SEQUENCE LISTING

	·
1.	GENERAL INFORMATION:
(i)	APPLICANT: ROMEO, Tony and WANG, Xin
(ii)	TITLE OF INVENTION: METHODS FOR POLYSACCHARIDE ADHESIN SYNTHESIS MODULATION
(iii)	NUMBER OF SEQUENCES: 6
(iv)	CORRESPONDENCE ADDRESS:
	Ridout & Maybee LLP 19th Floor - 150 Metcalfe Street Ottawa, Ontario K2P 1P1
(v) .	COMPUTER-READABLE FORM:
	a) COMPUTER: IBM Compatible b) OPERATING SYSTEM: MS DOS c) SOFTWARE: EditPad
(vi)	CURRENT APPLICATION DATA:
	a) APPLICATION NUMBER: b) FILING DATE: c) CLASSIFICATION:
(vii)	PRIOR APPLICATION DATA:
	a) APPLICATION NUMBER: US 60/414,352 b) FILING DATE: 9/30/2002 c) CLASSIFICATION:
2.	INFORMATION FOR SEQ ID NO: 1
(i)	SEQUENCE CHARACTERISTICS:
	a) LENGTH: 2700 b) TYPE: c) STRANDEDNESS: d) TOPOLOGY:
(ii)	MOLECULE TYPE: Combined DNA and Amino Acid Sequences
(iii)	HYPOTHETICAL: No
(iv)	ANTI-SENSE: No
· (v)	FRAGMENT TYPE:
(vi)	ORIGINAL SOURCE:
(vii)	IMMEDIATE SOURCE:
(viii)	POSITION IN GENOME:
	a) CHROMOSOME/SEGMENT:

```
b)
                    MAP POSITION:
             c)
                    UNITS:
(ix)
             FEATURE:
             a)
                    NAME/KEY:
             b)
                    LOCATION:
             C)
                    IDENTIFICATION METHOD:
             d)
                    OTHER INFORMATION:
(x)
             PUBLICATION INFORMATION:
             a)
                    AUTHOR(S):
             b)
                    TITLE:
             c)
                    JOURNAL:
             d)
                    VOLUME:
             e)
                    ISSUE:
             £)
                    PAGE(S):
             g)
                    DATE:
             h)
                    DOCUMENT NUMBER:
             i)
                    FILING DATE:
             j)
                    PUBLICATION DATE:
                    RELEVANT RESIDUES IN SEQUENCE ID NO:
             k)
(xi)
             SEQUENCE DESCRIPTION: SEQUENCE ID NO: 1
ATGTATTCAAGTAGCAGAAAAAGGTGCCCGAAAACCAAATGGGCTTTGAAACTTCTTACT
                                                     300
MYSSSRKRCPKTKWALKLLT
GCCGCATTTTTAGCAGCGAGTCCCGCGGCGAAGAGTGCTGTTAATAACGCCTATGATGCA
                                                     360
AAFLAASPAAKSAVNNAYDA
TTGATTATTGAAGCTCGCAAGGGTAATACTCAGCCAGCTTTGTCATGGTTTGCACTAAAA
                                                     420
LIIEARKGNTQPALSWFALK
TCAGCACTCAGCAATAACCAAATTGCTGACTGGTTACAGATTGCCTTATGGGCCGGGCAA
                                                     480
S A L S N N Q I A D W L Q I A L W A G Q
GATAAACAGGTTATTACCGTTTACAACCGCTACCGTCATCAGCAATTACCAGCGCGTGGT
                                                     540
D K Q V I T V Y N R Y R H Q Q L P A R G
TATGCAGCTGTCGCCGTCGCTTATCGTAACCTGCAACAATGGCAAAACTCGCTTACACTG
                                                     600
Y A A V A V A Y R N L Q Q W Q N S L T L
TGGCAAAAGGCGCTCTCTCTGGAGCCGCAAAATAAGGATTATCAACGGGGACAAATTTTA
                                                     660
WQKALSLEPQNKDYQRGQIL
ACCCTGGCAGATGCTGGTCACTATGATACTGCGCTGGTTAAACTTAAGCAGCTTAACTCT
                                                     7.20
TLADAGHYDTALVKLKQLNS
GGAGCACCGGACAAAGCCAATTTACTCGCAGAAGCCTATATCTATAAACTGGCGGGGCGT
                                                     780
G A P D K A N L L A E A Y I Y K L A G R
CATCAGGATGAATTACGGGCGATGACAGAGTCATTACCTGAAAATGCATCTACGCAACAA
                                                     840
HQDELRAMTESLPENASTQQ
TATCCCACAGAATACGTGCAGGCATTACGTAATAATCAACTTGCTGCCGCGATTGACGAT
                                                     900
Y P T E Y V Q A L R N N Q L A A A I D D
GCCAATTTAACGCCAGATATTCGCGCTGATATTCATGCCGAACTGGTCAGACTGTCGTTT
                                                     960
ANLTPDIRADIHAELVRLSF
ATGCCTACGCGCAGTGAAAGTGAACGTTATGCCATTGCCGATCGCGCCCTCGCCCAATAC
                                                     1020
M P T R S E S E R Y A I A D R A L A Q Y
GCTGCATTAGAAATTCTGTGGCACGATAACCCAGACCGCACTGCCCAGTACCAGCGTATT
                                                     1080
AALEILWHDNPDRTAOYORI
CAGGTTGATCATCTTGGCGCGTTATTAACTCGCGATCGTTATAAAGACGTTATTTCTCAC
Q V D H L G A L L T R D R Y K D V I S H
TATCAGCGATTAAAAAAGACGGGGCAAATTATTCCGCCCTGGGGGCAATATTGGGTTGCA
                                                     1200
```

