IIT Mandi

School of Basic Sciences *IC121:Mechanics of particles and waves*,

Tutorial – 1

- 1) Using the transformation rules of vector rotation prove the familiar trigonometric identities, $\sin(\theta+\phi)=\sin\theta\cos\phi+\cos\theta\sin\phi$ and $\cos(\theta+\phi)=\cos\theta\cos\phi-\sin\theta\sin\phi$.
- 2) Show that scalar product of two dimensional vectors $\vec{a} \cdot \vec{b}$ is invariant under rotation.
- 3) Find the gradient of following functions
 - (a) $x^2 + y^3 + z^4$
 - (b) $x^2 y^3 z^4$
 - (c) $e^x \sin(y) \ln(z)$
- 4) Find the directional derivative (gradient) of $f(x,y)=x^2\sin 2y$ at point $(1,\pi/2)$ in the direction $v=3\hat{x}-4\hat{y}$.
- 5) Find the derivative of $f(x,y,z)=x^3-xy^2-z$ at $P_o(1,1,0)$ in the direction of $\vec{v}=2\hat{x}-3\hat{y}+6\hat{k}$, in what direction does f change most rapidly at P_0 .
- 6) Let $\vec{\nabla} \phi = (1+2xy)\hat{x} + (x^2+3y^2)\hat{y}$. Find the associated scalar field.
- 7) Prove that divergence of a Curl is always zero. Also prove that curl of gradient is also zero always. (Hint: prove it for arbitrary vector field and scalar field by term by term expansion)
- 8) Let $T=x\,y^2$. Show that $\int_a^b \vec{\nabla} \,T \cdot d\vec{r} = T(\vec{b}) T(\vec{a})$ (independent of path) between points a=(0,0,0) and $\vec{b}=(2,1,0)$ via two paths (i) path connecting two points along straight line (ii) first move parallel to the x axis till x=2 and then move parallel to y axis till y=1.
- 9) Calculate the divergence of the following fields
 - (i) $\vec{v} = e^x(\cos y \hat{x} + \sin y \hat{y})$
 - (ii) $\vec{v} = x^2 \hat{x} + y^2 \hat{y} + z^2 \hat{z}$
 - (iii) $\vec{v} = v_1(y,z)\hat{x} + v_2(z,x)\hat{y} + v_3(x,y)\hat{z}$
- 10) Find the Laplacian $\nabla^2 f$ for the following scalar fields
 - (i) $f = 4x^2 + 9y^2 + z^2$
 - (ii) $f = e^{2x} \sin 2y$
 - (iii) f = xy/z
- 11) A vector field \vec{A} and space curve $\vec{r} = \vec{r}(t)$ are given by $\vec{A} = (3x^2 6xy)\hat{x} + (2y + 3xy)\hat{y} + (1 4xyz^2)\hat{z}$ and $\vec{r}(t) = t\hat{x} + t^2\hat{y} + t^3\hat{z}$ evaluate the

line integral $\int \vec{A} \cdot \vec{d} \vec{r}$ in the limits t=0 and t=2 (find the values of x,y,z in termds of t by comparing with \vec{r}).

- 12) Show that the vector field $\vec{A}=(2\,x\,y+z^3)\hat{x}+(x^2+2\,y)\,\hat{y}+(3\,x\,z^2-2)\hat{z}$ is independent of the path from (1,-1,1) to (2,1,2) for the integral $\int \vec{A}\cdot d\vec{r}$. Find the potential function $\phi(x,y,z)$.
- 13) What is a conservative force field? Is the force field $\vec{F} = (3xy y)\hat{x} x\hat{y} + (3/2)x^2\hat{z}$ is conservative? If yes determine the potential V and the work A to be performed to move a particle from point (1,1,1) to (2,2,2).
- 14) Check the divergence theorem using the function $\vec{v} = y^2 \hat{x} + (2xy + z^2) \hat{y} + (2yz) \hat{z}$, the unit cube placed at the origin ((0,0,0),(1,1,1) are diagonal points of the cube in the positive quadrant)
- 15) Find the curl $\vec{\nabla} \times v$ of the following functions
 - (i) $\vec{v} = 2 y \hat{x} + 5 x \hat{y}$
 - (ii) $v = xyz(x \hat{x} + y \hat{y} + z \hat{z})$
 - (iii) $\vec{v} = v_1(x)\hat{x} + v_2(y)\hat{y} + v_3(z)\hat{z}$
- 16) Suppose $\vec{v} = (2xz+3y^2)\hat{y} + (4yz^2)\hat{z}$. Check Stoke's theorem for the square surface shown in the figure

17) Calculate the volume integral of $T = x y z^2$ over the prism shown in the figure

