Lösung Aufgabe 1.1

Beweis (1):

$$(1-a)\cdot\sum_{\nu=0}^{N-1}a^{\nu}=(a^0+a^1+a^2+\cdots+a^{N-1})-(a^1+a^2+a^3+\cdots+a^N)=1-a^N$$
 q.e.d.

Grenzwert: Falls |a|<1ist, geht der Term a^N für $N\to\infty$ gegen 0, daher gilt:

$$\sum_{\nu=0}^{\infty} a^{\nu} = \frac{1}{1-a} \ .$$

Konvergenz: Die Reihe konvergiert für |a| < 1, wobei a auch komplex sein kann.

Beweis (2):

$$\sum_{\nu=M}^{N-1} a^{\nu} = \sum_{\nu=0}^{N-1} a^{\nu} - \sum_{\nu=0}^{M-1} a^{\nu} = \frac{1-a^{N}}{1-a} - \frac{1-a^{M}}{1-a} = \frac{a^{M}-a^{N}}{1-a} \quad \text{q.e.d.}$$

- a) nicht stabil, kausal, linear, nicht verschiebungsinvariant, nicht gedächnislos
- b) stabil, nicht kausal, linear, verschiebungsinvariant, nicht gedächnislos
- c) stabil, kausal, nichtlinear, verschiebungsinvariant, gedächnislos
- d) stabil, nicht kausal, linear, nicht verschiebungsinvariant, nicht gedächnislos
- e) stabil, kausal, nichtlinear, nicht verschiebungsinvariant, gedächnislos

a) Impulsantwort:

$$y(n) = 0,$$
 $n < 0$
 $y(n) = h(n) = \epsilon(n) \cdot n!,$ sonst
 $y(0) = 1$
 $y(1) = 1$
 $y(2) = 2$
 $y(3) = 6$
:

b) Linearität: Betrachte das Eingagngssignal $x(n) = a \cdot \delta(n) + b \cdot \delta(n)$:

$$y(n) = 0,$$
 $n < 0$
 $y(0) = a + b$
 $y(1) = a + b$
 $y(2) = 2 \cdot (a + b) = 2a + 2b$
 $y(3) = 6 \cdot (a + b) = 6a + 6b$
:

Das Ausgangssignal entspricht der Überlagerung der Ausgangssignale der individuellen Eingangssignale und ist daher linear.

c) Zeitinvarianz: Betrachte das Eingangssignal $x(n) = \delta(n-1)$:

$$y(n) = 0, n < 0$$

 $y(0) = 0$
 $y(1) = 1$
 $y(2) = 2$
 $y(3) = 6$
:

Vergleich mit h(n) zeigt: $y(n) \neq h(n-1) \rightarrow$ nicht verschiebungsinvariant!

Lösung Aufgabe 1.4

a) kausal b) kausal c) nicht kausal d) nicht kausal e) nicht kausal

Lösung Aufgabe 1.5

a) nicht stabil b) stabil c) stabil d) nicht stabil e) stabil f) stabil

Anfangsbedingung: y(-1) = 0.

$$y(n) = 0, n < 0$$

$$y(0) = 1 - a$$

$$y(1) = a \cdot (1 - a)$$

$$y(2) = a^{2} \cdot (1 - a)$$

$$\vdots$$

$$y(n) = a^{n} \cdot (1 - a), n \ge 0$$

$$y(n) = h(n), n \ge 0$$

Stabilität für |a|<1, denn: $\sum_{\nu=0}^{\infty}|h(n)|=1<\infty$ (siehe Aufgabe 1).

Lösung Aufgabe 1.7

$$y(n) = x(n) * y(n) = \sum_{\nu = -\infty}^{\infty} x(\nu) \cdot h(n - \nu) = \sum_{\nu = 0}^{4} 1 \cdot a^{n - \nu} \cdot \epsilon(n - \nu)$$

$$y(n) = 0, \qquad n < 0$$

$$y(0) = 1$$

$$y(1) = a + 1$$

$$y(2) = a^{2} + a + 1$$

$$y(3) = a^{3} + a^{2} + a + 1$$

$$y(4) = a^{4} + a^{3} + a^{2} + a + 1$$

$$y(5) = a \cdot y(4)$$

$$y(6) = a \cdot y(5)$$

$$\vdots$$

Lösung Aufgabe 1.8

Impulsantwort: $\{\ldots,0,0,0,0,0,\ldots\}$ Sprungantwort: $\{\ldots,0,0,1,1,1,\ldots\}$ a) nichtlinear b) verschiebungsinvariant c) nicht kausal d) BIBO-stabil

- a) periodisch $(T = 2\pi/5)$ b) nicht periodisch
- c) nicht periodisch

- d) nicht periodisch
- e) periodisch (N = 16)

Lösung Aufgabe 1.10

a)
$$h(n) = h_1(n) * [h_2(n) - h_3(n) * h_4(n)]$$

b)
$$h(n) = \frac{1}{2}\delta(n) + \frac{5}{4}\delta(n-1) + 2\delta(n-2) + \frac{5}{2}\epsilon(n-3)$$

c)
$$y(n) = \left\{ \frac{1}{2}, \frac{5}{4}, \frac{2}{4}, \frac{25}{4}, \frac{13}{2}, 5, 2, 0, 0, \dots \right\}$$

Lösung Aufgabe 1.11

$$h(n) = g(n)$$

Lösung Aufgabe 1.12

Differenzengleichung des Systems: x(n) = 0.5 y(n) - 0.4 y(n-1) - 1.5 x(n-1).

$$y(n) = \sum_{\nu=0}^{N_b} b_{\nu} \cdot \delta(n-\nu) + \sum_{\nu=n+1}^{N_b} b_{\nu} \cdot 1$$
, $n = 0, 1, 2, ...$

Faltungsergebnis, wenn alle Speicher mit Nullen vorbelegt sind: ${\bf Zero\text{-}State\text{-}Impulsantwort}$

Ausschwinganteil, den man erhält, wenn das FIR-System mit Nullen gespeist wird.

 \rightarrow Danach sind alle Speicher mit Nullen gefüllt!

