(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 May 2001 (31.05.2001)

(10) International Publication Number WO 01/38577 A2

(51) International Patent Classification7:

C12Q 1/68

Kenneth, W. [US/US]; 1403 Halkirk Way, BelAir, MD

- (21) International Application Number:
- (22) International Filing Date:

21 November 2000 (21.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/448,480

24 November 1999 (24.11.1999)

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

09/448,480 (CON)

Filed on

24 November 1999 (24.11.1999)

- (71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; Suite 906, 111 Market Place, Baltimore, MD 21202 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): VELCULESCU, Victor, E. [US/US]; Apt. 903, 1 E. Chase St., Baltimore, MD 21202 (US). VOGELSTEIN, Bert [US/US]; 3700 Breton Way, Baltimore, MD 21208 (US), KINZLER,

21015 (US).

- (74) Agents: HEMMENDINGER, Lisa, M. et al.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HUMAN TRANSCRIPTOMES

(57) Abstract: Global gene expression patterns have been characterized in normal and cancerous human cells using serial analysis of gene expression (SAGE). Cancer cell-specific, cell-type specific, and ubiquitously expressed genes have been identified. This information can be used to provide combination of cell type- and cancer-specific gene probes, as well as methods of using these probes to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue.

HUMAN TRANSCRIPTOMES

This invention was made with government support under CA57345, CA62924, and CA43460 awarded by the National Institutes of Health. The government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The characteristics of an organism are largely determined by the genes expressed within its cells and tissues. These expressed genes can be represented by transcriptomes that convey the identity and expression level of each expressed gene in a defined population of cells (1, 2). Although the entire sequence of the human genome will be elucidated in the near future (3), little is known about the many transcriptomes present in the human organism. Basic questions regarding the set of genes expressed in a given cell type, the distribution of expressed genes, and how these compare to genes expressed in other cell types, have remained largely unanswered.

General properties of gene expression patterns in eukaryotic cells were determined many years ago by RNA-cDNA reassociation kinetics (4), but these studies did not provide much information about the identities of the expressed genes within each expression class. Technological constraints have limited other analyses of gene expression to one or few genes at a time (5-9) or were non-quantitative (10, 11). Serial analysis of gene expression (SAGE) (12), one of several recently developed gene expression methods, has permitted the quantitative analysis of transcriptomes in the yeast *Saccharomyces cereviseae* (1, 13). This effort identified the expression of known and previously unrecognized genes in S.

cereviseae (1, 14) and demonstrated that genome-wide expression analyses were practicable in eukaryotes.

Thus, there is a need in the art for the identification of transcriptomes which represent gene expression in particular cell types or under particular physiological conditions in eukaryotes, particularly in humans.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide such transcriptomes, individual polynucleotides, and methods of using the polynucleotides to identify particular cell types, screen for useful drugs, reduce cancer-specific gene expression, standardize gene expression, and restore function to a diseased cell or tissue. These and other objects of the invention are provided by one or more of the embodiments described below.

One embodiment of the invention is a method of identifying a cell as either a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, or a kidney epithelial cell. Expression in a test cell of a gene product of at least one gene is determined. The at least one gene comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154 and 155;
 - (d) the sequences shown in SEO ID NOS:156-159 and 160:
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

Expression of a gene product of at least one gene comprising a sequence shown in (a) identifies the test cell as a colon epithelial cell. Expression of a gene product of at least one gene comprising a sequence shown in (b) identifies the test cell as a brain cell. Expression

of a gene product of at least one gene comprising a sequence shown in (c) identifies the test cell as a keratinocyte. Expression of a gene product of at least one gene comprising a sequence shown in (d) identifies the test cell as a breast epithelial cell. Expression of a gene product of at least one gene comprising a sequence shown in (e) identifies the test cell as a lung epithelial cell. Expression of a gene product of at least one gene comprising a sequence shown in (f) identifies the test cell as a melanocyte. Expression of a gene product of at least one gene comprising a sequence shown in (g) identifies the test cell as a prostate cell. Expression of a gene product of at least one gene comprising a sequence shown in (h) identifies the test cell as a kidney epithelial cell.

Another embodiment of the invention is an isolated polynucleotide comprising a sequence selected from the group consisting of SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-84, 98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, 150, 153-168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-213, 216-224, 237, 239, 257, 263, 485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

Still another embodiment of the invention is a solid support comprising at least one polynucleotide. The polynucleotide comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-83, and 84;
- (b) the sequences shown in SEQ ID NOS:98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, and 150;
 - (c) the sequences shown in SEQ ID NOS:153-154 and 155;
 - (d) the sequences shown in SEQ ID NOS:156-157 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-207 and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210;

- (h) the sequences shown in SEQ ID NOS:211-213, 216-223, and 224;
- (i) the sequences shown in SEQ ID NOS:237, 239, 257, and 263; or

(j) the sequences shown in SEQ ID NOS:485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

Even another embodiment of the invention is a method of identifying a test cell as a cancer cell. Expression in a test cell of a gene product of at least one gene is determined. The at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265. An increase in expression of at least two-fold relative to expression of the at least one gene in a normal cell identifies the test cell as a cancer cell.

Yet another embodiment of the invention is a method of reducing expression of a cancer-specific gene in a human cell. A reagent which specifically binds to an expression product of a cancer-specific gene is administered to the cell. The cancer-specific gene comprises a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265. Expression of the cancer-specific gene is thereby reduced relative to expression of the cancer-specific gene in the absence of the reagent.

Even another embodiment of the invention is a method for comparing expression of a gene in a test sample to expression of a gene in a standard sample. A first ratio and a second ratio are determined. The first ratio is an amount of an expression product of a test gene in a test sample to an amount of an expression product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS:266-375, 377-652, 654-796, and 798-1448 in the test sample. The second ratio is an amount of an expression product of the test gene in a standard sample to an amount of an expression product of the at least one gene in the standard sample. The first and second ratios are compared. A difference between the first and second ratios indicates a difference in the amount of the expression product of the test gene in the test sample.

Still another embodiment of the invention is a method of screening candidate anticancer drugs. A cancer cell is contacted with a test compound. Expression of a gene

product of at least one gene in the cancer cell is measured. The at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259, 260, 262-263, and 265. A decrease in expression of the gene product in the presence of a test compound relative to expression of the gene product in the absence of the test compound identifies the test compound as a potential anti-cancer drug.

Still another embodiment of the invention is a method of screening test compounds for the ability to increase an organ or cell function. A selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell is contacted with a test compound. Expression in the cell of a gene product of at least one gene is measured. The gene comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154 and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207 and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

An increase in expression of a gene product of at least one gene comprising a sequence shown in (a) identifies the test compound as a potential drug for increasing a function of a colon cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (b) identifies the test compound as a potential drug for increasing a function of a brain cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (c) identifies the test compound as a potential drug for increasing a function of a skin cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (d) identifies the test compound as a potential drug for increasing a function of a breast cell. An increase in expression of a gene product

of at least one gene comprising a sequence shown in (e) identifies the test compound as a potential drug for increasing a function of a lung cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (f) identifies the test compound as a potential drug for increasing a function of a melanocyte. An increase in expression of a gene product of at least one gene comprising a sequence shown in (g) identifies the test compound as a potential drug for increasing a function of a prostate cell. An increase in expression of a gene product of at least one gene comprising a sequence shown in (h) identifies the test compound as a potential drug for increasing a function of a kidney cell.

Yet another embodiment of the invention is a method to restore function to a diseased tissue. A gene is delivered to a diseased cell selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell. The gene comprises a nucleotide sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154 and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and ...
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

Expression of the gene in the diseased cell is less than expression of the gene in a corresponding cell which is normal. If the diseased cell is a colon epithelial cell, then the nucleotide sequence is selected from (a). If the diseased cell is a brain cell, then the nucleotide sequence is selected from (b). If the diseased cell is a keratinocyte, then the nucleotide sequence is selected from (c). If the diseased cell is a breast epithelial cell, then the nucleotide sequence is selected from (d). If the diseased cell is a lung epithelial cell,

then the nucleotide sequence is selected from (e). If the diseased cell is a melanocyte, then the nucleotide sequence is selected from (f). If the diseased cell is a prostate cell, then the nucleotide sequence is selected from (g). If the diseased cell is a kidney cell, then the nucleotide sequence is selected from (h).

Thus, the invention provides transcriptomes, polynucleotides, and methods of identifying particular cell types, reducing cancer-specific gene expression, identifying cancer cells, standardizing gene expression, screening test compounds for the ability to increase an organ or a cell function, and restoring function to a diseased tissue.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Sampling of gene expression in colon cancer cells. Analysis of transcripts at increasing increments of transcript tags indicates that the fraction of new transcripts identified approaches 0 at approximately 650,000 total tags.

FIG. 2. Colon cancer cell Rot curve.

FIGS. 3A-3C. Gene expression in different tissues. FIG. 3A. Fold reduction or induction of unique transcripts for each of the comparisons analyzed. The source of the transcripts included in each comparison are displayed in FIG. 3C. The relative expression of each transcript was determined by dividing the number of transcript tags in each comparison in the order displayed in FIG. 3C. To avoid division by 0, we used a tag value of 1 for any tag that was not detectable in one of the samples. We then rounded these ratios to the nearest integer; their distribution is plotted on the X axis. The number of transcripts displaying each ratio is plotted on the Y axis. Each comparison is represented by a specific color (see below or FIG. 3C). FIG. 3B. Expression of transcripts for each comparison, where values on X and Y axes represent the observed transcript tag abundances in each of the two compared sets. Light Blue symbols: DLD1 in different physiologic conditions; Yellow symbols: DLD1 cells (X axis) versus HCT116 cells (Y axis); Red symbols: colon cancer cells (X axis) versus normal brain (Y axis); and Dark Blue symbols: colon cancer cells (X axis) versus hemangiopericytoma (Y axis). FIG. 3C. Fraction of transcripts with dramatically altered expression. For each comparison, Expression Change denotes the number of transcripts induced or reduced 10 fold, and (%) denotes the number of altered

transcripts divided by the number of unique transcripts in each case. Differences between expression changes were evaluated using the chi squared test, where the expected expression changes were assumed to be the average expression change for any two comparisons.

TABLE LEGENDS

Table 1. Table of tissues and transcript tags analyzed. "Tissues" represents the source of the RNA analyzed, "Libraries" indicates the number of SAGE libraries analyzed, "Total Transcripts" is the total number of transcripts analyzed from each tissue, and "Unique Transcripts" denotes the number of unique transcripts observed in each tissue.

Table 2. Table of transcript abundance. "Copies/cell" denotes the category of expression level analyzed in transcript copies per cell, "Unique Transcripts" represents the number of unique transcripts observed and those matching GenBank genes or ESTs, and "Mass fraction mRNA" represents the fraction of mRNA molecules contained in each expression category.

Table 3. Table showing tissue-specific transcripts. The number in parentheses adjacent to the tissue type indicates the percent of transcripts exclusively expressed in a given tissue at 10 copies per cell. "Transcript tag" denotes the 10 bp tag adjacent to 4 bp NlaIII anchoring enzyme site, "Copies/cell" denotes the transcript copies per cell expressed, and "UniGene Description" provides a functional description of each matching UniGene cluster (from UniGene Build No. 67). As UniGene cluster numbers change over time, the most recent cluster assignment for each tag can be obtained individually at http://www.ncbi.nlm.nih.gov/SAGE/SAGEtag.cgi (Lal et al., "A public database for gene expression in human cancers," Cancer Research, in press) or for the entire table at http://www.sagenet.org/transcriptome.

Table 4. Table showing ubiquitously expressed genes. "Copies/cell" denotes the average expression level of each transcript from all tissues examined, "Range" represents the range in expression for each transcript tag among all tissues analyzed in copies per cell, and "Range/Avg" is the ratio of the range to the average expression level and provides a measure of uniformity of expression. Other table columns are the same as in Table 5. The

entire table of uniformly expressed transcripts also is available at http://www.sagenet.org/transcriptome.

Table 5. Table showing transcripts uniformly elevated in human cancers. Transcripts expressed at 3 copies/cell whose expression is at least 2-fold higher in each cancer compared to its corresponding normal tissue. CC, colon cancer; BC, brain cancer; BrC, breast cancer; LC, lung cancer; M, melanoma; NC, normal colon epithelium; NB, normal brain; NBr, normal breast epithelium; NL, normal lung epithelium; NM, normal melanocytes. "Avg T/N" is the average ratio of expression in tumor tissue divided by normal tissue (for the purpose of obtaining this ratio, expression values of 0 are converted to 0.5). Other table columns are the same as in Table 5.

Table 6. Table showing transcripts expressed in colon cancer cells at a level of at least 500 copies per cell.

Table 7. Table showing transcripts expressed at a level of at least 500 copies per cell.

DETAILED DESCRIPTION OF THE INVENTION

It is a discovery of the present invention that particular sets of expressed genes ("transcriptomes") are expressed only in cancer cells; expression of these genes can be used, *inter alia*, to identify a test cell as cancerous and to screen for anti-cancer drugs. These cancer-specific genes can also provide targets for therapeutic intervention.

It is another discovery of the invention that other transcriptomes are differentially associated with distinct cell types; expression of genes of these transcriptomes can therefore be used to identify a test cell as belonging to one of these distinct cell types.

It is yet another discovery of the invention that genes of another transcriptome are expressed ubiquitously; expression of genes of this transcriptome can be used to standardize expression of other genes in a variety of gene expression assays.

To identify the transcriptomes described herein we used the SAGE method, as described in Velculescu *et al.* (1) and Velculescu *et al.* (12), to analyze gene expression in a variety of different human cell and tissue types. The SAGE method is also described in U.S. Patents 5,866,330 and 5,695,937. A total of 84 SAGE libraries were generated from

19 tissues (Table 1). Diseased tissues included cancers of the colon, pancreas, breast, lung, and brain, as well as melanoma, hemangiopericytoma, and polycystic kidney disease. Normal tissues included epithelia of the colon, breast, lung, and kidney, melanocytes, chondrocytes, monocytes, cardiomyocytes, keratinocytes, and cells of prostate and brain white matter and astrocytes.

A total of 3,496,829 transcript tags were analyzed and found to represent 134,135 unique transcripts after correcting for sequencing errors (transcript data available at http://www.sagenet.org./transcriptome). Expression levels for these transcripts ranged from 0.3 to a high of 9,417 transcript copies per cell in lung epithelium. Comparison against the GenBank and UniGene collections of characterized genes and expressed sequence tags (ESTs) revealed that 6,900 transcript tags matched known genes, while 65,735 matched ESTs. The remaining 61,500 transcript tags (46%) had no matches to existing databases and corresponded to previously uncharacterized or partially sequenced transcripts.

Each of the genes or transcripts whose expression can be measured in the methods of the invention comprises a unique sequence of at least 10 contiguous nucleotides (the "SAGE tag"). Genes which are differentially expressed in colon, lung, kidney, and breast epithelial cells, brain cells, prostate cells, keratinocytes, or melanocytes are shown in Table 3. Ubiquitously expressed genes are shown in Table 4. Transcripts which are expressed only in cancer tissues, e.g., colon cancer, breast cancer, brain cancer, liver cancer, and melanoma, are shown in Table 5.

This information provides heretofore unavailable picture of human transcriptomes. These results, like the human genome sequence, provide basic information integral to future experimentation in normal and disease states. Because SAGE analyses provide absolute expression levels, future SAGE data can be directly integrated with those described here to provide progressively deeper insights into gene expression patterns. Eventually, a relatively complete description of the transcripts expressed in diverse cell types and in various physiologic states can be obtained.

Isolated polynucleotides

The invention provides isolated polynucleotides comprising either

deoxyribonucleotides or ribonucleotides. Isolated DNA polynucleotides according to the invention contain less than a whole chromosome and can be either genomic DNA or DNA which lacks introns, such as cDNA. Isolated DNA polynucleotides can comprise a gene or a coding sequence of a gene comprising a sequence as shown in SEQ ID NOS:1-1563, such as polynucleotides which comprise a sequence selected from the group consisting of SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-84, 98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, 150, 153-168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-213, 216-224, 237, 239, 257, 263, 485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

Any technique for obtaining a polynucleotide can be used to obtain isolated polynucleotides of the invention. Preferably the polynucleotides are isolated free of other cellular components such as membrane components, proteins, and lipids. They can be made by a cell and isolated, or synthesized using an amplification technique, such as PCR, or by using an automatic synthesizer. Methods for purifying and isolating polynucleotides are routine and are known in the art.

Isolated polynucleotides also include oligonucleotide probes, which comprise at least one of the sequences shown in SEQ ID NOS:1-1563. An oligonucleotide probe is preferably at least 10, 11, 12, 13, 14, 15, 20, 30, 40, or 50 or more nucleotides in length. If desired, a single oligonucleotide probe can comprise 2, 3, 4, or 5 or more of the sequences shown in SEQ ID NOS:1-1563. The probes may or may not be labeled. They may be used, for example, as primers for amplification reactions, such as PCR, in Southern or Northern blots, or for *in situ* hybridization.

Oligonucleotide probes of the invention can be made by expressing cDNA molecules comprising one or more of the sequences shown in SEQ ID NOS:1-1563 in an expression vector in an appropriate host cell. Alternatively, oligonucleotide probes can be synthesized chemically, for example using an automated oligonucleotide synthesizer, as is known in the art.

Solid Supports Comprising Polynucleotides

Polynucleotides, particularly oligonucleotide probes, preferably are immobilized on a solid support. A solid support can be any surface to which a polynucleotide can be attached. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, gene "chips," or particles such as beads, including but not limited to latex, polystyrene, or glass beads. Any method known in the art can be used to attach a polynucleotide to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polynucleotide and the solid support.

Polynucleotides are preferably present on an array so that multiple polynucleotides can be simultaneously tested for hybridization to polynucleotides present in a single biological sample. The polynucleotides can be spotted onto the array or synthesized *in situ* on the array. Such methods include older technologies, such as "dot blot" and "slot blot" hybridization (53, 54), as well as newer "microarray" technologies (55-58). A single array contains at least one polynucleotide, but can contain more than 100, 500, 1,000, 10,000, or 100,000 or more different probes in discrete locations.

Determining expression of a gene product

Each of the methods of the invention involves measuring expression of a gene product of at least one of the genes identified in Tables 3, 4, and 5 (SEQ ID NOS:1-1448). If desired, expression of gene products of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 50, 75, 100, 125, 250, 500, 1,000, 1,250, or more genes can be determined.

Either protein or RNA products of the disclosed genes can be determined. Either qualitative or quantitative methods can be used. The presence of protein products of the disclosed genes can be determined, for example, using a variety of techniques known to the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, protein synthesis can be determined *in vivo*, in a cell culture, or in an *in vitro* translation system by detecting incorporation of labeled amino acids into protein products.

RNA expression can be determined, for example, using at least 1, 2, 3, 4, 5, 10, 15,

20, 25, 30, 50, 75, 100, 125, 250, 500, 1,000, 5,000, 10,000, or 100,000 or more oligonucleotide probes, either in solution or immobilized on a solid support, as described above. Expression of the disclosed genes is preferably determined using an array of oligonucleotide probes immobilized on a solid support. *In situ* hybridization can also be used to detect RNA expression.

Identification of Cell Types

Cell-type specific genes are expressed at a level greater than 10 copies per cell in a particular cell type, such as epithelial cells of the colon, breast, lung, and kidney, keratinocytes, melanocytes, and cells from the prostate and brain, but are not expressed in cells of other tissues. Such cell-type specific genes represent "cell-type specific transcriptomes." The fraction of cell-type-specific transcripts ranges from 0.05% in normal prostate to 1.76% in normal colon epithelium. Approximately 50% of these transcripts tags match known genes or ESTs. The vast majority of these cell-type-specific genes have not been previously reported in the literature to be cell-type specific.

Cell type-specific genes are shown in Table 3. Genes which comprise the sequences shown in SEQ ID NOS:1-85 are uniquely expressed in colon epithelial cells. Genes which comprise the sequences shown in SEQ ID NOS:86-151 are uniquely expressed in brain cells. Genes which comprise the sequences shown in SEQ ID NOS:152-155 are uniquely expressed in keratinocytes. Genes which comprise the sequences shown in SEQ ID NOS:156-160 are uniquely expressed in breast epithelial cells. Genes which comprises the sequences shown in SEQ ID NOS:161-167 are uniquely expressed in lung epithelial cells. Genes which comprises the sequences shown in SEQ ID NOS:168-208 are uniquely expressed in melanocytes. Genes which comprise the sequences shown in SEQ ID NOS:209 and 210 are uniquely expressed in prostate cells. Genes which comprise the sequences shown in SEQ ID NOS:211-225 are uniquely expressed in kidney epithelial cells. Thus, determination of expression of at least one gene from each of these uniquely expressed groups, particularly those not previously known to be uniquely expressed, can be used to identify a test cell as an epithelial cell of the colon, breast, lung, and kidney, a keratinocyte, a melanocyte, or a cell from the prostate or brain.

Test cells can be obtained, for example, from biopsy or surgical samples, forensic samples, cell lines, or primary cell cultures. Test cells include normal as well as cancer cells, such as primary or metastatic cancer cells.

To identify a test cell as an epithelial cell of the colon, breast, lung, and kidney, a keratinocyte, a melanocyte, or a cell from the prostate or brain, expression of a gene product of at least one gene is determined, using methods such as those described above. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:2, 5-18, and 20-85, the test cell is identified as a colon epithelial cell. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129. and 131-151, the test cell is identified as a brain cell. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:152-155, the test cell is identified as a keratinocyte. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:156-160, the test cell is identified as a breast epithelial cell. If a test cell expresses a gene comprising a sequence shown in SEQ ID NOS:161-167, the test cell is identified as a lung epithelial cell. Expression of a gene comprising a sequence shown in SEQ ID NOS:168, 170, 172-177, 179-188, and 190-208 identifies the test cell as a melanocyte. Expression of a gene comprising a sequence shown in SEQ ID NOS:209 and 210 identifies the test cell as a prostate cell. Expression of a gene which comprises a sequence shown in SEQ ID NOS:211-225 identifies the test cell as a kidney epithelial cell.

Identifying a Test Cell as a Cancer Cell

A cancer-specific gene is expressed at a level of at least 3 copies per cancer cell, such as a colon cancer, breast cancer, brain cancer, lung cancer, or melanoma cell, at a level which is at least two-fold higher than expression of the same gene in a corresponding normal cell. Cancer-specific genes which comprise the sequences shown in SEQ ID NOS:226-265 (Table 5) represent a "cancer transcriptome." SEQ ID NOS:237, 239, 257, and 263 are sequences which are found in transcripts of novel cancer-specific genes of the invention. Oligonucleotide probes corresponding to cancer-specific genes can be used, for example, to detect and/or measure expression of cancer-specific genes for diagnostic purposes, to assess efficacy of various treatment regimens, and to screen for potential anti-

cancer drugs.

For example, determination of the expression level of any of these genes in a test cell relative to the expression level of the same gene in a normal cell (a cell which is known not to be a cancer cell) can be used to determine whether the test cell is a cancer cell or a non-cancer cell.

Test cells can be any human cell suspected of being a cancer cell, including but not limited to a colon epithelial cell, a breast epithelial cell, a lung epithelial cell, a kidney epithelial cell, a melanocyte, a prostate cell, and a brain cell. Test cells can be obtained, for example, from biopsy samples, surgically excised tissues, forensic samples, cell lines, or primary cell cultures. Comparison can be made to a non-cancer cell type, including to the corresponding non-cancer cell type, either at the time expression is measured in the test cell or by reference to a previously determined expression standard.

To identify a test cell as a cancer cell, expression of a gene product of at least one gene is determined, using methods such as those described above. The at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:226-265, particularly from the group consisting of SEQ ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265. An increase in expression of the at least one gene in the test cell which is at least two-fold more than the expression of the at least one gene in a cell which is not cancerous identifies the test cell as a cancer cell.

Reducing Cancer-Specific Gene Expression

Cancer-specific genes provide potential therapeutic targets for treating cancer or for use in model systems, for example, to screen for agents which will enhance the effect of a particular compound on a potential therapeutic target. Thus, a reagent can be administered to a human cell, either *in vitro* or *in vivo*, to reduce expression of a cancer-specific gene. The reagent specifically binds to an expression product of a gene comprising a sequence selected from the group consisting of SEQ ID NOS:226-265, particularly from the group consisting of SEQ ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265.

If the expression product is a protein, the reagent is preferably an antibody. Protein products of cancer-specific genes can be used as immunogens to generate antibodies, such

as a polyclonal, monoclonal, or single-chain antibodies, as is known in the art. Protein products of cancer-specific genes can be isolated from primary or metastatic tumors, such as primary colon adenocarcinomas, lung cancers, astrocytomas, glioblastomas, breast cancers, and melanomas. Alternatively, protein products can be prepared from cancer cell lines such as SW480, HCT116, DLD1, HT29, RKO, 21-PT, MDA-468, A549, and the like. If desired, cancer-specific gene coding sequences can be expressed in a host cell or in an *in vitro* translation system. An antibody which specifically binds to a protein product of a cancer-specific gene provides a detection signal at least 5-, 10-, or 2-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, the antibody does not detect other proteins in immunochemical assays and can immunoprecipitate the cancer-specific protein product from solution.

For administration in vitro, an antibody can be added to a tissue culture preparation, either as a component of the medium or in addition to the medium. In another embodiment, antibodies are delivered to specific tissues in vivo using receptor-mediated targeted delivery. Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol. 11, 202-05, (1993); Chiou et al., GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24, 1988; Wu et al., J. Biol. Chem. 269, 542-46, 1994; Zenke et al., Proc. Natl. Acad. Sci. U.S.A. 87, 3655-59, 1990; Wu et al., J. Biol. Chem. 266, 338-42, 1991.

If single-chain antibodies are used, polynucleotides encoding the antibodies can be constructed and introduced into cells using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.

Effective in vivo dosages of an antibody are in the range of about 5 μ g to about 50 μ g/kg of patient body weight, about 50 μ g to about 5 mg/kg, about 100 μ g to about 500 μ g/kg of patient body weight, and about 200 to about 250 μ g/kg. For administration of polynucleotides encoding single-chain antibodies, effective in vivo dosages are in the range

of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 μg to about 2 mg, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA.

If the expression product is mRNA, the reagent is preferably an antisense oligonucleotide. The nucleotide sequence of an antisense oligonucleotide is complementary to at least a portion of the sequence of the cancer-specific gene. Preferably, the antisense oligonucleotide sequence is at least 10 nucleotides in length, but can be at least 11, 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. An antisense oligonucleotide which specifically binds to an mRNA product of a cancer-specific gene preferably hybridizes with no more than 3 or 2 mismatches, preferably with no more than 1 mismatch, even more preferably with no mismatches.

Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides, including modified oligonucleotides, can be prepared by methods well known in the art (47-52) and introduced into human cells using techniques such as those described above. The cells can be in a primary culture of human tumor cells, in a human tumor cell line, or can be primary or metastatic tumor cells present in a human body.

Preferably, a reagent reduces expression of a cancer-specific gene by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% relative to expression of the gene in the absence of the reagent. Most preferably, the level of gene expression is decreased by at least 90%, 95%, 99%, or 100%. The effectiveness of the mechanism chosen to decrease the level of expression of a cancer-specific gene can be assessed using methods well known in the art, such as hybridization of nucleotide probes to cancer-specific gene mRNA, quantitative RT-PCR, or immunologic detection of a protein product of the cancer-specific gene.

Screening for Anti-Cancer Drugs

According to the invention, test compounds can be screened for potential use as anticancer drugs by assessing their ability to suppress or decrease the expression of at least one cancer-specific gene. The cancer-specific gene comprises a sequence selected from the group consisting of SEQ ID NOS:226-265, particularly from the group consisting of SEQ

ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265. Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity, including small molecules from compound libraries. Test substances can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, or can be produced recombinantly or synthesized by chemical methods known in the art.

To screen a test compound for use as a possible anti-cancer drug, a cancer cell is contacted with the test compound. The cancer cell can be a cell of a primary or metastatic tumor, such as a tumor of the colon, breast, lung, prostate, brain, or kidney, or a melanoma, which is isolated from a patient. Alternatively, a cancer cell line, such as colon cancer cell lines HCT116, DLD1, HT29, Caco2, SW837, SW480, and RKO, breast cancer cell lines 21-PT, 21-MT, MDA-468, SK-BR3, and BT-474, the A549 lung cancer cell line, and the H392 glioblastoma cell line, can be used.

Expression of a gene product of at least one gene is determined using methods such as those described above. The gene comprises a sequence selected from the group consisting of SEQ ID NOS:226-265, preferably from the group consisting of SEQ ID NOS:228, 230-236, 238, 240-256, 258-260, and 262-265, even more preferably from the group consisting of SEQ ID NOS:237, 239, 257, and 263. A decrease in expression of the gene in the cancer cell identifies the test compound as a potential anti-cancer drug.

