# Segmenting and Predicting Loan Repayment Probability of Lending Club Debtors



## Our Team





**Uswa Mazhar** 



Sakshi Joshi



Jose Repettoparedes



Shakthi Viswanathan

## What is Lending Club?

- LendingClub is an American peer-to-peer lending company, headquartered in San Francisco, California.
- It was the first peer-to-peer lender to register its offerings as securities with the Securities and Exchange Commission (SEC), and to offer loan trading on a secondary market.
- At its height, LendingClub was the world's largest peer-to-peer lending platform





# How Lending Club Works



Borrowers apply for loans. Investors open an account.



Borrowers get funded.

Investors build a portfolio.



Borrowers repay automatically.
Investors earn & reinvest.



## Detailed Working of The Lending Club



## **Project Goal**



The goal of the project is the analysis of the loans in the database to predict Customer's payment behavior. Our Analysis consists of the following two parts:

- A segmentation model is carried out to determine different clusters of debtors and identify distinctive characteristics of each one of them.
- Develop a prediction algorithm that allows to determine the probability of payment of each loan.

## Project Road Map

**Example 2** Lending Club

- Data Cleaning & Feature
   Engineering
- Exploratory Data Analysis
- Modelling and Evaluation
  - Classification
  - Cluster Analysis
- Conclusion



#### The Dataset



The Lending Club dataset used in this project has been taken from Kaggle: <a href="https://www.kaggle.com/wordsforthewise/lending-club">(https://www.kaggle.com/wordsforthewise/lending-club)</a>

The data is separated into 2 different files:

- Accepted loans (This is being used)
- Rejected loans

There are about 151 features of every loan of the dataset.

- Date range: January 2007 December 2018 (11 years)
- Total of 2260701 rows of data



## **Data Cleaning & Feature Engineering**



- In its original state, the data contains 2260701 observations and 151 variables.
   Data had the following drawbacks-
  - High number of observations
  - High dimensionality in the data.
- On observing the data, it was concluded that some variables are better described in the dictionary of information, so a match was done with this table to get better description of the variables.
- This helped to eliminate the variables that were not relevant as only the variables that were in both, the data and the dictionary, were only picked.
- Furthermore, the format of some variables containing dates was fixed and the 'emp\_length' variable was transformed to a numeric variable.



• Some basic boxplots were made to see the distribution of data points in the categories of loan amount, funded amount and annual income which can be seen below.





- Here we can see that most of the loan amounts and funded amounts fall in the range of 8000-20000, with some outliers.
- After removing the outlier frequency plots for loan and funded amounts were created which can be seen below.







- After Outlier Treatment, we are still left with 72 % of data and we have sufficient information to proceed with Univariate Analysis.
- These variables are similarly distributed, which shows that there is an adequate balance between loan and funding.





## Feature Engineering



Some of the data nuances were handled as follows:

- We fixed the format of the variables containing dates.
- We transformed the 'emp\_length' variable for it to be numeric
- The NA values were handled in the following manner:
  - 'emp title' and 'verification status joint' variables were filled with ' '.
  - 'bc\_open\_to\_buy', 'mo\_sin\_old\_il\_acct', 'mths\_since\_last\_delinq',
     'mths\_since\_last\_major\_derog', 'mths\_since\_last\_record', 'mths\_since\_rcnt\_il',
     'mths\_since\_recent\_bc', 'mths\_since\_recent\_bc\_dlq', 'mths\_since\_recent\_inq',
     'mths\_since\_recent\_revol\_delinq', 'pct\_tl\_nvr\_dlq','sec\_app\_mths\_since\_last\_major\_derog'
     were filled with the max value of each column.
  - Rest of the columns were filled with the minimum value of each column.

In the end, the final dataset was left with **938821** observations and **102** variables.

