Introduction to Number Theory

Outline

- Division
- Prime
- GCD and LCM
- Modular Arithmetic
- Chinese Remainder Theorem
- Fermat's little theorem

Division

Def: $a,b \in Z$ with $a \neq 0$.

- We say a divides b (written a | b) if there exists, k ∈ Z s.t. b = ka
 - •a | b =>
 - a is a factor (or divisor) of b and
 - b is a multiple of a.
- Ex:
 - \bullet 3 | 12 (* 12 = 4 x 3, k=4)
 - -4 | 8,
 - 13 | 0 (0 = 0 x 13,k=0)
 - 3! 7(3 does not divide 7)

Properties of |

- 1. $a \mid b \land a \mid c \Rightarrow a \mid b + c$
- 2. $a \mid b \Rightarrow a \mid bc \text{ for all } c \in Z$
- 3. | is reflexive (a | a for all $a \in Z$)
- 4. | is transitive ($a \mid b \land b \mid c$) $a \mid c$)
 - \Box pf: a | b \land b | c \Rightarrow
 - \Box b = k_1 a and c = k2 b for some k_1 , $k_2 \in Z$
 - $\square \Rightarrow c = k_2 (k_1 a) = (k_1 k_2) a$
- 5. | is antisymmetric (a | b /\ b | a \Rightarrow a = b)
- 6. Any relation satisfying 3,4,5 is called a partial order

Primes

- •An integer p > 1 is said to be prime if
 - \forall $n \in \mathbb{N}^+$ ($n \mid p \Rightarrow n = 1 \text{ or } n = p$).
 - •I.e., the only positive factors of p are 1 and p.
- •p > 1 is not prime => P is composite.
- •Examples:
 - 7 is prime
 - primes < 20 include : 2,3,5,7,11,13,17,19.

Fundamental Theorem of Arithmetic

• \forall n \in N⁺ > 1, there exists a unique increasing sequence of primes $p_1 \le p_2 \le ... \le p_k$ ($k \ge 0$) s.t.

$$n = p_1 \times p_2 \dots \times p_k$$
.

- Ex:
 - $\bullet 100 = 2 \times 2 \times 5 \times 5$
 - $\bullet 99 = 3 \times 3 \times 3 \times 37.$

Proof:

- (Existence) by Mathematical Induction
 - Basis step: $n = 1, 2 : 1 = 1 \times 1, 2 = 1 \times 2$.
 - Inductive step: n > 1.
 - if n is prime, then $n = p_1 = 1 \times p_1$, where $p_1 = n$ and k = 1.
 - if n is not prime then $n = n_1 \times n_2$ with $n_1, n_2 < n$.
 - => by ind. hyp. $n_1 = q_1 \times q_2 \dots \times q_t$
 - $n_2 = r_1 \times r_2 \dots r_s$
 - => $n = n_1 \times n_2 = q_1 \times ... \times q_t \times r_1 \times ... \times r_s$
 - => n = p_1 x ... x p_{s+t} . where p_1 ,..., p_{s+t} is an increasing reordering of q_1 ,..., q_t and r_1 ,..., r_t .
- Uniqueness:
 - let n = $p_1 x ... x p_k x q_1 x ... x q_s$
 - = $p_1 \times ... \times p_k \times r_1 \times ... \times r_t$ where $q_1 \neq r_1$
 - => $n n = p_1 x ... x p_k x (q_1 x ... x q_t r_1 x ... r_t)$
 - ≠0 (a contradiction !!).

Division algorithm

a ∈ Z, d ∈ N⁺
 ∃i q,r such that a = qd + r where 0 ≤ r < d.

Def: if a = dq + r Then

- d is called the divisor
- a : dividend
- q: quotient
- r: remainder
- Examples:
 - $101 = 11 \cdot 9 + 2$
 - \bullet -11 = -4 · 3 + 1
- Note: d | a iff r = 0.

Proof of the division algorithm

Consider the sequence:

```
... a-3d, a-2d, a-d, a, a-(-d), a-(-2d), a-(-3d), ...
```

- Let r = a qd be the smallest nonnegative number in the sequence.
- 1. since the sequence is strictly increasing toward infinity such q (and r) must exist and unique.
- 2. if $r \ge d \rightarrow r' = r d = a (q+1) d \ge 0$ is another nonnegative number in the sequence smaller than r. That's a contradiction.

