

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Impresoras 3D

v 1.4.1 Septiembre 2022

Introducción

- Qué son los impresoras 3D
- Métodos de impresión
- Tipos de impresora 3D FDM
- Partes de una impresora 3D FDM
- Materiales utilizados para imprimir en 3D
- Acabados

Impresoras 3D

¿Qué son las impresoras 3D?

- o Impresoras que permiten imprimir diseños en 3D
 - Uso de diferentes materiales
 - o Plásticos, polvo, hormigón, comida, metal, ...
- Diseños
 - Realizados en programas con diseño 3D
 - OpenSCAD, TinkerCad, FreeCAD, etc...
 - Usando escáneres 3D
 - BQ Ciclop: https://youtu.be/70LICigdX78?t=1076
- Hay muchas **DIY**, baratas, ampliables y con partes imprimibles
- o ¡Cuidado con inhalar los gases! El uso continuado podría provocar problemas según diversos estudios (ABS y PLA)
 - http://pubs.acs.org/doi/abs/10.1021/acs.est.5b04983
- o El boom surgió debido a la caducidad de las patentes FDM
 - Patente: finales 80 hasta 2005

Proyecto RepRap

- Con la caducidad de patentes...
- o Universidad de Bath, Inglaterra, 2005
- o Creación de impresoras 3D
 - Que pudieran imprimir piezas para ellas mismas
 - Fueran hardware de código abierto
 - o De bajo coste
 - http://reprap.org/

Modelos

- http://reprap.org/wiki/Build_A_RepRap
- Los hay que son casi en su totalidad impresos en 3D (Snappy)
 - https://youtu.be/3KJbrb0P8jQ
- Instrucciones de montaje y componentes necesarios
 - http://www.reprap.org/wiki/Clone_Wars:_Modelos_de_impresora/es

https://commons.wikimedia.org/wiki/File:Prusa i3 MK2.jpg

https://en.wikipedia.org/wiki/3D food printing#/media/File:3D Printed Chocolate.jpa

Utilidades

Partes del cuerpo

- Cara: trasplante de cara a una persona que tuvo un accidente de moto
- Corazón: lo recubren las células del cuerpo y después lo retiran
- Vértebra de titanio a una niña de 12 años en Pekín
- Impresiones con células vivas para crear órganos
- Riñones, prótesis para personas y animales, dientes, ...
- o Comida, casas, armas, maquetas, etc.
 - https://youtu.be/v72tGoEzhxk
 - http://foodink.io/london/

Medicina

- Creación de dosis exactas según el paciente
- Exoesqueletos para sustituir a la escayola
- Cráneos: https://impresiontresde.com/neurocirujano-surcoreano-salva-a-una-mujer-con-un-craneo-titanio-impreso-en-3d/

Piezas

- o Drones, robots, electrodomésticos, manillas, ampliaciones/piezas para la impresora, etc.
- Herramientas, decoración, prototipos, ropa, etc.

Funcionamiento

- o Construyen piezas en 3D mediante la adición de capas
 - o El cómo y con qué depende del tipo de impresora y el material
 - https://youtu.be/8_vloWVgf0o

Ejemplos I

- Castillo: https://youtu.be/DQ5Elbvvr1M
- Casa
 - https://youtu.be/mZMjRc0klg4
 - https://es.gizmodo.com/en-rusia-han-construido-una-casa-con-impresion-3d-en-ta-1792891252
- Herramientas: https://youtu.be/77p5K-y_RUo
- Varios: https://youtu.be/-LOGF3hFxHU

Ejemplos II

• Robot móvil

Ejemplos III

Robot con pinza

Actuador lineal

Ejemplos IV

Brazo robótico

Métodos de impresión

Introducción

- Diferentes métodos
 - Fundido o ablandado de material
 - Sinterizado de láser selectivo (SLS) y modelado por deposición fundida (FDM)
 - Solidificación de líquido
 - Corte de capas delgadas
 - Superposición de capas y cortado de 1 en 1
 - **o** ...
- o Cada método tiene sus pros y contras
 - Velocidad
 - Coste del material y del prototipo
 - o Coste de la impresora
 - Posibles materiales a utilizar
 - Colores y si tiene soporte multicolor/multifilamento
 - Calidad
 - **o** ...

