Logique combinatoire

- Fonction élémentaire
- Représentation logique
- Simplification logique
- Additionneur
- o Décodeur
- Multiplexeur

142

Logique combinatoire et séquentielle

Fonction élémentaire

- □État logique (binaire ou discret)
 - Élément nul : valeur binaire 0 (faux, non, bas, ouvert, éteint, vide)
 - Élément unité : valeur binaire 1 (vrai, oui, haut, fermé, allumé, plein)
- **□** Variable logique (bit : binary digit)
 - Grandeur représentée par un symbole (lettre ou signe) qui peut prendre 2 états logiques dans le cadre de l'algèbre de Boole.

□ Fonction logique

 Fonction représentée par des groupes de variables réliés par des opérateurs logiques qui ne peut prendre que 2 états logiques 0 (point faux) ou 1 (point vrai).

Logique combinatoire et séquentielle Représentation logique Algébrique (forme littérale): Équation, proposition, expression Formes technologiques Formes canoniques Graphique: Table de vérité Tableau de Karnaugh Diagramme d'Euler ou de Venn (théorie des ensembles) Temporelle: Chronogramme Symbolique: Logigramme Numérique (écriture condensée)

NON OU (NOR ou NI):

☐ Elle prend la valeur 1 si toutes les variables sont simultanément égales à 0. C'est aussi un opérateur complet. Soient x et y, deux variables booléennes,

f(x,y) s'écrit :

 $f(x,y) = \overline{x+y}$

156

Logique combinatoire et séquentielle

Table des fonctions logiques f à 2 variables

	(0,0)	(0,1)	(1,0)	(1,1)	f
$f_0(x,y)$	0	0	0	0	0
f ₁ (x,y)	0	0	0	1	x · y
f ₂ (x,y)	0	0	1	0	x · y
f ₃ (x,y)	0	0	1	1	x
f ₄ (x,y)	0	1	0	0	x ⋅ y
f ₅ (x,y)	0	1	0	1	у
f ₆ (x,y)	0	1	1	0	x ⊕ y
f ₇ (x,y)	0	1	1	1	x + y
f ₈ (x,y)	1	0	0	0	<u>x + y</u>
f ₉ (x,y)	1	0	0	1	x ⊕ y
f ₁₀ (x,y)	1	0	1	0	<u>y</u>
f ₁₁ (x,y)	1	0	1	1	x + y
f ₁₂ (x,y)	1	1	0	0	X
f ₁₃ (x,y)	1	1	0	1	x + y
f ₁₄ (x,y)	1	1	1	0	x · y
f ₁₅ (x,y)	1	1	1	1	1

158

Logique combinatoire et séquentielle Propriétés et théorèmes • identité (élément neutre) • A + 0 = A• $A \cdot 1 = A$ • involution : • $\overline{A} = A$ • complémentarité : • $A \cdot A = 1$ • $A \cdot A = 0$

Propriétés et théorèmes

- De Morgan :
 - $\overline{A + B} = \overline{A} \cdot \overline{B}$ $\overline{A \cdot B} = \overline{A} + \overline{B}$

Α	В	A⋅B	Ā⋅B	Ā	B	Ā+B
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
	企					

- Autre identité à démontrer algébriquement :
 - $AB + \overline{A}B = B$
 - $\bullet (A + B) \cdot (\overline{A} + B) = B$
 - $A + \overline{A}B = A + B$
 - $A \cdot (\overline{A} + B) = AB$
- Principe de dualité
- L'expression duale de toute expression logique (pas équation) s'obtient en permutant les opérateurs ET et OU et les éléments 0 et 1 apparaissant dans l'expression.

Logique combinatoire et séquentielle

Exercice :

• En utilisant les définitions, propriétés et théorèmes de l'algèbre de Boole développer et simplifier la fonction définie par l'équation suivante :

$$F(a,b,c,d,e) = \overline{a \cdot b \oplus b \cdot c + ce + \overline{de}}$$

Les formes technologiques

- Première forme : somme de monômes (produits de littéraux). C'est une forme disjonctive. Exemple : F(x,y,z) = xy + xz + xy
- **Deuxième forme** : produit de monaux (somme de littéraux). C'est une forme **conjonctive**. Exemple : $F(x,y,z) = (x + y) \cdot (x + \overline{z})(x + y)$
- Formes technologiques associées : elles s'obtiennent d'après le théorème d'involution et celui de Morgan.

