FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2020. május 19. 8:00

Időtartam: 120 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

3/

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.)

1. Egy test mozgásáról tudjuk, hogy legalább két szakaszán a test állandó sebességgel mozgott. Melyik grafikon tartozhat hozzá?

- A) Az A) grafikon.
- **B)** A B) grafikon.
- C) A C) grafikon.

2 pont	

2. A mellékelt ábrán látható kapcsolásban mekkora értéket mutat az I_2 és az I_4 árammérő műszer?

- **A)** $I_2 = 1$ A, $I_4 = 1$ A.
- **B)** $I_2 = 2 \text{ A}, I_4 = 1 \text{ A}.$
- C) $I_2 = 1 \text{ A}, I_4 = 2 \text{ A}.$
- **D)** $I_2 = 2 \text{ A}, I_4 = 2 \text{ A}.$

2 pont

Fizika
középszin

Név:	osztály:
1 · · · · · · · · · · · · · · · · · · ·	000000000000000000000000000000000000000

- 3. Egy vízszintes talajba szúrt függőleges rúd árnyékának hossza éppen megegyezik a rúd hosszával. Mekkora szöget zárnak be ekkor a napsugarak a talajjal?
 - A) 60°-nál kisebb szöget.
 - **B)** Éppen 60°-os szöget.
 - C) 60°-nál nagyobb szöget.

2 pont	

4. Egy jól hőszigetelt dobozba vizet teszünk, ebbe pedig egy zárt jégkockatartóban lévő jeget merítünk. A zárt jégkockatartó megakadályozza a jég és a víz esetleges összekeveredését. Különkülön mérjük a két rendszer hőmérsékletének alakulását normál légköri nyomáson. Adatainkból a mellékelt hőmérséklet-idő grafikont rajzoltuk. Mit állíthatunk a kialakuló közös hőmérsékletről?

- A) A közös hőmérséklet a víz fagyáspontja feletti.
- B) A közös hőmérséklet pontosan a víz fagyáspontja.
- C) A közös hőmérséklet a víz fagyáspontja alatti.
- **D)** A grafikon alapján ezt nem lehet megállapítani.

2 pont	
1	

5. A mellékelt fénykép kora reggel készült a Szaharában, s a tevék és utasaik árnyékát mutatja. Milyen irányba tartanak a tevék?

(http://www.discover-sahara.com/)

- A) Észak felé.
- B) Dél felé.
- C) Kelet felé.
- D) Nyugat felé.

		_
		1
		ı
		ı
		ı
		ı
		ı
		п

2 pont

Fizika
középszin

6. Egy laboratóriumban három radioaktív izotópot tartalmazó anyagminta bomlását vizsgáltuk. Az aktivitásukat az idő függvényében közös grafikonon ábrázoltuk. Melyik anyagminta felezési ideje a leghosszabb?

- A) Az A jelűé.
- B) A B jelűé.
- C) A C jelűé.
- **D)** A grafikon alapján ezt nem lehet megállapítani.

2 pont	

- 7. Egy v_0 sebességgel függőlegesen feldobott kavics h maximális magasságig emelkedik. Mekkora lesz a pálya tetőpontján a mozgási energiája? (A légellenállástól tekintsünk el!)
 - A) Pontosan akkora, mint a kezdeti mozgási energia.
 - B) A kezdeti mozgási energia fele.
 - C) Ebben a pillanatban nulla lesz a mozgási energia.

8. Egy negatív töltésű részecske halad homogén, a papír síkjából kifelé mutató mágneses térben. A rá ható Lorenz-erő irányát mellékelt ábra mutatja. Milyen irányba halad a részecske?

- A) A papír síkjában a lap teteje felé.
- B) A papír síkjában a lap alja felé.
- C) A papír síkjára merőlegesen, a síkból kifelé.
- **D)** A papír síkjára merőlegesen, a síkba befelé.

2 pont	

1911 írásbeli vizsga 5 / 20 2020. május 19.

