANEX O61	327		23.							
TEFLON 036 UNK 6.77 -9.00 23. VITON 009 UNK 6.00 -8.00 23. Butyl Cellosolve (Butoxyethanol, 2) 001117620 NITRILE 019 100 3.45 -7.00 37. PVC 007 129 7.00 -7.00 22. Carbon Tetrachloride (Tetrachloromethane) D00562350 PV ACETATE 124 UNK 3.00 -16.00 40. Chlorobenzene 001089070 NEOPRENE 02 UNK 6.61 -5.00 23. PVC 007 UNK 7.36 -5.00 23. Dimethyl Sulfoxide 000676850 NEOPRENE 002 UNK 6.60 -4.00 23. Ethane 000748400 PE 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. NATURAL RUBBER 017 UNK 5.83 -8.00 23.	327									
NITON NOP	323			-8.00						
Butyl Cellosolve (Butoxyethanol, 2) 001117620 N1TRILE 019 100 3.45 -7.00 37.	32			-9.00	6.77					
001117620 NITRILE 019 100 3.45 -7.00 37. 2.57 -7.00 37. 2.57 -7.00 37. 2.57 -7.00 37. 2.57 -7.00 37. 2.57 -7.00 22. Carbon Tetrachloride (Tetrachloromethane)	32		23.	-8.00	6.00		UNK	009	VITON	
PVC 007 129 7.00 7.00 37.									(Butoxyethanol, 2)	Butyl Cellosolve
PVC 007 129 7.00 -7.00 22. Carbon Tetrachloride (Tetrachloromethane) D00562350 PV ACETATE 124 UNK 3.00 -16.00 40. Chlorobenzene 001089070 NEOPRENE 002 UNK 6.61 -5.00 23. PVC 007 UNK 7.36 -5.00 23. Dimethyl Sulfoxide 000676850 NEOPRENE 002 UNK 6.60 -4.00 23. Ethane 000748400 PE 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. MATURAL RUBBER 017 UNK 7.50 -7.00 23.	.06 10						100	019	NITRILE	001117620
Carbon Tetrachloride (Tetrachloromethane) D00562350 PV ACETATE 124 UNK 3.00 -16.00 40. Chlorobenzene 001089070 NEOPRENE 002 UNK 6.61 -5.00 23. PVC 007 UNK 7.36 -5.00 23. Dimethyl Sulfoxide 000676850 NEOPRENE 002 UNK 6.60 -4.00 23. Ethane 000748400 PE - 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. EACH O64 UNK 5.83 -8.00 23. MATURAL RUBBER 017 UNK 7.50 -7.00 23.	.06 101 121						129	007	PVC	
D00562350 PV ACETATE 124 UNIK 3.00 -16.00 40.	16.									
Chlorobenzene 001089070 NEOPRENE 002 UNK 6.61 -5.00 23. PVC 007 UNK 7.36 -5.00 23. Dimethyl Sulfoxide 000676850 NEOPRENE 002 UNK 6.60 -4.00 23. Ethane 000748400 PE - 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. EACH ONLY ONLY ONLY ONLY ONLY ONLY ONLY ONLY			40	14 00	7.00		IMIY	•		
001089070 NEOPRENE 002 UNK 6.61 -5.00 23. Dimethyl Sulfoxid= 002 UNK 6.60 -4.00 23. Ethane 000748400 PE - 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 014 UNK 6.23 -8.00 23. Ethylene Dichloride (Dichloroethane,1,2) 014 UNK 5.83 -8.00 23. MATURAL RUBBER 017 UNK 7.50 -7.00 23.	17		40.	- 16.00	3.00		UNK	124	PV ACEINIE	000,023,0
PVC 007 UNK 7.36 -5.00 23. Dimethyl Sulfoxide 000676850 NEOPRENE 002 UNK 6.60 -4.00 23. Ethane 000748400 PE - 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.										
### Dimethyl Sulfoxide ### 000676850 NEOPRENE 002 UNK 6.60 -4.00 23. #### 23. #### Ethane ### 000748400 PE	186									001089070
000676850 NEOPRENE 002 UMK 6.60 -4.00 23. Ethane 000748400 PE 048 UMK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UMK 6.23 -8.00 23. 064 UMK 5.83 -8.00 23. MATURAL RUBBER 017 UMK 7.50 -7.00 23.	186		23.	-5.00	7.36		UNK	007	PVC	
Ethane 000748400 PE - 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. 064 UNK 5.83 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.									ide	Dimethyl Sulfox
000748400 PE 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. 064 UNK 5.83 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.	180		23.	-4.00	6.60		UNK	002	NEOPRENE	000676850
000748400 PE 048 UNK 8.15 -8.00 25. Ethylene Dichloride (Dichloroethane,1,2) 001070620 BUTYL 014 UNK 6.23 -8.00 23. 064 UNK 5.83 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.										Ethane
001070620 BUTYL 014 UNK 6.23 -8.00 23. 064 UNK 5.83 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.	193		25.	-8.00	8.15		UNK	048	PË -	
001070620 BUTYL 014 UNK 6.23 -8.00 23. 064 UNK 5.83 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.								1 2	ide (Dichlessette	Ethulana Bishi
064 UNK 5.83 -8.00 23. NATURAL RUBBER 017 UNK 7.50 -7.00 23.	==		^-	. 9. 00	4 97) Mar-	· •		
MATURAL RUBBER 017 UNK 7.50 -7.00 23.	320								9011L	
	320								MATIBAL PLIDDED	
	320							01 <i>7</i> 018	NEOPRENE	
	320									
NITRILE 019 UNK 4.50 -7.00 23. 020 UNK 1.00 -6.00 23.	320								MILLIPE	
PE 042 UNK 3.33 -8.00 23.	320 320								DE	