Modelado por deposición fundida (FDM) / Fabricación con filamento fundido (FFF) I

- o También conocida por su funcionamiento: adición de polímeros
- o Desarrollada en **1980** por S. Scott Crump
- o Funden filamentos de polímeros (plástico)
 - El filamento se introduce en la impresora y el extrusor lo derrite y deposita
 - o El inconveniente está en la calidad de los voladizos de las piezas
- Se van creando varias capas con el filamento derretido
- o Son las impresoras más comunes y baratas (domésticas)
- RepRap: Fused Filament Fabrication (FFF) para evitar las patentes

http://fpvmax.com/2017/03/29/como-funciona-una-impresora-3d/

https://commons.wikimedia.org/wiki/File:FDM by Zureks.png

Modelado por deposición fundida (FDM) / Fabricación con filamento fundido (FFF) II

Diferencias

- Algunas suben y bajan la cama y en otras todo el movimiento está en el extrusor
- Diferentes tipos de extrusor (ancho, temperatura, material, etc.)
- o Diferentes métodos de extrusor (directa y Bowden)
- Velocidad, estructura, calidad, precisión, ...
- Caja protectora
- Aspirador de partículas
- N° de extrusores

• Precio

- Desde 80€ siendo DIY, montándola, pequeñas dimensiones(10*10*10)
- o Hasta 5.000-7.000€, +11.000€ ya montada

Ejemplo

https://youtu.be/ik39_sv-wgQ

https://commons.wikimedia.org/wiki/File:Schematic_rep resentation_of_Fused_Filament_Fabrication_01.png

Impresión 3D Láser II – Estereolitografía (SLA) I

- Se basa en la fotosolidificación o estereolitografía
 - o Proceso de adición de finas capas empleando resina y un láser ultravioleta
 - o Patente de 1986 de Chuck Hull
- El material de impresión es **líquido**
- Se va sumergiendo tantas veces como capas existan
 - Las hay que imprimen de varias maneras
- o El láser va endureciendo la pieza dentro del tanque
- o Tiene mayor calidad, pero también mayor coste que FDM

Impresión 3D Láser II – Estereolitografía (SLA) II

Características

- Buen acabado, mejor que FDM
 - Las piezas salen sin polvo, no como en SLS
- Nay que limpiar la resina según se saca la pieza • Evitar impurezas no endurecidas en recovecos
 - Las piezas no son porosas, como en SLS
 - o Con el tiempo las piezas se vuelven frágiles
 - Siguen curando debido a la luz ultravioleta natural
 - Son sensibles a humedad y temperatura
 - Se puede mejorar con procesos posteriores
- Es cara (30-60-90€ el litro y 100€ hasta 75.000-497.000€ equipo)
 - Resinas tóxicas, irritantes, etc.
 - El material sobrante se reaprovecha en futuras impresiones
 - Las piezas pueden ser mecanizadas
- Eiemplos
 - https://youtu.be/yYGycgnYIBM
 - https://youtu.be/_9m5gEtow88
 - https://youtu.be/b-slcYo8isl
 - https://youtu.be/BUfh5wxj3qA

https://www.amazon.es/ELEGOO-Impresora-Fotocurado-

Scopigno R., Cignoni P., Pietroni N., Callieri M., Dellepiane M. (2017). "Digital Fabrication Techniques for Cultural Heritage: A Survey". Computer Graphics Forum 36 (1): 6-21. DOI:10.1111/cqf.12781

