# FORD MOTOR COMPANY

# **BODY ELECTRICAL/ELECTRONIC SUBSYSTEM**

# Rear Gate/Trunk Module Functional Specification

FS-DP5T-14B673-BE AE00 - E- 12617306-001 Revision AD

Date: 6/20/2013
Author: Anibal Santoyo

### FORD MOTOR COMPANY CONFIDENTIAL AND PROPRIETARY

This document contains Ford Motor Company confidential and proprietary information. Disclosure of the information contained in any portion of this document is not permitted without the expressed, written consent of a duly authorized representative of Ford Motor Company, Dearborn, Michigan, USA.



# **Engineering Specification**

| PART NAME          |     |     |                                                       | PART NUMBER |      |       |                   |                |
|--------------------|-----|-----|-------------------------------------------------------|-------------|------|-------|-------------------|----------------|
|                    |     |     | Module Assembly – Power Rear<br>/Trunk/Decklid Module | FART NOMBER | FS-D | P5T-1 | 4B673-BC          |                |
|                    | LET | FR  | REVISIONS                                             |             | DR   | CK    | REFERI            | ENCE           |
|                    | Α   | All | Release FS-DP5T-14B673-BA                             |             |      |       |                   |                |
|                    |     |     | AE00 - E- 12394067-145                                |             |      |       | PREPAR            | ED BY          |
|                    | В   | All | Release FS-DP5T-14B673-BB                             |             |      |       | Juan Qu           |                |
|                    |     |     | AE00 - E- 12416946-409                                |             |      |       | APPROVED BY       | DETAILED BY    |
|                    | С   | All | Release FS-DP5T-14B673-BC                             |             |      |       | Juan Quezada      |                |
|                    |     |     | AE00 - E- 12617306-001                                |             |      |       | CONCURRENC        | E/APPROVAL     |
|                    | D   | All | Release FS-DP5T-14B673-BD                             |             |      |       | SIGNAT            | URES           |
|                    |     |     |                                                       |             |      |       | Design Engineer   | ing Supervisor |
|                    |     |     |                                                       |             |      |       | Ron Brombach      |                |
|                    |     |     |                                                       |             |      |       | Design Engineerir | ng Management  |
|                    |     |     |                                                       |             |      |       | Terry Haggerty    |                |
|                    |     |     |                                                       |             |      |       | Manufacturi       | ng Engrg.      |
|                    |     |     |                                                       |             |      |       | 0 111             |                |
|                    |     |     |                                                       |             |      |       | Quality (         | iontrol        |
|                    |     |     |                                                       |             |      |       | Purcha            | sing           |
|                    |     |     |                                                       |             |      |       |                   |                |
|                    |     |     |                                                       |             |      |       | Supplier Qualit   | y Assistance   |
|                    |     |     |                                                       |             |      |       |                   |                |
|                    |     |     |                                                       |             |      |       |                   |                |
|                    |     |     |                                                       |             |      |       |                   |                |
|                    |     |     |                                                       |             |      |       |                   |                |
|                    |     |     |                                                       |             |      |       |                   |                |
| FRAME <sup>-</sup> |     | OF  | 164 REV C                                             |             |      |       |                   |                |
|                    |     |     | · · · · · · · · · · · · · · · · · · ·                 |             |      |       |                   |                |

PD **3947a1e** 

(Previous editions may **NOT** be used)

FS-DP5T-14B673-BC Page 2 of 175

**Revision History** 

| <b>.</b> | Kevision Historia                                                                                                                                                                                                   |                      | ***        | 1 a    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|--------|
| Date     | <b>Description of Change</b>                                                                                                                                                                                        | Sections<br>Affected | Name       | Source |
| 1/28/11  | Initial Release : Notice number AE00 - E- 12394067-145                                                                                                                                                              |                      | M James    |        |
| 2/9/11   | Added "Power Stop" calibration to Table 2                                                                                                                                                                           |                      | K Vosburgh |        |
| 2/9/11   | Changed Table 4 req 26 to "Clear Pending_RGT_Rqst"                                                                                                                                                                  |                      | K Vosburgh |        |
| 2/9/11   | Table 5 transitions 2->1.1 and 2->1.2 DrTgate_D_Rq = "OPENING", changed to "NOT_MOVING"                                                                                                                             |                      | K Vosburgh |        |
| 2/9/11   | Table 5 transitions 3->5.1, 4->5.1, 6->5.1 and 6->5.2 DrTgate_D_Rq = "OPENING", changed to "NOT_MOVING"                                                                                                             |                      | K Vosburgh |        |
| 2/10/11  | Table 5 transitions 6→2 transition event changed to make use of Power Trunk Present and Power Gate Present calibrations as follows                                                                                  |                      | K Vosburgh |        |
|          | <pre>&lt;1&gt; Power Trunk Present=YES &amp;   (RGT_Latch_Status=UNLATCHED)  &lt;2&gt;Power Gate Present=YES &amp;   (RGT_Latch_Status = &lt;3&gt;UNLATCHED     &lt;4&gt;BEFORE_SECONDARY   &lt;5&gt;MIDLATCH</pre> |                      |            |        |
|          | <4>BEFORE_SECONDANT   <5>WILDLATCH<br>  <6>BEFORE_PRIMARY<br>  & RGT_Sector_Gear_Status = NEUTRAL                                                                                                                   |                      |            |        |
| 2/10/11  | Figure 8 transition 4->5.6 changed to RGT_Handle_Req                                                                                                                                                                |                      | K Vosburgh |        |
| 2/10/11  | Figure 8 Transition 2→4.4  Changed to "<4> RGT_Move_Rqst =  CLOSE&(RGT_Position_Status <=                                                                                                                           |                      | K Vosburgh |        |
|          | RGT_Position_Near_Latch   RGT_Position_Status = RGT_Position_Out_Of_Range)" To allow cinching to start when ECU RESET and gate not fully closed.                                                                    |                      |            |        |
| 2/11/11  | Changed CAN Message from 0x331 To: "0x313 Power_Liftgate_Mode_StatM"                                                                                                                                                | 2.3.5.1              | K Vosburgh |        |
| 2/11/11  | Figure xx Changed all transition DTC references toDTC B144F                                                                                                                                                         | 2.3.7.3              | K Vosburgh |        |
| 2/11/11  | Figure 24 added  "GearLvrPos_D_Actl_Signal_UB" CAN signal                                                                                                                                                           | 2.4.2                | K Vosburgh |        |
| 2/11/11  | Figure 25 added  "GearLvrPos_D_Actl_Signal_UB"  CAN signal  To transitions: 1→2.1, 2→1.1, 2→2.1                                                                                                                     | 2.4.1.1              | K Vosburgh |        |
| 2/11/11  | Changed figure 28 2→2.1 transition containing "Odo_Status = HIGH" to 2→2.2 to eliminate duplicate naming                                                                                                            | 2.4.2                | K Vosburgh |        |

| Date     | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                      | Sections<br>Affected | Name        | Source                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------------------------------------------------|
| 2/11/11  | Figure 27 added "OdometerMasterValue_UB" CAN signal                                                                                                                                                                                                                                                                                                                                                                                        | 2.4.2                | K Vosburgh  |                                                         |
| 2/11/11  | Figure 28 added "OdometerMasterValue_UB" CAN signal                                                                                                                                                                                                                                                                                                                                                                                        | 2.4.2                | K Vosburgh  |                                                         |
|          | To transitions: $1 \rightarrow 2.1$ , $2 \rightarrow 1.1$ , $2 \rightarrow 2.1$ , $2 \rightarrow 2.2$                                                                                                                                                                                                                                                                                                                                      |                      |             |                                                         |
| 2/18/11  | Added note to Table 1 to clarify rear switch functionality by decklid vs liftgate.                                                                                                                                                                                                                                                                                                                                                         | 2.2                  | K Vosburgh  |                                                         |
| 3/1/2011 | Changed requirements throughout document, for requirement traceability.                                                                                                                                                                                                                                                                                                                                                                    | Multiple             | K. Vosburgh |                                                         |
| 3/7/2011 | Removed Table 42 in                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4.17               | J. Quezada  |                                                         |
| 5/5/2011 | Updated Section 2.3.5.1  In Figure 12 removed text references and replaced with numbered transitions between states 1,2,3,4.  Added Table 47. RGTM Chime Decision Table, this table contains the logic for figure 12.                                                                                                                                                                                                                      | 2.3.5                | J Quezada   | Preparation for DNA Chimes update.                      |
| 5/9/2011 | 1. Updated Section 2.3.5.1  In Figure 12 state 4 re-numbered as state 5 "Fast Chime". Added a new state 4 named "Long Chime Repeated"                                                                                                                                                                                                                                                                                                      | 2.3.5                | J Quezada   | Implementation<br>of DNA Chimes<br>for CD4.1<br>program |
|          | Updated Table 47 to included new states for state 4 "Long Chime Repeated"  2 Added RGT_Precondition_Changed in table 4, this is an output from the table.                                                                                                                                                                                                                                                                                  | 2.3.1                |             |                                                         |
|          | 3. Replaced DrTgateChime_D_Rq with DrTgateChime2_D_Rq. In Table 18 added DrTgateChime2_D_Rq=0x4 for DNA B Repeated                                                                                                                                                                                                                                                                                                                         | 2.3.5.1              |             |                                                         |
| 5/9/2011 | Added Pending_Rq_Time_CFG calibration in Table 2                                                                                                                                                                                                                                                                                                                                                                                           | 2.2.                 | J Quezada   | Update to Start<br>Stop interaction                     |
|          | 2. Updated Figure 72 and 73 with Pending_Rq_Time_CFG configuration.                                                                                                                                                                                                                                                                                                                                                                        | 2.4.18               |             |                                                         |
|          | 3. Updated Figure 72  IF Time Since Event "Pending Move" <=Pending_Rq_Time AND GTM received CAN messages from PCM, go to Idle and perform pending request.  IF Time Since Event "Pending Move" > Pending_Rq_Time, RGTM will go to state 4 "Pending Req Timeout" and will start a 1 second delay, after the delay has expired the RGTM will move to Idle and will execute the pending request.  4. Added Pending_Req_Timeout as an input to | 2.4.18               |             |                                                         |
|          | table 46, this variable is used for pending request time out .                                                                                                                                                                                                                                                                                                                                                                             | 2.4.18               |             |                                                         |

FS-DP5T-14B673-BC

Page 4 of 175

| Date      | Description of Change                                                                                                                                                                                                                 | Sections<br>Affected | Name       | Source                                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|---------------------------------------------------------|
| 5/9/2011  | Updated Figure 56, added RGT_Drift_Control_Rqst input. Deleted requirement 145 in Table 20, RGTM_Move_Rqst_doesn't have a HOLD domain                                                                                                 | 2.4.12               | J Quezada  | HIL test feedback                                       |
| 7/26/2011 | Updates to Table 47  1. Transition 1->4 Updated condition from:RGT_Chime_Rqst == ACTIVE to: RGT_Chime_Rqst =->ACTIVE  2. Transition 3->4 updated condition                                                                            | 2.3.5                | J. Quezada | Implementation<br>of DNA Chimes<br>for CD4.1<br>program |
|           | From: RGT_Chime_Rqst == ACTIVE To: RGT_Chime_Rqst =->ACTIVE  3. Removed transition Remove 4->3 it's not needed                                                                                                                        |                      |            |                                                         |
|           | 4. Transition 5->4 Updated condition From:RGT_Chime_Rqst ==ACTIVE To: RGT_Chime_Rqst =->ACTIVE                                                                                                                                        |                      |            |                                                         |
| 7/26/2011 | Table 46, Removed Pending_Req_Timeout flag from table and also Removed rows labeled as TBD.      Removed Pending_Req_Timeout flag from                                                                                                | 2.4.17               | J. Quezada | Update to Start<br>Stop interaction                     |
| 12/2/2011 | state machine in Figure 74  Added the following calibrations to Table 2: a) Max_Close_Delay_Time                                                                                                                                      | 2.2                  | J. Quezada | Spec Update                                             |
| 12/2/2011 | Delete crank pause on closing, implement a calibratable variable to adjust the pause time between user close request and the power close cycle.                                                                                       | 2.3.2                | J. Quezada | Spec Update                                             |
|           | <ul> <li>- Updated Figure 6.</li> <li>- Deleted Transition 2-&gt;4 for Pause Crank</li> <li>- Deleted Transition 3-&gt;4 for Pause Crank</li> <li>- In transition 3-&gt;3 replace 1 second value with Max_Close_Delay_Time</li> </ul> |                      |            |                                                         |
| 2/13/2012 | Updated requirement numbers throughout document.                                                                                                                                                                                      | Multiple             | J. Quezada | Spec Update                                             |
| 2/13/2012 | Added the following calibrations to Table 2: a) HW_Chime_Present b) Chime_Present c) Fast_Chime_Decay_Rate                                                                                                                            | 2.2                  | J. Quezada | HW Chime addition                                       |
| 2/13/2012 | Added HW_Chime_Present and Chime_Present to conditions evaluated in Table 47                                                                                                                                                          | 2.3.5.1              | J. Quezada | HW Chime addition                                       |
| 2/13/2012 | Added Figure 75 for hardwired chime.                                                                                                                                                                                                  | 2.3.5.2              | J. Quezada | HW Chime addition                                       |
| 5/03/2012 | Updated drift detection. Figure 19 section 2.3.7.1 Table 2 Calibration table                                                                                                                                                          | 2.3.7.1.<br>2.2      | J. Quezada | Drift detection updates                                 |
| 5/29/2012 | Table 18.1 Inverted LOCKED and UNLOCKED states for RGTM Lockout Status                                                                                                                                                                | 2.4.9.3              | J. Quezada | RGTM lockout<br>state inverted<br>logic                 |

FS-DP5T-14B673-BC Page 5 of 175

| Date       | Description of Change                                                                                                                                                                                                                                                                                                                                                                      | Sections<br>Affected                        | Name              | Source                           |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------|----------------------------------|
| 7/10/2012  | Added Vehicle_Speed_Low_Limit in Table 4.                                                                                                                                                                                                                                                                                                                                                  | 2.2                                         | J. Quezada        | Manual<br>Transmission<br>logic. |
| 7/10/2012  | 1. Updates for Gear Box Type Determination a) 2.4.1 Updated Figure 22 to add CAN signal 0x40A for gear box type b) Added Section 2.4.1.1.1 Read Gear Box Type. 2. Updates for Generation of Park Status c) 2.4.3 Updated table 10 to Include Gear Box Type and Vehicle Speed Slow. d) 2.4.4.2 Updated vehicle speed hysteresis to feature a calibratable value for low speed determination | 2.2<br>2.4.1<br>2.4.1.1<br>2.4.3<br>2.4.4.2 | J. Quezada        | Manual<br>Transmission<br>logic. |
| 7/23/2012  | Updated Vehicle_Speed_Low_Limit in Table 4.  Updated table 10 to simplify Park determination for manual transmission                                                                                                                                                                                                                                                                       | 2.2 2.4.3                                   | J. Quezada        | Manual<br>Transmission<br>logic. |
|            | Updated Table 9.3 Gear Box Type Decode to 8 bytes instead of 9                                                                                                                                                                                                                                                                                                                             | 2.4.1.1.1                                   |                   |                                  |
|            | Added Start Stop calibration to Table 4 Added Start Stop calibration                                                                                                                                                                                                                                                                                                                       | 2.2<br>2.4.17                               |                   | Start Stop configuration         |
| 08/08/2012 | Added program in vehicle program supported. Added program in table 3 for options.                                                                                                                                                                                                                                                                                                          | 2.2                                         | Anibal<br>Santoyo | Manual liftgate<br>Power cinch   |
|            | Added program in table 4 for calibrations.  Added new section for manual liftgate / power cinch  5. Added section for cinch/release control                                                                                                                                                                                                                                                | 2.2                                         |                   |                                  |
|            | state                                                                                                                                                                                                                                                                                                                                                                                      | 2.4.17<br>2.4.17.1                          |                   |                                  |
| 08/09/2012 | Added section for sector gear position                                                                                                                                                                                                                                                                                                                                                     | 2.4.17.2                                    | Anibal<br>Santoyo | Manual liftgate<br>Power Cinch   |
| 08/14/2012 | Added section for Factory Mode Updated table 16 for Factory Mode and handle rqst                                                                                                                                                                                                                                                                                                           | 2.4.18<br>2.4.17                            | Anibal<br>Santoyo | Factory Mode                     |
|            | Added new table for interaction between lifecycle mode and odo status                                                                                                                                                                                                                                                                                                                      | 2.4.18                                      |                   |                                  |
| 08/15/2012 | Added State Transition Diagram for missing message                                                                                                                                                                                                                                                                                                                                         | 2.4.18                                      | Anibal<br>Santoyo | Factory Mode                     |
| 09/25/2012 | Added comment for Open position case when RGTM uses self rising systems vs. counter balanced systems                                                                                                                                                                                                                                                                                       | 2.4.10.1                                    | Anibal<br>Santoyo | Rear Gate /<br>Trunk Position    |
| 09/28/2012 | Second Release : Notice number AE00 - E- 12416946-409                                                                                                                                                                                                                                                                                                                                      |                                             | Anibal<br>Santoyo |                                  |

FS-DP5T-14B673-BC Page 6 of 175

| Date       | Description of Change                                                                                                                                                                                                                                                                                                                                        | Sections<br>Affected                                    | Name              | Source                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------|-----------------------------------------------------------|
| 10/03/2012 | Added description when Torsion Bars are broken                                                                                                                                                                                                                                                                                                               | 2.3.8                                                   | Anibal<br>Santoyo | Manual<br>Operation for<br>broken TB                      |
| 10/04/2012 | Updated table: 4 Pending_Rq_Time_CFG and Max_Close_Delay_Time parameters. Added comment for difference between NA and EU market for start-stop funcionality                                                                                                                                                                                                  | 2.2 2.4.16                                              | Anibal<br>Santoyo | Start-Stop                                                |
| 10/10/2012 | Remove section for inhibit.  Added L1 option for C489  Added comment section 2.4.3 where table applies only for Normal mode.  Added functionality for factory mode with several scenarios.                                                                                                                                                                   | 2.1<br>2.2<br>2.4.3<br>2.4.18                           | Anibal<br>Santoyo | Inhibited Calibrations Park Status Factory mode           |
| 16/10/2012 | Increase timeout for exiting factory mode<br>Remove key fob operation while in factory<br>mode                                                                                                                                                                                                                                                               | 2.4.18                                                  | Anibal<br>Santoyo | Factory<br>Mode                                           |
| 30/10/2012 | Updated table 9.3 for Transmission status                                                                                                                                                                                                                                                                                                                    | 2.4.1.1.1                                               | Anibal<br>Santoyo | Read Gear Box<br>Type                                     |
| 05/11/2012 | Added Phase 2 for Torsion Management.                                                                                                                                                                                                                                                                                                                        | 2.3.8                                                   | Anibal<br>Santoyo | Broken Torsion<br>Bar                                     |
| 27/11/2012 | Updated figure 74 & table for 6 Start-Stop transition Added switch specifications for Europe                                                                                                                                                                                                                                                                 | 2.4.16<br>2.4.5.1<br>2.4.5.2<br>2.4.6<br>2.4.7.1        | Anibal<br>Santoyo | Start Stop  IP Switch                                     |
| 04/12/2012 | Added new item in table 4, regarding obstacle detection disconnect when learning process.  Added note in Obstacle detection.  Added note for Drift Control while learning process                                                                                                                                                                            | 2.4.9.4<br>2.1                                          | Anibal<br>Santoyo | Obstacle Detection & Drift Control while Learning Process |
| 18/01/2013 | Added section Latch position for GECOM latch Updated table 4 Included new flag that indicated RGT configuration MANUAL or POWER New requirement for RGT position status New requirement for RGT Lockout Status Updated figure 8 for RGT manual system Updated figure 75 RGT instead of PLG Pinch Strip Note for manual gate systems Updated data dictionary. | 2.4.17.1<br>2.4.10.1<br>2.4.17.1<br>2.4.17.1<br>2.4.9.3 | Anibal<br>Santoyo | Manual<br>Liftgate<br>Power Cinch                         |
| 26/02/2013 | Added ECE IP switch configuration. Added new table 15. Fix tables numeration.                                                                                                                                                                                                                                                                                | 2.4.5.1.1<br>2.4.5.4                                    | Anibal<br>Santoyo | ECE 11.03                                                 |

FS-DP5T-14B673-BC Page 7 of 175

| Date            | Description of Change                          | Sections | Name    | Source         |
|-----------------|------------------------------------------------|----------|---------|----------------|
|                 |                                                | Affected |         |                |
| 11/04/2013      | Adding Power Stop for C489                     | 2.2      | Anibal  | Power Stop     |
| 11/04/2013      | New chime strategy                             | 2.3.5.1  | Santoyo | Chime          |
|                 | Clarification in state diagram (figure 12,     | 2.3.5.1  |         |                |
|                 | table 8.3) $1 \rightarrow 3.2$ SHORT chime for |          |         |                |
|                 | memory heigth                                  |          |         |                |
| 13/05/2013      | Table 19.3 updated to only listed to ALL       | 2.4.7.1  | Anibal  | Read RGT       |
| 13/03/2013      | lock/unlock status                             |          | Santoyo | Handle Signal  |
|                 | Table 19 updated to clarify true conditions    |          |         |                |
|                 | for CAN signal DrTgateExtSwMde_B_Stat          |          |         |                |
| 27/09/2012      | Added section for Self Test Mode               | 2.4.19   | Anibal  | Self Test Mode |
| 27/08/2013      |                                                |          | Santoyo |                |
| 03/10/2013      | Added comment to evaluate only pawl            | 2.4.12   | Anibal  | Strattec Latch |
| 03/10/2013      | switch for power open operation                |          | Santoyo |                |
| 02/12/2012      | Added new interaction between Factory          | 2.4.18   | Anibal  | Factory Mode   |
| 02/12/2013      | Mode and Self Test Mode.                       | 2.4.19   | Santoyo | Self Test Mode |
| 20/01/2014      | Added information regarding Remote             | 2.4.5.2  | Anibal  | Read Remote    |
| 29/01/2014      | Request Key Fob and Hands Free                 |          | Santoyo | Request        |
| 00/05/2014      | 1. Change section 2.4.19.1 to a complete       | 2.4.19.1 | Anibal  | Learn Cycle    |
| 09/05/2014      | section 2.4.20 for Learn Cycle                 | 2.4.20   | Santoyo |                |
| 21/05/2014      | 1 A 11 1 M D 20 Cl A 44                        | 2.2      | Anibal  | Calibrations   |
| 21/05/2014      | 1. Added Max_Drift_Close_Attempts = 4          |          | Santoyo |                |
|                 | since the Hilex program.                       | 2.4.6    | · ·     | T 10           |
| 22/05/2014      | 1. Correction figure 42 for chime request at   | 2.4.6    | Anibal  | Local Open     |
|                 | maximum open position                          |          | Santoyo | /Close Switch  |
| 0.0.0.510.0.1.1 |                                                | 2.4.20   | Anibal  | Learn Cycle    |
| 02/06/2014      | 1. Update section for Normal mode in Learn     |          | Santoyo |                |
|                 | section                                        |          | ·       |                |
| 20/06/2014      | 1. Added table for PLG action taken            | 2.4.21   | Anibal  | PLG Action     |
| 20,00,201.      | depending on life cycle, learn, config file    |          | Santoyo | Table          |
|                 | status                                         |          |         |                |
|                 |                                                | 2.2      | Anibal  | Reflash        |
| 10/09/2014      | 1. Added Reflash scenarios considerations      | <b>-</b> | Santoyo | Operation      |
|                 | 1                                              | 1        | Juniojo | operation.     |

#### TABLE OF CONTENTS 1.6.1.1 1.6.1.2 1.6.1.3 1.6.1.4 Functional Classification 27 1.6.3 1.6.4.1 Order of Execution Requirements 32 2.1 SUBSYSTEM OVERVIEW 39 2.2 Control Rear Gate/Trunk 50 2.3.3 2.3.4 2.3.5 2.3.5.1 2.3.5.2 2.3.6 2.3.6.1 2.3.6.2 2.3.6.3 Network Sleep / Awake Control 73 2.3.7 2.3.7.1 2.3.7.2 2.3.7.3 Read Transmission Status 79 Read Gear Box Type 82 2.4.1.1.1 2.4.2 2.4.3 Determine Vehicle Speed 87 Master Open/Close Switch .......90 2.4.5.1.1 2.4.5.2 Read Power Locks Inhibit ......94

**REVISION DATE: 9/10/2014** 

FORD CONFIDENTIAL

**REVISION LEVEL: BC** 

ANIBAL SANTOYO / ASANTOY1

# FS-DP5T-14B673-BC

| 2.4.5.4 Determine Front User Request                                        | .95 |
|-----------------------------------------------------------------------------|-----|
| 2.4.6 Local (Rear) Open/Close Switch                                        |     |
| 2.4.7 Read Rear Gate/Trunk Handle Request                                   |     |
| 2.4.7.1 Read RGT Handle Signal                                              | .98 |
| 2.4.7.1.2 Read Vehicle Lock Status                                          | 102 |
| 2.4.7.2 Read Handle Request                                                 |     |
| 2.4.7.2.1 Read RGT Handle CAN Request                                       | 103 |
| 2.4.7.2.2 Determine Rear User Request                                       |     |
| 2.4.8 Read Power Rear Gate/Trunk Lockout                                    | 105 |
| 2.4.8.1 Read Power Rear Gate/Trunk Lockout Status                           | 106 |
| 2.4.8.2 Read Power Rear Gate/Trunk Lockout Status                           | 107 |
| 2.4.8.3 Determine Power Rear Gate/Trunk Lockout Status                      | 107 |
| 2.4.9 Look for Obstacle                                                     | 108 |
| 2.4.9.1 Read Left Pinch Strip                                               | 109 |
| 2.4.9.2 Read Right Pinch Strip                                              | 109 |
| 2.4.9.3 Determine Pinch                                                     | 110 |
| 2.4.9.4 Primary Obstacle Detection                                          | 110 |
| 2.4.10 Determine Rear Gate/Trunk Position                                   | 111 |
| 2.4.10.1 Set Rear Gate/Trunk Position                                       | 112 |
| 2.4.10.2 Determine Rear Gate/Trunk Ajar Status                              | 112 |
| 2.4.10.3 Read Rear Gate/Trunk Glass Ajar Signal                             |     |
| 2.4.10.4 Generate Rear Gate/Trunk Ajar Signal                               | 113 |
| 2.4.10.5 Determine Rear Gate/Trunk Speed                                    | 113 |
| 2.4.10.6 Handle Mechanical Overload Clutch slip                             |     |
| 2.4.11 Power Drive Unit                                                     | 114 |
| 2.4.11.1 Drive Motor Control                                                |     |
| 2.4.12 Latch Interface (Strattec C32P Power Cinching Latch)                 | 115 |
| 2.4.12.1 Determine Latch Position                                           |     |
| 2.4.12.2 Cinch/Unlatch Motor Control (Strattec C32P cinching latch)         |     |
| 2.4.12.3 Determine Sector Gear Position                                     | 122 |
| 2.4.13 Power Latch/Striker Interface (Strattec MDD Latch/ Cinching Striker) |     |
| 2.4.13.1 Determine Latch Position (Strattec MDD latch /cinching striker)    |     |
| 2.4.13.2 Determine Striker Position(Strattec MDD latch /cinching striker)   |     |
| 2.4.13.2.1 RGT Striker Up Switch                                            |     |
| 2.4.13.2.2 RGT Striker Down Switch                                          |     |
| 2.4.13.2.3 Striker Status                                                   |     |
| 2.4.13.3 Cinch Motor Control (Strattec MDD latch /cinching striker)         |     |
| 2.4.13.3.1 Release Solenoid Control (Strattec MDD latch /cinching striker)  |     |
| 2.4.14 Battery Voltage Monitor                                              |     |
| 2.4.14.1 Defined Voltage Ranges                                             |     |
| 2.4.14.1.1 MS CAN Interface                                                 |     |
| 2.4.14.1.2 DTC Logging                                                      |     |
| 2.4.14.1.3 Motor Outputs                                                    |     |
| 2.4.14.1.4 Digital Inputs                                                   |     |
| 2.4.14.1.5 Encoder                                                          |     |
| 2.4.14.1.6 Pinch Strip                                                      |     |
| 2.4.14.1.7 Power Rear Gate/Trunk Feature                                    |     |
| 2.4.14.1.8 Chime                                                            |     |
| 2.4.15 Determine Ignition Status                                            |     |
| 2.4.16 Determine Engine Start Stop Status                                   |     |
| 2.4.17 Manual Liftgate / Power Cinch Module.                                |     |
| 2.4.17.1 Determine Latch position (GECOM latch)                             |     |
| 2.4.17.2 Cinch/Unlatch Motor Control (GECOM Latch)                          |     |
| 2.4.17.3 Determine Sector Gear Position                                     |     |
| 2.4.18 Factory Mode                                                         |     |

**REVISION DATE: 9/10/2014** 

**REVISION LEVEL: BC** 

FORD CONFIDENTIAL

ANIBAL SANTOYO / ASANTOY1

# Power Rear Gate/Trunk – Cross Vehicle Functional Requirements FS-DP5T-14B673-BC

| 2.4.18.1 | Exit Criteria for Factory Mode. | 147 |
|----------|---------------------------------|-----|
| 2.4.19   | Self Test Mode.                 | 148 |
|          | Learn Cycle.                    |     |
|          | ΓA DICTIONARY                   |     |
|          | Chime attribute to be sent.     |     |

Page 10 of 175

FS-DP5T-14B673-BC Page 11 of 175

# 1. INTRODUCTION

### PURPOSE AND SCOPE

This document provides detailed requirement descriptions of Power Rear Gate/Trunk subsystems. This represents requirements combination of Power Liftgate and Power Decklid features, into common controller using configuration constants selecting appropriate software behavior by configuration constants. Terminology of Rear Gate is used synonymous with Liftgate and Trunk is used synonymous with Decklid in other documents.

Although the Hatley-Pirbhai System Specification method was used to generate the contents herein, it has been tailored substantially for conformance to the generic systems engineering process and specification formats. This format is intended to provide the reader a well-organized structure to ease the understanding of the functionality allocated to this subsystem and at the same time provide a modular set of specification elements for reuse and/or re-allocation.

| Program Code | Feature type                  | MY   |
|--------------|-------------------------------|------|
| CD391        | Power Rear Gate               | 2013 |
| CD533        | Power Trunk                   | 2013 |
| C489         | Manual Liftgate / Power Cinch | 2014 |

**Vehicle Programs Supported** 

### 1.2.1 Conflict of Documentation

If any conflict of documentation, the released Part Drawing shall take precedence over the Component Specification, which shall take precedence over this Functional Specification, which shall take precedence over the System Specification.

### 1.3 DOCUMENT ROAD MAP

Section 1.0: This section provides the scope, purpose of the body features in the DC/AC Power inverter Module for the

CGEA 1.3 ICM Functional Specification. It also contains general requirements for the features supported in the DC/AC Power inverter Module.

### 1.4 DOCUMENT CONVENTIONS

### 1.4.1 Methodology & Data Flow Diagrams

The requirements in this specification are partitioned into processes with data flowing between them. This partitioning is

represented in the data flow diagrams. A bubble represents each process. Arrows represent data flows, with the direction

indicating the direction of the flow of information.

The context diagram shown below is presented here to illustrate the methodology and conventions used in the requirements modeling.

FS-DP5T-14B673-BC Page 12 of 175



**Figure 1.4-1 Context Diagram Illustration** 

The Hatley-Pirbhai method is used exclusively. Control flows, CFDs, and CSPECS are NOT used. All modeling is done via

data flows and DFDs. unless otherwise specified, it is assumed that all processes are activated when the module awakes and

are deactivated when the module goes to sleep.

When the use of an event would be highly desirable, the "Ev" suffix is appended to a data flow.

All context diagrams in Section 3, Feature Specifications, include terminators for all data flows. Terminators can be

processes or physical devices connected to the module. If the terminator is a process, such as *IGNITION STATUS*, this

means that the reader must go to the subsection for the process to actually see the requirements for the Ignition Status

process.

### 1.4.2 Requirements Representations

Within each process, the required functionality is described in the form of text, decision tables, state transition diagrams

and/or state transition tables.

Decision tables show combinational logic where Inputs are on the left side of the table and Outputs are on the right side of

the table. A double vertical line separates inputs and Outputs. Each row has a unique number to allow reference to that

particular requirement.

State transition diagrams and state transition tables contain four key elements: states, transitions, events, and actions. States

represent a known condition with the model. Transitions represent the interaction of the states. Events represent the

conditions, which must be true for a transition to be taken. Actions represent the operations that must be accomplished when

a transition is taken.

State transition diagrams use the following conventions: States are represented by rectangles. Arrows represent transitions.

The symbols\_, ->, and => mean "transitions to" and represent an event occurring at a specific point in time. For example

Ignition\_Status \_ RUN means that the ignition switch has transitioned to the RUN position. This is different than

FS-DP5T-14B673-BC Page 13 of 175

Ignition\_Status = RUN, which means that the ignition switch is in the RUN position. The events and actions for a transition

are in text with the events listed before a "/" and the actions following the "/". Timers in one State Transition Diagram are

independent of timers in other State Transition Diagrams.

State transition tables have the Current State, Events, Actions, Next State column format with one transition per row. Each

row has a unique number to allow reference to that particular requirement.

Processing order shall be such that all inputs have been processed prior to evaluation of a given p-spec.

Requirements that are in purple bolded italics and highlighted in blue are "protect for" requirements. Requirements marked

as such identify features that are 1) implemented in the FS, but not coded, 2) are not testable or 3) mark summary type

information that needs to be searched easily. An example of such markings is R:2.4.2.12.2

# 1.4.3 State Transition Table/Diagram Notation

In state machines, some special symbols are used. All symbols used in state machines are listed below. The equality

symbols (=) is explained because it is both used for comparisons and assignments.

| Symbol   | Event or<br>Action | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <n></n>  | Event              | Requirement number <n>: uniquely identifies requirement #1 when transitioning between state A and state B. is assigned a unique requirement number. Example: &lt;1&gt;</n>                                                                                                                                                                                                                                                                                                                              |
| =        | Event              | Equality:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <>       | Event              | Inequality:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| >=       | Event              | Greater than or equal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <=       | Event              | Less than or equal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| >        | Event              | Greater than:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <        | Event              | Less than:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -><br>→  | Event              | Transitions to: activates only on the transition from one value to the target value.  Unless specified otherwise in the Finite State Machine, the state machine must look for the data transition to occur while it is in the state (or superstate) that has the -> as an exit condition. In modeling terms, this means that the transition flag is cleared upon entry to the state (or superstate). Special care must be taken when the -> event must be evaluated as part of a logical AND operation. |
| &        | Event              | Boolean "AND":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I        | Event              | Boolean "OR":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| =        | Action             | Assignment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| no event | Event              | No event trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

FS-DP5T-14B673-BC Page 14 of 175

| no action              | Action | No action taken:                                                                                                                                  |
|------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Mark event<br>xyzzy    | Action | Event in time: conceptual timing requirement – this action marks the event "xyzzy" on an imaginary timeline. Later referenced by Time since event |
| Time since event xyzzy | Event  | Elapsed time: determines the amount of time that has elapsed since the last occurrence of the Mark event xyzzy                                    |

**Table 1.4-1 Special Symbols used in Finite State Machines** 

This is an example of a state transition requirement using the "transitions to" notation (->) from the Courtesy Lighting Delay feature within Interior Lighting.



This is an example of one possible method to implement the above requirement without using the -> notation. The Momentary state is included to guarantee that prev\_Any\_Door\_Ajar\_Status is updated every time the exit conditions of the Off state are evaluated regardless of Ignition\_Status or Ignition\_Status\_Available.

FS-DP5T-14B673-BC Page 15 of 175



Definition of process Test\_Any\_Door\_Ajar\_Status

### **Feature Behavior Summary**

To show by representation the difference between volatile memory and non-volatile memory data storage symbols. The non

volatile memory data storage symbol representation is 2 horizontal lines, one line above and one line below the non volatile

dataflow name. The volatile memory data storage is represented by 2 horizontal bars with solid / filled boxes at the end of

each line, one line above and one line below the volatile dataflow name.



Figure 1.4.3-1 Convention Context Diagram

# 1.4.3.1 Feature Functional Requirements

The following state transition diagram defines the core processing for the feature.

R: 1.4.3.1.1 At Reset, Dataflow\_3 must be set to the initial value specified in the Data Dictionary.

| Rqmt. No.    | Dataflow_1 | Dataflow_2 | Dataflow_3 |
|--------------|------------|------------|------------|
| R: 1.4.3.1.2 | INACTIVE   | INACTIVE   | No Change  |
| R: 1.4.3.1.3 | INACTIVE   | ACTIVE     | No Change  |
| R: 1.4.3.1.4 | ACTIVE     | INACTIVE   | No Change  |
| R: 1.4.3.1.5 | ACTIVE     | ACTIVE     | ACTIVE     |

**Table 1.4.3-1 Process 1 Determine Dataflow Status** 



Figure 1.4.3-2 Process 2 Convention State Machine

FS-DP5T-14B673-BC Page 17 of 175

# 1.4.4 Glossary of Terms

Acronyms and terms used in this document that may not be commonplace in the engineering world.

**Table 1.4-2 Glossary of Terms** 

| Term          | Definition as used and applied in this functional specification                                                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active        | ON or Enable                                                                                                                                                                        |
| A/D           | Analog to Digital convertor                                                                                                                                                         |
| ANI           | Agree not to implement Functions with this flag are not included in the program. No planning/status entry is expected in any column further to the right of it in the FIP template. |
| Awake         | All individual state machines are evaluating their operating conditions. (Reference sections $1.4.1 - 1.4.10$ )                                                                     |
| BCM           | Body Control Module                                                                                                                                                                 |
| BFSL          | Body Functional Specification Library                                                                                                                                               |
| BESS          | Body Electronics Subsystem Specification                                                                                                                                            |
| Cfg           | Configure, Configuration, Configurable                                                                                                                                              |
| CCSM          | Climate Control Seat Module                                                                                                                                                         |
| Cmd           | Command                                                                                                                                                                             |
| Constant      | In Program Memory, Only Suppler can change this value (Flash/Re-Flash/ROM or EEPROM)                                                                                                |
| DCM           | Dimming Control Module                                                                                                                                                              |
| DFD           | Data Flow Diagram                                                                                                                                                                   |
| DRB           | Deployable Running Boards                                                                                                                                                           |
| Disable       | OFF                                                                                                                                                                                 |
| DSM           | Driver Seat Module                                                                                                                                                                  |
| DTC           | Diagnostic Trouble Code                                                                                                                                                             |
| EEPROM        | Electrically Erasable Programmable Read Only Memory                                                                                                                                 |
| EESE          | Electrical / Electronic Systems Engineering                                                                                                                                         |
| EESS          | Electrical / Electronic System Specification                                                                                                                                        |
| Enable        | ON                                                                                                                                                                                  |
| Ev            | Event                                                                                                                                                                               |
| FNOS          | Ford Network Operating System                                                                                                                                                       |
| HS-CAN        | High Speed Controller Area Network                                                                                                                                                  |
| IC            | Instrument Cluster                                                                                                                                                                  |
| InActive      | OFF or Disable                                                                                                                                                                      |
| INDEF         | Indefinitely                                                                                                                                                                        |
| Initial State | Upon reset this is the value that the data flow is to take until a new value can be obtained.                                                                                       |
| Initial Value | Upon reset this is the value that the data flow is to take until a new value can be obtained.                                                                                       |

# **Table 1.4-2 Glossary of Terms**

| Term                          | Definition as used and applied in this functional specification                                                                                                                                                                                                                                                                                |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LTM                           | Lift Trunk Module                                                                                                                                                                                                                                                                                                                              |
| MS-CAN                        | Medium Speed Controller Area Network                                                                                                                                                                                                                                                                                                           |
| NM                            | Network Manager                                                                                                                                                                                                                                                                                                                                |
| Network<br>Receive<br>Default | This is the timed out value that the data flow is to take until a new value is received over the network.                                                                                                                                                                                                                                      |
| Non-Volatile<br>Customer SET  | Customer uses feature to change this value. Diagnostics can change this value. (EEPROM)                                                                                                                                                                                                                                                        |
| Non-Volatile<br>Factory SET   | Diagnostics can change this value. (EEPROM)                                                                                                                                                                                                                                                                                                    |
| N/A                           | Not Applicable                                                                                                                                                                                                                                                                                                                                 |
| OFF                           | Off / Disable                                                                                                                                                                                                                                                                                                                                  |
| ON                            | On / Enable                                                                                                                                                                                                                                                                                                                                    |
| OSEK                          | Offene Systems und deren Schnittstellen fur die Elektronik in Kraftfahzeugen                                                                                                                                                                                                                                                                   |
| OSEK                          | (Open systems and their corresponding interfaces for automotive electronics)                                                                                                                                                                                                                                                                   |
| Out                           | Output                                                                                                                                                                                                                                                                                                                                         |
| PNI                           | Plan not to implement  Functions with this flag are included in the program but are not implemented at the relevant integration point. This flag is only applicable to "Planned" column. No entry is expected in the "Actual" column in the FIP template.                                                                                      |
| PID                           | Parameter Identification                                                                                                                                                                                                                                                                                                                       |
| PLG                           | Power Lift Gate Module                                                                                                                                                                                                                                                                                                                         |
| Received Default              | This is the timed out value that the data flow is to take until a new value is received over the network.                                                                                                                                                                                                                                      |
| Req or Rqst                   | Request                                                                                                                                                                                                                                                                                                                                        |
| Rqmt. No.                     | Requirement Number <n>, R: 1.4.4.1.1</n>                                                                                                                                                                                                                                                                                                       |
| R: 1.4.4.1.1                  | For example, <b>R: 1.4.4.1.1</b> is requirement number 1 in Section 1.4.4.1 of this document. Requirements are text denoted as "Caption, the font is Arial 8pt, <b>BOLD"</b> to identify a requirement. All Requirements are Level 4 Captions.                                                                                                 |
|                               | Requirements are sequenced based upon the "Heading 4" numbering sequence                                                                                                                                                                                                                                                                       |
| Reset                         | To force the state machine to a known condition. Each state machine may have an independent reset condition not defined in the software requirements. This independent condition shall not conflict with the body module software requirements. Reference the software requirements document for conditions that may or may not cause a reset. |
| Selection                     | This is the configuration or option selected from the BFSL feature.                                                                                                                                                                                                                                                                            |
| Sleep                         | All of the sleep criteria for the module have been met. All individual state machines must retain their current states prior to sleep. Retained states to be used as defined in the Wake Up definition. (Reference software requirement 62, and sections 1.4.1)                                                                                |

FS-DP5T-14B673-BC Page 19 of 175

### **Table 1.4-2 Glossary of Terms**

| Term     | Definition as used and applied in this functional specification                                                                                                                                                                     |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SJB      | Smart Junction Box                                                                                                                                                                                                                  |  |
| SPDJB    | Smart Power Distribution Junction Box                                                                                                                                                                                               |  |
| TPMS     | Tire Pressure Monitor System                                                                                                                                                                                                        |  |
| Toggle   | To change state for example from On to OFF, or Disable to Enable                                                                                                                                                                    |  |
| Volatile | Changes during run-time, program execution (RAM)                                                                                                                                                                                    |  |
| Wake Up  | An input event that results in a transition from the module SLEEP state to the AWAKE state. All individual state machines resume at their previously retained states as defined in the Sleep definition. (Reference sections 1.4.1) |  |
| WCR      | CR Worldwide Customer Requirements                                                                                                                                                                                                  |  |
|          |                                                                                                                                                                                                                                     |  |

# 1.4.5 Assumed Interface to NVRAM Manager

**Note:** This document assumes the following interface with an EEPROM manager. The supplier does not need to support this exact interface.

NVRAM\_Rqst NULL = do nothing

**UPDATE** = post all changes to NVRAM (going to reboot) **STOP** = Let any current write finish – don't start another

**NVRAM\_Status BUSY** = NVRAM is busy, write is occurring

**NULL** = NVRAM is not busy

**DONE** = request for UPDATE or STOP has been completed

This interface is used in the Sleep/Awake feature and in the Diagnostics feature.

