

Opracowanie aplikacji mobilnej do zajęć laboratoryjnych w wybranym języku programowania

Daniel Talarek

Promotor

dr inż. Grzegorz Struzikiewicz

Cel pracy

Celem niniejszej pracy dyplomowej jest opracowanie aplikacji mobilnej wspomagającej realizację wybranych zajęć laboratoryjnych na Wydziale Mechanicznym Politechniki Krakowskiej dla urządzeń z systemem Android przy użyciu framework'a React-native oraz języka programowania JavaScript.

Zakres pracy

Politechnika Krakowska im. Tadeusza Kościuszki

Zakres pracy obejmuje następujące zagadnienia:

- Przeprowadzenie analizy oraz zapoznanie z literaturą na temat tworzenia oprogramowania w React Native
- Przeprowadzenie analizy literatury na temat procesów obróbki skrawaniem
- Zapoznanie się z wybranym środowiskiem programistycznym oraz językiem programowania JavaScript
- Zapoznanie ze sposobem realizacji zajęć laboratoryjnych oraz wzorami sprawozdań, które obowiązują na Wydziale Mechanicznym Politechniki Krakowskiej w zakresie wybranych ćwiczeń dotyczących podstaw obróbki skrawaniem.
- Stworzenie aplikacji, która umożliwia studentom:
 - Wprowadzenie i usuwanie danych do aplikacji
 - Wczytywanie danych z pamięci urządzenia mobilnego
 - Automatyczne kalkulacje i obliczanie wymaganych wartości parametrów na podstawie wprowadzonych danych
 - Automatyczne kreowanie wykresów w programie na podstawie danych wprowadzonych i wyliczonych
 - Korzystanie z pomocy i wyświetlanie na ekranie urządzenia mobilnego informacji dotyczących ćwiczeń laboratoryjnych
- Test aplikacji w emulatorze oraz na urządzeniach z systemem Android

Co to jest React Native?

 React Native to framework

- Został stworzony przez grupę Facebook.
- Umożliwia tworzenie aplikacji mobilnych z użyciem JavaScript na platformy iOS i Android
- Obecnie jeden z najbardziej używanych narzędzi

Aplikacja E - STUDENT

Aplikacja obejmuje 4 ćwiczenia laboratoryjne z podstaw obróbki skrawaniem:

- Toczenie i Wytaczanie
- Wiercenie, Rozwiercanie i Pogłębiabnie
- Frezowanie
- Obróbka uzębień i uzwojeń

WIERCENIE, ROZWIERCANIE I POGŁĘBIANIE

I. Cel ćwiczenia

Celem ćwiczenia jest praktyczne zapoznanie studentów z rozwiązaniami konstrukcyjnymi wierteł, rozwiertaków i pogłębiaczy oraz z określaniem zależności kinematycznych i technologicznych procesów wiercenia, rozwiercania i poglebiania.

IV. Przebieg ćwiczenia

Zadanie laboratorvine 1.

A) Ustalić warunki skrawania. Przeprowadzić obróbkę przedmiotu wg szkicu.

 $D = 16.5 \text{ [mm]}; d_l = 13H7 \text{ [mm]}; l = 20 \text{ [mm]}$

Tabela 1

Material obrabiany: dural Pa7

Rm = 400 MPa

Obrabiarka: FND 32

ośrodek obróbkowy: emulsja

1.p.	Zabiegi		niary ędzia		niary oru	Parametry skrawania					
		Z	d	D_0	l	g ₂	f	$f_{\bar{a}}$	y _e	n	y _c
				mm		mm	mm/ohr	mm/ostrze	mm/min	oky/min	m/min
1	Wiercenie	2	11,2	11,4	20				50	560	
2	Pogłębianie	4	16,5	16,5	5				25	140	
3	Powiercanie	-	-	-	-	-	-	-	-	-	-
4	Rozwiercanie	4	12,7	12,7	15				25	140	
	zgrubne										
5	Rozwiercanie	8	13H7	13,0	15				25	90	
	wykańczające			1							

