基礎幾何預備知識

න

May 30, 2021

這篇講義會盡可能的把你所需要會的基礎幾何知識補足。

1 你會算角嗎

首先我們從算角度說起。

Definition 1.1. 記直線 l_a, l_b 之間所夾的逆時針夾角爲 $\angle(l_a, l_b)$

Definition 1.2. 給定任三點 ABC 則 AB, BC 之間所夾的逆時針夾角爲 ∠ABC

這裡提醒一下各位,通常我們都會把有向角模 180 度

Proposition 1.1. 對於四點 A, B, C, P 我們有以下性質

- 1. $\angle APA = 0^{\circ}$
- 2. $\angle ABC = -\angle CBA$
- 3. $\angle PBA = \angle PBC \iff A.B.C$ 三點共線
- 4. $PA \perp PB \iff \angle APB = \angle BPA = 90^{\circ}$
- 5. $\angle ABP + \angle PBC = \angle ABC$
- 6. $\angle ABC + \angle BCA + \angle CAB = 0^{\circ}$
- 7. $AB = AC \iff \angle ABC = \angle BCA$

所以我們就可以好好地定出共圓的充要條件了。

Proposition 1.2. ABCD 共圆若且惟若 $\angle ABC = \angle ADC$

Example 1.1 (Russian Olympiad 1996). 已知凸四邊形 ABCD, 點 E,F 是邊 BC 是上的點 (E 比 F 靠近 B) 已知 $\angle BAE = \angle FDC$ 且 $\angle EAF = \angle EDF$,證明 $\angle FAC = \angle EDB$

Proof. 首先我們有 $\angle EAF = \angle EDF$, 即 E, A, D, F 四點共圓,因此注意到

$$\angle FAC = \angle EDB \iff \angle BAC = \angle BDC \iff A, B, C, D$$
共圓

接著算角度

$$\angle ABC = \angle BAF + \angle AFB$$

$$= \angle EDC + \angle ADE = \angle ADC \Longrightarrow A, B, C, D$$
 四點共圓 \square

Author: So

我們來看一些經典的例子。

Theorem 1.1 (西姆松定理). 對於三角形 $\triangle ABC$ 和一點 P,做 P 在 BC, CA, AB 的垂足 D, E, F, 則 D, E, F 共線若且惟若 A, B, C, P 四點共圓。

Proof. 注意到 P, D, E, C 四點共圓, P, F, B, D 四點共圓, 因此

$$D, E, F$$
三點共線 \iff $0^{\circ} = \angle FDP + \angle PDE = \angle FBP + \angle PCE$
 $= \angle ABP + \angle PCA = 0^{\circ} \iff A, B, C, P$ 四點共圓□

Example 1.2. 設三角形 ABC 的切點三角形爲 $\triangle DEF$,且 ID 交 EF 於 T,證明:AT 平分 \overline{BC}

Proof. 考慮過 T 平行 BC 的直線交 AC, AB 於 X, Y,顯然有 E, T, F 共線,因此由西姆松定理 I 在 $\bigcirc(AXY)$ 外接圓上,且由 $\angle YAI = \angle IAX$,可以得到 I 爲 XY 孤中點,因此 T 爲 \overline{XY} 中點,故由 $XY \parallel BC$,AT 平分 \overline{BC} 。

Theorem 1.2 (三角形的密克定理). 對於三角形 ABC 和 BC, CA, AB 上三點 D, E, F, 則 (AEF), (BDF), (CDE) 共點。

Proof. 考慮 $\odot(AEF)$, $\odot(BDF)$ 的交點 P, 則我們有

Example 1.3. 設 A, B, C, D 四點共圓,做 $AB \cap CD = E, BC \cap AD = F$,則

$$\overline{EF}^2 = \overline{EA} \times \overline{EB} + \overline{FA} \times \overline{FD}$$

2 等角共軛點

Proposition 2.1 (定差幂線定理). 給定平面上任意四點 A, B, C, D,則

$$AB \perp CD \iff \overline{CA}^2 - \overline{CB}^2 = \overline{DA}^2 - \overline{DB}^2$$

Theorem 2.1 (正交). 對於兩三角形 $\triangle UVW$, $\triangle XYZ$, 以下兩件事等價

- 1.~U 對 YZ 的垂線、V 對 ZX 的垂線、W 對 XY 的垂線共點。
- 2. X 對 VW 的垂線、Y 對 WU 的垂線、Z 對 UV 的垂線共點。

