## 一 选择题 (共48分)

#### 1. (本题 3分)(1055)

一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:

- (A) 将另一点电荷放在高斯面外.
- (B) 将另一点电荷放进高斯面内.
- (C) 将球心处的点电荷移开, 但仍在高斯面内.
- (D) 将高斯面半径缩小.

## 2. (本题 3分)(5272)

在空间有一非均匀电场,其电场线分布如图所示。在电场中作一半径为R的闭合球面S,已知通过球面上某一面元 $\Delta S$  的电场强度通量为 $\Delta \Phi_e$ ,则通过该球面其余部分的电场强度通量为

$$(A) - \Delta \Phi_e$$
.

(B) 
$$\frac{4\pi R^2}{\Delta S} \Delta \Phi_e$$
.

(C) 
$$\frac{4\pi R^2 - \Delta S}{\Delta S} \Delta \Phi_e$$
.

(D) 
$$0$$
.

[ ]



图示为一具有球对称性分布的静电场的  $E \sim r$  关系曲线. 请指出该静电场是由下列哪种带电体产生的.



- (A) 半径为R 的均匀带电球面.
- (B) 半径为 R 的均匀带电球体.
- (C) 半径为 R 的、电荷体密度为 $\rho$ =Ar (A 为常数)的非均匀带电球体.
  - (D) 半径为R的、电荷体密度为 $\rho$ =A/r(A为常数)的非均匀带电球体.

[ ]

7

## 4. (本题 3分)(1257)

图示为一具有球对称性分布的静电场的  $E\sim r$  关系曲线. 请指出该静电场是由下列哪种带电体产生的.



- (C) 半径为 R 、电荷体密度  $\rho$ =Ar (A 为常数)的非均匀带电球体.
- (D) 半径为 R 、电荷体密度 $\rho$ =A/r (A 为常数)的非均匀带电球体.



## 5. (本题 3分)(1434)

关于高斯定理的理解有下面几种说法,其中正确的是:

- (A) 如果高斯面上 $\bar{E}$ 处处为零,则该面内必无电荷.
- (B) 如果高斯面内无电荷,则高斯面上 $\bar{E}$ 处处为零.
- (C) 如果高斯面上 $\bar{E}$ 处处不为零,则高斯面内必有电荷.
- (D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.

[ ]

## 6. (本题 3分)(5084)

A 和 B 为两个均匀带电球体,A 带电荷 +q,B 带电荷 -q,作一与 A 同心的球面 S 为高斯面,如图所示.则





- (A) 通过 S 面的电场强度通量为零,S 面上各点的场强为零。
- (B) 通过 S 面的电场强度通量为  $q/\varepsilon_0$ , S 面上场强的大小为  $E = \frac{q}{4\pi \varepsilon_0 r^2}$ .
- (C) 通过 S 面的电场强度通量为(-q) /  $\varepsilon_0$ , S 面上场强的大小为  $E = \frac{q}{4\pi \varepsilon_0 r^2}$ .
- (D) 通过 S 面的电场强度通量为  $q / \varepsilon_0$ ,但 S 面上各点的场强不能直接由高斯定理求出.

## 7. (本题 3分)(1415)

一"无限大"带负电荷的平面,若设平面所在处为电势零点,取 x 轴垂直电平面,原点在带电平面处,则其周围空间各点电势 U 随距离平面的位置坐标 x 变化的关系曲线为:



## 8. (本题 3分)(1019)

在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为



(B) 
$$\frac{q}{8\pi\varepsilon_0 a}$$
.

(C) 
$$\frac{-q}{4\pi\varepsilon_0 a}$$

(D) 
$$\frac{-q}{8\pi\varepsilon_0 a}$$



## 9. (本题 3分)(1020)

电荷面密度为 $+\sigma$ 和 $-\sigma$ 的 两块"无限大"均匀带电的平行 平板,放在与平面相垂直的x轴 上的+a 和-a 位置上,如图所 示. 设坐标原点 O 处电势为零, 则在-a < x < +a 区域的电势分 布曲线为











