# Final

#### Alexander Brown

April 25, 2022

#### 1

#### Given

$$\begin{aligned} \dot{x}_1 &= -x_1^3 + x_2 \\ \dot{x}_2 &= x_1 - x_2^3 \end{aligned}$$

#### Find

- Determine the equilibria for the given system
- Determine their qualitative nature (saddle, node, etc)
- Plot the vector field

#### Solution

Begin by finding equilibrium points  $\boldsymbol{x}_{eq}$  (See appendix for worksheet)

$$\dot{x} = \begin{bmatrix} -x_1^3 + x_2 \\ x_1 - x_2^3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Where the equilibrium points are found to be  $x_{eq} = \{(0,0), (1,1), (-1,-1)\}$ . Taking the Jacobian as  $J = \frac{\partial f}{\partial x}$ :

$$J = \begin{bmatrix} -3x_1^2 & 1\\ 1 & -3x_2^2 \end{bmatrix}$$

Solving for  $x_1$  and  $x_2$  we find:  $x_2 = x_1 = \pm \sqrt{1/3}$ . Therefore  $x_{eq} = \{(\sqrt{1/3}, \sqrt{1/3}), (-\sqrt{1/3}, \sqrt{1/3}), (\sqrt{1/3}, -\sqrt{1/3})\}$ 

(0,0)

$$J = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

eig(J) = -1, 1: Saddle

(1, 1)

$$J = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

eig(J) = -2, -4: Stable node

$$(-1, -1)$$

$$J = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$eig(J) = -2, -4$$
: Stable node

 $\mathbf{2}$ 

Given

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= x_1^3 - x_2 \end{aligned}$$

Find

Investigate (by Lyapunov Analysis) stability of the origin for the following system. Make the strongest statement possible.

Solution

Theorem: Let  $V:D\to\mathbb{R}$  be a continuously differentiable function such that

- 1) V(0) = 0
- 2)  $\forall x \in D \setminus \{0\}, \ V(x) > 0$
- S) If  $\forall x \in D, \dot{V}(x) \leq 0$  then x = 0 is stable
- AS) If  $\forall x \in D, \dot{V}(x) < 0$  then x = 0 is asymptotically stable

Attempt 1

Let  $V = 1/2x^T x$ , then  $\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2$ 

$$\begin{array}{l} x_1x_2+x_2(-x_1^3-x_2) \\ = x_2(x_1-x_1^3-x_2) \end{array}$$

Can't really say anything from this, but we are close to a form that we want.

Attempt 2

Let  $V = 1/4x_1^4 + 1/2x_2^2$ , then  $\dot{V} = x_1^3 \dot{x}_1 + x_2 \dot{x}_2$ 

$$\begin{array}{l} x1^3x_2 - x2*x_1^3 - x_2^2 = \\ -x_2^2 < 0 \end{array}$$

Therefore by the theorem above, the system is asymptotically stable.

Given

#### Find

Investigate (by whatever means) stability of the origin for the following system. Make the strongtest statement possible.

#### Solution

#### Attempt 1

Let  $V(x) = 1/4x_1^4 + 1/2x_2^2$ , therefore

$$\dot{V}(x) = x_1^3 \dot{x}_1 + x_2 \dot{x}_2 = \\ x_1^6 - x_1^3 x_2 + x_1 x_2 - x_2^2$$

From this, nothing can be said.

#### Attempt 2

Let  $V(x) = 1/2x_1^2 + 1/2x_2^2$ , therefore

$$\dot{V}(x) = x_1 \dot{x}_1 + x_2 \dot{x}_2 = x_1^4 - x_2^2$$

From this, nothing can be said.

#### Attempt 3

Let  $V(x) = 1/2x_2^2$  , therefore

$$\dot{V}(x) = x_2 \dot{x}_2 = (x_1 - x_2)x_2 = x_1 x_2 = x_2^2$$

From this, nothing can be said.

#### Attempt 4

Can't attempt LaSelle's Invariance Principle because we cannot get a negative semi-definite  $\dot{V}(x)$ .

