Anexo 1 – Datos de Entrada

```
1 import random
 2
 3 # Datos proporcionados
 4 horarios = {
 5 'H001': 'L-Mi-V 09:00 - 10:00',
 6 'H002': 'L-Mi-V 10:00 - 11:00',
 7 'H003': 'Ma-3 09:00 - 10:30',
 8 'H004': 'Ma-J 10:30 - 12:00'
9 }
10
11 aulas = {
12 'A001': 45,
13 'A002': 35,
14 'A003': 25
15 }
16
17 profesores = {
     'P001': {'nombre': 'Dr. Edwin Villanueva', 'preferido': None},
19 'P002': {'nombre': 'Mg. Layla Hirsh', 'preferido': 'H001'},
20 'P003': ('nombre': 'Dr. Manuel Tupia', 'preferido': None),
21
      'P004': ('nombre': 'Mg. Cesar Aguilera', 'preferido': 'H002')
22 }
23
24 cursos = {
      'C001': {'nombre': 'Fundamentos de programación', 'alumnos': 45, 'profesores': ['P001', 'P002', 'P003', 'P004']},
      'C002': {'nombre': 'Bases de Datos', 'alumnos': 45, 'profesores': ['P004']},
26
      'C003': {'nombre': 'Algoritmia', 'alumnos': 35, 'profesores': ['P002', 'P003']},
27
      'C004': {'nombre': 'Sistemas de información', 'alumnos': 30, 'profesores': ['P003', 'P004']},
28
29
      'C005': {'nombre': 'Sistemas de Información 2', 'alumnos': 30, 'profesores': ['P003', 'P004']},
      'C006': {'nombre': 'Machine Learning', 'alumnos': 25, 'profesores': ['P001', 'P002']},
30
      'C007': {'nombre': 'Deep Learning', 'alumnos': 20, 'profesores': ['P001']}
31
32 }
33 FUENTE: Código Python de Solución de Problema
```

Anexo 2 - Determinación de número de individuos en la población y el número de generaciones

FUENTE: Código Python de Solución de Problema

Anexo 3 - Determinación de número de individuos en la población y el número de generaciones

Fitness total final para este individua: 1841 Generación 180, Pejor fitness = 1841 Mejor individuo en la ditima generación = [['curso': 'C881', 'horario': 'H883',

FUENTE: Código Python de Solución de Problema

Anexo 4 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness - 1841

Mejor individuo en la última generación = [{'curso': 'C001', 'horario': "H06

FUENTE: Código Python de Solución de Problema

Fitness total final para este Individuo: 1841 Generación 180, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'M003


```
9 # Inicializa una población inicial de forma aleatoria
18 poblacion inicial = init population(tamano poblacion, cursos, horarios, aulas, profesores)
12 # Evoluciona la población con el algoritmo genético (cruzamiento 'uniforme', mutación 'flip')
best_ind, bestfitness = genetic_algorithm(poblacion_inicial, GENERATIONS, PMUT,
                                           crossover="onepoint", mutation="flip",
15
                                            selection_parents_method='roulette',
                                            selection_survivors_method='ranking')
```

Anexo 5 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness = 1841
Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H001'
Evolución del Fitness a lo largo de las Generaciones

60

Generación

80

100

20

Anexo 6 - Determinación de número de individuos en la población y el número de generaciones

Generación 100, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H003'

Generación 180, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': 'C091', 'horario': 'M083

FUENTE: Código Python de Solución de Problema

```
Generación 100, Mejor fitness = 1841
Hejor individuo en la última generación = [{'curso': 'C001', 'horario': 'H004'}

Evolución del Fitness a lo largo de las Generaciones

1800

1700

1700

1500

1841
```

60

Generación

20

100

Anexo 7 - Determinación de número de individuos en la población y el número de generaciones

Generación 188, Mejor fitness = 1841 Mejor individuo en la última generación = [{'curso': "C001', "horario': "H00

FUENTE: Código Python de Solución de Problema

Anexo 8 - Determinación de tipo de mutación

MULTIFLIP, 50 INDIVIDUOS, 100 GENERACIONES

Pmut: 5% Pmut: 10% Pmut: 100%

PUENTE: Código Python de Solución de Problema

Anexo 9 - Determinación de tipo de mutación

FLIP, 50 INDIVIDUOS, 100 GENERACIONES

Pmut: 5% Pmut: 10% Pmut: 100%

FUENTE: Código Python de Solución de Problema

Anexo 11 Resultados de la Experimentación (Etapa 2)

1. Output del Código donde se muestra el individuo con mejor fitness y cumpliendo las restricción del caso

```
Fitness de 1841 repetido en las últimas 3 generaciones. Deteniendo.

Mejor individuo en la última generación =

{'curso': 'C001', 'horario': 'H002', 'aula': 'A001', 'profesor': 'P002'}

{'curso': 'C002', 'horario': 'H003', 'aula': 'A001', 'profesor': 'P004'}

{'curso': 'C003', 'horario': 'H004', 'aula': 'A001', 'profesor': 'P002'}

{'curso': 'C004', 'horario': 'H001', 'aula': 'A001', 'profesor': 'P004'}

{'curso': 'C005', 'horario': 'H002', 'aula': 'A002', 'profesor': 'P003'}

{'curso': 'C006', 'horario': 'H003', 'aula': 'A002', 'profesor': 'P001'}

{'curso': 'C007', 'horario': 'H002', 'aula': 'A003', 'profesor': 'P001'}

(fitness = 1841)
```

FUENTE: Código Python de Solución de Problema

2. Output del Código para el usuario final (formato amigable)

1	clase_	id curso	1	cantidad_alumnos	aula_id	1	capacidad	profesor_id	1 pro	fesor	horario_id	horario
1	0 C001	Fundamentos de programació	in I	45	A001	1	45	P002	Mg.	Layla Hirsh	H002	L-Mi-V 10:00 - 11:00
1	1 C002	Bases de Datos	Ī	45	A001	Ī	45	P004	Mg.	Cesar Aguilera	H003	Ma-J 09:00 - 10:30
1	2 C003	Algoritmia	ī	35	A001	i	45	P002	Mg.	Layla Hirsh	H004	Ma-J 10:38 - 12:00
i	3 C004	Sistemas de información	i	30	A001	1	45	P004	1 Mg.	César Aguilera	H001	L-Mi-V 09:00 - 10:00
1	4 C005	Sistemas de Información 2	i	30	A882	i	35	P003	I Dr.	Manuel Tupia	H002	L-Mi-V 10:00 - 11:00
1	5 C006	Machine Learning	1	25	A802	İ	35	P001	Dr.	Edwin Villanueva	H003	Ma-3 89:00 - 10:30
i	6 C007	Deep Learning	i	20	A003	ij	25	P001	Dr.	Edwin Villanueva	H002	L-Mi-V 10:00 - 11:00

FUENTE: Código Python de Solución de Problema