Information Security and Privacy

David Jelenc

Administrative info

- 3 lab session slots
 - Check official Timetable
- Office hours
 - Slot: TBD and published on Moodle
 - Office: R3.50, third floor, first bridge on the left
 - Welcome at any time, but email first
- Point of contact
 - Forum in Moodle (preferred)
 - david.jelenc@fri.uni-lj.si

Syllabus (1/2)

- Using cryptoprimitives to develop secure applications using cryptographic libraries (JACL)
- Topics (by weeks)
 - Secrecy (stream and block ciphers)
 - Integrity (Message digests, MACs) & authenticated encryption
 - Public-key encryption, steganography,
 - Key exchange protocols, digital signatures, key-derivation
- Prerequisite: Java programming (basics)
- At the end: Midterm 1

Syllabus (2/2)

- Using various tools to secure and securely administrate computer systems (Ubuntu Linux)
- Topics (by weeks)
 - Firewalls with Netfilter/IPtables
 - Firewalls continued, NAT, routing
 - Secure shell with OpenSSH
 - Virtual private networking with IPsec
 - Authentication, authorization and accounting with FreeRADIUS
- Prerequisite: Computer networking & Linux basics
- At the end: Midterm 2

Grading

Weekly homework assignments

- Needs to be handed in by the end of the week
- Pass/Fail grading: need at least 7/9 to pass

Homework challenges

 Optional homework assignments; allows students to receive extra credit

Midterms

- During the semester, one after the completion of each syllabus topic
- Format: quiz + programming assignment
 - Quiz [50%]: 10 multiple-choice/closed-form-type questions
 - Programming assignment [50%]:
 - A short seminar-like task, similar to those at lab sessions
 - The solution has to be *defended;* the grading is done in the presence of the student
 - Programming is done on classroom computers, open-book style, Internet disconnected

Final lab total

Points = MAX(0.5*MidTerm1 + 0.5*MidTerm2 + ExtraPoints, 100)

Tentative grading dates

- Dates are tentative, may still change
- Midterm 1
 - Week Nov 25 to Dec 1
- Midterm 2
 - Week Jan 6 to Jan 12

Communication Secrecy

Contents

- Introduction
- Stream ciphers
 - Perfect secrecy
 - One time pad (OTP)
 - Pseudorandom generators (PRG)
 - Semantic security for one-time keys
- Block ciphers
 - Pseudorandom functions and permitatios (PRFs, PRPs)
 - Modes of Operation
- Semantic security for many-time keys
- Summary

Introduction: providing confidentiality

- We'd like to provide confidential communication
 - Only the intended recipient(s) should be able to read the data

- Two types of encryption and decryption
 - Symmetric ciphers
 - Asymmetric ciphers

Symmetric Ciphers

 A cipher defined over (K, M, C) is a pair of "comp. eff." algorithms (E, D), where

 $E: K \times M \rightarrow C$

 $D: K \times C \rightarrow M$

s. t. for all k in K and m in M: D(k, E(k, m)) = m

• *E* is often randomized, *D* is always deterministic

Perfect Secrecy

- What is a "secure" cipher?
 - Shannon: Cipher text should reveal "no information" about the plain text
- A cipher (*E*, *D*) over (*K*, *M*, *C*) has perfect secrecy if for all m₀, m₁ ε *M* (|m₀|=|m₁|) and for all c ε *C* Pr [*E*(k, m₀) = c] = Pr [*E*(k, m₁) = c]
 where k ε *K* is randomly chosen
 - Given cipher text c, one cannot tell whether c is a cryptogram of m_0 or m_1

One Time Pad

- Vernam (1917)
 - $-M = C = K = \{0, 1\}^n$
 - $E(k,m) = k \oplus m$
 - $D(k, c) = k \oplus c$
- Features
 - Given a truly random key, OTP has *perfect secrecy*
 - Key has to be *random* and it must be used *only once*
 - Impractical: Shannon shows that perfect secrecy requires keys to be at least as long as the plain text

Pseudo Random Generator

- Idea: Replace a "random" with a "pseudorandom" key $G: \{0, 1\}^s \rightarrow \{0, 1\}^n$ where n >> s
- Pseudo Random Generator (PRG) is a function G
 that maps seed space to key space
 - Is "efficiently" computable by a deterministic algorithm
 - Its output (keys) "looks random"
- Stream ciphers
 - $E(k, m) := m \oplus G(k)$
 - **D**(k, c) := c \oplus **G**(k)
- Examples: RC4, CSS, eStream, Salsa 20
- Can stream ciphers have perfect secrecy, why?

Stream Ciphers: perfect secrecy?

- Stream ciphers cannot have perfect secrecy
 - Keys (seeds) are shorter than messages
- Can stream ciphers ever be secure?
 - Need a new definition of security
 - Security will depend on PRG used

Pseudo Random Generators: defs

- Statistical test is an algorithm A: $\{0, 1\}^n \rightarrow \{0, 1\}$
 - Returns 1 if it thinks the input string is random, 0 otherwise
- Advantage of st. test A against PRG G:

$$\operatorname{Adv}_{\operatorname{PRG}}[A,G] = |\operatorname{Pr}[A(G(k)) = 1] - \operatorname{Pr}[A(r) = 1]|$$

$$k \overset{R}{\leftarrow} K$$

$$r \overset{R}{\leftarrow} \{0,1\}^n$$

- If close to 0, A cannot distinguish G from random
- Otherwise, A can distinguish G from random
- **<u>Def.</u>** A PRG G is secure, if for all eff. stat. tests A: $Adv_{PRG}[A,G]$ is negligible.

Negligible? Assume less than 2⁻⁸⁰

Pseudo Random Generators: defs

- <u>Def:</u> A PRG is **unpredictable** if given an initial sequence of bits (a prefix), one cannot *efficiently* predict the next bit (with probability higher than $\frac{1}{2} + \epsilon$)
- Thm: A PRG is secure iff. it is unpredictable.
- In practice
 - Unknown if there are provably secure PRG
 - But we have heuristic candidates

Perfect secrecy, threat model

• (Recall) A cipher (E, D) over (K, M, C) has **perfect secrecy** if for all m_0 , $m_1 \in M$ ($|m_0| = |m_1|$) and for all $c \in C$

Pr [$\mathbf{E}(k, m_0) = c] = Pr [\mathbf{E}(k, m_1) = c]$ where $k \in K$ is randomly chosen

- Given cipher text c, one cannot tell whether c is a cryptogram of m₀ or m₁
- Threat model: basis for reasoning about security
 - Adversary's power: what can she do
 - Adversary's goal: what is she trying to achieve

Semantic security: def

(for one-time key; adv. sees only one CT)

- Adversary's power: observe one ciphertext
 - Every message is encrypted with its own key; a particular key is used only once
- Adversary's goal: learn about the plaintext

Semantic security: def

(for one-time key; adv. sees only one CT)

• For $b \in \{0,1\}$ define experiments EXP(b) as

• Def: $\zeta = (E, D)$ is **semantically secure** if for all eff. adversaries A $\mathrm{Adv}_{\mathrm{SS}}[A, \zeta]$ is negligible.

$$Adv_{SS}[A,\zeta]:=|Pr[EXP(0)=1]-Pr[EXP(1)=1]|$$

Semantic security

- Informally
 - A cipher has semantic security if given only cipher text, an attacker cannot practically derive any information about the plain text
- Thm: Given a secure PRG, derived stream cipher is semantically secure

Final thoughts

- Two-time pad attack
 - Never use stream-cipher key to encrypt more than one message
 - later we show a secure a multi-message exchange

$$c_{1} \leftarrow m_{1} \oplus \mathbf{G}(k)$$

$$c_{2} \leftarrow m_{2} \oplus \mathbf{G}(k)$$

$$m_{1} \oplus m_{2} \leftarrow c_{1} \oplus c_{2}$$

- Redundancy in natural languages and in encoding schemes (ASCII, UTF-8, ...) to separate $m_1 \oplus m_2 \rightarrow m_1$, m_2
- http://www.crypto-it.net/eng/attacks/two-time-pad.html

Final thoughts

Two-time pad attack

Final thoughts

- Malleability
 - Modifications to CT are not detected and have predictable impact on the plain text

```
Encrypt: c \leftarrow m \oplus k
Modify: c' \leftarrow c \oplus p
Decrypt: m' \leftarrow c' \oplus k
```

What is the relation between m and m'?

Block Ciphers

Notable examples

- 3DES: n = 64 bits, k = 168 bits

- AES: n = 128 bits, k = 128, 192, 256 bits

Block Ciphers: Built by iteration

- R(k, m) is a round function
 - 3DES (n = 48)
 - AES (n = 10)

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Abstracting BC: PRF and PRP

- Pseudo Random Function (PRF) defined over (K, X, Y):
 F: K × X → Y
 - We can evaluate F(k, x) efficiently
- Pseudo Random Permutation (PRP) defined over (K, X):
 E: K × X → X
 - We can evaluate E(k, x) efficiently
 - E(k, -) has an inverse
 - We have an efficient inversion algorithm D(k, x)
 - (All PRPs are PRFs.)

Secure PRF

- Let $F: K \times X \to Y$ be a PRF
 - Funs[X,Y] the set of all functions from X to Y
 - $-S_F = \{F(k, -) : \forall k \in K\} \subseteq Funs[X, Y]$

Intuitively

- A PRF is secure if a random function in Funs[X, Y]is indistinguishable from a random function in S_F
- Believed to be secure PRPs:
 - AES, 3DES, Blowfish

$$|S_F| = |K|$$

$$|Funs[X,Y]| = |Y|^{|X|}$$

Secure PRF (def.)

• For $b \in \{0,1\}$ define experiment EXP(b) as

• Def: F is a secure PRF if for all eff. adversaries A $\operatorname{Adv}_{\operatorname{PRF}}[A,F]$ is negligible.

$$Adv_{PRF}[A,F] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

Secure PRP (def.)

• For $b \in \{0,1\}$ define experiment EXP(b) as

• Def: E is a secure PRP if for all eff. adversaries A $\operatorname{Adv}_{\operatorname{PRP}}[A,E]$ is negligible.

$$Adv_{PRP}[A,E] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

Block Ciphers: Modes of Operation

- Goal: How do we build a secure encryption from secure PRP (e.g. AES)
 - A PRP encrypts a single data block. How do we encrypt larger data?
- Semantic security (still for one-time key only)
 - Adversary's power: **observe one ciphertext**
 - Adversary's goal: learn about plaintext

MO: Electronic Code Book

- "Solution" Electronic Code Book (ECB):
 - Split the data into blocks
 - if needed, extend the last block with padding bits
 - Independently encrypt each block

Adaptation of: Dan Boneh, Cryptography I, Stanford.

MO: Electronic Code Book

- Problem: If PT[0] == PT[1], then CT[0] == CT[1]
 - If two plaintext blocks are the same, so are the corresponding ciphertexts blocks

How does the Adversary win the semantic security game against ECB?

ECB is not semantically secure

What should the adversary output?

MO: Deterministic counter mode

• Deterministic counter from a pseudorandom function (PRF)

$\bigoplus_{i=1}^{n}$	PT[0]	PT[1]	PT[2]
	PRF(k, 0)	PRF(k, 1)	PRF(k, 2)
	CT[0]	CT[1]	CT[2]

- Creates a stream cipher from a PRF
- Secure (but only for encrypting a single message which may consists of multiple blocks)

Semantic security for many-time key

- Key is used more than once: adversary sees many CTs encrypted with the same key
- Adversary's power: chosen-PT attack (CPA)
 - Can obtain the encryption of any message of her choice
- Adversary's goal: break semantic security
 - Learn about the PT from the CT

Semantic security for CPA (def)

(for many-time key)

- Let $\zeta = (E, D)$ be a cipher defined over (K, M, C)
- For $b \in \{0,1\}$ define experiments EXP(b) as

• Def: $\zeta = (E, D)$ is semantically secure under **CPA** if for all eff. adversaries A $\operatorname{Adv}_{\operatorname{CPA}}[A, \zeta]$ is negligible. $\operatorname{Adv}_{\operatorname{CPA}}[A, E] := |\Pr[\operatorname{EXP}(0) = 1] - \Pr[\operatorname{EXP}(1) = 1]|$

Ciphers insecure under CPA

- Suppose a cipher is deterministic
 - Given some message *m*, the cipher always produces the same ciphertext

- Implication
 - An attacker can learn that two encrypted elements (files, packets, ...) are the same

Ciphers insecure under CPA

- If a key is to be used multiple times, the encryption should be non-deterministic:
 - Encrypting the same PT twice, must produce different CTs
- Solutions
 - Randomized encryption
 - Nonce-based encryption

Non-deterministic encryption

- Nonce n: a value that changes from message to message
 - Pair (key, n) must never repeat
- Method 1: Nonce is a random value (AES-CBC)
- Method 2: Nonce is a counter (AES-CTR)

CPA system should be secure even when the adversary chooses nonces

Modes of Operation: CBC

- Randomize the encryption with an initialization vector (IV)
 - Sent unencrypted
 - Must generate new random IV for every message: pair (key, IV) must never repeat
 - IV must be unpredictable
- Forces encryption to be sequential
 - Decryption may be parallelized

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption https://en.wikipedia.org/wiki/Block cipher mode of operation

Counter Mode

- The random element is a counter
 - Or a combination of a random IV and a counter
 - The combination must not repeat for the lifetime of the key
- Encryption and decryption can be done in parallel
- In effect, creates a stream cipher out of a block cipher

Counter (CTR) mode encryption

Counter (CTR) mode decryption

https://en.wikipedia.org/wiki/Block cipher mode of operation

Summary

- Two security notions
 - Semantic security against one-time CPA
 - Semantic security against many-time CPA
- Only covered secrecy against passive attackers
 - Adversaries can see, but not modify cipher text
 - We'll cover integrity next week

Goal	One-time key	Many-time key (CPA)
Semantic security	Stream-ciphers Deterministic CTR-mode	Rand CBC Rand CTR-mode

Integrity

Contents

- Introduction
- MAC Definition
 - PRF
 - Secure PRF → Secure MAC
- ECBC-MAC
- Cryptographic hash functions
 - Collision resistance
 - MACs from CR
 - Merkle-Damgard iterative construction
- HMAC

Introduction

Integrity: maintaining accuracy and completeness of data

Goal

- Prevent adversary from modifying data
- More feasible: detect if data has been altered

Examples

- Protecting files on disks
- Assuring installation of correct software
- Assuring the delivered packet has not been tempered with in traffic

Message Authentication Code

$$MACI = (S, V)$$
 defined over (K, M, T) is a pair of algs.:

 $S: K \times M \rightarrow T$

 $|M| \gg |T|$ $V: K \times M \times T \rightarrow \{0,1\}$

such that

$$\forall k \in K, m \in M: V(k, m, S(k, m)) = 1$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Is a shared secret required?

- Is all these secrecy required?
- Could we not just simply use
 - MD-5 or
 - SHA-{1,2,3} or
 - CRC?

Secure MAC

- Attacker's power: Chosen message attack
 - For $m_1...m_q$ attacker is given $t_i = S(k, m_i)$
- Attacker's goal: Existential forgery
 - Produce a **new** valid (m,t) s. t.

$$(m,t) \notin \{(m_1,t_1)...(m_q,t_q)\}$$

Implications

- → attacker cannot produce a valid tag for a new message
- \rightarrow given (m,t) attacker cannot produce (m,t') for $t \neq t'$

Secure MAC (def)

I = (S, V) is a **secure MAC** if for all "efficient" adversaries A

$$Adv_{MAC}[A, I] = Pr[Chal. outputs 1]$$
 is "negligible".

