

MODULE 5

Propositional Logic

Dr Pooja Agarwal

Department of Computer Science & Engineering

Outline

- Proof by resolution
 - Unit resolution
 - Conjunctive normal form
 - Resolution algorithm

AUTOMATA FORMAL LANGUAGES AND LOGIC Proof by Resolution - Conjunctive Normal Form (CNF)

Conjunctive Normal Form (CNF)

every sentence of propositional logic is logically equivalent to a conjunction of clauses.

A sentence expressed as a conjunction of clauses (disjunction of literals) is said to be in conjunctive normal form or CNF.

Existing Knowledge Base

$$R_1$$
: $\neg P_{1,1}$

$$R_2$$
: $B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R4: \neg B_{1,1}$$

$$R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

$$R_7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

$$R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$$

$$R_9: \neg (P_{1,2} \vee P_{2,1})$$

$$R10 : \neg P1,2 \land \neg P2,1$$

$$R11: \neg B1,2$$

$$R12: B1,2 \Leftrightarrow (P1,1 \lor P2,2 \lor P1,3)$$

$$R13: \neg P2,2$$

$$R14: \neg P1,3$$

R15: P1,1
$$\vee$$
 P2,2 \vee P3,1

Proof by Resolution - Conjunctive Normal Form (CNF)

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ converting the sentence $B1,1 \Leftrightarrow (P1,2 \vee P2,1)$ into CNF. The steps are as follows:

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B1,1 \Rightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Rightarrow B1,1)$. 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$: $(\neg B1,1 \lor P1,2 \lor P2,1) \land (\neg (P1,2 \lor P2,1) \lor B1,1)$. 3. CNF requires ¬ to appear only in literals $\neg(\neg\alpha) \equiv \alpha$ (double-negation elimination) $\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$ (De Morgan) $\neg(\alpha \lor \beta) \equiv (\neg\alpha \land \neg\beta)$ (De Morgan) In the example, we require just one application of the last rule: $(\neg B1,1 \lor P1,2 \lor P2,1) \land ((\neg P1,2 \land \neg P2,1) \lor B1,1)$. 4. Now we have a sentence containing nested ∧ and ∨ operators applied to literals. We apply the distributivity law $(\neg B1,1 \lor P1,2 \lor P2,1) \land (\neg P1,2 \lor B1,1) \land (\neg P2,1 \lor B1,1)$.

Proof by Resolution - Conjunctive Normal Form (CNF)

Empty Clause

A disjunction of no disjuncts – is equivalent to False because a disjunction is true only if at least one of its disjuncts is true.

Resolving two singleton clauses leads to the *empty clause*; i.e. the clause consisting of no literals at all, as shown below. The derivation of the empty clause means that the database contains a contradiction.

Proof by Resolution

A Resolution Algorithm

```
function PL-RESOLUTION(KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
             \alpha, the query, a sentence in propositional logic
   clauses \leftarrow the set of clauses in the CNF representation of KB \wedge \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_j in clauses do
              resolvents \leftarrow PL-RESOLVE(C_i, C_j)
              if resolvents contains the empty clause then return true
              new \leftarrow new \cup resolvents
        if new \subseteq clauses then return false
         clauses \leftarrow clauses \cup new
```

Proof by Resolution

Example:

$$\Box Given$$

$$KB = (B_{11} \Leftrightarrow (P_{12} \vee P_{21})) \wedge \neg B_{11}$$
, prove $\neg P_{12}$

Resolution:

Convert to CNF and $\alpha = \neg P_{12}$ show $KB \land \neg \alpha$ is unsatisfiable

$$\neg P_{21} \lor B_{11}$$

$$\neg B_{11} \lor P_{12} \lor P_{21} \qquad \neg P_{12} \lor B_{11}$$

$$\neg P_{12} \vee B_{11}$$

$$\neg B_{11}$$

$$P_{12}$$

Proof by Resolution

Example:- Given

Resolution: Convert to CNF and $\alpha = \neg P_{12}$ show $KB \land \neg \alpha$ is unsatisfiable

Exercise

- Given the premises $(p \Rightarrow q)$ and $(r \Rightarrow s)$, use Propositional Resolution to prove the conclusion $(p \lor r \Rightarrow q \lor s)$.
- Ans:
 - 1. $\{^p,q\}$ Premise
 - 2. {~r,s} Premise
 - 3. $\{p,r\}$ Goal
 - 4. {~q} Goal
 - 5. {~s} Goal
 - 6. {~p} Resolution: 1, 4
 - 7. $\{^r\}$ Resolution: 2, 5
 - 8. {r} Resolution: 3, 6
 - 9. {} Resolution: 8, 7

0

AUTOMATA, FORMAL LANGUAGES AND LOGIC

Exercise

In each of the following questions, say which of the answers best characterizes the result of applying resolution to the clauses shown.

- 1. $\{p, q, \neg r\}$ and $\{r, s\}$
 - \bigcirc $\{p, q, s\}$
 - $\bigcirc \{p,q,r,s\}$
 - $\bigcirc \{p, q, \neg r, s\}$
 - There are no resolvents.

- 2. $\{p, q, r\}$ and $\{r, \neg s, \neg t\}$
 - $\bigcirc \{p, q, r, \neg s, \neg t\}$
 - $\bigcirc \{p, q, \neg s, \neg t\}$
 - There are no resolvents.

Exercise

In each of the following questions, say which of the answers best characterizes the result of applying resolution to the clauses shown.

- 3. $\{q, \neg q\}$ and $\{q, \neg q\}$
 - \bigcirc $\{q, \neg q\}$
 - $\bigcirc \{q\}$
 - $\bigcirc \{ \neg q \}$
 - \bigcirc {}
 - There are no resolvents.

Exercise

A Propositional 2-CNF expression is a conjunction of clauses, where each clause contains exactly 2-literals.

$$(A \lor B) \land (^{\sim}A \lor C) \land (^{\sim}B \lor D) \land (^{\sim}C \lor G) \land (^{\sim}D \lor G)$$

Prove using Resolution that the above sentence entails G.

Ans:

Given "KB \wedge ~ Alpha" is

R1: (A V B), R2: (~A V C), R3: (~B V D), R4: (~C V G),

R5:(~D V G) and R6: ~G

Resolving R1 and R2: R7 = B V C

Resolving R3 and R7: R8 = C V D

Resolving R4 and R8: R9 = D V G

Resolving R5 and R9: R10 = G

Resolving R6 and R10: R11 = {}

Hence Contradiction, So Alpha is TRUE and the given

Statement entails G.

THANK YOU

Dr Pooja Agarwal
Department of Computer Science and
Engineering
poojaagarwal@pes.edu