nlmixr²: Goodness of Fit plots using nlmixr²

PSSN Conference 2023 workshop

Matthew Fidler

On behalf of the nlmixr2 development team:

Matt Fidler, Bill Denney, John Harrold, Richard Hooijmaijers, Rik Schoemaker, Max Taubert, Mirjam Trame, Theodoros Papathanasiou, Justin Wilkins, Yuan Xiong

Standard Pharmacometrics goodness of fit plots (NPD or CWRES common, NPD in chart)

Plot	Shrinkage
Plot of normalized prediction distribution errors versus population predictions (NPD vs. EPRED)	
Plot of normalized prediction discrepancies versus time (NPD vs. TIME)	
Plot of individual weighted residuals versus individual predictions (IWRES vs. IPRED)	3
Plot of individual weighted residuals versus time (IWRES vs. TIME)	3
Visual predictive check (VPC)	
Distribution and quantile-quantile plot of IWRES	3
Distribution and correlation structure of estimated inter-individual random effects (ETA)	η
Relationships between estimated inter-individual random effects (ETA) and covariates (before and after inclusion of covariates)	η
Plots of observations and model predictions per individual	3
Plot of observations versus population predictions (DV vs. EPRED)	
Plot of observations versus individual predictions (DV vs. IPRED)	3
Plot of absolute individual weighted residuals versus individual predictions (IWRES vs. IPRED)	3

Running nlmixr² models: save the object, and examine parameter trace plots when using SAEM to check convergence

```
## results are stored in the nlmixr object and can be viewed:
fitOne.comp.KA.solved_S

## and saved for future use or reference:
save(fitOne.comp.KA.solved_S, file = "fitOne.comp.KA.solved_S.Rdata")

## and for SAEM, convergence can be checked using a parameter trace plot:
traceplot(fitOne.comp.KA.solved_S)
```


Traceplot for SAEM parameter estimates using traceplot command

NPDE vs PRED

NPDE vs TIME


```
## DV vs IPRED plot
ctr %>% pmx_plot_dv_ipred(scale_x_log10=TRUE, scale_y_log10=TRUE)
#You can filter to restrict the values of IPRED for instance:
ctr %>% pmx_plot_dv_ipred(scale_x_log10=TRUE, scale_y_log10=TRUE,filter=(IPRED>1))
## DV vs PRED plot
ctr %>% pmx plot dv pred(scale x log10=TRUE, scale y log10=TRUE)
## Absolute individual weighted residuals to investigate the residual error model
ctr %>% pmx plot abs iwres ipred
#again, alternatively:
#pmx plot abs iwres ipred(ctr)
ctr %>% pmx_plot_iwres_dens
ctr %>% pmx plot eta qq
ctr %>% pmx_plot_eta_box
ctr %>% pmx plot eta hist
ctr %>% pmx plot eta matrix
```


nlmixr² is linked to Ben Guiastrennec's xpose* package that uses ggplot2

```
## the nlmixr object can be transformed into an xpose object to allow diagnostics with the new xpose package
## the link between nlmixr and xpose is provided by the xpose.nlmixr package
## only xpose_data_nlmixr is from xpose.nlmixr
## all further commands (see cheatsheet) are from the xpose package

xpdb.1s <- xpose_data_nlmixr(fitOne.comp.KA.solved_S)

## this can also be used to generate trace plots (parameters vs iterations:)
prm_vs_iteration(xpdb.1s)
## to remove the path to the script from the plot use:
prm_vs_iteration(xpdb.1s,caption=NULL)</pre>
```


^{*}https://uupharmacometrics.github.io/xpose/

nlmixr² is linked to Ben Guiastrennec's xpose* package that uses ggplot2

```
## the nlmixr object can be transformed into an xpose object to allow diagnostics with the new xpose package
## the link between nlmixr and xpose is provided by the xpose.nlmixr package
## only xpose data nlmixr is from xpose.nlmixr
## all further commands (see cheatsheet) are from the xpose package
xpdb.1s <- xpose data nlmixr(fitOne.comp.KA.solved S)</pre>
## this can also be used to generate trace plots (parameters vs iterations:)
prm vs iteration(xpdb.1s)
## to remove the path to the script from the plot use:
prm vs iteration(xpdb.1s,caption=NULL)
```

