Appunti di Analisi Funzionale

Github Repository: Oxke/appunti/AnalFun

Primo semestre, 2025 - 2026, prof. Antonio Giovanni Segatti

0.1 Intro

0.1.1 Spazi Normati

Sia X uno spazio vettoriale su campo \mathbb{K} (\mathbb{C} o \mathbb{R}).

Definizione 0.1.1: norma

Si definisce **norma** una funzione

$$\|\cdot\|:X\to\mathbb{R}_{>0}$$

tale che

i.
$$||x|| = 0 \iff x = 0$$

ii.
$$\|\lambda x\| = |\lambda| \|x\|, \ \forall \lambda \in \mathbb{K} \ \mathrm{e} \ \forall x \in X$$

iii.
$$||x + y|| \le ||x|| + ||y||, \forall x, y \in X$$

Definizione 0.1.2: Spazio Normato

Uno **spazio normato** è una coppia $(X, \|\cdot\|)$ tale che X sia uno spazio vettoriale e $\|\cdot\|$ una norma su X.

Per una notazione più leggera, quando non è ambiguo sottintenderemo la norma, scrivendo "sia X uno spazio normato".

Proposizione 0.1.1 (Metrica indotta da $\|\cdot\|$). La norma $\|\cdot\|$ induce su X una metrica

$$d(x,y) = ||x - y|| \qquad \forall x, y \in X$$

Nota (zioni). Alcune notazioni utili:

$$-B_r(x_0) = \{x \in X : ||x - x_0|| \le r\} = x_0 + rB_1(0)$$

$$- \partial B_r(x_0) = \{ x \in X : ||x - x_0|| = r \}$$

Definizione 0.1.3: Convergenza in norma - Convergenza forte

Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione in X e sia $x\in X$. Dico che x_n converge a x in norma o fortemente se

$$\forall \varepsilon > 0 \ \exists \overline{n} : \|x_n - x\| \le \varepsilon \quad \forall n \ge \overline{n}$$

Definizione 0.1.4: Successione di Cauchy

Una successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ è detta di Cauchy se

$$\forall \varepsilon > 0 \ \exists \overline{n} : \|x_n - x_m\| \le \varepsilon \quad \forall n, m \ge \overline{n}$$

Osservazione. La norma $\|\cdot\|$ è una funzione continua.

Dimostrazione. Preso $x, y \in X$,

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||$$

e similmente si può con variabili scambiate. Ne consegue che

$$|||x|| - ||y||| \le ||x - y||$$

dunque la norma è Lipschitziana con costante 1

Definizione 0.1.5: Norma equivalente

Sia X uno spazio normato e siano $\|\cdot\|_1$ e $\|\cdot\|_2$ due norme su X. Dico che $\|\cdot\|_1$ è **topologicamente equivalente** a $\|\cdot\|_2$ se

$$\forall x \in X \ \forall r > 0 \ \exists r_1, r_2 > 0 :$$

 $B_{r_1}(x, \|\cdot\|_1) \subseteq B_r(x, \|\cdot\|_2) \in B_{r_2}(x, \|\cdot\|_2) \subseteq B_r(x, \|\cdot\|_1)$

Proposizione 0.1.2. Sia X normato. Allora due norme $\|\cdot\|_1$ e $\|\cdot\|_2$ sono equivalenti se e solo se $\exists \alpha, \beta > 0$ tali che

$$\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1 \quad \forall x \in X$$

Dimostrazione.

 \implies Fissato $x_0 = 0$, preso r tale che

$$B_{r_2}(0, \|\cdot\|_2) \subseteq B_r(0, \|\cdot\|_1)$$

preso ora $0 \neq x \in X$, sia $y := \frac{r_2}{2\|x\|_2}x$, così che $\|y\|_2 = \frac{r_2}{2}$, dunque $y \in B_{r_2}(0,\|\cdot\|_2)$ e quindi per l'inclusione sopra

$$||y||_1 = \frac{r_2}{2} \frac{||x||_1}{||x||_2} \le r$$

che è la prima delle disuguaglianze richieste. Similmente si può trovare l'altra scambiando x e y, le due norme, e r_2 con r_1

 \iff Preso $x_0 \in X$ e r > 0, sia $r_1 := r/\beta$. Allora, per ogni $x \in X$

$$||x - x_0||_1 \le \frac{r}{\beta} \implies ||x - x_0||_2 \le \beta ||x - x_0||_1 \le r$$

che è la prima delle inclusioni richieste. Similmente si può trovare l'altra prendendo $r_2:=r/\alpha$ e scambiando le norme.

Osservazione. Se $\{x_n\}$ è di Cauchy rispetto alla norma $\|\cdot\|_1$ e $\|\cdot\|_2$ è una norma equivalente alla prima, allora $\{x_n\}$ è di Cauchy rispetto a $\|\cdot\|_2$

Definizione 0.1.6: Dimensione

Sia X uno spazio vettoriale. Allora

$$\dim X = \begin{cases} 0 & X = \{0\} \\ n & n \in \mathbb{N} \text{ e } X \text{ ha una base di } n \text{ elementi} \\ +\infty & \forall n \in \mathbb{N}, \text{ esistono } n \text{ vettori linearmente indipendenti} \end{cases}$$

Teorema 0.1.3: Equivalenza delle norme

Sia X uno spazio vettoriale di dimensione finita. Allora tutte le norme su X sono topologicamente equivalenti.

Dimostrazione. Sia $\{e_1,\ldots,e_n\}$ una base di X. Sia $x\in X$. Allora sia

$$x = \sum_{i=1}^{n} x^{i} e_{i}$$
 con $x^{i} \in \mathbb{K}$ $\forall i \in \{1, \dots, n\}$

Definiamo la norma (facile controllo lasciato come esercizio)

$$||x||_1 = \sum_{i=1}^n |a^i|$$

Sia ora $\|\cdot\|$ un'altra norma su X, dimostriamo che $\|\cdot\|$ è equivalente a $\|\cdot\|_1$.

$$||x|| = \left\| \sum_{i=1}^{n} x^{i} e_{i} \right\| \le \sum_{i=1}^{n} |x^{i}| ||e_{i}|| \le \underbrace{\left(\max_{1 \le i \le N} ||e_{i}|| \right)}_{\beta} ||x||_{1}$$

Rimane da dimostrare che $\exists \alpha > 0$ tale che $\|x\|_1 \leq \frac{1}{\alpha} \|x\|$. Assumiamo per assurdo che $\forall n \in \mathbb{N}$ esista $x_n \in X$ tale che $\|x_n\|_1 > n \|x_n\|$. Prendiamo ora (ovviamente $x_n \neq 0$ per la diseguaglianza stretta)

$$y_n := \frac{x_n}{\|x_n\|_1}$$
 per ogni $n \in \mathbb{N} \implies \|y_n\| < \frac{1}{n}$; $\|y_n\|_1 = 1$

Dalla seconda otteniamo che $\forall i \in \{1, \dots, n\}$ e $\forall n \in \mathbb{N}, |y_n^i| \leq 1$. Per Bolzano-Weierstrass esiste una sottosuccessione n_k tale che per ogni $i \in \{1, \dots, n\}, y_{n_k}^i \rightarrow y^i$.

Allora

$$||y_{n_k} - y|| \le \beta ||y_{n_k} - y||_1 = \beta \left\| \sum_{i=1}^n (y_{n_k}^i - y^i) e_i \right\|_1 \le \beta^2 \sum_{i=1}^n |y_{n_k}^i - y^i| \stackrel{k \to \infty}{\longrightarrow} 0$$

e poiché

$$1 = ||y_{n_k}|| \le ||y_{n_k} - y|| + ||y|| \stackrel{k \to \infty}{\Longrightarrow} ||y|| \ge 1$$

che è in contraddizione con $\|y_n\| \to 0$

Definizione 0.1.7: Spazio di Banach

X spazio normato è detto **spazio di Banach** se le successioni di Cauchy convergono in X (ossia X è completo)

Teorema 0.1.4

Sia X uno spazio normato di dimensione finita. Allora X è di Banach.

Dimostrazione. Sia $N=\dim X$. Dimostro che X è completo secondo la norma $\|\cdot\|_1$.

Sia $\{x_n\}$ una successione di Cauchy. Vogliamo mostrare l'esistenza di $x \in X$ tale che $\lim_{n\to\infty} ||x_n - x||_1 = 0$. Da definizione di successione di Cauchy,

$$\forall \varepsilon > 0 \ \exists \overline{n} \in \mathbb{N} : \forall n, m \ge \overline{n}, \ \|x_n - x_m\|_1 = \sum_{i=1}^N |x_n^i - x_m^i| \le \varepsilon$$

per cui ogni successione delle componenti $\{x_n^i\}_{n\in\mathbb{N}}$ è di Cauchy in \mathbb{K} . Poiché \mathbb{C} e \mathbb{R} sono completi, allora $x_n^i\to x^i\in\mathbb{K}$ per ogni $i\in\{1,\ldots,N\}$. Concludiamo osservando che

$$||x_n - x||_1 = \sum_{i=1}^N |x_n^i - x^i| \stackrel{n \to \infty}{\longrightarrow} 0$$

Esempio 0.1.1. Sia $X=\mathbb{K}^N$ con $\mathbb{K}=\mathbb{C}$ o \mathbb{R} . Su tale spazio possiamo avere le norme

$$||x||_p = \left(\sum_{i=1}^N |x^i|^p\right)^{\frac{1}{p}}, \quad p \in [1, \infty)$$

X è chiaramente di Banach.

