How do singers tune?

Johanna Devaney

Jonathan Wild

Peter Schubert

Ichiro Fujinaga

Prior Work on Intonation

Intonation Experiments

- Research questions
 - How consistently do singers tune in performance
 - e.g., ascending vs. descending, a cappella vs. accompanied, replicating interval sizes across performances
 - How does their tuning relate to idealized tuning systems, such as Just Intonation, Pythagorean tuning, and equal temperament?
- Experiments
 - Solo: six non-professional and professional singers performed Schubert's "Ave Maria" both a cappella and with accompaniment
 - Ensemble: three different SATB quartets performed a set of exercises and Praetorius' "Lo how a rose e'er blooming"
- Interval size data was extracted automatically from the recordings for
 - Melodic intervals: semitone, whole tone
 - Vertical intervals: m3, M3, P4, TT, P5, m6, M6, m7, and P8

- Research questions
 - How consistently do singers tune in performance?
 - e.g., ascending vs. descending, a cappella vs. accompanied, replicating interval sizes across performances
 - How does their tuning relate to idealized tuning systems, such as Just Intonation,
 Pythagorean tuning, and equal temperament?
- Experiments
 - Solo: six non-professional and professional singers performed Schubert's "Ave Maria" both a cappella and with accompaniment
 - Ensemble: three different SATB quartets performed a set of exercises and Praetorius' "Lo how a rose e'er blooming"
- Interval size data was extracted automatically from the recordings for
 - Melodic intervals: semitone, whole tone
 - Vertical intervals: m3, M3, P4, TT, P5, m6, M6, m7, and P8

- Research questions
 - How consistently do singers tune in performance?
 - e.g., ascending vs. descending, a cappella vs. accompanied, replicating interval sizes across performances
 - How does their tuning relate to idealized tuning systems, such as Just Intonation,
 Pythagorean tuning, and equal temperament?
- Experiments
 - Solo: six non-professional and professional singers performed Schubert's "Ave Maria" both a cappella and with accompaniment
 - Ensemble: three different SATB quartets performed a set of exercises and Praetorius' "Lo how a rose e'er blooming"
- Interval size data was extracted automatically from the recordings for
 - Melodic intervals: semitone, whole tone
 - Vertical intervals: m3, M3, P4, TT, P5, m6, M6, m7, and P8

- Schoen (1922) found that in general the accompanied singers he studied were sharper than equal temperament and that notes tended to be flatter when descending and sharper when ascending
- Sundberg, Prame, and Iwarsson (1995) studied professional singers' ability to replicate pitches when singing with accompaniment and found that the average difference between repeated notes was 8 cents
- Prame (1997) found that the intonation in the same recordings used by Sundberg, Prame, and Iwarsson studied deviated substantially, though not consistently, from equal temperament

- Schoen (1922) found that in general the accompanied singers he studied were sharper than equal temperament and that notes tended to be flatter when descending and sharper when ascending
- Sundberg, Prame, and Iwarsson (1995) studied professional singers' ability to replicate pitches when singing with accompaniment and found that the average difference between repeated notes was 8 cents
- Prame (1997) found that the intonation in the same recordings used by Sundberg, Prame, and Iwarsson studied deviated substantially, though not consistently, from equal temperament

- Schoen (1922) found that in general the accompanied singers he studied were sharper than equal temperament and that notes tended to be flatter when descending and sharper when ascending
- Sundberg, Prame, and Iwarsson (1995) studied professional singers' ability to replicate pitches when singing with accompaniment and found that the average difference between repeated notes was 8 cents
- Prame (1997) found that the intonation in the same recordings used by Sundberg, Prame, and Iwarsson studied deviated substantially, though not consistently, from equal temperament

- Jers and Terström (2005) examined intonation in fast and slow performances by a cappella 16 voice ensemble (4 voices per part) and found a greater amount of intonation dispersion at the faster tempo and that descending intervals were closer to equal temperament while ascending intervals were sharper
- Howard (2007) studied two a cappella SATB quartets and found that the ensembles used non-equal temperament with a tendency toward, though not full compliance with Just-Intonation
- Vurma (2010) studied intonation in two-part exercises with a synthesized lower voice and found that singers' intonation did not change significantly when the synthesized voice was detuned

