Estructura de Computadores

Parcial 2 Jerarquía de memoria y Entrada/Salida

1 Junio - 2016

Nombre: Grupo:

1) (3 puntos) Un sistema basado en el procesador MIPS R2000 dispone de cache L1 segregada para Instrucciones y Datos. Las configuraciones para cada una de ellas son las siguientes:

- Cache de Instrucciones: 8 KB, correspondencia directa, tamaño de bloque de 16B.
- Cache de **Datos**: 8 KB y un formato de direcciones de memoria principal como el que se muestra:

3	12	11 6	5 0
	20 bits	6 bits	6 bits
	Etiqueta	Conjunto	Desplazamiento

a) (0,5 puntos) Calcule los siguientes parámetros:

	Cache Instrucciones	Cache Datos
Tamaño de bloque (bytes)	16 B	
Número de líneas		
Número de vías		
Número de conjuntos		

b) El siguiente fragmento de código realiza la rotación (una posición) a derechas de un vector V de números enteros { $V[i+1] \leftarrow V[i] \quad \forall i \quad 0 <= i <= 4094, \quad V[0] \leftarrow V[4095]$ }

```
.data 0x2B000800
                              # vector de 4096 enteros
٧:
      .word 1,2,3, ...,4096
      .text 0x00400000
_start:li $t3,4095
                              # carga contador
     lui $t0.0x2B00
                              # carga puntero a V
     ori $t0,$t0,0x0800
     lw $t1,0($t0)
                              # lee V[0] en $t1
                              # lee V[i+1] y lo almacena en reg.temporal $t2
buc:
     lw $t2,4($t0)
     sw $t1,4($t0)
                              # V[i+1] ←V[i]
     or $t1,$t2,$zero
                              # mueve $t2 a $t1
     addi $t0,$t0,4
                              # incrementa puntero
     addi $t3,$t3,-1
                              # decrementa contador
                              # mientras contador≠0, seguir en el bucle
     bnez $t3,buc
     1ui $t0,0x2B00
                              # vuelve a carga puntero a V
     ori $t0,$t0,0x0800
     sw $t1,0($t0)
                             # V[0] ←V[4095]
      .end
```

b.1) (0,75 puntos) Para la cache **de Instrucciones**, calcule los siguientes datos:

Número de bloques que ocupa el código	Dirección del primer bloque	Dirección del último bloque	Total de FALLOS de código
Total de ACCESOS a código (Indicar el cálculo)			
Tasa de aciertos			

b.2) (1 punto) Para la **cache de Datos**, sabiendo que la política de escritura es de ubicación (*write allocate*), que la de actualización es de copia posterior (*write-back*) y que el algoritmo de reemplazo es LRU, calcule los siguientes datos:

Núm. de bloques que ocupa el vector	Dirección del primer bloque		Conjunto al que se mapea el primer bloque	Total de ACCESOS a datos
Total de FALLOS de datos (Indicar el calculo)				
Tasa de	aciertos			
Núm de reempl	azos de bloque			
Núm. de escritur (p	as a MP alabras)			

b.3) (0,5 puntos) Calcule el tamaño de la memoria de control para las cache de Instrucciones y Datos:

	Cache Instrucciones	Cache Datos
Número de entradas o palabras de la memoria de control		
Número de bits de cada entrada y campos que la integran		
Tamaño total de la memoria de control (en bits)		

, , , , , , , , , , , , , , , , , , , ,		las posibles ventajas o	-	
caso el empleo de	correspondencia totaln	nente asociativa en la ca	ache de datos. Razor	na la respuesta

2) (2,5 puntos) En la figura se muestra el esquema de un interfaz de E/S para ser conectado a una CPU MIPS R2000 que ha sido modificada para incluir dos espacios de direccionamiento: el espacio de memoria y el espacio de entrada/salida. Por ello, su conjunto de instrucciones se amplía con las correspondientes instrucciones de lectura/escritura en puertos de E/S: Inputw/InputH/InputB y Outputw/OutputH/OutputB, con una sintaxis similar a las loads/stores de memoria. Dicho interfaz ha sido concebido para trabajar con dispositivos de bloques (discos magnéticos) y soporta transferencias PIO y ADM. Los registros Estado y Control poseen los siguientes bits significativos:

Registro **CONTROL**:

- MOD (bits 7 y 6). Permite seleccionar entre el modo PIO (MOD=00) y el modo ADM (MOD=11)
- A (bit 3), a 1 ordena al interfaz el inicio de una operación de lectura/escritura sobre el periférico (disco magnético)
- **R/W** (bit 1), indica al interfaz si se trata operación de lectura (R/W= 0) o de escritura (R/W=1) sobre el dispositivo de bloques
- **CL** (bit 0), a 1 hace R=0

Registro **ESTADO**:

 R (bit 2) se activa a 1 cuando el bloque está listo para empezar a ser transferido a/desde memoria (modo PIO) o bien cuando la transferencia a/desde memoria ha concluido (modo ADM)

a)	(0,25 puntos	s) Calcule la	dirección	base (DB) del interfaz
----	--------------	---------------	-----------	----------	----------------

b) (0,25 puntos) Indique el tipo de espacio de direccionamiento en el que se halla mapeado el interfaz. Justifica la respuesta

c) (0,5 puntos) Calcule la dirección (DB+X) de cada uno de los registros del interfaz

Registro	Dirección
ESTADO	
CONTROL	
DATOS	

Registro	Dirección
ID_BLOCK	
CONTADOR	
PUNTERO	

d)	(0,25 puntos) Indique el tamaño en bytes que ocupa este interfaz en el espacio en el que se halla
	mapeado y que no está disponible, pues, para otros dispositivos. Justifica la respuesta

e) (1,25 puntos) El driver del dispositivo de bloques controlado a través del interfaz del esquema anterior dispone de la siguiente función:

Función	Índice (en \$v0)	Argumentos
Read_Disk	400	\$a0: Puntero a buffer de memoria \$a1: Número de ciclos de transferencia \$a3: Identificador del bloque

Se desea implementar la función Read_Disk de modo que la transferencia se realice en modo PIO y que la sincronización con el dispositivo se realice mediante CONSULTA DE ESTADO. Suponemos que la sincronización se realiza al nivel de bloque y no palabra a palabra. También se asume que los registros \$a0, \$a1 y \$a3 han sido, en el momento de la llamada a la función Read_Disk desde la aplicación, debidamente inicializados con la dirección inicial del buffer en memoria, el número de ciclos de transferencia que requiere el bloque y el identificador del bloque que se desea leer de disco, respectivamente

Read_Disk:			
j re	texc		

3) (3 puntos) El sistema de control de un coche está gobernado por un MIPS R2000. Entre las interfaces de entrada/salida que controla se encuentran dos:

<u>Interfaz primera</u>: Un sensor distancia que cuando está activo (bit A) mide la distancia media de la parte trasera del vehículo al obstáculo situado enfrente. Cuando hay un cambio de al menos 5 mm en la distancia medida entonces se actualiza el registro de distancia y los bits correspondientes del registro de estado. Si además el bit E es uno, se activará la interrupción INT₁*. La descripción de los bits de la interfaz del sensor de distancia es:

Registro ESTADO (Sólo lectura, dirección base 0xFFFE0028):

- Bits 1..0 D: Se actualizan por comparación entre la distancia y la referencia (ambas en los registros con dicho nombre):
 - \triangleright D₁ = 0, D₀=0 si la distancia > referencia
 - \triangleright D₁ = 0, D₀=1 si la referencia ≥ distancia > 1/2 referencia
 - \triangleright D₁ = 1, D₀=0 si la 1/2 referencia ≥ distancia
- Bit 7 R: La interfaz lo pone a 1 cuando hay un cambio en la distancia mayor de 5mm.

Registro CONTROL (Sólo escritura, dirección base 0xFFFE0028):

- o Bit 0 **A**: 1 para activar la interfaz y que mida distancias, si se deja a cero deja de medir.
- Bit 6 E: Se pone a 1 para habilitar la interrupción en la interfaz y a 0 para inhibirla. Cuando E es 1 y el bit
 R también, se activa la interrupción 1 de la entrada del procesador (INT₁*).
- o Bit 7 C: Bit de cancelación. Si se escribe un 1 entonces la interfaz pone el bit R a 0.

