עבורם $\sigma\in\{\pm 1\}$ וכן $p\in\mathbb{Z}$ וכן $a_1
eq 0$ אזי איזי $a_1\ldots a_t\in\mathbb{Z}$ איזי אויהי $t\in\mathbb{N}_+$ וכן $\beta\in\mathbb{N}\setminus\{0,1\}$ וכן $\beta\in\mathbb{N}\setminus\{0,1\}$ $x = \sigma \cdot \left(\sum_{i=1}^t \frac{a_i}{\beta^i}\right) \cdot \beta^p$

 $.\sigma$ ייצוג בנקודה צפה אזי $x=\sigma\cdot\left(\sum_{i=1}^trac{a_i}{eta^i}
ight)\cdoteta^p$ עבורו $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{N}_+$ בסיס יהי בסיס $eta\in\mathbb{N}\setminus\{0,1\}$

מנטיסה/ספרות משמעותיות: יהי $x=\sigma\cdot\left(\sum_{i=1}^t rac{a_i}{eta^i}
ight)\cdoteta^p$ עבורו $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{N}_+$ בסיס יהי הי $eta\in\mathbb{N}\setminus\{0,1\}$ ייצוג בנקודה צפה $(a_1 \dots a_t)$ אזי

 $U בפיס צפה על החזקה בנקודה צפה: יהי <math>\beta \in \mathbb{N} \setminus \{0,1\}$ בסיס יהי ויהיו $t \in \mathbb{N}_+$ ויהיו צפה אפר יהי טענה: יהי $x\in\mathbb{R}\setminus\{0\}$ מספר בעל ייצוג נקודה צפה אזי $t\in\mathbb{N}_+$ יהיו בסיס יהי $t\in\mathbb{N}_+$ מספר בעל ייצוג נקודה צפה אזי $.\beta^{L-1} < |x| < \beta^U$

אזי $x\in\mathbb{R}$ אזי ויהי $x\in\mathbb{R}$ ויהי החזקה ויהי הגבלה על החזקה ויהי A

- $|x| > \beta^U$:overflow •
- $.|x| \leq \beta^{L-1} \ : \text{underflow} \ \bullet$

קיצוץ נקודה צפה: יהי $x=\sigma\cdot\left(\sum_{i=1}^\infty rac{a_i}{eta^i}
ight)\cdoteta^p$ בבסיס $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{R}_+$ ויהי בפה: יהי $eta\in\mathbb{R}\setminus\{0,1\}$.fl $(x) = \sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i}\right) \cdot \beta^p$

עיגול נקודה צפה: יהי $x=\sigma\cdot\left(\sum_{i=1}^\infty rac{a_i}{eta^i}
ight)\cdoteta^p$ בבטים $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{R}_+$ ביטים בטים אזי ביהי $eta\in\mathbb{R}\setminus\{0,1\}$ ביטים אזי

$$.fl(x) = \begin{cases} \sigma \cdot \left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) \cdot \beta^p & 0 \le a_{t+1} < \frac{\beta}{2} \\ \sigma \cdot \left(\left(\sum_{i=1}^{t} \frac{a_i}{\beta^i} \right) + \frac{1}{\beta^t} \right) \cdot \beta^p & \frac{\beta}{2} \le a_{t+1} < \beta \end{cases}$$

 $f(x)= ilde{x}$ אזי $x\in\mathbb{R}$ איי אויהי $t\in\mathbb{N}_+$ בסיס יהי $eta\in\mathbb{N}\setminus\{0,1\}$ איי

 $e\left(x
ight)=x-\mathrm{fl}\left(x
ight)$ אזי $x\in\mathbb{R}$ שגיאה: יהי

 $.|e\left(x
ight)|$ אזי $x\in\mathbb{R}$ שגיאה מוחלטת: יהי

 $\delta\left(x
ight)=rac{e\left(x
ight)}{x}$ אזי $x\in\mathbb{R}$ שגיאה יחסית: יהי

 $\operatorname{fl}\left(x
ight)=x\left(1-\delta\left(x
ight)
ight)$ אזי $x\in\mathbb{R}$ מסקנה: יהי

 $|\delta\left(x
ight)|\leqeta^{-t+1}$ טענה: יהי נקודה צפה אזי נקודה בעל ייצוג בעל ייצוג $x\in\mathbb{R}$ ויהי ויהי היי $t\in\mathbb{N}_{+}$ בסיס היי

 $|\delta\left(x
ight)|\leq rac{1}{2}eta^{-t+1}$ אזי בפה אזי נקודה צפה אזי ויהי $x\in\mathbb{R}$ ויהי ויהי $t\in\mathbb{N}_+$ ויהי ביסיס הי

 $|e(x+y)| \le |e(x)| + |e(y)|$ אזי $x, y \in \mathbb{R}$ טענה: יהיו

 $|\delta\left(x+y
ight)|\leq\left|\delta\left(x
ight)|+\left|\delta\left(y
ight)
ight|$ מסקנה: יהיו $x,y\in\mathbb{R}$ בעלי סימן זהה אזי

 $|\delta\left(x+y
ight)| \leq \max\left\{\left|\delta\left(x
ight)\right|,\left|\delta\left(y
ight)\right|\right\}$ טענה: יהיו $x,y\in\mathbb{R}$ בעלי סימן זהה אזי

 $|\delta\left(x-y
ight)| \leq \max\left\{|\delta\left(x
ight)|, |\delta\left(y
ight)|, |\delta\left(x-y
ight)| \leq \left|\frac{e(x)}{x-y}\right| + \left|\frac{e(y)}{x-y}\right| \times x, y \in \mathbb{R} \right\}$ טענה: יהיו $x,y \in \mathbb{R}$ אזי $|\delta\left(xy
ight)| \leq |\delta\left(x
ight)| + |\delta\left(y
ight)| + |\delta\left(x
ight)\delta\left(y
ight)| \times x, y \in \mathbb{R}$ טענה: יהיו $x,y \in \mathbb{R}$ אזי $x,y \in \mathbb{R}$ טענה: יהיו $|\delta\left(\frac{x}{y}
ight)| \leq \left|\frac{y}{\mathrm{fl}(y)}\right| \left(|\delta\left(x
ight)| + |\delta\left(y
ight)| \times x, y \in \mathbb{R}$ טענה: יהיו $|\delta\left(\frac{x}{y}
ight)| \leq \left|\frac{y}{\mathrm{fl}(y)}\right| \left(|\delta\left(x
ight)| + |\delta\left(y
ight)| \times x, y \in \mathbb{R}$

function BisectionMethod (a_0, b_0, ε)

$$\begin{split} n &\leftarrow 0 \\ \text{while } \left(\frac{b_0 - a_0}{2^{n+1}} \geq \varepsilon \right) \\ &\mid \quad m_n \leftarrow \frac{a_n + b_n}{2} \\ &\mid \quad \text{if } (f\left(m_n\right) = 0) \\ &\mid \quad | \quad \text{return } m_n \\ &\mid \quad \text{elif } (f\left(a_n\right) f\left(m_n\right) < 0) \\ &\mid \quad | \quad (a_{n+1}, b_{n+1}) \leftarrow (a_n, m_n) \\ &\mid \quad | \quad n \leftarrow n + 1 \\ &\mid \quad \text{elif } (f\left(m_n\right) f\left(b_n\right) < 0) \\ &\mid \quad | \quad (a_{n+1}, b_{n+1}) \leftarrow (m_n, b_n) \\ &\mid \quad | \quad n \leftarrow n + 1 \end{split}$$

return m_n

```
\alpha \in [a,b] איי קיים שורש f(a) איי קיים שורש a < b עבורו רציפה ויהיו f:[a,b] \to \mathbb{R} איי קיים שורש f:[a,b] \to \mathbb{R} איי קיים שורש (BisectionMethod (a,b,\varepsilon)-q|<\varepsilon
```

 $.e_n=lpha-x_n$ אזי איזי $x_n olpha$ עבורה $\{x_n\}\subseteq\mathbb{R}$ אזי

 $|lpha-m_n|\leq rac{b-a}{2^{n+1}}$ וכן $m_n olpha$ וכן $m_n olpha$ וכן בעלת שורש יחיד n אזי באלגוריתם החצייה $m_n olpha$ וכן $m_n olpha$ עבורה $m_n o$

 $e_n=rac{f(x_n)}{f'(\zeta_n)}$ אור טיילור שלה אזי f טור טיילור פשוט α וכן α וכן α וכן α טור טיילור שלה אזי α טור טיילור שלה אזי α דיוק המכונה ותהא α גזירה ברציפות בעלת שורש פשוט α וכן α וכן α טור טיילור שלה וכן α טור טיילור שלה וכן α אזי α ווער שלה וכן α ווער שלה וכן בעלת שורש פשוט α וכן α ווער טיילור שלה וכן α ווער שלה וער שלה וכן α אזי α ווער שלה וער שלה וכן α ווער שלה שלה וכן α ווער שלה וער שלה וער שלה וכן α ווער שלה וער שלה ו

 $\lim_{x o lpha} \left| rac{f(x)}{xf'(x)}
ight|$ מספר המצב: תהא a גזירה ברציפות בעלת שורש מספר מספר המצב:

 $x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$ איז $x_0\in\mathbb{R}$ ויהי ויהי $f\in C^1\left(\left[a,b
ight],\mathbb{R}ackslash\left\{0
ight\}
ight)$ אלגוריתם שיטת ניוטון: תהא

טענה: תהא $x_0\in\mathbb{R}$ בעלת שורש פשוט יחיד lpha ויהי ויהי $x_0\in\mathbb{R}$ אזי שיטת ניוטון בעלת סדר התכנסות ריבועי.

