2. Aufgabe

Die 5×5 Matrix **A** hat die Determinante $\det(\mathbf{A})=-3$.

Bestimmen Sie

$$\det(-2\cdot\mathbf{A})$$
, $\det(\mathbf{A}+\mathbf{A})$

Lösung

$-2\cdot A$

Jede Zeile von **A** wird mit −2 multipliziert

Entsteht **B** aus **A** durch Multiplikation einer Zeile/Spalte mit Zahl λ , so ist $\det (\mathbf{B}) = \lambda \det (\mathbf{A})$

$$\Rightarrow \det\left(-2\cdot\boldsymbol{A}\right) = \left(-2\right)^{5}\cdot\det\left(\boldsymbol{A}\right) = -32\cdot\det\left(\boldsymbol{A}\right) = -32\cdot\left(-3\right) = 96$$

Prof. Dr. Hans-Jürgen Dobner, HTWK Leipzig, MN2

$A+A=2\cdot A$

Jede Zeile von A wird mit 2 multipliziert

Entsteht **B** aus **A** durch Multiplikation einer Zeile/Spalte mit Zahl λ , so ist $\det(\mathbf{B}) = \lambda \det(\mathbf{A})$

$$\Rightarrow det\big(\textbf{A}+\textbf{A}\big) = det\big(2\cdot\textbf{A}\big) \ = 2^5\cdot det\big(\textbf{A}\big)$$

$$= 32\cdot det\big(\textbf{A}\big) = 32\cdot(-3) = -96$$

Prof. Dr. Hans-Jürgen Dobner, HTWK Leipzig, MNZ