Μαθηματικά Β' Γυμνασίου

Τετραγωνική Ρίζα

Εέρουμε ότι το εμβαδόν του διπλανού τετραγώνου είναι 144 τ.μ. Μήπως μπορούμε να βρούμε ποιο είναι το μήκος της πλευράς του;

Τετραγωνική ρίζα ενός θετικού αριθμού α είναι ο θετικός ο οποίος αν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του α συμβολίζεται με \sqrt{a}

Ας δοχιμάσουμε...

$$10^2 = 100$$
 θέλουμε λίγο παραπάνω

$$11^2 = 121$$
 θέλουμε λίγο παραπάνω

$$12^2 = 144$$
 το πετύχαμε!

Σχόλια:

- Δεν ορίζουμε ρίζα αρνητικού αριθμού, γιατί δεν υπάρχει αριθμός που το τετράγωνό του να είναι αρνητικός. Για παράδειγμα η √-25 δεν έχει νόημα, γιατί κανένας αριθμός, όταν υψωθεί στο τετράγωνο, δε δίνει αποτέλεσμα -25.
- Από τον ορισμό της τετραγωνικής ρίζας, προκύπτει ότι:
 - Aν $\sqrt{\alpha}$ = x, όπου $\alpha \ge 0$, τότε x ≥ 0 και x² = α.
 - Aν $\alpha \geq 0$, τότε $(\sqrt{\alpha})^2 = \alpha$.
- Σύμφωνα με τα παραπάνω:
 - α) Είναι λάθος να γράψουμε $\sqrt{25} = -5$, παρόλο που $(-5)^2 = 25$, καθώς -5 < 0.
 - β) Είναι λάθος να γράψουμε $\sqrt{(-5)^2} = -5$, καθώς -5 < 0. Το σωστό είναι $\sqrt{(-5)^2} = \sqrt{25} = 5$.

$E \phi A P M O \Gamma H 1$

Να βρείτε τους αριθμούς: $\sqrt{25}$, $\sqrt{49}$, $\sqrt{64}$, $\sqrt{121}$.

Λύση: Αν $x = \sqrt{25}$ τότε $x^2 = 25$. Άρα πρέπει να βρούμε έναν θετικό αριθμό του οποίου το τετράγωνο να ισούται με 25. Με δοκιμές βρίσκουμε εύκολα ότι $5^2 = 25$, δηλαδή x = 5. Άρα $\sqrt{25} = 5$.

Ομοίως, βρίσκουμε ότι:

$$\sqrt{49} = 7$$
 yiatí $7^2 = 49$, $\sqrt{64} = 8$ yiatí $8^2 = 64$, $\sqrt{121} = 11$ yiatí $11^2 = 121$.

$E \phi A P M O \Gamma H 2$

Να υπολογίσετε τις τετραγωνικές ρίζες: α) $\sqrt{16}$, β) $\sqrt{0,16}$, γ) $\sqrt{0,0016}$.

- **Λύση:** α) Γνωρίζουμε ότι $4^2 = 16$. Άρα $\sqrt{16} = 4$.
 - β) Γνωρίζουμε ότι $(0,4)^2 = 0,16$. Άρα $\sqrt{0,16} = 0,4$.
 - γ) Γνωρίζουμε ότι $(0,04)^2 = 0,0016$. Άρα $\sqrt{0,0016} = 0,04$.

1. Για τους x, y ισχύει: $y = \sqrt{x}$. Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση:

		А	В	Γ
α)	Ο χ είναι:	θετικός ή μηδέν	αρνητικός ή μηδέν	οποιοσδήποτε αριθμός
β)	Ο y είναι:	θετικός ή μηδέν	αρνητικός ή μηδέν	οποιοσδήποτε αριθμός
γ)	Ισχύει η σχέση:	$x^2 = y$	$y^2 = x$	$x^2 = y^2$

2. Η εξίσωση x² = 16 έχει λύσεις: Α: μόνο το 4 Β: μόνο το -4 Γ: το 4 και το -4.

