Avaliação do Jogo InspSoft: Um Jogo para o Ensino de Inspeção de Software

Avaliação do Jogo InspSoft: Um Jogo para o Ensino de Inspeção de Software

Adriana Costa Lopes, Anna Beatriz Marques, Tayana Conte

USES – Grupo de Usabilidade e Engenharia de Software, Universidade Federal do Amazonas (UFAM), Manaus – Amazonas – Brasil

{adriana, anna.beatriz, tayana}@icomp.ufam.edu.br

Abstract. Educational games support better learning in software engineering, as they reinforce concepts through practice, allowing a greater knowledge acquisition. The literature has proposed several games for software engineering teaching; however some of them do not have the evaluation of its effectiveness as a learning tool. This paper presents the game InspSoft, an educational game for teaching software inspection and the results of its evaluation by a specific model.

Resumo. Os jogos educacionais apoiam melhor aprendizagem na Engenharia de Software, pois reforçam conceitos através da prática, permitindo um aprofundamento dos conhecimentos. A literatura apresenta vários jogos propostos para o ensino da Engenharia de Software, porém, alguns não possuem a avaliação de sua eficácia enquanto ferramenta de aprendizagem. Este artigo apresenta o jogo InspSoft, um jogo educacional voltado para o ensino da inspeção de software, e os resultados da sua avaliação através de um modelo específico.

1. Introdução

Revisões de artefato de software encontram defeitos antecipados para reduzir retrabalho e melhorar a qualidade dos produtos [Ciolkowski *et al.*, 2003]. Possuem baixo custo, pois conforme o processo de desenvolvimento progride, o custo para corrigir os defeitos aumenta. A inspeção de software é uma técnica de revisão formal, a qual possui um processo de detecção de defeitos definido [Fagan, 1976].

Segundo Ciolkowski *et al.* (2003), algumas empresas realizam a inspeção de software, porém a técnica é empregada de maneira pouco sistemática, o que não permite alcançar o objetivo potencial das inspeções. Para que os beneficios sejam efetivamente alcançados, é necessário que o inspetor esteja devidamente treinado para a rápida identificação de defeitos [Pötter e Schots, 2011]. Com isto, surge a necessidade de capacitar profissionais e estudantes, para possibilitar um uso mais frequente de inspeções pela indústria de software.

De um modo geral, em relação à capacitação da Engenharia de Software (ES), são encontrados desafios para alunos e principalmente para os professores ministrarem aulas motivadoras com situações reais da área. Os jogos educacionais mostram-se como uma alternativa para mitigar esse problema, pois tornam o processo de ensino-aprendizagem mais atrativo e proveitoso [Kochanski, 2009], permitindo melhor assimilação através da prática [Monsalve *et al.*, 2010]. No entanto, existe uma

preocupação com jogos que não possuem uma avaliação de sua eficácia no apoio ao ensino, sendo necessário avaliar a sua efetividade no apoio à aprendizagem.

Este artigo apresenta o jogo InspSoft e a avaliação experimental do mesmo em relação ao apoio ao ensino de conceitos relacionados à inspeção de software. O objetivo do jogo é apresentar conceitos relacionados à atividade de detecção de defeitos, ao processo de inspeção de forma lúdica e os papéis no processo de inspeção. O restante deste artigo está organizado da seguinte forma: a Seção 2 apresenta conceitos de inspeção de software e os jogos educacionais como apoio ao ensino. A Seção 3 apresenta o jogo InspSoft. A Seção 4 apresenta a avaliação da efetividade de aprendizagem do jogo InspSoft. Por fim, a Seção 5 descreve a conclusão e as considerações sobre o trabalho desenvolvido.

2. Inspeção de Software e Jogos para Apoio à Aprendizagem

A inspeção de software possui um conjunto de atividades para verificar se o artefato possui qualidade satisfatória. A inspeção é realizada por uma equipe, onde cada participante no processo de inspeção desempenha um papel específico como o Autor, que é responsável pelo artefato a ser inspecionado, o Moderador, que é responsável pela definição do contexto da inspeção e seleção dos inspetores, e o Inspetor que é responsável pela detecção de defeitos [Kalinowski *et al.*, 2004].

