CS 446 / ECE 449 Homework 6

Naman Shukla

TOTAL POINTS

8/8

QUESTION 1

Backpropagation 8 pts

1.1 a 1/1

- √ 0 pts Correct
 - 0.5 pts Mathematically correct, but not expressed

as function of sigma

- 0.5 pts Minor error
- O pts Incorrect

1.2 b 1/1

- √ 0 pts Correct
 - 0.25 pts Undefined notation
 - 0.5 pts Minor error
 - 1 pts Incorrect

1.3 C 1 / 1

- √ 0 pts Correct
 - 0.5 pts Minor error
 - 1 pts Incorrect

1.4 d 1/1

- √ 0 pts Correct
 - 0.5 pts Minor error
 - 1 pts Incorrect

1.5 e 2 / 2

- √ 0 pts Correct
 - 1 pts Miss the summation
 - 1 pts Incorrect
- 2 pts Incorrect

1.6 f 1 / 1

- √ 0 pts Correct
 - 0.5 pts Incorrect
 - 1 pts Incorrect

1.7 g 1/1

- √ 0 pts Correct
 - 0.5 pts Incorrect
 - 1 pts Incorrect

CS 446: Machine Learning Homework

Due on Tuesday, February 27, 2018, 11:59 a.m. Central Time

1. [8 points] Backpropagation

Consider the deep net in the figure below consisting of an input layer, an output layer, and a hidden layer. The feed-forward computations performed by the deep net are as follows: every input a_i is multiplied by a set of fully-connected weights u_{ij} connecting the input layer to the hidden layer. The resulting weighted signals are then summed and combined with a bias e_j . This results in the activation signal $z_j = e_j + \sum_i a_i u_{ij}$. The hidden layer applies activation function g on z_j resulting in the signal b_j . In a similar fashion, the hidden layer activation signals b_j are multiplied by the weights connecting the hidden layer to the output layer w_{jk} , a bias f_k is added and the resulting signal h_k is transformed by the output activation function g to form the network output c_k . The loss between the desired target t_k and the output c_k is given by the MSE: $E = \frac{1}{2} \sum_k (c_k - t_k)^2$, where t_k denotes the ground truth signal corresponding to c_k . Training a neural network involves determining the set of parameters $\theta = \{U, W, e, f\}$ that minimize E. This problem can be solved using gradient descent, which requires determining $\frac{\partial E}{\partial \theta}$ for all θ in the model.

(a) For $g(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$, compute the derivative g'(x) of g(x) as a function of $\sigma(x)$.

$$\frac{d}{dx} g(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]$$

$$= \frac{d}{dx} (1+e^{-x})^{-1}$$

$$= -(1+e^{-x})^{-2} (-e^{-x})$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right)$$

$$= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right)$$

$$= \sigma(x) \cdot (1-\sigma(x))$$

(b) We denote by $\delta_k = \frac{\partial E}{\partial h_k}$ the error signal of neuron k in the second linear layer of the network. Compute δ_k as a function of c_k , t_k , g' and h_k .

Your answer:

$$E = \frac{1}{2} \sum_{k} (c_k - t_k)^2$$

$$c_k = g(h_k) \text{ and } h_k = f_k + \sum_{j} w_{jk} \cdot b_j$$

$$\delta_k = \frac{\partial E}{\partial h_k} = (c_k - t_k) \cdot g'(h_k)$$

(c) Compute $\frac{\partial E}{\partial w_{jk}}$. Use δ_k and b_j .

Your answer:

$$\frac{\partial E}{\partial w_{jk}} = (c_k - t_k) \cdot g'(h_k) \cdot b_j = \delta_k \cdot b_j$$

(d) Compute $\frac{\partial E}{\partial f_k}$. Use δ_k .

