Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1. Paweł Szewo	zuk			
WFiIS	2. Ihnatsi Yerm	nakovich	II	03	03
PRACOWNIA	Temat				Nr ćwiczenia
FIZYCZNA					
WFiIS AGH	Dyfrakcja świa	71			
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
11.04.2022	25.04.2022				

Dyfrakcja światła na szczelinie pojedynczej

Ćwiczenie nr 71

Paweł Szewczuk

Ihnatsi Yermakovich

1	Cel ćwiczenia	2
2	Wstęp teoretyczny	2
3	Przyrządy pomiarowe	3
4	Przebieg ćwiczenia	4
5	Wyniki	5
6	Opracowanie wyników	6
7	Wnioski	8

1 Cel ćwiczenia

Celem ćwiczenia był wyznaczenie rozkładu natężenia światła laserowego dla obrazu dyfrakcyjnego szczeliny pojedyńczej z wyznaczeniem jej szerokości.

2 Wstęp teoretyczny

Rozpatrujemy pojedyńczą szczelinę o szerokości d. W celu obliczenia natężenia promieniowania obesrwowanego pod kątem θ , szczelina zostaje podzielona na dużą liczbę odcinków, aby następnie zsumować pochodzące od nich fale cząstkowe.

Zakładamy, że rozmiar kątowy obrazu dyfrakcyjnego jest mały $(x \ll L)$. Rozkład natężenia światła I(x) wyraża się wzorem:

$$I(x) = I_0 \left(\frac{\sin(a)}{a}\right)^2 \tag{1}$$

gdzie:

- $\alpha = \frac{\pi d}{\lambda} \sin \theta \cong \frac{\pi dx}{\lambda L}$.
- λ długość fali świetlniej.
- L odległość szczelina ekran.
- d szerokość szczeliny.

Własności obrazu dyfrakcyjnego dla pojedyńczej szczeliny można wyprowadzić badając powyższą funkcję. Minima natężenia światła odpowiadają jej miejscom zerowym:

$$x_{min} = m \frac{\lambda L}{d} \tag{2}$$

gdzie m - numer kolejnego prążka dyfrakcyjnego W dobrym przybliżeniu maksima boczne odpowiadają maksimom funkcji $\sin^2(\alpha)$, które można wyrazić wzorem:

$$x_{\text{max}} = \left(m + \frac{1}{2}\right) \frac{\lambda L}{d} \tag{3}$$

Rysunek 1: Natężenie światła w obrazach dyfrakcyjnych dla pojedyńczej szczeliny

Źródłem światła monochromatycznego i spójnego jest laser półprzewodnikowy, detektorem natężenia światła jest fotodioda. Fotodioda bazująca na zjawisku fotoelektrycznym, powoduje powstanie napięcia U na oporniku R, które następnie zbadać można woltomierzem, aby zmierzyć zmianę natężenia światła. Z uwagi na budowę fotodiody, detektor uśrednia funkcję I(x), co prowadzi do obniżenia napięcia w maksimach i powstanie niezerowego sygnału w minimach.

Rysunek 2: Idealny obraz dyfrakcyjny dla pojedynczej szczeliny

3 Przyrządy pomiarowe

- Laser czerwony o długości fali $\lambda = 650$ nm.S
- Przesłona metalowa zawierająca pojedyńczą szczelinę.
- Ekran z fotodiodą, wraz z mechanizmem do jej przesuwania.
- Układ elektryczny do pomiaru odczytów fotodiody.

Rysunek 3: Układ pomiarowy do badania dyfrakcji

4 Przebieg ćwiczenia

- 1. Sprawdzono połączenie układu elektrycznego z fotodiodą.
- 2. Położenie fotodiody ustawiono na maksimum główne, po czym zanotowano natężenie światła, jako wskazanie woltomierza.
- 3. Diodę przesuwano o 0,3 mm w pionie, za każdym razem notując wskazania woltomierza.
- 4. Zmierzono odległość szczelina fotodioda.

5 Wyniki

Pomiary wstępne:

- Długość fali $\lambda=650~\mathrm{nm}.$
- $\bullet\,$ Odległość szczelina fotodioda L = 745 mm.
- Niepewność u(d) = 0,00577 mm.

I[j.u.]
0,02
0,12
0,16
0,17
0,15
0,25
0,13
0,05
0,01
-0,01
0,03
0,15
0,38
0,64
0,79
1,20
1,38
1,01
0,65
0,36
0,13

$ \begin{array}{c cc} x [mm] & I [j. u. \\ \hline 61,9 & 0,64 \\ \hline 62,2 & 2,47 \\ \end{array} $]
62.2 2.47	
- / / / /	
62,5 6,22	
62,8 12,04	
63,1 24,48	
63,4 41,69	
63,7 55,26	
64,0 71,03	
64,3 74,69	
64,6 69,19	
64,9 65,87	
65,2 61,27	
65,5 55,64	
65,8 48,91	
66,1 44,34	
66,4 36,54	
66,7 25,23	
67,0 15,87	
67,3 7,01	
67,6 1,68	
67,9 0,41	

I[j.u.]
0,19
0,59
1,37
2,33
3,18
2,76
2,05
1,22
0,55
0,16
0,01
0,01
0,15
0,42
0,75
0,96
0,92
0,69
0,39

maks gł	1 min	1 maks	2 min	2 maks

Tabela 1: Pomiar natężenia światła I w jednostkach umownych w zależności od położenia fotodiody

