

VGG网络搭建

VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。

网络结构:

VGG网络搭建 1

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
FC-1000					
		soft	-max		

网络中的亮点:

通过堆叠多个3×3的卷积核来代替大尺度卷积核(论文中提到,可以通过**堆叠两个3x3的卷积核替代5x5的卷积核,堆叠三个3x3的卷积核替代7x7的卷积核**)。

感受野:

在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野(receptive field)。通俗的解释是,输出feature map上的一个单元对应输入层上的区域大小。

VGG网络搭建 2

感受野计算公式:

$$F(i) = (F(i+1) - 1) \times Stride + Ksize$$

F(i)为第i层感受野, Stride为第i层的步距, Ksize为卷积核或池化核尺寸

Feature map: F = 1

Pool1: $F = (1 - 1) \times 2 + 2 = 2$ Conv1: $F = (2 - 1) \times 2 + 3 = 5$

Ş

如图,最上层为输出,输出对应的一格相当于池化层的2×2,相当于卷积层的5×5.

代码:

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/195df173-287 6-45c9-b60f-09648517709e/VGG.zip

VGG网络搭建