Medical/Bio Research Topics II: Week 06 (08.10.2024)

Practical Implementation of AI Models for Segmentation (1): Dataset Exploration and Problem Formulation

분할 인공지능 모델 개발 실습 (1): 데이터 및 예측 문제

Stroke

Medical condition in which poor blood flow to the brain

causes cell death

[https://mewarhospitals.com/stroke-causes-symptoms-and-treatment/]

- Two types of stroke
 - Ischemic ('ischein' (to restrain) + 'haima' (blood)) stroke
 - Most common type of stroke
 - State where blood supply to a specific area is reduced or blocked
 - The brain cannot get oxygen and nutrients from the blood, so that brain cells begin to die within minutes
 - Hemorrhagic ('haima' (blood) + 'rhegnynai' (to burst forth)) stroke
 - State where a blood vessel has ruptured, causing bleeding
 - The leaked blood results in pressure on brain cells, damaging them

Ischemic stroke

A clot blocking blood flow to an area of the brain

Hemorrhagic stroke

Bleeding inside or around brain tissue

[https://myhealth.alberta.ca/Health/Pages/conditions.aspx?hwid=tp12720]

Ischemic vs. hemorragic stroke

Medical emergency

- Signs and symptoms
 - Trouble speaking and understanding what others are saying
 - Paralysis or numbness of the face, arm, or leg
 - Problems seeing in one or both eyes
 - Headache
 - Trouble walking
- Early treatment can reduce brain damage and other complications

Diagnosis

- Determines the type of stroke
- Rules out other possible causes of symptoms
- Tests
 - Physical exam
 - Blood tests
 - CT
 - MRI

[https://www.mayoclinic.org/diseases-conditions/stroke/diagnosis-treatment/drc-20350119]

CT scan of brain tissue damaged by stroke

- Emergency treatment
 - Depends on the type of stroke
 - Ischemic stroke
 - Intravenous injection of recombinant tissue plasminogen activator (TPA) to dissolve the blood clot
 - Usually given through a vein in the arm within the first three hours
 - Endovascular therapy to directly remove the blood clot
 - Hemorrhagic stroke
 - Surgery to remove the blood and relieve pressure on the brain
 - Endovascular therapy to cause blood to clot

- Stages of stroke
 - Acute phase: hours to days after onset
 - Subacute phase: days to weeks
 - Chronic phase: weeks onwards

Rehabilitation therapy

- For most stroke survivors depending on the area of the brain involved and the amount of tissue damaged
- Focuses on helping to recover as much function as possible and return to independent living
- May begin before discharge and continue after discharge in a rehabilitation unit, as an outpatient, or at home
- After getting proper treatment during stroke attacks, most of the neurological recovery happens within 3-6 months
 - Most commonly, a stroke recovery plateau occurs around 3-6 months after stroke, in which little or no gains in function happen

- Proportional recovery rule
 - The degree of natural recovery up to a stroke recovery plateau is proportional to initial functional impairment [Winters et al., 2015]

 Applied to different functional domains including upper and lower limb motor, aphasia, and neglect

$$\Delta FMA-UE_{observed} = FMA-UE_{6months} - FMA-UE_{initial}$$

 $\Delta FMA-UE_{predicted} = 0.7 \times (66 - FMA-UE_{initial}) + 0.4$

[Winters et al., 2015]

Stroke Lesion

- Ischemic lesion
 - Acute ischemic lesion
 - Subacute/chronic infarct (permanent tissue damage)
- Hemorrhagic lesion
 - Intracerebral hemorrhage (ICH)
 - Subarachnoid hemorrhage (SAH)

FLAIR

Diffusion-weighted

[https://www.mayoclinic.org/diseases-conditions/stroke/diagnosis-treatment/drc-20350119]

Stroke lesion displayed as altered signals in MRI

- Brain-behaviour relationship in stroke rehabilitation
 - Lesion size
 - Lesion volume correlates with clinical outcome

Lesion location

 Motor performance correlates with the fraction of hand motor map injured more strongly than with lesion volume

- Lesion load: lesion overlap with extant brain structures
 - Motor impairment correlates with the proportion of the corticospinal tract injured more strongly than with lesion volume

