

Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: Watson AI Lab The Voyage Home (to STRIPS) Masataro Asai, IBM Research, MIT-IBM Watson AILab Christian Muise, U. Queens

1. Our Objectives Visually presented classical planning domains

Goal state image Initial state (black/white) image

2. Image-based planning: LatPlan (AAAI18)

3. State AutoEncoder(SAE): Binary Conrete VAE

4. Action AutoEncoder(AAE): Gumbel Softmax VAE with Skip Connection

5. LatPlan incompatible with SotA heuristics e.g. LMcut/M&S(Helmert et al. 09.14)

because AAE is a black-box function

- → Custom planner w/ Goal-Count
- \rightarrow Not ideal

To improve the scalability of Latplan We need a STRIPS-compatible AAE

5. The core elements missing in AAE

AAE: $z_{t+1} = apply(z_t, a)$

STRIPS: $z_{t+1} = (z_t / del(a)) \cup add(a)$

Issue1: Effects must be disentangled from z_t. → apply may have conditional effects

Issue2: Z is fixed / Z and A are trained separately → Z may not have a compact STRIPS model

Solution: Train Z and A end-to-end + Restrict A to STRIPS

 \rightarrow Z must adapt to A (STRIPS)

6. Cube-Space AE: end-to-end SAE+AAE

7. How to enforce STRIPS?

X Naive method (add/del using min/max)

Back-to-Logit:

NNs prefer continuous vectors

Convert discrete → continuous (logit)

→ using Batch Normalization (loffe, Szegedy, 2015) Continuous addition to compute effects Discretize the result to obtain successor z^{i,1} Guarantees STRIPS encoding (see theorem)

Training performance BtL ≫ min/max. Batchnorm is a must. End-to-end is a must

	_											
	(1) Bt	L Cube-	Space AE	(2)	Total loss		(3)	Ablation s	study	(4) Direct loss un	$der A = 300 \rightarrow 100$	ĺ
Domain	Rec.	Succ.	Direct	MinMax	Smooth	BtL	-BN	-Direct	-Succ.	Cube-Space AE	SAE+Cube-AAE	Ĺ
Hanoi	.001	.002	.001	.439	.436	.003	.019	.088	.501	.001 → .001	.001 → .002	Ĺ
LOut	.000	.000	.000	.506	.506	.000	.002	.239	.412	.001 → .008	.010 → .040	Ĺ
Twisted	.000	.001	.000	.458	.487	.001	.002	.154	.498	.000 → .002	.001 → .011	Ĺ
Mandrill	.000	.001	.001	.500	.600	.002	.035	.046	.495	.001 → .002	.000 → .006	Ĺ
Mnist	.000	.000	.000	.512	.506	.001	.002	.158	.462	.000 → .001	.002 → .005	Ĺ
Spider	.001	.001	.001	.607	.563	.003	.026	.073	.376	.003 → .002	.001 → .003	Ĺ

Planning performance

				_																							
blind		gc		blind			gc				blind			gc			lama			LMcut			M&S		3		
f	v	o	f	v	o	f	v	0	f	v	0	Domain	f	V	0	f	v	0	f	V	0	f	v	0	f	V	0
0	0	0	8	4	3	1	0	0	19	0	0	LOut(30)	30	30	30	30	30	17	30	21	5	30	30	30	30	30	30
0	0	0	4	0	0	0	0	0	14	2	2	Twisted(30)	30	25	25	30	26	5	30	20	4	30	29	29	30	25	25
15	14	14	17	17	16	15	15	15	13	12	12	Mandrill(30)	30	29	13	30	18	9	30	23	11	30	29	13	30	30	13
0	0	0	0	0	0	0	0	0	0	0	0	Mnist(30)	30	25	24	30	4	4	30	7	7	30	25	24	30	26	24
8	8	8	4	4	4	3	3	1	13	3	0	Spider(30)	30	28	16	30	27	12	28	22	14	30	28	16	30	28	16
SAE+AAE+AD					S	AE+	Cube	AA	E+A	D	15puzzle(40) →	32	32	29	28	9	9	38	13	3	38	38	33	38	38	33	

Plans f(ound), v(alid) and o(ptimal) by (left) AMA2 and (right) Cube-Space AE. Best result except > 2 ties are in bold. 4x4 LightsOut and 8 puzzle Mandrill 15-puzzle

 Cube-Space AE outperforms previous baselines (in f. v. o) LMcut/M&S significantly improves the performance vs. blind search

8. Results

Strong generalization: Plans do not contain examples

9. Conclusion

- We proposed how to learn symbolic STRIPS model using NNs completely unsupervised.
- SotA planning heuristics work out of the box w/o extra training + has optimality guarantee
- Strong candidate for replacing model-free RL which require huge amout of training