CSC242: Introduction to Assignment Project Exam Help Artificial/Lintelligence

WeChat: cstutorcs

Lecture 2.3

Please put away all electronic devices

Boolean CSP

- All variables must be Booleans
 - Domains sall mentrive, tals elep
- Constraints: Identify possible combinations of the boolean variables

Propositional Logic

Assignment Project Exam

https://tutorcs.com

WeChat: cstutorcs

Aristole (384BC - 332BC) George Boole (1815-1864)

Propositional Logic

- Propositions: things that are true or false

 Assignment Project Exam Help
- Connectives: nombine opropositions into larger propositions stutores
- Sentences: statements about the world (can be true or false)
 - Boolean functions of Boolean variables

Truth Table

 $L_{1,1} \wedge (W_{1,2} \vee W_{2,1})$

$L_{1,1}$	$W_{1,2}$	$W_{2,1}$	$W_{1,2} \lor W_{2,1}$ Exam Help	$L_{1,1} \wedge (W_{1,2} \vee W_{2,1})$
F	F	nttps://tutorcs.co	m F	F
F	F	WeChat: cstutoro	T T	F
F	T	F	T	F
F	T	T	T	F
T	F	F	F	F
T	F	T	T	T
T	T	F	T	THE REAL PROPERTY.
T	T	T	T	T

Propositional Logic

- Possible worlds
- Models Assignment Project Exam Help
- Satisfiabilityhttps://tutorcs.com
- Unsatisfiable WeChat: cstutorcs

Background Knowledge

$$B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$$

$$B_{1,2} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

$$B_{2,2} \Leftrightarrow P_{1,2} \vee P_{2,3} \text{ in } P_{3,2} \text{ is } OK_{1,1} \Leftrightarrow \neg (P_{1,1} \vee W_{1,1})$$

$$\dots \qquad \qquad \text{https://tutores.com } OK_{1,2} \Leftrightarrow \neg (P_{1,2} \vee W_{1,2})$$

$$S_{1,1} \Leftrightarrow W_{1,2} \vee W_{2,1} \text{ we Chat: estutores } OK_{2,1} \Leftrightarrow \neg (P_{2,1} \vee W_{2,1})$$

$$S_{1,2} \Leftrightarrow W_{1,1} \vee W_{2,2} \vee W_{3,1} \qquad \dots$$

$$S_{2,2} \Leftrightarrow W_{1,2} \vee W_{2,3} \vee W_{3,2} \vee W_{2,1}$$

$$\dots$$

 $W_{1,1} \lor W_{1,2} \lor ... \lor W_{3,4} \lor W_{4,4}$ $\neg (W_{1,1} \land W_{1,2}), \neg (W_{1,1} \land W_{1,3}), ..., \neg (W_{3,4} \land W_{4,4})$

Knowledge-Based Agents

Perception

$$\neg B_{1,1}, \ \neg S_{1,1}$$

Inference

- Given what I know...
 - What shoulded pagest Exam Helpee AIMA 7.7

https://tutorcs.com

Inference

Given what I know... Is there no pit in room [2,1]?

Assignment Project Exam Help

https://tutorcs.com

 R_1 : $\neg P_{1,1}$

 R_2 : $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ WeChat: cstutorcs $\neg P_{2,1}$?

 $\neg B_{1,1}$

Entailment

- α entails β : $\alpha \models \beta$
 - Every madelneft rajist elsa Helpmodel of β
 - Whenever α is true, so is β
 - β is true in every world consistent with α
 - $Models(\alpha) \subseteq Models(\beta)$
 - β logically follows from α

- Given knowledge α and query β
 - For everyignossibole: Wonlderw
 - If α is satisfied by w WeChat: cstutores
 - ullet If eta is not satisfied by w
 - Conclude that $\alpha \not\models \beta$
 - Conclude that $\alpha \models \beta$

- Given knowledge α and query β
 - For every ispossibile would by
 - If α is satisfied by w WeChat: cstutores
 - ullet If eta is not satisfied by w
 - Conclude that $\alpha \nvDash \beta$
 - Conclude that $\alpha \models \beta$ AIMA Fig. 7.10

Possible Worlds

$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$B_{1,1}$			
F	F	Āssig	nment Pro	ject Exam	Help	
F	F	F h	ttps://tutor	cs.com		
F	F	T V	VeCl <mark>pat: cs</mark>	tutorcs		
•••						
Т	Т	F	T			
T	T	T	F			
T	T	T	T			

Knowledge

$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$B_{1,1}$	R_1	R_2	$\neg B_{1,1}$	$\neg P_{2,1}$
F	F	Assig	nment Pro	ject Exam	Help	T	
F	F	F h	ttps://tutor	cs.com	F	F	
F	F	T V	VeChat: cs	tutorcs	F	Т	
•••				•••			
Т	Т	F	Т	F	T	F	
Т	Т	T	F	F	F	Т	
T	T	J	T	F	T	F	

Knowledge

$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$B_{1,1}$	R_1	R_2	$\neg B_{1,1}$	$\neg P_{2,1}$
F	F	Assig	nment Pro	ject Exam	Help	Т	
	F	<mark>- F h</mark>	ttps://tutor	cs.com	Г	Г	
F	F	T	VeCl <mark>jat: cs</mark>	tutor <mark>e</mark> s—		T	
•••							
T	T	F	T	F	T	F	
T	T	-	F			T	
T	T		T	F	T	F	TALL VI

Knowledge

$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$B_{1,1}$	R_1	R_2	$\neg B_{1,1}$	$ egreen P_{2,1} egreen$
F	F	Assig	nment Pro	ject Exam	Help	T	
	F	- F h	ttps://tutor	cs.com	F	F	
F	F	T	VeCl <mark>rat: cs</mark>	tutorcs	F	T	
•••				•••			
T	T	F	T	F	T	F	
T	T	T	F	F	F	T	
T	T	T	T	F	Т	F	

Query

	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$B_{1,1}$	R_1	R_2	$\neg B_{1,1}$	$\neg P_{2,1}$
	F	F	Assig	nment Pro	ject Exam	Help	Т	T
	F	F	F h	ttps://tutor	cs.com	F	F	
	F	F	T	VeCl <mark>pat: cs</mark>	tutorcs	F	T	
	•••				•••			
HASS.	T	T	F	T	F	T	F	
	T	T	T	F	F	F	T	
	T	Т	T	T	F	T	F	

Entailment

Given what I know... Is there no pit in room [2,1]?

 $R_1: \neg P_{1,1}$

 R_2 : $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ WeChat: cstutorcs $\neg P_{2,1}$?

 $\neg B_{1,1}$

 $KB \vDash \neg P_{2,1}$

Entailment

Given what I know... Is there no pit in room [1,2]?

Assignment Project Exam Help

$$R_1$$
: $\neg P_{1,1}$ https://tutorcs.com

$$R_2$$
: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_2 G)$ at: cstutorcs

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$\neg B_{1,1}$$

$$B_{2,1}$$

$$\neg P_{1,2}$$
?

$$KB \vDash \neg P_{1,2}$$

$$KB \not\models P_{2,2}$$

$$KB \not\models \neg P_{2,2}$$

https://tutores.com WeChat: cstutores

- Given knowledge α and query β
 - For everyignossibole: Wonlderw
 - If α is satisfied by w WeChat: cstutores
 - ullet If eta is not satisfied by w
 - Conclude that $\alpha \not\models \beta$
 - Conclude that $\alpha \models \beta$

$P_{1,1}$	$P_{1,2}$	4	$OK_{1,1}$	$OK_{2,1}$	R_1	R_2		$\neg B_{1,1}$	$\neg S_{1,1}$	$OK_{2,1}$
F	F	•••	K ssi	gnment	Project	Exam	Help	•••	Т	
				https://t	utores.c	om				
F	F	•••	Т	WeCha	t: cstuto	orcs	•••	•••	Т	Т
•••					•••					
Т	Т	•••	F	Т	F	•••	•••	•••	F	
Т	Т	•••	Т	F	T	F	•••	•••	Т	
Т	Т	•••	T	Т	T	Т		•••	F	

$P_{1,1}$	$P_{1,2}$	4	$OK_{1,1}$	$OK_{2,1}$	R_1	R_2		$\neg B_{1,1}$	$\neg S_{1,1}$	$OK_{2,1}$
F	F	•••	Essi	gnment	Project	Exam	Help [*]	•••	Т	
•••				nttps://t	utores.c	om			7 10	
F	F	•••	Т	WeCha	t: cstuto	orcs	•••	•••	Т	Т
•••					•••					
Т	Т	•••	F	Т	F	•••			F	
Т	Т	•••	Т	F	Т	F	•••	•••	Т	
Т	Т	•••	T	Т	Т	Т	•••	•••	F	

$P_{1,1}$	$P_{1,2}$		$OK_{1,1}$	$OK_{2,1}$	R_1	R_2	•••	$\neg B_{1,1}$	$\neg S_{1,1}$	$OK_{2,1}$
F	F	•••	E ssi	gnment	Project	Exam	Help	•••	Т	
•••				https://t	utores.c	om				
F	F	•••	Т	WeCha	t: cstuto	orcs	•••	•••	Т	Т
•••					•••					
Т	Т	•••	F	Т	F	•••	•••	•••	F	
Т	Т	•••	Т	F	Т	F	•••	•••	Т	
Т	Т	•••	T	Т	Т	Т		•••	F	