Annahme: $b_0 = b_1 = \cdots = b_{N_b} = 1$:

Lösung Aufgabe 2.1

$$X(e^{j\Omega}) = \underbrace{\frac{1 - a_1 \cdot \cos(\Omega)}{1 - 2a_1 \cdot \cos(\Omega) + a_1^2}}_{\text{Re}\{X(e^{j\Omega})\}} + j \underbrace{\frac{-a_1 \cdot \sin(\Omega)}{1 - 2a_1 \cdot \cos(\Omega) + a_1^2}}_{\text{Im}\{X(e^{j\Omega})\}}$$
$$|X(e^{j\Omega})| = \sqrt{\text{Re}^2 + \text{Im}^2} = \frac{1}{\sqrt{1 - 2a_1 \cdot \cos(\Omega) + a_1^2}}$$
$$\Phi(\Omega) = \arctan\left(\frac{-a_1 \cdot \sin(\Omega)}{1 - a_1 \cdot \cos(\Omega)}\right)$$

Plot: siehe Vorlesungsskript S. 81.

Lösung Aufgabe 2.2

Zeitverschiebungssatz: $x(n - n_0) \circ X(e^{j\Omega}) \cdot e^{-j\Omega n_0}, \quad n_0 \in \mathbb{Z}$

Beweis:

$$Y(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x(n-n_0) \cdot e^{-j\Omega n} \qquad \nu = n-n_0$$

$$= \sum_{\nu=-\infty}^{\infty} x(\nu) \cdot e^{-j\Omega(\nu+n_0)}$$

$$= e^{-j\Omega n_0} \sum_{\nu=-\infty}^{\infty} x(\nu) \cdot e^{-j\Omega\nu} \qquad \nu \to n \text{ (einfache Umbenennung)}$$

$$= e^{-j\Omega n_0} \cdot X(e^{j\Omega}) \qquad \text{q.e.d.}$$

Lösung Aufgabe 2.3

$$h(n) = \frac{\Omega_c}{\pi} \operatorname{si}(\Omega_c \cdot n)$$

 \rightarrow Der ideale TP ist <u>nicht-kausal</u> und somit praktisch nicht realisierbar! Stabilität:

$$\frac{1}{\pi} \cdot \sum_{n=0}^{\infty} \left| \frac{\sin(\Omega_c \cdot n)}{n} \right| \to \infty \quad \text{nicht stabil! (\rightarrow beidseitiges Abschneiden der Impulsantwort)}$$

$$h(n) = \delta(n) - h_{\mathrm{TP}}(n) = \delta(n) - \frac{\Omega_c}{\pi} \frac{\sin(\Omega_c \cdot n)}{n} \quad \circ \longrightarrow \quad H(e^{j\Omega}) = 1 - H_{\mathrm{TP}}(e^{j\Omega}) = H_{\mathrm{HP}}(e^{j\Omega})$$

Einen idealen Hochpass erhält man <u>auch</u> durch Verschiebung des TP-Frequenzgangs um $\Omega_0 = \pi$:

$$H_{\mathrm{HP}}(e^{j\Omega}) = H_{\mathrm{TP}}(e^{j(\Omega-\pi)})$$
 $\bullet \bullet \bullet \circ h_{\mathrm{HP}}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\mathrm{TP}}(e^{j(\Omega-\pi)}) \cdot e^{j\Omega n} d\Omega$
(Substitution: $\Omega' = \Omega - \pi$) $= \frac{1}{2\pi} \int_{-2\pi}^{0} H_{\mathrm{TP}}(e^{j\Omega'}) \cdot e^{j\Omega' n} \cdot e^{j\pi n} d\Omega'$
(Frequenzverschiebungssatz, Skript S. 72) $= h_{\mathrm{TP}}(n) \cdot e^{j\pi n} = h_{\mathrm{TP}}(n) \cdot (-1)^n$

Lösung Aufgabe 2.5

$$y(n) = x(n) - x(n-1)$$

Linearität:

$$y_1(n) = x_1(n) - x_1(n-1), \quad y_2(n) = x_2(n) - x_2(n-1)$$

$$\mathfrak{T}\{a \cdot x_1(n) + b \cdot x_2(n)\} = a \cdot x_1(n) + b \cdot x_2(n) - [a \cdot x_1(n-1) + b \cdot x_2(n-1)]$$

$$= [a \cdot x_1(n) - a \cdot x_1(n-1)] + [b \cdot x_2(n) + b \cdot x_2(n-1)]$$

$$= a \cdot y_1(n) + b \cdot y_2(n)$$

Verschiebungsinvarianz:

$$\mathfrak{T}\{x(n-n_0)\} = x(n-n_0) - x(n-n_0-1) = y(n-n_0)$$

Impulsantwort:

$$h(n) = \delta(n) - \delta(n-1)$$

Frequenzgang:

$$H(e^{j\Omega}) = 1 - e^{-j\Omega}$$

Amplitudengang:

$$|H(e^{j\Omega})| = 2 \cdot \left| \sin\left(\frac{\Omega}{2}\right) \right|$$

Phasengang:

$$\Phi(\Omega) = \frac{\pi}{2} - \frac{\Omega}{2}$$
 \rightarrow lineare Phase, Steigung: $\frac{-\pi}{2\pi} = -\frac{1}{2}$

Verzögerung: 1/2 Abtastwert

a)
$$H(e^{j\Omega}) = \frac{1+2e^{-j\Omega}+e^{-j2\Omega}}{1-\frac{1}{2}e^{-j\Omega}}$$

b)
$$x(n) - \frac{1}{2}x(n-1) + x(n-3) = y(n) + \frac{1}{2}y(n-1) + \frac{3}{4}y(n-2)$$