FS-DP5T-14B673-BC Page 20 of 175

### 1.4.6 Timer Mark Event / Time Since Event

| Mark event xyzzy  Action  Event in time. This action marks the referenced by Time since event" |           | Event in time. This action marks the event "xyzzy" on an imaginary timeline. Later referenced by Time since event" |
|------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------|
| Time since event xyzzy > = TimeValue_Cfg                                                       | Condition | Elapsed time: determines the amount of time that has elapsed since the last occurrence of the "Mark event xyzzy"   |

### Timers in the Behavior and Implementation models

- a) The Behavior models shall implement the following timer resolutions (selection based on Data Dictionary criteria):
- b) Note: all timers are 32-bit unsigned integers (U32).
- c) Following API shall be used to mark and check timers:

### Mark\_Timer\_msec(TIMER\_NAME)

### Check Timer msec(TIMER NAME)

This timer runs only while the module is awake. While the resolution is in millisecond, it may be actually incremented by 5 every 5 msec, for example. This timer will retain its value across module sleep status, and be reset to 0 if the CPU is reset.

### Mark\_Timer\_sec(TIMER\_NAME)

### Check\_Timer\_sec(TIMER\_NAME)

This timer runs only while the module is awake. This timer will retain its value across module sleep status, and be reset to 0 if the CPU is reset.

### Mark\_GRTimer(TIMER\_NAME)

### Check\_GRTimer(TIMER\_NAME)

This global real timer runs while the module is supplied with power, even while the module is asleep. Its resolution is 100 milliseconds. The value is committed to EEPROM on a schedule, so that a "recent" value will be retained across a power loss. The value is also (normally) retained across short CPU resets.

Note that this means that across a power loss, the timer could "go backwards". Practically, this means that after a power loss, you must Mark a GRTimer before checking it.

Note also that this clock is not necessarily synchronized with the other 2 timers. i.e., it may run at a slightly different rate, because it must be very accurate over long time periods to be used for time of day clock on the radio.

Note that even though GRT timer resolution is 100milliseconds

Check\_GRTimer() reports in seconds. This is to have consistent usage of timers in milliseconds or seconds.

d) The supplier may develope a timer behavior library which simulates the timer implementation. Test harness shall use this library to test the timers that are used in behavior library model.

All Data Dictionary time entries should use milliseconds or seconds as their units.

Note: The GRT is not allowed to use 0xFFFFFFFF (which indicates "unknown" in the vehicle CAN network). So every 13.6 years, we will have a 100msec error in GRT (which we will ignore). The GRT timer actually uses 100msec resolution. However, all uses of GRT use seconds as the unit. This means the calculation performed by the subroutine must be (ActualGRTime - BaseGRTime)/10 to convert to seconds.

FS-DP5T-14B673-BC Page 21 of 175

# **Example Timer Implementation**

Timer is 32 bit unsigned integer (U32).

| Mark Event Timer Base Unit   |                         | Time Since Event        | Eng. Unit    |  |
|------------------------------|-------------------------|-------------------------|--------------|--|
| Mark_Timer_msec Milliseconds |                         | Actual - Base >= Target | milliseconds |  |
| Mark_Timer_sec               | second                  | Actual - Base >= Target | second       |  |
| Mark GRTTimer                | Actual – Base >= Target |                         | second       |  |
| Mark_ORT Tillion             | 100 mmisceonus          | 10                      | second       |  |

|                  |        |         | Time Value<br>Hexadecimal (U32) | Decimal |
|------------------|--------|---------|---------------------------------|---------|
|                  |        |         | 0000 0000                       | 0       |
| Mark event       | Base   | <b></b> | 0000 0001                       | 1       |
|                  |        |         | 0000 0002                       | 2       |
|                  |        |         | 0000 0003                       | 3       |
|                  |        |         | 0000 0004                       | 4       |
|                  |        |         | 0000 0005                       | 5       |
| Time since event | Actual | <b></b> | 0000 0006                       | 6       |
|                  |        |         | 0000 0007                       | 7       |
|                  |        |         | 0000 0008                       | 8       |

Example computer computation:

Actual - Base

Actual + Two's Compliment of (Base)

|        | 5  | 0000 0005 | 0000 0005   |              |                        |  |
|--------|----|-----------|-------------|--------------|------------------------|--|
| - Base | -1 | 0000 0001 | + FFFF FFFF | Mark Event   | 2's Compliment of Base |  |
| Actual | 6  | 0000 0006 | 0000 0006   | Time Since E | Time Since Event       |  |

Compare Result of **Actual + Two's Compliment of (Base)** to **Target** (Note: Target is typically a method 3 **TimeValue\_Cfg**)

Now compare **0000 0005** to the **Target** (TimeValue\_Cfg)

FS-DP5T-14B673-BC Page 22 of 175

# 1.5 RELATED DOCUMENTS

Related documents, referenced elsewhere in this document, are listed below for quick reference.

**Table 1.5-1 – Related Documents** 

| Item | Title                                                                  | Control Number               |
|------|------------------------------------------------------------------------|------------------------------|
| 1    | DC/AC Power Inverter Statement of Engineering Statement of Work (ESOW) | Version TBD (TBD DATE)       |
| 2    | Hardware Specification – DC/AC Power Inverter                          | SY-DG9T- <mark>TBD</mark> -A |
| 3    | Engineering Specification DC/AC Power Inverter                         | ES-DG9T- <mark>TBD</mark> -A |
| 4    | DC/AC Power Inverter Diagnostic Specification (Part 2)                 | DS-DG9T- <mark>TBD</mark> -A |
|      | SDS Requirements                                                       |                              |
| 5    | SDS, ELCOMP Generic Body Module SDS                                    | Rev.: 17                     |
| 6    | SDS, MPLELC Generic Body E/E Feature Function SDS                      | Rev.: 29                     |
|      | Engineering Specifications and Requirements                            |                              |
| 7    | BCM Functional Specification, Section 2.14 Battery Management System   | FS-DG9T-14B476-AE            |
| 8    | PCM Start Stop Functional Specification                                | TBD                          |
|      | Software Requirements                                                  |                              |
| 9    | Body Software Statement of Work                                        | Ver. 2009.1 (14-Apr-2009)    |
| 10   | In – Vehicle Software Release Procedure                                | Ver. 2.8 4/22/2005           |
| 11   | ECU Software Requirements EESE-SMD CSE-PG-033                          | Ver. 2009.0                  |
| 12   | ECU Software Testing Requirements EESE-SMD CSE-PG-034                  | Ver. 2006.0                  |
| 13   | ECU Software Testing Traceability EESE-SMD CSE-PG-038                  | Ver. 2006.0                  |
| 14   | ECU SW Requirements Traceability EESE-SMD CSE-PG-037                   | Ver. 2007.0                  |
| 15   | MISRA C Traceability Matrix EESE-SMD CSE-PG-040                        | Ver. 2005.1                  |
| 16   | Output Fault Management Traceability EESE-SMD CSE-PG-063               | Ver. 2006.0                  |
| 17   | Voltage Range Monitor EESE-SMD-CSE-PG-035                              | Ver. 2005.1                  |
| 18   | Non-Volitale Memory EESE-CSE-PG-070                                    | Ver. 2008.0                  |
| 19   | Generic_Simulation_SOW_FNA EESE-SMD-CSE-PG-067                         | Ver. 2009.0                  |
| 20   | Outputs Fault Management EESE-SMD-CSE-PG-061                           | Ver. 2008.0                  |
| 21   | Software Release Notes Template EESE-SMD-CSE-PG-044                    | Ver. 2009.0                  |
| 22   | Sware Architecture Review Checklist EESE-SMD-CSE-PG-042                | Ver. 2009.0                  |
| 23   | Sware Code Review Checklist EESE-SMD-CSE-PG-043                        | Ver. 2009.0                  |

# **Power Rear Gate/Trunk – Cross Vehicle Functional Requirements** FS-DP5T-14B673-BC

Page 23 of 175

|    | Multiplex Communications & Diagnostic Specifications                                             |                              |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| 24 | Core Multiplex Technology Statement of Work                                                      | 2009.0                       |  |  |  |  |
| 25 | HS/MS-CAN CGEA ECU Level Functional Requirements Specification                                   | 2009.0                       |  |  |  |  |
| 26 | HS/MS-CAN ECU Level Functional Test Procedures                                                   | 2009.0                       |  |  |  |  |
| 27 | Vehicle Network Software Review Process Guidelines                                               | Latest version @ <psc></psc> |  |  |  |  |
| 28 | MUX S/W Review FNOS I <sup>3</sup> Integration Questionnaire                                     | 2.42, January 20, 2009       |  |  |  |  |
| 29 | FNOS I <sup>3</sup> Software Implementation Guide                                                | Ver. 2009.2                  |  |  |  |  |
| 30 | FNOS Vector, Interaction Layer Technical Reference                                               | Ver.: 1.8 (14-Jul-20030      |  |  |  |  |
| 31 | LIN Ford Subsystem Design Verification Test Document                                             | Latest version @ <psc></psc> |  |  |  |  |
|    | Diagnostic Specifications                                                                        |                              |  |  |  |  |
| 32 | EESE Network Communications Diagnostic Statement of Work                                         | Latest version @ <psc></psc> |  |  |  |  |
| 33 | Generic Global Central Configuration Specification                                               | Latest version @ <psc></psc> |  |  |  |  |
| 34 | Generic Global Diagnostic Specification (Part 1)                                                 | Latest version @ <psc></psc> |  |  |  |  |
| 35 | ECU Configuration Specification                                                                  | 9/26/2008                    |  |  |  |  |
| 36 | Software Download Specification (SWDL)                                                           | 6/27/2007                    |  |  |  |  |
| 37 | Versatile Binary Format v2.4 (VBF) Specification                                                 | 3/10/2008                    |  |  |  |  |
| 38 | GGD&SWDL Diagnostic Communication Test Specification_003_005                                     | 7/19/2007                    |  |  |  |  |
| 39 | ECU Configuration Test Specification_001_004                                                     | 9/25/2008                    |  |  |  |  |
| 40 | Versatile Binary Format (VBF) Test Specification V2.2 004_002                                    | Latest version @ <psc></psc> |  |  |  |  |
| 41 | Multiplex Diagnostic Exchange Format Specification (MDX) Rev 002                                 | Latest version @ <psc></psc> |  |  |  |  |
| 42 | Communication "Link Based" Diagnostic Requirements for the Ford Motor Company Diagnostic Tools - | Latest version @ <psc></psc> |  |  |  |  |
| 43 | Generic Diagnostic DVP&R Form (CAN or NON-CAN)                                                   | Latest version @ <psc></psc> |  |  |  |  |
| 44 | GGD&SWDL Diagnostic Services Test Specification_003_00x                                          | Latest version @ <psc></psc> |  |  |  |  |
| 45 | GGD&SWDL Diagnostic Communication Test Specification_003_00x                                     | Latest version @ <psc></psc> |  |  |  |  |
| 46 | Software Download Functionality Test Specification 004_00x                                       | Latest version @ <psc></psc> |  |  |  |  |
| 47 | ECU Configuration Test Specification_001_00x                                                     | Latest version @ <psc></psc> |  |  |  |  |
| 48 | Versatile Binary Format (VBF) Test Specification V2.3 005_00x                                    | Latest version @ <psc></psc> |  |  |  |  |
| 49 | Multiplex Diagnostic Exchange Format Specification (MDX) Rev 003                                 | 12/4/2008                    |  |  |  |  |
| 50 | Generic Diagnostic DVP&R Form GGDS (ISO-14229) ECUs – CAN_Diag_DVP&R_GGDS003x.xls                | Latest version @ <psc></psc> |  |  |  |  |
| 51 | Part 2 Template – GGDS (ISO14229) based.                                                         | Latest version @ <psc></psc> |  |  |  |  |
| 52 | MDX Validator                                                                                    | Latest version @ <psc></psc> |  |  |  |  |
| 53 | MDX To Word (Human Readable) Utility                                                             | Latest version @ <psc></psc> |  |  |  |  |
| 54 | Global Diagnostics Specification (Part I) – V2003.0 (NON-CAN ECUs)                               | Latest version @ <psc></psc> |  |  |  |  |
| 55 | Module Programming and Configuration Design Specification – V2003.0 (NON-CAN ECUs)               | Latest version @ <psc></psc> |  |  |  |  |

REVISION DATE: 9/10/2014
REVISION LEVEL: BC

FORD CONFIDENTIAL

ANIBAL SANTOYO / ASANTOY1

# **Power Rear Gate/Trunk – Cross Vehicle Functional Requirements** FS-DP5T-14B673-BC

| Page 24 of 175              |  |
|-----------------------------|--|
| atest version @ <psc></psc> |  |
|                             |  |

| 56 | Global Diagnostic Specification (Part I) Test Procedure Specification – V2003.0.x (NON-CAN ECUs)                | Latest version @ <psc></psc> |
|----|-----------------------------------------------------------------------------------------------------------------|------------------------------|
| 57 | Module Programming & Configuration Design Specification Test Procedure Specification – V2003.0.x (NON-CAN ECUs) | Latest version @ <psc></psc> |
| 58 | Part 2 Diagnostic Specification Template (NON CAN ECUs)                                                         | Latest version @ <psc></psc> |
| 59 | Released CAN Message List                                                                                       | DS-DG9T-14B476-Ax            |
| 60 | CGEA HS/MSCAN ECU Functional Requirements Spec                                                                  | January 2007                 |
| 61 | Core Netcom Protocol Software Implementation Requirements Specifications                                        | Version 2004.16              |
|    |                                                                                                                 |                              |

FS-DP5T-14B673-BC Page 25 of 175

#### **GENERAL REQUIREMENTS** 1.6

# 1.6.1 Module - Memory / Power Up / Microcontroller Reset

#### 1.6.1.1 **Microcontroller memory Storage Classification Requirements:**

The data dictionary specifies a "Storage Class" for every data flow used in this functional specification. The following five (5) requirements further specify / define the memory storage classes:

**Table 1 Memory Storage Classification Requirements** 

| Rqm't Num.   | Memory Storage Classification         | Definition                                                                                    |
|--------------|---------------------------------------|-----------------------------------------------------------------------------------------------|
| R: 1.6.1.1.1 | Constant                              | Re-Program the program memory to change it. (FLASH / ROM or EEPROM, Named Complier Constants) |
| R: 1.6.1.1.2 | Non-Volatile – Customer Set           | Customer uses feature to change it. Diagnostics can change it. (EEPROM)                       |
| R: 1.6.1.1.3 | Non-Volatile Factory Set Method 2     | Diagnostics can change it. (EEPROM)                                                           |
| R: 1.6.1.1.4 | Non-Volatile Factory Set Method 3     | Diagnostics can change it. (EEPROM)                                                           |
| R: 1.6.1.1.5 | Non-Volatile – Functional Requirement | Changes during program run – time. (EEPROM)                                                   |
| R: 1.6.1.1.6 | Volatile                              | Changes during program run – time. (RAM)                                                      |

#### 1.6.1.2 **Non-volatile Memory Requirements:**

**Table 2 Non-Volatile Memory Generic Requirements** 

| Rqm't Num    | Requirement                                                                                                                                               |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| R: 1.6.1.2.1 | NVRAM Management According to the requirements & expectations for development (RED) nonvolatile memory (NVM) document #EESE-SMD-CSE-PG-070 version 2008.0 |  |
| R: 1.6.1.2.2 | # 0076 – Coding Practice – Concurrency Shared Resources ECE software Requirements document #EESE-SMD-CSE-PG-033 version 2009.0                            |  |

**REVISION DATE: 9/10/2014** FORD CONFIDENTIAL **REVISION LEVEL: BC** 

FS-DP5T-14B673-BC Page 26 of 175

# 1.6.1.3 Module Power Up / Microcontroller Reset Requirements:

**Table 3 Power Up / Reset Requirements** 

| Rqm't Num.   | Memory storage Class                                                                                                                                                                                                       | Description                                                                                                                     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| R: 1.6.1.3.1 | Volatile                                                                                                                                                                                                                   | Upon module power-up and / or upon module reset the body feature initial values specified in the Data dictionary shall be used. |
| R: 1.6.1.3.2 | ALL Non-Volatile                                                                                                                                                                                                           | Shall be set to the initial values specificed in the Data Dictionary prior to delivery to FORD.                                 |
| R: 1.6.1.3.3 | Constant Shall be set to the initial value specified in the Data dictionary                                                                                                                                                |                                                                                                                                 |
| R: 1.6.1.3.4 | Upon module power-up and / or upon module reset all of the decision tables defined within this functional specification must have all of the output dataflows set to the initial value as specified in the Data Dictionary |                                                                                                                                 |

# 1.6.1.4 Reset Processing Requirements TBD

On reset, we must retrieve some values from PRAM and/or NVM before starting other processes. Here is a list of these special reset processing requirements.

**Table 4 Microcontroller Reset Processing Requirements** 

| Rqm't Num.    | Assignments to Protected RAM                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R: 1.6.4.1.1a | Call <b>RestoreGRTime()</b> . Notice that RestoreGRTime() directly assigns a value to GlobalRealTime.                                                                                                                                                                                                                                                                                                                                                          |  |  |
| R: 1.6.4.1.2a | Call <b>RestoreIgnition</b> (). Notice that this function sets Last_Ignition and Last_KeyIn to the last known ignition values.                                                                                                                                                                                                                                                                                                                                 |  |  |
| R: 1.6.4.1.3a | IgnitionPosition = Last_Ignition (in Ignition Arbitrator & Vehicle Starting Control)  KC_Ign_Rqst = Last_Ignition (in Key Cylinder Ignition & Vehicle Starting Control)  KC_Ignition_State = Last_Ignition  PB_Ign_Rqst = Last_Ignition (in Pushbutton Ignition & Vehicle Starting Control)  RawKeyPos = Last_Ignition (in Vehicle Starting Control)  Ignition_Status = Last_Ignition  If Ignition_Status = START and HEV_Cfg = HEV then Ignition_Status = RUN |  |  |
| R: 1.6.4.1.4a | Key_In_Ignition _DbncV = Last_KeyIn (in Key Cylinder Ignition & Vehicle Starting Control)  KC_Key_In_Ignition_Status = Last_KeyIn                                                                                                                                                                                                                                                                                                                              |  |  |
| R: 1.6.4.1.5a | PB_KeyIn_State = Last_KeyIn  After the above requirement has been performed:  PRAMaIgnition = IgnitionPosition  PRAMaValdataIgnition = OnesComplement(PRAMaIgnition)  PRAMbIgnition = PRAMaIgnition  PRAMbValdataIgnition = OnesComplement(PRAMbIgnition)  PRAMaKeyIn = Key_In_Ignition_Status                                                                                                                                                                 |  |  |

FS-DP5T-14B673-BC Page 27 of 175

| _             | PRAMaValdataKeyIn = OnesComplement(PRAMaKeyIn) |  |
|---------------|------------------------------------------------|--|
|               | PRAMbKeyIn = PRAMaKeyIn                        |  |
|               | PRAMbValdataKeyIn = OnesComplement(PRAMbKeyIn) |  |
| R: 1.6.4.1.6a | Add assert RunStart and FuelPump outputs?      |  |
| R: 1.6.4.1.7a | Add Elapsed engine off time?                   |  |

# 1.6.2 Functional Classification

Reference EC-0058 requirement in the ELCOMP Generic Body Module specification for the functional classification of the body features implemented with this Body Control Module, this information is in the details for requirement EC-0058 under the column header "EMC Classification".

This classification level is important for meeting the testing requirements defined in the *Ford Body Module Testing Requirements* document.

# 1.6.3 Software Classification Level

The entire BCM software is Functional Classification level SMS.

Reference EY-0091 requirement in the E/E System SDS Version 45, as of 06-Feb-09

FS-DP5T-14B673-BC Page 28 of 175

# 1.6.4 Timing Requirements TBD

# 1.6.4.1 Timing / Response Requirements

| R: 1.6.4.1.1 | T-1: Unless stated otherwise in the individual feature specification, activation / deactivation of an output response shall occur within the maximum delay time of the corresponding input(s) change as defined in <i>Table</i> 1.6-4 below.  The maximum delay time is pin-to-pin, including debounce time and multiplex messaging. |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R: 1.6.4.1.2 | T1.1 Since ignition input debounce is longer than 100 milliseconds and is an exception to requirement T1.0, 55 milliseconds is the maximum delay time for output device activation after an ignition change is debounced.                                                                                                            |  |  |
| R: 1.6.4.1.3 | T-2: The time tolerances of all timing requirements are +/- 10% unless otherwise stated.                                                                                                                                                                                                                                             |  |  |

FS-DP5T-14B673-BC Page 29 of 175

### **Table 5 Timing Requirements (in milliseconds)**

| Rqm't<br>Num. | Input Action                                                                                                                                                                       | Output Response<br>(See Note 12)  | Maximum Delay Time<br>With Module<br>In Awake State | Maximum Delay Time<br>With Module<br>In Sleep State            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|----------------------------------------------------------------|
| R: 1.6.4.1.4  | Digital Switch                                                                                                                                                                     | Output Control                    | 73 Note 1a                                          | 114 Note 1b                                                    |
| R: 1.6.4.1.5  | Discrete Analog                                                                                                                                                                    | Output Control                    | 113 Note 2a                                         |                                                                |
| R: 1.6.4.1.6  | MS/HS CAN message                                                                                                                                                                  | Output Control                    | 43 Note 3a                                          | 123 Note 3b                                                    |
| R: 1.6.4.1.7  | Digital Switch                                                                                                                                                                     | MS/HS CAN Message Output          | 71 Note 4a                                          | 211 Note 4b                                                    |
| R: 1.6.4.1.8  | Discrete Analog                                                                                                                                                                    | MS/HS CAN Message Output          | 111 Note 5a                                         |                                                                |
| R: 1.6.4.1.9  | RKE – RF Keyfob                                                                                                                                                                    | Output Control                    | 77 Note 6a                                          | 185 Note 6b                                                    |
| R: 1.6.4.1.10 | RKE – RF Keyfob                                                                                                                                                                    | MS/HS CAN Message Output          | 75 Note 7a                                          | 282 NOTE7B                                                     |
| R: 1.6.4.1.11 | Ambient Light = FAULT  PerimeterAlarm_Cfg = ENABLE  DRL_Present_Cfg = PRESENT  DRL_Trans_Cfg = AUTO  Enter a valid key code. Measure time from when last button of code is pressed | Perimeter Lighting = ON           | 150msec                                             | N/A (ECU WAKES UP<br>ON FIRST BUTTON<br>PRESS OF KEY-<br>CODE) |
| R: 1.6.4.1.12 | MS/HS CAN message (functional)                                                                                                                                                     | MS/HS CAN message<br>(functional) | 41 Note 13a                                         | 121 Note 13b                                                   |
| R: 1.6.4.1.13 | MS-CAN message (gateway)                                                                                                                                                           | HS-CAN message<br>(gateway)       | 21 Note 14a                                         | 71 Note 14b                                                    |
| R: 1.6.4.1.14 | HS-CAN message (gateway)                                                                                                                                                           | MS-CAN message<br>(gateway)       | 21 Note 14a                                         | 71 Note 14b                                                    |
| R: 1.6.4.1.15 | MS/HS CAN message                                                                                                                                                                  | LIN message                       | 21 Note 14a                                         | 71 Note 14b                                                    |
| R: 1.6.4.1.16 | LIN message                                                                                                                                                                        | MS/HS CAN message                 | 21 Note 14a                                         | TBD Note 14b                                                   |

# Notes Maximum Delay Time With Module In Awake State

1a - Calculation

50 ms to debounce the input.

20 ms to process the input.

3 ms to turn on the output.

### Maximum Delay Time With Module In Sleep State

1b - Calculation

50 ms to detect the switch has changed state

1 ms to wake up.

40 ms to debounce the input.

20 ms to process the input.

3 ms to turn on the output.

2a – Calculation

90 ms to debounce the input.

20 ms to process the input.

3 ms to turn on the output.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 30 of 175

# Notes Maximum Delay Time With Module In Awake State

3a - Calculation

20 ms FNOS process the message.

20 ms to process the input.

3 ms to turn on the output.

4a - Calculation

50 ms to debounce the input. 20 ms to process the input.

1 ms to Transmit Application message, perform

function

5a - Calculation

(Assume network awake)

90 ms to debounce the input.

20 ms to process the input.

1 ms to Transmit Application message, perform

function

If network asleep add 100ms

6a – Calculation

54 ms to detect the first RKE message

(1st message +8% tolerance)

20 ms to process the input.

3 ms to turn on the output.

7a (assume network awake)

54 ms to detect the first RKE message

(1st message +8% tolerance) 20 ms to process the input.

1 ms to Transmit Application message, perform

function

13a - Calculation

20 ms FNOS process the message.

20 ms to process the input.

1 ms to Transmit Application message,

perform function

14a – Calculation

20 ms FNOS process the message.

1 ms to Transmit Application message,

perform function

Maximum Delay Time With Module In Sleep State

3b – Calculation

50 ms NM transmit alive message

50 ms to transmit Application message, perform

function

20 ms to process the input. 3 ms to turn on the output.

4b - Calculation

50 ms to detect the switch has changed state

1 ms to wake up.

40 ms to debounce the input. 20 ms to process the input.

50 ms NM transmit alive message

50 ms to transmit Application message, perform

function

6b – Calculation

162 ms to detect the second RKE message

(2nd message +8% tolerance) 20 ms to process the input. 3 ms to turn on the output.

7b - Calculation

162 ms to detect the second RKE message

(2nd message +8% tolerance) 20 ms to process the input

50 ms NM transmit alive message

50 ms to transmit Application message, perform

function

13b – Calculation

50 ms NM transmit alive message

50 ms to transmit Application message, perform

function

20 ms to process the input.

1 ms to Transmit Application message, perform function

14b – Calculation

20 ms FNOS process the message.

TBD ms LIN Wake-up

1 ms to Transmit Application message, perform

function.

### 8 – ALL MAXIMUM DELAY TIMES ARE IN MILLISECONDS

9 – FNOS polled once every 10 milliseconds

10 – The input / output task schedule is every 20 milliseconds

FS-DP5T-14B673-BC Page 31 of 175

### Notes

Maximum Delay Time With Module In Awake State

Maximum Delay Time With Module In Sleep State

- 11 Multiple outputs Outputs not affected by SDS Requirement EC-0004 (Multiple high current outputs controlled by the module, which require more than 10 amps through the module or through relays controlled by the module, that are required to turn ON at the same time, shall be staggered) shall meet the above times. When multiple high current outputs occur, the first output shall meet the times above. Subsequent outputs shall be governed by EC-0004.
- 12 Actual transmission of CAN messages is dependent on transmit model (e.g. Periodic, Event, etc), and message attributes defined in the message list database. Calculations in this table refer to the availability of the data to be transmitted.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 32 of 175

# 1.6.5 Order of Execution TBD

Order of execution is important to prevent momentary output glitches and to ensure consistent sets of related outputs.

This FS should be designed to group related outputs, including CAN signals, in the appropriate output processes. Only output processes should write CAN data to FNOS.

Software implementation shall comply with the requirements in Tables 1.6.5-1 and 1.6.5-2.

### 1.6.5.1 Order of Execution Requirements

#### **Table 6 Overall Order of Execution**

| Rqm't Num.   | Requirement                                                                                                                                                                                                                                       |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R: 1.6.5.1.1 | The flow of data within this FS is generally organized from process to process in this order: input, feature, arbitrator, output. Within each feature category (e.g Exterior Lighting) all inputs shall be executed before a feature is executed. |  |  |
| R: 1.6.5.1.2 | All features that feed an arbitrator shall be executed together as a group. This will ensure that the features operate on a single set of input values and provide a single consistent set of output values to downstream processes.              |  |  |
| R: 1.6.5.1.3 | The arbitrator(s) that feed an output shall be executed before the output is executed.                                                                                                                                                            |  |  |
| R: 1.6.5.1.4 | Data shall be written to FNOS only as part of an output process.                                                                                                                                                                                  |  |  |

### **Table 7 Internal Process Order of Execution**

| Rqm't Num.   | Requirement                                                                                                                                                                                                                                                                                                                                                                         |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| R: 1.6.5.1.5 | Each (input, feature, arbitrator, and output) process shall be executed completely in a single time-slice.                                                                                                                                                                                                                                                                          |  |
| R: 1.6.5.1.6 | Each (input, feature, arbitrator, and output) process shall be executed atomically.                                                                                                                                                                                                                                                                                                 |  |
| R: 1.6.5.1.7 | Within every (input, feature, arbitrator, and output) process, data generally flows in the order in which decision tables and state transition diagrams are presented in this FS. For example, a decision table may feed a state transition diagram which may feed another decision table. The elements within a process shall be executed in the order of this internal data flow. |  |

### **Format and Conventions**

This document contains a large set of function specifications. There are three types: Input Functions, Core Functions, and Output Functions. Input functions are those that transform E/E sensor input states into input dataflows, output functions are those that transform output dataflows into E/E actuator output states, and core functions are those that transform input data flows into output data flows.

The function specifications interact with each other in the manner shown in the overall data flow diagram. The requirements within each function are allocated to each module by "superbubbles" in the overall data flow diagram.

FS-DP5T-14B673-BC Page 33 of 175

Each function specification contains four elements: function description, context diagram, and a process specification. The function description cites the purpose of the function, the context diagram depicts the overall I/O of the function, and the process specification details the requirements allocated to the function. The process specifications are a set of numbered and indentured English statements, a decision table, and/or state transition diagrams (STD's).

Output functions also combine components together to form single output signals.

Core functions are generally reserved for those functions that implement features that span across multiple types of I/O components.

The requirements in this specification are partitioned into processes with data flowing between them. This partitioning is represented in the data flow diagrams. Each process is represented by a bubble. Data flows are represented by arrows, with the direction indicating the direction of the flow of information.

Within each process, the required functionality is described in the form of text, decision tables, state transition diagrams, and/or state transition tables.

State transition diagrams and tables contain four key elements: states, transitions, events, and actions. States represent a known condition within the model. Transitions represent the interaction of the states. Events represent the conditions which must be true for a transition to be taken. Actions represent the operations that must be accomplished when a transition is taken.

State transition diagrams use the following conventions: States are represented by rectangles. Transitions are represented by arrows. The events and actions for a transition are in text with the events listed before a "/" and the actions following the "/". The symbol "->" is an operator that indicates a transition of the data element to the state following the symbol from any other state.

Numbers enclosed by <> indicate a requirement number. The following convention is used to number requirements:

An OR condition constitutes separate requirements.

An AND condition is a single requirement.

Requirement numbering for State Transition Diagrams is as follows:

Source State -> Destination State . Requirement number where Requirement number is a sequential number for each requirement for all transitions from the source state to the destination state.

Timers in one State Transition Diagram are independent of timers in other State Transition Diagrams.

FS-DP5T-14B673-BC Page 34 of 175

# **Special Symbols used in Finite State Machines**

| Symbol                 | Event or<br>Action | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <n></n>                | Event              | Requirement number <n>: uniquely identifies requirement #1 when transitioning between state A and state B. is assigned a unique requirement number. Example: &lt;1&gt;</n>                                                                                                                                                                                                                                                                                                                             |
| =                      | Event              | Equality:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <>                     | Event              | Inequality:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| >=                     | Event              | Greater than or equal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <=                     | Event              | Less than or equal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| >                      | Event              | Greater than:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <                      | Event              | Less than:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -><br><del>&gt;</del>  | Event              | Transitions to: activates only on the transition from one value to the target value. Unless specified otherwise in the Finite State Machine, the state machine must look for the data transition to occur while it is in the state (or superstate) that has the -> as an exit condition. In modeling terms, this means that the transition flag is cleared upon entry to the state (or superstate). Special care must be taken when the -> event must be evaluated as part of a logical AND operation. |
| &                      | Event              | Boolean "AND":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I                      | Event              | Boolean "OR":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| =                      | Action             | Assignment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| no event               | Event              | No event trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| no action              | Action             | No action taken:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mark event xyzzy       | Action             | Event in time: conceptual timing requirement – this action marks the event "xyzzy" on an imaginary timeline. Later referenced by Time since event                                                                                                                                                                                                                                                                                                                                                      |
| Time since event xyzzy | Event              | Elapsed time: determines the amount of time that has elapsed since the last occurrence of the Mark event xyzzy                                                                                                                                                                                                                                                                                                                                                                                         |

FS-DP5T-14B673-BC Page 35 of 175

# 2. POWER REAR GATE/TRUNK

### 2.1 FEATURE BEHAVIOR SUMMARY

The Power Rear Gate/Trunk Feature automatically opens and closes the Rear Gate/Trunk upon operator request.

### Power Open

The Power Rear Gate/Trunk Feature will initiate a gate/trunk open operation when all the following are met:

- the movement request is not inhibited (see Inhibit below) or locked out (see Lockout below)
- and the vehicle speed is below 5 kph
- and (the ignition is in Off or Accessory or the ignition is in Run and the transmission is in Park)
- and the operator activates one of the following inputs for the Rear Gate/Trunk
  - o A double press on the Rear Gate/Trunk button on a remote keyfob
  - o Pressing the master (overhead) open/close switch
  - Option G1 Only: Pressing the local (rear) open/close switch (located on the bottom of the Rear Gate/Trunk interior trim).
- and the Rear Gate/Trunk position is between the strut crossover point (typically 20 +/-5 degrees from the fully closed position) and fully closed.
- and the Engine\_Start\_Stop \_Status is not in "ACTIVE" state

The Power Rear Gate/Trunk Feature also initiates a Rear Gate/Trunk open operation during a close operation (power reversal) when:

- an obstacle is detected (either primary obstacle detection or secondary obstacle detection)
  - o and the vehicle speed is below 5 kph
  - o and (the ignition is in Off or Accessory or the ignition is in Run and the transmission is in Park).

The Power Rear Gate/Trunk Feature stops powering the Rear Gate/Trunk open when:

- the operator activates an open/close input for the Rear Gate/Trunk while the Rear Gate/Trunk is opening (Rear Gate/Trunk may reverse direction, see Power Close below)
- or an obstacle is detected (primary obstacle detection only)
- or the Rear Gate/Trunk becomes fully opened. (Once the RGTM has determined the mechanical stop position, it will stop powering the Rear Gate/Trunk (3 +/-1) degrees before reaching that position.)
- or the Rear Gate/Trunk comes to a valid customer programmed position (Option L1).
- or a double press on the Rear Gate/Trunk button on a remote keyfob
- or Pressing the master (overhead) open/close switch
- **or Option G1 Only:** Pressing the local (rear) open/close switch (located on the bottom of the Rear Gate/Trunk interior trim)

The Power Rear Gate/Trunk Feature initiates a Rear Gate/Trunk close operation following stop operation when:

- a double press on the Rear Gate/Trunk button on a remote keyfob
- or Pressing the master (overhead) open/close switch
- **or Option G1 Only:** Pressing the local (rear) open/close switch (located on the bottom of the Rear Gate/Trunk interior trim)
  - o and the vehicle speed is below 5 kph
  - o and (the ignition is in Off or Accessory or the ignition is in Run and the transmission is in Park).

FS-DP5T-14B673-BC Page 36 of 175

The Power Rear Gate/Trunk Feature suspends powering the Rear Gate/Trunk open when the ignition is in start. Hold Open Force is applied by the mechanical system during this period. Once the ignition is no longer in start, the motion will be resumed (subject to the above conditions for stopping motion).

Note: If the Rear Gate/Trunk completely stops, the drive motor is turned off. If the Rear Gate/Trunk reverses direction, the Hold Open Force is applied during the audible feedback before the drive motor is reversed.

#### Power Close

The Power Rear Gate/Trunk Feature will initiate a Rear Gate/Trunk close operation when all of the following are met:

- the movement request is not inhibited (see Inhibit below) or locked out (see Lockout below)
- and the vehicle speed is below 5 kph
- and (the ignition is in Off or Accessory or the ignition is in Run and the transmission is in Park)
- and the Rear Gate/Trunk position is between the strut crossover point (typically 20 +/-5 degrees from the fully closed position) and fully open.
- and the Engine\_Start\_Stop \_Status is not in "ACTIVE" state
- and the operator activates one of the following inputs for the Rear Gate/Trunk
  - o A double press on the Rear Gate/Trunk button on a remote keyfob
  - o Pressing the master (overhead) open/close switch
  - Option G1 Only: Pressing the local (rear) open/close switch

The Power Rear Gate/Trunk Feature will wait for 1 second of audible feedback to sound before closing the Rear Gate/Trunk under the above conditions. Hold Open Force is applied during the audible feedback before closing.

The Power Rear Gate/Trunk Feature also initiates a Rear Gate/Trunk open operation during an close operation (power reversal) when:

an obstacle is detected (either primary obstacle detection or secondary obstacle detection)

The Power Rear Gate/Trunk Feature stops powering the Rear Gate/Trunk closed when:

- an obstacle is detected primary or secondary obstacle detection (Rear Gate/Trunk will reverse direction, see Power Open above)
  - secondary obstacle detection is active until the Rear Gate/Trunk reaches the primary latched position.
- or the Rear Gate/Trunk becomes fully latched. (The drive motor is turned off when the secondary latch position is reached, then the cinch motor drives the Rear Gate/Trunk to the primary latch position.)
- or the exterior handle is pulled regardless of lockout (see below).

The Power Rear Gate/Trunk Feature suspends powering the Rear Gate/Trunk closed when the ignition is in start. Once the ignition is no longer in start, the motion will be resumed (subject to the above conditions for stopping motion). The audible feedback will stop sounding while the Rear Gate/Trunk is not powered then restart when power closing resumes.

Note: If the Rear Gate/Trunk completely stops, the drive motor is turned off. If the Rear Gate/Trunk reverses direction, the drive motor is reversed.

#### Lockout

Requests by the operator to initiate powered motion via the rear open/close switch and via manual unlatch will be ignored when the power Rear Gate/Trunk lockout has been activated. The master (overhead) open/close switch and the Keyfob will not be inhibited by the power Rear Gate/Trunk lockout. Also, requests for powered motion via the rear open/close switch will be ignored when the Rear Gate/Trunk is in either the primary or secondary latched position.

FS-DP5T-14B673-BC Page 37 of 175

#### Inhibit

The Master Open/Close Switch will be inhibited when the Lock Inhibit Feature is activated.

• See the Lock Inhibit Feature in the BCM FS for details on activation and de-activation.

#### **Drift Control**

The Power Rear Gate/Trunk Drift Control feature is intended to detect that the Rear Gate/Trunk moves in the closed direction immediately following a power open operation, and bring the Rear Gate/Trunk to the closed position in a controlled manner.

When the power Rear Gate/Trunk feature finishes a power open operation, the Rear Gate/Trunk position is then monitored to detect that the gate is moving in close direction. The Rear Gate/Trunk position is then monitored to detect that the gate is moving. Once gate movement is detected, the following sequence will be followed:

- Apply Hold Open Force
- Start sounding an audible warning.
- After a short pause, initiate a power close operation at a reduced speed with obstacle detection e engaged.
- Once the gate reaches the latch, the audible warning will stop.
- Cinch the gate to the primary latch position.

If an obstacle is detected during the reduced speed close, the gate will reverse to the full open position. Once full open position is reached, Hold Open Force will be applied. After a short pause, another reduced speed power close operation will begin. If an obstacle is detected for multiple consecutive cycles, the Rear Gate/Trunk will stop operation on encountering the obstacle.

If the Rear Gate/Trunk is detected as moving in the close direction for multiple consecutive customer initiated cycles, the power Rear Gate/Trunk system will set a Diagnostic Trouble Code (DTC), and become disabled once the gate reaches the latch. The Rear Gate/Trunk will act as a manual gate until the system is reset by clearing the DTC, or by disconnecting and reconnecting power to the controller.

#### Note:

Drift Control should be disabled only in Self Test Routine.

### Audible Feedback

The Power Rear Gate/Trunk Feature requests an audible warning be sounded for 3 seconds whenever:

- the Rear Gate/Trunk is requested to begin power closing
- or the Rear Gate/Trunk reverses to power opening due to an obstacle
- or the Rear Gate/Trunk stops opening due to an obstacle

The Power Rear Gate/Trunk Feature requests an audible warning be sounded for 1 second whenever the operator activates an open/close input while:

- the vehicle speed is at or above 5 kph
- or the ignition is in Run and the transmission is not in Park
- or the Battery Voltage is below the minimum operating voltage

Also, the audible warning will be continuously sounded for up to 5 minutes when the transmission is shifted out of park and/or vehicle speed becomes or exceeds 5 kph while the Rear Gate/Trunk is closing. The warning will stop sounding when the Rear Gate/Trunk reaches the latch or 5 minutes has elapsed since the audible feedback started or the transmission is shifted to park and vehicle is below 5 kph.

The audible warning will also be sounded continuously for up to 5 minutes whenever the Rear Gate/Trunk fails to close to the fully latched position after 20 seconds of powering in the close direction. The warning will stop if the Rear Gate/Trunk becomes fully latched or 5 minutes has elapsed since the audible feedback started.

The intent of the audible feedback is to alert persons in the area of the motion of the Rear Gate/Trunk and to alert the driver of the vehicle under the conditions above. The audible feedback must be audible within the area

#### Power Rear Gate/Trunk - Cross Vehicle Functional Requirements

FS-DP5T-14B673-BC Page 38 of 175

of motion of the Rear Gate/Trunk and at a distance of 1 meter outside that area while the Rear Gate/Trunk is fully open. The audible feedback must also be audible from the driver seat position while the Rear Gate/Trunk is either fully open or fully closed.

### **Operating Voltage Range**

Except as noted above, the voltage range that the power Rear Gate/Trunk system must operate is as defined in SDS requirement EL-0058.

#### Programmable Stop (Option L1)

The Rear Gate/Trunk Open Angle could be programmed by the customer, using the Local (Rear) Open/Close Switch.

To set up a lower (than nominal) Open position you have to do the following:

- Start a power open operation by using keyfob or switch/handle
- Let the gate move till to the full open position or stop the gate near the desired position with pressing either one of the PLG switches or the keyfob (Option L2). Move the gate manually to the desired position. The desired angle must be above 25° or up to mechanical full open position.
- Press Local (Rear) Open/Close Switch and hold for approx. 3 sec. Confirmation beep occurs -> new position programming has been saved.
- Confirmation beep should sound from minimum desired angle (above 25°) to maximum open angle (full mechanical open position).

#### **Engine Start Stop**

Engine Start Stop system shuts down the engine and monitors stored electrical power. Engine Start Stop Status is monitored by the RGTM to synchronize desired operation of the Rear Gate/Trunk against Engine Start Stop system operation.

The Engine\_Start\_Stop\_Status is created by processing CAN messages from powertrain. Processing of user requests for RGTM functionality is Ignored when Engine\_Start\_Stop\_Status is ACTIVE until engine Autostart or Autostop actions occur. Current movement operations of the Gate or Trunk are allowed to finish before powertrain performs Engine Autostart or Autostop actions.

### Manual Liftgate

For manual liftgate systems functionality is limited, the main operation for open/close the gate is done manually. These features are not included:

- \*Power Open/Close.
- \*Lockout.
- \*Inhibit.
- \*Drift Control.
- \*Audible Feedback.
- \*Programmable Stop (Option L1).
- \*Pinch Strip.
- \*Engine Start Stop.

#### **Re-flash Scenarios Considerations**

After re-flashing the module; the modules go through a hard reset, consequently all CAN signals are set to the default values based on the dbc files. In order to allow the re-flasing of the module, ECU's on the bus should go to session where ECU's are not operational and stay in this status.

Ignition cycle is needed to refresh CAN signals of all ECU's on the bus and allow normal operation of the module.

