

Chapter 8: Relational Database Design

Database System Concepts, 6th Ed.

Edited by Radhika Sukapuram

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if <u>for all functional dependencies</u> in F^+ of the form

$$\alpha \rightarrow \beta$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- \square $\alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \square α is a superkey for R

In other words: "R is in BCNF if the only non-trivial FDs over R are key constraints."

Example schema *not* in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because *dept_name*→ *building*, *budget* holds on *instr_dept*, but *dept_name* is not a superkey

Decomposing a Schema into BCNF

Suppose we have a schema R and a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF.

We decompose *R* into:

- (α U β)
- $(R (\beta \alpha))$
- □ In our example,
 - $\alpha = dept_name$
 - β = building, budget

and *inst_dept* is replaced by

- \square ($\alpha \cup \beta$) = (dept_name, building, budget)
- \square (R (β α)) = (ID, name, salary, dept_name)

Decompose into BCNF

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps

S -> SNLRWH, R->W

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

Hourly_Emps2

Is this decomposition lossless?
Are these two relations in BCNF now?

Dependency preservation

dept_advisor (s_id, i_id, dept_name)

- Additional constraints:
- A student can have at most one advisor for a given departments_id, dept_name -> i_id
- An instructor can act as advisor only for a single departmenti_id -> dept_name

Dependency preservation cont.

- □ i_id > dept_name
 - Causes BCNF violation
 - BCNF decomposition gives:
 - (s_id, i_id)
 - (i_id, dept_name)
- But there is no schema that includes all the attributes in

- This decomposition is not dependency preserving
- Is the Hourly_Emp example dependency preserving?

BCNF and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in practice
 - unless they pertain to only one relation
- If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that *all* functional dependencies hold, then that decomposition is **dependency preserving**.
- Because it is not always possible to achieve
 - both BCNF and dependency preservation, we consider a weaker normal form, known as third normal form.

Third Normal Form

☐ A relation schema *R* is in **third normal form (3NF)** if for all:

$$\alpha \rightarrow \beta$$
 in F^+

at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \square α is a superkey for R
- \square Each attribute A in $\beta \alpha$ is contained in a candidate key for R.

(**NOTE**: each attribute may be in a different candidate key)

- If a relation is in BCNF it is in 3NF
 - since in BCNF one of the first two conditions above must hold.
- The third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later).
- A relation in 3NF may have redundancies due to FDs

How good is BCNF?

- There are database schemas in BCNF that do not seem to be sufficiently normalized
- Consider a relation

inst_info (ID, child_name, phone)

 where an instructor may have more than one phone and can have multiple children

ID	child_name	phone
99999 99999 99999	David David William Willian	512-555-1234 512-555-4321 512-555-1234 512-555-4321

inst_info

How good is BCNF? (Cont.)

- There are no non-trivial functional dependencies in this relation and therefore the relation is in BCNF
- ☐ If we add a phone 981-992-3443 to 99999, we need to add two tuples

(99999, David, 981-992-3443)

(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

□ Therefore, it is better to decompose *inst_info* into, even though *inst_info* is in BCNF :

inst_child

ID	child_name
99999	David
99999	William

inst_phone

ID	phone
99999	512-555-1234
99999	512-555-4321

This suggests the need for higher normal forms, such as Fourth Normal Form (4NF), which we shall see later.

Functional-Dependency Theory

- We now consider the formal theory that tells us
 - which functional dependencies are implied logically by a given set of functional dependencies.
- We then develop algorithms to generate lossless decompositions into BCNF and 3NF
- We then develop algorithms to test if a decomposition is dependencypreserving

Closure of a Set of Functional Dependencies

- ☐ Given a set *F* set of functional dependencies, there are certain other functional dependencies that are logically implied by *F*.
 - \square For e.g.: If $A \to B$ and $B \to C$, then we can infer that $A \to C$
- ☐ The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the closure of F by F⁺.

Closure of a Set of Functional Dependencies

- We can find F^{+,} the closure of F, by <u>repeatedly</u> applying Armstrong's Axioms:

 - □ if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation)
 - \square if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- These rules are
 - sound (generate only functional dependencies that actually hold), and
 - complete (generate all functional dependencies that hold).

Example

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H\}$$

- □ some members of *F*⁺
 - \Box $A \rightarrow H$
 - \Box $AG \rightarrow I$
 - \square $CG \rightarrow HI$

Example

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H\}$$

- □ some members of *F*⁺
 - $A \rightarrow H$
 - ▶ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - \Box $AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - \square CG \rightarrow HI
 - by augmenting CG → I to infer CG → CGI, and augmenting of CG → H to infer CGI → HI, and then transitivity

Procedure for Computing F⁺

To compute the closure of a set of functional dependencies F:

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

NOTE: We shall see an alternative procedure for this task later Will the algorithm terminate?

Closure of Functional Dependencies (Cont.)

- Additional rules:
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union)
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition)
 - If $\alpha \to \beta$ holds and $\gamma \not \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

The above rules are sound. Proof?