Lösung Aufgabe 2.7

$$y(n) = 2 \cdot \left(\frac{1}{3}\right)^n \cdot \epsilon(n) + 3 \cdot \left(-\frac{1}{2}\right)^n \cdot \epsilon(n)$$

a)
$$X_1(e^{j\Omega}) = \frac{e^{j\frac{\Omega}{2}}}{1 - a \cdot e^{j\frac{\Omega}{2}}}$$

b)
$$X_2(e^{j\Omega}) = X(e^{-\frac{\Omega}{2}})$$

c)
$$X_3(e^{j\Omega}) = X^2(e^{j\Omega}) \cdot e^{-j\Omega}$$

d)
$$X_4(e^{j\Omega}) = -X(e^{j(\Omega + \frac{j\pi}{2})}) \cdot e^{j2\Omega}$$

e)
$$X_5(e^{j\Omega}) = \frac{1}{2} [X(e^{j(\Omega - 0.3\pi)}) + X(e^{j(\Omega + 0.3\pi)})]$$

f)
$$X_6(e^{j\Omega}) = \frac{1}{1 - 2a\cos(\Omega) + a^2}$$

a)
$$H(e^{j\Omega}) = \cos(\frac{\Omega}{2}) \cdot e^{-j\frac{\Omega}{2}}$$
 $|H(e^{j\Omega})| = |\cos(\frac{\Omega}{2})|$ $\Phi(\Omega) = -\frac{\Omega}{2}, \quad 0 < \Omega < \pi$

$$\mathrm{b)} \quad H(e^{j\Omega}) = \sin(\tfrac{\Omega}{2}) \cdot e^{-j\tfrac{\Omega}{2}} \cdot e^{j\tfrac{\pi}{2}} \qquad |H(e^{j\Omega})| = |\sin(\tfrac{\Omega}{2})| \qquad \quad \Phi(\Omega) = -\tfrac{\Omega}{2} + \tfrac{\pi}{2}, \quad 0 < \Omega < \pi$$

c)
$$H(e^{j\Omega}) = \sin(\Omega) \cdot e^{j\frac{\pi}{2}}$$
 $|H(e^{j\Omega})| = |\sin(\Omega)|$ $\Phi(\Omega) = \frac{\pi}{2}, \quad 0 < \Omega < \pi$

d)
$$H(e^{j\Omega}) = \cos(\Omega)$$
 $|H(e^{j\Omega})| = |\cos(\Omega)|$ $\Phi(\Omega) = \begin{cases} 0, & 0 < \Omega < \frac{\pi}{2} \\ \pi, & \frac{\pi}{2} < \Omega < \pi \end{cases}$

e)
$$H(e^{j\Omega}) = \cos(\Omega) \cdot e^{-j\Omega}$$
 $|H(e^{j\Omega})| = |\cos(\Omega)|$ $\Phi(\Omega) = \begin{cases} -\Omega, & 0 < \Omega < \frac{\pi}{2} \\ -\Omega + \pi, & \frac{\pi}{2} < \Omega < \pi \end{cases}$

f)
$$H(e^{j\Omega}) = \sin(\Omega) \cdot e^{-j\Omega + j\frac{\pi}{2}}$$
 $|H(e^{j\Omega})| = |\sin(\Omega)|$ $\Phi(\Omega) = -\Omega + \frac{\pi}{2}, \quad 0 < \Omega < \pi$

g)
$$H(e^{j\Omega}) = \frac{1}{3} [1 + 2\cos(\Omega)]$$
 $|H(e^{j\Omega})| = |\frac{1}{3} [1 + 2\cos(\Omega)]|$

$$\Phi(\Omega) = \begin{cases} -\Omega, & 1 + 2\cos(\Omega) > 0 \\ -\Omega + \pi, & 1 + 2\cos(\Omega) < 0 \end{cases} = \begin{cases} -\Omega, & 0 < \Omega < \frac{2\pi}{3} \\ -\Omega + \pi, & \frac{2\pi}{3} < \Omega < \pi \end{cases}$$

h)
$$H(e^{j\Omega}) = 2 \cdot \sin(4\Omega) \cdot e^{j(\frac{\pi}{2} - 4\Omega)} \quad |H(e^{j\Omega})| = 2 \cdot |\sin(4\Omega)|$$

$$\Phi(\Omega) = \begin{cases}
\frac{\pi}{2} - 4\Omega, & 0 < \Omega < \frac{\pi}{4} \\
\frac{3\pi}{2} - 4\Omega, & \frac{\pi}{4} < \Omega < \frac{\pi}{2} \\
\frac{\pi}{2} - 4\Omega (+2\pi), & \frac{\pi}{2} < \Omega < \frac{3\pi}{4} \\
\frac{3\pi}{2} - 4\Omega (+2\pi), & \frac{3\pi}{4} < \Omega < \pi
\end{cases}$$

i)
$$H(e^{j\Omega}) = e^{j4\Omega}$$
 $|H(e^{j\Omega})| = 1$ $\Phi(\Omega) = 4\Omega$

a)
$$H(e^{j\Omega}) = \cos(\frac{\Omega}{2}) \cdot e^{-j\frac{\Omega}{2}}$$
 $|H(e^{j\Omega})| = |\cos(\frac{\Omega}{2})|$ $\Phi(\Omega) = -\frac{\Omega}{2}$, $0 < \Omega < \pi$

b)
$$H(e^{j\Omega}) = \sin(\frac{\Omega}{2}) \cdot e^{j(\frac{\pi}{2} - \frac{\Omega}{2})} |H(e^{j\Omega})| = |\sin(\frac{\Omega}{2})| \Phi(\Omega) = \frac{\pi}{2} - \frac{\Omega}{2}, \quad 0 < \Omega < \pi$$

c)
$$H(e^{j\Omega}) = \cos^3(\frac{\Omega}{2})e^{-j\frac{3\Omega}{2}}$$
 $|H(e^{j\Omega})| = |\cos^3(\frac{\Omega}{2})|$ $\Phi(\Omega) = -\frac{3\Omega}{2}$, $0 < \Omega < \pi$

Lösung Aufgabe 2.11

$$|H(e^{j\Omega})| = |2\cos\left(\frac{\Omega \cdot M}{2}\right)| \qquad \Phi(\Omega) = \begin{cases} -\frac{\Omega \cdot M}{2}, & \cos\left(\frac{\Omega \cdot M}{2}\right) > 0\\ \pi - \frac{\Omega \cdot M}{2}, & \cos\left(\frac{\Omega \cdot M}{2}\right) < 0 \end{cases}$$

a)
$$b = \pm 0.1$$

b)
$$\Omega_0 = 0.105$$

a)
$$H(e^{j\Omega}) = 2 \cdot e^{-j2\Omega} \cdot e^{j\frac{\pi}{2}} \cdot \sin(2\Omega)$$

b)
$$x(n) = \cos\left(\frac{\pi}{2}n\right) + \cos\left(\frac{\pi}{4}n\right)$$
$$H(e^{j\frac{\pi}{2}n}) = 0, \qquad H(e^{j\frac{\pi}{4}}) = 2, \qquad \Phi(\frac{\pi}{4}) = 0$$
$$y(n) = 2 \cdot \cos\left(\frac{\pi}{4}n\right)$$

c) Das Filter sperrt bei der Frequenz $\Omega = \frac{\pi}{2}$.