	$x_l \text{ [mm]}$	$x_p [\mathrm{mm}]$	x_{sr} [mm]	Szerokość szczeliny [mm]
1 minimum	2,7	3,9	3,3	146,74
1 maksimum	3,9	5,1	4,5	161,40
2 minimum	6,0	7,0	6,5	149,00
2 maksimum	7,2	8,4	7,8	155,00

Tabela 2: Położenia minimów i maksimów natężenia światła

Natężenie światła w maksimum głównym: $I_0=74,69\ [j.\,u.]$

	I_l [j. u.]	I_p [j. u.]	$I(x_{\text{max}})/I_0$ (zmierzone)	$I(x_{\text{max}})/I_0$ (teoretyczne)
1 maksimum	1,38	3,18	0,0305	0,0450
2 maksimum	0,25	0,96	0,0081	0,0161

Tabela 3: Natężenie światła w maksimach bocznych

6 Opracowanie wyników

Opracowanie zaczniemy od wizualizacji powyższych danych w postaci wykresów:

Rysunek 4: Zależność natężenia światła od odległości szczelina - fotodioda

A teraz w celu lepszego rozpoznania minimówi i maksimów sporządzimy wykres z użyciem skali logarytmicznej na osi pionowej:

Rysunek 5: Zależność natężenia światła od odległości szczelina - fotodioda

Na rysunku (5) są łatwo zauważalnie minima i maksima 2 rzędu, ponadto otrzymany wykres jest zbliżony do wyidealizowanego wykresu przestawionego na rysunku (2).

Teraz obliczymy wartość średnią położenia kolejnych minimów i maksimów od maksima głównego. Wyniki są zebrane w tabeli (2). Tutaj pokażemy obliczenia tylko dla pierwszego minima:

$$\overline{x_{1 \min}} = \frac{x_l + x_p}{2} = \frac{2,7+3,9}{2} = 3,3 \ (mm) \tag{4}$$

Obliczenia szerokości szczeliny d pokażemy tylko dla pierwszego maksima i minima. Natomiast pozostałe wyniki są zebrane w tabeli (2). Szerokość szczeliny dla pierwszego minima:

$$d_{1 \min} = \frac{\lambda L}{x_{1 \max}} = \frac{650 \times 10^{-9} \cdot 745 \times 10^{-3}}{3,3 \times 10^{-3}} \approx 1,4674 \times 10^{-4} \,(m) = 146,74 \,(\mu m) \tag{5}$$

Analogicznie dla pierwszego maksima:

$$d_{1 \min} = \frac{3}{2} \frac{\lambda L}{x_{1 \max}} = \frac{3}{2} \frac{650 \times 10^{-9} \cdot 745 \times 10^{-3}}{4,5 \times 10^{-3}} \approx 1,614 \times 10^{-4} \,(m) = 161,4 \,(\mu m) \tag{6}$$

Wartość średnią szerokości szczeliny obliczymy następująco:

$$\overline{d} = \frac{\sum_{i=1}^{n} d_i}{n} = 153,035 \ (\mu m) \tag{7}$$

Niepewność pomiaru szerokości szczeliny typu A znajdziemy następująco:

$$u(d) = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n(n-1)}} = 3,288 (\mu m)$$
 (8)

Zatem otrzymana wartość szerokości szczeliny wynosi:

$$d = 153,04 \pm 3,29 \; (\mu m) \tag{9}$$

Jest to dobry wynik ze względu na to, że szerokość szczeliny podana przez producenta wynosi 150 μm .

W tej części opracowania obliczymy natężenia świtła w kolejnych maksimach. Na początku z tabeli (1) odczytamy wartość natężenia światla w maksimum głównym $I_0 = 74,69$ (j. u.). W następnym kroku policzymy wartości natężenia względnego wyznaczone doświadczaslnie. Tutaj przedstawimy rachunki tylko dla 1 maksimum bocznego, natomiast pozostałe wyniki są zebrane w tabeli (3):

$$\frac{I\left(x_{\max_1}\right)}{I_0} = \frac{I_{l_1} + I_{p_1}}{2I_0} = 0,0305 \tag{10}$$

Teraz znajdziemy wartości natężenia względnego wyznaczone teoretycznie. Tutaj przedstawimy rachunki tylko dla 1 maksimum bocznego, natomiast pozostałe wyniki są zebrane w tabeli (3):

$$\frac{I\left(x_{\max_{1}}\right)}{I_{0}} \cong \frac{1}{\pi^{2}\left(1+\frac{1}{2}\right)^{2}} = 0,045 \tag{11}$$

Porównując wartości otrzymane doświadczalnie z wartościami otrzymanymi teoretycznie widzimi, że bez względu na fakt, że rzędy wielkości są podobne wartości te różnią się znacząco.

7 Wnioski

Zjawisko dyfrakcji obserwowane w doświadczeniu ujawnia falową naturę światła. Znając teoretyczne zależności między położeniem, a natężeniem promieni świetlnych można z bardzo dużą dokładnością obliczyć szerokość szczeliny dyfrakcyjnej.

Warto zauważyć, że dla coraz większych odległości od maksimum głównego wartości wyznaczone empirycznie coraz mniej zgadzają się z oczekiwanymi wartościami teoretycznymi. Wynika to z niedokładności użytych urządzeń pomiarowych, w tym fotodiody, która uśredniała mierzone natężenie światła.