YOUR NAME YOUR EMAIL September 16, 2025

Homework 3

- 1. Show that the binomial probabilities sum to 1.
- 2. If X is an integer valued random variable, show that the pmf is related to the cdf by:

$$p(k) = F(k) - F(k-1).$$

3. Let A and B be events, and let I_A and I_B be the associated indicator random variables. That is, $I_A = 1$ if event A occurs, and $I_A = 0$ otherwise. Show that:

$$I_{A \cap B} = I_A \times I_B = \min(I_A, I_B),$$

and

$$I_{A \cup B} = \max(I_A, I_B).$$

- 4. Which is more likely: 9 or more heads in 10 tosses of a fair coin, or 18 or more heads in 20 tosses of the same coin?
- 5. Suppose that I receive phone calls as a Poisson process with parameter $\lambda=2$ per hour.
 - (a) If I take a 10-min shower, what is the probability that the phone rings during that time?
 - (b) How long can my shower be if I want to ensure that the probability of receiving no calls to be at most 0.5?
- 6. Let $X \sim \text{Poisson}(\lambda)$. What value of k maximizes the pmf of X, p(k)?

(Hint: consider the ratio p(k)/p(k-1). Use this to derive when the function is increasing and when the function is decreasing. Don't forget that $k \in \{0, 1, 2, ...\}$).