Исследование алгоритмов «блуждания от границы»

Васильев Александр Владимирович, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — д.ф.-м.н. С.М. Ермаков Рецензент — к.ф.-м.н. **Н.М. Москалева**

Санкт-Петербург 2009г.

Постановка задачи

- Исследовать процесс «блуждания по сферам от границы» для решения некоторых задач математической физики.
- ▶ Рассмотреть процесс «блуждания по сетке от границы» для решения аналогичных задач.

Интегральное уравнение второго рода:

$$\varphi(x) = \int K(x, y)\varphi(y)\mu(dy) + f(x) \pmod{\mu}.$$
 (1)

Пусть, для некоторого класса H функций h сходится ряд

$$\sum_{t=0}^{\infty} \int \mu(dx_0) \dots \int \mu(dx_l) |h(x_0)K(x_0, x_1) \dots K(x_{l-1}, x_l) f(x_l)|.$$
 (2)

Сопряженное к (1) уравнение:

$$\varphi^*(x) = \int K(y, x) \varphi^*(y) \mu(dy) + h(x) \pmod{\mu}.$$

Тогда известно, что

$$(\varphi, h) = (\varphi^*, f).$$

Уравнениям (1) и (2) можно сопоставить цепь Маркова с множеством состояний X и дискретным временем $t=0,1,2\dots$ Цепь задается плотностью начального распределения $p^0(x)$ по отношению к мере μ и плотностью перехода $p(x\to y)$ (также по отношению к мере μ). Предполагается, что

$$\int p(x \to y)\mu(dy) = 1 - g(x), \quad 0 \le g(x) < 1.$$

Схема Неймана-Улама. Прямые оценки

Теорема. Оценки

$$J_1 = \frac{h(x_0)K(x_0,x_1)...K(x_{r-1},x_r)f(x_r)}{p^0(x_0)p(x_0 \to x_1)...p(x_{r-1} \to x_r)g(x_r)} \text{ if } J_2 = \sum_{l=0}^r \frac{h_0K_{01}...K_{l-1,l}f_l}{p_0^0p_{01}...p_{l-1,l}}$$

являются несмещенными оценками функционала $(\varphi,h)\Leftrightarrow$ сходится ряд (2) и выполняются следующие условия согласования:

- ▶ 1) $p_0(x) > 0$ для тех x, для которых $h(x) \neq 0$
- $lacksymbol{ iny}$ 2) p(x o y)>0 для тех (x,y), для которых $K(x,y)\neq 0$
- ▶ 3) g(x)>0 для тех x, для которых $f(x)\neq 0$

для J_2 должны выполняться первые 2 условия.

Схема Неймана-Улама. Двойственные оценки

Теорема. Оценки

$$J_1^* = \frac{f(x_0)K(x_1,x_0)...K(x_r,x_{r-1})h(x_r)}{p^0(x_0)p(x_0 \to x_1)...p(x_{r-1} \to x_r)g(x_r)} \text{ in } J_2^* = \sum_{l=0}^r \frac{f_0K_{10}...K_{l,l-1}h_l}{p_0^0p_{01}...p_{l-1,l}}$$

являются несмещенными оценками функционала $(\varphi^*,f)\Leftrightarrow$ сходится ряд (2) и выполняются следующие условия согласования:

- ▶ 1) $p_0(x)>0$ для тех x, для которых $f(x)\neq 0$
- ▶ 2) $p(x \to y) > 0$ для тех (x,y), для которых $K(y,x) \neq 0$
- ▶ 3) g(x)>0 для тех x, для которых $h(x)\neq 0$

для J_2^* должны выполняться первые 2 условия.

