Chapter 14 – Exponential functions and logarithms

Solutions to Exercise 14A

1 a
$$x^2x^3 = x^{2+3} = x^5$$

b
$$2(x^3x^4)4 = 8x^{3+4} = 8x^7$$

c
$$x^5 \div x^3 = x^{5-3} = x^2$$

d
$$4x^6 \div 2x^3 = 2x^{6-3} = 2x^3$$

$$e (a^3)^2 = a^{2\times 3} = a^6$$

$$\mathbf{f} (2^3)^2 = 2^{3 \times 2} = 2^6$$

$$g(xy)^2 = x^2y^2$$

h
$$(x^2y^3)^2 = (x^2)^2(y^3)^2$$

= $x^{2\times 2}y^{3\times 2} = x^4y^6$

$$\mathbf{i} \ \left(\frac{x}{y}\right)^3 = \frac{x^3}{y^3}$$

$$\mathbf{j} \left(\frac{x^3}{y^2}\right)^2 = \frac{(x^3)^2}{(y^2)^2}$$
$$= \frac{x^{3\times 2}}{y^{2\times 2}} = \frac{x^6}{y^4}$$

2 a
$$3^5 \times 3^{12} = 3^{5+12} = 3^{17}$$

b
$$x^3y^2 \times x^4y^3 = x^{3+4}y^{2+3} = x^7y^5$$

$$\mathbf{c} \quad 3^{x+1} \times 3^{3x+2} = 3^{x+1+3x+2} = 3^{4x+3}$$

d
$$5a^3b^2 \times 6a^2b^4 = 30a^{3+2}b^{2+4} = 30a^5b^6$$

3 a
$$\frac{x^5y^2}{x^3y} = x^{5-3}y^{2-1} = x^2y$$

b
$$\frac{b^{5x} \times b^{2x+1}}{b^{3x}} = b^{5x+2x+1-3x} = b^{4x+1}$$

$$\mathbf{c} \ \frac{8a^2b \times 3a^5b^2}{6a^2b^2} = 4a^{2+5-2}b^{1+2-2} = 4a^5b$$

4 a
$$7^{-2} = \frac{1}{7^2} = \frac{1}{49}$$

b
$$\left(\frac{1}{4}\right)^{-3} = 4^3 = 64$$

$$\mathbf{c} \left(\frac{5}{2}\right)^{-3} = \left(\frac{2}{5}\right)^3 = \frac{8}{125}$$

5 **a**
$$(b^5)^2 = b^{10}$$

b
$$\left(\left(\frac{1}{3} \right)^{-2} \right)^3 = \left(\frac{1}{3} \right)^{-6} = 3^6 = 729$$

$$(b^5)^2 \times (b^2)^{-3} = b^{10} \times b^{-6} = b^4$$

6 a
$$(3a^4b^3)^3 \times (4a^2b^4)^{-2}$$

= $27a^{12}b^9 \times 4^{-2}a^{-4}b^{-8}$
= $\frac{27}{16}a^8b$

$$\mathbf{b} \left(\frac{5a^3b^3}{ab^2c^2}\right)^3 \div (a^2b^{-1}c)^3$$

$$= \left(5a^2bc^{-2}\right)^3 \times a^{-6}b^3c^{-3}$$

$$= 125a^6b^3c^{-6} \times a^{-6}b^3c^{-3}$$

$$= 125b^6c^{-9}$$

$$= \frac{125b^6}{c^9}$$

7 **a**
$$(-2)^6 = 64$$

b
$$(-3a)^3 = -27a^3$$

$$\mathbf{c} \quad (-2a)^5 \times 3a^{-2} = -32a^5 \times 3a^{-2}$$
$$= -96a^3$$

8 a
$$36^n \times 12^{-2n} = 2^{-2n}$$

b
$$\frac{2^{-3} \times 8^4 \times 32^{-3}}{4^{-4} \times 2^{-2}} = 2^4$$

$$\mathbf{c} \ \frac{5^{2n} \times 10^n}{8^n \times 5^n} = \frac{5^{2n}}{2^{2n}}$$

9 a
$$x^3x^4x^2 = x^{3+4+2} = x^9$$

b
$$2^4 4^3 8^2 = 2^4 2^6 2^6$$

= $2^{4+6+6} = 2^{16}$

$$\mathbf{c} \quad 3^4 9^2 27^3 = 3^4 3^4 3^9$$
$$= 3^{4+4+9} = 3^{17}$$

d
$$(q^2p)^3(qp^3)^2 = q^6p^3q^2p^6$$

= $q^{6+2}p^{3+6} = q^8p^9$

$$\mathbf{e} \quad a^2b^{-3}(a^3b^2)^3 = a^2b^{-3}a^9b^6$$
$$= a^{2+9}b^{6-3} = a^{11}b^3$$

$$\mathbf{f} (2x^3)^2 (4x^4)^3 = 2^2 x^{3x^2} 4^3 x^{3x^4}$$
$$= 2^2 2^6 x^6 x^{12} = 2^8 x^{18}$$

$$\mathbf{g} \quad m^3 p^2 (m^2 n^3)^4 (p^{-2})^2 = m^3 p^2 m^8 n^{12} p^{-4}$$
$$= m^{11} n^{12} p^{-2}$$

h
$$2^3 a^3 b^2 (2a^{-1}b^2)^{-2} = 2^3 a^3 b^2 2^{-2} a^2 b^{-4}$$

= $2a^5 b^{-2}$

10 a
$$\frac{x^3y^5}{xy^2} = x^{3-1}y^{5-2} = x^2y^3$$

$$\mathbf{b} \quad \frac{16a^5b4a^4b^3}{8ab} = \frac{64}{8}a^{5+4-1}b^{1+3-1}$$
$$= 8a^8b^3$$

$$\mathbf{c} \quad \frac{(-2xy)^2 2(x^2y)^3}{8(xy)^3} = \frac{4x^2y^2 2x^6y^3}{8x^3y^3}$$
$$= \frac{8}{8}x^{2+6-3}y^{2+3-3}$$
$$= x^5y^2$$

$$\mathbf{d} \quad \frac{(-3x^2y^3)^2}{(2xy)^3} \frac{4x^4y^3}{(xy)^3} = \frac{9x^4y^6}{8x^3y^3} \frac{4x^4y^3}{x^3y^3}$$
$$= \frac{9}{2}x^{4+4-3-3}y^{6+3-3-3}$$
$$= \frac{9x^2y^3}{2}$$

$$m^{3}n^{2}p^{-2}(mn^{2}p)^{-3} = m^{3}n^{2}p^{-2}m^{-3}n^{-6}p^{-3}$$
$$= m^{3-3}n^{2-6}p^{-2-3}$$
$$= n^{-4}p^{-5} = \frac{1}{n^{4}p^{5}}$$

$$\frac{x^3yz^{-2}2(x^3y^{-2}z)^2}{xyz^{-1}} = \frac{2x^3yz^{-2}x^6y^{-4}z^2}{xyz^{-1}}$$
$$= 2x^{3+6-1}y^{1-4-1}z^{-2+2+1}$$
$$= 2x^8y^{-4}z = \frac{2x^8z}{y^4}$$

$$\mathbf{c} \quad \frac{a^2b(ab^{-2})^{-3}}{(a^{-2}b^{-1})^{-2}} = \frac{a^2ba^{-3}b^6}{a^4b^2}$$
$$= a^{2-3-4}b^{1+6-2}$$
$$= a^{-5}b^5 = \frac{b^5}{a^5}$$

$$\mathbf{d} \quad \frac{a^2b^3c^{-4}}{a^{-1}b^2c^{-3}} = a^{2+1}b^{3-2}c^{3-4}$$
$$= \frac{a^3b}{c}$$

$$\mathbf{e} \qquad \frac{a^{2n-1}b^3c^{1-n}}{a^{n-3}b^{2-n}c^{2-2n}}$$

$$= a^{2n-1-n+3}b^{3-2+n}c^{1-n-2+2n}$$

$$= a^{n+2}b^{n+1}c^{n-1}$$

12 a
$$3^{4n}9^{2n}27^{3n} = 3^{4n}3^{4n}3^{9n}$$

= 3^{17n}

b
$$\frac{2^{n}8^{n+1}}{32^{n}} = \frac{2^{n}2^{3n+3}}{2^{5n}}$$
$$= 2^{n+3n+3-5n} = 2^{3-n}$$

$$\mathbf{c} \quad \frac{3^{n-1}9^{2n-3}}{6^23^{n+2}} = \frac{3^{n-1}3^{4n-6}}{6^23^{n+2}}$$
$$= \frac{3^{4n-9}}{36} = \frac{3^{4n-11}}{2^2}$$

$$\mathbf{d} \quad \frac{2^{2n}9^{2n-1}}{6^{n-1}} = \frac{2^{2n}3^{4n-2}}{6^{n-1}}$$
$$= \frac{2^{2n}3^{4n-2}}{2^{n-1}3^{n-1}}$$
$$= 2^{2n-n+1}3^{4n-2-n+1}$$
$$= 2^{n+1}3^{3n-1}$$

$$\mathbf{e} \quad \frac{25^{2n}5^{n-1}}{5^{2n+1}} = \frac{5^{4n}5^{n-1}}{5^{2n+1}}$$
$$= 5^{4n+n-1-2n-1} = 5^{3n-2}$$

$$\mathbf{f} \quad \frac{6^{x-3}4^x}{3^{x+1}} = \frac{3^{x-3}2^{x-3}2^{2x}}{3^{x+1}}$$
$$= 3^{x-3-x-1}2^{x-3+2x}$$
$$= 2^{3x-3}3^{-4}$$

$$\mathbf{g} \quad \frac{6^{2n}9^3}{27^n 8^n 16^n} = \frac{3^{2n} 2^{2n} 3^6}{3^{3n} 2^{3n} 2^{4n}}$$
$$= 3^{2n+6-3n} 2^{2n-3n-4n}$$
$$= 3^{6-n} 2^{-5n}$$

$$\mathbf{h} \quad \frac{3^{n-2}9^{n+1}}{27^{n-1}} = \frac{3^{n-2}3^{2n+2}}{3^{3n-3}}$$
$$= 3^{n-2+2n+2-3n+3}$$
$$= 3^3 = 27$$

i
$$\frac{82^53^7}{92^781} = \frac{2^32^53^7}{3^22^73^4}$$

= $2^{3+5-7}3^{7-2-4}$
= $(2)(3) = 6$

13 a
$$\frac{(8^3)^4}{(2^{12})^2} = \frac{2^{36}}{2^{24}}$$

= 2^{36-24}
= $2^{12} = 4096$

b
$$\frac{(125)^3}{(25)^2} = \frac{5^9}{5^4}$$
$$= 5^{9-4}$$
$$= 5^5 = 3125$$

$$\mathbf{c} \quad \frac{(81)^4 \div (27^3)}{9^2} = \frac{3^{16} \div 3^9}{3^4}$$
$$= \frac{3^{16} \div 3^9}{3^4}$$
$$= 3^{16-9-4}$$
$$= 3^3 = 27$$

