CAUSAL INFERENCE WITH PANEL DATA:

NEW METHODS AND REMAINING

CHALLENGES

Guido Imbens – Stanford University

(based on work with Alexander Almeida, Dmitry Arkhangelsky, Susan

Athey, Eva Lestant, Alexia Olaizola, Zhaona Qu, Davide Viviano)

NABE, Oct 28, 2024

OUTLINE

- 1. Introduction
- 2. Some Open Questions
- 3. A New Estimator
- 4. A New Variance Estimator
- 5. Conclusion

1.I INTRODUCTION

- Panel with N units and T periods.
- Each unit/period pair (i, t) is characterized by a pair of potential outcomes $(Y_{it}(0), Y_{it}(1))$ and a binary treatment $W_{it} \in \{0, 1\}$
- We observe for each unit the pair (W_i, Y_i) where

$$Y_{it} \equiv Y_{it}(W_{it}) = \begin{cases} Y_{it}(0) & \text{if } W_{it} = 0, \\ Y_{it}(1) & \text{if } W_{it} = 1. \end{cases}$$

The focus is on the average treatment effect for the treated:

$$\tau \equiv \sum_{i,t} W_{it}(Y_{it}(1) - Y_{it}(0)) / \sum_{i,t} W_{it}$$

1.II INTRODUCTION: EXAMPLES

- What is the effect of an advertising campaign on consumer spending (units are media markets, time periods are days)?
- What is effect of changes in state regulation (units are states, periods are days or weeks)?
- What was effect of Brexit on UK GDP (units are countries, time periods may be quarters or years)?
- Lots of variation in empirical settings in
 - number of units,
 - number of time periods,
 - correlation patterns over time,
 - correlation patterns across units.

1.III INTRODUCTION: ESTIMATORS

- Lots of estimators (with variation within classes)
 - Differences in Differences (DID) / Two-Way-Fixed-Effects(TWFE)
 - Synthetic Control Methods
 - Factor Models / Matrix Completion
 - Synthetic Difference In Differences
- Estimators are motivated in different ways, sometimes based on models, sometimes algorithmic
- Even though not all estimators can be used in all settings, they
 address closely related problems, more than much of the
 literature suggests.

1.IV DID/TWFE

Difference In Differences / Two Way Fixed Effect Regression:

$$\min_{\alpha,\beta,\tau^{\text{DID}}} \sum_{i,t} \left(Y_{it} - \alpha_i - \beta_t - \tau^{\text{DID}} W_{it} \right)^2$$

then:
$$\hat{\tau}^{\text{DID}} = \overline{Y}^{\text{post,treat}} - \overline{Y}^{\text{pre,treat}} - \left(\overline{Y}^{\text{post,control}} - \overline{Y}^{\text{pre,control}}\right)_{6/62}$$

1.V DID/TWFE

- Often in settings where policy decisions are made at aggregate level: evaluation of state level regulations with individual data (Card-Krueger, 1995, restaurant data to evaluate state-level minimum wage regulations).
- Lots of recent DID work: Goodman-Bacon (2021), Callaway & Sant'Anna (2021), Sun & Abraham (2021), surveys: Roth,
 Sant'Anna, Bilinski & Poe (2021), De Chaisemartin & d'Haultfoeuille (2020) dealing with complications in settings with staggered adoption, allowing for general treatment effect heterogeneity.

1.VI INTRODUCTION: DIFFERENCE IN DIFFERENCES

- (graph courtesy of Paul Goldsmith-Pinkham)
- DID/TWFE is
 - Popular
 - Easy to use, transparent.
 - But, ..., not necessarily very good in practice
- Remember: DDDiD (Don't Do Difference in Differences)

1.VII INTRODUCTION: THE PROBLEM WITH DID/TWFE

Very restrictive model for Y_{it}(0)

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

E.g., with states as units, it assumes all systematic differences between California and Texas, or between Delaware and Alaska, are captured by additive component α_i .

- Two alternatives:
 - Make potential outcome model more flexible
 - Estimate model locally (put more weight on similar units and similar time periods)

1.VIII INTRODUCTION: THE DATA (FOCUS ON CASE WITH SINGLE TREATED UNIT/PERIOD)

$$\mathbf{Y} \equiv \begin{pmatrix} Y_{11} & Y_{12} & Y_{13} & \dots & Y_{1T} \\ Y_{21} & Y_{22} & Y_{23} & \dots & Y_{2T} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Y_{N1} & Y_{N2} & Y_{N3} & \dots & Y_{NT} \end{pmatrix}$$
 (Outcome)
$$\mathbf{W} \equiv \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
 (Treatment),

- Setting with single treated unit/period allows easier comparison of estimators.
- (Covariates X_{it} not that important conceptually or in practice, but can

1.IX INTRODUCTION: OTHER ASSIGNMENT MECHANISMS POSSIBLE

$$\mathbf{W} = \begin{pmatrix} 1 & 0 & 0 & \dots & 1 \\ 0 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 1 & \dots & 0 \end{pmatrix}$$
 general assignment

$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 1 & \dots & 1 & 1 \end{pmatrix}$$

staggered adoption (common in practice)

1.X INTRODUCTION: OTHER ESTIMATORS

- Existing estimators (ctd):
 - 2. Synthetic Control (SC, Abadie et al, 2003, 2010): Define SC weights ω_i

$$\omega = \arg\min_{\omega \ge 0, \sum_{i=1}^{N-1} \omega_i = 1} \sum_{t=1}^{T-1} \left(Y_{Nt} - \sum_{j=1}^{N-1} \omega_j Y_{jt} \right)^2$$