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure MAC

- Negligible?
 - Assume less than 2^{-80}

- Suppose a S(k, m) computes 10-bit tags
 - Is such a MAC secure, why?

(Recall) Secure PRF

- Let $F: K \times X \rightarrow Y$ be a PRF
 - Funs[X,Y] the set of all functions from X to Y
 - $-S_F = \{F(k, -) : \forall k \in K\} \subseteq Funs[X, Y]$

Intuitively

– A PRF is secure if a random function in Funs[X,Y] is indistinguishable from a random function in S_F

(Recall) Secure PRF (def.)

• For $b \in \{0,1\}$ define experiment EXP(b) as

• Def: F is a secure PRF if for all eff. adversaries A $\operatorname{Adv}_{\operatorname{PRF}}[A,F]$ is negligible.

$$Adv_{PRF}[A,F] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

Secure PRF → Secure MAC

• For a PRF $F: K \times X \to Y$ define MAC $I_F = (S, V)$

$$S(k,m) := F(k,m)$$

$$V(k,m,t) := \begin{cases} 1 & t = F(k,m) \\ 0 & \text{otherwise} \end{cases}$$

• **Thm**. If F is a secure PRF and 1/|Y| is negligible (i.e. |Y| is sufficiently large), then I_F is a secure MAC.

Truncating MACs based on PRFs

• Lemma: Suppose $F: K \times X \rightarrow \{0,1\}^n$ is a secure PRF. So is $F_t(k,m) := F(k,m)[1...t]$ for all $1 \le t \le n$

- If (S, V) is a MAC based on a secure PRF that outputs *n*-bit tags, then the truncated MAC that outputs *w* bits is also secure.
 - As long as 2-w is still negligible

Examples of secure MAC

- AES (or any secure PRF)
 - A secure MAC for 16-byte (128-bit) messages
- Longer messages?
 - CBC-MAC
 - HMAC
- Both convert a small-PRF into a big-PRF

ECBC-MAC

Hash-MAC (HMAC)

- Built from collision resistance
- Let $H: M \rightarrow T$ be a hash function

$$|M|\gg |T|$$

- A **collision** for H is a pair $m_0, m_1 \in M$ such that: $H(m_0) = H(m_1)$ and $m_0 \neq m_1$
- Function H is **collision resistant** if for all explicit "eff." algs. A $\mathrm{Adv}_{\mathrm{CR}}[A,H]$ is negligible.

 $Adv_{CR}[A,H] := Pr[A \text{ outputs collision for } H]$

Example: SHA-256

MAC from CR

- Let I = (S, V) be a MAC for short messages over (K, M, T) (e.g. AES)
- Let $H: M^{\text{BIG}} \to M$
- Def: $I^{\text{BIG}} = (S^{\text{BIG}}, V^{\text{BIG}})$ over (K, M^{BIG}, T) as: $S^{\text{BIG}}(k, m) := S(k, H(m))$ $V^{\text{BIG}}(k, m, t) := V(k, H(m), t)$
- **Thm**. If I is a secure MAC and H is collision resistant, then I^{BIG} is a secure MAC.
- Example: $S(k,m) := AES_{2-block-CBC}(k,SHA-256(m))$

Example: Integrity using CR hash

Protecting software packages (Linux distros)

- READ-ONLY public space $H(F_1)$ $H(F_2)$ $H(F_N)$
- User downloads a package and verifies it using hashes in public space
 - If H is collision resistant, the attacker cannot modify packages without being detected
- We require <u>no shared secret</u>, but we need a <u>read-only public space</u>

Generic attack on CR

- Let $H: M \to \{0,1\}^n$ be a hash function $|M| \gg 2^n$
- Generic algorithm to find a collision
 - 1) Chose $\sqrt{2^n} = 2^{\frac{n}{2}}$ random messages: $m_1 ... m_{2^{n/2}} \in M$ which with the distinct with $m_1 ... m_{2^{n/2}} \in M$
 - 2) For $i = 1...2^{n/2}$: compute $t_i = H(m_i)$
 - 3)Look for a collision $(t_i=t_j)$. If not found, go to 1.

How many iterations before we find a collision?

The birthday paradox

• **Thm.** Let $r_1...r_n \in [1...B]$ be independent and identically distributed integers. If we sample $n=1.2\times \sqrt{B}$ samples from interval [1...B] then the probability of finding a collision is

$$\Pr\left[\exists i \neq j : r_i = r_j\right] \ge 0.5$$

Approximation of collision probability given n samples with Taylor series

$$p(n) \approx 1 - e^{\frac{-n(n-1)}{2B}}$$

Collision probability

Collision probabilities

Number of samples

Generic attack on CR

- Let $H: M \to \{0,1\}^n$ be a hash function $|M| \gg 2^n$
- Generic algorithm to find a collision
 - 1) Chose $\sqrt{2^n} = 2^{\frac{n}{2}}$ random messages: $m_1 ... m_{2^{n/2}} \in M$ which with the distinct with $m_1 ... m_{2^{n/2}} \in M$
 - 2) For $i = 1...2^{n/2}$: compute $t_i = H(m_i)$
 - 3)Look for a collision $(t_i=t_j)$. If not found, go to 1.

- How many iterations before we find a collision?
 - ~ 2
 - Running time $O(2^{\frac{n}{2}})$

Example CR hash functions

Function	Digest (tag) size [bits]	Generic attack time
MD-5	128	2 ⁶⁴
SHA-1*	160	2 ⁸⁰
SHA-256	256	2 ¹²⁸
SHA-512	512	2 ²⁵⁶
Whirpool	512	2 ²⁵⁶

^{*} Found collision by performing 263.1 evaluations https://shattered.it

Merkle-Damgard construction

Goal: given CR function for short messages, construct CR function for long messages

- CR for short messages (compression function) $h: T \times X \rightarrow T$
- CR for long messages $H: X^{\leq L} \to T$
- PB: padding block 10..0 | msg len (in bits)
 - If no space for PB, add an extra block
- **Thm.** If *h* is CR, so is *H*.

Compression functions

- Built from block ciphers $E: K \times \{0,1\}^n \rightarrow \{0,1\}^n$
- Several constructions
 - Davies-Meyer

$$h(H,m) := E(m,H) \oplus H$$

- Matyas–Meyer–Oseas
- Miyaguchi-Preneel

https://en.wikipedia.org/wiki/One-way compression function

Example: SHA-256

- Merkle-Damgard iterative construction
- Davies-Meyer compression function
 - Block cipher: SHACAL-2

MAC from M-D hash func.

- Can we construct a MAC directly from H? (e.g SHA-256)
- Naive attempt S(k,m) := H(k||m)
 - Is it secure?

- If you knew H(k||m) could you compute H(k||m||PB||w) for any w? How?
- Length-extension attack

Standardized solution: HMAC

- Most commonly used on the Internet
 - https://tools.ietf.org/html/rfc2104
- Given CR hash function H, define a MAC as

$$S(k,m) := H(k \oplus \text{opad} \parallel H(k \oplus \text{ipad} \parallel m))$$

- Built from a black-box implementation of SHA-256
- Assumed to be a secure PRF
- TLS 1.2 requires support of HMAC-SHA1-96 (TLS 1.3 does not)

Authenticated Encryption

Contents

- Ciphertext integrity
- AE definitions
- Chosen Ciphertext Attack
- Constructions
 - Encrypt-then-MAC
 - Encrypt-and-MAC
 - MAC-then-Encrypt

Authenticated Encryption (AE)

- Everything demonstrated so far provides
 - either integrity
 - or <u>confidentiality</u> (security against eavesdropping)
- CPA security does not provide secrecy against active attacks (where an attacker can tamper with ciphertext)
 - → If you require integrity → MAC
 - → If you require integrity and confidentiality → AE

AE: Desired properties

– An authenticated encryption system $\zeta = (E \, , D)$ is a cipher where

as usual $E: K \times M \times N \rightarrow C$ but $D: K \times C \times N \rightarrow M \cup \{\bot\}$ $\bot \not\in M$ Nonce CT is invalid (rejected)

- Security: the system must provide
 - · semantic security under CPA, and
 - ciphertext integrity
 - an adversary cannot create a new valid CT (such that would decrypt properly)

Ciphertext integrity (def)

Let $\zeta = (E, D)$ be a cipher with message space M

Def: $\zeta = (E, D)$ has **ciphertext integrity** if for all "efficient" adversaries $A : \mathrm{Adv}_{\mathrm{CI}}[A, \zeta]$ is "negligible".

$$Adv_{CI}[A,\zeta] = Pr[Chal. outputs 1]$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Authenticated Encryption

- Def: A cipher $\zeta = (E, D)$ provides authenticated encryption (AE) if it is
 - 1) semantically secure under CPA, and
 - 2) has ciphertext integrity.

