

SIMULATION STUDIES TO PREDICT DRUG PRECIPITATION IN VIVO

APM Forum, 5th June 2013

Kaoutar Abbou Oucherif

Co-advisors: Dr. Lynne Taylor

Dr. Jim Litster

Motivation

Physical Models of the GI Tract

Physical modeling of the GI tract:

- > Two compartment model
- Multi-compartmental dissolution system

Donor phase Acceptor phase

Experimental set up to examine dipyridamole precipitation

Reservoir Vessel

Gastric Compartment

Intestinal Compartment

TIM 1 model (www.tno.nl)

Absorption Compartment

ACAT Model

Current Commercial Software

Colon volume: 1200 mL

Pharmacokinetics

Body weight: 70 kg

Particle size distribution	Normal	
Mean particle radius	10,00	μm
Standard deviation of particle radius	3,00	μm
Number of bins	11,00	
Lower bound of particle radius	1,00	μm
Upper bound of particle radius	19,00	μm
Freat precipitated drug as	Soluble •	
mmediately dissolve particles smaller that	n 10,00	nm

del: log D model First pass extraction (fixed): 12.5% it time: 0.1 h Blood to plasma concentration ratio = 1
250 mL Clearance: 0.15 L/(h kg)

Wc: 1.9 L/kg

Small intestine radius: 1.2 cm Small intestine length: 300 cm -

Mean precipitation time: 1800 s Particle density: 1.2 g/mL

MW

clos

pK.

Dos

Effective permeability: 4.4×10^{-4} cm s⁻¹

Effective particle radius: 5 µm

gCOAS: a tool to Predict Oral Absorption

gCOAS: Nucleation Models

Classical nucleation:

$$J_{prim} = lnA_0 \left(\frac{-16\pi(\alpha\sigma)^3 v^2_0}{3k^3 T^3 lnS^2} \right)$$

 Parameters to be estimated: pre-exponential factor and the surface energy correction factor.

Power law kinetics:

$$J_{prim} = lnk_n \left(\frac{\Delta C}{\rho_c}\right)^n \exp\left(\frac{-E_{A,n}}{RT}\right)$$

 Parameters to be estimated: nucleation coefficient, nucleation order, and the activation energy.

Custom kinetics:

 E.g., extracting nucleation rates from probability distribution functions of induction time

$$P(t) = 1 - \exp(jV(t - t_g))$$

Input induction time (900 s)

- Case study: felodipine precipitation
- Objectives:
 - Extract the nucleation and growth kinetic parameters of felodipine to use as inputs in gCOAS
 - Quantify the inhibitory effect of HPMC on both the nucleation and growth rates of felodipine

Experimental Methods

- 18 mL 50 mM pH 6.8 buffer at 25 °C
- Felodipine supersaturations of 5 and 10
- HPMC concentrations: o to 3.5 ppm.
- Seeded experiments: 2 mg of seeds were prepared by grinding with a mortar and pestle
- Particle size characterized via a Malvern Mastersizer laser diffractometer (Worcesteshire, UK).
- Concentration measured using Ocean Optics 6 channel fiber optic system

Modeling Approach

- Extract the growth kinetic parameters from seeded experiments
 - Power law kinetics used to model crystal growth

$$G = k_g \left(\frac{\Delta C}{\rho_c}\right)^g \exp\left(\frac{-E}{RT}\right)$$

- Use growth data to extract the nucleation kinetic parameters from unseeded experiments
- Power law kinetics used to model crystal nucleation

$$J_{prim} = lnk_n \left(\frac{\Delta C}{\rho_c}\right)^n \exp\left(\frac{-E_{A,n}}{RT}\right)$$

gCRYSTAL: Estimation of PSD Parameters

global specifications

- Probability of parameter lying between (Final Value -α% Confidence Interval) and (Final Value +α% Confidence Interval) = α%
- The t-value shows the percentage accuracy of the estimated parameters, with respect to the 95% confidence intervals.

