СЛ**УЧАЙНЫЕ СОБЫТИЯ** ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

- 1. Элементы комбинаторики.
- 2. Классическое определение вероятности.
- 3. Геометрическая вероятность
- 4. Теоремы сложения и умножения вероятностей
- 5. Формула полной вероятности
- б. Повторение испытаний. Схема Бернулли

1. Элементы комбинаторики.

Пример 1. Сколько а) трехзначных чисел, б) трехзначных чисел, состоящих из различных цифр, можно составить из цифр 1, 2, 3, 4, 5?

Решение. а) Каждую цифру можно выбрать 5 способами, следовательно, по правилу произведения получаем, что всего таких чисел $5 \cdot 5 \cdot 5 = 125$.

б) Первую цифру можно выбрать 5 способами; на каждый способ выбора первой цифры приходится 4 способа выбора второй цифры (можно взять любую цифру, кроме той которую выбрали первый раз); на каждый способ выбора первых двух цифр приходится 3 способа выбора третьей цифры. По правилу произведения получаем всего $5 \cdot 4 \cdot 3 = 60$ способов, что равно числу A_5^3 размещений из 5 символов по 3 местам.

Пример 2. Сколько существует способов распределения 3 наград между 10 участниками соревнования, если а) награды различные, б) все награды одинаковые?

Решение. Число способов распределения 3 наград между 10 участниками соревнования равно числу способов выбрать трех участников из десяти и разместить их по трем местам, т. е. числу размещений $A_{10}^3 = 10 \cdot 9 \cdot 8 = 720$ (порядок важен) в случае а) и числу $C_{10}^3 = \frac{10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3} = 120$ (порядок не учитывается) в случае б).

Пример 3. Сколько существует способов выбрать а) 3 цветка, б) 1 розу и 2 гвоздики из вазы, в которой стоят 6 роз и 5 гвоздик?

Решение. а) Поскольку порядок выбора цветов не имеет значения, то выбрать 3 цветка из имеющихся 6+5=11 можно $C_{11}^3=\frac{11\cdot 10\cdot 9}{3\cdot 2\cdot 1}=165$ способами.

б) Выбрать одну розу из шести можно $C_6^1=6$ способами. На каждый из 6 способов выбора розы приходится $C_5^2=\frac{5\cdot 4}{2\cdot 1}=10$ способов выбора двух гвоздик из пяти. По правилу произведения получаем, что выбрать 1 розу и 2 гвоздики можно $C_6^1\cdot C_5^2=6\cdot 10=60$ способами.

2. Классическое определение вероятности.

Пример 1. СЭ: однократное бросание правильной игральной кости. Событие A — появление четырех очков, событие B — появление четного числа очков. Найти вероятности событий A и B.

Решение. Элементарными исходами в этом опыте являются события $\omega_1, \omega_2, ..., \omega_6$ — соответственно выпадение одного очка, двух, трех и т. д. — всего 6 элементарных исходов. Эти исходы равновозможны, т. к. кость предполагается правильной. Событию A благоприятствует один элементарный исход ω_4 , поэтому $m=1, n=6, P(A)=\frac{1}{6}$. Событию B благоприятствуют исходы $\omega_2, \omega_4, \omega_6$ (если выпало 2, 4 или 6 очков, то выпало четное число очков), для события B имеем: $m=3, n=6, P(B)=\frac{3}{6}=\frac{1}{2}$.

Пример 2. Наудачу брошены три правильные монеты. Какова вероятность того, что только на одной из них выпал герб?

Pешение. Обозначим событие A — только на одной монете выпал герб.

События A_1 – выпал один герб и две цифры, A_2 – выпало два герба и одна цифра, A_3 – выпало три герба, A_4 – выпало три цифры – не яв-

ляются равновозможными. Поэтому их нельзя использовать для вычисления вероятности по классическому определению вероятности.

