© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°16

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★★

On pose $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Soit S l'ensemble des fonctions $X : \mathbb{R} \to \mathcal{M}_{2,1}(\mathbb{R})$ de classe \mathcal{C}^1 et telles que

$$\forall t \in \mathbb{R}, \ X'(t) = AX(t)$$

- 1. Montrer que V : $t \mapsto \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$ appartient à S.
- **2.** a. Soit $X \in S$. Montrer que $AX \in S$.
 - **b.** En déduire une base de S.
- **3.** a. Soit $X \in \mathcal{S}$. Montrer que X est bornée sur \mathbb{R} .
 - **b.** Soient $P \in \mathcal{M}_2(\mathbb{R})$ inversible et $M \in \mathcal{M}_2(\mathbb{R})$ telles que $A = PMP^{-1}$. Soit $Y : \mathbb{R} \mapsto \mathcal{M}_{2,1}(\mathbb{R})$ de classe \mathcal{C}^1 sur \mathbb{R} et telle que Y' = MY. Montrer que Y est bornée sur \mathbb{R} .
- **4.** On introduit sur $\mathcal{M}_{2,1}(\mathbb{R})$ le produit scalaire défini par $(X \mid Z) = X^TZ$ et on note $\|\cdot\|$ la norme euclidienne associée.

Soit $b: \mathbb{R} \to \mathbb{R}$ continue et intégrable sur \mathbb{R} . Soit $X: \mathbb{R} \to \mathcal{M}_{2,1}(\mathbb{R})$ de classe \mathcal{C}^1 et telle que

$$\forall t \in \mathbb{R}, \ X'(t) = (A + b(t)I_2)X(t)$$

Soit $f: t \mapsto ||\mathbf{X}(t)||^2$. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et vérifie

$$\forall t \in \mathbb{R}, \ f'(t) = 2b(t)f(t)$$

5. Montrer que la fonction X de la question précédente est bornée.

© Laurent Garcin MP Dumont d'Urville

Problème 1 – E3A PSI 2015

Dans tout le problème :

 E est un espace euclidien de dimension p ≥ 1 dans lequel le produit scalaire sera noté (· | ·) et la norme associée ||.||.

- $\mathcal{S}(E)$ désigne le sous-espace vectoriel de $\mathcal{L}(E)$ constitué des endomorphismes symétriques de E.
- $\mathcal{F}(E)$ désigne l'ensemble des éléments u de $\mathcal{S}(E)$ de rang inférieur ou égal à 1 et qui vérifient

$$\forall x \in E, (u(x) \mid x) \ge 0$$

Préliminaires

1 Justifier que $\mathcal{T}(E)$ n'est pas un sous-espace vectoriel de $\mathcal{L}(E)$.

2 Si M est une matrice de $\mathcal{M}_p(\mathbb{R})$, on notera tr(M) sa trace. Soient A, B $\in \mathcal{M}_p(\mathbb{R})$.

2.a Prouver que tr(AB) = tr(BA).

2.b On suppose que B est semblable à A. Comparer tr(A) et tr(B).

2.c Donner la définition de la trace d'un endomorphisme de E.

[3] Rappeler la définition d'un hyperplan de E. On se donne alors un tel hyperplan H et on note G son complémentaire dans E. Déterminer (en justifiant) si les assertions suivantes sont vraies ou fausses.

3.a G est un sous-espace vectoriel supplémentaire de H.

3.b Pour tout vecteur a de G, vect(a) est supplémentaire de H dans E.

3.c Pour tout vecteur a non nul et orthogonal à H, vect(a) est supplémentaire de H dans E.

3.d Le noyau de l'application tr est un hyperplan de $\mathcal{M}_p(\mathbb{R})$.

3.e Un endomorphisme de E est de rang 1 si et seulement si son noyau est un hyperplan de E.

4 Montrer que l'application

$$(f,g) \in \mathcal{S}(E)^2 \mapsto \langle f,g \rangle = \operatorname{tr}(f \circ g)$$

est un produit scalaire.

On notera pour la suite N la norme associée à ce produit scalaire.

Soit A = $\begin{pmatrix} -5 & 1 & 1 \\ 1 & -5 & 1 \\ 1 & 1 & -5 \end{pmatrix}$ et f_A l'endomorphisme de \mathbb{R}^3 qui lui est canoniquement associé. Donner les

éléments propres de la matrice A.

Partie 1

Soit $a \in E$ et u_a l'endomorphisme de E défini par

$$\forall x \in E, \ u_a(x) = (x \mid a)a$$

6 Montrer que $u_a \in \mathcal{T}(E)$.

| 7 | On suppose dans cette question que $a \neq 0$.

7.a Ecrire la matrice de u_a dans une base \mathcal{B} de E constituée du vecteur a et d'une base de $\mathrm{vect}(a)^{\perp}$.

© Laurent Garcin MP Dumont d'Urville

- **7.b** Déterminer alors $tr(u_a)$ et $tr(u_a \circ u_a)$ en fonction de a.
- **7.c** Soit f un endomorphisme de E. Déterminer les éléments diagonaux de la matrice $f \circ u_a$ dans la base \mathcal{B} définie précédemment.
- **7.d** Calculer alors $tr(f \circ u_a)$ en fonction de a.
- **8** Soit $u \in \mathcal{T}(E)$, u non nul et b un vecteur non nul de Im(u).
 - **8.a** Montrer que b est un vecteur propre de u associé à une valeur propre μ positive.
 - **8.b** Prouver que $\forall x \in E$, $u(x) = \frac{\mu}{\|b\|^2} (x \mid b)b$.
 - **8.c** En déduire que $\mu > 0$.
 - **8.d** Montrer qu'il existe au moins un vecteur a de E tel que $u = u_a$.
- **9** L'application : $a \in E \mapsto \varphi(a) = u_a \in \mathcal{T}(E)$ est-elle injective? Surjective?

