

COMPUTER AIDED DIAGNOSIS SYSTEM IN DIGITAL MAMMOGRAPHY

João Maria Patacho de Matos Rocha e Melo

Discussion of the Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Maria Margarida Campos da Silveira Prof. Nuno Miguel de Pinto Lobo e Matela

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira Supervisor: Prof. Maria Margarida Campos da Silveira Members of the Committee: Prof. Jorge dos Santos Salvador Marques

OUTLINE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- **■** Experimental Results
- Conclusions and Future Work

1.1 CANCER STATISTICS

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

- 14.1 million cases of cancer in 2012
- Breast cancer represents 25% of all cancer cases among the female population
- High survival rates if caught in early stages

Figure 1 – Survival rate broke down by stage and age sector

1.3 BREAST IMAGING TECHNIQUES

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

MAMMOGRAPHY

- Most common breast imaging technique
- X-Ray based
- Standard Views:
 - Craniocaudal (Fig 2)
 - MedioLateral Oblique (Fig 3)

Figure 2 – Craniocaudal view of right breast

Figure 3 – MedioLateral Oblique view of left breast

1.4 COMPUTER AIDED DIAGNOSIS

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work
- Image Processing and Machine Learning based techniques
- Results to be reported to the doctor (not the patient)
- Aims to improve the accuracy of the whole diagnosis process

DOCTOR'S DIAGNOSIS

COMPUTER AIDED DIAGNOSIS

Figure 4 – Example of the application of CAD to a mammogram

1.5 THESIS OVERALL

- Context and Motivation
 - Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 5 – Schema of the sequence of steps describing this work

PRE-PROCESSING Bilateral Filter

SEGMENTATION Sliding Band Filter

FEATURE EXTRACTION Morphological, Intensity and Texture

CLASSIFICATION Decision Tree and AdaBoost

OUTLINE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- **■** Experimental Results
- Conclusions and Future Work

2.1 BILATERAL FILTER

- Pixel-by-Pixel technique
- **Reduces Noise**
- Keeps the information of the edges
- Disregards irrelevant information (including noise)
- Reduces the number of false positives

[1] X. Qin, G. Lu, I. Sechopoulos, and B. Fei, "Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features," in SPIE Medical Imaging. International Society for Optics and Photonics, 2014, pp. 90341V-90341V.

Context and Motivation

Experimental Results

Pre-processing and Segmentation

Conclusions and Future Work

Feature Extraction and Classification

Figure 6 – 2D (on the left) and 3D (on the right) representations of a) spatial distance filter, b) intensity distance filter and c) bilateral filter.

2.2 SLIDING BAND FILTER

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Gradient based technique

Finds the center and the border of the ROI

Figure 7 – Representation of the gradients of each pixel in the window of analysis of the pixel of interest -

Figure 8 – Illustration of the border found by the Sliding band filter

[2] T. Esteves, P. Quelhas, A. M. Mendonça, and A. Campilho, "Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection," Machine Vision and Applications, vol. 23, no. 4, pp. 623–638, 2012.

2.3 RESULTS

■ Pre-processing and Segmentation

■ Feature Extraction and Classification

Experimental Results

Conclusions and Future Work

a) b)

Figure 9 – Mammogram of left breast a) not filtered and b) filtered

OUTLINE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- **■** Experimental Results
- Conclusions and Future Work

3.1 FEATURE EXTRACTION

MORPHOLOGICAL

- X and Y coordinates of the location of the centre
- Maximum Radius
- Perimeter
- Area
- Surface Change

<u>INTENSITY</u>

- Mean Intensity Value
- Maximum Intensity Value
- Minimum Intensity Value
- Standard Deviation of Intensity Values
- Skewness
- Kurtosis
- Contrast
- Energy
- 10 Intensity Histogram bins

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

TEXTURE

- Entropy
- HOG Features

3.1 FEATURE EXTRACTION

- Context and Motivation
 - Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 10 – Illustration of mathematical morphology operations. Dilation (on left) and Erosion (on right).

Figure 11 – Illustration of mathematical morphology opening applied to 3 different types of structures

[3] Q. Zheng, "Mathematical morphology - set-theoretic representation for binary shapes," Language and Media Processing Lab - Center for Automation Research, University of Maryland College Park.

3.1 FEATURE EXTRACTION

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 12 – Striped image (on top) and its HOG features (on the bottom).

3.2.1 SINGLE MODEL DECISION TREE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 13 – Schematic representation of the classifier used in the Single Model Decision Tree experiment.

3.2.1 SINGLE MODEL DECISION TREE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

- Pruned
- 100% of the dataset

Figure 14 – Illustration of a Decision Tree.

