Puncte importante în triunghi

Ne vom ocupa aici de punctele remarcabile întâlnite în geometria triunghiului: centru de greutate G, centrul cercului circumscris O, etc.

Vom nota și acum cu z_A , z_B și z_C afixele vârfurilor triunghiului ΔABC , cu a, b și c lungimile laturilor BC, CA și AB, iar cu A, B și C mărimea unghiurilor triunghiului, măsurată în radiani și cuprinsă strict în intervalul $(0,\pi)$.

Amintim că numerele reale α , β și γ formează un set de coordonate baricentrice omogene pentru un punct Q din planul triunghiului Δ ABC dacă afixul său se calculează cu relația

$$z_Q = \frac{\alpha z_A + \beta z_B + \gamma z_C}{\alpha + \beta + \gamma}.$$

Pentru a afla cum se determină aceste coordonate, vezi tutorialul Coordonate baricentrice.

Exercițiul 1. Centrul cercului circumscris triunghiului. Următorul program pune în evidență punctul de intersecție al mediatoarelor laturilor unui triunghi care, după cum se știe, este punctul *O*, centrul cercului circumscris:

```
import ComplexPygame as C
import Color
import math

def unCercQA(q, a, N):
    theta = 2 * math.pi / N
    return [q + C.fromRhoTheta(1, k * theta) * (a - q) for k in range(N)]
```

```
def Mediatoare():
    C.setXminXmaxYminYmax(0, 10, 0, 10)
    zA = 2 + 2.5j
    zB = 8 + 2.5j
    zC = 3.5 + 9j
    for z in C.screenAffixes():
        za = C.rho(z - zA)
        zb = C.rho(z - zB)
        zc = C.rho(z - zC)
        k = 0
        if za < zb:</pre>
            k += 1
        if zb < zc:</pre>
            k += 2
        if zc < za:</pre>
            k += 4
        C.setPixel(z, Color.Index(600 + 50 * k))
    C.drawNgon([zA, zB, zC], Color.Red)
if __name__ == '__main__':
    C.initPygame()
    C.run(Mediatoare)
```

Completați codul astfel încât să apară cercul circumscris triunghiului și razele OA, OB și OC:

Indicație: *Metoda I*. Avem $z_O = (\alpha z_A + \beta z_B + \gamma z_C)/(\alpha + \beta + \gamma)$ unde ponderele α , β și γ sunt date de relațiile

$$\alpha = a^2(b^2 + c^2 - a^2), \beta = b^2(c^2 + a^2 - b^2), \gamma = c^2(a^2 + b^2 - c^2),$$

sau de relațiile

$$\alpha = \sin 2A$$
, $\beta = \sin 2B$, $\gamma = \sin 2C$.

Metoda a II-a. Se folosește triunghiul $\triangle BOC$ care este isoscel cu unghiul $\widehat{BOC} = 2A$.

Exercițiul 2. Centrul cercului înscris în triunghi. Următorul program pune în evidență, printro animație grafică, locul geometric al punctului I, centrul cercului înscris în triunghiul ΔABC , atunci când vârful A se mișcă pe un cerc dat iar B și C sunt fixate arbitrar pe cerc.

calculează afixul lui I cu formula $z_I = (a z_A + b z_B + c z_C)/(a + b + c)$ unde a, b și c sunt lungimile

Funcția

cercInscris(zA, zB, zC)

