Solutions to Topology

Yunwei Ren

Contents

Top	ological Spaces and Continuous Functions	2
13	Basis for a Topology	2
16	The Subspace Topology	3
17	Closed Sets and Limit Points	4
18	Continuous Functions	5
19	The Product Topology	6
	13 16 17 18	Topological Spaces and Continuous Functions 13 Basis for a Topology

2 Topological Spaces and Continuous Functions

13 Basis for a Topology

1.

Proof. Let \mathcal{T} be the topology of X. Since \mathcal{T} is a basis for itself and the hypothesis implies that A is a set in the topology generated by \mathcal{T} , $A \in \mathcal{T}$, i.e., A is open.

4.

Proof.

(a) Put $\mathcal{T} = \bigcap_{\alpha} \mathcal{T}_{\alpha}$. Since \varnothing and X are contained in all \mathcal{T}_{α} , they are also contained in \mathcal{T} . Let $\{U_{\beta}\}_{{\beta}\in J}$ be an indexed family of elements of \mathcal{T} and put $U = \bigcup_{{\beta}\in J} U_{\beta}$. For every β , since U_{β} is open with respect to each \mathcal{T}_{α} , by definition, so is $\bigcup_{{\beta}\in J}$. Similarly, we can show that \mathcal{T} is closed under finite intersection. Thus, \mathcal{T} is a topology.

The union $\bigcup \mathcal{T}_{\alpha}$, however, may not be a topology. Take $X = \{a, b, c\}$ for example. $\mathcal{T}_a = \{\emptyset, a, X\}$ and $\mathcal{T}_b = \{\emptyset, b, X\}$ are two topologies, but their union is not.

(b) Let \mathcal{T} be the intersection of all topologies containing all \mathcal{T}_{α} . By (a), \mathcal{T} is a topology and clear that it is the unique smallest one. Now, let $\mathcal{T}' = \bigcap T_{\alpha}$, which is again a topology and is contained in all T_{α} . It can be verified that \mathcal{T}' is the unique largest one.

(c)
$$\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}; \{\emptyset, X, \{a\}\}.$$

5.

Proof. Let \mathcal{A} be a basis, \mathcal{T} the topology generated by \mathcal{A} , $\{\mathcal{T}_{\alpha}\}$ the collection of all topologies containing \mathcal{A} and $\mathcal{T}' = \bigcap \mathcal{T}_{\alpha}$. For every union U of elements of \mathcal{A} , since, for every α , $\mathcal{A} \subset \mathcal{T}_{\alpha}$ and \mathcal{T}_{α} is closed under arbitrary union, $U \in \mathcal{T}_{\alpha}$. Hence, $\mathcal{T} \subset \mathcal{T}'$. Consequently, \mathcal{T}' is also the intersection of all topologies containing \mathcal{T} . Since \mathcal{T} contains itself as a subset, $\mathcal{T}' \subset \mathcal{T}$. Thus, $\mathcal{T} = \mathcal{T}'$.

Consider the collection of all finite intersections of \mathcal{A} , which is a basis, and apply the previous result to complete the proof.

6.

Proof. Let \mathcal{T}_l and \mathcal{T}_K be the topology of \mathbb{R}_l and \mathbb{R}_k respectively. B = (-1,1) - K is a basis element of \mathcal{T}_k and $0 \in B$. However, no half-open interval containing 0 is in B. Hence, \mathcal{T}_l is no finer than \mathcal{T}_K . Conversely, C = [1,2) is a basis element of \mathcal{T}_l and $1 \in C$, but as $1 \in K$, there is no basis element of \mathcal{T}_K containing 1. Hence, \mathcal{T}_K is no finer than \mathcal{T}_l . Thus, they are not comparable.

8.

Proof.

