数值代数实验报告

PB21010483 郭忠炜

2023年11月10日

一. 问题描述

Exercise1

对于给定的二阶微分方程边值问题,将问题离散化为线性方程组后,使用 Jacobi 迭代法、Gauss-Seidel 迭代法和 SOR 迭代法求解该方程组。比较这些迭代方法在不同参数 (ϵ) 设置下的性能,并分析数值解与精确解之间的误差。

Exercise2

对于二维偏微分方程,通过在 $[0,1] \times [0,1]$ 区域上进行均匀剖分,将方程离散化为一个代数方程组,采用中心差分方法得到差分方程。对于给定的函数 $g(x,y) = \exp(xy)$ 和 f(x,y) = x + y,使用 Jacobi 迭代法、Gauss-Seidel 迭代法和 SOR 迭代法求解这个代数方程组。具体来说,我需要考虑不同的网格尺寸 N=20,40,60,并比较不同网格尺寸下求解过程中所需的迭代次数和相应的 CPU 时间。

根据讲义给出的推导思路,可以得到 Jacobi 迭代法、Gauss-Seidel 迭代法和 SOR 迭代法的迭代格式如下。

Jacobi 迭代格式:

$$Dx^{(k+1)} = (L+U)x^{(k)} + b$$

$$(4+h^2g(ih,jh))u_{i,j}^{(k+1)} = u_{i-1,j}^{(k)} + u_{i,j-1}^{(k)} + u_{i+1,j}^{(k)} + u_{i,j+1}^{(k)} + h^2f(ih,jh)$$

G-S 迭代格式:

$$\begin{split} Dx^{(k+1)} &= Lx^{(k+1)} + Ux^{(k)} + b \\ &(4 + h^2g(ih, jh))u_{i,j}^{(k+1)} &= u_{i-1,j}^{(k+1)} + u_{i,j-1}^{(k+1)} + u_{i+1,j}^{(k)} + u_{i,j+1}^{(k)} + h^2f(ih, jh) \end{split}$$

SOR 迭代格式:

$$Dx^{(k+1)} = \omega Lx^{(k+1)} + ((1-\omega)D + \omega U)x^{(k)} + \omega b$$

$$(4+h^2g(ih,jh))u_{i,j}^{(k+1)} = \omega u_{i-1,j}^{(k+1)} + \omega u_{i,j-1}^{(k+1)} + (1-\omega)(4+h^2g(ih,jh))u_{i,j}^{(k)} + \omega (u_{i+1,j}^{(k)} + u_{i,j+1}^{(k)}) + \omega h^2f(ih,jh)$$

二. 程序介绍

Jacobi 迭代法:

- 函数描述: Jacobi_Iteration 函数用于通过 Jacobi 迭代法求解线性方程组。
- 使用方式:调用 Jacobi_Iteration(A, b) 函数,传入系数矩阵 A 和右侧向量 b,函数会进行 Jacobi 迭代,返回线性方程组的解。

Gauss-Seidel 迭代法:

- 函数描述: GS_Iteration 函数用于通过 Gauss-Seidel 迭代法求解线性方程组。
- 使用方式: 调用 GS_I Iteration(A, b) 函数,传入系数矩阵 A 和右侧向量 b,函数会进行 Gauss-Seidel 迭代,返回线性方程组的解。

SOR 迭代法:

- 函数描述: SOR_Iteration 函数用于通过 SOR 迭代法求解线性方程组。
- 使用方式: 调用 SOR_Iteration(A, b, omega) 函数,传入系数矩阵 A、右侧向量 b 和松弛因子 ω ,函数会进行 SOR 迭代,返回线性方程组的解。

SOR 迭代法性能评估:

- 函数描述: SOR_Performance 函数用于评估 SOR 迭代法在给定参数下的性能。
- 使用方式: 调用 SOR_Performance(A, b, omega) 函数,传入系数矩阵 A、右侧向量 b 和松弛因子 ω ,函数会返回 SOR 迭代的收敛迭代次数。

松弛因子搜索:

- 函数描述: BisearchOmega 函数用于通过二分法搜索最佳松弛因子。
- 使用方式: 调用 BisearchOmega(A, b) 函数,传入系数矩阵 A 和右侧向量 b,函数会通过二分法搜索最佳松弛因子并返回结果。

迭代过程展示:

- 函数描述: Iterations 函数用于执行差分方程的迭代求解过程。
- 使用方式: 调用 Iterations(epsilon) 函数,传入参数 ϵ ,函数会执行 Jacobi、Gauss-Seidel 和 SOR 迭代法,并展示每种方法的解以及运行时间。

Jacobi 迭代法 (二维):

- 函数描述: Jacobi_Iteration2 函数用于通过 Jacobi 迭代法求解二维偏微分方程。
- 使用方式: 调用 Jacobi_Iteration2(u) 函数,传入初始解矩阵 u,函数会执行 Jacobi 迭代,求解二维偏微分方程。

Gauss-Seidel 迭代法 (二维):

- 函数描述: GS Iteration2 函数用于通过 Gauss-Seidel 迭代法求解二维偏微分方程。
- 使用方式: 调用 GS_Iteration2(u) 函数,传入初始解矩阵 u,函数会执行 Gauss-Seidel 迭代,求解二维偏微分方程。

SOR 迭代法 (二维):

- 函数描述: SOR Iteration2 函数用于通过 SOR 迭代法求解二维偏微分方程。
- 使用方式: 调用 SOR_Iteration2(u, omega) 函数,传入初始解矩阵 u 和松弛因子 ω ,函数会执行 SOR 迭代,求解二维偏微分方程。

SOR 迭代法性能评估 (二维):

- 函数描述: SOR_Performance2 函数用于评估 SOR 迭代法在给定参数下的性能。
- 使用方式: 调用 SOR_Performance2(u, omega) 函数,传入初始解矩阵 u 和松弛因子 ω ,函数会返回 SOR 迭代的收敛迭代次数。

松弛因子搜索 (二维):

- 函数描述: BisearchOmega2 函数用于通过二分法搜索最佳松弛因子。
- 使用方式:调用 BisearchOmega2(u) 函数,传入初始解矩阵 u,函数会通过二分法搜索最佳松弛 因子并返回结果。

迭代过程展示 (二维):

- 函数描述: Iterations2 函数用于执行二维偏微分方程的迭代求解过程。
- 使用方式: 调用 Iterations2(n) 函数,传入参数 n,函数会执行 Jacobi、Gauss-Seidel 和 SOR 迭代法,并展示每种方法的解以及运行时间。