a)
$$h(n) = \frac{2}{\pi n} \cdot \sin\left(\frac{\pi}{8}n\right) \cdot \cos\left(\frac{\pi}{4}n\right)$$

b)
$$h_1(n) = \frac{2\sin(\frac{\pi}{8}n)}{n\pi}$$

$$H_1(e^{j\Omega}) = \begin{cases} 2, & |\Omega| \le \frac{\pi}{8} \\ 0, & \frac{\pi}{8} < |\Omega| < \pi \end{cases}$$

$$\to h(n) = h_1(n) \cdot \cos(\frac{\pi}{4}n)$$

Lösung Aufgabe 3.1

a)
$$\mathcal{Z}\left\{\left(\frac{1}{2}\right)^n \cdot \epsilon(n)\right\}$$
 = $\frac{1}{1-\frac{1}{2}z^{-1}}$ ROC: $|z| > 1/2$ \rightarrow FT existient

b)
$$\mathcal{Z}\left\{-\left(\frac{1}{2}\right)^n \cdot \epsilon(-n-1)\right\} = \frac{1}{1-\frac{1}{2}z^{-1}}$$
 ROC: $|z| < 1/2 \longrightarrow \text{FT existiert nicht}$

c)
$$\mathcal{Z}\left\{\left(\frac{1}{2}\right)^n \cdot \epsilon(-n)\right\}$$
 = $\frac{1}{1-2z}$ ROC: $|z| < 1/2$ \rightarrow FT existient nicht

d)
$$\mathcal{Z}\{\delta(n)\}$$
 = 1 ROC: alle $z \to FT$ existient

e)
$$\mathcal{Z}\{\delta(n-1)\}$$
 = z^{-1} ROC: $|z| > 0$ \rightarrow FT existient

f)
$$\mathcal{Z}\{\delta(n+1)\}$$
 = z ROC: $0 \le |z| < \infty \to \text{FT existient}$

g)
$$\mathcal{Z}\left\{ (\frac{1}{2})^n \cdot [\epsilon(n) - \epsilon(n-10)] \right\} = \frac{z - \frac{1}{2}(2z)^{-9}}{z - \frac{1}{2}}$$
 ROC: $0 < |z| \to \text{FT existiert}$

Lösung Aufgabe 3.2

$$X(z) = \frac{z^{-1} - z^{-N-1}}{(1 - z^{-1})^2}$$

Lösung Aufgabe 3.3

a)
$$x(n) = (-\frac{1}{2})^n \cdot \epsilon(n)$$
 (FT existient)

b)
$$x(n) = -(-\frac{1}{2})^n \cdot \epsilon(-n-1)$$
 (FT existiert nicht)

c)
$$x(n) = \left[4 \cdot \left(-\frac{1}{2}\right)^n - 3 \cdot \left(-\frac{1}{4}\right)^n\right] \cdot \epsilon(n)$$
 (FT existient)

d)
$$x(n) = (-\frac{1}{2})^n \cdot \epsilon(n)$$
 (FT existient)

e)
$$x(n) = -a \cdot \delta(n) + (a^2 - 1) \cdot a^{-(n+1)} \cdot \epsilon(n)$$
 (FT existiert falls $|a| > 1$)

a)
$$H(z) = \frac{1-z^{-1}}{1+z^{-1}}$$
 ROC: $|z| > 1$

b) ROC:
$$|z| > 1$$
, $y(n)$ rechtsseitig

c)
$$y(n) = -\frac{1}{3} \cdot (\frac{1}{2})^n \cdot \epsilon(n) + \frac{1}{3} \cdot (-1)^n \cdot \epsilon(n)$$

a)
$$h(n) = -\frac{4}{3} \cdot \delta(n) + \frac{7}{3} (-\frac{3}{4})^n \cdot \epsilon(n)$$

b)
$$y(n) = -\frac{8}{13} \cdot (\frac{1}{3})^n \cdot \epsilon(n) + \frac{8}{13} \cdot (-\frac{3}{4})^n \cdot \epsilon(n)$$

c) Das System ist stabil, da es laut Aufgabenstellung kausal ist und konvergiert im Bereich |z| > 3/4, also alle Pole innerhalb des Einheitskreises liegen! Wenn |z| = 1 Teil der ROC, dann ist absolute Summierbarkeit gegeben!

Übungen zur Vorlesung "Digitale Signalverarbeitung" – *Lsg. Blatt 15* Prof. Dr.-Ing. Tim Fingscheidt, Jan-Aike Termöhlen, M.Sc., Marvin Sach, M.Sc. TU Braunschweig, Institut für Nachrichtentechnik

Lösung Aufgabe 3.7

a) ROC: |z| > 1/2

b) ROC: 1/3 < |z| < 2

c) ROC: 1/3 < |z|

Lösung Aufgabe 3.8

a) ROC: |z| > 2/3

b) ROC: |z| > 1/6

Lösung Aufgabe 3.9

a)
$$H(z) = \frac{1}{2}(1+z^{-1})$$

b)
$$H(z) = \frac{1}{2}(-1 + z^{-1})$$

c)
$$H(z) = \left[\frac{1}{2}(1+z^{-1})\right]^3$$

zu a)
$$z_{0k} = (0.95)^{\frac{1}{6}} \cdot e^{j2\pi k/6}, \quad k = 0, 1, \dots, 5 \qquad r = 0.95^{(1/6)} = 0.9915$$

zu c)
$$G(z) = \frac{z^6}{z^6 - 0.95}$$

a) Nullstelle bei z=0, Nullstelle bei $z\to\infty$

b)
$$h(n) = -\frac{3}{8} \cdot (\frac{1}{8})^n \cdot \epsilon(n) - \frac{1}{8}(3)^{n+1} \cdot \epsilon(-n-1), \quad n \in \mathbb{Z}$$

Lösung Aufgabe 3.12

a)
$$y(n) - \frac{7}{12} \cdot y(n-1) + \frac{1}{12} \cdot y(n-2) = 3 \cdot x(n) - \frac{19}{6} \cdot x(n-1) + \frac{2}{3} \cdot x(n-2)$$

b)
$$h(n) = (\frac{1}{3})^n \cdot \epsilon(n) - (\frac{1}{3})^{n-1} \cdot \epsilon(n-1) + (\frac{1}{4})^n \cdot \epsilon(n) - (\frac{1}{4})^{n-1} \cdot \epsilon(n-1) + \delta(n)$$

c) Das System ist kausal, alle Pole liegen im Einheitskreis \rightarrow stabil.

Lösung Aufgabe 3.13

$$X(z) = \frac{z(z - \frac{1}{2}\cos(\frac{1}{3}))}{z^2 - \cos(\frac{1}{3}) \cdot z + \frac{1}{4}}$$

Nullstellen: $z_{01}=0$ und $z_{02}=\frac{1}{2}\cos(\frac{1}{3})=0.4725$ / Pole: $z_{\infty 1,2}=0.4725\pm j0.1636$

$$h(n) = \epsilon(n) \cdot [9 \cdot (0.9)^n - 8 \cdot (0.8)^n], \quad |z| > 0.9$$

Lösung Aufgabe 3.15

a) Stabil, da Pole $z_{\infty 1,2} = \pm j0.9$ innerhalb des Einheitskreises!

b)
$$H_{\min}(z) = \frac{(1 - 0.2z^{-1})(1 - \frac{1}{3}z^{-1})(1 + \frac{1}{3}z^{-1})}{(1 - j0.9z^{-1})(1 + j0.9z^{-1})} \cdot \frac{1}{b_0}$$

$$H_{AP}(z) = \frac{(1 - 3z^{-1})(1 + 3z^{-1})}{(1 - \frac{1}{3}z^{-1})(1 + \frac{1}{3}z^{-1})} \cdot b_0$$

$$b_0 = -\frac{1}{9}$$

a)
$$y(n) = y(n-1) - 0.49 \cdot y(n-2) + 0.49 \cdot y(n-3) + x(n) - 0.6 \cdot x(n-1) - 2.35 \cdot x(n-2) - 0.9 \cdot x(n-3)$$

b+c) $z_{01} = 2$, $z_{02} = -\frac{1}{2}$, $z_{03} = -0.9$, $z_{\infty 1,2} = \pm 0.7j$, $z_{\infty 3} = 1$

(Fortsetzung Aufgabe 3.16)

- d) Nein, denn 1 Pol liegt auf dem Einheitskreis.
- e) Nein, denn eine Nullstelle liegt außerhalb des Einheitskreises.

Lösung Aufgabe 3.17

- a) nicht minimalphasig
- b) minimalphasig
- c) minimalphasig
- d) nicht minimalphasig

Lösung Aufgabe 3.18

a)
$$H_{\min}(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{3}z^{-1}} \cdot 2$$

b)
$$H_{\min}(z) = \frac{1 - \frac{1}{2}z^{-1}}{z^{-1}} \cdot 3$$

c)
$$H_{\min}(z) = \frac{(1-\frac{1}{3}z^{-1})(1-\frac{1}{2}z^{-1})}{(1-\frac{3}{4}z^{-1})(1-\frac{3}{4}z^{-1})} \cdot \frac{9}{4}$$

Lösung Aufgabe 3.19

- a) Allpass
- b) kein Allpass
- c) Allpass
- d) Allpass mit zusätzlicher Verzögerung

a)
$$\tau(\Omega) = 5$$
 Takte Verzögerung

b)
$$\tau(\Omega) = 1/2$$
 Takt Verzögerung

Lösung Aufgabe 4.1

$$H(z) = \frac{0.5}{1 - e^{-(a+jb)T}z^{-1}} + \frac{0.5}{1 - e^{-(a-jb)T}z^{-1}},$$
 ROC: $|z| > e^{-aT}$

Lösung Aufgabe 4.2

a) $\delta_{\rm p}=0.293,\quad \delta_{\rm st}=0.5,\quad f_{\rm p}=2500, {\rm Hz}\qquad \Omega'=\Omega_{\rm p},\quad f_{\rm st}=3441\,{\rm Hz},\quad v=15708\,{\rm s}^{-1}$ Toleranzschema: vgl. Vorlesungsskript.

b)
$$N = 2$$

c)
$$s_{\infty 1} = 15708 \cdot e^{j3\pi/4} \,\mathrm{s}^{-1}, \quad s_{\infty 2} = 15708 \cdot e^{j5\pi/4} \,\mathrm{s}^{-1}$$

d)
$$H(z) = 0.293 \cdot \frac{(z+1)^2}{(z-0.414j)(z+0.414j)}$$

e)
$$H_{\rm HP}(z) = 0.293 \cdot \frac{(z-1)^2}{(z-0.414j)(z+0.414j)}$$

Lösung Aufgabe 4.3

a) $1-\delta_p=0.891,\quad \delta_{st}=0.17783,\quad \omega_p=0.1\omega_s,\quad \ \omega_{st}=0.15\omega_s$ Toleranzschema: vgl. Vorlesungsskript.

b)
$$\omega_{\rm c} = 0.112\omega_{\rm s}$$

Lösung Aufgabe 4.4

$$\Omega_{\rm c} = 0.4\pi$$

a)
$$\Omega_{\rm c} = 1.122$$

b)
$$v = 15169 \,\mathrm{s}^{-1}$$

$$\omega_{\rm c} = 2500\pi$$

Lösung Aufgabe 4.7

$$\omega_{\rm c} = 2\pi (2414) \, {\rm s}^{-1}$$

Lösung Aufgabe 4.8

$$v = 1369.5 \,\mathrm{s}^{-1}$$
 (nur exakt eine Lösung)

Lösung Aufgabe 4.9

 $v \cdot T = 1.85$, $\omega_{\rm st} \cdot T = 0.1913\pi$ Zeichnung des Toleranzschemas: vgl. Vorlesungsskript

Lösung Aufgabe 4.10

a)
$$N=2$$

b)
$$v = 15793, 9 \,\mathrm{s}^{-1}$$

Lösung Aufgabe 4.11

$$H_{\rm BP}(z) = \frac{0.245(1-z^{-2})}{1+0.509z^{-2}}$$

a)
$$H_{\rm HP}(z) = \frac{0.245(1-z^{-1})}{1+0.509z^{-1}}$$

b)
$$H_{\rm HP}(z) = 0.753(1 - z^{-1})$$

Lösung Aufgabe 5.1

a) $N_{\rm b} \ge 29.7, \quad \beta = 3.3953$

b)
$$\Omega_{\rm p}' = 0.25\pi, \quad \Omega_{\rm st}' = 0.4\pi, \quad \delta_{\rm st}' = 0.1$$

c)
$$N_{\rm b}' = 12$$

- d) Vorteile von F(z):
 - \bullet Geringere Gesamtkomplexität $2(N_{\rm b}'+1)=26$ MACs pro Sample.
 - \bullet geringere Verzögerung: 2 · $\frac{N_{\rm b}}{2}=12$ Samples.

