YET ANOTHER TABLE OF INTEGRALS

RICHARD J. MATHAR

ABSTRACT. This collection of sums and integrals has been harvested from the mathematical and physical literature in unstructured ways. Its main use is backtracking the original sources whenever an integral of the reader's application resembles one of the items in the collection.

Introduction

Dealing with the analysis of real numbers in the physical sciences shows a strange attraction towards integrals. Closed-form integration beats numerical integration, and often adaptive series expansion helps to crumble cumbersome integral kernels to digestable pieces.

The current table started as a incoherent list of bookmarks pointing to "interesting" formulas that complement or correct the Gradstein-Rhyshik tables [91], see http://www.mathtable.com/gr/. As such it does not replicate the original sources in full but is to be merely regarded as an aid to find places at which certain forms and classes of integrals or sums have been targeted.

The notation is generally not harmonized. Stirling numbers appear in bracketed and indexed notations, and at least two different meanings of harmonic numbers H with lower and upper indices are met.

There is only one hint of use: The list of references appears *prior* to each formula.

0.1. Finite Series. [181, 176]

(0.1)
$$\sum_{i=1}^{n} j^{k} = \frac{1}{n} \left(\rho(n, i) + \sum_{i=1}^{n} \sigma_{k+1}(i) \right) = \frac{B_{k+1}(n+1) - B_{k+1}}{k+1}$$

where $\rho(n,k) \equiv \sum_{d=1}^n d^k(n \mod d)$ is a sum over $n \mod d$ multiplied, then summed, over d^k , and $\sigma_k(n) = \sum_{d|n} d^k$.

[55, 67]

(0.2)
$$\sum_{k=1}^{n-1} k^r = \sum_{k=0}^r \frac{B_k}{k!} \frac{r!}{(r-k+1)!} n^{r-k+1}.$$

[182]

(0.3)
$$\sum_{k=0}^{n} k^{m} = \sum_{j=0}^{m} \begin{Bmatrix} m \\ j \end{Bmatrix} \binom{n+1}{j+1} j!.$$

Date: August 30, 2013.

2010 Mathematics Subject Classification. Primary 33-00, 40-00; Secondary 44-00.

Key words and phrases. sums, integrals, tables.

By telescoping the last term in this formula becomes

(0.4)
$$n^{m} = \sum_{j=0}^{m} \begin{Bmatrix} m \\ j \end{Bmatrix} \binom{n}{j} j!.$$

[186]

(0.5)
$$\sum_{0 \le i \le n/m} {n - jm \choose k} = P(n + m, k, m) - P(r, k, m)$$

for $n \geq 0, k \geq 1, m \geq 1$ where

(0.6)
$$P(x,k,m) \equiv \frac{1}{m} \sum_{j=1}^{k+1} {x \choose j} A(m,k+1-j)$$

with g.f.

(0.7)
$$\frac{mx}{(1+x)^m - 1} = \sum_{j=0}^{\infty} A(m,j)x^j.$$

[166]

(0.8)
$$\sum_{k=0}^{n} {r+k \choose k} = {r+n+1 \choose n}, \quad n = 0, 1, 2, \dots$$

[182]

(0.9)
$$\sum_{k} \binom{n}{2k} k = n2^{n-3}, \quad n \ge 2.$$

[182]

(0.10)
$$\sum_{k} {n \choose 2k+1} k = (n-2)2^{n-3}, \quad n \ge 2.$$

[182]

(0.11)
$$\sum_{k} {n \choose 2k} k^{\underline{m}} = n(n-m-1)^{\underline{m-1}} 2^{n-2m-1}, \quad n \ge m+1,$$

[182]

(0.12)
$$\sum_{k} {n \choose 2k+1} k^{\underline{m}} = n(n-m-1)^{\underline{m}} 2^{n-2m-1}, \quad n \ge m+1,$$

where $k^{\underline{m}}$ is the falling factorial $k(k-1)(k-2)\cdots(k-m+1)$. [182]

(0.13)
$$\sum_{k=0}^{n} \binom{n}{k} k^m = \sum_{j=0}^{m} \begin{Bmatrix} m \\ j \end{Bmatrix} \binom{n}{j} j! 2^{n-j}.$$

[182]

(0.14)
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k k^m = \begin{Bmatrix} m \\ n \end{Bmatrix} (-1)^n n!.$$

[182]

$$(0.15) \qquad \sum_{k=0}^{n} \binom{n}{2k} k^m = n \sum_{j=1}^{\min(m,n-1)} \begin{Bmatrix} m \\ j \end{Bmatrix} \binom{n-j-1}{j-1} (j-1)! 2^{n-2j-1}.$$

[182]

(0.16)
$$\sum_{k=0}^{n} \binom{n}{2k+1} k^m = \sum_{j=1}^{\min(m,n-1)} \begin{Bmatrix} m \\ j \end{Bmatrix} \binom{n-j-1}{j-1} j! 2^{n-2j-1}.$$

[107] (0.17)

$$\sum_{0 \le k \le N, k \ne K} \binom{N}{k} (-1)^k \frac{1}{(k-K)^m} = \binom{N}{K} (-1)^{K+1} \frac{1}{m!} Y_m(\dots, (i-1)! [H_{N-K}^{(i)} + (-1)^i H_K^{(i)}], \dots)$$

where $0 \le K \le N$, $Y_m(\ldots, x_i, \ldots)$ are the Bell polynomials and $H_r^{(i)} = \sum_{j=1}^r j^{-i}$ Harmonic numbers of the *i*-th order.

[107]

(0.18)
$$\sum_{0 \le k \le N, k \ne K} {N \choose k} (-1)^k \frac{1}{k - K} = {N \choose K} (-1)^{K+1} (H_{N-K} - H_K)$$

where $0 \le K \le N$, $H_r^{(i)} = \sum_{j=1}^r j^{-i}$ Harmonic numbers of the *i*-th order. [107]

(0.19)
$$\sum_{0 \le k \le N} {N \choose k} (-1)^k \frac{1}{k^m} = -\frac{1}{m!} Y_m(\dots, (i-1)! H_N^{(i)}, \dots)$$

where $H_r^{(i)} = \sum_{j=1}^r j^{-i}$ Harmonic numbers of the *i*-th order.

[107

$$\sum_{0 \le k \le N} {N \choose k} (-1)^k \frac{1}{(k-\xi)^m} = \Gamma(-\xi) \frac{\Gamma(N+1)}{\Gamma(N+1-\xi)} \frac{1}{(m-1)!} Y_{m-1}(\dots, (i-1)! \zeta_N(i, -\xi), \dots),$$

where $\zeta_N(i, -\zeta) = \sum_{j=0}^{N} (j - \xi)^{-j}$. [161, §4.3]

(0.21)
$$a_n = \sum_{k=0}^n \binom{p+k}{k} b_{n-k} \Leftrightarrow b_n = \sum_{k=0}^n (-1)^k \binom{p+k}{k} a_{n-k}.$$

 $[161, \S 4.3]$

(0.22)
$$a_n = \sum_{k=0}^n \binom{p+k}{k} b_{n-qk} \Leftrightarrow b_n = \sum_{k=0}^n (-1)^k \binom{p+k}{k} a_{n-qk}.$$

[161, §4.3]

(0.23)
$$a_n = \sum_{k=0}^n {2k \choose k} b_{n-k} \Leftrightarrow b_n = \sum_{k=0}^n \frac{1}{1-2k} {2k \choose k} a_{n-k}.$$

 $[161, \S 4.3]$

(0.24)
$$a_n = \sum_{k=0}^n \frac{1}{k+1} {2k \choose k} b_{n-k} \Leftrightarrow b_n = a_n - \sum_{k=1}^n \frac{1}{k} {2k \choose k} a_{n-k}.$$

[156]

$$(0.25) x_n = a_n + 2^{1-n} \sum_{k=0}^n \binom{n}{k} x_k \Leftrightarrow x_n = x_0 + \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{k\bar{x}_1 + \hat{a}_k - \bar{x}_0}{1 - 2^{1-k}}$$

where $\bar{x}_0 \equiv a_0 + x_0$, $\bar{x}_1 = a_1 + x_0$ and

(0.26)
$$\hat{a}_n = \sum_{k=0}^n \binom{n}{k} (-1)^k a_k.$$

[156]

$$(0.27) x_{n+1} = a_{n+1} + 2^{1-n} \sum_{k=0}^{n} \binom{n}{k} x_k \Leftrightarrow x_n = -\sum_{k=0}^{n} (-1)^k \binom{n}{k} \hat{x}_{k-2}$$

where $\bar{x}_0 = 0$,

(0.28)
$$\hat{x}_n = Q_n \sum_{i=1}^{n+1} (\hat{a}_i - \hat{a}_{i+1} - a_1)/Q_{i-1}, \quad Q_n \equiv \prod_{k=1}^n (1 - 2^{-k}).$$

[106]

$$(0.29) u_n = Au_{n-1} - Bu_{n-2}, v_n = Av_{n-1} - Bv_{n-2},$$

(0.30)

$$(0.31)$$

$$\rightsquigarrow v_n = \prod_{k=1}^n \left(A - 2i\sqrt{-B}\cos\frac{\pi(k-1/2)}{n} \right) = 2(i\sqrt{-B})^n \cos\left(n\cos^{-1}\frac{-iA}{2\sqrt{-B}}\right),$$

where $u_0 = 0$, $u_1 = 1$, $v_0 = 2$, $v_1 = A$ [201]

(0.32)
$$\sum_{p=1}^{p-1} F(x) + \sum_{p=1}^{p-1} \left(\frac{x}{p}\right) F(x) = \sum_{p=1}^{p-1} F(x^2),$$

if p is an odd prime and F(x) = F(x+p), where $(\frac{x}{p})$ is the Legendre Symbol. [201]

(0.33)
$$\sum_{x=1}^{p-1} \left(\frac{x}{p}\right) e(k(x+\bar{x})) = \left(\frac{k}{p}\right) i^{(p-1)^2/4} p^{1/2} (e(2k) + e(-2k)).$$

where \bar{x} is the unique solution to $x\bar{x} \equiv 1 \pmod{p}$, and $e(t) = e^{2\pi i t/p}$.

$$(0.34) \quad \sum_{k=0}^{m} {m \choose k} \frac{(n+k)!}{(n+k+s)!} a_{n+k+s} = \sum_{k=0}^{n} {n \choose k} \frac{(-1)^{n-k} (m+k)!}{(m+k+s)!} b_{m+k+s}$$

$$+ \sum_{j=0}^{s-1} \sum_{i=0}^{s-1-j} {s-1-j \choose i} {s-1 \choose j} \frac{(-1)^{n+1+i} a_j}{(s-1)! (m+n+1+i) {m+n+i \choose n}},$$

where $b_n \equiv \sum_{k=0}^n \binom{n}{k} a_k$.

(0.35)
$$\sum_{k=0}^{m} {m \choose k} {n+k \choose s} a_{n+k+s} = \sum_{k=0}^{n} {n \choose k} {m+k \choose s} (-1)^{n-k} b_{m+k+s},$$

where $b_n \equiv \sum_{k=0}^n \binom{n}{k} a_k$.

$$(0.36) \quad \sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+k+s}{s}} x^{m-k} A_{n+k+s}(y) = \sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{m+k+s}{s}} (-1)^{n+m+s} x^{n-k} A_{m+k+s}^{*}(z) + \sum_{j=0}^{s-1} \sum_{i=0}^{s-1-j} \binom{s-1-j}{i} \binom{s-1}{j} \frac{(-1)^{n+1+i} x^{m+n+s-j} s A_{j}(y)}{(m+n+1+i) \binom{m+n+i}{n}},$$

and

(0.37)

$$\sum_{k=0}^{m} {m \choose k} {n+k \choose s} x^{m-k} A_{n+k+s}(y) = \sum_{k=0}^{n} {n \choose k} {m+k \choose s} (-1)^{n+m+s} x^{n-k} A_{m+k+s}^*(z)$$

where $A_n(x) \equiv \sum_{k=0}^n \binom{n}{k} (-1)^k a_k x^{n-k}$ and $A_n^*(x) \equiv \sum_{k=0}^n \binom{n}{k} (-1)^k a_k^* x^{n-k}$ and $a_n^* \equiv \sum_{k=0}^n \binom{n}{k} (-1)^k a_k$ and x+y+z=1. [48]

(0.38)
$$a_{n,m} = \sum_{k=0}^{n} \binom{n}{k} \alpha^{n-k} \beta^k a_{0,m+k},$$

and

(0.39)
$$\sum_{k=0}^{n} \binom{n}{k} \alpha^{n-k} \beta^k a_{0,m+k} = \sum_{k=0}^{m} \binom{m}{k} (-\alpha)^{m-k} \beta^{-m} a_{n+k,0},$$

where $a_{n,m} \equiv \alpha a_{n-1,m} + \beta a_{n-1,m+1}$ for $n \ge 1, m \ge 0$.

[92]

(0.40)

$$x_{nm} = \sum_{k=0}^{m} x_{mk} \binom{n+k}{2m} \leadsto x_{nm} = \sum_{k=0}^{m} \frac{2k+1}{m+k+1} \binom{n+k}{m+k} \binom{n-1-k}{m-k} x_{kk},$$

for $m < n, n \ge 0, 0 \le m \le n$.

[33]

(0.41)

$$F(x) \equiv \sum_{k \ge 1} f(x/k); \quad G(x) \equiv \sum_{k \ge 1} (-)^k f(x/k) \leadsto F(x) = 2^{-n} F(2^n x) + \sum_{k \ge 1} 2^{-k} G(2^k x).$$

$$[33]$$
 (0.42)

$$F(x) = r_1 F(m_1 x) + r_2 G(m_2 x) \leadsto r_2 \sum_{k=1}^n r_1^{k-1} G(m_1^{k-1} m_2 x) = F(x) - r_1^n F(m_1^n x).$$

[182]

(0.43)
$$\sum_{k=0}^{n} \binom{n}{k} H_k = 2^n \left(H_n - \sum_{k=1}^{n} \frac{1}{k2^k} \right).$$

where H_k are the harmonic numbers.

[182]

(0.44)
$$\sum_{k} {n \choose 2k} \frac{1}{k+1} = \frac{n2^{n+1}+2}{(n+1)(n+2)}.$$

[182]

(0.45)
$$\sum_{k} \binom{n}{2k+1} \frac{1}{k+1} = \frac{2^{n+1}-2}{n+1}.$$

[164]

(0.46)
$$\sum_{j=0}^{n} {m-a+b \choose j} {n+a-b \choose n-j} {a+j \choose m+n} = {a \choose m} {b \choose n},$$

where n, m are integer and a, b real.

[164]

(0.47)
$$\sum_{m=0}^{P} (-)^m \binom{P}{m} \binom{a-m}{M} = \binom{a-P}{M-P},$$

where P, M are integer and a, b real.

[166]

(0.48)

$$\sum_{k} {r \choose k} {s \choose n+k} = {r+s \choose r+n}, \quad r = 0, 1, 2, \dots, n = \dots -2, -1, 0, 1, 2, 3, \dots$$

[164, 166]

(0.49)
$$\sum_{m=0}^{n} (-)^m \binom{n}{m} \binom{a+m}{p} = (-)^n \binom{a}{p-n},$$

where n, p are integer and a is real.

[166]

(0.50)
$$\sum_{k \ge 0} \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^k}{k+1} = \binom{n-1}{m-1}.$$

[166]

(0.51)
$$\sum_{\nu=0}^{s} (-)^{\nu} {\beta \choose \nu} {\beta+s-\nu \choose \beta} \frac{\alpha}{\alpha+s-\nu} = \frac{(\alpha-\beta)_s}{(\alpha+1)_s}.$$

$$\sum_{k=-l}^{l} (-)^k \binom{2l}{l+k} \binom{2m}{m+k} \binom{2n}{n+k} = \frac{(l+m+n)!(2l)!(2m)!(2n)!(2n)!}{(l+m)!(m+n)!(n+l)!l!m!n!}, \quad l = \min(l,m,n).$$

[199]

(0.53)
$$\sum_{k} \sum_{j} \binom{n}{k} \binom{n+k}{k} \binom{k}{j}^{3} = \sum_{k} \binom{n}{k}^{2} \binom{n+k}{k}^{2}.$$

[199]

(0.54)
$$\sum_{i=0}^{n} \sum_{j=0}^{n} {i+j \choose i}^2 {4n-2i-2j \choose 2n-2i} = (2n+1) {2n \choose n}.$$

[199]

$$\sum_{k_1} \sum_{k_2 \le k_1} \sum_{k_3 \le k_2} (k_1 - k_2)(k_1 - k_3)(k_2 - k_3) \binom{n}{k_1} \binom{n}{k_2} \binom{n}{k_3} = n^2(n-1)8^{n-2} \frac{(3/2)_{n-2}}{(3)_{n-2}}.$$

[199]

$$(0.56) \sum_{i} \sum_{j} \binom{i+j}{i} \binom{n-i}{j} \binom{n-j}{n-i-j} = \sum_{k=0}^{n} \binom{2k}{k}.$$

[199]

(0.57)
$$\sum_{i=0}^{n} \sum_{j=0}^{m} {i+j \choose j}^2 {m+m-i-j \choose n-j}^2 = \frac{1}{2} {2m+2n+2 \choose 2n+1}.$$

[199]

$$(0.58) \sum_{s=0}^{k} \sum_{b>0} (-)^b \binom{s}{b} \binom{k-s}{2v-b} \binom{k-2v}{s-b} = \binom{k-v}{k-2v} 2^{k-2v}, \quad k \ge 2v.$$

$$\sum_{j,k} (-)^{j+k} {j+k \choose k+l} {r \choose j} {n \choose k} {s+n-j-k \choose m-j} = (-)^l {n+r \choose n+l} {s-r \choose m-n-l}.$$

$$\sum_{i=0}^{n} \sum_{j=0}^{n} {i+j \choose i} {m-i+j \choose j} {n-j+i \choose i} {m+n-i-j \choose m-i} = \frac{(m+n+1)!}{m!n!} \sum_{k} \frac{1}{2k+1} {m \choose k} {n \choose k}.$$

[49]

(0.61)
$$\sum_{i=0}^{n} \sum_{j=0}^{n} {i+j \choose j}^2 {4n-2i-2j \choose 2n-2i} = (2n+1) {2n \choose n}^2.$$

$$\sum_{i=0}^{\lfloor m/2\rfloor} \sum_{j=0}^{\lfloor n/2\rfloor} \binom{i+j}{i}^2 \binom{m+n-2i-2j}{n-2i} = \frac{\lfloor (m+n+1)/2 \rfloor! \lfloor (m+n+2)/2 \rfloor!}{\lfloor m/2 \rfloor! \lfloor (m+1)/2 \rfloor! \lfloor (n+1)/2 \rfloor!}.$$
[49]

$$(0.63) \qquad \sum_{i} \sum_{j} \binom{n}{j} \binom{n+j}{j} \binom{j}{i}^{2} \binom{2i}{i}^{2} \binom{2i}{j-i} = \sum_{k} \binom{n}{k}^{3} \binom{n+k}{k}^{3}.$$

$$(0.64) \sum_{(-1)^{j+k}} (j+k) \binom{r}{n} \binom{s+n-j}{s}$$

$$\sum_{j} \sum_{k} (-1)^{j+k} {j+k \choose k+l} {r \choose j} {n \choose k} {s+n-j-k \choose m-j} = (-1)^{l} {n+r \choose n+l} {s-r \choose m-n-l}.$$
[49, 199]

$$(0.65) \qquad \sum_{r} \sum_{s} (-1)^{n+r+s} \binom{n}{r} \binom{n}{s} \binom{n+s}{s} \binom{n+r}{r} \binom{2n-r-s}{n} = \sum_{k} \binom{n}{k}^{4}.$$

[172]

$$(0.66) \binom{n}{i}^k = \binom{n+ik-i}{ik} + A_2 \binom{n+ik-i-1}{ik} + \cdots + A_{ik-i} \binom{n+1}{ik} + \binom{n}{ik},$$

$$\begin{split} S_{i}^{k}(n,0) &\equiv \binom{n}{i}^{k}; \\ S_{i}^{k}(n,p) &\equiv S_{i}^{k}(1,p-1) + S_{i}^{k}(2,p-1) + \cdots + S_{i}^{k}(n,k-1) \\ &= \binom{n+ik-i+p}{ik+p} + A_{2}\binom{n+ik-i+p-1}{ik+p} + \cdots + A_{ik-i}\binom{n+p+1}{ik+p} + \binom{n+p}{ik+p} \end{split}$$

where $A_j = A_{ik-i-j+2}$ for j = 2, 3, ..., ik - i,

$$(0.67) A_{j} = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & \binom{i}{i}^{k} \\ \binom{ik+1}{ik} & 1 & 0 & \cdots & 0 & \binom{i+1}{i}^{k} \\ \binom{ik+2}{ik} & \binom{ik+1}{ik} & 1 & \cdots & 0 & \binom{i+2}{i}^{k} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \binom{ik+j-1}{ik} & \binom{ik+j-2}{ik} & \binom{ik+j-3}{ik} & \cdots & \binom{ik+1}{ik} & \binom{i+j-1}{i}^{k} \end{vmatrix}$$

[189]

(0.68)
$$\sum_{k=0}^{2n} (-)^k \frac{\binom{2n}{k}}{\binom{4n}{2k}} = \frac{4n+1}{2n+1}.$$

[189]

(0.69)
$$\sum_{k=0}^{2n} (-)^k \frac{\binom{4n}{2k}}{\binom{2n}{k}} = -\frac{1}{2n-1}.$$

(0.70)
$$\sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+m}{p+k}} = \frac{n+m+1}{n+1} \binom{n}{p}^{-1},$$

with m, n, p nonnegative integers and $p \leq n$. [189]

(0.71)
$$\sum_{k=0}^{n} (-)^k \frac{1}{\binom{n+m}{m+k}} = \frac{n+m+1}{m+n+2} \left(\binom{m+n+1}{m}^{-1} + (-)^n \right),$$

with m and n nonnegative integers.

[182]

(0.72)
$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} H_k = n! \sum_{k=1}^{n} \frac{c_{k-1}}{k!},$$

where H_k are the harmonic numbers and $[\ldots]$ unsigned Stirling numbers of the first kind.

[182]

(0.73)
$$\sum_{k=0}^{n} s(n,k) = s(n-1,0) + s(n-1,-1),$$

where s(.,.) are the Stirling numbers of the first kind. [182]

(0.74)
$$\sum_{k=0}^{n} s(n,k)k = s(n-1,1) + s(n-1,0).$$

[182]

(0.75)
$$n! \sum_{k=0}^{n} s(k,m)(-1)^{n-k}/k! = s(n+1,m+1).$$

[182]

(0.76)
$$\sum_{k=0}^{n} s(n,k)k^{\underline{m}} = m![s(n-1,m) + s(n-1,m-1)],$$

where $k^{\underline{m}} = k(k-1)(k-2)\cdots(k-m+1)$. [182]

(0.77)
$$\sum_{k=0}^{n} s(n,k)k^{m} = \sum_{j=0}^{m} \begin{Bmatrix} m \\ j \end{Bmatrix} (s(n-1,j) + s(n-1,j-1)) j!.$$

[182]

(0.78)
$$\sum_{k=0}^{n} \frac{s(n,k)}{k+1} = b_n,$$

where $b_n = \int_0^1 x^n dx$ are the Cauchy numbers of the first type [175, A006232]. [182]

(0.79)
$$n! \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} \frac{1}{k!} = \begin{bmatrix} n+1 \\ m+1 \end{bmatrix}.$$

where $[\cdots]$ are the unsigned Stirling numbers of the first kind. [182]

(0.80)
$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} k = \begin{bmatrix} n+1 \\ 2 \end{bmatrix}.$$

[182]

(0.81)
$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} k^{\underline{m}} = \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} m!,$$

where $k^{\underline{m}} = k(k-1)(k-2)\cdots(k-m+1)$. [182]

(0.82)
$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} k^{m} = \sum_{j=0}^{m} \begin{bmatrix} n+1 \\ j+1 \end{bmatrix} \begin{Bmatrix} m \\ j \end{Bmatrix} j!.$$

[182]

(0.83)
$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} \frac{1}{k+1} = c_n,$$

where $c_n = \int_0^1 (x)_n dx$ are the Cauchy numbers of the second type [175, A002657], using Pochhammer's symbol. [48]

$$(0.84)$$

$$\sum_{k=0}^{m} {m \choose k} (n+k)! \begin{Bmatrix} n+k+s \\ q \end{Bmatrix} = \sum_{k=0}^{n} {n \choose k} (m+k)! (-1)^{n-k} \frac{(m+k+s)^q}{(m+k+s)!}$$

$$+ \sum_{k=0}^{n} \sum_{j=0}^{n} {n \choose k} (m+k)! (-1)^{n-k} \frac{(m+k+s)^q}{(m+k+s)!}$$

and

(0.85)
$$\sum_{k=0}^{m} (n+k)! \left\{ \begin{array}{c} n+k-s \\ q \end{array} \right\} = \sum_{k=0}^{n} \binom{n}{k} (m+k)! (-1)^{n-k} \frac{(m+k-s)^{q}}{(m+k-s)!}.$$
[138]

$$\left\{ {n \atop m} \right\}_r = \sum_{k=2}^n \binom{n}{k} \sum_{l=1}^{k-1} (-1)^{l-1} \binom{l+r-2}{l-1} \left\{ {k-l \atop m-1} \right\}_{r-1}$$

where $\{\}_r$ are r-Stirling numbers of the second kind, namely

(0.87)
$$\left\{ \begin{matrix} n \\ m \end{matrix} \right\}_r = \left\{ \begin{matrix} 0, & n < r \\ \delta_{mr} & n = r \\ m \left\{ \begin{matrix} n-1 \\ m \end{matrix} \right\}_r + \left\{ \begin{matrix} n-1 \\ m-1 \end{matrix} \right\}_r, & n > r. \end{matrix} \right.$$

0.2. Numerical Series. [56, 52][175, A152649]

(0.88)
$$\sum_{n=1}^{\infty} \frac{H_n^{(1)}}{n^3} = \frac{1}{2}\zeta^2(2),$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$.

(0.89)
$$\sum_{n=1}^{\infty} \frac{H_n^{(1)^2}}{n^4} = \frac{97}{24}\zeta(6) - 2\zeta^2(3) \approx 1.22187994531988.$$

[52]

(0.90)
$$\sum_{n=1}^{\infty} \frac{H_n^{(1)^3}}{n^3} = \zeta^2(3) - \frac{1}{3}\zeta(6) \approx 1.1058264444388.$$

[56]

(0.91)
$$\sum_{n=1}^{\infty} \frac{H_n^{(1)}}{n^{2p+1}} = \frac{1}{2} \sum_{j=2}^{2p} (-1)^j \zeta(j) \zeta(2p-j+2),$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$. [35, 137, 179]

(0.92)
$$\sum_{n=1}^{\infty} \frac{H_n^{(1)}}{n^m} = \frac{m+2}{2}\zeta(m+1) - \frac{1}{2}\sum_{k=1}^{m-2}\zeta(m-k)\zeta(k+1),$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$. [179]

(0.93)
$$\sum_{n=1}^{\infty} \frac{H_n}{n(n+\alpha)} = \frac{1}{2\alpha} [3\zeta(2) + \psi^2(\alpha) + 2\gamma\psi(\alpha) + \gamma^2 - \psi'(x)],$$

and

(0.94)
$$\sum_{n=1}^{\infty} \frac{H_n}{(n+\alpha)^2} = \gamma \psi'(\alpha) + \psi(\alpha)\psi'(\alpha) - \frac{1}{2}\psi''(\alpha),$$

and

(0.95)

$$\sum_{n=1}^{\infty} \frac{H_n}{(n+x)^q} = \frac{(-)^q}{(q-1)!} \left[(\psi(x) + \gamma) \psi^{(q-1)}(x) - \frac{1}{2} \psi^{(q)}(x) + \sum_{m=1}^{q-2} \binom{q-2}{m} \psi^{(m)} \psi^{(q-m-1)}(x) \right].$$

The paper also demonstrates a finite expansion of $\sum_{n>=1} H_n/[n^q \binom{an+k}{k}^t]$ in terms of ζ and ψ functions for t=1 and 2.

[137]

(0.96)
$$S(r,m) = S(1,m) + \sum_{k=1}^{r-1} \frac{S(k,m-1) - B(k,m)}{k}.$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$, where $S(r,m) \equiv \sum_{n=1}^\infty \frac{H_n^{(r)}}{n^m}$, where $B(k,m) \equiv {}_{m+1}F_m(1,1,\ldots,1,k+1;2,2,\ldots,2;1)$.

[137]

(0.97)
$$S(2,3) = \frac{\pi^4}{72} - \frac{\pi^2}{6} + 2\zeta(3) \approx 2.1120837816098848.$$

[137]

(0.98)
$$S(2,4) = \frac{\pi^4}{72} + 3\zeta(5) - \zeta(3)\left(1 + \frac{\pi^2}{6}\right).$$

[21, 52]

(0.99)
$$\sum_{k=1}^{\infty} \frac{H_k^{(1)2}}{k^2} = \frac{17}{4} \zeta(4).$$

[21]

$$(0.100) \quad \sum_{k=1}^{\infty} \frac{H_k^{(1)2}}{(k+1)^n} = \frac{1}{3}n(n+1)\zeta(n+2) + \zeta(2)\zeta(n) - \frac{1}{n}\sum_{k=0}^{n-2}\zeta(n-k)\zeta(k+2) + \frac{1}{3}\sum_{k=2}^{n-2}\zeta(n-k)\sum_{j=1}^{k-1}\zeta(j+1)\zeta(k+1-j) + \sum_{k=1}^{\infty}\frac{H_k^{(2)}}{(k+1)^n}.$$

[21]

(0.101)
$$\sum_{k=1}^{\infty} \frac{H_k^{(2)}}{(k+1)^2} = \frac{1}{2}\zeta^2(2) - \frac{1}{2}\zeta(4) = \frac{1}{120}\pi^4.$$

[167, 21][175, A214508]

(0.102)

$$A_4 \equiv \sum_{k=1}^{\infty} (-)^{k+1} \frac{1}{(k+1)^2} H_k^{(2)} = -4 \operatorname{Li}_4(1/2) + \frac{13\pi^4}{288} + \log(2) \left[-\frac{7}{2} \zeta(3) + \frac{\pi^2}{6} \log 2 - \frac{\log^3 2}{6} \right].$$

[21]

$$(0.103) \qquad \sum_{k=1}^{\infty} \frac{H_k^{(2)}}{(k+1)^4} = -6\zeta(6) + \frac{8}{3}\zeta(2)\zeta(4) + \zeta^2(3) = \zeta^2(3) - \frac{4}{2835}\pi^6.$$

[21]

(0.104)
$$\sum_{k=1}^{\infty} \frac{H_k^{(1)}}{(k+1)^n} = \frac{1}{2} n \zeta(n+1) - \frac{1}{2} \sum_{k=1}^{n-2} \zeta(n-k) \zeta(k+1).$$

[21]

(0.105)

$$\sum_{k=1}^{\infty} \frac{H_k^{(2)}}{(k+1)^{2n-1}} = -\frac{1}{2} (2n^2 + n + 1)\zeta(2n+1) + \zeta(2)\zeta(2n-1) + \sum_{k=1}^{n-1} 2k\zeta(2k+1)\zeta(2n-2k).$$

[21]

$$\sum_{k=1}^{\infty} \frac{H_k^{(1)2}}{(k+1)^{2n-1}} = \frac{1}{6} (2n^2 - 7n - 3)\zeta(2n+1) + \zeta(2)\zeta(2n-1) - \frac{1}{2} \sum_{k=1}^{n-2} (2k-1)\zeta(2n-1 - 2k)\zeta(2k+2) + \frac{1}{3} \sum_{k=1}^{n-2} \zeta(2k+1) \sum_{j=1}^{n-2-k} \zeta(2j+1)\zeta(2n-1-2k-2j).$$

[138]

(0.107)
$$\sum_{n=1}^{\infty} \frac{H_n^{(2)}}{n!} = e \left[1 + \frac{1}{4} {}_{2}F_{2} \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \right],$$

$$(0.108) \quad \sum_{n=1}^{\infty} \frac{H_n^{(4)}}{2^n n!} = \sqrt{e} \left[\frac{H_1^{(3)}}{2^1 1!} + \frac{H_2^{(2)}}{2^2 2!} + \frac{H_3^{(1)}}{2^3 3!} + \frac{3!}{2^4 (4!)^2} {}_2F_2 \left(\begin{array}{cc} 1 & 1 \\ 5 & 5 \end{array} \right) - \frac{1}{2} \right) \right],$$

where $H_n^{(r)}$ are hyperharmonic numbers (1.77).

[74]

(0.109)
$$\sum_{-\infty}^{\infty} \frac{1}{n^2 + q^2} = \frac{\pi \coth \pi q}{q}.$$

[74]

(0.110)

$$\sum_{-\infty}^{\infty} \frac{1}{(n^2 + q_1^2)((N-n)^2 + q_2^2)} = \frac{2\pi}{2q_1 2q_2} \left[\frac{1 + n_b(q_1) + n_b(q_2)}{Ni + q_1 + q_2} + \frac{n_b(q_1) - n_b(q_2)}{Ni - q_1 + q_2} - \frac{n_b(q_1) - n_b(q_2)}{Ni + q_1 - q_2} - \frac{1 + n_b(q_1) + n_b(q_2)}{Ni - q_1 - q_2} \right]$$

where $n_b(z) \equiv 1/(e^{2\pi z} - 1)$.

[74] Define the Matsubara sum associated to the Graph G (loopless multigraph such that the degree of each vertex is at least 2, with I lines) by

(0.111)
$$S_G \equiv \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} \cdots \sum_{n_I = -\infty}^{\infty} \frac{\delta_g(n_1, n_2, \cdots n_I; \{N_v\})}{(n_1^2 + q_1^2)(n_2^2 + q_2^2) \cdots (n_I^2 + q_I^2)},$$

where

(0.112)
$$\delta_g(n_1, \dots; \{N_v\}) = \prod_{v=1}^V \delta_{T_v, N_v}$$

imposes a series of constraints over the vertices v, and $T_v \equiv \sum_i s_i^v n_i$ is an algebraic sum at vertex v, with s_i^v having values ± 1 or 0 depending on the orientation of the line i with respect to the vertex v. The q_i are weights associated with the lines i. Then the integral

(0.113)

$$I(N, q_1, q_2, \dots) \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \cdots \frac{1}{(x_1^2 + q_1^2)(x_2^2 + q_2^2) \cdots ((N - x_1 - x_2 \cdots)^2 + q_I^2)}$$

is related to the sum via

$$(0.114) S_G = \hat{O}_G I_G$$

where the operator $\hat{O}_G = \prod_{i=1}^{I} [1 + n_{b_i}(1 - \hat{R}_i)]$ is composed of the functions n_b of the previous formula and the reflection operator \hat{R}_i (which switches the sign of the variable q_i).

[175, A152416][126]

(0.115)
$$\sum_{n=2}^{\infty} \frac{1}{n^s(n-1)} = s - \sum_{l=2}^{s} \zeta(l).$$

[36]

(0.116)
$$\sum_{n\geq 1} \frac{1}{n(n^2+1)} = \gamma + \Re\psi(1+i) \approx 0.67186598552400983.$$

[36]

(0.117)
$$\sum_{n\geq 1} \frac{1}{n^2(n^2+1)} = \frac{\pi^2}{6} - \frac{\pi \coth \pi - 1}{2} \approx 0.56826001937964526.$$

[132]

$$(0.118) \qquad \sum_{k=1}^{\infty} \frac{1}{(2k)^{2s}(2k+1)^{2s}} = \sum_{t=1}^{2s} \binom{4s-t-1}{2s-1} \left\{ [1 - \frac{1-(-)^t}{2^t}] \zeta(t) - 1 \right\}.$$

[132]

(0.119)
$$\sum_{k=1}^{\infty} \frac{1}{(2k)^2 (2k+1)^2} = -3 + \frac{\pi^2}{6} + 2\log 2.$$

[132]

$$(0.120) \qquad \sum_{k=1}^{\infty} \frac{1}{(2k)^4 (2k+1)^4} = -35 + \frac{\pi^4}{90} + 3\zeta(3) + \frac{5\pi^2}{3} + 20\log 2.$$

[132]

(0.121)
$$\sum_{n=1}^{\infty} \frac{1}{n^{2s}(n+1)^{2s}} = \sum_{t=1}^{2s} {4s-t-1 \choose 2s-1} \left\{ [1+(-)^t]\zeta(t) - 1 \right\}.$$

[132]

(0.122)
$$\sum_{n=1}^{\infty} \frac{1}{n^2(n+1)^2} = \frac{\pi^2}{3} - 3.$$

[132]

(0.123)
$$\sum_{n=1}^{\infty} \frac{1}{n^4(n+1)^4} = -35 + \frac{10\pi^2}{3} + \frac{\pi^4}{45}.$$

[119, (1)]

(0.124)
$$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{8^n} = \sqrt{2}.$$

(0.125)
$$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{10^n} = \sqrt{5/3}.$$

(0.126)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \binom{2n}{n}}{8^n} = \sqrt{2/3}.$$

[119][175, A145439]

(0.127)
$$\sum_{n=0}^{\infty} \frac{\binom{4n}{2n}}{64^n} = \frac{3\sqrt{2} + \sqrt{6}}{6}$$

[119]

(0.128)
$$4\sum_{n=0}^{\infty} \frac{\binom{8n}{4n}}{8^{4n}} = \frac{3\sqrt{2} + \sqrt{6}}{3} + \frac{2\sqrt{2} + \sqrt{5}}{\sqrt{5}}.$$

[119, (6)]

(0.129)
$$\sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{n4^n} = \log 4.$$

[119, (6)][175, A157699]

(0.130)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} {2n \choose n}}{n 4^n} = 2 \log \frac{1+\sqrt{2}}{2},$$

The formula above corrects a factor 2 in [119], see [127]. [175, A091648]

(0.131)
$$\sum_{n=1,3,5,7,\dots}^{\infty} \frac{\binom{2n}{n}}{n4^n} = \log(1+\sqrt{2}).$$

[119, (7)]

(0.132)
$$\sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{n(n+1)4^n} = \log 4 - 1.$$

[119, (8)]

(0.133)
$$\sum_{n=1}^{\infty} \frac{n\binom{2n}{n}}{8^n} = 1/\sqrt{2}.$$

[119]

(0.134)
$$\sum_{n=1}^{\infty} \frac{n^2 \binom{2n}{n}}{8^n} = \frac{5\sqrt{2}}{4}.$$

[119][175, A019670]

(0.135)
$$\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{(2n+1)16^n} = \frac{\pi}{3}.$$

[175, A086466]

(0.136)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m \binom{2m}{m}} = \frac{2}{\sqrt{5}} \log \frac{1+\sqrt{5}}{2}.$$

This corrects a factor 2 in [119] and two typos in [17, 4.1.42], see [127]. [119, (15)] [66, 189] [175, A073016]

(0.137)
$$\sum_{m=1}^{\infty} \frac{1}{\binom{2m}{m}} = \frac{9 + 2\pi\sqrt{3}}{27}.$$

[189]

(0.138)
$$\sum_{k=0}^{\infty} \frac{1}{\binom{mk}{nk}} = \int_0^1 \frac{1 + (m-1)t^n(1-t)^{m-n}}{(1-t^n(1-t)^{m-n})^2} dt,$$

where m and n are positive integers with m > n. [189]

(0.139)
$$\sum_{k=0}^{\infty} \frac{1}{\binom{4k}{2k}} = \frac{16}{15} + \frac{\pi\sqrt{3}}{27} - \frac{2\sqrt{5}}{25} \ln \frac{1+\sqrt{5}}{2}.$$

[119][175, A086465]

(0.140)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\binom{2n}{n}} = \frac{1}{5} + \frac{4\sqrt{5}}{25} \log \frac{1+\sqrt{5}}{2}.$$

[119, 66][175, A145429]

(0.141)
$$\sum_{m=1}^{\infty} \frac{m}{\binom{2m}{m}} = \frac{2}{27} (\pi \sqrt{3} + 9).$$

[39] And by linear combination with (0.137):

(0.142)
$$\sum_{n\geq 1} \frac{18 - 9n}{\binom{2n}{n}} = 2\frac{\pi}{\sqrt{3}}.$$

[119, 66]

(0.143)
$$\sum_{m=1}^{\infty} \frac{m^2}{\binom{2m}{m}} = \frac{2}{81} (5\pi\sqrt{3} + 54).$$

[119, 66]

(0.144)
$$\sum_{m=1}^{\infty} \frac{m^3}{\binom{2m}{m}} = \frac{2}{243} (37\pi\sqrt{3} + 405).$$

[119][175, A145433]

(0.145)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1}m}{\binom{2m}{m}} = \frac{2}{125}(2\sigma + 15), \quad \sigma \equiv \sqrt{5}\log\frac{1+\sqrt{5}}{2}.$$

[119]

(0.146)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} m^2}{\binom{2m}{m}} = \frac{2}{125} (5 - \sigma).$$

Erratum to [17, 4.1.40]:

(0.147)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n-1} n^2}{\binom{2n}{n}} = \frac{4}{125} \left[5 - \sqrt{5} \ln \left(\frac{1+\sqrt{5}}{2} \right) \right].$$

(0.148)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} m^3}{\binom{2m}{m}} = \frac{2}{625} (14\sigma - 5),$$

which corrects a factor 2 in [119], see [127]. [119, 66]

(0.149)
$$\sum_{m=1}^{\infty} \frac{2^m}{m^2 \binom{2m}{m}} = \frac{\pi^2}{8},$$

a special case of (1.17). [119]

(0.150)
$$\sum_{m=1}^{\infty} \frac{2^m}{m\binom{2m}{m}} = \frac{\pi}{2}.$$

[119]

(0.151)
$$\sum_{m=1}^{\infty} \frac{2^m}{\binom{2m}{m}} = \frac{\pi}{2} + 1.$$

[119]

(0.152)
$$\sum_{n=1}^{\infty} \frac{m2^m}{\binom{2m}{n}} = \pi + 3.$$

[119, 66]

(0.153)
$$\sum_{m=1}^{\infty} \frac{m^2 2^m}{\binom{2m}{m}} = \frac{1}{5} \sum_{m=1}^{\infty} \frac{m^3 2^m}{\binom{2m}{m}} = \frac{7\pi}{2} + 11.$$

[119, 66]

(0.154)
$$\sum_{m=1}^{\infty} \frac{m^4 2^m}{\binom{2m}{m}} = 113\pi + 355.$$

[119, 66]

(0.155)
$$\sum_{m=1}^{\infty} \frac{m^{10}2^m}{\binom{2m}{m}} = 229093376\pi + 719718067.$$

[119]

(0.156)
$$\sum_{m=1}^{\infty} \frac{3^m}{m^2 \binom{2m}{m}} = \frac{2\pi^2}{9},$$

a special case of (1.17). [119][175, A186706]

(0.157)
$$\sum_{m=1}^{\infty} \frac{3^m}{m \binom{2m}{m}} = \frac{2\pi}{\sqrt{3}} \equiv \nu.$$

[119]

(0.158)
$$\sum_{m=1}^{\infty} \frac{3^m}{\binom{2m}{m}} = 2\nu + 3.$$

[119]

(0.159)
$$\sum_{m=1}^{\infty} \frac{m3^m}{\binom{2m}{m}} = 10\nu + 18.$$

[119]

(0.160)
$$\sum_{m=1}^{\infty} \frac{m^2 3^m}{\binom{2m}{m}} = 2(43\nu + 78).$$

[119]

(0.161)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} 2^m}{m {2m \choose m}} = \rho/3, \quad \rho \equiv \sqrt{3} \log(2 + \sqrt{3}).$$

[12]

$$(0.162) \sum_{m=1}^{\infty} \frac{(2t)^{2m+2k}}{m(2m+2k)\binom{2m}{m}} = \arcsin^2(t)\binom{2k}{k} + \sum_{j=1}^k \binom{2k}{k-j} \frac{(-)^{j+1}}{j^2} + \sum_{j=1}^k (-)^j \binom{2k}{k-j} \left(\frac{2\arcsin t \sin(2j\arcsin t)}{j} + \frac{\cos(2j\arcsin t)}{j^2}\right),$$

and a similar logarithmic result for an alternating sign sum on the left hand side. [12]

(0.163)

$$\sum_{m=1}^{\infty} \frac{(2t)^{2m+2k}}{m^2 (2m+2k) \binom{2m}{m}} = -\frac{1}{k} \arcsin^2(t) + \frac{(2t)^{2k}}{k} \arcsin^2 t - \sum_{j=1}^{k} \binom{2k}{k-j} \frac{(-)^{j+1}}{kj^2} - \sum_{j=1}^{k} (-)^j \binom{2k}{k-j} \left(\frac{2 \arcsin t \sin(2j \arcsin t)}{kj} + \frac{\cos(2j \arcsin t)}{kj^2} \right),$$

and a similar logarithmic result for an alternating sign sum on the left hand side. [119]

(0.164)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} 2^m}{\binom{2m}{m}} = \frac{\rho+3}{9}.$$

[119]

(0.165)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} m 2^m}{\binom{2m}{m}} = \frac{1}{3}.$$

[119]

(0.166)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} m^2 2^m}{\binom{2m}{m}} = \frac{1}{27} (3 - \rho).$$

[119]

(0.167)
$$\sum_{m=1}^{\infty} \frac{(-1)^m m^3 2^m}{\binom{2m}{m}} = \frac{1}{81} (\rho + 15).$$

[119]

(0.168)
$$\sum_{m=1}^{\infty} \frac{(2-\sqrt{2})^m}{\binom{2m}{m}} = \frac{3-2\sqrt{2}}{4}(\pi\sqrt{2}+4).$$

[119]

(0.169)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} 3^{2m}}{4^m \binom{2m}{m}} = \frac{48}{125} (\log 2 + \frac{15}{16}).$$

[119][175, A152422]

(0.170)

$$\sum_{m=1}^{\infty} \frac{2^m (2-\sqrt{3})^m}{m^2 \binom{2m}{m}} = 2 \left(\arcsin \tau\right)^2, \quad \tau = \frac{\sqrt{3}-1}{2} = \sqrt{2} \sin \frac{\pi}{12} = \sin \frac{\pi}{3} - \sin \frac{\pi}{6},$$

where both right hand sides in [119] are erroneous, see [127]. [39]

(0.171)
$$\sum_{n>0} \frac{50n-6}{\binom{3n}{n}2^n} = \pi.$$

[39]

(0.172)
$$\sum_{n>1} \frac{1}{\binom{3n}{2}2^n} = \frac{2}{25} - \frac{6}{125} \ln 2 + \frac{11}{250} \pi.$$

[39]

(0.173)
$$\sum_{n \ge 1} \frac{n}{\binom{3n}{n} 2^n} = \frac{81}{625} - \frac{18}{3125} \ln 2 + \frac{79}{3125} \pi.$$

[39]

(0.174)
$$\sum_{n\geq 1} \frac{n^2}{\binom{3n}{n} 2^n} = \frac{561}{3125} + \frac{42}{15625} \ln 2 + \frac{673}{31250} \pi.$$

[39]

(0.175)
$$\sum_{n>1} \frac{-150n^2 + 230n - 36}{\binom{3n}{n} 2^n} = \pi.$$

[39]

(0.176)
$$\sum_{n\geq 1} \frac{575n^2 - 965n + 273}{\binom{3n}{n} 2^n} = 6\log 2.$$

[39]

(0.177)
$$\sum_{n\geq 1} \frac{(-1)^n}{\binom{3n}{3}4^n} = -\frac{1}{28} - \frac{3}{32} \ln 2 + \frac{13}{112} \frac{\arctan(\sqrt{7/5})}{\sqrt{7}}.$$

[39]

(0.178)
$$\sum_{n \ge 1} \frac{(-1)^n n}{\binom{3n}{n} 4^n} = -\frac{81}{1568} - \frac{9}{256} \ln 2 + \frac{17}{6272} \frac{\arctan(\sqrt{7/5})}{\sqrt{7}}.$$

[39]

(0.179)
$$\sum_{n\geq 1} \frac{1}{n\binom{3n}{n}2^n} = \frac{1}{10}\pi - \frac{1}{5}\ln 2.$$

[39]

(0.180)
$$\sum_{n>1} \frac{1}{n^2 \binom{3n}{n} 2^n} = \frac{1}{24} \pi^2 - \frac{1}{2} \ln^2 2.$$

[34]

(0.181)
$$\sum_{j=1}^{\infty} \frac{(-1)^j}{j!} (j/2)! = 1 - \frac{1}{2} e^{1/4} \sqrt{\pi} (1 - \operatorname{erf}(1/2)).$$

Erratum to [17, 4.1.47][175, A145438]: Using twice 9.14.+13, then [91, 9.121.6] and [91, 9.121.26], then substituting $tt'/4 = z^2$, then $y = \sqrt{t'/4}$, then $\arcsin y = v$

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{n^3 \binom{2n}{n}} &= \frac{1}{2} \,_{4}F_3(1,1,1,1;2,2,3/2;1/4) = \frac{1}{2} \int_{0}^{1} dt \,_{3}F_2(1,1,1;2,3/2;t/4) \\ &= \frac{1}{4} \int_{0}^{1} dt \int_{0}^{1} dt' \,_{2}F_1(1,1;3/2;tt'/4) = \frac{1}{4} \int_{0}^{1} dt \int_{0}^{1} dt' \frac{1}{\sqrt{1-tt'/4}} \,_{2}F_1(1/2,1/2;3/2;tt'/4) \\ &= \frac{1}{4} \int_{0}^{1} dt \int_{0}^{1} dt' \frac{1}{\sqrt{1-tt'/4}} \frac{\arcsin(\sqrt{tt'/4})}{\sqrt{tt'/4}} = \int_{0}^{1} \frac{dt'}{t'} \int_{0}^{\sqrt{t'/4}} dz \frac{\arcsin z}{\sqrt{1-z^2}} = \frac{1}{2} \int_{0}^{1} \frac{dt'}{t'} \arcsin^2(\sqrt{t'/4}) \\ &= \int_{0}^{\sqrt{1/2}} \frac{dy}{y} \arcsin^2 y = \int_{0}^{\sin\sqrt{1/2}} v^2 \cot v dv. \end{split}$$

This becomes [39, (35)][119][38,Theorem 3.3]

$$\frac{2\pi}{3}\Im \operatorname{Li}_2(e^{i\pi/4}) - \frac{4}{3}\zeta(3) = \frac{2\pi}{3}\operatorname{Cl}_2(\pi/3) - \frac{4}{3}\zeta(3) = \frac{\pi\sqrt{3}}{18}\left\{\psi'(1/3) - \psi'(2/3)\right\} - \frac{4\zeta(3)}{3}.$$

So the r.h.s. of [119] is missing a factor 4, and [15, 4.1.47] is in addition misleading to imply that the digamma (instead of the trigamma) functions are in effect [127]. [178]

$$(0.183) \quad \sum_{n=1}^{\infty} \frac{t^n}{n^{k+1} \binom{an+j+1}{j+1}} = \begin{cases} \frac{(j+1)t(-)^k}{k!} \int_0^1 \int_0^1 \frac{(1-x)^j x^a (\ln y)^k}{1 - t x^a y} dx dy, & k \ge 1\\ at \int_0^1 \frac{(1-x)^{j+1} x^{a-1}}{1 - t x^a} dx, & k = 1 \end{cases}$$
$$= T_{0\ a+k+1} F_{a+k} \begin{pmatrix} 1, 1, \dots, 1; (a+1)/a, \dots, (2a-1)/a \\ 2, 2, \dots, 2; (a+j+2)/a, \dots, (a+j+a+1)/a \end{cases} \mid t)$$

where $T_0 = t(j+1)B(j+1, a+1)$.

[67]

(0.184)

$$\frac{1}{2^m} \sum_{i=1}^{\infty} \binom{i+1}{2}^{-m} = (-)^{m-1} \binom{2m-1}{m} + (-)^m 2 \sum_{i=1}^{\lfloor m/2 \rfloor} \binom{2m-2i-1}{m-1} \zeta(2i).$$

[39, 119][175, A073010]

(0.185)
$$\sum_{n>1} \frac{1}{n\binom{2n}{n}} = \frac{\pi}{3\sqrt{3}}.$$

(0.186)
$$\sum_{n \ge 1} \frac{1}{n^2 \binom{2n}{n}} = \frac{1}{3} \zeta(2).$$

a special case of (1.17).

