let MaliciousFileSHA1 = "e14f7ed43ab3ae9d31680eb74b043339eb6f87e7"; // Random generated SHA1 hash 9d833c959de5dd22d778c697cd0de8189 let MaliciousFileName = "maliciousfilename.exe"; let SearchWindow = 48h; //Customizable h = hours, d = days let FileInfoLocation = materialize (DeviceFileEvents | where Timestamp > ago(SearchWindow) | where ((not(isempty(MaliciousFileSHA1)) and SHA1 == MaliciousFileSHA1) or (isempty(MaliciousFileSHA1) and tolower(FileName) | summarize FileLocations = make_set(tolower(FolderPath))); let FileInfoFileName = materialize (DeviceFileEvents | where Timestamp > ago(SearchWindow) | where ((not(isempty(MaliciousFileSHA1)) and SHA1 == MaliciousFileSHA1) or (isempty(MaliciousFileSHA1) and tolower(FileName) | summarize Filenames = make_set(tolower(FileName))); let FileInfoFileSHA1 = materialize (DeviceFileEvents | where Timestamp > ago(SearchWindow) | where ((not(isempty(MaliciousFileSHA1)) and SHA1 == MaliciousFileSHA1) or (isempty(MaliciousFileSHA1) and tolower(FileName) | summarize FileInfoFileSHA1 = make set(SHA1)); (union isfuzzy=true (FileInfoFileName), // Forensic information in set format available after last raw event (FileInfoLocation), // Forensic information in set format available after last raw event

// For the best results use SHA1

KQL DFIR

KQL CAFE | NOVEMBER 29, 2022

TWITTER: @BERTJANCYBER

GITHUB: GITHUB.COM/BERT-JANP

Starting point: Incidents

	Incident name	Incident Id Tags	Severity	Investigation state	Categories	Impacted assets	Active alerts	Service sources
□ >	Anonymous IP address involving one user	12	■■■ Medium	Unsupported alert type	Initial access	A kqlcafe1	1/1	Identity Protection
□ >	Anonymous IP address involving one user	11	■■■ Medium	Unsupported alert type	Initial access	A kqlcafe1	1/1	Identity Protection
□ >	Multi-stage incident involving Initial access & L	Ransomware +3	■■■ High	3 investigation states	Initial access, Execution	🖵 4 Hosts 🙎 2 Acc	, 101/101	Endpoint
▽ ∨	Multiple threat families detected including Ran	. 7 Ransomware	■■■ High	2 investigation states	Credential access, Rans	. 🚨 testserver2	4/4	Endpoint
	'WannaCrypt' ransomware was prevented	Ransomware	■■■ Medium	Remediated	Ransomware	☐ testserver2		Microsoft Defender for
	'Locky' ransomware was prevented	Ransomware	■■■ Medium	Remediated	Ransomware	☐ testserver2		Microsoft Defender for
	Mimikatz credential theft tool		■■■ High	Remediated	Credential access	☐ testserver2		Microsoft Defender for
	PowerSploit post-exploitation tool		■■■ Medium	Unsupported alert type	Suspicious activity	☐ testserver2		Microsoft Defender for
□ ~	Multiple threat families detected on one endpo	. 10	■■■ Low	2 investigation states	Credential access, Susp	. 🖵 testmachine1	2/2	Endpoint
	Suspicious 'AmsiProcessDetect' behavior wa		Low	Unsupported alert type	Suspicious activity	☐ TestMachine1		Microsoft Defender for
	'Sekur' credential theft malware was prevent		Low	Remediated	Credential access	☐ testmachine1		Microsoft Defender for
	'Exeselrun' malware was prevented on one end	9	■■■ Informational	Remediated	Malware	☐ testmachine5	1/1	Endpoint
	'Exeselrun' malware was prevented		■■■ Informational	Remediated	Malware	☐ testmachine5		Microsoft Defender for
\Box >	Suspicious administrative activity involving one	. 1	■■■ Medium	Unsupported alert type	Privilege escalation	8 admin	1/1	Microsoft Defender for

Compromised Laptop Triggers Incident

Search for evidence

Search for evidence

Goal of the IR queries

- **Enrich Incidents**
 - Easier decision making
- Find related (malicious) activities
 - IOCs
 - Input for additional investigations

Taking a step back

- Get to know your data sources
 - Summarize: count(), dcount(), make_set()
 - Build in KQL functions: base64_decode_tostring()
- Prepare for Incident Response cases
 - What information do I want to collect when an incident is triggered?
 - Build queries before incidents take place (yourself or community queries)
 - Validate the quality of the queries
 - Automate if possible