$P_{1,1}$	$P_{1,2}$		$OK_{1,1}$	$OK_{2,1}$	R_1	R_2	•••	$\neg B_{1,1}$	$\neg S_{1,1}$	$OK_{2,1}$
F	F	•••	Essi	gnment	Project	Exam	Help	•••	Т	
•••				nttps://t	utores.c	om				
F	F	•••	Т	WeCha	t: cstuto	rcsT			Т	Т
•••					•••					
T	Т	•••	F	T	F	•••			F	
T	Т	•••	Т	F	T	F		•••	T	
Т	Т	•••	Т	Т	Т	Т		•••	F	

n propositions m sentences, O(k) connectives

$P_{1,1}$	$P_{1,2}$	4	$OK_{1,1}$	$OK_{2,1}$	R_1	R_2		$\neg B_{1,1}$	$\neg S_{1,1}$	$OK_{2,1}$
F	F	•••	Essi	gnment	Project	Exam	Help	•••	Т	
				nttps://t	utores.c	om				
F	F	•••	Т	WeCha	t: cstute	orcs	•••		Т	Т
•••					•••					
Т	Т	• • •	F	Т	F	•••	•••	•••	F	
Т	Т	•••	Т	F	Т	F	•••	•••	Т	
Т	Т	•••	Т	Т	Т	Т	•••	•••	F	

 $(2^n mk)$ Intractable!

Entailment

- α entails β : $\alpha \models \beta$
 - Every madelneft rajist elso reinhodel of β
 - Whenever α is true, so is β

WeChat: cstutorcs

- β is true in every world consistent with α
- $Models(\alpha) \subseteq Models(\beta)$
- β logically follows from α

co-NP-complete!

Propositional Logic

- Programming language for knowledge
- Factored representation (Beglean CSP)
 - Propositionspsconnectives, sentences
- Possible worlds hatis hability, models
- Entailment: $\alpha \models \beta$
 - Every model of α is a model of β
 - Model checking intractable!

$P_{1,1}$	$P_{1,2}$	·	$OK_{1,1}$	$OK_{2,1}$	R_1	R_2		$\neg B_{1,}$	$\neg S_{1,}$	$OK_{2,1}$
F	F		F	F	F				Т	35
•••	A STATE	337				Port	The same	100	30	
F	F		Т	T	T	T			Т	T
•••	6.5			96		1616	N S	30%		10-8
Т	T		F	Т	F				F	
Т	Т		T	F	T	F			T	Part I
Т	Т		Т	T	Т	T			F	· at

Darn model checking...
so intractable

Assignment Project Exam Help

https://tutorcs.com

Rule: If you know α , then you also know β .

Assignment Project Exam Help

https://tutorcs.com

Rule: If you know α , then you also know β .

Assignment Project Exam Help

No http://defrechecking!

Rule: If you know α , then you also know β .

Assignment Project Exam Help

No http://detrecking!

WeChat: cstutorcs

Seems impossible...

 $KB = \{ Hungry \Rightarrow Cranky, \\ Hungry \}$ ignment Project Exam Help

 $KB = \{ Hungry \Rightarrow Cranky, \\ Hungry \Rightarrow Signment Project Exam Help \}$

WeChat: cstutorcs

Cranky

$$KB = \{ Hungry \Rightarrow Cranky, \\ Hungry \Rightarrow Signment Project Exam Help \}$$

Cranky

https://tutorcs.com

Hungry	Cranky	$Hungry \Rightarrow Cranky$
F	F	T
F	T	T
T	F	F
T	THE	T

$$KB = \{ Hungry \Rightarrow Cranky, \\ Hungry \Rightarrow Signment Project Exam Help \}$$

Cranky

https://tutorcs.com

Hungry	Cranky	$Hungry \Rightarrow Cranky$
F	F	T
F	T	T
T	F	F
T	THE	T

$$KB = \{ Hungry \Rightarrow Cranky, \\ Hungry \Rightarrow Signment Project Exam Help \}$$

Cranky

https://tutorcs.com

Hungry	Cranky	$Hungry \Rightarrow Cranky$
F	F	T
F	T	T
T	F	F
THE	T	T

 $KB = \{ Hungry \Rightarrow Cranky, \\ Hungry \Rightarrow Signment Project Exam Help \}$

Cranky

https://tutores.com/ky

Hungry	Cranky	$Hungry \Rightarrow Cranky$
F	F	T
F	T	T
T	F	F
T	T	T

Assignment Project Exam Help

Hungry \Rightarrow Cranky, Hungry

https://tutorcs.com

WeChat. Cstutores

Premises

(Antecedents)

Assignment Project Exam Help $Hungry \Rightarrow Cranky, Hungry$ https://tutorcs.com

WeChar. Pankys

```
Premises
(Antecedents)
```

Assignment Project Exam Help $Hungry \Rightarrow Cranky, Hungry$ https://tutorcs.com

WeChat Cranky

Conclusions (Consequents)

Assignment Project Exam Help $Hungry \Rightarrow Cranky, Hungry$ https://tutores.com

WeChar. Cranky

Hungry	Cranky	$Hungry \Rightarrow Cranky$
F	F	T
F	T	T
T	F	F
T	T	T

Assignment Project Exam Help $\varphi \Rightarrow \psi, \varphi$ https://tutorcs.com____

φ	ψ	$\varphi \Rightarrow \psi$
F	F	T
F	T	T
T	F	F
THE	T	T

Modus Ponens

"mode that affirms"

Assignment Project Exam Help $\varphi \Rightarrow \psi, \varphi$ Nttps://tutorcs.com
WeChat: cstutorcs

Derivation

 $\{ Hungry \Rightarrow Cranky, Hungry \} \vdash_{MP} Cranky$ Assignment Project Exam Help

https://tutorcs.com

Derivation

```
\{ Hungry \Rightarrow Cranky, Hungry \} \vdash Cranky
Assignment Project Exam Help
```

https://tutorcs.com

Derivation

$$\alpha \vDash \beta$$

$$\alpha \vdash \beta$$

 β logically follows from α Easier to compute https://tutorcs.com

Intractable to compute cstutores

But does α really follow from β ?

