Практическое задание №1

Изучить основные элементы языка C++ (см. материалы Лекции 1, раздел 1.9), простые типы данных языка C++, преобразование типов (см. материалы Лекции 2), переменные, операции и выражения (см. материалы Лекции 3).

Создать **многофайловый проект** (консольное приложение с gtest, использующее функции в виде библиотеки dll) с программой на языке C++, решающей задачу согласно варианту. При необходимости использовать функции стандартной библиотеки языка (см. материалы Лекции 3, раздел 3.2.4).

- Реализовать функции, вычисляющие значения z1(α) и z2(α) или z1(α,β) и z2(α,β) по двум формулам согласно варианту (α и β вещественные; результаты, вычисленные для одинаковых значений аргументов α и β по обеим формулам, должны совпадать). Сравнить в программе вычисленные значения функций на равенство (об особенностях сравнения вещественных чисел см. в файле «Материалы к Практическому заданию №1.pdf»).
- 2. Реализовать функции, вычисляющие значения f(a, b, c) и g(a, b, c) по двум формулам с логическими операциями (результаты для одинаковых значений аргументов a, b, c по обеим формулам должны совпадать). Значения **логических** переменных a, b, c задавать таким образом, чтобы проверить совпадение значений функций f и g для всех возможных комбинаций значений параметров a, b, c.
- 3. Реализовать функцию, вычисляющую значение кусочной функции f(x, R), заданной в виде графика. Вне области определения функции положить f(x, R) = 0. Проверить корректность вычисления функции на всех подынтервалах области определения (внутри подынтервалов и на их границах) и вне неё.
- 4. Реализовать функцию *inside*(*x*, *y*, *R*), которая определяет, попадает ли точка с заданными координатами *x* и *y* в область, закрашенную на рисунке чёрным цветом. Точки на периметре закрашенной фигуры считать принадлежащими закрашенной области. Проверить результаты работы функции для всех возможных комбинаций значений параметров *x* и *y* (внутри фрагментов закрашенной области, на её границах, вне закрашенной области).

Вариант 1

1.
$$z1(\alpha) = 2\sin^2(3\pi - 2\alpha)\cos^2(5\pi + 2\alpha), \qquad z2(\alpha) = \frac{1}{4} - \frac{1}{4}\sin(\frac{5}{2}\pi - 8\alpha)$$

2.
$$f(a, b, c) = \neg(a \land b) \land \neg c$$
; $g(a, b, c) = (\neg a \lor \neg b) \land \neg c$

3.

- 1. $z1(\alpha) = \cos\alpha + \sin\alpha + \cos3\alpha + \sin3\alpha$, $z2(\alpha) = 2\sqrt{2}\cos\alpha \cdot \sin(\frac{\pi}{4} + 2\alpha)$
- 2. $f(a,b,c) = \neg(\neg a \land b) \lor \neg c$; $g(a,b,c) = a \lor \neg b \lor \neg c$

3.

4.

Вариант 3

1.
$$z1(\alpha) = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha + 1 - 2\sin^2 2\alpha}, \quad z2(\alpha) = 2\sin \alpha$$

2. $f(a, b, c) = \neg a \lor \neg (b \lor c);$ $g(a, b, c) = \neg a \lor (\neg b \land \neg c)$

R

3.

4.

Вариант 4

1.
$$z1(\alpha) = \frac{\sin\alpha + \sin5\alpha - \sin3\alpha}{\cos\alpha - \cos3\alpha + \cos5\alpha}$$
, $z2(\alpha) = tg3\alpha$

2. $f(a, b, c) = (\neg a \lor b) \lor \neg c$; $g(a, b, c) = \neg (a \land \neg b) \lor \neg c$

3.

- 1. $z1(\alpha) = 1 \frac{1}{4}\sin^2 2\alpha + \cos 2\alpha$, $z2(\alpha) = \cos^2 \alpha + \cos^4 \alpha$
- 2. $f(a, b, c) = \neg (a \lor \neg b \lor c); \quad g(a, b, c) = \neg a \land b \land \neg c$

3.

Вариант 6

- 1. $z1(\alpha) = \cos\alpha + \cos 2\alpha + \cos 6\alpha + \cos 7\alpha$, $z2(\alpha) = 4\cos \frac{\alpha}{2} \cdot \cos \frac{5}{2}\alpha \cdot \cos 4\alpha$
- 2. $f(a, b, c) = \neg (a \land \neg b \land c)$; $g(a, b, c) = \neg a \lor b \lor \neg c$

3.