7

## <mark>10</mark>. (本题 3分)(1516)

如图所示,两个同心的均匀带电球面,内球面半径为 $R_1$ 、带电荷 $O_1$ , 外球面半径为  $R_2$ 、带电荷  $Q_2$ .设无穷远处为电势零 点,则在两个球面之间、距离球心为r处的P点的

$$(A) \frac{Q_1 + Q_2}{4\pi\varepsilon_0 r}$$

电势 U 为:

(B) 
$$\frac{Q_1}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 R_2}$$

(A) 
$$\frac{Q_1 + Q_2}{4\pi\varepsilon_0 r}$$
(C) 
$$\frac{Q_1}{4\pi\varepsilon_0 r} + \frac{Q_2}{4\pi\varepsilon_0 R_2}$$

(D) 
$$\frac{Q_1}{4\pi\varepsilon_0 R_1} + \frac{Q_2}{4\pi\varepsilon_0 r}$$



# 11. (本题 3分)(1623)

已知某电场的电场线分布情况如图所示. 现观察到一负 电荷从M点移到N点.有人根据这个图作出下列几点结论, 其中哪点是正确的?



(B) 电势 
$$U_M < U_N$$
.

(C) 电势能  $W_M < W_N$ .

(D) 电场力的功A > 0.



## 12. (本题 3分)(1085)

图中实线为某电场中的电场线,虚线表示等势(位) 面,由图可看出:

- (A)  $E_A > E_R > E_C$ ,  $U_A > U_R > U_C$ .
- (B)  $E_A < E_B < E_C$ ,  $U_A < U_B < U_C$ .
- (C)  $E_A > E_B > E_C$ ,  $U_A < U_B < U_C$ .
- (D)  $E_A < E_R < E_C$ ,  $U_A > U_R > U_C$ .



## 13. (本题 3分)(1394)

一个静止的氢离子 $(H^{+})$ 在电场中被加速而获得的速率为一静止的氧离子 $(O^{+2})$ 在同一电场中且通过相同的路径被加速所获速率的:

- (A) 2 倍.
- (B)  $2\sqrt{2}$  倍.
- (C) 4倍.
- (D)  $4\sqrt{2}$  倍.

Γ 7

#### 14. (本题 3分)(1442)

一个带正电荷的质点,在电场力作用下 从 A 点经 C 点运动到 B 点,其运动轨迹如 图所示.已知质点运动的速率是递增的,下 面关于 C 点场强方向的四个图示中正确的 是:



#### 15. (本题 3分)(1299)

在一个带有负电荷的均匀带电球外,放置一电偶极子,其电矩 $\bar{p}$ 的方向如图所示. 当电偶极子被释放后,该电偶极子将



- (A) 沿逆时针方向旋转直到电矩  $\bar{p}$  沿径向指向球面而停止.
- (B) 沿逆时针方向旋转至 $\bar{p}$  沿径向指向球面,同时沿电场线方向向着球面移动。
- (C) 沿逆时针方向旋转至 $\bar{p}$  沿径向指向球面,同时逆电场线方向远离球面移动.
- (D) 沿顺时针方向旋转至 $\bar{p}$ 沿径向朝外,同时沿电场线方向向着球面移动.

## 16. (本题 3分)(1300)

- (A) 沿逆时针方向旋转,直至电矩  $\bar{p}$  沿径向指向球面而停止.
- (B) 沿顺时针方向旋转,直至电矩  $\bar{p}$  沿径向朝外而停止。
- (C) 沿顺时针方向旋转至电矩  $\bar{p}$  沿径向朝外,同时沿电场线远离球面移动。
- (D) 沿顺时针方向旋转至电矩 *p* 沿径向朝外,同时逆电场线方向向着球面移动.



[ ]

#### 二 填空题 (共69分)

## 17. (本题 5分)(1500)

如图所示,真空中两个正点电荷 Q,相距 2R. 若以其中一点电荷所在处 O 点为中心,以 R 为半径作高斯球面 S,则通过该球面的电场强



## 18. (本题 5分)(1042)

 $A \times B$  为真空中两个平行的"无限大"均匀带电平面,已知两平面间的电场强度大小为  $E_0$ ,两平面外侧电场强度大小都为  $E_0/3$ ,方向如图.则  $A \times B$  两平面上的电荷面密度分别

为 $\sigma_{\!\scriptscriptstyle A}$ =\_\_\_\_\_\_, $\sigma_{\!\scriptscriptstyle B}$ =\_\_\_\_\_\_.