Model	Final	Final Initial		Upper	Confidence Interval		95%	Standard	
Parameter	Value	Guess	Bound	Bound	90%	95%	99%	t-value	Deviation
Flowsheet. PSD_input_predicted.peak(1).LO_g	11.263	11.751	1	30	2.284	2.849	4.217	3.953	1.205
Flowsheet. PSD_input_predicted.peak(1).sd_g	2.30738	2.23454	1	5	0.3345	0.4174	0.6178	5.528	0.1765
Reference t-value (95%):						1.89502			

Modeling Approach in gCRYSTAL

Results: growth kinetics

- High correlation between growth order and growth coefficient
- Growth order fixed to 1.6
- Felodipine growth is a hybrid between mass diffusion and surface integration controlled growth

HPMC Concentration [μg/mL]	Growth order	Growth coefficient	95% confidence interval
0	1.6	0.14122	0.03148
.2	1.6	0.12878	0.01462
.5	1.6	0.0644	0.0167
1.5	1.6	0.052235	0.004368
2.5	1.6	0.050515	0.01847
3.5	1.6	0.04856	0.006527

Results: growth kinetics (cont'd)

Results: growth kinetics (cont'd)

1.25

Results: nucleation kinetics

- Nucleation order fixed to 1
- Direct correlation between HPMC concentration and effect on the nucleation rate

HPMC Concentration [µg/mL]	Nucleation order	Nucleation coefficient	95% confidence interval
О	1	37.66	0.487
0.5	1	30.94	0.102
1.5	1	28.26	0.068
2.5	1	28.62	0.269
3.5	1	22.63	0.012

Results: nucleation kinetics (cont'd)

Result Highlights

Result Highlights

- HPMC has a much greater effect on inhibiting nucleation:
 - up to an 8 order decrease in nucleation rate vs.
 only a decrease by a factor of 2 for the growth rate
- Practical applications:
 - Better understanding of stabilization mechanism of inhibitors (decouple the effect of additives on nucleation and growth)
 - Develop better formulation strategies by facilitating the screening of polymers

Future Work

- Conduct crystallization experiments of poorly soluble APIs in the presence of bile salts
- Use estimated crystallization kinetic parameters as inputs in gCOAS
- Predict API concentration and fraction of drug absorbed as a function of time and location in the GI tract

Acknowledgments

- PSE
- Lilly Endowment Grant
- Dr. Lynne Taylor's research group
- Dr. Litster's research group

Obtaining Nucleation Rates from PDFs of induction times

 Probability of forming a nuclei follows a Poisson distribution:

$$P_m = \frac{N_m}{m!} \exp(-N)$$

Probability that there is at least 1 nucleus:

$$P_{\geq 1} = 1 - P_0 = 1 - \exp(-N)$$

Nucleation rate is:

$$N = JVt_j$$

Nucleation time $t_j = t - t_g$ $P(t) = 1 - \exp(jV(t - t_g))$

Case study:

- m-aminobenzoic acid crystallization
- Experiments conducted at isothermal conditions
- Constant supersaturation
- Induction times measured with the Crystal 16

Jiang, S., & Ter Horst, J. H. (2011). Crystal Nucleation Rates from Probability Distributions of Induction Times. *Crystal Growth & Design*, 11(1), 256–261. doi:10.1021/cg101213q

Parameter Estimation in gPROMS

Extracting Crystallization Kinetics

Supersaturation (σ)	Nucleation rate (J) [#/m^3*s]	Standard deviation [#/m^3*s]	Growth time [s]	Standard deviation [s]
1.96	414.75	30.24	2092	123.2
2.06	709.84	51.43	924.82	55.07
1.87	411.73	30.11	2076.9	125.3
2.15	4274.8	395	325.27	11.76
1.83	198.36	18.01	3697.2	235.8

$$J = k_n(\sigma)^n k_n = \exp(-4.2926) n = 15.842$$

Felodipine as a Case Study

Objective: quantify the ability of hydroxypropylmethyl cellulose (HPMC) to inhibit both the nucleation and growth of a <u>model amorphous compound</u>, <u>felodipine</u>.

- Significance of the study: stabilize amorphous solid dispersions via the use of carrier polymers to inhibit crystallization
- Benefits of amorphous materials:
 - Enhanced dissolution rates
 - Higher supersaturation levels in the GI tract

Obtaining Nucleation Rates from PDF

Probability of forming a nuclei follows a Poisson distribution:

$$P_m = \frac{N_m}{m!} \exp(-N)$$

Probability that there is at least 1 nucleus:

$$P_{\geq 1} = 1 - P_0 = 1 - \exp(-N)$$

Nucleation rate is:

$$N = JVt_j$$

Nucleation time $t_j = t - t_g$ $P(t) = 1 - \exp(jV(t - t_g))$

Project Road Map