Impresión 3D Láser I – Sintetizado selectivo por láser (SLS) I

- La tecnología es parecida a SLA
- El material de impresión es **polvo** en vez de líquido (SLA)
 - La pieza sale llena de polvo y hay que limpiarla
 - No necesita crear soportes en partes volátiles como en FDM y SLA
- o El láser de CO2 funde el polvo y lo solidifica
 - o El material no utilizado se almacena en el mismo lugar y no se desperdicia
- o Permite el uso de metal, plástico, cerámica o cristal
- Se desarrolló en 1980 en la Universidad de Texas patrocinado por el DARPA
 - Proceso similar patentado en 1979 por R. F. Housholder

Impresión 3D Láser I – Sinterizado selectivo por láser (SLS) II

Características

- ✓ o Las características finales de las piezas son similares a las del material
- Las piezas soportan temperaturas más elevadas que en SLA
- Muy buena resistencia química
- Permite mecanizado posterior
- Biocompatible
 - Puede sustituir una parte del cuerpo o entrar en contacto con sistemas vivos sin problemas
- Las piezas impresas tienen porosidad, algo que con SLA no ocurre
 - Se pueden sellar con procesos posteriores
- Hay que limpiar el polvo de la pieza después de su impresión
- Xo Precio: 6.000 (50% descuento en Kickstarter) 100.000\$, ahora a 292k€
- El material sobrante se reaprovecha en futuras impresiones
- Las piezas no necesitan soportes
- Ejemplos
 - Selective Laser Melting (SLM-subcategoría de SLS): https://youtu.be/OAXi1ENSA34
 - https://youtu.be/gbtu3wBJ-pY

Otros métodos de impresión 3D I

- Fabricación por haz de electrones (EBF)
 - o Con un haz de electrones va añadiendo material fundido
 - Aleaciones de metal
 - https://youtu.be/TIY2BoAmKpQ
- Laminado de capas (LOM)
 - Añade una capa, la corta, añade otra capa, la corta, etc.
 - Papel, plástico, etc.
 - https://youtu.be/OCYdpb3-dpg
 - https://youtu.be/GjJKuteh4xM
- Robocasting o Direct Ink Writing (DIW) 1996
 - Similar a FDM
 - o Pasta de materiales cerámicos, metal
 - https://upload.wikimedia.org/wikipedia/commons/transcoded/6/6b/UHTC_Propeller.webm/UHTC_Propeller.web
- Powder bed and inkjet head 3D printing (3DP)
 - o Inyecta tinta sobre una cama llena de polvo
 - https://youtu.be/kBHsfNDsbCs

Otros métodos de impresión 3D II

Directed Energy Deposition (DED)

- Deposita metal fundido en 4 o 5 ejes, similar a las FDM, pero el Nozzle se puede mover en diferentes ejes
- Aleaciones de metal
- https://youtu.be/oL7bMhPTtDI

Composite Filament Fabrication (CFF) de Markforged

- 2 nozzles
 - o 1 como en FDM depositando fibra en la cáscara y en la matriz interna
 - Otro para depositar en todas las capas el segundo material y entrelazarlo con el material del 1er nozzle
- Fibra compuesta de carbono, nylon, kevlar o cristal
- https://youtu.be/pNBhmv4ejec

Atomic Diffusion Additive Manufacturing (ADAM) de Markforged

- o Similar a FDM pero usa metal de polvo que introduce en la carcasa de plástico que después se funde
- Fibra compuesta de carbono, nylon, kevlar o cristal
 - https://markforged.com/resources/blog/adam
 - https://youtu.be/V7lsFQLjRNU

