lmię i nazwisko:	
L	
Logik	a dla informatyków
Egzamin po	oprawkowy (część licencjacka)
	15 lutego 2007
rozwiązania otrzymuje się 0 punktów	zadań można otrzymać od -2 do 2 punktów. Za brak, punkty ujemne otrzymuje się tylko za rozwiązania komzęść egzaminu (być dopuszczonym do części zasadniczej) ów. Egzamin trwa 60 minut.
Zadanie 1. Podaj formułę równowa	żną formule $\neg((p \Rightarrow \neg q) \land (q \Rightarrow r))$ i mającą:
(a) koniunkcyjną postać normalną	
(b) dysjunkcyjną postać normalną	
Zadanie 2. Wpisz w prostokąt obonegacji.	ok formuły równoważną formułę nie zawierającą znaku
(a) $\neg ((\forall x \ge 0)(\exists y < 0) (f(x) = g(y))$	y))))
(b) $\neg(\exists n \ (n \in A \Rightarrow n \in B))$	
=	prostokąty obok tych równości, które zachodzą dla dotałe prostokąty wpisz odpowiednie kontrprzykłady.
(a) $(A \setminus B) \setminus (B \setminus A) = A$	
(b) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$	7)

	ech $A_{n,m}=\{x\in\mathbb{R}\mid n\leq x\leq n+m\}$. Wylicz wartość poniższych kąt obok wyrażenie oznaczające ten sam zbiór i nie zawierające					
(a) $\bigcup_{n=0}^{\infty} \bigcap_{m=0}^{\infty} A_{n,m}$						
(b) $\bigcap_{n=0}^{\infty} \bigcup_{m=0}^{\infty} A_{n,m}$						
Zadanie 5. W zbiorze $\mathbb{N}^{\mathbb{N}}$ v	wszystkich funkcji z $\mathbb N$ w $\mathbb N$ definiujemy porządek wzorem					
	$f \leq g \stackrel{\mathrm{df}}{\Leftrightarrow} \forall n \in \mathbb{N} \ f(n) \leq g(n).$					
	$i\atop i$ i niech $X=\{f_i\mid i\in\mathbb{N}\}.$ Wpisz w prostokąty poniżej wzory dpowiednio kresem górnym i dolnym zbioru X lub słowo "NIE", nieje.					
(a) $\sup X$						
(b) $\inf X$						
Zadanie 6. Niech \leq_{lex} oznacza porządek leksykograficzny odpowiednio w zbiorach $\mathbb{R} \times \mathbb{N}$ i $\mathbb{N} \times \mathbb{R}$, natomiast \sqsubseteq porządek "po osiach" (czyli $\langle x,y \rangle \sqsubseteq \langle x',y' \rangle$ wtedy i tylko wtedy, gdy $x \leq x'$ oraz $y \leq y'$). W prostokąty poniżej wpisz izomorfizm pomiędzy podanymi porządkami lub uzasadnienie, dlaczego taki izomorfizm nie istnieje.						
(a) $\langle \mathbb{N} \times \mathbb{R}, \leq_{lex} \rangle$ i $\langle \mathbb{R} \times \mathbb{N} \rangle$	$\leq_{lex} \rangle$					
(b) $\langle \mathbb{N} \times \mathbb{R}, \sqsubseteq \rangle$ i $\langle \mathbb{R} \times \mathbb{N}, \sqsubseteq$)					

Imię i nazwisko:							
i rozważmy Definiujemy W prostoką	zbiór \mathcal{T}_Σ funkcję ty poniżej	$=\{a,s\}$ gdzie termów stały $f:\mathcal{P}(\mathcal{T}_{\Sigma}) ightarrow$ wpisz odpowieji f , lub słow	ch (tzn. nie $\mathcal{P}(\mathcal{T}_\Sigma)$ wzo ednio najmni	zawierających rem $f(X) =$ ejszy (oznacz	h zmienny $\{a\} \cup X$ ony $\mu f)$ i r	ch) nad sy $\cup \{s(s(t))\}$ największy	ygnaturą Σ . $\mid t \in X$ }. (oznaczony
(a) μf							
(b) νf							
	-	towo "TAK" n. Wpisz "NI			,	-	
	\mathbb{R}	$\mathcal{P}(\mathbb{N}\setminus\{0\})$	$\{0,1\} \times \mathbb{N}$	$\mathbb{Q} \times \{0, \frac{3}{7}\}$	$\mathcal{P}(\mathbb{R})$	N	$\mathbb{R} imes \mathbb{N}$
Q							
$\mathcal{P}(\mathbb{N})$							
funkcyjnym	i. W pros [.] ajogólniejs	zadaniu u, v, v tokąty obok t ze unifikatory owo "NIE".	ych spośród	podanych p	ar termów	, które są	unifikowal-
(a) $p(z, h)$	(w),g(z))	$\stackrel{?}{=} p(v, u, v)$					
(b) $p(a, h)$	(w), f(g(y))	(z, x, z)	f(w)				