FS-DP5T-14B673-BC Page 39 of 175

# 2.2 SUBSYSTEM OVERVIEW

# **Options**

| Option | Option Description                                        | CD533 | CD391<br>5DR | CD391<br>Wagon | C489 |
|--------|-----------------------------------------------------------|-------|--------------|----------------|------|
| A2     | Power Unlatch from Exterior Handle (From BFSL)            | Х     | Х            | Х              | Х    |
| B1     | Power Cinching Latch (From BFSL)                          |       | Х            | Х              | Х    |
| B2     | Power Cinching Striker                                    | Х     |              |                |      |
| C1     | Lock Inhibit Feature is standard. (From BFSL)             | Х     | Х            | Х              |      |
| D2     | Keypad Control of RGT is not supported. (From BFSL)       | Х     | Х            | Х              |      |
| E1     | Unlatch allowed while Rear Gate/Trunk locked. (From BFSL) | X     | X            | Х              | ?    |
| F1     | MSCAN                                                     | Х     | X            | Χ              | Х    |
| G1     | Local Open/Close Switch Supported                         | Х     | X            | Χ              |      |
| G2     | Local Open/Close Switch Not Supported                     |       |              |                |      |
| G3     | Exterior switch direct input supported                    | X     | X            | X              | Х    |
| H1     | Master Open/Close Switch Read by RGTM                     | Х     | X            | Χ              | Х    |
| J1     | Moveable Rear Gate/Trunk Glass                            |       |              |                |      |
| J2     | Fixed Rear Gate/Trunk Glass                               |       | X            | Χ              |      |
| K1     | Message Center Lockout                                    | Х     | Х            | Х              |      |
| K2     | Hardwired Lockout Switch                                  |       |              |                |      |
| L1     | Programmable Stop                                         |       | Х            | Х              |      |
| L2     | Power Stop                                                |       | Х            | Х              | Х    |
| M1     | Primary Obstacle Detection                                | Х     | Х            | Х              |      |
| M2     | Secondary Obstacle Detection                              |       | Х            | Х              |      |

Note: The Option G1, Local Open/Close Switch Supported, is known as Power Close Switch for Power Decklid applications and Rear Open/Close switch for Power Liftgate applications.

**Table 8. Option Table** 

# Calibrations

| Maintenner   Learner   L |                              | CD391    |         | 391     |         |         |            |            |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|---------|---------|---------|---------|------------|------------|------------|
| Tentring   Secondary   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Parameter                    | Units    | CD533   |         |         | C489    | CD<br>539N | CD<br>539C | CD<br>539E |
| Moto Abort Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum_Full_Open_Position   | Degrees  | 60°     | 45°     | 60°     | 25°     | 50°        | 45°        | 70°        |
| RGT   Latch   Latch  | Entering_Secondary_Time      | msec     | 200     | 200     | 200     | 500     | 500        | 500        | 500        |
| RGCT_Position_Near_Latch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RGT_Near_Latched_Time        | msec     | 145     | 145     | 145     | 500     | 145        | 145        | 145        |
| Latch Actuation Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RGT_Latched_Time             | msec     |         |         |         |         |            |            |            |
| RGT   Position Out OI, Range   Degrees   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   | RGT_Position_Near_Latch      | Degrees  |         |         |         |         |            |            |            |
| RGT_Crossover_Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Latch Actuation Time         | msec     | 3300    | 3300    | 3300    | 3300    | 3300       | 3300       | 3300       |
| Motor_Misst_Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGT_Position_Out_Of_Range    | Degrees  | 120     | 120     | 120     | 120     |            |            |            |
| Motor_IRRush_Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RGT_Crossover_Point          | Degrees  | 20      | 20      | 20      | 20      | 20         | 20         | 20         |
| Motor_Abort_Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Motor_EMF_Time               | msec     |         |         |         |         |            |            |            |
| Motor Abort Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Motor_InRush_Time            | msec     |         |         |         |         |            |            |            |
| Defined   Defi | Motor_Abort_Voltage          | Volts    |         |         |         |         |            |            |            |
| Polification   Defined   | Encoder_Reference_Voltage    | Volts    |         |         |         |         |            |            |            |
| Cinch Relax Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PinchStrip_Reference_Voltage | Volts    | Defined | Defined | Defined | Defined | Defined    | Defined    | Defined    |
| Cinch Return Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |          |         |         |         |         |            |            |            |
| In_Secondary_Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |          |         |         |         |         |            |            |            |
| Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |          |         |         |         |         |            |            |            |
| Release Return Delay Duration   msec   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |          |         |         |         |         |            |            |            |
| Cinch Return Delay Duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |          |         |         |         |         |            |            |            |
| December   Present   Pre | /-                           |          |         |         |         |         |            |            |            |
| Rear Gate/Trunk Glass Ajar Present   PRESENT   NO   NO   NO   NO   NO   NO   NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | i        |         |         |         |         |            |            |            |
| Message Center Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |          |         |         |         |         |            |            |            |
| Max Drift Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |          |         |         |         | _       | NO         | NO         | NO         |
| Drift_Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                            |          |         |         |         |         | 10         | 10         | 10         |
| Defined   Attempts   Atte |                              |          |         |         |         |         |            |            |            |
| Max_Drift_Hold_Time         msec         Supplier Defined         Defined Defined         Defined Defined Defined         Supplier Defined Defined Defined         Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Defined Define                                                                                                                                                                                        | Drift_Speed_High             | msec     |         |         |         |         |            |            |            |
| Defined   Defi | Max_Drift_Close_Attempts     | Attempts |         |         |         |         |            |            |            |
| Pinch Strips Present         PRESENT         NO         YES         YES                   NO         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max_Drift_Hold_Time          | msec     |         |         |         |         |            |            |            |
| Position_Program_Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |          |         |         |         | 10      | 10         | 10         | 10         |
| Position Program_Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !                            | PRESENT  |         |         |         |         |            |            |            |
| RGTM TYPE          TRUNK         GATE         GATE         GATE         GATE         GATE         GATE         GATE         POWER         POWER         POWER         POWER         POWER         POWER         POWER         POWER         POWER         PES         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |          | _       |         |         |         |            |            |            |
| Power Trunk Present         YES         NO         PES         YES         YE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0 =                        |          |         |         |         |         |            |            |            |
| Power Gate Present         NO         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |          |         |         |         |         |            |            |            |
| Power Stop Present         NO         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |          |         |         |         |         |            |            |            |
| CINCH MECHANISM STRIKER LATCH LATCH LATCH LATCH LATCH LATCH LATCH Pending_Rq_Time_CFG msec NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |          |         |         |         |         |            |            |            |
| Pending_Rq_Time_CFG         msec         NA         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |          |         |         |         |         | LATCH      | LATCH      | LATCH      |
| Fast_Chime_Decay_Rate          0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | msec     |         |         |         |         |            |            |            |
| HW_Chime_Present         PRESENT         YES         NO         NO         PRESENT         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max_Close_Delay_Time         | msec     | 0       | 0       | 0       | 0       | 0          | 0          | 0          |
| Chime_Present         PRESENT         YES         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |          |         |         |         | 0.7     | 0.7        | 0.7        | 0.7        |
| Looking_For_Drift_Time         msec         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |          |         |         |         | VEQ     | VEQ        | VEQ        | VEQ        |
| Vehicle_Speed_Low_Limit         KpH         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         6         2           BKE_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |          |         |         |         | IEO     | IEO        | IEO        | TEO        |
| Start_Stop_Present         PRESENT         NO         YES         YES               YES         YES               YES         YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |          |         |         |         | 5       | 5          | 5          | 5          |
| Obstacle_Detection_Shut_Off_Angle     Degrees     1.3     NA     NA     NA     NA       RGT_System_Cfg      POWER     POWER     MANUAL     POWER     POWER     POWER       Latch_Supplier      STRATTEC     STRATTEC     STRATTEC     GECOM     STRATTEC     STRATTEC     STRATTEC       ECE_Market      NON_ECE     ECE     NON_ECE     NON_ECE     NON_ECE     NON_ECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start_Stop_Present           |          |         |         |         |         |            |            |            |
| RGT_System_Cfg POWER POWER POWER MANUAL POWER POWER POWER Latch_Supplier STRATTEC STRATTEC STRATTEC GECOM STRATTEC STRATTEC STRATTEC ECE_Market NON_ECE ECE NON_ECE NON_ECE NON_ECE ECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | msec     |         |         |         |         |            |            |            |
| Latch_Supplier STRATTEC STRATTEC STRATTEC GECOM STRATTEC STRATTEC STRATTEC  ECE_Market NON_ECE ECE ECE NON_ECE NON_ECE ECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |          |         |         |         |         | B01/:      | DOV:       | B0//:==    |
| ECE_Market NON_ECE ECE ECE NON_ECE NON_ECE ECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |          |         |         |         |         |            |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |          |         |         |         |         |            |            |            |
| Factory Power Op OFF OFF OFF ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factory_Power_Op             |          | OFF     | OFF     | OFF     | ON ON   | INOIN_LOL  | NON_LOC    | LOL        |

**REVISION DATE: 9/10/2014** 

**REVISION LEVEL: BC** 

FORD CONFIDENTIAL

ANIBAL SANTOYO / ASANTOY1

#### Power Rear Gate/Trunk - Cross Vehicle Functional Requirements

FS-DP5T-14B673-BC Page 41 of 175

#### Table 9. Calibration Table

Note: The above list is a minimum set of calibrations. The supplier is allowed to define other calibrations.

<1> All calibrations must be stored in Non-Volatile Memory. All calibrations in Table 9, and any supplier defined calibrations that are vehicle dependent must be included in a separate calibration file that is downloaded to the RGTM via Method 3 Configuration per the Module Programming and Configuration Design Specification.

### Constraints on calibrations in addition to data dictionary ranges:

Entering\_Secondary\_Time allows the drive motor to continue driving to ensure secondary latch position is reached mechanically. RGT\_Near\_Latched\_Time allows the Cinch Motor to continue to drive to ensure that primary latch position is reached mechanically in the case of a fault or missed pulse on the Detent Signal. RGT\_Latched\_Time also allows the Cinch Motor to continue to drive to ensure primary latch position is reached mechanically in the case of a fault on the Forkbolt Primary Switch Signal. RGT\_Latched\_Time plus the debounce time must be greater than the time that the detent switch is activated while entering secondary latch position.

Motor\_InRush\_Time needs to be longer than worst case voltage drop due to in-rush on any motor.

Motor\_EMF\_Time needs to be longer worst case than Motor Back EMF pulse width on any motor.

Motor\_Abort\_Voltage needs to be below 9.5 volts by at least the worst case voltage drop due to running current on any motor.

In\_Secondary\_Time must be long enough to ensure that the secondary position is reached from the point in travel that is considered near the latch according to the Position sensor at the slowest speed of the Rear Gate/Trunk under powered operation.

DTC\_Drift\_Count must be no larger than Max\_Drift\_Count. This prevents the condition of having the RGT disabled, but no DTC set.

FS-DP5T-14B673-BC Page 42 of 175

#### 2.2.1 Latch Nomenclature

There are several latch suppliers, each with unique naming conventions for parts of the latch, and therefore for the switches that monitor the latch. Table 10a is an attempt to map those names to a common nomenclature to be used through the rest of this document. (The following information is carried over from FS-BT4T-14B673-AB for continuity.) Sector Gear Open Position and Closed Position switches are replaced by Zero Position Switch for Strattec C32P Power Cinching Latch. Strattec C32P Power Cinching Latch is assumption of system latch content for power liftgates as of November 30 2010 and the cinching latch content of this specification is geared to this latch due to specific interface details for cinching and releasing with 4 switch logic and dual motor design.

|                   | Dataflow Name           |                             |               |                         |  |  |  |
|-------------------|-------------------------|-----------------------------|---------------|-------------------------|--|--|--|
| Latch<br>Supplier | Forkbolt_Primary_Signal | Forkbolt_Secondary_Signal   | Detent_Signal | Centering_Switch_Signal |  |  |  |
| Intier            | Ratchet Primary Switch  | Ratchet Secondary Switch    | Pawl Switch   | Centering Switch        |  |  |  |
| Gecom             | Primary Switch          | Secondary Switch            | Pawl Switch   | Neutral Switch          |  |  |  |
| Strattec          | 1st Claw Switch         | 2 <sup>nd</sup> Claw Switch | Pawl Switch   | 0-position Switch       |  |  |  |
| Delphi            | Forkbolt Primary Switch | Forkbolt Secondary Switch   | Detent Switch | N/A                     |  |  |  |

**Table 10a. Cinching Latch Input Nomenclature (Rear Gate applications)** 

Power Striker/Decklatch Nomenclature

Power cinching of the trunk/decklid is accomplished by a pair of components consisting of Power Cinching Striker and Power Release Latch. Power Cinching Striker uses cinching motor to pull the release latch (attached to the trunk and latched to striker) in the closed direction until AJAR SWITCH is Not AJAR. PWM of the power source is needed to avoid striker malfunction. Release latch contains a unidirectional motor and AJAR position status switch. Table 3b contains Strattec Power Cinching Striker and Decklid Release Latch switch information.

|                   |                                           | Dataflow Name                             |  |                                 |  |  |  |
|-------------------|-------------------------------------------|-------------------------------------------|--|---------------------------------|--|--|--|
| Latch<br>Supplier | Power Cinching<br>Striker Position Switch | Power Cinching Striker<br>Position Switch |  | Decklid Release Latch<br>Switch |  |  |  |
| Strattec          | Striker_Up_Signal                         | Striker_Down_Signal                       |  | AJAR_switch                     |  |  |  |

Table 5b. Cinching Striker Input Nomenclature (CD 533 Rear Trunk application)

FS-DP5T-14B673-BC Page 43 of 175



Figure 1. Context Diagram

# 2.3 FEATURE BEHAVIOR DETAIL



Figure 2. Data Flow Diagram - Overall

FS-DP5T-14B673-BC Page 47 of 175



Figure 3. Power Rear Gate/Trunk Data Flow Diagram

FS-DP5T-14B673-BC Page 48 of 175

# 2.3.1 Validate User Request



Figure 4. Validate User Request Data Flow Diagram

FS-DP5T-14B673-BC Page 49 of 175

| Ramt No.    | RGT System | Transmission                                       | Vehicle Speed | Front RGT Rg | Local RGT Rg | RGT Lockout | VbattState  | Pendina    | PwPckRGTLoc  | Start_Stop_P | Valid RGT | Invalid   | RGT Prec   |
|-------------|------------|----------------------------------------------------|---------------|--------------|--------------|-------------|-------------|------------|--------------|--------------|-----------|-----------|------------|
| -1 -        | Cfg        | Status_Park                                        | _Slow         | st           | st           | Status      | [RGT]       | RGT_Rqst   | kout_Status  | ending_Time  | Move_Rast | RGT_Rqst_ | ondition_C |
|             |            |                                                    |               |              |              |             |             |            |              | r_Status     |           | Feedback  | hanged     |
| R: 2.3.1.1  | Don't Care | NOT_PARK                                           | Don't Care    | INACTIVE     | INACTIVE     | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | INACTIVE  | TRUE       |
| R: 2.3.1.2  | Don't Care | NOT_PARK                                           | Don't Care    | ACTIVE       | INACTIVE     | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | ACTIVE    | TRUE       |
| R: 2.3.1.3  | Don't Care | NOT_PARK                                           | Don't Care    | Don't Care   | ACTIVE       | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | ACTIVE    | TRUE       |
| R: 2.3.1.4  | Don't Care | NOT_PARK                                           | Don't Care    | Don't Care   | UNLATCH      | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | ACTIVE    | TRUE       |
| R: 2.3.1.5  | Don't Care | PARK                                               | FAST          | INACTIVE     | INACTIVE     | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | INACTIVE  | TRUE       |
| R: 2.3.1.6  | Don't Care | PARK                                               | FAST          | ACTIVE       | INACTIVE     | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | ACTIVE    | TRUE       |
| R: 2.3.1.7  | Don't Care | PARK                                               | FAST          | Don't Care   | ACTIVE       | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | ACTIVE    | TRUE       |
| R: 2.3.1.8  | Don't Care | PARK                                               | FAST          | Don't Care   | UNLATCH      | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INHIBIT   | ACTIVE    | TRUE       |
| R: 2.3.1.9  | POWER      | PARK                                               | SLOW          | ACTIVE       | Don't Care   | Don't Care  | NORM_V      | Don't Care | ALLOWED      | Don't Care   | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.10 | POWER      | PARK                                               | SLOW          | ACTIVE       | Don't Care   | Don't Care  | NORM_V      | Don't Care | NOT_ALLOWED  | NOT_EXPIRED  | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.11 | POWER      | PARK                                               | SLOW          | INACTIVE     | Don't Care   | Don't Care  | NORM_V      | ACTIVE     | NOT_ ALLOWED | EXPIRED      | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.12 | POWER      | PARK                                               | SLOW          | ACTIVE       | Don't Care   | Don't Care  | Not(NORM_V) | Don't Care | Don't Care   | Don't Care   | INACTIVE  | ACTIVE    | FALSE      |
| R: 2.3.1.13 | POWER      | PARK                                               | SLOW          | INACTIVE     | ACTIVE       | NOT_LOCKED  | NORM_V      | Don't Care | ALLOWED      | Don't Care   | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.14 | POWER      | PARK                                               | SLOW          | INACTIVE     | ACTIVE       | NOT_LOCKED  | NORM_V      | Don't Care | NOT_ ALLOWED | NOT_EXPIRED  | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.15 | POWER      | PARK                                               | SLOW          | INACTIVE     | INACTIVE     | NOT_LOCKED  | NORM_V      | ACTIVE     | NOT_ ALLOWED | EXPIRED      | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.16 | POWER      | PARK                                               | SLOW          | INACTIVE     | ACTIVE       | NOT_LOCKED  | Not(NORM_V) | Don't Care | Don't Care   | Don't Care   | INACTIVE  | ACTIVE    | FALSE      |
| R: 2.3.1.17 | POWER      | PARK                                               | SLOW          | INACTIVE     | ACTIVE       | LOCKED      | Don't Care  | Don't Care | Don't Care   | Don't Care   | INACTIVE  | ACTIVE    | FALSE      |
| R: 2.3.1.18 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | NOT_LOCKED  | NORM_V      | Don't Care | ALLOWED      | Don't Care   | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.19 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | NOT_LOCKED  | NORM_V      | Don't Care | NOT_ ALLOWED | NOT_EXPIRED  | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.20 | POWER      | PARK                                               | SLOW          | INACTIVE     | INACTIVE     | NOT_LOCKED  | NORM_V      | UNLATCH    | NOT_ ALLOWED | EXPIRED      | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.21 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | NOT_LOCKED  | Not(NORM_V) | Don't Care | Don't Care   | Don't Care   | INACTIVE  | ACTIVE    | FALSE      |
| R: 2.3.1.22 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | LOCKED      | NORM_V      | Don't Care | ALLOWED      | Don't Care   | UNLATCH   | INACTIVE  | FALSE      |
| R: 2.3.1.23 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | LOCKED      | NORM_V      | Don't Care | NOT_ ALLOWED | NOT_EXPIRED  | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.24 | POWER      | PARK                                               | SLOW          | INACTIVE     | INACTIVE     | LOCKED      | NORM_V      | UNLATCH    | NOT_ ALLOWED | EXPIRED      | UNLATCH   | INACTIVE  | FALSE      |
| R: 2.3.1.25 | POWER      | PARK                                               | SLOW          | INACTIVE     | Don't Care   | LOCKED      | NORM_V      | UNLATCH    | ALLOWED      | Don't Care   | UNLATCH   | INACTIVE  | FALSE      |
| R: 2.3.1.26 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | LOCKED      | Not(NORM_V) | Don't Care | Don't Care   | Don't Care   | INACTIVE  | ACTIVE    | FALSE      |
| R: 2.3.1.27 | POWER      | PARK                                               | SLOW          | INACTIVE     | INACTIVE     | Don't Care  | Don't Care  | Don't Care | Don't Care   | Don't Care   | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.28 | POWER      | PARK                                               | SLOW          | Don't Care   | Don't Care   | NOT_LOCKED  | NORM_V      | ACTIVE     | ALLOWED      | Don't Care   | ACTIVE    | INACTIVE  | FALSE      |
| R: 2.3.1.29 | POWER      | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | NOT_LOCKED  | NORM_V      | ACTIVE     | NOT_ALLOWED  | NOT_EXPIRED  | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.30 | POWER      | PARK                                               | SLOW          | INACTIVE     | INACTIVE     | NOT_LOCKED  | NORM_V      | UNLATCH    | NOT_ALLOWED  | EXPIRED      | UNLATCH   | INACTIVE  | FALSE      |
| R: 2.3.1.31 | MANUAL     | PARK                                               | SLOW          | INACTIVE     | INACTIVE     | NOT_LOCKED  | NORM_V      | Don't Care | Don't Care   | Don't Care   | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.32 | MANUAL     | PARK                                               | SLOW          | ACTIVE       | INACTIVE     | NOT_LOCKED  | NORM_V      | Don't Care | Don't Care   | Don't Care   | UNLATCH   | INACTIVE  | FALSE      |
| R: 2.3.1.33 | MANUAL     | PARK                                               | SLOW          | INACTIVE     | UNLATCH      | NOT_LOCKED  | NORM_V      | Don't Care | Don't Care   | Don't Care   | UNLATCH   | INACTIVE  | FALSE      |
| R: 2.3.1.34 | MANUAL     | PARK                                               | SLOW          | INACTIVE     | ACTIVE       | NOT_LOCKED  | NORM_V      | Don't Care | Don't Care   | Don't Care   | INACTIVE  | INACTIVE  | FALSE      |
| R: 2.3.1.35 |            | Clear DelayedRGT_Rqst after Evaluating this table. |               |              |              |             |             |            |              |              |           |           |            |

Table 11. Validate User Request (with Lockout) Decision Table.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

FS-DP5T-14B673-BC Page 50 of 175

## 2.3.2 Control Rear Gate/Trunk



Figure 5. Control Rear Gate/Trunk Data Flow Diagram

| DrTGate_D_Rq | State Encoded | CAN Message               |
|--------------|---------------|---------------------------|
| NOT_MOVING   | 0x0           |                           |
| OPENING      | 0x1           | 0x313                     |
| CLOSING      | 0x2           | Power_Liftgate_Mode_StatM |
| NotUsed      | 0x3           |                           |

Table 6.2 Report DrTGate\_D\_Rq signal status to MSCAN.



Figure 5.1 Control Rear Gate/ Trunk Data Flow Diagram (decomposed)

FS-DP5T-14B673-BC Page 52 of 175



Figure 6. Control Rear Gate/Trunk State Transition Diagram

The transitions in the above STD are described in the table below:

| Src | Dest | Event                                                                                                                                                                                                                 | Action                                                                                                                                       |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                                                                                                       |                                                                                                                                              |
| Any | 7    | <1> Local_OpMode = SLEEP                                                                                                                                                                                              | RGT_Move_Rqst = NULL RGT_Unlatch_Rqst = NULL RGT_Chime_Rqst = INACTIVE; DrTGate_D_Rq=NOT MOVING                                              |
| 0   | 7    | <1>Reset                                                                                                                                                                                                              | RGT_Move_Rqst = NULL RGT_Unlatch_Rqst = NULL RGT_Chime_Rqst = INACTIVE; DrTGate_D_Rq=NOT MOVING RGT_Position_Manual_Resynch_Rqst = NOT_SYNCH |
| 1   | 2    | <1> Valid_RGT_Move_Rqst -> ACTIVE<br>& VbattState[RGT] = NORM_V<br>& RGT_Drift_Control_Rqst = CLOSE   HOLD                                                                                                            | RGT_Move_Rqst = OPEN RGT_Unlatch_Rqst = UNLATCH DrTGate_D_Rq=OPENING Mark Event "Start_Unlatch" Mark Event "Start Opening"                   |
| 1   | 3    | <1>Valid_RGT_Move_Rqst -> ACTIVE & RGT_Latch_Status = UNLATCHED   OPEN & RGT_Secondary_Obstacle_Detection_Status = CLEAR & VbattState[RGT] = NORM_V & RGT_Drift_Control_Rqst = OPEN   NULL & Ignition_Status <> START | RGT_Chime_Rqst = ACTIVE; DrTGate_D_Rq=CLOSING Mark Event "Start_Chime" Mark Event "Start Closing"                                            |
| 1   | 1    | <1>Valid_RGT_Move_Rqst -> ACTIVE<br>& RGT_Latch_Status <> UNLATCHED<br>& RGT_Unlatch_Rqst = NULL                                                                                                                      | RGT_Unlatch_Rqst = UNLATCH<br>DrTGate_D_Rq=NOT MOVING<br>Mark Event "Start Unlatch"                                                          |
| 1   | 1    | RGT_Unlatch_Rqst = UNLATCH & (<2>RGT_Latch_Status = UNLATCHED   OPEN   <3>Time since Event "Start Unlatch" > Latch Actuation Time)                                                                                    | RGT_Unlatch_Rqst = NULL<br>DrTGate_D_Rq=NOT MOVING                                                                                           |
| 1   | 4    | <1> RGT_Position_Status < (RGT_Full_Open_Position – 3 degrees)                                                                                                                                                        | DrTGate_D_Rq=NOT MOVING                                                                                                                      |
| 1   | 7    | <4> RGT_Position_Manual_Resynch_Rqst = SYNCH                                                                                                                                                                          | RGT_Position_Status = RGT_Position_Out_Of_Range<br>RGT_Position_Manual_Resynch_Rqst = NOT_SYNCH<br>DrTGate_D_Rq=NOT MOVING                   |

| 0 | 1 | c1>/PGT Position Status > PGT Full Onen Position                                                                                                                                                                                                                                                                                                  | PGT Mayo Past - NULL                                                                                                              |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 2 | 1 | <1>(RGT_Position_Status >= RGT_Full_Open_Position<br>& RGT_Position_Status < RGT_Position_Out_Of_Range)<br>  (<2> Sleep_Recover_Flag = RECOVER<br>& RGT_Primary_Obstacle_Detection_Status = OBSTACLE)                                                                                                                                             | RGT_Move_Rqst = NULL RGT_Chime_Rqst = INACTIVE; RGT_Position_Status = RGT_Full_Open_Position DrTGate_D_Rq=NOT MOVING              |
| 2 | 2 | <1>RGT_Unlatch_Rqst = UNLATCH<br>& RGT_Latch_Status = UNLATCHED                                                                                                                                                                                                                                                                                   | RGT_Unlatch_Rqst = NULL<br>DrTGate_D_Rq=OPENING                                                                                   |
| 2 | 2 | <2> Valid_RGT_Move_Rqst <> INHIBIT<br>& Time Since Event "Start Chime" >= 3 seconds                                                                                                                                                                                                                                                               | RGT_Chime_Rqst = INACTIVE;<br>DrTGate_D_Rq=OPENING                                                                                |
| 2 | 3 | <pre>&lt;1&gt;Valid_RGT_Move_Rqst -&gt; ACTIVE &amp; RGT_Position_Status &gt;=RGT_Crossover_Point &amp; RGT_Position_Status &lt; RGT_Position_Out_Of_Range &amp; Time since Event "Start Opening" &gt; 500 ms &amp; RGT_Latch_Status = UNLATCHED   OPEN &amp; VbattState[RGT] &lt;&gt; ABORT_V &amp; Power_Stop = NOT_PRESENT</pre>               | RGT_Move_Rqst = NULL RGT_Chime_Rqst = ACTIVE; Mark Event "Start_Chime" Mark Event "Start Closing" DrTGate_D_Rq=CLOSING            |
| 2 | 4 | <1>RGT_Primary_Obstacle_Detection_Status = OBSTACLE<br>& Sleep_Recover_Flag = OK                                                                                                                                                                                                                                                                  | RGT_Move_Rqst = NULL RGT_Chime_Rqst = ACTIVE; Mark_Event "Start_Chime" DrTGate_D_Rq=NOT MOVING                                    |
| 2 | 4 | (<3> Valid_RGT_Move_Rqst -> ACTIVE (& Power_Stop = NOT_PRESENT & RGT_Position_Status < RGT_Crossover_Point & Time since Event "Start Opening" > 500 ms)  (& Power_Stop = PRESENT & Time since Event "Start Opening" > 500 ms))  <4> Time since Event "Start Opening" > 20 seconds  <6> VbattState[RGT] = ABORT_V  <8> RGT_Handle_Status -> ACTIVE | RGT_Move_Rqst = NULL RGT_Chime_Rqst = INACTIVE; DrTGate_D_Rq=NOT MOVING RGT_Stop_Direction_Status=OPEN                            |
| 2 | 4 | <2>Ignition_Status = START                                                                                                                                                                                                                                                                                                                        | RGT_Move_Rqst = NULL RGT_Last_Movement_Status = OPEN RGT_Chime_Rqst = INACTIVE; Mark Event "Crank Pause" DrTGate_D_Rq=NOT MOVING- |
| 2 | 4 | <7>OLC_slip_detected = TRUE                                                                                                                                                                                                                                                                                                                       | RGT_Move_Rqst = NULL RGT_Chime_Rqst = ACTIVE; Mark_Event "Start_Chime" DrTGate_D_Rq=NOT MOVING                                    |
| 2 | 4 | <5>Time since Event "Start_Unlatch"<br>> Latch Actuation Time<br>& RGT_Latch_Status <> UNLATCHED                                                                                                                                                                                                                                                  | RGT_Move_Rqst = NULL RGT_Unlatch_Rqst = NULL RGT_Chime_Rqst = INACTIVE; DrTGate_D_Rq=NOT MOVING                                   |

# $Power\ Rear\ Gate/Trunk-Cross\ Vehicle\ Functional\ Requirements$

FS-DP5T-14B673-BC Page 55 of 175

| 3 | 2 | <5> (RGT_Position_Status > RGT_Position_Near_Latch & RGT_Position_Status < RGT_Position_Out_Of_Range & (RGT_Latch_Status <> (UNLATCHED   OPEN)))   <6>Time since Event "Start Manual Resync" > 1.5 | RGT_Move_Rqst = OPEN; RGT_Unlatch_Rqst = UNLATCH RGT_Chime_Rqst = ACTIVE; Mark_Event "Start_Chime"; Mark Event "Start_Unlatch" Mark Event "Start Opening" RGT_Position_Manual_Resynch_Rqst = SYNCH DrTGate_D_Rq=OPENING |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | 6 | <2>RGT_Secondary_Obstacle_Detection_Status <>CLEAR  <3>RGT_Latch_Status = ERROR  (<4>RGT_Primary_Obstacle_Detection_Status = OBSTACLE & RGT_Latch_Status = UNLATCHED   OPEN)                       | RGT_Move_Rqst = NULL; RGT_Unlatch_Rqst = UNLATCH RGT_Last_Movement_Status = OPEN RGT_Chime_Rqst = ACTIVE; Mark_Event "Start_Chime"; Mark Event "Start_Unlatch" Mark Event "Start Opening" DrTGate_D_Rq=OPENING          |
| 3 | 6 | (<1> Valid_RGT_Move_Rqst → Active<br>& Time since Event "Start Closing" > 500 milliseconds<br>& VbattState[RGT] <> ABORT_V<br>& Power_Stop = NOT_PRESENT                                           | RGT_Move_Rqst = NULL RGT_Unlatch_Rqst = UNLATCH Mark Event "Start_Unlatch" Mark Event "Start Opening" RGT_Last_Movement_Status = OPEN DrTGate_D_Rq=OPENING                                                              |
| 3 | 3 | <1>Time Since Event "Start_Chime" >=  Max_Close_Delay_Time 1                                                                                                                                       | RGT_Move_Rqst = CLOSE                                                                                                                                                                                                   |
| 3 | 3 | <2>Time since Event "Start_Chime" >=<br>3 seconds & Valid_RGT_Move_Rqst <> INHIBIT                                                                                                                 | RGT_Chime_Rqst = INACTIVE;                                                                                                                                                                                              |
| 3 | 3 | <4>RGT_Cinch_Rqst = CINCH                                                                                                                                                                          | RGT_Move_Rqst = CINCH                                                                                                                                                                                                   |
| 3 | 3 | <5> Valid_RGT_Move_Rqst = INHIBIT                                                                                                                                                                  | RGT_Chime_Rqst = ACTIVE;                                                                                                                                                                                                |
| 3 | 3 | <6> RGT_Position_Status -> 0<br>& RGT_Latch_Status = UNLATCHED   OPEN)                                                                                                                             | Mark Event "Start Manual Resync" DrTGate D Rg=CLOSING                                                                                                                                                                   |
| 3 | 4 | <1>Ignition_Status = START                                                                                                                                                                         | RGT_Move_Rqst = NULL RGT_Last_Movement_Status = CLOSE DrTGate_D_Rq=NOT_MOVING RGT_Chime_Rqst = INACTIVE; Mark Event "Crank Pause"                                                                                       |
| 3 | 4 | <2> Time since Event "Start Closing" > 20 seconds                                                                                                                                                  | RGT_Move_Rqst = NULL RGT_Chime_Rqst = ACTIVE; RGT_Movement_Timeout = TRUE Mark Event "Close Timeout" DrTGate_D_Rq=NOT MOVING                                                                                            |

# $Power\ Rear\ Gate/Trunk-Cross\ Vehicle\ Functional\ Requirements$

FS-DP5T-14B673-BC Page 56 of 175

| 3 | 6 | <4> RGT_Handle_Status -> ACTIVE<br>& Power_Stop = NOT_PRESENT                                                                                                                                                                                                                                                                                                                                                                                  | RGT_Move_Rqst = NULL RGT_Chime_Rqst = INACTIVE; RGT_Unlatch_Rqst = UNLATCH RGT_Last_Movement_Status = UNLATCH Mark Event "Start Unlatch" DrTGate_D_Rq=OPENING                                                                                                                                              |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | 4 | <4> VbattState[RGT] = ABORT_V                                                                                                                                                                                                                                                                                                                                                                                                                  | RGT_Move_Rqst = NULL RGT_Chime_Rqst = INACTIVE; RGT_Unlatch_Rqst = NULL DrTGate_D_Rq=NOT MOVING                                                                                                                                                                                                            |
| 3 | 4 | <pre>&lt;5&gt;((Valid_RGT_Move_Rqst -&gt; ACTIVE &amp; Time since Event "Start Closing" &gt; 500 ms)  &lt;8&gt; RGT_Handle_Status -&gt; ACTIVE) &amp; Power_Stop = PRESENT</pre>                                                                                                                                                                                                                                                               | RGT_Move_Rqst = NULL RGT_Chime_Rqst = INACTIVE; RGT_Unlatch_Rqst = NULL DrTGate_D_Rq=NOT MOVING RGT_Stop_Direction_Status=CLOSE                                                                                                                                                                            |
| 3 | 5 | <1>RGT_Latch_Status = LATCHED                                                                                                                                                                                                                                                                                                                                                                                                                  | RGT_Move_Rqst = NULL RGT_Chime_Rqst = INACTIVE; Sleep_Recover_Flag = OK DrTGate_D_Rq=NOT MOVING                                                                                                                                                                                                            |
| 4 | 2 | Ignition_Status <> START & VbattState[RGT] = NORM_V & RGT_Drift_Count <= Max_Drift_Count & (<1> RGT_Last_Movement_Status = OPEN                                                                                                                                                                                                                                                                                                                | RGT_Move_Rqst = OPEN RGT_Unlatch_Rqst = UNLATCH RGT_Last_Movement_Status = NULL Mark Event "Start_Unlatch" Mark Event "Start Opening" RGT_Movement_Timeout = FALSE RGT_Chime_Rqst = INACTIVE; RGT_Stop_Direction_Status=NULL RGT_Chime_Rqst = ACTIVE; RGT_Last_Movement_Status = NULL DrTGate_D_Rq=OPENING |
| 4 | 3 | (<1>Valid_RGT_Move_Rqst -> ACTIVE & (RGT_Drift_Control_Rqst = OPEN   NULL   <3> RGT_Stop_Direction_Status=OPEN   <4> RGT_Position_Status >= RGT_NearFullOpen_Point)   <2> RGT_Last_Movement_Status = CLOSE) ) & Ignition_Status <> START & RGT_Position_Status >= RGT_Crossover_Point & RGT_Position_Status <> RGT_Position_Out_Of_Range & RGT_Latch_Status = UNLATCHED   OPEN & VbattState[RGT] = NORM_V & RGT_Drift_Count <= Max_Drift_Count | Mark_Event "Start_Chime" RGT_Movement_Timeout = FALSE Mark Event "Start Closing" RGT_Stop_Direction_Status=NULL DrTGate_D_Rq=CLOSING                                                                                                                                                                       |
| 4 | 4 | <1>Time since Event "Crank Pause" >25 seconds                                                                                                                                                                                                                                                                                                                                                                                                  | RGT_Move_Rqst = NULL; RGT_Last_Movement_Status = NULL                                                                                                                                                                                                                                                      |
| 4 | 4 | <2> Time since Event "Start_Chime" >= 3 seconds<br>& RGT_Movement_Timeout = FALSE                                                                                                                                                                                                                                                                                                                                                              | RGT_Chime_Rqst = INACTIVE                                                                                                                                                                                                                                                                                  |
| 4 | 4 | <3> Time since Event "Close Timeout" > 5 minutes<br>& RGT_Movement_Timeout = TRUE                                                                                                                                                                                                                                                                                                                                                              | RGT_Movement_Timeout = FALSE<br>DrTGate_D_Rq=NOT MOVING<br>RGT_Chime_Rqst = INACTIVE;                                                                                                                                                                                                                      |

# $Power\ Rear\ Gate/Trunk-Cross\ Vehicle\ Functional\ Requirements$

FS-DP5T-14B673-BC Page 57 of 175

| 4 | 4 | <4> RGT_Latch_Status = UNLATCHED<br>  <5> Time Since Event "Start Unlatch" > Latch_Actuation_Time                          | RGT_Unlatch_Rqst = NULL                                                                                                                                                                                                                                                                                                     |
|---|---|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | 5 | <1>RGT_Latch_Status <> UNLATCHED                                                                                           | RGT_Chime_Rqst = INACTIVE;<br>DrTGate_D_Rq=NOT MOVING                                                                                                                                                                                                                                                                       |
| 4 | 7 | <pre>&lt;6&gt; RGT_Position_Manual_Resynch_Rqst = SYNCH   (OLC_slip_detected = TRUE &amp; RGT_Chime_Rqst = INACTIVE)</pre> | RGT_Position_Status = RGT_Position_Out_Of_Range RGT_Position_Manual_Resynch_Rqst = NOT_SYNCH OLC_slip_detected = FALSE DrTGate_D_Rq=NOT_MOVING                                                                                                                                                                              |
| 5 | 4 | <1> Time since Event "Manual_Unlatch" > 250 ms                                                                             | DrTGate_D_Rq=NOT MOVING                                                                                                                                                                                                                                                                                                     |
| 5 | 5 | <1> RGT_Latch_Status = LATCHED -> not(LATCHED)                                                                             | Mark Event "Manual_Unlatch"                                                                                                                                                                                                                                                                                                 |
| 5 | 5 | <2> RGT_Latch_Status -> LATCHED                                                                                            | Sleep_Recovery_Flag = OK RGT_Movement_Timeout = FALSE RGT_Last_Movement_Status = NULL                                                                                                                                                                                                                                       |
| 5 | 5 | <3> Time since Event "Start_Chime" >= 3 seconds<br>& RGT_Movement_Timeout = FALSE                                          | RGT_Chime_Rqst = INACTIVE                                                                                                                                                                                                                                                                                                   |
| 5 | 5 | <4> Time since Event "Close Timeout" > 5 minutes<br>& RGT_Movement_Timeout = TRUE                                          | RGT_Movement_Timeout = FALSE RGT_Chime_Rqst = INACTIVE; DrTGate_D_Rq=NOT MOVING                                                                                                                                                                                                                                             |
| 5 | 6 | <1>Valid_RGT_Move_Rqst -> ACTIVE<br>& Ignition_Status <> START<br>& VbattState[RGT] = NORM_V                               | RGT_Unlatch_Rqst = UNLATCH Mark Event "Start_Unlatch" Mark Event "Start Opening" RGT_Last_Movement_Status = OPEN DrTGate_D_Rq=OPENING RGT_Chime_Rqst = INACTIVE; RGT_Movement_Timeout = FALSE If RGT_Position_Resynch_Rqst = SYNCH & RGT_Latch_Status = LATCHED { RGT_Position_Status = 0 RGT_Position_Resynch_Rqst = NULL} |
| 5 | 6 | <2> Valid_RGT_Move_Rqst -> UNLATCH                                                                                         | RGT_Unlatch_Rqst = UNLATCH Mark Event "Start_Unlatch" RGT_Last_Movement_Status = UNLATCH RGT_Chime_Rqst = INACTIVE RGT_Movement_Timeout = FALSE If RGT_Position_Resynch_Rqst = SYNCH & RGT_Latch_Status = LATCHED { RGT_Position_Status = 0 RGT_Position_Resynch_Rqst = NULL}                                               |

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

**REVISION LEVEL :** BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC

Page 58 of 175

| 6 | 2 | <1> Power Trunk Present=YES &<br>(RGT_Latch_Status=UNLATCHED)                                                                                                                                                                                                                                                                     | RGT_Move_Rqst = OPEN RGT_Last_Movement_Status = NULL DrTGate_D_Rq=OPENING                                                                                                  |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | <pre>&lt;2&gt;Power Gate Present=YES &amp; (RGT_Latch_Status = &lt;3&gt;UNLATCHED   &lt;4&gt;BEFORE_SECONDARY   &lt;5&gt;MIDLATCH   &lt;6&gt;BEFORE_PRIMARY &amp; RGT_Sector_Gear_Status = NEUTRAL &amp; RGT_Last_Movement_Status = OPEN &amp; VBattState[RGT] &lt;&gt; ABORT_V &amp; RGT_Drift_Count &lt;= Max_Drift_Count</pre> |                                                                                                                                                                            |
|   |   |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                            |
| 6 | 4 | RGT_Latch_Status = UNLATCHED & (<1> RGT_Last_Movement_Status = UNLATCH   <2> RGT_Drift_Count > Max_Drift_Count)                                                                                                                                                                                                                   | RGT_Unlatch_Rqst = NULL RGT_Last_Movement_Status = NULL DrTGate_D_Rq=NOT MOVING                                                                                            |
| 6 | 5 | <1>Time since Event "Start_Unlatch" > Latch Actuation Time   <2> VbattState[RGT] = ABORT_V                                                                                                                                                                                                                                        | RGT_Unlatch_Rqst = NULL RGT_Last_Movement_Status = NULL RGT_Move_Rqst = NULL DrTGate_D_Rq=NOT MOVING                                                                       |
| 7 | 4 | <1> RGT_Position_Status < RGT_Full_Open_Position<br>& RGT_Latch_Status <> LATCHED<br>& Local_OpMode = AWAKE<br>& Position_Program_Present = NOT_PRESENT                                                                                                                                                                           | Sleep_Recover_Flag = RECOVER<br>DrTGate_D_Rq=NOT MOVING                                                                                                                    |
| 7 | 5 | <pre>&lt;1&gt;RGT_Position_Status &lt;= RGT_Position_Near_Latch &amp; RGT_Latch_Status = LATCHED &amp; Local_OpMode = AWAKE</pre>                                                                                                                                                                                                 | Sleep_Recover_Flag = OK<br>DrTGate_D_Rq=NOT MOVING                                                                                                                         |
| 7 | 7 | <1> RGT_Position_Status > RGT_Position_Near_Latch<br>& RGT_Latch_Status = LATCHED                                                                                                                                                                                                                                                 | DrTGate_D_Rq=NOT MOVING (Note: This transition explicitly states that the state machine will remain in the Init State when the position and the latch state do not agree.) |

 Table 12. Transition Table for Control Rear Gate/Trunk State Transition Diagram

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

**REVISION LEVEL :** BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 59 of 175

# 2.3.3 Control Cinch (C32P Cinching Latch)



Figure 7. Control Cinch Data Flow Diagram

FS-DP5T-14B673-BC Page 60 of 175



Figure 8. Control Cinch State Transition Diagram (Strattec C32P Cinching Latch)

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL **REVISION LEVEL: BC** 

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 61 of 175

# 2.3.4 Control Cinch (Cinching Striker)



Figure 9. Control Cinch Data Flow Diagram

FS-DP5T-14B673-BC Page 62 of 175



Figure 10. Control Cinch State Transition Diagram (Cinching Striker)

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 63 of 175

## 2.3.5 Control Audible Feedback



Figure 11. Control Audible Feedback Data Flow Diagram



Figure 11.1. Control Audible Feedback Data Flow Diagram (Decomposed)

#### 2.3.5.1 **RGTM Audible Feedback**

The RGTM shall generate a hardwired chime or transmit a CAN command to the audio system to request audible feedback depending of the HW\_Chime\_Present and Chime\_Present calibrations, see scenarios included in the Table 8.1.

| Rqmt No.     | Condition                                                 | Chime command to use | Description      | DrTgateChime2_D_Rq |
|--------------|-----------------------------------------------------------|----------------------|------------------|--------------------|
| R: 2.3.5.1.1 | Open request                                              | OFF                  | None             | 0x0                |
| R: 2.3.5.1.2 | Close Request                                             | LONG                 | DNA B            | 0x1                |
| R: 2.3.5.1.3 | Obstacle detected (including Pinchstrip activation)       | LONG                 | DNA B            | 0x1                |
| R: 2.3.5.1.4 | Memory height program switch feedback                     | SHORT                | 1 KHz, 1s        | 0x2                |
| R: 2.3.5.1.5 | When pre-conditions change during operation               | LONG                 | DNA B – repeated | 0x4                |
| R: 2.3.5.1.6 | When a customer request is rejected due to pre-conditions | SHORT                | 1 KHz, 1s        | 0x2                |
| R: 2.3.5.1.7 | Drift control – Hatch closing error state                 | FAST                 | DNA C – repeated | 0x3                |

Table 8.1 List of possible chime commands for RGTM and determination of DrTgateChime2\_D\_Rq signal

The signal **DrTgateChime2\_D\_Rq** has to be updated based on this table, HW\_Chime\_Present and Chime\_Present calibrations. The command shall be sent to the MS CAN by transmitting the signal DrTgateChime2\_D\_Rq, contained in the CAN message 0x313 Power\_Liftgate\_Mode\_StatM.