- Jers and Terström (2005) examined intonation in fast and slow performances by a cappella 16 voice ensemble (4 voices per part) and found a greater amount of intonation dispersion at the faster tempo and that descending intervals were closer to equal temperament while ascending intervals were sharper
- Howard (2007) studied two a cappella SATB quartets and found that the ensembles used non-equal temperament with a tendency toward, though not full compliance with Just-Intonation
- Vurma (2010) studied intonation in two-part exercises with a synthesized lower voice and found that singers' intonation did not change significantly when the synthesized voice was detuned

- Jers and Terström (2005) examined intonation in fast and slow performances by a cappella 16 voice ensemble (4 voices per part) and found a greater amount of intonation dispersion at the faster tempo and that descending intervals were closer to equal temperament while ascending intervals were sharper
- Howard (2007) studied two a cappella SATB quartets and found that the ensembles used non-equal temperament with a tendency toward, though not full compliance with Just-Intonation
- Vurma (2010) studied intonation in two-part exercises with a synthesized lower voice and found that singers' intonation did not change significantly when the synthesized voice was detuned

- Solo Intonation Experiment
 - 6 undergraduate vocal majors and 6 professional singers
 - Franz Schubert's "Ave Maria"
 - sung a cappella and with accompaniment
- Ensemble Experiment
 - 1 semi-professional quartet (pilot) and 2 professional quartets (lab and church)
 - Exercises composed by Jonathan Wild and Peter Schubert,
 where semitones and whole tones occur in different contexts
 - Chord progression by Giambattista Benedetti
 - Michael Praetorius' "Lo how a rose e'er blooming"

- Solo Intonation Experiment
 - 6 undergraduate vocal majors and 6 professional singers
 - Franz Schubert's "Ave Maria"
 - sung a cappella and with accompaniment
- Ensemble Experiment
 - 1 semi-professional quartet (pilot) and 2 professional quartets (lab and church)
 - Exercises composed by Jonathan Wild and Peter Schubert, where semitones and whole tones occur in different contexts
 - Chord progression by Giambattista Benedetti
 - Michael Praetorius' "Lo how a rose e'er blooming"

Semitone Exercises (Jonathan Wild)

Whole Tone Exercises (Peter Schubert)

Repeated Progression (Giambattista Benedetti)

"Lo' How a Rose e'er blooming" (Michael Praetorius)

Identify Note Onsets and Offsets

Fundamental Frequency (F0) Estimation

Intonation Experiments - Solo

- Adherence to fixed systems
 - Semitones
 - mean of pros' ascending semitones closest to equal temperament
 - mean of non-pros' semitones
 (ascending and descending) and pros' descending semitones closest to Pythagorean
 - Whole tones
 - mean of pro's whole tones closest to Just Intonation/Pythagorean tuning (except for ascending a cappella whole tones)
 - mean of non-pro's whole tones (and pro's ascending a cappella whole tones) were closest to equal temperament

Intonation Experiments - Solo

Adherence to fixed systems

- Semitones
 - mean of pros' ascending semitones closest to equal temperament
 - mean of non-pros' semitones
 (ascending and descending) and pros' descending semitones closest to
 Pythagorean
- Whole tones
 - mean of pro's whole tones closest to Just Intonation/Pythagorean tuning (except for ascending a cappella whole tones)
 - mean of non-pro's whole tones (and pro's ascending a cappella whole tones) were closest to equal temperament

Intonation Experiments - Ensembles

- Adherence to fixed systems
 - Semitones: means of most ascending and descending semitones were closest to equal temperament
 - Lab ensemble in part one was closest to Pythagorean
 - Whole tones: means of the majority of ascending and descending whole tones were closest to equal temperament
 - Ensemble 1's whole tones in Part Three were between 200 EQT and 182
 JI tuning

Intonation Experiments - Ensembles

Adherence to fixed systems

- Semitones: means of most ascending and descending semitones were closest to equal temperament
 - Lab ensemble in part one was closest to Pythagorean
- Whole tones: means of the majority of ascending and descending whole tones were closest to equal temperament
 - Ensemble 1's whole tones in Part Three were between 200 EQT and 182
 JI tuning

