10. Speech response systems

Topic

- The creation of machine generated speech modern / contemporary technologies
- Modeling approaches
 - Generative models (articulation, sourcefilter, ...)
 - Production models (concatenation, ...)
- Technological solutions
- Applications
- Outlook

The research cycle of speech technology

The natural speech chain

Brain level Organ level Acoustic level Organ level Brain level

Speaking person Transmission medium Understanding person

The natural speech chain

Speech Production

Intelligent Interactions

smartlab.tmit.bme.hu

BME TMIT

The natural speech chain

Machine speech generation

- Machine speech generation (speech synthesis ???)
 - Playback or concatenation based on simple symbols
 - Gramophone
 - Tape recorder
 - CDs ...

- From text (speech synthesis???)
 - Text-to-speech (TTS)
 - Text-to-speech with additional information (concept-tospeech - CTS)
- Audiovisual speech synthesis

Modeling approach

Speech in the acoustic domain

Production model

Speech in the articulatory range *Generative model*

Research challenge

Avoiding the uncanny valley

Speech technology research cycle

Modeling approach

- Generative, articulation model
 - Segmental level
 - intelligibility of sounds
 - Suprasegmental level
 - correct intonation (prosody)
 - Non-linguistic features
 - individual tone, emotion, ...

Kempelen's talking machine (1791)

RECONSTRUCTED, WORKING VERSION (2001 MTA Nyl, 2020 BME)

Kempelen's talking machine (1791)

Kempelen's talking machine (1791)

- Resources
 - Mechanical articulation model
 - Direct control of model elements by human hands
- Solution
 - Continuous / sustained sounds
 - "simple" sound concatanations

Kempelen's "choir" of machines

Source: Meeting of Kempelen machines, September 2019, Vienna

Dudley-Voder (1939)

Dudley-Voder (1939)

Dudley-Voder (1939)

- Resources
 - Electro -mechanical articulation model
 - Keyboard control with human hand
- Solution
 - In principle, a loose vocabulary
 - Demonstration trick

Serial and parallel formant synthesizer (1983-84)

Resources

- Electronic formant/articulation model (equivalent LPC representation solved)
- Rule-based processing
- Control with computer
- Solution
 - In principle, a loose vocabulary
 - Singing
 - Small acoustic database (up to 1kByte)

Electronic formant synthesis solutions

KlatTalk/DecTalk 1982

HungaroVox 1982

MultiVox 1986-2002

21

Modeling approach

- Production model
 - Audio elements of varied details
 - Concatenation (modified by signal processing)
 - Segmental level
 - intelligibility of sounds
 - Suprasegmental level
 - correct intonation (prosody)
 - Non-linguistic features
 - individual tone, emotion, ...

Miklós Bánó's talking machine (1916)

■ June 21, 1919. Hungarian Patent Office Office, Patent description, number 74361, class IX/d

A talking machine suitable for reading any text

- Dr. Miklós Bánó certified engineer and economic engineer In Budapest
- The submission day:

November 30, 1916

Content of the patent The Machine Reader (1916)

5 claims

- 1. "A speaking machine capable of reproducing any text, characterized by recording individual sounds or groups of sounds separately and by playing these separately recorded sounds or groups of sounds in the order corresponding to them."
- 2. "An embodiment of the machine protected against the claim of 1., characterized in that each sound of the language is recorded on a separate recording cylinder or disc"

Content of the patent The Repentant (1916)

- 3. sound storage in a cylinder.
- **4**. 1. + 3.
- 5. "Under Claim 1 protected machine implementation shape, characterized by the same recording cylinder or discs activation by typewriterstyle buttons which can generate speech."
- (Naive) Example: per cylinders of r+o+z activated after each other melt into the word rose

Application example Bánó (1916)

- "Connected to a typewriter...suitable for the visually impaired typist to listen to the written text"
- "The speech impaired typist ... should be able to communicate what he has to say aloud with the help of the device"
- ..."also suitable for the reproduction of prescribed or duplicated texts"

Miklós Bánó's talking machine (1916)