Tipos de métodos

Leyenda: **Explicado** <u>Resumido</u>

Tipo	Tecnologías	Materiales
Extrusión	Modelado por deposición fundida (FDM) O Fabricación con filamento fundido (FFF)	Termoplásticos (PLA, ABS, etc.), HDPE, metales eutécticos, materiales comestibles
	Robocasting o Direct Ink Writing (DIW)	Materiales cerámicos, metal
	Composite Filament Fabrication (CFF)	Fibra compuesta de carbono, nylon, kevlar o cristal
	Atomic Diffusion Additive Manufacturing (ADAM)	Polvo de metal
Hilado	Fabricación por haz de electrones (EBF)	Casi cualquier aleación de metal
Granulado / Cama de polvo	Sinterizado directo de metal por láser (DMLS)	Casi cualquier aleación
	Fusión por haz de electrones (EBM)	Aleaciones de titanio
	Sinterizado selectivo por calor (SHS)	Polvo termoplástico
	Sinterizado selectivo por láser (SLS)	Termoplásticos, polvos metálicos, polvos cerámicos
	Powder bed and inkjet head 3D printing (3DP)	Yeso, metal, polímeros
	Selective laser melting (SLM)	Acero inoxidable, aluminio, titanio,
Laminado	Laminado de capas (LOM)	Papel, papel de aluminio, capas de plástico
Fotoquímicos	Estereolitografía (SLA)	Fotopolímero
	Continuous Liquid Interface Production (CLIP)	Fotopolímero
	Digital Light Processing (DLP)	Casi cualquier aleación de metal
Powder fed	Directed Energy Deposition (DED)	Casi cualquier aleación de metal

Tipos de impresora 3D FDM/FFF

Cartesianas y polares

Cartesianas

- Es la más común del mercado
- Utiliza las coordenadas cartesianas (X, Y, Z)
 - Los utilizan para saber donde imprimir
- o La cama se puede mover sobre un eje o ser fija
- **√o** Es la **más precisa**
 - https://youtu.be/BguwZ5DvNmo

Polares

Polares

- Se basa en las coordenadas polares
 - Son bidimensionales y cada punto del plano se determina por su distancia y ángulo
- La cama gira
- Pueden solo usar **2 motores** para funcionar
 - >> Diseño muy complejo
 - Gira un motor hasta llegar al tope, termina en la posición original, pero con 1 mm más de altura en una varilla roscada estándar (8mm) usada en el eje Z gracias al uso de una hélice que girará 360° en ese caso
 - https://reprap.org/wiki/Polar
 - Si la boquilla es de 0,5mm no es suficiente para pegar las capas
 - Hay varios sistemas diseñados: 2006, 2010, 2012, 2015, ...
 - Muchas usan 3 motores
 - o Simplifica el diseño, ya que el motor es más barato
 - Son más precisas y menos propensas a errores
 - https://youtu.be/gri16vi5D78
 - https://youtu.be/xZXjlcSOUoA

Delta y brazos robóticos

Delta

- Usan coordenadas cartesianas
- El extrusor se monta sobre una configuración triangular (delta)
 - Se mueve en 3 dimensiones
- Cama circular/triangular y sin movimiento
- ✓ Más rápida que las cartesianas, pero puede que no tan precisas
 - https://youtu.be/uG-yoiFV85c

Brazos robóticos

- o Todavía en desarrollo en el negocio de la construcción
- Permite **diseños más complejos** debido a la libertad de movimiento del cabezal
- \chi La calidad está lejos de la cartesiana
 - https://youtu.be/XGL35u-xssw

Impresoras FFF/FDM infinitas

- Mesa: cinta móvil
- Extrusor: diagonal a la mesa
 - o Cuidado al ajustarlo y de que la primera capa quede bien apegada

- https://youtu.be/E_RvnqVHbnA
- https://youtu.be/1UwaWLnGmXk

Partes de una impresora 3D FDM/FFF

Extrusor I

- o Pieza que recoge el filamento de la bobina y lo deposita en la superficie de impresión
- Se pueden atascar
 - Depende del material utilizado
 - Hay que retirarlo y limpiarlo inmediatamente después (metales)
 - Puede hinchar si se deja y obstruirlo (metales)
- Pueden ser muy diferentes según el modelo de extrusor
 - Anchura de la boquilla, tener ventilador, tipo de inyección de filamento (directa o Bowden), material en que esa realizado, materiales soportados, temperaturas soportadas, reductor (potencia de arrastre), etc.
- o Determinan la calidad de impresión en base a la anchura de su boquilla
- o **Determinan el material de impresión** en base a su anchura, temperatura y material de fabricación

