Vorlesung 1

Wozu Analysis?

Endliche Mengen k
nnen sehr gross sein. Manchmal ist es praktisch, eine diskrete Struktur durch eine kontinuierliche Struktur zu approximieren.

Ziel der Vorlesung: Bereitstellen wichtiger Techniken aus der Analysis, u.a.

- Approximation
- Differential -und Integralrechnung in einer und mehreren Variablen
- wichtige Funktionsklassen und ihre Eigenschaften
- Differentialgleichungen

Quantoren:

 $\forall x \text{ bedeutet fr alle } x$

 $\exists x$ bedeutet es existiert ein x

Kapitel 1: Reelle Zahlen

Bem. 1.1:

 $(\mathbb{R},+,\bullet)$ ist angeordnet, d.h. \exists ein Praedikat a>0 mit folgenden Eigenschaften

1) $\forall a \in \mathbb{R}$ gilt **genau eine** der 3 Aussagen a = 0, a > 0 oder -a > 0

2) $\forall a, b \in \mathbb{R} \text{ mit } a > 0 \text{ und } b > 0 \text{ gilt: } a + b > 0 \text{ und } a \cdot b > 0$

Schreibweisen:

a > b steht fr a - b > 0

a < b steht fr b - a > 0

 $a \ge b$ steht fr a > b oder a = b

 $a \le b$ steht fr a < b oder a = b

Bem 1.2:

Die Menge der Komplexen Zahlen $\mathbb C$ kann nicht angeordnet werden.

Beweis:

Angenommen, \mathbb{C} waere angeordnet, Sei $a \in \mathbb{C}$

$$a > 0 \Rightarrow a \cdot a > 0$$

 $-a > 0 \Rightarrow a^2 = (-a)(-a) > 0$

Fuer beides $\Rightarrow a^2 > 0 \forall a \neq 0$

insbesondere $1 = 1 \cdot 1 > 0 \Rightarrow 0 > -1 = i^2 \not \parallel$ Widerspruch

Def. 1.3:

 $M \subseteq \mathbb{R}$ heit nach oben beschraenkt, falls $\exists s_0 \in \mathbb{R}$ mit $a \leq s_0 \ \forall a \in M$ s_0 heisst obere Schranke von M.

Bsp:

 $M=(0,1)=\{x\in\mathbb{R}:0< x<1\}$ jedes $s_0\geq 1$ ist eine obere Schranke. In diesem beispiel liegt kein obere Schranke in M.

Bem. 1.4:

 \mathbb{R} erflit das Supremumsaxiom: Jede nichtleere nach oben beschrikte Teilmenge M von \mathbb{R} besitzt eine **kleinste obere** Schranke $\sup M \in \mathbb{R}$, das $Supremum\ von\ M$.

Bsp:

$$\sup\{\tfrac{-1}{n}:n\in\mathbb{N}=0\}$$

Konventionen:

 $\sup M = \infty$ falls M nicht nach oben beschrikt

$$\sup \emptyset = -\infty$$

$$-i < a < \infty \forall \in \mathbb{R}$$

Bem. 1.5:

Die Menge der rationalen Zahlen $\mathbb Q$ erfl
lt nichtdas Supremumsaxiom

z.B.

$$M=\{a\in\mathbb{Q}:a^2\leq 2\}$$
 hat keine kleinste obere Schranke in \mathbb{Q} in \mathbb{R} : $sup M=\sqrt{2}\notin\mathbb{Q}$

Bem 1.6:

Jede nichtleere nach unten beschraenkte teilmenge M von \mathbb{R} besitzt eine gr
te untere Schranke inf $M \in \mathbb{R}$, das Infimum von M.

Falls $supM \in M$, heit supM auch Maximum von M Falls $infM \in M$, heit infM auch Minimum von M

Satz 1.7:

 \mathbb{R} ist archimedisch d.h. $\forall a \in \mathbb{R} \exists n \in \mathbb{N} = \{1, 2, ...\}$ mit a < n. Insbesondere gibt es keine unendlich grosse Zahlen in \mathbb{R} .

Widerspruchsbeweis:

Satz 1.8:

Die rationalen Zahlen sind dicht in \mathbb{R} d.h. $\forall a, b \in \mathbb{R}$ mit a > b existiert $r \in \mathbb{Q}$ mit a < r < b

Konsquenz:

Jedes $a \in \mathbb{R}$ kann beliebig gut durch Brche approximiert werden:

$$\forall n \in \mathbb{N} \exists r \in \mathbb{Q} \text{ mit } a - 10^{-n} < r < a$$

$$\Rightarrow a \in (r, r + 10^{-n})$$

Damit wird a mit einer Genauigkeit von 10^{-n} approximiert.