Notes on Foundations of Programming Languages Reduction Systems

Sandra Alves

September 17, 2023

1 Reduction Systems

In this section we present basic notions on reduction systems. For a more detailed study see [Klop, 1992, Dershowitz and Jouannaud, 1990].

Definition 1.1 A reduction system is a pair $\langle \mathcal{A}, \to_R \rangle$, where \mathcal{A} is a set of terms and \to_R^1 is a relation on \mathcal{A} . We call R a notion of reduction. We will sometimes refer to \to_R as just R.

A notion of reduction can be introduced as a set of contraction rules:

$$R: M \to N \ \mathit{if} \ \cdots$$

This corresponds to the following relation on A:

$$R = \{(M, N) \mid \cdots \}$$

We will always present notions of reduction as contraction rules.

Definition 1.2 Let A be a set of terms. A context (denoted by $C[\]$) is a 'term' containing one or more occurrences of $[\]$, denoting holes, and such that if $M \in A$, then replacing the holes in $C[\]$ by M, is the term $C[M] \in A$.

A relation R is compatible if it can be lifted upon contexts.

Definition 1.3 1. A binary relation R on a set of terms A is compatible if

$$(M,N) \in \mathbb{R} \Rightarrow (C[M],C[N]) \in \mathbb{R}$$

for all $M, N \in A$ and all contexts C[] with one hole.

2. A compatible, reflexive and transitive relation on A is called a reduction relation on A.

Definition 1.4 Let R be a notion of reduction on A. Then R induces the following binary relations on A:

• The one step R-reduction denoted by \rightarrow_R . The \rightarrow_R relation is the compatible closure of R, and is inductively defined as follows:

$$\begin{array}{ccc} (M,N) \in R & \Rightarrow & M \to_R N \\ M \to_R N & \Rightarrow & C[M] \to_R C[N] \end{array}$$

• The R-reduction denoted by \rightarrow_R . The \rightarrow_R relation is the reflexive, transitive closure of \rightarrow_R , and is inductively defined as follows:

$$\begin{array}{cccc} M \rightarrow_R N & \Rightarrow & M \twoheadrightarrow_R N \\ M \twoheadrightarrow_R M & & & & \\ M \twoheadrightarrow_R N, N \twoheadrightarrow_R P & \Rightarrow & M \twoheadrightarrow_R P \end{array}$$

The relation \to_R is, by definition, a compatible relation. The relation \to_R is the reflexive transitive closure of \to_R and therefore a reduction relation.

We will sometimes omit R, when it is clear from the context which notion of reduction R represents.

Definition 1.5 Let $\langle A, \rightarrow_R \rangle$ be a reduction system.

¹We will often refer to \rightarrow_R as just R.

- A term M in A is called an R-redex, if $(M, N) \in R$ for some N in A. The term N is called an R-contractum of M.
- A term M is said to be in R-normal form (R-nf) if M does not contain (as a subterm) any R-redex.
- A term M has a (R-nf), if M R-reduces to N, and N is a (R-nf).
- We write NF_R to denote the set of terms in R-normal form.

We now discuss the property of confluence, which will be required in the reduction systems we will consider.

Definition 1.6 Let R be a notion of reduction.

• R satisfies the diamond property (see Figure 1) if:

$$\forall M, N_1, N_2.(M R N_1 \wedge M R N_2 \Rightarrow \exists N.(N_1 R N \wedge N_2 R N))$$

Figure 1: Diamond property

• R is said to be Church-Rosser (CR) if →R satisfies the diamond property.

If a reduction is Church-Rosser then it is not possible to reduce any λ -term to two distinct normal forms. Therefore, if a term has a normal form, the normal form is unique.

Definition 1.7 • Let Δ be a R-redex with contractum Δ' . We write

$$M \xrightarrow{\Delta}_R N$$

if $M \equiv C[\Delta]$, and $N \equiv C[\Delta']$.

• An R-reduction (path) is a sequence (possible infinite)

$$M_0 \xrightarrow{\Delta_0}_B M_1 \xrightarrow{\Delta_1}_B M_2 \rightarrow_B \cdots$$

We will sometimes leave out the redexes Δ_i , when denoting a reduction sequence.

Definition 1.8 Let $\langle \mathcal{A}, R \rangle$ be a reduction system. The R-reduction graph of a term $M \in \mathcal{A}$ (denoted by $\mathcal{G}_R(M)$) is the set

$$\{N \in \mathcal{A} \mid M \rightarrow_B N\}$$

directed by \to_R . This defines a multigraph since, if several redexes give rise to $M_0 \to_R M_1$, then that many directed arcs connect M_0 to M_1 in $\mathcal{G}_R(M)$.

Definition 1.9 The reduction system $\langle A, R \rangle$ is strongly normalising (SN), if for every $M_0 \in A$, every reduction sequence

$$M_0 \rightarrow_R M_1 \rightarrow_R \cdots$$

reaches a normal form.