1260

Y Q R L K K T G Q I I P P W G Q Y W V A TCGGCTTATCTCAAAGATCATCAGCCGAAAAAAGCACAGTCAATAATGACCGAGCTCTTT

SAYLKDHQPKKAQSIMTELF

	-
TATCACAAGGAGACCATTGCCCCGGATTTATCCGATGAAGAACTTGCGGATCTCTTTTAC	1320
Y H K E T I A P D L S D E E L A D L F Y	
AGCCACCTGGAGAGTGAAAATTATCCGGGCGCGCTAACTGTCACCCAACATACCATTAAT	1380
SHLESENYPGALTVTQHTIN	
ACTTCGCCGCCTTCCTTCGGTTAATGGGCACGCCTACGAGCATCCCGAATGATACCTGG	1440
	1310
T S P P F L R L M G T P T S I P N D T W	1500
TTACAGGGGCATTCGTTTCTCTCAACCGTAGCAAAATATAGTAATGATCTTCCTCAGGCT	1500
L Q G H S F L S T V A K Y S N D L P Q A	
GAAATGACAGCCAGAGAGCTTGCTTATAACGCACCAGGAAATCAGGGACTGCGCATTGAT	1560
E M T A R E L A Y N A P G N Q G L R I D	
TACGCGAGTGTGTTACAAGCCCGCGGTTGGCCTCGTGCAGCAGAAAATGAATTAAAAAAA	1620
	2020
	1.000
GCAGAAGTGATCGAGCCACGTAATATTAATCTGGAGGTTGAACAAGCCTGGACAGCATTA	1680
A E V I E P R N I N L E V E Q A W T A L	
ACGTTACAAGAATGGCAGCAGCAGCTGTCTTAACGCACGATGTTGTCGAACGTGAACCG	1740
T L Q E W Q Q A A V L T H D V V E R E P	
CAAGATCCCGGCGTTGTACGATTAAAACGTGCGGTTGATGTACATAATCTTGCAGAGCTT	1800
Q D P G V V R L K R A V D V H N L A E L	
CGTATCGCTGGCTCAACAGGAATTGATGCCGAAGGCCCGGATAGTGGTAAACATGATGTC	1860
	1000
KIROOI GIBUI BUI BUI BI	1000
GACTTAACCACCATCGTTTATTCACCACCGCTGAAGGATAACTGGCGCGGTTTTGCTGGA	1920
D L T T I V Y S P P L K D N W R G F A G	
TTCGGTTATGCCGATGGACAATTTAGCGAAGGAAAAGGGATTGTTCGCGACTGGCTTGCG	1980
F G Y A D G O F S E G K G I V R D W L A	
GGTGTTGAGTGGCGGTCACGTAATATCTGGCTCGAGGCAGAGTACGCTGAACGCGTTTTC	2040
G V E W R S R N I W L E A E Y A E R V F	
AATCATGAGCATAAACCCGGCGCGCGCTGTCTGGCTGGTATGATTTTAATGATAACTGG	2100
	2100
N H E H K P G A R L S G W Y D F N D N W	21.60
CGTATTGGTTCGCAACTGGAACGCCTCTCTCACCGCGTTCCATTACGGGCAATGAAAAAT	2160
RIGSQLERLSHRVPLRAMKN	
GGTGTTACAGGCAACAGTGCTCAGGCTTATGTTCGCTGGTATCAAAATGAGCGGCGTAAG	2220
G V T G N S A Q A Y V R W Y Q N E R R K	
TACGGTGTCTCCTGGGCTTTCACTGATTTTTCCGACAGTAACCAGCGTCATGAAGTCTCA	2280
Y G V S W A F T D F S D S N Q R H E V S	
CTTGAGGGTCAGGAACGCATCTGGTCTTCACCATATTTGATTGTCGATTTCCTACCCAGT	2340
	2310
LEGQERIWSSPYLIVDFLPS	2400
CTGTATTACGAACAAAATACAGAACACGATACCCCATACTACAACCCTATAAAAACGTTC	2400
LYYEQNTEHDTPYYNPIKTF	
GATATTGTTCCGGCATTTGAGGCAAGCCATTTGTTATGGCGAAGCTATGAAAATAGCTGG	2460
DIVPAFEASHLLWRSYENSW	
GAGCAAATATTCAGCGCAGGTGTTGGTGCCTCCTGGCAAAAACATTATGGCACGGATGTC	2520
E Q I F S A G V G A S W Q K H Y G T D V	2580
GTCACCCAACTCGGCTACGGGCAACGCATTAGTTGGAATGACGTGATTGAT	2300
V T Q L G Y G Q R I S W N D V I D A G A	
ACGCTACGCTGGGAAAAACGACCTTATGACGGTGACAGAGAACACAACTTATACGTTGAA	2640
T L R W E K R P Y D G D R E H N L Y V E	
TTCGATATGACATTCAGATTTTAAGGATAAATATGTTACGTAATGGAAATAAAT	2700
FDMTFRF *	

INFORMATION FOR SEQ ID NO: 2 2.