Solutions to Exercise 14B

1 a
$$125^{\frac{2}{3}} = 5^2 = 25$$

b
$$243^{\frac{3}{5}} = 3^3 = 27$$

$$\mathbf{c} \ 81^{-\frac{1}{2}} = \frac{1}{\sqrt{81}} = \frac{1}{9}$$

d
$$64^{\frac{2}{3}} = 4^2 = 16$$

$$e^{\left(\frac{1}{8}\right)^{\frac{1}{3}}} = \frac{1}{2}$$

$$\mathbf{f} \ 32^{-\frac{2}{5}} = \frac{1}{32^{\frac{2}{5}}}$$
$$= \frac{1}{2^2} = \frac{1}{4}$$

$$\mathbf{g} \quad 125^{-\frac{2}{3}} = \frac{1}{125^{\frac{2}{3}}}$$
$$= \frac{1}{5^2} = \frac{1}{25}$$

h
$$32^{\frac{4}{5}} = 2^4 = 16$$

$$\mathbf{i} \quad 1000^{\frac{4}{3}} = \frac{1}{100^{\frac{4}{3}}}$$
$$= \frac{1}{10^4} = \frac{1}{10000}$$

j
$$10\ 000^{\frac{3}{4}} = 10^3 = 1000$$

$$\mathbf{k} \ 81^{\frac{3}{4}} = 3^3 = 27$$

$$\left(\frac{27}{125}\right)^{\frac{1}{3}} = \left(\frac{3}{5}\right)^{\frac{3}{3}} = \frac{3}{5}$$

$$\mathbf{m} \ (-8)^{\frac{1}{3}} = -2$$

$$\mathbf{n} \ (125)^{-\frac{4}{3}} = \left(\frac{1}{5}\right)^4 = \frac{1}{625}$$

$$\mathbf{o} \ (-32)^{\frac{4}{5}} = (-2)^4 = 16$$

$$\mathbf{p} \left(\frac{1}{49}\right)^{-\frac{3}{2}} = 7^3 = 343$$

2 **a**
$$(a^2b)^{\frac{1}{3}} \div \sqrt{ab^3} = \frac{a^{\frac{2}{3}}b^{\frac{1}{3}}}{a^{\frac{1}{2}}b^{\frac{3}{2}}}$$

= $a^{\frac{2}{3}-\frac{1}{2}}b^{\frac{1}{3}-\frac{3}{2}}$
= $a^{\frac{1}{6}}b^{-\frac{7}{6}}$

$$\mathbf{b} = a^{-6}b^3b^{\frac{3}{2}}$$
$$= a^{-6}b^{3+\frac{3}{2}}b^{\frac{3}{2}} = a^{-6}b^{\frac{9}{2}}$$

$$(45^{\frac{1}{3}}) \div (9^{\frac{3}{4}}15^{\frac{3}{2}}) = (3^{\frac{2}{3}}5^{\frac{1}{3}}) \div (3^{\frac{3}{2}}3^{\frac{3}{2}}5^{\frac{3}{2}})$$

$$= 3^{\frac{2}{3} - \frac{3}{2} - \frac{3}{2}}5^{\frac{1}{3} - \frac{3}{2}}$$

$$= 3^{-\frac{7}{3}}5^{-\frac{7}{6}}$$

d
$$2^{\frac{3}{2}}4^{-\frac{1}{4}}16^{-\frac{3}{4}} = 2^{\frac{3}{2}}2^{-\frac{1}{2}}2^{-3}$$

= $2^{\frac{3}{2}-\frac{1}{2}-3} = 2^{-2} = \frac{1}{4}$

$$\frac{e^{-\frac{x^3y^{-2}}{3^{-3}y^{-3}}} \left(\frac{x^3y^{-2}}{x^4y^{-2}} \right)^{-2} \div \left(\frac{3^{-3}x^{-2}y}{x^4y^{-2}} \right)^2 = \left(\frac{x^{-6}y^4}{3^6y^6} \right) \left(\frac{x^8y^{-4}}{3^{-6}x^{-4}y^2} \right)$$

$$= 3^{6-6}x^{-6+8+4}y^{4-4-6-2}$$

$$= x^6y^{-8}$$

$$\mathbf{f} \quad \left((a^2)^{\frac{1}{5}} \right)^{\frac{3}{2}} \left((a^5)^{\frac{1}{3}} \right)^{\frac{1}{5}} = a^{\frac{2}{5} \frac{3}{2}} a^{\frac{5}{3} \frac{1}{5}}$$

$$= a^{\frac{3}{5}} a^{\frac{1}{3}}$$

$$= a^{\frac{3}{5} + \frac{1}{3}} = a^{\frac{14}{15}}$$

3 **a**
$$(2x-1)\sqrt{2x-1} = (2x-1)^{1+\frac{1}{2}}$$

= $(2x-1)^{\frac{3}{2}}$

b
$$(x-1)^2 \sqrt{x-1} = (x-1)^{2+\frac{1}{2}}$$

= $(x-1)^{\frac{5}{2}}$

$$\mathbf{c} \quad (x^2 + 1)\sqrt{x^2 + 1} = (x^2 + 1)^{1 + \frac{1}{2}}$$
$$= (x^2 + 1)^{\frac{3}{2}}$$

d
$$(x-1)^3 \sqrt{(x-1)} = (x-1)^{3+\frac{1}{2}}$$

= $(x-1)^{\frac{7}{2}}$

$$e \frac{1}{\sqrt{x-1}} + \sqrt{x-1} = \frac{1+x-1}{\sqrt{x-1}}$$
$$= x(x-1)^{-\frac{1}{2}}$$

$$\mathbf{f} (5x^2 + 1)(5x^2 + 1)^{\frac{1}{3}} = (5x^2 + 1)^{1 + \frac{1}{3}}$$
$$= (5x^2 + 1)^{\frac{4}{3}}$$

Solutions to Exercise 14C

- 1 a $47.8 = 4.78 \times 10^1 = 4.78 \times 10$
 - **b** $6728 = 6.728 \times 10^3$
 - \mathbf{c} 79.23 = 7.923 × 10¹ = 7.923 × 10
 - **d** $43580 = 4.358 \times 10^4$
 - $e \ 0.0023 = 2.3 \times 10^{-3}$
 - **f** $0.000\ 000\ 56 = 5.6 \times 10^{-7}$
 - **g** $12.000 \ 34 = 1.2000 \ 34 \times 10^{1}$ = $1.2000 \ 34 \times 10$
 - **h** Fifty million = $50\,000\,000$ = 5.0×10^7
 - **i** $23\,000\,000\,000 = 2.3 \times 10^{10}$
 - $\mathbf{j} \ 0.000\,000\,0013 = 1.3 \times 10^{-9}$
 - **k** 165 thousand = $165\,000$ = 1.65×10^5
 - 1 $0.000014567 = 1.4567 \times 10^{-5}$
- 2 a The decimal point moves 8 places to the right = 1.0×10^{-8}
 - **b** The decimal point moves 24 places to the right = 1.67×10^{-24}
 - **c** The decimal point moves 5 places to the right = 5.0×10^{-5}
 - **d** The decimal point moves 3 places to the left = $1.853 \ 18 \times 10^3$
 - e The decimal point moves 12 places to the left = 9.461×10^{12}

- **f** The decimal point moves 10 places to the right = 2.998×10^{10}
- **3 a** The decimal point move 13 places to the right = 81 280 000 000 000
 - **b** The decimal point move 8 places to the right = 270 000 000
 - **c** The decimal point move 13 places to the left = 0.000 000 000 000 28
- 4 a $456.89 \approx 4.569 \times 10^2$ (4 significant figures)
 - **b** $34567.23 \approx 3.5 \times 10^4$ (2 significant figures)
 - c $5679.087 \approx 5.6791 \times 10^3$ (5 significant figures)
 - **d** $0.04536 \approx 4.5 \times 10^{-2}$ (2 significant figures)
 - e $0.09045 \approx 9.0 \times 10^{-2}$ (2 significant figures)
 - f $4568.234 \approx 4.5682 \times 10^3$ (5 significant figures)
- 5 a $\frac{324\,000 \times 0.000\,000\,7}{4000}$ $= \frac{3.24 \times 10^5 \times 7 \times 10^{-7}}{4 \times 10^3}$ $= \frac{3.24 \times 7}{4} \times 10^{5+-7-3}$ $= 5.67 \times 10^{-5}$ = 0.0000567

$$\mathbf{b} \quad \frac{5240000 \times 0.8}{42000000}$$

$$= \frac{5.24 \times 10^6 \times 8 \times 10^{-1}}{4.2 \times 10^7}$$

$$= \frac{41.92 \times 10^5}{4.2 \times 10^7}$$

$$= \frac{4192 \times 10^3}{42000 \times 10^3}$$

$$= \frac{4192}{42000} = \frac{262}{2625}$$

6 a
$$\frac{\sqrt[3]{a}}{b^4} = \frac{\sqrt[3]{2 \times 10^9}}{3.215^4}$$

$$= \frac{\sqrt[3]{2} \times \sqrt[3]{10^9}}{106.8375...}$$

$$= \frac{1.2599... \times 10^3}{106.8375...}$$

$$= 0.011 792... \times 10^3 \approx 11.8$$

$$\frac{\sqrt[4]{a}}{4b^4} = \frac{\sqrt[4]{2 \times 10^{12}}}{4 \times 0.05^4} \\
= \frac{\sqrt[4]{2} \times \sqrt[4]{10^{12}}}{4 \times 0.00000625} \\
= \frac{1.189 \ 2 \dots \times 10^3}{4 \times 6.25 \times 10^{-6}} \\
= 0.047 \ 568 \dots \times 10^9 \approx 4.76 \times 10^7$$

Solutions to Exercise 14D

If the bases > 1 the function is increasing; if < 1 they are decreasing.