Στον διπλανό πίνακα να αντιστοιχίσετε σε κάθε αριθμό της 3. στήλης Α την τετραγωνική του ρίζα που βρίσκεται στη στήλη Β.

Να εξετάσετε αν ισχύουν οι παρακάτω προτάσεις:

$$\alpha$$
) $\sqrt{16} = 8$ \wedge

$$\sqrt{9} = 3$$
 Σ

ε)
$$\sqrt{-9} = -3$$

$$\sqrt{4} = -2$$
 $\sqrt{4}$

$$\theta$$
) $\sqrt{25-9}=5-3=2$ 1) $\sqrt{100}=50$ \wedge

$$\sqrt{9} = 3$$
 Σ δ) $\sqrt{0.4} = 0.2$ \wedge

$$\sqrt{-9} = -3$$
 Λ στ) η $\sqrt{0}$ δεν υπάρχει Λ $\sqrt{4} = -2$ Λ η) $\sqrt{16+9} = 5$ Σ

η)
$$\sqrt{16+9} = 5$$
 Σ

i)
$$\sqrt{100} = 50$$

5. Αν x είναι ένας θετικός αριθμός, στις παρακάτω προτάσεις να επιλέξετε τη σωστή απάντηση.

		Α	В	Γ	Δ	E
1.	Av \sqrt{x} = 5, τότε	x = 10	x = 25	x = -25	x = 2,5	η σχέση αυτή είναι αδύνατη
2.	Av \sqrt{x} = 9, τότε	x = 3	x = 81	x = 4,5	$x = \pm 81$	η σχέση αυτή είναι αδύνατη
3.	Av \sqrt{x} = -16, τότε	x = 4	x = -4	x = 256	x = -8	η σχέση αυτή είναι αδύνατη
4.	$Av \sqrt{100} = x$	x = 10	x = 50	x = 100	x = ±10	η σχέση αυτή είναι αδύνατη

1 Να υπολογίσετε τις παρακάτω τετραγωνικές ρίζες.

a)
$$\sqrt{81}$$
, $\sqrt{0.81}$, $\sqrt{8100}$.

β)
$$\sqrt{4}$$
, $\sqrt{0.04}$, $\sqrt{400}$, $\sqrt{40000}$

$$\gamma$$
) $\sqrt{121}$, $\sqrt{1,21}$, $\sqrt{12100}$, $\sqrt{0,0121}$

$$\delta$$
) $\sqrt{\frac{9}{4}}$, $\sqrt{\frac{144}{25}}$, $\sqrt{\frac{400}{49}}$, $\sqrt{\frac{36}{121}}$.

a)
$$\sqrt{81} = 9$$
 $\sqrt{0.81} = \sqrt{\frac{81}{100}} = \frac{9}{10} = 0.9$

$$\sqrt{8100} = 90$$

$$\beta) \quad \sqrt{4} = 2 \quad \sqrt{0.04}$$

$$\sqrt{0.04} = \sqrt{\frac{4}{100}} = \frac{\sqrt{4}}{\sqrt{100}} = \frac{2}{10} = 0.2$$

$$\sqrt{1,21} = 11$$

$$\sqrt{1,21} = \sqrt{\frac{121}{100}} = \frac{11}{100} = 1,1$$

$$\sqrt{400} = \sqrt{4.100} = \sqrt{4.100} = 2.10 = 20$$
 $\sqrt{4000} = \sqrt{400.100} = \sqrt{400}.\sqrt{100} = 20.10 = 200$

$$\sqrt{12100} = \sqrt{121 \cdot 100} = \sqrt{121} \cdot \sqrt{100} = 11 \cdot 10 = 110$$

$$\sqrt{0.0121} = \sqrt{\frac{121}{10000}} = \frac{11}{100} = 0.11$$

1 Να υπολογίσετε τις παρακάτω τετραγωνικές ρίζες.

a)
$$\sqrt{81}$$
, $\sqrt{0.81}$, $\sqrt{8100}$.