Extrusor II – Piezas I

Motor paso a paso

- o Empuja el filamento desde su entrada hasta la boquilla
- Va controlado por electrónica y gira en pequeños pasos precisos para expulsar exactamente el material requerido

o Engranaje de tracción

• Arrastra el filamento para moverlo en base al motor paso a paso

Engranaje reductor

- Engranaje de diámetro superior que a veces se usa para aumentar la fuerza aplicada sobre el filamento de arrastre estando en contacto con este
- Permite tirar de bobinas más pesadas

o Rodamiento de presión

o Rodamiento que presiona el filamento contra el engranaje de tracción para guiarlo

o Guía del filamento

- Recibe el filamento y marca cuál usar por su anchura
- Tubo recto que guía el filamento desde el motor al «hotend»
- La Hephestos tiene un filamento de 1,75mm y otras hasta 3mm

Extrusor II – Piezas II

Hotend

- Elemento que caliente el filamento y lo derrite para que salgo líquido por la boquilla del extrusor
- Es un tubo que se caliente y por el que pasa por su interior el filamento
- Es el que marca más la diferencia en la calidad de impresión
 - o Cuanto más fino, más resolución, y más atascos...
 - La finura mínima la determina la viscosidad plástica del material utilizado
- Pueden ser de diferentes **metales y aleaciones** (permiten temperaturas más elevadas de impresión, permitiendo utilizar más materiales)

Sensor de temperatura

 Mide la temperatura del extrusor y se la envía al control de la impresora para saber a que temperatura sale el filamento

Boquilla de salida (Nozzle)

- Cono donde llega el material caliente y derretido por su parte ancha, en donde se acumula y mantiene caliente, y sale por su lado estrecho
- La Hephestos tiene una abertura de 0,4mm y otras hasta 0,8mm o más

Extrusor III – Formas de extrusión

- o Existen dos formas de extrusión: la directa y la Bowden
 - o La diferencia está en la separación entre el motor de empuje y el «hotend»
 - Bowden hace que la pieza móvil pese menos, mejorando la precisión y rapidez al tener menos inercias, pero tiene que empujar en vez de tirar del filamento, necesitando más fuerza y siendo más complejo y susceptible a fallos

Extrusor II – Piezas III

- Ventilador
- Ventilador de capas
- Boquilla y ___HotEnd
- Sensor de proximidad

Extrusor II – Piezas IV

- Filamento
- Ventilador y disipador
- Ventilador de capas
- Boquilla y HotEnd
- Sensor de proximidad
- Motores

Otras I

- Bobina
 - Material utilizado (PLA, ABS, metálico, ...)
- o Cama caliente/Mesa/Base/Superficie de impresión
 - Puede tener temperatura (cama caliente) o no
 - Evita que las piezas comben
 - Si no es caliente, hay que usar lacas especiales para que la pieza pegue y no combe
- Cristal sobre cama caliente
 - Es donde se «posa» la primera capa de impresión y donde se va construyendo la pieza
 - Este cristal suele ir sobre la cama caliente y es el que se quita después para extraer la pieza y así crear una separación entre la cama y la pieza
 - o Proporciona una superficie de impresión completamente lisa
- Esqueleto/Marco exterior
 - Protege y crea un ambiente seguro para que nada entre/toque partes de la impresora
 - Pocas impresoras son cerradas completamente
- Aspirador de partículas
 - Algunas tienen un aspirador de particular
 - Normalmente aquellas impresoras que tienen una caja cerrada

