Oaktree Manual

March 12, 2013

Contents

1	Introduction	2
2	Installation	3
3	Running	4
4	Input 4.1 SIMULATION 4.2 SPHERE 4.3 CYLINDER 4.4 CUBE 4.5 POLYGON 4.6 MLS 4.7 COPY 4.8 UNION 4.9 INTERSECTION 4.10 DIFFERENCE 4.11 MOVE 4.12 ROTATE 4.13 FILLET 4.14 DOMAIN	5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8
5	Output	g
6	Viewer	10
7	Tutorials	11
8	Theory	19

Introduction

Installation

Running

Input

Oaktree input language extends Python. Subroutines and objects related to input processing are listed below.

4.1 SIMULATION

SIMULATION object stores data specific to one simulation.

obj = SIMULATION (outpath, duration, step, cutoff)

- $\bullet~{\bf obj}$ SIMULATION object
- outpath output directory path
- duration simulation duration
- step time step
- cutoff cutoff length below which geometrical details are not resolved

4.2 SPHERE

A sphere shape.

obj = SPHERE (center, r, scolor)

- \bullet **obj** SHAPE object
- ullet center tuple (x,y,z) defining the center
- \bullet **r** radius
- scolor integer surface color

4.3 CYLINDER

A cylinder shape.

CHAPTER 4. INPUT 6

obj = CYLINDER (base, h, r, scolor)

- $\bullet \ \mathbf{obj}$ SHAPE object
- base tuple (x, y, z) defining the base center
- \mathbf{h} height along z
- \bullet **r** radius
- scolor integer tuple $(s_{base}, s_{side}, s_{top})$ of surface colors

4.4 CUBE

A cube like shape.

obj = CUBE (corner, u, v, w, scolor)

- **obj** SHAPE object
- corner tuple (x, y, z) defining the minimum coordinate corner

- ullet w length along z
- scolor integer tuple $(s_{xmin}, s_{ymin}, s_{zmin}, s_{xmax}, s_{ymax}, s_{zmax})$ of surface colors

4.5 POLYGON

A shape extruded from a polygon.

obj = POLYGON (polygon, h, scolor)

- $\bullet~{\bf obj}$ SHAPE object
- **polygon** list $[(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)]$ of vertices defining a closed polygon in counter clock-wise order when looking down from a positive z point
- **h** height along z
- scolor integer tuple $(s_{base}, s_1, s_2, ..., s_n, s_{top})$ of surface colors

4.6 MLS

A shape defined by moving least square fit to oriented points.

obj = MLS (op, r, scolor)

- obj SHAPE object
- op list $[(x_1, y_1, z_1, nx_1, ny_1, nz_1), (x_2, y_2, z_2, nx_2, ny_2, nz_2), ..., (x_n, y_n, z_n, nx_n, ny_n, nz_n)]$ of oriented points
- \bullet **r** smoothing radius
- scolor integer surface color

CHAPTER 4. INPUT 7

4.7 COPY

Copy shape.

obj = COPY (shape)

- \bullet **obj** SHAPE object
- **shape** input SHAPE

4.8 UNION

Set theoretic union of two shapes.

obj = UNION (shape1, shape2)

- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.9 INTERSECTION

Set theoretic intersection of two shapes.

obj = INTERSECTION (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.10 DIFFERENCE

Set theoretic difference of two shapes.

obj = DIFFERENCE (shape1, shape2)

- $\bullet \ \mathbf{obj}$ SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.11 MOVE

Move shape linearly.

CHAPTER 4. INPUT 8

MOVE (shape, vector)

- shape input SHAPE object
- vector tuple (u, v, w) defining the translation

4.12 ROTATE

Rotate shape about an axis.

ROTATE (shape, point, vector, angle)

- shape input SHAPE object
- **point** tuple (x, y, z) defining axis point
- vector tuple (u, v, w) defining axis direction
- angle oriented angle in degrees

4.13 FILLET

Fillet a pair of surfaces.

FILLET (shape, c, r, fillet, scolor)

- shape input SHAPE object
- **c** centre (x, y, z) of surface picking sphere
- \bullet **r** radius of surface picking sphere
- fillet fillet radius
- scolor integer fillet surface color

4.14 DOMAIN

A domain is created in a simulation.

obj = DOMAIN (simu, shape | label, grid)

- obj DOMAIN object
- $\bullet~\mathbf{simu}$ simulation in which the domain is created
- shape domain shape
- label domain label (default: none)
- grid maximal discretization grid size for this domain (default: none)

Output

Viewer

Tutorials

Theory