

Bu ders, Pamukkale Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü tarafından diğer fakültelerde ortak okutulan Genel Fizik-I dersi için hazırlanmıştır.

Ana kaynak kitap olarak resimdeki ders kitabı takip edilecektir.

https://www.pau.edu.tr/fizik

BÖLÜM-04 İki Boyutta Hareket

Bölüm İçeriği

- 4.1 Yer değiştirme, Hız ve İvme Vektörleri
- 4.2 Sabit İvmeli İki Boyutlu hareket
- 4.3 Eğik Atış Hareketi
- 4.4 Düzgün Dairesel Hareket
- 4.5 Teğetsel ve Radyal İvme
- 4.6 Bağıl Hız ve Bağıl İvme

İçerik

- İki boyutta (düzlemde) hareket eden bir cismin kinematiği ile ilgilenilecek.
- Yerdeğiştirme, hız ve ivme vektörü tanımları verilecek.
- Düzlemde harekete örnek olarak;

eğik atış,

düzgün dairesel hareket

ayrıntılı bir şekilde incelenecektir.

 Birbirlerine göre sabit hızla hareket eden referans sistemlerine göre bir cismin hareketi incelenecektir (Bağıl hareket).

Konum Vektörü (\vec{r}): koordinat sistemin merkezinden parçacığın bulunduğu noktaya çizilen vektördür. İki boyutta yer alan bir parçacığın konum vektörü aşağıdaki gibi tanımlanır:

$$\vec{r} = x\hat{i} + y\hat{j} \qquad \dots (1)$$

Örnek: Şekilde bulunan parçacığın kartezyen koordinat sisteminde konumu (3,0 m, -2,0 m, 0)'dir. Konum vektörü aşağıdaki gibidir:

$$\vec{r} = (3.0 \text{ m})\hat{i} + (-2.0 \text{ m})\hat{j}$$

Yer değiştirme vektörü $(\Delta \vec{r})$: Bir parçacığın yer değiştirmesi

onun konum vektörlerindeki değişimdir.

 \vec{r}_i konumundan (t_1 anında A noktasında) \vec{r}_s (t_2 anında B noktasında) konumuna hareket eden bir cismin yer değiştirme vektörü aşağıdaki gibi tanımlanır:

$$\Delta \vec{r} = \vec{r}_{S} - \vec{r}_{i}$$

Bileşenleri cinsinden:

$$\Delta \vec{r} = \Delta x \hat{\imath} + \Delta y \hat{\jmath} = (x_s - x_i) \hat{\imath} + (y_s - y_i) \hat{\jmath}$$

Örnek: t_1 anında \vec{r}_i konumunda daha sonraki bir t_2 anında \vec{r}_s konumunda bulunan cismin yer değiştirme vektörü:

$$\Delta \vec{r} = (2.0 \text{ m} - 3.0 \text{ m})\hat{i} + (2.0 \text{ m} - (-2.0 \text{ m}))\hat{j}$$

 $\Delta \vec{r} = (-1.0 \text{ m})\hat{i} + (4.0 \text{ m})\hat{j}$

Hız vektörü (v): Cismin birim zamanda yer değiştirme vektörü.

Ortalama hız vektörü (\vec{v}_{ort}) : Bir parçacığın Δt zaman aralığı süresince \vec{v}_{ort} ortalama hızı, $\Delta \vec{r}$ yer değiştirmenin bu zaman aralığına bölümüdür:

$$\vec{V}_{ort} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_{s} - \vec{r}_{i}}{t_{s} - t_{i}}$$

$$\vec{V}_{ort} = \frac{\Delta x \hat{i} + \Delta y \hat{j}}{\Delta t} = \frac{\Delta x^{\hat{i}}}{\Delta t} + \frac{\Delta y^{\hat{i}}}{\Delta t} \hat{j}$$

$$\vec{V}_{ort} = \vec{V}_{x,ort} \hat{i} + \vec{V}_{y,ort} \hat{j}$$

 \overrightarrow{v}_{ort} , $\overline{\Delta r}$ ile aynı yöne sahiptir.

Ani hız vektörü (\vec{v}) : Bir parçacığın belirli bir t andaki hızı.

 Δt sıfıra giderken ortalama hızın limiti olarak tanımlanır.

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

$$\vec{v} = \frac{d}{dt}(x\hat{\imath} + y\hat{\jmath}) = \frac{dx}{dt}\hat{\imath} + \frac{dy}{dt}\hat{\jmath}$$

$$\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath}$$

Sürat ani hız vektörünün büyüklüğüdür:

$$v = |\vec{\boldsymbol{v}}| = \sqrt{v_x^2 + v_y^2}$$

Hızın yönü nedir?

Yer değiştirme vektörü olan $\Delta \vec{r}$ kirişini ele alalım:

- $\Delta \vec{r}$ vektörü hareket yönündedir.
- $\Delta t \to 0$ giderken \vec{r}_s vektörü, \vec{r}_i vektörüne yaklaşacak ve $\Delta \vec{r}$ kirişi sonunda teğet doğrultuya gelecektir.

Bir parçacığın anlık hızının yönü daima parçacığın bulunduğu konumdan geçen bu parçacığın yörüngesine teğettir.

İvme vektörü (a): Hız vektörünün birim zamanda değişimidir.

Ortalama ivme vektörü (\vec{a}_{ort}): Cismin t_i anındaki hızı \vec{v}_i ve daha sonraki bir t_s anındaki hızı \vec{v}_s ise, parçacığın bu Δt zaman aralığı süresince \vec{a}_{ort} ortalama hızı, $\Delta \vec{v}$ hız değişiminin bu zaman aralığına bölümüdür:

$$\vec{a}_{ort} = \frac{\vec{v}_s - \vec{v}_i}{t_s - t_i} = \frac{\Delta \vec{v}}{\Delta t}$$

Not: Bir vektörel niceliğin bir skalerle çarpılması veya bölünmesi, o vektörün yönünü değil, sadece büyüklüğünü değiştirir.