#### 19. (本题 4分)(1408)

一半径为 R,长为 L 的均匀带电圆柱面,其单位长度带有电荷 $\lambda$ . 在带电圆柱的中垂面上有一点 P,它到轴线距离为 r(r>R),则 P 点的电场强度的大小:

## 20. (本题 4分)(1058)

三个平行的"无限大"均匀带电平面,其电荷面密度都是 $+\sigma$ ,如图所示,则A、B、C、D 三个区域的电场强

| $\boldsymbol{A}$ | В | C | D |
|------------------|---|---|---|
|------------------|---|---|---|

## 21. (本题 5分)(5087)

两块"无限大"的均匀带电平行平板,其电荷面密度分别为 $\sigma(\sigma>0)$ 及 $-2\sigma$ ,如图所示. 试写出各区域的电场强度  $\bar{E}$ .

 $II区\bar{E}$ 的大小\_\_\_\_\_\_,方向\_\_\_\_\_.

#### 22. (本题 3分)(1600)

在点电荷+q和-q的静电场中,作出如图所示的三个闭合面  $S_1$ 、 $S_2$ 、 $S_3$ ,则通过这些闭合面的电场强度通量分别



是:  $\Phi_1$ = ,  $\Phi_2$ = ,  $\Phi_3$ =

#### 23. (本题 3分)(1038)

在场强为 $\bar{E}$ 的均匀电场中,有一半径为R、长为l的圆柱面,其轴线与 $\bar{E}$ 的方向垂直。在通过轴线并垂直 $\bar{E}$ 的方向将此柱面切去一半,如图所示。则穿过剩下的半圆柱面的电场强度通量等于



#### 24. (本题 4分)(1499)

点电荷  $q_1$ 、 $q_2$ 、 $q_3$ 和  $q_4$  在真空中的分布如图 所示. 图中 S 为闭合曲面,则通过该闭合曲面的



电场强度通量  $\oint_{S} \vec{E} \cdot d\vec{S} =$ \_\_\_\_\_\_\_,式中的 $\vec{E}$ 

是点电荷\_\_\_\_\_在闭合曲面上任一点产生的场强的矢量和.

#### 25. (本题 4分)(1194)

把一个均匀带有电荷+Q的球形肥皂泡由半径  $r_1$ 吹胀到  $r_2$ ,则半径为  $R(r_1 <$ 

## 26. (本题 3分)(1592)

一半径为R的均匀带电球面,其电荷面密度为 $\sigma$ . 若规定无穷远处为电势零

点,则该球面上的电势 U=\_\_\_\_\_.

