Algoritmos Genéticos

Nicolás Purita, Carlos Sessa, Lucas Pizzagalli

Función a aprender por la red

Posibles arquitecturas

- [30 20 10]
- [10 10]
- [10]
- [10 10 10 10]
- [40 20]
- [10 10 10]
- [5 10 20]

Representación del individuo

Se traduce la matriz de pesos en un vector

0.1	0.2	0.3
0.4	0.5	0.6
0.7	0.8	0.9

Fidelidad del individuo

Es completo

Representa todo el dominio del problema

Es coherente

Ninguna representación puede quedar fuera del dominio

Es uniforme

 No se puede representar dos individuos distintos con la misma cadena

Es sencillo

Convertir matriz a vector es una operación simple

Es local

 Un cambio en un elemento del vector genera un cambio en el peso de la conexión que representa

simple.properties

- popSize = 52
- generationGap = 0.5
- architecture = 2
- mutation = Classic
- mutationProbability = 0.05
- Backpropagation.probability = 0
- crossover = Classic
- selection = Elite
- replacement = Elite
- ending = MaxGeneration(500) / content(0.01, 50)

Sin backpropagation

Resultados

Cambiando probabilidad de mutación clásica

Fitness	Generación	Terminó por	Mutación
0.22501570790437642	60	Content	0.05
0.21842640558999668	60	Content	0.1
0.22113522454399956	67	Content	0.3
0.22050756611447994	72	Content	0.5

Cambiando probabilidad de mutación no uniforme

Mutación en 0.6 decrementando cada 30 generaciones

Fitness	Generación	Terminó por	Decremento
0.21222349890474348	50	Content	0.05
0.22795744299992385	77	Content	0.1
0.21740760693242447	65	Content	0.15

Cambiando cruce

Fitness	Generación	Terminó por	Cruce
0.22501570790437642	60	Content	Classic
0.20662153685787393	50	Content	Gene
0.21418198155450324	50	Content	Multiple Point (2 points)
0.21674758534799746	50	Content	Uniform (0.3 prob)
0.20662153685787393	50	Content	Anular

Sin backpropagation

- Modificando otros parámetros tampoco se llega a buenos resultados
- Dado que el individuo es muy grande demora mucho en converger
- Se pasa a probar con backpropagation

popSize = 52generationGap = 0.6mutation = Classic mutationProbability = 0.05Backpropagation.probability = 0.05 Backpropagation.iterations = 30 crossover = Classic crossoverProbability = 1 selection = Elite / Rulette Flite to Select = 16 Rulette.toSelect = 15 replacement = Elite / Botzman replacement.Elite.toSelect = 16 replacement.Botzman.toSelect = 6 Boltzman.maxTemperature = 100 Boltzman.minTemperature = 7 Boltzman.decrement = 0.8

Fitness

11.941655508072634

Generaciones

58

Terminó por

popSize = 52generationGap = 0.6 mutation = Classic mutationProbability = 0.05Backpropagation.probability = 0.15 Backpropagation.iterations = 30 crossover = Multiple point crossoverProbability = 1 MultiplePoint.cutPoints = 2 selection = Elite / Boltzman Elite.toSelect = 16Boltzman.toSelect = 15 Boltzman.maxTemperature = 100 Boltzman.minTemperature = 7 Boltzman.decrement = 0.8replacement = Elite / Rulette replacement.Elite.toSelect = 15 replacement.Rulette.toSelect = 6

Fitness

12.57897997517028

Generaciones

36

Terminó por

popSize = 52generationGap = 0.6mutation = NotUniform mutationProbability = 0.5 NotUniform.decreaseConstant = 0.05 Backpropagation.probability = 0.15 Backpropagation.iterations = 30 crossover = Classic crossoverProbability = 1 selection = Elite / Boltzman Elite.toSelect = 16Boltzman.toSelect = 15 Boltzman.maxTemperature = 100 Boltzman.minTemperature = 7 Boltzman.decrement = 0.8replacement = Elite / Rulette replacement.Elite.toSelect = 15 replacement.Rulette.toSelect = 6

Fitness

12.992838764610976

Generaciones

36

Terminó por

popSize = 52generationGap = 0.6mutation = Classic mutationProbability = 0.05Backpropagation.probability = 0.15 Backpropagation.iterations = 30 crossover = Anular crossoverProbability = 1 selection = Elite / Boltzman Flite to Select = 16 Boltzman.toSelect = 15 Boltzman.maxTemperature = 100 Boltzman.minTemperature = 7 Boltzman.decrement = 0.8replacement = Elite / Rulette replacement.Elite.toSelect = 15 replacement.Rulette.toSelect = 6

Fitness

13.560979676949982

Generaciones

50

Terminó por

popSize = 52generationGap = 0.4mutation = Classic mutationProbability = 0.08 Backpropagation.probability = 0.05 Backpropagation.iterations = 30 crossover = Gene crossoverProbability = 0.1 selection = Elite / Boltzman Elite.toSelect = 16 Boltzman.toSelect = 36 replacement = Elite / Rulette replacement.Elite.toSelect = 16 replacement.Rulette.toSelect = 36

Fitness

16.720276062651436

Generaciones

69

Terminó por

Posibles mejoras

- Disminuir la probabilidad del operador backpropagation a medida que se va alcanzando un fitness deseado.
- Parámetro adicional para que los criterios de selección y reemplazo siempre dejen al individuo con mejor aptitud.

Conclusiones

- Debido a la naturaleza del problema, es necesaria la utilización de backpropagation para lograr resultados próximos a los deseados.
- El hecho de correr backpropagation generó mejores individuos que luego al aplicarle operadores genéticos mejoran notablemente.

Muchas Gracias

