R 튜토리얼 - Some R Problems Derived Me Nuts! -

iHELP Working Group Chel Hee Lee & Eugene Jung

April 28, 2013

시작하면서

이 문서는 통계소프트웨어 R을 사용하는데 도움이 되기를 바라는 마음에서 작성되고 있으며, 아래와 같은 내용을 중점을 두고 있습니다.

- R을 이용한 원리중심의 문제해결을 설명하고자, 다양한 패키지들로부터 제공되는 함수들의 사용법에 대한 단순한 설명은 하지 않습니다.
- 통계와 전산에 관련된 전문용어는 쉽게 풀어쓰거나, 용어에 대한 이해를 돕기 위한 자료를 제공합니다.

본 문서의 최초작성일은 2010년 4월 10일이며, iHELP Working Group의 관리자에 의하여 수시로 갱신되고 있습니다. 따라서, 이 문서는 어떤 특정한 기간을 두고 완성되지 않으므로 단지 최신 업데이트된 버전만이 존재합니다. 만약, 이 문서를 현재 읽고 있는 독자가 내용에 대한 추가, 수정, 및 제안이 있다면이를 ihelp-urquestion@lists.r-forge.r-project.org 주소로 이메일을 보내주신다면 감사하겠습니다.

이 문서의 작성에 여러가지 제안을 해 주신 분들은 아래와 같습니다.

• 신종화

완전 초보에요

이 문서에서 "초보"라는 의미는 아래에 나열된 사항들중 두 가지 이상에 해당되시는 분들을 의미합니다.

- R 이라는 프로그래밍 언어 이전에 다른 프로그래밍 언어에 대한 경험이 전무하신 분,
- 유닉스와 리눅스 시스템에 익숙하지 않으신 분,
- 기초 통계 분석에 대한 도움이 필요하신 분,
- 그냥 무엇을 해야할지 막막함에 쌓여 계신분

2.1 사용전 숙지사항

초보라고 생각하시는 분들께서는 아래의 내용들에 대한 개념적 숙지해주시길 부탁드립니다.

데이터 입력과 처리: R 에서는 이용되는 모든 데이터들에 대한 처리는 열방향으로 이루어집니다. 이 말의 뜻은 데이터의 입력 및 변형, 그리고 연산에 사용되는 데이터들에 대한 처리순서는 열방향으로 나열된 후에 이루어지는 것을 말합니다. 예를들어, 1부터 12까지 12개의 정수로 이루어진 수열 (즉, $\{1,2,3,4,5,6,7,8,9,10,11,12\}$)을 수학적인 표현으로 4행 3열의 행렬은 R은 아래와 같이 이해합니다.

- 1 5 9
- 2 6 10
- 3 7 11
- 4 8 12

따라서, 이 행렬에서 5라는 숫자값은 행렬의 1행 2열에 위치하고 있다고 할 수 있으며, 행렬의 5번째의 값이라고도 할 수 있습니다.

대화형 처리와 결과 확인에 대해서: R은 사용자가 주어지는 업무를 시키는 대로만 수행하는 유용한 프로그램일뿐, 그 이상의 내용은 수행하지 않는다는 점을 반드시 명심하셔야 합니다. 따라서, R 프로그램을 시작하게 되면 아래와 같은 기호로 표시되는 프롬프트를 보여주게 됩니다.

>

모든 명령어는 > 기호 뒤에 작성하게 됩니다.

더 나아가, 분석자가 머릿속으로 상상하거나 기대하는 업무가 있다면 그 분석자는 반드시 그 업무가 이루어지는 프로세스에 대해서 잘 알고 있어야 합니다. 따라서, R은 다른 통계 소프트웨어들과 같이 분석된 결과를 미리 보여주거나 혹은 분석이 된 모든 결과를 한 번에 다 보여주지 않습니다. 분석자가 확인하고자하는 결과를 R에서 이를 제공하는 함수를 통하여 확인할 수 있습니다.

