07/02/2021

Sujet : Les déterminants de la dépense liée à l'exploitation de chemin de fer : le cas de Suisse

SOMMAIRE

INTRODUCTION	2
I- ETUDE DE DONNEES PANEL AVEC TSP	3
1.1- Etude de stationnarité	3
1.2- Analyse de multicolinéarité	3
1.3- Estimation des modèles	3
A- Modèle OLS	3
B- Modèle Between	4
C- Modèle Within(FE)	5
D- Modèle à effet aléatoire (Random Effects)	6
E- Analyse d'indices statistiques : theta vers Swartz B.I.C	7
1.4- LES TESTS	8
II. ETUDE DE DONNEES PANEL SOUS SAS	9
2.1- Analyse de multicolinéarité des variables exogènes	9
2.2- Estimation des différents modèles	11
2.3- Les Tests	24
III-ETUDE DE DONNEES PANEL AVEC STATA	25
3.1- La stationnarité	25
3.2- ESTIMATION DES DIFFERENTS MODELES	27
A-OLS	27
B- EFFET FIXE	28
INDIVIDUEL	28
TEMPOREL	28
C- MODELE A EFFET ALLEATOIRE	29
3.3 LES TESTS	30
HAUSSMAN	30
TESTPARM/ TEMPS	31
CONCLUSION	32

INTRODUCTION

La demande de transport devient de plus en plus importante. Dans une thématique de réalisation d'une étude soulignant les facteurs déterminants les dépenses liées à l'exploitation de chemin de fer, nous avons opter pour une base de données collectées par l'institution en Charge de transport public en Suisse. Par ailleurs, « La mondialisation est un processus de mise en relation des espaces à l'échelle planétaire, dans le cadre d'un système capitaliste (régime économique et juridique d'une société dans laquelle les moyens de production n'appartiennent pas à ceux qui les mettent en œuvre). C'est aussi une interdépendance des espaces qui sont connectés, un fonctionnement en réseau. »1 face à ce processus de la mondialisation plusieurs facteurs entrent en jeu qui génèrent des couts pesant sur l'Etat. Mais nous nous focaliserons sur celui des moyens de transports. Dans le processus de développement, le facteur transport est très capital car cela permet de désenclaver certaines régions et surtout permet le convoyage des marchandises et d'autres formes de produits. Ainsi Analyser ce secteur ne peut être que salutaire. Cela va permettre à l'Etat à optimiser les facteurs dédiés à ce secteur. Dans une approche plus scientifique, nous allons nous focaliser sur celui des chemins de fer. Pour faire une analyse plus poussée afin de pouvoir faire ressortir les facteurs déterminants qui contribuent de manière significative à l'explication des dépenses liées à l'exploitation de chemins de fer en Suisse qui est très important dans la vie économique et sociale de chaque pays.

_

¹ http://blog.ac-versailles.fr/lecturesdumonde/public/TS/Les_transports_dans_la_mondialisation.pdf

Tout en soulignant l'objectif principal de notre étude qui consiste à déterminer les facteurs qui explique la variation des dépenses de l'exploitation de chemins de fer dans le but d'aider les décideurs à minimiser plus que possibles des dépenses d'exploitation de ces chemins de fer. Pour y arriver, nous allons utiliser des outils d'analyses économétriques comme TSP, SAS, STATA. On n'est pas obligé d'utiliser ces trois logiciels en même temps. Mais néanmoins pour des raisons académiques, nous avons choisir d'utiliser ces trois logiciels qui vont nous conduire presque au même résultat. Nous pouvons répartir le projet en trois parties essentielles. Dans un premier temps, nous avons une analyse avec TSP, la seconde partie sera consacrée à l'analyse avec SAS pour plus approfondir le travail, et enfin une troisième partie qui sera effectuée par STATA qui va nous permettre de confirmer la fiabilité du modèle optimal à retenir grâce de différents tests.

I- ETUDE DE DONNEES PANEL AVEC TSP

1.1- Etude de stationnarité

Cette partie sera réaliser avec Stata et va constituer la partie 1 de la section III qui concerne stata.

1.2- Analyse de multicolinéarité

La partie 2 sera quand elle effectuer par SAS et va constituer la première partie de la section II consacré à l'étude avec le logiciel SAS.

1.3- Estimation des modèles

A- Modèle OLS

Le modèle OLS a une forte qualité d'ajustement ; le R2 ajusté (Ajusted R-squared) est de plus de 92%. Cependant toutes les variables sont du modèle sont significatives sauf le cout de la main d'œuvre (PL). On passe au modèle Between.

Plain OLS (TOTAL)	
Mean of dep. var.	= 11.3358
Std. dev. of dep. var.	= 1.11184
Sum of squared residuals	= 51.8869
Variance of residuals	= .097349
Std. error of regression	= .312008
R-squared	= .922127
Adjusted R-squared	= .921250

LM het. test		= .278097 [.598]			
Durbin-Watson		= .062309 ** [.000,.000]			
Schwarz B.I	.C.	=	155.772		
Akaike Information	Crit.	= 14	0.751		
Log likelihoo	od	= -	133.751		
Estimated	Standard				
Variable	Coefficient	Error	t-statistic		
P-value					
LNQP	.617537	.015798	39.0893	**	
[.000]					
LNQF	.054979	.687253E-02	7.99984	**	
[.000]					
PK	.537257E-04	.676866E-05	7.93742	**	
[.000]					
PL	258538E-05	.241196E-05	-1.07190		
[.284]					
PE	-5.38593	.626389	-8.59837	**	
[.000]					
STOPS	.770570E-02	.990225E-03	7.78177	**	
[.000]					
С	1.22899	.254378	4.83135	**	
[.000]					

B- Modèle Between

Le modèle Between possède un R2 ajusté élevé comme le cas de OLS. Cependant ce modèle a un très faible nombre de variables significatives ; il y a que trois variables qui sont significatives :Lnqp , Lnqf et Stops. Nous allons donc passer au troisième modèle : Modèle Within

BETWEE	N		
Mean of dep. var.	= 11.3358	Std. error of regression	= .319135
Std. dev. of dep. var928527	= 1.10935	R-squared	=
Sum of squared residuals .917242	= 3.87019	Adjusted R-squar	red =
Variance of residuals .108585 [.742]	= .101847	LM het. Test	=

Fatingated	01				
Estimated	Standard				
Variable		Coefficient	Error	t-statistic	Pvalue
LNQP		.633574	.059284	10.6871	**
[.000]					
LNQF		.060507	.026047	2.32298	*
[.026]					
PK		.528403E-04	.276330E-04	4 1.91222	
[.063]					
PL		129720E-04	.131585E-04	4985828	
[.330]					
PE		-4.28326	2.79415	-1.53294	
[.134]					
STOPS		.746924E-02	.358786E-0	2.08181	*
[.044]					
С		1.62768	1.01999	1.59578	
[.119]					

C- Modèle Within(FE)

Tout comme les deux modèles précédents le modèle Within a une qualité d'ajustement presque parfaite ; elle est de plus de 99% presque égale à 1. Toutes les variables explicatives du modèle sont toutes statistiquement significatives. On remarque ici que la constante n'existe pas, ce qui est tout à fait normal car la constante est nul dans le modèle Within. Passons au modèle à effet aléatoire.