(i) SEQUENCE CHARACTERISTICS:

- LENGTH: 2031 TYPE: a)
- STRANDEDNESS: TOPOLOGY:
- b) c) d)
- MOLECULE TYPE: Combined DNA and Amino Acid Sequences (ii)

```
HYPOTHETICAL: No
(iii)
              ANTI-SENSE: No
(iv)
              FRAGMENT TYPE:
(v)
              ORIGINAL SOURCE:
(vi)
              IMMEDIATE SOURCE:
(vii)
              POSITION IN GENOME:
(viii)
                     CHROMOSOME/SEGMENT:
              a)
                     MAP POSITION:
              b)
                     UNITS:
              c)
              FEATURE:
(ix)
                     NAME/KEY:
              a)
              b)
                     LOCATION:
                     IDENTIFICATION METHOD:
              c)
                     OTHER INFORMATION:
              d)
              PUBLICATION INFORMATION:
(x)
                     AUTHOR(S):
              a)
                     TITLE:
              b)
                     JOURNAL:
              c)
                      VOLUME:
              d)
                      ISSUE:
                      PAGE(S):
               f)
               g)
                      DATE:
                      DOCUMENT NUMBER:
               h)
                      FILING DATE:
               i)
                      PUBLICATION DATE:
               j)
                      RELEVANT RESIDUES IN SEQUENCE ID NO:
               SEQUENCE DESCRIPTION: SEQUENCE ID NO: 2
 (xi)
 TTAAGGATAAATATGTTACGTAATGGAAATAAATATCTCCTGATGCTGGTGAGTATAATT
                                                         60
     MLRNGNKYLLMLVSII
 ATGCTCACCGCGTGCATTAGCCAGTCAAGAACATCATTTATACCGCCACAGGATCGCGAA
                                                         120
 M L T A C I S Q S R T S F I P P Q D R E
 TCTTTACTCGCCGAGCAACCGTGGCCGCATAATGGTTTTGTAGCGATTTCATGGCATAAC
                                                         180
 S L L A E Q P W P H N G F V A I S W H N
                                                         240
 GTTGAAGACGAAGCTGCCGACCAGCGTTTTATGTCAGTGCGGACATCAGCACTGCGTGAA
 V E D E A A D Q R F M S V R T S A L R E
 CAATTTGCCTGGCTGCGCGAGAACGGTTATCAACCGGTCAGTATTGCTCAAATTCGTGAA
                                                         300
 Q F A W L R E N G Y Q P V S I A Q I R E
 GCACATCGAGGAGGAAAACCGCTACCGGAAAAAGCTGTAGTGCTGACTTTTGATGACGGC
                                                          360
 A H R G G K P L P E K A V V L T F D D G
 TACCAGAGTTTTTATACCCGCGTCTTCCCAATTCTTCAGGCCTTCCAGTGGCCTGCTGTA
                                                          420
 Y Q S F Y T R V F P I L Q A F Q W P A V
 TGGGCCCCCGTCGGCAGTTGGGTCGATACGCCAGCGGATAAACAAGTAAAATTTGGCGAT
                                                          480
 W A P VG S W V D T P A D K Q V K F G D
 GAGTTGGTCGAGAATATTTTGCCACGTGGCAACAAGTGCGAGAAGTTGCGCGTTCC
                                                          540
 E L V D R E Y F A T W Q Q V R E V A R S
 CGGCTCGTTGAGCTCGCTTCTCATACATGGAATTCTCACTACGGTATTCAGGCTAATGCC
                                                          600
 R L V E L A S H T W N S H Y G I Q A N A
 660
```

