PROBABILITY THEORY LECTURE 6

Per Sidén

Division of Statistics

Dept. of Computer and Information Science

Linköping University

OVERVIEW LECTURE 6

- Modes of convergence
 - almost surely
 - in probability
 - ▶ in *r*-mean
 - ▶ in distribution
- ► Law of large numbers
- ► Central limit theorem
- Convergence of sums, differences and products.

INTRODUCTION

- ▶ We are often interested in the large sample, or asymptotic, behavior of random variables.
- ▶ We are considering a **sequence** of random variables $X_1, X_2,$, also denoted by $\{X_n\}_{n=1}^{\infty}$.
- Example: what can we say about the sample mean $X_n = n^{-1} \sum_{i=1}^n Y_i$ in large samples?
 - Does it converge to a single number? (law of large numbers)
 - How fast? (central limit theorem)
 - What is the distribution of the sample mean in large samples? (central limit theorem)
- ▶ The usual limit theorems from calculus will not do. Need to consider that X_n is a **random** variable.

► Markov's inequality. For a positive random variable *X* and constant *a* > 0

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

► Markov's inequality. For a positive random variable *X* and constant *a* > 0

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

▶ Proof: $a \cdot I_{X>a} \leq X$. Then $E(a \cdot I_{X>a}) = a \cdot Pr(X \geq a) \leq E(X)$.

► Markov's inequality. For a positive random variable *X* and constant *a* > 0

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

- ▶ Proof: $a \cdot I_{X \ge a} \le X$. Then $E(a \cdot I_{X \ge a}) = a \cdot Pr(X \ge a) \le E(X)$.
- ▶ Chebyshev's inequality. Let Y be a random variable with finite mean m and variance σ^2 . Then

$$Pr(|Y - m| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

► Markov's inequality. For a positive random variable *X* and constant *a* > 0

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

- ▶ Proof: $a \cdot I_{X>a} \leq X$. Then $E(a \cdot I_{X>a}) = a \cdot Pr(X \geq a) \leq E(X)$.
- ▶ Chebyshev's inequality. Let Y be a random variable with finite mean m and variance σ^2 . Then

$$Pr(|Y-m| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

▶ Proof: Use Markov's inequality with $X = (Y - m)^2$ and $a = \varepsilon^2$, and that $E(X) = E(Y - m)^2 = \sigma^2$. We then have

$$Pr\left(\left(Y-m\right)^2 \ge \epsilon^2\right) \le \frac{\sigma^2}{\epsilon^2}$$

and therefore

$$Pr(|Y-m| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$
.

ALMOST SURE CONVERGENCE

 \triangleright $X_1,...X_n$ and X are random variables on the same probability space.

DEF X_n converges almost surely (a.s.) to X as $n \to \infty$ iff

$$P(\{\omega: X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}) = 1.$$

▶ Denoted by $X_n \stackrel{a.s.}{\to} X$.

ALMOST SURE CONVERGENCE

 \triangleright $X_1,...X_n$ and X are random variables on the same probability space.

DEF X_n converges almost surely (a.s.) to X as $n \to \infty$ iff

$$P(\{\omega: X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}) = 1.$$

- ▶ Denoted by $X_n \stackrel{a.s.}{\to} X$.
- ▶ For a given $\omega \in \Omega$, $X_n(\omega)$ (n = 1, 2, ...) and $X(\omega)$ are real numbers (not random variables).
- ▶ Almost sure convergence: check if the sequence of real numbers $X_n(\omega)$ converges to the real number $X(\omega)$ for all ω , except those ω that have probability zero.

CONVERGENCE IN PROBABILITY

DEF X_n converges in probability to X as $n \to \infty$ iff

$$P(|X_n - X| > \varepsilon) \to 0$$
 as $n \to \infty$.

▶ Denoted by $X_n \stackrel{p}{\to} X$.

CONVERGENCE IN PROBABILITY

DEF X_n converges in probability to X as $n \to \infty$ iff

$$P(|X_n - X| > \varepsilon) \to 0$$
 as $n \to \infty$.

- ▶ Denoted by $X_n \stackrel{p}{\to} X$.
- \longrightarrow Let $X_n \sim Beta(n, n)$ show that $X_n \stackrel{p}{\to} \frac{1}{2}$ as $n \to \infty$.

CONVERGENCE IN PROBABILITY

DEF X_n converges in probability to X as $n \to \infty$ iff

$$P(|X_n - X| > \varepsilon) \to 0$$
 as $n \to \infty$.

- ▶ Denoted by $X_n \stackrel{p}{\to} X$.
- ▶ Let $X_n \sim Beta(n, n)$ show that $X_n \stackrel{p}{\rightarrow} \frac{1}{2}$ as $n \rightarrow \infty$.

Solution: $E(X_n) = \frac{n}{n+n} = \frac{1}{2}$ and

$$Var(X_n) = \frac{n \cdot n}{(n+n)^2(n+n+1)} = \frac{1}{4(2n+1)}.$$

By Chebyshev's inequality, for all $\varepsilon>0$

$$Pr(|X_n - 1/2| \ge \varepsilon) \le \frac{1}{4(2n+1)\varepsilon^2} \to 0 \text{ as } n \to \infty.$$

CONVERGENCE IN R-MEAN

DEF X_n converges in r-mean to X as $n \to \infty$ iff

$$E\left|X_{n}-X\right|^{r}\to0$$
 as $n\to\infty$.

▶ Denoted by $X_n \xrightarrow{r} X$.

CONVERGENCE IN R-MEAN

DEF X_n converges in r-mean to X as $n \to \infty$ iff

$$E|X_n-X|^r\to 0$$
 as $n\to\infty$.

- ▶ Denoted by $X_n \stackrel{r}{\to} X$.
- ightharpoonup Let X_n be a random variable with

$$P(X_n = 0) = 1 - \frac{1}{n}$$
, $P(X_n = 1) = \frac{1}{2n}$ and $P(X_n = -1) = \frac{1}{2n}$.

Show that $X_n \stackrel{r}{\to} 0$ as $n \to \infty$.

CONVERGENCE IN R-MEAN

DEF X_n converges in r-mean to X as $n \to \infty$ iff

$$E|X_n-X|^r\to 0$$
 as $n\to\infty$.

- ▶ Denoted by $X_n \stackrel{r}{\rightarrow} X$.
- $\stackrel{\square}{\longrightarrow}$ Let X_n be a random variable with

$$P(X_n = 0) = 1 - \frac{1}{n}$$
, $P(X_n = 1) = \frac{1}{2n}$ and $P(X_n = -1) = \frac{1}{2n}$.

Show that $X_n \stackrel{r}{\to} 0$ as $n \to \infty$.

Solution: we have

$$E |X_n - X|^r = |0 - 0|^r \cdot \left(1 - \frac{1}{n}\right) + |1 - 0| \cdot \frac{1}{2n} + |-1 - 0|^r \cdot \frac{1}{2n}$$
$$= \frac{1}{n} \to 0.$$

as $n \to \infty$ for all r > 0.

CONVERGENCE IN DISTRIBUTION

DEF X_n converges in distribution to X as $n \to \infty$ iff

$$F_{X_n}(x) \to F(x)$$
 as $n \to \infty$

at all continuity points of X.

▶ Denoted by $X_n \stackrel{d}{\rightarrow} X$.

CONVERGENCE IN DISTRIBUTION

DEF X_n converges in distribution to X as $n \to \infty$ iff

$$F_{X_n}(x) \to F(x)$$
 as $n \to \infty$

at all continuity points of X.

- ▶ Denoted by $X_n \stackrel{d}{\rightarrow} X$.
- Suppose $X_n \sim Bin(n, \lambda/n)$. Show that $X_n \to Po(\lambda)$ as $n \to \infty$.

CONVERGENCE IN DISTRIBUTION

DEF X_n converges in distribution to X as $n \to \infty$ iff

$$F_{X_n}(x) \to F(x)$$
 as $n \to \infty$

at all continuity points of X.

- ▶ Denoted by $X_n \stackrel{d}{\rightarrow} X$.
- Suppose $X_n \sim Bin(n, \lambda/n)$. Show that $X_n \to Po(\lambda)$ as $n \to \infty$.

Solution: For fixed k we have

$$\binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \to e^{-\lambda} \frac{\lambda^k}{k!}$$

as $n \to \infty$

MORE ON CONVERGENCE

▶ Uniqueness: Theorem 6.2.1 tells us that if $X_n \to X$ and $X_n \to Y$, then X = Y almost surely ($X \stackrel{d}{=} Y$ for convergence in distribution).

MORE ON CONVERGENCE

- ▶ Uniqueness: Theorem 6.2.1 tells us that if $X_n \to X$ and $X_n \to Y$, then X = Y almost surely ($X \stackrel{d}{=} Y$ for convergence in distribution).
- ▶ The different notions of convergence are related as follows:

$$X_n \stackrel{a.s.}{\to} X \qquad \Rightarrow \qquad X_n \stackrel{p}{\to} X \qquad \Rightarrow \qquad X_n \stackrel{d}{\to} X$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

▶ So $\stackrel{a.s.}{\rightarrow}$ is stronger than $\stackrel{p}{\rightarrow}$ which is stronger than $\stackrel{d}{\rightarrow}$.

CONVERGENCE VIA TRANSFORMS

Let $X, X_1, X_2, ...$ be random variables. What if the moment generating function of X_n converges to the moment generation function of X? Does that mean that X_n converges to X?

CONVERGENCE VIA TRANSFORMS

Let $X, X_1, X_2, ...$ be random variables. What if the moment generating function of X_n converges to the moment generation function of X? Does that mean that X_n converges to X?

TH Let $X, X_1, X_2, ...$ be random variables, and suppose that

$$\varphi_{X_n}(t) o \varphi_X(t)$$
 as $n o \infty$

then

$$X_n \stackrel{d}{\to} X$$
 as $n \to \infty$.

TH The converse also holds. If $X_n \stackrel{d}{\to} X$, then $\varphi_{X_n}(t) \to \varphi_X(t)$.

CONVERGENCE VIA TRANSFORMS

Let $X, X_1, X_2, ...$ be random variables. What if the moment generating function of X_n converges to the moment generation function of X? Does that mean that X_n converges to X?

TH Let X, X_1 , X_2 , ... be random variables, and suppose that

$$\varphi_{X_n}(t) o \varphi_X(t)$$
 as $n o \infty$

then

$$X_n \stackrel{d}{\to} X$$
 as $n \to \infty$.

TH The converse also holds. If $X_n \stackrel{d}{\to} X$, then $\varphi_{X_n}(t) \to \varphi_X(t)$.

▶ Similar theorems hold for the probability generating function and moment generating function (Th 6.4.1-6.4.3).

LAW OF LARGE NUMBERS - SOME PRELIMINARIES

- ▶ Let $X_1, ..., X_n$ be independent variables with mean μ and variance σ^2 .
- ▶ Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean of *n* observations.
- ▶ We then have

$$E(\bar{X}_n) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \frac{1}{n} n\mu = \mu$$

and

$$Var(\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{\sigma^2}{n}.$$

▶ (Weak) law of large numbers. Let $X_1, ..., X_n$ be independent variables with mean μ and finite variance σ^2 . Then

$$\bar{X}_n \stackrel{p}{\rightarrow} \mu$$
.

▶ (Weak) law of large numbers. Let $X_1, ..., X_n$ be independent variables with mean μ and finite variance σ^2 . Then

$$\bar{X}_n \stackrel{p}{\to} \mu$$
.

► Proof: By Chebychev's inequality

$$Pr(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2/n}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \to 0 \text{ as } n \to \infty.$$

► This version of the law of large numbers requires a population variance which is finite. Theorem 6.5.1 gives a version where only the mean needs to be finite.

▶ (Weak) law of large numbers. Let $X_1, ..., X_n$ be independent variables with mean μ and finite variance σ^2 . Then

$$\bar{X}_n \stackrel{p}{\to} \mu$$
.

▶ Proof: By Chebychev's inequality

$$Pr(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2/n}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \to 0 \text{ as } n \to \infty.$$

- ► This version of the law of large numbers requires a population variance which is finite. Theorem 6.5.1 gives a version where only the mean needs to be finite.
- ► The strong law of large numbers proves that $\bar{X}_n \stackrel{a.s.}{\to} \mu$ if the mean is finite.

• (Weak) law of large numbers. Let $X_1, ..., X_n$ be independent variables with mean μ and finite variance σ^2 . Then

$$\bar{X}_n \stackrel{p}{\to} \mu$$
.

► Proof: By Chebychev's inequality

$$Pr(|\bar{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2/n}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \to 0 \text{ as } n \to \infty.$$

- ▶ This version of the law of large numbers requires a population variance which is finite. Theorem 6.5.1 gives a version where only the mean needs to be finite.
- ► The strong law of large numbers proves that $\bar{X}_n \stackrel{a.s.}{\to} \mu$ if the mean is finite.
- ▶ The assumption of a finite mean is important. Example: if $X_1, X_2, ...$ are independent C(0,1), then $\bar{X}_n \stackrel{d}{=} X_1$ for all n. The law of large numbers does not hold.

CENTRAL LIMIT THEOREM

TH Let $X_1, X_2, ...$ be iid random variables with finite expectation μ and variance σ^2 . Then

$$\left(rac{ar{X}_n - \mu}{\sigma/\sqrt{n}}
ight) \stackrel{d}{
ightarrow} N(0,1) \text{ as } n
ightarrow \infty.$$

CENTRAL LIMIT THEOREM

TH Let $X_1, X_2, ...$ be iid random variables with finite expectation μ and variance σ^2 . Then

$$\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \stackrel{d}{\to} N(0,1) \text{ as } n \to \infty.$$

▶ Proof by showing that

$$\phi_{rac{ar{X}_{n-\mu}}{\sigma/\sqrt{n}}}(t)
ightarrow \phi_{N(0,1)}(t)=e^{-t^2/2}.$$

CENTRAL LIMIT THEOREM

TH Let $X_1, X_2, ...$ be iid random variables with finite expectation μ and variance σ^2 . Then

$$\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}\right) \stackrel{d}{\to} N(0,1) \text{ as } n \to \infty.$$

▶ Proof by showing that

$$\varphi_{\frac{\tilde{X}_{n-\mu}}{\sigma/\sqrt{n}}}(t) \rightarrow \varphi_{N(0,1)}(t) = e^{-t^2/2}.$$

► Application: empirical distribution function

$$F_n(x) = \frac{\text{\#observations} \le x}{n}$$

then as $n \to \infty$

$$F_n(x) \stackrel{p}{\to} F(x)$$

$$\sqrt{n}(F_n(x) - F(x)) \stackrel{d}{\to} N(0, \sigma^2(x)), \ \sigma^2(x) = F(x)[1 - F(x)].$$

CONVERGENCE OF SUMS OF SEQUENCES OF RVS

TH If $X_n \to X$ and $Y_n \to Y$, then $X_n + Y_n \to X + Y$.

- ▶ Holds for a.s., p and r-convergence without assuming independence.
- ightharpoonup The theorem also holds for d-convergence if we assume independence.

CONVERGENCE OF SUMS OF SEQUENCES OF RVS

TH If $X_n \to X$ and $Y_n \to Y$, then $X_n + Y_n \to X + Y$.

- ▶ Holds for a.s., p and r-convergence without assuming independence.
- ightharpoonup The theorem also holds for d-convergence if we assume independence.

