Stat 501: Review of Matrix and Linear Algebra

Ranjan Maitra

2107 Snedecor Hall Department of Statistics Iowa State University. Phone: 515-294-7757 maitra@iastate.edu

January 23, 2025

Basic Concepts in Matrix Algebra

 An column array of p elements is called a vector of dimension p and is written as

$$\mathbf{x}_{p \times 1} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

• The transpose of the column vector $\mathbf{x}_{n\times 1}$ is row vector

$$\mathbf{x}' = [x_1 \ x_2 \ \dots \ x_n]$$

- A vector can be represented in p-space as a directed line with components along the p axes.
- Two vectors can be added if they have the same dimension. Addition is carried out elementwise.

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_p + y_p \end{bmatrix}$$

 A vector can be contracted or expanded if multiplied by a constant c. Multiplication is also elementwise.

$$c\mathbf{x} = c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_p \end{bmatrix}$$

Examples

$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} \text{ and } \mathbf{x}' = \begin{bmatrix} 2 & 1 & -4 \end{bmatrix}$$

$$6 \times \mathbf{x} = 6 \times \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} = \begin{bmatrix} 6 \times 2 \\ 6 \times 1 \\ 6 \times (-4) \end{bmatrix} = \begin{bmatrix} 12 \\ 6 \\ -24 \end{bmatrix}$$

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2+5 \\ 1-2 \\ -4+0 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$$

. 2/4

frtMultiplication by a Scalar

• Multiplication by c>0 does not change the direction of ${\it x}$. Direction is reversed if c<0.

Length of a vector

 The length of a vector x is the Euclidean distance from the origin

$$L_{\boldsymbol{x}} = \sqrt{\sum_{j=1}^{p} x_j^2} = \|\boldsymbol{x}\|.$$

 Multiplication of a vector x by a constant c changes the length:

$$L_{cx} = \sqrt{\sum_{j=1}^{p} c^2 x_j^2} = |c| \sqrt{\sum_{j=1}^{p} x_j^2} = |c| L_x.$$

• If $c = L_x^{-1}$, then cx is a vector of unit length.

Examples

The length of
$$\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -4 \\ -2 \end{bmatrix}$$
 is

$$L_{x} = \sqrt{(2)^{2} + (1)^{2} + (-4)^{2} + (-2)^{2}} = \sqrt{25} = 5$$

Then

$$\mathbf{z} = \frac{1}{5} \times \begin{bmatrix} 2\\1\\-4\\-2 \end{bmatrix} = \begin{bmatrix} 0.4\\0.2\\-0.8\\-0.4 \end{bmatrix}$$

is a vector of unit length.

Angle Between Vectors

• Consider two vectors \mathbf{x} and \mathbf{y} in two dimensions. If θ_1 is the angle between \mathbf{x} and the horizontal axis and $\theta_2 > \theta_1$ is the angle between \mathbf{y} and the horizontal axis, then

$$\begin{aligned} \cos(\theta_1) &= \frac{x_1}{L_{\boldsymbol{x}}} & \cos(\theta_2) &= \frac{y_1}{L_{\boldsymbol{y}}} \\ \sin(\theta_1) &= \frac{x_2}{L_{\boldsymbol{x}}} & \sin(\theta_2) &= \frac{y_2}{L_{\boldsymbol{y}}}, \end{aligned}$$

If θ is the angle between \boldsymbol{x} and \boldsymbol{y} , then

$$\cos(\theta) = \cos(\theta_2 - \theta_1) = \cos(\theta_2)\cos(\theta_1) + \sin(\theta_2)\sin(\theta_1).$$

Then

$$\cos(\theta) = \frac{x_1 y_1 + x_2 y_2}{L_{\boldsymbol{x}} L_{\boldsymbol{y}}} = \frac{\boldsymbol{x}' \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|}.$$

Angle Between Vectors (continued)

Inner Product Between Two Vectors

The inner product between two vectors x and y is

$$\mathbf{x}'\mathbf{y}=\sum_{j=1}^{p}x_{j}y_{j}.$$

• Then $L_x = \sqrt{\boldsymbol{x}'\boldsymbol{x}}, L_y = \sqrt{\boldsymbol{y}'\boldsymbol{y}}$ and

$$\cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{\sqrt{(\mathbf{x}'\mathbf{x})}\sqrt{(\mathbf{y}'\mathbf{y})}}$$

• Since $cos(\theta) = 0$ when $\mathbf{x}'\mathbf{y} = 0$ and $cos(\theta) = 0$ for $\theta = 90$ or $\theta = 270$, then the vectors are perpendicular (orthogonal) when $\mathbf{x}'\mathbf{y} = 0$.