In terms of the graph representation of reductions, if a reduction system is strongly normalising, then the reduction-graph for all the terms in the system is both acyclic and finite.

Reduction-graphs represent all the possible ways to reduce a term. A reduction strategy defines a way to travel trough the reduction-graphs, thus providing a choice of how to reduce a term. We will now define this notion, and discuss some of its properties.

Definition 1.10 Let $\langle A, R \rangle$ be a reduction system. A reduction strategy F is a map

$$F: \mathcal{A} \to \mathcal{A}$$

such that, for all $M \in A$, $M \to_R F(M)$ if M is not in normal form.

Definition 1.11 A strategy F is normalising if

M has a normal form
$$\Rightarrow \exists n F^n(M)$$
 is a normal form.

Definition 1.12 A strategy F is maximal if the minimum number of applications of F needed to reach the normal form is equal to the length of the longest finite reduction path.

2 The λ -calculus

In this section we briefly present the type free λ-calculus. For a more detailed reference, see [Barendregt, 1984].

2.1 Syntax

Definition 2.1 Let V be an infinite set of variables. The set of λ -terms, Λ is inductively defined from V the following way:

$$\begin{array}{ccc} x \in \mathcal{V} & \Rightarrow & x \in \Lambda \\ M, N \in \Lambda & \Rightarrow & (MN) \in \Lambda & (\mathsf{Application}) \\ M \in \Lambda, \, x \in \mathcal{V} & \Rightarrow & (\lambda x M) \in \Lambda & (\mathsf{Abstraction}) \end{array}$$

Notation: We use the symbol \equiv to denote syntactic equality between terms.

We consider application to be left associative, and abstraction to be right associative, and use the following abbreviations to simplify notation:

$$\begin{array}{rcl} (M_1M_2\ldots M_n) & \equiv & (\ldots(M_1M_2)\ldots M_n) \\ (\lambda x_1x_2\ldots x_n.M) & \equiv & (\lambda x_1(\lambda x_2(\ldots(\lambda x_nM)\ldots))) \end{array}$$

We define formally the notion of contexts in the λ -calculus.

Definition 2.2 A context C[] in the λ -calculus is inductively defined in the following way:

- x is a context
- [] is a context
- if $C_1[\]$ and $C_2[\]$ are contexts, then $C_1[\]C_2[\]$ and $\lambda x.C_1[\]$ are also contexts.

2.2 Variables and Substitutions

A variable x occurs free in a term M if x is not in the scope of an abstraction λx in M. Otherwise x occurs bound in M.

Definition 2.3 Let M be in Λ , the set fv(M) of free variables of M is inductively defined as follows:

$$\begin{array}{rcl} \mathsf{fv}(x) & = & \{x\} \\ \mathsf{fv}(MN) & = & \mathsf{fv}(M) \cup \mathsf{fv}(N) \\ \mathsf{fv}(\lambda x. M) & = & \mathsf{fv}(M) \setminus \{x\} \end{array}$$

Definition 2.4 Let M be in Λ , the set bv(M) of bound variables of M is inductively defined as follows:

$$\begin{array}{rcl} bv(x) & = & \emptyset \\ bv(MN) & = & bv(M) \cup bv(N) \\ bv(\lambda x.M) & = & bv(M) \cup \{x\} \end{array}$$

A λ -term is closed if and only if $fv(M) = \emptyset$. The set of closed λ -terms is denoted by $\Lambda^0 \subset \Lambda$.

Note that the sets of free and bound variables of a term are not necessarily disjoint: x occurs both free and bound in $x(\lambda xy.x)$.

Definition 2.5 (Substitution) The result of substituting the free occurrences of x by L in M (denoted by M[L/x]) is defined as:

$$\begin{array}{ccc} y[L/x] & \equiv & \begin{cases} L & \textit{if } x \equiv y \\ y & \textit{otherwise} \end{cases} \\ (MN)[L/x] & \equiv & (M[L/x])(N[L/x]) \\ (\lambda y.M)[L/x] & \equiv & \begin{cases} \lambda y.M & \textit{if } x \equiv y \\ \lambda y.(M[L/x]) & \textit{otherwise} \end{cases} \end{array}$$

2.3 The $\langle \Lambda, \beta \rangle$ Reduction System

We will now present a reduction relation on Λ . See [Barendregt, 1984] for more details on this, and other notions of reduction in the λ -calculus. This notion, together with Λ , defines a reduction system for which some properties will be discussed.

Definition 2.6 (β -reduction) The notion of β -reduction on Λ is defined by the following contraction rule:

$$\beta: (\lambda x.M)N \to M[N/x], M, N \in \Lambda$$

A λ -term of the form $(\lambda x.M)N$ is called a β -redex and M[N/x] is his β -contractum.

2.3.1 Substitution and α -equivalence

Some care is needed with substitution to avoid the problem of variable capture.

