



# WholsWho-IND-KDD-2024

#### **Final Presentation**

2024. 06. 11.

Department of Applied Artificial Intelligence

Minsu Kim

**Hanyong Kim** 

**SungJun Park** 

### Index



### 1. Introduction

## 2. Analysis

- (1) Analysis 1
- (2) **Analysis 2**
- (3) Analysis 3
- 3. Result & Conclusion



# 1. Introduction

### **KDD 2024 OAG-Challenge**



#### Motivation

- Academic data mining has potential to unlock enormous scientific, technological, and educational values.
- However, academic graph mining has been limited by the lack of a suitable public benchmark.
- Open Academic Graph Challenge(OAG-Challenge) is open to advance the SOTA in academic graph mining.

#### WholsWho-IND(Incorrect Assignment Detection) Task

Given the paper assignments of each author and paper metadata, the goal is to detect paper assignment

errors for each author.







### **Dataset**



- train\_author.json & ind\_valid\_author.json
  - The key is the Author ID and has the 'name'.
  - 'normal\_data' for owned papers correctly.
  - o 'outliers' for incorrectly assigned papers.
  - 779 authors(train) and 370 authors(valid)

|                 | Iki0         | 37dt                                      | ZihzMro7                                                   | MXN                | IYBk3c                                        | WrCC                 | DHhe                                      | k3uS(                                         | CGEE               |                                             |                                                            |
|-----------------|--------------|-------------------------------------------|------------------------------------------------------------|--------------------|-----------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------|--------------------|---------------------------------------------|------------------------------------------------------------|
| name            |              | tsushi<br>ochiai                          | mingwu<br>yang                                             | ji                 | anzhao<br>huang                               | χι                   | iebiao<br>yao                             | shunlin                                       | tang               |                                             |                                                            |
| normal_data     | B5ac<br>u1G7 | oPTO,<br>pcGjH,<br>ouLse,<br>wBEv,<br>w6P | [C58t0yYu,<br>sWIRnfR3,<br>HJW8h2mo,<br>0Ptx4O5n,<br>fU4vB | fY.<br>Zae<br>kg9x | IOXO4,<br>Icce0K,<br>eOFAcI,<br>DSXm,<br>37S3 | wjt8<br>pPx6<br>xgRa | Jb1W,<br>Y8ho,<br>o7KZ,<br>arLPn,<br>v9yz | [gTeQ<br>mVk2vn<br>TLKS<br>Eg5Nc<br>kM        | nmN,<br>SII8D,     |                                             |                                                            |
| outliers        |              | d3CP,<br>TiJp2,                           | [qK8llKzD,<br>l0eTdaAG,<br>pEchDDiD<br>ef08f               | nvl                | UxOes,<br>ELwvhl,<br>CDTOb<br>C <b>97i</b>    | wnP80                | V <sub>2</sub> OC                         | [xPmu40<br>buwfo<br>fBB-                      | ccml,              | hch6j                                       | xb6tyRp8                                                   |
| 3 rows × 779 co |              |                                           |                                                            | 4                  | (3,1                                          | 40. 7                |                                           |                                               | J. 2               |                                             | Aborynpo                                                   |
|                 |              | nam                                       | e chen                                                     | dong               | xiang                                         | quan<br>kong         |                                           | tephen<br>bonner                              | hep                | ing cao                                     | siddhartha<br>chaudhuri                                    |
|                 |              | pape                                      | eBrO                                                       | lvd2,<br>oryu,     | ddYPE<br>4RUX<br>bgq02                        |                      | LBF8<br>ve4d<br>4SZH                      | BeZpB,<br>BV0R7,<br>cZSnG,<br>I6NMu,<br>jx9x9 | zdl<br>L7Jb<br>ehC | 5UZBI,<br>vVxoB,<br>QRWL,<br>9IY2R,<br>d1JH | [ApK8dQmd,<br>oyAtP5qN,<br>0O83Pooh,<br>47g7LjvL,<br>9o8wv |
|                 | 2 rows       | s × 370 colur                             | nns                                                        |                    |                                               |                      |                                           |                                               |                    |                                             |                                                            |

