EL MODELO LINEAL

Clase 4

Propiedades estadísticas

Sergio Camiz

LIMA - Marzo-Mayo 2025

20/04/2025

"Clase_4 - Propiedades estadisticas"

IV - 1/36

Clase 4

Propiedades estadísticas de los estimadores

Propiedades estadísticas de los estimadores

Para poder estudiar propriedades estadísticas de los estimadores, se necesitan unas hipótesis, que llevan a los resultados.

- Se consideran p vectores, incluyendo el vector $\boldsymbol{x}_1 = (1, \dots, 1)'$, de valores observados sobre n unidades fijadas (no al azar), formando la matriz de variables descriptivas \boldsymbol{X} .
- por cada unidad i, se observan valores y_i , i = 1, ..., n de la variable respuesta, que resulta una variable aleatória.
- \blacksquare siempre se supone un error, así que resulta por cada i

$$y_i = \sum_j \beta_j x_{ij} + \varepsilon_i = \eta_i + \varepsilon_i \tag{1}$$

con ε_i el desvío del valor observado al modelo, o sea, $\varepsilon_i = y_i - \eta_i$ que es también una variable aleatoria.

Asuntos de la Clase 4

- Propiedades estadísticas de los estimadores
- Análisis de la varianza.
- Inferencia
- El programa lm

20/04/2025

 $"Clase_4$ - $Propiedades\ estadisticas"$

IV - 2/36

Clase 4

Propiedades estadísticas de los estimadores

Se necesitan otras hipótesis:

- Las observiaciones y_i son variables aleatorias independientes.
- Por cada observación, o sea por cada vector \boldsymbol{x}_i (filas de \boldsymbol{X}), y_i tiene la misma distribución, con
- $E(y_i|\mathbf{x}_i) = \eta_i$, o sea el modelo es correcto;
- $V(y_i|\mathbf{x}_i) = \sigma^2$ costante, por cada i = 1, ..., n.
- un error experimental siempre existe, dependiendo de la influencia sobre y de otros q factores $x_{j'}$ no incluídos, así el modelo (1) es un abreviado de

$$y_i = \sum_{j} \beta_j x_{ij} + \sum_{i'} \beta_{j'} x_{ij'}.$$

Si q es grande el teorema del límite central asegura la normalidad de ε_i .

Clase 4

Estas condiciones se pueden sintetizar ecuivalentemente

$$\begin{cases} y_i = \eta_i + \varepsilon_i \\ E(y_i | \boldsymbol{x}_i) = \eta_i \text{ (correcto)} \\ V(y_i | \boldsymbol{x}_i) = \sigma^2 \text{ (homoscedasticidad)} \\ y_i \text{ y } y_k \text{ independientes } \forall i \neq k \\ y_i \sim N(\eta_i, \sigma^2) \text{ (normalidad)} \end{cases} \begin{cases} y_i = \eta_i + \varepsilon_i \\ E(\varepsilon_i | \boldsymbol{x}_i) = 0 \\ V(\varepsilon_i | \boldsymbol{x}_i) = \sigma^2 \\ \varepsilon_i \text{ y } \varepsilon_k \text{ independientes } \forall i \neq k \\ \varepsilon_i \sim N(0, \sigma^2) \end{cases}$$

por cada $i \in (1, n)$, y en forma matricial

$$\begin{cases} \boldsymbol{y} = \boldsymbol{\eta} + \boldsymbol{\varepsilon} \\ E(\boldsymbol{y}|\boldsymbol{X}) = \boldsymbol{\eta} \\ V(\boldsymbol{y}|\boldsymbol{X}) = \sigma^2 \boldsymbol{I} \\ y_i \ y \ y_k \ \text{independientes} \ \forall i \neq k \\ \boldsymbol{y} \sim N(\boldsymbol{\eta}, \sigma^2 \boldsymbol{I}) \end{cases} \begin{cases} \boldsymbol{y} = \boldsymbol{\eta} + \boldsymbol{\varepsilon} \\ E(\boldsymbol{\varepsilon}) = \boldsymbol{0} \\ V(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{I} \\ \varepsilon_i \ y \ \varepsilon_k \ \text{independientes} \ \forall i \neq k \\ \boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}) \end{cases}$$

20/04/2025

"Clase_4 - Propiedades estadisticas"