T	G	S	L	L	P	V	Y	V	N	R	Α	Y	F	T	D	H	Α	R	Y	
GAA	ACC	GCA	GCA.	GAA								GAT	'GC'I	GTA	AAA	ATG	ACG	GAA	TAC	720
E	T	Α	Α	E	Y	R	E	R	I	R	L.	D	Α	V	K	М	T	E	Y	
CTG	CGT	ACA	AAG	GTT	'GAG	GTA	TAA	CCA	CAC	GTT	TTT	GTT	TGG	CCT	TAT	GGC	GAP	AGCG	CAAT	780
							N			V			W			G	E	Α	N	
																ACC	CTT	GAA	TCA	840
G		Α				L				G			M		F	T	L	E	S	
_			_	_					_					_		:GCC	AA:	ראבי	CCC	900
G		A		A	S		L			I						A	N	N	P	
																			ATA	960
S				F			0				v							R	I	300
			_	_		~	_					_					~		TTAT	1020
M M		I		L	D		V			E			Q		M	D	R	N N	I	1020
		-	-					_											ATTT	1080
																		A.		1000
-	V						K			Q						L			_	1140
		-																	ACCA	1140
	_	P	D	G		G		V			V		F	-	N	R	L	L	P	1000
																			AAAC	1200
M		Α	D							W				T 		S	G	V	N	
																			AAAA	1260
Ι	Y	Α	W	M		V		S		D.			P			T	R	V	K	
TAC	CTTI	ACCI	AACA	AGG(GGA(SAA	VAA	AGC	ACA	TAA									CTCT	1320
Y		P	T			K		Α		Ι	Н		E		Y	H	R	L	S	
CC	CTTC	CGA!	'GAC	ÄG	AGT	CAG	AGC	ACAI	GT'	rgg(CATO				\GA'	CT.	rgc	CGG	ACAT	1380
P		D	D	.R	V	R	Α	Q	V	G	M		Y		D	L	A	G	Н	
GC:	rgc:	TTT	rga?	rgg(CAT	ATTO	GTT	CCAC	CGA'	TGA'	rgci	TTT	GCT'	TTC	\GA:	CTA!	rga.	AGA'	rgcc	1440
Α	A	F	D .							D			L		D	Ÿ		D	A	
AG'	rgcz	ACC	GC'	TAT	CAC	GGC'	TTA!	rca(GCA	AGC	AGG	CTT	rag(CGG	GAG:	rct(GAG	CGA	TTAA	1500
S		P			T		Y			Α					S	L	S	E	I,	
CG	ACA	AAA														rgc	GTT.	AAC'	TGAC	1560
		N	P	E	Q	F	K	Q	W	Α	R	F	K	S	R	Α	L	T	D	
TT	CAC'	TTT	AGA/	ACT'	TAG	TGC	GCG(CGT	AAA	AGC	CAT	rcg	CGG'	TCC	ACA!	'TAT	TAA	AAC'	TGCA	1620
F	T	L	E	L	S	Α	R	V	K	Ą	Ŀ	R	G	P	Н	I	K	T	A:	
CG	AAA'	TAT	rrr	rgc.	ACT	TCC	GGT	AAT	ACA	ACC'	TGA	AAG'	TGA.	AGC	CTĠ(GTT'	TGC	ACA	GAAT	1680
Ŕ	N··		F				V				E		E	Α	W	F			N	
TA	TGC'	TGA	TTT	CCT.	AAA	AAG	CTA'	TGA	CTG	GAC	CGC	TAT'	TAT	GGC'	TAT	GCC	TTA	TCT	GGAA	1740
Y	A	D	F	T.	K.	S	Y	D	W	T	Α	I	М	Α	М			L		
	ጥርጥ	CGC	AGA:	AAA	ATC	GGC	TGA	CCA	ATG	GTT.	AAT	ACA	ТТА	GAC	CAA'		AAT	TAA	AAAC	1800
G	v		E	K		A				L		Q				0		K	N	
ΔΨ	רלים: יי	ጥርል	בברי הברי	ממד	DCD →	$\alpha \alpha \gamma$	ATC	TAT	ጥጥጥ	AGA	ATT.							GAA	TAAA	1860
T	B	707	л Л	K	יינטני. ח	K		т	Τ.	E	τ.	0	A	0	N	W	0	K	N	
CC	ምርን	CCN	ጥርን ከ	ממט זי	ጥአጥ	ጥጥረ	ጥጥር	ርሮል	מים מים	አርጥ	CGC	ጥሮል፡	CTG	CAT	GAG	CCT	AΨT		ACTG	1920
	0		Q		I	S			Q		Ä		W	М		L		0	L	
אַג	שרר ה	. 11 76 CT	\sim \sim \sim \sim	. ጨ አአአ	ርሞክ	TCC	יתיתית מיתיתית	ጥጥ ሊጥጥ	ጥርር	CGA									AATA	1980
	166	HG I	GAA V	nnn N	CIM	.100	TIM	TIM	D	D	N M	בי	L	H	N	0011	P	E	I	7.77
N	_G	m v m	mc~	mCC 13	I T	CEE.	mm~	አአጣ ተ	አርር ድ	CTG	Curv M	ጥርር ቴ	עעט ה					_	-	2031
														AAA N	D	**				2001
D	L	I	R	P	E	F	S	T	A	W	Y	-			_					
					٠.									OP						
											(ICD	y S	TAR	TC	CDO	/N)			

INFORMATION FOR SEQ ID NO: 3

SEQUENCE CHARACTERISTICS: (i)

- a)
- b)
- LENGTH: 1560 TYPE: STRANDEDNESS: c)
- TOPOLOGY: d)

MOLECULE TYPE: Combined DNA and Amino Acid Sequences (ii)

```
(iii)
             HYPOTHETICAL: No
(iv)
             ANTI-SENSE: No
(v)
             FRAGMENT TYPE:
(vi)
             ORIGINAL SOURCE:
(vii)
             IMMEDIATE SOURCE:
(viii)
             POSITION IN GENOME:
             a)
                   CHROMOSOME/SEGMENT:
             b)
                   MAP POSITION:
             c)
                   UNITS:
(ix)
             FEATURE:
             a)
                   NAME/KEY:
             b)
                   LOCATION:
                   IDENTIFICATION METHOD:
             c)
             d)
                   OTHER INFORMATION:
(x)
             PUBLICATION INFORMATION:
             a)
                   AUTHOR(S):
             b)
                   TITLE:
             c)
                   JOURNAL:
                   VOLUME:
             d)
             e)
                   ISSUE:
             f)
                   PAGE(S):
             g)
                   DATE:
             h)
                   DOCUMENT NUMBER:
             i)
                   FILING DATE:
             j)
                   PUBLICATION DATE:
                   RELEVANT RESIDUES IN SEQUENCE ID NO:
(xi)
             SEQUENCE DESCRIPTION: SEQUENCE ID NO: 3
AAAATGATTAATCGCATCGTATCGTTTTTTATATTATGTCTGGTGTTATGCATACCCCTA
                                                    240
  MINRIVSFFILCLVLCIPL
TGCGTAGCGTACTTTCACTCTGGTGAACTGATGATGAGGTTCGTTTTCTTCTGGCCGTTT
                                                    300
CVAYFHSGELMMRFVFFWPF
TTTATGTCCATTATGTGGATTGTTGGCGGCGTCTATTTCTGGGTCTATCGTGAACGCCAC
                                                    360
F M S I M W I V G G V Y F W V Y R E R H
TGGCCGTGGGGAGAAACGCACCAGCTCCCCAGTTGAAAGATAATCCGTCTATCTCCATT
                                                    420
WPWGENAPAPQLKDNPSISI
ATCATTCCCTGTTTTAATGAGGAGAAAACGTTGAGGAAACCATACACGCCGCTTTAGCA
                                                    480
IIPCFNEEKNVEETIHAALA
CAGCGTTATGAGAACATTGAAGTTATTGCCGTAAATGACGGTTCAACAGATAAAACCCGT
                                                    540
Q R Y E N I E V I A V N D G S T D K T R
600
A I L D R M A A Q I P H L R V I H L A Q
AACCAGGGGAAAGCCATTGCGCTTAAAACCGGAGCTGCCGCGGCGAAAAGTGAATATCTG
                                                    660
NQGKAIALKTGAAAAKSEYL
GTGTGCATTGATGGCGATGCGTTATTAGACCGCGATGCGGCGCATATATTGTGGAACCG
                                                    720
V C I D G D A L L D R D A A A Y I V E P
ATGTTGTACAACCCGCGTGTGGGTGCCGTAACCGGTAATCCTCGTATTCGAACACGTTCT
                                                    780
MLYNPRVGAVTGNPRIRTRS
```