Рассмотрим следующее множество элементарных исходов:

Эти исходы равновозможны, n=8. Событию A благоприятствуют m=3 элементарных исхода: $A=\{ \text{ЦЦГ}, \text{ЦГЦ}, \text{ГЦЦ} \}$. Тогда $P(A)=\frac{3}{8}$.

Пример 3. В коробке находится 8 красных и 12 черных карандашей. Какова вероятность того, что наугад вынутый карандаш будет красным?

Решение. Пусть A — событие, состоящее в том, что вынут красный карандаш. Ясно, что n=8+12=20 — число всех равновозможных элементарных исходов (можно взять любой карандаш из 20). Число исходов, благоприятствующих событию A, равно m=8 (т. к. красных карандашей 8). Следовательно, $P(A)=\frac{8}{20}=\frac{2}{5}$.

Пример 4. Какова вероятность того, что наудачу выбранный четырехзначный цифровой код состоит из различных цифр?

Решение. Обозначим событие $A = \{$ наудачу выбранный четырехзначный цифровой код состоит из различных цифр $\}$. Определим число элементарных исходов. Каждая из четырех цифр кода, независимо от остальных, может быть выбрана 10 способами. На каждый из 10 способов выбора первой цифры приходится 10 способов выбора второй; каждый из $10 \cdot 10 = 100$ способов выбора первых двух цифр сочетается с 10 способами выбора третьей цифры. Учитывая 10 способов выбора четвертой цифры, получаем $n = 10 \cdot 10 \cdot 10 \cdot 10 = 10000$. Эти исходы равновозможны.

Число элементарных исходов, благоприятствующих появлению события A, равно числу способов выбрать 4 различные цифры из 10 имеющихся и разместить их по 4 местам, т. е. числу A_{10}^4 размещений:

$$m = A_{10}^4 = 10 \cdot 9 \cdot 8 \cdot 7 = 5040$$
. Следовательно, $P(A) = \frac{5040}{10000} = 0,504$.

Пример 5. В урне содержится N шаров, из них M белых, остальные — черные. Наудачу вынимают n шаров. Какова вероятность того, что среди вынутых m белых?

Решение. Имеет место следующая схема:

Имеем:
$$M$$
 белых $+(N-M)$ черных $=N$ шаров Извлечь: m белых $+(n-m)$ черных $=n$ шаров $P(A)=$ C_M^m \cdot C_{N-M}^{n-m} $/$ C_N^n

Число элементарных исходов — это число способов извлечь (выбрать) n шаров из имеющихся N шаров, т. е. C_N^n . Число благоприятствующих исходов — это число способов выбрать m шаров из имеющихся M белых шаров и при каждом этом выборе извлечь n-m шаров из имеющихся N-M черных шаров; число благоприятствующих исходов равно $C_M^m \cdot C_{N-M}^{n-m}$. Обозначая через A событие, вероятность которого надо найти, получаем

$$P(A) = \frac{C_M^m \cdot C_{N-M}^{n-m}}{C_N^n}.$$

Пример 6. Какова вероятность выбрать 2 банана и 3 яблока из вазы, в которой лежат 4 банана и 8 яблок?

Решение. СЭ – выбор 2+3=5 фруктов из 4 + 8 = 12. Поскольку порядок выбора фруктов не имеет значения, то выбрать 5 фруктов из имеющихся 12 можно $C_{12}^5 = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 792$ способами, n=792.

 $A = \{$ выбрали 2 банана и 3 яблока $\}$.

Найдем число исходов m, благоприятствующих событию A. Выбрать 2 банана из 4 можно $C_4^2 = \frac{4 \cdot 3}{1 \cdot 2} = 6$ способами. На каждый из 6 способов выбора банана приходится $C_8^3 = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 56$ способов выбора 3 яблок из 8. По правилу произведения получаем, что выбрать 2 банана и 3 яблока можно $C_4^2 \cdot C_8^3 = 6 \cdot 56 = 366$ способами, m = 366.

