

Deutsche Kl.: 12 p, 10/01

1810423 (10) Offenlegungsschrift (1) P 18 10 423.9 Aktenzeichen: 22. November 1968 Anmeldetag: 2 Offenlegungstag: 9. Oktober 1969 **43** Ausstellungspriorität: Unionspriorität 39 24. November 1967 Datum: (32) Österreich Land: (33) A 10647-67 Aktenzeichen: (31) 1-Phenyl-4-alkyl-3H-1,4-benzodiazepin-2,5-[1H,4H]-dione Bezeichnung: 64) und Verfahren zu ihrer Herstellung Zusatz zu: 61) Ausscheidung aus: € C. H. Boehringer Sohn, 6507 Ingelheim Anmelder: 7 Vertreter: Weber, Dr. Karlheinz, 6535 Gau Algesheim; Als Erfinder benannt: 12 Zeile, Dr. Karl; Dannenberg, Dr. Peter, 6507 Ingelheim; Giesmann, Dr. Rolf, 6530 Bingen

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960): Prüfungsantrag gemäß § 28 b PatG ist gestellt

I

Case 1/300

C. H. BOEHRINGER SOHN, Ingelheim/Rhein

1-Phenyl-4-alkyl-3 H-1,4-benzodiazepin-2,5-21H, 4H7dione und Verfahren zu ihrer Herstellung.

Es wurde gefunden, daß Verbindungen der allgemeinen Formel

hervorragende pharmakologische, insbesondere psychosedative und antikonvulsive Eigenschaften besitzen. In dieser Formel bedeuten:

R₁ ein Wasserstoffatom, einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen oder den Benzylrest,

R₂ einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen, einen Methoxy - oder Äthoxyalkylrest, wobei die Alkylkette

1 - 3 Kohlenstoffatome aufweisen kann, den Allylrest oder einen gegebenenfalls durch ein Halogenatom oder einen Alkylrest mit

1 - 2 Kohlenstoffatomen substituierten Benzylrest,

 R_3 ein Wasserstoff- oder Halogenatom oder einen Alkyl- oder Alkoxyrest mit 1 - 2 Kohlenstoffatomen,

R₄ ein Wasserstoff- oder ein Halogenatom, eine Hydroxy-, Nitro-, Amino-, Trifluormethyl- oder Cyanogruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

R₅ ein Wasserstoff- oder ein Halogenatom, die Trifluormethylgruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

 R_6 ein Wasserstoff- oder ein Halogenatom oder eine Alkylgruppe mit 1 - 2 Kohlenstoffatomen.

Gegenstand der Erfindung sind 1-Phenyl-4-alkyl-3H-1,4-benzodiazepin-2,5-/1H, 4H/-dione der allgemeinen Formel

*) Der Nachweis der angeführten Wirkungen wurde an Warmblütern, insbesondere Mäusen, Ratten, Katzen und Hunden, erbracht.

909841/1633.

$$R_3$$
 R_4
 R_5
 R_6
 R_6

worin

R ein Wasserstoffatom, einen niederen Alkylrest mit 1-4 Kohlenstoffatomen oder den Benzylrest,

R₂ einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen, einen Methoxy- oder Äthoxyalkylrest, wobei die Alkylkette 1 - 3 Kohlenstoffatome aufweisen kann, den Allylrest oder einen gegebenenfalls durch ein Halogenatom oder einen Alkylrest mit 1 - 2 Kohlenstoffatomen substituierten Benzylrest,

R₃ ein Wasserstoff- oder Halogenatom oder einen Alkyl- oder Alkoxyrest mit 1 - 2 Kohlenstoffatomen,

R₄ ein Wasserstoff- oder ein Halogenatom, eine Hydroxy-,
Nitro-, Amino-, Trifluormethyl- oder Cyanogruppe oder eine
Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,
R₅ ein Wasserstoff- oder ein Halogenatom, die Trifluormethylgruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

 R_6 ein Wasserstoffatom oder ein Halogenatom oder eine Alkylgruppe mit 1 - 2 Kohlenstoffatomen

II

bedeuten.