Standardizing Expression of a Test Gene

Genes which comprise the sequences shown in SEQ ID NOS:266-1448 (Table 4) are expressed at a level of at least five transcript copies per cell in every cell type analyzed, including epithelia of the colon, breast, lung, and kidney, melanocytes, chondrocytes, monocytes, cardiomyocytes, keratinocytes, prostate cells, and astrocytes, oligodendrocytes, and other cells present in the white matter of brain. These genes thus represent members of the "minimal transcriptome," the set of genes expressed in all human cells. The minimal transcriptome includes well known genes which are often used as experimental controls to normalize gene expression, such as glyceraldehyde 3-phosphate dehydrogenase, elongation factor 1 alpha, and gamma actin.

Ubiquitously expressed genes can be used to compare expression of a test gene in a test sample to expression of a gene in a standard sample. A ubiquitously expressed gene preferably comprises a sequence shown in SEQ ID NOS:266-375, 377-652, 654-796, and 798-1448, and more preferably comprises a sequence shown in SEQ ID NOS:282, 288, 300, 302, 308, 320, 323, 363, 368, 379, 381, 444, 453, 518, 531, 535, 538, 542, 579, 580, 594, 600, 604, 617, 626, 641, 650, 717, 728, 776, 777, 794, 818, 822, 842, 885, 887, 899, 900, 902, 904, 914, 930, 960, 964, 1001, 1015, 1020, 1027, 1035, 1090, 1113, 1119, 1146, 1151, 1163, 1233, 1235, 1252, 1255, 1270, 1340, 1345, 1356, 1359, 1360, 1362, 1385, 1415, and 1441.

Two ratios are determined using gene expression assays such as those described above. The first ratio is an amount of an expression product of a test gene in a test sample to an amount of an expression product of at least one ubiquitously expressed gene comprising a sequence selected from the group consisting of SEQ ID NOS:266-375, 377-652, 798-1447, and 1448 in the test sample. The second ratio is an amount of an expression product of the test gene in a standard sample to an amount of an expression product of the ubiquitously expressed gene in the standard sample. Expression of either the test gene or the ubiquitously expressed gene can be used as the denominator. If desired, multiple ratios can be determined, such as (a) an amount of an expression product of more than one test gene to that of a single ubiquitously expressed gene, (b) an amount of an expression product of an expression product of more than one ubiquitously expressed genes, or (c) an amount of an expression product of more than one test gene to that of more than one ubiquitously expressed gene. Optionally, the ratio in the standard sample can be pre-determined.

The ratios determined in the test and standard samples are compared. A different between the ratios indicates a difference in the amount of the expression product of the test gene in the test sample.

The standard and test samples can be matched samples, such as whole cell cultures or homogenates of cells (such as a biopsy sample) and differ only in that the test biological sample has been subjected to a different environmental condition, such as a test compound, a drug whose effect is known or unknown, or altered temperature or other environmental

condition. Alternatively, the test and standard samples can be corresponding cell types which differ according to developmental age. In one embodiment, the test sample is a cancer cell, such as a colon cancer, breast cancer, lung cancer, melanoma, or brain cancer cell, and the standard sample is a normal cell.

The test gene can be a gene which encodes a protein whose biological function is known or unknown. Preferably the ratio of expression between the test gene and expression of the ubiquitously expressed gene is consistent in the standard sample. Even more preferably, expression of the ubiquitously expressed gene is not altered in the test sample. A difference between the first ratio of expression in the test sample and a second ratio of expression in the standard sample can therefore be used to indicate a difference in expression of the test gene in the test sample.

Screening for Compounds for Increasing an Organ or Cell Function

Test compounds can be screened for the ability to increase an organ or cell function by assessing their ability to increase expression of at least one tissue-specific gene. The tissue-specific gene comprises a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155:
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225.

As with the anti-cancer drug screening method described above, test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity, including small molecules from compound libraries.

Test substances can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, or can be produced recombinantly or synthesized by chemical methods known in the art.

To screen a test compound for the ability to increase an organ or cell function, a cell, such as a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, or a kidney cell, is contacted with the test compound. The cell can be a primary culture, such as an explant culture, of tissue obtained from a human, or can originate from an established cell line.

Expression of a gene product of at least one gene is determined using methods such as those described above. An increase in expression of a gene product of at least one gene comprising a sequence selected from (a) identifies the test compound as a potential drug for increasing a function of a colon cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (b) identifies the test compound as a potential drug for increasing a function of a brain cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (c) identifies the test compound as a potential drug for increasing a function of a skin cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (d) identifies the test compound as a potential drug for increasing a function of a breast cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (e) identifies the test compound as a potential drug for increasing a function of a lung cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (f) identifies the test compound as a potential drug for increasing a function of a melanocyte. An increase in expression of a gene product of at least one gene comprising a sequence selected from (g) identifies the test compound as a potential drug for increasing a function of a prostate cell. An increase in expression of a gene product of at least one gene comprising a sequence selected from (h) identifies the test compound as a potential drug for increasing a function of a kidney cell.

Restoring Function to a Diseased Tissue or Cell

Function can be restored to a diseased tissue or cell, such as a melanocyte or a colon,

brain, keratinocyte, breast, lung, prostate, or kidney cell, by delivering an appropriate tissue-specific gene to cells of that tissue. The tissue specific gene comprises a nucleotide sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85 (colon-specific);
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151 (brain-specific);
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155 (keratinocyte-specific);
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160 (breast-specific);
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167 (lung-specific);
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208 (melanocyte-specific);
 - (g) the sequences shown in SEQ ID NOS:209 and 210 (prostate-specific); and
- (h) the sequences shown in SEQ ID NOS:211-224 and 225 (kidney-specific). Expression of the gene in a cell of the diseased tissue preferably is 10, 20, 30, 40, 50, 60, 70, 80, or 90% less than expression of the gene in a cell of the corresponding tissue which is normal. In some cases, the diseased cell fails to express the gene. A tissue-specific gene which is administered to cells for this purpose includes a polynucleotide comprising a coding sequence which is intron-free, such as a cDNA, as well as a polynucleotide which comprises elements in addition to the coding sequence, such as regulatory elements.

Coding sequences of many of the tissue-specific genes disclosed herein are publicly available. For the novel tissue-specific genes identified here, coding sequences can be obtained using a variety of methods, such as restriction-site PCR (Sarkar, PCR Methods Applic. 2:318-322, 1993), inverse PCR (Triglia et al., Nucleic Acids Res. 16:8186, 1988), capture PCR (Lagerstrom, et al., PCR Methods Applic. 1:111-119, 1991). Alternatively, the partial sequences disclosed herein can be nick-translated or end-labeled with ³²P using polynucleotide kinase using labeling methods known to those with skill in the art (BASIC METHODS IN MOLECULAR BIOLOGY, Davis et al., eds., Elsevier Press, N.Y., 1986). A lambda library prepared from the appropriate human tissue can then be directly screened with the labelled sequences of interest.

Many methods for introducing polynucleotides into cells or tissues are available and

can be used to deliver a tissue-specific gene to a cell in vitro or in vivo. Introduction of the tissue-specific gene into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into a cell, such as transfection, electroporation, microinjection, lipofection, adsorption, and protoplast fusion. For in vitro administration, a tissue-specific gene can be added to a tissue culture preparation, either as a component of the medium or in addition to the medium. In vivo administration can be by means of direct injection of a vector comprising a tissue-specific gene to the particular tissue or cells to which the tissue-specific gene is to be delivered. Alternatively, the tissue-specific gene can be included in a vector which is capable of targeting a particular tissue and administered systemically (59-61).

For *in vitro* administration, suitable concentrations of a tissue-specific gene in the culture medium range from at least about 10 pg to 100 pg/ml, about 100 pg to about 500 pg/ml, about 500 pg to about 1 ng/ml, about 1 ng to about 10 ng/ml, about 10 ng to about 100 ng/ml, or about 100 ng/ml to about 500 ng/ml. For local administration, effective dosages of a tissue-specific gene range from at least about 10 ng to about 100 ng, about 50 ng to 150 ng, about 100 ng to about 250 ng, about 1 µg to about 10 µg, about 5 µg to about 50 µg, about 25 µg to about 100 µg, about 75 µg to about 250 µg, about 100 µg to about 250 µg, about 1 mg, about 1 mg to about 10 mg, about 5 mg to about 500 µg, about 50 mg to about 50 mg, about 5 mg to about 50 mg, about 25 mg to about 100 mg, or about 50 mg to about 200 mg of DNA per injection. Suitable concentrations for systemic administration range from at least about 500 ng to about 50 mg, about 1 µg to about 2 mg, about 5 µg to about 500 µg, and about 20 µg to about 100 µg of DNA per kg of body weight.

Recombinant DNA technologies can be used to improve expression of the tissue-specific gene by manipulating, for example, the number of copies of the gene in the cell, the efficiency with which the gene is transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of post-translational modifications. Recombinant techniques useful for increasing the expression of a tissue-specific gene in a cell include, but are not limited to, providing the tissue-specific gene in a high-copy number plasmid, integrating the tissue-specific gene into one or more host cell chromosomes, adding vector stability sequences to plasmids, substituting or modifying

transcription control signals (e.g., promoters, operators, enhancers), substituting or modulating translational control signals (e.g., ribosome binding sites, Shine-Dalgarno sequences), and deleting sequences that destabilize transcripts. (See Dow et al., U.S. Patent 5,935,568).

Preferably, delivery of the tissue-specific gene increases expression of a gene product of the tissue-specific gene in the cell or tissue by at least 10, 20, 30, 40, 50, 60 70, 80, 90, 95, 98, 99, or 100% relative to expression of the tissue-specific gene in a diseased cell or tissue to which the gene has not been delivered. Expression of a protein product of the tissue-specific gene can be determined immunologically, using methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, incorporation of labeled amino acids into a protein product can be determined. RNA expression is preferably determined using one or more oligonucleotide probes, either in solution or immobilized on a solid support, as described above.

All documents cited in this disclosure are expressly incorporated herein. The above disclosure generally describes the present invention, and all references cited in this disclosure are incorporated by reference herein. A more complete understanding can be obtained by reference to the following specific examples which are provided for purposes of illustration only and are not intended to limit the scope of the invention.

EXAMPLE 1

Tissue samples and the SAGE method

RNA for normal tissues was obtained from the following sources: colon epithelial cells isolated from sections of normal colon mucosa from two patients (41); HaCaT keratinocyte cells (42), normal mammary epithelial cells from two individuals (Clonetics); normal bronchial epithelial cell from two individuals (43); normal melanocytes from two individuals (Cascade Biologics); normal cultured monocytes, dendritic cells and TNF activated dendritic cells; two normal kidney epithelial cell lines; cultured chondrocyte cells from two normal individuals and one patient with osteoarthritic disease; normal fetal cardiomyocytes in normoxic and hypoxic conditions; and normal brain white matter from

two patients and normal cultured astrocyte cells.

RNA for diseased tissues was obtained from the following sources: primary colon adenocarcinomas from two patients, HCT116, DLD1, HT29, Caco2, SW837, SW480, and RKO colon cancer cell lines cultured *in vitro* in a variety of different cellular conditions including log phase growth, G1/G2 phase growth arrest, and apoptosis (40, 41, 44, 45); primary pancreatic adenocarcinomas from two patients and ASPC-1 and PL-45 pancreatic cancer cell lines (41); breast cancer cell lines 21-PT, 21-MT, MDA-468, SK-BR3, and BT-474; primary lung squamous cell cancers from two patients (43), primary lung adenocarcinoma from one patient, and the A549 lung cancer cell line (43); primary melanomas from 3 patients; kidney epithelial cells lines from two patients with polycystic kidney disease; hemangiopericytomas from 5 patients; primary glioblastoma tumors from two patients; and the H392 glioblastoma cell line.

Isolation of polyadenylate RNA and the SAGE method for all tissues was performed as previously described (1, 12; see also U.S. Patents 5,866,330 and 5,695,937).

EXAMPLE 2

Data analysis

The SAGE software (12) was used to analyze raw sequence data and to identify a total of 3,668,175 SAGE tags. Of these, 171,346 tags (4.7%) corresponded to linker sequences and were removed from further analysis. The remaining 3,496,829 tags were derived from transcript sequences, but a small fraction of these contained sequencing errors. SAGE analysis of yeast (1), for which the entire genome sequence is known, demonstrated a sequencing error rate of ~0.7% per bp, translating to a tag error rate of 6.8% (1-0.993; 10), in accord with sequence errors measured in the current data set.

To provide as accurate an estimate of unique genes as possible, we accounted for sequencing errors in two ways. First, we only considered tags that occurred twice in the data set. Although this requirement might have removed legitimate transcript tags expressed at very low levels (less than approximately 0.2 copies per cell, or 2 copies in 3,496,829 transcript tags), it eliminated the majority of sequencing errors (172,276 tags).

Second, because of the size of the data set utilized, it was possible that the same

sequencing error in a given tag may be observed multiple times. To account for these, tags with expression levels high enough to give multiple redundant errors were analyzed for single base substitutions, insertions, and deletions. If the observed expression level of a tag did not exceed its expected incidence due to redundant errors by a factor of five, it was assumed to be the result of a repeated sequencing error. This identified and removed an additional 27,051 unique tags (156,174 total tags), a number very similar to estimates of multiple sequencing errors obtained by Monte Carlo simulations.

In total, these corrections amount to a sequencing error rate of approximately 9.4%, suggesting that our analyses more than fully accounted for sequencing errors and that the remaining 134,135 unique transcript tags represented a conservative accounting of legitimate transcripts.

Transcript tags were matched to known genes and ESTs by use of tables containing matching 10 bp transcript sequences, UniGene clusters, GenBank accession numbers, and functional descriptions downloaded from the SAGEmap web site (http://www.ncbi.nlm.nih.gov/SAGE) (Lal et al., in press) on Feb 23, 1999 (UniGene build 70, http://www.ncbi.nlm.nih.gov/UniGene), and the Microsoft Access software. As UniGene clusters numbers may change over time, the most recent tag to cluster mapping can be obtained for each transcript tag individually at http://www.ncbi.nlm.nih.gov/SAGE/SAGEtag.cgi, or for the entire data set at http://www.sagenet.org./transcriptome. A total of 37,534 distinct transcripts from the UniGene database contained polyadenylation signals or polyadenylated tails and matched the collection of SAGE transcript tags; these corresponded to 23,534 unique UniGene clusters.

Transcript abundance per cell was determined simply by dividing the observed number of tags for a given transcript by the total number of transcripts obtained. An estimate of about 300,000 transcripts per cell was used to convert the abundances to copies per cell (46). For tissue specific transcripts, only transcript tags expressed at nominally ≥ 10 transcript copies per cell were considered in order to normalize for tissues with fewer total tags analyzed.

The following transcript data from this analysis are available electronically at the

SAGEnet web site (http://www.sagenet.org/transcriptome) with the corresponding expression levels and UniGene descriptions: 134,135 unique transcript tags identified from 3.5 million total transcripts tags; 69,381 transcript tags identified from colon cancer cells; 217 transcripts that are exclusively expressed in colon epithelium, keratinocytes, breast epithelium, lung epithelium, melanocytes, kidney epithelium and cells from prostate and brain; 987 transcripts that were expressed in all tissues. Individual transcript libraries from a total of ~800,000 transcript tags from colon epithelium, normal brain, colon cancer, and brain cancer are available at the SAGEmap web site (http://www.ncbi.nlm.nih.gov/SAGE) (Lal et al., in press).

EXAMPLE 3

Estimation of the number of genes present in the human genome

The transcripts detected by SAGE provides an estimate of the number of genes present in the human genome. Historically, estimates of the number of unique genes in the genome have ranged from 60,000 to over 100,000 genes using analyses of EST clustering (15), frequency of genes in characterized genomic regions, frequency of CpG islands (16), and RNA-cDNA reassociation kinetics (4). If one were to assume that each unique transcript tag observed by SAGE corresponded to a unique gene, our data would indicate that there are approximately 134,000 genes in the human genome.

However, such an approach is likely to overestimate the number of unique genes in the genome, as distinct transcripts can be derived from a single gene. Multiple sites for polyadenylation (17), alternative splicing, premature transcriptional termination (18), as well as polymorphisms in the SAGE tag or nearby restriction endonuclease site could lead to multiple transcript tags for any one gene. An analysis of all publicly available 3' end-derived ESTs revealed that this was the case for many transcripts, and provided an estimate of the multiplicity of transcripts expected for individual genes. 37,534 distinct 3' transcripts containing polyadenylation signals or polyadenylated tails were observed to correspond to 23,534 unique UniGene clusters, an average 1.6 different transcripts per gene. Applying a similar calculation to our SAGE data would suggest that the 134,135 transcripts observed corresponded to 84,103 unique genes. As our SAGE data is by no

means a complete analysis of transcripts from all possible tissues, this estimate would provide a lower boundary for the number of unique genes in the genome. This figure is significantly higher than the 65,538 genes estimated from a clustering of 982,808 ESTs (UniGene Build 70) (15), and suggests that a substantial number of genes expressed at low levels may not be present in current EST databases.

EXAMPLE 4

Assessment of transcriptome complexity

Assessment of transcriptome complexity requires a relatively complete sampling of a transcriptome for the cell type under analysis. Human cells are thought to contain close to 300,000 mRNA molecules, and therefore an analysis of at least several hundred thousand transcripts would be needed. Approximately 350,000 and 300,000 transcripts were analyzed from DLD1 and HCT116 colorectal cancer cells, respectively. As these cancer cells are diploid, have similar genetic and phenotypic properties, and have very similar gene expression patterns (see below), transcript tags obtained from these cells were analyzed in combination as well as individually.

Analysis of either cell line afforded approximately a one fold coverage of the 300,000 mRNA molecules in a cell, while the combined set represented a two fold coverage even for mRNA molecules present at a single copy per cell. Measurement of ascertained new tags at increasing increments of tags indicated that the fraction of new transcripts from analysis of additional tags approached 0 at approximately 650,000 tags in the combined set (FIG. 1). This suggested that generation of further SAGE tags would yield few additional genes, and Monte Carlo simulations indicated that analysis of 643,283 tags would identify at least one tag for a given transcript 96% of the time if its expression level was at least two transcript copies per cell, and 83% of the time if its expression level was at least one transcript copy per cell.

The combined 643,283 transcript tags represented 69,381 unique transcripts, of which 44,174 corresponded to known genes or ESTs in the GenBank or UniGene databases while 25,207 represented previously undescribed transcripts (Table 2). Even when accounting for multiple unique transcripts per gene, these transcripts would represent at least 43,502

unique genes. This is substantially higher than the previous estimate of 15,000-25,000 expressed genes obtained by RNA-DNA reassociation kinetics in a variety of human cell types (4), and suggests that a significant fraction of the genome may be expressed in individual cell types. As the kinetics of reassociation of a particular class of RNA and cDNA may be affected by a number of experimental variables and may underestimate transcripts of low abundance (4), it is not surprising that our studies have detected a higher number of expressed genes than estimated by hybridization analysis in both human cells (Table 2) and yeast.

EXAMPLE 5

Expression levels of transcripts in colon cancer cells

Expression levels of transcripts in the colon cancer cell ranged from 0.5 to 2341 copies per cell. The 61 transcripts expressed at over 500 transcript copies per cell made up nearly 1/4 of the mRNA mass of the cell and the most highly expressed 623 genes accounted for ½ of the mRNA content. In contrast, the vast majority of unique transcripts were expressed at low levels, with just under 23% of the mRNA mass of the cell comprising 90% of the unique transcripts expressed (Table 2). A "virtual rot" analysis of the expressed transcripts identified a relatively continuous distribution of gene expression without markedly discrete abundance classes, similar to those observed in previous rot studies of human cancer cells (20) (FIG. 2).

The identities of the expressed genes reveal the diversity of expression of a human transcriptome (data available at http://www.sagenet.org./transcriptome). For example, highly expressed genes often encoded proteins important in protein synthesis, energy metabolism, cellular structure and certain tissue specific functions. Moderate and low abundance genes accounted for a multitude of cellular processes including protein modification enzymes, DNA replication machinery, cell surface receptors, components of signal transduction pathways and transcription factors as well as many other transcripts with currently unknown functions.

EXAMPLE 6

Differences in gene expression between different tissues

Differences in gene expression between different tissues may provide insights into the specialized processes underlying human physiology in normal and diseased states. In line with previous observations, overall gene expression patterns among the 19 different tissues analyzed were similar (examples in FIGS. 3A-3C). Changes in gene expression between physiologic states of a particular cell type or between patient samples of the same tissue were less than changes between cell types of different origins (FIGS. 3A-3C). Likewise, only a small fraction of transcripts was exclusively expressed in a particular normal or disease tissue. Detailed analyses of transcripts from epithelia of colon, breast, lung, and kidney, melanocytes, and cells from prostate and brain, identified transcripts that were nominally expressed at greater than 10 copies per cell in one tissue but not in any other tissue studied. The fraction of these tissue-specific transcripts ranged from 0.05% in normal prostate to 1.76% in normal colon epithelium (Table 3). Approximately 50% of these transcript tags matched known genes or ESTs (examples in Table 3 and data available at http://www.sagenet.org/transcriptome). Some of these transcripts identified genes already reported to be important for tissue specific processes. For example, brain specific transcripts such as GABA receptor, myelin basic protein, and synaptopodin are known to be important for synaptic transmission (21) formation and maintenance of the myelin sheath (22) and dendrite shape and motility (23), respectively. guanylin/uroguanylin (24), carbonic anhydrase 1 (25), and CDX2 (26) are known to be expressed in colonic epithelium. 5,6-dihydroxyindole-2-carboxylic acid oxidase has been shown to have an important role for normal melanocyte pigment synthesis (27), while expression of MART-1 and melastatin may have clinical implications for melanoma patients (28, 29). However, the vast majority of the tissue specific transcripts observed have not been previously reported in the literature and their roles in the tissues examined remain to be elucidated.

EXAMPLE 7

Minimal transcriptome

Nearly 1000 transcripts were detected that were expressed at 5 transcript copies per cell in every cell type analyzed. These expressed genes represent a view into the "minimal transcriptome," the set of genes expressed in all human cells. Such genes, listed in order their in Table of uniformity of expression (and available http://www.sagenet.org./transcriptome), largely represent well known constitutive or housekeeping genes thought to provide the molecular machinery necessary for basic functions of cellular life (4). Genes involved in DNA, RNA, protein, lipid and oligosaccharide biosynthesis as well as in energy metabolism were among those observed. Additionally, genes from other functional classes including structural proteins (e.g. dystroglycan and myosin light chain), signaling molecules (e.g. 14-3-3 proteins and MAPKK2), proteins with compartmentalized functions (e.g. lysosome-associated membrane glycoprotein and ER lumen retaining protein receptor 1), cell surface receptors (e.g. FGF receptor and STRL22 G protein coupled receptor), proteins involved in intracellular transport (e.g. syntaxin and alpha SNAP), membrane transporters (e.g. Na⁺/K⁺ ATPase and mitochondrial F1/F0 ATPase), and enzymes involved in post-translational modification and protein degradation (e.g. kinases, phosphatases and proteasome components) were observed and were not previously known to be ubiquitously expressed. Well known genes often used as experimental controls such glyceraldehyde 3-phosphate dehydrogenase, elongation factor 1 alpha, and gamma actin were observed but varied in expression as much as 6 fold among different cell types.

EXAMPLE 8

Genes involved in tumorigenesis

Genes that are uniformly expressed in cancers but expressed at lower levels in normal tissues may turn out to be important for tumorigenesis, and demonstrate how gene expression patterns might be useful in the analysis of disease states. We detected 40 genes that were expressed in all cancer tissues examined at levels 3 transcript copies per cell and whose expression was at least 2-fold higher in each cancer compared to its corresponding

normal tissue (Table 5). Four of these transcripts had no matches to known genes and 15 matched ESTs with no known function. Several of the highly induced transcripts provided tantalizing clues about their roles in tumorigenesis. For example, \$100A4 has been thought to play a role in late stage tumorigenesis as it is overexpressed in colorectal adenocarcinomas but not adenomas (30), and its induction can promote (while its inhibition can prevent) metastasis in tumor models. Midkine, a heparin-binding growth factor has been reported to be overexpressed in certain cancers (34), to transform cells in vitro (35), and to promote tumor angiogenesis in vivo. Finally, overexpression of survivin, an IAP apoptosis inhibitor (37) has been recently shown to predict shorter survival rates in colorectal cancer patients and may carry out its antiapoptotic functions as a mitotic spindle checkpoint factor (39). The observed elevated expression of such genes in many tumor types indicates a potentially general role for these genes in tumorigenesis and suggests they may be useful as diagnostic markers or targets for therapeutic intervention.

EXAMPLE 9

Estimate of gene number

The 134,135 distinct transcripts identified in this study, corresponding to approximately 84,103 unique genes, provided an estimate of gene number substantially higher than the recent estimate (~65,000 genes) derived from extant EST clusters. What could account for the difference between these estimates, considering that both are derived from sequencing of transcripts from similar cell types? One explanation is that the clustering estimate is based on the number of observed EST clusters (62,236) divided by a measure of the completeness of the EST database. The latter value is calculated as the fraction of "characterized" genes in GenBank that already have EST matches (~95%). The characterized genes in GenBank have been assumed to be representative of the rest of the genes in the human genome, but our SAGE data indicated that their average expression was more than 10 fold higher than the mean levels of gene expression. Similarly, the number of ESTs that were present in clusters with characterized genes was approximately 12 fold higher than clusters composed entirely of ESTs. Such highly expressed genes would be more likely to be represented in transcript databases, thereby leading to an overestimation

of the completeness of the EST databases, and an underestimation of the number of unique genes. Indeed, the number of UniGene clusters continues to grow as a greater diversity of tissues is analyzed through the Cancer Genome Anatomy Project, and as of the date of submission of this manuscript already exceeds the recent EST derived estimate (71,849 gene clusters in Build 80 versus 65,538 predicted from Build 70).

Like other genome-wide analyses, studies of human transcriptomes using SAGE have several potential limitations. First, a small number of transcripts would be expected to lack the restriction enzyme site required to produce the 14 bp tags, and would therefore not be detected by our analyses (12). Second, our study was limited to the 19 tissues analyzed. Genes uniquely expressed in other tissues would not have been detected, and accordingly, genes observed to be tissue specific in our studies may turn out to be expressed in other normal or disease states. Finally, identification of genes corresponding to specific tags is mainly based on large but incomplete databases of ESTs and characterized genes. SAGE tags without matches to existing databases can directly be used to identify previously uncharacterized genes (1, 12, 40), but additional 3' EST data, as well as that of genomic regions would make gene identification more rapid.

REFERENCES

- 1. Velculescu et al., Cell 88, 243-251 (1997).
- 2. Pietu et al., Genome Res 9 195-209 (1999).
- 3. Wadman, Nature 398, 177 (1999).
- 4. Lewin, Gene Expression 2, 694-727 (1980).
- 5. Adams et al., Nature 377, 3 ff. (1995)
- 6. Okubo et al., DNA Res 1, 37-45 (1994).
- 7. Alwine et al. Proc Natl Acad Sci USA 74, 5350-5354 (1977).
- 8. Zinn et al. Cell 34, 865-879 (1983).
- 9. Veres et al. Science 237, 415-417 (1987).
- 10. Hedrick et al. Nature 308, 149-153 (1984).
- 11. Liang & Pardee, Science 257, 967-971 (1992).
- 12. Velculescu et al. Science 270, 484-487 (1995).
- 13. Kal et al., Mol Biol Cell 10, 1859-1872 (1999).
- 14. Basrai et al., NORF5/HUG1 is a component of the MEC1 mediated checkpoint response to DNA damage and replication arrest in S. cerevisiae. submitted.
- 15. Fields et al. Nat Genet 7, 345-346 (1994).
- 16. Antequera et al. Proc Natl Acad Sci USA 90 11995-11999 (1993).
- 17. Gautheret et al. Genome Res 8, 524-530 (1998).
- 18. Bouck et al. Trends Genet 15, 159-62 (1999).
- 19. Bentley & Groudine, Cell 53, 245-256 (1988).
- 20. Bishop et al. Nature 250, 199-204 (1974).
- 21. Mody et al. Trends Neurosci 17, 517-25 (1994).
- 22. Staugaitis et al. Bioessays 18, 13-18 (1996).
- 23. Mundel et al., J Cell Biol 139, 193-204 (1997).
- 24. Wiegand et al. FEBS Lett 311, 150-154 (1992).
- 25. Sowden et al. Differentiation 53, 67-74 (1993).
- 26. Suh & Traber, Mol Cell Biol 16, 619-625 (1996).
- 27. Blarzino et al., Free Radic Biol Med 26, 446-453 (1999).
- 28. Busam et al. Adv Anat Pathol 6, 12-18 (1999).

