Implementando o MINIMAL no R

Paulo Felipe Alencar 05/06/2019

1 Introdução

O MINIMAL¹ (Horridge and Powell [2001]) é um modelo de equilíbrio geral simplificado utilizado em cursos introdutórios do GEMPACK. A partir desse modelo, é possível deixar claro como a teoria microeconômica do consumidor e do produtor podem ser combinadas para a construção de um modelo de equilíbrio geral.

Este modelo considera 7 setores, um investidor agregado, um agente representativo das famílias, exportações agregadas e o governo. Cada produto pode ser obtido a partir de fontes domésticas ou importadas.

2 Estruturas de Modelo para o Pacote emr

2.1 Exemplo: Oferta e Demanda

3 Construindo MINIMAL no R.

3.1 Dados para o Modelo

Os dados para o modelo são esquematizados conforme a Figura 1. O esquema é similar ao de uma matriz de insumo produto, na qual os elementos das linhas vendem para os elementos das colunas.

Fica claro na 1 que existem duas fontes (sources) de fornecimento de produtos: doméstica e importada. Esse produtos são demandados pelos I setores produtores, pelos investidores, pelas famílias, pelas exportações² e pelo governo. As somas das linhas para produtos (commodities) domésticos ou importados serão denominadas de vendas (sales).

Adicionalmente, os fatores trabalhos e capital são demandados pelos produtores, e há uma taxação sobre a produção. Por fim, independente do demandante, existe um imposto de importação por produto. O valor arrecadado de imposto de importação será único por produto, o que resulta em uma única taxa de importação por produto.

A tabela apresentada na Figura 2 detalha um conjunto de valores para a Austrália a partir de dados de 1986-1987. Os valores estão a preços dos produtores. Ou seja, inclui qualquer imposto indireto que possa ter sido aplicada àquele fluxo. Para cada setor produtor, a sua produção (soma da respectiva coluna) tem que ser igual às suas vendas (soma da respectiva linha). Por exemplo, a produção do setor Agricultura-Mineração (AgricMining) foi igual 45.730, que é o mesmo valor de suas vendas.

Para as importações de produtos manufaturados (Manufacture), foi recolhido o montante de 5.787. O valor total importado desses produtos foi de 42.087 (este valor já inclui o imposto de importação), o que implica em uma taxa de importação de $15,94\%^3$.

¹https://www.copsmodels.com/minimal.htm

²O fornecimento de produtos importados para exportação é igual a zero.

 $^{^35787/(42087 - 5787).}$

		Absorption Matrix						
				2	2 3		5	
		Producers		Investors	Household	Export	Government	Total Sales
	Size	← I	\rightarrow	← 1 →	← 1 →	← 1 →	← 1 →	
Domestic Flows	↑ C ↓			USE(con	nmodity,"do	m",user)		
Imported Flows	↑ C ↓		USE(commodity,"imp",user)					
Labour	↑ 1 ↓	FACTO (labou		C = Number of Commodities = 7 I = Number of Industries = 7				
Capital	↑ 1 ↓	FACTO (capita						
Output tax	↑ 1 ↓	V1PT	X					

	Тах	on Im	ports
Size	+	1	\rightarrow
↑			
С	١	√0MT	Χ
\downarrow			

Figura 1: Base de Dados para o Minimal (Horridge and Powell $\left[2001\right])$

						All Users						
				Industries					Final De	mands		
	AgricMining	Manufacture	Utilities	Construction	TradeTranspt	FinanProprty	Services	Investment	Households	Exports	Government	Total
Domestic								ļ				
AgricMining	5502	14658	1839	689	143	52	641	210	2316	18975	705	45730
Manufacture	4587	30009	643	12486	10200	3061	6947	10150	38537	10587	57	127264
Utilities	1345	2045	3261	176	979	2814	2037	0	3573	21	150	16401
Construction	89	55	13	0	438	1708	381	33809	0	29	3679	40201
TradeTranspt	2958	11539	694	3353	8892	3052	5680	4563	38211	9269	582	88793
FinanProprty	1754	6545	622	1886	9623	9819	6111	2412	33641	886	1221	74520
Services	403	1595	92	290	1316	1586	2210	18	28653	345	44293	80801
Imported												
AgricMining	233	1677	1	49	7	3	145	9	340		6	2470
Manufacture	1305	12411	184	2518	2322	832	3232	9491	9792		0	42087
Utilities	1	2	2	0	1	3	2	0	3		0	14
Construction	0	1	0	0	3	0	8	68	0		2	82
TradeTranspt	104	259	11	34	703	142	258	41	1011		36	2599
FinanProprty	90	302	19	29	328	274	209	39	176		4	1470
Services	26	451	7	55	117	66	774	29	706		81	2312
Labour	10779	22512	3594	15008	35532	17095	43346					147866
Capital	11337	6359	4293	2160	10409	28873	4612					68043
Production tax	5217	16844	1126	1468	7780	5140	4208					41783
Total Cost	45730	127264	16401	40201	88793	74520	80801	60839	156959	40112	50816	78243
Tax on imports	497	5787	0	0	0	27	52					