Esempio 0.1.2. Sia $\Omega \subseteq \mathbb{R}^d$, allora $X = C^0(\Omega, \mathbb{K}^N)$ spazio delle funzioni continue $\Omega \to \mathbb{R}^N$. Facile verificare che X formi uno spazio vettoriale.

Preso ora Ω aperto e limitato.

$$C^0(\overline{\Omega}) = \{ f : \Omega \to \mathbb{R} \text{ unif. continue} \}$$

poiché f è uniformemente continua se e solo se si può estendere con coninuità al bordo. Si può prendere la norma

$$||f||_{\infty} = \max_{x \in \overline{\Omega}} |f(x)| \quad \forall f \in C^0(\overline{\Omega})$$

che si può verificare essere effettivamente una norma. Inoltre con tale norma $C^0(\overline{\Omega})$ è uno spazio di Banach.

Le funzioni in $C^0(\Omega)$ sono limitate e definite su un compatto, dunque sono anche integrabili, e possiamo dunque definire le norme

$$||f||_p = \left(\int_{\Omega} |f(x)|^p d\right)^{\frac{1}{p}} \quad \forall f \in C^0(\overline{\Omega}) \quad \forall p \in [1, \infty)$$

ma per nessun p la norma rende $C^0(\overline{\Omega})$ completo. Un esempio è

$$f_n(x) = \begin{cases} 1 & x \in [0, \frac{1}{2} - \frac{1}{n}] \\ \text{lineare} & x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}] \\ 0 & x \in [\frac{1}{2} + \frac{1}{n}, 1] \end{cases}$$

definita in [0,1]. Tale funzione converge in L_p con la stessa norma a una funzione non continua.

Esempio 0.1.3. Legato all'esempio precedente, con la stessa norma gli spazi $L^p(\Omega, \mu)$ sono spazi di Banach.

Presi ora gli spazi $l^p:=L^p(\mathbb{N},\#)$ gli spazi di successioni $\mathbb{N}\to\mathbb{K}$, abbiamo che anch'essi sono spazi di Banach con norma

$$||x||_p := ||x||_{L^p(\mathbb{N},\#)} = \left(\int_{\mathbb{N}} |x(n)|^p d\#\right)^{\frac{1}{p}} = \left(\sum_{n=1}^{\infty} |x(n)|^p\right)^{\frac{1}{p}}$$
$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x(n)|$$

Nota (zione). Per le successioni in l^p , indicheremo $x \in l^p$ intendendola come funzione $x : \mathbb{N} \to \mathbb{K}$, per cui per indicare la componente n-esima di x indicheremo x(n). In tal modo possiamo indicare le successioni di elementi in l^p come successioni $\{x_n\}_{n\in\mathbb{N}}$, dove ogni $x_n : \mathbb{N} \to \mathbb{K}$ è una funzione in l^p

0.1.2 Spazi di Hilbert

Definizione 0.1.8: Prodotto scalare

Sia X uno spazio vettoriale su $\mathbb C$. Allora un prodotto scalare è un'applicazione $\langle\cdot,\cdot\rangle:X\times X\to\mathbb C$ tale che

i.
$$\langle x, y \rangle = \overline{\langle y, x \rangle} \quad \forall x, y \in X$$

ii.
$$\langle x, x \rangle \ge 0$$
 e $\langle x, x \rangle = 0 \iff x = 0$

iii.
$$\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle, \quad \forall \alpha, \beta \in \mathbb{C}, \quad \forall x, y, z \in X$$

Osservazione. Gli stessi assiomi valgono anche sul prodotto scalare su spazio reale. Semplicemente si ha che se $x \in \mathbb{R}$, allora $\overline{x} = x$ quindi si possono droppare tutti i coniugati e viene tutto più leggero.

Nota (antilinearità nella seconda componente).

$$\langle x, \alpha y + \beta z \rangle \stackrel{i.}{=} \overline{\langle \alpha y + \beta z, x \rangle} \stackrel{iii.}{=} \overline{\alpha} \overline{\langle y, x \rangle} + \overline{\beta} \overline{\langle z, x \rangle} \stackrel{i.}{=} \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle$$

Lemma 0.1.5: Diseguaglianza di Cauchy-Schwarz

Sia X uno spazio vettoriale munito del prodotto scalare $\langle \cdot, \cdot \rangle$. Allora

$$|\langle x, y \rangle|^2 < \langle x, x \rangle \langle y, y \rangle \quad \forall x, y \in X$$

e inoltre la diseguaglianza è un'uguaglianza se e solo se x e y sono linearmente dipendenti.

Dimostrazione. Sia $z := \langle y, y \rangle x - \langle x, y \rangle y$. Allora

$$0 \leq \langle z, z \rangle = \langle \langle y, y \rangle x - \langle x, y \rangle y, \langle y, y \rangle x - \langle x, y \rangle y \rangle =$$

$$= \langle y, y \rangle \langle x, \langle y, y \rangle x - \langle x, y \rangle y \rangle - \langle x, y \rangle \langle y, \langle y, y \rangle x - \langle x, y \rangle y \rangle =$$

$$= \langle y, y \rangle^{2} \langle x, x \rangle - \langle y, y \rangle \langle y, x \rangle \langle x, y \rangle - \underline{\langle x, y \rangle \langle y, y \rangle \langle y, x \rangle} + \underline{\langle x, y \rangle \langle y, x \rangle \langle y, y \rangle} =$$

$$= \langle y, y \rangle (\langle y, y \rangle \langle x, x \rangle - |\langle x, y \rangle|^{2})$$

quindi ora o y=0 che farebbe valere la tesi, oppure si può semplificare $\langle y,y\rangle$ e rimane esattamente la tesi.

Infine si verifica l'uguaglianza quando z = 0, ossia quando $x \in y$ sono collineari.

Definizione 0.1.9: Spazio prehilbertiano

Uno spazio vettoriale X con prodotto scalare viene detto spazio **prehilbertiano** (o spazio $con\ prodotto\ interno$)

Esempio 0.1.4. \mathbb{K}^N con $\langle x,y\rangle=\sum_{i=1}^N x^i\overline{y^i}$ è prehilbertiano.

Esempio 0.1.5. $C^0([0,1],\mathbb{C})$ con $\langle f,g\rangle=\int_0^1 f(x)\overline{g}(x)\,dx$

Definizione 0.1.10: Norma indotta dal prodotto scalare

Su uno spazio prehilbertiano $X, \langle \cdot, \cdot \rangle$ definisco

$$||x|| := \sqrt{\langle x, x \rangle} \quad \forall x \in X$$

Allora $\|\cdot\|$ è una norma su X

buona definizione. La radice è ben definita perché $\langle x,x\rangle$ è un reale non negativo. Inoltre si può mostrare che $\|\cdot\|$ è una norma con gli assiomi di prodotto scalare e la diseguaglianza di Schwarz per la diseguaglianza triangolare.

Proposizione 0.1.6. Sia X uno spazio prehilbertiano, allora il prodotto scalare è una funzione continua $X \times X \to \mathbb{K}$.

Dimostrazione. prese $x_n \to x$ e $y_n \to y$

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle| \\ &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \le |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle| \le \\ &\le \|x_n - x\| \|y_n\| + \|x\| \|y_n - y\| \xrightarrow{n \to \infty} 0 \end{aligned}$$

Definizione 0.1.11: ortogonalità

 $x,y\in X$ si dicono ortogonali se $\langle x,y\rangle=0$

Proposizione 0.1.7 (Identità di polarizzazione). $Se \mathbb{K} = \mathbb{C}$,

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$$

Se invece $\mathbb{K} = \mathbb{R}$,

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Dimostrazione. Non sono difficili, basta scrivere per esteso $||x+y||^2$ e $||x-y||^2$ (e $||x+iy||^2$ e $||x-iy||^2$ nel caso complesso) e poi fare i contazzi.

Proposizione 0.1.8. teorema di Pitagora Se $\langle x, y \rangle = 0$ allora $||x + y||^2 = ||x||^2 + ||y||^2$

Dimostrazione. ovvio

Proposizione 0.1.9. *Identità del parallelogramma Per ogni* $x, y \in X$, *allora*

$$||x - y||^2 + ||x + y||^2 = 2(||x||^2 + ||y||^2)$$

Teorema 0.1.10

Jordan - Von Neumann Sia X uno spazio normato, allora la norma è indotta da un prodotto scalare se vale l'identità del parallelogramma

 $Dimostrazione~per~\mathbb{K}=\mathbb{R}$. Definiamo il prodotto scalare con l'identità di polarizzazione, dunque

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

infatti se effettivamente $\langle \cdot, \cdot \rangle$ è un prodotto scalare allora quest'uguaglianza varrebbe, dunque ha senso iniziare prendendola come definizione. Verifichiamo ora che è un prodotto scalare.