Your answer:

$$\frac{\partial E}{\partial f_k} = (c_k - t_k) \cdot g'(h_k) \cdot 1 = \delta_k$$

1.1 a 1 / 1

√ - 0 pts Correct

- **0.5 pts** Mathematically correct, but not expressed as function of sigma
- 0.5 pts Minor error
- O pts Incorrect

$$\frac{d}{dx} g(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]$$

$$= \frac{d}{dx} (1+e^{-x})^{-1}$$

$$= -(1+e^{-x})^{-2} (-e^{-x})$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right)$$

$$= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right)$$

$$= \sigma(x) \cdot (1-\sigma(x))$$

(b) We denote by $\delta_k = \frac{\partial E}{\partial h_k}$ the error signal of neuron k in the second linear layer of the network. Compute δ_k as a function of c_k , t_k , g' and h_k .

Your answer:

$$E = \frac{1}{2} \sum_{k} (c_k - t_k)^2$$

$$c_k = g(h_k) \text{ and } h_k = f_k + \sum_{j} w_{jk} \cdot b_j$$

$$\delta_k = \frac{\partial E}{\partial h_k} = (c_k - t_k) \cdot g'(h_k)$$

(c) Compute $\frac{\partial E}{\partial w_{jk}}$. Use δ_k and b_j .

Your answer:

$$\frac{\partial E}{\partial w_{jk}} = (c_k - t_k) \cdot g'(h_k) \cdot b_j = \delta_k \cdot b_j$$

(d) Compute $\frac{\partial E}{\partial f_k}$. Use δ_k .

Your answer:

$$\frac{\partial E}{\partial f_k} = (c_k - t_k) \cdot g'(h_k) \cdot 1 = \delta_k$$

1.2 b 1 / 1

√ - 0 pts Correct

- 0.25 pts Undefined notation
- 0.5 pts Minor error
- 1 pts Incorrect

$$\frac{d}{dx} g(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]$$

$$= \frac{d}{dx} (1+e^{-x})^{-1}$$

$$= -(1+e^{-x})^{-2} (-e^{-x})$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right)$$

$$= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right)$$

$$= \sigma(x) \cdot (1-\sigma(x))$$

(b) We denote by $\delta_k = \frac{\partial E}{\partial h_k}$ the error signal of neuron k in the second linear layer of the network. Compute δ_k as a function of c_k , t_k , g' and h_k .

Your answer:

$$E = \frac{1}{2} \sum_{k} (c_k - t_k)^2$$

$$c_k = g(h_k) \text{ and } h_k = f_k + \sum_{j} w_{jk} \cdot b_j$$

$$\delta_k = \frac{\partial E}{\partial h_k} = (c_k - t_k) \cdot g'(h_k)$$

(c) Compute $\frac{\partial E}{\partial w_{jk}}$. Use δ_k and b_j .

Your answer:

$$\frac{\partial E}{\partial w_{jk}} = (c_k - t_k) \cdot g'(h_k) \cdot b_j = \delta_k \cdot b_j$$

(d) Compute $\frac{\partial E}{\partial f_k}$. Use δ_k .

Your answer:

$$\frac{\partial E}{\partial f_k} = (c_k - t_k) \cdot g'(h_k) \cdot 1 = \delta_k$$

1.3 C 1 / 1

- √ 0 pts Correct
 - 0.5 pts Minor error
 - 1 pts Incorrect

$$\frac{d}{dx} g(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]$$

$$= \frac{d}{dx} (1+e^{-x})^{-1}$$

$$= -(1+e^{-x})^{-2} (-e^{-x})$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right)$$

$$= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right)$$

$$= \sigma(x) \cdot (1-\sigma(x))$$

(b) We denote by $\delta_k = \frac{\partial E}{\partial h_k}$ the error signal of neuron k in the second linear layer of the network. Compute δ_k as a function of c_k , t_k , g' and h_k .

Your answer:

$$E = \frac{1}{2} \sum_{k} (c_k - t_k)^2$$

$$c_k = g(h_k) \text{ and } h_k = f_k + \sum_{j} w_{jk} \cdot b_j$$

$$\delta_k = \frac{\partial E}{\partial h_k} = (c_k - t_k) \cdot g'(h_k)$$

(c) Compute $\frac{\partial E}{\partial w_{jk}}$. Use δ_k and b_j .

