Вынужденнные колебания в электрическом контуре

Лабораторная работа

Высшая школа экономики, Санкт-Петербургская школа физико-математических и компьютерных наук Физика, 1 курс

Андрей Ситников

Никита Афанасьев

28.04.2022

Цель работы

Исследование резонансных кривых, с целью определения добротности и логарифмического декремента затухания при нарастании и затухании колебаний

Теория

Рассмотрим цепь с таким параллельным контуром:

Figure 1: Схема контура

Запишем импедансы параллельных элементов и посчитаем полный импеданс контура:

$$\frac{1}{Z} = \frac{1}{Z_L} + \frac{1}{Z_C} = \frac{1}{R + i\omega L} + i\omega C = \frac{1 - \left(\omega/\omega_0\right)^2 + i\omega RC}{R + i\omega L}$$

При этом, если частота генератора совпадает с частотой колебательного контура, то импеданс упрощается до:

$$Z_{\mathrm{pes}} = \frac{R + i\omega_0 L}{i\omega_0 RC} = \frac{L}{RC} - i\frac{1}{\omega_0 C}$$

Что при малом сопротивлении (R« w_0*L) превращается в:

$$Z_{\rm pes} = \frac{L}{RC}$$

что также можно переписать через добротность $Q=rac{\omega_0 L}{R}$

$$Z_{\rm pes} = \frac{L}{RC} = \frac{Q}{\omega_0 C}$$

А если рассматривать импеданс для всех частот генератора, то формула будет такой:

$$|Z| = \frac{\omega L}{\sqrt{\left(1 - \left(\omega/\omega_0\right)^2\right)^2 + (\omega RC)^2}}$$

Методика

При исследовании резонансной кривой тока в колебательном контуре обычно снимают зависимость амплитуды напряжения на резисторе R от частоты генератора. Однако при резком увеличении тока вблизи резонанса выходное напряжение генератора заметно просаживается, что вносит существенные искажения в форму резонансной кривой.

В работе для устранения влияния генератора используется такая схема:

Figure 2: Схема установки

Синусоидальный сигнал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость C_1 . При этом ток в цепи определяется ёмкостью C_1 и вблизи резонанса остается практически постоянным. Напряжение ёмкости контура C поступает на вертикальный вход осциллографа. Зависимость амплитуды этого напряжения от частоты генератора согласно формуле:

$$U_{0} = I_{0}|Z| = \frac{I_{0}\omega L}{\sqrt{\left(1 - (\omega/\omega_{0})^{2}\right)^{2} + (\omega RC)^{2}}}$$
(1)

Разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот её импеданс $Z_{C_1}=1/(\omega C1)$ много больше импеданса контура, в цепи генератор создаёт ток с постоянной амплитудой, а колебательный контур выполняет роль нагрузочного сопротивления, которое, в свою очередь, зависит от частоты. Поскольку в резонансе сопротивление $Z_{\text{pe}3}$ параллельного контура максимально, то и напряжение на ёмкости

C (неизменный ток, умноженный на максимальное сопротивление) тоже максимально. Входное сопротивление осциллографа в измеряющей цепи достаточно велико: $R_{\mathsf{PO}} = 1$ МОм. Таким образом, при выполнении условий

$$Z_{C_1} = \frac{1}{\omega C_1} \gg Z_{\rm pes} = \frac{Q}{\omega C}$$

$$R_{\rm 30} \gg \frac{Q}{\omega C}$$

и при условии, что действительная часть импеданса катушки много меньше её мнимой части, резонансная кривая в нашем контуре будет выглядеть так же, как в последовательном: максимум амплитуды при резонансе. А с помощью её ширины можно будет определить добротность контура.