IV - 5/36

Clase 4

Propiedades estadísticas de los estimadores

Esperanza

Sabiendo que $E(\boldsymbol{y}) = \boldsymbol{\eta} = \boldsymbol{X}\boldsymbol{\beta}$, y que la matriz \boldsymbol{X} es fijada, se resulta que

$$E(\hat{\boldsymbol{\beta}}) = E((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}) = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'E(\boldsymbol{y}) =$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\eta} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{\beta}$$

$$E(\hat{\boldsymbol{\eta}}) = E(\boldsymbol{X}\hat{\boldsymbol{\beta}}) = \boldsymbol{X}E(\hat{\boldsymbol{\beta}}) = \boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{\eta}$$

$$E(\boldsymbol{e}) = E(\hat{\boldsymbol{\varepsilon}}) = E(\boldsymbol{y} - \hat{\boldsymbol{\eta}}) = E(\boldsymbol{y}) - E(\hat{\boldsymbol{\eta}}) = \boldsymbol{\eta} - \boldsymbol{\eta} = \boldsymbol{0}$$

En seguida se utilizarán las relaciones siguientes. Para su prueba, verse por ejemplo Mood et al. (1974):

$$\begin{split} E(ax+b) &= aE(x) + b & V(ax+b) = a^2V(x) \\ E(x\pm y) &= E(x) \pm E(y) \ \ V(x\pm y) = V(x) + V(y) \pm 2cov(x,y) \\ E(xy) &= E(x)E(y) + cov(x,y) \ \ \ V(xy) = V(x)V(y) + E(x)E(y) \\ E(x^2) &= (E(x))^2 + V(x) & V(x^2) = (V(x))^2 + (E(x))^2 \end{split}$$

20/04/2025

 $"Clase_{\it 4} - Propiedades \ estadisticas"$

IV - 6/36

Clase 4

Propiedades estadísticas de los estimadores

Varianza

Considerando también que $V(\boldsymbol{y}) = \sigma^2 \boldsymbol{I}$, resulta

$$V(\hat{\boldsymbol{\beta}}) = V((\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}) = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'V(\boldsymbol{y})\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1} =$$

$$= \sigma^{2}(\boldsymbol{X}'\boldsymbol{X})^{-1}$$

$$V(\hat{\boldsymbol{\eta}}) = V(\boldsymbol{X}\hat{\boldsymbol{\beta}}) = \boldsymbol{X}V(\hat{\boldsymbol{\beta}})\boldsymbol{X}' = \sigma^{2}\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' = \sigma^{2}\boldsymbol{\mathscr{P}}$$

$$V(\boldsymbol{e}) = V(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) = V(\boldsymbol{y} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}) =$$

$$= \sigma^{2}(\boldsymbol{I}_{n} - \boldsymbol{\mathscr{P}}) = \sigma^{2}\boldsymbol{\mathscr{E}}$$

Hay que observar que los estimadores de los parámetros tienen una covarianza entre ellos, dependiendo de las relaciones lineales entre regresores.

Propiedades estadísticas de los estimadores

El teorema de Gauss-Markov

Dados

- 1. n conjuntos de observaciones, dispuestas en forma de matriz $(\boldsymbol{X}, \boldsymbol{y})$, con
- 2. \boldsymbol{X} matriz de valores previamente elegidos, y
- 3. \boldsymbol{y} valores al azar correspondientes y independientes para los cuales $E(\boldsymbol{y}|\boldsymbol{X}) = \boldsymbol{X}\boldsymbol{\beta}, V(\boldsymbol{y}|\boldsymbol{X}) = \sigma^2 I;$
- 4. Sea $\hat{\beta}$ la estimación de mínimos cuadrados de β .
- 5. $\boldsymbol{\tau} = \boldsymbol{a'\beta}$, con $\boldsymbol{a'} = (a_1, \dots, a_n)$ un vector de constantes.

Bajo 1.,...,5., entre todos los estimadores *insesgados* y *lineal* en \boldsymbol{y} de $\boldsymbol{\tau}$, el de mínimos cuadrados $\boldsymbol{\hat{\tau}} = \boldsymbol{a'}\boldsymbol{\hat{\beta}}$ es de varianza mínima.

Por lo tanto, cada $\hat{\beta}_j$ y $\hat{\boldsymbol{\eta}}_i$ entre todos los estimadores insesgados y lineales en \boldsymbol{y} , son los de varianza mínima.