Your answer:

$$\frac{\partial E}{\partial w_{jk}} = (c_k - t_k) \cdot g'(h_k) \cdot b_j = \delta_k \cdot b_j$$

(d) Compute $\frac{\partial E}{\partial f_k}$. Use δ_k .

Your answer:

$$\frac{\partial E}{\partial f_k} = (c_k - t_k) \cdot g'(h_k) \cdot 1 = \delta_k$$

1.4 d 1 / 1

- √ 0 pts Correct
 - 0.5 pts Minor error
 - 1 pts Incorrect

$$E = \frac{1}{2} \sum_k (c_k - t_k)^2$$
 $c_k = g(h_k)$ and $h_k = f_k + \sum_j w_{jk} \cdot b_j$ $b_j = g(z_j)$ and $z_j = e_j + \sum_i a_i u_{ij}$

Hence,

$$\psi_j = \frac{\partial E}{\partial z_j} = \sum_k (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) = g'(z_j) \sum_k \delta_k \cdot w_{jk}$$

(f) Compute $\frac{\partial E}{\partial u_{ij}}$. Use ψ_j and a_i .

Your answer:

$$\frac{\partial E}{\partial u_{ij}} = \sum_{k} (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) \cdot a_i = \psi_j \cdot a_i$$

(g) Compute $\frac{\partial E}{\partial e_j}$. Use ψ_j .

Your answer:

$$\frac{\partial E}{\partial e_j} = \sum_k (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) \cdot 1 = \psi_j$$

1.5 e 2 / 2

√ - 0 pts Correct

- 1 pts Miss the summation
- 1 pts Incorrect
- 2 pts Incorrect

$$E = \frac{1}{2} \sum_{k} (c_k - t_k)^2$$

$$c_k = g(h_k) \text{ and } h_k = f_k + \sum_{j} w_{jk} \cdot b_j$$

$$b_j = g(z_j) \text{ and } z_j = e_j + \sum_{i} a_i u_{ij}$$

Hence,

$$\psi_j = \frac{\partial E}{\partial z_j} = \sum_k (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) = g'(z_j) \sum_k \delta_k \cdot w_{jk}$$

(f) Compute $\frac{\partial E}{\partial u_{ij}}$. Use ψ_j and a_i .

Your answer:

$$\frac{\partial E}{\partial u_{ij}} = \sum_{k} (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) \cdot a_i = \psi_j \cdot a_i$$

(g) Compute $\frac{\partial E}{\partial e_j}$. Use ψ_j .

Your answer:

$$\frac{\partial E}{\partial e_j} = \sum_k (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) \cdot 1 = \psi_j$$

1.6 f 1 / 1

- √ 0 pts Correct
- 0.5 pts Incorrect
- 1 pts Incorrect

$$E = \frac{1}{2} \sum_{k} (c_k - t_k)^2$$

$$c_k = g(h_k) \text{ and } h_k = f_k + \sum_{j} w_{jk} \cdot b_j$$

$$b_j = g(z_j) \text{ and } z_j = e_j + \sum_{i} a_i u_{ij}$$

Hence,

$$\psi_j = \frac{\partial E}{\partial z_j} = \sum_k (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) = g'(z_j) \sum_k \delta_k \cdot w_{jk}$$

(f) Compute $\frac{\partial E}{\partial u_{ij}}$. Use ψ_j and a_i .

Your answer:

$$\frac{\partial E}{\partial u_{ij}} = \sum_{k} (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) \cdot a_i = \psi_j \cdot a_i$$

(g) Compute $\frac{\partial E}{\partial e_j}$. Use ψ_j .

Your answer:

$$\frac{\partial E}{\partial e_j} = \sum_k (c_k - t_k) \cdot g'(h_k) \cdot w_{jk} \cdot g'(z_i) \cdot 1 = \psi_j$$

1.7 g 1/1

- √ 0 pts Correct
 - 0.5 pts Incorrect
 - 1 pts Incorrect