Project 3: Sign Language Recognition

Index:	Page No.
Acknowledgement	2
2. Introduction	3
3. Objectives	4
4. Requirements	5
5. Methodology	6
4.1 System-level Architecture	
4.2 Data Acquisition & Preprocessing	
4.3 Hand Landmark Extraction	
4.4 Feature Engineering	
4.5 Speech-to-text subsystem	
6. American Sign Language Dataset	8
7. Project Results	14

Acknowledgement

It gives me immense pleasure to present the report of the 3rd Project of my internship at Invenio Business Solutions, conducted from May 20, 2025 to July 18,2025. I would like to express my gratitude to my reporting manager, Mrs. Saritha Koroth, and my mentors, Mr. Harsh Singh and Ms. Malika Kaur for their constant guidance. It was a privilege to intern under the mentorship of Mr. Harsh Singh for two enriching months.

Introduction

Sign-language recognition (SLR) systems have long been proposed as a bridge between Deaf and hearing communities, but research momentum has only recently accelerated thanks to advances in computer vision, lightweight deep-learning frameworks and commodity GPUs.

MediaPipe's real-time hand-tracking models, for instance, resolve 21 three-dimensional landmarks per hand at mobile-phone frame rates.

Simultaneously, open libraries such as SpeechRecognition and pyttsx3 offer offline speech-to-text (STT) and TTS capabilities, making multimodal translation pipelines feasible on consumer hardware.

Objectives:

- **1. Real-Time Recognition:** Achieve ≥24 fps landmark estimation and ≥10 fps classification on a standard laptop webcam feed.
- 2. Bidirectional Communication:
 - Convert recognised sign letters → synthesised speech through TTS.
 - Accept spoken English → display textual transcript → render sequential ASL alphabet images.
- **3. User-Friendly Interface:** Provide clickable buttons for common actions (word commit, sentence commit, delete, clear, speak)
- **4. Modular Codebase:** Abstract detection, feature extraction, classification, audio and UI layers for ease of substitution or upgrade.

Requirements:

- matplotlib==3.7.1
- mediapipe==0.10.13
- numpy==1.24.3
- opency-python==4.6.0.66
- pandas==2.0.1
- Pillow==9.5.0
- python-dotenv==1.0.0
- scikit-learn==1.2.2
- seaborn==0.12.2
- tensorflow==2.12.0

Use virtual environment for requirements.txt

Step 1: pip install virtualenv

Step 2: python -m venv venv

Step 3: source venv/Scripts/activate

To install the necessary requirements: pip install -r requirements.txt

Methodology:

1. System-level Architecture

The pipeline separates perception (CV) from dialogue (NLP/audio) allowing parallel execution threads.

2. Data Acquisition & Pre-processing

- Frame Capture: cv.VideoCapture polls the default camera at 30 fps, scaled to 400 × 300 pixels to balance detail and throughput.
- Frame Mirroring: Horizontally flipped images match the user's mirror expectation and stabilise handedness features.
- Color Space Conversion: BGR → RGB because MediaPipe expects RGB.

3. Hand Landmark Extraction

MediaPipe returns 21 landmark triples (x, y, z) mapping to anatomical joints.

4. Feature Engineering

- 1. Bounding-box derivation using min/max of landmarks \rightarrow ROI for optional cropping.
- 2. Relative co-ordinates normalisation: Translate landmarks so the wrist joint sits at origin; scale by maximum inter-landmark distance → viewpoint/scale invariance.
- 3. Flatten vector \rightarrow 42-dimensional feature (21 points × 2) for classifier input.

5. Speech-to-Text Sub-system

- Triggered by Speech button; launches a non-blocking thread calling recognize speech.
- Default recogniser: Google Web API through speech recognition. Recognizer. recognize google.
- On completion, recognised text:
 - 1. Displays beside the Speech button.
 - 2. Generates an image queue (prepare_speech_images) mapping each alphabetic character to a stored PNG in alphabet images/.
 - 3. Streams images at 1 letter/s with 2 s inter-word pause—mirroring how Deaf viewers might fingerspell the spoken utterance.

American Sign Language Dataset:

Project Results:

1. User Interface

Current: Last Word: Sentence:

Speak Word Add to Sentence Delete Character Delete Word Speak Sentence

Clear

Speech

Functionalities:

- Speak current word
- Add a word to a sentence
- Allows the user to delete the last character of a word if it was recognized incorrectly.
- Allows the user to delete the last word of a sentence
- Text to speech functionality: speak current word,
 Speak complete sentence
- Clear complete sentence
- Speech to text input: the user can give speech as input and the model will convert it into text and signs.

2. Give hand gesture as input

Current: MAN Last Word: Sentence:

Speak Word Add to Sentence Delete Character Delete Word Speak Sentence Clear

Speech

3. Add words in a sentence

Current:

Last Word: HARSH Sentence: I AM HARSH

Speak Word

Add to Sentence Delete Character Delete Word Speak Sentence

Clear

Speech

4. Speech as input

Last Word: Sentence:

> Speak Word

Add to Sentence Delete Character Delete Word Speak Sentence

Clear

Speech

Text: Harsh

Current: Last Word: Sentence:

> Speak Word

Add to Sentence Delete Character Delete Word Speak Sentence

Clear

Speech

Text: Harsh

Current: Last Word: Sentence:

Speak Word Add to Sentence Delete Character Delete Word Speak Sentence

Clear

Speech

Text: Harsh

Current: Last Word: Sentence:

Speak Word Add to Sentence Delete Character Delete Word Speak Sentence

Clear

Speech

Text: Harsh

