Assignment 2 for csc446

Yingchao Yu V00830514

2. Since E(x,y) = E(x) + E(y), it is obviously that $E(x,+x_2+...x_n) = E(x_1+E(x_1+...E(x_n))$ Thus, $E(y) = E(x_1) + E(x_2) + E(x_n)$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{1+x_1} \int_{-\infty}^{\infty} \frac{1}{1+x_2} \int_{-\infty$ 3. We get h=10 h=20 h=30 , h=30 . As=30 a. $\frac{hs}{us}=0.8$ \Rightarrow us=37.5 perom/h \Rightarrow See Ara Service the $=\frac{60}{57.5}=1.6$ mins

b. It is U/U/I Queues. $P = \frac{L_1}{U_1} = \frac{1}{3}, \qquad L = \frac{P}{1-P} = \frac{1}{3} \quad 0.5, \qquad L_2 = \frac{P^2}{1-P} = \frac{1}{6}$ $U = \frac{1}{U(1-P)} = \frac{1}{30P/h \cdot \frac{2}{3}} = \frac{1}{30P/h} = 0.05 \text{ h}/P = 3 \text{ mine }/Person$ U = UP = I mine /Person

C. It is M/M/I Queues. $P = \frac{1}{1-p} = \frac{0.8}{0.2} = 4$ $L_q = \frac{p^2}{1-p} = 3.2$ $U = \frac{1}{U_5(1-p)} = \frac{1}{37.5} \frac{1}{1-p} = \frac{1}{$

de Wtotal: = $\frac{1}{3}$ more $\frac{1}{7}$ 8 m/s $\frac{1}{7}$ = $\frac{1}{2}$ + $\frac{4}{3}$ = $\frac{1}{2}$ + $\frac{4}{3}$

Since Wq2<Wq1 and Lq2<Lq1, then Setting a new stalling will be better.

8.
$$\lambda = \frac{4}{3}$$
 $P = \frac{4}{3} = \frac{3}{4}$
a. $\lambda = \frac{3}{4} = \frac{3}{4}$
 $\lambda = \frac{3}{4} = \frac{3}{4} = \frac{3}{4}$
 $\lambda = \frac{3}{4} = \frac{3}{4} = \frac{3}{4} = \frac{3}{4}$
 $\lambda = \frac{3}{4} =$

b. Since man = 9x0.15 + 62, It's not.

$$C_1 = \frac{p^2(H 6^2u^2)}{2(1-p^2)} = 1.5$$

$$d_{1} W = \frac{1}{4} + \frac{1(1/4^{2} + 6^{2})}{2(1-p)} = 2.25$$

$$y = y + 0.1 = x \Rightarrow x = \frac{d}{d}$$
 when is $= 10$

when
$$10\% \times \le 1 \Rightarrow \times \le 10$$
,

 $10\% \times \le 1 \Rightarrow \times \le 10$,

 $10\% \times \le 1 \Rightarrow \times = \frac{50}{9}$ which is ≤ 10 .

Thus, $10\% \times = \frac{50}{9}$ which is ≤ 10 .

 $10\% \times = \frac{50}{9}$ which is ≤ 10 .

 $10\% \times = \frac{50}{9}$ which is ≤ 10 .

 $10\% \times = \frac{50}{9}$ which is ≤ 10 .

 $10\% \times = \frac{50}{9}$ which is ≤ 10 .

 $10\% \times = \frac{50}{9}$ which is ≤ 10 .

 $10\% \times = \frac{50}{9}$ which is ≤ 10 .

Since Aport < utom
$$\Rightarrow$$
 $1s = 100$ $\frac{10}{9}$.

$$P = \frac{15}{118} = \frac{25}{36}$$

$$Wa = \frac{p}{uc1-p} = \frac{25}{88} = 0.284$$

b.
$$lm + 0.1x = X$$
 and $X \le 6$
 $lm = 0.9x$