

# **Séries Temporais**



Eduardo Ogasawara eduardo.ogasawara@cefet-rj.br https://eic.cefet-rj.br/~eogasawara

## Introdução às Séries Temporais

- Sequência de observações ordenadas no tempo
  - $X = \langle x_1, x_2, ..., x_n \rangle$
- Pode ser univariada ou multivariada
- Representa fenômenos dinâmicos em domínios como economia, saúde, clima etc.
- Frequência (regularidade de coleta)





## Componentes de Séries Temporais

- Tendência: variação de longo prazo  $(\beta_t)$
- Sazonalidade: padrões que se repetem em intervalos regulares  $(\pi_t)$
- Ruído: variações aleatórias não explicadas pelos outros componentes ( $\omega_t$ )
- $x_t = \beta_t + \pi_t + \omega_t$



#### **Estacionariedade**

- Média e variância constante independente do tempo
- Autocovariância  $\gamma(X_s, X_t)$  só depende de |s t|



#### Testes de Estacionariedade

 Testes comuns: ADF (Dickey-Fuller), Phillips-Perron test, Breusch-Pagan test

| Time series           | ADFT | PPT | BPT |
|-----------------------|------|-----|-----|
| stationary            |      |     |     |
| trend stationary      |      |     |     |
| level stationary      | X    |     |     |
| heteroscedastic       |      |     | X   |
| difference stationary | X    | X   | X   |
| YGT                   |      |     | X   |

#### **Autocorrelação**

- Mede a relação entre valores atuais e seus defasados
- Utilizada para identificar padrões temporais, como periodicidade e dependência
- Representada por gráficos de autocorrelação (ACF)



## Pré-processamento de Séries Temporais

- Etapa crítica para garantir qualidade dos dados
- Envolve:
  - Suavização
  - Diferenciação
  - Normalização/padronização
  - Agregação temporal

## Suavização de Séries Temporais

- Reduz a variabilidade de curto prazo
- Evidencia padrões de longo prazo
- Exemplos:
  - Média móvel
  - Média móvel exponencialmente ponderada



## Diferenciação e Estacionariedade

- Subtrai o valor anterior do atual
- Remove tendência ou ciclo, tornando a série mais estacionária
- Muito usada em modelos ARIMA



## Normalização e Padronização

- Normalização: reescala os dados para intervalo [0, 1]
- Padronização: transforma dados para média 0 e desvio padrão 1
  - Min-Max:  $y_t = \frac{x_t x_{min}}{x_{max} x_{min}}$  e Z-Score:  $y_t = \frac{x_t \bar{X}}{\sigma_X}$
  - Global vs. SW
    - Normalização adaptativa



## Agregação temporal

- Converte dados de maior para menor frequência (ex: minuto → hora)
- Reduz granularidade e facilita análise
- Permite análise em múltiplos níveis temporais



## Modelagem Simples de Tendência

- Regressão linear: ajusta uma reta à série
- Média móvel: suaviza ruído para destacar tendência
- Auxilia na identificação do comportamento de longo prazo



#### Tratamento de tendência

- Estratégias para remover tendência antes da modelagem:
  - Resíduo da regressão linear
  - Resíduo da média móvel
  - Diferenciação
  - Variação percentual



#### Tratamento de variância

- Transforma séries com variância crescente ou decrescente
- Técnicas:
- Logaritmo natural
- Transformação Box-Cox (BCT)



## Decomposição no domínio da frequência



#### Janelas deslizantes

- Divide a série em subsequências fixas ao longo do tempo
- Base para entrada em modelos de aprendizado de máquina
- Útil para extração de padrões locais



## Predição em Séries Temporais

- Objetivo: prever valores futuros com base no histórico
- Estratégias:
  - Predição passo a passo (rolling)
  - Predição de múltiplos passos à frente
  - Requer validação temporal adequada



## Separação Temporal de Treino e Teste

- Manter a ordem cronológica dos dados
- Técnicas:
- Holdout temporal
- Validação cruzada com janelas (TimeSeriesSplit)
- Evita vazamento de informação do futuro para o passado



## Workflow de predição em Séries Temporais

- Etapas típicas de predição:
  - Pré-processamento: limpeza, transformação, diferenciação
  - Treinamento do modelo: ARIMA, redes neurais, regressão etc.
  - Predição do modelo: geração de valores futuros
  - Pós-processamento: dessazonalização, inversão de escala
  - Avaliação: erro quadrático médio (RMSE), MAE, MAPE



## Modelagem com ARIMA

- Modelo estatístico tradicional: ARIMA(p, d, q)
- p: autorregressão
- d: diferenciação
- q: média móvel
- Requer estacionariedade
- Boas práticas: identificar parâmetros via ACF/PACF, validação cruzada





## Modelagem com Aprendizado de Máquina

- Capturam padrões não lineares e alta complexidade
- Métodos comuns para predição de séries temporais:
  - ELM (Extreme Learning Machines), MLP (Perceptron Multicamadas)
  - RRF (Random Rotation Forests), SVR (Support Vector Regression)
  - Conv1D (Convolucional 1D), LSTM (Long Short-Term Memory)



## Resumo do Capítulo

- Revisamos:
- Conceitos, tipos e componentes de séries temporais
- Estratégias de pré-processamento
- Fundamentos de modelagem e predição
- O entendimento desses fundamentos é essencial para tarefas de detecção de eventos e mineração de dados temporais

## Referências









[1] Ogasawara, E.; Salles, R.; Porto, F.; Pacitti, E. Event Detection in Time Series. 1. ed. Cham: Springer Nature Switzerland, 2025.

[2] Cryer, J. D.; Chan, K.-S. Time Series Analysis: With Applications in R. Springer Science & Business Media, 2008.

[3] Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques. 4th edition ed. Cambridge, MA: Morgan Kaufmann, 2022.

[4] James, G. M.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R. [s.l.] Springer Nature, 2021.