Linear Dependence

• Two vectors, \mathbf{x} and \mathbf{y} , are *linearly dependent* if there exist two constants c_1 and c_2 , not both zero, such that

$$c_1 \mathbf{x} + c_2 \mathbf{y} = 0$$

 If two vectors are linearly dependent, then one can be written as a linear combination of the other. From above:

$$\mathbf{x} = (c_2/c_1)\mathbf{y}$$

• k vectors, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$, are linearly dependent if there exist constants (c_1, c_2, \dots, c_k) not all zero such that

$$\sum_{j=1}^k c_j \boldsymbol{x}_j = 0.$$

 Vectors of the same dimension that are not linearly dependent are said to be linearly independent.

Linear Independence-Example

Let

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Then $c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + c_3 \mathbf{x}_3 = 0$ if

$$c_1 + c_2 + c_3 = 0$$

 $2c_1 + 0 - 2c_3 = 0$
 $c_1 - c_2 + c_3 = 0$

The unique solution is $c_1 = c_2 = c_3 = 0$, so the vectors are linearly independent.

Projections

The projection of x on y is defined by

Projection of
$$x$$
 on $y = \frac{x'y}{y'y}y = \frac{x'y}{L_y}\frac{1}{L_y}y$.

• The length of the projection is

Length of projection =
$$\frac{|\mathbf{x}'\mathbf{y}|}{L_{\mathbf{y}}} = L_{\mathbf{x}} \frac{|\mathbf{x}'\mathbf{y}|}{L_{\mathbf{x}}L_{\mathbf{y}}} = L_{\mathbf{x}} |\cos(\theta)|,$$

where θ is the angle between \boldsymbol{x} and \boldsymbol{y} .

Matrix Algebra

A matrix \mathbf{A} is an array of elements a_{ij} with n rows and p columns:

$$\mathbf{A} = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{array} \right]$$

The transpose ${\bf A}'$ has p rows and n columns. The j-th row of ${\bf A}'$ is the j-th column of ${\bf A}$

$$\mathbf{A}' = \left[egin{array}{cccc} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1p} & a_{2p} & \cdots & a_{np} \end{array}
ight]$$

 Multiplication of A by a constant c is carried out element by element.

$$c\mathbf{A} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1p} \\ ca_{21} & ca_{22} & \cdots & ca_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{n1} & ca_{n2} & \cdots & ca_{np} \end{bmatrix}$$

Matrix Addition

Two matrices $A_{n \times p} = \{a_{ij}\}$ and $B_{n \times p} = \{b_{ij}\}$ of the same dimensions can be added element by element. The resulting matrix is $C_{n \times p} = \{c_{ij}\} = \{a_{ij} + b_{ij}\}$

$$\begin{array}{llll} \textbf{\textit{C}} & = & \textbf{\textit{A}} + \textbf{\textit{B}} \\ \\ & = & \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} \\ \\ & = & \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1p} + b_{1p} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2p} + b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{np} + b_{np} \end{bmatrix} \end{array}$$

Example:

$$\begin{bmatrix} 2 & 1 & -4 \\ 5 & 7 & 0 \end{bmatrix}' = \begin{bmatrix} 2 & 5 \\ 1 & 7 \\ -4 & 0 \end{bmatrix}$$
$$6 \times \begin{bmatrix} 2 & 1 & -4 \\ 5 & 7 & 0 \end{bmatrix} = \begin{bmatrix} 12 & 6 & -24 \\ 30 & 42 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 5 & 10 \end{bmatrix}$$

Matrix Multiplication

- Multiplication of two matrices A_{n×p} and B_{m×q} can be carried out only if the matrices are compatible for multiplication:
 - $A_{n \times p} \times B_{m \times q}$: compatible if p = m.
 - $\mathbf{\textit{B}}_{m \times q} \times \mathbf{\textit{A}}_{n \times p}$: compatible if q = n.