#### pid\_to\_info\_all.json

- Paper ID
- Author info : name, organization
- Paper info : venue, publication year
- Text info : paper title, keywords, abstract

| Column       | Туре            | Description              | Example                                                                                   |
|--------------|-----------------|--------------------------|-------------------------------------------------------------------------------------------|
| ID           | string          | Paper ID                 | 53e9ab9eb7602d970354a97e                                                                  |
| title        | string          | Paper title              | Data mining: concepts and techniques                                                      |
| authors.name | string          | Author's name            | Jiawei Han                                                                                |
| author.org   | string          | Author's organization    | department of computer science University of Illinois at Urbana Champaign                 |
| venue        | string          | Conference or<br>Journal | Inteligencia Artificial, Revista Iberoamericana de Inteligencia<br>Artificial             |
| year         | int             | Publication year         | 2000                                                                                      |
| keywords     | list of strings | Key words                | ["data mining", "structured data", "world wide web", "social network", "relational data"] |
| abstract     | string          | Abstract of a paper      | Our ability to generate                                                                   |



# 2. Analysis

## (1) Analysis – 1: Graph Learning



#### Constructed the "Paper-Paper Graph" by author

- Stopwords elimination from the title of paper & Embedding
- Extracted Roberta keywords by using Embedding of title
- Calculated Jaccard similarities among keywords
- If Jaccard similarities >= 0.6,
  - → Construct the "Paper-Paper Graph" by author
- Embeddings of title can be used for feature vectors.



< Fig 3. Distribution of Jaccard Similarities among keywords >



< Fig 4. Sample graph of Paper-Paper Graph on KDD Dataset >

### (1) Analysis – 1: Graph Learning



### Graph Modeling : GCN (Graph Convolution Network)

- Inductive Learning (Dataset split → Train Set : Validation Set = 7 : 3)
- Feature Extraction with two of GCN Conv. Layers from the graph
- Adam Optimizer & FC Layer for the final output & binary output with Sigmoid activation

#### Hyper-parameters

Hidden: 768

o Epochs: 50

Learning rate : 0.0005

Evaluation metric : AUC

| Valid AUC | Public Board |
|-----------|--------------|
| 0.592     | 0.583        |

## (2) Analysis – 2: Machine Learning



### Data Preprocessing

- Stopwords elimination from the title and abstract
- Text embedding for the title and abstract with RoBERTa
- Combining embeddings, features(title, abstract, keywords, authors, venue), and year
- Get ready with Training dataset(148,409) and Validation dataset(62,229)

#### Method

- LightGBM learning with stratified K-Fold cross validation
- Train:Test = 80:20
- Optimizing hyper-parameters by using grid search
- Evaluation metrics: ROC-AUC, Accuracy, Precision, Recall, F1-score

| Valid AUC | Public Board |
|-----------|--------------|
| 0.764     | 0.638        |

## (3) Analysis – 3 : GCCAD Modeling



#### GCCAD modeling with WholsWho-IND Baseline code

#### Build Graph

- Eliminating stopwords from the title
- Building Paper-Paper Graph by author → Edge weights with co-author, co-work years and venues
- Embeddings of title are used for feature vectors.

#### GCCAD Modeling (Graph Contrastive Learning for Anomaly Detection)

- GraphCAD is a complex graph neural network model aimed at Outlier Detection in graph structures.
- Designed to exploit the characteristics of graph data to detect anomalies at node, edge, and system levels

#### Experiment

epochs: 40 and default value of baseline code

| Valid AUC | Public Board |
|-----------|--------------|
| 0.693     | 0.682        |



# 3. Result & Conclusion

### **Result & Conclusion**



#### Result

Ranked 53rd on the Leaderboard with an accuracy 0.68226 (scored by GCCAD)



< Fig 5. Screenshot of the competition leaderboard (June 9, 2024) >

#### Conclusion & Limitations

- We tried both Machine Learning and Graph Learning.
  - ML performs well in general.
  - GNN is huge and heavy. → GNN needs enormous computing power and resources.
- There was a difficulty on modeling and running codes due to the lack of computing resources. (Oh, C'mon Colab!)
- o Proper topic selection and utilization for GNN are very important.

### References



- [1] Ravipati, R. D., & Abualkibash, M. (2019). Intrusion detection system classification using different machine learning algorithms on KDD-99 and NSL-KDD datasets-a review paper. International Journal of Computer Science & Information Technology (IJCSIT) Vol, 11.
- [2] Li, Y., Fang, B., Guo, L., & Chen, Y. (2007, March). Network anomaly detection based on TCM-KNN algorithm. In Proceedings of the 2nd ACM symposium on Information, computer and communications security (pp. 13-19).
- [3] Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. Journal of Computational Science, 25, 152-160.
- [4] Chiang, W. L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C. J. (2019, July). Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 257-266).
- [5] Jiang, J., Chen, J., Gu, T., Choo, K. K. R., Liu, C., Yu, M., ... & Mohapatra, P. (2019, November). Anomaly detection with graph convolutional networks for insider threat and fraud detection. In MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM) (pp. 109-114). IEEE.



# Thank you!

Q&A