SUMMARY OF PERFORMANCE DETAIL TESTS DIFFUSION COEFFICIENTS

CHEMICAL NAME/	RESISTANT	PRODUCT	VENDOR	DIFFUSION C	DEFFICIENT		TEMP THIC	KNESS
CASNO	MATERIAL	DESC CODE		•		ь	DEG C	CM
01070620	PV ALCOHOL	102	UNK		1.83	-7.00	23.	
	TEFLON	036	UNK	<	5.00	-8.00	23.	
		044	UNK		8.33	-10.00	23.	
	VITON	009	UNK	<	8.33	-11.00	23.	
lexane								
001105430	NEOPRENE	002	UNK		1.35	-5.00	23.	
	PE	041	UNK		7.50	-11.00	0.	
		042	UNK		1.50	-10.00	0.	
		048	UNK		1.20	-9.00	0.	
					2.50	-8.00	30.	
	PVC	007	UNK		3.68	-5.00	23.	
sobutylene (Is	obutene)							
01151170	PE	048	UNK		4.70	-8.00	30.	
					3.10	-9.00	0.	
					1.25	-9.00	-8.	
sopropylamine								
00753100	PV ACETATE	124	UNK		1.70	-12.00	40.	
ethane								
00748280	PE	048	UNK		1.96	-7.00	25.	
ethanol (Methy	l Alcohol)							
00675610	PV ACETATE	124	UNK		1.40	-9.00	40.	
	PVC	007	UNK		1.51	-5.00	23.	
ethyl Bromide	(Bromomethane)							
00748390	PE	041	UNK		1.40	-9.00	0.	
		042	UNK		2.90	-8.00	0.	
		048	UNK	7.30 -	10.00	-9.00	0.	
					8.30	-8.00	30.	
ethyl Chiarofo	rm (Trichloroethane	,1,1,1)						
00715560	BUTYL	014	UNK		1.45	-7.00	25.	
		064	UNK		1.67	-7.00	25.	
	NATURAL RUBBER	017	UNK		2.78	-7.00	25.	
	NEOPRENE	018	UNK		2.08	-7.00	25.	
	NITRILE	019	UNK		3.67	-8.00	25.	
	PE	042	UNK		2.33	-8.00	25.	
		076	UNK		3.83	-8.00	25.	
	POLYURETHANE	050	UNK		1.38	-7.00	25.	
	PVC .	077	UNK		6.33	-7.00	25.	
	VITON	009	UNK	<	1.17	-9.00	25.	
ropene								
00749860	PE	048	UNK		2.00	-8.00	25.	
ropyl Alcohol ((Propenol)							
00712380	PV ACETATE	124	UNK		1.10	-12.00	40.	

n-Propylamine

PRODUCTOR OF THE PRODUCTOR OF THE PRODUCTOR OF THE

SUMMARY OF PERFORMANCE DETAIL TESTS DIFFUSION COEFFICIENTS

CASHO CASHO	/ RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	DIFFUSION COEFFICIENT			ICKNESS	RE
				•	b	DEG C	СМ	NU
001071080	PV ACETATE	124	UNK	5.10	-12.00	40.		17
	de (Chloropropane, 1))						
005405450	PV ACETATE	124	UNK	1.30	-12.00	40.		17
Toluene								
001088830	BUTYL	014	118	3.67	-7.00	2 2.		12
			216	1.02	-6.00	37.		12
	NEOPRENE	002	UNK	5.56	-5.00	23.		18
		018	509	6.17	-7.00	22.		12
	NITRILE	019	100	3.45	-7.00	37.	.06	12
				2.57	-7.00	37.	.06	12
				1.50	-7.00	22.		12
				2.95	-7.00	37.	.04	12
			118	1.17	-7.00	22.	•••	12
				4.15	-7.00	37.		12
				1.67	-7.00	22.		12
			509	2.67	-7.00	22.		12
		020	216	3.50	-7.00	22.		12
				6.95	-7.00	37.		12
				5.17	-7.00	22.		12
	PVC	003	215	5.50	-7.00	22.		12
		007	129	3.33	-7.00	22.		12
				3.27	-7.00	37.		12
			UNK	8.10	-5.00	23.		18
	VITON	009	118	2.33	-8.00	37.		12
	VITON/NEOPRENE	022	216	3.33	-8.00	22.		12
				5.17	-8.00	37.		12
1,1,2·Trichlor	oethane							
000790050	BUTYL	014	UNK	1.67	-7.00	23.		32
		064	UNK	8.33	-8.00	23.		32
	NATURAL RUBBER	017	UNK	1.47	-6.00	23.		32
	NEOPRENE	018	UNK	1.35	-6.00	23.		32
	NITRILE	019	UNK	5.50	-7.00	23.		32
	PE	042	UNK	2.00	-8.00	23.		32
	POLYURETHANE	050	UNK	> 2.83	-7.00	23.		32
	PV ALCOHOL	102	UNK	2.67	-7.00	23.		32
	TEFLON	036	UNK	< 4.83	-11.00	23.		32
		044	UNK	4.00	-10.00	23.		32
	VITON	009	UNK	< 1.20	-9.00	23.		32
richloroethyl	ene (Trichloroethene)						
000790160	NEOPRENE	002	UNK	5.03	-5.00	23.		186
	PVC	007	UNK	1.45	-6.00	23.		186