ACCCTGGTGGGTAAAA	TTCAGGTTGGCGAGTATTCCTCAATTATTGGTTTGATCAAGCGA	840
T L V G K I ACCCAGCGTATCTATG	Q V G E Y S S I I G L I K K GAAACGTATTTACCGTTTCCGGTGTTATTGCCGCATTTCGTCGC	900
	TGGGTTACTGGAGTGACGATATGATCACCGAAGATATTGATATT	960
AGCTGGAAGCTGCAGT	TGAATCAGTGGACGATTTTTTACGAGCCACGGGCACTGTGCTGG NOWTIFYEPRALCW	1020
ATATTAATGCCTGAAA	CGTTAAAAGGGCTGTGGAAACAGCGCCTGCGCTGGGCTCAGGGC	1080
	T L K G L W K Q R L R W A Q G TCAAAAATATGACAAGGTTGTGGCGCAAAGAAAACTTTCGAATG K N M T R L W R K E N F R M	1140
TGGCCGCTGTTTTTT	AATACTGCCTGACGACAATATGGGCCTTCACCTGCCTGGTCGGT	1200
W P L F F E	TCCAACTTGCCGGTGTACCGTTAAATATTGAATTGACACATATC	1260
GCTGCGACACATACTC	OLAGVPLNIELTHI CCCGGAATATTATTGTGTACGTTATGTTTACTGCAATTTATTGTC CGIII.CTLCLLOFI.V	1320
AGCCTGATGATCGAG	AATCGCTATGAGCATAATCTGACTTCATCGCTTTTCTGGATTATT	1380
S L M I E M	TTCTGGATGCTGAGCCTGGCAACGACATTGGTATCATTTACACGA	1440
GTCATGTTGATGCCT)	F W M L S L A T T L V S F T R AAAAAAGCAACGCGCCCGTTGGGTAAGTCCCGATCGCGGGATTCTG	1500
TOME TO ME TO THE	K K Q R A R W V S P D R G I L CAATTTAATTATTACGACCCGACAATCACCAGTACGTTTACTGGT	1560
RG* M N	N L (ycdP)	
2.	INFORMATION FOR SEQ ID NO: 4	
(i)	SEQUENCE CHARACTERISTICS:	
	a) LENGTH: 30 b) TYPE:	
	c) STRANDEDNESS:	
e e e e e e e e e e e e e e e e e e e	d) TOPOLOGY:	
(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL:	
(iv)	ANTI-SENSE:	
(v)	FRAGMENT TYPE:	
(vi)	ORIGINAL SOURCE:	
(vii)	IMMEDIATE SOURCE:	
(viii)	POSITION IN GENOME:	
	a) CHROMOSOME/SEGMENT:	
	b) MAP POSITION: c) UNITS:	
(ix)	FEATURE:	
	a) NAME/KEY:	
	b) LOCATION: c) IDENTIFICATION METHOD:	
	7	
• • • • • • • • • • • • • • • • • • • •		ė.

	d)	OTHER INFORMATION:	
(x)	PUBLICAT	TION INFORMATION:	
	a) b) c) d) e) f) h) i) k)	AUTHOR(S): TITLE: JOURNAL: VOLUME: ISSUE: PAGE(S): DATE: DOCUMENT NUMBER: FILING DATE: PUBLICATION DATE: RELEVANT RESIDUES IN SEQUENCE ID NO:	
(xi)	SEQUENC	E DESCRIPTION: SEQUENCE ID NO: 4	
TACAGTTAAG TGTG	TTATCG G	TGCAGAGCC	30
2.	INFORMA	TION FOR SEQ ID NO: 5	
(i)	SEQUENC	E CHARACTERISTICS:	
· ,	a) b) c) d)	LENGTH: 31 TYPE: STRANDEDNESS: TOPOLOGY:	
(ii)	MOLECUI	LE TYPE: DNA	
(iii)	нүротн	ETICAL:	
·(iv)	ANTI-SI	ENSE:	
(v)	FRÄGME	NT TYPE:	
(vi)	ORIGIN	AL SOURCE:	
(vii)	IMMEDI	ATE SOURCE:	
(vili)	POSITI	ON IN GENOME:	
,	a) b) c)	CHROMOSOME/SEGMENT: MAP POSITION: UNITS:	
(ix)	FEATUR	E:	
	a) b) c) d)	NAME/KEY: LOCATION: IDENTIFICATION METHOD: OTHER INFORMATION:	
(x)	PUBLIC	CATION INFORMATION:	
·	a) b) c) d)	AUTHOR(S): TITLE: JOURNAL: VOLUME:	

