★9.20 编写你自己的 malloc 和 free 版本,将它的运行时间和空间利用率与标准 C 库提供的 malloc 版本进行比较。

练习题答案

9.1 这道题让你对不同地址空间的大小有了些了解。曾几何时,一个32位地址空间看上去似乎是无法想象的大。但是,现在有些数据库和科学应用需要更大的地址空间,而且你会发现这种趋势会继续。在有牛之年,你可能会抱怨个人电脑上那狭促的64位地址空间!

虚拟地址位数(n)	虚拟地址数 (N)	最大可能的虚拟地址
8	2 ⁸ = 256	$2^8 - 1 = 255$
16	$2^{16} = 64K$	$2^{16} - 1 = 64K - 1$
32	$2^{32} = 4G$	$2^{32} - 1 = 4G - 1$
48	$2^{48} = 256T$	$2^{48} - 1 = 256T - 1$
64	$2^{64} = 16384P$	$2^{64} - 1 = 16384P - 1$

9.2 因为每个虚拟页面是 $P=2^p$ 字节,所以在系统中总共有 $2^n/2^p=2^{n-p}$ 个可能的页面,其中每个都需要一个页表条目(PTE)。

n	$P=2^p$	PTE的数量	
16	4K	16	
16	8K	8	
32	4K	1M	
32	8K	512K	

9.3 为了完全掌握地址翻译,你需要很好地理解这类问题。下面是如何解决第一个子问题:我们有 n=32 个虚拟地址位和 m=24 个物理地址位。页面大小是 P=1KB,这意味着对于 VPO 和 PPO,我们都需要 $\log_2(1$ K)=10 位。(回想一下,VPO 和 PPO 是相同的。)剩下的地址位分别是 VPN 和 PPN。

P	VPN位数	VPO位数	PPN位数	PPO位数
1KB	22	10	14	10
2KB	21	11	13	11
4KB	20	12	12	12
8KB	19	13	11	13

9.4 做一些这样的手工模拟,能很好地巩固你对地址翻译的理解。你会发现写出地址中的所有的位,然后在不同的位字段上画出方框,例如 VPN、TLBI等,这会很有帮助。在这个特殊的练习中,没有任何类型的不命中:TLB有一份 PTE 的副本,而缓存有一份所请求数据字的副本。对于命中和不命中的一些不同的组合,请参见习题 9.11、9.12 和 9.13。

A. 00 0011 1101 0111

参数	值	
VPN	0xf	
TLB索引	0x3	
TLB标记	0x3	
TLB命中? (是/否)	是	
缺页? (是/否)	否	
PPN	0xd	