Then:

$$\hat{\tau}^{SC} = Y_{NT} - \sum_{i=1}^{N-1} \omega_i Y_{iT}$$

1.XI INTRODUCTION: OTHER ESTIMATORS

- Existing estimators (ctd):
 - DIFP (Doudchenko-Imbens, 2016, Fernan-Pinto 2021),
 Modified SC with free intercept

$$\hat{\tau}^{\mathsf{DIFP}} = Y_{NT} - \omega_0 - \sum_{i=1}^{N-1} \omega_i Y_{iT}$$

$$\omega = \arg \min_{\omega_{j} \ge 0, j \ge 1, \sum_{i=1}^{N-1} \omega_{i} = 1} \sum_{t=1}^{T-1} \left(Y_{Nt} - \omega_{0} - \sum_{j=1}^{N-1} \omega_{j} Y_{jt} \right)^{2}$$

1.XII INTRODUCTION: OTHER ESTIMATORS

- Existing estimators (ctd):
 - DIFP (Doudchenko-Imbens, 2016, Fernan-Pinto 2021),
 Can be written as weighted DID/TWFE regression

$$\min_{\alpha,\beta,\tau^{\mathsf{DIFP}}} \sum_{i,t} \omega_i^{\mathsf{SC}} \left(Y_{it} - \alpha_i - \beta_t - \tau^{\mathsf{DIFP}} W_{it} \right)^2$$

with SC weights.

More attractive than DID/TWFE because upweights "similar" units.

1.XIII INTRODUCTION:

- Existing estimators (ctd):
 - 4. Horizontal Regression:

$$\lambda = \arg\min_{\lambda} \sum_{i=1}^{N-1} \left(Y_{iT} - \lambda_0 - \sum_{t=1}^{T-1} \lambda_t Y_{it} \right)^2$$

Then:
$$\hat{\tau}^{HZ} = Y_{NT} - \sum_{t=1}^{T-1} \lambda_t Y_{Nt}$$

- Comparison:
 - $-\hat{\tau}^{\mathsf{DIFP}}$ regresses Y_{Nt} on $Y_{1t},\ldots,Y_{N-1,t}$ (N regr, T-1 obs),
 - $-\hat{\tau}^{HZ}$ regresses Y_{iT} on $Y_{i1}, \ldots, Y_{i,T-1}$ (T regr, N-1 obs)

1.XIV INTRODUCTION: OTHER ESTIMATORS

- Existing estimators (ctd):
 - 5. Matrix Completion (MC, Athey, Bayati, Doudchenko, Imbens & Khosravi, 2021):

$$\min \sum_{i,t} \left(Y_{it} - \alpha_i - \beta_t - \tau^{MC} W_{it} - L_{it} \right)^2 + \lambda \|\mathbf{L}\|_{nn}$$

- ★ Nuclear norm for matrix, is sum of singular values.
- ★ Leads to factor representation for $L_{it} = \sum_{r=1}^{R} \gamma_{ir} \delta_{rt}$.
- * Regularization parameter λ, chosen through cross-validation, determines rank *R*.
- ★ Strict generalization of DID with data-driven flexible low rank model for outcomes, should dominate DID in large samples.

1.XV INTRODUCTION: OTHER ESTIMATORS

- Existing estimators (ctd):
 - Synthetic Difference in Differences (SDID, Arkhangelsky, Athey, Hirshberg, Imbens Wager, 2021)

$$\min_{\alpha,\beta,\tau^{\mathsf{SDID}}} \sum_{i,t} \omega_i \lambda_t \left(Y_{it} - \alpha_i - \beta_t - \tau^{\mathsf{SDID}} W_{it} \right)^2$$

$$\omega = \arg \min_{\omega \ge 0, \sum_{j=1}^{N-1} \omega_j = 1} \sum_{t=1}^{T-1} \left(Y_{Nt} - \sum_{j=1}^{N-1} \omega_j Y_{jt} \right)^2$$
 (like SC)

$$\lambda = \arg \min_{\lambda \ge 0, \sum_{t=1}^{T-1} \lambda_t = 1} \sum_{i=1}^{N-1} \left(Y_{iT} - \sum_{t=1}^{T-1} \lambda_j Y_{jt} \right)^2$$

1.XVI INTRODUCTION: OTHER ESTIMATORS

- Existing estimators (ctd):
 - 7. Generalized Mundlak Estimator (Arkhangelsky & Imbens, 2024)
 - ★ Mundlak (1978) shows that DID/TWFE is identical to

$$\min_{\gamma,\delta,\tau} \sum_{i,t} \left(Y_{it} - \gamma \overline{W}_{i.} - \delta \overline{W}_{.t} - \tau W_{it} \right)^2$$

- ★ One could adjust more flexibly for \overline{W}_i . and $\overline{W}_{\cdot t}$ rather than just linearly
- ★ Makes a difference with general assignment patterns, but not with single treated unit/period.

2.1 TWO ISSUES WITH EXISTING ESTIMATORS

- 1. The estimators treat the matrices and as row and column exchangeable (Aldous, 1981). The implications are that
 - If one were to swap the columns corresponding to 2019 and 1983, that would not change the estimates $\hat{\tau}$ for DID, SC, HZ, MC, SDID, DIFP.
 - If we are trying to estimate $Y_{N,2020}$, having pre-treatment observations for $t = 1980, \ldots, 1999$ is just as valuable as observations for $t = 2001, \ldots, 2019$.
 - Time ordering is irrelevant.
 - This is highly implausible.
 - These estimators ignore very relevant information.

