A Gentle Introduction to Model Order Reduction via Proper Orthogonal Decomposition

Shane McQuarrie

25 October 2019

Outline

- 1 The Model Reduction Problem
- Solution Strategy
- 3 Example: Heat Equation

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

We call (*) the full-order model (FOM).

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

We call (*) the full-order model (FOM).

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

We call (*) the full-order model (FOM).

Some assumptions:

• We know f and that it is "nice"

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

We call (*) the full-order model (FOM).

- We know f and that it is "nice"
- ullet The dimension n is large

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

We call (*) the full-order model (FOM).

- We know f and that it is "nice"
- The dimension n is large $(n \sim 10^8)$

Many computational science, engineering, and mathematics applications eventually reduce to the problem of solving a (very) large system of ordinary differential equations:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0, \qquad (*)$$

where

$$\mathbf{x}: \mathbb{R} \to \mathbb{R}^n, \qquad \mathbf{f}: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{x}_0 \in \mathbb{R}^n.$$

We call (*) the full-order model (FOM).

- We know f and that it is "nice"
- The dimension n is large $(n \sim 10^8)$
- We can solve (*), but it is computationally expensive to do so

Small Dynamical Systems

The goal of model order reduction (MOR) is to construct a low-dimensional system

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = \hat{\mathbf{f}}(t, \hat{\mathbf{x}}(t)), \qquad \hat{\mathbf{x}}(0) = \hat{\mathbf{x}}_0, \qquad (**)$$

where

$$\hat{\mathbf{x}}: \mathbb{R} \to \mathbb{R}^r, \qquad \qquad \hat{\mathbf{f}}: \mathbb{R} \times \mathbb{R}^r \to \mathbb{R}^r, \qquad \qquad \hat{\mathbf{x}}_0 \in \mathbb{R}^r,$$

with $r \ll n$ and $\hat{\mathbf{x}}$ related to \mathbf{x} somehow.

Small Dynamical Systems

The goal of model order reduction (MOR) is to construct a low-dimensional system

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = \hat{\mathbf{f}}(t, \hat{\mathbf{x}}(t)), \qquad \hat{\mathbf{x}}(0) = \hat{\mathbf{x}}_0, \qquad (**)$$

where

$$\hat{\mathbf{x}}: \mathbb{R} \to \mathbb{R}^r, \qquad \qquad \hat{\mathbf{f}}: \mathbb{R} \times \mathbb{R}^r \to \mathbb{R}^r, \qquad \qquad \hat{\mathbf{x}}_0 \in \mathbb{R}^r,$$

with $r \ll n$ and $\hat{\mathbf{x}}$ related to \mathbf{x} somehow.

We call (**) the *reduced-order model* (ROM).

Small Dynamical Systems

The goal of model order reduction (MOR) is to construct a low-dimensional system

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = \hat{\mathbf{f}}(t, \hat{\mathbf{x}}(t)), \qquad \hat{\mathbf{x}}(0) = \hat{\mathbf{x}}_0, \qquad (**)$$

where

$$\hat{\mathbf{x}}: \mathbb{R} \to \mathbb{R}^r, \qquad \qquad \hat{\mathbf{f}}: \mathbb{R} \times \mathbb{R}^r \to \mathbb{R}^r, \qquad \qquad \hat{\mathbf{x}}_0 \in \mathbb{R}^r,$$

with $r \ll n$ and $\hat{\mathbf{x}}$ related to \mathbf{x} somehow.

We call (**) the *reduced-order model* (ROM).

The goal is typically r < 50 or so.

Strategy: Projection to a Linear Subspace

Idea: approximate $\mathbf{x} \in \mathbb{R}^n$ as a linear combination of r vectors.

Strategy: Projection to a Linear Subspace

Idea: approximate $\mathbf{x} \in \mathbb{R}^n$ as a linear combination of r vectors.

That is, find $V \in \mathbb{R}^{n \times r}$ such that

$$\mathbf{x}(t) \approx V \hat{\mathbf{x}}(t),$$

 $\text{meaning Range}(V) \approx \{\mathbf{x}(t) \mid t \geq 0\}.$

Strategy: Projection to a Linear Subspace

Idea: approximate $\mathbf{x} \in \mathbb{R}^n$ as a linear combination of r vectors.