Gegenstand der Erfindung sind ferner Verfahren zur Herstellung von 1-Phenyl-4-alkyl-3H-1,4-benzodiazepin-2,5
[TH, 4H7-dionen der allgemeinen Formel I, welche darin bestehen, daß man in an sich bekannter Weise

a) ein Anthranilsäurederivat der allgemeinen Formel

worin die Reste R_1 bis R_6 die oben angegebene Bedeutung besitzen

- ✓) mit einem geeigneten Halogenierungsmittel in das entsprechende Säurehalogenid überführt und dieses gegebenenfalls mit einer tertiären organischen Base behandelt oder
- B) mittels eines Acylanhydrids bzw. Acylhalogenids direkt zum Ring schließt, oder daß man

III

worin die Reste R_1 bis R_6 die oben angeführte Bedeutung besitzen und x für ein Halogenatom steht, in einem geeigneten Lösungsmittel mit einem Alkalimetallalkoholat erhitzt.

Die Umsetzung eines Anthranilsäurederivates der Formel II mit Thionylchlorid, Phosphorpentachlorid, Phosphortrichlorid oder einem anderen geeigneten Halogenierungsmittel verläuft bevorzugt unter Verwendung geeigneter inkerter organischer Lösungsmittel wie Benzol, Toluol, Xylol oder einem Gemisch dieser Lösungsmittel mit Dimethylformamid. Die anzuwendenden Temperaturen hängen ab von der jeweils eingesetzten Ausgangsverbindung und können zwischen Raumtemperatur und der Rück-

1810423

Umsetzung der Amide mit Halogenacylhalogeniden vorzugsweise in Benzol unter Zusatz der äquivalenten Menge einer organischen Base, z. B. Pyridin.

Die erfindungsgemäßen Verbindungen können im Gemisch mit den bekannten Arzneimittelträgern in den Anwendungsformen, wie sie in der Galenik für parenterale oder enterale Applikation üblich sind, zum Einsatz gelangen. Geeignete Anwendungsformen sind beispielsweise Tabletten, Kapseln, Zäpfchen, Lösungen oder Pulver; hierbei können zu deren Herstellung die üblicherweise verwendeten Hilfs-, Binde-, Träger-, Spreng- oder Schmiermittel bzw. Mittel zur Erzielung eines Depoteffektes Anwendung finden. Die Herstellung dieser Zubereitungen erfolgt nach an sich bekannten Fertigungs-methoden.

Die Verbindungen sollen in einer Dosierung von 1 - 100, vorzugsweise 5 - 50 mg/Dosis zur Anwendung gelangen.

Die folgenden Beispiele dienen zur näheren Erläuterung der Erfindung, ehne sie jedoch zu beschränken: In der folgenden Tabelle sind die Ergebnisse der pharmakologischen Untersuchungen auf Sedation (Messung der Ataxie) und Antikonvulsion (Messung des maximalen Elektroschocks) zusammengestellt. Sämtliche Tests wurden mit Mäusen durchgeführt, die Substanzen wurden oral appliziert.