- i. Evidente per definizione
- ii. Evidente dalla definizione, perché viene letteralmente $\langle x, x \rangle = ||x||^2$
- iii. Proseguiamo con la dimostrazione, dividendo in $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ e $\langle \lambda x,y\rangle=\lambda\langle x,y\rangle$

$$\begin{split} \langle x,z\rangle + \langle y,z\rangle &\stackrel{(def)}{=} \frac{1}{4} \big(\|x+z\|^2 - \|x-z\|^2 + \|y+z\|^2 - \|y-z\|^2 \big) = \\ &= \frac{1}{4} \big(\|x+z\|^2 + \|y+z\|^2 \big) - \frac{1}{4} \big(\|x-z\|^2 + \|y-z\|^2 \big) = \\ &\stackrel{prll.}{=} \frac{1}{8} \big(\|x-y\|^2 + \|x+y+2z\|^2 \big) - \frac{1}{8} \big(\|x-y\|^2 + \|x+y-2z\|^2 \big) = \\ &= \frac{2}{4} \left(\left\| \frac{x+y}{2} + z \right\|^2 - \left\| \frac{x+y}{2} - z \right\|^2 \right) = \\ &\stackrel{(def)}{=} 2 \left\langle \frac{x+y}{2}, z \right\rangle \end{split}$$

Da quest'ultima, scelto y=0e notando dalla definizione che $\langle 0,z\rangle=0$, abbiamo che

$$\langle x,z \rangle = 2 \left\langle \frac{x}{2},z \right\rangle \implies \langle x+y,z \rangle = 2 \left\langle \frac{x+y}{2},z \right\rangle$$

che conclude la prima parte della dimostrazione della linearità.

Procediamo definendo

$$\Lambda = \{ \lambda \in \mathbb{R} : \langle \lambda x, y \rangle = \lambda \langle x, y \rangle, \ \forall x, y \in X \}$$

allora chiaramente $\{0,1,-1\}\subseteq\Lambda$. Notiamo che se $\alpha,\beta\in\Lambda$ allora $\alpha+\beta\in\Lambda$:

$$\langle (\alpha + \beta)x, y \rangle = \langle \alpha x + \beta x, y \rangle = \langle \alpha x, y \rangle + \langle \beta x, y \rangle = \alpha \langle x, y \rangle + \beta \langle x, y \rangle = (\alpha + \beta) \langle x, y \rangle$$

Dunque necessariamente $\mathbb{Z} \subseteq \Lambda$. Prendiamo ora $\alpha, \beta \in \mathbb{Z}$ con $\beta \neq 0$, allora

$$\alpha \langle x, y \rangle = \langle \alpha x, y \rangle = \left\langle \alpha \frac{\beta}{\beta} x, y \right\rangle = \beta \left\langle \frac{\alpha}{\beta} x, y \right\rangle$$

da cui dividendo ambo i termini per β otteniamo che anche $\mathbb{Q} \subseteq \Lambda$. Concludiamo che, poiché \mathbb{Q} è denso in \mathbb{R} e $\langle \cdot, \cdot \rangle$ è continuo (per come è definito, chiaramente non possiamo usare la prop, essendo che non abbiamo ancora dimostrato che $\langle \cdot, \cdot \rangle$ è un prodotto scalare), allora $\mathbb{R} \subseteq \Lambda \subseteq$.

 $Dimostrazione\ per\ \mathbb{K}=\mathbb{C}$. Similmente a prima, definiamo

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) + i\frac{1}{4} (\|x + iy\|^2 - \|x - iy\|^2)$$

Dunque $Re\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) =: (x, y)$. Allora

$$\langle x, y \rangle = (x, y) + i(x, iy)$$

allora per la parte reale del teorema (x,y) verifica (x+y,z)=(x,z)+(y,z) e $(\lambda x,y)=\lambda(x,y)$ per ogni $\lambda\in\mathbb{R}$. Dunque

$$\langle x + y, z \rangle = (x, z) + (y, z) + i(x, iz)i(y, iz) = \langle x, z \rangle + \langle y, z \rangle$$

Rimane da verificare l'omogeneità per $\lambda \in \mathbb{C}$ e che $\langle x,y \rangle = \overline{\langle y,x \rangle}$. Iniziamo dalla seconda:

$$\overline{\langle y, x \rangle} = \overline{(y, x) + i(y, ix)} = (y, x) - i(y, ix)$$

inolre

$$\begin{split} (y,ix) &= \frac{1}{4} \big(\|y+ix\|^2 - \|y-ix\|^2 \big) = \frac{1}{4} \big(\|i(-iy+x)\|^2 + \|i(-iy-x)\|^2 \big) = \\ &= \frac{1}{4} \big(\|x-iy\|^2 + \|x+iy\|^2 \big) = -(x,iy) \end{split}$$

e quindi la precedente è

$$\overline{\langle y, x \rangle} = (x, y) + i(x, iy) = \langle x, y \rangle$$

Sia ora $\alpha + i\beta = \lambda \in \mathbb{C}$, con $\alpha, \beta \in \mathbb{R}$. Allora

$$\langle (\alpha + i\beta)x, y \rangle = \langle \alpha x + i\beta x, y \rangle = \langle \alpha x, y \rangle + i\langle \beta x, y \rangle = \alpha \langle x, y \rangle + \beta \langle ix, y \rangle$$

ma abbiamo che, riprendendo la definizione

$$\langle ix, y \rangle = \frac{1}{4} (\|ix + y\|^2 - \|ix - y\|^2) + i\frac{1}{4} (\|ix + iy\|^2 - \|ix - iy\|^2)$$

$$= -\frac{1}{4} (\|x + iy\|^2 - \|x - iy\|^2) + i(x, y) = i(x, y) - (x, iy) =$$

$$= i\langle x, y \rangle$$

e quindi concludiamo

$$\langle (\alpha + i\beta)x, y \rangle = \alpha \langle x, y \rangle + \beta \langle ix, y \rangle = \alpha \langle x, y \rangle + i\beta \langle x, y \rangle = \lambda \langle x, y \rangle$$

Osservazione. presa su $C^0([0,1])$ la norma $||f||_2^2 = \int_0^1 |f|^2 dt$, allora $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$ questo è uno spazio prehilbertiano.

 $\langle f,g \rangle = \int_0^1 f(t)g(t)\,dt$ questo è uno spazio prehilbertiano. Però con la norma $\|f\|_\infty$ non è uno spazio prehilbertiano. Infatti non vale l'identità del parallelogramma: prese f(t)=1-t e g(t)=t abbiamo

$$||f - g||_{\infty}^{2} + ||f + g||_{\infty}^{2} = 1 + 1 \neq 2(1 + 1) = 2(||f||_{\infty}^{2} + ||g||_{\infty}^{2})$$

Corollario 0.1.10.1. Sia X uno spazio normato e sia $M \subseteq X$ un sottospazio di dimensione finita. Allora M è chiuso.

Dimostrazione. $(M, \|\cdot\|)$ è esso stesso uno spazio normato di dimensione finita. M è dunque completo quindi chiuso.

Esempio 0.1.6. La precedente non vale se dim $X=+\infty$. Presi infatti $M=C^0(\Omega)$ e $X=L^2(\Omega)$, abbiamo che $\overline{M}^{L^2}=L^2$

0.1.3 Operatori lineari e continui

Siano Xe Yspazi normati. Sia $T:X\to Y.$ Allora T è lineare se

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

per ogni $\alpha, \beta \in \mathbb{K}$ e $x, y \in X$. Per ricordare la linearità, invece di scrivere T(x) scriveremo Tx.

Nota. zione Nelle bolle, indicando a pedice lo spazio invece che il raggio, si sottintende il raggio 1 e si esplicita la norma da utilizzare:

$$B_X(0) := \{x \in X : ||x||_X < 1\}$$

Teorema 0.1.11

Siano X,Y spazi normati. Sia $T:X\to Y$. Allora le seguenti proposizioni sono tutte equivalenti:

- (i) T è continuo
- (ii) T è continuo in 0
- (iii) Ogni limitato di X ha immagine limitata in Y
- (iv) $\exists \alpha > 0 : \overline{T(B_X)} \subseteq \alpha B_Y(0)$
- (v) $\sup_{X \setminus \{0\}} \frac{\|Tx\|_y}{\|x\|_X} < +\infty$
- (vi) $\sup_{x \in B_X(0)} ||Tx||_Y < +\infty$
- (vii) $\sup_{\|x\|_X=1} \|Tx\|_Y < +\infty$

Osservazione. Se X e Y hanno dimensione finita, T è sempre continuo.

Esempio 0.1.7. Preso

$$T: C^0([0,1])_{\|\cdot\|_1} \longrightarrow \mathbb{R}$$

 $f \longmapsto T(f) = f(0)$

è chiaramente lineare. Tuttavia la controimmagine di $\{0\}$ tramite T contiene ad esempio la successione $f_n(x) = \max(nx, 1)$ che ha come limite in $C^0_{\|\cdot\|_1}$ la funzione costante 1, per cui $T^{-1}\{0\}$ non è chiuso.

Definizione 0.1.12: Operatore limitato

Un operatore che soddisfa la condizione (iii) viene detto limitato

Dimostrazione.

- $(i) \implies (ii)$ ovvio
- $(ii) \implies (i)$ ovvio, poiché $T(x-x_0) = T(x) T(x_0)$
- $(ii) \implies (iv)$ Abbiamo che per ogni intorno U_Y di 0_Y esiste un intorno U_X di 0_X tale che $T(U_X) \subseteq U_Y$. Allora scelto $U_Y = \overline{B_Y(0)}$ abbiamo

$$\exists \delta > 0 : T(\delta \overline{B_X(0)}) = \delta T(\overline{B_X(0)}) \subset B_Y(0)$$

per cui basta prendere $\alpha = \frac{1}{\delta}$

 $(iv) \implies (ii)$ Preso $\varepsilon > 0$ bisogna trovare $\delta > 0$ tale che

$$T(\delta \overline{B_x(0)}) \subseteq \varepsilon B_Y(0)$$

e similmente a prima per linearità basta prendere $\delta = \varepsilon/\alpha$

 $(iv) \implies (iii)$ Sia $C \subseteq R\overline{B_X(0)}$ un limitato. Allora

$$T(C) \subseteq T(R\overline{B_X(0)}) = RT(\overline{B_X(0)}) \subseteq R\alpha \overline{B_Y(0)}$$

- $(iii) \implies (iv) \ \overline{B_X}(0)$ è limitato in X, dunque $T(\overline{B_X(0)})$ è limitato in Y, e dunque è contenuto in una palla $\alpha B_Y(0)$ per un $\alpha > 0$
- $(iv) \iff (vi) \|x\|_X \le 1$ se e solo se $x \in \overline{B_X(0)}$, il resto vien da sè
- $(v) \iff (vi) \iff (vii)$ tutte ovvie, come anche è ovvio che il valore finito nel caso sia lo stesso, e viene denotato ||T|| e in pratica tutte e tre dicono che

$$\exists ||T|| > 0 : ||Tx||_Y \le ||T|| ||x||_X$$

per ogni $x \in X$

0.2 Hahn - Banach

Teorema 0.2.1: Hahn - Banach (spazi normati)

Sia X uno spazio normato, X_0 un sottospazio. Sia $g:X_0\to X$ lineare e continua, cioè $g\in X_0'$. Allora $\exists f:X\to\mathbb{K}$ lineare e continua, ossia $f\in X'$ tale che

- 1) f prolunga g
- 2) $||f||_{X'} = ||g||_{X'_0}$

Dimostrazione. sia $p(x) = \|g\|_{X_0'} \|x\|$. Allora $p: X \to \mathbb{R}$ ed è sublineare e omogenea, dunque è una seminorma.

Esempio 0.2.1. Sia $X = \mathbb{R}^2$, allora un generico operatore lineare $\mathbb{R}^2 \to \mathbb{R}$ è del tipo $x \mapsto a \cdot x$, con $a \in \mathbb{R}^2$.

Allora $\|f\|_{\mathcal{L}(\mathbb{R}^2,\mathbb{R})} = \sup_{x \in \mathbb{R}^2 \setminus \{0\}} \frac{|fx|}{\|x\|_p}$ e abbiamo che $|fx| \leq \|a\|_q \|x\|_p$ con $\frac{1}{q} + \frac{1}{p} = 1$. Dunque concludiamo che $\|f\| \leq \|a\|_q$. In realtà questa è un'uguaglianza. Basta infatti prendere

$$\overline{x} = \left(|a_1|^{q-2}a_1, |a_2|^{q-2}a_2\right) \implies \|x\|_p^p = |a_1|^{(q-1)p} + |a_2|^{(q-1)p} = |a_1|^q + |a_2|^q = \|a\|_q^q$$

dove si è usato che $\frac{1}{p}+\frac{1}{q}=1 \implies (q-1)p=q.$ Ma inoltre abbiamo che

$$|f\overline{x}| = |a \cdot \overline{x}| = ||a||_q^q$$

concludiamo che

$$\|f\|_{\mathcal{L}(\mathbb{R}^2,\mathbb{R})} \geq \frac{|fx|}{\|\overline{x}\|_p} = \|a\|_q^{q-\frac{q}{p}} = \|a\|_q$$

Esercizio 0.2.1

Sia $Y\subseteq X$ un sottospazio di Xspazio normato. Mostrare che \overline{Y} è un sottospazio di X.

Lemma 0.2.2

Sia X uno spazio normato e $Y\subseteq X$ un sottospazio tale che $\overline{Y}\subset X$. Allora $\exists f:X\to\mathbb{K}$ con f lineare continua, ossia $f\in X'$ tale che:

- 1. $f \neq 0$
- 2. $\langle f, x \rangle = 0$ per ogni $x \in Y$

Osservazione. Sia X uno spazio normato, $Y \subseteq X$ un sottospazio si supponga che se un funzionale $f \in X'$ tale che $\langle f, x \rangle = 0$ per ogni $x \in Y$ allora necessariamente f = 0. Segue che $\overline{Y} = X$

Dimostrazione. $\exists x_0 \in X - \overline{Y}$, allora $X_0 = Y \oplus \mathbb{K} x_0$. A questo punto prendiamo il funzionale $g: X_0 \to \mathbb{K}$ definito da $g(y + \alpha x_0) = \alpha$. Mostriamo ora che $g \in X_0'$ e che è vero che $g|_Y = 0$. La seconda è banalmente vera perché se $y \in Y$ allora $g(y) = g(y + 0 * x_0) = 0$. Mostriamo che g è lineare e continuo. Supponiamo $x_1 = y_1 + \alpha_1 x_0$ e $x_2 = y_2 + \alpha_2 x_0$. Allora

$$g(\lambda x_1 + \mu x_2) = g(\lambda y_1 + \lambda \alpha_1 x_0 + \mu y_2 + \mu \alpha_2 x_0) =$$

$$= g((\lambda y_1 + \mu y_2) + (\lambda \alpha_1 + \mu \alpha_2) x_0) = \lambda \alpha_1 + \mu \alpha_2 =$$

$$= \lambda g(x_1) + \mu g(x_2)$$

Per la continuità, prendiamo $\alpha \neq 0$ e abbiamo che

$$||x|| = ||y + \alpha x_0|| = \left| |(-\alpha) \left(\frac{y}{-\alpha} - x_0 \right) \right|| = |\alpha| \left| \frac{y}{-\alpha} - x_0 \right||$$

necessariamente $\frac{y}{-\alpha} \in Y$ e dunque possiamo proseguire la precedente equazione con

$$||x|| = |\alpha| \left\| \frac{y}{-\alpha} - x_0 \right\| \ge |\alpha| d(x_0, Y) = |g(x)| d(x_0, Y)$$

per cui concludiamo che g è continua con norma $\|g\| \le 1/d(x_0,Y)$. Questa disuguglianza è in realtà un'uguaglianza, infatti poiché $d(x_0,Y) = \inf_{y \in Y} \|x_0 - y\|$ abbiamo che

$$\exists y_n \in Y : ||y_n - x_0|| < \frac{n+1}{n} d(x_0, Y)$$

e ora abbiamo che

$$\frac{n}{n+1} \frac{\|y_n - x_0\|}{d(x_0, Y)} < 1 = |g(x_0 - y_n)| \le \|g\| \|x_0 - y_n\|$$

da cui per $n \to \infty$ otteniamo $||g||_{X_0'} \ge 1/d(x_0, Y)$.

Ora estendo g a tutto X con Håhn-Banach ottenendo $f \in X'$ tale che $f|_{X_0} = g$ e dunque $f|_Y = 0$. Inoltre l'estensione poiché Hahn-Banach conserva la norma, abbiamo che

$$||f||_{X'} = \frac{1}{d(x_0, Y)}$$

Corollario 0.2.2.1. Sia X uno spazio normato reale. Allora per ogni $x_0 \in X$ esiste una $f \in X'$ tale che $\langle f, x_0 \rangle = ||x_0||^2$ e $||f||_{X'} = ||x_0||$

Dimostrazione. Sia $X_0 = \mathbb{R}x_0$. Sia $x = tx_0 \in X_0$, allora definiamo $g(x) = g(tx_0) = t||x_0||^2$. Verifichiamo che la norma sia corretta: $|g(tx_0)| = |t|||x_0||^2$ dunque $||g||_{X_0'} = ||x_0||$.

Per Hahn-Banach possiamo estendere g a tutto X' ottenendo $f: X \to \mathbb{R}$ tale che $\langle f, x \rangle = \langle g, x \rangle$ per ogni $x \in X_0$ e $||f||_{X'} = ||g||_{X'_0} = ||x_0||$. In particolare anche $\langle f, x_0 \rangle = \langle g, x_0 \rangle = ||x_0||^2$

Il corollario precedente motiva la seguente definizione:

Definizione 0.2.1: Mappa di dualità

Chiamiamo la mappa di dualità la seguente funzione

$$\mathcal{F}: X \longrightarrow 2^{X'}$$
$$x \longmapsto \mathcal{F}(x) = \{ f \in X' : \langle f, x \rangle = ||x||^2 ; ||f||_{X'} = ||x|| \}$$

che associa a ogni elemento di X l'insieme degli elementi "a lui duali".

Esercizio 0.2.2

Consideriamo

$$\mathcal{F}'(x) = \{ f \in X' : \langle f, x \rangle = ||x||^2 ; ||f||_{X'} \le ||x|| \}'$$

Mostrare che $\mathcal{F}' = \mathcal{F}$

Fissato $x \in X$, è evidente che $\mathcal{F}(x) \subseteq \mathcal{F}'(x)$. Supponiamo ora che $f \in \mathcal{F}'(x)$, ossia $||f||_{X'} \le ||x||$. Da $|\langle f, x \rangle| = ||x|| ||x||$ concludiamo che $||f||_{X'} = ||x||$ e dunque $f \in \mathcal{F}(x)$

Esercizio 0.2.3

Consideriamo

$$\mathcal{I}(x) = \left\{ f \in X' : \frac{1}{2} \|y\|^2 - \frac{1}{2} \|x\|^2 \ge \langle f, y - x \rangle \ \forall y \in X \right\}$$

Mostrare che $\mathcal{I} = \mathcal{F}$

Fissiamo $x \in X$

 \subseteq Sia $f \in \mathcal{I}(x)$. Iniziamo mostrando che $\langle f, x \rangle = ||x||^2$. Scegliamo $y = \alpha x$ per $\alpha \in \mathbb{R}$. Segue che

$$\frac{1}{2}\alpha^{2}||x||^{2} - \frac{1}{2}||x||^{2} \ge \langle f, x \rangle(\alpha - 1)$$

con questa uguaglianza, dividendo i casi per $\alpha>0$ e $\alpha<1$, prendiamo il limite di $\alpha\to 1^+$ e $\alpha\to 1^-$, ottenendo le due disuguaglianza $\langle f,x\rangle\leq \|x\|^2$ e $\langle f,x\rangle\geq \|x\|^2$.

Rimane da controllare che $||f||_{X'} \le ||x||$. Scegliamo $y \in X$ tale che ||y|| = ||x||. Otteniamo che

$$\langle f, y \rangle \le \langle f, x \rangle = ||x||^2 \implies |\langle f, y \rangle| \le ||y|| ||x|| \implies ||f||_{X'} \le ||x||$$

 \supseteq Sia $f \in \mathcal{F}(x)$ e $y \in X$. Allora

$$\langle f, y - x \rangle = \langle f, y \rangle - \langle f, x \rangle \le ||f|| ||y|| - ||x||^2 \le \frac{1}{2} ||f||^2 + \frac{1}{2} ||y||^2 - ||x||^2$$

$$\le \frac{1}{2} ||y||^2 - \frac{1}{2} ||x||^2$$

da cui $f \in \mathcal{I}(x)$

Osservazione. Il precedente esercizio suggerisce che $f \in \mathcal{F}(x)$ svolge in un certo senso il ruolo della derivata di $\varphi(x) = \frac{1}{2} ||x||^2$ valutata in x. Vedremo più avanti il significato di questa analogia.

Esercizio 0.2.4

Mostrare che

$$c_0 = \{x : \mathbb{N} \to \mathbb{R} : \lim_{n \to \infty} x(n) = 0\}$$
$$c = \{x \in \ell^{\infty} : \lim_{n \to \infty} x(n) \text{ esiste } \}$$

sono sottospazi chiusi di ℓ^{∞} .

Le dimostrazioni contose esplicite sono lasciate davvero come esercizio, riporto dimostrazioni più sintetiche.

Utilizzando la f definita come il limite come poco più avanti (dopo il teorema), abbiamo che c_0 è chiuso in quanto $c_0 = f^{-1}(\{0\})$ controimmagine continua di chiuso.

Teorema 0.2.3

Sia $p \in [1, +\infty)$, sia $f \in (\ell^p)'$. Sia $q \in \mathbb{R}$ tale che $\frac{1}{p} + \frac{1}{q} = 1$. Allora

$$\exists! y \in \ell^q : \langle f, x \rangle = \sum_{n=1}^{\infty} x(n)y(n)$$

e inoltre $||f||_{(\ell^p)'} = ||y||_{\ell^q}$

Notare che il precedente teorema non vale per $p=\infty$. Costruiamo infatti un funzionale lineare e continuo su ℓ^∞ che non si rappresenta con $y\in\ell^1$. Consideriamo infatti $g:c\to\mathbb{R}$ la funzione definita da $\langle g,x\rangle=\lim_{n\to\infty}x(n)$. Allora g è lineare ed è continuo perché $|\langle g,x\rangle|=|\lim_{n\to\infty}x(n)|\leq \|x\|_\infty$ per cui $g\in c'$ e in particolare $\|g\|_{c'}=1$ ad esempio prendendo la successione $x\in c$ definita da x(n)=1.

Estendo ora g a tutto ℓ^{∞} con Hahn-Banach, ottenendo $f:\ell^{\infty}\to\mathbb{R}$ lineare continuo con $\|f\|_{(\ell^{\infty})'}=1$.

Supponiamo ora per assurdo che esista $y \in \ell^1$ tale che

$$\langle f, x \rangle = \sum_{n=1}^{\infty} y(n)x(n) \quad \forall x \in \ell^{\infty}$$

e consideriamo ora gli x_k definiti come $x_k = (n = k)$. Allora abbiamo $\langle f, x_k \rangle = \lim_{n \to \infty} x_k(n) = 0$ ma per ogni k allora avremmo che $0 = \langle f, x_k \rangle = \sum_{n=1}^{\infty} y(n) x_k(n) = y(k)$ per cui y = 0 che è impossibile perché sappiamo che f ha norma 1.

¹concedetemi questa notazione da informatico

Esercizio 0.2.5

Mostrare che

$$c_{00} = \{x : \mathbb{N} \to \mathbb{R} \text{ definitivamente nulle}\}\$$

è denso in ℓ^p , per ogni $p \in [1, \infty)$

Esercizio 0.2.6

Mostrare che $T:\ell^2 \to \ell^2$ dato da

$$(Tx)(n) = \frac{x(n)}{n}$$

è ben definito, lineare, continuo e $T(\ell^2)$ non è chiuso in ℓ^2 ed è denso in ℓ^2

Definizione 0.2.2: Immersione Compatta

Siano X,Yspazi di Banach. Dico che Y è immerso con compattezza in X (indicato $Y\subset\subset X$) se

- 1. $\exists C>0: \|x\|_X \leq C \|x\|Y$ per ogni $x \in Y$ (dunque l'immersione $Y \hookrightarrow X$ è continua.
- 2. Ogni successione limitata in Y ha un'estratta convergente in X

Esercizio 0.2.7

Sia $X = \ell^2$ e consideriamo

$$Y = \left\{ x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} n^2 |x(n)|^2 < +\infty \right\}$$

Mostrare che

- 1. Y è sottospazio vettoriale di ℓ^2
- 2. Posto $\|x\|_Y^2 := \sum_{n=1}^\infty n^2 |x(n)|^2$, questa è una norma indotta da un prodotto scalare
- 3. L'inclusione $Y \hookrightarrow X$ è continua
- 4. Y è completo
- 5. $Y \subset\subset X$
- 1. preso $x \in Y$, $|x(n)|^2 \le n^2 |x(n)|^2$ e poiché $\{nx(n)\}_{n \in \mathbb{N}} \in \ell^2$ allora anche $x \in \ell^2$. Facile verificare che Y è sottospazio
- 2. Tutte facili verifiche, con prodotto scalare $\langle x,y\rangle_Y=\sum_{n=1}^\infty n^2x(n)y(n)$
- 3. Come visto nel punto 1., $||x||_{\ell^2} \le ||\{nx(n)\}_{n \in \mathbb{N}}||_{\ell^2} = ||x||_Y$
- 4. Sia $\{x_k\}_{k\in\mathbb{N}}$ di Cauchy in $\|\cdot\|_Y$. Vogliamo mostrare che $x_k \to \overline{x}$ in Y. Poiché $\|x_n x_m\|_{\ell^2} \leq \|x_n x_m\|_Y$ allora esiste $\overline{x} \in \ell^2$ tale che $x_k \to \overline{x}$ in ℓ^2 per completezza di ℓ^2 . Poste $y_k(n) = nx_k(n)$, evidentemente y_k è di Cauchy in ℓ^2 , dunque esiste $\overline{y} \in \ell^2$ tale che $y_k \to \overline{y}$. Vogliamo ora mostrare che

 $\overline{y}(n) = n\overline{x}(n)$. Questo si può dire perché la convergenza in ℓ^2 implica la convergenza puntuale, e per ogni $k \in \mathbb{N}$ si ha che $y_k(n) = nx_k(n)$

5. Sia $\{x_k\}$ limitata in Y. Allora $\exists M>0: \|x_k\|_Y^2\leq M$. Vogliamo trovare una sottosuccessione $\{x_{k_j}\}\subseteq \{x_k\}$ tale che $x_{k_j}\overset{\ell^2}{\to} \overline{x}\in \ell^2$. Ora usando un risultato che ancora non abbiamo dimostrato, la **compattezza debole**, diciamo che $\exists \overline{x}\in \ell^2$ e una sottosuccessione tale che

$$\langle y, x_{k_i} \rangle \to \langle y, \overline{x} \rangle \quad \forall y \in \ell^2$$

(reindicizziamo per comodità i k a indicare k_j , per alleggerire la notazione) Fisso $n \in \mathbb{N}$ e prendo y(i) = (i == n). Allora otteniamo dalla precedente che $\langle y, x_k \rangle = x_k(n) \to \overline{x}(n) = \langle y, \overline{x} \rangle$. Vogliamo ora mostrare che la convergenza è in ℓ^2

$$||x_k - \overline{x}||_{\ell^2}^2 = \sum_{n=1}^{\infty} |x_k(n) - \overline{x}(n)|^2 = \sum_{n=1}^{m} |x_k(n) - \overline{x}(n)|^2 + \sum_{n=m+1}^{\infty} \frac{1}{n^2} n^2 |x_k(n) - \overline{x}(n)|^2$$

osservo ora che $n^2|x_k(n)-\overline{x}(n)|^2 \le n^2(|x_k(n)|+|\overline{x}(n)|)^2 \le 2n^2|x_k(n)|^2+2n^2|\overline{x}(n)|^2$

Prima di proseguire vogliamo dire che $\overline{x} \in Y$. Abbiamo che

$$nx_k(n) \to n\overline{x}(n) \implies n^2|x_k(n)|^2 \to n^2|\overline{x}(n)|^2 \quad \forall n \in \mathbb{N}$$

per il lemma di Fatou, abbiamo che

$$\sum_{n=1}^{\infty} n^2 |\overline{x}(n)|^2 \le \liminf_{k \to \infty} \sum_{n=1}^{\infty} n^2 |x_k(n)|^2 \le M$$

possiamo ora proseguire la disuguaglianza precedente

$$||x_k - \overline{x}||_{\ell^2}^2 = \sum_{n=1}^m |x_k(n) - \overline{x}(n)|^2 + \sum_{n=m+1}^\infty \frac{1}{n^2} n^2 |x_k(n) - \overline{x}(n)|^2$$

$$\leq \sum_{n=1}^m |x_k(n) - \overline{x}(n)|^2 + \frac{4}{(m+1)^2} M$$

Infine fisso $\varepsilon > 0$ e prendo $m \in \mathbb{N}$: $\frac{4M}{(m+1)^2} < \frac{\varepsilon}{2}$ e $\overline{k} = \overline{k}(\varepsilon, m)$ tale che anche la somma troncata del primo addendo sia minore di $\frac{\varepsilon}{2}$. Concludiamo che

$$||x_k - \overline{x}||_{\ell^2}^2 < \varepsilon$$

e dunque $x_k \to \overline{x}$ in ℓ^2

Nell'esercizio precedente abbiamo che similmente si comporterebbe anche

$$Y_{\alpha} = \left\{ x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} n^{2\alpha} |x(n)|^2 < +\infty \right\} \text{ con } \alpha \in (0,1)$$

Riprendendo l'operatore T definito nell'esercizio 0.2, abbiamo che $T(\ell^2) \neq \ell^2$.

Poiché T è iniettivo, definiamo $A = T^{-1}$ come (Ax)(n) = nx(n). Ovviamente il dominio di A non è tutto ℓ^2 , ma

$$A: D(A) \longrightarrow \ell^2$$

$$D(A) = \left\{ x \in \ell^2 : \sum_{n=1}^{\infty} n^2 |x(n)|^2 < +\infty \right\}$$

ossia Y dell'esercizio 0.2. Ma allora A è lineare ma non limitato, infatti

$$||Ax||_{\ell^2}^2 = ||x||_Y^2 \not\leq C||x||_{\ell^2}$$

Corollario 0.2.3.1. Sia X uno spazio normato. Allora

$$\|x\|=\sup_{f\in X';\|f\|_{X'}\leq 1}|\langle f,x\rangle|$$

che è in realtà un massimo

Dimostrazione. Prendo $x \neq 0, |\langle f, x \rangle| \leq ||x||, \forall f \in X'$ e quindi anche

$$\sup_{f:\|f\|_{X'} \le 1} |\langle f, x \rangle| \le \|x\|$$

preso ora $f \in \mathcal{F}(x)$, abbiamo che $\langle f, x \rangle = \|x\|^2$ e $\|f\|_{X'} = \|x\|$. Prendiamo ora $f_1 = \frac{f}{\|x\|}$ e dunque $\|f_1\|_{X'} = 1$ e $\langle f_1, x \rangle = \|x\|$ ne consegue che il sup è un max ed è raggiunto da f_1

Definizione 0.2.3: Stretta convessità

Sia $(X, \|\cdot\|)$ uno spazio normato. Allora $(X, \|\cdot\|)$ è **strettamente convesso** se, dati $x, y \in X$

$$x \neq y \in ||x|| = ||y|| = 1 \implies \left\| \frac{x+y}{2} \right\| < 1$$

Esempio 0.2.2. \mathbb{R}^2 è strettamente convesso in norma p per $p \in (1, \infty)$

Esempio 0.2.3 (Spoiler). Gli spazi di Hilbert sono strettamente convessi

Proposizione 0.2.4. Unicità in Hahn-Banach Sia X uno spazio normato tale che X' sia strettamente convesso. Allora dato $X_0 \subseteq X$ sottospazio e $g \in X'_0$,

$$\exists ! f \in X' : f \ estende \ g \ ; \|f\|_{X'} = \|g\|_{X'_0}$$

Dimostrazione. Siano f_1 e f_2 due estensioni di g. Se $g \equiv 0$ allora necessariamente $f_1 = f_2 \equiv 0$.

Assumo che $||g||_{X'_0} = ||f_1||_{X'} = ||f_2||_{X'} = 1$. Allora

$$\frac{f_1 + f_2}{2} \Big|_{X_0'} = g \implies \left\| \frac{f_1 + f_2}{2} \right\| \ge \|g\|_{X_0'} = 1$$

allora dalla contropositiva della stretta convessità, concludiamo che $f_1=f_2$

Definizione 0.2.4: Spazio Separabile

X spazio metrico è detto **separabile** se esiste $D\mathbb{C}X$ tale che

- 1. D è numerabile
- 2. D è denso in X

Proposizione 0.2.5. Se X è separabile e $M_0 \subseteq X$ allora M_0 è separabile.

Dimostrazione. $M_0 \cap D$ è numerabile e denso in M_0

Teorema 0.2.6

Sia X uno spazio normato tale che X' è separabile. Allora X è separabile.

Dimostrazione. Sia $\{f_n\}_{n\in\mathbb{N}}$ numerabile e chiuso in X'. Allora

$$\exists \{x_n\}_{n \in \mathbb{N}}, \ x_n \in X : |\langle f_n, x_n \rangle| \ge \frac{1}{2} ||f_n||_{X'}$$

per la definizione di norma duale.

Assumo momentaneamente che $\mathbb{K} = \mathbb{R}$, allora

$$D = \left\{ x \in X : x = \sum_{k=1}^{n} \alpha_k x_k, \quad n \in \mathbb{N}, \quad \alpha_k \in \mathbb{Q} \right\}$$

che è numerabile in quanto unione numerabile di numerabili (insiemi $\{\sum_{i=1}^n \alpha_k x_k, \ \alpha_k \in \mathbb{Q}\} \hookrightarrow \mathbb{Q}^n$ per n fissato).

