Complement of an Event: $P(A^c)=1-P(A)$

Relation between Unions and Intersections: $P(A \cup B) = P(A) + P(B) - PA \cap B$.

De Morgan's Laws:

$$P(A^c \cup B^c) = 1 - P(A \cap B)$$

$$P(A^c \cap B^c) = 1 - PA \cup B \stackrel{?}{\iota}$$

Mutually Exclusive Events: Two events are mutually exclusive if, $P(A \cap B) = 0$

Exhaustive Events: Two events are exhaustive if, $P(A \cup B)=1$

Conditional Probability: $P(A/B) = \frac{P(A \cap B)}{P(B)}$

Baye's Rule:
$$P(A/B) = \frac{P(B/A). P(A)}{P(B)}$$

Independent Events: Two events are **independent** of each other if, $P(A \cap B) = P(A)$. P(B)

Theorem of Total Probability: If the sample space can be divided into mutually exclusive and exhaustive events A_i , the probability of a new event B is given by, $P(B) = \sum_{i=1}^{n} P(B/A_i)$. $P(A_i)$

Multiplicative Rule

If there are n_1 outcomes in experiment 1, n_2 outcomes in experiment 2,..., n_k outcomes in experiment k, then there are $n_1 \times n_2 \times ... \times n_k$ outcomes if the experiments are done in series.

Permutations (all objects distinct)

No . of ways of arranging n objects n!

No. of ways of selecting k objects select from a total of n where the order of selection matters

$$_{k}^{n}P=\frac{n!}{(n-k)!}$$

Combinations (all objects distinct)

No. of ways of selecting k objects from a total of n where the order of selection does not matter

$${}_{k}^{n}C = \frac{n!}{(n-k)!k!}$$

Permutations (objects not distinct)

No. of ways of selecting from a total of n objects with k_1 of the 1st kind, k_2 of the 2nd kind, and so on till k_i of the i^{th} kind, then the

$$\frac{n!}{k_1! \, k_2! \dots k_i!}$$

Discrete Random Variable

Probability mass function: P(X=x)=p(x)

Probability always lies between zero and 1: $0 \le p(x) \le 1$

Probability of the sample space is 1: $\sum_{all \ x} p(x) = 1$

Cumulative mass function: $F(x) = \sum_{X \le x} p(x)$

Probability that X lies between two values a and b: $P(a < X \le b) = \sum_{a < X \le b} p(x)$

$$P(a < X \le b) = F(b) - F(a)$$

 $\text{Expected Value and Variance:} \\ E(X) = \sum_{\textit{all } x} \left(x \times \textit{p}(x) \right) = \mu_{V(X)} = \left(E(X^2) - E(X)^2 \right) = \sigma^2$

Expected Value of a function g(x): $E(g(x)) = \sum_{all \ x} (g(x) \times p(x))$

Continuous Random Variable

Probability density function: f(x)

Probability always lies between zero and 1: $0 \le f(x) \le 1$

Probability of the sample space is 1: $\int_{-\infty}^{\infty} f(x) dx = 1$

Cumulative mass function: $F(x) = \int_{-\infty}^{x} f(x) dx$

Probability that X lies between two values a and b: $P(a < X \le b) = \int_a^b f(x) dx \ P(a < X \le b) = F(b) - F(a)$

Expected Value and Variance: $E(X) = \int_{-\infty}^{\infty} x f(x) dx = \mu V(X) = (E(X^2) - E(X)^2) = \sigma^2$

Expected Value of a function g(x): $E(g(x)) = \int_{-\infty}^{\infty} g(x) f(x) dx$

Percentile: The p^{th} percentile value of a random variable X with a probability density f(x) is denoted by x_p

$$\int_{-\infty}^{x_p} f(x) dx = \frac{p}{100}$$

Median is the 50th percentile; 1st quartile is the 25th percentile; 3rd quartile is the 75th percentile

