Mérték, integrál, ...

12. Előadás

1. Szorzatmérték.

Adott $X_1, X_2 \neq \emptyset$ halmazok esetén tekintsük az (X_i, Ω_i, μ_i) (i = 1, 2) mértéktereket. Legyen

$$X := X_1 \times X_2$$

a két alaphalmaz Descartes-szorzata, valamint

$$\Omega := \Omega_1 \otimes \Omega_2 := \Omega(\{U \times V \in \mathcal{P}(X) : U \in \Omega_1, V \in \Omega_2\})$$

az Ω_1 , Ω_2 -beli halmazok Descartes-szorzatai¹ által meghatározott legszűkebb szigma-algebra. A továbbiakban az

$$f: X \to [0, +\infty]$$

kétváltozós függvényeket vizsgáljuk az integrálhatóság és az integrál kiszámítása szempontjából. Az itt említett "integrál" (szigma-véges mértékek esetén) majd a μ_1 , μ_2 mértékekből származó $\mu_1 \otimes \mu_2$ szorzatmérték szerint lesz értendő.

- **1. Lemma.** Tetszőleges $A \in \Omega$ halmaz és $x \in X_1$, $y \in X_2$ elemek esetén
 - a) $A_x := \{ z \in X_2 : (x, z) \in A \} \in \Omega_2;$
 - b) $A^y := \{ v \in X_1 : (v, y) \in A \} \in \Omega_1.$

Bizonyítás. Lássuk be először azt, hogy az

$$\Omega' := \{ A \in \mathcal{P}(X) : A_x \in \Omega_2, A^y \in \Omega_1 \ (x \in X_1, y \in X_2) \}$$

halmazrendszer egy (X-beli) szigma-algebra. Az nyilvánvaló, hogy $X \in \Omega',$ lévén

$$X_x = X_2 \in \Omega_2, X^y = X_1 \in \Omega_1.$$

Ha $A \in \Omega'$, akkor

$$(X \setminus A)_x = X_2 \setminus A_x \in \Omega_2, (X \setminus A)^y = X_1 \setminus A^y \in \Omega_1,$$

 $^{^{1}}$ Ezek az ún. $t\acute{e}glahalmazok.$

tehát $X \setminus A \in \Omega'$. Végül, ha adottak az $A_n \in \Omega'$ $(n \in \mathbb{N})$ halmazok, akkor

$$\left(\bigcup_{n=0}^{\infty} A_n\right)_x = \bigcup_{n=0}^{\infty} (A_n)_x \in \Omega_2, \quad \left(\bigcup_{n=0}^{\infty} A_n\right)^y = \bigcup_{n=0}^{\infty} (A_n)^y \in \Omega_1.$$

Ez éppen azt jelenti, hogy $\bigcup_{n=0}^{\infty} A_n \in \Omega'$.

Tehát az Ω' szigma-algebra az X-ben. Ha viszont $U \in \Omega_1, V \in \Omega_2$, akkor

$$(U \times V)_x = \begin{cases} \emptyset \in \Omega_2 & (x \notin U) \\ V \in \Omega_2 & (x \in U) \end{cases}, \ (U \times V)^y = \begin{cases} \emptyset \in \Omega_1 & (y \notin V) \\ U \in \Omega_1 & (y \in V) \end{cases}$$

miatt $U \times V \in \Omega'$, így (a "legszűkebb szigma-algebra" értelmezésére tekintettel) $\Omega \subset \Omega'$.

Legyen egy

$$f: X \to \overline{\mathbf{R}}$$

függvény és $x \in X_1, y \in X_2$ esetén

$$f_x(z) := f(x,z) \quad (z \in X_2), \ f^y(v) := f(v,y) \quad (v \in X_1).$$

Az

$$f_x: X_2 \to \overline{\mathbf{R}}, f^y: X_1 \to \overline{\mathbf{R}}$$

függvények mérhetők, ha az f is mérhető, nevezetesen igaz a

2. Lemma. Minden $f: X \to \overline{\mathbb{R}}$ mérhető függvényre és $x \in X_1$, $y \in X_2$ elemekre a fenti f_x , f^y függvények mérhetők.²

Bizonyítás. A lemma igazolása címén elég annyit megjegyezni, hogy egyrészt minden $Y \subset \overline{\mathbf{R}}$ Borel-halmaz esetén

$$(f_x)^{-1}[Y] = (f^{-1}[Y])_x, (f^y)^{-1}[Y] = (f^{-1}[Y])^y.$$

Másrészt az f mérhetősége miatt $f^{-1}[Y] \in \Omega$, ezért alkalmazható az előbbi 1. Lemma:

$$(f^{-1}[Y])_x \in \Omega_2, (f^{-1}[Y])^y \in \Omega_1,$$

ami az f_x , f^y függvények mérhetőségét jelenti.