- (a) First clear that $\mathcal{B} \subset \mathcal{T}$. For every $U \in \mathcal{T}$ and $x \in U$, since U is open, there exists some $\delta > 0$ such that $(x \delta, x + \delta) \subset U$. Hence, there exists some rational a and b such that $x \delta < a < x < b < x + \delta$. Thus, by Lemma 13.2, \mathcal{B} generates the standard topology on \mathbb{R} .
- (b) Since $x \in [\lfloor x \rfloor, \lfloor x \rfloor + 1) \in \mathcal{C}$ for every $x \in \mathbb{R}$, the first condition for a basis is satisfied. Meanwhile, for every $B_1 = [a, b)$ and $B_2 = [c, d)$ in \mathcal{C} , if they are not disjoint, $[c, b) = B_1 \cap B_2$ is also in \mathcal{C} . Hence, the second condition is satisfied. Thus, \mathcal{C} is a basis.

Since $[\sqrt{2}, 2)$ can not be represented by union of elements in \mathcal{C} , \mathcal{C} does not generate the lower limit topology. 16 The Subspace Topology 1. *Proof.* Denote the topologies inherited from X and Y by \mathcal{T} and \mathcal{T}' respectively. For every $E = H \in \mathcal{T}$, supposing that $E = H \cap A$ where H is open in X, then, since $E \subset A \subset Y$, $E = (Y \cap H) \cap A$. Namely, $E \in \mathcal{T}'$. For the converse, suppose that $F = K \cap A$ where K is open in Y, then, for some H open in X, $F = (H \cap Y) \cap A = H \cap A$. Namely, $F \in \mathcal{T}$. Thus, $\mathcal{T} = \mathcal{T}'$. 2. *Proof.* Denote the corresponding subspace topologies by \mathcal{S} and \mathcal{S}' respectively. Clear that \mathcal{S}' is finer than \mathcal{S} . The relation, however, may not be strict. As an example, put $Y = \{y\}$. Then both \mathcal{S} and \mathcal{S}' are $\{\emptyset, Y\}$. 4. *Proof.* By Lemma 13.1, (U, V) is open in $X \times Y$ iff $U = \bigcup U_{\alpha}$ and $V = \bigcup V_{\beta}$ where all U_{α} and V_{β} are open in X and Y respectively. Hence, $\pi_1(U,V) = \bigcup U_{\alpha}$ and $\pi_2(U,V) = \bigcup V_{\beta}$ are also open. Thus, π_1 and π_2 are open maps. 6. *Proof.* By Prob. 8(a), Sec. 13, $\{(a,b): a < b, a,b \in \mathbb{Q}\}$ is a basis for \mathbb{R} . The result then follows immediately from Theorem 15.1. 7. *Proof.* No. Let $X = \mathbb{Q}$ with the usual order and $Y = \{x : 0 \le x^2 \le 2\}$. Y is a proper subset of X and is convex in X but not an interval or a ray. 9. *Proof.* $\mathcal{B}_d = \mathcal{P}(\mathbb{R}) \times \{(b,d) : b < d, b, d \in \mathbb{R}\}$ is a basis for $\mathbb{R}_d \times \mathbb{R}$ and by Example 2, Sec. 14, $\mathcal{B}_o = \{\{a\} \times (b,d) : a,b,d \in \mathbb{R}, b < d\}$ is a basis for the dictionary order topology

Proof. $\mathcal{B}_d = \mathcal{P}(\mathbb{R}) \times \{(b,d) : b < d, b, d \in \mathbb{R}\}$ is a basis for $\mathbb{R}_d \times \mathbb{R}$ and by Example 2, Sec. 14, $\mathcal{B}_o = \{\{a\} \times (b,d) : a,b,d \in \mathbb{R}, b < d\}$ is a basis for the dictionary order topology on $\mathbb{R} \times \mathbb{R}$. Clear that $\mathcal{B}_0 \subset \mathcal{B}_d$. Meanwhile, for every $E \in \mathcal{P}(\mathbb{R})$, $E = \bigcup_{x \in E} \{x\}$. Hence, $\mathcal{B}_d \subset \mathcal{B}_o$. Thus, these two topologies are the same.