O processo tradicional definido por Fagan (1976) envolve as atividades de Planejamento na qual é realizada a seleção dos participantes e preparação do material para inspeção, Revisão do Artefato pelos inspetores, Reunião de Inspeção com os participantes do processo e o Registro de Defeitos. Com o objetivo de aumentar a eficiência da inspeção, diversas variações sobre o processo tradicional foram propostas, bem como teorias e técnicas avaliadas experimentalmente [Kalinowski *et al.*, 2004].

Thiry et al. (2010) afirmam que jogos educativos podem ser aplicados como um complemento à capacitação de profissionais, tornando o aprendizado mais atrativo. Para apoiar o ensino de inspeção, podemos citar o jogo educacional InspectorX [Pötter e Schots, 2011], um jogo que visa desenvolver a percepção do jogador para a identificação e categorização de defeitos. O jogo disponibiliza questões com trechos de artefato de software com um ou mais defeitos objetivando o aprendizado da inspeção em documentos de requisitos e código fonte. O InspectorX exibe a pontuação dos jogadores com base no número de pontos obtidos nas questões.

3. InspSoft

Para apoiar a aprendizagem de outros aspectos do processo de inspeção não abordados pelo jogo Inspector X, um novo jogo foi proposto: o InspSoft. O InspSoft é um jogo educacional voltado para inspeção de software em um documento de especificação de requisitos, que proporciona um ambiente lúdico possibilitando a escolha de um avatar para o jogador, um personagem para cada objetivo de aprendizagem e sons específicos para acertos e erros no jogo. O InspSoft simula uma situação de inspeção de software em uma empresa de desenvolvimento de software. O objetivo é obter aprendizado sobre os papéis de cada participante no processo de inspeção e os tipos de defeitos encontrados em um documento de requisitos, conforme Travassos *et al.* (2001). O

InspSoft é uma alternativa de baixo custo para a aprendizagem em inspeção de software, está disponível em http://www.dcc.ufam.edu.br/uses/index.php/inovacao-tecnologica.

No início do jogo, é apresentado um anúncio da vaga de emprego para o grupo da Garantia de Qualidade em uma empresa de desenvolvimento de software. Para "trabalhar" na empresa, o jogador deverá escolher o avatar, dando início ao jogo. Desempenhando o papel do Moderador, o jogador recebe sua primeira atividade na empresa para a inspeção de um documento de requisitos. O jogador vai até a sala do Autor para receber o artefato.

O jogo possui três níveis de desafio. No primeiro nível o jogador classifica o nome do papel dos participantes no processo de inspeção de acordo com a função para adquirir conhecimento sobre os papéis de Autor, Moderador e Inspetor, conforme a Figura 1.a.

a)Primeiro Nível.

b)Segundo Nível.

c)Terceiro Nível.

Figura 1. Níveis do Jogo InspSoft

No segundo nível, o jogo disponibiliza os tipos de defeitos encontrados no documento de requisitos e exemplos para a fixação da aprendizagem, conforme a Figura 1.b. No terceiro nível, o jogo fornece um caso de uso para estudar, após a conclusão do estudo, o jogador seleciona a opção para iniciar a inspeção e o jogo disponibiliza trechos do caso de uso para facilitar a categorização de possíveis defeitos encontrados

ou definindo o trecho como falso positivo, conforme a Figura 1.c. O jogo fornece um final positivo e um negativo de acordo com o valor da pontuação que, por sua vez, é anunciado pelo Gerente do Projeto na sala de reunião da empresa com o moderador, os inspetores e o autor do documento.

