ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

12. Sprawdź, czy funkcja $f(x,y)=e^{x+y}$ jest dwukrotnie różniczkowalna w \mathbb{R}^2 . Jeśli tak, to oblicz różniczkę zupełną 2–go rzędu d^2f .

Dane wejściowe:

$$f(x,y) = e^{x+y}$$

Kroki rozwiazania:

1. **Sprawdzenie, czy funkcja jest dwukrotnie różniczkowalna:**

Funkcja $f(x,y)=e^{x+y}$ jest funkcja wykładnicza, a funkcje tego typu sa różniczkowalne dowolna ilość razy w standardowych przestrzeniach euklidesowych, w tym w \mathbb{R}^2 .

- 2. **Obliczenie pochodnych czastkowych drugiego rzedu:**
- Obliczamy pierwsze pochodne czastkowe:

$$f_x(x,y) = \frac{\partial}{\partial x}(e^{x+y}) = e^{x+y}$$

$$f_y(x,y) = \frac{\partial}{\partial y}(e^{x+y}) = e^{x+y}$$

- Obliczamy drugie pochodne czastkowe:

$$f_{xx}(x,y) = \frac{\partial}{\partial x}(f_x(x,y)) = \frac{\partial}{\partial x}(e^{x+y}) = e^{x+y}$$

$$f_{yy}(x,y) = \frac{\partial}{\partial y}(f_y(x,y)) = \frac{\partial}{\partial y}(e^{x+y}) = e^{x+y}$$

$$f_{xy}(x,y) = \frac{\partial}{\partial y}(f_x(x,y)) = \frac{\partial}{\partial y}(e^{x+y}) = e^{x+y}$$

$$f_{yx}(x,y) = \frac{\partial}{\partial x}(f_y(x,y)) = \frac{\partial}{\partial x}(e^{x+y}) = e^{x+y}$$

3. **Sprawdzenie równości pochodnych mieszanych:**

$$f_{xy} = f_{yx} \implies e^{x+y} = e^{x+y}$$

Pochodne mieszane sa równe, co oznacza, że funkcja jest dwukrotnie różniczkowalna.

4. **Obliczenie różniczki zupełnej drugiego rzedu d^2f :**

Formuła różniczki zupełnej drugiego rzedu to:

$$d^2 f = f_{xx} (dx)^2 + 2 f_{xy} dx dy + f_{yy} (dy)^2$$

Podstawiajac obliczone pochodne:

$$d^{2} f = e^{x+y} (dx)^{2} + 2e^{x+y} dx dy + e^{x+y} (dy)^{2}$$

To możemy zapisać jako:

$$d^2 f = e^{x+y} \left((dx)^2 + 2dx \, dy + (dy)^2 \right)$$

Wvnik końcowy:

$$d^{2}f = e^{x+y} \left((dx)^{2} + 2dx \, dy + (dy)^{2} \right)$$