Joint Distributions

Joint Distribution Formulas

	Description	Discrete	Continuous
	Joint probability distribution functions	$P(X=x \cap Y=y)=p(x,y)$	$P(x < X < x + dx \cap y < Y < y + dy) = f(x, y)$
	Probability always lies between zero and 1	$0 \le p(x, y) \le 1$	$0 \nleq \int_{any} \int_{any} f(x, y) dy dx \leq 1$
	Probability of the sample space is 1	$\sum_{all x} \sum_{all y} p(x, y) = 1$	$\int_{\text{all } x} \int_{\text{all } y} f(x, y) dy dx = 1$
o (a	Probability Calculation $X < b \cap c < Y < d$	$\sum_{a < X < b} \sum_{c < Y < d} p(x, y)$	$P(a < X < b \cap c < Y < d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$
	Discrete Marginal Functions $P_{\scriptscriptstyle Y}(\cdot)$	$P_X(x) = \sum_{all \ y} p(x, y)$ $y) = \sum_{all \ x} p(x, y)$	$f_{X}(x) = \int_{all y} f(x, y) dy$ $f_{Y}(y) = \int_{all y} f(x, y) dx$
	Conditional Probability $P_{\gamma/2}$	$P_{X/Y=y}(x) = \frac{p(x,y)}{P_Y(y)}$	$f_{X/Y=y}(x) = \frac{f(x, y)}{f_Y(y)}$ $f_{X/Y=y}(x) = \frac{f(x, y)}{f_X(x)}$
	Check for Independence	$p(x, y) = P_X(x) \times P_Y(y)$	$f(x,y)=f_X(x)\times f_Y(y)$

Functions of Random Variables Formulas

Function (Y =)	E(Y)	V(Y)
X + c	E(X)+c	V(X)
cX cE(\mathbf{x})	$c^2V(X)$
$X_1 + X_2$	$E(X_1) + E(X_2)$	$V(X_1) + V(X_2) + 2 Cov(X_1, X_2)$
$c_0 + \sum_{i=1}^n c_i X_i$ For X _i independent $c_0 +$	$\sum_{i=1}^{n} c_{i} E(X_{i})$	$\sum_{i=1}^{n} c_i^2 V(X_i)$

Cov $(X_1, X_2) = E(X_1X_2) - E(X_1) E(X_2)$

For independent X_1 , $X_2 \square Cov(X_1, X_2) = 0$

Notati on	Variable Description	Probabili ty Distribut ion	Probability distribution function	E(X)	V(X)
X_B	x is the number of successes, n is the number of trials, p is the probability of success in each trial	Binomial Distributi on	$P(X_B=x; p, n)={}_{x}^{n}C p^{x}(1-p)^{n-x}$	пр	np(1-p)
X_{NB}	x is the number of trials, r is the number of successes, p is the probability of success in each trial	Negative Binomial Distributi on	$P(X_{NB}=x; p, n)=\sum_{r=1}^{x-1}Cp^{r}(1-p)^{x-r}$	<u>r</u> p	$\frac{r(1-p)}{p^2}$
X_G	x is the number of trials, p is the probability of success in each trial	Geometri c Distributi on	$P(X_G=x; p)=p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$
X_{HG}	N - No. in population, n - No. in sample, r - No. of successes in population, x - No. of successes in sample	Hyper Geometri c Distributi on	$P(X_{HG}=x; N, n, r) = \frac{{r \choose x} {C \choose n-x} {C \choose n-x}}{{r \choose n} {C}}$	nr N	$\frac{nr(N-r)}{N^2} \frac{(N-n)}{(N-1)}$
X_{i}	x ₁ , x ₂ ,, x _k represent the number of occurrences of each outcome; p ₁ , p ₂ ,, p _k represent probabilities of each outcome.	Multinomi al Distributi on	$P(X_1=x_1, X_2=x_2,, X_k=x_k; p_1, p_2,, x_k)$	$(x_1! x_2) = \frac{1}{x_1! x_2}$	$\frac{n!}{\lim_{k \to \infty} \frac{1}{k!} \mathcal{P}_k^{x} \mathcal{P}_2^{x_2} \cdots \mathcal{P}_k^{x_k}}$

