

Data de Emissão: 21/07/2016

Instituto de Informática

Departamento de Informática Aplicada

Dados de identificação

Disciplina: ENGENHARIA DE SOFTWARE II

Período Letivo: 2016/1 Período de Início de Validade: 2016/1

Professor Responsável pelo Plano de Ensino: ERIKA FERNANDES COTA

Sigla: INF01003 Créditos: 4

Carga Horária: 60h CH Autônoma: 10h CH Coletiva: 50h CH Individual: 0h

Súmula

Qualidade de Software. Programas de Qualidade e Métricas. Normas de Qualidade. ISO9000. Ambientes de Desenvolvimento.

Técnicas de projeto, construção, seleção e o uso de Ambientes e Ferramentas de Desenvolvimento.

Currículos

Currículos Etapa Aconselhada Natureza

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Eletiva

Objetivos

Esta disciplina apresenta conceitos, modelos, técnicas e ferramentas direcionadas à melhoria da Qualidade de Software. Será dada ênfase à atividade de verificação nas diversas atividades do processo de software. A disciplina cobre ainda a etapa de evolução do software e sua verificação.

O objetivo é capacitar o aluno a usar técnicas de verificação em todas as atividades do processo de software, visando a construção de um sistema de melhor qualidade e baixo risco.

Conteúdo Programático

Semana: 1

Título: Introdução e Motivação

Conteúdo: Validação, Verificação e Teste (VV&T) no ciclo de desenvolvimento de SW. Economia do Teste. Escopo de Teste.

Semana: 1

Título: Qualidade de Software

Conteúdo: Programas de Qualidade e métricas.

Semana: 2

Título: Conceitos Básicos: terminologia e escopo do teste

Conteúdo: Projeto de teste baseado em modelos. Critérios de cobertura de teste. Cobertura de grafos

Semana: 2 a 3

Título: Critérios de cobertura de teste sobre grafos

Conteúdo: Critérios de análise de grafos: control-flow e data-flow

Semana: 3

Título: Geração de grafos de teste: código-fonte

Conteúdo: Geração e análise de grafos de teste gerados a partir de código fonte. Exemplos de ferramentas de análise automática.

Semana: 4

Título: Geração de grafos de teste: artefatos de projeto

Conteúdo: Análise de artefatos de projeto para geração de grafos de teste. Aplicação dos critérios de cobertura em grafos estudados

anteriormente.

Semana: 4 a 5

Título: Geração de grafos de teste: artefatos de especificação e casos de uso

Conteúdo: Parte conceitual e prática sobre como gerar grafos de teste a partir de documentos de especificação e casos de uso. Usar os grafos e

avaliar os critérios de cobertura estudados anteriormente.

Semana: 6

Título: Teste baseado em diagramas de estado

Data de Emissão: 21/07/2016

Conteúdo: Definição de diagramas de estado para diferentes artefatos de projeto (especificação e projeto) e uso desses diagramas para geração

de casos de teste.

Semana: 7 a 8

Título: Critérios de cobertura em expressões lógicas

Conteúdo: Análise de diferentes critérios de cobertura de teste sobre a estrutura de uma expressão lógica.

Semana: 8

Título: Extração de expressões lógicas

Conteúdo: Definição de expressões lógicas a partir de artefatos de especificação, diagramas de estado e código. Aplicação dos critérios de

cobertura sobre expressões lógicas.

Semana: 9

Título: Avaliação

Conteúdo: Primeira avaliação de aproveitamento

Semana: 9 a 10

Título: Técnica de partição do espaço de entradas (teste funcional)

Conteúdo: Análise do espaço de entradas para definição de casos de teste. Estudo de critérios de cobertura para o domínio de entrada.

Semana: 11

Título: Teste baseado em gramáticas

Conteúdo: Técnica de teste baseada em gramáticas. Extração de gramáticas a partir de especificação. Gramáticas para validação de entradas do

SW. Teste de mutação.

Semana: 12

Título: Considerações sobre o teste em sistemas orientados a objetos **Conteúdo:** Como lidar com herança, polimorfismo e encapsulamento.

Semana: 13 a 14

Título: Evolução de Software e teste de regressão

Conteúdo: Análise do impacto de mudanças. Teste de regressão.

Semana: 15
Título: Avaliação

Conteúdo: Segunda verificação de aproveitamento.

Metodologia

As aulas serão de cunho teórico-expositivo intercaladas com discussões sobre os exercícios e os trabalhos extra-classe, além de aulas em laboratório, quando couber. Além disso, estão previstas aulas de discussão onde os alunos irão identificar e discutir técnicas específicas, ferramentas e outros aspectos relacionados à qualidade e à verificação de software. Por fim, trabalhos práticos e exercícios podem ser definidos para a fixação das técnicas discutidas durante as aulas.

As 60 horas previstas para atividades teóricas e práticas indicadas neste Plano de Ensino incluem 30 encontros de 100 minutos de duração (2 períodos de 50 minutos por encontro, 2 vezes por semana, durante 15 semanas) num total de 3.000 minutos, e mais 10 horas (600 minutos) de atividades autônomas, realizadas sem contato direto com o professor, correspondentes a exercícios e trabalhos extraclasse, conforme Resolução 11/2013 do

CEPE/UFRGS, Artigos 36 a 38. O Professor poderá se valer de aulas presenciais ou à distância (utilização de recursos da EAD), assim como do apoio de Professores Assistentes (Alunos de Pós-Graduação) em Atividades Didáticas.

