

Appl. Serial No.: 10/603,946
Amendment dated April 5, 2005
Reply to Office action of January 27, 2005

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A system for in-situ verification and calibration of flow control devices, comprising:
 - a flow verification device;
 - a first network physical layer for connecting the flow control devices to the flow verification device; and
 - a second network physical layer connected to the flow verification device;

wherein a controller of the flow verification device is programmed to verify and, if necessary, calibrate the flow control devices over the first network physical layer based upon a single command provided through the second network physical layer.
2. (Currently amended) A system according to claim 1, wherein the first network physical layer comprises a EtherNet/IP network physical layer.
3. (Currently amended) A system according to claim 1, wherein the second network physical layer comprises a DeviceNet™ network physical layer is based on a broadcast-oriented, communications protocol.
4. (Original) A system according to claim 1, wherein the flow verifier is a rate-of-rise flow verifier.

Appl. Serial No.: 10/603,946
Amendment dated April 5, 2005
Reply to Office action of January 27, 2005

5. (Currently amended) A system according to claim 4, wherein the flow verifier is a GBROR™ modular, in-situ flow verifier.

6. (Currently amended) A system according to claim 4, wherein the flow verifier is a Tru-Flo™ process transparent, in-situ flow verifier.

7. (Original) A system according to claim 1, further comprising flow control devices connected to the first network physical layer.

8. (Original) A system according to claim 7, wherein the flow control devices comprise pressure insensitive type mass flow controllers.

9. (Original) A system according to claim 1, further comprising a hub connected to the first network physical layer.

10. (Original) A system according to claim 9, wherein the hub comprises a BlueBox™ communications manager that can support connectivity software for data collection and routing.

11. (Original) A method for in-situ verification and calibration of flow control devices, comprising:

connecting a flow verification device to the flow control devices through a first network physical layer;

connecting a second network physical layer to the flow verification device; and

programming a controller of the flow verification device to verify and, if necessary, calibrate the flow control devices over the first network physical layer based upon a single command provided through the second network physical layer.

Appl. Serial No.: 10/603,946
Amendment dated April 5, 2005
Reply to Office action of January 27, 2005

12. (Currently amended) A method according to claim 11, wherein the first network physical layer comprises a an EtherNet/IP network physical layer.

13. (Currently amended) A method according to claim 11, wherein the second network physical layer comprises a ~~DeviceNet™ network physical layer is based on a broadcast-oriented, communications protocol.~~

14. (Original) A method according to claim 11, wherein the flow verifier is a rate-of-rise flow verifier.

15. (Currently amended) A method according to claim 14, wherein the flow verifier is a ~~GBROR™ modular~~, in-situ flow verifier.

16. (Currently amended) A method according to claim 14, wherein the flow verifier is a ~~Tru-Flo™ process transparent~~, in-situ flow verifier.

17. (Original) A method according to claim 11, wherein the flow control devices comprise pressure insensitive type mass flow controllers.

18. (Original) A method according to claim 11, further comprising connecting a hub to the first network physical layer.

19. (Currently amended) A method according to claim 18, wherein the hub comprises a ~~BlueBox™ communications manager that can support connectivity software for data collection and routing.~~

20. (Original) A method according to claim 11, wherein the flow verification device is put in fluid communication with the flow control devices through a gas manifold.