The signal DrTgateChime2 D Rq has to send the "ON" state to start the chime and then the "OFF" state to stop the chime. This command has to keep the "ON" state for a calculated period of time, this time is calculated using the number of repetitions, duration of the chime and 2 sec. timer in case another chime is playing, then sends the "OFF state". To calculate the number of time for "ON" state see next table:

| Chime Time Repetitions 2 sec Timer (recommen |        | 2 sec Timer (recommended) | Duration ON state |           |
|----------------------------------------------|--------|---------------------------|-------------------|-----------|
| Ford DNA B 900 ms 3 2000 msec                |        | 4700 msec                 |                   |           |
| Lincoln DNA B                                | 750 ms | 3                         | 2000 msec         | 4250 msec |

Table 8.2 Chime durations for RGTM and determination of DrTgateChime2\_D\_Rq signal

The chime command will be sent according to the state transition diagram illustrated in Figure 12 and Table 8.3.



Figure 12. Control Audible Feedback State Transition Diagram

| Src | Dest | Event                                    | Action                          |
|-----|------|------------------------------------------|---------------------------------|
|     |      |                                          |                                 |
| Any | 1    | Reset                                    | RGT_Chime_Cmd = OFF             |
|     |      |                                          | DrTgateChime2_D_Rq=0            |
| 1   | 2    | <1>Invalid_RGT_Rqst_Feedback -> ACTIVE   | RGT_Chime_Cmd = SHORT           |
|     |      | & VBattState[RGT Chime] = NORM_V         | Mark Event "Start Short Chime"  |
|     |      | &HW_Chime =TRUE                          |                                 |
|     |      | &Chime_Present =TRUE                     |                                 |
| 1   | 2    | <2>Invalid_RGT_Rqst_Feedback -> ACTIVE   | RGT_Chime_Cmd = SHORT           |
|     |      | & VBattState[RGT Chime] = NORM_V         | Mark Event "Start Short Chime"  |
|     |      | &HW_Chime =FALSE                         | DrTgateChime2_D_Rq=0x2          |
|     |      | &Chime_Present =TRUE                     |                                 |
| 1   | 2    | <3> RGT_Chime_Rqst -> ACTIVE             | RGT_Chime_Cmd= SHORT            |
|     |      | & Invalid_RGT_Rqst_Feedback <> ACTIVE    | Mark Event " Start Short Chime" |
|     |      | & RGT_Drift_Event_Warning_Rqst <> ACTIVE | DrTgateChime2_D_Rq=0x2          |
|     |      | & VBattState[RGT Chime] = NORM_V         |                                 |
|     |      | &HW_Chime =FALSE                         |                                 |
|     |      | &Chime_Present =TRUE                     |                                 |
|     |      | & RGT_Precondition_Changed<>TRUE         |                                 |
| 1   | 3    | <1> RGT_Chime_Rqst -> ACTIVE             | RGT_Chime_Cmd= LONG             |
|     |      | & Invalid_RGT_Rqst_Feedback <> ACTIVE    | Mark Event "Start Long Chime"   |
|     |      | & RGT_Drift_Event_Warning_Rqst <> ACTIVE |                                 |
|     |      | & VBattState[RGT Chime] = NORM_V         |                                 |
|     |      | &HW_Chime =TRUE                          |                                 |
|     |      | &Chime_Present =TRUE                     |                                 |
|     |      | & RGT_Precondition_Changed<>TRUE         |                                 |

| 1 | 4 | <1> RGT_Chime_Rqst =->ACTIVE & Invalid_RGT_Rqst_Feedback <> ACTIVE & RGT_Drift_Event_Warning_Rqst <> ACTIVE & VBattState[RGT Chime] = NORM_V &HW_Chime = TRUE &Chime_Present = TRUE & RGT_Precondition_Changed=TRUE                           | RGT_Chime_Cmd= LONG_REPEATED<br>Mark Event "Start Long Chime"                           |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1 | 4 | <2> RGT_Chime_Rqst =->ACTIVE<br>& Invalid_RGT_Rqst_Feedback <> ACTIVE<br>& RGT_Drift_Event_Warning_Rqst <> ACTIVE<br>& VBattState[RGT Chime] = NORM_V<br>& HW_Chime =FALSE<br>&Chime_Present =TRUE<br>& RGT_Precondition_Changed=TRUE         | RGT_Chime_Cmd= LONG_REPEATED<br>Mark Event "Start Long Chime"<br>DrTgateChime2_D_Rq=0x4 |
| 1 | 5 | <pre>&lt;1&gt;RGT_Drift_Event_Warning_Rqst -&gt; ACTIVE &amp; Invalid_RGT_Rqst_Feedback &lt;&gt; ACTIVE &amp; VBattState[RGT Chime] = NORM_V &amp;HW_Chime =TRUE &amp;Chime_Present =TRUE</pre>                                               | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"                                    |
| 1 | 5 | <pre>&lt;2&gt;RGT_Drift_Event_Warning_Rqst -&gt; ACTIVE &amp; Invalid_RGT_Rqst_Feedback &lt;&gt; ACTIVE &amp; VBattState[RGT Chime] = NORM_V &amp;HW_Chime =FALSE &amp;Chime Present =TRUE</pre>                                              | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"<br>DrTgateChime2_D_Rq=0x3          |
| 2 | 1 | <1>(Time since Event "Start Short Chime" > 1 second<br>& RGT_Chime_Rqst = INACTIVE<br>& HW_Chime = TRUE<br>& Chime_Present = TRUE<br>& (Time since Event "Start Long Chime" > 5 minutes<br>I VBattState[RGT Chime] <> NORM_V)                 | RGT_Chime_Cmd = OFF                                                                     |
| 2 | 1 | <2>(Time since Event "Start Short Chime" > 1 second<br>& RGT_Chime_Rqst = INACTIVE<br>& HW_Chime = FALSE<br>&Chime_Present = TRUE<br>& (Time since Event "Start Long Chime" > 5 minutes<br>I VBattState[RGT Chime] <> NORM_V)                 | RGT_Chime_Cmd = OFF<br>DrTgateChime2_D_Rq=0                                             |
| 2 | 3 | <1>Time since Event "Start Short Chime" > 1 second<br>& RGT_Chime_Rqst = ACTIVE<br>& HW_Chime = TRUE<br>&Chime_Present = TRUE<br>& RGT_Drift_Event_Warning_Rqst <> ACTIVE<br>& RGT_Precondition_Changed<> TRUE                                | RGT_Chime_Cmd= LONG<br>Mark Event "Start Long Chime"                                    |
| 2 | 3 | <2>Time since Event "Start Short Chime" > 1 second<br>& RGT_Chime_Rqst = ACTIVE<br>& HW_Chime = FALSE<br>&Chime_Present = TRUE<br>& RGT_Drift_Event_Warning_Rqst <> ACTIVE<br>& RGT_Precondition_Changed<> TRUE                               | RGT_Chime_Cmd= LONG<br>Mark Event "Start Long Chime"<br>DrTgateChime2_D_Rq=0x1          |
| 2 | 4 | <1>Time since Event "Start Short Chime" > 1 second<br>& RGT_Chime_Rqst = ACTIVE<br>& HW_Chime = TRUE<br>& Chime_Present = TRUE<br>& RGT_Drift_Event_Warning_Rqst <> ACTIVE<br>& RGT_Precondition_Changed=TRUE                                 | RGT_Chime_Cmd= LONG_REPEATED<br>Mark Event "Start Long Chime"                           |
| 2 | 4 | <2>Time since Event "Start Short Chime" > 1 second<br>& RGT_Chime_Rqst = ACTIVE<br>& HW_Chime = FALSE<br>&Chime_Present = TRUE<br>& RGT_Drift_Event_Warning_Rqst <> ACTIVE<br>& RGT_Precondition_Changed=TRUE                                 | RGT_Chime_Cmd= LONG_REPEATED<br>Mark Event "Start Long Chime"<br>DrTgateChime2_D_Rq=0x4 |
| 2 | 5 | <1>Time since Event "Start Short Chime" > 1 second<br>& RGT_Drift_Event_Warning_Rqst = ACTIVE<br>& HW_Chime = TRUE<br>& Chime_Present = TRUE                                                                                                  | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"                                    |
| 2 | 5 | <2>Time since Event "Start Short Chime" > 1 second<br>& RGT_Drift_Event_Warning_Rqst = ACTIVE<br>& HW_Chime = FALSE<br>&Chime_Present = TRUE                                                                                                  | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"<br>DrTgateChime2_D_Rq=0x3          |
| 3 | 1 | <pre>&lt;1&gt; RGT_Chime_Rqst = INACTIVE &amp; RGT_Drift_Event_Warning_Rqst = INACTIVE &amp; HW_Chime =TRUE &amp;Chime_Present =TRUE &amp; (Time since Event "Start Long Chime" &gt; 5 minutes I VBattState[RGT Chime] &lt;&gt; NORM_V)</pre> | RGT_Chime_Cmd = OFF                                                                     |

| 3 | 1 | <2> RGT_Chime_Rqst = INACTIVE<br>& RGT_Drift_Event_Warning_Rqst = INACTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RGT_Chime_Cmd = OFF<br>DrTgateChime2_D_Rq=0                                       |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|   |   | & HW_Chime =FALSE<br>&Chime_Present =TRUE<br>& (Time since Event "Start Long Chime" > 5 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |
|   |   | VBattState[RGT Chime] <> NORM_V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |
| 3 | 2 | <pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><pre><pre></pre><pre></pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre>&lt;</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> | RGT_Chime_Cmd = SHORT<br>Mark Event "Start Short Chime"                           |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |
| 3 | 2 | <pre>&lt;2&gt;Invalid_RGT_Rqst_Feedback -&gt; ACTIVE &amp; HW_Chime =FALSE &amp;Chime_Present =TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGT_Chime_Cmd = SHORT Mark Event "Start Short Chime" DrTgateChime2_D_Rq=0x2       |
| 3 | 4 | <pre>&lt;1&gt; RGT_Chime_Rqst =-&gt;ACTIVE &amp; RGT_Drift_Event_Warning_Rqst = &lt;&gt;ACTIVE &amp; RGT_Precondition_Changed-&gt;TRUE &amp; HW_Chime =TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RGT_Chime_Cmd= LONG_REPEATED                                                      |
|   |   | &Chime_Present =TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
| 3 | 4 | <pre>&lt;2&gt; RGT_Chime_Rqst =-&gt;ACTIVE &amp; RGT_Drift_Event_Warning_Rqst = &lt;&gt;ACTIVE &amp; RGT_Precondition_Changed-&gt;TRUE &amp; HW_Chime =FALSE &amp;Chime_Present =TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RGT_Chime_Cmd= LONG_REPEATED<br>DrTgateChime2_D_Rq=0x4                            |
| 3 | 5 | <pre>&lt;1&gt; RGT_Drift_Event_Warning_Rqst = ACTIVE &amp; HW_Chime = TRUE &amp;Chime_Present = TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"                              |
| 3 | 5 | <pre>&lt;2&gt; RGT_Drift_Event_Warning_Rqst = ACTIVE &amp; HW_Chime =FALSE &amp;Chime_Present =TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"<br>DrTgateChime2_D_Rq=0x3    |
| 4 | 1 | <1> RGT_Chime_Rqst = INACTIVE<br>& RGT_Drift_Event_Warning_Rqst = INACTIVE<br>& HW_Chime = TRUE<br>& Chime_Present = TRUE<br>& (Time since Event "Start Long Chime" > 5 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RGT_Chime_Cmd = OFF                                                               |
| 4 | 1 | VBattState[RGT Chime] <> NORM_V )   <2> RGT_Chime_Rqst = INACTIVE   & RGT_Drift_Event_Warning_Rqst = INACTIVE   & HW_Chime = FALSE   & Chime_Present = TRUE   & (Time since Event "Start Long Chime" > 5 minutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RGT_Chime_Cmd = OFF<br>DrTgateChime2_D_Rq=0                                       |
|   |   | VBattState[RGT Chime] <> NORM_V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |
| 4 | 2 | <pre>&lt;1&gt;Invalid_RGT_Rqst_Feedback -&gt; ACTIVE &amp; HW_Chime =TRUE &amp;Chime_Present =TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RGT_Chime_Cmd = SHORT<br>Mark Event "Start Short Chime"                           |
| 4 | 2 | <1>Invalid_RGT_Rqst_Feedback -> ACTIVE & HW_Chime =FALSE & Chime_Present =TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RGT_Chime_Cmd = SHORT<br>Mark Event "Start Short Chime"<br>DrTgateChime2_D_Rq=0x2 |
| 4 | 3 | <1> RGT_Chime_Rqst = ACTIVE<br>& RGT_Drift_Event_Warning_Rqst = <>ACTIVE<br>& RGT_Precondition_Changed<>TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RGT_Chime_Cmd=LONG<br>DrTgateChime2_D_Rq=0x1                                      |
| 4 | 5 | <1> RGT_Drift_Event_Warning_Rqst = ACTIVE<br>& HW_Chime = TRUE<br>&Chime_Present = TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"                              |
| 4 | 5 | <2> RGT_Drift_Event_Warning_Rqst = ACTIVE<br>& HW_Chime = FALSE<br>&Chime_Present = TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RGT_Chime_Cmd = FAST<br>Mark_Event"Start Fast Chime"<br>DrTgateChime2_D_Rq=0x3    |
| 5 | 1 | <1>(RGT_Drift_Event_Warning_Rqst = INACTIVE<br>& RGT_Chime_Rqst = INACTIVE<br>& HW_Chime = TRUE<br>& Chime_Present = TRUE<br>& (Time since Event "Start Long Chime" > 5 minutes<br>I VBattState[RGT Chime] <> NORM_V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RGT_Chime_Cmd = OFF                                                               |
| 5 | 1 | <pre>&lt;2&gt;(RGT_Drift_Event_Warning_Rqst = INACTIVE &amp; RGT_Chime_Rqst = INACTIVE &amp; HW_Chime =FALSE &amp;Chime_Present =TRUE &amp; (Time since Event "Start Long Chime" &gt; 5 minutes I VBattState[RGT Chime] &lt;&gt; NORM_V)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RGT_Chime_Cmd = OFF<br>DrTgateChime2_D_Rq=0                                       |
| 5 | 2 | <pre>&lt;1&gt;Invalid_RGT_Rqst_Feedback -&gt; ACTIVE &amp; HW_Chime =TRUE &amp;Chime_Present =TRUE</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RGT_Chime_Cmd = SHORT<br>Mark Event "Start Short Chime"                           |
|   |   | domino_rrocont=rroc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |

| 5 | 2 | <pre>&lt;2&gt;Invalid_RGT_Rqst_Feedback -&gt; ACTIVE &amp; HW_Chime =FALSE &amp;Chime_Present =TRUE</pre>                                                                                     | RGT_Chime_Cmd = SHORT<br>Mark Event "Start Short Chime"<br>DrTgateChime2_D_Rq=0x2       |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 5 | 3 | <pre>&lt;1&gt; RGT_Chime_Rqst = ACTIVE &amp; RGT_Drift_Event_Warning_Rqst = &lt;&gt;ACTIVE &amp; RGT_Precondition_Changed&lt;&gt;TRUE &amp; HW_Chime = TRUE &amp; Chime_Present = TRUE</pre>  | RGT_Chime_Cmd= LONG<br>Mark Event "Start Long Chime"                                    |
| 5 | 3 | <pre>&lt;2&gt; RGT_Chime_Rqst = ACTIVE &amp; RGT_Drift_Event_Warning_Rqst = &lt;&gt;ACTIVE &amp; RGT_Precondition_Changed&lt;&gt;TRUE &amp; HW_Chime = FALSE &amp; Chime_Present = TRUE</pre> | RGT_Chime_Cmd= LONG<br>Mark Event "Start Long Chime"<br>DrTgateChime2_D_Rq=0x1          |
| 5 | 4 | <pre>&lt;1&gt; RGT_Chime_Rqst =-&gt; ACTIVE &amp; RGT_Drift_Event_Warning_Rqst = &lt;&gt;ACTIVE &amp; RGT_Precondition_Changed-&gt;TRUE &amp; HW_Chime =TRUE &amp;Chime_Present =TRUE</pre>   | RGT_Chime_Cmd= LONG_REPEATED<br>Mark Event "Start Long Chime"                           |
| 5 | 4 | <pre>&lt;2&gt; RGT_Chime_Rqst =-&gt; ACTIVE &amp; RGT_Drift_Event_Warning_Rqst = &lt;&gt;ACTIVE &amp; RGT_Precondition_Changed-&gt;TRUE &amp; HW_Chime =FALSE &amp;Chime_Present =TRUE</pre>  | RGT_Chime_Cmd= LONG_REPEATED<br>Mark Event "Start Long Chime"<br>DrTgateChime2_D_Rq=0x4 |

**Table 8.4 RGTM Chime Decision Table** 

#### **Hardwired Chime** 2.3.5.2

The following requirements describe the desired sound characteristics of the chime to be generated. The actual electrical signal that is generated to achieve the desired chime sounds is supplier defined.

| Rqmt No. RGT_Chime_Cmd |               | Tone_Frequency<br>(Hz) | Volume_Decay_Rate     | Sound_Duration (sec) |  |
|------------------------|---------------|------------------------|-----------------------|----------------------|--|
| R: 2.3.5.2.1           | OFF           | 0                      | 0                     | 0                    |  |
| R: 2.3.5.2.2           | SHORT         | 1000 (+/- 100)         | 0                     | 1 (+/- 0.1)          |  |
| R: 2.3.5.2.3           | LONG          | 740 (+/- 75)           | 0.7                   | 1 (+/- 0.1)          |  |
| R: 2.3.5.2.4           | LONG_REPEATED | 740 (+/- 75)           | 0.7                   | 1 (+/- 0.1)          |  |
| R: 2.3.5.2.5           | FAST          | 740 (+/- 75)           | Fast_Chime_Decay_Rate | 0.25 (+/- 0.025)     |  |

**Table 13.4 Chime Characteristics Decision Table** 

Note: Multiple sound units make up a LONG chime or a FAST chime. The above table describes the characteristics of a single sound unit.

FS-DP5T-14B673-BC Page 69 of 175



Figure 75. Generate Chime Sound State Transition Diagram

Peak Volume is defined as the maximum loudness as defined in the MPLELC SDS (Rqmt No. EF-0156).

# 2.3.6 Sleep/Awake



Figure 13. Sleep Awake Data Flow Diagram 1

FS-DP5T-14B673-BC Page 70 of 175



Figure 14. Sleep Awake Data Flow Diagram 2 (Decomposed)

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 71 of 175

# 2.3.6.1 Wake-Up Inputs

The Wake-Up inputs events / conditions shown in Table 14 define wake-up events. Unless specified otherwise, any change in a dataflow or circuit is a wake-up event. The *Enable* column defines when the input can cause a wakeup.

| Rqmt No.     | Dataflow or Circuit             | Enable         |
|--------------|---------------------------------|----------------|
| R: 2.3.6.1.1 | Forkbolt_Primary_Signal         | Always         |
| R: 2.3.6.1.2 | Forkbolt_Secondary_Signal       | Always         |
| R: 2.3.6.1.3 | Detent_Switch_Signal            | Always         |
| R: 2.3.6.1.4 | Local_Open_Close_Switch_Signal  | Option G1 ONLY |
| R: 2.3.6.1.5 | Master_Open_Close_Switch_Signal | Always         |
| R: 2.3.6.1.6 | Liftgate_Glass_Ajar_Signal      | Option J1 ONLY |
| R: 2.3.6.1.7 | Liftgate_Handle_Status          | Always         |
| R: 2.3.6.1.8 | Decklid_Ajar_Switch_Signal      | Always         |

**Table 14. Wake Up Inputs** 

### 2.3.6.2 Local Mode Control

| Rqmt No.     | gnition_<br>Status      | RGT_Mo<br>ve_ Rqst | Cinch_<br>Unlatch_<br>Motor_Rqst | RGT_Chim<br>e_Signal | RGT_Positio<br>n _Status           | RGT_Latch<br>_ Status         | Local_Ok<br>2Sleep | Current_<br>Sleep_ Time |
|--------------|-------------------------|--------------------|----------------------------------|----------------------|------------------------------------|-------------------------------|--------------------|-------------------------|
| R: 2.3.6.2.1 | RUN  <br>START  <br>ACC | Don't Care         | Don't Care                       | Don't Care           | Don't Care                         | Don't Care                    | NOSLEEP            | No Change               |
| R: 2.3.6.2.2 | OFF                     | Not(NULL)          | Don't Care                       | Don't Care           | Don't Care                         | Don't Care                    | NOSLEEP            | No Change               |
| R: 2.3.6.2.3 | OFF                     | NULL               | Not(NULL)                        | Don't Care           | Don't Care                         | Don't Care                    | NOSLEEP            | No Change               |
| R: 2.3.6.2.4 | OFF                     | NULL               | NULL                             | > 0 Volume           | Don't Care                         | Don't Care                    | NOSLEEP            | No Change               |
| R: 2.3.6.2.5 | OFF                     | NULL               | NULL                             | ) Volume             | < RGT_Position<br>_Out_Of_Range    | UNLATCHED<br>OPEN             | SLEEP              | 6 Hrs                   |
| R: 2.3.6.2.6 | OFF                     | NULL               | NULL                             | ) Volume             | >=<br>RGT_Position<br>Out Of Range | UNLATCHED<br>OPEN             | SLEEP              | 10 sec                  |
| R: 2.3.6.2.7 | OFF                     | NULL               | NULL                             | ) Volume             | Don't Care                         | Not<br>(UNLATCHE<br>D   OPEN) | SLEEP              | 10 sec                  |
| R: 2.3.6.2.8 | On   Reset              |                    |                                  |                      |                                    |                               | NOSLEEP            | 10 Sec                  |

**Table 15. Local Mode Control Table** 

FS-DP5T-14B673-BC Page 72 of 175

# 2.3.6.3 Local Sleep / Awake Control



Figure 15. Local Sleep Awake Control State Transition Diagram

## 2.3.6.4 Network Mode Control

| Rqmt No.     | Ignition_ Status | LocalBus_Rqst | ComboBus_Rqst |
|--------------|------------------|---------------|---------------|
| R: 2.3.6.4.1 | RUN   START      | Don't Care    | NETAWAKE      |
| R: 2.3.6.4.2 | OFF   ACC        | AWAKE         | NETAWAKE      |
| R: 2.3.6.4.3 | OFF   ACC        | SLEEP         | NETSLEEP      |
| R: 2.3.6.4.4 | On Reset         |               | NETSLEEP      |

**Table 16. Network Mode Control Table** 

FS-DP5T-14B673-BC Page 73 of 175



Figure 16. Network Sleep Delay State Transition Diagram

# 2.3.6.5 Network Sleep / Awake Control



Figure 17. Network Sleep Awake Control State Transition Diagram

FS-DP5T-14B673-BC Page 74 of 175

# 2.3.7 Manage Drift



Figure 18. Manage Drift Data Flow Diagram

FS-DP5T-14B673-BC Page 75 of 175

## 2.3.7.1 Detect Drift



**Figure 19. Detect Drift State Machine** 

FS-DP5T-14B673-BC Page 76 of 175

#### 2.3.7.2 **Control Drift**



Figure 20. Drift Control State Transition Diagram

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL **REVISION LEVEL: BC** 

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 77 of 175

# 2.3.7.3 Manage Drift Control DTC



Figure 21. Manage Drift Control DTC State Transition Diagram.

FS-DP5T-14B673-BC Page 78 of 175

# 2.3.8 Manual Operation for Broken Torsion Bars

This section describes operation when the Torsion Bars are broken. When Torsion Bars are broken the decklid should work manually, below are some descriptions of how RGTM should operate under this condition, decklid should open and close manually. When decklid is full open position user should be able to close the decklid.

## **Opening Current Limit Shutoff**

Adjust the Actuator current so a broken Torsion Bar (TB) is current and time limited and therefore will not open the Deck-lid. This has the advantage of Re-flashing the fleet without changing out mechanical parts, and allowing the Deck-lid to pass two test for

This allows for manual closing of a fully functioning Deck-lid.

#### **Open Amperage Test**

Current Draw goes to 18 to 19A when one of the Torsion Bars is removed. On an open-event set a limit on Current Draw to 14.5 amps in a 1sec window.

If the amperage limit is exceeded, then close the Deck-lid, and set a DTC for a Broken Torsion Rod/Strut.

Set the DTC for Broken TB after any combination of eleven SM and Open Amperage failures and inactivate the Power Decklid.

### **Torsion Bar Management Test**

If the Deck-lid passes the Open Amperage Test, then at Full Open test using Strut Management for 1.5 Seconds.

If the Deck-lid does not fall during this time then turn off SM, so the gate can be closed manually, since the gate will have passed two tests for a broken Torsion Bar.

Set the DTC for Broken TB after any combination of eleven SM and Open Amperage failures and inactivate the Power Deck-lid.

#### **Operation after detecting broken Torsion Bar (phase 2)**

This section descibres operation when system has detected broken Torsion Bar.

If Torsion Bar is detected the RGTM should monitor the drift control after 1.5 seconds, then set a DTC for a Broken Torsion Rod/Strut. If decklid is in full open position by user (manually) then Strut Management should be ON and keep this condition until unit is repaired. Precautions should be taken for slamming shut of the decklid.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL REVISION LEVEL: BC

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 79 of 175

## 2.4 INTERFACES

## 2.4.1 Determine Vehicle State



Figure 22. Determine Vehicle State Data Flow Diagram

#### 2.4.1.1 Read Transmission Status



Figure 23. Read Transmission Status Data Flow Diagram 1



Figure 24. Read Transmission Status Data Flow Diagram 2 (Decomposed)

| Rqmt No.      | GearLvrPos_D_Actl_Signal | Values | _Transmission_Status |
|---------------|--------------------------|--------|----------------------|
|               |                          |        |                      |
| R: 2.4.1.1.1  | Park                     | 0x0    | PARK                 |
| R: 2.4.1.1.2  | Reverse                  | 0x1    | REVERSE              |
| R: 2.4.1.1.3  | Neutral                  | 0x2    | NEUTRAL              |
| R: 2.4.1.1.4  | Drive                    | 0x3    | DRIVE                |
| R: 2.4.1.1.5  | Sport_DriveSport         | 0x4    | DRIVE                |
| R: 2.4.1.1.6  | Low                      | 0x5    | DRIVE                |
| R: 2.4.1.1.7  | First                    | 0x6    | DRIVE                |
| R: 2.4.1.1.8  | Second                   | 0x7    | DRIVE                |
| R: 2.4.1.1.9  | Third                    | 0x8    | DRIVE                |
| R: 2.4.1.1.10 | Fourth                   | 0x9    | DRIVE                |
| R: 2.4.1.1.11 | Fifth                    | 0xA    | DRIVE                |
| R: 2.4.1.1.12 | Sixth                    | 0xB    | DRIVE                |
| R: 2.4.1.1.13 | Undefined_Treat_as_Fault | 0xC    | NEUTRAL              |
| R: 2.4.1.1.14 | Undefined_Treat_as_Fault | 0xD    | NEUTRAL              |
| R: 2.4.1.1.15 | Unknown_Position         | 0xE    | NEUTRAL              |
| R: 2.4.1.1.16 | Fault                    | 0xF    | NEUTRAL              |
| R: 2.4.1.1.17 | Any Other State          | OTHER  | NEUTRAL              |

Table 12. Translation of GearLvrPos\_D\_Actl values to Transmission Status values

| CAN ID | CAN Message      | Signal            | Range |
|--------|------------------|-------------------|-------|
| 0x3BC  | EngineData_1_MS1 | GearLvrPos_D_Actl | 0-FF  |

Table 12.1 Source for GearLvrPos\_D\_Actl\_Signal

FS-DP5T-14B673-BC Page 81 of 175



Figure 25. Receive MSCAN Trans Message State Transition Diagram

| CAN ID | CAN Message       | Signal                     | CAN Signal | Transmission_<br>Status<br>_Available |
|--------|-------------------|----------------------------|------------|---------------------------------------|
| 0x3BC  | Engine Date 1 MC1 | GearLvrPos D Actl Received | DISABLED   | AVAILABLE                             |
| UX3DC  | EngineData_1_MS1  | GearLviFoS_D_Acti_Received | ENABLED    | LOST                                  |

Table 12.2 Source for GearLvrPos\_D\_Actl\_Received

FS-DP5T-14B673-BC Page 82 of 175

## 2.4.1.1.1 Read Gear Box Type



Figure 23a. Read Gear Box Type Flow Diagram 1



Figure 24a. Read Gear Box Type (Decomposed)

The Gear Box type information is contained in CAN signal 0x40A. The Table 9.3 contains the decoded gear box type, to store in Gear\_Box\_Type\_Status variable according to the received information from powertrain.

|        |                 |        |        |        |        |       |       |       | -     | N     | /IESSAC | SE INFO | RMA   | TION  | -     | -     |       |       |       | -     | -     |       |        |                      |      |      |      |      |      |      |           |
|--------|-----------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|----------------------|------|------|------|------|------|------|-----------|
| CAN ID | CAN MESSAGE     | BYTE 1 | DVTE 2 | DVTE 2 | DVTE 4 | DVTCE |       |       |       | BYT   | E 6     |         |       |       |       |       |       | ВҮТ   | E 7   |       |       |       | BYTE 8 |                      |      |      |      |      |      |      |           |
|        |                 | PLIET  | DTIE 2 | BTIES  | BTIE4  | BILES | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3   | BIT 2   | BIT 1 | BIT 0 | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | BILES  | Gear_Box_Type_Status |      |      |      |      |      |      |           |
|        |                 | C1     | 10     | Don't  | Don't  | Don't | Don't | Don't | Don't | Don't | Don't   | Don't   | 0     | 0     | 0     | Don't  | 1201                 |      |      |      |      |      |      |           |
|        |                 | C1     |        | care   | care   | care  | care  | care  | care  | care  | care    | care    | U     | U     | U     | care   | LOST                 |      |      |      |      |      |      |           |
|        |                 | C1     | 10     | Don't  | Don't  | Don't | Don't | Don't | Don't | Don't | Don't   | Don't   | 0     | _     | 1     | Don't  | MANUAL               |      |      |      |      |      |      |           |
|        |                 |        | care   | care   | care   | care  | care  | care  | care  | care  | care    | U       | 0 0 1 | 1     | care  | WANUAL |                      |      |      |      |      |      |      |           |
| 0X40A  | GGCC_Config_Mgm | C1     | 10     | Don't  | Don't  | Don't | Don't | Don't | Don't | Don't | Don't   | Don't   | 0     | 1     | 0     | Don't  | AUTOMATIC            |      |      |      |      |      |      |           |
| UNHUM  | t_ID_1_MS3      | CI     | CI     | C1     | CI     | CI    | CI    | CI    | CI    |       | care    | care    | care  | care  | care  | care  | care  | care  | care  | U     | 1     | U     | care   | care                 | care | care | care | care | care | care | AUTOWATIC |
|        | C1              | 10     | Don't  | Don't  | Don't  | Don't | Don't | Don't | Don't | Don't | Don't   | 0       | 1     | 1     | Don't | LOST   |                      |      |      |      |      |      |      |           |
|        |                 | CI     |        | care   | care   | care  | care  | care  | care  | care  | care    | care    | U     | 1     | 1     | care   | LUST                 |      |      |      |      |      |      |           |
|        |                 | C1     | 10     | Don't  | Don't  | Don't | Don't | Don't | Don't | Don't | Don't   | Don't   | 1     | Don't  | LOST                 |      |      |      |      |      |      |           |
|        |                 | CI     |        | care   | care   | care  | care  | care  | care  | care  | care    | care    | 1     | care   | LUST                 |      |      |      |      |      |      |           |

Table 12.3 Gear Box Type Decode

## Power Rear Gate/Trunk - Cross Vehicle Functional Requirements

FS-DP5T-14B673-BC Page 83 of 175



Figure 25a. Receive MSCAN Gear Box Type State Transition Diagram

# 2.4.2 Determine ODO status



Figure 26. Determine Odometer Value Data Flow Diagram 1

FS-DP5T-14B673-BC Page 84 of 175



Figure 27. Determine Odometer Value Data Flow Diagram 2 (Decomposed)



Figure 28. Determine Plant Build Mode Transition Diagram

FS-DP5T-14B673-BC Page 85 of 175

# 2.4.3 Generate Park Status

The following table applies only for Normal mode:

| Rqmt No.    | Ignition_<br>Status | Ignition_<br>Status_<br>Available | Transmission_S tatus         | Transmis sion_<br>Status _<br>Available | Odo_Stat<br>us | Gear_Box_<br>Type | Vehicle_<br>Speed_<br>Slow | Transmission<br>_ Status_Park | Comment                     |
|-------------|---------------------|-----------------------------------|------------------------------|-----------------------------------------|----------------|-------------------|----------------------------|-------------------------------|-----------------------------|
| R: 2.4.3.1  | RUN  <br>START      | AVAILABLE                         | PARK                         | AVAILABLE                               | don't care     | AUTOMATIC         | SLOW                       | PARK                          |                             |
| R: 2.4.3.2  | RUN  <br>START      | AVAILABLE                         | REVERSE  <br>NEUTRAL   DRIVE | AVAILABLE                               | don't care     | AUTOMATIC         | SLOW                       | NOT_PARK                      |                             |
| R: 2.4.3.3  | RUN  <br>START      | AVAILABLE                         | don't care                   | LOST                                    | don't care     | AUTOMATIC         | SLOW                       | NOT_PARK                      | Fault 1                     |
| R: 2.4.3.4  | OFF   ACC           | AVAILABLE                         | PARK                         | AVAILABLE                               | don't care     | AUTOMATIC         | SLOW                       | PARK                          |                             |
| R: 2.4.3.5  | OFF   ACC           | AVAILABLE                         | NEUTRAL                      | AVAILABLE                               | LOW            | AUTOMATIC         | SLOW                       | PARK                          |                             |
| R: 2.4.3.6  | OFF   ACC           | AVAILABLE                         | NEUTRAL                      | AVAILABLE                               | HIGH           | AUTOMATIC         | SLOW                       | NOT_PARK                      |                             |
| R: 2.4.3.7  | OFF   ACC           | AVAILABLE                         | REVERSE   DRIVE              | AVAILABLE                               | don't care     | AUTOMATIC         | SLOW                       | NOT_PARK                      | Fault –<br>except<br>EPRNDL |
| R: 2.4.3.8  | OFF   ACC           | AVAILABLE                         | don't care                   | LOST                                    | don't care     | AUTOMATIC         | SLOW                       | PARK                          |                             |
| R: 2.4.3.9  | don't care          | LOST                              | PARK                         | AVAILABLE                               | don't care     | AUTOMATIC         | SLOW                       | PARK                          | Fault                       |
| R: 2.4.3.10 | don't care          | LOST                              | REVERSE  <br>NEUTRAL   DRIVE | AVAILABLE                               | don't care     | AUTOMATIC         | SLOW                       | NOT_PARK                      | Fault                       |
| R: 2.4.3.11 | don't care          | LOST                              | don't care                   | LOST                                    | don't care     | AUTOMATIC         | SLOW                       | NOT_PARK                      | Fault                       |
| R: 2.4.3.12 | don't care          | don't care                        | don't care                   | don't care                              | don't care     | MANUAL            | SLOW                       | PARK                          |                             |
| R: 2.4.3.13 | don't care          | don't care                        | don't care                   | don't care                              | don't care     | MANUAL            | FAST                       | NOT_PARK                      |                             |
| R: 2.4.3.14 | don't care          | don't care                        | don't care                   | don't care                              | don't care     | LOST              | don't care                 | NOT_PARK                      |                             |

**Table 13.1 Generate Park Status Decision Table** 

The following table applies only for Factory Mode:

| Rqmt No.    | Ignition_<br>Status | Transmission_<br>Status | Odo_<br>Status | Gear_Box_<br>Type | Vehicle_<br>Speed_<br>Slow | Transmission_<br>Status_Park | Comment |
|-------------|---------------------|-------------------------|----------------|-------------------|----------------------------|------------------------------|---------|
| R: 2.4.3.15 | don't care          | PARK   NEUTRAL          | LOW            | AUTOMATIC         | SLOW                       | PARK                         |         |
| R: 2.4.3.16 | don't care          | REVERSE   DRIVE         | LOW            | AUTOMATIC         | SLOW                       | NOT_PARK                     |         |
| R: 2.4.3.17 | don't care          | don't care              | HIGH           | AUTOMATIC         | SLOW                       | NOT_PARK                     |         |
| R: 2.4.3.18 | don't care          | don't care              | don't<br>care  | AUTOMATIC         | FAST                       | NOT_PARK                     |         |
| R: 2.4.3.19 | don't care          | don't care              | don't<br>care  | MANUAL            | SLOW                       | PARK                         |         |
| R: 2.4.3.20 | don't care          | don't care              | don't<br>care  | MANUAL            | FAST                       | NOT_PARK                     |         |
| R: 2.4.3.21 | don't care          | don't care              | don't<br>care  | LOST              | don't care                 | PARK                         |         |

**Table 13.2. Generate Park Status in Factory Mode** 

FS-DP5T-14B673-BC Page 87 of 175

# 2.4.4 Read Vehicle Speed



Figure 29. Read Vehicle Speed Data Flow Diagram 2 (Decomposed)

#### 2.4.4.1 **Determine Vehicle Speed**



Figure 30. Determine Vehicle Speed State Transition Diagram

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL **REVISION LEVEL: BC** 

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 88 of 175

## 2.4.4.2 Generate Vehicle Speed Status

Vehicle speed hysteresis will feature two possible calibrations depending on the type of gear box installed in the vehicle: Manual transmission or Automatic transmission, refer to Table 4.



Figure 31. Vehicle Speed Hysteresis State Machine

| Rqmt No.     | Ignition_Status | Ignition_Status | Vehicle_<br>Speed_OK | Vehicle_<br>Speed_<br>Available | Vehicle_Speed_<br>Slow |
|--------------|-----------------|-----------------|----------------------|---------------------------------|------------------------|
| R: 2.4.4.2.1 | RUN   START     | AVAILABLE       | ОК                   | AVAILABLE                       | SLOW                   |
| R: 2.4.4.2.2 | RUN   START     | AVAILABLE       | NOT_OK               | AVAILABLE                       | FAST                   |
| R: 2.4.4.2.3 | RUN   START     | AVAILABLE       | don't care           | LOST                            | FAST                   |
| R: 2.4.4.2.4 | OFF   ACC       | AVAILABLE       | OK                   | AVAILABLE                       | SLOW                   |
| R: 2.4.4.2.5 | OFF   ACC       | AVAILABLE       | NOT_OK               | AVAILABLE                       | FAST                   |
| R: 2.4.4.2.6 | OFF   ACC       | AVAILABLE       | don't care           | LOST                            | SLOW                   |
| R: 2.4.4.2.7 | don't care      | LOST            | OK                   | AVAILABLE                       | SLOW                   |
| R: 2.4.4.2.8 | don't care      | LOST            | NOT_OK               | AVAILABLE                       | FAST                   |
| R: 2.4.4.2.9 | don't care      | LOST            | don't care           | LOST                            | FAST                   |

Table 14. Generate VSS Signal Decision Table

| CAN ID | CAN Message      | Signal        | Units | Range                 |
|--------|------------------|---------------|-------|-----------------------|
| 0x42E  | EngineData_2_MS1 | Veh_V_ActlEng | KPH   | 0-655.35 (0000 xFFFF) |

Table 14.1. Source VSS Signal Decision Table

FS-DP5T-14B673-BC Page 89 of 175

# 2.4.5 Monitor Front Requests



Figure 32. Monitor Front Requests Data Flow Diagram 1



Figure 33. Monitor Front Requests Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 90 of 175

## 2.4.5.1 Master Open/Close Switch

The Master\_Open\_Close\_Switch\_Signal is a wakeup input to the RGTM.

- 1) The input to the RGTM (Master\_Open\_Close\_Switch\_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0045).
- 2) The RGTM shall sample the Master\_Open\_Close\_Switch\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) The RGTM shall be capable of detecting a change in value (either rising edge or falling edge ) of the Master\_Open\_Close\_Switch\_Signal while the RGTM is asleep.
- 4) When the RGTM is asleep and Master\_Open\_Close\_Switch\_Signal changes value, the RGTM shall temporarily awaken within 50 milliseconds and debounce Master\_Open\_Close\_Switch\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the RGTM shall set Master\_RGT\_Open\_Close\_Rqst to the new state and remain awake. Otherwise, the RGTM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 5) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of Master\_Open\_Close\_Switch\_Signal is taken, then that sample is to be considered open circuit (Software Requirement #0066).
- 6) The RGTM shall set Master\_RGT\_Open\_Close\_Status = ACTIVE when all consecutive samples of Master\_Open\_Close\_Switch\_Signal indicate a closed circuit for a time period of at least 45 (+/- 11) milliseconds (V < 2.2 volts). The RGTM shall transmit signal PwLftgtIntSw B Stat = 0x1 (PRESSED) over CAN.
- 7) The RGTM shall set Master\_RGT\_Open\_Close\_Status = INACTIVE when all consecutive samples of Master\_Open\_Close\_Switch\_Signal indicate an open circuit for a time period of at least 45 (+/- 11) milliseconds (V > 8.0 volts). The RGTM shall transmit signal PwLftgtIntSw\_B\_Stat = 0x0 (NULL) over CAN.
- 8) The RGTM shall set Master\_RGT\_Open\_Close\_Status = UNKNOWN upon a module reset and whenever VBattState[Digital Input] <> NORM\_V. The RGTM signal shall transmit signal PwLftgtIntSw\_B\_Stat = 0x0 (NULL) over CAN.



Figure 34. Read Master Switch State Machine

FS-DP5T-14B673-BC Page 91 of 175

# 2.4.5.1.1 IP Center Stack Switch Availability

The master Switch has to operate accordingly with the market it is intended. The purpose is to inhibit operation in the cases where the gubernamental regulations avoid the release of the trunk. It is better explained in the decision table for ECE\_Inhibit\_RGT signal that shows when to inhibit the operation of the RGT.

| Rqmt No.       | Market_ECE | Vehicle_Lock<br>_Status_Signal | Ignition_Status | ECE_Inhibit_RGT | Comments        |
|----------------|------------|--------------------------------|-----------------|-----------------|-----------------|
| R: 2.4.5.1.1.1 | ECE        | LOCKED                         | OFF   ACC       | INHIBIT         |                 |
| R: 2.4.5.1.1.2 | ECE        | NOT_LOCKED                     | OFF   ACC       | NO_INHIBIT      |                 |
| R: 2.4.5.1.1.3 | ECE        | Don't care                     | RUN   START     | NO_INHIBIT      | Auto Trans Only |
| R: 2.4.5.1.1.4 | NON_ECE    | LOCKED                         | don't care      | NO_INHIBIT      |                 |
| R: 2.4.5.1.1.5 | NON_ECE    | NOT_LOCKED                     | don't care      | NO_INHIBIT      |                 |

Table 15 Decision table for ECE Inhibit RGT signal.

## **Specifications for European Market:**

If the center stack switch is pressed periodically by the user with a high frequency this must not lead to consecutive trigger events but shall be detected as misuse.