Soundness

Assignment Project Exam Help

If determinen $\alpha \models \beta$ We Chat: estutores

Soundness

Assignment Project Exam Help

If $\alpha = \beta$ We Chat: cstutores

Modus Ponens is sound

Hungry
Assignment Project Exam Help

https://tutorcs.com

$$\frac{\varphi \Rightarrow \psi, \ \psi}{\varphi}$$

 $\varphi \Rightarrow \psi, \psi$

Hungry

Assignment Project Exam Help

https://tutorcs.com

	φ	ψ	$\varphi \Rightarrow \psi$
	F	F	T
-	F	T	T
	T	F	F
+	T	T	T

 $\varphi \Rightarrow \psi, \psi$

Hungry

Assignment Project Exam Help

https://tutorcs.com

	φ	ψ	$\varphi \Rightarrow \psi$
	F	F	T
	F	T	T
	T	F	F
-	T	T	T

 $\varphi \Rightarrow \psi, \psi$

Hungry

Assignment Project Exam Help

$$\{\psi^{\text{ps://tut/pres-point}} \neq \varphi$$

φ	ψ	$\varphi \Rightarrow \psi$
F	F	T
F	T	T
T	F	F
T	T	T

Hungry

Assignment Project Exam Help

$$\{\psi^{\text{ps://tut/pres-point}} \neq \varphi$$

WeChat: cstutorcs

φ	$\Rightarrow \psi$,	ψ
	φ	

Unsound!

φ	ψ	$\varphi \Rightarrow \psi$
F	F	T
F	T	T
T	F	F
T	T	T

Affirming the Consequent

$$Hungry \Rightarrow Cranky, Cranky$$

Assignment Project Exam Help

$$\{\psi^{\text{tut/pres-ton}} \neq \varphi$$

WeChat: cstutorcs

φ	\Rightarrow	y	b,	ψ
250	1	1111111	THE REAL PROPERTY.	3115

4

Unsound!

φ	ψ	$\varphi \Rightarrow \psi$
F	F	T
F	T	T
T	F	F
T	E THE	T

$Hungry \Rightarrow Cranky, \neg Cranky$

 $\neg Hungry$

Assignment Project Exam Help

https://tutorcs.com

$$\frac{\varphi \Rightarrow \psi, \ \neg \psi}{\neg \varphi}$$

$$\frac{Hungry \Rightarrow Cranky, \neg Cranky}{\neg Hungry}$$

 $\frac{\varphi \Rightarrow \psi, \, \neg \psi}{\neg \varphi}$

https://tutorcs.com

Assignment Project Exam Help

φ	ψ	$\varphi \Rightarrow \psi$	$\neg \varphi$	$ eg \psi$
F	F	T	T	T
F	Т	T	Т	F
T	F	F	F	T
T	T	T	F	F

$\frac{Hungry \Rightarrow Cranky, \neg Cranky}{\neg Hungry}$ $\frac{\neg Hungry}{Assignment Project Exam Help}$

 $\frac{\varphi \Rightarrow \psi, \, \neg \psi}{\neg \varphi}$

https://tutorcs.com

STATE OF	φ	ψ	$\varphi \Rightarrow \psi$	$\neg \varphi$	$ eg \psi$
	F	F	T	T	Ţ
	F	Т	T	Т	F
	T	F	F	F	T
	T	T	T	F	F

$\frac{Hungry \Rightarrow Cranky, \neg Cranky}{\neg Hungry}$

 $\frac{\varphi \Rightarrow \psi, \, \neg \psi}{\neg \varphi}$

https://tutorcs.com

Assignment Project Exam Help

STATE OF	φ	ψ	$\varphi \Rightarrow \psi$	$\neg \varphi$	$ eg \psi$
	F	F	T	T	T
	F	Т	T	Т	F
	T	F	F	F	T
	T	T	T	F	F

$Hungry \Rightarrow Cranky, \neg Cranky$ $\neg Hungry$ Assignment Project Exam Heli

$$\frac{\tau}{\neg \varphi}$$

$$\{ \varphi^{\text{https://thtores/point}} \models \neg \varphi$$

Sound!