WITHIN	
Mean of dep. var.	= 11.3358
Std. dev. of dep. var.	= 1.11184
Sum of squared residuals	= 4.01313
Variance of residuals	= .820682E-02
Std. error of regression	= .090591
R-squared	= .993977
Adjusted R-squared	= .993361
LM het. test	= 14.4919 ** [.000]
Durbin-Watson	= .666853 ** [.000,.000]
Schwarz B.I.C.	= -396.877
Akaike Information Crit.	= -506.312
Log likelihood	= 557.312
Estimated Standard	

Variable Pvalue	Coefficient	Error	t-statistic
LNQP	.548309	.025664	21.3649
[.000]			
LNQF	.038017	.730246E-02	5.20611
[.000]			
PK **	.500287E-04	.430293E-05	11.6267
[.000]			
PL **	489545E-05	.103828E-05	4.71497
[.000]			
PE **	-5.98159	.351137	-17.0349
[.000]			
STOPS **	.618557E-02	.212936E-02	2.90489
[.004]			

D- Modèle à effet aléatoire (Random Effects)

Ce modèle et le modèle Within comporte un même nombre de variables significatives. Il a tout comme le modèle Within toutes les variables qui sont significatives au seuil de 5%. Mais en revanche le modèle Within a un pouvoir explicatif plus élevé que le modèle à effet aléatoire c'est-à-dire qu'il possède un R2-ajusté (92%) moins élevé que le modèle Within.

En effet, jusqu'ici on ne sait pas encore quel modèle qu'il faut privilégier par rapport aux autres car presque tous les modèles apparaissent comme de bons candidats pour effectuer cette étude. Ainsi pour se départager, certains indices statistiques nous sont fournis par TSP qui vont nous servir de piste pour retenir le meilleur modèle.

RANI	DOM EFFECTS			
Mean of dep. var.		= 11.3358		
Std. dev. of dep. va	ar.	= 1.11184		
Sum of squared re	siduals	= 55.2631		
Variance of residua	als	= .103683		
Std. error of regres	ssion	= .321999		
R-squared = .9201	58			
Adjusted R-square	d	= .919259		
LM het. Test		= 17.9106 ** [.000]		
Durbin-Watson		= .048480 *	* [.000,.000]	
Estimated	Standard			
Variable	Coefficient	Error	t-statistic	
P-value				
LNQP **	.572659	.021937	26.1048	

[.000]			
LNQF	.042215	.682025E-02	6.18964
[.000]			
PK **	.498726E-04	.422709E-05	11.7983
[.000]			
PL **	.450713E-05	.101882E-05	4.42388
[.000]			
PE ** [.000]	-5.94595	.346405	-17.1647
STOPS ** [.000]	.778455E-02	.169551E-02	4.59126
C ** [.000]	1.61602	.343003	4.71138

E- Analyse d'indices statistiques : theta vers Swartz B.I.C

Theta au carré est un indicateur statistique qui permet d'avoir une vision sur le modèle à retenir. S'il est proche de zéro, le modèle à privilégier est le modèle Within et s'il est proche de 1, le meilleur modèle à garder c'est le modèle Between. Pour l'indicateur Swartz B.I.C, c'est un indicateur qui aide à choisir le meilleur modèle parmi plusieurs modèles économétriques en se basant sur le critère de minimum. Autrement dire cet indicateur nous propose de choisir comme meilleur modèle parmi plusieurs modèles celui qui minimise le Schartz B.I.C.

Ainsi dans notre cas ici, le modèle pour lequel le Schartz B.I.C est le plus faible possible est le modèle Within. Et en plus, THETA CARRE (0,000057966) est plus proche de 0 que de 1. [Tableau ci-dessous]

Sur ce, nous pouvons conclure cette session pour dire que le modèle à retenir en se basant sur cet indicateur est le modèle Within. Mais en revanche il faut noter que le modèle à effet aléatoire ne fait pas partie de la liste des modèles à parmi lesquels il faut choisir le meilleur modèle en se basant sur le critère de Schartz B.I.C. Les différents tests de spécification vont nous confirmer si c'est le modèle Within qui est effectivement le meilleur modèle.

Modèles	SCHARTZ B.I.C
OLS	155.772
BETWEEN	-308.948
WITHIN	-396.877

THETA = 0.76136E-02 THETA CARRE =0,000057966 -396.877 * Fixed Effects - Individual (WITHIN)

1.4- LES TESTS

A. Tests de Sélection entre un modèle pooled et un modèle à effets spécifiques

a. Test1 : Ho= Les N constantes et les N paramètres sont identiques (Ho : α_i = α β_i = β)

Avec α_i étant les constant et β_i étant les paramètres

On remarque la p-value est inférieure à 5%, donc Ho est rejetée. Les N Constantes et les N paramètres du modèle ne sont pas tous identiques, on a à faire avec une structure panel. Passons au deuxième test.

```
F test of A,B=Ai,Bi: F(283,250) = 132.66, P-value = [.0000]
Critical F value for diffuse prior (Leamer, p.114) = 23.002
```

a. **Test2**: Ho= les N paramètres sont identiques (H0 : $\beta_i = \beta$)

L'hypothèse Ho d'égalité des paramètres n'est rejetée car la p-value est supérieure à 5%. Les Paramètres sont tous identiques. On est en face d'une donnée à structure panel. On passe au troisieme test.

```
F test of Ai,B=Ai,Bi: F(239,250) = 11.185, P-value = [.0900]
Critical F value for diffuse prior (Leamer, p.114) = 15.893
```

b. **Test3**: **Ho**: les N constantes sont identiques (Ho : $\alpha_i = \alpha$)

On rejette donc l'hypothèse nulle d'égalité des constantes car la p-value est largement inférieure à 5%. Les effets individuels sont donc très importants pour notre modèle. Nous avons alors à faire avec une structure panel avec effet individuel. Nous venons de déterminer que le modèle adapté à notre base de données est le modèle à effet spécifique. Nous allons poursuivre notre étude en vérifiant si ce modèle à effet individuel est de type fixe ou aléatoire.

```
F test of A,B=Ai,B: F(44,489) = 132.58, P-value = [.0000]
Critical F value for diffuse prior (Leamer, p.114) = 7.4428
```

B. Tests de spécification des effets individuels : modèle à effet fixe versus effet aléatoire

a. Test d'Hausman

Règle de décision : si P-value est inférieure à 5%, on rejette H0, sinon on accepte H1

H0: Modèle à d'effets aléatoire

H1: Modèle à effet fixe

On remarque ici que la p-value de test d'Hausman est supérieure à 5%. Donc le modèle retenu est le modèle à effet aléatoire (Random effects :RE)

Hausman test of H0:RE vs. FE: CHISQ(6) = 6.4849, P-value = [.3711]

b. Test de Breush-Pagan

Règle de décision : si P-value est inférieure à 5%, on rejette H0, sinon on accepte H1

Ho: absence d'effets aléatoire

H1: présence d'effet aléatoire

La p-value ici est égale à 0.000 ; elle est inferieure à 5%. On rejette donc l'hypothèse H0 pour accepter l'hypothèse H1. Ce deuxième test vient conforter le résultat de premier test qui stipule que le meilleur modèle à retenir est le modèle à effet aléatoire.