통계분석의 절차: 분석이라 것은 데이터에 대한 이해를 통하여 데이터가 가진 특징을 수학적 표현으로서 설명하기 위한 과정입니다. 따라서, 데이터에 대한 직관적인 이해를 위해서 시각화 작업과 통계 모형이 요구하는 데이터 형식을 만드는 것이 중요합니다. 이를 전처리 과정이라고 하며, 통계분석은 크게 아래와 같은 절차를 밟아 이루어집니다.

- 데이터 입출력과 클리닝, 그리고 분석 전처리 관련 테크닉들
- 분석전 탐색적 시각화 작업
- 통계모형의 결정 및 적용
- 모형 적용 후의 보고서 생성 및 시각화 작업
- 통계 모형 자체의 개발 또는 자동화 시스템 구축

따라서, 이 문서는 위에서 설명한 과정에 해당하는 순서대로 챕터들을 구성하였습니다.

인코딩과 한글:

- 1. R은 한국어 사용자를 위한 한국어 인터페이스를 제공합니다. 그러나, 이는 단순한 사용자를 위한 옵션 일 뿐입니다. R을 한국어가 아닌 영문으로 사용하고 싶습니다 (버전에 관계없이 일반적으로 통용되는 방법 윈도우즈 사용자에게 맞추어 작성됨). 이를 설정하는 방법에 대해서는 http://lists.r-forge.r-project.org/을 읽어보시길 바랍니다.
- 2. 불러오고자 하는 데이터의 인코딩이 UTF-8가 아닐때 이를 확인하고, 데이터를 올바르게 불러오기 위한 내용은 http://lists.r-forge.r-project.org/pipermail/ihelp-urquestion/2013-April/000017.html를 읽어보시길 바랍니다.

대소문자 구분:

패키지와 관련하여: 초기에 가장 보는 에러는 "xxx 함수가 없습니다" 또는 "xxx 함수를 찾을 수 없습니다" 입니다. (접수: 2013-APR-15, 분류: 패키지 관련)

대부분의 경우는 사용하고자 하는 함수가 R 기본 배포판에 포함되어 있지 않은 사용자에 의해서 제공된 특정한 패키지에서 존재하기 때문입니다. 이런 경우에는 먼저 사용하고자 하는 함수가 어떤 패키지에 존재하는지 알아야 합니다. 그리고, 해당 패키지를 설치했을 때에는 설치된 패키지를 사용할 수 있도록 로딩하는 과정을 거쳐야 합니다.

> library(pkg_name)

기초 프로그래밍과 운영체제

이 챕터에서는 데이터 처리와 분석에 필요한 기초 프로그래밍 요소를 알아봅니다.

3.1 에러과 경고에 대한 이해

```
3.1.1 관련 메시지
```

3.1.2 에러 핸들링

try()

```
tryCatch()
```

3.2 조건문:

분기:

switch

3.3 함수의 정의와 사용

내장함수

사용자 정의 함수

do.call()

스코프

인바이런먼트

3.4 벡터라이제이션과 반복문

반복문:

벡터라이제이션: apply(), lapply(), sapply(), mapply()의 사용방법

3.5 객체와 속성

속성:

객체:

3.6 제네릭 함수와 클래스

메소드:

제네릭 함수:

클래스:

3.7 스크립트 작성하기

일괄처리

실행하기

3.8 운영체제와 소통하기

파일과 디렉토리 유틸리티

시간과 관련된 명령어들

데이터 조작과 관련하여

4.1 데이터 파일 입출력

4.1.1 입력

다른 형식들: 키 포인트는 .csv 파일을 이용하여 데이터 입력과 출력을 하는 것을 권장하고, 그 이외의 방법에 대해서는 간단한 설명과 사용법만 추가해주도록 함.