3.2.2 DECISION TREE ENSEMBLE CLASSIFIER

- Context and Motivation
 - Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 15 – Schematic representation of the classifier used in the Decision Tree Ensemble Classifier experiment.

3.2.3 ADABOOST

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions

$$\beta^{(t)} = \frac{\epsilon^{(t)}}{1 - \epsilon^{(t)}}$$

$$w_i^{(t+1)} = w_i^{(t)} \beta^{(1 - |h_i^{(t)} - y_i|)}$$

$$\alpha^{(t)} = \frac{1}{\log(\beta^{(t)})}$$

$$C(Z_i) = \begin{cases} 1, & if \sum_{T} \alpha^{(t)} h^{(t)}(Z_i) > \frac{1}{2} \sum_{T} \alpha^{(t)} \\ 0, & otherwise \end{cases}$$

Weak classifier 3

Figure 16 – Illustration of an AdaBoost Classifier.

3.2.3 ADABOOST

- Context and Motivation
 - Pre-processing and Segmentation
 - Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 17 – Schematic representation of the classifier used in the AdaBoost experiment.

3.2.3 ADABOOST

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 18 – Representation of bagging technique used in the AdaBoost experiment.

3.2.4 FUSION TECHNIQUES

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

NAÏVE BAYES TECHNIQUE

$$P(d_i = c \mid \boldsymbol{o}) = \frac{P(d_i = c)P(\boldsymbol{o}|d_i = c)}{P(\boldsymbol{o})} \propto \frac{1}{N_c^{K-1}} \prod_{k=1}^{K} cm_k(c, s)$$

Assume the independence between the classifiers

$$P(\mathbf{o}|d_i = c) = P(o_1, o_2, ..., o_k|d_i = c) = \prod_{k=1}^{K} P(o_k|d_i = c)$$

3.2.4 FUSION TECHNIQUES

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

OUTLINE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

4.1 DATABASE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

- 3 Experiments
 - Single Model Decision Tree
 - Decision Tree Ensemble
 - AdaBoost Ensemble

- 3185 images
 - 1950 Healthy Tissue
 - 846 Malignant Lesion
 - 399 Benign Lesions

Figure 19 – Description of the database used in this work, broken down by class

- Context and Motivation
 - Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

		Output Labels		
		Healthy Tissue Benign Mass Malignant Mass		
Target Class	Healthy Tissue	1760	83	107
	Benign Mass	136	189	125
	Malignant Mass	134	56	595

DECISION TREE ENSEMBLE CLASSIFIER

		Output Labels		
		Healthy Tissue Benign Mass Malignant Mass		
Target Class	Healthy Tissue	1763	99	88
	Benign Mass	99	255	96
	Malignant Mass	105	80	600

		Output Labels			
		Healthy Tissue Benign Mass Malignant Mass			
	Healthy Tissue	1863	59	28	
Target Class	Benign Mass	113	269	68	
8	Malignant Mass	81	153	551	

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

		Output Labels			
		Healthy Tissue Benign Mass Malignant Mass			
	Healthy Tissue	1760	83	107	
Target Class	Benign Mass	136	189	125	
	Malignant Mass	134	56	595	

DECISION TREE ENSEMBLE CLASSIFIER

		Output Labels		
		Healthy Tissue Benign Mass Malignant Mass		
Target Class	Healthy Tissue	1763	99	88
	Benign Mass	99	255	96
	Malignant Mass	105	80	600

		Output Labels			
	/	Healthy Tissue Benign Mass Malignant Mass			
	Healthy Tissue	1863	59	28	
Target Class	Benign Mass	113	269	68	
	Malignant Mass	81	153	551	

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

		Output Labels			
		Healthy Tissue Benign Mass Malignant Mass			
Target Class	Healthy Tissue	1760		83	107
	Benign Mass	136		189	125
	Malignant Mass	134		56	595

DECISION TREE ENSEMBLE CLASSIFIER

		Output Labels		
		Healthy Tissue Benign Mass Malignant Mass		
Target Class	Healthy Tissue	1763	99	88
	Benign Mass	99	255	96
	Malignant Mass	105	80	600

		Output Labels			
		Healthy Tissue Benign Mass Malignant Mass			
	Healthy Tissue	1863	59	28	
Target Class	Benign Mass	113	269	68	
	Malignant Mass	81	153	551	

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

	Single Model Decision Tree
ACC General	0.82
ACC Malignant	0.80
ACC Benign	0.47
ACC Healthy Tissue	0.91

DECISION TREE ENSEMBLE CLASSIFIER

	Morphological Feat.	Intensity Feat	Texture Feat	Classifier ensemble
ACC General	0.80	0.73	0.71	0.82
ACC Malignant	0.62	0.42	0.43	0.77
ACC Benign	0.41	0.45	0.18	0.57
ACC Healthy Tissue	0.97	0.92	0.94	0.90