Hence r must < d. QED

GCD and LCM

- a,b ∈ Z, ab ≠ 0.
 if d | a and d | b → d is a common divisor of a and b.
- $gcd(a,b) =_{def}$ the greatest common divisor of a and b.

Note: The set $cd = \{x > 0 : x \mid a \text{ and } x \mid b\}$ is a finite subset of N^+ ($\because \{1\} \subseteq cd \subseteq \{1,... \text{ min}(a,b)\}$ \therefore gcd(a,b) must exist.

- Example:
 - gcd(24,36) = ?
 - factors of 24: 1,2,3,4,6,12,24
 - factors of 36: 1,2,3,4,6,9,12,18,36
 - $:: cd(24,36) = \{1,2,3,4,6,12\}$
 - \therefore gcd(24,36) = 12.

Relatively prime

- If gcd(a,b) = 1 we say a and b are relatively prime(r.p.).
 - Ex: gcd(17,22) = 1.
- $a_1, a_2, ..., a_n$ are pairwise r.p. if $gcd(a_i, a_j) = 1$ for all $1 \le i < j \le n$.
 - Ex:
 - 10,17,21 are p.r.p.
 - 10,19,24 are not p.r.p since gcd(10,24) = 2.

Proposition 1:

If
$$a = p_1^{x_1} p_2^{x_2} \dots p_n^{x}$$
 and $b = p_1^{y_1} p_2^{y_2} \dots p_n^{y}$,

where

 $p_1 < p_2 ... < p_n$ are primes and all x_i , $y_j \ge 0$, then

$$gcd(a,b) = s =_{def} p_1^{z_1} p_2^{z_2} \dots p_n^{z_n}$$

where $z_i = min(x_i, y_i)$ for all $0 \le i \le n$.

Proof:

- 1. $s \in cd(a,b)$.
 - what are the quotients of a and b when divided by s?
- 2. $t \mid a = p_1^{x_1} p_2^{x_2} ... p_n^{x} \Rightarrow t = p_1^{d_1} p_2^{d_2} ... p_n^{d_n}$ for some $d_1,...d_n$ with $d_i \le x_i$ for $1 \le i \le n$.

pf: t | $a \Rightarrow a = tk$ for some integer k. let p be any prime factor of k.

Then $p \mid k \Rightarrow p \mid tk = a \Rightarrow p = p_i$ for some $1 \le j \le n$.

O/W by FTA: $a = p ... \neq p_1^x p_2^x ... p_n^x$.

 \Rightarrow k = $p_{11}^{r} p_{22}^{r} ... p_{nn}^{r}$ for some $r_1 \le x_1,...,r_n \le x_n$.

and $t = a/k = p_1^x - r_1 \dots p_m^x - r_n$ with all $x_i - r_i \ge 0$.

3. Corollary: $\forall t \ t \in cd(a,b) \Rightarrow t = p_1^{d_1} p_2^{d_2} \dots p_n^{d_n}$ for some $d_1, \dots d_n$ with $d_i \le x_i$, $d_i \le y_i$, and $d_i \le z_i$.

- Ex:
 - $120 = 2^3 \cdot 3^1 \cdot 5^1$
 - $500 = 2^2 \cdot 5^3$
 - \therefore gcd(120,500) = $2^2 \cdot 3^0 \cdot 5^1 = 20$

LCM

- a,b \in Z $c \in \mathbb{N}^+$ if a|c and b|c \Rightarrow d is a common multiplier of a and b.
- lcm(a,b) = def the least common multiplier of a and b.

Note: The set cm = $\{x > 0 \mid , a \mid x \text{ and } b \mid x\} \neq \emptyset$ (:: $\{a \cdot b\} \subseteq cm$:: lcm(a,b) must exist.

Proposition 2:

```
If a = p_1^{x_1} p_2^{x_2} ... p_{n n}^{x}, b = p_1^{y_1} p_2^{y_2} ... p_{n n}^{y}, where p_1 < p_2 ... < p_n are primes and all x_i, y_j \ge 0, then lcm(a,b) = t =_{def} p_1^{z_1} p_2^{z_2} ... p_{n n}^{z} where z_i = max(x_i, y_i) for all 0 \le i \le n.

pf: p_{i = 1}^{x_i} |a| cm and p_{i = 1}^{y_i} |b| cm => p_i^{max(x_i, y_i)} |cm| => t |cm|. Theorem 5: gcd(a,b) \cdot lcm(a,b) = ab.
```

Modular Arithmetic

Def 8: $m \in N^+$, $a \in Z$. a mod $m =_{def}$ the remainder of a when divided by m.

