Programação Funcional (COMP0393)

Leila M. A. Silva

Indução Forte e Recursão Geral (COMP0393)

Aula 8

Indução Matemática

- Nas aulas anteriores estudamos indução fraca e como este princípio indutivo pode ser usado na construção de funções com recursão primitiva.
- Na indução fraca o passo indutivo é de um, P(k) => P(k+1).
- Mas para alguns problemas precisamos de um passo maior.
 Neste caso, dizemos que a indução é forte.

Indução Matemática (Forte)

- Seja P(n) um predicado definido para os inteiros n e sejam a e b dois inteiros fixos, sendo a≤b.
- Suponha que as duas afirmações seguintes sejam verdadeiras:
 - P(a), P(a+1),..., P(b) são V. (Casos base)
 - Para qualquer inteiro k≥b,
 se P(i) é V para a ≤ i < k, então P(k) é V, isto é, P(i)=> P(k).
- Logo, a afirmação para todos inteiros $n \ge a$, P(n) é V.
- A suposição que P(i) é V para a ≤ i < k é chamada de hipótese indutiva.

Indução Matemática (Forte)

- Prova por indução forte é similar ao caso anterior de indução fraca:
 - Defina a variável de indução;
 - Estabeleça e prove o(s) caso(s) base;
 - Estabeleça a Hipótese de Indução (HI);
 - Estabeleça e prove o Passo Indutivo ou Caso Geral.
- A diferença maior reside no fato a hipótese de indução deve ser suposta verdadeira não só para o elemento anterior ao que se quer provar, mas para todos os anteriores a ele entre o caso base e ele.

Aplicando o Princípio de Indução Forte

- Prove que qualquer inteiro maior que 1 é divisível por um número primo.
- Prova:
 - Caso base: n=2. A prova do caso é válida porque 2 é divisível por 2 e o número 2 é primo.
 - Hipótese de Indução: Vamos supor que para todos inteiros i, $2 \le i < k$, i é divisível por um número primo.
 - Caso geral: Supondo HI, desejamos provar que *k* é divisível por um número primo.

Aplicando o Princípio de Indução

- Caso geral: Supondo HI, desejamos provar que k é divisível por um número primo, ou seja, se a propriedade é válida para 2 ≤ i < k, então é válida para k.
 Seja k um inteiro, k > 2. Temos dois casos a considerar:
 - 1.k é primo ou
 - 2.k não é primo.

No primeiro caso, *k* é divisível por um primo que é ele próprio, já que todo inteiro é divisível por si mesmo.

No segundo caso, se k não é primo então k = u .v, onde u e v são inteiros tais que $2 \le u < k$ e $2 \le v < k$. Pela hipótese indutiva, u é divisível por um número primo p. Como se um número é divisível por outro qualquer múltiplo dele também é então k também é divisível por p. Assim, independente se k é primo ou não, k é divisível por um primo. \blacksquare

Observe que não podemos usar a indução fraca porque não podemos garantir que u ou v sejam k-1. Só podemos garantir que ele será um número entre 2 e k-1.

Seja a sequência a_1 , a_2 , a_3 ,... definida como:

$$a_1 = 0;$$

 $a_2 = 2;$
 $a_k = 3. \ a_{/k/2/} + 2, k \ge 3$

Prove que a_n é par para $n \ge 1$.

- •Caso base: n=1, n=2 e n=3. Nestes casos os valores são pares pois $a_1=0$, $a_2=2$ e $a_3=2$.
- •Hipótese de Indução: Supomos que a_i é par para todos os inteiros i, $1 \le i < k$
- •Caso Geral: Se a HI é V então a asserção é valida para k, ou seja, a_k é par.

 Caso Geral: Se a HI é V então a asserção é valida para k, ou seja, a_k é par.

Prova:

Pela definição, $a_k = 3$. $a_{[k/2]} + 2$, $k \ge 3$. Como $1 \le k/2 < k$, por HI $a_{[k/2]}$ é par. Logo, 3. $a_{[k/2]}$ é par, porque qualquer número múltiplo de par é par. Como 2 é par e soma de pares é par, a_k é par.

Observe que não podemos usar a indução fraca porque $1 \le k/2 < k$.

Seja a sequência a_1 , a_2 , a_3 ,... definida como:

$$a_1 = 1$$
; $a_2 = 2$; $a_3 = 3$;
 $a_k = a_{k-1} + a_{k-2} + a_{k-3}$, $k \ge 4$

Prove que $a_n < 2^n$, $n \ge 1$.

- •Caso base: n=1, n=2, n=3 e n=4. Nestes casos a asserção é válida, ou seja $a_n < 2^n$ porque 1<2, 2<4, 3<8 e 6<16.
- Hipótese de Indução: Supomos que $a_i < 2^i$ para todos os inteiros $i, 1 \le i < k$
- •Caso Geral: Se a HI é V então a asserção é valida para k, ou seja, $a_k < 2^k$.

