Pflichtenheft Zwei-Gelenk-Roboter

Projektmanagement
Ines Marquardt-Schmidt
Hochschule Heilbronn

Status: In Arbeit

Freigabevermerk: Nicht freigegeben

Winter Semester 2022/23

Marc Grosse (210233), Moritz Hoehnel (210258), Mattis Ritter (210265)

Inhaltsverzeichnis

Tab	pellarische Versionshistorie	3
Abl	kürzungsverzeichnis	3
1. E	Einleitung	3
a.	Zweck	Error! Bookmark not defined.
b.	Umfang	Error! Bookmark not defined.
c.	Verweise auf sonstige Ressourcen oder Quellen	Error! Bookmark not defined.
2. <i>A</i>	Allgemeine Beschreibung	3
a.	Produktperspektive	3
b.	Produktfunktionen	3
c.	Annahmen und Abhängigkeiten	Error! Bookmark not defined.
d.	Benutzermerkmale	3
3. S	Spezifische Anforderungen	4
a.	funktionale Anforderungen	6
b.	nicht funktionale Anforderungen	6
4 \/-	.:f: +:	7

Tabellarische Versionshistorie

Version	Datum
Version 1.0	17.10.2022
Version 1.1	19.10.2022
Version 1.2	20.10.2022
Version 1.3	22.10.2022

Abkürzungsverzeichnis

Kürzel	Bedeutung	
Pr.	Priorität	

1. Einleitung

Dieses Dokument legt die Pflichten für das Labor Modellbildung und Simulationstechnik (304143) Projekt Zwei-Gelenk-Roboter fest.

Es soll die Modellbildung und Simulation eines Zwei-Gelenk-Roboters durchgeführt werden.

2. Allgemeine Beschreibung

a. Produktperspektive

Es muss ein Roboter mit zwei aneinandergereihten Armen erstellt werden. Der Roboter ist fest mit dem Boden verankert. In dem Gelenk (Schulter) zwischen Boden und ersten Arm, als auch in dem Gelenk (Ellenbogen) zwischen ersten und zweiten Arm sind Motoren. Der Roboter wird zweidimensional betrachtet. Jedes Gelenk soll eine 360 Grad Drehung ausführen können. Die Längen der Arme sind konstant. Massen sind in den Gelenken und am Greifer punktuell konzentriert darzustellen.

Es soll eine visuelle Simulation erstellt werden. Diese muss auf einem PC laufen. Dabei sollen die zwei Roboter-Arme dargestellt werden. Eine Animation dieser Arme ist gefordert (diese sollen Bewegungen ausführen).

Der Nutzer soll die Simulation starten und stoppen können.

b. Produktfunktionen

Das Projektteam muss dazu ein dynamisches Modell erstellen. Danach müssen stationäre Gleichungen ermittelt werden. Schließlich werden die Gleichungen in ein Zustandsraummodell umgewandelt, dass diese in dem Simulationstool implementiert werden können.

c. Benutzermerkmale

Bei Benutzern wird die Bedienung der Software Matlab als auch Simulink vorausgesetzt. Die Nutzer verfügen darüber hinaus reglungstechnische Grundlagen und höhere Mathematische Kenntnisse.

3. Spezifische Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
A.0	Т	Anmeldung	Meldung zur Teilnahme mit Projektthema und Teamkollegen	Vorgehensziel	Zusage des Dozenten	A
A.1	Q	Massematrix	Es muss gezeigt werden, dass die Massenmatrix invertierbar ist	Ergebnisziel	Determinante der Matrix ist ungleich Null	A
A.2	Q	Stationäre Gleichungen	Bestimmen der allgemeinen stationären Gleichungen	Ergebnisziel	Ergebnis muss der Gleichung des Dynamischen Modells im Lastenheft entsprechen	A
A.3	Q	Umformen	Die stationäre Gleichung muss nach $\overline{\varphi_1}$ umgeformt werden	Ergebnisziel	Gleichung muss semantisch mit der Musterlösung übereinstimmen	A
A.4	Q	Dokumentation	Erstellen Zusammenschrift mit Hilfe des PowerPoint Formeleditors	Ergebnisziel	In Nr. A.1-3 erstellte Rechnungen aufgeschrieben	В
A.5	Q	Linearisierung	Es wird keine Linearisierung der stationären Gleichungen durchgeführt	Nicht-Ziel		
A.6	Q	Eigenwert- berechnung	Es wird keine Eigenwert- berechnung der Massenmatrix durchgeführt	Nicht-Ziel		
A.7 a)	Q	Vorabgabe	Abgabe der in Nr. 1-3 erstellten Aufschriebe	Ergebnisziel	Bestätigung der Abgabe durch Betreuer	A
A.7 b)	Т	Vorabgabe	09.11.2022	Vorgehensziel		Α
A.8	Q	Visualisierung	Graphische Oberfläche für den Benutzer	Ergebnisziel	Sichtprüfung ob Bauteile vorhanden	А
A.9	Q	Animation	Implementieren der Bewegungen der Arme, durch vorgegebene Bewegungsmuster	Ergebnisziel	Sichtprüfung, Arme müssen 2 Minuten lang rotieren	Α
A.10	Q	Benutzer- eingabe	Nutzer kann Bewegung vorgeben	Ergebnisziel	Arme bewegen sich an Benutzer	С