All graphs have an asymptote at y = 0. The y-intercepts are wherever the constant is in front of the exponential, however, at 2, -2, 5 and -5.

The negative values are also below the axis instead of above.

3 $y = 2^x$ for $x \in [-4, 4]$:

 $2^x = 14$: solution of the equation is where the graph cuts the line y = 14, i.e. x = 3.807

4
$$y = 10^x$$
; $x \in [-0.4, 0.8]$

 $10^x = 6$: solution of the equation is where the graph cuts the line y = 6, i.e. x = 0.778

5 a $f: R \to R; f(x) = 3(2^x) + 2$

Asymptote at y = 2, y-axis intercept at (0, 5), range = $(2, \infty)$

b
$$f: R \to R; f(x) = 3(2^x) - 3$$

Asymptote at y = -3, y-axis intercept at (0, 0), range = $(-3, \infty)$

c
$$f: R \to R; f(x) = -3^x - 2$$

Asymptote at y = -2, y-axis intercept at (0, -3), range = $(-\infty, -2)$

Asymptote at y = 2, y-axis intercept at (0, 0), range = $(-\infty, 2)$

e
$$f: R \to R; f(x) = \left(\frac{1}{2}\right)^x + 2$$

Asymptote at y = 2, y-axis intercept at (0, 3), range = $(2, \infty)$

f
$$f: R \to R; f(x) = -2(3^x) - 2$$

Asymptote at y = -2, y-axis intercept at (0, -4), range = $(-\infty, -2)$

6 a $y = 2(5^x)$

Asymptote at y = 0, y-axis intercept at (0, 2), range = $(0, \infty)$

b
$$y = 3^{3x}$$

Asymptote at y = 0, y-axis intercept at (0, 1), range = $(0, \infty)$

c
$$y = 5^{\frac{x}{2}}$$

Asymptote at y = 0, y-axis intercept at (0, 1), range = $(0, \infty)$

Asymptote at y = 2, y-axis intercept at (0, 1), range = $(-\infty, 2)$

1 a $3^x = 27 = 3^3$, $\therefore x = 3$

b
$$4^x = 64 = 4^3$$
, $\therefore x = 3$

c
$$49^x = 7 = 49^{\frac{1}{2}}, \therefore x = \frac{1}{2}$$

d
$$16^x = 8$$
, $\therefore 2^{4x} = 2^3$
 $\therefore 4x = 3$, $\therefore x = \frac{3}{4}$

e
$$125^x = 5$$
, $\therefore 5^{3x} = 5$
 $\therefore 3x = 1$, $\therefore x = \frac{1}{3}$

f
$$5^x = 625 = 5^4$$
, $\therefore x = 4$

g
$$16^x = 256 = 16^2$$
, $\therefore x = 2$

h
$$4^{-x} = \frac{1}{64}$$
, $\therefore 4^x = 64$
 $\therefore 4^x = 4^3$, $\therefore x = 3$

i
$$5^{-x} = \frac{1}{125}$$
, $\therefore 5^x = 125$
 $\therefore 5^x = 5^3$, $\therefore x = 3$

2 a
$$5^{n}25^{2n-1} = 125$$

 $\therefore 5^{n}5^{4n-2} = 5^{3}$
 $5^{5n-2} = 5^{3}$
 $5n - 2 = 3$ $\therefore n = 1$

b
$$3^{2n-4} = 1$$

 $\therefore 3^{2n-4} = 3^0$
 $2n-4=0, \therefore n=2$

c
$$3^{2n-1} = \frac{1}{81}$$

 $\therefore 3^{2n-1} = 3^{-4}$
 $2n-1 = -4, \therefore n = -\frac{3}{2}$

$$\mathbf{d} \qquad \frac{3^{n-2}}{9^{1-n}} = 1$$

$$\therefore 3^{n-2} = 9^{1-n}$$

$$3^{n-2} = 3^{2(1-n)}$$

$$n - 2 = 2 - 2n$$

$$3n = 4, n = \frac{4}{3}$$

e
$$3^{3n}9^{-2n+1} = 27$$

$$\therefore 3^{3n}3^{2-4n} = 3^3$$

$$3^{3n+2-4n} = 3^3$$

$$2 - n = 3, \therefore n = -1$$

$$f 2^{-3n}4^{2n-2} = 16$$

$$\therefore 2^{-3n}2^{4n-4} = 2^4$$

$$2^{4n-3n-4} = 2^4$$

$$n-4 = 4, \therefore n = 8$$

g
$$2^{n-6} = 8^{2-n} = 2^{6-3n}$$

 $\therefore n-6 = 6-3n$
 $4n = 12, \therefore n = 3$

h
$$9^{3n+3} = 27^{n-2}$$

∴ $3^{6n+6} = 3^{3n-6}$
 $6n + 6 = 3n - 6$
 $3n = -12$, ∴ $n = -4$

i
$$4^{n+1} = 8^{n-2}$$

 $\therefore 2^{2n+2} = 2^{3n-6}$
 $2n+2 = 3n-6, n = 8$

j
$$32^{2n+1} = 8^{4n-1}$$

 $\therefore 2^{10n+5} = 2^{12n-3}$
 $10n + 5 = 12n - 3$
 $2n = 8, \therefore n = 4$

k
$$25^{n+1} = 5 \times 390 625$$

$$\therefore 25^{n+1} = (25)^{\frac{1}{2}} (25)^4 = 25^{\frac{9}{2}}$$

$$n+1 = \frac{9}{2}, \therefore n = \frac{7}{2} = 3\frac{1}{2}$$

1
$$125^{4-n} = 5^{6-2n}$$

 $\therefore 5^{12-3n} = 5^{6-2n}$
 $12 - 3n = 6 - 2n, \therefore n = 6$

m
$$4^{2-n} = \frac{1}{2048}$$

 $\therefore 2^{4-2n} = 2^{-11}$
 $4 - 2n = -11$
 $2n = 15, \therefore n = \frac{15}{2}$

$$2^{x-1}2^{4x+2} = 2^5$$
$$2^{x-1+4x+2} = 2^5$$
$$5x + 1 = 5, \therefore x = \frac{4}{5}$$

 $3^{2x-1}9^x = 243$

3 a $2^{x-1}4^{2x+1} = 32$

$$3^{2x-1}3^{2x} = 3^{5}$$

$$3^{2x-1+2x} = 3^{5}$$

$$4x - 1 = 5$$

$$4x = 6, \therefore x = \frac{3}{2}$$

c
$$(27 \ 3^x)^2 = 27^x 3^{\frac{1}{2}}$$

$$\therefore (3^3 3^x)^2 = 3^{3x} 3^{\frac{1}{2}}$$

$$3^{6+2x} = 3^{3x+\frac{1}{2}}$$

$$2x + 6 = 3x + \frac{1}{2}, \therefore x = \frac{11}{2} = 5\frac{1}{2}$$

4 a
$$4(2^{2x}) = 8(2^x) - 4$$
, $A = 2^x$
 $\therefore 4A^2 = 8A - 4$
 $A^2 - 2A + 1 = 0$
 $(A - 1)^2 = 0$
 $A = 2^x = 1$, $\therefore x = 0$

b 8(2^{2x}) - 10(2^x) + 2 = 0,
$$A = 2^x$$

∴ 8A² - 10A + 2 = 0

$$4A^2 - 5A + 1 = 0$$

$$(4A - 1)(A - 1) = 0$$

$$A = 2^x = \frac{1}{4}, 1$$
∴ $x = -2, 0$

c
$$3(2^{2x}) - 18(2^x) + 24 = 0, A = 2^x$$

$$A^2 - 18A + 24 = 0$$

$$A^2 - 6A + 8 = 0$$

$$(A - 2)(A - 4) = 0$$

$$A = 2^x = 2, 4$$

$$x = 1, 2$$

d
$$9^x - 4(3^x) + 3 = 0, A = 3^x$$

∴ $(A - 1)(A - 3) = 0$
 $A = 3^x = 1, 3$
∴ $x = 0, 1$

5 a
$$2^x = 5$$
, $\therefore x = 2.32$

b
$$4^x = 6$$
, $x = 1.29$

c
$$10^x = 18$$
, $\therefore x = 1.26$

d
$$10^x = 56$$
, $\therefore x = 1.75$

6 a
$$7^x > 49$$
, $\therefore 7^x > 7^2$
 $\therefore x > 2$

b
$$8^x > 2$$
, $\therefore 2^{3x} > 2^1$ $3x > 1$, $\therefore x > \frac{1}{3}$

c
$$25^x \le 5$$
, $\therefore 5^{2x} \le 5^1$
 $2x \le 1$, $\therefore x \le \frac{1}{2}$

d
$$3^{x+1} < 81$$
, $\therefore 3^{x+1} < 3^4$
 $x+1 < 4$, $\therefore x < 3$

e
$$9^{2x+1} < 243$$
, $\therefore 3^{4x+2} < 3^5$
 $4x + 2 < 5$
 $4x < 3$, $\therefore x < \frac{3}{4}$

f
$$4^{2x+1} > 64$$
, $\therefore 4^{2x+1} > 4^3$
 $2x + 1 > 3$, $\therefore x > 1$

g
$$3^{2x-2} \le 81$$
, $\therefore 3^{2x-2} \le 3^4$
 $2x - 2 \le 4$, $\therefore x \le 3$

Solutions to Exercise 14F

1 a
$$\log_2 128 = 7$$

b
$$\log_3 81 = 4$$

$$c \log_5 125 = 3$$

d
$$\log_{10} 0.1 = -1$$

2 a
$$\log_2 10 + \log_2 a = \log_2 10a$$

b
$$\log_{10} 5 + \log_{10} 2 = \log_{10} 10 = 1$$

$$c \log_2 9 - \log_2 4 = \log_2 \left(\frac{9}{4}\right)$$

d
$$\log_2 10 - \log_2 5 = \log_2 \left(\frac{10}{5}\right)$$

= $\log_2 2 = 1$

$$e \log_2 a^3 = 3\log_2 a$$

$$\mathbf{f} \log_2 8^3 = 3 \log_2 8 = 9$$

$$g \log_5(\frac{1}{6}) = -\log_5 6$$

h
$$\log_5\left(\frac{1}{25}\right) = -\log_5 25 = -2$$

3 **a**
$$\log_3 27 = \log_3 3^3$$

= $3\log_3 3 = 3$

b
$$\log_5 625 = \log_5 5^4$$

= $4 \log_5 5 = 4$

$$c \log_2(\frac{1}{128}) = \log_2 2^{-7}$$

= $-7 \log_2 2 = -7$

$$\mathbf{d} \quad \log_4 \left(\frac{1}{64}\right) = \log_4 4^{-3}$$
$$= -3\log_4 4 = -3$$

$$e \log_x x^4 = 4 \log x x = 4$$

$$\mathbf{f} \quad \log_2 0.125 = -\log_2 8$$
$$= -3\log_2 2 = -3$$

$$\mathbf{g} \quad \log_{10} 10000 = \log_{10} 10^4$$
$$= 4 \log_{10} 10 = 4$$

$$\mathbf{h} \quad \log_{10} 0.000001 = \log_{10} 10^{-6}$$
$$= -6 \log_{10} 10 = -6$$

$$\mathbf{i}$$
 $-3\log_5 125 = -3\log_5 5^3$
= $-9\log_5 5 = -9$

$$\mathbf{j}$$
 $-4\log_{16} 2 = -\log_{16} 16 = -1$

$$k \ 2 \log_3 9 = 4 \log_3 3 = 4$$

$$1 - 4 \log_{16} 4 = -2 \log_{16} 16 = -2$$

4 a
$$\frac{1}{2}\log_{10} 16 + 2\log_{10} 5 = \log_{10}(\sqrt{16}(5^2))$$
$$= \log_{10} 100 = 2$$

b
$$\log_2 16 + \log_2 8 = \log_2 2^4 + \log_2 2^3$$

= 4 + 3 = 7

$$c \log_2 128 + \log_3 45 - \log_3 5$$

$$= \log_2 2^7 + \log_3 5(3^2) - \log_3 5$$

$$= 7 + 2\log_3 3 + \log_3 5 - \log_3 5$$

$$= 7 + 2 = 9$$

	$\log_4 32 - \log_9 27 = \log_4 2^5 - \log_9 3^3$ $= \log_4 4^2 - \log_9 9^2$ $= \frac{5}{2} - \frac{3}{2} = 1$	$\log_{10} 2 + \log_{10} 5 + \log_{10} x - \log_{10} 3 = 2$ $\log_{10} \left(\frac{10x}{3}\right) = 2$ $\frac{10x}{3} = 10^2$
e	$\log_b b^3 - \log_b \sqrt{b} = \log_b b^3 - \log_b \left(b^{\frac{1}{2}} \right)$ $= 3 - \frac{1}{2} = \frac{5}{2}$	$\therefore \qquad \qquad x = 30$
f	$2 2 \mathbf{f}$ $2 \log_x a + \log_x a^3 = 2 \log_x a + 3 \log_x a$ $= 5 \log_x a$	$\log_{10} x = \frac{1}{2} \log_{10} 36 - 2 \log_{10} 3$ $\log_{10} x = \log_{10} \sqrt{36} - \log_{10} 3^{2}$ $\log_{10} x = \log_{10} \frac{6}{9}$
g	$= \log_x a^5$ $x \log_2 8 + \log_2(8^{1-x}) = \log_2 8^x + \log_2(8^{1-x}) \mathbf{g}$ $= \log_2(8^{x+1-x})$ $= \log_x 8 = 3$	$\therefore x = \frac{2}{3}$ $\log_x 64 = 2$ $64 = x^2$ $x^2 = 64, \therefore x = 8$ (no negative solutions for log base)
h	$\frac{3}{2}\log_a a - \log_a \sqrt{a} = \frac{3}{2} - \log_a \left(a^{\frac{1}{2}}\right)$ $= \frac{3}{2} - \frac{1}{2} = 1$	$\log_5(2x - 3) = 3$ $2x - 3 = 5^3$ $2x - 3 = 125, \therefore x = 64$
a	$\log_3 9 = x$ $x = \log_3 3^2 = 2$	$\log_5(x+2) - \log_3 2 = 1$ $\log_3 \frac{x+2}{2} = 1$
b	$\log_3 x = 3$ $x = 3^3, \therefore x = 27$	$\frac{x+2}{2} = 3^1$ $\frac{x+2}{2} = 3$
c	$\log_5 x = -3$ $x = 5^{-3}, \ \ \therefore \ \ x = \frac{1}{125}$	$x + 2 = 6, : x = 4$ $\log_x 0.01 = -2$
d	$\log_{10} x = \log_{10} 4 + \log_{10} 2$	$0.01 = x^{-2}$ $0.01 = x^{-2}$

5

 $\log_{10} x = \log_{10} 8$

 \therefore x = 8

 $x^{-2} = 0.01$

 $x^2 = 100$, $\therefore x = 10$

6 a
$$\log_x \left(\frac{1}{25}\right) = -2$$

 $\log_x 25 = 2$
 $25 = x^2$
 $x^2 = 25, \therefore x = 5$
(No negative solutions for log base)

b
$$\log_4(2x-1) = 3$$

 $2x-1 = 4^3$
 $2x-1 = 64$, $\therefore x = \frac{65}{2} = 32.5$

c
$$\log_4(3x+2) - \log_4 6 = 1$$

 $\log_4 \frac{x+2}{6} = 1$
 $\frac{x+2}{6} = 4^1$
 $\frac{x+2}{6} = 4$
 $x+2 = 24, \therefore x = 22$

d
$$\log_4(3x+4) + \log_4 16 = 5$$

 $\log_4(3x+4) + 2 = 5$
 $\log_4(3x+4) = 3$
 $3x+4=4$
 $3x+4=64$, $x=20$

e
$$\log_3(x^2 - 3x - 1) = 0$$

 $x^2 - 3x - 1 = 1$
 $x^2 - 3x - 2 = 0$
 \therefore $x = \frac{3 \pm \sqrt{17}}{2}$

$$f \log_3(x^2 - 3x + 1) = 0$$

$$x^2 - 3x + 1 = 1$$

$$x^2 - 3x = 0$$

$$x(x - 3) = 0, x = 0, 3$$

7
$$\log_{10} x = a; \log_{10} y = c :$$

 $\log_{10} \left(\frac{100x^3y^{-\frac{1}{2}}}{y^2}\right) = \log_{10} \left(100x^3y^{-\frac{5}{2}}\right)$
 $= \log_{10}(100x^3) + \log_{10}(y^{-\frac{5}{2}})$
 $= \log_{10}(100) + 3\log_{10} x - \frac{5}{2}\log_{10} y$
 $= 3a - \frac{5c}{2} + 2$

8
$$\log_{10} \frac{ab^2}{c} + \log_{10} \frac{c^2}{ab} - \log_{10}(bc)$$

 $= \log_{10} \left(\frac{ab^2}{c}\right) \left(\frac{c^2}{ab}\right) - \log_{10}(bc)$
 $= \log_{10}(bc) - \log_{10}(bc)$
 $= \log_{10} \left(\frac{bc}{bc}\right) = \log_{10} 1 = 0$

$$\log_{a}\left(\frac{11}{3}\right) + \log_{a}\left(\frac{490}{297}\right) - 2\log_{a}\left(\frac{7}{9}\right) = \log_{a}(k)$$

$$\log_{a}\left(\frac{11}{3}\right)\left(\frac{490}{297}\right) - 2\log_{a}\left(\frac{7}{9}\right) = \log_{a}(k)$$

$$\log_{a}\left(\frac{490}{81}\right) - \log_{a}\left(\frac{7}{9}\right)^{2} = \log_{a}(k)$$

$$\log_{a}10 + \log_{a}1 = \log_{a}(k)$$

$$\log_{a}10 = \log_{a}(k)$$

$$k = 10$$

10 a
$$\log_{10}(x^2 - 2x + 8) = 2\log_{10} x$$

 $\log_{10}(x^2 - 2x + 8) = \log_{10} x^2$
 $x^2 - 2x + 8 = x^2$
 $-2x + 8 = 0$, $\therefore x = 4$

$$\log_{10}(5x) - \log_{10}(3 - 2x) = 1$$

$$\log_{10}\left(\frac{5x}{3 - 2x}\right) = 1$$

$$\left(\frac{5x}{3 - 2x}\right) = 10^{1}$$

$$5x = 10(3 - 2x)$$

$$x = 2(3 - 2x)$$

$$5x = 6$$

$$\therefore \qquad x = \frac{6}{5}$$

c
$$3 \log_{10}(x-1) = \log_{10} 8$$

 $3 \log_{10}(x-1) = 3 \log_{10} 2$
 $x-1=2, \therefore x=3$

d

:.