Тогда
$$P(A) = \frac{C_4^2 \cdot C_8^3}{C_{12}^5} = \frac{366}{792} \approx 0,462.$$

3. Геометрическая вероятность

Пример 1. На отрезке между 30-м и 80-м километром произошел обрыв телефонного кабеля. Найти вероятность того, что разрыв про-изошел в наиболее труднодоступной области между 60-м и 70-м км (предполагается, что обрыв мог произойти в любом месте и вероятность разрыва на данном участке пропорциональна длине этого участка).

Решение. Длина всего участка (отрезка) равна l=80-30=50, а длина труднодоступной области равна $l_A=70-60=10$, поэтому $P(A)=\frac{l_A}{l}=\frac{10}{50}=\frac{1}{5}$.

Пример 2.Задача о встрече. Два лица: И. и М. договорились встретиться в течение часа, в пределах которого они приходят случайным образом (наудачу), причем И. ждет 20, а М. — 10 минут. Найти вероятность того (событие A), что они встретятся.

Решение. Пусть x — время прихода И., а y — время прихода М. Тогда (x,y) — точка, которая наудачу появляется во множестве $\Omega = \{(x,y): 0 \le x \le 60, 0 \le y \le 60\}$ с геометрической мерой — площадью $S = 60 \cdot 60 = 3600$. Чтобы встреча состоялась, нужно, чтобы каждое лицо пришло не позже, чем ушло после ожидания другое, что равносильно геометрическому условию (см. рис. 1):

$$(x; y) \in A = \{(x; y) : x \le y + 10, y \le x + 20, 0 \le x \le 60, 0 \le y \le 60\},\$$

причем площадь S_A благоприятствующей событию A области равна площади S квадрата Ω за вычетом площадей двух прямоугольных треугольников с катетами по 40 и 50 единиц. Тогда

$$P(A) = \frac{S_A}{S} = \frac{60 \cdot 60 - \frac{1}{2} \cdot 40 \cdot 40 - \frac{1}{2} \cdot 50 \cdot 50}{60 \cdot 60} = \frac{31}{72} \approx 0,43.$$

Рис. 1. Задача о встрече

4. Теоремы сложения и умножения вероятностей

Пример 1. Из коробки, в которой 8 красных и 12 черных карандашей, трижды наугад извлекают по одному карандашу. Найти вероятность того, что все три раза будут извлечены черные карандаши, если выборка производится: а) без возвращения; б) с возвращением.

Решение. Обозначим события: $A = \{$ извлекли три раза черный карандаш $\}$; $A_1 = \{1$ -й раз извлекли черный карандаш $\}$; $A_2 = \{2$ -й раз извлекли черный карандаш $\}$; $A_3 = \{3$ -й раз извлекли черный карандаш $\}$. Тогда $A = A_1$ A_2 A_3 .

а) По теореме умножения вероятностей получаем:

$$P(A) = P(A_1)P(A_2|A_1)P(A_3|A_1|A_2).$$

Используя классическое определение вероятности, вычисляем: $P(A_1) = \frac{12}{20} = \frac{3}{5}$; $P(A_2|A_1) = \frac{11}{19}$, т. к. после первого извлечения в коробке оставалось n=19 карандашей, из которых (когда произошло событие A_1) m=11 черных карандашей; $P(A_3|A_1|A_2) = \frac{10}{18} = \frac{5}{9}$, т. к. после второго извлечения оставалось n=18 карандашей, из которых m=10 черных (когда произошли события A_1 и A_2). Следовательно,

$$P(A) = \frac{12}{20} \cdot \frac{11}{19} \cdot \frac{10}{18} = \frac{11}{57} \approx 0,193.$$

б) В случае выборки с возвращением события A_1 , A_2 и A_3 независимы, поскольку при каждом извлечении в коробке оказывается n=20 карандашей, из которых m=12 черных. Поэтому

$$P(A_1) = P(A_2) = P(A_3) = \frac{12}{20} = \frac{3}{5},$$

$$P(A) = P(A_1)P(A_2)P(A_3) = \left(\frac{3}{5}\right)^3 = \frac{27}{125} = 0,216.$$

Пример 2. Студент знает 15 вопросов из 20. Какова вероятность того, что он ответит на три предложенных ему вопроса.

