

ARDUINO AVANZADO I

Pensamiento Visual - IDI1015

Alonso Canales - aecanales@uc.cl

¿Qué conoceremos hoy?

- Más herramientas de programación
- Sensores y actuadores varios
- Shields
- Raspberry Pi

Herramientas de programación

MÁS TIPOS DE VARIABLES

» Booleano: valores verdaderos o falso.

```
bool running = false;
```

» Float: número decimal.

```
float sensorCalbrate = 1.117;
```

» String: una secuencia de caracteres.

```
String stringOne = "Hello String";
```

¿CÓMO ESCRIBIR MÁS ORDENADO?

» Mediante comentarios y funciones.

¿CÓMO ESCRIBIR MÁS ORDENADO?

Los **comentarios** nos permiten escribir explicaciones de lo que hace nuestro código. // Esto es un comentario de una línea. /* Esto es un comentario de múltiples líneas. */

```
int functionSuma(int x, int y) {
  int resultado;
  resultado = x + y;
  return resultado;
```

```
Tipo de retorno de la función
```

```
int functionSuma(int x, int y) {
  int resultado;
  resultado = x + y;
  return resultado;
```

```
Nombre de la función
int funcionSuma(int x, int y) {
  int resultado;
  resultado = x + y;
  return resultado;
```

Parámetros de entrada

```
int functionSuma
(int x, int y) {
  int resultado;
  resultado = x + y;
  return resultado;
```

```
Retorno de la función
int functionSuma(int x, int y) {
  int resultado;
  resultado = x + y;
  return resultado;
```

```
void loop() {
  int suma = funcionSuma(2, 3);
}
```

El tipo void sirve para funciones que no retornan

```
void girarServo(int angulo) {
   myservo.write(angulo);
   delay(1000);
   myservo.write(0);
}
```

LIBRERÍAS

- » Funcionalidad encapsulada que nos facilita la programación de componentes.
- » Ya usaron una: la libreria Servo.
- » Se instalan mediante ZIP o Library Manager y luego se incluyen en el código mediante el comando #include <Libreria.h>

ALGUNAS LIBRERÍAS

- » EEPROM: Para escribir a la memoria de la placa.
- » Ethernet: Para conectarse a Internet.
- » LiquidCrystal: Para controlar pantallas LCD.
- » SD: Permite leer y escribir a una tarjeta SD.
- » Y muchos más...

Sensores y actuadores varios

SENSOR DE HUMEDAD DE TIERRA

» Detecta la humedad de la tierra en la cual se coloca.

SENSOR DE SONIDO

¡Disponible en el stock!

» Detecta sonido.

FOTORESISTENCIA (LDR)

¡Disponible en el stock!

» Detecta la cantidad de luz en el ambiente.

SENSOR DE VIBRACIÓN

» Detecta cuando se mueve el módulo.

INERTIAL MEASUREMENT UNIT

 Contiene accelerómetro, giroscopio y magnetómetro todo en uno.

JOYSTICK

» El clásico de los controles de videojuegos.

» Nos permite controlar artefactos eléctricos mediante un Arduino.

DIODO LÁSER

» El clásico laser, ahora controlable por Arduino.

NEOPIXEL

» Anillo de LEDs RGB fáciles de controlar.

SENSOR RFID

» Identificación de anillos o tarjetas.

Shields

¿Cómo agregar funcionalidad de manera eficiente, ordenada y simple?

SOBRE SHIELDS

- » Provee la misma funcionalidad de manera más rápida y fácil de instalar.
- » Ojo que sí ocupan ciertos pines, por lo que deben revisar la documentación o en shieldlist.org.

JOYSTICK SHIELD

» Haz un control tradicional de juego de manera rápida y fácil.

COLOR LCD SHIELD

» Agrega una pantalla de 128x128 pixeles a tu Arduino.

RELAY SHIELD

» Incluye 4 relés y dónde conectar los cables.

PROTOSHIELD

» Una protoboard integrada para llevar a todas partes.

WIFI SHIELD

» Conecta tu Arduino a Internet mediante WiFi.

BLUETOOTH SHIELD

» Conecta tu Arduino a dispositivos Bluetooth.

"DANGER" SHIELD

» Sensores varios.

Raspberry Pi

66

¿Es lo mismo que un Arduino?

El Raspberry Pi es un mini-computador.

66

Podemos llegar a replicar mucho de lo que un Arduino puede hacer usando un Raspberry Pi.

66

Podemos llegar a replicar mucho de lo que un Arduino puede hacer usando un Raspberry Pi.

¿...para qué usamos Arduino entonces?

RASPBERRY PI VS ARDUINO

- » Una placa Arduino es mucho más barata.
- » Es mucho más fácil usar un Arduino que una Raspberry Pi.

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(PC ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

fritzing

¿CUÁNDO USÁR UNA RASPBERRY PI?

- » Proyecto puesto de forma permanente en el cual quieren ahorrarse el costo de un computador.
- » Proyecto que donde no basta el procesador del Arduino para realizar las operaciones y es difícil conectarse a un computador.

ARDUINO AVANZADO I

Pensamiento Visual - IDI1015

Alonso Canales

aecanales@uc.cl