The collection \mathcal{B} of all products of open intervals is a basis for the standard topology on \mathbb{R}^2 . Clear that $\mathcal{B} \subset \mathcal{B}_d$. Meanwhile, $\{0\} \times \mathbb{R}$ is open in $\mathbb{R}_d \times \mathbb{R}$ but not in the standard topological space. Thus, the previous two topologies are strictly finer than the standard topology.

10.

Proof. Denote these topologies by \mathcal{T}_i , i = 1, 2, 3, respectively. $[0, 1] \times (1/2, 1] \in \mathcal{T}_1 \setminus \mathcal{T}_2$. Hence, \mathcal{T}_2 is no finer than \mathcal{T}_1 . Meanwhile, since $\{1/2\} \times (1/2, 1) \in \mathcal{T}_2 \setminus \mathcal{T}_1$, \mathcal{T}_1 is no finer than \mathcal{T}_2 . Thus, \mathcal{T}_1 and \mathcal{T}_2 are not comparable.

Now we show that \mathcal{T}_3 is finer than both \mathcal{T}_1 and \mathcal{T}_2 and since \mathcal{T}_1 and \mathcal{T}_2 are not comparable, this relation is strict. Let \mathcal{B}_1 be the collection of all products of open intervals in I and \mathcal{B}_3 the collection of all sets of form $\{a\} \times ((b,d) \cap [0,1])$ where $a \in [0,1]$. They are bases of \mathcal{T}_1 and \mathcal{T}_3 . respectively. Since every element in \mathcal{B}_1 can be represented by an arbitrary union of elements in \mathcal{B}_3 , \mathcal{T}_3 is finer than \mathcal{T}_1 . Similarly, we assert that \mathcal{T}_3 is also finer than \mathcal{T}_2 .

17 Closed Sets and Limit Points

2.

Proof. Since A is a subset of $Y \subset X$, $X \setminus A = (Y \setminus A) \cup (X \setminus Y)$. Since A is closed in Y and Y in closed in X, this implies that $X \setminus A$ is open. Thus, A is closed in X.

4.

Proof. Since A is closed in X, A^c is open in X. Hence, $U \setminus A = U \cap A^c$ is open. Similarly, $A \setminus U$ is closed.

6.

Proof.

- (a) For any $x \in X$, if the neighborhood U of x intersects A, then it intersects B since $A \subset B$. Thus, $\bar{A} \subset \bar{B}$.
- (b) Since $\overline{A \cup B}$ is the smallest closed set containing $A \cup B$ and $\overline{A} \cup \overline{B}$ is closed set containing $A \cup B$, $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$. For the reverse inclusion, suppose that $x \in \overline{A} \cup \overline{B}$. If $x \in \overline{A}$, then all its neighborhood intersects $A \cup B \supset A$. Hence, $x \in \overline{A \cup B}$. Similarly for the case $x \in \overline{B}$. Therefore, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Thus, $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (c) The previous argument, mutatis mutandis, yields the inclusion. Let $X = \mathbb{R}$ and $A_n = [0, 1/n]$. Then, $\overline{\bigcup A_n} = [0, 1]$ and $\overline{\bigcup A_n} = [0, 1)$, which do not coincide.

8.

Proof.

