

Module 3 Partial Differentiation and Application

Unit 3.3

Maxima and Minima of Function of Two Independent Variables

❖ Maxima:

A function of two variable, f(x, y) is said to be maximum at point (a, b) if f(a, b) > f(a + h, b + k) for some h, k.

❖ Maxima:

A function of two variable, f(x, y) is said to be minimum at point (a, b) if f(a, b) < f(a + h, b + k) for some h, k.

Method To find maxima or minima of a function of two variables

- 1) Given f(x, y), solve $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ for x and y simultaneously.
- 2) Suppose (a, b) is solution of above equations then it is called as Stationary Point.
- 3) Calculate the values of $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$, $t = \frac{\partial^2 f}{\partial y^2}$ at (a, b).

4) DECISION:

For point (a, b), K J Somaiya College of Engineering

- a. If $rt s^2 > 0$ and r < 0 or t < 0, f(x, y) is **maximum** at(a, b).
- b. If $rt s^2 > 0$ and r > 0 or t > 0, f(x, y) is **minimum** at (a, b).
- c. If $rt s^2 < 0$ then f(x, y) is **neither maximum nor minimum** at (a, b). Such point is known as a saddle point.
- d. If $rt s^2 = 0$, test fails.

SOME SOLVED EXAMPLES

1. Discuss the maxima and minima $x^3 + xy^2 - 12x^2 - 2y^2 + 21x + 10$. Solution:

We have
$$f(x, y) = x^3 + xy^2 - 12x^2 - 2y^2 + 21x + 10$$
.
 $f_x = 3x^2 + y^2 - 24x + 21$
 $f_y = 2xy - 4y$

We now solve the equations $f_x = 0$, $f_v = 0$

$$3x^2 + y^2 - 24x + 21 = 0 \dots \dots \dots \dots \dots (i)$$

and $2xy - 4y = 0$

 $\Rightarrow 2y(x-2) \Rightarrow x = 2 \text{ or } y = 0.$ When x = 2, (i) gives

$$12 + y^2 - 48 + 21 = 0$$

$$y^2 - 15 = 0 \qquad \therefore y^2 = 15 \qquad \therefore y = \pm \sqrt{15}.$$

: The possible stationary points are $(2, \sqrt{15})$, $(2, -\sqrt{15})$ When y = 0, (1) gives

$$3x^2 - 24x + 21 = 0 \Rightarrow x^2 - 8x + 7 = 0$$

$$(x-7)(x-1) = 0 : x = 7,1.$$

The other possible stationary points are (7, 0), (1, 0).

Now.

VIDYAVIHAR UNIVERSITY
$$r = f_{xx} = 6x - 24,$$

$$s = f_{xy} = 2y,$$

$$t = f_{yy} = 2x - 4$$

Hence, all stationary points of f(x, y) are (7,0), (1,0), $(2, \sqrt{15})$, $(2, -\sqrt{15})$ We write a tabular form and find Maxima and Minima

Sr. No.	Point	r	t	S	$rt - s^2$	Conclusion
1	(7,0)	18 > 0	10	0	180 > 0	(7,0) is minima.
2	(1,0)	-18 < 0	-2	0	36 > 0	(1,0) is maxima.
3	(2,√15)	-12 < 0	0	2√15	-60 < 0	Neither maxima nor minima
4	$(2, -\sqrt{15})$	-12 < 0	0	-2√15	-60 < 0	Neither maxima nor minima

Maximum Value at (1,0) is
$$f(1,0) = 1 + 0 - 12 - 0 + 21 + 10 = 20$$

Minimum Value at (7,0) is $f(7,0) = 343 + 0 - 588 - 0 + 147 + 10 = -88$.