- Do the following ciphers provide AE:
 - AES-CBC,
 - AES-CTR,
 - RC4?
- Why?

Authenticated Encryption

Implication 1: Authenticity

- An attacker cannot create a new valid $c \notin \{c_1...c_q\}$
- If message decrypts properly $(D(k,c) \neq \bot)$, it must have come from someone who knows secret key k
 - But it could be a replay

 Implication 2: Security against chosen ciphertext attack (CCA)

Chosen ciphertext security

- Adversary's power: CPA and CCA
 - Can encrypt any message of her choice
 - Can decrypt any message of her choice other than some challenge
 - (still conservative modeling of real life)
- Adversary's goal: break semantic security
 - Learn about the PT from the CT

Chosen ciphertext security (def)

- Let $\zeta = (E, D)$ be a cipher defined over (K, M, C)
- For $b \in \{0,1\}$ define experiments EXP(b) as

Chosen ciphertext security (def)

• <u>Def.</u> Cipher $\zeta = (E, D)$ is CCA secure if for all efficient adversaries $\mathrm{AAdv}_{\mathrm{CCA}}[A, \zeta]$ is negligible.

$$Adv_{CCA}[A, \zeta] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

- Thm. A cipher that provides AE is also CCA secure.
- <u>Implication.</u> AE provides confidentiality against an active adversary that can decrypt some ciphertexts.
- Limitations
 - AE does not prevent replay attacks
 - Does not account for side channels attacks (timing)

Ex: AES-CTR is not CCA secure

- Recall
 - AES-CTR is effectively a stream cipher
 - Malleability of stream ciphers

Encrypt then MAC

- MAC computed over cipher text
- Used in IPsec, always provides AE
 - Use separate and independent keys

Encrypt and MAC

- MAC computed over plain text and sent unencrypted
- Used in SSH
- Use separate and independent keys

MAC then encrypt

- MAC computed over plain text and then encrypted before sending
- Used in TLS/SSL
- Use separate and independent keys

Three AE approaches

AE: Standardized solutions

- Galois/Counter Mode (GCM)
 - CTR mode encryption then CW-MAC
 - Made popular by Intel's PCLMULQDQ instruction
- CBC-MAC then CTR mode encryption (CCM)
- EAX
- All support authenticated encryption with associated data (AEAD)

ASSOCIATED DATA

ENCRYPTED DATA

AUTHENTICATED

Authenticated Encryption

Contents

- Ciphertext integrity
- AE definitions
- Chosen Ciphertext Attack
- Constructions
 - Encrypt-then-MAC
 - Encrypt-and-MAC
 - MAC-then-Encrypt

Authenticated Encryption (AE)

- Everything demonstrated so far provides
 - either integrity
 - or confidentiality (security against eavesdropping)
- CPA security does not provide secrecy against active attacks (where an attacker can tamper with ciphertext)
 - → If you require integrity → MAC
 - → If you require <u>integrity and confidentiality</u> → **AE**

AE: Desired properties

– An authenticated encryption system $\zeta = (E , D)$ is a cipher where

as usual $E: K \times M \times N \rightarrow C$ but $D: K \times C \times N \rightarrow M \cup \{\bot\}$ $\bot \not\in M$ Nonce CT is invalid (rejected)

- Security: the system must provide
 - semantic security under CPA, and
 - ciphertext integrity
 - an adversary cannot create a new valid CT (such that would decrypt properly)

Ciphertext integrity (def)

Let $\zeta = (E, D)$ be a cipher with message space M

Def: $\zeta = (E, D)$ has **ciphertext integrity** if for all "efficient" adversaries A: $Adv_{CI}[A, \zeta]$ is "negligible".

$$Adv_{CI}[A,\zeta]=Pr[Chal. outputs 1]$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Authenticated Encryption

- Def: A cipher $\zeta = (E, D)$ provides authenticated encryption (AE) if it is
 - 1) semantically secure under CPA, and
 - 2) has ciphertext integrity.

- Do the following ciphers provide AE:
 - AES-CBC,
 - AES-CTR,
 - RC4?
- Why?

Authenticated Encryption

Implication 1: Authenticity

- An attacker cannot create a new valid $c \notin \{c_1...c_q\}$
- If message decrypts properly $(D(k,c) \neq \bot)$, it must have come from someone who knows secret key k
 - But it could be a replay
- Implication 2: Security against chosen ciphertext attack (CCA)

Chosen ciphertext security

- Adversary's power: CPA and CCA
 - Can encrypt any message of her choice
 - Can decrypt any message of her choice other than some challenge
 - (still conservative modeling of real life)
- Adversary's goal: break semantic security
 - Learn about the PT from the CT

Chosen ciphertext security (def)

- Let $\zeta = (E, D)$ be a cipher defined over (K, M, C)
- For $b \in \{0,1\}$ define experiments EXP(b) as

Chosen ciphertext security (def)

• <u>Def.</u> Cipher $\zeta = (E, D)$ is CCA secure if for all efficient adversaries $AAdv_{CCA}[A, \zeta]$ is negligible.

$$Adv_{CCA}[A, \zeta] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

- Thm. A cipher that provides AE is also CCA secure.
- Implication. AE provides confidentiality against an active adversary that can decrypt some ciphertexts.
- Limitations
 - AE does not prevent replay attacks
 - Does not account for side channels attacks (timing)

Ex: AES-CTR is not CCA secure

- Recall
 - AES-CTR is effectively a stream cipher
 - Malleability of stream ciphers

Encrypt then MAC

- MAC computed over cipher text
- Used in IPsec, always provides AE
 - Use separate and independent keys

Encrypt and MAC

- MAC computed over plain text and sent unencrypted
- Used in SSH
- Use separate and independent keys

MAC then encrypt

- MAC computed over plain text and then encrypted before sending
- Used in TLS/SSL
- Use separate and independent keys

Three AE approaches

Key

AE: Standardized solutions

- Galois/Counter Mode (GCM)
 - CTR mode encryption then CW-MAC
 - Made popular by Intel's PCLMULQDQ instruction
- CBC-MAC then CTR mode encryption (CCM)
- EAX
- All support authenticated encryption with associated data (AEAD)

ASSOCIATED DATA ENCRYPTED DATA

AUTHENTICATED

Public key encryption

Index

- Public-key ciphers overview
- Security definitions
 - CPA-security
 - CCA-security
- Trapdoor functions and permutations (TDF, TDP)
 - Encryption schemes from TDF (ISO)
- Example TDP: RSA
 - Definition
 - RSA in practice
 - Security of RSA

Public key encryption

- Each party uses a key pair: k = (pk, sk)
- Public key is given to everyone, secret is kept hidden

Public key encryption: usage

- Communication session set-up
 - A process where Alice and Bob agree upon a shared secret
- Non-interactive applications
 - E.g. email
 - Typically, PKs are long-lived, symmetric keys are ephemeral
 - (But the sender needs to know recipient's PK in advance – need PKI)

Public key encryption: def

Def. A public-key encryption system is triple of algs. (G, E, D)