20/04/2025 "Clase 4 - Propiedades estadisticas" IV - 9/36

Clase 4 Propiedades estadísticas de los estimadores

La covarianza entre \boldsymbol{t} y $\boldsymbol{\hat{\tau}}$ vale

$$cov(\hat{\boldsymbol{\tau}}, \boldsymbol{t}) = cov(\boldsymbol{c}'\boldsymbol{y}, \boldsymbol{d}'\boldsymbol{y}) = E(\boldsymbol{d}'(\boldsymbol{y} - \boldsymbol{\eta})(\boldsymbol{y} - \boldsymbol{\eta})'\boldsymbol{c}) = \sigma^2 \boldsymbol{d}' \boldsymbol{c} =$$
$$= \sigma^2 \boldsymbol{d}' \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{a} = \sigma^2 \boldsymbol{a}' (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{a} = V(\hat{\boldsymbol{\tau}})$$

Se encuentra entonces que

$$0 \leq V(\boldsymbol{t} - \hat{\boldsymbol{\tau}}) = V(\boldsymbol{t}) + V(\hat{\boldsymbol{\tau}}) - 2\operatorname{cov}(\boldsymbol{t}, \hat{\boldsymbol{\tau}}) = V(\boldsymbol{t}) - V(\hat{\boldsymbol{\tau}})$$

y por tanto $V(t) \geq V(\hat{\tau})$.

Prueba.

Clase 4

Es evidente que $E(\hat{\tau}) = \tau$ y que $\hat{\tau}$ es lineal en y pues

$$\hat{\boldsymbol{\tau}} = \boldsymbol{a}'\hat{\boldsymbol{\beta}} = \boldsymbol{a}'(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} = \boldsymbol{c}'\boldsymbol{y},$$

entonces su varianza es

$$V(\hat{\boldsymbol{\tau}}) = V(\boldsymbol{a}'\hat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{a}'(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{a}.$$

Supongamos exista otra estimación de τ , insesgada y lineal en \boldsymbol{y} , digamos $\boldsymbol{t} = \boldsymbol{d}'\boldsymbol{y}$, con $\boldsymbol{d} \neq \boldsymbol{c}$. Por la condición de insesgamiento, $E(\boldsymbol{t}|\boldsymbol{X}) = \boldsymbol{\tau}$ y por lo tanto

$$E(t) = d'E(y|X) = d'X\beta = \tau = a'\beta$$

por cada β . Por tanto d'X = a'.

20/04/2025 "Clase_4 - Propiedades estadisticas" IV -

IV - 10/36

Clase 4

Propiedades estadísticas de los estimadores

Análisis de varianza del modelo

Una vez estimados los $\hat{\boldsymbol{\beta}}$ resulta que el cuadrado de la distancia entre \boldsymbol{y} y \boldsymbol{X} es

$$e'e = (y - \hat{\eta})'(y - \hat{\eta}) = (y - X\hat{\beta})'(y - X\hat{\beta}) =$$

$$= y'y - y'X\hat{\beta} - \hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta} =$$

$$= y'y - \hat{\beta}'X'X\hat{\beta} = y'y - \hat{\eta}'\hat{\eta}$$

pues, según las ecuaciones normales,

$$y'X\hat{\beta} = (\hat{\beta}'X'y)' = \hat{\beta}'X'X\hat{\beta},$$

de donde $y'y = \hat{\eta}'\hat{\eta} + e'e = y'\mathscr{P}y + y'\mathscr{E}y$.

Esto resulta también del teorema de Pitagoras.

Se puede escribir también

$$SS_t = SS_r + SS_e$$
,

ya que se ha compartido la suma de cuadrados de las observaciones:

- lacktriangle una parte SS_r debido a la regresión de $m{y}$ sobre X
- la otra, SS_e , debido al error.

Por tanto:

- $\hat{\boldsymbol{\eta}}$ contiene la información sobre el modelo $\boldsymbol{\eta} = X\boldsymbol{\beta}$,
- ullet e solo contiene la información sobre el error,
- e'e solo debe informar sobre σ^2 .

20/04/2025

 $"Clase_{\it 4} - Propiedades \ estadisticas"$

IV - 13/36

Clase 4

Propiedades estadísticas de los estimadores

Se suele enrequecer la tabla de análisis de varianza con las esperanzas como sigue:

Fuente	Grados de libertad (DF)	Sumas de cuadrados (SS)		Esperanza de los cuadrados promedios $E(MS)$
Regresión	p	SS_r	$MS_r = SS_r/p$	$\sigma^2 + oldsymbol{eta'} oldsymbol{X'} oldsymbol{X} oldsymbol{eta}/p = \sigma^2 + oldsymbol{\eta'} oldsymbol{\eta}/p$
Error	n-p	SS_e	$MS_e = SS_e/(n-p)$	σ^2
Total	n	SS_t		

Los grados de libertad corresponden a las dimensiones de los espacios:

- lacktriangle el espacio de los estimadores X tiene p dimensiones,
- lacktriangle el espacio de los residuos tiene dimensión n-p.

Nótese que las esperanzas de los cuadrados promedios son diferentes solo si $\parallel \boldsymbol{\eta} \parallel \neq 0$.

Calculemos ahora las esperanzas SS_r y SS_e :

$$E(SS_r) = E(\mathbf{y'}\mathcal{P}\mathbf{y}) = \mathbf{\beta'}\mathbf{X'}\mathcal{P}\mathbf{X}\mathbf{\beta} + tr(\mathcal{P}\sigma^2I) = \mathbf{\beta'}\mathbf{X'}\mathbf{X}\mathbf{\beta} + p\sigma^2$$

$$E(SS_e) = E(\mathbf{y'}\mathcal{E}\mathbf{y}) = \mathbf{\beta'}\mathbf{X'}\mathcal{E}\mathbf{X}\mathbf{\beta} + tr(\mathcal{E}\sigma^2I) = (n-p)\sigma^2$$

resultando el producto $\mathscr{E} \boldsymbol{X} = 0$. Por lo tanto los cuadrados promedios se resultan

$$MS_r = SS_r/p$$
 $E(MS_r) = \boldsymbol{\beta'X'X\beta/p} + \sigma^2$
 $MS_e = SS_e/(n-p)$ $E(MS_e) = \sigma^2$

así que MS_e es un estimador insesgado de σ^2 .

20/04/2025

Clase 4

 $"Clase_{4} - Propiedades \ estadisticas"$

IV - 14/36

Clase 4

Inferencia

Inferencia

Para hacer inferencia a una poblacíon, y también evaluar si el modelo resulta fiable y es necesario imponer hipótesis sobre la distribución de y condicionada a los X.

Si se asume la distribución de los $y_i|x_i$ multinormal, o sea normal por cada valor de los x_{ij} , en seguida se consiguen le distribuciones de los resultados.

Sino hay que conocer resultados parecidos por la distribución que resulta o se hace recurso a métodos de remuestreo (Manly, 2007), construyendo distribuciones empíricas.

Se presentan aquí los resultados más importantes relativos a las muestras de una distribución normal multivariada, que servirán a los test estadísticos. Para una lectura más detallada, demostraciones y referencias se puede ver Guttman (1982: pp. 62–95).

Distribuciones estadísticas

Definición. Se dice que el vector aleatorio $\mathbf{y} \in \mathbb{R}^n$, tiene una distribución multi-normal si su función de densidad $d(\mathbf{y})$ es

$$d(\boldsymbol{y}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\boldsymbol{y} - \boldsymbol{\mu})}$$

donde la matriz de varianza/covarianza Σ es simétrica definida positiva, con $|\Sigma| = \Pi_i \lambda_i$ producto de su autovalores, y el vector de promedios μ tiene componentes finitas. Entonces se escribe $\mathbf{y} \sim N(\mu, \Sigma)$, con $E(\mathbf{y}) = \mu$ y $V(\mathbf{y}) = \Sigma$.

Teorema. Si $\boldsymbol{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ y $\boldsymbol{\Sigma}$ es diagonal, las componentes y_i de \boldsymbol{y} son estadísticamente independientes.

Donde la necesidad de normalidad y independencia de los y_i .

20/04/2025 "Clase_4 - Propiedades estadisticas" IV - 17/36

Clase 4 Inferencia

Como consequencia de la multinormalidad, se determinan las distribuciones de formas cuadraticas, o sea las sumas de cuadrados, que resultan en general:

Teorema. Sea un vector aleatorio $\boldsymbol{y} \sim N(\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$, con $\boldsymbol{\Sigma} = \boldsymbol{P'P}$ y Q la forma cuadrática centrada

$$Q = (\boldsymbol{y} - \boldsymbol{\mu})' \boldsymbol{G} (\boldsymbol{y} - \boldsymbol{\mu})$$

con G simétrica y real. Entonces la ley de distribución de Q es una combinación lineal de n variables aleatorias independientes de ley chi-cuadrado con 1 grado de libertad

$$Q \sim \sum_{i} \lambda_{i} \chi_{1,i}^{2}$$

donde los λ_i son los autovalores de P'GP (y de ΣG y $G\Sigma$).

