Université de Paris Saclay M1 MF 2024-2025

FEUILLE TD 3 - EXERCICES ALGÈBRE - ANNEAUX

► Cette feuille de TD nous occupera deux semaines.

Exercices fondamentaux de la semaine 1

EXERCICE 1. Montrer que tout anneau intègre fini est un corps.

EXERCICE 2. Soit A un anneau commutatif, et soit S une partie multiplicative de A, c'est-à-dire que S contient S, et si S, S, alors S alors S on veut définir la localisation S de S par rapport à S.

- **1.** Montrer qu'on peut définir une relation d'équivalence sur $A \times S$ comme suit : (a, s) est équivalent à (b, t) s'il existe un $u \in S$ tel que u(at bs) = 0. Soit $S^{-1}A$ l'ensemble des classes d'équivalences. On écrira $\frac{a}{s}$ pour désigner la classe d'équivalence de (a, s).
- **2.** Montrer que $S^{-1}A$, muni des opérations $\frac{a}{s} + \frac{b}{t} = \frac{at+bs}{st}$ et $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$, est un anneau commutatif.
- **3.** Montrer gue si S contient 0, alors $S^{-1}A$ est un anneau trivial.
- **4.** Montrer que l'application $f:A\to S^{-1}A$ définie par $a\mapsto \frac{a}{1}$ est un morphisme d'anneaux. Montrer que f est injectif si S ne contient pas de diviseurs de zéro.
- **5.** Cas particulier : corps des fractions. Supposons que A est intègre, et que $S=A\setminus\{0\}$. Montrer que $S^{-1}A$ est un corps, appelé le corps des fractions de A.
- **6.** Cas particulier: localisation en un idéal premier. Soit P un idéal premier de A. Montrer que $S=A\setminus P$ est une partie multiplicative de A. On écrit A_P pour désigner $S^{-1}A$ dans ce cas.
- 7. Cas particulier (suite) : Montrer que l'idéal engendré par l'image de P dans A_P est le seul idéal maximal de A_P .

EXERCICE 3. Soit $\mathbf{Z}[i]$ l'anneau des entiers de Gauß.

- **1.** Soit p un nombre premier. Montrer que p est irréductible dans $\mathbf{Z}[i]$ si, et seulement si, p ne s'écrit pas comme somme de deux carrés d'entiers.
- **2.** Soit p un nombre premier congru à 3 modulo 4. Montrer que si pour deux entiers a et b, on a $a^2 + b^2 \equiv 0 \pmod{p}$, alors p divise a et b. Indication : on pourra calculer (p-1)! modulo p.
- 3. Montrer qu'une somme de deux carrés d'entiers est congrue à 0, 1 ou 2 modulo 4.
- **4.** En déduire qu'un nombre premier p est irréductible dans $\mathbf{Z}[i]$ si, et seulement si, $p \equiv 3 \pmod{4}$.

EXERCICE 4. Soit A le sous-anneau de ${\bf C}$ engendré par $\alpha=\frac{1+i\sqrt{19}}{2}$. Le but de cet exercice est de montrer que A est principal, mais pas euclidien.

- **1.** Montrer d'abord que, si B est un anneau euclidien, alors il existe un élément non inversible $x \in B$ tel que la restriction à $B^* \cup \{0\}$ de la projection de B sur B/(x) soit surjective.
 - Ceci nous servira de critère pour montrer que l'anneau A n'est pas euclidien.
- 2. Donner un polynôme du second degré à coefficients entiers P s'annulant en α . En déduire que A est isomorphe à $\mathbf{Z}[X]/P$ et que le groupe abélien sous-jacent à A est engendré par 1 et α . Vérifier que l'application norme, qui à $z \in A$ associe $N(z) = z\overline{z}$, prend ses valeurs dans \mathbf{N} .
- 3. Montrer que 1 et -1 sont les seuls éléments inversibles de A.
- **4.** Montrer qu'il n'existe pas de morphisme d'anneaux de A dans ${f Z}/2{f Z}$ ou ${f Z}/3{f Z}$.