164

Logique combinatoire et séquentielle

Les formes normales ou canoniques

- Une fonction logique est sous forme canonique si chaque termes (monômes et monaux) contient toutes les variables. C'est aussi une forme technologique.
- Forme normale disjonctive (1ère forme canonique) : somme de monômes contenant chacun toutes les variables (intersection de base ou *min terme*). Exemple : $F(x,y,z) = x \ y \ z + \overline{x} \ \overline{y} \ z + \overline{x} \ y \ z$
- Forme normale conjonctive (2ème forme canonique) : produit de monaux contenant chacun toutes les variables (réunion de base ou max terme). Exemple : $F(x,y,z) = (x + y + z)(\overline{x} + \overline{y} + z)(\overline{x} + y + z)$

166

Logique combinatoire et séquentielle Table de vérité → équation logique a | b | c | f(a,b,c) 0 0 0 1 Forme normale disjonctive: <u>Points vrais :</u> 0 Elle ne comprend que les min termes 0 $F(0,0,0) = 1 = \overline{a} \, \overline{b} \, \overline{c}$ pour lesquels la valeur particulière 0 de la fonction est égale à 1 (points 1 0 1 $F(0,1,1) = 1 = \overline{a} \underline{b} \underline{c}$ Le nombre de termes de la réunion $F(1,0,0) = 1 = a \overline{b} c$ 1 est égale au nombre de 1 de la F(1,0,1) = 1 = a b cfonction figurant dans la table de vérité. $f(a,b,c) = \overline{a \cdot b \cdot c} + \overline{a \cdot b \cdot c} + a \cdot \overline{b \cdot c} + a \cdot \overline{b \cdot c}$

• Exercice 1:

- ☐ Extraire les équations logiques des tables de vérité des fonctions suivantes :
 - 1ère forme canonique de la fonction f7
 - 2ème forme canonique de la fonction f1
 - 1ère forme et 2ème forme canonique de la fonction f6
 - 1ère forme et 2ème forme canonique de la fonction f9
- ☐ En utilisant les règles de l'algèbre de Boole, simplifier ces fonctions.

168

Logique combinatoire et séquentielle

Exercice 2:

• Mêmes questions que l'exercice 1 en utilisant la table de vérité suivante :

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Equation logique Table de vérité

Compter le nombre de variables différentes dans l'équation et créer la table de vérité.

- <u>1ère méthode</u>: pour chacune des combinaisons de la table de vérité, évaluer l'équation et reporter le résultat dans la table.
- <u>2ème méthode</u>: mettre l'équation sous une forme technologique et pour chacun des termes de la forme choisie, reporter les 1 ou les 0 dans les cases correspondantes de la table de vérité (plusieurs reports par terme).

170

Logique combinatoire et séquentielle

Equation logique → Table de vérité

- •Compter le nombre de variables différentes dans l'équation et créer la table de vérité.
 - <u>3ème méthode</u>: mettre l'équation sous une forme canonique et pour chacun des termes de la forme choisie, reporter les 1 ou les 0 dans les cases correspondantes de la table de vérité (un seul report par terme).

Exemple:

- F(a,b) = a ⊕ b⋅c
- 3 variables a, b et c

•	F	a.	b)	=	а	\oplus	b-d	2
	. ,	ч,	~ ,		ч	·	~ `	•

- $F(a,b) = \overline{a \cdot b \cdot c} + a \cdot \overline{b \cdot c}$
- $F(a,b) = \overline{a \cdot b \cdot c} + a \cdot (\overline{b + c})$
- $F(a,b) = \overline{a \cdot b \cdot c} + a \cdot \overline{b} + a \cdot \overline{c}$