²Tehát tetszőleges $Y \subset \overline{\mathbf{R}}$ Borel-halmazra $(f_x)^{-1}[Y] \in \Omega_2$, $(f^y)^{-1}[Y] \in \Omega_1$, valamint $f^{-1}[Y] \in \Omega$.

Értelmezzünk most minden $A \in \Omega$ halmaz mellett két újabb leképezést az alábbiak szerint:

$$f_A(x) := \mu_2(A_x) \quad (x \in X_1), \ f^A(y) := \mu_1(A^y) \quad (y \in X_2).$$

Ezzel definiáltunk egy-egy

$$f_A: X_1 \to [0, +\infty], f^A: X_2 \to [0, +\infty]$$

függvényt. Ezekkel a függvényekkel kapcsolatos az

1. Tétel. Ha a fenti μ_1 , μ_2 mértékek szigma-végesek, akkor tetszőleges mérhető $A \subset X$ halmazra $f_A \in L^+(\mu_1)$, $f^A \in L^+(\mu_2)$, és

$$\int f_A d\mu_1 = \int f^A d\mu_2.$$

Bizonyítás (vázlat). Ha $A = U \times V \ (U \in \Omega_1, \ V \in \Omega_2)$, akkor az

$$(U \times V)_x$$
, $(U \times V)^y$ $(x \in X_1, y \in X_2)$

"metszethalmazokról" mondottak alapján

$$f_A = \mu_2(V) \cdot \chi_U, \ f^A = \mu_1(U) \cdot \chi_V.$$

Így ekkor az

$$f_A \in L^+(\mu_1), \ f^A \in L^+(\mu_2)$$

tartalmazások nyilvánvalóak, és

$$\int f_A \, d\mu_1 = \mu_1(U) \cdot \mu_2(V) = \int f^A \, d\mu_2.$$

Tegyük fel most azt, hogy a μ_2 véges – azaz $\mu_2(X_2) < +\infty$ –, és legyen

$$\mathcal{D} := \{ A \in \Omega : f_A \in L^+(\mu_1) \}.$$

A \mathcal{D} egy Dynkin³-rendszer⁴. Mivel

$$\mathcal{M} := \{U \times V \in \Omega : U \in \Omega_1, V \in \Omega_2\} \subset \mathcal{D},$$

³Eugene Borisovich Dynkin (1924 – 2014).

 $^{^4}$ $X \in \mathcal{D}$; minden $A, B \in \mathcal{D}, A \subset B$ esetén $B \setminus A \in \mathcal{D}$; megszámlálható sok, páronként diszjunkt \mathcal{D} -beli halmaz egyesítése is \mathcal{D} -ben van. Egy Dynkin-rendszer akkor és csak akkor σ -algebra, ha metszet-stabil.

valamint tetszőleges $A, B \in \mathcal{M}$ esetén $A \cap B \in \mathcal{M}$ (röviden tehát a "téglahalmazok" \mathcal{M} halmazrendszere metszetstabil), ezért az \mathcal{M} -et tartalmazó legszűkebb Dynkin-rendszer $(\mathcal{D}(\mathcal{M}))$ megegyezik az $\Omega = \Omega(\mathcal{M})$ -mel. Az $\mathcal{M} \subset \mathcal{D}$ és a $\mathcal{D} \subset \Omega$ tartalmazások miatt ugyanakkor

$$\mathcal{D}(\mathcal{M}) \subset \mathcal{D} \subset \Omega$$

is igaz, amiből a $\mathcal{D} = \Omega$ egyenlőség már nyilván következik. Mindez azt jelenti, hogy bármelyik $A \in \Omega$ halmazra $f_A \in L^+(\mu_1)$.

На

$$\varphi_1(A) := \int f_A d\mu_1, \quad \varphi_2(A) := \int f^A d\mu_2 \qquad (A \in \Omega),$$

akkor a

$$\varphi_1, \ \varphi_2: \Omega \to [0, +\infty]$$

leképezések szigma-véges mértékek és $\varphi_1 = \varphi_2$.

Legyen

$$\mu_1 \otimes \mu_2(A) := \int f_A d\mu_1 = \left(\int f^A d\mu_2 \right) \qquad (A \in \Omega)$$

a $\mu_1, \, \mu_2$ által meghatározott szorzatmérték. Ez szintén egy szigma-véges mérték.

2. Fubini-tétel.

Adottak az (X_i, Ω_i, μ_i) (i = 1, 2) szigma-véges mértékterek, tekintsük ezen terek (X, Ω, μ) szorzatát, ahol

$$X := X_1 \times X_2, \ \Omega := \Omega_1 \otimes \Omega_2, \ \mu := \mu_1 \otimes \mu_2.$$

Az

$$f: X \to [0, +\infty]$$

kétváltozós mérhető függvény esetén legyen

$$\varphi_f(x) := \int f_x d\mu_2 \quad (x \in X_1), \ \varphi^f(y) := \int f^y d\mu_1 \quad (y \in X_2).$$

Mivel $f \in L^+(\mu)$, ezért (ld. 2. Lemma)

$$f_x \in L^+(\mu_2) \quad (x \in X_1), \quad f^y \in L^+(\mu_1) \quad (y \in X_2).$$

Így a $\varphi_f,\ \varphi^f$ függvények definíciója korrekt, mindkettő nemnegatív leképezés.

3. Lemma (Tonelli⁵-tétel). A fenti szigma-véges (X_i, Ω_i, μ_i) (i = 1, 2) mértékterek esetén az (X, Ω, μ) szorzattérre vonatkozóan tetszőleges $f: X \to [0, +\infty]$ mérhető függvényre⁶

a)
$$\varphi_f \in L^+(\mu_1), \ \varphi^f \in L^+(\mu_2);$$

b)
$$\int f d\mu = \int \varphi_f d\mu_1 = \int \varphi^f d\mu_2.$$

Bizonyítás. Csak a φ_f -re vonatkozó állítások bizonyítását részletezzük, mivel a φ^f -re mindez analóg módon végezhető.

Tegyük fel, hogy az f lépcsősfüggvény, azaz $f \in L_0^+(\mu)$. Ekkor egy $\emptyset \neq \mathcal{J}$ véges halmazzal és alkalmas, páronként diszjunkt $Q_i \in \Omega$ $(i \in \mathcal{J})$ halmazokkal, valamint $z_i \geq 0$ $(i \in \mathcal{J})$ számokkal

$$f = \sum_{i \in \mathcal{I}} z_i \cdot \chi_{Q_i}.$$

Ha $x \in X_1$, akkor

$$f_x = \sum_{i \in \mathcal{J}} z_i \cdot (\chi_{Q_i})_x = \sum_{i \in \mathcal{J}} z_i \cdot \chi_{(Q_i)_x},$$

amiből rögtön következik az, hogy

$$\int f_x d\mu_2 = \sum_{i \in \mathcal{I}} z_i \cdot \mu_2((Q_i)_x) = \sum_{i \in \mathcal{I}} z_i \cdot f_{Q_i}(x).$$

Ez egyúttal azt is jelenti, hogy

$$\varphi_f = \sum_{i \in \mathcal{I}} z_i \cdot f_{Q_i} \in L^+(\mu_1),$$

és

$$\int \varphi_f \, d\mu_1 = \sum_{i \in \mathcal{I}} z_i \cdot \int f_{Q_i} \, d\mu_1 = \sum_{i \in \mathcal{I}} z_i \cdot \mu(Q_i) = \int f \, d\mu.$$

Ha most az $f \in L^+(\mu)$ tetszőleges függvény, akkor egy alkalmasan választott monoton növekedő $f_n \in L_0^+(\mu) \ (n \in \mathbf{N})$ sorozattal

$$f = \lim_{n \to \infty} f_n$$
, $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.

Nyilvánvaló, hogy minden $x \in X_1$ elemre az

$$(f_n)_x \in L_0^+(\mu_2) \qquad (n \in \mathbf{N})$$

 $^{^{5}}$ Leonida Tonelli (1885 – 1946).

