IFT3700 : Science des données

Travail 1

Révisé le 7 octobre 2019

Description

Proposer une notion de similarité originale et spécifiquement construite pour être utilisée avec MNIST. L'objectif est d'augmenter la performance de divers <u>algorithmes de partitions</u>.

Comparer la performance des algorithmes suivants en utilisant la distance euclidienne et votre mesure proposé.

<i>k</i> -medoïde	Partition binaire	PCoA	Isomap	KNN
	(Regroupement hiérarchique)	(c'est un cas particulier de MDS)		

Conseils et indications

- L'utilisation de la librairie scikit-learn est recommandée.
- Si on effectue une légère translation de l'image, cela ne devrait pas affecter sa similarité.
- Il est permis de faire un prétraitement des données pour accélérer le calcul de la similarité.
- La notion de similarité n'a pas besoin d'être une distance, mais elle doit se comporter de façon similaire.
- Il est parfois nécessaire dans la phase exploratoire (ou même finale) de travailler avec des jeux de donnée de taille réduite.
- Pour l'algorithme k-moyenne vous devez utiliser une version de l'algorithme où le
 - centroïde est l'élément du groupe qui maximise la similarité
 - un élément est dans le groupe qui maximise sa similarité avec le centroïde.
 - ✓ Cette version sera/fut présentée au TP
- Dans le cas de Partition binaire, utilisez la
 - variation basée sur la moyenne des distances.

Critère d'évaluation

- Format Jupyter Notebook
- En groupe de 3 ou 4
- Originalité
- La qualité des résultats obtenus avec votre mesure de similarité
- La perte de performance si on compare avec la distance euclidienne (ou le gain si c'est le cas).
- Le rapport doit mettre en lumière de façon claire et honnête les forces et faiblesses de la similarité proposée.
- Le rapport peut être rendu en français ou en anglais.