- 29. Duncan et al., Cancer Res 58, 1515-1520 (1998).
- 30. Takenage et al., Clin Cancer Res 3, 2309-2316 (1997).
- 31. Lloyd et al. Oncogene 17, 465-473 (1998).
- 32. Maelandsmo et al., Cancer Res 56, 5490-5498 (1996).
- 33. Muramatsu & Muramatsu, Biochem Biophy Res Commun 177, 652-658 (1991).
- 34. Tsutsui et al., Cancer Res 53, 1281-1285 (1993).
- 35. Kadomatsu et al., Br J Cancer 75, 354-359 (1997).
- 36. Choudhuri et al. Cancer Res. 57, 1814-1819 (1997).
- 37. Ambrosini et al. Nat Med 3, 917-921 (1997).
- 38. Kawasaki et al., Cancer Res 58, 5071-5074 (1998).
- 39. Li et al., Nature 396, 580-584 (1998).
- 40. Polyak et al. Nature 389, 300-304 (1997).
- 41. Zhang et al., Science 276, 1268-1272 (1997).
- 42. Boukam et al., J Cell Biol 106, 761-771 (1988).
- 43. Hibi et al., Cancer Res 58, 5690-5694 (1998).
- 44. Hermeking et al., Molecular Cell 1, 3-11 (1997).
- 45. He et al., Science 281, 1509-1512 (1998).
- 46. Hastie & Bishop, Cell 9, 761-774 (1976).
- 47. Agrawal et al., Trends Biotechnol. 10, 152-158 (1992)
- 48. Uhlmann et al., Chem. Rev. 90, 543-584 (1990)
- 49. Uhlmann et al., Tetrahedron. Lett. 215, 3539-3542 (1987)
- 50. Brown, Meth. Mol. Biol. 20, 1-8 (1994)
- 51. Sonveaux, Meth. Mol. Biol. 26, 1-72 (1994)
- 52. Uhlmann et al., Chem. Rev. 90, 543-583 (1990)
- 53. White & Bancroft, J. Biol. Chem. 257, 8569 (1982)
- 54. Sambrook et al., MOLECULAR CLONING. A LABORATORY MANUAL, 2d ed., pages 7.53-7.57 (1989)
- 55. Chee et al., Science 274, 610-14 (1996)
- 56. DeRisi et al., Nat. Genet. 14, 457-60 (1996)
- 57. Schena, Bioessays 18, 427-31 (1996)

WO 01/38577 PCT/US00/31922

- 58. Lockhart et al., Nature Biotechnology, 14 (1996)
- 59. Romanczuk et al., Hum. Gene. Ther. 10, 2615-26
- 60. Lanzov, Mol. Genet. Metab. 68, 276-82 (1999)
- 61. Lai & Lien, Exp. Nephrol. 7, 11-14 (1999)

Table 1. Tissues and transcript tags analyzed

Colon epithelium ^{1,2}	7	680'86	12,941
Keratinocytes ³	2	83,835	12,598
Breast epithelium ³	2	107,632	13,429
Lung epithelium ⁴	2	111,848	11,636
Melanocytes ³	2	110,631	14,824
Prostate ³	2	98,010	9,786
Monocytes ³	ო	66,673	9,504
Kidney epithelium ³	2	103,836	15,094
Chondrocytes ³	4	88,875	11,628
Cardiomyocytes ³	4	77,374	9,449
Brain ²	ო	202,448	23,580
Diseased Tissues			
Colon cancer ^{1,2,3}	22	1,004,509	56,153
Pancreatic cancer	4	126,414	17,050
Breast cancer ³	5	226,630	18,685
Lung cancer*	2	221,302	22,783
Melanoma³	9	269,332	25,600
Polycystic kidney disea	2	112,839	16,280
Hemangiopericytoma ³	2	199,985	31,351
Brain cancer²	ო	186,567	23,108
1.1.1	2	000	7

1 Ref. 40, 41, 44, 45 2 Lal et al. 3 unpublished 4 Ref. 43

Table 2. Transcript abundance

=	Colon Ca Unique	Colon Cancer Cells nique Mass fraction
Copies/Cell	transcripts	mRNA (%)
500 Match GenBank (%)	61 61 (100)	50
50 to 500 Match GenBank (%)	562 554 (99)	27
to 50 Match GenBank (%)	6,358 6,023 (95)	30
=5 Match GenBank (%)	62,400 37,536 (60)	23
otal Match GenBank (%)	69,381 44,174 (64)	100

Table 3. Tissue-specific genes

Tag sequence	SEQ ID NO:	Observed	Copies/cell	Copies/cell Unigene Description
Color politicalium (4.76	170			
ATACTCCACT	1	141	431	Guanylate cyclase activator 2 (guanylin, intestinal, heat-stable)
TCAGCTGCAA	.: ::	72	220	No match
GTCATCACCA	<u>ო</u>	57	174	H.saplens mRNA for GCAP-Il/uroguanylin precursor
CCTTCAAATC	4	46	141	Carbonic anhydrase I
ACACCCATCA	S	58	88	No match
CCAACACCAG	9	28	86	No match
AATAGTTTCC	_	23	02	Pregnancy-specific beta-1 glycoprotein 6
CCAGGCGTCA	80	18	55	No match
GAACAGCTCA	6	18	55	ESTs
Ì	.	15	46	No match
GGGGAGAAG	-	12	37	ESTs
AGTGGGCTCA	12	1	34	No match
GAGCACCGTG		11	34	No match
GATCTATCCA	14	10	31	ESTS
GAACGCCAGA	15	6	28	No match
GCCCTCGGAG	16	6	28	ESTs
ACAAGCCTAG	4	o	28	No match
GTCACAGGAA	18	6	28	No match
GCCCTCGGAG	19	6	28	Human homeobox protein Cdx2 mRNA, complete cds
CTAGGATGAT	20	6	28	ESTS
CCAACTATCG	21	8	24	No match
CTGACGGGGA		æ	24	ESTs
i	1 :	ω	24	Homo saplens C19sterold specific UDP-glucuronosyltransferase mRNA, complete cds
GGGTCCCAT	. 24	80	. 24	No match
GCCAGGTCAC	25	7	21	No match
	56	7	21	No match
AATCCCGCCC	27	7	21	Homo sapiens hAQP8 mRNA for aquaporin 8, complete cds
ACACTGCCTC	28	9	18	No match
AGAGTCCAGG	53	9	18	Homo sapiens carcinoembryonic antigen (CGM2) mRNA, complete cds
CCAGACGTAG	œ :	9	18	No match
GAGGCCCCG	<u>ج</u>	9	18	No match
CTGTGTGCCC		5	15	ESTs, Weakly similar to tryptase-III [H.saplens]
GAGAGGATGG	33	5	15	ESTs
GGCTGAACCA	34	2	15	No match
	-	2	15	No match
	. -	5	15	No match
ACCTTCATCT	37	2	15	EST
AGGCTTGAG	38	9	15	No match
ACCTTCATCT	98	S	15	Human rearranged metabotropic glutamate receptor type II (GLUR2) mRNA, complete cds
TCAGGCCAGA	. 40	5	15	No match
	41	S.	15	ESTS
The second of the second deposits				

Table 3, cont.

Normal Brain (1.36)

	45	5	15	Human RecA-like protein (hREC2) mRNA, complete cds
ATCTGGAGCA	43	2	15	Alcohol dehydrogenase 1 (class I), alpha polypeptide
GAGAGGATGG	44	5	15	INTEGRAL MEMBRANE PROTEIN E16
ATCTGGAGCA	45	5	15	Alcohol dehydrogenase 3 (class I), gamma polypeptide
GGATGTCAAC		5	15	Polymeric immunoglobulin receptor
CACAGACACA	47	4	12	No match
TGCTCCTAAC	48	4	12	No match
TATACCCGGA	64	4	12	No match
TATCCTGATG	200	4	12	No match
GGCCTCCCG	5.	4	12	No match
GTAGCGATGG	52	4	12	Pim-1 oncogene
GCAGGTTGTG	23	4	12	No match
TGGGAACCGG	25	3	6	No match
ACACCTCTCT	55	3	6	No match
GGAAACAGG	20	9	6	No match
!	25	3	6	No match
CAGGTTGGTC	28	3	6	Homo sapiens hRVP1 mRNA for RVP1, complete cds
GGGATATAAA	29	3	6	No match
i	09	3	6	No match
GTGTGTGAAT	. 59	3	6	No match
ATGTGACACT	29	3	6	No match
ATGGTGTAAT	3	3	6	ESTS
	64	3	6	H.sapiens mRNA for LI-cadherin
ia	65	က	6	No match
	99	3	6	No match
TAGTCGGAAA	- 63	3	6	No match
	89	3	6	No match
TCACACCCCA	69	9	6	No match
CTGCCCGAAC	2	3	6	ESTs
AGTCACCTCT	7	3	6	No match
TCATTGGTTT	72	3	6	No match
TCCTCTCTC	73	3	6	No match
ccrcrceecc	74	ဗ	თ	No match
	75	ဗ	6	No match
İ.	92	3	6	No match
GAAACAGAA	77	3	6	[55]
	78	3	6	No match
GAAAACAGAA	4	3	[6 	ESTs, Weakly similar to synapse-associated protein sap47-1 [D.melanogaster]
:	8	3	6	No match
AAACAGGCAC	81	3	တ	No match
CTTACAGTCC	82		6	No match
GAATGGACTC	83	<u>س</u>	б	No match
GAACCCAAAC	3	3	o	No match
GAAACAGAA	82	3	6	ESTS

ŝ
က
<u>응</u>
유

ACTITICING	98	160	237	Glial fibrillary addic protein
GTGCGAATCC	. 87	7.62	117	ESTS
:	88	36	53	ESTS
TTAACTITAT	68	33	49	Homo sapiens neuroendocrine-specific protein A (NSP) mRNA, complete cds
CAGCCAAATG	8	!	43	ESTs
GCCTGTGGTG	6	28	41	Homo sapiens LY6H mRNA, complete cds
	 26	26	39	ESTs
i	83	22	33	ESTs
ATTCCATTC	76	20	30	ESTS
ATTCCATTIC	95	20	30	ESTS, Highly similar to RAS-RELATED PROTEIN RAB-10 (Canis familians)
AGAGCGGA	8	19	28	Human guanine nucleotide-binding regulatory protein (Go-alpha) gene
TTCTCAATAC	26	19	28	Homo sapiens mRNA for synaptopodin
CATCCTCCCA	86	19	28	No match
GTATCGATTT	66	16	24	Homo sapiens GABA-B receptor mRNA, complete cds
TTGTAACAG	5	15	22	ESTs, Weakly similar to cyclin I (H.saplens)
;	5	15	22	ESTS
CCACATTGCC	102	15	22	Homo sapiens chromosome 7q22 sequence
CAGGGCAACG	103	15	22	No match
	1		-	Human mRNA for MOBP (myelin-associated ollgodendrocytic basic protein), complete cds,
AAAAGCAAAT	104	5	22	clone hOPRP1
ACCAATCCTA	105	14	21	Human guanine nucleotide-binding regulatory protein (Go-alpha) gene
CTGTGTGCC	106	13	19	AXONIN-1 PRECURSOR
TCAGACAATA	107	12	18	ESTS
TGGTGAGATG	108	12	18	ESTS
ATTITIGIT	109	12	18	ESTS
ACATTGAGTC	110	12	18	Homo sapiens mRNA for MEGF4, partial cds
	111	11	16	Glutamate receptor, metabotropic 3
GTCCCACTTC	112	11	16	ESTS
GGGGCCCGAA	=======================================	11	16	No match
TGACTCACCC	114	10	15	Homo sapiens calmodulin-stimulated phosphodiesterase PDE1B1 mRNA, complete cds
GACAGCGACA	115	10	15	No match
	116	10	15	ESTs
TAGCTATAAA	117	10	15	ESTS
GGTGTACATA	118	9	15	ESTS
GTTTCATTT	119	10	15	ESTS
AATAAATTGC	120	10	15	ESTS
GTTTCATTT	121	10	15	ESTS
	122	9	15	No match
-	123	10	15	ESTS
	124	10	15	Homo saplens cyclin E2 mRNA, complete cds
TTTAGCAGAA	125	10	15	ESTS
CAATTTATGA	126	6	13	ESTS
GTGAAGGTTT	127	G	13	Homo saplens (huc) mRNA, complete cds
	128	6	13	ESTS
CGATGCCACG	129	6	13	No match
				Neuron-specific RNA recognition motifs (RRMs)-containing protein (human, hippocampus,
GTGAAGGTTT	130	o	13	mRNA, 1992 nt

_
ខ្ជ
Ū
m
_
₾
죠
D

TGGACTTTA	131	6	13	ESTs
20	132	6	13	No match
TCCATTCAAG	133	6	13	Human clone 23586 mRNA sequence
:	134	8	12	No match
	135	80	12	No match
TATTATCTTG	136	8	12	
	137	8	12	ESTs
				ESTS. Weakly similar to EPIDERMAL GROWTH FACTOR RECEPTOR KINASE SUBSTRATE
ACTITATACS	138	•	12	EPS8 [H.sapiens]
	130		12	BETA-NEOENDORPHIN-DYNORPHIN PRECURSOR
2222	2 3		45	No motive
161AGIGCIC	04.	0	7	
CTGCTTAAGT	141	80	12	ES1s, Weakly similar to unknown (H.sapiens)
!	142	8	12	Human mRNA for KIAA0027 gene, partial cds
AATCCCAATC	143	7	10	Homo sabiens mRNA for KIAA0283 gene, partial cds
			-	No match
AC-A-GCA-C	4 1	-		
ACGAGTCATT	145	_	01	FOIS
į	146	4	2	Homo saplens clone 24461 mRNA sequence
				ESTS. Highly similar to HYPOTHETICAL 52.2 KD PROTEIN 2K512.6 IN CHROMOSOME III
	147	_	5	[Caenorhabditis elegans]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>.</u>			
THATTCAT	148	_	2	[ED18
ACAGAGCATT	149	7	5	No match
TATA COAC	150	7	ç	
2	3 ;			Charles At 11 and 12 an
AATCCCAATG	151	\	10	Plasun 1 (1 isolorm)
Keratinocytes (0.087%)				
GCGAACTGGG	152	သ	18	ORPHAN RECEPTOR TR4
GCAACACTAA	153	۳	-	No match
	9 4	-	-	State CN
GIAAIGGAII	<u> </u>			No model
AGCAGACGTG	155	2		INO MBIGN
Breast Epithellum (0.14%)			ŗ	
GGATTCGGTC	156	9	4	No match
CGGAAGGCGG	157	2	7	No match
TOTACTACE	452	5	7	No match
	3 5			
GALCAGICAI	60	+	= :	
GCTCAGAGTT	1 60	4	=	No match
			· 1	
Lung epithellum (0.17%)			•	
:	161	Go	241	No market
333	5	8	;	
AGGAACAACT	162	ام	2	No match
50000	163	9	5	No match
A PARA COAF	16.4		<u>~</u>	So Batch
21000	3 5	,	? ;	
GCIGIGCACA	3	4	=	NO FIRECT
CAGAAATCA	166	4	=	No match
)	

8
m
9
ē

No match	No match 5.6-DIHYDROXYINDOLE-2-CARBOXYLIC ACID OXIDASE PRECURSOR ESTS 5.6-DIHYDROXYINDOLE-2-CARBOXYLIC ACID OXIDASE PRECURSOR	ESTs, Weakly similar to LACTOSE PERMEASE (Escherichia coli) ESTs, Highly similar to HIGH AFFIMMUNOGLOBULIN GAMMA FC RECEPTOR I PRECURSOR (Homo sapiens)	No match No match	No match ESTs, Moderately similar to PAS protein 5 [H.saplens]	Human melanoma antigen recognized by T-cells (MART-1) mRNA Human cysleine protease CPP32 Isoform alpha mRNA, complete cds	EST PROJEN-TYROSINE PHOSPHATASE ZETA PRECURSOR	No match	Homo sapiens cone 23/05 mkNA sequence Human DNA sequence from PAC 257A7 on chromosome 6p24. Contains two unknown genes	and ESTs, STSs and a GSS	No match	Homo saplens mRNA for KIAA0679 protein, partial cds	No match	Homo sapiens melastatin 1 (MLSN1) mKNA, complete cds	Homo saplens mRNA for synaptosome associated protein of 23 kilodaltons, Isoform A	Msh (Drosophila) homeo box homolog 1 (formerly homeo box 7)	Homo sapiens thyroid receptor Interactor (TRIPB) mKNA, 3 and of cos	Interferon regulatory factor 4	ESTS	ESTS	ESTS	ESTS, Weakly Similar to line-1 protein OKFZ IT Sapiens	No field:	FST	Human R kappa B mRNA, complete cds	Homo sapiens clone 23688 mRNA sequence	No match	No match	No maich	·······
Ξ	309 108 73	57	43	8 8	88	33	24	24	24	22	19	19	9	0,0	16	9	4 4	14	14	41	7	4 2	2 =	=	Ξ	Ξ	= :	= =	-
4	114 40 39 27	21	15	14	12	12	6	6	6	8	01/	7	7		9	9	vo e	2	2	S	S	0		4	4	4	7	4	·
167	168 169 170	172	174	176	178	8 5	182	183	184	185	185	188	189	8 5	192	193	194	95	197	198	199	200	502	203	204	502	206	, 60 70 70 70 70 70 70 70 70 70 70 70 70 70	}
GATTTGCTGG	Melanosyte (0.93%) GTGCCATTCT GATATTTGTC TATGATTTTA TCACTGCAAC	CCCAGTCACA	GAGTTTAGTG	ATCCAGTGAC	AATGGCTGTT	ATACTAAAAA	AGAAATCAGT	TTGGATATTA	AATTGAGTAG	TGAGTGCTGC	GCAGTACAGT	GACTTCTTTA	GAATTCAGGA	GATTCAGGA	GCCCGTGTAG	TGGGTGTGC	AATTITTATG	STATE SACTOR SAC	TTCTTCTCAA	TTCTTCTCAA	GGTTGTCTCT	CTTTGTTTAC	CACIAIAGAA	TOADAGOT	1	TATAGAGCAA	TAATAACCAG	TTCTATACT6	September 1

8
'n
읊
Ω
ਛ

Normal Kidney (0.27%)				
CGACAACTA	211	7	12	No match
CTACCACACA	212	4	12	No match
ACCOTCAATC	. 213	4	12	No match
	214	4	12	Human mRNA for KIAA0259 gene, partial cds
TGGCTCGGTC	215	4	12	
	216	4	12	No match
GCACTAGCTG	217	i	6	No match
į L	218	3	6	No maich
CGGCAGTCCC	219	3	6	No match
GCCCACCTGT	220	3	6	No match
CGGCGGATGG	23	3	6	No match
į	222		6	No match
CCCATTCCAA	223	က	6	No match
TCAAGAGGTG	224	3	6	No match
ATAACTGTTG	225	3	6	Human HFREP-1 mRNA for unknown protein, complete cds
			٠	
				The state of the s

	:			and the state of t
-				
				TO THE COLUMN TO THE COLUMN TWO THE
ļ_				The designation of the first term and designation and the first term to the designation and the second seco
	:			C translation tratt and an artistic contract of the finds in contract and in the contract of t
				TO THE PROPERTY OF THE PROPERT
				- Care - C.
	:			
				DES DE L'AMBRES DES REPRESENTATION DE PROPERTIES DE L'AMBRES DE L'AMBRE L'AMBRES DE L'AMBRES DE L'AMBR
) at 1 (major) igni men mijorium menterum t. 2 (f) tid jediske ramane generium munistijad od taket i e menerium ediske ediskenium menerium ediske
				THE STREET OF THE STREET OF THE PROPERTY OF TH

Table 4. Ubiquitously expressed transcripts

	27	25 . 98 1.21 7 . 29 1.21 51 . 193 1.23 32 . 162 1.24 21 . 111 1.25 19 . 93 1.25 19 . 93 1.26 24 . 105 1.27 26 . 110 1.31
1.32 1.32 1.33 1.33 1.33 1.33	. 57 . 54 . 78 . 254	26 2 2 26

÷
ទី
ጵ
4.
Φ
슗
7

نيہ
⊆
ខ
4
<u>•</u>
ō
Ë

GCN5-like 1=GCN5 homolog/putative regulator of transcriptional activation (clone	GCN5L1	saplens ribosomal protein L11 mRNA, complete cds	ESTs	Human ribosomal protein L23-related mRNA, complete cds		Heterogeneous nuclear ribonucleoprotein K	ESTS	Himan Iveyl Oxidase-related profein (WSQ-14) mRNA complete ods	Tools on some francoins	Tesus emiarces gene mansoripr	H sapiens mkNA for I KAMP protein	ESTs	Human guanylate kinase (GUK1) mRNA, complete cds		Homo sapiens mRNA for low molecular mass ublquinone-binding protein, complete cds	Human mRNA for antilleukoprotease (ALP) from cervix uterus	Radin blood group	Adrenergic, beta, receptor kinase 1	Cytoplasmic antiproteinase=38 kda Intracellular serine proteinase inhibitor		Calpain, small polypeptide	Solute carrier family 5 (sodium/glucose cotransporter), member 2	Ewing sarcoma breakbolnt region 1		ESTs, Moderately similar to T13H5.2 [C.elegans]			60S RIBOSOMAL PROTEIN L30		Homo saplens acyl-protein thioesterase mRNA, complete cds	ER LUMEN PROTEIN RETAINING RECEPTOR 1	ESTS, Highly similar to PROTEIN TRANSPORT PROTEIN SEC61 ALPHA SUBUNIT	Human FK-506 binding protein homologue (FKBP38) mRNA, complete cds	Homo sapiens (clone mf.18) RNA polymerase II mRNA, complete cds	Homo sapiens mRNA for putative methyltransferase	Homo sapiens 3-phosphoglycerate dehydrogenase mRNA, complete cds	ESTS	rotein I	Human BAC clone RG114A06 from 7q31	Ubiquitin-conjugating enzyme E2I (homologous to yeast UBC9)			Adaptin, beta 1 (beta prime)	60S RIBOSOMAL PROTEIN L13	H.sapiens mRNA for ras-related GTP-binding protein	PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR	Human mRNA for cyclin I, complete cds
	1.46	1.46	1.46	1.47	1.47	1.47	1.47	1.47	4	04.	1.48	1.48	1.48	1.48	1.48	1.49	1.49	1.49	1.49	1.50	1.50	1.50	1.50	1.50	1.51	1.51	1.51	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.53	1.53	1.53	1.53	1.53	1.54	<u>7.</u>	1.56	1.56	1.56	1.56	1.56	1.56
	7.4	825	105	23	2177	27	8		3 ;	4/4	9	2	254	191	138	978	29	. 44	74	618	418	38	63	52	37	37	368	999	899	43	7	122	323	91	45	141	33	141	141	28	87	1076	3	78	53	132	9
		. 111	13	٠	383 -					•		٠ ،		33	. 24	196			13	. 98	. 06							119	119 .			24 .	30	. 91		21 .			++			51		. 51		19	
	=	443	62	43	1233 30	15	-	: :	- 3	501	. 21	1 5	134	107	77 2	526		34	Ţ	356 8	6	5	52	5	73		207		361	28	38	65	192	4.9	5¢	. 82	82		SS F	g	64	658	28	42	72	2	\$
	352	353	354	355	356	357	. 358	350	200	000	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397
	GCACCATTG	CGCTGGTTCC	GGCCTGGGG	CGAGGAGG	TTGGTCCTCT	TCCCTGGCAT	GGGGCTGCT	GEGGETTE		くそうつつつかく	CTGCTAGGAA	AACTGCGGCA	TGGAGTGGAG	TGAAGGAGCC	GGGGACTGAA	TGCACGTTTT	CTGGATGCCG	сссстсете	ATGATGCGGT	ATTCTCCAGT	CCCCAGTTGC	CCAAGGATTG	CCGAGGTG	GACTCTCTCA	CTCTGGGA	GACTCTGGGA	CGCCGCGTG	CCAGAACAGA	CCAGAACAGA	recrirringe	TTTTGTACA	GTTCTCCCAC	GACCTGCCC	всссесст	STGCTGGAG	TTACCTCCTT	ACCAGGGC	TTCTGGCTGC	TCTGGCTGC	CTTCTCACCG	AGAACCGTA	GCGACCGTCA	GTCAAGACCA	стеветстес	CGATTCTGGA	CAGGAGGAGT	CAAAATCAGG

نـ
S
3
4
<u>•</u>
മ

	200	2	?	•		# 1
						Hydroxyacyi-Coenzyme A dehydrogenase/3-ketoacyi-Coenzyme A Inidiase/enoyi-
TTTCTGCTG	399	38	9	8	1.57	Coenzyme A hydratase (trifunctional protein), beta subunit
CCTGGCAAT	400	8	=	. 61	1.57	ESTs
GGCTACGGA	401	807	199	. 1472	1.58	60S RIBOSOMAL PROTEIN L13A
GAGGCCATCC	402	23	60	. 45	1.58	Homo sapiens chromosome 19, cosmid R30783
сттеатет	403	98	Ξ	. 25	1.58	Homo sapiens mRNA for NORI-1, complete cds ESTs. Waakly similar to MALONYL COA-ACYL CARRIER PROTEIN TRANSACYLASE
TEGACCIEG	404	113	53	. 206	1.58	[E.coll]
TGGACCTGG	405	113	8	208	1.58	ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit
GTTCGTGCCA	406	213	: :	. 379	1.58	Ribosomal protein L35a
GATGCTGCCA	407	154	8	. 277	1.58	Human mRNA for Epstein-Barr virus small RNAs (EBERs) associated protein (EAP)
ACGCTCCGA	408	27	60		1.58	ESTs
GAGTCAGGAG	409	29	80	. 53	1.59	ESTs, Highly similar to COATOMER ZETA SUBUNIT [Bos taurus]
GGAGGCTGAG	410	9	37	. 171	1.59	Homo sapiens mRNA for KIAA0792 protein, complete cds
GGAGGCTGAG	411	8	37	171	1.59	Homo saplens putative fatty acid desaturase MLD mRNA, complete cds
GTGATGGTGT	412	75	24	. 143	1.59	Thyroid autoantigen 70kD (Ku antigen)
CAGATGGCG	413	. 45	9	. 78	1.59	Homo saplens hD54+ins2 isoform (hD54) mRNA, complete cds
ATGCGAAAGG	414	32	ø	. 59	1.59	Dodecenoyi-Coenzyme A delta Isomerase (3,2 trans-enoyi-Coenzyme A isomerase)
						ESTS, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE ASHI SUBUNIT
GCTGGGTGG	415	49	28	. 133	1.60	PRECURSOR (Bos taurus)
тестесетес	416	67	28	. 133	1.60	Homo sapiens folylpolyglutamate synthetase mRNA, complete cds
TCAAATGCAT	417	37	σ	. 68	1.60	HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEINS C1/C2
TCCAAGGAAG	418	£	ĸ	. 28	1.60	Homo saplens DBI-related protein mRNA, complete cds
						Homo sapiens chaperonin containing t-complex polypeptide 1, delta subunit (Cctd)
CCCAGGGAGA	419	49	=	06 .	1.60	mRNA, complete cds
TGGCCTGCCC	420	35	5	- 102	1.60	ESTS
GGCCTGCCC	421	¥	ñ	. 102	1.60	ESTs, Moderately similar to PEANUT PROTEIN [Urosophila melanogaster]
GGCCAAAGGC	422	39	=	. 11	1.60	Human mRNA for KIAA0064 gene, complete cds
SECTECTEC	423	69	5	. 125	1.60	ESTs, Highly similar to C10 (H.saplens)
						ESTS, Highly similar to HYPOTHETICAL 6.3 KD PROTEIN 2K652.2 IN CHROMOSOME
GTGAAGCTGA	424	22	7	4	1.61	III (Caenorhabdilis elegans)
GTGAAGCTGA	425	22	^		1.61	ESTs, Highly similar to thymic epithelial cell surface antigen (M.musculus)
GAAATGTAAG	426	20	12	. 93	1.62	ESTS
SAATGTAAG	427	\$	12	. 93	1.62	H.sapiens hnRNP,E2 mRNA
CGTGTTAATG	428	73	5	. 148	1.62	CELLULAR NUCLEIC ACID BINDING PROTEIN
AGGGGATTCC	429	49	ø	. 40	1.62	lete cds
CAGCTCACTG	430	188	23	. 328	1.63	ste cds
GTTTGGCAGT	. 431	35	5		1.63	Homo sapiens mRNA for EDF-1 protein
						ESTs, Moderately similar to NADH-UBIQUINONE OXIDOREDUCTASE B15 SUBUNIT
GGAGCTCTGT	432	48	13	. 92	1.63	(Bos taurus)
TGGAACTGTG .	433	22	ĸ	+ 5	1.63	ESTs, Weakly similar to III! ALU SUBFAMILY SQ WARNING EN IRY III! [H.sapiens]
TCTGCTTACA	434	58	8	114	1.63	Human ribosomal protein L10 mRNA, complete cds
			•		i	UBIQUINOL-CYTOCHROME C REDOCTAVE COMPLEX SUBUNIT VI REGOLING
AGGCTTCCA	435	643	202	. 1257	49. 49.	PROTEIN
GAGCAAACGG	436	2	ĸ	. 37	<u>.</u> 2	Homo sapiens chromosome 19, cosmid R26445
TGTGATCAGA	437	88	22	171	1.64	Homo sapiens F1F0-tope ATP synthase subunit a mRNA, complete cds