1.p.	Zabiegi	Czas	Wydajność	
-	_	masz.	Obj. Pow.	
		Ĺю	Qu Qx	
		min	mm³/min	mm²/min
1	Wiercenie			
2	Pogłębianie			
3	Powiercanie			
4	Rozwiercanie			
	zgrubne			
5	Rozwiercanie			
	wykańczające			

B) Dla wybranego zabiegu:

a) Obliczyć czas maszynowy:

$$t_m = \frac{L_d + L + L_w}{f * n} * i \text{ [min]}; \quad L_{3K} = 2 - 3 \text{ mm}; \qquad L_{3C} = 0.3*D_o$$

b) Obliczyć wydajność objętościową i powierzchniową:

$$Q_{k} = 1000 \cdot g_{k} \cdot f \cdot y_{k} = \dots \qquad [\text{mm}^{3}/\text{min}]$$

$$Q_{k} = 1000 \cdot f \cdot y_{k} = \dots \qquad [\text{mm}^{2}/\text{min}]$$

c) Określić wymiary i przekrój warstwy skrawanej dla zabiegu wiercenia (szkic i obliczenia):

$$g_R = \dots; f = \dots; A = \dots$$

Zadanie laboratoryjne 2.

Dokładność wymiarowo-kształtowa otworów.

- A) Porównać dokładność wymiarowo-kształtowa następujących otworów:
 - otwór I - wiercenie Ø18;
 - wiercenie Ø11, powiercanie Ø18; otwór II
 - otwór III wiercenie Ø17.5, rozwiercanie zgrubne Ø17.8;
 - otwór IV wiercenie Ø17.5, rozwiercanie zgrubne Ø17.8;

rozwiercanie wykańczające Ø18 H7;

- B) Obliczyć:
 - błąd wymiaru: $\Delta d = d_{max} d_{nom}$ (rozbicie)
 - błąd kształtu: $\Delta K = d_{max} d_{min}$ (błąd kołowości)

Materiał obrabiany: St7

Obrabiarka: FND 32

ciecz obróbkowa: emulsja olejowa

Tabela 2

]									
	Nr	d_{nom}	n	y _c	f	dwar	donie	4d	ΔK
	otworu	mm	obt/min	m/min	mm/obr	mm	mm	mm	mm
	I	18	315	~18	0,32	18,24	18,21		
	II	18	315	~18	0,32	18,22	18,20		
	III	17.8	315	~18	0,32	17,805	17,79		
	IV	18H7	315	~18	0,32	18,015	18,01		

C) Określić błąd wymiaru 4d oraz kształtu 4K w funkcji posuwu i prędkości skrawania dla wiertła prawidłowo zaostrzonego (symetryczne krawedzie) i nieprawidłowo zaostrzonego (niesymetryczne krawędzie) - tab. 3.

Rozkład sił na wiertle kretym [4]:

Fe− siła osiowa

E - siła odporowa F. - siła obwodowa

Tabela 3

Materiał obrabiany: St7; narzędzie: NWKc Ø19.

Obrabiarka:, ośrodek obróbkowy: emulsja olejowa.

Wiertło z krawędziami symetrycznymi: $d_{nom} = 19 \ mm$

n	¥6	f	duas	dair	4d	ΔK
obr/min	m/min	mm/obr	mm	mm	mm	mm
125	7,5		19,39	19,37		
180	10,7	0,25	19,43	19,41		
315	18,8		19,44	19,40		
		0,1	19,50	19,47		
180	10,7	0,25	19,43	19,41		
		0,40	19,45	19,43		

Wiertło z krawędziami niesymetrycznymi: dnom = 19 mm

п	y.	f	duas	duir	4d	∆K
obr/min	m/min	mm/obr	mm	mm	mm	mm
125	7,5		20,42	20,39		
180	10,7	0,25	20,58	20,56		
315	18,8		20,58	20,57		
		0,1	20,68	20,66		
180	10,7	0,25	20,94	20,89		
		0.40	20.80	20.75		

V. Zadania do wykonania

- Wykonać histogramy Δd i ΔK dla różnie obrobionych otworów według
- 2. Według danych z tabeli 3 wykonać wykresy Δd =f(y₆, f=const.) i ΔK = $f(v_s, f = const.)$ oraz $\Delta d = f(f, v_s = const.)$ i $\Delta K = f(f, v_s = const.)$