Решение. *Первый способ*. Событие A={студент ответит на три предложенных ему вопроса}. Рассмотрим события A_i ={студент ответит на i-й вопрос}, где i=1,2,3. Тогда A = $A_1 \cdot A_2 \cdot A_3$. События зависимы, тогда

$$P(A) = P(A_1 \cdot A_2 \cdot A_3) = P(A_1)P(A_2 / A_1)P(A_3 / A_1 A_2) = \frac{15}{20} \cdot \frac{14}{19} \cdot \frac{13}{18} \approx 0.4$$

Второй способ. Эту задачу также можно было решить, используя классическое определение вероятности

$$P(A) = \frac{C_{15}^3 \cdot C_5^0}{C_{20}^3} = \frac{\frac{15 \cdot 14 \cdot 13}{1 \cdot 2 \cdot 3}}{\frac{20 \cdot 19 \cdot 18}{1 \cdot 2 \cdot 3}} = \frac{15 \cdot 14 \cdot 13}{20 \cdot 19 \cdot 18} \approx 0,4.$$

Пример 3. На 30 жетонах числа от 1 до30. Случайным образом взяли один жетон. Какова вероятность того, что на жетоне число кратное 2-м или 3-м?

Решение. Рассмотрим события

 $A = \{$ число кратное 2-м или 3-м $\}$,

$$A_1$$
={число кратное 2-м},

$$A_2 = \{$$
число кратное 3-м $\}$.

$$m.\kappa.P(A_1) = \frac{15}{30}, P(A_2) = \frac{10}{30}, P(A_1A_2) = \frac{5}{30} \Rightarrow P(A_1 + A_2) = \frac{15}{30} + \frac{10}{30} - \frac{5}{30} = \frac{2}{3}.$$

Пример 4. Два стрелка делают по одному выстрелу по мишени. Вероятность попадания первым стрелком равна 0.8, вторым -0.6. Найти вероятность хотя бы одного попадания в мишень.

Решение. 1 способ. Пусть

 A_I ={первый стрелок попал в мишень},

 $A_2 = \{$ второй стрелок попал в мишень $\}$.

По условию $P(A_1) = 0.8$ $P(A_2) = 0.6$. Тогда

 $A_1 + A_2 = \{$ хотя бы один стрелок попал в мишень $\}$,

 A_1A_2 ={оба стрелка попали в мишень}.

Тогда по теореме сложения вероятностей получим

$$P(A_1 + A_2) = 0.8 + 0.6 - 0.8 \cdot 0.6 = 0.92$$
.

2 способ. Событие

 $A=A_1+A_2=\{$ хотя бы один стрелок попал в мишень $\}$, $\overline{A}=\{$ ни один стрелок не попал в мишень $\}$.

Тогда $\overline{A}=\overline{A}_1\cdot\overline{A}_2$, где

 \overline{A}_1 ={Первый стрелок не попал в мишень},

 $\overline{A}_2 = \{ \text{Второй стрелок не попал в мишень} \}.$

Тогда по теореме умножения вероятностей независимых событий имеем $P(\overline{A}) = P(\overline{A}_1) \cdot P(\overline{A}_2) = (1-0,8)(1-0,6) = 0,08$. Следовательно, $P(A) = 1 - P(\overline{A}) = 1 - 0,08 = 0,92$.

3 способ. Представим событие A как сумму несовместных событий: $A = A_1 \cdot \overline{A}_2 + \overline{A}_1 \cdot A_2 + A_1 \cdot A_2$. Тогда

$$P(A) = P(A_1) \cdot P(\overline{A}_2) + P(\overline{A}_1) \cdot P(A_2) + P(A_1) \cdot P(A_2) = 0.8 \cdot 0.4 + 0.2 \cdot 0.6 + 0.8 \cdot 0.6 = 0.92$$

Пример 5. Студент должен сдать за неделю три зачета (независимо друг от друга). Вероятность сдачи этим студентом зачета по первому предмету равна 0.8, по второму -0.6, по третьему -0.5. Найти

вероятность того, что студент сдаст: а) один (только один) зачет, б) хотя бы один зачет, в) по крайней мере два зачета.

