Curso de

Sistemas Operacionais

Gerenciamento de Entrada/Saída

Prof. Dr. Robson Augusto Siscoutto

e-mail: robson.siscoutto@unoeste.br

Sistemas Operacionais

Gerenciamento de Entrada/Saída

- Princípios de Hardware de E/S
- Princípios de Software de E/S
- Camadas de Software de E/S

Algoritmos de Escalonamento de Braço do Disco

Dispositivos de E/S

- Os Dispositivos de E/S são divididos em 2 categorias:
 - (1) Dispositivos de Blocos
 - Armazena informações em blocos de tamanho fixo;
 - Cada bloco com seu próprio endereço;
 - Os tamanho dos blocos variam de 512 bytes a 32768 bytes;
 - Exemplo: HD

• (2) Dispositivos de Caractere

- Envia ou recebe um fluxo de caracteres;
- Sem considerar qualquer estrutura de dados;
- O fluxo não é endereçável e não dispõe de operações de posicionamento;
- Exemplo: Impressoras, Interfaces de rede, Mouse.

4

Dispositivos de E/S

- Os Dispositivos de E/S
- Taxas de Dados:

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Telephone channel	8 KB/sec
Dual ISDN lines	16 KB/sec
Laser printer	100 KB/sec
Scanner	400 KB/sec
Classic Ethernet	1.25 MB/sec
USB (Universal Serial Bus)	1.5 MB/sec
Digital camcorder	4 MB/sec
IDE disk	5 MB/sec
40x CD-ROM	6 MB/sec
Fast Ethernet	12.5 MB/sec
ISA bus	16.7 MB/sec
EIDE (ATA-2) disk	16.7 MB/sec
FireWire (IEEE 1394)	50 MB/sec
XGA Monitor	60 MB/sec
SONET OC-12 network	78 MB/sec
SCSI Ultra 2 disk	80 MB/sec
Gigabit Ethernet	125 MB/sec
Ultrium tape	320 MB/sec
PCI bus	528 MB/sec
Sun Gigaplane XB backplane	20 GB/sec

Controladores de Dispositivos

- As unidade de E/S consistem de componentes:
 - Mecânico e
 - Eletrônico;
- O componente eletrônico é chamado de:
 - Controlador do Dispositivo ou Adaptador
 - permite manipular múltiplos dispositivos;
 - se apresenta na forma de placa controladora de circuito impresso inserida em um conector de expansão;
- O componente Mecânico é o dispositivo propriamente dito;

Controladores de Dispositivos

- As unidade de E/S consistem de componentes:
 - Mecânico e
 - Eletrônico;

Controladores de Dispositivos

- As unidade de E/S consistem de componentes:
 - Mecânico e
 - Eletrônico;
- Tarefas do Componente Eletrônico:
 - Converter fluxo serial de bits para bloco de bytes e executar correção de erros (*checksum*)
 - O bloco de bytes é montado, bit a bit, em buffer dentro do controlador;
 - Colocar o bloco na Memória Principal;

- •Controladoras possuem registradores para:
 - Comunicação com a CPU;
 - o S.O. escreve comandos nos registradores para serem executados;
 - Aceitar dados, ligar e desligar, estado do dispositivo, etc;
 - Três Formas de acesso pela CPU aos Registradores :
 - 1ª Forma: Cada <u>registrador tem uma porta de E/S</u> (8 ou 16 bits) associada a ele;
 - IN REG-CPU, PORT-CONTROLADOR (reg ← port)
 - OUT PORT-CONTROLADOR, REG-CPU (port ← reg)
 - IBM 360

- Formas de acesso pela CPU aos Registradores :
 - continuação do 1ª forma:
 - Espaço de Endereçamento para a memória e E/S são diferentes;
 - 2ª Forma: E/S Mapeada na Memória
 - Mapear todos os registradores de controle no espaço de endereçamento da memória;
 - Cada registrador é associado a um endereço de memória único;
 - Endereços Associados estão no topo da memória;

- Formas de acesso pela CPU aos Registradores
 - •Em alguns computadores, os registradores estão em memória
 - Exemplos: IBM PC

 controladora 	End. E/S	Vetor Interrupção
Disquete	3D0-3F7	14
Teclado	060-063	9
Disco rígido	320-32F	13
Impressora	378-37F	15

- Formas de acesso pela CPU aos Registradores :
 - 3^a Forma: Forma Hibrida
 - buffers de dados de E/S mapeados em memória e
 - portas de E/S separadas para os registradores de controle
 - Pentium utiliza essa estrutura:
 - endereços de 640 kb 1 M reservador para os buffers de dados dos dispositivos;
 - portas de E/S de 0 a 64 Kb