LM het. test = 17.9106 ** [.000]

II. ETUDE DE DONNEES PANEL SOUS SAS

2.1- Analyse de multicolinéarité des variables exogènes

<u>Avant</u>

Pour notre étude, nous considérons toutes ces variables suivantes : le nombre de passagers (LNQP), le poids de cargaison(LNGF), Le cout de capital(PK), le cout de la main d'œuvre(PL), le prix d'électricité(PE), le nombre d'arrêt sur la ligne de chemin de fer(STOPS), la distance parcourue(NETWORK), la variable catégorielle virage(VIRAGE), tunnel(TUNNEL), présence de chemin étroit(NARROW T) comme importantes. Cependant pour éviter de faire des estimations biaisées, nous avons jugé important d'étudier d'abord la colinéarité entre nos variables exogènes. Ainsi pour détecter d'éventuelle multicolinéarité, nous avons appliqué le test de vif dont le contenu est à droite dans la dernière colonne du tableau ci-dessous. Le critère de décision pour ce test est de vérifier inflation de variance sur le tableau. Les variables pour lesquelles inflation de variance est supérieure 10 causent le problème de multicolinéarité, sinon pas de problème de multicolinéarité. Nous remarquons que nous notre cas, les variables STOPS et NETWORK sont à l'origine de multicolinéarité du modèle car leur inflation de variance est supérieure à 10[voir Tableau1 : Test de multicolinéarité/avant]. Pour pallier ce problème, nous avons écarté la variable NETWORK de l'estimation et relançons l'estimation avec le test de vif. Regardons le nouveau résultat de test de vif dans le deuxième tableau nommé [Tableau 2 : Test de multicolinéarité/après]

Tableau 1: Test de multicolinéarité/ avant

Résultats estimés des paramètres						
Cohérent avec l'hétéroscédasticité						
Variable	Libellé	DDL	Erreur type	Valeur du test t	Pr > t	Inflation de variance
Intercept	Intercept	1	0.30530	2.39	0.0174	0
LNQP	LNQP	1	0.01758	36.73	<.0001	3.57007

LNQF	LNQF	1	0.00851	3.27	0.0011	3.80207
PK	PK	1	0.00000643	7.78	<.0001	1.22463
PL	PL	1	0.00000244	0.83	0.4047	1.41820
PE	PE	1	0.63270	-7.20	<.0001	1.20498
STOPS	STOPS	1	0.00187	-4.82	<.0001	11.09629
NETWORK	NETWORK	1	6.331047E- 7	10.11	<.0001	10.64727
VIRAGE	VIRAGE	1	0.05779	-0.15	0.8838	5.85825
TUNNEL	TUNNEL	1	0.03619	-3.41	0.0007	1.82847
NARROW_T	NARROW_ T	1	0.06262	-0.21	0.8345	7.01419

Après

Nous pouvons remarquer que le fait d'éliminer la variable NETWORK a résolu le problème de muticolinéarité.

NB: résoudre le problème de multicolinéarité seule ne suffit pas pour une estimation robuste car certaines variables restent non significatives au seuil de 5% malgré la résolution du problème de colinéarité. Par tâtonnement, nous avons éliminé certaines variables non significatives en servant de modèle Within car c'est le modèle que TSP nous avait proposé comme modèle adéquate pour notre estimation quand nous avons mis toutes les variables exogènes faire l'estimation. Nous avons éliminé un à un les variables non significatives du modèle Within en regardant le P-value jusqu'à ce que nous obtenions un modèle within avec des variables toutes significatives au seuil de 5%. Ainsi, nous utiliser que les variables significatives issue du modèle Within pour faire l'estimation des différents modèles. Ces variables sont :LNQP, LNQF, PK, PL, PL, PE, STOPS.

Tableau 2: Test de multicolinéarité/ aprés

Résultats estimés des paramètres								
1			Cohérent a	Cohérent avec l'hétéroscédasticité				
Variable	Libellé	DDL	Erreur type	Valeur du test t	Pr > t	Inflation de variance		
Intercept	Intercept	1	0.31441	3.32	0.0010	0		
LNQP	LNQP	1	0.01872	34.22	<.0001	3.56629		
LNQF	LNQF	1	0.00908	4.25	<.0001	3.73487		
РК	PK	1	0.0000071 8	8.03	<.0001	1.20378		
PL	PL	1	0.0000024 5	-0.78	0.4342	1.36932		
PE	PE	1	0.68577	-7.77	<.0001	1.17963		
STOPS	STOPS	1	0.0009315	9.49	<.0001	2.29469		
VIRAGE	VIRAGE	1	0.04881	-1.85	0.0652	5.74914		
TUNNEL	TUNNEL	1	0.03898	-1.87	0.0620	1.79601		
NARROW_T	NARROW_ T	1	0.05465	-0.33	0.7452	7.01380		

2.2- Estimation des différents modèles

a. Modèle OLS

Pour ce modèle, SAS a trouvé les mêmes résultats que TSP. Le coefficient de détermination R2 est de 92% et toutes les variables sont statistiquement significatives sauf la variable prix de capital humain (PL)qui ne contribue pas à l'explication de cout total de chemin de fer (LNCT) en Suisse. Les coefficients de régression sont égaux avec les deux logiciels. En observant les signes des coefficients, le cout total augmente avec les variables exogènes à l'exception de variable prix d'électricité (PE) pour lequel le cout total diminue quand le prix d'électricité ou le nombre d'arrêt augmente.

Tests d'ajustement

SSE	51.886 9	DFE	533
MSE	0.0973	Racine MSE	0.312
R carré	0.9221		

	Résultats estimés des paramètres									
Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé				
Intercept	1	1.228988	0.2544	4.83	<.0001	Intercep t				
LNQP	1	0.617537	0.0158	39.09	<.0001	LNQP				
LNQF	1	0.054979	0.00687	8.00	<.0001	LNQF				
PK	1	0.000054	6.769E- 6	7.94	<.0001	PK				
PL	1	-2.59E-6	0			PL				
PE	1	-5.38593	0.6264	-8.60	<.0001	PE				
STOPS	1	0.007706	0.00099 0	7.78	<.0001	STOPS				

b. Modèle Within à deux effets

La qualité d'ajustement (R2) est très élevée ici, elle est environ à plus de 99%. Le modèle est globalement significatif car P-Value Fisher (Pr>F) est inférieure 5%. La plupart des individus statistiques (lignes de chemin de fer) contribuent à l'explication de cout total lié à l'exploitation des chemins de fer en Suisse car leur P-value est inferieure à 5% contre quelques lignes qui ne contribuent pas l'explication de cout total. Les lignes qui ne contribuent pas à l'explication de cout total sont coloriées en bleue dans le ci-dessous ; on peut commencer déjà par citer la ligne 4, la ligne 6, la ligne 8 etc. Parmi celles qui contribuent à l'explication de la variable endogène, elles ont presque les mêmes caractéristiques excepté la ligne 18 qui est différente (en jaune). Ce qui veut dire que l'effet individuel est plus ou moins important pour ce modèle. Par contre l'effet temps est presque négligeable car la p-value de la plupart des effets temps est supérieure à 5%.

