Forecasting Analysis of Automobile Sales

This project aimed to address one of the most critical challenges in today's automobile industry — **anticipating future demand** amid the ongoing transition from conventional vehicles to electric vehicles (EVs). Using monthly sales data from **2015–2023**, sourced from the Ministry of Road Transport and Highways (**VAHAN Dashboard**), the study forecasted **2024 EV and Non-EV sales** through advanced time-series models.

Business Context

India's automobile sector is experiencing a pivotal shift, driven by **government incentives**, **environmental awareness**, **and consumer adoption of EVs**. For manufacturers, accurate forecasting is not just about predicting numbers — it is about aligning **production capacity**, **supply chain management**, **and marketing strategies** with real market demand.

Inaccurate forecasts can lead to **overproduction**, **inventory pile-ups**, **or missed opportunities** in high-demand segments, making forecasting a strategic priority.

Approach

The project followed a structured analytics workflow:

- Data Preprocessing: Cleaning, handling missing values, detecting outliers, and normalizing sales data.
- **Exploratory Analysis**: Identifying long-term trends, seasonal cycles (festivals, subsidies, new launches), and anomalies.
- Model Development:
 - Baseline models: Moving Averages, Weighted Averages.
 - Smoothing models: Exponential Smoothing (SES, DES, Holt-Winters).
 - Advanced models: SARIMA for seasonal forecasting and LSTM for capturing non-linear dependencies.

• Model Evaluation: Accuracy assessed using MAPE, RMSE, R², and MAD for a comprehensive comparison.

Key Insights

- EV Sales: Strong upward trend with seasonal spikes during Diwali and subsidy cycles.
 - SARIMA achieved the lowest forecast error (MAPE ~9.79%), making it the most reliable model for EV demand.
 - Holt-Winters also captured seasonality well.
 - LSTM highlighted complex non-linear patterns but required more granular data for higher accuracy.
- Non-EV Sales: Showed steady but slower growth with mild seasonality.
 - Double Exponential Smoothing (DES) proved the most reliable, with the lowest MAPE ~7.22%, thanks to its ability to capture stable trends efficiently.

Best Performing Models:

- EVs → SARIMA (lowest forecast errors, robust with seasonality).
- Non-EVs → DES (simpler, computationally efficient, strong trend fit).

Strategic Implications

- Manufacturers: Use SARIMA-driven EV forecasts to align production with peak demand cycles and reduce risks of under/over supply.
- Supply Chain & Inventory: Apply DES forecasts for Non-EVs to ensure smoother inventory planning in a predictable market.

- **Policy Makers & Investors**: Forecasts provide **data-backed evidence** of EV adoption momentum, supporting targeted policies and capital allocation.
- Future Outlook: With larger, more granular datasets, LSTM models could unlock even more accurate long-term forecasts as EV adoption accelerates.

Conclusion

By integrating traditional statistical techniques (SARIMA, DES) with modern machine learning (LSTM), this project delivered not only accurate sales forecasts but also actionable insights for decision-makers.

The results clearly highlight:

- SARIMA → Best for EVs (MAPE: ~9.79%).
- **DES** → **Best for Non-EVs** (MAPE: ~7.22%).

These findings help bridge the gap between **data science and business strategy**, ensuring that the Indian automobile industry can **adapt effectively to the dynamic EV revolution**.

Starbucks Customer Segmentation

Problem

Starbucks serves a diverse global customer base with varying preferences, lifestyles, and behaviors. However, a one-size-fits-all marketing strategy often fails to maximize customer engagement, loyalty, and sales.

The challenge: How can Starbucks segment its customers effectively to deliver personalized offers, improve loyalty, and drive long-term growth?

Approach / Methodology

1. Data Collection & Preparation

- Consolidated and pre-processed three datasets (~300,000 entries).
- Ensured data cleanliness, merged sources, handled missing values, and standardized formats.

