Overview

Hot and cold tumor are crucial in assessing the efficacy of existing cancer immunotherapies. A hot tumor is rich in tumor immune microenvironment (TME), PD-L1 overexpression, genomic instability. Example of hot tumors include melanoma and lung cancer. In contrast, non-T- cell inflamed cancers, such as Triple Negative Breast Cancer (TNBC), prostate or pancreas cancers fall into the category of "cold tumors". Simultaneously, tumor-associated macrophages (TAMs), T/B regulatory cells (T/Bregs), myeloid-derived suppressor cells (MDSCs) have been identified as contributor to the formation of a specific TME in "cold tumors". Factors affecting tumor virulence include immune checkpoints (PD-1, PD-L1, CTL4, TIM-3, and LAG-3), tumor infiltrating lymphocytes (TIL), tertiary lymphoid tissue (TLS), microsatellite status (MSI), tumor mutational burden (TMB) and gene mutations (for ex.TP53, BRCA1).

Immune checkpoint inhibitors (ICIs) have shown success in improving the survival of cancer patient. ICI-mediated antitumor responses depend on the infiltration of T cells that identify and eliminate cancer cells. Therefore, ICIs are less efficacious in "cold tumors" which are characterized by the lack of T-cell infiltration.

Specific Aims

Ī

The aims of this project are to analyze the current landscape of strategies designed in "warming up" cold tumors to immune checkpoint inhibitors (ICIs); to introduce an innovative approach utilizing nanoparticles, viral vectors, or polymeric particles as potential solutions. We will also sketch a clinical trial with appropriate criteria selection of patients to validate the established solution.

Yves Greatti 1/1