## Probabilidade e Estatística







### Probabilidade e Estatística

# Aula 4 Análise Exploratória de Dados (AED)



- Distribuição de frequências: Tabelas e Gráficos para variáveis quantitativas
- ✓ Atividade prática Uso do R e Rstudio para fazer uma análise de dados



#### Estatística Descritiva

- Tabelas
- Gráficos (Barras, Setores Circulares, Histograma, Linha, Dispersão)
- Medidas de posição (Média, Mediana, Percentis, Moda)
- Medidas de dispersão (Variância, Desvio Padrão, Coeficiente de Variação)

#### Exemplo: BASE SALÁRIO DE FUNCIONÁRIOS QUE TRABALHAM COM DATA SCIENCE

| BASE DE DADOS |      | salarios.csv |         | (no SIGAA – Aula 4) |            |           |           |           |           |     |
|---------------|------|--------------|---------|---------------------|------------|-----------|-----------|-----------|-----------|-----|
|               | Α    | В            | С       | D                   | Е          | F         | G         | Н         | I         |     |
|               | ano  | experienci   | emprego | cargo               | salario_US | pais_empr | trab_remo | pais_empr | tam_empre | esa |
|               | 2020 | MI           | FT      | Data Scien          | 79833      | DE        | 0         | DE        | L         |     |
|               | 2020 | SE           | FT      | Machine L           | 260000     | JP        | 0         | JP        | S         |     |
|               | 2020 | SE           | FT      | Big Data E          | 109024     | GB        | 50        | GB        | M         |     |
|               | 2020 | MI           | FT      | Product Da          | 20000      | HN        | 0         | HN        | S         |     |
|               | 2020 | SE           | FT      | Machine L           | 150000     | US        | 50        | US        | L         |     |
|               | 2020 | EN           | FT      | Data Analy          | 72000      | US        | 100       | US        | L         |     |
|               | 2020 | SE           | FT      | <b>Lead Data</b>    | 190000     | US        | 100       | US        | S         |     |
|               | 2020 | MI           | FT      | Data Scien          | 35735      | HU        | 50        | HU        | L         |     |
|               | 2020 | MI           | FT      | <b>Business D</b>   | 135000     | US        | 100       | US        | L         |     |
|               | 2020 | SE           | FT      | <b>Lead Data</b>    | 125000     | NZ        | 50        | NZ        | S         |     |
|               | 2020 | EN           | FT      | Data Scien          | 51321      | FR        | 0         | FR        | S         |     |
|               | 2020 | MI           | FT      | Data Scien          | 40481      | IN        | 0         | IN        | L         |     |
|               | 2020 | EN           | FT      | Data Scien          | 39916      | FR        | 0         | FR        | M         |     |
|               | 2020 | MI           | FT      | <b>Lead Data</b>    | 87000      | US        | 100       | US        | L         |     |
|               | 2020 | MI           | FT      | Data Analy          | 85000      | US        | 100       | US        | L         |     |
|               | 2020 | MI           | FT      | Data Analy          | 8000       | PK        | 50        | PK        | L         |     |
|               | 2020 | EN           | FT      | Data Engin          | 41689      | JP        | 100       | JP        | S         |     |

#### Exemplo: BASE SALÁRIO DE FUNCIONÁRIOS QUE TRABALHAM COM DATA SCIENCE

#### **Descrição dos Dados**

| Variável     | Descrição                                                                                               |  |  |
|--------------|---------------------------------------------------------------------------------------------------------|--|--|
| ano          | O ano em que o salário foi pago.                                                                        |  |  |
| experiencia  | O nível de experiência no cargo durante o ano com os seguintes valores                                  |  |  |
|              | possíveis: <b>EN</b> (Nível básico / Junior), <b>MI</b> (Nível médio / Intermediário), <b>SE</b> (Nível |  |  |
|              | sênior / Expert), <b>EX</b> (Nível executivo / Diretor)                                                 |  |  |
| emprego      | O tipo de emprego para a função: <b>PT</b> (Part-time), <b>FT</b> (Full-time),                          |  |  |
|              | CT (Contract), FL (Freelance)                                                                           |  |  |
| cargo        | A função exercida durante o ano                                                                         |  |  |
|              | O salário em USD (taxa de câmbio dividida pela taxa média em USD para o                                 |  |  |
| salario_USD  | respectivo ano via fxdata.foorilla.com).                                                                |  |  |
| pais_empreg  | O país de residência do funcionário durante o ano de trabalho como um código                            |  |  |
|              | de país ISO 3166.                                                                                       |  |  |
|              | O tempo total de trabalho feito remotamente, os valores possíveis são os                                |  |  |
|              | seguintes: 0 Nenhum trabalho remoto (menos de 20%), 50 Parcialmente                                     |  |  |
| trab_remoto  | remoto, 100 Totalmente remoto (mais de 80%)                                                             |  |  |
| pais_empresa | O país da sede do empregador ou da filial contratante como um código de país                            |  |  |
|              | ISO 3166.                                                                                               |  |  |
| tam_empresa  | O número médio de pessoas que trabalharam para a empresa durante o ano: S                               |  |  |
|              | menos de 50 funcionários (pequeno), M 50 a 250 funcionários (médio), L mais                             |  |  |
|              | de 250 funcionários (grande)                                                                            |  |  |

library(ggplot2)

geom bar(stat="identity")

Exemplo 1: Salário em USD (salario\_USD) por nível de experiência (experiencia = EN, MI, SE, EX)