				_	-		_		_
٠	F	(a	h)	– а	·b·c	+	a.h	+	a.c
		u,	\sim	_ u	\sim		u v		u u

- $F(a,b) = \overline{a \cdot b \cdot c} + a \cdot \overline{b \cdot (c + \overline{c})} + a \cdot \overline{c \cdot (b + \overline{b})}$
- $F(a,b) = \overline{a \cdot b \cdot c} + a \cdot \overline{b \cdot c}$
- $F(a,b) = \overline{a \cdot b \cdot c} + a \cdot \overline{b \cdot c} + a \cdot \overline{b \cdot c} + a \cdot b \cdot \overline{c}$

172

f(a,b,c)

0

0

1

0 0 0 1

1 0

1 0

0

Logique combinatoire et séquentielle

Les formes numériques

☐ Chaque combinaison est repérée par un numéro (en général, l'équivalent décimal) afin de condenser l'écriture.

-Exemple précédent :

$$F(a,b,c) = \sum (3, 4, 5, 6)$$

 $F(a,b,c) = \prod (0, 1, 2, 7)$

Les logigrammes

- ☐ C'est une association des symboles utilisés pour représenter les fonctions logiques en vue de leur réalisation câblée ou programmée.
- ☐ Le logigramme le plus simple est celui qui utilise le moins d'opérateurs possible et de même type.

Logique combinatoire et séquentielle Fronts des chronogrammes L'instant de passage de 0 à 1 est un front montant. L'instant de passage de 1 à 0 est un front descendant. La succession de ces deux fronts forme une impulsion. front montant de $x : \uparrow x$ front descendant de $x : \downarrow x$

Exercice:

Réaliser le tableau de Karnaugh de la fonction f de 4 variables a,b,c et d définie par la table de vérité suivante :

00	01	11	10
0 0	1	0 3	1 2
1 4	0 5	1 7	0 6
0	1 13	0 15	1 14
1 8	0 9	1	0
	0 0 1 4 0 12 1	0 1 1 1 1 4 0 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	_	_	_	
а	b	С	d	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0 0 0	1		0	0
0	1	1	1	1
1	0	0	0	1
1 1 1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1 1 1	1	0	1	1
1	1	1	0	1
1	1	1	1	0
				1

Logique combinatoire et séquentielle

Méthodes de simplification

- ☐ Méthode algébrique : application des principes de l'algèbre de Boole
 - Mise en facteur ou développement
 - Idempotence...
- ☐ Méthode graphique : utilisation des tableaux de Karnaugh
 - Deux cases sont adjacentes si le passage de l'une à l'autre se fait uniquement par le changement d'état d'une seule variable.
 - Ce principe s'applique également pour des ensembles de cases adjacentes constitués de 2ⁿ cases.

Exemple :

182

Logique combinatoire et séquentielle

Méthode de Karnaugh:

- ☐ Selon la forme recherchée, regrouper les cases adjacentes de même valeur (soit 0, soit 1) par des ensembles les plus grands possibles et correspondant à des puissances de 2.
- ☐ Tous ces regroupements correspondent à des monômes premiers (ou monaux) et constitue la base première complète.
- ☐ La somme de ces monômes donne une expression simplifiée de la fonction logique mais pas sa forme minimale.

Méthode de Karnaugh:

- ☐ La forme minimale est obtenue en faisant la somme des monômes premiers principaux (un regroupement où il existe au moins une case qui ne peut être regroupée que par elle-même).
- ☐ Parfois, plusieurs possibilités sont offertes et on obéira aux règles suivantes :
 - Tous les 1 (ou tous les 0) doivent être regroupés au moins une fois.
 - Les regroupements les plus grands doivent être choisis en priorité.
 - Les cases à regrouper doivent l'être un minimum de fois (commencer par celles qui n'ont qu'une seule façon de se regrouper).