CST Injury =

Number of overlapping voxels between the CST and lesion for the transverse slice

Total number of CST voxels for the transverse slice

 $\times 100\%$

[Lam et al., 2020]

• Corticospinal tract lesion load can predict motor outcome

Lesion Segmentation

- Critical in stroke rehabilitation research
 - For the quantification of lesion burden
 - For accurate image processing
- Still faces challenges and difficulties primarily due to variations of lesions in terms of shape, size, and location
- Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise

[Wu et al., 2023]

Variations of stroke lesions

- Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 dataset [https://fcon_1000.projects.nitrc.org/indi/retro/atlas.html]
 - Primarily led by the Mark and Mary Stevens Neuroimaging and Informatics Institute at the University of Southern California (USC)
 - Released in 2021 by expanding upon and replacing ATLAS v1.2 released in 2018
 - Largest dataset of its kind
 - Intended to be a resource for the scientific community to develop more accurate lesion segmentation algorithms
 - Derived from diverse, multi-site data from 44 research cohorts worldwide

- Includes T1-weighted MRI scans and manually segmented lesion masks (n = 1,271)
 - Training and test sets derived from 33 research cohorts
 - Samples from each research cohort are randomly assigned to either training or test sets so that they have similar compositions
 - Training set (n = 655): publicly released T1-weighted MRI scans and lesion masks
 - Test set (n = 300): publicly released T1-weighted MRI scans and hidden lesion masks
 - Generalizability set derived from 11 new cohorts
 - To test the performance of trained algorithms on completely unseen data
 - Generalizability set (n = 316): completely hidden T1-weighted MRI scans and lesion masks from separate cohorts

- T1-weighted MRI data
 - Collected on 1.5 Tesla and 3 Tesla MR scanners
 - Each cohort was collected on a single scanner using the same parameters except for 2 cohorts
 - High-resolution with the voxel size of 1 mm³ or higher
- Lesion masks [Liew et al., 2022]
 - Number of lesions and lesion location were manually recorded

	Subjects with One Lesion			Subjects with Multiple Lesions		
	Left	Right	Other	Unilateral	Bilateral	Other
Training data (n = 655)	173 (26.4%)	187 (28.5%)	46 (7.0%)	47 (7.2%)	121 (18.5%)	81 (12.4%)
Testing data (n = 300)	88 (29.3%)	95 (31.7%)	23 (7.7%)	16 (5.3%)	43 (14.3%)	35 (11.7%)

- Lesion identification and manual tracing
 - By using ITK-SNAP [http://www.itksnap.org/]
 - White matter hyperintensities of presumed vascular origin and perivascular spaces were excluded from lesion masks as much as possible
 - All identified lesions for each subject were reviewed for quality control by two additional trained raters

[Liew et al., 2022]

[Liew et al., 2022]

Image Segmentation

- Technique in digital image processing and analysis to partition an image into multiple parts or areas, often based on the characteristics of the pixels/voxels in the image
 - Involves converting an image into a collection of regions of pixels/voxels that are represented by a mask or a labeled image
- A common application in medical imaging is to detect and label pixels/voxels that represent an abnormality in the brain or other organs

- Algorithms and techniques [https://www.mathworks.com/discovery/image-segmentation.html]
 - Developed over the years using domain-specific knowledge to effectively solve segmentation problems in specific application areas such as medical imaging, automated driving, video surveillance, and machine vision
 - Thresholding
 - Performs thresholding on a greyscale or color image to create a binary image

Clustering

- Creates a segmented labeled image using a specific clustering algorithm such as K-means clustering
- For example, to distinguish between tissue types in an image of body tissue stained with hematoxylin and eosin

- Graph-based segmentation
 - Enables to segment an image into foreground and background areas

Region growing

 Examines neighbouring pixels of initial seed points and determines iteratively whether the pixel neighbours should be added to the area

Deep Learning-based Image Segmentation

 Associates every pixel/voxel of an image with a class label by using neural networks

[https://www.mathworks.com/discovery/image-segmentation.html]

- Leverages the power of deep learning algorithms to analyze image features at various scales, offering improved accuracy and efficiency compared to traditional methods
- Processes the entire image in smaller sections vs. holistically
 - Patch-wise segmentation
 - Takes a small patch around a voxel as the input and traverses the entire volume by repeatedly taking patches
 - Redundant calculations caused by overlapping patches decreases computational efficiency
 - Semantic-wise segmentation
 - Takes the entire volume or a large patch as the input
 - Prone to overfitting during training due to class imbalance

