- 29 What is a possible charge on a particle?
 - **A** 6.40×10^{-20} C
 - **B** 4.00×10^{-19} C
 - **C** 1.12×10^{-18} C
 - **D** 9.11×10^{-18} C
- **30** A slice of germanium of cross-sectional area $1.0\,\text{cm}^2$ carries a current of $56\,\mu\text{A}$. The number density of charge carriers in the germanium is $2.0\times10^{13}\,\text{cm}^{-3}$. Each charge carrier has a charge equal to the charge on an electron.

What is the average drift velocity of the charge carriers in the germanium?

- **A** $0.18 \,\mathrm{m \, s^{-1}}$
- **B** $18 \,\mathrm{m\,s^{-1}}$
- $C 180 \,\mathrm{m\,s^{-1}}$
- **D** $1800 \,\mathrm{m\,s^{-1}}$
- **31** A cell of electromotive force (e.m.f.) E and internal resistance r is connected to an external resistor of resistance R, as shown.

What is the power dissipated in the external resistor?

- $\mathbf{A} = \frac{E^2(R+r)}{R^2}$
- $\mathbf{B} = \frac{E^2R}{(R+r)^2}$
- $\mathbf{C} \quad \frac{E^2(R+r)}{r^2}$
- $\mathbf{D} = \frac{E^2 r}{(R+r)^2}$