

KT I Lab Course

Angular Correlation

Assistant:

Alexander Kish

Students:

Fabian Stäger, Manuel Sommerhalder

Date of experiment:

24.01.2018

Contents

1	Introduction	3
	1.1 The ⁶⁰ Co Decay	3
	1.2 Angular Correlation	3
	1.3 Experimental Concept	4
2	Measurement Principle	5
	2.1 Experimental Set-Up	5
	2.2 Electronic Modules	5
3	Energy Spectrum	6
4	Calibration	7

1 Introduction

The goal of this experiment is to measure the angular correlation function of γ -rays in a 60 Co decay and compare it to theoretical predictions.

1.1 The ⁶⁰Co Decay

 60 Co is a synthetic isotope of cobalt with a half-life of 5.1 years. Through β^- decay it disintegrates into an excited 60 Ni atom with an energy of 2505 keV and l=4 with positive parity. This nickel isotope thus emits two successive gamma rays with energies of 1172 keV and 1332 keV in order to reach its stable state of 0^+ . Since the intermediate state (2^+) has a lifetime of around 1 ps, the two γ -rays can due to the finite experimental time resolution be treated as coincident. A schematic diagram of the 60 Co decay is provided in figure 1.

Figure 1: Schematic illustration of the ⁶⁰Co Decay. [??]

1.2 Angular Correlation

The two successive γ -rays are predicted to be emitted anisotropically relative to each other according to the general angular correlation function [??]:

$$W(\theta) = 1 + \sum_{i=1}^{l} a_i \cos^{2i} \theta \tag{1.1}$$

This function describes the probability for the latter gamma ray to be emitted at an angle θ from the first one. 2l is the order of the lowest multipole in the cascade. In case of

the 60 Co decay, both gamma rays are emitted during a transision of Δl = 2 and positive parity, so the dominant contribution is the electric quadrupole and the correlation function reduces to:

$$W(\theta) = 1 + a_1 \cos^2 \theta + a_2 \cos^4 \theta$$
 (1.2)

The coefficients a_1 and a_2 have been theoretically predicted by Dr. Hamilton for all combinations of angular momenta involved by consideration of state transitions using the Clebsch-Gordan-coefficients. These are summarized in figure 2

J_2	J_2	Multipoles	a_1	az
1	0	Dipole-Dipole	1	0
1	1	Dipole-Dipole	-1/3	0
1	2	Dipole-Dipole	-1/3	0
1	1	Quadrupole-Dipole	-1/3	0
1	2	Quadrupole-Dipole	3/7	0
1	3	Quadrupole-Dipole	-3/29	0
2	3	Dipole-Quadrupole	-3/29	0
2	2	Dipole-Quadrupole	3/7	0
2	1	Dipole-Quadrupole	-1/3	0
2	0	Quadrupole-Quadrupole	-3	4
2	1	Quadrupole-Quadrupole	5	-16/3
2	2	Quadrupole-Quadrupole	-15/13	16/1
2	3	Quadrupole-Quadrupole	0	-1/3
2	4	Quadrupole-Quadrupole	1/8	1/24

Figure 2: Coefficients a_1 and a_2 for different combinations of J_1 and J_2 for an atom deexciting into the ground state $J_1 = 0$ [??]

Since the angular monenta of J_3 = 4, J_2 = 2, J_1 = 0 are assumed for the 60 Co decay, the expected correlation function has the following explicit form:

$$W(\theta) = 1 + \frac{1}{8}\cos^2\theta + \frac{1}{24}\cos^4\theta$$
 (1.3)

1.3 Experimental Concept

The experimental setup, more throroughly described in section $\ref{eq:constraint}$, consists of two scintillation counters that detect the coincident γ -rays from different and adjustable relative angles. The rate of detected events is then plotted and compared to the theoretical description from formula 1.3.

2 Measurement Principle

- 2.1 Experimental Set-Up
- 2.2 Electronic Modules

3 Energy Spectrum

4 Calibration