TH If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} a$, where a is a constant, then as $n \to \infty$

$$X_n + Y_n \xrightarrow{d} X + a$$

$$X_n - Y_n \xrightarrow{d} X - a$$

$$X_n \cdot Y_n \xrightarrow{d} X \cdot a$$

$$\xrightarrow{X_n} \xrightarrow{d} X \text{ for } a \neq 0$$

CONVERGENCE OF SUMS OF SEQUENCES OF RVS

TH If $X_n \to X$ and $Y_n \to Y$, then $X_n + Y_n \to X + Y$.

- ▶ Holds for a.s., p and r-convergence without assuming independence.
- ▶ The theorem also holds for *d*-convergence if we assume independence.

TH If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} a$, where a is a constant, then as $n \to \infty$

$$X_n + Y_n \xrightarrow{d} X + a$$

$$X_n - Y_n \xrightarrow{d} X - a$$

$$X_n \cdot Y_n \xrightarrow{d} X \cdot a$$

$$\xrightarrow{X_n} \xrightarrow{d} X \text{ for } a \neq 0$$

ightharpoonup Let $X_1, X_2, ...$ be independent U(0, 1). Show that

$$\frac{X_1+X_2+\ldots+X_n}{X_1^2+X_2^2+\ldots+X_n^2} \xrightarrow{p} \frac{3}{2} \text{ as } n \to \infty.$$

TH Let $X_1, X_2, ...$ be random variables such that $X_n \stackrel{p}{\to} a$ for some constant a. Let g() be a function which is continuous at a. Then

$$g(X_n) \stackrel{p}{\to} g(a)$$
.

TH Let $X_1, X_2, ...$ be random variables such that $X_n \stackrel{p}{\to} a$ for some constant a. Let g() be a function which is continuous at a. Then

$$g(X_n) \stackrel{p}{\to} g(a).$$

Let $X_1, X_2, ...$ be iid random variables with finite mean $\mu \geq 0$. Show that $\sqrt{\bar{X}_n} \stackrel{p}{\to} \sqrt{\mu}$ as $n \to \infty$.

TH Let $X_1, X_2, ...$ be random variables such that $X_n \stackrel{p}{\to} a$ for some constant a. Let g() be a function which is continuous at a. Then

$$g(X_n) \stackrel{p}{\to} g(a)$$
.

Let $X_1, X_2, ...$ be iid random variables with finite mean $\mu \geq 0$. Show that $\sqrt{\bar{X}_n} \stackrel{p}{\to} \sqrt{\mu}$ as $n \to \infty$.

Solution: from the law of large numbers we have $\bar{X}_n \stackrel{p}{\to} \mu$. Since $g(x) = \sqrt{x}$ is continuous at $x = \mu$ the above theorem proves that $\sqrt{\bar{X}_n} \stackrel{p}{\to} \sqrt{\mu}$ as $n \to \infty$.

TH Let $X_1, X_2, ...$ be random variables such that $X_n \stackrel{p}{\to} a$ for some constant a. Let g() be a function which is continuous at a. Then

$$g(X_n) \stackrel{p}{\to} g(a)$$
.

Let $X_1, X_2, ...$ be iid random variables with finite mean $\mu \geq 0$. Show that $\sqrt{X_n} \stackrel{p}{\to} \sqrt{\mu}$ as $n \to \infty$.

Solution: from the law of large numbers we have $\bar{X}_n \stackrel{p}{\to} \mu$. Since $g(x) = \sqrt{x}$ is continuous at $x = \mu$ the above theorem proves that $\sqrt{\bar{X}_n} \stackrel{p}{\to} \sqrt{\mu}$ as $n \to \infty$.

Let $Z_n \sim N(0,1)$ and $V_n \sim \chi^2(n)$ be independent RVs. Show that

$$T_n = rac{Z_n}{\sqrt{rac{V_n}{n}}} \stackrel{d}{
ightarrow} N(0,1) \ \ ext{as } n
ightarrow \infty.$$