- When there was a difference of more than a couple of cents between idealized Equal Temperament and Just Intonation
 - most ensembles' means were closer to equal temperament (except for some ensembles' m6, M6, and m7)

	Pythagorean	5-limit Just Intonation	Equal Temperament
	Cents	Cents	Cents
m3	294	316	300
M3	408	386	400
P4	498	498	500
TT	588	590	600
	612	610	
P5	702	702	700
m6	792	814	800
M6	905	884	900
m7	996	1018	1000
P8	1200	1200	1200

 However, when cadential context was taken into account in the Praetorius, a ttest (p < 0.05) revealed that the tuning was closer to Just Intonation in cadential contexts than non-cadential contexts

- When there was a difference of more than a couple of cents between idealized Equal Temperament and Just Intonation
 - most ensembles' means were closer to equal temperament (except for some ensembles' m6, M6, and m7)

	Pythagorean	5-limit Just Intonation	Equal Temperament	
	Cents	Cents	Cents	
m3	294	316	300	
M3	408	386	400	
P4	498	498	500	
TT	588	590	600	
	612	610		
P5	702	702	700	
m6	792	814	800	
M6	905	884	900	
m7	996	1018	1000	
P8	1200	1200	1200	

 However, when cadential context was taken into account in the Praetorius, a ttest (p < 0.05) revealed that the tuning was closer to Just Intonation in cadential contexts than non-cadential contexts

	Pilot	Lab	Church
Cadence	14.356	14.108	14.261
Non-Cadence	17.027	16.631	17.254

Mean deviation in cents from idealized Just Intonation tunings

		Previous Findings	Current Findings
Adherence to a	Solo	Schoen (1922): sharper than EQT Prame (1997): deviation from EQT	closest to EQT (except non-pro semitones)
Fixed System	Ensemble	Howard (2007): closest to JI	closest to EQT

		Previous Findings	Current Findings
Adherence to a Fixed System	Solo	Schoen (1922): sharper than EQT Prame (1997): deviation from EQT	closest to EQT (except non-pro semitones)
	Ensemble	Howard (2007): closest to JI	closest to EQT
		Cabaan (1000), bath dagaanding and	ala a a a malina y a a malita ya a a a a a a lla w
A	Solo	Schoen (1922): both descending and ascending intervals larger than EQT	descending semitones smaller* descending whole tone larger*
Ascending vs Descending			

* when the effect was significant (p < 0.01)

		Previous Findings	Current Findings
Adherence to a	Solo	Schoen (1922): sharper than EQT Prame (1997): deviation from EQT	closest to EQT (except non-pro semitones)
Fixed System	Ensemble	Howard (2007): closest to JI	closest to EQT
According vo	Solo	Schoen (1922): both descending and ascending intervals larger than EQT	descending semitones smaller* descending whole tone larger*
Ascending vs Descending	Ensemble	Jers and Ternström (2005): descending intervals close to equal temperament while ascending intervals were larger	descending semitones smaller* descending whole tone larger*

^{*} when the effect was significant (p < 0.01)

		Previous Findings	Current Findings
Adherence to a	Solo	Schoen (1922): sharper than EQT Prame (1997): deviation from EQT	closest to EQT (except non-pro semitones)
Fixed System	Ensemble	Howard (2007): closest to JI	closest to EQT
According vo	Solo	Schoen (1922): both descending and ascending intervals larger than EQT	descending semitones smaller* descending whole tone larger*
Ascending vs Descending	Ensemble	Jers and Ternström (2005): descending intervals close to equal temperament while ascending intervals were larger	descending semitones smaller* descending whole tone larger*
Accompanied vs. a cappella	Solo	Vurma (2010): detuning of accompanying synthesized voices didn't significantly effect intonation	non-professionals showed an effect for semitone tuning but no effect for whole tone tuning

^{*} when the effect was significant (p < 0.01)