4. Avaliação Experimental da Efetividade de Aprendizagem

Segundo Wangenheim *et al.* (2009), faz-se necessário avaliar a efetividade dos jogos como ferramentas de aprendizagem. Por esta razão, foi executado um estudo para avaliação do jogo InspSoft enquanto ferramenta de aprendizagem. O objetivo do estudo foi estruturalmente definido segundo o paradigma GQM (Goal-Question-Metrics) [Basili e Rombach, 1988], conforme a Tabela 2.

Analisar	O jogo InspSoft
Com o propósito de	Caracterizar
Em relação a	Efetividade de Aprendizagem, Motivação e Experiência do Usuário
Do ponto de vista	dos Pesquisadores
No contexto de	Ensino de Inspeção de software em uma turma de Graduação de Ciência da Computação da UFAM.

Tabela 2: Objetivo do Estudo de Observação segundo o paradigma GQM.

A avaliação do InspSoft foi feita com base no modelo específico para jogos educacionais proposto por Savi *et al.* (2011). Este modelo é baseado no modelo de avaliação de programas de treinamento de Kirkpatrick (1994), nas estratégias motivacionais do modelo ARCS [Keller, 1987], na área de experiência do usuário e na taxonomia de objetivos educacionais de Bloom [Anderson e Krathwohl, 2001]. Os itens da escala de avaliação no modelo foram definidos através de estudos de caso, na qual foram obtidos vinte e sete itens divididos em três sub-escalas: Motivação, Experiência do Usuário e Aprendizagem. O modelo propõe o uso de questionário para avaliar as sub-escalas, e uma planilha configurada para organizar e analisar os dados recebidos. Os detalhes da documentação para o processo da definição e avaliação estão disponíveis em [Savi *et al.*, 2011].

O questionário utiliza o formato de resposta dos itens em uma escala que vai de -2 até +2. Uma nota +1 indica concordância com um item e +2 forte concordância. A nota -1 indica discordância com um item, enquanto -2 forte discordância. Quanto maior a quantidade de notas +2 atribuídas a um item, maior o nível de concordância dos alunos com a afirmação que está sendo feita sobre o jogo.

Segundo Savi *et al.* (2011), o modelo possui o foco em jogos que possam ser utilizados como material educacional para apoiar o processo de ensino e aprendizagem da ES, avaliando se o jogo motiva os estudantes a utilizarem a ferramenta como material de apoio, se proporciona experiência positiva com os jogadores e principalmente se o jogo educativo proporciona o conhecimento para o conceito relacionado.

Os participantes do estudo foram 16 alunos do 6º período do curso de Ciência da Computação da UFAM, os quais receberam treinamento sobre inspeção de software. Após o treinamento, os alunos foram convidados a utilizar o jogo e em seguida preencheram os formulários de avaliação propostos por Savi *et al.* (2011). Durante a

execução do estudo, monitores tomavam nota em formulários de acompanhamento do tempo gasto e da pontuação para análise complementar posterior. Após a utilização do InspSoft, alguns participantes mencionaram terem se sentido intimidados ao utilizar a ferramenta na presença dos demais participantes devido aos sons específicos emitidos para os acertos e erros. Além disso, alguns participantes demonstraram o interesse em utilizar o jogo novamente.

4.1 Análise dos resultados

A utilização da planilha fornecida pelo modelo de avaliação [Savi *et al.*, 2011] viabiliza a análise qualitativa e quantitativa dos resultados. A partir dos dados do questionário foram gerados gráficos de frequência, que indicam a porcentagem de notas atribuídas para cada item. O gráfico que apresenta os resultados relacionados à Motivação é ilustrado pela Figura 2.

Figura 2. Gráficos de Avaliação da sub-escala de Motivação.

Ao analisar o gráfico da Figura 2, observa-se que o jogo teve um efeito positivo na motivação dos alunos em grande parte dos itens, de acordo com as frequências que demonstram vários itens que receberam nota +1 ou +2 por pelo menos 86% dos alunos. Em relação à relevância do conteúdo do jogo para os interesses dos alunos, 81,25% concordam com este item e mais de 68% afirmam que foi fácil utilizar o jogo como material de estudo. Sobre a capacidade do jogo de capturar a atenção dos alunos, houve concordância com 75% dos alunos e 62% afirmam estar satisfeitos ao utilizarem na prática a aprendizagem que o jogo fornece.

