Indian Institute of Space Science and Technology

Thiruvananthapuram

MA 211 - Integral Transforms

Instructor: Dr. Kaushik Mukherjee Tutorial-2

- 1. (a) Show that $f(x) = x^2$ is of exponential order for any $\sigma > 0$, where n is a fixed positive integer.
 - (b) Without using definition, show that $f(x) = (x+1)^2$ possesses the Laplace transform $\hat{f}(s)$ for s > 0. Also, compute $\hat{f}(s)$.
- 2. Let K be a postive real number.
 - (a) Show that $f(x) = e^{Kx}$ is of exponential order for any $\sigma \ge \sigma_c = K$.
 - (b) Without using definition, show that $f(x) = \sinh Kx = \frac{e^{Kx} e^{-Kx}}{2}$, possesses the Laplace transform $\hat{f}(s)$ for s > K. Also, compute $\hat{f}(s)$.
- 3. Show that $f(x) = \cos x$ is of exponential order for any $\sigma \ge \sigma_c = 0$.
 - Without using definition, show that $f(x) = (x+1)\cos(x+1)$ possesses the Laplace transform $\widehat{f}(s)$ for s > 0. Also, compute $\widehat{f}(s)$.
- 4. Show that if $f:[0,\infty)\to\mathbb{R}$ is piecewise continuous on [0,A], for every real number A>0 and is of exponential order with $\sigma>\sigma_c$, then show that $\lim_{s\to\infty}\widehat{f}(s)=0$.
- 5. Consider the function $f(x) = \begin{cases} x, & \text{for } 0 \le x \le a, \\ 10, & \text{for } x > a. \end{cases}$

Verify whether f is piece-wise continuous on every interval [0, A], for A > 0 and is of exponential order for any $\sigma \ge \sigma_c = 0$. Compute $\hat{f}(s)$ if it exits for s > 0.

- 6. Consider the function $f(x) = \begin{cases} 0, & \text{for } 0 \le x \le a, \\ \frac{1}{x-a}, & \text{for } x > a. \end{cases}$
 - (a) Show that f is not piece-wise continuous on every interval [0, A], for A > 0 but is of exponential order for any $\sigma \ge \sigma_c = 0$.
 - (b) Does the above observation assure existence of the Laplace transform $\hat{f}(s)$ for s > 0?
- 7. Consider the function $f(x) = \begin{cases} 0, & \text{for } x = 0, \\ \frac{1}{\sqrt{x}}, & \text{for } x > 0. \end{cases}$
 - (a) Show that f is not piece-wise continuous on every interval [0, A], for A > 0 but is of exponential order for any $\sigma \ge \sigma_c = 0$.
 - (b) Verify whether f possesses the Laplace transform $\hat{f}(s)$ for s>0, using definition.
 - (c) Does the above observation contradict the existence of $\hat{f}(s)$ according the theorem of existence of the Laplace transform?

8. Consider the function $f(x) = \begin{cases} 0, & \text{for } x = 0, \\ \frac{1 - \cos(x)}{x}, & \text{for } x > 0. \end{cases}$

Verify whether f is piece-wise continuous on every interval [0, A], for A > 0 and is of exponential order for any $\sigma \ge \sigma_c = 0$. Compute $\hat{f}(s)$ if it exits for s > 0.