Notatio n	Variable Description	Probability Distribution	Probability Calculations	E(X)	V(X)
X_{p}	_	Poisson Distribution	$P(X_p=x;\lambda,t=\frac{e^{-\lambda t}(\lambda t)^x}{x!}$	$E(X) = \lambda t$	$V(X) = \lambda t$
T	λ–rate , t–time	Exponential Distribution	$P(T \le t; \lambda = 1 - e^{-\lambda t})$	$E(T) = \frac{1}{\lambda}$	$V(T) = \frac{1}{\lambda^2}$
T_{W}	λ–rate , a–constant	Weibull Distribution	$P(T_w \le t; \lambda, \phi = 1 - e^{-(\lambda t)^a}$		

Notation	Probability Distribution	Probability Distribution Function	E(X)	V(X)
$X_N N(\mu, \sigma^2)$	Normal Distribution	$\frac{1}{\sigma\sqrt{2\pi}}e^{-0.5\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2
$X_U \ U(a,b)$	Uniform distribution	$\frac{1}{b-a}$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$

Central Limit Theorem

For large n, the probability distribution of the sum of n independent and identical random variables can be approximated by the normal distribution. Therefore, for large sample sizes,

$$\overline{X} N \left(\mu, \frac{\sigma^2}{n} \right)$$

$$S_n = n \overline{X} N (n\mu, n \sigma^2)$$

If X_i are normal, then the sample mean is normal irrespective of the sample size.

Standard Normal Distribution

To find probabilities for a normal variable, we standardize it by subtracting the mean and dividing by the standard deviation.

$$Z = \frac{X - \mu}{\sigma}$$

Now we can use the tables to compute probabilities by standardizing X.

$$ZN$$
 $(0,1)$

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-0.5z^2} for - \infty < Z < \infty$$

Lognormal Distribution

If *X* follows the lognormal distribution, then log X follows the normal distribution.

Normal Approximation to Binomial Distribution

If,

and np>5 and n(1-p)>5, then,

$$XN (np, np(1-p))$$

However, you must also apply the continuity correction when using the normal approximation. That is,

$$P(X_B < x) = P(X_N < x - 0.5)$$

And,

$$P(X_B x) = P(X_N x + 0.5)$$

Normal Approximation to Poisson Distribution

Similarly if,

$$XP(\lambda,t)$$

and $\lambda t > 5$,

$$XN (\lambda t, \lambda t)$$

Again, you must also apply the continuity correction when using the normal approximation. That is,

$$P(X_P < x) = P(X_N < x - 0.5)$$

And,

$$P(X_P x) = P(X_N x + 0.5)$$

Confidence Intervals and Hypothesis Testing of a Population Mean (Variance Known)

Confidence Intervals

One-sided confidence level for lower bound,

$$\mu_l = \overline{X} - Z_\alpha \frac{\sigma}{\sqrt{n}}$$

One sided confidence interval for upper bound,

$$\mu_u = \overline{X} + Z_\alpha \frac{\sigma}{\sqrt{n}}$$

Similarly, the two sided $(1-\alpha)$ confidence interval for the population mean would be given by,

$$\mu \in \left(\overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) with \ 1 - \alpha \ confidence$$

Therefore, you are $(1-\alpha)100\%$ confident that the true mean lies between these two values. This is a 2-sided confidence interval.

Hypothesis Test

The probability of erroneously rejecting the null hypothesis is given by the p-value. If the p-value is less than α , which is the probability limit that you set for erroneously rejecting H_0 , then you reject H_0 . Because, now the probability that you have made an error in rejecting H_0 is lower than the limit you set for yourself.

Another way of doing the same test is, you can define

$$z_{calc} = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Similarly, you can find a z_{rit} as z_{α} or $z_{\alpha/2}$ depending on whether it is a 1-sided test or a two sided test. The only way for the p-value to be lower than α is for the z_{calc} to be greater than z_{crit} (ignore the sign).

In summary the hypothesis test procedure,

1) State H₀ and H₁ based on the experiment

- 2) Select a suitable value of α
- 3) Calculate p-value and/or z_{calc}
- 4) Look up z_{crit} from the table (use $\alpha/2$ if 2 sided test and α if one sided test)
- 5) Reject H₀ is p value $< \alpha$ if 1 sided, $\alpha/2$ if 2 sided or if z_{calc} is greater than z_{crit} .

Confidence Intervals and Hypothesis Testing of a Population Mean (Variance Unknown)

This time we do not know the variance. In such a case, it was shown that the sample mean follows the T-distribution,

$$\overline{X} T \left(\mu, \frac{s^2}{n} \right)$$

Confidence Intervals

Going by similar procedures as earlier, the 1-sided $(1-\alpha)$ confidence interval to find a lower limit.

$$\mu_l = \overline{X} - t_{\alpha, n-1} \frac{s}{\sqrt{n}}$$

In a similar procedure, one can obtain the one sided confidence interval to find an upper limit to be,

$$\mu_u = \overline{X} + t_{\alpha, n-1} \frac{S}{\sqrt{n}}$$

Similarly, the two sided $(1-\alpha)$ confidence interval for the population mean would be given by,

$$\mu \in \left(\overline{X} \pm t_{\frac{\alpha}{2}, \, n-1} \frac{s}{\sqrt{n}}\right) with (1-\alpha) confidence$$

Therefore, you are $(1-\alpha)100\%$ confident that the true mean lies between these two values. This is a 2-sided confidence interval.

Hypothesis Test

We do the hypothesis test using,

$$t_{calc} = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

And finding t_{crit} as t_{α} and $t_{\alpha/2}$ for 1-sided and 2-sided tests respectively.

The only way for the p-value to be lower than α is for the t_{calc} to be greater than t_{crit} (ignore the sign).

In summary the hypothesis test procedure,

- 1. State H_0 and H_1 based on the experiment
- 2. Select a suitable value of $\boldsymbol{\alpha}$
- 3. Calculate p-value and/or t_{calc}
- 4. Look up t_{crit} from the table (use $\alpha/2$ if 2 sided test and α if one sided test)

Reject H_0 is p value $< \alpha$ if 1 sided, $\alpha/2$ if 2 sided or is t_{calc} is greater than t_{crit} .

Short Notes on Simple linear regression

Model: $Y = \beta_0 + \beta_1 x$

Calculated model: $\hat{y} = \widehat{\beta_0} + \widehat{\beta_1} x$

 $\widehat{\beta}_0, \widehat{\beta}_1 \wedge \widehat{\beta}_0 + \widehat{\beta}_1 x$ have t-distributions since we assume ε_i are normally distributed

ANOVA

Source of	Degrees of	Sum of	Mean Sum of	F-stat
Variance	Freedom	Squares	Squares	r-stat
Regression	1	SSR MSI	$R = \frac{SSR}{1}$ $F =$	MSR MSE
Residual	n - 2	SSE MSI	$E = \frac{SSE}{n-2}$	
Total	n – 1	SST		

$$R^2 = \frac{SSR}{SST}$$

Only for simple linear regression $F = t_{calc}^2$

Short Notes on Multilinear regression

Model: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$

<u>Calculated model</u>: $\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + ... \hat{\beta_p} x_p$

 $\hat{\beta}$ have t-distributions

Model obtained by minimizing:

$$S = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

i.e. solving p+1 equations for (p+1) β coefficients

$$\begin{cases} \frac{\partial S}{\partial \widehat{\beta}_{0}} = 0 \\ \frac{\partial S}{\partial \widehat{\beta}_{1}} = 0 \\ \frac{\partial S}{\partial \widehat{\beta}_{p}} = 0 \end{cases}$$

ANOVA

Source of	Degrees of Sum of		Mean Sum of	F-stat	
Variance	Freedom	Squares	Squares	i -stat	
Regression	р	SSR	$MSR = \frac{SSR}{p}$	$F = \frac{MSR}{MSE}$	
Residual	n - p - 1	SSE	$MSE = \frac{SSE}{n - p - 1}$		
Total	n – 1	SST			

Model significant if $\left|F_{\it calc}\right| > \left|F_{\it crit}\right|$, $\left|F_{\it crit}\right| = \left|F_{\alpha\,,\,p\,,n-\,p-\,1}\right|$

Variable significant if $\left|t_{calc}\right| > \left|t_{crit}\right|$, $\left|t_{crit}\right| = \left|t_{\frac{\alpha}{2}, n-p-1}\right| R^2 = \frac{SSR}{SST}$; SSR+SSE=SST

$$R^{2} = \frac{p \times M SR}{p \times MSR + (n-p-1) \times MSE} = \frac{1}{1 + \frac{(n-p-1)}{pF}}$$

Notation	Probability Distribution	Probability Distribution Function	E(X)	V(X)
$X_N N(\mu, \sigma^2)$	Normal Distribution	$\frac{1}{\sigma\sqrt{2\pi}}e^{-0.5\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2
$X_U \ U(a,b)$	Uniform distribution	$\frac{1}{b-a}$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$

Central Limit Theorem

For large n, the probability distribution of the sum of n independent and identical random variables can be approximated by the normal distribution. Therefore, for large sample sizes,

$$\overline{X} N \left(\mu, \frac{\sigma^2}{n} \right)$$

$$S_n = n \overline{X} N (n\mu, n \sigma^2)$$

If X_i are normal, then the sample mean is normal irrespective of the sample size.

Standard Normal Distribution

To find probabilities for a normal variable, we standardize it by subtracting the mean and dividing by the standard deviation.

$$Z = \frac{X - \mu}{\sigma}$$

Now we can use the tables to compute probabilities by standardizing X.

$$ZN$$
 $(0,1)$

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-0.5z^2} for - \infty < Z < \infty$$

Lognormal Distribution

If *X* follows the lognormal distribution, then log X follows the normal distribution.

Normal Approximation to Binomial Distribution

If,

and np>5 and n(1-p)>5, then,

$$XN (np, np(1-p))$$

However, you must also apply the continuity correction when using the normal approximation. That is,

$$P(X_B < x) = P(X_N < x - 0.5)$$

And,

$$P(X_B x) = P(X_N x + 0.5)$$

Normal Approximation to Poisson Distribution

Similarly if,

$$XP(\lambda,t)$$

and $\lambda t > 5$,

$$XN (\lambda t, \lambda t)$$

Again, you must also apply the continuity correction when using the normal approximation. That is,

$$P(X_P < x) = P(X_N < x - 0.5)$$

And,

$$P(X_P x) = P(X_N x + 0.5)$$

Confidence Intervals and Hypothesis Testing of a Population Mean (Variance Known)

Confidence Intervals

One-sided confidence level for lower bound,

$$\mu_l = \overline{X} - Z_\alpha \frac{\sigma}{\sqrt{n}}$$

One sided confidence interval for upper bound,

$$\mu_u = \overline{X} + Z_\alpha \frac{\sigma}{\sqrt{n}}$$

Similarly, the two sided $(1-\alpha)$ confidence interval for the population mean would be given by,

$$\mu \in \left(\overline{X} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
 with $1 - \alpha$ confidence

Therefore, you are $(1-\alpha)100\%$ confident that the true mean lies between these two values. This is a 2-sided confidence interval.

Hypothesis Test

The probability of erroneously rejecting the null hypothesis is given by the p-value. If the p-value is less than α , which is the probability limit that you set for erroneously rejecting H_0 , then you reject H_0 . Because, now the probability that you have made an error in rejecting H_0 is lower than the limit you set for yourself.

Another way of doing the same test is, you can define

$$z_{calc} = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Similarly, you can find a z_{rit} as z_{α} or $z_{\alpha/2}$ depending on whether it is a 1-sided test or a two sided test. The only way for the p-value to be lower than α is for the z_{calc} to be greater than z_{crit} (ignore the sign).

In summary the hypothesis test procedure,

6) State H₀ and H₁ based on the experiment

- 7) Select a suitable value of α
- 8) Calculate p-value and/or z_{calc}
- 9) Look up z_{crit} from the table (use $\alpha/2$ if 2 sided test and α if one sided test)
- 10) Reject H_0 is p value $< \alpha$ if 1 sided, $\alpha/2$ if 2 sided or if z_{calc} is greater than z_{crit} .

Confidence Intervals and Hypothesis Testing of a Population Mean (Variance Unknown)

This time we do not know the variance. In such a case, it was shown that the sample mean follows the T-distribution,

$$\overline{X} T \left(\mu, \frac{s^2}{n} \right)$$

Confidence Intervals

Going by similar procedures as earlier, the 1-sided $(1-\alpha)$ confidence interval to find a lower limit.

$$\mu_l = \overline{X} - t_{\alpha, n-1} \frac{S}{\sqrt{n}}$$

In a similar procedure, one can obtain the one sided confidence interval to find an upper limit to be,

$$\mu_u = \overline{X} + t_{\alpha, n-1} \frac{S}{\sqrt{n}}$$

Similarly, the two sided $(1-\alpha)$ confidence interval for the population mean would be given by,

$$\mu \in \left(\overline{X} \pm t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}\right) with (1-\alpha) confidence$$

Therefore, you are $(1-\alpha)100\%$ confident that the true mean lies between these two values. This is a 2-sided confidence interval.

Hypothesis Test

We do the hypothesis test using,

$$t_{calc} = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$$

And finding t_{crit} as t_{α} and $t_{\alpha/2}$ for 1-sided and 2-sided tests respectively.

The only way for the p-value to be lower than α is for the t_{calc} to be greater than t_{crit} (ignore the sign).

In summary the hypothesis test procedure,

- 5. State H_0 and H_1 based on the experiment
- 6. Select a suitable value of α
- 7. Calculate p-value and/or t_{calc}
- 8. Look up t_{crit} from the table (use $\alpha/2$ if 2 sided test and α if one sided test)

Reject H_0 is p value $< \alpha$ if 1 sided, $\alpha/2$ if 2 sided or is t_{calc} is greater than t_{crit} .

Short Notes on Simple linear regression

Model: $Y = \beta_0 + \beta_1 x$

Calculated model: $\hat{y} = \widehat{\beta_0} + \widehat{\beta_1} x$

 $\widehat{\beta}_0$, $\widehat{\beta}_1 \wedge \widehat{\beta}_0 + \widehat{\beta}_1 x$ have t-distributions since we assume ε_i are normally distributed

ANOVA

Source of	Degrees of	Sum of	Mean Sum of	F-stat	
Variance	Freedom	Squares	Squares	i -stat	
Regression	1	SSR	$MSR = \frac{SSR}{1}$	$F = \frac{MSR}{MSE}$	
Residual	n - 2	SSE	$MSE = \frac{SSE}{n-2}$		
Total	n – 1	SST			

$$R^2 = \frac{SSR}{SST}$$

Only for simple linear regression $F = t_{calc}^2$

Short Notes on Multilinear regression

Model: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$

<u>Calculated model</u>: $\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + ... \hat{\beta_p} x_p$

