Análise de Modelagem Conceitual Projeto Oficina Mecânica

1. Introdução

Este documento relata o desenvolvimento de um projeto de modelagem conceitual de banco de dados para um sistema de oficina mecânica, realizado como parte de um desafio proposto no bootcamp de Análise de Dados. O objetivo principal foi transformar uma narrativa textual em um modelo conceitual (diagrama ER) completo e funcional, aplicando boas práticas de modelagem.

2. Objetivos do Projeto

- Compreender os requisitos do sistema a partir de uma narrativa
- Identificar entidades, atributos e relacionamentos
- Normalizar e estruturar o modelo conforme boas práticas
- Controle de ordens de serviço
- Rastreamento de veículos e seus serviços
- Registro de peças utilizadas
- Acompanhamento de pagamentos
- Representar o esquema relacional no MySQL Workbench
- Documentar o raciocínio por trás das decisões de modelagem

3. Entidades e Relacionamentos

- Cliente: Unifica pessoa física e jurídica, evitando duplicidade de entidades. Armazena dados de pessoas físicas ou jurídicas (nome/razão social, CPF/CNPJ, telefone, endereço).
- Veículo: Define os veículos atendidos pela oficina, com informações sobre revisões, trocas de peças e consertos.
- Cliente/Veículo: Permite relacionamentos N:M entre clientes e veículos. Relaciona clientes e veículos com um tipo de vínculo (ex: proprietário, empresa, copropriedade).
- Ordem de Serviço: Registra o número da ordem, status da execução, serviços prestados, peças utilizadas e referência ao veículo, equipe e pagamento. status_ordem ENUM('pendente', 'em_execucao', 'concluida', 'cancelada').

- **Serviço**: Informa o tipo de serviço, valor da mão de obra, quantidade, data de execução e autorização do cliente.
- **Peça:** Contém detalhes sobre as peças utilizadas, tipo, valor, quantidade, datas e autorização do cliente.
- **Equipe Mecânica:** Registra equipes da oficina com identificação, nome, endereço e especialidade.
- **Pagamento**: Armazena as informações de pagamento vinculadas a uma ordem de serviço, status_pagamento ENUM('aguardando', 'confirmado', 'recusado', 'estornado').

4. Decisões de Modelagem

- Foram evitados nomes com espaços ou acentos para garantir compatibilidade com SQL.
- O uso de ENUM foi escolhido para atributos com valores fixos (ex: status_ordem, status pagamento).
- Chaves primárias e estrangeiras seguem convenções claras, com padronização de nomes.
- Campos booleanos, como autorizacao_cliente, foram definidos como TINYINT (0/1) conforme prática do MySQL.

A modelagem foi baseada na narrativa do sistema de ordens de serviço de uma oficina, priorizando clareza, normalização e representação fiel do contexto real. Essa estrutura facilita consultas, relatórios e futura implementação do sistema em um banco relacional.

5. Desafios e Aprendizados

Aqui você pode escrever algo pessoal:

- Aprendi a aplicar as regras de cardinalidade corretamente
- Desenvolvi mais confiança no uso de ferramentas como MySQL Workbench
- Percebi a importância de nomear atributos de forma consistente e clara
- Entendi melhor como modelar um sistema próximo do mundo real

6. Considerações Finais

Este projeto foi essencial para consolidar meus conhecimentos em modelagem conceitual. Com base na narrativa, foi possível criar um modelo relacional realista e bem estruturado, pronto para futuras implementações em ambientes reais.