Partie 2

Pour cette partie du problème, f est un endomorphisme de $\mathcal{S}(E)$ qui est **fixé**. Pour tout vecteur $x \in E$, on pose

$$\Phi(x) = [N(f - u_x)]^2 \text{ et } m(f) = \inf_{x \in E} \Phi(x)$$

Pour tout vecteur x de E et tout vecteur y de E tel que ||y|| = 1, on pose

$$h_x$$
: $t \in \mathbb{R} \mapsto h_x(t) = \Phi(x + ty)$

- **10** Justifier l'existence de m(f).
- 11 Prouver que $\forall x \in E$, $\Phi(x) = [N(f)]^2 2(x \mid f(x)) + ||x||^4$.
- 12 Montrer que h_x est une fonction polynomiale dont on précisera les coefficients.
- 13 Justifier l'existence d'une base orthonormale $\mathcal{C}=(e_1,\ldots,e_p)$ de E et de réels $(\lambda_i)_{i\in [\![1,p]\!]}$ vérifiant

$$\forall i \in [1, p], \ f(e_i) = \lambda_i e_i \ \text{et} \ \lambda_1 \le \lambda_2 \le \dots \le \lambda_p$$

- **14** Calculer alors N(f) à l'aide des réels λ_i , $1 \le i \le p$.
- Exprimer $\alpha = \sup_{z \in E, \|z\| = 1} (z \mid f(z))$ à l'aide des λ_i . Déterminer l'ensemble des vecteurs $z \in E$ unitaires tels que $(z \mid f(z)) = \alpha$.
- 16 On suppose que m(f) est atteint en $a \in E$.
 - **16.a** Déterminer $h'_a(0)$.
 - **16.b** Prouver que $f(a) = ||a||^2 a$.
 - **16.c** Prouver que pour tout réel t et tout vecteur y de norme 1,

$$\Phi(a + ty) - \Phi(a) = t^2[(t + 2(y \mid a))^2 + 2(\|a\|^2 - (y \mid f(y)))]$$

16.d Prouver que

$$m(f) = \Phi(a) \iff \begin{cases} f(a) = ||a||^2 a \\ \forall y \in E \text{ tel que } ||y|| = 1, (y | f(y)) \le ||a||^2 \end{cases}$$

17 On suppose que $\lambda_p \leq 0$.

- **17.a** Prouver que $m(f) = \Phi(a)$ si et seulement si a = 0.
- **17.b** Déterminer $m(f_A)$ où f_A est l'endomorphisme de la question 5 des préliminaires.
- 18 On suppose que $\lambda_p > 0$.
 - **18.a** Démontrer que $m(f) = \sum_{i=1}^{p-1} \lambda_i^2$.
 - **18.b** Prouver que $m(f) = \Phi(x) \iff \begin{cases} x \in \text{Ker}(f \lambda_p Id_E) \\ ||x|| = \sqrt{\lambda_p} \end{cases}$.

Partie 3

Dans cette partie, on prend $E = \mathbb{R}^p$ euclidien usuel.

Soit $M = (m_{i,j}) \in \mathcal{M}_p(\mathbb{R})$ symétrique et telle que

$$\begin{cases} \forall i, j \in [1, p]^2, \ m_{i,j} \ge 0 \\ \forall i \in [1, p], \ \sum_{j=1}^p m_{i,j} = 1 \end{cases}$$

On note $f_{\mathbf{M}}$ l'endomorphisme de \mathbb{R}^p canoniquement associé à la matrice \mathbf{M} .

- **19.a** Prouver que $\lambda = 1$ est valeur propre et donner un vecteur propre associé.
- 19.b Soit λ une valeur propre de M et X = $\begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ un vecteur propre associé. Soit $k \in [1, p]$ tel que $|x_k| = \max\{|x_j|, \ 1 \le j \le p\}$. En considérant la k-ième ligne du système MX = λX , prouver que
- **19.c** Déterminer alors un vecteur a de \mathbb{R}^p tel que $\Phi(a) = m(f_{\mathrm{M}})$. (On ne cherchera pas à calculer la valeur de $m(f_{\mathrm{M}})$).
- **19.d** En déduire l'existence d'un endomorphisme v de $\mathcal{F}(E)$ tel que $[N(f_M v)]^2 = m(f_M)$.
- **19.e** Reconnaître la nature géométrique de l'endomorphisme v et donner ses éléments remarquables.
- Soit B $\in \mathcal{M}_p(\mathbb{R})$ la matrice dont tous les coefficients valent 1 et f_B l'endomorphisme de \mathbb{R}^p qui lui est canoniquement associé. Calculer $m(f_B)$. Trouver un vecteur $b \in \mathbb{R}^p$ tel que $[N(f_B u_b)]^2 = m(f_B)$.
- **21** On prend dans cette question p > 1. Soit

$$\mathbf{C} = \begin{pmatrix} 0 & 1 & \dots & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ \vdots & 1 & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & 0 \end{pmatrix} \in \mathcal{M}_p(\mathbb{R})$$

et $f_{\mathbb{C}}$ l'endomorphisme de \mathbb{R}^p qui lui est canoniquement associé.

- 21.a Déterminer les éléments propres de la matrice C.
- **21.b** Calculer $m(f_C)$.
- **21.c** Trouver un vecteur c de \mathbb{R}^p tel que $\Phi(c) = m(f_{\mathbb{C}})$ et un endomorphisme $w \in \mathcal{F}(E)$ tel que $m(f_{\mathbb{C}}) = [N(f_{\mathbb{C}} w)]^2$.
- **21.d** Cet endomorphisme w est-il unique?