hydrogen	-		959	250	1570	5	134	5	155	197	d de	100	18 CO.	100	850	100	866)	helium
1																		2
H																		He
1.0079	L'ocaliticae	ì										ř	- Luciana	I construes			n	4.0026
lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
	Be												В	C	N	0	F	Ne
Li																	_	
6.941 sodium	9.0122 magnesium											+	10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	Р	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39,948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
	_												_					
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony	tellurium	iodine	xenon
			39	40	41	42	43	44		46	200	5000 500		-0.55	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium 56	57-70	lutetium 71	hafnium	tantalum	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum	gold 79	mercury 80	thallium	lead 82	bismuth	polonium 84	astatine 85	radon
55	12 3377	1000	-	72	73		1000000	1000000	10.22	78			81		83	2000000	32845	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg		Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium	radium	00 400	lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium		ununquadium	er valte av Redamina			
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
L V		* *	Lr	D.f	Db	20	Bh	Hs	Mt	Llun	Uuu	Llub		Uuq				
	Na	// //			$\mathbf{D}\mathbf{D}$	34		113	IAIC	Ouli	Ouu	OUD		Oud				
Fr [223]	Ra	X - X	[262]	Rf [261]	Db	Sg	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
?	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Key integrals and identities:

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\left(\frac{a}{2}\right)\delta_{mn} = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx$$

$$0 = \int_{0}^{a} \cos\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi x}{a}\right) dx$$

$$\frac{a^{2}}{4} = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x dx$$

$$\left(\frac{a}{2\pi n}\right)^{3} \left(\frac{4\pi^{3}n^{3}}{3} - 2\pi n\right) = \int_{0}^{a} \left(\sin\left(\frac{n\pi x}{a}\right)\right)^{2} x^{2} dx$$

$$\frac{1}{2}\sqrt{\frac{\pi}{\alpha}} = \int_{0}^{\infty} e^{-\alpha x^{2}} dx$$

$$\left(\frac{1}{2}\sqrt{\frac{\pi}{\alpha}}\right) \left(\frac{(2n-1)(2n-3)\cdots(3)(1)}{(2\alpha)^{n}}\right) = \int_{0}^{\infty} x^{2n} e^{-\alpha x^{2}} dx$$

$$n = 1, 2, 3, \dots$$

$$\left(\frac{1}{2}\right) \left(\frac{n!}{\alpha^{n+1}}\right) = \int_{0}^{\infty} x^{2n+1} e^{-\alpha x^{2}} dx$$

$$n = 0, 1, 2, \dots$$

$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y) \rightarrow 2\sin^{2}x = 1 - \cos(2x)$$

$$2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y) \rightarrow 2\cos^{2}x = 1 + \cos(2x)$$

$$2\sin(x)\cos(y) = \sin(\alpha+\beta) + \sin(\alpha-\beta) \rightarrow 2\sin x\cos x = \sin(2x)$$

$$\sin(x+y) = \sin x\cos y + \cos x\sin y \rightarrow \sin(2x) = 2\sin x\cos x$$

$$\cos(x+y) = \cos x\cos y - \sin x\sin y \rightarrow \cos(2x) = \cos^{2}x - \sin^{2}x$$

VALUES OF SOME PHYSICAL CONSTANTS

Constant	Symbol	Value
Avogadro's number	N_0	$6.02205 \times 10^{23} \text{mol}^{-1}$
Proton charge	e	$1.60219 \times 10^{-19} \mathrm{C}$
Planck's constant	* *	$6.62618 \times 10^{-34} \text{ J} \cdot \text{s}$ $1.05459 \times 10^{-34} \text{ J} \cdot \text{s}$
Speed of light in vacuum	c	$2.997925 \times 10^8 \mathrm{m \cdot s^{-1}}$
Atomic mass unit	amu	$1.66056 \times 10^{-27} \text{ kg}$
Electron rest mass	m _e	$9.10953 \times 10^{-31} \text{ kg}$
Proton rest mass	m_p	$1.67265 \times 10^{-27} \text{ kg}$
Boltzmann constant	k_B	$1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ 0.69509 cm^{-1}
Molar gas constant	R	8.31441 J·K ⁻¹ ·mol ⁻¹
Permittivity of a vacuum	$\frac{\varepsilon_0}{4\pi\varepsilon_0}$	$8.854188 \times 10^{-12} \text{ C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3}$ $1.112650 \times 10^{-10} \text{ C}^2 \cdot \text{s}^2 \cdot \text{kg}^{-1} \cdot \text{m}^{-3}$
Rydberg constant (infinite nuclear mass)	R_{∞}	$2.179914 \times 10^{-23} \text{ J}$ 1.097373 cm^{-1}
First Bohr radius	a_0	$5.29177 \times 10^{-11} \mathrm{m}$
Bohr magneton	μ_B	$9.27409 \times 10^{-24} \text{ J} \cdot \text{T}^{-1}$
Stefan-Boltzmann constant	q	$5.67032 \times 10^{-8} \text{ J} \cdot \text{m}^{-2} \cdot \text{K}^{-4} \cdot \text{s}^{-1}$

