Lecture 3

A point to remember

Symmetric-Key Cryptography: Sender and Receiver both know the secret key. The encryption and decryption algorithms need not be identical.

Public Key Cryptography

University of Birmingham

Outline of This Lecture

- Diffie-Hellman Key Exchange
- The Setup of Public Key Cryptography
- RSA Encryption and Signatures
- Public Key Certificates

Secure Key Exchange

Public parameter:

Example: Suppose p = 13 and g = 7.

Secure Key Exchange

Public parameter: g, p

Secure Key Exchange: Idea of Public-Key Cryptography

$$K = (B)^a \mod p = g^{aa} \mod p$$

$$K = (A)^a \mod p = g^{ab} \mod p$$

Public Keys

 $q^a \mod p$ and $q^b \mod p$ can be called public keys. The secrets a and b are private keys.

Public Keys needs to be authenticated

Public parameter:

Encryption and Authentication using Public Keys

Encryption using Public-Key

- Encryption uses receiver's Public-Key
- Decryption uses receiver's Private-Key

Encryption using RSA

Procedure $Keygen(1^{\lambda})$	Procedure $Encrypt(PK, m)$	Procedure $Decrypt(SK, c)$
01 : Choose two random $\lambda/2$ -bit primes p and q	// We assume $m \in \mathbb{Z}_n^*$	01: $m = c^d \mod n$
$02: n = p \cdot q$	01: $c = m^e \mod n$	02: return m
03: $\phi = (p-1)(q-1)$	02: return c	
04: Select e such that		
$1 < e < \phi$ and $gcd(e, \phi) = 1$		
05: Compute d such that		
$1 < d < \phi$ and $ed \equiv 1 \pmod{\phi}$		
06: Set $PK = (e, n)$		
07: Set $SK = (d, n)$		
08: return (PK, SK)		

Encryption using RSA:Example

Procedure $Keygen(1^{\lambda})$	${\bf Procedure} \ {\bf Encrypt}(PK,m)$	Procedure $Decrypt(SK, c)$
01 : Choose two random $\lambda/2$ -bit primes p and q	// We assume $m \in \mathbb{Z}_n^*$	01: $m = c^d \mod n$
02: $n = p \cdot q$	01: $c = m^e \mod n$	02: return m
03 : $\phi = (p - 1)(q - 1)$	02: return c	
04 : Select e such that		
$1 < e < \phi$ and $gcd(e, \phi) = 1$		
05 : Compute d such that		
$1 < d < \phi$ and $ed \equiv 1 \pmod{\phi}$		
06 : Set $PK = (e, n)$		
07 : Set SK = (d, n)		
08 : return (PK, SK)		

- ▶ Let p = 5, q = 11
- $n = 55, \phi(n) = 4 \times 10 = 40$
- ▶ Suppose e = 7. Then d = 23 as $7 \times 23 = 161 \equiv 1 \mod 40$
- ightharpoonup PK=(7, 55), SK=(23, 55)

Notes on RSA

- ▶ RSA security depends on hardness of finding d from e, n; Related to hardness of factoring of n.
- ➤ The textbook algorithms are deterministic. In practice, some random padding is used.
- Shor's quantum algorithm can solve factoring in polynomial time. However, a quantum computer of required capacity is still quite far away in the future.

Notes on RSA

- ► RSA security depends on hardness of finding *d* from *e*, *n*; Related to hardness of factoring of *n*.
- ➤ The textbook algorithms are deterministic. In practice, some random padding is used.
- Shor's quantum algorithm can solve factoring in polynomial time. However, a quantum computer of required capacity is still quite far away in the future.
- ▶ Wikipedia says any m < n would work. Strictly speaking, it is required that $\gcd(m,n)=1$. On the other hand, finding a m < n such that $\gcd(m,n)>1$ will lead to finding p or q, and breaking the system.

Digital Signatures

 $\textbf{Signature Scheme} \; (\mathsf{Gen},\mathsf{Sign},\mathsf{Verify})$

- Correctness
- Unforgeability

Gen

(pk, sk)

Digital Signatures

Signature Scheme (Gen, Sign, Verify)

Digital Signatures

Signature Scheme (Gen, Sign, Verify)

Signature using RSA

```
Procedure Keygen(1^{\lambda})
                                                     Procedure Sign(SK, m) Procedure Verify(PK, m, \sigma)
      Choose two random \lambda/2-bit primes p and q // We assume m \in \mathbb{Z}_n^* 01: if H(m) = \sigma^e \mod n
                                                     01: \sigma = H(m)^d \mod n 02: return Accept
    n = p \cdot q
02:
03: \phi = (p-1)(q-1)
                                                           return \sigma
                                                                                 03: else return Reject
04: Select e such that
     1 < e < \phi and gcd(e, \phi) = 1
05: Compute d such that
     1 < d < \phi \text{ and } ed \equiv 1 \pmod{\phi}
06 : Set PK = (e, n)
07 : Set SK = (d, n)
08: return (PK, SK)
```

What is H

H is a cryptographic hash function. More on hash functions next week.

Signature using RSA

```
Procedure Keygen(1^{\lambda})
                                                     Procedure Sign(SK, m) Procedure Verify(PK, m, \sigma)
      Choose two random \lambda/2-bit primes p and q // We assume m \in \mathbb{Z}_n^* 01: if H(m) = \sigma^e \mod n
                                                     01: \sigma = H(m)^d \mod n 02: return Accept
    n = p \cdot q
02:
03: \phi = (p-1)(q-1)
                                                           return \sigma
                                                                                 03: else return Reject
04 · Select e such that
     1 < e < \phi and gcd(e, \phi) = 1
05: Compute d such that
     1 < d < \phi \text{ and } ed \equiv 1 \pmod{\phi}
06 : Set PK = (e, n)
07 : Set SK = (d, n)
08: return (PK, SK)
```

What is H

 ${\it H}$ is a cryptographic hash function. More on hash functions next week.

Why use H

Possible attack without H.

Authenticating Public Keys

Certificates of Public-Key. Demo in class.