Logique combinatoire et séquentielle Exemple F=abcd+abcd+abcd+abcd+abcd+abcd F=abcd+abcd+abcd+abcd+abcd+abcd+abcd+abcd $F = \overline{acd}(\overline{b} + b) + \overline{abc}(\overline{d} + d) + bd(\overline{ac} + \overline{ac} + \overline{ac} + \overline{ac}) + a\overline{bcd}$ $F = \overline{a}\overline{c}\overline{d} + \overline{a}\overline{b}\overline{c} + bd[\overline{a}(\overline{c}+c) + a(\overline{c}+c)] + a\overline{b}\overline{c}\overline{d}$ 00 01 11 10 $F = \overline{a}\overline{c}\overline{d} + \overline{a}b\overline{c} + bd(\overline{a} + a) + a\overline{b}c\overline{d}$ F=acd+abc+bd+abcd acd 00 $F = \overline{a}\overline{c}\overline{d} + \overline{a}\overline{b}\overline{c}(\overline{d} + d) + bd + a\overline{b}\overline{c}\overline{d}$ 1 abc 01 0 F=acd+abcd+abcd+bd+abcd $F = \overline{a}\overline{c}\overline{d}(1+b) + bd(\overline{a}\overline{c}+1) + a\overline{b}\overline{c}\overline{d}$ 11 bd F=acd+bd+abcd 0 abcd 10 F est la somme des monômes premiers principaux (irredondants). monômes redondant premiers 185

Exercice :

☐ Simplifier sous une 1^{ére} et 2^{ème} forme technologique la fonction définie par la table de vérité suivante en utilisant la méthode de Karnaugh :

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

106

Logique combinatoire et séquentielle

Cas des fonctions incomplètement définies :

- ☐ Certaines combinaisons ne peuvent jamais exister.
- ☐ La valeur de la fonction n'a pas d'importance pour certaines combinaisons de variables.
- □ La valeur de la fonction est dite indifférente ou la combinaison interdite. La valeur de la fonction est alors notée Φ ou X et peut prendre indifféremment la valeur 1 ou 0 selon qu'elle sert ou non à la simplification.

- Exemple:

Points vrais:

$F(0,0,0,1) = 1 = \overline{abcd}$	$F(1,0,0,0) = 1 = a\overline{bcd}$
$F(0.0.1.0) = 1 = \overline{abcd}$	$F(1,0,1,1) = 1 = a\bar{b}cd$

$$F(0,0,1,0) = 1 = abcd$$
 $F(1,1,0,1) = 1 = abcd$ $F(0,1,1,1) = 1 = abcd$ $F(1,1,1,0) = 1 = abcd$

Points faux:

$$F(0,0,0,0) = 0 = a+b+c+d$$
 $F(1,0,0,1) = 0 = a+b+c+d$

$$F(0,0,1,1) = 0 = a + b + c + d$$

$$F(0,1,0,1) = 0 = a + b + c + d$$

$$F(0,1,0,1) = 0 = a + b + c + d$$

$$F(1,1,0,0) = 0 = a + b + c + d$$

$$F(0,1,1,0) = 0 = a + \bar{b} + \bar{c} + d$$
 $F(1,1,1,1) = 0 = \bar{a} + \bar{b} + \bar{c} + \bar{d}$

c d f(a,b,c,d)

Logique combinatoire et séquentielle

Demi Additionneur

- □ Le demi additionneur est un circuit combinatoire qui permet de réaliser la somme arithmétique de deux nombres A et B chacun sur un bit.
- ☐ A la sotie on va avoir la somme S et la retenu R (Carry).

→Pour trouver la structure (le schéma) de ce circuit on doit en premier dresser sa table de vérité

19²

Addition

☐ En binaire l'addition sur un seul bit se fait de la manière suivante:

$$\begin{cases} 0+0 = 00 \\ 0+1 = 01 \\ 1+0 = 01 \\ 1+1 = 10 \end{cases}$$

•La table de vérité associée :

A	В	R	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

De la table de vérité on trouve :

$$R = A.B$$

$$S = \overline{A}.B + A.\overline{B} = A \oplus B$$

L'additionneur complet

☐ En binaire lorsque on fait une addition il faut tenir en compte de la retenue entrante.

