A Complete Comparison of Multi-Point Target Tracking Algorithms over Simulation and NuScenes Data

Liping Bai*, Jianan Liu*, Yuxuan Xia, Bing Zhu

*Authors contribute equally to the work.

September 29, 2021

Project Overview

Project Objective: Compare 3 Categories of Trackers over simulated scenarios and real measured NuScenes data

- Random Vector Bayesian Filter based Trackers (PDA, JPDA + Track Management)
- Random Finite Set Filter based Trackers (PHD, CPHD, PMBM)
- Neural Network based Trackers (LSTM, Transformer)

Simulation Data: 6 Different Scenarios

No Intersection No Cardinality Change

Intersection No Cardinality Change

No Intersection with Cardinality Change

Intersection with Cardinality Change

Travel in Proximity

Intersection, Multi-Cardinality Changes

Scenario 1: No Intersection, No Cardinality Change

- In this scenario, four targets are initiated and there would be no intersection whatsoever when the track progresses, also there will be no Cardinality change.
- The objective of this scenario is to act as a baseline.
- All trackers should perform relatively well for this scenario.

Scenario 1: No Intersection, No Cardinality Change

Scenario 1: No Intersection, No Cardinality Change

Scenario 2: Intersection, No Cardinality Change

- The four tracks will meet at n_scan/2 steps, and the Cardinality will remain the same through out the simulation.
- The objective of this scenario is the compare how the 5 trackers fare against the intersection point.

Scenario 2: Intersection, No Cardinality Change

Scenario 2: Intersection, No Cardinality Change

Scenario 3: No Intersection, with Cardinality Change

- In this scenario, four targets are initiated and there would be no intersection whatsoever when the track progresses. However, there will be Cardinality changes every 30 scans, in dicated by the color changes in the following graph.
- The objective of this scenario is to see how the trackers fare against Cardinality variation.

Scenario 3: No Intersection, with Cardinality Change

Scenario 3: No Intersection, with Cardinality Change

Scenario 4: Intersection, with Cardinality Change

- The tracks will meet at n_scan/2 steps, and the Cardinality will change every 30 scans.
- The objective of this scenario is the compare how the 5 trackers fare against the intersection point and Cardinality variation.

Scenario 4: Intersection, with Cardinality Change

Scenario 4: Intersection, with Cardinality Change

Scenario 5: Travel in Proximity

- This scenario has 4 targets travel in proximity, without any Cardinality changes.
- This scenario is designed to mimic the road traffic where cars are moving in parallel with each other closely.

Scenario 5: Travel in Proximity

Scenario 5: Travel in Proximity

Scenario 6: Intersection, with Multiple Cardinality Change

This scenario is designed to be the highest difficulty. At n_scan/2 step, there
would be intersection. There would also be multiple varying Cardinalities,
such as disappearing of more than one object and appearing of more than one
object simultaneously.

Scenario 6: Intersection, with Multiple Cardinality Change

Scenario 6: Intersection, with Multiple Cardinality Change

Project Overview

NuScenes Data: N Different Scenarios