Leila Silva

10

• Caso Geral: Se a HI é V então a asserção é valida para k, ou seja, $a_k < 2^k$.

Prova:

Por definição, $a_k = a_{k-1} + a_{k-2} + a_{k-3}$. Como k-1, k-2 e k-3 são menores que k, por HI vale que a_{k-1} < 2^{k-1} , a_{k-2} < 2^{k-2} e a_{k-3} < 2^{k-3} . Logo,

$$a_k = a_{k-1} + a_{k-2} + a_{k-3}$$

$$< 2^{k-1} + 2^{k-2} + 2^{k-3} = 2^{k-3} (2^2 + 2 + 1) = 7. \ 2^{k-3}$$

$$< 8. \ 2^{k-3} = 2^3 \ 2^{k-3} = 2^k$$

Observe que não podemos usar a indução fraca porque preciso de três termos menores e não um só!

Leila Silva

11

Exercícios Recomendados

Seja a sequência a₁, a₂, a₃,... definida como:

$$a_1 = 1; a_2 = 2;$$

$$a_k = a_{k-2} + 2. a_{k-1}, k \ge 3$$

Prove que a_n é impar para todos os inteiros $n \ge 1$.

• Seja a sequência a_0 , a_1 , a_2 ,... definida como:

$$a_0 = 12$$
; $a_1 = 29$;

$$a_k = 5a_{k-1} - 6a_{k-2}, k \ge 2$$

Prove que $a_n \not\in 5$. $3^n + 7$. 2^n , para todos os inteiros $n \ge 0$.

Recursão Geral

- As funções construídas usando o princípio de indução forte resultam também em funções recursivas e como o passo é maior que um, a esta recursão chamamos de recursão geral.
- Da mesma forma que na indução fraca, podemos usar a indução forte para a construção de funções recursivas.

- Sequência de Fibonacci
 - A sequência de Fibonacci começa com o e 1 e depois os próximos números são a soma dos dois anteriores.

```
0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
```

- A função para calcular o n-ésimo número de Fibonacci pode ser construída por indução forte da seguinte maneira:
 - Casos base: n=o e n=1. Nestes casos a função retornaria o e
 1, respectivamente.
 - HI: Sei calcular a função para todos os inteiros i, o $\leq i < k$.
 - Caso geral: calcular a função para o *k*-ésimo termo

- Caso geral: calcular a função para o *k*-ésimo termo
 - Estratégia: fib (k) = fib(k-1) + fib(k-2). Como, o≤ k-1 < k e, o≤ k-2 < k então posso aplicar a HI e obter o resultado. Para determinar fib(k) é só somar os resultados obtidos por indução.
 - Observe que preciso de indução forte, porque não consigo resolver o problema somente com a instância *k-1*.
 - Podemos escrever a função abaixo para o caso de sucesso.

```
fib :: Integer \rightarrow Integer
fib 0 = 0
fib 1 = 1
fib k = fib (k-1) + fib(k-2)
```


Ou usando guardas...

 Para incluir a situação de insucesso, a construção com guarda estende mais facilmente para

```
fib :: Integer -> Integer
fib k

| k < 0 = error "indefinido para numero negativo"
| k == 0 = 0
| k == 1 = 1

| otherwise = fib (k-1) + fib(k-2)</pre>
Leila Silva
```

16

- Esta formulação de Fibonacci não é muito eficiente porque quando calculamos fib (k-2) duas vezes.
- Avaliação

```
fib 4 ~ fib 3 + fib 2 ~

fib 2 + fib 1 + fib 2 ~

fib 1 + fib 0 + fib 1 + fib 2 ~

1 + fib 0 + fib 1 + fib 2 ~

1 + 0 + fib 1 + fib 2 ~

1 + 0 + 1 + fib 2 ~

1 + 0 + 1 + fib 1 + fib 0 ~

1 + 0 + 1 + 1 + fib 0 ~

1 + 0 + 1 + 1 + 0 ~ 3
```

• Veremos mais adiante como calcular Fibonacci de forma mais

- Potência: Vamos retomar o problema de calcular aⁿ, n≥o, que já vimos na aula de recursão primitiva. Por convenção, o^o = 1.
- Vamos tentar usar agora a seguinte propriedade para o cálculo da potência
 - $a^n = (a^{n/2})^2$, se $n \in par$
 - $a^n = a.(a^{n/2})^2$, se $n \in m$
- Construindo por indução forte teríamos que:
 - Variável de indução: n
 - Casos base: n=0 e n=1. Neste caso a função retorna i=a pois $a^0=1$, $a^1=a$. HI: Sei calcular a^i , $o \le i < k$.
 - Caso Geral: Calcular *a*^k.