That is, find $V \in \mathbb{R}^{n \times r}$ such that

$$\mathbf{x}(t) \approx V \hat{\mathbf{x}}(t),$$

meaning Range $(V) \approx \{\mathbf{x}(t) \mid t \geq 0\}.$

But how tho?

Strategy: Collect Snapshot Data

To approximate the solution set $\{\mathbf{x}(t) \mid t \geq 0\}$, simulate the FOM (*) and record the solution $\mathbf{x}(t)$ at times $0 = t_0 < t_1 < \cdots < t_{k-1}$. Stack the results column-wise to get the *snapshot matrix*,

$$X = \left[\begin{array}{c|c} \mathbf{x}(t_0) & \mathbf{x}(t_1) & \cdots & \mathbf{x}(t_{k-1}) \end{array}\right] \in \mathbb{R}^{n \times k}.$$

Strategy: Collect Snapshot Data

To approximate the solution set $\{\mathbf{x}(t) \mid t \geq 0\}$, simulate the FOM (*) and record the solution $\mathbf{x}(t)$ at times $0 = t_0 < t_1 < \cdots < t_{k-1}$. Stack the results column-wise to get the *snapshot matrix*,

$$X = \left[\begin{array}{c|c} \mathbf{x}(t_0) & \mathbf{x}(t_1) & \cdots & \mathbf{x}(t_{k-1}) \end{array}\right] \in \mathbb{R}^{n \times k}.$$

Now the column space (range) of X is an approximation to $\{\mathbf{x}(t) \mid t \geq 0\}$.

Strategy: Collect Snapshot Data

To approximate the solution set $\{\mathbf{x}(t) \mid t \geq 0\}$, simulate the FOM (*) and record the solution $\mathbf{x}(t)$ at times $0 = t_0 < t_1 < \cdots < t_{k-1}$. Stack the results column-wise to get the *snapshot matrix*,

$$X = \left[\begin{array}{c|c} \mathbf{x}(t_0) & \mathbf{x}(t_1) & \cdots & \mathbf{x}(t_{k-1}) \end{array}\right] \in \mathbb{R}^{n \times k}.$$

Now the column space (range) of X is an approximation to $\{\mathbf{x}(t) \mid t \geq 0\}$.

But we want $V \in \mathbb{R}^{n \times r}$ (probably r < k < n)...

Strategy:

Strategy:

Use the SVD!

Strategy: Use the SVD!

Theorem

Let $A \in \mathbb{R}^{n \times k}$ have the singular value decomposition

$$A = \Phi \Sigma \Psi^{\mathsf{T}}.$$

Then the first r columns of Φ are the best rank-r approximation of the column space of A. In other words, $\{\phi_j\}_{j=1}^r$ solves the minimization problem

$$\underset{\tilde{\phi}_{1},...,\tilde{\phi}_{r}\in\mathbb{R}^{n}}{argmin} \sum_{j=1}^{k} \left\| \mathbf{x}_{j} - \sum_{i=1}^{r} \left\langle \mathbf{x}_{j}, \tilde{\phi}_{i} \right\rangle_{\mathbb{R}^{n}} \tilde{\phi}_{i} \right\|_{\mathbb{R}^{n}}^{2}$$

$$such \ that$$

$$\left\langle \tilde{\phi}_{i}, \tilde{\phi}_{j} \right\rangle_{\mathbb{R}^{n}} = \delta_{ij} \quad for \quad 1 \leq i, j \leq r.$$

Define

$$V_r := \Phi_{:,:r}(X) \in \mathbb{R}^{n \times r},$$

the POD basis of rank r corresponding to the snapshot matrix X.

Define

$$V_r := \Phi_{:,:r}(X) \in \mathbb{R}^{n \times r},$$

the POD basis of rank r corresponding to the snapshot matrix X.

Since Φ has orthonormal columns, so does V_r . In particular,

Define

$$V_r := \Phi_{:,:r}(X) \in \mathbb{R}^{n \times r},$$

the POD basis of rank r corresponding to the snapshot matrix X.