 $\Delta \vec{v}$ vektörünün Δt skalerine oranı \vec{a}_{ort} ortalama ivmesinin $\Delta \vec{v}$ ile aynı doğrultuda olduğunu gösterir.

$$\vec{a}_{ort}$$
, $\Delta \vec{v}$ ile aynı yöne sahiptir.

Ani ivme vektörü (\vec{a}) : Bir parçacığın belirli bir t anındaki ivmesi.

 Δt sıfıra giderken ortalama hızın limiti olarak tanımlanır:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (v_x \hat{\imath} + v_y \hat{\jmath})$$

$$\vec{a} = \frac{dv_x}{dt}\hat{\imath} + \frac{dv_y}{dt}\hat{\jmath}$$

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath}$$

İvme vektörü konum vektörünün ikinci türevi

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

İvme vektörünün yönü, herhangi bir yönde olabilir. İzlenilen yörüngeyle özel bir ilişkisi yoktur.

4.2 İki- Boyutta Sabit İvmeli Hareket

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath} = \text{sabit}$$

bir boyutlu hareket

$$v_{xs} = v_{xi} + a_x t$$

$$x_s = x_i + v_{xi} t + \frac{1}{2} a_x t^2$$

iki boyutlu hareket

$$\vec{v}_S = \vec{v}_i + \vec{a}t$$

$$\vec{r}_S = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a}t^2$$

√ iki bağımsız bir-boyutlu harekete

eşdeğerdir

x doğrultusunda hareket

$$v_{xs} = v_{xi} + a_x t$$

$$x_s = x_i + v_{xi}t + \frac{1}{2}a_x t^2$$

y doğrultusunda hareket

$$v_{ys} = v_{yi} + a_y t$$

 $y_s = y_i + v_{yi} t + \frac{1}{2} a_y t^2$

$$\vec{v}_{s} = v_{xs}\hat{i} + v_{ys}\hat{j} = (v_{xi} + a_{x}t)\hat{i} + (v_{yi} + a_{y}t)\hat{j}$$

$$\vec{r}_{s} = (x_{i} + v_{xi}t + \frac{1}{2}a_{x}t^{2})\hat{i} + (y_{i} + v_{yi}t + \frac{1}{2}a_{y}t^{2})\hat{j}^{11}$$

4.2 İki- Boyutta Sabit İvmeli Hareket

Örnek 4-1: Bir cisim, ilk hız bileşenleri $v_{xi} = 20 \ m/s$ ve $v_{yi} = -15 \ m/s$ olacak şekilde, t = 0 anında orijinden harekete başlıyor. xy- düzleminde hareket eden cismin ivme bileşenleri de $a_x = 4 \ m/s^2$ ve $a_y = 0$ olacak şekildedir.

- a) Cismin herhangi bir andaki hızını bulunuz.
- b) t = 5 s anında cismin hızının büyüklük, yön ve doğrultusunu hesaplayınız.
- c) Cismin herhangi bir andaki konumu nedir?

Çözüm 4-1:

Verilenler:

t=0 'da
$$x_i = 0 m$$
, $v_{xi} = 20 m/s$, $a_x = 4 m/s^2$
t=0 'da $y_i = 0 m$, $v_{yi} = -15 m/s$, $a_y = 0$

$$v_{xs} = v_{xi} + a_x t \longrightarrow v_{xs} = (20 + 4t)m/s$$

$$v_{ys} = v_{yi} + a_y t \longrightarrow v_{ys} = v_{yi} = -15 m/s$$

$$v_{ys} = v_{yi} + a_y t \longrightarrow v_{ys} = v_{yi} = -15 m/s$$

İki- Boyutta Sabit İvmeli Hareket

b)
$$t = 5 s$$
 anında cismin son hızının vektörü;

$$\vec{v}_S = ((20 + 4(5))\hat{i} - 15\hat{j}) \, m/s$$
 $\vec{v}_S = (40\hat{i} - 15\hat{j}) \, m/s$

$$\theta = tan^{-1} \left(\frac{v_{ys}}{v_{xs}} \right) = tan^{-1} \left(\frac{-15}{40} \right) = -21^{0}$$

Burada eksi işareti x ekseninin altında 21⁰'lik bir açıyı gösterir.

Son hızın büyüklüğü;

$$|\vec{v}_{S}| = \sqrt{v_{xS}^2 + v_{yS}^2} = 43 \ m/s$$

c) Herhangi bir andaki yer değiştirme vektörü; t=0 anında $\vec{r}_i = 0 m$ olduğu için $\Delta \vec{r} = \vec{r}_s$

$$x_s = v_{xi}t + \frac{1}{2}a_xt^2 = (20t + 2t^2) m$$

$$x_{s} = v_{xi}t + \frac{1}{2}a_{x}t^{2} = (20t + 2t^{2}) m$$
$$y_{s} = v_{yi}t + \frac{1}{2}a_{y}t^{2} = (-15t) m$$

$$\Delta \vec{r} = \vec{r}_s = \left((20t + 2t^2)\hat{i} + (-15t)\hat{j} \right) m$$

13

4.3

Eğik Atış Hareketi

Eğik atış: Bir cismin yer-çekimi kuvvetinin etkisi altında düşey düzlemdeki hareketidir. Bu hareketin analizini basitleştirmek için iki tane kabul yapmamız yeterlidir:

- Yerçekimi ivmesi (\vec{g}) hareket boyunca sabit ve aşağıya doğru yönelmektedir.
- Hareket boyunca havanın direnci ihmal edilir.