φ	ψ	$\varphi \Rightarrow \psi$	$\neg \varphi$	$ eg \psi$
F	F	T	T	T
F	Т	T	Т	F
T	F	F	F	T
Т	T	Т	F	F

Modus Tollens

$$\text{MT:} \frac{Hungry \Rightarrow Cranky, \neg Cranky}{\neg Hungry} \qquad \text{MT:} \frac{\varphi \Rightarrow \psi, \neg \psi}{\neg \varphi}$$

$$\text{Assignment Project Exam Help}$$

$$\{ \varphi^{\text{https://thtorcs/ton}} \models \neg \varphi$$

Sound!

	φ	ψ	$\varphi \Rightarrow \psi$	$\neg \varphi$	$ eg \psi$
+	F	F	T	T	T
	F	T	T	T	F
	T	F	F	F	T
	T	T	T	F	F

Equivalences

For any sentences
$$\varphi$$
 and ψ If ϕ the side with the properties ϕ and ϕ and ϕ

are inference rules

Equivalences AIMA Fig. 7.11

$$(\alpha \wedge \beta) = (\beta \wedge \alpha) \qquad \qquad \text{Commutativity of } \wedge \\ (\alpha \vee \beta) = (\beta \vee \alpha) \qquad \qquad \text{Commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) = (\alpha \wedge (\beta \wedge \gamma)) \qquad \qquad \text{Associativity of } \wedge \\ ((\alpha \vee \beta) \wedge \gamma) = (\alpha \vee (\beta \vee \gamma)) \qquad \qquad \text{Associativity of } \vee \\ ((\alpha \vee \beta) \wedge \gamma) = (\alpha \vee (\beta \vee \gamma)) \qquad \qquad \text{Associativity of } \vee \\ ((\alpha \vee \beta) \wedge \gamma) = (\alpha \vee (\beta \vee \gamma)) \qquad \qquad \text{Double-negation elimination} \\ (\alpha \Rightarrow \beta) = (\neg \alpha) \qquad \qquad \text{Double-negation elimination} \\ (\alpha \Rightarrow \beta) = (\neg \alpha \vee \beta) \qquad \qquad \text{Implication elimination} \\ (\alpha \Leftrightarrow \beta) = ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \qquad \qquad \text{Biconditional elimination} \\ (\alpha \Leftrightarrow \beta) = ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \qquad \qquad \text{De Morgan's law} \\ (\alpha \wedge (\beta \vee \gamma)) = ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \qquad \text{Distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) = ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \qquad \text{Distributivity of } \vee \text{ over } \wedge \text{ over }$$

$$\frac{\alpha \wedge \beta}{\alpha}$$

$$\frac{\neg \neg \alpha}{\alpha}$$

$$\frac{\neg(\alpha \land \beta)}{\neg \alpha \lor \neg \beta} \quad \frac{\neg(\alpha \lor \beta)}{\neg \alpha \land \neg \beta}$$

$$\frac{\neg(\alpha \lor \beta)}{\neg \alpha \land \neg \beta}$$

And-eliminationignm Double Exam Help De Morgan's

httpsegation

Laws

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)} \qquad \frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

Modus Ponens

Definition of biconditional

Proof

- Inference rules produce theorems derived from other sentences Assignment Project Exam Help
- The sequence of the rule applications used in whe derivation constitutes a proof of the theorem

Proof

Given what I know... Is there no pit in room [1,2]?

 $\neg P_{1,2}$?

Assignment Project Exam Help

1:
$$\neg P_{1,1}$$
 https://tutorcs.com

2:
$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,p})$$
 that: cstutores

$$3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

4:
$$\neg B_{1,1}$$

5:
$$B_{2,1}$$

1: $\neg P_{1,1}$

2: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

3: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

 $4: \ \overline{\neg B_{1,1}}$

5: $B_{2,1}$

Rule	Premises	Genclusion Help
Bicond elim	2 h	$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ B_{1,1} \end{array} \stackrel{\text{com}}{\Rightarrow} (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}) \end{array}$
And elim	6	$7 = Chat: cstutorcs \\ 7: ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
Contrapositive	7	8: $(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$
MP	8, 4	9: $\neg (P_{1,2} \lor P_{2,1})$
De Morgan	9	10: $\neg P_{1,2} \wedge \neg P_{2,1}$
And elim	10	11: $\neg P_{1,2}$

Proof

- Each step's premises must be in the KB already
 Assignment Project Exam Help
- Each step's conclusionois added to the KB
 WeChat: cstutorcs
- The last step derives the query

$$KB \vdash \neg P_{1,2}$$

Proof

- Each step's premises must be in the KB already
 Assignment Project Exam Help
- Each step's conclusionois added to the KB WeChat: cstutorcs
- The last step derives the query

$$KB \vdash \neg P_{1,2}$$

• If all the inference rules are sound

$$KB \vDash \neg P_{1,2}$$

Proof as Search

- States are sets of sentences (KBs)
- Actions are applying interence rules
 - Actions(s) = ttps r/tutor Match(Premises(r), KB) = m
 - $Result(r_m, s) \stackrel{\mathsf{VeChat:}}{=} s \ Usubst(m, Conclusions(r))$
- \bullet Initial state: initial KB
- Goal test: $query \in KB$

- Searching for proofs is an alternative to enumerating models.