2.II TWO ISSUES WITH EXISTING ESTIMATORS

2 SC type estimators rely on regression for estimating weights

$$\omega = \arg \min_{\omega \ge 0, \sum_{j=1}^{N-1} \omega_j = 1} \sum_{t=1}^{T-1} \left(Y_{Nt} - \sum_{j=1}^{N-1} \omega_j Y_{jt} \right)^2$$

 This does not easily generalize to staggered adoption, and to other assignment patterns: it would require regression with many missing covariates.

2.III ISSUES WITH INFERENCE

- Multiple proposals for doing inference
 - Regression-based methods (for DID)
 - Placebo methods
 - Conformal inference
- Not clear how to choose between them.
- Not clear what appropriate repeated sampling thought experiment is.
- focus in literature on validity, largely ignoring power

3.I NEW ESTIMATOR: DOUBLY WEIGHTED CAUSAL PANEL (DWCP)

Minimize over α_i , β_t , **L**, given tuning parameters $(\lambda^U, \lambda_T, \lambda^{nn})$

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{\mathsf{DWCP}} W_{it}\right)^2 + \lambda^{\mathsf{nn}} \|\mathbf{L}\|,$$

distance metrics:

$$d^{U}(N,i) = \sum_{t=1}^{T-1} (Y_{it} - Y_{Nt})^{2} \qquad d^{T}(T,t) = |T-t|$$

Is related to DID, SC, MC, SDID estimators

3.II NEW ESTIMATOR: DOUBLY WEIGHTED CAUSAL PANEL (DWCP)

Minimize over α_i , β_t , **L**, given tuning parameters (λ^U , λ_T , λ^{nn})

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{DWCP} W_{it}\right)^2 + \lambda^{nn} \|\mathbf{L}\|,$$

distance metrics

$$d^{U}(N,i) = \sum_{t=1}^{T} (Y_{it} - Y_{Nt})^{2} \qquad d^{T}(T,t) = |T - t|$$

· Like DID, but with weights and factor component

3.III NEW ESTIMATOR: DOUBLY WEIGHTED CAUSAL PANEL (DWCP)

Minimize over α_i , β_t , **L**, given tuning parameters $(\lambda^U, \lambda_T, \lambda^{nn})$

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{\mathsf{DWCP}} W_{it}\right)^2 + \lambda^{\mathsf{nn}} \|\mathbf{L}\|,$$

distance metrics

$$d^{U}(N,i) = \sum_{t=1}^{T} (Y_{it} - Y_{Nt})^{2} \qquad d^{T}(T,t) = |T - t|$$

 Like SC, but with unit fixed effects and factor component, and different weights

3.IV NEW ESTIMATOR: DOUBLY WEIGHTED CAUSAL PANEL (DWCP)

Minimize over α_i , β_t , **L**, given tuning parameters $(\lambda^U, \lambda_T, \lambda^{nn})$

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{\mathsf{DWCP}} W_{it}\right)^2 + \lambda^{\mathsf{nn}} \|\mathbf{L}\|,$$

distance metrics

$$d^{U}(N,i) = \sum_{t=1}^{T} (Y_{it} - Y_{Nt})^{2} \qquad d^{T}(T,t) = |T - t|$$

· Like matrix completation estimator, but with weights

3.V NEW ESTIMATOR: DOUBLY WEIGHTED CAUSAL PANEL (DWCP)

Minimize over α_i , β_t , **L**, given tuning parameters (λ^U , λ_T , λ^{nn})

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{\mathsf{DWCP}} W_{it}\right)^2 + \lambda^{\mathsf{nn}} \|\mathbf{L}\|,$$

distance metrics

$$d^{U}(N,i) = \sum_{t=1}^{T} (Y_{it} - Y_{Nt})^{2} \qquad d^{T}(T,t) = |T - t|$$

 Like SDID estimator, but with different weights and factor component

3.VI NEW ESTIMATOR: KEY FEATURE 1

Minimize over α_i , β_t , **L**, given tuning parameters (λ^U , λ_T , λ^{nn})

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{\mathsf{DWCP}} W_{it}\right)^2 + \lambda^{\mathsf{nn}} \|\mathbf{L}\|,$$

distance metrics

$$d^U(N,i) = \sum_{t=1}^T (Y_{it} - Y_{Nt})^2 \qquad d^T(T,t) = |T - t|$$
• Unit weights are distance based, so can deal with general

 Unit weights are distance based, so can deal with genera assignment patterns

3.VII NEW ESTIMATOR: KEY FEATURE 2

Minimize over α_i , β_t , **L**, given tuning parameters (λ^U , λ_T , λ^{nn})

$$\sum_{i,t} \exp\left(-\lambda^T d^T(T,t) - \lambda^U d^U(N,i)\right) \left(Y_{it} - \alpha_i - \beta_t - L_{it} - \tau_{NT}^{\mathsf{DWCP}} W_{it}\right)^2 + \lambda^{\mathsf{nn}} \|\mathbf{L}\|,$$

distance metrics

$$d^{U}(N,i) = \sum_{t=1}^{T} (Y_{it} - Y_{Nt})^{2} \qquad d^{T}(T,t) = |T - t|$$

time weights decline with distance in time.