- G() rand. alg. generates key pairs (pk, sk)
- E(pk,m) rand. alg. takes $m \in M$ and returns $c \in C$
- •D(sk,c) det. alg. takes $c \in C$ and returns $m \in M$ or \bot

such that $\forall (pk, sk)$ output by G:

 $\forall m \in M : D(sk, E(pk, m)) = m$

Semantic security (def)

Let $\zeta = (G, E, D)$ be a public key encryption system. For $b \in \{0, 1\}$ define experiments EXP(0), EXP(1)

Def: $\zeta = (G, E, D)$ is **semantically secure** (aka IND-CPA) if for all eff. adversaries $A : Adv_{ss}[A, \zeta]$ is negligible.

$$Adv_{SS}[A,\zeta]:=|Pr[EXP(0)=1]-Pr[EXP(1)=1]|$$

Relation to symmetric cipher security

- For symmetric ciphers, we had 2 security definitions
 - One-time security (key used only once) and manytime security (key used many times; CPA)
 - One-time security does not imply many-time security (OTP is broken if used more than once)
- Public key encryption
 - One-time security → many-time security (CPA)
 - Because the adversary can encrypt herself (she knows pk)
 - Public key encryption must be randomized

(pub-key) Chosen Ciphertext Security (def)

 $\zeta = (G, E, D)$ a pub-key enc. over (M, C). For $b \in \{0, 1\}$ define experiments EXP(b):

CCA security

• Def. $\zeta = (G, E, D)$ is CCA secure (aka. IND-CCA) if for all efficient adversaries A: $\mathrm{Adv}_{\mathrm{CCA}}[A, \zeta]$ is negligible.

$$Adv_{CCA}[A, \zeta] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

- Recall: A secure symmetric cipher provides AE, when it has CPA security and ciphertext integrity
 - Attacker cannot create new ciphertexts (implies CCA security)
- In pub-key setting
 - Attacker knows pk → can create new ciphertexts
 - Instead: we directly require CCA security
- Next step: Constructing CCA secure pub-key encryption

Trapdoor function (TDF)

- Def. A trapdoor function X → Y is a triple of eff. algorithms (G, F, F⁻¹)
 - G(): rand. alg. for creating (pk, sk)
 - **F(pk, -)**: det. alg. that defines $X \rightarrow Y$
 - F⁻¹(sk, -): det. alg. that defines Y → X
 [inverts F(pk, -)]

For every (pk, sk) returned by
$$G$$

 $F^{-1}[sk, F(pk, x)] = x$

Secure TDFs

- TDF (G, F, F⁻¹) is secure if F(pk, -) is one-way
 - It can be evaluated but not inverted without sk

• Def. (G, F, F⁻¹) is a secure TDF if for all eff. algs. A: $Adv_{OW}[A,F]$:=Pr[x=x'] is negligible.

Pub-key encryption from TDFs

(ISO 18033-2 standard)

- Building blocks
 - (G, F, F⁻¹) secure TDF $X \rightarrow Y$
 - (E_S, D_S) symmetric AE cipher over (K, M, C)
 - H: X → K a hash function
- Pub-key enc. system (G, E, D)
 - Key generation G: same as G in TDF

E(pk, m): $x \stackrel{R}{\leftarrow} X$, $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$, $c \leftarrow E_s(k, m)$ return (y, c)

$$D(sk, (y, c)):$$

$$X \leftarrow F^{-1}(sk, y)$$

$$k \leftarrow H(x), \qquad m \leftarrow D_s(k, c)$$

return m

Pub-key encryption from TDFs

(ISO 18033-2 standard)

$$F(pk,x)$$
 $E_S(H(x),m)$

Thm. If (G, F, F⁻¹) is a secure TDF, if (E_s , D_s) provides AE, and if H: $X \rightarrow K$ is a "random oracle", then (G, E, D) is CCA^{ro} secure.

An incorrect use of TDF:

$$D(sk, c) := F^{-1}(sk, c)$$

Such construction results in a deterministic encryption scheme: cannot be semantically secure

Trapdoor permutation (TDP)

- TDP is a triple of eff. algorithms (G, F, F⁻¹)
 - G(): generates (pk, sk); pk defines a function $X \rightarrow X$
 - F(pk, x): evaluates the function at x
 - F⁻¹(sk, y): inverts the function at y using sk

Secure TDP

The function F(pk, -) is one-way without the sk

Arithmetic modulo composites

Let $N = p \cdot q$ where p, q are primes

$$\mathbb{Z}_N = \{0, 1, ..., N-1\}$$

 $\mathbb{Z}_N^* = \{\text{invertible elements in } Z_N \}$

Facts $x \in \mathbb{Z}_N$ is invertible $\iff \gcd(x,N) = 1$ $|\mathbb{Z}_N^*| = \varphi(N) = (p-1)(q-1) = N-p-q+1$

Euler's theorem

$$\forall x \in \mathbb{Z}_N^* : x^{\varphi(N)} = 1 \mod N$$

RSA trapdoor permutation

- G():
 - Choose random primes p,q (~1024 bits); $N=p\cdot q$
 - Choose integers e, d such that $e \cdot d = 1 \mod \varphi(N)$
 - Return pk = (N, e), sk = (N, d)
- F(pk, x): $\mathbb{Z}_N^* \to \mathbb{Z}_N^* : RSA(x) = x^e \mod N$
- F-1(sk, y): $y^d = \operatorname{RSA}(x)^d \mod N$ $= x^{ed} \mod N$ $= x^{k \cdot \varphi(N) + 1} \mod N$ $= (x^{\varphi(N)})^k \cdot x \mod N$

RSA trapdoor permutation

RSA assumption: RSA is one-way permutation

For all eff. algs. A:

$$\Pr[A(N, e, y) = \sqrt[e]{y}] < \text{negligible}$$

$$p, q \leftarrow n$$
-bit primes $N = p \cdot q$ $y \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$

Insecure "textbook" RSA

- Encrypting directly with RSA ("textbook" RSA) is insecure
 - $-E((N,e),x) := x^e \mod N$
 - $D((N,d),y) := y^d \mod N$
- Problem 1: Ciphertext is malleable
 - Given ciphertext c = E((N, e), m) an attacker can create $c' = c \cdot 2^e \mod N$
 - The modified ciphertext c' decrypts to $2m \mod N$
- Problem 2: Encryption is <u>deterministic</u>

RSA in practice

- RSA in practice (ISO standard rarely used)
 - Expand the message to the RSA modulus size and add random bits
 - Apply the RSA function

RSA in practice: PKCS1 v1.5

- Resulting value is RSA encrypted
- Widely deployed (HTTPS)
- Attack due to Bleichenbacher (1998)
 - During decryption, the system will signal an error if the decrypted plaintext does not start with 02
 - Enough to completely decrypt the ciphertext
- Solution in RFC 5246
 - set decrypted PT to a random value and fail later on
- Generally PKCS1 v1.5 padding should be avoided Adaptation of: Dan Boneh, Cryptography I, Stanford.

RSA in practice: PKCS1: v2.0 (OAEP)

- New preprocessing function: Optimal asymmetric encryption padding (OAEP)
- Check pad on decryption
 - Reject CT if invalid
- **Thm.** If RSA is a TDP, then RSA-OAEP is CCA secure if H, G are *random oracles*.
 - In practice we use SHA-256 for H and G

RSA security (informally)

- To invert RSA one-way function, the attacker must extract x from $c = x^e \mod N$
- How difficult is to compute e'th root modulo N?
 Currently best known algorithm
 - Step 1: Factor N[difficult]
 - Step 2: Compute e'th roots modulo p and q [easy]
- Shor's algorithm: a quantum algorithm for integer factorization in polynomial time
 - Unknown if quantum computers can be built

RSA security (informally)

 Security of public key system should be comparable to security of symmetric cipher

Cipher key size	RSA modulus size [in modulo primes]
80	1024
128	3072
256	15360

Key Exchange

Contents

- Key management problem
- On-line Trusted Third Parties
- The Diffie-Hellman protocol
- Public key cryptography
- Digital signatures
- Key derivation
- Final words

Key management

Storing mutual secret keys is difficult

• In a universe of *n* users, each user requires

O(n) keys

On-line Trusted Third Party (TTP)

- Every user has to manage only <u>a single key</u>
 - The one used to communicate with TTP
- Upon request, the TTP generates shared secret keys for user sessions

TTP: Generating keys (toy protocol)

Bob wants a shared secret with Alice

 $(E\,,D)$ a CCA secure cipher.

