

Data Management for Research and Institutional Decision Making

Duplicates in R

- Duplicates are repeated information in rows of data sets.
- Managing duplicates involves identifying and dropping them.
- Functions to identify duplicates duplicated()
- Functions to create unique data sets distinct() unique()

Combining data sets

Combining data sets involves the following:

1. Adding rows from different files into one file by appending data sets.

2. Adding columns by adding columns from one file into one file.

Appending data sets

- Combines data sets by adding additional rows to the data set
- Data sets should have the same number of columns
- Data sets should have the same column names

	YEAR: 2017	Table 1			YEAR: 2018	Table 2			YEAR: 2019	Table 3	
Year	Month	Product A	Product B	Year	Month	Product A	Product B	Year	Month	Product A	Product B
2017	January	45112	45564	2018	January	45564	4500	2019	January	4500	45112
2017	February	50000	4556214	2018	February	4556214	15245	2019	February	15245	50000
2017	March	75100	45871	2018	March	45871	45872	2019	March	45872	75100
	RESULTING TABLE										
Year	Month	Product A	Product B								
2017	January	45112	45564								
2017	February	50000	4556214								
2017	March	75100	45871								
2018	January	45564	4500								
2018	February	4556214	15245								
2018	March	45871	45872								
2019	January	4500	45112								
2019	February	15245	50000								
2019	March	45872	75100								

Append

Demonstration

• bind_rows() function to combine agriculture data from town A and town B into one data set.

agric_AB <- bind_rows(agriculture_townA,agriculture_townB)</pre>

Merging

- Merging adds columns from one data set to another
- All rows in both data frames are included in the result

Merging

Demonstration

• inner_join() function to merge agriculture data and agriculture 2 data into one data set.

agric_gender <- inner_join(agriculture, agriculture2, by = "Farm_ID")</pre>

Data Exploration

 Exploration involves taking a dive into data sets to understand meanings and possible relationships.

- Summarizing data:
 - >Involves creating frequency distribution tables for categorical variables
 - ➤ Obtaining descriptive statistics for numerical variables

- Relationships help us to get insights into our data sets
 - >Involves using appropriate statistical tests
 - ➤ Involves correct interpretation of statistical tests

Relationships between categorical variables

- This involves checking whether two categorical variables are related to each other.
- Using the chisquare test
- Significant p values (pvalue<=0.05) imply significant relationships.

Function to perform chisquare is chisq.test()

Steps:

- 1. Summarise data in a contingency table
- 2. Perform the chisquare test

Chi square test of independence

• Using the agriculture data set. Check whether irrigation type is associated with location

Null: No association

Alternative: There is association

table(agriculture\$location, agriculture\$Irrigation_Type)

> chisq.test(table(agriculture\$location, agriculture\$Irrigation_Type))

```
Pearson's Chi-squared test

data: table(agriculture$location, agriculture$Irrigation_Type)

X-squared = 19.657, df = 4, p-value = 0.0005837

P-value

Significant(p-value<0.005)
```


Categorical and Numerical variables

 Exploring relationships between the two involves understanding in variation of the quantitative variable across the levels of the categorical variable.

• Example:

- >average yield across location
- >average fertilizer used in different crops

Categorical variables vs Numerical variables

Steps:

Check the distribution of the quantitative variable.

Obtain a frequency table for the categorical variable.

If the categorical variable has 2 categories, perform the t test.

If the categorical variable has more than 2 categories, perform the ANOVA test.

The t test of equality of means

 Using the agriculture data set , check whether average yield varies by location using t.test()

Null: No difference between the means

Alternative: The two means are not equal

Wilcoxon rank-sum test

Wilcoxon rank sum test is the non-parametric test of equality of two medians.

• Does not require normally distributed populations

Steps:

Check the distribution of the numeric variable

If it is not normally distributed, test for equality of medians using Wilcoxon rank-sum test

Wilcoxon ranksum test

Check whether Farm area vary by location

Ho: No difference in median Farm area

Ha: The median Farm area differs by location

END