Agrégation séquentielle : boosting

- ► De quoi s'agît-il ?
- ► Un peu d'histoire
- Gradient boosting pour la régression

De quoi s'agît-il?

Gradient Boosting = Gradient Descent + Boosting

De quoi s'agît-il?

- Premier algorithme de "boosting" [Freund and Schapire, 1997].
- Contruire une famille de règles qui sont ensuite agrégées.
- Processus récursif : la règle construite à l'étape k dépend de celle construite à l'étape k-1

Un peu d'histoire

- Invention Adaboost, premier algorithme de boosting [Freund et al., 1996, Freund and Schapire, 1997]
- Formulation de l'algorithme Adaboost comme une descente du gradient avec une fonction de perte particulière [Breiman et al., 1998, Breiman, 1999]
- ➤ Généralisation de l'algorithme Adaboost au Gradient Boosting pour l'adapter à différentes fonctions de perte [Friedman et al., 2000, Friedman, 2001]

Principe

- Le bagging propose d'agréger des modèles à forte variances.
- Le boosting est proposé à l'origine pour des problèmes de classification ensuite adapté à la régression.
- Le boosting combine séquentiellement des règles de classification dites faibles pour produire une règle de classification précise.
- Nous allons introduire l'algorithme de boosting le plus connu appelé AdaBoost.M1 introduit par [Freund and Schapire, 1997].
- On s'intéresse au problème de classification binaire où $Y \in \{-1,1\}$. Pour un vecteur de variables explicatives, g(X) est une règle de classification qui prédit une des modalités $\{-1,1\}$.

Schéma (Hastie et al. 2009)

FINAL CLASSIFIER

Notion de règle faible

Le terme boosting s'applique à des méthodes générales permettant de produire des décisions précises à partir de règles faibles.

Définition: On appelle règle de classification faible une règle légèrement meilleure que le hasard:

g faible si
$$\exists \gamma > 0$$
 tel que $\mathbb{P}\big(g(X) \neq Y\big) = \frac{1}{2} - \gamma$.

Exemple: arbre à 2 feuilles.

Schéma ou idée

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

Algorithme dit Adaboost.M1

Input : - Une observation x à prédire et l'échantillon $d_n = (x_1, y_1), \ldots, (x_n, y_n)$ - Une règle de classification faible et M le nombre d'itérations

Algorithm of [Freund and Schapire 1997]:

- 1. Initialisser les poids $w_i = \frac{1}{n}, i = 1, \dots, n$
- 2. Pour m=1 à M:
 - a. Ajuster la règle faible sur l'échantillon d_n pondéré par les poids w_1, \ldots, w_n , on note $g_m(x)$ l'estimateur issu de cet ajustement
 - b. Calcul du taux d'erreur :

$$err_m = rac{\sum_{i=1}^{n} w_i 1_{y_i
eq g_m(x_i)}}{\sum_{i=1}^{n} w_i}.$$

- c. Calcul de : $\alpha_m = \log\left(\frac{1 err_m}{err_m}\right)$
- d. Réajuster les poids + normalisation

$$w_i = w_i \exp \left(\alpha_m 1_{y_i \neq g_m(x_i)}\right), \quad i = 1, \ldots, n.$$

Output:

$$\widehat{g}_M(x) = \sum_{m=1}^M \alpha_m g_m(x).$$

Schéma ou idée

$$\widehat{H}_{3}(x) = \sum_{m=1}^{3} \alpha_{m} h_{m}(x)$$

$$H = \text{sign} \left(0.42 + 0.65 + 0.92 +$$

Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

Cet algorithme a été introduit en 1996 par Yoav Freund and Rob Shapire (prix Gödel 2003)

Commentaires

- L'étape 1. nécessite que la règle faible puisse prendre en compte des poids. Lorsque ce n'est pas le cas, la règle peut être ajustée sur un sous-échantillon de d_n dans lequel les observations sont tirées avec remise selon les poids w_1, \ldots, w_n .
- Les poids w_1, \ldots, w_n sont mis à jour à chaque itération : si le $i^{\text{ième}}$ individu est bien classé son poids est inchangé, sinon il est augmenté.
- Le poids α_m de la règle g_m augmente avec la performance de g_m mesurée sur d_n : α_m augmente lorsque e_m diminue (il faut néanmoins que g_m ne soit pas trop faible : si $e_m > 0.5$ alors $\alpha_m < 0$!!!).