고정형식

복잡한 구조를 읽어올때

.SAS

.SPSS

.URL

 \mathbf{XML}

.EXCEL

.CSV

1. read.table 계열의 함수를 이용하여 데이터를 불러올 때 첫번째 인자는 파일의 위치와 파일명이 입력된 문자열이어야 합니다. 그런데, 간혹 문법에서 틀린 점도 없고, 불러오고자 하는 데이터 파일도올바른 파일경로에 위치하고 있음에도 불구하고, 데이터를 찾을 수 없다고 하는 경우가 있습니다. 이것은 내부적으로 파일경로에 띄어쓰기, 특수문자, 혹은 특수한 인코딩 등 다양한 이유로 인하여파일경로가 올바르게 처리되지 않았기 때문입니다. 아래와 같은 방법으로 read.table() 함수 사용시file.choose() 함수를 함께 사용하면 이러한 문제를 해결이 가능합니다.

```
mydata <- read.table(file.choose(), header=TRUE, sep=",")</pre>
```

데이터 입출력

```
mydata <- read.table("c:/mydata.csv", header=TRUE, sep=",", row.names="id")
write.table(mydata, "c:/mydata.txt", sep="\t")</pre>
```

4.1.2 출력

저장하기

.RData

.CSV

.HTML

.XML

4.1.3 메타데이터 처리

원 데이터 소스에 데이터 구조 대한 이해와 데이터 엔트리:

데이터셋 또는 변수에 주석첨가하기

4.2 데이터형에 대한 이해

- 4.2.1 벡터
- 4.2.2 행렬
- 4.2.3 데이터프레임
- 4.2.4 리스트

리스트와 데이터 프레임 관계:

ls()

names(mydata)

str(mydata)

dim(object)

class(obj)

mydata

head(mydata, n=10)

tail(mydata, n=5)

length(obj)

str(obj)

class(obj)

names(obj)

```
c(obj,obj,...)
cbind(obj, obj, ...)
rbind(obj, obj, ...)
obj
ls()
rm(obj)
newobject <- edit(obj)
fix(obj)</pre>
```

4.2.5 배열

배열과 행렬과 벡터와의 관계

4.3 데이터 클리닝 및 전처리 테크닉

4.3.1 데이터셋에 관련하여

변수명 변경하기

조건에 부합하는 데이터셋 골라내기

주어진 데이터셋으로부터 랜덤샘플 추출하기

정렬하기

데이터셋 합치기

변수 추가 또는 제거

종횡데이터를 횡형으로 변형하기

횡형데이터를 종형으로 변형하기

관측치의 개수 알아보기

중복되는 값 찾아보기

결측치에 대해서

4.3.2 문자형 변수들과 연관하여

수치형 변수로 강제형변환 하기

빈공간 모두 제거하기

특정 문자열 뽑아내기

변수의 길이 파악하기

두 문자형 변수 결합하기

대소문자 전환

요인과 관계하여

라벨링 생성 및 변경하기

4.3.3 시간과 날짜에 관련하여

날짜 데이터 생성

년/월/일 따로 분리하기

시간 데이터 생성

4.4 유용한 클리닝 테크닉들

분석자가 보통 얻게 되는 데이터는 분석에 사용되는 통계모형에 적합한 경우는 드물기 때문에 분석자 스스로가 이러한 데이터를 형성하는 것은 필요한 기술중에 하나라고 할 수 있습니다.

결측치를 바로 윗값으로 채워넣기: 아래와 같이 주어진 데이터에 변수 ID는 결측값 없이 모든 값이 완전하게 잘 들어가 있는데, Week 변수에는 각 ID의 첫번째 레코드에만 해당하는 부분에 값이 들어가 있고나머지부분에는 NA값이 들어가 있습니다.

> mydata

ID Week

- 1 1 15
- 2 1 NA
- 3 1 NA
- 4 1 NA
- 5 2 18 6 2 NA
- 7 2 NA
- 8 2 NA
- 9 3 20
- 10 3 NA

이와 같은 데이터를 아래와 같이 자동으로 채워주려면 어떻게 해야 할까요?

