Терминологические пояснения. Конструктивными постоянными ниже называются величины J, R, k_m, k_e . Угловое ускорение обозначим буквой α (не так, как в методичке), символ ε будем использовать только для обозначения ЭДС.

ЗНАНИЕ К ЗАЩИТЕ ПЕРВОЙ ЛАБОРАТОРНОЙ РАБОТЫ

Физика

- Конструкция и принцип работы двигателя постоянного тока. Почему двигатель разгоняется? Почему перестаёт разгоняться? (Лекция)
- Четыре физические формулы, из которых выводится математическая модель двигателя. Единицы измерения и физический смысл всех величин. (Лекция)

Переходные функции

- Выражения для $\alpha(t)$, $\omega(t)$, $\theta(t)$ без использования конструктивных постоянных, с использованием обозначений T_m , w_{nls} . (Методичка)
- Выражения для $\alpha(t)$, $\omega(t)$, $\theta(t)$, M(t), I(t), $\varepsilon(t)$ с использованием конструктивных постоянных, без использования обозначений T_m , w_{nls} . (Лекция + голова)
- Графики $\alpha(t)$, $\omega(t)$, $\theta(t)$, M(t), I(t), $\varepsilon(t)$. В каких точках касаются осей? К какому значению стремятся при $t \to \infty$? Для графика $\theta(t)$ уметь написать уравнение наклонной асимптоты (прямой, к которой стремится график), для графиков $\omega(t)$, $\alpha(t)$, M(t), I(t), $\varepsilon(t)$ уметь написать уравнение касательной в точке t=0. (Методичка + голова)
- Выражения для T_m , M_{st} , ω_{nls} через конструктивные постоянные и входное напряжение. (Memoduuka + nekuus)

Анализ графиков

— Как изменится каждый из графиков при изменении каких-либо конструктивных параметров двигателя? (Например, при увеличении коэффициента k_e в два раза). Умение нарисовать новый график, сравнить его с исходным и объяснить, что изменилось и почему.

Программирование и моделирование

- Смысл каждой строчки кода в python-программе.
- Смысл каждой строчки кода в scilab-программе.
- Умение нарисовать схему моделирования по заданному дифференциальному уравнению. Например, для уравнения $2\dot{y}(t)+3u(t)-4y(t)=0$ (здесь u(t) вход, y(t) выход).