PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Tercera práctica (tipo a) Primer semestre 2025

Indicaciones generales:

- Duración: 105 minutos.
- Materiales o equipos a utilizar: con apuntes de clase físicos.
- No está permitido el uso de ningún material o equipo electrónico, salvo calculadora.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 (6 puntos). Funciones convexas por definición.

a) Sean $f: D_1 \subset \mathbb{R}^n \to \mathbb{R}$ y $g: D_2 \subset \mathbb{R}^n \to \mathbb{R}$ funciones convexas. Pruebe que

$$h(x) = \max\{f(x), g(x)\}, h: D_1 \cap D_2 \to \mathbb{R}$$

es convexa.

b) Pruebe que si f es convexa sobre [a, b],

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a) + f(b)}{2}.$$

c) Sea $f: \mathbb{R} \to \mathbb{R}$ continua. Para h > 0 fijo, defina

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t)dt.$$

Pruebe que si f es convexa, $f_h(x) \ge f(x)$.

Solución:

a) Sea $\theta \in [0, 1]$ y $x, y \in D_1 \cap D_2$

$$\begin{split} h(\theta x + (1 - \theta)y) &= \max\{f(\theta x + (1 - \theta)y), g(\theta x + (1 - \theta)y)\} \\ &\leq \max\{\theta f(x) + (1 - \theta)f(y), \theta g(x) + (1 - \theta)g(y)\} \\ &\leq \max\{\theta f(x), \theta g(x)\} + \max\{(1 - \theta)f(y), (1 - \theta)g(y)\} \\ &= \theta \max\{f(x), g(x)\} + (1 - \theta)\max\{f(y), g(y)\} \\ &= \theta h(x) + (1 - \theta)h(y). \end{split}$$

b) Tenemos

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = \int_{0}^{1} f((1-t)a + bt)dt$$

$$\leq \int_{0}^{1} tf(a) + (1-t)f(b)dt$$

$$= \frac{f(a) + f(b)}{2}.$$

c) Tenemos que

$$\int_{x-h}^{x+h} f(t)dt - \underbrace{\int_{x-h}^{x+h} f(x)dt}_{=2hf(x)} = \int_{x-h}^{x+h} f(t)dt - 2hf(x)$$

$$= \int_{-h}^{h} (f(x+t) - f(x))dt$$

$$= \int_{0}^{h} (f(x+t) + f(x-t) - 2f(x))dt \ge 0.$$

Esto último se sigue del hecho que $x = \frac{x+t}{2} + \frac{x-t}{2}$ y como f es convexa $f(x) \leq \frac{f(x+t) + f(x-t)}{2}$.

Pregunta 2 (4 puntos). Criterios de concavidad y cuasiconcavidad.

- a) Analice si $f(x_1, x_2) = x_1^2 x_2^2$ es cuasicóncava sobre \mathbb{R}^2_+ .
- b) Considere la función de utilidad CES

$$u(x) = (x_1^{\rho} + x_2^{\rho})^{1/\rho},$$

donde $\rho \in (0,1)$. Pruebe que u(x) es cuasicóncava.

Solución:

a) Lo es pues:

$$M_{r} = \begin{bmatrix} 0 & f_{x_{1}} & f_{x_{2}} \\ f_{x_{1}} & f_{x_{1}x_{1}} & f_{x_{2}x_{1}} \\ f_{x_{2}} & f_{x_{1}x_{2}} & f_{x_{2}x_{2}} \end{bmatrix} = \begin{bmatrix} 0 & 2x_{1}x_{2} & 2x_{1}^{2} \\ 2x_{1}x_{2} & 2x_{2}^{2} & 4x_{1}x_{2} \\ 2x_{1}^{2} & 4x_{1}x_{2} & 2x_{1}^{2} \end{bmatrix}$$

$$(-1)^{1}M_{1} = - \begin{vmatrix} 0 & 2x_{1}x_{2} & 2x_{1}^{2} \\ 2x_{1}x_{2} & 2x_{2}^{2} & 4x_{1}x_{2} \\ 2x_{1}^{2} & 4x_{1}x_{2} & 2x_{1}^{2} \end{vmatrix} = 4x_{1}^{2}x_{2} \ge 0$$

$$(-1)^{2}M_{2} = \begin{vmatrix} 0 & 2x_{1}x_{2} & 2x_{1}^{2} \\ 2x_{1}x_{2} & 2x_{2}^{2} & 4x_{1}x_{2} \\ 2x_{1}^{2} & 4x_{1}x_{2} & 2x_{1}^{2} \end{vmatrix} = 16x_{1}^{4}x_{2} \ge 0$$

b) Si $0<\rho<1$, entonces tanto x_1^ρ como x_2^ρ son funciones cóncavas. Luego, $(x_1^\rho+x_2^\rho)$ también es cóncava por ser una combinación lineal de funciones cóncavas, y por tanto cuasicóncava. Finalmente, dado que $g(z)=z^{\frac{1}{\rho}}$ es una función creciente, se sigue que toda función CES es una transformación creciente de una función cuasicóncava, y por tanto cuasicóncava.

