Application 0

Le robot humanoïde Lola - Corrigé

Concours Mines Ponts - PSI 2015.

Stabilité du robot

Objectif

L'objectif de cette partie est de trouver à quelle condition le maintien du contact sur le sol est possible lorsque le robot marche et si l'accélération est compatible avec le cahier des charges, dont un extrait est donné ciaprès.

Modélisation de l'effort de contact entre le sol et le robot

Question 1 Montrer que $\{\mathcal{T}(\text{sol} \rightarrow \text{pied})\}\$ est un glisseur.

Correction

L'automoment est un des invariants du torseur : $\forall P$, \overline{R} (sol \rightarrow pied) \cdot \overline{M} (O_S , sol \rightarrow pied) = cst. Dans le cas d'un glisseur, il existe un point tel que le moment est nul. L'automoment est donc nul en tous points de l'espace.

Dans notre cas, $b\int_{M\in\Sigma}p(M)\overrightarrow{z_0}\mathrm{d}y\cdot b\int_{M\in\Sigma}\overrightarrow{O_SM}\wedge p(M)\overrightarrow{z_0}\mathrm{d}y=0$ (permutation circulaire du produit mixte).

Question 2 Montrer que $H_S \in [O_S; C_S]$, c'est à-dire qu'il est situé sous le pied du robot.

Correction

On cherche H_S tel que $\overline{\mathcal{M}}(H_S, \operatorname{sol} \to \operatorname{pied}) = \overline{0}$. On a donc $b \int_{M \in \Sigma} \overline{H_S M} \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ $\Leftrightarrow \int_{M \in \Sigma} \left(\overline{H_S O_S} + \overline{O_S M}\right) \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ $\Leftrightarrow \int_{M \in \Sigma} \overline{H_S O_S} \wedge p(M) \overline{z_0} \mathrm{d}y + \int_{M \in \Sigma} \overline{O_S M} \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ $\Leftrightarrow \int_{M \in \Sigma} -Y_{H_S} \overline{y_0} \wedge p(M) \overline{z_0} \mathrm{d}y + \int_{M \in \Sigma} \overline{O_S M} \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ $\Leftrightarrow -Y_{H_S} \int_{M \in \Sigma} p(M) \mathrm{d}y \overline{x_0} + \int_{M \in \Sigma} \overline{O_S M} \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ Projetons cette expression sur $\overline{x_0} : -Y_{H_S} \int_{M \in \Sigma} p(M) \mathrm{d}y + \int_{M \in \Sigma} \left(\overline{O_S M} \wedge p(M) \overline{z_0}\right) \cdot \overline{x_0} \mathrm{d}y = 0$ $\Leftrightarrow -Y_{H_S} \int_{M \in \Sigma} p(M) \mathrm{d}y + \int_{M \in \Sigma} p(M) \overline{y_0} \cdot \overline{O_S M} \mathrm{d}y = 0$ $\Leftrightarrow -Y_{H_S} \int_{M \in \Sigma} p(M) \mathrm{d}y + \int_{M \in \Sigma} Y_M p(M) \mathrm{d}y = 0$ soit $Y_{H_S} = \frac{\int_{M \in \Sigma} Y_M p(M) \mathrm{d}y}{\int_{M \in \Sigma} p(M) \mathrm{d}y}$. On a, en raison du parmaétrage, $Y_M > 0$. Nécessairement, H_S est donc à droite du point O_S . De même, on a donc $b \int_{M \in \Sigma} \overline{H_S M} \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ $\Leftrightarrow \int_{M \in \Sigma} \overline{H_S C_S} + \overline{C_S M} \wedge p(M) \overline{z_0} \mathrm{d}y + \int_{M \in \Sigma} \overline{C_S M} \wedge p(M) \overline{z_0} \mathrm{d}y = \overline{0}$ On a $\overline{C_S M} = -\lambda \overline{y_0}$ avec $\lambda > 0$ ($M \in \Sigma$) et $\overline{H_S C_S} = \mu \overline{y}$. En projetant de plus suivant $\overline{x_0}$, on a: $\left(\int_{M \in \Sigma} \mu \overline{y_0} \wedge p(M) \overline{z_0} \mathrm{d}y + \int_{M \in \Sigma} -\lambda \overline{y_0} \wedge p(M) \overline{z_0} \mathrm{d}y\right) \overline{x_0} = 0$

$$\Rightarrow \int_{M \in \Sigma} \mu p(M) \mathrm{d}y + \int_{M \in \Sigma} -\lambda p(M) \mathrm{d}y = 0 \text{ soit } \mu = \frac{\int_{M \in \Sigma} \lambda p(M) \mathrm{d}y}{\int_{M \in \Sigma} p(M) \mathrm{d}y}$$
 μ est donc nécessairement positif et H_S est à gauche de C_S . Au final, H_S appartient à $[O_S C_S]$.

Question 3 Donner la forme du torseur $\{\mathcal{T}(\text{sol} \to \text{pied})\}$ dans le cas d'un contact avec frottement dans le plan sagittal (c'est-à dire que la densité d'efforts de contact est $p(M)\overrightarrow{z_0} + t(M)\overrightarrow{y_0}$). Montrer que les résultats des questions 1 et 2 sont inchangés.