E:_:1		
Fizika középszint	Név:	osztály:
9. A képen látható tanu megszólaltatja az üvegeke legmagasabb hangot? (Az	t. Melyik üveg adja a	

		(http://www.mykidsadventure	es.com/pop-be	ottle-music/)	
	A)	A legkevesebb folyadékot tartalmazó üveg.			
	B)	A legtöbb folyadékot tartalmazó üveg.			
	C)	Nem lehet eldönteni, mert nem ismerjük a folyadékok sűrűségét.			
			2 4		
			2 pont		
10. Vákuumkamrában két vízszintesen elhelyezkedő, azonos nagyságú síklap között aj tárgy lebeg. A lapok elektromosan töltöttek, az alsó pozitív, a felső negatív töltét töltésük nagysága megegyezik. Mit állíthatunk az apró tárgyról?					
	A)	A tárgy negatív töltésű.			
	B)	A tárgy pozitív töltésű.			
	C)	A tárgy biztosan nem semleges, de akár pozitív, akár negatív tölté lehet.	ėsű is		
			2 pont		
11.	11. Mekk Elek egy műanyag csőre egy fémkarikát akar húzni, ám a karika túl szűk Hogyan érheti el Mekk Elek, hogy a fémkarikát a csőre tudja húzni?				
	A)	Melegítenie kell a karikát.			
	B)	Hűtenie kell a karikát			
	C)	Csak a cső melegítése jelenthet megoldást.			
			2 pont		
			2 point		

12. A Halley-üstökös elnyúlt ellipszis pályán kering a Nap körül. A pályáját ábrázoló vázlatrajzon láthatjuk, hogy mikor tartózkodott, illetve fog tartózkodni a pálya egyes pontjaiban. Körülbelül mennyi idő alatt tesz meg az üstökös a pálya mentén a pályahosszának negyedét kitevő távolságot?

- A) Körülbelül 19 év alatt.
- B) Körülbelül 12 év alatt.
- C) Körülbelül 26 év alatt.
- D) Nem eldönthető: attól függ, hogy a pálya melyik negyedrészét vizsgáljuk.

2 pont	
2 point	

13. Mi következik Rutherford szórási kísérletéből?

- A) Az elektron töltésének nagysága.
- **B)** Az, hogy az elektron hullámként is tud viselkedni.
- C) Az, hogy az atomok tömegének zöme az atomon belül középen, egy kicsiny térrészben helyezkedik el.

2 pont	

14. A fény terjedési sebessége jó közelítéssel 300 000 km/s. Milyen feltételek között érvényes ez az állítás?

- A) Ez az állítás mindig érvényes.
- **B)** Ez az állítás csak légüres térben haladó fényre érvényes a mi galaxisunkon belül.
- C) Ez az állítás csak légüres térben haladó fényre érvényes, az Univerzumban mindenütt.

2 pont	

15. Egy kétkarú mérleg vízszintes rúdján azonos távolságra vannak a szomszédos lyukak. A középső lyukban van a mérleg tengelye, a többibe mérősúlyokat akaszthatunk. Egy 0,4 kg-os és egy 0,1 kg-os mérősúlyt akasztottunk a mérleg egyik oldalára az ábrának megfelelő módon. Hova kell akasztani a másik oldalon a 0,3 kg-os mérősúlyt, hogy a mérleg egyensúlyban legyen?

- A) A testet az "A" felfüggesztésre kell akasztani.
- **B)** A testet a "B" felfüggesztésre kell akasztani
- C) A testet a "C" felfüggesztésre kell akasztani.

2 pont

- 16. Dugattyúval elzárt hengerben lévő, adott mennyiségű ideális gáz hőmérsékletét 20 °C-ról 80 °C-ra szeretnénk növelni. Az alábbiak közül melyik folyamatot válasszuk, hogy a lehető legkevesebb hőt kelljen a gázzal közölni?
 - **A)** Izochor folyamatot.
 - **B)** Izobár folyamatot.
 - C) Adiabatikus folyamatot.
 - **D)** Mindegy, azonos lesz a hőközlés mindhárom esetben.

2 pont

- 17. Az alábbiak közül melyik esetben beszélhetünk rövidzárlatról?
 - **A)** Ha az áramkör hirtelen megszakad, mert a drót valahol elvékonyodott, majd elszakadt.
 - **B)** Ha az áramkör két pontja között a szigetelés hibája miatt nem kívánt összeköttetés létesül.
 - C) Ha az áramkörben ingadozni kezd az áramerősség, és ezt a lámpák fényerejének változása is mutatja.

2 pont

Fizika	
középszint	

Nev Oształy	Név:		osztály:
-------------	------	--	----------

18. Sekély tengerben egy búvár úszik. Egy nagy szikla túloldaláról cápa közelít felé az ábrán látható módon. A víz felszíne nyugodt. Megláthatja-e a búvár a cápát, mielőtt az előbukkan a szikla mögül?

