Inlämningsuppgift 4

Samma instruktioner som inlämningsuppgift 1 – (Läs dessa!)

Nedan finns ett korsord (eller rättare sagt ett "korstal") som skall lösas. **OBS! Varje uträkning skall redovisas** med de metoder som lärts ut i kursen, dvs det är inte tillåtet att använda räknedosa, appar, internet för talomvandlingar. (Handskrivet går bra.) Om man tycker att ASCII-tabellen i läroboken är otydlig kan man använda valfri.

Lodrätt 1	10 1110 0011 ₂ -> BCD-kod
Lodrätt 2	11 1100 0111 ₂ -> Oktalt (Ledning: Gå inte via decimalt)
Lodrätt 3	1111 0000 0000 1110 ₂ -> Hexadecimalt (Ledning: Gå inte via decimalt)
Lodrätt 4	ASCII(55 ₁₀), dvs ASCII-tecknet för talet 55 ₁₀
Lodrätt 5	119 ₁₀ -> Oktalt (Ledning: Divisionsalgoritm med 8)
Lodrätt 6	732 ₈ -> Binärt (Ledning: Gå inte via decimalt)
Lodrätt 7	267B ₁₆ -> Decimalt
Lodrätt 8	1101011 ₂ -> Gray-kod
Lodrätt 9	0010111 ₂ -> 2-kompl
Vågrätt 1	0010 0001 0001 _{BCD} -> Decimalt
Vågrätt 2	261 ₈ -> Decimalt
Vågrätt 3	13E ₁₆ -> Binärt (Ledning: Gå inte via decimalt)
Vågrätt 4	Talet (decimalt) som ger "k" som ASCII-tecken
Vågrätt 5	8033 ₁₀ -> Hexadecimalt (Ledning: Divisionsalgoritm med 16)
Vågrätt 6	11CD ₁₆ -> Oktalt (Ledning: Gå inte via decimalt)
Vågrätt 7	602 ₁₀ -> Binärt (Ledning: Kör via divisionsalgoritm för hexadecimalt)
Vågrätt 8	7241 ₈ -> Hexadecimalt (Ledning: Gå inte via decimalt)
Vågrätt 9	0111 ₂ - 0011 ₂ OBS! Tvåkomplement skall användas!
Vågrätt 10	00010 ₂ - 01001 ₂ OBS! Tvåkomplement skall användas!
1-1	

Lösning

Lodrätt

Lodrätt 1

$(10\ 1110\ 0011)_2 -> BCD-kod$

Gör om till decimalt

$$512+128+64+32+2+1 = 739_{10}$$

Vi ska då representera 7, 3 och 9 binärt

$$7 = (8*0) + (4*1) + (2*1) + (1*1) = 0111$$

 $3 = (8*0) + (4*0) + (2*1) + (1*1) = 0011$
 $9 = (8*1) + (4*0) + (2*0) + (1*1) = 1001$

Svar: 0111 0011 1001

Lodrätt 2

$(11\ 1100\ 0111)_2$ -> oktalt

Börja med att gruppera om siffror till 3 och 3:

001 111 000 111

Sätt "421" under varje grupp, addera siffrorna under för varje etta ovanför

Svar: $(11\ 1100\ 0111)_2 = > 1707_8$

Lodrätt 3

$(1111\ 0000\ 0000\ 1110)_2$ -> Hexadecimalt

Ungefär samma tillvägagångssätt som ovan, men gruppera om fyra

Svar $(1111\ 0000\ 0000\ 1110)_2 => F00E_{16}$

Lodrätt 4

ASCII(55₁₀), dvs ASCII-tecknet för talet 55₁₀

Det går att utläsa från valfri ASCII-tabell att $55_{10} =$ "7"

Lodrätt 5

$$119_{10}$$
 -> Okt

*Svar: $119_{10} = > 167_8$

Lodrätt 6

732_8 -> binärt

Ta en siffra i taget, vänster till höger, och representera den binärt med tre siffror. "Sätt ihop" resultaten.