 $\hat{\beta}$ have t-distributions

Model obtained by minimizing:

$$S = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

i.e. solving p+1 equations for (p+1) β coefficients

$$\begin{cases} \frac{\partial S}{\partial \widehat{\beta}_{0}} = 0 \\ \frac{\partial S}{\partial \widehat{\beta}_{1}} = 0 \\ \frac{\partial S}{\partial \widehat{\beta}_{p}} = 0 \end{cases}$$

ANOVA

Source of	Degrees of Sum of		Mean Sum of	F-stat	
Variance	Freedom	Squares	Squares	i -stat	
Regression	р	SSR	$MSR = \frac{SSR}{p}$	$F = \frac{MSR}{MSE}$	
Residual	n - p - 1	SSE	$MSE = \frac{SSE}{n - p - 1}$		
Total	n – 1	SST			

Model significant if $\left|F_{\it calc}\right| > \left|F_{\it crit}\right|$, $\left|F_{\it crit}\right| = \left|F_{\alpha\,,\,p\,,n-\,p-\,1}\right|$

Variable significant if $\left|t_{calc}\right| > \left|t_{crit}\right|$, $\left|t_{crit}\right| = \left|t_{\frac{\alpha}{2}, n-p-1}\right| R^2 = \frac{SSR}{SST}$; SSR+SSE=SST

$$R^{2} = \frac{p \times M SR}{p \times MSR + (n-p-1) \times MSE} = \frac{1}{1 + \frac{(n-p-1)}{pF}}$$

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

									Ż	
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	8000.0	8000.0	8000.0	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
	l									
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
							•			
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166°	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0:0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1 <u>76</u> 2	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
	00440	0.0405	0.00=5							
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
							0.7400	0.7457	0.7400	0.7004
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1									
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.0	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.1	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.2	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.4	0.5510	0.0020	0.0022		0.002	51.55.55			*	
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
2.0	l 0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.0		0. 9 987 0.9991	0.9987 0.9991	0.9991	0.9992	0.9992	0.9969	0.9992	0.9993	0.9993
3.1	0.9990		0.9991	0.9991	0.9992	0.9992	0.9992	0.9995	0.9995	0.9995
3.2	0.9993	0.9993 0.9995	0.9994	0.9994	0.9994	0.9996	0.9994	0.9996	0.9996	0.9997
3.3	0.9995		0.9995	0.9996	0.9996	0.9996	0.9997	0.9997	0.9997	0.9998
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.8887	U.333/	0.8880

F Values for $\alpha = 0.05$

					d_1				
d_2	1	2	3	4	5	6	7	8	9
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2	18.51	19.00	19.16	19.25	19.3	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
2 5	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
2 6	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
2 7	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
2 8	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
2 9	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
3 0	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
inf	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

F Values for $\alpha = 0.05$

					d_1					
d_2	10	12	15	20	24	3 0	40	60	120	\inf
1	241.9	243.9	245.9	248.0	249.1	250.1	251.1	2 52.2	253.3	254.3
2	19.4	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.5
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
2 5	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
3 0	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
6 0	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.10	1.55	1.50	1.43	1.35	1.25
inf	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

F Values for $\alpha = 0.01$

					d_1				
d_2	1	2	3	4	5	6	7	8	9
1	4052	4999.5	5403	5625	5764	5859	5928	5982	6022
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.2	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.7 0	5.74	5.21	4.86	4.62	4.44	4.30	4.14
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3 .79	3.68
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
2 1	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.3 0
24	7.82	5.61	4.72	4.22	3.90	3.67	3.5 0	3.36	3.26
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22
2 6	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15
2 8	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09
30	7.56	5.39	4.51	4.02		3.47	3.30	3.17	3.07
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
\inf	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41

F Values for $\alpha = 0.01$

					d_1					
d_2	10	12	15	20	24	30	40	60	120	\inf
1	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46
5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.6 0
12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	3.94	3.80	3.66	3.51	3.43	3.35	3.27		3.09	3.00
15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
2 0	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
2 2	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
2 6	3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
3 0	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
inf	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS

Column headings denote probabilities (α) above tabulated values.

d.f.	0.40	0.25	0.10	0.05	0.04	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	7.916	12.706	15.894	31.821	63.656	127.321	318.289	
2	0.289	0.816	1.886	2.920	3.320	4.303	4.849	6.965	9.925	14.089	22.328	31.600
3	0.277	0.765	1.638	2.353	2.605	3,182	3.482	4.541	5.841	7.453	10.214	12.924
4	0.271	0.741	1.533	2.132	2.333	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.191	2.571	2.757	3.365	4.032	4.773	5.894	6.869
6	0.265	0.718	1.440	1.943	2.104	2.447	2.612	3.143	3.707	4.317	5.208	5,959
7	0.263	0.711	1.415	1.895	2.046	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.004	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	1.973	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	1.948	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	1.928	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	1.912	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	1.899	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	1.887	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	1.878	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	1.869	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	1.862	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	1.855	2.101	2.214	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	1.850	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	1.844	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	1.840	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	1.835	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	1.832	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.256	0.685	1.318	1.711	1.828	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	1.825	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	1.822	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	1.819	2.052.	2.158	2.473	2.771	3.057	3.421	3.689
28	0.256	0.683	1.313	1.701	1.817	2.048	2.154	2,467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	1.814	2.045	2.150	2.462	2.756	3.038	3.396	3.660
30	0.256	0.683	1.310	1.697	1.812	2.042	2.147	2.457	2.750	3.030	3.385	3.646
31	0.256	0.682	1.309	1.696	1.810	2.040	2.144	2.453	2.744	3.022	3.375	3.633
32	0.255	0.682	1.309	1.694	1.808	2.037	2.141	2.449	2.738	3.015	3.365	3.622
33	0.255	0.682	1.308	1.692	1.806	2.035	2.138	2.445	2.733	3.008	3.356	3.611
34	0.255	0.682	1.307	1.691	1.805	2.032	2.136	2.441	2.728	3.002	3.348	3.601
35	0.255	0.682	1.306	1.690	1.803	2.030	2.133	2.438	2.724	2.996	3.340	3.591
36	0.255	0.681	1.306	1.688	1.802	2.028	2.131	2.434	2.719	2.990	3.333	3.582
37	0.255	0.681	1.305	1.687	1.800	2.026	2.129	2.431	2.715	2.985	3.326	3.574
38	0.255	0.681	1.304	1.686	1.799	2.024	2.127	2.429	2.712	2.980	3.319	3.566
39	0.255	0.681	1.304	1.685	1.798	2.023	2.125	2.426	2.708	2.976	3.313	3.558
40	0.255	0.681	1.303	1.684	1.796	2.021	2.123	2.423	2.704	2.971	3.307	3.551
60	0.254	0.679	1.296	1.671	1.781	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.254	0.678	1.292	1.664	1.773	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	0.254	0.677	1.290	1.660	1.769	1.984	2.081	2.364	2.626	2.871	3.174	3.390
120	0.254	0.677	1.289	1.658	1.766	1.980	2.076	2.358	2.617	2.860	3.160	3.373
140	0.254	0.676	1.288	1.656	1.763	1.977	2.073	2.353	2.611	2.852	3.149	3.361
160	0.254	0.676	1.287	1.654	1.762	1.975	2.071	2.350	2.607	2.847	3.142	3.352
180	0.254	0.676	1.286	1.653	1.761	1.973	2.069	2.347	2.603	2.842	3.136	3.345
200	0.254	0.676	1.286	1.653	1.760	1.972	2.067	2.345	2.601	2.838	3.131	3.340
250	0.254	0.675	1.285	1.651	1.758	1.969	2.065	2.341	2.596	2.832	3.123	3.330
inf	0.253	0.674	1.282	1.645	1.751	1.960	2.054	2.326	2.576	2.807	3.090	3.290