Si asumimos normal independiente la distribución de los resíduos $\varepsilon \sim N(\mathbf{0}, \Sigma)$ se resulta la distribución

$$\boldsymbol{y} \sim N(\boldsymbol{X}\boldsymbol{\beta}, \boldsymbol{\Sigma}),$$

donde la función de verosimilitud

$$L(\boldsymbol{\beta}, \sigma^2) = \frac{1}{\sqrt{(2\pi)^n \sigma^2}} e^{-\frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})}.$$

Entonces el estimador de máxima verosimilitud de $\boldsymbol{\beta}$ tiene que maximizar la log-verosimilitud

$$l(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

y resulta ser $\hat{\beta}$, que por lo tanto es de mínima varianza.

20/04/2025 "Clase_4 - Propiedades estadisticas" IV - 18/36

Clase 4 Inferencia

Por consecuencia, si $\lambda_i = 1$ o 0 se deduce:

Teorema. Una condición necesaria y suficiente por que Q tenga una ley de distribución de chi-cuadrado con p < n grados de libertad es que $\mathbf{P}'\mathbf{G}\mathbf{P}$ sea idempotente y de rango p. Si $\mathbf{\Sigma} = \sigma^2 \mathbf{I}$ la condición deviene en que \mathbf{G} sea idempotente de rango p.

Teorema (Craig). Sea un vector aleatorio $\boldsymbol{y} = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ y las dos formas cuadráticas

$$Q_i = (\boldsymbol{y} - \boldsymbol{\mu})' \boldsymbol{G}_i (\boldsymbol{y} - \boldsymbol{\mu}), i = 1, 2$$

con G_i reales y simétricas. Entonces Q_1 y Q_2 son estadísticamente independientes si y solo si $G_1\Sigma G_2=0$.

Esto es relevante para los proyectores ortogonales entre si.

Teorema. (Cochran). Sea $y \sim N(0,1)$ una variable aleatoria y sean n observaciones de y independientes, formando un vector aleatorio $y \sim N(\mathbf{0}, \mathbf{I})$. Sea por otro lado

$$Q = y'y = Q_1 + Q_2 + ... + Q_k$$

donde $Q_i = \mathbf{y}' \mathbf{A}_i \mathbf{y}$ es una forma cuadrática de rango $rg(\mathbf{A}_i) = n_i$, y \mathbf{A}_i es una matriz simétrica $n \times n, i = 1, ..., k$. Entonces las siguiente condiciones son equivalentes:

- $Q_1, Q_2, ..., Q_k$ son estadísticamente independientes;
- $Q_1, Q_2, ..., Q_k$ tienen individualmente distribuciones de chicuadrado, con $n_1, ..., n_k$ grados de libertad;
- $n_1 + n_2 + \ldots + n_k = n.$

Esto nos sirve para la partición de SS_{y} .

20/04/2025 "Clase 4 - Propiedades estadisticas"

IV - 21/36

Clase 4 Inferencia

Test del modelo

Se supone que el vector \boldsymbol{y} tiene

- \blacksquare en cada punto de observación una distribución normal centrada sobre su esperanza η
- y de varianza constante, $\boldsymbol{y} \sim N(\boldsymbol{\eta}, \sigma^2 \boldsymbol{I})$.
- Bajo la hipótesis nula $H_0: \boldsymbol{\beta} = \mathbf{0}$ se tiene
- $\mathbf{E}(\mathbf{y}) = \mathbf{0}$
- y por tanto $\boldsymbol{y} = N(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$.
- Por el teorema de Craig, SS_r y SS_e son formas cuadráticas de una distribución normal estandarizada estadísticamente independientes, de matrizes \mathscr{P} y \mathscr{E} tales que $\sigma^2 \mathscr{P} \mathscr{E} = 0$.

En consecuencia (teorema de Cochran, con k=2) se resulta

$$SS_r = \sigma^2 \chi_p^2$$
 y $SS_e = \sigma^2 \chi_{n-p}^2$.