- Ex:
 - $17 \mod 5 = 2$
 - -133 mod 9 = 2.

Def 9: $a,b \in Z$, $m \in N^+$.

 $a \equiv b \pmod{m}$ means $m \mid (a-b)$.

- i.e., a and b have the same remainder when divided by m.
- i.e., a mod m = b mod m
- we say a is congruent to b (module m).
- Ex:
 - $17 \equiv 5 \pmod{6}$?
 - $24 \equiv 14 \pmod{6}$?

Properties of congruence

```
Theorem 6: a \equiv b \pmod{m} iff
                      a = km + b for some k \in \mathbb{Z}.
pf: a \equiv b \pmod{m} \Rightarrow (a-b) = km \Rightarrow a = km + b.
Theorem 7: If m > 0, a = b (mod m) and c = d (mod m), then
      (1) a + c \equiv b + d \pmod{m}
            (2) ac \equiv bd \pmod{m}.
pf: By the premise, a = km + b and c = sm + d for some k,s.
            a + c = (b + d) + (k + s) m and
      ac = bd + (kd + sb + skm) m
 ∴ (1) and (2) hold.
Ex: 7 \equiv 2 \pmod{5}, 11 \equiv 1 \pmod{5} :.
     18 \equiv 3 \text{ and } 77 \equiv 2.
```

Euclidean Algorithm

```
Lemma 1: a = bq + r \Rightarrow gcd(a,b) = gcd(b,r).
pf: it suffices to show that cd(a,b) = cd(b,r). But
   • d \mid a / d \mid b \Rightarrow d \mid (a-bq) = r, and
   • d | b /\ d | r \Rightarrow d | bq + r = a. Hence cd(a,b) = cd(b,r).
Note: if a = bq + 0 \Rightarrow gcd(a,b) = gcd(b,0) = b.

    A simple algorithm:

gcd(a,b) // a \ge b \ge 0.
 if (b == 0)
     return a;
  else
    return gcd(b, a mod b);
Note: this algorithm is very efficient.
```

Example: gcd(662, 414) = ?

a	b	a = qb + r	q	r
662	414	662=1x414+248	1	248
414	248	414= 1x 248 + 166	1	166
248	166	248= 1 x 166 + 82	1	82
166	82	166= 2 x 82 + 2	2	2
82	2	82=42 x 2 + 0	42	0
2	0			

$$\therefore$$
 gcd(662,414) = gcd(414,248) = ...
= gcd(2,0) = 2.

Theorem

- a > b ≥ 0 ⇒ gcd(a,b) = sa + tb for some s,t in Z.
 i.e., gcd(a,b) is a linear combination of a and b.
 Pf: By induction on b.
 - Basis: b = 0. \Rightarrow gcd(a,b) = $a = 1 \cdot a + 0 \cdot b$. Inductive case: b > 0.
 - case1: b | a \Rightarrow gcd(a,b) = b = 0 a + 1 b. case2: b \(\) a \Rightarrow gcd(a,b) = gcd(b,r) where
 - $0 \le r = a \mod b < b$.
 - By I.H. gcd(b,r) = sb + tr. But r = a bq
 - $\therefore \gcd(a,b) = \gcd(b,r) = sb + tr$ = sb + t(a bq) = ta + (s qt)b. QED

Example

• gcd(252, 198) = 18 = ____ · 252 + ____ · 198. Sol:

Exercise: Let $L(a,b) = \{sa + tb \mid s,t \in Z \}$ is the set of all linear combinations of a and b. Show that gcd(a,b) = the smallest positive number of L(a,b).

pf: let m = st + tb be any positive member of L(a,b) with $m \le gcd(a,b) = g$.

Since g | a and g | b, we have g | sa+tb => $g \ge m$ Hence g = m.