[94]

(0.187)
$$\sum_{n>1} \frac{1}{n^4 \binom{2n}{n}} = \frac{17}{36} \zeta(4).$$

[94]

(0.188)
$$\sum_{n\geq 1} \frac{1}{n^5 \binom{2n}{n}} = 2\pi \operatorname{Cl}_4(\pi/3) - \frac{19}{3}\zeta(5) + \frac{2}{3}\zeta(3)\zeta(2).$$

[94]

(0.189)
$$\sum_{n>1} \frac{1}{n^6 \binom{2n}{n}} = -\frac{4\pi}{3} \Im L_{4,1}(e^{i\pi/3}) + \frac{3341}{1296} \zeta(6) - \frac{4}{3} \zeta^2(3).$$

[94]

(0.190)
$$\sum_{n>1} \frac{(-1)^n}{n\binom{2n}{n}} = -2 \frac{\operatorname{arctanh}(1/\sqrt{5})}{\sqrt{5}}.$$

Correction of a sign error in [119], see [127]:

(0.191)
$$\sum_{n\geq 1} \frac{(-1)^n}{n^2 \binom{2n}{n}} = -2 \left(\ln \frac{\sqrt{5}-1}{2} \right)^2 = -2 \left(\ln \frac{\sqrt{5}+1}{2} \right)^2.$$

(0.192)
$$\sum_{n>1} \frac{(-1)^n}{n^3 \binom{2n}{n}} = -\frac{2}{5} \zeta(3).$$

(0.193)

$$\sum_{n\geq 1} \frac{(-1)^n}{n^4 \binom{2n}{n}} = -4K_4(\rho) + 4K_4(-\rho) + \frac{1}{2} \ln^4 \rho + 7\zeta(4), \quad K_k(x) \equiv \sum_{r=0}^{k-1} \frac{(-\ln|x|)^r}{r!} L_{k-r}(x).$$

(0.194)
$$\sum_{n\geq 1} \frac{1}{n^3 \binom{3n}{n} 2^n} = -\frac{33}{16} \zeta(3) + \frac{1}{6} \ln^3 2 - \frac{1}{24} \pi^2 \ln 2 + \pi \Im L_2(i).$$

$$(0.195) \sum_{n=1}^{\infty} \frac{1}{n^4 \binom{3n}{n} 2^n} = -\frac{143}{16} \zeta(3) \ln 2 + \frac{91}{640} \pi^4 - \frac{3}{8} \ln^4 2 + \frac{3}{8} \pi^2 \ln^2 2 - 8L_4(1/2) - 8\Re L_{3,1}(\frac{1+i}{2}) - 8\Re L_4(\frac{1+i}{2}).$$

$$\begin{split} \sum_{n \geq 1} \frac{(-1)^n}{8^n n \binom{6n}{2n}} &= \left(-\frac{1}{3} + \frac{2}{57} \sqrt{114 \sqrt{57 - 342}} \right) \ln 2 - \frac{1}{114} \sqrt{114 \sqrt{57 - 342}} \ln \left(13 + \sqrt{57} + \sqrt{-30 + 26 \sqrt{57}} \right) \\ &+ \frac{1}{57} \sqrt{114 \sqrt{57 + 342}} \arctan \frac{\sqrt{2 \sqrt{57 + 9}}}{7}. \end{split}$$

(0.196)
$$\sum_{n\geq 1} \frac{(-1)^n}{2^n n\binom{4n}{n}} = \sum_{\substack{13+12r+2r^3=0}} \frac{\ln(r+2)}{r+3} - \frac{6}{7}\ln 3 + \frac{1}{7}\ln 2.$$

(0.197)
$$\sum_{n\geq 1} \frac{(-1)^n}{n\binom{3n}{n}} = \sum_{\substack{8+4r+r^3=0\\r+3}} \frac{\ln(r+2)}{r+3} - \ln 2.$$

[206] Let
$$A_k \equiv \sum_{n=0}^{\infty} {n+k \choose n} / {2n \choose n}$$
, then

(0.198)
$$A_{k+1} = -\frac{2}{3(k+1)} + \frac{2(2k+3)}{3(k+1)} A_k.$$

[206] Let
$$B_k \equiv \sum_{n=0}^{\infty} (-1)^n \binom{n+k}{n} / \binom{2n}{n}$$
, then

(0.199)
$$B_{k+1} = -\frac{2}{5(k+1)} + \frac{2(2k+3)}{5(k+1)} B_k.$$

and similar recurrences with an additional factor n or n^2 in the denominator of the sums.

[33]

(0.200)
$$\sum_{k=1}^{\infty} \arctan \frac{2}{k^2} = \frac{3\pi}{4}.$$

[33][175, A091007]

(0.201)
$$\sum_{k=1}^{\infty} \arctan \frac{1}{k^2} = \arctan \frac{\tan(\pi/\sqrt{2}) - \tanh(\pi/\sqrt{2})}{\tan(\pi/\sqrt{2}) + \tanh(\pi/\sqrt{2})}.$$

[33]

(0.202)
$$\sum_{k=1}^{\infty} \arctan \frac{a}{a^2 k^2 + a(a+2b)k + 1 + ab + b^2} = \frac{\pi}{2} - \arctan(a+b).$$

[33]

(0.203)

$$\sum_{k=1}^{\infty} \arctan \frac{a^2k^2 + a^2k - 1 - b^2}{a^4k^4 + 2a^3(a+2b)k^3 + a^2(2+a^2+6ab+6b^2)k^2 + 2a(a+2b)(1+ab+b^2) + (1+b^2)(1+[a+b]^2)}$$

$$= \frac{1}{1 + (a+b)^2}.$$

[33]

$$(0.204) \qquad \sum_{k=1}^{\infty} \arctan \frac{2ak + a + b}{a_4k^4 + a_3k^3 + a_2k^2 + a_1k + a_0} = \frac{\pi}{2} - \arctan(a + b + c).$$

[33]

(0.205)

$$\sum_{k=1}^{n} \arctan \frac{f(k+1) - f(k-1)}{1 + f(k+1)f(k-1)} = \arctan f(n+1) - \arctan f(1) + \arctan f(n) - \arctan f(0).$$
[33]

(0.206)
$$\sum_{k=1}^{\infty} \arctan \frac{8k}{k^4 - 2k^2 + 5} = \pi - \arctan \frac{1}{2}.$$

$$(0.207) \qquad \qquad \sum_{k=1}^{\infty}\arctan\frac{4ak}{k^4+a^2+4}=\arctan\frac{a}{2}+\arctan a.$$

(0.208)
$$\sum_{k=1}^{\infty} \arctan \frac{2xy}{k^2 - x^2 + y^2} = \arctan \frac{y}{x} - \arctan \frac{\tanh \pi y}{\tan \pi x}.$$

(0.209)
$$\sum_{k=1}^{\infty} \arctan \frac{1}{2k^2} = \pi/4.$$

(0.210)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^4 + 4x^4} = \frac{\pi}{4x} \frac{\sin 2\pi x - \sinh 2\pi x}{\cos 2\pi x - \cosh 2\pi x}.$$

(0.211)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^4 + 4} = \frac{\pi}{4} \coth \pi.$$

(0.212)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^4 + x^2 k^2 + x^4} = \frac{\pi}{2x\sqrt{3}} \frac{\sinh \pi x \sqrt{3} - \sqrt{3}\sin \pi x}{\cosh \pi x \sqrt{3} - \cos \pi x}.$$

(0.213)
$$\sum_{k=1}^{\infty} \frac{A_0 + B_0 k + C_0 k^2}{(k^2 - a^2)(k^2 - b^2)} = \sum_{n=1}^{\infty} \frac{d_n}{\prod_{m=1}^n (m^2 - a^2)(m^2 - b^2)}$$

for |a| < 1, |b| < 1, with d_n defined via a recurrence in the reference.

(0.214)
$$\sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}.$$

(0.215)
$$\sum_{n=0}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}.$$

[175, A000578]

(0.216)
$$\sum_{n=0}^{\infty} n^3 x^n = \frac{x(1+4x+x^2)}{(1-x)^4}.$$

[175, A000583]

(0.217)
$$\sum_{n=0}^{\infty} n^4 x^n = \frac{x(1+x)(1+10x+x^2)}{(1-x)^5}.$$

[175, A000584]

(0.218)
$$\sum_{n=0}^{\infty} n^5 x^n = \frac{x(1+26x+66x^2+26x^3+x^4)}{(1-x)^6}.$$

[175, A001014]

(0.219)
$$\sum_{n=0}^{\infty} n^6 x^n = \frac{x(x+1)(1+56x+246x^2+56x^3+x^4)}{(1-x)^7}.$$

[175, A001015]

$$(0.220) \qquad \sum_{n=0}^{\infty} n^7 x^n = \frac{x(1+120x+1191x^2+2416x^3+1191x^4+120x^5+x^6)}{(1-x)^8}.$$

See [175, A008292] for coefficients in the numerator polynomial if exponents of n are higher than 7. The pole at x = 1 in the generating functions obviously delimits the radius of convergence.

[98] Let

(0.221)
$$S_{a,p}(n) \equiv \sum_{k=0}^{n} a^k k^p;$$

then

$$(0.222) S_{a,p}(n) = \frac{a^{n+1}}{a-1} \sum_{r=0}^{p-1} {p \choose r} f_r(a) (n+1)^{p-r} + f_p(a) \frac{a^{n+1}-1}{a-1}$$

with

(0.223)
$$f_0(a) = 1, \quad a \sum_{j=0}^r {r \choose j} f_j(a) - f_r(a) = 0, \quad r = 1, 2, \dots$$

[6]

$$(0.224) \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} = G.$$

[6, 42]

(0.225)
$$2\sum_{k=0}^{\infty} \frac{1}{(4k+1)^2} = G + \frac{\pi^2}{8}.$$

[6, 42]

$$(0.226) -2\sum_{k=0}^{\infty} \frac{1}{(4k+3)^2} = G - \frac{\pi^2}{8}.$$

[42]

(0.227)
$$\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{\infty} \binom{n}{k} \frac{(-1)^k}{(2k+1)^2} = G.$$

[42]

(0.228)
$$1 - \sum_{n=1}^{\infty} \frac{n\zeta(2n+1)}{16^n} = G.$$

$$(0.229) \frac{1}{4} \sum_{n=1}^{\infty} n16^{-n} (3^{2n} - 1)\zeta(2n+1) = G - \frac{1}{6}$$

(and similar ζ -sums).

[42]

$$(0.230) \qquad \sum_{n=0}^{\infty} \frac{1}{n+1} \binom{n+1/2}{n}^{-2} = {}_{4}F_{3}(1,1,1,1;2,\frac{3}{2},\frac{3}{2};1) = 2\pi G - \frac{7}{2}\zeta(3).$$

[42]

(0.231)
$$2\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n^2} \sum_{k=0}^{n-1} \frac{1}{2k+1} = 2\pi G - \frac{7}{2}\zeta(3).$$

[42]

(0.232)
$$\sum_{n=0}^{\infty} \frac{2^n}{(2n+1)\binom{2n}{n}} \sum_{k=0}^n \frac{1}{2k+1} = 2G.$$

[42]

(0.233)
$$\sum_{n=0}^{\infty} \frac{4^n}{(2n+1)^2 \binom{2n}{n}} = 2G.$$

[42]

(0.234)
$$\frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \binom{2n}{n}} = G - \frac{1}{8} \pi \log(2 + \sqrt{3}).$$

[42]

(0.235)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \sum_{k=1}^n \frac{1}{k} = G - \frac{1}{2}\pi \log 2.$$

[42]

(0.236)
$$-2\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \sum_{k=0}^{n-1} \frac{1}{2k+1} = G - \frac{1}{4}\pi \log 2.$$

[42]

$$(0.237) -\frac{1}{32}\pi \sum_{n=0}^{\infty} \frac{(2n+1)^2}{(n+1)^3 16^n} {2n \choose n}^2 = G - \frac{1}{2}\pi \log 2.$$

[42]

(0.238)
$$\sum_{n=0}^{\infty} \frac{\sqrt{2}}{(2n+1)^2 8^n} {2n \choose n} = G + \frac{1}{4} \pi \log 2.$$

[42]

(0.239)
$$\sum_{n=1}^{\infty} \frac{\sin(n\pi/4)}{n^2 2^{n/2}} = G - \frac{1}{8}\pi \log 2.$$

(0.240)
$$\sum_{n=0}^{\infty} \frac{2^{n+1} (n!)^2}{(2n+1)!(n+1)^2} = 2\pi G - \frac{35}{8} \zeta(3) + \frac{1}{4} \pi^2 \log 2.$$

[42]

$$(0.241) \qquad \frac{1}{4}\pi_3 F_2(1/2, 1/2, n+1/2; 1, n+3/2; 1) - \frac{1}{2} \sum_{k=0}^{n-1} \frac{(k!)^2}{(\frac{3}{2})_k^2} = G.$$

[76, 77] Let T denote Tornheim double sums

(0.242)
$$T(a,b,c) \equiv \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \frac{1}{r^a s^b (r+s)^c}$$

with a + c > 1, b + c > 1 and a + b + c > 2. Then (0.243)

$$T(m,k,n) = \sum_{i=1}^{m} \binom{m+k-i-1}{m-i} T(i,0,N-i) + \sum_{i=1}^{k} \binom{m+k-i-1}{k-i} T(i,0,N-i).$$

$$\begin{split} T(m,0,n) &= (-1)^m \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} \binom{m+n-2j-1}{m-1} \zeta(2j) \zeta(m+n-2j) \\ &+ (-1)^m \sum_{j=0}^{\lfloor m/2 \rfloor} \binom{m+n-2j-1}{n-1} \zeta(2j) \zeta(m+n-2j) - \frac{1}{2} \zeta(m+n), \end{split}$$

if $N \equiv m + k + n$ is odd.

(0.244)
$$T(1,0,5) = -\frac{1}{2}\zeta(3)^2 + \frac{3}{4}\zeta(6).$$

(0.245)
$$T(2,0,4) = \zeta^2(3) - \frac{4}{3}\zeta(6).$$

(0.246)
$$T(3,0,3) = \frac{1}{2}\zeta(3)^2 - \frac{1}{2}\zeta(6).$$

(0.247)
$$T(4,0,2) = -\zeta^2(3) + \frac{25}{12}\zeta(6).$$

(0.248)
$$T(0,0,N) = \zeta(N-1) - \zeta(N), \quad N \ge 3; \quad T(0,0,4) = \zeta(3) - \frac{\pi^4}{90}$$

(0.249)
$$T(n,0,n) = \frac{1}{2}\zeta^2(n) - \frac{1}{2}\zeta(2n). \quad T(2,0,2) = \frac{\pi^4}{120}.$$

$$(0.250) T(0,0,8) = \zeta(7) - \zeta(8).$$

(0.251)
$$T(1,0,7) = \frac{5}{4}\zeta(8) - \zeta(3)\zeta(5).$$

(0.252)
$$T(4,0,4) = \frac{1}{12}\zeta(8).$$

$$(0.253) T(0,0,14) = \zeta(13) - \zeta(14).$$

$$(0.254) T(1,0,13) = \frac{11}{4}\zeta(14) - \zeta(3)\zeta(11) - \zeta(5)\zeta(9) - \frac{1}{2}\zeta(7)^{2}.$$

$$(0.255) T(1,0,2) = \zeta(3).$$

$$(0.256) T(1,1,1) = 2\zeta(3).$$

$$(0.257) T(1,0,3) = \frac{\pi^4}{360}.$$

$$(0.258) T(1,1,2) = \frac{\pi^4}{180}.$$

$$(0.259) T(2,1,1) = \frac{\pi^4}{72}.$$

$$(0.260) T(2,2,0) = \frac{\pi^4}{36}.$$

(0.261)
$$T(1,0,5) = \frac{3}{4}\zeta(6) - \frac{1}{2}\zeta^{2}(3).$$

(0.262)
$$T(1,1,4) = \frac{3}{2}\zeta(6) - \zeta^2(3).$$

$$(0.263) T(3,3,0) = \zeta^2(3).$$

$$(0.264) T(4,1,1) = \frac{7}{6}\zeta(6) - \frac{1}{2}\zeta^2(3).$$

$$(0.265) T(4,2,0) = \frac{7}{4}\zeta(6).$$

(0.266)
$$T(1,1,4) = \frac{3}{2}\zeta(6) - \zeta^2(3).$$

(0.267)
$$\sum_{n=0}^{\infty} \frac{1}{(n+a)(n+b)} = \frac{\psi(a) - \psi(b)}{a-b}.$$

$$\sum_{n=0}^{\infty} \frac{(-)^n}{(n+a)(n+b)} = -\frac{1}{2} \frac{\psi(1/2 + a/2) - \psi(a/2) - \psi(1/2 + b/2) + \psi(b/2)}{a-b}.$$

(0.269)
$$\log 2 = \frac{1}{2} - \sum_{k>1} \frac{(-1)^k}{k(4k^4 + 1)}.$$

[89]

After inserting x = 1 in (1.65), [17, 4.1.13]

$$(0.270) \quad 2\ln 2 = 1 + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k(k+1)} = 1 + 2\sum_{k=1,3,5,\dots}^{\infty} \frac{1}{k(k+1)(k+2)}$$
$$= 1 + 4\sum_{k=1,5,0,12}^{\infty} \frac{6 + 4k + k^2}{k(k+1)(k+2)(k+3)(k+4)}.$$

[17, 4.1.20]

$$2\ln 2 = \frac{5}{4} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k(k+1)(k+2)} = \frac{5}{4} + 3\sum_{k=1,3,5,\dots}^{\infty} \frac{1}{k(k+1)(k+2)(k+3)}$$
$$= \frac{17}{12} - 3\sum_{k=2,4,6}^{\infty} \frac{1}{k(k+1)(k+2)(k+3)}.$$

$$(0.271)$$

$$\frac{4}{3} \ln 2 = \frac{8}{9} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k(k+1)(k+2)(k+3)} = \frac{8}{9} + 4 \sum_{k=1,3,5}^{\infty} \frac{1}{k(k+1)(k+2)(k+3)(k+4)}.$$

More irregular denominators follow from hybridization. For example we can multiply the penultimate formula by 4, the previous formula by 3, and subtract

(0.272)
$$4 \ln 2 = \frac{7}{3} + 12 \sum_{k=1,3,5}^{\infty} \frac{1}{k(k+1)(k+2)(k+4)}.$$

$$\frac{2}{3}\ln 2 = \frac{131}{288} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k(k+1)(k+2)(k+3)(k+4)}$$
$$= \frac{131}{288} + 5\sum_{k=1,3,5}^{\infty} \frac{1}{k(k+1)(k+2)(k+3)(k+4)(k+5)}.$$

Inserting x = -1/2 in (1.65) [89, 22] yields

(0.273)
$$\ln 2 = 1 - \sum_{k=1}^{\infty} \frac{1}{2^k k(k+1)}.$$

(0.274)
$$\ln 2 = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{1}{2^{k-1}k(k+1)(k+2)}.$$

(0.275)
$$\ln 2 = \frac{5}{6} - 3 \sum_{k=1}^{\infty} \frac{1}{2^{k-1}k(k+1)(k+2)(k+3)}.$$

More irregular denominators follow from hybridization. For example we can multiply the penultimate formula by 3 and add to the previous formula,

(0.276)
$$4\ln 2 = \frac{7}{3} + 3\sum_{k=1}^{\infty} \frac{1}{2^{k-1}k(k+1)(k+3)}.$$

(0.277)
$$\ln 2 = \frac{7}{12} + 3 \sum_{k=1}^{\infty} \frac{1}{2^{k-3}k(k+1)(k+2)(k+3)(k+4)}.$$

[89]

(0.278)
$$\log 2 = \frac{1327}{1920} + \frac{45}{4} \sum_{k>4} \frac{(-1)^k}{k(k^2 - 1)(k^2 - 4)(k^2 - 9)}.$$

[89]

(0.279)
$$\log 2 = \sum_{k>1} \left(\frac{1}{3^k} + \frac{1}{4^k} \right) \frac{1}{k}.$$

(0.280)
$$\log 2 = \sum_{k>0} \left(\frac{1}{8k+8} + \frac{1}{4k+2} \right) \frac{1}{4^k}.$$

[89]

(0.281)
$$\log 2 = \frac{2}{3} + \sum_{k>1} \left(\frac{1}{2k} + \frac{1}{4k+1} + \frac{1}{8k+4} + \frac{1}{16k+12} \right) \frac{1}{16^k}.$$

[89]

(0.282)
$$\log 2 = \frac{2}{3} \sum_{k>0} \frac{1}{(2k+1)9^k}.$$

(0.283)
$$\log 2 = \frac{3}{4} \sum_{k>0} \frac{(-1)^k k!^2}{2^k (2k+1)!}.$$

[89]

(0.284)
$$\log 2 = \frac{3}{4} + \frac{1}{4} \sum_{k>1} \frac{(-1)^k (5k+1)}{k(2k+1) 16^k} {2k \choose k}.$$

[175, A154920][23]

(0.285)
$$\log 3 = \sum_{k>1} \left[\frac{9}{2k-1} + \frac{1}{2k} \right] \frac{1}{9^k}.$$

[175, A164985][23]

$$(0.286) 27\log 5 = 4\sum_{k\geq 0} \left[\frac{9}{4k+1} + \frac{3}{4k+2} + \frac{1}{4k+3} \right] \frac{1}{81^k}.$$

(0.287)
$$\log 5 = 2\log 3 - \log 2 + \sum_{k=1}^{\infty} \frac{1}{k \cdot 10^k}.$$

(0.288)
$$4\log 7 = 5\log 2 + \log 3 + 2\log 5 + \sum_{k=1}^{\infty} \frac{(-1)^k}{k 2400^k}.$$

Table 1. Formulas of the type $s \log p = t \log q + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} r^k$. [128]

		,		
s	$\frac{p}{2}$	<u>t</u>	q	<u>r</u>
1	ა ი	1	2	$1/2 \approx 0.50000000$
1	3	2	2	$-1/4 \approx -0.25000000$
2	3	3	2	$1/8 \approx 0.12500000$
5	3	8	2	$-13/256 \approx -0.05078125$
12	3	19	2	$7153/524288 \approx 0.01364326$
1	5	2	2	$1/4 \approx 0.25000000$
3	5	7	2	$-3/128 \approx -0.02343750$
1	7	2	2	$3/4 \approx 0.75000000$
1	7	3	2	$-1/8 \approx -0.12500000$
5	7	14	2	$423/16384 \approx 0.02581787$
1	11	3	2	$3/8 \approx 0.37500000$
2	11	7	2	$-7/128 \approx -0.05468750$
11	11	38	2	$10433763667/274877906944 \approx 0.03795781$
1	13	3	2	$5/8 \approx 0.62500000$
1	13	4	2	$-3/16 \approx -0.18750000$
3	13	11	2	$149/2048 \approx 0.07275391$
7	13	26	2	$-4360347/67108864 \approx -0.06497423$
10	13	37	2	$419538377/137438953472 \approx 0.00305254$
1	17	4	2	$1/16 \approx 0.06250000$
1	19	4	2	$3/16 \approx 0.18750000$
4	19	17	2	$-751/131072 \approx -0.00572968$
1	23	4	2	$7/16 \approx 0.43750000$
1	23	5	2	$-9/32 \approx -0.28125000$
2	23	9	2	$17/512 \approx 0.03320312$
1	29	4	2	$13/16 \approx 0.81250000$
1	29	5	2	$-3/32 \approx -0.09375000$
7	29	34	2	$70007125/17179869184 \approx 0.00407495$
1	31	4	2	$15/16 \approx 0.93750000$
1	31	5	2	$-1/32 \approx -0.03125000$
1	37	5	2	$5/32 \approx 0.15625000$
4	37	21	2	$-222991/2097152 \approx -0.10633039$
5	37	26	2	$2235093/67108864 \approx 0.03330548$
1	$\frac{41}{41}$	5	2	$9/32 \approx 0.28125000$
2		11	2	$-367/2048 \approx -0.17919922$
3	41	16	2	$3385/65536 \approx 0.05165100$
1	43	5 11	2	$11/32 \approx 0.34375000$
2	43	11	2	$-199/2048 \approx -0.09716797$
5	43	27	2	$12790715/134217728 \approx 0.09529825$
$\frac{7}{1}$	43	38	2	$\frac{-3059295837/274877906944 \approx -0.01112965}{15/32 \approx 0.46875000}$
	47	5	2	$15/32 \approx 0.46875000$
$\frac{1}{2}$	47 47	6 11	$\frac{2}{2}$	$-17/64 \approx -0.26562500$ $161/2048 \approx 0.07861328$
$\frac{2}{1}$	47 53	5	2	$\frac{161/2048 \approx 0.07861328}{21/32 \approx 0.65625000}$
1	53			
3	53	6	$\frac{2}{2}$	$-11/64 \approx -0.17187500$ 17805 /131072 ≈ 0.13584137
	53	17 23	2	$17805/131072 \approx 0.13584137$ $-408127/8388608 \approx -0.05038137$
$\frac{4}{1}$	59	$\frac{23}{5}$	$\frac{2}{2}$	$-498127/8388608 \approx -0.05938137$ $27/32 \approx 0.84375000$
1	59 59	6	2	$27/32 \approx 0.84375000$ $-5/64 \approx -0.07812500$
1	61	5	2	$-5/64 \approx -0.07812500$ $29/32 \approx 0.90625000$
1	61	6	2	,
$\frac{1}{1}$	67	6	2	$\frac{-3/64 \approx -0.04687500}{3/64 \approx 0.04687500}$
1	U1	U	\angle	J/ U4 ~ U.U4U01 JUU

[23]

$$(0.289) 35 log 7 = \sum_{k \ge 0} \left[\frac{405}{6k+1} + \frac{81}{6k+2} + \frac{72}{6k+3} + \frac{9}{6k+4} + \frac{5}{6k+5} \right] \frac{1}{3^{6k}}$$

[23]

(0.290)

$$2 \times 3^{9} \log 11 = \sum_{k \ge 0} \left[\frac{85293}{10k+1} + \frac{10935}{10k+2} + \frac{9477}{10k+3} + \frac{1215}{10k+4} + \frac{648}{10k+5} + \frac{135}{10k+6} + \frac{117}{10k+7} + \frac{15}{10k+8} + \frac{13}{10k+9} \right] \frac{1}{3^{10k}}.$$

(0.291)
$$\log 11 = \log 2 + \log 5 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \cdot 10^k}.$$

(0.292)
$$\log 11 = 2\log 2 + \log 3 - \sum_{k=1}^{\infty} \frac{1}{k12^k}.$$

(0.293)
$$\log 11 = 2(\log 2 + \log 5 - \log 3) - \sum_{k=1}^{\infty} \frac{1}{k \cdot 100^k}.$$

(0.294)
$$\log 13 = 2\log 2 + \log 3 + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \cdot 12^k}.$$

$$(0.295) 3\log 17 = 3\log 2 + 4\log 5 - \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{87}{5000}\right)^k.$$

(0.296)
$$\log 19 = 2\log 2 + \log 5 - \sum_{k=1}^{\infty} \frac{1}{k20^k}.$$

[115]

$$(0.297) \qquad \log 11 = \sum_{k \ge 1} \frac{1}{k} \left(\frac{3}{2^k} + \frac{1}{2^{2k}} + \frac{1}{2^{5k}} - \frac{1}{2^{10k}} \right) = \frac{1}{2} \sum_{k \ge 1} \frac{1}{k} \left(\frac{13}{3^k} - \frac{4}{3^{2k}} - \frac{1}{3^{5k}} \right).$$

[115]

$$(0.298) \log 13 = \sum_{k>1} \frac{1}{k} \left(\frac{3}{2^k} + \frac{1}{2^{2k}} + \frac{1}{2^{3k}} + \frac{1}{2^{4k}} - \frac{1}{2^{12k}} \right) = \sum_{k>1} \frac{1}{k} \left(\frac{7}{3^k} - \frac{2}{3^{2k}} - \frac{1}{3^{3k}} \right).$$

[115]

(0.299)
$$\log 17 = \sum_{k>1} \frac{1}{k} \left(\frac{4}{2^k} + \frac{1}{2^{4k}} - \frac{1}{2^{8k}} \right).$$

[115]

(0.300)
$$\log 19 = \sum_{k>1} \frac{1}{k} \left(\frac{3}{2^k} + \frac{3}{2^{2k}} + \frac{1}{2^{9k}} - \frac{1}{2^{18k}} \right).$$

Similar formulas as the four above are obtained by inserting (0.301)

$$\log[(2^s - 1)^{\tau}] = s\tau \log 2 - \sum_{k \ge 1} \frac{\tau}{k2^{ks}} = -s\tau \log \frac{1}{2} - \sum_{k \ge 1} \frac{\tau}{k2^{ks}} = \sum_{k \ge 1} \frac{\tau}{k} \left(\frac{s}{2^k} - \frac{1}{2^{ks}} \right),$$

—immediate consequence of putting x = 1/2 in (1.64)—into the right hand sides of [46]:

$$(0.302) \qquad \log 41 = \log(2^{20} - 1) - \log(2^{10} - 1) + \log[(2^2 - 1)^2] - \log[(2^4 - 1)^2].$$

$$\log 43 = \log(2^{14} - 1) - \log(2^2 - 1) - \log(2^7 - 1).$$

$$\log 73 = \log(2^9 - 1) - \log(2^3 - 1).$$

$$(0.305) \log 151 = \log(2^{15} - 1) - \log(2^3 - 1) - \log(2^5 - 1).$$

$$(0.306) \qquad \log 241 = \log(2^{24} - 1) - \log(2^{12} - 1) - \log(2^8 - 1) + \log(2^4 - 1).$$

$$(0.307) \log 257 = \log(2^{16} - 1) - \log(2^8 - 1).$$

$$(0.308) \log 331 = \log(2^{30} - 1) - \log(2^{15} - 1) - \log(2^{10} - 1) + \log(2^{5} - 1) - \log(2^{2} - 1).$$

$$(0.309) \qquad \log 337 = \log(2^{21} - 1) - \log(2^7 - 1) - \log[(2^6 - 1)^2] + \log[(2^2 - 1)^4].$$

$$(0.310) \log 683 = \log(2^{22} - 1) - \log(2^{11} - 1) - \log(2^{2} - 1).$$

$$(0.311) \log 2731 = \log(2^{26} - 1) - \log(2^{13} - 1) - \log(2^{2} - 1).$$

$$(0.312) \log 5419 = \log(2^{42} - 1) - \log(2^{21} - 1) - \log(2^{14} - 1) + \log(2^{7} - 1) - \log(2^{2} - 1).$$

$$(0.313) \qquad \log 43691 = \log(2^{34} - 1) - \log(2^{17} - 1) - \log(2^2 - 1).$$

$$(0.314) \qquad \log 61681 = \log(2^{40} - 1) - \log(2^{20} - 1) - \log(2^8 - 1) + \log(2^4 - 1).$$

$$(0.315) \qquad \log 174763 = \log(2^{38} - 1) - \log(2^{18} - 1) - \log(2^2 - 1).$$

$$\log 262657 = \log(2^{27} - 1) - \log(2^9 - 1).$$

$$(0.317) \qquad \log 599479 = \log(2^{33} - 1) - \log(2^{11} - 1) - \log(2^3 - 1).$$

(0.318)
$$\sum_{k>0} \frac{\log(2k+1)}{(2k+1)^l} = -\frac{\log 2}{2^l} \zeta(l) - (1-2^{-l})\zeta'(l).$$

(0.319)
$$\sum_{k>0} \frac{\log(ak+b)}{(ak+b)^l} = \frac{\log a}{a^l} \zeta(l,b/a) - \frac{1}{a^l} \zeta'(l,b/a).$$

[34]

(0.320)
$$\sum_{k=1}^{\infty} \frac{kk!}{(2k)!} = \frac{1}{8} \left(2 + 3e^{1/4} \sqrt{\pi} \operatorname{erf}(1/2) \right).$$

(0.321)
$$\sum_{k=1}^{\infty} \frac{(-1)^k \alpha^k x^k}{kk!} = -\gamma - \Gamma(0, \alpha x) - \ln \alpha - \ln x.$$

$$\begin{split} &\frac{3}{2}\sum_{k=0}^{\infty}\frac{1}{16^k}\Big(\frac{1}{(8k+1)^2}-\frac{1}{(8k+2)^2}+\frac{1}{2(8k+3)^2}-\frac{1}{4(8k+5)^2}+\frac{1}{4(8k+6)^2}-\frac{1}{8(8k+7)^2}\Big)\\ &-\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{4096^k}\Big(\frac{1}{(8k+1)^2}+\frac{1}{2(8k+2)^2}+\frac{1}{8(8k+3)^2}-\frac{1}{64(8k+5)^2}-\frac{1}{128(8k+6)^2}-\frac{1}{512(8k+7)^2}\Big)=G, \end{split}$$

which is Catalan's constant [175, A006752].

[44]

$$(0.322) \qquad \sum_{k>0} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right) = \pi.$$

$$\frac{1}{16807} \sum_{n=0}^{\infty} \frac{1}{2^n \binom{7n}{2n}} \left(\frac{59296}{7n+1} - \frac{10326}{7n+2} - \frac{3200}{7n+3} - \frac{1352}{7n+4} - \frac{792}{7n+5} + \frac{552}{7n+6} \right) = \pi.$$

[6]

(0.324)
$$\frac{1}{2} \sum_{k=0}^{\infty} \frac{4^k k!^2}{(2k)!(2k+1)^2} = G.$$

[6]

(0.325)
$$-\frac{\pi}{32} \sum_{k=0}^{\infty} \frac{(2k+1)!^2}{16^k k!^4 (k+1)^3} = G - \frac{\pi}{2} \log 2.$$

[6]

(0.326)
$$\sqrt{2} \sum_{k=0}^{\infty} \frac{(2k)!}{8^k k!^2 (2k+1)^2} = G + \frac{\pi}{4} \log 2.$$

[6, 41]

(0.327)
$$\frac{3}{8} \sum_{k=0}^{\infty} \frac{k!^2}{(2k)!(2k+1)^2} = G + \frac{\pi}{8} \log(2 + \sqrt{3}).$$

[41]

(0.328)
$$\frac{5}{8} \sum_{k=0}^{\infty} \frac{L(2k+1)}{(2k+1)^2 {2k \choose k}} = G - \frac{\pi}{8} \log(\frac{10 + \sqrt{50 - 22\sqrt{5}}}{10 - \sqrt{50 - 22\sqrt{5}}}).$$

where L are the Lucas numbers [155]

(0.329)
$$\sqrt{e} = \frac{16}{31} \left[1 + \sum_{n=1}^{\infty} \frac{1 + n^3/2 + n/2}{2^n n!} \right],$$

which is a special case of $\frac{1}{2}P_3(1/2) + \frac{1}{2}P_1(1/2) + P_0(1/2)$ of [100]

(0.330)
$$\sum_{n=0}^{\infty} n^{j} \frac{t^{n}}{n!} = P_{j}(t) \exp(t)$$

where

(0.331)
$$P_0(t) \equiv 1; \quad P_j(t) \equiv t \left[P'_{j-1}(t) + P_{j-1}(t) \right], j > 0.$$

[4]

(0.332)
$$\sum_{k>1} \begin{bmatrix} k \\ p \end{bmatrix} \frac{1}{k!k} = \zeta(p+1).$$

[4]

$$(0.333) \qquad \sum_{k\geq 2} \begin{bmatrix} k \\ 2 \end{bmatrix} \frac{1}{k!k^q} = \frac{q+1}{2}\zeta(q+2) - \frac{1}{q}\sum_{k=1}^{q-1}k\zeta(k+1)\zeta(q+1-k).$$

[4]

$$(0.334) \qquad \sum_{k>1} \begin{bmatrix} k \\ p \end{bmatrix} \frac{z^k}{k!k} = \zeta(p+1) + \sum_{k=1}^p \left(\frac{(-)^{k-1}}{k!} \operatorname{Li}_{p+1-k} (1-z) \log^k (1-z)\right).$$

[4] (0.335)

$$\sum_{k \ge p} \begin{bmatrix} k \\ p \end{bmatrix} \frac{1}{k!k^q} = \sum_{k \ge q} \begin{bmatrix} k \\ q \end{bmatrix} \frac{1}{k!k^p} = \frac{(-)^{q-1}}{(q-1)!p!} \lim_{\beta \to 0} \lim_{\alpha \to 0} \frac{d^{q+p-1}}{d\alpha^q d\beta^{q-1}} \frac{\Gamma(1-\alpha)\Gamma(1+\beta)}{\Gamma(\beta)\Gamma(1-\alpha+\beta)},$$

which can always be represented in finite terms of zeta functions.

0.3. Formulae from Differential Calculus. [112]

(0.336)
$$\left(\frac{d}{dx}\right)^m e^{g(x)} = e^{g(x)} Y_m \left(g'(x), g''(x), \dots, g^{(m)}(x)\right)$$

where Y_m is the mth exponential complete Bell polynomial,

$$(0.337) Y_n(x_1, \dots, x_n) = \sum_{\pi(n)} \frac{n!}{k_1! \cdots k_n!} \left(\frac{x_1}{1!}\right)^{k_1} \cdots \left(\frac{x_n}{n!}\right)^{k_n}.$$

$$(0.338) \qquad \frac{d}{dx} \left[f(x)^{g(x)} \right] = f(x)^{g(x)} \left[(\log f)g' + g \frac{f'}{f} \right]$$

[62]

(0.339)
$$\sum_{n\geq 0} \frac{g^{(n)}(0)}{n!} f(n) x^n = \sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} \sum_{k=0}^n \left\{ \begin{array}{c} n \\ k \end{array} \right\} x^k g^{(k)}(x).$$

where the braces are Stirling numbers of the second kind.

1. Elementary Functions

1.1. Powers of Binomials. [30]

$$(1.1) \qquad \left(\frac{1+\sqrt{1+4x}}{2}\right)^n = (1+x)^{n/2} \sum_{k\geq 0} \frac{(-)^{k+1} \Gamma(\frac{3k-2}{2})}{\Gamma(\frac{3k-n}{2}-k+1)k!} \left(\frac{x}{(1+x)^{3/2}}\right)^k.$$

[119]

$$(1.2) \qquad \sum_{n=0}^{\infty} {2n \choose n} x^n = \frac{1}{\sqrt{1-4x}}.$$

[119][175, A000108]

(1.3)
$$\sum_{n=0}^{\infty} {2n \choose n} \frac{x^n}{n+1} = \frac{1-\sqrt{1-4x}}{2x}.$$

[119]

(1.4)
$$\sum_{n=1}^{\infty} \frac{1}{n} {2n \choose n} x^n = 2 \log \frac{1 - \sqrt{1 - 4x}}{2x}.$$

[119]

$$(1.5) \ x \sum_{n=1}^{\infty} \frac{1}{n(n+1)} {2n \choose n} x^n = 2x \log \frac{1-\sqrt{1-4x}}{x} + \frac{\sqrt{1-4x}}{2} - x(\log 4 - 1) - \frac{1}{2},$$

which corrects a sign error in [119], see [127].

[40]

(1.6)

$$\sum_{n=0}^{\infty} \frac{1}{n+1} {2n \choose n} H_n x^{n+1} = \sqrt{1-4x} \log(2\sqrt{1-4x}) - (1+\sqrt{1-4x}) \log(1+\sqrt{1-4x}) + \log 2,$$

(1.7)
$$\sum_{n=0}^{\infty} {2n \choose n} H_n x^n = \frac{2}{\sqrt{1-4x}} \log(\frac{1+\sqrt{1-4x}}{2\sqrt{1-4x}}),$$

(1.8)
$$\sum_{n=0}^{\infty} {2n \choose n} H_n(-1)^{n-1} x^n = \frac{2}{\sqrt{1+4x}} \log(\frac{2\sqrt{1+4x}}{1+\sqrt{1+4x}}),$$

where $H_n = \sum_{k=1}^{n} 1/k$.

$$(1.9) \qquad \sum_{n=0}^{\infty} {2n \choose n} P_q(n) x^{n+1} = \frac{1}{\sqrt{1-4x}} \sum_{k=0}^{q} {2k \choose k} k! \left(\frac{x}{1-4x}\right)^k \sum_{m=k}^{q} a_m S(m,k)$$

where $P_q(z) = a_q z^q + a_{q-1} z^{q-1} + \ldots + q_0$ is a polynomial and S are the Stirling Numbers of the Second Kind.

[175, A005430]

(1.10)
$$\sum_{n=1}^{\infty} n \binom{2n}{n} x^n = 2x(1-4x)^{-3/2}.$$

[119][175, A002736]

(1.11)
$$\sum_{n=1}^{\infty} n^2 \binom{2n}{n} x^n = \frac{2x(2x+1)}{(1-4x)^{5/2}}.$$

[119]

(1.12)
$$\sum_{n=0}^{\infty} \frac{1}{2n+1} {2n \choose n} x^n = \frac{1}{2x} \arcsin(2x).$$

[40]

$$(1.13) \sum_{n=0}^{\infty} \frac{1}{n+m+1} {2n \choose n} x^n = \frac{1}{2^{2m+1}x^{m+1}} \sum_{k=0}^{m} {m \choose k} \frac{(-)^k}{2k+1} [1 - (1-4x)^{k+1/2}].$$

$$(1.14) \quad \sum_{n=0}^{\infty} \frac{1}{n^2} {2n \choose n} x^n = 2 \operatorname{Li}_2 \left(\frac{1 - \sqrt{1 - 4x}}{2} \right) - \log^2 (1 + \sqrt{1 - 4x}) - 2 \log 2 \log \frac{1 - \sqrt{1 - 4x}}{x} + 3 \log^2 2$$

[119]

(1.15)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\binom{2m}{m}} (2x/y)^{2m} = \frac{xy^2}{h^3} \left[\log \frac{x+h}{y} + \frac{xh}{y^2} \right]$$

where $h \equiv \sqrt{x^2 + y^2}$. [119]

(1.16)
$$\sum_{m=1}^{\infty} \frac{(2x)^{2m}}{m {2m \choose m}} = \frac{2x \arcsin x}{\sqrt{1-x^2}}.$$

[119]

(1.17)
$$\sum_{m=1}^{\infty} \frac{(2x)^{2m}}{m^2 \binom{2m}{m}} = 2(\arcsin x)^2.$$

[119]

(1.18)
$$\sum_{m=1}^{\infty} \frac{(2x)^{2m}}{\binom{2m}{m}} = \frac{x^2}{1-x^2} + \frac{x \arcsin x}{(1-x^2)^{3/2}}$$

$$\frac{1}{(\sigma^2 + \sigma_L^2)^{\gamma/2}} = \frac{1}{\sigma_L^{\gamma}} \exp\left(-\frac{\gamma}{2} \frac{\sigma^2}{\sigma_L^2}\right) \left(1 + \frac{\gamma}{4} \left(\frac{\sigma}{\sigma_L}\right)^4 - \frac{\gamma}{6} \left(\frac{\sigma}{\sigma_L}\right)^6 + \frac{\gamma(\gamma + 4)}{32} \left(\frac{\sigma}{\sigma_L}\right)^8 - \frac{\gamma(5\gamma + 12)}{120} \left(\frac{\sigma}{\sigma_L}\right)^{10} + \frac{\gamma(3\gamma^2 + 52\gamma + 96)}{1152} \left(\frac{\sigma}{\sigma_L}\right)^{12} - \frac{\gamma(35\gamma^2 + 308\gamma + 480)}{6720} \left(\frac{\sigma}{\sigma_L}\right)^{14} + \cdots\right)$$
[162, 3.41(a)]

(1.20)
$$\frac{1}{a^2 - x^2} = \frac{2}{a\sqrt{a^2 - 1}} \sum_{j=0}^{\infty} (a - \sqrt{a^2 - 1})^{2j} T_{2j}(x)$$

where the prime at the sum symbols means taking only half of the value at index zero.

[31]

$$(1.21) \quad (1+x+x^{-1})^n = \sum_{j=-n}^n \binom{n}{j}_2 x^j, \quad \binom{n}{m}_2 \equiv \sum_{j\geq 0} \frac{n!}{j!(m+j)!(n-2j-m)!}.$$

[153]

$$(1.22) \qquad \sum_{s=0}^{\infty} \zeta(4s+3)x^{4s} = \sum_{k=1}^{\infty} \frac{k}{k^4 - x^4} = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-)^{k-1}}{\binom{2k}{k}} \frac{k}{k^4 - x^4} \prod_{m=1}^{k-1} \frac{m^4 + 4x^4}{m^4 - x^4}.$$

[28] Let $B_0(x)$ be a period function of period 1. Assume $B_0(x)$ has a continuous derivative in the open interval (0,1). Let $a_0 \equiv \int_0^1 B_0(x) dx$ and define

(1.23)
$$B_n(x) = \int_0^2 B_{n-1}(y)dy + \int_0^1 (y-1)B_{n-1}(y)dy.$$

Then

$$(1.24) \sum_{k=0}^{\infty} B_k(x)t^k = \frac{te^{xt}}{e^t - 1} \left[a_0 - \int_0^1 B_0'(1 - y) \frac{e^{ty} - 1}{t} dy \right] + \int_0^x e^{t(x - y)} B_0'(y) dy,$$

and

(1.25)
$$B_n(x) = \Re \left[2 \sum_{j=1}^{\infty} \frac{e^{2\pi i j x}}{(2\pi i j)^n} (a_j - a_0 - i b_j) \right]$$

where a_j and b_j are the Fourier coefficients of $B_0(x)$. For example $B_0(x) = \cos(\pi x)$ yields $B_2(x) = (1 - 2x - \cos(\pi x))/\pi^2$ and

(1.26)
$$\frac{\pi^3}{2}B_2(x) = -\sum_{j=1}^{\infty} \frac{\sin(2\pi jx)}{j(4j^2 - 1)}.$$

Consider also a periodic sequence $\lambda_{j+T} = \lambda_j$, the Dirichlet series

(1.27)
$$f(s) = \sum_{j=1}^{\infty} \frac{a_j - a_0}{j^s} \lambda_j, \quad g(s) = \sum_{j=1}^{\infty} \frac{b_j}{j^s} \lambda_j,$$

and the Fourier coefficients

(1.28)
$$\alpha_j \equiv \sum_{k=1}^T \lambda_k \cos(2\pi j k/T), \quad \beta_j \equiv \sum_{k=1}^T \lambda_k \sin(2\pi j k/T).$$

If $\lambda_{T-j} = \lambda_j$ for $1 \leq j < T$, then

(1.29)
$$f(2n) = \frac{(-)^n}{2T} (2\pi)^{2n} \sum_{j=1}^T \alpha_j B_{2n}(j/T),$$

(1.30)
$$g(2n+1) = \frac{(-)^{n+1}}{2T} (2\pi)^{2n+1} \sum_{j=1}^{T} \alpha_j B_{2n+1}(j/T),$$

and similar expressions for other even-odd symmetries of the λ . [28]

(1.31)
$$8\log 2 - 4 = \zeta(3) + \sum_{i=1}^{\infty} \frac{1}{j^2(4j^2 - 1)} = \sum_{k=0}^{\infty} \frac{\zeta(3+2k)}{4^k}.$$

[28]

(1.32)
$$\sum_{j=1}^{\infty} \frac{\cos(2\pi j/3)}{j^{2k}(4\pi^2 j^2 + 1)} = \frac{(-)^k}{4} (2\pi)^{2k} \alpha_{2k},$$

with g.f.

(1.33)

$$\sum_{k=0}^{\infty} \alpha_k t^k = \frac{e + e^{4/3} - e^{1+t} - e^{t+4/3} + t^3 [e^{(2t+5)/3} - e^{(2+2t)/3} - e^{(2+t)/3} + e^{(5+t)/3}]}{(e-1)e^{2/3}(e^t - 1)(t^2 - 1)} - \frac{2te^{t/3}}{e^t - 2}$$

1.2. The Exponential Function. [84], [175, A001469]

(1.34)
$$\frac{2t}{e^t + 1} = \sum_{N=0}^{\infty} \frac{G_N}{N!} t^N;$$

with $(G+1)^N + G_N = 1$ for N > 1, $G_1 = 1$, $G_2 = -1$, $G_4 = 1$, $G_6 = -3$, $G_8 = 17$, $G_{10} = -155$, $G_{12} = 2073$, Genocchi numbers.

(1.35)
$$\exp(xt + yt^2) = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x, y), \quad H_n(x, y) \equiv n! \sum_{k=0}^{[n/2]} \frac{x^{n-2k} y^k}{k! (n-2k)!}.$$

1.3. **Fourier Series.** [61, B2a]

(1.36)
$$\cos(m\theta) = \sum_{k=0}^{\lfloor m/2 \rfloor} (-1)^k \binom{m}{2k} \cos^{m-2k} \theta \sin^{2k} \theta.$$

(1.37)
$$\sin^{2k} \alpha + \cos^{2k} \alpha = 1 - \sum_{l=1}^{k-1} {k \choose l} \sin^{2l} \alpha \cos^{2k-2l} \alpha.$$

[60]

(1.38)
$$S_{\nu}(\alpha) \equiv \sum_{k=0}^{\infty} \frac{\sin(2k+1)\alpha}{(2k+1)^{\nu}};$$

(1.39)
$$C_{\nu}(\alpha) \equiv \sum_{k=0}^{\infty} \frac{\cos(2k+1)\alpha}{(2k+1)^{\nu}};$$

(1.40)
$$S_{2n+1}(\alpha) = \frac{(-1)^n}{4(2n)!} \pi^{2n+1} E_{2n}\left(\frac{\alpha}{\pi}\right);$$

(1.41)
$$C_{2n}(\alpha) = \frac{(-1)^n}{4(2n-1)!} \pi^{2n} E_{2n-1}\left(\frac{\alpha}{\pi}\right);$$

(1.42)
$$S_{\nu}(2\pi p/q) = \frac{1}{q^{\nu}} \sum_{s=1}^{q-1} \zeta(\nu, s/q) \left[\sin(s2\pi p/q) - \frac{\sin(s4\pi p/q)}{2^{\nu}} \right];$$

(1.43)

$$C_{\nu}(2\pi p/q) = \frac{1}{q^{\nu}} \left\{ \zeta(\nu) \left(1 - \frac{1}{2^{\nu}} \right) + \sum_{s=1}^{q-1} \zeta(\nu, s/q) \left[\cos(s2\pi p/q) - \frac{\cos(s4\pi p/q)}{2^{\nu}} \right] \right\}.$$

[91, 1.448.1]

(1.44)
$$\sum_{k=1}^{\infty} \frac{p^k \sin(kx)}{k} = \arctan \frac{p \sin x}{1 - p \cos x}, \quad 0 < x < 2\pi, p^2 \le 1,$$

with special case

(1.45)
$$\sum_{k=1}^{\infty} \frac{\sin(kx)}{2^k k} = \arctan \frac{\sin x}{2 - \cos x}, \quad 0 < x < 2\pi.$$

(1.46)
$$\sum_{k=1}^{\infty} \frac{p^k \cos(kx)}{k} = \ln \frac{1}{\sqrt{1 - 2p \cos x + p^2}}, \quad 0 < x < 2\pi,$$

with special case

(1.47)
$$\sum_{k=1}^{\infty} \frac{\cos(kx)}{2^k k} = -\ln \sqrt{1 - \cos x + 1/4}, \quad 0 < x < 2\pi.$$

[99, (1.10)]

(1.48)
$$-\sqrt{2-2\cos\theta} = -\frac{4}{\pi} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\cos k\theta}{(k-1/2)(k+1/2)}$$

[184]

(1.49)
$$\operatorname{Cl}_{2n+1}(\pi/2) = -2^{-2n-1}(1-2^{-2n})\zeta(2n+1), n \in \mathbb{N}.$$

[184]

(1.50)
$$\operatorname{Cl}_{2n+1}(\pi/3) = \frac{1}{2}(1 - 2^{-2n})(1 - 3^{-2n})\zeta(2n+1), n \in \mathbb{N}.$$

[184]

(1.51)
$$\operatorname{Cl}_{2n+1}(2\pi/3) = -\frac{1}{2}(1-3^{-2n})\zeta(2n+1), n \in \mathbb{N}.$$

[184]

(1.52)
$$\sum_{k>1} \frac{\cos(k\pi/2)}{k^s} = -2^{-s}(1-2^{1-s})\zeta(s), \Re s > 1.$$

[119]

$$\sum_{m=1}^{\infty} \frac{m^{k-2} (2x)^{2m}}{\binom{2m}{m}} = \frac{x}{2^{k-2} (1-x^2)^{k-1/2}} \left[\arcsin x V_x(x^2) + x \sqrt{1-x^2} W_k(x^2) \right], \quad k \ge 0,$$

[119]

(1.54)
$$\sum_{m=1}^{\infty} \frac{m^{k-2} 4^m (\sin \theta)^{2m}}{\binom{2m}{m}} = \frac{\sin 2\theta}{(2\cos^2 \theta)^k} \left[2\theta V_k (\sin^2 \theta) + \sin 2\theta W_k (\sin^2 \theta) \right],$$

[119]

(1.55)
$$\sum_{m=1}^{\infty} \frac{(-1)^{m-1} m^{k-2} 4^m (\sinh z)^{2m}}{\binom{2m}{m}} = \frac{\sinh 2z}{(2\cosh^2 z)^k} \left[2\log\{\sinh z + \cosh z\} V_k (-\sinh^2 z) + \sinh 2z W_k (-\sinh^2 z) \right],$$

where $V_1(t) = 1$, (see [175, A156919]) $W_1(t) = 0$,

$$V_{k+1}(t) = \{(2k-2)t+1\}V_k(t) + 2(1-t)\delta V_k(t)$$

$$W_{k+1}(t) = \{(2k-4)t+2\}W_k(t) + 2(1-t)\delta W_k(t) + V_k(t)$$

and δ is the operator $x \frac{d}{dx}$.

1.4. Expansions of Hyperbolic Functions. [30]

(1.56)
$$\cos x \cosh x = \sum_{k>0} \frac{(-)^k (2x^2)^{2k}}{(4k)!}.$$

[30]

(1.57)
$$\sin x \sinh x = \sum_{k>0} \frac{(-)^k (2x^2)^{2k+1}}{(4k+2)!}.$$

[30]

(1.58)
$$\coth(2x)\tanh x = 1 - \sum_{k>1} \frac{2^{2k-1}(2^{2k}-1)(2k-1)B_{2k}x^{2k-2}}{(2k)!}.$$

[33]

(1.59)
$$\sum_{j=0}^{\infty} \frac{x}{\sinh 2^{-j}x} - 2^j = 1 - \frac{x}{\tanh x}.$$

[33]

(1.60)
$$\sum_{j=0}^{\infty} \frac{2^j - \coth 2^{-j}}{2^j \sinh 2^{-j}} = \frac{1 + 4e^2 - e^4}{1 - 2e^2 + e^4}.$$

[86]

(1.61)
$$\sum_{m,n=-\infty}^{\infty} \frac{F(|2m+2n+1|)}{\cosh(2m+1)u \cosh 2nu} = 2\sum_{n=0}^{\infty} \frac{(2n+1)F(2n+1)}{\sinh(2n+1)u},$$

for any summable function F(x).