Mostriamo ora la densità. Consideriamo l'insieme

$$D = \left\{ x \in X : x = \sum_{k=1}^{n} \alpha_k x_k, \quad n \in \mathbb{N}, \quad \alpha_k \in \mathbb{R} \right\}$$

e chiaramente $\overline{D}=\overline{Y}$ dunque dobbiamo solo dimostrare $\overline{Y}=X$. Mostriamo la condizione equivalente che se $f\in X'$ e $f\equiv 0$ su Y, allora $f\equiv 0$ su tutto X. A tal scopo fissiamo $\varepsilon>0$ e troviamo $f_n\in X'$ tale che (con $\|x_n\|=1$)

$$||f_n - f||_{X'} \le \varepsilon \implies \frac{1}{2} ||f_n||_{X'} \le |\langle f_n, x \rangle| = |\langle f_n - f, x_n \rangle + \langle f, x_n \rangle| \le ||f_n - f||_{X'} \le \varepsilon$$

ma allora

$$||f||_{X'} \le ||f_n - f||_{X'} + ||f_n||_{X'} \le 3\varepsilon$$

e per arbitrarietà di ε concludiamo che $f \equiv 0$ su X

Il caso complesso è analogo, ma prendendo $\alpha_k \in \mathbb{Q} \oplus i\mathbb{Q} \subseteq \mathbb{C}$.

Esempio 0.2.4. c_{00} è denso in ℓ^p per $p \in [1, +\infty)$. Allora preso

$$D = \{ x \in c_{00} : x(n) \in \mathbb{Q} \quad \forall n \in \mathbb{N} \}$$

si ha che $\overline{D} = \overline{c_{00}} = \ell^p$

Esercizio 0.2.8

Mostrare che c_0 e c sono separabili con la $\|\cdot\|_{\infty}$

Proposizione 0.2.7. ℓ^{∞} non è separabile

Dimostrazione. Vogliamo mostrare che se D è un sottoinsieme numerabile di ℓ^{∞} allora non può essere denso. Sia $D = \{y_n\}_{n \in \mathbb{N}}$. Ora consideriamo $x : \mathbb{N} \to \mathbb{R}$ dato da

$$x(n) = \begin{cases} 1 + y_n(n) & |y_n(n)| \le 1\\ 0 & \text{altrimenti} \end{cases}$$

e dunque chiaramente $||x||_{\infty} \leq 2$ e in particolare $x \in \ell^{\infty}$ ma allora

$$||x - y_k||_{\infty} = \sup_{n \in \mathbb{N}} |x(n) - y_k(n)| \ge |x(k) - y_k(k)| \ge 1$$

dove l'ultima disuguaglianza è perché se $|y_k(k)| \le 1 \implies |x(k) - y_k(k)| = 1$ e se $|y_k(k)| > 1$ allora $|x(k) - y_k(k)| = |y_k(k)|$.

Concludiamo che D non può essere denso in ℓ^{∞} e dunque ℓ^{∞} non è separabile.

0.3Forme geometriche di Hahn-Banach

Ora supponiamo $\mathbb{K} = \mathbb{R}$.

Sia X uno spazio normato e $f \in X'$. Allora un iperpiano è definito come ker f. Se vogliamo generalizzare a iperpiani non sottospazi vettoriali, possiamo prendere, preso un $\alpha \in \mathbb{R}$, lo spazio

$$H = \{x \in X : \langle f, x \rangle = \alpha\} =: [f = \alpha]$$

Allora due insiemi $A, B \in X$ sono separati in senso largo da $[f = \alpha]$ se

$$f(x) \le \alpha \forall x \in A$$

 $f(x) > \alpha \forall x \in B$

e dico che l'iperpiano $[f = \alpha]$ separa in senso stretto A e B se esiste $\varepsilon > 0$ tale che

$$f(x) \le \alpha - \varepsilon \forall x \in A$$

 $f(x) \ge \alpha + \varepsilon \forall x \in B$

Teorema 0.3.1: Hahn-Banach, prima forma geometrica

Sia X spazio normato, $A, B \subseteq X$ convessi, non vuoti e disgiunti. Allora se A è aperto esiste $f \in X'$ e $\alpha \in \mathbb{R}$ tale che $[f = \alpha]$ separa A e B in senso largo

Osservazione. Non è migliorabile (avere senso stretto) neanche nel caso a dimensione finita. Ad esempio su \mathbb{R} posso avere $A = \{x > 0\}$ e $B = \{x \leq 0\}$ che sono separati $da \{0\}$ ma solo in senso largo.

Definizione 0.3.1: Funzionale di Minkowski

Sia X uno spazio normato. C aperto convesso che contiene lo 0. Sia

$$p(x) = \inf \left\{ r > 0 : \frac{x}{r} \in C \right\}$$
il funzionale di Minkowski

viene anche detto gauge di C.

Buona definizione. $p:X\to\mathbb{R}$ è ben definito. Poiché C è aperto e $0\in C$, esiste $\varepsilon > 0$ tale che $B_{\varepsilon}(0) \subseteq C$, ossia $||x|| \le \varepsilon \implies x \in C$. Fissato ora $x \in X$, allora preso $r = \frac{\varepsilon}{\|x\|}$ abbiamo che $\frac{\|x\|}{r} = \varepsilon$ e dunque $\frac{x}{r} \in C$. Dunque l'insieme di cui si fa l'inf è non vuoto.

Lemma 0.3.2: Proprietà del funzionale di Minkowski

Il funzionale di Minkowski p ha diverse proprietà

- 1. $p(\lambda x) = \lambda p(x)$ per ogni $x \in X$ e per ogni $\lambda > 0$
- 2. $p(x+y) \le p(x) + p(y)$ per ogni $x, y \in X$
- 3. $\exists m > 0 : 0 \le p(x) \le m||x||$ per ogni $x \in X$
- 4. $C = \{x \in X : p(x) < 1\}$

1. ovvio Dimostrazione.

3. $\exists R>0: \overline{B}_R(0)\subseteq C, \text{ cioè } \forall x\in X\smallsetminus\{0\}, \quad R\frac{x}{\|x\|}\in C$

dunque $p(x) \leq ||x||/R$ per ogni $x \in X$

- 4. Sia $x \in C$, trovo $\varepsilon > 0$ tale che $(1+\varepsilon)x \in C$ poiché C è aperto. Allora $p(x) \leq \frac{1}{1+\varepsilon} < 1$. Viceversa se p(x) < 1, allora esiste $\alpha \in (0,1)$ tale che $\frac{x}{\alpha} \in C$. Ma allora per la convessità di C e poiché $0 \in C$, anche $\alpha \frac{x}{\alpha} + (1-\alpha)x \in C$ e dunque $x \in C$
- 2. Prendo $x,y\in X$ e $\varepsilon>0. Allora$

$$\frac{x}{p(x) + \varepsilon}, \frac{y}{p(y) + \varepsilon} \in C$$

(infatti $p(x) + \varepsilon > p(x)$). Ora poiché C è convesso, $\forall t \in (0,1)$

$$t\frac{x}{p(x)+\varepsilon}+(1-t)\frac{y}{p(y)+\varepsilon}\in C$$

preso ora $t=\frac{p(x)+\varepsilon}{p(x)+p(y)+2\varepsilon},$ quindi $1-t=\frac{p(y)+\varepsilon}{p(x)+p(y)+2\varepsilon}$ abbiamo che

$$\frac{x+y}{p(x)+p(y)+2\varepsilon}\in C$$

Ne consegue (da 4. o dalla definizione) che

$$p(x+y) < p(x) + p(y) + 2\varepsilon \quad \forall \varepsilon > 0$$

e per arbitrarietà di ε segue la sottolinearità $p(x+y) \leq p(x) + p(y)$

Osservazione. Abbiamo detto dunque che p è una seminorma. Cosa dovremmo aggiungere per renderla una norma? Serve che sia omogenea anche per $\lambda \leq 0$, dunque vogliamo $p(\lambda x) = |\lambda| p(x)$ e inoltre vorremmo che $p(x) = 0 \iff x = 0$.

Per la prima abbiamo che se $\lambda < 0$ allora $p(\lambda x) = p(-\lambda(-x)) = |\lambda|p(-x)$. Vogliamo dunque che p(-x) = p(x). Abbiamo però che

$$p(-x) = \inf\{r > 0 : -\frac{x}{r} \in C\} = \inf\{r > 0 : -x \in rC\}$$

Una proprietà dunque che renderebbe l'uguaglianza vera (p "pari" diciamo) sarebbe avere che se $x \in C$, allora $-x \in C$.

Lemma 0.3.3 (Separazione di un convesso non vuoto da un punto esterno). Sia $C \subseteq X$ convesso aperto non vuoto e sia $x_0 \notin C$. Allora $\exists f \in X'$ tale che

$$f(x) < f(x_0) \quad \forall x \in C$$

Dimostrazione. Sia $X_0 = \mathbb{R}x_0$. Allora X_0 è sottospazio di X. Sia $g: X_0 \to \mathbb{R}$ definita da $g(tx_0) = t$, per $t \in \mathbb{R}$. Sia p il funzionale di Minkowski di C, vogliamo dire che $g(tx_0) \leq p(tx_0)$ per ogni t > 0. Poiché $x_0 \notin C$, abbiamo che $p(x_0) \geq 1$. Effettivamente allora

$$g(tx_0) = t \cdot 1 \le tp(x_0) = p(tx_0)$$

Se invece t < 0 banalmente $g(tx_0) \le 0 \le p(tx_0)$.

