

Infinity Tutors

Calculus II

Topic: Parametric Equations

Prepared by: Trevor Jim

Date: August 4, 2025

"Empowering Excellence in Education"

Parametric Equations Exercise

- 1. By revolving the curve $x = r \cos t$, $y = r \sin t$ for $0 \le t \le \pi$ about the x-axis, show that the surface area of a sphere of radius r is $4\pi r^2$.
- 2. The figure below shows the curve C, known as the lemniscate of Bernoulli, defined by the parametric equations:

$$x = 3\sin\theta$$
, $y = 2\sin(2\theta)$ $(0 \le \theta \le \pi)$

The curve is symmetrical about both the x- and y-axes.

(a) Show that a Cartesian equation of C is:

$$18y^2 = 16x^2(9 - x^2)$$

- (b) Find the area of one loop of C.
- 3. Find the equation of the tangent to the curve at the point corresponding to the given value of the parameter $x = t^3 + 1$, $y = t^4 + 1$: t = -1
- 4. Find the parametric equation for the path of a particle that moves counter clockwise halfway around the circle $(x-2)^2 + y^2 = 4$, from the top to the bottom.
- 5. Find the area bounded by loop of the curve with parametric equation $x=t^2, \quad y=t^3-3t$
- 6. Find the parametric equation of the following

(a)
$$\frac{ax^2}{a^2} + \frac{y^2}{a^2} = 1$$

(b)
$$\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$$

(c)
$$x^2 + y^2 = 4$$

- 7. For each of the following determine $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
 - (a) $x = \sin t$, $y = \cos t$

(b)
$$x = 3t^2 + 1$$
, $y = t^3 - 2t^2$

(c)
$$x = 3t^2 + 4t$$
, $y = \sin 2t$