Bu koşullarda:

Eğik atış hareketi yapan bir cisim sadece ve sadece dünyanın kütle çekiminin etkisindedir. Fırlatılan cismin \vec{a} ivmesi serbest-düşme ivmesidir:

$$a_x = 0$$
 $a_y = -g$
 $\rightarrow \vec{a} = -g\hat{j}$
 $\vec{v}_i = v_{xi}\hat{i} + v_{yi}\hat{j}$: ilk hız burada,
 $v_{xi} = v_i \cos \theta_i$
 $v_{yi} = v_i \sin \theta_i$

Eğik Atış Hareketi

İki boyutta sabit ivmeli hareket formüllerini hatırlayalım:

$$\vec{v}_{\rm S} = \vec{v}_i + \vec{a}t$$

$$\vec{r}_{S} = \vec{r}_{i} + \vec{v}_{i}t + \frac{1}{2}\vec{a}t^{2}$$

Yatay hareket

$$a_{x} = 0$$

$$v_{xi} = v_{i} \cos \theta_{i}$$

$$v_{x} = v_{xi} = v_{i} \cos \theta_{i}$$

$$x = x_{i} + v_{i} \cos \theta_{i} t$$

Düşey hareket

$$a_y = -g$$

$$v_{yi} = v_i \sin \theta_i$$

$$v_y = v_i \sin \theta_i - gt$$

$$y = y_i + v_i \sin \theta_i t - \frac{1}{2}gt^2$$

Yörünge Denklemi

Hareketin başladığı nokta orijin olarak alındığında ($x_i = 0$; $y_i = 0$) konum vektörü bileşenleri;

$$\mathbf{x} = (v_i \cos \theta_i)t.....(1)$$

$$y = v_i \sin \theta_i t - \frac{1}{2}gt^2 \dots (2)$$

Eşitlik-1'den t çekilip Eşitlik-2'de kullanılırsa;

$$y = (\tan \theta_i) x - \frac{g}{2(v_i \cos \theta_i)^2} x^2$$

Yörünge denklemi $y = ax + bx^2$ formunda olup, bir paraboldür.

Eğik Atış Hareketi

Yatay Menzil (R)

Cismin harekete başladığı nokta (O) ile yere düştüğü nokta (B) x-ekseni üzerindeyse

 $(y_s = y_i = 0)$, cismin yatayda aldığı yol (R) menzil olarak adlandırılır. Konum

vektörünün y bileşeni;

$$y = y_i + v_i \sin \theta_i t - \frac{1}{2}gt^2$$

Burada, $y_s = y_i = 0$ alındığında,

$$(v_i \sin \theta_i)t - \frac{1}{2}gt^2 = 0 \Longrightarrow t = \frac{2v_i \sin \theta_i}{g}$$

 $t=t_{u \in u }$: cismin uçuş süresi

Bu süre konum vektörünün x bileşeninde yerine konulduğunda;

$$x - x_i = v_i \cos \theta_i \frac{2v_i \sin \theta_i}{g} \Longrightarrow \mathbf{R} = \frac{v_i^2 \sin 2\theta_i}{g}$$

45⁰ lik fırlatma açısında cismin menzili en büyüktür.

 $\sin 2\theta_i = 1$ olduğunda yataydaki erişim en büyüktür.

$$\rightarrow 2\theta_i = 90^0 \text{ veya } \theta_i = 45^0$$

Eğik Atış Hareketi

Maksimum Yükseklik (h)

Cismin y ekseninde çıkabileceği maksimum yüksekliğidir. Tepe

noktasında (A) hızın y bileşeni sıfırdır:

$$v_{yA} = 0 \Longrightarrow v_i \sin \theta_i - gt = 0 \Longrightarrow$$

$$t = \frac{v_i \sin \theta_i}{g} \quad ve$$

$$y_s = h \implies$$

$$h = (v_i \sin \theta_i) \left(\frac{v_i \sin \theta_i}{g}\right) - \frac{1}{2} g \left(\frac{v_i \sin \theta_i}{g}\right)^2$$

$$h = \frac{(v_i \sin \theta_i)^2}{2g}$$

4.3 Eğik Atış Hareketi

Ornek 4-3: Uzun atlama yapan bir sporcu, yatayla 20⁰ açı altında

- $11 \, m/s$ 'lik hızla fırlıyor.
- a) Sporcu ne kadar yatay uzaklığa sıçrayabilir?
- b) Ulaşılan maksimum yükseklik nedir?

Cözüm 4-3:

a) x- eksenindeki konum vektörü:

a) x- eksenindeki konum vektoru:

$$x_s - x_i = (v_i \cos \theta_i) t_{u \in u \in S} \qquad x_s = (v_i \cos \theta_i) t_{u \in u \in S} \qquad x_s = (11 \cos 20^0) t_{u \in u \in S} \qquad (1)$$

Tepe noktasında hızın v_{vs} bileşeni sıfırdır:

$$v_{ys} = v_i \sin \theta_i - gt = 0$$
, burada $t = \frac{t_{u\varsigma u\varsigma}}{2}$
 $0 = 11 \sin 20^0 - 9,80 \left(\frac{t_{u\varsigma u\varsigma}}{2}\right) \longrightarrow t_{u\varsigma u\varsigma} = 0,768 s$

Verilenler:

 $v_i = 11 \text{m/s}$

19

 $\theta_i = 20^0$

 $x_i = 0$ m

(1) Eşitliğinde $t_{uçus}$ değerini yazdığımızda menzili buluruz ;

$$x_s = (11\cos 20^0)(0.768)$$
 $R = 7.94 m$

b)
$$y_s - y_i = (v_i \sin \theta_i)t - \frac{1}{2}gt^2$$
 burada, $y_i = 0$ ve $t = \left(\frac{t_{u \in u \in S}}{2}\right) = 0,384$ s ise

$$y_s = (11\sin 20^0)(0,384) - \frac{1}{2}(9,80)(0,384)^2$$

$$h = y_s = 0.722 \text{ m}$$

4.3 Eğik Atış Hareketi

Örnek 4-5: Bir taş, yüksekliği 45 m olan bir binanın tepesinden yatayla 30° açı yapacak şekilde ve 20 m/s'lik bir ilk hızla fırlatılıyor.