Consecutive signal edges of the center stack switch signal appearing within a period shorter than t=1000ms after a "stop" trigger must be recognized as misuse and therefore must be ignored.

| CAN   | CAN Message               | Signal              | Detailed | State Encoded | RGT_Mode |
|-------|---------------------------|---------------------|----------|---------------|----------|
| ID    |                           |                     | Meaning  |               | _Cfg     |
| 0x313 | Power_Liftgate_Mode_StatM | PwLftgtIntSw_B_Stat | Null     | 0x0           | NULL     |
|       |                           |                     | Pressed  | 0x1           | PRESSED  |

Table 16 States for signal PwLftgtIntSw\_B\_Stat (TX signal from RGTM to CAN).

## 2.4.5.2 Read Remote Request (Key Fob/Hands Free)

Remote request is handled by the RGT module, a CAN signal is send by the BCM that indicates if RGT has to Power Open/Close the decklid/liftgate. This signal can come from 2 different devices, a Key Fob or a Hands Free module. Key Fob allows open/close the Liftgate/Decklid, normally the Key Fob have a specific button to handle the Liftgate/Decklid. Hands Free allows open/close the Liftgate/Decklid just by a gentle kicking motion under the rear bumper if car is equipped with this feature.

### **Specifications for European Market:**

#### **Interruption by the user:**

Disable RKE after tailgate operation interrupt by the user, this is for safety reasons:

After interrupting the tailgate operation by the tailgate button on the remote key fob, following start requests by the key fob must be ignored for a certain period of time, the value of this time depends on RKE\_Interrupt\_Time that has a value of 3 seconds. This is necessary to avoid unintended tailgate operation if the customer presses the button uncontrolled.

The Timer value should be calibratable.



Figure 35. Read Remote Request Data Flow Diagram 1



Figure 36. Read Remote Request Data Flow Diagram 2 (Decomposed).

| Rqmt No.     | Power<br>Trunk<br>Present | Power<br>Liftgate<br>Present | Power_Liftgate_<br>Rqst | Power_Decklid_<br>Rqst | Remote_Req |
|--------------|---------------------------|------------------------------|-------------------------|------------------------|------------|
| R: 2.4.5.2.1 | NO                        | YES                          | 0X0                     | IGNORE                 | NULL       |
| R: 2.4.5.2.2 | NO                        | YES                          | 0X1                     | IGNORE                 | ACTIVE     |
| R: 2.4.5.2.3 | YES                       | NO                           | IGNORE                  | 0X0                    | NULL       |
| R: 2.4.5.2.4 | YES                       | NO                           | IGNORE                  | 0X1                    | ACTIVE     |

Table 16.1 Decision Table for received MSCAN Remote Req from Key fob

| CAN<br>ID | CAN Message            | Signal              | Detailed<br>Meaning | State<br>Encoded |
|-----------|------------------------|---------------------|---------------------|------------------|
| 0x331     | Locking Systems 2 MS1  | Power Decklid Rast  | NULL                | 0x0              |
| 0,551     | Locking_Systems_z_wis1 | Fower_Deckiid_hqst  | ACTIVE              | 0x1              |
| 0v221     | Looking Systems 2 MS1  | Power Liftgate Past | NULL                | 0x0              |
| 0x331     | Locking_Systems_2_MS1  | Power_Liftgate_Rqst | ACTIVE              | 0x1              |

Table 16.2 MSCAN message source for Remote\_Req input from Key fob

FS-DP5T-14B673-BC Page 93 of 175



Figure 37. Receive MSCAN KeyfobPad Message - State Transition Diagram

| CAN<br>ID | CAN Message           | Signal               | Units  | Range   | Keyfob_Pad_<br>Msg_Count |
|-----------|-----------------------|----------------------|--------|---------|--------------------------|
| 0x331     | Locking_Systems_2_MS1 | Keyfob_Pad_Msg_Count | COUNTS | 0 - 255 | 0 - 255                  |

Table 16.3 MSCAN message source for Keyfob\_Pad\_Msg\_Count input

## 2.4.5.3 Read Power Locks Inhibit



Figure 38. Read Power Locks Inhibit Data Flow Diagram



Figure 39. Interior Lock Inhibit Data Flow Diagram 2 (Decomposed)

| Rqmt No.     | LockInhibit_Signal | VbattState[Vrange_CAN] | InteriorLockInhibit_Cmd |
|--------------|--------------------|------------------------|-------------------------|
| R: 2.4.5.3.1 | Don't Care         | Not(NORM_V)            | INHIBIT                 |
| R: 2.4.5.3.2 | INHIBIT            | NORM_V                 | INHIBIT                 |
| R: 2.4.5.3.3 | NO_INHIBT          | NORM_V                 | NO_INHIBIT              |

Table 17. Decision Table For InteriorLockInhibit\_Cmd for NON ECE Market.

| CAN ID | CAN Message           | Signal       | Detailed<br>Meaning | State<br>Encoded | LockInhibit_<br>Signal |
|--------|-----------------------|--------------|---------------------|------------------|------------------------|
| 0.201  | Looking Systems 2 MS1 | LockInhibit  | No_Inhibit          | 0x0              | NO_INHIBT              |
| 0x331  | Locking_Systems_2_MS1 | LOCKITITIDIL | Inhibit             | 0x1              | INHIBIT                |

Table 17.2 Source for Lock\_Inhibit\_Signal

FS-DP5T-14B673-BC Page 95 of 175

# 2.4.5.4 Determine Front User Request



Figure 40. Determine Front User Request Data Flow Diagram

| Rqmt No.     | Master_RGT_Open<br>_Close_Rqst                                                                        | InteriorLockInhibit<br>_Cmd | Remote_RGT<br>_Rqst | ECE_Inhibit_RGT | Front_RGT_Rqst |
|--------------|-------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|-----------------|----------------|
| R: 2.4.5.4.1 | INACTIVE                                                                                              | don't care                  | NULL                | don't care      | INACTIVE       |
| R: 2.4.5.4.2 | INACTIVE                                                                                              | don't care                  | RGT                 | don't care      | ACTIVE         |
| R: 2.4.5.4.3 | ACTIVE                                                                                                | don't care                  | RGT                 | don't care      | ACTIVE         |
| R: 2.4.5.4.4 | ACTIVE                                                                                                | NO_INHIBIT                  | NULL                | NO_INHIBIT      | ACTIVE         |
| R: 2.4.5.4.5 | ACTIVE                                                                                                | INHIBIT                     | NULL                | NO_INHIBIT      | INACTIVE       |
| R: 2.4.5.4.6 | ACTIVE                                                                                                | NO_INHIBIT                  | NULL                | INHIBIT         | INACTIVE       |
| R: 2.4.5.4.7 | ACTIVE                                                                                                | INHIBIT                     | NULL                | INHIBIT         | INACTIVE       |
| R: 2.4.5.4.9 | After evaluation of this table, set Remote_RGT_Rqst = NULL and Master_RGT_Open_Close_Rqst = INACTIVE. |                             |                     |                 |                |

**Table 18. Determine Front User Request - Decision Table** 

FS-DP5T-14B673-BC Page 96 of 175

# 2.4.6 Local (Rear) Open/Close Switch



Figure 41. Read Local Open/Close Switch Data Flow Diagram

The Local\_Open\_Close\_Switch\_Signal is a wakeup input to the RGTM.

If Local Switch Present = PRESENT, apply 1 through 9 below:

- 1) The input to the RGTM (Local\_Open\_Close\_Switch\_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0045).
- 2) The RGTM shall sample the Local Open Close Switch Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) The RGTM shall be capable of detecting a change in value (either rising edge or falling edge ) of the Local Open Close Switch Signal while the RGTM is asleep.
- 4) When the RGTM is asleep and Local\_Open\_Close\_Switch\_Signal changes value, the RGTM shall temporarily awaken within 50 milliseconds and debounce Local\_Open\_Close\_Switch\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the RGTM shall set Local RGT Open Close Rqst to the new state and remain awake. Otherwise, the RGTM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 5) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of Local\_RGT\_Open\_Close\_Signal is taken, then that sample is to be considered open circuit (Software Requirement #0066).
- 6) The RGTM shall set Local\_RGT\_Open\_Close\_Status = ACTIVE when all consecutive samples of Local\_Open\_Close\_Switch\_Signal indicate ground (a closed circuit) for a time period of at least 45 (+/- 11) milliseconds (V < 2.2 volts).
- 7) The RGTM shall set Local\_RGT\_Open\_Close\_Status = INACTIVE when all consecutive samples of Local\_Open\_Close\_Switch\_Signal indicate an open circuit for a time period of at least 45 (+/- 11) milliseconds (V > 8.0 volts). 8) The RGTM shall set Local\_RGT\_Open\_Close\_Status = UNKNOWN upon a module reset and whenever VBattState[Digital Input] <> NORM V.
- 9) If Local\_Switch\_Present = NOT\_PRESENT, the RGTM shall set Local\_RGT\_Open\_Close\_Status = INACTIVE.

#### **Specifications for European Market:**

If the local (rear) switch is pressed periodically by the user with a high frequency this must not lead to consecutive trigger events but shall be detected as misuse.

Consecutive signal edges of the center stack switch signal appearing within a period shorter than t=1000ms after a "stop" trigger must be recognized as misuse and therefore must be ignored.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1 FS-DP5T-14B673-BC Page 97 of 175



Figure 42. Read Local Switch State Machine

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL **REVISION LEVEL: BC** 

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 98 of 175

# 2.4.7 Read Rear Gate/Trunk Handle Request



Figure 43. Read Rear Gate/Trunk Handle Request Data Flow Diagram

# 2.4.7.1 Read RGT Handle Signal

The RGT\_Handle\_Signal is a wakeup input to the RGTM.

- 1) The input to the RGTM (RGT\_Handle \_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0045).
- 2) The RGTM shall sample the RGT\_Handle\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) The RGTM shall be capable of detecting a change in value (either rising edge or falling edge ) of the RGT\_Handle\_Signal while the RGTM is asleep.
- 4) When the RGTM is asleep and RGT\_Handle\_Signal changes value, the RGTM shall temporarily awaken within 50 milliseconds and debounce RGT\_Handle\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the RGTM shall set RGT\_Handle\_Status to the new state and remain awake. Otherwise, the RGTM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 5) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of RGT\_Handle\_Signal is taken, then that sample is to be considered open circuit (Software Requirement #0066).
- 6) The RGTM shall set RGT\_Handle\_Switch\_Status = ACTIVE when all consecutive samples of RGT\_Handle\_Signal indicate Ground (a closed circuit) for a time period of at least 45 (+/- 11) milliseconds (V< 2.2 volts).
- 7) The RGTM shall set RGT\_Handle\_Switch\_Status = INACTIVE when all consecutive samples of RGT\_Handle\_Signal indicate an open circuit for a time period of at least 45 (+/-11) milliseconds (V > 8.0 volts).
- 8) The RGTM shall set RGT\_Handle\_Switch\_Status = UNKNOWN upon a module reset and whenever VBattState[Digital Input] <> NORM\_V.

FS-DP5T-14B673-BC Page 99 of 175

#### **Specifications for European Market:**

If the handle switch is pressed periodically by the user with a high frequency this must not lead to consecutive trigger events but shall be detected as misuse.

Consecutive signal edges of the center stack switch signal appearing within a period shorter than t=1000ms after a "stop" trigger must be recognized as misuse and therefore must be ignored.



Figure 44. Read RGT Handle Switch Status

### **Handle Request:**

Handle request is the result of the evaluation of switch status, lock status and handle request signals. The type of the Liftgate Power or Manual or Manual with soft close should decide what signals are needed to let Open/Close the liftgate:

For <u>Power Liftgate</u>, signal with the switch status should be used to determine if Liftgate should OPEN/CLOSE.

Section 2.4.7.1.1.1 determines the use of this CAN signal. See table 19\_A for more reference on the interaction of the signals.

For Manual Liftgate, lock status is needed to determine if Liftgate should OPEN/CLOSE.

Section 2.4.7.1.2 determines the use of this signal. See table 19\_B for more reference on the interaction of the signals.

Programs can have both types of Liftgate: Manual and Power.

Above conditions apply when LifeCyc\_Mode\_Signal is NORMAL, when LifeCyc\_Mode\_Signal in in FACTORY mode see table 19\_C.

| PROGRAM | POWER | MANUAL |
|---------|-------|--------|
| CD533   | X     |        |
| C489    | X     | X      |

Table 19. Program with type of Liftgate

| Rqmt No.     | RGT_Handle_<br>Switch_Rqst | RGT_Handle_SW<br>_Enable_Stat | LifeCyc_Mode_Signal | RGT_Handle_Req |
|--------------|----------------------------|-------------------------------|---------------------|----------------|
| R: 2.4.7.1.1 | R: 2.4.7.1.1 INACTIVE      |                               | NORMAL              | INACTIVE       |
| R: 2.4.7.1.2 | R: 2.4.7.1.2 ACTIVE E      |                               | NORMAL              | ACTIVE         |
| R: 2.4.7.1.3 | ACTIVE                     | DISABLED                      | NORMAL              | INACTIVE       |

Table 19\_A. Determine RGT\_Handle\_Req for Power Liftgate - decision table

| Rqmt No.     | RGT_Handle_<br>Switch_Rqst | Veh_Lock_Status  | Veh_Lock_Status<br>LifeCyc_Mode_Signal |          |
|--------------|----------------------------|------------------|----------------------------------------|----------|
| R: 2.4.7.1.4 | INACTIVE                   | Don't Care       | NORMAL                                 | INACTIVE |
| R: 2.4.7.1.5 | ACTIVE                     | UNLOCK_ALL       | NORMAL                                 | ACTIVE   |
| R: 2.4.7.1.6 | ACTIVE                     | Not (UNLOCK_ALL) | NORMAL                                 | INACTIVE |

Table 19\_B. Determine RGT\_Handle\_Req for Manual Liftgate - decision table

| Rqmt No.      |          | RGT_Handle_SW<br>Enable_Stat | Veh_Lock_Status  | LifeCyc_Mode_Signal | RGT_Handle_Req |
|---------------|----------|------------------------------|------------------|---------------------|----------------|
| R: 2.4.7.1.7  | INACTIVE | Don´t care                   | Don't Care       | FACTORY             | INACTIVE       |
| R: 2.4.7.1.8  | ACTIVE   | ENABLED                      | Don't Care       | FACTORY             | ACTIVE         |
| R: 2.4.7.1.9  | ACTIVE   | DISABLED                     | UNLOCK_ALL       | FACTORY             | ACTIVE         |
| R: 2.4.7.1.10 | ACTIVE   | DISABLED                     | Not (UNLOCK_ALL) | FACTORY             | ACTIVE         |

Table 19\_C. Determine RGT\_Handle\_Req in Factory Mode - decision table

FS-DP5T-14B673-BC Page 101 of 175

#### 2.4.7.1.1.1 Read RGT Handle Switch Enabled Status

The signal **DrTgateExtSwMde\_B\_Stat** is send by the BCM and represents the status of the exterior liftgate switch send in a CAN message. This signal is only send when the BCM has the configuration for Power Liftgate. When BCM has the configuration for Manual Liftgate, this signal is not send in a CAN message and should not used as a condition to determine RGT operation.



Figure 44a. Read RGT Handle Switch CAN Enabled Status Data Flow Diagram

| Rqmt No.       | DrTgateExtSwMde_B_Stat | VbattState<br>[Vrange_CAN] | RGT_Handle_SW_<br>Enable_Stat |
|----------------|------------------------|----------------------------|-------------------------------|
| R: 2.4.7.1.1.1 | Don't Care             | Not(NORM_V)                | No Change                     |
| R: 2.4.7.1.1.2 | ENABLED                | NORM_V                     | ENABLED                       |
| R: 2.4.7.1.1.3 | DISABLED               | NORM_V                     | DISABLED                      |

Table 19.1 Read RGT Handle Switch CAN Enabled Status - Decision Table.

FS-DP5T-14B673-BC Page 102 of 175

## 2.4.7.1.2 Read Vehicle Lock Status



Figure 44B - Read Vehicle Lock Status

| Rqmt No.       | Veh_Lock_Status_<br>Signal | VbattState[Vrange_CAN] | Vehicle_Lock_Status |
|----------------|----------------------------|------------------------|---------------------|
| R: 2.4.7.1.2.1 | Don't Care                 | Not(NORM_V)            | No Change           |
| R: 2.4.7.1.2.2 | Unlocked                   | NORM_V                 | INACTIVE            |
| R: 2.4.7.1.2.3 | Locked                     | NORM_V                 | ACTIVE              |

Table 19.2 . Read Vehicle Lock Status - Decision Table

| CAN<br>ID                   | CAN Message                   | Signal          | Detailed Meaning | State<br>Encoded | Veh_Lock<br>_Status_Signal |
|-----------------------------|-------------------------------|-----------------|------------------|------------------|----------------------------|
|                             |                               |                 | LOCK_DBL         | 0x0              | LOCKED                     |
| 0x331 Locking Systems 2 MS1 | Veh Lock Status               | LOCK_ALL        | 0x1              | LOCKED           |                            |
| 0,331                       | 0x331 Locking_Systems_z_ivi31 | Ven_Lock_Status | UNLOCK_ALL       | 0x2              | UNLOCKED                   |
|                             |                               | UNLOCK_DRV      | 0x3              | LOCKED           |                            |

Table 19.3 Source for Vehicle\_Lock\_Status\_Signal

FS-DP5T-14B673-BC Page 103 of 175

# 2.4.7.2 Read Handle Request

| Rqmt No.     | RGT_Handle_<br>Req |            | RGT_Handle_<br>Status | RGT_Handle_Status_2 |
|--------------|--------------------|------------|-----------------------|---------------------|
| R: 2.4.7.2.1 | INACTIVE           | INACTIVE   | INACTIVE              | INACTIVE            |
| R: 2.4.7.2.2 | ACTIVE             | Don't Care | ACTIVE                | ACTIVE              |
| R: 2.4.7.2.2 | INACTIVE           | ACTIVE     | ACTIVE                | ACTIVE              |

Table 19.4 . Read RGT Handle Request - Decision Table

# 2.4.7.2.1 Read RGT Handle CAN Request



Figure 45. Read RGT Handle CAN Request Data Flow Diagram

| Rqmt No.       | Rqmt No. DrTgateOpen_B_Rq |             | RGT_Handle_Cmd |  |
|----------------|---------------------------|-------------|----------------|--|
| R: 2.4.7.2.1.1 | Don't Care                | Not(NORM_V) | No Change      |  |
| R: 2.4.7.2.1.2 | RELEASE                   | NORM_V      | INACTIVE       |  |
| R: 2.4.7.2.1.3 | NULL                      | NORM_V      | ACTIVE         |  |

Table 19.5 Read Rear Gate/Trunk Handle CAN Request - Decision Table

FS-DP5T-14B673-BC Page 104 of 175

# 2.4.7.2.2 Determine Rear User Request



Figure 46. Determine Rear User Request Data Flow Diagram

| Rqmt No.               | Local_RGT_Ope<br>n_Close_ Rqst<br>(G1)                                                           | RGT_Latch_Status | RGT_Handl<br>e_Status | RGT_Handle_<br>Status_2 | Local_RGT_<br>Rqst |
|------------------------|--------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|--------------------|
| R: 2.4.7.1 (optionG1)  | ACTIVE                                                                                           | UNLATCHED        | Don't Care            | Don't Care              | ACTIVE             |
| R: 2.4.7.2 (option G1) | ACTIVE                                                                                           | not(UNLATCHED)   | INACTIVE              | INACTIVE                | INACTIVE           |
| R: 2.4.7.3             | Don't Care                                                                                       | not(UNLATCHED)   | ACTIVE                | ACTIVE                  | UNLATCH            |
| R: 2.4.7.4             | INACTIVE                                                                                         | UNLATCHED        | ACTIVE                | INACTIVE                | ACTIVE             |
| R: 2.4.7.5             | INACTIVE                                                                                         | Don't Care       | INACTIVE              | INACTIVE                | INACTIVE           |
| R: 2.4.7.6             | After evaluation of this table, set Local_RGT_Rqst = INACTIVE and RGT_Handle_Status_2 = INACTIVE |                  |                       |                         |                    |

Table 20. Determine Rear User Request -decision table

FS-DP5T-14B673-BC Page 105 of 175

# 2.4.8 Read Power Rear Gate/Trunk Lockout



Figure 48. Read RGT Lockout Status Data Flow Diagram 1



Figure 49. Read RGT Lockout Status Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 106 of 175

#### 2.4.8.1 Read Power Rear Gate/Trunk Lockout Status



Figure 50. RGT Mode Processing State Transition Diagram

| CAN<br>ID                       | CAN Message                       | Signal                     | Detailed Meaning | State Encoded |
|---------------------------------|-----------------------------------|----------------------------|------------------|---------------|
| 0x313 Power Liftgate Mode Statm |                                   | Disabled                   | 0x0              |               |
|                                 | Power Liftgate Mode Statm         | m Power_Liftgate_Mode_Stat | Enabled          | 0x1           |
| 0,313                           | 0x313   Fower_Lingate_wode_Statin |                            | Unused           | 0x2           |
|                                 |                                   |                            | Not Supported    | 0x3           |

Figure 20.1 Possible values to report in signal Power\_Liftgate\_Mode\_Stat

#### 2.4.8.2 Read Power Rear Gate/Trunk Lockout Status

The RGT\_Lockout\_Signal is NOT a wakeup input to the RGTM.

- 1) The input to the RGTM (RGT\_Lockout\_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0045).
- 2) The RGTM shall sample the RGT\_Lockout\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of RGT\_Lockout\_Signal is taken, then that sample is to be considered open circuit (Software Requirement #0066).
- 4) The RGTM shall set RGT\_Lockout\_Status =NOT\_LOCKED when all consecutive samples of RGT\_Lockout\_Signal indicate a closed circuit for a time period of at least 45 (+/- 11) milliseconds (V < 2.2 volts).
- 5) The RGTM shall set RGT\_Lockout\_Status = LOCKED when all consecutive samples of RGT\_Lockout\_Signal indicate an open circuit for a time period of at least 45 (+/- 11) milliseconds (V > 8.0 volts).
- 6) The RGTM shall set RGT\_Lockout\_Status = LOCKED upon a module reset, or upon coming out of sleep.
- 7) The RGTM shall set RGT\_Lockout\_Status = NOT\_LOCKED when RGT\_System\_Cfg = MANUAL.

#### 2.4.8.3 Determine Power Rear Gate/Trunk Lockout Status

| Rqmt. No     | Message_Center_<br>Present | RGT_Lockout_<br>Switch_Status | RGT_Mode_Cfg | RGT_Lockout_Status |
|--------------|----------------------------|-------------------------------|--------------|--------------------|
| R: 2.4.9.3.1 | NOT_PRESENT                | LOCKED                        | Don't Care   | LOCKED             |
| R: 2.4.9.3.2 | NOT_PRESENT                | UNLOCKED                      | Don't Care   | UNLOCKED           |
| R: 2.4.9.3.3 | PRESENT                    | Don't Care                    | LOCKED       | LOCKED             |
| R: 2.4.9.3.4 | PRESENT                    | Don't Care                    | UNLOCKED     | UNLOCKED           |

**Table 21 - Determine Power Liftgate Lockout Status** 

| CAN<br>ID          | CAN Message             | Signal   | Detailed Meaning | State<br>Encoded   | RGT_Mode_Cfg |
|--------------------|-------------------------|----------|------------------|--------------------|--------------|
| 0v2C4 Padulata MC1 | Power_Liftgate_Mode_Cmd | DISABLED | 0x0              | UNLOCKED<br>LOCKED |              |
| 0x3C4 BodyInfo_MS1 |                         | ENABLED  | 0x1              | LOCKED UNLOCKED    |              |

Table 21.1 Source for RGT Mode Cfg

FS-DP5T-14B673-BC Page 108 of 175

### 2.4.9 Look for Obstacle



Figure 51. Look For Obstacle Data Flow Diagram 1



Figure 52. Look For Obstacle Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 109 of 175

#### 2.4.9.1 **Read Left Pinch Strip**

- <R: 2.4.9.1.1> When Left\_Pinch\_Strip\_Signal is at a level that represents a resistance <= 2500 ohms at the pinch strip for at least 2 consecutive samples, the RGTM shall set Left Pinch Strip Status = PINCHED.
- < R: 2.4.9.1.2> When Left\_Pinch\_Strip\_Signal is at a level that represents a resistance >= 2500 ohms but < 10500 ohms at the pinch strip for at least 2 consecutive samples, the RGTM shall set Left\_Pinch\_Strip\_Status = NOT\_PINCHED.
- < R: 2.4.9.1.3> When Left\_Pinch\_Strip\_Signal is at a level that represents a resistance >= 10500 ohms at the pinch strip for at least 2 consecutive samples, the RGTM shall set Left Pinch Strip Status = ERROR.
- < R: 2.4.9.1.4>The RGTM shall detect an obstacle via the Left Pinch Strip during a power close operation such that the Rear Gate/Trunk does not exert a force greater than 200 N with a spring rate of 10 N/mm.
- < R: 2.4.9.1.5> The RGTM shall sample the Left\_Pinch\_Strip\_Signal with a sample period of no more than 11 milliseconds and no less than 5 milliseconds while the RGTM is awake (Software Requirement #0044).
- < R: 2.4.9.1.6> If VbattState[Pinch Strip] <> NORM\_V at the time a sample of Left\_Pinch\_Strip\_Signal is taken, then that sample is to be considered >= 10500 ohms (Software Requirement #0066).

#### 2.4.9.2 **Read Right Pinch Strip**

- < R: 2.4.9.2.1> When Right Pinch Strip Signal is at a level that represents a resistance <= 2500 ohms at the pinch strip strip for at least 2 consecutive samples, the RGTM shall set Right Pinch Strip Status = PINCHED.
- < R: 2.4.9.2.2> When Right\_Pinch\_Strip\_Signal is at a level that represents a resistance >= 2500 ohms but < 10500 ohms at the pinch strip for at least 2 consecutive samples, the RGTM shall set Right\_Pinch\_Strip\_Status = NOT\_PINCHED.
- < R: 2.4.9.2.3> When Right Pinch Strip Signal is at a level that represents a resistance >= 10500 ohms at the pinch strip for at least 2 consecutive samples, the RGTM shall set Right Pinch Strip Status = ERROR.
- < R: 2.4.9.2.4>The RGTM shall detect an obstacle via the Right Pinch Strip during a power close operation such that the Rear Gate/Trunk does not exert a force greater than 200 N with a spring rate of 10 N/mm.
- < R: 2.4.9.2.5> The RGTM shall sample the Right Pinch Strip Signal with a sample period of no more than 11 milliseconds and no less than 5 milliseconds while the RGTM is awake (Software Requirement #0044).
- < R: 2.4.9.2.6> If VbattState[Pinch Strip] <> NORM V at the time a sample of Right Pinch Strip Signal is taken, then that sample is to be considered >= 10500 ohms (Software Requirement #0066).

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL REVISION LEVEL: BC

FS-DP5T-14B673-BC Page 110 of 175

#### $2.4.\overline{9.3}$ **Determine Pinch**

| Rqmt No.      | Left_Pinch_Strip<br>_Status                                                                                                                      | Right_Pinch_Strip_<br>Status | RGT_Secondary_<br>Obstacle_Detection_Status |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------|--|
| R: 2.4.9.3.1  | PINCHED                                                                                                                                          | PINCHED                      | OBSTACLE                                    |  |
| R: 2.4.9.3.2  | PINCHED                                                                                                                                          | ERROR                        | ERROR                                       |  |
| R: 2.4.9.3.3  | PINCHED                                                                                                                                          | NOT_PINCHED                  | OBSTACLE                                    |  |
| R: 2.4.9.3.4  | ERROR                                                                                                                                            | PINCHED                      | ERROR                                       |  |
| R: 2.4.9.3.5  | ERROR                                                                                                                                            | ERROR                        | ERROR                                       |  |
| R: 2.4.9.3.6  | ERROR                                                                                                                                            | NOT_PINCHED                  | ERROR                                       |  |
| R: 2.4.9.3.7  | NOT_PINCHED                                                                                                                                      | PINCHED                      | OBSTACLE                                    |  |
| R: 2.4.9.3.8  | NOT_PINCHED                                                                                                                                      | ERROR                        | ERROR                                       |  |
| R: 2.4.9.3.9  | NOT_PINCHED                                                                                                                                      | NOT_PINCHED                  | CLEAR                                       |  |
| R: 2.4.9.3.10 | Validation of this table should be executed only if PinchStrips_Present = PRESENT, otherwise set RGT_Secondary_Obstacle_Detection_Status = CLEAR |                              |                                             |  |

**Table 22. Determine Pinch Decision Table** 

< R: 2.4.9.3.11> > The RGTM shall set RGT\_Secondary\_ Obstacle\_Detection\_Status = CLEAR when RGT\_System\_Cfg = MANUAL.

#### 2.4.9.4 **Primary Obstacle Detection**

This strategy is supplier defined.

< R: 2.4.9.4.1>The RGTM shall detect an obstacle in the path of Rear Gate/Trunk travel during either a power open or power close operation such that the Rear Gate/Trunk does not exert a force greater than 200 N with a spring rate of 10 N/mm.

Note: A stretch objective is set to 100 N at the same spring rate.

- < R: 2.4.9.4.2> When an obstacle is detected, the RGTM shall set RGT\_Primary\_Obstacle\_Detection\_Status = OBSTACLE.
- < R: 2.4.9.4.3> When no obstacle has been detected, the RGTM shall set RGT\_Primary\_Obstacle\_Detection\_Status = CLEAR.
- < R: 2.4.9.4.4> When VbattState[Encoder] = UNDER\_V | OVER\_V, the RGTM shall set RGT\_Primary\_Obstacle\_Detection\_Status = OBSTACLE.

### Note:

Obstacle Detection should be OFF when RGTM is in closing direction and the position of the Decklid (degress) is less than Obstacle\_Detection\_Shut\_Off\_Angle value; this requirement is only for Decklids.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL REVISION LEVEL: BC

FS-DP5T-14B673-BC Page 111 of 175

# 2.4.10 Determine Rear Gate/Trunk Position



Figure 53. Determine Rear Gate/Trunk Position Data Flow Diagram 1



Figure 54. Determine Rear Gate/Trunk Position Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 112 of 175

#### $2.4.\overline{10.1}$ **Set Rear Gate/Trunk Position**

< R: 2.4.10.1.1>RGT\_Position\_Status is an angular representation of the position of the Rear Gate/Trunk as determined by counting pulses from Encoder Sensor 1. RGT Position Status = 0 when the Rear Gate/Trunk is fully closed and latched.

- < R: 2.4.10.1.2> The RGTM shall set RGT Position Status = 0 when Synch Status -> SYNCH, OR when RGT Latch Status = LATCHED, AND RGT\_Position\_Status = RGT\_Position\_Out\_Of\_Range.
- < R: 2.4.10.1.3> The RGTM shall set RGT\_Position\_Status = 0 when the module goes to the sleep state.
- < R: 2.4.10.1.4 > The RGTM shall set RGT Position Status = RGT Position Out Of Range on module Reset.
- < R: 2.4.10.1.5 > For self rising systems the RGTM shall set RGT\_Full\_Open\_Position = Mechanical\_Full\_Open\_Position 3 degrees and for counter balanced systems the RGTM shall set RGT\_Full\_Open\_Position = Mechanical\_Full\_Open\_Position - 0.5 degrees. (Except Option L1).
- (Option L1) Once the user starts learning the gate maximum opening angle, the EEprom location will contain the learned Full Open Position information. This is kept and restored after reset / power-up.
- < R: 2.4.10.1.6> The RGTM shall set RGT\_Position\_Status = RGT\_Position\_Out\_Of\_Range when VbattState[Encoder] = UNDER\_V | OVER\_V

Mechanical\_Full\_Open\_Position is determined by a supplier defined strategy.

- < R: 2.4.10.1.7> The RGTM shall set Mechanical Full Open Position to Minumum Full Open Position if the mechanical stop position has not yet been determined.
- < R: 2.4.10.1.8> The RGTM shall set RGT\_Position\_Status = 0 when RGT\_System\_Cfg = MANUAL.

#### 2.4.10.2 **Determine Rear Gate/Trunk Ajar Status**



Figure 55. Determine Rear Gate/Trunk Ajar Status Data Flow Diagram

#### Power Rear Gate/Trunk - Cross Vehicle Functional Requirements

FS-DP5T-14B673-BC Page 113 of 175

#### $2.4.\overline{10.3}$ Read Rear Gate/Trunk Glass Ajar Signal

The RGT\_Glass\_Ajar\_Signal is a wakeup input to the RGTM.

If RGT\_Glass\_Ajar\_Present = PRESENT, apply 1 through 8 below:

- 1) The input to the RGTM (RGT\_Glass\_Ajar\_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0045).
- 2) The RGTM shall sample the RGT Glass Ajar Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) The RGTM shall be capable of detecting a change in value (either rising edge or falling edge ) of the RGT\_Glass\_Ajar\_Signal while the RGTM is asleep.
- 4) When the RGTM is asleep and RGT\_Glass\_Ajar\_Signal changes value, the RGTM shall temporarily awaken within 50 milliseconds and debounce RGT\_Glass\_Ajar\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the RGTM shall set RGT Glass Ajar Status to the new state and remain awake. Otherwise, the RGTM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 5) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of RGT\_Glass\_Ajar\_Signal is taken, then that sample is to be considered invalid (Software Requirement #0066). RGT\_Glass\_Ajar\_Status will not change state, and the number of consecutive samples for debounce must be restarted.
- 6) The RGTM shall set RGT\_Glass\_Ajar\_Status = CLOSED when all consecutive samples of RGT\_Glass\_Ajar\_Signal indicate a closed circuit for a time period of at least 45 ( $\pm$ 11) milliseconds (V < 2.2 volts).
- 7) The RGTM shall set RGT\_Glass\_Ajar\_Status = AJAR when all consecutive samples of RGT\_Glass\_Ajar\_Signal indicate an open circuit for a time period of at least 45 ( $\pm$ 11) milliseconds (V > 8.0 volts).
- 8) The RGTM shall set RGT\_Glass\_Ajar\_Status = AJAR upon a module reset.
- 9) If RGT\_Glass\_Ajar\_Present = NOT\_PRESENT, the RGTM shall set RGT\_Glass\_Ajar\_Status = CLOSED.

#### 2.4.10.4 Generate Rear Gate/Trunk Ajar Signal

< R: 2.4.10.4.1> The RGTM shall set RGT\_Ajar\_Signal = Ground whenever:

RGT Ajar Status = CLOSED AND RGT\_Glass\_Ajar\_Status = CLOSED.

< R: 2.4.10.4.2> The RGTM shall set RGT\_Ajar\_Signal = Open Circuit whenever:

RGT Ajar Status = AJAR $OR RGT\_Glass\_Ajar\_Status = AJAR.$ 

- < R: 2.4.10.4.3> The state of RGT\_Ajar\_Signal is independent of Local\_OpMode.
- < R: 2.4.10.4.4> The RGTM shall set RGT\_Ajar\_Signal = Open Circuit upon module reset.

#### 2.4.10.5 **Determine Rear Gate/Trunk Speed**

This strategy is supplier defined.

#### 2.4.10.6 **Handle Mechanical Overload Clutch slip**

< R: 2.4.10.6.1> Set "OLC\_slip\_detected = TRUE" when the Slip detection algorithm detects a slipping clutch.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL REVISION LEVEL: BC

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 114 of 175

### 2.4.11 Power Drive Unit

### 2.4.11.1 Drive Motor Control



Figure 56. Drive Motor Control Data Flow Diagram

| Rqmt No.      | RGT_Move<br>Rgst | RGT_Drift_<br>Control_Rqst | RGT_Motor_<br>Open Pwr | RGT_Motor_<br>Close Pwr |
|---------------|------------------|----------------------------|------------------------|-------------------------|
|               | _riqət           | Control_rigst              | Open_ Fwi              | Close_FWI               |
| R: 2.4.11.1.1 | CLOSE            | Don't Care                 | Ground *               | Vbatt                   |
| R: 2.4.11.1.2 | OPEN             | Don't Care                 | Vbatt                  | Ground *                |
| R: 2.4.11.1.3 | NULL             | NULL                       | Ground                 | Ground                  |
| R: 2.4.11.1.4 | CINCH            | Don't Care                 | Ground                 | Ground                  |
| R: 2.4.11.1.5 | NULL             | HOLD                       | TBD                    | TBD                     |
| R: 2.4.11.1.6 | NULL             | CLOSE                      | Ground *               | Vbatt                   |
| R: 2.4.11.1.7 | NULL             | OPEN                       | Vbatt                  | Ground *                |

**Table 23. Drive Motor Control Decision Table** 

< R: 2.4.11.1.8> Pulse Width Modulation is used to control the speed of the Rear Gate/Trunk. The speed of the Rear Gate/Trunk is determined by the rate of change in the Rear Gate/Trunk position as measured by the Encoder Sensors. The strategy for speed control is defined by the supplier.

< R: 2.4.11.1.9> The opening/closing operation shall complete within the time(s) specified in the Latch SDS.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 115 of 175

# 2.4.12 Latch Interface (Strattec C32P Power Cinching Latch)



Figure 58. Latch Interface Data Flow Diagram 1



Figure 59. Latch Interface Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 116 of 175

# **Strattec C32P Power Cinching Latch Operation details**

Tables 24 and 25 Assumption: Switch actuation matches Strattec Sept 24 2010 Presentation. These tables detail controller actions related to latch state, showing when to Start Cinching and Stop Cinching Motor activation.

 $1^{st}$  Claw switch: N.O. sw ,  $2^{nd}$  Claw switch: N.O. sw, Pawl switch : NC sw, 0 position Switch: N.O. switch to GND in latch as discussed in Oct 4 2010 Ford Webex meeting.

Controller switch interface: Switch pulled high inside RGTM, resulting in switch activation states shown in Tables 24 and 25 for corresponding latch states.

# Cinching and Reversing Process Strattec C32P Latch (open -> Closed -> Reversed)

| Latch<br>State<br>Number |                                     | Latch Status                                  | M2 = Cinch<br>Motor | M1 =<br>Release<br>Motor | S4 = 0<br>position<br>switch<br>(N.O.) | Detent<br>Switch | 2nd<br>Claw | S1 = 1st<br>Claw<br>Switch<br>(N.O.) |
|--------------------------|-------------------------------------|-----------------------------------------------|---------------------|--------------------------|----------------------------------------|------------------|-------------|--------------------------------------|
|                          |                                     | Open                                          | 0                   | 0                        | 0                                      | 1                | 1           | 1                                    |
| 1                        |                                     | 2 <sup>nd</sup> claw switch<br>=> switch to 0 | 0                   | 0                        | 0                                      | 1                | 0           | 1                                    |
| 2                        | Mechanical<br>Secondary<br>Position | Pawl switch<br>=> switch to 0                 | 0                   | 0                        | 0                                      | 0                | 0           | 1                                    |
| 3                        |                                     | Activate Cinch Motor                          | 1                   | 0                        | 0                                      | 0                | 0           | 1                                    |
| 4                        |                                     | 0-Position switch<br>=> switch to 1           | 1                   | 0                        | 1                                      | 0                | 0           | 1                                    |
| 5                        |                                     | Pawl switch<br>=> switch to 1                 | 1                   | 0                        | 1                                      | 1                | 0           | 1                                    |
| 6                        |                                     | 1 <sup>st</sup> claw switch<br>=> switch to 0 | 1                   | 0                        | 1                                      | 1                | 0           | 0                                    |
| 7                        | Mechanical<br>Primary<br>Position   | Pawl switch<br>=> switch to 0                 | 1                   | 0                        | 1                                      | 0                | 0           | 0                                    |
| 8                        |                                     | Stop Activate Cinch<br>Motor                  | 0                   | 0                        | 1                                      | 0                | 0           | 0                                    |
| 9                        |                                     | Activate<br>Reverse Cinch Motor               | -1                  | 0                        | 1                                      | 0                | 0           | 0                                    |
| 10                       |                                     | 0-Position switch<br>=> switch to 0           | -1                  | 0                        | 0                                      | 0                | 0           | 0                                    |
| 11                       |                                     | Stop Reverse Cinch<br>Motor                   | 0                   | 0                        | 0                                      | 0                | 0           | 0                                    |
|                          |                                     | Closed and Reversed                           | 0                   | 0                        | 0                                      | 0                | 0           | 0                                    |

Table Legend: 1/0 = Motor Activated/not Activated Status 1/0= Switch Active/Not Active

Table 24. Strattec C32P Cinching Latch Power Cinch Process.

### **Power Releasing Process Strattec C32P Latch**

(Closed -> Open)

| Latch<br>State<br>Number | Latch Status                      | Cinch |   | position<br>sw (N.O.) | S3 =<br>Detent<br>Switch<br>(N.C.) | S2 = 2 <sup>nd</sup> Claw Switch (N.O.) | S1 = 1st<br>Claw<br>Switch<br>(N.O.) | Notes                          |
|--------------------------|-----------------------------------|-------|---|-----------------------|------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------|
|                          | Latch Closed                      | 0     | 0 | 0                     | 0                                  | 0                                       | 0                                    |                                |
| 1                        | Activate Release<br>Motor         | 0     | 1 | 0                     | 0                                  | 0                                       | 0                                    |                                |
| 2                        | Pawl switch<br>=> switch to 1     | 0     | 1 | 0                     | 1                                  | 0                                       | 0                                    |                                |
| 3                        | 1st claw switch<br>=> switch to 1 | 0     | 1 | 0                     | 1                                  | 0                                       | 1                                    |                                |
| 4                        | Pawl switch<br>=> switch to 0     | 0     | 1 | 0                     | 0                                  | 0                                       | 1                                    | Release<br>Motor<br>Activation |
| 5                        | Pawl switch<br>=> switch to 1     | 0     | 1 | 0                     | 1                                  | 0                                       | 1                                    | time=<br>500msec               |
| 6                        | 2nd claw switch<br>=> switch to 1 | 0     | 1 | 0                     | 1                                  | 1                                       | 1                                    |                                |
| 7                        | Stop Activate<br>Release<br>Motor | 0     | 0 | 0                     | 1                                  | 1                                       | 1                                    |                                |
|                          | Latch Open                        | 0     | 0 | 0                     | 1                                  | 1                                       | 1                                    |                                |

Table Legend: 1/0 = Motor Activated/Not Actuated Status 1/0 Switch Active/Not Active Notes:

- Release memory lever will hold latch in open state until striker is removed, re-introduced again to latch
- No Release operation permitted while cinching

Table 25. Strattec C32P Cinching Latch Power Release Process

NOTE\_1: Table 25 shows the latch status switches transition through states from LATCH CLOSED to LATCH OPEN during power release process. A mechanical snow load memory lever HOLDS THE LATCH IN OPEN STATE FOLLOWING RELEASE MOTOR ACTUATION, until the striker is removed from the latch and re-introduced into the latch.

NOTE\_2: To Power Open, the Module has to evaluate only Pawl Switch. Primary and Secondary switches should not be used by the system in the logic to power open.

#### **2.4.12.1 Determine Latch Position**

This section applies for Strattec C32P Power Cinching Latch and for GECOM latch.

The Forkbolt\_Secondary\_Signal, Forkbolt\_Primary\_Signal, and Detent\_Switch\_Signal are wake-up inputs to the RGTM.

