

# WHERE ARE WE?

# LIFE AFTER DENNARD SCALING

# The End of Road for General Purpose Processors and the Future of Computing John Hennessy Stanford University Merch 2017



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

# **GPU-ACCELERATED PERFORMANCE**





#### TESLA PLATFORM ADVANTAGE

Delivered value grows over time





#### **HOW ARE WE DOING THIS?**

And, is our differentiation sustainable?

- What are the most important dimensions of our differentiation?
- Why are GPUs so much more efficient than CPUs?
- How can we continue scaling performance/efficiency as Moore's Law fades?
- Why can't competitors replicate GPU efficiency, performance, scaling, etc., with lots of weak CPU cores? (e.g., Intel KNC/KNL/KNM)
- How is optimizing GPUs for AI affecting their suitability for HPC?

#### **GPU-ACCELERATED EFFICIENCY**





**ENERGY EFFICIENCY** 

7 ON OVIDIA

#### **COMPUTATION VERSUS COMMUNICATIONS**



**CPU** 126 pJ/flop (SP)

Optimized for Latency
Deep Cache Hierarchy



Broadwell E5 v4 14 nm

# **GPU** 28 pJ/flop (SP)

Optimized for Throughput Explicit Management of On-chip Memory



Pascal 16 nm

#### 10 **INVIDIA**

### **HOW IS POWER SPENT IN A CPU?**

In Order, Embedded

Out of Order, High Performance



Payload Arithmetic 15pJ Overhead 985pJ

11 🥯 NVIDIA.

12 **② NVIDIA**.

# **SIMPLER CORES = ENERGY EFFICIENCY**





13 **ONVIDIA**.

**THROUGHPUT PROCESSORS** 

#### **RISE OF LEAKAGE**



16 **@ NVIDIA**.

# FREQUENCY VS. LEAKAGE



#### 17 ON INVIDIA.

20 **O INVIDIA**.

# SP ENERGY EFFICIENCY @ 28 NM $_{^{25}}$ 20 GFLOPS / watt Fermi Kepler Maxwell

#### OPTIMIZED FOR DATACENTER EFFICIENCY

40% More Performance in a Rack





ResNet-50 Training Max Efficiency run with V100@160W | V100 performance measured on pre-production hardware

**HETEROGENEOUS COMPUTING** 

# **OPTIMIZING SERIAL/PARALLEL EXECUTION**



#### TWO TYPES OF ACCELERATORS

Many-Weak-Cores (MWC) Model Single CPU Core for Both Serial & Parallel Work

> Xeon Phi (And Others) Many Weak Serial Cores



Heterogeneous Computing Model Complementary Processors Work Together



23 **( DVID** 

# NVLINK: A MEMORY FABRIC, NOT A NETWORK

DGX-1: 8 NVLink-Connected GPUs





25 @ NVIDIA.

**EXTENSIBILITY** 

#### LATENCY HIDING FOR LOAD/STORE/ATOMICS

Where are the NICs? There are no NICs.







#### STRONG SCALING





#### STRONG SCALING





28 ONIDIA.

#### STRONG SCALING





QUDA version 0.9beta, using double-half mixed precision DDalphaAMG using double-single

29 ONIDIA

#### **NEW TENSOR CORE**

New CUDA TensorOp instructions and data formats 4×4 matrix processing array

 $D_{FP32} = A_{FP16} \times B_{FP16} + C_{FP32}$ Optimized for deep learning



# **TESLA PLATFORM**

#### **TESLA IS A PLATFORM**

World's Leading Data Center Platform for Accelerating HPC and AI



# **MULTIPLE GROWTH MARKETS**





# **CONCLUSION**

#### **PASCAL TO VOLTA**

Architecture with Technology

- Area:  $\sim 600 \text{ mm}^2 \rightarrow \sim 800 \text{ mm}^2 (\sim 33\% \text{ more area})$
- Process: ~ small Pascal → Volta improvement (a few percent)
- · Clocks: similar dynamic range, power limited
- Memory BW (sustained): 50% improvement
- Communications (NVLink): 160 GB/s → 300 GB/s (almost double!)
- AI (Tensor Cores): ~20 TFLOPS → 120 TFLOPS (~6x!)

#### 35 🥯 NVIDIA.

#### REVOLUTIONARY PERFORMANCE FOR HPC AND AI

Single Platform For Data Science and Computation Science





NMT Training for 13 Epochs | German -> English, WMT15 subset | System Config Info: CPU - 2x Xeon E5 2699 V4 w/ P100s or V100s | QUDA, RTM, STREAM | System Config Info: Xeon E5-2690 V4 Xeon E5-2690 V4, ZéoHz, w IX Tabla P100 or V100 | Y000 measured on pre-production hardware V100 | System Config Info: Xeon E5-2690 V4 / IX Tesla P100 and E5-2690 V4 / IX Tesla P100 or V100 | Y000 measured on pre-production hardware

# **GPU PERFORMANCE COMPARISON**

|                        | P100        | V100          | Ratio |
|------------------------|-------------|---------------|-------|
| Training acceleration  | 10 TOPS     | 120 TOPS      | 12x   |
| Inference acceleration | 21 TFLOPS   | 120 TOPS      | 6x    |
| FP64/FP32              | 5/10 TFLOPS | 7.5/15 TFLOPS | 1.5x  |
| HBM2 Bandwidth         | 720 GB/s    | 900 GB/s      | 1.2x  |
| NVLink Bandwidth       | 160 GB/s    | 300 GB/s      | 1.9x  |
| L2 Cache               | 4 MB        | 6 MB          | 1.5x  |
| L1 Caches              | 1.3 MB      | 10 MB         | 7.7x  |

37 🥯 NVIDIA

# **GPU TRAJECTORY**





Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp



