Machine learning strategy

Zoltan Miklos

University of Rennes 1

2022

Why do we need a machine learning strategy?

(*Credits*: The material is based on notes from Andrew Ng.) Your project involves machine learning component. You realize that the results are disappointing. What to do?

- collect more training data?
- use a larger / deeper network? (or smaller?)
- change the algorithm?
- change the parameters of the algorithm? (longer training, other learning rate? etc.)
- add a regularization technique?

Which solution to chose?

Dev and test set

Your project involves machine learning component. You realize that the results are disappointing. What to do?

- Split the available data to training/test: a random split 70% / 30% is a good start, but it is important to ensure that the test set contains all the challenging cases you expect to have for the unseen data
- Training/Dev/Test split : Training to run your algorithm, Dev : to set the parameters, Test to evaluate
- Test: it should the data where your algorithm should perform well

Dev and test sets should have the same distribution

Verify! Run a small program that compares the distributions. Otherwise a number of things can go wrong

- If dev is different from test, the efforts spent on improving on dev are wasted
- You can overfit the dev set

How large should be the dev/test sets?

- If your classifier A results 90% accuracy on the dev set and the classifier B has 90.1% then a dev set of size of size 100 is small
 - a difference in accuracy (0.1) in this case is likely to come from numerical errors, it is not a real difference
 - 10 000 would be better
- How much data is classified differently by A and B?
 - You could use statistical methods (significance tests) to understand whether your improvement is real or it is only a noise
 - Hypothesis : "A is better than B", and estimate the statistical significance of this hypothesis
- Test set: it is not the size that matters (reasonably large), but it should be diverse enough to correspond to the distribution of unseen data

Entropy of training set

- it is not (only) the size that matters
- The test and train set should be diverse enough (high entropy)
- the distribution of test set it should also correspond to the distribution of unseen data
- A useful trick : compute the entropy of training and test sets (compare the distributions)

Iterative projects

Machine learning projects should be iterative. It is extremely hard to tell a priori what is the "right approach" (a sophisticated algorithm, large collection of training examples, etc.)

- Start with an idea
- Implement
- Experiment

Having a fixed dev set and a clear metric will enable to measure the advancement.

Analyse errors in the dev (test) set

- Analyse individually wrongly classified examples from the dev set to see what is the reason for the problem
- If you propose a solution (to improve the learning accuracy), estimate the effect of your approach (for example, if it would eliminate 1 other case? or 10? or 10000? 50%? or 99 % of all problems)
- If there are too many errors, select a small fraction (Eyeball dev set) randomly in order to analyse

Bias and variance

Bias and variance are the two major sources of error in machine learning projects. Informally,

- Bias : the error rate on the training set
- Variance: how much worse the algorithm works on the dev set than the training set?

Bias and variance

Bias and variance are the two major sources of error in machine learning projects.

- High bias (under-fitting): we miss relevant relations between features of data and the output (prediction).
- High variance (over-fitting): the algorithm also learns the (random) noise in the data, rather then only the intended output

Optimal error rate (Bayes rate)

- Sometimes even humans cannot achieve 0 error rate. For example, voice recognition with noisy audio files.
- Analyse the optimal error rate and understand the avoidable and the unavoidable bias.

How to address high bias or high variance?

- high (avoidable) bias: increase the size of your model (more layers in a neural network, bigger decision trees, etc.) (however this comes with higher computational costs, longer training times, etc.)
- high variance: add more data to your training set (if it is available, or reasonable to construct - with human efforts)

Variance vs. bias trade-off

- increasing the model size can effectively reduce the bias, but might increase the risk of over-fitting (increase variance)
- Regularization : increases bias, but reduces variance

Early stopping

- Stop gradient descent before it reaches convergence
- Reduces variance, but increases bias
- Similar to regularization

Reducing variance

- More training data
- Add regularization
- Early stopping
- Decrease the number and type of input features
- Decrease model size