Asymptotics of eigenvalues for some integro-differential operators

Yulia Petrova

St. Petersburg State University

St. Petersburg, 2015

Joint work with A.I.Nazarov (St. Petersburg Dept. of Steklov Math. Inst. and St. Petersburg State University)

Problem statement

We are interested in sharp asymptotics of eigenvalues of integral operators with kernels

$$G_1(s,t) = G(s,t) - h_1(s)h_1(t), \tag{1}$$

$$G_2(s,t) = G(s,t) - h_2(s)h_2(t),$$

$$G_3(s,t) = G(s,t) - h_1(s)h_1(t) - h_2(s)h_2(t),$$
(3)

where $G(s,t) = \min(s,t) - st$ is the Green function of boundary value problem $Lu := -u'' = \lambda u, \ u(0) = u(1) = 0$, and

$$h_1(t) = \phi(\Phi^{-1}(t)), \qquad h_2(t) = \phi(\Phi^{-1}(t)) \frac{\Phi^{-1}(t)}{\sqrt{2}},$$

where

$$\phi(s) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{s^2}{2}\right), \quad \Phi(t) = \int_0^t \phi(s) \, ds$$

are the probability density and the distribution function of standard normal distrubition, respectively.

Motivation

Let X(t), $t \in [0,1]$, be a random Gaussian process. It is of statistical interest the behaviour of $\mathbb{P}(\|X\|_2 < \varepsilon)$ when $\varepsilon \to 0$.

The Wenbo Li principle, 1992

Let X(t), $\tilde{X}(t)$ be two Gaussian processes with zero mean and covariance functions G(s,t) and $\tilde{G}(s,t)$. Let λ_k and $\tilde{\lambda}_k$ be positive eigenvalues of integral operators with kernels G(s,t) and $\tilde{G}(s,t)$, respectively. If $\prod \tilde{\lambda}_k/\lambda_k < \infty$ then

$$\mathbb{P}\Big\{ \big\| X \big\|_{2} < \varepsilon \Big\} \sim \mathbb{P}\Big\{ \big\| \tilde{X} \big\|_{2} < \varepsilon \Big\} \cdot \left(\prod_{k=1}^{\infty} \frac{\tilde{\lambda}_{k}}{\lambda_{k}} \right)^{1/2}, \qquad \varepsilon \to 0. \quad (4)$$

Gaussian processes with covariance functions (??)-(??) firstly appeared in the work of Kac, Kiefer, Wolfowitz (1955).

Asymptotics we are looking for should be «sharp» in the sense that $\prod \tilde{\lambda}_k/\lambda_k < \infty$, where $\tilde{\lambda}_k$ are approximated values of eigenvalues λ_k .

Motivation

A.I. Nazarov considered a family of processes

$$X_{\varphi,\alpha}(t) = X(t) - \alpha \psi(t) \int X(s)\varphi(s) ds,$$

where $\varphi \in L_{1,loc}$, $\psi(t) = \int G(s,t)\varphi(s)\,ds$, and

$$q:=\int \psi(s)\varphi(s)\,ds=\int\!\!\int G(s,t)\varphi(s)\varphi(t)\,ds\,dt<+\infty.$$

Their covariance functions

$$G_{\varphi,\alpha}(s,t) = G(s,t) + Q\psi(s)\psi(t), \quad Q = q\alpha^2 - 2\alpha.$$

Theorem (A.I. Nazarov, 2009)

- $1. \ \hbox{(non-critical case) If} \ \alpha \neq 1/q, \ \hbox{then} \ \prod_{k=1}^\infty \frac{\lambda_k}{\tilde{\lambda}_k} < +\infty.$
- 2. (critical case) If $\alpha = 1/q$, $\varphi \in L_2$, then $\prod_{k=1}^{\infty} \frac{\lambda_{k+1}}{\tilde{\lambda}_k} < +\infty$.

Equation for eigenvalues

Cases (??) and (??) are critical. But corresponding $\varphi(s) \notin L_2$. Therefore the previous theorem is *not* valid for this case. Perturbation h_1 is even, so only odd eigenvalues «move».

The corresponding integro-differential eigenvalue problem is:

$$\begin{cases} -\lambda u''(t) = u(t) + h_1''(t) \int_0^1 u(s)h_1(s) ds, & t \in (0,1), \\ u(0) = u(1) = 0. \end{cases}$$
 (5)

Using standard methods we get equation for $\omega_{2k-1}^{(1)} := \left(\lambda_{2k-1}^{(1)}\right)^{-1/2}$:

$$D_1(\omega) := \frac{2\sin\left(\frac{\omega}{2}\right)}{\omega} \cdot C_1^2 + \frac{\cos\left(\frac{\omega}{2}\right)}{\omega^2} - \frac{4\cos\left(\frac{\omega}{2}\right)}{\omega} \cdot \mathcal{I}_1 = 0, \quad (6)$$

where

$$C_{1} = \int_{0}^{\frac{1}{2}} \Phi^{-1}(t) \cos(\omega t) dt,$$

$$I_{1} = \int_{0}^{\frac{1}{2}} \int_{0}^{t} \Phi^{-1}(t) \Phi^{-1}(s) \sin(\omega t) \cos(\omega s) ds dt.$$

Analogously, we obtain equation on $\omega_{2k}^{(2)}:=\left(\lambda_{2k}^{(2)}\right)^{-1/2}$ with integrals $\mathcal{C}_2,\ \mathcal{I}_2$ of the same type as $\mathcal{C}_1,\ \mathcal{I}_1$.

