

Conservatorio di Musica S. Cecilia di Roma Dipartimento di Nuove Tecnologie

Musica Elettronica

TRIENNIO DI I LIVELLO

appunti sul marmo

studio sulla memoria acustica di S. Luca e Martina

Candidato: Marco De Martino Matricola 2240TR

Relatore: Giuseppe Silvi

Maestri:

Michelangelo Lupone Nicola Bernardini

C'è gente che trova figure nascoste nella carta da parati o nelle nuvole. A me succede lo stesso coi rumori. Per essere più esatti, ho un vecchio phon che appena si accende comincia a vibrare e man mano emette un lamento profondo. E' l'elica difettosa, o i cuscinetti a sfera, non ne ho idea, ma so che inizia a intonare una trenodia, o meglio, a sussurrarla sottovoce. Prima si avvertono solo suoni indistinti, una folla che fugge, moto che si avvicinano, ma facendo attenzione appaiono via via urla, richiami. Io mi concentro; una sera, addirittura, sono arrivato a bruciarmi, tale è lo sforzo per afferrare il groviglio, il nodo acustico dell'asciugacapelli. Perché il suo sferragliare non resta sempre uguale: più dura, più si sciolgono gli intrecci del fragore, le voci si distinguono. Sento dialetti slavi, minacce, spesso spari: un giorno sono rimasto ad ascoltarlo quasi dieci minuti per seguire la fasi di un rastrellamento in un lontano villaggio dei Balcani. A volte ne esce uno squillo familiare, credo che sia il telefono, spengo, vado a rispondere, ma non c'é mai nessuno: quei segnali, si vede che provengono da un'altra parte, sempre. Se qualcuno ti chiama, non ci credere, sarà un miraggio uditivo, un'impressione. La verità è diversa: mentre mi punto alla tempia quell'attrezzo che sembra una pistola, viene fuori il racconto di storie terribili, fucilazioni, il pianto di bambini. E' come una confessione non richiesta, una registrazione spedita per errore. Che c'entro, io, con tutto questo sangue, io che mi voglio solo asciugare la testa? Ormai ci penso due volte, prima di adoperarlo, prima di sprofondare in quell'orrore e assistere impotente a certe scene. Meglio bagnato, allora. Mi verrà il torcicollo? Poco male — Valerio Magrelli

INDICE

Ĺ	INT	RODUZIO	ONE ALLO LOGICA DELLO SPAZIO 1	
2	ACU	STICA D	I SAN LUCA: RICOSTRUZIONE E PERDITA 3	
	2.1	Cenno	storico - scientifico 4	
	2.2	Rispos	sta all'impulso 5	
	2.3	Scelta	di distribuzione della sorgente e del microfono	6
	2.4	Impul	se Response Retrieval 8	
		_	-	
3	ACU	STICA D	I SAN LUCA: RICOSTRUZIONE E PERDITA 11	
	3.1	Coscie	enza di scrittura 11	
	3.2	Modal	lità di emissione omogenea 11	
	3.3	Enviro	onment 13	
		3.3.1	struttura del nastro 13	
		3.3.2	Schema 13	
		3.3.3	Klangqualitatemelodie 14	

ELENCO DELLE FIGURE

Figura 1	Pianta S. Luca	3
Figura 2	Pianta S. Luca	5
Figura 3	Pianta S. Luca	7
Figura 4	Pianta S. Luca	11

ELENCO DELLE TABELLE

SOMMARIO

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

ABSTRACT

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

RINGRAZIAMENTI

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris.

- Donald Ervin Knuth

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Roma, aprile 2017

INTRODUZIONE ALLO LOGICA DELLO SPAZIO

...sì, per cui una chiesa barocca ha sotto di sé, accessibile, una chiesa romanica, sotto la chiesa romanica una basilica paleocristiana, poi si scende ancora e c'è il mitreo romano...

Questa è Roma.

Però, invece, apparentemente Roma è appunto atemporale, sembra non offrire nulla; e gli accessi sono segreti, alla vera realtà di Roma.

Quindi corrisponde assai bene allo stadio opaco dell'infanzia e dell'adolescenza, quando si è in preda a questa cosa strana che è il voler scrivere...

— G. Agamben

Nel descrivere il percorso di ricerca applicata allo spazio espressa in questa tesi si può definire il duplice ruolo *strutturale* del riverbero.