三. 实验结果

Exercise1

表格中展示了在不同的 ϵ 时的精确解和三种迭代方法(Jacobi 迭代法、Gauss-Seidel 迭代法和 SOR 迭代法)的计算结果、迭代次数和运行时间。

				$\epsilon = 1$.0 时的精	 确解				
0.0129	0.0257	0.0384	0.0510	0.0636	0.0761	0.0885	0.1008	0.1131	0.1253	0.1374
0.1494	0.1614	0.1733	0.1852	0.1970	0.2087	0.2203	0.2319	0.2434	0.2548	0.2662
0.2775	0.2888	0.3000	0.3111	0.3222	0.3332	0.3441	0.3550	0.3658	0.3766	0.3873
0.3980	0.4086	0.4191	0.4296	0.4401	0.4504	0.4608	0.4710	0.4813	0.4914	0.5016
0.5116	0.5217	0.5316	0.5415	0.5514	0.5612	0.5710	0.5807	0.5904	0.6000	0.6096
0.6192	0.6287	0.6381	0.6475	0.6569	0.6662	0.6755	0.6847	0.6939	0.7031	0.7122
0.7212	0.7303	0.7392	0.7482	0.7571	0.7660	0.7748	0.7836	0.7924	0.8011	0.8098
0.8184	0.8270	0.8356	0.8441	0.8526	0.8611	0.8695	0.8779	0.8863	0.8946	0.9029
0.9112	0.9194	0.9276	0.9358	0.9439	0.9520	0.9601	0.9681	0.9761	0.9841	0.9921
Jac	cobi 迭代	法		迭代次数	χ: 13172		j	运行时间:	11.4540	s
0.0128	0.0256	0.0382	0.0508	0.0633	0.0758	0.0881	0.1004	0.1126	0.1248	0.1369
0.1489	0.1608	0.1727	0.1845	0.1962	0.2079	0.2195	0.2310	0.2425	0.2539	0.2653
0.2766	0.2878	0.2990	0.3101	0.3211	0.3321	0.3430	0.3539	0.3647	0.3755	0.3862
0.3968	0.4074	0.4179	0.4284	0.4388	0.4492	0.4595	0.4698	0.4800	0.4902	0.5003
0.5104	0.5204	0.5304	0.5403	0.5502	0.5600	0.5698	0.5795	0.5892	0.5988	0.6084
0.6180	0.6275	0.6370	0.6464	0.6558	0.6651	0.6744	0.6837	0.6929	0.7020	0.7112
0.7203	0.7293	0.7383	0.7473	0.7562	0.7651	0.7740	0.7828	0.7916	0.8003	0.8090
0.8177	0.8263	0.8349	0.8435	0.8520	0.8605	0.8690	0.8774	0.8858	0.8942	0.9025
0.9108	0.9191	0.9273	0.9355	0.9437	0.9518	0.9599	0.9680	0.9760	0.9841	0.9920
G	FS 迭代》	去	迭代次数: 6574				运行时间	: 3.9850s	3	
0.0128	0.0256	0.0382	0.0508	0.0633	0.0757	0.0881	0.1004	0.1126	0.1248	0.1368
0.1488	0.1608	0.1727	0.1845	0.1962	0.2079	0.2195	0.2310	0.2425	0.2539	0.2652
0.2765	0.2878	0.2989	0.3100	0.3211	0.3321	0.3430	0.3539	0.3647	0.3754	0.3861
0.3968	0.4074	0.4179	0.4284	0.4388	0.4492	0.4595	0.4698	0.4800	0.4902	0.5003
0.5103	0.5204	0.5303	0.5403	0.5501	0.5600	0.5697	0.5795	0.5892	0.5988	0.6084
0.6180	0.6275	0.6369	0.6464	0.6557	0.6651	0.6744	0.6836	0.6928	0.7020	0.7111
0.7202	0.7293	0.7383	0.7473	0.7562	0.7651	0.7740	0.7828	0.7916	0.8003	0.8090
0.8177	0.8263	0.8349	0.8435	0.8520	0.8605	0.8690	0.8774	0.8858	0.8942	0.9025
0.9108	0.9191	0.9273	0.9355	0.9437	0.9518	0.9599	0.9680	0.9760	0.9841	0.9920
S	OR 迭代	法	迭代次数: 261			运行时间: 0.1650s				
0.0129	0.0256	0.0383	0.0509	0.0635	0.0760	0.0884	0.1007	0.1129	0.1251	0.1372
0.1493	0.1612	0.1731	0.1850	0.1967	0.2084	0.2201	0.2316	0.2431	0.2546	0.2660
0.2773	0.2885	0.2997	0.3108	0.3219	0.3329	0.3438	0.3547	0.3655	0.3763	0.3870
0.3977	0.4083	0.4188	0.4293	0.4398	0.4501	0.4605	0.4707	0.4810	0.4911	0.5013
0.5113	0.5213	0.5313	0.5412	0.5511	0.5609	0.5707	0.5804	0.5901	0.5998	0.6093
0.6189	0.6284	0.6378	0.6472	0.6566	0.6659	0.6752	0.6845	0.6937	0.7028	0.7119
0.7210	0.7300	0.7390	0.7480	0.7569	0.7658	0.7746	0.7834	0.7922	0.8009	0.8096
0.8182	0.8268	0.8354	0.8440	0.8525	0.8609	0.8694	0.8778	0.8862	0.8945	0.9028
0.9111	0.9193	0.9275	0.9357	0.9438	0.9520	0.9600	0.9681	0.9761	0.9841	0.9921