- a)Taş, ne kadar sürede yere düşer?
- b) Taş, atıldığı noktadan ne kadar uzakta yere düşer'
- c) Taş, yere hangi hızla çarpar?

Çözüm 4-5:

Verilenler:

$$\theta_i = 30^0$$
; $v_i = 20 \text{ m/s}$
 $x_i = 0$; $y_i = 0$; $y_s = -45 \text{ m}$

20

a)

$$y_{s} - y_{i} = (v_{i} \sin \theta_{i})t - \frac{1}{2}gt^{2}$$

$$-45 = 0 + (20 \sin 30^{0})t - \frac{1}{2}(9,80)t^{2}$$

$$t = 4,22 s$$

b)
$$x_s - x_i = (v_i \cos \theta_i)t$$

$$x_s = (20\cos 30^0)(4,22) \longrightarrow x_s = 73 m$$

4.3 Eğik Atış Hareketi

Örnek 4-5:

c) Taş, yere hangi hızla çarpar?

Verilenler:

$$\theta_i$$
=30°; v_i =20 m/s
 x_i =0; y_i =0; y_s =-45 m

$$v_x = v_{xi} = v_i \cos \theta_i$$

 $v_x = v_{xi} = 20 \cos 30^0 = 17.3 \text{ m/s}$

$$v_y = v_i \sin \theta_i - gt$$

 $v_y = 20 \sin 30^0 - (9,80)(4,22) = -31,4 \text{ m/s}$

$$\vec{v}_s = v_{xs}\hat{\imath} + v_{ys}\hat{\jmath} = (17,3\hat{\imath} - 31,4\hat{\jmath}) \ m/s$$

ve büyüklüğü;

$$|\vec{v}_S| = \sqrt{(17,3)^2 + (-31,4)^2}$$

$$|\vec{v}_s| = 35,9 \, m/s$$

21

4.3 Eğik Atış Hareketi

Örnek 4-6 :Bir kurtarma uçağı yerden 100 m yükseklikte, 40 m/s'lik yatay hızla giderken, mahsur kalmış bir grubun bulunduğu noktaya yardım paketi ulaştırmak istiyor. (yatay eğik atış hareketi)

- a) Paketin grubun bulunduğu noktaya düşmesi için geçen süre nedir?
- **b)** Hangi yatay uzaklıktan bırakılmalıdır? c) Paket hangi hızla yere çarpar?

Çözüm 4-6:

 $y_{s} - y_{i} = v_{yi}t - \frac{1}{2}gt^{2}$

 $-100 - 0 = 0 - \frac{1}{2}(9,80)t^2$ t = 4,52 s

c)
$$v_{xs} = v_{xi} = 40 \ m/s$$

 $v_{ys} = v_{yi} - gt$ \longrightarrow $v_{ys} = 0 - (9,80)(4,52) = -44,3 m/s$

 $v_{xi}=40 \text{m/s};$

 $v_{vi}=0$ m/s; $x_{i} = 0 \text{ m}$;

 $y_i = 0 \text{ m}$;

 $y_{\rm s} = -100 \text{ m}$

$$\mathbf{b}) x_s - x_i = (v_{xi})t$$

$$x_s - 0 = (40)(4,52) =$$
181 m

22

 $\vec{v}_s = v_{xs}\hat{\imath} + v_{ys}\hat{\jmath} = (40\hat{\imath} - 44,3\hat{\jmath})\frac{m}{s}$ $|\vec{v}_s| = \sqrt{(40)^2 + (-44,3)^2} = 59,7 \text{ m/s}$

4.3 Eğik Atış Hareketi

Örnek 4-7: Bir kayakçı, kayak pistini şekildeki gibi 25 *m/s*'lik hızla yatay doğrultuda giderek terkeder. Aşağıya inişinde 35°'lik bir eğimle düşer.

- a) Kayakçı ne kadar süre havada kalır?
- **b**) Yokuşun uzunluğu (*d*) ne kadardır?
- c) Sporcu nereye düşer?
- d) Kayakçı yokuşa hangi hızla çarpar?

Çözüm 4-7:

Verilenler:

$$v_{xi}$$
=25 m/s; v_{yi} =0 m/s
 x_i =0 m; y_i =0 m;
 θ = 35⁰

 $\mathbf{a)} \ x_s - x_i = (v_{xi})t$

$$x_{s} = (v_{xi})t \longrightarrow x_{s} = 25t$$

$$y_{s} - y_{i} = (v_{yi})t - \frac{1}{2}gt^{2} \longrightarrow y_{s} = -\frac{1}{2}9,8t^{2}$$

Ayrıca geometrik yapıdan

$$x_s = d \cos 35^0 \longrightarrow d \cos 35^0 = 25t$$

 $y_s = -d \sin 35^0 \longrightarrow -d \sin 35^0 = 4.9t^2$

her iki denklemi taraf tarafa bölersek

$$\tan 35^0 = \frac{(4,9)}{(25)}t \longrightarrow t = 3,57 s$$

4.3 Eğik Atış Hareketi

Çözüm 4-7:

$$t = 3,57 s$$

Verilenler:

$$v_{xi}$$
=25 m/s; v_{yi} =0 m/s
 x_i =0 m; y_i = 0 m;
 θ = 35⁰

b) Yokuşun uzunluğu (*d*) ne kadardır?

