ECE260: Fundamentals of Computer Engineering

Floating Point Numbers & Representation

James Moscola
Dept. of Engineering & Computer Science
York College of Pennsylvania

Floating-Point Numbers

- Floating point numbers are numbers that have "floating" decimal points
- Used to represent non-integer numbers, including:
 - Real numbers
 - Examples: 99.2 3.14159265359
 - Very small numbers such as fractions
 - Examples: 0.00187 -0.1211
 - Very large numbers that cannot be represented using using the provided word size
 - Examples: 987.02×10^9 -0.002×10^{-4}
- In many programming languages, declare floating point numbers using *float* or *double* keyword
 - Two different floating-point representations: single-precision and double-precision

Single-Precision Floating-Point Representation

- Represented using a single 32-bit word
 - Sign bit (s) specifies sign of the floating-point value
 - 0 indicates a positive / 1 indicates a negative
 - Includes 8-bit exponent and 23-bit fraction
 - Value of floating-point number is computed as: with a **bias of 127** for single-precision values

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

Double-Precision Floating-Point Representation

- Represented using a **TWO** 32-bit words (totaling 64-bits)
 - Sign bit (s) specifies sign of the floating-point value
 - 0 indicates a positive / 1 indicates a negative
 - Includes 11-bit exponent and 52-bit fraction
 - Value of floating-point number is computed as: with a bias of 1023 for double-precision values

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

32 bits

Bias? What the heck is that?

- Floating-point numbers can be negative AND also have a negative exponent
 - Example: -0.002×10^{-4}
- The sign bit of a floating-point number, (s), indicates the sign of the entire value, not the exponent
- How about embedding a second sign bit in the exponent (bit 30) and storing as 2's complement?
 - Meh .. it would work, but it would make comparing floating-point values difficult
 - Direct comparison of binary floating-point values would not be possible since negative numbers would "appear" larger than positive numbers
- Instead, bias the exponent value by the largest positive value and adjust exponent when interpreting value of floating-point number
 - Enables DIRECT comparison of binary floating-point numbers

Single-Precision Range

- Exponents 0000_0000_{two} and 1111_1111_{two} are reserved
 - Exponent 0_{ten} with a fraction of 0_{ten} indicates the value zero
 - Exponent 255_{ten} with a fraction of 0_{ten} indicates the value ∞
 - Exponent 255_{ten} with any nonzero fraction indicates the value NaN (Not a Number)
- Smallest value in single-precision range:

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

• Binary exponent value: 0000_0001_{two} Actual exponent after biasing: $1_{ten} - 127_{ten} = -126_{ten}$

• Binary fraction value: $000_0000_0000_0000_0000_0000_{two}$ Significand: $1_{ten} + 0_{ten} = 1_{ten}$

• Final value: $\pm \text{ significand} \times 2^{\text{actual_exponent}}$ $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Single-Precision Range (continued)

• Largest value in single-precision range:

- Binary exponent value: $1111_{1110_{two}}$ Actual exponent after biasing: $254_{ten} 127_{ten} = +127_{ten}$
- Binary fraction value: $111_1111_1111_1111_1111_1111_{two}$ Fraction value: $\approx 1_{ten}$ Significand: $1_{ten} + 1_{ten} \approx 2_{ten}$
- Final value: $\pm \text{ significand} \times 2^{\text{actual_exponent}}$ $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 000_0000_0000 and 111_1111_1111_two are reserved
 - Exponent 0_{ten} with a fraction of 0_{ten} indicates the value zero
 - Exponent 2047_{ten} with a fraction of 0_{ten} indicates the value ∞
 - Exponent 2047_{ten} with any nonzero fraction indicates the value NaN (Not a Number)
- Smallest value in double-precision range:

$$x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$$

• Binary exponent value: $000_0000_0001_{two}$ Actual exponent after biasing: $1_{ten} - 1023_{ten} = -1022_{ten}$

• Binary fraction value: $000_0000_0000 \dots 0000_0000_0000_{two}$ (52 bits of zeros) Significand: $1_{ten} + 0_{ten} = 1_{ten}$

• Final value: $\pm \text{ significand} \times 2^{\text{actual_exponent}}$ $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Double-Precision Range (continued)

• Largest value in double-precision range:

Binary exponent value: 111_111_11
 Actual exponent after biasing: 2046_{ten} - 1023

- Binary fraction value:
 - Fraction value:
- Significand:
- Final value:

- ≈ 1_{ten}
- $1_{\text{ten}} + 1_{\text{ten}} \approx 2_{\text{ten}}$
- ± significand × 2actual_exponent
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Single-precision
 - Approximately 2-23
 - Can represent a value x and $(x \pm 2^{-23})$, but not the numbers in between
- Double-precision
 - Approximately 2-52
 - Can represent a value x and $(x \pm 2^{-52})$, but not the numbers in between

Floating-Point Example (bin -> float)

What number is represented by the single-precision floating-point value?

alt. index		7	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20	-21	-22	-23
index	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	8 bits									23 bits																						

 $x = (-1)^s \times (1 + fraction) \times 2^{(exponent - bias)}$

• Sign bit: 1 (negative number)

Exponent: $1000_{0001_{two}} = 129_{ten}$

Fraction: 010_0000_0000_0000_0000_0000_{two}

$$(0 \times 2^{-1}) + (1 \times 2^{-2}) + ... + (0 \times 2^{-23}) = 0 + (1 \times \frac{1}{4}) + ... + 0 = \frac{1}{4} = .25$$

$$x = (-1)^{s} \times (1 + fraction) \times 2^{(exponent - bias)}$$

= $(-1)^{1} \times (1 + .25) \times 2^{(129 - 127)}$
= $-1 \times 1.25 \times 2^{2}$
= -5.0

Floating-Point Example (float -> bin)

- What is the binary representation of the decimal number 29.28125 in single-precision float format?
 - Step #1 Rewrite whole number portion in binary: $29_{ten} = 11101_{two}$
 - - - 0.28125 0.25 = 0.03125 remains

 - set bit -5? // $2^{-5} = 0.03125$ // $0.03125 \le 0.03125$ (yes, it fits) // $010_01xx_xxxx_xxxx_xxxx_xxxx$
 - 0.03125 0.03125 = 0 remains (DONE)
 - set bit -6 through bit -23 to 0 // 010_0100_0000_0000_0000

Floating-Point Example (float -> bin) (continued)

- What is the binary representation of the decimal number 29.28125 in single-precision float format?

 - - Normalized value represents the (1 + fraction), drop the leading 1 from the normalized value
 - Step #5 Determine sign bit and exponent bits:
 - Original value, 29.28125, was positive so: s = 0
 - Exponent from normalized value = 4, add to bias to determine exponent bits
 - exponent = $4 + bias = 4 + 127 = 131_{ten} = 1000_0011_{two}$
 - Step #6 Put it all together:

```
• s _ exponent _ fraction = 0 _ 1000 _ 0011 _ 110 _ 1010 _ 0100 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 00000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 0000 _ 000
```