- (a) We show that the equality holds. Since $\overline{A \cap B}$ is the smallest closed set containing $A \cap B$ and clear that $\overline{A} \cap \overline{B}$ is closed set containing $A \cap B$, $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. For the reverse inclusion, suppose that $x \in \overline{A} \cap \overline{B}$, then every neighborhood of x intersects both A and B. Hence, $x \in \overline{A \cap B}$. Thus, $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
- (b) The previous argument, mutatis mutandis, shows that $\bigcap A_{\alpha} \subset \bigcap \bar{A}_{\alpha}$. The reverse inclusion does not hold in general. For example, let $X = \mathbb{R}$ and $A_n = (0, 1/n)$. Then $\overline{\bigcap A_n} = \emptyset$ but $\bigcap \bar{A}_n = \{0\}$.
 - (c) We show that $\overline{A \setminus B} \supset \overline{A} \setminus \overline{B}$.

$$\bar{A} \setminus \bar{B} \subset \bar{A} \setminus B = \bar{A} \cap B^c \subset \bar{A} \cap \overline{(B^c)} = \overline{A \cap B^c} = \overline{A \setminus B}$$

where the second equality comes from part (a). The reverse inclusion does not hold in general. For example, let $X = \mathbb{R}$, A = [0,1] and B = (0,1). Then $\overline{A \setminus B} = \{0,1\}$ but $\overline{A} \setminus \overline{B} = \emptyset$.

10.

Proof. Let X be a simply ordered set and \mathcal{T} the order topology for X. If X contains only one single point, then, vacuously, \mathcal{T} is Hausdorff. Otherwise, let a < b be two distinct point in X. If $(a,b) \neq \emptyset$, that is, there exists some c with a < c < b, then $[-\infty, c)$ and $(c, \infty]$ are two disjoint open sets containing a and b respectively. If $(a,b) = \emptyset$, then $[-\infty, b) \setminus (a, b)$ and $(a, \infty] \setminus (a, b)$ are two such sets. Thus, we conclude that \mathcal{T} is Hausdorff. (The case where the $\pm \infty$ can not be attained is similar.)

12.

Proof. Let Y be a subspace of the Hausdorff space X. Let a,b be two distinct points of Y. Since X is Hausdorff, there are two disjoint sets U and V which contain a and b respectively and are open in X. Hence, $U \cap Y$ and $V \cap Y$ are two disjoint open sets in Y containing a and b respectively. Thus, Y is also Hausdorff.

14.

Proof. Let \mathcal{T} be the finite complement topology on \mathbb{R} . We show that for the sequence (x_n) converges to every point of \mathbb{R} . Let x be an arbitrary point of \mathbb{R} and U an neighborhood of x. Since U is open and nonempty, U^c is finite. Hence, U^c contains at most finitely many points in (x_n) . Thus, $x_n \in U$ for all sufficiently large n. Namely, $x_n \to x$.

21.b

Solution. $A = (-\infty, 1) \cup (1, 2] \cup \{3\} \cup ([4, 5] \cap \mathbb{Q}) \cup (6, 7) \cup (7, 8].$

18 Continuous Functions

1.

Proof. For every open set V in \mathbb{R} , put $U = f^{-1}(V)$. Since the collection of open intervals forms a basis for the topology on \mathbb{R} , it suffices to show that for each $x \in U$, there is an open interval I containing x such that $I \subset U$ to conclude that U is open. Put y = f(x). Since V is open, there is a $\varepsilon > 0$ such that $J = (y - \varepsilon, y + \varepsilon) \subset V$. By the $\varepsilon - \delta$ condition, there is a $\delta > 0$ such that for all $x' \in (x - \delta, x + \delta) = I$, $f(x') \in J \subset V$. Namely, $I \subset U$. Thus, f is continuous in the sense of the open set definition.

3.

Proof.

- (a) i is continuous iff every open set in X is open in X' iff $\mathcal{T} \subset \mathcal{T}'$, i.e., \mathcal{T}' is finer than \mathcal{T} .
 - (b) By part (a), \mathcal{T} is finer than \mathcal{T}' and vice versa. Hence, $\mathcal{T} = \mathcal{T}'$.

_	
h	

Proof. Clear that f(x) = a + t(b - a) is a homeomorphism in both cases.

