密立根油滴实验

Millikan Oil-Drop Experiment

【实验目的】

- 1. 了解密立根油滴仪的结构,掌握利用油滴测定电子电荷的设计思路和方法。
- 2. 了解 CCD 图像传感器的原理和电视显微测量方法。
- 3. 用平衡法和动态法(选做)测量电子电量的大小,验证电子电荷的量子化特性。
- 4. 感受和体验物理经典真滋味

【预备问题】

- 1. 密立根利用油滴测定电子电荷的基本原理和设计思路是什么?
- 2. 什么是静态(平衡)测量法和动态(非平衡)测量法? 两种方法有何不同与优缺点? 测量中需注意哪些问题?
 - 3. 为什么必须保证油滴在测量范围内做匀速运动或静止? 怎样控制油滴运动?
 - 4. 使用油滴喷雾器应注意什么问题? 若喷油后, 在显示器看不到油滴如何处理?
 - 5. 如何判断油滴盒内平衡极板是否水平? 不水平对实验结果有何影响?
 - 6. 用 CCD 成像系统观测油滴比直接从显微镜中观测有何优点?

【实验背景】

1897年,英国物理学家汤姆逊(Thomson, Joseph John)发现了电子,又测量了这种基本粒子的比荷(荷质比),并证实了这个比值是唯一的。因此,电子的电荷量的测量成为当时物理学家面临的重大课题。

1917年,美国物理学家密立根(Robert Andrews Millikan)历经 9 年苦心钻研,以卓越的研究方法和精湛的实验技术,设计了油滴实验,经过上千次测量,最早从实验上测得电子电荷的精确数值为 $e=1.60\times10^{-19}$ C;明确了电荷的量子化,具有不连续性。密立根油滴实验堪称物理学的经典实验,实验结果对近代物理学发展有重要意义,其实验思路和方法有着广泛应用,其实验原理至今仍在当代物理科学研究的前沿发挥着作用。密立根因此获得了 1923年的诺贝尔物理学奖。

目前,测量电子电荷的最好结果为: $e=(1.60217733\pm0.00000049)\times10^{-19}$ C。

【实验原理】

用油滴法测量电子的电荷 e, 可以用静态(平衡)测量法或动态(非平衡)测量法, 也可以通

过改变油滴的带电量,用静态法或动态法测量油滴带电量的改变量。

本实验主要采用静态测量法,原理如下:

设质量为m带电量为q的油滴在两平行极板间运动,两极板间电压为U,极板间距为d。则油滴在极板间将同时受到重力和电场力的作用,如图 1 所示。如果调节两极板间的电压U,可使电场力和重力达到平衡,即

图 1 静电场中的带电油滴(电压 U, 板间距 d)

当两平行极板间不加电压时,油滴在重力作用下加速下降,同时也受空气阻力(粘滞阻力)作用,根据斯托克斯定律,粘滞阻力为 $f_r = 6\pi a\eta v_g$,这里,a 为油滴的半径, η 为空气的粘滞系数, v_g 为油滴运动的速度。油滴的速度达到一定值后,粘滞阻力和重力会平衡,油滴进而做匀速直线运动,有

$$f_r = 6\pi a \eta v_{\rm g} = mg \tag{2}$$

$$m = \rho v = \frac{4}{3}\pi a^3 \rho \tag{3}$$

$$a = \sqrt{\frac{9\eta v_{\rm g}}{2\rho g}} \tag{4}$$

考虑到油滴的半径为10-6米量级,空气不能再看作连续介质,空气的粘滞系数应做如下修正

$$\eta' = \frac{\eta}{1 + \frac{b}{pa}} \tag{5}$$

这里,b 为修正常数,b=6.17×10⁻⁶m cmHg,p 为大气压强,a 为未修正过的油滴半径。而则修正后的油滴半径 a 为

$$a = \sqrt{\frac{9\eta v_g}{2\rho g} \frac{1}{1 + \frac{b}{pa}}} \tag{6}$$

油滴匀速运动的距离l和速度 v_g 之间的关系为

$$v_{\rm g} = \frac{l}{t_{\rm g}} \tag{7}$$

由(1)、(2)、(6)、(7)式得,油滴的带电量q为

$$q = \frac{18\pi}{\sqrt{2\rho g}} \left[\frac{\eta l}{t_g (1 + \frac{b}{pa})} \right]^{3/2} \frac{d}{U}$$
 (8)

式(8)即静态测量法的油滴带电量的表达式,要注意的是,因为油滴的半径 a 处于修正项中,可以不十分精确。因此,式(8)中油滴的半径 a 仍用(4)式计算。

【实验仪器】

P6701 型密立根油滴仪:包括水平放置的平行极板(油滴盒)、调平装置、照明装置、电源、计时器、实验油、喷雾器、显微镜、监视器等。

【实验内容】

实验 1. 仪器调整与熟悉,观察油滴运动,练习控制油滴。

实验 2. 选择合适的油滴。

实验 3. 平衡法测量电子电荷量的数值。

实验 4. 动态法测量电子电荷量的数值 (拓展选做)。

【实验步骤与要求】

实验 1. 仪器调整与熟悉,观察油滴运动,练习控制油滴。

- (1) 调整仪器底部的调平螺丝, 使水准泡指示水平;
- (2) 如果显微镜的分划板位置不正,则转动目镜头,直到分划板的位置放正;调整接目镜,使分划板刻线清晰。
- (3) 将油从油雾室旁的喷雾口喷入,微调显微镜的调焦手轮,使视场中出现大量清晰的油滴。

