ARIA 양자 회로 구현

발표자: 양유진

링크: https://youtu.be/mUYxUZ6EQpk

S-box 양자 구현 (1/3)

양자컴퓨팅 환경에서 측정 전까지 qubit 상태 알 수 없음 → Look-up table 방식의 S-box 생성 방법 사용 X

⇒ 양자 게이트 활용한 S-box 생성식 기반의 S-box 양자 회로 구현 필요함

S-box generation equation

process

- 1. Get x^{-1}
- 2. Matrix-vector Multiplication $(8 \times 8 \text{ Matrix}) \cdot x^n$
- 3. constant(vector) Multiplication

S-box 양자 구현 (2/3)

Get x^{-1}

(1) Itoh Tsuji Inversion Algorithm

$$x^{-1} = x^{254} = ((x \cdot x^2) \cdot (x \cdot x^2)^4 \cdot (x \cdot x^2)^{16} \cdot x^{64})^2$$

(2) 제곱연산 – XZLBZ[3]

- XZLBZ^[3] 는 이진 행렬의 인수분해를 기반으로 하는 휴리스틱 검색 알고리즘을 제안함
- in-place 구조로 구현
 → CNOT 게이트로만 구성
- 10 CNOT gates, circuit depth of 7

Fig. 5: Quantum circuit implementation for Squaring in $\mathbb{F}_{2^8}/(x^8+x^4+x^3+x+1)$

S-box 양자 구현 (3/3)

Get x^{-1}

(3) 곱셈연산 – Toffoli depth에 최적화된 Karatsuba 곱셈 사용

quantum-quantum 곱 → Karatsuba 곱셈 사용

Table 1: Quantum resources required for multiplication.

schoolbook Karatsuba

	Source	#Clifford	#T	Toffoli depth	Full depth	
〈	CMMP [2]	435	448	28	195	
	J++ [13]	390	189	1	28	

*: The multiplication size n is 8.

Matrix-vector Multiplication & constant(vector) Multiplication

classical-quantum 곱 → XZLBZ 사용

Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and opti mization of a quantum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) TQC 2008. LNCS, vol. 5106, pp. 96-104. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2-9

Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized implementation of quantum binary field multiplication with toffoli depth one. In: International Conference on Information Security Applications, Springer (2022) 251–264

Diffusion layer 양자 구현

• Diffusion 함수 A 는 16 x 16 이진 행렬곱으로 표현 가능

$$A: GF(2^8)^{16} \to GF(2^8)^{16}$$

1byte (8-bit)

- 0:8 x 8 zero matrix
- 1:8 x 8 identity matrix

• XZLBZ 를 사용하여 CNOT gates 는 51.04%, depth는 45.16% 감소시킴(큐비트수는유지)

Table 2: Quantum resources required for Diffusion layer.

Source	#CNOT	qubit	Depth	
PLU factorization	768	128	31	
XZLBZ [25]	376	128	17	

$$768 (= 96 \times 8), 376 (= 47 \times 8)$$

Key-Schedule 양자 구현 (1/2)

1) Key Initialization

Fig. 3: Key Initialization of ARIA

Algorithm 1: Quantum circuit implementation of key schedule for ARIA.

Input: master key MK, key length l, vector a, b, ancilla qubit anc, round number r **Output:** round key ek

$$K_L$$
 $ightharpoonup K_R$ $ightharpoonup K_R$ $ightharpoonup K_R$ $ightharpoonup K_R$ $ightharpoonup MK[: 128] ext{ is } K_L$ 2: Constant_XOR($W_1[l-128:128]$, $MK[l-128:l]$) $ightharpoonup MK[l-128:l]$ is K_R

- 3: $W_2 \leftarrow F_e(W_1, a, b, anc)$ 4: $W_2 \leftarrow \text{CNOT128}(MK[: 128], W_2)$
- 5: $W_3 \leftarrow F_o(W_2, a, b, anc)$ 6: $W_3 \leftarrow \text{CNOT128}(W_1, W_3)$
- $K_L = W_0$ 와 같은 값을 가짐 $\rightarrow W_0$ 를 생성하는 대신, K_L 사용 \rightarrow 큐비트 수 감소시킴
- K_R 은 **상수** \rightarrow **CNOT** gates 연산을 **X** gates 연산으로 바꿀 수 있음 \Rightarrow 게이트 수와 게이트 비용을 줄일 수 있음

Key-Schedule 양자 구현 (2/2)

2) Key Generation

Algorithm 1: Quantum circuit implementation of key schedule for ARIA.

