

# EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

GROUP 22:

HE Yichen A0236326H

LOU Xinyun A0251245M

SONG Mingyue A0251125U

WANG Jiangyi A02346307J

YANG Sizhe A0236299N















#### **BACKGROUND**

#### **EVOLUTION OF CNNs**





**EfficientNet** 

AlexNet (2012)

First winner of the ImageNet challenge based on a CNN



VGGNet (2014)

Depth is critical in CNN design



GoogLeNet (2014)

Reduce parameter count, memory usage, and computation



#### **EVOLUTION OF CNNs**



#### Observation 1:

More sophisticated architecture

Larger scale

Better performance



#### **MOTIVATION**

#### SCALING UP CNNs



Add more layers



Depth coefficient: d (In this case, d=2)

deeper

Depth scaling



#### SCALING UP CNNs









Width coefficient: w



Baseline

Width scaling

#### SCALING UP CNNs



## Higher resolution of input image



Resolution coefficient: r





Resolution scaling

#### **EMPIRICAL STUDY**



#### Change in Width



#### Change in Depth



Change in Resolution



#### Experiment setting:

- Baseline: EfficientNet-B0 (Structure will be detailed discussed later)
- Dataset: CIFAR-10 with only 3 classes (cat, deer and dog),
   15k~ training samples, 3k~ testing samples
- Epochs: 40

#### EMPIRICAL STUDY



#### Observation 2:

Scaling up any dimension of network width, depth, or resolution improves accuracy, but the degree of benefit diminishes as the models grow larger.



#### **MOTIVATION**



But different scaling dimensions are not independent.

They are interrelated.

#### **MOTIVATION**



So.....

Uniformly scaling up the coefficients!

#### **Compound Scaling**



#### **Compound Scaling**



#### **Compound Scaling**



#### Observation 3:

In order to pursue better accuracy and efficiency, it is critical to balance all dimensions of network width, depth, and resolution during ConvNet scaling.

#### **MOTIVATION**



#### Based on observation 2 & 3 ——

#### Observation 2:

Scaling up any dimension of network improves accuracy, but the degree of benefit diminishes as the models grow larger.

#### Observation 3:

We need to balance all dimensions of network during ConvNet scaling.

#### **MOTIVATION**



Based on observation 2 & 3 ——

#### **Question:**

How to balance the three dimensions of neural networks?



#### REPRODUCTION

#### EFFICIEFFICIENTNET BO ARCHITECTURE

Before talking about result, go through the general architecture of EfficientNet B0 (Baseline).





GOAL
GOOVER MARRIAGON
MARR

To conclude, there are two main parts for our reproduction:

1. To determine the optimal combination of depth, width, and resolution for specific computation resources.

2. Compare the performance of EfficientNet with other convolutional neural network (CNN) architectures.

First part: Determine combination of depth, width, resolution

Efficient Net proposes 'Compound Scaling' Scheme to determine the optimal scaling factors.







First part: Determine combination of depth, width, resolution





First part: Determine combination of depth, width, resolution



Result: Computational Complexity  $\sim O(C_{in} \times K^2 \times H_{out} \times W_{out} \times C_{out})$ 

Scaling factor:  $\beta \leftarrow Width$ :  $w \leftarrow C_{in}, C_{out}$ )

Scaling factor:  $\gamma$   $\leftarrow$  Resolution: r  $\leftarrow$   $(H_{out}, W_{out})$ 

Conclusion1: if we enlarge width by  $\beta$  and resolution by  $\gamma$ , then the computational costs will be proportional to  $(\beta^2 \cdot \gamma^2)$  times.

Scaling factor:  $\alpha$   $\longleftarrow$  Depth: d  $\longleftarrow$  (# of convolution modules)

Conclusion2: if we enlarge depth by  $\alpha$ , then the computational costs will be proportional to  $\alpha$  times.

**Conclusion3**: if we enlarge 3 factors by  $(\alpha, \beta, \gamma)$  respectively, then the computational costs will be **proportional to**  $(\alpha \cdot \beta^2 \cdot \gamma^2)$  **times.** 

First part: Determine combination of depth, width, resolution

#### 'Compound Scaling' Scheme:

Question: if now, our resources are N times larger, how to allocate for these 3 scaling factors?

