$$\cos\frac{\pi}{5} = ?$$

Swipe For Solution \Rightarrow

Let's assign an arbitrary constant such as γ to be equal to $\frac{\pi}{5}$.

$$\gamma = \frac{\pi}{5} \to 5\gamma$$

$$3\gamma = \pi - 2\gamma \tag{1}$$

We will now apply sin on both sides of (1); we can apply cosine if we want but the addition formulas for \cos give us squares which are somewhat difficult to deal with which is why we will start with \sin functions and work our way towards and equation we can express in terms of $\cos\gamma$

$$\sin(3\gamma) = \sin(\pi - 2\gamma)$$

We can write $\sin (\pi - 2\gamma)$ using its' addition formula which will give us:

$$\sin(3\gamma) = \sin(\pi)\cos(2\gamma) - \cos(\pi)\sin(2\gamma)$$

We know that $\sin(\pi) = 0$ and $\cos(\pi) = -1$ so our equation simplifies to:

$$\sin(3\gamma) = \sin(2\gamma)$$
$$\sin(\gamma + 2\gamma) = \sin(2\gamma)$$

which can be written as:

$$\sin(\gamma)\cos(2\gamma) + \sin(2\gamma)\cos(\gamma) = 2\sin(\gamma)\cos(\gamma)$$

factoring out and cancelling a factor of $\sin(\gamma)$ gives us:

$$\cos(2\gamma) + \frac{\sin(2\gamma)\cos(\gamma)}{\sin(\gamma)} = 2\cos(\gamma)$$

Breaking down $\cos(2\gamma)$ and $\sin(2\gamma)$ by their addition formulas will take us closer to our goal of writing everything in terms of $\cos(\gamma)$.

$$\cos^{2}(\gamma) - \sin^{2}(\gamma) + \frac{2\sin(\gamma)\cos^{2}(\gamma)}{\sin(\gamma)} = 2\cos(\gamma)$$
$$\cos^{2}(\gamma) - 1 + \cos^{2}(\gamma) + 2\cos^{2}(\gamma) = 2\cos(\gamma)$$

We can equate a variable such as λ to be equal to $\cos(\gamma)$ and under this our equation becomes:

$$4\lambda^2 - 2\lambda - 1 = 0$$

Solving this quadratic gives us 2 branches but we will consider the positive solution only as $\cos{(\theta)} \ge 0$ in the interval from $0 \to \frac{\pi}{2}$ and $\frac{\pi}{5}$ is in this interval.

$$\lambda^2 - \frac{1}{2}\lambda - \frac{1}{4} = 0$$

$$\lambda^2 - \frac{1}{2}\lambda + \frac{1}{16} = \frac{1}{4} + \frac{1}{16} \rightarrow \left(\lambda - \frac{1}{4}\right)^2 = \frac{5}{16}$$

$$\left(\lambda - \frac{1}{4}\right) = \frac{\sqrt{5}}{4} \rightarrow \lambda = \frac{\sqrt{5}}{4} + \frac{1}{4}$$

$$\lambda = \frac{1 + \sqrt{5}}{4} \rightarrow \lambda = \frac{\phi}{2}$$

 $\therefore \cos\left(\frac{\pi}{5}\right) \text{ equals } \frac{\phi}{2}$

$$\cos\left(\frac{\pi}{5}\right) = \frac{\phi}{2}$$