A)	Nem, mert	a szikla	éppen	közöttük	van,	elzárja	a a rá	álátást a	cápára.
----	-----------	----------	-------	----------	------	---------	--------	-----------	---------

- **B)** Igen, mert a víz alatt elhajlik a fény, ezért a búvár láthatja, hogy mi van a szikla mögött.
- C) Nem, mert a víz alatt sokkal lassabban terjed a fény, mint levegőben.
- **D)** Igen, mert a búvár megláthatja a vízfelszínről visszatükröződő cápát.

2 pont	
--------	--

19. Honnan származik a Földön található ²³⁸U izotóp?

- **A)** A Napban keletkezik magfúziós folyamatok során, és a napszéllel jut el a Földre.
- B) A Föld belsejében keletkezik, a Föld forró magjában.
- C) Több milliárd évvel ezelőtt működött, már felrobbant csillagok maradványaiból származik.

2 pont

20. Egy fonál segítségével egy követ forgatunk a fejünk felett vízszintes síkban. Amikor a fonalat elengedjük, a kő messze repül. (Az ábra felülnézetből mutatja a kő pályáját.) Milyen erő repíti el a követ, miután a kötelet elengedtük?

- A) A kőre ható centripetális erő.
- B) A kőre ható gravitációs erő.
- C) A kőre ható légellenállási erő.
- **D)** Egyik sem.

2 pont

1911 írásbeli vizsga 9 / 20 2020. május 19.

Fizika
középszint

Név:	 osztály:
TICV.	 OSZIGIY

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Az ősmaradványok tanúsága szerint egy bizonyos fajta dinoszaurusz feje a szívénél 20 méterrel volt magasabban, a szív a talaj felett 8 m magasságban helyezkedett el.
 - a) Legalább mekkora nyomással kellett a szívének a vért pumpálnia, ha a dinoszaurusz agyának (ami a fejében volt) legalább 11000 Pa vérnyomásra volt szüksége?
 - b) Mekkora volt ekkor a vérnyomás a dinoszaurusz lábában?

A vér sűrűsége $\rho=1060~{\rm kg/m^3},\,g=9.8~{\rm m/s^2}.$

a)	b)	Összesen
10 pont 5 pont		15 pont

2. A villámlás

A villám és az azt kísérő mennydörgés jól ismert időjárási jelenség. A villám kialakulása a felhőkben felhalmozódott töltések egymás felé vagy a föld felé áramlásával kezdődik, ha az elektromos térerősség elég nagyra nő. A feszültség ilyenkor a későbbi villám két végpontja között körülbelül 10 millió volt. Az áramló töltések ütközések révén egy ioncsatornát alakítanak ki a későbbi villám két végpontja között. A villám (vagyis maga az elektromos kisülés) a környezet vezetőképességétől függően 50–150 kilométer/másodperc sebességgel halad végig az ioncsatornán. Az ionizált levegő hőmérséklete elérheti a 30 000 Celsius-fokot. Egy átlagos villámban 30-40 ezer amperes áramerősség lép fel, időtartama kb. 0,1 milliszekundum.

- a) Milyen folyamatnak kell megelőznie a viharfelhőkben a villám kialakulását? Milyen erőhatás miatt kezdenek a töltések egymás felé áramlani? Mit nevezünk ionnak?
- b) Miért rendkívül veszélyes a villámcsapás az emberre? Miért érezhetjük magunkat villámlás idején biztonságban egy bádogkunyhóban?
- c) A villámlást többnyire mennydörgés kíséri. Miért észlelünk időkülönbséget a villámlás és az azt kísérő mennydörgés között?
- d) Körülbelül mekkora töltés áramlik át az ioncsatornán egy villámlás során?

a)	b)	c)	d)	Összesen
6 pont	4 pont	2 pont	3 pont	15 pont

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Az interneten könnyen elérhető az a melven 1971-ben videófelvétel, amerikai Apollo 15 űrhajósa, Dave Scott egyszerre elejt egy nehéz geológiai kalapácsot és egy könnyű sólyomtollat. A képen az ejtés előtt látható az űrhajós a két eszközzel a kezében. A videófelvételen látszik, hogy a kalapács és a toll egyszerre ér "holdat". Mivel a Hold tömege jóval kisebb, mint a Földé, a holdi gravitációs gvorsulás csak kb. 1,62 m/s², a földi érték hatoda, így a tárgyak meglehetősen "lassan" esnek le. Sajnos nehéz volt igazán jó minőségű felvételeket készíteni, mert a Holdon a napos és az árnyékos felületek között a kontraszt sokkal nagyobb, mint a Földön.