[86]

(1.62)
$$\sum_{m,n=-\infty}^{\infty} \frac{F(m+n+1) + F(m-n)}{\sinh(2m+1)u \cosh(2n+1)u} = 8 \sum_{n=1}^{\infty} \frac{nF(n)}{\cosh(2nu)},$$

and

$$(1.63) \qquad \sum_{k,m,n=-\infty}^{\infty} \frac{F(k+m+n+1) + F(k-m+n)}{\cosh(2ku)\cosh(2m+1)u \sinh(2n+1)u} = 8\sum_{n=1}^{\infty} \frac{n^2 F(n)}{\sinh(2nu)},$$

where F is any sine transform (and hence odd).

1.5. The Logarithmic Function.

(1.64)
$$\ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}.$$

(1.65)

$$(1+x)\ln(1+x) = x + \frac{1}{1\cdot 2}x^2 - \frac{1}{2\cdot 3}x^3 + \frac{1}{3\cdot 4}x^4 - \frac{1}{4\cdot 5}x^5 + \dots = x + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k+1}}{k(k+1)}.$$

By integration of this w.r.t. x [91, 2.729], [135]

(1.66)
$$\frac{1}{2}(1+x)^2 \ln(1+x) = \frac{x}{2} + \frac{3x^2}{4} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k+2}}{k(k+1)(k+2)}.$$

$$(1.67) \ \frac{1}{6}(1+x)^3 \ln(1+x) = \frac{x}{6} + \frac{5x^2}{12} + \frac{11x^3}{36} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k+3}}{k(k+1)(k+2)(k+3)}.$$

$$\frac{1}{24}(1+x)^4 \ln(1+x) = \frac{x}{24} + \frac{7x^2}{48} + \frac{13x^3}{72} + \frac{25x^4}{288} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k+4}}{k(k+1)(k+2)(k+3)(k+4)}$$

$$(1.69) x + (1-x)^{l} \ln(1-x) = \sum_{i=2}^{l} \tau_{i,l} x^{i} - (-1)^{l} l! \sum_{k=1}^{\infty} \frac{x^{k+l}}{k(k+1)(k+2)\cdots(k+l)},$$

where

(1.70)
$$au_{2,l} = l - 1/2, \quad l \ge 2; \quad i\tau_{i,l} = (-1)^i \binom{l-1}{i-1} - l\tau_{i-1,l-1}, \quad i \ge 3.$$

(1.71)
$$\log n = -\sum_{s>1} \frac{\alpha(s,n)}{s}$$

with

(1.72)
$$\alpha(s,n) \equiv \begin{cases} n-1, & n \mid s; \\ -1 & n \nmid s. \end{cases}$$

Superposition of [91, 1.513.1] and [91, 1.511], see [175, A165998]:

$$(1.73) \qquad \frac{1}{3x} \ln \frac{1+x}{(1-x)^2} = 1 + \frac{x}{6} + \frac{x^2}{3} + \frac{x^3}{12} + \dots + \frac{x^{2j}}{2j+1} + \frac{x^{2j+1}}{3(2j+1)} + \dots$$

[11]

(1.74)
$$\sum_{j=k}^{\infty} \frac{|S_j^{(k)}|b^j}{j!} = \frac{\ln^k(1+b)}{k!}.$$

[101]

(1.75)

$$\sum_{k=0}^{\infty} \frac{x^k}{\binom{k+L}{L}} = {}_{2}F_{1}(1,1;L+1;x) = L \sum_{j=0}^{L-2} \frac{(x-1)^j}{(L-j-1)x^{j+1}} - L(x-1)^{L-1} \frac{\ln(1-x)}{x^L}; \quad L \ge 1.$$
[43]

(1.76)
$$\frac{1}{2x} \left\{ 1 - \ln(1+x) - \frac{1-x}{\sqrt{x}} \arctan \sqrt{x} \right\} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k-1}}{(2k-1)2k(2k+1)};$$

 $0 < x \le 1.$ [138]

(1.77)
$$-\frac{\ln(1-t)}{(1-t)^r} = \sum_{n=0}^{\infty} H_n^{(r)} t^n,$$

where the Hyperharmonic numbers are defined by $H_n = \sum_{k=1}^n (1/k)$ and $H_n^{(r)} = \sum_{k=1}^n H_k^{(r-1)} = \binom{n+r-1}{r-1} (H_{n+r-1} - H_{r-1})$.

1.6. The Inverse Trigonometric and Hyperbolic Function. [33]

(1.78)
$$\sum_{k=1}^{\infty} 2^{-k} \tan \frac{x}{2^k} = \frac{1}{2^n} \cot \frac{x}{2^n} - \cot x.$$

[33]

(1.79)
$$\sum_{k=1}^{\infty} \csc \frac{x}{2^{k-1}} = \cot \frac{x}{2^n} - \cot x.$$

[33]

(1.80)
$$\sum_{k=1}^{\infty} \arctan \frac{2x^2}{k^2} = \frac{\pi}{4} - \arctan \frac{\tanh \pi x}{\tan \pi x}.$$

[33]

(1.81)
$$\sum_{k=1}^{\infty} (-)^{k-1} \arctan \frac{2x^2}{k^2} = -\frac{\pi}{4} - \arctan \frac{\sinh \pi x}{\sin \pi x}.$$

- 2. Indefinite Integrals of Elementary Functions
- 2.1. Rational Functions. Aids to partial fraction decompositions: [205]

(2.1)
$$\frac{1}{s^n(s^2+as+b)} = \frac{-\alpha_{n-1}s + \alpha_n}{b^n(s^2+as+b)} + \sum_{k=0}^{n-1} \frac{\alpha_k}{b^{k+1}s^{n-k}};$$

where b > 0, $a^2 - 4b < 0$, $\alpha_0 \equiv 1$,

(2.2)
$$\alpha_m \equiv (-1)^m \sqrt{b^m} U_m \left(\frac{a}{2\sqrt{b}} \right) = \sum_{k=0}^{\lfloor m/2 \rfloor} (-1)^{k+m} \binom{m-k}{k} a^{m-2k} b^k.$$

[205]

(2.3)

$$\frac{\alpha s + \beta}{(s^2 + as + b)(s^2 + kas + kb)} = \frac{1}{(k-1)b^2} \left(\frac{L(s+a) + \beta b}{s^2 + as + b} - \frac{L(s+ka) + \beta b}{s^2 + kas + kb} \right),$$

$$k \neq 1, ab \neq 0, L \equiv \left| \begin{array}{cc} \alpha & \beta \\ a & c \end{array} \right|.$$

$$(2.4) \quad \frac{1}{(pq+ap+b)(pq+cp+b)} = \begin{vmatrix} a & c \\ b & b \end{vmatrix}^{-1} \left(\frac{q+a}{pq+ap+b} - \frac{q+c}{pq+cp+b} \right),$$

$$a \neq c, b \neq 0.$$

$$[205]$$

$$(2.5) \frac{\alpha p + \beta}{(pq + ap + b)(pq + cp + b)} = \begin{vmatrix} a & c \\ b & b \end{vmatrix}^{-1} \left(\frac{\begin{vmatrix} \alpha & \beta \\ q + c & b \end{vmatrix}}{pq + cp + b} - \frac{\begin{vmatrix} \alpha & \beta \\ q + a & b \end{vmatrix}}{pq + ap + b} \right),$$

 $a \neq c, b \neq 0.$

$$[205]$$
 (2.6)

$$\frac{as+b}{(s^2+\alpha s+\beta)(s^2+\gamma s+\delta)} = \frac{1}{k} \left(\frac{\left(b-a\frac{\delta-\beta}{\gamma-\alpha}\right)s+b\alpha-a\beta-b\frac{\delta-\beta}{\gamma-\alpha}}{s^2+\alpha s+\beta} - \frac{\left(b-a\frac{\delta-\beta}{\gamma-\alpha}\right)s+b\gamma-a\delta-b\frac{\delta-\beta}{\gamma-\alpha}}{s^2+\gamma s+\delta} \right),$$

$$\alpha \neq \gamma$$
. [132]

(2.7)
$$\frac{1}{n^{2s}(n+1)^{2s}} = \sum_{t=1}^{2s} {4s-t-1 \choose 2s-1} \left[\frac{(-1)^t}{n^t} + \frac{1}{(n+1)^t} \right].$$

[**65**, 170.]

(2.8)
$$\int \frac{dx}{a^4 + x^4} = \frac{1}{4a^3\sqrt{2}} \log \frac{x^2 + ax\sqrt{2} + a^2}{x^2 - ax\sqrt{2} + a^2} + \frac{1}{2a^3\sqrt{2}} \arctan \frac{ax\sqrt{2}}{a^2 - x^2}.$$
[65, 171.]

(2.9)
$$\int \frac{dx}{a^4 - x^4} = \frac{1}{4a^3} \log \left| \frac{a+x}{a-x} \right| + \frac{1}{2a^3} \arctan \frac{x}{a}.$$

[**65**, 170.1]

(2.10)
$$\int \frac{xdx}{a^4 + x^4} = \frac{1}{2a^2} \arctan \frac{x^2}{a^2}.$$

[**65**, 170.2]

(2.11)
$$\int \frac{x^2 dx}{a^4 + x^4} = -\frac{1}{4a\sqrt{2}} \log \frac{x^2 + ax\sqrt{2} + a^2}{x^2 - ax\sqrt{2} + a^2} + \frac{1}{2a\sqrt{2}} \arctan \frac{ax\sqrt{2}}{a^2 - x^2}.$$
[65, 170.3]

(2.12)
$$\int \frac{x^3 dx}{a^4 + x^4} = \frac{1}{4} \log(a^4 + x^4).$$

[**65**, 171.1]

(2.13)
$$\int \frac{xdx}{a^4 - x^4} = \frac{1}{4a^2} \log \left| \frac{a^2 + x^2}{a^2 - x^2} \right|.$$

[**65**, 171.2]

(2.14)
$$\int \frac{x^2 dx}{a^4 - x^4} = \frac{1}{4a} \log \left| \frac{a+x}{a-x} \right| - \frac{1}{2a} \arctan \frac{x}{a}.$$

[**65**, 171.3]

(2.15)
$$\int \frac{x^3 dx}{a^4 - x^4} = -\frac{1}{4} \log|a^4 - x^4|.$$

[**65**, 173]

(2.16)
$$\int \frac{dx}{x(a+bx^m)} = \frac{1}{am} \log \left| \frac{x^m}{a+bx^m} \right|.$$

2.2. Algebraic Functions. [65, 186.11,188.11]

(2.17)
$$\int \frac{dx}{(a^2 + b^2 x)x^{1/2}} = \frac{2}{ab} \arctan \frac{bx^{1/2}}{a}.$$

(2.18)
$$\int \frac{dx}{(a^2 - b^2 x)x^{1/2}} = \frac{1}{2ab} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

[65, 185.11,187.11]

(2.19)
$$\int \frac{x^{1/2}dx}{a^2 + b^2x} = \frac{2x^{1/2}}{b^2} - \frac{2a}{b^3} \arctan \frac{bx^{1/2}}{a}.$$

(2.20)
$$\int \frac{x^{1/2}dx}{a^2 - b^2x} = -\frac{2x^{1/2}}{b^2} + \frac{a}{b^3} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

[65, 185.13,187.13]

$$(2.21) \qquad \int \frac{x^{3/2} dx}{a^2 + b^2 x} = \frac{2}{3} \frac{x^{3/2}}{b^2} - \frac{2a^2 x^{1/2}}{b^4} + \frac{2a^3}{b^5} \arctan \frac{bx^{1/2}}{a}.$$

(2.22)
$$\int \frac{x^{3/2}dx}{a^2 - b^2x} = -\frac{2}{3} \frac{x^{3/2}}{b^2} - \frac{2a^2x^{1/2}}{b^4} + \frac{a^3}{b^5} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

[65, 186.21,188.21]

$$(2.23) \qquad \int \frac{dx}{(a^2 + b^2 x)^2 x^{1/2}} = \frac{x^{1/2}}{a^2 (a^2 + b^2 x)} + \frac{1}{a^3 b} \arctan \frac{bx^{1/2}}{a}.$$

(2.24)
$$\int \frac{dx}{(a^2 - b^2 x)^2 x^{1/2}} = \frac{x^{1/2}}{a^2 (a^2 - b^2 x)} + \frac{1}{2a^3 b} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

[65, 185.21,187.21]

(2.25)
$$\int \frac{x^{1/2}dx}{(a^2 + b^2x)^2} = -\frac{x^{1/2}}{b^2(a^2 + b^2x)} + \frac{1}{ab^3} \arctan \frac{bx^{1/2}}{a}.$$

(2.26)
$$\int \frac{x^{1/2}dx}{(a^2 - b^2x)^2} = \frac{x^{1/2}}{b^2(a^2 - b^2x)} - \frac{1}{2ab^3} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

|**65**, 185.23,187.23|

$$(2.27) \qquad \int \frac{x^{3/2} dx}{(a^2 + b^2 x)^2} = \frac{2x^{3/2}}{b^2 (a^2 + b^2 x)} + \frac{3a^2 x^{1/2}}{b^4 (a^2 + b^2 x)} - \frac{3a}{b^5} \arctan \frac{bx^{1/2}}{a}.$$

$$(2.28) \qquad \int \frac{x^{3/2} dx}{(a^2 - b^2 x)^2} = \frac{3a^2 x^{1/2} - 2b^2 x^{3/2}}{b^4 (a^2 - b^2 x)} - \frac{3a}{2b^5} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

[65, 186.13,188.13]

(2.29)
$$\int \frac{dx}{(a^2 + b^2 x)x^{3/2}} = -\frac{2}{a^2 x^{1/2}} - \frac{2b}{a^3} \arctan \frac{bx^{1/2}}{a}.$$

(2.30)
$$\int \frac{dx}{(a^2 - b^2 x)x^{3/2}} = -\frac{2}{a^2 x^{1/2}} + \frac{b}{a^3} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|.$$

[65, 186.23,188.23]

$$(2.31) \int \frac{dx}{(a^2 + b^2 x)^2 x^{3/2}} = -\frac{2}{a^2 (a^2 + b^2 x) x^{1/2}} - \frac{3b^2 x^{1/2}}{a^4 (a^2 + b^2 x)} - \frac{3b}{a^5} \arctan \frac{bx^{1/2}}{a}.$$

$$\int \frac{dx}{(a^2 - b^2 x)^2 x^{3/2}} = -\frac{2}{a^2 (a^2 - b^2 x) x^{1/2}} + \frac{3b^2 x^{1/2}}{a^4 (a^2 - b^2 x)} + \frac{3b}{2a^5} \log \left| \frac{a + bx^{1/2}}{a - bx^{1/2}} \right|$$
[65, 189.2,189.4]

$$(2.33) \qquad \int \frac{dx}{(a^4 + x^2)x^{1/2}} = \frac{1}{2a^3\sqrt{2}}\log\frac{x + a\sqrt{2x} + a^2}{x - a\sqrt{2x} + a^2} + \frac{1}{a^3\sqrt{2}}\arctan\frac{a\sqrt{2x}}{a^2 - x}.$$

(2.34)
$$\int \frac{dx}{(a^4 - x^2)x^{1/2}} = \frac{1}{2a^3} \log \left| \frac{a + x^{1/2}}{a - x^{1/2}} \right| + \frac{1}{a^3} \arctan \frac{x^{1/2}}{a}.$$

[65, 188.23,189.3]

(2.35)
$$\int \frac{x^{1/2} dx}{a^4 + x^2} = -\frac{1}{2a\sqrt{2}} \log \frac{x + a\sqrt{2x} + a^2}{x - a\sqrt{2x} + a^2} + \frac{1}{a\sqrt{2}} \arctan \frac{a\sqrt{2x}}{a^2 - x}$$

(2.36)
$$\int \frac{x^{1/2} dx}{a^4 - x^2} = \frac{1}{2a} \log \left| \frac{a + x^{1/2}}{a - x^{1/2}} \right| - \frac{1}{a} \arctan \frac{x^{1/2}}{a}.$$

(2.37)
$$\int \frac{x^n}{\sqrt{a+bx}} dx = \frac{2\sqrt{a+bx}}{b^{n+1}} (-a)^n \sum_{k=0}^n \binom{n}{k} \frac{(-z/a)^k}{2k+1}.$$

This corrects two sign errors in [91] at the b:

$$(2.38) \int \frac{z^m dx}{t^n \sqrt{z}} = -z^m \sqrt{z} \left\{ \frac{1}{(n-1)\Delta} \frac{1}{t^{n-1}} + \sum_{k=2}^{n-1} \frac{(2n-2m-3)(2n-2m-5)\cdots(2n-2m-2k+1)(-b)^{k-1}}{2^{k-1}(n-1)(n-2)\cdots(n-k)\Delta^k} \frac{1}{t^{n-k}} \right\} - \frac{(2n-3m-3)(2n-3m-5)\cdots(-2m+3)(-2m+1)(-b)^{n-1}}{2^{n-1}(n-1)!\Delta^n} \int \frac{z^m dx}{t\sqrt{z}}$$

where z = a + bx and $t = \alpha + \beta x$ and $\Delta \equiv a\beta - \alpha b$ [191]

(2.39)
$$\int \frac{f_m(z)}{\sqrt{D_m(z)}} dz = \log(x_m(z) + y_m(z)\sqrt{D_m(z)}),$$

if for example

(2.40)
$$f = 4z+2$$
; $D = z^4+8(z+1)$; $x = z^4-2z^3+2z^2+4z-4$; $y = z^2-2z+2z^2+2z^2+4z-4$

or (2.41)
$$f = 5z + 1; \quad D = (z^2 + 1)^2 + 4z; \quad x = z^5 - z^4 + 3z^3 + z^2 + 2; \quad y = z^3 - z^2 + 2z$$

or
$$(2.42)$$

$$f = 6z+2; \quad D = (z^2+2)^2+8z; \quad x = z^6-2z^5+8z^4-4z^3+8z^2+8z; \quad y = z^4-2z^3+6z^2-4z+4$$

or (2.43)
$$f = 3z - s$$
; $D = (z^2 - s^2)^2 + t(z - s)$; $x = 1 + 2(z + s)(z^2 - s^2)/t$; $y = 2(z + s)/t$.

2.3. The Exponential Function.

(2.44)
$$\int x^{m+2} e^{-ax^2} dx = \frac{m+1}{2a} \left[-x^{m+1} e^{-ax^2} + \int x^m e^{-ax^2} dx \right];$$

$$m \neq -1.$$

- 2.4. Hyperbolic Functions.
- 2.5. Trigonometric Functions.

$$\int \sin x \frac{(a+\sin x)^2}{(a+\sin x)^2 + (b+\cos x)^2} dx = \frac{1}{4} \left[\frac{2b^2}{a^2 + b^2} + \frac{a^2 - b^2}{(a^2 + b^2)^2} - 3 \right] \cos(x)$$

$$- \frac{ab}{2} \left[\frac{1}{a^2 + b^2} - \frac{1}{(a^2 + b^2)^2} \right] \sin(x)$$

$$+ \frac{1}{8} \frac{b \cos(2x) - a \sin(2x)}{a^2 + b^2} + \frac{b}{4} \left[1 + \frac{2(a^2 - b^2)}{(a^2 + b^2)^2} + \frac{-3a^2 + b^2}{(a^2 + b^2)^3} \right] \ln \sqrt{(\cos x + b)^2 + (\sin x + a)^2}$$

$$+ \frac{a}{4} \left[1 - \frac{4b^2}{(a^2 + b^2)^2} - \frac{a^2 - 3b^2}{(a^2 + b^2)^3} \right] \arctan \frac{\sin x + a}{\cos x + b} + \frac{a}{4} \left[\frac{4b^2}{(a^2 + b^2)^2} + \frac{-3b^2 + a^2}{(a^2 + b^2)^3} \right] x.$$

- 2.6. Rational Functions of Trigonometric Functions.
- 2.7. The Logarithm. [137]

(2.45)
$$\int \frac{\log z}{(1-z)z} dz = \text{Li}_2(1-z) + \frac{1}{2}\log^2 z.$$
 [17, 3.1.6.]

(2.46)
$$\int \frac{\ln x}{1+ax} dx = \frac{1}{a} [\ln x \ln(1+ax) + \text{Li}_2(-ax)].$$

Correcting a sign error in [17, 3.1.7]:

(2.47)
$$\int \frac{\ln(a+bx)}{c+hx} dx = \frac{1}{h} \left[\ln\left(\frac{ah-bc}{h}\right) \ln(c+hx) - \operatorname{Li}_2(\frac{bc+bhx}{bc-ah}) \right].$$

$$\int z \ln(c+z+1/z) dz = \frac{z^2 - c^2/2 + 1}{2} \ln(z^2 + cz + 1) - \frac{c\sqrt{c^2/4 - 1}}{2} \ln \frac{z + c/2 + \sqrt{c^2/4 - 1}}{z + c/2 - \sqrt{c^2/4 - 1}} - \frac{(z - c)^2}{4} - \frac{1}{2} z^2 \ln z.$$

3. Definite Integrals of Elementary Functions I.

3.1. General formulae. [8]

(3.1)
$$\int_0^\infty f([ax - b/x]^2) dx = \frac{1}{a} \int_0^\infty f(y^2) dy, \qquad a, b > 0.$$

[34] Let

$$\varphi(x) = \sum_{k=0}^{\infty} A_k x^k,$$

then

(3.2)
$$\int_0^\infty x^{\beta-1} e^{-x} \varphi(x) dx = \sum_{k=0}^\infty A_k \Gamma(k+\beta), \quad \beta > 0.$$

Let

$$\varphi(x) = \sum_{k=0}^{\infty} A_k x^{k/p},$$

then

(3.3)
$$\int_0^\infty x^{\beta-1} e^{-x} \varphi(x) dx = \sum_{k=0}^\infty A_k \Gamma(k/p + \beta), \quad \beta > 0.$$

Let

$$\varphi(x) = \sum_{k=0}^{\infty} A_k x^k,$$

then

(3.4)
$$p \int_0^\infty x^{\beta-1} e^{-x^p} \varphi(x) dx = \sum_{k=0}^\infty A_k \Gamma(\frac{\beta+k}{p}), \quad \beta > 0.$$

[117]

$$\int_{a}^{u} \frac{xdx}{\sqrt{(x-a)(x-b)(x-c)}} = \frac{2}{\sqrt{a-c}} [(a-b)\Pi(\mu,1,q) + bF(\mu,q)], \ u > a > b > c.$$
[117]

(3.6)
$$\int_{u}^{c} \frac{dx}{(r-x)\sqrt{(a-x)(b-x)(c-x)}} = \frac{2(c-b)}{(r-b)(r-c)\sqrt{a-c}} \times \Pi(\beta, \frac{r-b}{r-c}, p) + \frac{2}{(r-b)\sqrt{a-c}} F(\beta, p), \ a > b > c > u, r \neq c.$$

[117]

(3.7)
$$\int_{a}^{u} \frac{dx}{(x-r)\sqrt{(x-a)(x-b)(x-c)}} = \frac{2}{(b-r)(a-r)\sqrt{a-c}} \times \left[(b-a)\Pi(\mu, \frac{b-r}{a-b}, q) + (a-r)F(\mu, q) \right], \ u > a > b > c, r \neq a.$$

[117]

(3.8)
$$\int_{u}^{b} \sqrt{\frac{(x-c)(b-x)}{a-x}} dx = \frac{2}{3} \sqrt{a-c} [2(b-a)F(\delta,q) + (2a-b-c)E(\delta,q)] + \frac{2}{3} (b+c-a-u) \sqrt{\frac{(b-u)(u-c)}{a-u}}, \ a>b>u \ge c.$$

[117]

$$(3.9) \int_{a}^{u} \sqrt{\frac{(x-b)(x-c)}{x-a}} dx = \frac{2}{3} \sqrt{a-c} [2(a-b)F(\mu,q) + (b+c-2a)E(\mu,q)] + \frac{2}{3} (u+2a-2b-c) \sqrt{\frac{(u-a)(u-c)}{u-b}}, u > a > b > c.$$
[117]

(3.10)
$$\int_{a}^{u} \sqrt{\frac{(x-a)(x-c)}{x-b}} dx = \frac{2}{3} \sqrt{a-c} [(a+c-2b)E(\mu,q) - (a-b)F(\mu,q)] + \frac{2}{3} (u+b-a-c) \sqrt{\frac{(u-a)(u-c)}{u-b}}, u > a > b > c.$$

[58]

(3.11)
$$\int_0^\infty \frac{u^\alpha du}{(au+1)^\beta (bu+1)^\gamma} = A_0 \log a + B_0 \log b + \sum_{r=1}^{\beta-1} \frac{A_r}{r} + \sum_{s=1}^{\gamma-1} \frac{B_s}{s};$$

where

(3.12)

$$A_r = (-1)^{\alpha+\beta+r+1} a^{\gamma-\alpha-1} \sum_{j=0}^{\beta-\gamma-1} \binom{\alpha}{j} \binom{\beta+\gamma-r-j-2}{\gamma-1} \frac{b^{\beta-r-j-1}}{(a-b)^{\beta+\gamma-r-j-1}};$$

$$(3.13) B_s = (-1)^{\beta} b^{\beta - \alpha - 1} \sum_{j=0}^{\gamma - s - 1} {\alpha \choose j} {\beta + \gamma - s - j - 2 \choose \beta - 1} \frac{a^{\gamma - s - j - 1}}{(a - b)^{\beta + \gamma - s - j - 1}}.$$

$$(3.14) r = 0, 1, \dots, \beta - 1; s = 0, 1, \dots, \gamma - 1.$$

3.2. Powers of x, of binomials of the form $\alpha + \beta x^p$, and of polynomials in x. [64] (3.15)

$${}_{3}F_{2}(-n,b/2,(b+1)/2;c/2,(c+1)/2;x) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-xt^{2})^{n} dt, \quad \Re c > \Re b > 0.$$

$$(3.16) \int_0^\infty \left[\frac{x^2}{x^4 + 2ax^2 + 1} \right]^r \cdot \frac{x^2 + 1}{x^b + 1} \frac{dx}{x^2}$$

$$= \int_0^\infty \left[\frac{x^2}{x^4 + 2ax^2 + 1} \right]^r \frac{dx}{x^2} = \int_0^\infty \left[\frac{x^2}{x^4 + 2ax^2 + 1} \right]^r dx$$

$$= \int_0^\infty \left[\frac{x^2}{x^4 + 2ax^2 + 1} \right]^r \frac{x^2 + 1}{x^2} dx = 2^{-1/2 - r} (1 + a)^{1/2 - r} B(r - 1/2, 1/2),$$

with B Euler's beta function, a >= 1, r > 1/2, any b. From this by specialization [32]

(3.17)
$$\int_0^\infty \frac{x^4}{(x^4 + x^2 + 1)^3} dx = \frac{\pi}{48\sqrt{3}}.$$

[32]

(3.18)
$$\int_0^\infty \frac{x^3}{(x^4 + 7x^2 + 1)^{5/2}} dx = \frac{2}{243}.$$

[32]

(3.19)
$$\int_0^\infty \frac{\sqrt{x}}{(x^4 + 14x^2 + 1)^{5/4}} dx = \frac{\Gamma^2(3/4)}{4\sqrt{2\pi}}.$$

[32]

(3.20)
$$\int_0^\infty \left[\frac{x^2}{bx^4 + 2ax^2 + c} \right]^r dx = \frac{B(r - 1/2, 1/2)}{2^{r+1/2}\sqrt{b}[a + \sqrt{bc}]^{r-1/2}}$$

with b > 0, $c \ge 0$, $a > -\sqrt{bc}$ and r > 1/2.

(3.21)
$$\int_0^\infty \left[\frac{x^2}{x^4 - x^2 + 1} \right]^r \frac{dx}{x^2} = \frac{\sqrt{\pi}}{2} \frac{\Gamma(r - 1/2)}{\Gamma(r)}$$

[10, 143]

(3.22)
$$\int_0^\infty \frac{dx}{(x^4 + 2ax^2 + 1)^{m+1}} = \frac{\pi}{2} \frac{\sum_{l=0}^m d_l(m)a^l}{[2(a+1)]^{m+1/2}}$$

where

(3.23)
$$d_l(m) \equiv 2^{-2m} \sum_{k=l}^m 2^k \binom{2m-2k}{m-k} \binom{m+k}{m} \binom{k}{l}.$$

[143]

(3.24)
$$\int_0^\infty \frac{dx}{bx^4 + 2ax^2 + 1} = \frac{\pi}{2\sqrt{2}} \frac{1}{\sqrt{a + \sqrt{b}}}.$$

[121]

(325)

$$\frac{(-)^n}{4^{n-1}} \int_0^1 \frac{x^{4n} (1-x)^{4n}}{1+x^2} dx = \pi - \sum_{k=0}^{n-1} (-)^k \frac{2^{4-2k} (4k)! (4k+3)!}{(8k+7)!} (820k^3 + 1533k^2 + 902k + 165).$$

[121]

(3.26)

$$\int_0^1 \frac{x^m (1-x)^n}{1+x^2} dx = \frac{\sqrt{\pi \Gamma(m+1)\Gamma(n+1)}}{2^{m+n+1}} \,_3F_2 \left(\begin{array}{c} 1, (m+1)/2, (m+2)/2 \\ (m+n+2)/2, (m+n+3)/2 \end{array} \right| -1 \right).$$
[19]

(3.27)
$$\int_0^1 \frac{x^m (1-x)^n}{1+x^2} dx = R_{m,n} + A_{m,n} \pi + B_{m,n} \ln \sqrt{2}$$

induced by the partial fraction decomposition

(3.28)
$$\frac{x^m(1-x)^n}{1+x^2} = Q_{m,n}(x) + \frac{A_{m,n}}{1+x^2} + \frac{B_{m,n}x}{1+x^2}.$$

(3.29)
$$\int_0^\infty \frac{dx}{\sqrt{1+x^4}} = \mathbf{K}(\frac{1}{\sqrt{2}}).$$

[170]

(3.30)
$$\int_0^\infty \frac{dx}{\sqrt{x+x^4}} = \mathbf{K}(\frac{\sqrt{6}-\sqrt{2}}{4}).$$

[170]

(3.31)
$$\int_0^1 \frac{dx}{\sqrt[4]{1-x^2}} = \sqrt{3} \left[2\mathbf{E} \left(\frac{1}{\sqrt{2}} - \mathbf{K} \left(\frac{1}{\sqrt{2}} \right) \right].$$

[170][175, A062539]

(3.32)
$$\int_0^1 \frac{dx}{(1-x^2)^{3/4}} = \sqrt{2}\mathbf{K}(\frac{1}{\sqrt{2}}).$$

[170]

(3.33)
$$\int_0^1 \frac{x^2}{(1-x^2)^{3/4}} dx = \frac{2^{3/2}}{3} \mathbf{K}(\frac{1}{\sqrt{2}}).$$

[170]

(3.34)
$$\int_0^1 \frac{1}{\sqrt{1-x^6}} dx = \frac{1}{\sqrt[4]{3}} \mathbf{K} (\frac{\sqrt{6}-\sqrt{2}}{4}).$$

[170]

(3.35)
$$\int_0^\infty \frac{1}{\sqrt{1+x^6}} dx = \frac{2}{\sqrt[4]{27}} \mathbf{K}(\frac{\sqrt{6}-\sqrt{2}}{4}).$$

[170]

(3.36)
$$\int_0^1 \frac{1}{\sqrt{1-x^8}} dx = \frac{1}{\sqrt{2}} \mathbf{K}(\sqrt{2}-1).$$

[170]

(3.37)
$$\int_0^1 \frac{x^2}{\sqrt{1-x^8}} dx = \left(1 - \frac{1}{\sqrt{2}}\right) \mathbf{K}(\sqrt{2} - 1).$$

[170]

(3.38)
$$\int_0^1 \frac{x^{a-1}}{\sqrt{1-x^n}} dx = \cos(a\pi/n) \int_0^\infty \frac{z^{a-1}}{\sqrt{1+z^n}} dz, \quad 2a < n.$$

[170]

(3.39)
$$\int_0^\infty \frac{z^{n-a-1}}{\sqrt{1+z^n}} dz \cdot \int_0^1 \frac{x^{a-1}}{\sqrt{1-x^n}} dx = \frac{2\pi}{n(2a-n)\sin(\pi a/n)}, \quad n/2 < a < n.$$
[170]

(3.40)
$$\int_0^\infty \frac{1}{\sqrt{1+x^8}} dx = \int_0^\infty \frac{x^2}{\sqrt{1+x^8}} dx = \sqrt{2-\sqrt{2}} \mathbf{K}(\sqrt{2}-1).$$

[170]

(3.41)
$$\int_0^1 \frac{x^4}{\sqrt{1-x^8}} dx = \frac{\pi}{8} \frac{\sqrt{2}}{\mathbf{K}(\sqrt{2}-1)}.$$

(3.42)
$$\int_0^1 \frac{x^6}{\sqrt{1-x^8}} dx = \frac{\pi}{24} \frac{2+\sqrt{2}}{\mathbf{K}(\sqrt{2}-1)}.$$

[170]

(3.43)
$$\int_0^\infty \frac{1}{\sqrt[3]{1+x^6}} dx = \frac{\sqrt[3]{4}}{\sqrt[4]{3}} \mathbf{K}(\frac{\sqrt{6}-\sqrt{2}}{4}).$$

[170]

(3.44)
$$\int_0^1 \frac{1}{\sqrt[3]{1-x^6}} dx = \frac{\sqrt[3]{4}}{\sqrt[4]{27}} \mathbf{K}(\frac{\sqrt{6}-\sqrt{2}}{4}).$$

[170]

$$\int_{1}^{\infty} \frac{1}{\sqrt[m]{(x^n + a)(x^n + b)}} dx = \frac{m}{2n - m} F_1 \left(\begin{array}{c} \frac{2n - m}{mn}; 1/m, 1/n \\ \frac{2n - m + mn}{mn} \end{array} \mid -a, -b \right), \quad 2n - m > 0, \quad a, b > 0.$$

[170

$$\int_{0}^{1} \frac{1}{\sqrt[n]{(x^{n}+a)(x^{n}+b)}} dx = \frac{1}{\sqrt[n]{ab}} F_{1} \begin{pmatrix} 1/n; 1/m, 1/m \\ 1+1/n \end{pmatrix} | -1/a, -1/b \rangle, \quad a, b > 0.$$

3.3. The Exponential function. [11]

(3.47)
$$-\int_0^2 \frac{x^p - x^q}{1 - x} dx = \psi(p+1) - \psi(q+1)$$

[110]

$$(3.48) \int_{u}^{\infty} \exp(-\frac{x^2}{4\beta} - \gamma x) dx = \sqrt{\pi\beta} e^{\beta\gamma^2} \left[1 - \Phi(\gamma\sqrt{\beta} + \frac{u}{2\sqrt{\beta}}) \right], \Re\beta > 0, u \ge 0.$$
[110]

(3.49)
$$\int_{-\infty}^{\infty} \exp(-p^2 x^2 \pm qx) dx = \exp(\frac{q^2}{4p^2}) \frac{\sqrt{\pi}}{|p|}.$$

[110]

(3.50)

$$\int_0^\infty \frac{x^n e^{-\mu x}}{x+\beta} dx = (-1)^{n-1} \beta^n e^{\beta \mu} \operatorname{Ei}(-\beta \mu) + \sum_{k=1}^n (k-1)! (-\beta)^{n-k} \mu^{-k}, \ |\arg \beta| < \pi, \, \Re \mu > 0, \, n \ge 0.$$

3.4. Rational functions of powers and exponentials. [110]

(3.51)
$$\int_0^\infty \frac{x^{\nu-1}e^{-\mu x}}{1-\beta e^{-x}}dx = \Gamma(\nu)\sum_{n=0}^\infty (\mu+n)^{-\nu}\beta^{\mu}.$$

[110]

(3.52)
$$\int_0^\infty \frac{(1+ix)^{2n-1} - (1-ix)^{2n-1}}{i} \frac{dx}{e^{\pi x} + 1} = \frac{1}{2n} [1 - 2^{2n} B_{2n}].$$

[110]

(3.53)
$$\int_0^\infty \frac{x^q e^{-px} dx}{(1 - a e^{-px})^2} = \frac{\Gamma(q+1)}{a p^{q+1}} \sum_{k=1}^\infty \frac{a^k}{k^q}, -1 \le a < 1, q > -1, p > 0.$$

(3.54)
$$\int_0^\infty \frac{(1+a)e^x + a}{(1+e^x)^2} e^{-ax} x^n dx = -n! \sum_{k=1}^\infty \frac{(-1)^k}{(a+k)^n}, \ a > -1, \ n = 1, 2, \dots$$

[34]

$$(3.55) p \int_0^\infty x^{\beta - 1} e^{ax - x^p} dx = \sum_{k = 0}^\infty \frac{a^k}{k!} \Gamma(\frac{k + \beta}{p}).$$

(3.56)
$$p^{2} \int_{0}^{\infty} t^{p-1} e^{at-t^{p}} dt = \sum_{k=1}^{\infty} \frac{a^{k}}{(k-1)!} \Gamma(k/p).$$

(3.57)
$$\int_0^\infty x^{\beta - 1} e^{-x - x^p} dx = \sum_{j=0}^\infty \frac{(-1)^j}{j!} \Gamma(\beta + jp).$$

[171][175, A002161]

(3.58)
$$\int_{0}^{\infty} (1 - e^{-1/x^2}) dx = \sqrt{\pi}.$$

[110][175, A155739]

(3.59)
$$\int_{0}^{\infty} \left\{ e^{-x^{2}} - \frac{1}{1+x^{2^{n}}} \right\} \frac{dx}{x} = -\frac{1}{2}C \approx -0.288607.$$

[192]

(3.60)
$$\int_0^\infty \exp(nx - \beta \operatorname{sh} x) dx = \frac{1}{2} \left[S_n(\beta) - \pi \mathbf{E}_n(\beta) - \pi N_n(\beta) \right].$$

[192]

(3.61)
$$\int_{-\infty}^{\infty} \frac{\exp(\nu \operatorname{Arsh} x - iax)}{\sqrt{1 + x^2}} = \begin{cases} 2 \exp\left(-\frac{i\nu\pi}{2}\right) K_{\nu}(a) & \text{if } a > 0, \\ 2 \exp\left(\frac{i\nu\pi}{2}\right) K_{\nu}(-a) & \text{if } a < 0. \end{cases}$$

 $[|\Re \nu| < 1]$

3.5. Hyperbolic Functions. [6, 42]

$$\frac{1}{2} \int_0^\infty \frac{x}{\cosh x} dx = G.$$

[14]

(3.63)
$$\int_0^\infty \frac{du}{(b^2 + u^2)\sinh(au)} = \frac{1}{2b} \left[\psi(\frac{ab}{2\pi} + \frac{3}{4}) - \psi(\frac{ab}{2\pi} + \frac{1}{4}) \right]$$

for $\Re a > 0$, $\Re b > \max(-\Re a, -\Re 3a)$

[14]

(3.64)
$$\int_0^\infty \frac{u du}{(b^2 + u^2) \sinh(au)} = \frac{1}{2} \left[\psi(\frac{ab}{2\pi} + \frac{1}{2}) - \psi(\frac{ab}{2\pi}) \right] - \frac{\pi^2}{4a^2b}$$

for $\Re a > 0$, $\Re b > 0$.

[34]

(3.65)
$$\int_0^\infty x^{\beta - 1} e^{-x} \frac{\sinh b\sqrt{x}}{b\sqrt{x}} dx = \sum_{j=0}^\infty \frac{\Gamma(j+\beta)}{(2j+1)!} b^{2j}.$$

(3.66)
$$\int_0^\infty t^{2\beta-2} e^{-t^2/b^2} \sinh t dt = \frac{1}{2} \sum_{j=0}^\infty \frac{\Gamma(j+\beta)}{(2j+1)!} b^{2(j+\beta)}.$$

(3.67)
$$\int_0^\infty x^{\beta-1} e^{-x} \sinh \sqrt{x} dx = \sum_{k=1}^\infty \frac{\Gamma(\beta+k)}{\Gamma(2k)}.$$

[42]

(3.68)
$$\int_0^{\pi/2} \sinh^{-1}(\sin x) dx = \int_0^{\pi/2} \sinh^{-1}(\cos x) dx = G.$$

[42]

(3.69)
$$\int_0^{\pi/2} \operatorname{csch}^{-1}(\operatorname{csc} x) dx = \int_0^{\pi/2} \operatorname{csch}^{-1}(\operatorname{sec} x) dx = G.$$

3.6. Rational Functions of Sines and Cosines. [110]

(3.70)
$$\int_0^{\pi/2} \frac{\sin 2nx \cos^{2m+1} x}{\sin x} dx = \frac{\pi}{2}, \ n > m \ge 0.$$

[61, B2b]

(3.71)
$$\int_0^{2\pi} \sin^m \theta \cos^n \theta d\theta = 2\pi \epsilon_m \epsilon_n \frac{(m-1)!!(n-1)!!}{(m+n)!!}$$

where $\epsilon_j = 1$ if j is even and $\epsilon_j = 0$ otherwise.

 $\lfloor 26$

$$\int_0^z \sin^\mu t \sin^\nu (z-t) dt = \frac{\sqrt{\pi} \Gamma(\mu+1) \Gamma(\nu+1)}{2^{(\mu+\nu+1)/2} \Gamma(\mu/2+\nu/2+1)} \sin^{(\mu+\nu+1)/2} z P_{(\mu-\nu-1)/2}^{-(\mu+\nu+1)/2}(\cos z), \Re \mu > -1, \Re \nu > -1.$$

[26]

$$\frac{2^{m}\Gamma(m+1/2)}{\sqrt{\pi}\Gamma(m+n+1)\Gamma(m-n)} \int_{0}^{z} \sin^{m+n} t \sin^{m-n-1}(z-t) dt = \sin^{m} z P_{n}^{-m}(\cos z).$$

26

(3.74)
$$\int_0^z \left(\frac{\sin t}{\sin(z-t)}\right)^\mu dt = \frac{\pi \sin \mu z}{\sin \mu \pi}, \quad -1 < \Re \mu < 1.$$

[124]

(3.75)
$$\int_0^{\arcsin q} \left(\cos \phi \pm \sqrt{q^2 - \sin^2 \phi}\right)^{n+2} T_m(\cos \phi) d\phi = \dots$$

[6]

(3.76)
$$\int_0^{\pi/2} \sinh^{-1}(\sin x) dx = G.$$

[6]

(3.77)
$$\int_{0}^{\pi/2} \sinh^{-1}(\cos x) dx = G.$$

(3.78)
$$\int_{0}^{\pi/2} \operatorname{csch}^{-1}(\operatorname{csc} x) dx = G.$$

[6]

(3.79)
$$\int_0^{\pi/2} \operatorname{csch}^{-1}(\sec x) dx = G.$$

[122, p40]

(3.80)
$$\int_{0}^{\infty} \cos(T_n(t, -x)) dt = \frac{\pi \sqrt{x}}{2n \sin \frac{\pi}{2n}} \left[J_{1/n}(2x^{n/2}) - J_{-1/n}(2x^{n/2}) \right],$$

(3.81)
$$\int_0^\infty \cos(T_{2m}(t,x))dt = \frac{\pi\sqrt{x}}{4m\sin\frac{\pi}{4m}} \left[J_{-1/(2m)}(2x^m) - J_{1/(2m)}(2x^m) \right], \quad m = 1, 2, 3...$$

$$\int_0^\infty \cos(T_{2m+1}(t,x))dt = \frac{2\sqrt{x}\cos\frac{\pi}{4m+2}}{2m+1}K_{1/(2m+1)}(2x^{m+1/2}), \quad m = 1, 2, 3...$$

where x real positive, where

(3.83)
$$T_n(t,x) \equiv t^n {}_2F_1(-\frac{n}{2},\frac{1-n}{2};1-n;-\frac{4x}{t^2}), \quad n=2,3,4,\dots$$

for example $T_2 = t^2 + 2x$, $T_3 = t^3 + 3tx$.

3.7. Trigonometric and Rational Functions. [6, 42]

(3.84)
$$\frac{1}{2} \int_0^{\pi/2} \frac{x}{\sin x} = G.$$

[6]

(3.85)
$$\frac{3}{4} \int_0^{\pi/6} \frac{x}{\sin x} = G - \frac{\pi}{8} \log(1 + \sqrt{3}).$$

[6, 42]

(3.86)
$$-\frac{\pi^2}{4} \int_0^1 (x - \frac{1}{2}) \sec(\pi x) dx = G.$$

[11]

(3.87)
$$\frac{2^{s+2}}{\pi} \int_0^{\pi/2} x \cos^s x \sin(sx) dx - \gamma = \psi(s+1).$$

[110]

(3.88)
$$\int_0^{\pi/4} x^m \tan x dx = 2\pi G - \frac{7}{2}\zeta(3), \ m = 2.$$

[57]

(3.89)

$$\int_0^{1/2} x^n \cot \pi x dx = \frac{n!}{2^n} \sum_{k=1, k \text{ odd}}^n \frac{(-)^{(k-1)/2}}{\pi^k} \frac{\eta(k)}{(n-k+1)!} + \frac{(-)^n + 1}{2} \frac{4n!(1-2^{-n-1})}{(2\pi)^{n+1}} \zeta(n+1),$$

where $\eta(s) \equiv (1 - 2^{1-s})\zeta(s)$.

(3.90)
$$\int_0^\infty \frac{\cos(xy)}{(a^2 + x^2)^{\nu + 1/2}} dx = \sqrt{\pi} \left(\frac{y}{2a}\right)^{\nu} \frac{1}{\Gamma(\nu + 1/2)} K_{\nu}(ay).$$

$$\int_0^\infty \frac{x^{\nu}}{(a^2 + x^2)^{\mu + 1}} \cos(xy) dx = \frac{a^{\nu - 2\mu - 1}}{2} B\left(\frac{1}{2} + \frac{1}{2}\nu, \mu - \frac{1}{2}\nu + \frac{1}{2}\right) {}_1F_2(\frac{\nu + 1}{2}; \frac{\nu + 1}{2} - \mu, \frac{1}{2}, \frac{a^2y^2}{4})$$

$$+\sqrt{\pi} \frac{2^{-2\mu+\nu-2}}{\Gamma(1+\mu-\frac{1}{2}\nu)} y^{2\mu-\nu+1} \Gamma(\frac{1}{2}\nu-\mu-\frac{1}{2}) {}_{1}F_{2}(\mu+1-\frac{\nu}{2};\mu-\frac{\nu}{2}+\frac{3}{2};\frac{a^{2}y^{2}}{4}).$$

[110]

(3.93)

$$\int_0^\infty \frac{x^{2m}\cos(ax)dx}{(\beta^2 + x^2)^{n+1/2}} = \frac{(-1)^m\sqrt{\pi}}{2^n\beta^n\Gamma(n+1/2)} \cdot \frac{d^{2m}}{da^{2m}} \{a^nK_n(a\beta)\}, \ a > 0, \ \Re\beta > 0, \ 0 \le m \le n.$$

(3.94)
$$\int_{0}^{\infty} \frac{\sin(xy)}{x(a^2 + x^2)^{\nu + 1/2}} dx = \frac{\pi y}{2a^{2\nu}} [K_{\nu} \mathbf{L}_{\nu - 1}(ay) + \mathbf{L}_{\nu}(ay) K_{\nu - 1}(ay)]$$

where L are Struve functions.

[6]

(3.95)
$$\frac{1}{2\pi} \int_0^{\pi/2} \frac{x^2}{\sin x} = G - \frac{7}{4\pi} \zeta(3).$$

[42]

(3.96)
$$\int_0^{\pi/4} \frac{x^2}{\sin^2 x} dx = G - \frac{1}{16} \pi^2 + \frac{1}{4} \pi \log 2.$$

[6, 42]

(3.97)
$$\int_{0}^{\pi/2} \frac{x \csc x}{\cos x + \sin x} = G + \frac{\pi}{4} \log 2.$$

[6, 42]

(3.98)
$$-2\int_{0}^{\pi/2} \frac{x \cos x}{\cos x + \sin x} = G - \frac{\pi^2}{8} - \frac{\pi}{4} \log 2.$$

[6, 42]

(3.99)
$$2\int_0^{\pi/2} \frac{x \sin x}{\cos x + \sin x} = G + \frac{\pi^2}{8} - \frac{\pi}{4} \log 2.$$

[42]

(3.100)
$$\frac{3}{4} \int_0^{\pi/6} \frac{x}{\sin x} dx = G - \frac{1}{8} \pi \log(2 + \sqrt{3}).$$

[9]

$$(3.101) \int_0^\infty x^{-p} \cos^{2n+1}(x+b) dx = \frac{\Gamma(1-p)}{2^{2n}} \sum_{k=0}^n \binom{2n+1}{n-k} \frac{\sin[\pi p/2 - (2k+1)b]}{(2k+1)^{1-p}}.$$

$$(3.102) \int_0^\infty x^{-p} \sin^{2n+1}(x+b) dx = \frac{\Gamma(1-p)}{2^{2n}} \sum_{k=0}^n \binom{2n+1}{n-k} \frac{\cos[\pi p/2 - (2k+1)b]}{(2k+1)^{1-p}}$$

[9]

(3.103)
$$\int_0^\infty x^{-p} \cos^{2n+1} x dx = \frac{\Gamma(1-p)}{2^{2n}} \sin\left(\frac{\pi p}{2}\right) \sum_{k=0}^n \frac{\binom{2n+1}{n-k}}{(2k+1)^{1-p}}$$

for 0 . [9]

(3.104)
$$\int_0^\infty x^{-p} \sin^{2n+1} x dx = \frac{\Gamma(1-p)}{2^{2n}} \cos\left(\frac{\pi p}{2}\right) \sum_{k=0}^n (-1)^k \frac{\binom{2n+1}{n-k}}{(2k+1)^{1-p}}$$

for 0 . [9]

(3.105)
$$\int_0^\infty \cos^{2n+1} x^p dx = \frac{1}{2^{2n}} \Gamma\left(\frac{p+1}{p}\right) \cos\left(\frac{\pi}{2p}\right) \sum_{k=0}^n \frac{\binom{2n+1}{n-k}}{(2k+1)^{1/p}}$$

for p > 1. [9]

(3.106)
$$\int_0^\infty \sin^{2n+1} x^p dx = \frac{1}{2^{2n}} \Gamma\left(\frac{p+1}{p}\right) \sin\left(\frac{\pi}{2p}\right) \sum_{k=0}^n (-1)^k \frac{\binom{2n+1}{n-k}}{(2k+1)^{1/p}}$$

for p > 1. [9]

(3.107)
$$\int_0^{\pi/2} x^p \cos^{2n} x dx = \sum_{i=0}^{\lfloor p/2 \rfloor} a_{n,p,p+1-2j} \pi^{p+1-2j} + \delta_{odd,p} \cdot a_{n,p}^*,$$

where for $p \geq 2$ and $0 \leq j \leq \lfloor p/2 \rfloor$

$$(3.108) a_{n,p,p+1-2j} = \frac{(-)^j \binom{2n}{n} p!}{2^{2n+p+1} (p+1-2j)!} \sum_{1 \le k_1 \le k_2 \le \dots \le k_j \le n} \frac{1}{k_1^2 k_2^2 \cdots k_j^2}.$$

and $a_{n,p}^*$ is a similar multinomial sum. A similar form exists for odd powers of the cosine.