ID Week

- 1 1 15
- 2 1 15
- 3 1 15
- 4 1 15
- 5 2 18

```
6
  2
      18
7
  2
      18
8
  2
      18
9
   3
      20
10 3
      20
  이를 수행하는데에는 여러 가지 종류의 함수들이 다양한 패지키 안에 존재합니다. 그러나, 이를 수행하는
기본 알고리즘은 동일하며, R 기본시스템만으로 작성이 가능합니다. 아래의 함수를 복사하여 사용하시면
됩니다.
fill <- function(x, first, last){</pre>
      n <- last-first+1</pre>
      for(i in c(1:length(first))) x[first[i]:last[i]] <- rep(x[first[i]], n[i])</pre>
      return(x)
}
각 아디이별로 첫번째와 마지막 레코드 찾아보기: 위에서 주어진 데이터에서 ID 변수에서 보이는 것처
럼 같은 관측치가 여러번 반복 측정되어 ID가 반복적으로 입력이 되었을 때, SAS에서처럼 각 아이디별로
첫번째와 마지막 레코드를 알수 있는 .FIRST 와 .LAST 같은 기능이 R에서는 어떻게 해야 하나요?
mydata$first <- !duplicated(mydata$ID)</pre>
mydata$last <- !duplicated(mydata$ID, fromLast=TRUE)</pre>
> mydata
  ID Week first last
      15 TRUE FALSE
   1
   1
      NA FALSE FALSE
3
  1 NA FALSE FALSE
  1 NA FALSE TRUE
     18 TRUE FALSE
5
6
  2
     NA FALSE FALSE
7
  2 NA FALSE FALSE
8
  2 NA FALSE TRUE
9
   3
     20 TRUE FALSE
10 3
      NA FALSE TRUE
조건에 맞게 데이터 선택하기: 데이터의 일부분만 골라 내고 싶어요. 예를들면, 위에서 사용된 예제에서
ID 가 1과 2인 데이터만 골라내고 싶다면 아래와 같이 할 수 있습니다.
# 데이터 생성하기
mydata <- data.frame(ID=c(rep(1,4), rep(2,4), rep(3,2)), Week=c(15, NA, NA, NA, 18, NA, NA, NA, 20, NA)
# ID 변수에 있는 ID를 기준으로 첫번째와 마지막 레코드의 위치 알아내기
idx.first <- which(!duplicated(mydata$ID))</pre>
idx.last <- which(!duplicated(mydata$ID, fromLast=TRUE))</pre>
# ID에 있는 NA값을 채워넣기
mydata$Week <- fill(x=mydata$Week, first=idx.first, last=idx.last)</pre>
# 개별 ID에 대한 첫번째와 마지막 레코드에 대한 논리값을 추가하여 데이터 확장하기
mydata$first <- !duplicated(mydata$ID)</pre>
mydata$last <- !duplicated(mydata$ID, fromLast=TRUE)</pre>
```

조건에 맞는 데이터 골라내기 select <- subset(x=mydata, subset=(ID %in% c(1,2)))</pre> > select ID Week first last 1 1 15 TRUE FALSE 2 1 15 FALSE FALSE 3 1 15 FALSE FALSE 4 1 15 FALSE TRUE 5 2 18 TRUE FALSE 6 2 18 FALSE FALSE 7 2 18 FALSE FALSE 8 2 18 FALSE TRUE # 추가적인 조건 부여하기 select.1 <- subset(x=mydata, subset=((ID %in% c(1,2)) & first==TRUE))</pre> > select.1 ID Week first last 1 1 15 TRUE FALSE

18 TRUE FALSE

5 2

여러개의 엑셀시트로 구성된 엑셀파일 하나로 합치기: 여러개의 엑셀시트로 구성되어 있는 엑셀파일을 불러와 하나의 데이터셋으로 합치기

리스트 중첩구조 가끔 리스트형으로 받아진 데이터가 중첩된 구조를 가지고 있어서, 한 번에 이를 불러오 기를 해야할 때는 어떻게 해야할지.