Zac	lanie 10. V	Vykaż indukcyj	nie, że dla wsz	ystkich liczb n	aturalnych $n \ge$	2 zbiór $\{1, 2, \dots, $	n
ma	dokładnie $\frac{n}{}$	$\frac{(n-1)}{2}$ podzbior	ów dwuelemer	ntowych.		$2 \text{ zbi\'or } \{1, 2, \dots, $	

Imię i nazwisko:

Oddane zadania:

Logika dla informatyków

Egzamin poprawkowy (część zasadnicza)

15 lutego 2007

Za każde z poniższych zadań można otrzymać od -20 do 20 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów. Mniej niż -4 punkty otrzymuje osoba, która umieszcza w swoim rozwiązaniu odpowiedzi kompromitująco fałszywe. Rozwiązania, w których nie ma odpowiedzi kompromitująco fałszywych, będą oceniane w skali od -4 do 20 punktów.

Zadanie 11. Rozważmy dowolny ciąg zbiorów $\{A_i \mid i \in \mathbb{N}\}.$

(a) Udowodnij, że

$$\bigcup_{n=0}^{\infty}\bigcap_{i=n}^{\infty}A_i\subseteq\bigcap_{n=0}^{\infty}\bigcup_{i=n}^{\infty}A_i$$

(b) Załóżmy, że $\bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty} A_i = \bigcap_{n=0}^{\infty} \bigcup_{i=n}^{\infty} A_i$ i niech $A = \bigcup_{n=0}^{\infty} \bigcap_{i=n}^{\infty} A_i$. Udowodnij, że

$$\bigcap_{n=0}^{\infty} \bigcup_{i=n}^{\infty} (A_i - A) = \emptyset$$

Zadanie 12. Niech A i B będą dowolnymi zbiorami. Rozważmy zbiór $B^{\subseteq A}$ funkcji częściowych z A w B.

- (a) Niech $\{f_i \mid i \in I\}$ będzie indeksowaną rodziną funkcji częściowych z A w B spełniającą warunek $(f_i \cup f_j) \in B^{\subseteq A}$ dla wszystkich $i, j \in I$. Udowodnij, że $(\bigcup_{i \in I} f_i) \in B^{\subseteq A}$.
- (b) Podaj przykład takiej rodziny funkcji częściowych $\{f_i \mid i \in \mathbb{N}\} \subseteq \{0,1\}^{\subseteq \mathbb{N}}$, że $(f_i \cup f_{i+1}) \in \{0,1\}^{\subseteq \mathbb{N}}$ dla wszystkich $i \in \mathbb{N}$ oraz $\bigcup_{i \in \mathbb{N}} f_i \notin \{0,1\}^{\subseteq \mathbb{N}}$. Uzasadnij, że podana przez Ciebie rodzina spełnia wymagane warunki.

Zadanie 13. Niech A będzie dowolnym zbiorem mocy continuum, a B dowolnym zbiorem mocy \aleph_0 . Udowodnij, że $A \setminus B$ jest zbiorem mocy continuum.

Zadanie 14. Praporządkiem w zbiorze A nazywamy dowolną relację zwrotną w zbiorze A i przechodnią. Niech \prec będzie praporządkiem w zbiorze A. Rozważmy binarną relację \sim w zbiorze A zdefiniowaną wzorem $x \sim y \stackrel{\text{df}}{\Leftrightarrow} x \prec y \wedge y \prec x$.

- (a) Udowodnij, że \sim jest relacją równoważności w A.
- (b) W zbiorze ilorazowym $A/_{\sim}$ definiujemy relację \leq wzorem $[x]_{\sim} \leq [y]_{\sim} \stackrel{\text{df}}{\Leftrightarrow} x \prec y$. Udowodnij, że jest to poprawna definicja oraz że \leq jest relacją częściowego porządku w $A/_{\sim}$.