Nachteil:

• $\delta_{\rm p}$ wird größer! $\approx 6\,{\rm dB}$ \rightarrow $\approx 12\,{\rm dB}$

Lösung Aufgabe 5.2

a)
$$N = 91, \quad \beta = 3.3953$$

b)
$$\tau = 45$$

c)
$$h_{\text{ideal}}(n) = \frac{\sin(0.625\pi(n-45)) - \sin(0.3\pi(n-45))}{\pi(n-45)}$$

Lösung Aufgabe 5.3

- Hann-Fenster $(N_b = 80)$
- Hamming-Fenster $(N_b = 80)$
- Blackman-Fenster $(N_b = 120)$

$$N_{\rm b} = 181, \quad \beta = 2.655$$

a)
$$N_{\rm b} = 23, \quad h_{\rm ideal}(n) = \frac{\sin(\frac{\pi}{3}(n - \frac{23}{2}))}{\pi(n - \frac{23}{2})}, \ 0 \le n \le 23$$

b)
$$N_{\rm b} = 48, \quad h(n) = \frac{\sin(\frac{\pi}{3}(n-24))}{\pi(n-24)} \cdot \left[0.54 - 0.46\cos(\frac{2\pi n}{48})\right], \ 0 \le n \le 48$$

Lösung Aufgabe 5.6

$${h(n)} = {0.0732, 0.4267, 0.4267, 0.0732}$$

Lösung Aufgabe 5.7

$$h(n) = j \frac{\sin(\pi(n-10))\cos(\pi n)[1-\cos(\frac{\pi n}{10})]}{2(n-10)}$$

Lösung Aufgabe 5.8

a)
$$|H(e^{j\Omega})| = 1$$

b)

Die Typen III und IV sind möglich!

c)
$$h(n) = \frac{1}{\pi(n-\alpha)} \left[1 - \cos\left(\pi(n-\alpha)\right) \right]$$

d) Für $\alpha \in \mathbb{Z}$ kann man schreiben: $h(n) = \frac{1}{\pi (n-\alpha)} [1-(-1)^{n-\alpha}]$

Lösung Aufgabe 6.1

a)
$$X(e^{j\Omega}) = \frac{1}{1 - c \cdot e^{-j\Omega}}, \quad |c| < 1$$

b+c)
$$\tilde{X}(k) = \frac{1}{1 - c \cdot e^{-j2\pi k/K}} = X(e^{j\Omega})\big|_{\Omega = 2\pi k/K}$$

Lösung Aufgabe 6.2

a)
$$X(k) = 1$$

b)
$$X(k) = W_k^{n_0 k}$$

c)
$$X(k) = \begin{cases} 0, & \text{sonst} \\ \frac{K}{2}, & k = 0, \frac{K}{2} \end{cases}$$

d)
$$X(k) = \begin{cases} \frac{K}{2}, & k = 0\\ 0, & k = 2, 4, \dots, K - 2\\ \frac{2}{1 - e^{-j2\pi k/K}}, & k = 1, 3, \dots, K - 1 \end{cases}$$

a)
$$X(e^{j\Omega}) = e^{-j(\Omega - \Omega_0)(K-1)/2} \cdot \frac{\sin((\Omega - \Omega_0)\frac{K}{2})}{\sin((\Omega - \Omega_0)\frac{1}{2})}$$

b)
$$X(k) = e^{-j(\frac{2\pi k}{K} - \Omega_0)(K - 1)/2} \cdot \frac{\sin((\frac{2\pi k}{K} - \Omega_0)\frac{K}{2})}{\sin((\frac{2\pi k}{K} - \Omega_0)\frac{1}{2})}$$

c)
$$X(k) = e^{-j\frac{2\pi}{K}(k-k_0)(K-1)/2} \cdot \frac{\sin(\pi(k-k_0))}{\sin(\pi(k-k_0)/K)}$$

Skizzen entsprechend:

a)
$$y_1(n) = 2\delta(n) + 2\delta(n-1) + \delta(n-2) + \dots + \delta(n-5)$$
 b)
$$y_2(n) = x(n)$$

Lösung Aufgabe 6.5

$$y(n) = \frac{(\frac{1}{2})^n}{1 - (\frac{1}{2})^{10}}, \quad 0 \le n \le 9$$

Lösung Aufgabe 6.6

$$K_{\min} = 24$$

Da die Folge kürzer ist als die DFT-Länge K=24, müssen zunächst Nullwerte angehängt werden:

$$y(n) = \begin{cases} x(n), & 0 \le n \le 19 \\ 0, & 20 \le n \le 23 \end{cases}$$

$$\mathrm{DFT}_{24-\mathrm{Punkte}}\{y(n)\}\big|_{k=4} = X(e^{j\Omega})\big|_{\Omega=\frac{12\pi}{26}}$$

Lösung Aufgabe 6.7

a)
$$Y(k) = \text{DFT}\{y(n)\}$$

$$\frac{1}{2}\tilde{Y}(k) + \frac{1}{2}\tilde{Y}(K-k) = X_1(k), \quad k = 0, 1, \dots, K-1$$

$$\frac{1}{2i}(\tilde{Y}(k) - \tilde{Y}(K-k)) = X_2(k), \quad k = 0, 1, \dots, K-1$$

b) •
$$2K^2$$

•
$$K^2 + 4K$$

Lösung Aufgabe 6.8

b)
$$F\ddot{u}r K = 6:$$

Für K = 8 ergibt sich die lineare Faltung!

a)
$$X(k) = \sum_{n=0}^{3} \cos\left(\frac{\pi n}{2}\right) W_4^{kn} = 1 - e^{-j\pi k}, \quad 0 \le k \le 3$$

b)
$$H(k) = 1 + 2W_4^k + 4W_4^{2k} + 8W_4^{3k}$$

c)
$$y(n) = (1-4)\delta(n) + (2-8)\delta(n-1) + (4-1)\delta(n-2) + (8-2)\delta(n-3)$$

Lösung Aufgabe 6.10

$$K = 9$$

Lösung Aufgabe 6.11

a)
$$K = 128, \quad L = 48 \text{ Abtastwerte}$$

c)
$$2K\log_2(K) + 2K - L \text{ komplexe Ops pro } L \text{ Abtastwerte}$$

e)

d) OLA: $0.42 \cdot 10^6$ MACs/Sekunde, OLS: $0.43 \cdot 10^6$ MACs/Sekunde Die Faltung im Zeitbereich ist etwa 3.8 mal aufwändiger.