APPROXIMATION OF THE PROPERTY OF THE PROPERTY

APPENDIX E

TENSILE DATA

SUMMARY OF PERFORMANCE DETAIL TESTS IMMERSION TENSILE STRENGTH CHANGE TEST

CASNO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT	TENSILE CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	RE
1 1 - Dimathyl hyd	razine (Dimethylh								_
000571470	BUTYL	901 az irie, urisyiii 064	113	<	.01	.08	27		73
000371470	60.72	085	211	•	-13.64		23.		32
	CHLOROBUTYL	052	205	<	.01	.80. 80.	23.		32
	CPE	06 0	113	`	-20.63	.08	23.		32
	Or L	070	113		-10.00	.08	23.		32
	PVC	053	126		29.03	.08	23.		32
	TEFLON	055	210		8 5.19	.08	23. 23.		32 32
Freon TMC 577623190	BUTYL	064	113		6.82	.08	23.		32
		085	211		2.27	.08	23.		32
	CHLOROBUTYL	052	205		8.38	.08	23.		32
	CPE	060	113		-12.70	.08	23.		32
		070	113		-20.00	.08	23. 23.		32
	PVC	053	126		16.13	.08	23.		32
	TEFLON	055	210		48.15	.08	23.		32
łydrazine (Diam	ine)								
03020120	BUTYL	064	113		-25.00	.08	23.		32
		085	211		-15.91	.08	23.		32
	CHLOROBUTYL	052	205		-2.78	.08	23.		32
	CPE	060	113	<	.01	.08	23.		32
		070	113		-15.00	.08	23.		32
	PVC	053	126		9.68	.08	23.		32
	TEFLON	055	210		166.67	.08	23.		32
lydrochloric Ac	id								
76470100	BUTYL	064	113		15.91	.08	23.		32
		085	211		-4.55	.08	23.		32
	CHLOROBUTYL	052	205		-13.89	.08	23.		32
	CPE	060	113		-11.11	.08	23.		32
		070	113		-62.50	.08	23.		32
	PVC	053	126		35.48	.08	23.		32
	TEFLON	055	210		174.07	.08	23.		32
lydrogen Peroxi	de								
77228410	BUTYL	064	113		36.36	.08	23.		32
		085	211		-4.55	.08	23.		32
	CPE	060	113		-9.52	.08	23.		32
		07 0	113		-45.00	.08	23.		32
	PVC	053	126		35.48	.08	23.		32
	TEFLON	055	210		29.63	.08	23.		32
iydrogen Peroxi	de, <30%								
777228411	CHLOROBUTYL	052	205		2.78	.08	23.		32
sopropyl Alcoh	ol (Propenol, 2·)								
000676300	BUTYL	064	113		•2.27	.08	23.		32
		085	211	<	.01	.08	23.		32
	CHLOROSUTYL	052	205		-6.94	.08	23.		32
	CPE	060	113		-1.59	.08	23.		32

