Lecture 19: ANOVA Part I

Chapter 5.5

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

 $ightharpoonup n_i$ plants assigned to each of the k=4 fertilizers:

n_1	n_2	n_3	<i>n</i> ₄	total n
3	7	4	6	20

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

 $ightharpoonup n_i$ plants assigned to each of the k=4 fertilizers:

Count the number of tomatoes on each plant

Tomato Fertilizer

We observe the following, where each point is one tomato plant.

Tomato Fertilizer

We observe the following, where each point is one tomato plant. Plot the sample mean of each level.

Tomato Fertilizer

We observe the following, where each point is one tomato plant. Plot the sample mean of each level. Question: are the mean tomato yields different?

Analysis of Variance

Analysis of Variance

Analysis of Variance

Numerator: the between-group variation refers to the variability between the levels (the 4 horizontal lines):

Denominator: the within-group variation refers to the variability within each level (the 4 vertical arrows):

Now compare the following two plots. Which has "more different" means?

F Distributions

F Distributions

For $df_1 = 4$ and $df_2 = 6$, the F distribution looks like:

F Distributions

p-values are computed where "more extreme" means larger. Say the F=3, the p-value is the area to the right of 3 and is computed in R: pf(3,df1=4,df2=6,lower.tail=FALSE)

Conducting An *F*-Test

The results are typically summarized in an ANOVA table:

Source of Variation	df	SS	MS	F	<i>p</i> -value
Between groups	k – 1	SSTr	$MSTr = \frac{SSTr}{k-1}$	MSTr MSE	р
Within groups	n-k	SSE	$MSE = \frac{\hat{S}SE}{n-k}$		
Total	n-1	SST			

Conditions