$$\log_{10}(20x) - \log_{10}(x - 8) = 2$$

$$\log_{10}\left(\frac{20x}{x - 8}\right) = 2$$

$$\left(\frac{20x}{x - 8}\right) = 10^{2}$$

$$20x = 100(x - 8)$$

$$x = 5x - 40$$

$$4x = 40$$

x = 10

e LHS =
$$2 \log_{10} 5 + \log_{10}(x+1)$$

= $\log_{10} 5^2 + \log_{10}(x+1)$
= $\log_{10} 25(x+1)$
RHS = $1 + \log_{10}(2x+7)$
= $\log_{10} 10 + \log_{10}(2x+7)$
= $\log_{10} 10(2x+7)$
 $\therefore 25(x+1) = 10(2x+7)$
 $5x+5=4x+14$
 $x=9$

f LHS =
$$1 + 2 \log_{10}(x + 1)$$

= $\log_{10} 10 + \log_{10}(x + 1)^2$
= $\log_{10} 10(x + 1)^2$
RHS = $\log_{10}(2x + 1) + \log_{10}(5x + 8)$
= $\log_{10}(2x + 1)(5x + 8)$
 $\therefore 10(x + 1)^2 = (2x + 1)(5x + 8)$
 $10x^2 + 20x + 10 = 10x^2 + 21x + 8$
 $20x + 10 = 21x + 8$
 $x = 2$

Solutions to Exercise 14G

1 a
$$2^x = 7$$

$$\therefore x = \frac{\log 7}{\log 2} = 2.81$$

b
$$2^x = 0.4$$

$$\therefore x = \frac{\log 0.4}{\log 2} = -1.32$$

c
$$3^x = 14$$

$$\therefore x = \frac{\log 14}{\log 3} = 2.40$$

d
$$4^x = 3$$

$$\therefore x = \frac{\log 3}{\log 4} = 0.79$$

e
$$2^{-x} = 6$$

$$\therefore x = -\frac{\log 6}{\log 2} = -2.58$$

f
$$0.3^x = 2$$

$$\therefore \qquad x = \frac{\log 2}{\log 0.3} = -0.58$$

2 a
$$5^{2x-1} = 90$$

$$\therefore (2x-1) = \log_5 90$$

$$2x = \log_5(90) + 1$$

$$x = \frac{1}{2}(\log_5(90) + 1)$$

$$x = 1.90$$

b
$$3^{x-1} = 10$$

$$\therefore (x-1)\log 3 = \log 10$$

$$(x-1) = \frac{\log 10}{\log 3}$$

$$x - 1 = 2.10$$

$$x = 3.10$$

$$3^{x-1} = 10$$

$$\therefore (x-1) = \log_3(10)$$

$$x = \log_3(10) + 1$$

$$x = 3.10$$

$$\mathbf{c}$$
 $0.2^{x+1} = 0.6$

$$(x + 1) \log 0.2 = \log 0.6$$

$$(x+1) = \frac{\log 0.6}{\log 0.2}$$

$$x + 1 = 0.32$$

$$x = -0.68$$

3 a
$$2^x > 8$$
, $\therefore 2^x > 2^3$

$$\therefore$$
 $x > 3$

b
$$3^x < 5$$
, $\therefore x \log 3 < \log 5$

$$x < \frac{\log 5}{\log 3} < 1.46$$

c

$$0.3^x > 4, \quad \therefore \quad x \log 0.3 < \log 4$$

$$x < \frac{\log 4}{\log 0.3}$$

$$x < \frac{\log 4}{\log 0.3} < -1.15$$

$$3^{x-1} \le 7, \quad \therefore \quad (x-1)\log 3 \le \log 7$$

$$(x-1) \le \frac{\log 7}{\log 3}$$

$$(x-1) \le \frac{\log 7}{\log 3} = 1.77$$

$$\therefore \qquad x \le 2.77$$

e
$$0.4^x \le 0.3$$
, $\therefore x \le 2.77$
 $\therefore x \ge \frac{\log 0.3}{\log 0.4} \ge 1.31$

4 a
$$f(x) = 2^x - 4$$

Asymptote at $y = -4$,
axis intercepts at $(0, -3)$ and $(2, 0)$

b
$$f(x) = 2(3^x) - 6$$

Asymptote at $y = -6$,
axis intercepts at $(0, -4)$ and $(1, 0)$

 $f(x) = 3(10^x) - 5$

Asymptote at y = -5, axis intercepts at (0, -2) and $(\log_{10}\left(\frac{5}{3}\right), 0)$

d
$$f(x) = -2(10^x) + 4$$

Asymptote at $y = 4$,
axis intercepts at $(0, 2)$ and $(\log_{10} 2, 0)$

 $f(x) = -3(2^x) + 6$

f $f(x) = 5(2^x) - 6$

Asymptote at y = -6, axis intercepts at (0, -1) and $(\log_2 1.2, 0)$

Solutions to Exercise 14H

1 **a** $y = \log_{10}(2x)$; domain $(0, \infty)$, range R, x-intercept $(\frac{1}{2}, 0)$

b $y = 2 \log_{10} x$; domain $(0, \infty)$, range R, x-intercept (1, 0)

c $y = \log_{10}(\frac{x}{2})$; domain (0, ∞) range R, x-intercept (2, 0)

d $y = 2 \log_{10}(3x)$; domain $(0, \infty)$, range R, x-intercept $\left(\frac{1}{3}, 0\right)$

e $y = -\log_{10} x$; domain $(0, \infty)$, range R, x-intercept (1, 0)

f $y = \log_{10}(-x)$ domain $(-\infty, 0)$, range R, x-intercept (-1, 0)

2 a $f(x) = \log_2(x-4)$ Domain $(4, \infty)$, asymptote x = 4, x-intercept at (5,0)

b $f(x) = \log_2(x+3)$ Domain $(-3, \infty)$, asymptote x = -3, x-intercept at (-2, 0), y-intercept at $(0, \log_2 3)$

c $f(x) = \log_2(2x)$ Domain $(0, \infty)$, asymptote x = 0, x-intercept at $\left(\frac{1}{2}, 0\right)$

d $f(x) = \log_2(x+2)$ Domain $(-2, \infty)$, asymptote x = -2, x-intercept at (-1, 0), y-intercept at (0, 1)

e $f(x) = \log_2(\frac{x}{3})$ Domain $(0, \infty)$, asymptote x = 0, x-intercept at (3, 0)

f $f(x) = \log_2(-2x)$ Domain $(-\infty, 0)$, asymptote x = 0, x-intercept at $\left(-\frac{1}{2}, 0\right)$

- 3 **a** $2^{-x} = x$, $\therefore x = 0.64$
 - **b** $\log_{10}(x) + x = 0$, $\therefore x = 0.40$

$$y = 2 \log_{10} x;$$

 $x \in [-10, 10], x \neq 0$

5
$$y = \log_{10} \sqrt{x};$$

 $x \in (0, 10], x \neq 0$
 $y = \frac{1}{2} \log_{10} x;$
 $x \in (0, 10], x \neq 0$

6
$$y = \log_{10}(2x) + \log_{10}(3x)$$

Solutions to Exercise 14I

1 Let *N* be the number of bacteria at time *t* minutes.

a
$$N = 1000 \times 2^{\frac{t}{15}}$$

b
$$10\ 000 = 1000 \times 2^{\frac{t}{15}}$$

 $10 = 2^{\frac{t}{15}}$
 $\frac{t}{15} = \log_2 10$

$$t \approx 50$$
.

t = 49.8289...

It will take approximately 50 minutes

2 Choose $A(t) = A_0 \times 10^{-kt}$ as the model where $A_0 = 10$ is the original amount and t is the time in years.

First find *k*:

$$5 = 10 \times 10^{-24 \ 000k}$$

$$\log_{10} \frac{1}{2} = -24\ 000k$$

$$k = -\frac{1}{24000} \log_{10} \frac{1}{2}k = 1.254296... \times 10^{-5}$$
If $A(t) = 1$

If
$$A(t) = 1$$

$$1 = 10 \times 10^{-kt}$$

$$0.1 = 10^{-kt}$$

$$\therefore kt = 1$$

$$\therefore t = \frac{1}{1.254296 \times 10^{-5}}$$

It will take 79 726 years for there to be 10% of the original.

3 Choose $A(t) = A_0 \times 10^{-kt}$ as the model where A_0 is the original amount and t is the time in years.

First find *k*:

$$\frac{1}{2}A_0 = A_0 \times 10^{-5730k}$$

$$\log_{10} \frac{1}{2} = -5730k$$

$$k = -\frac{1}{5730} \log_{10} \frac{1}{2}$$

$$k = 5.2535..... \times 10^{-5}$$
When $A(t) = 0.4A_0$

$$0.4A_0 = A_0 \times 10^{-kt}$$

$$0.4 = 10^{-kt}$$

$$\therefore kt = \log_{10} 0.4$$

$$\therefore t = \frac{1}{5.2535... \times 10^{-5}} \times \log_{10} 0.4$$

$$t \approx 7575$$

It is approximately 7575 years old.

4
$$P(h) = 1000 \times 10^{-0.0542h}$$

a
$$P(5) = 1000 \times 10^{-0.0542 \times 5}$$

= 535.303...
 $P(h) \approx 535$ millibars

b If
$$P(h) = 400$$

Then $400 = 1000 \times 10^{-0.05428h}$
 $\frac{2}{5} = 10^{-0.05428h}$
 $\log 10(\frac{2}{5}) = -0.05428h$

 $h \approx 7331$ metres correct to the nearest metre

5 $N(t) = 500\ 000(1.1)^t$ where N(t) is the number of bacteria at time t 4 000 000 = 500 000(1.1) t

$$8 = 1.1^t$$

$$t = 21.817...$$

The number will exceed 4 million bacteria after 22 hours.

