5

6

1

CLAIMS

A spatial sound conference system comprising:

We claim:

1.

2	a conference station comprising:						
3	right and left spatially disposed microphones connected to a						
4	communication channel for receiving right and left audio signals, wherein the						
5	differences between the right and left audio signals represent a head-related						
6	transfer function; and						
7	a remote station comprising:						
8	right and left spatially disposed loudspeakers connected to the						
9	communication channel.						
1	2. A spatial sound conference system according to claim 1, further						
2	comprising:						
3	a compression unit connected to the right and left spatially disposed						
4	microphones for compressing the right and left audio signals; and						
5	a decompression unit connected to the right and left spatially disposed						
6	loudspeakers for decompressing the compressed right and left audio signals.						
1	3. A spatial sound conference system according to claim 1, further						
2	comprising:						
3	a microphone positioned in the remote station and connected to the						
4	communication channel for receiving an audio signal; and						

a loudspeaker positioned in the conference station and connected

through the communication channel to the microphone.

(D
LTI
J
Ũ
===== ====
M
- BAN
2

	Attorney Docket	No. 414.013
1	4. A spatial sound conference system according to claim	3, further
2	comprising:	
3	a compression unit connected to the microphone position	ed in the
4	remote station for compressing the audio signal; and	
5	a decompression unit connected to the loudspeaker position	ned in the
6	conference station for decompressing the compressed audio signal.	
1	5. A spatial sound conference system according to claim 1, w	herein the
2	right and left spatially disposed microphones are positioned on a dur	nmy head.
1	6. A spatial sound conference system according to claim	5, further
2	comprising:	
3	a microphone positioned in the remote station and connec	ted to the
4	communication channel for receiving an audio signal; and	
5	a loudspeaker positioned proximal to the dummy head and	connected
6	through the communication channel to the microphone.	
1	7. A spatial sound conference system according to claim	5, further
2	comprising:	
3	a microphone positioned in the remote station and connec	ted to the
4	communication channel for receiving an audio signal; and	
5	right and left spatially disposed loudspeakers positioned	ed in the
6	conference station and connected through the communication char	inel to the
7	microphone.	
1	8. A spatial sound conference system according to claim	5, further

2 comprising:

> a head-tracking sensor in the remote station connected to the communications channel; and

> a position simulator attached to the dummy head and connected through the communication channel to the sensor.

3

4

5 6 1

2

1

2

4

5

6

7

8

9

10

11

1 2 3

4

5

6

9.	Α	spatial	sound	conference	system	according	to	claim	1,	further
comprising:										

a video camera positioned in the conference station and connected to the communication channel for receiving a video image; and

- a display positioned in the remote station and connected through the communication channel to the video camera.
- 1 **10**. A spatial sound conference system according to claim 9, wherein the 2 video camera is positioned near the location of eyes on a dummy head.
- 1 11. A spatial sound conference system according to claim 9, wherein the 2 display is a head-mounted display.
 - A spatial sound conference system according to claim 1, wherein the **12**. right and left spatially disposed loudspeakers are a headset.
 - 13. A method for conducting a spatial sound conference comprising the steps of:

converting audio information into right and left audio signals at a conference station, wherein the conversion imparts a differential characteristic to the right and left audio signals, and the differential characteristic is represented by a head-related transfer function, and the right and left audio signals comprise spatialized audio;

transmitting audio information representative of said spatialized audio from the conference station across a communication channel to a remote station; and

playing the spatialized audio in the remote station.

1 A method for conducting a spatial sound conference according to claim 14. 2 13, further comprising the steps of:

3	compressing the right and left audio signals after the step of converting;
4	and
5	decompressing the compressed right and left audio signals after the step
6	of transmitting.
1	15. A spatial sound conference system comprising:
2	a transmitting station comprising:
3	a microphone connected to a communications system for receiving
4	an audio signal;
5	a head-related transfer function unit connected to the communications
6	system for imparting a head-related transfer function to the audio signal to
7	produce a spatialized audio signal; and
8	a receiving station comprising:
9	right and left spatially disposed loudspeakers connected to the
10	communication system for receiving the spatialized audio signal.
1	16. A spatial sound conference system according to claim 15, further
2	comprising:
3	a compression unit connected to the microphone for compressing the
4	audio signal; and
5	a decompression unit connected to the head-related transfer function
6	unit for decompressing the compressed audio signal.
1	17. A spatial sound conference system according to claim 15, further
2	comprising:
3	a compression unit connected to the head-related transfer function unit
4	for compressing the spatialized audio signal; and
5	a decompression unit connected to the right and left spatially disposed
6	loudspeakers for decompressing the compressed spatialized audio signal.

1	18.	A spatial sound conference system according to claim 15, wherein the								
2	head	head-related transfer function unit is contained in a spatial sound conference								
3	brid	bridge.								
1	19.	A method for conducting a spatial sound conference comprising the steps								
2	of:									
3		receiving an audio signal at a transmitting station;								
4		transmitting the audio signal from the transmitting station to a spatial								
5	soun	d conference bridge;								
6		imparting a head-related transfer function to the audio signal to create								
7	a spa	atialized audio signal;								
8		sending the spatialized audio signal from the spatial sound conference								
9	brid	ge to a receiving station; and								
.0		playing the spatialized audio signal on spatially disposed loudspeakers								
.1	at th	ne receiving station.								
1	20.	A method for conducting a spatial sound conference according to claim								
2	19, f	urther comprising the steps of:								
3		compressing the audio signal after the step of receiving; and								
4		decompressing the compressed audio signal after the step of								
5	trans	transmitting.								
1	21.	A method for conducting a spatial sound conference according to claim								
2	19, f	urther comprising the steps of:								
3		compressing the spatialized audio signal after the step of imparting; and								
4		decompressing the compressed spatialized audio signal after the step of								
5	sending.									
1	22.	A method for conducting a spatial sound conference comprising the steps								
2	of:									
3		receiving an audio signal at a transmitting station;								

4

5

6

7

8

9

1

2

4

5

6

7

1

2

3

4

1

2

3

4

transmitting the audio signal from the transmitting station to a receiving station;

imparting a head-related transfer function to the audio signal to create spatialized audio signal;

playing the spatialized audio signal on spatially disposed loudspeakers in the receiving station.

23. A method for conducting a spatial sound conference according to claim 22, further comprising the steps of:

compressing the audio signal after the step of receiving; and decompressing the compressed audio signal after the step of transmitting.

24. A spatial sound conference bridge comprising:

at least two input ports for receiving at least two audio signals;

a head-related transfer function unit connected to the at least two input ports for imparting a head-related transfer function to at least one received audio signal to produce at least one spatialized audio signal; and

at least two output ports connected to the head-related transfer function unit for transmitting the spatialized audio signal.

- 25. A spatial sound conference bridge according to claim 24, further comprising:
- a decompression unit connected to at least one input port for decompressing at least one audio signal.
- 26. A spatial sound conference bridge according to claim 24, further comprising:
- a compression unit connected to at least one output port for compressing at least one spatialized audio signal.

Attorney Docket No. 414.013

1	27. A method for conducting a spatial sound conference comprising the st	teps
2	of:	
3	receiving at least two monaural audio signals;	
4	generating at least two sets of spatialized audio signals from the at le	east
5	two monaural audio signals using at least two head-related transfer function	ons;
6	compiling at least one composite signal from the at least two set	s of
7	spatialized audio signals;	
8	transmitting at least one composite signal to a location; and	
9	playing at least one composite signal at the location.	