Pt

I.	Modélisation							
:	À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.	3	Α				3	
	Même question avec Hz(p).	2	С				0,7	
3	Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	А				2	
4	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1	Α				1	
ļ	Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.	1	Α				1	
(Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	В				1,5	Je ne vois pas de mesure.
II.	Tendance							
:	Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.	2	Α				2	
:	Déduire des questions 1 et 2 la valeur du gain de tendance.	2	С				0,7	
;	Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés.	2	Χ				0	
II.	Performances de la boucle de tendance							
	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D				0,1	
	Comparer vos résultats à ceux obtenus en boucle simple.	1	Χ				0	
			No	te:	12/	20		

I. Modélisation

1)

Le modèle est stable.. K=11/20=0,55 retard T=2,8*(90)-1,8*(115)=45s constante de temps=t=5,5*(30)=165s Kr=T/t=45/165=0,27

$$H(p)= (K*e^-Tp)/(1+tp)$$

= $(0.55*e^-45p)/(1+165p)$

-- PID.PV.% --- 02P02_08.OP

3)

EASYREG									
Nouveau fichier	Faire les calculs	Les valeurs	Le graphe						
Enregistrer fichier	Aide	du plan de Black	du plan de Black						
Fichier de travail	A propos	temporelles	temporel						

Donner la fonction de transfert en boucle ouverte :

$$T(p) = \frac{N(p)}{D(p)}e^{-Rp}$$

V(p) = 0.55(3)

O(p) = 165p

₹ = 45

Constante de temps pour le calcul (en s) 100

Résultats des calculs

 $\omega_{min} = 0.001$; $\omega_{max} = 0.1$; raison = 1.05

Argument_{min} = -343.00530386975 ° -- Argument_{max} = -92.578312255896 °

 $Module_{min} = -19.835882251484 db -- Module_{max} = 20 db$

 $X_{min} = 0 \% ; X_{max} = 101.341 \%$

temps de réponse à 95% est de 170s..

```
5)
Td=0
Xp=100/A=33,33
Ti=165
6)
```


II. Tendance

1)

nous ne pouvons pas le faire avec la courbe 2 car le débit d'air varie vraiment trop faiblement.

3)

III. Performances de la boucle de tendance

1)

2) he sais pas