Aplikacja E-Student

Główne etapy powstawania aplikacji:

- Stworzenie głównego ekranu
- Przechodzenie pomiędzy ekranami
- Zapisywanie i usuwanie danych
- Wczytywanie danych
- Obliczanie parametrów
- Rysowanie wykresów

Główny ekran

Politechnika Krakowska im. Tadeusza Kościuszki

Wydział Mechaniczny E-student

W1 - TOCZENIE I WYTACZANIE

W2 - WIERCENIE, ROZWIERCANIE I POGŁĘBIANIE

W3 - FREZOWANIE

W4 - OBRÓBKA UZĘBIEŃ I UZWOJEŃ

Przechodzenie pomiędzy ekranami

```
const Stack = createNativeStackNavigator();
/ function App() {
   return (
     <NavigationContainer>
       <Stack.Navigator initialRouteName="Home">
         <Stack.Screen name="E-student" component={HomeScreen} />
         <Stack.Screen name="chart" component={chart} />
         <Stack.Screen name="W2" component={W2} />
         <Stack.Screen name="W1" component={W1} />
         <Stack.Screen name="W3" component={W3} />
         <Stack.Screen name="W1third" component={W1third} />
         <Stack.Screen name="W4" component={W4} />
         <Stack.Screen name="W1second" component={W1second} />
         <Stack.Screen name="W3table" component={W3table} />
         <Stack.Screen name="W3Table2" component={W3Table2} />
         <Stack.Screen name="W3podsumowanie" component={W3podsumowanie} />
         <Stack.Screen name="W3podsumowanie2" component={W3podsumowanie2} />
         <Stack.Screen name="W3chart" component={W3chart} />
         <Stack.Screen name="W2zdjecie" component={W2zdjecie} />
         <Stack.Screen name="W2tolerancie" component={W2tolerancie} />
         <Stack.Screen name="W2table" component={W2table} />
         <Stack.Screen name="W2podsumowanie" component={W2podsumowanie} />
         <Stack.Screen name="W2table2" component={W2table2} />
         <Stack.Screen name="W2podsumowanie2" component={W2podsumowanie2} />
         <Stack.Screen name="W2table3" component={W2table3} />
         <Stack.Screen name="W2chart" component={W2chart} />
         <Stack.Screen name="W4table" component={W4table} />
         <Stack.Screen name="W4podsumowanie" component={W4podsumowanie} />
         <Stack.Screen name="W0help" component={W0help} />
         <Stack.Screen name="W2help" component={W2help} />
         <Stack.Screen name="W3help" component={W3help} />
         <Stack.Screen name="W4help" component={W4help} />
       </Stack.Navigator>
     </NavigationContainer>
   );
```


Wydział Mechaniczny

□ 🗦 ... 🗆

E-student

W1 - TOCZENIE I WYTACZANIE

W2 - WIERCENIE, ROZWIERCANIE I POGŁEBIANIE

W3 - FREZOWANIE

W4 - OBRÓBKA UZĘBIEŃ I UZWOJEŃ

Zapisywanie i usuwanie danych

```
<Text style={styles.bold}>Wprowadz nazwe Tokarki oraz Moc Tokarki</Text>
<View style={styles.textstyle} >
<TextInput style={styles.input}
 placeholder="Nazwa Tokarki"
 onChangeText={(text) => setTokarka(text)}
<TextInput style={styles.input}
 placeholder="Ps"
 onChangeText={(text) => setMocTokarka(text)}
</View>
                                                                           Mechaniczny
<View style={styles.textstyle} >
<Text style={styles.nazwy}>Tokarka : {Tokarka}</Text>
<Text style={styles.nazwy}>Ps[kW] : {MocTokarka}</Text>
</View>
<View style={styles.mniejszaprzerwa}></View>
<View style={styles.button}>
<TouchableHighlight style={styles.viewboxbutton} onPress={()=>saveTokarka()} underlayColor="white">
<Text style={styles.buttoncolor}>
zapisz
</Text>
</TouchableHighlight>
<TouchableHighlight style={styles.viewboxbutton} onPress={()=>removeTokarka()} underlayColor="white">
<Text style={styles.buttoncolor}>
usuń
</Text>
</TouchableHighlight>
</View>
```