$$(25)t = d\cos 35^0 \longrightarrow (25)(3,57) = d\cos 35^0$$

$$d = 109 m$$

$$x_s = (109)\cos 35^0 = 89, 3 m$$

 $y_s = -(109)\sin 35^0 = -62, 5 m$

$$v_{xs} = v_{xi} = 25 m/s$$

 $v_{ys} = v_{yi} - gt$ ise

$$v_{vs} = 0 - (9,80)(3,57) = -35.0 \, m/s$$

$$\vec{v}_{s} = v_{xs}\hat{i} + v_{ys}\hat{j} = (25\hat{i} - 35, 0\hat{j}) \, m/s$$

4.4 Düzgün Dairesel Hareket

Cisim r yarıçaplı bir çember üzerinde sabit v hızında dairesel hareket yapıyorsa, bu harekete düzgün dairesel hareket denir. t_1 anında bulunduğu P_1 konumundaki hız vektörü \vec{v}_1 , daha sonraki bir t_2 anında P_2 konumundaki hızı da \vec{v}_2 olsun. Bu hızların büyüklüğü birbirine eşit olsun $(|\vec{v}_1| = |\vec{v}_2| = v)$. Diğer bir değişle, düzgün dairesel hareket yapsın.

 \vec{v}_1 ile \vec{v}_2 vektörlerin başlangıç noktalarını bir araya getirelim. $\Delta \vec{v} = \vec{v}_2 - \vec{v}_1$ farkını oluşturalım. Cismin ortalama ivmesini hesaplayalım:

$$\vec{a}_{\text{ort}} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

Hızın büyüklüğü (sürat) sabit olmasına rağmen, hızın yönü vektörel olarak farklı olması hızdaki değişim ($\Delta \vec{v}$) sıfırdan farklı olmasını göstermektedir. Bu sebeple bir ivme oluşur.

25

4.4

Düzgün Dairesel Hareket

Konum vektörü (O P_1P_2 üçgeni) ve hız vektörü üçgenleri benzerdir. Çünkü ikizkenarlar arasındaki θ tepe açıları aynıdır. Benzer üçgenlerdeki kenar oranları eşit olur:

$$\frac{\Delta r}{r} = \frac{\Delta v}{v}$$

Yerdeğiştirme büyüklüğünü yaklaşık olarak yay uzunluğuna eşit alır isek ($\Delta r \approx \Delta s$), hızdaki değişim aşağıdaki gibi olur:

$$\Delta v = \frac{v \Delta s}{r}$$

Cismin ivmesi de aşağıdaki ifadeleri alır:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v \Delta s}{r \Delta t} = \frac{v}{r} \lim_{\Delta t \to 0} \underbrace{\frac{\Delta s}{\Delta t}}_{\Delta t} = \frac{v^2}{r}$$

 a_{ort} , Δv ile aynı yöne sahiptir ve merkeze doğru yönelmiştir.

4.4 Düzgün Dairesel Hareket

Merkezcil İvme

- Parçacık dairesel bir yörüngede sabit süratle hareket etmekte.
- Hız büyüklüğü (sürat) değişmiyor.
- Hız yönü değişiyor.
- Hız vektörü daima cismin hareketi doğrultusunda yörüngeye teğettir.
- Hız yönünün değişmesi, parçacığın ivmelenmesine sebep vermekte.
- İvme daima hıza dik olacak şekilde merkeze doğru yönelmiştir. Bu sebeple merkezcil ivme olarak adlanır.
- Cisim bir tam turunu bir periyotluk sürede (T) alır : $T = \frac{2\pi r}{v}$

dairenin yarıçapı

4.5

Teğetsel ve Radyal İvme

Parçacığın eğrisel bir yol boyunca düzgün olmayan dairesel hareketini inceleyelim.

- Hız hem doğrultuca hem de büyüklükçe değişmekte.
- Hız vektörü daima yola teğettir.
- İvme (*a*) vektörünün doğrultusu noktadan noktaya değişmektedir.
- Hızın sadece yönü değil, büyüklüğü de değiştiği için merkezcil ivmeye ek teğetsel ivme de oluşur.
- Toplam \vec{a} ivmesi bu merkezcil ve teğetsel ivmelerin bileşkesi olur.

teğetsel ivme
$$a_t = \frac{d|\vec{v}|}{a_t}$$

4.4

Teğetsel ve Radyal İvme

• Toplam \vec{a} ivmesi bu merkezcil ve teğetsel ivmelerin bileşkesi olur.

$$\vec{a} = \vec{a}_r + \vec{a}_t$$

• Dairesel yörüngede hareket eden bir parçacığın ivmesini kutupsal birim vektörler cinsinden yazmak daha uygun olur.

$$\vec{a} = \frac{d|\vec{v}|}{dt}\hat{\theta} - \frac{v^2}{r}\hat{r}$$

 $\widehat{\boldsymbol{\theta}}$: saatin tersi yönünde birim vektör

r: yarıçap (radyal)doğrultusunda birim vektör

4.5 Teğetsel ve Radyal İvme

Örnek 4-8:

Bir top, 0,5 m uzunluğundaki bir ipin ucuna asılmış ve şekildeki gibi düşey düzlemde çembersel bir yörünge üzerinde salınım yapmaktadır. İp, düşey eksenle 20^{0} 'lik açı yaptığında, taşın hızı $1,5 \ m/s$ 'dir.