- a) Milyennek érzi az űrhajós a kezében tartott kalapács súlyát a földi állapothoz képest, és miért?
- b) Milyen erő(k) hat(nak) a Holdon az elejtett (éppen zuhanó) tárgyakra? Milyen mozgást végeznek ezek a tárgyak? (A Hold tengely körüli forgásától, keringésétől eltekinthetünk.)
- c) Mekkora a kalapács, illetve a toll gravitációs gyorsulása a Holdon? Miért ér le egyszerre a két test a Holdon végrehajtott ejtési kísérletben, és miért nem ér le egyszerre a Földön végrehajtott kísérletben? Mi történik másképp, és mi a különbség oka?
- d) Hányszor hosszabb ideig tart a kalapács esése azonos magasságból a Holdon, mint a Földön, ha a közegellenállást elhanyagoljuk?
- e) Mi a magyarázata annak, hogy a Holdon a napos és az árnyékos felületek között a kontraszt sokkal nagyobb, mint a Földön?

a)	b)	c)	d)	e)	Összesen
3 pont	4 pont	7 pont	4 pont	2 pont	20 pont

Fizika
középszint

Név:	 osztály:

3/B Egy ház homlokzatának hőszigetelését úgy szeretnénk megoldani, hogy a hőveszteséget jellemző együttható ne legyen nagyobb 0,25 W/(m²K)-nél. Az alábbi táblázat a hőveszteséget jellemző együttható értékét tartalmazza öt különböző téglatípusnál szigetelés nélkül, valamint hét különböző vastagságú hungarocell hőszigetelő alkalmazásával.

Megnevezés	Fal vastagsága	szigetelés nélkül	3 cm	6 cm	8 cm	10 cm	12 cm	14 cm	18 cm
téglatípus	cm	W/(m ² K)							
A1	30	0,58	0,42	0,31	0,27	0,24	0,21	0,19	0,16
A2	38	0,50	0,37	0,28	0,25	0,23	0,20	0,18	0,15
A3	44	0,39	0,30	0,25	0,22	0,20	0,18	0,17	0,14
B1	38	0,43	0,33	0,26	0,23	0,21	0,19	0,17	0,15
B2	44	0,35	0,28	0,23	0,21	0,19	0,17	0,16	0,14

- a) Legalább milyen vastag hungarocell rétegre van szükség az egyes téglatípusoknál, hogy elérjük a szükséges hőszigetelést?
- b) A hasznos lakóterület szempontjából előnyös, ha a falvastagság kisebb. Melyik faltípusnál érhető el a legkisebb összes falvastagság (tégla + hőszigetelés együtt) a szükséges mértékű szigetelés mellett? Mekkora ez a vastagság?
- c) Ábrázolja az A1 és a B2 téglatípusokhoz tartozó hőveszteségi együtthatót a hungarocell vastagságának függvényében!
- d) Hogyan alakul a két ábrázolt téglafal hővesztesége <u>egymáshoz képest</u>, a rajtuk lévő hőszigetelő réteg vastagságának növelésével?
- e) Mennyivel csökkenti az A1 és a B2 tégla esetén a hőveszteséget 8 cm hungarocell hőszigetelés? Mit mondhatunk ennek alapján a két fal hőszigetelésének gazdaságosságáról (célszerűségéről), ha feltehetjük, hogy mindkét falat ugyanakkora költséggel hőszigetelhetjük?

a)	b)	c)	d)	e)	Összesen
3 pont	3 pont	5 pont	4 pont	5 pont	20 pont

Fizika	Név:	osztály:
közénszint	Nev:	05Ztary

Fizika	Név:	osztály:
közénezint	Nev:	05Ztary

Fizika középszint	Név:	osztály:

	pontszám	
	maximális	elért
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

dátum	javító tanár

	pontszáma egész számra kerekítve		
	elért	programba beírt	
I. Feleletválasztós kérdéssor			
II. Összetett feladatok			

dátum	dátum
javító tanár	jegyző