Autonomous Drone System with ArduPilot, Raspberry Pi, and YOLOv8 Integration

Autonomous Drone System with ArduPilot, Raspberry Pi, and YOLOv8 Integration

Overview

This document outlines the complete workflow to set up and run an autonomous drone mission using Pixhawk (ArduPilot), Raspberry Pi, a YOLOv8-based litter detection system, and a servo picker mechanism. It includes configuration steps, code placement, and system architecture.

1. ArduPilot Configuration (Using Mission Planner on PC)

Software: Mission Planner (Windows)

Steps:

- 1. Connect the Pixhawk via USB.
- 2. Flash ArduCopter firmware from the "Install Firmware" tab.
- 3. Calibrate:
 - Accelerometer
 - Compass
 - Radio (RC)
 - ESCs
- 4. Connect:
 - GPS
 - Telemetry Radio
 - Power Module
- 5. Configure Flight Modes:
 - Stabilize / AltHold (for testing)
 - Loiter (for hovering during detection)
 - AUTO (for autonomous missions)
 - GUIDED (for dynamic control via Raspberry Pi)
- 6. Set Return to Launch (RTL) as the failsafe action.
- 7. Upload Patrol Waypoints using the waypoints.txt file via PLAN > Load WP > Write WPs.
- 2. Autonomous Mission Script (mission.py)

Location: Raspberry Pi

Steps:

- 1. Transfer mission.py to the Raspberry Pi.
- 2. Ensure DroneKit is installed.
- 3. Connect Pixhawk via serial (/dev/serial0) or USB.
- 4. Run the script.

Purpose: Manages arming, takeoff, patrol, detection pause, litter pick-up, and return to launch (RTL).

3. YOLOv8 Litter Detection Script (yolo_detect.py)

Location: Raspberry Pi

Steps:

- 1. Install dependencies.
- 2. Edit mission.py to import the detection function.
- 3. Implement is litter detected() in yolo detect.py to return True when litter is detected with high confidence.
- 4. Ground Station Dashboard (Flask Web App)

Files: app.py (backend), dashboard.html (frontend)

Location: Raspberry Pi

Steps:

1. Place both files in the same directory.

Autonomous Drone System with ArduPilot, Raspberry Pi, and YOLOv8 Integration

- 2. Install Flask.
- 3. Run the dashboard.
- 4. Access in browser via http://<raspberry_pi_ip>:5000/

Function: Displays live telemetry (GPS, battery, altitude, and flight mode).

5. Servo Picker Configuration

GPIO Pin Mapping (BCM):

- 17: Arm movement
- 18: Claw open/close
- 27: Optional (e.g., wrist rotation)

Wiring Notes:

- Connect servos through a servo driver (e.g., PCA9685) or directly via GPIO with external power.
- Tune angles in pick_litter() according to your mechanical design.
- 6. Folder & File Structure
 /home/pi/drone_project/
 mission.py
 yolo_detect.py
 /home/pi/drone_dashboard/
 app.py
 dashboard.html

- Replace the dummy detect_litter() logic with live YOLOv8 detection.
- Adjust servo angles to match your arm/gripper mechanics.
- Test in STABILIZE mode before switching to AUTO.
- Optionally, configure the system to auto-launch on boot using systemd or cron.

Prepared by: [Your Name]

Date: [Insert Date]

Project: Autonomous Drone for Outdoor Waste Management