Deep Learning

Regularized Autoencoders

Learning goals

- Overcomplete AEs
- Sparse AEs
- Denoising AEs
- Contractive AEs

Overcomplete Autoencoders

OVERCOMPLETE AE – PROBLEM

Overcomplete AE (code dimension \geq input dimension): even a linear AE can copy the input to the output without learning anything useful.

How can an overcomplete AE be useful?

Figure: Overcomplete AE that learned to copy its inputs to the hidden layer and then to the output layer (Credits to M. Ponti).

REGULARIZED AUTOENCODER

- Goal: choose code dimension and capacity of encoder/decoder based on the problem.
- Regularized AEs modify the original loss function to:
 - prevent the network from trivially copying the inputs.
 - encourage additional properties.
- Examples:
 - **Sparse AE:** sparsity of the representation.
 - Denoising AE: robustness to noise.
 - Contractive AE: small derivatives of the representation w.r.t. input.

⇒ A regularized AE can be overcomplete and nonlinear but still learn something useful about the data distribution!

Sparse Autoencoder

SPARSE AUTOENCODER

Idea: Regularization with a sparsity constraint

$$L(\mathbf{x}, dec(enc(\mathbf{x}))) + \lambda \|\mathbf{z}\|_1$$

- Try to keep the number of active neurons per training input low.
- Forces the model to respond to unique statistical features of the input data.

Figure: Sparse Autoencoder (Credits to M. Ponti).

Denoising Autoencoders

The denoising autoencoder (DAE) is an autoencoder that receives a corrupted data point as input and is trained to predict the original, uncorrupted data point as its output.

- Idea: representation should be robust to introduction of noise.
- Produce corrupted version $\tilde{\mathbf{x}}$ of input \mathbf{x} , e.g. by
 - random assignment of subset of inputs to 0.
 - adding Gaussian noise.
- Modified reconstruction loss: $L(\mathbf{x}, \frac{dec(enc(\tilde{\mathbf{x}}))}{})$
 - \rightarrow denoising AEs must learn to undo this corruption.

- With the corruption process, we induce stochasticity into the DAE.
- Formally: let $C(\tilde{\mathbf{x}}|\mathbf{x})$ present the conditional distribution of corrupted samples $\tilde{\mathbf{x}}$, given a data sample \mathbf{x} .
- Like feedforward NNs can model a distribution over targets $p(\mathbf{y}|\mathbf{x})$, output units and loss function of an AE can be chosen such that one gets a stochastic decoder $p_{decoder}(\mathbf{x}|\mathbf{z})$.
- E.g. linear output units to parametrize the mean of Gaussian distribution for real valued x and negative log-likelihood loss (which is equal to MSE).
- The DAE then learns a reconstruction distribution $p_{reconstruct}(\mathbf{x}|\tilde{\mathbf{x}})$ from training pairs $(\mathbf{x}, \tilde{\mathbf{x}})$.
- (Note that the encoder could also be made stochastic, modelling p_{encoder}(z|x̃).)

The general structure of a DAE as a computational graph:

Figure: Denoising autoencoder: "making the learned representation robust to partial corruption of the input pattern."

Figure: Denoising autoencoders - "manifold perspective" (lan Goodfellow et al. (2016))

A DAE is trained to map a corrupted data point $\tilde{\boldsymbol{x}}$ back to the original data point $\boldsymbol{x}.$

Figure: Denoising autoencoders - "manifold perspective" (Ian Goodfellow et al. (2016))

- The corruption process $C(\tilde{\mathbf{x}}|\mathbf{x})$ is displayed by the gray circle of equiprobable corruptions
- Training a DAE by minimizing $||dec(enc(\tilde{\mathbf{x}})) \mathbf{x}||^2$ corresponds to minimizing $\mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}} \sim p_{data}(\mathbf{x})C(\tilde{\mathbf{x}}|\mathbf{x})}[-\log p_{decoder}(\mathbf{x}|f(\tilde{\mathbf{x}}))].$

Figure: Denoising autoencoders - "manifold perspective" (lan Goodfellow et al. (2016))

- The vector $dec(enc(\tilde{\mathbf{x}})) \tilde{\mathbf{x}}$ points approximately towards the nearest point in the data manifold, since $dec(enc(\tilde{\mathbf{x}}))$ estimates the center of mass of clean points \mathbf{x} which could have given rise to $\tilde{\mathbf{x}}$.
- Thus, the DAE learns a vector field $dec(enc(\tilde{\mathbf{x}})) \mathbf{x}$ indicated by the green arrows.

An example of a vector field learned by a DAE.

Figure: source: Ian Goodfellow et al. (2016)

 We will now corrupt the MNIST data with Gaussian noise and then try to denoise it as good as possible.

Figure: Flow chart of our autoencoder: denoise the corrupted input.

 To corrupt the input, we randomly add or subtract values from a uniform distribution to each of the image entries.

Figure: Top row: original data, bottom row: corrupted mnist data.

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 1568 (overcomplete).

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 784 (= dim(x)).

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 256.

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 64.

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 32.

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 16.

Figure: The top row shows the original digits, the intermediate one the corrupted and the bottom row the denoised/reconstructed digits (prediction).

• dim(z) = 8.

Contractive Autoencoder

CONTRACTIVE AUTOENCODER

- Goal: For very similar inputs, the learned encoding should also be very similar.
- We can train our model in order for this to be the case by requiring that the derivative of the hidden layer activations are small with respect to the input.
- In other words: The encoded state enc(x) should not change much for small changes in the input.
- Add explicit regularization term to the reconstruction loss:

$$L(\mathbf{x}, dec(enc(\mathbf{x})) + \lambda \| \frac{\partial enc(\mathbf{x})}{\partial \mathbf{x}} \|_F^2$$

DAE VS. CAE

DAE	CAE
the decoder function is trained	
to resist infinitesimal perturba-	
tions of the input.	tions of the input.

- Both the denoising and contractive autoencoders perform well.
- Advantage of denoising autoencoder: simpler to implement
 - requires adding one or two lines of code to regular AE.
 - no need to compute Jacobian of hidden layer.
- Advantage of contractive autoencoder: gradient is deterministic
 - can use second order optimizers (conjugate gradient, LBFGS, etc.).
 - might be more stable than the denoising autoencoder, which uses a sampled gradient.

REFERENCES

Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

Deep Learning

http://www.deeplearningbook.org/

Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask (2017)

SIBGRAPI Tutorials 2017