ESTs, Weakly similar to putative progesterone binding protein [H.saplens]	H.sapiens hnRNP-E2 mRNA	Human methlonine aminopeptidase mRNA, complete cds	elegans)	Human mRNA for cysteine protease, complete cds	Human translation initiation factor eIF3 p40 subunit mRNA, complete cds	PROTEIN PHOSPHATASE PP2A, 65 KD REGULATORY SUBUNIT, ALPHA ISOFORM	U. mos elettric accountly activity 60 (ADEO) mDMA complete ode	ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (oligomycin	sensitivity conferring protein)	er det en	Heat shock 27kD protein 1	ADENYLYL CYCLASE-ASSOCIATED PROTEIN 1	Heterogeneous nuclear ribonucleoprotein A1	40S RIBOSOMAL PROTEIN S20	ESTs	Proteasome (prosome, macropain) subunit, beta type, 6	Calcineurin B	ESTS, Highly similar to HYPOTHETICAL 38.2 KD PROTEIN IN BEM2-SPT2	INTERGENIC REGION (Saccharomyces cerevisiae)	Human mRNA for KIAA0315 gene, partial cds	Human p97 mRNA, complete cds	:	ESTS, Highly similar to 60S RIBOSOMAL PROTEIN L36 [Rattus norvegicus]	ADP-ribosylation factor 5	Calnexin	ESTS	GLYCOPROTEIN HORMONES ALPHA CHAIN PRECURSOR	Human mRNA for Mr 110,000 antigen, complete cds	FOLS, WEAKLY SIMILATED THE CONTROLL ALS NO PROLEGIATIONS CONTRACTIONS OF THE CONTROLL OF THE C	FK506-BINDING PROTEIN PRECURSOR	TRANSLATIONALLY CONTROLLED TUMOR PROTEIN	Human mitochondrial ATP synthase subunit 9, P3 gene copy, mRNA, nuclear gene	encoding mitochondrial protein, complete cds	to a comment of the second sec	60S RIBOSOMAL PROTEIN L24	Homo saplens ribosomal protein L33-like protein mRNA, complete cds	Ribosomal protein L12	Human mRNA for reticulocalbin, complete cds	Hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-	Coenzyme A hydratase (trifunctional protein), alpha subunit	Homo saplens SPF31 (SPF31) mRNA, complete cds	Human nASNA-I mKNA, complete cds	Homo sapiens clone 24775 mKNA sequence
1.64	1.64	1.64	1.65	1.65	1.65	1.65	20.4		1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.67		1.67	1.67	1.67	1.67	1.68	1.68	1.68	1.68	1.68	1.69	60	69.	1.69		1.70	1.70	1.70	1.70	1.70	1.70		1.70	2.3	1.71	1.71
99	79	35	86	8	44	ç	3 1	85	-	. 9	B24	98	276	312	98	118	107		46	86	99	599	948	8	69	36	58	95	;	; &	187		187	38	136	35	722	51		89	S	99	5
. 9	t2							2	5		119			. 72						*	. 21	73	162 .		10					• =			. 72				. 98	. 9		· =		s.	
37	7	16	38	15	45	3	; ;	84	9	: 2	425	₩	137	171	5	22	SS		23	5.	ន	314	469	31	28	81	2	47	i	, y	85		40	17	75	18	374	27		;	9	38	‡
438	439	440	441	442	443	444	1 1 6	445	446	447	448	449	450	451	452	453	454		455	456	457	458	459	460	461	462	463	\$	166	466 66	467		468	469	470	471	472	473		474	475	476	477
ACACTACGGG	AGCCAAAAA	<u> всевететев</u>	TTGCTAGAGG	GGGCTTCTG	AACTCTTGAA	COCCASTORS	000000000000000000000000000000000000000	A G C A C A A	TCTGTCAAGA	A SUCCE A SUCCE A	GGCAAGCCC	CTCATCAGCT	CTGTTGATTG	GCTTTTAAGG	GCCTGAGCCT	GAGCGGGATG	TTCACAGTGG		GCCGTGCCA	CCCTAGGTTG	CCCTGATTTT	GTGTTAACCA	AGGAAAGCTG	TCTCTCTGT	TTACTAMATG	GGGTGTGGTG	CCACTGCAGT	AGCCTGGACT	CTCCCTC	CACTACAGG	CTCATAGCAG		GGAATGTACG	CTGAGGGTGG	AAGGTCGAGC	GAATCACTGC	ACATCATCGA	GAATGAGGAC		CCTCGCTCAG	TCCTAGCCTG	AGGTGCGGGG	CTCCAATAAA

ì	
ĺ	
7	3
2	1
ş	

:							ESTs, Weakly similar to HYPOTHETICAL 9.9 KD PROTEIN B0495.6 IN CHROMOSOME
GCGCTGGAGT	478	7.3	23		147	1.71	II [C.elegans]
AATTTGCAAC	479	. 21	un		9	1.71	
AACGCGGCCA	480	448	2		790	1.71	Macrophage migration inhibitory factor
GGTGTATATG	481	53	1		42	1.71	Homo sapiens chromosome 9. P1 clone 11659
GGCAACAAAA	482	32	80		99	1.71	A, complete cds
GGCAACAAAA	483	35	60		99	1.71	Homo sapiens importin beta subunit mRNA, complete cds
TTTGTGACTG	484	28	Ç		62	1.71	Homo sapiens phosphoprotein CtBP mRNA, complete cds
TGAGGCCGG	485	23	^		4	1.72	No match
:							Human HS1 binding protein HAX-1 mRNA, nuclear gene encoding mitochondrial protein,
TCAGTTTGTC	486	39	15		18	1.72	complete ods
CCCTATTAAG	487	69	9		129	1.72	
TITCTAGTIT	488	55	88		123	1.72	Human mRNA for KIAA0108 gene, complete cds
беессттсс	489	20	ın		Ş	1.72	Homo sapiens clone 24684 mRNA sequence
GGCCCTTCC	490	50	ĸ		\$	1.72	
сстевтт	491	54	9		47	1.72	Homo sapiens DNA-binding protein (CROC-1B) mRNA, complete cds
GCTAAGGAGA	492	.6	23	•	161	1.72	Human ras-related C3 botulinum toxin substrate (rac) mRNA, complete cds
TGAGGGGTGA	493	27	60		8	1.72	Human Gps1 (GPS1) mRNA, complete cds
CCAGCTGCCA	494	63	19		128	1.73	Ubiquitin activating enzyme E1
GGGCTGTTTG	495	16	ĸ		8	1.73	No match
TGGACACAAG	496	8	vo		38	1.73	
TCTCCAGGAA	497	4	12		68	1.73	ESTS. Weakly similar to PUTATIVE MITOCHONDRIAL CARRIER C16C10.1 (C.elegans)
TGATGTTTGA	498	54	60		64	1.73	Human mRNA for KIAA0058 gene, complete cds
GTGGTGCACG	499	82	ũ		155	1.73	No match
GTCTGCACCT	200	32	œ		2	1.73	ESTs, Weakly similar to NUCLEAR PROTEIN SNF7 (Saccharomyces cerevisiae)
GATGACCCCG	501	32	Ξ		88	1.73	ESTs, Weakly similar to F08G12.1 [C.elegans]
ATCAAGGGTG	202	569	27		484	1.73	
TCTGGTCTGG	503	8	7		72	1.74	Human surface antigen mRNA, complete cds
AGGATGACCC	504	42	Φ		79	1.74	ESTs, Weakly similar to lon channel homolog RIC (M.musculus)
AAAGGGGGCA	505	82	6		88	1.74	H.sapiens mRNA for activin beta-C chain
SCTTTACCC	206	178	98		365	1.74	Eukaryotic translation initiation factor 5A
SCTTTTAGA	207	38	5		78	1.74	nplete cds
CTCTGCTCGG	208	18	40		37	1.74	Homo sapiens clone 638 unknown mRNA, complete sequence
GCCTGGGACT	209	58	8		50	1.74	
GTAGCAGGG	510	R	ъ		20	1.74	
GCCGATCCTC	511	3.	^	•	19	1.74	omplete cds
GCAGCTCAGG	512	S	5	•	ē	1.74	Cathepsin D (iysosomal aspartyl protease)
CGCAGTGTCC	513	118	8		225	1.75	Vacuolar H+ ATPase proton channel subunit
CCCCTATTAA	514	62	5		121	1.75	
TTGTAAAAGG	515	23	60		47	1,75	Homo sapiens chromosome 9, P1 clone 11659
CACACCGGT	516	17	ø		36	1.75	Heme oxygenase (decycling) 2
							Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta
CTGGAAGAG	517	192	8		396	1.75	polypeptide (protein disulfide isomerase; thyroid hormone binding protein p55)
TAGCCGCTGA	518	37	7		72	1.75	Homo sapiens alpha SNAP mRNA, complete cds
CCTAGGACCT	519	91	ď		39	1.75	Homo sapiens Arp2/3 protein complex subunit p20-Arc (ARC20) mRNA, complete cds
GTGGACCCTG	520	28	œ		25	1.75	Surfelt 1

Ē
8
٠.
4
9
5
₹

ESTs. Weakly similar to R05G6 4 gene product IC elegens!	soleucine-IRNA synthetase	EST8	Homo sapiens nuclear chloride ion channel protein (NCC27) mRNA, complete cds	ESTs, Weakly similar to Yel007c-ap [S.cerevisiae]	ESTs	ESTs, Weakly similar to alpha 2,6-sialyttransferase [R.norvegicus]	Sorbitol dehydrogenase	LAMIN A	ESTs, Highly similar to SEX-REGULATED PROTEIN JANUS-A [Drosophila	melanogasteri	MYOSIN LIGHT CHAIN ALKALI, SMOOTH-MUSCLE ISOFORM	ESTs, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE SUBUNIT B14.5A	[Bos taurus]	Eukaryotic translation initiation factor 4A (eIF-4A) isoform 1	Homo sapiens mRNA for RanBPM, complete cds	Protein phosphatase 1, catalytic subunit, alpha isoform	ESTs	Homo sapiens mRNA for Hrs, complete cds	Homo sapiens Bruton's tyrosine kinase (BTK), alpha-D-galactosidase A (GLA), L44-like	ribosomal protein (L44L) and FTP3 (FTP3) genes, complete cds	ESTs, Weakly similar to F49C12.12 (C.elegans)		SM22-ALPHA HOMOLOG	Human mRNA for 26S proteasome subunit p97, complete cds	H.saplens alpha NAC mRNA	Glycyl-tRNA synthetase	60S RIBOSOMAL PROTEIN L13	ESTs, Weakly similar to SEX-DETERMINING TRANSFORMER PROTEIN 1	[Caenorhabditis elegans]	Human SnRNP core protein Sm D2 mRNA, complete cds	Human enhancer of rudimentary homolog mRNA, complete cds	Human myosin regulatory light chain mRNA, complete cds	ESTS	SĮ		ESTs, Highly similar to ALPHA-ADAPTIN (Mus musculus)	ESTs, Weakly similar to similar to oxysterol-binding proteins: partial CDS (C.elegans)	Homo sapiens mRNA for putative seven transmembrane domain protein	H. sapiens mRNA for mediator of receptor-induced toxicity	:	ESTs, Weakly similar to transmembrane protein [H.sapiens]	2513	ESTS, Highly similar to GLUTATHIONE S-TRANSFERASE, MITOCHONDRIAL (Rattus	norvegicus)	Ribosomal protein L21	RNA-BINDING PROTEIN FUS/TLS
1.75	1.76	1.76	1.76	1.76	1.76	1.76	1.76	1.77		1.77	1.77		1.77	1.77	1.77	1.77	1.78	1.78		1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78		1.78	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.80	8.	1.80			1.80	98.
3	8	49	228	23	61	47	47	172		78	1031		75	351	9	113	40	84		187	7.12	36	413	125	305	148	2564		208	187	3		75	84	84	36	. 21	65	4	918	2	22		82	786	86
•				•						•				•													•		•																	
a	9	0	2	S	^	60	9	9		ø.	218	•	o	38	ĸ	=	80	12		6	27	89	4	2	25	5	293		33	12	80	8	7	60	80	9	6	S	9	68	60	60		12	83	Ф
26	32	23	114	5	3.	23	æ	88		38	459		37	178	15	58	19	83		92	141	17	204	\$	142	52	1272		88	88	28	09	35	ŝ	43	17	35	ጽ	21	456	42	22		38	391	43
521	522	523	524	525	526	527	528	529		230	531		532	533	534	535	536	537		538	539	8. 04.	<u>7</u>	542	543	544	545 5	;	84 i	%	χ, φ,	549	550	551	225	553	554	555	556	557	558	559		260	561	295
GTGGACCCTG	TTGGGAGCAG -	GTCTCACGTG	GTACTGTGGC	AAGATAATGC	AATACCTCGT	ACCTTGTGCC	ACCTTGTGCC	GGAGGGGGCT		GCCTATGGTC	GTGCTGAATG	¢	TCGTCGCAGA	GTGACAGAAG	TCAACGGTGT	GAGCCTTGGT	TACATCCGAA	GTCTGTGAGA		GTTAACGTCC	GTGCGCTAGG	CGGATAAGGC	GTCTGGGGCT	CATCCTGCTG	TCACAAGCAA	GGCTGATGTG	CCCGTCCGGA		TCCGCGAGAA	GTGCTGGAGA	TCCTCAAGAT	CAACITAGIT	GGGCAGCTGG	TTCAGAGAG	TTCAGAGAG	GACGCAGAAG	GGAAGTTTCG	GTGCTGCCC	GCTGGGGTGG	CTCAACATCT	CAAGCAGGAC	TTGGCTTTC		TGGCAACCTT	GCATAATAGG	GGGGTAACT

. 38 1.80	. 421 1.80	. 312	. 110 1.81	. 110 1.81		9 . 47 1.81 Human mRNA for KIAA0190 gene, partial cds	,	197 1467 1.81 Eukaryotic translation elongation factor 2		11 . 60 1.81 ESTs	51 . 397 1.82 Triosephosphate isomerase 1	150 . 962 1.82 60S RIBOSOMAL PROTEIN L23	. 40	. 35	79 1.82	. 143 1.82	. 121 1.83 ESTs	. (2) 1.83 ESTS	1.83	. 37 1.83	. 165	. 69 1.83	. 101 1.83	. 103 1.84	. 169	. 46 1.84	ESTS, Highly similar to HYPOTHETICAL 14.1 KD PROTEIN C31A2.02 IN		6 . 36 1.84 CHROMOSOME III [Caenorhabdilis elegans]	74 1.84	43 1.84	187		2 . 1172 1.84	. 315	. 67 1.85	. 125 1.85	1.85	Finkel-Biskis-Relily murine sarcoma virus (FBR-MuSV) ublautously expressed (tox	as an 185 darked)
274 '55 18 · 6	210 42	158 27		56	21	23	144	701	39	27	191	447	85	16 6	37	3	57			18		8	43 21	51	75 32	22 8	9						18	_	158 27	1				200
563 564	565	266	267	268	269	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	290	, KO	- 0	592	293	594	585	596	597	598	599	009	601		602

ESTS, Weakly similar to CASEIN KINASE I HOMOLOG HRR25 (Saccharomyces cerevisiae)	The state of the s	Human mkNA for U1 small nuclear KNP-specific C protein	CYTOCHROME C OXIDASE POLYPEPTIDE VIII-LIVER/HEART PRECURSOR	Human siah binding protein 1 (SiahBP1) mRNA, partial cds	ESTa	GUANINE NUCLEOTIDE-BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3	:	ESTs, Weakly similar to HYPOTHETICAL 15.4 KD PROTEIN C16C10.11 IN	CHROMOSOME III [C.elegans]	Homo sapiens peroxisomal phytanoyl-CoA alpha-hydroxylase (PAHX) mRNA, complete	503		H.saplens mRNA for 1-acylglycerol-3-phosphate O-acyltransferase	Homo sapiens chromosome 1p33-p34 beta-1,4-galactosyltransferase mRNA, complete	500	Cell division cycle 42 (G I P-binding protein, 25kD)	Homo sapiens phosphomevalonate kinase mkny, complete cos	FIGURE SEPTEMBER HISTORY TO THE SEPTEMBER OF THE SEPTEMBE	ECTS	CO19 FOTe	ECT 3	Non-matastatic rolls 2 profelia (NMA2R) expessed in	Himso mBNA for absental protein C40	Highlith A-52 residue abosomal protein fusion product 1	Homo sapiens mRNA for proteasome subjuilt n58 complete cds	Ribosomal protein S16	Billary glycoprotein	Homo sapiens malignancy-associated protein mRNA, partial cds	Homo sapiens mRNA for KIAA0565 protein, complete cds	Ribosomal protein L27	Homo sapiens Arp2/3 protein complex subunit p21-Arc (ARC21) mRNA, complete cds	60S RIBOSOMAL PROTEIN L13A	Human Bak mRNA, complete cds	Ribosomal protein S24	Human mRNA fragment encoding cytoplasmic actin. (isolated from cultured epidermal	cells grown from human foreskin)	ESTs, Highly similar to transcription factor ARF6 chain B (M.musculus)	Ribosomai protein, large P2	Kloosomal protein SZ6	Toman many for PIC-b, complete cas	Human mkNA for proteasome subunit HSC/-i, complete cds Himan nentflviordivi somerase and essential mitoric requisity (PIN1) mRNA complete	ods	101	ONAJ PROTEIN HOMOLOG 1
1.85	9 6		•	1.86	1.86	1.86	1.86		1.86		1.86	1.86	1.86	,	38.	/8.	78.		- 0	, o. t	7	78.1	•	_	•		1.88	1.88	1.88	1.88	_	•	•	1.88		_	•			- 1	7.89	1.89		1.89
4		29	253	97	39	490	8		122		49	67	55		67	89	6 6	? :	i 6	àâ	2 6	3 3	5 5	187	*	1058	174	174	174	207	49	536	536	853	•	1203	9	140	0	140	95	8	3 8) B
,							•				•	•	•				•	•	•					, ,	•				•		•				•	٠.	•				•	•		
	• '	φ	38	6	9	3.	S		7		CD.	0	9		co ·		•	٠ ،			- 1	2, 00		? \$: vc	, g	Ň	2	74	ň	9	28	88	116		147	6	165	163	165	'n	a	•) (0
69	3 3	8	118	47	18	247	58		28		22	22	92		F 1	27	e 9	2 6	€ 8	€ 3	:	7 2	2 6	8		532	9	8	8	252	R	255	255	382		260	22	656	838	909	ř	88	; ;	÷ #
604	, L	505	909	209	809	609	610		611		612	613	614	,	615	6	649	9 6	6.0	621		779 623	20	625 625	626	627	628	629	630	631	632	633	634	635	;	636	637	638	929	2 7	2	642	843	64 54 54
ATCCACATCG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CIGCIGIGAL	GTGACCTCCT	GTGGACCCCA	GACTAGTGCG	TTATGGGATC	TTCAGATTG		GTCTGAGCTC		CACACAATGT	CACACAATGT	ACCCACCCA		GGAGGCAGG	200	COTO CO COTO	200000000000000000000000000000000000000	994094009	りつりていつつつ	000000000000000000000000000000000000000	ACTREGATOR	S A A S S A S S S S S S S S S S S S S S	CAGATOTTE	AGGTTTCCTC	CCGTCCAAGG	GTGGCGGCG	GTGGCGGCG	GTGGCGGGCG	GGCAAGAAGA	TCTTTACTTG	CTCCTCACCT	CTCCTCACCT	GCCTGTATGA		GCITTALLIG	CTTAAGGATT	GGATTIGGCC	CONTRACTOR CO	TOTOTOTO	2222222	GGCCCTCTGA	TOTOTOTO	AGACCAAAGT

نہ
⊑
ទ
4
Φ
큠
a

64 1.89 ESTs	<u>.</u>	. 165 precursor (NDUFSB) nuclear mRNA encoding mitochondrial protein, complete cds	-	_	1.90			Translation elongation factor 1-alpha-1	. 199 1.91 Basic transcription factor 3	1.91	•	. 243 1.91 complete cds	. 116 1.91 ESTS		1.91	1.91	Human calmodulin mRNA, complete cds	<u>ω</u> ;		. 47 1.92 Human dynamitin mRNA, complete cds	Homo sapiens X-ray repair cross-complementing protein 2 (XRCC2) mRNA, complete		1.92		1.92	1.92	. 154 1.92 H.Sapiens mkNA for Sopzip-like protein		1.93 ESTs, Weakly similar to K01G5.8 (C.elegans)	1,	. 54 1.93 ESTS	•	. 53 (Homo saplens calmodulin-stimulated phosphodiasterase PDE181 mRNA, complete cds	1.93	43 1.93 Homo saplens forkhead protein FREAC-2 mRNA, complete cds	•	1.93	. 1.93	. 302 1.93 (L-LACTATE DEHYDROGENASE M CHAIN		. 49 194 CHROMOSOMFIII [Caenorhabditis elecans]
5 5	!	12	8	Ξ	8	6	^	321	7	9		22	F	œ	Ę	12	24	23	ç	w		=	15	5	5	23	22 4	• =	: wo	4	Ø.	ø,	w	S	w	ĸ	ß	ē.	92	•	œ
58	5	6	245	2	8C	28	32	1663	86	35		51	55	82	37	353	9	8	72	22		39	38	42	88	80 80	8 8	3 75	: 23	9	23	23	52	52	20	8	8	0	143	;	_
645 645	}	647		649	650	651	652	653	654	655		929	657	658	629	099	661	662	663	664 4		999	999	299	668	699	671	672	673	674	675	929	677	678	679	680	681	682	683	Č	7×4
ATGGCCAACT		AGGAGCTGCT	TGTACCTGTA	GATCCCAACA	GGCCATCTCT	AGGTGCAGAG	GTGGCATCAC	TGTGTTGAGA	CTGAGACAAA	GCAACGGGCC	:	остеестеес	GCCAAGATGC	GCCAAGGGGC	ACGGTGATGT	CCCATCCGAA	ACAAACTTAG	GCCTCCTCCC	GTGCCTGAGA	TCCAATACTG		стестесете	AAGAAGCAGG	ACTTGGAGCC	CCGTGGTCAC	ACAGIGGGGA	ACAMACIGIG	CTGTGCTCGG	GTGGCCTGCA	TGGTACACGT	GTACTGTATG	GTACTGTATG	GGCCAGGTGG	GCCAGGTGG	AGGGAGAGGG	AGGGAGAGGG	AGGGAGAGGG	GTGGCAGGTG	TCTTGTGCAT	000000000000000000000000000000000000000	C. Al. Al. Al. I.

Electron-transfer-flavoprotein, beta polypeptide		:	ESTS, Weakly similar to 50S RIBOSOMAL PROTEIN L20 (E. coli)	CYTOCHROME P450 IVF3	Human mRNA for KIAA0102 gene, complete cds	Human HXC-26 mRNA, complete cds	se (SULT1C) mRNA, complete cds	Ribosomal protein S9			cytic 1		Human helix-loop-helix zipper protein mRNA	ESTs	ESTs, Highly similar to YME1 PROTEIN (Saccharomyces cerevislae)	ESTs	Homo sapiens clone lambda MEN1 region unknown protein mRNA, complete cds	COATOMER BETA' SUBUNIT		Human 54 kDa protein mRNA, complete cds	Human insulinoma rig-analog mRNA encoding DNA-binding protein, complete cds	H.sapiens mRNA for transmembrane protein mp24	Parathymosin		n translation initiation factor eIF3 p66 subunit mRNA, complete cds	ESTs	ESTS, Weakly similar to HYPOTHETICAL 16.8 KD PROTEIN IN SMY2-RPS101	INTERGENIC REGION (S. cerevislae)	029 gene, partial cds	H.sapiens HUNKI mRNA	Phosphofructokinase, platelet	Homo sapiens mRNA for smallest subunit of ubiquinol-cytochrome c reductase, complete	spo	Homo sapiens poly(A) binding protein II (PABP2) gene, complete cds	ESTs, Highly similar to elastin like protein [D.melanogaster]	ESTs	Human nicotinic acetylcholine receptor alpha6 subunit precursor, mRNA, complete cds	Homo sapiens mRNA for PBK1 protein	Breast cancer 1, early onset		Homo saplens (clone s153) mRNA fragment	Human mRNA for myosin regulatory light chain	Human dystroglycan (DAG1) mRNA, complete cds	40S RIBOSOMAL PROTEIN S2	Homo saplens flotillin-1 mRNA, complete cds	ESTs
1.94	1.94	1.94	1.94	1.94	1.94	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96		1.97	1.97	1.97	1.97		1.97	1.97	1.97	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.99	1.99
67	65	107	37	38	88	83	ş	582	69	82	7	98	28	ē	37	37	37	40	61	75	452	452	155	155	125	185		104	104	36	88		260	79	62	43	72	7.2	72	2894	4	114	88	2287	108	20
	•	•	•	•	•	•				•	•	•	٠	•	٠	•	•	•	•		•		•	•					•	•	٠			•	•	•	•	٠	٠		٠	•	•		•	•
9	12	15	· 50	9	9	6	21	48	=	9	6	Φ	Φ	Φ	S	un	vo.	S.	60	-	40	40	14	4	45	49		=	=	ĸ	5		ř	æ	80	9	9	9	9	410	9	2	00	174	*	Ø
58	22	47	- 91	17	17	9	9	274	8		32	58	8	48	5	\$	18	8 t	27	33	210	210	22	72	26	8		47	47	5	‡		117	36	38	6	33	33	33	1247	18	47	30	1064	94	23
687	688	689	069	691	692	693	694	695	969	697	869	669	200	701	702	703	704	705	706	707	708	709	710	711	712	713		714	715	7.16	717		718	719	720	721	722	723	724	725	726	727	728	729	730	731
AAAGCCAAGA	CAAGGATCTA	TGAGGCCAGG	TTTGTGTGA	ACAGTCTTGC	ACAGTCTTGC	CCAGGCACGC	AGTITCCCAA	CCAGTGGCCC	GCCCGCCCT	TCTCTACTAA	CGGCTTTTCT	1660000000	166000000	CTCCTGGGGC	AAGGAGCTGG	AAGGAGCTGG	AAGGAGCTGG	GGCTTTGATT	ACTACCTTCA	CTGTGCATTT	ACTCCAAAAA	ACTCCAAAAA	TCCTGCCCA	TCCTGCCCCA	AAGCTGGAGG	GCACAAGAAG		GAAACCGAGG	GAAACCGAGG	GCCCGCAAGC	CTTTCAGATG		GGGCGCTGTG	GTATTCCCCT	GTATTCCCCT	CTGGCCATCG	GTGGTGGACA	GTGGTGGACA	GTGGTGGACA	CACCTAATTG	GACCCTGTC	CCCTTAGCTT	CAGAGACGTG	ATGGCTGGTA	TCAGCCTTCT	TCGTAACGAG