Otras II

- Disipador del extrusor
 - Refrigera este componente
- Ventilador de capa
 - Suele ir colocado donde el extrusor y permite enfriar y solidificar el material extruido antes y obtener una mejor impresión (depende del material, la velocidad de impresión y las dimensiones de la pieza, pues si es grande, da tiempo a que sequen las capas)
 - https://youtu.be/xEwsgQ6M-gl
 - Depende del material hay o no que utilizarlo: PLA mejora mucho, ABS casos concretos
- Electrónica
 - Suele ser un microcontrolador mínimo
 - Otras tienen diferentes escudos y sensores (temperatura, finales de carrera, etc.)
 - Hay impresoras que no tienen sensores de seguridad
- Motores paso a paso (stepper)
 - Se suelen utilizar los NEMA 17 (muy testeado, extendido y con potencia suficiente)
- Ejes
- Correas
- LCD
- o Rodamientos, tornillos, tuercas, mandos, botones, varilla roscada, varillas lisas, etc.
- Firmware

Otras III – Cadenas, motor, marco y filamento

Otras IV – Pantalla y control

Otras V – Cama e impresora

Materiales utilizados para imprimir en 3D

Introducción

- Son termoplásticos
 - Material que a temperaturas altas se vuelve deformable
- Los hay
 - Comunes (ABS y PLA)
 - Flexibles
 - o Otros materiales permiten lograr
 - Diferentes texturas
 - Diferentes propiedades
 - Flexibilidad, porosidad, flotabilidad, etc.
 - Uso de otros materiales
 - Madera, piedra, goma, hormigón, metal, etc.
 - Conductividad eléctrica

o La impresora 3D según el material

- o Cambian las temperaturas de extrusión y de la cama caliente
- Se necesita cama caliente o basta con laca/spray especial
- Cambia el ancho del «nozzle» (boquilla del extrusor)
- Hay que limpiar el extrusor inmediatamente o no

Termoplásticos I

- ABS (Acrilonitrilo Butadieno Estireno)
 - Típico de juguetes y cajas de plástico y de dispositivos electrónicos

- Muy resistente a altas temperaturas
- Opaco
- ✓ o Se puede mecanizar, pulir, lijar, agujerear pintar y pegar fácilmente
- **X**o **Emite gases perjudiciales**, luego la habitación debe de estar bien ventilada
 - Proporciona superficies lisas y puede ser soldado con productos químicos
 - Temperaturas
 - 215-230° (Un poco más alto que PLA)
 - Necesita cama caliente: 90°-120°
 - Soporta temperaturas de -20° a 80°
- No es biodegradable
- Se encoge en contacto con el aire
 - Absorbe agua, luego no hay que usarlo para sitios con agua
 - o ≈ 1kg ≈ 21€ ≈> **0,021 €/g** (2018-2021 a 20€)

https://filament2print.com/es/absbasic/709-abs-basic-rojo.html

Termoplásticos II

- PLA (Poliácido láctico)
- Origen natural

Biodegradable

- Gran gama de colores
- Es el material más utilizado
- Impresión más rápida
- No emite gases perjudiciales
- Tiene menos resistencia que ABS
- Apenas encoge después de la impresión
- Temperaturas
 - 190°-220° (Un poco más bajo que ABS)
 - No es necesario tener cama caliente, pero si se tiene: 20° a 60°
 - Se puede usar para usos alimentarios si el extrusor es de <u>acero inoxidable o titanio</u>
- Más difícil de manipular que ABS
 - o Elevada velocidad de enfriamiento y solidificación
 - Puede deteriorarse y estirarse en contacto con el agua
- Suele ser translúcido
- \circ ≈ 1kg ≈ 21€ ≈> **0,021 €/g** (2018-2021 a 20€)

https://filament2print.com/es/pla-basic/696-pla-basic-rojo-bobina-1ka.html

Flexibles I

- Soft-PLA o Flexible PLA o PLA Soft-Flexible
 - Gomoso y flexible
 - Para objetos flexibles o que deban resistir impactos
 - o Calzado, ruedas, juguetes, etc.
 - La velocidad de impresión es menor que con PLA
- **√**∘ Biodegradable
 - Acabado en blanco puro
 - Temperaturas
 - 215°-230° (Como ABS)
 - Cama caliente: 90° a 100° (mayor que PLA)
 - o ≈ 750g ≈ 40€ ≈> **0,0533 €/g**

