גליון ראשון:

תרגיל 2:

 $\cos(ax)$ אינטגרציה בחלקים x^n גוזרים את גוזרים אינטגרל ל

תרגיל 3:

ידוע שניתן לכתוב את A_k את עוברים לשברים. בפירוק בפירוק $\frac{1}{\prod_1^n(x+k)}=f(x)=\sum_{k=1}^n\frac{A_k}{x+k}$ כ f(x) את שניתן לכתוב את שניתן לכתוב $x=\pm i\sqrt{k}$ ע"י הצבה של g(x) ע"י הצבה של $x=\pm i\sqrt{k}$ משותף באגף ימין ומציבים x=-k דבר דומה ניתן לעשות עם

:4 תרגיל

:5 תרגיל

- 1. בקטע נובעת מכך את הקטע ניתן להרחיב אל ניתן הסיבה שלא פונקציה קדומה והסיבה שלא ניתן להרחיב את הקטע נובעת מכך שלנגזרת של פונקציה תמיד יש את תכונת ערך הביניים.
- עבור $F(x)=A_nx+B_n$ קבועה ולכן F'(x)=f(x)=[x]=n עבור מקבלים ש מקבלים ער מקבלים מקבועים מקבועים מקבועים מקבועים המונקציה תהיה רציפה נותנת $A_n=[x]$ בחירה של קבועים המונקציה תהיה רציפה נותנת f(x)=[x] בחירה של הבועים מקבועים מ

גליון 2:

תרגיל 1:

כדי להוכיח את השוויון עושים אינטגרציה בחלקים של $\frac{(x-t)^n}{n!} f^{(n+1)}(t) \mathrm{d} t$ ומבצעים הרכיח את השוויון עושים אינטגרציה אינטגרציה על מוכיחים את השוויון ע"י אינדוקציה. העובדה שניתן לכתוב את השארית כשארית לגראנז' נובעת ממשפט הערך הממוצע.

:2 תרגיל

 $g(x) = \arctan(e^x) - \arctan(e^0)$ ש "רואים" בפרט "הטימטריה את הסימטריה את צריך לזהות את הפונקציה אי זוגית ולכן

$$0 = \int_{-\pi}^{\pi} g(x) dx = \int_{-\pi}^{\pi} f(x) dx + \int_{-\pi}^{\pi} \arctan(1) dx$$

תרגיל 3:

- 1. מראים שהנגזרת שווה לאפס.
- ו $\arccos(\cos(x))=x$ אים שהנגזרת שווה לאפס. (לשים לב ש $\sqrt{x^2}=|x|$ ולא תמיד מתקיים ש $\arctan(\sin(\sin(x))=x$. $\arctan(\sin(x))=x$

תרגיל 6:

.t>0 סעיף 3 דומה): מתקיים ש $\sin(t)+t>0$ כאשר $\sin(t)+t>0$ ולכן 5 $\sin(t)+t>0$ מוגדר ורציף ב $\sin(t)+t>0$ סעיף 3 סעיף 3 כשר 3 חלים 5 $\sin(t)+t>0$ מתקיים ש 1 המקיים ל-10 $\sin(t)+t>0$ בנוסף, כאשר $t\sim0$ מקבלים ש 1 $\sin(t)+t>0$ בנוסף, כאשר $t\sim0$ מקבלים ש 1 $\sin(t)+t>0$ בנוסף, כאשר $t\sim0$ מבחן השוואה עם $\frac{x^p}{x^2}$

:7 תרגיל

אפשר להוכיח ע"י תנאי קושי להתכנסות או ע"י כך ששמים לב ש $f-f\leq g-f\leq h-f$ אפשר אפשר להתכנסות או ע"י להתכנסות או ע"י כך ששמים לב שליליות ולכן ניתן להשתמש במבחן ההשוואה כדי להראות ש $\int_0^\infty g$ מתכנס ולכן ניתן להשתמש במבחן ההשוואה כדי להראות ש

גליון 3:

תרגיל 3:

 $(f(x)\leq -2arepsilon)$ עם $f(x)\geq 2arepsilon$ בפרט אז בכל נקודה בה $f(x)\geq 2arepsilon$ מתאימים אז בכל נקודה בפרט $f(x)\geq 2arepsilon$ בפרט ש להתכנסות אומר בפרט ש $f(x)\geq 2\delta_{arepsilon}$ בפרט ש $f(x+h)\geq \varepsilon$ עקבל ש f(x)|<2arepsilon באפר f(x)|<2arepsilon נאשר איים מספיק גדולים מתקיים שf(x)|<2arepsilon נאשר איים מספיק גדולים מתקיים שf(x)|<2arepsilon כאשר איים מספיק גדולים מתקיים ש

תרגיל 4:

נניח ש $f(x) = \left(rac{f^{(l)}(0)}{l!} + arepsilon(x)
ight)x^l$ ע מפיתוח טיילור מקבלים ש $f(x) = 0 \leq m < 1$ לכל לכל לכל לכל לייט ש l>k עם $\frac{f^{(l)}(0)}{l!}x^l$ עם $f\left(\frac{1}{k/n}\right)$ עם השוואה של לעשות מבחן ניתן לעשות לעשות $f^{(l)}(0)\neq 0$ אם arepsilon(x) o 0

- 2. מחשבים את תחילת הטור עד האיבר העשירי ומקרבים את שאר הטור ע"י האינטגרל. מסעיף ראשון ההבדל קטן מהאיבר הראשון של הטור (החדש) שהוא $\frac{1}{11}$. 3. מתרגיל קודם מספיק להראות שהטור הבא מתכנס

$$\sum_{i=0}^{\infty} \frac{1}{2i+1} - \left[\frac{1}{6i+2} + \frac{1}{6i+4} + \frac{1}{6i+6} \right] = \sum_{i=0}^{\infty} \frac{1}{2i+1} - \frac{1}{2} \left[\frac{1}{3i+1} + \frac{1}{3i+2} + \frac{1}{3i+3} \right]$$

נסמן בM בטור מקבלים. אם סוכמים עד האיבר ה $H(N) = \sum_{1}^{N} rac{1}{k}$

$$\sum_{0}^{M} \frac{1}{2i+1} - \frac{1}{2} \sum_{0}^{M} \left[\frac{1}{3i+1} + \frac{1}{3i+2} + \frac{1}{3i+3} \right] = H(2M+2) - \sum_{0}^{M} \frac{1}{2i+2} - \frac{1}{2}H(3M+3)$$
$$= H(2M+2) - \frac{1}{2}H(M+1) - \frac{1}{2}H(3M+3)$$

עתה נותר לחשב את הגבול הנ"ל ע"י הקירוב של $H(M) \sim \ln(M)$ ע"י אינטגרלים (בעצם $H(M) \sim \ln(M)$).