6
$$T = T_0 10^{-kt}$$

When $t = 0, T = 100$. Therefore $T_0 = 100$

We have
$$T = 100 \times 10^{-kt}$$

When
$$t = 5, T = 40$$

$$\therefore 40 = 100 \times 10^{-5k}$$

$$\frac{2}{5} = 10^{-5k}$$

$$k = -\frac{1}{5}\log 10\frac{2}{5}$$

$$k = 0.07958...$$

When
$$t = 15$$

$$T = 100 \times 10^{-15k} = 6.4$$

The temperature is 6.4°C after 15 minutes.

$$A(t) = 0.9174^t$$

When
$$A(t) = 0.2$$

$$0.2 = 0.9174^t$$

$$t = 18.668...$$

t > 18.668 . . .

$$p = q$$

$$\Leftrightarrow$$

$$2^{0.04t} = \frac{17}{12}$$

$$t = 12.56$$

(mid 1962)

ii Solve the equation p = 2q

i.e.
$$1.2 \times 2^{0.08t} = 2(1.7 \times 2^{0.04t})$$
$$\frac{6}{17} \times 2^{0.04t} = 1$$
$$2^{0.04t} = \frac{17}{6}$$
$$t = 37.56 \qquad (mid 1987)$$

9 a We can write

$$a \times b^1 = 15$$
 (1)

$$a \times b^4 = 1875 \qquad (2)$$

Dividing equation (2) by equation (1) gives $b^3 = 125$. Thus b = 5, and substituting into equation (1) gives a = 3.

$$\therefore y = 3 \times 5^x$$

b We can write

$$a \times b^2 = 1 \tag{1}$$

$$a \times b^5 = \frac{1}{8} \qquad (2)$$

Dividing equation (2) by equation (1) gives $b^3 = \frac{1}{8}$. Thus $b = \frac{1}{2}$, and substituting into equation (1) gives a = 4.

$$\therefore y = 4 \times (\frac{1}{2})^x$$

c We can write

$$a \times b^1 = \frac{15}{2} \tag{1}$$

$$a \times b^{\frac{1}{2}} = \frac{5\sqrt{6}}{2}$$
 (2)

Dividing equation (2) by equation (1) gives $b^{-\frac{1}{2}} = \frac{\sqrt{6}}{3}$. Thus $b = \frac{3}{2}$, and substituting into equation (1) gives a = 5.

$$y = 5 \times (\frac{3}{2})^x$$

10
$$S = 5 \times 10^{-kt}$$

a
$$S = 3.2 \text{ when } t = 2$$

 $3.2 = 5 \times 10^{-2k}$
 $0.64 = 10^{-2k}$
 $k = -\frac{1}{2} \log_{10} 0.64$
 $= 0.0969...$

b When
$$S = 1$$

$$1 = 5 \times 10^{-0.9969...t}$$

$$10^{(-0.0969...)t} = 0.2$$

$$(-0.0969...)t = \log_{10} 0.2$$

$$t = 7.212...$$

There will be 1 kg of sugar remaining after approximatel 7.21 hours

11 a When
$$t = 0, N = 1000$$

$$N = ab^{t}$$

$$1000 = ab^{0}$$

$$a = 1000$$
When $t = 5, N = 10000$

$$\therefore 10 = b^{5}$$

$$\therefore b = 10^{\frac{1}{5}}$$

$$\therefore N = 1000 \times 10^{\frac{t}{5}}$$

b When
$$N = 5000$$

$$5 = 10^{\frac{t}{5}}$$

$$\frac{t}{5} = \log_{10} 5$$

$$t = 5 \log_{10} 5$$

$$\approx 3.4948 \text{ hours}$$

$$= 210 \text{ minutes}$$

c When
$$N = 1000000$$

$$1000 = 10^{\frac{t}{5}}$$

$$\frac{t}{5} = \log_{10} 1000$$

$$t = 5 \times 3$$

$$= 15 \text{ hours}$$

d
$$N(12) = 1000 \times 10^{\frac{12}{5}} \approx 251188.64$$

12 We can write

$$a \times 10^{2k} = 6 \tag{1}$$

$$a \times 10^{5k} = 20 \tag{2}$$

Dividing equation (2) by equation (1) gives $10^{3k} = \frac{10}{3}$. Thus $k = \frac{1}{3} \log_{10} \frac{10}{3}$, and substituting into equation (1) gives $a = 6 \times \left(\frac{10}{3}\right)^{-\frac{2}{3}}$.

13 Use two points, say (0, 1.5) and (10, 0.006) to find $y = ab^x$.

$$1.5 = a \times b^0$$

$$1.5 = a$$

$$y = 1.5b^x$$

$$0.006 = 1.5b^{10}$$

$$b^{10} = \frac{0.006}{1.5}$$

$$= 0.004$$

$$b = (0.004)^{\frac{1}{10}} \approx 0.5757$$

$$y = 1.5 \times 0.58^x$$

If CAS is used with exponential regression, a = 1.5 and b = 0.575, so $y = 1.5(0.575)^x$

14 Use two points, say (0, 2.5) and (8, 27.56) to find $p = ab^t$.

at (0, 2.5)

2.5 =
$$a \times b^0$$

∴

2.5 = a

∴

 $p = 2.5b^t$

at (8, 27.56)

27.56 = 2.5 b^8

∴

 $b^8 = \frac{27.56}{2.5}$

= 11.024

∴

 $b = (11.024)^{\frac{1}{8}}$

≈ 1.3499

∴

 $p = 2.5 \times 1.35^t$

If CAS is used with exponential regression, a = 1.5 and b = 0.575, so $y = 1.5(0.575)^x$

Total thickness, T (mm) 15 a Cuts, *n* Sheets 0.2 0 1 1 2 0.4 2 0.8 3 8 1.6 3.2 4 16 5 6.4 32 12.8 6 64 7 25.6 128 8 256 51.2 9 512 102.4 10 1024 204.8

b
$$T = 0.2 \times 2^n$$

d When
$$n = 30$$
,

$$T = 0.2 \times 2^{30}$$

Total thickness is 214 748364.8 mm = 214 748.4m

16
$$d = d_0(10^{mt})$$

$$d(1) = 52; d(3) = 80$$

$$\therefore d_0(10^m) = 52; d_0(10^{3m}) = 80$$

Take log_{10} both equations:

(1):
$$\log_{10} d_0 + m \log_{10} 10 = \log_{10} 52$$

$$\therefore \qquad \log_{10} d_0 + m = \log_{10} 52$$

(2):
$$\log_{10} d_0 + 3m \log_{10} 10 = \log_{10} 80$$

$$\log_{10} d_0 + 3m = \log_{10} 80$$

(2)–(1) gives

$$2m = \log_{10}\left(\frac{80}{52}\right)$$

$$\therefore m = \frac{1}{2} \log_{10} \left(\frac{20}{13} \right) = 0.0935$$

Substitute into (1):

$$\log_{10} d_0 = \log_{10} 52 - 0.0935$$

$$= \log_{10} 52 - \log_{10} (10^{0.0935})$$

$$= \log_{10} \left(\frac{52}{1.240}\right) = \log_{10} 41.92$$

:.
$$d_0 = 41.92 \text{ cm}$$

Solutions to Review: Short-answer questions

1 **a**
$$\frac{a^6}{a^2} = a^{6-2} = a^4$$

$$\mathbf{b} \quad \frac{b^8}{b^{10}} = b^{8-10}$$
$$= b^{-2} = \frac{1}{b^2}$$

$$\mathbf{c} \quad \frac{m^3 n^4}{m^5 n^6} = m^{3-5} n^{4-6}$$
$$= m^{-2} n^{-2} = \frac{1}{m^2 n^2}$$

$$\mathbf{d} \quad \frac{a^3b^2}{(a^*b^2)^4} = \frac{a^3b^2}{a^4b^8}$$
$$= a^{3-4}b^{2-8} = \frac{1}{ab^6}$$

$$e^{\frac{6a^8}{4a^2}} = \left(\frac{6}{4}\right)a^{8-2} = \frac{3a^6}{2}$$

$$\mathbf{f} \ \frac{10a^7}{6a^9} = \left(\frac{10}{6}\right)a^{7-9} = \frac{5}{3a^2}$$

$$\mathbf{g} \quad \frac{8(a^3)^2}{(2a)^3} = \frac{8a^6}{8a^3}$$
$$= a^{6-3} = a^3$$

$$\mathbf{h} \quad \frac{m^{-1}n^2}{(mn^{-2})^3} = \frac{m^{-1}n^2}{m^3n^{-6}}$$
$$= m^{-1-3}n^{2+6} = \frac{n^8}{m^4}$$

$$\mathbf{i} \ (^2p^{-1}q^{-2}) = p^{-2}q^{-4} = \frac{1}{p^2q^4}$$

$$\mathbf{j} \quad \frac{(2a^{-4})^3}{5a^{-1}} = \frac{8a^{-12}}{5a^{-1}}$$
$$= \frac{8a^{1-12}}{5} = \frac{8}{5a^{11}}$$

$$\mathbf{k} \frac{6a^{-1}}{3a^{-2}} = \left(\frac{6}{3}\right)a^{-1+2} = 2a$$

$$1 \frac{a^4 + a^8}{a^2} = \frac{a^2(a^2 + a^6)}{a^2}$$
$$= a^2 + a^6$$

$$\mathbf{m} \quad \frac{a^4 + a^8}{a^2} = \frac{a^4}{a^2} (1 + a^4)$$
$$= a^2 (1 + a^4) = a^2 + a^6$$

2
$$32 \times 10^{11} \times 12 \times 10^{-5}$$

= $(32 \times 12) \times 10^{11-5}$
= 384×10^{6}
= 3.84×10^{8}

3 1 L (1000 mL) of blood contains 5×10^{12} red blood cells so 500 mL of blood contains 2.5×10^{12} red blood cells.

Thus, the time required is equal to $\frac{2.5 \times 10^{12}}{2.5 \times 10^6} = 1.0 \times 10^6 \text{ seconds.}$

$$4 \quad \frac{1.5 \times 10^8}{3 \times 10^6} = 0.5 \times 10^2$$

The Sun is 50 times further from Earth than the comet.

