EXERCISE - III

SUBJECTIVE QUESTIONS

Sol.

1. Find the coefficients

(i) $x^7 \text{ in } \left(ax^2 + \frac{1}{bx}\right)^{11}$

Sol.

3. If the coefficients of the r^{th} , $(r + 1)^{th}$ and $(r + 2)^{th}$ terms in the expansion of $(1 + x)^{14}$ are in A.P., find r. **Sol.**

(ii) x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$

Sol.

(iii) Find the relation between a and b, so that these coefficients are equal.

Sol.

4. Find the term independent of x in the expansion of

(a)
$$\left[\sqrt{\frac{x}{3}} + \frac{\sqrt{3}}{2x^2} \right]^{10}$$

301.

(b)
$$\left[\frac{1}{2}x^{1/3} + x^{-1/5}\right]^8$$

Sol.

5. Find the sum of the series

$$\sum_{r=0}^{n} (-1)^{r} {}^{n}C_{r} \left[\frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \frac{15^{r}}{2^{4r}} + \dots up \text{ to m terms} \right]$$

Sol.

6. If the coefficients of 2nd, 3rd and 4th terms in the expansion of $(1 + x)^{2n}$ are in AP, show that $2n^2 - 9n + 7 = 0$.

Sol.

7. Given that $(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$, find

(i)
$$a_0 + a_1 + a_2 + \dots + a_{2n}$$
;

(ii)
$$a_0 - a_1 + a_2 - a_3 \dots + a_{2n}$$
;

(ii)
$$a_0 - a_1 + a_2 - a_3 \dots + a_{2n}$$
;
(iii) $a_0^2 - a_1^2 + a_2^2 - a_3^2 + \dots + a_{2n}^2$

8. If a, b, c and d are the coefficients of any four consecutive terms in the expansion of $(1 + x)^n$, $n \in N$, prove that $\frac{a}{a+b} + \frac{c}{c+d} = \frac{2b}{b+c}$.

Sol.

10. Prove that : ${}^{n-1}C_r + {}^{n-2}C_r + {}^{n-3}C_r + \dots + {}^rC_r = {}^nC_{r+1}$. **Sol.**

11. (a) Which is larger : $(99^{50} + 100^{50})$ or $(101)^{50}$. **Sol.**

9. Find the value of x for which the fourth term in the

expansion ,
$$\left(5^{\frac{2}{5}log_5\sqrt{4^{x}+44}}+\frac{1}{5^{log_5\sqrt[3]{2^{x-1}+7}}}\right)^{8} \text{ is } 336.$$

(b) Show that ${}^{2n-2}C_{n-2} + 2.{}^{2n-2}C_{n-1} + {}^{2n-2}C_n > \frac{4n}{n+1}$, $n \in \mathbb{N}, n > 2$.

Sol.

12. In the expansion of $\left(1+x+\frac{7}{x}\right)^{11}$ find the term not containing x.

Sol.

13. Show that coefficient of x^5 in the expansion of

 $(1 + x^2)^5$. $(1 + x)^4$ is 60.

14. Find the coefficient of x^4 in the expansion of (i) $(1 + x + x^2 + x^3)^{11}$ Sol.

(ii)
$$(2 - x + 3x^2)^6$$

15. Find numerically the greatest term in the expansion of

(i)
$$(2 + 3x)^9$$
 when $x = \frac{3}{2}$

Sol.

(ii)
$$(3 - 5x)^{15}$$
 when $x = \frac{1}{5}$

Sol.

16. Given
$$s_n = 1 + q + q^2 + \dots + q^n$$
 and

$$S_n = 1 + \frac{q+1}{2} + \left(\frac{q+1}{2}\right)^2 + \dots + \left(\frac{q+1}{2}\right)^n, q \neq 1.$$

Prove that ${}^{n+1}C_1 + {}^{n+1}C_2 \cdot s_1 + {}^{n+1}C_3 \cdot s_2 + \dots + {}^{n+1}C_{n+1} \cdot s_n = 2^n \cdot S_n.$

17. Prove that the ratio of the coefficient of x^{10} in $(1-x^2)^{10}$ & the term independent of x in $\left(x-\frac{2}{x}\right)^{10}$ is 1:32.

Sol.