Input: master key MK, key length l, vector a, b, ancilla qubit anc, round number r

Output: round key ek

```
7: num = [19, 31, 67, 97, 109]
8: for i \leftarrow 0 to r do
9: | if i = 0 \pmod{4} then K_L = W_0
10: | Constant_XOR(ek, MK[: 128])

11: | else
12: | ek \leftarrow \text{CNOT128}(W_{(i\%4)}, ek)
13: | ek \leftarrow \text{CNOT128}(W_{(i+1)\%4} \gg num[i\%4], ek)
```

```
\begin{array}{lll} ek_{1} = (W_{0}) \oplus (W_{1} \gg 19), & ek_{2} = (W_{1}) \oplus (W_{2} \gg 19) \\ ek_{3} = (W_{2}) \oplus (W_{3} \gg 19), & ek_{4} = (W_{0} \gg 19) \oplus (W_{3}) \\ ek_{5} = (W_{0}) \oplus (W_{1} \gg 31), & ek_{6} = (W_{1}) \oplus (W_{2} \gg 31) \\ ek_{7} = (W_{2}) \oplus (W_{3} \gg 31), & ek_{8} = (W_{0} \gg 31) \oplus (W_{3}) \\ ek_{9} = (W_{0}) \oplus (W_{1} \ll 61), & ek_{10} = (W_{1}) \oplus (W_{2} \ll 61) \\ ek_{11} = (W_{2}) \oplus (W_{3} \ll 61), & ek_{12} = (W_{0} \ll 61) \oplus (W_{3}) \\ ek_{13} = (W_{0}) \oplus (W_{1} \ll 31), & ek_{14} = (W_{1}) \oplus (W_{2} \ll 31) \\ ek_{15} = (W_{2}) \oplus (W_{3} \ll 31), & ek_{16} = (W_{0} \ll 31) \oplus (W_{3}) \\ ek_{17} = (W_{0}) \oplus (W_{1} \ll 19) \end{array}
```

14: return ek

- ek 에 W를 할당시킬 때, W_0 는 K_L (상수)과 같기 때문에 CNOT gates 연산을 X gates 연산으로 바꿀수 있음
- ⇒ 게이트 수와 게이트 비용을 줄일 수 있음

평가

(Clifford + T Level)

Table 4: Required decomposed quantum resources for ARIA quantum circuit imple-

mentation	M			TD	$TD \times M$			
Ciphe	Source	#Cliford	#T	T-depth	#Qubit	Full depth	Toffoli depth	TD- M cost
ARIA-1	$CS [2]^{\langle}$	1,494,287	1,103,872	17,248	1,560	37,882	$4,\!312$	6,726,720
AMIA-1	This wo	rk 481,160	181,440	240	29,216	$4,\!241$	60	1,752,960
ARIA-1	$CS [2]^{\langle}$	> 1,742,059	1,283,576	20,376	1,560	44,774	$5,\!096$	7,949,760
AIUA-I	This wo	rk $551,776$	205,632	272	32,928	$5,\!083$	68	2,239,104
ARIA-2	CS [2]	> 2,105,187	1,555,456	24,304	1,688	51,666	6,076	10,256,288
AIUA-2	This wo	rk 616,920	229,824	304	36,640	$5,\!693$	76	2,784,640
		♦ Ext	88.8%	98.7%	72.9%			
							감소	감소

- 이전 연구^[1]에서 분해된 양자 자원은 명시적으로 제공되지 않았음
 → 표4에서 제시한 양자 자원은 논문에 제공된 정보를 기반으로 추정한 값임
- qubit와 depth 간의 균형을 고려하면서 depth 관련 측정항목(full depth, Toffoli depth, TD-M cost)을 크게 감소시켰음

