

Effect Graph: Effect Relation Extraction for Explanation Generation

by <u>Jonathan Kobbe</u>, Ioana Hulpuş, Heiner Stuckenschmidt

Example argument:

Legal abortions protect women.

Goal: Find possible explanations.

- 1. Abortions prevent the harm caused by giving birth and being pregnant.
- 2. Legal abortions strengthen the women's right to self-determination.
- 3. Abortions release women from the financial burden of raising a child.

Intuition: Explain an effect relation by chaining other effect relations. Effect Relation: Legal abortions –[protect]→ women

Possible explanations with effect relations:

- 1. Abortions –[prevent]→ harm –[hurts]→ women
- 2. Legal abortions $-[strengthen] \rightarrow self-determination -[empower] \rightarrow women$
- 3. Abortions $-[release] \rightarrow financial burden <math>-[strain] \rightarrow women$

Effect Relation Extraction & Graph Construction

Text resources:

Online debate platforms & Wikipedia in simple English

Effect Lexicon (Rashkin 16, Kobbe 20):

Positive Effect Words: increase, help, permit, cause, create, ...

Negative Effect Words: decrease, damage, forbid, ban, reduce, ...

Extract Subject-Predicate-Object (SPO) triples using dependency parsing where:

- P is an effect word.
- S and O are noun phrases linking to Wikipedia entries.
- → The lemmas of S and O become *nodes* in the graph which are connected by a directed edge labeled with P.

Explanation Generation

Consistency Checking & Node Ranking:

High degree in subgraph, Low degree in effect graph

Evaluation of the Effect Graph

Evaluation of the Effect Relation Extraction

By the subtasks of Al-Khatib 20:

Subtask	Al-Khatib	EREx
Relation Classification (macro F1)	0.79	0.65
Relation Type Class. (macro F1)	0.77	0.77
Subject Identification (accuracy)	0.69	0.71
Object Identification (accuracy)	0.28	0.35

The evaluation was done on the crowd-sourced dataset of Al-Khatib 20. Since the train-test split is unknown to us, we evaluated on the full dataset.

Evaluation of the Final Graph

Baseline: Stanford CoreNLP's OpenIE system for finding SPO triples, instead of dependency parsing.

Precision:

Given a random edge of the graph, how likely was it extracted correctly?

- → We randomly select 250 edges per graph
- → Each edge is annotated by 3 crowd-workers and myself:

Statement: Throughout history, nuclear weapons have killed many innocents. **Relation**: history (may) **negatively** affect innocents

Assuming the statement is correct, is the Relation also correct?

Agreement is low: Fleiss 0.15 for the workers,
Spearman 0.56 between their aggregated label and mine

Precision	OpenIE	EREx
Crowd Annotations	0.70	0.80
Expert Annotations	0.34	0.54

Recall:

Given any effect relation, how likely is it contained in the graph?

- → We manually extracted effect relations for 180 arguments.
- → "known" means these arguments were included when building the graph.

Recall	OpenIE	EREx
known	0.14	0.09
unknown	0.09	0.06