#### Attempt 5

Lets just try linearizing and see what happens locally (See appendix for worksheet). Solving for equilibrium points gives

$$x_{eq} = \{(0,0), (1,1), (-1,-1)\}$$

The Jacobian of the system is:

$$J = \begin{bmatrix} 3x_1^2 & -1 \\ 1 & -1 \end{bmatrix}$$

## Where the given eigenvalues are

- (0,0):  $[-0.5*1.732 \pm i]$  Stable focus (1,1): [-0.7325, 2.73] Saddle
- (-1, -1): [-0.7325, 2.73] Saddle



Given

$$\begin{split} \dot{x} &= -h(x) + u^2 \\ \exists a > 0, \ \forall y \in \mathbb{R} \ y h(y) \geq a y^2 \end{split}$$

#### Find

Investigate input-to-state stability of the following system.

#### Solution

Theorem: Consider the system

$$\dot{x} = f(t, x, u)$$

where  $f:[0,\infty)\times\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$  is piecewise continuous in t and locally Lipschitz in (x,u). The input functions u are piecewise continuous and bounded for all  $t\geq 0$ . If

- 1. There exists a continuously differentiable  $V:[0,\infty)\times\mathbb{R}^n\to\mathbb{R}$
- 2. There exists continuously differentiable functions  $\alpha_1,\alpha_2\in K_\infty$  and  $\rho\in K$
- 3. There exists a continuous positive definite function  $w_3:\mathbb{R}^n\to\mathbb{R}$  such that
- $4. \ \forall (t,x,u) \in [0,\infty) \times \mathbb{R}^n \times \mathbb{R}^m \ \alpha_1(||x||) \leq V(t,x) \leq \alpha_2(||x||)$
- 5.  $\forall t \in [0, \infty), \ \forall (x, u) : ||x|| \ge \rho(||u||) > 0 \ \dot{V}(t, x, u) \le -w_3(x)$

then the system is input-to-state stable.

If  $h(x) \ge ay$  then suppose  $\dot{(}x) = -h(x) + u^2 \le -ax + u^2$ 

Let  $\alpha_1 = \alpha_2 = V(x) = 1/2x^Tx$ , therefore

$$\dot{V}(x) = x\dot{x} = x(-ax+u) = \\ -ax^2 + ux$$

Let  $||x|| \ge |u| = \rho(|u|)$ . Then  $|xu| \le x^2$ 

$$\begin{array}{l} \dot{V}(x)=-ax^2-ux\leq\\ -ax^2+x^2=\\ x^2(1-a) \end{array}$$

Given that  $w_3 = ax^2$ , then the system is input-to-state stable.

Given

$$\begin{aligned} \dot{x}_1 &= x_2^3 - 1 + (1 - x_1)^3 \\ \dot{x}_2 &= -x_1 + u \end{aligned}$$

#### Find

- Develop a globally stabilizing state feedback control for the following system using backstepping
- Simulate

#### Solution

Definition: A nonlinear system

$$\dot{x} = f(x) + G(x)u$$

with  $f:\mathbb{R}^n\supset D\to\mathbb{R}^n$  and  $G:\mathbb{R}\supset D\to\mathbb{R}^n$  "sufficiently smooth" is feedback linearizeable iff

- 1. there exists a diffeomorphism  $T:D\to\mathbb{R}^n$  such that  $0\in D_z:=T(T)=\{\sigma:sigma=T(x),x\in D\}$
- 2. there exists a function  $\gamma: D \to \mathbb{R}^{m \times m}$  such that  $\forall x \in D, \gamma(x)$  is non-singular
- 3. There exists a function  $\alpha: D \to \mathbb{R}^m$
- 4. There exists a controllable pair (A, B)
- 5. with  $z = T(x), \dot{z} = Az + B\gamma(x)[u \alpha(x)]$

Theorem: The single input system

$$\dot{x} = f(x) + g(x)u$$

is feedback lineariazeable iff there exists a domain  $D_0\subset D$ 

- 1. x D\_0\$ the matrix  $G(x) = [g(x), ad_fg(x), ..., ad_f^{n-1}g(x)]$  has rank n
- 2. The distribution  $\Gamma = \text{span}\{g(x), ad_f g(x), ..., ad_f^{n-2}g(x)\}$  is involute in  $D_0$