⁶Más szóval $f \in L^+(\mu)$.

sorozat monoton nőve tart az f_x -hez, és ugyanígy a

$$\varphi_{f_n} \in L^+(\mu_1) \qquad (n \in \mathbf{N})$$

sorozat monoton nőve tart a φ_f -hez. Innen a lépcsősfüggvényekre már bebizonyított állítást felhasználva a Beppo Levi-tétel alapján $\varphi_f \in L^+(\mu_1)$, és

$$\int \varphi_f \, d\mu_1 = \lim_{n \to \infty} \int \varphi_{f_n} \, d\mu_1 = \lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu$$

adódik. ■

Tekintsünk most egy $f \in L(\mu)$ függvényt.⁷ Minden $x \in X_1$ esetén (ld. 2. Lemma) az f_x függvény mérhető, továbbá fennállnak az alábbi triviális egyenlőségek:

$$|f|_x = |f_x|, (f^{\pm})_x = (f_x)^{\pm}.$$

Következésképpen

$$\int |f_x| \, d\mu_2 = \int |f|_x \, d\mu_2 = \varphi_{|f|}(x), \quad \int \varphi_{|f|} \, d\mu_1 = \int |f| \, d\mu < +\infty,$$

ezért

$$\varphi_{|f|}(x) = \int |f_x| \, d\mu_2 < +\infty \qquad (\mu_1\text{-m.m. } x \in X_1).$$

Minden ilyen x-re tehát $f_x \in L(\mu_2)$.

Ugyanígy látható be, hogy μ_2 -m.m. $y\in X_2$ esetén $f^y\in L(\mu_1)$. Ha viszont valamilyen $x\in X_1$ elemre $f_x\in L(\mu_2)$, akkor

$$\varphi_f(x) = \int f_x d\mu_2 = \int (f_x)^+ d\mu_2 - \int (f_x)^- d\mu_2 =$$

$$\int (f^+)_x d\mu_2 - \int (f^-)_x d\mu_2 = \varphi_{f^+}(x) - \varphi_{f^-}(x).$$

Mivel

$$\int \varphi_{f^{\pm}} \, d\mu_1 = \int f^{\pm} \, d\mu < +\infty,$$

ezért $\varphi_{f^{\pm}} \in L(\mu_1)$. Így a φ_f függvény előbbi felbontása alapján $\varphi_f \in L(\mu_1)$ is teljesül, és

$$\int \varphi_f d\mu_1 = \int \varphi_{f^+} d\mu_1 - \int \varphi_{f^-} d\mu_1 = \int f^+ d\mu - \int f^- d\mu = \int f d\mu.$$

Hasonlóan látható be az utóbbi egyenlőség (az előzményeivel együtt) a φ_f helyett a φ^f -re is.

A fentieket összefoglalva tehát a következő tételt bizonyítottuk be.

 $^{^{7}}$ Azaz az f mérhető, van integrálja és az véges.

- **2. Tétel** (Fubini⁸). A fenti szigma-véges (X_i, Ω_i, μ_i) (i = 1, 2) mértékterek esetén az eddigi (X, Ω, μ) szorzattérre nézve tetszőleges $f \in L(\mu)$ függvényre igazak az alábbi állítások:
 - a) $f_x \in L(\mu_2)$ μ_1 -m.m. $x \in X_1$ elemre;
 - b) $f^y \in L(\mu_1)$ μ_2 -m.m. $y \in X_2$ elemre;
 - c) $\varphi_f \in L(\mu_1), \ \varphi^f \in L(\mu_2);$
 - d) $\int f d\mu = \int \varphi_f d\mu_1 = \int \varphi^f d\mu_2.$

A tétel d) egyenlőségét szukcesszív integrálás elnevezéssel szokás említeni. Ui. általában egy $f\in L(\mu)$ függvénynek (valamilyen μ mérték szerinti) integráljára az eddigi $\int f\,d\mu$ szimbólum mellett használatos a kissé konzervatív, a függvény jele helyett (joggal kifogásolható módon) a függvényértéket feltüntető

 $\int f(x) \, d\mu(x)$

jelölés is. A φ_f , φ^f függvények definíciójára gondolva pl. a Fubini-tétel d) állítása ezzel a szimbolikával a következőképpen is írható:

$$\int f d\mu = \int f(x,y) d\mu(x,y) = \int \left(\int f(x,y) d\mu_2(y) \right) d\mu_1(x) =$$

$$\int \left(\int f(x,y) d\mu_1(x) \right) d\mu_2(y),$$

ami eléggé szemléletes módon fejezi ki a fent említett szukcesszív ("az egyes változók szerinti egymás után való") integrálás tényét.

