

GCE

Edexcel GCE Statistics S2 (6684)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6684 Statistics S2 Mark Scheme

Question Number	Scheme		Marks	
1(a)	$X \sim B(n, 0.04)$	Implied	B1	
	E(X) = np	Use of $np = 5$	M1	
	5 = 0.04n n = 125	125	A1	(3)
(b)	E(X) = 3 $np = 3$	np = 3	B1	(3)
	$sd = \sqrt{npq} = \sqrt{3(1 - 0.04)}$	Use of <i>npq</i>	M1	
	$= \sqrt{2.88}$ $= 1.70$	$\sqrt{3(1-0.04)}$ awrt 1.70	A1 A1	(4)
			To	tal 7
2(a)	$f(x) = \frac{1}{4} , \ 2 \le x \le 6$	$\frac{1}{4}$ and range	B1	
	= 0 , otherwise	0 and range	B1	
(b)	E(X) = 4 by symmetry or formula	4	B1	(2)
(c)	$Var (X) = \frac{(6-2)^2}{12}$ $= \frac{4}{3}$	Use of formula	M1	
	$=\frac{4}{3}$	1.3 or $1\frac{1}{3}$ or $\frac{4}{3}$ or 1.33	A1	(2)
(d)	$F(x) = \int_{2}^{x} \frac{1}{4} dt = \left[\frac{1}{4}t\right]_{2}^{x}$	Use of $\int f(x) dx$	M1	
	$=\frac{1}{4}(x-2)$	$\frac{1}{4}$ (x – 2) or equiv.	A1	
	$F(x) = \frac{1}{4}(x-2), \ 2 \le x \le 6$	$\frac{1}{4}$ (x – 2) and range	B1ft	
	= 1 , $x > 6= 0 , x < 2$	ends and ranges	B1	(4)
(e)	$P(2.3 < X < 3.4) = \frac{1}{4} (3.4 - 2.3)$	Use of area or F(x)	M1	
	= 0.275	0.275 or $\frac{11}{40}$	A1 Tota	(2)

Question Number	Scheme		Ma	arks
3(a)	Misprints are random / independent, occur singly in space and at a constant rate	Context, any 2	B1,	B1 (2)
(b)	$P(X = 0) = e^{-2.5}$ = 0.08208 = 0.0821	Po (2.5) 0.0821	M1 A1	(2)
(c)	$Y \sim Po(5)$ for 2 pages $P(Y > 7) = 1 - P(X \le 7)$ Use of 1 – and co = 1 - 0.8666 = 0.1334	Implied breet inequality 0.1334 P_a (50)	B1 M1 A1	(3)
(d)	For 20 pages, $Y \sim P_o$ (50) $Y \sim N(50, 50)$ approx $P(Y < 40) = P(Y \le 39.5)$ $= P\left(Z \le \frac{39.5 - 50}{\sqrt{50}}\right)$ sta	$N(50, 50)$ cc ± 0.5 and ardise above all correct	B1 B1 M1 M1 A1	
	$= P (Z \le -1.4849)$ $= 1 - 0.93 = 0.07$	awrt – 1.48 0.07	A1 A1	(7)
4(a)	Individual member or element of the population or sampling frame		То В1	tal 14_
(b) (c)	A <u>list</u> of <u>all</u> sampling units or <u>all</u> the population All possible <u>samples</u> are chosen from a population; the <u>values</u> of a <u>stat</u> associated <u>probabilities</u> is a sampling distribution	istic and the	B1 B1 B1	(1) (1) (2)
			To	otal 4