Proof. 只需要注意到 1. 2. 都等價到下式即可。

$$UY^2 - UZ^2 + VZ^2 - VX^2 + WX^2 - WY^2 = 0$$

Author: 80

Proposition 2.2. 設 P 爲平面上任意點,且有一點 Q 滿足 $\angle BAP = \angle QAC$,並設 P 對 AC, AB 的垂足爲 P_B , P_C ,則

$$AQ \perp P_B P_c$$

Proof. 設 $T = P_B P_C \cap AQ$, 則顯然有 $\triangle APP_C \stackrel{+}{\sim} \triangle AP_B T \implies AT \perp P_B P_C \circ \Box$

Theorem 2.2 (等角共軛點的存在性). 三角形 $\triangle ABC$,設 P 爲不在三邊上的任意點,則存在一點 P^* 滿足

$$\angle BAP + \angle CAP^* = \angle CBP + \angle ABP^* = \angle ACP + \angle BCP^* = 0$$

 $Proof\ 1.$ 設 $\triangle P_A P_B P_C$ 爲 P 關於 $A\triangle ABC$ 的垂足三角形,則 $\triangle ABC$, $\triangle P_A P_B P_C$ 正交,因此我們有 A 對 $P_B P_C$ 的垂線,B 對 $P_C P_A$ 的垂線,C 對 $P_A P_B$ 的垂線,三線共點,設此點爲 P^* ,則由 (2.2)。

$$\angle BAP + \angle CAP^* = \angle CBP + \angle ABP^* = \angle ACP + \angle BCP^* = 0$$

 $Proof\ 2.$ 考慮 PA, PB, PC 和 $\odot(ABC)$ 的交點, P_A , P_B , P_C ,並且令 $\triangle XYZ$ 爲 P 對 $\triangle P_A P_B P_C$ 的垂足三角形,注意到

因此我們有 $\triangle ABC \stackrel{+}{\sim} \triangle XYZ$ 。考慮一點 P^* 使得

$$\triangle ABC \cup \{P^*\} \stackrel{+}{\sim} \triangle XYZ \cup \{P\}$$

則

$$\angle BAP^* = \angle YXP = \angle YP_CP = \angle P_AP_CC = \angle PAC$$

同理可得 P* 滿足

$$\angle BAP + \angle CAP^* = \angle CBP + \angle ABP^* = \angle ACP + \angle BCP^* = 0$$

3 内心

内心的常用代號是I,在ETC裡面的編號是X(1),接下來我們用純算角證明一些内心的常用性質。

Proposition 3.1. 我們有

$$\angle BIC = 90^{\circ} + \angle BAI = 90^{\circ} + \angle IAC.$$

Proof. 考慮切點三角形 $\triangle DEF$, 注意到 AI, BI, CI 分別垂直 EF, FD, DE, 所以

$$\angle BIC = \angle FDE = \angle AFE = 90^{\circ} + \angle BAI = 90^{\circ} + \angle IAC.$$

Author: S

Proposition 3.2 (雞爪圓). 設 AI 交 $\odot(ABC)$ 於 $M \neq A$,則 B, I, C, I_A 共圓 且圓心爲 M。

Proof. 我們只須證明 $\overline{MI} = \overline{MB} = \overline{MC}$ 即可,注意到

$$\angle MBI = \angle MBC + \angle CBI = \angle BAI + \angle IBA = \angle BIM$$

因此
$$\overline{MB} = \overline{MI}$$
, 同理 $\overline{MI} = \overline{MB} = \overline{MC}$

4 歐拉線

Proposition 4.1. 三角形 $\triangle ABC$ 中,外心垂心互爲等角共軛點。

Proof. 考慮 A 對外接圓的對鏡點 A',以及 A 對 BC 的垂足 H_A ,則

$$\triangle AH_AC \stackrel{+}{\sim} ABA' \implies \angle BAH = \angle OAC$$

Proposition 4.2. 設 H 爲 $\triangle ABC$ 的垂心,則 H 對 BC, CA, AB 鏡射皆在 $\triangle ABC$ 外接圓上。

Proof. 設 H' 爲 H 對 BC 邊的對稱點,則

$$\angle BH'C = \angle CHB = \angle BAC \implies A, B, C, H'$$
 四點共圓

Proposition 4.3. 設 H 爲 $\triangle ABC$ 的垂心,則 H 對 \overline{BC} , \overline{CA} , \overline{AB} 的中點鏡射皆在 $\triangle ABC$ 外接圓上。