			•
	e)	ISSUE:	
	f)	PAGE(S):	
	g)	DATE:	
	h)	DOCUMENT NUMBER:	
		FILING DATE:	
		PUBLICATION DATE:	
	k)	RELEVANT RESIDUES IN SEQUENCE ID NO:	
(xi)	SEQUENCE	DESCRIPTION: SEQUENCE ID NO: 5	
CTCAACGCCT GGCT	GATTAA AC	CCAACTATT C	31
2.	INFORMAT	TION FOR SEQ ID NO: 6	
(i)	SEQUENCE	E CHARACTERISTICS:	
	-	LENGTH: 7500	
	b)	TYPE:	
	•	STRANDEDNESS:	
	d)	TOPOLOGY:	
(ii)	MOLECUL	E TYPE: DNA	
(iii)	нүротнет	rical:	
(iv)	ANTI-SEN	NSE:	
(v)	FRAGMEN	r type:	
(vi)	ORIGINA	L SOURCE:	
		re source:	
(viii)	POSITION	N IN GENOME:	
	a)	CHROMOSOME/SEGMENT:	
•	b)	MAP POSITION:	
	c)	UNITS:	
(ix)	FEATURE	•	
(12.6)	LLIIIOIG	•	
	a)	NAME/KEY:	•
	b)	LOCATION:	
•	c)	IDENTIFICATION METHOD:	
	d)	OTHER INFORMATION:	
(x)	PUBLICA	TION INFORMATION:	
	a)	AUTHOR(S):	
	b)	TITLE:	
•	c)	JOURNAL:	
	d)	VOLUME:	
	e)	ISSUE:	
	f)	PAGE(S):	_
	g)	DATE:	•
	h)	DOCUMENT NUMBER:	
·	i)	FILING DATE:	
•			
	j) k)	PUBLICATION DATE: RELEVANT RESIDUES IN SEQUENCE ID NO:	

SEQUENCE DESCRIPTION: SEQUENCE ID NO: 6 (xi) ATGTATTCAAGTAGCAGAAAAAGGTGCCCGAAAAACCAAATGGGCTTTGAAACTTCTTACT GCCGCATTTTTAGCAGCGAGTCCCGCGGCGAAGAGTGCTGTTAATAACGCCTATGATGCA TTGATTATTGAAGCTCGCAAGGGTAATACTCAGCCAGCTTTGTCATGGTTTGCACTAAAA TCAGCACTCAGCAATAACCAAATTGCTGACTGGTTACAGATTGCCTTATGGGCCGGGCAA GATAAACAGGTTATTACCGTTTACAACCGCTACCGTCATCAGCAATTACCAGCGCGTGGT 300 TATGCAGCTGTCGCCGTCGCTTATCGTAACCTGCAACAATGGCAAAACTCGCTTACACTG 389 TGGCAAAAGGCGCTCTCTCTGGAGCCGCAAAATAAGGATTATCAACGGGGACAAATTTTA ACCCTGGCAGATGCTGGTCACTATGATACTGCGCTGGTTAAACTTAAGCAGCTTAACTCT GGAGCACCGGACAAAGCCAATTTACTCGCAGAAGCCTATATCTATAAACTGGCGGGGCGT 583 600 CATCAGGATGAATTACGGGCGATGACAGAGTCATTACCTGAAAATGCATCTACGCAACAA TATCCCACAGAATACGTGCAGGCATTACGTAATAATCAACTTGCTGCCGCGATTGACGAT GCCAATTTAACGCCAGATATTCGCGCTGATATTCATGCCGAACTGGTCAGACTGTCGTTT ATGCCTACGCGCAGTGAAAGTGAACGTTATGCCATTGCCGATCGCGCCCTCGCCCAATAC GCTGCATTAGAAATTCTGTGGCACGATAACCCAGACCGCACTGCCCAGTACCAGCGTATT CAGGTTGATCATCTTGGCGCGTTATTAACTCGCGATCGTTATAAAGACGTTATTTCTCAC 900 TATCAGCGATTAAAAAAGACGGGGCAAATTATTCCGCCCTGGGGGCAATATTGGGTTGCA TCGGCTTATCTCAAAGATCATCAGCCGAAAAAAGCACAGTCAATAATGACCGAGCTCTTT TATCACAAGGAGACCATTGCCCCGGATTTATCCGATGAAGAACTTGCGGATCTCTTTTAC AGCCACCTGGAGAGTGAAAATTATCCGGGCGCGCTAACTGTCACCCAACATACCATTAAT ACTTCGCCGCCTTTCCTTCGGTTAATGGGCACGCCTACGAGCATCCCGAATGATACCTGG 1200 TTACAGGGGCATTCGTTTCTCTCAACCGTAGCAAAATATAGTAATGATCTTCCTCAGGCT GAAATGACAGCCAGAGAGCTTGCTTATAACGCACCAGGAAATCAGGGACTGCGCATTGAT TACGCGAGTGTGTTACAAGCCCGCGGTTGGCCTCGTGCAGCAGAAAATGAATTAAAAAAA GCAGAAGTGATCGAGCCACGTAATATTAATCTGGAGGTTGAACAAGCCTGGACAGCATTA ACGTTACAAGAATGGCAGCAGCAGCTGTCTTAACGCACGATGTTGTCGAACGTGAACCG 1500 CAAGATCCCGGCGTTGTACGATTAAAACGTGCGGTTGATGTACATAATCTTGCAGAGCTT CGTATCGCTGGCTCAACAGGAATTGATGCCGAAGGCCCGGATAGTGGTAAACATGATGTC GACTTAACCACCATCGTTTATTCACCACCGCTGAAGGATAACTGGCGCGGTTTTGCTGGA TTCGGTTATGCCGATGGACAATTTAGCGAAGGAAAAGGGATTGTTCGCGACTGGCTTGCG