Схема Неймана-Улама. Дискретный случай

Если μ — дискретная мера, то уравнение второго рода становится системой линейных алгебраических уравнений вида

$$X = AX + F$$

аналогично интегральным уравнениям 2-го рода, для решения СЛАУ моделируется цепь Маркова, а оценкой служит

$$\Phi = \frac{h_{i_0} a_{i_0,i_1} ... a_{i_{r-1},r_r} f_{i_r}}{p_{i_0}^0 p_{i_0,i_1} ... p_{i_{r-1},r_r} g_{i_r}}$$

условия согласования выглядят следующим образом

- ▶ 1) $p_i^0 > 0$, если $h_i \neq 0$, $i = 1, \dots, n$
- ▶ 2) $p_{i,j} > 0$, если $a_{i,j} \neq 0, \ i,j = 1, \dots, n$
- ▶ 3) $g_i > 0$, если $f_i \neq 0$, i = 1, ..., n

Блуждание по сферам. Определение

Введем следующие обозначения:

$$D'$$
 — замыкание области D ;

$$D(P)$$
 — расстояние от точки P до границы $\Gamma(D)$;

$$\Gamma_{\varepsilon}$$
 — ε -окрестность границы Γ ;

$$S(P)$$
 — максимальная из сфер с центром в точке P , целиком лежащих в $D^{\prime}.$

Цепь Маркова:

$$p_{0}(r) = \delta(r - P_{0})$$
 — плотность начального распределения.

$$p(r,r'')=\delta p(r')$$
 — плотность перехода из r в r' — плотность равномерного распределения вероятностей на сфере $S(r)$.

g(r)=1, если $r\in \Gamma_{arepsilon}$ — вероятность обрыва цепи равна 1, если цепь попадает в arepsilon-окрестность границы.

$$g(r)=0$$
, если $r\notin \Gamma arepsilon$ — в противном случае.

Уравнение Гельмгольца. «Блуждание по сферам»

• Первая краевая задача Дирихле для уравнения Гельмгольца в ограниченной области D трехмерного евклидова пространства X:

$$\Delta u - cu = -g, u|_{\Gamma} = \psi(x)$$

▶ Решение этого уравнения в точке $P_0 \in D$:

$$u(P_0) = \int\limits_{S(P_0)} \frac{d_0\sqrt{c}}{4\pi d_0^2 sh(d_0\sqrt{c})} u(s) ds + \int\limits_{|r-P_0| \le d_0} \frac{sh[(d_0-|r-P_0|)\sqrt{c}]}{4\pi |r-P_0| sh(d_0\sqrt{c})} g(r) dr$$

то есть интегральное уравнение 2-го рода

$$u(r) = \int_{D} k(r, r')u(r')dr' + \varphi(r)$$

• Для решения задачи Дирихле в точке $P_0 \in D$ строится цепь Маркова, которая называется «блуждание по сферам».

Также эту задачу можно решать через двойственные оценки, но после проведенных исследований стало понятно, что это не даст ожидаемых результатов.

Уравнение Гельмгольца. «Блуждание по сетке»

Задача Дирихле для уравнения Гельмгольца:

$$\Delta u - cu = -g, u|_{\Gamma} = \psi(x)$$

ightharpoonup Если заменить производные вторыми разделенными разностями, то получится система $(L-1)^2$ линейных алгебраических уравнений вида

$$u = Au + F$$

или

$$u_{i,j} = \frac{1}{4+cl^2}(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} + l^2g_{i,j}), \ 1 \le i, j \le L-1$$

ightharpoonup Для нахождения решения этой задачи в узле $u_{i,j}$ строится цепь Маркова, названная «блужданием по сетке».

Уравнение Гельмгольца. Обратное «блуждание по сетке»

 Задача Дирихле для однородного уравнения Гельмгольца в единичном квадрате двумерного пространства:

$$\Delta u - cu = 0, u|_{\Gamma} = \psi(x)$$

▶ Соответствующая ей система уравнений:

$$u = Au$$

Известно, что матрица A в этом случае является симметричной.

Сопряженная система:

$$u^* = A^T u^*$$
, но $A^T = A$, тогда сопряженная система есть $u^* = A u^*$.

