User Repurchase Prediction

Sean Matthews

github/sean-io/market-basket-analysis

Objective & Context

Predict which previously purchased products a user will order next.

Kaggle Instacart Challenge Data

Available information: user order count, order products were added to a user's cart, day of week, hour of day, reordered indicator, product department, product aisle.

Default Variable Correlation

	order_number	order_dow	order_hour_of_day	days_since_prior_order	product_id	add_to_cart_order	aisle_id	department_id
order_number	1.0	0.016	-0.04	-0.36	-0.0021	-0.0037	0.0051	0.0042
order_dow	0.016	1.0	0.014	-0.03	-0.0058	-0.0087	0.00057	0.0062
order_hour_of_day	-0.04	0.014	1.0	0.0017	0.00061	-0.015	-0.0036	-0.0097
days_since_prior_order	-0.36	-0.03	0.0017	1.0	0.002	0.053	0.0051	-0.00013
product_id	-0.0021	-0.0058	0.00061	0.002	1.0	0.0056	0.0033	-0.028
add_to_cart_order	-0.0037	-0.0087	-0.015	0.053	0.0056	1.0	0.0076	0.028
aisle_id	0.0051	0.00057	-0.0036	0.0051	0.0033	0.0076	1.0	0.063
department_id	0.0042	0.0062	-0.0097	-0.00013	-0.028	0.028	0.063	1.0

Highly correlated variables:

'order_dow' and 'order_hour_of_day'

'add_to_cart_order' and 'days_since_prior_order'

Feature Selection

Developed 13 features to evaluate for predictive performance using Random Forest Classifier.

Selected Features

<u>User prod reorder rate</u>: user frequency of reordering product

<u>Prod reorder rate</u>: frequency product is reordered (by all users)

	features	importance
16	user_prod_reorder_rate	0.4873
19	prod_reorder_rate	0.0584
8	user_orders	0.0517
15	avg_add_to_cart_order	0.0435
11	avg_reorders_per_basket	0.0358

Avg add to cart order: average sequence a product is added to a user's order

Avg reorders per basket: proportion of reorded products in a user's orders

Products reordered in the training (prior order) data set.

Products were reordered in the validation (test order) data set.

Baseline performance (Using sklearn LR evaluation)

Accuracy 77.7%

Precision 100%

Recall 62.7%

F1 0.771

AUROC 93.7%

SKLearn Calibration Plots

Native Bayes + Sigmoid demonstrates the best reduction in overfitting.

Logistic:

Brier: 0.144

Precision: 1.000

Recall: 0.627

F1: 0.771

Naive Bayes + Isotonic:

Brier: 0.190

Precision: 0.932

Recall: 0.583

F1: 0.717

Naive Bayes:

Brier: 0.226

Precision: 0.945

Recall: 0.486

F1: 0.642

Naive Bayes + Sigmoid:

Brier: 0.191

Precision: 0.738

Recall: 0.727

F1: 0.733

SKLearn Calibration Plots

SVC + Isotonic demonstrates the best overall performance.

Logistic: SVC + Isotonic:

Brier: 0.144 Brier: 0.134

Precision: 1.000 Precision: 1.000

Recall: 0.627 Recall: 0.690

F1: 0.771 F1: 0.817

SVC: SVC + Sigmoid:

Brier: 0.540 Brier: 0.138

Precision: 1.000 Precision: 1.000

Recall: 0.659 Recall: 0.658

F1: 0.794 F1: 0.794

Reflections

- → Developing a well-balanced model is difficult with only a single highly predictive feature.
- → While performance appears promising when applied to customers' next order, this can not be necessarily anticipated with future orders.
- → The combined linear support-vector classifier (LinearSVC) + Isotonic model had the best overall performance. It is less than ideal, evidenced by its distance from isotonic regression line (diagonal). This is likely caused by the dominance of a single feature in the model.

Reflections

Additional questions to explore:

- Which product is a customer likely to try for the first time during their next order?
- ♦ When will a customer make their next order?
- What customer segments can be derived from purchasing behavior?
- What products are commonly purchased together?

Thank You

Sean Matthews

github/sean-io/market-basket-analysis