Announcement:

HW7 posted (due Wed. 10/25)

Recall:

K(G) = min. size of SEVGI s.t. GIS is disconn.

K(G) = min. size of FSE(G) s.t. GIF is disconn.

Whitney's Thm: K(G) = K'(G) = F(G) if G: simple

Today's goal: give several characterizations of 2-connected graphs.

Def 4.2.1: Two u, v-paths are internally disjoint if their intersection is fu, vz.

Thm 4.2.2: Let G be a graph w/ = 3 vertices. Then,

G is

2-connected

3 two internally

disjoint u,v-paths

- $PF: \Leftarrow$ If G has internally disjoint u,u-paths for all $u,v \in V(G)$, then deleting one vertex from G leaves ≥ 1 u,v-path for all remaining vertices u and v.
- \Rightarrow) Suppose that G is 2-conn. and let u, $v \in V(G)$. Use induction on d(u,v)

Base case: d(u,v) = 1. Since by Whitney's Thm.

K'(G)≥K(G)≥2, G'uv is conn. anyelse

u v

Thus, I a u,v-path in G\uv, and this is internally disjoint from the path u, uv, v.

Inductive step: Let $k := d(u,v) \ni 2$. Choose any minimum-length u,v-path, and let w be the vertex next to v on this path, so d(u,w) = k-1.

By the inductive hyp., G has internally-disjoint u,w-paths P and Q. If $v \in V(P) \cup V(Q)$, then we obtain internally hisjoint u,v-paths

Now assume $V \notin V(P) \cup V(Q)$. Since G is 2-conn., G\w is conn. and thus contains a n,v-path R. Let z be the last vertex before ν belonging to PUQ (WLOG, say $\tau \in P$)

Since P and Q are internally disjoint, the U, Z-Subpath of P followed by the Z,v-subpath of R is internally disjoint from Q followed by WV.

Thm 4.2.2: Let G be a graph $\omega/\ge 3$ vertices. TFAE:

A) G is conn. and has no cut-ventex are equiv.

B) Yx, y & V(G), 3 internally-disjoint x, y-paths

c) $\forall x, y \in V(G)$, 3 cycle containing x and y

D) $\delta(G) \ge 1$, and $\forall e, f \in E(G)$, $\exists cycle containing e and <math>f$ E) G is 1-conn.

Pf: A Defin of 2-conn.

B 🖨 E: Thm. 4.2.2.

 $D \Rightarrow C: \mathcal{S}(G) \ge 1 \Rightarrow x$ and y are not iso. If e is incident to x and f is incident to y, by D, \exists cycle containing e and f, So containing x and y. (If e is incident to both x and y, let f be any other edge).

Interlude:

Expansion Lemma (4.2.3): If G is k-conn. and G' is obtained from G by adding a new vertex y w $\geq k$ neighbors in G, then G' is k-conn.

Pf by picture:

Finish pf of Thm 4.2.4:

A,C,E \Rightarrow D: Since G is conn., $\delta(G) \ge 1$. Let uv, $xy \in E(G)$. Let G' be the graph w/

V(G) = V(G) U {W, 23} &G E(G) = E(G) U {WW, VW, XZ, YZ}

Def: G: graph

b) An ear of G is a max'l path whose internal vertices have degree 2 in G.

Class activity: Find the ears!

c) An ear decomposition of G is a decomposition Po,.., Pk s.t. Po is a cycle and For i ≥ 1, Pi is an ear of Po U... UP.

Class activity: find an ear decomposition:

