82. Асимптотическая оценка $[1,2,\ldots,n]$ снизу. Более грубая оценка, верная для n>7. (б/д)

Лемма: $m! \geq \left(\frac{m}{e}\right)^m$

- **▲** 1. База m = 1: $1 \ge \frac{1}{e}$
 - 2. Пусть для m верно. Покажем для m+1. Заметим, что $\left(\frac{m}{m+1}\right)^m$ убывает (так как $\frac{m}{m+1} < 1$) и стремится к e^{-1}

$$(m+1)! = (m+1) \left(\frac{m}{e}\right)^m = (m+1) \left(\frac{m}{m+1}\right)^m \left(\frac{m+1}{e}\right)^m > \frac{m+1}{e} \left(\frac{m+1}{e}\right)^m = \left(\frac{m+1}{e}\right)^{m+1} \blacksquare$$

Утверждение: $HOK(1, ..., n) := [1, ..., n] \ge e^n$

 $[1,\ldots,n] > \prod$

$$[1,\ldots,n] \ge \prod_{p \text{ - mpoctoe}, p \le n} p$$

Количество простых чисел $\leq n: \pi(n) \sim \frac{n}{\ln n}, p_k \geq k$. Тогда

$$[1,\ldots,n] \ge \left[\frac{n}{\ln n}(1+o(1))\right]!$$

Так как по лемме $m! \ge \left(\frac{m}{e}\right)^m$, получаем

$$[1, \dots, n] \ge \left(\frac{n}{e \ln n} (1 + o(1))\right)^{\frac{n}{\ln n} (1 + o(1))} = e^{\ln \left(\frac{n}{e \ln n} (1 + o(1))\right) \frac{n}{\ln n} (1 + o(1))}$$

Распишем большой логарифм из степени

$$\ln \left(\frac{n}{e \ln n} (1 + o(1)) \right) = \ln n - 1 - \ln \ln n + \ln \left(1 + o(1) \right) = \ln n \left(1 - \frac{1}{\ln n} - \frac{\ln \ln n}{\ln n} + \frac{\ln \left(1 + o(1) \right)}{\ln n} \right)$$

Функция в последней скобки стремится к 1 при $n \to \infty \Rightarrow$ этот логарифм равен $\ln n(1+o(1))$

Подставив все назад в степень получаем

$$[1,\ldots,n] \ge e^{n(1+o(1))^2} = e^{n(1+o(1))} \blacksquare$$

Утверждение (б/д): $[1, \ldots, n] \ge 2^n, n > 7$