수학/확률/행렬/수치해석과 관련하여

5.1 수학함수들의 사용

일반 수학함수들

삼각함수들

집합과 관련된 함수들

기타 유용한 함수들 combn() 함수를 이용하여 모든 조합을 찾기

5.2 확률의 사용

5.2.1 밀도/누적 확률분포

퍼센타일 값 찾기

- 5.2.2 표준 난수생성 함수
- 5.2.3 비표준 난수생성 알고리즘

Multinomial random variables

Correlated binary random variables

5.3 수치해석

- 5.3.1 미분
- 5.3.2 적분

Laplace Approximation 알고리즘을 구현하는 방법 – 적분하는 방법에 많이 쓰임 (특히, 베이지안 컴퓨테이션)

5.3.3 최적화 문제

Newton-Raphson 알고리즘을 구현하는 방법 – optimization 에 관련된 일종의 설명도 추가해주면 좋을 것 같음

5.4 행렬연산

생성

전치

역행렬

대각행렬

기저값과 기저벡터

행렬값

행렬의 분해

5.5 시뮬레이션

5.5.1 Metropolis-Hastings

알고리즘을 구현하는 프레임 워크 - 이것은 그냥 사용가능하게 바로 소스코드 붙여주기 (베이지안 컴퓨테이션에 많이 쓰임)

5.5.2 Bootstrap

방법 – 요건 아주 좋은 패키지가 있음

탐색적 데이터 분석

6.1 기초 요약

평균과 분산과 같은 기초요약 함수들

그룹별 평균산출

5분위수 구하기

퀀타일

표준화와 스케일링

신뢰구간

6.2

통계모형의 선택 및 적용

- 7.1 다양한 모형에 대한 개관과 장단점
- 7.1.1 회귀분석
- 7.1.2 일반선형모델 (GLM)
- 7.1.3 Mixed-effect model
- 7.1.4 Longitudinal data analysis
- 7.1.5 Survivial analysis
- 7.1.6 Mixture and latent class model
- 7.1.7

7.2 패키지 관리

- 1. 이와 반대로 현재 연결된 라이브러리를 떼어낼 수도 있습니다.
 - > detach(package:pkg_name)
- 2. 패키지를 설치 (분류: 사용자 환경)(답변) 설치되는 패키지의 설치위치와 의존성에 대해서 반드시 알아야 합니다.
 - > install.packages("배키지명", dependencies=TRUE,)
- 3. 설치된 패키지의 목록을 확인하는 방법을 알고 싶습니다.

비쥬얼라이제이션

- 1. coordinating system을 활용하기
- 2. Lattice 패키지를 이용하여 아래와 같은 그림을 생성해보기 (가장 단순한 예제임 팁 보다는 튜토리 얼 형식으로?)

3D Plot Customization

Lattice Example 1

3. IATeX의 문서에 포함될 .eps 그래픽을 R에서 뽑았을 때는 아무런 문제가 없어 보였는데, 정작 pdf로 문서를 뽑아 보니까 이 그래픽이 들어간 페이지가 90도로 돌아가 있거나 혹은 그래픽이 90도로 회전되어 있을 경우에는 아래와 같이 하면 됩니다.

postscript(file=``filename.eps'', onefile=FALSE, horizontal=FALSE)

- 이 문제에 대한 출처는 postscript 도움말입니다.
- 이문제를 다른 방법으로도 해결할 수 있습니다. (대충 서너개 더 있음).
- 4. 새로운 그래픽 객체를 생성하는 방법을 설명해줘서 사용자가 추후에 독립적인 그래픽을 생성할 수 있게 도와주기

분석 후 개발과 관련하여

9.1 클래스와 메소드 그리고 패키지 제작

1. 패키지를 만들고 싶어요. (흠.. Generalized Linear Model 프레임워크 흉내내서 똑같이 만들어보기 실습자료로 제공해주기)

9.2 간단한 GUI 제작 해보기

- 1. 다른 언어로 인터페이싱 하는 방법마로, 그냥 R에서 주어지는 패키지를 이용해서 간단한 GUI 환경만 들기
- 2. 아마도... R Commander를 확장하는 방법을 예로 들면 좋을 것 같음
- 3. 원리도 간단히 설명해주면 더욱 좋을 것 같음.