60S RIBOSOMAL PROTEIN L38	Human mRNA for pM5 protein	ALPHA-ACTININ 1, CYTOSKELETAL ISOFORM	Ribosomal protein S10	ESTS, Weakly similar to VON EBNER'S GLAND PROTEIN PRECURSOR [H.sapiens]	Signal sequence receptor, beta	ESTS, Highly similar to HYPOTHETICAL 13.6 KD PROTEIN IN NUP170-ILS1	INTERGENIC REGION (Saccharomyces cerevislae)	Human mRNA for ATP synthase gamma-subunit (L-type), complete cds	itein, zeta	polypeptide	s mitochondrial sequence	Human ribosomal protein L10 mRNA, complete cds	ESTs	ESTs, Weakly similar to K04G2.2 [C.elegans]	INTERFERON-INDUCIBLE PROTEIN 1-8U	Homo sapiens clone 23675 mRNA sequence	ESTs, Weakly similar to weak similarity to rat TEGT protein [C.elegans]	Amyloid beta (A4) precursor-tike protein 2	HEAT SHOCK FACTOR PROTEIN 1	Homo sapiens 4F5rel mRNA, complete cds	No match	Human 100 kDa coactivator mKNA, complete cos	Homo saplens DNA sequence from cosmid ICK0721Q on chromosome 6.	Human ORF mRNA, complete cds	ESTs	Human 150 kDa oxygen-regulated protein ORP150 mRNA, complete cds	Homo sapiens chromosome 19, cosmid R33729	Ribosomal protein L3	TRANSCOBALAMIN I PRECURSOR	Ribosomal protein, large, P1	Human B-cell receptor associated protein (hBAP) mRNA, partial cds	Tag matches mitochondrial sequence	ESTs, Weakly similar to ALBUMIN B-32 PROTEIN [Zea mays]	ESTs	ESTs, Highly similar to 50S RIBOSOMAL PROTEIN L2 (Bacillus stearothermophilus)	ESTs	Human SH3-containing protein EEN mRNA, complete cds	HEAT SHOCK PROTEIN HSP 90-ALPHA	Homo sapiens NADH-ubiquinone oxidoreductase subunit CI-B14 mRNA, complete cds	H, sapiens mRNA for proc protein	ESTS	Human zinc finger protein (MAZ) mRNA	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A	40S RIBOSOMAL PROTEIN S7	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX 11 KD PROTEIN	IPRECURSOR
1.99	1.99	1.99	1.99	1.99	1.99		1.99	1.99		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.01	2.01	2.01	2.01	2.01	2.05	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.04		2.04
371	133	128	229	124	124		47	107		178	8	114	67	23	341	ş	Z	169	88	459	12977	2	142	88	8	92	147	1182	813	813	120	309	135	92	43	5	49	69	7.	7.	132	132	1172	275		156
•	•	•		•	•		•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•				•		•		•
5	5	12	9	12	5		7	=		=======================================	Ŋ	=	œ	9	24	9	S	27	8	75	887	9	5	0	6	œ	17	174	5	5	0	23	7	9	80	9	60	9	5	5	17	11	132	Đ		.
178	88	99	107	88	26		ୡ	84		80	23	52	58	92	158	11	39	7	88	181	6970	4 2	\$	R	27	ន	65	488	377	377	55	142	9	82	11	94	82	31		5	57	57	611	126		2
732	733	734	735	736	737		738	739		740	741	742	743	744	745	746	747	748	749	750	751	752	753	7	. 755	756	757	758	759	760	761	762	763	764	765	992	797	768	769	770	171	772	773	774		775
GCGACGAGGC	GCGGGGTACC	TCCTTCTCA	CAGTCTCTCA	ACCCTTCCCT	ACCCTTCCCT		TGAGTGGTCA	GACAATGCCA		. ATCTTTCTGG	AGCTGTCCCC	TCTTCCAGGA	GTGCCTAGGA	TGGACCCCC	ACCTGTATCC	ACCTGCTGGT	AGTCTGATGT	TCTCTACCCA	TGATTAAGGT	CAGCAGAAGC	TCCCTATTAA	GIGGAGGIGC	AAGATCCCCG	GAGCGGCCTC	AACTACATAG	GTAAGATTTG	AGCCTGCAGA	GGACCACTGA	TTCAATAAAA	TTCAATAAAA	CGATGGTCCC	CATTTGTAAT	CCTGAGCCCG	. TGAGGCCTCT	AAGAGTTACG	GAATCCAACT	AGGGCGCAG	GCTTAGAAGT	AAGTCATTCA	AÄGTCATTCA	TACCCCACCC	TACCCCACCC	CCTAGCTGGA	тсетсттат		661116601

·
4.
9
æ

;		1		:	: •								-	lear gene	 · ,	· · ·	!	•	ptide 1	 İ İ	-	: - :		<u>:</u> !				:			s taurus]			; ;			 	ete cds	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 ! :		!!!!!!!!	ata ::	· F	-
Sodium/potassium-transporting AT Pase beta-3 subunit	Himse CDC37 homelog mBNA complete cds	ESTs. Highly similar to BETA-ARRESTIN 2 (Homo sanions)		Homo sabiens clone 23967 unknown mRNA partial cds	ESTs. Highly similar to GOI IATH PROTFIN (Drosophila melanogaster)	!	low density lipoprotein-felated professociated profess 1 (alpha-2-macroplobulin	sproventy cracks proventy associated proventy (alpha-2-mag-oglob				ASE GAMMA FORM	H.saplens mRNA for Sop2p-like protein	Homo sapiens NADH:ubiquinone oxidoreductase NDUFS6 subunit mRNA, nuclear gene	encoding mitochondrial protein, complete cds	Homo sapiens KIAA0408 mRNA, complete cds	Cytokine receptor family II, member 4	H.sapiens mRNA for delta 4-3-oxosteroid 5 beta-reductase	Guanine nucleotide binding protein (G protein), alpha stimulating activity polypeptide	ESTs, Weakly similar to GLUCOSE-6-PHOSPHATASE (Rattus norvegicus)	ESTs, Highly similar to ADIPOCYTE P27 PROTEIN [Mus musculus]	Activating transcription factor 4 (tax-responsive enhancer element B67)	Glyceraldehyde-3-phosphate dehydrogenase	Homo sapiens signal peptidase complex 18 kDa subunit mRNA, partial cds		Human ribosomal protein S6 mRNA, complete cds	Human mRNA for KIAA0026 gene, complete cds	al protein HMG-17 mRNA, complete cds	40S RIBOSOMAL PROTEIN S8	ESTs. Weakly similar to coded for by C. elegans cDNA yk1578.5 (C.elegans)	ESTs, Highly_similar to RAS-RELATED PROTEIN RAP-1B [Homo saplens; Bos taurus]	Human DNA sequence from clone 1033B10 on chromosome 6p21.2-21.31.	ESTs, Weakly similar to C44C1.2 gene product [C.elegans]			ĺ	Homo sapiens mRNA for KIAA0563 protein, complete cds	Homo sapiens androgen receptor associated protein 24 (ARA24) mRNA, complete cds	in \$29		****	Human mRNA for ORF, Xq terminal portion	l yrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta		Human G protein-coupled receptor (STRL22) mRNA, complete cds
Sodium/potassi	Himan CDC37	ESTS Highly s	ESTs	Homo sapiens	ESTs Highly s	Myosin, heavy	Low density lip	recentor-associ	The state of the s	Outrice	Phospholipid hy	S-ADENOSYLA	H.saplens mRN	Homo sapiens	encoding mitoc	Homo sapiens I	Cytokine recept	H.sapiens mRN	Guanine nucleo	ESTs, Weakly s	ESTS, Highly s	Activating trans	Glyceraldehyde	Homo sapiens	ESTs	Human ribosom	Human mRNA	Human non-his	40S RIBOSOM	ESTs, Weakly s	ESTs, Highly s	Human DNA se	ESTs, Weakly s	Human mRNA	ATPase, Ca++	Human DNA fra	Homo sapiens r	Homo sapiens	Ribosomal protein S29	Voltage-depend	Human FX prote	Human mRNA f	Tyrosine 3-mon	polypeptide	Human G protei
2. c 4. c	20.5	2.04	2.04	2.04	2.05	2.06		2.06		2.00	. 2.07	2.07	2.07		2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.08	2.08	2.08	2.08	2.08	2.09	2.09	2.09	5.09	2.09	5.09	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	,	2.10	01.2
207	£ £	125	125	125	2	1 9		ā	5 6	2	203	118	118		187	7 50	420	420	220	5	123	184	1985	2	104	1185	65	184	523	.	88	1876	4 8	86	25	263	263	120	467	98	8	63		20	206
	· ·										49	12 .	12 .		. 20	8		. 03	. 81		18	. 72	194	14		. 09		=	. 94			147				37 .			37 .		•			= ;	0.
88		, so	9 90 9 90	8 8	52	; %		82	3 8	_	623		52		26			179	98	18		7.8		8		242	28		528			828			22	_	_		205		22			25	
776	778	97.	780	781	782	783		784	7.07	60.	786	787	788		789	790	791	792	793	794	795	962	797	798	199	800	801	802	803	804	805	908	807	808	808	810	811	812	813	814	815	816	7	, o	9
AGGATGGGG	AGCGCTGCA	SGAGCCCCT	GGAGCCCCT	AGATGTGG	TACCACAG	GCTAAAAAA		ACAGAGTCC	CCCAATAA	W 1 W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	555155155	TECTTECC	CTGCTTGCC		GGTTACTGT	ACCCGGGAG	ACCCGGGAG	ACCCGGGAG	TTAACAAAG	TCAGTGCCC	CGTGCTCAT	TCCCTCAGT	ACCATCAAT	GCACCACAG	ACCCTGGG	ccerercce	TAGAGGCAA	TGTTTATG	AATAAAGGT	GATCAAGG	AAGGGCTTG	GTGTTGAG	AGTGAGTGA	GGCGCACA	GATCCGGA	CCTGGGAG	CCTGGGAG	GCTTCATCT	ТААТТСТТТ	TTCAGCTGT	GGAAGTCAC	бетесттее	VALOVALO	A1174 400	האארה. האארה הרוכה

Table 4, cont.

Table 4, cont.

							Users sections as a contract of the section of the
						,	Dono Saprens Przy Carerin 150 (CTANO 1) III NA Saprens Spiece, Campiere
AAACTCTGTG	863	27	φ		49	2.18	COS
ACACGCAA	864	22	6 0		56	2.18	ESTs
CCCCCGAAGT	865	20	^		118	2.18	
TGTGCTAAAT	966	169	46		415	2.18	60S RIBOSOMAL PROTEIN L34
CGACCGTGGC	867	54	φ		25	2.18	ESTS
GCCTGGGCTG	868	44	€	•	114	2.18	
<u>вествеесте</u>	869	4	18		114	2.18	Homo sapiens molybdopterin synthase sulfurylase (MOCS3) mRNA, complete cds
AAAGTCAGAA	870	24	12		65	2.19	Ublquinot-cytochrome c reductase core protein II
TGGAGCGCTA	871	3	ď		12	2,19	ESTs, Weakly similar to PUTATIVE MITOCHONDRIAL CARRIER C16C10.1 (C.elegans)
GAAATGATGA	872	2	*		167	2.19	Homo saplens mRNA for c-myc binding protein, complete cds
TGTCGCTGGG	873	73	7		173	2.19	C4/C2 activating component of Ra-reactive factor
GCCCTGCCT	874	39	80	•	91	2.19	Homo sapiens DNA-binding protein (CROC-1B) mRNA, complete cds
GCCCTGCCT	. 878	38	φ	.•	91	2.19	
CAGGCCTGGC	876	8	^		8	2.19	
CAGGCCTGGC	877	8	^		8	2.19	
GCAAAAAAA	878	163	35		371	2.20	No match
AGCCACCACG	879	S	80	•	91	2.20	- 1
GAGGAAGAAG	880	52	91		130	2.20	Homologue of mouse tumor rejection antigen gp96
CAGCTGTAGT	881	20	0		28	2.20	
TCTTCTCCCT	882	9	9		66	2.20	Human mRNA for hepatoma-derived growth factor, complete cds
TACATTCTGT	883	30	^	•	74	2.20	Myeloid cell leukemia sequence 1 (BCL2-related)
							ESTs, Weakly similar to HYPOTHETICAL 68.7 KD PROTEIN ZK757.1 IN
GGGAAACCCC	884	39	Ξ.		88	2.21	CHROMOSOME III [C.elegans]
AGCCACTGCA	885	87	•		155	2.21	Homo saplens mRNA for 26S proteasome subunit p55, complete cds
TAGTTGAAGT	886	55	5		136	2.21	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX 14 KD PROTEIN
GCCAAGTITG	887	17	S	•	€	2.21	Human mRNA for proteasome subunit p112, complete cds
	٠						Excision repair cross-complementing rodent repair deficiency, complementation group 1
GGCGGCTGCA	888	38	o		68	2.21	(includes overlapping antisense sequence)
AAAAAAAAA	. 688	469	38		1078	2.21	:
AAAAAAAAA	880	469	8		1076	2.21	Homo sapiens GPI-linked anchor protein (GFRA1) mRNA, complete cds
AAAAAAAAAA	891	469	æ		1076	2.21	Enclase 1, (alpha)
AAAAAAAAA	892	469	8		1076	2.21	Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit
TGTTCCACTC	893	6	S		97	2.21	Homo sapiens CD39L2 (CD39L2) mRNA, complete cds
CTCGGTGATG	894	30	5		76	2.22	
							ESTs, Highly similar to PUTATIVE CYSTEINYL-TRNA SYNTHETASE C29E6.06C
CTTCTCAGGG	895	17	ĸ		43	2.22	(Schizosaccharomyces pombe)
GGTAGCCCAC	998	16	e٥		40	2.22	EST3
GGGTTTTTAT	897	65	7	•	150	2.22	Homo saplens dbpB-like protein mRNA, complete cds
CCTGTAACCC	888	39	5		66	2.23	SUTR
GAAACAAGAT	668	89	9		133	2.23	
GATGAGTCTC	006	7	6		175	2.23	Homo sapiens proteasome subunit XAPC7 mRNA, complete cds
GGCCCTAGGC	901	\$	9		101	2.23	H.sapiens ERF-2 mRNA
TGGCCCCACC	902	440	29		1041	2.23	Pyruvate kinase, muscle
CAGCGCGCCC	903	99	10	•	152	2.23	ESTs
AGGCGAGATC	904	91	27		231	2.24	Homo sapiens proteasome subunit XAPC7 mRNA, complete cds
		•					

H.saplens ERF-1 mRNA 3' end	Homo sapiens mKNA for NA14 protein	ESTs	ednence	COFILIN, NON-MUSCLE ISOFORM	No match	Human adult heart mRNA for neutral calponin, complete cds	Human translation initiation factor 3 47 kDa subunit mRNA, complete cds	ADENYLYL CYCLASE-ASSOCIATED PROTEIN 1	Protein kinase C substrate 80K-H	ing protein 1 [H.sapiens]	Vinculin	Dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2)	HEAT SHOCK PROTEIN HSP 90-ALPHA		40S RIBOSOMAL PROTEIN S15A		Human Tax1 binding protein mRNA, partial cds		Homo sapiens mRNA for KIAA0472 protein, partial cds	No match	Homo sapiens microsomal glutathione S-transferase 3 (MGST3) mRNA, complete cds	PRECURSOR (Xenopus laevis)	ESTs, Weakly similar to GOLIATH PROTEIN [Drosophila melanogaster]	ESTs, Highly similar to RAS-RELATED PROTEIN RAB-1A [H.sapiens]	PROTEASOME ZETA CHAIN	Ribosomal protein \$11	No match	Ribosomal protein L6	Prothymosin alpha	Human putative fumor suppressor (SNC6) mRNA, complete cds	Ribosomal protein S11	COFILIN, NON-MUSCLE ISOFORM	ESTs, Moderately similar to nuclear autoantigen [H.sapiens]	: :	Uroporphyrinogen decarboxylase	Homo sapiens microtubule-based motor (HsKIFC3) mRNA, complete cds	ESTS	Prostatic binding protein	<u>INTERFERON GAMMA UP-REGULATED 1-5111 PROTEIN PRECURSOR</u>	Ribosomal protein L27a	×	60S RIBOSOMAL PROTEIN L18	H factor (complement)-like 1	TRANSFORMATION-SENSITIVE PROTEIN IEF SSP 3521
2.24	2.24	2.24	2.24	2.24	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.26	2.26	2.26	2.26	2.26	2.26	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.28	2.28	2.28	2.28	2.28	2.29	2.29	2.29	2.29	2.29	2.30	2.30	2.30	2.30	2.30	2.30
155	ኔ አ	6	61	47	171	159	147	143	91	25	19	106	187	139	139	248	248	177	. 177	215	99	51	103	180	8	610	220	521	862	98	135	858	88	181	82	312	312	255	153	115	59	465	74	74
٠	•	•							•	٠	•			•	•			. 91			•	•	•	•	•	•	•									٠			. 91	٠	•		•	
¥	•	•	Φ	S	22	=	4	÷	· vo	· wo	60	=	5	9	9	16	16	=	16	-	9	40	=	24	7	3	=	48	. 78	9	Ξ	54	3	23	9	38	35	43	÷	49	80	8	9	9
2	21	54	24	18	99	99	9	99	78	21	34	5	12	29	59	102	102	7	71	98	27	20	9	69	25	245	91	508	344	35	25	352	27	69	. 33	121	121	93	59	48	22	190	53	58
905	906	206	806	606	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	247	948	949
GCGGGGTGGA	GGGGCCCCT	AAGGAACTTG	- AAGGAACTTG	AATTGCAAGC	CCTGTGATCC	CCCCCCAAG	CTCAACAGCA	AAGGTAGCAG	AAGCCAGCCC	CAGCCTTGGA	TTTGCTCTCC	CAACATTCCT	TACTAGTCCT	GACTCTGGTG	GACTCTGGTG	GTGGCTCACG	GTGGCTCACG	GTGGCGGCCA	GTGGCGGCA	CCTGTGGTCC	TACAGCACGG	GTGGCACCTG	TACACGTGAG	TCAGGCATTT	TTCACAAAGG	TCTTGTGGC	TCCCTATTAG	TACAAGAGGA	TCAGACGCAG	CAGGATCCAG	TCTGTACACC	GAAGCAGGAC	၁၁၁၁၁၁၁၁	сстсстеве	TGGGCGCCTT	GTGGTACAGG	GTGGTACAGG	GGTGAGACCT	GAGATCCGCA	TGGCAGCCC	GCCTTTCCCT	GGAGTGGACA	TTATGGGGAG	TTATGGGGAG

ESTs. Highly similar to LYSOSOMAL PRO-X CARBOXYPEPTIDASE PRECURSOR	[Homo sapiens]	No match	;	Ferritin heavy chain				ESTS	Enolase 1, (alpha)	ESTs, Highly similar to HYPOTHETICAL 27.5 KD PROTEIN IN SPX19-GCR2	INTERGENIC REGION (Sacchammyces cerevisiae)	Calmodulin 1 (phosphorylase kinase, delta)		ESTs, Weakly similar to zinc finger protein [H.saplens]	mRNA, partial cds	Human mRNA for proteasome activator hPA28 subunit beta, complete cds	Human mRNA for omithine decarboxylase antizyme, ORF 1 and ORF 2	Homo sapiens nuclear-encoded mitochondrial cytochrome c oxidase Va subunit mRNA,	complete cds	Homo sapiens clone 24703 beta-tubulin mRNA, complete cds	n neuronal olfactomedin-related ER localized protein mRNA, partial cds	ESTs	60S RIBOSOMAL PROTEIN L18A		Human BTK region clone ftp-3 mRNA	Homo saplens intrinsic factor-B12 receptor precursor, mRNA, complete cds	COTEIN	Human mRNA for KIAA0106 gene, complete cds	Tag matches mitochondrial sequence	Homo saplens NADH;ublquinone oxidoreductase B12 subunit mRNA, nuclear gene	encounty interaction profess, compared to	Eukaryouc translation elongation ractor 1 detta (guanine nucleotide exchange protein)	High mobility group (goal) (goal) (goal) (goal) (goal) (goal)		ESTS	Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2	ESTs. Weakly similar to No definition line found (C.elegans)	ESTs, Moderately similar to GTP-binding protein-associated protein [M.musculus]	THYMOSIN BETA-10	visiae]	PROTEIN TRANSLATION FACTOR SUIT HOMOLOG	U1 snRNP 70K protein	Human pancreatic zymogen granule membrane protein GP-2 mRNA, complete cds	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)	Human non-muscle alpha-actinin mRNA, complete cds
	2.30	2.30	2.31	2.31	2.31	2.31	2.31	2.31	2.31		2.31	2.31	2.32	2.32	2.33	2.33	2.33		2.33	2.33	2.34	2.34	2.34	2.34	2.34	2.35	2.35	2.35	2.35	300	5.6	2.30 3.50	2.30	36.	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.38
	108	479	331	3123	229	229	2	67	49		8	184	122	138	Ξ	162	540		75	369	49	49	2051	1226	105	297	1386	150	1463	;	5 5	432	9 5	3 5	46	198	139	149	1772	5	242	99	223	223	4 80
		38		255	- -	. 41		. 9				. 20		. 61			. 69			. 9			156 -	132			104		. 611			. 58	•				- -		. 96	15	. 51			16	
	43	192	126	1243 2			. 82				23		67	51	45	8	208			156		18	809	467 f:	14	111	546		572											48		24			188
	920	951	952	953	954	955	926	957	958		929	096	961	362	963	964	965	· ·	996	296	896	696	970	971	972	973	974	975	976	720	240	970	080	981	982	983	984	985	986	. 486	988	686	066	991	992
	GAGTGGGGGC	GTGGCACGTG	CTGGGCGTGT	TTGGGGTTTC	GGCTGGGCCT	GGCTGGGCCT	CCTGTTCTCC	GTGTCTCATC	GTGTCTCATC		ACGATTGATG	TETTETTEA	TGGCCTCCCC	ATCGGGCCCG	GCCGCCATCA	GTGCTGGACC	TTGTAATCGT		TAATGGTAAC	AACGACCTCG	GCCTGCACCC	GCCTGCACCC	AAGGTGGAGG	AAGGAGATGG	CAGTTCTCTG	GTGAAACCTC	TAGGTTGTCT	CCTGTGACAG	CTCATAAGGA	Cercecture	COTONOTOO	GOLLAGE	TOTOTAAAG	TCTGCTAAAG	AGCCCCACAA	CTGAGTCTCC	TGCTTTGGGA	ccrerccrec	GGGGAAATCG	TCTGCCTGGG	CAATAAACTG	GAGTCTGAGG	GTGGCAGGCG	GTGGCAGGCG	CGAGGGGCCA

Human DNA sequence from cosmid F0811 on chromosome 6. Contains Daxx, BING1 Tangein BCI 2 KE2 BING4 BING5 ECT5 and CRG islands	ימקסטון, ייכרל, יייכל, חויכל, בכו אויכל, בכו	Homo sapiens KIAA0419 mKNA, complete cds	Homo sapiens mRNA for GDP dissociation inhibitor beta	LARGE PROLINE-RICH PROTEIN BAT2			Tao maiches mitochondrial sequence	Months and the second s	COLINI DEBENDENT VINASE MUIBITOS 4	CICLIN-DEPENDENT KINASE INFIBILICK 1	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta	polypeptide	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1	Human male-enhanced antigen mRNA (Mea), complete cds	No match	d TRAIL mRNA, complete cds	ESTs, Weakly similar to F25H5.h [C.elegans]	And at the second secon	Tag matches mitochondrial sequence	TA	ESTs	Ribosomal protein L8	Human mRNA for NADPH-flavin reductase, complete cds		H.sapiens mRNA for protein phosphatase 5	Human splicing factor SRp30c mRNA, complete cds			Human plectin (PLEC1) mRNA, complete cds	Homo saplens interleukin-1 receptor-associated kinase (IRAK) mRNA, complete cds	Human mRNA for KIAA0088 gene, partial cds	EST\$	C (H.sapiens)	Ubiquitin A-52 residue ribosomal protein fusion product 1	40S RIBOSOMAL PROTEIN \$20		Homo sapiens F1Fo-ATPase synthase f subunit mRNA, complete cds	H.sapiens mRNA for alpha 4 protein	Human profilin mRNA, complete cds	Thyroid autoantigen 70kD (Ku antigen)	este (Drosophila) homolog 1	CD19 antigen	Human clone 23732 mRNA, partial cds	Annexin II (lipocortin II)	/me)	i	Homo sapiens carbonic aphydrase practices (CA 12) mBNA complete cde
2 38	9 6	2.38	2.38	2.38	2.39	2.39	2.39	2.40	9 6	7.40	•	2.40	2.40	2.40	2.40	2.41	2.41	2.41	2.41	2.41	2.41	2.42	2.42	2.42	2.42	2.43	2.43	2.43	2.44	2.44	2.44	2.44	2.45	2.45	2.45	2.45	2.45	2.45	2.46	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2 47
9		22	75	9	72	2	8145	3	2 5	388		107	62	22	156	86	8	2084	2064	379	83	1377	112	=	B	75	728	728	147	228	295	Z	=	234	4 19	118	90	45	1124	2480	2460	2460	2460	2460	2460	2460	2480
•		•	•	•	•	•				•		•	٠	•	•	•				•	•	,	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•						•		
	•	a 0	ш,	47	7	^	714	•	,	ñ		9	₩.	æ	6	9	Ξ	132	132	36	60	135	6	7	8	S	72	72	5	Đ.	35	Φ	5	24	8	~	8	w	48	181	181	181	181	181	181	181	181
ģ	: ;	28	8 8	17	72	27	3108	>	ş ş	061		42	23	21	19	. 38	8	803	803	142	32	514	43	43	30	8	270	270	83	86	101	2	9	98	158	45	3	. 91	437	928	925	925	928	925	925	925	. 926
663		40.0	995	966	266	866	666		2 5	3	0001	1002	1003	1004	1005	1006	1001	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	2201	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037
GTGGGGGGAG	FOTOUTO O	6A6166C1A1	GAGTGGCTAT	GTAGACTCAC	AGGGAAAGAG	AGGGAAAGAG	CCCATCGTCC	TCGCCGCGAC	TOTOTOT			25.11.12	ATAAATTGGG	TATCACTCTG	GTGGTGGGCG	CCACTACACT	TGACCCCACA	TGATTTCACT	TGATTTCACT	GGCTCCCACT	ccrererere	AATCCTGTGG	AGGAGCAAAG	CCTTTGAACA	GTGGGGCTAG	AGGGTGAAAC	CCTCAGGATA	CCTCAGGATA	TCCACTAAC	CCCCGTGAA	9990109191	AAGCC11GC1	IGITCALCA!	AACLAACAAA	201010100	GGAIGIGAAA	ACTGGTACGT	TGTATTCCA	CGCTGGGGGC	CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACTGCACT	O:	CCACTGCACT	CCACTGCACT

1		
9		
•	١	J
٠		i
1	١	
2	2	
4		

,- ·		- -							- · - -	. ,							-,			.,																									
Homo sapiens methyl-CpG binding protein MBD4 (MBD4) mRNA, complete cds	Phosphodiesterase 4C, cAMP-specific (dunce (Drosophila)-homolog phosphodiesterase (E1)	Human SNRPN mRNA 3 LITR partial sequence	Homo saplens brachvury variant A (TBX1) mRNA, complete cds	H.sapiens beta glucuronidase pseudogene	G PROTEIN ACTIVATED INWARD RECTIFIER POTASSIUM CHANNEL 4	ESTs, Highly similar to ACETYL-COENZYME A SYNTHETASE [Escherichia coli]	ESTs, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE B22 SUBUNIT IBOS	taurus)	Tag matches mitochondrial sequence	Homo saplens clone 24703 beta-tubulin mRNA, complete cds	Tag matches mitochondrial sequence	Enolase 1, (alpha)	Human mRNA for KIAA0099 gene, complete cds	Eukaryotic translation initiation factor 4A (BIF-4A) Isoform 1	TRANSALDOLASE	ESTS	40S RIBOSOMAL PROTEIN S14	Human mRNA for histone H1x, complete cds	Homo sabiens mRNA for KIAA0529 protein, partial cds	60S RIBOSOMAL PROTEIN L24	Human signal-transducing guanine nucleotide-binding regulatory (G) protein beta subunit	mRNA, complete cds	S100 calcium-binding protein A10 (annexin II ligand, calpactin I. light polypeptide (p11))	ELONGATION FACTOR TU, MITOCHONDRIAL PRECURSOR	885gn	Veakly similar to neuroendocrine-specific protein C [H.sapiens]		Human thymosin beta-4 mRNA, complete cds		Tag matches mitochondrial sequence	Ribosomal protein L28	Basigin	Homo sapiens mRNA for synaptogyrin 2	No match	Human nuclear factor NF90 mRNA, complete cds	Adenine nucleotide translocator 3 (liver)	H.sapiens mRNA for arginine methyltransferase, splice variant, 1262 bo	ESTs, Weakly similar to N-methyl-D-aspartate receptor glutamate-binding chain	(R.norvegicus)	Homo sapiens breakpoint cluster region protein 1 (BCRG1) mRNA, complete cds	ESTs	ESTs, Highly similar to Surf4 protein [M.musculus]	ESTs, Highly similar to deduced protein product shows significant homology to coactosin	from Dictyostellum discoldeum [H.sapiens]	Ribosomal protein S3A
2.47	2.47	2.47	2.47	2.47	2.47	2.47		2.47	2.47	2.47	2.47	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48		2.49	2.49	2.49	2.49	2.49	2.49	2.50	2.50	2.50	2.50	2.50	2.50	2.51	2.51	2.52	2.52		2.52	2.52	2.52	2.52	-	2.53	2.53
2460	2460	2460	2460	2460	2480	280		280	284	52	682	294	294	172	172	6	78	98	95	115		159	1034	240	72	5	2089	1053	125	2055	2072	1798	142	105	47	62	161		177	159	5	8		112	1265
•	•	•	•	•	•	•		•	•	•	•	٠	•	•		•			•	٠				•		•		•		•		•				•	•								
181	181	181	181	181	181	21		2	11	so	8	6	۰	8	С	^	~	9	9	ĸ		1	92	ñ	65	9	208	57	æ	125	96	128	6	60	9	9	7		7	=	9	ဗ		ιn	8
928	925	928	925	925	925	109		109	100	87	251	115	115	99	8	58	59	38	38	\$		22	390	90	52	42	754	388	48	277	780	668	ន	39	16	22	59		65	89	27	က		42	467
1038	1039	1040	1041	1042	1043	1044		1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057		1058	1059	1060	1061	1062	1063	1064	. 1065	1066	1067	1068	1069	1070	1071	1072	1073		1074	1075	1076	1077		1078	1079
CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACTGCACT	CCACTGCACT	CACTTGCCCT		CACTTGCCCT	GCAAGCCAAC	TAGATAATGG	TCGAAGCCCC	AGAAAAAAA	AGAAAAAA	GGCGCCTCCT	GGCGCCTCCT	TAAACTGTTT	TAMACTGTTT	GGCCTTTTT	GGCCTTTTT	GCGACAGCTC		CCCACACTAC	AGCAGATCAG	GCATAGGCTG	GAGGCCGACC	AAATGCCACA	AGCCCTACAA	TTGGTGAAGG	CCGGGCCCAG	TCATACACC	GCAGCCATCC	GCCGGGTGGG	GCTCCCAGAC	AGCCACCGTG	TCAGCTGGCC	GGGGCGCCT	CGGCCCAACG		TGGCCATCTG	CCTCCCCGT	ACITEITEGE	AAGACTGGCT		AGCACATITG	GTGAAGGCAG

