Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- □ Relational model supports simple, powerful QLs:
 - Formal foundation based on logic.
 - Allows for optimization.
- □ Query Languages!= programming languages!
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Credit: R. Ramakrishnan, J. Gehrke

2

Relational Algebra

- Formalism for creating new relations from existing ones
- □ Its place in the big picture:

Declarative query language

SQL, Relational algebra Relational bag algebra

4

DBMS Architecture

How does a SQL engine work?

- \square SQL query \rightarrow relational algebra plan
- \square Relational algebra plan \rightarrow Optimized plan
- □ Execute each operator of the plan

3

Formal Relational Query Languages

Two mathematical Query Languages form the basis for SQL, and for implementation:

- <u>Relational Algebra</u>: More operational, very useful for representing execution plans.
- <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Nonoperational, <u>declarative</u>.)

What is an "Algebra"

- □ Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

Credit: Renee J. Mille

6

Core Relational Algebra

- □ Union, intersection, and difference.
 - Usual operations, but both operands must have the same relation schema.
- □ Selection: picking certain rows.
- $\hfill\Box$ Projection: picking certain columns.
- □ Products and joins: compositions of relations.
- □ Renaming of relations and attributes.

Since each operation returns a relation, operations can be composed

What is Relational Algebra?

- □ An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a query language for relations.

7

Selection

 \square R1 := \mathbf{O}_{C} (R2)

- C is a condition (as in "if" statements) that refers to attributes of R2.
- R1 is all those tuples of R2 that satisfy C.

8

a

10

12

Projection

 \square R1 := Π_L (R2)

- $\square L$ is a list of attributes from the schema of R2.
- R1 is constructed by looking at each tuple of R2, extracting the attributes on list *L*, in the order specified, and creating from those components a tuple for R1.

Extended Projection

4

- Using the same Π_l operator, we allow the list l to contain arbitrary expressions involving attributes:
 - Arithmetic on attributes, e.g., $A+B \rightarrow C$.

14

Product

16

- □ R3 := R1 X R2
 - □ Pair each tuple t1 of R1 with each tuple t2 of R2.
 - □ Concatenation t1t2 is a tuple of R3.
 - □ Schema of R3 is the attributes of R1 and then R2, in order.
 - But beware attribute A of the same name in R1 and R2:
 - In relational algebra use renaming to distinguish
 - in SQL use R1.A and R2.A.

Example: Extended Projection

= (A B

 $\Pi_{A+B} \rightarrow C_{,A} \rightarrow_{A1,A} \rightarrow_{A2} (R) =$

С	A1	A2				
3	1	1				
7	3	3				

15

Example: $R3 := R1 \times R2$

R1(A B)

1 2
3 4

B 5

A, R1.B, R2.B,

1 2 5
1 2 7
1 2 9

C

3 4 5 3 4 7 3 4 9

16

Theta-Join

18

- \square R3 := R1 \bowtie_{C} R2
 - □ Take the product R1 X R2.
 - lacksquare Then apply $oldsymbol{\sigma}_{\!\scriptscriptstyle C}$ to the result.
- \square As for $\mathbf{O}_{\mathbb{C}}$ can be any boolean-valued condition.
 - \blacksquare A θ B, where θ is =, <, etc.; hence the name "theta-join."

18

Natural Join

20

20

- □ A useful join variant (*natural* join) connects two relations by:
 - Equating attributes of the same name, and
 - Projecting out one copy of each pair of equated attributes.
- □ Denoted R3 := R1 🖂 R2.

Sells(bar, beer, price)
Joe's Bud 2.50
Joe's Miller 2.75

Bars(name, Joe's Sue's Sue's

2.50

3.00

BarInfo := Sells Sells.bar = Bars.name Bars

Bud

Coors

BarInfo(

Sue's

bar,	beer,	price,	name,	addr
Joe's	Bud	2.50	Joe's	Maple St.
Joe's	Miller	2.75	Joe's	Maple St.
Sue's	Bud	2.50	Sue's	River Rd.
Sue's	Coors	3.00	Sue's	River Rd.

19

21

Example: Natural Join

| Sells(| bar, | beer, | price | Joe's | Bud | 2.50 | Joe's | Miller | 2.75 | Sue's | Bud | 2.50 | Sue's | Coors | 3.00 |

Bars(bar, addr Joe's Maple St. Sue's River Rd.

Maple St.

River Rd.

BarInfo := Sells ⋈ Bars

Note: Bars.name has become Bars.bar to make the natural join non-trivial

BarInfo(

addr price, 2.50 Maple St. Joe's Bud Joe's Milller 2.75 Maple St. Sue's 2.50 River Rd. Bud 3.00 River Rd. Sue's Coors

Renaming

2

- $\hfill\Box$ The ρ operator gives a new schema to a relation.
- \square R1 := $\rho_{R1(A1,...,An)}(R2)$ makes R1 be a relation with attributes A1,...,An and the same tuples as R2.
- □ Simplified notation: R1(A1,...,An) := R2.