TTP: Security

An eavesdropper sees

$$-m_1 = E(k_B, 'B, A' || k_{AB})$$

 $-m_2 = E(k_A, 'B, A' || k_{AB})$

- Since (E,D) is CCA secure, she learns nothing about k_{AB}
- Issues
 - TTP needed for all key exchanges
 - TTP knows all user and all session keys
 - Replay attacks possible
- Basis of Kerberos

The main issue

- Can we generate shared keys without an online TTP?
 - YES!
- Entrance of public-key cryptography
- Two most widely known constructions
 - Diffie-Hellman protocol (1976)
 - RSA crypto system (1977)

Diffie-Hellman protocol

- Stems from hard problems in algebra
- Alice an Bob want to establish a shared secret in the presence of an eavesdropper
- Security against eavesdropping only

Diffie-Hellman protocol (informally)

- Fix a large prime p (600 digits ~ 2kbits long)
- Fix an integer \mathbf{g} in $\mathbf{G} = \{1 \dots p-1\}$ such that \mathbf{g} is a <u>primitive root</u> modulo \mathbf{p} (generator)
 - Raising g to powers of 0 to p-2 generates all values in {1 ... p-1}

$$B^a = (g^b)^a = g^{ab} \mod p$$

$$A^b = (g^a)^b = g^{ab} \mod p$$

Security (informally)

An eavesdropper sees

$$-p,g,A=g^a(mod p),B=g^b(mod p)$$

• Can she derive $g^{ab} (mod p)$ herself?

- In general, let's define $DH_a(g^a, g^b) = g^{ab} \pmod{p}$
- How difficult is to compute DH function (mod p)?

Security (informally)

- Suppose p is n bits long
- Best known algorithm (GNFS) computes function DH in $e^{O(\sqrt[3]{n})}$
- How difficult is to break DH compared to breaking a symmetric cipher?

Cipher key size	DH modulus size [in modulo primes]	DH modulus size [Elliptic Curve]
80	1024	160
128	3072	256
256	15360	512

• Slow transition from (mod p) to elliptic curves

DH: Open issues

- Remember: security against eavesdropping only
- An active attacker can break the protocol with the man-in-the-middle attack
 - Reason: exchanges are not authenticated

Public key encryption for key exchange

- Alice an Bob want to establish a shared secret in the presence of an eavesdropper
- Security against eavesdropping only

Public key encryption

- Each party uses a key pair: k = (pk, sk)
- Public key is given to everyone, secret is kept hidden

Establishing a shared secret

- Adversary sees pk, E(pk, x)
- Adversary wants x
- If $\zeta = (G, E, D)$ is sem. secure, the adv. obtains no information about x
- Security against eavesdropping only: protocol still vulnerable to man-in-the-middle

Digital signatures

- Preserving integrity in public-key cryptography
 - "MACs" of public-key cryptography
- Idea: The <u>signer signs</u> a message <u>with</u> her <u>secret key</u>.
 <u>Anyone</u> can <u>verify</u> the signature using the corresponding <u>public key</u> and thus know:
 - That the message has not been tampered with
 - That the signer indeed signed the message
- Similar to MACs, but digital signatures are
 - Publicly verifiable: anyone (with PK) can verify the signature
 - Non-repudiative: the signer cannot later deny having signed a particular message

Signature scheme: def.

- **<u>Def:</u>** A signature scheme (G,S,V) is a triple of eff. algs. defined over (M,Z) where:
 - G() is a rand. alg. that generates key pairs (pk,sk)
 - S(sk,m) is an alg. that signs a message $m \in M$ using secret key sk and produces a signature $z \in Z$
 - V(pk,m,z) is a det. alg. that verifies the signature $z \in Z$ of message $m \in M$ using pk and outputs $\mathbf{1}$ if the signature verifies, or $\mathbf{0}$ otherwise
 - A signature generated by S must always verify by V: $\forall (pk,sk), m \in M : \Pr[V(pk,m,S(sk,m))=1]=1$

Digital signatures: Threat model

- Attacker's power: Chosen message attack
 - For $m_1...m_q$ attacker is given $z_i = S(sk, m_i)$
- Attacker's goal: Existential forgery
 - Produce a **new** valid (m, z) s. t. $m \notin \{m_1...m_a\}$

→ An adversary cannot produce a valid signature for a new message

Secure digital signature: def.

A signature scheme (G, S, V) is **secure** if for all "efficient" adversaries A: $Adv_{SIG}[A, I] = Pr[Chal. outputs 1]$ is "negligible".

Extending the message space

- Hash-and-sign paradigm
 - Constructing a signature scheme for large messages from a signature scheme for small messages (and strengthening security)
- **Thm.** Let (G,S,V) be a secure signature scheme over (M,Z) and let $H:M' \rightarrow M$ be a collision resistant hash function where $|M'| \gg |M|$. Then (G,S',V') is also secure sig. scheme, where:

$$S'(sk,m):=S(sk,H(m))$$

 $V'(pk,m,z):=V(pk,H(m),z)$

Signatures from TDP: Full Domain Hash

- Building blocks
 - (G, F, F⁻¹) Secure trapdoor permutation (TDP)
 - *F*: *X* → *X*
 - $H: M \rightarrow X$ collision resistant hash function
- Full domain (length) hash (FDH)
 - G() from TDP
 - $-S(sk,m) := F^{-1}(sk,H(m))$

$$-V(pk, m, z) := \begin{cases} 1 & H(m) = F(pk, z) \\ 0 & \text{otherwise} \end{cases}$$

Signatures from TDP: Full Domain Hash

- Thm. Let (G, F, F^{-1}) be a secure TDP $X \rightarrow X$ and let $H: M \rightarrow X$ be a collision resistant hash function. Then signature scheme FDH is secure if H is a *random oracle*.
- FDH produces <u>unique signatures</u>: every message has its own signature

Signatures from TDP: Full Domain Hash

 Hashing is required for security; schemes without hashing are insecure. For instance:

$$S(sk,m):=F^{-1}(sk,m)$$
 $V(pk,m,z):=F(pk,z)==m$

 Zero-message attack: create an existential forgery by picking a random signature, and creating a "message" from it

$$z \stackrel{\mathbb{R}}{\leftarrow} Z, m \leftarrow F(pk, z)$$

- Multiplicative-property attack (when using RSA)
 - Ask for signatures on two messages m_{1} , m_{2}

$$z_1 \leftarrow S(sk, m_1), z_2 \leftarrow S(sk, m_2)$$

Output existential forgery

$$m_3 \leftarrow m_1 \cdot m_2$$

 $z_3 \leftarrow z_1 \cdot z_2$

Signatures from RSA trapdoor

• G()

- Choose random primes p,q (~1024 bits); $N=p\cdot q$
- Choose integers e, d such that $e \cdot d = 1 \mod \varphi(N)$
- Return pk = (N, e), sk = (N, d)
- $S((N,d),m) := H(m)^d \mod N$

•
$$V((N, e), m, z) := \begin{cases} 1 & H(m) = z^e \mod N \\ 0 & \text{otherwise} \end{cases}$$

What about *H*?

RSA Full Domain Hash

- We require $H: M \to \mathbb{Z}_N^*$
 - The output length of *H* depends on *N*; could be different for every public key
 - Ideally we want the output length of H to be fixed
- **Thm.** Let $H: M \rightarrow Y$ be a collision resistant hash function where $Y = \{1, ..., 2^{n-2}\}$ and n is the number of bits used to represent N. Then RSA-FDH is secure sig. scheme if H is a random oracle.
- \rightarrow The bit-length of digests must be of similar length as is the bit-length of the modulus $|Y| \geq N/4$

PKCS1 v1.5 signatures

• Widely deployed (TLS certificates, S/MIME, ...)