POSICIONO DICIONALO POSICIONO SANDANDE SANDANDE PRODUCADA NOTICIONAL PARASSANA POLICIO SANDA PARAS

SUMMARY OF PERFORMANCE DETAIL TESTS IMMERSION TENSILE STRENGTH CHANGE TEST

CHEMICAL NAME/ CASNO	RESISTANT	PRODUCT	VENDOR	PERCENT TENSILE CHANGE		TEMP	THICKNESS
CASRO	MATERIAL	DESC CODE			HOURS	DEG C	CH
000676300	CPE	070	113	-10.00	.08	23.	
	PVC	053	126	12.90	.08	23.	
	TEFLON	055	210	129.63	.08	23.	
ethyl Ethyl Ke	tone (Butanone,2)						
00789330	BUTYL	064	113	6.82	.08	23.	
		085	211	-4.55	.08	23.	
	CHLOROBUTYL	052	205	5.56	.08	23.	
	CPE	060	113	-4.76	.08	23.	
		070	113	-20.00	.08	23.	
	PVC	053	126	-67.74	.08	23.	
	TEFLON	055	210	159.26	.08	23.	
ethylhydrazine							
00603440	BUTYL	064	113	-4.55	.08	23.	
	5 114 6 5 6 5 	085	211	-4.55	.08	23.	
	CHLOROBUTYL	052	205	•11.11	.08	23.	
	CPE	060	113	·7.94	.08	23.	
	DVC	070	113	-12.50	.08	23.	
	PVC	053	126	-22.58	.08	23.	
	TEFLON	055	210	85.19	.08	23.	
itric Acid							
76973720	BUTYL	064	113	2.27	.08	23.	
	2 111 22 23 23 23	085	211	4.55	.08	23.	
	CHLOROBUTYL	052	205	-27.78	.08	23.	
	CPE	060	113	1.59	.08	23.	
	PVC	070	113	-40.00	.08	23.	
	TEFLON	053 055	126	-16.13	.08	23.	
	TETEOR	033	210	133.33	.08	23.	
itric Acid, Fu							
80075870	BUTYL	064	113	25.00	.08	23.	
	2 11 2 2 2 2 2 1 2 1 2 1 2 1 2 1	085	211	-6.82	.08	23.	
	CHLOROBUTYL	052	205	-19.44	.08	23.	
	CPE	060	113	3.17	.08	23.	
	PVC	070	113	-62.50	.08	23.	
	TEFLON	053 055	126 210	16.13 44.44	.08 .08	23. 23.	
	121 201	•••	2.0	44.44	.00	23.	
itrogen Tetrox 05447260		647	447	97.97			
	BUTYL	064 085	113 211	36.36	.08	23.	
	CHLOROBUTYL	065 052	205	-20.45 -47.22	.08	23.	
	CPE	060	113	·47.22 ·26.98	.08	23.	
		070	113	·52.50	.08	23.	
	PVC	053	113	·32.30 ·19.35	.08 .08	23. 23	
	TEFLON	055	210	207.41	.08	23. 23.	
ulfuric Acid							
76649390	BUTYL	064	113	2.27	.08	23.	
		085	211	-9.09	.08	23.	
	CHLOROBUTYL	052	205	-5.56	.08	23.	

SUMMARY OF PERFORMANCE DETAIL TESTS IMMERSION TENSILE STRENGTH CHANGE TEST

CHEMICAL NAME/ CASHO	RESISTANT MATERIAL	PRODUCT DESC CODE	VENDOR	PERCENT TE	NSILE CHANGE	IMMERSION TIME HOURS	TEMP DEG C	THICKNESS CM	REF NUM
076649390	CPE	060	113		6.35	.08	23.		321
		070	113		·22.50	.08	23.		321
	PVC	053	126	<	.01	.08	23.		321
	TEFLON	055	210		92.59	.08	23.		321

APPENDIX F

PERMEATION DATA FOR MULTI-COMPONENT LIQUIDS

CROSS-REFERENCE OF CHEMICALS IN MIXTURES

MIXTURE

•••••	
Acetone	
000676410	000400029
	000400079
	000400169
	000400179
	000400189

COMPONENT

000400199 000400209

000400219

Acetonitrile 000750580 000400059

Atlox 3403F 000300060 000400389 000400399

Atlox 3404F 000300070 000400389 000400399

Butadiene 001069900 000400059

Butyl Acetate 001238640 000400089 000400109

Butyl Alcohol 000713630 000400089 000400109

Cyclohexanol 001089300 000400359 000400369 000400379

Diesel Oil 000300020 000400149

Epoxy Resin 000300010 000400079 000400099

Ethyl Acetate 001417860 000400019 000400029 000400109

CROSS-REFERENCE OF CHEMICALS IN MIXTURES

COMPONENT MIXTURE -----Ethyl Alcohol 000641750 000400019 000400029 000400039 000400089 000400299 000400309 000400319 000400329 000400339 000400349 000400359 000400369 000400379 Ethylene Glycol Monoacetate 005245960 000400069 Hexane 001105430 000400169 000400179 000400189 000400199 000400209 000400219 000400229 000400239 Isobutyl Alcohol 000788310 000400049 Isopropyl Alcohol 000676300 000400049 000400059 000400069 Methanol 000675610 000400029 000400109 Methyl Acetate - 000792090 000400039 Methyl Cellosolve 001098640 000400079 Methylene Chloride 000750920 000400139 000400239

000400249

CROSS-REFERENCE OF CHEMICALS IN MIXTURES

COMPONENT MIXTURE

Methyl Ethyl Ketone 000789330 000400059 000400069 000400089

Methyl Isobutyl Ketone 001081010 000400049 000400059 000400069 000400099 000400119 000400129

Methyl Parathion 002980000 000400389 000400399

Nitrobenzene 000989530 000400329 000400339 000400349

Organophosphate 000300030 000400159

Pentachlorophenol 000878650 000400149

Phenol 001089520 000400139

Polyamide 000300000 000400049

Propylene Glycol 000575560 000400159

Sodium Hydroxide 013107320 000400289

Sodium Pentachlorophenate 001315220 000400289

Tenneco 500-100 000300050 000400389 000400399

CROSS-REFERENCE OF CHEMICALS IN MIXTURES

COMPONENT	MIXTURE
•••••	
Toluene	
001088830	000400049
	000400089
	000400099
	000400109
	000400119
	000400249

