Appendix E

More examples of Lagrange interpolation

E.1 Lagrange polynomials

We wish to find the polynomial interpolating the points

\boldsymbol{x}	1	1.3	1.6	1.9	2.2
f(x)	0.1411	-0.6878	-0.9962	-0.5507	0.3115

where $f(x) = \sin(3x)$, and estimate f(1.5).

First, we find Lagrange polynomials $L_k(x)$, k = 1...5,

$$L_1(x) = \frac{(x-1.3)(x-1.6)(x-1.9)(x-2.2)}{(1-1.3)(1-1.6)(1-1.9)(1-2.2)}, \quad L_2(x) = \frac{(x-1)(x-1.6)(x-1.9)(x-2.2)}{(1.3-1)(1.3-1.6)(1.3-1.9)(1.3-2.2)}$$

$$L_3(x) = \frac{(x-1)(x-1.3)(x-1.9)(x-2.2)}{(1.6-1)(1.6-1.3)(1.6-1.9)(1.6-2.2)}, \quad L_4(x) = \frac{(x-1)(x-1.3)(x-1.6)(x-2.2)}{(1.9-1)(1.9-1.3)(1.9-1.6)(1.9-2.2)}$$

$$L_5(x) = \frac{(x-1)(x-1.3)(x-1.6)(x-1.9)}{(2.2-1)(2.2-1.3)(2.2-1.6)(2.2-1.9))}$$

with the following graphs,

Clearly, $L_k(x_i) = \delta_{ik}$. Next, the polynomial approximation can be assembled,

$$P(x) = 0.1411 \times L_1(x) - 0.6878 \times L_2(x) - 0.9962 \times L_3(x) - 0.5507 \times L_4(x) + 0.3115 \times L_5(x).$$

The interpolating polynomial approximates accurately the function $f(x) = \sin(3x)$ in the interval [1, 2.2], with five points only.

So, $P(1.5)\approx -0.9773$ is an approximate to $f(1.5)=\sin(4.5)\approx -0.9775$ accurate within $E\approx 2\times 10^{-4}$.

E.2 Convergence of "Lagrange" interpolation

First, consider, P(x), the polynomial interpolating $f(x) = \cos(x)$ through a set of equidistant points in the interval [-5, 5].