- a) Rutschtest
 Die Tiere werden auf eine um 35° geneigte blanke Metallplatte gesetzt; die ED₅₀ ist die Dosis, bei welcher 50 %
 der Tiere sich infolge der sedierenden Wirkung der verabreichten Testsubstanz auf dieser Platte nicht mehr halten können und abrutschen.
- Als AD₅₀ wird diejenige Dosis bezeichnet, bei welcher bei 50 % der Tiere die Bewegungen der Extremitäten nicht mehr koordiniert sind.
- Die Tiere werden mittels Augenelektroden mit einem definien ten Strom geschockt. Beim maximalen Elektroschock zeigen 100 % der unbehandelten Kontrolltiere den maximalen Streckkrampf. Unter Einwirkung antikonvulsiver Mittel wird der maximale Streckkrampf ganz oder teilweise verhindert. Die ED₅₀ ist diejenige Dosie, bei der 50 % der Versuchstiere keinen maximalen Streckkrampf zeigen.
- d) Toxizitht
 Die mittlere letale Dosis (LD₅₀) wurde nach Litchfield und
 Wilcoxon J. of Pharmacol. exptl. Therap., Band <u>96</u>, S. 99
 (1949) bestimmt.
 Die Werte wurden in allen Fällen grafisch ermittelt.

	•				
Verbindung	Rutschtest ED ₅₀ mg/kg	Ataxie ED ₅₀ mg/kg	Max.Elektro- schook ED ₅₀ mg/kg	LD 50 ng/kg	
1-Phenyl-4-mothyl- 8-ohlor-3H-1,4- bensodingopin-2,5- [1H, 4H]-dion	(11	91	70	> 2700	
1-Phenyl-4-athyl- 8-chlor-34-1,4- benzodingepin-2,5- [1H, 4H]-dion	27	3 5	86	> 2500	
1-(2-Chbrphenyl)-4-mothyl-8-chlor-3H- 1,4-benzodiazepin- 2,5-[1H, 4H]-dion	27	5 4	190	> 3000	
1-(2-Chlorphenyl)- 4-Uthyl-8-chlor-3H- 1,4-bonzodiazepin- 2,5-[1H, 4H]-dion	60	29	45	> 3100	
1-Phenyl-4-n-butyl- 8-chlor-3H-1,4-ben- sodiasopin-2,5-[1H, 4H]-dion	50	48	230	> 3090	
1-Phenyl-4-lithyl-8- nitro-7H-1,4-benzo- diasepin-2,5-[1H, 4H]-dion	9	14	70	> 2900	
1-Phenyl-4-athyl-8- cyano-3H-1,4-benzo- diazepin-2,5-[1H, 4H]-dion	-	44	> 305	>1000	

909841/1633

Beispiel 1

1-Phenyl-4-methyl-8-chlor-3H-1,4-benzodiazepin-2,5-/1H, 4H/-dion 7,36 g (= 0,03 Mol) Carboxymethyl-methylamido-N-phenyl-4-chlor-anthranilsäure werden in 50 ml Benzol und 5 ml Dimethylformamid gelöst und in der Kälte unter Rühren innerhalb von 10 Minuten mit einer Lösung von 3,1 g Thionylchlorid in 10 ml Benzol versetzt. Die Temperatur steigt auf 35 °C. Man rührt zwei Stunden bei Raumtemperatur nach, dampft das Lösungsmittel ab, nimmt den Rückstand in Methylenchlorid auf und schüttelt zur Entfernung der sauren Bestandteile mit Natriumbicarbonatlösung aus.

Die getrocknete Methylenchlorid/Isopropyläther umkristallisiert.

Man erhält 3,2 g 1-Phenyl-4-methyl-8-chlor-3H-1,4-benzodiazepin-2,5-/1H, 4H/-dion vom Fp.: 209 - 210 °C.

Das Ausgangsmaterial wurde wie folgt erhalten:

74 g (= 0,03 Mol) Phenyl-4-chloranthranilsäure werden in 800 ml Petroläther suspendiert. Unter Rühren fügt man 62,5 g Phosphorpentachlorid zu und erhitzt danach auf ungefähr 50 °C.

Die Raktion setzt spontan ein und ist nach 15 Minuten beendet.

Es entsteht eine klare gelbe Lösung über einer geringen Menge Bodensatz. Man filtriert heiß ab und erhält nach Kühlen in Eis lange gelbe Nadeln, die gegebenenfalls nochmals aus Isopropyläther umkristallisiert werden.