zB = C.fromRhoTheta(R, nB * delta)
zC = C.fromRhoTheta(R, nC * delta)

```
laturilor BC, CA și, respectiv, AB. Notând cu p semiperimetrul p=(a+b+c)/2, raza r a cercului
înscris se găsește din relația S = pr unde aria S a triunghiului este calculată cu formula lui Heron
S = \sqrt{p(p-a)(p-b)(p-c)}.
import ComplexPygame as C
import Color
import math
def LocGeomI():
    def unCercQR(q, r, N):
        alfa = 2 * math.pi / N
        return [q + C.fromRhoTheta(r, k * alfa) for k in range(N)]
    def cercInscris(zA, zB, zC):
        # returneaza zI si r pentru cercul inscris
        a = C.rho(zB - zC)
        b = C.rho(zC - zA)
        c = C.rho(zA - zB)
        p = (a + b + c) / 2
        S = math.sqrt(p * (p - c) * (p - b) * (p - a))
        zI = (a * zA + b * zB + c * zC) / (a + b + c)
        r = S / p
        return zI, r
    C.setXminXmaxYminYmax(-10, 10, -10, 10)
    q = 0
    R = 7
    nrPuncte = 720
    delta = 2 * math.pi / nrPuncte
    nB = nrPuncte // 2 + nrPuncte // 15
    nC = nrPuncte - nrPuncte // 15
```

```
for n in range(10 * nrPuncte):
    C.fillScreen(Color.White)
    C.setNgon(unCercQR(q, R, nrPuncte), Color.Navy)
    zA = C.fromRhoTheta(R, n * delta)
    C.drawNgon([zA, zB, zC], Color.Navy)
    zI, r = cercInscris(zA, zB, zC)
    C.setNgon(unCercQR(zI, r, 300), Color.Green)
    C.drawNgon([zA, zI, zB, zI, zC, zI], Color.Green)
    if C.mustClose():
        return

if __name__ == '__main__':
    C.initPygame()
    C.run(LocGeomI)
```

Adăugați codul necesar pentru a pune în evidență, colorate în roșu, cele două arce de cerc care formează locul geometric al lui I (demonstrați!), și care să rămână nemișcate în timpul animației:

Exercițiul 3. Ortocentrul. Vrem să evidențiem acum locul geometric al ortocentrului H al triunghiului ΔABC , atunci când vârful A se mișcă pe un cerc dat iar B și C sunt fixate arbitrar pe cerc. În programul următor trebuie implementată funcția

```
ortocentru(zA, zB, zC)
```

astfel încât aceasta să calculeze afixul lui H cu formula $z_H = (\alpha z_A + \beta z_B + \gamma z_C)/(\alpha + \beta + \gamma)$

unde ponderele α , β şi γ sunt date de relațiile

$$\alpha = (c^2 + a^2 - b^2)(a^2 + b^2 - c^2)$$

$$\beta = (a^2 + b^2 - c^2)(b^2 + c^2 - a^2),$$

$$\gamma = (b^2 + c^2 - a^2)(c^2 + a^2 - b^2).$$

```
import ComplexPygame as C
import Color
import math
def LocGeomH():
    def unCercQR(q, r, N):
        alfa = 2 * math.pi / N
        return [q + C.fromRhoTheta(r, k * alfa) for k in range(N)]
    def ortocentru(zA, zB, zC):
        # returneaza afixul zH al ortocentrului
        zH = 0 # trebuie corectat!
        return zH
    C.setXminXmaxYminYmax(-10, 10, -12, 8)
    q = 0
    R = 6
    nrPuncte = 720
    delta = 2 * math.pi / nrPuncte
    nB = nrPuncte // 2 + nrPuncte // 15
    nC = nrPuncte - nrPuncte // 15
    zB = C.fromRhoTheta(R, nB * delta)
    zC = C.fromRhoTheta(R, nC * delta)
    for n in range(10 * nrPuncte):
        if n % nrPuncte == nB or n % nrPuncte == nC:
            continue
        C.fillScreen(Color.White)
        C.setNgon(unCercQR(q, R, nrPuncte), Color.Navy)
        zA = C.fromRhoTheta(R, n * delta)
        C.drawNgon([zA, zB, zC], Color.Navy)
        zH = ortocentru(zA, zB, zC)
        C.drawNgon([zA, zH, zB, zH, zC, zH], Color.Green)
        if C.mustClose():
            return
```

```
if __name__ == '__main__':
    C.initPygame()
    C.run(LocGeomH)
```

Adăugați și codul necesar pentru a pune în evidență, colorat în roșu, cercul care formează locul geometric al lui H (demonstrați!), și care să rămână nemișcat pe parcursul animației:

Exercițiul 4. Punctul lui Gergonne. Fie A', B' și C' punctele de contact cu laturile BC, CA și, respectiv, AB ale cercului înscris în triunghiul $\triangle ABC$. Notăm cu p semiperimetrul

$$p = (a+b+c)/2.$$

a) arătați că
$$BA'=BC'=p-b$$
, $CB'=CA'=p-c$, $AC'=AB'=p-a$,

- b) demonstrați că dreptele AA', BB', CC' sunt concurente într-un punct J, numit punctul lui Gergonne.
- c) aflați coordonatele baricentrice ale punctului J și corectați programul următor astfel încât cerculețul roșu să fie centrat mereu în intersecția celor trei ceviene verzi:

```
import ComplexPygame as C
import Color
import math
def Gergonne():
    def unCercQR(q, r, N):
        alfa = 2 * math.pi / N
        return [q + C.fromRhoTheta(r, k * alfa) for k in range(N)]
    def pctGergonne(zA, zB, zC):
        # returneaza afixul zJ al punctului Gergonne
        alfa = 1 # de corectat!
        beta = 1 # de corectat!
        gama = 1 # de corectat!
        zJ = (alfa * zA + beta * zB + gama * zC) / (alfa + beta + gama)
        return zJ
    def deseneazaTriunghi(zA, zB, zC):
        a = C.rho(zB - zC)
        b = C.rho(zC - zA)
        c = C.rho(zA - zB)
        p = (a + b + c) / 2
        S = math.sqrt(p * (p - c) * (p - b) * (p - a))
        zI = (a * zA + b * zB + c * zC) / (a + b + c)
        r = S / p
        zAprim = ((p - b) * zC + (p - c) * zB) / a
        zBprim = ((p - c) * zA + (p - a) * zC) / b
        zCprim = ((p - a) * zB + (p - b) * zA) / c
        C.drawNgon([zA, zB, zC], Color.Navy)
        C.setNgon(unCercQR(zI, r, 1000), Color.Blue)
        C.drawLine(zA, zAprim, Color.Green)
        C.drawLine(zB, zBprim, Color.Green)
        C.drawLine(zC, zCprim, Color.Green)
    C.setXminXmaxYminYmax(0, 10, 0, 10)
    zB = 1 + 2j
    zC = 9 + 2j
    zQ = 5 + 8j
    t = 0
    while t < 1000:
        C.fillScreen()
        zA = zQ + C.fromRhoTheta(2 * math.sin(3 * t), t)
        deseneazaTriunghi(zA, zB, zC)
        zJ = pctGergonne(zA, zB, zC)
        C.setNgon(unCercQR(zJ, 0.05, 100), Color.Red)
        if C.mustClose():
            return
```


Indicație: a) Se folosește faptul că tangentele dintr-un punct la un cerc dat sunt egale.

- b) Se aplică teorema lui Ceva.
- c) Cu notațiile standard, avem

$$\frac{\sigma_c}{\sigma_b} = \frac{p - b}{p - c} \Rightarrow \frac{\sigma_c}{\frac{1}{p - c}} = \frac{\sigma_b}{\frac{1}{p - b}}$$

de unde deducem următorul set de coordonate omogene pentru punctul lui Gergonne:

$$\frac{1}{p-a}:\frac{1}{p-b}:\frac{1}{p-c}$$

Exercițiul 5. Punctul lui Lemoine. Două ceviene AA' și AA" duse prin vârful A al unui triunghi ΔABC se numesc *izogonale* dacă unghiul făcut de una dintre ele cu o latură este egal cu unghiul făcut de cealaltă ceviană cu cealaltă latură a unghiului A, mai precis, dacă $\widehat{BAA}' = \widehat{AAC}$. Izogonala unei mediane se numește *simediană*.

- a) arătați că simediana împarte latura opusă într-un raport egal cu pătratul raportului celorlalte două laturi ale triunghiului.
- b) demonstrați că simedianele unui triunghi sunt concurente într-un punct L, numit punctul lui Lemoine.
- c) Puneți în evidență această proprietate (printr-o animație grafică, eventual) marcând cu un cerculeț verde centrul de greutate și cu unul roșu punctul lui Lemoine al unui triunghi oarecare:

Indicație: a) Fie AA" simediana corespunzătoare medianei AA'. Notăm $\beta = \widehat{BAA}' = \widehat{AAC}$ și $\gamma = \widehat{CAA}' = \widehat{A''} \widehat{AB} = A - \beta$ și exprimăm cu arii rapoartele în care cevienele AA" și AA' împart latura BC. Avem

$$\frac{BA"}{A"C} = \frac{\sigma_{\Delta BAA"}}{\sigma_{\Delta CAA"}} = \frac{\frac{1}{2}AB \cdot AA" \cdot \sin \widehat{BAA"}}{\frac{1}{2}AC \cdot AA" \cdot \sin \widehat{CAA"}} = \frac{c \sin \gamma}{b \sin \beta}$$

şi

$$1 = \frac{BA'}{A'C} = \frac{\sigma_{\Delta BAA'}}{\sigma_{\Delta CAA'}} = \frac{\frac{1}{2}AB \cdot AA' \cdot \sin \widehat{BAA'}}{\frac{1}{2}AC \cdot AA' \cdot \sin \widehat{CAA'}} = \frac{c \sin \beta}{b \sin \gamma}.$$

Înmulțind aceste două rapoarte, obținem relația căutată:

$$\frac{BA"}{A"C} = \frac{c^2}{h^2}.$$

- b) Se aplică teorema lui Ceva, folosind punctul a).
- c) Punctul A" se poziționează cunoscând raportul în care acesta împarte segmentul BC. Pentru aflarea afixului punctului L se folosesc coordonatele lui baricentrice, care se determină analog cu coordonatele centrului cercului înscris (vezi tutorialul *Coordonate baricentrice*).

Exercițiul 6. a) Fie Qun punct în interiorul triunghiului $\triangle ABC$ și fie AA', BB', CC' cevienele prin Q, conform figurii. Determinați poziția lui Q cunoscând pozițiile vârfurilor triunghiului și rapoartele

$$v_B = \frac{AB'}{AC}, v_C = \frac{AC'}{AB}.$$

Rezolvare. Metoda I, aflarea afixului z_Q prin determinarea coordonatelor baricentrice ale lui Q este lăsată cititorului (vezi tutorialul).

Metoda a II-a. Pentru a poziționa punctulQ pe AA' vom folosi relația lui Van Aubel

$$\frac{AQ}{QA'} = \frac{AB'}{B'C} + \frac{AC'}{C'B}$$

iar pentru al poziționa pe A' pe BC vom folosi teorema lui Ceva:

$$\frac{AC'}{C'B} \cdot \frac{BA'}{A'C} \cdot \frac{CB'}{B'A} = 1.$$

Avem următoarele calcule

leule
$$\frac{AB'}{B'C} = \frac{AB'}{AC - AB'} = \frac{\frac{AB'}{AC}}{1 - \frac{AB'}{AC}} = \frac{v_B}{1 - v_B}, \frac{AC'}{C'B} = \frac{v_C}{1 - v_C}.$$
Prin urmare
$$\lambda_Q = \frac{AQ}{OA'} = \frac{v_B}{1 - v_B} + \frac{v_C}{1 - v_C}.$$

şi

$$\lambda_A = \frac{BA'}{A'C} = \frac{C'B}{AC'} \cdot \frac{AB'}{B'C} = \frac{1 - v_C}{v_C} \cdot \frac{v_B}{1 - v_B}.$$

Mai departe, afixele punctelor A' șiQ se determină astfel

$$\lambda_A = \frac{z_{A'} - z_B}{z_C - z_{A'}} z_{A'} = \frac{z_B + \lambda_A z_C}{1 + \lambda_A}$$

şi

$$\lambda_Q = \frac{z_Q - z_A}{z_A - z_Q} z_Q = \frac{z_A + \lambda_Q z_{A'}}{1 + \lambda_Q}$$