2. Exploratory Data Analysis (EDA)

- o Identified customer spending patterns, demographics, and behavioral attributes.
- Engineered features to capture recency, frequency, and monetary behavior.

3. Dimensionality Reduction

- Applied Principal Component Analysis (PCA) to reduce data complexity while retaining key variance.
- Used t-SNE optimization to visualize high-dimensional clusters.

4. Clustering Algorithm

- Implemented K-Means clustering on ~17,000 customer records (after feature selection).
- Determined optimal number of clusters using Silhouette Score & Sum of Squared Errors (SSE).

W

Solution / Results

- **K-Means Segmentation Outcome**: Customers segmented into **4 key clusters** (example interpretation):
 - Busy Professionals → High spenders, frequent mobile app users, prioritize convenience.
 - College Students → Price-sensitive, socially conscious, drawn to sustainability offers.
 - Loyal Regulars → Frequent store visitors, moderate spenders, respond well to loyalty rewards.
 - Occasional Buyers → Low-frequency customers, responsive to discounts and seasonal promotions.

Validation Metrics:

- Silhouette Score → Confirmed optimal separation between clusters.
- SSE (Elbow Method) → Helped determine cluster count stability.

Recommendations

- Cluster 1 (Busy Professionals) → Promote mobile ordering & premium subscription offers.
- Cluster 2 (College Students) → Discounts on reusable cups, emphasize sustainability campaigns.

- Cluster 3 (Loyal Regulars) → Strengthen loyalty rewards & personalized offers.
- Cluster 4 (Occasional Buyers) → Send seasonal promotions & introductory discounts to increase frequency.

Impact / Use

- Personalized Marketing: More relevant offers → higher engagement and conversion rates.
- Customer Loyalty: Tailored rewards strengthen emotional connection with the brand.
- Sales Growth: Targeted campaigns reduce marketing waste and maximize ROI.
- **Strategic Insight**: Helps Starbucks understand **demographic & behavioral drivers** for each segment.

Credit Card Fraud Detection

Problem

Credit card fraud is a **critical challenge for financial institutions** as the number of digital transactions continues to rise. The primary difficulty lies in **detecting fraudulent transactions in real time** while minimizing false positives. Even small detection errors can result in **financial loss**, **reputational damage**, **and reduced customer trust**.

Approach / Methodology

1. Data Collection

- Used publicly available imbalanced datasets (fraudulent vs. non-fraudulent transactions).
- Ensured data was representative of real-world imbalance (fraud cases <1%).

2. Data Preprocessing

- Handled imbalanced classes using techniques such as SMOTE (Synthetic Minority Oversampling).
- Performed **feature engineering** to identify patterns linked to fraudulent behavior.
- Standardized/normalized transaction attributes for model readiness.

3. Exploratory Data Analysis (EDA)

- Visualized fraud vs. non-fraud distributions.
- Analyzed transaction patterns (amount, time, frequency).
- Identified anomalies and correlations critical for fraud detection.

4. Model Development

- Trained and optimized multiple algorithms:
 - Logistic Regression
 - Decision Tree
 - Support Vector Machine (SVM)
 - K-Nearest Neighbors (KNN)
 - XGBoost
 - Neural Networks
- Applied Grid Search CV for hyperparameter tuning.

5. Model Evaluation

- Evaluated using: Recall (to minimize false negatives), Precision, F1-score,
 ROC-AUC, Confusion Matrix.
- Chose recall as the **primary metric**, since failing to detect fraud (false negative) is more costly than false positives.

Solution / Results

- Achieved **93% Recall** → High ability to correctly identify fraudulent transactions.
- K-Nearest Neighbors (KNN) emerged as the top-performing model with:
 - Accuracy: ~95%
 - Strong performance across F1-score & ROC-AUC.
- XGBoost and Neural Networks also performed well, but KNN provided the best balance of interpretability, accuracy, and recall.

