gauge 1647.
Hard Lefschetz for Ehar. vars - A. Tellit
Context (Iv12)
-X smooth proj/a din d, w EHZ(X)
hyperplane class, w= c, (L) -(1 w) k; Hd-k-> Hd+k 18 180.
-(1 w) 12; H 1 -> 14 4 - 15 150.
- Rmk: similar thing in Sympl. hol. affine
Example 1 TT = (CX) 2d w= Za: dt: dt; log-canonical, airsa; nordey. - then (lw) k: Hd-k(TT) -> Hd+k(TT) 150
Le (Auskindekitt) aldrkitt
-> but here d is hall at dim
-> but here d is half of ding Example 2 (*x C*, w= dx x dy -X = Bliso) (*x C*
-X = B((1)0) (xx 4x
x-1=y.z, x ∈ C
Z = compliant of TEPISES (2 +
i) as a set x= (xx(x))
- w 150 H°(x)= Z = H²(x)
Example 3
-same, but another Blat (0,1)
5) X-1= y Z1 y-1= X Zz => y Z1Zz + Zz-y+1= 6
("avgmentation val." assoc. Hb(x)= 2 ~ H1(x) to trefoil knot
-3 ply graded khovanov honology.
, , ,

Example 4 - Blowup at 4 pts - secoll Blops (P2 = cubic -ous blowop => affine cubic ~> char. var. of 191 4 pts rlez q". - H (TT) = 2 29-H'(T)= 72-> H6((U(. ())= 26 1 .. 1-12(1) - 7 Thin Fix d. Suppose & filtered by closed Subvarieties X: < Xi x Cai

X: \ Xi = 1 ((x) zd-zu: x (ai Suppose X has a closed hol. z-for-w s.t. its restriction to (4x)2d-za: x (2i 15 a pullback via projection of log-canonical nonley form on (It)2d-2ai Then corrows hard Lefschetz holds: Cos21-2; Hi (1w) Grad+2; Hj+2? chas. var of Zysk (Todge) Mstable lliggs
affine vas. 66soruation 1 Hausel-Letellier, Rodrigues-Villegas conjectured explicit formula for refined Poincaré polyn & Z[q, f] of charvas w/ mysteriors gest symmetry

66servation Z (Follow Jp + de Ealallo, Migliorini)
P=W conjecture: Wz: = Pi, where P parverse Laray fibration on H(X) induced by Hitchin unp X-00
on H(X) induced by Hitchin was x-
•