A.17	Q	Literaturvorgabe	Woernle, C.: Mehrkörpersysteme: eine Einführung in die Kinematik und	Ergebnisziel	Buch in Literatur- verzeichnis der Dokumentation aufgenommen	C
A.16	Т	Abschluss- Präsentation	17.01.2022	Vorgehensziel	Präsentation von Dozenten benotet	Α
A.15 f)	Т	Upload final	10.01.2022	Vorgehensziel		А
A.15 e)	Q	Upload final	Abgabe eine Dokumentation in PDF Format	Ergebnisziel		A
A.15 d)	Q	Upload final	die Animation Abgabe der Matlab Datei	Ergebnisziel	_	A
A.15 c)	Q	Upload final	Datei Abgabe Matlabfunction für	Ergebnisziel	bestätigt	A
a) A.15 b)	Q	Upload final	Modell Abgabe Parametrierungs-	Ergebnisziel	wird durch Betreuer	A
A.15	Q	Upload final	Architektur des Simulink-Modells Abgabe Simulink	Ergebnisziel	Abgabe via .zip file in Ilias Ordner	A
A.14	Q	Dokumentation	PDF mit Inhalten der Vorabgabe, Zusammenschrift Formeln und	Ergebnisziel	Kontrolle ob Texte vorhanden	A
A.13	Q	Schriftart	Einheitliche Schriftart in allen Abgabe- Dokumenten	Ergebnisziel	Kontrolle, dass in allen Texten Calibri verwendet wird	В
A.12	Q	Zusammen- schrift Größen	Alles Eingangs-, Ausgangs- und Zustandsgrößen müssen in einer Tabelle zusammengefasst werden	Ergebnisziel	Vergleich der Zusammen- schrift und Parametrierungs- Datei	A
A.11	Q	Bedienungs- anleitung	Es muss eine Bedienungsanleitung für die Anwendung der Simulation erstellt werden	Ergebnisziel	Unter 2.c) definierter Nutzer muss Software mit Bedienungs- anleitung in Betrieb nehmen	С
					Wunschposition, Kontrolle durch Wunsch- zu Ist- Winkel	

			Dynamik von Systemen starrer Körper, 2022, Springer Vieweg Berlin			
A.18	В	Leistungs- anerkennung	Jeder Projektmitarbeiter erhält 4 ECTS	Vorgehensziel	ECTS müssen bis 05.03.2023 in Studentenportal erscheinen	A
A.19	В	Arbeitszeit	Jedes Projekt- Mitglied soll 100 Stunden arbeiten	Vorgehensziel	Dokumentation der Arbeitszeiten via Excel-Liste	A
A.20	В	Arbeitszeit	Jedes Projekt- Mitglied soll nicht mehr als 100 Stunden arbeiten	Vorgehensziel		С

Budgetziel 0 €

a. funktionale Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
B.1	Q	Masse m₁	10kg	Ergebnisziel	Masse in Software ausgeben lassen	А
B.2	Q	Masse m ₂	10kg	Ergebnisziel	Masse in Software ausgeben lassen	A
B.3	Q	Länge l₁	Länge des ersten Armes I ₁ = 0.8m	Ergebnisziel	Länge in Software ausgeben lassen	A
B.4	Q	Länge l₂	Länge des zweiten Armes I ₂ = 0.7m	Ergebnisziel	Länge in Software ausgeben lassen	А
B.5	Q	Rotation	Rotation der Gelenke unbegrenzt	Ergebnisziel	Winkel in Software ausgeben lassen	А
B.6	Q	Ebene	Das Modell soll 2D sein	Ergebnisziel	Es gibt nur x und y Koordinaten	А

b. nicht funktionale Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
C.1	Q	Software	Verwendung MATLAB	Vorgehensziel	Alle Rechner	Α
			R2021a		werden vor	
C.2	Q	Toolboxen	Verwendung von Control	Vorgehensziel	Nutzung	Α
			Systems Toolbox und		kontrolliert, dass	
			Symbolic Math Toolbox		richtige Version	
C.3	Q	Software	Es muss der Real-Time-	Vorgehensziel	erstellt wurde	Α
			Pacer verwendet werden			
C.4	Q	Toolbox	Es soll Simulink	Vorgehensziel		Α
			verwendet werden			

4. Verifikation

Das Projektteam führt eine Sichtprüfung der Animation durch. Beide Arme müssen sich bewegen. Es soll eine Rotation erkennbar sein.

Es soll vor Abgabe der finalen Ergebnisse ein Testdurchlauf mit dem Auftraggeber durchgeführt werden. Dabei gibt der Auftraggeber Feedback.

Arbeitspaket

Die Parteien bestätigen hiermit das Pflichtenheft.	
Datum, Unterschrift Projektteam Stellvertreter	Datum, Unterschrift Auftraggeber