5 a
$$2^x = 7$$
, $\therefore x = \log_2 7$

b
$$2^{2x} = 7, 2x = \log_2 7$$

 $\therefore x = \frac{1}{2} \log_2 7$

c
$$10^x = 2$$
, $\therefore x = \log_{10} 2$

d
$$10^x = 3.6$$
, $\therefore x = \log_{10} 3.6$

e
$$10^x = 110$$
, $\therefore x = \log_{10} 110$
(or $1 + \log_{10} 11$)

f
$$10^x = 1010$$
, $\therefore x = \log_{10} 1010$
(or $1 + \log_{10} 101$)

g
$$2^{5x} = 100$$
, $\therefore 5x = \log_2 100$
 $\therefore x = \frac{1}{5} \log_2 100$

h
$$2^x = 0.1$$
, $\therefore x = \log_2 0.1$
= $-\log_2 10$

6 a
$$\log_2 64 = \log_2 2^6$$

= $6\log_2 2 = 6$

b
$$\log_{10} 10^7 = 7 \log_{10} 10 = 7$$

$$\mathbf{c} \log_a a^2 = 2\log_a a = 2$$

d
$$\log_4 1 = 0$$
 by definition

$$e \log_3 27 = \log_3 3^3$$

= $3\log_3 3 = 3$

$$\mathbf{f} \quad \log_2 \frac{1}{4} = \log_2 2^{-2}$$
$$= -2\log_2 2 = -2$$

$$\mathbf{g} \quad \log_{10} 0.001 = \log_{10} 10^{-3}$$
$$= -3 \log_{10} 10 = -3$$

h
$$\log_2 16 = \log_2 2^4$$

= $4\log_2 2 = 4$

7 **a**
$$\log_{10} 2 + \log_{10} 3 = \log_{10} (2 \times 3) = \log_{10} 6$$

b
$$\log_{10} 4 + 2 \log_{10} 3 - \log_{10} 6$$

= $\log_{10} 4 + \log_{10} (3^2) - \log_{10} 6$
= $\log_{10} \frac{4(3^2)}{6} = \log_{10} 6$

c
$$2\log_{10} a - \log_{10} b = \log_{10} a^2 - \log_{10} b$$

$$= \log_{10} \left(\frac{a^2}{b}\right)$$

d

$$2 \log_{10} a - 3 - \log_{10} 25$$

$$= \log_{10} a^2 - \log_{10} 25 - \log_{10} 10^3$$

$$= \log_{10} \left(\frac{a^2}{25000}\right)$$

$$e \log_{10} x + \log_{10} y - \log_{10} x = \log_{10} y$$

$$\mathbf{f} \quad 2\log_{10} a + 3\log_{10} b - \log_{10} c$$

$$= \log_{10} a^2 + \log_{10} b^3 - \log_{10} c$$

$$= \log_{10} \left(\frac{a^2 b^3}{c}\right)$$

8 a
$$3^{x}(3^{x} - 27) = 0$$

 $3^{x} = 27, \therefore x = 3$
 $(3^{x} \neq 0 \text{ for any real } x)$

b
$$(2^x - 8)(2^x - 1) = 0$$

 $2^x = 1, 8, \therefore x = 0, 3$

c
$$2^{2x} - 2^{x+1} = 0$$

 $(2^x)(2^x - 2) = 0$
 $2^x = 2, : x = 1$
 $(2^x \neq 0 \text{ for any real } x)$

d
$$2^{2x} - 12(2^x) + 32 = 0$$

 $(2^x - 8)(2^x - 4) = 0$
 $2^x = 4, 8, \therefore x = 2, 3$

9 a $y = 2 \times 2^x$

Asymptote at y = 0, y-intercept at (0, 1)

b $y = -3 \times 2^x$

Asymptote at y = 0, y-intercept at (0, 1)

c $y = 5 \times 2^{-x}$

Asymptote at y = 0, y-intercept at (0, 1)

d $y = 2^{-x} + 1$ Asymptote at y = 1, y-intercept

at (0, 2)

e $y = 2^x - 1$

Asymptote at y = -1, y-intercept at (0,0)

f $y = 2^x + 2$

Asymptote at y = 2, y-intercept at (0, 3)

10

:.

 $\log_{10} x + \log_{10} 2x - \log_{10} (x+1) = 0$

$$\log_{10} \frac{2x^2}{x+1} = 0$$

$$\frac{2x^2}{x+1} = 1$$

$$2x^2 = x+1$$

$$2x^2 - x - 1 = 0$$

$$(2x+1)(x-1) = 0$$

$$\therefore x = -\frac{1}{2}, 1$$
Since $\log x$ is not defined for $x \le 0, x = 1$

11 a
$$2(4^{a+1}) = 16^{2a}$$

$$\therefore 4^{\frac{1}{2}}(4^{a+1}) = 4^{4a}$$

$$4^{a+\frac{3}{2}} = 4^{4a}$$

$$a + \frac{3}{2} = 4a$$

$$3a = \frac{3}{2}, \therefore a = \frac{1}{2}$$

b
$$\log_2 y^2 = 4 + \log_2(y+5)$$

∴ $\log_2 y^2 - \log_2(y+5) = 4$

$$\log_2\left(\frac{y^2}{y+5}\right) = 4$$

$$\frac{y^2}{y+5} = 2^4$$

$$y^2 = 16y + 80$$

$$y^2 - 16y - 80 = 0$$

$$(y-20)(y+4) = 0$$
∴ $y = -4, 20$
(Both solutions must be included here, because the only domain restriction is that $y > -5$)

Solutions to Review: Multiple-choice questions

1 C
$$\frac{8x^3}{4x^{-3}} = \frac{8}{4}x^{3+3} = 2x^6$$

2 A
$$\frac{a^2b}{(2ab^2)^3} \div \frac{ab}{16a^0} = \frac{a^2b}{8a^3b^6} \frac{16}{ab}$$

= $\frac{16}{8}a^{2-3-1}b^{1-6-1}$
= $2a^{-2}b^{-6}$
= $\frac{2}{a^2b^6}$

- **3** C The range of $y = 3 \times 2^x$ is $(0, \infty)$ but $f(x) = 3(2^x) - 1$ is translated 1 unit down
 - \therefore range = $(-1, \infty)$

4 A
$$\log_{10}(x-2) - 3\log_{10} 2x = 1 - \log_{10} y$$

 $\therefore \log_{10} \frac{x-2}{(2x)^3} + \log_{10} y = 1$
 $\log_{10} \frac{y(x-2)}{8x^3} = 1$
 $\frac{y(x-2)}{8x^3} = 10$
 $\therefore y = \frac{80x^3}{x-2}$

5 B
$$5(2^{5x}) = 10$$
, $\therefore 2^{5x} = 2^1$
 $\therefore 5x = 1$, $\therefore x = \frac{1}{5}$

- **6** A The vertical asymptote of $y = \log x$ is at x = 0. Here 5x = 0 so x = 0. (y-direction translations don't affect the vertical asymptote.)
- **7 A** $f(x) = 2^{ax} + b$; a, b > 0Function must be increasing, with a horizontal asymptote at y = bwhich the graph approaches at large negative values of x, and there will be no x-intercept because b > 0
- 8 A Vertical asymptote, hence log or hyperbola. But B and C both have a vertical asymptote x = -b.

$$9 A \frac{2mh}{(3mh^2)^3} \div \frac{mh}{81m^2} = \frac{2mh}{27m^3h^6} \frac{81m^2}{mh}$$
$$= 6m^{1+2-3-1}h^{1-6-1}$$
$$= 6m^{-1}h^{-6}$$
$$= \frac{6}{mh^6}$$

Solutions to Review: Extended-response questions

1 a
 Number of discs,
$$n$$
 0
 1
 2
 3
 4

 Minimum no. of moves, M
 0
 1
 3
 7
 15

For two discs, the following procedure may be used.

For three discs, the procedure is as follows.

Now the problem reduces to taking the two discs from B to C, i.e. three more moves (using the technique for two discs).

$$\therefore$$
 total number of moves = $3 + 4$

This procedure can be generalised for n discs.

- The top n-1 discs can be moved from A to B in $2^{n-1}-1$ moves.
- \blacksquare The remaining bottom disc can be moved from A to C.
- The n-1 discs on B can be moved to C in $2^{n-1}-1$ moves.

∴ total number of moves =
$$2^{n-1} - 1 + 1 + 2^{n-1} - 1$$

= $2 \times 2^{n-1} - 1$
= $2^n - 1$

b
$$M = 2^n - 1$$

Number of discs, <i>n</i>	0	5	6	7
Minimum no. of moves, <i>M</i>	0	31	63	127

d Let the top disc be called D_1 , the next D_2 , then D_3 and so on to nth disc, D_n .

For 3 discs, D_1 moves 4 times, D_2 2 times and D_3 once.

For 4 discs, D_1 moves 8 times, D_2 4 times, D_3 2 times and D_4 once.

For *n* discs, D_1 moves 2^{n-1} times, D_2 2^{n-2} times, ..., D_n 2^0 times.

Three discs	D_1	D_2	D_3
Times moved	4	2	1

Four discs	D_1	D_2	D_3	D_4
Times moved	8	4	2	1

n discs	D_1	D_2	D_3	 D_{n-1}	D_n
Times moved	2^{n-1}	2^{n-2}	2^{n-3}	21	2^{0}

Note: For *n* discs, total number of moves $= 1 + 2 + 4 + ... + 2^{n-1}$

$$=\frac{1(2^n-1)}{2-1}=2^n-1$$

2
$$2187 = 9 \times 9 \times 9 \times 3 = 9^3 \times 3^1$$

This gives 3 switches of Type 1 and 1 switch of Type 2.

However, if n of Type 1 and n + 1 of Type 2 are used, there needs to be one more 3 than the number of 9s in the factorisation.

$$2187 = 9 \times 9 \times 3 \times 3 \times 3 = 9^2 \times 3^3$$

Two switches of Type 1 and three of Type 2 are needed. Hence, n = 2.

3 a
$$F = \frac{6.67 \times 10^{-11} \times 200 \times 200}{12^2}$$

= 1.8528×10^{-8}
= 1.9×10^{-8} (to 2 s.f.)