- Resources
 - Electro-mechanical speech concatenation model
 - Keyboard control with human hand
- Solution

smartlab.tmit.bme.hu

- No working sample
 - Sustained speech sounds
 - In principle, unlimited vocabulary

Simulation reconstruction (2010)

Overview of machine speech generation methods

Speech synthesis method	Prosody production	Speech database type
"classical" formant synthesis (the starting method)	rule-based, with encoder control parameters	parametric (formant filter model)
element-concatenation (diad/diphone)	rule-based, with waveform modification	sound, diad/diphone waveform elements (logatoms)
element-concatenation (triad/triphone)	rule-based, with waveform modification	sound, triad/triphone and diad/diphone waveform elements (logatoms)
element selection (corpus)	the time scale of the current	large waveform database (from readings) of variable-sized elements (words, word strings, sentences, etc.)
statistical parametric	with a statistical (HMM or DNN) model, which operates based on parameter n-grams at the sentence level	
waveform-based statistical parametric (WaveNet /DNN)	with statistical (DNN) model	neural network parameters (learning from waveform and direct generation)

Database features

Sign	Audio recording length/database length (minutes)	Gender	Language	Goals
DIAD1- DIAD4	28/2.5	man	Hungarian	Element-concatenation (diad-triad / diphone-triphone) research
DIAD5-DIAD8	approx. 28 minutes/2.5 minutes	woman		
TRIAD1	approx. 120min/32 min	man		
TRIAD2	approx. 120min/32 min	woman		
TIME1	630 minutes			Item selection (corpus-based) research
FON1	100 minutes			
PAGE1	110 minutes	woman		Experimental station passenger information system
ARU1	330 minutes			
UGYF1	505 minutes			
SZAM1	10 minutes/XXXX		Hungarian	Reading numbers up to 1 billion
SZAM2	10 minutes/XXXXX	man		
RADIO	516 minutes	3 men		
FON2-5	approx. 130 minutes/person	4 women		Statistician
FON6-10	approx. 130 minutes/person	5 men	en	parametric (HMM and
BEA1	30 minutes	woman		DNN) research
BEA2	31 minutes	man		
GABOR	3 minutes	man		Spemoticon research

Element concatenation model

Diad-triad concatenation ProfiVox (1999-)

Hungarian sound definition for synthesis

- Hungarian speech with 39 speech sounds
 - 24 consonants (C)
 - 14 vowels (V)
 - plus the pause (_ sign) can be covered
 - long consonants are generated from their short versions using signal processing.
 - We are very sensitive to the quality of vowels, so it is advisable to treat short and long versions separately.

Speech sound set

No.	Hungarian cha	racter Exampl	e Owr	character set IPA Unicode	IPAASCII	
1	(pause)					
2	á	1áb	A:	0250 02D0	a&:	
3	a	hat	A	0254	c&	
4	0	sok	O	006F	0	
5	u	fut	U	0075	U	
6	ü	süt	U	0079	Y	
7	i	hit	i	0069	I	
8	é	méz	E:	0065 02D0	e:	
9	ö	köt	0	00F8	o/)	
10	e	vet	e	025B	E	
11	ь	bál	Ъ	0062	В	
12	p	tár	p	0070	P	
13	d	dán	d	0064	D	
14	t	tár	t	0074	T	
15	g	gát	g	0067	G	
16	k	kád	k	006B	K	
17	gy	gyár	G	025F	j-	
18	ty	tyúk	T	0063	C	
19	m	már	m	006D	M	
20	n	nád	n	006E	N	
21	ny	nyom	N	0272	nj)	
22	j	Jön	j	006A	J	
23	H	Hát	h	0068	H	
24	v	Vád	v	0076	V	
25	f	Fát	f	0066	F	
26	Z	Zár	Z	007A	Z	
27	SZ	Szép	S	0073	S	
28	С	Cé1	c	0074 0073	Ts	
29	ZS	Zsir	Z	0292	3"	
30 31	S	Só	S	0283 0074 0283	S	
32	cs 1	Cső Láp	C 1	00/4 0283 006C	TS L	
33	r	Rák	r	0072	R	
34	ó	Pók	0:	006F 02D0	0:	
35	ú	Kút	u:	0075 02D0	u:	
36	ű	Fűt	U:	0079 02D0	y:	
37	í	Szit	i:	0069 02D0	i:	
38	ő	Sőt	O:	00F8 02D0	o/):	
39	j*	Kapj	j	006A	J	

