Course Logistics

- Register In this Course: See CS Advisors
- https://cs.uwaterloo.ca/office-hours: 2-3:30
- USE **\$15** Course Webpage
- Register Your Clicker under S15 Page: You should not get response with W15
- A0 Posted Today- Wednesday

Digital Logic Design **CS251**

Truth Tables and Laws of Boolean Algebra Course Notes Module 02

DeMorgan's Law:

$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$
 $\overline{XY} = \overline{X} + \overline{Y}$

First we will look at Logic Gates: Come Back to This

$$X + YZ = (X + Y)(X + Z)$$
 why?
= $XX + XZ + XY + YZ$

Factor out X:

$$= X (X + Z + Y) + YZ$$

If X is false

$$X + YZ = (X + Y)(X + Z)$$
 why?
= $XX + XZ + XY + YZ$

Factor out X:

$$=X(X+Z+Y)+YZ$$

Just X being True is enough
To make the first part of the expression true.
Therefore bracketed term drops

$$X + YZ = (X + Y)(X + Z)$$
 why?
= $XX + XZ + XY + YZ$

Factor out X:

$$=X+YZ$$

Just X being True is enough
To make the first part of the expression true.
Therefore bracketed term drops

$$X + YZ = (X + Y)(X + Z)$$
 why?
= $XX + XZ + XY + YZ$

Factor out X:

$$=X+YZ$$

Just X being True is enough
To make the first part of the expression true.
Therefore bracketed term drops

Binary Numbers: 0010 ? Binary Number system: Review

Using Gates in Logic Design

• Here are symbols for AND, OR, NOT gates

- NOT often drawn as "bubble" on input or output
- AND, OR can be generalized to many inputs (useful)

Review Each of these Gates and Their Truth Tables: On Board

X	Y	Z	F	G
0	0	0	0	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

Formula Simplification Using Laws

- We can use algebraic manipulation (based on laws) to simplify formulas
- An example using the previous truth table

$$F = \overline{X}\overline{Y}Z + X\overline{Y}Z + XY\overline{Z} + XYZ$$

$$= \overline{Y}Z(\overline{X} + X) + XY(\overline{Z} + Z)$$

$$= \overline{Y}Z + XY$$

- Difficult even for humans, tricky to automate
- Seems inherently hard to get "simplest" formula
- Is simplest formula the best for implementation?

\mathbf{X}	Y	Z	F	G
0	0	0	0	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	1
1	0	0	O	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	O

What was the formula for G?

Formula Simplification Using Laws

- We can use algebraic manipulation (based on laws) to simplify formulas
- An example using the previous truth table

$$F = \overline{X}\overline{Y}Z + X\overline{Y}Z + XY\overline{Z} + XYZ$$

$$= \overline{Y}Z(\overline{X} + X) + XY(\overline{Z} + Z)$$

$$= \overline{Y}Z + XY$$

- Difficult even for humans, tricky to automate
- Seems inherently hard to get "simplest" formula
- Is simplest formula the best for implementation?

Deriving Truth Table from Circuit

- Label intermediate gate outputs
- Fill in truth table in appropriate order

