Aufgabe 4.1:

Lineares Hashing

n = 5, b = 2, $bf_s = 0.75$, $h_0(k) = k \mod 5$, $h_1(k) = k \mod 10$, p = 0Einfügen: 200, 325, 405, 389,188, 101, 500, 57

p				
0	1	2	3	4
200 325	101	57	188	389

405 500

bf = 8/10 = 0.8

dann muss man in diesem Fall die Tabelle aufspalten

	p				
0	1	2	3	4	5
200 500	101	57	188	389	325 405

bf = 8/12 = 0.66

 $n=5,\,b=2$, $bf_s=0.75,\,h_0\,(k)=k$ mod 5, $h_1\,(k)=k$ mod 10, p=1 Wir fügen weitere Elemente hinzu: 82, 120

	р				
0	1	2	3	4	5
200 500	101	57 82	188	389	325 405

120

bf = 10/12 = 0.83

hier muss man wieder die Tabelle aufspalten

		р				
0	1	2	3	4	5	6
200 500	101	57 82	188	389	325 405	

120

bf = 10/14 = 0.71

 $n=5,\,b=2$, $bf_s=0.75,\,h_0\left(k\right)=k$ mod 5, $h_1\left(k\right)=k$ mod 10, p=2

Wir fügen weitere Elemente hinzu: 133

		р				
0	1	2	3	4	5	6
200 500	101	57 82	188 133	389	325 405	

120

bf = 11/14 = 0.78

hier muss man wieder die Tabelle aufspalten:

			р				
0	1	2	3	4	5	6	7
200 500	101	82	188 133	389	325 405		57

120

bf = 11/16 = 0.68

 $n=5,\,b=2$, $bf_s=0.75,\,h_0\left(k\right)=k$ mod 5, $h_1\left(k\right)=k$ mod 10, p=3 Wir fügen weitere Elemente hinzu: 48, 436

			р				
0	1	2	3	4	5	6	7
200 500	101	82	188 133	389	325 405	436	57

120

48

 $\overline{bf} = 13/16 = 0.81$

hier muss man wieder die Tabelle aufspalten:

				р				
0	1	2	3	4	5	6	7	8
200 500	101	82	133	389	325 405	436	57	188 48

120

bf = 13/18 = 0.72

n = 5, b = 2, $bf_s = 0.75$, $h_0(k) = k \mod 5$, $h_1(k) = k \mod 10$, p = 4

Wir fügen weitere Elemente hinzu: 461

				р				
0	1	2	3	4	5	6	7	8
200 500	101 461	82	133	389	325 405	436	57	188 48

120

bf = 14/18 = 0.77

hier muss man wieder die Tabelle aufspalten. Nun müssen wir unsere p auf 0, weil die Größe von der Hashtabelle schon 10 ist:

р									
0	1	2	3	4	5	6	7	8	9
200 500	101 461	82	133		325 405	436	57	188 48	389

120

bf = 14/20 = 0.7

 $n=5,\,b=2$, $bf_s=0.75,\,h_1\left(k\right)=k$ mod 10, $h_2\left(k\right)=k$ mod 20, p=0 Wir fügen weitere Elemente hinzu: 364, 223

p									
0	1	2	3	4	5	6	7	8	9
200 500	101 461	82	133 223	364	325 405	436	57	188 48	389

120

bf = 0.8 hier muss man wieder die Tabelle aufspalten

	р									
0	1	2	3	4	5	6	7	8	9	10
200 500	101 461	82	133 223	364	325 405	436	57	188 48	389	

120

bf = 16/22 = 0.72

n = 5, b = 2, $bf_s = 0.75$, $h_1(k) = k \mod 10$, $h_2(k) = k \mod 20$, p = 1

Wir fügen weitere Elemente hinzu: 228

	р									
0	1	2	3	4	5	6	7	8	9	10
200 500	101 461	82	133 223	364	325 405	436	57	188 48	389	