Tests d'ajustement								
SSE	3.866 0	DFE	478					
MSE	0.008	Racine MSE	0.089					
R carré	0.994							

Test F d	'absence c	l'effets f	fixes
DDL num.	DDL den.	Valeu r F	Pr > F

	Résultats estimés des paramètres									
Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé				
CS1	1	-0.48678	0.2411	-2.02	0.0440	Cross Sectional Effect	1			
CS2	1	-0.52413	0.2277	-2.30	0.0218	Cross Sectional Effect	2			
CS3	1	-0.91885	0.2249	-4.08	<.0001	Cross Sectional Effect	3			
CS4	1	-0.13601	0.2859	-0.48	0.6345	Cross Sectional Effect	4			
CS5	1	-0.50232	0.2516	-2.00	0.0464	Cross Sectional Effect	5			
CS6	1	-0.28494	0.2536	-1.12	0.2618	Cross Sectional Effect	6			
CS7	1	-0.53771	0.2501	-2.15	0.0321	Cross Sectional Effect	7			
CS8	1	-0.16777	0.1856	-0.90	0.3665	Cross Sectional Effect	8			
CS9	1	-0.07736	0.1681	-0.46	0.6456	Cross Sectional Effect	9			
CS10	1	-0.28381	0.2504	-1.13	0.2575	Cross Sectional Effect	10			
CS11	1	-0.07932	0.1797	-0.44	0.6591	Cross Sectional Effect	11			
CS12	1	0.150097	0.2725	0.55	0.5820	Cross Sectional Effect	12			
CS13	1	-0.42652	0.2537	-1.68	0.0934	Cross Sectional Effect	13			

CS14	1	-0.23455	0.2420	-0.97	0.3330	Cross Sectional Effect 14				
CS15	1	-0.12137	0.2496	-0.49	0.6271	Cross Sectional Effect 15				
CS16	1	0.117858	0.2614	0.45	0.6523	Cross Sectional Effect 16				
CS17	1	-0.64905	0.2490	-2.61	0.0094	Cross Sectional Effect 17				
	1	0.559157	0.1979	2.83	0.0049	Cross Sectional Effect 18				
CS18										
CS19	1	0.2449	0.2466	0.99	0.3211	Cross Sectional Effect 19				
CS20	1	0.11225	0.2405	0.47	0.6409	Cross Sectional Effect 20				
CS21	1	0.168293	0.1816	0.93	0.3544	Cross Sectional Effect 21				
CS22	1	-0.50142	0.2589	-1.94	0.0534	Cross Sectional Effect 22				
CS23	1	-0.6168	0.2376	-2.60	0.0097	Cross Sectional Effect 23				
CS24	1	-0.54986	0.2455	-2.24	0.0256	Cross Sectional Effect 24				
CS25	1	-0.50643	0.1681	-3.01	0.0027	Cross Sectional Effect 25				
CS26	1	-0.707	0.2465	-2.87	0.0043	Cross Sectional Effect 26				
CS27	1	0.244718	0.1956	1.25	0.2116	Cross Sectional Effect 27				
	Résultats estimés des paramètres									
			Erreur							
Variable	DDL	Estimation	type	Valeur du test t						
CS28	DDL 1	Estimation -0.13426		Valeur du test t -0.66	0.5075	Cross Sectional Effect 28				
			type		0.5075 0.2179	Cross Sectional Effect 28 Cross Sectional Effect 29				
CS28 CS29 CS30	1	-0.13426	0.2024	-0.66 -1.23 -2.87	0.5075 0.2179	Cross Sectional Effect 28				
CS28 CS29	1	-0.13426 -0.29532	0.2024 0.2394	-0.66 -1.23	0.5075 0.2179 0.0042	Cross Sectional Effect 28 Cross Sectional Effect 29				
CS28 CS29 CS30	1 1	-0.13426 -0.29532 -0.76788	0.2024 0.2394 0.2671	-0.66 -1.23 -2.87	0.5075 0.2179 0.0042 0.0196	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30				
CS28 CS29 CS30 CS31	1 1 1	-0.13426 -0.29532 -0.76788 -0.45395	0.2024 0.2394 0.2671 0.1938	-0.66 -1.23 -2.87 -2.34	0.5075 0.2179 0.0042 0.0196 0.0207	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31				
CS28 CS29 CS30 CS31 CS32	1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988	0.2024 0.2394 0.2671 0.1938 0.2713	-0.66 -1.23 -2.87 -2.34 -2.32	0.5075 0.2179 0.0042 0.0196 0.0207	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32				
CS28 CS29 CS30 CS31 CS32 CS33	1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974	0.2024 0.2394 0.2671 0.1938 0.2713 0.2318	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33				
CS28 CS29 CS30 CS31 CS32 CS33	1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886	0.2024 0.2394 0.2671 0.1938 0.2713 0.2318 0.2396	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 33				
CS28 CS29 CS30 CS31 CS32 CS33 CS34 CS35	1 1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886 -0.76169	0.2024 0.2394 0.2671 0.1938 0.2713 0.2318 0.2396	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72 -2.25 -3.08	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250 0.0022	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 34 Cross Sectional Effect 35				
CS28 CS29 CS30 CS31 CS32 CS33 CS34 CS35 CS36	1 1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886 -0.76169 -0.22267	0.2024 0.2024 0.2394 0.2671 0.1938 0.2713 0.2318 0.2396 0.2472 0.2210	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72 -2.25 -3.08 -1.01	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250 0.0022 0.3141	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 34 Cross Sectional Effect 35 Cross Sectional Effect 35 Cross Sectional Effect 35				
CS28 CS29 CS30 CS31 CS32 CS33 CS34 CS35 CS36 CS37	1 1 1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886 -0.76169 -0.22267 -0.71613	0.2024 0.2024 0.2394 0.2671 0.1938 0.2713 0.2318 0.2396 0.2472 0.2210 0.2296	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72 -2.25 -3.08 -1.01 -3.12	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250 0.0022 0.3141 0.0019	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 34 Cross Sectional Effect 35 Cross Sectional Effect 35 Cross Sectional Effect 36 Cross Sectional Effect 37				
CS28 CS29 CS30 CS31 CS32 CS33 CS34 CS35 CS36 CS37	1 1 1 1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886 -0.76169 -0.22267 -0.71613 -0.11856	0.2024 0.2394 0.2671 0.1938 0.2713 0.2318 0.2396 0.2472 0.2210 0.2296 0.2238	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72 -2.25 -3.08 -1.01 -3.12 -0.53	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250 0.0022 0.3141 0.0019 0.5966	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 34 Cross Sectional Effect 35 Cross Sectional Effect 36 Cross Sectional Effect 37 Cross Sectional Effect 37 Cross Sectional Effect 37				
CS28 CS29 CS30 CS31 CS32 CS33 CS34 CS35 CS36 CS37 CS38 CS39	1 1 1 1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886 -0.76169 -0.22267 -0.71613 -0.11856 -0.55457	0.2024 0.2394 0.2671 0.1938 0.2713 0.2318 0.2396 0.2472 0.2210 0.2296 0.2238 0.2439	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72 -2.25 -3.08 -1.01 -3.12 -0.53 -2.27	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250 0.0022 0.3141 0.0019 0.5966 0.0234	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 34 Cross Sectional Effect 35 Cross Sectional Effect 36 Cross Sectional Effect 37 Cross Sectional Effect 37 Cross Sectional Effect 38 Cross Sectional Effect 38 Cross Sectional Effect 38				
CS28 CS29 CS30 CS31 CS32 CS33 CS34 CS35 CS36 CS37 CS38 CS39 CS40	1 1 1 1 1 1 1 1 1 1	-0.13426 -0.29532 -0.76788 -0.45395 -0.62988 -0.62974 -0.53886 -0.76169 -0.22267 -0.71613 -0.11856 -0.55457 -0.51711	0.2024 0.20394 0.2671 0.1938 0.2713 0.2318 0.2396 0.2472 0.2210 0.2296 0.2238 0.2439 0.2287	-0.66 -1.23 -2.87 -2.34 -2.32 -2.72 -2.25 -3.08 -1.01 -3.12 -0.53 -2.27 -2.26	0.5075 0.2179 0.0042 0.0196 0.0207 0.0068 0.0250 0.0022 0.3141 0.0019 0.5966 0.0234 0.0242	Cross Sectional Effect 28 Cross Sectional Effect 29 Cross Sectional Effect 30 Cross Sectional Effect 31 Cross Sectional Effect 32 Cross Sectional Effect 33 Cross Sectional Effect 34 Cross Sectional Effect 35 Cross Sectional Effect 35 Cross Sectional Effect 36 Cross Sectional Effect 37 Cross Sectional Effect 38 Cross Sectional Effect 38 Cross Sectional Effect 39 Cross Sectional Effect 40				