Parameter value vs. ITERATION | One.comp.KA.sol

Method: SAEM. minimization time: 32.7 Termination message: na

^{*}https://uupharmacometrics.github.io/xpose/

DV vs IPRED using xpose

DV vs. IPRED | One.comp.KA.solved

Ofv: 468.2, Eps shrink: -17.5 [1]

nlmixr² is linked to Ron Keizer's vpc* package

```
## nlmixr comes with its own built-in vpc functionality that uses Ron Keizer's vpc package
## see the cheatsheet for further options
## because the data set uses nominal time points, it is nice to have the bins surround these time points
## so that each time point falls in a bin
bin mids <- sort(unique(PKdata$TIME))</pre>
bin edges <- bin mids - c(0, diff(bin mids) / 2)
vpcPlot(
 fitOne.comp.KA.solved S,
                            #the nlmixr object
  n = 500,
                                  #number of trials simulated
  bins = bin edges,
  show = list(obs dv = TRUE,
                                  #additional items to show, like the observations
              obs median = TRUE,
              sim median = TRUE,
              sim median ci = TRUE,
              obs ci = TRUE,
              pi = TRUE
  xlab = "Time (h)",
                             #x-axis LabeL
 ylab = "Concentration (mg/L)", #y-axis label
 title = "VPC for first order absorption PopPK model"
```


^{*}http://vpc.ronkeizer.com/

VPC for the base model on linear scale...

VPC for first order absorption PopPK model with linear y axis

...and on log scale

```
## or with a log y-axis starting at 0.5
vpcPlot(
 fitOne.comp.KA.solved S,
                                #the nlmixr object
                                 #number of trials simulated
 n = 500,
 bins = bin edges,
  show = list(obs dv = TRUE,
                                 #additional items to show, like the observations
             obs median = TRUE,
             sim median = TRUE,
             sim_median_ci = TRUE,
             obs ci = TRUE,
             pi = TRUE
 xlab = "Time (h)",
                       #x-axis label
 ylab = "Concentration (mg/L)", #y-axis Label
 title = "VPC for first order absorption PopPK model"
 log y = TRUE,
                         #to request a log y-axis
 log y min = 0.5
                         #starting at 0.5
```


...and on log scale. It's super fast ©

nlmixr² can generate individual graphs using augPred

```
## Individual fits can be generated using augPred (augmented predictions)
## that provides smooth profiles by interpolating the predictions between observations:
plot(augPred(fitOne.comp.KA.solved_S))
## ...use the arrows in the plot window to examine the earlier curves
```


nlmixr² can generate individual graphs using augPred

```
## Individual fits can be generated using augPred (augmented predictions)
## that provides smooth profiles by interpolating the predictions between observations:
plot(augPred(fitOne.comp.KA.solved S))
```

...use the arrows in the plot window to examine the earlier curves

use augPred output to plot using your favourite package...

```
#or the augPred output can be plotted to your liking, for instance using applot2 or the lattice function xyplot:
indivpk<-augPred(fitOne.comp.KA.solved S)</pre>
nlmixCOLS <- c("#28466A", "#8DB6CD", "#B40000) ## specify array of colours for curves
xyplot(
 values~time id,
                          ## plot the variable values by time and make a separate panel for each id
 data=indivpk,
                          ## data source with smooth interpolated predictions and observations
                           ## make separate curves by ind that separates Observed data,
 groups=ind,
                           ## Individual predictions and Population predictions
                          ## arrange as 8 columns and 4 rows
 layout=c(8,4),
 type=c("l","l","p"), ## represent these three by a line, a line and only markers (l=line, p=points)
 col=nlmixCOLS[c(2,1,3)], ## colours for each curve
 cex=c(0.1,0.1,1),  ## character size for the markers
lwd=c(2,2,0.1),  ## line width of the lines
                         ## use closed circles as marker
  pch=19,
 xlab="Time (hr)\n", ## x-axis Label
 ylab="Warfarin (mg/L)", ## y-axis Label
  as.table=TRUE, ## have the first plot at the top left (otherwise plot 1 starts at the lower left corner)
  scales=list(alternating=1), ## have axis labels at left and bottom (and not alternating)
 main="First order-absorption linear elimination", ## title for plot
  auto.key=list(adj=1,col=nlmixCOLS[c(2,1,3)],columns=3,space="bottom",rectangles=FALSE,points=FALSE) ## key for curves
```


..like lattice

First order-absorption linear elimination