Begin by writing

$$\dot{x} = \begin{bmatrix} x_2 + 1 + (1 - x_1)^3 \\ -x_1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

where the rank can be see to be n=2. Let

$$\begin{aligned} & ad_f^0g(x) = g(x) \\ & ad_f^1g(x) = \nabla g(x)f(x) + \nabla f(x)g(x) \end{aligned}$$

Where we know  $\nabla g(x) = 0$  and

$$\nabla f(x) = \begin{bmatrix} -3x_1^2 + 6x_1 - 3 & 1\\ -1 & 0 \end{bmatrix}$$

Therefore

$$ad_f^1g(x) = \begin{bmatrix} -3x_1^2 + 6x_1 - 3 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

From this, rank(G(x)) = 2 and the distribution is involutive. To find a satisfactory h, we must solve

$$\begin{split} L_g L_f^0 h(x) &= \nabla h(x) g(x) = 0 \\ L_g L_f^1 g(x) &= \nabla (\nabla h(x) f(x)) g(x) \neq 0 \\ h(0) &= 0 \end{split}$$

The first equation gives

$$\begin{bmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = [0]_{2 \times 2}$$

Therefore  $\frac{\partial h}{\partial x_2} = 0$  which implies that h is independent of  $x_2$ . In a similar fashion,

$$\frac{\partial h}{\partial x_1} \begin{bmatrix} -3x_1^2 + 6x_1 - 3 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{\partial h}{\partial x_1} \neq 0$$

From which we state that h is dependent on  $x_1$ . The first simple choice is then to allow  $h(x) = x_1$  (which satisfies h(0) = 0)

Let 
$$h(x) = x_1 = z_1$$
, and  $z_2 = \dot{z}_1 = \dot{x}_1 = x_2 + 1 + (1 - x_1)^3$ 

$$\dot{z} = \begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} x_2 + 1 + (1 - x_1)^3 \\ \dot{x}_2 - 3x_1^3 \dot{x}_1 + 6x_1 \dot{x}_1 - 3\dot{x}_1 \end{bmatrix}$$

Let  $u=x_1-3z_2(x_1^2-3x_1+1)+v$ , choose  $v=-10x_1^2-10x_2^2$ .



Given

$$\begin{aligned} \dot{x}_1 &= x_1^2 - x_2 \\ \dot{x}_2 &= u \end{aligned}$$

Find

- Develop a globally stabilizing state feedback control for the following system using feedback linearization
- Simulate

## Solution

Let  $V(x) = 1/2x_1^2$ 

$$\dot{V}(x) = x_1 \dot{x}_1 = \\ x_1(x_1^2 + x_2) = x_1^3 + x_1 x_2$$

Let  $\phi(x) = x_2 = -x_1^2 - x_1$ , therefore

$$\dot{V}(x) = x_1^3 - x_1^3 - x_1^2 \le 0$$

Pick 
$$z=x_2-\phi(x_1),\,\dot{z}=\dot{x}_2-\dot{\phi}(x_1)=u-\dot{\phi}(x_1)$$
 where  $\dot{\phi}(x_1)=-2x_1\dot{x}_1-\dot{x}_1$   
Let  $V_2(x)=V_1+1/2z^2,$  then  $\dot{V}_2(x)=\dot{(}V)_1(x)+z\dot{z}$ 

$$\dot{V}_2(x) = -x_1^2 + z(u - \dot{\phi}(x_1))$$

Let 
$$u = \dot{\phi}(x_1) + kz$$



Given

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -x_1^3 + \mathrm{sat}(u) \end{split}$$

#### Find

- Develop a globally stabilizing state feedback control for the following system using passivity-based control
- Simulate