[110]

$$(3.109) \qquad \int_0^\infty \sin^{2m+1} x \frac{x dx}{a^2 + x^2} = \frac{\pi}{2^{2m+1}} e^{-(2m+1)a} \sum_{k=0}^m (-1)^{m+k} \binom{2m+1}{k} e^{2ka}.$$

[110]

$$(3.110) \quad \int_0^\infty \cos^{2m} x \frac{x dx}{a^2 + x^2} = \frac{\pi}{2^{2m+1}a} \binom{2m}{m} + \frac{\pi}{2^{2m}a} \sum_{k=1}^m \binom{2m}{m+k} e^{-2ka}, \ a > 0.$$

[69]

$$I(a,b) \equiv \int_0^\infty x^{-a} \left(1 - \frac{\sin^b x}{x^b} \right) dx.$$

then

(3.111)
$$I(a,b) = \frac{\pi \sec(\pi a/2)}{2^b \Gamma(a+b)} \sum_{k=0}^{\lfloor (b-1)/2 \rfloor} (-1)^{k+1} {b \choose k} (b-2k)^{a+b-1},$$

with special cases

(3.112)
$$I(2,b) = \frac{\pi}{2^b(b+1)!} \sum_{k=0}^{\lfloor (b-1)/2 \rfloor} (-1)^{k+1} \binom{b}{k} (b-2k)^{b+1},$$

(3.113)
$$I(a,1) = -\frac{\pi \sec(\pi a/2)}{2\Gamma(1+a)} \qquad \int_0^\infty x^{-3/2} (1 - \frac{\sin x}{x}) dx = \frac{2\sqrt{2\pi}}{3},$$

(3.114)
$$I(a,2) = -\frac{\pi 2^{a-1} \sec(\pi a/2)}{\Gamma(2+a)}, \quad \int_0^\infty x^{-3/2} (1 - \frac{\sin^2 x}{x^2}) dx = \frac{16\sqrt{\pi}}{15},$$

(3.115)

$$I(a,3) = \frac{(3-3^{2+a})\pi \sec(\pi a/2)}{8\Gamma(3+a)} \qquad \int_0^\infty x^{-3/2} (1-\frac{\sin^3 x}{x^3}) dx = \frac{2}{35} (9\sqrt{3}-1)\sqrt{2\pi}.$$

3.8. Trigonometric Functions and Exponentials. [120]

(3.116)
$$\int_0^\infty e^{-tx^2} \cos x^2 dx = \sqrt{\pi/8} \sqrt{\frac{\sqrt{1+t^2}+t}{1+t^2}}.$$

[120]

(3.117)
$$\int_0^\infty e^{-tx^2} \sin x^2 dx = \sqrt{\pi/8} \sqrt{\frac{\sqrt{1+t^2}-t}{1+t^2}}.$$

4. Definite Integrals of Elementary Functions II

[167] In terms of the constant (0.102) we have

(4.1)
$$\int_0^1 \frac{\log^2 u}{u} \log(1+u) du = \frac{7\pi^4}{360},$$

(4.2)
$$\int_0^1 \frac{\log^2 u}{u} \log(1-u) du = -\frac{\pi^4}{45},$$

(4.3)
$$\int_0^1 \frac{\log^2 u}{u} \log \frac{1+u}{1-u} du = \frac{\pi^4}{24},$$

(4.4)
$$\int_0^1 \frac{\log u}{u} \log^2(1+u) du = A_4 - \frac{\pi^4}{288},$$

(4.5)
$$\int_0^1 \frac{\log u}{u} \log^2(1-u) du = -\frac{\pi^4}{180},$$

(4.6)
$$\int_0^1 \frac{\log u}{u} \log^2 \frac{1+u}{1-u} du = 2A_4 - \frac{\pi^4}{60},$$

(4.7)
$$\int_0^1 \frac{1}{u} \log^3(1+u) du = \frac{3}{2} A_4 - \frac{\pi^4}{960},$$

(4.8)
$$\int_0^1 \frac{1}{u} \log^3(1-u) du = -\frac{\pi^4}{15},$$

[167]

(4.9)
$$\int_0^1 \frac{\log u}{u} \log(1+u) du = -\frac{3}{4}\zeta(3),$$

(4.10)
$$\int_0^1 \frac{\log u}{u} \log(1 - u) du = \zeta(3),$$

(4.11)
$$\int_0^1 \frac{\log u}{u} \log \frac{1+u}{1-u} du = -\frac{7}{4}\zeta(3),$$

(4.12)
$$\int_0^1 \frac{1}{u} \log^2(1+u) du = \frac{1}{4}\zeta(3),$$

(4.13)
$$\int_0^1 \frac{1}{u} \log^2(1-u) du = 2\zeta(3).$$

[110]

(4.14)
$$2\int_0^{\pi/2} \ln|1 - \sin x| dx = -\pi \ln 2 - 4G.$$

[42]

(4.15)
$$-2 \int_0^{\pi/4} \log(2\sin x) dx = G.$$

A factor 2 is missing in [6]. [42]

(4.16)
$$\frac{1}{4} \int_0^{\pi/2} \log \frac{1 + \cos x}{1 - \cos x} dx = G.$$

[42]

(4.17)
$$\frac{1}{4} \int_0^{\pi/2} \log \frac{1 + \sin x}{1 - \sin x} dx = G.$$

[110]

(4.18)
$$\int_0^{\pi/2} (\ln \tan x)^{2n} dx = (\pi/2)^{2n+1} |E_{2n}|.$$

[110]

(4.19)
$$\int_0^\infty \frac{\ln x dx}{(x+a)^2} = \frac{\ln a}{a}, \ 0 < a.$$

[6, 42]

(4.20)
$$2\int_{0}^{\pi/4} \log(2\cos x) dx = G.$$

(4.21)
$$\int_{\pi/4}^{\pi/2} \ln \ln \tan x dx = \int_0^1 \ln \ln \left(\frac{1}{x}\right) \frac{dx}{1+x^2} = \frac{\pi}{2} \ln \left(\frac{\Gamma(3/4)\sqrt{2\pi}}{\Gamma(1/4)}\right)$$

[142]

$$\frac{1}{4} \int_0^1 \frac{x^4 - 6x^2 + 1}{(1+x^2)^3} \log\log(1/x) dx = -(\gamma + \log 4) [\zeta(-1, 1/4) - \zeta(-1, 3/4)] + \zeta'(-1, 1/4) - \zeta'(-1, 3/4).$$
[6]

$$-\int_0^1 \frac{\log(x)}{x^2 + 1} dx = G.$$

[56]

(4.24)
$$\int_0^1 \frac{\log t}{1 - (1 - t)(1 - u)} dt = \frac{1}{1 - u} \operatorname{Li}_2 \left(-\frac{u - 1}{u} \right)$$

[11]

$$\int_0^b \frac{\ln t}{(1+t)^{n+1}} dt = \frac{1}{n} [1 - (1+b)^{-n}] \ln b - \frac{1}{n} \ln(1+b) - \frac{1}{n(1+b)^{n-1}} \sum_{j=1}^{n-1} \frac{1}{j!} \binom{n-1}{j} |S_{j+1}^{(2)}| b^j$$

$$(4.26) \frac{z^p}{(p-1)!} \int_0^1 \frac{t^{z-1}}{(1-t)^z} \log^{p-1} \frac{1}{t} dt = {}_{p+1}F_p \left(\begin{array}{c} z, z, \dots, z \\ z+1, \dots, z+1 \end{array} | 1 \right).$$

[4]

(4.27)
$$\frac{1}{\Gamma(1-z)\Gamma(p)} \int_0^1 \frac{t^{z-1}}{(1-t)^z} \log^{p-1}(t) dt = \begin{bmatrix} z \\ p \end{bmatrix}.$$

[11]

$$(4.28) \qquad \int_0^x \frac{\ln t}{(1+t^2)^{n+1}} dt = \frac{\binom{2n}{n}}{2^{2n}} \left[g_0(x) + p_n(x) \ln x - \sum_{k=0}^{n-1} \frac{\tan^{-1} x + p_k(x)}{2k+1} \right]$$

where

(4.29)
$$g_0(x) \equiv \ln x \tan^{-1} x - \int_0^x \frac{\tan^{-1} t}{t} dt.$$

[144]

$$(4.30) \int_0^\infty \frac{\ln^{n-1} x dx}{(x-1)(x+a)} = \frac{(-)^n (n-1)!}{1+a} \left\{ [1+(-)^n] \zeta(n) - \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} (2^{2j}-2)(-)^j B_{2j} \pi^{2j} \log^{n-2j} a \right\}$$

for $n \ge 2$, a > 0. [177]

$$(4.31) -2t \int_0^1 \frac{(1-x)^{j+1} \log(1-x)}{(1-tx(1-x))^3} dx = \sum_{n\geq 1} \frac{t^n}{C_n(j)} \sum_{r=1}^n \frac{1}{r+j+n}$$

where $C_n(j) = \binom{2n+j}{n}/(n+1)$ are Catalan related numbers. For t=2 the integral becomes a sum of G, $\zeta(2)$, $\pi \ln 2$, π and 1 with rational coefficients, and similar results are given for t=1/2.

[20]

(4.32)
$$\int_0^\infty \frac{\log(1+x)}{1+x+x^2} dx = -\int_0^1 \frac{(1+t)\log t}{1+t^3} dt = -\frac{3}{2}L_{-3}(2),$$

where $L_{-3}(s)$ is a Dirichlet series [175, A086724].

[11]

(4.33)
$$\int_0^1 \frac{\ln t}{(1+t^2)^{n+1}} dt = -2^{-2n} {2n \choose n} \left(G + \sum_{k=0}^{n-1} \frac{\frac{\pi}{4} + p_k(1)}{2k+1} \right)$$

where

(4.34)
$$p_k(1) = \sum_{j=1}^{\infty} k \frac{2^j}{2j\binom{2j}{j}}.$$

[6]

(4.35)
$$\int_0^1 \left(\frac{2}{x^2 - 4x + 8} - \frac{3}{x^2 + 2x + 2} \right) \log x dx = C.$$

[56]

$$(4.36) \qquad (-1)^{p+1} n \int_0^1 (1-t)^{n-1} \log^p t dt = p! \sum_{k=1}^n \binom{n}{k} \frac{(-1)^k}{k^p}.$$

[56][175, A152648]

(4.37)

$$\int_0^1 \frac{\log^2 t}{1-t} dt = \sum_{n=1}^\infty \frac{H_n^{(1)}}{n^2} = 2\zeta(3) = 2\operatorname{Li}_3(t) - 2\operatorname{Li}_2(t)\log t - \log(1-t)\log^2 t + c$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$.

(4.38)
$$\int_0^1 \frac{\log^3 u}{1-u} du = -6\zeta(4).$$

[196]

(4.39)
$$\int_0^{\pi/2} \frac{\ln(2\cos x)}{x^2 + \ln^2(2\cos x)} dx = \pi/4.$$

[196]

(4.40)
$$\int_0^{\pi/2} \ln[x^2 + \ln^2(2\cos x)] dx = 0.$$

[196]

(4.41)
$$\int_0^{\pi/2} \ln[x^2 + \ln^2(2e^{-a}\cos x)] dx = x \ln\frac{a}{e^b - 1},$$

and

(4.42)
$$\int_0^{\pi/2} \ln[x^2 + \ln^2(2e^{-a}\cos x)]\cos 2x dx = \frac{\pi}{2} \left(1 - \frac{1}{a} - e^b + \frac{1}{e^b - 1} \right)$$

where
$$b = \min(a, \ln 2)$$
. [196]

(4.43)
$$\int_0^{\pi/2} \ln[x^2 + \ln^2(\cos x)] dx = \frac{\pi}{2} \ln \ln 2.$$

[196]

(4.44)
$$\int_0^{\pi/2} \ln[x^2 + \ln^2(\cos x)] \cos 2x dx = -\frac{\pi}{\ln 2}.$$

[196]

(4.45)
$$\int_0^{\pi/2} \frac{\ln \cos x}{x^2 + \ln^2(\cos x)} dx = \frac{\pi}{2} \left(1 - \frac{1}{\ln 2} \right).$$

[196]

(4.46)
$$\int_0^{\pi/2} \frac{x \sin 2x}{x^2 + \ln^2(\cos x)} dx = \frac{\pi}{4 \ln^2 2}.$$

[196]

(4.47)
$$\int_0^{\pi/2} \frac{x \sin 2x}{x^2 + \ln^2(2\cos x)} dx = \frac{13\pi}{48}.$$

[196]

(4.48)
$$\int_{-\pi/2}^{\pi/2} \frac{(1+e^{-2ix})^{\beta}}{\ln(1+e^{-2ix})-a} dx = -\frac{\pi}{a} + \pi \frac{e^{(\beta+1)a}}{e^a - 1} H(\ln 2 - a),$$

and

$$(4.49) \quad \int_0^{\pi/2} \frac{x \sin x}{x^2 + \ln^2(2e^{-a}\cos x)} dx = \frac{\pi}{4a^2} + \frac{\pi e^a}{4} \left(1 - \frac{1}{(e^a - 1)^2}\right) H(\ln 2 - a),$$

where H is the unit step function.

[11, 196]

(4.50)
$$\frac{4}{\pi} \int_0^{\pi/2} \frac{x^2 dx}{x^2 + \ln^2(2\cos x)} = \frac{1}{2} (1 + \ln(2\pi) - \gamma).$$

 $(4.51)^{3} \frac{4}{\pi} \int_{0}^{\pi/2} \frac{x^{2} dx}{x^{2} + \ln^{2}(2e^{-a}\cos x)} = \frac{\gamma}{a} + \frac{a + \ln(1 - e^{-a}) - \gamma - \ln a}{1 - e^{-a}} + \frac{a}{1 - e^{-a}} \int_{0}^{1} e^{-at} \ln \Gamma(t) dt$

$$(4.52) \qquad = \frac{\gamma}{a} + \frac{a + \ln(1 - e^{-a}) + \Gamma(0, a)}{1 - e^{-a}} + \frac{1}{1 - e^{-a}} \int_0^1 e^{-at} \psi(t+1) dt$$

where $0 < a < \ln 2$.

[11]

(4.53)
$$\frac{4}{\pi} \int_0^{\pi/2} \frac{x^2 dx}{x^2 + \ln^2(2e^{-a}\cos x)} = \frac{\gamma}{a} + \int_0^{\infty} e^{-at} \psi(t+1) dt$$

where $a > \ln 2$.

(4.54)
$$\int_0^{\pi/2} \frac{x^2 \ln(2\cos x) dx}{(x^2 + \ln^2(2\cos x))^2} = \frac{7\pi}{192} + \frac{\pi \ln 2\pi}{96} - \frac{\zeta'(2)}{16\pi}.$$

[196]

(4.55)
$$\frac{1}{2i} \int_{-\pi/2}^{\pi/2} \frac{x(1 + \exp(-2ix))^{\beta}}{\ln(1 + \exp(-2ix))} dx = \frac{\pi}{8} [1 + \ln 2\pi - \gamma(2\beta + 1) - 2\ln \Gamma(\beta + 1)]$$
 with $\Re \beta > -1$. [196]

(4.56)
$$\int_{-\pi/2}^{\pi/2} \frac{(1 + \exp(-2ix))^{\beta}}{\ln(1 + \exp(-2ix))} dx = \frac{\pi}{2} (1 + 2\beta).$$

4.1. Logarithmic functions of compound arguments and powers. [6]

(4.57)
$$-\int_0^1 \frac{\log(\frac{1}{\sqrt{2}}(1-x))}{x^2+1} = G.$$

[6]

$$-\int_0^1 \frac{\log[\frac{1}{2}(1-x^2)]}{x^2+1} = G.$$

[32]

$$\int_{0}^{\infty} \left[\frac{1}{x^4 - x^2 + 1} \right]^r \ln \frac{x^2}{x^4 - x^2 + 1} \frac{dx}{x^2} = \frac{\sqrt{\pi}}{2} \frac{\Gamma(r)\Gamma'(r - 1/2) - \Gamma(r - 1/2)\Gamma'(r)}{\Gamma^2(r)}$$
[32]

(4.60)
$$\int_0^\infty \frac{1}{x^4 - x^2 + 1} \ln^2 \frac{x^2}{x^4 - x^2 + 1} \frac{dx}{x^2} = \frac{\pi}{2} (\frac{\pi^2}{3} + 4 \ln^2 2).$$

[32]

(4.61)
$$\int_0^\infty \left[\frac{x}{x^2 + 1} \right]^{2r} \ln \frac{x}{x^2 + 1} \frac{dx}{x^2} = \frac{\sqrt{\pi}}{4} G(r) [\psi(r - 1/2) - \psi(r) - 2 \ln 2],$$

where $G \equiv 2^{1-2r}B(r-1/2,1/2)/\sqrt{\pi}$.

[32]

(4.62)
$$\int_0^\infty \left[\frac{x}{x^2 + 1} \right]^{2r} \ln \frac{x}{x^2 + 1} \frac{x^2 + 1}{x^2 (x^b + 1)} dx = \frac{\sqrt{\pi}}{4} G'(r)$$

where $G \equiv 2^{1-2r}B(r-1/2,1/2)/\sqrt{\pi}$. [32]

(4.63)
$$\int_{0}^{\infty} \left[\frac{x}{x^2 + 1} \right]^{2r} \ln^2 \frac{x}{x^2 + 1} \frac{dx}{x^2} = \frac{\sqrt{\pi}}{8} G''(r)$$

where
$$G'' \equiv G(r)[\psi'(r-1/2) - \psi'(r) + (\psi(r-1/2) - \psi(r) - 2\ln 2)^2]$$
[11]

$$\int_0^\infty e^{-ax} \ln x \, dx = -\frac{\gamma + \ln a}{a}.$$

[11]
$$(4.65)$$

$$\int_0^\infty \frac{\ln x}{e^x + e^{-x} - 1} dx = \int_0^1 \ln \ln \left(\frac{1}{x}\right) \frac{dx}{1 - x + x^2} = \frac{2\pi}{\sqrt{3}} \left(\frac{5}{6} \ln 2\pi - \ln \Gamma \left(\frac{1}{6}\right)\right).$$
[112]

(4.66)
$$\frac{a^{\nu}}{\Gamma(\nu)} \int_0^{\infty} e^{-ax} x^{\nu-1} \ln^m x dx = \phi^m(a, \nu) + \sum_{j=1}^m \binom{m}{j} \eta_j \phi^{m-j}(a, \nu),$$

where

(4.67)
$$\phi(a,\nu) \equiv \psi(\nu) - \ln a,$$

(4.68)
$$\eta_j(\nu) \equiv (-1)^j \sum_{\pi_0(j)} (j; 0, k2, \dots, k_j)^* \zeta^{k_2}(2, \nu) \cdots \zeta^{k_j}(j, \nu),$$

(4.69)
$$\zeta(k,\nu) \equiv \sum_{l=0}^{\infty} \frac{1}{(l+\nu)^k}, \quad k \ge 2.$$

[9]

$$\begin{split} \int_0^\infty \log x \cos^{2n+1} x^2 dx &= -\frac{\sqrt{\pi}}{2^{2n+3}} (\pi + 2\gamma + 4 \log 2) \sum_{k=0}^n \binom{2n+1}{n-k} \frac{1}{\sqrt{4k+2}} \\ &- \frac{\sqrt{\pi}}{2^{2n+2}} \sum_{k=0}^n \binom{2n+1}{n-k} \frac{\log(2k+1)}{\sqrt{4k+2}}. \end{split}$$

[11]

(4.70)
$$\int_0^{\pi/2} x \ln(2\cos x) dx = -\frac{7}{16} \zeta(3).$$

[11]

(4.71)
$$\int_0^{\pi/2} x^2 \ln(2\cos x) dx = -\frac{\pi}{4} \zeta(3).$$

[11]

(4.72)
$$\int_0^{\pi/2} x^2 \ln^2(2\cos x) dx = \frac{11\pi}{16} \zeta(4) = \frac{11\pi^5}{1440}.$$

[52]

(4.73)
$$\int_0^{\pi/2} x^4 \ln^2(2\cos x) dx = \frac{5\pi^7}{8064} + \frac{3\pi}{4} \zeta^2(3).$$

[52]

(4.74)
$$\int_0^{\pi/2} x^2 \ln^4(2\cos x) dx = \frac{33\pi^7}{4480} + \frac{3\pi}{2} \zeta^2(3).$$

$$\int_{0}^{\pi/2} x^{3} \ln(\cos x) \sin[(p-1)x] \cos^{p-1} x dx = -\frac{\pi}{15} 2^{-(p+6)} [60\gamma^{4} - 60\gamma^{2}\pi^{2} + \pi^{4} + 60\gamma(\pi^{2} - 2\gamma^{2}) \ln 2 + 60\psi'''(p) + 60\{-(\pi^{2} + 6\gamma(-\gamma + \ln 2))\psi^{2}(p) + (4\gamma - 2\ln 2)\psi^{3}(p) + \psi^{4}(p) + 6\gamma \ln 2\psi'(p)$$

$$+60\psi (p)+60\{-(\pi +6\gamma(-\gamma + \ln 2))\psi (p)+(4\gamma -2 \ln 2)\psi (p)+\psi (p)+6\gamma \ln 2\psi (p) -3[\psi'(p)]^2 -2(\gamma + \ln 2)\psi''(p)+(8\gamma -4 \ln 2)\zeta(3) +\psi(p)(4\gamma^3 -2\gamma\pi^2 +(\pi^2 -6\gamma^2) \ln 2)\psi''(p) +(6\gamma -4 \ln 2)\zeta(3) +\psi(p)(4\gamma^3 -2\gamma\pi^2 +(\pi^2 -6\gamma^2) \ln 2)\psi''(p) +(6\gamma -4 \ln 2)\zeta(3) +\psi(p)(4\gamma^3 -2\gamma\pi^2 +(\pi^2 -6\gamma^2) \ln 2)\psi''(p) +(6\gamma -4 \ln 2)\psi'''(p) +(6\gamma -4 \ln 2)\psi'''(p$$

$$+6 \ln 2\psi'(p) - 2\psi''(p) + 8\zeta(3)$$
].

[6, 42]

(4.76)
$$\int_0^{\pi/4} \log(\cot x) dx = -\int_0^{\pi/4} \log(\tan x) dx = G.$$

[75, 134]

(4.77)
$$\int_{\pi/4}^{\pi/2} \ln \ln \tan x \, dx = \frac{\pi}{2} \ln \frac{\Gamma(3/4)\sqrt{2\pi}}{\Gamma(1/4)}.$$

[134, 3]

(4.78)
$$\int_0^1 x^j \log \log \frac{1}{x} dx = -\frac{\gamma + \log(j+1)}{j+1}.$$

$$\int_{0}^{1} \frac{x^{p-1}}{1+x^{n}} \log \log \frac{1}{x} dx = \frac{1}{2n} [\log(2n) + \gamma] \left(\psi(\frac{p}{2n}) - \psi(\frac{n+p}{2n}) \right) + \frac{1}{2n} \left(\zeta'(1, \frac{p}{2n}) - \zeta'(1, \frac{n+p}{2n}) \right)$$

for $\Re p > 0$ and $\Re n > 0$, and a similar expression if $(1 + x^n)^2$ or $(1 + x^n)^3$ are in the denominator.

$$[3]$$
 (4.80)

$$\int_0^1 \frac{x^{nr-1}}{1+x^n} \log \log \frac{1}{x} dx = \frac{1}{2n} [\log(2n) + \gamma] \left(\psi(r/2) - \psi(\frac{r+1}{2}) \right) + \frac{1}{2n} \left(\zeta'(1, r/2) - \zeta'(1, (r+1)/2) \right).$$

[3]

(4.81)

$$\int_0^1 x^{p-1} \frac{1-x}{1-x^n} \log \log \frac{1}{x} dx = \frac{1}{n} [\log(n) + \gamma] \left(\psi(p/n) - \psi(\frac{p+1}{n}) \right) + \frac{1}{n} \left(\zeta'(1, p/n) - \zeta'(1, (p+1)/n) \right).$$

[134] Let

(4.82)
$$R_{m,j}(a) \equiv \int_0^1 \frac{x^j \log \log 1/x}{(x+a)^{m+1}} dx,$$

and (Eulerian numbers)

(4.83)
$$A_{m,j} = \sum_{k=0}^{j} (-)^k {m+1 \choose k} (j-k)^m$$

and

(4.84)
$$E_m \equiv \int_0^1 \frac{T_{m-1}(x) \log \log 1/x}{(x+1)^{m+1}} dx$$

defined via polynomials

(4.85)
$$T_m(x) \equiv \sum_{j=0}^m (-)^j A_{m+1,j+1} x^j,$$

then

(4.86)
$$E_m = (1 - 2^m)\zeta'(1 - m) - (-)^m [\gamma(2^m - 1) + 2^m \log 2] \frac{B_m}{m}$$

where B_m are the Bermoulli numbers. The $R_{m,j}$ are then recursively

$$(4.87) R_{0,0}(1) = -(\log^2 2)/2; R_{m,0}(1) = \frac{E_m}{b_0(m)} - \sum_{k=1}^{m-1} \frac{b_k(m)}{b_0(m)} R_{m-k,0}(1),$$

(4.88)
$$R_{0,0}(a) = -\gamma \log(1 + 1/a) - \text{Li}'_1(-1/a); \quad \text{Li}'_c(x) = -\sum_{n \ge -1} \frac{\log n}{n^c} x^n,$$

and for m > 0

(4.89)

$$R_{m,0}(a) = -\frac{\gamma}{a^m(1+a)m} - \frac{\gamma}{a^{m+1}m!} \sum_{j=2}^m \frac{S_1(m,j)T_{j-2}(1/a)}{(1+1/a)^j} - \frac{1}{a^m m!} \sum_{j=1}^m S_1(m,j) \operatorname{Li}'_{1-j}(-1/a),$$

where

(4.90)
$$b_k(m) \equiv (-)^k \sum_{j=0}^{m-1} {j \choose k} A_{m,j+1},$$

and the unsigned Stirling numbers of the first kind are $S_1(m,j)$ as in $(t)_m = \sum_{j=1}^m S_j(m,j)t^j$. For larger parameters m then

(4.91)
$$R_{m,0}(a) = \sum_{j=0}^{r} \alpha_{j,r}(a) R_{m-r+j,j}(a), \quad \alpha_{j,r}(a) \equiv (-)^{j} {r \choose j} a^{-r}.$$

[134] Let

(4.92)
$$D_{m,j}(r,\theta) = \equiv \int_0^1 \frac{x^j \log \log 1/x}{(x^2 - 2rx \cos \theta + r^2)^{m+1}} dx,$$

then

(4.93)
$$D_{0,0}(1,\theta) = \frac{\pi}{2\sin\theta} \left[(1 - \theta/\pi) \log 2\pi + \log \frac{\Gamma(1 - \theta/2\pi)}{\Gamma(\theta/2\pi)} \right],$$

$$(4.94) \ D_{0,0}(r,\theta) = -\frac{\gamma}{r\sin\theta} \tan^{-1}\frac{\sin\theta}{r-\cos\theta} + \frac{1}{2ri\sin\theta} (\text{Li}_1'(e^{i\theta}/r) - \text{Li}_1'(e^{-i\theta}/r)),$$

(4.95)

$$D_{0,1}(r,\theta) = -\frac{\gamma}{2} \log \frac{r^2 - 2r\cos\theta + 1}{r^2} - \gamma \cot\theta \tan^{-1} \frac{\sin\theta}{r - \cos\theta} + \frac{1}{2ri\sin\theta} [\Phi'(e^{i\theta}/r, 1, 1) - \Phi'(e^{-i\theta}/r, 1, 1)],$$

(4.96)
$$D_{m,j}(r\theta) = -\frac{1}{2rm\sin\theta} \frac{\partial}{\partial \theta} D_{m-1,j-1}(r,\theta), \quad m, j > 0.$$

[134]

(4.97)
$$\int_0^1 \frac{\log(1-x)}{x} \log\log 1/x dx = \int_0^\infty \log t \log(1-e^{-t}) dt = \frac{\gamma \pi^2}{6} - \zeta'(2).$$

[134]

(4.98)
$$\int_0^1 \frac{\log(1+x)}{x} \log\log 1/x dx = \frac{\pi^2}{12} (\log 2 - \gamma) + \zeta'(2)/2,$$

and other examples involving the kernel $\log \log 1/x$. [75]

(4.99)
$$\int_0^1 q^n \ln(\sin \pi q) dq = -\frac{\ln 2}{n+1} + n! \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{(-1)^k (\zeta(2k+1))}{(2\pi)^{2k} (n+1-2k)!}$$

[80, 129] by differentiation of [91, 3.761.4] w.r.t. the parameter:

(4.100)
$$\int_0^\infty \frac{\sin x}{x^s} \ln x dx = \frac{\pi}{2} \frac{1}{[\Gamma(s) \sin \frac{\pi s}{2}]^2} \left[\Gamma'(s) \sin \frac{s\pi}{2} + \frac{\pi}{2} \Gamma(s) \cos \frac{\pi s}{2} \right].$$

$$(4.101) \int_0^\infty \frac{\sin x}{x^s} \ln^2 x dx = \pi \frac{1}{\left[\Gamma(s) \sin \frac{\pi s}{2}\right]^3} \left\{ \Gamma'(s) \sin \frac{s\pi}{2} + \frac{\pi}{2} \Gamma(s) \cos \frac{\pi s}{2} \right\} - \frac{\pi}{2} \frac{1}{\left[\Gamma(s) \sin \frac{\pi s}{2}\right]^3} \left\{ \Gamma''(s) \sin \frac{s\pi}{2} + \pi \Gamma'(s) \cos \frac{\pi s}{2} - \frac{\pi^2}{4} \Gamma(s) \sin \frac{s\pi}{2} \right\}.$$

[108] Define

(4.102)
$$s_{n,p} \equiv \frac{(-)^{n+p-1}}{(n-1)!p!} \int_0^1 t^{-1} \log^{n-1} t \log^p (1-t) dt$$

then

(4.103)
$$s_{n,p} = s_{p,n} = \sum_{k=1}^{p} \frac{(-)^{k+1}}{k!} \sum_{m_k} \frac{H_p(m_1, \dots m_k)}{m_1 \cdots m_k} \zeta(m_1) \cdots \zeta(m_k),$$

where

$$(4.104) H_p(m_1, \dots, m_k) = \sum_{p_i} {m_1 \choose p_1} \cdots {m_k \choose p_k},$$

the sum over m_i over all sets of integers which satisfy $m_i \geq 2$, $\sum_{i=1}^k = n+p$, and the sum over p_i over all sets of integers which satisfy $1 \leq p_i \leq m_i - 1$, $\sum_{i=1}^k p_i = p$. Examples with $s_{n,p} = \sum_{k=1}^p (-)^{k+1} \alpha_k(n,p)/k!$ are $\alpha_1(n,p) = (n+p-1)!\zeta(n+p)/(n!p!)$ or $\alpha_2(n,2) = \sum_{\nu=2}^n \zeta(\nu)\zeta(n-\nu+2)$. The reference provides an explicit table for $n,p \leq 4$.

$$(4.105) r_{np} \equiv \int_0^{\pi/2} \log^n \cos x \log^p \sin x dx;$$

$$(4.106) r_{10} = -\frac{\pi}{2}\log 2,$$

(4.107)
$$r_{11} = \frac{\pi}{2} \left(-\frac{\pi^2}{24} + \log^2 2 \right),$$

(4.108)
$$r_{20} = \frac{\pi}{2} \left(\frac{\pi^2}{12} + \log^2 2 \right),$$

(4.109)
$$r_{21} = \frac{\pi}{2} \left(-\log^3 2 + \frac{1}{4} \zeta(3) \right),$$

(4.110)
$$r_{22} = \frac{\pi}{2} \left(\frac{\pi^4}{160} + \log^4 2 - \zeta(3) \log 2 \right).$$

[56]

(4.111)
$$\int_0^1 \frac{\log u}{1-u} \operatorname{Li}_2\left(\frac{u-1}{u}\right) du = \frac{17}{4}\zeta(4).$$

[56]

(4.112)
$$-\int_0^1 \frac{\operatorname{Li}_{q-1}(1-t)\log t}{1-t} dt = \sum_{n=1}^\infty \frac{H_n^{(1)}}{n^q},$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$. [56]

(4.113)
$$\int \frac{\text{Li}_2(1-t)\log t}{1-t}dt = \frac{1}{2}\left[\text{Li}_2(1-t)\right]^2 + c.$$

[56]

(4.114)
$$\int_0^1 \frac{\text{Li}_{2p}(1-t)\log t}{1-t} dt = \frac{1}{2} \sum_{j=2}^{2p} (-1)^j \zeta(j) \zeta(2p-j+2),$$

[42]

$$(4.115) -\frac{1}{4} \int_0^1 \frac{\log x}{(x+1)\sqrt{x}} dx = \frac{1}{4} \int_1^\infty \frac{\log x}{(x+1)\sqrt{x}} dx = G.$$

[42]

(4.116)
$$\frac{1}{\sqrt{2}} \int_0^{\pi/2} \log(\frac{1 + \frac{1}{\sqrt{2}} \sin x}{1 - \frac{1}{\sqrt{2}} \sin x}) \frac{dx}{1 + \cos^2 x} = G.$$

[42]

(4.117)
$$\frac{1}{2} \int_{0}^{\pi/4} \log(\frac{1+\sin x}{1-\sin x}) \frac{dx}{\cos x \sqrt{\cos 2x}} = G.$$

[42]

(4.118)
$$\int_{0}^{\frac{\sqrt{2}+1}{\sqrt{2}-1}} \frac{(x+1)\log x}{4x\sqrt{6x-x^2-1}} dx = G.$$

$$(4.119) -\int_0^1 \frac{\log x}{1+x^2} dx = \int_1^\infty \frac{\log x}{1+x^2} dx = G.$$

(4.120)
$$-\int_0^1 \log(\frac{1-x}{\sqrt{2}}) \frac{dx}{1+x^2} = G.$$

(4.121)
$$-\int_0^1 \log(\frac{1-x^2}{2}) \frac{dx}{1+x^2} = G.$$

(4.122)
$$\int_{1}^{\infty} \log(\frac{x+1}{\sqrt{2}}) \frac{dx}{1+x^2} = G.$$

(4.123)
$$\int_0^\infty \frac{\log(1+x)}{1+x^2} dx = G + \frac{1}{4}\pi \log 2.$$

(4.124)
$$-\int_0^1 \frac{\log(1+x^2)}{1+x^2} dx = G - \frac{1}{2}\pi \log 2.$$

(4.125)
$$-\int_{1}^{\sqrt{2}} \frac{2\log x}{x\sqrt{x^2 - 1}} dx = G - \frac{1}{2}\pi \log 2.$$

(4.126)
$$\int_0^{\pi/2} \log(\cos x + \sin x) dx = G - \frac{1}{4}\pi \log 2.$$

(4.127)
$$-\frac{3}{2} \int_0^{2-\sqrt{3}} \frac{\log x}{1+x^2} dx = G.$$

$$(4.128) \frac{3}{2} \int_{2+\sqrt{3}}^{\infty} \frac{\log x}{1+x^2} dx = G.$$

4.2. Inverse Trigonometric Functions. [6, 42]

(4.129)
$$\frac{2}{\pi} \int_0^1 \frac{\tan^{-1} x}{x} = G - \frac{7}{4\pi} \zeta(3).$$

(4.130)
$$\frac{3}{2} \int_0^{2-\sqrt{3}} \frac{\tan^{-1} x}{x} dx = G - \frac{1}{8} \pi \log(2 + \sqrt{3}).$$

(4.131)
$$-\int_0^1 (\tan^{-1} x)^2 dx = G - \frac{1}{16} \pi^2 - \frac{1}{4} \pi \log 2.$$

(4.132)
$$\int_0^1 \frac{\tan^{-1} x}{x} dx = G.$$

(4.133)
$$2\int_0^1 (\frac{1}{4}\pi - \tan^{-1}x) \frac{dx}{1 - x^2} = G.$$

(4.134)
$$-\int_0^1 \frac{\sin^{-1} x}{\sqrt{1+x^2}} dx = G - \frac{1}{2}\pi \log(1+\sqrt{2}).$$

(4.135)
$$\int_0^b \tan^{-1} \frac{a}{\sqrt{1+x^2}} \cdot \frac{dx}{\sqrt{1+x^2}} = \frac{1}{2} [g(a,b) + g(b,a)]$$

where

$$(4.136) \quad g(a,b) = \tan^{-1}\frac{b}{a}\ln[4(a^2+1) - \frac{4a\sqrt{a^2+1}}{2a^2+1}] - 2\eta\ln(\sqrt{a^2+1} - a) - \text{Cl}_2(2\tan^{-1}\frac{b}{a}) + \frac{1}{2}\text{Cl}_2(4\tan^{-1}\frac{b}{a} - 2\eta) + \frac{1}{2}\text{Cl}_2(2\eta)$$

and

(4.137)
$$\eta = \tan^{-1} \frac{ab}{(\sqrt{a^2 + 1} - a + 1)a^2 + (\sqrt{a^2 + 1} - a - 1)b^2}.$$

4.3. Multiple Integrals. [20] Let

$$(4.138) C_n = \frac{4}{n!} \int_0^\infty \cdots \int_0^\infty \frac{1}{\left[\sum_{i=1}^n (u_i + 1/u_i)\right]^2} \frac{du_1}{u_1} \cdots \frac{du_n}{u_n}$$

then

(4.139)
$$C_2 = 1; \quad C_3 = L_{-3}(s); \quad C_4 = 7\zeta(3)/12$$

see (4.32).

[20] Let

(4.140)

$$D_n = \frac{4}{n!} \int_0^\infty \cdots \int_0^\infty \frac{\prod_{i < j} (\frac{u_i - u_j}{u_i + u_j})^2}{\left[\sum_{i=1}^n (u_j + 1/u_j)\right]^2} \frac{du_1}{u_1} \cdots \frac{du_n}{u_n} = \frac{1}{n!} \int d^n x \frac{\prod_{i < j} \tanh^2[(x_i - x_j)/2]}{(\cosh x_1 + \dots + \cosh x_n)^2}$$

then

(4.141)

$$D_1 = 2;$$
 $D_2 = 1/3;$ $D_3 = 8 + 4\pi^2/3 - 27L_{-3}(2);$ $D_4 = 4\pi^2/9 - 1/6 - 7\zeta(3)/2,$ see (4.32).

[42]

(4.142)
$$\frac{2}{\pi} \int_0^{\pi/2} \int_0^{\pi/2} \tan^{-1}(\sin x \sin y) \frac{dxdy}{\sin x} = G.$$

(4.143)
$$\frac{1}{2} \int_{0}^{1} \int_{0}^{\pi/2} \frac{d\theta dx}{\sqrt{1 - x^{2} \sin^{2} \theta}} = G.$$

(4.144)
$$\int_{0}^{1} \int_{0}^{\pi/2} \sqrt{1 - x^{2} \sin^{2} \theta} d\theta dx = G + \frac{1}{2} d\theta dx = \frac{1}$$

$$8 \int_0^1 \int_0^1 \frac{\tan^{-1}(xy)dxdy}{1+x^2y^2} = 2\pi G - \frac{7}{2}\zeta(3).$$

(4.146)
$$4 \int_0^1 \int_0^1 \frac{\tan^{-1} x}{1 + x^2 y^2} dx dy = 2\pi G - \frac{7}{2} \zeta(3).$$

$$(4.147) -\int_0^1 \int_0^1 \frac{\log(1-x^2y^2)}{xy\sqrt{(1-x^2)(1-y^2)}} dxdy = 2\pi G - \frac{7}{2}\zeta(3).$$

$$\int_0^{\pi/2} \int_0^{\pi/2} \frac{\tan(\phi/2)d\theta d\phi}{\sqrt{1 - x\cos^2\theta\cos^2\phi}} = \frac{\pi}{4} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - (1 - x)\sin^2\phi}} + \frac{1}{4} \log x \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - x\sin^2\phi}}.$$

(4.149)
$$\frac{1}{4} \int_0^1 \int_0^1 \frac{1}{\sqrt{(1-x)(1-y)}} \frac{dxdy}{x+y} = G.$$

[96

(4.150)

$$\int_0^1 \cdots \int_0^1 \prod_{1 \le i \le j \le n} |t_i - t_j|^{2z} \prod_{j=1}^n t_j^{x-1} (1 - t_j)^{y-1} dt_j = \prod_{j=1}^n \frac{\Gamma(x + (j-1)z)\Gamma(y + (j-1)z)\Gamma(jz+1)}{\Gamma(x + y + (n+j-2)z)\Gamma(z+1)},$$

where n is a positive integer, x, y, z are in \mathbb{C} , and $\Re x$, $\Re y > 0$, $\Re z > -\max\{1/n, \Re x/(n-1), \Re y/(n-1)\}$. [56]

(4.151)
$$\int_0^1 \int_0^1 \frac{\operatorname{Li}_{q-2}[(1-t)(1-u)] \log t \log u \, du dt}{(1-t)(1-u)} = \sum_{n=1}^\infty \frac{\left[H_n^{(1)}\right]^2}{n^q}$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$.

(4.152)
$$\int_0^1 \int_0^1 \frac{\log t \log u \, du dt}{1 - (1 - t)(1 - u)} = \sum_{n=1}^\infty \frac{\left[H_n^{(1)}\right]^2}{n^2}$$

where
$$H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$$
.

$$(4.153) -\int_0^1 \int_0^1 \frac{\log[1-(1-t)(1-u)]\log t \log u \, du dt}{(1-t)(1-u)} = \sum_{n=1}^\infty \frac{\left[H_n^{(1)}\right]^2}{n^3}$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$. [56]

$$(4.154) n^2 \int_0^1 (1-t)^{n-2} \log t \, dt \int_0^1 (1-u)^{n-1} \log u \, du = \left[H_n^{(1)} \right]^2,$$

where $H_n^{(r)} \equiv \sum_{k=1}^n \frac{1}{k^r}$.

$$\int_0^\infty \int_0^\infty \frac{\cos^{2n+1}(x+y)}{x^p y^q} dx ds = -\Gamma(1-p)\Gamma(1-q)\cos\frac{\pi(p+q)}{2} \sum_{k=0}^n \binom{2n+1}{n-k} \frac{(2k+1)^{p+1-2}}{2^{2n}}$$

[9]

$$(4.156) \qquad \int_0^\infty \int_0^\infty \frac{\cos(x+y)}{x^p y^q} dx dy = -\Gamma(1-p)\Gamma(1-q)\cos\frac{\pi(p+q)}{2}.$$

[9]

(4.157)
$$\int_0^\infty \int_0^\infty \frac{\log x \log y}{\sqrt{xy}} \cos(x+y) dx dy = (\gamma + 2\log 2)\pi^2.$$

[9]

(4.158)
$$\int_{R_{+}^{n}} (\cos||x||^{2}) \cdot \prod_{j=1}^{n} \log x_{j} dV = \frac{(-)^{\Delta_{n}} \pi^{n/2}}{2^{2n}} \times \begin{cases} \Re \psi_{n} & n \text{ even} \\ \Im \psi_{n} & n \text{ odd} \end{cases}$$

where $\Delta_n \equiv n(n+1)/2$ and $\psi_n \equiv (\gamma + 2 \log 2 + \pi i/2)^n e^{\pi i n/4}$.

$$(4.159) \int_0^1 \int_0^1 \frac{x^{u-1}y^{v-1}}{1 - xyz} (-\ln xy)^s dxdy = \Gamma(s+1) \frac{\Phi(z, s+1, v) - \Phi(z, s+1, u)}{u - v},$$

[95]

(4.160)
$$\int_0^1 \int_0^1 \frac{(xy)^{u-1}}{1 - xyz} (-\ln xy)^s dx dy = \Gamma(s+1)\Phi(z, s+2, u)$$

where

(4.161)
$$\Phi(z, s, u) = \sum_{k=0}^{\infty} \frac{z^k}{(u+k)^s} = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{e^{-(u-1)t}}{e^t - z} t^{s-1} dt$$

is the Lerch transcendent. [95]

(4.162)
$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 + xyi} dx dy = G - \frac{\pi^{2} i}{48},$$

[95]

(4.163)
$$\int_0^1 \int_0^1 \frac{-x \ln xy}{1 + x^2 y^2} dx dy = G - \frac{\pi^2}{48}$$

(4.164)
$$\int_0^1 \int_0^1 \frac{-x \ln xy}{1 - x^2 y^2} dx dy = \frac{\pi^2}{12},$$

(4.165)
$$\int_0^1 \int_0^1 \frac{(-\ln xy)^n}{1 - xyz} dx dy = \frac{(n+1)! \operatorname{Li}_{n+2}(z)}{z},$$

(4.166)
$$\int_0^1 \int_0^1 \frac{-1}{(1 - xyz) \ln xy} dx dy = -\frac{\ln(1 - z)}{z},$$

(4.167)
$$\int_0^1 \int_0^1 \frac{-1}{(2 - xyz) \ln xy} dx dy = \ln 2,$$

(4.168)
$$\int_0^1 \int_0^1 \frac{1}{2 - xy} dx dy = \frac{\pi^2}{12} - \frac{\ln^2 2}{2}.$$

(4.169)
$$\int_0^1 \int_0^1 \frac{-\ln xy}{2 - xy} dx dy = \frac{7\zeta(3)}{4} - \frac{\pi^2 \ln 2}{6} + \frac{\ln^3 2}{3}.$$

(4.170)
$$\int_0^1 \int_0^1 \frac{-1}{(\varphi - xy) \ln xy} dx dy = \ln \varphi,$$

(4.171)
$$\int_0^1 \int_0^1 \frac{1}{\varphi - xy} dx dy = \frac{\pi^2}{10} - \ln^2 \varphi,$$

[95]

(4.172)
$$\int_{0}^{1} \int_{0}^{1} \frac{-1}{(\varphi^{2} - xy) \ln xy} dx dy = \ln \varphi,$$

etc where

$$(4.173) \varphi \equiv (1 + \sqrt{5})/2.$$

[95]

(4.174)
$$\int_0^1 \int_0^1 \frac{1 - 2xy}{(8 + xy)(9 - xy)} dx dy = \frac{1}{2} \ln^2 \frac{9}{8}.$$

[95]

$$(4.175) \qquad \int_0^1 \int_0^1 \frac{52 - 7xy}{(2 + xy)(9 - xy)} dx dy = \frac{\pi^3}{3} + 3\ln^2 2 + 2\ln^2 3 - 6\ln 2\ln 3.$$

etc [95]

(4.176)
$$\int_0^1 \int_0^1 \frac{(-\ln xy)^s}{1 - xy} dx dy = \Gamma(s+2)\zeta(s+2), \Re s > -1.$$

[95]
$$(4.177)$$

$$\int_0^1 \int_0^1 \frac{(-\ln xy)^s}{1+xy} dx dy = \Gamma(s+2)\zeta^*(s+2), \Re s > -2, \quad \zeta^*(s) \equiv (1-2^{1-s})\zeta(s).$$
[95]

(4.178)
$$\int_0^1 \int_0^1 \frac{(-\ln xy)^s}{1+x^2y^2} dx dy = \Gamma(s+2)\beta(s+2), \Re s > -2.$$

[95]

(4.179)
$$\int_0^1 \int_0^1 \frac{1}{1 - xy} dx dy = \zeta(2).$$

[95]

(4.180)
$$\int_{0}^{1} \int_{0}^{1} \frac{-\ln xy}{1 - xy} dx dy = 2\zeta(3).$$

[95]

(4.181)
$$\int_0^1 \int_0^1 \frac{-1}{(1+x^2y^2)\ln xy} dx dy = \pi/4.$$

(4.182)
$$\int_0^1 \int_0^1 \frac{1}{1+x^2y^2} dx dy = G.$$

[95]

(4.183)
$$\int_0^1 \int_0^1 \frac{\ln xy}{1 + x^2 y^2} dx dy = \frac{\pi^3}{16}.$$

[95]

(4.184)
$$\int_0^1 \int_0^1 \frac{(-\ln xy)^s}{1 + x^2 y^2 z^2} dx dy = \Gamma(s+1) \frac{\chi_{s+2}(z)}{z}, \quad \Re s > -2, \Re z \neq 0.$$

[95]

(4.185)
$$\int_0^1 \int_0^1 \frac{1}{1 - x^2 y^2 \tan^2(\pi/8)} dx dy = \frac{\pi^2}{16 \tan \frac{\pi}{8}} - \frac{\ln^2 \tan \frac{\pi}{8}}{4 \tan \frac{\pi}{8}}.$$

[95]

(4.186)
$$\int_0^1 \int_0^1 \frac{x^{u-1}y^{v-1}}{-\ln xy} dx dy = \frac{1}{u-v} \ln \frac{u}{v}.$$

[95]

(4.187)
$$\int_0^1 \int_0^1 \frac{(xy)^{u-1}}{-\ln xy} dx dy = \frac{1}{u}.$$

[95]

$$(4.188) \qquad \int_0^1 \int_0^1 \frac{-x^{u-1}y^{v-1}}{(1+xy)\ln xy} dx dy = \frac{1}{u-v} \ln \frac{\Gamma(u/2)\Gamma(\frac{u+1}{2})}{\Gamma(v/2)\Gamma(\frac{v+1}{2})}, \quad u>0, v>0.$$

(4.189)
$$\int_0^1 \int_0^1 \frac{-(xy)^{u-1}}{(1+xy)\ln xy} dx dy = \frac{1}{2} \left[\psi(\frac{u+1}{2} - \psi(\frac{u}{2})) \right].$$

[95][175, A053510]

(4.190)
$$\int_0^1 \int_0^1 \frac{1+x}{-(1+xy)\ln xy} dx dy = \ln \pi.$$

[95][175, A094640]

(4.191)
$$\int_0^1 \int_0^1 \frac{1-x}{-(1+xy)\ln xy} dx dy = \ln \frac{4}{\pi}.$$

[95]

(4.192)
$$\int_0^1 \int_0^1 \frac{-x}{(1+x^2y^2)\ln xy} dxdy = \ln \frac{\sqrt{2\pi}}{\Gamma^2(3/4)}.$$

[95]

$$(4.193) \quad \int_0^1 \int_0^1 \frac{x^{u-1}y^{v-1}}{1-xy} dx dy = \frac{\psi(u) - \psi(v)}{u-v}; \quad \int_0^1 \int_0^1 \frac{(xy)^{u-1}}{1-xy} dx dy = \psi'(u).$$

[95][175, A073010]

(4.194)
$$\int_0^1 \int_0^1 \frac{y}{(1-x^3y^3)} dx dy = \frac{\pi}{3\sqrt{3}}.$$

[95]

(4.195)
$$\int_0^1 \int_0^1 x^{u-1} y^{v-1} (-\ln xy)^s dx dy = \Gamma(s+1) \frac{v^{-s-1} - u^{-s-1}}{u - v}$$

and others of similar shape.

[37]

(4.196)
$$W_n(2k) = \sum_{a_1 + a_2 + \dots + a_n = k} {k \choose a_1, \dots, a_n}^2,$$

where the sum is over all compositions (unordered partitions) with n terms, and

(4.197)
$$W_n(s) \equiv \int_{[0,1]^n} \left| \sum_{k=1}^n e^{2\pi i x_k} \right|^s d^n x.$$

[37]

(4.198)
$$W_3(k) = \Re_3 F_2 \begin{pmatrix} 1/2, -k/2, -k/2 \\ 1, 1 \end{pmatrix}.$$

[37]

(4.199)

$$W_n(s) = n^s \sum_{m \ge 0} (-1)^m \binom{s/2}{m} \sum_{k=0}^m \frac{(-)^k}{n^{2k}} \binom{m}{k} \sum_{a_1 + a_2 + \dots + a_n = k} \binom{k}{a_1, \dots, a_n}^2.$$

5. Indefinite Integrals of Special Functions

5.1. Elliptic Integrals and Functions.

- 5.2. The Exponential Integral.
- 5.3. The Sine Integral and Cosine Integral.
- 5.4. The Error Funcation and Fresnel Integrals.
- 5.5. Cylinder Functions.

(5.1)
$$\int x^2 Z_{\nu+1}(x) dx = -2x^2 Z_{\nu}(x) + 4 \int x Z_{\nu}(x) dx + \int x^2 Z_{\nu-1}(x) dx,$$

by partial integration of $\int xZ_{\nu}dx$ with [91, 8.471.2], where Z is a Bessel Function.

(5.2)
$$\int x^{\mu+1} Z_{\nu-1}(x) dx = x^{\mu+1} Z_{\nu}(x) + (\nu - \mu - 1) \int x^{\mu} Z_{\nu}(x) dx,$$

 $\mu \neq -1$, by partial integration of $\int x^{\mu} Z_{\nu} dx$ with [91, 8.472.1], where Z is a Bessel Function. Equivalent formula for spherical Bessel functions $j_n(z) \equiv \sqrt{\pi/(2z)} J_{n+1/2}(z)$:

(5.3)
$$(n-m) \int x^m j_n(x) dx = \int x^{m+1} j_{n-1}(x) dx - x^{m+1} j_n(x).$$

(5.4)
$$\int x^{\mu+1} Z_{\nu+1}(x) dx = -x^{\mu+1} Z_{\nu}(x) + (\mu + 1 + \nu) \int x^{\mu} Z_{\nu}(x) dx,$$

 $\mu \neq -1$, by partial integration of $\int x^{\mu} Z_{\nu} dx$ with [91, 8.472.2], where Z is a Bessel Function.

(5.5)

$$\int \frac{\sin(x)Z_{\nu}(x)}{x^{3/2}}dx = \frac{2[(2\nu+1)\sin(x) - 2x\cos(x)]}{x^{1/2}(2\nu-1)(2\nu+1)}Z_{\nu}(x) - \frac{4x^{1/2}\sin(x)}{(2\nu-1)(2\nu+1)}Z_{\nu+1}(x)$$

where Z is a Bessel function J or Y.