 Indication : pour chacun des deux cas, supposer que f soit un tel morphisme, et étudier l'image par f du polynôme trouvé en **2**.
- 5. En déduire que A n'est pas euclidien. Indication : utiliser le critère de 1.
- **6.** On va montrer que A est principal.
 - (a) Montrer que pour tout a,b éléments non nuls de A, il existe $q,r\in A$ tels que r=0 ou N(r)< N(b) et qui vérifient, soit a=bq+r, soit 2a=bq+r.
 - (b) Montrer que (2), l'idéal engendré par 2 dans A, est un idéal maximal de A. Indication : distinguer les cas où $y \in (2)$ et $y \notin (2)$.
 - (c) Montrer que l'idéal engendré par 2 est maximal dans A (on pourra utiliser le fait que A est isomorphe à un quotient de $\mathbf{Z}[X]$).
 - (d) Montrer que ${\cal A}$ est principal.

Université de Paris Saclay M1 MF 2024-2025

Exercices complémentaires de la semaine 1

EXERCICE 5. Soit A un anneau factoriel. On suppose qu'il vérifie le théorème de Bezout, i.e. pour tous $a,b\in A$ premiers entre eux, il existe $u,v\in A$ avec ua+vb=1.

- **1.** Montrer que si $a, b \in A$ ont pour pgcd d, alors il existe $u, v \in A$ avec ua + bv = d.
- **2.** Montrer que si une famille finie $a_1, ..., a_n$ d'éléments de A a pour pgcd 1, alors il existe des éléments $u_1, ..., u_n$ de A avec $\sum_{i=1}^n u_i a_i = 1$.
- 3. Montrer que si I est un idéal de A, alors il existe une famille finie d'éléments de I dont le pgcd est le pgcd de tous les éléments de I.
- **4.** En déduire que A est principal.

EXERCICE 6. Le radical de Jacobson d'un anneau commutatif A est l'intersection de tous les idéaux maximaux de A. On le note $\operatorname{rad} A$.

- **1.** Soit A un anneau. Montrer qu'un élément a est dans le radical de A si, et seulement si, pour tout $x \in A$, 1 ax est inversible.
- **2.** Toujours en supposant que A est commutatif, montrer que si $x \in A$ est nilpotent, alors 1-ax est inversible, pour tout élément $a \in A$.
- 3. Toujours dans le cas commutatif, montrer que le radical de A est le plus grand idéal de A tel que 1-x est inversible pour tout $x \in \operatorname{rad} A$.
- **4.** Toujours dans le cas où A est commutatif, soit I un idéal dont tous les éléments sont nilpotents. Montrer que $I \subseteq \operatorname{rad} A$.
- **5.** Calculer le radical de \mathbf{Z} , $\mathbf{R}[X]$, $\mathbf{Z}/n\mathbf{Z}$ (pour un entier n>1).

Exercices fondamentaux de la semaine 2

EXERCICE 7. Montrer qu'un polynôme $P(X,Y) \in \mathbf{Z}[X,Y]$ est tel que $P(t^2,t^3) = 0$ pour tout $t \in \mathbf{Z}$ si, et seulement si, il existe un polynôme $Q(X,Y) \in \mathbf{Z}[X,Y]$ tel que $P(X,Y) = (X^3 - Y^2) \cdot Q(X,Y)$. En déduire un isomorphisme de \mathbf{Z} -algèbres

$$\mathbf{Z}[X,Y]/(X^3-Y^2) \cong \{P \in \mathbf{Z}[T] : P'(0) = 0\} \cong \mathbf{Z}[T^2,T^3].$$

EXERCICE 8. Soit k un corps. On note F = k(X) le corps des fractions rationnelles.

- **1.** Soient $R_1 = P_1/Q_1, \ldots, R_s = P_s/Q_s$ des éléments de F, avec $P_i \in k[X]$ et Q_i non nul dans k[X] pour tout i de $\{1, \ldots, s\}$. Soit B la sous-k-algèbre de F engendrée par R_1, \ldots, R_s . Montrer qu'il existe un polynôme non nul $G \in k[X]$ tel que $B \subseteq (k[X])[G^{-1}]$.
- **2.** En déduire que F n'est pas de type fini en tant que k-algèbre.

EXERCICE 9. Soient B un anneau, L un sous-anneau de B et A un sous-anneau de L. On suppose que L est un corps, que B est un L-espace vectoriel de dimension finie, et que B est aussi une A-algèbre de type fini. On se propose de montrer que L est une A-algèbre de type fini. Soient $\alpha_1, \ldots, \alpha_n$ dans B tels que $B = A[\alpha_1, \ldots, \alpha_n]$.