3. Megjegyzések.

 i) Az alábbi példa azt mutatja, hogy az 1. Tételben a mértékek szigmavégessége lényeges. Legyen ui.

$$X_i := [0, 1]$$
 $(i = 1, 2),$

a μ_1 a [0,1]-beli Lebesgue-mérték, a $\mu_2(A)$ $(A \in \Omega_2)$ pedig legyen az A elemeinek a száma (ha az A véges), és legyen $+\infty$ (ha az A nem véges), ahol $\Omega_1 = \Omega_2$ a [0,1]-beli Borel-halmazok rendszere. Ekkor

$$A := \{(x, y) \in X_1 \times X_2 : x = y\} \in \Omega,$$

⁸Guido Fubini (1879 – 1943).

$$f_A(x) = \mu_2(A_x) = 1, \quad f^A(y) = \mu_1(A^y) = 0 \qquad (x \in X_1, \ y \in X_2).$$

Tehát

$$\int f_A \, d\mu_1 = 1 \neq \int f^A \, d\mu_2 = 0.$$

(Könnyű meggondolni, hogy a μ_2 nem szigma-véges.)

ii) Valamilyen $0 < n \in \mathbf{N}$ mellett tekintsük az alábbi $\mathbf{R}^n \to \mathbf{R}^n$ típusú lineáris transzformációkat:

$$\lambda \in \mathbf{R}, i, j = 1, ..., n, i < j$$

és $x = (x_1, ..., x_n) \in \mathbf{R}^n$ esetén

- a) $T(x) := (x_1, ..., x_{i-1}, \lambda \cdot x_i, x_{i+1}, ..., x_n);$
- b) $R(x) := (x_1, ..., x_{i-1}, x_i + x_i, x_{i+1}, ..., x_n);$
- c) $S(x) := (x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{j-1}, x_i, x_{j+1}, ..., x_n).$

Nem nehéz belátni, hogy bármilyen

$$\Phi: \mathbf{R}^n \to \mathbf{R}^n$$

invertálható lineáris leképezés (azaz egy

$$\Phi \in \mathbf{R}^{n \times n}$$

nem szinguláris mátrix) véges sok T, R, S-típusú operátor kompozíciója. Ha viszont az

$$f: \mathbf{R}^n \to \mathbf{R}$$

függvény $L^1(\widehat{\mu}_n)$ -beli, akkor a Fubini-tétel szerint

$$\int f \, d\widehat{\mu}_n = \int f \circ S \cdot |\det S| \, d\widehat{\mu}_n$$

 $(\hat{\mu}_n \text{ az } \mathbf{R}^n$ -beli Lebesgue-mértéket jelöli)). Ugyanez mondható az S helyett a T-re és az R-re, a Fubini-tétel mellett a $\hat{\mu}_1$ Lebesgue-mérték eltolásinvarianciáját, valamint az azzal analóg módon igazolható

$$\int g_{\lambda} \, d\widehat{\mu}_1 = |\lambda| \cdot \int g \, d\widehat{\mu}_1$$

 $(0 \neq \lambda \in \mathbf{R}, g \in L^1(\widehat{\mu}_1), g_{\lambda}(x) := g(x/\lambda) \quad (x \in \mathbf{R}))$ egyenlőséget figyelembe véve. Innen viszont a fenti Φ -re és f-re azonnal adódik az

$$\int f \, d\widehat{\mu}_n = \int f \circ \Phi \cdot |\det \Phi| \, d\widehat{\mu}_n$$

integráltranszformációs formula. Ha ebben egy $A \in \widehat{\Omega}_n$ halmaz mellett $f := \chi_A$ -t írunk, akkor a

$$\widehat{\mu}_n(\Phi[A]) = |\det \Phi| \cdot \widehat{\mu}_n(A)$$

egyenlőséget kapjuk.

iii) (Minkowski⁹-egyenlőtlenség). Tegyük fel, hogy az $(X,\Omega,\mu), (Y,\Theta,\nu)$ mértékterek szigma-végesek. Ekkor minden, a $\mu\otimes\nu$ szorzatmérték szerint integrálható

$$f: X \times Y \to \overline{\mathbf{R}}$$

függvény és $1 \le p < +\infty$ kitevő esetén

$$\left(\int \left|\int f(x,y) \, d\nu(y)\right|^p d\mu(x)\right)^{1/p} \le \int \left(\int |f(x,y)|^p \, d\mu(x)\right)^{1/p} d\nu(y).$$

(Az integrál normája kisebb vagy egyenlő, mint a norma integrálja (ahol a "norma" a $\|\cdot\|_p$ normát jelenti).)

