ECEN325 Ref Sheet © Josh Wright February 6, 2017

Metric Prefixes			
peta	Ρ	10^{15}	1 000 000 000 000 000
tera	Τ	10^{12}	1 000 000 000 000
giga	G	10^{9}	1 000 000 000
mega	Μ	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
deca	da	10^{1}	10
one		10^{0}	1
deci	d	10^{-1}	0.1
centi	\mathbf{c}	10^{-2}	0.01
milli	m	10^{-3}	0.001
micro	μ	10^{-6}	0.000 001
nano	n	10^{-9}	0.000 000 001
pico	p	10^{-12}	0.000 000 000 001
femto	f	10^{-15}	0.000 000 000 000 001

- Transmission Function: $T(s) = \frac{V_o(s)}{V_i(s)}$
- Corner frequency: frequency s at which $T(s) = \frac{1}{\sqrt{2}}$
- for simple circuit: ground \rightarrow source $\rightarrow R \rightarrow C \rightarrow$ ground

$$*T(s) = rac{1}{1+RCs}$$
 $|T(j\omega)| = rac{1}{\sqrt{1+R^2C^2s^2}}$
 $|\angle T(j\omega)| = rac{1}{\sqrt{1+R^2C^2s^2}}$
Bode Plots

Bode Plots

- magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$
- starts on y-axis at DC offset with slope 0
- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin:

constant slope $\pm 20db/dec$ for all ω ; 0dB at

$$\omega = 10^0 = 1$$

- *Pole/Zero at ω_0 :

- 0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after *Constant C: constant line at $20 \log_{10}(|C|)$
- phase:
 - *Pole at origin: constant $-\frac{\pi}{2}$ or -90°
 - *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
 - *Pole/Zero at ω_0 :
 - $0 \text{ for } \omega < \frac{\omega_0}{10}$

slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$

- 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)

Solving systems with Op Amps

- step 0: if the op amp is ideal, write out ideal properties:
- $*V_{+} = V_{-}$
- $*I_{-}=0,I_{+}=0$
- avoid doing KCL/KVL on the output node of the op
- ignore resistors from a point at 0V to ground