Another proof on infinity of prime numbers.

David Nauhgthen from Manchester grammair school did talk on pirme numbers....

The existence of infinite set of pairwise coprime numbers implies the existence of infinite set of prime numbers. Indeed let $\{n_k\}$ be an infinite set of copirme numbers: $(n_i \neq n_j \text{ and } (n_i, n_j) = 1)$. Let p_i be an arbitrary divisor of n_i . Then all p_i are distinct,

How to form the infinite sequence of coprime numbers.

Two examples:

Ι

$$n_k = 2^{2^k} + 1, k = 1, 2, 3, \dots$$

This is the famous example of coprime nimbers

Another example: n_1 is an arbitrary number $n_1 > 1$ and

$$n_{k+1} = \prod_{i=1}^{k} n_i + 1.$$

This proof seems to be "fresh"