1. Soit β_1,\ldots,β_m une base de B sur L, avec $\beta_1=1$. On écrit

$$\beta_i \beta_j = \sum_{k=1}^m a_{ijk} \beta_k; \quad \alpha_i = \sum_{j=1}^m b_{ij} \beta_j,$$

avec $a_{ijk}, b_{ij} \in L$. Soit C la sous A-algèbre de L engendrée par les a_{ijk} et les b_{ij} . Montrer que tout élément x de B s'écrit :

$$x = \sum_{i=1}^{m} \lambda_i \beta_i,$$

où les λ_i sont dans C.

2. En déduire que L=C, et conclure.

EXERCICE 10 — LEMME DE ZARISKI. Cet exercice utilise les exercices 8 et 9. Soient $k \subset K$ deux corps, tels que K soit une k-algèbre de type fini. Le but de l'exercice est de montrer que K est un k-espace vectoriel de dimension finie. Pour cela on écrit $K = k[\alpha_1, \dots, \alpha_n]$, et on raisonne par récurrence en supposant le résultat vrai jusqu'à n-1, le cas n=0 étant trivial.

- **1.** On pose $L = k(\alpha_1)$. Comparer K et $L[\alpha_2, \ldots, \alpha_n]$, et en déduire que K est de dimension finie sur L.
- **2.** En utilisant l'exercice 9, montrer que L est une k-algèbre de type fini.
- 3. En utilisant l'exercice 8, montrer que α_1 est racine d'un polynôme unitaire de k[X], puis que L est de dimension finie sur k.
- 4. En déduire le résultat annoncé.

EXERCICE 11 — THÉORÈME DES ZÉROS DE HILBERT. Cet exercice utilise le résultat de l'exercice 10. Soit k un corps.

^{1.} C'est le corps des fractions de $k[lpha_1]$.

Université de Paris Saclay M1 MF 2024-2025

1. Soient a_1,\ldots,a_n dans k. Montrer que le morphisme $u:P\mapsto P(a_1,\ldots,a_n)$ de $k[X_1,\ldots,X_n]$ dans k est surjectif de noyau l'idéal $J=\langle X_1-a_1,\ldots,X_n-a_n\rangle$.

On suppose dans la suite que k est algébriquement clos et on se donne I un idéal maximal de $k[X_1,\ldots,X_n]$.

- **2.** Montrer que le corps $L=k[X_1,\ldots,X_n]/I$ est isomorphe (en tant que k-algèbre) à k. Indication : On appliquera le résultat principal de l'exercice 12.
- **3.** En déduire qu'il existe a_1,\ldots,a_n dans k tel que I soit l'idéal J du **1.**, c'est-à-dire que I est l'ensemble des polynômes $P\in k[X_1,\ldots,X_n]$ tels que $P(a_1,\ldots,a_n)=0$.

EXERCICE 12. Montrer que les polynômes suivants sont irréductibles.

1. Pour n > 0 et p premier, $X^n - p$ sur \mathbf{Q} ;

4. Pour n > 0, $X^n - T \operatorname{sur} K(T)$ ($K \operatorname{un corps}$);

- **2.** $X^4 + X + 1 \operatorname{sur} \mathbf{Q}$;
- **3.** $X^6 + X^2 + 1 \text{ sur } \mathbf{Q}$;

5. $1+X+\cdots+X^{p-1}$ sur \mathbf{Q} , pour p premier.

Exercices complémentaires de la semaine 1

EXERCICE 13 — ANNEAU LOCAL. Un anneau est dit local s'il n'admet qu'un seul idéal maximal.

- 1. Montrer que A est local si, et seulement si, l'ensemble de ses éléments non inversibles est un idéal et que, dans ce cas, cet idéal est l'unique idéal maximal.
- **2.** Montrer que A est local si, et seulement si, pour tout élément $x \in A$, 1-x ou x est inversible.
- 3. Un élément $x \in A$ est dit *idempotent* si $x^2 = x$. Montrer que si A est un anneau local, alors ses seuls idempotents sont 0 et 1. Donner un exemple d'anneau pour lequel la réciproque est fausse.
- **4.** Soit k un corps et n>0 un entier. Montrer que $k[X]/(X^n)$ est un anneau local et donner son idéal maximal.
- 5. Soit p un nombre premier, montrer que la localisation $\mathbf{Z}_{(p)}$ par rapport à l'idéal premier (p) est un anneau local et donner son idéal maximal.

EXERCICE 14. Soit $Q \in \mathbf{Z}[X]$ unitaire. On note z_1, \dots, z_n ses racines (pas forcément distinctes) dans \mathbf{C} . Montrer que

$$\prod_{i\neq j} (z_i - z_j) \in \mathbf{Z}.$$