CS44	1	-0.42966	0.2717	-1.58	0.1144	Cross Sectional Effect 44
TS1	1	-0.02386	0.0217	-1.10	0.2725	Time Series Effect 1
TS2	1	-0.02101	0.0224	-0.94	0.3490	Time Series Effect 2
TS3	1	-0.06427	0.0226	-2.85	0.0046	Time Series Effect 3
TS4	1	-0.03568	0.0215	-1.66	0.0985	Time Series Effect 4
TS5	1	-0.00365	0.0208	-0.18	0.8607	Time Series Effect 5
TS6	1	-0.00368	0.0207	-0.18	0.8592	Time Series Effect 6
TS7	1	-0.00039	0.0206	-0.02	0.9850	Time Series Effect 7
TS8	1	0.016107	0.0199	0.81	0.4193	Time Series Effect 8
TS9	1	-0.01228	0.0198	-0.62	0.5355	Time Series Effect 9
TS10	1	-0.03548	0.0198	-1.79	0.0735	Time Series Effect 10
TS11	1	-0.01957	0.0192	-1.02	0.3093	Time Series Effect 11
LNQP	1	0.562373	0.0275	20.43	<.0001	LNQP
LNQF	1	0.039298	0.00855	4.60	<.0001	LNQF
PK	1	0.000046	4.511E-6	10.28	<.0001	PK
PL	1	2.256E-6	0			PL
PE	1	-5.72016	0.3760	-15.21	<.0001	PE
STOPS	1	0.006033	0.00213	2.84	0.0047	STOPS

c. Modèle Within sans effet temps

Ce modèle est similaire au modèle Within de TSP. Il a coefficient de détermination que le modèle Within de TSP. Il est de plus de 99%. Les variables ne sont toutes simultanément égales à 0 car p-value de Fisher (Pr>F) est inférieure à 5%. Tous les coefficients de régression sont tous significatifs au seuil de 5% comme le cas de TSP. Comme nous avons déjà dit précédemment dans la partie b, les lignes qui n'expliquent pas de manière significative le cout total de l'exploitation de chemin de fer sont coloriées en bleue et celles qui contribuent à l'explication de cout total sont en noir. Parmi ces lignes, toutes les lignes sont toutes similaires sauf la ligne 18 (jaune) qui est différente.

	Tests d'ajustement								
SSE	4.013 1	DFE	489						
MSE	0.008	Racine MSE	0.090 6						
R carré	0.994								

Test F d'absence d'effets fixes					
		Valeur			
DDL num.	DDL den.	·	Pr > F		
	400	400.50	0004		
44	489	132.58	<.0001		

	Résultats estimés des paramètres								
Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé			
CS1	1	-0.52578	0.2383	-2.21	0.0278	Cross Sectional Effect	1		
CS2	1	-0.54635	0.2247	-2.43	0.0154	Cross Sectional Effect	2		
CS3	1	-0.94965	0.2231	-4.26	<.0001	Cross Sectional Effect	3		
CS4	1	-0.18674	0.2785	-0.67	0.5029	Cross Sectional Effect	4		
CS5	1	-0.52912	0.2486	-2.13	0.0338	Cross Sectional Effect	5		
CS6	1	-0.30853	0.2504	-1.23	0.2184	Cross Sectional Effect	6		
CS7	1	-0.59212	0.2456	-2.41	0.0163	Cross Sectional Effect	7		
CS8	1	-0.18363	0.1829	-1.00	0.3159	Cross Sectional Effect	8		
CS9	1	-0.1004	0.1663	-0.60	0.5463	Cross Sectional Effect	9		
CS10	1	-0.32329	0.2460	-1.31	0.1893	Cross Sectional Effect	10		
CS11	1	-0.0948	0.1790	-0.53	0.5966	Cross Sectional Effect	11		
CS12	1	0.106134	0.2673	0.40	0.6915	Cross Sectional Effect	12		

	Résultats estimés des paramètres									
Varia ble	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé				
CS13	1	-0.46689	0.2496	-1.87	0.0620	Cross Sectional Effect 13				
CS14	1	-0.25992	0.2389	-1.09	0.2772	Cross Sectional Effect 14				
CS15	1	-0.1422	0.2463	-0.58	0.5640	Cross Sectional Effect 15				
CS16	1	0.090646	0.2570	0.35	0.7244	Cross Sectional Effect 16				
CS17	1	-0.65227	0.2461	-2.65	0.0083	Cross Sectional Effect 17				

Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé
		K		times des paramet	res	
PK	1	0.00005	4.303E-6	11.63 timés des paramèt	<.0001	PK
LNQF	1	0.038017	0.00730	5.21	<.0001	LNQF
LNQP	1	0.548309	0.0257	21.36	<.0001	LNQP
CS44	1	-0.47042	0.2663	-1.77	0.0779	Cross Sectional Effect 44
CS43	1	-0.64582	0.2455	-2.63	0.0088	Cross Sectional Effect 43
CS42	1	-0.21306	0.1917	-1.11	0.2670	Cross Sectional Effect 42
CS41	1	-0.32034	0.2141	-1.50	0.1352	Cross Sectional Effect 41
CS40	1	-0.54724	0.2266	-2.41	0.0161	Cross Sectional Effect 40
CS39	1	-0.5721	0.2404	-2.38	0.0177	Cross Sectional Effect 39
CS38	1	-0.12911	0.2233	-0.58	0.5635	Cross Sectional Effect 38
CS37	1	-0.74682	0.2276	-3.28		Cross Sectional Effect 37
CS 36	1	-0.24788	0.2200	-1.13		Cross Sectional Effect 36
CS35	1	-0.77129	0.2455	-3.14		Cross Sectional Effect 35
CS34	1	-0.56574	0.2383	-2.37		Cross Sectional Effect 34
CS33	1	-0.65744	0.2301	-2.86		Cross Sectional Effect 33
CS32	1	-0.40032	0.1927	-2.42		Cross Sectional Effect 32
CS31	1	-0.46652	0.1927	-2.42		Cross Sectional Effect 31
CS30	1	-0.80021	0.2625	-3.05		Cross Sectional Effect 30
CS29	1	-0.1559	0.1999	-0.76	0.4356	
CS28	1	-0.1559	0.1944	-0.78		Cross Sectional Effect 28
CS26	1	0.233163	0.2428	1.20		Cross Sectional Effect 27
CS25	1	-0.51228 -0.73955	0.1682	-3.05 -3.05	0.0024	Cross Sectional Effect 25 Cross Sectional Effect 26
CS24	1	-0.59102	0.2418	-2.44		Cross Sectional Effect 24
CS23	1	-0.64775	0.2349	-2.76	0.0060	Cross Sectional Effect 23
CS22	1	-0.53508	0.2551	-2.10	0.0365	
CS21	1	0.157611	0.1806	0.87	0.3831	
CS20	1	0.101674	0.2398	0.42		Cross Sectional Effect 20
CS19	1	0.254737	0.2453	1.04		Cross Sectional Effect 19
CS18						
	1	0.538531	0.1968	2.74	0.0064	Cross Sectional Effect 18

PL	1	4.895E-6	0	-17.80	<.0001	PL
PE	1	-5.98159	0.3511	-17.03	<.0001	PE
STOPS	1	0.006186	0.00213	2.90	0.0038	STOPS

d. Modèle within avec effets temps

Le modèle Within avec effets temps a un R2 égal plus de 92%. On observe un grand nombre de temps qui ne sont pas significative. Ce qui implique que les effets temps ne sont pas approprié pour expliquer le cout total.

Tests d'ajustement							
SSE	51.120 3	DFE	522				
MSE	0.0979	Racine MSE	0.312 9				
R carré	0.9233						

	Résultats estimés des paramètres								
Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé			
TS1	1	-0.07622	0.0685	-1.11	0.2666	Time Series Effect 1			
TS2	1	-0.0875	0.0695	-1.26	0.2087	Time Series Effect 2			
TS3	1	-0.14385	0.0700	-2.06	0.0404	Time Series Effect 3			
TS4	1	-0.09789	0.0681	-1.44	0.1512	Time Series Effect 4			
TS5	1	-0.04339	0.0667	-0.65	0.5158	Time Series Effect 5			
TS6	1	-0.01418	0.0663	-0.21	0.8307	Time Series Effect 6			
TS7	1	0.001633	0.0665	0.02	0.9804	Time Series Effect 7			

		Rés	ultats esti	més des paramè	tres	
Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé
TS8	1	0.010644	0.0662	0.16	0.8723	Time Series Effect 8
TS9	1	-0.03396	0.0661	-0.51	0.6079	Time Series Effect 9
TS10	1	-0.0658	0.0664	-0.99	0.3221	Time Series Effect 10
TS11	1	-0.03667	0.0662	-0.55	0.5799	Time Series Effect 11
LNQP	1	0.622305	0.0160	38.92	<.0001	LNQP
LNQF	1	0.057834	0.00704	8.22	<.0001	LNQF
PK	1	0.000051	6.888E- 6	7.43	<.0001	PK
PL	1	-6.41E-6	0			PL
PE	1	-4.88083	0.6657	-7.33	<.0001	PE
STOPS	1	0.00764	0.00099 5	7.68	<.0001	STOPS

e. Modèle à effet aléatoire

Ici toutes les variables sont statistiquement significatives sauf la variable prix de la main. Tout comme le Modèle précèdent, le R2 est plus ou moins élevé ; il est de 77% environ.

Tests d'ajustement						
SSE	4.319 7	DFE	533			
MSE	0.008	Racine MSE	0.090			
R carré	0.769 6					

	Résultats estimés des paramètres							
Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé		
Intercept	1	1.610737	0.3527	4.57	<.0001	Intercep t		
LNQP	1	0.576645	0.0226	25.51	<.0001	LNQP		
LNQF	1	0.042065	0.00720	5.85	<.0001	LNQF		
PK	1	0.000049	4.277E- 6	11.46	<.0001	PK		
PL	1	3.848E-6	0			PL		
PE	1	-5.9011	0.3526	-16.74	<.0001	PE		
STOPS	1	0.007584	0.00172	4.40	<.0001	STOPS		

f. Modèle à effet aléatoire sans effet temps

Il a un pouvoir explicatif plus ou moins élevé. Son coefficient de détermination n'est pas aussi élevé que les modèles précédents ; R2 est de plus de 79%. Toutes les variables sont toutes significatives au seuil de 5% à l'exception de la variable PL. Toutes ces variables augmentent avec le cout total sauf le prix d'électricité qui diminue avec le cout total.

Tests d'ajustement						
SSE	4.374 3	DFE	533			
MSE	0.008	Racine MSE	0.090			
R carré	0.790 5					

	Résultats estimés des paramètres							
Variable	DDL	Estimatio n	Erreur type	Valeur du test t	Pr > t	Libellé		
Intercep t	1	1.646797	0.3491	4.72	<.000 1	Interce pt		
LNQP	1	0.570982	0.0223	25.66	<.000	LNQP		
LNQF	1	0.041911	0.00687	6.10	<.000 1	LNQF		
PK	1	0.00005	4.236E- 6	11.77	<.000	PK		
PL	1	4.536E-6	0			PL		
PE	1	-5.9486	0.3469	-17.15	<.000	PE		
STOPS	1	0.007705	0.00173	4.46	<.000	STOP S		

g. Modèle à Résidus Autorégressifs d'ordre 1 ou modèle GLS

Le modèle GLS compte presque toutes les variables qui sont significatives mais cependant la constante et la variable PL ne sont pas significatives au seuil de 5%. Son R2 est de 89%.

Tests d'ajustement						
SSE	56.996 1	DFE	533			
MSE	0.1069	Racine MSE	0.327			
R carré	0.8924					

	Résultats estimés des paramètres							
Variable	DDL	Estimatio n	Erreur type	Valeur du test t	Pr > t 	Libellé		
Intercep t	1	1.179397	0.7593	1.55	0.120 9	Interce pt		
LNQP	1	0.630916	0.0559	11.29	<.000 1	LNQP		
LNQF	1	0.049947	0.0252	1.98	0.048 4	LNQF		
PK	1	0.000057	0.0000 17	3.39	0.000 7	PK		
PL	1	-6.12E-7	0			PL		
PE	1	-6.81421	1.2306	-5.54	<.000 1	PE		
STOPS	1	0.005938	0.0028 0	2.12	0.034 4	STOP S		

h. Modèle between Groupe

Pour ce modèle, trois variables ne sont pas significatives au seuil de 5% :PL, PK , PE. Et de plus la constante aussi n'est pas significative. Son coefficient de détermination est élevé et est de 92%.