Logique combinatoire et séquentielle

Additionneur complet 1 bit

- ☐ L'additionneur complet un bit possède 3 entrées :
 - a_i: le premier nombre sur un bit.
 - b_i : le deuxième nombre sur un bit.
 - r_{i-1}: la retenue entrante sur un bit.
- ☐ Il possède deux sorties :
 - S_i: la somme
 - R_i la retenue sortante

•	1 • . •	, ,	
Ogidile	combinatoire	et sea	uentielle
-081940	combination c	00 009	acriciona

Table de vérité d'un additionneur complet sur

	r _{i-1}	ri	Si
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	1
	0 1 1 0 0	0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1	0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1

$$\begin{split} S_i &= \overline{A_i}.\overline{B_i}.R_{i-1} + \overline{A_i}.B_i.\overline{R_{i-1}} + A_i.\overline{B_i}.\overline{R_{i-1}} + A_i.B_i.R_{i-1} \\ R_i &= \overline{A_i}B_iR_{i-1} + A_i\overline{B_i}R_{i-1} + A_iB_i\overline{R_{i-1}} + A_iB_iR_{i-1} \end{split}$$

Logique combinatoire et séquentielle

Simplification de l'équation logique d'un additionneur complet sur 1 bit

Si on veut simplifier les équations on obtient :

$$S_i = \overline{A}_i.\overline{B}_i.R_{i-1} + \overline{A}_i.B_i.\overline{R}_{i-1} + A_i.\overline{B}_i.\overline{R}_{i-1} + A_i.B_i.R_{i-1}$$

$$S_{i} = \overline{A_{i}} \cdot (\overline{B_{i}} \cdot R_{i-1} + B_{i} \cdot \overline{R}_{i-1}) + A_{i} \cdot (\overline{B}_{i} \cdot \overline{R}_{i-1} + B_{i} \cdot R_{i-1})$$

$$S_i = \overline{A}_i(B_i \oplus R_{i-1}) + A_i.(\overline{B_i \oplus R_{i-1}})$$

$$S_i = A_i \oplus B_i \oplus R_{i-1}$$

$$R_{i} = \overline{A_{i}} B_{i} R_{i-1} + A_{i} \overline{B_{i}} R_{i-1} + A_{i} B_{i} \overline{R_{i-1}} + A_{i} B_{i} R_{i-1}$$

$$R_{i} = R_{i-1} \cdot (\overline{A_{i}} \cdot B_{i} + A_{i} \cdot \overline{B}_{i}) + A_{i} B_{i} (\overline{R}_{i-1} + R_{i-1})$$

$$R_i = R_{i-1}.(A_i \oplus B_i) + A_iB_i$$

Schéma d'un additionneur complet

$$R_{i} = A_{i}.B_{i} + R_{i-1}.(B_{i} \oplus A_{i})$$

$$S_{i} = A_{i} \oplus B_{i} \oplus R_{i-1}$$

Logique combinatoire et séquentielle

En utilisant des Demi-Additionneurs

$$R_i = A_i.B_i + R_{i-1}.(B_i \oplus A_i)$$

$$S_{i} = A_{i} \oplus B_{i} \oplus R_{i-1}$$

Si on pose $X = A_i \oplus B_i$ et $Y = A_i B_i$

On obtient:

$$R_{i} = Y + R_{i-1}.X$$

$$S_i = X \oplus R_{i-1}$$

et si on pose $Z = X \oplus R_{i-1}$ et $T = R_{i-1}.X$

On obtient:

 $R_i = Y + T$

•On remarque que X et Y sont les sorties d'un demi-additionneur ayant comme entrées A et B

 $S_i = Z$ •On remarque que Z et T sont les sorties d'un

demi-additionneur ayant comme entrées X et R_{i-1}

En utilisant des Demi-Additionneurs

$$X = A_{i} \oplus B_{i}$$

$$Y = A_{i}B_{i}$$

$$Z = X \oplus R_{i-1}$$

$$T = R_{i-1}.X$$

$$R_{i} = Y + T$$

$$S_{i} = Z$$

200

Logique combinatoire et séquentielle

Additionneur sur 4 bits

- ☐ Un additionneur sur 4 bits est un circuit qui permet de faire l'addition de deux nombres A et B de 4 bits chacun
 - $A(a_3a_2a_1a_0)$
 - $B(b_3b_2b_1b_0)$
 - En plus il tient en compte de la retenu entrante
- ☐ En sortie on va avoir le résultat sur 4 bits ainsi que la retenu (5 bits en sortie)
- ☐ Donc au total le circuit possède 9 entrées et 5 sorties.
- □ Avec 9 entrées on a 29=512 combinaisons !!!!!! Comment faire pour représenter la table de vérité ?????
- ☐ Il faut trouver une solution plus facile et plus efficace pour concevoir ce circuit ?