 ${\tt GGTGTTGAGTGGCGGTCACGTAATATCTGGCTCGAGGCAGAGTACGCTGAACGCGTTTTC}$ 1800 CGTATTGGTTCGCAACTGGAACGCCTCTCTCACCGCGTTCCATTACGGGCAATGAAAAAT GGTGTTACAGGCAACAGTGCTCAGGCTTATGTTCGCTGGTATCAAAATGAGCGGCGTAAG TACGGTGTCTCCTGGGCTTTCACTGATTTTTCCGACAGTAACCAGCGTCATGAAGTCTCA ${\tt CTTGAGGGTCAGGAACGCATCTGGTCTTCACCATATTTGATTGTCGATTTCCTACCCAGT}$ 2100 CTGTATTACGAACAAAATACAGAACACGATACCCCATACTACAACCCTATAAAAACGTTC GATATTGTTCCGGCATTTGAGGCAAGCCATTTGTTATGGCGAAGCTATGAAAATAGCTGG GAGCAAATATTCAGCGCAGGTGTTGGTGCCTCCTGGCAAAAACATTATGGCACGGATGTC ACGCTACGCTGGGAAAAACGACCTTATGACGGTGACAGAGAACACAACTTATACGTTGAA 2400 ycdR(+1) TGATGCTGGTGAGTATAATTATGCTCACCGCGTGCATTAGCCAGTCAAGAACATCATTTA TACCGCCACAGGATCGCGAATCTTTACTCGCCGAGCAACCGTGGCCGCATAATGGTTTTG TAGCGATTTCATGGCATAACGTTGAAGACGAAGCTGCCGACCAGCGTTTTATGTCAGTGC GGACATCAGCACTGCGTGAACAATTTGCCTGGCTGCGCGAGAACGGTTATCAACCGGTCA 2700 GTATTGCTCAAATTCGTGAAGCACATCGAGGAGGAAAAACCGCTACCGGAAAAAGCTGTAG TGCTGACTTTTGATGACGGCTACCAGAGTTTTTATACCCGCGTCTTCCCAATTCTTCAGG CCTTCCAGTGGCCTGCTATGGGCCCCCGTCGGCAGTTGGGTCGATACGCCAGCGGATA AACAAGTAAAATTTGGCGATGAGTTGGTCGATCGAGAATATTTTGCCACGTGGCAACAAG TGCGAGAAGTTGCGCGTTCCCGGCTCGTTGAGCTCGCTTCTCATACATGGAATTCTCACT 3000 ACGGTATTCAGGCTAATGCCACCGGCAGCTTATTGCCTGTATATGTAAATCGTGCATATT TTACTGACCACGCACGGTATGAAACCGCAGCAGAATACCGGGAAAGAATTCGTCTGGATG 723. CTGTAAAAATGACGGAATACCTGCGTACAAAGGTTGAGGTAAATCCACACGTTTTTGTTT TGTTCTTCACCCTTGAATCAGGTTTGGCAAATGCGTCGCAATTGGATTCCATTCCGCGGG 3300 TATTAATCGCCAATAATCCCTCATTAAAAGAGTTTGCCCAGCAAATTATTACCGTACAGG AAAAATCACCACAACGGATAATGCATATCGATCTTGATTACGTTTATGACGAAAACCTCC AGCAAATGGATCGCAATATTGATGTGCTAATTCAGCGGGTGAAAGATATGCAAATATCAA CCGTGTATTTGCAGGCATTTGCTGATCCCGATGGTGATGGGCTGGTCAAAGAGGTCTGGT

TTCCAAATCGTTTGCTACCAATGAAAGCAGATATTTTTAGTCGGGTTGCCTGGCAATTAC 3600 GTACCCGCTCAGGTGTAAACATCTATGCGTGGATGCCGGTATTAAGCTGGGATTTAGATC CCACATTAACGCGAGTAAAATACTTACCAACAGGGGAGAAAAAAGCACAAATTCATCCTG AACAATATCACCGTCTCTCTCTCTCTGATGACAGAGTCAGAGCACAAGTTGGCATGTTAT ATGAAGATCTTGCCGGACATGCTGCTTTTGATGGCATATTGTTCCACGATGATGCTTTGC 3900 GCGGGAGTCTGAGCGAAATTCGACAAAACCCGGAGCAATTTAAACAGTGGGCCCGCTTTA AAAGTCGTGCGTTAACTGACTTCACTTTAGAACTTAGTGCGCGCGTAAAAGCCATTCGCG GTCCACATATTAAAACTGCACGAAATATTTTTGCACTTCCGGTAATACAACCTGAAAGTG AAGCCTGGTTTGCACAGAATTATGCTGATTTCCTAAAAAGCTATGACTGGACCGCTATTA TGGCTATGCCTTATCTGGAAGGTGTCGCAGAAAAATCGGCTGACCAATGGTTAATACAAT 4200 TGACCAATCAAATTAAAAACATCCCTCAGGCTAAAGACAAATCTATTTTAGAATTACAGG CACAAAACTGGCAGAAAAATGGTCAGCATCAGGCTATTTCTTCGCAACAACTCGCTCACT GGATGAGCCTATTACAACTGAATGGAGTGAAAAACTATGGTTATTATCCCGACAATTTTC TGCATAACCAACCTGAAATAGACCTTATTCGTCCTGAGTTTTCAACAGCCTGGTATCCGA ycdQ(+1) AAAATGATTAATCGCATCGTATCGTTTTTTATATTATGTCTGGTGTTATGCATACCCCTA 4500 ${\tt TGCGTAGCGTACTTTCACTCTGGTGAACTGATGATGAGGTTCGTTTTCTTCTGGCCGTTT}$ TTTATGTCCATTATGTGGATTGTTGGCGGCGTCTATTTCTGGGTCTATCGTGAACGCCAC TGGCCGTGGGGAGAAACGCACCAGCTCCCCAGTTGAAAGATAATCCGTCTATCTCCATT ATCATTCCCTGTTTTAATGAGGAGAAAAACGTTGAGGAAACCATACACGCCGCTTTAGCA CAGCGTTATGAGAACATTGAAGTTATTGCCGTAAATGACGGTTCAACAGATAAAACCCGT 4800 AACCAGGGGAAAGCCATTGCGCTTAAAACCGGAGCTGCCGCGGCGAAAAGTGAATATCTG GTGTGCATTGATGCCGATGCGTTATTAGACCGCGATGCGCGCATATATTGTGGAACCG ATGTTGTACAACCCGCGTGTGGGTGCCGTAACCGGTAATCCTCGTATTCGAACACGTTCT ACCCTGGTGGGTAAAATTCAGGTTGGCGAGTATTCCTCAATTATTGGTTTGATCAAGCGA 5100 ACCCAGCGTATCTATGGAAACGTATTTACCGTTTCCGGTGTTATTGCCGCATTTCGTCGC AGCGCCCTGGCAGAAGTGGGTTACTGGAGTGACGATATGATCACCGAAGATATTGATATT AGCTGGAAGCTGCAGTTGAATCAGTGGACGATTTTTTACGAGCCACGGGCACTGTGCTGG ATATTAATGCCTGAAACGTTAAAAGGGCTGTGGAAACAGCGCCTGCGCTGGGCTCAGGGC