Pregunta 3 (4 puntos). Aplicación de la cuasiconcavidad al problema de maximización de la utilidad.

Considere el siguiente problema de optimización con parámetros (note que corresponde al problema maximización de la utilidad)

$$\mathcal{P}_u: \begin{cases} \max & u(\mathbf{x}) \\ \text{s. a:} & \mathbf{p} \cdot \mathbf{x} \leq I \\ & \mathbf{x} > \mathbf{0}. \end{cases}$$

Asuma que $\mathbf{p} \in \mathbb{R}^n_{++}$, I > 0 y que $u(\cdot)$ es continua y tal que $\mathbf{x}_2 \ge \mathbf{x}_1$, $\mathbf{x}_2 \ne \mathbf{x}_1 \implies u(\mathbf{x}_2) > u(\mathbf{x}_1)$. Sea $\mathbf{x}^*(\mathbf{p}, I)$ una solución al problema. Demuestre que:

- 1. Si u es cuasicóncava, entonces el conjunto de soluciones al problema \mathcal{P}_u es convexo.
- 2. Si u es estrictamente cuasicóncava, entonces el conjunto de soluciones al problema \mathcal{P}_u es unitario (la solución es única).

Solución:

Supongamos que $u(\cdot)$ es cuasicóncava y que tenemos dos soluciones \mathbf{x}^* y \mathbf{x}^{**} con $\mathbf{x}^* \neq \mathbf{x}^{**}$. El objetivo es probar que $\theta \mathbf{x}^* + (1-\theta)\mathbf{x}^{**}$ es solución para todo $\theta \in [0,1]$. Los casos $\theta = 0,1$ son triviales. Tomemos entonces $\theta \in (0,1)$. Por un lado,

$$\mathbf{p} \cdot [\theta \mathbf{x}^* + (1 - \theta)\mathbf{x}^{**}] = \theta \mathbf{p} \mathbf{x}^* + (1 - \theta)\mathbf{p} \mathbf{x}^{**} \le \theta I + (1 - \theta)I = I.$$

Finalmente, por la cuasiconcavidad de $u(\cdot)$

$$u(\theta \mathbf{x}^* + (1 - \theta)\mathbf{x}^{**}) \ge \min\{u(\mathbf{x}^*), u(\mathbf{x}^{**})\} = u^*.$$

Ahora bien, si $u(\cdot)$ fuese estrictamente cuasicóncava,

$$u(\theta \mathbf{x}^* + (1 - \theta)\mathbf{x}^{**}) > \min\{u(\mathbf{x}^*), u(\mathbf{x}^{**})\} = u^*,$$

lo cual contradice la optimalidad de \mathbf{x}^* y \mathbf{x}^{**} .

Pregunta 4 (6 puntos). Optimización en \mathbb{R}^n . Clasificación de puntos óptimos.

a) De acuerdo al valor del parámetro $a \neq 0$, analice si la función

$$f(x,y) = (x^2 + y^2)^2 - 2a^2(x^2 - y^2)$$

tiene puntos óptimos.

b) Considere una firma cuya función de ingreso es

$$R(x,y) = x(100 - 6x) + y(192 - 4y),$$

donde x e y representan el número de artículos vendidos. Si la función de costo es

$$C(x,y) = 2x^2 + 2y^2 + 4xy - 8x + 20,$$

determine el beneficio máximo.

Solución:

a) El gradiente de f viene dado por

$$\nabla f(x,y) = \begin{bmatrix} 4x(x^2 + y^2 - a^2) \\ 4y(x^2 + y^2 + a^2) \end{bmatrix}$$

Por lo tanto, los puntos críticos son (0,0), (-a,0), (a,0). Ahora calculamos la hessiana de f:

$$H_f(x,y) = \begin{bmatrix} 4(x^2 + y^2) + 8x^2 - 4a^2 & 8xy \\ 8xy & 4(x^2 + y^2) + 8y^2 + 4a^2 \end{bmatrix}.$$

Evaluando en los puntos estacionario:

$$Hf(0,0) = \begin{bmatrix} -4a^2 & 0 \\ 0 & 4a^2 \end{bmatrix} \implies |Hf(0,0)| = -16a^4 < 0 \implies \text{silla}$$

$$Hf(-a,0) = H(a,0) = \begin{bmatrix} 8a^2 & 0 \\ 0 & 8a^2 \end{bmatrix} \implies \text{mínimo local}.$$

b) El beneficio es

$$B(x,y) = R(x,y) - C(x,y) = x(100 - 6x) + y(192 - 4y) - (2x^2 + 2y^2 + 4xy - 8x + 20)$$

cuyo gradiente es

$$\nabla B(x,y) = (108 - 16x - 4y, \ 192 - 4x - 12y)$$

Obtenemos el punto crítico (3,15). La matriz Hessiana es

$$H_B(x,y) = \begin{bmatrix} -16 & -4 \\ -4 & -12 \end{bmatrix}$$

La cual es definida negativa en \mathbb{R}^2 . Por tanto, la función es cóncava en \mathbb{R}^2 y el punto (3,15) es un máximo global.

Profesor del curso: Jorge Chávez.

Asistente de docencia: Marcelo Gallardo.