Water

077321850 000400389

Xylene

001332070 000400089

MIXTURE: 000400019 REFERENCE: 124

001417860 > 70% by vol Ethyl Acetate 000641750 Ethyl Alcohol

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	PROD	ICHP	BREAKTHROOGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CM)
BUTYL					
000400019	014	21.00	> 4.00		.07
PV ALCOHOL					
000400019	004	21.00	> 4.00		
PVC					
000400019	003	21.00	.03	1,102.20	.05
VITON/NEOPRENE				·	
000400019	022	21.00	.13	280.56	.05

MIXTURE: 000400029 REFERENCE: 124

 001417860
 > 70% by vol
 Ethyl Acetate

 000676410
 Acetone

 000641750
 Ethyl Alcohol

 000675610
 Methanol

	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
BUTYL			(,	(00,0000,000,000,000,000,000,000,000,00	(5.1)
000400029	014	21.00	> 4.00		.07
PV ALCOHOL					
000400029	004	21.00	> 4.00		

MIXTURE: 000400039 REFERENCE: 124

 000792090
 50% by vol
 Methyl Acetate

 000641750
 50% by vol
 Ethyl Alcohol

	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
BUTYL			,	(00,000 2,000)	(0)
000400039	014	21.00	> 4.00		.04
NITRILE -					
000400039	019	21.00	.12	105.21	.03
VITON					
000400039	009	21.00	.07	62.29	.03

MIXTURE: 000400049 REFERENCE: 124

000788310 30 - 70% by vol

000676300 < 30% by vol 001081010 < 30% by vol

< 30% by vol Hethyl Isobutyl Ketone < 30% by vol Toluene

001088830 000300000

Polyamide

Isobutyl Alcohol

Isopropyl Alcohol

PROD TEMP BREAKTHROUGH PERMEATION RATE THICK
CODE (C) (HOURS) (UG/CM^2/MIN) (CM)

PV ALCOHOL

000400049 004 21.00 > 4.00

MIXTURE: 000400059 REFERENCE: 124

000789330 30 - 70% by vol

001081010 < 30% by vol 000676300 < 30% by vol

001069900 000750580 Methyl Ethyl Ketone Methyl Isobutyl Ketone Isopropyl Alcohol Butadiene

Butadiene Acetonitrile

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CH^2/MIN)	(CH)
BUTYL					(
000400059	014	21.00	> 4.00		
NITRILE					
000400059	019	21.00	.32	260.52	.04
PVC				200132	
000400059	003	21.00	.15		

MIXTURE: 000400069 REFERENCE: 124

000789330 30 - 70% by vol 005245960 30 - 70% by vol

001081010 < 30% by vol 000676300 < 30% by vol Methyl Ethyl Ketone

Ethylene Glycol Monoacetate Methyl Isobutyl Ketone

Isopropyl Alcohol

	PROD CODE	TEMP (C)	BREAKTHROUGH	PERMEATION RATE	THICK
BUTYL	COL	(0)	(HOURS)	(UG/CM^2/MIN)	(CH)
000400069	014	21.00	> 4.00		.07
NATURAL RUBBER					•••
000400069	017	21.00	.33	24.05	.05

MIXTURE: 000400079 REFERENCE: 124

< 30% by vol 000676410

Acetone 001098640 30% by vol Methyl Cellosolve

000300010

Epoxy Resin

	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
BUTYL					-
000400079	014	21.00	> 4.00	•	.07
PV ALCOHOL					•••
000400079	004	21.00	> 4.00		
PVC					
000400079	003	21.00	.02	1,490.98	.05

MIXTURE: 000400089 REFERENCE: 124

001088830 5 - 20% by vol Toluene

000713630 5 - 20% by vol **Butyl Alcohol** 001238640 5 - 20% by vol **Butyl Acetate** 5 - 20% by vol 000641750 Ethyl Alcohol

000789330 5 - 20% by vol Methyl Ethyl Ketone

5 - 20% by vol 001332070 Xylene

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CM)
BUTYL					(4)
000400089	014	21.00	2.65	6.61	.04
NITRILE					
000400089	019	21.00	.10	916.83	.04
000400089	020	21.00	.23	842.68	.04
PE/EVOH/PE					•••
000400089	109	21.00	.43	410.82	.06
PV ALCOHOL					
000400089	004	21.00	> 4.00		
PVC					
000400089	003	21.00	.07	855.71	.06
VITON				2224	.00
000400089	009	21.00	.08	671.34	.03

MIXTURE: 000400099 REFERENCE: 124

001088830 30 - 70% by vol

< 30% by vol 001081010

Toluene Methyl Isobutyl Ketone

001332070

< 30% by vol **Xylene**

000300010

Epoxy Resin

PROD TEMP BREAKTHROUGH PERMEATION RATE THICK CODE (C) (HOURS) (UG/CM^2/MIN) (CM)