3.V OTHER NEW ESTIMATORS

- DWCP is just one example of estimator that satisfies desiderata:
 - Allows time ordering to matter
 - Can be applied to general assignment patterns.
 - Can incorporate covariates
- Possible generalizations:
 - Include distance measure based on covariates

$$d^C(i,j) = (X_i - X_j)^\top \Sigma_X^{-1} (X_i - X_j)$$

- Include distance measure based on assignment pattern

$$d^{A}(i, j) = \sum_{t=1}^{T} (W_{it} - W_{jt})^{2}$$

3.III SOME SIMULATIONS: DESIGN

- Simulation Designs from earlier SDID paper (Athey et al, 2021), report results for all 9 combinations of outcomes/treatments they consider.
- Estimated flexible model on real data set (N = 50, T = 50, CPS panels,
 Penn world tables) to get relatively realistic DGPs. Many simulation
 designs in the literature make no effort to ensure realistic DGPs
 - Estimate rank 4 model on full panel.
 - Extract two way fixed effects and remainder
 - Estimate autoregressive process on residuals.
 - Estimate assignment process for real regulations on factors so assignment is not uncorrelated with outcomes, but is uncorrelated with residuals.

3.IV SIMULS	i: RMSE, I	BEST IS	ORA	NGE	WOR:	ST IS	BLUE
outcome	treatment	DWCP	SDID	SC	DID	МС	DIFP
CPS logwage	min wage	1.00	1.09	1.13	1.46	1.07	1.12
CPS urate	min wage	1.02	1.12	1.06	1.00	1.11	1.06
CPS hours	min wage	1.00	1.08	1.07	1.20	1.06	1.07
CPS log wage	gun law	1.00	1.11	1.13	1.33	1.06	1.14
CPS log wage	abortion	1.00	1.10	1.11	1.46	1.05	1.14
CPS log wage	random	1.00	1.12	1.13	1.14	1.05	1.14
PENN GDP	democracy	1.00	1.10	2.13	6.19	1.27	1.60
PENN GDP	education	1.00	1.08	2.44	4.74	1.29	1.50
PENN GDP	random	1.00	1.08	2.67	6.92	1.22	2.51

- DWCP estimator almost uniformly better
- Directly generalizes to general assignment mechanisms
- DID very poor for some DGPs

4.I VARIANCE ESTIMATION

- What assumptions do we need to estimate the variance?
- Model

$$Y_{it}(0) = \mu_{it} + \varepsilon_{it}, \quad \mathbb{E}[\varepsilon_{it}] = 0, \quad \mathbb{V}(\varepsilon_{it}) = \sigma_{it}^2$$

Then, if we can estimate μ_{it}:

$$\mathbb{V}(\hat{\tau}) \approx \sigma_{NT}^2$$

4.II EXISTING VARIANCE ESTIMATORS

- How do we estimate the variance σ_{NT}^2 ?
- $\hat{\mathbb{V}}^{\text{marg}}$: Based on robust variance for regression estimators,

$$Y_{it} = \alpha_i + \beta_t + \tau W_{it} + \varepsilon_{it} = X_{it}^\top \theta + \varepsilon_{it}$$

$$\hat{\mathbb{V}}^{\mathsf{marg}} = \left(\sum_{i,t} X_{it} X_{it}^{\top}\right)^{-1} \left(\sum_{i,t} \hat{\varepsilon}_{it}^{2} X_{it} X_{it}^{\top}\right) \left(\sum_{i,t} X_{it} X_{it}^{\top}\right)^{-1}$$

Approximately variance for estimated treatment effect $\hat{\tau}$:

$$\hat{\sigma}_{NT}^{2,\text{marg}} \equiv \frac{1}{NT-1} \sum_{i=1}^{N} \sum_{t=1}^{I} (1 - W_{it}) \hat{\varepsilon}_{it}^{2}$$

4.III EXISTING VARIANCE ESTIMATORS

- \mathbb{V}^{unit} : Unit-placebo method: pretend each of the other N-1 units is treated in period T, estimate treatment effect for that unit, average squared error for those pseudo treatment effects.
 - Iterate through units i = 1, ..., N-1. Estimate the treatment effect using the outcome data $Y_{j,s}$, $j \neq N$, and $(j,s) \neq (i,T)$. The error is $\hat{\varepsilon}_{iT} = Y_{iT} \hat{Y}_{iT}$.
 - Average the squared errors,

$$\hat{\sigma}_{NT}^{2,\text{unit}} \equiv \frac{1}{N-1} \sum_{i=1}^{N-1} \hat{\varepsilon}_{iT}^2$$

Abadie et al (2010), Doudchenko and Imbens (2016)

4.IV EXISTING VARIANCE ESTIMATORS FOR PANEL DATA

- V^{time}: Time-placebo method: pretend unit N is treated in the other T − 1 time periods, estimate effect, average squared errors.
 - Iterate through $t=1,\ldots,T-1$. Estimate the treatment effect using the outcome data $Y_{j,s}$, $s \neq T$, and $(j,s) \neq (N,t)$. The error is $\hat{\varepsilon}_{Nt} = Y_{Nt} \hat{Y}_{Nt}$. Average the squared errors,

$$\hat{\sigma}_{NT}^{2,\text{time}} \equiv \frac{1}{T-1} \sum_{t=1}^{T-1} \hat{\varepsilon}_{Nt}^2$$

Doudchenko and Imbens (2016), Chernozhukov et al (2021)