•Exercice

□ Soit une information binaire sur 5 bits (i₄i₃i₂i₁i₀).
 Donner le circuit qui permet de calculer le nombre de 1 dans l'information en entrée en utilisant uniquement des additionneurs complets sur 1 bit ?

☐ Exemple :

Si on a en entrée l'information (i₄i₃i₂i₁i₀) =(10110) alors en sortie on obtient la valeur 3 en binaire (011) puisque il existe 3 bits qui sont à 1 dans l'information en entrée .

204

Logique combinatoire et séquentielle Compteur C'est un circuit combinatoire qui permet de comparer entre deux nombres binaire A et B. Il possède 2 entrées: A: sur un bit B: sur un bit Il possède 3 sorties fe: égalité (A=B) fi: inférieur (A < B) fi: inférieur (A < B) fi: supérieur (A > B)

Comparateur 2 bits avec des comparateurs 1 bit

- ☐ C'est possible de réaliser un comparateur 2 bits en utilisant des comparateurs 1 bit et des portes logiques.
- ☐ Il faut utiliser un comparateur pour comparer les bits du poids faible et un autre pour comparer les bits du poids fort.
- ☐ Il faut combiner entre les sorties des deux comparateurs utilisés pour réaliser les sorties du comparateur final.

Logique combinatoire et séquentielle

Expressions logiques

1. A=B si

A2=B2 et A1=B1

$$fe = (\overline{A2 \oplus B2}).(\overline{A1 \oplus B1}) = fe2.fe1$$

2. A>B si

A2 > B2 ou (A2=B2 et A1>B1)

$$fs = A2.B2 + (A2 \oplus B2).(A1.\overline{B1}) = fs2 + fe2.fs1$$

3. A<B si

A2 < B2 ou (A2=B2 et A1<B1)

$$fi = \overline{A2}.B2 + (\overline{A2 \oplus B2}).(\overline{A1}.B1) = fi2 + fe2.fi1$$

Comparateur avec des entrées de mise en cascade

- ☐ On remarque que :
 - Si A2 >B2 alors A > B
 - Si A2<B2 alors **A < B**
- ☐ Par contre si A2=B2 alors il faut tenir en compte du résultat de la comparaison des bits du poids faible.
- □ Pour cela on rajoute au comparateur des entrées qui nous indiquent le résultat de la comparaison précédente.
- ☐ Ces entrées sont appelées des entrées de mise en cascade.

Démultiplexeurs

- Il joue le rôle inverse d'un multiplexeur, il permet de faire passer une information dans l'une des sorties selon les valeurs des entrées de commandes.
- Il possède:
 - une seule entrée
 - 2ⁿ sorties
 - N entrées de sélection (commandes)

220

Logique combinatoire et séquentielle

Démultiplexeur 1→4

$$S0 = \overline{C1}.\overline{C0}.(I)$$

$$S1 = \overline{C1}.C0.(I)$$

$$S2 = C1.\overline{C0}.(I)$$

$$S3 = C1.C0.(I)$$

Le décodeur binaire

- C'est un circuit combinatoire qui est constitué de :
 - N : entrées de données
 - 2ⁿ sorties
 - Pour chaque combinaison en entrée une seule sortie est active à la fois

Un décodeur 3→8

222

Lo	ogia	ue c	om	bina	ato	oire	ets	égu	entie	
	•	: Transo						'		
	Α	В	С	D		X	Y	Z	Т	
	0	0	0	0		0	0	1	1	
	0	0	0	1		0	1	0	0	
	0	0	1	0		0	1	0	1	
	0	0	1	1		0	1	1	0	
	0	1	0	0		0	1	1	1	
	0	1	0	1		1	0	0	0	
	0	1	1	0		1	0	0	1	
	0	1	1	1		1	0	1	0	
	1	0	0	0		1	0	1	1	
	1	0	0	1		1	1	0	0	
	1	0	1	0			X	X	x	
	1	0	1	1			x	x	x	
	1	1	0	0		x	x	X	x	
	1	1	0	1		x	x	X	x	
	1	1	1	0			x	X	x	
	1	1	1	1				x	X	

Systèmes asynchrones

□Les sorties évoluent à la suite d'un changement de combinaison des entrées, ce qui provoque des états transitoires, des retards de durées différentes et des risques d'instabilité.