- Учитывая условия согласования, сопряженной системе сопоставляется следующая цепь Маркова:
 - 1) начальная точка траектории моделируется на границе области пропорционально значению искомой функции;
 - 2) с вероятностью единица траектория уходит внутрь области;
 - 3) на каждом шаге с вероятностью $1/(4+cl^2)$ траектория переходит в один из соседних узлов, а с вероятностью $1-4/(4+cl^2)$ обрывается; также обрыв траектории происходит при попадании на границу области;
 - 4) попадая в какой-либо узел, счетчик этого узла увеличивается на

$$\frac{l}{4+cl^2} \int\limits_{\Gamma} \psi dx$$

Уравнение Гельмгольца. Обратное «блуждание по сетке». Результаты

Задача Дирихле для однородного уравнения Гельмгольца в единичном квадрате двумерного пространства:

$$\Delta e^{\sqrt{\frac{c}{2}}(x+y)} - ce^{\sqrt{\frac{c}{2}}(x+y)} = 0, \ u|_{\Gamma} = e^{\sqrt{\frac{c}{2}}(x+y)}.$$

Область: $D = \{(x, y) \mid x \in [0; 1], y \in [0; 1]\}.$

Оценивалось решение этой задачи в квадратах 1/10 на 1/10, шаг сетки l=0,1.Результаты приведены в слое $x \in [0, 1], y \in [0, 5, 0, 6].$

c=1

							0,023			
$\hat{I_i}$	0,014	0,017	0,025	0,020	0,026	0,034	0,031	0,031	0,029	0,031
$\hat{\sigma_i}$	0,002	0,003	0,004	0,003	0,004	0,005	0,005	0,005	0,003	0,003
c = 10:										

T_i	0,038	0,048	0,060	0,075	0,094	0,117	0,147	0,184	0,230	0,287
\hat{I}_i	0,040	0,031	0,063	0,040	0,060	0,118	0,140	0,185	0,231	0,308
$\hat{\sigma_i}$	0,010	0,009	0,019	0,009	0,020	0,025	0,027	0,031	0,031	0,025

 T_i — теоретическое решение (интеграл по квадрату

 $[(i-1)/10; i/10] \times [0,5;0,6], i = 1,...10$.

 \hat{I}_i — оценка решения.

 $\hat{\sigma}_i$ — выборочное стандартное отклонение.

Уравнение Гельмгольца. «Гибрид блужданий по сетке и сферам»

Основная проблема при моделировании «блуждания по сферам» — выход траектории с границы области.

Решение проблемы — начинать моделирование траектории по сетке, а дальше переходить на сферы.

$$D=\{(x,y)\mid x\in[0;1],\;y\in[0;1]\},\; arepsilon=0,05,\; l=r=0,1.$$
 Результаты приведены в слое $x\in[0;1],\;y\in[0,5;0,6].$

c = 1:

T_i	0,015	0,016	0,018	0,019	0,020	0,022	0,023	0,025	0,027	0,029
\hat{I}_i	0,016	0,018	0,019	0,018	0,014	0,017	0,024	0,025	0,027	0,035
$\hat{\sigma_i}$	0,002	0,003	0,004	0,004	0,003	0,003	0,004	0,004	0,004	0,003

c = 10:

T_i	0,038	0,048	0,060	0,075	0,094	0,117	0,147	0,184	0,230	0,287
\hat{I}_i	0,040	0,068	0,078	0,094	0,124	0,117	0,124	0,147	0,220	0,283
$\hat{\sigma_i}$	0,010	0,020	0,020	0,027	0,038	0,032	0,023	0,024	0,029	0,025

 T_i — теоретическое решение (интеграл по квадрату

$$[(i-1)/10; i/10] \times [0,5;0,6], i = 1,...10$$
.

 \hat{I}_i — оценка решения.

 $\hat{\sigma}_i$ — выборочное стандартное отклонение.

Выводы

- ▶ Было исследовано «блуждания по сферам». В ходе исследования было выявлено, что построение обратного алгоритма представляется достаточно сложным из-за наличия большого числа параметров.
- Построен алгоритм «блуждания по сетке» для решения первой краевой задачи Дирихле для уравнения Гельмгольца.
- Построен «гибрид блужданий по сетке и сферам» для решения первой краевой задачи Дирихле для уравнения Гельмгольца.

Оба этих алгоритма дают неплохие оценки решения рассматриваемых задач и могут применяться в дальнейшем для решения более сложных вопросов математической физики.