Riverbero *struttura-architettonica* come definizione dell'ambiente, custodia del rito e dell'idea musicale.

Riverbero *struttura-musicale* come culla di risonanze cercate nella scrittura e nei gesti, particelle del rito celato nel tubo sonoro e nel suo sconfinamento architettonico.

I riverberi architettonici, siano essi locali che generali, non acquisiscono funzione di elaborazione di un suono amplificato. L'altoparlante non ha funzione di amplificazione ma di dimensionamento della forma acustica della chiesa. C'è una dimensione spaziale di creazione, di sintesi e simbiosi acustica con lo strumento che non assume mai funzione di elaborazione. La sola voce acustica dello strumento rischierebbe, in un confronto con una diffusione elettroacustica convenzionale, di scindersi dalla sua immagine riflessa.

La riflessione, qualità intrinseca del riverbero, è oggetto di analisi e sintesi polidimensionale.

La riflessione, per confrontarsi a pari caratteristiche con la voce acustica dello strumento musicale, deve poter essere descritta nello spazio come un elemento polidimensionale tempovariabile. Solo in questo modo ci si può permettere di collocare le due entità, ormai due voci dello stesso canto, in due luoghi diversi della sala da concerto ed ottenerne un unico e solido corpo sonoro, mosso e stazionario come nella chiesa.

La scelta del sistema elettroacustico S.T.ONE è quindi parte attiva nella composizione, elementi di dialogo strutturale e quindi al tempo stesso archiettonico e musicale.

La scelta del numero minimo di diffusori, quattro, si colloca tra i punti di equilibrio tra minima definizione tridimensionale e resa acustica in regime di verosimiglianza.

Lo stesso Michael Gerzon identifica in tre le sorgenti per la descrizine planare e q uattro per la descizione perifonica. Su questo principio si è operata una divisione dello spazio acustico descritto dalle mura in quattro regioni facilmente replicabili o identificabili in sala da concerto.

2 | ACUSTICA DI SAN LUCA: RICOSTRUZIONE E PERDITA

Nel processo di scelta ed elaborazione del materiale sonoro volto alla costruzione del brano, mi è subito apparso ovvio intraprendere il cammino partendo non tanto dalle qualità timbriche del sassofono o dall'astratta struttura e forma del brano, quanto dalle qualità intrinseche del luogo come La chiesa di San Luca e Martina.

L'analisi di questo sistema acustico è incentrato nella sua ricostruzione tridimensionale, virtualizzazione delle sue componenti, successivamente stratificate alla sala da concerto, assieme alla registrazione dell'environment: anche per quest'ultimo sarà posto l'accento sulla possibile riproduzione tridimensionale.

Figura 1: Pianta S. Luca

2.1 CENNO STORICO - SCIENTIFICO

Progettata nel 1635 da Pietro Berrettini da Cortona, la chiesa è composta da un unitaria pianta cruciforme, che poggia sul titolo primitivo di Santa Martina, fondata nel VII secolo da papa Onorio I, frontale all'arco di Settimio Severo.

I due luoghi comunicano tramite il lucernario di Santa Martina e la scelta di portare sopra di esso l'altoparlante per l'indagine acustica, riguarda anche la ripresa delle riflessioni che avvengono nella chiesa inferiore e modificano l'ambiente sovrastante. Per quanto riguarda i materiali è stato fatto affidamento alle fonti trovate all'accademia di San Luca, nell'ipotesi di un nuovo sopralluogo e determinare, in base alle percentuali di materiale nelle varie sezioni della chiesa il relativo livello di assorbimento della chiesa e i conseguenti tempi delle prime riflessioni

Materiali preponderanti della chiesa:

- mattoni cotto
- marmo

I fenomeni principali acustici che vengono posti all'analisi riguardano:

a) il campo libero, ovvero la distanza tra lo strumento/sorgente e gli ascoltatori. Stiamo parlando del confronto con il suono diretto e recepito dall'ascoltatore. Possiamo calcolarlo come:

$$I_{\text{direct}} = \frac{QW_{\text{source}}}{4\pi r^2} \tag{1}$$

I = intensità del suono diretto calcolato in watts per m2

Q = direzionalità della sorgente

W = potenza della sorgente calcolata in watt

 $r = Distanza in m^2$

b) **il campo riverberante**, ovvero l'energia successiva a quella diretta; prime riflessioni e coda.