- DI digest info encodes the name of the used hash function H (SHA*, MD*, ...)
- The resulting value is then signed by raising it to d in mod N (recall, sk = (N, d))
- Not FDH, but partial domain hash
 - No security proof; also no known substantial attacks
 - ullet Issue with proving: **H**(m) maps to a small subset of \mathbb{Z}_N^*

Probabilistic Signature Scheme (PSS)

- Randomizes the signature with a public random value s called salt
- $S((N,d), m, s) := [H(s||m) || MGF[H(s||m)] \oplus s]^d \mod N$
 - MGF mask generating function that extends the hash size to the full modulus size

$$\bullet V((N,e),m,z,s) := \begin{cases} 1 & H(s||m) \mid |MGF[H(s||m)] \oplus s = z^e \mod N \\ 0 & \text{otherwise} \end{cases}$$

- Provably secure in random oracle model
- Part of PKCS1 v2.1

Digital Signature Standard (DSS)

- NIST (FIPS 186)
 - Also called Digital Signature Algorithm (DSA)
- Relies on the hardness of Dlog
- No known proof of security
 - But also no serious attacks found
- Has an equivalent in elliptic curves (ECDSA)

Deriving many keys from one

- Scenario: we obtain a single source key (SK)
 - From a hardware random number generator
 - From a key exchange protocol
- We need many keys to secure the session
 - Unidirectional keys, MAC/encryption keys
- Goal: generate many keys from a single SK
 - KDF key derivation function

Deriving many keys from one

- Three cases
 - 1)SK is uniform in key space
 - 2)SK is non-uniform in key space
 - 3)SK is a password

Key derivation: (1) SK is uniform

- Let PRF F: K × X → {0, 1}ⁿ
- If source key is <u>uniform</u> in K:

```
KDF(sk, ctx, l) := F(sk, ctx||0) || F(sk, ctx||1) || ... || F(sk, ctx||l)
```

- ctx: a string unique to every application
 - Assures that two applications derive independent keys even if they sample the same source key

Key derivation: (2) SK is non-uniform

- The KDF can be directly used <u>only when SK is</u> <u>uniform</u>
 - → If SK is not uniform, the PRF output may not look random
- Reasons for non-uniformity of SK
 - Hardware RNG may be biased
 - Key-exchange protocol may produce a key that is uniform in some subset of K

Key derivation: (2) SK is non-uniform

Extract-then-Expand paradigm

- Step 1) Use an extractor and SK to extract a pseudo-random key k that is uniform in key space
 - Use salt: a fixed public (non-secret) random string
- Step 2) expand k with KDF
- HKDF a KDF from HMAC
 - Step 1) k ← HMAC(salt, SK)
 - Step 2) Expand as you would with uniform keys, but use HMAC for PRF and k for key
 - https://tools.ietf.org/html/rfc5869

Key derivation: (3) SK is a password

- Particular care needed when deriving keys from passwords
 - HKDF unsuitable here: passwords have low entropy
 - Derived keys will be vulnerable to dictionary attack
- General idea: add salt and slow down hashing
- PBKDF password-based KDF
 - PKCS #5 v2.0 and https://tools.ietf.org/html/rfc2898
 - Iterate hash function many times

Final words

- Cryptography is a powerful tool, but it is too easy to use it incorrectly
 - Systems work, but could be easily attacked
- To reduce the probability of making mistakes
 - Have others review your design and code
 - Never invent your own primitives (ciphers, MACs, modes of operation, ...)
 - Avoid implementing your own cryptographic operations
 - E.g. instead of combining AES-CTR and HMAC, prefer AES-GCM

Key Exchange

Contents

- Key management problem
- On-line Trusted Third Parties
- The Diffie-Hellman protocol
- Public key cryptography
- Digital signatures
- Key derivation
- Final words

Key management

Storing mutual secret keys is difficult

• In a universe of *n* users, each user requires

O(n) keys

Adaptation of: Dan Boneh, Cryptography I, Stanford.

On-line Trusted Third Party (TTP)

- Every user has to manage only <u>a single key</u>
 - The one used to communicate with TTP
- Upon request, the TTP generates shared secret keys for user sessions

Adaptation of: Dan Boneh, Cryptography I, Stanford.

TTP: Generating keys (toy protocol)

Bob wants a shared secret with Alice

 $(E\,,D)$ a CCA secure cipher.

TTP: Security

An eavesdropper sees

$$-m_1 = E(k_B, 'B, A' || k_{AB})$$

 $-m_2 = E(k_A, 'B, A' || k_{AB})$

- Since (E,D) is CCA secure, she learns nothing about k_{AB}
- Issues
 - TTP needed for all key exchanges
 - TTP knows all user and all session keys
 - Replay attacks possible
- Basis of Kerberos

The main issue

- Can we generate shared keys without an online TTP?
 - YES!
- Entrance of public-key cryptography
- Two most widely known constructions
 - Diffie-Hellman protocol (1976)
 - RSA crypto system (1977)

Diffie-Hellman protocol

- Stems from hard problems in algebra
- Alice an Bob want to establish a shared secret in the presence of an eavesdropper
- Security against eavesdropping only

Diffie-Hellman protocol (informally)

- Fix a large prime p (600 digits ~ 2kbits long)
- Fix an integer \mathbf{g} in $\mathbf{G} = \{1 \dots p-1\}$ such that \mathbf{g} is a <u>primitive root</u> modulo \mathbf{p} (generator)
 - Raising g to powers of 0 to p-2 generates all values in {1 ... p-1}

$$B^a = (g^b)^a = g^{ab} \mod p$$

$$A^b = (g^a)^b = g^{ab} \mod p$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Security (informally)

An eavesdropper sees

$$-p,g,A=g^a(mod p),B=g^b(mod p)$$

• Can she derive $g^{ab} (mod p)$ herself?

- In general, let's define $DH_a(g^a, g^b) = g^{ab} \pmod{p}$
- How difficult is to compute DH function (mod p)?

Security (informally)

- Suppose p is n bits long
- Best known algorithm (GNFS) computes function DH in $e^{O(\sqrt[3]{n})}$
- How difficult is to break DH compared to breaking a symmetric cipher?

Cipher key size	DH modulus size [in modulo primes]	DH modulus size [Elliptic Curve]
80	1024	160
128	3072	256
256	15360	512

• Slow transition from (mod p) to elliptic curves

DH: Open issues

- Remember: security against eavesdropping only
- An active attacker can break the protocol with the man-in-the-middle attack
 - Reason: exchanges are not authenticated

Public key encryption for key exchange

- Alice an Bob want to establish a shared secret in the presence of an eavesdropper
- Security against eavesdropping only

Public key encryption

- Each party uses a key pair: k = (pk, sk)
- Public key is given to everyone, secret is kept hidden

Establishing a shared secret

- Adversary sees pk, E(pk, x)
- Adversary wants x
- If $\zeta = (G, E, D)$ is sem. secure, the adv. obtains no information about x
- Security against eavesdropping only: protocol still vulnerable to man-in-the-middle

Digital signatures

- Preserving integrity in public-key cryptography
 - "MACs" of public-key cryptography
- Idea: The <u>signer signs</u> a message <u>with</u> her <u>secret key</u>.
 <u>Anyone</u> can <u>verify</u> the signature using the corresponding <u>public key</u> and thus know:
 - That the message has not been tampered with
 - That the signer indeed signed the message
- Similar to MACs, but digital signatures are
 - Publicly verifiable: anyone (with PK) can verify the signature
 - Non-repudiative: the signer cannot later deny having signed a particular message

Signature scheme: def.