Решение. Обозначим события $A = \{$ студент сдаст один зачет $\}$, $B = \{$ студент сдаст хотя бы один зачет $\}$, $C = \{$ студент сдаст по крайней мере два зачета $\}$. Известны вероятности событий $A_i = \{$ студент сдаст зачет по i-му предмету $\}$ (i = 1, 2, 3): $P(A_1) = 0, 8, P(A_2) = 0, 6, P(A_3) = 0, 5$.

В результате испытания может произойти одно из четырех несовместных событий $B_i = \{$ студент сдаст ровно i зачетов $\}$ (i = 0, 1, 2, 3). Представим события A, B, C и/или $\overline{A}, \overline{B}, \overline{C}$ через эти события.

а) Событие A означает, что студент сдаст ровно один зачет, а два не сдаст, и совпадает с событием B_1 , т. е. $A = B_1$. Выразим событие A через события A_1 , A_2 , A_3 :

$$A = A_1 \overline{A}_2 \overline{A}_3 + \overline{A}_1 A_2 \overline{A}_3 + \overline{A}_1 \overline{A}_2 A_3$$

(либо студент сдаст только первый зачет (произойдет $A_1\overline{A_2}\overline{A_3}$), либо студент сдаст только второй зачет (произойдет $\overline{A_1}\overline{A_2}\overline{A_3}$), либо студент сдаст только третий зачет (произойдет $\overline{A_1}\overline{A_2}A_3$)). Поскольку слагаемые попарно несовместны, а события A_1 , A_2 , A_3 независимы и $P(\overline{A_1}) = 1 - P(A_1) = 0.2$, $P(\overline{A_2}) = 1 - P(A_2) = 0.4$, $P(\overline{A_3}) = 1 - P(A_3) = 0.5$, то, используя теоремы сложения и умножения вероятностей, получаем

$$P(A) = 0.8 \cdot 0.4 \cdot 0.5 + 0.2 \cdot 0.6 \cdot 0.5 + 0.8 \cdot 0.6 \cdot 0.5 = 0.46$$
.

б) Событие $B = B_1 + B_2 + B_3$ означает, что студент сдаст либо только один зачет, либо только два зачета, либо все три зачета. Для вычисления вероятности этого события удобнее перейти к противоположному событию $\overline{B} = B_0$ — студент не сдаст ни одного зачета. Тогда

$$P(B) = 1 - P(\overline{B}) = 1 - P(\overline{A_1}\overline{A_2}\overline{A_3}) = 1 - 0.2 \cdot 0.4 \cdot 0.5 = 0.96$$
.

в) Событие C произойдет в том случае, если студент сдаст ровно 2 зачета (осуществится событие B_2) или все 3 зачета (осуществится событие B_3), т. е. $C = B_2 + B_3$. Событие \overline{C} означает, что студент сдаст только один зачет (осуществится событие B_1) или не сдаст ни одного зачета (осуществится событие B_0), т. е. $\overline{C} = B_0 + B_1$. Выразим эти события через A_1 , A_2 , A_3 :

$$C = B_2 + B_3 = \overline{A}_1 A_2 A_3 + A_1 \overline{A}_2 A_3 + A_1 A_2 \overline{A}_3 + A_1 A_2 A_3,$$

$$\overline{C} = B_0 + B_1 = A_1 \overline{A}_2 \overline{A}_3 + \overline{A}_1 A_2 \overline{A}_3 + \overline{A}_1 \overline{A}_2 A_3 + \overline{A}_1 \overline{A}_2 \overline{A}_3,$$

