БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ

Лабораторная работа 1

Применение интерполяционных квадратурных формул для вычисления определённых интегралов.

Вариант 5

Выполнил: Журик Никита Сергеевич 2 курс, 6 группа Преподаватель: Будник Анатолий Михайлович

Содержание

1.	Постановка задачи	1
2.	Задание 1.	1
3.	Листинг программы	1
4.	Вывод программы	1
5.	Выводы	1

1. Постановка задачи

- 1. При помощи правила Рунге вычислить интеграл и определить шаг, необходимый для достижения требуемой точности;
- 2. Пользуясь формулами для оценки погрешности К Φ средних прямоугольников и Симпсона определить необходимые шаги h_r, h_S для достижения требуемой точности;
- 3. Применить НАСТ Гаусса и оценить погрешность интегрирования;
- 4. Сравнить полученные результаты.

2. Задание 1.

• Для вычисления интеграла с требуемой точностью воспользуемся следующим критерием остановки итерационного процесса:

$$R(f) = \frac{|I_{h_1} - I_{h_2}|}{1 - \left(\frac{h_2}{h_1}\right)^2} \le \epsilon$$

На каждой итерации будем уменьшать шаги в два раза до достижения требуемой точности. Тогда искомый шаг - h_2 на последней итерации. Для улучшения точности положим

$$I(f) \approx I_{h_2} + R(f)$$

3. Листинг программы

Для реализации алгоритма был использован Python и библиотеки numpy и scipy.

4. Вывод программы

5. Выводы