Ora possiamo applicare Hahn-Banach dicendo che esiste $f: X \to \mathbb{R}$ lineare tale che f = g su X_0 e $f(x) \le p(x)$ per ogni $x \in X$. Per le proprietà di Minkowski, abbiamo che $f(x) \le p(x) \le m\|x\|$ per ogni $x \in X$. Inoltre per linearità $-f(x) = f(-x) \le m\|-x\| = m\|x\|$. Dalle due otteniamo che

$$|f(x)| \le m||x|| \quad \forall x \in X$$

e dunque $f \in X'$.

Ora se $x \in C$, allora

$$f(x) \le p(x) < 1 = g(x_0) = f(x_0)$$

Teorema 0.3.4: Hahn-Banach – prima forma geometrica

Sia X uno spazio normato. Siano A,B sottoinsiemi non vuoti, disgiunti e convessi. Allora se A è aperto esiste un iperpiano chiuso che separa A e B, cioè $\exists f \in X'$ e $\exists \alpha \in \mathbb{R}$ tale che

$$f(x) = \alpha \quad \forall x \in A \quad e \quad f(x) \ge \alpha \quad \forall x \in B$$

Dimostrazione. Sia $C = A - B = \{x \in X : x = a - b, a \in A, b \in B\}$. Dobbiamo ora mostrare che C è convesso, aperto e non contiene lo A. È aperto in quanto

$$C = \bigcup_{b \in B} (A - b)$$

unione di aperti. È convesso in quanto, se $a_i - b_i = x_i \in C$ per i = 1, 2, allora

$$(1-t)(a_1-b_1)+t(a_2-b_2)=((1-t)a_1+ta_2)-((1-t)b_1+tb_2)\in C$$

Infine chiaramente $0 \notin C$ poiché A e B sono disgiunti.

Allora $\exists f \in X'$ tale che 0 = f(0) > f(z) per ogni $z \in C$. Se z = x - y, con $x \in A$ e $y \in B$ abbiamo dunque per linearità che

$$f(x) < f(y) \quad \forall x \in A, \quad \forall y \in B$$

concludiamo l'esistenza di α della tesi.

Teorema 0.3.5: Hahn-Banach – seconda forma geometrica

Sia X uno spazio normato, $A\subseteq X,\ B\subseteq X.$ Siano A,B convessi non vuoti e disgiunti. Allora, se A è chiuso e B è compatto, esiste un iperpiano chiuso che separa A e B strettamente, cioè

$$\exists f \in X', \exists \alpha \in \mathbb{R}, \exists \varepsilon > 0 : f(x) < \alpha - \varepsilon \ \forall x \in A \in f(x) > \alpha + \varepsilon \ \forall x \in B$$

Dimostrazione. $\forall \varepsilon > 0$, siano $A_{\varepsilon} = A + B_{\varepsilon}(0)$ e $B_{\varepsilon} = B + B_{\varepsilon}(0)$. Dimostro ora che A_{ε} e B_{ε} sono convessi, disgiunti e aperti. Sono convessi in quanto somma di due convessi. Sono aperti in quanto

$$A_{\varepsilon} = \bigcup_{a \in A} B_{\varepsilon}(a)$$
 e $B_{\varepsilon} = \bigcup_{b \in B} B_{\varepsilon}(b)$

Dimostro ra che $\exists \overline{\varepsilon} > 0 : \forall \varepsilon < \overline{\varepsilon}, A_{\varepsilon} \cap B_{\varepsilon} = \emptyset$. Per assurdo supponiamo esista una successione $\varepsilon_n \to 0$ decrescente e x_n, y_n, w_n, z_n , con $x_n \in A, y_n \in B, w_n \in B_{\varepsilon_n}(0)$ e $z_n \in B_{\varepsilon_n}(0)$ tali che $x_n + w_n = y_n + z_n$. Allora

$$||x_n - y_n|| = ||z_n - w_n|| \le 2\varepsilon_n$$

poiché $y_n \in B$ compatto, esiste n_k sottosuccessione con $y_{n_k} \to \overline{y} \in B$. Allora

$$||x_{n_k} - \overline{y}|| \le ||x_{n_k} - y_{n_k}|| + ||y_{n_k} - \overline{y}|| \stackrel{k \to \infty}{\longrightarrow} 0$$

Da cui $x_{n_k} \to \overline{y}$, ma $x_{n_k} \in A$ chiuso, dunque $\overline{y} \in A$. Risulterebbe che $\overline{y} \in A \cap B$ che è assurdo.

Abbiamo dunque che $\exists f \in X'$, ed $\exists \alpha > 0$ tale che

$$f(z) \le \alpha \quad \forall z \in A_{\varepsilon}$$

 $f(z) \ge \alpha \quad \forall z \in B_{\varepsilon}$

Ossia $f(x + \varepsilon w) \leq \alpha$, per ogni $x \in A$ e $w \in B_1(0)$ da cui $f(x) + \varepsilon f(w) \leq \alpha$ e poiché vale per ogni $w \in B_1(0)$ abbiamo

$$f(x) \le \alpha - \varepsilon ||f||_{X'}$$
 e analogamente $f(x) \ge \alpha + \varepsilon ||f||_{X'}$

0.4 Funzioni convesse

Sia X uno spazio vettoriale e sia $\varphi: X \to \mathbb{R} + \{+\infty\}$. Dico che φ è propria se $D(\varphi) = \{x \in X : \varphi(x) \neq +\infty\} \neq \emptyset$. Dico che φ è convessa se, $\forall x, y \in X$ e $\forall t \in [0,1]$,

$$\varphi(tx + (1-t)y) \le t\varphi(x) + (1-t)\varphi(y)$$

Sia $C \subseteq X$ convesso non vuoto. Allora sia

$$\varphi(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

è una funzione convessa detta indicatrice di C

Definizione 0.4.1: Epigrafico

Data φ una funzione, il suo *epigrafico* è

$$\operatorname{epi}\varphi = \{(x,\lambda) \in X \times \mathbb{R} : \varphi(x) \leq \lambda\}$$

Proposizione 0.4.1. Si ha che

- (1) $\varphi: X \to \mathbb{R}$ è convessa se e solo se epi φ è convesso
- (2) $Se \ \varphi : X \to \mathbb{R} \cup \{+\infty\} \ \dot{e} \ convessa, \ allora \ \{x \in X : \varphi(x) \le \lambda\} \ \dot{e} \ convesso \ \forall \lambda \in \mathbb{R}$
- (3) Se φ_1, φ_2 sono convesse, allora $\varphi_1 + \varphi_2$ è convessa
- (4) Se $\{\varphi_i\}_{i\in I}$ sono convesse, allora $\varphi(x) = \sup_{i\in I} \varphi_i(x)$ è convessa.

Esempio 0.4.1. Sia X uno spazio normato. Allora $\varphi: X \to \mathbb{R}$ data da $\varphi(x) = ||x||$ è convessa. Infatti

$$||tx + (1-t)y|| \le t||x|| + (1-t)||y|| \quad \forall x, y \in X, \quad \forall t \in (0,1)$$

0.5 semicontinuità

Definizione 0.5.1: Funzione semicontinua inferiormente

Sia Xuno spazio normato. $\varphi:X\to\mathbb{R}$ è semicontinua inferiormente se

$$\varphi(x) \leq \liminf_{y \to x} \varphi(y)$$

viene anche abbreviato s.c.i.

Proposizione 0.5.1 (Caratterizzazioni equivalenti). (i) φ è s.c.i. se e solo se epi φ è chiuso in $X \times \mathbb{R}$

- (ii) φ è s.c.i. se e solo se $\{x \in X : \varphi(x) \leq \lambda\}$ è chiuso per ogni $\lambda \in \mathbb{R}$ s.c.i.
- (iii) Se φ_1, φ_2 sono s.c.i. allora anche $\varphi_1 + \varphi_2$ lo è.
- (iv) Se $\{\varphi_i\}_{i\in I}$ sono s.c.i., allora $\varphi(x) = \sup_{i\in I} \varphi_i(x)$ è s.c.i..
- (v) Sia X compatto, $\varphi: X \to \mathbb{R}$ s.c.i., allora φ ha minimo.

Dimostrazione di (v). S.c.i. se e solo se è continua secondo la topologia della semicontinuità inferiore, con aperti della base della forma $(a, +\infty)$, con $a \in \mathbb{R}$ come base. Allora se X è compatto, anche $\varphi(X)$ è compatto.

Teorema 0.5.2

Sia X uno spazio normato, $\varphi:X\to\mathbb{R}\cup\{+\infty\}$ convessa, propria e s.c.i. Allora esiste $f\in X'$ e $\exists c\in\mathbb{R}$ tale che

$$\varphi(x) \ge \langle f, x \rangle + c \quad \forall x \in X$$