Construção de **tabela e gráfico** para uma variável **qualitativa** e uma **quantitativa** 

```
tabela.medias <- aggregate(base$salario_USD, by=list(base$experiencia), FUN="mean") colnames(tabela.medias) <- c("Experiencia", "Sal_Medio") tabela.medias
```

ggplot(tabela.medias, aes(x=Experiencia, y=Sal Medio)) +



#### Gráfico em colunas e Tabela de médias



4:EX 199392.04

Exemplo 2: Resposta dos pacientes a dois tipos de drogas em 5 níveis de dosagem

Construção de gráfico para duas variáveis quantitativas

Table 3.1 Patient responses to two drugs at five dosage levels

| Dosage | Response to Drug A | Response to Drug B |
|--------|--------------------|--------------------|
| 20     | 16                 | 15                 |
| 30     | 20                 | 18                 |
| 40     | 27                 | 25                 |
| 45     | 40                 | 31                 |
| 60     | 60                 | 40                 |

Fonte: Kabacoff, R. I. R in action – Data analysis and Graphic with R. p. 49



#### Gráfico de linha relacionando dose para resposta da droga A



plot(dose, drugA, type="b")
plot(dose, drugA, type="b", lty=2, pch=17)

Exemplo 3: Comparando a resposta dos pacientes a dois tipos de drogas por dose

#### Construção de gráfico para duas variáveis quantitativas

```
dose <- c(20, 30, 40, 45, 60)
drugA < -c(16, 20, 27, 40, 60)
drugB < -c(15, 18, 25, 31, 40)
opar <- par(no.readonly=TRUE)</pre>
                                               Increases line, text, symbol, and label size
par(lwd=2, cex=1.5, font.lab=2)
plot(dose, drugA, type="b",
     pch=15, lty=1, col="red", ylim=c(0, 60),
     main="Drug A vs. Drug B",
     xlab="Drug Dosage", ylab="Drug Response")
                                                   Generates the graph
lines(dose, drugB, type="b",
      pch=17, lty=2, col="blue")
abline(h=c(30), lwd=1.5, lty=2, col="gray")
library(Hmisc)
                                                   Adds minor tick marks
minor.tick(nx=3, ny=3, tick.ratio=0.5)
legend("topleft", inset=.05, title="Drug Type", c("A", "B")
                                                                  Adds a legend
       lty=c(1, 2), pch=c(15, 17), col=c("red", "blue"))
par(opar)
```

Fonte: Kabacoff, R. I. R in action – Data analysis and Graphic with R. p. 61



## Gráfico de linha relacionando dose para resposta da droga A



# install.packages("psych")

library(psych)

Exemplo 4: Construir uma **tabela** para a variável salário (salario\_USD) Construção de tabela para uma variável **quantitativa** 

```
dados$Cat_Salario[dados$salario_USD <100000] = "G1"

dados$Cat_Salario[dados$salario_USD >=100000 & dados$salario_USD <200000] = "G2"

dados$Cat_Salario[dados$salario_USD >=200000 & dados$salario_USD <300000] = "G3"

dados$Cat_Salario[dados$salario_USD >=300000 & dados$salario_USD <400000] = "G4"

dados$Cat_Salario[dados$salario_USD >=400000] = "G5"

freq.tabela <- table(dados$Cat_Salario, useNA = "ifany")

freq.tabela
```

Exemplo 4: Construir uma **tabela** para a variável salário (salario\_USD) Construção de tabela para uma variável **quantitativa** 

| G1  | G2  | G3 | G4 | G5 |
|-----|-----|----|----|----|
| 287 | 256 | 54 | 3  | 7  |

Exemplo 5: Construir um gráfico para a variável salário (salario\_USD) (histograma)

```
# Histograma
library(dplyr)
library(ggplot2)
hist(dados$salario_USD)
hist(dados$salario_USD,
  breaks=6)
hist(dados$salario_USD,
  main="Distribuição Salarial em Data Science",
  xlab="Salários em USD",
  ylab = "número de colaboradores",
  col="darkmagenta",
  xaxt = 'n'.
  freq=TRUE)
myTicks = axTicks(1)
axis(1, at = myTicks, labels = formatC(myTicks, format = 'd'))
```

Gráfico
Histograma da
distribuição salarial
dos colaboradores



#### Explorando bases nativas do R

Exemplo 6 - base mtcars

data() # mostra os conjuntos de dados disponíveis

library(help = "datasets")

?mtcars

mtcars é uma base disponível no R Informações sobre marcas de 32 carros em 11 variáveis

No console do R digite?mtcars para entender a base

#### Combinação de gráficos

Exemplo 7: Quatro gráficos combinados em duas linhas e duas colunas para variáveis da base mtcars

```
attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(wt,mpg, main="Scatterplot of wt vs. mpg")
plot(wt,disp, main="Scatterplot of wt vs. disp")
hist(wt, main="Histogram of wt")
boxplot(wt, main="Boxplot of wt")
par(opar)
detach(mtcars)</pre>
```

Fonte: Kabacoff, R. I. R in action – Data analysis and Graphic with R. p. 65



Combinação de 4 gráficos para variáveis da base mtcars

mtcars é uma base disponível no R Informações sobre marcas de 32 carros em 11 variáveis

No console do R digite?mtcars para entender a base

#### Dispersão

#### Scatterplot of wt vs. mpg



#### Histograma

#### Histogram of wt



#### Scatterplot of wt vs. disp

Dispersão



Diagrama de caixa

#### Boxplot of wt



#### **ATIVIDADE**

#### No LABORATÓRIO:

Baixar do SIGAA (Aula 14/03) os arquivos:

- Aula 4 Slides variáveis quantitativas gráficos e tabelas
- base de dados salário Data Science



código para executar no R Studio



Reproduzir no R o código dos 7 exemplos da sintaxe