				$\epsilon = 0$.1 时的精	确解				
0.0526	0.1006	0.1446	0.1848	0.2217	0.2556	0.2867	0.3153	0.3417	0.3661	0.3886
0.4094	0.4288	0.4467	0.4635	0.4791	0.4937	0.5074	0.5202	0.5324	0.5438	0.5546
0.5649	0.5747	0.5840	0.5929	0.6014	0.6096	0.6175	0.6251	0.6325	0.6396	0.6466
0.6533	0.6599	0.6664	0.6727	0.6788	0.6849	0.6909	0.6967	0.7025	0.7082	0.7139
0.7195	0.7250	0.7305	0.7359	0.7413	0.7467	0.7520	0.7573	0.7625	0.7678	0.7730
0.7782	0.7833	0.7885	0.7937	0.7988	0.8039	0.8090	0.8141	0.8192	0.8243	0.8293
0.8344	0.8395	0.8445	0.8496	0.8546	0.8596	0.8647	0.8697	0.8747	0.8798	0.8848
0.8898	0.8948	0.8999	0.9049	0.9099	0.9149	0.9199	0.9249	0.9299	0.9349	0.9399
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
Ja	cobi 迭代	法法		迭代次数	汝: 5926			运行时间	: 3.4670s	}
0.0504	0.0967	0.1393	0.1784	0.2144	0.2476	0.2782	0.3066	0.3327	0.3570	0.3795
0.4005	0.4199	0.4381	0.4551	0.4709	0.4858	0.4998	0.5130	0.5254	0.5372	0.5483
0.5589	0.5690	0.5786	0.5878	0.5966	0.6051	0.6133	0.6211	0.6288	0.6361	0.6433
0.6502	0.6570	0.6637	0.6701	0.6765	0.6827	0.6888	0.6948	0.7007	0.7066	0.7123
0.7180	0.7237	0.7292	0.7348	0.7402	0.7457	0.7511	0.7564	0.7617	0.7670	0.7723
0.7775	0.7828	0.7880	0.7932	0.7983	0.8035	0.8086	0.8137	0.8189	0.8240	0.8291
0.8341	0.8392	0.8443	0.8494	0.8544	0.8595	0.8645	0.8696	0.8746	0.8797	0.8847
0.8897	0.8948	0.8998	0.9048	0.9098	0.9148	0.9199	0.9249	0.9299	0.9349	0.9399
0.9449	0.9499	0.9549	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
G	S-S 迭代》	法		迭代次数	女: 2981		运行时间: 1.6220s			
0.0504	0.0967	0.1392	0.1784	0.2144	0.2476	0.2782	0.3065	0.3327	0.3570	0.3795
0.4004	0.4199	0.4381	0.4550	0.4709	0.4858	0.4998	0.5130	0.5254	0.5372	0.5483
0.5589	0.5690	0.5786	0.5878	0.5966	0.6051	0.6133	0.6211	0.6287	0.6361	0.6433
0.6502	0.6570	0.6636	0.6701	0.6765	0.6827	0.6888	0.6948	0.7007	0.7066	0.7123
0.7180	0.7237	0.7292	0.7348	0.7402	0.7457	0.7511	0.7564	0.7617	0.7670	0.7723
0.7775	0.7828	0.7880	0.7932	0.7983	0.8035	0.8086	0.8137	0.8189	0.8240	0.8291
0.8341	0.8392	0.8443	0.8494	0.8544	0.8595	0.8645	0.8696	0.8746	0.8797	0.8847
0.8897	0.8948	0.8998	0.9048	0.9098	0.9148	0.9199	0.9249	0.9299	0.9349	0.9399
0.9449	0.9499	0.9549	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
	OR 迭代		迭代次数: 201			运行时间: 0.1480s				
0.0505	0.0968	0.1394	0.1785	0.2146	0.2478	0.2784	0.3068	0.3330	0.3573	0.3798
0.4007	0.4202	0.4384	0.4553	0.4712	0.4861	0.5001	0.5133	0.5257	0.5375	0.5486
0.5592	0.5693	0.5789	0.5881	0.5969	0.6054	0.6135	0.6214	0.6290	0.6364	0.6435
0.6505	0.6572	0.6639	0.6703	0.6767	0.6829	0.6890	0.6950	0.7009	0.7067	0.7125
0.7182	0.7238	0.7294	0.7349	0.7404	0.7458	0.7512	0.7565	0.7618	0.7671	0.7724
0.7776	0.7829	0.7880	0.7932	0.7984	0.8035	0.8087	0.8138	0.8189	0.8240	0.8291
0.8342	0.8393	0.8443	0.8494	0.8545	0.8595	0.8646	0.8696	0.8746	0.8797	0.8847
0.8897	0.8948	0.8998	0.9048	0.9098	0.9148	0.9199	0.9249	0.9299	0.9349	0.9399
0.9449	0.9499	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950