Ricordiamo che le prime riflessioni differiscono dal suono diretto sia per tempo (circa 80ms) che direzione:

The amount of energy, or power, removed by a given area of absorbing material will depend on the energy, or power, per unit area striking it. As the sound intensity is a measure of the power per unit area this means that the intensity of the sound reflected is reduced in proportion to the absorption coefficient

importante è anche sottolineare come i materiali descritti in precedenza siano analizzati e ricondotti ad una misurazione della riflessione "regionale", specifica ai punti del quadrato, raccogliendo informazioni riguardo alle differenti future risposte registrate.

Figura 2: Catena di misurazione della risposta all'impulso

Le mappe, descritte successivamente, riconducono a scelte di preparazione date dalla conformazionse della prima sala ove sarà eseguito il brano per la prima volta. Il sassofonistainterprete si trovava ad una distanza di circa la metà dei metri cui sono stati disposti i microfoni per catturare le riflessioni dello spazio.

Il riverbero e le riflessioni della stanza sono il nostro argomento principale, ma l'analisi vedrà solo l'attuazione di determinati punti sonori in regime e non tutta la pianta. Schroeder a questo proposito spiega come [DA SCRIVERE MEGLIO misura del ltempo di riverbero p. 15 /farina] è possibile ricavare il tempo di decadimento (T60) tramite integrale della risposta all'impulso.

RISPOSTA ALL'IMPULSO 2.2

Nel postulare le formule del nostro sistema lineare tempo invariante [LTI], Sabine ci rammenta che questo sistema fisico non deve modificarsi nel momento di attuazione dell'analisi acustica. L'LTI può essere rappresentato tramite una risposta all'impulso, ovvero misurare il suo comportamento acustico. Una sorgente, (nel nostro caso omnidirezionale) emette un segnale x(t)cui sarà sottoposto a modifiche del sistema:

dove

x(t) = segnale sorgente

F(x(t)) = funzione di trasferimento

n(t) = rumore ambiente

il segnale sorgente sarà comunque alterato dal trasduttore e dal rumore di fondo della stanza n(t).

La risposta all'impulso $h(\tau)$ è la risposta del sistema nell'ipotesi che la sorgente sonora generi un segnale $x(\tau)$ particolare, ossia un solo impulso unitario, preceduto e seguito da una infinità di zeri. Esso è chiamato funzione delta di Dirac:

FORMULA 003

Possiamo parlare della nostra risposta in Frequenza H(f) (funzione di trasferimento), come la trasformata di *Fourier* di h(t): il prodotto tra gli spettri di x e y in funzione della frequenza

$$Y(f) = X(f) * H(f)$$
 (2)

La funzione F è prodotto di convoluzione tra il segnale di input e la risposta all'impulso del sistema

$$h(t) : y(t) = n(t) + x(t)xh(t)$$
 (3)

2.3 SCELTA DI DISTRIBUZIONE DELLA SORGENTE E DEL MICROFONO

La peculiarità del progetto è quella di usare quattro diffusori tetraedrici nella sala da concerto per ri-descrivere lo spazio sonoro.

Il complesso sonoro tridimensionale è registrato tramite il microfono *a-format* messo nei quattro angoli del quadrato con il diffusore omnidirezionale al centro del quadrato.

le distanze sono state misurare ed equilibrate per dislocare i sistemi tetraedrici facilmente nello spazio della sala

STRUMENTAZIONE E TECNICHE DI MISURA

La misurazione dell'ambiente ha fatto affidamento su questa strumentazione:

Mac Book pro portatile
Finale di potenza t amp 700
microfono A-format soundfield
microfoni omni-direzionali
.dpa 4600
.audio line omni
Speaker omnidirezionale tetraedrico
SPEAKER OMNIDIREZIONE STone:

Figura 3: Catena di misurazione della risposta all'impulso

Microfono A format Soundfield/parentesei su Gherzon PROVA CON LO STRUMENTISTA

In un indagine di primo livello dall'acustica di San Luca è stato importante suonare parte del brano con l'interprete all'interno della chiesa. Partendo da un concetto di auralizzazione per poi via via affrancarsi dalla metodologia scientifica e ricavare la propria risposta nell'accoppiamento tra stanza virtuale e stanza reale, è stato importante ricavare empiricamente le regioni che meglio soddisfavano le eseigenze compositive. L'interprete ha eseguito parte del brano in diversi punti della navata, portando all'attenzione le riflessioni e risonanze preponderanti. Le prove che hanno dato maggior riscontro acustico in funzione musicale riguardano il centro della chiesa e la collanna di sinistra vicina al cenacolo.

