TORIC VARIETY

BOWEN LIU

Contents

1. Cones and affine toric variety	4
1.1. Affine semigroups	4
1.2. Cones	2
2. Fans and toric variety	4
3. Divisors on toric variety	
4. Line bundles on toric variety	6
5. Canonical divisors of toric variety	7
References	7

1. Cones and affine toric variety

1.1. Affine semigroups.

Definition 1.1.1 (affine semigroup). An affine semigroup S is a semigroup group such that

- (1) The binary operation on S is communicative.
- (2) The semigroup is finitely generated.
- (3) The semigroup can be embedded in a lattice M.

Example 1.1.1. $\mathbb{N}^n \subseteq \mathbb{Z}^n$ is an affine semigroup.

Example 1.1.2. Given a finite set \mathcal{A} of a lattice M, $\mathbb{N}\mathcal{A} \subseteq M$ is an affine semigroup.

Definition 1.1.2 (semigroup algebra). Let $S \subseteq M$ be an affine semigroup. The semigroup algebra $\mathbb{C}[S]$ is the vector space over \mathbb{C} with S as basis and multiplication is induced by the semigroup structure.

Example 1.1.3. The affine semigroup $\mathbb{N}^n \subseteq \mathbb{Z}^n$ gives the polynomial ring

$$\mathbb{C}[\mathbb{N}^n] = \mathbb{C}[x_1, \dots, x_n]$$

Example 1.1.4. If e_1, \ldots, e_n is a basis of a lattice M, then M is generated by $\mathcal{A} = \{\pm e_1, \ldots, \pm e_n\}$ as an affine semigroup, and the semigroup algebra gives the Laurent polynomial ring

$$\mathbb{C}[M] = \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$

- 1.2. **Cones.** In this section we assume M, N are dual lattices with associated \mathbb{R} -vector spaces $M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$ and $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, and the pairing between M and N is denoted by $\langle -, \rangle$.
- 1.2.1. Convex polyhedral cones.

Definition 1.2.1 (convex polyhedral cone). Let $S \subseteq N_{\mathbb{R}}$ be a finite subset. A convex polyhedral cone in $N_{\mathbb{R}}$ generated by S is a set of the form

$$\sigma = \operatorname{Cone} S = \{ \sum_{u \in S} \lambda_u u \mid \lambda_u \ge 0 \} \subseteq N_{\mathbb{R}}.$$

Notation 1.2.1. Cone(\emptyset) = {0}.

Remark 1.2.1. A convex polyhedral cone is convex, that is $x, y \in \sigma$ implies $\lambda x + (1 - \lambda)y \in \sigma$ for all $0 \le \sigma \le 1$, and it's a cone, that is $x \in \sigma$ implies $\lambda x \in \sigma$ for all $\lambda \ge 0$. Since we will only consider convex cones, the cones satisfying Definition 1.2.1 will be called polyhedral cone for convenience.

Definition 1.2.2 (dimension). The dimension of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is the dimension of the smallest subspace $W \subseteq N_{\mathbb{R}}$ containing σ .

Definition 1.2.3 (dual cone). Let $\sigma \subseteq N_{\mathbb{R}}$ be a polyhedral. The dual cone is defined by

$$\sigma^{\vee} := \{ u \in M_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \text{ for all } u \in \sigma \}.$$

Definition 1.2.4 (hyperplane). Given $m \in M_{\mathbb{R}}$, the hyperplane given by m is defined by

$$H_m := \{ u \in N_{\mathbb{R}} \mid \langle m, u \rangle = 0 \} \subseteq N_{\mathbb{R}},$$

and the closed half-space given by m is defined by

$$H_m^+ := \{ u \in N_{\mathbb{R}} \mid \langle m, u \rangle \ge 0 \} \subseteq N_{\mathbb{R}}.$$

Definition 1.2.5 (supporting hyperplane). The supporting hyperplane of a polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is a hyperplane H_m such that $\sigma \subseteq H_m^+$, and H_m^+ is called a supporting half-space.

Remark 1.2.2. H_m is a supporting hyperplane of σ if and only if $m \in \sigma^{\vee}$, and if m_1, \ldots, m_s generates σ^{\vee} , then

$$\sigma = H_{m_1}^+ \cap \dots \cap H_{m_s}^+.$$

Thus every polyhedral cone is an intersection of finitely many closed half-spaces.

Definition 1.2.6 (face). A face of a polyhedral cone σ is $\tau = H_m \cap \sigma$ for some $m \in \sigma^{\vee}$, written $\tau \leq \sigma$. Faces $\tau \neq \sigma$ are called proper faces, written $\tau \prec \sigma$.

Definition 1.2.7 (facet and edge). A facet of a polyhedral cone σ is a face of codimension one, and an edge of σ is a face of dimension one.

1.2.2. Strongly convex.

Definition 1.2.8 (strongly convex). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is strongly convex if $\{0\}$ is a face of σ .

1.2.3. Rational polyhedral cones.

Definition 1.2.9 (rational). A polyhedral cone $\sigma \subseteq N_{\mathbb{R}}$ is rational if $\sigma = \text{Cone}(S)$ for some finite subset $S \subseteq N$.

Definition 1.2.10 (ray generator). Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone and ρ be an edge of σ . The unique generator of semigroup $\rho \cap N$ is called ray generator of ρ , written u_{ρ} .

Definition 1.2.11. Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone.

4 BOWEN LIU

2. Fans and toric variety

3. Divisors on Toric Variety

6 BOWEN LIU

4. Line bundles on toric variety

5. Canonical divisors of toric variety

References

Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, P.R. China,

 $Email\ address: \verb|liubw22@mails.tsinghua.edu.cn|$