4.IV EXISTING VARIANCE ESTIMATORS

Marginal variance method

$$\hat{\sigma}_{NT}^{2,\text{marg}} \equiv \frac{1}{NT-1} \sum_{i=1}^{N} \sum_{t=1}^{I} (1 - W_{it}) \hat{\epsilon}_{it}^{2}$$

Unit-placebo method

$$\hat{\sigma}_{NT}^{2,\text{unit}} \equiv \frac{1}{N-1} \sum_{i=1}^{N-1} \hat{\varepsilon}_{iT}^{2}$$

Time-placebo method

$$\hat{\sigma}_{NT}^{2,\text{time}} \equiv \frac{1}{T-1} \sum_{t=1}^{T-1} \hat{\varepsilon}_{Nt}^2$$

4.V HOW DO THE EXISTING METHODS PERFORM?

- Take as outcome average log earnings from CPS for each of 50 states, for 40 years.
- For each of $N \times T = 2,000$ pairs (i,t) calculate the estimated pseudo treatment effect $\hat{\tau}_{it}$.
- Calculate for each of 2,000 pairs (i,t) each of the three standard errors, $\sqrt{\hat{V}_{it}^{\text{marg}}}$, $\sqrt{\hat{V}_{it}^{\text{unit}}}$, $\sqrt{\hat{V}_{it}^{\text{time}}}$

4.VI AVERAGES, STANDARD DEVIATIONS, AND CORRELATIONS OF STANDARD ERRORS

	Mean		Time	Unit	Marg	Cond.
Time	10.17	7.02	1.00	-0.08	-0.61	0.88
Unit	11.76	3.79	-0.08	1.00	-0.11	0.20
Marg	12.35	0.01	-0.61	-0.11	1.00	-0.67
Cond.	12.63	11.01	0.88	0.20	-0.67	1.00

(a) California Smoking

	Mean	SD	Time	Unit	Marg	Cond.
Time	0.06	0.02	1.00	-0.05	-0.40	0.79
Unit	0.06	0.01	-0.05	1.00	-0.13	0.34
Marg	0.06	0.00	-0.40	-0.13	1.00	-0.44
Cond.	0.06	0.03	0.79	0.34	-0.44	1.00

(b) CPS Log Wage

4.VII QUESTIONS

- The three variance estimators (marg, unit-placebo, time-placebo) have approximately the same mean, and mean is equal to the variance of the estimator
 - \implies all three are approximately valid.
- The standard deviation of these variances is quite different.
- There is substantial variation in the three variance estimators (and negative correlations)
 - \Longrightarrow they can be quite different for any given case.
- What should we use in practice?

4.VIII TOY EXAMPLE

Toy setting with single treated unit/period, unit N, period T,

$$Y_{NT}(1) = 0 \quad \forall i, t$$

Simple Model:

$$Y_{it}(0) = \varepsilon_{it}$$

Estimator

$$\hat{Y}_{NT}(0) = 0$$
 $\hat{\tau} = Y_{NT}(1) - \hat{Y}_{NT}(0) = 0$

Error:

$$\tau - \hat{\tau} = Y_{NT}(0) - \hat{Y}_{NT} = \varepsilon_{NT}$$

4.IX ROW AND COLUMN EXCHANGEABILITY (RCE)

- Suppose the matrix ε is row and column and exchangeable (RCE). (this may not be realistic in proper panel setting, and we may need to first adjust for some autocorrelation structure)
- RCE \Longrightarrow there is a random $N \times T$ matrix ε^* with typical element

$$\varepsilon_{it}^* = f(\kappa, \nu_i, \xi_t, \eta_{it}),$$

with all $(\kappa, \nu_i, \xi_t, \eta_{it})$ jointly independent, and $\varepsilon \stackrel{d}{\sim} \varepsilon^*$.

• Assume (given model for expected values μ_{it}):

$$\mathbb{E}[f(\kappa, \nu_i, \xi_t, \eta_{it}) | \kappa, \nu_i, \xi_t] = 0$$

4.X FOUR VARIANCES

Marginal variance:

$$\sigma^{2,\text{marg}}(\kappa) \equiv \mathbb{V}\left(f(\kappa, \nu_i, \xi_t, \eta_{it}) | \kappa\right),$$

Conditional variance given unit:

$$\sigma^{2,\text{unit}}(\kappa, \nu_i) \equiv \mathbb{V}\left(f(\kappa, \nu_i, \xi_t, \eta_{it}) | \kappa, \nu_i\right)$$

Conditional variance given unit:

$$\sigma^{2,\text{time}}(\kappa, \xi_t) \equiv \mathbb{V}\left(f(\kappa, \nu_i, \xi_t, \eta_{it}) | \kappa, \xi_t\right)$$

42 / 62

Conditional variance given unit and time period:

$$\sigma^{2,\mathsf{cond}}(\kappa, \nu_i, \xi_t) \equiv \mathbb{V}\left(\left.f(\kappa, \nu_i, \xi_t, \eta_{it})\right| \kappa, \nu_i, \xi_t\right)$$