• Step 1: Assume twice more resources are available, as we illustrate in the previous slide, we are required to solve:





First part: Determine combination of depth, width, resolution

#### **Grid Search Result:**



| index    | α          | β          | γ           | best_train_accuracy | best_val_accuracy |
|----------|------------|------------|-------------|---------------------|-------------------|
| <u>1</u> | <u>1.2</u> | <u>1.1</u> | <u>1.15</u> | <u>86.02%</u>       | <u>93.17%</u>     |
| 2        | 1.2        | 1.15       | 1.1         | 84.85%              | 92.40%            |
| 3        | 1.3        | 1.05       | 1.15        | 85.10%              | 92.12%            |
| 4        | 1.3        | 1.15       | 1.05        | 84.21%              | 92.03%            |
| 5        | 1.15       | 1.1        | 1.2         | 85.07%              | 92.26%            |
| 6        | 1.1        | 1.2        | 1.15        | 84.71%              | 92.52%            |
|          |            |            |             |                     |                   |

 $\underline{s.t \ \alpha \times \beta^2 \times \gamma^2 \approx 2}$ 

#### Experiment setting:

• Baseline: EfficientNet-B0

Dataset: CIFAR-10 with 10 classes

• Epochs: 100



First part: Determine combination of depth, width, resolution

#### 'Compound Scaling' Scheme:

Question: if now, our resources are N times larger, how to allocate for these 3 scaling factors?

• Step 1: Assume twice more resources are available, as we illustrate in the previous slide, we are required to solve:

$$\begin{cases} \max_{\{\alpha,\beta,\gamma\}} : validation\_accuracy(\alpha,\beta,\gamma) \\ s.t: \quad \alpha \cdot \beta^2 \cdot \gamma^2 \approx 2 \end{cases}$$

• Step 2: Now we achieve the optimal  $(\hat{\alpha}, \hat{\beta}, \hat{\gamma})$  and in the question, we have  $\underline{N}$  times more computation resources. In this setting, the optimal scaling factors  $(\alpha^*, \beta^*, \gamma^*)$  can be determined as follows:

$$\begin{cases}
\alpha^*, \beta^*, \gamma^* = \hat{\alpha}^{\phi}, \hat{\beta}^{\phi}, \hat{\gamma}^{\phi} \\
\phi = \log_2 N
\end{cases}$$

$$\begin{cases}
d^* = d_0 \cdot \alpha^* \\
w^* = w_0 \cdot \beta^* \\
r^* = r_0 \cdot \gamma^*
\end{cases}$$



First part: Determine combination of depth, width, resolution



Big, Intractable Grid Search Problem (N times more resources)

Uniform Scaling Parameter  $\phi$ 

Small, Tractable Grid Search Problem (2 times more resources)



Second Part: Comparison between EfficientNet and other Network Architectures

Compare between EfficientNet and other CNN architectures including the CNN given in our lecture and famous ResNet152 on CIFAR10 Dataset.







#### **EXTENSION**

#### **EXTENSION**



#### Two possible directions of extension:

1 Apply EfficientNet on CIFAR100 dataset

2 Improve the EfficientNet Architecture

#### **EFFICIENTNET EXTENSION**

First part: Apply EfficientNet on CIFAR100 Dataset

### Compare between EfficientNet and the CNN given in our lecture on CIFAR100 Dataset.





#### CNN on Cifar100



#### **EFFICIENTNET EXTENSION**

Second part: Improve EfficientNet Architecture

#### Limitations of the EfficientNet architecture,

- 1. Training with very large image sizes is slow
- 2. Depthwise convolutions are slow in early layers

To overcome these limitations, we try to replace the depthwise 3x3 convolution and expansion 1x1 convolution in MBConv in EfficientNet with a regular 3x3 convolution.





#### **EFFICIENTNET EXTENSION**

Second part: Improve EfficientNet Architecture



Compare between EfficientNet and EfficientNet V2 with respect to model performance (accuracy) and model efficiency (steptime).



#### EfficientNet V.S. EfficientNet V2





#### **SUMMARY**





#### SUMMARY

Dataset: CIFAR-10 & CIFAR-100

Platform: Colab with GPU

Library: PyTorch

Links: <a href="https://github.com/SizheYang512/DSA5204-2023-Group20">https://github.com/SizheYang512/DSA5204-2023-Group20</a>

#### Reference (paper and code):

- 1. ResNet, <a href="https://arxiv.org/abs/1512.03385">https://arxiv.org/abs/1512.03385</a>
- 2. EfficientNet, <a href="https://arxiv.org/abs/1905.11946">https://arxiv.org/abs/1905.11946</a>
- 3. EfficientNet V2, <a href="https://arxiv.org/abs/2104.00298">https://arxiv.org/abs/2104.00298</a>
- 4. Code: <a href="https://github.com/qubvel/efficientnet">https://github.com/qubvel/efficientnet</a>
- 5. Code: <a href="https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch\_classification/Test9\_efficientNet">https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch\_classification/Test9\_efficientNet</a>





## THANKS

HAVE A NICE DAY!