Registro **DISTANCIA** (Sólo lectura, dirección base +4). Registro de 8 bits. Registro **REFERENCIA** (Sólo escritura, dirección base +4). Registro de 8 bits.

<u>Interfaz segunda</u>: un actuador sonoro que hace sonar una alarma a una frecuencia determinada. Este actuador solo tiene un registro que funciona por sincronización o E/S directa:

Registro CONTROL (Sólo escritura, dirección base 0xFF000000):

- Bit 0 S: 1 para hacer sonar la alarma a la frecuencia indicada en los bits frecuencia. Si se pone este bit a
 0 deja de sonar la alarma, y si no estaba sonando no tiene efecto.
- Bits 7..3- Frecuencia: Frecuencia de la alarma. Si se ponen a cero suena la alarma a la frecuencia base,
 valores mayores de cero la aceleran hasta el valor máximo.
- a) (0,5 puntos) Realice un dibujo del conexionado interno de selección de los cuatro registros del sensor de distancias, tenga en cuenta todas las líneas que intervienen en la selección (patillas de direcciones A_i, líneas BE_i* y señales de lectura RD* y escritura WR*). Puede utilizar un comparador de 13 entradas, activo por nivel bajo (como se ha utilizado en los ejercicios de clase) y puertas not, nand y or de las entradas que necesite.

b) (2 puntos) Programe la rutina del sistema asociada a la línea INT1. Suponga que en el sistema operativo se encuentra definida la siguiente variable que puede utilizar:

.kdata

frecuencia: .byte 0x20 # frecuencia de alarma sonora

Asuma el siguiente comportamiento:

Caso 1: ($D_1=0\ y\ D_0=1$) "hacer sonar la alarma a frecuencia base"

Caso 2: (D₁=1 y D₀=0) "hacer sonar la alarma a frecuencia almacenada en la variable frecuencia"

Caso 3: (D₁=0 y D₀=0) "parar la alarma"

AVISO: El contenido de la variable frecuencia se encuentra alineado en los bits 7..3 (como el campo frecuencia del registro CONTROL). La frecuencia base se establece con el valor `0`

Se pueden emplear los registros \$t0 a \$t4

INT1:			
	b retexo	:	
Programe	las signientos	s funciones de sistema:	
ción	Índice	Argumentos	Resultado

c) (0,5 puntos)

Activar_Sensor:

•	, ,	U		
Ī	Función	Índice	Argumentos	Resultado
	Activar_Sensor	\$v0 = 30	\$a0= distancia de referencia	Guarda en el registro de referencia del sensor distancia el valor en \$a0 Activa la captura de distancias (bit A) y las interrupciones (bit E)
	Desactivar_Sensor	v0 = 31		Desactiva la captura de distancias (bit
				A) y las interrupciones (bit E)

(1 punto) La

4) Figura 1 muestra la estructura de buses y periféricos de un computador.

Se pide:

a) Calcule el tiempo empleado en realizar la copia de un archivo de 1GB (10⁹ B) desde HD2 a HD1 si mientras tanto se está visualizando una película muda a baja resolución formada por escenas de 800×600×24 bits a 60 escenas/segundo almacenada en el disco HD1, y cuyo tráfico es prioritario. NOTA: Las transferencias se hacen por ADM y el tiempo de procesador es despreciable.

Calcule el porcentaje de ocupación del bus	
(0,5 puntos) Considerando los siguientes	s parámetros de un disco duro, calcule el tie
erir un archivo de 640 KB (K=10 ³), si se sab 0. El tiempo medio de posicionamiento es 3 r	pe que se encuentra almacenado de modo óptin ms.
Velocidad rotacional: 6000 RPM	Formato : ZCAV con dos zonas
Densidad lineal: 4000 pistas/pulgada Número de caras: 6	Zona Límite Sector/pista
Radio interno: 1" Radio externo: 5"	0 3"-5" 520 1 1"-3" 290
Tamaño Sector: 512 bytes	1 1-3 290