[154]

(5.6)

$$\int \frac{\cos(x)Z_{\nu}(x)}{x^{3/2}}dx = \frac{2[(2\nu+1)\cos(x)+2x\sin(x)]}{x^{1/2}(2\nu-1)(2\nu+1)}Z_{\nu}(x) - \frac{4x^{1/2}\cos(x)}{(2\nu-1)(2\nu+1)}Z_{\nu+1}(x)$$

where Z is a Bessel function J or Y. [154]

$$\int \frac{Z_{\mu}(x)\bar{Z}_{\nu}(x)}{x^{2}}dx = -\frac{1+\mu+\nu+2\mu\nu+\mu\nu^{2}+\mu^{2}\nu-\mu^{2}-\mu^{3}-\nu^{2}-\nu^{3}+2x^{2}}{x(-1+\mu-\nu)(-1+\mu+\nu)(1+\mu-\nu)(1+\mu+\nu)}Z_{\mu}\bar{Z}_{\nu} + \frac{1}{(1-\mu-\nu)(1-\mu+\nu)}Z_{\mu}\bar{Z}_{\nu+1} + \frac{1}{(1-\mu-\nu)(1+\mu-\nu)}Z_{\mu+1}\bar{Z}_{\nu} - \frac{2x}{(1-\mu-\nu)(1-\mu+\nu)(1+\mu-\nu)(1+\mu+\nu)}Z_{\mu+1}\bar{Z}_{\nu+1}.$$

[154]

$$(5.8)$$

$$\int \frac{Z_{\mu}(x)\bar{Z}_{\nu}(x)}{x^{3}}dx = -\frac{(2+\mu+\nu)(4\mu+4\nu+\mu\nu^{2}+\mu^{2}\nu-\mu^{3}-\nu^{3}+4x^{2}}{x^{2}(\mu+\nu)[\nu^{2}-(2-\mu)^{2}][\nu^{2}-(2+\mu)^{2}]}Z_{\mu}\bar{Z}_{\nu}$$

$$-\frac{4\mu\nu^{2}+2\mu^{2}\nu^{2}-4\mu^{2}-4\nu^{3}-\mu^{4}+4\nu^{2}-\nu^{4}+8x^{2}}{x(\mu^{2}-\nu^{2})[\nu^{2}-(2-\mu)^{2}][\nu^{2}-(2+\mu)^{2}]}Z_{\mu}\bar{Z}_{\nu+1}$$

$$+\frac{4\mu^{2}\nu+2\mu^{2}\nu^{2}+4\mu^{2}-\mu^{4}-4\nu^{2}-4\nu^{3}-\nu^{4}+8x^{2}}{x(\mu^{2}-\nu^{2})[\nu^{2}-(2-\mu)^{2}][\nu^{2}-(2+\mu)^{2}]}Z_{\mu+1}\bar{Z}_{\nu}$$

$$-\frac{4}{[-\nu^{2}+(2-\mu)^{2}][-\nu^{2}+(2+\mu)^{2}]}Z_{\mu+1}\bar{Z}_{\nu+1}.$$

[154]

(5.9)
$$\int \frac{Z_{\nu}^{2}(x)}{x^{2}} dx = \frac{1 + 2\nu + 2x^{2}}{(4\nu^{2} - 1)x} Z_{\nu}^{2}(x) - \frac{2}{-1 + 2\nu} Z_{\nu}(x) Z_{\nu+1}(x) - \frac{2x}{1 - 4\nu^{2}} Z_{\nu+1}^{2}(x).$$
[154]

$$(5.10) \int \frac{Z_{\nu}^{2}(x)}{x^{4}} dx = \frac{-9 - 6\nu + x^{2}(6 + 16\nu + 8\nu^{2}) + 36\nu^{2} + 24\nu^{3} + 16x^{4}}{3x^{3}(1 - 4\nu^{2})(9 - 4\nu^{2})} Z_{\nu}^{2}(x) - \frac{2(-3 + 4\nu + 4\nu^{2} + 8x^{2})}{3x^{2}(1 - 2\nu)(9 - 4\nu^{2})} Z_{\nu}(x) Z_{\nu+1}(x) - \frac{2(1 - 4\nu^{2} - 8x^{2})}{3x(1 - 4\nu^{2})(9 - 4\nu^{2})} Z_{\nu+1}^{2}(x).$$
[154]

$$\int x^2 Z_{1/3}^3(x) dx = \left(-\frac{4}{9}x - \frac{16}{81x}\right) Z_{1/3}^3(x) - \frac{4x}{3} Z_{1/3}(x) Z_{4/3}^2(x) + \left(\frac{8}{9} + x^2\right) Z_{1/3}^2(x) Z_{4/3}(x) + \frac{2}{3} x^2 Z_{4/3}^3(x).$$
[154]

$$\int \frac{Z_1^4(x)}{x} dx = \frac{x^2}{4} Z_2^4(x) + (\frac{3}{4} + \frac{x^2}{4}) Z_1^4(x) - \frac{3x}{2} Z_1(x) Z_2^3(x) + 6(\frac{1}{2} + \frac{x^2}{12}) Z_1^2(x) Z_2^2(x) + 4(-\frac{3x}{8} - \frac{1}{2x}) Z_1^3(x) Z_2(x).$$
 [154]

$$(5.13) \int \frac{Z_3^4(x)}{x^3} dx = \left(\frac{1}{24} + \frac{1}{2x^2} + \frac{2}{x^4} + \frac{x^2}{378}\right) Z_3^4(x) + \left(\frac{5}{216} + \frac{2}{27x^2} + \frac{x^2}{378}\right) Z_4^4(x) + 4\left(-\frac{x}{108} - \frac{5}{54x} - \frac{1}{3x^3}\right) Z_3(x) Z_4^3(x) + 6\left(\frac{7}{216} + \frac{1}{3x^2} + \frac{4}{3x^4} + \frac{x^2}{1134}\right) Z_3^2(x) Z_4^2(x) + 4\left(-\frac{x}{108} - \frac{1}{8x} - \frac{1}{x^3} - \frac{4}{x^5}\right) Z_3^3(x) Z_4(x).$$

where Z and \bar{Z} are Bessel functions J or Y. [154]

$$\int x^{l} Z_{\mu}(x) \bar{Z}_{\nu}(x) dx = A_{00}(x) Z_{\mu}(x) \bar{Z}_{\nu}(x) + A_{01}(x) Z_{\mu}(x) \bar{Z}_{\nu+1}(x) + A_{10}(x) Z_{\mu+1}(x) \bar{Z}_{\nu}(x) + A_{11}(x) Z_{\mu+1}(x) \bar{Z}_{\nu+1}(x),$$

where Z and \bar{Z} are Bessel functions J or Y, where

$$A_{00} = \frac{x}{2(\mu + \nu)} D^3 A_{11} + \frac{3 + \mu + \nu}{2(\mu + \nu)} D^2 A_{11} + \frac{-7 - 3\mu - 3\nu - 2\mu\nu + \mu^2 + \nu^2 - 4x^2}{2x(\mu + \nu)} DA_{11} + \frac{(-2 - \mu - \nu)(-4 - 2\mu\nu + \mu^2 + \nu^2 - 2x^2)}{2x^2(\mu + \nu)} A_{11} + \frac{x^{l+1}}{\mu + \nu},$$

$$A_{01} = \frac{-x^2}{2(\mu^2 - \nu^2)} D^3 A_{11} + \frac{3x}{2(\mu^2 - \nu^2)} D^2 A_{11} - \frac{7 - 3\mu^2 - \nu^2 + 4x^2}{2(\mu^2 - \nu^2)} D A_{11} + \frac{4 + \mu\nu^2 - 3\mu^2 - \mu^3 - \nu^2 + 2x^2}{x(\mu^2 - \nu^2)} A_{11} + \frac{x^{l+2}}{\mu^2 - \nu^2},$$

$$A_{10} = \frac{x^2}{2(\mu^2 - \nu^2)} D^3 A_{11} - \frac{3x}{2(\mu^2 - \nu^2)} D^2 A_{11} + \frac{7 - \mu^2 - 3\nu^2 + 4x^2}{2(\mu^2 - \nu^2)} D A_{11} - \frac{4 + \mu^2 \nu - \mu^2 - 3\nu^2 - \nu^3 + 2x^2}{x(\mu^2 - \nu^2)} A_{11} - \frac{x^{l+2}}{\mu^2 - \nu^2},$$

$$A_{11}(x) = x^{l+3} \sum_{n=0}^{n'} d_n x^{2n},$$

$$d_0 = \frac{2(l+1)}{(l+3)^4 - 8(l+3)^3 + 2(12 - \mu^2 - \nu^2)(l+3)^2 - 8(l+3)(4 - \mu^2 - \nu^2) + [(2-\mu)^2 - \nu^2][(2+\mu)^2 - \nu^2]}$$

$$\{(3+2n+l)^4 - 8(3+2n+l)^3 + 2(12-\mu^2-\nu^2)(3+2n+l)^2 - 8(3+2n+l)(4-\mu^2-\nu^2) + [(2-\mu)^2 - \nu^2][(2+\mu)^2 - \nu^2]\}d_n = -4(1+2n+l)(2n+l)d_{n-1}, n' \ge n > 0,$$

and $d_n = 0$ if n > n'.

$$n' = \begin{cases} 0, & l = -1\\ \frac{|l|}{2} - 1, & l < -1, even\\ \frac{|l| - 3}{2}, & l < -1, odd\\ \infty, & l \ge 0 \end{cases}$$

[154]

$$(5.15) \quad \int x^l Z_{\nu}^2(x) dx = A_{00}(x) Z_{\nu}^2(x) + 2A_{01}(x) Z_{\nu}(x) Z_{\nu+1}(x) + A_{11}(x) Z_{\nu+1}^2(x)$$

where

(5.16)
$$A_{00}(x) = \frac{1}{2}D^2 A_{11}(x) - \frac{3+2\nu}{2x}DA_{11}(x) + \frac{(2+2\nu+x^2)}{x^2}A_{11}(x),$$

(5.17)
$$A_{01}(x) = \frac{1}{2}DA_{11}(x) - \frac{1+\nu}{x}A_{11}(x),$$

$$(5.18) A_{11}(x) = xy(x),$$

(5.19)
$$y = \sum_{n=0}^{(l-1)/2} b_n x^{2n+1}, \quad \frac{b_{l-1}}{2} = 1/2l,$$

(5.20)
$$\frac{b_{l-1}}{2} = 1/2l, \quad b_n = \frac{2(n+1)[\nu^2 - (n+1)^2]}{2n+1}b_{n+1},$$

if $0 \le n \le (l-3)/2$, and if $l \ge 3$ a positive odd integer. [198, 136,1]

$$\int z^{-\mu-\nu-1} \mathcal{C}_{\mu+1}(z) \mathcal{D}_{\nu+1}(z) dz = -\frac{z^{-\mu-\nu}}{2(\mu+\nu+1)} \left\{ \mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) + \mathcal{C}_{\mu+1}(z) \mathcal{D}_{\nu+1}(z) \right\}$$

where \mathcal{C} and \mathcal{D} are arbitrary Bessel functions.

[198, 136,2]

(5.22)
$$\int z^{\mu+\nu+1} \mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) dz = \frac{z^{\mu+\nu+2}}{2(\mu+\nu+1)} \left\{ \mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) + \mathcal{C}_{\mu+1}(z) \mathcal{D}_{\nu+1}(z) \right\}$$

where C and D are arbitrary Bessel functions. [198]

$$(\rho + \mu + \nu) \int z^{\rho - 1} \mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) dz + (\rho - \mu - \nu - 2) \int z^{\rho - 1} \mathcal{C}_{\mu + 1}(z) \mathcal{D}_{\nu + 1}(z) dz = z^{\rho} \left\{ \mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) + \mathcal{C}_{\mu + 1}(z) \mathcal{D}_{\nu + 1}(z) \right\}$$

where C and D are arbitrary Bessel functions. [198, 136,5]

$$(\mu + \nu) \int \mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) \frac{dz}{z} - (\mu + \nu + 2n) \int \mathcal{C}_{\mu+n}(z) \mathcal{D}_{\nu+n}(z) \frac{dz}{z} =$$

$$\mathcal{C}_{\mu}(z) \mathcal{D}_{\nu}(z) + 2 \sum_{m=1}^{n-1} \mathcal{C}_{\mu+m}(z) \mathcal{D}_{\nu+m}(z) + \mathcal{C}_{\mu+n}(z) \mathcal{D}_{\nu+n}(z)$$

where \mathcal{C} and \mathcal{D} are arbitrary Bessel functions.

[198, 137,1]

(5.23)

$$\int \mathcal{C}_n(z)\mathcal{D}_n(z)\frac{dz}{z} = -\frac{1}{2n}\left[\mathcal{C}_0(z)\mathcal{D}_0(z) + 2\sum_{m=1}^{n-1}\mathcal{C}_m(z)\mathcal{D}_m(z) + \mathcal{C}_n(z)\mathcal{D}_n(z)\right]$$

where C and D are arbitrary Bessel functions. [198, 138]

$$(5.24) \quad (\mu+2) \int z^{\mu+2} \mathcal{C}_{\nu}^{2}(z) dz = (\mu+1) \left\{ \nu^{2} - \frac{1}{4} (\mu+1)^{2} \right\} \int z^{\mu} \mathcal{C}_{\nu}^{2}(z) dz$$

$$+ \frac{1}{2} \left[z^{\mu+1} \left\{ z \mathcal{C}_{\nu}'(z) - \frac{1}{2} (\mu+1) \mathcal{C}_{\nu}(z) \right\}^{2} + z^{\mu+1} \left\{ z^{2} - \nu^{2} + \frac{1}{4} (\mu+1)^{2} \right\} \mathcal{C}_{\nu}^{2}(z) \right]$$

where \mathcal{C} and \mathcal{D} are arbitrary Bessel functions.

With [1, 10.121], then partial integration for a product of three spherical Bessel functions

$$(5.25) \quad (n+m+l+2) \int j_n(x)j_m(x)j_l(kx)dx = -(2n-1)j_{n-1}(x)j_m(x)j_l(kx)$$

$$+(n-3-m-l) \int j_{n-2}(x)j_m(x)j_l(kx)dx + (2n-1) \int j_{n-1}(x)j_{m-1}(x)j_l(kx)dx$$

$$+(2n-1)k \int j_{n-1}(x)j_m(x)j_{l-1}(kx)dx.$$

(5.26)
$$\int x J_1(x) dx = \frac{\pi}{2} x [J_1(x) \mathbf{H}_0(x) - J_0(x) \mathbf{H}_1(x)]$$

where **H** are Struve functions $[1, \S 12]$.

5.6. Orthogonal Polynomials. [154]

(5.27)

$$\int \ln(1\pm x)P_{\nu}(x)dx = \left[-\frac{x}{\nu}\ln(1\pm x) \pm \frac{1}{\nu(\nu+1)} - \frac{x}{\nu^2} \right] P_{\nu} + \left[\frac{1}{\nu}\ln(1\pm x) + \frac{1}{\nu^2(\nu+1)} \right] P_{\nu+1}.$$

where P are Legendre functions.

[154]

(5.28)
$$\int P_{\mu}(x)\bar{P}_{\nu}(x)dx = -\frac{x}{1+\mu+\nu}P_{\mu}(x)\bar{P}_{\nu}(x) - \frac{1+\nu}{(\mu-\nu)(1+\mu+\nu)}P_{\mu}(x)\bar{P}_{\nu+1}(x) + \frac{1+\mu}{(\mu-\nu)(1+\mu+\nu)}P_{\mu+1}(x)\bar{P}_{\nu}(x).$$

[154]

(5.29)
$$\int x[P_{\nu}(x)]^2 dx = -\frac{1+\nu}{2\nu} \left[\frac{x^2+\nu}{1+\nu} [P_{\nu}(x)]^2 - 2xP_{\nu}(x)P_{\nu+1}(x) + [P_{\nu+1}(x)]^2 \right].$$

154

(5.30)

$$\int [P_{1/2}(x)]^2 dx = \frac{9}{2} x [P_{3/2}(x)]^2 + \frac{x(-7+16x^2)}{2} [P_{1/2}(x)]^2 - 3(-1+2x)(1+2x)P_{1/2}(x)P_{3/2}(x).$$
[154]

(5.31)

$$\int [P_{3/2}(x)]^2 dx = \frac{x(93 - 480x^2 + 512x^4)}{18} x [P_{3/2}(x)]^2 + \frac{25x(-3 + 8x^2)}{18} [P_{5/2}(x)]^2 - \frac{5}{9} (3 - 42x^2 + 64x^4) P_{3/2}(x) P_{5/2}(x).$$

[154]

$$(5.32) \int x^{5} P_{1/3}(x) P_{2/3}(x) dx = \left(-\frac{335}{2352} - \frac{512x^{2}}{392} + \frac{235x^{4}}{336} + \frac{x^{6}}{3}\right) P_{1/3}(x) P_{2/3}(x)$$

$$+ \left(\frac{685x}{784} - \frac{573x^{3}}{1176} - \frac{5x^{5}}{48}\right) P_{1/3}(x) P_{5/3}(x) + \left(\frac{235x}{196} - \frac{295x^{3}}{588} - \frac{2x^{5}}{21}\right) P_{2/3}(x) P_{4/3}(x)$$

$$+ \left(-\frac{5}{6} + \frac{65x^{2}}{196} + \frac{25x^{4}}{588}\right) P_{4/3}(x) P_{5/3}(x).$$

[154]

(5.33)

$$\begin{split} \int x [P_{1/3}(x)]^3 dx &= (\frac{125x^4}{12} - \frac{14}{3}x^2 - \frac{5}{12})[P_{1/3}(x)]^3 + (-4 + 20x^2)P_{1/3}(x)[P_{4/3}(x)]^2 \\ &\quad + (9x - 25x^3)[P_{1/3}(x)]^2 P_{4/3}(x) - \frac{16}{3}x[P_{4/3}(x)]^3. \end{split}$$

[154]

$$(5.34) \int x[P_{1/2}(x)]^4 dx = \left(-\frac{5}{16} - \frac{19}{4}x^2\right)[P_{1/2}(x)]^4 + \frac{81}{4}xP_{1/2}(x)[P_{3/2}(x)]^3 + 6\left(-\frac{9}{16} - \frac{9}{2}x^2\right)[P_{1/2}(x)]^2[P_{3/2}(x)]^2 + 4\left(\frac{33x}{16} + 3x^3\right)[P_{1/2}(x)]^3P_{3/2}(x) - \frac{81}{16}[P_{3/2}(x)]^4.$$
[154]

(5.35)
$$\int x^{l} P_{\mu}(x) P_{\nu}(x) dx = A_{00}(x) P_{\mu}(x) P_{\nu}(x) + A_{01}(x) P_{\mu}(x) P_{\nu+1}(x) + A_{10}(x) P_{\mu+1}(x) P_{\nu}(x) + A_{11}(x) P_{\mu+1}(x) P_{\nu+1}(x),$$

[154]

(5.36)
$$\int e^{-x^2} H_{\nu}(x) dx = -e^{-x^2} H_{\nu-1}(x).$$

[154]

(5.37)

$$\int H_{\nu}(x)x^{-(\nu+3)}dx = \left[\frac{2x^{-\nu}}{(\nu+1)(\nu+2)} - \frac{x^{-(\nu+2)}}{\nu+2}\right]H_{\nu}(x) - \frac{2\nu}{(\nu+1)(\nu+2)}x^{-(\nu+1)}H_{\nu-1}(x).$$

[154]

(5.38)
$$\int x H_{\nu}(x) dx = \frac{1 + 2x^2}{2(\nu + 2)} H_{\nu}(x) - \frac{\nu x}{\nu + 2} H_{\nu - 1}(x).$$

[154]

(5.39)
$$\int e^{-x^2} H_{\mu}(x) \bar{H}_{\nu} dx = \frac{e^{-x^2}}{2(\mu - \nu)} [-H_{\mu}(x) \bar{H}_{\nu+1}(x) + H_{\mu+1}(x) \bar{H}_{\nu}(x)].$$

[154]

(5.40)

$$\int xe^{-x^2}H_{\mu}(x)\bar{H}_{\nu}dx = \frac{e^{-x^2}}{2}\left[-\frac{1+\mu+\nu}{(1-\mu+\nu)(1+\mu-\nu)}H_{\mu}(x)\bar{H}_{\nu+1}(x) + \frac{x}{1+\mu-\nu}H_{\mu+1}(x)\bar{H}_{\nu}(x)\right] + \frac{x}{1-\mu+\nu}H_{\mu}(x)\bar{H}_{\nu+1}(x) - \frac{1}{(1-\mu+\nu)(1+\mu-\nu)}H_{\mu+1}(x)\bar{H}_{\nu+1}(x)\right].$$

[154]

$$(5.41) \int x^{2}e^{-x^{2}}H_{\mu}(x)\bar{H}_{\nu}dx = -e^{-x^{2}}\frac{H_{\mu}(x)\bar{H}_{\nu}(x)x(\mu+\nu)}{(2-\mu+\nu)(2+\mu-\nu)}$$

$$+ H_{\mu+1}(x)\bar{H}_{\nu}(x)\frac{2+\mu+3\nu+2\mu x^{2}-2\nu x^{2}-\mu^{2}x^{2}-\nu^{2}x^{2}+2\mu\nu x^{2}}{2(\mu-\nu)(2-\mu+\nu)(2+\mu-\nu)}$$

$$+ H_{\mu}(x)\bar{H}_{\nu+1}(x)\frac{2+3\mu+\nu-2\mu x^{2}+2\nu x^{2}-\mu^{2}x^{2}-\nu^{2}x^{2}+2\mu\nu x^{2}}{2(\mu-\nu)(2-\mu+\nu)(2+\mu-\nu)}$$

$$- H_{\mu+1}(x)\bar{H}_{\nu+1}(x)\frac{x}{(2-\mu+\nu)(2+\mu-\nu)}.$$

$$\int e^{-3x^2} x^2 H_{2/3}^3(x) dx = e^{-3x^2} \left[-\frac{1}{12} x (5 + 6x^2) H_{2/3}^3(x) + \frac{1}{8} (1 + 6x^2) H_{2/3}^2(x) H_{5/3}(x) - \frac{3}{8} x H_{2/3}(x) H_{5/3}^2(x) + \frac{1}{16} H_{5/3}^3(x) \right].$$

where H and \bar{H} are Hermite functions. [154]

(5.43)
$$\int xe^{-(\nu+1)x}L_{\nu}(x)dx = \frac{e^{-(\nu+1)x}}{\nu+1}[-(1+x)L_{\nu}(x) + L_{\nu-1}(x)].$$

[154]

(5.44)

$$\int x(1+x)^{-(\nu+3)} L_{\nu}(x) dx = \frac{(1+x)^{-(\nu+1)}}{\nu+2} \left[\left(\frac{x-\nu}{\nu+1} - \frac{x}{1+x} \right) L_{\nu}(x) + \frac{\nu}{\nu+1} L_{\nu-1}(x) \right].$$

[154

$$\int e^{-x} L_{\mu}(x) \bar{L}_{\nu}(x) dx = e^{-x} [L_{\mu}(x) \bar{L}_{\nu}(x) + \frac{1+\nu}{\mu-\nu} L_{\mu}(x) \bar{L}_{\nu+1}(x) - \frac{1+\mu}{\mu-\nu} L_{\mu+1}(x) \bar{L}_{\nu}(x)].$$
[154]

$$\int xe^{-x}L_{\mu}(x)\bar{L}_{\nu}(x)dx = e^{-x}\left[-\frac{1+\mu+\nu-x+2\mu\nu+\mu^{2}x+\nu^{2}x-2\mu\nu x}{(1-\mu+\nu)(1+\mu-\nu)}L_{\mu}(x)\bar{L}_{\nu}(x)\right] + \frac{(1+\nu)(1+2\mu-\mu x+\nu x)}{(\mu-\nu)(1-\mu+\nu)}L_{\mu}(x)\bar{L}_{\nu+1}(x) - \frac{(1+\mu)(1+2\nu+\mu x-\nu x)}{(\mu-\nu)(1+\mu-\nu)}L_{\mu+1}(x)\bar{L}_{\nu}(x) - \frac{2(1+\mu)(1+\nu)}{(1-\mu+\nu)(1+\mu-\nu)}L_{\mu+1}(x)\bar{L}_{\nu+1}(x)\right].$$

[154]

$$\int e^{-3x} x L_{2/3}^3(x) dx = e^{-3x} \left\{ L_{2/3}^3(x) \left[\frac{125}{24} - \frac{625x}{24} + \frac{853x^2}{16} - \frac{675x^3}{16} + \frac{225x^4}{16} - \frac{27x^5}{16} \right] + L_{5/3}^3(x) \left[-\frac{125}{24} + \frac{125x}{12} - \frac{125x^2}{16} \right] + 3 \left[\frac{125}{24} - \frac{125x}{8} + \frac{275x^2}{16} - \frac{75x^3}{16} \right] L_{2/3}(x) L_{5/3}^2(x) + 3 \left[-\frac{125}{24} + \frac{125x}{6} - \frac{515x^2}{16} + \frac{135x^3}{8} - \frac{45x^4}{16} \right] L_{2/3}^2(x) L_{5/3}(x) \right\}.$$

where L and \bar{L} are Laguerre functions.

6. Definite Integrals of Special Functions

6.1. Elliptic Integrals and Functions. [6]

(6.1)
$$\frac{1}{2} \int_0^1 K(x^2) dx = G.$$

(6.2)
$$\int_0^1 E(x^2) dx = G + \frac{1}{2}.$$

6.2. The Exponential Integral and Related Functions. [34]

(6.3)
$$\int_0^\infty t^{2\beta} e^{-3t^2} \operatorname{erf}(t) dt = \frac{\Gamma(1+\beta)}{\sqrt{\pi} 3^{\beta+1}} {}_2F_1(\frac{1}{2}, 1+\beta; \frac{3}{2}; -\frac{1}{3}).$$

6.3. The Gamma Function and Related Functions. [11][175, A075700]

(6.4)
$$\int_0^1 \ln \Gamma(t) dt = \frac{1}{2} \ln 2\pi.$$

[11]

(6.5)
$$\int_0^1 t \ln \Gamma(t) dt = \frac{\zeta'(2)}{2\pi^2} + \frac{1}{6} \ln 2\pi - \frac{\gamma}{12}.$$

[11]

(6.6)
$$\int_0^\infty 2^{-t} \ln \Gamma(t) dt = 2 \int_0^1 2^{-t} \ln \Gamma(t) dt - \frac{\gamma + \ln \ln 2}{\ln 2}.$$

[11

(6.7)
$$\int_0^\infty 2^{-t} t \ln \Gamma(t) dt = 2 \int_0^1 2^{-t} (t+1) \ln \Gamma(t) dt - \frac{(\gamma + \ln \ln 2)(1 + 2 \ln 2) - 1}{\ln^2 2}.$$
[75]

(6.8)
$$\int_0^1 \ln \Gamma(q) \cos((2n+1)\pi q) dq \frac{2}{\pi^2} \left(\frac{\gamma + 2\ln\sqrt{2\pi}}{(2n+1)^2} + 2\sum_{k=1}^\infty \frac{\ln k}{4k^2 - (2n+1)^2} \right).$$
 [75]

(6.9)
$$\int_0^1 B_{2m}(q) \ln \Gamma(q) dq = (-)^{m+1} \frac{(2m)! \zeta(2m+1)}{2(2\pi)^{2m}}.$$

[75]

(6.10)
$$\int_0^1 B_{2m-1}(q) \ln \Gamma(q) dq = \frac{B_{2m}}{2m} \left[\frac{\zeta'(2m)}{\zeta(2m)} - A \right],$$

where $A = 2 \ln \sqrt{2\pi} + \gamma$. [75]

(6.11)
$$\int_{0}^{1} q^{n} \ln \Gamma(q) dq = \frac{1}{n+1} \sum_{k=1}^{\lfloor (n+1)/2 \rfloor} (-)^{k} \binom{n+1}{2k-1} \frac{(2k!)}{k(2\pi)^{2k}} [A\zeta(2k) - \zeta'(2k)] - \frac{1}{n+1} \sum_{k=1}^{\lfloor n/2 \rfloor} (-)^{k} \binom{n+1}{2k} \frac{(2k!)}{2(2\pi)^{2k}} \zeta(2k+1) + \frac{\ln \sqrt{2\pi}}{n+1},$$

where $A = 2 \ln \sqrt{2\pi} + \gamma$. [75]

(6.12)
$$\int_0^1 (q - 1/2) \ln \Gamma(q) dq = \frac{1}{12} \left(\frac{6\zeta'(2)}{\pi^2} - 2 \ln \sqrt{2\pi} - \gamma \right).$$

(6.13)
$$\int_0^{1/2} \ln \Gamma(q+1) dq = \frac{\gamma}{8} + \frac{3 \ln \sqrt{2\pi}}{4} - \frac{13 \ln 2}{24} - \frac{3\zeta'(2)}{4\pi^2} - \frac{1}{2}$$

[75]

$$\int_{0}^{1} q^{n} \psi^{(m)}(q) dq = (-1)^{m} \frac{n!}{(n-m)!} \left[\frac{\gamma}{n-m+1} + (n-m)! \sum_{k=0}^{m-2} \frac{\Gamma(m-k)\zeta(m-k)}{(n-k)!} + \sum_{k=0}^{n-m-1} (-)^{k} \binom{n-m}{k} \left[H_{k}\zeta(-k) + \zeta'(-k) \right] \right],$$

where H_k are harmonic sums.

(6.15)
$$\int_0^1 q^n \psi(q) dq = \zeta'(0) + \sum_{k=1}^{n-1} (-)^k \binom{n}{k} [H_k \zeta(-k) + \zeta'(-k)],$$

where H_k are harmonic sums.

[16]

(6.16)
$$\int_0^\infty \frac{t^{\alpha+z}\psi(\alpha+z+1)}{\Gamma(\alpha+z+1)}dz = \frac{t^\alpha}{\Gamma(\alpha+1)} + \nu(t,\alpha)\ln t, \quad \Re \alpha > -1.$$

(6.17)
$$\int_0^\infty \frac{\psi(\alpha+z+1)}{\Gamma(\alpha+z+1)} dz = \frac{1}{\Gamma(\alpha+1)}, \quad \Re \alpha > -1.$$

(6.18)
$$\int_{1}^{\infty} \frac{\psi(z)}{\Gamma(z)} dz = 1.$$

(6.19)
$$\int_0^\infty \frac{t^z \psi(z+1)}{\Gamma(z+1)} dz = 1 + \nu(t) \ln t, t \neq 1.$$

[16]

$$\int_{0}^{\infty} \frac{t^{\alpha+z}}{\Gamma(\alpha+z+1)} \{ \psi(\alpha+z+1)^{2} - \psi^{(1)}(\alpha+z+1) \} dz = \frac{2t^{\alpha} \ln t}{\Gamma(\alpha+1)} + (\ln t)^{2} \nu(t,\alpha) + L^{-1} \left\{ \frac{\ln s}{s^{\alpha+1}} \right\}, \quad \Re \alpha > -1$$

where L^{-1} is the inverse Laplace transform.

(6.21)
$$\int_0^\infty \frac{t^z}{\Gamma(z+1)} \{ \psi(z+1)^2 - \psi^{(1)}(z+1) \} dz = -\gamma + \ln t (1 + \nu(t) \ln t).$$

(6.22)
$$\int_{1}^{\infty} \frac{1}{\Gamma(z)} \{ \psi^{(1)}(z) - \psi(z)^{2} \} dz = \gamma.$$

(6.23)
$$\int_0^\infty \frac{t^{\alpha+z}}{\Gamma(\alpha+z+1)} \{ \psi(\alpha+z+1)^2 - \psi^{(1)}(\alpha+z+1) \} dz = \frac{t^{\alpha}}{\Gamma(\alpha+1)} [\psi(\alpha+1) + \ln t] + (\ln t)^2 \nu(t,\alpha).$$
(6.24)

(6.24)
$$\int_{\alpha}^{\infty} \frac{t^{\alpha+z}z^{\beta}}{\Gamma(\alpha+z+1)} \frac{\psi(\alpha+z+1)}{\Gamma(\beta+1)} dz = \mu(t,\beta-1,\alpha) + \ln t \mu(t,\beta,\alpha), \quad \Re \alpha > -1, \Re \beta > -1.$$

(6.25)
$$\int_{0}^{\infty} \frac{t^{\alpha+z}z^{\beta}}{\Gamma(\alpha+z+1)} \frac{\psi(\alpha+z+1)^{2} - \psi^{(1)}(\alpha+z+1)}{\Gamma(\beta+1)} dz$$
$$= \mu(t, \beta-2, \alpha) + 2\ln t \mu(t, \beta-1, \alpha) + (\ln t)^{2} \mu(t, \beta, \alpha), \quad \Re \alpha > -1, \Re \beta > 1.$$

 $[{\bf 16}]$ Let $L\{f(t)\} \equiv \int_0^\infty e^{-st} f(t) dt = F(s)$ be the Laplace transform and

(6.26)
$$\nu(z) \equiv \int_0^\infty \frac{z^t dt}{\Gamma(t+1)},$$

(6.27)
$$\nu(z,\alpha) \equiv \int_0^\infty \frac{z^{\alpha+t}dt}{\Gamma(\alpha+t+1)},$$

(6.28)
$$\mu(z,\beta) \equiv \int_0^\infty \frac{z^t t^\beta dt}{\Gamma(\beta+1)\Gamma(t+1)},$$

(6.29)
$$\mu(z,\beta,\alpha) \equiv \int_{0}^{\infty} \frac{z^{\alpha+t}t^{\beta}dt}{\Gamma(\beta+1)\Gamma(\alpha+t+1)},$$

then

$$(6.30) L\{\nu(t)\} = \frac{1}{s \ln s}.$$

[16]

(6.31)
$$L\{\nu(t,\alpha)\} = \frac{1}{s^{1+\alpha} \ln s}.$$

[16]

(6.32)
$$L\{\mu(t,\beta)\} = \frac{1}{s(\ln s)^{\beta+1}}.$$

[16]

(6.33)
$$L\{\mu(t,\beta,\alpha)\} = \frac{1}{s^{\alpha+1}(\ln s)^{\beta+1}}.$$

Above $\Re \alpha > -1$, $\Re \beta > -1$, $\Re s > 1$. [16]

(6.34)
$$\frac{F(\ln s)}{s \ln s} = L\{\int_0^\infty \nu(t, x) f(x) dx\}.$$

[16]

(6.35)
$$\frac{F(\ln s)}{s^{\alpha+1}\ln s} = L\{\int_0^\infty \nu(t,\alpha+x)f(x)dx\}.$$

[16]

(6.36)
$$\frac{F(\ln s)}{s(\ln s)^{\beta+1}} = L\{\int_0^\infty \mu(t,\beta,x)f(x)dx\}.$$

[16]

(6.37)
$$\frac{F(\ln s)}{s^{\alpha+1}(\ln s)^{\beta+1}} = L\left\{\int_0^\infty \mu(t,\beta,\alpha+x)f(x)dx\right\}.$$

[16]

(6.38)
$$\int_0^\infty x^{\beta-1}\nu(t,\alpha+x)dx = \Gamma(\beta)\mu(t,\beta,\alpha), \quad \Re\alpha > -1, \Re\beta > 0.$$

(6.39)
$$\int_{0}^{\infty} x^{\beta - 1} \nu(t, x) dx = \Gamma(\beta) \mu(t, \beta).$$

[16]

(6.40)
$$\int_0^\infty \nu(t, \alpha + x) dx = \mu(t, 1, \alpha).$$

[16]

(6.41)
$$\int_{0}^{\infty} \nu(t, x) dx = \mu(t, 1).$$

[16]

$$(6.42) \int_0^\infty t^{\lambda-1} \mu(t,\beta,\alpha+x) dx = \Gamma(\lambda)\mu(t,\beta+\lambda,\alpha), \quad \Re\alpha > -1, \Re\beta > -1, \Re\lambda > 0.$$

[16]

$$(6.43) \quad \frac{1}{3\pi} \int_0^\infty (\frac{x}{t})^{1/2} K_{1/2}(\phi) \mu(x,\beta,\alpha) dx = 3^{\beta+1} \mu(t,\beta,\alpha/3), \phi \equiv 2(x^3/27t)^{1/2},$$

and others,

6.4. Cylinder Functions. [147]

(6.44)

$$2\pi(-1)^{(n-m)/2} \int_0^\infty dk J_{n+1}(2\pi k) J_m(2\pi k r) = R_n^m(r) = \sum_{s=0}^{(n-m)/2} (-1)^s \binom{n-s}{s} \binom{n-2s}{(n-m)/2-s} r^{n-2s},$$

for $n \ge 0$, $0 \le m \le n$, n - m even.

(6.45)
$$\int_{0}^{\infty} J_{\mu}(ct\sin\phi)J_{\nu}(ct\sin\Phi)K_{\rho}(ct\cos\phi\cos\Phi)dt = \dots$$

[27]

(6.46)

$$\int_0^\infty J_{\mu}(ct\sin\phi\sin\Phi)J_{\nu}(ct\cos\phi\sin\Phi)J_{\rho}(ct)dt = \frac{\Gamma(\frac{1+\mu+\nu+\rho}{2})\sin^{\mu}\phi\cos^{\mu}\Phi\cos^{\nu}\phi\sin^{\nu}\Phi}{c^{\mu+\nu+1}\Gamma(\mu+1)\Gamma(\nu+1)\Gamma(\frac{1-\mu-\nu+\rho}{2})}$$

(6.47)

$$\times {}_{2}F_{1}(\frac{1+\mu+\nu-\rho}{2},\frac{1+\mu+\nu+\rho}{2};\mu+1;\sin^{2}\phi){}_{2}F_{1}(\frac{1+\mu+\nu-\rho}{2},\frac{1+\mu+\nu+\rho}{2};\nu+1;\sin^{2}\Phi)$$

where ϕ and Φ arre positive angles whose sum is acute.

6.4.1. Cylinder Functions combined with x and x^2 . [203]

(6.48)
$$\int_0^1 x J_{\nu}(\lambda_n x) J_{\nu}(\lambda_m x) dx = \frac{1}{2} \left\{ (1 - \nu^2 / \lambda_n^2) J_{\nu}^2(\lambda_n) + J_{\nu}^{\prime 2}(\lambda_n) \right\} \delta_{nm}$$

for $\{\lambda_n\}$ $(n=1,2,\cdots)$ a sequence of succesive positive roots of the equation $xJ'_{\nu}(x) + HJ_{\nu}(x) = 0$, where H is a real number and $\nu \geq -1$.

[125]

(6.49)
$$\int_0^1 x^{2+l+2n} j_l(2\pi\sigma x) dx = \frac{1}{2\pi\sigma} \sum_{k=0}^n \frac{(-n)_k}{(\pi\sigma)^k} j_{l+k+1}(2\pi\sigma); \quad l, n = 0, 1, 2, 3, \dots$$

[152]

(6.50)
$$\int_{0}^{\infty} k^{2} j_{l}(kr) j_{l}(kr') dk = \frac{\pi \delta(r - r')}{2r^{2}}.$$

[93, 136]

$$(6.51) \quad \frac{4p_1p_2p_3}{\pi} \int_0^\infty x^2 j_1(p_1x) j_2(p_2x) j_3(p_3x) dx = \Delta(p_1, p_2, p_3) (-1)^{(l_1+l_2+l_3)/2}$$

$$\times \frac{1}{2} \sum_{k_1=0}^{l_1} \sum_{k_2=0}^{l_2} \sum_{k_3=0}^{l_3} \frac{(-1)^{k_1+k_2+k_3}}{(k_1+k_2+k_3)!} \prod_{i=1}^3 \frac{(l_i+k_i)!}{k_i!(l_i-k_i)!} (2p_i)^{-k_i}$$

$$\times [(-1)^{l_1+k_1} (p_2+p_3-p_1)^{k_1+k_2+k_3} + (-1)^{l_2+k_2} (p_3+p_1-p_2)^{k_1+k_2+k_3}$$

$$+ (-1)^{l_3+k_3} (p_1+p_2-p_3)^{k_1+k_2+k_3} - (p_1+p_2+p_3)^{k_1+k_2+k_3}]$$

supposed that p_1 , p_2 and p_3 can be the sides of a plane triangle, that is where $\Delta(.) = 1$ if they form a non-denerate triangle, $\Delta(.) = 1/2$ if they form a degenerate triangle, and $\Delta(.) = 0$ otherwise.

(6.52)
$$\int_0^\infty x j_0(ax) j_0(bx) j_1(cx) dx = \frac{\pi}{8abc^2} (c^2 - (a-b)^2)$$

for c > 0, a > 0, |c - a| < b < c + a.

|102|

(6.53)

$$\int_{0}^{\infty} J_{n_1}(k_1 \rho) J_{n_2}(k_2 \rho) J_{n_3}(k_3 \rho) \rho d\rho = \frac{\Delta}{6\pi A} [\cos(n_1 \alpha_2 - n_2 \alpha_1) + \cos(n_2 \alpha_3 - n_3 \alpha_2) + \cos(n_3 \alpha_1 - n_1 \alpha_3)]$$

if $n_1 + n_2 + n_3 = 0$, Δ as above, the area of the triangle of k_1 , k_2 and k_3 given by $2A = k_1k_3\sin\theta_{13}$, and α three external angles in that triangle.

6.4.2. Cylinder Functions and Rational Functions. [82]

(6.54)
$$\int_0^\infty \frac{J_{\nu}(x)}{x^2 + a^2} dx = \frac{i}{a} [S_{0,\nu}(ia - e^{-i\nu\pi/2}K_{\nu}(a))] = \frac{1}{a} [is_{0,\nu}(ia) + \frac{\pi}{2}\sec\frac{\nu\pi}{2}I_{\nu}(a)].$$
[180]

(6.55)
$$\int_{0}^{\infty} x^{1-2n} J_{\nu}(ax) J_{\nu}(bx) \frac{dx}{x^{2}+c^{2}} = (-1)^{n} c^{-2n} \left\{ I_{\nu}(bc) K_{\nu}(ac) - \frac{1}{2} \left(\frac{b}{a} \right)^{\nu} \frac{\pi}{\sin \pi \nu} \sum_{n=0}^{n-1} \frac{(ac/2)^{2p}}{p! \Gamma(1-\nu+p)} \sum_{k=0}^{n-1-p} \frac{(bc/2)^{2k}}{k! \Gamma(1+\nu+k)} \right\}$$

for 0 < b < a, $\Re c > 0$, $\Re \nu > n-1$, $n=1,2,\ldots$ For 0 < a < b, the arguments a and b should be interchanged.

6.4.3. Cylinder Functions and Powers. [110, 114]

$$\int_{0}^{1} x^{\mu} J_{\nu}(ax) dx = 2^{\mu} \frac{\Gamma(\frac{1}{2} + \frac{1}{2}\mu + \frac{1}{2}\nu)}{a^{\mu+1} \Gamma(\frac{\nu}{2} + \frac{1}{2} - \frac{1}{2}\mu)} + a^{-\mu} \left\{ (\mu + \nu - 1) J_{\nu}(a) S_{\mu-1,\nu-1}(a) - J_{\nu-1}(a) S_{\mu,\nu}(a) \right\}$$

$$[a > 0, \Re(\mu + \nu) > -1].$$

(6.57)
$$\int_{0}^{u} z^{\nu} K_{\nu}(x) dx = \frac{2^{\nu} - 1}{1 + 2\nu} [(1 + 2\nu)\Gamma(\nu)u_{1}F_{2}(1/2; 3/2, 1 - \nu; u^{2}/4) + 2(u/2)^{1+2\nu}\Gamma(-\nu)_{1}F_{2}(\nu + 1/2; 1 + \nu, 3/2 + \nu; u^{2}/4)].$$

[147]

(6.58)
$$\int_0^\infty x^{-P} [1 - J_0(bx)] dx = \frac{\pi b^{P-1}}{2^P \Gamma^2(\frac{P+1}{2}) \sin[\pi(P-1)/2]}.$$

[72, p 22]

(6.59)

$$\int_{0}^{1} x^{\mu} J_{\nu}(xy) \sqrt{xy} dx = y^{-\mu-1} \left[(\nu + \mu - \frac{1}{2}) y J_{\nu}(y) S_{\mu-1/2,\nu-1}(y) - y J_{\nu-1}(y) S_{\mu+1/2,\nu}(y) + 2^{\mu+1/2} \frac{\Gamma(\frac{\mu}{2} + \frac{\nu}{2} + \frac{3}{4})}{\Gamma(\frac{\nu}{2} - \frac{\mu}{2} + \frac{1}{4})} \right]$$

for
$$\Re(\mu + \nu) > -3/2$$
. [82]

$$(6.60) \int_{0}^{\infty} \frac{x^{\rho-1} J_{\nu}(ax)}{(x^{2}+k^{2})^{\mu+1}} dx = \frac{a^{\nu} k^{\rho+\nu-2\mu-2} \Gamma(\rho/2+\nu/2) \Gamma(\mu+1-\rho/2-\nu/2)}{2^{\nu+1} \Gamma(\mu+1) \Gamma(\nu+1)} \times {}_{1}F_{2}\left(\frac{\rho+\nu}{2}; \frac{\rho+\nu}{2} - \mu, \nu+1; \frac{a^{2}k^{2}}{4}\right) + \frac{a^{2\mu+2-\rho} \Gamma(\nu/2+\rho/2-\mu-1)}{2^{2\mu+3-\rho} \Gamma(\mu+2+\nu/2-\rho/2)} \times {}_{1}F_{2}\left(\mu+1; \mu+2+\frac{\nu-\rho}{2}, \mu+2-\frac{\nu+\rho}{2}; \frac{a^{2}k^{2}}{4}\right), a>0, -\Re\nu<\Re\rho<2\Re\mu+\frac{7}{2}, \Re k>0.$$

[204]

$$\int_{0}^{\infty} \frac{J_{n+1}(k)J_{n'+1}(k)}{k(k^{2}+k_{0}^{2})^{1+\gamma 2}} dk = k_{0}^{n+n'-\gamma} \frac{\Gamma(\frac{\gamma-n-n'}{2})\Gamma(\frac{n+n'}{2}+1)}{2^{n+n'+3}\Gamma(n+2)\Gamma(n'+2)\Gamma(1+\gamma/2)} \times {}_{3}F_{4}\left(\begin{array}{c} \frac{n+n'}{2}+1, \frac{n+n'}{2}+2, \frac{n+n'+3}{2} \\ n+2,n'+2,n+n'+3,1+\frac{n+n'-\gamma}{2} \end{array} \right) k_{0}^{2} + \frac{\Gamma(\frac{n+n'-\gamma}{2})\Gamma(3+\gamma)}{2^{3+\gamma}\Gamma(3+\frac{\gamma+n+n'}{2})\Gamma(2+\frac{\gamma+n-n'}{2})\Gamma(2+\frac{\gamma+n'-n}{2})} {}_{3}F_{4}\left(\begin{array}{c} 2+\frac{\gamma}{2},1+\frac{\gamma}{2},\frac{3+\gamma}{2} \\ 2+\frac{\gamma+n-n'}{2},2+\frac{\gamma+n+n'-\gamma}{2},1+\frac{\gamma-n-n'}{2} \end{array} \right) k_{0}^{2}$$

$$\int_{0}^{\infty} J_{\nu+n}(at) J_{\nu-n-1}(bt) dt = \begin{cases} \frac{b^{\nu-n-1} \Gamma(\nu)}{a^{\nu-n} n! \Gamma(\nu-n)} \, {}_{2}F_{1}(\nu, -n; \nu - n; \frac{b^{2}}{a^{2}}), & 0 < b < a, \\ (-1)^{n} / (2a), & 0 < b = a, \\ 0, & 0 < a < b. \end{cases}$$

where $n = 0, 1, 2, ..., \Re \nu > 0$. [122, p50]

(6.62)
$$\int_0^\infty J_{\nu}(at)J_{\nu+1}(bt)dt = \begin{cases} a^{\nu}b^{-\nu-1}, & 0 < b < a \\ 1/(2a), & 0 < b = a \\ 0, & 0 < a < b \end{cases}$$

where a, b real positive, $\Re \nu > -1$.

[122, p50]

(6.63)
$$\int_0^\infty J_{\mu}(at)J_{\nu}(at)dt = \frac{2}{\pi} \frac{\sin(\frac{\nu-\mu}{2}\pi)}{\nu^2 - \mu^2},$$

 $\Re(\nu + \mu) > 0, \ a > 0.$

$$(6.64) \quad \int_0^\infty x^{-P} \left(1 - \frac{4J_1^2(x)}{x^2} \right) dx = \frac{\pi \Gamma(P+2)}{2^P \Gamma^2(\frac{P+3}{2}) \Gamma(\frac{P+5}{2}) \Gamma(\frac{P+1}{2}) \sin[\pi(P-1)/2]}$$

[79]

(6.65)

$$\int_0^\infty t^{\rho-\mu-\nu-3} J_{\mu}(at) J_{\nu}(bt) J_{\rho}(ct) dt = \frac{2^{\rho-\mu-\nu-3} a^{\mu} b^{\nu} \Gamma(\rho-1)}{c^{\rho-2} \Gamma(\mu+1) \Gamma(\nu+1)} \left(1 - \frac{\rho-1}{\mu-1} \frac{a^2}{c^2} - \frac{\rho-1}{\nu-1} \frac{b^2}{c^2} \right).$$

[190] Let

(6.66)
$$G_{lmn} \equiv \int_0^\infty dx x^\alpha J_l(x) J_m(x) J_n(\beta x)$$

with $\Re \alpha < 3/2$ and $\Re (\alpha + l + m + n + 1) > 0$, then for $\beta/2 < 1$

(6.67)

$$G_{lmn} = \frac{\Gamma(\frac{\alpha+n)}{2})(\beta/2)^{-\alpha}}{2\Gamma(\frac{-l+m+1}{2})\Gamma(\frac{l-m+1}{2})\Gamma(\frac{-\alpha+n+2}{2})} \, {}_{4}F_{3} \left(\begin{array}{c} \frac{l+m+1}{2}, \frac{l-m+1}{2}, \frac{-l-m+1}{2}, \frac{-l+m+1}{2}, \frac{-l+m+1}{2} \\ -\frac{\alpha+n+2}{2}, \frac{1}{2}, \frac{-\alpha-n+2}{2} \end{array} \right) \, |\beta^{2}/4 \right) \\ - \frac{\Gamma(\frac{l+m+2}{2})\Gamma(\frac{\alpha+n-1}{2})(\beta/2)^{-\alpha+1}}{\Gamma(\frac{-l+m}{2})\Gamma(\frac{l+m}{2})\Gamma(\frac{l+m}{2})\Gamma(\frac{l-m}{2})\Gamma(\frac{-\alpha+n+3}{2})} \, {}_{4}F_{3} \left(\begin{array}{c} \frac{l+m+2}{2}, \frac{l-m+2}{2}, \frac{-l-m+2}{2}, \frac{-l+m+2}{2} \\ -\frac{\alpha+n+3}{2}, \frac{3}{2}, \frac{-\alpha-n+3}{2} \end{array} \right) \, |\beta^{2}/4 \right) \\ + \frac{2^{\alpha+n}\Gamma(-\alpha-n)\Gamma(\frac{\alpha+l+m+n+1}{2})(\beta/2)^{n}}{\Gamma(\frac{-\alpha-l+m-n+1}{2})\Gamma(\frac{-\alpha+l+m-n+1}{2})\Gamma(\frac{-\alpha+l-m-n+1}{2})\Gamma(n+1)} \\ \times \, {}_{4}F_{3} \left(\begin{array}{c} \frac{\alpha+l+m+n+1}{2}, \frac{\alpha+l-m+n+1}{2}, \frac{\alpha-l-m+n+1}{2}, \frac{\alpha-l-m+n+1}{2}, \frac{\alpha-l+m+n+1}{2} \\ n+1, \frac{n+\alpha+2}{2}, \frac{\alpha+n+1}{2}, \end{array} \right) \, |\beta^{2}/4 \right),$$

and for $\beta/2 > 1$

(6.68)

$$G_{lmn}(\alpha,\beta) = \frac{2^{-l-m-1}\Gamma(\frac{\alpha+l+m+n+1}{2})(\beta/2)^{-\alpha-l-m-1}}{\Gamma(\frac{-\alpha-l-m+n+1}{2})\Gamma(l+1)\Gamma(m+1)} \, _4F_3\left(\begin{array}{c} \frac{\alpha+l+m+n+1}{2},\frac{l+m+1}{2},\frac{l+m+2}{2},\frac{\alpha+l+m-n+1}{2}\\ m+1,l+1,m+l+1 \end{array}\right) \, |4/\beta^2\right)$$

[187] (6.69)
$$\int_{0}^{\infty} t \left(\frac{t}{\sqrt{u^2 + t^2}} - 1 \right) J_0(\gamma t) dt = \frac{u^2}{2} [I_1(u\gamma/2) K_1(u\gamma/2) - I_0(u\gamma/2) K_0(u\gamma/2)].$$

6.4.4. Cylinder Functions and Exponentials.

6.4.5. Cylinder Functions, Exponentials and Powers. With

$$l_1(a,b,c) \equiv \frac{1}{2} \left[\sqrt{(a+b)^2 + c^2} - \sqrt{(a-b)^2 + c^2} \right]$$

$$l_2(a,b,c) \equiv \frac{1}{2} \left[\sqrt{(a+b)^2 + c^2} + \sqrt{(a-b)^2 + c^2} \right]$$

at a > 0, b > 0, c > 0 [79]

$$\int_{0}^{\infty} e^{-cx} J_1(ax) J_{1/2}(bx) \frac{dx}{x^{3/2}} = \frac{\sqrt{2}}{\sqrt{\pi b} a} \left[\frac{l_1}{2} \sqrt{a^2 - l_1^2} + \frac{a^2}{2} \sin^{-1}(\frac{l_1}{a}) + c(\sqrt{b^2 - l_1^2} - b) \right].$$

(6.71)
$$\int_0^\infty e^{-cx} J_1(ax) J_{1/2}(bx) \frac{dx}{\sqrt{x}} = \frac{\sqrt{2}}{\sqrt{\pi b}a} (b - \sqrt{b^2 - l_1^2}).$$

(6.72)
$$\int_0^\infty e^{-cx} J_1(ax) J_{1/2}(bx) \sqrt{x} dx = \frac{\sqrt{2}}{\sqrt{\pi b} a} \frac{l_1 \sqrt{a^2 - l_1^2}}{l_2^2 - l_1^2}.$$

(6.73)
$$\int_0^\infty e^{-cx} J_1(ax) J_{3/2}(bx) \sqrt{x} dx = \frac{2l_1^2 \sqrt{b^2 - l_1^2}}{\sqrt{2\pi} b^{3/2} a(l_2^2 - l_1^2)}.$$

(6.74)
$$\int_0^\infty e^{-cx} J_1(ax) J_{3/2}(bx) \frac{dx}{\sqrt{x}} = \frac{1}{\sqrt{2\pi} b^{3/2} a} \left(-l_1 \sqrt{a^2 - l_1^2} + a^2 \sin^{-1}(l_1/a) \right).$$

(6.75)

$$\int_0^\infty e^{-cx} J_1(ax) J_{5/2}(bx) \frac{dx}{\sqrt{x}} = \frac{2^{-1/2}c}{\sqrt{\pi}b^{5/2}a} \left(l_1 \sqrt{a^2 - l_1^2} + \frac{2a^2 l_1}{\sqrt{a^2 - l_1^2}} - 3a^2 \sin^{-1}(l_1/a) \right).$$

and similar combinations of even and odd-indexed J(ax) and J(bx).

(6.76)
$$\int_{0}^{\infty} x^{\nu} e^{-x/2} J_{\nu}(\mu x) L_{n}^{2\nu}(x) dx = 2^{\nu} \Gamma(\nu + \frac{1}{2}) \frac{1}{\sqrt{\pi \mu}} (\sin \theta)^{\nu + \frac{1}{2}} C_{n}^{\nu + \frac{1}{2}} (\cos \theta),$$

 $\mu\geq 0,\, \nu>-\frac{1}{2},\,\cos\theta\equiv\frac{\mu^2-1/4}{\mu^2+1/4},\,C_n^\lambda(x)$ ultraspherical polynomial. [150]

(6.77)
$$\int_0^\infty \frac{x^{\nu+1}}{a^2+x^2} J_{\nu}(xy) dx = \frac{a^{\nu}}{\sqrt{y}} K_{\nu}(ay), \quad 1 < \Re \nu < 3/2.$$

[150]

$$\int_{0}^{\infty} \frac{x^{\nu+1}}{(a^{2}+x^{2})^{\mu}} J_{\nu}(xy) dx = \frac{2^{1-\mu}a^{\nu-\mu+1}y^{\mu-1}}{\Gamma(\mu)} K_{\nu-\mu+1}(ay), \quad \Re\nu > -1, \Re(2\mu-\nu) > 1/2.$$

[150]

(6.79)
$$\int_{0}^{\infty} \frac{x^{1-\nu}}{(a^{2}+x^{2})^{\mu}} J_{\nu}(xy) dx = a^{-\mu-\nu+1} y^{\mu-1} \left[2^{-\mu} \frac{\Gamma(1-mu)}{1-\nu} I_{\nu+\mu-1}(ay) - 2 \frac{1-\mu}{\Gamma(\nu)} e^{-i\frac{\pi}{2}(\nu-\mu+1)} s_{-\mu+\nu,-\mu-\nu+1}(iay) \right], \quad \Re(\nu+2\mu) > 1/2.$$

[34]

(6.80)
$$\int_0^\infty x^{\beta-1} e^{-x} I_n(x) dx = \sum_{j=0}^\infty \frac{\Gamma(\beta+2j+n)}{2^{2j+n} j! (j+n)!}.$$

[34]

(6.81)
$$\int_{0}^{\infty} x^{2n+1} e^{-x^{2}/4a} I_{0}(x) dx = 2^{2n+1} a^{n+1} n! e^{a} L_{n}(-a) = 2^{2n+1} a^{n+1} n! {}_{1}F_{1}(n+1;1;a).$$

(6.82)
$$\int_0^\infty x^3 e^{-x^2/4a} I_0(x) dx = 8a^2 (1+a)e^a.$$

[2]

(6.83)
$$\int_0^\infty x e^{-x^2/z} J_2(x) Y_2(x) dx = -\frac{2}{\pi} + \frac{4}{\pi z} - \frac{z K_2(z/2)}{2\pi \exp(z/2)}.$$

[2]

(6.84)
$$\int_0^\infty x e^{-x^2/z} I_3(x) K_3(x) dx = -\frac{32 + 16z + 3z^2}{2z^2} + \frac{\exp(z/2)z K_3(z/2)}{4}.$$

 $\lfloor 2$

(6.85)
$$\int_0^\infty x^3 e^{-x^2/z} J_2(x) Y_2(x) dx = -\frac{4}{\pi} + \frac{z^2 (2+z) K_0(z/2)}{4\pi \exp(z/2)} + \frac{z(8+4z+z^2) K_1(z/2)}{4\pi \exp(z/2)}.$$
[2]

(6.86)

$$\int_{0}^{\infty} x^{5} e^{-x^{2}/z} I_{3}(x) K_{3}(x) dx = -32 + \frac{1}{8} e^{z/2} z^{2} (32 - 16z + 5z^{2} - z^{3}) K_{0}(z/2) + \frac{1}{8} e^{z/2} z (128 - 64z + 24z^{2} - 6z^{3} + z^{4}) K_{1}(z/2).$$

[68] Let

(6.87)
$$I(\mu,\nu,\lambda) \equiv \int_0^\infty J_\mu(at)J_\nu(bt)e^{-ct}t^\lambda dt,$$

then

(6.88)
$$I(n,n;0) = \frac{(-)^n k}{\pi \sqrt{ab}} \int_0^{\pi/2} \frac{\cos(2n\psi)d\psi}{\sqrt{1 - k^2 \sin^2 \psi}},$$

(6.89)
$$I(n,n;1) = \frac{(-)^n ck^3}{4\pi (ab)^{3/2}} \int_0^{\pi/2} \frac{\cos(2n\psi)d\psi}{(1-k^2\sin^2\psi)^{3/2}},$$

in particular

(6.90)
$$I(0,0;0) = \frac{k}{2\sqrt{ab}}F_0(k),$$

(6.91)
$$I(1,1;0) = \frac{1}{k\sqrt{ah}}[(1-k^2/2)F_0(k) - E_0(k)],$$

(6.92)
$$I(0,0;1) = \frac{ck^3 E_0(k)}{8k'^2 (ab)^{3/2}},$$

and more results on $I(n+1, n; \pm 1)$ and I(n+1, n; 0) in terms of Elliptic Integrals. Associated recurrences:

(6.93)
$$a[I(\mu+1,\nu;\lambda) + I(\mu-1,\nu;\lambda)] = 2\mu I(\mu,\nu;\lambda-1);$$

(6.94)
$$b[I(\mu, \nu + 1; \lambda) + I(\mu, \nu - 1; \lambda)] = 2\nu I(\mu, \nu; \lambda - 1);$$

(6.95)
$$aI(\mu+1,\nu;\lambda) - bI(\mu,\nu-1;\lambda) = C_{\mu,\nu} + (\mu-\nu+\lambda)I(\mu,\nu;\lambda-1) - cI(\mu,\nu;\lambda)$$
, with

(6.96)
$$C_{\mu,\nu} \equiv \begin{cases} \frac{a^{\mu}b^{\nu}}{2^{\mu+\nu}\Gamma(\mu+1)\Gamma(\nu+1)}, & \text{if } \lambda + \mu + \nu = 0; \\ 0 & \text{if } \lambda + \mu + \nu > 0. \end{cases}$$

6.4.6. Cylinder and Trigonometric Functions and Powers. [79]

$$\int_0^\infty \sin(cx) x^{\nu-\mu-4} J_\mu(ax) J_\nu(bx) dx = \frac{\Gamma(\nu) a^\mu b^{-\nu} c}{2^{\mu-\nu+3} \Gamma(\mu+1)} \left(\frac{b^2}{\nu-1} - \frac{a^2}{\mu+1} - \frac{2c^2}{3} \right).$$

[79]

$$\int_0^\infty \cos(cx) x^{\nu-\mu-3} J_\mu(ax) J_\nu(bx) dx = \frac{\Gamma(\nu) a^\mu b^{-\nu}}{2^{\mu-\nu+3} \Gamma(\mu+1)} \left(\frac{b^2}{\nu-1} - \frac{a^2}{\mu+1} - 2c^2 \right).$$
[165]

(6.99)
$$\int_{0}^{\infty} J_{2n}(a\sqrt{t^{2}+2bt})e^{-pt}dt = (-1)^{n} \left\{ \frac{e^{b(p-\sqrt{p^{2}+a^{2}})}}{\sqrt{p^{2}+a^{2}}} + \frac{2e^{bp}}{a} \right.$$

$$\times \sum_{k=1}^{n} (-)^{k} (2k-1)I_{k-1/2} \left[b(\sqrt{p^{2}+a^{2}}-a)/2) \right] K_{k-1/2} \left[b(\sqrt{p^{2}+a^{2}}+a)/2 \right] \right\}.$$
[165]

(6.100)

$$\int_0^\infty J_{2n}(a\sqrt{t^2+2bt})e^{-pt}dt = (-1)^n \left\{ \frac{e^{b(p-\sqrt{p^2+a^2})}}{\sqrt{p^2+a^2}} + 2n\sum_{\lambda=1}^n \frac{(n-1+\lambda)!}{\lambda!(n-\lambda)!} \frac{1}{b^{2\lambda-1}a^{2\lambda}} \right\}$$

$$\times \sum_{\mu=0}^{\lambda-1} \frac{(2\lambda-2-\mu)!}{\mu!(\lambda-1-\mu)!} (2b\sqrt{p^2+a^2})^{\mu} \left(e^{b(p-\sqrt{p^2+a^2})} - \sum_{\nu=0}^{2\lambda-2-\mu} \frac{[b(p-\sqrt{p^2+a^2})]^{\nu}}{\nu!} \right) \right\}.$$

[34]

(6.101)
$$\int_0^\infty x^{\beta - 1} e^{-x} I_0(2\sqrt{ax}) dx = \sum_{k=0}^\infty \frac{a^k}{k!^2} \Gamma(\beta + k).$$

7. Definite Integrals of Special Functions II.

7.1. Associated Legendre Functions and Powers. [159]

$$\begin{split} &\int_{-1}^{1} P_{l+\alpha}^{-\alpha}(x) P_{k+\beta}^{-\beta}(x) (1-x^{2})^{-p-1} dx = 2^{-(\alpha+\beta)} \\ &\times \frac{\Gamma[\frac{1}{2}(k+1)]\Gamma(-\frac{1}{2}k-\beta)\Gamma[\frac{1}{2}(\alpha+\beta)-p]\Gamma[\frac{1}{2}(\alpha-\beta-p)]\Gamma[\frac{1}{2}(l-k)]\Gamma[\frac{1}{2}(l+k+1)+\beta]}{\Gamma(\beta+1)\Gamma(-\beta)\Gamma(\alpha+1)\Gamma(-\frac{1}{2}k)\Gamma[\frac{1}{2}(k+1)+\beta]\Gamma[\frac{1}{2}(l-k+\alpha-\beta)-p]\Gamma[\frac{1}{2}(l+k+\alpha+\beta+1)-p]} \\ &\times {}_{4}F_{3}\left(\begin{array}{c} \frac{1}{2}(\alpha-\beta)+p+1, & \frac{1}{2}(\alpha-\beta)-p, & -\frac{1}{2}(l-1), & -\frac{1}{2}l\\ \frac{1}{2}(k-l)+1, & -\frac{1}{2}(l+k-1)-\beta, & \alpha+1 \end{array}; 1\right) \end{split}$$

for $\Re[\frac{1}{2}(\alpha+\beta)-p]>0$, for k,l both even or both odd. [159]

$$(7.1) \int_{-1}^{1} P_{l}^{m}(x) P_{k}^{n}(x) (1-x^{2})^{-p-1} dx = (-1)^{(l-k+m-n)/2} 2^{-(m+n)}$$

$$\times \frac{(l+m)! \Gamma[\frac{1}{2}(m+n)-p] \Gamma[\frac{1}{2}(m-n)-p] \Gamma[\frac{1}{2}(l+k+1-m+n)]}{(l-m)! m! [\frac{1}{2}(k-l+m-n)]! \Gamma[\frac{1}{2}(l-k)-p] \Gamma[\frac{1}{2}(l+k+1)-p]}$$

$$\times {}_{4}F_{3} \left(\begin{array}{c} \frac{1}{2}(m-n)+p+1, & \frac{1}{2}(m-n)-p, & -\frac{1}{2}(l-m-1), & -\frac{1}{2}(l-m)\\ \frac{1}{2}(k-l+m-n)+1, & -\frac{1}{2}(l+k-1-m+n), & m+1 \end{array} \right) ; 1 \right)$$

for $\Re[\frac{1}{2}(m+n)-p] > 0$, for $k-n \ge l-m$. [159]

(7.2)
$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) (1 - x^{2})^{-1} dx = \frac{1}{m} \frac{(l+m)!}{(l-m)!}, \quad k \ge l \ge m > 0.$$

[159]

$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) (1 - x^{2})^{-2} dx = \frac{(l+m)!}{2(l-m)!(m-1)m(m+1)} \times \left[l(l+1) + (m-1)(m+1) + \frac{1}{2}(k-l)(m+1)(k+l+1)\right], \quad k \ge l \ge m > 1.$$

[159]

(7.3)
$$\int_{-1}^{1} P_l^m(x) P_k^m(x) = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{kl}$$

[159]

$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) (1 - x^{2}) dx =$$

$$(-1)^{(k-l)/2} \frac{(l+m)![l(l+1) + (m-1)(m+1) + \frac{1}{2}(k-l)(m+1)(k+l+1)]}{(l-m)![\frac{1}{2}(k-l) + 1]!\Gamma[\frac{1}{2}(l-k) + 2](k+l-1)(k+l+1)(k+l+3)}$$

for $k \ge l \ge m \ge 0$, zero for $k - l \ge 4$.

7.2. Associated Legendre functions, powers, and trigonometric functions.

[26]

(7.4)
$$\int_{0}^{z} P_{n}[\cos(z-t)] P_{n}^{-m}(\cos t) \frac{dt}{\sin t} = \frac{P_{n}^{-m}(\cos z)}{m}, \quad \Re m > 0.$$

(7.5)
$$\int_0^z \sin^m t P_{n-m-1}[\cos(z-t)] P_n^{-m}(\cos t) dt = \frac{\Gamma(m+1/2)}{2^{1/2}\Gamma(m+1)} \sin^{m+1/2} z P_{n-1/2}^{-m-1/2}(\cos z), \quad \Re m > -1/2.$$

$$\int_0^z \sin^{m+1} t P_{n-m-2}[\cos(z-t)] P_n^{-m}(\cos t) dt = \frac{\Gamma(m+3/2)}{2^{1/2}\Gamma(m+2)} \sin^{m+3/2} z P_{n-1/2}^{-m-1/2}(\cos z), \quad \Re m > -1.$$

$$\int_{0}^{z} \sin^{-1-k} t \sin^{k}(z-t) P_{n}^{-m}(\cos t) P_{n}^{-k}[\cos(z-t)] = \frac{2^{k} \Gamma(m-k) \Gamma(k+1/2)}{\sqrt{\pi} \Gamma(k+m+1)} \sin^{k} z P_{n}^{-m}(\cos z), \quad \Re m > \Re k > -1/2$$
(7.8)

$$\int_0^z \sin^m t \sin^{-m}(z-t) P_n^{-m}(\cos t) P_{n-1}^m[\cos(z-t)] = \frac{\sin[(m+n)z]}{(m+n)\cos m\pi}, \quad -1/2 < \Re m < 1/2.$$

(7.9)
$$\int_{0}^{z} P_{n+1}^{-m}(\cos t) \sin[n(z-t)]dt = 2^{3/2} \sin^{1/2} z \sum_{r=0}^{\infty} \frac{(-1)^{r} (m+n+2)_{2r} (3/2)_{r} \Gamma(m+r+3/2)}{r! \Gamma(m+r+1)} \times \frac{m+2r+3/2}{(m+2r+1)(m+2r+2)} P_{n-1/2}^{-(m+3/2+2r)}(\cos z).$$

[146]

$$(7.10) \int_0^{\pi} d\theta \sin^{|m|+1}\theta \exp(\pm iR\cos\theta) P_n^{|m|}(\cos\theta) = 2(\pm i)^{n+|m|} \frac{(n+|m|)!}{(n-|m|)!} \frac{j_n(R)}{R^{|m|}}.$$

[146, (23)]

(7.11)
$$\int_0^\pi d\theta \sin\theta \exp(iR\cos\alpha\cos\theta) P_n^m(\cos\theta) J_m(R\sin\alpha\sin\theta) = 2i^{n-m} P_n^m(\cos\alpha) j_n(R).$$

 $[15, \S 11.4, 13][123]$

(7.12)
$$\int_0^\infty e^{-c^2x^2} H_{2m}(ax) H_{2k}(bx) dx =$$

$$(-)^{m+k} 2^{2m+2k-1} \frac{\Gamma(m+1/2)\Gamma(k+1/2)}{\pi c^{2m+2k+1}} (c^2-a^2)^m (c^2-b^2)^k {}_2F_1(-m,-k;\frac{1}{2};\frac{a^2b^2}{(c^2-a^2)(c^2-b^2)}),$$

$$c^2 - a^2 - b^2 > 0.$$
 [15, §11.4,14]

(7.13)

$$\int_{0}^{\infty} e^{-c^{2}x^{2}} H_{2m+1}(ax) H_{2k+1}(bx) dx = (-)^{m+k} 2^{2m+2k+1} \frac{\Gamma(m+3/2)\Gamma(k+3/2)}{\Gamma(3/2)} \times \frac{ab(c^{2}-a^{2})^{m}(c^{2}-b^{2})^{k}}{c^{2m+2k+3}} {}_{2}F_{1}(-m,-k;\frac{3}{2};\frac{a^{2}b^{2}}{(c^{2}-a^{2})(c^{2}-b^{2})}.$$

(7.14)
$$\int_{-\infty}^{\infty} e^{-2x^2} \left[H_n(x) \right]^2 dx = 2^{n-1/2} \Gamma(n+1/2).$$

$$\int_{-\infty}^{\infty} e^{-(a^2+b^2)x^2} H_{2m}(ax) H_{2k}(bx) dx = (-)^{m+k} 2^{2(m+k)} \Gamma(m+k+\frac{1}{2}) \frac{a^{2k}b^{2m}}{(a^2+b^2)^{m+k+1/2}}.$$

$$\int_{-\infty}^{\infty} e^{-(a^2+b^2)x^2} H_{2m+1}(ax) H_{2k+1}(bx) dx = (-)^{m+k} 2^{2(m+k+1)} \Gamma(m+k+\frac{3}{2}) \frac{a^{2k+1}b^{2m+1}}{(a^2+b^2)^{m+k+3/2}}$$

[111

$$\int_{0}^{\infty} x^{\nu+1} e^{-\alpha x^{2}} L_{m}^{\nu-\sigma}(\alpha x^{2}) L_{n}^{\sigma}(\alpha x^{2}) J_{\nu}(xy) dx = \frac{(-1)^{m+n}}{2\alpha} \left(\frac{y}{2\alpha}\right)^{\nu} \exp\left(-\frac{y^{2}}{4\alpha}\right) L_{m}^{\sigma-m+n} \left(\frac{y^{2}}{4\alpha}\right) L_{n}^{\nu-\sigma+m-n} \left(\frac{y^{2}}{4\alpha}\right) L_{n}^{\nu-\sigma+m-n} \left(\frac{y^{2}}{4\alpha}\right) L_{n}^{\sigma-m+n} \left(\frac{y^{2}}{4\alpha}\right) L_{n}^{\nu-\sigma+m-n} \left(\frac{y^{2}}{$$

for y > 0, $\Re \alpha > 0$, $Re\nu > -1$.

$$\int_{0}^{\infty} x^{(\alpha+\beta)/2} e^{-x} L_{m}^{\alpha}(x) L_{n}^{\beta}(x) J_{\alpha+\beta}(2\sqrt{ax}) dx = (-1)^{m+n} a^{(\alpha+\beta)/2} L_{m}^{\beta-m+n}(a) L_{n}^{\alpha+m-n}(a); \quad \Re(\alpha+\beta) > -1.$$

7.3. Hypergeometric Functions. [73, p 238]

7.19

$$\frac{1}{\Gamma(2\lambda+2\nu)} \int_0^\infty dt e^{-pt} t^{2\lambda+2\nu-1} \, {}_1F_2(\nu;\lambda+\nu,\lambda+\nu+\frac{1}{2};-\frac{1}{4}a^2t^2) = \frac{1}{p^{2\lambda}} \, \frac{1}{(p^2+a^2)^{\nu}}; \quad \Re(\lambda+\nu) > 0.$$

previous formula at $\lambda = 0$ with [1, 9.1.69] gives [91, 6.623.1]

$$(7.20) \frac{1}{\Gamma(2\nu)} \int_0^\infty dt e^{-pt} t^{2\nu-1} \,_0 F_1(; \nu + \frac{1}{2}; -\frac{1}{4} a^2 t^2) = \frac{\Gamma(\nu + 1/2)}{\Gamma(2\nu)} \left(\frac{a}{2}\right)^{1/2-\nu} \int_0^\infty e^{-pt} t^{\nu-1/2} J_{\nu-1/2}(at) dt dt = \frac{1}{(p^2 + a^2)^{\nu}}; \quad \Re(\nu) > 0.$$

(7.21)

$$\int_{0}^{\infty} J_{\mu}^{2}(\omega \rho) \,_{3}F_{2}\left(\begin{array}{cc} 3/2, (\sigma + \nu)/2, (\sigma - \nu)/2 \\ 1 - \mu, 1 + \mu \end{array} \right| -4\omega^{2} \omega d\omega = -\frac{\mu \rho^{\sigma - 2} K_{\nu}(\rho)}{2^{\sigma - 1} \Gamma[(\sigma + \nu)/2] \Gamma[(\sigma - \nu)/2]}$$

for $\Re \sigma > 1 + |\Re \nu|$, $\mu = l + 1/2$ with $l \in \mathbb{N}$, $\Re(\sigma + \nu) > 0$, $\Re \rho > 0$.

(7.22)

$$\int_{0}^{\infty} J_{\mu}^{2}(\omega \rho) J_{\mu+1}(\omega \rho) \,_{3}F_{2}\left(\begin{array}{cc} 3/2, (\sigma+\nu)/2, (\sigma-\nu)/2 \\ 1-\mu, 2+\mu \end{array} \right| -4\omega^{2} \omega^{2} d\omega = -\frac{\mu(\mu+1)\rho^{\sigma-3}K_{\nu}(\rho)}{2^{\sigma-1}\Gamma[(\sigma+\nu)/2]\Gamma[(\sigma-\nu)/2]}$$

for
$$\Re \sigma > 2 + |\Re \nu|$$
, $\mu = l + 1/2$ with $l \in \mathbb{N}$, $\Re (\sigma + \nu) > 0$, $\Re \rho > 0$.

8. Special Functions

8.1. The exponential integral and related functions. [30] If

(8.1)
$$\int_0^x \frac{\sin u}{u} du = \frac{\pi}{2} - r\cos(x - \theta); \int_0^x \frac{1 - \cos u}{u} du = \gamma + \log x - r\sin(x - \theta)$$

then

(8.2)

$$r\cos\theta \sim \sum_{k>0} \frac{(-)^k (2k)!}{x^{2k+1}}; \ r\sin\theta \sim \sum_{k>1} \frac{(-)^{k+1} (2k-1)!}{x^{2k}}; \ r \sim \sum_{k>1} \frac{(-)^{k+1} (2k-1)!}{kx^{2k}}$$

for $x \to \infty$.

8.2. The error function and Fresnel integrals. [34]

(8.3)
$$2\sqrt{\pi}e^{b^2}\operatorname{erf}(b) = \sum_{j=0}^{\infty} \frac{j!b^{2j+1}}{(2j+1)!2^{2j+2}}.$$

8.3. The gamma function.

(8.4)
$$\frac{1}{a+r} = \frac{1}{a} \frac{(a)_r}{(a+1)_r}.$$

[174, 2.2.3.1]

(8.5)
$$(a)_{m-r} = \frac{(-1)^r (a)_m}{(1-a-m)_r}.$$

[174, (2.4.5.2.)][64, 166]

$$(8.6) (a)_{2r} = (a/2)_r (\frac{a+1}{2})_r 2^{2r}; (a)_{qr} = (a/q)_r (\frac{a+1}{q})_r \cdots (\frac{a+q-1}{q})_r q^{qr}$$

(8.7)
$$\Gamma(n+1-k) = \frac{(-1)^k \Gamma(n+1)}{(-n)_k}.$$

[174, (I.4)]

(8.8)
$$(a+kn)_n = \frac{(a)_{(k+1)n}}{(a)_{kn}}.$$

[174, (I.6)]

(8.9)
$$(a - kn)_n = \frac{(-1)^n (1 - a)_{kn}}{(1 - a)_{(k-1)n}}.$$

[174, (I.9)][166]

(8.10)
$$(a)_{N-n} = \frac{(-1)^n (a)_N}{(1-a-N)_n}.$$

[174, (I.11)]

(8.11)
$$(a+kn)_{N-n} = \frac{(a)_N (a+N)_{(k-1)n}}{(a)_{kn}}.$$

[174, (I.13)]

(8.12)
$$(a-kn)_{N-n} = \frac{(-1)^n (a)_N (1-a)_{kn}}{(1-a-N)_{(k+1)n}}.$$

$$[70, (\S 1.2)]$$

(8.13)
$$\frac{\Gamma(n+\frac{1}{2}+z)\Gamma(n+\frac{1}{2}-z)}{\Gamma^2(n+\frac{1}{2})} = \frac{1}{\cos(\pi z)} \prod_{l=1}^n \left[1 - \frac{4z^2}{(2l-1)^2}\right],$$

for n = 1, 2, 3, ...

[194][175, A073006]

(8.14)
$$\Gamma(2/3) = \frac{2\pi}{\sqrt{3}} \frac{1}{\Gamma(1/3)}.$$

[194][175, A068465]

(8.15)
$$\Gamma(3/4) = \pi \sqrt{2} \frac{1}{\Gamma(1/4)}.$$

[194][175, A175379]

(8.16)
$$\Gamma(1/6) = \frac{\sqrt{3}}{\sqrt{\pi}2^{1/3}}\Gamma^2(1/3).$$

[194]

(8.17)
$$\Gamma(3/5) = \frac{\pi\sqrt{2}\sqrt{\phi^*}}{\sqrt{5}} \frac{1}{\Gamma(2/5)},$$

where $\phi^* = 5 - \sqrt{5}$. [194][175, A203145]

(8.18)
$$\Gamma(5/6) = \frac{\pi^{3/2} 2^{4/3}}{\sqrt{3}} \frac{1}{\Gamma^2(1/3)}.$$

[194]

(8.19)
$$\Gamma(4/5) = \frac{\pi\sqrt{2}\sqrt{\phi}}{\sqrt{5}} \frac{1}{\Gamma(1/5)},$$

where $\phi = 5 + \sqrt{5}$. [194][175, A203143]

(8.20)
$$\Gamma(3/8) = \sqrt{\pi} \sqrt{\sqrt{2-1}} \frac{\Gamma(1/8)}{\Gamma(1/4)}.$$

[194][175, A203144]

(8.21)
$$\Gamma(5/8) = \sqrt{\pi} 2^{3/4} \frac{\Gamma(1/4)}{\Gamma(1/8)}.$$

[194][175, A203146]

(8.22)
$$\Gamma(7/8) = \pi 2^{3/4} \sqrt{\sqrt{2} + 1} \frac{1}{\Gamma(1/8)}.$$

[194]

(8.23)
$$\Gamma(1/10) = \frac{\sqrt{\phi}}{\sqrt{\pi}2^{7/10}}\Gamma(1/5)\Gamma(2/5),$$

where $\phi = 5 + \sqrt{5}$. [194]

(8.24)
$$\Gamma(3/10) = \frac{\sqrt{\pi}\phi^*}{2^{3/5}\sqrt{5}} \frac{\Gamma(1/5)}{\Gamma(2/5)},$$

where
$$\phi^* = 5 - \sqrt{5}$$
. [194]

(8.25)
$$\Gamma(7/10) = \sqrt{\pi} 2^{3/5} \frac{\Gamma(2/5)}{\Gamma(1/5)}.$$

[194]

(8.26)
$$\Gamma(9/10) = \frac{\pi^{3/2} 2^{7/10} \sqrt{\phi}}{\sqrt{5}} \frac{1}{\Gamma(2/5)\Gamma(1/5)}.$$

[194]

(8.27)
$$\Gamma(1/12) = \frac{3^{3/8}\sqrt{\sqrt{3}+1}}{\sqrt{\pi}2^{1/4}}\Gamma(1/3)\Gamma(1/4).$$

[194]

(8.28)
$$\Gamma(5/12) = \frac{\sqrt{\pi}2^{1/4}\sqrt{\sqrt{3}-1}}{3^{1/8}} \frac{\Gamma(1/4)}{\Gamma(1/3)}.$$

[164]

(8.29)

$$(N+\frac{1}{2},K)(N+\frac{1}{2},L) = \sum_{j=\max(K,L)}^{\min(N,K+L)} {2j-K-L \choose j-K} (j+\frac{1}{2},K+L-j)(N+\frac{1}{2},j),$$

where $(n + \frac{1}{2}, j) = \frac{(n+j)!}{j!(n-j)!}$ is Hankel's symbol.

(8.30)

$$(-)^{N} \frac{(N + \frac{1}{2}, K)(N + \frac{1}{2}, L)}{\binom{K+L}{K}} = \sum_{j=\max(K, L)}^{\min(N, K+L)} (-)^{j} \binom{2j - K - L}{j - K} \frac{(j + 1/2, K + L - j)(N + 1/2, j)}{\binom{K+L}{j}},$$

where $(n + \frac{1}{2}, j) = \frac{(n+j)!}{j!(n-j)!}$ is Hankel's symbol. [104]

(8.31)
$$\log \frac{\Gamma(z+1/2)}{\sqrt{z}\Gamma(z)} = -\sum_{r=1}^{k} \frac{(1-2^{-2r})B_{2r}}{r(2r-1)z^{2r-1}} + O(z^{-2k+1/2}).$$

[104]

(8.32)
$$\log \frac{\Gamma(z+3/4)}{\sqrt{z}\Gamma(z+1/4)} = -\sum_{r=1}^{k} \frac{E_{2r}}{4r(4z)^{2r}} + O(z^{-2k+1/2}).$$

[104]

(8.33)
$$\frac{1}{z} \left[\frac{\Gamma(z+3/4)}{\Gamma(z+1/4)} \right]^2 = 1 + \frac{2u}{1+} \frac{9u}{1+} \frac{25u}{1+} \frac{49u}{1+} \cdots$$

where $u = 1/(64z^2)$.

8.4. The psi function ψ . [6]

(8.34)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} [\psi(k+1) + \gamma] = G - \frac{\pi}{2} \log 2.$$

[6]

(8.35)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} [\psi(k+3/2) + \gamma] = G - \frac{\pi}{4} \log 2.$$

[6]

(8.36)
$$\frac{(-1)^n}{q^n(n-1)!} \sum_{k=1}^{q-1} e^{2\pi i k p/q} \psi^{n-1}(k/q) = \operatorname{Li}_n(e^{2\pi i p/q}) - \frac{\zeta(n)}{q^n}.$$

[6]

(8.37)
$$\frac{1}{4} \sum_{k=0}^{\infty} \frac{2^k k!^2}{(2k+1)!} [\psi(k+3/2) + \gamma] = G - \frac{\pi}{4} \log 2.$$

[6]

(8.38)
$$q \sum_{k=0}^{q-1} \operatorname{Li}_{2}(e^{2\pi i k/q}t) = \operatorname{Li}_{2}(t^{q}).$$

8.5. Integral representations of the functions J_{ν} and N_{ν} . [185, La. 4.13]

(8.39)
$$J_{\mu+\nu+1}(t) = \frac{t^{\nu+1}}{2^{\nu}\Gamma(\nu+1)} \int_0^1 J_{\mu}(ts)s^{\mu+1} (1-s^2)^{\nu} ds.$$

[71, 7.2.7][118]

(8.40)

$$\Gamma(\nu+1)\Gamma(\mu+1)J_{\nu}(z)J_{\mu}(z) = (z/2)^{\nu+\mu} {}_{2}F_{3}(\frac{1+\nu+\mu}{2}, 1+\frac{\nu+\mu}{2}; 1+\nu, 1+\mu, 1+\nu+\mu; -z^{2}).$$

[24]

(8.41)
$$\frac{z}{2}J_{\mu}(z\cos\phi\cos\Phi)J_{\nu}(z\sin\phi\sin\Phi) = (\cos\phi\cos\Phi)^{\mu}(\sin\phi\sin\Phi)^{\nu}$$

$$\times \sum_{n=0}^{\infty} (-1)^{n}(\mu+\nu+2n+1)J_{\mu+\nu+2n+1}(z)\frac{\Gamma(\mu+\nu+n+1)\Gamma(\nu+n+1)}{n!\Gamma(\mu+n+1)\Gamma^{2}(\nu+1)}$$

$$\times F(-n,\mu+\nu+n+1;\nu+1;\sin^{2}\phi)F(-n,\mu+\nu+n+1;\nu+1;\sin^{2}\Phi),$$

where ν and μ are not negative integers. [63]

.42) $J_{\mu}(Xz)J_{\nu}(xz) = \frac{X^{\mu}x^{\nu}}{\pi} \int_{-\pi/2}^{\pi/2} e^{i(\mu-\nu)\theta} (\lambda_1/\lambda_2)^{\mu+\nu} J_{\mu+\nu}(z\lambda_1\lambda_2) d\theta$

where
$$\lambda_1 = +\sqrt{(e^{i\theta} + e^{-i\theta})}, \ \lambda_2 = (X^2 e^{i\theta} + x^2 e^{-i\theta})^{1/2}.$$

[71, p 99]

(8.43)
$$(z/2)^{\gamma - \mu - \nu} J_{\mu}(\alpha z) J_{\nu}(\beta z) = \frac{\alpha^{\mu} \beta^{\nu}}{\Gamma(\mu + 1) \Gamma(\nu + 1)} \sum_{m=0}^{\infty} \frac{(\gamma + 2m) \Gamma(\gamma + m)}{m!}$$
$$\times F_4(-m, \gamma + m; \mu + 1, \nu + 1; \alpha^2, \beta^2) J_{\gamma + 2m}(z)$$

$$= \frac{\alpha^{\mu}\beta^{\nu}}{\Gamma(\nu+1)} \sum_{m=0}^{\infty} (\gamma+2m) J_{\gamma+2m}(z) \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma(\gamma+m+n)\alpha^{2n}}{n!(m-n)!\Gamma^2(n+\mu+1)} {}_{2}F_{1}(-n,-n-\mu;\nu+1;\frac{\beta^2}{\alpha^2}).$$

Application of [81, (3.5)] to [1, (9.1.14)]

$$(8.45) \quad J_{\rho}(cz)J_{\nu}(z)J_{\mu}(z) = \frac{c^{\rho}(z/2)^{\nu+\mu+\rho}}{\Gamma(\rho+1)\Gamma(\nu+1)\Gamma(\mu+1)} \sum_{n\geq 0} \frac{(-c^{2}z^{2}/4)^{n}}{(\rho+1)_{n}n!} \times {}_{4}F_{3}\left(-n, -n-\rho, 1 + \frac{\nu+\mu}{2}, \frac{1+\nu+\mu}{2}; \nu+1, \mu+1, \nu+\mu+1; \frac{4}{c^{2}}\right).$$

[31]

(8.46)
$$x^{-\alpha}I_{\alpha}(2\sqrt{x}) = \sum_{r=0}^{\infty} \frac{x^r}{r!\Gamma(r+\alpha+1)}$$

[31][175, A002426]

$$(8.47) \quad \exp(t)I_0(2t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} c_n; \quad c_n \equiv \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!}{(k!)^2 (n-2k)!} = i^n \sqrt{3^n} P_n \left(-\frac{i}{\sqrt{3}} \right).$$

[31]

(8.48)

$$\exp(yt) \exp(xt^2)^{-\alpha/2} I_{\alpha}(2t\sqrt{x}) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \Pi_n^{\alpha}(x,y); \quad \Pi_n^{\alpha}(x,y) \equiv n! \sum_{k=0}^{[n/2]} \frac{x^k y^{n-2k}}{(n-2k)! k! \Gamma(k+\alpha+1)}.$$

(8.49)
$$\frac{\exp(t)}{t}I_1(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!}\Pi_n^1(1,1).$$

[146]

(8.50)
$$j_s(R) = \frac{R^s}{2^{s+1}s!} \int_0^{\pi} d\theta \sin\theta \cos(R\cos\theta) (\sin\theta)^{2s}.$$

[175, A122848

(8.51)
$$\frac{d^s}{dt^s}t^{\nu}Z_{\nu}(t) = \sum_{l=\lfloor (s+1)/2 \rfloor}^s \alpha_{l,s}t^{\nu-(s-l)}Z_{\nu-l}(t).$$

(8.52)
$$\frac{d^s}{dt^s} t^{\nu} K_{\nu}(t) = (-)^s \sum_{l=\lfloor (s+1)/2 \rfloor}^s \alpha_{l,s} t^{\nu-(s-l)} K_{\nu-l}(t)$$

with Bessel polynomial coefficients [97]

$$\alpha_{l,s} = \frac{s!}{(s-l)!(2l-s)!2^{s-l}}.$$

(8.53)

$$\sum_{k=1}^{n} \frac{2k-1}{\sqrt{\pi}} K_{k-1/2}(x) K_{k-1/2}(y) = \sum_{k=1}^{n} \frac{n(n-1+k)!}{k!(n-k)!} \left(\frac{x+y}{2xy}\right)^{k-1/2} K_{k-1/2}(x+y).$$
[164]

$$(8.54) \quad \frac{1}{\sqrt{\pi}} K_{n+1/2}(x) K_{n+1/2}(y) = \sum_{\mu=0}^{n} \frac{(n+\mu)!}{\mu! (n-\mu)!} \left(\frac{x+y}{2xy}\right)^{\mu+1/2} K_{k+1/2}(x+y).$$

[87]

(8.55)
$$\sum_{n=1}^{\infty} (-1)^n \frac{J_{2m}(n\pi)}{a^2 - n^2} = \frac{\pi J_{2m}(a\pi)}{2a\sin a\pi}.$$

[87]

(8.56)
$$\sum_{n=1}^{\infty} (-1)^n \frac{nJ_{2m-1}(n\pi)}{a^2 - n^2} = \frac{\pi J_{2m-1}(a\pi)}{2\sin a\pi}.$$

[168]

(8.57)
$$z^{m}[K_{\nu+m}(z) - K_{\nu-m}(z)] = \sum_{j=0}^{m-1} (-)^{m-j-1} b_{m}(j) z^{j} K_{\nu+j}(z),$$

(8.58)
$$z^{m}[I_{\nu-m}(z) - I_{\nu+m}(z)] = \sum_{j=0}^{m-1} b_{m}(j)z^{j}I_{\nu+j}(z),$$

(8.59)
$$z^{m}[J_{\nu-m}(z) - (-1)^{m}I_{\nu-m}(z)] = \sum_{j=0}^{m-1} b_{m}(j)(-z)^{j}J_{\nu+j}(z),$$

with m = 1, 2, 3, and

$$b_m(j) = 2^{m-j} \binom{m}{j} \nu(\nu - 1) \cdots (\nu + j - m + 1) = \Gamma(\nu + 1) \frac{2^{m-j} \binom{m}{j}}{\Gamma(\nu + j - m + 1)}.$$
[71, §7.10.1]

$$(8.60) f(z) = \frac{1}{z^{\nu}} \sum_{n=0}^{\infty} a_n J_{\nu+n}(z); a_n = (\nu+n) 2^{\nu+n} \sum_{s=0}^{\lfloor n/2 \rfloor} \frac{\Gamma(\nu+n-s)}{s! 2^{2s}} b_{n-2s},$$

where $f(z) = \sum_{n=0}^{\infty} b_n z^n$. [71, §7.10.1]

(8.61)
$$f(z) = \frac{1}{z^{\nu}} \sum_{n=0}^{\infty} a_n z^n J_{\nu+n}(z); \quad a_n = \sum_{s=0}^{n} \frac{\Gamma(\nu+s+1)}{(n-s)!} 2^{2s-n+\nu} b_s,$$

(8.62)
$$\Gamma(\nu + n + 1)b_n = \sum_{s=0}^{\infty} (-1)^s 2^{-\nu - n - s} \frac{a_{n-s}}{s!}.$$

where $f(z) = \sum_{l=0}^{\infty} b_l z^{2l}$.

$$\begin{vmatrix} [25] \\ [8.63] \\ [z^{2n}] & \frac{1}{z^{2\nu}} \sum_{r=0}^{\infty} A_r J_{\nu+r}^2(z) = \frac{(-)^n \Gamma(\nu+n+1/2)}{n! \sqrt{\pi} \Gamma(2\nu+n+1) \Gamma(\nu+n+1)} \sum_{r=0}^n \frac{A_r(-n)_r}{(2\nu+n+1)_r}, \\ [25] & (8.64) \\ \frac{1}{z^{2\nu}} \sum_{r=0}^{\infty} \frac{(2\nu)_r(\nu+1)_r(a_3)_r(a_4)_r}{r!(\nu)_r(1+2\nu-a_3)_r(1+2\nu-a_4)_r} J_{\nu+r}^2(z) = \frac{1}{4^\nu \Gamma^2(1+\nu)} {}_2F_3\left(\begin{array}{c} \nu+1/2,1+2\nu-a_3-a_4\\ \nu+1,1+2\nu-a_3,1+2\nu-a_4 \end{array} \right| -z^2\right) \\ [25] & (8.65) & z^\nu J_\nu(2z) = \frac{2\sqrt{\pi}}{\Gamma(\nu+1/2)} \sum_{r=0}^{\infty} (-)^r (\nu+r) \frac{\Gamma(2\nu+r)}{r!} J_{\nu+r}^2(z). \\ [25] & (8.66) & z^{-1/2} J_{2\nu+1/2}(2z) = -\frac{\Gamma(\nu+1)}{\Gamma(\nu+1/2)} \sum_{r=0}^{\infty} (\nu+r) \frac{\Gamma(2\nu+r) \Gamma(r-1/2)}{r! \Gamma(2\nu+r+3/2)} J_{\nu+r}^2(z). \\ [25] & (8.67) & (25) \\ [25] & (8.68) & (25) \\ [25] & (25) \\ [25] & (25) \\ [25] & (25) \\ [25] & (25) \\ [25] & (368) & ($$

(8.71)
$$e^{ik\cos\varphi} = 2^{\nu}\Gamma(\nu)\sum_{m=0}^{\infty} (\nu+m)i^{m}J_{\nu+m}(k\rho)(k\rho)^{-\nu}C_{m}^{(\nu)}(\cos\varphi),$$

$$\nu \neq 0, -1, -2, -3, \dots$$

[82]

(8.72)

$$S_{\mu,\nu}(z) \sim z^{\mu-1} \sum_{m=0}^{\infty} (-1)^m \left(\frac{1-\mu+\nu}{2}\right)_m \left(\frac{1-\mu-\nu}{2}\right)_m (z/2)^{-2m}, |z| \to \infty, |\arg z| < \pi.$$

The series terminates and is equal to $S_{\mu,\nu}(z)$ when $\mu \pm \nu$ is a positive odd integer.

[158]

(8.73)

$$\left(\frac{\sin\beta}{\sin\alpha}\right)^{m+n} P_{m+n}^m(\cos\alpha) = \sum_{r=0}^n \binom{2m+n}{r} \left(\frac{\sin(\beta-\alpha)}{\sin\alpha}\right)^r P_{n+m-r}^m(\cos\beta).$$

8.6. Orthogonal Polynomials. [197]

(8.74)

$$L_m^{(\alpha)}L_n^{(\alpha)} = \sum_{M=|m-n|}^{m+n} \frac{L_M^{(\alpha)}(z)(-)^{m+n-M}2^{m+n-M}M!}{(M-m)!(M-n)!(m+n-M)!} \, {}_{3}F_{2}\left(\begin{array}{c} \alpha+M+1, \frac{M-m-n}{2}, \frac{(M-m-n+1)}{2} \\ M-m+1, M-n+1 \end{array} \right) \, .$$

[54]

(8.75)
$$\sum_{n \ge 0} t^n L_n^{a+bn}(x) = \frac{(1+v)^{a+1}}{1-bv} \exp(-xv),$$

where $v = t(1+v)^{b+1}$, v(0) = 0. [54]

(8.76)
$$\sum_{n\geq 0} t^n L_n^{v+bn}(x(1+an)) = \frac{(1-z)^{1-v}}{1-z(b+2-ax)+z^2(b+1)} e^{xz/(z-1)},$$

where $t = z(1-z)^b \exp[axz/(1-z)]$ and |t| < 1.

[54]

(8.77)

$$\sum_{n\geq 0} \frac{t^n}{v+bn+n} L_n^{v+bn}(x(1+an)) = \frac{\exp[xz/(z-1)]}{v(1-z)^v} {}_1F_1\left(\begin{array}{c} 1\\ \frac{v+1+b}{1+b} \end{array} \mid \frac{xz(1+b-av)}{(1-z)(1+b)}\right),$$

where $t = z(1-z)^b \exp[axz/(1-z)]$ and |t| < 1. [54]

(8.78)
$$\sum_{n\geq 0} \frac{t^n}{1+an} L_n^{v+avn-n}(x(1+an)) = \frac{1}{(1-z)^v} e^{xz/(z-1)},$$

where $t = z(1-z)^{av-1} \exp[axz/(1-z)]$ and |t| < 1. [54]

(8.79)
$$\sum_{n\geq 0} \frac{t^n}{1+an} L_n^{v+bn}(x(1+an)) = \frac{\exp[xz/(z-1)]}{(1-z)^v} {}_2F_1\left(\begin{array}{c} 1, \frac{1+b-av}{\frac{a+q}{a}} & |z\end{array}\right),$$

where $t = z(1-z)^b \exp[axz/(1-z)]$ and |t| < 1.

$$\sum_{n\geq 0}^{\infty} \frac{t^n}{1+n} L_n^{v+bn}(x(1+an)) = \frac{\exp[x(1-a-z)/(1-z)]}{(1-z)^v z(v-b)} \Big\{ {}_1F_1\left(\begin{array}{c} v-b \\ v-b+1 \end{array} \mid \frac{x(a-1)}{1-z}\right) - (1-z)^{v-b} {}_1F_1\left(\begin{array}{c} v-b \\ v-b+1 \end{array} \mid x(a-1)\right) \Big\},$$

where $t = z(1-z)^b \exp[axz/(1-z)]$ and |t| < 1. [54]

(8.81)
$$\sum_{n>0} \frac{(1+bn)^{n/2}}{n!} t^n H_n[x(1+an)/(1+bn)^{1/2}] = \frac{e^{-z^2-2xz}}{1+2bz^2+2axz}.$$

where $t = (-z)e^{bz^2 + 2axz}$ and $|2azx \exp[bz^2 + 2axz + 1]| < 1$. [54]

8 82)

$$\sum_{n=0}^{\infty} \frac{(1+bn)^{n/2-1}}{n!} t^n H_n[x(1+an)/(1+bn)^{1/2}] = e^{-z^2 - 2xz} {}_1F_1 \left(\begin{array}{c} 1 \\ 1+1/b \end{array} | 2xz(b-a)/b \right)$$

where $t = (-z)e^{bz^2 + 2axz}$ and $|2azx \exp[bz^2 + 2axz + 1]| < 1$. [54]

(8.83)
$$\sum_{n>0} \frac{(1+an)^{n/2-1}}{n!} t^n H_n[x(1+an)] = e^{-z^2 - 2xz}$$

where $t = (-z)e^{az^2 + 2axz}$ and $|2azx \exp[az^2 + 2axz + 1]| < 1$.

[83

(8.84)

$$\int_0^1 f(t)t^r dt = c_r, \ (r = 0, 1, \dots, n) \leadsto f(t) = \sum_{i=0}^n (2i+1) \sum_{r=0}^i \left\{ (-)^r \frac{(i+r)!}{(i-r)!} \frac{1}{(r!)^2} c_r \right\} P_i(1-2t).$$

9. Special Functions II.

9.1. Hypergeometric Functions. [29]

$${}_{2}F_{1}(a,b;c;z) = (a)_{m}(b)_{m}z^{m}{}_{2}F_{1}(a+m,b+m;1+m;z).$$

[29]

$$(9.2) {}_{2}F_{1}(a,b;c;z) = (1-z)^{c-a-b} {}_{2}F_{1}(c-a,c-b;c;z).$$

[29]

$$(9.3) 2F1(a,b;c;z) = (a)m(b)mzm(1-z)1-a-b-m 2F1(1-b,1-a;1+m;z).$$

[29]

$${}_{2}F_{1}(a,b;c;z) = (1-z)^{-a} {}_{2}F_{1}(a,c-b;c;z/(z-1)).$$

[145]

(9.5)

$$\frac{(z/2)^c}{\Gamma(1+c)} \,_2F_1(a,b;c+1;-z^2/(4ab)) = \sum_{\nu \ge 0} \frac{1}{\nu!} \,_3F_0(-\nu,a,b;1/(ab))(z/2)^{\nu} J_{c+\nu}(z).$$

[29]

$$(9.6) \quad {}_{2}F_{1}(a,b;c;z) = (1-z)^{-a} \left(\frac{z}{z-1}\right)^{1-c} \left\{\frac{\Gamma(|m|)}{\Gamma(a+\bar{m})\Gamma(c-a-\underline{m})} \left(\frac{1}{1-z}\right)^{\underline{m}} \right.$$

$$\sum_{n=0}^{|m|-1} \frac{(1-a-\bar{m})_{n}(1-c+a+\underline{m})_{n}}{(1-|m|)_{n}\Gamma(1+n)} \left(\frac{1}{1-z}\right)^{n} - \frac{(-)^{m}}{\Gamma(a+\underline{m})\Gamma(c-a-\bar{m})} \left(\frac{1}{1-z}\right)^{\bar{m}}$$

$$\sum_{n=0}^{\infty} \frac{(1-a-\underline{m})_{n}(1-c+a+\bar{m})_{n}}{\Gamma(1+|m|+n)\Gamma(1+n)} \left(\frac{1}{1-z}\right)^{n}$$

$$[-\ln(1-z) - \pi \cot \pi (c-a) - \pi \cot \pi a + \psi (1-a-\underline{m}+n) + \psi (1-c+a+\bar{m}+n) - \psi (1+|m|+n) - \psi (1+n)]\bigg\},$$

where $\bar{m} \equiv \max(0, m)$, $\underline{m} \equiv \min(0, m)$.

(9.7)

$$_{1}F_{1}(1/2;9/2;z) = -\frac{525 + 280z + 140z^{2}}{128z^{3}}e^{z} + \frac{525 + 630z + 420z^{2} + 280z^{3}}{256z^{7/2}}\sqrt{\pi}\operatorname{erfi}(\sqrt{z}).$$

[173]

(9.8)

$${}_{1}F_{1}(\frac{1}{2} + \frac{1}{2}a - b, 1 + a - b; x) = e^{x/2} \sum_{r=0}^{\infty} \frac{(a)_{r}(b)_{r}(-x/4)^{r}}{r!(a/2)_{r}(1 + a - b)_{r}} {}_{0}F_{1}(; \frac{1}{2}a + r + 1; (x/4)^{2}).$$

[174, 1.7.7]

(9.9)
$${}_{2}F_{1}(a,-m;c,1) = \frac{(c-a)_{m}}{(c)_{m}}.$$

[47]

$$(9.10) 2F1(a, -n; c; p) = \frac{(a)_n}{(c)_n} (-p)^n {}_2F_1(1 - c - n, -n; 1 - a - n; 1/p).$$

[193]

$$(9.11) _2F_1(a+n,b;a-b;-1) = P(n) \frac{\Gamma(a-b)\Gamma(\frac{a+1}{2})}{\Gamma(a)\Gamma(\frac{a+1}{2}-b)} + Q(n) \frac{\Gamma(a-b)\Gamma(\frac{a}{2})}{\Gamma(a)\Gamma(\frac{a}{2}-b)}$$

where

$$P(n) = \frac{1}{2^{n+1}} {}_{3}F_{2}(-n/2, -(n+1)/2, a/2 - b; 1/2, a/2; 1);$$

$$Q(n) = \frac{n+1}{2^{n+1}} {}_{3}F_{2}(-(n-1)/2, -n/2, (a+1)/2 - b; 3/2, (a+1)/2; 1).$$

[13]

(9.12)

$${}_{2}F_{1}(-2n,b;-2n+2r-b;-1) = \frac{(1/2)_{n}(b+1-r)_{n}}{(b/2+1-r)_{n}(b/2+1/2-r)_{n}} \sum_{i=0}^{r-1} \frac{2^{2i}i!\binom{r+i-1}{2i}}{(b-r+1)_{i}} \binom{n}{i}.$$

[193]

$${}_2F_1(-a,1/2;2a+3/2+n;1/4) = \frac{2^{n+3/2}}{3^{n+1}} \frac{\Gamma(a+5/4+n/2)\Gamma(a+3/4+n/2)\Gamma(a+1/2)}{\Gamma(a+7/6+n/3)\Gamma(a+5/6+n/3)\Gamma(a+1/2+n/3)} K(n) \\ - (-3)^{n-2} 2^{3/2} \frac{\Gamma(a+5/4+n/2)\Gamma(a+3/4+n/2)\Gamma(a+1)}{\Gamma(a+3/2)\Gamma(a+1/2+n/2)\Gamma(a+1+n/2)} L(n)$$

where K(n) and L(n) are defined in the reference.