미분류 질문들

- 이 섹션에 등록된 질문들은 접수만 되고 아직은 답변되지 않은 상태입니다
- 1. R을 사용하기 전에 반드시 알아두어야 할 점 R은 모든 연산을 열벡터를 기준으로 한다는 것을 반드시 알고 시작해야 함. SAS는 행벡터임. 따라서, 가끔 R에서 벡터사이즈가 어쩌구 할때는 바로 데이터의 수가 R이 해결하기에는 부족하다는 점이다. 그런데, 어떤 경우 이것은 주로 메모리 조절과 관계가 있음.
- 2. (접수: 2013-APR-23) NA 와 NaN을 데이터로부터 찾고 싶어요. (답변) 요것은.... is.na()와 is.nan() 함수 사용법을 알려주면 좋음. 추가로 is.null()도 알려주면 is관련 함수들에 설명해주면 짱임.
- 3. (접수: 2013-APR-23) 분기문 쓸때요 if문 사용하는 것은 알고 있습니다. 그런데, C 언어처럼 중간에 루프를 완전히 끊고 나가는 방법이 있거나 혹은 해당 루프를 넘어가는 방법이 있나요? 예를들면, Basic 언어에서 보면 goto 같은 것도 있는지 알고 싶어요.
 - (답변) 요건... 질문이 좀 방대한건데... repeat, while에 대해서 간단히 보여주고, break과 next 를 알려주면 좋음. 만약, 메시지 역시 설명해줄려면 stop(), warning()도 함께 설명해주면 최고임.
- 4. (접수: 2013-APR-23) 저는 다각형을 그리고 싶습니다.
 - (답변) 이것은 간단히 2차원-랜덤포인트 생성한 뒤에 polygon() 함수를 써서 보여주면 됨.
- 5. (접수: 2013-APR-23) 제가 가진 데이터셋이 있는데, 이 데이터를 어떤 특정한 변수들의 값을 이용하여 분류하려고 합니다. 어떻게 해야하나요?
 - (답변) 요것은 split() 함수를 이용하도록 알려줄 것.
- 6. (접수: 2013-APR-23) 제가 가진 데이터 프레임에 NA 값들이 있는데, NA 때문에 분석이 이상해지는 것 같아, NA를 가진 데이터 행자체를 없애고 싶습니다. 한번에 해주는게 없나요?
 - (답변) 요건 na.omit()과 같은 함수를 이용하는 법을 알려줄 것. 흠.. na.action이라는 개념을 알려주면 더욱 좋음.
- 7. (접수: 2013-APR-23) 논리형 벡터가 있는데, 이 벡터의 구성요소가 모두 TRUE 인지 알고 싶습니다. (답변) 이건 isTRUE()함수와 all()함수를 통해 알려주면 매우 좋음.
- 8. (접수: 2013-APR-23) t-테스트 하는 방법 좀 알려주세요 통계적 해석을 덧 붙여주시면 좋을 것 같습니다.
 - (답변) t.test() 함수 사용법을 알려줄 것 일반화 된 옵션 다 알려주면 더 좋을 것 같음.
- 9. (접수: 2013-APR-22) 선형방정식 AX = b의 해 X를 찾으려면 어떻게 해야 하나요? (답변) solve() 함수의 사용법을 알려줄 것.

