DATA SCIENCE - FINAL EXAM

- 1. Perform clustering on the two-dimensional data illustrated below.
 - a. Explain how the following four algorithms would split the data into two clusters: K-means, hierarchical clustering (separately single linkage and complete linkage),
 DBSCAN. Draw the clusters and give brief explanations to your answers!
 - b. Let us assume that the goal is to find the two annular natural clusters. Give an $R^2 \to R^2$ coordinate transformation that assists the bad-performing clustering algorithms to find the natural clusters. Plot the coordinate system transformation!

(20%)

2. kNN regression

- a. Determine the target value of the record marked by a star using **kNN** regression with the choice of k=4 (without using distance-weights)!
- b. Name at least **three further algorithms** that can solve **regression** problems! **(10%)**

0.4 0.1 ° ° 0.2 0.1 ° 0.2 ° 0.15 ° 0.2 ° ° 0.35

	(15%)	
	a.	Using AdaBoost algorithm, if the j th classifier correctly classifies the i th record then the weight of the i th record will be certainly reduced in the $(j+1)$ th step.
	b.	Perceptron algorithm is a universal function approximator.
	C.	One-vs-one strategy is computationally more expensive than the one-vs-rest strategy.
	d.	SMOTE is an efficient undersampling method.
	e.	Logistic regression is a binary classification algorithm.
4.	possibl	ent the "(NOT <i>A</i>) AND <i>B</i> " Boolean function with a perceptron or show that it is not e to do so. In the latter case, construct a neural network with one hidden layer. Use the ctivation function!
(10)%)	

3. Are the following statements **true or false? Explain** your answer!

5. Hierarchical clustering

- a. Using the following **distance** matrix draw the dendrograms corresponding to the single linkage (MIN) and complete linkage (MAX) clustering algorithms.
- b. What advantages does hierarchical clustering have in general compared to K-means algorithm?
- c. What advantages and disadvantages do single and complete linkage techniques have compared to one another?

(20%)

Item	A	В	С	D	Е
A	0	1	2	2	3
В	1	0	2	4	3
C	2	2	0	1	5
D	2	4	1	0	3
E	3	3	5	3	0

6. We aim to minimize the squared error with regularization term regarding a linear regression model:

$$((w_0 + \mathbf{w}^T \mathbf{x}) - y)^2 + \lambda ||\mathbf{w}||_2^2$$

where $\mathbf{w} = (w_1, w_2, ..., w_p)$: vector of weights (parameters, coefficients), \mathbf{x} : feature vector, λ : regularization parameter, $||\mathbf{w}||_2$ denotes the Euclidean length of the vector \mathbf{w} . Note that the constant term (w_0) is not regularized.

- a. What is the role of regularization?
- b. Give the formula for one update step of stochastic gradient descent method for w_0 and for w_i $(i \neq 0)$, with η learning rate for a training record $(x_1, x_2, ..., x_p)$ with target variable y.
- c. What does the learning rate refer to? What are the advantages and disadvantages of using a small/large learning rate?
- d. What is the difference between gradient descent method and stochastic gradient descent method?

(25%)