## Definition: Continuity

## **Definition: Continuity**

A function  $f: A \to \mathbb{R}$  (where  $A \subseteq \mathbb{R}$ ) is **continuous** at a point  $c \in A$  if the function value equals the limit at that point.

## **Epsilon-Delta Definition**

f is continuous at c if:

For every  $\varepsilon > 0$ , there exists  $\delta > 0$  such that for all  $x \in A$ :

$$|x-c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

### Sequential Definition

Equivalently, f is continuous at c if:

For every sequence  $(x_n)$  in A with  $x_n \to c$ , we have  $f(x_n) \to f(c)$ .

#### Limit Definition

When c is a limit point of A, f is continuous at c if and only if:

$$\lim_{x\to c} f(x) = f(c)$$

This requires three conditions: 1. f(c) is defined 2.  $\lim_{x\to c} f(x)$  exists 3. The limit equals the function value

#### Types of Continuity

- Continuous on a set: f is continuous on A if it is continuous at every point in A
- Uniformly continuous: A stronger condition where  $\delta$  depends only on  $\varepsilon$ , not on the point
- Lipschitz continuous: An even stronger condition with a linear bound on the rate of change

#### Discontinuities

If f is not continuous at c, we say f has a **discontinuity** at c. Types include: - **Removable**: The limit exists but doesn't equal f(c) - **Jump**: Left and right limits exist but are different - **Essential**: The limit doesn't exist

Continuity captures the intuitive notion of a function having "no breaks or jumps."

# Dependency Graph



Local dependency graph