		Previous Findings	Current Findings
Adherence to a	Solo	Schoen (1922): sharper than EQT Prame (1997): deviation from EQT	closest to EQT (except non-pro semitones)
Fixed System	Ensemble	Howard (2007): closest to JI	closest to EQT
Accordings	Solo	Schoen (1922): both descending and ascending intervals larger than EQT	descending semitones smaller* descending whole tone larger*
Ascending vs Descending	Ensemble	Jers and Ternström (2005): descending intervals close to equal temperament while ascending intervals were larger	descending semitones smaller* descending whole tone larger*
Accompanied vs. a cappella	Solo	Vurma (2010): detuning of accompanying synthesized voices didn't significantly effect intonation	non-professionals showed an effect for semitone tuning but no effect for whole tone tuning
			* when the effect was significant (p < 0.01)
Replicating Pitches	Solo	Sundberg, Prame, and Iwarsson (1995): 8 cents average deviation	11 cents for non-professionals 12 cents for professionals

		Previous Findings	Current Findings
Adherence to a	Solo	Schoen (1922): sharper than EQT Prame (1997): deviation from EQT	closest to EQT (except non-pro semitones)
Fixed System	Ensemble	Howard (2007): closest to JI	closest to EQT
According	Solo	Schoen (1922): both descending and ascending intervals larger than EQT	descending semitones smaller* descending whole tone larger*
Ascending vs Descending	Ensemble	Jers and Ternström (2005): descending intervals close to equal temperament while ascending intervals were larger	descending semitones smaller* descending whole tone larger*
Accompanied vs. a cappella	Solo	Vurma (2010): detuning of accompanying synthesized voices didn't significantly effect intonation	non-professionals showed an effect for semitone tuning but no effect for whole tone tuning
* when the effect was significant (p < 0.			* when the effect was significant (p < 0.01)
Replicating Pitches	Solo	Sundberg, Prame, and Iwarsson (1995):	11 cents for non-professionals

8 cents average deviation 12 cents for professionals Pitches

Just Noticeable Difference for Detecting Mistunings

Lynch et al. (1991): for melodic intervals: 10 cents (experienced musicians) Vurma (2010): for two-part intervals: 20–40 cents (experienced musicians)

- How consistently did the singers tune in performance?
 - In the solo experiment there were some significant effects for accompaniment and ascending vs. descending
 - In the ensemble experiment there were some significant effects for ascending vs. descending
- How did their tuning relate to idealized tuning systems?
 - Melodic intervals: the singers did not conform exactly to equal temperament but were closest to it than any other system
 - Vertical intervals: overall they were closest to equal temperament but tended more towards Just Intonation in cadential contexts

- How consistently did the singers tune in performance?
 - In the solo experiment there were some significant effects for accompaniment and ascending vs. descending
 - In the ensemble experiment there were some significant effects for ascending vs. descending
- How did their tuning relate to idealized tuning systems?
 - Melodic intervals: the singers did not conform exactly to equal temperament but were closest to it than any other system
 - Vertical intervals: overall they were closest to equal temperament but tended more towards Just Intonation in cadential contexts

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Thank you!

References

Howard, D.M. 2007a. Equal or non-equal temperament in a cappella SATB singing. Logopedics Phoniatrics Vocology. 32: 87–94.

Howard, D.M. 2007b. Intonation drift in *a capella* soprano, alto, tenor, bass quartet singing with key modulation. *Journal of Voice*. 21(3): 300–15.

Lynch, M., R. Eilers, K.Oller, and R. Urbano. 1991. Influences of acculturation and musical sophistication on perception of musical intervals patterns. *Journal of Experimental Psychology: Human Perception and Performance*. 17(3): 967–75.

Jers, H., & Ternström, S. 2005. Intonation analysis of a multi-channel choir recording. *TMH-QPSR*. 47(1), 1–6.

Prame, E. 1997. Vibrato extent and intonation in professional western lyric singing. *Journal of the Acoustical Society of America*. 102(1): 616–21.

Schoen, M. 1922. An experimental study of the pitch factor in artistic singing. *Psychological Monographs*. 31 (1): 230–59.

Sundberg, J., E. Prame, and J. Iwarsson. 1995. Replicability and accuracy of pitch patterns in professional singers. *STL-Quarterly Progress and Status Report.* 36 (2-3): 51-62.

Vurma, A. 2010. Mistuning in two-part singing. Logopedics Phoniatrics Vocology 35: 24–33.