4.XI FOUR VARIANCES

• The expected values of all variances, cond. on κ , are all equal (because the conditional means are all zero,

$$\mathbb{E}[f(\kappa, \nu_i, \xi_t, \eta_{it}) | \kappa, \nu_i, \xi_t] = 0)$$

$$\mathbb{E}\left[\sigma^{2, \text{cond}}(\kappa, \nu_i, \xi_t) \middle| \kappa\right] = \sigma^{2, \text{marg}}(\kappa)$$

$$\mathbb{E}\left[\sigma^{2, \text{unit}}(\kappa, \xi_t) \middle| \kappa\right] = \sigma^{2, \text{marg}}(\kappa)$$

$$\mathbb{E}\left[\sigma^{2, \text{time}}(\kappa, \xi_t) \middle| \kappa\right] = \sigma^{2, \text{marg}}(\kappa)$$

4.XII THREE VARIANCE ESTIMATORS

- Which variance would be preferable?
- There is an ordering in terms of the variance of these variances:

$$\mathbb{V}(\sigma^{2,\mathsf{marg}}(\kappa)) \leq \left\{ \begin{array}{l} \mathbb{V}(\sigma^{2,\mathsf{unit}}(\kappa,\xi_t)) \\ \\ \mathbb{V}(\sigma^{2,\mathsf{time}}(\kappa,\xi_t)) \end{array} \right\} \leq \mathbb{V}(\sigma^{2,\mathsf{cond}}(\kappa,\nu_i,\xi_t))$$

• No general ordering between $V(\sigma^{2,\text{unit}}(\kappa, \xi_t))$ and $V(\sigma^{2,\text{time}}(\kappa, \xi_t))$.

4.XII THREE VARIANCE ESTIMATORS

- The conditionality principle (Cox 1958 example)
 - We flip a coin to decide whether to use measurement instrument X = A or measurement instrument X = B.
 - The measurement satisfies $Y|X \sim \mathcal{N}(\theta, \sigma_X^2)$,

$$\sigma_X^2 = \begin{cases} 1 & \text{if } X = A \\ 100 & \text{if } X = B \end{cases}$$

- Marginal variance: V^{marg} = 50.5 = V(Y)
- Conditional variance: $\mathbb{V}^{\text{cond}} = \sigma_X^2 = \mathbb{V}(Y|X)$
- Both valid, but we should use V^{cond}

4.XIII THREE VARIANCE ESTIMATORS

Leans into row exchangeability:

$$\tilde{\sigma}_{NT}^{2,\text{unit}} = \frac{1}{N-1} \sum_{i=1}^{N-1} \varepsilon_{iT}^2 \approx \sigma^{2,\text{unit}}(\kappa, \xi_t)$$
 (unit – placebo).

Leans into column exchangeability

$$\tilde{\sigma}_{NT}^{2,\text{time}} = \frac{1}{T-1} \sum_{t=1}^{T-1} \varepsilon_{Nt}^2 \approx \sigma^{2,\text{time}}(\kappa, \xi_t)$$
 (time – placebo).

Leans into both

$$\tilde{\sigma}_{NT}^{2,\text{marg}} = \frac{1}{NT - 1} \sum_{i=1}^{I} \sum_{i=1}^{N} \mathbf{1}_{(i,t) \neq (N,T)} \varepsilon_{it}^2 \approx \sigma^{2,\text{marg}}(\kappa)$$
 (marginal).

4.XIV IMPLICATIONS

- $\tilde{\sigma}_{NT}^{2,\text{time}}$ or $\tilde{\sigma}_{NT}^{2,\text{unit}}$ are preferable to $\tilde{\sigma}_{NT}^{2,\text{marg}}$.
- Choice between $\tilde{\sigma}_{NT}^{2,\text{time}}$ and $\tilde{\sigma}_{NT}^{2,\text{unit}}$ not clear.
- $\sigma_{NT}^{2,cond}$ would be preferable to all, but how to estimate it?

- Can we do something that gets closer to $\sigma^{2,\text{cond}}(\kappa, \nu_i, \xi_t)$?
 - Not immediately: only a single unit/period pair with (v_i, ξ_t) .
 - Need a model for variance σ_{it}^2 .

4.XV A NEW VARIANCE ESTIMATOR

(Simple) model for conditional variance

$$\log \left(\sigma^{2,\text{cond}}(\kappa, \nu_i, \xi_t)\right) = \kappa + \nu_i + \xi_t.$$

• Estimate κ , ν_i , and ξ_t using regression

$$\log\left(\hat{\varepsilon}_{it}^2\right) = \kappa + \nu_i + \xi_t + \zeta_{it}$$

Estimate conditional variance

$$\hat{\sigma}^{2,\text{cond}} = \exp\left(1.2704 + \hat{\kappa} + \hat{\nu}_i + \hat{\xi}_t\right)$$

• aside: The adjustment factor exp(1.2704) adjusts for the fact that if $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, then

$$\mathbb{E}\left[\ln\left(\varepsilon^{2}\right)\right] = \ln(\sigma^{2}) + \int_{-\infty}^{\infty} \ln(z^{2}) \frac{1}{\sqrt{2\pi}} \exp\left(-z^{2}/2\right) dz = \ln(\sigma^{2}) + \frac{\Gamma(1/2)}{\sqrt{\pi}} \left(\ln(2) + \psi(1/2)\right) \approx \ln(\sigma^{2}) + \exp(-1.2704).$$

4.XV A NEW VARIANCE ESTIMATOR

estimate :
$$\ln(\hat{\epsilon}_{it}^2) = \alpha_i + \beta_t$$
 $\tilde{\alpha}_i = \ln\left(\frac{\exp(\alpha_i)}{\frac{1}{N}\sum_{j=1}^N \exp(\alpha_j)}\right)$

so that the average of $\exp(\alpha_i)$ is equal to one, and similar for $\tilde{\beta}_t$. Calculate the dof by first calculating the var of the $\exp(\alpha_i)$:

$$\hat{V}(\exp(\tilde{\alpha}_i)) = \frac{1}{N} \sum_{i=1}^{N} \left(\exp(\tilde{\alpha}_i) - \frac{1}{N} \sum_{i=1}^{N} \exp(\tilde{\alpha}_j) \right)^2$$

