Wykład 6 Iloczyn macierzy

Mnożenie macierzy definiujemy tak, aby było zgodne z superpozycją przekształceń liniowych.

Definicja 1 *Iloczynem macierzy* $B = [b_{ij}]_{p \times m}$ $i A = [a_{ij}]_{m \times n}$ nazywamy macierz

$$C = B \cdot A = [c_{ij}]_{p \times n}, \quad c_{ij} = \sum_{k=1}^{m} b_{ik} a_{kj}.$$

Uwaga. Iloczyn $B \cdot A$ jest określony, gdy macierz B ma tyle kolumn, ile wierszy ma macierz A. Uwaga. Elementy i-tego wiersza macierzy B mnożymy odpowiednio przez elementy j-tej kolumny macierzy A i dodajemy do siebie - dostajemy element c_{ij} .

Niech V, W, U - skończenie wymiarowe przestrzenie liniowe nad ciałem \mathbb{K} , niech $\phi: V \to W, \psi: W \to U$ - przekształcenia liniowe.

Wtedy $\psi \circ \phi : V \to U$ też jest przekształceniem liniowym i zachodzi:

$$M_{\mathfrak{C}}^{\mathcal{A}}(\psi \circ \phi) = M_{\mathfrak{C}}^{\mathfrak{B}}(\psi) \cdot M_{\mathfrak{B}}^{\mathcal{A}}(\phi),$$

gdzie \mathcal{A} - baza V, \mathcal{B} - baza W, \mathcal{C} - baza U.

Własności działań na macierzach

Zakładamy, że macierze A, B, C są takie, że działania są określone.

- 1. A + B = B + A
- 2. (A+B)+C=A+(B+C)
- 3. $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- 4. $A \cdot (B+C) = A \cdot B + A \cdot C$, $(B+C) \cdot A = B \cdot A + C \cdot A$
- 5. $\alpha \cdot (B+C) = \alpha \cdot B + \alpha \cdot C, \quad \alpha \in \mathbb{K}$
- 6. mnożenie macierzy **nie** jest przemienne tzn. istnieją macierze A i B takie, że $A \cdot B \neq B \cdot A$

Macierz jednostkowa stopnia n: $E_n = [e_{ij}]_{n \times n}, e_{ij} = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$

 E_n jest elementem neutralnym mnożenia macierzy (dla wszystkich macierzy, dla których to mnożenie jest określone).

Twierdzenie 1 Niech $\phi: V \to W$ - przekształcenie liniowe, \mathcal{A} - baza V, \mathcal{B} - baza W. Niech $v \in V$, $w \in W$. Wtedy

$$\phi(v) = w \iff M_{\mathcal{B}}^{\mathcal{A}}(\phi) \cdot v_{\mathcal{A}} = w_{\mathcal{B}}$$

Oznaczenie. v_A - wektor $v \neq V$ zapisany w bazie A.

Macierz zmiany bazy

Niech $id:V\to V$ - przekształcenie (liniowe) identycznościowe, $\mathcal A$, $\mathcal B$ - bazy przestrzeni liniowej V. Wtedy macierz

$$M_{\mathbf{A}}^{\mathcal{B}}(id)$$

nazywamy macierzą przejścia od bazy \mathcal{A} do bazy \mathcal{B} (lub macierzą zmiany bazy z \mathcal{A} na \mathcal{B}).

Czyli wektory z bazy \mathcal{B} wyrażamy przez wektory z bazy \mathcal{A} .

Uwaga.
$$M_{\mathcal{A}}^{\mathcal{B}}(id) \cdot v_{\mathcal{B}} = v_{\mathcal{A}}.$$

Uwaga.

$$\begin{array}{c|c} id_W \circ \phi \circ id_V \\ \hline V & id_V & V & \phi & W & id_W \\ \mathcal{A}_2 & & \mathcal{A}_1 & & \mathcal{B}_1 & & \mathcal{B}_2 \\ \end{array}$$

$$M_{\mathfrak{B}_2}^{\mathcal{A}_2}(\phi) = M_{\mathfrak{B}_2}^{\mathfrak{B}_1}(id_W) \cdot M_{\mathfrak{B}_1}^{\mathcal{A}_1}(\phi) \cdot M_{\mathcal{A}_1}^{\mathcal{A}_2}(id_V).$$