实验 2. 选择合适的油滴。

将油滴仪的功能键置于"平衡"(即"BALANCE")档,调节平衡电压至 100~300V 之间,观察能够静止的油滴,并且要满足油滴匀速下降 1.5mm 所用时间在 8~30s 之间。具体操作

为,将油滴仪的功能键置于"UP"档,使油滴运动到显示屏的最高刻度线,将功能键置于"BALANCE"档,油滴静止。然后将功能键置于"DOWN"档,使油滴运动到第二刻度线的时候开始计时,一直运动到最底端刻度线时计时停止。选择这段时间在 8~30s 的油滴。

实验 3. 平衡法测量电子电荷量的数值。

选择满足上述条件的10颗油滴进行时间的测量,每个油滴需要重复测量5次。

注意: 计时结束的同时,一定要迅速将油滴仪的功能键置于"平衡"(即"BALANCE")档,否则油滴就会运动到下极板而观察不到,造成跟踪油滴丢失,进而无法测量 5 次。

<u>实验 4</u>. 动态法测量电子电荷量的数值(自主设计,拓展选做)。 略。

【数据处理】

- 1. 计算每颗油滴的带电量q。
- 2. 计算n值。 $n = 取整\left(\frac{q}{e}\right)$ 。
- 3. 图示法作 q-n 曲线,求解电子的电荷量数值 e 测(即 q-n 曲线的斜率)和相对不确定 $\boxed{ EU_r = \left| \frac{e_{\mathbb{M}} e}{e} \right| \times 100\%}$ 。此外,e 测的数值也可再用最小二乘法来求得,并与图示法的结果 作比较,分析这两种处理方法的异同点和优缺点。

【注意事项】

- 1. 实验安全第一,认真操作,如实记录,规范处理。
- 2. 喷雾器喷口方向不能朝下,否则会导致漏油。平衡电压最佳取值范围: 100~300V。
- 3. 注意针对选中油滴用显微镜调焦,呈现出清晰的亮点后再测量。
- 4. 个别情况下喷雾器产生的油滴数量过多且无法快速消散,严重妨碍了对油滴的选择 和观察。这时要先通过风吹等方式消除过多的悬浮油滴。
 - 5. 测量时要对油滴跟踪聚焦; 计时结束时同时按下"BALANCE"键, 以防油滴丢失。
 - 6. 通电时极板带电,请勿用手接触。
 - 7. 做完实验后请擦拭掉自己仪器上的油渍。
 - 8. 请 1~4 号负责实验室清洁卫生。

【思考题】

1. 如何判断油滴盒内平衡极板是否水平? 如果上下极板不水平,对测量结果有什么影响?

参考解答:

调节仪器底座上的两只调平螺旋手轮,将仪器上的水泡调平,使水平仪水平,这样平衡 极板就水平了。或将外置小水准器放在仪器上,调节仪器底座的调平螺旋手柄。

平行极板如果不水平,油滴横向漂移很厉害,影响实验结果。同时,电场力与重力不 在同一方向,对于平衡电压的测量也有影响。

2. 对实验结果造成影响的主要因素有哪些?如何克服这些因素?

参考解答:

- 1)要制造(喷出)和选择合适的油滴,这是最主要的。油滴不能太大或大小,并且每次洗的油滴带电量应该不一样。
 - 2) 人为因素,每次计时测量的反应时间可能不一样,选择的平衡线也会有差别。
 - 3) 测量时没有平视观测,有视差。
- 4) 在测量每个油滴的下落时间时,在第四、五次时,油滴可能会有挥发,下落时间会有差距; 当油滴挥发时,可以移动显微镜重新聚焦,但这也会影响实验结果。

【拓展思考问题】

- 1. 密立根油滴实验中,平衡法和动态法有何异同点,试分析其优缺点。
- 2. 密立根油滴实验的总结(油滴筛选、跟踪、测量) (经验分享; 体会; 感想; 讨论; 建议等)
- 3. 在实验中, 你所感受和体验的物理经典真滋味。
- 注: 思考题和拓展思考题任选两题。其中,拓展思考题 2 和 3 必选一,在实验报告中回答和 讨论。可以自己拟定题目,结合实际,具体分析讨论。鼓励在 BBS 分享和讨论。

【参考文献】

- [1] Millikan R A. Coefficients of slip in gases and the law of refflection of mecules from the surfaces of solids and liquids. Physical Rev, 1923, 22:409
- [2] 熊永红等. 大学物理实验(第一册). 科学出版社, 2007年8月.
- [3] 任忠明等. 大学物理实验(第二册). 科学出版社, 2007年8月.
- [4] 潘仁培, 密立根油滴试验仪说明书和光盘资料, 南京培中科技开发研究所,