β)
$$\sqrt{4}$$
, $\sqrt{0.04}$, $\sqrt{400}$, $\sqrt{40000}$

y)
$$\sqrt{121}$$
, $\sqrt{1,21}$, $\sqrt{12100}$, $\sqrt{0,0121}$

$$\delta$$
) $\sqrt{\frac{9}{4}}$, $\sqrt{\frac{144}{25}}$, $\sqrt{\frac{400}{49}}$, $\sqrt{\frac{36}{121}}$.

$$8) \sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2} , \sqrt{\frac{144}{25}} = \frac{\sqrt{144}}{\sqrt{25}} = \frac{12}{5} , \sqrt{\frac{400}{49}} = \frac{\sqrt{400}}{\sqrt{49}} = \frac{20}{7}$$

$$\sqrt{\frac{36}{121}} = \frac{\sqrt{36}}{\sqrt{121}} = \frac{6}{11}$$

Να υπολογίσετε τους αριθμούς:

$$\alpha$$
) $\sqrt{36}$ =

α)
$$\sqrt{36}$$
 = β) $\sqrt{18+18}$ =

$$\gamma$$
) $\sqrt{18 \cdot 18} =$

$$\gamma$$
) $\sqrt{18 \cdot 18} = \delta$) $(\sqrt{18})^2 =$

a)
$$\sqrt{36} = 6$$

a)
$$\sqrt{36} = 6$$
 B) $\sqrt{18+18} = \sqrt{36} = 6$

$$(7)$$
 $\sqrt{18.18} = \sqrt{18^2} = 18.$

$$\mathcal{E} = 18$$

Να τοποθετήσετε σε κάθε τετράγωνο έναν κατάλληλο αριθμό, ώστε να ισχύει η αντίστοιχη ισότητα.

α)
$$\sqrt{\frac{4}{3}} = \frac{2}{3}$$
 β) $(\sqrt{})^2 = 5$

$$\beta) \left(\sqrt{} \right)^2 = 5$$

$$γ)$$
 $\sqrt{+3} = 6$ $δ)$ $\sqrt{+2} = 11$

δ)
$$\sqrt{}$$
 +2 = 11

$$\epsilon$$
) $2-\sqrt{}=0$

ε)
$$2 - \sqrt{} = 0$$
 στ) $(\sqrt{})^2 + \sqrt{} = 6$

$$\alpha) \sqrt{\frac{4}{9}} = \frac{2}{3} \qquad \beta) \left(\sqrt{5}\right)^2 = 5$$

$$\beta$$
) $(\sqrt{5})^2 = 5$

$$\sqrt{33+3} = 6$$
 $\sqrt{81} + 2 = 11$

$$5) \sqrt{81 + 2} = 11$$

$$\epsilon$$
) $2-\sqrt{4}=0$

$$\epsilon$$
) $2-\sqrt{4}=0$ σT) $(\sqrt{4})^2+\sqrt{4}=6$

5 Να υπολογίσετε την άγνωστη πλευρά των παρακάτω ορθογωνίων τριγώνων.

Aproprifu ra reignour 1,2,3...
(zeaque rous aproproir pira)

1)
$$\Pi v \theta a y i \rho \epsilon n \rho \alpha = x^2 = 6^2 + 8^2 a \rho \alpha$$

$$x^{2} = 36 + 64$$
 $x^{2} = 100 \quad \text{on id} \in \mathbb{R}$

$$X = \sqrt{100} = 10$$

2)
$$13^2 = 12^2 + y^2 \Rightarrow 169 = 144 + y^2 \Rightarrow y^2 = 169 - 144 \Rightarrow y^2 = 25 \Rightarrow y = \sqrt{25} \Rightarrow y = 5$$

3)
$$5^2 = 3^2 + \beta^2 \Rightarrow 25 = 9 + \beta^2 \Rightarrow \beta^2 = 25 - 9 \Rightarrow \beta^2 = 16 \Rightarrow \beta = \sqrt{16} \Rightarrow \beta = 4$$

4)
$$\alpha^2 = 21^2 + 20^2 \Rightarrow \alpha^2 = 441 + 400 \Rightarrow \alpha^2 = 841 \Rightarrow \alpha = \sqrt{841} \Rightarrow \alpha = 29$$