Consider the term first $\equiv (\lambda xy.x)$. For any given λ -terms M and N, we would expect

$$((\lambda xy.x)MN \rightarrow M.$$

But if we take $M \equiv y$ then

$$((\lambda xy.x)yN \rightarrow N.$$

The problem arises when the free variable y in M enters the scope of a (λy) in $(\lambda xy.x)$. To avoid variable capture, a substitution M[N/x] should only be allowed, in which case we say that x is substitutable by N in M, if x does not occur free in any subterm of M of the form $\lambda y.P$, and $y \in fv(N)$. This condition is ensured if the set of bound variables of M is disjoint from the set of free variables of N:

$$bv(M) \cap fv(N) = \emptyset$$
.

The previous condition can be always be ensure by renaming, when necessary, the bound variables in M. This operation is called α -conversion.

Definition 2.7 A change of bound variable x in a term M is the substitution of a subterm of M of the form $\lambda x.N$ by $\lambda y.(N[y/x])$, where y does not occur in N.

The change of bound variables preserves the meaning of the term, in the sense that it represents the same function. This notion is called α -congruence:

Definition 2.8 (α -congruence) The terms M and N are α -congruent, (notation $M \equiv_{\alpha} N$), if N can be obtained from M, by a series of changes of bound variables, and vice-versa.

In any given context, we will always assume the sets of free and bound variables of any term to be disjoint². Therefore any substitution M[N/x] is valid. Moreover, we do not distinguish terms that are α -congruent (for instance $\lambda x.x \equiv \lambda y.y$).

Definition 2.9 Let β be the notion of reduction in Definition 2.6, and \rightarrow_{β} and \rightarrow_{β} be the binary relations induced by β as described in Definition 1.4. We say that:

- M β -reduces to N in one step, and write $M \to_{\beta} N$;
- M β -reduces to N, and write M $\twoheadrightarrow_{\beta}$ N.

Based on the relations defined above, we can build reduction-graphs for terms in Λ .

Remark 2.10 Note that, the fact that a term M has a β -normal form is not implied neither implies $\mathcal{G}_{\beta}(M)$ to be finite.

2.3.2 Equality of λ -terms

Based on the notion of β -reduction, we define equality between λ -terms. Informally, we say that two λ -terms are equal if M can be transformed into N by a series of reductions/expansions (M expands to N, if N \longrightarrow M). A pictorial representation of the notion of equality is:

Definition 2.11 Let $M, N \in \Lambda$. The notion of equality M = N is formalised by the rules in Figure 2.

²this is known as the Barendregt variable convention

$$(\lambda x.M)N = M[N/x]$$

$$M = M$$

$$M = N \qquad \Rightarrow \qquad N = M$$

$$M = N, N = L \qquad \Rightarrow \qquad M = L$$

$$M = N \qquad \Rightarrow \qquad ML = NL$$

$$M = N \qquad \Rightarrow \qquad LM = LN$$

$$M = N \qquad \Rightarrow \qquad \lambda x.M = \lambda x.N$$

Figure 2: The notion of equality of λ -terms

```
\begin{array}{lll} x \rightrightarrows x \\ M \rightrightarrows M' & \Rightarrow & \lambda x.M \rightrightarrows \lambda x.M' \\ M \rightrightarrows M', N \rightrightarrows N' & \Rightarrow & MN \rightrightarrows M'N' \\ M \rightrightarrows M', N \rightrightarrows N' & \Rightarrow & (\lambda x.M)N \rightrightarrows M'[N'/x] \end{array}
```

Figure 3: The \Rightarrow reduction relation

2.4 Confluence

The β -reduction is Church-Rosser [Barendregt, 1984, Church and Rosser, 1936]. We will show a proof of confluence for the λ -calculus with the β notion of reduction, due to W. Tait and P. Martin-Löf.

We first recall the following result from [Barendregt, 1984].

Lemma 2.12 If a binary relation satisfies the diamond property, then the transitive closure of that relation also satisfies the diamond property.

Proof: As suggested by the following diagram:

We will show that $\twoheadrightarrow_{\beta}$ satisfies the diamond property, by defining the parallel reduction relation \rightrightarrows and proving that \rightrightarrows satisfies the diamond property and that $\twoheadrightarrow_{\beta}$ is the transitive closure of \rightrightarrows .

Definition 2.13 We define a binary relation \Rightarrow on the set of λ -terms inductively as indicated in Figure 3.

Lemma 2.14 If $M \rightrightarrows M'$ and $N \rightrightarrows N'$, then $M[N/x] \rightrightarrows M'[N'/x]$.

Proof: By induction on the definition of \Rightarrow .