Ribosomal protein L37	ESTS, Highly similar to HYPOTHETICAL 52.8 KD PROTEIN T05E11.5 IN	CHROMOSOME IV [Caenomabolitis elegans]	Colladen type I alpha-2	ESTS	Myelin oligodendrocyte glycoprotein (alternative products)	Dihydrolipoamide branched chain transacylase (E2 component of branched chain keto	acid dehydrogenase complex)	Human mRNA for platelet-activating factor acetylhydrolase 2, complete cds	GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR RECEPTOR	ALPHA CHAIN PRECURSOR	Thymopoletin	(mu)	Homo sapiens mRNA for KIAA0794 protein, partial cds	Homo saplens RNA polymerase I subunit hRPA39 mRNA, complete cds	Homo sapiens mRNA for KIAA0701 protein, partial cds	Homo sapiens mRNA for MAX.3 cell surface antigen	Homo sapiens mRNA for KIAA0706 protein, complete cds	Homo saplens deoxyribonuclease II mRNA, complete cds	Homo saplens clone 24758 mRNA sequence	Kangai 1 (suppression of tumorigenicity 6, prostate; CD82 antigen (R2 leukocyte antigen,	antigen detected by monoclonal and antibody (A4))	Leptin (murine obesity homolog)	R,norvegicus]	H2AZ histone	Homo saplens tumor necrosis factor superfamily member LIGHT mRNA, complete cds		!	Homo saplens BC-2 protein mRNA, complete cds	H.sapiens CDM mRNA	Homo sapiens tapasin (NGS-17) mRNA, complete cds	POLYADENYLATE-BINDING PROTEIN		ESTs			ha 1 polypeptide	Human p76 mRNA, complete cds	ESTs, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE B9 SUBUNIT (Bos		MPLEX PROTEIN 1, ALPHA SUBUNIT	ESTS		Homo sapiens protein kinase (BUB1) mRNA, complete cds	***************************************	Human mRNA for proton-ATPase-Ike protein, complete cds
2.54	ć	7, c	2.54	2.54	2.55		2.55	2.55		2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55		2.55	2.55	2.55	2.56	2.56	2.56	2.58	2.58	2.59	2.59	2.60	2.60	2.60	2.60	2.61	2.61	2.61		2.62	2.62	2.63	2.63	2.63	2.63	2.63
620	•	121	5 2	2	3963		3963	3963		3963	3963	3963	3963	3963	3963	3963	3963	3963	3963		3963	3963	122	247	461	124	8	88	92	117	174	2	102	943	527	323	6		171	8	280	290	290	199	23.
43					514 .		514 .	514		514	514 .	514 .	514	514	514	514	514	514	514		514	514			. 97									88	. 97	43	٠ ،		. 02						g
					S		9	w.		S	S	10	S	ĸ	5	LO.	S	S	\$		S	S			•	•	•	_	•	•	_	-	•	ď	8	*			~	,-	.~	-	-	•	ຕ
227	•	9 1	25	25	1352		1352	1352		1352	1352	1352	1352	1352	1352	1352	1352	1352	1352		1352	1352	*	96	182	84	30	35	22	4	62	22	35	9 7	192	101	51		88	32	108	108	108	2	78
1080		1001	1083	1084	1085		1086	1087		1088	1089	1090	1091	1092	1093	1094	1095	1096	1097		1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114		1115	1116	1117	1118	1119	1120	1121
CAATAAATGT		GTGTAATAAG	TTCTGCACTG	TTCTGCACTG	GTGAAACCCC		GTGAAACCCC	GTGAAACCCC		GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC	GTGAAACCCC		GTGAAACCCC	GTGAAACCCC	GACACCTCCT	GACGTGTGGG	GCAAAACCCC	TACCAGTGTA	CCCCTCCCCA	GGTGATGAGG	GTGTGTAAAA	GGCTCCTCGA	AAAAGAAACT	CAGCGCACAG	CTGGGAGAGG	GAAAAATGGT	ATCACGCCCT	TAGCTCTATG	GTATTGGCCT		CCCGACGTGC	GAAGTTATGA	TAAAAAAAA	TAAAAAAAA	TAAAAAAAA	ССССССТСС	TTGGGGCTG

ند
C
8
4.
ø
مَ
o.

THE PARTY OF THE PROPERTY OF THE PARTY OF TH	NO MAICH	CTSTEINERICH PROTEIN	(H.sapiens)	60S RIBOSOMAL PROTEIN L23A	Human translational initiation factor 2 beta subunit (elF-2-beta) mRNA complete cds	Tag matches mitochondrial sequence	Homo sabiens histone H2A F/7 variant (H2AV) mRNA commissiones	Human mRNA for ribosomal protein L39, complete cds	No match	Homo sapiens NADH:ublouinone oxidoreductase NDLIFS3 subrinit mRNA purlear page	encoding milochandral projets of s	Home carlone SKB1He mBNA complete ode	Sadanesilhamourefalae hidrologo	accompanient of the companient	ADD.	numan APR I gene for adenne phosphoribosylitransferase		ESTs	Annexin II (lipocortin II)	E318	Tag matches mitochondral sequence	Annexin X (56kD autoantinen)	Home engine BNA antimotion II tenses also feel fill and	ino sapienis nav polymerasa in uanscription ractor sim pro subunit many, complete		Cystaun C (amyloid anglopathy and cerebral nemorrhage)	ESTS	in complex subunit p34-Arc (ARC34) mRNA, complete cds	Proteasome component C2	ESTS	Cathepsin D (Ivsosomal aspartyl professe)	ESTS Highly similar to LATENT TRANSFORMING CROWTH EACTOR BETA BINDING	PROTEIN 1 PRECLIBROD Restrict consequences	Homo sanjans NF-A14c mRNA complete ode	Acid phosphatase prograte	Dihasami ambala (4)	Wording professional All All Cliptanii K 1995 Shines Cliptanii C	SCORES, WEERLY SITTING TO THE ALC SUBFAMILY J WARNING EN IN (H. Sapiens)	Glycogen phosphorylase B (brain form)	ESTs, Highly similar to HYPOTHETICAL 6.3 KD PROTEIN ZK652.2 (N CHROMOSOME)	III [Caenorhabditis elegans]	Human cell cycle protein p38-264 homolog (h64-1) mRNA, complete cds		Human mRNA for KIAA0134 oene. complete cds	H.sapiens F11 mRNA	HIMAN MRNA for KIAA0150 sons complete ad	Himan calmodulin mRNA complete Afe	Manuacine Manuac	PROTEASOME IOTA CHAIN		numo sapiens tysyr nydroxyjase isolom 3 (PLOU3) mRNA, complete cds
_	=1:					·					<u>-</u>							_	_		_		_				_			_		J				-		_	_					•		_					_
Č	, i	77	2.63	2.6	2.64	2.65	2.65	2.65	2.65		2.6	2 66	267	200	, c	2.07	2.68	2.68	2.69	2.69	2.69	2.70	i	,	2.70	7.7	2.72	2.72	2.72	2.72	2.7		2.7	2.74	2.74	276	į (100	7.7		2.77	2.7	2.7	2.78	2.78	2.78	ic	ic	2.81	9 6	
į	245	225	353	412	78	220	6	999	165		9	84	33	3 8	2	è	28	3	1050	223	223	112		;	25	899	5	270	143	769	769		108	13	134	1467) :	130		287	153	=======================================	288	288	288	å	3 5	183	? ?	2
	•	•	•	•	•	•	•	٠	•		•	•	٠		•	•	•	•	•	•	•	•			•	•	•	•	•	٠	•		•	•	•			•	•		•	•	•	•	•	•	•				•
,	₽ ;	2	4	5	7	æ	9	48	60		1	^	- σ	• \$	2 ;	2	œ	œ	187	ω	€	40	,	3	₫ ;	6	^	ឧ	3	8	50		•	•	60	:	:	= :	12		%	Ф	80	22	22	22	<u> </u>	, 8	3 2	¥ .	a
8	£ £	₹ :	128	152	27	80	32	186	59		28	22	2	3 8	3 8	R	50	2	358	8	8	9		7	- 6	767	4 5	91	51	264	264		36	46	48	181	6	3 8	g		88	ន	88	82	95	56	32	: 6	3 8	; 5	3
1133	1122	27.	4711	1125	1126	1127	1128	1129	1130		1131	1132	1133	1134	1125	2 .	350	1137	1138	1139	1140	1141	•	1142	4 4 4 5	2 1	144	1145	1146	1147	1148		1149	1150	1151	1152	1153	20 4	<u></u>		1155	1156	1157	1158	1159	1160	1161	1162	1163	15.	<u> </u>
GTGGCAGGCA	いいつかけいから	2220000	つこうううかいうか	AAGAAGA I AG	TCTGGGGACG	GCTAGGTTTA	TGGTGACAGT	TTACCATATC	стеесеесте		TGGATCCTAG	GGGTTTGAAC	AATGCAGGCA	ACATOCTACE	TOUCLUSTA	00010000	100A001	16CC1GCTCC	CTTCCAGCTA	GTAAGTGTAC	GTAAGTGTAC	GTGTCTCGCA		ATCCGGCGCC	TOCTOCACO	1001		CAGGAGTTCA	GICTGCGTGC	GAAATACAGT	GAAATACAGT		TGAGCCCGGC	GTGGTGTG	GTGGTGTG	TCACCCACAC	TCACCCACAC	CTCGATCTCG	99101000		GAAGATGTGT	CGGATAACCA	TCAGAAGGTG	GAGAAACCCC	GAGAAACCCC	GAGAACCCC	CTCGTTAAGA	TTGGAGATCT	GAGGTCCCTG	TTOCCCTGC	

						ι	
CCCAACC	1165	3	60	7	187 2.		Homo saplens eukaryotic translation initiation factor 3 subunit (p42) mRNA, complete cds
GCTCACA	1166	104	6		_	2.81	Adenosine A2b receptor
AAAGGCA	1167	31	9				H.sapiens ERF-2 mRNA
GTAGCAA	1168	ន	^	÷			ESTs, Weakly similar to putative [M.musculus]
GAGACAC	1169	128	52		389 2.	2.83	Adenine nucleotide translocator 3 (liver)
ATCGTCT	1170	39	80		116 2.		No match
ATCACCG	1171	59	1.4	<i>∓</i>	182 2.	_	Human translational initiation factor 2 beta subunit (eIF-2-beta) mRNA, complete cds
TCGGTTA	1172	£3	5		133 2.		Homo sapiens NADH-ubiquinone oxidoreductase 15kDa subunit mRNA, complete cds
CCAGGAG	1173	110	=	ei	323 2.		No match
TGAAGCA	1174	S	5	÷	108 2.		Homo sapiens hepatitis B virus X interacting protein (XIP) mRNA, complete cds
AGGCAAA	1175	9	80	-	122 2.	i	Human mRNA for KIAA0005 gene, complete cds
GCTTCAC	1176	30	^	,	93 2.	2.85	Human mRNA for KIAA0359 gene, complete cds
GCTTCAC	1177	30	^		93 2.		Human putative G-protein (GP-1) mRNA, complete cds
GGCCGGT	1178	61	5		185 2.	:	ESTS, Highly similar to HISTONE H2A [Cairina moschata]
CAGCCAG	1179	320	7.4	ď.	988 2.	.=_:	Ribosomal protein S3
стесете	1180	59	40		176 2.		A, complete cds
CCAAGTT	1181	100	23		314 2.		Homo sapiens mRNA for zyxin
SAAACCCT	1182	46	12	•	144 2.	.=:	Homo sapiens mRNA, chromosome 1 specific transcript KIAA0506
AAACCCT	1183	46	12	÷	144 2.		Vitamin D (1,25- dihydroxyvitamin D3) receptor
AACACCC	184	544	132	. 16	1694 2.	2.87	Tag matches mitochondrial sequence
TGGGGGC	1185	37	1		112 2.		ESTs
TGGGGGC	1186	37	7		112 2.	88.	Human mRNA for proton-ATPase-like protein, complete cds
AAACCCA	1187	£3	15	Ť	140 2.	.=.	No match
TTCATTG	1188	. 22	7		89 2.		Homo sapiens clone 23967 unknown mRNA, partial cds
GCACGCA	1189	33	9	-	101	:=:	No match
STCAAAAG	1190	. 29	7		165 2.	=-	HISTONE H3.3
GGTCACC	1191	19	6		186 2.	2.90	ATP SYNTHASE LIPID-BINDING PROTEIN P1 PRECURSOR
AAACCCT	1192	664	198		2130 2.	-	Carboxypeptidase M
SAAACCCT	1193	664	188	, ,	2130 2.		H.saplens mRNA for laminin
AAACCCT	194	664	198		2130 2.	2.91	GC-RICH SEQUENCE DNA-BINDING FACTOR
SAACCCT	1195	664	198	. 2	2130 2.	,	Homo sapiens mRNA for KIAA0596 protein, partial cds
AAACCCT	1196	664	198	<u>آ</u>	2130 2.	2.91	Homo sapiens clone 23605 mRNA sequence
AAACCCT	1197	664	198		_	=1	Formyl peptide receptor 1
TGAAATT	1198	8	9				ESTS
ATCGCTT	1199	74	Ξ			=1	Homo sapiens coatomer protein (COPA) mRNA, complete cds
TCAAGAG	1200	20	^				No match
ACCAGAC	1201	43	=		136 2		ANGIOTENSIN-CONVERTING ENZYME PRECURSOR, SOMATIC
PATGGCAG	1202	38	so.	•	115 2.	<u>4</u>	VALYL-TRNA SYNTHETASE
CCCACAA	1203	162	39		512 2.	<u>.</u> .	Tag matches mitochondrial sequence
AAGAACC	1204	20	^		155 2.		CD63 antigen (melanoma 1 antigen)
MATAAA	1205	71	9		214 2.	92	Nucleophosmin (nucleolar phosphoprotein 823, numatrin)
GAGGTGC	1206	3	6	•	109	56	Homo saplens FGF-1 intracellular binding protein (FIBP) mRNA, complete cds
							ESTS, Highly similar to NADH-UBIQUINONE OXIDOREDUCTASE AGGG SUBUNIT
CAGAAGA	1207	20	12	-			PRECURSOR (Bos taurus)
CACATCC	1208	440	113	÷			Ribosomal protein L19
TAATACT	1209	67	9		203	2.96 []	ESTs, Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII (H.sapiens)

Table 4, cont.

1	L	
1	Ç	
	_	
`	9	
1	•	
7	η	Ċ

Hydroxyacyl-Coenzyme A dehydropenase/3-ketoacyl-Coenzyme A thiolase/enoyl-	Coenzyme A hydratase (trifunctional protein), beta subunit Hydro carlone RNA transcript from 1117 email puribodar RNA host pene variant 117 HG.	AB	ESTs, Weakly similar to No definition line found [C.elegans]	No match	GUANINE NUCLEOTIDE-BINDING PROTEIN BETA SUBUNIT-LIKE PROTEIN 12.3	ESTs, Moderately similar to SULFATED SURFACE GLYCOPROTEIN 185 (Volvox	carteri	Human alpha-tubulin mRNA, 3' end	ete cds	Human transcriptional corepressor hKAP1/TIF1B mRNA, complete cds	ESTS	No match	Ataxia telangiectasia mutated (includes complementation groups A, C and D)	- 1	Calclum modulating ligand	lls (MART-1) mRNA	Human mRNA for KIAA0123 gene, partial cds	Homo sapiens AIBC1 (AIBC1) mRNA, complete cds	Homo sapiens mRNA for MEGF8, partial cds	Human cytochrome P450-IIB (hIIB3) mRNA, complete cds	Homo saplens X-ray repair cross-complementing protein 2 (XRCC2) mRNA, complete	βρο	Homo saplens oligodendrocyte-specific protein (OSP) mRNA, complete cds	ste - 11 mm s eta 1980-118 Satr, desta kultutusta desta desta keta desta firmijo priminima gala Situation desta distributus desta del desta desta desta del desta del desta del desta del desta del desta del desta del del del del del del del del del del		ible double stranded RNA dependent	Zinc finger protein 157 (HZF22)	rotein kinase B (RSK-B)	Fphosphate dehydrogenase		Breast cancer 2, early onset	Integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	Transcription factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1), albumin proximal	factor	Homo saplens interferon induced tetratricopeptide protein IFI60 (IFIT4) mRNA, complete	Spo	H.saplens RBQ-3 mRNA	Human hVps41p (HVPS41) mRNA, complete cds	Human TNF-alpha converting enzyme precursor, mRNA, alternatively spliced, complete	508	Homo saplens mRNA for KIAA0526 protein, complete cds	Homo saplens melastatin 1 (MLSN1) mRNA. complete cds	Homo sapiens clone 23716 mRNA sequence	Homo saplens mRNA for KIAA0538 protein, partial cds
	2.96	2.97	2.98	2.98	2.99		5.99	2.99	2.99	3.00	3.00	3.00	3.02	3.02	3.05	3.05	3.05	3.06	3.06	3.07		3.07	3.07	3.07	3.07	3.07	3.07	3.08	3.09	3.09	3.10	3.10		3.10		3.10	3.10	3.10		3.10	3.10	3.10	3.10	3.10
	86	. 68	172	152	184		<u>4</u>	415	415	281	515	5	773	122	419	419	98	228	228	1149		1149	1149	1149	1149	1149	1149	89	197	347	4484	4484		4484		44B4	4484	4484		4484	4484	4484	4484	4484
		•	· .	· =	ž.				4		8				. 74	24	. 9		15						. 48		- 28	· vo			453	453		453		453	453	453		453	453	453	453	453
	S.	27	52	47	. 22		57	1 24	134	08	160	34	237	38	129	129	30	02	2	346		346	346	346	348	346	346	20	19	107	1302	1302		1302		1302	1302	1302		1302	1302	1302	1302	1302
	1210	1211	1212	1213	1214		1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228		1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239		1240		1241	1242	1243		1244	1245	1246	1247	1248
	AGATGTGTGG	GTGGTGTGCA	. сесетестве	CCTGCAATCC	GCCTGGCCAT		GCCTGGCCAT	СТССССТТС	GCTGCCCTTG	GCCAGCCCAG	TCCTATTAAG	ATTGTGCCAC	CCATTGCACT	GCACCTCAGC	TTGGTCAGGC	TTGGTCAGGC	GGCCCCGCA	GTGGCACACA	GTGGCACACA	TEGCCAGGC		TGGCCAGGC	TGGCCAGGC	TTGGCCAGGC	TTGGCCAGGC	TGGCCAGGC	TTGGCCAGGC	GTCACTGCCT	GCCACCCCGT	TCCCTATAAG	CCTGTAATCC	CCTGTAATCC		CCTGTAATCC		CCTGTAATCC	CCTGTAATCC	CCTGTAATCC	- 14	CCTGTAATCC	CCTGTAATCC	CCTGTAATCC	CCTGTAATCC	CCTGTAATCC