- Caso Geral: Calcular *a*^k.
 - Estratégia: Observe que usando a propriedade, nos dois casos, preciso calcular $a^{k/2}$. Mas neste termo podemos aplicar a HI pois , $o \le k/2 < k$. Logo, precisamos apenas checar se k é par ou não para usar a propriedade correta e chegar ao resultado.

Avaliação

```
pot 2 4 ~ (pot 2 2) ^ 2

(pot 2 1) ^2^2 ~

2^2^2 ~2^4 ~16
```

```
pot 2 5 ~ 2 * (pot 2 2) ^ 2
2* (pot 2 1) ^2^2 ~
2* 2^2^2 ~ 2* 2^4 ~32
```


- Palíndromos: são sequências que podem ser lidas da esquerda para a direita ou da direita para a esquerda.
- Ex: "arara", [1, 2, 2, 1]
- Elabore uma função que dada uma palavra, retorna True se ela for palíndromo.
 - Variável de indução: *n*, tamanho da palavra.
 - Casos base: lista vazia [] e lista unitária [x]. Por definição, retorne True.
 - HI: Sei calcular se a palavra é palíndromo para palavras com o≤ i < k caracteres.
 - Caso Geral: Calcular para uma palavra de k caracteres.

Caso Geral: Calcular para uma palavra de k caracteres.

```
[a_1, a_2,..., a_{k-1}, a_k]

se a_1 \neq a_k então não é palíndromo

senão preciso checar se [a_2,..., a_{k-1}] é palíndromo
```

• Observe que $[a_2, \ldots, a_{k-1}]$ possui tamanho k-2 e portanto podemos aplicar a HI que irá nos retornar se é ou não palíndromo!

```
palindromo :: [Char] -> Bool
palindromo [] = True
palindromo [x] = True
palindromo xs = head xs == last xs && palindromo (init (tail xs))
```


Leila Silva

22

Avaliação

```
palindromo "arara" 	 True && palindromo "rar" 	 True && True && palindromo "a" 	 True && True && True 	 True & True & True 	 True
```


Cuidado!

- Precisamos definir precisamente os casos base senão podemos construir uma função que rode indefinitivamente.
- Por exemplo, suponha que você deseje implementar uma função para determinar se o número é ou não par e elabore a seguinte função

 Você só pensou no caso base quando n for par e aí a função funciona. E quando for impar???

Cuidado!

 Casos especiais podem afetar o passo indutivo. Considere agora o problema de dividir um número inteiro por outro usando as seguintes funções, que dão o quociente e o resto da divisão de inteiros

```
meuDiv :: Int -> Int -> Int
meuMod :: Int-> Int -> Int
```

 A ideia seria usar subtração para realizar a divisão. Por exemplo, para dividir 37 por 10 podemos ir subtraindo 10 até que o valor fique menor que 10. O resto poderia ser calculado de maneira análoga.

```
meuDiv m n
  | m < n = 0
  | otherwise = 1 + meuDiv (m-n) n
meuMod m n
  | m < n = m
  | otherwise = meuMod (m-n) n</pre>
```

• Mas, o que acontece se n=o?? E se n=-4??

Cuidado!

- As funções ficam rodando indefinidamente !!!
- Eu preciso tratar estes casos como uma das guardas da função!!

 Observe que usamos a indução forte pois a chamada da função não é necessariamente para um valor 1 menor.

departamento de computação

Exercício de Fixação

• Defina uma função recursiva chamada divMod que calcula ao mesmo o quociente e o resto da divisão inteira e fornece como saída uma tupla (quoc, resto).

Recursão Mútua

- É possível definir funções recursivas que se chamem mutuamente para a solução de um problema.
- Por exemplo, digamos que dado um número desejamos determinar se ele é par usando as seguintes funções:

```
par :: Int -> Bool
par 0 = True
par n = impar (n-1)

impar :: Int -> Bool
impar 0 = False
impar n = par (n-1)
```


Leila Silva

28

Recursão Mútua

Avaliação:

Fibonacci usando tuplas

 A função de Fibonacci que demos anteriormente é ineficiente. É possível criar uma função mais eficiente usando recursão primitiva e tuplas. A função teria a seguinte propriedade:

```
fibTupla(n) = (fib(n), fib(n+1)),
```

Assim, dado o par (u,v) formado de dois números consecutivos na sequência obtém-se o par (v, u+v), que são os próximos dois números na sequência depois de u.

```
fibTupla :: Int -> (Int, Int)
fibTupla 0 = (0,1)
fibTupla n = (b, a+b)
   where (a, b) = fibTupla (n-1)
fib n = fst (fibTupla n)
```


Exercícios Recomendados

 Defina uma função recursiva chamada prodMult que dados uma lista de inteiros xs, e um número z, calcula o produto dos números que estão nas posições múltiplas de z em xs.

```
Ex: xs = [1, 4, 8, 10, 30, 6] e z = 3 a função retorna 8*6 = 48
```

• Defina uma função que dada uma palavra e um texto, determina se a palavra ocorre no texto.