We want to think of the $\exp(\tilde{\alpha}_i)$ as $\sim \chi(M_\alpha)/M_\alpha$. Hence

$$V(\exp(\tilde{\alpha})) = \frac{2M_{\alpha}}{M_{\alpha}^2} = \frac{2}{M_{\alpha}}, \qquad M_{\alpha} = \frac{2}{\hat{V}(\exp(\tilde{\alpha}_i))}$$

4.XVI AVERAGES, STANDARD DEVIATIONS, AND CORRELATIONS OF STANDARD ERRORS

Data Set	S.D.	M_{α}	M_{β}	Unit Placebo		Time Placebo		Marginal			Conditional				
				mean	(s.d.)	cov	mean	(s.d.)	cov	mean	(s.d.)	cov	mean	(s.d.)	COV
cal_Y	32.77	0.39	6.87	0.36	0.12	0.94	0.31	0.21	0.95	0.38	0.00	0.96	0.39	0.34	0.9
cps_hours	1.34	4.26	13.37	0.64	0.09	0.94	0.63	0.14	0.95	0.64	0.00	0.95	0.66	0.24	0.9
cps_lwage	0.44	5.18	7.61	0.13	0.03	0.93	0.13	0.04	0.92	0.13	0.00	0.94	0.14	0.07	0.9
cps_urate	0.02	7.11	8.48	0.67	0.15	0.94	0.67	0.14	0.94	0.69	0.00	0.95	0.69	0.25	0.9
germ	8.95	1.10	2.95	0.19	0.08	0.91	0.16	0.12	0.89	0.20	0.00	0.92	0.23	0.21	0.92
mariel	0.20	9.44	3.69	0.63	0.23	0.93	0.64	0.20	0.93	0.67	0.00	0.95	0.65	0.29	0.9
guns	9.71	0.19	1.91	0.35	0.17	0.93	0.21	0.33	0.93	0.39	0.00	0.96	0.25	0.34	0.9

Real panel simulation studies - TWFE

- All four standard errors are the same on average, and do fine for coverage, but they vary greatly in terms of standard deviation.
- we should prefer the one with larger standard deviation

4.XVII SOME SIMULATIONS

Some Simulations (homoskedastic case)

- (a) homoskedastic case: $\lambda_{\text{unit}} = 0$, $\lambda_{\text{time}} = 0$
- (b) unit-heteroskedastic case: $\lambda_{unit} = 1$, $\lambda_{time} = 0$
- (c) time-heteroskedastic case: $\lambda_{unit} = 0$, $\lambda_{time} = 1$
- (d) fully heteroskedastic case: $\lambda_{unit} = 1$, $\lambda_{time} = 1$

4.XVIII FOUR POWER CURVES WITH SIMULATED DATA

Power curves for simulation studies with heterogeneous variance structure estimated using a two-way-fixed-effects estimator for imputing missing values.

4.XIX FOUR POWER CURVES WITH ACTUAL DATA

4.XX VARIANCES

- Variance Estimation is tricky in panel data settings
- Validity of variance estimators is not sole consideration, power also matters.
- Full robustness to misspecification is not always possible.
- The choice between unit and time placebo variance estimators is not clear
- There are other approaches beyond unit and time placebo variance estimators based on modelling the heteroskedasticity.

5. CONCLUSION

- More to be done on estimation:
 - row-column-exchangeability is not a good assumption, but underlies many estimators.
 - Combination of outcome modelling and local estimation,
 similar to cross-section approaches may be effective.
- More to be done on variance estimation
 - Power and validity are both important
 - Focus on choice between unit-placebo and time-placebo is misplaced.

REFERENCES

- ABADIE, ALBERTO, ALEXIS DIAMOND, AND JENS HAINMUELLER. "SYNTHETIC
 CONTROL METHODS FOR COMPARATIVE CASE STUDIES: ESTIMATING THE EFFECT OF
 CALIFORNIA'S TOBACCO CONTROL PROGRAM." Journal of the American statistical
 Association 105, No. 490 (2010): 493-505.
- ALDOUS, D.J., 1981. REPRESENTATIONS FOR PARTIALLY EXCHANGEABLE ARRAYS OF RANDOM VARIABLES. Journal of Multivariate Analysis, 11(4), pp.581-598.
- ALMUZARA, MARTÍN. HETEROGENEITY IN TRANSITORY INCOME RISK. WORKING PAPER, 2020.
- ARKHANGELSKY, DMITRY, AND DAVID HIRSHBERG. "LARGE-SAMPLE PROPERTIES OF THE SYNTHETIC CONTROL METHOD UNDER SELECTION ON UNOBSERVABLES." ARXIV PREPRINT ARXIV:2311.13575 2 (2023).