A Figura 3 apresenta os resultados obtidos em relação à Experiência do Usuário. De acordo com o gráfico, o jogo foi considerado divertido e proporcionou uma experiência positiva para 68,25% dos alunos e 75% recomendam o jogo para seus colegas, indicando a aprovação do jogo. No entanto, em relação ao desafio, as notas

foram um pouco mais baixas no item que avalia se o jogo evolui num ritmo adequado com 43,75% de concordância. Ao observar o item que avalia se os alunos esqueceram as preocupações e ficaram concentrados no jogo, identificou-se um nível ainda menor de concordância (apenas 29% dos alunos), porém a maior parte comentou no questionário ter preocupações fora da disciplina, devido ao fim do período letivo.

Figura 3. Gráficos de Avaliação da sub-escala de Experiência do Usuário.

A Figura 4 ilustra os resultados relacionados à Aprendizagem. Conforme o gráfico, 90,9% dos alunos entendem que o jogo possui contribuições na aprendizagem e 45,45 % o considera eficiente em comparação a outras atividades da disciplina e 63,63% consideram que o jogo contribui para o desempenho na vida profissional.

Figura 4. Gráficos de Avaliação da sub-escala de Aprendizagem.

Os conceitos avaliados no jogo foram em relação aos papéis no processo de inspeção com o Inspetor (1), Moderador (2) e Autor (3), e aos tipos de defeitos encontrados no documento de requisitos como a Omissão (4), Ambiguidade (5), Inconsistência (6), Fato Incorreto (7) e Informação Estranha (8). Os conceitos foram numerados para uma melhor observação na Figura 5, que apresenta o gráfico com as médias de auto-avaliação dos alunos em relação aos objetivos de aprendizagem, antes e depois do jogo.

Figura 5. Gráficos dos Objetivos de Aprendizagem.

Observa-se um aumento do nível de conhecimento em todos os objetivos de aprendizagem do jogo. Este resultado é bastante positivo, pois fornece indícios de que o jogo promove a oportunidade para os alunos praticarem os conceitos vistos em aulas teóricas, contribuindo assim na melhoria no processo de aprendizagem da inspeção de software.

5. Conclusão

Os jogos educacionais devem proporcionar os benefícios esperados no ensino. Esta pesquisa apresentou o jogo InspSoft para apoio ao ensino de inspeção e a condução de uma avaliação com a finalidade de verificar a eficácia que este jogo proporciona.

Neste trabalho, a utilização do modelo proposto por Savi *et al.* (2011), possibilitou uma avaliação do InspSoft segundo os objetivos de aprendizagem organizacional. Com a análise, foi possível ter indícios sobre a relevância do jogo InspSoft como apoio para o ensino de inspeção de software. Os autores recomendam que o jogo seja utilizado como um complemento, após um treinamento teórico sobre inspeção de software.

Uma limitação deste trabalho é que o jogo foi avaliado segundo o Nível 1 (Reação), do modelo de quatro níveis para avaliação de aprendizagem proposto por Kirkpatrick (1994). Como trabalho futuro, planeja-se realizar um novo estudo para avaliar se o jogo proporciona um aumento de competências. Adicionalmente serão acrescentadas novas funcionalidades ao InspSoft para o aprendizado de outros conceitos e técnicas relacionados a inspeção de software.

Agradecimentos

Os autores agradecem a todos os participantes do estudo, aos autores do Modelo (Rafael Savi, Christiane Gresse von Wangenheim e Adriano Borgatto) que gentilmente nos cederam os instrumentos para a avaliação do jogo e aos que colaboraram durante a execução do estudo: Davi Viana, Priscila Fernandes e Luis Rivero.

Referências

Anderson, L.W., Krathwohl, D.R. (2001). "A taxonomy for learning, teaching, and assessing: a revision of bloom's taxonomy of educational objectives". Longman, NewYork.