#### Solution

Theorem: If the system

$$\dot{x} = f(x, u), \ y = h(x)$$

is

- 1. passive with radially unbounded positive definite storage function
- 2. zero-state observable

then the origin x=0 is globally asymptotically stabilizeable with  $u=-\phi(y)$  where  $\phi$  is any locally Lipschitz function such that

$$\phi(0) = 0$$
 and  $\forall y \neq 0, \ y^T \phi(y) > 0$ 

Begin by checking if th system is passive

Let  $V(x) = 1/2x^Tx$  therefore

To check for passivity we write

$$-x_{1}x_{2}+x_{1}^{3}x_{2}=x_{2}sat(u) \\$$

Let  $y=x_2$  then the system is passive. Choose  $u=y=x_2$ 



Given

$$\begin{split} \dot{x}_1 &= x_2 + sin(x_1) \\ \dot{x}_2 &= \theta x_1 x_2 + u \\ 0 &\leq \theta \leq a \end{split}$$

True values:  $\theta = 0.1$  and a = 1

#### Find

- Develop a globally stabilizing state feedback control law for the following uncertain system using sliding mode control.
- Simulate

#### Solution

Begin by choosing manifold to be  $s=ax_1+x_2$ , therefore  $x_2=-ax_1$ 

$$\begin{split} \dot{x}_2 &= -ax_1 + sin(x_1) \\ \text{we choose} \\ V(x) &= 1/2x_1^2 \\ \dot{V}(x) &= x_1\dot{x}_1 = \\ x_1(-ax_1 + sin(x_1)) \end{split}$$

Therefore  $\sin(x_1) - ax_1 < 0.$  Now let  $\dot{V} = s\dot{x}$ 

$$\begin{split} \dot{V} &= s(a\dot{x_1} + \dot{x}_2) = \\ s(a(x_2 + sin(x_1)) + \theta x_1 x_2 + u) \end{split}$$

Let  $u = -a(x_2 + \sin(x_1)) + v$ 

$$\dot{V} = s(\theta x_1 x_2 + v)$$

Choose  $v = sgn(s)(-\theta x_1 x_2 - \beta_0)$  where  $\beta_0 > 0$ 



Given

$$\begin{split} \dot{x}_1 &= x_2 + sin(x_1) \\ \dot{x}_2 &= \theta x_1 x_2 + u \\ 0 &\leq \theta \leq a \end{split}$$

True values:  $\theta = 0.1$  and a = 1

Find

• Develop a globally stabilizing state feedback control for the following system using Lyapunov redesign

• Simulate

Solution

Stabilize the nominal system

Begin by writing

$$\begin{bmatrix} x_1 + sin(x1) \\ \theta_0 x_1 x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Let  $V(x) = 1/2x^T x$ , therefore

$$\begin{array}{l} \dot{V}(x) = x_1 \dot{x}_1 + x_2 \dot{x}_2 = \\ x_1(x_2 sin(x1)) + x2(\theta_0 x_1 x_2 + u) = \\ x_1 x_2 sin(x_1) + \theta_0 x_1 x_2^2 + x_2 u \end{array}$$

We choose  $u = x_1 sin(x_1) + \theta_0 x_1 x_2 - kx$ , therefore  $\dot{V}(x) = -kx$ . However, because we want to control a nominal and uncertain system, let the u defined above be redefined as  $\psi = x_1 sin(x_1) + \theta_0 x_1 x_2 - kx$ . We now let  $u = \psi + v$ .

Stabilize the actual system

We begin by defining  $\delta(t, x, u) = \bar{\theta}x_1x_2$ 

$$\bar{\theta}x_1x_2 \leq |\bar{\theta}x_1x_2| \leq \rho(x) + k_0v$$

Where  $k_0 = 0$  because there is no uncertainty in the control. Now we define  $\eta = \nabla V(x)G(x) = x^T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x2$ . We then choose v to be

$$v = -(\frac{\rho}{1-k_0} + \beta_0) \frac{x_1}{|x_2|}$$

Where the total control is  $u = \psi + v$ .