514 Math Methods AC Year 11

b
$$F = \frac{6.67 \times 10^{-11} m_1 m_2}{r^2}$$
$$\therefore Fr^2 = 6.67 \times 10^{-11} m_1 m_2$$
$$\therefore m_1 = \frac{Fr^2}{6.67 \times 10^{-11} m_2}$$

c Using the formula in part **b**, substitute in $F = 2.4 \times 10^4$, $r = 6.4 \times 10^6$ and $m_2 = 1500$: $m_1 = \frac{Fr^2}{6.67 \times 10^{-11} m_2}$

$$m_1 = \frac{Fr^2}{6.67 \times 10^{-11} m_2}$$

$$= \frac{2.4 \times 10^{-11} \times (6.4 \times 10^6)^2}{6.67 \times 10^{-11} \times 1500}$$

$$= 9.8 \times 10^{24} \text{ kg (to 2 s.f.)}$$

4 a
$$\left(\frac{1}{8}\right)^n = \left(\left(\frac{1}{2}\right)^3\right)^n = \left(\frac{1}{2}\right)^{3n}$$

$$\mathbf{b} \quad \left(\frac{1}{4}\right)^{n-1} \left(\frac{1}{2}\right)^{3n} = \left(\left(\frac{1}{2}\right)^2\right)^{n-1} \left(\frac{1}{2}\right)^{3n}$$
$$= \left(\frac{1}{2}\right)^{2(n-1)} \left(\frac{1}{2}\right)^{3n}$$
$$= \left(\frac{1}{2}\right)^{2n-2} \left(\frac{1}{2}\right)^{3n} = \left(\frac{1}{2}\right)^{5n-2}$$

c
$$\left(\frac{1}{2}\right)^{n-3} \left(\frac{1}{2}\right)^{5n-2} = \left(\frac{1}{2}\right)^{6n-5}$$

Now, $\left(\frac{1}{2}\right)^{6n-5} = \frac{1}{8192} = \frac{1}{2^{13}} = \left(\frac{1}{2}\right)^{13}$
 $\therefore 6n-5=13$

$$\therefore \qquad 6n = 18 \ \therefore \ n = 3$$

		Times used	1	2	3	n
5	a	Caffeine remaining	$729\left(\frac{1}{4}\right)^{1}$	$729\left(\frac{1}{4}\right)^2$	$729\left(\frac{1}{4}\right)^3$	$729\left(\frac{1}{4}\right)^n$

	Times used	1	2	3	n
b	Tannin remaining	$128\left(\frac{1}{2}\right)^{1}$	$128\left(\frac{1}{2}\right)^2$	$128\left(\frac{1}{2}\right)^3$	$128\left(\frac{1}{2}\right)^n$

c Can be re-used if amount of tannin $\leq 3 \times$ amount of caffeine.

i.e.
$$128\left(\frac{1}{2}\right)^{n} \le 3 \times 729\left(\frac{1}{4}\right)^{n}$$

$$\Leftrightarrow \qquad 128\left(\frac{1}{2}\right)^{n} \le 2187\left(\frac{1}{2}\right)^{2n}$$

$$\Leftrightarrow \qquad \frac{128}{2187} \le \frac{\left(\frac{1}{2}\right)^{2n}}{\left(\frac{1}{2}\right)^{n}}$$

$$\Leftrightarrow \qquad \frac{128}{2187} \le \left(\frac{1}{2}\right)^{n}$$

$$\Leftrightarrow \qquad \frac{128}{2187} \le \left(\frac{1}{2}\right)^{n}$$

$$\Leftrightarrow \qquad \log_{10}\left(\frac{128}{2187}\right) \le \log_{10}\left(\frac{1}{2}\right)^{n}$$

$$\Leftrightarrow \qquad \log_{10}\left(\frac{128}{2187}\right) \le n \log_{10}\left(\frac{1}{2}\right)$$

$$\Leftrightarrow \qquad \frac{\log_{10}\left(\frac{128}{2187}\right)}{\log_{10}\left(\frac{1}{2}\right)} \ge n \text{ as } \log_{10}\left(\frac{1}{2}\right) < 0$$

$$\therefore \qquad n \le 4.09$$

Hence, the tea leaves can be re-used 4 times.

6 a Brightness Batch 1 after *n* years = $15(0.95)^n$ Brightness of Batch 2 after *n* years = $20(0.94)^n$ **b** Let *n* be the number of years until brightness is the same.

$$\frac{(0.95)^{n+1}}{(0.94)^n} = 20(0.94)^n$$

$$\frac{(0.95)^{n+1}}{(0.94)^n} = \frac{20}{15}$$

$$\log_{10}\left(\frac{(0.95)^{n+1}}{(0.94)^n}\right) = \log_{10}\left(\frac{4}{3}\right)$$

$$\therefore \qquad \log_{10}(0.95)^{n+1} - \log_{10}(0.94)^n = \log_{10}\left(\frac{4}{3}\right)$$

$$(n+1)\log_{10}(0.95) - n\log_{10}(0.94) = \log_{10}\left(\frac{4}{3}\right)$$

$$n\log_{10}(0.95) + \log_{10}(0.95) - n\log_{10}(0.94) = \log_{10}\left(\frac{4}{3}\right)$$

$$n(\log_{10}(0.95) - \log_{10}(0.94)) = \log_{10}\left(\frac{4}{3}\right) - \log_{10}(0.95)$$

$$n\log_{10}\left(\frac{0.95}{0.94}\right) = \log_{10}\left(\frac{4}{3 \times 0.95}\right)$$

$$n = \frac{\log_{10}\left(\frac{400}{285}\right)}{\log_{10}\left(\frac{95}{94}\right)}$$

$$= 32.033$$

Hence, the brightness is the same early in the 33rd year (i.e. after about 32 years).

7 Let *W* be the number of wildebeest and *n* the number of years.

Then
$$W = 700(1.03)^n$$

Let *Z* be the number of zebras.

Then
$$Z = (0.96)^n \times 1850$$

= $1850(0.96)^n$

a
$$(0.96)^{n} \times 1850 = 700(1.03)^{n}$$

$$\frac{1850}{700} = \left(\frac{1.03}{0.96}\right)^{n}$$

$$\frac{37}{14} = \left(\frac{103}{96}\right)^{n}$$

$$\therefore \qquad n = 13.81$$

After 13.81 years, the number of wildebeest exceeds the number of zebras.

b Let A be the number of antelopes.

$$A = 1000 + 50n$$

The number of antelopes is greater than the number of zebras when

$$1000 + 50n > 1850(0.96)^n$$

From a CAS calculator,

$$1000 + 50n > 1850(0.96)^n$$
 for $n > 7.38$

After 7.38 years, the number of antelopes exceeds the number of zebras.

8 a TI: Type the given data into a new Lists & Spreadsheet application. Call column A time, and column B temp

> Press Menu → 4:Statistics → 1:Stat Calculations → A:Exponential Regression

Set **X** List to time and **Y** List to temp then ENTER

CP: Open the Statistics application. Type the time data into list1 and the temperature data into list2

Tap Calc \rightarrow abExponential Reg and set XList to list1 and YList to list2 The values of a and b are given as a = 87.06 and b = 0.94, correct to 2 decimal places,

$$T = 87.06 \times 0.94^t$$

b i When t = 0, $T = 87.06^{\circ} \text{C}$

ii When
$$t = 25$$
, $T = 18.56^{\circ}$ C

c (12, 45.5) is the reading which appears to be incorrect.

Re-calculating gives
$$a = 85.724...$$
 and $b = 0.9400$

$$T = 85.72 \times 0.94^t$$

- **d i** When t = 0, $T = 85.72^{\circ}$ C
 - **ii** When t = 12, $T = 40.82^{\circ}$ C
- e When T = 15, t = 28.19 min
- **9 a** At (1,1) $1 = a \times b^1$
 - $\therefore 1 = ab \tag{1}$
 - At (2,5) $5 = a \times b^2$ (2)
 - Divide (2) by (1) 5 = b
 - Substitute b = 5 into (1) $1 = a \times 5$
 - $\therefore \qquad \qquad a = \frac{1}{5} = 0.2$
 - $\therefore a = 0.2, b = 5$
 - **b** Let $b^x = 10^z$
 - i By the definition of logarithm:

$$z = \log_{10} b^x$$

$$\therefore = x \log_{10} b$$

$$\mathbf{ii} \qquad \qquad \mathbf{y} = a \times 10^{kx}$$

$$= a \times b^x$$
 where $b^x = 10^{kx}$

From **b** i, $b^x = 10^{kx}$ can be rewritten

$$kx = x \log_{10} b$$

$$k = \log_{10} b$$

From **a**,
$$a = 0.2$$
 and $b = 5$, $k = \log_{10} 5$

At
$$(0,2)$$
 $2 = a \times b^0$

$$\therefore$$
 2 = a

$$y = 2b^x$$

At(10, 200)
$$200 = 2b^{10}$$

$$b^{10} = \frac{200}{2} = 100$$

$$b = (100)^{\frac{1}{10}}$$

= 1.5849 (correct to 4 decimal places)

$$y = 2 \times 1.5849^x$$

Using CAS regression $y = 2 \times 1.585^x$

b From Question 9, $k = \log_{10} b$

and from part **a**,
$$a = 2$$
 and $b = (100)^{\frac{1}{10}}$

$$k = \log_{10}(100)^{\frac{1}{10}}$$

$$= \frac{1}{10}\log_{10}100$$

$$= \frac{1}{10} \times 2 = \frac{1}{5}$$

$$y = 2 \times 10^{\frac{x}{5}} = 2 \times 10^{0.2x}$$

$$\mathbf{c} \qquad \qquad \mathbf{y} = 2 \times 10^{\frac{x}{5}}$$

can be written $\frac{y}{2} = 10^{\frac{x}{5}}$

By definition of logarithms:

$$\frac{x}{5} = \log_{10}\left(\frac{y}{2}\right)$$

$$x = 5\log_{10}\left(\frac{y}{2}\right)$$