

Activity Recognition

Soluções de mineração de dados

Link projeto github

Prof.: Leandro Almeida

Grupo:

Karl Sousa kvms@cin.ufpe.br Maria Eugênia meps@cin.ufpe.br

Mateus Silva mmps@cin.ufpe.br

CRISP-DM

A. Wickramasinghe, D. C. Ranasinghe, C. Fumeaux, K. D. Hill, R. Visvanathan, "Sequence learning with passive RFID sensors for real-time bed-egress recognition in older people", *IEEE J. Biomed. Health Inform.*, vol. 21, no. 4, pp. 917-929, Jul. 2017.

A. Wickramasinghe, D. C. Ranasinghe, C. Fumeaux, K. D. Hill, R. Visvanathan, "Sequence learning with passive RFID sensors for real-time bed-egress recognition in older people", *IEEE J. Biomed. Health Inform.*, vol. 21, no. 4, pp. 917-929, Jul. 2017.

Dados da base

- Número de exemplos: 75.128
- Número de atributos: 8
- Número de arquivos: 60 (S1), 27 (S2)
- Média de exemplos (linhas) por arquivo: 863

Boxplot de atributos

Distribuição de classes

Acelerações x tempo

Dados de todos os exemplos

Dados de um único ensaio

Gráfico das acelerações

Dados de todos os exemplos

Dados de um único ensaio

Normalização

MinMaxScaler (Intervalo de 0 a 1)

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Seleção de atributos

Visualização dos dados

Antes:

	tempo	frontal	vertical	lateral	antena	rssi	fase	frequencia	atividade
0	0.00	0.27203	1.00820	-0.082102	1	-63.5	2.4252	924.25	1
1	0.50	0.27203	1.00820	-0.082102	1	-63.0	4.7369	921.75	1
2	1.50	0.44791	0.91636	-0.013684	1	-63.5	3.0311	923.75	1
3	1.75	0.44791	0.91636	-0.013684	1	-63.0	2.0371	921.25	1
4	2.50	0.34238	0.96229	-0.059296	1	-63.5	5.8920	920.25	1

			:
D_{i}	PN	M	12.
	${}^{L}P$.

	sala	sexo	tempo	frontal	vertical	lateral	antena	rssi	atividade
0	0	0	0.160849	0.881062	0.168890	0.481822	0.000000	0.432836	3
1	1	1	0.292244	0.383782	0.324447	0.090887	0.333333	0.701493	3
2	1	1	0.435208	0.427024	0.306670	0.104520	0.333333	0.641791	3
3	0	1	0.023140	0.859441	0.235558	0.704556	0.000000	0.388060	3
4	0	0	0.139703	0.751351	0.235558	0.477276	0.666667	0.656716	3

Separação dos dados

Árvore de decisão

K-Nearest Neighbors

Rede Neural MLP

hidden_layer_sizes: (20,20),
activation: "tanh",
max_iter: 400,

solver: "lbfgs",

média da acurácia: 0.9832475

Random Forest

Comitê MLP

Comitê Heterogêneo

Voting Classifier (voting: 'soft'):

- **Árvore de decisão** 0.9717752
- **KNN** 0.97851257
- **MLP** 0.96212
- **Comitê Heterogêneo**: 0.976

Comparação de modelos

• Árvore de decisão

*max_depth=*12

KNN

n_neighbors=2

MLP

hidden layers: (20, 20)

activation='tanh'

Random Forest

*max_depth=*12

 $n_{estimators} = 20$

Comitê MLP

 $n_{estimators} = 5$

Comitê heterogêneo

Voting classifier, soft

Comparação de modelos (média e desvio padrão)

CV 20-fold

Comparação de modelos

Testes estatísticos

Kruskal Wallis

Testes estatísticos

Posthoc Nemenyi

1	Árvore de decisão			
2	KNN			
3 MLP				
4	Random Forest			
5	Comitê MLP			
6	Comitê Heterogêneo			

```
Posthoc Nemenyi for accuracy
Posthoc Nemenyi for F1 score
Posthoc Nemenyi for MCC
```


Resultado final

K-Nearest Neighbor com K=2

Real

	C	כ
•	r	ے
-	=	₹
	١	ڔ
		ט
	۷	_
Ĺ	1	L

11441	0	0	0
4	3474	0	0
34	1	36046	0
175	57	6	1351

• **Acurácia**: 99,47%

• **F1 score**: 97,51%

• MCC score: 0,98898

10-fold

