שיעור 6 אי-כריעות

לא כריעות $L_{ m d}$, $L_{ m halt}$, $L_{ m acc}$ השפות 6.1

 $L_{
m acc}$ 6.1 הגדרה

 $L_{\text{acc}} = \{ \langle M, w \rangle \mid w \in L(M) \} \in RE \backslash R$

 $L_{
m halt}$ 6.2 הגדרה

 $L_{ ext{halt}} = \{\langle M, w
angle \mid w$ עוצרת על א $M \} \in RE \backslash R$

 $L_{
m d}$ 6.3 הגדרה

 $L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \} \notin RE$

 $L_{
m acc} \in RE$ 6.1 משפט

 $L_{\rm acc} \in RE$.

 $L_{
m acc}\in$ לכן לכן , $L_{
m acc}$ את מכיוון ש- מכיוון ש- , $L(U)=L_{
m acc}$, לכן מכיוון ש- הוכחה: מכיוון ש- .RE

 $L_{
m halt} \in RE$ 6.2 משפט

 $L_{\text{halt}} \in RE$.

. תעצור ותקבל U' שהיא מ"ט U' שהיא למעשה שבו U פרט למקום שבו U עצרה ודחתה, U' תעצור ותקבל

 $:\!L_{
m halt}$ את מקבלת U' נוכיח כי

 $x \in L_{\mathrm{halt}}$ אם

w עוצרת על הי ו- $x=\langle M,w \rangle \Leftarrow$

x עוצרת ומקבלת את $U' \Leftarrow$

אם מקרים: $x \notin L_{\text{halt}}$ אם

- .x את דוחה $U' \Leftarrow x \neq \langle M, w \rangle$
- x א עוצרת על $U' \Leftarrow w$ אוצרת על M -ו $x = \langle M, w \rangle$

$L_{ m d} otin RE$ 6.3 משפט

 $L_{\rm d} \notin RE$.

הוכחה:

 $L_{
m d}\in RE$ נניח בשלילה כי

 $.L_{ ext{d}}$ את המקבלת את $\exists \Leftarrow$

$$L(M_d) = L_d \Leftarrow$$

 $:\!\!\langle M_d
angle$ על איל על פבדוק ריצה של

$$L(M_{\mathrm{d}})
eq L_{\mathrm{d}} \quad \Leftarrow \quad \langle M_{\mathrm{d}}
angle
otin L(M_{\mathrm{d}})
eq L_{\mathrm{d}} \quad \Leftarrow \quad \langle M_{\mathrm{d}}
angle
otin L(M_{\mathrm{d}})
otin \Phi$$

$$L(M_{\mathrm{d}})
eq L_{\mathrm{d}} \quad \Longleftarrow \quad \langle M_{\mathrm{d}} \rangle \in L_{\mathrm{d}} \quad \Longleftarrow \quad \langle M_{\mathrm{d}} \rangle \notin L(M_{\mathrm{d}})$$
 אם •

 $L_{
m d} \notin RE$ ולכן וולכן $L(M_{
m d}) = L_{
m d}$ שיבלנו סתירה לכך ש-

משפט 6.4 לא כריעה $L_{ m acc}$

$$L_{\mathrm{acc}} = \{ \langle M, w \rangle \mid w \in L(M) \} \notin R$$
.

הוכחה:

 $L_{
m acc}$ את המכריעה המ"ט המכריעה ותהי ותהי $L_{
m acc} \in R$ נניח בשלילה כי

.(6.3 כפי שהוכחנו במשפט $L_{
m d}$ עדי לבנות מ"ט $M_{
m d}$ מ"ט $M_{
m d}$ המכריעה את לבע החוכחנו בסתירה לכך ש-

$$L_{\rm d} = \{ \langle M, w \rangle \mid \langle M \rangle \notin L(M) \}$$
.

$M_{ m d}$ התאור של

:x על קלט $=M_{\mathrm{d}}$

. דוחה.
$$\langle M \rangle$$
 דוחה. בודקת האם $\langle x = \langle M \rangle$

$$\langle x \rangle = \langle \langle M \rangle \rangle$$
 מחשבת מחשבת (2

$$:\langle M,\langle M
angle
angle$$
 על הזוג $M_{
m acc}$ את מריצה (3

. דוחה
$$M_{
m d} \Leftarrow M_{
m acc}$$
 אם $M_{
m acc}$

. אם
$$M_{
m d} \Leftarrow M_{
m acc}$$
 אם $M_{
m acc}$

 $:\!L_{
m d}$ את מכריעה את מכריעה אל כעת נוכיח כי

 $x \in L_{\mathrm{d}}$ אם

$$\langle M \rangle \not\in L(M) \text{ -1 } x = \langle M \rangle \Leftarrow$$

$$\langle M, \langle M
angle
angle$$
 דוחה את הזוג $M_{
m acc} \Leftarrow$

.x מקבלת את $M_{
m d}$

:שני מקרים $x \notin L_{\mathrm{d}}$ אם

x את את דוחה את $M_{\mathrm{d}} \quad \Leftarrow \quad x \neq \langle M \rangle$ דוחה את

$$\langle M
angle \in L(M)$$
 -ו $x = \langle M
angle$:(2) מקרה

$$\langle M, \langle M \rangle
angle$$
 את אוג מקבלת $M_{
m acc} \Leftarrow$. x דוחה את $M_{
m d} \Leftarrow$