• $M \rightrightarrows M'$ is $x \rightrightarrows x$. Then the result follows trivial by hypothesis since

$$M[N/x] \equiv x[N/x] \equiv N \Rightarrow N' \equiv x[N'/x] \equiv M'[N'/x].$$

- $M \rightrightarrows M'$ is $\lambda y.P \rightrightarrows \lambda y.P'$, and is a consequence of $P \rightrightarrows P'$. By induction hypothesis $P[N/x] \rightrightarrows$ P'[N'/x]. Then $\lambda y.(P[N/x]) \Rightarrow \lambda y.(P'[N'/x])$ by the definition of 2.13, thus $(\lambda y.P)[N/x] \Rightarrow (\lambda y.P')[N'/x]$, by the definition of substitution.
- $M \Rightarrow M'$ is $PQ \Rightarrow P'Q'$, and is a consequence of $P \Rightarrow P'$ and $Q \Rightarrow Q'$. Then by induction hypothesis $P[N/x] \Rightarrow P'[N'/x]$ and $Q[N/x] \Rightarrow Q'[N'/x]$. Therefore $PQ[N/x] \equiv P[N/x]Q[N/x]Q \Rightarrow P[N/x]Q[N/x]Q[N/x]$ $P'[N'/x]Q'[N'/x] \equiv P'Q'[N'/x].$
- $M \rightrightarrows M'$ is $(\lambda y.P)Q \rightrightarrows P'[Q'/y]$, and is a consequence of $P \rightrightarrows P'$ and $Q \rightrightarrows Q'$, then:

$$\begin{array}{rcl} M[N/x] & \equiv & (\lambda y.P[N/x])Q[N/x] \\ & \Rightarrow & P'[N'/x][Q'[N'/x]/y] \\ & \equiv & (P'[Q'/y])[N'/x] \\ & \equiv & M'[N'/x] \end{array}$$

Lemma 2.15 \Rightarrow satisfies the diamond property.

Proof: By induction on the definition of \Rightarrow , one can show that if $M \Rightarrow M_1$ and $M \Rightarrow M_2$, then there is a term M_3 such that $M_1 \rightrightarrows M_3$ and $M_2 \rightrightarrows M_3$.

- $M \Rightarrow M_1$ is $x \Rightarrow x$. Then trivially $M_2 \equiv x$ and $M_3 \equiv x$.
- $M \rightrightarrows M_1$ is $\lambda x.P \rightrightarrows \lambda x.P'$ and is a consequence of $P \rightrightarrows P'$. Then $M_2 \equiv \lambda x.P''$. By induction hypothesis there is a term P''' with $P' \Rightarrow P'''$ and $P'' \Rightarrow P'''$, thus take $M_3 \equiv \lambda x.P'''$.
- $M \rightrightarrows M_1$ is $PQ \rightrightarrows P'Q'$ and is a consequence of $P \rightrightarrows P'$ and $Q \rightrightarrows Q'$. Then we have two subcases:
 - $-M_2 \equiv P''Q''$, such that $P \rightrightarrows P''$ and $Q \rightrightarrows Q''$. Then by induction hypothesis there is a term P'''with $P' \rightrightarrows P'''$ and $P'' \rightrightarrows P'''$ and the same for Q, thus take $M_3 = P'''Q'''$.
 - $-P \equiv \lambda x.P_1, M_2 \equiv P_1''[Q''/x] \text{ with } P_1 \Rightarrow P_1'' \text{ and } Q \Rightarrow Q''. \text{ Then one has } P' \equiv \lambda x.P_1' \text{ with } P_1 \Rightarrow P_1'.$ By induction hypothesis and Lemma 2.14 one can take $M_3 \equiv P_1'''[Q'''/x]$.
- $M \rightrightarrows M_1$ is $(\lambda x.P)Q \rightrightarrows P'[Q'/x]$ and is a consequence of $P \rightrightarrows P'$ and $Q \rightrightarrows Q'$. Then we have two subcases:
 - $-M_2 \equiv (\lambda x.P'')Q''$. Then by induction hypothesis and Lemma 2.14 one can take $M_3 = P'''[Q'''/x]$.
 - $-M_2 \equiv P''[Q''/x]$ with $P \Longrightarrow P''$ and $Q \Longrightarrow Q''$. By induction hypothesis and Lemma 2.14 one can can take $M_3 \equiv P'''[Q'''/x]$.

Lemma 2.16 $\twoheadrightarrow_{\beta}$ is the transitive closure of \rightrightarrows .

Proof: If we represent reduction as a relation (thus as a set of pairs), we have:

$$\longrightarrow_{\beta}\subseteq \rightrightarrows \subseteq \twoheadrightarrow_{\beta}$$

Since $\twoheadrightarrow_{\beta}$ is this transitive closure of \longrightarrow_{β} , so it is of \rightrightarrows .

Theorem 2.17 (Church-Rosser) Let M be a λ -term, if $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, there is a λ -term N such that $N_1 \twoheadrightarrow_{\beta} N$ and $N_2 \twoheadrightarrow_{\beta} N$. Thus \longrightarrow_{β} is Church-Rosser.