5)
$$37^2 = y^2 + 12^2 \Rightarrow 1369 = y^2 + 144 \Rightarrow y^2 = 1369 - 144 \Rightarrow y^2 = 1225 \Rightarrow y = \sqrt{1225} \Rightarrow y = 35$$

6)
$$85^2 = 36^2 + \omega^2 \Rightarrow 7225 = 1296 + \omega^2 \Rightarrow \omega^2 = 7225 - 1296 \Rightarrow \omega^2 = 5929 \Rightarrow \omega = \sqrt{5929} = 77$$

7 Να υπολογίσετε το ύψος του ισοσκελούς τριγώνου ΑΒΓ του διπλανού σχήματος.

Στο τρίμυνο ΑΒΔ εξορριόζω Ττυθ. Θεώρημα και
$$\dot{c} \times \omega$$
:

$$AB^2 = B\Delta^2 + A\Delta^2 . \quad \text{Εμείς ψάχνωμε το } A\Delta. , \text{ενώ το } B\Delta = \text{μισό του } B\Gamma \text{ άρα}$$

$$B\Delta = 1,2 \quad \text{οπότε}$$

$$(3,7)^2 = (1,2)^2 + A\Delta^2 \Rightarrow 13,69 = 1,44 + A\Delta^2 \Rightarrow A\Delta^2 = 13,69 - 1,44$$

$$\Rightarrow A\Delta^2 = 12,25 \Rightarrow A\Delta = \sqrt{12,25}$$

$$\Rightarrow A\Delta = 3,5.$$

8

Να υπολογίσετε τη διαγώνιο ενός ορθογωνίου γηπέδου που έχει διαστάσεις 65 m και 72 m.

Kavw
$$\pi \cup \theta$$
. 570 0e8. reignovo ABT. Onio7f:
 $A\Gamma^2 = AB^2 + B\Gamma^2 \Rightarrow A\Gamma^2 = 72^2 + 65^2 = 5184 + 4225$
 $\Rightarrow A\Gamma^2 = 9409 \Rightarrow A\Gamma = \sqrt{9409} = 97$

9 Το τετράγωνο ενός θετικού αριθμού, αν αυξηθεί κατά 8, γίνεται ίσο με το τριπλάσιο του τετραγώνου του αριθμού αυτού. Ποιος είναι ο αριθμός αυτός;

$$\xi_{67W} \times 0$$
 Jy700iptros apiθρός, 7676 ξαναδιαβόρω την άσκηση και έχω!
$$x^{2}+8=3x^{2} \Rightarrow x^{2}-3x^{2}=-8 \Rightarrow -2x^{2}=-8 \Rightarrow \frac{\sqrt{2}x^{2}}{\sqrt{2}}=\frac{-8}{-2}$$
$$\Rightarrow x^{2}=4 \Rightarrow x=2$$

Να συμπληρώσετε τον παρακάτω πίνακα:

α	β	$\sqrt{\alpha}$	$\sqrt{\beta}$	$\frac{\sqrt{\alpha}}{\sqrt{\beta}}$	$\sqrt{\frac{\alpha}{\beta}}$	
4	16	2	4	2-1	$\frac{4}{16} = \frac{1}{4} = \frac{1}{2}$	
25	36	5	6	5	<u>18</u> 19 2	
6 36 6						

Να συμπληρώσετε τον παρακάτω πίνακα:

α	β	$\sqrt{\alpha}$	$\sqrt{\beta}$	$\sqrt{\alpha}\sqrt{\beta}$	√αβ
9	4	3	2	3.2=6	√36=6
36	49	6	7	67=42	1764=42

Τι συμπεραίνετε;

ολι ισχύει
$$\sqrt{\alpha} = \sqrt{\frac{\alpha}{\beta}}$$

Να συμπληρώσετε τον παρακάτω πίνακα:

α	β	$\sqrt{\alpha}$	$\sqrt{\beta}$	$\sqrt{\alpha} + \sqrt{\beta}$	$\sqrt{\alpha+\beta}$
9	16	3	4	3+4=7	25=5
64	36	8	6	8+6=14	V(00 =10

Τι συμπεραίνετε;