Erreur empirique d'apprentissage

 $ightharpoonup err_m$ désigne le taux d'erreur calculé sur l'échantillon de la règle g_m :

$$err_m = \frac{\sum_{i=1}^{n} w_i 1_{y_i \neq g_m(x_i)}}{\sum_{i=1}^{n} w_i}.$$

ho γ_m désigne le gain de la règle g_m par rapport à une règle pûrement aléatoire

$$err_m = \frac{1}{2} - \gamma_m.$$

Propriété: [Freund and Schapire, 1999]

$$L_n(\widehat{g}_M) \leq \exp\left(-2\sum_{m=1}^M \gamma_m^2\right).$$

Conséquence:

L'erreur empirique (calculée sur les données) tend vers 0 lorsque le nombre d'itérations augmente.

Erreur empirique d'apprentissage (suite)

Ils ont montré que

$$L_n\left(\widehat{g}_M\right) = \frac{1}{n} \sum_{i=1}^n 1_{y_i \neq \widehat{g}_M(x_i)} \leq \exp\left(-2\sum_{m=1}^M \gamma_m^2\right) \leq \exp\left(-2M\gamma^2\right)$$

Erreur de généralisation

Définition : C'est l'erreur moyenne attendue sur un échantillon test

$$L(\widehat{g}_M) = \mathbb{P}[Y \neq \widehat{g}_M(X)]$$

Borne obtenue par Freund & Schapire

$$L(\widehat{g}_{M}) \leq L_{n}(\widehat{g}_{M}) + \mathcal{O}\left(\sqrt{\frac{MV}{n}}\right)$$

où V est la dimension de Vapnik-Chervonenkis de la famille de règles de classification faibles (3 dans l'exemple simple).

Erreur de généralisation (suite)

Interprétation Il peut y avoir du sur-ajustement

- Le compromis biais/variance ou erreur approximation/estimation est régulé par le nombre d'itérations M:
 - 1. M petit \rightarrow premier terme (approximation) domine
 - 2. M grand \rightarrow second terme (estimation) domine
- Lorsque *M* est (trop) grand, Adaboost aura tendance à sur-ajuster l'échantillon d'apprentissage (sur-ajustement ou overfitting).

Sur-apprentissage: Qu'est-ce que c'est ?

C'est ce qui se passe quand en complexifiant le modèle l'erreur d'apprentissage baisse, alors que l'erreur de généralisation se remet à augmenter.

Dimension de Vapnik-Chervonenkis: Qu'est-ce que c'est?

C'est une mesure de la capacité d'un algorithme de classification statistique

- cardinal du plus grand ensemble de points que l'algorithme peut pulvériser
- Pulvériser: un modèle de classification g_{θ} pulvérise un ensemble de données $E = (x_1, x_2, \dots, x_n)$ si, pour tout étiquetage E, il existe θ tel que g_{θ} ne fasse aucune erreur dans l'évaluation de cet ensemble de données.
- ▶ Une droite en dimension 2 : on peut pulvériser 3 points mais pas 4 points!

Dimension de Vapnik-Chervonenkis

Dimension de Vapnik-Chervonenkis (suite)

Un modèle de dimension VC trop haute risque le sur-apprentissage par un modèle complexe trop adapté aux données d'apprentissage

Gradient boosting pour la régression (intuitif)

- Nous disposons de $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, et une fonction \hat{f} qui minimise l'erreur quadratique moyenne.
- On fait une petit vérification et constate quelques écarts à la vérité : $\hat{f}(x_1) = 0.8$ alors que $y_1 = 0.9$, et $\hat{f}(x_2) = 1.4$ et $y_2 = 1.3, \ldots$ Comment améliorer \hat{f} ?
- ▶ On ne peut pas modifier \hat{f} .
- On peut ajouter un modèle (arbre de régression) h à \hat{f} et la prédiction sera donnée par $\hat{f}(x) + h(x)$.

Solution simple

$$\hat{f}(x_1) + h(x_1) = y_1$$
 $\hat{f}(x_2) + h(x_2) = y_2$
 $\hat{f}(x_3) + h(x_3) = y_3$
...
 $\hat{f}(x_n) + h(x_n) = y_n$

Peut-on obtenir un arbre h tel que

$$h(x_1) = y_1 - \hat{f}(x_1)$$
 $h(x_2) = y_2 - \hat{f}(x_2)$
 $h(x_3) = y_3 - \hat{f}(x_3)$
...
 $h(x_n) = y_n - \hat{f}(x_n)$

Oui mais une approximation!