Figura 2: Base de Dados para Austrália (Milhões 1986-1987)

3.2 Implementação

3.2.1 Passos Iniciais

Inicialmente, é preciso carregar o pacote emr:

```
library(emr)
# Carregar o tidyverse para manipulação dos dados
library(tidyverse)
```

Adicionalmente, também é necessário ler os dados que servirão de base para o modelo. Os dados foram exportados do formato HAR do GEMPACK para csv. Nessa conversão, as diversas tabelas são empilhadas em um único csv, sendo separadas por uma linha denominada de *HEADER*.

Dessa forma, vamos inicialmente identificar os headers:

P028

P018

USER

SRC

##

COM

```
minimal_headers <- read_lines('../dados/minimal.csv')
minimal_headers[str_detect(minimal_headers, "Header")]

## [1] "!Header: USE , dimensions: COM*SRC*USER [7*2*11], description: USE matrix"
## [2] "!Header: 1FAC, dimensions: FAC*IND [2*7], description: Wages and profits"

## [3] "!Header: OTAR, dimensions: COM [7], description: Import tax revenue"

## [4] "!Header: 1PTX, dimensions: IND [7], description: Production tax revenue"

## [5] "!Header: ARM , dimensions: COM [7], description: Armington elasticities"

## [6] "!Header: P028, dimensions: IND [7], description: Primary factor substitution elasticity"

## [7] "!Header: P018, dimensions: COM [7], description: Export demand elasticities"</pre>
```

A Tabela 1 detalha em quais linhas as tabelas se iniciam de fato e quantas linhas de dados existem em cada tabela. Por exemplo, a tabela USE, que contém os dados de uso por produto, origem e usuário, inicia-se na linha 2 e encerra na linha 156, sendo 154 linhas de dados e uma com os títulos de cada coluna. Para, ler essa tabela, podemos executar o seguinte código:

Nome	Início	Fim	Nº de Linhas
USE	2	156	154
1FAC	158	172	14
0TAR	174	181	7
1PTX	183	190	7
ARM	192	199	7

208

217

7

201

210

Value

Tabela 1: Posição de Cada Header no Arquivo minimal.csv

```
USE <- read_csv(
  file = '../dados/minimal.csv',
  skip = 1,
  n_max = 154,
  col_types = 'cccd'
)
head(USE)
## # A tibble: 6 x 4</pre>
```

```
##
    <chr>>
                 <chr> <chr>
                                  <dbl>
## 1 AgricMining dom
                      AgricMining 5502
## 2 Manufacture dom
                       AgricMining 4587
## 3 Utilities
                      AgricMining 1345
                 dom
## 4 Construction dom
                      AgricMining
## 5 TradeTranspt dom
                      AgricMining 2958
## 6 FinanProprty dom
                      AgricMining 1754
```

As demais tabelas serão importadas quando necessárias.

3.2.2 Conjuntos

Aqui, iremos definir os conjuntos de índices que são utilizados pelas variáveis do modelo. Por exemplo, a variável de produção é definida por produto (commodity) pertencente ao conjunto COM, que é composto pela descrição de todos os produtos.

Para implementação do modelo, precisaos de uma lista nomeada sets, na qual cada elemento recebe o nome do conjunto e seus possíveis valores.