				$\epsilon = 0.$.01 时的*	青确解				
0.3211	0.4423	0.4901	0.5108	0.5216	0.5288	0.5345	0.5398	0.5449	0.5500	0.5550
0.5600	0.5650	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
Ja	cobi 迭代	法法		迭代次	数: 569			运行时间	: 0.3370s	3
0.2550	0.3850	0.4525	0.4887	0.5094	0.5222	0.5311	0.5380	0.5440	0.5495	0.5548
0.5599	0.5649	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
G	X-S 迭代》	去	迭代次数: 333				运行时间: 0.2010s			
0.2550	0.3850	0.4525	0.4887	0.5094	0.5222	0.5311	0.5380	0.5440	0.5495	0.5548
0.5599	0.5649	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
	SOR 迭代法			迭代次数: 101			运行时间: 0.0820s			
0.2550	0.3850	0.4525	0.4888	0.5094	0.5222	0.5311	0.5380	0.5440	0.5495	0.5548
0.5599	0.5649	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
						0 7550	0.7600	0.7650	0.7700	0.7750
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600			
0.7250 0.7800	0.7300 0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.7250 0.7800 0.8350	0.7300 0.7850 0.8400	0.7900 0.8450	0.7950 0.8500	0.8000 0.8550	0.8050 0.8600	0.8100 0.8650	0.8150 0.8700	0.8200 0.8750	0.8250 0.8800	0.8300 0.8850
0.7250 0.7800	0.7300 0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300

				$\epsilon = 0.0$	001 时的	<u></u> 精确解				
0.5050	0.5100	0.5150	0.5200	0.5250	0.5300	0.5350	0.5400	0.5450	0.5500	0.5550
0.5600	0.5650	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
Jac	cobi 迭代	 大法		迭代次	数: 118			运行时间	: 0.0840s	
0.5000	0.5100	0.5150	0.5200	0.5250	0.5300	0.5350	0.5400	0.5450	0.5500	0.5550
0.5600	0.5650	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
G	FS 迭代》	法		迭代次	数: 109		运行时间: 0.0820s			
0.5000	0.5100	0.5150	0.5200	0.5250	0.5300	0.5350	0.5400	0.5450	0.5500	0.5550
0.5600	0.5650	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950
	OR 迭代			迭代次			运行时间: 0.0860s			
0.5000	0.5100	0.5150	0.5200	0.5250	0.5300	0.5350	0.5400	0.5450	0.5500	0.5550
0.5600	0.5650	0.5700	0.5750	0.5800	0.5850	0.5900	0.5950	0.6000	0.6050	0.6100
0.6150	0.6200	0.6250	0.6300	0.6350	0.6400	0.6450	0.6500	0.6550	0.6600	0.6650
0.6700	0.6750	0.6800	0.6850	0.6900	0.6950	0.7000	0.7050	0.7100	0.7150	0.7200
0.7250	0.7300	0.7350	0.7400	0.7450	0.7500	0.7550	0.7600	0.7650	0.7700	0.7750
0.7800	0.7850	0.7900	0.7950	0.8000	0.8050	0.8100	0.8150	0.8200	0.8250	0.8300
0.8350	0.8400	0.8450	0.8500	0.8550	0.8600	0.8650	0.8700	0.8750	0.8800	0.8850
0.8900	0.8950	0.9000	0.9050	0.9100	0.9150	0.9200	0.9250	0.9300	0.9350	0.9400
0.9450	0.9500	0.9550	0.9600	0.9650	0.9700	0.9750	0.9800	0.9850	0.9900	0.9950

Exercise2

N	迭代方法	最小分量	迭代次数	运行时间/s
	Jacobi		1122	0.4540
20	G-S	0.9187	589	0.2540
	$SOR(\omega=1.7266)$		68	0.0360
	Jacobi		4289	5.5790
40	G-S		2251	2.2560
	$SOR(\omega=1.8516)$		134	1.550
	Jacobi		9376	26.6210
60	G-S		4927	11.3620
	$SOR(\omega=1.8984)$		200	0.4140

四. 结果分析

Exercise1

对于固定的 $\epsilon=1.0$,Jacobi 迭代法、Gauss-Seidel 迭代法和 SOR 迭代法表现出了性能上的显著提升。在迭代结果相差不大的情况下,G-S 迭代法较于 Jacobi 迭代法实现了运行时间的减半,而 SOR 迭代法的运行速度在经过选取最佳的参数 ω 之后可以达到 G-S 迭代法的 10 倍有余。随着 ϵ 不断减小,迭代矩阵 A 的性质发生变化,这体现在三大迭代法的迭代次数和运行时间渐渐趋近。

注: SOR 迭代法中选取参数 ω 的方法是在 [1,2] 区间内进行二分查找,以迭代次数为评价指标,在代码中对应的函数是 SOR_Performance 和 SOR_Performance。

Exercise2

从计算结果上看,对于固定的 N=20,Jacobi 迭代法、Gauss-Seidel 迭代法和 SOR 迭代法都完成了计算任务,但从计算性能上三者表现和 Exercise1 类似,并且随着划分细度从 20 增加到 60 后,SOR 迭代法的优势越发突出。