230

Logique combinatoire et séquentielle

Systèmes synchrones

□ L'évolution des sorties est synchronisée par une commande externe appelée horloge afin d'éviter les multiples états transitoires notamment lorsque des entrées changent d'état simultanément.

La bascule RS asynchrone

- □ La bascule RS asynchrone possède une entrée R (Reset) de mise à zéro, une entrée S (Set) de mise à 1 et une sortie Q.
- ☐ L'état R=S=0 (mode mémoire) maintient l'état de la sortie. L'état R=S=1 (mode interdit) est interdit car il conduit à mettre simultanément la sortie à 1 et à 0.

Logique combinatoire et séquentielle Réalisation 1 de bascule RS asynchrone table de vérité : tableau de Karnaugh : $R|S|Q^{-}$ Q⁺ RS Mémoire 0 0 1 00 Mise à 1 01 Mise à 0 0 1 0 11 Φ Interdit <u>équation logique :</u> $Q^+ = S + Q^- \cdot \overline{R}$

Logique combinatoire et séquentielle Réalisation 1 de bascule RS asynchrone logigramme: St. St. O. T. S. O.

- Cette bascule RS est prioritaire au 1 car, pour la combinaison R=S=1, la sortie Q est mise à 1 (les Φ ayant été fixés à 1 pour la simplification de Q).
- ☐ Remarque : le logigramme fait apparaître une sortie supplémentaire égale au complément de la sortie Q uniquement si la combinaison R=S=1 n'apparaît pas.₂₃₄

Réalisation 2 de bascule RS asynchrone

- Cette bascule RS est prioritaire au 0 car, pour la combinaison R=S=1, la sortie Q est mise à 0 (les Φ ayant été fixés à 0 pour la simplification de Q).
- □ Remarque : le logigramme fait apparaître une sortie supplémentaire égale au complément de la sortie Q uniquement si la combinaison R=S=1 n'apparaît pas.

236

Logique combinatoire et séquentielle

Cas des états interdits

☐ Afin de conserver une sortie complémentaire quel que soit la combinaison d'entrée, il convient de remplacer la combinaison R=S=1 par une autre combinaison en utilisant un circuit combinatoire selon le principe suivant :

La bascule RS synchrone (RST ou RSH)

- □ La bascule RS synchrone possède une entrée R (Reset) de mise à zéro, une entrée S (Set) de mise à 1, une entrée d'horloge H et une sortie Q.
- □ La bascule RS synchrone fonctionne selon l'état de l'horloge :
 - si l'horloge est à 1 (niveau haut)
 - si l'horloge est à 0 (niveau bas)
 - si il y a un front montant sur l'horloge
 - si il y a un front descendant sur l'horloge
 - si il y a une impulsion sur l'horloge

La bascule RST synchronisée par le niveau haut de l'horloge :

• Exercice : à partir de la table de vérité de cette bascule, déterminer l'équation de sa sortie et réaliser le logigramme avec des portes NAND uniquement.

La bascule D latch:

- □ la sortie recopie l'entrée sur un niveau d'horloge. Sur l'autre niveau, la sortie est mémorisée.
 - Bascule D latch synchronisée par le niveau haut :

Logique combinatoire et séquentielle La bascule T ☐ La bascule T est une bascule synchrone qui possède une entrée de donnée T, une entrée d'horloge H, une sortie Q et une sortie complément de Q. ☐ Son fonctionnement est un cas particulier de la bascule JK ou les entrées J et K sont connectées ensemble (ou mises à 1). table de fonctionnement : symbole: Q⁺ Φ Q-Mémoire Φ Q-Q-<u>ā</u> Inversion