- 10. (접수: 2013-APR-21) R 패키지를 CRAN에 올리는 방법을 알려주세요
 - (답변) 이 질문을 대답할 때는 반드시 CRAN Package Submission Guideline에 대해서 알려줘야 함. (이거 번역해 놨는데 당췌 어디에 뒀는지 찾을 수가 없음, 2013-04-20 까지 못 찾으면 새로이 번역할 것)
- 11. (접수: 2013-APR-19) R은 처음부터 기존의 통계팩키지와는 다른 모습에 약간 두렵기까지 합니다. 기존의 분석은 일반적으로 [프로그램 실행 > 데이터 불러오기 > 분석(메뉴클릭:SPSS 또는 명령 어입력:SAS) > 실행]의 절차를 밟아 왔기에 모든 결과를 한 번에 보여주는 식입니다. 그러나 R은 그렇지 않아 이러한 점부터 생소하고 이상합니다. 데이터를 불러오기 하면 바로 데이터시트를 볼 수 있는 것도 아닙니다 (접수날짜: 2013-APR-17).

(답변) 사용방식의 다른 점에 대해서 아주 근본적인 다른 점을 알려줄 것. Introduction to R 문서에 써 있음 (단순히 링크시켜주는게 좋을 듯 함).

파일관리와 관계된 여러가지 유용한 유틸리티가 존재합니다.

- edit(),
- file.edit()
- fix()
- file.show()
- file.path()
- list.files()
- dir.create()
- file.access()
- file.exists()
- file.copy()
- data.entry()
- 너무 많아서 차근차근 예를들면서 하나씩 설명하겠습니다.
- 12. (접수: 2013-04-18, Reproducibility=NA) c()의 역할은 무엇인가요? a <- seq(1:4)과 a <- c(1,2,3,4) 은 동일한 것인가요?
- 13. (접수: 2013-04-18, Reproducibility=NO) read.xlsx함수를 이용해 xlsx파일에서 데이터프레임형태로 가져옵니다. 이 때 [3,3] 셀에 있는 텍스트가 "3월" 이라고 할 때 temp[3,3] == "3월" 이렇게 비교하려고 하면 제대로 비교가 안되더군요.. 한글 텍스트로 이루어진 변수값를 비교하는 방법이 어떤게 있는지 궁금합니다.
- 14. 분석을 하고 나면 결과를 그래프나 그림으로 나타내게 되는데 R에서는 그림을 나타내는 창이 하나만 나타나서 동시에 두 개를 보지 못하는 경우가 허다한데, 이의 해결방법은 없나요? (접수: 2013-APR-13, 분류: 그래픽스 관련)

(답변) R에서는 그래픽 디바이스가 그래픽 생성시 마다 초기화되어 다시 보여줌으로서 그래픽 창이하나만 계속 보여지는 것입니다. 새로운 그래프를 또다른 장치를 통해 보여주고자 한다면 X11()이라는 명령어를 이용하면 됩니다. 이 명령어는 유닉스환경에 설치된 R의 경우에 해당합니다.

10.1 답변되지 않을 수도 있는 질문들

1. (접수: 2013-04-18, Reproducibility=NA) R의 장점이자 단점이라고 생각되는 것 중에 하나가 엄청난수의 패키지들임. 즉 어떤 분석을 하고자 할 때 그것에 대해 하나의 패키지가 있는 것이 아니라 대체적으로 사용가능한 패키지들이 존재하는데 이들 중 어느 것을 써야할 지 잘 모름. 다른 분석 프로그램의

경우 이러한 문제가 없는데... 결국엔 어떻게 제일 성능이 좋은? 결과가 신뢰할 만한? 좋은 패키지를 선택하는가를 알려주었으면 좋겠씀돠.

(답변) 이것은 경험에 해당되며, 해당분야의 전문가로부터의 조언을 받는 것이 안전합니다. 그렇지 않다면, 직접 베이스를 이용하여 작성하면 됩니다.