	Morphological Feat.	Intensity Feat	Texture Feat	Classifier ensemble
ACC General	0.84	0.76	0.75	0.85
ACC Malignant	0.74	0.59	0.62	0.70
ACC Benign	0.46	0.27	0.20	0.60
ACC Healthy Tissue	0.97	0.94	0.92	0.96

- Context and Motivation
 - Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

	Single Model Decision Tree		
ACC General		0.82	
ACC Malignant	0.80		
ACC Benign	0.47		
ACC Healthy Tissue		0.91	

DECISION TREE ENSEMBLE CLASSIFIER

	Morphological Feat.	Intensity Feat	Texture Feat	Classifier ensemble
ACC General	0.80	0.73	0.71	0.82
ACC Malignant	0.62	0.42	0.43	0.77
ACC Benign	0.41	0.45	0.18	0.57
ACC Healthy Tissue	0.97	0.92	0.94	0.90

	Morphological Feat.	Intensity Feat	Texture Feat	Classifier ensemble
ACC General	0.84	0.76	0.75	0.85
ACC Malignant	0.74	0.59	0.62	0.70
ACC Benign	0.46	0.27	0.20	0.60
ACC Healthy Tissue	0.97	0.94	0.92	0.96

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

	Single Model Decision Tree		ion Tree
ACC General		0.82	
ACC Malignant	0.80		
ACC Benign	0.47		
ACC Healthy Tissue		0.91	

DECISION TREE ENSEMBLE CLASSIFIER

	Morphological Feat.	Intensity Feat	Texture Feat	Class	sifier ense	mble
ACC General	0.80	0.73	0.71		0.82	
ACC Malignant	0.62	0.42	0.43		0.77	
ACC Benign	0.41	0.45	0.18		0.57	
ACC Healthy Tissue	0.97	0.92	0.94		0.90	

	Morphological Feat.	Intensity Feat	Texture Feat	Classifier ensemble
ACC General	0.84	0.76	0.75	0.85
ACC Malignant	0.74	0.59	0.62	0.70
ACC Benign	0.46	0.27	0.20	0.60
ACC Healthy Tissue	0.97	0.94	0.92	0.96

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SINGLE MODEL DECISION TREE

	Single Model Decision Tree		ion Tree
ACC General		0.82	
ACC Malignant	0.80		
ACC Benign	0.47		
ACC Healthy Tissue		0.91	

DECISION TREE ENSEMBLE CLASSIFIER

	Morphological Feat.	Intensity Feat	Texture Feat	Class	sifier ense	mble
ACC General	0.80	0.73	0.71		0.82	
ACC Malignant	0.62	0.42	0.43		0.77	
ACC Benign	0.41	0.45	0.18		0.57	
ACC Healthy Tissue	0.97	0.92	0.94		0.90	

	Morphological Feat.	Intensity Feat	Texture Feat	Class	sifier ense	mble
ACC General	0.84	0.76	0.75		0.85	10
ACC Malignant	0.74	0.59	0.62		0.70	
ACC Benign	0.46	0.27	0.20		0.60	
ACC Healthy Tissue	0.97	0.94	0.92		0.96	

OUTLINE

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- **■** Experimental Results
- Conclusions and Future Work

4.2 CONCLUSIONS AND FUTURE WORK

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

SUMMARY OF CONCLUSIONS

- AdaBoost Ensemble Classifier increases the accuracy in 3%
- Separation of the classifiers into different models improves the accuracy for benign lesions only
- Morphological Features increase a model's accuracy in 8,25%

FUTURE WORK

- Test the influence of all the parameters
- Distinguish the lesions using expert's knowledge
- Cost of classification between classes

COMPUTER AIDED DIAGNOSIS SYSTEM IN DIGITAL MAMMOGRAPHY

JOÃO ROCHA E MELO

BREAST AND BREAST TUMORS

- Breast breakdown into 4 density types:
 - I, II, III, IV
- Breast Tissue divided into:
 - Adipose Tissue
 - Glandular Tissue

	Malignant	Benign
Mass		
Micro Calcifications		

- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 20 – Breast Illustration

BILATERAL FILTER

- Pixel-by-Pixel technique
- Reduces Noise
- Keeps the information of the edges
- Disregards irrelevant information (including noise)
- Improves the accuracy of the segmentation stage by reducing the number of false positives

- Context and Motivation
 - Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

Figure 21 – 2D (on the left) and 3D (on the right) representations of a) spatial distance filter, b) intensity distance filter and c) bilateral filter