【附录 1】实验数据记录表格与计算公式

1. 实验数据记录表格(推荐)

油滴序号	U/V	t_{g} / s							
		t_1	t_2	t_3	t_4	t_5	$ar{t}_g$		
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									

2. 油滴带电量测量的实际计算公式

$$q = \frac{18\pi}{\sqrt{2\rho g}} \left[\frac{\eta l}{\bar{t}_{g}(1 + \frac{b}{pa})} \right]^{3/2} \frac{d}{U}$$

$$a = \sqrt{\frac{9\eta v_{g}}{2\rho g}}$$

$$v_{g} = \frac{l}{\bar{t}_{g}}$$

式中,相关参数的取值:油滴密度 ρ =981 kg/m³,重力加速度 g=9.795 m/s²,空气的粘滞系数 η =1.83×10⁻⁵ kg/(m s),油滴下落距离 l =1.5mm,修正常数 b=6.17×10⁻⁶ m cmHg,大气压强 p=76.0 cmHg,极板间距 d=5.00×10⁻³ m。

3. 油滴带电量与电子电荷 e 的倍数 n

$$n = \mathbb{R} \underbrace{\mathbb{R} \left(\frac{q}{e} \right)}$$

式中,电子的电荷量取值: $e=1.60\times10^{-19}$ C。

【附录 2】实验数据处理示例

1. 数据处理计算列表

油滴序号	U/V		q						
		<i>t</i> ₁	t_2	t_3	t_4	t_5	$ar{t}_g$	(×10 ⁻¹⁸ C)	n
1	192	19.6	19.8	19.2	19.5	19.6	19.5	0.47	3
2	135	10.6	10.8	10.4	10.6	10.7	10.6	1.77	11
3	107	10.4	10.2	10.4	10.2	10.4	10.3	2.35	15
4	158	12.8	12.6	12.9	12.9	12.7	12.8	1.13	7
5	232	11.5	11.6	11.5	11.8	11.3	11.5	0.91	6
6	151	11.1	10.9	10.8	10.8	10.9	10.9	1.45	9
7	127	18.9	18.7	18.6	19.0	18.8	18.8	0.78	5
8	107	22.9	22.5	23.2	22.9	23.1	22.7	0.68	4
9	275	14.5	14.4	14.3	14.8	14.9	14.6	0.53	3
10	130	13.7	13.9	13.9	13.5	13.8	13.8	1.24	8

2. 利用图示法 q_i - n_i (i=1, 2, 3, ..., 10) (图 2),在直线(红色虚线)上任取一点(图中红十字),读取相应坐标,可得直线的斜率即电子的电荷 e 值大小为:

$$e_{\text{opt}} = \frac{1.348 \times 10^{-18}}{8.554} = 1.576 \times 10^{-19} \text{C}$$

图 2.图示法数据处理示例

相对误差为 (只求这个斜率即可):

$$U_r = \frac{\left|1.576 \times 10^{-19} - 1.60 \times 10^{-19}\right|}{1.60 \times 10^{-19}} \times 100\% = 1.5\%$$

3. 利用最小二乘法也可得电子电荷值 e m 的大小为

$$e_{\text{MJ}} = \frac{\overline{nq} - \overline{nq}}{\overline{n^2} - \overline{n}} = 1.586 \times 10^{-19} \text{ C}$$

相对误差为:

$$U_r = \frac{\left|1.586 \times 10^{-19} - 1.60 \times 10^{-19}\right|}{1.60 \times 10^{-19}} \times 100\% = 0.9\%$$

【附录3】仪器简要说明

本实验采用 P6701 型密立根油滴仪(图 3)。

图 3. P6701 型密立根油滴仪功能概要

<u>油雾室</u>:产生带电油滴;水平泡:调节仪器水平;<u>计时显示</u>:0~99.9s;<u>电压显示</u>:0~999V; <u>计时键</u>:START/STOP;<u>清零键</u>:RESET;<u>平衡电压调节</u>:控制油滴静止,100~300V为宜; <u>电压控制开关</u>:UP/BALANCE/DOWN;<u>CCD</u>方向调节与固定;显微镜焦距调节。

【附录 4】评分细则

实验课堂评分

序号	要求	分值	
1	预习报告:内容完整(目的、原理、仪器、内容)。	20	
	原理部分描述清晰、重点突出。	20	
2	理解实验设计,实验操作思路清晰,方法得当。	40	
3	过程清楚,测量准确,数据记录完整,表格设计合理。	40	
	实验仪器的摆放整齐有序,桌面整洁等。		

实验报告评分

序号	要求	分值		
	报告形式规范,文字清晰工整。			
1	实验原理表达清晰。			
	实验报告简洁易懂。			
2	实验简要步骤和数据的整理列表(注:原始数据记录必须随报告上交)。			
	实验数据符合要求,现象记录正确,坐标纸作图,作图规范。	60		
	数据处理:过程清楚,计算正确,表达规范,误差分析。			
3	结果分析、讨论和总结。误差分析和实验的经验分享等。			
	误差分析等要求紧密结合自己在实验中的问题展开讨论。	20		