CONVERSION FACTORS FOR ENERGY UNITS

Hy	cm^{-1} =1.986×10 ⁻²³ 1.196×10 ⁻²	au =4.359×10 ⁻¹⁸ 2625	eV =1.602×10 ⁻¹⁹ 96.48	$kJ \cdot mol^{-1}$ = 1.661 × 10 ⁻²¹ 1	joule 6.022 × 10 ²⁰	joule kJ·mol-1
-6.626 - 10-34 3 990 - 10-13 4 136 - 10-15	1.240 × 10 ⁻⁴	27.21	-	1.036×10^{-2}	6.242×10^{18}	eV
	4.556 × 10 ⁻⁶	-	3.675×10^{-2}	3.089×10^{-4}	2.2939×10^{17}	au
1.520 × 10 ⁻¹⁶ 3.336 × 10 ⁻¹¹	1	2.195 × 10 ⁵	8065	83.60	5.035×10^{22}	cm ⁻¹
-	2.998 × 1010	6.580 × 10 ¹⁵	2.418×10 ¹⁴	2.506 × 1012	1.509×10 ³³	H_Z

SOME MATHEMATICAL FORMULAS

and

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ $\int_0^\infty e^{-ax^2} dx = \left(\frac{\pi}{4a}\right)^{1/2}$ $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{}$ $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\int_0^\infty x^{2n+1} e^{-\alpha x^2} dx = \frac{n!}{2d^{n+1}} \qquad (n \text{ positive integer})$ $(1 \pm x)^n = 1 \pm nx \pm \frac{n(n-1)}{2!}x^2 \pm \frac{n(n-1)(n-2)}{3!}x^3 \pm \cdots$ $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots \qquad x^2 < 1$ $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ $e^{\pm i\theta} = \cos\theta \pm i\sin\theta$ $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\int_0^a \cos \frac{n\pi x}{a} \sin \frac{m\pi x}{a} dx = 0 \qquad (m \text{ and } n \text{ integers})$ $f(x) = f(a) + f'(a)(x - a) + \frac{1}{2!}f''(a)(x - a)^2 + \frac{1}{3!}f'''(a)(x - a)^3 + \cdots$ $\sin \alpha \cos \beta = \frac{1}{2} \sin (\alpha + \beta) + \frac{1}{2} \sin (\alpha - \beta)$ $\sin \alpha \sin \beta = \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha + \beta)$ $\cos \alpha \cos \beta = \frac{1}{2}\cos(\alpha - \beta) + \frac{1}{2}\cos(\alpha + \beta)$ $\int_0^a \sin \frac{n\pi x}{a} \sin \frac{m\pi x}{a} dx = \int_0^a \cos \frac{n\pi x}{a} \cos \frac{m\pi x}{a} dx = \frac{a}{2} \delta_{nm}$ $\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n+1} a^n} \left(\frac{\pi}{a}\right)^{1/2}$ $\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \qquad (n \text{ positive integer})$ (n positive integer) x² <

Short Answer Questions:

The following text refers to problems 1-8.

Among the many possible wavefunctions associated with the 7G term symbol, suppose you are given the one with the largest possible values for the J quantum number (total angular momentum) and the M_J quantum number (total angular momentum about the z-axis). This wavefunction is denoted $\Psi_{J^{(\max)}M^{(\max)}}^{r_G}$.

- 1. What is the degeneracy of an atomic state described by the ⁷G term symbol?
- 2-3. What are the maximum values for the total angular momentum and the total angular momentum around the *z*-axis.

 $J^{(max)}$

3-8. What are the eigenvalues of \hat{L}^2 , \hat{J}^2 , \hat{S}^2 , \hat{L}_z , \hat{S}_z , \hat{J}_z . Be sure to show the dependence on \hbar .

- 9. Write the key equation known as "Fermi's Golden Rule."
- 10. Write a Slater determinant of molecular orbitals that is appropriate for the *ground* state of the Lithium Hydride cation, LiH⁺. Label the molecular orbitals with symmetry labels, i.e. $\sigma_u, \sigma_g, \pi_u^+, \pi_u^-, \pi_g^+, \pi_g^-, \dots$ Use the long form of the Slater determinant, writing out all the rows and columns.