PV ALCOHOL

000400099 004 21.00 > 4.00

MIXTURE: 000400109 REFERENCE: 124

001088830 30 - 70% by vol Toluene

000713630 **Butyl Alcohol** 001238640 **Butyl Acetate** 001417860 Ethyl Acetate 000675610 Methanol

	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
PV ALCOHOL			************		(5)
000400109	004	21.00	.43	42.08	
VITON/NEOPRENE					
000400109	022	21.00	.27	300.60	.05

MIXTURE: 000400119 REFERENCE: 124

001088830 50% by vol

001081010

50% by vol Methyl Isobutyl Ketone

PROD TEMP BREAKTHROUGH PERMEATION RATE THICK CODE (C) (HOURS) (UG/CM^2/MIN) (CM) PV ALCOHOL

Toluene

000400119 004 21.00 > 4.00

MIXTURE: 000400129 REFERENCE: 124

001332070 50% by vol Xylene

001081010 50% by vol Methyl Isobutyl Ketone

NITRILE	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
000400129 VITON	019	21.00	.20	2,705.40	.03
000400129	009	21.00	.33	3,006.00	.03

MIXTURE: 000400139 REFERENCE: 124

000750920 > 70% by vol Methylene Chloride

001089520 Phenol

	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
NEOPRENE 000/00470	010	24 00			
000400139 PV ALCOHOL	018	21.00	.30	1.34	.11
000400139	004	21.00	> 4.00		

MIXTURE: 000400149 REFERENCE: 278

000878650 4% by vol Pentachlorophenol

000300020 Diesel Oil

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CM)
NATURAL RUBBER					,
000400149	001	23.00	.01	.02	.16
NEOPRENE					• • •
000400149	018	23.00	1.00	1.35	.04
NITRILE					
000400149	019	23.00	> 8.00		.06
PVC					1.0
000400149	003	23.00	.01	.27	.02

MIXTURE: 000400169 REFERENCE: 302

000676410 95% by vol Acetone 001105430 5% by vol Hexane

PROD TEMP BREAKTHROUGH PERMEATION RATE THICK CODE (C) (HOURS) (UG/CM^2/MIN) (CM) VITON/CHLOROBUTYL 000676410 112 25.00 .08 .04 001105430 112 25.00 .08 .04

MIXTURE: 000400179 REFERENCE: 302

000676410 86% by vol Acetone 001105430 14% by vol Hexane

PROD TEMP BREAKTHROUGH PERMEATION RATE THICK CODE (C) (HOURS) (UG/CM^2/MIN) (CM) VITON/CHLOROBUTYL 000676410 25.00 -10 .04 001105430 25.00 112 .10 - .18 .04

MIXTURE: 000400189 REFERENCE: 302

000676410 50% by vol Acetone 001105430 50% by vol Hexane

PROD TEMP BREAKTHROUGH PERMEATION RATE THICK CODE (C) (HOURS) (UG/CM^2/MIN) (CM) VITON/CHLOROBUTYL 000676410 112 25.00 .03 - .10 .04 001105430 112 25.00 .03 - .10 .04

MIXTURE: 000400199 REFERENCE: 302

000676410 35% by vol Acetone 001105430 65% by vol Hexane

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CH)
VITON/CHLOROBUTY	ľL				
000676410	112	25.00	.10		.04
001105430	112	25.00	.10		.04

MIXTURE: 000400209 REFERENCE: 302

000676410 15% by vol Acetone 001105430 85% by vol Hexane

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CM)
VITON/CHLOROBUTY	ľL				
000676410	112	25.00	.1018		.04
001105430	112	25.00	.1018		.04

MIXTURE: 000400219 REFERENCE: 302

000676410 5% by vol Acetone 001105430 95% by vol Hexane

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CH)
VITON/CHLOROBUTY	rL				
000676410	112	25.00	.08		.04
001105430	112	25.00	.08		.04

MIXTURE: 000400229 REFERENCE: 302

000676410 1% by vol Acetone 001105430 99% by vol Nexene

VITON/CHLOROBUTY	PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
000676410 001105430	112 112	25.00 25.00	.08 .08		.04

MIXTURE: 000400239 REFERENCE: 302

001105430

50% by vol

Hexane

000750920

50% by vol

Methylene Chloride

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CH)
VITON/CHLOROBUT	YL				
000750920	112	25.00	.7078		.04
001105430	112	25.00	.95 - 1.03		.04

MIXTURE: 000400249 REFERENCE: 302

000750920

50% by vol

by vol

Methylene Chloride

001088830 50% by vol Toluene

VITON/CHLOROBUT	PROD CODE YL	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CH)
000750920	112	25.00	.75 · .92		.04
001088830	112	25.00	.97 - 1.10		.04

MIXTURE: 000400289 REFERENCE: 278

001315220 4% by vol

013107320

Sodium Pentachlorophenate

Sodium Hydroxide

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
	CODE	(C)	(HOURS)	(UG/CM^2/HIN)	(CH)
NATURAL RUBBER					
000400289	001	23.00	.01	.02	.16
NEOPRENE					
000400289	018	23.00	> 7.50		.04
NITRILE					
000400289	019	23.00	> 15.50		.06
PVC					
000400289	003	23.00	> 5.00		.02
000400289	007	23.00	> 15.50		.11

