Test Circuit and Layout Guidelines (Continued)

Adjustable Output Voltage Versions

01258323

$$V_{OUT} = V_{REF} \left(1 + \frac{R_2}{R_1} \right)$$

where $V_{REF} = 1.23V$

$$R_2 = R_1 \left(\frac{V_{OUT}}{V_{REF}} - 1 \right)$$

Select R_1 to be approximately 1 $k\Omega$, use a 1% resistor for best stability.

 C_{IN} —470 μ F, 50V, Aluminum Electrolytic Nichicon "PL Series"

 C_{OUT} — 220 μF , 35V Aluminum Electrolytic, Nichicon "PL Series"

D1 —5A, 40V Schottky Rectifier, 1N5825

 $L1 -68 \mu H, L38$

R1 —1 kΩ, 1%

CFF — See Application Information Section

FIGURE 1. Standard Test Circuits and Layout Guides

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.

If **open core inductors are used,** special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and C_{OUT} wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.)