Calcul des prédicats

Exercice 1

Dans chercher à démontrer quoi que ce soit, donner les négations des propositions suivantes

- 1. $\forall x \in R, \forall y \in R, \exists z \in R, x < z < y$
- 2. $\exists x \in R, \exists y \in R, x + y > 3$
- 3. $\forall n \in \mathbb{N}^*$, $\exists p \in \mathbb{N}^*$ n divise p ou p divise n

Exercice 2

Méthode

- Pour prouver qu'une proposition quantifiée par ∀ est fausse, il suffit de donner un contre exemple.
- Pour prouver qu'une proposition quantifiée par **3**x... est vraie, on peut déterminer la valeur de **x** qui convient.
- Pour prouver qu'une proposition quantifiée par ∀ est vraie on a souvent recours à un raisonnement ou au calcul littéral.
- De même pour prouver qu'une proposition quantifiée par **3x...** est fausse.
- 1. A: $\forall n \in \mathbb{N}$ 3 divise n ou 2 divise n Montrer que A est fausse
- 2. B: $\exists n \in \mathbb{N}$, 3 divise n et 4 divise n Montrer que B est vraie
- 3. C : «Quand on prend trois nombres entiers qui se suivent, leur somme est toujours un multiple de 3 ».

Montrer que C est vraie.

4. D : « Quand on prend quatre nombres entiers qui se suivent, leur somme est toujours un multiple de 4 ».

Montrer que D est fausse.

5. E : «Il existe deux entiers k et n plus grands que 1 tels que k divise à la fois n et n+1. Montrer que E est fausse.