MIXTURE: 000400389 REFERENCE: 104

002980000 10% by wt 000300050 6% by wt 000300060 000300070 077321850 83% by wt Methyl Parathion Tenneco 500-100 Atlox 3403F Atlox 3404F Water

		PROD CODE	TEMP (C)	BREAKTHROUGH (HOURS)	PERMEATION RATE (UG/CM^2/MIN)	THICK (CM)
NON	NOVEN PE					
PE	002980000	071	23.00	< .08	20.04 - 60.12	
76	002980000	076	23.00	.50 · .75	.20	

MIXTURE: 000400399 REFERENCE: 104

 002980000
 57% by wt
 Methyl Parathion

 000300050
 36% by wt
 Tenneco 500-100

 000300060
 5% by wt
 Atlox 3403F

 000300070
 2% by wt
 Atlox 3404F

	PROD	TEMP	BREAKTHROUGH	PERMEATION RATE	THICK
PE	CODE	(C)	(HOURS)	(UG/CM^2/MIN)	(CH)
002980000	076	23.00	.25	.08	
SARAMEX 002980000	061	23.00	2.00 - 3.00	.02	

APPENDIX G

VENDOR CODES FOR USE WITH DATA SUMMARIES IN APPENDICES A THROUGH E

VENDOR CODES FOUND IN APPENDICES A THROUGH E

VENDOR CODE VENDOR NAME -------100 Edmont Div. Becton, Dickinson & Co. 101 Granet 102 Ansell Industrial Products 103 Best Manufacturing Company 104 Boss Manufacturing Company 106 Disposables Inc. 107 Durafab Disposables, Inc. 108 Keystone Protection Corp. 110 Glover Latex, Inc. 112 Greene Rubber Co., Inc. 113 ILC Dover 114 International Playtex, Inc. 115 Major Safety Service, Inc. 116 Melco, Inc. 117 Mine Safety Appliances Co. 118 North Hand Protection 119 OKI Supply Co. 120 Pioneer Industrial Products Co. 121 Plastex Protective Products, Inc. 122 PPG Industries, Inc. 123 Protexall Company 124 Safety First Industries 125 SGL Homalite Industries 126 Wheeler Protective Apparel, Inc. 127 E.I. du Pont de Nemours & Co., Inc. 128 Jordan David Safety Products 129 KID AB 140 Allied Glove & Safety Products Corp. 141 The Sager Corporation 142 American Scientific Products 144 Arbill Inc. 145 Body-Guard 146 Cesco Safety Products 147 Charkate 150 Dayton Flexible Products 151 Defense Apparel 153 Direct Safety Company 155 Eastco Industrial Safety Corp. 156 Encon Manufacturing Co. 157 Fairway Products 158 General Scientific Safety Equipment Company 159 Frommelt Industries, Inc. 160 Goodyear Rubber Products Corp. 162 Holcomb Safety Garment Co.164 Industrial Products Co., Inc. 165 Industrial Safety and Security Co. 166 Interex Corp. 168 Jomac Products Inc. 169 Kappler Disposables, Inc. 170 Kimberly-Clark Corp.

172 Lehigh Safety Shoe Co.

VENDOR CODES FOUND IN APPENDICES A THROUGH E

VENDOR CODE VENDOR NAME 173 Magid Glove and Safety Mfg. Co. 174 Neese Industries Inc. 175 Pendergast Safety Equipment Co. 176 Plastimayd Corp. 177 Pulmosan Safety Equipment Corp. 178 Rainfair, Inc. 179 Ranger 180 Record Industrial Co. 181 Renco Corp 185 W.H. Salisbury & Co. 187 Singer Safety Co. 188 Standard Glove & Safety Equip. Corp. 189 Standard Safety Equipment Co. 191 LRC Safety Products Co. 192 H. Texier Glove Company Inc. 193 Tingley Rubber Corp. 194 The Tracies Co. 196 United States Safety Service Co. 197 Angelica Uniform Group 198 Vidaro Corp. 201 Falcon Industries, Inc. 202 Oak Medical Supply Co. 203 Colonial Glove & Garment Inc. 204 Monte Glove Company 205 Arrowhead Products 206 Hub Safety Equipment, Inc. 207 Miller Products Co., Inc. 208 Robar Protective Products 209 Fisher Scientific Company 210 Comasec 211 Barry Manufacturing Co. Ltd. 212 Rich Industries 214 Clean Room Products, Inc. 215 Vinylprodukter 216 Erista 220 National Draeger, Inc. 223 Bel-Art Products 225 Coyne Safety Equipment, Inc. 227 Halprin Supply Co. 229 Inco Safety Products Co. 231 Keller Glove Mfg. Co. 232 Latex Glove Co., Inc. 233 Leonard Safety Epuipment, Inc. 234 Lion Uniform, Inc. 235 Mar-Mac Manufacturing Co., Inc. 236 National Safety Wear, Inc. 238 Rockford Medical & Safety Co. 239 Safety Engineering & Supply Co. 242 3M Company 244 Intermarket Latex, Inc. 245 Protech Safety Equipment Inc.