E/S Mapeada na Memória

• Formas de acesso pela CPU aos Registradores

Acesso Direto à Memória (DMA)

Operações de uma Transferência DMA

Interrupções

- Como ocorre uma Interrupção:
 - As conexões entre os dispositivos e o controlador de interrupção usam de fato linhas de interrupção no barramento em vez de fios dedicados;

Princípios de Software de E/S

Princípios de Software de E/S Objetivos do Software de E/S

Independência do Dispositivo

- Programas podem acessar qualquer dispositivos de E/S
- Sem necessitar alteração no código: floppy, hard drive

Uniformidade de identificação

- Nome de um arquivo ou dispositivos é uma string de caracteres ou um numero inteiro;
- Totalmente independente do dispositivo;

Tratamento de Erros

Tratados o mais próximo do hardware (p.ex. controladoras);

Princípios de Software de E/S Objetivos do Software de E/S

• Transferência Sincrona vs. Assincrona

- -Transferência bloqueada (sincrona) vs. dirigida por interrupção (orientada à interrupção);
- Maioria do dispositivos de E/S são assincronos;

Buferização

 Dados oriundos de dispositivos não podem ser armazenados no destino final;

Dispositivos Compartilhados vs. Dedicados

- Discos são compartilhados (p.ex. Discos);
- Impressoras não são (p.ex. Fita);

Princípios de Software de E/S

Maneiras de se Realizar E/S

• Três maneiras diferentes:

- E/S Programada;
 - CPU faz o trabalho;

E/S Orientada à interrupção;

• E/S que usa DMA;

Princípios de Software de E/S Maneiras de se Realizar E/S

E/S Programada;

- A cadeia de caracteres é montada em um buffer no espaço do usuários;
- O processo do usuário requisita o **dispositivo via chamada** ao sistema para abri-la;
- S.O copia o buffer com a cadeia para um vetor no espaço do núcleo, onde ele é facilmente acessado;
- Uma vez disponível o dispositivo (verificação conhecida como *Espera Ocupada ou Polling*), o S.O copia o primeiro caractere para o registrador de dados do dispositivo e assim sucessivamente
 - Utilizando E/S mapeada em Memória;

Princípios de Software de E/S

Maneiras de se Realizar E/S

• E/S Programada

• Passos na Impressão de uma Cadeia de Caracteres

Princípios de Software de E/S

Maneiras de se Realizar E/S

• E/S Programada

• Código seguido pelo S.O na Impressão de uma Cadeia de Caracteres em uma Impressora

- Vantagem: Simplicidade;
- •**Desvantagem**: Segura a CPU o tempo todo até que a E/S₂₂seja feita;

Princípios de Software de E/S Maneiras de se Realizar E/S

• E/S Orientada à Interrupção:

- Utilizando o exemplo da Impressão:
 - Semelhante os passos E/S Programadas;
 - Diferença:
 - Uma vez o **caractere copia para a impressora**, a CPU chama o escalonador e outro processo é executado;
 - O **processo** que solicitou a impressão **é bloqueado** até que toda a cadeia seja impressa;
 - Uma vez **impresso um caractere**, para aceitar o próximo é gerado uma **interrupção que bloqueia o processo atual** e salva seu estado;
 - Uma **rotina de tratamento de interrupção** da impressora é executada:

Princípios de Software de E/S

Maneiras de se Realizar E/S

• E/S Orientada à Interrupção:

```
copy_from_user(buffer, p, count);
enable_interrupts();
while (*printer_status_reg != READY);
*printer_data_register = p[0];
scheduler();

(a)

if (count == 0) {
    unblock_user();
} else {
    *printer_data_register = p[i];
    count = count - 1;
    i = i + 1;
}
acknowledge_interrupt();
return_from_interrupt();
```

• (a) código executado na Chamada e (b) Rotina de Tratamento da Interrupção 34

Princípios de Software de E/S

Maneiras de se Realizar E/S

- E/S Orientada à Interrupção:
 - Desvantagem:
 - Ocorrência de uma interrupção para cada caractere;
 - Desperdiço de Tempo de CPU;

- Solução:
 - Utilização de DMA;

Princípios de Software de E/S Maneiras de se Realizar E/S

• E/S Usando DMA – Acesso Direto a Memória:

- Fazer com que o controlador de DMA alimente os caracteres, para a impressora um por vez, sem que a CPU seja perturbada;
- DMA executada E/S programada:
 - Somente o controlador de DMA faz todo o Trabalho, em vez da CPU principal;

• Vantagem:

• Reduz o numero de interrupções de um por caractere para um por buffer impresso;

• Desvantagem:

• Controladora de DMA mais lenta que a CPU;

Princípios de Software de E/S Maneiras de se Realizar E/S

(a)

- E/S Usando DMA Acesso Direto a Memória:
 - Impressão de uma cadeia de caractere usando DMA

• (a) código executado quando a chamada ao sistema print é feita e (b) Rotina de Tratamento da Interrupção;

(b)

- Software de E/S é organizado em 4 camadas:
 - Cada camada tem uma função bem definida para executar
 - E uma interface também bem definida para as camadas adjacentes.