Teorema. Sea el vector aleatorio $\boldsymbol{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ y considere su distribución condicional

$$\mathbf{A}(\mathbf{y} - \boldsymbol{\mu}) = 0$$

donde \boldsymbol{A} es una matriz $p \times n, p < n, \operatorname{rk}(\boldsymbol{A}) = p$. Entonces la distribución condicional de \boldsymbol{y} es tal que

$$Q = (\boldsymbol{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}) = \chi^{2}_{n-p}$$

En fin, esto no sirve para SS_e .

20/04/2025

"Clase_4 - Propiedades estadisticas"

IV - 22/36

Clase 4

Inferencia

Se puede estimar σ^2 también con el máximo de verosimilitud. Derivando $l(\boldsymbol{\beta}, \sigma^2)$ por respecto a σ^2 y igualando a cero

$$\frac{\partial l(\boldsymbol{\beta}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) = 0,$$

se consigue, sostituyendo $\hat{\beta}$ a β .

$$-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \boldsymbol{e}' \boldsymbol{e} = 0,$$

donde

$$\frac{n}{2\sigma^2} = \frac{1}{2\sigma^4} e'e$$
 y $\sigma_{ml}^2 = \frac{e'e}{n}$,

de varianza minima, pero sesgado, ya que $E(MS_e) = E(SS_e/(n-p)) = \sigma^2$. Se corrige con $\sigma^2 = n/(n-p)\sigma_{ml}^2$.

Como resulta

$$SS_r = \sigma^2 \chi_p^2$$
 y $SS_e = \sigma^2 \chi_{n-p}^2$

con las leyes χ^2 independientes, donde

bajo
$$H_0: \beta = 0, F = \frac{MS_r}{MS_e} = F_{p,n-p}$$

una F de Fisher con p y n-p grados de libertad. Por tanto, fijado un nivel de probabilidad π el test resulta ser

no aceptar
$$H_0: \boldsymbol{\beta} = \mathbf{0}$$
, si $\frac{MS_r}{MS_e} > F_{p,n-p;\pi}$ aceptar en otro caso.

20/04/2025 "Clase_4 - Propiedades estadisticas" IV - 25/36

Clase 4 Inferencia

Estas estadísticas permiten de enrequecer la tabla de análisis de la varianza con nuevas columnas.

Fuente	Grados de libertad (DF)	Sumas de cuadrados (SS)	$Cuadrados \ promedios \ (MS)$	$\begin{array}{c} \textit{Esperanza de los} \\ \textit{cuadrados promedios} \\ \textit{E(MS)} \end{array}$	F	Prob
Regresión	p	SS_r	$MS_r = SS_r/p$	$\sigma^2 + \boldsymbol{\eta'\eta}/p$	$\frac{MS_r}{MS_e}$	π
Error	n-p	SS_e	$MS_e = SS_e/(n-p)$	σ^2		
Total	n	SS_t				

De esta manera, toda la información para evaluar el modelo se encuentra en esta tabla. El valor π es la probabilidad asociata al valor de la F calculada, con p y n-p grados de libertad.

Como la hipótesis nula es $\beta = 0$, si entonces π es más grande del nivel de aceptación que hemos establecido (por ejemplo 5% = 0.05) podemos aceptar que no hay regresión, sino se puede rechazar, en el sentito que hay a lo menos un coeficiente β diferente de cero, y portanto el modelo tiene un sentido.

Por otro lado, es fácil de ver que en la descomposición

$$(\boldsymbol{y} - X\boldsymbol{\beta})'(\boldsymbol{y} - X\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\hat{\beta}})'(\boldsymbol{y} - X\boldsymbol{\hat{\beta}}) + (\boldsymbol{\hat{\beta}} - \boldsymbol{\beta})'X'X(\boldsymbol{\hat{\beta}} - \boldsymbol{\beta})$$

el primero término a la derecha vale $e^\prime e$ y se puede escribir

$$\frac{1}{\sigma^2}(\boldsymbol{y} - X\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - X\hat{\boldsymbol{\beta}}) = \frac{1}{\sigma^2}(\boldsymbol{y} - X\boldsymbol{\beta})'\mathscr{E}(\boldsymbol{y} - X\boldsymbol{\beta}),$$
$$\frac{1}{\sigma^2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'X'X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \frac{1}{\sigma^2}(\boldsymbol{y} - X\boldsymbol{\beta})'\mathscr{P}(\boldsymbol{y} - X\boldsymbol{\beta}),$$

dos formas cuadráticas independientes. Entonces resulta

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \boldsymbol{X}' \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})/p}{\boldsymbol{e'} \boldsymbol{e}/(n-p)} = \frac{\sigma^2 \chi^2_{p}/p}{\sigma^2 \chi^2_{n-p}/(n-p)} = F_{p,n-p}$$

donde se construye la región de confianza de β al nivel de $1-\pi$.