- a) Tam bu anda, radyal ve teğetsel yönlerdeki ivme nedir?
- b) Tam bu anda, net ivmenin büyüklüğünü ve yönünü bulunuz Verilenler:

Çözüm 4-8:

a)
$$a_r = \frac{v^2}{r} = \frac{(1.5)^2}{0.5} = 4.5 \text{ m/s}^2$$
 $r = 0.5 \text{ m};$ $\theta = 20^0$ $\theta = 20^0$ $a_t = g \sin \theta = (9.8) \sin 20^0 = 3.4 \text{ m/s}^2$

b)
$$a = \sqrt{(a_r)^2 + (a_t)^2} = \sqrt{(4.5)^2 + (3.4)^2} = 5.6 \text{ m/s}^2$$

$$\emptyset = \tan^{-1}\left(\frac{a_t}{a_r}\right) = \tan^{-1}\left(\frac{3,4}{4,5}\right) = 37^0$$
 (ivmenin ip doğrultusunda yaptığı açı)

v = 1.5 m/s;

Referans Çerçevesi

P nin sürati A tarafından ölçülürse = 100 km/sa

B nin sürati A tarafından ölçülürse = 40 km/sa

P nin sürati B tarafından ölçülürse = 60 km/sa

Bir parçacığın hızı, hızı ölçen kişinin referans çerçevesine bağlıdır

Referans Çerçevesi

Konum, hız, ivme gibi kavramlar hangi gözlemci tarafından ölçüldüğüne bağlıdır. İki gözlemcinin birbirine göre hızı biliniyorsa, bu farklı ölçümler arasındaki ilişki hesaplanabilir.

A noktasına yerleşmiş bir parçacığın hareketi iki referans sisteminde bulunan gözlemci tarafından ölçülsün:

- Durgun S referans sistemi
- Sağa doğru sabit \vec{v}_0 hızıyla hareket eden S' referans sistemi

 \vec{r} : parçacığın S sistemine göre konum vektörü \vec{r}' : parçacığın S' sistemine göre konum vektörü

Galilean dönüşüm denklemleri

• \vec{r} ve \vec{r}' vektörleri birbirlerine $\vec{r} = \vec{r}' + \vec{v}_0 t$ veya

$$\vec{r}' = \vec{r} - \vec{v}_0 t \quad (1)$$

eşitliği ile bağlıdır. Yani, t kadarlık zaman sonra S' sistemi sağa doğru $\vec{v}_0 t$ miktarı kadar yer değiştirir.

Eşitlik (1)'in zamana göre türevini alır

Eşitlik (1)ve (2) Galilean dönüşüm denklemleri olarak bilinir.

 \vec{v} : parçacığın S sisteminde gözlenen hızı \vec{v}' : parçacığın S'sisteminde gözlenen hızı \vec{v}_0 : S'sisteminin S sistemine göre sabit hızı

Bağıl İvme

Her ne kadar farklı iki referans sistemindeki gözlemciler, parçacıklar için farklı hızlar ölçseler de, \vec{v}_0 sabit olduğu zaman **aynı** ivmeyi ölçeceklerdir.

Bu durum, Eşitlik (2)' nin zamana göre türevi alınarak sağlaması ile oluşur:

$$\frac{d\vec{v}'}{dt} = \frac{d\vec{v}}{dt} - \frac{d\vec{v}_0}{dt}$$

$$\vec{v}_0 = sabit \rightarrow \frac{d\vec{v}_0}{dt} = 0$$

$$\vec{a}' = \vec{a}$$

Yeryüzünün referans sistemindeki bir gözlemci tarafından ölçülen ivmesi, yeryüzünün referans sistemine göre sabit hızla hareket eden herhangi bir gözlemci tarafından ölçülen ivmeyle aynı değerde olacaktır.

34

olur.

Bir Boyutta Bağıl Hareket: Bağıl Konum

x_{PA}:P'nin A çerçevesinden ölçülen konumu

x_{PB}:P' nin B çerçevesinden ölçülen konumu

x_{BA}: B çerçevesinin A çerçevesi tarafından ölçülen konumu

35

Bir Boyutta Bağıl Hareket

$$x_{PA} = x_{PB} + x_{BA}$$

$$V_{PA} = V_{PB} + V_{BA}$$

$$V_{BA} = sabit$$

$$a_{PA} = a_{PB}$$

Farklı referans çerçevelerinde bulunan ve birbirlerine göre sabit hızlarla hareket eden gözlemciler, hareket eden bir parçacığın ivmesini aynı değerde ölçerler.

İki Boyutta Bağıl Hareket

A ve B referans çerçeveleri birbirlerine göre sabit hızla hareket etmekte dolayısıyla eksenleri birbirlerine paralel kalmaktadır.

$$\vec{r}_{PA} = \vec{r}_{PB} + \vec{r}_{BA}$$

$$\overrightarrow{V}_{PA} = \overrightarrow{V}_{PB} + \overrightarrow{V}_{BA}$$

$$V_{BA} = sabit$$

$$\vec{a}_{PA} = \vec{a}_{PB}$$

Farklı referans çerçevelerinde bulunan ve birbirlerine göre sabit hızlarla hareket eden gözlemciler, hareket eden bir parçacığın ivmesini aynı değerde ölçerler.

Örnek 4-9:

Genişliği 3 km olan ve doğu yönünde 5 km/saat düzgün hızla akan bir nehirde, bir tekne rotasını tam olarak kuzeye yönlendirmiş ve suya göre 10 km/saat'lik hızla ilerlemektedir.

- a) Teknenin kıyılardan birinde duran bir gözlemciye göre, hızını bulunuz.
- b) Tekne ne kadar sürede karşı kıyıya ulaşır?