1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1302 453 - 4484 3.10 1303 2484 3.10 1304 453 - 1248 3.11 1305 453 - 4484 3.10 1316 6	TGTAATCC	1249	1303	163		7487	5	HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, E E'0101/E'0102 ALPHA CHAIN IPRECI IPSOP
1257 1302 453 4484 3.10 1253 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1256 1302 453 4484 3.10 1257 1302 453 4484 3.10 1258 30 9 104 3.11 1259 30 9 104 3.11 1260 9 104 3.11 3.12 1260 9 104 3.11 3.12 1260 9 104 3.11 3.12 1260 9 104 3.11 3.12 1260 9 104 3.11 3.12 1260 9 104 3.11 3.12 1260 9 104 3.12 3.14 1260 9 104 3.12 3.14 1270	TGTAATCC	1250	1302	3 5	•	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	; e	Home canions decourses 2 mONA complete ade
1252 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1257 3918 290 12438 3.11 1259 30 9 104 3.11 1259 30 9 104 3.11 1260 56 9 104 3.11 1260 9 104 3.11 1260 9 104 3.11 1260 9 104 3.11 1260 9 104 3.11 1261 111 27 3.12 1262 12 108 3.13 1263 13 12 118 3.18 1274 358 13 12 12 12 <td< td=""><td>TGTAATCC</td><td>1251</td><td>1302</td><td>453</td><td></td><td>4484</td><td>3.10</td><td>CATHEPSIN'S PRECURSOR</td></td<>	TGTAATCC	1251	1302	453		4484	3.10	CATHEPSIN'S PRECURSOR
1252 1302 453 4484 3.10 1254 1302 453 4484 3.10 1255 1302 453 4484 3.10 1256 1302 453 4484 3.10 1256 1302 453 4484 3.10 1257 1302 453 4484 3.10 1258 30 9 104 3.11 1260 56 9 104 3.11 1261 111 27 312 3.11 1262 623 161 104 3.11 1263 57 10 104 3.13 1264 231 161 270 3.14 1265 623 161 270 3.14 1266 62 9 108 3.14 1270 32 16 17 3.18 1271 32 18 11 3.18 1272								Homo sapiens type 6 nucleoside diphosphate kinase NM23-H6 (NM23-H6) mRNA,
1253 1302 453 . 4484 3.10 1254 1302 453 . 4484 3.10 1255 1302 453 . 4484 3.10 1256 1302 453 . 4484 3.10 1256 1302 453 . 4484 3.10 1259 30 9 . 1044 3.11 1260 56 9 . 1044 3.11 1260 56 9 . 1044 3.11 1261 111 27 . 372 3.11 1262 9 . 1044 3.11 3.11 1260 9 . 1044 3.11 3.11 1260 9 . 1044 3.11 3.11 1260 9 . 1044 3.11 3.11 1260 9 . 1044 3.11 3.11 1260 9 . 1044 3.11 3.11 1260 9 . 106 3.14 3.14	GTAATCC	1252	1302	453		44B4	3.10	complete cds
1254 1302 453 - 4484 3.10 1255 1302 453 - 4484 3.10 1256 1302 453 - 4484 3.10 1258 30 9 - 104 3.11 1259 30 9 - 104 3.11 1260 56 9 - 104 3.11 1261 111 27 - 372 3.11 1262 9 - 104 3.11 1263 9 - 104 3.11 1264 23 161 - 2105 3.12 1265 9 - 104 3.11 3.14 1266 9 - 104 3.11 3.14 1267 23 161 - 2105 3.14 1268 9 - 104 3.14 3.14 1269 9 10 187 3.14 1270 33 11 3.14 3.14 1270 35	GTAATCC	1253	1302	453		4484	3.10	5' nucleotidase (CD73)
1255 1302 463 - 4484 3.10 1256 1302 453 - 4484 3.10 1259 30 9 - 104 3.11 1259 30 9 - 104 3.11 1260 56 9 - 104 3.11 1261 111 27 - 372 3.11 1262 623 161 - 2105 3.12 1263 57 10 187 3.13 1264 231 67 - 187 3.13 1265 623 161 - 2105 3.14 1266 623 161 - 2105 3.14 1267 231 67 - 187 3.13 1268 623 161 - 2105 3.14 1270 86 12 - 210 3.14 1271 87 13 1.18 3.14 1272 88 13 1.27 3.18	GTAATCC	1254	1302	453		4484	3.10	Homo sapiens mRNA, chromosome 1 specific transcript KIAA0508
1256 1302 453 - 4484 3.10 1258 30 9 - 104 3.11 1259 30 9 - 104 3.11 1260 36 9 - 104 3.11 1261 43 9 - 104 3.11 1262 43 9 - 104 3.11 1263 43 9 - 104 3.11 1264 43 67 10 104 3.11 1265 63 6 9 - 104 3.11 1265 63 10 9 - 104 3.11 1266 62 9 - 104 3.11 1267 56 12 210 3.13 1268 9 11 3.13 3.14 1270 35 13 127 3.18 1271 35 13 127 3.18 1277 35 13 127 3.18 </td <td>GTAATCC</td> <td>1255</td> <td>1302</td> <td>453</td> <td></td> <td>4484</td> <td>3.10</td> <td>H. sapiens mRNA for p85 beta subunit of phosphatidyl-inositol-3-kinase</td>	GTAATCC	1255	1302	453		4484	3.10	H. sapiens mRNA for p85 beta subunit of phosphatidyl-inositol-3-kinase
1257 3918 290 12438 3.10 1259 30 9 104 3.11 1260 56 9 104 3.11 1261 111 27 372 3.11 1262 623 161 2105 3.12 1263 57 10 187 3.13 1264 231 67 781 3.13 1265 62 23 161 203 3.14 1265 62 20 13 14 1266 35 67 781 3.13 1270 35 67 781 3.14 1271 67 21 203 3.14 1272 35 13 124 3.18 1273 36 13 124 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 <td>GTAATCC ;</td> <td>1256</td> <td>1302</td> <td>453</td> <td></td> <td>4484</td> <td>3.10</td> <td>Interleukin 12 receptor, beta-2</td>	GTAATCC ;	1256	1302	453		4484	3.10	Interleukin 12 receptor, beta-2
1258 30 9 04 3.11 1260 36 9 04 3.11 1261 111 27 372 3.11 1262 623 161 2105 3.12 1263 57 10 187 3.13 1264 231 67 781 3.13 1265 66 12 203 3.14 1266 9 12 203 3.14 1267 92 12 10 3.14 1267 93 12 10 3.14 1270 95 12 203 3.14 1271 87 13 12 3.18 1272 95 13 12 23 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 359	CCGTACA	1257	3918	280		12438	3.10	No match
1259 30 9 104 3.11 1260 56 9 104 3.11 1261 111 27 372 3.11 1262 623 161 2105 3.12 1263 57 10 187 3.13 1265 62 9 203 3.14 1266 62 9 203 3.14 1267 32 6 108 3.14 1266 62 9 203 3.14 1267 32 6 108 3.14 1270 35 6 118 3.14 1271 85 12 13 3.18 1272 85 13 127 3.18 1274 359 133 127 3.18 1275 359 133 127 3.18 1276 359 133 127 3.18 1277 359	ACACCAC	1258	8	6		5	3.11	ESTS
1260 56 9 182 3.11 1261 111 27 372 3.11 1263 57 161 2105 3.12 1264 231 67 167 3.12 1265 62 167 2105 3.14 1266 82 167 2105 3.14 1266 82 167 2103 3.14 1266 82 167 2103 3.14 1267 35 16 118 3.14 1270 35 16 118 3.14 1277 46 3.18 3.17 1273 36 133 1274 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 35 133 1274 3.18 1278 13	ACACCAC	1259	န	6		104	3.11	Prothymosin alpha
1261 1111 27 372 3,11 1262 623 161 2105 3,12 1263 67 167 167 3,12 1265 623 161 2105 3,12 1266 623 161 216 3,14 1266 62 9 203 3,14 1267 32 6 118 3,14 1269 35 6 118 3,14 1270 56 12 180 3,14 1271 85 13 221 3,18 1272 85 13 1274 3,18 1274 359 133 1274 3,18 1275 359 133 1274 3,18 1276 359 133 1274 3,18 1277 13 6 45 3,18 1278 13 5 45 3,18 1280 13<	SCAAGGG	1260	98			182	3.11	ESTS, Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII IH saniens
1262 623 161 2105 3.12 1263 57 10 187 3.12 1264 231 67 781 3.13 1265 62 9 203 3.14 1266 62 9 203 3.14 1269 35 8 118 3.14 1270 35 8 118 3.14 1270 36 12 138 3.14 1271 87 21 233 3.17 1272 85 13 221 3.18 1274 358 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 359 133 1274 3.18 1276 359 133 1274 3.18 1277 31 5 45 3.18 1280 7 <td>TGGCAT</td> <td>1261</td> <td>111</td> <td>27</td> <td></td> <td>372</td> <td>3.11</td> <td>Ribosomal protein L21</td>	TGGCAT	1261	111	27		372	3.11	Ribosomal protein L21
1263 57 10 187 3.12 1264 231 67 781 3.12 1265 86 12 218 3.14 1266 82 9 203 3.14 1266 35 8 118 3.14 1270 35 8 118 3.14 1271 87 21 233 3.17 1272 85 13 221 3.18 1273 38 11 23 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 35 133 1274 3.18 1276 359 133 1274 3.18 1277 35 133 1274 3.18 1278 13 5 45 3.18 1280 7	SCCTCAC	1262	623	181		2105	3.12	Actin, gamma 1
1264 231 67 781 3.13 1265 86 12 218 3.14 1266 92 9 203 3.14 1269 35 8 118 3.14 1270 56 12 180 3.16 1271 87 21 221 3.17 1272 85 13 221 3.18 1273 36 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1281 109 23 1274 3.18 1282 13 5 45 3.18 1281 109 23 1274 3.18 1282 13 1274 3.18 1283 13 5 45 3.18 1284 28 13 2 45 3.22 1284 28 15 2 2 3.23 1285 <t< td=""><td>SCAAGAC</td><td>1263</td><td>57</td><td>ç</td><td></td><td>187</td><td>3.12</td><td>Tag matches mitochondrial sequence</td></t<>	SCAAGAC	1263	57	ç		187	3.12	Tag matches mitochondrial sequence
1265 86 12 218 3.13 1266 82 9 203 3.14 1268 35 8 118 3.14 1270 56 12 118 3.14 1271 65 12 118 3.17 1272 85 12 233 3.17 1273 36 13 221 3.18 1274 358 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.23 1282 31 7 108 3.23 1284 26 7 24 224 3.23 1286 67 24 224 3.23 1286 67 24 224 3.23 1286 67 24 224 3.23 1287 67 6 5 6 3.25 <t< td=""><td>STAGTCC</td><td>1264</td><td>231</td><td>67</td><td></td><td>781</td><td>3.13</td><td>No match</td></t<>	STAGTCC	1264	231	67		781	3.13	No match
1266 62 9 203 3.14 1267 32 6 108 3.14 1269 35 6 118 3.14 1270 56 12 130 3.16 1271 65 12 130 3.16 1272 66 13 221 3.18 1273 36 13 221 3.18 1274 359 133 127 3.18 1275 359 133 127 3.18 1276 359 133 127 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.23 1282 67 24 3.23 1284 26 7 45 3.23 1285 67 95 <t></t>	CTGAAA	1265	98	12		218	3.13	Thioredoxin
1267 32 6 108 3.14 1269 35 6 118 3.14 1270 56 12 118 3.14 1271 67 12 130 3.17 1272 68 13 221 3.17 1273 36 13 221 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 6 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.23 1284 28 6 9 3.23 1286 67 24 2.24 3.25 1286 67 24 3.25 1289 16 5	CCTGCC	1266	62	o		203	3.14	Capoing protein (actin filament), gelsolin-like
1268 35 8 . 118 3.14 1269 35 8 . 118 3.14 1270 56 12 . 180 3.16 1271 87 21 . 233 3.17 1272 85 13 . 221 3.18 1274 359 133 . 1274 3.18 1275 359 133 . 1274 3.18 1276 359 133 . 1274 3.18 1276 359 133 . 1274 3.18 1277 13 6 . 45 3.18 1278 13 5 . 45 3.18 1280 7 21 269 3.21 1281 109 23 . 35 3.22 1284 28 6 . 206 3.23 1285 67 24 2.24 3.25 1286 67 24 2.24 3.25 1289 <td>CTTTC</td> <td>1267</td> <td>. 32</td> <td>ω</td> <td></td> <td>108</td> <td>3.14</td> <td>H.sapiens tissue specific mRNA</td>	CTTTC	1267	. 32	ω		108	3.14	H.sapiens tissue specific mRNA
1269 35 8 . 118 3.14 1270 56 12 . 190 3.16 1271 87 21 . 233 3.17 1272 85 13 . 221 3.18 1274 359 13 . 1274 3.18 1275 359 13 . 1274 3.18 1276 359 13 . 1274 3.18 1277 13 6 . 45 3.18 1278 13 5 . 45 3.18 1279 13 5 . 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.23 1282 31 7 108 3.23 1284 29 6 9 3.23 1285 67 24 224 3.23 1286 67 24 224 <t>3.25 1289 1</t>	SACGAGG	1268	35	60		118	3.14	Homo saplens TFAR19 mRNA, complete cds
1270 56 12 190 3.16 1271 65 12 190 3.17 1272 65 13 221 3.17 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 6 45 3.18 1278 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.22 1282 31 7 108 3.23 1284 28 6 9 3.23 1286 67 24 24 3.23 1286 67 24 24 3.25 1290 16	SACGAGG	1269	35	60		118	3.14	complete cds
1271 87 21 233 3.17 1272 85 13 221 3.17 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1278 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.22 1281 109 23 3.75 3.22 1282 31 7 108 3.22 1283 55 15 26 3.23 1286 67 24 24 3.23 1286 67 24 275 3.25 1286 67 24 275 3.25 1290 16 5 56 6 3.26 1290 16 5 56 6 3.26 1290 16 5 56 6 3.26 1290 16 5 56 6 3.26 1291 64 6 183 3.26	STCATTG	1270	99	12		180	3.16	Human mRNA for proteasome subunit HsC10-II. complete cds
1272 65 13 221 3.17 1273 36 11 126 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.21 1281 109 23 375 3.22 1282 31 7 108 3.22 1283 59 15 26 3.23 1284 28 6 24 3.23 1286 67 24 224 3.23 1286 67 24 25 3.25 1289 16 5 5 3.26 1290 16 5 5 8 3.26 1290 16<	CAGGTG	1271	87	2		233	3.17	Homo sapiens cargo selection protein TIP47 (TIP47) mRNA, complete cds
1273 36 11 126 3.18 1274 359 133 1274 3.18 1275 359 133 1274 3.18 1277 13 5 45 3.18 1278 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 26 3.21 1281 109 23 3.75 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1286 67 24 2.24 3.23 1286 67 24 2.24 3.25 1287 81 13 27 3.25 1290 16 5 58 3.26 1290 16 5 58 3.26 1291 64 6 183 3.26 1291 64 6 183 3.26 1291 64 6 183 3.26 1292 16 5 58 3.26 1291 64 6 183 3.26 1292 16 5 <td>AGCTGG</td> <td>1272</td> <td>63</td> <td>5</td> <td></td> <td>221</td> <td>3.17</td> <td>LAMINA</td>	AGCTGG	1272	63	5		221	3.17	LAMINA
1274 359 133 1274 3.18 1275 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 289 3.21 1281 109 23 375 3.22 1283 59 15 206 3.22 1284 28 6 9 3.23 1286 67 24 3.23 1286 67 24 3.25 1287 81 13 27 3.25 1289 16 5 5 5 3.25 1290 16 5 5 5 3.26 1290 16 5 5 5 3.26 1290 16 5 5 5 5 1290 16 5 5 5 3.26 1290 16 5 5 5 5	MACCCG	1273	38	Ξ		126	3.18	No match
1275 359 133 1274 3.18 1276 359 133 1274 3.18 1277 13 5 45 3.18 1279 13 5 45 3.18 1280 77 21 269 3.21 1281 109 23 3.75 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1285 67 24 24 3.23 1286 67 24 275 3.23 1287 81 13 275 3.25 1290 16 5 5 5 1291 64 6 183 3.26 1297 16 5 5 5 1291 54 6 183 3.26 1292 16 5 5 5 1293 16 5 5 5 1291 54 6 183 3.26 1292 16 5 5 5 1293 16 5 5 5 1294 5 5 5 5 <td>CAGGAG</td> <td>1274</td> <td>358</td> <td>133</td> <td></td> <td>1274</td> <td>3.18</td> <td>5</td>	CAGGAG	1274	358	133		1274	3.18	5
1276 359 133 1274 3.18 1277 13 5 45 3.18 1278 13 5 45 3.18 1280 77 21 289 3.22 1281 109 23 375 3.22 1282 31 7 108 3.22 1284 28 6 95 3.23 1285 67 8 24 24 3.23 1286 67 24 276 3.23 1289 16 5 5 5 3.25 1290 16 5 5 5 3.26 1291 64 6 183 3.26 1292 16 5 5 5 1291 64 6 183 3.26 1292 16 5 5 5 1293 16 5 5 5 1290 16 5 5 5 1291 64 6 183 3.26 1292 16 5 5 3.26 1293 16 5 5 3.26 1293 16	CAGGAG	1275	359	£		1274	3.18	
1277 13 6 . 45 3.18 1278 13 5 . 45 3.18 1280 77 21 . 269 3.21 1281 109 23 . 375 3.22 1282 31 7 . 108 3.22 1283 59 15 . 206 3.23 1286 67 9 . 224 3.23 1286 67 9 . 224 3.23 1287 81 13 . 275 3.25 1290 16 5 5 5 5 1291 64 6 183 3.26 1292 16 5 5 5 1291 64 6 183 3.26 1292 16 5 5 5 1291 64 6 183 3.26 1292 10 183 3.26 1293 10 183 3.26 1294 16 5 5 5 1295 16 6 6 6 6 1297 16 5 5 6 1297 16 6 6	CAGGAG	1276	359	133		1274	3.18	
1278 13 5 . 45 3.18 1280 77 21 . 269 3.21 1281 109 23 . 375 3.22 1282 31 7 . 108 3.22 1283 59 15 . 206 3.22 1284 28 6 . 95 3.23 1286 67 9 . 24 3.23 1286 67 24 . 24 3.23 1287 81 13 . 275 3.25 1290 16 5 . 58 3.26 1291 64 6 . 183 3.26 1292 16 5 . 58 3.26 1291 64 6 . 183 3.26 1292 16 5 . 58 3.26 1292 16 5 . 58 3.26 1291 64 6 . 183 3.26 1292 16 5 . 58 3.26 1293 16 5 . 58 3.26 1292 16 5 . 58 3.26 1293 16 5 . 58 3.26 1293 <	GCAGTT	1277	5	40		89	3.18	ESTS
1279 13 5 . 45 3.18 1280 77 21 . 269 3.21 1281 109 23 . 375 3.22 1283 59 15 . 206 3.22 1284 28 6 . 95 3.23 1286 67 9 . 224 3.23 1286 67 24 . 240 3.23 1287 81 13 . 275 3.25 1290 16 5 . 58 3.26 1290 16 5 . 58 3.26 1291 64 6 . 183 3.26 1291 64 6 . 183 3.26 1291 64 6 . 183 3.26 1292 16 5 . 58 3.26 1291 64 6 . 183 3.26 1292 16 5 . 58 3.26 1291 64 6 . 183 3.26 1292 16 5 . 58 3.26 1293 16 5 . 58 3.26 1291 64 6 . 183 3.26 1293	GCAGTT	1278	ដ	٠,		45	3.18	ESTS
1280 77 21 269 3.21 1281 109 23 375 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1286 67 9 224 3.23 1286 67 24 2.23 3.23 1287 81 13 275 3.25 1289 16 5 58 3.26 1290 16 5 58 3.26 1291 64 6 183 3.26 1290 16 5 5 58 1291 64 6 183 3.26 1292 16 5 5 58 1291 64 6 183 3.26 1292 16 5 5 50 1291 64 6 183 3.26 1292 16 5 5 50 1293 16 5 5 50 1294 16 5 5 50 1295 16 5 5 50 1294 16 5 5 50	GCAGTT	1279	13	S		45	3.18	ESTS
1281 109 23 . 375 3.22 1283 55 15 . 206 3.22 1284 28 6 . 95 3.23 1286 67 24 3.23 1287 81 13 . 275 3.25 1288 16 5 . 58 3.26 1290 16 5 . 58 3.26 1291 64 6 . 183 3.26	GCCCAT	1280	77	2		269	3.21	HEAT SHOCK PROTEIN HSP 90-BETA
1282 31 7 108 3.22 1283 59 15 206 3.22 1284 28 6 95 3.23 1285 67 9 24 3.23 1286 67 24 240 3.23 1287 81 13 275 3.25 1289 18 5 58 3.26 1290 18 5 59	TCCTGC	1281	109	23		375	3.22	Tag matches ribosomal RNA sequence
1283 59 15 . 206 3.22 1284 28 6 . 95 3.23 1285 67 9 . 224 3.23 1286 67 24 . 240 3.23 1288 35 11 . 275 3.25 1290 16 5 . 58 3.26 1291 64 6 . 183 3.26	GTAACA	1282	3.	^		108	3.22	PROTEIN TRANSLATION FACTOR SUI1 HOMOLOG
1284 28 6 . 95 3.23 1285 67 24 . 24 3.23 1287 81 13 . 275 3.25 1288 35 11 . 124 3.25 1290 16 5 . 58 3.26 1291 64 6 . 95	TGTAAT	1283	29	15		506	3.22	ISLET AMYLOID POLYPEPTIDE PRECURSOR
1285 67 24 224 3.23 1286 67 24 240 3.23 1287 81 13 275 3.25 1288 35 11 274 3.25 1290 16 5 5 8 3.26 1291 64 6 7 183 3.26	SCATAAA	1284	28	9		95	3.23	***************************************
1286 67 24 . 240 3.23 1287 81 13 . 275 3.25 1288 35 11 . 124 3.25 1290 16 5 . 56 3.26 1291 64 6 . 183 3.26	GGTCGT	1285	67	ø		224	3.23	Fibrillarin
1286 35 11 - 275 3.25 1.25 1.28 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	AACCCC .	1286	67	%		240	3.23	Homo sapiens mRNA expressed in osteoblast, complete cds
1288 35 11 - 124 3.25 1289 16 5 - 56 3.26 1290 16 5 6 8 3.26 1291 64 6 - 183 3.26	ттесте	1287	16	5		275	3.25	CD9 antigen
1290 16 5 . 58 3.26 1290 16 5 . 58 3.26 1291 64 6 . 183 3.26	GTGCCC	1288	35	Ξ		124	3.25	Human calmodulin mRNA, complete cds
1290 16 5 . 58 3.26 1291 64 6 . 183 3.26	TCACTG	1289	16	ç		29	3.26	ESTs, Moderately similar to III! ALU SUBFAMILY J WARNING ENTRY !!!! [H.sapier
1291 64 6 . 183 3.26	TCACTG	1290	16	s		28	3.26	ESTs
1292 475 47	TGGGGC	1291	\$	9		₹ 3	3.26	Polypyrimidine tract binding protein (hnRNP I) (afternative products)
1232 109 1/ 3/0 3.20	- 000000							

Table 4, cont.

	32 6 110 3.27 Ribosomal protein L5	. 351 3.27	16 . 351 3.27		83 . 655		اــــــا			6 . 195 3.30 Ribosomal protein S16	. 251 3.30	. 251 3.30	3.31	8 103 3.31	. 489 3.31	71 11 248 3.32 ESTs, Moderately similar to IIII ALU SUBFAMILY J WARNING ENTRY III IH. sapiens	. 165 3.33	325 3.33 Human copper transport protein HAH1 (HAH1) mRNA, complete cds	62 6 213 3.33 Prostatic binding protein	CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3A5, EJ16, EJ30,		47 17 176 3.39 H.sapiens mRNA for NADH dehydrogenase		_	·=:	68 6 - 239 3.44 Human chromosome 17q21 mRNA done LF113	. 90 3.44	<u> </u>	5 - 188 3.46	19 - 456 3.48	5 - 100 3.49	11 . 268 3.50	8 . 271 3.52	9 . 396 3.53	s . 138 3.53 Human transglutaminase mRNA, 3' untranslated region	. 1402 3.54			20 - 467 3.55 Homo sapiens beta 2 gene	=-	8 . 213 3.58 Tumor necrosis factor receptor 2 (75kD)		9 . 213 3.58	9 . 125 3.61	57 8 . 211 3.62 ESTs
25	32			103				39													49																							32	22
TAACCAATCA	CACCTGTAGT	TACCCTAAAA	TACCCTAAAA	TACCCTAAAA	тесстстесе	GCAAAACCCT	AAGGACCTTT	CTGGCGCCGA	GAAGCTTTGC	GCTCCGAGCG	TTGCCCAGGC	TTGCCCAGGC	ACCCACGTCA	GCTCCACTGG	TTTAACGGCC	CTTGTAATCC	CACTTTTGGG	CCGGGTGATG	GGGGTAAGAA		TGACTGGCAG	CAATGTGTTA	GGCTCGGGAT	TGCCTGTAGT	၁၅၀၁၁၁၁၁၁	GGTGGGGAGA	GTAAAACCCT	GGCTCCTGGC	AGTAGGTGGC	GGAGGTGGGG	ССТТСССТА	AGAAAGATGT	AGAACAAAAC	AACTAAAAAA	ATTGCACCAC	GATCCCAACT	GATCCCAACT	CACTACTCAC	CTGTACAGAC	TACCCTAGAA	GTAAAACCCC	GTAAAACCCC	GTAAAACCCC	CTGAGAGCTG	222122122

Tournesses, on the service of the se	Homo sapiens mKNA for protein phosphatase 2C gamma	1.S. HIGHIY SIMILAT TO COATOMER ZETA SUBUNTI [BOS TANTAS]	V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 (alternative products)	Glutathione-S-transferase pi-1	man metargidin precursor mRNA, complete cds	PROTEASOME COMPONENT C13 PRECURSOR		Lectin, galactoside-binding, soluble, 1 (galectin 1)	Homo sapiens mRNA for KIAA0706 protein, complete cds	ESTs, Weakly similar to allograft Inflammatory factor-1 [H.sapiens]	Jun D proto-oncogene	Homo saplens mRNA for CIRP, complete cds	Villin 2 (ezrin)	Homo sapiens clone 23565 unknown mRNA, partial cds	575	Human Gps2 (GPS2) mRNA, complete cds	Human 53K Isoform of Type II phosphatidylinositol-4-phosphate 5-kinase (PIPK) mRNA,	complete cds	Human mRNA for KIAA0328 gene, partial cds	lete cds	Ę	Human syntaxin mRNA, complete cds	H.saplens mRNA for major astrocytic phosphoprotein PEA-15	PROTEASOME BETA CHAIN PRECURSOR	Signal recognition particle 14 kD protein	fag matches mitochondrial sequence	ag matches mitochondrial sequence	Human aryl sulfotransferase mRNA, complete cds		H.sapiens mRNA for phenylalkylamine binding protein	ESTS, Weakly similar to EPIDERMAL GROWTH FACTOR PRECURSOR, KIDNEY	Eukaryotic translation initiation factor 5A	No match	ESTs, Weakly similar to No definition line found [C.elegans]	Retinoblastoma-like 1 (p107)	Cyclic nucleotIde gated channel (photoreceptor), cGMP gated 2 (beta)	Homo saplens mRNA for KIAA0694 protein, complete cds	Homo saplens Arp2/3 protein complex subunit p41. Arc (ARC41) mRNA, complete cds	Small nuclear ribonucleoprotein polypeptides B and B1	Homo sapiens mRNA for KIAA0591 protein, partial cds	Human HU-K4 mRNA, complete cds	Tag matches mitochondrial sequence	Ribosomal protein \$24	ESTS	SET translocation (myeloid leukemia-associated)	Human mRNA for collagen binding protein 2, complete cds	Human 14-3-3 epsilon mRNA, complete cds
•-					3.68 H		3.71 Ta	3.73 Le	-	-	3.76	3.80 Ho	3.80	3.80 HG	3.80 ES	3.80 H	Ĭ		3.81 Ht	3.81 Ho	3.81 H.	-	-																				=-			^	4.17
	165	7 8	323	1448	268	94	237	1801	193	103	251	120	120	120	118	118		269	569	201	201	78	138	136	119	2741	185	185	110	97	1138	1138	134	118	452	452	452	323	233	201	351	2334	117	166	150	240	129
																		•														•						•	,								
	un ·	so.	23	16	15	9	7	9	ø	so.	9	9	9	9	^	7		5	5	5	12	\$	9	60	60	20	₩	0	ທ	S	g	8	60	٧	16	91	16	12	Ξ	ю	7	83	7	80	9	9	თ
	4	8	94	391	89	54	99	428	49	58	65	8	e	93	82	8	•	99	99	90	20	19	*	ž	58	704	97	97	27	24	281	281	32	28	109	109	109	7.7	35	97	\$	551	27	39	35	57	29
9,0	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355		1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385
	20010000		CCTGTAATCT	AGGTCCTAGC	ACTGAAGGCG	AAGGAAGATG	CCGACGGGCG	GCCCCCAATA	AGGATGTGGG	GGAGGCCGAG	ACCCCCCGGC	CTGGCCTGTG	CTGGCCTGTG	creeccrere	CACCCCCAGG	CACCCCCAGG		GTGAAACTCC	GTGAAACTCC	AGAATTGCTT	AGAATTGCTT	ATGGCCTCCT	AACTGTCCTT	AAGGAATCGG	TCTGTTTATC	ACTITICAA	TCTGTAATCC	TCTGTAATCC	GTGAAAACCC	GGCAGGCACA	GGGCAGGGC	GGGCCAGGGC	GTGAAACTCT	TGGACCAGGC	CCTATAATCC	CCTATAATCC	CCTATAATCC	AACTGCTTCA	GGATTGTCTG	CCTGTAATTC	стееесстее	ACCCTTGGCC	ATGGCGATCT	TTGTCTGCCT	TGAATCTGGG	АССТТСТ	CTTTCAGCA

8
4
0
ā
B

ESTS	Homo sapiens dboB-like protein mRNA, complete cds		ial sequence	ESTs, Highly similar to BRAIN PROTEIN 13 [Mus musculus]	Homo sapiens quiescin (Q6) mRNA, complete cds	ESTS	Tag matches mitochondrial sequence	•	GELSOLIN PRECURSOR, PLASMA	Ribosomal protein S17	Tag matches mitochondrial sequence	EST	ESTS	Homo sapiens clone 24751 unknown mRNA	No match	Tag matches ribosomal RNA sequence	No match	:	B-cell translocation gene 1, anti-proliferative		Major histocompatibility complex, class I, C		Homo sapiens calumein (Calu) mRNA, complete cds	Vasodilator-stimulated phosphoprotein	Homo sablens Sox-like transcriptional factor mRNA, complete cds	Homo sapiens monocarboxylate transporter (MCT3) mRNA, complete cds	ESTS	ESTS, Weakly similar to TRANS-ACTING TRANSCRIPTIONAL PROTEIN ICPO	otor, type 1	Fibroblast growth factor receptor 4	Ribosomal protein S25	No match		Human LLGL mRNA, complete cds	BETA-2-MICROGLOBULIN PRECURSOR	Tag matches mitochondrial sequence	Cytochrome c oxidase subunit VIIb	Homo sapiens Arp2/3 protein complex subunit p41-Arc (ARC41) mRNA, complete cds	Human transcriptional activator mRNA, complete cds		CYSTATINB	Ribosomal protein, large, P1	Human glutathione-S-transferase homolog mRNA, complete cds	Tag matches mitochondrial sequence	ESTs, Highly similar to 40S RIBOSOMAL PROTEIN S27 [Rattus norvegicus]	Heat shock 27kD protein 1	
4.17	4.20	4.21	4.23	4.24	4.30	4.32	4.36	4.36	4.38	4.38	4.41	4.41	4.41	4.41	4.43	4.50	4.53	4.53	4.61	4.61	4.65	4.65	4.68	4.71	4.71	4.79	4.79	4.79	4.87	4.87	4.97	90.9	5.09	5.22	5.25	5.26	5.29	5.29	5.35	5.35	5.42	5.43	5.43	5.45	5.95	6.08	
123	380	4414	2814	265	202	216	168	210	648	487	280	280	280	290	549	314	444	155	238	280	1228	1228	170	284	284	647	847	598	109	109	311	539	194	129	2648	2910	217	33,	629	963	57.1	202	214	1698	385	2698	
•	•		•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	:	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	
40	. =	93	93	9	•	0	45	5	æ	w	9	9	9	Ф	7	Ŧ	S	Ξ	۶	12	₹	21	9	7	7	Ξ	Ξ	Đ.	ω	w	en.	38	N)	8	4 3	38	œ	60	19	5	Ξ	w	9	ဗ	9	3	
28	87	1027	643	61	45	84	194	46	143	110	46	2	99	2	122	67	97	32	9	119	259	259	38	54	Z	133	133	121	21	21	62	90	37	R	496	547	88	8	120	177	104	36	38	306	3	435	
1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	. 1429	1430	1431	1432	
CCTGGAGTGG	CGGAGACCCT	CCCTGGGTTC	ATTTGAGAAG	ACAACTCAAT	CTTGATTCCC	GECTEGICTC	AGGTGGCAAG	CTAGCTTTTA	TCACCGGTCA	CGCCGCGTTC	GAGAGCTCCC	GAGAGCTCCC	GAGAGCTCCC	GAGAGCTCCC	CCCCGTACAT	TGGCGTACGG	TCCCCGACAT	CCTGGCTAAT	TCACAGCTGT	TCCCATTAAG	. GTGCACTGAG	GTGCACTGAG	GCTTACCTTT	CTGGCCCGGA	CTGGCCCGGA	GGGCCTGTGC	GGGCCTGTGC	GCCCTCCGG	TGTGATGTA	LIGIGATGIA	CATCTTCACC	TIGGCCAGGA	AGAATCACTT	TAGCCAGGA	GITGTGGTTA	CAAGCATCCC	GACATATGTA	AGTATCTGGG	ACCECCTETE	CTCTTCGAGA	ATGAGCTGAC	GCCTCTGTCT	AAGGAAGATC	AAAACATTCT	CTCAGACAGT	CCCAAGCTAG	

Table 4, cont.