Recommendations

- Deploy KNN as the primary fraud detection model with continuous monitoring.
- Use XGBoost as a secondary ensemble model for large-scale, high-volume transaction systems.
- Implement a hybrid system:
 - o High-recall models (KNN/XGBoost) for initial screening.
 - Manual review or rule-based filters for flagged high-value transactions.

Impact / Use

- Financial Institutions: Prevent substantial losses by detecting fraud in real-time.
- Customer Trust: Enhanced protection builds loyalty and reduces customer churn.
- **Operational Efficiency**: Reduces false positives → fewer unnecessary investigations.
- Scalability: Models can adapt to evolving fraud patterns with retraining.

Conclusion

This project demonstrates the effectiveness of **machine learning for fraud detection** on highly imbalanced datasets.

- KNN achieved the best performance with 95% accuracy and 93% recall, making it the
 most suitable model for deployment.
- Fraud detection accuracy directly translates into reduced financial losses, improved customer trust, and better compliance for financial institutions.
- The study highlights the importance of **precision-recall tradeoff** in fraud analytics, emphasizing recall as the key metric in high-risk financial applications.

Interactive Business Dashboards

This project showcases a collection of interactive dashboards built to **analyze**, **monitor**, **and present business insights** across HR, Sales, and E-commerce domains. The dashboards were created using **Power BI / Tableau / Python visualization libraries** (depending on the use case), focusing on clarity, storytelling, and actionable decision support.

1 HR Analytics Dashboard

Problem

Employee attrition is a critical issue in HR management, impacting workforce stability and organizational costs.

Approach / Methodology

- Processed HR datasets (~1,470 employees).
- Performed **EDA** to uncover attrition drivers (age, role, job satisfaction, education field).
- Designed **interactive visuals**: attrition by demographics, job roles, tenure, and salary distribution.

Solution / Result

- Dashboard highlighted 237 attritions (16%) with highest churn among sales executives, lab technicians, and younger employees (26–35 years).
- Attrition drivers such as low job satisfaction and shorter tenure were visually mapped.

Impact / Use

- HR teams can identify high-risk employee groups and design targeted retention strategies.
- Supports proactive workforce planning and cost reduction in rehiring.

2 E-commerce Sales Dashboard

Problem

Businesses need real-time visibility into sales performance, profit contribution, and customer purchasing patterns to optimize strategy.

Approach / Methodology

- Processed e-commerce transactional data (5,615 orders).
- Tracked KPIs: Profit, Sales Amount, Quantity, Payment Mode.
- Built **drill-down dashboards** to analyze trends by category, sub-category, geography, and customer segments.

Solution / Result

- Total Profit: ₹37K | Total Sales Amount: ₹438K.
- **Top-performing categories:** Clothing (62.6%) & Electronics (20.5%).
- Profitability drivers: Printers & Bookcases, while some categories (Tables, Accessories) showed losses.
- Payment preference: COD (43.7%) dominated, followed by UPI (20.6%).

Impact / Use

- Helps business teams understand product profitability and regional performance.
- Supports inventory optimization and marketing campaigns for specific customer groups.

3 Additional Dashboards

Financial dashboards

- Customer behavior analytics
- KPI monitoring panels

Recommendations

- Use HR insights to reduce attrition through role-specific engagement.
- Optimize e-commerce strategy by focusing on profitable sub-categories and encouraging digital payments.
- Continuously update dashboards with **real-time data pipelines** for maximum business value.

X Tools & Tech Stack

- **Power BI, Tableau** → Dashboard creation, interactive visuals
- Python (Pandas, Matplotlib, Seaborn, Plotly) → Data cleaning, EDA, visualizations
- **Excel** → Data preprocessing and validation

Business Impact

These dashboards transformed raw data into actionable insights, enabling decision-makers to:

- Enhance employee retention strategies.
- Increase sales profitability and customer targeting.
- Streamline reporting and performance monitoring.