Lösung Aufgabe 7.1

a)
$$y(n) = x(n) \cdot r(n) \text{ mit } r(n) = \frac{1}{2}(1 + e^{j\pi n}), \quad Y(e^{j\Omega}) = \frac{1}{2} \cdot \sum_{\nu = -\infty}^{\infty} X(e^{j(\Omega - \pi \nu)})$$

b) Beweis:

$$E(e^{j\Omega'}) = \sum_{n'=-\infty}^{\infty} x(2n') \cdot e^{-j\Omega'n'}$$

$$= \sum_{n'=-\infty}^{\infty} y(2n') \cdot e^{-j\Omega'n'}$$

$$= \sum_{\nu=-\infty}^{\infty} y(\nu) \cdot e^{-j\Omega'\nu/2} \text{ (Ersetzung: } \nu = 2n')$$

$$= Y(e^{j\Omega'/2}) \text{ q.e.d.}$$

Nein, Expansion und TP-Filterung rekonstruiert das ursprüngliche Signal!

a) $Y(e^{j\Omega'}) = X(e^{j2\Omega'})$

Rekonstruktion von x(n) aus y(n') möglich durch TP-Filterung und Unterabtastung.

b) Ja! Das Signal x(n) ergibt sich bei richtiger Wahl von $\Omega_{\rm c}$ durch einfache Unterabtastung um den Faktor 2.

Bereich: $\pi/6 \le \Omega'_{\rm c} \le 5\pi/6$

Lösung Aufgabe 7.3

a) Beweis:

$$\{x(n)\} = \{x_0, x_1, x_2, x_3, x_4, \dots\}$$

z.B. $L_1 = L_2 = 2$

Dezimation zuerst:

$$\{x_2(n'')\} = \{x_0, x_2, x_4, \dots\}, \{y_2(n')\} = \{x_0, 0, x_2, 0, x_4, \dots\}$$

Expansion zuerst:

$$\{x_1(n'')\} = \{x_0, 0, x_1, 0, x_2, 0, \dots\}, \quad \{y_1(n')\} = \{x_0, x_1, x_2, \dots\} = \{x(n)\}$$

 $\Rightarrow y_2(n') \neq y_1(n') \quad \text{q.e.d.}$

b) Beweis:

Annahme: $L_1 = i \cdot k$, $L_2 = d \cdot k$, i, d seien teilerfremd.

Dezimation zuerst:

$$\{x_2(n'')\} = \{x_0, x_{dk}, x_{2dk}, \dots\}, \quad \{y_2(n')\} = \{x_0, \underbrace{0, \dots, 0}_{ik-1 \text{ Nullen}}, x_{dk}, \underbrace{0, \dots, 0}_{ik-1 \text{ Nullen}}, x_{2dk}, \dots\}$$

Interpolation zuerst:

$$\{x_1(n'')\} = \{x_0, \underbrace{0, \dots, 0}_{ik-1 \text{ Nullen}}, x_1, \underbrace{0, \dots, 0}_{ik-1 \text{ Nullen}}, \dots\}, \{y_1(n')\} = \{\dots?$$

Positionen der von Null versch. Werte in $\{x_1(n'')\}: 0, 1 \cdot ik, 2 \cdot ik, \dots, d \cdot ik, (d+1)ik, \dots$

Die Werte sind:
$$x_0, x_1, x_2, ..., x_d, x_{d+1}, ...$$

Wenn i und d teilerfremd sind, ergibt sich eine d-fache Dezimation:

$$\{y_1(n')\} = \{x_0, \underbrace{0, \dots, 0}_{ik-1 \text{ Nullen}}, x_d, \underbrace{0, \dots, 0}_{ik-1 \text{ Nullen}}, x_{2d}, \dots\}$$

mit Index
$$n' = 0, 1, \dots, ik - 1, ik, ik + 1, \dots$$
(nach d -facher Dezimation wird aus $dik \to ik$)
$$\Rightarrow y_2(n') = y_1(n') \text{ für } k = 1, \text{ d.h. Teilerfremdheit!} \quad \text{q.e.d.}$$

Lösung Aufgabe 7.4

a) Beweis:

$$y(n') = x_1(n') * g(n') = x(n = L \cdot n') * g(n')$$

= $\sum_{\nu=0}^{\infty} g(\nu) \cdot x(L \cdot (n' - \nu))$

System rechts:

$$G(z^{L}) = g(0) \cdot z^{0} + g(1) \cdot z^{L} + g(2) \cdot z^{2L} + \dots$$
• $\{\bar{g}(n)\} = \{g(0), \underbrace{0, \dots, 0}_{L-1 \text{ Nullen}}, g(1), \underbrace{0, \dots, 0}_{L-1 \text{ Nullen}}, g(2), 0, \dots\}$

$$\Rightarrow y_1(n) = \bar{g}(n) * x(n) = \sum_{\nu=0}^{\infty} \bar{g}(\nu)x(n-\nu) = \sum_{\nu=0}^{\infty} \bar{g}(L \cdot \nu)x(n-\nu) = \sum_{\nu=0}^{\infty} g(\nu)x(n-\nu) = \sum_{\nu=0$$

Unterabtastung liefert:

$$y(n') = y_1(n = L \cdot n') = \sum_{\nu=0}^{\infty} g(\nu) \cdot x(L \cdot (n' - \nu))$$
 q.e.d.

