

Sistemas Operacionais

Te acalma que nem começou. Agora que vai ficar bom.

Computadores hipotéticos

Computadores hipotéticos

Computador NEANDER

Computador AHMES

Computador RAMSES

Computador CESAR

Principais Características (Neander X Ahmes)

NEANDER

Largura de dados e de endereços de 8 bits

Modo de endereçamento: direto

1 registrador acumulador de 8 bits

1 apontador de programa de 8 bits

1 registrador de estado com 2 códigos de condição: negativo e zero

AHMES

Largura de dados e de endereços de 8 bits

Modo de endereçamento: direto

1 registrador acumulador de 8 bits

1 apontador de programa de 8 bits

1 registrador de estado com 5 códigos de condição: negativo, zero, carry, borrow e overflow

Conjunto de instruções (Neander X Ahmes)

Neander

Ahmes

Mnemônicos					
NOP STA LDA ADD OR AND	00 16 end 32 end 48 end 64 end 80 end	JN JP JV JNV JZ	128 end 144 end 148 end 152 end 156 end 160 end	ROR 2	25 26 27
NOT SUB	96 112 end	JNZ JC JNC JB JNB	164 end 176 end 180 end 184 end 188 end		

Conjunto de instruções do NEANDER

Códi	Mnemônico	Operação
go		
99	NOP	Nenhuma operação
16	STA end	Armazena acumulador no endereço "end" da memória
32	LDA end	Carrega o acumulador com o conteúdo do endereço "end" da memória
48	ADD end	Soma o conteúdo do endereço "end" da memória ao acumulador
64	OR end	Efetua operação lógica "OU" do conteúdo do endereço "end" da memória ao acumulador
80	AND end	Efetua operação lógica "E" do conteúdo do endereço "end" da memória ao acumulador
96	NOT	Inverte todos os bits do acumulador
128	JMP end	Desvio incondicional para o endereço "end" da memória
144	JN end	Desvio condicional, se "N=1", para o endereço "end" da memória (Jump on Negative)
160	JZ end	Desvio condicional, se "Z=1", para o endereço "end" da memória (Jump on Z ero)
240	HLT	Para o ciclo de busca-decodificação-execução

Conjunto de instruções do NEANDER

CÓDIGO	INSTRUÇÃO	COMENTÁRIO	AÇÕES
0000	NOP	Nenhuma Operação .	Nenhuma operação
0001	STA end .	Armazena acumulador (store)	MEM(end) ← AC
0010	LDA end	Carrega acumulador (load)	AC ← MEM(end)
0011	ADD end	Soma	$AC \leftarrow MEM(end) + AC$
0100	OR end	OU lógico	AC ← MEM(end) OR AC
0101	AND end	AND lógico	AC ← MEM(end) AND AC
0110	NOT	Inverte acumulador (complementa)	AC ← NOT AC
1000	JMP end	Desvio incondicional (jump)	PC ← end
1001	JN end	Desvio condicional (jump on negative)	IF N=1 THEN PC ← end
1010	JZ end	Desvio condicional (jump on zero)	IF Z=1 THEN PC ← end
1111	HLT	Término de execução (halt)	pára processamento

Armazena acumulador no endereço "end" da memória

Desvio incondicional para o endereço "end" da memória

Para o ciclo de busca-decodificação-execução

Inverte todos os bits do acumulador

STA end

LDA end

ADD end **OR** end

AND end

SUB end

JMP end

JN end

JP end

JV end

JNV end

JZ end

JNZ end

JC end

JNC end

JB end

JNB end

SHR

SHL

ROR

ROL

HLT

NOT

64

80

96

112

128

144

148

152

156

160 164

176

180

184

188

224 225

226

227

240

Conjur	nto de instruções do AHMES
Código Mnemônico	Operação
00 NOP	Nenhuma operação

Carrega o acumulador com o conteúdo do endereço "end" da memória

Efetua operação lógica "OU" do conteúdo do endereço "end" da memória ao acumulador

Efetua operação lógica "E" do conteúdo do endereço "end" da memória ao acumulador

Desvio condicional, se "N=1", para o endereço "end" da memória (Jump on Negative)

Desvio condicional, se "N=0", para o endereço "end" da memória (Jump on Positive) Desvio condicional, se "V=1", para o endereço "end" da memória (Jump on oVerflow)

Desvio condicional, se "Z=1", para o endereço "end" da memória (Jump on Zero)

Desvio condicional, se "Z=0", para o endereço "end" da memória (Jump on Not Zero)

Desvio condicional, se "C=1", para o endereço "end" da memória (Jump on Carry On)

Desvio condicional, se "B=1", para o endereço "end" da memória (Jump on **B**orrow)

Desvio condicional, se "C=0", para o endereço "end" da memória (Jump on Not Carry On)

Desvio condicional, se "B=0", para o endereço "end" da memória (Jump on Not Borrow)

Desloca o acumulador para a direita; o bit 7 do acumulador recebe 0; o Carry recebe o bit 0 do acumulador

Desloca o acumulador para a esquerda, o bit 0 do acumulador recebe 0; o Carry recebe o bit 7 do acumulador

Gira o acumulador para a direita; o bit 7 do acumulador recebe o Carry; o Carry recebe o bit 0 do acumulador

Gira o acumulador para a esquerda, o bit 0 do acumulador recebe o Carry; o Carry recebe o bit 7 do acumulador

Desvio condicional, se "V=0", para o endereço "end" da memória (Jump on Not oVerflow)

Soma o conteúdo do endereço "end" da memória ao acumulador

Subtrai o conteúdo do endereço "end" da memória do acumulador

Computadores hipotéticos

Neander, Ahmes, Ramses e Cesar são simuladores de computadores hipotéticos

Prof. Raul F. Weber (UFRGS)

Downloads

Neander

http://www.inf.ufrgs.br/arq/wiki/lib/exe/fetch.php?media=wneander.zip

Ahmes

http://www.inf.ufrgs.br/arq/wiki/lib/exe/fetch.php?media=wahmes.zip

Ramses

http://www.inf.ufrgs.br/arq/wiki/lib/exe/fetch.php?media=wramses.zip

Cesar

http://www.inf.ufrgs.br/arq/wiki/lib/exe/fetch.php?media=wcesar16.1.3.5.2.exe.zip

Mussum => Neander + Ahmes + Ramses + Cesar

http://177.101.203.139/gladimir/SO/

Web

Web – Neander

https://www.inf.ufrgs.br/~vbuaraujo/sw/neander/neander.html

Web – Ahmes

https://www.inf.ufrgs.br/~vbuaraujo/sw/neander/ahmes.html

Soma de dois (inteiros maiores do que zero)

Multiplicação entre dois números (inteiros maiores do que zero)

Se curtiu, deixa o like, te inscreve no canal e ativa as notificações.