[](img/9.png]

#### Given

$$\dot{x} = ax + u$$

- True values: a = 1
- a is unknown to the controller

#### Find

- Develop an adaptive control law for the scalar system to track the signal r(t) = sin(t).
- Simulate

#### Solution

Define the error as

$$\begin{split} e(t) &= x(t) - r(t) \\ \dot{e} &= (\hat{a} - a)x + be - \dot{r} \end{split}$$

Where r(t) is a reference trajectory. Choose  $u=-1[ke+\hat{a}x-\dot{r}]$  such that

$$\dot{e} = -ke$$

where  $\hat{a}$  is "adaptive" value of a. Choose  $V=\frac{1}{2}e^2+\frac{1}{2\gamma}\tilde{a}^2,$  therefore

$$\dot{V} = e\dot{e} + \frac{1}{\gamma}\tilde{a}\dot{\hat{a}}$$

Choose  $\dot{\hat{a}}=\gamma ex,$  thus  $\dot{V}(x)=-ke^2<0.$  Therefore,  $u=-1(ke-\dot{r}+a\hat{(t)}x)$ 



# Appendix

## Given

$$\dot{x}_1 = -x_1^3 + x_2 
\dot{x}_2 = x_1 - x_2^3$$

#### Find

- 1. Find all equilibrium points
- 2. Determine the type of each isolated equilibrium
- 3. Draw vector field plot

#### Solution

## Find equilibrium points

#### Determine equilibrium point types

```
/* Calculate Jacobian */
J:jacobian([xd1, xd2], [x1, x2]);

/* Calculate eigenvalue for each equilibrium point */
/* The eigenvalue output is of the following format */
/* [[eigenvalues], [multiplicity]] */

float(eivals(psubst([x1=1, x2=1], J)));
float(eivals(psubst([x1=-1, x2=-1], J)));
float(eivals(psubst([x1=0, x2=0], J)));

matrix([-3*x1^2,1],[1,-3*x2^2])

[[-2.0,-4.0],[1.0,1.0]]

[[-2.0,-4.0],[1.0,1.0]]
```

Based on the eigevalues found from the Jacobians found at each of the equilibrium points, we can determine that they are:

```
(1,1): Stable node(-1,-1): Stable Node(0,0): Saddle
```

#### Draw vector field

[[-1.0,1.0],[1.0,1.0]]

```
>>> plotdf([xd1, xd2], [x1, x2], [x1, -1.5, 1.5], [x2, -1.5, 1.5])$
```



# 3)

# Given

$$\dot{x}_1 = x_1^3 - x_2 \\ \dot{x}_2 = x_1 - x_2$$

## **Find**

- 1. Find all equilibrium points
- 2. Determine the type of each isolated equilibrium
- 3. Draw vector field plot

# Solution

## Find equilibrium points

```
/* Define equations */
xd1: x1^3 - x2;
xd2: x1 - x2;

/* Find roots */
solve([xd1=0, xd2=0]);

x1^3-x2
x1-x2
```

Determine equilibrium point types

[[x2 = -1, x1 = -1], [x2 = 1, x1 = 1], [x2 = 0, x1 = 0]]

```
/* Calculate Jacobian */
J:jacobian([xd1, xd2], [x1, x2]);

/* Calculate eigenvalue for each equilibrium point */
/* The eigenvalue output is of the following format */
/* [[eigenvalues], [multiplicity]] */

float(eivals(psubst([x1=1, x2=1], J)));
float(eivals(psubst([x1=-1, x2=-1], J)));
float(eivals(psubst([x1=-0, x2=-0], J)));

matrix([3*x1^2,-1],[1,-1])

[[-0.7320508075688772,2.732050807568877],[1.0,1.0]]

[[-0.7320508075688772,2.732050807568877],[1.0,1.0]]

[[-0.5*(1.732050807568877*%i+1.0),0.5*(1.732050807568877*%i-1.0)],[1.0,
1.0]]
```

Based on the eigevalues found from the Jacobians found at each of the equilibrium points, we can determine that they are:

• (1,1): Saddle • (-1,-1): Saddle • (0,0): Saddle

#### Draw vector field

>>> plotdf([xd1, xd2], [x1, x2], [x1, -1.5, 1.5], [x2, -1.5, 1.5])\$