2. Discuss the maxima & minima of $x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Solution:

Let
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$

$$f_x = \frac{\partial f}{\partial x} = 4x^3 - 4x + 4y$$

$$f_y = \frac{\partial f}{\partial y} = 4y^3 + 4x - 4y$$

We now solve the equations $f_x = 0$, $f_y = 0$ simultaneously,

$$4x^3 - 4x + 4y = 0 \Rightarrow x^3 - x + y = 0 \dots (i)$$

$$4y^3 + 4x - 4y = 0 \Rightarrow y^3 + x - y \dots (ii)$$

On adding (i) & (ii), we get

$$x^3 + y^3 = 0$$

$$\therefore (x+y)(x^2-xy+y^2)=0$$

$$x = -y$$

Substituting x = -y in eq (i),

$$x^3 - x - x = 0$$

$$\therefore x^3 - 2x = 0$$

$$\therefore x(x^2-2)=0$$

$$\therefore x = 0 \text{ or } x = \pm \sqrt{2}$$

Since $x = -y$,

For
$$x = 0 \Rightarrow y = 0$$

For
$$x = \sqrt{2} \Rightarrow y = -\sqrt{2}$$

For
$$x = -\sqrt{2} \Rightarrow y = \sqrt{2}$$

∴ Stationary points are (0,0), $(\sqrt{2}, -\sqrt{2})$ & $(-\sqrt{2}, \sqrt{2})$. ollege of Engineering

$$r = f_{xx} = \frac{\partial^2 f}{\partial x^2} = 12x^2 - 4$$

$$s = f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = 4$$

$$t = f_{yy} = \frac{\partial^2 f}{\partial y^2} = 12y^2 - 4$$

We write a tabular form and find Maxima and Minima

Sr. No.	Point	r	t	S	$rt - s^2$	Conclusion
1	(0,0)	-4<0	-4	4	0	Test fails.
2	$(\sqrt{2}, -\sqrt{2})$	20 > 0	20	4	384 > 0	$(\sqrt{2}, -\sqrt{2})$ is minima.
3	$\left(-\sqrt{2},\sqrt{2}\right)$	20 > 0	20	4	384 > 0	$(-\sqrt{2},\sqrt{2})$ is minima.

Minimum Value at $(\sqrt{2}, -\sqrt{2})$ and $(-\sqrt{2}, \sqrt{2})$ is

$$f(\sqrt{2}, -\sqrt{2}) = f(-\sqrt{2}, \sqrt{2}) = 4 + 4 - 4 - 8 - 4 = -8$$

3. Find the stationary values of $x^3 + y^3 - 3a xy$, a > 0

Solution:

We have
$$f(x, y) = x^3 + y^3 - 3a xy$$

 $f_x = 3x^2 - 3ay$,
 $f_y = 3y^2 - 3ax$

We now solve, $f_x = 0$, & $f_y = 0$.

$$x^2 - ay = 0 \implies y = x^2/a$$

and
$$y^2 - ax = 0$$

To eliminate y, we put $y = x^2/a$ in this equation.

$$x^4 - a^3 x = 0$$
 $x(x^3 - a^3) = 0$

Hence, x = 0 or x = a.

When $x = 0 \Rightarrow y = 0$ and when $x = a \Rightarrow y = a$.

∴ (0, 0) and (a, a) are stationary points.

Now,

$$r = f_{xx} = 6x$$
,
 $s = f_{xy} = -3a$
 $t = f_{yy} = 6y$
We write a tabular form and find Maxima and Minima

Sr. No.	Point	Jron	natly	asco	$rt-s^2$	Conclusion
1	(0,0)	0	-3 <i>a</i>	0	$-9a^2 < 0$	Neither maxima nor minima
2	(a, a)	6a > 0, as $a > 0$	-3a	6a	$27a^2 > 0$	(a, a) is minima.

Minimum Value at (a, a) is $f(a, a) = a^3 + a^3 - 3a^3 = -a^3$

4. Find the stationary values of $\sin x \cdot \sin y \cdot \sin (x + y)$.

Solution:

We have
$$f(x, y) = \sin x \cdot \sin y \cdot \sin (x + y)$$

 $f_x = \sin y \left[\cos x \cdot \sin (x + y) + \sin x \cdot \cos (x + y)\right] = \sin y \cdot \sin (2x + y)$
Similarly, $f_y = \sin x \cdot \sin (x + 2y)$

Now, we solve $f_x = 0$ and $f_y = 0$.

and
$$\sin x \sin (x + 2y) = 0 \Rightarrow \frac{1}{2} [\cos 2y - \cos(2x + 2y)] = 0 \dots (ii)$$