Slowly varying functions = SVF

Definition

Function F(t) is called SVF at infinity, if it doesn't change sign on some $[A,\infty),\ A>0,$ and for any $\lambda>0$

$$\lim_{t \to \infty} \frac{F(\lambda t)}{F(t)} = 1.$$

Function F(t) is called SVF at zero, if F(1/t) is SVF at infinity. For example, $\ln^{\alpha}(t)$, $\alpha \in \mathbb{R}$.

Note: $\Phi^{-1}(t)$ has the following properties:

- \bullet $F_0(t) := \Phi^{-1}(t), F_{n+1}(t) := tF'_n(t), n \ge 0$, are SVF at zero.
- $\Phi^{-1}\left(\frac{1}{2}\right) = 0.$

Note: for any SVF at zero: tF'(t) = o(F(t)) when $t \to 0$. So $\forall n \ge 0$ $F_{n+1}(t) = o(F_n(t))$.

Asymptotics of integrals

We obtain asymptotic expansion of integrals with SVF F(t), satisfying above mentioned two properties.

Theorem (cos)

When $\omega \to \infty$:

$$\mathcal{C} := \int_{0}^{\frac{1}{2}} F(t) \cos(\omega t) dt = \sum_{k=1}^{N} c_k^{\cos} \frac{F_k(\frac{1}{\omega})}{\omega} + R_N^{\cos}, \tag{7}$$

where

$$|R_N^{cos}| \le C(F, N) \cdot \frac{\left|F_{N+1}(\frac{1}{\omega})\right|}{\omega}.$$

Asymptotics of integrals

Theorem (sincos)

$$\mathcal{I} := \int_{0}^{\frac{1}{2}} \int_{0}^{\tau} F(t)F(\tau)\sin(\omega\tau)\cos(\omega t) dt d\tau =$$

$$= \frac{1}{2\omega} \int_{0}^{\frac{1}{2}} F^{2}(t) dt + \sum_{n=2}^{N} \sum_{\substack{k+m=n\\k,m \geq 1}} a_{k,m} \frac{F_{k}(\frac{1}{\omega})F_{m}(\frac{1}{\omega})}{\omega^{2}} + R_{N}^{sc},$$
where $|R_{N}^{sc}| \leq C(F,N) \sum_{\substack{i+j=N+1\\i,j \geq 1}} \frac{|F_{i}(\frac{1}{\omega})F_{j}(\frac{1}{\omega})|}{\omega^{2}}.$ (8)

Asymptotic of eigenvalues

Finally, we obtain asymptotics of eigenvalues for (??):

$$\omega_{2k-1}^{(1)} = 2\pi k + \frac{\pi}{\ln(k)} + O\left(\frac{\ln(\ln(k))}{\ln^2(k)}\right).$$

Analogously for (??):

$$\omega_{2k}^{(2)} = \pi(2k+1) + O\left(\frac{1}{\ln^2(k)}\right).$$

Small deviation probability asymptotics

Sytaya, 1974: complete description, but in implicit way Zolotarev, Ibragimov, Nazarov, Nikitin...

Dunker, Linde, Lifshits, 1998: small ball asymptotics under some general conditions on λ_k . F.e.:

$$\lambda_k = (\vartheta(k+\delta))^{-2}, \quad k \to \infty.$$

So in case (??) using Li's principle for $\gamma_k = \left[(2k+1)\pi/2\right]^{-2}$ we get:

$$\mathbb{P}\Big\{\|X^{(2)}\|_2 < \varepsilon\Big\} \sim \frac{2\sqrt{2}}{\pi^{3/2}} \,\varepsilon^{-1} \exp\Big(-\frac{1}{8\varepsilon^2}\Big), \quad \varepsilon \to 0.$$

 $\mbox{\it w}\mbox{\it The distortion constant}\mbox{\it $\%$}$ from Li's principle can be found using theorems from complex analysis.

Small deviation probability asymptotics

The situation is different in case (??). Here we have

$$\lambda_k = \left(\pi\left(k + \frac{1}{2} + \frac{1}{2\ln(k)}\right)\right)^{-2}, \quad k \to \infty.$$

Using DLL theorem we calculate small ball asymptotics in case

$$\lambda_k = \left(\vartheta\left(k + \delta + F(k)\right)\right)^{-2}, \quad k \to \infty,$$

where F(k) is SVF and tends to 0 at infinity. Final asymptotics in case $(\ref{eq:substant})$ and $(\ref{eq:substant})$ is «up to constant»:

$$\mathbb{P}\Big\{\|X^{(1)}\| < \varepsilon\Big\} \sim C \cdot \varepsilon^{-1} \cdot \ln^{\frac{1}{2}}\left(\frac{1}{\varepsilon}\right) \cdot \exp\left(-\frac{1}{8\varepsilon^2}\right), \qquad \varepsilon \to 0.$$

Thank you for your attention!