- 1) The RGTM shall sample the inputs Forkbolt\_Secondary\_Signal, Forkbolt\_Primary\_Signal, and Detent\_Switch\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 2) The RGTM shall sample the Forkbolt\_Secondary\_Signal, Forkbolt\_Primary\_Signal, and Detent\_Switch\_Signal with a sample period of no more than 50 milliseconds while the RGTM is asleep (Software Requirement #0056).
- 3) The RGTM shall sample each of the above signals at the same time to prevent excessive sampling error.
- 4) The RGTM shall combine the samples of each of the above signals according to the Determine Latch Position Decision Table to produce Latch\_Position\_Signal.
- 5) The input to the RGTM (Latch\_Position\_Signal) shall be debounced for between 34 and 56 milliseconds to determine Latch\_Position\_Status (Software Requirement #0045).
- 6) When the RGTM is asleep and a sample of Latch\_Position\_Signal is different than previous samples, the RGTM shall temporarily awaken and debounce Latch\_Position\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the RGTM shall set Latch\_Position\_Status to the new state and remain awake. Otherwise, the RGTM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 7) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of Latch\_Position\_Signal is taken, then that sample is to be considered ERROR (Software Requirement #0066).
- 8) The RGTM shall set Latch\_Position\_Status to the current value of Latch\_Position\_Signal when at least 5 consecutive samples of Latch Position Signal are the same.

| Rqmt No.      | Forkbolt_<br>Primary_Signal<br>(NO) | Forkbolt_<br>Secondary_Signal<br>(NO) | Detent_Switch<br>_ Signal<br>(NC) | Latch_Position_Signal |
|---------------|-------------------------------------|---------------------------------------|-----------------------------------|-----------------------|
| R: 2.4.12.1.1 | Not Active                          | Not Active                            | Active                            | BEFORE_PRIMARY        |
| R: 2.4.12.1.2 | Not Active                          | Not Active                            | Not Active                        | LATCHED (Primary)     |
| R: 2.4.12.1.3 | Not Active                          | Active                                | DON'T CARE                        | ERROR                 |
| R: 2.4.12.1.4 | Active                              | Not Active                            | Active                            | BEFORE_SECONDARY      |
| R: 2.4.12.1.5 | Active                              | Not Active                            | Not Active                        | SECONDARY             |
| R: 2.4.12.1.6 | SEE NOTE                            | SEE NOTE                              | SEE NOTE                          | UNLATCHED             |
| R: 2.4.12.1.7 | Not Active                          | Not Active                            | Active                            | OPEN                  |
| R: 2.4.12.1.8 | DON'T CARE                          | DON'T CARE                            | DON'T CARE                        | CINCHING/REVERSING    |

Table 26. Determine Latch Position Decision Table (Strattec C32P Power Cinching Latch).

NOTE: Table 25 shows the latch status switches transition through states from LATCH CLOSED to LATCH OPEN during power release process. A mechanical snow load memory lever HOLDS THE LATCH IN OPEN STATE FOLLOWING RELEASE MOTOR ACTUATION, until the striker is removed from the latch and re-introduced into the latch.

Switch activation condition -> logic level by switch type

Not Active = 0/NC 1/NO switch, Active = 1/NC 0/NO switch

FS-DP5T-14B673-BC Page 120 of 175



Figure 60. Determine RGT\_Latch\_ Status State Transition Diagram

FS-DP5T-14B673-BC Page 121 of 175

#### 2.4.12.2 **Cinch/Unlatch Motor Control (Strattec C32P cinching latch)**



Figure 61 - Cinch/Release Motor Control State Transition Diagram

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL **REVISION LEVEL: BC** 

ANIBAL SANTOYO / ASANTOY1

| Rqmt No.      | RGT_Cinch_Rqst | RGT_Cinch_Pwr | RGT_Return_Pwr |
|---------------|----------------|---------------|----------------|
| R: 2.4.12.2.1 | CINCH          | Vbatt*        | Ground         |
| R: 2.4.12.2.2 | NULL           | Ground        | Ground         |
| R: 2.4.12.2.3 | CINCH_RTN      | Ground        | Vbatt*         |

**Table 27. Cinch Motor Decision Table** 

| Rqmt No.      | Release_Motor_Rqst | RGT_Unlatch_Pwr |
|---------------|--------------------|-----------------|
| R: 2.4.12.2.4 | NULL               | Ground          |
| R: 2.4.12.2.5 | RELEASE            | Vbatt*          |

**Table 28. Release Motor Decision Table** 

< R: 2.4.12.2.6> The ground circuit may be PWM'ed to regulate the RMS voltage output to the unlatch actuator (supplier defined).

Unlatch Relax Duration is the time for the Latch Motor to be driven in the reverse direction to get to the Park position. This value must be stored in non-volatile memory.

- < R: 2.4.12.2.7> The cinching operation shall complete within the time(s) specified in the Latch SDS.
- < R: 2.4.12.2.8> During CINCH RETURN, the PWM duty shall be set such that the RMS voltage applied is equal to Cinch Return Voltage.

#### 2.4.12.3 **Determine Sector Gear Position**

Strattec C32P Latch contains a 'Zero position switch' to indicate status of latch cinching mechanism. The Zero\_Position\_Switch\_Signal and Detent\_Switch\_Signal switch states are combined with commanded RGT\_Cinch\_Pwr and RGT Return Pwr of the latch Cinch Motor to define Sector Gear Position Signal.

The Sector\_Gear\_Position\_Signal is NOT a wake-up input to the RGTM.

- 1) The RGTM shall sample the input Zero\_Position\_Switch\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) The RGTM shall sample each of the above signals at the same time to prevent excessive sampling error.
- 4) The RGTM shall assign Sector Gear Position Signal according to Determine Sector Gear Position Decision Table.
- 5) The input to the RGTM (Sector\_Gear\_Position\_Signal) shall be debounced for between 34 and 56 milliseconds to determine Latch\_Zero\_Position\_Status (Software Requirement #0045).
- 7) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of Sector\_Gear\_Position\_Signal is taken, then that sample is to be considered the same as the previous valid sample (Software Requirement #0066).
- 8) The RGTM shall set RGT Sector Gear Status to the current value of Sector Gear Position Signal when at least 5 consecutive samples of Sector Gear Position Signal are the same.

| Rqmt No.      | Detent_Switch_Si<br>gnal (NC) | Zero_Position_<br>Switch_Signal (NO) | RGT_Cinch<br>_Pwr | RGT_Retur<br>n_Pwr | Sector_Gear_P<br>osition_ Signal |
|---------------|-------------------------------|--------------------------------------|-------------------|--------------------|----------------------------------|
| R: 2.4.12.3.1 | INACTIVE                      | INACTIVE                             | Ground            | Ground             | NEUTRAL                          |
| R: 2.4.12.3.2 | ACTIVE                        | ACTIVE                               | Vbatt*            | Ground             | NOT(NEUTRAL)                     |
| R: 2.4.12.3.3 | INACTIVE                      | ACTIVE                               | Ground            | Vbatt*             | NOT(NEUTRAL)                     |

Note: Inactive = 0/NC 1/NO, Active = 1/NC 0/NO

Table 29. Determine Sector Gear Position Decision Table.

FS-DP5T-14B673-BC Page 124 of 175

# **2.4.13 Power Latch/Striker Interface** (Strattec MDD Latch/ Cinching Striker)



Figure 62. Latch Interface Data Flow Diagram 1



Figure 63. Latch Interface Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 125 of 175

#### 2.4.13.1 **Determine Latch Position (Strattec MDD latch /cinching striker)**



Figure 64. Determine Latch Position Data Flow Diagram

The RGT\_Latch\_Ajar\_Signal, is wake-up input to the RGTM.

- 1) The RGTM shall sample the RGT Latch Ajar Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0055).
- 2) The RGTM shall sample the RGT\_Latch\_Ajar\_Signal with a sample period of no more than 50 milliseconds while the RGTM is asleep (Software Requirement #0045).
- 3) The RGTM shall be capable of detecting a change in value (either rising edge or falling edge ) of the RGT Latch Ajar Signal while the RGTM is asleep...
- 5) The Latch status input to the RGTM (RGT\_Latch\_Ajar\_Signal) shall be debounced for between 34 and 56 milliseconds to determine RGT Latch Ajar Status (Software Requirement #0056).
- 6) When the RGTM is asleep and a sample of RGT\_Latch\_Ajar\_Signal is different than previous samples, the RGTM shall temporarily awaken and debounce RGT\_Latch\_Ajar\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the RGTM shall set RGT Latch Ajar Signal to the new state and remain awake. Otherwise, the RGTM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 7) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of RGT\_Latch\_Ajar\_Signal is taken, then that sample is to be considered no change from last sample (Software Requirement #0066).
- 8) The RGTM shall set RGT\_Latch\_Status to the current value of RGT\_Latch\_Ajar\_Signal when at least 5 consecutive samples of RGT\_Latch\_Ajar\_Signal are the same.
- 9) The RGTM shall set RGT Latch Status = LATCHED when all consecutive samples of RGT Latch Ajar Signal indicate a closed circuit for a time period of at least 45 (+/- 11) milliseconds.
- 10) The RGTM shall set RGT\_Latch\_Status = UNLATCHED when all consecutive samples of RGT\_Latch\_Ajar\_Signal indicate an open circuit for a time period of at least 45 (+/- 11) milliseconds.
- 11) The RGTM shall set RGT Latch Status = UNKNOWN upon a module reset.
- 12) The RGTM shall set RGT\_Latch\_Status = UNKNOWN whenever VbattState[Digital Inputs] <> NORM\_V

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL REVISION LEVEL: BC

ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 126 of 175

### 2.4.13.2 Determine Striker Position(Strattec MDD latch /cinching striker)



Figure 65. Determine Striker Position Data Flow Diagram

### 2.4.13.2.1 RGT Striker Up Switch

The RGT\_Striker\_Up\_Signal is NOT a wakeup input to the RGTM.

- 1) The input to the RGTM (RGT\_Striker\_Up\_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0056).
- 2) The RGTM shall sample the RGT\_Striker\_Up\_Signal with a sample period of no more than 11 milliseconds while the PDLM is awake (Software Requirement #0044).
- 3) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of RGT\_Striker\_Up\_Signal is taken, then that sample is to be considered open circuit (Software Requirement #0066).
- 4) The RGTM shall set RGT\_Striker\_Up\_Status = UP when all consecutive samples of RGT\_Striker\_Up\_Signal indicate a closed circuit for a time period of at least 45 (+/- 11) milliseconds.
- 5) The RGTM shall set RGT\_Striker\_Up\_Status = NOT\_UP when all consecutive samples of PDL\_Striker\_Up\_Signal indicate an open circuit for a time period of at least 45 (+/- 11) milliseconds.
- 6) The RGTM shall set RGT Striker Up Status = NOT UP upon a module reset.

#### 2.4.13.2.2 RGT Striker Down Switch

The RGT\_Striker\_Down\_Signal is NOT a wakeup input to the RGTM.

- 1) The input to the RGTM (RGT\_Striker\_Down\_Signal) shall be debounced for between 34 and 56 milliseconds (Software Requirement #0045).
- 2) The PDLM shall sample the RGT\_Striker\_Down\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake (Software Requirement #0044).
- 3) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of RGT\_Striker\_Down\_Signal is taken, then that sample is to be considered open circuit (Software Requirement #0066).
- 4) The RGTM shall set RGT\_Striker\_Down\_Status = DOWN when all consecutive samples of RGT\_Striker\_Down\_Signal indicate an open circuit for a time period of at least 45 (+/- 11) milliseconds.
- 5) The RGTM shall set RGT\_Striker\_Down\_Status = NOT\_DOWN when all consecutive samples of PDL\_Striker\_Down\_Signal indicate an closed circuit for a time period of at least 45 (+/- 11) milliseconds.
- 6) The RGTM shall set RGT\_Striker\_Down\_Status = NOT\_DOWN upon a module reset.

### **2.4.13.2.3** Striker Status

| Rqmt No.        | RGT_Striker_Up<br>_Status | RGT_Striker_Do<br>wn_Status | RGT_Striker_S tatus |
|-----------------|---------------------------|-----------------------------|---------------------|
| R: 2.4.13.2.3.1 | UP                        | NOT_DOWN                    | UP                  |
| R: 2.4.13.2.3.2 | NOT_UP                    | NOT_DOWN                    | MID                 |
| R: 2.4.13.2.3.3 | UP                        | DOWN                        | MID                 |
| R: 2.4.13.2.3.4 | NOT_UP                    | DOWN                        | DOWN                |

**Table 30. Striker Status Decision Table** 

FS-DP5T-14B673-BC Page 128 of 175

#### 2.4.13.3 **Cinch Motor Control (Strattec MDD latch /cinching striker)**



Figure 66 - Cinch/Uncinch Motor Control Data Flow Diagram

| Rqmt No.      | Cinch<br>Mechanism | RGT_Cinch_Rqst | RGT_Cinch_Pwr | RGT_Return_Pwr |
|---------------|--------------------|----------------|---------------|----------------|
| R: 2.4.13.3.1 | Striker            | CINCH          | Vbatt         | Ground         |
| R: 2.4.13.3.2 | Striker            | RAISE          | Ground        | Vbatt          |
| R: 2.4.13.3.3 | Striker            | NULL           | Ground        | Ground         |
| R: 2.4.13.3.4 | Latch              | Don't Care     | Ground        | Ground         |

Table 31. Cinch Motor Decision Table.

- < R: 2.4.13.3.5> The ground circuit may be PWM'ed to regulate the RMS voltage output to the unlatch actuator (supplier defined).
- < R: 2.4.13.3.6> The cinching operation shall complete within the time(s) specified in the Latch SDS.
- < R: 2.4.13.3.7> During CINCH\_RETURN, the PWM rate shall be set such that the RMS voltage applied is equal to Cinch Return Voltage.

FS-DP5T-14B673-BC Page 129 of 175

# 2.4.13.3.1 Release Solenoid Control (Strattec MDD latch /cinching striker)



Fig 67 Release Solenoid Dataflow Diagram

| Rqmt No.        | Cinch<br>Mechanism | RGT_Unlatch_Rqst | RGT_Unlatch_Pwr |
|-----------------|--------------------|------------------|-----------------|
| R: 2.4.13.3.1.1 | Striker            | UNLATCH          | Vbatt           |
| R: 2.4.13.3.1.2 | Striker            | NULL             | Open Circuit    |
| R: 2.4.13.3.1.3 | Latch              | Don't Care       | Open Circuit    |

**Table 32 Release Solenoid Decision Table** 

FS-DP5T-14B673-BC Page 130 of 175

# 2.4.14 Battery Voltage Monitor



Figure 68. Battery Voltage Monitor Data Flow Diagram

Each defined *Voltage Range* must be evaluated using this state machine.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

Current Rqmt No. **Event** Action **Next State** State Power-up or Reset  $VbattState[I] = HI_V$ R: 2.4.14.1 HI VOLT Any & VBattRaw > Vmax\_Cfg[I] Mark event EXIT\_NORM[I] VbattState[I] = LO\_V Mark event EXIT\_NORM[I] Power-up or Reset R: 2.4.14.2 LO\_VOLT Any & VBattRaw < Vmin\_Cfg[I] Power-up or Reset R: 2.4.14.3 & VBattRaw ≤ Vmax\_Cfg[I] VbattState[I] = NORM V NORM VOLT Any & VBattRaw ≥ Vmin\_Cfg[I] VbattState[I] = HI\_V R: 2.4.14.4 NORM\_VOLT HI\_VOLT VBattRaw > Vmax\_Cfg[I] Mark event EXIT NORM[I] VbattState[I] = LO\_V R: 2.4.14.5 LO\_VOLT VBattRaw < Vmin\_Cfg[I] Mark event EXIT NORM[I] WAIT NORM Mark event R: 2.4.14.6 HI\_VOLT  $VBattRaw \leq Vmax\_Cfg[I]$ ENTER\_NORM[I] FROM HI Time since event EXIT NORM[I] >= R: 2.4.14.7 VbattState[I] = OVER\_V OVER\_VOLT HiOvrTime\_Cfg[I] WAIT NORM R: 2.4.14.8 VBattRaw > Vmax\_Cfg[I] HI\_VOLT (no action) FROM HI Time since event ENTER\_NORM[I] = R: 2.4.14.9 VbattState[I] = NORM\_V NORM\_VOLT HiTime\_Cfg[I] WAIT NORM Mark event R: 2.4.14.10 LO\_VOLT  $VBattRaw \ge Vmin\_Cfg[I]$ ENTER NORM[I] FROM LO Time since event EXIT NORM[I] >= R: 2.4.14.11 VbattState[I] = UNDER\_V UNDER\_VOLT LoOvrTime\_Cfg[I] WAIT NORM R: 2.4.14.12 VBattRaw < Vmin Cfg[I] (no action) LO VOLT FROM LO Time since event ENTER NORM[I] = R: 2.4.14.13 VbattState[I] = NORM V NORM VOLT LoTime\_Cfg[I] Mark event ENTER\_NORM[I] WAIT NORM R: 2.4.14.14 OVER\_VOLT VBattRaw ≤ Vmax Cfg[I] FROM OVER WAIT NORM R: 2.4.14.15 VBattRaw > Vmax Cfg[I] (no action) OVER VOLT FROM OVER Time since event ENTER\_NORM[I] = R: 2.4.14.16 VbattState[I] = NORM V NORM VOLT HiRecovTime\_Cfg[I] WAIT NORM Mark event R: 2.4.14.17 UNDER\_VOLT VBattRaw ≥ Vmin\_Cfg[I] ENTER\_NORM[I] FROM UNDER WAIT NORM R: 2.4.14.18 VBattRaw < Vmin\_Cfg[I] (no action) UNDER\_VOLT FROM UNDER Time since event ENTER\_NORM[I] = R: 2.4.14.19 VbattState[I] = NORM\_V NORM\_VOLT LoRecovTime\_Cfg[I]

Page 131 of 175

### Table 33 - Finite State Machine for Vbatt Monitor

< R: 2.4.14.20> The RGTM shall sample Logic\_VBattRaw and Power\_VBattRaw with a sample period of no more than 5 milliseconds while the RGTM is awake (Software Requirement #0066).

# 2.4.14.1 Defined Voltage Ranges

### 2.4.14.1.1 MS CAN Interface

This Voltage Range uses Logic\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.        | Dataflow/Other              | Value                                                               | Description                           |
|-----------------|-----------------------------|---------------------------------------------------------------------|---------------------------------------|
| R: 2.4.14.1.1.1 | Vmin_Cfg[Vrange_CAN]        | 8.0 volts                                                           | Minimum voltage for operating MS CAN. |
| R: 2.4.14.1.1.2 | Vmax_Cfg[Vrange_CAN]        | 16.0 volts                                                          | Maximum voltage for operating MS CAN. |
| R: 2.4.14.1.1.3 | LoTime_Cfg[Vrange_CAN]      | 15 <i>m</i> sec                                                     | Recovery time to NORM_V from LO_V     |
| R: 2.4.14.1.1.4 | HiTime_Cfg[Vrange_CAN]      | 15 <i>m</i> sec                                                     | Recovery time to NORM_V from HI_V     |
| R: 2.4.14.1.1.5 | LoOvrTime_Cfg[Vrange_CAN]   | 20 <i>m</i> sec                                                     | LO_V too long, enter UNDER_V          |
| R: 2.4.14.1.1.6 | HiOvrTime_Cfg[Vrange_CAN]   | 160 <i>m</i> sec                                                    | HI_V too long, enter OVER_V           |
| R: 2.4.14.1.1.7 | LoRecovTime_Cfg[Vrange_CAN] | 200 <i>m</i> sec                                                    | Recovery time to NORM_V from UNDER_V  |
| R: 2.4.14.1.1.8 | HiRecovTime_Cfg[Vrange_CAN] | ovTime_Cfg[Vrange_CAN] 200 msec Recovery time to NORM_V from OVER_\ |                                       |

Table 34 – Voltage Range Configuration for MS CAN

# **2.4.14.1.2 DTC Logging**

This Voltage Range uses Logic\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.                                    | Dataflow/Other                          | Value              | Description                          |
|---------------------------------------------|-----------------------------------------|--------------------|--------------------------------------|
|                                             |                                         |                    |                                      |
| R: 2.4.14.1.2.1                             | Vmin_Cfg[Vrange_DTC]                    | 9.5 volts          | Minimum voltage for DTC reporting    |
| R: 2.4.14.1.2.2                             | R: 2.4.14.1.2.2 Vmax_Cfg[Vrange_DTC] 16 |                    | Maximum voltage for DTC reporting    |
| R: 2.4.14.1.2.3                             | LoTime_Cfg[Vrange_DTC]                  | 15 <i>m</i> sec    | Recovery time to NORM_V from LO_V    |
| R: 2.4.14.1.2.4                             | HiTime_Cfg[Vrange_DTC]                  | 15 <i>m</i> sec    | Recovery time to NORM_V from HI_V    |
| R: 2.4.14.1.2.5                             | LoOvrTime_Cfg[Vrange_DTC]               | 5 msec             | LO_V too long, enter UNDER_V         |
| R: 2.4.14.1.2.6                             | HiOvrTime_Cfg[Vrange_DTC]               | 5 msec             | HI_V too long, enter OVER_V          |
| R: 2.4.14.1.2.7 LoRecovTime_Cfg[Vrange_DTC] |                                         | 2,000 <i>m</i> sec | Recovery time to NORM_V from UNDER_V |
| R: 2.4.14.1.2.8 HiRecovTime_Cfg[Vrange_DTC] |                                         | 2,000 <i>m</i> sec | Recovery time to NORM_V from OVER_V  |

Table 35 – Voltage Range Configuration for DTC Logging

Note: This voltage range applies to all DTCs except battery voltage out of range DTCs.

# **2.4.14.1.3 Motor Outputs**

This Voltage Range uses Power\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.                                                      | Rqmt No. Dataflow/Other                                    |                                     | Description                                 |
|---------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|---------------------------------------------|
|                                                               |                                                            |                                     |                                             |
| R: 2.4.14.1.3.1                                               | Vmin_Cfg[Outputs_Inhibit]                                  | 9.5 volts                           | Minimum voltage for operating motor outputs |
| R: 2.4.14.1.3.2                                               | Vmax_Cfg[Outputs_Inhibit]                                  | 16 volts                            | Maximum voltage for operating motor outputs |
| R: 2.4.14.1.3.3                                               | .14.1.3.3 LoTime_Cfg[Outputs_Inhibit] 15 msec              |                                     | Recovery time to NORM_V from LO_V           |
| R: 2.4.14.1.3.4                                               | 2.4.14.1.3.4 HiTime Cfg[Outputs Inhibit] 15 msec           |                                     | Recovery time to NORM_V from HI_V           |
| R: 2.4.14.1.3.5                                               | LoOvrTime_Cfg[Outputs_Inhibit]                             | Motor_InRush_Time msec              | LO_V too long, enter UNDER_V                |
| R: 2.4.14.1.3.6                                               | HiOvrTime_Cfg[Outputs_Inhibit]                             | Motor_EMF_Time msec                 | HI_V too long, enter OVER_V                 |
| R: 2.4.14.1.3.7                                               | R: 2.4.14.1.3.7 LoRecovTime_Cfg[Outputs_Inhibit] 1000 msec |                                     | Recovery time to NORM_V from UNDER_V        |
| R: 2.4.14.1.3.8 HiRecovTime_Cfg[Outputs_Inhibit] 1000 msec Re |                                                            | Recovery time to NORM_V from OVER_V |                                             |

Table 36 – Voltage Range Configuration for Motor Outputs – Inhibit Operation

This Voltage Range uses Power\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.         | Rqmt No. Dataflow/Other V                              |                                               | Description                                 |
|------------------|--------------------------------------------------------|-----------------------------------------------|---------------------------------------------|
| R: 2.4.14.1.3.9  | .3.9 Vmin_Cfg[Outputs_Abort] Motor_Abort_Voltage volts |                                               | Minimum voltage for operating motor outputs |
| R: 2.4.14.1.3.10 | Vmax_Cfg[Outputs_ Abort]                               | 16 volts                                      | Maximum voltage for operating motor outputs |
| R: 2.4.14.1.3.11 | LoTime_Cfg[Outputs_ Abort]                             | 15 <i>m</i> sec                               | Recovery time to NORM_V from LO_V           |
| R: 2.4.14.1.3.12 | HiTime_Cfg[Outputs_ Abort]                             | 15 <i>m</i> sec                               | Recovery time to NORM_V from HI_V           |
| R: 2.4.14.1.3.13 | LoOvrTime_Cfg[Outputs_ Abort]                          | Motor_InRush_Time<br>msec                     | LO_V too long, enter UNDER_V                |
| R: 2.4.14.1.3.14 | HiOvrTime_Cfg[Outputs_ Abort]                          | Motor_EMF_Time msec                           | HI_V too long, enter OVER_V                 |
| R: 2.4.14.1.3.15 | LoRecovTime_Cfg[Outputs_ Abort]                        | rt] 1000 msec Recovery time to NORM_V from UN |                                             |
| R: 2.4.14.1.3.16 | HiRecovTime_Cfg[Outputs_ Abort]                        | 1000 <i>m</i> sec                             | Recovery time to NORM_V from OVER_V         |

Table 37 - Voltage Range Configuration for Motor Outputs - Abort Operation

# **2.4.14.1.4 Digital Inputs**

This Voltage Range uses Logic\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.        | Dataflow/Other                  | Value             | Description                                             |
|-----------------|---------------------------------|-------------------|---------------------------------------------------------|
| R: 2.4.14.1.4.1 | Vmin_Cfg[Digital Inputs]        | 8volts            | Minimum voltage for reading digital inputs              |
| R: 2.4.14.1.4.2 | Vmax_Cfg[Digital Inputs]        | 16 volts          | Maximum voltage for reading digital inputs              |
| R: 2.4.14.1.4.3 | LoTime_Cfg[Digital Inputs]      | 5 msec            | Recovery time to NORM_V from LO_V                       |
| R: 2.4.14.1.4.4 | HiTime_Cfg[Digital Inputs]      | 5 msec            | Recovery time to NORM_V from HI_V                       |
| R: 2.4.14.1.4.5 | LoOvrTime_Cfg[Digital Inputs]   | 15 <i>m</i> sec   | LO_V too long, enter UNDER_V (Keep less than debounce.) |
| R: 2.4.14.1.4.6 | HiOvrTime_Cfg[Digital Inputs]   | 15 <i>m</i> sec   | HI_V too long, enter OVER_V (Keep less than debounce.)  |
| R: 2.4.14.1.4.7 | LoRecovTime_Cfg[Digital Inputs] | 1000 <i>m</i> sec | Recovery time to NORM_V from UNDER_V                    |
| R: 2.4.14.1.4.8 | HiRecovTime_Cfg[Digital Inputs] | 1000 <i>m</i> sec | Recovery time to NORM_V from OVER_V                     |

Table 38 - Voltage Range Configuration for Motor Outputs - Inhibit Operation

### 2.4.14.1.5 Encoder

This Voltage Range uses Logic\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.        | Dataflow/Other           | Value                           | Description                          |
|-----------------|--------------------------|---------------------------------|--------------------------------------|
| R: 2.4.14.1.5.1 | Vmin_Cfg[Encoder]        | Encoder_Reference_Voltage volts | Minimum voltage for reading encoder  |
| R: 2.4.14.1.5.2 | Vmax_Cfg[Encoder]        | 16 volts                        | Maximum voltage for reading encoder  |
| R: 2.4.14.1.5.3 | LoTime_Cfg[Encoder]      | 5 msec                          | Recovery time to NORM_V from LO_V    |
| R: 2.4.14.1.5.4 | HiTime_Cfg[Encoder]      | 5 msec                          | Recovery time to NORM_V from HI_V    |
| R: 2.4.14.1.5.5 | LoOvrTime_Cfg[Encoder]   | 15 <i>m</i> sec                 | LO_V too long, enter UNDER_V         |
| R: 2.4.14.1.5.6 | HiOvrTime_Cfg[Encoder]   | 15 <i>m</i> sec                 | HI_V too long, enter OVER_V          |
| R: 2.4.14.1.5.7 | LoRecovTime_Cfg[Encoder] | 1000 <i>m</i> sec               | Recovery time to NORM_V from UNDER_V |
| R: 2.4.14.1.5.8 | HiRecovTime_Cfg[Encoder] | 1000 <i>m</i> sec               | Recovery time to NORM_V from OVER_V  |

Table 39 - Voltage Range Configuration for Motor Outputs - Inhibit Operation

# **2.4.14.1.6** Pinch Strip

This Voltage Range uses Logic\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.                                     | Rqmt No. Dataflow/Other                     |                   | Description                             |
|----------------------------------------------|---------------------------------------------|-------------------|-----------------------------------------|
| R: 2.4.14.1.6.1                              | R: 2.4.14.1.6.1 Vmin_Cfg[Pinch Strip]       |                   | Minimum voltage for reading pinch strip |
| R: 2.4.14.1.6.2                              | R: 2.4.14.1.6.2 Vmax_Cfg[Pinch Strip] 16 vo |                   | Maximum voltage for reading pinch strip |
| R: 2.4.14.1.6.3                              | LoTime_Cfg[Pinch Strip]                     | 5 msec            | Recovery time to NORM_V from LO_V       |
| R: 2.4.14.1.6.4                              | HiTime_Cfg[Pinch Strip]                     | 5 msec            | Recovery time to NORM_V from HI_V       |
| R: 2.4.14.1.6.5                              | LoOvrTime_Cfg[Pinch Strip]                  | 15 <i>m</i> sec   | LO_V too long, enter UNDER_V            |
| R: 2.4.14.1.6.6                              | R: 2.4.14.1.6.6 HiOvrTime_Cfg[Pinch Strip]  |                   | HI_V too long, enter OVER_V             |
| R: 2.4.14.1.6.7                              | LoRecovTime_Cfg[Pinch Strip]                | 1000 <i>m</i> sec | Recovery time to NORM_V from UNDER_V    |
| R: 2.4.14.1.6.8 HiRecovTime_Cfg[Pinch Strip] |                                             | 1000 <i>m</i> sec | Recovery time to NORM_V from OVER_V     |

Table 40 – Voltage Range Configuration for Motor Outputs – Inhibit Operation

### **2.4.14.1.7** Power Rear Gate/Trunk Feature

VbattState[RGT] is determined by combining the VbattState[Outputs\_Inhibit] and VbattState[Outputs\_Abort] and VbattState[Digital Inputs] and VbattState[Encoder] and VbattState[Pinch Strip]:

| Rqmt. No         | VbattState<br>[Outputs_<br>Abort] | VbattState<br>[Outputs_Inhibit] | VbattState [Digital Inputs] | VbattState<br>[Encoder] | VbattState<br>[Pinch Strip] | VbattState<br>[RGT] |
|------------------|-----------------------------------|---------------------------------|-----------------------------|-------------------------|-----------------------------|---------------------|
| R: 2.4.14.1.7.1  | UNDER_V                           | Don't Care                      | Don't Care                  | Don't Care              | Don't Care                  | ABORT_V             |
| R: 2.4.14.1.7.2  | NORM_V                            | UNDER_V   OVER_V                | UNDER_V   OVER_V            | Don't Care              | Don't Care                  | ABORT_V             |
| R: 2.4.14.1.7.3  | NORM_V                            | UNDER_V   OVER_V                | NORM_V   HI_V   LO_V        | UNDER_V  <br>OVER_V     | Don't Care                  | ABORT_V             |
| R: 2.4.14.1.7.4  | NORM_V                            | UNDER_V   OVER_V                | NORM_V   HI_V   LO_V        | NORM_V   HI_V  <br>LO_V | UNDER_V  <br>OVER_V         | ABORT_V             |
| R: 2.4.14.1.7.5  | NORM_V                            | UNDER_V   OVER_V                | NORM_V   HI_V   LO_V        | NORM_V   HI_V  <br>LO_V | NORM_V   HI_V  <br>LO_V     | INHIBIT_V           |
| R: 2.4.14.1.7.6  | NORM_V                            | NORM_V   HI_V   LO_V            | UNDER_V   OVER_V            | Don't Care              | Don't Care                  | ABORT_V             |
| R: 2.4.14.1.7.7  | NORM_V                            | NORM_V HI_V LO_V                | NORM_V   HI_V   LO_V        | UNDER_V  <br>OVER_V     | Don't Care                  | ABORT_V             |
| R: 2.4.14.1.7.8  | NORM_V                            | NORM_V HI_V LO_V                | NORM_V   HI_V   LO_V        | NORM_V   HI_V  <br>LO_V | UNDER_V  <br>OVER_V         | ABORT_V             |
| R: 2.4.14.1.7.9  | NORM_V                            | NORM_V HI_V LO_V                | NORM_V   HI_V   LO_V        | NORM_V   HI_V  <br>LO_V | NORM_V   HI_V  <br>LO_V     | NORM_V              |
| R: 2.4.14.1.7.10 | OVER_V                            | Don't Care                      | Don't Care                  | Don't Care              | Don't Care                  | ABORT_V             |

**Table 41 - Determine VbattState[RGT]** 

FS-DP5T-14B673-BC Page 136 of 175

### 2.4.14.1.8 Chime

This Voltage Range uses Logic\_VBattRaw as VBattRaw in the state machine.

| Rqmt No.                                                                 | Rqmt No. Dataflow/Other                      |                                     | Description                          |
|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|--------------------------------------|
| R: 2.4.14.1.8.1                                                          | Vmin_Cfg[RGT Chime]                          | 8volts                              | Minimum voltage for operating chime  |
| R: 2.4.14.1.8.2                                                          | R: 2.4.14.1.8.2 Vmax Cfg[RGT Chime] 16 volts |                                     | Maximum voltage for operating chime  |
| R: 2.4.14.1.8.3                                                          | R: 2.4.14.1.8.3 LoTime_Cfg[RGT Chime]        |                                     | Recovery time to NORM_V from LO_V    |
| R: 2.4.14.1.8.4                                                          | HiTime_Cfg[RGT Chime]                        | 5 msec                              | Recovery time to NORM_V from HI_V    |
| R: 2.4.14.1.8.5                                                          | R: 2.4.14.1.8.5 LoOvrTime_Cfg[RGT Chime] 1   |                                     | LO_V too long, enter UNDER_V         |
| R: 2.4.14.1.8.6                                                          | R: 2.4.14.1.8.6 HiOvrTime_Cfg[RGT Chime] 15  |                                     | HI_V too long, enter OVER_V          |
| R: 2.4.14.1.8.7 LoRecovTime_Cfg[RGT Chime]                               |                                              | 1000 <i>m</i> sec                   | Recovery time to NORM_V from UNDER_V |
| R: 2.4.14.1.8.8 HiRecovTime_Cfg[RGT Chime] 1000 msec Recovery time to No |                                              | Recovery time to NORM_V from OVER_V |                                      |

Table 42 - Voltage Range Configuration for Motor Outputs - Inhibit Operation

# 2.4.15 Determine Ignition Status



Figure 69. Determine Ignition Position Data Flow Diagram 1



Figure 70. Determine Ignition Position Data Flow Diagram 2 (Decomposed)

FS-DP5T-14B673-BC Page 137 of 175



Figure 71. Receive MSCAN Ignition Message State Transition Diagram

| CAN<br>ID | CAN Message          | Signal          | Detailed<br>Meaning | State<br>Encoded | Ignition_Switch_<br>Position_Signal |
|-----------|----------------------|-----------------|---------------------|------------------|-------------------------------------|
|           |                      |                 | Unknown             | 0x0              | UNKNOWN                             |
|           | 0x3B3 BodyInfo_3_MS1 | Ignition_Status | Off                 | 0x1              | OFF                                 |
| 0v2B2     |                      |                 | Accessory           | 0x2              | ACC                                 |
| UXSBS     |                      |                 | Run                 | 0x4              | RUN                                 |
|           |                      |                 | Start               | 8x0              | START                               |
|           |                      |                 | Invalid             | 0xF              | INVALID                             |

Table 43. Source for Ignition\_Switch\_Position\_Signal.

FS-DP5T-14B673-BC Page 138 of 175

# 2.4.16 Determine Engine Start Stop Status

The Start/Stop feature shall be enabled upon the Start\_Stop\_Present configuration.

The following directions should be followed to Stop/Start systems from North America and Europe programs:

### North America Market:

The Override timer (Pending\_Rq\_Time\_CFG) for the Liftgate delay should be set to 2 secs

#### EU Market:

The Override timer (Pending\_Rq\_Time\_CFG) for the Liftgate delay should be set to 0 secs For Europe, Power liftgate should be activated if Stop in Neutral + Stop in Park.



Figure 72 Determine Engine Start Stop Status Data Flow Diagram



Figure 73 Determine Engine Start Stop Status Data Flow Diagram (Decomposed)

FS-DP5T-14B673-BC Page 139 of 175



Figure 74. Determine Engine Start Stop Status Transition Diagram

| Rqmt No.    | Pending_Rq_Time_CFG                 | Start_Stop_Pending_Timer_<br>Status |
|-------------|-------------------------------------|-------------------------------------|
| R: 2.4.16.1 | Pending_move < Pending_Rq_Time_CFG  | NOT_EXPIRED                         |
| R: 2.4.16.2 | Pending_move >= Pending_Rq_Time_CFG | EXPIRED                             |

Table 44. Decision Table for Start\_Stop\_Pending\_Timer\_Status

| Rqmt No.     | PwPckTq_D_Stat    | EIPw_D_Stat                                     | PowerPackState  | PwPckRGTLockout _Status |
|--------------|-------------------|-------------------------------------------------|-----------------|-------------------------|
| R: 2.4.16.3  | OFF_NO_TQ         | Don't Care                                      | OFF             | ALLOWED                 |
| R: 2.4.16.4  | START_IN_PROGRESS | Don't Care                                      | STARTING        | NOT_ALLOWED             |
| R: 2.4.16.5  | ON_NO_TQ          | Don't Care                                      | REMOTE_STARTING | ALLOWED                 |
| R: 2.4.16.6  | ON_TQ_AVAILABLE   | SUPPORTED                                       | RUNNING         | ALLOWED                 |
| R: 2.4.16.7  | ON_TQ_AVAILABLE   | NOT_SUPPORTED                                   | AUTOSTOP        | NOT_ALLOWED             |
| R: 2.4.16.8  | ON_TQ_AVAILABLE   | IMMINENT                                        | AUTOSHUTDOWN    | NOT_ALLOWED             |
| R: 2.4.16.9  | ON_TQ_AVAILABLE   | EVENT_IN_PROGRESS                               | AUTOSTART       | NOT_ALLOWED             |
| R: 2.4.16.10 | ON_TQ_AVAILABLE   | FAULT   NOT_USED1  <br>NOT_USED2  <br>NOT_USED3 | RUNNING         | ALLOWED                 |

Table 45. Decision Table for PwPckRGTLockout\_Status

| CAN<br>ID | CAN Message     | Signal         | Detailed Meaning         | State<br>Encoded | PwPckTq_D_Stat    |
|-----------|-----------------|----------------|--------------------------|------------------|-------------------|
|           |                 |                | PwPckOff_TqNotAvailable  | 0x0              | OFF_NO_TQ         |
| 0x167     | VehicleOperatin | PwPckTq_D_Stat | PwPckOn_TqNotAvailable   | 0x1              | ON_NO_TQ          |
| 0.007     | gModes_MS1      | FWFCKIQ_D_Stat | StartInPrgrss_TqNotAvail | 0x0              | START_IN_PROGRESS |
|           |                 |                | PwPckOn_TqAvailable      | 0x1              | ON_TQ_AVAILABLE   |

Table 46. Source for PwPckTq\_D\_Stat

| CAN<br>ID | CAN Message                   | Signal      | Detailed Meaning       | State<br>Encoded | EIPw_D_Stat       |
|-----------|-------------------------------|-------------|------------------------|------------------|-------------------|
| 0x167     | VehicleOperating<br>Modes_MS1 | EIPw_D_Stat | Not_Supported          | 0x0              | NOT_SUPPORTED     |
|           |                               |             | Supported              | 0x1              | SUPPORTED         |
|           |                               |             | Not_Supported_Imminent | 0x2              | IMMINENT          |
|           |                               |             | LV_Event_In_Progress   | 0x3              | EVENT_IN_PROGRESS |
|           |                               |             | Fault_Limited          | 0x4              | FAULT             |
|           |                               |             | NotUsed_1              | 0x5              | NOT_USED1         |
|           |                               |             | NotUsed_2              | 0x6              | NOT_USED2         |
|           |                               |             | NotUsed_3              | 0x7              | NOT_USED3         |

Table 47. Source for ElPw\_D\_Stat

| Rqmt No.     | PwPckRGTLocko<br>ut_Status | Front_RGT<br>_Rqst | Local_RGT_<br>Rqst | Pending_RGT_Rqst |
|--------------|----------------------------|--------------------|--------------------|------------------|
| R: 2.4.16.11 | NOT_ALLOWED                | INACTIVE           | INACTIVE           | INACTIVE         |
| R: 2.4.16.12 | NOT_ALLOWED                | ACTIVE             | INACTIVE           | ACTIVE           |
| R: 2.4.16.13 | NOT_ALLOWED                | INACTIVE           | ACTIVE             | ACTIVE           |
| R: 2.4.16.14 | NOT_ALLOWED                | INACTIVE           | UNLATCH            | UNLATCH          |
| R: 2.4.16.15 | NOT_ALLOWED                | ACTIVE             | ACTIVE             | INACTIVE         |
| R: 2.4.16.16 | ALLOWED                    | Don't Care         | Don't Care         | INACTIVE         |

Table 48. Decision Table for Pending\_RGT\_Rqst

# 2.4.17 Manual Liftgate / Power Cinch Module.

The Manual Liftgate/Power Cinch Feature automatically releases/latches the liftgate.

### **Close operation**

The power cinch should operate when the liftgate is manually closed to the secondary latch position, then the cinch motor drives the liftgate to the primary latch position.

**Lockout** – Default value = Not\_Locked for Manual Gate Systems.

**Inhibit** – Default value = Not\_Inhibit for Manual Gate System

Drift Control - Not Applicable for Manual Gate System since no motor is used to power open/close the liftgate.

### **Operating Voltage Range**

Except as noted above, the voltage system must operate is as defined in SDS requirement EL-0058.

**Programmable Stop (Option L1) -** Not Applicable for Manual Gate System since no motor is used to power open/close the liftgate.

### **2.4.17.1** Determine Latch position (GECOM latch)

The Forkbolt\_Secondary\_Signal, Forkbolt\_Primary\_Signal, and Detent\_Switch\_Signal are wake-up inputs to the PLGM.

- 1) The PLGM shall sample the inputs Forkbolt\_Secondary\_Signal, Forkbolt\_Primary\_Signal, and Detent\_Switch\_Signal with a sample period of no more than 11 milliseconds while the PLGM is awake (Software Requirement #0044).
- 2) The PLGM shall sample the Forkbolt\_Secondary\_Signal, Forkbolt\_Primary\_Signal, and Detent\_Switch\_Signal with a sample period of no more than 50 milliseconds while the PLGM is asleep (Software Requirement #0056).
- 3) The PLGM shall sample each of the above signals at the same time to prevent excessive sampling error.
- 4) The PLGM shall combine the samples of each of the above signals according to the Determine Latch Position Decision Table to produce Latch\_Position\_Signal.
- 5) The input to the PLGM (Latch\_Position\_Signal) shall be debounced for between 34 and 56 milliseconds to determine Latch\_Position\_Status (Software Requirement #0045).
- 6) When the PLGM is asleep and a sample of Latch\_Position\_Signal is different than previous samples, the PLGM shall temporarily awaken and debounce Latch\_Position\_Signal with the awake sample period (max 11 milliseconds). If the debounced signal verifies a change of state, the PLGM shall set Latch\_Position\_Status to the new state and remain awake. Otherwise, the PLGM shall return to the sleep mode within 2 minutes (Software Requirement #0055).
- 7) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of Latch\_Position\_Signal is taken, then that sample is to be considered ERROR (Software Requirement #0066).
- 8) The PLGM shall set Latch\_Position\_Status to the current value of Latch\_Position\_Signal when at least 5 consecutive samples of Latch\_Position\_Signal are the same.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

| Req#       | Forkbolt_<br>Primary_Signal | Forkbolt_<br>Secondary_Signal | Detent_Switch_<br>Signal | Latch_Position_Signal |
|------------|-----------------------------|-------------------------------|--------------------------|-----------------------|
| 2.4.17.1.1 | INACTIVE                    | INACTIVE                      | INACTIVE                 | BEFORE_PRIMARY        |
| 2.4.17.1.2 | INACTIVE                    | INACTIVE                      | ACTIVE                   | LATCHED               |
| 2.4.17.1.3 | INACTIVE                    | ACTIVE                        | INACTIVE                 | ERROR                 |
| 2.4.17.1.4 | INACTIVE                    | ACTIVE                        | ACTIVE                   | ERROR                 |
| 2.4.17.1.5 | ACTIVE                      | INACTIVE                      | INACTIVE                 | BEFORE_SECONDARY      |
| 2.4.17.1.6 | ACTIVE                      | INACTIVE                      | ACTIVE                   | SECONDARY             |
| 2.4.17.1.7 | ACTIVE                      | ACTIVE                        | INACTIVE                 | UNLATCHED             |
| 2.4.17.1.8 | ACTIVE                      | ACTIVE                        | ACTIVE                   | OPEN                  |

Table 49. Determine GECOM Latch Position Decision Table.

| Req#        | Valid_RGT_Move_Request | RGT_Unlatch_Request |  |
|-------------|------------------------|---------------------|--|
| 2.4.17.1.9  | ACTIVE                 | UNLATCH             |  |
| 2.4.17.1.10 | INACTIVE               | NULL                |  |
| 2.4.17.1.11 | UNLATCH                | UNLATCH             |  |
| 2.4.17.1.12 | INHIBIT                | NULL                |  |

Table 50. Determine PLG\_Cinch\_Request Decision table

FS-DP5T-14B673-BC Page 144 of 175

#### 2.4.17.2 Cinch/Unlatch Motor Control (GECOM Latch)



Figure 75. Cinch/Unlatch Control State Transition Diagram

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL REVISION LEVEL: BC

ANIBAL SANTOYO / ASANTOY1

| Req #         | Cinch_Unlatch_Motor_Rqst | RGTM_Cinch_Pwr | RGTM_Unlatch_Pwr |
|---------------|--------------------------|----------------|------------------|
| R: 2.4.17.2.1 | CINCH                    | Vbatt*         | Ground           |
| R: 2.4.17.2.2 | NULL                     | Ground         | Ground           |
| R: 2.4.17.2.3 | RELEASE                  | Ground         | Vbatt*           |
| R: 2.4.17.2.4 | RELEASE_RTN              | Vbatt*         | Ground           |
| R: 2.4.17.2.5 | CINCH_RTN                | Ground         | Vbatt*           |
| R: 2.4.17.2.6 | CINCH_OVR                | Vbatt*         | Ground           |
| R: 2.4.17.2.7 | RELEASE_OVR              | Ground         | Vbatt*           |

Table 51. Cinch/Unlatch Motor Decision Table

<5> The ground circuit may be PWM'ed to regulate the RMS voltage output to the unlatch actuator (supplier defined).