	Tests d'ajustement						
SSE	3.870 2	DFE	38				
MSE	0.101 8	Racine MSE	0.319 1				
R carré	0.928 5						

Résultats estimés des paramètres

Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé
Intercept	1	1.627677	1.0200	1.60	0.1188	Intercep t
LNQP	1	0.633574	0.0593	10.69	<.0001	LNQP
LNQF	1	0.060507	0.0260	2.32	0.0256	LNQF
PK	1	0.000053	0.00002 8	1.91	0.0634	PK
PL	1	-0.00001	0.00001	-0.99	0.3305	PL
PE	1	-4.28326	2.7942	-1.53	0.1336	PE
STOPS	1	0.007469	0.00359	2.08	0.0441	STOPS

i. Modèle Between Période

Le modèle Between Période semble être plus adapté à cette étude que le modèle Between Groupe. Il a également trois variables non significatives au seuil de 5% mais en revanche son R2 est plus élevé que le modèle Between Période.

Tests d'ajustement				
SSE	0.000	DFE	5	
MSE	0.000	Racine MSE	0.011 4	
R carré	0.994 4			

Résultats estimés des paramètres						
Variable DDL Estimation Erreur type Valeur du test t Pr > t Libellé						Libellé
Intercept	1	5.483463	1.7746	3.09	0.0272	Intercep t

LNQP	1	0.280599	0.1057	2.65	0.0452	LNQP
LNQF	1	0.057517	0.0174	3.31	0.0212	LNQF
PK	1	0.000053	0.00002 6	2.00	0.1015	PK
PL	1	7.867E-6	3.434E- 6	2.29	0.0706	PL
PE	1	-7.91038	1.7220	-4.59	0.0059	PE
STOPS	1	0.042372	0.0207	2.05	0.0956	STOPS

2.3- Les Tests

Le logiciel TSP nous a permis de retenir le modèle à effet aléatoire comme meilleur modèle mais il ne nous a pas spécifié si le modèle est à effet temps ou sans temps. Cette section va donner la réponse à cette préoccupation en se basant sur les tests d'Hausman.

a. Test avec les deux effets

H**0**: pooled

 $H1: il\ y\ a\ soit\ 1\ effet\ temps$, soit\ 1\ effet\ individuel, ou soit les 2

La p-value est inférieure est inférieure à 5% ; on rejette Ho pour accepter H1.

Test de Hausman pour effets aléatoires			
Coefficients	DDL	Valeur m	Pr > m
Cocinolents	DDL		117111

b. Test avec effet individuel sans effet temps

H**0**: pas effet fixe et pas de constante

 $H1: il\ y\ a\ effet\ individue$

La p-value ici est inférieure à 5% ; on n'accepte H1 pour dire qu'il y a présence d'effet individuel.

L'effet individuel est donc important pour expliquer le cout total.

Test de Hausman pour effets aléatoires			
Coefficients	DDL	Valeur m	Pr > m
6	6	5.95	0.0428 4

Test avec effet temps

c. H0: pas effet fixe

 $H1: il\ y\ a\ effet\ temporel$

On obtient un p-value supérieure à 5%. On ne peut pas rejeter H0. On dit qu'il n'y a pas d'effet temporel.

Le l'effet temps n'est pas alors approprié pour expliquer le cout total lié à l'exploitation de chemin de fer en Suisse.

Test de Hausman pour effets aléatoires			
Coefficients DDL Valeur Pr > m			
Occiniolents			117111
6	6	5.95	0.4284

NB : on vient de démontrer avec TSP et SAS que le modèle adéquate pour cette étude est le modèle à effet aléatoire à travers de différents tests et analyses des indicateurs statistiques. Nous allons poursuivre notre étude avec le troisième logiciel Stata. Et après avoir confirmé les résultats trouvés précédemment avec Stata, nous allons donner des interprétations économétriques et économiques de notre modèle retenu.

III-ETUDE DE DONNEES PANEL AVEC STATA

3.1- La stationnarité

Dans le traitement de nos variables nous disposons de sept variables en tout dont six exogène. Dans la stationnarité nous allons conduire le test avec le logiciel STATA.

POUR LCT

$$CIPS^* = -2.902$$
 $N,T = (45,12)$

25 | Page

	10%	5%	1%
Critical values at	-2.03	-2.11	-2.26

POUR STOPS

CIPS* = 0.787		N,T =	(45,12)	
		10%	5%	1%
Critical at		-2.03 2.26	-2.11	-

POUR LQP

CIPS =	-1.610	N,T = (45,12)	
		10%	5%
		1%	
Critical	values	-2.03 -2.11	_
at		2.26	

POUR PL

CIPS* = -2.7	N,T =	(45,12)
	10%	5%
Critical values	-2.03 -2.26	-2.11

POUR LQF

CIPS* =
$$-2.521$$
 N,T = $(45,12)$ 10% 5%

26 | Page

Critical	-2.03	-2.11
values at	-2.26	

Par rapport à la réalité des variables nous remarquons que la valeurs critiques des tests ne correspondent pas aux probabilités seuil. Ainsi nous notons un problème de stationnarité des variables qui sera corrigés par les autres test et ajustement.

3.2- ESTIMATION DES DIFFERENTS MODELES A-OLS

Source Model Residual	SS MS 614.392548 102.398758 51.9093049 .097390816	53.	F() Pro 6 R-:	mber of obs 5, 533) ob > F squared j R-squared ot MSE	= =	54 1051.4 0.000 0.922 0.921	12 00 21 -2
Total	666.301853 1.23618155	53	9				
LCT	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
LQF LQP PE PK PL STOPS	.0549956 .6174727 -5.382611 .0000537 -2.59e-06 .0077107 1.229325	.0068738 .0158012 .6265294 6.77e-06 2.41e-06 .0009904 .2544364	8.00 39.08 -8.59 7.94 -1.07 7.79 4.83	0.000 0.000 0.000 0.000 0.284 0.000	.5864 -6.613 .0000 -7.336)404	.0684988 .6485129 -4.151841 .000067 2.15e-06 .0096562 1.729146
_cons							

Nous voyons que le model est parfait avec Prob>F=0. Nous voyons que toutes les **27 |** Page

variables sont significatives au seuil de 5% sauf PL. il est bien de souligner que le model explique 92% de la réalité. Toute augmentation de 1% de LCT fait augmenter LQP DE 0.61%

B- EFFET FIXE INDIVIDUEL

LCT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	.0380146	.0073012	5.21	0.000	.0236691	.0523601
LQF	.5482769	.0256529	21.37	0.000	.4978734	.5986803
LQP PE	-5.980126	.3510765	-17.03	0.000	-6.669931	-5.290321
PK	.00005	4.30e-06	11.63	0.000	.0000416	.0000585
PL	4.90e-06	1.04e-06	4.72	0.000	2.86e-06	6.94e-06
STOPS	.0061796	.002129	2.90	0.004	.0019965	.0103627
cons	2.071405	.4116658	5.03	0.000	1.262553	2.880258
sigma u	.3309981					
sigma e	.09057457					
rho	.93033704	(fraction	of variar	nce due t	o u_i)	

