Target Tracking using Drone Swarms

Project Members & Speaking Order

- 1. Finlay Cross Drone Swarm Lifecycle & Software Porting
- 2. Benjamin Ireland Drone Trajectory Control & Network Protocol Integration
- 3. Se Hyun Kim Target Implementation
- 4. Ronniel Padua Drone Management/Visualisation Application

Raith Fullam - Network Communication Protocol (SENG, Assessed Separately)

Project Code: **E24**

Sponsor: Wireless Research Centre

Background

Why?

NZ has many threatened insects that are almost impossible to track through conventional means. Because of this little is known about their behaviour.

How?

By attaching harmonic radar tags to the insects, their movements can be tracked. Using drone swarms, detailed information about the insects can be obtained.

Other Applications:

Search & Rescue, Infrastructure Monitoring, Surveillance

Project Overview

- WRC's Application:
 - Reliable tracking of threatened insects.
- Continued Project
- Subprojects:
 - Flight Controller
 - Trajectory Control System
 - Drone Swarm Lifecycle
 - Target Implementation
 - Drone Management Application
 - Drone Coordination Protocol ~ SENG

System Hierarchy

Sub-Project Goals

Successful Four Drone Swarm in the Field

Port Software

Address Performance Concerns of last year

Lifecycle Development

Create a comprehensive mission lifecycle manager

Scalability

Ensure the swarm is scalable to larger swarms

Long Term support

Ensure the project is viable far in the future

Software Redesign

Lifecycle Implementation

Automatic Drone Setup

Install_on_drone.sh ROS2 C++ **Packages** Humble

μXRCE-DDS

Network Setup

launch

Project Review & Future

Achievements:

Updated to long term support software and firmware

Software Redesigned in C++

Createm api style Input

Automated drone setup

Lifecycle restructured to be event based

Final Steps:

Successful multi-drone field test

In depth
Documentation

Code clean up

Recommendations:

More detailed lifecycle states and events

Trajectory Controller & Protocol Integration

Sub-project Goals

- Provide reliable target tracking capability.
- Address performance and scalability issues of the previous iteration.
- Decoupling of formation and trajectory.

Sub-project Objectives

- Design of the drone's trajectory controller and swarm configuration.
- Integration with the drone coordination protocol.

Previous Swarm Implementation

Swarm Design

Proposed Solution

- Maintain position to Reference Point.
- RP superimposes itself over target.
- Simplifies individual drone computation and configuration.
- Position, angle, and height displacement constraints.

Software Architecture & Network Integration

Integration & Testing

Simulation

• The drone swarm has been tested in the *gazebo* simulation software.

Hardware Integration

- Software updates & drone reconfiguration.
- Middleware integration and FCU software customization.

Field Testing & Validation

Field testing to date, test plans and evaluation.

Project Conclusion

Achievements

- Fully operational simulation of the drone swarm.
- Simplified swarm configuration to improve scalability.
- Separation of trajectory and formation activities.
- Initial field tests validated formation forming and singular drone target tracking.

Wrapping up

Validation of target tracking and multi-drone formations.

Recommendations

The current implementation is promising and should be enhanced in the project's continuation.

Future Objectives

- Complete Network Protocol Integration
- Simulation -> Real World Performance Estimation
- Collision detection

Automatic Drone Setup

launch

Configuration App

✓ I TEST_SHAPE_config	•
{} drone_1_config.json	U
{} drone_2_config.json	U
{} drone_3_config.json	U
drone_4_config.json	U
drone_5_config.json	U
drone_o_comig.json	

Dash App

Proof of concept to Quickly create new formation

Reference Point

• Origin {0,0,0}

Add Node

• x, y, z control

Create polygon

- Number of points
- Radius
- Height

Save

Save Name

Progress & Goals

On Track?

Scope Overview

Previous Target Node

Used virtual preplanned path node as target

New Target Node

Develop a Real-Time tracking target

Advantages of Real-Time Tracking Target

Increased flexibility in movement and timing Increased scalability to different environments Mimic real-life missions, more accurate testing

Target Requirements

- Need a precise tracking method
- Need a tracking method suited to the testing environment

	GPS	Wi-Fi RTLS	Active RFID
Accuracy	2.5 m	5 m	3 m
Range	Global	15 m	80 m
(Maximum)			
Power	High	High	Moderate
Cost (NZD)	Free	Free (Wi-Fi	40 + (260 x
	(Provided	capability	N), N =
	by WRC)	installed	number of
		inside drone)	drones. (Tag
			[4] + Reader
			[5] x N)
Ref. pt.	Yes	No	No
Compatabible			
Choice:	GPS		

BU-353S4 USB GPS Receiver

- Operating Frequency of 1.575 MHz
- Channels = 48

GPS Implementation

Implementation

- Read GPS Data from Receiver (10 times per second)
- Convert NMEA GPS data to Lat, Lon, Alt in degrees
 - Send GPS Data to Drone Swarm using ROS2

Testing

- Read HDOP Data from Receiver (1 time per second)
- Log GPS Data into a text file
- Map out GPS Data using GIS Software

GPS Data Extraction

GPS Coordinate Conversion

```
-43.526408, 172.579328, 24.7
-43.526423, 172.579330, 24.6
-43.526440, 172.579332, 24.5
-43.526455, 172.579337, 24.6
-43.526468, 172.579345, 24.5
-43.526480, 172.579352, 24.5
-43.526490, 172.579358, 24.6
-43.526503, 172.579365, 24.6
-43.526517, 172.579372, 24.6
-43.526528, 172.579382, 24.5
-43.526543, 172.579387, 24.5
-43.526558, 172.579390, 24.5
-43.526572, 172.579392, 24.4
-43.526582, 172.579400, 24.5
-43.526602, 172.579407, 24.5
-43.526617, 172.579405, 24.6
-43.526628, 172.579400, 24.6
-43.526622, 172.579403, 24.7
-43.526625, 172.579402, 24.8
-43.526627, 172.579395, 24.8
-43.526638, 172.579383, 24.8
-43.526653, 172.579372, 24.8
-43.526662, 172.579365, 24.7
-43.526672, 172.579362, 24.6
-43.526683, 172.579355, 24.6
-43.526697, 172.579342, 24.5
-43.526715, 172.579322, 24.4
-43.526720, 172.579307, 24.3
```

HDOP calculation

Starting NMEA data processing...

Average HDOP (excluding values > 10): 3.15m

Finished NMEA data processing.

Drone Swarm

```
shk52@shk52-VirtualBox: /media/sf_shk52/ros2_ws 🔍 🗏
                          shk52@shk52-VirtualBox: /media/sf_shk52/ros2_ws 🔾 😑
                                                                                                                                          INFO] [1726711945.009229142] [gps_subscriber]: Received NMEA GPS data: '$GPGGA,
.387,,,,,0,00,,,M,0.0,M,,0000*59'
[INFO] [1726711941.896795244] [serial_port_publisher]: Published: '$GPGGA,021221
                                                                                                                                        021224.387,,,,,0,00,,,M,0.0,M,,0000*5D'
Attempting to read from the gps_publisher...
.387,,,,,,0,00,,,M,0.0,M,,0000*58'
[INFO] [1726711942.898587639] [serial_port_publisher]: Published: '$GPGGA,021222
                                                                                                                                        Attempting to read from the gps_publisher...
[INFO] [1726711945.913796636] [gps_subscriber]: Received NMEA GPS data: '$GPGGA, 021225.387,,,,0,00,,,M,0.0,M,,0000*5C'
Attempting to read from the gps_publisher...
[INFO] [1726711946.942666904] [gps_subscriber]: Received NMEA GPS data: '$GPGGA, 021226.387,,,,0,00,,M,0.0,M,,0000*5F'
Attempting to read from the gps_publisher...
[INFO] [1726711947.900643730] [gps_subscriber]: Received NMEA GPS data: '$GPGGA, 021227.387,,,0,00,,M,0.0,M,,0000*5E'
.387,,,,0,00,,,M,0.0,M,,0000*5B'
[INFO] [1726711943.933415370] [serial_port_publisher]: Published: '$GPGGA,021223
 .387,,,,0,00,,,M,0.0,M,,0000*5A'
[INFO] [1726711944.999025493] [serial_port_publisher]: Published: '$GPGGA,021224
.387,,,,0,00,,,M,0.0,M,,0000*5D'
[INFO] [1726711945.913222847] [serial_port_publisher]: Published: '$GPGGA,021225
                                                                                                                                          21227.387,,,,0,00,,,M,0.0,M,,0000*5E
 .387,,,,0,00,,,M,0.0,M,0000*5C'
[INFO] [1726711946.942397174] [serial_port_publisher]: Published: '$GPGGA,021226
                                                                                                                                          ttempting to read from the gps_publisher...
INFO] [1726711948.918865078] [gps_subscriber]: Received NMEA GPS data: '$GPGGA,
.387,,,,0,00,,,M,0.0,M,,0000*5F'
[INFO] [1726711947.899313737] [serial_port_publisher]: Published: '$GPGGA,021227
                                                                                                                                          221228.387,,,,0,00,,,M,0.0,M,,0000*51'
Attempting to read from the gps_publisher.
 .387,,,,0,00,,,M,0.0,M,,0000*5E'
[INFO] [1726711948.917245000] [serial_port_publisher]: Published: '$GPGGA,021228
                                                                                                                                          [INFO] [1726711949.917790700] [gps_subscriber]: Received NMEA GPS data: '$GPGGA,
221229.387,,,,,0,00,,,M,0.0,M,,0000*50'
Attempting to read from the gps_publisher...
 .387,,,,0,00,,,M,0.0,M,,0006*51'
[INFO] [1726711949.917047915] [serial_port_publisher]: Published: '$GPGGA,021229
                                                                                                                                                   [1726711950.900344529] [gps_subscriber]: Received NMEA GPS data: '$GPGGA,
  .387,,,,0,00,,,M,0.0,M,,0006*50'
[INFO] [1726711950.899945294] [serial_port_publisher]: Published: '$GPGGA,021230
                                                                                                                                         021230.387,,,,,0,00,,,M,0.0,M,,0000*58'
Attempting to read from the gps_publisher...
 .387,,,,0,00,,,M,0.0,M,,0000*58'
[INFO] [1726711951.901891610] [serial_port_publisher]: Published: '$GPGGA,021231
                                                                                                                                        [INFO] [1726711951.902492452] [gps_subscriber]: Received NMEA GPS data: '$GPGGA,
<u>0</u>21231.387,,,,,0,00,,,M,0.0,M,,0000*59'
    387,,,,,0,00,,,M,0.0,M,,0000*59
```

GIS Mapping (Google Earth Pro)

Conclusion

Achievements:

Found suitable target method <a>

Capable of sending and receiving correct GPS data 🗹

Various features to help test/debug the target ✓

Virtual Static Target → Real-Time Target ✓

Summary:

Future continuations of this project now have a fully independent target node which will be used to help test drone swarm behaviour

Recommendations:

If further testing deems a more accurate GPS is required, the current GPS can be upgraded to GNSS RTK receiver which may help with accuracy.

Purpose of the GUI

Original:

What Has Been Accomplished?

		Display drone information	Store drone information	Set up drones before flight
		See connection information	Accessible configuration file	Add new drones
GUI (Python-Tkinter)	Requirement	Send data to drones:	Increase code reliability	Set up SSH keys
Necessary data:	ROS Configurations	Create ROS configurations	Add unit tests	Enter a direct connection
	Python Webserver	Send files/folder	Add manual tests	
Necesary Commands:	Activate drone files	Send commands	Add exception handling	

Using the GUI

Drone Lifecycle

What Needs To Be Done?

Requirement:	Receive data from drone	What is data used for?
GUI	ROS Messages?	Visualize data from the drone
	Network protocol??	Update drone information
	Flask webserver?	

In Conclusion

What the GUI can do	Final steps	Contro	ller
Send data to the drones	Receive data from the drones	eceive data	
Show various information about drone	Update drone information	GUI	
	automatically	Setup	
Set up new drones	Recommendations to future groups		
	rataro groups	Usei	г
Guarantee code works with tests	Use test-driven development approach		
WILLI COCO	to streamline development		