(9.14)

$$\pi_2 F_1(1/2, 1/2; 1; 1-x) = \log \frac{16}{x} {}_2F_1(1/2, 1/2; 1; x) - 4 \sum_{k \ge 1} \frac{(1/2)_k^2}{(k!)^2} \sum_{i=1}^k \frac{x^k}{(2j-1)(2j)}.$$

(9.15)

$$_{2}F_{1}(\frac{1}{2},\frac{1}{2};1;\frac{1+x}{2}) = \frac{\sqrt{\pi}}{\Gamma^{2}(3/4)} {}_{2}F_{1}(1/4,1/4;1/2;x^{2}) + \frac{\Gamma^{2}(3/4)}{\pi^{3/2}} {}_{2}F_{1}(3/4,3/4;3/2;x^{2}).$$

[30] (9.16)

$${}_{2}F_{1}(\frac{1}{2},\frac{1}{2};1;\frac{1}{2}+\frac{x}{1+x^{2}}) = \frac{\sqrt{\pi}}{\Gamma^{2}(3/4)}\sqrt{1+x^{2}}{}_{2}F_{1}(1/4,1/2;3/4;x^{4}) + \frac{\Gamma^{2}(3/4)}{\pi^{3/2}}x(1+x^{2})^{3/2}{}_{2}F_{1}(1/2,3/4;5/4;x^{4}).$$

[30]

(9.17)
$${}_{2}F_{1}(n,-n;1/2;x^{2}) = \cos(2n\sin^{-1}x).$$

[30]

$$(9.18) 2nx_2F_1(\frac{1}{2}+n,\frac{1}{2}-n;3/2;x^2) = \sin(2n\sin^{-1}x).$$

[30]

$$(9.19) 2F1(\frac{1}{2} + n, \frac{1}{2} - n; 1/2; x^2) = (1 - x^2)^{-1/2}\cos(2n\sin^{-1}x).$$

[163]

(9.20)
$${}_{2}F_{1}(-3/2,-1/2;1/2,z) = \frac{2+z}{2}\sqrt{1-z} + \frac{3\sqrt{z}}{2}\arcsin\sqrt{z}.$$

[163]

(9.21)
$$\frac{z^{\mu+1}}{2^{\mu}\sqrt{\pi}\Gamma(\frac{3}{2}+\mu)} {}_{2}F_{1}(1,3/2;3/2+\mu,z^{2}/4) = L_{\mu}(z).$$

[163]

$$(9.22) _2F_1(-3/2, 1/2; 3/2, z) = \frac{5-2z}{8}\sqrt{1-z} + \frac{3}{8\sqrt{z}}\arcsin\sqrt{z}.$$

[163]

$$(9.23) _2F_1(-3/2, -1/2; 3/2, z) = \frac{13+2z}{16}\sqrt{1-z} + \frac{3+12z}{16\sqrt{z}}\arcsin\sqrt{z}.$$

[163] (9.24)
$${}_1F_2(-3/2;-1/2,1/2;z) = (1+2z)\cosh(2\sqrt{z}) + \sqrt{z}\sinh(2\sqrt{z}) - 4z^{3/2}\operatorname{Shi}(2\sqrt{z}).$$
 [163]

$$(9.25) \quad {}_{1}F_{2}(-3/2; -1/2, 2; z) = -\frac{4 + 24z - 28z^{2}}{15z\pi}K(\sqrt{z}) + \frac{4 + 56z + 4z^{2}}{15z\pi}E(\sqrt{z}).$$
[195]

$$(9.26) {}_{2}F_{1}\left(1/4,-1/12;2/3;\frac{x(4+x)^{3}}{4(2x-1)^{3}}\right) = (1-2x)^{-1/4}..$$

[195]

$$(9.27) {}_{2}F_{1}\left(5/4, -1/12; 5/3; \frac{x(4+x)^{3}}{4(2x-1)^{3}}\right) = \frac{1+x}{(1+\frac{1}{4}x)^{2}}(1-2x)^{-1/4}.$$

[195]

$$(9.28) _2F_1\left(1/4,7/12;4/3;\frac{x(4+x)^3}{4(2x-1)^3}\right) = \frac{1}{1+\frac{1}{4}x}(1-2x)^{3/4}.$$

[195]

$$(9.29) {}_{2}F_{1}\left(1/4, -5/12; 1/3; \frac{x(4+x)^{3}}{4(2x-1)^{3}}\right) = (1+\frac{5}{2}x)(1-2x)^{-5/4}.$$

[195]

(9.30)
$${}_{2}F_{1}\left(1/2,-1/6;2/3;\frac{x(2+x)^{3}}{(2x+1)^{3}}\right) = (1+2x)^{-1/2}.$$

[195]

$$(9.31) 2F1\left(1/2,5/6;2/3;\frac{x(2+x)^3}{(2x+1)^3}\right) = \frac{1}{(1-x)^2}(1+2x)^{3/2}.$$

[195]

$$(9.32) {}_{2}F_{1}\left(1/6,5/6;4/3;\frac{x(2+x)^{3}}{(2x+1)^{3}}\right) = \frac{1}{1+\frac{1}{2}x}(1+2x)^{1/2}(1+x)^{1/3}.$$

[195]

$$(9.33) 2F1\left(1/6, -1/6; 1/3; \frac{x(2+x)^3}{(2x+1)^3}\right) = (1+2x)^{-1/2}(1+x)^{1/3}.$$

[195]

$$(9.34) {}_{2}F_{1}\left(7/24, -1/24; 3/4; \frac{108x(x-1)^{4}}{(x^{2}+14x+1)^{3}}\right) = (1+14x+x^{2})^{-1/8}.$$

[195]

$$(9.35) {}_{2}F_{1}\left(7/24, 23/24; 7/4; \frac{108x(x-1)^{4}}{(x^{2}+14x+1)^{3}}\right) = \frac{1+2x-\frac{1}{11}x^{2}}{(1-x)^{2}}(1+14x+x^{2})^{7/8}.$$
[195]

$$(9.36) {}_{2}F_{1}\left(5/24, 13/24; 5/4; \frac{108x(x-1)^{4}}{(x^{2}+14x+1)^{3}}\right) = \frac{1}{1-x}(1+14x+x^{2})^{5/8}.$$

$$(9.37) _2F_1\left(5/24, -11/24; 1/4; \frac{108x(x-1)^4}{(x^2+14x+1)^3}\right) = \frac{1-22x-11x^2}{(1+14x+x^2)^{11/8}}$$
[195]

$$(9.38) \quad {}_{2}F_{1}\left(19/60,-1/60;4/5;\varphi_{1}(x)\right) = (1-228x+494x^{2}+228x^{3}+x^{4})^{-1/20}.$$

(9.39)

$$_{2}F_{1}\left(19/60,59/60;4/5;\varphi_{1}(x)\right) = \frac{(1+66x-11x^{2})(1-228x+494x^{2}+228x^{3}+x^{4})^{19/20}}{(1+x^{2})(1+522x-10006x^{2}-522x^{3}+x^{4})}.$$

$$(9.40) \quad {}_{2}F_{1}\left(11/60, 31/60; 6/5; \varphi_{1}(x)\right) = \frac{\left(1 - 228x + 494x^{2} + 228x^{3} + x^{4}\right)^{11/20}}{1 + 11x - x^{2}}.$$

$$(9.41) \quad {}_{2}F_{1}\left(11/60, -29/60; 1/5; \varphi_{1}(x)\right) = \frac{1 + 435x - 6670x^{2} - 3335x^{4} - 87x^{5}}{(1 - 228x + 494x^{2} + 228x^{3} + x^{4})^{29/20}}$$

$$(9.42) {}_{2}F_{1}(13/60, -7/60; 3/5; \varphi_{1}(x)) = \frac{1 - 7x}{(1 - 228x + 494x^{2} + 228x^{3} + x^{4})^{7/20}}.$$

(9.43)

$${}_{2}F_{1}\left(13/60,53/60;3/5;\varphi_{1}(x)\right) = \frac{(1+119x+187x^{2}+17x^{3})(1-228x+494x^{2}+228x^{3}+x^{4})^{13/20}}{(1+x^{2})(1+522x-10006x^{2}-522x^{3}+x^{4})}.$$

(9.44)

$$_{2}F_{1}\left(17/60,37/60;7/5;\varphi_{1}(x)\right) = \frac{\left(1+\frac{1}{7}x\right)\left(1-228x+494x^{2}+228x^{3}+x^{4}\right)^{17/20}}{(1+11x-x^{2})^{2}}.$$

$$(9.45) \quad {}_{2}F_{1}\left(17/60, -23/60; 2/5; \varphi_{1}(x)\right) = \frac{\left(1 + 107x - 391x^{2} + 1173x^{3} + 46x^{4}\right)}{\left(1 - 228x + 494x^{2} + 228x^{3} + x^{4}\right)^{23/20}}.$$

Where

(9.46)
$$\varphi_1(x) = \frac{1728x(x^2 - 11x - 1)^5}{(x^4 + 228x^3 + 494x^2 - 228x + 1)^3}.$$

[195]

$$(9.47) 2F1(7/20, -1/20; 4/5; \varphi2(x)) = \frac{(1+x)^{7/20}}{(1-x)^{1/20}(1-4x-x^2)^{1/4}}.$$

(9.48)

$$_{2}F_{1}\left(7/20,19/20;4/5;\varphi_{2}(x)\right) = \frac{(1+3x)(1+x)^{7/20}(1-x)^{19/20}(1-4x-x^{2})^{7/4}}{(1+x^{2})(1+22x-6x^{2}-22x^{3}+x^{4})}.$$

Where

(9.49)
$$\varphi_2(x) = \frac{64x(x^2 - x - 1)^5}{(x^2 - 1)(x^2 + 4x - 1)^5}.$$

[151, 51]

$$(9.50) {}_{2}F_{2}(a,d;b,c;x) = e^{x} \sum_{n>0} \frac{(c-d)_{n}}{(c)_{n} n!} (-x)^{n} {}_{2}F_{2}(b-a,d;b,c+n;-x).$$

[140]

$$(9.51) \quad _{r+1}F_{r+1}(a,(f_r+1);b,(f_r);y) = e^y_{r+1}F_{r+1}(b-a-r,(\xi_r+1);b,(\xi_r);-y),$$

where ξ_r are nonvanishing zeros of an associated parametric polynomial of Q degree r,

(9.52)
$$Q_r(t) = \sum_{j=0}^r s_{r-j} \sum_{l=0}^j \begin{Bmatrix} j \\ l \end{Bmatrix} (a)_l(t)_l(b-a-r-t)_{r-l},$$

and the s_{r-j} are determined by

(9.53)
$$(f_1 + x) \cdots (f + r + x) = \sum_{j=0}^{r} s_{r-j} x^j.$$

[11]

(9.54)
$${}_{3}F_{2}(1,1,2-t;2,3;1) = \frac{2(1-\gamma-\psi(t+1))}{1-t}.$$

[166]

(9.55)

$$_{3}F_{2}(-n,-a,-b;c,2-n-a-b-c;1) = \frac{(c+b-1)_{n}(c+a)_{n}}{(c+a+b-1)_{n}(c)_{n}} \left[1 - \frac{a}{(c+b-1)(a+c+n-1)}\right].$$

for n = 1, 2, 3, ...

[113][174, (2.3.1.3)]

(9.56)

$$_{3}F_{2}(-m,b,c;e,-m+b+c-e+1;1) = \frac{(e-b)_{m}(e-c)_{m}}{(e)_{m}(e-b-c)_{m}}; \quad m=0,1,2,\ldots, \quad e,e-b-c\neq 0,-1,-2,\ldots$$

[64]

(9.57)

$${}_{3}F_{2}(a,b/2,(b+1)/2;c/2,(c+1)/2;1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-b)\Gamma(c-a)} \, {}_{2}F_{1}(a,b;c-a;-1), \quad \Re c > \Re b > 0, \Re(c-a-b) > 0.$$

[64

(9.58)

$$_{3}F_{2}(a,b/2,(b+1)/2;c/2,(c+1)/2;1/2) = 2^{a}\sum_{k=0}^{\infty} {\binom{-a}{k}} \frac{(c-b)_{k}}{(c)_{k}} {_{2}F_{1}(-k,b;c+k;-1)}, \quad \Re c > \Re b > 0.$$

[47]

$$(9.59) {}_{0}F_{1}(a;px) {}_{0}F_{1}(c';qx) = \sum_{n>0} \frac{(px)^{n}}{n!(c)_{n}} {}_{2}F_{1}(1-c-n,-n;c';q/p).$$

[47]

(9.60)

$$_{1}F_{1}(a;c;px) _{1}F_{1}(a';c';qx) = \sum_{n\geq 0} \frac{(a)_{n}(px)^{n}}{n!(c)_{n}} _{3}F_{2}(a',1-c-n,-n;c',1-a-n;-q/p).$$

[47]

(9.61)

$$_{2}F_{0}(a,b;px) _{2}F_{0}(a',b';qx) = \sum_{n>0} \frac{(a)_{n}(b)_{n}(px)^{n}}{n!} _{3}F_{2}(a',b',-n;1-a-n,1-b-n;-q/p).$$

$$[47]$$
 (9.62)

$${}_{2}F_{1}(a,b;c;px)\,{}_{2}F_{1}(a',b';c';qx) = \sum_{n\geq 0} \frac{(a)_{n}(b)_{n}(px)^{n}}{n!(c)_{n}}\,{}_{4}F_{3}(a',b',1-c-n,-n;c',1-a-n,1-b-n;q/p).$$

(9.63)

$$(a+b+1)_3F_2[-c,-a,1;b+1,\frac{1-a-c}{2};\frac{1}{2}] = (b+1)_3F_2[-\frac{a}{2},\frac{1-a}{2},1;\frac{1-a-b}{2},\frac{1-a-c}{2};1]$$

where a, b and c are positive integers of the same parity.

[64

(9.64)

$$_{3}F_{2}(-n,b/q,(b+1)/2;c/2,(c+1)/2;1) = \frac{(c-b)_{n}}{(c)_{n}} \, _{2}F_{1}(-n,b;c+n;-1), \quad \Re c > \Re b > 0.$$

[113]

$${}_3F_2(a,b,c;e,a+b+c-e+1;1) + \frac{\Gamma(e-1)\Gamma(a-e+1)\Gamma(b-e+1)\Gamma(c-e+1)\Gamma(a+b+c-e+1)}{\Gamma(1-e)\Gamma(a)\Gamma(b)\Gamma(c)\Gamma(a+b+c-2e+2)} \\ \times {}_3F_2(a-e+1,b-e+1,c-e+1;2-e,a+b+c-2e+2;1) \\ = \frac{\Gamma(a-e+1)\Gamma(b-e+1)\Gamma(c-e+1)\Gamma(a+b+c-e+1)}{\Gamma(1-e)\Gamma(b+c-e+1)\Gamma(a+c-e+1)\Gamma(a+b-e+1)}.$$

$$[113]$$

(9.65)

$${}_{3}F_{2}(a,b,c;e,a+b+c-e+1;1) = \frac{\Gamma(e)\Gamma(a+b+c-e+1)}{\Gamma(a)\Gamma(b+1)\Gamma(c+1)} \, {}_{3}F_{2}(e-a,b+c-e+1,1;b+1,c+1;1); \quad \Re a > 0.$$

[160][139]

$$_{3}F_{2}(a,b,c;f,e;1)$$

$$= \frac{\Gamma(f)\Gamma(e)\Gamma(f+e-a-b-c)}{\Gamma(e-b+f-c)\Gamma(f+e-a-c)} \, {}_{3}F_{2}(e+f-a-b-c,f-c,e-c;e-b+f-c,e+f-a-c;1)$$

$$= \frac{\Gamma(f)\Gamma(e)\Gamma(f+e-a-b-c)}{\Gamma(e-b+f-c)\Gamma(e-b+f-a)} \, {}_{3}F_{2}(e+f-a-b-c,f-b,e-b;e-b+f-c,e-b+f-a;1)$$

(9.68)
$$= \frac{\Gamma(e)\Gamma(f+e-a-b-c)}{\Gamma(e-a)\Gamma(e-b+f-c)} {}_{3}F_{2}(f-c,f-b,a;e-b+f-c,f;1)$$

$$(9.69) \qquad = \frac{\Gamma(f)\Gamma(f+e-a-b-c)}{\Gamma(f-a)\Gamma(e-b+f-c)} \, {}_{3}F_{2}(e-c,e-b,a;e-b+f-c,e;1)$$

(9.70)

$$= \frac{\Gamma(e)\Gamma(f)\Gamma(f+e-a-b-c)}{\Gamma(e+f-a-c)\Gamma(e-b+f-a)} \, {}_{3}F_{2}(e+f-a-b-c,f-a,e-a;e+f-a-c,e-b+f-a;1)$$

(9.71)
$$= \frac{\Gamma(e)\Gamma(f+e-a-b-c)}{\Gamma(e-b)\Gamma(e+f-a-c)} {}_{3}F_{2}(f-c,f-a,b;e+f-a-c,f;1)$$

(9.72)
$$= \frac{\Gamma(f)\Gamma(f+e-a-b-c)}{\Gamma(f-b)\Gamma(e+f-a-c)} {}_{3}F_{2}(e-c,e-a,b;e+f-a-c,e;1)$$

(9.73)
$$= \frac{\Gamma(e)\Gamma(f+e-a-b-c)}{\Gamma(e-c)\Gamma(e-b+f-a)} {}_{3}F_{2}(f-b,f-a,c;e+f-a-b,f;1)$$

$$(9.74) = \frac{\Gamma(f)\Gamma(f+e-a-b-c)}{\Gamma(f-c)\Gamma(e-b+f-a)} {}_{3}F_{2}(e-b,e-a,c;e+f-a-b,e;1).$$

[157, (6)]

(9.75)

$$_{3}F_{2}(-n,\alpha,\beta;\gamma,\delta;1) = \frac{\Gamma(\gamma)\Gamma(\gamma+n-\alpha)}{\Gamma(\gamma+n)\Gamma(\gamma-\alpha)} \, _{3}F_{2}(-n,\alpha,\delta-\beta;1+\alpha-\gamma-n,\delta;1).$$

[30]

$$(9.76) _{3}F_{2}(-2\alpha, -2\beta, \gamma; \gamma + 1/2, 2\gamma; x) = {}_{2}F_{1}^{2}(-\alpha, -\beta; \gamma + 1/2; x).$$

[30]

$$(9.77) \quad {}_{3}F_{2}(\alpha,\beta,\gamma;\delta,\epsilon;1) = \frac{\Gamma(\delta)\Gamma(\delta-\alpha-\beta)}{\Gamma(\delta-\alpha)\Gamma(\delta-\beta)} {}_{3}F_{2}(\alpha,\beta,\epsilon-\gamma;\alpha+\beta-\delta+1,\epsilon;1)$$

$$+\frac{\Gamma(\delta)\Gamma(\epsilon)\Gamma(\alpha+\beta-\gamma)\Gamma(\delta+\epsilon-\alpha-\beta-\gamma)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\epsilon-\gamma)\Gamma(\delta+\epsilon-\alpha-\beta)}{}_{3}F_{2}(\delta-\alpha,\delta-\beta,\delta+\epsilon-\alpha-\beta-\gamma;\delta-\alpha-\beta+1,\delta+\epsilon-\alpha-\beta;1).$$

[174, (2.2.3.2)]

(9.78)

$${}_{A+1}F_B[(a), -m; (b); z] = \frac{((a))_m (-z)^m}{((b))_m} {}_{B+1}F_A[1 - (b), 1 - m; 1 - (a); \frac{(-1)^{A+B}}{z}].$$

[174, (4.3.5.1)][200][105]

$$_{4}F_{3}(x,y,z,-n;u,v,w;1) = \frac{(v-z)_{n}(w-z)_{n}}{(v)_{n}(w)_{n}} \, _{4}F_{3}(u-x,u-y,z,-n;1-v+z-n,1-w+z-n,w;1),$$

$$\begin{aligned} &\text{if } u+v+w=1+x+y+z-n. \\ &[174] \\ &(9.80) \\ &[\delta(\delta+b_1-1)(\delta+b_2-1)\cdots(\delta+b_B-1)-z(\delta+a_1)(\delta+a_2)\cdots(\delta+a_A)] \, {}_AF_B((a),(b),z)=0, \\ &\text{where } \delta=z\frac{d}{dz}. \\ &[47] \\ &(9.81) \quad \frac{(\delta+h)_m}{(\delta+k)_m} \, {}_rF_s\left(\begin{array}{c} a,\ldots & |x \\ c,\ldots & |x \end{array}\right) = \frac{(h)_m}{(k)_m} \, {}_{r+2}F_{s+2}\left(\begin{array}{c} a,\ldots ,h+m,k\\ c,\ldots ,h,k+m \end{array} \mid x \right). \\ &[47] \\ &(9.82) \quad \sum_{n\geq 0} \frac{(a)_n}{n!} F\left(\begin{array}{c} -n,A,\ldots & |p \\ C\ldots & |p \end{array}\right) x^n = (1-x)^{-a} F\left(\begin{array}{c} a,A,\ldots & |-\frac{px}{1-x} \right). \\ &(0.83) \\ &\sum_{n\geq 0} \frac{(a)_n}{n!} F\left(\begin{array}{c} -n,a+n,A,\ldots & |p \\ C\ldots & |p \end{array}\right) x^n = (1-x)^{-a} F\left(\begin{array}{c} a/2,(1+a)/2,A,\ldots & |-\frac{4px}{(1-x)^2} \right). \\ &[47] \\ &(9.84) \quad \sum_{n\geq 0} \frac{(a)_n}{n!} F\left(\begin{array}{c} -n,A,\ldots & |p \\ 1-a-n,C,\ldots & |p \end{array}\right) x^n = (1-x)^{-a} F\left(\begin{array}{c} A,\ldots & |px \\ C,\ldots & |px \end{array}\right). \\ &[47] \\ &(9.85) \quad [\delta(\delta+c-1)-px(\delta+a)(\delta-n)]F_n = 0, \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_2F_1(a,-n;c;px). \\ &[47] \\ &(9.86) \quad nF_n - [2n+c-2-p(n+a-1)]F_{n-1} + (1-p)(n+c-2)F_{n-2} = 0 \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_2F_1(a,-n;c;p). \\ &[47] \\ &(9.87) \quad [\delta(\delta+c-1)(\delta+c'-1)-(\delta+a)(\delta+a')(\delta-n)]F_n = 0, \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_3F_2(a,a',-n;c,c';x). \\ &[47] \\ &(9.88) \quad n(n+c'-1)F_n - [2(n-1)^2 + (2c+2c'-a-a'-1)(n-1) + cc'-aa']F_{n-1} + (n+c-2)(n+c+c'-a-a'-2)F_{n-2} = 0 \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_3F_2(a,a',-n;c,c';x). \\ &[47] \\ &(9.88) \quad n(n+c'-1)F_n - [2(n-1)^2 + (2c+2c'-a-a'-1)(n-1) + cc'-aa']F_{n-1} + (n+c-2)(n+c+c'-a-a'-2)F_{n-2} = 0 \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_3F_2(a,a',-n;c,c';x). \\ &[47] \\ &(9.88) \quad n(n+c'-1)F_n - [2(n-1)^2 + (2c+2c'-a-a'-1)(n-1) + cc'-aa']F_{n-1} + (n+c-2)(n+c+c'-a-a'-2)F_{n-2} = 0 \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_3F_2(a,a',-n;c,c';x). \\ &[47] \\ &(9.88) \quad n(n+c'-1)F_n - [2(n-1)^2 + (2c+2c'-a-a'-1)(n-1) + cc'-aa']F_{n-1} + (n+c-2)(n+c+c'-a-a'-2)F_{n-2} = 0 \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_3F_2(a,a',-n;c,c';x). \\ &[47] \\ &(9.88) \quad n(n+c'-1)F_n - [2(n-1)^2 + (2c+2c'-a-a'-1)(n-1) + cc'-aa']F_{n-1} + (n+c-2)(n+c+c'-a-a'-2)F_{n-2} = 0 \\ &\text{where } F_n \equiv \frac{(c)_n}{n!} \, {}_3F_2(a,a',-n;c,c';x). \\ &(3.88) \quad n(n+c'-1)F_n - [2(n-1)^2 + (2c+2c'-a-a'-1)(n-1) + cc'-aa'$$

(9.89)
$$\left[\sum_{\nu=1}^{B} z^{\nu-1} (a_{\nu}z - b_{\nu}) \frac{d^{\nu}}{dz^{\nu}} + a_0 + z^B (1-z) \frac{d^{B+1}}{dz^{B+1}}\right]_{B+1} F_B((a), (b), z) = 0.$$
[163]

$$(9.90) {}_{2}F_{2}(-3/2, -1/2; -5/2, 1; z) = \frac{5-4z}{5}e^{z/2}I_{0}(z/2) + \frac{4z}{5}e^{z/2}I_{1}(z/2).$$

[163]

$${}_{2}F_{3}(-1/2,1;1/4,1/2,3/4;z) = 1 + z^{1/4}\sqrt{2}\sqrt{\pi}e^{2\sqrt{z}}\operatorname{erf}(\sqrt{2}z^{1/4}) - z^{1/4}\sqrt{2}\sqrt{\pi}e^{-2\sqrt{z}}\operatorname{erf}(\sqrt{2}z^{1/4}) - 2\sqrt{z}\pi\operatorname{erf}(\sqrt{2}z^{1/4})\operatorname{erf}(\sqrt{2}z^{1/4}).$$

[163]

$${}_{1}F_{2}(3/2;5/2,5;z) = -\frac{432 - 24z + 96z^{2}}{5z^{3}}I_{0}(2\sqrt{z}) + \frac{432 + 192z + 48z^{2}}{5z^{7/2}}I_{1}(2\sqrt{z}) - \frac{48}{5z}\pi \left(I_{0}(2\sqrt{z})L_{1}(2\sqrt{z}) - I_{1}(2\sqrt{z})L_{0}(2\sqrt{z})\right).$$

[163]

$${}_{3}F_{2}(-1/2,1,2;3,4;z) = -\frac{480 + 3472z - 2100z^{2}}{525z^{3}} + \frac{480 + 3712z - 1024z^{2} + 192z^{3}}{525z^{3}}\sqrt{1-z} - \frac{32}{5z^{2}}\log\left(\frac{1}{2} + \frac{\sqrt{1-z}}{2}\right).$$

[30]

$$(9.91) {}_{2}F_{3}(-\beta, \beta + \gamma; \gamma; \gamma/2, \frac{1+\gamma}{2}; x^{2}/4) = {}_{1}F_{1}(-\beta; \gamma; -x){}_{1}F_{1}(-\beta; \gamma; x).$$

[30]

$$(9.92) {}_{2}F_{3}(1, n; n+1; (n+1)/2, 2+n2; x^{2}/4) = {}_{1}F_{1}(1; n+1; -x){}_{1}F_{1}(1; n+1; x).$$

[30]

(9.93)

$$_{4}F_{1}(-\alpha,-\beta,-\frac{\alpha+\beta}{2}-\frac{\alpha+\beta-1}{2};-\alpha-\beta;4x^{2})={}_{2}F_{0}(-\alpha,-\beta;x){}_{2}F_{0}(-\alpha,-\beta;-x).$$

if α or β a nonnegative integer.

[174]

(9.94)

$${}_{A+1}F_{B+1}(c,(a);d,(b);z) = \frac{\Gamma(d)}{\Gamma(c)\Gamma(d-c)} \int_0^1 t^{c-1} (1-t)^{d-c-1} {}_{A}F_{B}((a),(b),tz) dt.$$

[53, 64]

(9.95)

$$\frac{1}{q+1}F_q \begin{pmatrix} a, \frac{b}{q}, \frac{b+1}{q}, \cdots, \frac{b+q-1}{q} \\ \frac{c}{q}, \frac{c+1}{q}, \cdots, \frac{c+q-1}{q} \\ \hline \Gamma(b)\Gamma(c-b) \end{pmatrix} = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-xt^q)^{-a} dt$$

$$= \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \sum_{k>0} {c-b-1 \choose k} \frac{(-)^k}{b+k} {}_2F_1(a, (b+k)/q; 1+(b+k)/q; x)$$

 $\begin{bmatrix} 64 \end{bmatrix}$

$$\begin{array}{l}
\left(9.90\right) \\
p+kF_{q+k}\left(\begin{array}{c} a_1,\ldots,a_p,\frac{\alpha}{k},\frac{\alpha+1}{k},\ldots,\frac{\alpha+k-1}{k} \\ b_1,\ldots,b_q,\frac{\alpha+\beta}{k},\frac{\alpha+\beta+1}{k},\ldots,\frac{\alpha+\beta+k-1}{k} \end{array}\right) = \frac{t^{1-\alpha-\beta}}{B(\alpha,\beta)} \int_0^t x^{\alpha-1}(t-x)^{\beta-1} \,_pF_q\left(\begin{array}{c} a_1,\ldots,a_p \\ b_1,\ldots,b_q \end{array}\right) dx.
\end{array}$$

$$\begin{bmatrix}
141 \\
(9.97) \\
r+2F_{r+1} \begin{pmatrix} a, b, & (f_r+1) \\ c, & (f_r) \end{pmatrix} \mid x = (1-x)^{-a} r+2F_{r+1} \begin{pmatrix} a, \lambda, & (\xi_r+1) \\ c, & (\xi_r) \end{pmatrix} \mid \frac{x}{x-1} \\
\end{bmatrix}$$

$$\begin{bmatrix}
141 \\
(9.98) \\
r+2F_{r+1} \begin{pmatrix} a, b, & (f_r+1) \\ c, & (f_r) \end{pmatrix} \mid x = (1-x)^{c-a-b-r} r+2F_{r+1} \begin{pmatrix} \lambda, \lambda', & (\xi_r+1) \\ c, & (\xi_r) \end{pmatrix} \mid x \\
\end{bmatrix}$$

$$\begin{bmatrix}
4 \\
4
\end{bmatrix}$$

$$(9.99) \quad {}_{p+1}F_p\left(\begin{array}{c} a, a, \dots, a \\ a+1, \dots, a+1 \end{array} \mid 1\right) = \frac{a^p}{(a-1)!} \sum_{k=0}^{a-1} (-)^{a-k-1} \zeta(p-k) \left[\begin{array}{c} a \\ k+1 \end{array}\right]$$

for a a positive integer, where the [] is Stirling numbers of the first kind. [148]

(9.100)

$$p+1F_p(a_1,\ldots,a_{p+1};b_1\ldots b_p\mid z\zeta) = (1-z)^{-a_1} \sum_{k>0} \frac{(a_1)_k}{k!} p+1F_p(-k,a_2,\ldots,a_{p+1};b_1,\ldots,b_p\mid \zeta) \left(\frac{z}{z-1}\right)^k.$$

[4]

$$(9.101) p_{+1}F_p\left(\begin{array}{c} a, a, \dots, a \\ a+1, \dots, a+1 \end{array} \mid 1\right) = \frac{(-)^{p-1}\pi a^p}{\sin(a\pi)(p-1)!}w(a, p-1)$$

where

(9.102)
$$w(n,m) = \frac{1}{(n-1)!} \sum_{i=m+1}^{n} \begin{bmatrix} n \\ i \end{bmatrix} (i-m)_m (-1)^{n-i} n^{i-m-1},$$

recursively

$$(9.103) w(n,0) = 1, w(n,m) = \sum_{k=0}^{m-1} (1-m)_k H_{n-1}^{(k+1)} w(n,m-1-k)$$

and the Harmonic numbers defined in (0.88).

$$(9.104) \quad {}_{q+1}F_q\left(\begin{array}{c} a_1,\ldots,a_{q+1} \\ b_1,\ldots,b_q \end{array} | 1\right) + {}_{q+1}F_q\left(\begin{array}{c} a_1,\ldots,a_{q+1} \\ b_1,\ldots,b_q \end{array} | -1\right)$$

$$= 2 \, {}_{2q+2}F_{2q+1}\left(\begin{array}{c} a_1/2,a_1/2 + 1/2\ldots,a_{q+1}/2 + 1/2 \\ b_1/2,b_1/2 + 1/2,\ldots,b_q/2 + 1/2,1/2 \end{array} | 1\right).$$

[78]

$$(9.105) \quad {}_{q+1}F_q\left(\begin{array}{c} a_1,\ldots,a_{q+1} \\ b_1,\ldots,b_q \end{array} \mid 1\right) - {}_{q+1}F_q\left(\begin{array}{c} a_1,\ldots,a_{q+1} \\ b_1,\ldots,b_q \end{array} \mid -1\right)$$

$$= 2\frac{a_1a_2\cdots a_{q+1}}{b_1b_2\cdots b_q} \, {}_{q+1}F_q\left(\begin{array}{c} a_1/2+1/2,a_1/2+1\ldots,a_{q+1}/2+1/2,a_{q+1}/2+1 \\ b_1/2+1/2,b_1/2+1,\ldots,b_q/2+1,3/2 \end{array} \mid 1\right).$$

[78]

[78]

$$\begin{array}{l} a, a+2, a+4 \dots, a+2q \\ a+1, a+3, a+5 \dots a+2q-1 \end{array} \mid 1 \\ - \frac{2a(a+2)(a+4) \cdots (a+2q)}{(a+1)(a+3) \cdots (a+2q-1)} \ _{2}F_{1}(a/2+1/2, a/2+q+1; 3/2; 1). \end{array}$$

[78]

$$(9.108) \quad {}_{q+1}F_q\left(\begin{array}{c} a, a+2, a+4\dots, a+2q \\ a+1, a+3, a+5\dots a+2q-1 \end{array} \right| 1\right)$$

$$= \frac{\sqrt{\pi}\Gamma(-a-q)}{\Gamma(1/2-a)\Gamma(-a/2-q)} + \frac{2(a/2)_q}{(a/2+1/2)_{q-1}\Gamma(1-a/2)\Gamma(1/2-a/2-q)},$$

if $\Re(a+q) < 0$, and a similar expression for argument -1. [139]

$$(9.109) \quad {}_{3}F_{2}(a,m,b;c,m-n;1) = \Gamma(a+n-m+1)$$

$$\times \left(\sum_{L=0}^{m-1} \frac{(-1)^{L}\Gamma(-b+c-a-n+L)\Gamma(1-b+L)}{\Gamma(m-L)\Gamma(-b-n+1+L)\Gamma(-b+c-m+1+L)\Gamma(L+1)} \right)$$

$$\times \frac{\Gamma(c)\Gamma(m-n)(-1)^n}{\Gamma(c-a)\Gamma(a)}, \quad 0 < n < m.$$

$$(9.110) \quad {}_{3}F_{2}(a,b,-n;c,m-n;1) = \Gamma(a+n-m+1)$$

$$\times \left(\sum_{L=0}^{m-1} \frac{(-1)^{L} \Gamma(c-a+L) \Gamma(1+b-m+n+L)}{\Gamma(m-L) \Gamma(b-m+1+L) \Gamma(c+n-m+1+L) \Gamma(L+1)} \right) \times \frac{\Gamma(c) \Gamma(m-n) (-1)^{n}}{\Gamma(c-a) \Gamma(a)}, \quad 0 < n < m.$$

$${}_{3}F_{2}(a,-n,b;c,a-c+b-n+m;1) = \Gamma(c-b+n-m+1)\Gamma(-a+c-b-m+1)$$

$$\times \left(\sum_{L=0}^{m-1} \frac{(-1)^L \Gamma(b+L) \Gamma(1-a+c-m+n+L)}{\Gamma(m-L) \Gamma(-a+c-m+1+L) \Gamma(c+n-m+1+L) \Gamma(L+1)} \right) \times \frac{\Gamma(c) \Gamma(m)}{\Gamma(n+1-a+c-b-m) \Gamma(b) \Gamma(c-b)}, \quad 0 < n, m.$$

$$(9.112)$$

$${}_3F_2(a,1,b;n+1,c;1) = \frac{\Gamma(a-n)\Gamma(b-n)\Gamma(n+1)\Gamma(c)\Gamma(-b+c-a+n)\Gamma(1-b)\Gamma(1+n)\Gamma(c)}{\Gamma(b)\Gamma(c-b)\Gamma(a)\Gamma(c-a)\Gamma(a)}$$

$$\times \left(\sum_{L=0}^{n-1} \frac{(-1)^L \Gamma(a-1-L)}{\Gamma(c-1-L)\Gamma(n-L)\Gamma(2+L-b)}\right)$$
, $0 < n, m$.

and 60 others.

[64]

$$(9.113) \quad {}_{4}F_{3}(a,b/3,(b+1)/3,(b+2)/3;c/3,(c+1)/3,(c+2)/3;1)$$

$$= \frac{\Gamma(c)\Gamma(c-b-a)}{\Gamma(c-a)\Gamma(c-b)} \sum_{k=0}^{\infty} \frac{(a)_{k}(-1)^{k}(b)_{k}}{k!(c-a)_{k}} {}_{2}F_{1}(-k,b+k;c-a+k;-1).$$

[105]

$$(9.114) _4F_3(\frac{\alpha}{2}, \frac{\alpha+1}{2}, \beta+n, -n; 1+\alpha, \frac{\beta}{2}, \frac{\beta+1}{2}; 1) = \frac{(\beta-\alpha)_n}{(\beta)_n}.$$

[105]

$$(9.115) _4F_3(\alpha, -\alpha, -\frac{m}{2}, \frac{1-m}{2}; \frac{1}{2}, \beta, 1-m-\beta; 1) = \frac{(\alpha+\beta)_m + (\beta-\alpha)_m}{2(\beta)_m}.$$

[105]

(9.116)

$$_{4}F_{3}(a,b,\frac{1}{2}-a-b-n,-n;a+b-\frac{1}{2},1-a-n,1-b-n;1) = \frac{(2a)_{n}(2b)_{n}(a+b)_{n}}{(2a+2b-1)_{n}(a)_{n}(b)_{n}}.$$

[105]

(9 117

$$_{4}F_{3}(a-\frac{1}{2},b-\frac{1}{2},\frac{1}{2}-a-b-n,-n;a+b-\frac{1}{2},\frac{1}{2}-a-n,\frac{1}{2}-b-n;1) = \frac{(2a)_{n}(2b)_{n}(a+b)_{n}}{(2a+2b-1)_{n}(a+\frac{1}{2})_{n}(b+\frac{1}{2})_{n}}$$

 $\lfloor 105 \rfloor$

(9.118)

$$_{4}F_{3}(a+1,b,\frac{1}{2}-a-b-n,-n;a+b+\frac{1}{2},1-a-n,1-b-n;1) = \frac{(2a+1)_{n}(2b)_{n}(a+b)_{n}}{(2a+2b)_{n}(a)_{n}(b)_{n}}.$$

[105]

(9.119)

$${}_{4}F_{3}(a+\frac{1}{2},b-\frac{1}{2},\frac{1}{2}-a-b-n,-n;a+b+\frac{1}{2},\frac{1}{2}-a-n,\frac{1}{2}-b-n;1)=\frac{(2a+1)_{n}(2b)_{n}(a+b)_{n}}{(2a+2b)_{n}(a+\frac{1}{2})_{n}(b+\frac{1}{2})_{n}}$$

[105]

(9.120)

$$_{4}F_{3}(a,b,\frac{1}{2}-a-b-n,-n;a+b+\frac{1}{2},1-a-n,1-b-n;1) = \frac{(2a)_{n}(2b)_{n}(a+b)_{n}}{(2a+2b)_{n}(a)_{n}(b)_{n}}$$

$$[105]$$
 (9.121)

$$_{4}F_{3}(a,b,a+b-\frac{1}{2}-n,-n;a+b+\frac{1}{2},\frac{1}{2}+a-n,\frac{1}{2}+b-n;1) = \frac{(1/2)_{n}(a-b+\frac{1}{2})_{n}(b-a+\frac{1}{2})_{n}}{(a+b+\frac{1}{2})_{n}(\frac{1}{2}-a)_{n}(\frac{1}{2}-b)_{n}}$$

[105]

(9.122)

$${}_{4}F_{3}(a,-a,\frac{1}{2}-n,-n;\frac{1}{2},\frac{1}{2}+b-n,\frac{1}{2}-b-n;1) = \frac{(\frac{1}{2}+a+b)_{n}(\frac{1}{2}-a-b)_{n}+(\frac{1}{2}+a-b)_{n}(\frac{1}{2}-a+b)_{n}}{2(\frac{1}{2}+b)_{n}(\frac{1}{2}-b)_{n}}.$$

[105]

(9.123)

$$_{4}F_{3}(a,-a,-\frac{1}{2}-n,-n;\frac{1}{2},b-n,-b-n;1) = \frac{(a+b)_{n+1}(1-a-b)_{n}+(b-a)_{n+1}(1+a-b)_{n}}{2b(1+b)_{n}(1-b)_{n}}$$

[105]

(9.124)

$${}_{4}F_{3}(\frac{1}{2}+a,\frac{1}{2}-a,-\frac{1}{2}-n,-n;\frac{1}{2},\frac{1}{2}+b-n,\frac{1}{2}-b-n;1) = \frac{(a+b)_{n+1}(1-a-b)_{n}+(b-a)_{n+1}(1+a-b)_{n}}{2b(\frac{1}{2}+b)_{n}(\frac{1}{2}-b)_{n}}.$$

[105]

$$(9.125) \quad _{4}F_{3}(a,-a,-\frac{1}{2}-n,-n;\frac{1}{2},\frac{1}{2}+b-n,\frac{1}{2}-b-n;1)$$

$$=\frac{(a+b)(\frac{1}{2}+a+b)_{n}(\frac{1}{2}-a-b)_{n}+(b-a)(\frac{1}{2}+b-a)_{n}(\frac{1}{2}+a-b)_{n}}{2b(\frac{1}{2}+b)_{n}(\frac{1}{2}-b)_{n}}$$

[105]

(9.126)

$$_{4}F_{3}(a,-a,\frac{1}{2}-n,-n;\frac{1}{2},1+b-n,1-b-n;1) = \frac{(a+b)_{n}(-a-b)_{n}+(a-b)_{n}(b-a)_{n}}{2(b)_{n}(-b)_{n}}.$$

[30]

(9.127)

$$_4F_3(\alpha,\beta,\frac{\alpha+\beta}{2},\frac{\gamma+\delta}{2};\gamma,\delta,\alpha+\beta;x) = {}_2F_1(\alpha,\beta;\gamma;\frac{1-\sqrt{1-x}}{2}){}_2F_1(\alpha,\beta;\delta;\frac{1-\sqrt{1-x}}{2})$$

if $\alpha + \beta + 1 = \gamma + \delta$. [45]

(9.128)

$$\frac{1}{\Gamma(b_1)\Gamma(b_2)\Gamma(b_3)} {}_{4}F_{3} \begin{pmatrix} a_1, a_2, a_3, a_4 \\ b_1, b_2, b_3 \end{pmatrix} | 1 = \frac{\Gamma(s)}{\Gamma(a_1 + s)\Gamma(a_2 + s)\Gamma(a_3)\Gamma(a_4)} \times \sum_{k=0}^{\infty} \frac{(b_1 + b_3 - a_3 - a_4)_k(b_2 + b_3 - a_3 - a_4)_k(s)_k}{(a_1 + s)_k(a_2 + s)_k k!} {}_{3}F_{2} \begin{pmatrix} b_3 - a_3, b_3 - a_4, -k \\ b_1 + b_3 - a_3 - a_4, b_2 + b_3 - a_3 - a_4 \end{pmatrix} | 1 \right).$$
[78]

$$(9.129) \quad _{4}F_{3}(a/2,a/2+1/2,b/2,b/2+1/2;1/2+a/2-b/2,1+a/2-b/2,1/2;1) \\ = \frac{\Gamma(1+a-b)\Gamma(1-2b)}{\Gamma(1-b)\Gamma(1+a-2b)} + \frac{\Gamma(1+a-b)\Gamma(1+a/2)}{\Gamma(1+a)\Gamma(1+a/2-b)}.$$

where $\Re b < 1/2$.

[78]

$$(9.130)$$

$$\frac{2ab}{1+a-b} {}_{4}F_{3}(a/2+1/2,a/2+1,b/2+1/2,b/2+1;1+a/2-b/2,3/2+a/2-b/2,3/2;1)$$

$$= \frac{\Gamma(1+a-b)\Gamma(1-2b)}{\Gamma(1-b)\Gamma(1+a-2b)} + \frac{\Gamma(1+a-b)\Gamma(1+a/2)}{\Gamma(1+a)\Gamma(1+a/2-b)}.$$

where $\Re b < 1/2$. [45]

$$(9.131) \quad \frac{1}{\prod_{j=1}^{p} \Gamma(b_{j})} {}_{p+2}F_{p+1} \left(\begin{array}{c} a_{1}, a_{2}, \dots, a_{p+1}, -m \\ b_{1}, b_{2}, \dots, b_{p}, 1-s-m \end{array} \middle| 1 \right)$$

$$= \frac{(a_{1}+s)_{m} (a_{2}+s)_{m} \prod_{j=3}^{p+1} (a_{j})_{m}}{(s)_{m} \prod_{j=1}^{p} \Gamma(b_{j}+m)} \sum_{k=0}^{m} \frac{(s)_{k} (-m)_{k}}{(a_{1}+s)_{k} (a_{2}+s)_{k} k!}$$

$$\times (S)_{k \ p+1}F_{p} \left(\begin{array}{c} 1-b_{1}-m, 1-b_{2}-m, \dots, 1-b_{p}-m, -k \\ 1-a_{3}-m, 1-a_{4}-m, \dots 1-a_{p+1}-m, 1-S-k \end{array} \middle| 1 \right)$$

where $s = \sum_{j=1}^{p} b_j - \sum_{j=1}^{p+1} a_j$ and $S = a_1 + a + 2 + s + m - 1$ and s not a negative integer or zero.

[45]

(9.132)

$$\frac{1}{\Gamma(b_1)\Gamma(b_2)} {}_{4}F_{3} \begin{pmatrix} a_1, a_2, a_3, -m \\ b_1, b_2, 1-s-m \end{pmatrix} | 1 = \frac{(a_1+s)_m(a_2+s)_m(a_3)_m}{(s)_m\Gamma(b_1+m)\Gamma(b_2+m)} {}_{4}F_{3} \begin{pmatrix} b_1-a_3, b_2-a_3, s, -m \\ a_1+s, a_2+s, 1-a_3-m \end{pmatrix} | 1$$

where $s = b_1 + b_2 - a_1 - a_2 - a_3$ not a negative integer or zero, $m = 0, 1, 2 \dots$

(9.133)

$$_{0}F_{2}(m+n+1,n+1;x)_{0}F_{2}(m+1,1-n;-x) = 1 + \sum_{k>1} \frac{\alpha_{k}(\frac{2m+n+k+2}{2})_{k}(2x)^{k}}{(m+n+1)_{k}(m+1)_{k}k!}$$

where

(9.134)
$$\alpha_k = \begin{cases} \frac{n}{(n^2 - 1^2)(n^2 - 3^2) \cdots (n^2 - k^2)}, & \text{if } k \text{odd}; \\ \frac{1}{(n^2 - 2^2)(n^2 - 4^2) \cdots (n^2 - k^2)}, & \text{if } k \text{even} \end{cases}$$

[54]

 $(9.\overset{\cdot}{135}) \\ \sum_{k>0} t^k \frac{(\alpha+1+sk)_k}{k!} \, _rF_r \left(\begin{array}{c} \Delta(-k,r) \\ \Delta(-\alpha-sk-k,r) \end{array} \mid x(\beta+sk) \right) = (1-z)^{\alpha+1} \frac{1}{1+sz+rsy} e^{-\beta y},$

where
$$t = (-z)(1-z)^{-s-1} \exp(sy)$$
, $x = (-y)[1-1/z]^r$, $(a)_k = \Gamma(a+k)/\Gamma(a)$ and $\Delta(-k,r) \equiv -k/r$, $(-k+1)/r$, ... $(-k+r-1)/r$, $|t| < 1$.

[54]

(9.136)

$$\sum_{k\geq 0} t^k \frac{(\alpha+1+sk)_k}{(\alpha+l+1+sk)k!((\alpha+l+1+s''+sk)/s'')_{l'}} {}_rF_r \left(\begin{array}{c} \Delta(-k,r) \\ \Delta(-\alpha=sk-k,r) \mid x(\beta+sk) \end{array} \right)$$

$$= \frac{(1-z)^{\alpha+l+1}e^{-\beta y}}{l'!} \sum_{q=0}^{l'} \sum_{k=0}^{l+s''q} \frac{(-z)^k (1-z)^{s''q-k}(-l')_q (-l-s''q)_k}{k!q!(\alpha+l+1+s''q+sk)}$$

$$\times {}_1F_1 \left(\begin{array}{c} 1 \\ (\alpha+l+1+s'+s''r+sk)/s' \end{array} \mid y(\beta-\alpha-l-1-s''q) \right),$$

where $t = (-z)(1-z)^{-s-1}e^{sy}$, $x = -y[1-1/z]^r$ and |t| < 1. [54]

(9.137)
$$\sum_{p>0} t^p \frac{(\beta + s'p)^p}{p!} \, {}_rF_0\left(\begin{array}{c} \Delta(-p,r) \\ - \end{array} \right) \left(\frac{xr^r(\alpha + s'p)}{(\beta + s'p)^r}\right) = \frac{e^{-\beta y - \alpha z}}{1 + s'y + rs'z},$$

where $t = -ye^{s'y+s'z}$, $x = -z/y^r$ and $|s'y \exp(s'y + s'z + 1)| < 1$. [54]

(9.138)

$$\sum_{p\geq 0} t^p \frac{(\beta+s'p)^p}{p!(\alpha+s'p)} \, {}_rF_0\left(\begin{array}{c} \Delta(-p,r) \\ - \end{array} \mid \frac{xr^r(\alpha+s'p)}{(\beta+s'p)^r}\right) = \frac{e^{-\beta y - \alpha z}}{\alpha} \, {}_1F_1\left(\begin{array}{c} 1 \\ \alpha/s' + 1 \end{array} \mid y(\beta-\alpha)\right)$$

where $t = -ye^{s'y+s'z}$, $x = -z/y^r$ and $|s'y \exp(s'y + s'z + 1)| < 1$. [170]

(9.139)
$$F_1\left(\begin{array}{c} a; b, b \\ 1+a-b \end{array} \mid e^{2\pi i/3}, e^{-2\pi i/3} \right) = \frac{\Gamma(1+a-b)\Gamma(1+a/3)}{\Gamma(1+a)\Gamma(1+a/3-b)}$$

[170]

$$(9.140) F_D\left(\begin{array}{cc} a;b,b,\ldots b \\ c \end{array} \mid \omega_{1,n},\ldots \omega_{n-1,n}\right) = \frac{\Gamma(a-b+1)\Gamma(1+a/n)}{\Gamma(1+a)\Gamma(1+a/n-b)},$$

where $\omega_{k,n} \equiv e^{2k\pi i/n}$.

[170]

(9 141)

$$F_D\left(\begin{array}{c}2mb-a;b,b,\ldots b\\2mb\end{array}\mid x_1,\ldots x_{2m}\right)=\frac{1}{2m}\frac{\Gamma(a/(2m))\Gamma(2mb)\Gamma((2mb-a)/(2m))}{\Gamma(a)\Gamma(b)\Gamma(2mb-a)},$$

where $x_k = 1 + e^{(2k-1)\pi i/(2m)}$, for k = 1, ... 2m, and 2m is an even integer, a > 0, b > 0, nb > a.

(9.142)
$$F_{D} \begin{pmatrix} (2m-1)b-a; b, b, \dots b \\ (2m-1)b \end{pmatrix} | y_{1}, \dots y_{2m-1}$$

$$= \frac{1}{2m-1} \frac{\Gamma(a/(2m-1))\Gamma((2m-1)b)\Gamma(((2m-1)b-a)/(2m-1))}{\Gamma(a)\Gamma(b)\Gamma((2m-1)b-a)},$$

where $y_k = 1 + e^{(2k-1)\pi i/(2m-1)}$, and 2m-1 is an odd integer, a > 0, b > 0, nb > a.

(9.143)
$$\alpha F_4(\alpha + 1, \beta; \gamma, \gamma'; x, y) - \beta F_4(\alpha, \beta + 1; \gamma, \gamma'; x, y)$$

= $(\alpha - \beta) F_4(\alpha, \beta; \gamma, \gamma'; x, y)$.