Correction

$$\begin{split} & \{\mathcal{T}\left(\operatorname{sol} \to \operatorname{pied}\right)\} = \left\{ \begin{array}{l} b \int_{M \in \Sigma} \left(p(M)\overrightarrow{z_0} + t(M)\overrightarrow{y_0}\right) \mathrm{d}y \\ b \int_{M \in \Sigma} \overrightarrow{O_SM} \wedge p(M)\overrightarrow{z_0} \mathrm{d}y \end{array} \right\}_{O_S} \\ & = \left\{ \begin{array}{l} b \int_{M \in \Sigma} \frac{p(M)\overrightarrow{z_0} \mathrm{d}y}{O_SM} \wedge p(M)\overrightarrow{z_0} \mathrm{d}y \\ b \int_{M \in \Sigma} \overrightarrow{O_SM} \wedge p(M)\overrightarrow{z_0} \mathrm{d}y \end{array} \right\}_{O_S} + \left\{ \begin{array}{l} b \int_{M \in \Sigma} t(M)\overrightarrow{y_0} \mathrm{d}y \\ \overrightarrow{0} \end{array} \right\}_{O_S} . \end{split}$$
 Le promier torseur vérifie bien les deux premières questions. Le second

Le premier torseur vérifie bien les deux premières questions. Le second torseur est bien un glisseur (automoment nul).
(...)

Établissement de la condition de non-basculement

Question 4 En appliquant le théorème du moment dynamique, puis le théorème de la résultante dynamique au système {1+2}, montrer que la condition de stabilité (non basculement) s'écrit : $Y_{H_S} = Y_G - \frac{Z_G}{g} \frac{\mathrm{d}^2 Y_G}{\mathrm{d} t^2}$.

Correction

- ► On isole 1+2.
- ▶ Bilan des actions mécaniques :
 - action de la pesanteur;
 - action du sol.
- ► On applique le TMD au point H_S en projection sur $\overrightarrow{y_0}$.
 - $\overrightarrow{\delta(1,0/G)} = \overrightarrow{0}$ (mouvement de translation). $\overrightarrow{\delta(1,0/H_S)} = \overrightarrow{\delta(1,0/G)} + \overrightarrow{H_SG} \land \overrightarrow{R_d(1/0)} = m_1 \left(-Y_{H_S} \overrightarrow{y_0} + Y_G(t) \overrightarrow{y_0} + Z_G(t) \overrightarrow{z_0} \right) \land \ddot{Y}_G \overrightarrow{y_0} = -m_1 Z_G(t) \ddot{Y}_G \overrightarrow{x_0}.$
 - Déplacement de l'action de la pesanteur : $\left(-Y_{H_S}\overrightarrow{y_0} + Y_G(t)\overrightarrow{y_0} + Z_G(t)\overrightarrow{z_0}\right) \wedge -m_1g\overrightarrow{z_0}$ = $-m_1g\left(-Y_{H_S}\overrightarrow{x_0} + Y_G(t)\overrightarrow{x_0}\right)$.
 - Au final, $-m_1g(-Y_{H_S} + Y_G(t)) = -m_1Z_G(t)\ddot{Y}_G \Leftrightarrow g(-Y_{H_S} + Y_G(t)) = Z_G(t)\ddot{Y}_G$. On a donc $gY_G(t) Z_G(t)\ddot{Y}_G = gY_{H_S}$ et $Y_{H_S} = \frac{gY_G(t) Z_G(t)\ddot{Y}_G}{g}$.

En faisant le TMD au point H_S il est inutile de faire le TRD.

Question 5 Sachant que la longueur de la semelle du robot $[O_S; C_S]$ est L = 300 mm, déterminez la longueur de la première foulée du robot qui garantit la condition de non-basculement. Est-ce compatible avec le cahier des charges?

Correction

Le cas limite de basculement est lorsque $H_S = C_S$ et donc $Y_{H_S} = L$. On a donc $Y_G(t) = Y_{H_S} + \frac{Z_G(t)\ddot{Y}_G}{g} = 300 + \frac{1050 \times 1390}{9810} = 449 \,\mathrm{mm}.$ La foulée est donnée par $4Y_G \simeq 1,795 \,\mathrm{m} < 1,50 \,\mathrm{m}$. L'exigence 1.1.4 n'est pas respectée.

Question 6 Dans le cas d'un sol relativement glissant, avec un facteur de frottement du contact sol/semelle $\mu = 0, 1$, quelle accélération maximale $\left[\frac{d^2 Y_G(t)}{dt^2}\right]_{\max}$ le robot peut-il avoir? Est-ce compatible avec le cahier des charges pour la phase de démarrage?

Correction

On isole (1+2) et on réalise le TRD:

- ► projection sur $\overrightarrow{y_0}$: $b \int_{M \in \Sigma} t(M) dy = m_1 \frac{d^2 Y_G(t)}{dt^2}$; ► projection sur $\overrightarrow{z_0}$: $b \int_{M \in \Sigma} p(M) dy m_1 g = 0$.

À la limite du glissement, on a $b\int_{M\in\Sigma}t(M)\mathrm{d}y=\mu b\int_{M\in\Sigma}p(M)\mathrm{d}y$ soit $\left[\frac{\mathrm{d}^2Y_G(t)}{\mathrm{d}t^2}\right]_{\max}=0$ $\mu g = 0.1 \times 9.81 = 0.981 \,\mathrm{m \, s^{-2}} < 1.39 \,\mathrm{m \, s^{-2}}$. L'exigence 1.1.3 n'est pas respectée.

