Digital Logic Design Gate-Level Minimization

3-1 Introduction

 Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

3-2 The Map Method

- The complexity of the digital logic gates
 - The complexity of the algebraic expression
- Logic minimization
 - Algebraic approaches: lack specific rules
 - The Karnaugh map
 - A simple straight forward procedure
 - A pictorial form of a truth table
 - Applicable if the # of variables < 7
- A diagram made up of squares
 - Each square represents one minterm

Review of Boolean Function

- Boolean function
 - Sum of minterms
 - Sum of products (or product of sum) in the simplest form
 - A minimum number of terms
 - A minimum number of literals
 - The simplified expression may not be unique

Two-Variable Map

A two-variable map

- Four minterms
- x' = row 0; x = row 1
- y' = column 0; y = column 1
- A truth table in square diagram
- Fig. 3.2(a): $xy = m_3$
- Fig. 3.2(b): x+y = x'y+xy' + xy= $m_1+m_2+m_3$

Figure 3.1 Two-variable Map

Figure 3.2 Representation of functions in the map

A Three-variable Map

- A three-variable map
 - Eight minterms
 - The Gray code sequence
 - Any two adjacent squares in the map differ by only on variable
 - Primed in one square and unprimed in the other
 - e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz(y'+y) = xz$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
	(8	a)	

Figure 3.3 Three-variable Map

A Three-variable Map

- m_0 and m_2 (m_4 and m_6) are adjacent
- $m_0 + m_2 = x'y'z' + x'yz' = x'z'(y'+y) = x'z'$
- $m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$

				$\setminus xz$		y		
				x	00	01	11	10
m_0	m_1	m_3	m_2	0	x'y'z'	x'y'z	x'yz	x'yz'
m_4	m_5	m_7	m_6	$x \begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'
							ž	_
	(a)				((b)	

Fig. 3-3 Three-variable Map

Example 3.1

• Example 3.1: simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$

•
$$F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$$

Figure 3.4 Map for Example 3.1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Example 3.2

- Example 3.2: simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$
 - $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Figure 3.5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent Squares

- Consider four adjacent squares
 - 2, 4, and 8 squares
 - $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y'+y) + xz'(y'+y) = x'z' + xz' = z'$
 - $m_1+m_3+m_5+m_7 = x'y'z+x'yz+xy'z+xyz = x'z(y'+y) + xz(y'+y) = x'z + xz = z$

Figure 3.3 Three-variable Map

Example 3.3

- **Example 3.3:** simplify $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$
- $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Figure 3.6 Map for Example 3-3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

October 23, 2023

Example 3.4

- Example 3.4: let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms.
 - b) Find the minimal sum of products expression.

Ans:

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$

Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B

October 23, 2023

3.3 Four-Variable Map

- The map
 - 16 minterms
 - Combinations of 2, 4, 8, and 16 adjacent squares

m_0	m_1	m_3	m_2
0			2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

Figure 3.8 Four-variable Map

Example 3.5

• Example 3.5: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Figure 3.9 Map for Example 3-5; $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$

October 23, 2023

Example 3.6

Example 3-6: simplify F = A B C'+ B CD'+ A B CD'+ AB C'

Figure 3.9 Map for Example 3-6; $A \mathcal{B}'C' + B\mathcal{C}D' + A\mathcal{B}'C\mathcal{D}' + AB\mathcal{C}' = B\mathcal{D}' + B\mathcal{C}' + A\mathcal{C}D'$

October 23, 2023

3.4 Five-Variable Map

- Map for more than four variables becomes complicated
 - Five-variable map: two four-variable map (one on the top of the other).

Figure 3.12 Five-variable Map

• Table 3.1 shows the relationship between the number of adjacent squares and the number of literals in the term.