- Basili, V. R., Rombach, H. D. (1998). "The TAME Project:Towards Improvement Oriented Software Environments". IEEE Transactions on Software Engineering, v. 14, no. 6, pp: 758 773.
- Devellis, R. F. (2003) "Scale development: theory and applications". SAGE.
- Fagan, M.E. (1976). "Design and Code Inspection to Reduce Errors in Program Development", IBM Systems Journal, vol. 15, no. 3, pp. 182-211.
- Figueiredo, E., Lobato, C., Dias, K., Leite, J., Lucena, C., (2007). "Um Jogo para o Ensino de Engenharia de Software Centrado na Perspectiva de Evolução", XV Workshop sobre Educação em Computação, Rio de Janeiro.
- Kalinowski, M., Spinola, R.O., Travassos, G.H., (2004). "Infra-Estrutura Computacional para Apoio ao Processo de Inspeção de Software", III Simpósio Brasileiro de Qualidade de Software (SBQS 2004), Brasília, Brasíl.
- Keller, J.M., (1987). "Development and use of the ARCS model of motivational design". Journal of Instructional Development, v. 10, n. 3, p. 2–10.
- Kirkpatrick, D. L., (1994). "Evaluating Training Programs The Four Levels". Berrett-Koehler Publishers.
- Kochanski, D., (2009). "Um framework para apoiar a construção de experimentos na avaliação empírica de jogos educacionais". Dissertação de Mestrado, Programa de Mestrado Acadêmico em Computação Aplicada. Universidade do Vale do Itajaí.
- Maldonado, J. C., Fabri, S. C. P. F., (2001). "Verificação e Validação de Software", Capítulo 3, Seção 3.4, Qualidade de Software Teoria e Prática, Prentice Hall.
- Magalhães, A. L. C. C., (2008). "A Importância do Controle da Qualidade na Melhoria de Processos de Software". In II Workshop de Empresas (W6 MPS.Br), Campinas.
- Monsalve, E. S., Werneck, V. M. B., Leite, J. C. P., (2010). "SimulES-W: Um Jogo para o Ensino de Engenharia de Software". Anais do FEES 2010/ CBSoft 2010. SBC, 2010. v.1. pp. 17 26
- Pötter, H., Schots, M., (2011). "InspectorX: Um Jogo para o Aprendizado em Inspeção de Software". Anais do FEES 2011 Fórum de Educação em Engenharia de Software/ CBSoft 2011, São Paulo-SP, Brasil, Setembro 28, pp.115.
- Savi, R.; Wangenheim, C., Borgatto, A., (2011). "Um Modelo de Avaliação de Jogos Educacionais na Engenharia de Software". Anais do XXV Simpósio Brasileiro de Engenharia de Software (SBES 2011), São Paulo.
- Savi, R.; Wangenheim, C., Borgatto, A., (2011). "Análise de um modelo de avaliação de jogos educacionais". Disponível em: https://sites.google.com/site/savisites/avaliacao-de-jogos-educacionais
- Sauer, C., Jeffery, D.R., Land, L., Yetton, P., (2000). "The Effectiveness of Software Development Technical Review: A Behaviorally Motivated Program of Research", IEEE Transactions on Software Engineering, 26 (1): 1-14, January.
- Thiry, M., Zoucas, A., Gonçalves, R., Salviano, C., (2010). "Aplicação de Jogos Educativos para Aprendizagem em Melhoria de Processo e Engenharia de Software", In: Anais do VI Workshop Anual do MPS (WAMPS 2010).
- Travassos, G. H., Shull, F., Carver, J. (2001). "Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language". Advances in Computer, Vol. 54, pp: 35 98.
- Wangenheim, C., Kochanski, D., Savi, R. (2009) "Revisão Sistemática sobre Avaliação de Jogos Voltados para Aprendizagem de Engenharia de Software no Brasil". In: Anais do FEES 2009/ XXIII SBES, pp. 41-48, Fortaleza, Brasil.