QcBits: constant-time small-key code-based cryptography

Tung Chou

Technische Universiteit Eindhoven, The Netherlands

February 26, 2016, PQCrypto, Fukuoka, Japan

constant-time small-key code-based cryptography

constant-time small-key code-based cryptography

"Using QC-MDPC codes"

constant-time small-key code-based cryptography

constant-time small-key code-based cryptography

"Timing-attack-resistant"

constant-time small-key code-based cryptography

constant-time small-key code-based cryptography

"The software: QC-MDPC + Bitslicing"

platform	key-pair	encrypt	decrypt	reference	scheme
Haswell	784 192	82 732	1 560 072	(new) QcBits	KEM/DEM
	14 234 347	34 123	3 104 624	ACMTECS 2015	McEliece
Cortex-M4	140 372 822	2 244 489	14 679 937	(new) QcBits	KEM/DEM
	63 185 108	2 623 432	18 416 012	PQCrypto 2016	KEM/DEM
	148 576 008	7 018 493	42 129 589	PQCrypto 2014	McEliece

Cycle counts for key-pair generation, encryption, and decryption for 80-bit pre-quantum security. Numbers in RED are non-constant-time. Numbers in BLUE are constant-time.

Step 1: syndrome computation

Matrix view:

$$\left(egin{array}{c|c} h^{(0)} & h^{(1)} \end{array}
ight) \left(egin{array}{c} e^{(0)} \ e^{(1)} \end{array}
ight) \in \mathbb{F}_2^n$$

Step 1: syndrome computation

Matrix view:

$$\left(egin{array}{c|c} h^{(0)} & & h^{(1)} \end{array}
ight) \left(egin{array}{c} e^{(0)} \ e^{(1)} \end{array}
ight) \in \mathbb{F}_2^n$$

Polynomial view:

$$h^{(0)}e^{(0)} + h^{(1)}e^{(1)} \in \mathbb{F}_2[x]/(x^n-1)$$

Step 1: syndrome computation

Matrix view:

$$\left(egin{array}{c|c} h^{(0)} & & h^{(1)} \end{array}
ight) \left(egin{array}{c} e^{(0)} \ & & \end{array}
ight) \in \mathbb{F}_2^n$$

Polynomial view:

$$h^{(0)}e^{(0)} + h^{(1)}e^{(1)} \in \mathbb{F}_2[x]/(x^n-1)$$

PCLMULQDQ or barrel shifter

Step 2: counting number of unsatisfied parity checks

Matrix view:

$$\left(s^{(0)} \qquad s^{(1)}
ight) \left(\qquad h^{(0)} \qquad \left| \qquad h^{(1)} \qquad
ight) \in \mathbb{Z}^{2n}$$

Step 2: counting number of unsatisfied parity checks

Matrix view:

$$\left(s^{(0)} \qquad s^{(1)}\right) \left(\quad h^{(0)} \qquad \middle| \quad h^{(1)} \quad \right) \in \mathbb{Z}^{2n}$$

• Polynomial view:

$$\left(\tilde{h}^{(0)}s^{(0)}, \ \tilde{h}^{(1)}s^{(1)}\right) \in (\mathbb{Z}[x]/(x^n-1))^2$$

Step 2: counting number of unsatisfied parity checks

Matrix view:

$$\left(\mathfrak{s}^{(0)} \qquad \mathfrak{s}^{(1)}\right) \left(\quad h^{(0)} \quad \middle| \quad h^{(1)} \quad \right) \in \mathbb{Z}^{2n}$$

· Polynomial view:

$$\left(\tilde{h}^{(0)}s^{(0)}, \ \tilde{h}^{(1)}s^{(1)}\right) \in (\mathbb{Z}[x]/(x^n-1))^2$$

barrel shifter + bitslicing

www.win.tue.nl/~tchou/qcbits/