Equating (i) & (ii), we get

$$[\cos 2x - \cos(2x + 2y)] = [\cos 2y - \cos(2x + 2y)] \Rightarrow \cos 2x = \cos 2y$$

$$\Rightarrow x = y$$

From (i) we get,

$$\frac{1}{2}[\cos 2x - \cos 4x] = 0 \Rightarrow \cos 2x - (2\cos^2 2x - 1) = 0$$

$$\Rightarrow 2\cos^2 2x - \cos 2x - 1 = 0$$

$$\Rightarrow \cos 2x = 1 \text{ or } \cos 2x = -\frac{1}{2}$$

$$\Rightarrow 2x = 0 \text{ or } 2x = \frac{2\pi}{3} \Rightarrow x = 0 \text{ or } x = \frac{\pi}{3}$$

As
$$x = y$$
,

$$y = 0$$
 or $y = \frac{\pi}{3}$ VIDYAVIHAR UNIVERSIT

 \therefore (0, 0) and $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$ are possible stationary points.

$$r = f_{xx} = 2 \sin y \cdot \cos (2x + y)$$

$$s = f_{xy} = \cos y \cdot \sin (2x + y) + \sin y \cdot \cos (2x + y) = \sin (2x + 2y)$$

$$t = f_{yy} = 2\sin x \cdot \cos(x + 2y)$$

We write a tabular form and find Maxima and Minima

Sr. No.	Point	r	t	S	$rt-s^2$	Conclusion
1	(0,0)	0	0	0	0	Test Fails
2	$\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$	$-\sqrt{3} < 0$	$-\sqrt{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{9}{4} > 0$	$\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$ is maxima.

Maximum Value at
$$\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$$
 is $f\left(\frac{\pi}{3}, \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{3}\right) \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$

Divide 90 into three parts such that the sum of their products taken two at a time is maximum.

Solution:

Let three parts of the 90 are x, y & z.

$$\therefore x + y + z = 90 \dots \dots \dots (i)$$

Function to be maximized f(x, y) = xy + yz + zx

$$= xy + y (90 - x - y) + x (90 - x - y) \quad from(i)$$

= $90x + 90y - xy - x^2 - y^2$

$$f_x = 90 - y - 2x,$$

$$f_{y} = 90 - x - 2y$$

Solving $f_x = 0 \& f_y = 0$

$$\therefore 2x + y = 90 \& x + 2y = 90$$

Solving above equations we get,

$$x = 30 \& y = 30$$

Hence (30,30) is stationary point.

$$r = f_{xx} = -2,$$

$$s = f_{xy} = \frac{K_1}{1}$$
, Somaiya College of Engineering

$$t = f_{yy} = -2$$

At (30,30)

$$r=-2$$
 <0 , $S=-1$, $t=-2$

$$rt - s^2 = 4 > 0$$

Function has maxima at (30,30).

From (i)

$$z = 90 - x - y = 30$$

∴ Required three parts of the 90 are 30,30 &30.

A rectangular box with open top has capacity of 32 cubiccms. Find the dimensions of the box such that the material required is minimum.

Solution:

Let the dimensions of the box be x, y, z.

$$\therefore Volume = V = xyz = 32 \qquad \dots \dots \dots (i)$$

Minimum material required if surface area is minimum.

Considering that the box is rectangular with open top,

 $Surface\ Area = xy + 2yz + 2zx$

$$f(x, y) = xy + 2yz + 2zx = xy + \frac{64}{x} + \frac{64}{y}$$
 from(i)

$$f_x = y - \frac{64}{x^2}$$

$$f_y = x - \frac{64}{y^2}$$

Solving $f_x = 0 \& f_y = 0$

$$y - \frac{64}{x^2} = 0$$
 $\therefore 64 = x^2 y$ $\therefore y = \frac{64}{x^2}$ (ii)

$$\therefore 64 = x \cdot \frac{(64)^2}{x^4}$$

$$K : x^3 = 64 \text{ naiv} x = 40 \text{ llege of Engineering}$$

For
$$x = 4$$
, $y = \frac{64}{x^2} = 4$

Hence, (4,4) is stationary point

$$r = f_{xx} = \frac{64(2)}{x^3}$$

$$s = f_{xy} = 1$$
,

$$t = f_{yy} = \frac{64(2)}{v^3}$$

At
$$(4,4)$$
, $r=2$, $s=1$ and $t=2$

$$rt - s^2 = 4 - 1 = 3 > 0$$
, & $r = 2 > 0$, So, function has minima at (4,4)

From (i)

$$z = \frac{32}{xy} = 2$$

Hence, surface area is minimum if dimensions of box are x = 4, y = 4 and z = 2.