Sőt, bármilyen, az $\Omega \otimes \Theta$ szigma-algebrára nézve mérhető

$$f: X \times Y \to \overline{\mathbf{R}}$$

függvényre és $1 \le p < +\infty$ kitevőre

$$\left(\int \left(\int |f(x,y)| \, d\nu(y)\right)^p d\mu(x)\right)^{1/p} \le \int \left(\int |f(x,y)|^p \, d\mu(x)\right)^{1/p} d\nu(y).$$

A Tonelli-tétel miatt itt p = 1-re egyenlőség van.

iv) Mutassuk meg, hogy ha $X \neq \emptyset$ és adott az (X,Ω,μ) szigma-véges mértéktér, akkor tetszőleges 0 kitevő és

$$f: X \to \overline{\mathbf{R}}$$

mérhető függvény esetén

$$||f||_p^p = p \cdot \int_0^{+\infty} y^{p-1} \cdot \mu(\{|f| > y\}) \, dy.$$

Ui. szukcesszív integrálással (a $(0,+\infty)$ félegyenesen a Lebesguemérték szerint történő $\int_0^{+\infty}\dots dy$ integrálásra utalva)

$$\int |f|^p d\mu = \int \left(p \cdot \int_0^{|f(x)|} y^{p-1} dy \right) d\mu(x) =$$

 $^{^9}$ Hermann Minkowski (1864 – 1909).

$$= \int \left(p \cdot \int_0^{+\infty} y^{p-1} \cdot \chi_{\{|f| > y\}}(x) dy \right) d\mu(x) =$$

$$p \cdot \int_0^{+\infty} y^{p-1} \cdot \left(\int \chi_{\{|f| > y\}}(x) d\mu(x) \right) dy =$$

$$p \cdot \int_0^{+\infty} y^{p-1} \cdot \mu(\{|f| > y\}) dy.$$

v) Könnyű meggondolni, hogy a fenti Minkowski-egyenlőtlenségből a "klasszikus"

$$||g+h||_p \le ||g||_p + ||h||_p \qquad (g, h \in L^p)$$

változat is következik (tetszőleges szigma-véges (X,Ω,μ) mértéktér és $1\leq p<+\infty$ esetén). Valóban, legyen ehhez $Y:=[0,2],\ a$ szigma-algebra legyen a [0,2] intervallumbeli Lebesgue-mérhető halmazok rendszere, a ν pedig a [0,2]-beli Lebesgue-mérték. Ha

$$f(x,y) := \begin{cases} g(x) & (0 \le y < 1) \\ h(x) & (1 \le y \le 2) \end{cases} (x \in X),$$

akkor

$$\left(\int \left| \int f(x,y) \, d\nu(y) \right|^p d\mu(x) \right)^{1/p} =$$

$$\left(\int \left| \int_0^1 f(x,y) \, d\nu(y) + \int_1^2 f(x,y) \, d\nu(y) \right|^p d\mu(x) \right)^{1/p} =$$

$$\left(\int |g(x) + h(x)|^p d\mu(x) \right)^{1/p} = ||g + h||_p.$$

Tehát

$$||g+h||_{p} \le \int \left(\int |f(x,y)|^{p} d\mu(x)\right)^{1/p} d\nu(y) =$$

$$\int_{0}^{1} \left(\int |f(x,y)|^{p} d\mu(x)\right)^{1/p} d\nu(y) + \int_{1}^{2} \left(\int |f(x,y)|^{p} d\mu(x)\right)^{1/p} d\nu(y) =$$

$$\left(\int |g(x)|^{p} d\mu(x)\right)^{1/p} + \left(\int |h(x)|^{p} d\mu(x)\right)^{1/p} = ||g||_{p} + ||h||_{p}.$$