

# Recognizing Head Gestures for Head-mounted Displays

Timon Ruban, Jeremy Wood Department of Electrical Engineering, Stanford University

## Motivation

An intuitive UI is crucial for immersive VR experiences





Using head gestures (like nodding yes or shaking you head no) is a natural way to interact with your surroundings

### **Future Work**

Extend the approach to recognize other head gestures than Yes and No (like tilting, head rolls, user-defined gestures)





Speed up the classification:

- Find a faster implementation of DTW
- Experiment with a different machine learning algorithm (LSTMs, SVMs)

### Related Work

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, Eamonn Keogh. Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2):1542-1552, 2008.

https://github.com/kbryla/rift\_unity\_scripts/blob/master/RiftGestures/RiftGesture.cs. Accessed: 2016- 05-05.

Marcus Georgi, Christoph Amma, and Tanja Schultz.

Recognizing hand and finger gestures with imu based motion and emg based muscle activity sensing. In International Conference on Bio-inspired Systems and Signal Processing, 2015. BIOSIGNALS 2015.



#### Approach Oculus Sensor Data (Acceleration, Angular Velocity, Rotation **Data Collection Training Error Analysis Evaluation** k-Nearest-Neighbor Classifier with Dynamic Time Warping as Distance Measure Collected 747 Forward data points from Selection with Plot learning Evaluate best 15 different Leave-one-out curve, precision method on cross-validation people and recall and test set to choose best confusion 267 YESs features and matrix 237 NOs best k 243 NULLs



#### **Forward Selection**

Chosen Features:

- Acceleration (X, Y, Z)
- Rotation Quaternion (X, Y)

Best k = 5

#### **Qualitative Results**

- Short or too slow gestures are often not recognized => there are few examples of this in the collected training data!
- Interactive Demo feels smooth!

Test Accuracy: 85.04%