 $x_{n+1}=x_n-f\left(x_n
ight)\cdotrac{x_n-x_{n-1}}{f'(x_n)-f(x_{n-1})}$ אלגוריתם שיטת המיתרים: תהא $f\in C\left(\left[a,b
ight],\mathbb{R}ackslash\left\{0
ight\}
ight)$ ויהיו

 $\phi=rac{1+\sqrt{5}}{2}$ טענה: תהא $f\in C\left([a,b],\mathbb{R}\setminus\{0\}
ight)$ איי שיטת המיתרים בעלת סדר התכנסות בעלת טורש פשוט יחיד a ויהיי a ויהיי a איי a ויהיי a ויהיי

 x_n אזי $x_0 \in \mathbb{R}$ ויהי $g:I o \mathbb{R}$ אזי איי

 $x_n o lpha$ עבורה $g:I o \mathbb{R}$ איטרציה: שיטת איטרציה

 $g\left(a
ight)=a$ עבורה $a\in\mathbb{R}$ אזי $g:I o\mathbb{R}$ עבורה נקודת שבת: תהא

g(lpha)=lpha אזי א $x_n olpha$ איטת איטרציה מתכנסת שיטת איטרציה שיטת $g\in C\left(I,\mathbb{R}
ight)$

 $g\in C(I,\mathbb{R})$ ותהא ותהא קונסיסטנטיות: תהא שיטת איטרציה ותהא ותהא ותהא $f:I o\mathbb{R}$

 $a,g\left(lpha
ight)=lpha$ עבורה $lpha\in\left[a,b
ight]$ אזי קיימת $g\in C\left(\left[a,b
ight],\left[a,b
ight]
ight)$ עבורה

 $g\left(lpha
ight)=lpha$ עבורה $lpha\in\left[a,b
ight]$ אזי קיימת ויחידה עבורה K<1 ויהי ווהי $g\in C^{1}\left(\left[a,b
ight],\left[a,b
ight]
ight)$ אזי קיימת ויחידה

. מתכנסת לנקודת משבת. אזי שיטת איט עבורו $g' | \leq K$ עבורו ויהי $g \in C^1\left([a,b],[a,b]
ight)$ מחסנה: תהא מסקנה: תהא

 $|e_n| \leq K \, |e_{n-1}|$ אזי $|g'| \leq K$ עבורו K < 1 ויהי $g \in C^1 \left([a,b], [a,b]
ight)$ אזי איזי ויהי

 $|g\left(x
ight)-g\left(y
ight)|\leq K\left|x-y
ight|$ עבורם K>0 וכן $g:\mathbb{R}
ightarrow\mathbb{R}$ פונקציה פונקציה

K עבורם $g:\mathbb{R} \to \mathbb{R}$ וכן $g:\mathbb{R} \to \mathbb{R}$ עבורם $g:\mathbb{R} \to \mathbb{R}$ תנאי ביווץ: פונקציה

 $|g'| \geq K > 1$ וכן $g \in C^1(\mathbb{R})$ עבורם g לישפיץ תנאי מתיחה: פונקציה

 $g\left(lpha
ight)=lpha$ עבורה $lpha\in\left[a,b
ight]$ אזי קיימת ויחידה עבורה K<1 ויהי ויהי ויהי $g\in C\left(X
ight)$ עבורה אזי קיימת ויחידה עבורה אזי קיימת ויחידה אוויים אוו

. מסקנה: g מתכנסת g מתכנסת g ויהי $g \in C(X)$ אזי שיטת האיטרציה g ויהי ווהי $g \in C(X)$ מסקנה: יהי

 $|e_n| \leq rac{K^n}{1-K} |x_1-x_0|$ אזי א ליפשיץ K < 1 ויהי $g \in C(X)$ מסקנה: יהי X סגור תהא

משפט: תהא $g\in (\alpha-arepsilon, \alpha+arepsilon)$ מתקיים כי $g'(\alpha)$ אזי קיים $g'(\alpha)$ מתקיים משפט: תהא $g\in C^1$ ותהא $g\in C^1$ ותהא מתכנסת ל- α

משפט: תהא $g\in C^1$ לכל לכל $\varepsilon>0$ עבורו לכל $g'(\alpha)$ מתקיים שבת עבורה שבת נקודת שבת עבורה $g\in C^1$ עבורו לכל מתכנסת לי α בקצב התכנסות לינארי.

משפט: יהי $g^{(n)}\left(lpha
ight)=0$ וכן $g^{(p)}\left(lpha
ight)\neq0$ ותהא $g\in C^{p}\left(I,\mathbb{R}
ight)$ לכל $g^{(n)}\left(lpha
ight)=0$ אזי קיים משפט: יהי $g\in C^{p}\left(I,\mathbb{R}
ight)$ אתקיים כי g מתכנסת ל-g בקצב התכנסות g