On voit que les résidus sont ici corrélés positivement avec les variables exogènes. Le model est aussi parfait et aussi 93% de la variance est due par la différence entre les individus. Toutes les variables sont significatives au seuil de 5% ce qui est un bon signe pour le model

TEMPOREL

LCT	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
LQF	.0393275	.008548	4.60	0.000	.0225312	.0561238
LQP	.5623294	.0275145	20.44	0.000	.5082651	.6163937
PE	-5.718486	.3759092	-15.21	0.000	-6.457125	-4.979847
PK	.0000464	4.51e-06	10.29	0.000	.0000375	.0000553
PL	2.26e-06	1.32e-06	1.71	0.087	-3.31e-07	4.84e-06
STOPS	.0060247	.0021262	2.83	0.005	.0018469	.0102024
YEAR						
86	.002634	.0190826	0.14	0.890	0348621	.0401302
87	0405245	.0196679	-2.06	0.040	0791707	0018782
88	0118548	.0194116	-0.61	0.542	0499974	.0262877
89	.0201216	.0198656	1.01	0.312	0189131	.0591563
90	.0200299	.0209442	0.96	0.339	0211241	.061184
91	.0234174	.0225812	1.04	0.300	0209532	.0677881
92	.0399549	.0217378	1.84	0.067	0027585	.0826683
93	.0114281	.020954	0.55	0.586	0297454	.0526015
94	0116823	.0208282	-0.56	0.575	0526085	.0292438
95	.0042709	.0209187	0.20	0.838	0368331	.0453749
96	.0238826	.0217157	1.10	0.272	0187875	.0665526
_cons	2.02487	.4351328	4.65	0.000	1.169861	2.87988
sigma_u	.32547629					
sigma_e	.08991373					
rho	.92909553	(fraction of variance due to u_i)				

F test that all u i=0: F(44, 478) = 132 Prob > F = 0.0000

C'est un modèle si est aussi parfait et aussi nous voyons que les résidus sont bien corrélés positivement avec les variables exogènes. 92% de la variance est bien due par la différence de temps. Toutes les variables sont significatives seuil PL, et du côté des années nous voyons que seul 87 est significatif au seuil de 5%

C- MODELE A EFFET ALEATOIRE

*GLS effets aléatoire

Prob > chi2	=	0.0000 th	ieta	= .9	1808946	
LCT	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
LQF LQP PE	.0419071 .5709189 -5.947092	.0068643 .0222473 .3468652	6.11 25.66 -17.15	0.000 0.000 0.000	.0284534 .527315 -6.626936	.0553609 .6145229 -5.267249
29 Page						

PK PL STOPS cons	.0000499 4.54e-06 .0077016 1.64753	4.23e-06 1.02e-06 .0017296	11.78 4.45 4.45 4.72	0.000 0.000 0.000 0.000	.0000416 2.54e-06 .0043117 .9633724	.0000582 6.54e-06 .0110915 2.331688
sigma_u sigma_e rho	.31813692 .09057457 .92502157	(fraction	<u> </u>			2.331000

Nous avons un model parfait en plus nous voyons que toutes les variables sont significatives seul la variable PE explique négativement la variable endogène. Toute augmentation du coût total (LCT) fait augmenter le fret (LQF) de 0.041% et en même temps augmenter le nombre de sortie passagers de 0.57% (LQP). Economiquement on comprend que plus on investit dans la construction du rail, on remarquera qu'elle sera plus longue et demandera plus de fret et de même des passages piétons. Toute augmentation du coût total augmentera le nombre de poste stops car plus nous avons de l'investissement plus le chemin sera long et donc une augmentation des poste stops de 0.0077

3.3 LES TESTS HAUSSMAN

Coefficients								
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))				
	between	random	Difference	S.E.				
LQF	.0605279	.0419071	.0186208	.0251319				
LQP	.633524	.5709189	.062605	.0549663				
PE	-4.278355	-5.947092	1.668737	2.773255				
PK	.0000528	.0000499	2.96e-06	.0000273				
PL	000013	4.54e-06	0000175	.0000131				
STOPS	.0074744	.0077016	0002272	.0031442				

b = consistent under Ho and Ha; obtained from xtr B = inconsistent
under Ha, efficient under Ho; obtained from xtreg Test: Ho:
difference in coefficients not systematic

chi2(4) =
$$(b-B)'[(V_b-V_B)^(-1)](b-B)$$

= 5.51
Prob>chi2 = 0.2384

Nous constatons que la probabilité n'est pas significative au seuil de 5% donc nous optons pour le model aléatoire.

TESTPARM/ TEMPS

$$F(11, 478) = 1.66$$

 $Prob > F = 0.0806$

Aucun effet fixe temporel n'est nécessaire dans le model

Test de Breusch_Pagan

Breusch and Pagan Lagrangian multiplier test for random effects

Estimated results:

Ce test nous conduit à choisir le modèle à effet aléatoire.

CONCLUSION

Dans le cadre de notre étude portant sur les dépenses des chemins de fer, nous avons mené une analyse qui nous a sorti des informations. Nous notons qu'après les analyses économétriques et les tests statistiques, le modèle qui décrit au mieux notre base de données c'est le modèle à effet aléatoire. Ce modèle constitue donc le socle des interprétations et l'explications de notre étude. Il nous révèle que le temps n'a pas d'effet sur les dépenses d'exploitation de chemins de fer. Les lignes de chemins de fer en Suisse ne sont pas toutes homogènes. Elles ont des caractéristiques différentes.

En Suisse, la distance de la ligne de chemin de fer, le fait qu'il y a virage ou pas, le fait la ligne soit étroite ou pas n'impactent pas de manière significative les dépenses d'exploitation des lignes des chemin de fer.

Mais en revanche, le poids de marchandise transporté, le nombre de passagers, le cout de la main d'œuvres, le capital investi dans le secteur, le nombre d'arrêt sur les lignes de chemin de fer ont un effet positif sur les couts totaux liés à l'exploitation de chemins de fer. Ce qui veut dire toute variation positive de ces variables ne va que fait tirer à la hausse les dépenses au cours d'une année. Parmi toutes ces variables, c'est le nombre de passagers transporté qui constitue la première source de l'augmentation de couts totaux de l'exploitation des lignes de chemins de fer chaque année. Plus le nombre de passagers augmente plus les dépenses augmentent et fortement.

Par ailleurs, le seul facteur qui contribuent de manière négative à l'augmentation des dépenses liées à l'exploitation des chemins de fer en Suisse est le cout de l'électricité. L'augmentation de prix d'électricité entraine la baisse de couts totaux à l'exploitation des voies ferrées. C'est un peu bizarre qu'il y a une relation contraire entre le couts totaux et le prix d'électricité. J'ai longuement réfléchi mais je ne sais pas ce qui peut expliquer cela.