Çözüm 4-9:

a)

b: tekne, r: nehir,

E:yer

 \vec{v}_{br} : teknenin nehre göre bağıl hızı (the velocity of the **boat** relative to the **river**)

 \vec{v}_{rE} : nehrin yere göre bağıl hızı (the velocity of the **river** relative to the **Earth**).

 \vec{v}_{bE} : teknenin yere göre hızıdır.

$$\vec{v}_{bE} = \vec{v}_{br} + \vec{v}_{rE}$$

Verilenler:

$$\vec{v}_{br}$$
: 10 \hat{j} km/sa $\vec{v}_{rE} = 5\hat{i}$ km/sa $\vec{v}_{bE} = ?$

Çözüm 4-9:

$$\mathbf{a)} \ \vec{v}_{bE} = \vec{v}_{br} + \vec{v}_{rE}$$

$$v_{bE} = \sqrt{(v_{br})^2 + (v_{rE})^2}$$

$$= \sqrt{(10,0)^2 + (5,00)^2} = 11,2 \text{ km/saat}$$

$$\theta = \tan^{-1}\left(\frac{v_{rE}}{v_{br}}\right) = \tan^{-1}\left(\frac{5,00}{10,0}\right) = 26,6^0$$

Tekne 11,2 *km/saat* hızla yere göre 26,6⁰ kuzey doğu yönünde yol alacaktır.

Verilenler:

 \vec{v}_{br} : 10 \hat{j} km/sa $\vec{v}_{rE} = 5\hat{i}$ km/sa d=3,0 km $\vec{v}_{bE} = ?$ t=?

Örnek 4-10:
Bir önceki örnekte tekne nehre göre aynı 10 km/saat'lik hızla ilerlemektedir ve şekildeki gibi kuzeye doğru gitmekte ise,

- Baş tarafının çevrildiği yön ne olacaktır?
- Tekne ne kadar sürede karşı kıyıya ulaşır?

Çözüm 4-10:

a)
$$\vec{v}_{br} = \vec{v}_{bE} - \vec{v}_{rE}$$

$$v_{bE} = \sqrt{(v_{br})^2 - (v_{rE})^2} = \sqrt{(10,0)^2 - (5,00)}$$

$$= 8,66 \text{ km/saat}$$

Yönü de;
$$\theta = \tan^{-1} \left(\frac{v_{rE}}{v_{bE}} \right) = \tan^{-1} \left(\frac{5,00}{8,66} \right) = 30,0^{0}$$

Teknenin dümeni 8,66 km/saat hızla yere göre 30,0 0 kuzey batı yönüne kırılmalıdır.

b)
$$d = v_{bE}t$$
 ve $d = 3 \text{ km}$; $v_{bE} = 8,66 \text{ km/saat}$ ise $t = \frac{d}{v_{bE}} = \frac{3,00}{8.66} = 0,35 \text{ saat} = 21 \text{ dakika}$

Verilenler:

$$\vec{v}_{br}$$
: 10 km/sa $\vec{v}_{rE} = 5\hat{i}$ km/sa $\vec{v}_{bE} = ?$

Problem 4. 2

Problem 4. 16

Problem 4.31

Problem 4.36

Problem 4. 2 Bir parçacık için konum vektörünün, x = at + b ve $y = ct^2 + d$ olmak üzere $\vec{r} = x\hat{\imath} + y\hat{\jmath}$ olarak verildiğini varsayınız. Burada a = 1 m/s, b = 1 m, c = 0,125 m/s^2 ve d = 1 m'dir.

- a) t = 2 s ile t = 4 s zaman aralığında ortalama hızı hesaplayınız.
- **b**) t = 2 s'deki hızını ve büyüklüğünü bulunuz.

Çözüm 4.2

```
a) x = at + b; y = ct^2 + d

\vec{r}_i = x_i \hat{\imath} + y_i \hat{\jmath} = (at + b) \hat{\imath} + (ct^2 + d) \hat{\jmath}

\vec{r}_i = (t+1) \hat{\imath} + (0,125t^2+1) \hat{\jmath}

t_i = 2 s aninda \vec{r}_i (t = 2) = (3\hat{\imath} + 1,5\hat{\jmath}) m

t_s = 4 s aninda \vec{r}_s (t = 4) = (5\hat{\imath} + 3\hat{\jmath}) m
```

Verilenler:

$$a = 1 m/s,$$

 $b = 1 m,$
 $c = 0.125 m/s^2$
 $d = 1 m' dir.$

$$\bar{\vec{v}} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_s - \vec{r}_i}{\Delta t} = \frac{\left[(5\hat{i} + 3\hat{j}) - (3\hat{i} + 1,5\hat{j}) \right]}{(4 - 2)} = \frac{2\hat{i} + 1,5\hat{j}}{2}$$

$$\bar{\vec{v}} = (\hat{i} + 0,75\hat{j}) \, m/s$$

b)
$$\vec{v} = \frac{d\vec{r}}{dt}$$
 ise $\vec{v} = \frac{d}{dt} [(at+b)\hat{\imath} + (ct^2+d)\hat{\jmath}]$
 $\vec{v} = a\hat{\imath} + 2ct\hat{\jmath} = \hat{\imath} + 2(0,125)(2)\hat{\jmath} = (\hat{\imath} + 0,5\hat{\jmath}) \, m/s$
 $|\vec{v}| = \sqrt{(1)^2 + (0,5)^2} = 1,12 \, m/s$

Problem 4. 16

Bir top, bir binanın en üst penceresinden atılmaktadır. Topa yatayın altında 20° 'lik bir açıda 8 m/s'lik bir ilk hız veriliyor. Top yere 3 s sonra çarpıyor.

- a) Top binanın zemininden yatay olarak ne kadar uzakta yere çarpar?
- b) Topun fırlatıldığı yüksekliği bulunuz.
- c) Topun, atış seviyesinin 10 m altında bir noktaya ulaşması için ne kadar zaman geçer? Havanın sürtünmesini ihmal ediniz.