Carga Horária

Teórica: 60 Prática: 0

Experiências de Aprendizagem

Exemplos e Exercícios com a orientação do professor.

Trabalhos Teóricos extra-classe individuais e/ou em grupo

Trabalhos Práticos extra-classe individuais e/ou em grupo

Prova individual

Data de Emissão: 21/07/2016

Critérios de avaliação

Serão realizadas até 2 (duas) provas que ocorrem conforme calendário da disciplina em datas pré-definidas. As provas envolvem o conteúdo de toda disciplina ministrado até a prova.

Serão realizados trabalhos teóricos e/ou práticos para consolidação e aplicação dos conceitos vistos em aula. Os trabalhos são organizados, em sua maioria, como atividades extraclasse. A realização dos trabalhos práticos é caracterizada com atividade autônoma, mas estão previstas aulas de acompanhamento com o professor para resolver dúvidas da elaboração do trabalho. Exercícios de fixação poderão, a critério do professor e com aviso prévio, fazerem parte do conjunto de trabalhos práticos da disciplina. Os trabalhos práticos serão realizados individualmente ou em grupo (a critério do professor) e seus desenvolvimentos (parciais e/ou final) enviados via Moodle nas datas indicadas.

A cada prova e a cada trabalho será atribuído um grau de 0 (zero) a 10 (dez).

O conceito final do aluno será atribuído levando-se em consideração a sua participação nas atividades em classe e extraclasse (10%), a média dos trabalhos realizados pelo aluno (40%) e a média das provas (50%). Em particular, a média das provas e a média dos trabalhos não poderá ser inferior a 6,0 (seis).

A nota de participação inclui a avaliação sobre realização/participação de exercícios e dinâmicas propostos, aulas de laboratório, posicionamento quanto a conteúdo e dúvidas, qualidade de participação em aula e motivação durante o desenvolvimento dos trabalhos, e assiduidade do aluno.

A conversão da média numérica (MN) para conceitos é feita por meio da seguinte tabela:

9,0 =< MN <= 10,0 : conceito A (aprovado).

7,5 =< MN < 9,0 : conceito B (aprovado).

6.0 = < MN < 7.5: conceito C (aprovado).

0.0 = < MN < 6.0: conceito D (reprovado).

Alunos com frequência inferior a 75% das aulas são reprovados com conceito FF.

Atividades de Recuperação Previstas

Os alunos com conceito final D podem realizar uma prova ou atividade de recuperação (a critério do professor), com data e conteúdo a serem fixados pelo professor.

Para poder realizar a prova de recuperação, o aluno deve ter realizado ao menos uma das provas/trabalhos teóricos E ter entregue o trabalho prático. Os que não se enquadrarem nesta situação permanecerão com conceito D.

A recuperação de cada prova individualmente será realizada somente para os casos previstos na legislação: saúde, parto, serviço militar, convocação judicial, luto, etc., devidamente comprovados, em data e horário a serem definidos pelo professor.

Prazo para Divulgação dos Resultados das Avaliações

A avaliação de cada prova será divulgada no mínimo 72 horas antes da próxima prova (incluindo recuperação). A avaliação dos trabalhos práticos será divulgada no mínimo 72 horas antes da prova/atividade de recuperação.

Bibliografia

Básica Essencial

Amman, P.; Offut, J.. Introduction to Software Testing. Cambridge University Press, 2008. ISBN 978-0-521-88038-1.

Daniel Galin. Software Quality Assurance: From Theory to Implementation. Addison-Wesley, 2003. ISBN 978-0201709452.

Robert Arnold e Shawn Bohner. Software Change Impact Analysis. Wiley-IEEE Computer society Press, 1996. ISBN 978-0-8186-7384-9.

Básica

Baker, P. et al.. Model-driven Testing: Using the UML Testing Profile. Springer, 2010. ISBN 978-3-642-23390-6.

Pezze, M.; Young, M.. Software Testing and Analysis. Wiley, 2008. ISBN 978-0-471-45593-6.

Complementar

Myers, G. J.. The Art of Software Testing. Wiley, 2004. ISBN 0-471-46912-2.

Data de Emissão: 21/07/2016

Patton, R.. Software Testing. SAMS, 2005. ISBN 0-672-32798-8.

Utting, M.; Legeard, B.. Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann, 2006. ISBN 978-0-123-72501-1.

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

Uma página da disciplina foi criada no Moodle do INF (moodle.inf.ufrgs.br). Nesta página serão colocados os slides, especificações de trabalhos, notas e outros materiais de interesse para a disciplina, bem como o cronograma atualizado das aulas. Toda comunicação oficial do professor com os alunos será feita APENAS através do Moodle do INF. Assim, acesse antes e após cada aula para verificar o material didático, eventuais informações, notícias, alterações etc. Além disso, mantenha seu e-mail atualizado no sistema.