CCCAAGCTAG	1433	435	\$	2698	90.9	Tag matches ribosomal RNA sequence
:						Tyrosine 3-топоохудепазе/tryptophan 5-топоохудепазе activation protein, eta
TCAATCAAGA	1434	35	80	236	6.67	polypeptide
TGCAGCGCCT	1435	. 111		762	6.80	H.sapiens mRNA for urldine phosphorylase
TTCACTGTGA	1436	223	^	1557	6.94	Lectin, galactoside-binding, soluble, 3 (galectin 3) (NOTE: redefinition of symbol)
CTGACCTGTG	1437	226	16	1683	7.38	HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, 8-27 ALPHA CHAIN PRECURSOR
GGGGTCAGGG	1438	118	ø	882	7.43	Glycogen phosphorylase B (brain form)
GGCTTTAGGG	1439	125	9	1019	8.05	
TGGGTGAGCC	1440	304	45	2538	8.21	
AGGGTGTTT	1441	78	60	. 899	8.43	Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase
AGGGTGTTTT	1442	78	80	668	8.43	Tag matches mitochondrial sequence
TGGTGTATGC	1443	93	φ	810	8.62	Tag matches mitochondrial sequence
GAGTAGAGAA	1444	8	60	465	9.15	SET translocation (myeloid leukemia-associated)
TGCAGGCCTG	1445	115	=	1165	10.02	TRYPTOPHANYL-TRNA SYNTHETASE
GCGAAACCCT	1446	210	ä	2242	10.51	V-erb-b2 avian erythroblastic leukernia viral oncogene homolog 3 (alternative products)
						Human N-methyl-D-aspartate receptor 2C subunit precursor (NMDAR2C) mRNA,
GTGACCACGG	1447	4374	53	17260	10.80	complete cds
GTGACCACGG	1448	4374	5 2	47280	10.80	

Table 5. Transcripts uniformly elevated in cancer tissues

					ņ		South Instruct		anss :	,	BAY	
Tag Sequence SEQ ID NO:		ВС	9.0	CC BC Brc LC M	Σ		NC NB NBr NL NM	NB	ž	Ž		V UniGene Description
ATGTGTAACG 226	83	7.	5 13	3 5	- T	8	0	ິ	°	٥	8	S 100 calcium-binding protein A4 (calcium protein, calvasculin, metastasin)
CCCTGCCTTG 227	. .	.8	3 120	88	8		21 27		80	0	21	
GTGCGCTGAG 228	85	5	380	23	Š	8	33	88	0	80	₽	Major histocompatibility complex, class I, C
стевссвете 229	28	5	53	3 16	3 25	S.	60	٥	0	40	=	Apoptosis inhibitor 4 (survivin)
	38	9	54	3	- 29	ø	9	"	n	0	5	ESTs
rggccccagg 231	£,	20	<u>س</u>	3 24	338	9	8		n	19	6	Apolipoprotein CI
~	4	Ξ.	=	16	_	ø	0		0	6	ຫ ໍ	ESTS
_	S		'n	8		7	-	0	6	0	60	ESTs
CTGCACTTAC 234	\$2	8		2		78	3 12	22	S	ຊ	60	DNA REPLICATION LICENSING FACTOR CDC47 HOMOLOG
	168	137	230	52	178	•	9 21	64	5	8	80	Human ubiquitin carrier protein (E2-EPF) mRNA, complete cds
тессествс 236	4	9	12	5 19		~		0	0	0	^	ESTs
recectesce 237	22	83	74	1 28	-	-	8 18	φ	60	0	7	No match
CTCCTGGAAC 238	8	5	8	5 18	•	9	9	۰	60	9	φ	ESTs, Highly similar to MYO-INOSITOL-1-PHOSPHATE SYNTHASE [Arabidopsis thallana]
CCCCCGTCGT 239	•	151	유 _	6	8		0 13	9	0	2	60	No match
ттессссет 240	2	9	5	5	23	6	0 22		S	0	9	AXL receptor tyrosine kinase
TTGCTAAAGG 241	80	w	16	3 16	22	7	3	9	8	0	9	ESTs, Weakly similar to KIAA0005 [H.sapiens]
AGCCACGTTG 242	t.	ш	Ξ	=	_	æ	0	0	0	က	9	Acid phosphatase 1, soluble
CCTGGGCACT 243	2	Ф	8	22	<u> </u>	&	3	e	က	0	9	ESTs, Highly similar to transcription factor ARF6 chain B (M.musculus)
_	23	<u>+</u>	25	16	<u>-</u>	7	4	90	c	4O	9	Home sapiens clone 24767 mRNA sequence / ESTs, Weakly similar to colt [O.melanogaster]
CTTACAGCCA 245	=		19	12	٠.	ဟ	0	n	0	က	9	ESTs
	7	Ψ	15		•		υ 0	•	0	0	80	Homo sapiens mRNA, complete cds
	7	22	w)	=	<u>;</u>	~	-	0	0	9	\$	ESTs, Moderately similar to unknown (M.musculus)
CTGACAGCCC 248	4	en.	-	٠.		æ	-	۰	0	က	S	Human mRNA for HsMcm6, complete cds
	7	-	÷	5 25	-	_	9 0	60	es	0	€0	ESTs, Weakly similar to No definition line found (C.elegans) / ESTs
	5	47	12	=	_	B	-	6	•	60	40	ESTs. Highly similar to G2MITOTIC-SPECIFIC CYCLIN B2 (Mesocricetus auratus)
TCATTGCACT 251	7	5	w)	4	J.	ø	3	٥	0	0	S	ESTs, Highly similar to HYPOTHETICAL 16.3 KD PROTEIN (Saccharomyces cerevisiae)
.	3.	-	7.	38	88	-	5	Φ.	6	Ξ	ď	Small nuclear ribonucleoprotein polypeptide N / B and B1
	=	7	=	19	5	6	3 6	0	ຕ	80	•	ESTs
_	7	•	1	89	=	6	0	c	e	n	•	Plasminogen / PEPTIDYL-PROLYL CIS-TRANS ISOMERASE A
	3	Ξ	Ξ	7		~		0	0	60	•	Cyclin F
ATCTCTGGAG 256	^	ຕ	60	6	-	_	0	0	0	m	4	ESTs
	5	4	=	4			6	0	0	n	4	No match
SCCTTGGGTG 258	7	•	4	03	<u>ء</u>		3	0	0	0	4	Leukemia inhibitory factor (cholinergic differentiation factor)
ACCTCACTCT 259	o	e	2	5		6	0	Φ	e	ຕ	4	ESTs
TAAAGACTTG 260	6	5	75		38	gr.		Ξ	ĸ	Ξ	4	Adenylate kinase 2 (adk2)
"	15	16	~	z		9	9	8	e	0	4	SET translocation (myeloid foukemia-associated)
AACCTCGAGT 262	9	우	-	6 0	=	_	4	0	n	60	4	ESTs, Moderately similar to putative [M.musculus]
	9	ຕ	*	^			0	0	0	0	n	No match
	*	ທ	S				0	0	0	•	•	ESTs
CCTGGGTCCT 285	•	•	•							•	•	

Table 6. Transcripts expressed in Colon Cancer Cells (>500 coples per cell)

Tag	SEQ ID NO:	Copies/cell	Unigene Description
CCCATCGTCC	1449	2672	i Tag matches mitochondrial sequence
TGTGTTGAGA	1450	1672	Translation elongation factor 1-alpha-1
GGATTTGGCC	1451	1663	Ribosomal protein, large P2 / Ribosomal protein S26 / Human mRNA for PIG-B, complete cds
CCCGTCCGGA	1452	1559	160S RIBOSOMAL PROTEIN L13
ATGGCTGGTA	1453	1555	40S RIBOSOMAL PROTEIN S2
GTGAAACCCC	1454	1482	[Multiple matches
CCTCCAGCTA	1455	1468	Keratin 8
ттестст	1456	1453	JOOS RIBOSOMAL PROTEIN L41
TGATTTCACT	1457	1434	EST / Tag matches mitochondrial sequence
CCTGTAATCC	1458	1372	Multiple matches
ACTITITICAA	1459	1367	Tag matches mitochondrial sequence
AAAAAAAA	1460	1357	Multiple matches
GAGGGAGTTT	1461	1290	Ribosomal protein L27a
GCCGAGGAAG	1462	1141	Human mRNA for ribosomal protein S12
CACCTAATTG	1463	1137	Tag matches mitochondrial sequence
၁၅၅၁၁၅၁၁၅၁	1464	1098	Human ribosomal protein L35 mRNA, complete cds
GGGGAAATCG	1465	1092	THYMOSIN BETA-10
GAAAAATGGT	1466	1056	Laminin receptor (2H5 epitope)
GGCTGGGGT	1467	1028	H.sapiens mRNA for ribosomal protein L29 / Homo sapiens sperm acrosomal protein mRNA
GCCGGGTGGG	1468	986	Basigin
AGCCCTACAA	1469	945	Tag matches mitochondrial sequence
CTGGGTTAAT	1470	943	40S RIBOSOMAL PROTEIN S19
CAAACCATCC	1471	927	Keratin 18
TGCACGTTTT	1472		Human mRNA for antileukoprotease (ALP) from cervix ulerus
AGGCTACGGA	1473	905	60S RIBOSOMAL PROTEIN L13A
GCAGCCATCC	1474	861	Ribosomal protein L28
TTCAATAAAA	1475	851	Ribosomai protein, large, P1 / TRANSCOBALAMIN I PRECURSOR
CTAAGACTTC	1476	833	Tag matches mitochondrial sequence
TGGTGTTGAG	1477	830	Human DNA sequence from clone 1033B10 on chromosome 6p21.2-21.31
TACCATCAAT	1478		Glyceraldehyde-3-phosphate dehydrogenase
TTCATACACC	1479	814	Tag matches mitochondrial sequence
CCACTGCACT	1480	800	Multiple matches
ACTAACACCC	1481	795	Tag matches mitochondrial sequence
AAGGTGGAGG	1482	794	60S RIBOSOMAL PROTEIN L18A
AGCACCTCCA	1483	787	Eukaryotic translation elongation factor 2
CACAAACGGT		761	40S RIBOSOMAL PROTEIN S27
AGGAAAGCTG	1485	732	ESTs, Highly similar to 603 RIBOSOMAL PROTEIN L36 [Rattus norvegicus]
GTGAAACCCT	1486	729	Multiple matches
AATCCTGTGG	1487	711	Ribosomal protein L8
тевеетте	1488	869	Ferrtlin heavy chain
AAGACAGTGG	1489	969	Ribosomal protein L37a
ATTTGAGAAG	1490	680	Tag matches mitochondrial sequence
GCCGTGTCCG	1491	629	Human ribosomal protein S6 mRNA, complete cds
			1901 00 1 1000 100 100 100 100 100 100 1

rable 6, con

CGCCGGAACA	1492	678	'Ribosomal protein L4
TCTCCATACC	1493	661	
ACATCATCGA	1494	199	
AACGCGGCCA	1495	644	Macrophage migration Inhibitory factor
AGGCTTCCA	1496	643	UBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX SUBUNIT VI REQUIRING PROTEIN
CCGTCCAAGG	1497	631	Ribosomal protein S16
CGCTGGTTCC	1498	929	
CTCAACATCT	1499	615	Ribosomal protein, large, PO
ACTCCAAAAA	1500	809	H.Sapiens mRNA for transmembrane protein mp24 / Human insulinoma rig-analog mRNA encoding DNA-binding protein
CCTAGCTGGA	1501	909	PEPTIDYL-PROLYL CIS-TRANS SOMERASE A
GTGAAGGCAG	1502	596	:
AGCTCTCCT	1503	551	60S RIBOSOMAL PROTEIN L23
TAGGTTGTCT	1504	537	TRANSLATIONALLY CONTROLLED TUMOR PROTEIN
GGACCACTGA	1505	522	Ribosomal protein L3
AAGGAGATGG	1506	521	. Ribosomal protein L31
AACTAAAAA	1507	510	Ubiquitin A-52 residue ribosomal protein fusion product 1
GGCTGGGGGC	1508	507	Human profilin mRNA, complete cds
4000000	1500	503	Documental data Linguis (200 DIDOCOMINI DECITED 1 20

Table 7. Expressed transcripts (>500 copies per cell)

	The residence of the last of t		
CCCATCGTCC	1508	3022	Tag matches mitochondrial sequence
GTGACCACGG	1509	2435	Tag matches ribosomal RNA sequence / Human N-methyl-D-asparate receptor 2C subunit precursor (NMDAR2C) mRNA
TGTGTTGAGA	1510	1557	Translation elongation factor 1-alpha-1
GTGAAACCCC	1511	1466	Multiple matches
CCTGTAATCC	1512	1403	Multiple matches
CTAAGACTTC	1513	1349	Tag matches mitochondrial sequence
CACCTAATTG	1514	1333	Tag matches mitochondrial sequence
CCCGTCCGGA	1515	1282	60S RIBOSOMAL PROTEIN L13
TTGGTCCTCT	1516	1238	60S RIBOSOMAL PROTEIN L41
ATGCCTGGTA	1517		40S RIBOSOMAL PROTEIN \$2
TIGGGGTTTC	1518	1099	Fertitin heavy chain
CCACTGCACT	1519	964	Multiple matches
TGATTTCACT	1520	942	Tag matches mitochondrial sequence / EST
ACTITITICAA	1521	669	Tag matches mitochondrial sequence
GCAGCCATCC	1522	886	Ribosomal protein L28
TACCATCAAT	1523	874	Giyceraldehyde-3-phosphate dehydrogenase
GGATTTGGCC	1524	854	Ribosomal protein, large P2 / Ribosomal protein S26 / Human mRNA for PIG-B
CCCTGGGTTC	1525	844	Ferritin, light polypeptide
GCCGAGGAAG		836	Human mRNA for ribosomal protein S12
AGGCTACGGA	1527	!	GOS RIBOSOMAL PROTEIN L13A
090000000	1528	805	Human ribosomal protein L35 mRNA, complete cds
TTCATACACC	1529	804	Tag matches mitochondrial sequence
AGCCCTACAA	1530	801	Tag matches milochondrial sequence
CACAAACGGT	1531	799	40S RIBOSOMAL PROTEIN S27
AAGGTGGAGG	1532	786	60S RIBOSOMAL PROTEIN L18A
стсствес	1533	777	Keratin 17
TGGTGTTGAG	1534	770	Human DNA sequence from clone 1033B10 on chromosome 6p21.2-21.31
GTGAAACCCT	1535	728	Multiple matches
GGGGAAATCG	1536	724	THYMOSIN BETA-10
AGCACCTCCA	1537	718	Eukaryotic translation elongation factor 2
CCTCCAGCTA	1538	711	Keralin 8
AAGACAGTGG	1539	669	Ribosomal protein L37a
CTGGGTTAAT	1540	669	40S RIBOSOMAL PROTEIN \$19
ATTTGAGAAG	1541	689	Tag matches mitochondrial sequence
GCCGGGTGGG	1542	687	Basigin
GGCTGGGGT	1543	683	H.saplens mRNA for ribosomal protein L29 / Homo saplens sperm acrosomal protein mRNA
AGGCTTCCA	1544	663	IUBIQUINOL-CYTOCHROME C REDUCTASE COMPLEX SUBUNIT VI REQUIRING PROTEIN
AAAAAAAA	1545	650	(Multiple matches
GAGGGAGTTT	1546	648	Ribosomal protein L27a
GCGACCGTCA	1547	637	Aldolase A
ACTAACACCC	1548	631	Tag matches mitochondrial sequence
CGCCGGAACA	1549	616	Ribosomal protein L4
TGGGCAAAGC	1550	592	Translation elongation factor 1 gamma
TUTTUTT	1551	586	Hyman mRNA for antileukonrotease (ALP) from cervix utents

Table 7, cont.

CLAIMS

1. A method of identifying a cell as either a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, or a kidney epithelial cell, comprising the step of:

determining expression in a test cell of a gene product of at least one gene comprising a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, and 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159, and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166, and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225,

wherein expression of a gene product of at least one gene comprising a sequence shown in (a) identifies the test cell as a colon epithelial cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (b) identifies the test cell as a brain cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (c) identifies the test cell as a keratinocyte;

wherein expression of a gene product of at least one gene comprising a sequence shown in (d) identifies the test cell as a breast epithelial cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (e) identifies the test cell as a lung epithelial cell;

wherein expression of a gene product of at least one gene comprising a sequence shown in (f) identifies the test cell as a melanocyte;

wherein expression of a gene product of at least one gene comprising a sequence shown in (g) identifies the test cell as a prostate cell; and

wherein expression of a gene product of at least one gene comprising a sequence shown in (h) identifies the test cell as a kidney epithelial cell.

- 2. The method of claim 1 wherein expression of gene products of at least two of said genes is determined.
- 3. The method of claim 1 wherein expression of gene products of at least five of said genes is determined.
 - 4. The method of claim 1 wherein the gene product is protein.
 - 5. The method of claim 1 wherein the gene product is RNA.
- 6. The method of claim 5 wherein expression is determined using at least one oligonucleotide probe.
- 7. The method of claim 5 wherein expression is determined using at least two oligonucleotide probes.
- 8. The method of claim 6 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 9. The method of claim 8 wherein the at least one oligonucleotide probe is in an array.
 - 10. The method of claim I wherein the cell to be identified is a cancer cell.
- 11. An isolated polynucleotide comprising a sequence selected from the group consisting of SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-84, 98, 103, 113, 115, 122, 129, 132, 134, 135, 140, 144, 149, 150, 153-168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-213, 216-224, 237, 239, 257, 263, 485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.
- 12. A solid support comprising at least one polynucleotide comprising a sequence selected from at least one of the following groups:
- (a) the sequences shown in SEQ ID NOS:2, 5, 6, 8, 10, 12, 13, 15, 17, 18, 21, 24-26, 28, 30, 31, 34-36, 38, 40, 47-51, 53-57, 59-62, 65-69, 71-76, 78, 80-83, and 84;
 - (b) the sequences shown in SEQ ID NOS:98, 103, 113, 115, 122, 129, 132,

134, 135, 140, 144, 149, and 150;

- (c) the sequences shown in SEQ ID NOS:153-154 and 155;
- (d) the sequences shown in SEQ ID NOS:156-157 and 160;
- (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 174-176, 182, 185, 186, 188, 190, 200, 201, 205-207 and 208;
 - (g) the sequences shown in SEQ ID NOS:209 and 210;
 - (h) the sequences shown in SEQ ID NOS:211-213, 216-223, and 224;
 - (i) the sequences shown in SEQ ID NOS:237, 239, 257, and 263; or
- (j) the sequences shown in SEQ ID NOS:485, 487, 495, 499, 514, 586, 686, 751, 835, 844, 878, 910, 925, 932, 951, 1000, 1005, 1070, 1122, 1130, 1170, 1173, 1187, 1189, 1200, 1213, 1220, 1237, 1257, 1264, 1273, 1293, 1300, 1320, 1367, 1371, 1401, 1403, 1404, 1406, 1418, and 1419.

13. The solid support of claim 12 wherein:

if the at least one polynucleotide comprises a sequence selected from (a), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:1, 3, 4, 7, 9, 11, 14, 16, 19, 20, 22, 23, 27, 29, 32, 33, 37, 39, 41-46, 52, 58, 63, 64, 70, 77, 79, and 85;

if the at least one polynucleotide comprises a sequence selected from (b), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:86-97, 99-102, 104-112, 114, 116-121, 123-128, 130, 131, 133, 136-139, 141-143, 145-148, and 151;

if the at least one polynucleotide comprises a sequence selected from (c), then the solid support further comprises a polynucleotide comprising the sequence shown in SEQ ID NO:152;

if the at least one polynucleotide comprises a sequence selected from (f), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:169-173, 177-181, 183, 184, 187, 189, 191-199, 202, 203, and 204;

if the at least one polynucleotide comprises a sequence selected from (h), then

the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:214, 215, and 225;

if the at least one polynucleotide comprises a sequence selected from (i), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:226-236, 238, 240-256, 258-262, 264, and 265; and

if the at least one polynucleotide comprises a sequence selected from (j), then the solid support further comprises a polynucleotide comprising a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:266-484, 486, 488-494, 496-498, 500-513, 515-585, 587-685, 687-750, 752-834, 836-843, 845-877, 879-909, 911-924, 926-931, 933-950, 952-999, 1001-1004, 1006-1069, 1071-1121, 1123-1129, 1131-1169, 1171, 1174-1186, 1188, 1190-1199, 1201-1212, 1214-1219, 1221-1236, 1238-1256, 1258-1263, 1265-1272, 1274-1292, 1294-1299, 1301-1319, 1321-1366, 1368-1370, 1372-1400, 1402, 1405, 1407-1416, and 1417.

14. The solid support of claim 12, wherein:

if the at least one polynucleotide comprises a sequence selected from (a), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:1, 3, 4, 7, 9, 11, 14, 16, 19, 20, 22, 23, 27, 29, 32, 33, 37, 39, 41-46, 52, 58, 63, 64, 70, 77, 79, and 85;

if the at least one polynucleotide comprises a sequence selected from (b), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:86-97, 99-102, 104-112, 114, 116-121, 123-128, 130, 131, 133, 136-139, 141-143, 145-148, and 151;

if the at least one polynucleotide comprising a sequence selected from (c), then the at least one polynucleotide further comprises SEQ ID NO:152;

if the at least one polynucleotide comprises a sequence selected from (f), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:169-173, 177-181, 183, 184, 187, 189, 191-199, 202, 203, and 204;

if the at least one polynucleotide comprises a sequence selected from (h), then

the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:214, 215, and 225;

if the at least one polynucleotide comprises a sequence selected from (i), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:226-236, 238, 240-256, 258-262, 264, and 265; and

if the at least one polynucleotide comprises a sequence selected from (j), then the at least one polynucleotide further comprises a sequence selected from the group consisting of the sequences shown in SEQ ID NOS:266-484, 486, 488-494, 496-498, 500-513, 515-585, 587-685, 687-750, 752-834, 836-843, 845-877, 879-909, 911-924, 926-931, 933-950, 952-999, 1001-1004, 1006-1069, 1071-1121, 1123-1129, 1131-1169, 1171, 1171, 1174-1186, 1188, 1190-1199, 1201-1212, 1214-1219, 1221-1236, 1238-1256, 1258-1263, 1265-1272, 1274-1292, 1294-1299, 1301-1319, 1321-1366, 1368-1370, 1372-1400, 1402, 1405, 1407-1416, and 1417.

- 15. The solid support of claim 12 wherein the at least one polynucleotide is in an array.
- 16. A method of identifying a test cell as a cancer cell, comprising the step of: determining expression in a test cell of a gene product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265, wherein an increase in said expression of at least two-fold relative to expression of the at least one gene in a normal cell identifies the test cell as a cancer cell.
- 17. The method of claim 16 wherein expression of gene products of at least two of said genes is determined.
- 18. The method of claim 16 wherein expression of gene products of at least five of said genes is determined.
 - 19. The method of claim 16 wherein the gene product is protein.
 - 20. The method of claim 16 wherein the gene product is RNA.
- 21. The method of claim 20 wherein expression is determined using at least one oligonucleotide probe.
 - 22. The method of claim 21 wherein expression is determined using at least two

oligonucleotide probes.

23. The method of claim 21 wherein the at least one oligonucleotide probe is immobilized on a solid support.

- 24. The method of claim 23 wherein the at least one oligonucleotide probe is in an array.
- 25. The method of claim 16 wherein the test cell is selected from the group consisting of a colon epithelial cell, a breast epithelial cell, a lung epithelial cell, a melanocyte, and a brain cell.
- 26. The method of claim 16 wherein the normal cell and the test cell are selected from a single cell type.
- 27. A method of reducing expression of a cancer-specific gene in a human cell, comprising the step of:

administering to the cell a reagent which specifically binds to an expression product of a cancer-specific gene comprising a sequence selected from the group consisting of SEQ ID NOS:228, 230-257, 259-260, and 262-265, whereby expression of the cancer-specific gene is reduced relative to expression of the cancer-specific gene in the absence of the reagent.

- 28. The method of claim 27 wherein the reagent is an antisense oligonucleotide.
- 29. The method of claim 27 wherein the reagent is an antibody.
- 30. A method for comparing expression of a gene in a test sample to expression of a gene in a standard sample, comprising the steps of:

determining a first ratio and a second ratio, wherein the first ratio is an amount of an expression product of a test gene in a test sample to an amount of an expression product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS:266-375, 377-652, 654-796, and 798-1448 in the test sample, and wherein the second ratio is an amount of an expression product of the test gene in a standard sample to an amount of an expression product of the at least one gene in the standard sample; and

comparing the first and second ratios, wherein a difference between the first and second ratios indicates a difference in the amount of the expression product of the test

gene in the test sample.

31. The method of claim 30 wherein the at least one gene comprises a sequence selected from the group consisting of SEQ ID NOS:282, 288, 300, 302, 308, 320, 323, 363, 368, 379, 381, 444, 453, 518, 531, 535, 538, 542, 579, 580, 594, 600, 604, 617, 626, 641, 650, 717, 728, 776, 777, 794, 818, 822, 842, 885, 887, 899, 900, 902, 904, 914, 930, 960, 964, 1001, 1015, 1020, 1027, 1035, 1090, 1113, 1119, 1146, 1151, 1163, 1233, 1235, 1252, 1255, 1270, 1340, 1345, 1356, 1359, 1360, 1362, 1385, 1415, and 1441.

- 32. The method of claim 30 wherein expression is determined using at least one oligonucleotide probe.
- 33. The method of claim 32 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 34. The method of claim 33 wherein the at least one oligonucleotide probe is in an array.
- 35. The method of claim 30 wherein the test sample is a cancer cell and the standard sample is a normal cell.
- 36. The method of claim 35 wherein the cancer cell is selected from the group consisting of a colon cancer cell, a breast cancer cell, a lung cancer cell, a melanoma cell, and a brain cancer cell.
- 37. The method of claim 30 wherein the test sample has been treated with a test compound and the standard sample has not been treated with the test compound.
- 38. The method of claim 37 wherein the test sample is a cancer cell and wherein the standard sample is a normal cell.
- 39. The method of claim 30 wherein the test sample and the standard sample are obtained from the same cell type.
 - 40. A method of screening candidate anti-cancer drugs, comprising the steps of: contacting a cancer cell with a test compound; and

measuring expression in the cancer cell of a gene product of at least one gene comprising a sequence selected from the group consisting of SEQ ID NOS: 228, 230-257, 259, 260, 262-263, and 265, wherein a decrease in expression of the gene product in the presence of a test compound relative to expression of the gene product in the absence of the

test compound identifies the test compound as a potential anti-cancer drug.

41. The method of claim 40 wherein the cancer cell is selected from the group consisting of a colon cancer cell, a breast cancer cell, a lung cancer cell, a melanoma cell, and a brain cancer cell.

- 42. The method of claim 40 in which expression of gene products of at least two of said genes is measured.
- 43. The method of claim 40 in which expression of gene products of at least five of said genes is measured.
 - 44. The method of claim 40 wherein the gene product is protein.
 - 45. The method of claim 40 wherein the gene product is RNA.
- 46. The method of claim 45 wherein expression of the at least one gene product is measured using at least one oligonucleotide probe.
- 47. The method of claim 46 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 48. The method of claim 47 wherein the at least one oligonucleotide probe is in an array.
- 49. The method of claim 46 wherein the at least one oligonucleotide probe comprises a sequence selected from the group consisting of SEQ ID NOS:237, 239, 257, and 263.
- 50. A method of screening test compounds for the ability to increase an organ or cell function, comprising the step of:

contacting a cell selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell with a test compound; and

measuring expression in the cell of a gene product of at least one gene comprising a sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155;

- (d) the sequences shown in SEQ ID NOS:156-159 and 160;
- (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188,

190-207, and 208;

- (g) the sequences shown in SEQ ID NOS:209 and 210; and
- (h) the sequences shown in SEQ ID NOS:211-224 and 225,

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (a) identifies the test compound as a potential drug for increasing a function of a colon cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (b) identifies the test compound as a potential drug for increasing a function of a brain cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (c) identifies the test compound as a potential drug for increasing a function of a skin cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (d) identifies the test compound as a potential drug for increasing a function of a breast cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (e) identifies the test compound as a potential drug for increasing a function of a lung cell;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (f) identifies the test compound as a potential drug for increasing a function of a melanocyte;

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (g) identifies the test compound as a potential drug for increasing a function of a prostate cell; and

wherein an increase in expression of a gene product of at least one gene comprising a sequence selected from (h) identifies the test compound as a potential drug for increasing a function of a kidney cell.

51. The method of claim 50 wherein expression of gene products of at least two of said genes is determined.

- 52. The method of claim 50 wherein expression of gene products of at least five of said genes is determined.
 - 53. The method of claim 50 wherein the gene product is protein.
 - 54. The method of claim 50 wherein the gene product is RNA.
- 55. The method of claim 54 wherein expression is determined using at least one oligonucleotide probe.
- 56. The method of claim 54 wherein expression is determined using at least two oligonucleotide probes.
- 57. The method of claim 55 wherein the at least one oligonucleotide probe is immobilized on a solid support.
- 58. The method of claim 57 wherein the at least one oligonucleotide probe is in an array.
- 59. A method to restore function to a diseased tissue or cell comprising the step of:

delivering a gene to a diseased cell selected from the group consisting of a colon epithelial cell, a brain cell, a keratinocyte, a breast epithelial cell, a lung epithelial cell, a melanocyte, a prostate cell, and a kidney cell, wherein the gene comprises a nucleotide sequence selected from at least one of the following groups:

- (a) the sequences shown in SEQ ID NOS:2, 5-18, 20-84, and 85;
- (b) the sequences shown in SEQ ID NOS:87-96, 98, 100-103, 105, 107-110, 112-129, 131-150, and 151;
 - (c) the sequences shown in SEQ ID NOS:152-154, and 155;
 - (d) the sequences shown in SEQ ID NOS:156-159 and 160;
 - (e) the sequences shown in SEQ ID NOS:161-166 and 167;
- (f) the sequences shown in SEQ ID NOS:168, 170, 172-177, 179-188, 190-207, and 208;
 - (g) the sequences shown in SEO ID NOS:209 and 210; and
 - (h) the sequences shown in SEQ ID NOS:211-224 and 225,

wherein expression of the gene in the diseased cell is less than expression of the gene in a corresponding cell which is normal,

wherein if the diseased cell is a colon epithelial cell, then the nucleotide sequence is selected from (a);

wherein if the diseased cell is a brain cell, then the nucleotide sequence is selected from (b);

wherein if the diseased cell is a keratinocyte, then the nucleotide sequence is selected from (c);

wherein if the diseased cell is a breast epithelial cell, then the nucleotide sequence is selected from (d);

wherein if the diseased cell is a lung epithelial cell, then the nucleotide sequence is selected from (e);

wherein if the diseased cell is a melanocyte, then the nucleotide sequence is selected from (f);

wherein if the diseased cell is a prostate cell, then the nucleotide sequence is selected from (g); and

wherein if the diseased cell is a kidney cell, then the nucleotide sequence is selected from (h).

60. The method of claim 59 wherein the diseased cell fails to express the gene in the diseased state.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 30

	COMPARISON	DESCRIPTION	TOTAL TRANSCRIPTS	UNIQUE TRANSCRIPTS	EXPRESSION CHANGE > = 10 FOLD (%)	
	-	DLD1 CONDITION A vs DLD1 CONDITION B	0	42,673	43 (0.10)	
	2	DLD1 vs HCT116	0	56,061	390 (0.70)A	
3	. က ·	COLON CANCER vs NORMAL BRAIN	0	62,216	930 (1.49) ^B	5
83	4	COLON CANCER vs HEMANGIOPERICYTOMA	0	72,239	1,047 (1.45) ^C	/5

A DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 1 AND 2, p < 0.0001 B DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 2 AND 3, p < 0.0001 C DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 2 AND 4, p < 0.0001 DIFFERENCE BETWEEN EXPRESSION CHANGE OF COMPARISON 2 AND 4, p < 0.0001