la scelta di posizionamento del sistema tetraedrico interno alla chiesa per la risposta all'impulso si è basata anche per il posizionamento possibile del sassofonista in concerto. Un possibile quadrante che inglobi il pubblico in concerto, corrispondente al quadrante interno alla croce, dove sono ubicati i banchi da chiesa. Come nel posizionamento dello STone per la risposta all'impulso, sono state effettuate molteplici prove per sistemare per il quadrante ottimale. Di seguitp le configurazioni accettate per l'esecuzione:

file 004 file 005

La prima esecuzione prevista per il brano è stata alla Filarmonica Romana il 22/11/2016 e la conformazione della sala è un rettangolo: Questo ha escluso la configurazione B di tipo "diamond" in quanto avremmo avuto l'interprete in prospettiva dell'altoparlante e il ridimensionamento del quadrante formato dagli Stone inscritto, rispetto alla configurazione A che non presentava questo tipo di inconveniente.

2.4 IMPULSE RESPONSE RETRIEVAL

La tecnica di misurazione adottata fa affidamento al descrittore acustico di tipo ESS. Essendo la chiesa vicino ad un via molto trafficata e con possibilità di rumore di fondo molto alta, si era pensato di determinare le caratteristiche dell'ambiente tramite sistema MIS, maximum length sequences. Ricordiamo che questa tecnica mette in correlazione segnale di ingresso x(n) e segnale di uscita y(n) di un sistema lineare. In pratica si applica questa sequenza pseudocasuale (simile ad un rumore bianco) all'ingresso del sistema e moltiplicando poi questo segnale in uscita con la sequenza iniziale di ingresso. Il risultato è la funzione delta di Dirac:

Questa misurazione permette un ottimo bilanciamento suono/rumore di fondo, anche in condizioni molto precarie. Ma il metodo di sweep (lineare o esponenziale che sia) permette un risulatato migliore al fronte di distorsione armoniche del sistema (altoparlante).

Metodo ESS (exponential sine sweep)

Il nostro descrittore acustica è uno segnale sweep esponenziale, che si sviluppa nel tempo. Partendo da una sequenza dal di sopra del dc. La frequenza si raddoppia ripetutamente a tempi di intervallo indentico. Tempo ed energia sono spese per partire dalla bassa frequenza fino alle alte:

si è partiti da una frequenza di 30 HZ fino a 22000 HZ: per partire a frequenze cosi basse è stato integrato un sub woofer.

A differenza di un chirp lineare si possono raccogliere maggiori informazioni selle frequenze percepite.

-fileoo6-

w1 frequenza di partenza normalizzata in radianti (frequenza angolare iniziale)

w2 è la frequenza di arrivo in radianti (frequenza angolare finale)

n è l'indice dei sample

n è il numero dei samples

Anche questo sistema porta con se, oltre all'effetto di riverbero della stanza anche le componenti di rumore e gli effetti di distorsione non lineare di cui parlavamo in precedenza (dirsione della fondamentale della componente elettronica)

Anche per quanto riguarda l'ampiezza il segnale è costante tutto il tempo. L'analisi mostra un decay della magnitudine di 6 db per ottava. Questo decay della magnitudine viene compensato quando la risposta all'impulso è calcolata tramite deconvoluzione, in quanto la compensazione è fatta nel domnicio digitale e non altera il rapporto segnale rumore favorendo la gamma di bassa frequenza del segnale di prova.

Vista la registrazione di molteplici risposte bisogna arrivare alla maggior efficenza del sistema. Lo spettro registrato non risulta perfetto in quanto caratterizzato da frequenze di ripple agli estremi, che in taluni casi superano i + 5 db. I confini del chirp (di start e di stop) presentano queste frequenze indesiderate, causa anche la parziale cancellazione di fase e somma sopra il segnale.

chirp expo:2.5 further ripple reduction: fade-in window e deconvoluzione segnale di putput y(t)convoluto con il filtro inverso risposte markidis

3 | ACUSTICA DI SAN LUCA: RICOSTRUZIONE E PERDITA

Qui, l'incedere di una risonanza è legata ad un corpo/luogo, lentamente mutabile: uno spazio che è memoria di superficie. Abitare questo ascolto è stato il primo passo della scrittura, il formalizzarsi e il perdersi di una molteplice voce, abitante abitato da *per sempre*.

