Relational Algebra

The Theory behind Relational Databases

PROFESSIONAL & CONTINUING EDUCATION

Relational Algebra: What and Why

- ><u>Ted Codd</u> introduced relational algebra to databases and created the <u>relational</u> model.
- >Relational algebra provides a theoretical foundation for <u>relational databases</u>, and particularly for <u>query languages</u> like <u>SQL</u>.

PROFESSIONAL & CONTINUING EDUCATION

Relational Algebra: What and Why

- >Why do you want a theoretical foundation?
 - -If you want to optimize a query or a database
 - -If you are thinking about using NOSQL, then you should be aware of the limitations and advantages of NOSQL data management.
 - >In other words, relational algebra assists in comparing <u>SQL</u> with <u>NOSQL</u> (<u>NO</u>T-SQL, <u>Not-Only-SQL</u>, <u>KNO</u>W-SQL, <u>http://www.youtube.com/watch?v=sh1YACOK_bo</u>)

PROFESSIONAL & CONTINUING EDUCATION

Term	Comments		
<u>able</u>	Part of a database		
<u>Relation</u>	A table where rows are unique. Operand in Relational Algebra/Calculus		
<u>Tuple</u>	sing <u>le</u> , doub <u>le</u> , tri <u>ple</u> , qudr <u>uple</u> , quin <u>tuple</u> , sex <u>tuple</u> ; Like a row in a table		
<u>Arity</u>	un <u>ary</u> , bin <u>ary</u> , tern <u>ary</u> , quatern <u>ary</u>		
<u>Closure</u>	Operation on a type produces a value of that same type.		
	Natural Numbers have closure under + and * (3 * 5 = 15)		
	Natural Numbers do not have closure under – or /: 5 – 3 = -2		

	New Terminology (2)		
Term	Comments		
<u>Procedural</u>	Step-by-step solution to solving problem or achieving goal. I will drive to Bellevue, enter the class room and listen to the lecture. (Relational Algebra is <u>procedural</u> or <u>imperative</u>)		
<u>Declarative</u>	Stating what one wants in non-ambiguous terms without describing how one is to achieve ones goal. Example: I want to know what was said in class last week. I don't care if you use the slide deck, your memory, or the recording to get me that information. (SQL is declarative)		
Relational Algebra	The algebra that describes relations as operands and results		
Relational Calculus	The calculus that uses relations as operands and results (SQL)		

New Terminology (3)				
Operation	Symbols	Comments		
<u>Selection</u>	σ (sigma); σ _φ (R);	SELECT * FROM WHERE Column1 = 1		
<u>Projection</u>	π (pi); π _{c1, c2,,} _{cn} (R)	SELECT <u>Column1, Column 2</u> FROM		
<u>Rename</u>	P (rho)	as		
<u>Union</u>	U	AuB; A={1,2,3, 5}; B={0,2}; {1,2,3, 5}u{0,2}={0,1,2,3,5}		
Intersection	n	A∩B; A={1,2,3, 5}; B={0,2}; {1,2,3, 5} ∩{0,2}= {2}		
<u>Difference</u>	-,	B\A = B-A; {0,2} - {1,2,3,5} = {0}	NTINUING EDI	

New Terminology (4)					
Operation	Symbols	Comments			
<u>Product</u>	Х	AXB A={1,2,3,5}; B={0,2}; {1,2,3, 5} X{0,2}= {{1,0}, {2,0}, {3,0}, {5,0}, {1,2}, {2,2}, {3,2}, {5,2}}			
<u> oin</u>	\bowtie_{ϕ}	$B\bowtie_{\varphi}A$; φ : $A > B$; $A = \{1,2,3,5\}$; $B = \{0,2\}$; $\{1,2,3,5\}\bowtie_{\varphi}\{0,2\} = \{\{1,0\},\{2,0\},\{3,0\},\{3,2\},\{5,0\},\{5,2\}\}$			
<u>Division</u>	÷	A÷B = C; Project to show me the columns in A that are not in B; Select to show me the tuples in A that are a superset of the a tuple in B.			

