Review 7/7 * d-separation For sets of nodes K, Y, E when is $\int P(Y|X,E) = P(Y|E)$ P(X|Y,E) = P(X|E) P(X|Y|E) = P(X|E)P(Y|E)* True if all paths from nodes in X to nodes in y are blocked". A path is blocked it it has a node z that Satisfies: ZEF -> 2- s intervening course ZEE COmmon cause 2 ≠ E → Se no observed common effect desc(z) ≠ E Markov blanket Bx of node x consists of parents children and spouses of X. Children Thm: $P(X|B_X,Y) = P(X|B_X)$ if $Y \notin \{X,B_X\}$

	4 00 4
*	Inference in BNs
	Query node 0
4	Evidence nodes E
	How to compute P(Q F)?
*	Polytrees
	- Singly connected networks
	- polynomial time inference
+	Leopy BNs
	- exact inference : node clustering
Trace (1971) and fact the disease and a second control of the cont	- approximate inference: stochastic simulation,
	Thearning
*	BN = DAG + CPTs not always available from
	experts
	How to learn from examples?
120,000	
*	Issues:
	- structure (DAG): known or unknown?
	- evidence: "complete" data vs "incomplete" data
	partial instantiation
	of nodes in BN

	- optimization:
	combinatorial vs. continuous
	(eg. learning DAGs) (eg. learning CPTs)
	- algorithms.
	non-iterative VS iterative
S. 2450433	(100p over data many times)
	- solution: local vs global optima
*	Maximum likelihood estimation:
	- simplest form of learning in BNs
	- choose ("estimate") the model (DAG + CPTs)
	to maximize P (observed data I model)
	"likelihood"
	TEx: biased coin [P(X=heads)]
	X & & heads, tail }
	P (x=heads) = P
	P(X=tails) = 1-p
	* How to estimate p from observed samples (eg.Tcoin_tosses)

Samples are independently identically distributed according to P(X)

* Probability of IID data

$$P(data) = P(X=x^{(1)}) P(X=x^{(2)}) \dots P(X=x^{(T)})$$

$$= \prod_{k=1}^{T} P(X=x^{(k)})$$

* Log - probability

$$\mathcal{L} = \log P(\text{data})$$

$$= \log T P(X = x^{(t)})$$

$$\text{log}$$

$$\text{log}$$

$$\text{likelihood}$$

$$\mathcal{L} = \sum_{t=1}^{T} \log P(X = x^{(t)})$$

* In terms of counts:

+ Maxmum likelihood (ML) estimation:

$$IP = NH = NH$$
 ML estimate of $P = P(heads)$
 $N_H + N_T$ is just empirical frequency...

Discrete BNs with "complete" data

CPTs enumerate
$$P(X_i = x \mid pa(X_i) = \Pi)$$
 as lookup

parents \uparrow tables

 $q(X_i) = \frac{1}{2} \prod_{i=1}^{n} parents$
 $q(X_i) = \frac{1}{2} \prod_{i=1}^{n} parents$
 $q(X_i) = \frac{1}{2} \prod_{i=1}^{n} parents$

* Data is Tramplete

*	work out th term in product:
	$P(X = x, (4), \dots X_n = x_n(4))$
	product rule
	$= P(X_1 = X_1(t)) P(X_2 = X_2(t) X_1 = X_1(t)) - P(X_n = X_n(t) X_1 = X_1(t))$
	$\chi_{n-1} \chi_{n-1}^{(e)}$
***	$= \prod_{i=1}^{n} P(X_{i} = x_{i}^{(t)} X_{i} = x_{i}^{(t)}, X_{i-1} = x_{i-1}^{(t)})$
	$= \prod_{i=1}^{n} P(X_i = x_i^{(t)}) pa(X_i) = pa(t)) cond. ind$
ο¥	log-likelihood
	Z = log P(data)
	= log TT P(x, (+), x, +)
4	= log TT TT P (x;(+) pa(x;)= pa;(+))
ASSESSED	
	t=1 i=1
	$= \underbrace{\sum_{t=1}^{\infty} \log P(x_{i}^{(t)} pa(X_{i}) = pa_{i}^{(t)})}_{t=1}$ $= \underbrace{\sum_{t=1}^{\infty} \log P(x_{i}^{(t)} pa(X_{i}) = pa_{i}^{(t)})}_{sums} (\underbrace{sums})$
	surns)
w.:	