משפט 6.5 לא כריעה $L_{ m halt}$

$$L_{ ext{halt}} = ig\{\langle M, w
angle \mid w$$
 עוצרת על $M ig\}
otin R$.

הוכחה:

 $L_{
m halt}$ את מ"ט המכריעה את נניח בשלילה כי $L_{
m halt} \in R$ ותהי

. (המפט במשפט שהוכחנו במשפט בי לבנות ע"ט ביי לבנות את המכריעה את המכריעה $M_{
m acc}$ כפי שהוכחנו במשפט $M_{
m halt}$

$M_{ m acc}$ אור של

:x על קלט $=M_{\mathrm{acc}}$

- .x על $M_{
 m acc}$ מריצה את (1
- דוחה. $M_{
 m acc} \Leftarrow T$ דוחה אם $M_{
 m halt}$
- . מריצה על U את מריצה $M_{\mathrm{acc}} \Leftarrow m$ ועונה מקבלת \bullet

<u>אבחנה</u>

 $:\!\!L_{
m acc}$ את מכריעה $M_{
m acc}$

 $x \in L_{\mathrm{acc}}$ אם

$$\langle w \rangle \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

x את מקבלת את מקבלת מקבלת את $M_{\mathrm{halt}} \Leftarrow$

.x מקבלת את מקבלת $M_{\mathrm{acc}} \Leftarrow$

אם מקרים: $x \notin L_{\mathrm{acc}}$

 $x \neq \langle M, w \rangle$:(1) מקרה

x דוחה את $M_{\mathrm{halt}} \leftarrow$

.x דוחה את $M_{
m acc}$

"מקרים: שני מקרים: $\langle w \rangle \notin L(M)$ ו- $\langle x = \langle M, w \rangle$ שני מקרים:

 $M_{\mathrm{acc}} \Leftarrow x$ דוחה את דוחה את את אוצרת על א לא עוצרת על M לא אוצרת את מקרה (א):

x את את דוחה את $M_{\mathrm{acc}} \Leftarrow x$ דוחה את אבל דוחה את מקבלת את מקבלת מקבלת את אבל $M_{\mathrm{halt}} \Leftarrow w$

 $L_{
m acc} \notin R$ -ם בסתירה לכך ש- בסתירה מכריעה את מכריעה $M_{
m acc}$

 $.L_{\mathsf{halt}} \notin R$ לכן

משפט 6.6

$$\begin{array}{ccc} L_{\rm acc} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm acc} \notin RE \ , \\ L_{\rm halt} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm halt} \notin RE \ , \\ L_{\rm d} \notin RE \backslash R \ . \end{array}$$

לא כריעה L_E השפה 6.2

L_E השפה 6.4 הגדרה

$$L_E = \{ \langle M \rangle \mid L(M) = \emptyset \} .$$

$L_E otin R$ משפט

 $L_E \notin R$.

.כלומר L_E לא כריעה

הוכחה:

. באופן באופן $L_{\rm acc}$ את המכריעה $M_{\rm acc}$ מ"ט גניה. אז כריעה. כי בשלילה נניח נניח גניח לבנה אז נבנה אז נבנה

 M_w בנייה של

 $: M_w$ ראשית נגדיר את המ"ט

:x על כל קלט $=M_w$

- . אם $x \neq w$ אם (1
- . על w ועונה כמוה M אז מריצה x=w אם x=w

<u>אבחנה</u>

 $L(M_w) = \Sigma^*$ אם M - 1 מקבלת את אז M - 1

 $L(M_w)=arnothing$ אם w אז m דוחה את m אז x=w אם x
eq w

$M_{ m acc}$ בנייה של

 $:L_{
m acc}$ את המכריעה את המכריעה מ"ט $M_{
m acc}$ אז נבנה מ"ט המכריעה את המכריעה את המכריעה את

:x על כל קלט $=M_{\rm acc}$

- דוחה. $x \neq \langle M, w \rangle$ דוחה. (1
- M_w בונה מ"ט , $\langle M,w \rangle$ אם $\langle x=\langle M,w \rangle$ אם געזרת בעזרת בעזרת בעזרת
 - $:\!\!\langle M_w
 angle$ על M_E מריצה (3
 - . אם M_E מקבלת \bullet (4
 - אם M_E אם •