Ausbeute 90 - 95 % d. Th. vom Fp. 100 - 101 °C.

0,2 Mol (= 53 g Saurechlorid) werden in 500 ml Methylenchlorid

gelöst. Unter kräftigem Rühren fügt man gleichzeitig eine Lösung von 0,2 Mol (26,2 g) N-Methylaminoessigsäureäthylester und 16,8 g Natriumbicarbonat, gelöst in 50 ml Wasser, hinzu. Nach ca. 30 Minuten ist die Reaktion beendet. Die Methylenchloridphase wird abgetrennt, getrocknet und eingedampft. Man erhält 75 g Rohester, die in 200 ml Äthanol gelöst werden. Man fügt 35 g Ätzkali in 200 ml Wasser hinzu und kocht 15 Minuten unter Rückfluß. Der Alkohol wird abdestilliert, der Rückstand mit Wasser verdünnt, mit Salzsäure angesäuert und mit Methylenchlorid ausgeschüttelt.

Nach Trocknen und Eindampfen erhält man 75 g Carboxymethylmethylamino-N-phenyl-4-chlor-anthranilsäure.

Beispiel 2

1-Phenyl-4-äthyl-8-chlor-3H-1,4-benzodiazepin-2,5-/ĪH, 4H7-dion 38,4 g Carboxymethyl-äthylamido-N-phenyl-4-chloran ranilsäure werden in 250 ml Benzol gelöst. Man gibt 50 ml Essigsäure hinzu und kocht eine Stunde unter Rückfluß. Die sauren Bestandteile werden mit Natriumbicarbonatlösung ausgeschüttelt, die Benzolphase getrocknet und eingedampft. Den Rückstand kristallisiert man aus Methylenchlorid/Petroläther um.

Beispiel 3

Ausbeute: 26 g vom Fp. 193 - 195 °C.

1-Phenyl-4-athyl-8-chlor-3H-1,4-benzodiazepin-2,5-/7H, 4H7-dion 1,2 g Natriummethylat werden in 120 ml Toluol suspendiert. Man destilliert 20 ml Toluol ab, setzt 7,0 g (= 20mMol) 2-/(N-Chlor-acyl-N-phenyl)-amino/7-4-chlor-äthylbenzamid hinzu und kocht zwei Stunden unter Rückfluß und Rühren. Das Reaktionsgemisch wird mehrmals mit Wasser ausgeschüttelt, die Toluolphase getrocknet und eingedampft. Der feste Rückstand ergibt nach Digerieren mit Isopropyläther, Absaugen und Umkristallisieren aus Methylenchlorid-Petroläther 4 g (= 65 % d. Th.) 1-Phenyl-4-äthyl-8-chlor-3H-1,4-benzodiazepin-2 5-/(1H, 4H/-dion vom Fp. 193 - 195 °C.

Das Ausgangsmaterial wurde wie folgt erhalten:

80 g (0,3 Mol) 3-Chlor-N-phenylanthranilsäurechlorid werden
in 400 ml Methylenchlorid gelöst und unter Rühren und Kühlen
110 ml 25 %iges wäßriges Äthylamin zugetropft. Man rührt 30
Minuten nach, trennt die Methylenchloridphase ab, wäscht mit
Wasser, trennt erneut, trocknet, dampft ein und kristallisiert
aus Isopropyläther um.

Ausbeute: 74 g (= 90 % d. Th.) vom Fp. 101 - 102 °C.

17,4 g (0,06 Mol) Amid werden in 350 ml Benzol und 4,8 ml

Pyridin gelöst. Unter Rühren setzt man 6,8 g reines Chlorace
tylchlorid in 20 ml Benzol hinzu und hält die Temperatur 24

Stunden bei 50 °C. Das Reaktionsgemisch wird mit Wasser, Natriumcarbonatlösung und nochmals mit Wasser gewaschen, getrocknet

und im Vakuum eingedampft. Der Rückstand wird aus Methylenchlorid-Isopropyläther umkristallisiert.