Unlatch Relax Duration is the time for the Latch Motor to be driven in the relax direction to get to the Park position. This value must be stored in non-volatile memory.

- <6> The cinching operation shall complete within the time(s) specified in the Latch SDS.
- <8> During CINCH\_RETURN, the PWM rate shall be set such that the RMS voltage applied is equal to Cinch Return Voltage.
- <11> During CINCH\_OVR, the PWM rate shall be set such that the RMS voltage applied is equal to Cinch\_Overshoot\_Voltage.

#### 2.4.17.3 Determine Sector Gear Position

The Sector Open Switch Signal and Sector Close Switch Signal are NOT wake-up inputs to the RGTM.

- 1) The RGTM shall sample the inputs Sector\_Open\_Switch\_Signal, Sector\_Close\_Switch\_Signal with a sample period of no more than 11 milliseconds while the RGTM is awake.
- 3) The RGTM shall sample each of the above signals at the same time to prevent excessive sampling error.
- 4) The RGTM shall combine the samples of each of the above signals according to the Determine Sector Gear Position Decision Table to produce Sector\_Gear\_Position\_Signal.
- 5) The input to the RGTM (Sector\_Gear\_Position\_Signal) shall be debounced for between 34 and 56 milliseconds to determine PLG\_Sector\_Gear\_Status.
- 7) If VbattState[Digital Inputs] <> NORM\_V at the time a sample of Sector\_Gear\_Position\_Signal is taken, then that sample is to be considered the same as the previous valid sample.
- 8) The RGTM shall set RGT\_Sector\_Gear\_Status to the current value of Sector\_Gear\_Position\_Signal when at least 5 consecutive samples of Sector\_Gear\_Position\_Signal are the same.

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

| Req #         | Sector_Open_<br>Switch_Signal | Sector_Close_<br>Switch_Signal | Sector_Gear_Position_<br>Signal |
|---------------|-------------------------------|--------------------------------|---------------------------------|
| R: 2.4.17.3.1 | INACTIVE                      | INACTIVE                       | NEUTRAL                         |
| R: 2.4.17.3.2 | INACTIVE                      | ACTIVE                         | RELEASE                         |
| R: 2.4.17.3.3 | ACTIVE                        | INACTIVE                       | CINCH                           |
| R: 2.4.17.3.4 | ACTIVE                        | ACTIVE                         | END                             |

Table 52. Determine Sector Gear Position Decision Table.

# 2.4.18 Factory Mode

Factory Mode is used to determine the stages of the vehicle lifecycle. This lifecycle is presented in three stages:

Factory – car in production.

Transport – car in storage.

Normal – customer delivery and use.

Interaction of factory mode with the external switch is explicit in table 16 of this document.

When value of signal LifeCycMde\_D\_Actl is FACTORY the RGTM should:

- Does not permit powered decklid / liftgate operation. Power operation should be allowed only for Self Test Mode.
- Release of the latch if a valid RGTM configuration is loaded into the ECU (not default configuration).
- Release the decklid/liftgate latch with master open/close switch and exterior switch independent of all lockouts.
- Release the decklid/liftgate latch when central configuration data (manual/automatic transmission) is lost.
- Shut-face switch is not operational.

This mode will interact with ODO signal, and will check for 80 KM as a safeguard for exiting Factory Mode. Factory mode is in message BodyInfo\_3 in the signal LifeCycMode\_D\_Actl:

| CAN<br>ID            | CAN Message        | Signal                         | Detailed<br>Meaning | State<br>Encoded | LifeCyc_Mode_Signal |
|----------------------|--------------------|--------------------------------|---------------------|------------------|---------------------|
|                      |                    | dyInfo 3 MS1 LifeCycMde D Actl | Normal              | 0x0              | NORMAL              |
| 0x3B3 BodyInfo_3_MS1 | Rodylpfo 3 MS1     |                                | Factory             | 0x1              | FACTORY             |
|                      | LITECYCIVICE_D_ACT | NA                             | 0x2                 | NA               |                     |
|                      |                    |                                | Transport           | 0x3              | TRANSPORT           |

Table 53. Determine Life Cycle Mode Table.

FS-DP5T-14B673-BC Page 147 of 175

| Rqmt No.    | LifeCycMde_D_ActI | Odo_Status | LifeCyc_Mode_Signal |
|-------------|-------------------|------------|---------------------|
| R: 2.4.18.1 | NORMAL            | LOW        | NORMAL              |
| R: 2.4.18.2 | NORMAL            | HIGH       | NORMAL              |
| R: 2.4.18.3 | FACTORY           | LOW        | FACTORY             |
| R: 2.4.18.4 | FACTORY           | HIGH       | NORMAL              |
| R: 2.4.18.5 | TRANSPORT         | LOW        | NORMAL              |
| R: 2.4.18.6 | TRANSPORT         | HIGH       | NORMAL              |

Table 54. Determine Life Cycle Mode Signal.

#### 2.4.18.1 Exit Criteria for Factory Mode.

To exit Factory Mode these are the conditions:

- **<R: 2.4.18.7>** In case of missing message for more than 30 secs. See figure 76.
- If odometer of the vehicle exceeds 80 Kms.

Allow Power Open/Close while Factory Mode:

If Factory\_Power\_Op = ON and Self Test Mode routine is Finished successfully in the opening direction. This operation should not be interrupted; if opening is interrupted Self Test routine must be re-run. After Self Test routine has finished the Lifgate learned full open position height and PLG should allow power open/close operation.



Figure 76. Life Cycle Mode Message State Transition Diagram

FS-DP5T-14B673-BC Page 148 of 175

#### 2.4.19 Self Test Mode.

Self Test Mode is a Control Routine Type 2. Its control routine number is 0x0202. The purpose of this routine is to Cycle the liftgate to Open/Close position and determine if the module is working properly. Self Test Mode is a Learn Cycle for the PLG, this mode should allow the PLG to program the height of the liftgate.

During Self Test Mode when the lift gate reach the full mechanical open position the PLG should learn the length if it was not learned, in the case when the PLG was learned before the PLG should re-learn the gate length.

The operation of the routine is based in 3 steps:

- 1. The ECU will unlatch and cycle the rear gate/trunk from fully close position to fully open position.
- 2. Following a pause of 1 second, the rear gate/trunk is powered close to fully closed position.
- 3. If the fault(s) is (are) detected, self-test is aborted and on-demand DTC(s) is (are) logged.

To start the operation of the Self Test mode, the liftgate needs:

1. Rear gate/trunk must be in the fully latch position (latch is primary position)

The exit criteria for Self Test Mode if any of the following is TRUE:

#### DYNAMIC TEST

- 1. ECU does not receive a diagnostic message every 5 seconds.
- 2. Receipt of SID \$32 "stopRoutineByLocalIdentifier" message
- 3. Park Signal from CAN is NOT\_PARK
- 4. Ignition Start Signal from CAN is START or INVALID
- 5. VSS Signal from CAN is > 5kph
- 6. Left or Right Pinch Strip(s) status is Pinched
- 7. Primary obstacle Or Secondary Obstacle Detected
- 8. Clutch Overtemperature detected
- 9. VBATT\_LC out of range
- 10. VBATT\_HC out of range
- 11. Latch Error
- 12. Test is not completed in 20 seconds (time out)

REVISION DATE: 9/10/2014 FORD CONFIDENTIAL

REVISION LEVEL: BC ANIBAL SANTOYO / ASANTOY1

FS-DP5T-14B673-BC Page 149 of 175

#### STATIC TEST

- 1. Gate is fully closed (Latch is fully latched).
- 2. Sector gear status
- 3. Latch motor circuit is not shorted to ground or battery
- 4. Gate motor circuit is not shorted to ground or battery
- 5. Left or Right Pinch Strips are not Pinched or shorted.
- 6. Ignition Signal from CAN is not available
- 7. Ignition Start Signal from CAN is START or INVALID
- 8. Park Signal from CAN not available
- 9. Park Signal from CAN is NOT PARK
- 10. VSS Signal from CAN is not available
- 11. VSS Signal from CAN is > 5kph
- 12. VBATT\_LC out of range
- 13. VBATT\_HC out of range
- 14. Self-Test Completed

#### 2.4.20 Learn Cycle.

Learn cycle determines the height of the tailgate for the open position, this height determines how far the tailgate should open when power open operation is requested by master switch, key fob or handle switch. Learn cycle should be allowed under these two conditions: Normal mode and Factory mode.

#### **FACTORY MODE:**

- 1. Valid Config file is needed to allow learn cycle.
- 2. If not valid config tailgate should not allow learn cycle.
- 3. Learn Cycle is triggered running self test at any time.
- 4. In case of a battery disconnection (power on reset), learned open position should be stored.
- 5. To start learn cycle tailgate need to be fully closed and run only Self Test routine.

#### Only for Power Lifgate:

- 6. In case of Programmable Stop (Option L1), Position\_Program\_Present calibration tells if this option is enabled or not:
  - In case Position\_Program\_Present = NO; after self test is done successfully, learn position should be learned when gate opens to full open position. In case of a power on reset learned position should be stored. To relearn the tailgate position to full open position it's necessary to run Self-Test.
  - In case Position\_Program\_Present = YES; after learn by Self Test routine if a Programmable liftgate height is set different from a full open position, in case of a power on reset the height should not be modified. To relearn to full mechanical open position it's necessary to run Self Test.
  - If Position\_Program\_Present = YES: after Learn by Self Test routine if a Programmable liftgate height is NOT set, in case of a power on reset the learned position should be full open position and this position should be stored after power on reset. To relearn the tailgate position to full open position it's necessary to run Self-Test again.

#### **NORMAL MODE:**

- 1. Valid Config file is needed to allow learn cycle.
- 2. Open\_Cycle is triggered when tailgate is manually close to fully latched position and power open to full open position by master switch, key fob or handle switch.
- 3. For first Learn Cycle in this mode, tailgate need to be fully closed and run only Self Test routine.
- 4. After first learn cycle; Self Test should trigger learn cycle again. For Open\_Cycle should not trigger learn cycle.
- 5. In case programmed before only Self Test triggers learn cycle, for details go to step 7.
- 6. In case of a battery disconnection (power on reset), height for open position should be stored.

FS-DP5T-14B673-BC Page 151 of 175

Only for Power Liftgate:

7. In case of Programmable Stop (Option L1), Position\_Program\_Present calibration tells if this option is enabled or not:

- In case Position\_Program\_Present = NO; learn position should be learned when gate opens to full open position after doing self test. In case of a power on reset learned position should be stored. To relearn the tailgate position to full open position it's necessary to run self test.
- In case Position\_Program\_Present = YES; after first learn cycle by doing self test; if a Programmable liftgate height is set different from a full open position, in case of a power on reset the height should not be modified. To relearn to full mechanical open position it's necessary to run Self-Test.
- If Position\_Program\_Present = YES: After first Learn Cycle by doing self test; if a Programmable liftgate height is NOT set, in case of a power on reset the learned position should be full open position and should be stored. To relearn the tailgate position to full open position it's necessary to run Self-Test.

# 2.4.21 PLG Action Table

Next table represents the action taken by the module depending on the program, life cycle, learn and configuration file status.

| PROGRAM            | ACTIVATION        | INITIAL PLG POSITION | LIFECYCLE<br>STATUS | LEARN<br>STATUS | CONFIG<br>FILE<br>STATUS | ACTION                                                                                     |
|--------------------|-------------------|----------------------|---------------------|-----------------|--------------------------|--------------------------------------------------------------------------------------------|
| CD533              | Any PLG button    | Closed               | Factory             | Not Learned     | Default Config           | Latch release only, no power open.                                                         |
| CD533              | Manual to striker | Open                 | Factory             | Not Learned     | Default Config           | Latch power cinch when put back to striker.                                                |
| CD533              | Any PLG button    | Closed               | Normal              | Learned         | Valid Config             | Latch release and power open.                                                              |
| CD533              | Any PLG button    | Open                 | Normal              | Learned         | Valid Config             | Power Close                                                                                |
| CD533              | Manual to striker | Open                 | Normal              | Learned         | Valid Config             | Latch power cinch when put back to striker.                                                |
| CD533              | Any PLG button    | Don't care           | Factory Normal      | Don't care      | Valid Config             | Retain learn info on power reset.                                                          |
| CD539N             | Any PLG button    | Don't care           | Factory             | Not Learned     | Default Config           | No latch release, no power open                                                            |
| CD539N             | Any PLG button    | Don't care           | Factory             | Not Learned     | Valid Config             | No latch release, no power open                                                            |
| CD539N             | Any PLG button    | Don't care           | Normal              | Not Learned     | Default Config           | No latch release, no power open                                                            |
| CD539N             | Any PLG button    | Closed               | Normal              | Not Learned     | Valid Config             | Latch release and power open.                                                              |
| CD539N             | Manual to striker | Open                 | Normal              | Not Learned     | Valid Config             | Only cinches when put back to striker.                                                     |
| CD539N             | Any PLG button    | Closed               | Normal              | Learned         | Valid Config             | Latch release and power open.                                                              |
| CD539N             | Any PLG button    | Open                 | Normal              | Learned         | Valid Config             | Power Close                                                                                |
| CD539N             | Manual to striker | Open                 | Normal              | Learned         | Valid Config             | Latch power cinch when put back to striker.                                                |
| CD539N             | Any PLG button    | Don't care           | Factory Normal      | Don't care      | Valid Config             | Retain learn info on power reset.                                                          |
| C489<br>softlpower | Any PLG button    | Closed               | Factory             | Not Learned     | Default Config           | Latch release only, no power open.                                                         |
| C489<br>softlpower | Manual to striker | Open                 | Factory             | Not Learned     | Default Config           | Latch power cinch (provided that the latch has been power released first)                  |
| C489<br>softlpower | Manual to striker | Open                 | Factory             | Not Learned     | Default Config           | Latch power cinch ( does not care if gate was previously open or closed for manual & Power |
| C489<br>softlpower | Any PLG button    | Don't care           | FactorylNormal      | Don't care      | Valid Config             | Retain learn info on power reset.                                                          |
| C489 soft          | Any PLG button    | Closed               | Normal              | Not Learned     | Valid Config             | Latch release only.                                                                        |
| C489 soft          | Any PLG button    | Open                 | Normal              | Not Learned     | Valid Config             | Latch power cinch.                                                                         |
| C489 power         | Any PLG button    | Closed               | Factory             | Learned         | Valid Config             | Latch release only, no power open.                                                         |
| C489 power         | Manual to striker | Open                 | Factory             | Learned         | Valid Config             | Latch power cinch when put back to striker.                                                |
| C489 power         | Any PLG button    | Open                 | Factory             | Learned         | Valid Config             | No Power Close                                                                             |
| C489 power         | Any PLG button    | Closed               | Normal              | Not Learned     | Valid Config             | Latch release and power open.                                                              |
| C489 power         | Manual to striker | Open                 | Normal              | Not Learned     | Valid Config             | Latch power cinch when put back to striker.                                                |
| C489 power         | Any PLG button    | Open                 | Normal              | Not Learned     | Valid Config             | Power Close                                                                                |

| ower Rear Gate/Trunk – Cross Vehicle Functional Ro<br>S-DP5T-14B673-BC | equirements | Page 153 of 175  |  |
|------------------------------------------------------------------------|-------------|------------------|--|
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
|                                                                        |             |                  |  |
| SION DATE - 0/10/2014                                                  |             | ODD CONFIDENTIAL |  |

FS-DP5T-14B673-BC Page 154 of 175

# 3. DATA DICTIONARY

| Dataflow Name                | Definition                             | Attributes                     |
|------------------------------|----------------------------------------|--------------------------------|
| BusWakeUp                    | Used to inform the network sleep/awake | Type: Internal – Discrete      |
|                              | FSM and the local sleep/awake FSM that | Default: AWAKE                 |
|                              | the MS CAN bus has been awakened       |                                |
|                              | from an incoming message.              |                                |
|                              | AWAKE – Network has woken up           |                                |
|                              | SLEEP – Network is asleep and hasn't   |                                |
|                              | woken up                               |                                |
| CAN_TesterPhysicalReqRGTM    | Diagnostic Tester physical request to  | Type: MSCAN                    |
|                              | RGTM.                                  | Send On Change                 |
| CAN_TesterPhysicalResRGTM    | RGTM Physical response to Diagnostic   | Type: MSCAN                    |
|                              | Tester.                                | Send On Change                 |
| CAN_ BodyGatewayData         | MSCAN message containing Odometer      | Type: MSCAN                    |
|                              | Value, and Odometer Value updated Bit  | Transmit Model: Event Periodic |
|                              | (UB) from the IP Cluster.              | Transmit Rate: 100 msec        |
|                              | Message ID: 0x3BE                      |                                |
|                              | Signals : OdometerMasterValue          | ←Send On Change                |
|                              | OdometerMasterValue_UB                 | ← No Send Type                 |
| CAN_EngineData_1_MS1         | MSCAN message containing Auto          | Type: MSCAN                    |
| CAN_EligineData_1_W31        | transmission gear selected info.       | Transmit Model: Fixed Periodic |
|                              | transmission gear selected into.       | Transmit Rate: 50 msec         |
|                              | Message ID: 0x3BC                      | No Send Type                   |
|                              | Signals: GearLvrPos_D_Actl_Signal      | Two Send Type                  |
|                              | GearLvrPos_D_Actl_Signal_UB            |                                |
| CAN EngineData_2_MS1         | MSCAN message containing vehicle       | Type: MSCAN                    |
| Of it v Engine Duta_2_ivis i | speed info.                            | Transmit Model: Fixed Periodic |
|                              | Message ID: 0X42E                      | Transmit Rate: 50 msec         |
|                              | Signals: VEH_V_ActlEng_Signal          | No Send Type                   |
| CAN EngineData_2_MS1         | MSCAN message containing vehicle       | Type: MSCAN                    |
| <i>6</i>                     | speed info.                            | Transmit Model: Fixed Periodic |
|                              | Message ID: 0X42E                      | Transmit Rate: 50 msec         |
|                              | Signals: VEH_V_ActlEng_Signal_UB       | No Send Type                   |
| CAN_BODYINFO_3_MS1           | MSCAN message containing Ignition      | Type: MSCAN                    |
|                              | Switch state info.                     | Transmit Model: Event Periodic |
|                              | Unknown - 0x0                          | Transmit Rate: 500 msec        |
|                              | Off - 0x1                              | No Send Type                   |
|                              | Accessory - 0x2                        |                                |
|                              | Run - 0x4                              |                                |
|                              | Start - 0x8                            |                                |
|                              | Invalid - 0xF                          |                                |
|                              | Message ID: 0x3B3                      |                                |
|                              | Signals: Ignition_Status               |                                |

FS-DP5T-14B673-BC Page 155 of 175

| Dataflow Name             | Definition                              | Attributes                     |
|---------------------------|-----------------------------------------|--------------------------------|
| CAN_Locking_Systems2_MS1  | MSCAN message containing info on        | Type: MSCAN                    |
|                           | whether interior switches should be     | Transmit Model: Event Periodic |
|                           | inhibited.                              | Transmit Rate: 1000 msec       |
|                           | No_Inhibit - 0x0                        | No Send Type                   |
|                           | Inhibit - 0x1                           |                                |
|                           | Message ID: 0x331                       |                                |
|                           | Signals: LockInhibit_Signal             |                                |
| CAN_ Locking_Systems2_MS1 | MSCAN message containing requests       | Type: MSCAN                    |
| _                         | for Power Decklid function.             | Transmit Model: Event Periodic |
|                           | Null - 0x0                              | Transmit Rate: 1000 msec       |
|                           | Active - 0x1                            | No Send Type                   |
|                           | Message ID: 0x331                       |                                |
|                           | Signals: Power_Decklid_Rqst             |                                |
| CAN_ Locking_Systems2_MS1 | MSCAN message containing requests       | Type: MSCAN                    |
|                           | for Power Liftgate function.            | Transmit Model: Event Periodic |
|                           | Null - 0x0                              | Transmit Rate: 1000 msec       |
|                           | Active - 0x1                            | No Send Type                   |
|                           | Message ID: 0x331                       |                                |
|                           | Signals: Power_Liftgate_Rqst            |                                |
| CAN_ Locking_Systems2_MS1 | MSCAN message containing Keypad         | Type: MSCAN                    |
|                           | Message Counts.                         | Transmit Model: Event Periodic |
|                           | Bits: 8                                 | Transmit Rate: 1000 msec       |
|                           | Start Bit: 8                            | No Send Type                   |
|                           | Minimum : 0 (0x0)                       |                                |
|                           | Maximum: 255 (0xFF)                     |                                |
|                           | Message ID: 0x331                       |                                |
|                           | Signal: Keyfob_Pad_Msg_Count            |                                |
| CAN_Locking_Systems2_MS1  | MSCAN message containing Vehicle        | Type: MSCAN                    |
|                           | Lock Status.                            | Transmit Model: Event Periodic |
|                           | LOCK_DBL - 0x0                          | Transmit Rate: 1000 msec       |
|                           | LOCK_ALL - 0x1                          | No Send Type                   |
|                           | UNLOCK_ALL - 0x2                        |                                |
|                           | UNLOCK DRV - 0x3                        |                                |
|                           | Message ID: 0x331                       |                                |
|                           | Signals: Veh_Lock_Status                |                                |
| CAN_BodyInfo_MS1          | MSCAN message containing info on the    | Type: MSCAN                    |
| -                         | requested state of the lockout from the | Transmit Model: Event Periodic |
|                           | message center.                         | Transmit Rate: 200 msec        |
|                           | Enable – 0x0                            |                                |
|                           | Disable – 0x1                           |                                |
|                           | Message ID: 0x3C4                       |                                |
|                           | Signals: Power_Liftgate_Mode_Cmd,       | < Send on change               |
|                           | Power_Liftgate_Mode_Cmd_UB              | < No Send Type                 |

FS-DP5T-14B673-BC Page 156 of 175

| Dataflow Name                 | Definition                                                                                                                                                                                                          | Attributes                                                                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| CAN Power_Liftgate_Mode_StatM | MSCAN message containing info on                                                                                                                                                                                    | Type: MSCAN<br>Transmit Model: Event Periodic                                      |
|                               | 3.4.1.1 Chime attribute to be sent.                                                                                                                                                                                 | Transmit Rate: 1000 msec<br>Send on Change                                         |
|                               | Off - 0x0<br>Long - 0x1<br>Short - 0x2<br>Fast - 0x3                                                                                                                                                                |                                                                                    |
|                               | Message ID: 0x313 Signals: DrTgateChime_D_Rq                                                                                                                                                                        |                                                                                    |
| CAN Power_Liftgate_Mode_StatM | MSCAN message containing info on Power Liftgate Interior Switch state.  Null – 0x0  Pressed – 0x1  Message ID: 0x313  Signals: PwLftgtIntSw_B_Stat                                                                  | Type: MSCAN Transmit Model: Event Periodic Transmit Rate: 1000 msec Send on Change |
| CAN Power_Liftgate_Mode_StatM | MSCAN message containing info on power liftgate Enable Disable status acknowledgement from RGTM. Disabled - 0x0 Enabled - 0x1 Unused - 0x2 Not_Supported - 0x3  Message ID: 0x313 Signals: Power_Liftgate_Mode_Stat | Type: MSCAN Transmit Model: Event Periodic Transmit Rate: 1000 msec Send on Change |
| CAN Power_Liftgate_Mode_StatM | MSCAN message containing info on gate status for Locking and Start Stop  Not_Moving - 0x0 Opening - 0x1 Closing - 0x2 Not_Used - 0x3  Message ID: 0x313 Signals: DrTGate_D_Rq                                       | Type: MSCAN Transmit Model: Event Periodic Transmit Rate: 1000 msec Send on Change |

FS-DP5T-14B673-BC Page 157 of 175

| Dataflow Name                 | Definition                                                                                                                                                                                                                                                                                                                                                                                                                          | Attributes                                                          |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| CAN VehicleOperatingModes_MS1 | CAN message containing vehicle operating mode information relating to Start Stop operation.                                                                                                                                                                                                                                                                                                                                         | Type: MSCAN Transmit Model: Event Periodic Transmit Rate: 10 msec   |
|                               | Message ID: 0x167                                                                                                                                                                                                                                                                                                                                                                                                                   | No Send Type                                                        |
|                               | Signals: ElPw_D_Stat, ElPw_D_Stat_UB, PwPckTq_D_Stat, PwPckTq_D_Stat_UB, Eng_D_Stat, Eng_D_Stat_UB                                                                                                                                                                                                                                                                                                                                  |                                                                     |
| Cinch_Overshoot_Voltage       | Calibratible parameter to indicate the effective voltage to drive the latch motor during cinch overshoot return.                                                                                                                                                                                                                                                                                                                    | Type: Internal – Continuous Units: volts Default: TBD               |
| Cinch Relax Duration          | Calibratible Parameter to set the amount of time to drive the latch motor to return it to the center position from the cinch position.  Range: 0 to 2000 milliseconds  When set to 0, indicates no return from cinch.                                                                                                                                                                                                               | Type: Internal – Continuous<br>Units: milliseconds<br>Default: 1500 |
| Cinch_Return_Delay_Duration   | Calibratable parameter for delay from a cinch operation to a cinch return operation.  Range: 0 – 400 msec                                                                                                                                                                                                                                                                                                                           | Type: Internal – Continuous<br>Default: 200 msec.                   |
| Cinch_Return_Voltage          | Calibratible parameter to indicate the effective voltage to drive the latch motor during cinch return.                                                                                                                                                                                                                                                                                                                              | Type: Internal – Continuous Units: volts Default: TBD               |
| Cinch_Unlatch_Motor_Rqst      | Indicates the direction of latch motor movement requested. CINCH – drive motor to cinch latch RELEASE – drive motor to release latch NULL – no request RELEASE_RTN – drive motor to return from release operation CINCH_RTN – drive motor to return from cinch operation. RELEASE_OVR – drive motor back to neutral after overshooting a release return. CINCH_OVR – drive motor back to neutral after overshooting a cinch return. | Type: Internal – Discrete<br>Default: NULL                          |
| Clear_Drift_Count_Rqst        | Indicates that the DTC to disable the RGT has been cleared by a diagnostic tool.  CLEAR – reset drift event count  NO_CLEAR – do not reset drift event count                                                                                                                                                                                                                                                                        | Type: Internal – Discrete<br>Default: NO_CLEAR                      |

FS-DP5T-14B673-BC Page 158 of 175

| Dataflow Name         | Definition                                                   | Attributes                                 |
|-----------------------|--------------------------------------------------------------|--------------------------------------------|
| Close_Count           | Counts number of consecutive close                           | Type: Internal – Continuous                |
|                       | attempts made by the drift control                           | Default: 0                                 |
|                       | algorithm.                                                   |                                            |
|                       | Range: 0 – 10 attempts                                       |                                            |
| ComboBus_Rqst         | Indicates whether the network sleep                          | Type: Internal – Discrete                  |
|                       | conditions have been satisfied. Once this                    | Default: NETAWAKE                          |
|                       | is NETSLEEP, there is an extra delay                         |                                            |
|                       | imposed by "WaitMsg_Cfg"                                     |                                            |
|                       | NETAWAKE - Local conditions have                             |                                            |
|                       | not been met for letting the bus go to                       |                                            |
|                       | sleep                                                        |                                            |
|                       | NETSLEEP - Local conditions have                             |                                            |
|                       | been met - the bus can no attempt to                         |                                            |
| C (SI TE              | sleep                                                        | T 1 D                                      |
| Current_Sleep_Time    | Indicates the amount of time that must                       | Type: Internal – Discrete Default: 10 sec. |
|                       | elapse before the module can go to sleep.<br>10 sec or 6 hrs | Default: 10 sec.                           |
| Decay_Constant        | Used to capture the currently active                         | Type: Internal – Discrete                  |
| Decay_Constant        | volume decay rate for chime.                                 | Default: 0                                 |
|                       | 0 – no decay (tone)                                          | Default. 0                                 |
|                       | 0.7 – decay for 1 second chime                               |                                            |
| Detent_Switch_Signal  | Provides feedback on the state of the                        | Type: Physical Input – Discrete            |
| Betein_5 witch_5ighti | latch pawl (detent lever).                                   | Type. Thysical input Discrete              |
|                       | Open Circuit – switch is Active                              |                                            |
|                       | Ground – switch is Not Active                                |                                            |
| Drift_Speed_High      | Calibratible parameter to indicate the                       | Type: Internal – Continuous                |
|                       | gate speed threshold to trigger a drift                      | Default: TBD                               |
|                       | event.                                                       |                                            |
|                       | Range: TBD                                                   |                                            |
| Drift_Time            | Calibratible parameter to indicate how                       | Type: Internal – Continuous                |
|                       | long after the end of an open cycle to                       | Default: TBD                               |
|                       | look for a drift event.                                      |                                            |
|                       | Range: 1-1000 msec                                           |                                            |
| DrTGate_D_Rq          | Indicates if the power lift gate function                    | Type: Unknown                              |
|                       | has been requested back through the                          |                                            |
|                       | interaction layer.                                           |                                            |
| DrTgateChime_D_Rq     | CAN Signal request to sound a chime to                       | Type: Internal – Discrete                  |
|                       | indicate either a closing or opening                         | Default: INACTIVE                          |
|                       | operation or an obstacle detected while                      |                                            |
|                       | closing. See "RGTM Audible Feedback"  ACTIVE – Sound chime   |                                            |
|                       | INACTIVE – do notsound chime                                 |                                            |
| DrTgateChime_D_Rq_UB  | Update Bit signal for Gateway                                | Type: Unknown                              |
| Dirgueemme_D_Kq_OD    | functionality.                                               | Type . Olikilowii                          |
| DTC_Drift_Count       | Calibratible parameter to determine the                      | Type: Internal – Continuous                |
|                       | number of consecutive open cycles                            | Default: TBD                               |
|                       |                                                              |                                            |
|                       | =                                                            |                                            |
|                       | setting a DTC.                                               |                                            |
|                       | Range: 1 – 1000                                              |                                            |
|                       | _                                                            |                                            |

FS-DP5T-14B673-BC Page 159 of 175

| Dataflow Name             | Definition                                            | Attributes                               |
|---------------------------|-------------------------------------------------------|------------------------------------------|
| ECE_Inhibit_RGT           | Signal that indicates when master                     |                                          |
|                           | open/close switch has to operate                      |                                          |
|                           | depending on the type or market (NA y                 |                                          |
|                           | EU)                                                   |                                          |
|                           | INHIBIT – Master Switch is not allowed                |                                          |
|                           | to move the RGT                                       |                                          |
|                           | NOT_INHIBIT – Master Switch allowed                   |                                          |
|                           | to move the RGT                                       |                                          |
| ElPw_D_Stat               | MSCAN signal indicating the power                     | Type: Internal-Discrete                  |
|                           | pack supporting the 12V bus with                      |                                          |
|                           | energy, supporting but about to stop, not             |                                          |
|                           | supporting and undergoing a large power               |                                          |
|                           | draw (e.g. starting MHEV ICE), or in a                |                                          |
|                           | fault limited support mode.                           |                                          |
| Engelon Defenses Wilson   | Used to communicate AutoStop                          | Town as Indown al. Condings              |
| Encoder_Reference_Voltage | Calibratible parameter to set lower                   | Type: Internal – Continuous Units: volts |
|                           | threshold at which the encoder can be                 | Default: 8                               |
| Engador Consor 1 Cignol   | read reliably.  Pulse train signal that indicates the | Type: Physical Input – Pulse             |
| Encoder_Sensor_1_Signal   | relative position of the Rear Gate/Trunk.             | Train                                    |
| Encoder_Sensor_2_Signal   | Pulse train signal that is phase shifted              | Type: Physical Input – Pulse             |
| Encoder_Sensor_2_Signal   | from sensor 1 to indicate direction of                | Train                                    |
|                           | movement.                                             | Train                                    |
| Entering_Secondary_Time   | Calibratible Parameter to set the amount              | Type: Internal – Continuous              |
|                           | of time to continue to drive the drive                | Units: milliseconds                      |
|                           | motor once the before secondary latch                 | Default: 200                             |
|                           | position has been detected.                           |                                          |
| Factory_Power_Op          | Calibratable Parameter to set when the                | Type: Internal                           |
|                           | module should exit Factory Mode after                 |                                          |
|                           | Self Test Mode                                        | Default: OFF                             |
| Fast_Chime_Decay_Rate     | Calibratible Parameter to set the decay               | Type: Internal – Continuous              |
| -                         | rate of the fast chime.                               | Default: 0.7                             |
|                           | Range: 0 – 1                                          |                                          |
| Fast_Sample_Rate          | Indicates the sample rate for debouncing              | Type Internal – Continuous               |
|                           | digital inputs while awake.                           | Default: Supplier defined.               |
|                           | Range: 1 – 11 msec                                    |                                          |
| Forkbolt_Primary_Signal   | Provides feedback on the position of the              | Type: Physical Input – Discrete          |
|                           | forkbolt (ratchet). Active when in the                |                                          |
|                           | primary state.                                        |                                          |
|                           | Open circuit – the switch is Not Active               |                                          |
|                           | Ground –the switch is Active                          |                                          |
| Forkbolt_Secondary_Signal | Provides feedback on the position of the              | Type: Physical Input – Discrete          |
|                           | forkbolt (ratchet). Active when in the                |                                          |
|                           | primary or secondary state.                           |                                          |
|                           | Open circuit – the switch is Not Active               |                                          |
|                           | Ground –the switch is Active                          |                                          |

FS-DP5T-14B673-BC Page 160 of 175

| Dataflow Name                     | Definition                                                                                                                                                                                                                                                     | Attributes                                                   |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Front_RGT_Rqst                    | Indicates a request for movement via<br>either the keyfob or the overhead<br>open/close switch. Lock Inhibit is                                                                                                                                                | Type: Internal – Discrete<br>Default: INACTIVE               |
|                                   | considered in state determination.  ACTIVE – request for movement from front of vehicle                                                                                                                                                                        |                                                              |
|                                   | INACTIVE – no request for movement                                                                                                                                                                                                                             |                                                              |
| HiOvrTime_Cfg                     | Array of configuration values to indicate the amount of time that battery voltage is higher than Vmax_Cfg for that voltage range to be considered OVER_V.                                                                                                      | Type: Internal – Continuous<br>Units: msec                   |
| HiRecovTime_Cfg                   | Array of configuration values to indicate the amount of time that battery voltage is lower than Vmax_Cfg for that voltage range to be considered NORM_V after being OVER_V.                                                                                    | Type: Internal – Continuous<br>Units: msec                   |
| HiTime_Cfg                        | Array of configuration values to indicate the amount of time that battery voltage is lower than Vmax_Cfg for that voltage range to be considered NORM_V after being HI_V.                                                                                      | Type: Internal – Continuous<br>Units: msec                   |
| Ignition_Status_Available         | Indicates whether the CAN message for Ingition Position is correctly being received.  AVAILABLE – message is being received  LOST – message is invalid or lost                                                                                                 | Type: Internal – Discrete<br>Default: LOST                   |
| Ignition_Switch_Position_Received | Notification from FNOS interaction layer to indicate when a Ignition_Switch_Position_Msg is received.  RECEIVED – a message has been received since the last time the application cleared the notification.  IDLE – no message received (notification cleared) | Type: Internal – Discrete<br>Default IDLE                    |
| Ignition_Switch_Position_Signal   | CAN signal from FNOS interaction layer to indicate ignition position.  Unknown – 0x0  Off – 0x1  Acc – 0x2  Run – 0x4  Start – 0x8  Invalid – 0xF, or any other state                                                                                          | Type: FNOS signal<br>Default: Unknown                        |
| In_Secondary_Time                 | Calibratible parameter to ensure latch is truly in Secondary before starting a cinch.                                                                                                                                                                          | Type: Internal – Continuous Units: milliseconds Default: 500 |

FS-DP5T-14B673-BC Page 161 of 175

| Dataflow Name              | Definition                                               | Attributes                  |
|----------------------------|----------------------------------------------------------|-----------------------------|
| InteriorLockInhibit_Cmd    | Determines whether interior switches                     | Type: Internal – Discrete   |
| _                          | should allow power operation to gain                     | Default: NULL               |
|                            | access to vehicle.                                       |                             |
|                            | INHIBIT – interior switches disabled.                    |                             |
|                            | NO_INHIBIT – interior switches                           |                             |
|                            | enabled.                                                 |                             |
| Invalid_RGT_Rqst_Feedback  | Provides a request to provide a short                    | Type: Internal – Discrete   |
| _                          | tone to customer to indicate that the                    | Default: INACTIVE           |
|                            | preconditions for movement are not                       |                             |
|                            | correct.                                                 |                             |
|                            | ACTIVE – request to provide tone                         |                             |
|                            | INACTIVE – no request to provide tone                    |                             |
| KeyfobPad_Msg_Count_Signal | CAN signal from FNOS interaction                         | Type: Internal – Discrete   |
|                            | layer. Rolling counter to distinguish new                | Default: 0x7F               |
|                            | data from repeated messages.                             |                             |
|                            | 0 to 0xFF                                                |                             |
| KeyfobPad_Msg_Received     | Notification from FNOS interaction                       | Type: Internal – Discrete   |
|                            | layer to indicate when a KeyfoPad_Msg                    | Default IDLE                |
|                            | is received.                                             |                             |
|                            | RECEIVED – a message has been                            |                             |
|                            | received since the last time the                         |                             |
|                            | application cleared the notification.                    |                             |
|                            | IDLE – no message received                               |                             |
|                            | (notification cleared)                                   |                             |
| Latch Actuation Time       | Calibratible Parameter to set the                        | Type: Internal – Continuous |
|                            | maximum amount of time to drive the                      | Units: milliseconds         |
|                            | unlatch actuator.                                        | Default: 3000               |
| Latch_Position_Signal      | Combines forkbolt secondary, forkbolt                    | Type: Internal – Discrete   |
|                            | primary and detent switch samples                        | Default: SECONDARY          |
|                            | LATCHED – in primary position                            |                             |
|                            | BEFORE_SECONDARY – entering                              |                             |
|                            | secondary position or moving between                     |                             |
|                            | secondary and primary.                                   |                             |
|                            | SECONDARY – in secondary position                        |                             |
|                            | BEFORE_PRIMARY – entering                                |                             |
|                            | primary position                                         |                             |
|                            | UNLATCHED – out of latch                                 |                             |
| Latel Back and Control     | ERROR – unknown state                                    | Translational D'            |
| Latch_Position_Status      | Debounced state of forkbolt secondary,                   | Type: Internal – Discrete   |
|                            | forkbolt primary and detent switches                     | Default: SECONDARY          |
|                            | LATCHED – in primary position                            |                             |
|                            | BEFORE_SECONDARY – entering                              |                             |
|                            | secondary position or moving between                     |                             |
|                            | secondary and primary. SECONDARY – in secondary position |                             |
|                            | BEFORE_PRIMARY – entering                                |                             |
|                            | primary position                                         |                             |
|                            | UNLATCHED – out of latch                                 |                             |
|                            | ERROR – unknown state                                    |                             |
|                            | EKKOK – ulikilowii state                                 |                             |

FS-DP5T-14B673-BC Page 162 of 175

| Dataflow Name                  | Definition                                                                                                                                                                                                                                                                                                                                                                                                                     | Attributes                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Left_Pinch_Strip_Signal        | Signal to indicate a pinch on the left side of the Rear Gate/Trunk.  PINCHED – an obstacle is pinched NOT_PINCHED – no obstacle is pinched ERROR – the signal is not in a valid                                                                                                                                                                                                                                                | Type: Physical Input<br>Units: Ohms           |
| Left_Pinch_Strip_Status        | range.  Logical state of the left pinch strip debounced over number of samples  PINCHED – an obstacle is pinched NOT_PINCHED – no obstacle is pinched ERROR – the signal is not in a valid range.                                                                                                                                                                                                                              | Type: Internal – Discrete<br>Default: PINCHED |
| Local_Ok2Sleep                 | Indicates when local conditions have been met to attempt to enter sleep mode (must also wait for network sleep).  NOSLEEP - Local Sleep conditions haven't been met, do not attempt to enter sleep mode  SLEEP - Local sleep conditions have been met - ok to attempt to enter sleep mode (must wait for network sleep).                                                                                                       | Type: Internal – Discrete<br>Default: NOSLEEP |
| Local_Open_Close_Switch_Signal | Provides a request for Rear Gate/Trunk movement from the rear of the vehicle.  Will be also used for customizing a programmable RGT Open Position if pressed longer than 3s.  - Open Circuit – no action  - (Ground < 3s) followed by Open Circuit – request for movement  - (3s < Ground < 10s) followed by Open Circuit – request for programmable Position                                                                  | Type: Physical Input – Discrete               |
| Local_OpMode                   | Defines the state of the microprocessor awake/sleep modes.  AWAKE - Microprocessor is awake and is will not attempt to enter SLEEP state yet. Network is also awake. All features are active.  DROWSY - Microproceessor is awake, but the network is not needed so it may or may not be asleep. All features are active.  SLEEP - Microprocessor and network is asleep (low power mode). Some of the features are still active | Type: Internal – Discrete Default: AWAKE      |

FS-DP5T-14B673-BC Page 163 of 175

| Dataflow Name               | Definition                                 | Attributes                  |
|-----------------------------|--------------------------------------------|-----------------------------|
| Local_RGT_Open_Close_Rqst   | Indicates a valid change on the local      | Type: Internal – Discrete   |
|                             | switch from Ground to Open Circuit has     | Default: INACTIVE           |
|                             | been detected. After Ground was            |                             |
|                             | detected less than 3s.                     |                             |
|                             | ACTIVE – request for movement              |                             |
|                             | INACTIVE – no request for movement         |                             |
| Local_RGT_Open_Close_Status | Indicates the logical state of the rear    | Type: Internal – Discrete   |
|                             | open/close switch.                         | Default: UNKNOWN            |
|                             | ACTIVE – request for movement              |                             |
|                             | INACTIVE – no request for movement         |                             |
|                             | UNKNOWN – switch has not been              |                             |
|                             | debounced                                  |                             |
| Local_RGT_Rqst              | Indicates a request for movement from      | Type: Internal – Discrete   |
|                             | either the rear open/close switch or the   | Default: INACTIVE           |
|                             | Rear Gate/Trunk handle.                    |                             |
|                             | ACTIVE – request for power open            |                             |
|                             | INACTIVE – no request for movement         |                             |
|                             | UNLATCH – request to unlatch only          |                             |
| Local_Switch_Present        | Calibration to enable or disable the rear  | Type: Internal – Discrete   |
| 2004.25 11000.10            | switch input.                              | Default: NOT_PRESENT        |
|                             | PRESENT – rear switch enabled.             |                             |
|                             | NOT_PRESENT – rear switch disabled.        |                             |
| LocalBus_Rqst               | Controls when the network can enter        | Type: Internal – Discrete   |
|                             | sleep according to the Local               | Default: AWAKE              |
|                             | Sleep/Awake FSM. Also allows the local     |                             |
|                             | sleep/wake FSM to wake up the bus due      |                             |
|                             | to a hardwired wakeup input.               |                             |
|                             | AWAKE - Network must wake up or            |                             |
|                             | stay awake                                 |                             |
|                             | SLEEP - Network can go to sleep if all     |                             |
|                             | sleep criteria are met                     |                             |
| LocalSleepDelay_Cfg         | Minimum amount of time that the            | Type: Internal – Discrete   |
|                             | microprocessor and network will stay       | Default: 5 seconds          |
|                             | awake before attempting to enter sleep     |                             |
|                             | mode. Any change to a wakeup input         |                             |
|                             | will reset this timer.                     |                             |
|                             | Range: 0 - 120 seconds                     |                             |
| LockInhibit_Signal          | MSCAN signal from FNOS interaction         | Type: Internal – Discrete   |
|                             | layer to indicate whether interior         | Default: NO_INHIBIT         |
|                             | switches are inhibited.                    | _                           |
|                             | INHIBIT – ignore master switch             |                             |
|                             | NO_INHIBIT – allow master switch to        |                             |
|                             | operate                                    |                             |
| Logic_VBattRaw              | Battery voltage that powers the logic      | Type: Physical Input –      |
|                             | circuits in the module.                    | Continuous                  |
|                             | Range: 0 – 24 volts.                       |                             |
| LoOvrTime_Cfg               | Array of configuration values to indicate  | Type: Internal – Continuous |
|                             | the amount of time that battery voltage is | Units: msec                 |
|                             | lower than Vmin_Cfg for that voltage       |                             |
|                             | range to be considered UNDER_V.            |                             |
|                             | range to be considered of VDER_V.          | <u> </u>                    |