Since Φ has orthonormal columns, so does V_r . In particular,

$$V_r^\mathsf{T} V_r = I \in \mathbb{R}^{r \times r}$$

Define

$$V_r := \Phi_{:,:r}(X) \in \mathbb{R}^{n \times r},$$

the POD basis of rank r corresponding to the snapshot matrix X.

Since Φ has orthonormal columns, so does V_r . In particular,

- $V_r^\mathsf{T} V_r = I \in \mathbb{R}^{r \times r}$
- $\bullet~V_rV_r^{\mathsf{T}}$ is the orthogonal projector onto

$$\mathsf{Range}(V_r) \approx \mathsf{Range}(X) \approx \{\mathbf{x}(t) \mid t \geq 0\}$$

Since V_r is orthonormal,

$$\mathbf{x}(t) \approx V_r \hat{\mathbf{x}}(t) \implies V_r^\mathsf{T} \mathbf{x}(t) \approx V_r^\mathsf{T} V_r \hat{\mathbf{x}}(t) = \hat{\mathbf{x}}(t).$$

Since V_r is orthonormal,

$$\mathbf{x}(t) \approx V_r \hat{\mathbf{x}}(t) \implies V_r^\mathsf{T} \mathbf{x}(t) \approx V_r^\mathsf{T} \hat{\mathbf{v}}_r \hat{\mathbf{x}}(t) = \hat{\mathbf{x}}(t).$$

Substituting this into the FOM (*),

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0,$$

$$\frac{d}{dt}V_r\hat{\mathbf{x}}(t) = \mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r\hat{\mathbf{x}}(0) = \mathbf{x}_0,$$

Since V_r is orthonormal,

$$\mathbf{x}(t) \approx V_r \hat{\mathbf{x}}(t) \implies V_r^\mathsf{T} \mathbf{x}(t) \approx V_r^\mathsf{T} \hat{\mathbf{v}}_r \hat{\mathbf{x}}(t) = \hat{\mathbf{x}}(t).$$

Substituting this into the FOM (*),

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0,$$

$$\frac{d}{dt}V_r\hat{\mathbf{x}}(t) = \mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r\hat{\mathbf{x}}(0) = \mathbf{x}_0,$$

$$V_r^\mathsf{T}V_r\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r^\mathsf{T}V_r\hat{\mathbf{x}}(0) = V_r^\mathsf{T}\mathbf{x}_0,$$

Since V_r is orthonormal,

$$\mathbf{x}(t) \approx V_r \hat{\mathbf{x}}(t) \qquad \Longrightarrow \qquad V_r^\mathsf{T} \mathbf{x}(t) \approx V_r^\mathsf{T} \hat{\mathbf{v}}_r \hat{\mathbf{x}}(t) = \hat{\mathbf{x}}(t).$$

Substituting this into the FOM (*),

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0,$$

$$\frac{d}{dt}V_r\hat{\mathbf{x}}(t) = \mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r\hat{\mathbf{x}}(0) = \mathbf{x}_0,$$

$$V_r^\mathsf{T}V_r\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r^\mathsf{T}V_r\hat{\mathbf{x}}(0) = V_r^\mathsf{T}\mathbf{x}_0,$$

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^{\mathsf{T}}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)),$$

$$\hat{\mathbf{x}}(0) = V_r^\mathsf{T} \mathbf{x}_0 =: \hat{\mathbf{x}}_0 \, \bigg| \, .$$

Since V_r is orthonormal,

$$\mathbf{x}(t) \approx V_r \hat{\mathbf{x}}(t) \implies V_r^\mathsf{T} \mathbf{x}(t) \approx V_r^\mathsf{T} \hat{\mathbf{v}}_r \hat{\mathbf{x}}(t) = \hat{\mathbf{x}}(t).$$

Substituting this into the FOM (*),

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{f}(t, \mathbf{x}(t)), \qquad \mathbf{x}(0) = \mathbf{x}_0,$$

$$\frac{d}{dt}V_r\hat{\mathbf{x}}(t) = \mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r\hat{\mathbf{x}}(0) = \mathbf{x}_0,$$

$$V_r^\mathsf{T}V_r\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)), \qquad V_r^\mathsf{T}V_r\hat{\mathbf{x}}(0) = V_r^\mathsf{T}\mathbf{x}_0,$$

$$\boxed{\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t))},$$

$$\hat{\mathbf{x}}(0) = V_r^\mathsf{T} \mathbf{x}_0 =: \hat{\mathbf{x}}_0 \, \bigg| \, .$$