4.

Вариант 7

- 1. $z1(\alpha) = \cos^2(\frac{3}{8}\pi \frac{\alpha}{4}) \cos^2(\frac{11}{8}\pi + \frac{\alpha}{4}), \quad z2(\alpha) = \frac{\sqrt{2}}{2}\sin\frac{\alpha}{2}$
- 2. $f(a, b, c) = a \land \neg (b \lor \neg c) \land \neg d$; $g(a, b, c) = a \land \neg b \land c \land \neg d$

3.

1.
$$z1(\alpha, \beta) = \cos^4 \alpha + \sin^2 \beta + \frac{1}{4} \sin^2 2\alpha - 1$$
, $z2(\alpha, \beta) = \sin(\beta + \alpha) \cdot \sin(\beta - \alpha)$

2.
$$f(a, b, c) = \neg a \lor \neg (b \land \neg c);$$
 $g(a, b, c) = \neg a \lor \neg b \lor c$

$$g(a, b, c) = \neg a \lor \neg b \lor c$$

3.

4.

Вариант 9

1.
$$z1(\alpha, \beta) = (\cos\alpha - \cos\beta)^2 - (\sin\alpha - \sin\beta)^2$$
, $z2(\alpha, \beta) = -4\sin^2\frac{\alpha - \beta}{2}\cos(\alpha + \beta)$

2.
$$f(a, b, c) = a \land (\neg b \lor c);$$
 $g(a, b, c) = a \land \neg b \lor c \land a$

$$g(a, b, c) = a \land \neg b \lor c \land a$$

3.

4.

Вариант 10

1.
$$z1(\alpha) = \frac{\sin(\frac{\pi}{2} + 3\alpha)}{1 - \sin(3\alpha - \pi)}, \quad z2(\alpha) = \cot(\frac{5}{4}\pi + \frac{3}{2}\alpha)$$

2. $f(a, b, c) = \neg(\neg a \lor \neg b) \lor \neg c$; $g(a, b, c) = a \land \neg b \land \neg c$

3.

1.
$$z1(\alpha) = \frac{1 - 2\sin^2 \alpha}{1 + \sin 2\alpha}$$
, $z2(\alpha) = \frac{1 - \tan 2\alpha}{1 + \tan 2\alpha}$

2.
$$f(a, b, c) = \neg (a \lor \neg b \land c)$$
; $g(a, b, c) = \neg a \land b \lor \neg a \land \neg c$

4.

Вариант 12

1.
$$z1(\alpha) = \frac{\sin 4\alpha}{1 + \cos 4\alpha} \cdot \frac{\cos 2\alpha}{1 + \cos 2\alpha}$$
, $z2(\alpha) = \cot g(\frac{3}{2}\pi - \alpha)$
2. $f(a, b, c) = \neg(\neg \neg a \lor \neg b \lor c)$; $g(a, b, c) = \neg a \land b$

$$z2(\alpha) = \operatorname{ctg}(\frac{3}{2}\pi - \alpha)$$

2.
$$f(a, b, c) = \neg(\neg \neg a \lor \neg b \lor c)$$

$$g(a, b, c) = \neg a \land b \land \neg c$$

3.

4.

Вариант 13

1.
$$z1(\alpha, \beta) = \frac{\sin\alpha + \cos(2\beta - \alpha)}{\cos\alpha - \sin(2\beta - \alpha)}, \qquad z2(\alpha, \beta) = \frac{1 + \sin2\beta}{\cos2\beta}$$

$$z2(\alpha,\beta) = \frac{1 + \sin 2\beta}{\cos 2\beta}$$

2.
$$f(a, b, c) = (a \lor \neg b) \lor \neg (c \land \neg d); \quad g(a, b, c) = a \lor \neg b \lor \neg c \lor d$$

3.

1.
$$z1(\alpha) = \frac{\cos\alpha + \sin\alpha}{\cos\alpha - \sin\alpha}$$
, $z2(\alpha) = tg2\alpha + \sec2\alpha$

2.
$$f(a, b, c) = \neg a \land \neg (\neg b \lor \neg \neg c) \lor d$$
; $g(a, b, c) = \neg a \land b \land \neg c \lor d$

3.