Table 3.1The Relationship between the Number of Adjacent Squares and the Number of Literals in the Term

	Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable Map				
K	2 ^k	n = 2	n = 3	n = 4	n = 5	
0	1	2	3	4	5	
1	2	1	2	3	4	
2	4	0	1	2	3	
3	8		0	1	2	
4	16			0	1	
5	32				0	

October 20, 2020

3-5 Product of Sums Simplification

Approach #1

- Simplified F' in the form of sum of products
- Apply DeMorgan's theorem F = (F')'
- F': sum of products $\rightarrow F$: product of sums
- Approach #2: duality
 - Combinations of maxterms (it was minterms)
 - $M_0M_1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C$

	CD			
AB \	00	01	11	10
00	M_{o}	M_1	M_3	M_2
01	M_4	M_5	M_7	M_6
11	M ₁₂	M ₁₃	M ₁₅	M ₁₄
10	M_8	M_{9}	M ₁₁	M ₁₀

October 23, 2023

Example 3.8

Example 3.8: simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sumof-products form, and (b) product-of-sums form:

Note: BC'D' + BCD' = BD'

Figure 3.14 Map for Example 3.8, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

a) $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

 $(b) \quad F' = AB + CD + BD'$

- » Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D)
- » Or think in terms of maxterms

Example 3.8 (cont.)

Gate implementation of the function of Example 3.8

Figure 3.15 Gate Implementation of the Function of Example 3.8

October 23, 2023

Sum-of-Minterm Procedure

- Consider the function defined in Table 3.2.
 - Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

• Combine the 0's:

$$F'(x, y, z) = xz + x'z'$$

Figure 3.16 Map for the function of Table 3.2

3-6 Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
 - BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1
- Example 3.9: simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$.

Example 3.9 (cont.)

- F = yz + w'x'; F = yz + w'z
- $F = \Sigma(0, 1, 2, 3, 7, 11, 15)$; $F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

Figure 3.17 Example with don't-care Conditions

3-7 NAND and NOR Implementation

- NAND gate is a universal gate
 - Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

October 23, 2023

NAND Gate

• Two graphic symbols for a NAND gate

Figure 3.19 Two Graphic Symbols for NAND Gate

Two-level Implementation

- Two-level logic
 - NAND-NAND = sum of products
 - Example: *F* = *AB+CD*
 - F = ((AB)'(CD)')' = AB+CD

Example 3.10

• Example 3-10: implement F(x, y, z) =

$$F(x, y, z) = \sum (1, 2, 3, 4, 5, 7)$$

$$F(x, y, z) = xy' + x'y + z$$

Figure 3.21 Solution to Example 3-10

Procedure with Two Levels NAND

The procedure

- Simplified in the form of sum of products;
- A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
- A single NAND gate for the second sum term (the second level);
- A term with a single literal requires an inverter in the first level.

Multilevel NAND Circuits

- Boolean function implementation
 - AND-OR logic → NAND-NAND logic
 - AND → AND + inverter
 - OR: inverter + OR = NAND
 - For every bubble that is not compensated by another small circle along the same line, insert an inverter.

(b) NAND gates

Figure 3.22 Implementing F = A(CD + B) + BC'

NAND Implementation

Figure 3.23 Implementing F = (AB' + AB)(C + D')

NOR Implementation

- NOR function is the dual of NAND function.
- The NOR gate is also universal.

Figure 3.24 Logic Operation with NOR Gates

Two Graphic Symbols for a NOR Gate

Figure 3.25 Two Graphic Symbols for NOR Gate

Example:
$$F = (A + B)(C + D)E$$

Figure 3.26 Implementing F = (A + B)(C + D)E

Example

Example: F = (AB' + A'B)(C + D')

Figure 3.27 Implementing F = (AB' + A'B)(C + D') with NOR gates

Non-degenerate Forms

- 16 possible combinations of two-level forms
 - Eight of them: degenerate forms = a single operation
 - AND-AND, AND-NAND, OR-OR, OR-NOR, NAND-OR, NAND-NOR, NOR-AND, NOR-NAND.
 - The eight non-degenerate forms
 - AND-OR, OR-AND, NAND-NAND, NOR-NOR, NOR-OR, NAND-AND, OR-NAND, AND-NOR.
 - AND-OR and NAND-NAND = sum of products.
 - OR-AND and NOR-NOR = product of sums.
 - NOR-OR, NAND-AND, OR-NAND, AND-NOR = ?