Proof: By Lemma 2.15 ⇒ satisfies the diamond property. By Lemma 2.16 →_β is the transitive closure of \Rightarrow . The result follows by Lemma 2.12.

2.4.1 The notion of η -reduction

We consider another important notion of reduction, which is called η -reduction.

Definition 2.18 1. The notion of η -reduction is given by

$$\eta: \lambda x.Mx \longrightarrow M$$
, with $x \notin fv(M)$.

2.
$$\beta \eta = \beta \cup \eta$$
.

Theorem 2.19 By is Church-Rosser.

2.5 Normalisation

The $\langle \Lambda, \beta \rangle$ reduction system is not strongly normalising. Consider $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$, and $M \equiv (\lambda xy.y)\Omega$. The reduction path

$$(\lambda xy.y)\Omega \xrightarrow{M}_{\beta} \lambda y.y$$

ends with the normal form of the term, erasing Ω . However, if we try to normalise the subterm Ω , we obtain the following infinite reduction sequence:

$$(\lambda xy.y)\Omega \xrightarrow{\Omega}_{\beta} (\lambda xy.y)\Omega \xrightarrow{\Omega}_{\beta} (\lambda xy.y)\Omega \xrightarrow{\Omega}_{\beta} \cdots$$

A λ -term M that has a normal form, which admits an infinite reduction sequence, reaches the normal form if all the subterms of M that do not have normal forms, are erased. This is obtained if the following strategy is used.

Definition 2.20 F_L is defined as follows:

$$\begin{array}{lll} F_{\it L}(M) & = & M & \textit{if M is in normal form,} \\ & = & M' & \textit{if $M \xrightarrow{\Delta}_{\beta} M'$ and Δ is the leftmost redex in M.} \end{array}$$

The following was proved in [Curry and Feys, 1958].

Theorem 2.21 The reduction strategy F_L is normalising.

 F_L is called the "normal order" strategy and it is related to the call-by-name strategy in programming languages.

The following strategy is due to Barendregt et al. [Barendregt et al., 1976] and was proved to be maximal in [van Raamsdonk et al., 1999].

Definition 2.22 F_{∞} is defined as follows:

$$\begin{array}{lll} \mathsf{F}_{\infty}(x\vec{\mathsf{P}}Q\vec{\mathsf{R}}) & = & x\vec{\mathsf{P}}\mathsf{F}_{\infty}(Q)\vec{\mathsf{R}} & \textit{if } \vec{\mathsf{P}} \in \mathit{NF}_{\beta}, Q \not\in \mathit{NF}_{\beta} \\ \mathsf{F}_{\infty}(\lambda x.\mathsf{P}) & = & \lambda x.\mathsf{F}_{\infty}(\mathsf{P}) \\ \mathsf{F}_{\infty}(\lambda x.\mathsf{P})Q\vec{\mathsf{R}} & = & \mathsf{P}[Q/x]\vec{\mathsf{R}} & \textit{if } x \in \mathsf{fv}(\mathsf{P}), \textit{ or } Q \in \mathit{NF}_{\beta} \\ \mathsf{F}_{\infty}(\lambda x.\mathsf{P})Q\vec{\mathsf{R}} & = & (\lambda x.\mathsf{P})\mathsf{F}_{\infty}(Q)\vec{\mathsf{R}} & \textit{if } x \not\in \mathsf{fv}(\mathsf{P}), \textit{ and } Q \not\in \mathit{NF}_{\beta} \end{array}$$

Theorem 2.23 The reduction strategy F_{∞} is maximal.

2.6 Subsystems of the lambda calculus

Several subsystems of the λ -calculus can be obtained by restricting the set of terms. Here we present three of those systems: the $\lambda_{\mathcal{I}}$ -calculus, the affine λ -calculus and the linear λ -calculus. These systems are obtained by imposing restrictions on variable occurrences on the terms.

In the $\lambda_{\mathcal{I}}$ calculus, in every term of the form $\lambda x.M$, x occurs in M. Therefore β -reduction in $\lambda_{\mathcal{I}}$ never erases terms.

Definition 2.24 Let V be an infinite set of variables. The set of $\lambda_{\mathcal{I}}$ -terms, $\Lambda_{\mathcal{I}}$ is inductively defined from V in the following way:

$$\begin{array}{ccc} x \in \mathcal{V} & \Rightarrow & x \in \Lambda_{\mathcal{I}} \\ M, N \in \Lambda_{\mathcal{I}} & \Rightarrow & (MN) \in \Lambda_{\mathcal{I}} & (\text{Application}) \\ M \in \Lambda_{\mathcal{I}}, \, x \in \mathsf{fv}(M) & \Rightarrow & (\lambda x.M) \in \Lambda_{\mathcal{I}} & (\text{Abstraction}) \end{array}$$

In the affine λ -calculus β -reduction never duplicates terms. Thus, in every term M, every variable occurs free at most once in any subterm of M.