Proof. 設 H' 爲 H 對 \overline{BC} 中點的對稱點,則

$$\angle BH'C = \angle CHB = \angle BAC \implies A, B, C, H'$$
 四點共圓

Theorem 4.1 (九點圓). 三角形 $\triangle ABC$ 中的三邊垂足、三邊中點,和三頂點到垂心的中點,九點共圓且圓心爲垂心和外心的中點。

Proof. 注意到以垂心爲中心將這九個點往外推一倍都在外接圓上,故得證。 □

Definition 4.1 (九點圓圓心). 我們稱上面的定理中的圓爲九點圓,其圓心爲九點圓圓心。

Proposition 4.4. 三角形 $\triangle ABC$ 中,設 O, N 爲外心、九點圓圓心,設 O_A 爲 BOC 外心。則 AN, AO_A 爲等角線。

Proof. 考慮 \overline{AB} 中垂線和 AC 的交點 D,考慮 \overline{AC} 中垂線和 AB 的交點 E,設 O' 爲 O 關於 BC 的對稱點,則注意到

$$\triangle ABC \cup \{O'\} \sim \triangle ADF \cup \{O_A\} \implies AO', AO_A$$
 爲等角線

且由 AHO'O 爲平行四邊形,我們有 AO' 過 \overline{OH} 中點,故結論得證。

Author: State of the state of t

Theorem 4.2. 重心、外心、垂心、九點圓圓心,四點共線,我們稱此線爲該三角形的歐拉線。

Theorem 4.3 (斯坦納定理). 對於三角形 $\triangle ABC$ 和外接圓上一點 P,做 P 對 BC, CA, AB 的對稱點 P_A , P_B , P_C , 則 P_A , P_B , P_C 共線且過 $\triangle ABC$ 垂心。

Proof. 我們只要證明 P_A , H, P_B 三點共線即可,考慮 PP_A , PP_B 和 $\triangle ABC$ 的外接圓的交點 P'_A , P'_B ,則注意到 $AHP_AP'_A$ 爲平行四邊形。因此我們只需要證明 $AP'_A\parallel BP'_B$ 即可,注意到 $PP'_A\perp BC$, $PP'_B\perp CA$ 故

$$\angle P_A'AP_B' = \angle P_A'PP_B = \angle BCA = \angle BP_B'A \implies AP_A' \parallel BP_B'$$

5 完全四線形和圓冪

Theorem 5.1 (四邊形的密克定理). 考慮四點 ABCD, 設 AB 交 CD 於 E, AD 交 BC 於 F, 則 $\odot(AED)$, $\odot(ABF)$, $\odot(BCE)$, $\odot(CDF)$ 共點。

Proof. 考慮 $\odot(AED)$, $\odot(ABF)$ 的交點 M,則由西姆松定理 M 對 AB, BC, CD, DA 的垂足四點共線,再則由西姆松定理, $M \in \odot(BCE)$, $M \in \odot(CDF)$ 。

Definition 5.1. 上面的 M 稱爲 $Q\{AB,BC,CD,DA\}$ 完全四線形的密克點。

Theorem 5.2 (垂心線). 考慮四點 ABCD, 設 AB 交 CD 於 E, AD 交 BC 於 F, 則 $\triangle AED$, $\triangle ABF$, $\triangle BCE$, $\triangle CDF$ 垂心共線。

Proof. 由斯坦那定理顯然。

Definition 5.2. $\triangle AED$, $\triangle ABF$, $\triangle BCE$, $\triangle CDF$ 的垂心所共的線稱爲完全四線形 $\{AB,BC,CD,DA\}$ 的垂心線。

Definition 5.3. 設有兩圓 $\odot(O_1)$, $\odot(O_2)$, 則稱到這兩圓的圓幂一樣的點的軌跡 爲 O_1, O_2 的根軸。

Proposition 5.1. 根軸垂直連心線

Proposition 5.2. 對於任意三個圓,兩兩根軸三線共點或平行。

Theorem 5.3 (牛頓線). 完全四線形 $Q\{AB,BC,CD,DA\}$ 的三條對角線中點共線。且垂直垂心線。

Proof. 考慮 $\triangle EBC$ 的垂心 H, 並考慮 H 對 BC, CE, EB 的垂足 X, Y, Z, 則

$$HE \times HX = HB \times HY = HC \times HZ$$

因此我們有 H 在 (AC) 直徑圓、(BD) 直徑圓、EF 直徑圓的跟軸上,同理我們有 $\triangle ABF$, $\triangle CDF$ 的垂心在此根軸上,故三直徑圓共軸,即圓心共線。