THE PARTY OF THE P

VENDOR CODES FOUND IN APPENDICES A THROUGH E

VENDOR	
CODE	·
246	Broner Glove Co.
	Trelleborg, Inc.
248	Masterman's
	Goodall Rubber Company
500	Oak Technical, Inc.
501	Bard Parker
502	Seiberling
503	Surety-Sure Seal
504	California Safety
505	Handgards Inc.
506	Ackwell
	Converse Inc.
	Pharmaseal Laboratories Inc.
	Nolato
	Chemical Fabrics Corporation
	Dow Chemical Company
512	
513	
514	Acme Mills Company
515	E.D. Bullard Company
216	Cofish International, Inc.
21/	Dorsey Safety Products Co.
518	
519 520	
521	
522	
523	
524	
525	.
526	
527	• • • • • • • • • • • • • • • • • • • •
529	
531	
532	Willson Safety Products
534	Daffin Disposables, Inc.
535	Aramsco
536	
537	
538	• • • • • • • • • • • • • • • • • • • •
539	
	Ronco Textile Products, Inc.
541	
	Armin Corporation
	IPESCo., Inc.
	Marathon Rubber
543 547	Stauffer Manufacturing Company
	Sawyer-Tower
246	E.I. du Pont de Nemours & Company

APPENDIX H

RATIONALE FOR RECOMMENDATIONS IN MATRIX A

1. Overview

CPC chemical resistance information was formed into two data bases:

- Test data including breakthrough times, permeation rates, percent swell, percent elongation, percent weight change and calculated diffusion coefficients from the technical literature and CPC vendors.
- Qualitative ratings (e.g., "excellent," "good," etc.) from CPC vendors, raw materials suppliers and a variety of publications.

There was a separate field for each test and each qualitative rating for each chemical/material pair. The total number of fields was about 10,000.

Algorithms were developed to analyze the information in each data base separately. The results of the analyses were then combined by means of another algorithm to produce the recommendations in Matrix A. The algorithms for each analysis are summarized in the following paragraphs.

2. Test Data

Five types of data were considered: breakthrough time, % swell (volume), % change in elongation, % change in weight due to immersion, and diffusion coefficient. The data were scanned and classified as follows:

Breakthrough Time	Good >1 hour Fair 0.2-1 hour Poor <0.2 hour
% Swell (Volume)	Good <10% Poor >10%
% Elongation Change	Good <20% Poor >20%
% Weight Change	Good <10% Poor >10%
Diffusion Coefficient	Good <10 ⁻¹⁰ cm ₂ /sec Poor >10 cm ₂ /sec
Tensile Strength	Good <10% Poor >10%

On a resistant material by resistant material basis for each chemical, the number of individual products in each classification was totaled. (See Appendix E of Volume I for a listing of the resistant materials.)

The totals in each classification were compared and the resistant material put into one of the following four groups:

- I. Significant number of test data indicating excellent resistance to the particular chemical.
- II. Relatively few test data showing excellent resistant, or many data indicating good resistance.
- III. Many data indicating fair resistance, or a few data indicating poor resistance.
- IV. Significant number of test data indicating poor resistance.

The criteria for Group I were at least two tests with breakthrough times greater than 1 hour; no breakthrough times less than 1 hour and no data indicating "poor" resistance in either swelling, weight change, elongation, or diffusion coefficient.

The criterion for Group II was one or more "good" and no "fair" or "poor" in any of the five tests. Alternatively, the material would be put in Group II if there were two breakthrough times greater than 1 hour (with none less than 1 hour) and two or less "poor" in the other four tests.

recensional descended and companies of the companies of t

The criterion for Group III was one or more "fair" or "poor" test results.

The criteria for Group IV were one or more breakthrough times less than 0.2 hour or two breakthrough times less than 1 hour.

3. Qualitative Information

As described in Volume I, Chapter 7, Part 4, qualitative information was normalized to a four grade scale: A, B, C, D. "A" represented excellent resistance and "D" represented poor resistance. Similar to the test data base, the qualitative information was analyzed on a resistant material by resistant material basis for each chemical. The number of ratings in each grade were tabulated and compared in order to assign each chemical/material pair to one of four groups with descriptions analogous to these given above for the test data. In this case, however, qualitative rather than quantitative information is of concern.

The criteria for Group II were less than three A or B ratings and no C or D ratings. Alternatively, Group II conditions would be met by a total of three or more A or B or C ratings, the number of A plus B ratings greater than the number of C ratings, and no D ratings.

The criteria for Group III were less than a total of three C or D ratings or, alternatively, a total of three or more B, C or D ratings with the number of C plus D ratings greater than the number of B ratings.

The criterion for Group IV was a total of three or more C and D ratings.

4. Matrix A Recommendations

The results of the activities described in the two preceding sections were combined to yield the overall recommendations listed in Matrix A of Volume I. The rationale for the combination is described in Volume I, Chapter 7, Part B.