Çözüm 4. 16

a)
$$x_s = v_{xi}t = (v_i \cos \theta)(3) = (8\cos 20^0)(3) = 22.6 m$$

b)
$$v_{yi} = v_i \sin \theta = -(8 \sin 20^0),$$

eksi işareti yatayın altında açıyla atıldığı ve v_{yi} 'nin yönünün aşağıya doğru olmasından kaynaklanır.

$$y_s = y_i + v_{yi}t - \frac{1}{2}gt^2 \implies 0 - y_i = -(8\sin 20^0)(3) - \frac{1}{2}(9,8)(3)^2$$

 $y_i = 8,21 + 44,1 = 52,3 m$

Verilenler:

$$v=8m/s,$$
 $t_{uçuş}=3 s$
 $\theta=20 ^{\circ}$

Problem 4. 31
Bir tren, bir virajı dönerken hızını 15 s içinde 90 km/saat'den 50 km/saat'e düşürmektedir. Virajın yarıçapı 150 m'dir. Trenin hızı 50 km/saat'e ulaştığı anda ivmesini hesaplayınız.

Çözüm 4. 16

Yavaşlamakta olan trenin ivmesi;

$$\Delta t = 15 \text{ s}$$
 $v_1 = 90 \text{ km/sa}$
 $v_2 = 50 \text{ km/sa}$
 $r = 150 \text{ m}$
 $v = 50 \text{ km/sa ise } a = ?$

$$a_r = \frac{v^2}{r} = \frac{[(50)(1000)(1/3600)]^2}{150} = 1,29 \, m/s^2$$

$$a_t = \frac{\Delta v}{\Delta t} = \frac{[(50)(1000)(1/3600)] - [(90)(1000)(1/3600)]}{15} = -0,741 \, m/s^2$$

$$|\vec{a}| = \sqrt{a_r^2 + a_t^2} = \sqrt{(1.29)^2 + (-0.741)^2} = 1.48 \, m/s^2$$

$$\theta = \tan^{-1}\left(\frac{a_t}{a_r}\right) = \tan^{-1}\left(\frac{0,741}{1,29}\right) = 29,9^0$$

Problem 4.31

Jill bir Jaguar ile $(1\hat{\imath} + 3\hat{\jmath}) \, m/s^2$ ile hızlanırken Corvette'indeki Heather $(3\hat{\imath} - 2\hat{\jmath}) \, m/s^2$ değerde hızlanmaktadır. Onların her ikisi de bir xy koordinat sisteminin orijininde durgun halden harekete geçmektedir. 5 s sonra,

- a) Heather'ın Jill'e göre hızının büyüklüğü nedir?
- b) Birbirlerinden ne kadar uzaktadır?
- c) Heather'ın Jill'e göre ivmesi nedir?

Çözüm 4. 31

a)
$$\vec{v}_H = 0 + \vec{a}_H t = (3\hat{\imath} - 2\hat{\jmath})(5) = (15\hat{\imath} - 10\hat{\jmath}) \, m/s$$

$$\vec{v}_J = 0 + \vec{a}_J t = (1\hat{\imath} + 3\hat{\jmath})(5) = (5\hat{\imath} + 15\hat{\jmath}) \, m/s$$

$$\vec{v}_{HJ} = \vec{v}_H - \vec{v}_J = (15\hat{\imath} - 10\hat{\jmath}) - (5\hat{\imath} + 15\hat{\jmath})$$

$$\vec{v}_{HJ} = (10\hat{\imath} - 25\hat{\jmath}) \, m/s$$

$$|\vec{v}_{HJ}| = \sqrt{(10)^2 + (-25)^2} = 26.9 \, m/s$$

Çözüm 4. 31

b) Birbirlerinden ne kadar uzaktadır?

$$\vec{r}_H = 0 + 0 + \frac{1}{2}\vec{a}_H t^2 = \frac{1}{2}(3\hat{\imath} - 2\hat{\jmath})(5)^2 = (37,5\hat{\imath} - 25\hat{\jmath}) m$$

$$\vec{r}_J = 0 + 0 + \frac{1}{2}\vec{a}_J t^2 = \frac{1}{2}(1\hat{\imath} + 3\hat{\jmath})(5)^2 = (12,5\hat{\imath} + 37,5\hat{\jmath}) m$$

$$\vec{r}_{HJ} = \vec{r}_H - \vec{r}_J = (37,5\hat{\imath} - 25\hat{\jmath}) - (12,5\hat{\imath} + 37,5\hat{\jmath})$$

$$\vec{r}_{HJ} = (25\hat{\imath} - 62,5\hat{\jmath}) m/s$$

$$|\vec{r}_{HJ}| = \sqrt{(25)^2 + (-62,5)^2} = 67,3 m/s$$

c) Heather'ın Jill'e göre ivmesi nedir?

$$\vec{a}_{HJ} = \vec{a}_H - \vec{a}_J = (3\hat{\imath} - 2\hat{\jmath}) - (1\hat{\imath} + 3\hat{\jmath})$$

 $\vec{a}_{HJ} = (2\hat{\imath} - 5\hat{\jmath}) \, m/s^2$

KAYNAKLAR

- Fen ve Mühendislik İçin Fizik 1, Serway-Beichner, Çeviri: Prof. Dr. Kemal Çolakoğlu
- Üniversite Öğrencileri İçin Fizik 1 Çalışma Kitabı,
 Dr.Tayfun Demirtürk
 www.youtube.com/user/tdemirturk
- Üniversiteler İçin Fizik 1, Prof.Dr. Bekir Karaoğlu