откуда убеждаемся в равносильности использования событий C или \overline{C} . Поэтому

$$P(C) = 0.2 \cdot 0.6 \cdot 0.5 + 0.8 \cdot 0.4 \cdot 0.5 + 0.8 \cdot 0.6 \cdot 0.5 + 0.8 \cdot 0.6 \cdot 0.5 = 0.7$$

5. Формула полной вероятности

Пример 1. На трех автоматических станках изготовляются одинаковые детали. Известно, что 30% продукции производится первым станком, 25% вторым и 45% — третьим. Вероятность изготовления детали, отвечающей стандарту, на первом станке равна 0,99, на втором — 0,988 и на третьем — 0,98. Изготовленные в течение дня на трех станках нерассортированные детали находятся на складе. Определить вероятность того, что наудачу взятая деталь не соответствует стандарту.

Решение. Пусть событие $A = \{$ наудачу выбранная деталь не соответствует стандарту $\}$. Известны вероятности события A при условии, что деталь изготовлена на 1-м, 2-м, 3-м станках (условные вероятностии). В этом случае для вычисления вероятности (безусловной) события A используют формулу полной вероятности.

Введем гипотезы: $H_i = \{$ выбранная деталь изготовлена на i-м станке $\}$ (i = 1, 2, 3). Из условий задачи легко находятся следующие вероятности для некоторой детали, выбранной случайно из всей дневной продукции:

$$P(H_1)=0.3;$$
 $P(A|H_1)=1-0.99=0.01;$ $P(H_2)=0.25;$ $P(A|H_2)=1-0.988=0.012;$ $P(H_3)=0.45;$ $P(A|H_3)=1-0.98=0.02.$ Контроль: $P(H_1)+P(H_2)+P(H_3)=1.$

По формуле полной вероятности находим вероятность того, что наудачу взятая деталь не соответствует стандарту:

$$P(A) = 0.3 \cdot 0.01 + 0.25 \cdot 0.012 + 0.45 \cdot 0.02 = 0.015.$$

Пример 2. Имеется три одинаковые коробки. В первой 2 белых и 3 черных шара, во второй -4 белых и 2 черных, в третьей -3 белых и

4 черных. Наугад выбирают одну из коробок и вынимают из нее один шар. Найти вероятность того, что этот шар белый.

Решение. Событие $A = \{$ наудачу выбранный шар белый $\}$.

Рассмотрим гипотезы: H_i = {выбрали і-ю коробку} (i = 1, 2, 3). Так как по условию задачи гипотезы равновозможны, то $P(H_1) = P(H_2) = P(H_3) = \frac{1}{3}$.

Условные вероятности события A при наступлении этих гипотез соответственно равны: $P(A/H_1) = \frac{2}{5}, P(A/H_2) = \frac{2}{3}, P(A/H_3) = \frac{3}{7}$. Тогда по формуле полной вероятности

$$P(A) = \frac{2}{5} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} + \frac{3}{7} \cdot \frac{1}{3} = \frac{157}{315} \approx 0,5.$$

Пример 3. В урну, содержащую 2 шара, опущен белый шар, после чего из урны наудачу извлечен один шар. Найти вероятность того, что этот шар окажется белым, если все возможные предположения о первоначальном числе белых шаров в урне равновозможны.

Решение. Обозначим событие $A = \{$ извлечен белый шар $\}$. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: $H_1 = \{0$ белых шаров $\}$, $H_2 = \{1$ белый шар $\}$, $H_3 = \{2$ белых шара $\}$. Эти гипотезы образуют полную группу событий. Поскольку всего имеется 3 гипотезы, причем по условию они равновероятны, и сумма вероятностей гипотез равна единице, то вероятность каждой из гипо-

тез равна
$$\frac{1}{3}$$
, т. е. $P(H_1) = P(H_2) = P(H_3) = \frac{1}{3}$.

