Probability and Statistics Topic 8. Descriptive analysis of data

- Population and sample
- Sample mean, median and mode
- Data span, sample variance, sample standard deviation (standard error)
- Percentile (quantile), quartile
- Empirical cumulative distribution function (ecdf)
- Distribution of the sample mean and sample variance

Seminar 8

1. Complete the tasks from the file Seminar_8.Rmd

Now let us recall the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) and see how they work in practice.

- 2. (i) Consider the normal distribution $\mathcal{N}(\mu_1, \sigma_1^2)$, where μ_1 and σ_1 are taken from **Task 1**. Generate N = 1000 samples of size n, and for each sample compute the sample mean. For n = 10, 100, 1000, 10000, plot and overlay the histograms of these sample means. What conclusions can you draw from the results?
 - (ii) For each n = 10, 100, 1000, 10000, compute the theoretical probability

$$p_n = \mathsf{P}(|\overline{\mathbf{X}} - \mu_1| > 0.03),$$

where $\overline{\mathbf{X}}$ is the sample mean of i.i.d. random variables $X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu_1, \sigma_1^2)$. Among the N = 1000 generated samples, count the relative frequency

$$f_n = \frac{\#\{|\overline{\mathbf{x}} - \mu_1| > 0.03\}}{N}.$$

Compare p_n and f_n . Are the results as expected? What do they demonstrate about the LLN?

- 3. (i) Generate N = 1000 samples of size n = 4 from the exponential distribution $\mathcal{E}(1)$. Compute their sample means and plot the corresponding histogram. Overlay the plot with the probability density function of the normal distribution $\mathcal{N}(1, 1/n)$.
 - Hint: In the histogram, plot probabilities (not counts).
 - (ii) Standardize the sample means $\overline{\mathbf{x}}$ as

$$\mathbf{z}_n = \sqrt{n} \, \frac{\overline{\mathbf{x}} - \mu}{\sigma}$$

(as suggested by the CLT), and plot the empirical c.d.f. $\widehat{F}_N(t)$ of \mathbf{z}_n . Overlay it with the c.d.f. $\Phi(t)$ of the standard normal distribution, and compute

$$d = \max_{t} |\widehat{F}_N(t) - \Phi(t)|.$$

Compare d with the upper bound predicted by the Berry-Esseen theorem.

(iii) Repeat parts (i) and (ii) for n = 100. Compare the results and formulate your conclusions.