FS-DP5T-14B673-BC Page 164 of 175

| Dataflow Name                   | Definition                                                            | Attributes                                    |
|---------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
| LoRecovTime_Cfg                 | Array of configuration values to indicate                             | Type: Internal – Continuous                   |
|                                 | the amount of time that battery voltage is                            | Units: msec                                   |
|                                 | higher than Vmin_Cfg for that voltage                                 |                                               |
|                                 | range to be considered NORM_V after                                   |                                               |
|                                 | being UNDER_V.                                                        |                                               |
| LoTime_Cfg                      | Array of configuration values to indicate                             | Type: Internal – Continuous                   |
|                                 | the amount of time that battery voltage is                            | Units: msec                                   |
|                                 | higher than Vmin_Cfg for that voltage                                 |                                               |
|                                 | range to be considered NORM_V after                                   |                                               |
|                                 | being LO_V.                                                           |                                               |
| Master_Open_Close_Switch_Signal | Provides a request for Rear Gate/Trunk                                | Type: Physical Input – Discrete               |
|                                 | movement from the driver seat.                                        |                                               |
|                                 | Open Circuit – no request for movement                                |                                               |
| Martin BCT Once Class State     | Ground – request for movement                                         | To a Literal Discours                         |
| Master_RGT_Open_Close_Status    | Indicates the logical state of the                                    | Type: Internal – Discrete<br>Default: UNKNOWN |
|                                 | overhead (master) open/close switch.  ACTIVE – request for movement   | Default: UNKNOWN                              |
|                                 | INACTIVE – no request for movement                                    |                                               |
|                                 | UNKNOWN – switch has not been                                         |                                               |
|                                 | debounced                                                             |                                               |
| Master_RGT_Open_Close_Rqst      | Indicates a change on the master switch                               | Type: Internal – Discrete                     |
| Muster_RGT_Open_Close_Rqst      | to active has been detected.                                          | Default: INACTIVE                             |
|                                 | ACTIVE – request for movement                                         | Belault. II WEIT VE                           |
|                                 | INACTIVE – no request for movement                                    |                                               |
| Max_Drift_Close_Attempts        | Calibratible parameter to indicate the                                | Type: Internal – Continuous                   |
| inian_bini_erose_rimempus       | number of consecutive close attempts the                              | Default: TBD                                  |
|                                 | drift control algorithm will make.                                    |                                               |
|                                 | Range: 0 – 9 attempts                                                 |                                               |
| Max_Drift_Count                 | Calibratible parameter that indicates the                             | Type: Internal – Continuous                   |
|                                 | number of consecutive cycles that can                                 | Default: TBD                                  |
|                                 | occur before the RGT operation is                                     |                                               |
|                                 | disabled.                                                             |                                               |
|                                 | Range: 1-1000                                                         |                                               |
| Max_Drift_Hold_Time             | Calibratible parameter that determines                                | Type: Internal – Continuous                   |
|                                 | the length of the pause between catching                              | Default: TBD                                  |
|                                 | the gate with Max Dynamic Braking and                                 |                                               |
|                                 | starting the controlled power close.                                  |                                               |
| )                               | Range: 1-2000 msec                                                    |                                               |
| Mechanical_Full_Open_Position   | Threshold value on RGT_Position_                                      | Type: Internal – Continuous                   |
|                                 | Status that represents the learned                                    | Default: Same as                              |
|                                 | mechanical stop position.                                             | RGT_Position_Out_Of_Range                     |
| Massaga Cantar Present          | Range: 60-100 degrees  Calibration to determine whether the           | Type Internal Discrete                        |
| Message_Center_Present          |                                                                       | Type: Internal – Discrete<br>Default: PRESENT |
|                                 | vehicle uses the message center or a hardwired switch to provide Rear | Delault, FRESENT                              |
|                                 | Gate/Trunk lockout capability.                                        |                                               |
|                                 | PRESENT – use message center                                          |                                               |
|                                 | NOT_PRESENT – use hardwired switch                                    |                                               |
| Minimum_Full_Open_Position      | Threshold value on RGT_Position_                                      | Type: Internal – Continuous                   |
|                                 | Status that represents the lowest position                            | Default: 75 degrees                           |
|                                 | that can be learned.                                                  |                                               |
|                                 | Range: 60-90 degrees                                                  |                                               |
| -                               | 1 1441.50, 00 70 4051000                                              | l                                             |

FS-DP5T-14B673-BC Page 165 of 175

| Dataflow Name       | Definition                                                                                                                                                                                                                                                                                         | Attributes                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Motor_Abort_Voltage | Voltage threshold on Power_Vbatt<br>below which the module will abort any<br>operation in progress.<br>Range: 7-9.5 volts                                                                                                                                                                          | Type: Internal – Continuous<br>Default: 8 volts |
| Motor_EMF_Time      | Calibratible parameter to set the amount of time that Power_Vbatt needs to be above Vmax_Cfg to be considered OVER_V. Range: 5-50 msec                                                                                                                                                             | Type: Internal – Continuous<br>Default: 5 msec  |
| Motor_InRush_Time   | Calibratible parameter to set the amount of time that Power_Vbatt needs to be below Vmin_Cfg to be considered UNDER_V. Range: 5-100 msec                                                                                                                                                           | Type: Internal – Continuous<br>Default: 5 msec  |
| Network_Ok2Sleep    | Indicates when network conditions have been met to attempt to enter sleep mode. NOSLEEP - Network Sleep conditions haven't been met, do not attempt to enter sleep mode  SLEEP - Network sleep conditions have been met - ok to attempt to enter sleep mode (must await agreement by other nodes). | Type: Internal – Discrete<br>Default: NOSLEEP   |
| Network_OpMode      | Indicates if the network is asleep or awake.  AWAKE - Network is awake and will not attempt to enter sleep mode yet.  DROWSY - Network is no longer needed and is attempting to enter sleep mode.  SLEEP - Network is asleep.                                                                      | Type: Internal – Discrete<br>Default: AWAKE     |
| OdometerMasterValue | CAN signal from FNOS interaction layer containing the Odometer value.  Range: 0-0xFFFFFE  0xFFFFFF is considered invalid                                                                                                                                                                           | Type: Internal – Discrete<br>Default: 0xFFFFFF  |
| Odo_Status          | Indicates the status of the vehicle odometer relative to a constant breakpoint.                                                                                                                                                                                                                    | Type: Internal – Discrete<br>Default: HIGH      |
| Odo_Value_Available | Indicates whether the CAN message for OdometerMasterValue is correctly being received.  AVAILABLE – message is being received                                                                                                                                                                      | Type: Internal – Discrete<br>Default: LOST      |
|                     | LOST – message is invalid or lost                                                                                                                                                                                                                                                                  |                                                 |

FS-DP5T-14B673-BC Page 166 of 175

| Dataflow Name                | Definition                                                                                                                                                                                                                                                                                                        | Attributes                                                |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Odo_Value_Received           | Notification from FNOS interaction layer to indicate when a OdometerMasterValue is received.                                                                                                                                                                                                                      | Type: Internal – Discrete Default IDLE                    |
|                              | RECEIVED – a message has been received since the last time the application cleared the notification.                                                                                                                                                                                                              |                                                           |
|                              | IDLE – no message received (notification cleared)                                                                                                                                                                                                                                                                 |                                                           |
| OLC_slip_detected            | Indicates whether a Overload clutch slip has been detected.  TRUE – slip detected                                                                                                                                                                                                                                 | Type: Internal – Discrete Default: FALSE                  |
| Pending_RGT_Rqst             | FALSE – no slip detected  Created by validating front and rear user requests against  PwPckRGTLockout_Status. Used for movement inhibit during Start/Stop situations where RGT movement must be delayed during vehicle power interruption and restarts until proper vehicle power is available for RGT operation. | Type: Internal - Discrete                                 |
| PinchStrip_Reference_Voltage | Calibratible parameter to set lower threshold at which the pinch strips can be read reliably.                                                                                                                                                                                                                     | Type: Internal – Continuous<br>Units: volts<br>Default: 8 |
| RGT_Sector_Gear_Status       | Logical state of the sector gear position.  CINCH – sector gear is in cinching.  RELEASE – sector gear is in releasing.  NEUTRAL – sector gear is in neutral.  END – sector gear is at one end of travel.                                                                                                         | Type: Internal – Discrete<br>Default: NEUTRAL             |
| PwPckRGTLockout_Status       | Variable used for RGT inhibit during<br>Start/Stop situations where RGT<br>movement must be delayed during<br>vehicle power interruption and restarts.                                                                                                                                                            | Type: Internal - Discrete                                 |
| RGT_Ajar_Signal              | Indicates the state of the latch to the SJB.  Open Circuit – Rear Gate/Trunk is ajar Ground – Rear Gate/Trunk is closed                                                                                                                                                                                           | Type: Physical Output- Discrete<br>Default: Open Circuit  |
| RGT_Ajar_Status              | Indicates whether the latch is in the primary latched position or not.  AJAR – not in primary latch  CLOSED – in primary latch                                                                                                                                                                                    | Type: Internal – Discrete<br>Default: AJAR                |
| RGT_Glass_Ajar_Present       | Calibration to determine whether the vehicle has fixed glass or flip glass on the Rear Gate/Trunk.  PRESENT – flip glass  NOT_PRESENT – fixed glass                                                                                                                                                               | Type: Internal – Discrete<br>Default: NOT_PRESENT         |

FS-DP5T-14B673-BC Page 167 of 175

| Dataflow Name                           | Definition                                                                                                                                                                                                                                                                              | Attributes                                                                                                |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| RGT_Glass_Ajar_Signal                   | Indicates whether the RGT glass is                                                                                                                                                                                                                                                      | Type: Physical Input – Discrete                                                                           |
|                                         | ajar/open or closed.                                                                                                                                                                                                                                                                    |                                                                                                           |
|                                         | Open Circuit – glass is ajar                                                                                                                                                                                                                                                            |                                                                                                           |
|                                         | Ground – glass is closed                                                                                                                                                                                                                                                                |                                                                                                           |
| RGT_Glass_Ajar_Status                   | Indicates the logical state of the Rear                                                                                                                                                                                                                                                 | Type: Internal – Discrete                                                                                 |
|                                         | Gate/Trunk glass.                                                                                                                                                                                                                                                                       | Default: AJAR                                                                                             |
|                                         | AJAR – glass is ajar                                                                                                                                                                                                                                                                    |                                                                                                           |
|                                         | CLOSED – glass is closed                                                                                                                                                                                                                                                                |                                                                                                           |
| RGT_Handle_Cmd                          | Logic Signal to request a handle                                                                                                                                                                                                                                                        | Type: Internal – Discrete                                                                                 |
|                                         | activation based on CAN signal.                                                                                                                                                                                                                                                         | Default: UNKNOWN                                                                                          |
|                                         | UNKNOWN – CAN Signal not yet                                                                                                                                                                                                                                                            |                                                                                                           |
|                                         | received.                                                                                                                                                                                                                                                                               |                                                                                                           |
|                                         | ACTIVE – Request to activate Rear                                                                                                                                                                                                                                                       |                                                                                                           |
|                                         | Gate/Trunk.                                                                                                                                                                                                                                                                             |                                                                                                           |
|                                         | INACTIVE – No Request.                                                                                                                                                                                                                                                                  |                                                                                                           |
| RGT_Handle_Signal                       | Provides a request to unlatch the gate                                                                                                                                                                                                                                                  | Type: Physical Input – Discrete                                                                           |
| -                                       | from the exterior handle.                                                                                                                                                                                                                                                               |                                                                                                           |
|                                         | Open Circuit – no request                                                                                                                                                                                                                                                               |                                                                                                           |
|                                         | Vbatt – request to unlatch                                                                                                                                                                                                                                                              |                                                                                                           |
| RGT_Handle_Rqst                         | Indicates a change on the RGT handle to                                                                                                                                                                                                                                                 | Type: Internal – Discrete                                                                                 |
|                                         | active has been detected.                                                                                                                                                                                                                                                               | Default: INACTIVE                                                                                         |
|                                         | ACTIVE – request for movement                                                                                                                                                                                                                                                           |                                                                                                           |
|                                         | INACTIVE – no request for movement                                                                                                                                                                                                                                                      |                                                                                                           |
| RGT_Handle_Status                       | Indicates logical state of the Rear                                                                                                                                                                                                                                                     | Type: Internal – Discrete                                                                                 |
|                                         | Gate/Trunk handle signal.                                                                                                                                                                                                                                                               | Default: UNKNOWN                                                                                          |
|                                         | ACTIVE – request to unlatch                                                                                                                                                                                                                                                             |                                                                                                           |
|                                         | INACTIVE – no request                                                                                                                                                                                                                                                                   |                                                                                                           |
|                                         | UNKNOWN – signal has not been                                                                                                                                                                                                                                                           |                                                                                                           |
|                                         | debounced                                                                                                                                                                                                                                                                               |                                                                                                           |
| RGT_Handle_D_Req                        | CAN Signal to request a "handle                                                                                                                                                                                                                                                         | Type: Internal – Discrete                                                                                 |
|                                         | activation" of the Rear Gate/Trunk.                                                                                                                                                                                                                                                     | Default: NULL                                                                                             |
|                                         | RELEASE – Request activation.                                                                                                                                                                                                                                                           |                                                                                                           |
|                                         | NULL – No request.                                                                                                                                                                                                                                                                      |                                                                                                           |
|                                         |                                                                                                                                                                                                                                                                                         |                                                                                                           |
| RGT_Handle_Switch_Rqst                  | Derived from the logical state of                                                                                                                                                                                                                                                       | Type: Internal – Discrete                                                                                 |
| red r_ramore_s witch_requi              | RGT_Handle_Switch_Status in                                                                                                                                                                                                                                                             | 1990 1110111111 2150100                                                                                   |
|                                         |                                                                                                                                                                                                                                                                                         |                                                                                                           |
|                                         |                                                                                                                                                                                                                                                                                         |                                                                                                           |
|                                         | "Read RGT Handle Switch Status"                                                                                                                                                                                                                                                         |                                                                                                           |
| RGT Handle Switch Status                | "Read RGT Handle Switch Status" state machine figure.                                                                                                                                                                                                                                   | Type: Internal – Discrete                                                                                 |
| RGT_Handle_Switch_Status                | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of                                                                                                                                                                                                      | Type: Internal – Discrete                                                                                 |
| RGT_Handle_Switch_Status                | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal".                                                                                                                                                                                 | Type: Internal – Discrete                                                                                 |
|                                         | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal".  (Valid 45msec +/- 11msec)                                                                                                                                                      | V1                                                                                                        |
| RGT_Handle_Switch_Status  RGT_Chime_Cmd | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal".  (Valid 45msec +/- 11msec)  Indicates the desired state of the chime.                                                                                                           | Type: Internal – Discrete                                                                                 |
|                                         | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal".  (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep                                                                              | V1                                                                                                        |
|                                         | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as                                           | Type: Internal – Discrete                                                                                 |
|                                         | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as active.                                   | Type: Internal – Discrete                                                                                 |
| RGT_Chime_Cmd                           | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as active. NONE – no request for chime sound | Type: Internal – Discrete<br>Default: NONE                                                                |
|                                         | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as active.                                   | Type: Internal – Discrete Default: NONE  Type: Physical Output –                                          |
| RGT_Chime_Cmd                           | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as active. NONE – no request for chime sound | Type: Internal – Discrete Default: NONE  Type: Physical Output – Modulated                                |
| RGT_Chime_Cmd                           | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as active. NONE – no request for chime sound | Type: Internal – Discrete Default: NONE  Type: Physical Output – Modulated Tone frequency: 1000 Hz or 740 |
| RGT_Chime_Cmd                           | "Read RGT Handle Switch Status" state machine figure.  Debounced signal version of "RGT_Handle_Signal". (Valid 45msec +/- 11msec)  Indicates the desired state of the chime. SHORT – request a short beep LONG – request chime for as long as active. NONE – no request for chime sound | Type: Internal – Discrete Default: NONE  Type: Physical Output – Modulated                                |

FS-DP5T-14B673-BC Page 168 of 175

| Dataflow Name                 | Definition                                                        | Attributes                                 |
|-------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| RGT_Cinch_Pwr                 | Drives latch cinching motor in the                                | Type: Physical Output – Discrete           |
|                               | cinching direction.                                               |                                            |
|                               | Vbatt – apply battery to Cinch side of                            |                                            |
|                               | motor                                                             |                                            |
|                               | Ground – apply to the Return side of the                          |                                            |
|                               | motor                                                             |                                            |
| RGT_Return_Pwr                | Drives latch cinching motor in the                                | Type: Physical Output – Discrete           |
|                               | returning direction. (opposite of cinching                        |                                            |
|                               | direction)                                                        |                                            |
|                               | Vbatt – apply battery to Return side of                           |                                            |
|                               | motor                                                             |                                            |
|                               | Ground – Apply to the Cinch side the                              |                                            |
| Dom G. 1 D                    | motor                                                             |                                            |
| RGT_Cinch_Rqst                | Indicates a request to cinch the latch                            | Type: Internal – Discrete                  |
|                               | CINCH – request to cinch                                          | Default: NULL                              |
| DOM G                         | NULL – no request                                                 |                                            |
| RGT_Crossover_Point           | Threshold value on RGT_Position_                                  | Type: Internal – Continuous                |
|                               | Status that represents the position at                            | Default: 20 degrees                        |
|                               | which the liftstruts change direction.                            |                                            |
| DOT DEG COM                   | Range: 10-30 degrees                                              | To a Literary 1 Counting and               |
| RGT_Drift_Count               | Number of consecutive open cycles that                            | Type: Internal – Continuous                |
|                               | have resulted in drift events.                                    | Default: 0                                 |
| DCT Duift Countril Door       | Range: 0-1000                                                     | Town Lateranal Discusts                    |
| RGT_Drift_Control_Rqst        | Request by the drift control algorithm to control the drive unit. | Type: Internal – Discrete<br>Default: NULL |
|                               |                                                                   | Default: NOLL                              |
|                               | NULL – no request<br>HOLD – turn on Max Dynamic Brake             |                                            |
|                               | OPEN – power open gate                                            |                                            |
|                               | CLOSE – power close gate                                          |                                            |
| RGT_Drift_Event_Warning_Rqst  | Request for a fast chime by the drift                             | Type: Internal – Discrete                  |
| NOT_DIRE_Event_ warming_requi | control algorithm.                                                | Default: NULL                              |
|                               | ACTIVE – request for fast chime                                   | Boldani. IVOEE                             |
|                               | INACTIVE – no request                                             |                                            |
| RGT_Drift_Status              | Indicates whether a drift event has been                          | Type: Internal – Discrete                  |
| 1101_21110_50000              | detected.                                                         | Default: NO_DRIFT                          |
|                               | DRIFT – event detected                                            |                                            |
|                               | NO_DRIFT – no event detected                                      |                                            |
| RGT_EvNum                     | Holds the value of the rolling count last                         | Type: Internal – Discrete                  |
| _                             | received in CAN_KeyfobPad_Msg.                                    | Default: 7F                                |
|                               | Range: 0-FF counts                                                |                                            |
| RGT_Full_Open_Position        | Threshold on RGT_Position_Status at                               | Type: Interrnal – Continuous               |
| -                             | which an open operation will stop.                                | Default: same as                           |
|                               | Range: 55-100 degrees                                             | RGT_Position_Out_Of_Range                  |
| RGT_COLD_Crossover_Point      | Minimum RGT_Position_Status at                                    | Type: Internal – Continuous                |
|                               | which in worst case condition (COLD)                              | Default: 25 degrees                        |
|                               | Programmable Position could be                                    |                                            |
|                               | accepted                                                          |                                            |
| RGT_FET_Current               | Indicates the amount of current value to                          | Type: Internal – Continuous                |
|                               | detect the FET_OVER_CURRENT.                                      | Default: 40 Amps                           |

FS-DP5T-14B673-BC Page 169 of 175

| Dataflow Name             | Definition                                                             | Attributes                                      |
|---------------------------|------------------------------------------------------------------------|-------------------------------------------------|
| RGT_FET_Over_Current_Time | Calibratable parameter to set the amount                               | Type: Internal – Continuous                     |
|                           | of time that RGT current needs to be                                   | Units: milliseconds                             |
|                           | above RGT_FET_Current to be                                            | Default: 10 msec (4 counts)                     |
|                           | considered FET OVER CURRENT and                                        |                                                 |
|                           | set the short to battery DTC.                                          |                                                 |
|                           | Range: 0 – 600 msec, 2.5 millisecond                                   |                                                 |
|                           | ticks                                                                  |                                                 |
| RGT_Handle_SW_Enable_Stat | CAN signal based on validation of                                      | CAN Signal (TBD)                                |
|                           | DrTgateExtSwMde_B_Stat signal with                                     |                                                 |
|                           | Vbatt. Indicates status of inhibit rear                                |                                                 |
|                           | handle switch.                                                         |                                                 |
|                           | Enabled – TBD                                                          |                                                 |
|                           | Disabled - TBD                                                         |                                                 |
| RGT_Last_Movement_Status  | Used internally to remember the                                        | Type: Internal – Discrete                       |
|                           | direction of travel during a crank/pause                               | Default: NULL                                   |
|                           | event.                                                                 |                                                 |
|                           | CLOSE – Rear Gate/Trunk was moving                                     |                                                 |
|                           | in close direction                                                     |                                                 |
|                           | OPEN – Rear Gate/Trunk was moving in                                   |                                                 |
|                           | the open direction                                                     |                                                 |
|                           | UNLATCH – Rear Gate/Trunk was                                          |                                                 |
|                           | requested to unlatch only                                              |                                                 |
|                           | NULL – Rear Gate/Trunk was not                                         |                                                 |
| DOT I 1 1 P               | moving                                                                 | m I I D'                                        |
| RGT_Latched_Flag          | Indicates that the primary position has                                | Type: Internal – Discrete                       |
|                           | been reached during a cinch operation.                                 | Default: CLEAR                                  |
|                           | SET – primary has been detected                                        |                                                 |
| DCT Latahad Time          | CLEAR – primary not detected  Calibratible Parameter to set the amount | Tymas Intermal Continuous                       |
| RGT_Latched_Time          | of time to continue to cinch the latch                                 | Type: Internal – Continuous Units: milliseconds |
|                           | once the primary latch position has been                               | Default: 200                                    |
|                           | detected.                                                              | Default. 200                                    |
| RGT_Latch_Status          | Indicates the state of the latch (combines                             | Type: Internal – Discrete                       |
| KG1_Laten_Status          | forkbolt secondary, forkbolt primary and                               | Default: SECONDARY                              |
|                           | detent)                                                                | Delault. SECONDAIX I                            |
|                           | LATCHED – in primary position                                          |                                                 |
|                           | BEFORE_SECONDARY – entering                                            |                                                 |
|                           | secondary position                                                     |                                                 |
|                           | SECONDARY – in secondary position                                      |                                                 |
|                           | MIDLATCH – between secondary and                                       |                                                 |
|                           | primary                                                                |                                                 |
|                           | BEFORE_PRIMARY – entering                                              |                                                 |
|                           | primary position                                                       |                                                 |
|                           | UNLATCHED – out of latch                                               |                                                 |
|                           | OPEN – Out of latch and pawl dropped                                   |                                                 |
|                           | ERROR – unknown state                                                  |                                                 |
| RGT_Lockout_Signal        | Signal to indicate whether the Rear                                    | Type: Physical Input – Discrete                 |
|                           | Gate/Trunk rear controls are locked out                                |                                                 |
|                           | or not.                                                                |                                                 |
|                           | Open Circuit – locked                                                  |                                                 |
|                           | Ground – not locked                                                    |                                                 |

FS-DP5T-14B673-BC Page 170 of 175

| Dataflow Name             | Definition                                                      | Attributes                       |
|---------------------------|-----------------------------------------------------------------|----------------------------------|
| RGT_Lockout_Status        | Indicates the logical state of the RGT                          | Type: Internal – Discrete        |
|                           | lockout switch.                                                 | Default: LOCKED                  |
|                           | LOCKED – rear controls inoperative                              |                                  |
| D.C.T. 14 . C.C.          | NOT_LOCKED – rear control operative                             |                                  |
| RGT_Mode_Cfg              | Used to store the state of the RGT                              | Type: Internal – Discrete        |
|                           | lockout in case of reset.  ENABLE – Allow rear control to       | Default: None<br>Stored in NVM.  |
|                           | operate gate.                                                   | Stored III IN VIVI.              |
|                           | DISABLE – inhibit rear controls.                                |                                  |
| RGT_Motor_Close_Pwr       | Signal to drive the motor in the                                | Type: Physical Output – Discrete |
|                           | downward direction.                                             | Default: Ground                  |
|                           | Ground – not driving down                                       |                                  |
|                           | Vbatt – driving down                                            |                                  |
| RGT_Motor_Open_Pwr        | Signal to drive the motor in the upward                         | Type: Physical Output – Discrete |
|                           | direction.                                                      | Default: Ground                  |
|                           | Ground – not driving up                                         |                                  |
| D.C.T. M.                 | Vbatt – driving up                                              |                                  |
| RGT_Movement_Timeout      | Indicates that the drive motor has timed                        | Type: Internal – Discrete        |
|                           | out without reaching the end of travel.  TRUE – motor timed out | Default: FALSE                   |
|                           | FALSE – motor not timed out                                     |                                  |
| RGT_Move_Rqst             | Indicates a request to drive the Rear                           | Type: Internal – Discrete        |
| No 1_Mo ve_mqst           | Gate/Trunk.                                                     | Default: NULL                    |
|                           | OPEN – drive Rear Gate/Trunk open                               |                                  |
|                           | CLOSE – drive Rear Gate/Trunk closed                            |                                  |
|                           | NULL – no request                                               |                                  |
|                           | CINCH – Rear Gate/Trunk is being                                |                                  |
|                           | cinched to finish a close operation                             |                                  |
| RGT_Position_Near_Latch   | Threshold value on RGT_Position_                                | Type: Internal – Continuous      |
|                           | Status that represents the position at                          | Default: 5 degrees               |
|                           | which the module will consider the gate away from the latch     |                                  |
|                           | Range: 2-10 degrees                                             |                                  |
| RGT_Near_Latched_Flag     | Indicates that the before primary position                      | Type: Internal – Discrete        |
| ROT_IVEHI_Eutened_I lug   | has been reached during a cinch                                 | Default: CLEAR                   |
|                           | operation.                                                      |                                  |
|                           | SET – before primary has been detected                          |                                  |
|                           | CLEAR – before primary not detected                             |                                  |
| RGT_Near_Latched_Time     | Calibratable Parameter to set the amount                        | Type: Internal – Continuous      |
|                           | of time to continue to drive the cinch                          | Units: milliseconds              |
|                           | motor once the before primary latch                             | Default: 1000                    |
| DOM DOLL OF STATE         | position has been detected.                                     |                                  |
| RGT_Position_Out_Of_Range | Threshold value on RGT_Position_                                | Type: Internal – Continuous      |
|                           | Status that represents a position that cannot be reached.       | Default: 120 degrees             |
|                           |                                                                 |                                  |
|                           | Range: 110 – 130 degrees                                        |                                  |

FS-DP5T-14B673-BC Page 171 of 175

| Dataflow Name                   | Definition                                 | Attributes                                    |
|---------------------------------|--------------------------------------------|-----------------------------------------------|
| RGT_Position_Resynch_Rqst       | Request from the Control Rear              | Type: Internal – Discrete                     |
|                                 | Gate/Trunk FSM to set the                  | Default: NULL                                 |
|                                 | RGT_Position_Status back to zero           |                                               |
|                                 | because a power open operation is about    |                                               |
|                                 | to begin from the Closed state.            |                                               |
|                                 | SYNCH – Request to synchronize             |                                               |
|                                 | position.                                  |                                               |
|                                 | NULL – No request                          |                                               |
| RGT_Position_Status             | Angular representation of Rear             | Type: Internal – Continuous                   |
|                                 | Gate/Trunk position, based on Encoder      | Units: Degrees                                |
|                                 | Sensor input.                              | Default: 0                                    |
|                                 | Range: 0 – 130 degrees                     |                                               |
| RGT_Primary_Obstacle_Detection_ | Indicates whether an obstacle has been     | Type: Internal – Discrete                     |
| Status                          | detected, based on the speed of the Rear   | Default: OBSTACLE                             |
|                                 | Gate/Trunk.                                |                                               |
|                                 | OBSTACLE – an obstacle has been            |                                               |
|                                 | detected                                   |                                               |
|                                 | CLEAR – no obstacle has been detected      |                                               |
| RGT_Secondary_Obstacle_Dection  | Combines right and left pinch statuses to  | Type: Internal – Discrete                     |
| _Status                         | indicate whether a pinch has been          | Default: OBSTACLE                             |
|                                 | detected.                                  |                                               |
|                                 | OBSTACLE – an obstacle has been            |                                               |
|                                 | detected                                   |                                               |
|                                 | CLEAR – no obstacle has been detected      |                                               |
|                                 | ERROR – one of the signals is not in a     |                                               |
|                                 | valid range.                               |                                               |
| RGT_Sector_Gear_Status          | Logical state of the sector gear position. | Type: Internal Disarate                       |
|                                 | CINCH – sector gear is in cinching.        | Type: Internal – Discrete<br>Default: NEUTRAL |
|                                 | RELEASE – sector gear is in releasing.     | Default. NEU I KAL                            |
|                                 | NEUTRAL – sector gear is in neutral.       |                                               |
|                                 | END – sector gear is at one end of         |                                               |
|                                 | travel.                                    |                                               |
| RGT_Speed_Status                | Angular representation of gate speed       | Type: Internal – Continuous                   |
|                                 | based on Encoder Pulse Width.              | Default: TBD                                  |
|                                 | Range: TBD                                 | Default. 1DD                                  |
| RGT_Striker_UP_Signal           | Signal indicating position of Power        | Type: Internal – Discrete                     |
| KO1_Suikci_O1_Signal            | Striker used in Power Trunk vehicles.      | 1 ypc. Internal – Discrete                    |
|                                 | Closed Striker Up Switch – Striker in Up   |                                               |
|                                 | Position                                   |                                               |
| RGT_ Striker_Down_Signal        | Signal indicating position of Power        | Type: Internal – Discrete                     |
| KO1_Suikci_Dowii_Sigilal        | Striker used in Power Trunk vehicles.      | 1 ypc. Internal – Discrete                    |
|                                 | Closed Striker Down Switch – Striker in    |                                               |
|                                 | Down Position                              |                                               |
| RGT_System_Cfg                  | Indicates the configuration of the system: | Type: Internal - Discrete                     |
| KG1_System_Cig                  | MANUAL: For systems where gate             | 1 ype. Internal - Discrete                    |
|                                 | open/close manually.                       |                                               |
|                                 | POWER: For systems where gate              |                                               |
|                                 | open/close powered.                        |                                               |

FS-DP5T-14B673-BC Page 172 of 175

| Dataflow Name                 | Definition                                                                                                                                                                                                                  | Attributes                                                         |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| RGT_Unlatch_Pwr               | Signal to drive the latch motor in the unlatch (release) direction.  Vbatt – drive the unlatch motor in the release direction.                                                                                              | Type: Physical Output – Discrete<br>Default: Ground                |
|                               | Ground – do not drive the motor                                                                                                                                                                                             |                                                                    |
| RGT_Unlatch_Rqst              | Indicates a request for the latch to be released.  UNLATCH – request to release  NULL – no request                                                                                                                          | Type: Internal – Discrete<br>Default: NULL                         |
| Position_Program_Time         | Calibratible parameter that determines how long the customer must push the Local Switch to program the Rear Gate/Trunk hight. Releasing the switch before this time is a movement request. Range: 1-5000 msec               | Type: Internal – Continuous<br>Default: 3000ms                     |
| Position_Program_Present      | Calibration to enable or disable Programmable Stop feature NOT_PRESENT – Local switch only for movement                                                                                                                     | Type: Internal – Discrete<br>Default: NOT_PRESENT                  |
| Power_VBattRaw                | Battery voltage that powers the high current circuits in the module. Range: 0 – 24 volts.                                                                                                                                   | Type: Physical Input –<br>Continuous                               |
| PwPckTq_D_Stat                | MSCAN signal that indicates if the power pack is a motive (wheel torque producing) or non-motive (non-wheel torque producing) mode. It also indicates to if a transition from a non-motive to a motive mode is in progress. | Type: Unknown                                                      |
| Release_Return_Delay_Duration | Calibratable parameter for delay from a release operation to a release return operation. For GECOM latch Only Range: 0 – 2000 msec                                                                                          | Type: Internal – Continuous<br>Default: 500 msec.                  |
| Release_Return_Duration       | Calibratible Parameter to set the maximum amount of time to drive the latch motor to return it to the neutral position from the release position. Range: 20 to 1000 milliseconds                                            | Type: Internal – Continuous<br>Units: milliseconds<br>Default: 700 |
| Remote_RGT_Rqst               | Indicates a request for movement from MSCAN. RGT – request for movement NULL – no request                                                                                                                                   | Type: Internal – Discrete<br>Default: NULL                         |
| Remote_RGT_Signal             | CAN signal from FNOS interaction layer indicating a request for movement via keyfob.  NULL – 0x0  ACTIVE – 0x1                                                                                                              | Type: Internal – Discrete<br>Default: NULL                         |

FS-DP5T-14B673-BC Page 173 of 175

| Dataflow Name               | Definition                                 | Attributes                                 |
|-----------------------------|--------------------------------------------|--------------------------------------------|
| Right_Pinch_Strip_Signal    | Signal to indicate a pinch on the right    | Type: Physical Input                       |
|                             | side of the Rear Gate/Trunk.               | Units: Ohms                                |
|                             | PINCHED – an obstacle is pinched           |                                            |
|                             | NOT_PINCHED – no obstacle is               |                                            |
|                             | pinched                                    |                                            |
|                             | ERROR – the signal is not in a valid       |                                            |
|                             | range.                                     |                                            |
| Right_Pinch_Strip_Status    | Logical state of the right pinch strip     | Type: Internal – Discrete                  |
|                             | debounced over number of samples.          | Default: PINCHED                           |
|                             | PINCHED – an obstacle is pinched           |                                            |
|                             | NOT_PINCHED – no obstacle is               |                                            |
|                             | pinched                                    |                                            |
|                             | ERROR – the signal is not in a valid       |                                            |
|                             | range.                                     |                                            |
| Sector_Close_Switch_Signal  | Signal that indicates whether the latch    | T DI LI LI DI                              |
| 5                           | motor has moved the sector gear into the   | Type: Physical Input – Discrete            |
|                             | Releasing region.                          |                                            |
|                             | Open Circuit – sector gear is either in    |                                            |
|                             | neutral or cinching.                       |                                            |
|                             | Ground – sector gear is in either          |                                            |
|                             | releasing or end of travel.                |                                            |
| Sector_Gear_Position_Signal | Combines Sector Gear Close Switch          | Town Lateran 1 Discussion                  |
|                             | Signal and Sector Gear Open Switch         | Type: Internal – Discrete Default: NEUTRAL |
|                             | Signal samples.                            | Default: NEU I RAL                         |
|                             | CINCH – sector gear is in cinching.        |                                            |
|                             | RETURN – sector gear is in returning.      |                                            |
|                             | NEUTRAL – sector gear is in neutral.       |                                            |
|                             | END – sector gear is at one end of         |                                            |
|                             | travel.                                    |                                            |
| Caston Onen Casitala Cianal | Signal that indicates whether the latch    | Towns Dissert Disserts                     |
| Sector_Open_Switch_Signal   | motor has moved the sector gear into the   | Type: Physical Input – Discrete            |
|                             | Cinching region.                           |                                            |
|                             | Open Circuit – sector gear is either in    |                                            |
|                             | neutral or releasing.                      |                                            |
|                             | Ground – sector gear is in either          |                                            |
|                             | cinching or end of travel.                 |                                            |
| Sleep_Recover_Flag          | Used to indicate that the gate needs to    | Type: Internal – Discrete                  |
|                             | recover position.                          | Default: RECOVER                           |
|                             | RECOVER – position needs to be             | Delault. RECOVER                           |
|                             | recovered                                  |                                            |
|                             | OK – position is OK.                       |                                            |
| Slow Sample Rate            | Indicates the sample rate for debouncing   | Type: Internal – Continuous                |
| Slow_Sample_Rate            | digital inputs while asleep.               | Default: Supplier defined.                 |
|                             | Range: 1 – 50 msec                         | 11                                         |
| Sound_Duration              | Indicates the time that a sound unit is to | Type: Internal – Continuous                |
|                             | be active on the chime.                    | Default: 0 sec                             |
|                             | 0 sec- no chime sound                      |                                            |
|                             | 1 sec – chime for 1 second                 |                                            |
| Synch_Status                | Flag to indicate when to reset the power   | Type: Internal – Discrete                  |
|                             | Rear Gate/Trunk position to zero.          | Default: NOT_SYNCH                         |
|                             |                                            |                                            |
|                             | SYNCH – reset position                     |                                            |

FS-DP5T-14B673-BC Page 174 of 175

| Dataflow Name                 | Definition                                 | Attributes                     |
|-------------------------------|--------------------------------------------|--------------------------------|
| Tone_Frequency                | Indicates the pitch of the chime sound     | Type: Internal – Discrete      |
|                               | 0 Hz – no chime sound                      | Default: 0 Hz                  |
|                               | 750 Hz – Chime                             |                                |
|                               | 1000 Hz – Tone                             |                                |
| Transmission_Status           | Logical state of the transmission position | Type: Internal – Discrete      |
|                               | PARK                                       | Default: NEUTRAL               |
|                               | REVERSE                                    |                                |
|                               | NEUTRAL                                    |                                |
|                               | DRIVE                                      |                                |
|                               | LOW                                        |                                |
| Transmission_Status_Available | Indicates whether the CAN message for      | Type: Internal – Discrete      |
|                               | transmission position is correctly being   | Default: LOST                  |
|                               | received.                                  |                                |
|                               | AVAILABLE – message is being               |                                |
|                               | received                                   |                                |
|                               | LOST – message is invalid or lost          |                                |
| Transmission_Status_Park      | Indicates whether the transmission is      | Type: Internal – Discrete      |
|                               | known to be in Park.                       | Default: NOT_PARK              |
|                               | PARK – transmission is in park             |                                |
|                               | NOT_PARK – transmission is not in          |                                |
|                               | park, or is unknown.                       |                                |
| Valid_RGT_Move_Rqst           | Request to move the Rear Gate/Trunk        | Type: Internal – Discrete      |
|                               | that has been validated via Park, VSS,     | Default: INACTIVE              |
|                               | lockout and inhibit.                       |                                |
|                               | ACTIVE – valid request                     |                                |
|                               | INACTIVE – no request or invalid           |                                |
|                               | request.                                   |                                |
|                               | UNLATCH- unlatch request                   |                                |
|                               | INHIBIT – movement inhibited               |                                |
| VbattState                    | Array of values to indicate the state of   | Type: Internal – Discrete      |
|                               | the battery voltage relative to the        | Default: UNDER_V               |
|                               | operating limits.                          |                                |
|                               | NORM_V – In normal operating range         |                                |
|                               | HI_V – above VMax for a short duration     |                                |
|                               | LO_V – below VMin for a short              |                                |
|                               | duration                                   |                                |
|                               | UNDER_V – below VMin for too long          |                                |
|                               | OVER_V – above VMax for too long           |                                |
|                               | INHIBIT_V – outside range to start         |                                |
|                               | operation                                  |                                |
|                               | ABORT_V – outside range to continue        |                                |
|                               | operation                                  |                                |
| Vehicle_Lock_Status           | Reported vehicle lock status through the   | Type : Internal Discrete       |
|                               | CAN bus validated against                  |                                |
|                               | Vbatt(VrangeCAN)                           |                                |
| Vehicle_Access_RqstM          | CAN Message to contain Rear                | Type: MSCAN                    |
|                               | Gate/TrunkHandle_D_Req                     | Transmit Model: Event Periodic |
|                               |                                            | Transmit Rate: 100 millisecond |
| Vehicle_Speed                 | Logical absolute value of the vehicle      | Type: Internal – Continuous    |
|                               | speed.                                     | Units: kph                     |
|                               |                                            | Default: 0                     |

FS-DP5T-14B673-BC Page 175 of 175

| Dataflow Name           | Definition                                 | Attributes                  |
|-------------------------|--------------------------------------------|-----------------------------|
| Vehicle_Speed_Available | Indicates whether the CAN message for      | Type: Internal – Discrete   |
|                         | vehicle speed is correctly being received. | Default: LOST               |
|                         | AVAILABLE – message is being               |                             |
|                         | received                                   |                             |
|                         | LOST – message is invalid or lost          |                             |
| Vehicle_Speed_OK        | Indicates whether the Vehicle Speed is     | Type: Internal – Discrete   |
|                         | above 5 kph for more than 2 seconds, or    | Default: NOT_OK             |
|                         | is lost.                                   |                             |
|                         | OK – below 5 kph and available             |                             |
|                         | NOT_OK – above 5 kph or not available      |                             |
| Vehicle_Speed_Slow      | Indicates whether vehicle speed is         | Type: Internal – Discrete   |
|                         | known to be below 5 kph                    | Default: FAST               |
|                         | SLOW – vehicle speed is below 5 kph        |                             |
|                         | FAST – vehicle speed is above 5 kph or     |                             |
|                         | is unknown                                 |                             |
| VMax_Cfg                | Array of values to indicate the upper      | Type: Internal – Continuous |
|                         | limit of the operating voltage ranges.     | Default: 16 volts           |
|                         | Range: 14 – 24 Volts                       |                             |
| VMin_Cfg                | Array of values to indicate the lower      | Type: Internal – Continuous |
|                         | limit of the operating voltage ranges.     | Default: 8 volts            |
|                         | Range: 5 – 10 Volts                        |                             |
| Volume_Decay_Rate       | Indicates the time constant of the         | Type: Internal – Continuous |
|                         | exponential decay of the chime volume.     | Default: 0                  |
|                         | 0 – no decay, either no sound, or tone     |                             |
|                         | 0.7 – decay for a chime sound              |                             |
| VSS_Signal              | Signal to the RGTM to reflect the state    | Type: physical signal       |
|                         | of Vehicle_Speed_Slow                      |                             |
|                         | Ground – vehicle speed is slow             |                             |
|                         | Open Circuit – vehicle speed is not slow   |                             |
| WaitMsg_Cfg             | Amount of time the network sleep/awake     | Type: Internal – Continuous |
|                         | FSM waits after getting the OK for sleep   | Default: 600 msec           |
|                         | before actually requesting the network to  |                             |
|                         | sleep                                      |                             |
|                         | Range: 0 - 10 seconds                      |                             |
|                         |                                            |                             |
|                         |                                            |                             |