Lemma 1 and Lemma 2

```
Lemma 1:gcd(a,b) = 1/\langle a \mid bc \Rightarrow a \mid c.
pf: gcd(a,b) = 1 \Rightarrow 1 = sa + tb for some s,t \in Z
   \Rightarrow c = sac + tbc = sac + tka :: a | bc
                       = (sc + tk) \cdot a : a \mid c.
Lemma 2': p:prime \land p \nmid a \Rightarrow \gcd(p,a) = 1.
Pf: cd(p,a) \subseteq factors of p = \{1,p\}. but p is not a factor of a.
                            Hence gcd(p,a) = 1.
Lemma 2: p : prime \bigwedge p | a_1 a_2 ... a_n \Rightarrow p | a_i for some i.
Pf: By ind. on n. Basis: n = 1. trivial.
                        Ind. case: n = k + 1. p \mid a_1 \mid a_2 \dots \mid a_k \mid a_{k+1} \mid a_k \mid a_{k+1} \mid a_k \mid a_k \mid a_{k+1} \mid a_k 
                       If p \mid a_1 we are done.
                       O/W p \nmid a<sub>1</sub> and gcd(p, a<sub>1</sub>) = 1 by lem2'.
                        By Lem 1: p \mid (a_2 ... a_{k+1}) \Rightarrow p \mid a_i \text{ for some } 2 \le i \le k+1 \text{ by IH}.
```

Uniqueness of FTA

Pf: Suppose ∃ two distinct sequences

$$p_1, ..., p_s$$
 and $q_1, ..., q_t$ with $n = p_1 \times ... \times p_s = q_1 \times ... \times q_t \Rightarrow$

Removing all common primes on both sides:

$$m =_{def} p_{i1} x ... p_{iu} = q_{j1} x ... x q_{jv}$$

where $p_i \neq q_i$ for all p_i and q_i .

- \Rightarrow p_{i1} | m = q_{j1}x ... x q_{jv}
- \Rightarrow p_{i1} | q_i for some j (a contradiction!!).

Theorem 2

```
m > 0 \ \land \ ac \equiv bc \ (mod \ m) \ \land \ gcd(m,c) = 1 \Rightarrow a \equiv b \ (mod \ m).

Pf: ac \equiv bc \ (mod \ m)
\Rightarrow m \mid (ac - bc) = (a - b) \ c.
\because gcd(m,c) = 1 \therefore m \mid (a - b)
\therefore a \equiv b \ (mod \ m).
```

Linear Congruence

Ex: Find all x such that $7 x \equiv 2 \pmod{5}$.

Def: Equations of the form $ax \equiv b \pmod{m}$ are called

linear congruence equations.

Def: Given (a,m), any integer a' satisfying the condition:

$$a a' \equiv 1 \pmod{m}$$

is called the inverse of a (mod m).

Proposition: a a' $\equiv 1 \pmod{m} \Rightarrow$

x = a'b + km is the general solution of the congruence equation ax $\equiv b \pmod{m}$

Pf: 1. a'b + km is a solution for any $k \in Z$.

2. y is a solution \Rightarrow ay \equiv b (mod m) => y \equiv a'b (mod m) => m | $(y-a'b) \Rightarrow y = a'b + k' m$ for some k.

Theorem:

- m > 0, gcd(a,m) = 1. Then \exists b \in Z s.t.
 - 1. $ab \equiv 1 \pmod{m}$
 - 2. if $ab \equiv ac \ [\equiv 1] \Rightarrow b \equiv c \ (mod \ m)$.

Pf: 1. gcd(a,m) = 1. Then \exists b,t with ba + tm = 1. since m | ba -1 and hence ab \equiv 1 (mod m).

2. Direct from Theorem 2.

Note: Theorem 3 means That the inverse of a mod m uniquely exists (and hence is well defined) if a and m are relatively prime.

Examples

Ex: Find a s.t. $3a \equiv 1 \pmod{7}$.

Sol: since gcd(3,7) = 1. the inverse of 3 (mod 7) exists and can be computed by the Euclidean algorithm:

$$7 = 3 \times 2 + 1 \Rightarrow 1 = 7 + 3 (-2)$$
. $\therefore 3 (-2) \equiv 1 \pmod{7}$

 \Rightarrow a = -2 + 7k for all k \in Z.

EX: Find all solutions of $3x \equiv 4 \pmod{7}$.

Sol: -2 is an inverse of 3 (mod 7). Hence

x = 4 (-2) + 7k where $k \in Z$ are all solutions of x.