<u>נכונות</u>

 $\langle M_w \rangle$ דוחה $M_E \iff L(M_w) = \Sigma^* \neq \varnothing \iff w \in L(M)$ ו- $x = \langle M, w \rangle \iff x \in L_{\mathrm{acc}}$ אם $M_{\mathrm{acc}} \iff M_{\mathrm{acc}} \iff M_{a$

אם שני מקרים: $x \notin L_{\mathrm{acc}}$

. דוחה $M_{
m acc} \ \Leftarrow \ \langle M_w \rangle$ מקבלת $M_E \ \Leftarrow \ L(M_w) = \varnothing \ \Leftarrow \ x \neq \langle M, w \rangle$ בוחה.

. דוחה $M_{
m acc} \ \Leftarrow \ \langle M_w \rangle$ מקבלת $M_E \ \Leftarrow \ L(M_w) = arnothing \ \Leftrightarrow \ w
otin L(M) - 1 <math>x = \langle M, w \rangle$:2

לסיכום:

 $L_{
m acc} \notin R$ -ש בסתירה לכך בסתירה את המכריעה $M_{
m acc}$ מ"ט אפשר לבנות כריעה אז אפשר לבנות המכריעה $L_E \notin R$ לכן לבנות

$L_E otin RE$ 6.8 משפט

$L_E \notin RE$

הוכחה:

נבנה מ"ט א"ד N המקבלת את

$$\bar{L}_E = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

$$:x$$
 על קלט $=N$

- דוחה. $x \neq \langle M \rangle$ אם (1
- . או א $w\in \Sigma^*$ או בוחרת מילה $x=\langle M \rangle$ אם עד.
 - .w על M מריצה (3
 - אם $M \Leftarrow M$ מקבלת.
 - . אם M דוחה $N \Leftarrow$

הוכחת הנכונות

 $x\in ar{L}_E$ אם

$$L(M) \neq \emptyset$$
 -1 $x = \langle M \rangle \Leftarrow$

- $w \in L(M)$ -פיימת מילה $w \in \Sigma^*$ כך ש
- w את מקבלת את כך ש $w\in \Sigma^*$ ניחוש $\exists \Leftarrow$
- $x = \langle M \rangle$ את המקל של של N קיים חישוב של \Leftarrow
 - $x \in L(N) \Leftarrow$

 $ar{L}_E \in RE$ לכן קיימת מ"ט א"ד א המקבלת את השפה א"ד לכן קיימת מ"ט א

 $.L_{E}\notin RE$ כעת נוכיח כי

 $.L_E \in R$, 5.1 לכם לפי משפט. . $\bar{L}_E \in RE$ ש- הוכחנו למעלה ש- . $L_E \in RE$ או בסתירה לכך ש- . $L_E \notin R$ לכן $.L_E \notin R$

לא כריעה L_{EQ} השפה 6.3

 L_{EQ} 6.5 הגדרה

$$L_{EQ} = \left\{ \left\langle M_1, M_2 \right\rangle \mid L\left(M_1\right) = L\left(M_2\right) \right\}$$

$L_{EQ} otin R$ משפט

$$L_{EQ} \notin R$$

השפה L_{EQ} לא כריעה.

נניח בשלילה כי M_E כריעה את מ"ט המכריעה את מ"ט המכריעה את M_{EQ} אז נבנה מ"ט באופן L_{EQ} כריעה. תהי M_{EQ} מ"ט המכריעה את באופן הבא.

M_E בנייה של

x על כל קלט $=M_E$

- דוחה. $\langle M \rangle$ אם (1
- . כאשר M_{\varnothing} אם M_{\varnothing} המ"ט שדוחה כל קלט. M_{EQ} על M_{EQ} אם ג $x=\langle M \rangle$ אם (2
 - . אם M_{EQ} מקבלת \bullet (3
 - . אם M_{EQ} דוחה +

<u>נכונות</u>

 $x \in L_E$ אם

$$L(M) = \emptyset$$
 -1 $x = \langle M \rangle \Leftarrow$

$$L(M) = L(M_{\varnothing}) \Leftarrow$$

$$\langle M, M_{\varnothing} \rangle \in L_{EQ} \Leftarrow$$

$$\langle M, M_{\varnothing}
angle$$
 מקבלת $M_{EQ} \Leftarrow$

.מקבל
$$M_E \Leftarrow$$

:שני מקרים $\Leftarrow x \notin L_E$ אם

מקרה 1:
$$M_E \leftarrow x \neq \langle M \rangle$$
 דוחה.