7 => 111

3 => 011

2 => 010

Svar: 111 011 010

Lodrätt 7

$267B_{16}$ -> decimalt

Ställ upp en tabell på vad varje sifferposition är värd

$$(2*4096) + (6*256) + (7*16) + (11*1) = 9851$$

Svar: $267B_{16} = 9851_{10}$

Lodrätt 8

1101011_2 -> Graykod

Vi kan ta två siffror i taget, höger från vänster, och XOR:a dem. Men sätt en noll i början

```
01101011
1 \text{ XOR } 1 = 0
01101011
0 \text{ XOR } 1 = 1
01101011
1 \text{ XOR } 0 = 1
01101011
0 \text{ XOR } 1 = 1
01101011
1 \text{ XOR } 0 = 1
01101011
1 XOR 1 = 0
01101011
0 \text{ XOR } 1 = 1
Sedan läser man nedifrån och upp => 1011110
Svar: 10111110
Lodrätt 9
0010111_2i 2-komp
```

Invertera $0 \Rightarrow 1$, $1 \Rightarrow 0$ 0010111 1101000

Addera 1 1101001

Svar: 1101001

Vågrätt

Vågrätt 1

 $(0010\ 0001\ 0001)_{BCD}$ -> Decimalt

Ta varje grupp för sig, 0010 kan jag snabbt avgöra är 2, 0001 = 1. Så svaret är då (211) $_{10}$

Vågrätt 2

 261_8 -> decimalt

(2*64) + (6*8) + (1*1) = 177

Svar: 177₁₀, vilket vi redan har fått från Lodrätt 1, 2 och 4. Bra!

Vågrätt 3

 $13E_{16}$ -> binärt

Jag tänker lite som med BCD-koden, representera 1, 3 och E (14) binärt, grupperat om 4 siffror.

1 = > 0001

3 = > 0011

Att räkna ut E (14) är ju däremot något jobbigare. Men vi börjar med att subtrahera 8 och fyller i en 1 på första position.

Då ska vi representera (14-8) = 6 binärt. Så vi bockar i 4 och 2, då det blir 6 och vi har inget överskott.

E => 1110

Svar: $(0001\ 0011\ 1110)_2$ (alt. $(100\ 111\ 110)_2$).

Vågrätt 4

Talet (decimalt) som get "k" (inte "K") som ASCII-tabell

Det är bara att kika på valfri ASCII-tabell.

Svar: 107

Vågrätt 5

8033_{10} -> hexadecimalt

8033 / 16 = 502 + 1 502 / 16 = 31 + 6 31 / 16 = 1 + F 1 / 16 = 0 + 1

Svar: 1F61 Vilket jag redan hade fått ifyllt, bra!

Vågrätt 6

$11CD_{16}$ -> okt

Konvertera 1 1 C D till binärt

1 => 0001

1 => 0001

C => 1100

D => 1101

=> 0001 0001 1100 1101

Gruppera om i 3 och 3 och konvertera

1 000 111 001 101 1 0 7 1 5

Svar: 10715 Vilket jag redan hade fått ifyllt, bra!

Vågrätt 7

 602_{10} -> binärt

602 / 2 = 301 + 0

301 / 2 = 150 + 1

150 / 2 = 75 + 0

75 / 2 = 37 + 1

37 / 2 = 18 + 1

18 / 2 = 9 + 0

9 / 2 = 4 + 1

4 / 2 = 2 + 0

2 / 2 = 1 + 0

Svar: 1001 0110 10

Vågrätt 8

7241_8 -> hex

Ledningen säger att man inte ska gå via decimalt, vilket jag håller med om. Däremot känns det enkelt att gå via binärt, då 7 => 111 och F => 1111. Så jag börjar med att konvertera 7, 2, 4, 1 till binärt, därifrån till hex.

```
Okt => Bin
7 => 111
2 => 010
4 => 100
1 => 001
```

Så det är 111010100001 binärt. Gruppera om det i par om fyra, konvertera till hex.

```
Bin => Hex
1110 => E
1010 => A
0001 => 1
Svar: (0)EA1.
```

Vågrätt 9

0110_2 - 0011_2 , använd tvåkomplement

Gör om 0011 till tvåkomplement: invertera 0 => 1, 1 => 0 och lägg på en etta. Addera ihop talen istället för att subtrahera.

```
0011 ==[tvåkomplement]==> 1101
```

```
1
0110
+ 1101
-----
10011
```

Resultatet är positivt

Svar: 0011

Jag får det inte att passa in med lodrätt 9. Jag har dubbelkollat svaren på båda frågor och det ska stämmas. Jag dubbelkollade lodrätt 9 mot en räknare och får samma svar. Även om jag gör om denna fråga till decimalt $0110_2 => 6_{10}$, $0011_2 => 3_{10}$ och subtraherar: 6 - 3 = 3 så får jag samma svar som ovan.

Gör jag om 0110₂ till tvåkomplement så får jag också ut 0011₂ (fast negativ).

Vågrätt 10

00010_2 - $01001_2,$ använd tvåkomplement

```
01001 ==[tvåkomplement]==> 10111

11
00010
+ 10111
-----
011001
```

Resultatet är negativt

Svar: 11001_2