

So Far...

- ▶ It's time for
 - Unsupervised learning
 - We are only given inputs
 - Goal: find "interesting patterns"
 - Discovering clusters
 - Clustering
 - Discovering latent factors
 - Dimensionality reduction
 - Topic modeling
 - Matrix factorization

Dimensionality Reduction

Deng Cai (蔡登)

College of Computer Science Zhejiang University

dengcai@gmail.com

Feature Representation

- ightharpoonup For all the learning tasks (supervised, unsupervised), we need x
- Better representation makes learning easier
- Minimum requirement:
 - *x* should contains relevant features
- But we don't know which features are useful.
 - As many features as possible
- Feature engineering problem:
 - Dimensionality reduction

What is Dimensionality Reduction?

- The Key:
 - Feature mapping from *x* to *z*
 - The *x* is the original representation, usually with high dimensionality.
 - We believe the number of latent factors (degree of the freedoms) of the data is far less.
 - Handwritten digits example
 - Thus, the dimensionality of z is usually smaller than that of x
 - This is the name DR comes from.

Linear and Nonlinear

$$\mathcal{F}(\mathbf{x} \in R^p) = \mathbf{z} \in R^d$$

$$f_1(\mathbf{x}) = z_1 \qquad f_i(\mathbf{x}) = z_i \qquad f_d(\mathbf{x}) = z_d$$

- ▶ All the methods (classification & clustering) can be seen as a DR approach (either supervised or unsupervised)
- ▶ If *f* is linear, linear dimensionality reduction

$$\mathbf{a}_1^T \mathbf{x} = z_1$$
 $\mathbf{a}_i^T \mathbf{x} = z_i$ $A \triangleq [\mathbf{a}_1, \dots, \mathbf{a}_d]$ $A^T \mathbf{x} = \mathbf{z}$

- ightharpoonup If f is nonlinear, nonlinear dimensionality reduction
 - We know the embedding function
 - We don't know the function

Linear Transformation

Linear transformation

Reduced data $\mathbf{z} \in \mathcal{R}^d$

Original data $x \in \mathcal{R}^p$

$$A \in \mathcal{R}^{p \times d} : \mathbf{x} \in \mathcal{R}^p \to \mathbf{z} = A^T \mathbf{x} \in \mathcal{R}^d$$

Feature Extraction vs Feature Selection

- Dimensionality reduction (Feature reduction)
 - Feature extraction
 - Feature selection

- ▶ Selection: choose a best subset of size *d* from the available *p* features
- ▶ Extraction: given *p* features (set X), extract *d* new features (set Z) by linear or non-linear combination of all the p features

$$A \in \mathcal{R}^{p \times d} : \mathbf{x} \in \mathcal{R}^p \to \mathbf{z} = A^T \mathbf{x} \in \mathcal{R}^d$$

- ▶ Selection: $A \in [0,1]^{p \times d}$, every column of A has only one 1.
- ▶ Extraction: $A \in \mathbb{R}^{p \times d}$

Dimensionality Reduction Algorithms

- Unsupervised
 - Latent Semantic Indexing (LSI): truncated SVD
 - Principal Component Analysis (PCA)
 - Independent Component Analysis (ICA)
 - Canonical Correlation Analysis (CCA)
- Supervised
 - Linear Discriminant Analysis (LDA)
- Semi-supervised
 - Semi-supervised Discriminant Analysis (SDA)

Dimensionality Reduction Algorithms

- Linear
 - Latent Semantic Indexing (LSI): truncated SVD
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - Canonical Correlation Analysis (CCA)
- Nonlinear
 - Nonlinear feature reduction using kernels
 - Manifold learning

Algorithms

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Locality Preserving Projections (LPP)

▶ The framework of graph based dimensionality reduction.

Laplacian Eigenmap

Principal Component Analysis

What is Principal Component Analysis?

- Principal component analysis (PCA)
 - Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables
 - Retains most of the sample's information.
 - Useful for the compression and classification of data.
- ▶ By information we mean the variation present in the sample, given by the correlations between the original variables.
 - The new variables, called principal components (PCs), are uncorrelated, and are ordered by the fraction of the total information each retains.

▶ Given a sample of *n* observations on a vector of *p* variables

$$\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_n\}\in\mathcal{R}^p$$

Define the first principal component of the sample by the linear transformation

$$z_i^{(1)} = \boldsymbol{a}_1^T \boldsymbol{x}_i, \qquad i = 1, \dots n$$

is chosen such that $var(z^{(1)})$ is maximum.

$$var(z^{(1)}) = E\left((z^{(1)} - \bar{z}^{(1)})^{2}\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (a_{1}^{T} x_{i} - a_{1}^{T} \bar{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{a}_{1}^{T} (\boldsymbol{x}_{i} - \overline{\boldsymbol{x}}) (\boldsymbol{x}_{i} - \overline{\boldsymbol{x}})^{T} \boldsymbol{a}_{1} = \boldsymbol{a}_{1}^{T} S \boldsymbol{a}_{1}$$

Where
$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

is the covariance matrix and $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the mean.

$$\max_{\boldsymbol{a}_1} \boldsymbol{a}_1^T S \boldsymbol{a}_1$$
s.t. $\boldsymbol{a}_1^T \boldsymbol{a}_1 = 1$

Let λ be a Lagrange multiplier

$$L = \mathbf{a}_1^T S \mathbf{a}_1 - \lambda (\mathbf{a}_1^T \mathbf{a}_1 - 1)$$
$$\frac{\partial L}{\partial \mathbf{a}_1} = 2S \mathbf{a}_1 - 2\lambda \mathbf{a}_1 = 0$$
$$S \mathbf{a}_1 = \lambda \mathbf{a}_1$$

therefor, a_1 is an eigenvector of S corresponding to the largest eigenvalue $\lambda = \lambda_1$.

$$\max_{a_2} a_2^T S a_2$$
s.t. $a_2^T a_2 = 1, \text{cov}(z^{(2)}, z^{(1)}) = 0$

$$cov(z^{(2)}, z^{(1)}) = \boldsymbol{a}_2^T S \boldsymbol{a}_1 = \lambda \boldsymbol{a}_2^T \boldsymbol{a}_1 = 0$$

$$Sa_2 = \lambda a_2$$

 a_2 is an eigenvector of S corresponding to the second largest eigenvalue $\lambda = \lambda_2$.

In general:

$$var(z^{(k)}) = \boldsymbol{a}_k^T S \boldsymbol{a}_k = \lambda_k$$

- ▶ The kth largest eigenvalue of S is the variance of kth PC.
- ▶ The k^{th} PC $z^{(k)}$ retains the k^{th} greatest fraction of the variation in the sample.

Principle Component Analysis

- Main steps for computing PCs:
 - Form the covariance matrix S.
 - Compute its eigenvectors: $\{a_i\}_{i=1}^p$
 - Use the first d eigenvectors $\{a_i\}_{i=1}^d$ to form the d PCs.
 - The transformation *A* is given by

$$A = [\boldsymbol{a}_1, \cdots \boldsymbol{a}_d]$$

• A test point $\mathbf{x} \in \mathcal{R}^p \to A^T \mathbf{x} \in \mathcal{R}^d$