[18, p 21]

(9.144)
$$\frac{\beta}{\gamma} x F_4(\alpha + 1, \beta + 1; \gamma + 1, \gamma'; x, y) + \frac{\beta}{\gamma'} y F_4(\alpha + 1, \beta + 1; \gamma, \gamma' + 1; x, y)$$
$$= F_4(\alpha + 1, \beta; \gamma, \gamma'; x, y) - F_4(\alpha, \beta; \gamma, \gamma'; x, y).$$

[18, p 26]

$$(9.145) \quad F_{4}(\alpha, \beta; \gamma, \gamma'; x, y) = \sum \frac{(\alpha)_{m}(\beta)_{m}}{(\gamma)_{m} m!} \frac{\Gamma(\gamma')\Gamma(\beta - \alpha)}{\Gamma(\gamma' - \alpha - m)\Gamma(\beta + m)} (-y)^{-\alpha - m}$$

$$\times {}_{2}F_{1}(\alpha + m, \alpha + m + 1 - \gamma'; \alpha + 1 - \beta; \frac{1}{y})x^{m}$$

$$+ \sum \frac{(\alpha)_{m}(\beta)_{m}}{(\gamma)_{m} m!} \frac{\Gamma(\gamma')\Gamma(\alpha - \beta)}{\Gamma(\gamma' - \beta - m)\Gamma(\alpha + m)} (-y)^{-\beta - m}$$

$$\times {}_{2}F_{1}(\beta + m, \beta + m + 1 - \gamma'; \beta + 1 - \alpha; \frac{1}{y})x^{m}.$$

[18]

(9.146)

$$F_4(\alpha, \beta; \gamma, \gamma'; x, y) = \frac{\Gamma(\gamma')\Gamma(\beta - \alpha)}{\Gamma(\gamma' - \alpha)\Gamma(\beta)} (-y)^{-\alpha} F_4(\alpha, \alpha + 1 - \gamma'; \gamma, \alpha + 1 - \beta; \frac{x}{y}, \frac{1}{y}) + \frac{\Gamma(\gamma')\Gamma(\alpha - \beta)}{\Gamma(\gamma' - \beta)\Gamma(\alpha)} (-y)^{-\beta} F_4(\beta + 1 - \gamma', \beta; \gamma, \beta + 1 - \alpha; \frac{x}{y}, \frac{1}{y}).$$

[27, 85]

(9.147)

$$F_4\left[\alpha,\beta;\gamma,1+\alpha+\beta-\gamma;x(1-y),y(1-x)\right] = F(\alpha,\beta;\gamma;x)F(\alpha,\beta;1+\alpha+\beta-\gamma;y).$$

(9.148)

$$F_4\left[\alpha, \beta; \gamma, \beta; -\frac{x}{(1-x)(1-y)}, -\frac{y}{(1-x)(1-y)}\right] = (1-x)^{\alpha}(1-y)^{\alpha}F_1[\alpha; \gamma - \beta, 1 + \alpha - \gamma; \gamma; x, xy].$$

(9.149)

$$F_4\left[\alpha,\beta;\alpha,\beta;-\frac{x}{(1-x)(1-y)},-\frac{y}{(1-x)(1-y)}\right] = (1-xy)^{-1}(1-x)^{\beta}(1-y)^{\alpha}.$$

(9.150)

$$F_4\left[\alpha, \beta; \beta, \beta; -\frac{x}{(1-x)(1-y)}, -\frac{y}{(1-x)(1-y)}\right] = (1-x)^{\alpha}(1-y)^{\alpha}F[\alpha, 1+\alpha-\beta; \beta; xy].$$

(9.151)

$$F_4\left[\alpha, \beta; 1 + \alpha - \beta, \beta; -\frac{x}{(1-x)(1-y)}, -\frac{y}{(1-x)(1-y)}\right] = (1-y)^{\alpha} F[\alpha, \beta; 1 + \alpha - \beta; -\frac{x(1-y)}{1-x}].$$

[105]

(9.152)

$$F_{q:1;1}^{p:2;2} \begin{bmatrix} \alpha_1, \dots \alpha_p : & a_1, b_1 & a_2, b_2 \\ \gamma_1, \dots \gamma_q : & c_1 & c_2 \end{bmatrix} | X, X \end{bmatrix} =_{p+3} F_{q+2}(\alpha_1, \dots, \alpha_p, \beta_1, \beta_2, \beta_3; \gamma_1, \dots, \gamma_q, \delta_1, \delta_2; X)$$

[183]

(9.153)

$$F_{1:1;1}^{1:2;2} \begin{bmatrix} \alpha : & -M, \beta : & -N, \beta' : \\ \beta + \beta' : & \alpha - \beta' - M + 1 & \alpha - \beta - N + 1 \end{bmatrix} = \frac{(\beta + \beta' - \alpha)_{M+N}(\beta')_{M}(\beta)_{N}}{(\beta + \beta')_{M+N}(\beta' - \alpha)_{M}(\beta - \alpha)_{N}}$$
 for $M, N = 0, 1, 2, \dots$

[183]

$$(9.154) \quad F_{1:1;1}^{1:2;2} \begin{bmatrix} \beta + \beta' - \alpha : & \beta, \gamma : & \beta', \gamma' : \\ \beta + \beta' : & \delta & \delta' \end{bmatrix} = \frac{\Gamma(\delta)\Gamma(\delta')\Gamma(\alpha - \beta - \gamma + \delta)\Gamma(\alpha - \beta' - \gamma' + \delta')}{\Gamma(\delta - \gamma)\Gamma(\delta' - \gamma')\Gamma(\alpha - \beta + \delta)\Gamma(\alpha - \beta' + \delta')} F_{1:1;1}^{1:2;2} \begin{bmatrix} \alpha : & \beta', \gamma : & \beta, \gamma' : \\ \beta + \beta' : & \alpha - \beta + \delta & \alpha - \beta' + \delta' \end{bmatrix} [183]$$

(9.155)

$$F_{1:s;v}^{1:r;u} \begin{bmatrix} \alpha : (a_r) : (c_u) : \\ \gamma : (b_s) : (d_v); \end{bmatrix} | x, y \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(\alpha)_n (\gamma - \alpha)_n \prod_{j=1}^r (a_j)_n \prod_{j=1}^u (c_j)_n}{(\gamma + n - 1)_n (\gamma)_{2n} \prod_{j=1}^s (b_j)_n \prod_{l=1}^v (d_l)_n} \frac{(xy)^n}{n!} \times {}_{r+1}F_{s+1} \begin{pmatrix} (a_r) + n, & \alpha + n \\ (b_s) + n, & \gamma + 2n \end{pmatrix} {}_{u+1}F_{v+1} \begin{pmatrix} (c_u) + n, & \alpha + n; \\ (d_v) + n, & \gamma + 2n; \end{pmatrix} y$$

[85]

$$(9.156) \quad {}_{3}F_{2}\left(\begin{array}{cc} -n, n+a, b \\ c, d \end{array} \mid 1\right) {}_{3}F_{2}\left(\begin{array}{cc} -n, n+a, e \\ c, f \end{array} \mid 1\right)$$

$$= \frac{(-)^{n}(a-c+1)_{n}}{(c)_{n}}F_{2:1;1}^{2:2;2}\left[\begin{array}{cc} -n, n+a: & b, e; & d-b, f-e \\ d, f: & c; & a-c+1 \end{array} \mid 1, 1\right].$$

[85]

$$\begin{array}{ll} (9.157) \quad F_{2:1;1}^{2:2;2} \left[\begin{array}{ccc} a,b: & -x,y+e; & -y,x+d \\ d,e: & c; & b \end{array} \right] \ 1,1 \\ = \frac{(d-a)_x(e-a)_y}{(d)_x(e)_y} F_{2:1;0}^{2:2;1} \left[\begin{array}{ccc} a,-x: & 1+a-c,-y; & c-b \\ c,1+a-d-x: & 1+a-e-y; & - \end{array} \right] \ 1,1 \end{array}$$

if $x, y = 0, 1, \dots$ [85]

(9.158)

$$F_{2:1;1}^{2:2;2} \begin{bmatrix} a,b: & -x,y+e; & -y,x+d \\ d,e: & c; & c' \end{bmatrix} = \sum_{r=0}^{\min(x,y)} \frac{(a)_r(b)_r(a+b-c-c'+1)_r}{r!(c)_r(c')_r} \frac{(-x)_r(-y)_r}{(d)_r(e)_r} \\ \times {}_3F_2 \begin{pmatrix} r+a,r+b,r-x \\ r+c,r+c \end{pmatrix} | 1 \end{pmatrix} {}_3F_2 \begin{pmatrix} r+a,r+b,r-y \\ r+c',r+e \end{pmatrix} | 1 \end{pmatrix}$$

if x, y = 0, 1, ...

9.2. The Confluent Hypergeometric Function.

9.3. The Meijer G-Function. [2]

$$(9.159) \quad G_{p+1,q+2}^{m+1,n+1} \left(z \mid a, a_p \atop a, b_q, b \right) = (-)^{a-b} G_{p,q+1}^{m+1,n} \left(z \mid a_p \atop b_q, b \right)$$

$$- (-1)^{a-b} \sum_{k=1}^{a-b} \operatorname{Res}_{s=k-a} \left[\frac{\Gamma(b+s) \prod_{i=1}^m \Gamma(b_i+s) \prod_{i=1}^n \Gamma(1-a_i-s)}{\prod_{i=n+1}^p \Gamma(a_i+s) \prod_{i=m+1,q}^n \Gamma(1-b_i-s)} z^{-s} \right]$$

if a - b > 0. [2]

$$(9.160) G_{p+1,q+2}^{m+1,n+1} \left(z \mid \begin{array}{c} a, a_p \\ a, b_q, b \end{array} \right) = (-)^{a-b} G_{p,q+1}^{m+1,n} \left(z \mid \begin{array}{c} a_p \\ b_q, b \end{array} \right)$$

if $a - b \le 0$. [2]

$$(9.161) G_{p+2,q+1}^{m,n+1} \left(z \mid \begin{array}{c} a, a_p, b \\ b_a, b \end{array} \right) = (-)^{a-b} G_{p+1,q}^{m,n} \left(z \mid \begin{array}{c} a_p, a \\ b_a \end{array} \right)$$

if a - b is an integer.

9.4. The MacRobert E-function.

9.5. Riemann and Hurwitz zeta functions. [188, (2.4.1)]

(9.162)
$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx, \quad \sigma > 1.$$

[184, 5]

(9.163)
$$\zeta(3) = \frac{5}{2} \sum_{k \ge 1} \frac{(-)^{k-1}}{k^3 {2k \choose k}} = -\frac{4\pi^2}{7} \sum_{k \ge 0} \frac{\zeta(2k)}{(2k+1)(2k+2)2^{2k}}.$$

[153]

(9.164)
$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n!^4} \left(\frac{4n+1}{2n^2} L_n + \frac{7n^3}{4} L_{n-1} \right)$$

where $L_0 = 0$, $L_1 = 1/3$ and

$$(9.165) \ 4(4n+3)(4n+5)L_{n+1}+2(n+1)^3(6n^3+9n^2+5n+1)L_n-n^6(n+1)^3L_{n-1}=0.$$
[142]

(9.166)
$$\zeta'(2k) = (-)^{k+1} \frac{(2\pi)^{2k}}{2(2k)!} \{ 2k\zeta'(1-2k) - [\psi(2k) - \log(2\pi)]B_{2k} \}.$$

[142]

(9.167)

$$\zeta'(1-2k,p/q) = \frac{[\psi(2k) - \log(2\pi q)]B_{2k}(p/q)}{2k} - \frac{[\psi(2k) - \log(2\pi)]B_{2k}(p/q)}{q^{2k}2k} + (-)^{k+1} \frac{\pi}{(2\pi q)^{2k}} \sum_{n=1}^{q-1} \sin(\frac{2\pi pn}{q}) \psi^{(2k-1)}(n/q) + (-)^{k+1} \frac{2(2k-1)!}{(2\pi q)^{2k}} \sum_{n=1}^{q-1} \cos(\frac{2\pi pn}{q}) \zeta'(2k,n/q) + \frac{\zeta'(1-2k)}{q^{2k}}.$$

[142]

(9.168)
$$\zeta'(1-2k,1/2) = -\frac{B_{2k}\log 2}{k4^k} - \frac{(2^{2k-1}-1)\zeta'(1-2k)}{2^{2k-1}}.$$

[142]

$$(9.169) \quad \zeta'(1-2k,1/3) = -\frac{(9^k - 1)B_{2k}\pi}{\sqrt{3}(3^{2k-1} - 1)8k} - \frac{B_{2k}\log 3}{3^{2k-1}4k} + (-)^k \frac{\psi^{(2k-1)}(1/3)}{2\sqrt{3}(6\pi)^{2k-1}} - \frac{(3^{2k-1} - 1)\zeta'(1-2k)}{2 \times 3^{2k-1}}.$$

[153]

$$(9.170) \quad \sum_{k=1}^{\infty} \frac{k}{k^4 - x^2 k^2 - y^4} = \sum_{n,m=0}^{\infty} \binom{n+m}{n} \zeta (2n + 4m + 3) x^{2n} y^{4m}$$
$$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-)^{n-1} r(n)}{n \binom{2n}{n}} \frac{\prod_{m=1}^{n-1} ((m^2 - x^2)^2 + 4y^4)}{\prod_{m=n}^{2n} (m^4 - x^2 m^2 - y^4)}$$

where

(9.171)

$$r(n) = 205n^6 - 160n^5 + (32 - 62x^2)n^4 + 40x^2n^3 + (x^4 - 8x^2 - 25y^4)n^2 + 10y^4n + y^4(x^2 - 2).$$

[5]

(9.172)
$$\sum_{k\geq 1} \frac{(-)^k}{k} [\zeta(nk) - 1] = \log \left(\prod_{j=0}^{n-1} \Gamma[2 - (-)^{(2j+1)/n}] \right).$$

[5

(9.173)

$$\sum_{k=2}^{\infty} (-)^k [\zeta(k) - 1] k^n = -1 + \frac{1 - 2^{n+1}}{n+1} B_{n+1} - \sum_{k=1}^{n} (-)^k k! \zeta(k+1) S(n+1, k+1),$$

with S the Stirling numbers of the second kind

[5]

(9.174)
$$\sum_{k=2}^{\infty} [\zeta(k) - 1]k^n = 1 + \sum_{k=1}^{n} k! \zeta(k+1) S(n+1, k+1),$$

[6]

(9.175)
$$-\sum_{k=1}^{\infty} \frac{k}{4^{2k}} \zeta(2k+1) = G-1.$$

[184]

(9.176)
$$\sum_{k>0} \frac{\zeta(2k)}{(2k+1)4^{2k}} = -\frac{G}{\pi} - \frac{1}{4}\log 2.$$

[184]

(9.177)
$$\sum_{k>0} \frac{\zeta(2k)}{2k+1} \left(\frac{3}{4}\right)^{2k} = \frac{G}{3\pi} - \frac{1}{4}\log 2.$$

(9.178)
$$\frac{1}{16} \sum_{k=1}^{\infty} \frac{3^k - 1}{4^k} (k+1)\zeta(k+2) = G.$$

[5]

(9.179)
$$\sum_{k=1}^{\infty} \frac{\zeta(2k+1) - 1}{k+2} = \frac{2}{3} - \frac{\gamma}{2} + \log 2 + 6\zeta'(-1).$$

[5]

(9.180)
$$\sum_{k=2}^{\infty} \frac{\zeta(k)}{(k+1)(k+2)} = \frac{1-\gamma}{6} - 2\zeta'(-1).$$

[5]

(9.181)
$$\sum_{k=2}^{\infty} \frac{k^2}{k+1} [\zeta(k) - 1] = \frac{3}{2} - \frac{\gamma}{2} + \frac{\pi^2}{6} - \frac{1}{2} \log(2\pi).$$

[5]

(9.182)
$$\sum_{k=2}^{\infty} [\zeta(4k) - 1] = \frac{7}{8} - \frac{\pi}{4} \coth \pi$$

[142]

$$(9.183) 4\sum_{k=0}^{\infty} \frac{1-\zeta(2k)}{(2k+1)3^{2k}} = \log(192) - \pi \frac{2\sqrt{3}}{9} + \frac{\sqrt{3}}{3\pi} \psi^{(1)}(1/3).$$

[**5**]

$$(9.184) \qquad \sum_{k=1}^{\infty} [\zeta(4k) - 1]z^{4k} = \frac{3z^4 - 1}{2(z^4 - 1)} - \frac{\pi z}{4} [\cot(\pi z) + \coth(\pi z)], \quad |z| < 2.$$

[0] (9.185

$$\sum_{k=1}^{\infty} [\zeta(2k) - 1] \sin k = -\frac{1}{2} \cot(1/2) + \frac{\pi}{2} \frac{\sin(1/2) \sin[2\pi \cos(1/2)] - \cos(1/2) \sinh[2\pi \sin(1/2)]}{\cos[2\pi \cos(1/2)] - \cosh[2\pi \sin(1/2)]}$$

[5]

(9.186)
$$\sum_{k=1}^{\infty} {p+k \choose k} \zeta(p+k+1,a) z^k = \frac{(-)^p}{p!} [\psi^{(p)}(a) - \psi^{(p)}(a-z)].$$

[5]

(9.187)
$$\sum_{k=1}^{\infty} \frac{t^k}{k^2} \zeta(2k) = \log[\pi \sqrt{t} \csc(\pi \sqrt{t}].$$

[6]

(9.188)
$$\frac{1}{8} \sum_{k=0}^{\infty} \frac{k}{2^k} \zeta(k+1, 3/4) = G.$$

(9.189)
$$-\frac{1}{8} \sum_{k=2}^{\infty} \frac{k}{2^k} \zeta(k+1, 5/4) = G - 1.$$

(9.190)

$$\zeta'(1, p/q) - \zeta'(1, 1 - p/q) = \pi \cot \frac{\pi p}{q} [\log(2\pi q) + \gamma] - 2\pi \sum_{j=1}^{q-1} \log(\Gamma(j/q)) \sin \frac{2\pi j p}{q}.$$

[75]

(9.191)
$$\int_0^1 \sin(2\pi q)\zeta(z,q)dq = \frac{(2\pi)^z}{4\Gamma(z)}\csc\frac{z\pi}{2}.$$

[75]

(9.192)
$$\int_0^1 \sin(2k\pi q)\zeta(z,q)dq = \frac{(2\pi)^z k^{z-1}}{4\Gamma(z)}\csc\frac{z\pi}{2}.$$

[75]

(9.193)
$$\int_{0}^{1} \cos(2k\pi q)\zeta(z,q)dq = \frac{(2\pi)^{z}k^{z-1}}{4\Gamma(z)}\sec\frac{z\pi}{2}.$$

[75]

(9.194)
$$\int_0^1 \zeta(z',q)\zeta(z,q)dq = -\zeta(z+z'-1)B(1-z,1-z')\frac{\cos\frac{\pi(z-z')}{2}}{\cos\frac{\pi(z+z')}{2}}.$$

[75]

(9.195)
$$\int_0^1 q^n \zeta(z,q) dq = -n! \sum_{j=1}^n \frac{\zeta(z-j)}{(z-j)_j (n-j+1)!}.$$

[75]

(9.196)
$$\int_0^1 \ln(\sin \pi q) \zeta(z, q) dq = -\frac{\Gamma(1-z)}{(2\pi)^{1-z}} \sin \frac{\pi z}{2} \zeta(2-z).$$

[95]

$$\Phi(z,s,u) = 2^{-s} \left[\Phi(z^2,s,u/2) + z \Phi(z^2,s,(u+1)/2) \right].$$

[57]

(9.198)
$$\zeta(r,s) \equiv \sum_{m \le r} \frac{1}{n^s m^r}.$$

[57]

(9.199)
$$\zeta(r,s) + \zeta(s,r) = \zeta(r)\zeta(s) - \zeta(r+s).$$

[57]

(9.200)
$$\zeta(r,s) = -\frac{1}{2}\zeta(r+s) + \sum_{j=1,j \text{ odd}} {\binom{j-1}{s-1} + \binom{j-1}{r-1}} \zeta(j)\zeta(r+s-j).$$

for r even and s odd.

(9.201)
$$\zeta(1,s) = \frac{s}{2}\zeta(s+1) - \frac{1}{2}\sum_{j=1}^{s-2}\zeta(j+1)\zeta(s-j).$$

[57]

(9.202)
$$\zeta(r,s) = -\frac{1}{2}\zeta(r+s) + \sum_{k=3,k\text{odd}}^{\infty} \Phi_k \sum_{j=0,j\text{even}}^{k-1} \binom{k}{j} \eta(r-j) \eta(s-k+j),$$

where

(9.203)
$$\Phi_k \equiv -\frac{2}{\pi} \sum_{d=1, d \text{ odd}}^{k-2} (-1)^{(d-1)/2} \frac{\pi^d}{d!} \zeta(k-d+1),$$

and

$$\eta(s) = (1 - 2^{1-s})\zeta(s).$$

9.6. Bernoulli Numbers and Polynomials. [95]

(9.205)
$$B_m(x) = \sum_{n=0}^m \frac{1}{n+1} \sum_{k=0}^n (-1)^k \binom{n}{k} (x+k)^m.$$

[48]

$$(9.206) \quad \sum_{k=0}^{m} \frac{\binom{m}{k}}{\binom{n+k+s}{s}} y^{m-k} B_{n+k+s}(x) = \sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{m+k+s}{s}} (-y)^{n-k} B_{m+k+s}(x+y)$$

$$+ \sum_{j=0}^{s-1} \sum_{i=0}^{s-1-j} \binom{s-1-j}{i} \binom{s-1}{j} \frac{(-1)^{n+1+i} sy^{m+n+s-j} B_j(x)}{(m+n+1+i) \binom{m+n+l}{n}}$$

and

$$\sum_{k=0}^{m} {m \choose k} {n+k \choose s} y^{m-k} B_{n+k-s}(x) = \sum_{k=0}^{n} {n \choose k} {m+k \choose s} (-y)^{n-k} B_{m+k-s}(x+y).$$
[48]

(9.208) $\sum_{k=0}^{k} {k+1 \choose j} (k+j+1) B_{k+j} = 0, \quad k \ge 1.$

[57]

(9.209)

$$B_s(t)B_r(t) = \sum_{j>0, j \equiv r+s \bmod 2} \frac{1}{j} \left(r \binom{s}{j-r} + s \binom{r}{j-s} \right) B_{r+s-j}B_j(t) + \frac{1}{2} ((-1)^{r+s} + 1) \frac{(-)^r B_{r+s}}{\binom{r+s}{s}}$$

[95]

(9.210)
$$E_m(x) = \sum_{n=0}^m \frac{1}{2^n} \sum_{k=0}^n (-1)^k \binom{n}{k} (x+k)^m.$$

References

- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, 9th ed., Dover Publications, New York, 1972. MR 0167642 (29 #4914)
- V. S. Adamchik, The evaluation of integrals of Bessel functions via g-function identities, J. Comput. Appl. Math. 64 (1995), no. 3, 283–290. MR 1365430
- 3. _____, A class of logarithmic integrals, Proc. 1997 Intl. Symp. Symbol. Algebr. Comput., 1997, pp. 1–8. MR 1809963
- On Stirling numbers and Euler sums, J. Comput. Appl. Math 79 (1997), no. 1, 119–130. MR 1437973 (97m:11025)
- V. S. Adamchik and H. M. Srivastava, Some series of the Zeta and related functions, Analysis (Munich) 18 (1998), no. 2, 131–144. MR 1625172 (99d:11096)
- Victor Adamchik, 33 representations for catalan's constant, http://www.cs.cmu.edu/adamchik/articles/catalan/catalan.htm, 2007.
- A. D. Alhaidari, Evaluation of integrals involving orthogonal polynomials: Laguerre polynomial and Bessel function example, Appl. Math. Lett 20 (2007), 38–42. MR 2273125
- 8. Tewodros Amdeberhan, M. L. Glasser, M. C. Jones, V. H. Moll, R. Posey, and D. Varela, The Cauchy-Schlömilch transformation, arXiv:math/1004.2445 (2010).
- 9. Tewodros Amdeberhan, Luis A. Medina, and Victor H. Moll, *The integrals in Gradshteyn and Ryzhik. part 5: Some trigonometric integrals*, arXiv:math/0705.2379 (2007).
- 10. Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: A survey of old proofs and some new ones, arXiv:math/0707.2118 (2007).
- The laplace transform of the digamma function: an integral due to Glasser, Manna and Oloa, arXiv:math/0707.3663 (2007).
- S. Amghibech, On sums involving binomial coefficients, J. Integer Seq. 10 (2007), # 07.2.1.
 MR 2276785
- 13. Moa Apagodu and Doron Zeilberger, Searching for strange hypergeometric identities by sheer brute force, Integers: El. J. Combin. Number Theory 8 (2008), #A36. MR 2438527
- Alexander Apelblat, Repeating use of integral transforms—a new method for evaluation of some infinite integrals, IMA J. Appl. Math. 27 (1981), no. 4, 481–496. MR 0637508
- 15. ______, Table of definite and infinite integrals, Physical Sciences Data, vol. 13, Elsevier, 1983. MR 0902582
- 16. _____, Some integrals of gamma, polygamma and Volterra functions, IMA J. Appl. Math. 34 (1985), no. 2, 173–186. MR 0795510
- 17. _____, Tables of integrals and series, 1 ed., Harri Deutsch, Thun, 1996.
- 18. Paul Appell and Joseph Kampé de Fériet, Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.
- 19. Nigel Backhouse, Pancake functions and approximations to π , Math. Gaz. **79** (1995), no. 485, 371–374.
- D. H. Bailey, J. M. Borwein, and R. E. Crandall, Integrals of the Ising class, J. Phys. A: Math. Gen. 39 (2006), 12271–12302. MR 2261886
- David Bailey, Jonathan M. Borwein, and Roland Girgensohn, Experimental evaluation of Euler sums, Exper. Math. 3 (1994), no. 1, 17. MR 1302815
- David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation of various polylogarithmic constants, Math. Com. 66 (1997), 903–913. MR 1415794
- David H. Bailey, A compendium of BBP-type formals for mathematical constants, 16 October 2009.
- W. N. Bailey, A note on Bateman's expansion in Bessel functions, Proc. Cambr. Phil. Soc. 25 (1929), no. 1, 48–49.
- Some series of squares of Bessel functions, Proc. Cambr. Phil. Soc. 26 (1930), no. 1, 82–87.
- 26. _____, Some series and integrals involving associated legendre functions (ii), Proc. Cambr. Phil. Soc. 27 (1931), no. 3, 381–386.
- Some infinite integrals involving Bessel functions, Proc. Lond. Math. Soc. 40 (1936), no. 1, 37–48, E: [103].
- Eugenio P. Balanzario and Jorge Sánchez-Ortiz, A generating function for a class of generalized Bernoulli polynomials, Raman. J. 19 (2009), 9–18. MR 2501233

- 29. W. Becken and P. Schmelcher, The analytic continuation of the gaussian hypergeometric function $_1f_1(a,b;c;z)$ for arbitrary parameters, J. Comput. Appl. Math. **126** (2000), no. 1–2, 449–478. MR 1806771
- Bruce C. Berndt, Chapter 11 of Ramanujan's second notebook, Bull. Lond. Math. Soc. 15 (1983), no. 4, 273–320. MR 0703753 (85a:01043)
- 31. P. Blasiak, G. Dattoli, A. Horzela, K. A. Penson, and K. Zhukovsky, *Motzkin numbers, central trinomial coefficients and hybrid polynomials*, arXiv:math.CO/0802.0075 (2008).
- George Boros and Victor H. Moll, An integral with three parameters, SIAM Rev. 40 (1998), no. 4, 972–980. MR 1659712
- Sums of arctangents and some formulas of Ramanujan, Sci. Ser. A Math. Sci (N.S.)
 (2005), 13–24. MR 2196063 (2006j:33001)
- 34. _____, A summation method due to Carr: Part 1, Scientia. Series A: Math. Sci. (2006), no. 12, 21–38. MR 2257096
- 35. David Borwein and J. M. Borwein, On an intriguing integral and some series related to $\zeta(4)$, Proc. Am. Math. Soc. **123** (1995), 1191–1198. MR 1231029
- David Borwein, Jonathan M. Borwein, and David M. Bradley, Parametric Euler sum identities, J. Math. Anal. Appl. 316 (2006), 328–338. MR 2201764
- 37. Jonathan Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some arithmetic properties of short random walk integrals, Ramanujan J. 26 (2011), no. 1, 109–132. MR 2837721
- 38. Jonathan Michael Borwein, David J. Broadhurst, and Joel Kamnitzer, Central binomial sums, multiple Clausen values and Zeta values, Exp. Math. 10 (2001), no. 1, 25–34. MR 1821569 (2002k:11105)
- 39. Jonathan Michael Borwein and Roland Girgensohn, *Evaluations of binomial series*, Tech. Report 02-188, CECM, 2002.
- Khristo N. Boyadzhiev, Series with central binomial coefficients, Catalan numbers, and harmonic numbers, J. Integer Seq. 15 (2012), 12.1.7. MR 2872464
- David M. Bradley, A class of series acceleration formulae for Catalan's constant, Ramanujan J. 3 (1999), no. 2, 159–173. MR 1703281
- 42. _____, Representations of Catalan's constant, 2001.
- 43. David K. Brice, Three-parameter formula for the electronic stopping cross section at non-relativistic velocities, Phys. Rev. A 6 (1972), no. 5, 1791–1805.
- D. J. Broadhurst, Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5), arXiv:math/9803067 [math.CA] (1998).
- Wolfgang Bühring, Transformation formulas for terminating Saalschützian hypergeometric series of unit argument, J. Appl. Math. Stoch. Anal. 8 (1995), no. 2, 189–194. MR 1330122
- 46. Marc Chamberland, Binary BBP-formulae for logarithms and generalized Gaussian-Mersenne primes, J. Integer Seq. 6 (2003), 03.3.7. MR 2046407 (2005a:11201)
- T. W. Chaundy, An extension of hypergeometric functions (i), Quart. J. Math. 14 (1943), 55–78. MR 0010749
- Kwang-Wu Chen, Identities from the binomial transform, J. Number Theory 124 (2007), 142–150. MR 2320995
- William Y. C. Chen, Quing-Hu Hou, and Yan-Ping Mu, A telescoping method for double summations, J. Comp. Appl. Math. 196 (2006), 553–566. MR 2249445
- Junesang Choi and Arjun Kumar Rathie, Generalizations of two summation formulas for the generalized hypergeometric function of higher order due to Exton, Commun. Korean Math. Soc. 25 (2010), no. 3, 385–389.
- 51. Wenchang Chu and Wenlong Zhang, Transformations of kummer-type for 2f2-series and their q-analogues, J. Comp. Appl. Math. 216 (2008), 467–473. MR 2412920
- Mark W. Coffey, On some log-cosine integrals related to ζ(3), ζ(4) and ζ(6), J. Comp. Appl. Math. 159 (2003), 205–215. MR 20005956
- Mark W. Coffey and S. J. Johnston, Some results involving series representations of hypergeometric functions, J. Comp. Appl. Math. 233 (2009), no. 3, 674–679. MR 2583002
- M. E. Cohen, Some classes of generating functions for the laguerre and hermite polynomials, Math. Comp. 31 (1977), no. 238, 511–518. MR 0442323
- 55. Lin Cong, On Bernoulli numbers and its properties, arXiv:math.HO/0408082 (2004).
- 56. Donal F. Connon, Some series and integrals involving the Rieman zeta function, binomial coefficients and the harmonic numbers, arXiv:0710.4023 (2007).

- Richard E. Crandall and J. P. Buhler, On the evaluation of Euler sums, Exper. Math. 3 (1994), no. 4, 275–285. MR 1341720
- S. A. Cruz, C. Cisneros, and I. Alvarez, Individual orbital contribution to the electronic stopping cross section in the low-velocity region, Phys. Rev. A 17 (1978), no. 1, 132–140, (E): [59].
- 59. _____, Erratum: Individual orbital contribution to the electronic stopping cross section in the low-velocity region, Phys. Rev. A **20** (1979), no. 2, 628–629.
- Djurdje Cvijović and Jacek Klinowski, Closed-form summation of some trigonometric series, Math. Comp. 64 (1995), no. 209, 205–210. MR 1270616
- Guang-ming Dai, Model compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen-Loève functions, J. Opt. Soc. Am. A 12 (1995), no. 10, 2182– 2193.
- Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series ii, Appl. An. Discr. Math. 5 (2011), 212–229. MR 2883425
- A. L. Dixon and W. L. Ferrar, Integrals for the product of two Bessel functions, Quart. J. Math. 4 (1933), no. 1, 193–208.
- K. A. Driver and S. J. Johnston, An integral representation of some hypergeometric functions, El. Trans. Num. Analysis 25 (2006), 115–120. MR 2280366
- Herbert Bristol Dwight, Tables of integrals and other mathematical data, 3rd ed., Macmillan, New York, 1957. MR 0129577 (23 #B2613)
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's second interesting series, arXiv:1009.4274 [math-ph] (2010).
- Askar Dzhumadil'daev and Damir Yeliussizov, Power sums of binomial coefficients, J. Integer Seq. 16 (2013), # 13.1.4. MR 3022328
- G. Eason, B. Noble, and I. N. Sneddon, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Phil. Trans. Roy. Soc. Lond. A 247 (1955), no. 935, 529–551. MR 0069961
- 69. H. El-Rabii, On the evaluation of the integral $\int_0^\infty x^{-a}(1-\sin^b x/x^b)dx$, Scientia A: Math. Sci. 14 (2007), 21–25. MR 2330700
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi (eds.), Higher transcendental functions, vol. 1, McGraw-Hill, New York, London, 1953. MR 0058756 (15,419i)
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi (eds.), Higher transcendental functions, vol. 2, McGraw-Hill, New York, London, 1953.
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi (eds.), Tables of integral transforms, vol. 2, McGraw-Hill, New York, London, 1954. MR 0065685 (16.468c)
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi (eds.), Tables of integral transforms, vol. 1, McGraw-Hill, New York, London, 1954. MR 0061695 (15.868a)
- Olivier Espinosa, On the evaluation of Matsubara sums, Math. Comp. 79 (2010), no. 271, 1709–1725. MR 2630009
- Olivier Espinosa and Victor H. Moll, On some integrals involving the Hurwitz zeta function: Part 1, Raman. J. 6 (2002), no. 2, 159–188. MR 1908196
- 76. _____, The evaluation of Tornheim double sums. part 2, arXiv:0811.0557 [math.NT] (2008).
- The evaluation of Tornheim double sums. part 2, Raman. J. 22 (2010), no. 1, 55–99.
 MR 2610609
- Harold Exton, Some new summation formulae for the generalised hypergometric function of higher order, J. Comp. Appl. Math. 79 (1997), no. 2, 183–187, E:[50]. MR 1450279
- Valery I. Fabrikant, Computation of infinite integrals involving three Bessel functions by introduction of a new formalism, Z. Angew. Math. Mech. 83 (2003), no. 6, 363–374. MR 1986960
- G. M. Fichtenholz, Differential- und Integralrechnung, vol. II, Deutscher Verlag der Wissenschaften, Berlin, 1964.
- 81. Jerry L. Fields and Jet Wimp, Expansions of hypergeometric functions in series of other hypergeometric functions, Math. Comp. 15 (1961), no. 76, 390–395. MR 23 #A3289
- 82. George Fikioris, Table errata 634, Math. Comp. 67 (1998), no. 224, 1753-1754. MR 1625064
- 83. C. Fox, The solution of a moment problem, J. Lond. Math. Soc. s1-13 (1938), no. 1, 12-14.

- J. M. Gandhi, A conjectured representation of Genocchi numbers, Amer. Math. Monthly 77 (1970), no. 5, 505. MR 1535914
- 85. George Gasper, Products of terminating $_3f_2(1)$ series, Pac. J. Math. **56** (1975), no. 1, 87–95. MR 0374508
- 86. M. L. Glasser, Reduction formulas for multiple series, Math. Comp. ${\bf 28}$ (1974), no. 125, 265–266. MR 0328414
- 87. _____, A sum of Bessel functions, SIAM Rev. 22 (1980), no. 4, 508.
- 88. _____, Problems and solutions, SIAM Rev. 26 (1984), no. 2, 276–277.
- 89. Xavier Gourdon and Pascal Sebah, *The logarithmic constant:* log 2, 2008, http://numbers.computation.free.fr/Constants/Log2/log2.html.
- 90. Boris Gourévitch and Jesús Guillera Goyanes, Construction of binomial sums for π and polylogarithmic constants inspired by BBP formulas, Appl. Math. E-Notes **7** (2007), 237–246.
- I. Gradstein and I. Ryshik, Summen-, Produkt- und Integraltafeln, 1st ed., Harri Deutsch, Thun, 1981. MR 0671418 (83i:00012)
- R. L. Graham and John Riordan, The solution of a certain recurrence, Am. Math. Monthly 73 (1966), no. 5, 604–608. MR 0227029
- 93. I. P. Grant and H. M. Quiney, A class of Bessel function integrals with application in particle physics, J. Phys. A: Math. Gen. 26 (1993), no. 24, 7547–7562. MR 1257782
- 94. Jesus Guillera, History of the formulas and algorithms for π , arXiv:0807.0872 [math.HO] (2009).
- 95. Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Raman. J. 16 (2008), no. 3, 247–270. MR 2429900
- Robert A. Gustafson, A generalization of Selberg's beta integral, Bull. Am. Math. Soc. 22 (1990), no. 1, 97–105. MR 1001607
- 97. Hyuk Han and Seunghyn Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat 29 (2008), no. 7, 1544–1554. MR 2431746
- 98. Leetsch Charles Hsu and Evelyn L. Tan, A refinement of de Bruyn's formula for $\sum a^k k^p$, Fib. Quart. 38 (2000), no. 1, 56–59. MR 1738647 (2000k:11030)
- Simon Hubbert and Stefan Müller, Interpolation with circular basis functions, Numer. Algorithms 42 (2006), 75–90. MR 2249568
- 100. Robert Israel, priv. commun., 4 January 2009.
- 101. _____, SeqFan List, 4 July 2009.
- A. D. Jackson and L. C. Maximon, Integrals of products of Bessel functions, SIAM J. Math. Anal. 3 (1972), no. 3, 446–460. MR 0311958 (47 #520)
- Augustus J. E. M. Janssen, Zernike circle polynomials and infinite integrals involving the product of Bessel functions, arXiv:1007.0667 [math-ph] (2010).
- 104. W. B. Jordan, Problem 76-2, an infinite sum, SIAM Rev. 26 (1984), no. 2, 276-278.
- 105. Per W. Karlsson, Some reduction formulae for double power series and Kempé de Fériet functions, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 1, 31–36. MR 0748975 (85h:3304)
- Emrah Kilic and Dursun Tasci, Factorizations and representations of the backward secondorder linear recurrences, J. Comput. Appl. Math. 201 (2007), no. 1, 182–197. MR 2293547 (2008e:65399)
- Peter Kirschenhofer, A note on alternating sums, El. J. Combinat. 3 (1996), no. 2, #R7.
 MR 1392492
- 108. K. S. Kölbig, Closed expressions for $\int_0^1 t^{-1} \log^{n-1} t \log^p (1-t) dt$, Math. Comp. **39** (1982), no. 160, 647–654. MR 0669656
- no. 160, 647–654. MR 0669656 109. _____, On the integral $\int_0^{\pi/2} \log^n \cos x \log^p \sin x dx$, Math. Comp. **40** (1983), no. 162, 565–570. MR 0689472
- 110. ______, Table errata 617, Math. Comp. 64 (1995), no. 209, 449–460. MR 1270626
- 111. K. S. Kölbig and H. Scherb, On a Hankel transform integral containing an exponential function and two Laguerre polynomials, J. Comput. Appl. Math. 71 (1996), no. 2, 357–363. MR 1399902
- K. S. Kölbig and W. Strampp, Some infinite integrals with powers of logarithms and the complete Bell polynomials, J. Comput. Appl. Math. 69 (1996), 39–47. MR 1391610

- 113. Tom H. Koornwinder, *Identities of nonterminating series by Zeilberger's algorithm*, arXiv:math.CA/9805010 (1998).
- 114. Ernst D. Krupnikov, Table errata 601, Math. Comp. 41 (1983), no. 164, 782–783.
 MR 0717727
- 115. Jaume Oliver Lafont, Bbp binary and ternary formulas, 7 June 2010, priv. commun.
- 116. ______, Generalized mercator series, 13 September 2011, priv. commun.
- 117. Adeline Lambert, Table errata 628, Math. Comp. 66 (1997), no. 217, 463-463. MR 1388890
- L. J. Landau and N. J. Luswili, Asymptotic expansion of a Bessel function integral using hypergeometric functions, J. Comp. Appl. Math. 132 (2001), no. 2, 387–397. MR 1840636
- Derrick Henry Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (1985), no. 7, 449–457, E: [127]. MR 0801217 (87c:40002)
- 120. I. E. Leonard, More on fresnel integrals, Math. Monthly $\bf 95$ (1988), no. 5, 431–433. MR 0937530
- S. K. Lucas, Approximations to π derived from integrals with nonnegative integrands, Amer. Math. Monthly 116 (2009), no. 2, 166–172. MR 2478060
- 122. Wilhelm Magnus and Fritz Oberhettinger, Formeln und Sätze für die speziellen Funktionen der Mathematischen Physik, 2nd ed., Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 52, Springer, Berlin, Heidelberg, 1948.
- 123. Richard J. Mathar, Mutual conversion of three flavors of Gaussian Type Orbitals, Int. J. Quant. Chem. 90 (2002), no. 1, 227–243, E: [130].
- 124. _____, Orthogonal set of basis functions over the binocular pupil, arXiv:physics/0706.3682 [optics] (2007).
- 125. _____, Karhunen-Loève basis functions of Kolmogorov turbulence in the sphere, Baltic Astronomy 17 (2008), no. 3/4, 383–398, E: [131].
- 126. _____, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT] (2008).
- 127. _____, Corrigenda to "interesting series involving the central binomial coefficient" [Am. Math. Monthly vol 92 (1985)], arXiv:0905.0215 [math.CA] (2009).
- 128. ______, A java Math.BigDecimal implementation of core mathematical functions, arXiv:0908.3030 [math.NA] (2009).
- 129. _____, Numerical evaluation of the oscillatory integral over $e^{i\pi x}x^{1/x}$ between 1 and infinity, arXiv:0912.3844 [math.CA] (2009).
- 130. ______, Erratum: Mutual conversion of three flavors of Gaussian Type Orbitals, Int. J. Quant. Chem. 110 (2010), no. 4, 962.
- 131. ______, Karhunen-Loève basis functions of Kolmogorov turbulence in the sphere (erratum), Baltic Astronomy 19 (2010), no. 1/2, 143–144.
- 132. _____, Tightly circumscribed regular polygons, arXiv:1301.6293 [math.MG] (2013).
- 133. Harry A. Mavromatis, Two integrals involving products of two Bessel and a generalized hypergeometric function, J. Comp. Appl. Math. 59 (1995), no. 3, 381–384. MR 1346420
- 134. Luis A. Medina and Victor H. Moll, A class of logarithmic integrals, Ramanujan J. 20 (2009), 91–125. MR 2546186
- Luis A. Medina, Victor H. Moll, and Eric S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325 [math.NT] (2009).
- R. Mehrem, J. T. Londergan, and M. H. Macfarlane, Analytic expressions for integrals of products of spherical Bessel functions, J. Phys. A: Math. Gen. 24 (1991), 1435–1453.
 MR 1121820
- 137. István Mező, Summation of hyperharmonic series, arXiv:0811.0042 [math.CO] (2008).
- 138. István Mező and Ayhan Dil, Euler-seidel method for certain combinatorial numbers and a new characterization of fibonacci sequence, Cent. Eur. J. Math 7 (2009), no. 2, 310–321. MR 2506968
- 139. Michael Milgram, On hypergeometric 3f2(1), arXiv:math.CA/0603096 (2006).
- Allen R. Miller, Certain summation and transformation formulas for generalized hypergeometric series, J. Comput. Appl. Math. 231 (2009), 964–972. MR 2549757
- Allen R. Miller and R. B. Paris, Euler-type transformations for the generalized hypergeometric function, Z. Angew. Math. Phys. 62 (2010), no. 1, 31–45.
- Jeff Miller and Victor S. Adamchik, Derivatives of the Hurwitz zeta function for rational arguments, J. Comput. Appl. Math. 100 (1998), no. 2, 201–206. MR 1569109
- Victor H. Moll, The evaluation of integrals: A personal story, Not. AMS 49 (2002), no. 3. MR 1879857

- 144. _____, The integrals in Gradshteyn and Ryzhik. part 1: A family of logarithmic integrals, Scientia A 14 (2007), 1–6. MR 2330697
- 145. Bengt Nagel, An expansion of the hypergeometric function in bessel functions, J. Math. Phys. 42 (2001), no. 12, 5910. MR 1866696
- 146. A. A. R. Neves, L. A. Padilha, A. Fontes, E. Rodrigues, C. H. B. Cruz, L. C. Barbosa, and C. L. Cesar, Analytical results for a Bessel function times Legendre polynomial class integrals, J. Phys. A: Math. Gen. 39 (2006), no. 18, L293–L296. MR 2243193
- Robert J. Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am. 66 (1976), no. 3, 207–211.
- 148. N. E. Nørlund, Hypergeometric functions, Acta Math. 94 (1955), no. 1, 289–349. MR 0074585
- 149. Fritz Oberhettinger, Tabellen zur Fourier-Transformation, Springer, Berlin, Heidelberg, 1957. MR 0081997
- 150. _____, Tables of Bessel Transforms, Springer, Berlin, Heidelberg, 1972. MR 0352888
- R. B. Paris, A kummer-type transformation of a 2f2 hypergeometric function, J. Comput. Appl. Math. 173 (2005), no. 2, 379–382. MR 2102904
- P. J. E. Peebles, Statistical analysis of catalogs of extragalactic objects. I. Theory, Astroph. J. 185 (1973), 413–440.
- 153. Kh. Hessami Pilehrood and Tatiana Hessami Pilehrood, Simultaneous generation for zeta values by the Markov-WZ method, Discr. Math. Theor. Comp. Sci. 10 (2008), no. 3, 115–124. MR 2457055
- 154. Jean C. Piquette, Table of special function integrals, ACM SIGSAM Bulletin 24 (1990), no. 4, 8–21.
- 155. Alexander Povolotsky, priv. commun., 9 January 2009.
- Helmut Prodinger and Wojciech Szpankowski, A note on binomial recurrences arising in the analysis of algorithms, Inf. Proc. Lett. 46 (1993), no. 6, 309–311. MR 1231833
- 157. V. Rajeswari and K. Srinivasa Rao, Four sets of $_3f_1(1)$ functions, Hahn polynomials and recurrence relations for the 3-j coefficients, J. Phys. A: Math. Gen **22** (1989), no. 19, 4113–4123. MR 1016765
- 158. S. K. Rangarajan, On "a new formula for $p_{m+n}^m(\cos\alpha)$ ", Quart. J. Math. 15 (1964), no. 1, 32–34. MR 0159968
- 159. M. A. Rashid, Evaluation of integrals involving powers of 1 x² and two associated Legendre functions of Gegenbauer polynomials, J. Phys. A: Math. Gen 29 (1986), 2505–2512. MR 0857047 (87m:33009)
- 160. Arjun K. Rathie, Y. S. Yong Sup Kim, and Hyeong Kee Song, Another method for a new two-term relation for the hypergeometric function $_3f_2$ due to Exton, J. Comp. Appl. Math. 167 (2004), no. 2, 485–487. MR 2064704
- 161. John Riordan, Combinatorial identities, John Wiley, New York, 1968. MR 0231725 (38 #53)
- Theodore J. Rivlin, The Chebyshev Polynomials, Pure and Applied Mathematics, John Wiley, New York, London, 1974. MR 0450850 (56 #9142)
- 163. Kelly Roach, *Hypergeometric function representations*, Proc. of the 1996 Intl. Symp. on Symbolic and algebraic computation (Y. N. Lakshman, ed.), ACM, 1996, pp. 301–308.
- 164. Klaus Rottbrand, Finite-sum rules for Macdonald's functions and Hankel's symbols, Int. Transf. Special Func. 10 (2000), no. 2, 115–124. MR 1812510
- 165. Klaus Rottbrand and Christian Weddigen, Closed-form representations of the Laplace transforms of Bessel functions $j_{2n}(a\sqrt{t^2+2b})$, Int. Transf. Special Func. 9 (2000), no. 3, 217–228. MR 1782973
- 166. Ranjan Roy, Binomial identities and hypergeometric series, Amer. Math. Monthly 94 (1987), no. 1, 36–46. MR 0873603 (88f:05012)
- 167. George Rutledge and R. D. Douglas, Table of definite integrals, Am. Math. Monthly 45 (1938), no. 8, 525–530. MR 1524383
- Stefan G. Samko, On some index relations for Bessel functions, Integr. Transf. Spec. Func. 11 (2001), no. 4, 397–402. MR 1887291
- 169. Richard J. Sasiela and John D. Shelton, Transverse spectral filtering and Mellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism, J. Opt. Soc. Am. A 10 (1993), no. 4, 646–660.
- 170. Giovanni Mingari Scarpello and Daniele Ritelli, On computing some special values of hypergeometric functions, arXiv:1212.0251 (2012).

- 171. Glenn M. Schmieg, Table errata 392., Math. Comp. 20 (1966), no. 95, 468–468.
- 172. E. B. Shanks, Iterated sums of powers of the binomial coefficients, Amer. Math. Monthly 58 (1951), no. 6, 404–407. MR 0047594
- L. J. Slater, Expansions of generalized Whittaker functions, Proc. Camb. Phil. Soc. 50 (1954), no. 4, 628–631. MR 0064210
- 174. Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, 1966. MR 0201688
- 175. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc. 50 (2003), no. 8, 912–915, http://oeis.org/. MR 1992789 (2004f:11151)
- 176. Donald R. Snow, Formulas for sums of powers of integers by functional equations, Aequat. Math. 18 (1978), no. 1–2, 269–286. MR 0522512
- 177. Anthony Sofo, Catalan related sums, J. Inequal. Pure Appl. Math. ${\bf 10}$ (2009), no. 3, # 69. MR 2551092
- 178. ______, Integrals and polygamma representations for binomial sums, J. Integer Seq. 13 (2010), # 10.2.8. MR 2594742
- 179. _____, Extensions of Euler harmonic sums, Applic. Anal. Discr. Math. 6 (2012), 317–328. MR 3012679
- 180. G. Solt, Table errata 607., Math. Comput. 47 (1986), no. 176, 768-768. MR 0856719
- Michael Z. Spivey, The humble sum of remainders function, Math. Mag. 78 (2005), no. 4, 300–305.
- 182. ______, Combinatorial sums and finite differences, Discr. Math. **307** (2007), no. 24, 3130–3146. MR 2370116 (2008j:05013)
- 183. H. M. Srivastava, A certain class of q-series transformations, J. Math. Anal. Applic. 107 (1985), no. 2, 498–508. MR 0787729
- 184. H. M. Srivastava, M. L. Glasser, and V. S. Adamchik, Some definite integrals associated with the Riemann zeta function, Zeitsch. f. Analys. Anwend. 19 (2000), no. 3, 831–846. MR 1784133
- Elias M. Stein and Guido Weiss, Introduction to fourier analysis in euclidean spaces, Princeton University Press, Princeton, 1971. MR 0304972
- 186. Lajos Takács, A sum of binomial coefficients, Math. Comp. **32** (1978), no. 144, 1271–1273. MR 0502014
- Münevver Tezer, On the numerical evaluation of an oscillating infinite series, J. Comp. Appl. Math. 28 (1989), 383–390. MR 1038858
- 188. E. C. Titchmarch and D. R. Heath-Brown, *The theory of the Riemann zeta-function*, 2 ed., Oxford Science Publications, 1986. MR 0882550 (88c:11049)
- 189. Tiberiu Trif, Combinatorial sums and series involving inverses of binomial coefficients, Fib. Quart. 38 (2000), no. 1, 79–83. MR 1738651
- Glenn A. Tyler, Analysis of propagation through turbulence: evaluation of an integral involving the product of three Bessel functions, J. Opt. Soc. Am. A 7 (1990), no. 7, 1218–1223.
- Alfred J. van der Poorten and Xuan Chuong Tran, Periodic continued fractions in elliptic function fields, Lect. Not. Comp. Sci. 2369 (2002), 390–403. MR 2041099
- 192. H. van Haeringen and L. P. Kok, Table errata 589, Math. Comput. 39 (1982), no. 160, 747–757. MR 0669666
- 193. Raimundas Vidūnas, A generalization of Kummer's identity, Rocky Mount. J. Math. 32 (2002), no. 2, 919–936. MR 1934920
- 194. ______, Expressions for values of the gamma function, arXiv:math.CA/0403510 (2004).
- 195. _____, Darboux evaluations of algebraic gauss hypergeometric functions, arXiv:math/0504264 [math.CA] (2005).
- Niaz M. Vildanov, Generalization of the Glasser Manna Oloa integral and some new integrals of similar type, arXiv:1007.3460 [math.CA] (2010).
- 197. G. N. Watson, A note on the polynomials of hermite and laguerre, J. Lond. Math. Soc. s1-13 (1938), 29–32.
- A treatise on the theory of Bessel functions, 2nd ed., Cabridge University Press, 1958.
- 199. Kurt Wegschaider, Computer generated proofs of binomial multi-sum identities, Master's thesis, Johannes Kepler Universität Linz, 1997.
- F. J. W. Whipple, Well-poised series and other generalized hypergeometric series, Proc. Lond. Math. Soc. 25 (1926), no. 2, 525–544.

- 201. Kenneth S. Williams, On Saliés sum, J. Numb. Theory 3 (1971), 316-317. MR 0286742
- James A. Wilson and O. G. Ruehr, Identity for hypergeometric functions (problem 81-15), SIAM Rev. 24 (1982), no. 3, 346.
- $203.~{\rm G.~Milton~Wing},~The~mean~convergence~of~orthogonal~series,~{\rm Am.~J.~Math.~}{\bf 72}~(1950),~{\rm no.~4},~792–808.~{\rm MR}~0037923$
- 204. D. M. Winker, Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence, J. Opt. Soc. Am. A 8 (1991), no. 10, 1568–1573, E: [169].
- Roman Wituła and Damian Słota, Partial fractions decompositions of some rational functions, Appl. Math. Comput. 197 (2008), 328–336. MR 2396331
- Jin-Hua Yang and Feng-Zhen Zhao, Certain sums involving inverses of binomial coefficients and some integrals, J. Integer Sequ. 10 (2007), no. 07.8.7. MR 2335861

URL: http://www.mpia.de/~mathar E- $mail\ address$: mathar@mpia.de

Hoeschstr. 7, 52372 Kreuzau, Germany