7.a

Proof. Let x be a point in \mathbb{R}_l and put $y = f(x) \in \mathbb{R}$. For every open interval J containing y, since f is continuous from the right, there exists a $\delta > 0$ such that $f(I) \subset J$ where $I = [x, x + \delta)$. Since I is open in \mathbb{R}_l , this implies that f is continuous when considered as a function from \mathbb{R}_l to \mathbb{R} .

9.

Proof.

- (a) It follows from the pasting lemma and the fact that the finite union of closed sets is still closed.
- (b) Put $A_0 = \{0\}$ and $A_n = (-\infty, -1/n] \cup [1/n, \infty)$. Clear that $\{A_n\}_{n=0}^{\infty}$ is a sequence of closed set whose union is \mathbb{R} . Define $f : \mathbb{R} \to \mathbb{R}$ by f(0) = 0 and f(x) = 1 for all $x \neq 0$. Clear that f is not continuous but $f|_{A_n}$ are all continuous.
- (c) By Theorem 18.1.4, it suffices to show that f is continuous at every $x \in X$. For each x, let U be the neighborhood of x that only intersects finitely many A_{α} . Let $\{A_k\}_{k\in K}$ denote the collection of such A_{α} . Since U is open, each $U \cap A_k$ is closed in U. Hence, part (a), $f|_U$ is continuous and, therefore, f is continuous at $x \in U$. Thus, f is continuous on X.

11.

Proof. Let $y_0 \in Y$ be fixed, we show that $h(x) = F(x \times y_0)$ is continuous. Let $x \in X$ be fixed and let V be a neighborhood of $h(x) = F(x \times y_0)$. Since F is continuous, by Theorem 18.1.4, there is a basis neighborhood $A \times B$ of $x \times y_0$ such that $F(A \times B) \subset V$. Note that $h(A) = F(A \times \{y_0\}) \subset F(A \times B) \subset V$. Hence, h is continuous. Since the roles of X and Y are interchangeable, this implies that F is continuous in each variable separately.

13.

Proof. Let g_1 and g_2 be continuous extensions of f. Clear that $g_1 = g_2$ on A. For every limit point x of A, let V_1 and V_2 be neighborhoods of $g_1(x)$ and $g_2(x)$ respectively. Since both g_1 and g_2 are continuous, by Theorem 18.1.4, there exists neighborhoods U_1 and U_2 of x such that $g_1(U_1) \subset V_1$ and $g_2(U_2) \subset V_2$. Since x is a limit point of A. A intersects both U_1 and U_2 . Hence, there exists some $x^* \in A$ such that $g_i(x^*) \in V_i$ for i = 1, 2. Since $g_1(x^*) = g_2(x^*)$, this implies that V_1 and V_2 intersect. As the choice of neighborhoods V_1 and V_2 are arbitrary, this, by the definition of a Hausdorff space, implies that $g_1(x) = g_2(x)$. Namely, if the extension exists, it is unique.

19 The Product Topology

1.

Proof. We show the result for the box topology \mathcal{T}_B . For every $U \in \mathcal{T}_B$ and $x = (x_\alpha) \in U$, let $\prod_{\alpha \in J} U_\alpha \subset U$ be a basis neighborhood of x, where each U_α is open in X_α . Again, let $B_\alpha \in \mathcal{B}_\alpha$ be a basis neighborhood of x_α which is contained by U_α . Then, $x \in \prod B_\alpha \subset U$. Thus, the collection described is a basis for the box topology. Similarly for the product topology.

5.

Proof. Since the box topology is finer than the product topology. Hence, if f is continuous with respect to the box topology, it is continuous with respect to the product topology and, therefore, each f_{α} is continuous by Theorem 19.6.

7.