120

228

bf = 17/22 = 0.77 Tabelle aufspalten

		р									
0	1	2	3	4	5	6	7	8	9	10	11
200 500	101 461	82	133 223	364	325 405	436	57	188 48	389		

120

228

bf = 17/24 = 0.708

 $n=5,\,b=2$, $bf_s=0.75,\,h_1\left(k\right)=k$ mod 10, $h_2\left(k\right)=k$ mod 20, p=2 Wir fügen weitere Elemente hinzu: 199, 123

		р									
0	1	2	3	4	5	6	7	8	9	10	11
200 500	101 461	82	133 223	364	325 405	436	57	188 48	389 199		

120

123

228

bf = 19/24 = 0.79

Tabelle aufspalten:

			p									
0	1	2	3	4	5	6	7	8	9	10	11	12
200 500	101 461	82	133 223	364	325 405	436	57	188 48	389 199			

120

123

228

bf = 19/26 = 0.73

n = 5, b = 2, $bf_s = 0.75$, $h_1(k) = k \mod 10$, $h_2(k) = k \mod 20$, p = 3

Wir fügen weitere Elemente hinzu: 42

			р									
0	1	2	3	4	5	6	7	8	9	10	11	12
200 500	101 461	82 42	133 223	364	325 405	436	57	188 48	389 199			

bf = 20/26 = 0.76 Tabelle aufspalten:

				р									
0	1	2	3	4	5	6	7	8	9	10	11	12	13
200 500	101 461	82 42	133 223	364	325 405	436	57	188 48	389 199				

bf = 19/26 = 0.73

 $n=5,\,b=2$, $bf_s=0.75,\,h_1\left(k\right)=k$ mod 10, $h_2\left(k\right)=k$ mod 20, p=4

				р									
0	1	2	3	4	5	6	7	8	9	10	11	12	13
200 500	101 461	82 42	223 123	364	325 405	436	57	188 48	389 199				133

Wir fügen weitere Elemente hinzu: 23

				р									
0	1	2	3	4	5	6	7	8	9	10	11	12	13
200 500	101 461	82 42	223 123	364	325 405	436	57	188 48	389 199				133

Aufgabe 4.2

a.

$$< 5,4 >$$

 $0 \le x \le 19$
 $x = 5y + z$ $0 \le y \le 3, 0 \le z \le 4$

X		J	1		Z						
R	y_0	y_1	y_2	y_3	z_0	z_1	z_2	z_3	z_4		
10	0	0	1	0	1	0	0	0	0		
5	0	1	0	0	0	0	0	0	0		
6	0	1	0	0	0	1	0	0	0		
8	0	1	0	0	0	0	0	1	0		
7	0	1	0	0	0	0	1	0	0		
1	0	0	0	0	0	1	0	0	0		
3	0	0	0	0	0	0	0	1	0		
5	0	1	0	0	0	0	0	0	0		
6	0	1	0	0	0	1	0	0	0		
4	0	0	0	0	0	0	0	0	1		

b.

n*m muss alle mögliche Ausprägungen enthalten und n+m muss Bitmap-Vektoren.

Damit jede Wert nur einmal durch eine Definition abgebildet werden können und alle

Werte abbildbar sein, soll m=n-1 ausgewählt werden.

c.

R	0	1	2	3	4	5	6	7	8	9	10
10	0	0	0	0	0	0	0	0	0	0	1
5	0	0	0	0	0	1	1	1	1	1	1
6	0	0	0	0	0	0	1	1	1	1	1
8	0	0	0	0	0	0	0	0	1	1	1
7	0	0	0	0	0	0	0	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1
3	0	0	0	1	1	1	1	1	1	1	1
5	0	0	0	0	0	1	1	1	1	1	1
6	0	0	0	0	0	0	1	1	1	1	1
4	0	0	0	0	1	1	1	1	1	1	1

d.

beim bereichskodierten Bitmap-Index sind zwei Zugriffe für Punktabfragen nötig, da
man gesuchten Wert durch kleiner gleich der allen Werte bekommen kann.