La scelta del luogo, dello spazio d'ascolto è il punto di partenza. Partenza (come dipartita), della stessa scrittura strumentale tradizionale. Lo studio dello spazio di San Luca ha instaurato diverse relazioni che congiungono i diversi strati di elaborazione, dalla macro alla micro-struttura.

3.1 COSCIENZA DI SCRITTURA

L'immemorialit à dell'evento scandisce sia il gesto formale che la struttura, organizzando i contributi qualitativi del suono e la loro distribuzione temporale e spaziale. Immemorialità dello stesso suono come strumento trasformato e non riconducibile a:

Altezza temperata.

È volutamente ricercato nello strumento la sua oscillazione attorno a dei poli frequenziali (descritti successivamente), cercando la massima «instabilità-controllata». Giochi di oscillazione che intercorrono tra l'evidente parametro multifonico e la sua de-costruzione timbrica. Lo stesso vale per i battimenti, altri importanti operatori di trasformazione.

—fileA—

3.2 MODALITÀ DI EMISSIONE OMOGENEA

Gradazioni controllate di soffio e suono, oltre che intonazione di aberrazioni prodotte tramite saliva e spostamento dell'imboccatura.

Figura 4: Schemi imboccatura

Perché il sassofono?

Le caratteristiche cercate in questo strumento si basano sulla possibilità di insistere su determinati fattori; il corpo/bocca dello strumentista, le modifiche della colonna armonica, i suoi armonici sovracuti, doppiati e triplicati nel medesimo tempo/istante. Il sassofono soprano rende possibile la continua modulazione tra multifonici: una "corrente continua", dove il movimento lento (pensato assieme all'impronta elettronica del luogo) permette lo stazionamento di determinate parziali e il passaggio fluido tra differenti bicordi. È stato fondamentale lo studio dei parziali multifonici, il loro isolamento monodico e la possibilità di "entrare" ed "uscire" dalla posizione di generazione multifonica.

Possiamo dividere le qualità di queste parziali in famiglie:

disegnino1* = parziali «treshold tones» - disegnino2 = «shadow sound»: suoni che non possono essere i solati. È stato posto l'accento sulle possibili aberrazioni che si pongono su ottave differenti rispetto al suono cardine, rendendo il contenuto spettrale più instabile e ricco. disegnino3 = instabile : alcune regioni frequenziali di multifonici presentano una difficile risposta. Battimenti o parziali sovracuti avranno una risposta non lineare. Si deve tendere a cercare una sorta di «modulazione di ampiezza». Cercare il suono. * i simboli sono presi dal trattato di Weiss e Netti

---fileC-

Conseguenziale a questo tipo di scrittura il rapporto e la pratica con lo strumentista. Le tecniche estese di partenza vengono dagli studi di Weiss e Netti,ma il percorso di elaborazione, di nuova scoperta di emissione e modulazione di timbro e altezze è stato condotto assieme al sassofonista Danilo Perticaro.

[[[[a specchio da una parte le Qualità sonore da l'altra i suoni cardine]]]]

Qualità sonore e trasformazione suoni cardine del brano¹ Ogni diteggiatura nel suo legarsi presenta un effetto di modifica non solo frequenziale ma dello spettro stesso delle parziali.

Assottigliamento verso i suoni sovracuti del sassofono(materiale povero spettralmente)

fileD

frequenza ambigua che interpola

Emissione - soffio - battimento

schema microstruttura con modifica del suono:

file E

fondamentale -parziale accrescimento-svuotamento

la logica d'uso di queste tecniche si pone lontana dagli schematismi di "effetto" che ruotano attorno all'articolazione di note.