#### 27. (本题 4分)(1176)

真空中,有一均匀带电细圆环,电荷线密度为 $\lambda$ ,其圆心处的电场强度  $E_0$ =

\_\_\_\_\_\_, <mark>电势  $U_0$ = \_\_\_\_\_\_. (选无穷远处电势为零)</mark>

## 28. (本题 4分)(1023)

一点电荷  $q=10^{-9}$  C,A、B、C 三点分别距离该点电荷 10 cm、20 cm、30 cm. 若选 B 点的电势为零,则 A 点的电



| <b>29. (本题 4分)(1176)</b> 真空中,有一均匀带电细圆环,电荷线密度为 $\lambda$ ,其圆心处的电场强度 $E_0$ =                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| , 电势 <i>U</i> <sub>0</sub> = (选无穷远处电势为零)                                                                                                    |
| 30. (本题 5分)(1066)                                                                                                                           |
| 静电场的环路定理的数学表示式为: 该式的物理                                                                                                                      |
| 意义是:                                                                                                                                        |
| 该定理表明,静电场是                                                                                                                                  |
|                                                                                                                                             |
| <b>31.</b> (本题 3分)(1041) 在点电荷 $q$ 的电场中,把一个 $-1.0\times10^{-9}$ C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 $0.1$ m 处,克服电场力作功 $1.8\times10^{-5}$ J,      |
| 则该点电荷 $q$ = (真空介电常量 $\epsilon_0$ =8.85×10 <sup>-12</sup> $\mathrm{C}^2 \cdot \mathrm{N}^{\text{-1}} \cdot \mathrm{m}^{\text{-2}}$ )         |
| <b>32. (本题 3分)(1273)</b> 在点电荷 $q$ 的静电场中,若选取与点电荷距离为 $r_0$ 的一点为电势零点,则                                                                         |
| 与点电荷距离为 $r$ 处的电势 $U=$                                                                                                                       |
| 33. (本题 3分)(1177) 图中所示以 $O$ 为心的各圆弧为静电场的等势(位)线图,已知 $U_1 < U_2 < U_3$ ,在图上画出 $a$ 、 $b$ 两点的电场强度的方向,并比较它们的大小. $E_a$ $E_b$ (填 $<$ 、 $=$ 、 $>$ ). |
| <b>34.</b> (本题 3分)(2791) 带有 $N$ 个电子的一个油滴,其质量为 $m$ ,电子的电荷大小为 $e$ . 在重力场中由静止开始下落(重力加速度为 $g$ ),下落中穿越一均匀电场区域,欲使油滴在该                             |
| 区域中匀速下落,则电场的方向为                                                                                                                             |

#### 三 计算题 (共62分)

## 35. (本题 8分)(5090)



一段半径为 a 的细圆弧,对圆心的张角为a,其上均匀分布有正电荷 q,如图所示. 试以 a,q,a表示出圆心 a处的电场强度.



#### 36. (本题 8分)(1263)

如图所示,一长为 10 cm 的均匀带正电细杆,其电荷为  $1.5 \times 10^{-8}$  C,试求在杆的延长线上距杆的端点 5 cm 处的 P 点的电场强度.  $(\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$ 



#### 37. (本题 5分)(1008)

如图所示,真空中一长为 L 的均匀带电细直杆,总电荷为 q,试求在直杆延长线上距杆的一端距离为 d 的 P 点的电场强度.



#### 38. (本题 5分)(1284)

真空中一立方体形的高斯面,边长 a=0.1 m,位于图中所示位置.已知空间的场强分布为:

$$E_x=bx$$
,  $E_y=0$ ,  $E_z=0$ .

常量 b=1000 N/(C·m). 试求通过该高斯面的电通量.



#### 39. (本题10分)(1653)

电荷以相同的面密度 $\sigma$ 分布在半径为 $r_1$ =10 cm 和 $r_2$ =20 cm 的两个同心球面上. 设无限远处电势为零,球心处的电势为 $U_0$ =300 V.

- (1) 求电荷面密度 $\sigma$ .
- (2) 若要使球心处的电势也为零,外球面上应放掉多少电荷?  $\left[ \varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2 / (\text{N} \cdot \text{m}^2) \right]$

#### 40. (本题 5分)(1384)

若电荷以相同的面密度  $\sigma$ 均匀分布在半径分别为  $r_1$ =10 cm 和  $r_2$ =20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为 300 V,试求两球面的电荷面密度  $\sigma$ 的值. ( $\varepsilon_0$ =8.85×10<sup>-12</sup>C<sup>2</sup>/N·m<sup>2</sup>)

#### 41. (本题 5分)(1216)

如图所示两个平行共轴放置的均匀带电圆环,它们的半径均为R,电荷线密度分别是+ $\lambda$ 和- $\lambda$ ,相距为l. 试求以两环的对称中心O 为坐标原点垂直于环面的x 轴上任一点的电势(以无穷远处为电势零点).



42. (本题 8分)(1024)

有一电荷面密度为 $\sigma$ 的"无限大"均匀带电平面。若以该平面处为电势零点, 试求带电平面周围空间的电势分布.

## 43. (本题 8分)(1598)

电荷q均匀分布在长为2l的细杆上,求杆的中垂线上与杆中心距离为a的 P 点的电势(设无穷远处为电势零点).

, 
$$\dfrac{1}{\sin x}$$
的积分是 $\ln |\csc x - \cot x| + C$ 。  $\dfrac{1}{\cos x}$ 的积分是 $\ln |\sec x + \tan x| + C$ 。  $\dfrac{1}{\tan x}$ 的积分是 $\ln |\sin x| + C$ 。  $\int \tan x dx = \ln |\sec x| + C$ ,