Suppose the FOM operator ${\bf f}$ is of the form

$$\mathbf{f}(t, \mathbf{x}(t)) = A\mathbf{x}(t) + \mathbf{c},$$

where

$$A \in \mathbb{R}^{n \times n},$$
 $\mathbf{c} \in \mathbb{R}^n.$

Suppose the FOM operator f is of the form

$$\mathbf{f}(t, \mathbf{x}(t)) = A\mathbf{x}(t) + \mathbf{c},$$

where

$$A \in \mathbb{R}^{n \times n}$$
,

$$\mathbf{c} \in \mathbb{R}^n$$
.

Then the corresponding ROM is

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)) = V_r^\mathsf{T}AV_r\hat{\mathbf{x}}(t) + V_r^\mathsf{T}\mathbf{c}$$

Suppose the FOM operator f is of the form

$$\mathbf{f}(t, \mathbf{x}(t)) = A\mathbf{x}(t) + \mathbf{c},$$

where

$$A \in \mathbb{R}^{n \times n}$$
,

$$\mathbf{c} \in \mathbb{R}^n$$
.

Then the corresponding ROM is

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)) = V_r^\mathsf{T}AV_r\hat{\mathbf{x}}(t) + V_r^\mathsf{T}\mathbf{c}$$
$$= \hat{A}\hat{\mathbf{x}}(t) + \hat{\mathbf{c}},$$

Suppose the FOM operator ${\bf f}$ is of the form

$$\mathbf{f}(t, \mathbf{x}(t)) = A\mathbf{x}(t) + \mathbf{c},$$

where

$$A \in \mathbb{R}^{n \times n}$$
,

$$\mathbf{c} \in \mathbb{R}^n$$
.

Then the corresponding ROM is

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)) = V_r^\mathsf{T}AV_r\hat{\mathbf{x}}(t) + V_r^\mathsf{T}\mathbf{c}$$
$$= \hat{A}\hat{\mathbf{x}}(t) + \hat{\mathbf{c}},$$

where

$$\hat{A} := V_r^\mathsf{T} A V_r \in \mathbb{R}^{r \times r},$$

$$\hat{\mathbf{c}} := V_r^\mathsf{T} \mathbf{c} \in \mathbb{R}^r.$$

Suppose the FOM operator ${\bf f}$ is of the form

$$\mathbf{f}(t, \mathbf{x}(t)) = A\mathbf{x}(t) + \mathbf{c},$$

where

$$A \in \mathbb{R}^{n \times n}$$
,

$$\mathbf{c} \in \mathbb{R}^n$$
.

Then the corresponding ROM is

$$\frac{d}{dt}\hat{\mathbf{x}}(t) = V_r^\mathsf{T}\mathbf{f}(t, V_r\hat{\mathbf{x}}(t)) = V_r^\mathsf{T}AV_r\hat{\mathbf{x}}(t) + V_r^\mathsf{T}\mathbf{c}$$
$$= \hat{A}\hat{\mathbf{x}}(t) + \hat{\mathbf{c}},$$

where

$$\hat{A} := V_r^\mathsf{T} A V_r \in \mathbb{R}^{r \times r},$$

$$\hat{\mathbf{c}} := V_r^\mathsf{T} \mathbf{c} \in \mathbb{R}^r.$$

Offline Phase (construct the ROM)

Offline Phase (construct the ROM)

• Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.

Offline Phase (construct the ROM)

- Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.
- ② Compute the rank-r POD basis matrix V_r corresponding to X (the first r left singular vectors).

Offline Phase (construct the ROM)

- Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.
- ② Compute the rank-r POD basis matrix V_r corresponding to X (the first r left singular vectors).
- **3** Construct \hat{A} , $\hat{\mathbf{c}}$ from A, \mathbf{c} , and V_r . This defines an r-dimensional ROM.