 Assignment Project Exam Help
- "In many practical cases, finding a proof can be more afficient because the proof can ignore irrelevant propositions, no matter how many of them there are."

- States are sets of sentences (KBs)
- Actions are applying interence rules
 - Actions(s) = ttps r/tutor Match(Premises(r), KB) = m
 - $Result(r_m, s) \stackrel{\mathsf{VeChat:}}{=} s \overset{\mathsf{cstattores}}{=} t(m, Conclusions(r))$
- \bullet Initial state: initial KB
- Goal test: $query \in KB$

Need a complete search strategy

Assignment Project Exam Help

https://tutorcs.com

- Need a complete search strategy
- · Need a complete set cétainference rules

https://tutorcs.com

Completeness

Assignment Project Exam Help

If $\alpha \vdash \beta$

Completeness

Assignment Project Exam Help

If determine
$$\alpha \vdash \beta$$
 We Chat: cstutores

MP:
$$\frac{\varphi \Rightarrow \psi, \varphi}{\psi}$$

Modus Ponens is not complete

Proof

Rule	Premises	Conclusion
Bicond elim	Assign	$G_{\bullet}^{\text{pent-Project Exam Help}}(B_{1,1}^{\bullet}) \wedge ((P_{1,2} \vee P_{2,1})) \rightarrow B_{1,1})$
And elim	6	$7: ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
Contrapositive	7	8: $(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$
MP	8, 4	9: $\neg (P_{1,2} \lor P_{2,1})$
De Morgan	9	10: $\neg P_{1,2} \wedge \neg P_{2,1}$
And elim	10	11: $\neg P_{1,2}$

- Need a complete search strategy
- · Need a complete set cétainference rules

https://tutorcs.com

- Need a complete search strategy
- · Need a complete set refainference rules
 - Or a singlette of the inference rule

 $Hungry \lor Cranky$

 $\neg Hungry$

Cranky

Assignment Project Exam Help

https://tutorcs.com

 $B_{2,1}$

1,4	2,4	3,4	4,4	$P_{1,1} \vee P_{2,2} \vee P_{3,1}$
1,3	2,3	3,3	4,3	$\neg P_{1,1}$
1,2	2,2 P?	A 3,2	ssignme _{4,2}	nt Project Exam Help
OK 1,1	2,1 p	3,1		//tutorcs.com $P_{2,2} \lor P_{3,1}$ nat: cstutorcs
V OK	B A OK	3,1 P?		$ eg P_{2,2}$

 $P_{3,1}$

Reasoning By Cases

If A or B is true and you know it's not A, https://tutorcs.com

thereit: musts be B

 $l_1 \lor \dots \lor l_i \lor \dots \lor l_k$ $\neg l_i$ https://tutorcs.com $l_1 \lor \dots \lor l_{i-1} \lor v \lor l_{i-1} \lor v \lor l_k$

 $l_1 \lor \dots \lor l_i \lor \dots \lor l_k - l_i$ $l_1 \lor \dots \lor l_i \lor \dots \lor l_k$ https://tutorcs.com

 $l_1 \lor \dots \lor l_i \lor \dots \lor l_k$ $\neg l_i$ https://tutores.com $l_1 \lor \dots \lor l_k$ $\lor l_i \lor \dots \lor l_k$

 l_i is gone

Literals

$$l_1 \lor \ldots \bigvee_{l_i}^{\mathsf{Assignment Project Exam Help}} \lnot l_i$$
 $l_1 \lor \ldots \bigvee_{\mathsf{https://tutores.com}}^{\mathsf{Valify}} \lnot l_i$

Literals $l_1 \lor \ldots \lor l_i \lor \ldots \lor l_k$ Complementary $l_i = \neg m$ $l_i \lor \ldots \lor l_k \lor \ldots \lor l_k$

Clause

Unit Resolution

 $l_1, \ ..., \ l_k$ and m are literals l_i and m are complementary

- 1. $\overline{Hungry} \vee \overline{Cranky}$
- $2. \neg Hungry$

Q: Cranky?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Unit Res: Hungry

1,2

3. Cranky

 $KB \vdash_{UR} Cranky$

1,4	2,4	3,4	4,4
1.0	0.0	2.2	4.0
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
	1:		
OK			
1,1	2,1 B	3,1 P?	4,1
V	A	1 :	Ass
OK	OK		

1.
$$P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

2.
$$\neg P_{1,1}$$

3.
$$\neg P_{2,2}$$

ignment Project Exam Help

https://tutorcs.com

Unit Res: $P_{1,1}$	1,2	4. $P_{2,2} \vee P_{3,1}$
Unit Res: $P_{2,2}$	4,3	5. $P_{3,1}$

$$KB \vdash_{UR} P_{3,1}$$

Unit Resolution

- Sound: if $\alpha \vdash \beta$ then $\alpha \models \beta$
 - Easy to shown Project Exam Help
- Not completeles:/ifftoras.com eta then $\alpha \vdash eta$
 - Give a counterexample

 $Hungry \lor Cranky$

 $\neg Hungry \lor Sleepy$

Assignment Project Exam HelpSleepy

https://tutorcs.com

Resolution

 $\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \quad m_1 \vee \cdots \vee m_j \vee \cdots \vee m_n}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \cdots \vee m_n}$

Assignment Project Exam Help $l_1, \ ..., \ l_k$, $m_{1/tutores.com}$ are literals

 l_i and m_j^{regree} ctomplementary

 l_i and m_j are gone

Technical note: Resulting clause must be <u>factored</u> to contain only one copy of each literal.