Abaixo listamos todos os conjuntos:

- IND: indústrias;
- SRC: origem (doméstica ou importada);
- COM: produtos:
- USER: usuários (fontes de demanda);
- IMPUSER: usuários que demandam produtos importados;
- FINALUSER: usuários que compõem a absorção final da economia;
- FAC: fatores primários (capital e trabalho).

```
IND <- c("AgricMining", "Manufacture", "Utilities", "Construction",</pre>
         "TradeTranspt", "FinanProprty", "Services")
COM <- c("AgricMining", "Manufacture", "Utilities", "Construction",
         "TradeTranspt", "FinanProprty", "Services")
SRC <- c("dom", "imp")</pre>
USER <- c("AgricMining", "Manufacture", "Utilities", "Construction",
          "TradeTranspt", "FinanProprty", "Services", "Investment", "Households",
          "Government", "Exports")
IMPUSER <- c("AgricMining", "Manufacture", "Utilities", "Construction",</pre>
             "TradeTranspt", "FinanProprty", "Services", "Investment", "Households",
             "Government")
FINALUSER <- setdiff(USER, IND)
FAC <- c("Labour", "Capital")
sets <- list(</pre>
  IND = IND,
  COM = COM,
  SRC = SRC,
  USER = USER,
  IMPUSER = IMPUSER,
 FINALUSER = FINALUSER,
```

```
FAC = FAC
)
```

3.2.3 Estrutura Teórica do Modelo

3.2.3.1 Produção

A estrutura de produção utilizada no minimal é apresentada na Figura ... A estrutura adotada considera um primeiro nível em que o produtor demanda bens intermediários (commodities) e o fator primário, que é uma combinação de capital e trabalho. É assumida uma tecnologia do tipo Leontief. Dessa forma, pode-se definir o primeiro nível da produção como:

$$\mathrm{X1TOT}_i = \min \left\{ \frac{X_{c\{c \in \mathrm{COM}\}i}}{A_{c\{c \in \mathrm{COM}\}i}}, \frac{\mathrm{X1PRIM}_i}{A1\mathrm{PRIM}_i} \right\}, \ i \in \mathrm{IND},$$

em que X1TOT_i é a produção total da i-ésima indústria, X_{ci} é a demanda pelo produto c pela indústria i e X1PRIM_i é a demanda por fatores primários pela indústria i. A_{ci} e A1PRIM podem ser entendidos como coeficientes técnicos da matriz de insumo-produto. Isto é, necessita-se A_{ci} unidades do produto c para se produzir uma unidade de i.

Para essa tecnologia, tem-se as seguintes funções de demanda:

• Demanda por bens intermediários (compostos)⁴:

$$X_{ci} = A_{ci} \times X1TOT_i, i \in IND, c \in COM$$

• Demanda por valor adicionado:

$$X1PRIM_i = A1PRIM_i \times X1TOT_i$$

Essas equações, facilmente, podem ser reescritas em variações exatas:

• Demanda por bens intermediários:

$$\hat{X}_{ci} = \hat{A}_{ci} \times X1\hat{T}OT_i, i \in IND, c \in COM$$

• Demanda por valor adicionado:

$$X1P\hat{R}IM_i = A1P\hat{R}IM_i \times X1\hat{T}OT_i$$

Por enquanto, não entraremos nos detalhes sobre a demanda no segundo nível (escolha entre bens domésticos e importados), tendo em vista que a forma da demanda é comum independente do usuário (indústrias, família, governo etc.).

3.2.3.2 Famílias

Para as famílias, que serão representadas como HH, assume-se um agente representativo com preferências do tipo Cobb-Douglas sobre um conjunto de produtos (compostos) e uma restrição orçamentária. Isto é:

$$U = \prod_{c \in \text{COM}} X_{c, \text{HH}}^{\alpha_c}$$

$$s.a. \sum_{c \in \text{COM}} P_{c, \text{HH}} X_{c, \text{HH}} = W3,$$

⁴Os bens intermediários compostos são uma composição entre produtos domésticos e importados.

em que $X_{c,\text{HH}}$ é quantidade demandada do bem composto c pelas famílias (HH), $P_{c,\text{HH}}$ é o índice de preço do bem composto c e W3 é renda nominal das famílias. Adicionalmente, $\sum_{c \in \text{COM}} \alpha_c = 1$.