$$C_{1-\pi} = \left\{ \boldsymbol{\beta} \left| (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})' \boldsymbol{X}' \boldsymbol{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \le pM S_e F_{p,n-p;\pi} \right| \right\}$$

20/04/2025 "Clase 4 - Propiedades estadisticas" IV - 26/36

Clase 4 Inferencia

Test de los $\hat{\beta}_i$

Si el test ANOVA es positivo, o sea el modelo tiene sentido, entonces se pueden testar los $\hat{\beta}_i$. Como $\hat{\boldsymbol{\beta}}$ es distribuido multinormalmente con promedio $\boldsymbol{\beta}$ y varianza $\sigma^2(\boldsymbol{X'X})^{-1}$, cada $\hat{\beta}_i$ tiene una distribución normal $\hat{\beta}_i = N(\beta_i, \sigma^2 c_{ii})$ con c_{ii} elemento diagonal de $(\boldsymbol{X'X})^{-1}$. Como su desvío estándard es $SD(\hat{\beta}_i) = \sqrt{MS_e c_{ii}}$, el test resulta

$$\begin{cases}
\text{no aceptar } H_0: \hat{\beta}_i = \beta_i, \text{ si } \left| \frac{\hat{\beta}_i - \beta_i}{SD(\hat{\beta})} \right| > t_{n-k;\pi/2} \\
\text{aceptar en otro caso.} \end{cases}$$

con intervalo de confianza (con cuidado)

$$C_{1-\pi} = \left\{ \beta_i | \hat{\beta}_i - SD(\hat{\beta}_i) \, t_{n-k;\pi/2} \le \beta_i \le \hat{\beta}_i + SD(\hat{\beta}_i) \, t_{n-k;\pi/2} \right\}$$

Test de la varianza SS_e

La varianza del modelo σ^2 es estimada para SS_e . Por lo tanto, siendo un chi-cuadrado, su intervalo de confianza es dado por

$$C_{1-\pi} = \left\{ \sigma^2 \middle| \frac{SS_e}{\chi^2_{n-k;\pi/2}} \le \sigma^2 \le \frac{SS_e}{\chi^2_{n-k;1-\pi/2}} \right\}$$

20/04/2025

"Clase_4 - Propiedades estadisticas"

IV - 29/36

Clase 4

Inferencia

Test del predictor

De manera análoga se calcula el desvío estándar del predictor \tilde{y}_0 , correspondiente a un nuevo vector \boldsymbol{x}_0 que se encuentre dentro de la región ocupada para los \boldsymbol{x}_{ik} . Esto vale

$$SD(\tilde{y}_0) = \sqrt{MS_e (1 + \boldsymbol{x}'_0(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{x}_0)}$$

y por lo tanto su intervalo de confianza resulta ser

$$\left\{y|\tilde{y}_0-SD(\tilde{y}_0)\,t_{n-p;\pi/2}\leq y\leq \tilde{y}_0+SD(\tilde{y}_0)\,t_{n-p;\pi/2}\right\}$$

Nótese que este intervalo es más grande de lo de los η_i , ya que estos son estimaciones del promedio de los y_i coorrespondientes, mientras aquí es una observación. Entonces la varianza del predictor es la varianza del promedio más la varianza σ^2 alrededor de esto.

Test de los $\hat{\eta}_i$

Resulta

Clase 4

$$V(\hat{\boldsymbol{\eta}}) = V(\boldsymbol{X}\hat{\boldsymbol{\beta}}) = \boldsymbol{X}V(\hat{\boldsymbol{\beta}})\boldsymbol{X}' = \sigma^2 \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}',$$

entonces por la estimación de $\hat{\eta}_i = \boldsymbol{x}_i' \hat{\boldsymbol{\beta}}$, resulta su desvío estándar

$$SD(\hat{\eta}_i) = \sqrt{MS_e \, \boldsymbol{x}_i' (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{x}_i}$$

se deriva la condición del test

$$\left| \frac{\hat{\eta}_i - \eta_i}{SD(\hat{\eta}_i)} \right| > t_{n-p;\pi/2}$$

con intervalo de confianza

$$\left\{\eta|\hat{\eta}_i - SD(\hat{\eta}_1)\,t_{n-p;\pi/2} \le \eta \le \hat{\eta}_i + SD(\hat{\eta}_i)\,t_{n-p;\pi/2}\right\}$$

