4.3-9.

Solve the recurrence $T(n) = 3 T(\sqrt{n}) + \log n$ by making a change of variables. Your solution should be asymptotically tight. Do not worry about whether values are integral.

Answer.

Renaming $m = \log n$ yields

$$T(2^m) = 3T(2^{m/2}) + m$$

We can now rename $S\left(m\right)=T\left(2^{m}\right)$ to produce the new recurrence

$$S(m) = 3S(m/2) + m$$

This new recurrence has the solution: $S\left(m\right)=\Theta\left(m^{\lg 3}\right)$. Changing back from $S\left(m\right)$ to $T\left(n\right)$, we obtain

$$T\left(n\right) = T\left(2^{m}\right) = S\left(m\right) = \Theta\left(m^{\lg 3}\right) = \Theta\left((\log n)^{\lg 3}\right)$$

^{*.} Creative Commons 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com