Ausbeute an $2-\sqrt{(N-chlor-acyl-N-phenyl)-amin_07-4-chlor-athylben z-amid: 7,8 g (= 38 % d. Th.) vom Fp. 167 - 168 °C.$

Analog den oben beschriebenen Arbeitsweisen wurden ferner die folgenden Verbindungen hergestellt:

·	1				" 		
Beispiel Nr.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	Schmelz- punkt 00
5	H	снз	H	H	Н	Н	162-163
6	Н	C2H5	н	H	H	н	126-127
7	н	CH ₃	8-C1	H	4'-CH3	Н	190-192
8	н	C2H5	8-C1	Ħ	4'-CH3	Н	206-207
9	Н	но-сн ₃	8-C1	H	H.	Н	178–180
10	H	CH ₃	8-C1	н	2'-01	Н	165-167
11	Н	C ₂ H ₅	8-C1	Н	2'-01	н	162-164
1.2	сн3	CH3	8-C1	н	н	Н	195-197
13	H	(сн ₂) ₃ -сн ₃	8-01	н	н	н	153-154
14	Н	CH2=CH-CH2	7-C1	H.	н	Į.	128-130
15	Н	сн3	8-01	Н	2'-CH3	3'-CH3	•
16	H	С ₂ Н ₅	8-Cl	H	2'-0CH3	H	175-176
17	H	C ₂ H ₅	8-CH ₃	н	H	Н	154-155
18 19	H H	C ₂ H ₅ C ₂ H ₅	7-C1 8-NO ₂	н н	H	H H	126-127 155 - 157

Beispiel Nr.	Rı	R ₂	R ₃	R ₄	R ₅	R ₆	Fp.°C
20	Н	0,H,	8- 07 -	H	H	H	192
21	н	0 ₂ H ₅	8-01	Ħ	3-01	H	172-173
22	H	02H5	8-CN	H	H	H	186-187

- 15 -

Beispiel I

Dragées:

1 Dragée-Kern enthält:

1-(2-Chlorphenyl)-4- \pm thyl-8-chlor-3H-1,4-benzodiazepin-2,5- $\sqrt{1}$ H, 4 \pm 7

dion				10,0 mg	
Milchzucker		 		 25,5 mg	
Maisstärke				13,0 mg	
Gelamtine	•	•	•	1,0 mg	
Magnesiumsteara	t			0,5 mg	
•				50.0 mg	•

Herstellung:

Die Mischung der Wirksubstanz mit Milchzucker und Maisstärke wird in einer 10 %igen wässrigen Gelamtinelösung durch ein Sieb mit 1 mm Maschenweite granuliert, bei 40 °C getrocknet und nochmals durch ein Sieb gerieben. Das so erhaltene Granulat wird mit Magnesiumstearat gemischt und verpreßt. Die auf diese Weise hergestellten Dragée-Kerne werden in üblicher Weise mit einer Hülle überzogen, die mit Hilfe einer wässrigen Suspension von Zucker, Titandioxyd, Talkum und Gummi arabicum aufgebracht wird. Die fertigen Dragées werden mit Bienenwachs poliert.

Dragée-Endgewicht: 100 mg.

Beispiel II

Supositorien:

1 Zäpfchen enthält:

1-Phenyl-4-athyl-8-chlor-3H-1,4-benzodiazepin -2,5-21H, AH7-dion

10,0 mg

Herstellung:

Die feingepulverte Substanz wird mit Hilfe eines Eintauch-Homogenisators in die geschmolzene und auf 40 °C abgekühlte Zäpfchenmasse eingerührt. Die Masse wird bei 35 °C in leicht vorgekühlte Formen ausgegossen.