11. Because of the presence of other electrons and the positive nuclei, electrons in large molecules and solids do not experience the full Coulomb potential. Instead, they experience a screened Coulomb potential. (You learned about this in thermodynamics, as it is a key component of the Debye-Hückel theory of electrolyte solutions.) A common model for the screened Coulomb potential is the Yukawa potential,

$$V_{\rm Y}(r) = \frac{q_1 q_2 e^{-\lambda r}}{4\pi \varepsilon_0 r}$$

where r is the separation between the particles. Write the Hamiltonian for two particles, with charges q_1 and q_2 and masses m_1 and m_2 whose interaction is described by the Yukawa potential.

The following text refers to problems 12-15.

Consider an electron confined to two one-dimensional boxes with infinitely repulsive sides. The two boxes are adjacent to each other but separated by an infinite barrier, as shown in the following figure and encapsulated by the following equation:

$$V(x) = \begin{cases} +\infty & x \le 0 \\ 0 & 0 < x < a \\ +\infty & x = a \\ 0 & a < x < 2a \\ +\infty & x \ge 2a \end{cases}$$

- 12. The system is prepared in its ground state and then its absorption spectrum is taken. The largest-wavelength absorption that is observed has wavelength 1000 nm. How wide are the boxes? (I.e., what is the value of a?)
- 13. What is the ground state energy of this system?
- 14,15. An experiment reveals that the system has a 90% chance of being observed in the first box and a 10% chance of being observed in the second box. Write <u>TWO</u> wavefunctions, which differ from each other by more than a constant factor, that are consistent with this observation.

Part 2. Problems

1. **Properties of the Second Derivative Operator.**

In this problem, you will derive some properties of the second derivative operator,

$$\left\langle \Psi(x) \left| \frac{d^2}{dx^2} \right| \Psi(x) \right\rangle$$

- **Explicitly show that the second derivative operator is Hermitian.** [6 points] 1a.
- Explicitly show that the second derivative operator is negative semidefinite. That is, show that for any wavefunction, $\Psi(x)$,

$$\left\langle \Psi(x) \left| \frac{d^2}{dx^2} \right| \Psi(x) \right\rangle \leq 0$$
.

[4 points]

2. **Atomic Diffraction and Neutron Diffraction.**

Suppose we use a beam of Helium-4 atoms to image a crystal, in a manner similar to X-ray crystallography. Assume that the ${}_{2}^{4}$ He atoms are in thermal equilibrium at temperature T. From fundamental thermodynamics, we know that the kinetic energy of the Helium atoms is

kinetic energy =
$$\frac{3}{2}k_BT$$
 (1)

where k_B is Boltzmann's constant. Suppose that the substance we want to diffract the Helium atoms from crystallizes in a simple cubic lattice with lattice constant (i.e., nearestneighbor distance) $a = 3.0 \cdot 10^{-10}$ m.

- At what temperature would diffraction of the ⁴₂He atoms become appreciable? (6 points)
- Suppose we use thermal neutrons, instead of ⁴₂He to diffract off the crystal. Would the optimal temperature of the neutrons be smaller or larger than that of the **Helium atoms in part (a)? (2 points)**

(i)
$$T_{\text{neutrons}} > T_{\text{Helium}}$$

(ii)
$$T_{\text{neutrons}} < T_{\text{Helium}}$$

Suppose we now decide to diffract ⁴₂He from a cubic lattice with a slightly smaller lattice constant, $a = 2.8 \cdot 10^{-10}$ m. Should the temperature of the Helium atom beam be increased or decreased in order to optimize diffraction. (2 points)

(i)
$$T_{\text{He for 28 nm}} > T_{\text{He for 20 nm}}$$
 (increase T

(i)
$$T_{\text{He for .28 nm}} > T_{\text{He for .20 nm}}$$
 (increase T) (ii) $T_{\text{He for .28 nm}} < T_{\text{He for .20 nm}}$ (decrease T)

3. Mathematical results related to infinitesimal unitary transformations.

Let $\hat{C}(\tau)$ be a time-independent Hermitian operator. Let $\Psi_k(\tau)$ denote the eigenfunctions of the Hamiltonian, $\hat{H}(\tau)$. Denote the ground-state wavefunction as $\Psi_0(\tau)$.

3a. Show that for any eigenfunction of the Hamiltonian, the following expectation value is zero:

$$\langle \Psi_{k} \left[\hat{H}, \hat{C} \right] | \Psi_{k} \rangle = 0$$

(3 points)

3b. Show that the expectation value of the following double-commutator is always greater than or equal to zero for the ground-state wavefunction,

$$\langle \Psi_0 \left[\hat{C}, \left[\hat{H}, \hat{C} \right] \right] | \Psi_0 \rangle \geq 0$$

(7 points)