Segment Trees

- Basic data structure in computational geometry.
- · Computational geometry.
 - Computations with geometric objects.
 - Points in 1-, 2-, 3-, d-space.
 - · Closest pair of points.
 - Nearest neighbor of given point.
 - Lines in 1-, 2-, 3-, d-space.
 - · Machine busy intervals.
 - IP router-table filters (10*, [20, 60]).

Segment Trees

- Rectangles or more general polygons in 2-space.
 - · VLSI mask verification.
 - · Sentry location.
 - · 2-D firewall filter.
 - (source address, destination address)
 - (10*, 011*)
 - When addresses are 4 bits long this filter matches addresses in the rectangle ([8,11], [6,7])

Segment Tree Application

- Store intervals of the form [i,j], i < j, i and j are integers.
 - [i,j] may, for example represent the fact that a machine is busy from time i to time j.
- Answer queries of the form: which intervals intersect/overlap with a given unit interval [a,a+1].
 - List all machines that are busy from 2 to 3.

Segment Tree – Definition

- Binary tree.
- Each node, v, represents a closed interval.
 - s(v) = start of v's range.
 - e(v) = end of v's range.
 - s(v) < e(v).
 - s(v) and e(v) are integers.
 - Root range = [1,n].
- e(v) = s(v) + 1 => v is a leaf node (unit interval).
- $e(v) > s(v) + 1 \Longrightarrow$
 - Left child range is [s(v), (s(v) + e(v))/2].
 - Right child range is [(s(v) + e(v))/2, e(v)].

$Top-Down\ Insert$ insert(s, e, v) $\{ \text{// insert [s,e] into subtree rooted at } v$ if (s <= s(v) && e(v) <= e) add [s,e] to v; // interval spans node range $else \{$ if (s < (s(v) + e(v))/2) insert(s,e,v.leftChild); if (e > (s(v) + e(v))/2) insert(s,e,v.rightChild); $\}$ $\}$

$Top\text{-}Down\ Delete$ $\label{eq:continuous} \begin{tabular}{ll} Top\text{-}Down\ Delete \\ delete(s, e, v) \\ \begin{tabular}{ll} \# delete(s, e] from subtree rooted at v \\ if (s <= s(v) \&\& e(v) <= e) \\ delete(s, e] from v; // interval spans node range \\ else \\ \begin{tabular}{ll} if (s < (s(v) + e(v))/2) \\ delete(s, e, v. leftChild); \\ if (e > (s(v) + e(v))/2) \\ delete(s, e, v. rightChild); \\ \begin{tabular}{ll} \# delete(s, e, v. rightChild); \\ \begin{tabu$

Search -[a,a+1]

- Follow the unique path from the root to the leaf node for the interval [a,a+1].
- Report all segments stored in the nodes on this unique path.
- No segment is reported twice, because no segment is stored in both a node and the ancestor of this node.

