TD1: Complexite des algorithmes

Exercice 1

Pour chacune des séquences itératives suivantes estimer le nombre d'opérations OP exécutées.

1. for
$$i = 1$$
 to n do
for $j = 1$ to i do

OP
end for

$$\begin{aligned} \textbf{2.} \quad & \text{i=1} \\ \text{While } i \leq n \text{ do} \\ & \text{for j = 1 to i do} \\ & \textbf{OP} \\ & \text{end for} \\ & i = i+2 \\ & \text{end while} \end{aligned}$$

3. for i = 1 to n do begin
$$j = 1$$
 while $j \le n$ do OP $j = 2 * j$ end while end

$$\begin{aligned} \textbf{4.} & \text{ } i = 1 \\ & \text{ while } i \leq n \text{ do} \\ & \text{ for } j = 1 \text{ to i do} \\ & \textbf{OP} \\ & i = 2 * i \\ & \text{ end for} \\ & \text{ end while} \end{aligned}$$

Exercice 2

- 1. Montrer que si $f \in O(g)$ et $g \in O(h)$ alors $f \in O(h)$.
- 2. Donner un ordre de grandeur pour chaque fonction en utilisant la notation O() et/ou $\Theta()$ en précisant les constantes c_1,c_2 et n_0 .

(a)
$$17n + 4$$

(b)
$$n^2 + 4n + 12$$

(c)
$$n^3 + 12n + 40$$

(d)
$$nlog n + 12n + 6$$

3. considère les fonctions suivantes :

(a)
$$f_1(n) = 17n$$

(c)
$$f_3(n) = 2log(n) + 1$$

(e)
$$f_5(n) = 2^n + n$$

(b)
$$f_2(n) = 5n^3 + 8n + 2$$

(d)
$$f_4(n) = 3n + 1$$

Remplir un tableau 5×5 en mettant dans la case à l'intersection de la ligne i et de la colonne j le symbole qui convient selon la règle :

•
$$\Theta$$
 si $f_i \in \Theta(f_i)$,

•
$$O$$
 si $f_i \in O(f_i)$,

4. Montrez que $500n^7$ est moins complexe que $n^8/106$.

Exercice 3

- 1. Mon problème de combinatoire me ramène à 3 méthodes: la méthode **A** en n!, la méthode **B** en n^n , et la méthode **C** en 2^{n^2} . Quelle méthode choisir ? (Utiliser la formule de Stirling $n! \sim \left(\frac{n}{\epsilon}\right)^n \sqrt{2\pi n}$).
- 2. Le rectorat demande de trier d'urgence les dossiers des candidats bacheliers en utilisant le tri $\bf A$ de complexité $n\log n$ ou le tri $\bf B$ de complexité $n^{1.235}$. Lequel choisir ?
- 3. Pour étudier la fiabilité du vaccin anti-Covid les informaticiens d'un laboratoire ont développé deux algorithmes $\bf A$ et $\bf B$ ayant une complexité de O(logn) et $O(n^{0.1})$ respectivement. Lequel est le plus efficace (justifier votre réponse) ? .