Рассмотрим процесс установления колебаний в контуре вблизи резонанса. Несложно показать, что возникающие в контуре колебания будут представлять собой суперпозицию двух синусоид: первая — с частотой собственных колебаний контура ω_0 и амплитудой, экспоненциально убывающей со временем; вторая — с частотой внешнего источника ω и постоянной амплитудой. Зависимость напряжения на контуре (при напряжении и его производной равным 0 при t = 0) от времени имеет вид:

$$U(t) = U_0 \left(\cos(\omega t - \varphi) - e^{-\gamma t} \cos(\omega_0 t - \varphi) \right)$$

Здесь U_0 – амплитуда установившихся колебаний, γ – коэффициент затухания. При частотах ω , отличающихся от собственной частоты контура ω_0 , уравнение описывает биения. При очень близких частотах биения не возникают, так как колебания с собственной частотой контура затухают быстрее, чем накапливается разность фаз между колебаниями с частотами ω и ω_0 достаточная для наблюдения этого эффекта. В этом случае уравнение сводится к простому виду

$$U(t) = U_0 (1 - e^{-\gamma t}) \cos (\omega_0 t - \varphi)$$

Заметим, что добротность колебательного контура можно выразить через коэффициент затухания

$$Q = \frac{\omega_0}{2\gamma}$$

Это соотношение позволяет определить добротность контура по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний. Нарастание и затухание колебаний можно наблюдать на экране осциллографа, если на контур подаются — части синусоиды, разделённые интервалами, в течение которых сигнал отсутствует. Чем выше добротность, тем медленнее нарастают и медленнее затухают колебания в контуре. Количественные оценки можно сделать, если определить логарифмический декремент затухания по скорости нарастания или затухания колебаний. В условиях резонанса, огибающая затухающих колебаний — это перевёрнутая огибающая нарастающего участка, поэтому при расчёте логарифмического декремента по затухающему участку нет необходимости использовать амплитуду установившихся колебаний U0, которая в контуре с высокой добротностью иногда не успевает установиться за время подачи ненулевого напряжения.

При частоте генератора близкой (но не равной) к резонансной, происходят биения

Figure 3: Фото биений

Которые появляются из-за наложения двух колебаний, различных по частоте: вынужденных и свободных. В итоге, из-за изменения сдвига по фазе от времени — со временем меняется и амплитуда.

Результаты

Результаты измерения LCR-метром элементов системы:

Параметр	Значение
$\overline{R_0}$	0.07Ω
R_30	30.08Ω
С	97.183нФ
R_C	0.23Ω
L	14.633мГн
R_L	3.44Ω
C_1	223pF

Как оказалось, сопротивление моста имеет постоянную добавку 0.07Ω , но мы здесь и далее будем писать 0 и 30Ω , имея в виду номинальное сопротивление — тем более, что добавка мала. Добавим, что емкость C_1 действительно мала — импеданс много больше остальных импедансов схемы.

R = 0 График показаний вольтметра от частоты генератора:

Figure 4: АЧХ при $R = 0\Omega$

R = 30 ом График показаний вольтметра от частоты генератора:

Figure 5: АЧХ при $R=30\Omega$

Обработка данных

Figure 6: Нормированная АЧХ при R = 0Ω

Figure 7: Нормированная AЧX при $R = 30\Omega$

График резонансных кривых в относительных координатах Ширина полосы при R=0: 0.242, откуда добротность $-Q_0=\frac{f}{\Delta f}=\frac{1}{0.24}\approx 41.4$

Ширина полосы при
$$R=30$$
: 0.102 , откуда добротность — $Q_{30}=\frac{f}{\Delta f}=\frac{1}{0.24}\approx 9.8$

Здесь погрешность будет достаточно высокой, так как мы используем линейную интерполяцию между точками, которых у нас не так много. Если оценить погрешность "расстояния" как расстояние между ближайшими точками измерения (10 Гц в первом случае и 20 во втором), получим, что $Q_0=41\pm4$, $Q_{30}=9.8\pm0.5$

Сравнение теоритической и экспериментальной резонансных частот Экспериментально наблюдаемая частота — 4216 Гц (забыли точно убедиться для $R = 30\Omega$, но там она была также очень близкой)

Теоретическая частота:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\nu = \frac{\omega}{2\pi} = \frac{\sqrt{\omega_0^2 - \gamma^2}}{2\pi} \approx \frac{\omega_0}{2\pi}$$

Даже для $R=30\Omega$ отклонение из-за поправки на γ не превышает 2 Ω , поэтому им можно спокойно пренебречь (2/4220 pprox 0.05%).

Откуда получается, что частота резонанса — $\nu = 4220$ Гц, очень близко к экспериментальной.