b) Beweis:

$$y_1(n) = \sum_{\nu=0}^{\infty} g(\nu) \cdot x(n-\nu) \qquad (0)$$

$$y(n') = \begin{cases} y_1(n = \frac{n'}{L}), & \text{wenn } \frac{n'}{L} \in \mathbb{Z} \leftarrow \text{Dies ist der Fall, wenn } n' = p \cdot L \text{ ist, } p \in \mathbb{Z} \\ 0, & \text{sonst} \end{cases}$$

$$\Rightarrow y(n') = \begin{cases} y_1(p), & \text{wenn } n' = p \cdot L, \ p \in \mathbb{Z} \\ 0, & \text{sonst} \end{cases} \qquad (*)$$
System rechts:
$$\Rightarrow x_1(n') = \begin{cases} x(p), & \text{wenn } n' = p \cdot L, \ p \in \mathbb{Z} \\ 0, & \text{sonst} \end{cases}$$

$$\Rightarrow x_1(n') = \begin{cases} a(r), & \text{if } r = r, r = 0 \\ 0, & \text{sonst} \end{cases}$$

$$G(z^L) \quad \bullet \longrightarrow \quad \bar{a}(n')$$

$$G(z^L)$$
 \bullet $\bar{g}(n')$

$$\operatorname{dann\ gilt:}\ y(n') = \sum_{\nu'=0}^{\infty} \bar{g}(\nu') \cdot x_1(n'-\nu') = \sum_{\nu'=0}^{\infty} \bar{g}(\nu'L) \cdot x_1(n'-\nu'L)$$

$$= \sum_{\nu'=0}^{\infty} g(\nu') \cdot x_1(n'-\nu'L)$$

$$\operatorname{Setze}\ n' = p \cdot L :\ y(n') = \sum_{\nu'=0}^{\infty} g(\nu') \cdot x_1(L(p-\nu')) = \sum_{\nu'=0}^{\infty} g(\nu') \cdot x(p-\nu') \underbrace{= y_1(p)}_{\text{siehe\ oben!(*)}(0)}$$

$$\operatorname{Setze:}\ n' \neq p \cdot L :\ y(n') = \sum_{\nu'=0}^{\infty} g(\nu') \cdot 0 \underbrace{= 0}_{\text{siehe\ oben!(*)}} \text{ q.e.d.}$$

a) Polyphasen-Zerlegung:

$$H(z) = \sum_{n=-\infty}^{\infty} h(2n)z^{-2n} + \sum_{n=-\infty}^{\infty} h(2n+1)z^{-2n-1}$$

$$= \sum_{n=-\infty}^{\infty} h(2n)(z^2)^{-n} + z^{-1} \sum_{n=-\infty}^{\infty} h(2n+1)(z^2)^{-n}$$

$$= E_0(z^2) + z^{-1} \cdot E_1(z^2)$$

$$E_0(z) = \sum_{n=-\infty} h(2n) \cdot z^{-n}, \quad E_1(z) = \sum_{n=-\infty} h(2n+1) \cdot z^{-n}$$

b) Verallgemeinerung:

$$H(z) = \sum_{n} h(Ln)z^{-Ln} + \sum_{n} h(Ln+1)z^{-Ln+1} + \dots + \sum_{n} h(Ln+L-1)z^{-Ln+L-1}$$

$$= \sum_{l=0}^{L-1} z^{-l} \sum_{n=-\infty}^{\infty} h(Ln+l) (z^{L})^{-n} \stackrel{!}{=} \sum_{l=0}^{L-1} z^{-l} E_{l}(z^{L})$$

$$E_{l}(z) = \sum_{n=-\infty}^{\infty} h(Ln+l) \cdot z^{-n}$$
c)
$$E_{l}(z) = \sum_{n=-\infty}^{\infty} h(Ln+l) \cdot z^{-n}$$

$$E_0(z) = \frac{1}{1 - a^2 z^{-1}}, \quad E_1(z) = \frac{a}{1 - a^2 z^{-1}}$$

a)
$$L_1 = 2, \quad L_2 = 3, \quad \Omega'_{\rm c} = \pi/3$$

b)
$$h(n') = \frac{1}{3} \cdot \text{si}(\frac{\pi}{3}(n' - \frac{5}{2})), \quad 0 \le n' \le 5$$

c)
$$h(0), h(1), h(2), h(3), h(4), h(5) \Rightarrow \text{Koeffizienten aus b}$$

es gilt:
$$\Omega''' = \Omega$$

a)
Minimale Anzahl Dezimatoren/Expander:

b)
Minimaler Speicheraufwand, minimale Rechenkapazität:

a)
$$h_0(n) = \begin{cases} 0.45, & n = 0, 1 \\ 0, & \text{sonst} \end{cases}, \qquad H_0(z) = 0.45(1 + z^{-1})$$

b) wähle:
$$G_0(z) = H_0(z)$$
, bzw. $g_0(n) = h_0(n)$ wähle: $H_1(z) = H_0(-z) = 0.45(1-z^{-1})$ [HP-TP-Trafo] bzw. $h_1(n) = \begin{cases} 0.45, & n=0\\ -0.45, & n=1\\ 0, & \text{sonst} \end{cases}$ wähle: $G_1(z) = H_1(z)$

c) Ansatz für perfekte Rekonstruktion mit Skalierungsfaktor α :

$$Y(e^{j\Omega}) = e^{-j\Omega \cdot 1} \cdot \frac{\alpha}{2} \left[|H_0(e^{j\Omega})|^2 + H_1(e^{j\Omega})|^2 \right] \cdot X(e^{j\Omega}) \stackrel{!}{=} e^{-j\Omega} \cdot X(e^{j\Omega})$$

$$\Rightarrow \frac{\alpha}{2} \left[|H_0(e^{j\Omega})|^2 + H_1(e^{j\Omega})|^2 \right] = \frac{\alpha}{2} \left[0.45^2 \cdot \underbrace{(1 + e^{-j\Omega})(1 + e^{j\Omega})}_{H_0 \cdot H_0^*} + 0.45^2 \cdot (1 - e^{-j\Omega})(1 - e^{j\Omega}) \right]$$

$$= 2 \cdot 0.45^2 \alpha \stackrel{!}{=} 1$$

Mit $\alpha = \frac{1}{2 \cdot 0.45^2}$ ist die perfekte Rekonstruktion gezeigt!

Wähle also
$$\sqrt{\alpha} \cdot H_0(z) = \frac{1}{\sqrt{2}} (1 + z^{-1}) = H_0'(z)$$
 bzw. $\frac{1}{\sqrt{2}} (1 - z^{-1}) = H_1'(z)$