RÉPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTÈRE DE L'ÉDUCATION NATIONALE DIRECTION DES EXAMENS ET DE L'ÉVALUATION SERVICE DES EXAMENS

Série : Sciences de la nature Épreuve : Mathématiques

Durée : 4heures Coefficient : 6

Baccalauréat 2011 session Normale

Exercíce 1 (3points)

Un groupe d'élèves est composé de 3 garçons et de 4filles. Les noms de ces sept élèves sont inscrits sur des jetons indiscernables au touché et placés dans une enveloppe. A chaque cours de mathématiques, le professeur tire au hasard un jeton et interroge l'élève concerné .Durant une semaine, il y'a 6cours de mathématiques. On appelle X la

l'élève concerné .Durant une semaine, il y'a 6cours de mathématiques. On appelle X la variable aléatoire définie par « X est égale au nombre de fois où le professeur interroge une fille durant cette semaine». On considère les événements :

A: Le professeur interroge exactement cinq garçons.

B: Une fille au moins est interrogée durant la semaine.

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

	Question	Réponse A	Réponse B	Réponse C
1	La probabilité, à un cours donné, que l'élève interrogé soit un garçon est :	$\frac{3}{7}$	C ₇ ³	A_7^3
2	La probabilité, à un cours donné, que l'élève interrogée soit une fille est :	$\frac{1}{2}$	$\frac{4}{3}$	$\frac{4}{7}$
3	L'ensemble des valeurs de X est :	{0, 1, 2,, 7 }	{0, 1, 2,, 6}	{0, 1, 2, 3, 4}
4	La probabilité de l'événement A est :	$\left(\frac{3}{7}\right)^5$	$C_6^5 \left(\frac{3}{7}\right)^5 \left(\frac{4}{7}\right)$	$\left(\frac{4}{7}\right)^5 \left(\frac{3}{7}\right)$
5	La probabilité de l'événement B est :	$1-\left(\frac{3}{7}\right)^6$	1- $\left(\frac{4}{7}\right)^5$	$\frac{4}{7}$
6	Le nombre de filles interrogées durant la semaine, que l'on peut espérer est :	2	3	4

Recopie sur la feuille et complète le tableau suivant en choisissant la bonne réponse.

	_					
Question	1	2	3	4	5	6
Réponse						

Exercíce (5points)

- 1. On pose $(z) = z^3 5z^2 + 12z 8$.
- a) Calculer p(1)
- b) Déterminer a et b tels que : tels que pour tout z on a $p(z) = (z-1)(z^2 + az + b)$
- c) Résoudre dans \mathbb{C} l'équation : p(z) = 0
- 2. On considère le plan complexe rapporté à un repère orthonormal $(O; \vec{u}, \vec{v})$ Soient les points A, B et C d'affixes respectives : $z_1 = 1$, $z_2 = 2 + 2i$ et $z_3 = 2 - 2i$
 - a) Calculer le module et un argument de chacun des nombres z_1 , z_2 et z_3
- b) Placer les points A, B et C dans le repère (O ; \vec{u} , \vec{v})
- 3a) Écrire le nombre $\frac{z_2}{z_3}$ sous forme algébrique .En déduire la nature du triangle OBC.
- b) Déterminer et représenter l'ensemble \mathbb{F} des points M d'affixe z telle que $\left|\frac{z-1}{z-2-2i}\right|=1$ Exercice (5points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x + 2)e^x$

Soit C sa courbe représentative dans un repère orthonormé (O; i, j) unité 1cm.

- 1. Calculer $\lim_{x\to -\infty} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.
- 2. Calculer f'(x)et dresser le tableau de variation de f.
- 3. Déterminer les points d'intersections de C avec l'axe des coordonnées puis construire (C) dans le repère (O; i, j).
- 4a) Vérifier que pour tout réel x on a : $f'(x) = f(x) + e^x$.

En déduire une primitive de f sur 🛘

- b) Calculer l'aire S du domaine plan délimité par la courbe (C) et les axes des coordonnées.
- 5. On définit une suite numérique (U_n) par son terme général : $U_n = f\left(\frac{1}{n}\right)$; $n \ge 1$
- a) Calculer U_1 et U_2 .

Montrer que (U_n) est décroissante (on pourra utiliser les variations de f).

b) Calculer $\lim_{n\to +\infty} U_n$.

Exercíce 4 (7points)

Soit f la fonction définie sur]0, $+\infty$ [par : $f(x) = x - 1 + \frac{1 + \ln x}{x}$

Soit (C) sa courbe représentative dans un repère orthonormé (O;1,1) unité 1cm.

- 1a) Montrer que $\lim_{x\to 0^+} f(x) = -\infty$ et interpréter graphiquement.
- b) Calculer $\lim_{x\to +\infty} f(x)$

Montrer que la droite Δ d'équation y = x - 1 est asymptote à la courbe (C).

- c) Étudier la position relative de (C) et Δ
- 2) On considère la fonction g définie sur $]0, +\infty[:g(x) = x^2 lnx]$
- a) vérifier que $g\left(\frac{1}{\sqrt{2}}\right) = \frac{1 + ln2}{2}$
- b) Calculer g'(x)
- c) Étudier les variations de g et montrer que pour tout x de $]0, +\infty[:g(x)>0]$
- 3a) Calculer f'(x) et vérifier que pour tout x de $]0, +\infty[$ on a $: f'(x) = \frac{g(x)}{x^2}$
 - b) Dresser le tableau de variation de f
- 4a) Montrer que f réalise une bijection de $]0,+\infty[$ sur un intervalle J que l'on déterminera.
- b) Montrer que l'équation f(x) = 0 admet une unique solution α vérifier que $\frac{1}{e} < \alpha < \frac{1}{2}$.
- 5a) Préciser les points de la courbe (C) en lesquels la tangente (T) est parallèle à Δ .
- b) Représenter la courbe (C) et les droites Δ et (T) dans (O; \vec{i} , \vec{j}).
- c) Discuter graphiquement, suivant les valeurs du paramètre m, le nombre de solutions de l'équation (m+1)x-1-lnx=0
- 6) Soit n un entier naturel, $n \ge 1$. On note U_n l'aire du domaine plan délimitée par la courbe (C) l'asymptote oblique Δ et les droites d'équations respectives x=n et x=n+1
- a) Exprimer U_n en fonction de n
- b) Calculer et interpréter graphiquement $\lim U_n$

Fin