	$count(x,=x,pq=\pi)=\sum_{i=1}^{\infty} \underline{T}(x_i^{(t)},x)\underline{T}(pq_i^{(t)},\pi)$
Ex:	Naive Bayes model for document classification.
*	Variables eq. 1= Sports
	y ∈ ≤1,2, n q 2 = polítics
	(i=1-n) Xi E go, 1] does the ith word in the dictionary
	appear in document?
*	BN = DAG + CPTs
	(Y) $P(Y=Y)$
	(Y) P(Y=y)
	12(v 14) fr i-1 -
	$(X_i) = (Y_{-i}) \text{ for } i = 1n$ $(X_i) = (X_i) = (Y_{-i}) \text{ for } i = 1n$
*	How to use model for document desification.
7.406.00	$P(Y=y \mid \overrightarrow{X}=\overrightarrow{x}) = P(\overrightarrow{X}=\overrightarrow{x}\mid Y=y) P(Y=y) Bayes$ $P(\overrightarrow{X}=\overrightarrow{x}) \qquad \forall x \in \mathbb{R}$
	$P(\vec{x} = \vec{x})$ vule
	= { TT P(X:=x: Y=y)} P(Y=y) prod rule
	+(T
	$\sum_{y'} \{ \prod_{i=1}^{T} P(x_i = x_i Y = y') \} P(y = y') $ normalization

徕	How to learn a model from a large corpus of documents?
	Pmr (Y=y) fraction of documents with topicy Pmr (X:=1 Y=y) fraction of documents with topicy
	that contain it word in dict
*	Weaknesses of model
	- "naive Bayes" assumption that words appear independently given topic
	- "bag-of-words" representation ignores word ordering
<u>E</u> x:	[Markov models of language]
*	Let we denote the word at 1th position in sortence.
	How to model P (w, w, w,)? probability of
4.44	sentence with L words.
*	Simplifying assumptions:
	(1) finite context/memory. "k-gram" model
	$P(\omega_{\ell} \omega_{1},\omega_{2},-\omega_{\ell})=P(\omega_{\ell} \omega_{2},\omega_{\ell},\omega_{2},-\omega_{\ell}(k-1))$
	eg. P(we/we-1) = P(we/we-1) "b1-gram" model.

*	n-gram model: condition	on	orevio	us n	-1 words
	P (w_1 w, we.,) = P (w,	/ wp-1	,	ا ا – (۱	((1-
	N =	il unie	ram		
	N=	2 big	ram		
) U= U= V=	3 tri	gram		1 1 1
	•	1			
	n-gram counts get increas	singly	spar	se fo	or large n.
	•				
	Tearning (ML estimation) from	n ir	comp	lete data
Given: fixed DAG over discrete nodes					Sx, x2 x23
	Also: data set of Texa	mples	bw	t e	ach example
	Also: data set of Texa is a partial instantion	ation	9	odes	in BN.
Fx:	(X) t	χ,	X,	X ₃	X4
	1	(7	4	?
	2	0	2	?	1
	3	1	-	5	3
	(X4) T-1	0	7	2	2 5 8 8
	T	1	\		1
				-	

×	Goal: estimate CPTs P (X:=x pa;=11) that
	maximize (marginal) probability of partially
	observed data.
*	Variables in BN
(1828)	
	X = all nodes in BN
	H = subset of nodes that are unobserved
	("hidden")
	V = Subset of nodes observed ("visible")
於	log-likelihood
F ₁	Assume that T examples are i-i-d from
	joint distribution P(X, X, Xn)
	$\chi = \log P(dota)$
Winds	visible nodes on the example
	$= \log \prod P(v = v^{(t)})$ $t = 1$
	= E log P (V = V(+)) (not joint)
	t=1
	*