Patentansprüche

1. 1-Phenyl-4-alkyl-3H-1,4-benzodiazepin-2,5-21H, 4H7-dione der allgemeinen Formel

worin

 R_1 ein Wasserstoffatom, einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen oder den Benzylrest,

R₂ einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen, einen Methoxy- oder Äthoxyalkylrest, wobei die Alkylkette

- 1 3 Kohlenstoffatome aufweisen kann, den Allylrest oder einen gegebenenfalls durch ein Halogenatom oder einen Alkylrest mit
- 1 2 Kohlenstoffatomen substituierten Benzylrest,
- R_3 ein Wasserstoff- oder Halogenatom oder einen Alkyl- oder Alkoxyrest mit 1 2 Kohlenstoffatomen,
- R4 ein Wasserstoff- oder ein Halogenatom, eine Hydroxy-, Nitro-,

Amino-, Trifluormethyl- oder Cyanogruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

R₅ ein Wasserstoff- oder ein Halogenatom, die Trifluormethylgruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

R₆ ein Wasserstoff- oder ein Halogenatom oder eine Alkylgruppe mit 1 - 2 Kohlenstoffatomer bedeuten.

- 2. 1-(2-Chlorphenyl)-4-athyl-8-chlor-3H-1,4-benzodiazepin-2,5- $\sqrt{1}$ 1H, 4 $\frac{1}{2}$ -dion.
- 3. 1-Phenyl-4-athyl-8-chlor-3H-1,4-benzodiazepin-2,5-2-1H, 4H7-dion.
- 4. Verfahren zur Herstellung von 1-Phenyl-4-alkyl-3H-1,4-benzodiazepin-2,5-/1H, 4H7-dionen der allgemeinen Formel

worin

 R_1 ein Wasserstoffatom, einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen oder den Benzylrest,

R₂ einen niederen Alkylrest mit 1 - 4 Kohlenstoffatomen, einen Methoxy- oder Äthoxyalkylrest, wobei die Alkylkette

1 - 3 Kohlenstoffatome aufweisen kann, den Allylrest oder einen gegebenenfalls durch ein Halogenatom oder einen Alkylrest mit

1 - 2 Kohlenstoffatomen substituierten Benzylrest,

 R_3 ein Wasserstoff- oder Halogenatom oder einen Alkyl- oder Alkoxyrest mit 1 - 2 Kohlenstoffatomen,

 R_4 ein Wasserstoff- oder ein Halogenatom, eine Hydroxy-, Nitro-, Amino-, Trifluormethyl- oder Cyanogruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

 R_5 ein Wasserstoff- oder ein Halogenatom, die Trifluormethylgruppe oder eine Alkyl- oder Alkoxygruppe mit 1 - 2 Kohlenstoffatomen,

 R_6 ein Wasserstoff- oder ein Halogenatom oder eine Alkylgruppe mit 1-2 Kohlenstoffatomen bedeuten,

dadurch gekennzeichnet, daß man in an sich bekannter Weise a) ein Anthranilsäurederivat der allgemeinen Formel

worin die Reste R₁ bis R₆ die oben angeführte Bedeutung besitzen, \sim) mit einem geeigneten Halogenierungsmittel in das entsprechende Säurehalogenid überführt und dieses gegebenenfalls mit einer tertiären organischen Base behandelt, oder

- B) mittels eines Acylanhydrides bzw. Acylhalogenides direkt zum Ring schließt, oder daß man
- b) ein Diamid der allgemeinen Formel

worin R_1 bis R_6 die oben angeführte Bedeutung besitzen und x ein Halogenatom bedeutet, in einem geeigneten Lösungsmittel mit einem Alkalimetallalkoholat erhitzt.

5. Pharmazeutische Präparate, enthaltend als Wirkstoff eine oder mehrere Verbindungen der allgemeinen Formel I in Mengen von 1 - 100, vorzugsweise 5 - 50 mg/Dosis im Gemisch mit üblichen pharmazeutischen Hilfs- und/oder Trägerstoffen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.