Relational Algebra <u>Name</u> Age **Home** 5 None Blackbur 21 Kobayas Rent Menchú 42 Alvarez Rent 50 Own Tagore PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON

Relational Algebra: Operands and Simple Operations >Operand -Relation (Table) >Operations -UNION -INTERSECT -PROJECT -SELECT -PRODUCT -DIVISION

Relational Algebra: Examples

-R u S

>SELECT * FROM MyTableR UNION SELECT * FROM MyTableS

-SELECT * FROM MyTableR -SELECT * FROM MyTableR **UNION SELECT * FROM** MyTableS

>RuS or SuR

 $-R \cap S$

>SELECT * FROM MyTableR **INTERSECT SELECT *** FROM MyTableS

INTERSECT SELECT * FROM MyTableS

>RNS or SNR

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Relational Algebra: Examples

-In General:

>An operation with \mathbf{u} or $\mathbf{\cap}$ produces a relation

 $>R \cup S = S \cup R$

 $>R \cap S = S \cap R$

>(R \cup S) \cap T = (R \cap T) \cup (S \cap T)

 $>(R \cap S) \cup T = (R \cup T) \cap (S \cup T)$

PROFESSIONAL & CONTINUING EDUCATIO

Relational Algebra Operations

So far:

- Union
- Intersect

Coming up:

- Project
- Select
- Product
- Join
- Division

Select Operation

Relational Algebra: Examples -Tigge, Home (R)

>ŠELECT Age, Home FROM MyTable

 $-\sigma_{Home="Rent"}(R)$

>SELECT * FROM MyTable WHERE Home = "Rent"

-SELECT Age, Home FROM MyTable WHERE Home = "Rent"

 $>\pi_{Age,Home}(\sigma_{Home="Rent"}(R)) \text{ or } \sigma_{Home="Rent"}(\pi_{Age,Home}(R))$

Relational Algebra: Examples

-In General:

- \rightarrow An operation with σ produces a relation
- \rightarrow An operation with π produces a relation

$$>\sigma_{\mathbf{\phi}^1}(\sigma_{\mathbf{\phi}^2}(\mathsf{R})) = \sigma_{\mathbf{\phi}^2}(\sigma_{\mathbf{\phi}^1}(\mathsf{R}))$$

- > $\pi_{[c1]}(\pi_{[c2]}(R)) \neq \pi_{[c2]}(\pi_{[c1]}(R))$ (<u>except if</u> c1 = c2 because c1 \subset c2 and c2 \supset c1)
- $>\pi_{[c]}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{[c]}(R))$ (only if columns in φ are also in [c])

Data Science: Process and Tools

Data Science: Process and Tools

Join Operation

Relational Algebra: Join

>A Join is a Product with a select statement

>Product followed by Select

>SELECT * FROM TableR, TableS WHERE Home = "Rent" $>\!\!\sigma_{\!_{\!\bm{\phi}}}\!(R~X~S~)$ where $\bm{\phi}\!:$ Home = "Rent"

-JOIN

>SELECT * FROM TableR JOIN TableS ON Home = "Rent"

>R \bowtie_{φ} S where φ : Home = "Rent"

ROFESSIONAL & CONTINUING EDUCATION

Relational Algebra Operations So far: Coming up: • Union • Division • Intersect • Project • Select • Product • Join

Relational Algebra: Resources

Links for definitions and concepts:

- http://en.wikipedia.org/wiki/Cartesian product
- http://en.wikipedia.org/wiki/Commutative_property
- http://en.wikipedia.org/wiki/Associative_property
- http://en.wikipedia.org/wiki/Closure (mathematics)
- http://en.wikipedia.org/wiki/Relational calculus
- http://en.wikipedia.org/wiki/Relational algebra
- http://en.wikipedia.org/wiki/Edgar F. Codd
- http://en.wikipedia.org/wiki/Relational_model
- http://en.wikipedia.org/wiki/Relational_database
- http://en.wikipedia.org/wiki/Query_language

PROFESSIONAL & CONTINUING EDUCATION

Summary

- >Table = Part of a Database
- >Relation = Table with unique rows
- >Attribute = Column in a table relation
 - –Arity number of columns
- >Tuple = Row in the table relation
- >Math operations on a Relation
 - -Union, Intersect, Project, Select, Join
 - -Product, Division