The 5 diads of the word alma

- The boundaries of the sound periods are shown in blue,
- the sound boundary in red
- the boundaries of the diads are the lines next to the markings in the lower gray bar

The number of diad variants required for the synthesis of the Hungarian language

Audio	CV	VC	CC	VV	_V and V_	_C and C_	Total
Quantity	336	336	576	196	28	48	1520

Prosodic units

F0/sound duration modification PSOLA

Pitch Synchronous OverLap-Add

https://www.researchgate.net/publication/252824047_Voice_Conversion_using_Pitch_Shifting_Algorithm_by_Time_Stretchingwith_PSOLA_and_Re-Sampling/figures?lo=1

F0/sound duration modification PSOLA

https://wiki.aalto.fi/pages/viewpage.action?pageId=155477136

Diad-triad concatenation ProfiVox (1999-)

Resources

- Digital diad triad voice concatenation model
- Rule-based processing
- Control with computer

Solution

- Practically unlimited vocabulary
- Flexible prosodic control
- Acoustic database 1.5-60Mbyte

Stephen Hawking's machine voice (English - Hungarian)

Dectalk 1982

ProfiVox 2000 - 2014

Intelligent Interactions
smartlab.tmit.bme.hu

Hungarian dubbing: Theory of Everything movie

(Theory of Eyerything)

40

GPU EDUCATION CENTER

Corpus approach (2003-)

- N * Gbytes of storage space available
 - Store as many items as possible
 - Limit: limits of human reading with the same tone
- Corpus-based concatenation synthesis (corpus-based, unit-selection synthesis)
 - Prosody can be controlled better indirectly
 - Exceptions are difficult to implement

Corpus-based, waveform element selection speech synthesizer model

Indirect prosodic model

Corpus approach (2003-)

Corpus-based concatenation

Corpus approach (2003-)

- Resources
 - Digital corpus voice concatenation model
 - Statistical processing
 - Control with computer
- Solution
 - Optimally limited to a topic

- Practically unlimited vocabulary with slightly worse sound quality
- Acoustic database n*10Mbyte n*Gbyte

A new voice at Hungarian train stations

Hidden Markov Model (HMM)

HMM evolution

Speech recognition technology development (1970-90)

Dictation applications (1990-)
Dragon Dictate 1997,
Excessive Marketing
promises 2000-

Markov (end of the 19th century) Signal processing models, Algorithms 1970-80ies

Further development, other areas

HMM features

Tokuda et al. (1996-), Tóth, Németh (2008-)

Resources

- Digital parametric speech coding model
- Statistical processing (training database)
- Computer controlled process

Advantages

smartlab.tmit.bme.hu

- Practically unlimited vocabulary
- Speaker adaptation

 Slightly poorer speech quality (coding distortions)

n*Mbyte acoustic database

HMM-based TTS

Spectrum modeling

Speech signal excitation models

Excitation signal from natural speech

BME TMIT

Excitation codebook (codebook)

Speech production

Articulatory/formant rebirth (2009-)

- Resources
 - Hybrid approach
 - Digital articulation/formant model
 - Statistical processing
 - Computer controlled
- Advantages
 - Free vocabulary
 - Sound character modification

Articulatory/formant re-Ling et al . (2009-)

Synthesis with optional articulatory modification

Articulatory/formant re-Ling et al . (2009-)

Alternatives to articulation - formants

Articulatory synthesis Atsuo Takanishi (2008)

Digitally controlled mechanical articulation model

Dyadic synthesis application (2012) Nao robot

Outlook

(even before deep learning)

- Challenges in machine speech generation
 - Adaptation
 - Application scenario (robot <> synthesized audiobook)
 - Speech rate (partner, message type)
 - Person and style (context, emotions, ...)
 - Multilingualism (uniform quality, limited resources)
 - Intelligibility in noisy environments
 - Lombard effect
 - High-level control
 - Dialogue systems

Thank you for your attention!