20/04/2025

 $"Clase_4 - Propiedades\ estadisticas"$

IV - 30/36

Clase 4

El programa lm

El programa 1m

El programa 1m es el método básico para correr el modelo lineal en R. El comando es:

LM = lm(MODELO, data=DATOS)

con:

- LM la lista donde guardar los resultados,
- **DATOS** el archivo donde se encuentran tanto X como y,
- MODELO es la descripción del modelo indicada con las reglas siguientes.

Los resultados principales se resultan con el comando:

summary(LM)

El modelo

- Un modelo se escribe usando una fórmula del tipo *variable* de respuesta ~ variables predictoras.
- La tilde se lee ~ como "se modela como una función de".
- Básicamente se emplea el símbolo \sim entre un objeto, p.e. Y, a la izquierda y otros a la derecha, p.e. X, así indicando que se quiere modelar Y con X, es decir $Y \sim X$ significa estimar el modelo $y_i = \alpha + \beta x_i + \varepsilon_i$.
- Si se quieren ajuntar otras variables se incluyen interponiendo el símbolo +: así $Y \sim X + Z + T$ significa estimar el modelo $y_i = \alpha + \beta x_i + \gamma z_i + \delta t_i + \varepsilon_i$.

20/04/2025

"Clase_4 - Propiedades estadisticas"

IV - 33/36

Clase 4

El programa lm

- Si se quiere tener variables y interacciones, se puede escribir también $Y \sim X * Z$, igual a $Y \sim X + Z + X : Z$.
- Con tres variables $Y \sim X*Z*T$ se indican todas las interacciones posibles, es decir:

 $Y \sim X + Z + T + X : Z + X : T + Z : T + X : Z : T$.

- El símbolo ^ sirve para indicar las interacciones que se requieren: Si solo se requieren las interacciones hasta el segundo orden. Así $Y \sim (X+Z+T)^2$ indica el modelo $Y \sim X+Z+T+X:Z+X:T+Z:T$ sin la interacción triple.
- El grupo %in% sirve para indicar que los términos a su izquierda están juntados con los a la derecha. Así $Y \sim X + Z + T\%in\%T$ se transforma en $Y \sim X : T + Z : T + T$.

- Si se quieren ajuntar todas las variables contenidas en la matriz indicada en el parámetro data=, se escribe brevemente:
 Y ~ ., el punto indicando todas.
- El símbolo se usa para tirar una variable del conjunto. Así $Y \sim . T$ indica el modelo con todas las variables en data menos la T.
- Así, escribiendo $Y \sim X 1$ se indica de estimar el modelo sin intercepta, es decir $y_i = \beta x_i + \varepsilon_i$, sin α .
- Se emplea el símbolo : para indicar interacciones entre variables: así con $Y \sim X + Z + X$: Z significa estimar el modelo $y_i = \alpha + \beta x_i + \gamma z_i + \delta x_i z_i + \varepsilon_i$

20/04/2025

"Clase_4 - Propiedades estadisticas"

IV - 34/36

Clase 4

El programa lm

- Cualquier fórmula incluyendo nombres de funciones es aceptada: así son aceptados $Y \sim \log(Z) + \cos(T)$.
- Si se puede tener confusión, la expresión matemática se incluye entre I(). Así es diferente $Y \sim X + Z$ de $Y \sim I(X + Z)$ ya que se modelan respectivamente $y_i = \alpha + \beta x_i + \gamma z_i + \varepsilon_i$ y $y_i = \alpha + \beta(x_i + z_i) + \varepsilon_i$.

Los siguientes modelos son iguales, aún con fórmulas diferentes:

 $Y \sim X + Z + W + X: Z + X: W + Z: W$

Y \sim X * Z * W - X: Z: W

 $Y \sim (X + Z + W)^2$

todas corresponde al mismo modelo:

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 W_i + \beta_4 X_i Z_i + \beta_5 X_i W_i + \beta_6 Z_i W_i + \varepsilon_i.$