AND-OR-Invert Implementation

- AND-OR-INVERT (AOI) Implementation
 - NAND-AND = AND-NOR = AOI
 - F = (AB+CD+E)'
 - F' = AB + CD + E (sum of products)

Figure 3.29 AND-OR-INVERT circuits, F = (AB + CD + E)'

October 23, 2023

OR-AND-Invert Implementation

- OR-AND-INVERT (OAI) Implementation
 - OR-NAND = NOR-OR = OAI
 - F = ((A+B)(C+D)E)'
 - F' = (A+B)(C+D)E (product of sums)

Figure 3.30 OR-AND-INVERT circuits, F = ((A+B)(C+D)E)'

Tabular Summary and Examples

• Example 3-11: F = x'y'z' + xyz'

```
• F' = x'y+xy'+z (F': sum of products)

• F = (x'y+xy'+z)' (F: AOI implementation)

• F = x'y'z' + xyz' (F: sum of products)

• F' = (x+y+z)(x'+y'+z) (F: product of sums)

• F = ((x+y+z)(x'+y'+z))' (F: OAI)
```

Tabular Summary and Examples

Table 3.3 *Implementation with Other Two-Level Forms*

Equivalent Nondegenerate Form		Implements the	Simplify	To Get
(a)	(b)*	Function	into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and	
			then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

Figure 3.31 Other Two-level Implementations

3-9 Exclusive-OR Function

- Exclusive-OR (XOR)
 - $x \oplus y = xy' + x'y$
- Exclusive-NOR (XNOR)
 - $(x \oplus y)' = xy + x'y'$
- Some identities
 - $x \oplus 0 = x$
 - $x \oplus 1 = x'$
 - $x \oplus x = 0$
 - $x \oplus x' = 1$
 - $x \oplus y' = (x \oplus y)'$
 - $x' \oplus y = (x \oplus y)'$
- Commutative and associative
 - A⊕B = B⊕A
 - $(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Exclusive-OR Implementations

Implementations

•
$$(x'+y')x + (x'+y')y = xy'+x'y = x \oplus y$$

Figure 3.32 Exclusive-OR Implementations

Odd Function

- $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C = AB'C' + A'BC' + ABC + A'B'C = \Sigma(1, 2, 4, 7)$
- XOR is a odd function \rightarrow an odd number of 1's, then F = 1.
- XNOR is a even function \rightarrow an even number of 1's, then F = 1.

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Figure 3.33 Map for a Three-variable Exclusive-OR Function

XOR and XNOR

Logic diagram of odd and even functions

Figure 3.34 Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

Four-variable Exclusive-OR function

October 23, 2023

• $A \oplus B \oplus C \oplus D = (AB'+A'B) \oplus (CD'+C'D) = (AB'+A'B)(CD+C'D')+(AB+A'B')(CD'+C'D)$

Figure 3.35 Map for a Four-variable Exclusive-OR Function

Parity Generation and Checking

- Parity Generation and Checking
 - A parity bit: $P = x \oplus y \oplus z$
 - Parity check: $C = x \oplus y \oplus z \oplus P$
 - C=1: one bit error or an odd number of data bit error
 - C=0: correct or an even # of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.4 *Even-Parity-Generator Truth Table*

Three-Bit Message		Parity Bit		
x	y z		P	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Parity Generation and Checking

Table 3.5 *Even-Parity-Checker Truth Table*

Four Bits Received			Parity Error Check	
x	y	z	P	c
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

October 23, 2023