Software de E/S no Nível do Usuário	
Software do S.O. Independente do Dispositivo	
Drivers do Dispositivo	
Tratadores de Interrupções	

Hardware

Camadas do Software de E/S Tratadores de Interrupção

Manip. de Interrupção devem ser escondidos:

- um processo que iniciou uma operação de E/S deve ficar bloqueado até o termino da operação;
 - ou seja, bloquear o driver que inicio uma operação de E/S até que a E/S se complete e uma interrupção ocorra

O procedimento de Interrupção faz esta tarefa:

- desbloquear o processo que iniciou a operação;
- Nomarmente, os drivers são estruturados como processo do nucleo do S.O.

Camadas do Software de E/S Drivers dos Dispositivos

- Código específico do dispositivos ou conjunto de dispositivos;
- o Driver do dispositivo deve ser parte do núcleo do SO;
- o S.O. classificam os drivers em duas categorias principais:

• Dispositivos de Bloco

- Contêm vários blocos de dados que podem ser endereçados independentemente;
- P.ex. Discos

• Dispositivos de Caractere

- geram ou aceitam uma sequência de caracteres
- P.ex. teclados e impressoras.

Camadas do Software de E/S Drivers dos Dispositivos

• Funções de Driver:

- Aceitar e executar requisições como leitura e gravação;
- Iniciar um dispositivo;
- Tratar necessidades de energia e registrar eventos.

• Estrutura de um Driver:

- Verifica parâmetros de entrada para validação;
- Verificar o status do dispositivo para ver se a requisição pode ser tratada imediatamente;
- Ligar o dispositivo ou um motor antes de iniciar a transferência;
- Uma vez ligado e pronto, o controle atual pode começar:

Camadas do Software de E/S Drivers dos Dispositivos

• Controle do Dispositivo:

- Significa emitir uma seqüência de comandos para ele;
 - O driver é o local onde a sequência de comandos é determinada;
- Escreve os **comandos nos registradores** do controlador do dispositivo;
- Verifica se o controlador aceitou o comando e se está preparado para receber o próximo;
- Sucessivamente, até todos os comandos tenham sidos emitidos;
- Recebido os comandos, pode ocorrer duas situações:
 - o driver espera o controlador realizar algum trabalhado para ele e se autobloqueia, sendo acordado por interrupção;
 - a operação se finaliza sem atraso, de maneira que o driver não precisa se bloquear;

Drivers dos Dispositivos

- Posição lógica dos device drivers:
 - Comunicação entre drivers e os controladores dos dispositivos é realizada via barramento;

Software de E/S independente do Dispositivo

• Objetivos básicos:

- Realizar a função de E/S que são comuns a todos os dispos.
- Fornecer uma interface uniforme para o nível do SW do usuário;
- Algumas funções do Software de E/S independente do dispositivo:

Interface Uniforme para os drivers dos dispositivos (device drivers)
Armazenamento em Buffer
Relatórios de erros
Alocação e Liberação de dispositivos dedicados
Fornecimento de Tamanho de Bloco Independente de Dispositivo

Software de E/S independente do Dispositivo

- Interface Uniforme para os drivers dos dispositivos (device drivers)
- (a) Sem uma interface-padrão do driver;
- (b) Com uma interface padrão do dispositivo;

(a)

(b)

Software de E/S independente do Dispositivo

• Armazenamento em Buffer:

- (a) Entrada sem utilização de buffer;
- (b) Utilização do buffer no espaço do usuário;
 - Problema: buffer paginado pode trancar a paginas na memória;
- (c) Utilização de buffer no núcleo seguido da copia para o espaço do usuário
 - Problema: durante a copia os caracteres que chegam não tem onde ser colocados;
- (d) Utilização de buffer duplicado no núcleo;
 - Para resolver o problema anterior;
 - Buffers trabalham alternadamente
 - Esquema: utilização de Buffer Duplicado

Software de E/S independente do Dispositivo

- Armazenamento em Buffer:
 - (a) Entrada sem utilização de buffer;
 - (b) Utilização do buffer no espaço do usuário;
 - (c) Utilização de buffer no núcleo seguido da copia para o espaço do usuário
 - (d) Utilização de buffer duplicado no núcleo;

