

#### **Business Case**

Products that do not sell over 20,000 units is could cause problems within Supply Chains due high production minimums.

Two Outcomes:

Significant Excess inventory or

New Product Does Not Get Produced

This problem is often **invisible** due to bias in the forecasting process.



### **Business Case**

Build a statistical model that predicts if a product will sell above or below 20,000 units



Below 20k or Above 20k?



# Logistic Regression Statistical Models

#### Models

- 1. Generalized Logistic Model (G.L.M.)
- 2. Decision Tree
- 3. Support Vector Machine
- 4. Random Forest
- 5. XGBoost



### **Confusion Matrix: Key Performance Indictors**

Confusion Matrix and Statistics Reference Prediction Accuracy 95% CI No Information Rate P-Value [Acc > NIR] Kappa Mcnemar's Test P-Value Sensitivity Specificity Pos Pred Value Neg Pred Value prevalence Detection Rate Detection Prevalence Balanced Accuracy

'Positive' Class

Confusion Matrix

0 1

0 True Positive False Negative
1 False Positive True Negative

**Accuracy of Model** 

| Sensitivity | Correct Negative Predictions divided by the total number of Negatives |
|-------------|-----------------------------------------------------------------------|
|             |                                                                       |
| Specificity | Correct Positive Predictions divided by the total number of Positive  |
|             |                                                                       |
| Pos Pred    | Correct True Positive divided by the total                            |
|             | number of True Positive and False Negative                            |
|             | Compat Two Nametics divided by the total                              |
| Neg Pred    | Correct True Negative divided by the total                            |
|             | number of False Postive and True Negative                             |



## 1. Generalized Logistic Model (G.L.M.) Results

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
         0 49 298
        1 360 856
              Accuracy: 0.579
                95% CI: (0.5541, 0.6036)
    No Information Rate: 0.7383
    P-Value [Acc > NIR] : 1.00000
                 Kappa : -0.1455
Mcnemar's Test P-Value: 0.01741
           Sensitivity: 0.11980
           Specificity: 0.74177
         Pos Pred Value: 0.14121
         Neg Pred Value: 0.70395
            Prevalence: 0.26168
         Detection Rate: 0.03135
   Detection Prevalence: 0.22201
      Balanced Accuracy: 0.43079
       'Positive' Class: 0
```



### 2. Decision Tree Model Results

```
Confusion Matrix and Statistics
         Reference
Prediction
         0 110 237
        1 74 1142
              Accuracy: 0.801
                95% CI: (0.7804, 0.8206)
    No Information Rate: 0.8823
    P-Value [Acc > NIR] : 1
                 Kappa: 0.3078
Mcnemar's Test P-Value : <2e-16
           Sensitivity: 0.59783
           Specificity: 0.82814
        Pos Pred Value: 0.31700
        Neg Pred Value: 0.93914
            Prevalence: 0.11772
        Detection Rate: 0.07038
   Detection Prevalence: 0.22201
      Balanced Accuracy: 0.71298
       'Positive' Class: 0
```



### 3. Support Vector Machine Model Results

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 43 166
        1 10 878
              Accuracy: 0.8396
                95% CI: (0.8165, 0.8608)
    No Information Rate: 0.9517
    P-Value [Acc > NIR] : 1
                 Kappa: 0.2721
Mcnemar's Test P-Value: <2e-16
           Sensitivity: 0.81132
           Specificity: 0.84100
        Pos Pred Value: 0.20574
        Neg Pred Value: 0.98874
            Prevalence: 0.04831
        Detection Rate: 0.03920
   Detection Prevalence: 0.19052
      Balanced Accuracy: 0.82616
       'Positive' Class: 0
```



### 4. Random Forest Model Results

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 95 114
        1 44 844
              Accuracy: 0.856
                95% CI: (0.8338, 0.8762)
    No Information Rate: 0.8733
    P-Value [Acc > NIR] : 0.9597
                 Kappa : 0.4645
Mcnemar's Test P-Value: 4.034e-08
           Sensitivity: 0.6835
           Specificity: 0.8810
        Pos Pred Value: 0.4545
        Neg Pred Value: 0.9505
            Prevalence: 0.1267
        Detection Rate: 0.0866
   Detection Prevalence: 0.1905
      Balanced Accuracy: 0.7822
       'Positive' Class: 0
```



### **5. XGBoost Model Results**

```
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 81 128
        1 38 850
              Accuracy: 0.8487
                95% CI: (0.8261, 0.8694)
    No Information Rate: 0.8915
    P-Value [Acc > NIR] : 1
                 Kappa: 0.4127
Mcnemar's Test P-Value: 4.924e-12
           Sensitivity: 0.68067
           Specificity: 0.86912
        Pos Pred Value: 0.38756
        Neg Pred Value: 0.95721
            Prevalence: 0.10848
        Detection Rate: 0.07384
   Detection Prevalence: 0.19052
      Balanced Accuracy: 0.77490
       'Positive' Class: 0
```



| Statistical Model          | Accuracy | Sensitivity | Specificity | Pos Pred | Neg Pred |
|----------------------------|----------|-------------|-------------|----------|----------|
| Generalized Logistic Model | 60%      | 8%          | 77%         | 10%      | 72%      |
| Decision Tree              | 84%      | 63%         | 86%         | 34%      | 95%      |
| Support Vector Machine     | 83%      | 81%         | 84%         | 21%      | 99%      |
| Random Forest              | 86%      | 68%         | 88%         | 46%      | 95%      |
| XGBoost                    | 85%      | 68%         | 87%         | 39%      | 96%      |