https://filament2print.com/es/pla-especial/660-pla-soft-flexible.html

Flexibles II

Bendlay

- Fabricado a partir de butadieno (petróleo)
- Flexible como Soft-PLA
 - Alternativa semiflexible entre PLA y ABS
- Resistente
- Transparente (pasa el 90% de la luz)
- o ≈ 30% menos absorción de agua que ABS
- Temperatura
 - Nozzle: 215°-240° (235° recomendado)
 - Cama caliente: Ta ambiente
- Gran adhesión entre capas
- No emblanquece en las zonas de flexión
 - Otros materiales sí
- 🗸 o Seguro para el contacto con la comida
 - Se usa en productos alimentarios
 - Recipientes, botellas, cubiertos, etc.
 - o Si la impresora también cumple los requisitos
 - o ≈ 750g ≈ 41€ ≈> **0,05466 €/g**
 - https://youtu.be/VtYbYr19GVg

https://filament2print.com/es/bendlay/583-bendlay-bobina-750gr.html

Otros materiales I

- Laybrick
 - Yeso/Arenisca + plástico
 - o Textura similar a la piedra
 - Fácil de pintar
 - Temperatura
 - Nozzle: 165°-210°
 - Cama caliente: Ta ambiente
 - Opaco
 - o Diferentes texturas en base a la temperatura de extrusión: lisa (-) o rugoso (+)
 - Para piezas de decoración
 - o ≈ 250g ≈ 28€ ≈> **0,112 €/g**
- Laywood-D3
 - Madera + plástico
 - Los objetos parecen de madera
 - Puede ser lijado y pintado
 - Simula su olor
 - o Modificando la temperatura de extrusión cambia el color
 - o Menor temperatura más claro
 - Temperatura
 - Nozzle: 180°-250° (recomendado >200° para evitar atascos)
 - o Cama caliente: 40°
 - o ≈ 250g ≈ 35€ ≈> **0,14 €/g**
 - o 2019-2020 ≈ 250g ≈ 28€ ≈> **0,112 €/g**

https://filament2print.com/es/maderaceramico/587-lay-brick-175mm-rollo-250gr.html

https://filament2print.com/es/maderaceramico/590-filamento-laywoo-d3-3mm.html https://www.impresoras3d.com/producto/laywood-d3-cherry-madera-3-mm/

Otros materiales II

Nailon

- Alternativa al ABS y PLA
- Más resistente y flexible que ABS y PLA
- 💪 Origen natural, reutilizable y sin emisión de humos
- Resistente al agua y **mecanizable**
- Acabado en blanco natural brillante con 65% de transparencia
- Temperatura
 - Nozzle: 230°-265°
 - No hace falta cama caliente, pero si se tiene a: 30°-65°
- o ≈ 1kg ≈ 73€ ≈> **0,072 €/g**
 - o 2019-2020: ≈ 450g ≈ 37€ ≈> **0,0822 €/g**

Poro-Lay

- Espumoso y poroso / Gelatinoso
- o Se aclara para quitar el PVA y obtener el efecto poroso
- En seco es fuerte y rígido, pero un poco flexible
- o En contacto con el agua se vuelve flexible
- o Se puede humedecer con diferentes líquidos
- Uso en biomecánica y objetos flotantes
- Temperatura
 - Nozzle: 225°-235°
 - Base: cama caliente a 80°
- o ≈ 250g ≈ 36€ ≈> **0,144 €/g**
 - o 2019-2020: ≈ 250g = 30€ ≈> **0,12 €/g**