Segmentation performance

- Dice similarity coefficient (DSC, Dice-Sørensen coefficient or Dice coefficient) [Dice, 1945]
 - 2 * |X ∩ Y| / (|X| + |Y|), where X and Y are the predicted and ground truth segmentations
 - Measures the overlap between predicted and ground truth segmentations
 - F₁ score that is a harmonic mean of precision and recall
 - Precision (true positive value (TPV)) = TP / (TP + FP)
 - Recall (sensitivity) = TP / (TP + FN)
 - $-F_1$ score = 2 / ((1 / precision) + (1 / recall)) = 2TP / (2TP + FP + FN)
 - Range: 0 (no overlap) to 1 (perfect overlap)
 - Sensitive to both false positives and false negatives

		Predicted cond	lition		
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
	Prevalence $= \frac{P}{P+N}$	Positive predictive value (PPV), precision = TP PP = 1 - FDR	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) =√TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP

[https://en.wikipedia.org/wiki/Confusion_matrix]

DSC: Dice similarity coefficient

[Lee et al., 2018; https://www.mathworks.com/help/images/ref/dice.html]

Computation of DSC

- Intersection over Union (IoU, Jaccard Index)
 - $|X \cap Y| / |X \cup Y|$
 - Measures the overlap ratio of the intersection to the union of predicted and ground truth segmentations
 - Range: 0 (no overlap) to 1 (perfect overlap)
 - Stricter than DSC by penalizing errors more heavily
- Mean Intersection over Union (mIoU)
 - Average of IoU scores for all classes
 - Provides an overall measure of segmentation quality across multiple classes
 - Range: 0 (no overlap) to 1 (perfect overlap)
 - Useful for multi-class segmentation tasks

Hausdorff distance

- max(h(X,Y), h(Y,X)), where h(X,Y) = max(min(d(x,y))) for x in X, y in Y and h(Y,X) = max(min(d(y,x))) for y in Y, x in X
- Measures the maximum distance between the boundaries of predicted and ground truth segmentations
- Range: 0 to ∞ (lower is better)
- Sensitive to outliers, useful for evaluating boundary accuracy
- Average Surface Distance (ASD)
 - Average of distances between surfaces of predicted and ground truth segmentations
 - Measures the average error in boundary delineation
 - 0 to ∞ (lower is better)
 - Less sensitive to outliers than Hausdorff Distance

Accuracy

- (Correctly Classified Pixels) / (Total Pixels) = (TP + TN) / (Total Pixels)
- Measures the proportion of pixels correctly classified across all classes
- Range: 0 (completely incorrect classification) to 1 (perfect classification)
- Sensitivity and specificity
 - Sensitivity = TP / (TP + FN), specificity = TN / (TN + FP)
 - Measure the model's ability to correctly identify positive and negative cases
 - Range: 0 (complete failure to detect positive/negative cases) to 1 (perfect detection of positive/negative cases)
- Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
 - Measures the model's ability to distinguish between classes
 - Range: 0.5 (random guessing) to 1 (perfect classification)

- Deep learning-based lesion segmentation
 - Specific application of image segmentation to medical images by targeting abnormal tissues or pathological regions
 - Challenges
 - Class imbalance (lesions often small compared to healthy tissue)
 - Variabe in lesion shape, size, and location
 - Artifacts and noise common in medical images
 - Data considerations
 - Often works with 3D volumetric images (CT, MRI scans)
 - Requires expert annotations, which can be costly and time-consuming
 - Employs data augmentation to efficiently use limited training data
 - May benefit from multi-modal data integration

Performance metrics

- Usually uses domain-specific metrics like DSC and Hausdorff distance
- Emphasizes both quantitative accuracy and clinical relevance
- Specialized architectures
 - Uses common segmentation models such as U-Net and its variants
 - Ability to capture both local and global context
 - Skip connections that preserve fine details, crucial for precise lesion boundaries
 - Designed to handle medical imaging specificities

