Метод активизации путей синтеза тестов.

Метод активизации путей – необходимо задать неисправность.

1-я часть – активизация пути

2-я часть – дополнение входного набора

Активизируемый путь – это путь, по которому данная неисправность может быть передана на выход схемы.

V

a	b	c	d	e	f	1	2	3	4	5
0	X					0(1)		0(1)		0(1)
							1		0	
		1	1	0	X					
							Y			

$$t_9 = 0X110X$$
 0(1)

Если кратные неисправности, то не все можно обнаружить. Если схема с обратными связями, то ее преобразовывают по модели Хаффмана – разрывают ОС (пунктиром) и добавляют вход (V).

$$t_3 = 0X110X$$
 y=1

Установочная последовательность – подается до того, как подается тестовая последовательность. Она устанавливает схему в нужное состояние, но сама тестом не является.

X	V	W
t_{91}	0	1
t_{2}	1	' 1 ·
t ₉₃	1	

V- вход, W – выход. Нужно найти такой тест, у которого на входе 1 нужна (W=1, с предыдущего теста).

Сегмент теста – последовательность упорядоченных по изменению внутренних состояний схемы.

Установочных последовательностей нужно столько, сколько будет сегментов.