19. Let $(1+x^2)^2$. $(1+x)^n = \sum_{K=0}^{n+4} a_{K.} x^K$. If a_1 , a_2 and a_3 are in AP, find n.

18. Find the term independent of x in the expansion

of
$$(1 + x + 2x^3) \left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$$
.

20. If the coefficient of a^{r-1} , a^r , a^{r+1} in the expansion of $(1 + a)^n$ are in arithmetic progression then prove that $n^2 - n(4r + 1) + 4r^2 - 2 = 0$. **Sol.**

22. Prove that $\sum_{K=0}^{n} {}^{n}C_{K} \sin Kx \cdot \cos(n-K)x = 2^{n-1} \sin nx$. **Sol.**

21. If
$${}^{n}J_{r} = \frac{(1-x^{n})(1-x^{n-1})(1-x^{n-2}).....(1-x^{n-r+1})}{(1-x)(1-x^{2})(1-x^{3})....(1-x^{r})}$$
, prove that ${}^{n}J_{n-r} = {}^{n}J_{r}$.

- **23.** The expressions 1 + x, $1 + x + x^2$, $1 + x + x^2 + x^3$,, $1 + x + x^2 + \dots + x^n$ are multiplied together and the terms of the product thus obtained are arranged in increasing powers of x in the form of $a_0 + a_1x + a_2x^2 + \dots$, then
- (a) how many terms are there in the product **Sol.**

(b) show that the coefficients of the terms in the product, equidistant from the beginning and end are equal.

Sol.

(c) show that the sum of the odd coefficients = the sum of the even coefficients = $\frac{(n+1)!}{2}$. Sol.

- **24.** Find the coefficients of
- (a) x^6 in the expansion of $(ax^2 + bx + c)^9$ Sol.

(b) $x^2y^3z^4$ in the expansion of $(ax - by + cz)^9$. **Sol.**

(c) $a^2b^3c^4$ d in the expansion of $(a - b - c + d)^{10}$

25. If
$$\sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r$$
 and $a_k = 1$ for all $k \ge n$,

then show that $b_n = {}^{2n+1}C_{n+1}$.

Sol.

26. Find the coefficient of x^r in the expression of $(x+3)^{n-1} + (x+3)^{n-2} (x+2) + (x+3)^{n-3} (x+2)^2 + ...$ $(x+2)^{n-1}$.

27. (a) Find the index n of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if

the 9th term of the expansion has numerically the greatest coefficient (n \in N). Sol.

28. Prove that $\frac{(72)!}{(36!)^2} - 1$ is divisible by 73.

- (b) For which positive values of x is the fourth term in the expansion of $(5 + 3x)^{10}$ is the greatest. Sol.
- **29.** (a) Find the number of divisors of the number N= 2000 C₁+2. 2000 C₂+3 2000 C₃ +....+ 2000 . 2000 C₂₀₀₀ Sol.

(b) Find the sum of the roots (real or complex) of the

equation $x^{2001} + \left(\frac{1}{2} - x\right)^{2001} = 0$.

Sol.

(ii) $(8+3\sqrt{7})^n$

Sol.

(iii)
$$(6+\sqrt{35})^n$$

Sol.

30. (a) Show that the integral part in each of the following is odd. $n \in N$.

(i)
$$(5+2\sqrt{6})^n$$

(b) Show that the integral part in each of the following is even. $n \in N$.

(i)
$$(3\sqrt{3}+5)^{2n+1}$$

Sol.

31. If $(7+4\sqrt{3})^n=p+\beta$ where n and p are positive integers and β is a proper fraction show that $(1-\beta)(p+\beta)=1$. **Sol.**

(ii) $(5\sqrt{5} + 11)^{2n+1}$

Sol.

32. If $(6\sqrt{6}+14)^{2n+1}=N$ and F be the fractional part of N, prove that NF = 20^{2n+1} (n \in N) **Sol.**

Sol.

- **33.** Prove that the integer next above $(\sqrt{3}+1)^{2n}$ contains 2^{n+1} as factor $(n \in N)$ **Sol.**
- **35.** Prove that $\frac{{}^{2n}C_n}{n+1}$ is an integer, \forall $n \in \mathbb{N}$. **Sol.**

34. Let I denotes the integral part and F the proper fractional part of $(3+\sqrt{5})^n$ where $n\in N$ and if ρ denotes the rational part and σ the irrational part of the same, show that $\rho=\frac{1}{2}(I+1)$ and $\sigma=\frac{1}{2}(I+2F-1)$.