

Listado 12 Polinomios *Polinomios*

1. Calcule $p(x) + q(x), p(x) - q(x), p(x) \cdot q(x)$ y en cada caso determine el grado del polinomio resultante.

a)
$$p(x) = x^3 - 4x$$
 y $q(x) = 9x - x^3$.

b)
$$p(x) = x^4 - 4x^3 + 3x^2$$
 y $q(x) = x^2(x-2)^2$

2. Use el Algoritmo de división para determinar el cociente y el resiudo de dividir p(x) por q(x)cuando:

a)
$$p(x) = x^4 + 8$$
, $q(x) = x^3 + 2x - 1$
b) $p(x) = 8x^4 + 8$, $q(x) = x^2 - 1$ (P)

d)
$$p(x) = 5x^6 - x^5 + 10x^4 + 3x^2 - 2x + 4$$
,

b)
$$p(x) = 8x^4 + 8$$
, $q(x) = x^2 - 1$ (P)

$$q(x) = x^2 + x - 1$$
 (P)

c)
$$p(x) = 8x^2 + 4x - 7$$
, $q(x) = x^2$

e)
$$p(x) = x^4 + 3x^2 + 1$$
, $q(x) = 2x^2 - 1$

3. Dividir los siguientes polinomios por el polinomio lineal (x-c) usando la regla de Ruffini, el valor de c se indica en cada caso. ¿Se cumple p(c) = 0?.

a)
$$p(x) = 6x^3 + 17x^2 - 5x - 6, c = -1$$
 (P)

b)
$$p(x) = x^3 - 2x^2 + x + 2, c = 2$$

c)
$$p(x) = x^4 - x^3 - 5x^2 - x - 6, c = i$$
 (P)

d)
$$p(x) = x^4 + 4ix^3 + x^2 + 16ix - 12, c = -i$$

e)
$$p(x) = x^4 - 16, c = 2i$$

4. Determinar los valores de a y b en \mathbb{R} tales que se cumpla lo pedido para los siguientes polinomios

a)
$$p(x) = ax^3 - 3x + 2$$
 el resto de dividir por $x - 1$ sea 1

b)
$$p(x) = x^3 + ax^2 + bx + 2$$
 tiene a $2 + i$ como raíz (P)

c)
$$p(x) = 4x^3 + 3x^2 - ax + 6a$$
, sea divisible por $x + 3$

d)
$$p(x) = x^3 - 9x + a$$
 tenga una raíz de multiplicidad 2 (P)

e)
$$p(x) = x^2 + 2x - 4$$
 tal que el resto de dividir $p(x)$ por $x - a$ sea 31

$$f)$$
 $p(x) = ax^4 - ax^3 + 15bx^2$ sea divisible por x^2 (P)

g)
$$p(x) = x^3 + x + a$$
 tal que -1 es raíz del polinomio

$$h)$$
 $p(x) = x^4 - 2x^3 + x^2 - ax$, tal que 2 es raíz