Ciências ULisboa Faculdade de Ciências da Universidade de Lisboa

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- **Experimental Results**
- Conclusions and Future Work

Spatial Distance Filter
$$f(c_x, c_y, x, y) = \frac{e^{-|(c_x, c_y) - (x, y)|}}{\sigma_s^2}$$

Intensity Based Filter
$$g(c_x, c_y, x, y) = \frac{e^{-(I(c_x, c_y) - I(x, y))}}{\sigma_I^2}$$

Bilateral filter

$$r(c_x, c_y) = \sum_{x \text{ in } \Omega} \sum_{y \text{ in } \Omega} f(c_x, c_y, x, y) \times g(c_x, c_{y,}, x, y)$$

Filtered image
$$I_{BF}(c_x, c_y) = \sum_{x \text{ in } \Omega} \sum_{y \text{ in } \Omega} I(x, y) \times f \times g$$

SLIDING BAND FILTER

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

$$DC_{SBF}(P) = \frac{1}{N} \sum_{i=1}^{N} \max_{\substack{R_{min} < R < R_{max} \\ R = 1}} \left| \frac{1}{R - R_{min}} \sum_{\substack{r = R_{min} \\ r = R_{min}}}^{R} CI(x_i, y_i) \right|$$

Gradient based technique

Finds the center and the border of the ROI

Figure 22 – Representation of the gradients of each pixel in the window of analysis of the pixel of interest -

Figure 23 – Illustration of the border found by the Sliding band filter

FEATURE EXTRACTION

MORPHOLOGICAL

- X and Y coordinates of the location of the centre
- Maximum Radius
- Perimeter
- Area
- Surface Change

Figure 24 – Illustration of mathematical morphology operations. Dilation (on top) and Erosion (on bottom).

<u>INTENSITY</u>

- Mean Intensity Value
- Maximum Intensity Value
- Minimum Intensity Value
- Standard Deviation of Intensity Values
- Skewness
- Kurtosis
- Contrast
- Energy
- 10 Intensity Histogram bins

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions and Future Work

TEXTURE

- Entropy
- HOG Features

Figure 25 – Striped image (on top) and its HOG features (on the bottom).

SINGLE MODEL **DECISION TREE**

Context and Motivation

Pre-processing and Segmentation

Feature Extraction and Classification

Experimental Results

Conclusions and Future Work

GINI Function

$$Gini(S) = 1 - \sum_{k=1}^{C} p_S(k)^2$$

DROP

$$Drop(S, A) = Gini(S) - \sum_{v \in values(A)} \frac{|S_v|}{|S|} Gini(S_v)$$

ADABOOST

$$h(x, f, p, \theta) = \begin{cases} 1, & if \ pf(x) < p\theta \\ 0, & otherwise \end{cases}$$

$$\epsilon^{t} = \min_{f,\theta,p} \sum_{i=1}^{N} w_{i}^{(t)} |h^{(t)}(x_{i},f,p,\theta,p) - d_{i}|$$

$$\beta^{(t)} = \frac{\epsilon^{(t)}}{1 - \epsilon^{(t)}}$$

$$w_i^{(t+1)} = w_i^{(t)} \beta^{(1 - |h_i^{(t)} - y_i|)}$$

$$\alpha^{(t)} = \frac{1}{\log(\beta^{(t)})}$$

$$C(Z_i) = \begin{cases} 1, & if \sum_{T} \alpha^{(t)} h^{(t)}(Z_i) > \frac{1}{2} \sum_{T} \alpha^{(t)} \\ 0, & otherwise \end{cases}$$

- Pre-processing and Segmentation
- Feature Extraction and Classification
- Experimental Results
- Conclusions

FUSION TECHNIQUES

NAÏVE BAYES TECHNIQUE

$$P(d_i = c \mid \boldsymbol{o}) = \frac{P(d_i = c)P(\boldsymbol{o}|d_i = c)}{P(\boldsymbol{o})}$$

- Disregard P(o)
- 2. $P(d_i = c) = \frac{N_c}{N_c}$
- 3. Assume the independence between the classifiers

$$P(\mathbf{o}|d_i = c) = P(o_1, o_2, ..., o_k|d_i = c) = \prod_{k=1}^{K} P(o_k|d_i = c)$$

This can be withdrawn from:

$$P(o_k|d_i=c) = \frac{cm_k(c,s)}{N_c}$$

5. Which means that:

$$P(d_i = c | \boldsymbol{o}) \propto \frac{1}{N_c^{K-1}} \prod_{k=1}^K cm_k(c, s)$$

- Context and Motivation
- Pre-processing and Segmentation
- Feature Extraction and Classification
- **Experimental Results**
- Conclusions and Future Work