Peut-on obtenir un arbre h tel que

$$h(x_1) = y_1 - \hat{f}(x_1)$$

 $h(x_2) = y_2 - \hat{f}(x_2)$
 $h(x_3) = y_3 - \hat{f}(x_3)$
...
 $h(x_n) = y_n - \hat{f}(x_n)$

Oui mais une approximation!

$$(x_1, y_1 - \hat{f}(x_1)), (x_2, y_2 - \hat{f}(x_2)), \dots, (x_n, y_n - \hat{f}(x_n))$$

Une solution simple

- $ightharpoonup y_i \hat{f}(x_i)$ sont les résidus. La partie qui échappe à \hat{f} .
- Le rôle de h est de compenser les lacunes de \hat{f} .
- Si la nouvelle fonction de régression estimée $\hat{f} + h$ demeure insatisfaisante, on peut ajouter d'autres arbres de régression.

Modélisation additive linéaire

Modélisation additive linéaire

Contexte: Classification ou régression (presque le même que pour AdaBoost)

- ▶ On a toujours une variable $y \in \{-1, 1\}$ ou $y \in \mathbb{R}$ à inférer à partir de règles faibles.
- Cette fois-ci, on se donne un fonction de coût (ou déviance) L(y,g) que l'on cherche à minimiser.

Approche: On modélise à chaque fois le résidu produit par la solution précédente, on a donc

$$\widehat{g}_{M}(x) = \sum_{m=1}^{M} \beta_{m} g_{m}(x) = \widehat{g}_{M-1}(x) + \beta_{M} g_{M}(x)$$

Algorithme Forward staging additive modeling

Entrée: Les éléments nécessaires sont

- un jeu de données $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- un ensemble de règles faibles
- le nombre M d'itérations

Initialisation: $\hat{g}_0(x)$

Itération: pour m = 1 à M

1. ajuster la règle faible g_m et calculer un coefficient β_m qui minimise

$$\sum_{i=1}^{n} L(y_i, \widehat{g}_{m-1}(x_i) + \beta_m g_m(x_i))$$

2.

$$\widehat{g}_m(x) = \widehat{g}_{m-1}(x) + \beta_m g_m(x)$$

Sortie: La prédiction est $sign \widehat{g}_{M}(x)$ (en classification)

Justification du boosting : minimisation de risque empirique

Pertes théorique et empirique

- ▶ (X, Y) couple aléatoire à valeurs dans $\mathbb{R}^p \times \{-1, 1\}$. Étant donnée \mathcal{G} une famille de règles, on se pose la question de trouver la meilleure règle dans \mathcal{G} .
- Choisir la règle qui minimise une fonction de perte, par exemple

$$L(g) = \mathbb{P}(Y \neq g(X)).$$

Problème : la fonction de perte n'est pas calculable

Idée : choisir la règle qui minimise la version empirique de la fonction de perte :

$$L_n(g) = \frac{1}{n} \sum_{i=1}^n 1_{g(X_i) \neq Y_i}.$$

Erreurs d'estimation et d'approximation

$$L(\hat{g}) - L^* = L(\hat{g}) - \inf_{g \in \mathcal{G}} L(g) + \inf_{g \in \mathcal{G}} L(g) - L^*.$$

Risque convexifié

Problème: la fonction

$$\mathcal{G} \longrightarrow \mathbb{R}$$

$$g \longmapsto \frac{1}{n} \sum_{i=1}^{n} 1_{g(X_i) \neq Y_i}$$

est généralement difficile à minimiser.

Idée : trouver une autre fonction de perte $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ telle que

$$g \rightarrow \mathbb{R}$$

$$g \mapsto \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, g(X_i))$$

soit "facile" à minimiser (si la fonction fonction $v \mapsto \ell(u, v)$ est convexe par exemple).

Fonction de perte

La fonction de perte $\ell(y, g(x))$ mesure l'écart entre la quantité à prévoir $y \in \{-1, 1\}$ et g(x).

Fonction de perte

- La fonction de perte $\ell(y, g(x))$ mesure l'écart entre la quantité à prévoir $y \in \{-1, 1\}$ et g(x).
- ► Elle doit donc prendre des valeurs
 - ightharpoonup élevées lorsque yg(x) < 0
 - ▶ faibles lorsque yg(x) > 0

Fonction de perte

- La fonction de perte $\ell(y, g(x))$ mesure l'écart entre la quantité à prévoir $y \in \{-1, 1\}$ et g(x).
- Elle doit donc prendre des valeurs
 - ightharpoonup élevées lorsque yg(x) < 0
 - faibles lorsque yg(x) > 0
- Exemple:
 - 1. $\ell(y, g(x)) = 1_{yg(x) < 0}$
 - 2. $\ell(y, g(x)) = \exp(-yg(x))$ (présente l'avantage d'être convexe en le second argument).