Definition 2.25 Let V be an infinite set of variables. The set of affine λ -terms, Λ_A is inductively defined from V in the following way:

$$\begin{array}{ccc} x \in \mathcal{V} & \Rightarrow & x \in \Lambda_{\mathcal{A}} \\ M, N \in \Lambda_{\mathcal{A}}, \ \ \mathsf{fv}(M) \cap \mathsf{fv}(N) = \emptyset & \Rightarrow & (MN) \in \Lambda_{\mathcal{A}} & (\mathsf{Application}) \\ M \in \Lambda_{\mathcal{A}}, \ x \in \mathcal{V} & \Rightarrow & (\lambda x.M) \in \Lambda_{\mathcal{A}} & (\mathsf{Abstraction}) \end{array}$$

The linear λ -calculus is the intersection of the $\lambda_{\mathcal{I}}$ and the affine λ -calculus. In the linear λ -calculus, in every term M every variable occurs free exactly once in any subterm of M.

Definition 2.26 Let V be an infinite set of variables. The set of linear λ -terms, $\Lambda_{\mathcal{L}}$ is inductively defined from V in the following way:

$$\begin{array}{ccc} x \in \mathcal{V} & \Rightarrow & x \in \Lambda_{\mathcal{L}} \\ M,N \in \Lambda_{\mathcal{L}}, \ \mathsf{fv}(M) \cap \mathsf{fv}(N) = \emptyset & \Rightarrow & (MN) \in \Lambda_{\mathcal{L}} & (\mathsf{Application}) \\ M \in \Lambda_{\mathcal{L}}, \ x \in \mathsf{fv}(M) & \Rightarrow & (\lambda x.M) \in \Lambda_{\mathcal{L}} & (\mathsf{Abstraction}) \end{array}$$

All the notions defined for Λ , are defined in an analogous way for $\Lambda_{\mathcal{I}}$, $\Lambda_{\mathcal{A}}$, and $\Lambda_{\mathcal{L}}$. The sets of terms $\Lambda_{\mathcal{I}}$, $\Lambda_{\mathcal{A}}$, and $\Lambda_{\mathcal{L}}$, with the β -reduction notion respectively define the reduction systems $\langle \Lambda_{\mathcal{I}}, \beta \rangle$, $\langle \Lambda_{\mathcal{A}}, \beta \rangle$, and $\langle \Lambda_{\mathcal{L}}, \beta \rangle$.

2.7 The de Brujin notation

We recall a notation for representing terms in the λ -calculus, which eliminates the necessity for using names of variables. This notation is due to Nicolaas Govert de Bruijn [Bruijn, 1972].

Definition 2.27 1. The set of nameless terms Λ^* has the following alphabet:

$$\lambda$$
, (,), 1, 2, 3, . . .

2. Λ^* is defined inductively in the following way:

$$\begin{array}{ccc} n \in \mathbb{N} \setminus \{0\} & \Rightarrow & n \in \Lambda^* \\ A, B \in \Lambda^* & \Rightarrow & (AB) \in \Lambda^* \\ A \in \Lambda^* & \Rightarrow & \lambda A \in \Lambda^* \end{array}$$

Each De Bruijn index is a natural number that represents an occurrence of a variable in a λ -term, and denotes the number of binders that are in scope between that occurrence and its corresponding binder.

Definition 2.28 The notion of β reduction for nameless terms is defined by the following reduction rule.

$$(\beta): (\lambda P)Q \longrightarrow P[Q/1]$$

Substituition has to be defined in an appropriate way. In the β -reduction $(\lambda M)N$, three aspects need to be consider:

- 1. find the variables n_1, n_2, \ldots, n_k in M under the range of the λ in λM ;
- 2. decrease the free variables of M taking into account the removal of the outer binder;
- 3. replace n_1, n_2, \ldots, n_k with N, suitably increasing the free variables occurring in N each time, to match the number of λ -binders the corresponding variable occurs under when substituted.

Definition 2.29 Let $M, N \in \Lambda^*$ and $n \in \mathbb{N} \setminus \{0\}$. Substitution M[N/n] is inductively defined as:

$$\begin{array}{ccc} m[N/n] & \equiv & \begin{cases} m & \text{if } m < n \\ m-1 & \text{if } m > n \\ \text{remane}_{(m,1)}(N) & \text{if } m = n \end{cases} \\ (M_1M_2)[N/n] & \equiv & (M_1[N/n])(M_2[N/n]) \\ (\lambda M)[N/n] & \equiv & \lambda (M[N/n+1]) \end{array}$$

and $remane_{(n,i)}(M)$ is inductively defined as:

$$\begin{array}{lll} \mathsf{remane}_{(\mathfrak{n},\mathfrak{i})}(\mathfrak{j}) & \equiv & \begin{cases} \mathfrak{j} & \mathit{if} \ \mathfrak{j} < \mathfrak{i} \\ \mathfrak{j} + \mathfrak{n} - 1 & \mathit{if} \ \mathfrak{j} \geq \mathfrak{i} \end{cases} \\ \mathsf{remane}_{(\mathfrak{n},\mathfrak{i})}(M_1M_2) & \equiv & (\mathsf{remane}_{(\mathfrak{n},\mathfrak{i})}(M_1))(\mathsf{remane}_{(\mathfrak{n},\mathfrak{i})}(M_2)) \\ \mathsf{remane}_{(\mathfrak{n},\mathfrak{i})}(\lambda M) & \equiv & \lambda(\mathsf{remane}_{(\mathfrak{n},\mathfrak{i}+1)}(M)) \end{cases}$$

We can can define a translation from Λ to Λ^* :

DB
$$x(x_1,...,x_n)$$
 \equiv i, where i is the minimum such that $x \equiv x_i$ DB $(\lambda x.M)$ $(x_1,...,x_n)$ \equiv $\lambda(DB M (x,x_1,...,x_n))$ DB (MN) $(x_1,...,x_n)$ \equiv $(DB M (x_1,...,x_n))(DB N (x_1,...,x_n))$

Exercises

- 1 For any of the following λ -terms reduce them to β normal for (if possible):
 - (a) xy
 - (b) $(\lambda x.x)(yz)$
 - (c) $(\lambda x.xy)(\lambda z.z)$
 - (d) $(\lambda xy.xy)$
 - (e) $(\lambda x.x\lambda x.xy)(yy)$
 - (f) $(\lambda x.xx)(\lambda x.xx)$
 - (g) $(\lambda x.xxx)(\lambda x.xxx)$

- (h) $(\lambda xy.y)((\lambda x.xx)(\lambda x.xx))b$
- (i) M = AAx where $A = \lambda axz.z(aax)$
- 2 What is wrong with the following reductions?
 - (a) $(\lambda xy.yx)y \longrightarrow_{\beta} \lambda y.yy$
 - (b) $(\lambda xx.xx)y \longrightarrow_{\beta} \lambda x.yy$
 - (c) $(\lambda x.xx)(\lambda y.ay)k \longrightarrow_{\beta} (\lambda x.xx)ak \longrightarrow_{\beta} akak$
- 3 Let $S = \lambda xyz.xz(yz)$, $K = \lambda xy.x$, $B = \lambda xyz.x(yz)$ and $I = \lambda x.x$. Show that
 - (a) $S(KI) \longrightarrow_{\beta\eta}^* I$
 - (b) BI $\longrightarrow_{\beta\eta}^* I$
 - (c) SKK $\longrightarrow_{\beta\eta}^* I$
 - (d) $S(KS)K \longrightarrow_{\beta\eta}^* B$
- 4 Let $T_1=(\lambda x.xx)(\lambda x.xx)$ and $T_2=(\lambda xy.yx)(\lambda x.xx)(\lambda x.x)$. Can T_1 and T_2 be reduced to the same λ -term T?
- 5 If M and N are two λ -terms, then $M \equiv_{\alpha} N$ if they are the same λ -term or if one can be obtained from the other by a change of bound variables. For example $(\lambda x.x)z \equiv_{\alpha} (\lambda y.y)z$ and $(\lambda x.x)z \not\equiv_{\alpha} (\lambda x.y)z$. Prove, by strutural induction of a λ -term M that if $x \neq y$ and if $x \notin FV(L)$ then:

$$M[N/x][L/y] \equiv_{\alpha} M[L/y][N[L/y]/x]$$

- 6 Show that if x does not occur free in the λ -term M, $\forall N.M[N/x] = M$.
- 7 Consider the \rightarrow_1 in Λ , inductively defined in the following way:

$$\begin{array}{cccc} M \twoheadrightarrow_1 M \\ M \twoheadrightarrow_1 M' & \Rightarrow & \lambda x.M \twoheadrightarrow_1 \lambda x.M' \\ M \twoheadrightarrow_1 M', N \twoheadrightarrow_1 N' & \Rightarrow & MN \twoheadrightarrow_1 M'N' \\ M \twoheadrightarrow_1 M', N \twoheadrightarrow_1 N' & \Rightarrow & (\lambda x.M)N \twoheadrightarrow_1 M'[N'/x] \end{array}$$

Prove, by induction on M, that if $N \rightarrow 1 N'$, then $M[N/x] \rightarrow 1 M[N'/x]$.