(See AIMA)

- 1. $Hungry \lor Cranky$
- 2. $\neg Sleepy \lor \neg Hungry$
- 3. $Cranky \lor Sleepy$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Rule	Premises	Conclusion
Resolution: Hungry	1,2	4. $Cranky \lor \neg Sleepy$
Resolution: Sleepy	3,4	5. $Cranky \vee Cranky$
Factoring	5	6. Cranky

 $KB \vdash Cranky$

Resolution

• Sound:

if
$$\alpha \vdash \beta$$
 then $\alpha \models \beta$

• Easy to shown Project Exam Help

https://tutorcs.com

Resolution

- Sound: if $\alpha \vdash \beta$ then $\alpha \models \beta$
 - Easy to shown Project Exam Help
- Not complete β then $\alpha \vdash \beta$
 - Give a counterexample

Resolution is Refutation-Complete

Assignment Project Exam Help

If a set of clauses is unsatisfiable, then resolution can derive the empty clause
 (□)

AIMA p. 255

Resolution

$$\frac{l_1 \vee \cdots \vee l_i \vee \cdots \vee l_k, \quad m_1 \vee \cdots \vee m_j \vee \cdots \vee m_n}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \cdots \vee m_n}$$

Assignment Project Exam Help l_1, \ldots, l_k , m_1 , tutores. m_n are literals

 l_i and m_j^{regree} ctomplementary

Technical note: Resulting clause must be <u>factored</u> to contain only one copy of each literal.

(See AIMA)

Challenges for Using Resolution

Only works on clauses
 https://tutorcs.com

WeChat: cstutorcs

Only refutation-complete

Conjunctive Normal Form (CNF)

Assignment Project Exam Help

• Any sentence of propositional logic can be converted into an equivalent conjunction (set) of clauses

Conjunctive Normal Form (CNF)

- Eliminate \Leftrightarrow : $\alpha \Leftrightarrow \beta \rightarrow \alpha \Rightarrow \beta \land \beta \Rightarrow \alpha$
- Eliminate Assignment Project Exam Help
- Move negationhttps://tutorcs.com
 - $\neg \neg \alpha \rightarrow \alpha$ WeChat: cstutorcs
 - $\bullet \neg(\alpha \lor \beta) \rightarrow (\neg\alpha \land \neg\beta)$
 - $\bullet \neg(\alpha \land \beta) \rightarrow (\neg\alpha \lor \neg\beta)$
- Distribute \(\) over \(\):
 - $(\alpha \lor (\beta \land \gamma)) \rightarrow ((\alpha \lor \beta) \land (\alpha \lor \gamma))$

AIMA p. 253-254

Challenges for Using Resolution

- Only works on clauses
 https://tutorcs.com
 - Convert Kille & Convert & Co

Only refutation-complete

Challenges for Using Resolution

- Only works on clauses
 https://tutorcs.com
 - · Convert KB & query to clauses (CNF)

• Only refutation-complete

Resolution is Refutation-Complete

Assignment Project Exam Help

• If a set of clauses is unsatisfiable, then resolution can derive the empty clause (□)

a clause with zero literals

Entailment and Satisfiability

- If a set of clauses is unsatisfiable, then resolution can derive the empty clause (□) Assignment Project Exam Help
- $KB \models \beta$ https://tutorcs.com
 - iff every model of β
 - ullet iff no model of $K\!B$ is a model of $\neg eta$
 - iff there are no models of $KB \cup \{ \neg \beta \}$
 - iff $KB \cup \{ \neg \beta \}$ is unsatisfiable

- Convert $KB \cup \{ \neg \beta \}$ to CNF
- Apply resalution rujet Entitlesp
 - No new clauses can be added
 - $KB \nvDash \beta$
 - Two clauses resolve to yield the empty clause (contradiction)
 - $leftharpoonup KB \models \beta$

Given what I know... Is there no pit in room [1,2]?