Camadas do Software de E/S Software de E/S independente do Dispositivo

Relatórios de Erros:

- Classe de erros relacionados aos **erros de programação**:
 - endereçamento errado de buffer ou dispositivo, etc;
- Classe de erros que engloba **erros reais de E/S**
 - Tentativa de escrever em um bloco de disco danificado ou ler de uma câmera de vídeo desligada;
- •O que o software faz dependo do **ambiente e natureza do erro**:
 - Exibir no vídeo uma caixa de dialogo perguntando o que fazer;
 - Ignorar o erro, Matar o processo, Desligar o Sistema;
 - Relatar um código de erro indicando uma falha de sistema;³⁹

Camadas do Software de E/S Software de E/S independente do Dispositivo

- · Alocação e Liberação de dispositivos dedicados:
 - Aceitar ou rejeitar acesso a dispositivos dedicados
 - Exemplo: CDROM
 - Maneira Simples: processos abrir arquivos especiais que estão associados diretamente aos dispositivos;
 - Estratégia Alternativa: mecanismos especiais para a requisição e liberação de dispositivos;
 - Processos bloqueados são colocados em fila

Software de E/S independente do Dispositivo

- Fornecimento de Tamanho de Bloco Independente de Dispositivo:
 - Discos diferentes podem ter tamanhos diferenciados para os setores:
 - SW independente de dispositivo esconde esse detalhe e fornecer um tamanho de bloco uniforme para as camadas superiores;

Camadas do Software de E/S Software de E/S no Espaço do Usuário

• Através de bibliotecas:

- Ligadas aos programas do usuário procedimentos;
 - exemplos: write, printf, etc.

Sistema de Spooling

- Maneira de lidar com dispositivos dedicados de E/S em Sistemas de Multiprogramação;
- Utilização de um processo especial chamado de **daemon**, e um diretório especial;
 - arquivo a ser impresso colocado no diretório de spool pelo daemon;
 - •Não só para impressão, tb para redes;

Software de E/S no Espaço do Usuário

• Resumo das Camadas do Sistema de E/S e as funções principais de cada camada:

Algoritmos de Escalonamento de Braço do Disco

- Algoritmo de Escalonamento do Braço do Disco FCFS
 - Primeiro a chegar, primeiro a ser servido
 - Quase nada pode ser feito para otimizar o tempo de posicionamento;
 - Estratégia alternativa:
 - Utilizar uma tabela onde as requisições pendentes para cada cilindro são encadeados pelo numero do cilindro;
 - •Exemplo:
 - leitura do cilindro 11
 - Novas requisições durante o posicionamento de 11
 - 1, 36, 16, 34, 9 e 12
 - Uma finalizado 11, será 1, depois o 36,

Algoritmos de Escalonamento de Braço do Disco

- Algoritmo de Escalonamento do Braço do Disco FCFS
 - Primeiro a chegar, primeiro a ser servido
 - Exemplo: Novas requisições durante o posicionamento de 11
 - 1, 36, 16, 34, 9 e 12
 - Uma finalizado 11, será 1, depois o 36,
 - Esse algoritmo posicionará o braço nos cilindros requisitados percorrendo 111 cilindros, ou seja,
 - $11 \rightarrow 1 = 10$
 - 1 -> 36 = 35
 - $36 \rightarrow 16 = 20$
 - 16 -> 34 = 18
 - 34 -> 9 = 25
 - 9 -> 12 = $\underline{3}$
 - 111

Algoritmos de Escalonamento de Braço do Disco

- Algoritmo de Escalonamento do Braço do Disco SSF
 - Menor Seek Primeiro menor deslocamento
 - Coloca as requisições em ordem proximidade:
 - 12, 9, 16, 1, 34 e 36
 - percorrido: 1, 3, 7, 15, 33 e 2 = 67

• Problema: dependendo da requisição o braço pode sempre ficar no centro do disco;

Algoritmos de Escalonamento de Braço do Disco

- Algoritmo de Escalonamento do Braço do Disco Elevador
 - Procura manter em uma direção até não haver mais requisições;
 - Requisições: 12, 16, 34, 36, 9 e 1
 - Total percorrido = 60 = 1, 4, 18, 2, 27 e 8

• Ligeiramente melhor que o anterior;

Gerenciamento de Entrada/Saída

Referências Utilizadas:

- Livro do Andrew S. Tanenbaum
 - Sistemas Operacionais Modernos
 - 2^a Ed Editora Prentice Hall, 2003
 - www.cs.vu.nl/~ast
- Livro do Abraham Silberschatz et.al.
 - Operating System Concepts
 - www.bell-labs.com/topic/books/aos-book/
 - Sistemas Operacionais: Conceitos e Aplicações
 - Editora Campus, 2001