- 8 Prove, by induction on the definition of \rightarrow_1 , the following properties:
 - (a) $\lambda x.M \rightarrow 1 N$, implies that $N \equiv \lambda x.M'$ and $M \rightarrow 1 M'$
 - (b) $MN \rightarrow_1 L$, implies that

$$L \equiv M'N'$$
 and $M \rightarrow_1 M'$, $N \rightarrow_1 N'$

or

$$M \equiv \lambda x.P$$
, $L \equiv P'[N'/x]$ and $P \rightarrow_1 P'$, $N \rightarrow_1 N'$

- 9 Write the following λ -terms using the De Brujin notation:
 - (a) $(\lambda xy.y)((\lambda x.xx)(\lambda x.xx))(\lambda y.y)$
 - (b) $(\lambda fx.f(f(x)))(\lambda zw.z(z(zw)))$
 - (c) $M = \lambda x.AAx$ where $A = \lambda axz.z(aax)$

- 10 Reduce to normal form the following De Brujin terms:
 - (a) $(\lambda(\lambda 2)1)(\lambda 321)$
 - (b) $(\lambda \lambda .2(2(21)))(\lambda \lambda 2(21))$
 - (c) $(\lambda\lambda\lambda31(21))(\lambda\lambda2)(\lambda1)$
- 11 Consider the set Λ^* , of De Brujin terms. Define a function BL: $\Lambda^* \longrightarrow \Lambda$ that converts terms in the De Brujin notation, to λ -calculus.
- 12 Consider the following set of term Λ' defined inductively as:

$$\begin{array}{ccc} x \in \mathcal{V} & \Rightarrow & x \in \Lambda' \\ M, N \in \Lambda' & \Rightarrow & (MN) \in \Lambda' \\ M \in \Lambda', \ x \in \mathcal{V} & \Rightarrow & (\lambda x M) \in \Lambda' \\ M, N \in \Lambda', \ x \in \mathcal{V}, \ i \in \mathbb{N} & \Rightarrow & ((\lambda_i x M) N) \in \Lambda' \end{array}$$

and the following functions $|\cdot|$, $\varphi(\cdot): \Lambda' \to \Lambda$:

$$\begin{array}{rcl} |x| & = & x \\ |MN| & = & |M||N| \\ |\lambda x.M| & = & \lambda x.|M| \\ |(\lambda_i x.M)N| & = & (\lambda x|M|)|N| \\ \\ \varphi(x) & = & x \\ \varphi(MN) & = & \varphi(M)\varphi(N), \text{ if } M \not\equiv (\lambda_i xP), \\ \varphi(\lambda x.M) & = & \lambda x.\varphi(M) \\ \varphi((\lambda_i x.M)N) & = & \varphi(M)[\varphi(N)/x] \end{array}$$

Let $\beta' = \beta_0 \cup \beta_1$ as defined in lectures.

Prove the following properties:

- 1. If $M \twoheadrightarrow_{\beta} N$ and M = |M'| then there exists N' such that $M' \twoheadrightarrow_{\beta'} N'$ and N = |N'|.
- 2. If $M' \rightarrow_{\beta'} N'$ then $|M'| \rightarrow_{\beta} |N'|$.
- 3. $\varphi(M[N/x]) \equiv \varphi(M)[\varphi(N)/x]$.
- 4. If $M \rightarrow_{\beta'} N$ then $\phi(M) \rightarrow_{\beta} \phi(N)$.
- 5. If $M \in \Lambda'$ then $|M| \twoheadrightarrow_{\beta} \phi(M)$.

References

- [Barendregt, 1984] Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, second, revised edition.
- [Barendregt et al., 1976] Barendregt, H. P., Bergstra, J., Klop, J. W., and Volken, H. (1976). Degrees, reductions and representability in the lambda calculus. Technical Report Preprint no.22, University of Utrecht, Department of Mathematics.
- [Bruijn, 1972] Bruijn, N. G. D. (1972). Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser theorem. INDAG. MATH, 34:381-392.
- [Church and Rosser, 1936] Church, A. and Rosser, J. B. (1936). Some Properties of Conversion. Transactions of the American Mathematical Society, 39(3):472-482.
- [Curry and Feys, 1958] Curry, H. and Feys, R. (1958). Combinatory Logic, volume 1. North-Holland, Amsterdam.
- [Dershowitz and Jouannaud, 1990] Dershowitz, N. and Jouannaud, J.-P. (1990). Rewrite Systems. In van Leeuwen, J., editor, *Handbook of Theoretical Computer Science*, volume B: Formal Models and Semantics, chapter 6, pages 243–320. North-Holland, Amsterdam.
- [Klop, 1992] Klop, J. W. (1992). Term Rewriting Systems. In Abramsky, S., Gabbay, D. M., and Maibaum, T. S. E., editors, *Handbook of Logic in Computer Science: Background Computational Structures* (Volume 2), pages 1-116. Clarendon Press, Oxford.
- [van Raamsdonk et al., 1999] van Raamsdonk, F., Severi, P., Sorensen, M. H. B., and Xi, H. (1999). Perpetual reductions in λ-calculus. *Information and Computation*, 149(2):173-225.