¹ Alcune delle transizioni e multifonici non si trovano nel brano. Gli schemi preparatori riportano anche lavoro a monte rispetto allo studio con lo strumentista. Provandoli successivamente ci siamo resi conti di incongruenze legate alla difficolta di diteggiatura o differente legatura di emissione (dinamiche eccessivamente differenti portavano ad non legare le posizioni)

3.3 ENVIRONMENT

La logica spaziale proposta con la risposta all'impulso e la riproduzione tramite sistema tetraedrico, ha portato a concepire un uso delle fonti sonore che gravitano interne e all'esterno dell'ambiente della chiesa di San Luca. La registrazione e la riproduzione tramite sistema A-format permetteva di delineare una cartografia tridimensionale degli eventi: tramite un'azione musicale preparata sono stati controllati e scanditi i materiali suonati all'interno della chiesa: preparata in quanto si vuole nascondere il più possibile l'evento acustico dalla percezione familiare, dal suo effettivo sguardo «concreto». La logica di registrazione segue il quadrante interno alla chiesa utilizzato per gli impulsi.

struttura del nastro 3.3.1

Note

Tre esecutori la durata del nastro è di circa 10 minuti. è da considerare ad libitum. Sarà chiuso il processo da parte del regista del suono. L'incontro con la parte strumentale è fortemente aleatoria. Environment attorno all'ascoltatore, attorno allo strumentista, con un range medio-grave. E possibile riscrivere il nastro partendo dai materiali e dallo schema relativo alle dinamiche generale. Il tutto deve essere tra «pppppp» e «pp». Mai s

MATERIALI

A= ambiente esterno alla chiesa [controllare adeguatamente il livello d'ingresso del soundfield] B= banchi da chiesa (scricchiolio) C= sedie D= passi E= voci

Schema 3.3.2

La scelta di preparare dal vivo il materiale concreto e non elaborarlo successivamente è dato dal fatto che i 4 tape registrati dal soundfield potevano andare incontro a sfasamenti togliendo la componente tridimensionale. Solo tagli e riposizionanamenti del nastro, fade in e fade out delle tracce.

Sono state registrate due azioni con una configurazione dei microfoni diversa, per poi essere integrati nell'esecuzione:

quadrante A + quadrante b

Come si vede dallo schema la tridimensionalità del nastro è prevista solo per i relativi STone: in questo caso solo quelli anteriori, paralleli alla posizione dello strumentista. Su gli altri 2 STone è prevista diffusione omnidirezionale.

Schema di tracce mandate agli STone

La discesa come struttura.

Il tragitto costruito tramite il sassofono soprano è direttamente intrecciato alle sue possibilità più remote, ad uno studio acustico che insiste sulla transizione di bicordi. Un passaggio da un certo grado intervallare a l'altro, in una continua trasformazione, pronta ad dilatarsi in un tempo immobile. Questo gioco, del perdersi e riprendersi variando nei registri e nelle qualità vibrazionali, mette in relazione luoghi acustici eterogenei dalla ricca complessità timbrica. Luogo, scrittura, concepito nelle possibilità che ogni passo, gradazione nata dal primo bicordo di sesta minore, poteva mettere in gioco: l'individuazione del successivo istante e cambio di frequenze è circoscritto alle posizioni di chiave appena precedute. Il successivo bicordo è in molti dei casi costituito da una delle parziali che fa da ponte tra un intervallo e l altro. Questa successione di eventi (rizoma tra due voci poste ora in accordo poi battimento) è il fondamento della struttura, dell'alveare polifonico e microtonale. Le tecniche estese consentono di sfruttare parziali inarmoniche, tipiche di questo strumento, organizzando dei poli microtonali.

Prendo in esempio l'evento generante che gravita attorno alla frequenza del sib5.

Il successivo movimento tiene conto di questo polo alterando l'intervallo a favore di un spostamento quartitonale, per poi riassumere nei succesivi movimenti l'aspetto originario:

È comunque da tenere conto che i microtoni non sono pensati su una scala temperata ma in cent. Possiamo prendere come intervalli polari/ circostanziali:

sesta minore/quinta aumentata/— ——seconda minore/battimento La qualità del battimento è fondamentale e questa trasformazione entro la seconda minore.

Esso è "interruttore" per lo spostamento del polo.

Il progetto di queste polarità frequenziali è andato di pari passo con quella di relazioni alla costruzione di qualità descritte in precedenza.

Klangqualitatemelodie 3.3.3

variazioni delle qualità attorno a i poli. tipo di variazione operatori di instabilità variazione informale