Находим условные вероятности $P(A|H_i)$, используя классическое определение вероятности. Число элементарных исходов равно n=2+1=3 (изначально в урне было два шара, затем добавили еще один). В случае гипотезы H_1 в урну, в которой не было белых шаров, опустили один белый шар, поэтому m=1, $P(A|H_1)=\frac{1}{3}$. При выполнении гипотезы H_2 в урне имеется m=1+1=2 белых шара, $P(A|H_2)=\frac{2}{3}$. При вы-

полнении гипотезы H_3 имеется m=2+1=3 белых шара, $P(A|H_3)=\frac{3}{3}=1$.

Зная вероятности гипотез и условные вероятности, вычисляем вероятность события A по формуле полной вероятности:

$$P(A) = \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot 1 = \frac{2}{3}.$$

Пример 4. Два автомата производят одинаковые детали, которые сбрасываются на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй — 84%. Найти вероятность того, что наудачу взятая с конвейера деталь окажется отличного качества.

Решение. Обозначим событие $A = \{$ наудачу взятая деталь отличного качества $\}$. Известны условные вероятности события A при условии, что деталь изготовлена 1-м или 2-м автоматом. Можно сделать два предположения (гипотезы): $H_i = \{$ деталь произведена i-м автоматом $\}$ (i = 1, 2). Тогда $P(A|H_1) = 0,6, P(A|H_2) = 0,84$.

Найдем вероятности гипотез. Пусть 2-й автомат производит k деталей, тогда 1-й производит 2k деталей — всего 3k деталей, поэтому $P(H_1) = \frac{2k}{3k} = \frac{2}{3}$, $P(H_2) = \frac{k}{3k} = \frac{1}{3}$. Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна $P(A) = \frac{2}{3} \cdot 0,6 + \frac{1}{3} \cdot 0,84 = 0,68$.

б. Повторение испытаний. Схема Бернулли

Пример 1. Всхожесть семян данного растения составляет 90%. Найти вероятность того, что из пяти посеянных семян взойдут: а) ровно четыре; б) не менее четырех.

Решение. а) Мы имеем схему Бернулли с n = 5 испытаниями (посеяно пять семян). Событие $A = \{\text{семя взошло}\}$. По условию задачи p

= P(A) = 0.9, тогда q = 1 - p = 0.1. Искомую вероятность $P_5(4)$ находим по формуле Бернулли:

$$P_5(4) = C_5^4 \cdot 0.9^4 \cdot 0.1^1 = 5 \cdot 0.9^4 \cdot 0.1^1 = 0.32805.$$

б) Искомое событие состоит в том, что из пяти посеянных семян взойдут или четыре, или пять. Таким образом, $P_5(m \ge 4) = P_5(4) + P_5(5)$. Первое слагаемое найдено. Для вычисления второго слагаемого применяем снова формулу Бернулли:

$$P_5(5) = C_5^5 \cdot 0.9^5 \cdot 0.1^0 = 1 \cdot 0.9^5 \cdot 1 = 0.59049.$$

Следовательно, $P_5(m \ge 4) = 0.32805 + 0.59049 = 0.91854$.

Пример 2. Вероятность попадания в мишень при каждом выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найти вероятность хотя бы одного попадания в мишень.

Решение. Пусть событие B- хотя бы одно попадание. Задачу удобнее решать при помощи нахождения вероятности противоположного события, т. е. события $\overline{B}-$ ни одного попадания в мишень. В данном примере n=6; p=0,4; q=1-p=0,6. Применяя формулу Бернулли, получаем

$$P(B) = 1 - P(\overline{B}) = 1 - P_6(0) = 1 - 0.6^6 \approx 0.953$$
.

Пример 3. Коммутатор учреждения обслуживает 100 абонентов. Вероятность того, что в течение одной минуты абонент позвонит на коммутатор, равна 0,01. Найти вероятность того, что в течение одной минуты позвонят: а) ровно три абонента, б) менее трех абонентов, в) более трех абонентов; г) хотя бы один абонент.

Решение. По условию n=100, p=0.01. Поскольку число n велико, вероятность p мала, рассматриваемые события (звонки абонентов) независимы, то применима формула Пуассона. Найдем $a=np=100\cdot 0.01=1$.