Offline Phase (construct the ROM)

- Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.
- ② Compute the rank-r POD basis matrix V_r corresponding to X (the first r left singular vectors).
- **3** Construct \hat{A} , $\hat{\mathbf{c}}$ from A, \mathbf{c} , and V_r . This defines an r-dimensional ROM.

Online Phase (simulate the ROM) Given an initial value x_0 ,

Offline Phase (construct the ROM)

- Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.
- ② Compute the rank-r POD basis matrix V_r corresponding to X (the first r left singular vectors).
- **3** Construct \hat{A} , $\hat{\mathbf{c}}$ from A, \mathbf{c} , and V_r . This defines an r-dimensional ROM.

Online Phase (simulate the ROM)

Given an initial value x_0 ,

• Project the initial value as $\hat{\mathbf{x}}_0 = V_r^\mathsf{T} \mathbf{x}_0$.

Offline Phase (construct the ROM)

- Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.
- ② Compute the rank-r POD basis matrix V_r corresponding to X (the first r left singular vectors).
- **3** Construct \hat{A} , $\hat{\mathbf{c}}$ from A, \mathbf{c} , and V_r . This defines an r-dimensional ROM.

Online Phase (simulate the ROM)

Given an initial value x_0 ,

- Project the initial value as $\hat{\mathbf{x}}_0 = V_r^\mathsf{T} \mathbf{x}_0$.
- ② Solve the ROM with initial value $\hat{\mathbf{x}}_0$, obtaining $\hat{\mathbf{x}}(t)$

Offline Phase (construct the ROM)

- Simulate the n-dimensional FOM to collect snapshots, stacked column-wise into the matrix X.
- ② Compute the rank-r POD basis matrix V_r corresponding to X (the first r left singular vectors).
- **3** Construct \hat{A} , $\hat{\mathbf{c}}$ from A, \mathbf{c} , and V_r . This defines an r-dimensional ROM.

Online Phase (simulate the ROM)

Given an initial value x_0 ,

- Project the initial value as $\hat{\mathbf{x}}_0 = V_r^\mathsf{T} \mathbf{x}_0$.
- ② Solve the ROM with initial value $\hat{\mathbf{x}}_0$, obtaining $\hat{\mathbf{x}}(t)$
- **③** Reconstruct the solution in the initial space as $\mathbf{x}_{\mathtt{ROM}}(t) = V_r \hat{\mathbf{x}}(t)$.

Example: Heat Equation

Consider the following one-dimensional parabolic PDE.

$$x_{t}(t,\omega) = \frac{1}{\pi^{2}} x_{\omega\omega}(t,\omega), \qquad (t,\omega) \in (0,T] \times \Omega,$$

$$x_{\omega}(t,0) = x_{\omega}(t,1) = 0, \qquad t > 0,$$

$$x(0,\omega) = \cos(\pi\omega) + \varepsilon \cos(4\pi\omega) + 2, \qquad \omega \in \Omega.$$

Example: Heat Equation

Consider the following one-dimensional parabolic PDE.

$$x_{t}(t,\omega) = \frac{1}{\pi^{2}} x_{\omega\omega}(t,\omega), \qquad (t,\omega) \in (0,T] \times \Omega,$$

$$x_{\omega}(t,0) = x_{\omega}(t,1) = 0, \qquad t > 0,$$

$$x(0,\omega) = \cos(\pi\omega) + \varepsilon \cos(4\pi\omega) + 2, \qquad \omega \in \Omega.$$

Discretizing with a simple finite difference scheme yields a linear ODE,

$$\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t).$$

Example: Heat Equation

Consider the following one-dimensional parabolic PDE.

$$x_{t}(t,\omega) = \frac{1}{\pi^{2}} x_{\omega\omega}(t,\omega), \qquad (t,\omega) \in (0,T] \times \Omega,$$

$$x_{\omega}(t,0) = x_{\omega}(t,1) = 0, \qquad t > 0,$$

$$x(0,\omega) = \cos(\pi\omega) + \varepsilon \cos(4\pi\omega) + 2, \qquad \omega \in \Omega.$$

Discretizing with a simple finite difference scheme yields a linear ODE,

$$\frac{d}{dt}\mathbf{x}(t) = A\mathbf{x}(t).$$

We can reduce this system!

https://tinyurl.com/y28qhsfl