- **<u>Def:</u>** A signature scheme (G,S,V) is a triple of eff. algs. defined over (M,Z) where:
 - G() is a rand. alg. that generates key pairs (pk,sk)
 - S(sk,m) is an alg. that signs a message $m \in M$ using secret key sk and produces a signature $z \in Z$
 - V(pk,m,z) is a det. alg. that verifies the signature $z \in Z$ of message $m \in M$ using pk and outputs $\mathbf{1}$ if the signature verifies, or $\mathbf{0}$ otherwise
 - A signature generated by S must always verify by V: $\forall (pk,sk), m \in M : \Pr[V(pk,m,S(sk,m))=1]=1$

Digital signatures: Threat model

- Attacker's power: Chosen message attack
 - For $m_1...m_q$ attacker is given $z_i = S(sk, m_i)$
- Attacker's goal: Existential forgery
 - Produce a **new** valid (m, z) s. t. $m \notin \{m_1...m_a\}$

→ An adversary cannot produce a valid signature for a new message

Secure digital signature: def.

A signature scheme (G, S, V) is **secure** if for all "efficient" adversaries A: $Adv_{SIG}[A, I] = Pr[Chal. outputs 1]$ is "negligible".

Extending the message space

- Hash-and-sign paradigm
 - Constructing a signature scheme for large messages from a signature scheme for small messages (and strengthening security)
- **Thm.** Let (G,S,V) be a secure signature scheme over (M,Z) and let $H:M' \rightarrow M$ be a collision resistant hash function where $|M'| \gg |M|$. Then (G,S',V') is also secure sig. scheme, where:

$$S'(sk,m):=S(sk,H(m))$$

 $V'(pk,m,z):=V(pk,H(m),z)$

Signatures from TDP: Full Domain Hash

- Building blocks
 - (G, F, F⁻¹) Secure trapdoor permutation (TDP)
 - *F*: *X* → *X*
 - $H: M \rightarrow X$ collision resistant hash function
- Full domain (length) hash (FDH)
 - G() from TDP
 - $S(sk, m) := F^{-1}(sk, H(m))$

$$-V(pk, m, z) := \begin{cases} 1 & H(m) = F(pk, z) \\ 0 & \text{otherwise} \end{cases}$$

Signatures from TDP: Full Domain Hash

- Thm. Let (G, F, F^{-1}) be a secure TDP $X \rightarrow X$ and let $H: M \rightarrow X$ be a collision resistant hash function. Then signature scheme FDH is secure if H is a *random oracle*.
- FDH produces <u>unique signatures</u>: every message has its own signature

Signatures from TDP: Full Domain Hash

 Hashing is required for security; schemes without hashing are insecure. For instance:

$$S(sk,m):=F^{-1}(sk,m)$$
 $V(pk,m,z):=F(pk,z)==m$

 Zero-message attack: create an existential forgery by picking a random signature, and creating a "message" from it

$$z \stackrel{\mathbb{R}}{\leftarrow} Z, m \leftarrow F(pk, z)$$

- Multiplicative-property attack (when using RSA)
 - Ask for signatures on two messages m_{1} , m_{2}

$$z_1 \leftarrow S(sk, m_1), z_2 \leftarrow S(sk, m_2)$$

Output existential forgery

$$m_3 \leftarrow m_1 \cdot m_2$$

 $z_3 \leftarrow z_1 \cdot z_2$

Signatures from RSA trapdoor

• G()

- Choose random primes p,q (~1024 bits); $N=p\cdot q$
- Choose integers e, d such that $e \cdot d = 1 \mod \varphi(N)$
- Return pk = (N, e), sk = (N, d)
- $S((N,d),m) := H(m)^d \mod N$

•
$$V((N, e), m, z) := \begin{cases} 1 & H(m) = z^e \mod N \\ 0 & \text{otherwise} \end{cases}$$

What about *H*?

RSA Full Domain Hash

- We require $H: M \to \mathbb{Z}_N^*$
 - The output length of *H* depends on *N*; could be different for every public key
 - Ideally we want the output length of H to be fixed
- **Thm.** Let $H: M \rightarrow Y$ be a collision resistant hash function where $Y = \{1, ..., 2^{n-2}\}$ and n is the number of bits used to represent N. Then RSA-FDH is secure sig. scheme if H is a random oracle.
- \rightarrow The bit-length of digests must be of similar length as is the bit-length of the modulus $|Y| \geq N/4$

PKCS1 v1.5 signatures

• Widely deployed (TLS certificates, S/MIME, ...)

- DI digest info encodes the name of the used hash function H (SHA*, MD*, ...)
- The resulting value is then signed by raising it to d in mod N (recall, sk = (N, d))
- Not FDH, but partial domain hash
 - No security proof; also no known substantial attacks
 - ullet Issue with proving: **H**(m) maps to a small subset of \mathbb{Z}_N^*

Probabilistic Signature Scheme (PSS)

- Randomizes the signature with a public random value s called salt
- $S((N,d), m, s) := [H(s||m) || MGF[H(s||m)] \oplus s]^d \mod N$
 - MGF mask generating function that extends the hash size to the full modulus size

$$\bullet V((N,e),m,z,s) := \begin{cases} 1 & H(s||m) \mid |MGF[H(s||m)] \oplus s = z^e \mod N \\ 0 & \text{otherwise} \end{cases}$$

- Provably secure in random oracle model
- Part of PKCS1 v2.1

Digital Signature Standard (DSS)

- NIST (FIPS 186)
 - Also called Digital Signature Algorithm (DSA)
- Relies on the hardness of Dlog
- No known proof of security
 - But also no serious attacks found
- Has an equivalent in elliptic curves (ECDSA)

Deriving many keys from one

- Scenario: we obtain a single source key (SK)
 - From a hardware random number generator
 - From a key exchange protocol
- We need many keys to secure the session
 - Unidirectional keys, MAC/encryption keys
- Goal: generate many keys from a single SK
 - KDF key derivation function

Deriving many keys from one

- Three cases
 - 1)SK is uniform in key space
 - 2)SK is non-uniform in key space
 - 3)SK is a password

Key derivation: (1) SK is uniform

- Let PRF F: K × X → {0, 1}ⁿ
- If source key is <u>uniform</u> in K:

```
KDF(sk, ctx, l) := F(sk, ctx||0) || F(sk, ctx||1) || ... || F(sk, ctx||l)
```

- ctx: a string unique to every application
 - Assures that two applications derive independent keys even if they sample the same source key

Key derivation: (2) SK is non-uniform

- The KDF can be directly used <u>only when SK is</u> <u>uniform</u>
 - → If SK is not uniform, the PRF output may not look random
- Reasons for non-uniformity of SK
 - Hardware RNG may be biased
 - Key-exchange protocol may produce a key that is uniform in some subset of K

Key derivation: (2) SK is non-uniform

Extract-then-Expand paradigm

- Step 1) Use an extractor and SK to extract a pseudo-random key k that is uniform in key space
 - Use salt: a fixed public (non-secret) random string
- Step 2) expand k with KDF
- HKDF a KDF from HMAC
 - Step 1) k ← HMAC(salt, SK)
 - Step 2) Expand as you would with uniform keys, but use HMAC for PRF and k for key
 - https://tools.ietf.org/html/rfc5869

Key derivation: (3) SK is a password

- Particular care needed when deriving keys from passwords
 - HKDF unsuitable here: passwords have low entropy
 - Derived keys will be vulnerable to dictionary attack
- General idea: add salt and slow down hashing
- PBKDF password-based KDF
 - PKCS #5 v2.0 and https://tools.ietf.org/html/rfc2898
 - Iterate hash function many times

Final words

- Cryptography is a powerful tool, but it is too easy to use it incorrectly
 - Systems work, but could be easily attacked
- To reduce the probability of making mistakes
 - Have others review your design and code
 - Never invent your own primitives (ciphers, MACs, modes of operation, ...)
 - Avoid implementing your own cryptographic operations
 - E.g. instead of combining AES-CTR and HMAC, prefer AES-GCM