#### The Final Dataset



#### Initial Dataset

• 2260701 observations and 151 variables



#### **Final Dataset**

• 938821 observations and 102 variables



## **Exploratory Data Analysis**

#### **Loan Characteristics**



- People who are taking loans have Home Ownership as Rent or in Mortgage.
- Most of loan applications do not have their income source verified, this is worth looking into as it might lead
  to defaulter loan





#### Loan Status



- We kept only 3 important loan statuses out of 7 present in the dataset, these are most useful
- We will focus on the Current and Charged off loans



#### Loan Status Vs Loan Term



- There are only 2 loan terms 36 months and 60 months
- Smaller term loans are more likely to be charged off compared to longer term loans but majority loans are short term



#### Annual Income Vs Probability Charge Off



- Annual income should play a huge role in determining loan charge off probability
- With the income increases the probability of charge off decreases drastically
- This can be an important feature for the model



#### Purpose of Loan



 Most of the loans are taken for debt consolidation, credit card bills and home improvement and the charge off is also high for these loans



#### Purpose of Loan Vs Loan Amount



- For almost every loan purpose, the median loan amount for charged off loans is higher than the fully paid and current loans.
- Considering monitoring the loan amount would help reduce charge off probability



## Purpose of Loan Vs Probability Charge Off LendingClub



- Probability of charge off is really high for small business and debt consolidation loans.
- These types of loan should be monitored carefully



## Interest Rate Range Vs Probability Charge Off LendingClub



- Interest rate definitely affects the charge off loan.
- Loans with higher risk have high interest rate and in a way leads to charge off



#### Loan Grade Vs Probability Charge Off



- Loan grades are decided by the risk of each loan hence the probability of charge off increases with the grade
- Due to this reason, risky grades have low approval count



#### Highest Correlations with the outcome variable



 We computed the different feature correlations and saw which of them have the highest positive and negative correlations with the outcome variable.







## Modelling

#### Models Used



- Classification Model
  - Naive Bayes Classifier
  - Random Forest
  - Logistic Regression
  - Neural Network

- Clustering Model
  - Kmeans

## Classification - Naive Bayes Classifier

- 2018 info to achieve better running times
- Independence between each variable (Naive Bayes).

Model Accuracy: 0.879

| support | f1-score | recall | precision |             |  |
|---------|----------|--------|-----------|-------------|--|
| 3553    | 0.09     | 0.17   | 0.06      | 0           |  |
| 95496   | 0.94     | 0.91   | 0.97      | 1           |  |
| 99049   | 0.88     |        |           | accuracy    |  |
| 99049   | 0.51     | 0.54   | 0.52      | macro avg   |  |
| 99049   | 0.91     | 0.88   | 0.93      | eighted avg |  |





## Feature Importance - Naive Bayes Classifier

- We computed the feature importance of the Naive Bayes Classifier with the use of eli5 package in Python.

| Weight              | Feature                             |
|---------------------|-------------------------------------|
| $0.0023 \pm 0.0005$ | sec_app_mths_since_last_major_derog |
| $0.0012 \pm 0.0003$ | bc_open_to_buy                      |
| $0.0006 \pm 0.0001$ | annual_inc_joint                    |
| $0.0005 \pm 0.0002$ | dti                                 |
| $0.0005 \pm 0.0004$ | loan_amnt                           |
| $0.0004 \pm 0.0001$ | earliest_cr_line                    |
| $0.0001 \pm 0.0002$ | mths_since_recent_bc_dlq            |
| $0.0001 \pm 0.0001$ | tot_coll_amt                        |
| $0.0000 \pm 0.0001$ | revol_util                          |
| $0.0000 \pm 0.0000$ | total_cu_tl                         |
| $0.0000 \pm 0.0000$ | grade_B                             |
| $0.0000 \pm 0.0002$ | emp_length                          |
| $0.0000 \pm 0.0001$ | delinq_amnt                         |
| $0.0000 \pm 0.0000$ | num_tl_90g_dpd_24m                  |
| $0.0000 \pm 0.0000$ | home_ownership_RENT                 |
| $0 \pm 0.0000$      | tax_liens                           |
| $0 \pm 0.0000$      | collections_12_mths_ex_med          |
| $0 \pm 0.0000$      | grade_G                             |
| $0 \pm 0.0000$      | acc_now_delinq                      |
| $0 \pm 0.0000$      | grade_F                             |
|                     | 36 more                             |