Para esse tipo de preferência, sabe-se que, a partir da maximização de utilidade do consumidor, que a função de demanda ótima é:

$$X_{c, \text{HH}} = \alpha_c \frac{W3}{P_{c, \text{HH}}}, \ c \in \text{COM}.$$

Em variações, a demanda das famílias é escrita da seguinte forma:

$$\hat{X}_{c,\text{HH}} = \frac{\hat{W}3}{\hat{P}_{c,\text{HH}}}, \ c \in \text{COM}.$$

Por fim, definimos o dispêndio real das famílias (X3TOT) como:

$$X3\hat{T}OT = \frac{\hat{W3}}{P3\hat{T}OT},$$

em que P3TOT é o índice de preços associado à cesta de consumo das famílias. O índice P3TOT é uma média ponderada dos preços de cada bem composto c para as famílias:

$$P3TOT = \sum_{c \in COM} SHARE_{c,HH}P_{c,HH}.$$

em que $SHARE_{c,HH}$ é a participação do bem c no dispêndio das famílias.

3.2.3.3 Investimento e Governo

3.2.3.4 Demanda de segundo nível entre bens domésticos e importados

No segundo nível, para os bens intermediários, é assumida uma função de agregação CES, com elasticidade de substituição σ_i , que combina os produtos domésticos e importados. Nesse caso, a demanda por cada fornecedor (doméstico ou importado) é dada pela seguinte função de demanda:

$$X_{cis} = \left(\frac{P_{cs}}{P_{ci}}\right)^{-\sigma_i} X_{ci}, i \in \text{IND}, c \in \text{COM}, s \in \text{SRC}$$

em que P_{cs} é o preço do produto c fornecido pela fonte s. Já P_{ci} é o preço médio (índice de preço) do produto c para a indústria i. Em variação, a equação de demanda é escrita da seguinte forma:

$$\hat{X}_{cis} = \left(\frac{\hat{P}_{cs}}{\hat{P}_{ci}}\right)^{-\sigma_i} \hat{X}_{ci}, \quad i \in \text{IND}, \ c \in \text{COM}, \ s \in \text{SRC}$$

Os preços dos produtos c de origens s são os seguintes:

$$\begin{split} \hat{P}_{cdom} &= \text{P1}\hat{\text{T}}\text{OT}_c \times P\hat{T}X_c, \ c \in C \\ \hat{P}_{cimp} &= \text{PW}\hat{\text{ORLD}}_c \times \hat{\phi} \times \hat{\text{mtx}}_c,, \qquad c \in C, \end{split}$$

em que P1TOT $_c$ representa o custo de produção, PTX $_c$ é igual a 1 mais a taxa sobre a produção, PWORLD $_c$ é o preço internacional do produto c importado, ϕ é taxa de câmbio e mtx $_c$ é 1 mais a tarifa de importação do produto c.

Apesar de ser utilizada uma função de agregação do tipo CES, os autores do MINIMAL consideram uma média ponderada para construir o índice de preços \hat{P}_{ci}^{5} . Assim,

$$\hat{P}_{cu} = \sum_{c \in S} \text{SHARE}_{csu} \hat{P}_{cs}, \ c \in \text{COM}, u \in \text{USER}$$

⁵Foi substituído o índice de indústria por usuário, uma vez que tal fórmula serve tanto para as indústrias como os usuários finais. Na prática, IND é um subconjunto de USER.

3.2.3.5 Demanda por Fatores Primários

Para o fator primário, a decisão de cada indústria i é entre capital e trabalho. Também é utilizada uma função de agregação CES, com elasticidade substituição σ_i^{1PRIM} . Assim, pode-se definir a demanda (em variações) por trabalho e capital na indústria i como:

$$\begin{split} \mathbf{X}1\hat{\mathbf{L}}\mathbf{A}\mathbf{B}_i &= \left(\frac{\mathbf{P}1\hat{\mathbf{L}}\mathbf{A}\mathbf{B}_i}{\mathbf{P}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_i}\right)^{-\sigma_i^{1\mathrm{PRIM}}} \mathbf{X}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_i,\ i \in \mathrm{IND}, \\ \mathbf{X}1\hat{\mathbf{C}}\mathbf{A}\mathbf{P}_i &= \left(\frac{\mathbf{P}1\hat{\mathbf{C}}\mathbf{A}\mathbf{P}_i}{\mathbf{P}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_i}\right)^{-\sigma_i^{1\mathrm{PRIM}}} \mathbf{X}1\hat{\mathbf{P}}\hat{\mathbf{R}}\mathbf{I}\mathbf{M}_i,\ i \in \mathrm{IND} \end{split}$$

References

Mark Horridge and Alan Powell. Minimal - a simplified general equilibrium model. Technical report, Centre of Policies Studies and the Impact Project, 2001.