Author: 85

Problem 5.1. 設 $\triangle DEF$ 是 $\triangle ABC$ 的垂足三角形,設 EF, FD 交 BC, CA 於 M, N 則 MN 垂直歐拉線。

Proof. 注意到 B, C, E, F 四點共圓,因此我們有

$$MB \times MC = ME \times MF$$

因此 M 在外接圓和九點圓的根軸上,同理有 N 在外接圓和九點圓的根軸上,且我們知道外心和九點圓連線爲歐拉線,因此 MN 爲根軸故垂直歐拉線。

Problem 5.2. 設 H 爲 ABC 的垂心,M, N 爲 \overline{AB} , \overline{AC} 邊上的中點,射線 MH, NH 交外接圓於 P, Q, 則 PQ, MN, A 在外接圓上的切線共點。

Proof. 設 M', N' 爲 H 對 M, N 的對稱點 (熟知其在外接圓上),則

$$HM \times HP = \frac{1}{2}HM' \times HP = \frac{1}{2}HN' \times HQ = HN \times HQ \implies P,Q,M,N$$
 四點共圓

考慮三圓 $\odot(AMN), \odot(MNPQ)$ $\odot(APQ)$,則由根心的存在性知道則 PQ, MN, A 在外接圓上的切線共點。

Author: S

6 習題

Problem 6.1. 三角形 ABC, 設 $\triangle DEF$ 爲頂點對各邊的垂足 (以後叫他垂足三角形), 設 EF 交外接圓於 P, 做 BP 交 DF 於 Q, 試證 AP = AQ。

Problem 6.2. 三角形 ABC, A,B,C 在 BC,CA,AB 上的垂足爲 D,E,F, H 爲垂心。試證:H 是 $\triangle DEF$ 内心。

Problem 6.3. 設 ABCD 爲圓內接四邊形, I_1 , I_2 爲 $\triangle ABC$, $\triangle DBC$ 的內心。試證:B, C, I_1 , I_2 共圓。

Problem 6.4. 三角形 ABC 中 BC 爲最短邊,D,E 在線段 AB,AC 上滿足 BD = BC = CE,試證: 內外心連線垂直 DE

Problem 6.5. 三角形 $\triangle ABC$, O 爲其外心, O_A 爲 $\triangle BOC$ 外心,設 B', C' 爲 B, C 關於 AC, AB 的對稱點,證明: $AO_A \perp B'C'$

Problem 6.6. 三角形 ABC, DEF 爲垂足三角形, M 爲 BC 中點, 證明 ME, MF 爲 M 對 $\odot (AEF)$ 的切線。

Problem 6.7. (2017 APMOC P5) ABCD 爲圓內接四邊形,AB,DC 交於 P,AD,BC 交於 Q,M 是 PQ 中點,MC 交 $\odot(ABCD)$ 於 G,證明 AGPQ 共圓。

Problem 6.8. 三角形 ABC 其中 H 爲垂心,P 爲外接圓上任意點,做 PH 中垂線交 AB, AC 於 Q, R,試證 APQR 共圓。

Problem 6.9. (2013 IMO P4) 設 ABC 爲銳角三角形,H 爲垂心,W 爲 BC 上一點,設 M,N 爲 B,C 在 AC,AB 上的垂足,WX 上在 $\odot(BWN)$ 上的直徑,WY 是 $\odot(CWM)$ 上的直徑,證明 H,X,Y 共線。

Problem 6.10. 點 A, B 在圓 $\odot(O)$ 上 M 爲劣弧 AB 上的弧中點,C 在圓外且 CS, CT 爲圓 $\odot(O)$ 的切線,MS, MT 分別交 AB 於 E, F 兩點。過 E, F 做垂 直 AB 的直線,分別交 OS, OT 於 X, Y,過 C 做任意一條直線交 (O) 於 P, Q,設 MP 和 AB 的交點爲 R。證明: $\triangle PQR$ 的外心在 XY 上。

Problem 6.11 (正交截線). 三角形 $\triangle ABC$, P 爲任意一點,過 P 做垂直 AP, BP, CP 的直線交 BC, CA, AB 於 D, E, F, 試證 D, E, F 共線。

Author: S