Figure 8: График максимумов сигнала от времени при $R=0\Omega$

Figure 9: График максимумов сигнала от времени при $R=30\Omega$

Коэффициент затухания Рассмотрим в логарифмическом масштабе правые части графиков (из левых извлекать информацию гораздо сложнее по той простой причине, что мы не знаем точно напряжение, к которому стремится экспонента; правая же часть стремится к нулю, так как это амплитуды):

Figure 10: Логарифм амплитуды от времени при $R=0\Omega$

Логарифмический декремент затухания: 0.62 Коэффициент наклона (из линейной аппроксимации): -0.26 1/мс

Figure 11: Логарифм амплитуды от времени при $R=30\Omega$

Логарифмический декремент затухания: 0.23 Коэффициент наклона: -0.97 1/мс.

Метод наименьших квадратов дает ошибку в 0.02, но мы не можем ручаться, что у осциллографа одни и те же

расстояния "сверху" и "посередине" соответствуют одним и тем же разницам в напряжении, учитывая особенности конструкции электронного осциллографа (отклонение пучка электронов может быть нелинейным), поэтому этим цифрам доверять нельзя.

Добротность через коэффициент затухания

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{2\gamma} \sqrt{\frac{1}{LC}} = \frac{\omega_0}{2\gamma} = \frac{\pi}{\gamma T}$$

Подставляя, получаем $Q_0 \approx 50$, $Q_{30} \approx 13.7$. Значения резко выше (за пределами погрешности) полученных через АЧХ

Попробуем определить добротность из параметров системы (см. таблицу выше). И здесь начинается самое интересное:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q_0 = \frac{1}{R_0} \sqrt{\frac{L}{C}} \approx 104$$

Что в два раза отличается от наблюдаемых результатов. Более того, если мы посчитаем для 30Ω:

$$Q_{30} = \frac{1}{R_3 0} \sqrt{\frac{L}{C}} \approx 11.5$$

Что по-прежнему выше полученных через АЧХ, но уже не настолько "критично".

Попробуем по выражению 1 построить графики:

Figure 12: Теоретическое и наблюдаемое АЧХ при $R=0\Omega$

Figure 13: Теоретическое и наблюдаемое АЧХ при R = 30Ω

Если бы у нас был бы фактор, влияющий на индуктивность или емкость, у нас бы сместился пик. Пик совпадает с теоретическим, значит, проблема в неверно подсчитанном сопротивлении. Мы замерили сопротивления всех элементов (в т.ч. постоянной добавки сопротивления моста), но сложно утверждать, что никуда не могло "закрасться" паразитное сопротивление. Попробуем ввести неизвестное "добавочное сопротивление" и подогнать кривые.

При добавочном сопротивлении $\Delta R = 5.6\Omega$ графики:

Figure 14: app_FR_0_2

Figure 15: app_FR_30_2

Видно, что начинаются расхождения "по краям", которые могли возникнуть из-за зависящего от w падения напряжения на конденсаторе C_1 , но в целом совпадает. Отсюда добротности с "поправкой":

$$Q_0 = 41.5$$

$$Q_{30} = 9.9$$

Увы, такое совпадение объясняется тем, что мы "подогнали" доп. сопротивление под АЧХ (хотя сам факт того, что оно "подгоняется" говорит о том, что общая теория, описывающая колебания в этом контуре верна). Идеально было бы найти и замерить это сопротивление в контуре, но нам это не удалось.

Совмещать результаты достаточно бессмысленно — тем не менее, как уже было сказано, видно, что результат, полученный через коэффициент затухания выше полученного через АЧХ (на 20% для $R=0\Omega$ и 40% для $R=30\Omega$). Сложно сказать, чем вызвана такое отклонение, но, скорее всего, это показывает несостоятельность его использования для измерения добротности.

Выводы

Эксперимент наглядно демонстрирует, что эффект биений несложно получить без использования нескольких генераторов за счет разности частот вынужденных и свободных компонент колебания (при использовании модулирующего сигнала). Было обнаружено неучтенное сопротивление 5.6Ω, с поправкой на которые АЧХ системы

совпадает с теорическим. Также замечено, что экспериментально наблюдаемый коэффициент затухания меньше на 20%-40% от теоретического (добротность на 20-40% больше, но т.к. коэффициент и добротность связаны через частоту, которую мы знаем точно, то относительные отклонения совпадают).