$$L(M) \neq \emptyset$$
 -ו $x = \langle M \rangle \Leftarrow$:2 מקרה

$$L(M) \neq L(M_{\varnothing}) \Leftarrow$$

$$\langle M, M_{\varnothing} \rangle \notin L_{EQ} \Leftarrow$$

$$\langle M, M_{\varnothing} \rangle$$
 דוחה $M_{EQ} \Leftarrow$

. דוחה
$$M_E \Leftarrow$$

לסיכום:

 $L_E
otin R$ אם L_{EQ} כריעה אז אפשר לבנות מ"ט M_E המכריעה את בסתירה למשפט 6.7 האומר ש $L_{EQ}
otin R$ לכן

$L_{EQ} \notin RE$ 6.10 משפט

$$L_{EQ} \notin RE$$

לא קבילה. L_{EQ}

הוכחה:

נניח בשלילה כי M_E קבילה. תהי M_{EQ} מ"ט המקבלת את M_{EQ} אז נבנה מ"ט קבילה. תהי M_{EQ} המקבלת את באופן הבא.

M_E בנייה של

$$:x$$
 על כל קלט $=M_E$

- דוחה. $x \neq \langle M \rangle$ אם (1
- . כל קלט. M_{\varnothing} אם M_{\varnothing} המ"ט שדוחה כל קלט. M_{EQ} על M_{EQ} מריצה $x=\langle M \rangle$ אם (2
 - מקבלת \Leftrightarrow מקבלת M_{EQ} (3

נכונות

 $x \in L_E$ אם

$$L(M) = \emptyset$$
 -1 $x = \langle M \rangle \Leftarrow$

$$L(M) = L(M_{\varnothing}) \Leftarrow$$

$$\langle M, M_{\varnothing} \rangle \in L_{EQ} \Leftarrow$$

$$\langle M, M_{\varnothing}
angle$$
 מקבלת $M_{EQ} \Leftarrow$

.מקבל
$$M_E \Leftarrow$$

לסיכוח:

 $L_E
otin RE$ אם L_{EQ} קבילה אז אפשר לבנות מ"ט M_E המקבלת את בסתירה למשפט 6.8 האומר ש $L_{EQ}
otin RE$ לכן

$ar{L}_{EQ} otin RE$ 6.11 משפט

$\bar{L}_{EQ} \notin RE$.

הוכחה:

 $ar{L}_{
m acc}$ את המקבלת מ"ט $M_{ar{acc}}$ אז נבנה מ"ט המקבלת את מ"ט המקבלת מ"ט המקבלת המקבלת קבילה. תהי $M_{ar{E}Q}$ קבילה. תהי $M_{ar{E}Q}$ מ"ט המקבלת את באופן הבא.

M_1 בנייה של

ראשית נגדיר מ"ט M_1 באופן הבא:

$$x$$
 על קלט $= M_1$

.ועונה כמוהM על w ועונה כמוה (1

$M_{\overline{ m acc}}$ בנייה של

$$:x$$
 על כל קלט $=M_{\overline{\mathrm{acc}}}$

. מקבלת $\Leftarrow x \neq \langle M, w \rangle$ אם (1

- M_1 אז בונה $x=\langle M,w \rangle$ אם (2
- . כאשר אמקבלת כל שמקבלת אמ"ט אמר אר כאשר $\langle M_1, M^*
 angle$ על $M_{\overline{EQ}}$ מריצה (3
 - . אם $M_{\overline{EQ}}$ מקבלת \bullet

נכונות

 $x\in L_{\overline{
m acc}}$ אם

$$w$$
 לא מקבלת $M \Leftarrow$

$$L(M_1) = \emptyset \Leftarrow$$

$$\langle M_1, M^* \rangle \in L_{\overline{EQ}} \Leftarrow$$

$$\langle M_1, M^*
angle$$
 מקבלת $M_{\overline{EQ}} \Leftarrow$

.מקבל
$$M_{\overline{\mathrm{acc}}} \Leftarrow$$

לסיכום:

 $L_{\overline{
m acc}}\notin RE$ -אומר ש- 6.6 בסתירה למשפט בסתירה אז אפשר לבנות מ"ט $M_{\overline{
m acc}}$ המקבלת את המקבלת לבנות $L_{\overline{
m EQ}}\notin RE$ לכן $L_{\overline{EQ}}\notin RE$

6.4 סיכום: כריעות וקבילות של שפות

קבילה	כריעה	
√	×	$L_{ m acc}$
×	×	$\overline{L_{ m acc}}$
×	×	L_{d}
✓	×	L_{Halt}
×	×	$\overline{L_{ ext{Halt}}}$
×	×	$L_{\scriptscriptstyle m E}$
✓	×	$\overline{L_{\scriptscriptstyle m E}}$
×	×	$L_{ t EQ}$
×	×	$\overline{L_{ t EQ}}$
×	×	$L_{ ext{REG}}$
×	×	$L_{ ext{NOTREG}}$