https://filament2print.com/es/nylons/582-nylon-taulman-645-natural.html

https://filament2print.com/es/poro-lay/647-ael-lay-rollo-250ar.html

Otros materiales III

- Sirve para casi cualquier impresora 3D
 - o Se recomienda usar boquillas de acero endurecido o Olsson Ruby en vez de latón
- Conductividad eléctrica (max. 12 V y 100 mA)
- Alta resistencia: mayor que ABS y PLA
- o Tamaño del nozzle de 0,5mm y hay que limpiarlo justo al acabar
- Temperatura
 - o Nozzle: 220°
 - Base: cama caliente a 50°
- Sirve para crear
 - Sensores capacitivos: proximidad, posición, humedad, niveles de líquido y aceleración
 - Pistas conductoras, apantallamiento de frecuencias, partes mecánicas de alta resistencia, etc.
- o 2018 Enero: ≈ 100g = $124 \in \approx > 1,24 \in /g > 2018$ Octubre: ≈ $100g = 242 \in \approx > 2,42 \in /g$, 2020 octubre 2021: $100g = 199 \in \approx > 1,99 \in /g$
- o 2022: 100g)= 241€ ≈> 2,41€/g

Otros grafenos flexibles

- Basados en fibra de carbono y Poliuretano Termoplástico (TPU)
- Son más baratos que el basado en PLA
- Otros PLA
 - o Inoxidable, conductivo, magnético
- o Fibra de carbono
- o Etc.

https://filament2print.com/es/grafeno/653-filamento-conductivo-de-grafeno.html

Otros materiales IV

- Impresoras SLS
 - Poliamidas
 - Polvo fino granuloso
 - Alumide
 - o Poliamidas + aluminio en polvo
- Impresoras SLA
 - Resinas (ABS, Polipropileno, Flex, etc.)
- Polipropileno
 - o Termoplástico usado en la industria del automóvil y para objetos cotidianos
- Chocolate y otros alimentos
 - https://youtu.be/4-NYxo6tcjg
 - https://youtu.be/RhrsJx6_NyA

Acabados

Acabados

- Lijado
 - Suavizar la pieza y quitar manchas y restos de soporte
- Alisado
 - La acetona permite fundir a temperatura ambiente la «cáscara» de la pieza
 - o Con cuidado: puede fundir TODA la pieza y es tóxico
 - Sirve para ABS
 - https://youtu.be/6xFUNFG-UKE
 - Químicos: tetrahidrofurano para PLA
 - o ¡Cuidado!: son tóxicos, inflamables, irritan la piel, ojos, etc.
- Soldado de piezas
 - Igual que el alisado, con químicos
- o Alisado, protector, capa para pintar y rellenado de huecos
 - Diferentes resinas especiales
 - https://www.feroca.com/es/epoxi-smooth-on/238-xtc-3d-recubrimiento-epoxi-para-impresiones-3d.html
 - ABS, PLA, LayWood y otros similares
 - Masilla: tras esto, lijar y pintar (similar a figuras de Warhammer)
- Pintar PLA
 - Necesita una primera capa fina de imprimación con pulverizador o masilla
 - Alisa crea una cobertura uniforme en la pieza

Reciclaje

Reciclaje

- Estudios dicen que un **0,1% de PLA no afecta al reciclaje de plástico** (polémica sobre contaminación de PLA en el reciclaje) (2008)
- Después de 3 ciclos de reciclado, el PLA reduce 50% su viscosidad, en el 5º un 80%, entre otras características (2015)
 - https://repositorio.unican.es/xmlui/bitstream/handle/10902/6694/376365.pdf?sequence=1&isAllowed=y
- o Tecnología para reciclar hasta 5 veces el PLA y el ABS (2016)
 - Estudiantes de la Universidad Autónoma de Sinaloa (México)
 - Primero se granula y después se extruye para crear el material
- o Protocycler: máquina que transforma residuos plásticos en filamentos de impresión 3D (2018)
 - Nylon, PET (botellas de plástico), ... No todos.
 - https://youtu.be/PZdEhvmosko
 - Destrucción del material + extrusión
- Recyclebot: similar a Protocycler, pero de Open Source (2018)
 - ABS y otros plásticos, no todos
 - https://reprap.org/wiki/Recyclebot

Preguntas tema 3

ohttps://forms.office.com/r/gxfPLnLS1Z

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

Impresoras 3D

v 1.4.1 Septiembre 2022