#### Classification - Random Forest

- 2018 info to achieve better running times
- Model Accuracy: 0.964



|          |     | precision | recall | f1-score | support |
|----------|-----|-----------|--------|----------|---------|
|          | 0   | 1.00      | 0.00   | 0.00     | 3553    |
|          | 1   | 0.96      | 1.00   | 0.98     | 95496   |
| accur    | асу |           |        | 0.96     | 99049   |
| macro    | avg | 0.98      | 0.50   | 0.49     | 99049   |
| weighted | avg | 0.97      | 0.96   | 0.95     | 99049   |



## Classification - Logistic Regression

- Biggest running time of the models.
  - Picked only the most important features of the previous model to train the algorithm.
- Model Accuracy: 0.96



|          |      | precision | recall | f1-score | support |
|----------|------|-----------|--------|----------|---------|
|          | 0    | 0.00      | 0.00   | 0.00     | 3553    |
|          | 1    | 0.96      | 1.00   | 0.98     | 95496   |
| accur    | racy |           |        | 0.96     | 99049   |
| macro    | avg  | 0.48      | 0.50   | 0.49     | 99049   |
| weighted | avg  | 0.93      | 0.96   | 0.95     | 99049   |



#### Classification - Neural Network Model

- 3 models with different dataset
- Model parameters:
  - Activation function ReLu
  - Optimizer Adam
  - Loss function mean\_squared\_logarithmic\_error

| Layer (type)        | Output | Shape | Param # |
|---------------------|--------|-------|---------|
| dense_8 (Dense)     | (None, | 64)   | 5376    |
| dropout_6 (Dropout) | (None, | 64)   | 0       |
| dense_9 (Dense)     | (None, | 32)   | 2080    |
| dropout_7 (Dropout) | (None, | 32)   | 0       |
| dense_10 (Dense)    | (None, | 16)   | 528     |
| dropout_8 (Dropout) | (None, | 16)   | 0       |
| dense_11 (Dense)    | (None, | 1)    | 17      |
| Total narams: 8 001 |        |       |         |

Total params: 8,001 Trainable params: 8,001 Non-trainable params: 0

#### Classification - Neural Network Model Validation



## Classification - Neural Network Validation (Model 2)

```
Train Result:
Accuracy Score: 80.54%
Classification Report: Precision Score: 80.54%
                     Recall Score: 100.00%
                     F1 score: 89.22%
Confusion Matrix:
     30 1728151
      4 715287]]
Train Result:
______
Accuracy Score: 80.54%
                     Precision Score: 80.54%
Classification Report:
                     Recall Score: 100.00%
                     F1 score: 89.22%
Confusion Matrix:
       9 432051
      5 178816]]
```

```
Classification Report:
                       recall f1-score
            precision
                                         support
                 0.64
                          0.00
                                   0.00
                                           43214
                 0.81
                         1.00
                                  0.89
                                          178821
                                   0.81
                                          222035
   accuracy
                0.72 0.50
                                  0.45
                                          222035
  macro avg
weighted avg
                 0.77
                         0.81
                                   0.72
                                          222035
Confusion Matirx:
      9 43205]
      5 178816]]
```

## Clustering - KMeans Model

- Finding applicant segmentation to help understand different customer behaviors.
- Used PCA & KMeans algorithm to find clusters in the data



## Clustering - KMeans Validation

- Unfortunately, there are no evident clusters in the data
- The loss graph does not flatten till k = 20
- Here is the cluster distribution for k = 10

79387945.44565827





## Conclusion

#### Conclusion

- Some of the EDA is very helpful understanding the data.
- Precision is the best model performance metrics as we need to minimize False Positives.
- Machine learning models have much lower accuracy (& precision) compared to Deep Learning model.
- A neural network can be a good model to find the probability of charge off.
- Further analysis using CNN or RNN can help improve model accuracy.
- Future analysis to improve precision can include extensive feature extraction.
- Finding customer segmentation based on customer background can help label new applicants faster and decide loan grades.

## Thank you!!