GGTGCAGAAGTATTCCTCAAAAATATGACAAGGTTGTGGCGCAAAGAAACTTTCGAATG 5400 TTCATTATTTACGCAGTCCAACTTGCCGGTGTACCGTTAAATATTGAATTGACACATATC GCTGCGACACATACTGCCGGAATATTATTGTGTACGTTATGTTTACTGCAATTTATTGTC AGCCTGATGATCGAGAATCGCTATGAGCATAATCTGACTTCATCGCTTTTCTGGATTATT TGGTTCCCGGTTATTTCTGGATGCTGAGCCTGGCAACGACATTGGTATCATTTACACGA 5700 GTCATGTTGATGCCTAAAAAGCAACGCGCCCGTTGGGTAAGTCCCGATCGCGGGATTCTG AGAGGTTAATATGAACAATTTAATTATTACGACCCGACAATCACCAGTACGTTTACTGGT TGATTATGTTGCCACAACCATCTTGTGGACATTATTTGCGTTGTTCATATTCTTATTCGC CATGGATCTGCTGACGGGTTATTACTGGCAAAGCGAGGCCAGAAGCCGACTTCAGTTCTA TTTTTTGCTGGCAGTGGCGAATGCCGTCGTGTTAATTGTCTGGGCGCTGTACAATAAGCT 6000 GCGTTTTCAAAAACAGCAGCATCATGCAGCCTACCAATATACGCCGCAAGAATATGCAGA GAGCTTAGCAATACCTGATGAGCTCTATCAGCAACTACAAAAAAGCCACAGGATGAGCGT ACACTTCACCAGCCAGGGGCAAATAAAAATGGTTGTTTCAGAAAAAGCGCTAGTCCGGGC ATAAACACCCAAAACAAAGCCCGGTTCGCCCGGGCTCTGCACCGATAACACACTTAACTG TAGGCATGCAGCGTACGTTGGCAAAGTGCCGAACGTACGCAGTCCTCTTTACCGAACCGG 6300 ACGATCCCAACCATTTCATCTTCTTCGAAACGTTCCAGCGCGTCACTTAATCCGGAGCAC ACGCCGCGAGGCAAATCGCATTGCGTGATATCACCGTTGACGATAACCGTCACGTTCTCC CCGAGGCGGGTTAAAAACATTTTCATTTGCGCGGCAGTCACATTCTGCGCCTCGTCAAGA ATGACGACTGCATTTTCAAAGGTACGTCCACGCATATAGGCGAACGGCGCAATTTCCACC TTCCCTATTTCCGGTCGCAGGCAGTACTGCATAAAGGAAGCCCCTAAGCGCCGGACCAGC 6600 ACGTCGTAGACCGGGCGAAAATAGGGAGCAAACTTTTCTGCGATATCTCCAGGTAAGAAG CCAAGATCTTCATCGGCTTGCAGAACTGGACGGGTGACGATAATCCTGTCGACATCCTTA TGTATCAGGGCCTCTGCCGCTTTTGCTGCGCTGATCCAGGTTTTTCCGCACCCGGCTTCG CCCGTGGCGAATATCAGCTGCTTACTCTCAATAGCCTTCAGATAGTGCAATTGCGCTTCA TTTCGCGCGAGGATGGGCGAAGTATCGCGACTGTCGCGGGCCATACCAATGGCTTCTACG 6900 CCGCCCATCTGCACAAGCGAGGTGACCGATTCTTCTTCACGCTGCTTATGGCTGCGCGAA TCCCGTCTCAGCACACGTTTTGCCTCGCGACGAGCTTTGATCACTGCTTTTTTGTCTTCCC ATGGAGAGCACCTTGAGTTGTTTGTATTCATCACACGCGCCGTTGGCAGCGCGATTATGC GCACGAACATCAGAGGGTTGGCTTCCTTGTAAGCCATAGTTTGCTTTTGGATAAAATGCC