Chinese Remainder Theorem

- EX: Find all integer x satisfying the equations simultaneously:
 - $x \equiv 2 \pmod{3}$
 - $x \equiv 3 \pmod{5}$
 - $x \equiv 2 \pmod{7}$
- Theorem 4: $m_1, m_2, ..., m_n$: pairwise relatively prime. The system of congruence equations:
 - $x \equiv a_1 \pmod{m_1}$
 - $x \equiv a_2 \pmod{m_2}$

 - $x \equiv a_n \pmod{m_n}$
 - has a unique solution modulo $m = m_1 m_2 ... m_n$.

Proof of the Chinese remainder theorem

```
Pf: Let M_k = m / m_k for 1 \le k \le n.
 Note:
  1. gcd(m_k, M_k) = 1 and
  2. m_i \mid M_k if i \neq k. Hence
 \exists s_k, y_k \text{ s.t. } s_k m_k + y_k M_k = 1. \text{ Hence}
  y_k is an inverse of M_k mod m_k. Now
  M_k y_k \equiv 1 \pmod{m_k} and
  M_k y_k \equiv 0 \pmod{m_i} for all j \neq k. Let
  x = a_1 M_1 y_1 + ... + a_n M_n y_n then
  x \equiv a_1 M_1 y_1 + ... + a_n M_n y_n \equiv a_k M_k y_k \equiv a_k \pmod{m_k} for
 all 1 \le k \le n.
```

Proof of the uniqueness part

```
If x and y satisfying the equations, then
  x-y \equiv 0 \pmod{m_k} for all k = 1..n. =>
\exists s_1,...,s_n \text{ with } x-y=s_1 m_1=...=s_n m_n.
since gcd(m_i, m_k) = 1 for all i \neq k and
 m_k \mid s_1 m_1, we have m_k \mid s_1 for all k \neq 1.
Hence s<sub>1</sub> is a multiple of m<sub>2</sub> m<sub>3</sub> ... m<sub>n</sub> and
x-y = s_1 m_1 is a multiple of m = m_1 m_2 ... m_k.
Hence x \equiv y \pmod{m}. QED
```

Example

- Find $x \equiv (2,3,2) \pmod{(3,5,7)}$ respectively.
- Sol:

į	mi	ai	Mi	$y_i = M_i^{-1} \pmod{m_i}$	a _i M _i y _i
1	3	2	m/3=35	35 y ₁ ≡ 1 (mod 3) ⇒ -1	2 x 35 x -1
2	5	3	m/5=21	21 y ₂ ≡ 1 (mod 5) ⇒ 1	3 x 21 x 1
3	7	2	m/7=15	15 y ₃ ≡ 1 (mod 7) ⇒ 1	2 x 15 x 1
	m = 105				x = -70 + 63 + 30 = 23.

Fermat's little theorem

- p: prime, a ∈ N. Then
 - 1. if (p a) then $a^{p-1} \equiv 1 \pmod{p}$. Moreover,
 - 2. for all a, $a^p \equiv a \pmod{p}$.

Ex:

- 1. p = 17, $a = 2 \Rightarrow 2^{16} = 65536 = 3855 \times 17 + 1$ $\Rightarrow 2^{16} \equiv 1 \pmod{17}$.
- 2. p = 3, $a = 20 \Rightarrow 20^3 20 = 8000 20 = 7980$ is a multiple of 3. Hence $20^3 \equiv 20 \pmod{3}$.

Proof of Fermat's little theorem

Lemma: $\forall 1 \le i < j \le p-1$, ia $\not\equiv$ ja (mod p) and ia $\not\equiv$ 0 (mod p).

Pf: ia \equiv ja (mod p) \Rightarrow p | (j-i) a. Since p - a, p | (j-i). But 0 < j-i < p, p - (j-i), a contradiction.

1. Note the above lemma means ia and ja have different remainders when divided by p. Hence

```
a x 2a x ... (p-1) a \equiv 1 x 2 ... x (p-1) = (p-1)! (mod p)

\Rightarrow (p-1)! a^{p-1} \equiv (p-1)! (mod p). Then

p | (p-1)! (a^{p-1}-1). \because p - (p-1)!, p | a^{p-1}-1, and

hence a^{p-1} \equiv 1 (mod p).
```

2. if $p \mid a \Rightarrow p \mid a (a^{p-1}-1) = a^p - a \Rightarrow a^p \equiv a \pmod{p}$. if $p - a \Rightarrow a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^p \equiv a \pmod{p}$.