Proof. We show that, in the box topology, \mathbb{R}^{∞} is closed and, as a result, its closure is \mathbb{R}^{∞} itself. Suppose that $(y_n) \notin \mathbb{R}^{\infty}$, that is, (y_n) has subsequence whose elements are all nonzero. Define (ε_n)

$$\varepsilon_n = \begin{cases} 1, & y_n = 0, \\ y_n/2, & y_n \neq 0. \end{cases}$$

Then $\prod (y_n - \varepsilon_n, y_n + \varepsilon_n)$ is a neighborhood of (y_n) in the box topology. And it does not intersect \mathbb{R}^{∞} . Hence, for (y_n) to be a limit point of \mathbb{R}^{∞} , it must belong to \mathbb{R}^{∞} . Thus, \mathbb{R}^{∞} is closed in the box topology and its closure is \mathbb{R}^{∞} .

We show that, in the product topology, the closure of \mathbb{R}^{∞} is \mathbb{R}^{ω} . Clear that \mathbb{R}^{ω} is closed and contains \mathbb{R}^{∞} . For every $(y_n) \in \mathbb{R}^{\omega}$, let $(\prod_{n=1}^{N} (y_n - \varepsilon, y_n + \varepsilon_n)) \times \mathbb{R}^{\omega}$ be a basis neighborhood of (y_n) , where $0 < \varepsilon_n \leq \infty$. Then the sequence (x_n) defined by $x_k = y_k$ for $k = 1, \ldots, N$ and $x_k = 0$ for k > N belongs to both \mathbb{R}^{∞} and the neighborhood of (y_n) . Thus, $\mathbb{R}^{\omega} \subset \overline{\mathbb{R}^{\infty}}$ in the product topology, which implies that $\mathbb{R}^{\omega} = \overline{\mathbb{R}^{\infty}}$.

10.

Proof.

(a) Let

$$\mathcal{B} = \{ f_{\alpha}^{-1}(U_{\alpha}) \mid \forall \alpha \in J, \forall U_{\alpha} \text{ open in } X_{\alpha} \}.$$

Clear that \mathcal{B} contains X. Hence, \mathcal{B} serves as a subbasis for a topology \mathcal{T} on A. By the definition of \mathcal{B} , each f_{α} is continuous with respect to \mathcal{T} . Note that for every topology \mathcal{T}' on A that makes every f_{α} continuous, $\mathcal{B} \subset \mathcal{T}'$. As a result, $\mathcal{T} \subset \mathcal{T}'$. Thus, \mathcal{T} is the unique coarsest topology on A relative to which each f_{α} is continuous.

- (b) It follows immediately from the previous discussion.
- (c) The "only if" part comes from Theorem 18.2(c) immediately. For the "if" part, suppose that all $f_{\alpha} \circ g$ are continuous. Assume, to obtain a contradiction, that there is an subbasis element W in A whose inverse image $g^{-1}(W)$ is not open. Suppose $W = f_{\alpha}^{-1}(U_{\alpha})$ where U_{α} is open in X_{α} . Then $g^{-1}(W) = g^{-1}(f_{\alpha}^{-1}(U_{\alpha})) = (f_{\alpha} \circ g)^{-1}(U_{\alpha})$, which is open as $f_{\alpha} \circ g$ is continuous. Contradiction. Thus, g is continuous.
- (d) Let E be an open set in A. We show that f(E) is open in Z. For every $x \in f(E)$, suppose f(a) = x. Since E is open, there is a basis neighborhood B of a with $B \subset E$. Note that $x \in f(B) \subset f(E)$. Now we show that f(B) is open in Z to complete the proof.

Since B is a basis element, we may write B as $B = \bigcap_{\beta \in I} B_{\beta}$ where I is a finite subset of J and $B_{\beta} = f_{\beta}^{-1}(U_{\beta})$ for some open set U_{β} in X_{β} . Hence,

$$f(B) = f\left(\bigcap_{\beta \in I} f_{\beta}^{-1}(U_{\beta})\right) = Z \cap \left(\bigcap_{\beta \in I} U_{\beta}\right).$$

Namely, f(B) is open in Z. Thus, the image under f of each open set in A is open in Z.