Question Number	Scheme		Marks	
5(a)	$X \sim B(200, 0.02)$ $\underline{\text{n large, P small}}$ so $X \sim \text{Po (np)} = \text{Po (4)}$	Implied conditions, $P_0(4)$	B1 B1, B1	
	$P(X = 5) = \frac{e^{-4}4^{5}}{5!}$ $= 0.1563$	$P(X \le 5) - P(X \le 4) $ 0.1563	M1 A1 (5)	
(b)	$P(X < 5) = P(X \le 4)$ = 0.6288	$P(X \le 4)$ 0.6288	M1 A1 (2) Total 7	
6(a)	$\int_{0}^{2} k(4x - x^3) \mathrm{d}x = 1$	$\int f(x)dx = 1, \text{ all correct}$	M1 A1	
	$\int_{0}^{2} k(4x - x^{3}) dx = 1$ $k \left[2x^{2} - \frac{1}{4}x^{4} \right]_{0}^{2} = 1$ $k(8 - 4) = 1$	[*]	A1	
	$k = \frac{1}{4}$		(4)	
(b)	$E(X) = \int_{0}^{2} x \cdot \frac{1}{4} (4x - x^{3}) dx$	$\int x f(x) dx$	M1	
	$= \left[\frac{1}{3}x^3 - \frac{1}{20}x^5\right]_0^2$	[*]	A1	
	$=\frac{16}{15}$	1.07 or $1\frac{1}{15}$ or $\frac{16}{15}$ or $1.0\dot{6}$	A1 (3)	
(c)	At mode, $f'(x) = 0$ $4 - 3x^2 = 0$	Implied Attempt to differentiate	M1 M1	
	$x = \frac{2}{\sqrt{3}}$	$\sqrt{\frac{4}{3}}$ or 1.15 or $\frac{2}{\sqrt{3}}$ or $\frac{2\sqrt{3}}{3}$	A1 (3)	
(d)	At median, $\int_0^x \frac{1}{4} (4t - t^3) dt = \frac{1}{2}$	$F(x) = \frac{1}{2} \operatorname{or} \int f(x) dx = \frac{1}{2}$	M1	
	$\frac{1}{4} \left(2x^2 - \frac{1}{4}x^4 \right) = \frac{1}{2}$	Attempt to integrate	M1	
	$x^{4} - 8x^{2} + 8 = 0$ $x^{2} = 4 \pm 2\sqrt{2}$ $x = 1.08$	Attempt to solve quadratic Awrt 1.08	M1 A1 (4)	

(e)	mean (1.07) < median (1.08) < mode (1.15) ⇒ negative skew	ny pair cao	M1 A1 (2)
(f)	f(x) lines $x < 0$ and $x > 0$	>2, labels, 0 and 2	B1
	negative		B1 (2)
_	0 2 x		Total 18
7 (a)	$X \sim B(10, p)$ Binomial	(10, 0.75)	B1, B1 (2)
(b)	$P(X = 6) = 0.9219 - 0.7759$ $= 0.1460$ $P(X \le 6)$	$-P(X \le 5)$ 0.1460	M1 A1 (2)
(c)	H_0 : $p = 0.75$ (or $p = 0.25$)	Correct H ₀	B1
		e tailed H	B1
	Under H_0 , $X \sim B(20, 0.75)$ (or $Y \sim B(20, 0.25)$)	Implied	B1
	$P(X \le 13) = 1 - 0.7858 = 0.2142 \text{ (or } P(Y \ge 7))$ $P(X \le 13) \text{ and } 1$ Insufficient evidence to reject H_0 as $0.2412 > 0.05$	- , 0.2142	M1, A1
	Doctor's belief is not supported by the sample	Context	A1
	$(OR\ CR\ P(X \le 12) = 1 - 0.8982 = 0.1018$ $(or\ P(Y \ge 8))$		(6)
	$P(X \le 11) = 1 - 0.9591 = 0.0409$ (or $P(Y \ge 9)$) 13 outside critical region	either	(M1 A1)
(d)	$(or 7)$) $P(X \le c) \le 0.01 \text{ for p=0.75}$ $(or P(Y \ge 20-c) \le 0.01 \text{ for p=0.25})$ $P(X \le 9) = 1 - 0.9961 = 0.0039 \text{ (or } P(Y \ge 11)$ $P(X \le 10) = 1 - 0.9861 = 0.0139 \text{ (or } P(Y \ge 10)$ C. R. is [0,9], so greatest no. of patients is 9.	or 0.9981 9	M1 A1 B1 B1 (4) Total 14