Toxic Comment Classification

AGENDA

- 2 DATA PREPROCESSING
 - 3 METHODOLOGICAL APPROACH
 - 4 RESULTS
- 5 CONCLUSIONS

DATASET DESCRIPTION

The train set contains a total of 159.571 comments, with 1 or 0 for each of these labels:

•	toxic	16.225
---	-------	--------

severe_toxic1.595

obscene 8.449

threat 478

• insult 7.877

· identity_hate 1.405

DATA PREPROCESSING

- Replacement of "0" in toxic with "1" if the comment belongs to at least one of the five subcategory of toxic
- Lower case
- Transformation of contracted form in long form
- Removal of punctuation and stop words
- Tokenization

DATA PREPROCESSING

Class imbalance problem: Data Augmentation

- Synonym Replacement
- Random Swap
- Random Deletion (p = 0,2)

Categoria	Dataset originale	Dataset aumentato		
Toxic	16225	109108		
Severe toxic	1595	27584		
Obscene	8449	67573		
Threat	478	21010		
Insult	7877	65339		
Identity hate	1405	24610		

DATA PREPROCESSING

Class imbalance problem: Subsampling

- Selection of all the toxic comments
- Random sampling of non toxic comments
- Dataset of 30.000 observation

Multi-label classification:

- Bidirectional LSTM
- Bidirectional GRU
- CNN

Common parameters:

- Loss function: binary crossentropy
- Optimizer: Adamax
- Early stopping for validation loss

Bidirectional LSTM

Embedding layer

- Input dim=60.000
- Output dim=128
- Input length=150

Bidirectional LSTM

- 128 units
- Dropout rate=0.2

- 6 units
- Sigmoid function

Bidirectional GRU

Embedding layer

- Input dim=60.000
- Output dim=64
- Input length=150

Bidirectional GRU

- 128 units
- Dropout rate=0.2

- 6 units
- Sigmoid function

CNN

SECOND METHODOLOGICAL ** APPROACH

- Binary classification of toxic/non toxic
- Multi-label classification of toxic category

Common aspects:

- Bidirectional LSTM
- Loss function: binary crossentropy
- Optimizer: Adamax
- Early stopping for validation loss

SECOND METHODOLOGICAL & APPROACH

Bidirectional LSTM - Binary

Embedding layer

- Input dim=60.000
- Output dim=128
- Input length=150

Bidirectional LSTM

- 128 units
- Dropout rate=0.2

- 1 unit
- Sigmoid function

SECOND METHODOLOGICAL & APPROACH

Bidirectional LSTM - Multi-label

Embedding layer

- Input dim=60.000
- Output dim=128
- Input length=150

Bidirectional LSTM

- 128 units
- Dropout rate=0.3

- 5 units
- Sigmoid function

RESULTS

Given the imbalaced nature of the dataset, the following metrics have been used:

$$Recall = \frac{TP}{TP + FN}$$

Precision =
$$\frac{TP}{TP+FP}$$

Fl-score =
$$\frac{TP}{TP + \frac{1}{2}(FN + FP)}$$

RESULTS OF FIRST APPROACH

Multi-label model on the test set with 63978 comments

		LSTM			$\mathbf{G}\mathbf{R}\mathbf{U}$			CNN		
	precision	recall	f1 score	precision	recall	F1 score	precision	recall	F1 score	support
toxic				1						6090
subsampling	0.39	0.93	0.55	0.38	0.93	0.54	0.25	0.83	0.39	
$data\ augmentation$	0.42	0.92	0.57	0.44	0.91	0.59	0.30	0.78	0.43	
severe toxic										367
subsampling	0.44	0.26	0.32	0.40	0.27	0.32	0.49	0.17	0.25	
$data\ augmentation$	0.27	0.68	0.39	0.29	0.62	0.40	0.29	0.53	0.38	
obscene										3691
subsampling	0.64	0.74	0.68	0.61	0.75	0.68	0.46	0.53	0.49	
$data\ augmentation$	0.63	0.77	0.69	0.60	0.78	0.68	0.52	0.50	0.51	
threat										211
subsampling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
$data\ augmentation$	0.27	0.67	0.38	0.22	0.66	0.34	0.11	0.00	0.01	
insult										3427
subsampling	0.59	0.60	0.60	0.57	0.60	0.59	0.45	0.48	0.47	
$data\ augmentation$	0.55	0.68	0.61	0.52	0.67	0.58	0.48	0.46	0.47	
identity_hate										712
subsampling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
$data\ augmentation$	0.59	0.24	0.34	0.45	0.11	0.17	0.48	0.02	0.04	

RESULTS OF FIRST APPROACH

During training the following metrics were evaluated:

RESULTS OF SECOND APPROACH

Binary model on the test-set with 63978 comments

Label	precision	recall	F1 score	support
$\overline{non\ toxic\ (0)}$	0.99	0.87	0.93	57888
toxic (1)	0.43	0.92	0.59	6090

Multi-label model on the test-set with 6090 comments

Label	precision	recall	F1 score	support
$severe_toxic$	0.23	0.44	0.30	367
obscene	0.78	0.76	0.77	3626
threat	0.46	0.48	0.47	205
insult	0.70	0.67	0.68	3342
$identity_hate$	0.60	0.51	0.55	693

RESULTS OF SECOND APPROACH

MULTI-LABEL MODEL

CONCLUSIONS

Evaluation criteria in order of importance:

- 1. F1-score
- 2. Recall
- 3. Precision

Binary + multi-label model

Future development:

- Prediction of level of toxicity
- Implementation in other languages

THANK YOU FOR THE ATTENTION!