b) Următorul program pune în evidență locul geometric al punctului Q atunci când segmentul B'C 'se mişcă rămânând tot timpul paralel cu BC.

```
import ComplexPygame as C
import Color
import math
```

```
def VanAubel3():
    def unCercQR(q, r, N):
        alfa = 2 * math.pi / N
        return [q + C.fromRhoTheta(r, k * alfa) for k in range(N)]
    def intersectie(zA, zB, zC, niuB, niuC):
        # niuB=AB'/AC niuC=AC'/AB
        lambdaA = niuB * (1 - niuC) / (niuC * (1 - niuB))
        # LambdaA =BA'/A'C
        zAprim = (zB + lambdaA * zC) / (1 + lambdaA)
        lambdaQ = niuB / (1 - niuB) + niuC / (1 - niuC)
        # LambdaQ=AQ/QA'
        zQ = (zA + lambdaQ * zAprim) / (1 + lambdaQ)
        return zAprim, zQ
    C.setXminXmaxYminYmax(0, 10, 0, 10)
    zA, zB, zC = 7 + 8j, 1 + 2j, 9 + 2j
    t = 0
    while t < 10:
        t += 0.01
        niuCprim = 0.05 + 0.45 * (1 + math.sin(t))
        niuBprim = niuCprim
        zCprim = zA + niuCprim * (zB - zA)
        zBprim = zA + niuBprim * (zC - zA)
        zAprim, zQ = intersectie(zA, zB, zC, niuBprim, niuCprim)
        C.fillScreen()
        C.drawLine(zA, zAprim, Color.Red)
        C.drawLine(zB, zBprim, Color.Green)
        C.drawLine(zC, zCprim, Color.Green)
        C.drawNgon(unCercQR(zQ, 0.1, 100), Color.Red)
        C.drawLine(zCprim, zBprim, Color.Red)
        C.drawNgon([zA, zB, zC], Color.Navy)
        C.setText("A", zA)
        C.setText("B", zB - 0.2 - 0.1j)
        C.setText("C", zC + 0.2 - 0.1j)
        C.setText("A'", zAprim - 0.4j)
C.setText("B'", zBprim + 0.2 - 0.1j)
C.setText("C'", zCprim - 0.2 - 0.1j)
        C.wait(10)
        if C.mustClose():
            break
if __name__ == '__main__':
    C.initPygame()
    C.run(VanAubel3)
```

Rulați programul și apoi modificați-l pentru a arăta locul geometric al punctului Q atunci când dreapta B'C'trece tot timpul printr-un punct fix Psituat pe dreapta BC, în exteriorul triunghiului.

Indicație. Fixați punctul $Ppe\ BC$ alegând un raport PB/BC=2/3, de exemplu. Lăsați punctul B' să se miște periodic pe ACca în programul dat, determinați mai întâi poziția lui C' ca intersecție de două ceviene în triunghiul ΔCPA (sau, prin Teorema lui Menelaus, ca intersecție dintre secanta PB' cu latura ABa triunghiului ΔABC) și apoi determinați poziția lui Q ca intersecție de două ceviene în ΔABC .

Exercițiul 7. Pe laturile triunghiului $\triangle ABC$ se construiesc în exterior triunghiurile $\triangle AC'B$, $\triangle BA'C$, și $\triangle CB'A$ astfel încât $\widehat{BAC'} = \widehat{CAB'} = \alpha$, $\widehat{ABC'} = \widehat{CBA'} = \beta$, $\widehat{BCA'} = \widehat{ACB'} = \gamma$. Puneți în evidență printr-o animație grafică (și, eventual demonstrați) că dreptele AA', BB', CC' sunt concurente. De exemplu: țineți fix triunghiul $\triangle ABC$ și variați mărimea lui $\alpha \in \left(0, \frac{\pi}{2}\right)$.

Indicație : Exprimăm cu arii rapoartele în care cevienele AA', BB', CC' împart laturile triunghiu-lui:

$$\frac{BA"}{A"C} = \frac{\sigma_{_{AABA'}}}{\sigma_{_{AACA'}}} = \frac{\frac{1}{2}AB \cdot BA' \cdot \sin \widehat{ABA'}}{\frac{1}{2}AC \cdot CA' \cdot \sin \widehat{ACA'}} = \frac{c}{b} \cdot \frac{BA'}{CA'} \cdot \frac{\sin(B+\beta)}{\sin(C+\gamma)} = \frac{c}{b} \cdot \frac{\sin\gamma}{\sin\beta} \cdot \frac{\sin(B+\beta)}{\sin(C+\gamma)}$$

Aici am folosit teorema sinusurilor în $\triangle BA'C$

$$\frac{BA'}{\sin \gamma} = \frac{CA'}{\sin \beta} \Rightarrow \frac{BA'}{CA'} = \frac{\sin \gamma}{\sin \beta}.$$

Mai departe se aplică teorema lui Ceva.