Assignment Project Exam Help

https://tutorcs.com

2:
$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,p})$$
 that: cstutorcs

4:
$$\neg B_{1,1}$$

$$\neg P_{1,2}$$
?

$$KB = \{ B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}), \neg B_{1,1} \}$$

Query: $\neg P_{1,2}$?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Add -Query to KB

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}), \neg B_{1,1}, \neg \neg P_{1,2}$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Convert to CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}), \neg B_{1,1}, \neg \neg P_{1,2}$$

$$B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1}), \stackrel{\text{Assignment Project Exam Help}}{(P_{1,2} \vee P_{2,1})} \Rightarrow B_{1,1}, \neg B_{1,1}, \neg \neg P_{1,2}$$

$$\neg B_{1,1} \vee (P_{1,2} \vee P_{2,1}), \neg \stackrel{\text{Plust}}{(P_{1,2} \vee P_{2,1})} \vee B_{1,1}, \neg B_{1,1}, \neg \neg P_{1,2}$$

$$\neg B_{1,1} \vee (P_{1,2} \vee P_{2,1}), (\neg P_{1,2} \wedge \neg P_{2,1}) \vee B_{1,1}, \neg B_{1,1}, P_{1,2}$$

$$\neg B_{1,1} \vee (P_{1,2} \vee P_{2,1}), (\neg P_{1,2} \vee B_{1,1}), (\neg P_{2,1} \vee B_{1,1}), \neg B_{1,1}, P_{1,2}$$

$$\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}, \neg P_{1,2} \vee B_{1,1}, \neg P_{2,1} \vee B_{1,1}, \neg B_{1,1}, P_{1,2}$$

1:
$$\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$$

$$2: \neg P_{1,2} \lor B_{1,1}$$

$$3: \neg P_{2,1} \lor B_{1,1}$$

4:
$$\neg B_{1,1}$$

$$5: P_{1,2}$$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutores

Premises	Literal	Result
2,4	$B_{1,1}$	6: $\neg P_{1,2}$
5,6	$P_{1,2}$	7:

1:
$$\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$$

$$2: \neg P_{1,2} \lor B_{1,1}$$

$$3: \neg P_{2,1} \lor B_{1,1}$$

4:
$$\neg B_{1,1}$$

 $5: P_{1,2}$

Assignment Project Exam Help

https://tutorcs.com

$$2: \neg P_{1,2} \land B_{1,1}$$
 $4: \neg B_{1,1}$
 $6: \neg P_{1,2}$
 $5: P_{1,2}$
 $7: \square$

- Convert $KB \cup \{ \neg \beta \}$ to CNF
- Apply resalution rujet Entitlesp
 - No new clauses can be added
 - $KB \nvDash \beta$
 - Two clauses resolve to yield the empty clause (contradiction)
 - $leftharpoonup KB \models \beta$

Resolution

- Complete when used in a refutation (proof by contradiction) Assignment Project Exam Help
- Search challengesoremaining:
 - Which clauses to resolve?
 - On which complementary literals?

Resolution

- Complete when used in a refutation (proof by contradiction) Assignment Project Exam Help
- Search challengesoremaining:
 - Which clauses to resolve?
 - On which complementary literals?

Intractable!

Assignment Project Exam Help

But waiththere's more...

Theorem Proving

- States are sets of sentences (KBs)
- Actions are applying interence rules
 - Actions(s) = ttps r/tutor Match(Premises(r), KB) = m
 - $Result(r_m, s) \stackrel{\mathsf{VeChat:}}{=} s \overset{\mathsf{cstattores}}{=} t(m, Conclusions(r))$
- \bullet Initial state: initial KB
- Goal test: $query \in KB$

Inference for Knowledge-Based Agents

Assignment Project Exam Help

Data-driven (for ward whaining)

WeChat: cstutores

Goal-directed (backward chaining)

Forward Chaining

- Given new fact φ (often perception)
 - Add φ to agenda Assignment Project Exam Help
 - · While agendais not empty
 - · Remove sentence sentence sentence
 - Add α to KB
 - Apply inference using only rules whose premises include α
 - ullet Add conclusion eta to agenda

Forward Chaining

- Reasons forward from new facts
 - Data-drivenment Project Exam Help
- Done by humans tutos some extent
 - When to stop?

Forward Chaining

- Reasons forward from new facts
 - Data-drivenment Project Exam Help
- Done by humans tutos some extent
 - When to stop?
- For KBs using only definite clauses
 - · Sound, complete, linear time

AIMA 7.5.4

Backward Chaining

- In order to prove β
 - Find assigimplitagtionsawhose conclusions: isutocs.com
 - Try to prove its premises α (recursively)

Backward Chaining

- Reasons backward from query
 - Goal-dizected Project Exam Help
- Useful for attswering specific questions

Backward Chaining

- Reasons backward from query
 - Goal-dizected Project Exam Help
- Useful for ahttwerting oppecific questions WeChat: cstutorcs
- For KBs using only definite clauses
 - · Sound, complete, linear time

AIMA 7.5.4

Propositional Theorem Proving

- Inference rules: Soundness, Completeness
- Proof: $\alpha \vdash \beta$ Assignment Project Exam Help
 - Searching for proofs is an alternative to enumerating models; "can be more efficient"
- Resolution is a sound and complete inference rule
 - Works on clauses (CNF); requires refutation
- Forward and backward chaining

For next time:

Assignment Project Exam Help

https://tutorcs.com

AIMMechat: Stutore -8.3;

8.1.1-8.1.2 fyi