Récapitulatif

▶ (X, Y) à valeurs dans $\mathbb{R}^p \times \{-1, 1\}$, une fonction de perte $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ et on cherche à approcher

$$g^* = \operatorname{argmin} \mathbb{E}\left[\ellig(Y, g(X)ig)
ight]$$
 .

Récapitulatif

▶ (X, Y) à valeurs dans $\mathbb{R}^p \times \{-1, 1\}$, une fonction de perte $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ et on cherche à approcher

$$g^* = \operatorname{argmin} \mathbb{E}\left[\ellig(Y, g(X)ig)
ight].$$

Stratégie : étant donnée un n échantillon i.i.d $(X_1, Y_1), \ldots, (X_n, Y_n)$ de même loi que (X, Y), on cherche à minimiser la version empirique de $\mathbb{E}\left[\ell(Y, g(X))\right]$:

$$\frac{1}{n}\sum_{i=1}^n \ell(Y_i, g(X_i)).$$

Récapitulatif

▶ (X, Y) à valeurs dans $\mathbb{R}^p \times \{-1, 1\}$, une fonction de perte $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ et on cherche à approcher

$$g^* = \operatorname{argmin} \mathbb{E}\left[\ellig(Y, g(X)ig)
ight].$$

Stratégie : étant donnée un n échantillon i.i.d $(X_1, Y_1), \ldots, (X_n, Y_n)$ de même loi que (X, Y), on cherche à minimiser la version empirique de $\mathbb{E}\left[\ell(Y, g(X))\right]$:

$$\frac{1}{n}\sum_{i=1}^n \ell(Y_i, g(X_i)).$$

Approche récursive : approcher g^* par $\widehat{g}_M(x) = \sum_{m=1}^M \beta_m g_m(x)$ où g_m et β_m sont construits de façon récursive.

Récapitulatif

(X,Y) à valeurs dans $\mathbb{R}^p \times \{-1,1\}$, une fonction de perte $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ et on cherche à approcher

$$g^* = \operatorname{argmin} \mathbb{E} \left[\ell(Y, g(X)) \right].$$

Stratégie : étant donnée un n échantillon i.i.d $(X_1, Y_1), \ldots, (X_n, Y_n)$ de même loi que (X, Y), on cherche à minimiser la version empirique de $\mathbb{E}\left[\ell(Y, g(X))\right]$:

$$\frac{1}{n}\sum_{i=1}^n \ell(Y_i, g(X_i)).$$

- Approche récursive : approcher g^* par $\widehat{g}_M(x) = \sum_{m=1}^M \beta_m g_m(x)$ où g_m et β_m sont construits de façon récursive.
- Méthode : utiliser une approche numérique (descente de gradients, Newton-Raphson).

Fonctions de coût pour la classification

Exponentielle

$$L(y,g) = \exp(-yg)$$

- On peut prouver qu'on retrouve AdaBoost !!
- Pourtant l'idée est très différente

Logistique
$$L(y,g) = \log (1 + \exp(-2yg))$$

- Similaire à AdaBoost a priori
- Moins sensible aux observations mal classées

Fonctions de coût pour la régression

Quadratique

$$\ell(y,g) = \frac{1}{2}(y-g)^2$$

sensible aux valeurs aberrantes ou extrêmes

Absolue

$$\ell(y,g) = |y-g|$$

Plus robuste, mais moins précis pour les petites erreurs

Huber

$$\ell(y,g) = (y-g)^2 1_{|y-g| \le \delta} + (2\delta|y-g| - \delta^2) 1_{|y-g| > \delta}$$

combine les bonnes propriétés des deux fonctions précédentes

Un petit rappel

Nous faisons ici un bref rappel sur la méthode de Newton-raphson dans le cas simple de la minimisation d'une fonction strictement convexe $J: \mathbb{R} \to \mathbb{R}$. Si on désigne par \tilde{x} la solution du problème de minimisation, la méthode consiste à construire une suite (x_k) qui converge vers \tilde{x} . La suite est tout d'abord initialisée en choisissant une valeur x_0 . On cherche alors $x_1 = x_0 + h$ tel que $J'(x_1) \approx 0$. Par un développement limité, on obtient l'approximation

$$J'(x_0+h)\approx J'(x_0)+hJ''(x_0).$$

Comme $J'(x_0 + h) \approx 0$, il vient $h = -(J''(x_0))^{-1}J'(x_0)$. Si on pose $\lambda = (J''(x_0))^{-1}$, alors $x_1 = x_0 - \lambda J'(x_0)$ et on déduit la formule de récurrence

$$x_k = x_{k-1} - \lambda J'(x_{k-1}).$$

Newton Raphson

ightharpoonup On note $oldsymbol{g_m}=ig(g_m(x_1),\ldots,g_m(x_n)ig)$, et

$$J(\mathbf{g_m}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, g_m(x_i)).$$