Divide 24 into three parts such that the product of the first, square of the second and cube of the third is maximum.

Solution:

Let three parts of the 24 are z, y & x.

$$z + y + x = 24$$
(i)

We want product $zy^2 \cdot x^3$ to be maximum.

Hence,

$$f(x, y) = zy^{2} \cdot x^{3} = (24 - y - x)y^{2}x^{3} \quad \dots \dots from(i) \quad z = 24 - y - x$$
$$= 24y^{2}x^{3} - y^{3}x^{3} - y^{2}x^{4}$$

$$f_x = 72y^2x^2 - 3y^3x^2 - 4y^2x^3$$

$$f_v = 48x^3y - 3x^3y^2 - 2x^4y$$

Solving
$$f_x = 0 \& f_y = 0$$

$$f_x = 0 \Rightarrow 72y^2x^2 - 3y^3x^2 - 4y^2x^3 = 0$$

$$\Rightarrow y^2 x^2 (72 - 3y - 4x) = 0$$

$$f_y = 0 \Rightarrow 48x^3y - 3x^3y^2 - 2x^4y = 0$$

$$\Rightarrow x^3y(48-3y-2x)=0$$

As, we want maximum product x, y, $z \neq 0$

$$\Rightarrow$$
 $(72 - 3y - 4x) = 0$ and $(48 - 3y - 2x) = 0$

$$4x + 3y = 72$$
 and $2x + 3y = 48$

$$\therefore$$
 x = 12, y = 8

Hence (12,8) is stationary point.

$$r = f_{xx} = 144y^2x - 6y^3x - 12y^2x^2$$

$$s = f_{xy} = 144yx^2 - 9y^2x^2 - 8yx^3$$

$$t = f_{yy} = 48x^3 - 6x^3y - 2x^4$$

$$r = 144 \times 64 \times 12 - 6 \times 512 \times 12 - 12 \times 64 \times 144 = -36864$$

$$s = 144 \times 8 \times 144 - 9 \times 64 \times 144 - 8 \times 8 \times 1728 = -27648$$

$$t = 48 \times 1728 - 6 \times 1728 \times 8 - 2 \times 20736 = -41472$$

$$rt - s^2 = 1528823808 - 764411904 > 0$$
, & $r < 0$

So, function has minima at (12,8)

From (i)

$$z = 24 - y - x = 24 - 8 - 12 = 4$$

$$z = 4, y = 8, x = 12.$$

Hence three parts of 24 are 4, 8 and 12 such that the product of the first, square of the second and cube of the third is maximum.

SOMAIYA VIDYAVIHAR UNIVERSITY

K J Somaiya College of Engineering

SOME PRACTICE PROBLEMS

 Find stationary points of the following functions and discuss the maxima & minima at those points.

1)
$$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

2)
$$x^4 + y^4 - 2x^2 + 4xy - 2y^2$$

3)
$$x^3 + xy^2 - 12x^2 - 2y^2 + 21x + 10$$

4)
$$x^3y^2(1-x-y)$$

5)
$$x^2y^3(1-x-y)$$

6)
$$xy(3a - x - y)$$

7)
$$x^2y - 3x^2 - 2y^2 - 4y + 3$$

8)
$$y^2 + 4xy + 3x^2 + x^3$$

9)
$$xy(3 - x - y)$$

$$10) x^3 + 3x y^2 - 3x^2 - 3y^2 + 4$$

11)
$$2(x^2 - y^2) - x^4 + y^4$$

$$12) xy + a^3 \left(\frac{1}{x} + \frac{1}{y}\right)$$

- 2. A real number k, k > 0 is divided into 3 parts such that the sum of their products taken two at a time is maximum. Find the numbers.
- A rectangular box, open at top has volume V. Find dimensions of the box requiring least material for its construction.
- 4. Find the maximum value of cosA cosB cosC, where A, B, C are angles of a triangle.
- 5. Find the maximum volume of a parallelepiped inscribed in a sphere $x^2 + y^2 + z^2 = a^2$.