[1] Chauhan, A.K., Sanadhya, S.K.: Quantum resource estimates of grover's key search on aria. In: Security, Privacy, and Applied Cryptography Engineering: 10th International Conference, SPACE 2020, Kolkata, India, December 17–21, 2020, Proceedings 10, Springer (2020) 238–258

평가

[Table 5] = [Table 4]
$$\times \left[\frac{\text{key size}}{\text{block size}} \right] \times 2 \times \left[\frac{\pi}{4} \sqrt{2^k} \right]$$

Total gates X Full depth = Cost(complexity)

Table 5: Cost of the Grover's key search for ARIA

Cipher		Total gates		(complexity)	#Qubit	TD-M cost	NIST Level ^[6,7]	
ARIA-128	CS [2]		$1.816 \cdot 2^{79}$		1,561	$1.26\cdot 2^{87}$	(Level 1) 2 ¹⁵⁷	
A1(1A-120	This work	$1.985 \cdot 2^{83}$	$1.626 \cdot 2^{76}$		29,217	$1.313\cdot 2^{84}$	(LCVCI I) Z	
ARIA-192	CS [2]	$1.133\cdot 2^{119}$	$1.073 \cdot 2^{113}$		3,121	$1.489\cdot 2^{121}$	(Level 3) 2 ¹⁹² , 2 ²²¹	
A1(1A-192		$1.135 \cdot 2^{117}$			$65,\!857$	$1.672\cdot 2^{119}$	(LEVEI 3) 2 , 2	
ARIA-256		$1.371\cdot 2^{151}$			3,377	$1.921\cdot 2^{153}$	(Level 5) 2 ²⁷⁴ , 2 ²⁸⁵	
A101A-200	This work	$1.268 \cdot 2^{149}$	$1.092 \cdot 2^{142}$	$1.385 \cdot 2^{291}$	73,281	$1.04 \cdot 2^{152}$	(LCVCI 3) Z , Z	

모두 NIST Level 달성

평가

Table 5: Cost of the Grover's key search for ARIA

Cipher	Source Total gates		Full depth	Cost (complexity)	#Qubit	TD-M cost
ARIA-128	CS [2]	$1.946 \cdot 2^{85}$	$1.816\cdot 2^{79}$	$1.767\cdot2^{165}$	1,561	$1.26 \cdot 2^{87}$
ARIA-128	This work	$1.985 \cdot 2^{83}$	$1.626\cdot 2^{76}$	$1.614\cdot2^{160}$	29,217	$1.313 \cdot 2^{84}$
ARIA-192	CS [2]	$1.133\cdot 2^{119}$		$1.216 \cdot 2^{232}$	· '	$1.489 \cdot 2^{121}$
AMIA-192	This work	$1.135 \cdot 2^{117}$	$1.949 \cdot 2^{109}$	$1.106 \cdot 2^{227}$	65,857	$1.672 \cdot 2^{119}$
ARIA-256					3,377	$1.921\cdot 2^{153}$
A1t1A-200	This work	$1.268 \cdot 2^{149}$	$1.092 \cdot 2^{142}$	$1.385 \cdot 2^{291}$	73,281	$1.04\cdot 2^{152}$

NIST MAXDEPTH^[8]

 $2^{40}, 2^{64}, 2^{96}$

- 유일하게 ARIA-128만 MAXDEPTH를 만족함 (ARIA-128 < 2⁹⁶)
- MAXDEPTH를 초과한 경우(ARIA-192, 256), cost에 MAXDEPTH 제한을 직접적으로 적용하는 대신 관련 측정항목 $(FD^2 \times M, TD^2 \times M)$ 의 비용을 최소화하는 데 집중해야 함

[8] NIST.: Call for additional digital signature schemes for the post-quantum cryptography standardization process (2022) https://csrc.nist.gov/csrc/media/ Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022. pdf.

Thank you