Fiche de révision DS1

Fiche de révision DS1 de maths

- 1. Rappel primitive et dérivé
- 2. Espaces de Hilbert
 - <u>Définitions</u>
 - Propriétés
- 3. Décomposition en Séries de Fourier
 - <u>Définition</u>
 - Coefficients de Fourier
 - Propriétés
- 4. Convolution
 - <u>Définition</u>
 - Propriétés
- 4. Distribution de Dirac
 - <u>Définition</u>
 - Propriétés

1. Rappel primitive et dérivé

Fonction $f(x)$	Dérivée $f'(x)$	Primitive $F(x)$
$x^n (n eq -1)$	nx^{n-1}	$\frac{x^{n+1}}{n+1}$
x^{-1}	$-x^{-2}$	$\ln \ x\ $
$\ln(x)$	$\frac{1}{x}$	$x \ln(x) - x$
e^x	e^x	e^x
a^x	$a^x \ln(a)$	$\frac{a^x}{\ln(a)}$
$\sin(x)$	$\cos(x)$	$-\cos(x)$
$\sin(ax)$	$a\cos(x)$	$-rac{1}{a}\mathrm{cos}(x)$
$\cos(x)$	$-\sin(x)$	$\sin(x)$
$\cos(ax)$	$-a\sin(x)$	$\frac{1}{a}\sin(x)$
$\tan(x)$	$1+ an^2(x)=rac{1}{\cos^2(x)}$	

2. Espaces de Hilbert

Un **espace de Hilbert** est un espace vectoriel normé complet muni d'un produit scalaire.

Définitions

Produit scalaire :

$$\langle u,v
angle = \sum_{i=1}^n u_i \overline{v_i} \quad ext{(ou une intégrale si l'espace est infini-dimensionnel)}.$$

Norme induite :

$$\|u\|=\sqrt{\langle u,u
angle}$$

Propriétés

1. **Orthogonalité** : Deux vecteurs u et v sont orthogonaux si :

$$\langle u,v \rangle = 0$$

2. Inégalité de Cauchy-Schwarz :

$$|\langle u,v \rangle| \leq ||u|| ||v||.$$

3. Théorème de projection orthogonale :

Si H est un sous-espace fermé, tout vecteur x se décompose en :

$$x=x_H+x_H^\perp,\quad x_H\in H,\, x_H^\perp\in H^\perp.$$

3. Décomposition en Séries de Fourier

Définition

Une fonction périodique f(x) de période 2π peut être décomposée en une série de Fourier :

$$f(x)=a_0+\sum_{n=1}^{\infty}\left[a_n\cos(nx)+b_n\sin(nx)
ight].$$

Coefficients de Fourier

ullet a_0 :

$$a_0=rac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\,dx$$

ullet a_n :

$$a_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx$$

• b_n :

$$b_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx$$

Propriétés

- Convergence : La série converge en moyenne quadratique dans $L^2([-\pi,\pi])$. (Pas vu en cours mais je le note la quand même au cas ou)
- Parseval:

$$rac{1}{2\pi}\int_{-\pi}^{\pi}|f(x)|^2dx=rac{a_0^2}{2}+\sum_{n=1}^{\infty}rac{a_n^2+b_n^2}{2}$$

4. Convolution

Définition

La convolution de deux fonctions f et g est définie par :

$$(fst g)(t)=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au$$

Propriétés

1. Commutativité :

$$f * g = g * f$$

2. Associativité:

$$f * (g * h) = (f * g) * h$$

3. Distributivité:

$$f * (g + h) = (f * g) + (f * h)$$

4. Lien avec la transformée de Fourier :

$$\mathcal{F}(f*g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

4. Distribution de Dirac

Définition

La distribution de Dirac $\delta(x)$ est définie par :

$$\int_{-\infty}^{\infty} \delta(x) f(x) \, dx = f(0)$$

pour toute fonction f continue au voisinage de 0.

Propriétés

1. Support ponctuel:

$$\delta(x)=0 \quad ext{pour } x
eq 0$$

2. Translation:

$$\delta(x-a)$$
 est centrée en $x=a$

3. Propriété de filtrage :

$$\int_{-\infty}^{\infty} \delta(x-a) f(x) \, dx = f(a)$$

4. Lien avec la transformée de Fourier :

$$\mathcal{F}(\delta(x))=1$$

© Félix MARQUET