Dataset

- ATLAS v2.0 dataset for training (n = 655)
 - Training set: n = 600
 - T1-weighted MRI scans: train/Brain/001-600.nii.gz
 - Lesion masks: train/Lesion/001-600.nii.gz
 - Test set: n = 55
 - T1-weighted MRI scans: test/Brain/001-055.nii.gz
 - Lesion masks: hidden

Distribution of lesion volume

Segmentation Abnormality analysis sMRI

Example pair of a T1-weighted MRI scan and a lesion mask

001: 0.884 cm³ 002: 33.781 cm³ 003: 0.351 cm³ 004: 1.417 cm³ 005: 62.252 cm³ 006: 7.201 cm³

037: 36.236 cm³

038: 67.076 cm³

039: 140.210 cm³

040: 53.083 cm³

041: 24.708 cm³

042: 119.731 cm³

055: 26.097 cm³

- T1-weighted MRI scan and lesion mask
 - T1-weighted MRI scan in the native brain space
 - Lesion mask in the native brain space

T1-weighted MRI scan

Lesion mask

1 mm:

Dimensions: 197 × 233 × 189

Voxel size: $1.0 \text{ mm} \times 1.0 \text{ mm} \times 1.0 \text{ mm}$

2 mm:

Dimensions: $98 \times 116 \times 94$

Voxel size: $2.0 \text{ mm} \times 2.0 \text{ mm} \times 2.0 \text{ mm}$

T1-weighted MRI scan and lesion mask

- Segmentation label map
 - Lesion mask
- Lesion segmentation performance
 - Mean DSC for the test set (n = 55)
 - Average of the overlap between predicted and manually annotated lesion masks across the test set
 - Ranges from 0 to 1

Article	Method	Reported Dice	Code Publicly Available	n	Validation Method	Input size 2D/3D (H, W, D)
					Cross-validation	
Basak et al., 2021	DFENet	0.546	no	229	5-fold cross-validation	2D 192, 192 or 3D 192, 192, 4
Hui et al., 2020	PSPF and U-Net	0.593	no	239	6-fold cross-validation	2D 176, 176
Lu et al., 2020	EDCL w/ 3D Unet	0.148 (0.584)**	no	239	5-fold cross-validation	3D 64, 64, 64
Qi et al., 2019	X-Net	0.487	yes	229	5-fold cross-validation	2D 192, 224
Zhang et al., 2020	MI-UNet	0.567	no	229	5-fold cross-validation	2D 233, 197 or 3D 49, 49, 49
					One hold-out Train, Validation, Test	
Chen et al., 2018	U-Net/GMM*	0.500/0.170	no	220	unclear/0, 0, 100 (%)	2D 128, 128 or 256, 256
Chen et al., 2020	VAE*/GMVAE*	0.110/0.120	no	220	0, 0, 100/0, 0, 100 (%)	2D 200, 200
Kervadec et al., 2020	Enet	0.474	yes	229	203, 26, 0	unclear
Liu et al., 2019	MSDF-Net	0.558	no	229	160, 69, 0	2D 224, 177
Paing et al., 2021	3D U-Net	0.668	no	239	60, 20, 20 (%)	3D 197, 233, 189
Qi et al., 2020	U-Net	0.518	no	229	120, 40, 69	2D 224, 192
Sahayam et al., 2020	MUDCap3	0.670	no	229	160, 69, 0	3D 256, 256, 256
Tomita et al., 2020	3D-ResU-Net	0.640	yes	239	76, 11, 13 (%)	3D 144, 172, 168
Wang et al., 2020	CPGAN	0.617	no	239	129, 40, 60	2D 256, 256
Xue et al., 2020	U-Net (9 paths)	0.540	yes	54	0, 0, 54	3D 192, 224, 192
Yang et al., 2019	CLCI-Net	0.581	yes	220	55, 18, 27 (%)	2D 224-233, 176-197
Zhou et al., 2019	D-Unet	0.535	no	229	80, 20, 0 (%)	2D 192, 192 or 3D 192, 192, 4

[Liew et al., 2022]

Demo Dataset

- Simulated images and labels
 - Training dataset: n = 40
 - Images: Image/0-39.nii.gz
 - Masks: Label/0-39.nii.gz

Image Label

Example pair of an image and a label mask