- ARKHANGELSKY, DMITRY, AND GUIDO IMBENS. CAUSAL MODELS FOR LONGITUDINAL AND PANEL DATA: A SURVEY. Fconometrics, Journal 2024.
- ARKHANGELSKY, DMITRY, AND GUIDO W. IMBENS. "FIXED EFFECTS AND THE GENERALIZED MUNDLAK ESTIMATOR." Review of Economic Studies 91, No. 5 (2024): 2545-2571.
- ARKHANGELSKY, DMITRY, GUIDO W. IMBENS, LIHUA LEI, AND XIAOMAN LUO.
 "DESIGN-ROBUST TWO-WAY-FIXED-EFFECTS REGRESSION FOR PANEL DATA."
 Quantitative Economics, (2024).
- ARKHANGELSKY, DMITRY, SUSAN ATHEY, DAVID A. HIRSHBERG, GUIDO W. IMBENS, AND STEFAN WAGER. "SYNTHETIC DIFFERENCE-IN-DIFFERENCES." American Economic Review 111, NO. 12 (2021): 4088-4118.

- ARKHANGELSKY, DMITRY, AND GUIDO IMBENS. "CAUSAL MODELS FOR LONGITUDINAL AND PANEL DATA: A SURVEY." The Econometrics Journal (2024).
- Athey, Susan, Mohsen Bayati, Nikolay Doudchenko, Guido Imbens, and Khashayar Khosravi. "Matrix completion methods for causal panel data models." *Journal of the American Statistical Association* 116, No. 536 (2021).
- BERTRAND, MARIANNE, ESTHER DUFLO, AND SENDHIL MULLAINATHAN. "How MUCH SHOULD WE TRUST DIFFERENCES-IN-DIFFERENCES ESTIMATES?." The Quarterly journal of economics 119, No. 1 (2004): 249-275.
- BOTTMER, LEA, GUIDO W. IMBENS, JANN SPIESS, AND MERRILL WARNICK. "A
 DESIGN-BASED PERSPECTIVE ON SYNTHETIC CONTROL METHODS." Journal of
 Business & Economic Statistics 42, No. 2 (2024): 762-773.

- CALLAWAY, BRANTLY, AND PEDRO HC SANT'ANNA. "DIFFERENCE-IN-DIFFERENCES
 WITH MULTIPLE TIME PERIODS." Journal of econometrics 225, No. 2 (2021).
- DE CHAISEMARTIN, CLÉMENT, AND XAVIER D'HAULTFOEUILLE. "TWO-WAY FIXED EFFECTS ESTIMATORS WITH HETEROGENEOUS TREATMENT EFFECTS." American economic review 110, NO. 9 (2020): 2964-2996.
- CHERNOZHUKOV, VICTOR, KASPAR WÜTHRICH, AND YINCHU ZHU. "AN EXACT AND ROBUST CONFORMAL INFERENCE METHOD FOR COUNTERFACTUAL AND SYNTHETIC CONTROLS." *Journal of the American Statistical Association* 116, No. 536 (2021): 1849-1864.
- Doudchenko, Nikolay, and Guido W. Imbens. Balancing, regression,
 Difference-in-differences and synthetic control methods: A synthesis.
 No. w22791. National Bureau of Economic Research, 2016.

- FERMAN, BRUNO, AND CRISTINE PINTO. "SYNTHETIC CONTROLS WITH IMPERFECT PRETREATMENT FIT." Quantitative Economics 12, NO. 4 (2021): 1197-1221.
- GOLDSMITH-PINKHAM, PAUL. "TRACKING THE CREDIBILITY REVOLUTION ACROSS FIELDS." ARXIV PREPRINT ARXIV:2405.20604 (2024).
- GOODMAN-BACON, ANDREW. "DIFFERENCE-IN-DIFFERENCES WITH VARIATION IN TREATMENT TIMING." Journal of econometrics 225, No. 2 (2021): 254-277.
- IMBENS, GUIDO, NATHAN KALLUS, AND XIAOJIE MAO. "CONTROLLING FOR UNMEASURED CONFOUNDING IN PANEL DATA USING MINIMAL BRIDGE FUNCTIONS: FROM TWO-WAY FIXED EFFECTS TO FACTOR MODELS." ARXIV PREPRINT ARXIV:2108.03849 (2021).

- MUNDLAK, YAIR. "ON THE POOLING OF TIME SERIES AND CROSS SECTION DATA."
 ECONOMETRICA (1978): 69-85.
- ROTH, JONATHAN, PEDRO HC SANT'ANNA, ALYSSA BILINSKI, AND JOHN POE.
 "WHAT'S TRENDING IN DIFFERENCE-IN-DIFFERENCES? A SYNTHESIS OF THE RECENT ECONOMETRICS LITERATURE." Journal of Econometrics 235, NO. 2 (2023): 2218-2244.
- SEKHON, JASJEET S., AND YOTAM SHEM-TOV. "INFERENCE ON A NEW CLASS OF SAMPLE AVERAGE TREATMENT EFFECTS." Journal of the American Statistical Association 116, NO. 534 (2021): 798-804.

- SPLAWA-NEYMAN, JERZY, DOROTA M. DABROWSKA, AND TERRENCE P. SPEED. "ON THE APPLICATION OF PROBABILITY THEORY TO AGRICULTURAL EXPERIMENTS. ESSAY ON PRINCIPLES. SECTION 9." Statistical Science (1990): 465-472.
- Sun, Liyang, and Sarah Abraham. "Estimating dynamic treatment effects in Event studies with heterogeneous treatment effects." *Journal of* econometrics 225, No. 2 (2021): 175-199.
- WHITE, HALBERT. "MAXIMUM LIKELIHOOD ESTIMATION OF MISSPECIFIED MODELS."
 Econometrica (1982): 1-25.