Zapisywanie i usuwanie danych

```
const saveTokarka = async()=>{
  try{
        await AsyncStorage.setItem("MyTokarka", Tokarka);
        await AsyncStorage.setItem("MyMocTokarka", MocTokarka);
  }catch(err)
    alert(err)
const removeTokarka = async()=>{
  try{
      await AsyncStorage.removeItem("MyTokarka")
      await AsyncStorage.removeItem("MyMocTokarka")
  catch(err){
      alert(err)
  finally{
      setTokarka("")
      setMocTokarka("")
```


Wczytywanie danych

```
const loadTokarka = async () =>{
 try{
   let Tokarka = await AsyncStorage.getItem("MyTokarka")
    let MocTokarka = await AsyncStorage.getItem("MyMocTokarka")
   if(Tokarka !==null){
      setTokarka(Tokarka)
    if(MocTokarka !==null){
        setMocTokarka(MocTokarka)
 catch(err){
   alert(err)
                                                Mechaniczny
 setisLoading(true)
```


Obliczanie parametrów

Wydział Mechaniczny

Prędkość skrawania:

$$v_c = \frac{\pi * D * n}{1000} [m/min]$$

(1)

gdzie:

D – średnica przedmiotu [mm]

n – prędkość obrotowa przedmiotu [obr/min]

Tokarka : Masterturn 400x1000 Ps[kW] : 7.5

Materiał obrabiany : Materiał PA-7

Narzędzie: PTGNR2020K16 Kr: 91 Kr': 29

13:48

W1third

ap : 0.5 Ośrodek obróbkowy : Bez chłodzenia

d[mm]	n[obr/min]	vc[m/min]	f[mm/obr]	re[mm]	Ralur
27	1000	84.78	0.077	0.8	0.44
27	1400	118.69	0.153	0.8	0.96
27	1600	135.65	0.23	0.8	2.18
35	1800	197.82	0.307	0.8	3.97
27	2000	169.56	0.383	0.8	5.93
27	2200	186.52	0.211	1.2	1.56
27	1200	101.74	0.211	0.8	1.63
40	2000	251.20	0.211	0.4	3.3

EDYCJA TABELI

PODSUMOWANIE-WYKRESY

POWRÓT DO STRONY POCZĄTKOWEJ

POWRÓT DO STRONY GŁÓWNEJ

Rysowanie wykresów

Politechnika Krakowska im. Tadeusza Kościuszki


```
const chartConfig = {
  color: (opacity = 255) => `rgba(255, 255, 255, ${opacity})`,
    strokeWidth: 2, // optional, default 3
    barPercentage: 0.5,
    useShadowColorFromDataset: false // optional
if(isLoading==true){
const data = {
  labels: [JSON.parse(vc1), JSON.parse(vc2), JSON.parse(vc3), JSON.parse(vc4), JSON.parse(vc5)],
  datasets: [
      data: [JSON.parse(ra1), JSON.parse(ra2), JSON.parse(ra3), JSON.parse(ra4), JSON.parse(ra5)],
      color: (opacity = 1) => `rgba(255, 255, ${opacity})`, // optional
      strokeWidth: 2 // optional
  legend: ["Ra w funkcji posuwu f"] // optional
```

13:55 👄 W1second chart Ra w funkcji posuwu f Ra w funkcji promienia naroża re 3.30

2.86

□ **佘...** □

Wnioski

- Cel pracy został osiągnięty:
 - Aplikacja działa na telefonach z systemem Android.
 - Została stworzona przy użyciu framework'a React Native oraz języka programowania JavaScript.
 - Obejmuje zakres 4 ćwiczeń laboratoryjnych dotyczących podstaw obróbki skrawaniem.

Kierunki dalszego rozwoju aplikacji

• Opracowanie aplikacji dla prowadzącego zajęcia, która pełni funkcję serwera.

- Opracowanie funkcjonalności :
 - Aplikacja może się również uruchamiać na systemach iOS
 - Generowania raportów np. do pliku pdf
- Dodanie kolejnych ćwiczeń laboratoryjnych do aplikacji.

Dziękuję za uwagę.