Вариант 15

1.
$$z1(\alpha) = \frac{\sqrt{2\alpha + 2\sqrt{\alpha^2 - 4}}}{\sqrt{\alpha^2 - 4} + \alpha + 2}, \quad z2(\alpha) = \frac{1}{\sqrt{\alpha + 2}}$$

2.
$$f(a, b, c) = \neg (a \lor \neg b) \land \neg c \land d$$
; $g(a, b, c) = \neg a \land b \land \neg c \land d$

R

3.

4.

Вариант 16

1.
$$z1(\alpha) = \frac{1 - 2\sin^2 \alpha}{1 + \sin 2\alpha}$$
, $z2(\alpha) = \frac{1 - \tan \alpha}{1 + \tan 2\alpha}$

2.
$$f(a, b, c) = \neg(\neg a \land b) \lor \neg c$$
; $g(a, b, c) = a \lor \neg b \lor \neg c$

R X -R

3.

1.
$$z1(\alpha, \beta) = (\cos\alpha - \cos\beta)^2 - (\sin\alpha - \sin\beta)^2$$
, $z2(\alpha, \beta) = -4\sin^2\frac{\alpha - \beta}{2}\cos(\alpha + \beta)$

2.
$$f(a, b, c) = \neg (a \lor \neg b \lor c);$$
 $g(a, b, c) = \neg a \land b \land \neg c$

3.

4.

Вариант 18

1.
$$z1(\alpha) = \cos^2(\frac{3}{8}\pi - \frac{\alpha}{4}) - \cos^2(\frac{11}{8}\pi + \frac{\alpha}{4}), \quad z2(\alpha) = \frac{\sqrt{2}}{2}\sin\frac{\alpha}{2}$$

2.
$$f(a, b, c) = a \land (\neg b \lor c);$$
 $g(a, b, c) = a \land \neg b \lor c \land a$

3.

4.

Вариант 19

1.
$$z1(\alpha) = 1 - \frac{1}{4}\sin^2 2\alpha + \cos 2\alpha$$
 $z2(\alpha) = \cos^2 \alpha + \cos^4 \alpha$

2.
$$f(a, b, c) = \neg (a \lor \neg b \land c)$$
; $g(a, b, c) = \neg a \land b \lor \neg a \land \neg c$

3.

1.
$$z1(\alpha) = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha + 1 - 2\sin^2 2\alpha}, \quad z2(\alpha) = 2\sin \alpha$$

2.
$$f(a, b, c) = \neg(\neg \neg a \lor \neg b \lor c)$$
; $g(a, b, c) = \neg a \land b \land \neg c$

3.

Вариант 21

- 1. $z1(\alpha) = \cos\alpha + \sin\alpha + \cos3\alpha + \sin3\alpha$, $z2(\alpha) = 2\sqrt{2}\cos\alpha \cdot \sin(\frac{\pi}{4} + 2\alpha)$
- 2. $f(a, b, c) = \neg a \lor \neg (b \land \neg c)$; $g(a, b, c) = \neg a \lor \neg b \lor c$

Вариант 22

1. $z1(\alpha) = \frac{\sin 2\alpha + \sin 5\alpha - \sin 3\alpha}{\cos \alpha - \cos 3\alpha + \cos 5\alpha}$, $z2(\alpha) = tg3\alpha$

3.

2. $f(a, b, c) = \neg (a \lor \neg b \lor c)$; $g(a, b, c) = \neg a \land b \land \neg c$

3.

- 1. $z1(\alpha) = \cos\alpha + \cos 2\alpha + \cos 6\alpha + \cos 7\alpha$ $z2(\alpha) = 4\cos \frac{\alpha}{2} \cdot \cos \frac{5}{2}\alpha \cdot \cos 4\alpha$
- 2. $f(a, b, c) = (\neg a \lor b) \lor \neg c$; $g(a, b, c) = (a \land \neg b) \lor \neg c$

3.

Вариант 24

- 1. $z1(\alpha, \beta) = \cos^4 \alpha + \sin^2 \beta + \frac{1}{4} \sin^2 2\alpha 1$, $z2(\alpha, \beta) = \sin(\beta + \alpha) \cdot \sin(\beta \alpha)$
- 2. $f(a, b, c) = a \land \neg (b \lor \neg c) \land \neg d$; $g(a, b, c) = a \land \neg b \land c \land \neg d$

R X

4.