Newton Raphson

ightharpoonup On note $oldsymbol{g_m}=ig(g_m(x_1),\ldots,g_m(x_n)ig)$, et

$$J(\mathbf{g_m}) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, g_m(x_i)).$$

La formule de récurrence de l'algorithme de Newton-Raphson est donnée par

$$\mathbf{g_m} = \mathbf{g_{m-1}} - \lambda \nabla J(\mathbf{g_{m-1}}),$$

où $\lambda > 0$ désigne le pas de descente de gradient.

Newton Raphson

ightharpoonup On note $m{g_m} = (g_m(x_1), \dots, g_m(x_n))$, et

$$J(\mathbf{g_m}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, g_m(x_i)).$$

La formule de récurrence de l'algorithme de Newton-Raphson est donnée par

$$\mathbf{g_m} = \mathbf{g_{m-1}} - \lambda \nabla J(\mathbf{g_{m-1}}),$$

où $\lambda > 0$ désigne le pas de descente de gradient.

Inconvénients

- a. Cet algorithme permet de calculer l'estimateur uniquement en les points du design x_1, \ldots, x_n .
- b. Ne prend pas en compte une éventuelle régularité de la fonction à estimer (si x_i est proche de x_j alors $g^*(x_i)$ est proche de $g^*(x_i)$).

Boosting par descente du gradient

Entrées :

- $(x_1, y_1), \dots, (x_n, y_n)$ l'échantillon, λ un paramètre de régularisation tel que $\lambda > 0$ et M le nombre d'itérations.
- a. Initialisation : $\widehat{g}_0(\cdot) = \operatorname{argmin}_c \sum_{i=1}^n \ell(y_i, c)$
- b. Pour m=1 à M:
 - 1..1 Calculer l'opposé du gradient et l'évaluer aux points d'observation

$$r_{im} = -\frac{\partial}{\partial g(x_i)} \ell(y_i, g_m(x_i)) \bigg|_{y=y_i, g(x_i)=\widehat{g}_{m-1}(x_i)}, \quad i=1,\ldots,n.$$

- 2..2 ajuster une règle faible g_m sur l'échantillon $(x_1, r_{1m}), \ldots, (x_n, r_{nm})$
- 3..3 Mise à jour : $\widehat{g}_m(x) = \widehat{g}_{m-1}(x) + \lambda g_m(x)$.
- c. Sortie: La règle $\widehat{g}_M(x)$ pour la régression et sign $\widehat{g}_M(x)$ pour la classification.

Boosting par descente du gradient avec des arbres

Notation formelle d'un arbre

$$T(x,\Theta) = \sum_{j=1}^{J} \gamma_j 1(x \in R_j)$$

où
$$\Theta = \{R_j, \gamma_j\}_1^J$$

Un arbre boosté donnera

$$\widehat{f}_M(x) = \sum_{m=1}^M T(x, \Theta_m)$$

Boosting par descente du gradient avec des arbres

Entrées :

- $(x_1, y_1), \dots, (x_n, y_n)$ l'échantillon, λ un paramètre de régularisation tel que $\lambda > 0$ et M le nombre d'itérations.
- a. Initialisation : $f_0(x) = \operatorname{argmin}_{\gamma} \sum_{i=1}^n \ell(y_i, \gamma)$
- b. Pour m=1 à M:
 - 1..1 Calculer l'opposé du gradient et l'évaluer aux points d'observation

$$r_{im} = -\frac{\partial}{\partial g(x_i)} \ell(y_i, f_m(x_i)) \Big|_{y=y_i, f(x_i)=f_{m-1}(x_i)}, \quad i=1,\ldots,n.$$

- 2..2 ajuster un arbre sur l'échantillon $(x_1, r_{1m}), \ldots, (x_n, r_{nm})$ qui donne les feuilles $R_{jm}, j = 1, \ldots J_m$.
- 3..3 Pour $j = 1, ..., J_m$ calculer

$$\gamma_{jm} = \operatorname{argmin}_{\gamma} \sum_{x_i \in R_{jm}} \ell(y_i, f_{m-1}(x_i) + \gamma)$$

- 4..4 Mise à jour : $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} 1(x \in R_{jm})$.
- c. $\widehat{f}(x) = f_M(x)$