

PLANO DE ENSINO

Data de Emissão: 21/07/2016

Instituto de Informática

Departamento de Informática Teórica

Dados de identificação

Disciplina: OTIMIZAÇÃO COMBINATÓRIA

Período Letivo: 2016/2 Período de Início de Validade: 2016/2

Professor Responsável pelo Plano de Ensino: MARCUS ROLF PETER RITT
Sigla: INF05010 Créditos: 4 Carga Horária: 60

Súmula

Modelagem matemática, programação linear e não-linear. Programação inteira e solução via métodos exatos. Algoritmos de aproximação e heurísticas.

Currículos		
Currículos	Etapa Aconselhada	Natureza
BIOINFORMÁTICA	6	Alternativa
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO	5	Obrigatória
BIOTECNOLOGIA MOLECULAR		Eletiva
BACHARELADO EM MATEMÁTICA - ÊNFASE MATEMÁTICA APLIC COMPUTACIONAL	8	Alternativa

Objetivos

A disciplina tem por objetivo fornecer fundamentos teóricos e aplicados da área de Otimização Combinatória. O foco será em modelagem matemática e resolução de problemas de programação linear e programação inteira via métodos exatos, métodos de aproximação e heurísticas. Ao final da disciplina espera-se que o aluno

- saiba modelar problemas de programação linear e inteira,
- conheça o método Simplex e saiba resolver problemas de programação linear através do uso deste algoritmo,
- conheça e seja capaz de aplicar os métodos de solução para problemas de otimização e programação inteira,
- conheça as principais técnicas para projetar algoritmos de aproximação,
- conheça e saiba aplicar os métodos heurísticos clássicos.

Conteúdo Programático

Semana: 1 a 6

Título: Programação linear

Conteúdo: Otimização combinatória: área de abrangência, importância e caracterização. Modelagem Matemática de problemas de otimização

combinatória.

Programação Linear:

Formulações equivalentes e formas normais. Resolução gráfica e formulação geométrica. O método Simplex. Dualidade. Análise de

sensibilidade.

Semana: 7 a 12

Título: Programação inteira

Conteúdo: Formulação de programas inteiros. Caracterização de sistemas com soluções simples. Desigualdades válidas. Branch and bound.

Métodos de planos de corte.

Semana: 13 a 14

Título: Buscas locais e heurísticas

Conteúdo: Gradiente descendente, multi-start, GRASP. Variable neighborhood search. Metropolis e simulated annealing. Busca Tabu e

algoritmos genéticos.

Semana: 14

Título: Algoritmos de aproximação

Conteúdo: Técnicas de projeto de algoritmos de aproximação. Limites de aproximação.

Semana: 15

PLANO DE ENSINO

Data de Emissão: 21/07/2016

Título: Apresentação de trabalhos

Conteúdo: Apresentação e discussão dos trabalhos finais em aula.

Metodologia

Aulas teóricas-expositivas, exercícios individuais e em classe, prática no laboratório, e trabalhos individuais e em grupo com apresentação dos resultados.

Carga Horária

Teórica: 60 Prática: 0

Experiências de Aprendizagem

Aulas teóricas-expositivas, exercícios individuais e em classe, prática no laboratório, e trabalhos individuais e em grupo com apresentação dos resultados.

Estão previstas Atividades Autônomas do Aluno com uma carga horária de 6 (seis) horas-aula a serem desenvolvidas ao longo do semestre. As atividades previstas podem incluir: realização de temas e trabalhos, leitura de texto (capítulos de livros ou artigos), resolução de listas de exercícios entre outras. O Professor poderá se valer de aulas presenciais ou à distância (utilização de recursos da EAD). A Disciplina poderá contar com o apoio de Professores Assistentes (Alunos de Pós-Graduação) em Atividades Didáticas.

Critérios de avaliação

A disciplina será ministrada em três unidades. A primeira e segunda unidade serão avaliadas através de três provas (n_1,n_2,n_3). A terceira unidade será avaliada através de um trabalho prático (n_4). A média final é m=(n_1+n_2+n_3+n_4)/4. O resultado de cada avaliação será disponibilizado 15 dias úteis após do prazo de entrega.

O conceito final corresponde com a nota final e a freqüência f como seguinte:

Conc. final=

A caso 9<=m<=10 e f>=75% B caso 7.5<=m<9 e f>=75%

C caso 6<=m<7.5 e f>=75%

D caso m<6 e f>=75%

FF caso f<75%

Para ser aprovado é necessário obter um conceito final de A,B ou C.

Atividades de Recuperação Previstas

Um aluno com conceito final D pode realizar uma única prova de recuperação sobre toda matéria que substitui a menor nota obtida nas provas (prova 1, prova 2 ou prova 3). Pré-requisito para realização da prova de recuperação é uma frequência de 75% ou maior, a participação nas provas 1, 2 e 3 e ter entregue o trabalho prático.

Bibliografia

Básica Essencial

Maculan, Nelson; Fampa, Marcia H. Costa. Otimização linear. Brasília: Unb, 2006. ISBN 8523009272.

Papadimitriou, Christos H.. Combinatorial Optimization :algorithms and complexity.. Usa: Dover Publications, 1998. ISBN 978048602581.

Vanderbei, Robert J.. LInear Programming:foundations and extensions. New York: Springer, c2007. ISBN 9780387743875.

Básica

Bazaraa, Mokhtar S.; Sherali, Hanif D.; Shetty, C. M.. Nonlinear programming :theory and algorithms. Hoboken, N.J.: Wiley-Interscience, c2006. ISBN 0471486000; 9780471486008.

PLANO DE ENSINO

Data de Emissão: 21/07/2016

Goldbarg, Marco Cesar; Luna, Henrique Pacca Loureiro. Otimização combinatória e programação linear :modelos e algoritmos. Rio de Janeiro: Elsevier, c2005. ISBN 8535215204.

Korte, Bernhard H.; Vygen, Jens. Combinatorial optimization: theory and algorithms. Berlin: Springer-Verlag, 2002. ISBN 3540431543.

Luenberger, David G.; Ye, Yinyu. Linear and nonlinear programming. New York: Springer, 2008. ISBN 9780387745022.

Nemhauser, George L.; Wolsey, Laurence A.. Integer and combinatorial optimization. New York: John Wiley, c1999. ISBN 9780471359432.

Complementar

Ausiello, Giorgio. Complexity and approximation: combinatorial optimization problems and their approximability properties. Berlin: Springer-Verlag, c1999. ISBN 3540654313.

Hromkovic, Juraj. Algorithmics for hard problems :introduction to combinatorial optimization, randomization, approximation, and heuristics. Berlin: Springer-Verlag, c2001. ISBN 3540668608.

Laurence A. Wolsey. Integer programming. Wiley, 1998. ISBN 0471283665.

Laurence A. Wolsey, George L. Nemhauser. Integer and combinatorial optimization. Wiley, 1999. ISBN 0471359432.

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

Nenhuma observação incluída.