12/06/2007

Algebra lineare - Corso di laurea in Informatica

Nome:	Cognome:	Matricola:
i tollic.	cognome.	wian icoia.

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso (gli esercizi svolti in altri fogli non verranno presi in considerazione).

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

N.B.3 Gli esercizi senza nome e cognome hanno valore nullo.

Esercizio 1 [2.5 PUNTI]

Trovare i numeri complessi ztali che $(z-1)^3=(\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}})^4.$

Risposta:

Esercizio 2 [2.5 PUNTI]

Trovare i numeri complessi che soddisfano l'equazione $z^4 - z = 0$.

Risposta:

Esercizio 3 [2.5 PUNTI]

Scrivere due numeri complessi non nulli z e w tale che $z^2=-\bar{w}^2$ e ${\rm Arg}\,z\neq {\rm Arg}\,w.$

Esercizio	4	[2.5]	PUNTI	ı
-----------	---	-------	-------	---

Esercizio 4 [2.5 PUNTI]

Trovare tre vettori u, v, w di \mathbb{R}^3 tali che $u \cdot v = u \cdot w = v \cdot w = 0$ e $||u||^2 = 1$, $||v||^2 = 2$, $||w||^2 = 3$. Risposta:

Esercizio 5 [2.5 PUNTI]

Siano $\mathbf{u}, \mathbf{v} \in \mathbf{w}$ tre vettori di \mathbb{R}^3 . Allora $(\mathbf{u} \wedge \mathbf{v}) \wedge \mathbf{w} = \mathbf{u} \wedge (\mathbf{v} \wedge \mathbf{w})$ Giustificazione:

Esercizio 6 [2.5 PUNTI]

Calcolare il volume del parallelepipedo generato dai tre vettori $\mathbf{u} = (1,0,1), \mathbf{v} = (2,0,1),$ $\mathbf{v} = (1, 1, -1).$

Esercizio 7 [2.5 PUNTI]

Per quali valori di
$$\lambda \in \mathbb{R}$$
 le matrici $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$ commutano?

Risposta:

Esercizio 8 [2.5 PUNTI]

Scrivere una matrice 2×3 di rango 2 .

Risposta:

Esercizio 9 [2.5 PUNTI]

Scrivere due vettori linearmente indipendenti di \mathbb{R}^4 tali che ognuno di essi formi un angolo di $\frac{\pi}{2}$ con il vettore (1, 1, 1, 1).

Esercizio 10 [2.5 PUNTI]

Un sistema di due equazioni lineari in tre incognite è sempre compatibile. ${f V}$ ${f F}$ Giustificazione:

Esercizio 11 [2.5 punti] Discutere le soluzioni del seguente sistema lineare al variare del parametro reale λ .

$$\begin{cases} x+y+z=-1\\ x+y+(\lambda+1)z=0\\ (\lambda-1)x+(\lambda-1)z=1 \end{cases}$$

Risposta:

Esercizio 12 [2.5 PUNTI]

Esistono sistemi di tre equazioni in due incognite con un unica soluzione?