а) Найдем вероятность того, что позвонят ровно 3 (m=3) абонента: $P_{100}\left(3\right)\approx\frac{1^3}{3!}e^{-1}\approx0,0613.$

б) Найдем вероятность того, что позвонят менее трех абонентов, т. е. либо два, либо один, либо ни одного:

$$P_{100}(m < 3) = P_{100}(0) + P_{100}(1) + P_{100}(2) \approx \frac{1^{0} \cdot e^{-1}}{0!} + \frac{1^{1} \cdot e^{-1}}{1!} + \frac{1^{2} \cdot e^{-1}}{2!} =$$

$$= e^{-1} + e^{-1} + \frac{e^{-1}}{2} = \frac{5}{2}e^{-1} \approx \frac{5}{2} \cdot 0,36788 = 0,9197.$$

в) Найдем вероятность P_{100} (m>3) того, что позвонят более трех абонентов. События $\{m>3\}=\{$ позвонят более трех абонентов $\}$ и $\{m\le3\}=\{$ позвонят не более трех абонентов $\}$ – противоположные, поэтому

$$P_{100}(m > 3) = 1 - P_{100}(m \le 3) = 1 - (P_{100}(0) + P_{100}(1) + P_{100}(2) + P_{100}(3)).$$

Пользуясь результатами пунктов а) и б), получим

$$P_{100} (m > 3) \approx 1 - (0.9197 + 0.0613) = 0.019$$
.

г) Найдем вероятность P_{100} ($m \ge 1$) того, что позвонит хотя бы один абонент. События { $m \ge 1$ } = {позвонит хотя бы один абонент} и {m < 1} = {ни один абонент не позвонит} – противоположные, поэтому

$$P_{100} (m \ge 1) = 1 - P_{100} (m < 1) = 1 - P_{100}(0) \approx 1 - e^{-1} \approx 0,6321.$$

Пример 4. Вероятность появления события A в каждом из 600 независимых испытаний равна 0,6. Найти вероятность того, что событие A в этих испытаниях наступит: а) ровно 330 раз; б) не менее 330 и не более 375 раз.

Решение. а) По условию задачи n=600 – велико; p=0,6 – не очень мало; q=1-p=0,4; m=330. Применим локальную формулу Муавра-Лапласа. Определяем значение x:

$$x = \frac{330 - 600 \cdot 0, 6}{\sqrt{600 \cdot 0, 6 \cdot 0, 4}} = -\frac{30}{12} = -2, 5.$$

По таблице значений функции $\phi(x)$ находим $\phi(-2,5) = \phi(2,5) \approx 0,0175$. По локальной формуле Муавра-Лапласа найдем искомую вероятность:

$$P_{600}(330) \approx \frac{1}{\sqrt{600 \cdot 0, 6 \cdot 0, 4}} \cdot 0,0175 = \frac{1}{12} \cdot 0,0175 \approx 0,0015.$$

б) В этом случае применима интегральная формула Муавра-Лапласа. По условию задачи $n=600;\ p=0,6;\ m_1=330;\ m_2=375.$ Находим x_1 и x_2 :

$$x_1 = \frac{330 - 600 \cdot 0, 6}{\sqrt{600 \cdot 0, 6 \cdot 0, 4}} = -2, 5; \quad x_2 = \frac{375 - 600 \cdot 0, 6}{\sqrt{600 \cdot 0, 6 \cdot 0, 4}} = 1, 25.$$

По таблице значений функции Лапласа $\Phi(x)$ находим, что $\Phi(-2,5) = -\Phi(2,5) \approx -0,4938; \ \Phi(1,25) \approx 0,3944.$ По интегральной формуле Муавра-Лапласа искомая вероятность

$$P_{600}(330 \le m \le 375) \approx \Phi(1,25) - \Phi(-2,5) \approx 0,3944 - (-0,4938) = 0,8882.$$