Graph Mining SD212

1. Graphs as sparse matrices

Thomas Bonald

2019 - 2020

Motivation

Real graphs are sparse

Dataset	#nodes	#edges	Density	
Flights	2,939	30,500	$pprox 10^{-3}$	
Amazon products	335k	925k	$pprox 10^{-5}$	
Actors	382k	33M	$pprox 10^{-4}$	
Wikipedia (en)	12M	378M	$pprox 10^{-6}$	
Twitter	42M	1.5G	$pprox 10^{-6}$	
Friendster	68M	2.5G	$pprox 10^{-7}$	

Outline

- 1. Sparse matrices
- 2. Graphs as sparse matrices
- 3. The friendship paradox

Sparse matrices

```
    5
    6
    9
    0
    2
    2
    0
    4

    7
    0
    0
    0
    7
    0
    0
    0

    0
    0
    5
    0
    0
    0
    5
    5

    5
    0
    0
    0
    0
    3
    0
    0

    6
    0
    0
    0
    0
    0
    9
    0

    0
    0
    5
    0
    0
    0
    9
    0
```

Coordinate format

$$\begin{bmatrix} 5 & 6 & 9 & 2 & 2 & 4 \\ 7 & & 7 & & \\ & 5 & & 5 & 5 \\ 5 & & & 3 & \\ 6 & & & & 3 \\ & 5 & & 9 & \end{bmatrix}$$

$$\begin{aligned} \text{data} &= (5,6,9,2,2,4,7,7,5,5,5,5,3,6,3,5,9) \\ \text{row} &= (0,0,0,0,0,0,1,1,2,2,2,3,3,4,4,5,5) \\ \text{col} &= (0,1,2,4,5,7,0,4,2,6,7,0,5,0,7,2,6) \end{aligned}$$

Compressed Sparse Row

$$\begin{aligned} \text{data} &= (5,6,9,2,2,4,7,7,5,5,5,5,3,6,3,5,9) \\ \text{indices} &= (0,1,2,4,5,7,0,4,2,6,7,0,5,0,7,2,6) \\ \text{indptr} &= (0,6,8,11,13,15,17) \end{aligned}$$

Compressed Sparse Column

$$\begin{aligned} \text{data} &= (5,7,5,6,6,9,5,5,2,7,2,3,5,9,4,5,3) \\ \text{indices} &= (0,1,3,4,0,0,2,5,0,1,0,3,2,5,0,2,4) \\ \text{indptr} &= (0,4,5,8,8,10,12,14,17) \end{aligned}$$

List of Lists

 $\begin{aligned} &\mathsf{data} = [[5,6,9,2,2,4],[7,7],[5,5,5],[5,3],[6,3],[5,9]] \\ &\mathsf{rows} = [[0,1,2,4,5,7],[0,4],[2,6,7],[0,5],[0,7],[2,6]] \end{aligned}$

Use cases

Fast	COO	CSR	CSC	LIL
Dot product		✓	✓	
Arithmetic		✓	✓	
Row slicing		\checkmark		
Column slicing			✓	
Modification				✓
Loading	✓			

Outline

- 1. Sparse matrices
- 2. Graphs as sparse matrices
- 3. The friendship paradox

Graph

Adjacency matrix:

$$A_{ij} = \left\{ egin{array}{ll} 1 & ext{if } i \sim j \\ 0 & ext{otherwise} \end{array}
ight.$$

Weighted graph

Adjacency matrix:

$$A_{ij} = \left\{ egin{array}{ll} w_{ij} & \mbox{if } i \sim j \ 0 & \mbox{otherwise} \end{array}
ight.$$

Directed graph

Adjacency matrix:

$$A_{ij} = \left\{ egin{array}{ll} 1 & ext{if } i
ightarrow j \ 0 & ext{otherwise} \end{array}
ight.$$

Bipartite graph

Biadjacency matrix:

$$B_{ij} = \left\{ egin{array}{ll} 1 & ext{if } i \sim j \ 0 & ext{otherwise} \end{array}
ight.$$

Outline

- 1. Sparse matrices
- 2. Graphs as sparse matrices
- 3. The friendship paradox

Your friends have more friends than you on average.

Node sampling

Consider a graph of n nodes and m edges, without self-loops.

Let X be a random node and D its degree.

$$E_0(D)=\frac{2m}{n}$$

Edge sampling

Select one of the edges, uniformly at random:

Bias

The degree D has the size-biased distribution. In particular,

$$E_{\infty}(D) \geq E_0(D)$$

Neighbor sampling

Select a node, then one of its neighbors uniformly at random:

The friendship paradox

$$\mathrm{E}_1(D) \geq \mathrm{E}_0(D)$$

Random walk

Select a node, then walk t steps at random:

Let π_t be the distribution of X, as a row vector:

Stationary distribution

If the graph is connected and not bipartite,

$$\lim_{t\to +\infty} \pi_t = \frac{d^T}{2m}$$