The element in the *i*-th row and the *j*-th column of $\mathbf{A} \times \mathbf{B}$ is the inner product of the *i*-th row of \mathbf{A} with the *j*-th column of \mathbf{B} .

$$\left[\begin{array}{ccc} 2 & 0 & 1 \\ 5 & 1 & 3 \end{array}\right] \times \left[\begin{array}{ccc} 1 & 4 \\ -1 & 3 \\ 0 & 2 \end{array}\right] = \left[\begin{array}{ccc} 2 & 10 \\ 4 & 29 \end{array}\right]$$

Example:

$$\left[\begin{array}{cc} 2 & 1 \\ 5 & 3 \end{array}\right] \times \left[\begin{array}{cc} 1 & 4 \\ -1 & 3 \end{array}\right] = \left[\begin{array}{cc} 1 & 11 \\ 2 & 29 \end{array}\right]$$

$$\begin{bmatrix} 1 & 4 \\ -1 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} = \begin{bmatrix} 22 & 13 \\ 13 & 8 \end{bmatrix}$$

The Identity Matrix and the Inverse

 An identity matrix, denoted by I, is a square matrix with 1's along the main diagonal and 0's everywhere else. For example,

$$I_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $I_{3\times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- If \mathbf{A} is a square matrix, then $\mathbf{AI} = \mathbf{IA} = \mathbf{A}$.
- $I_{n \times n} A_{n \times p} = A_{n \times p}$ but $A_{n \times p} I_{n \times n}$ is not defined for $p \neq n$.
- Consider two square matrices $\mathbf{A}_{k \times k}$ and $\mathbf{B}_{k \times k}$. If

$$AB = BA = I$$

then **B** is the *inverse* of **A**, denoted \mathbf{A}^{-1} .

- The inverse of **A** exists only if the columns of **A** are linearly independent.
- If $\mathbf{A} = \text{diag}\{a_{ii}\}\ \text{then } \mathbf{A}^{-1} = \text{diag}\{1/a_{ii}\}.$

Symmetric and Orthogonal Matrices

- A square matrix is *symmetric* if $\mathbf{A} = \mathbf{A}'$.
- If a square matrix \mathbf{A} has elements $\{a_{ij}\}$, then \mathbf{A} is symmetric if $a_{ij} = a_{ji}$.
- A square matrix Q is orthogonal if

$$QQ' = Q'Q = I,$$

or
$$Q' = Q^{-1}$$
.

• If \mathbf{Q} is orthogonal, its rows and columns have unit length $(\mathbf{q}_j'\mathbf{q}_j=1)$ and are mutually perpendicular $(\mathbf{q}_j'\mathbf{q}_k=0)$ for any $j\neq k$.

Eigenvalues and Eigenvectors

• A square matrix **A** has an eigenvalue λ with corresponding eigenvector $\mathbf{z} \neq \mathbf{0}$ if

$$\mathbf{A}\mathbf{z} = \lambda \mathbf{z}$$

- The eigenvalues of **A** are the solution to $|A \lambda I| = 0$.
- A normalized eigenvector (of unit length) is denoted by e.
- A k × k matrix A has k pairs of eigenvalues and eigenvectors

$$(\lambda_1, \boldsymbol{e}_1), (\lambda_2, \boldsymbol{e}_2) \dots (\lambda_k, \boldsymbol{e}_k)$$

where $\mathbf{e}_i'\mathbf{e}_i=1$, $\mathbf{e}_i'\mathbf{e}_j=0$ and the eigenvectors are unique up to a change in sign unless two or more eigenvalues are equal.

Spectral Decomposition

- Eigenvalues and eigenvectors will play an important role in this course. For example, principal components are based on the eigenvalues and eigenvectors of sample covariance matrices.
- The spectral decomposition of a k x k symmetric matrix A is

$$\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_k \mathbf{e}_k \mathbf{e}_k'$$

$$= \begin{bmatrix} \mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_k \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix} \begin{bmatrix} \mathbf{e}_1 \ \mathbf{e}_2 \ \cdots \ \mathbf{e}_k \end{bmatrix}'$$

$$= \mathbf{P} \mathbf{A} \mathbf{P}'$$

, 18

Determinant, Trace and Rank of a Matrix

- The *trace* of a $k \times k$ matrix **A** is the sum of the diagonal elements, i.e., $trace(\mathbf{A}) = \sum_{i=1}^{k} a_{ii}$
- The trace of a square, symmetric matrix \mathbf{A} is the sum of the eigenvalues, i.e., $trace(\mathbf{A}) = \sum_{i=1}^{k} a_{ii} = \sum_{i=1}^{k} \lambda_i$
- The determinant of a square, symmetric matrix \boldsymbol{A} is the product of the eigenvalues, i.e., $|\boldsymbol{A}| = \prod_{i=1}^{k} \lambda_i$
- The rank of a square matrix A is
 - The number of linearly independent rows
 - The number of linearly independent columns
 - The number of non-zero eigenvalues
- The inverse of a $k \times k$ matrix **A** exists, if and only if

$$rank(\mathbf{A}) = k$$

i.e., there are no zero eigenvalues

Positive-Definite Matrices

- For a $k \times k$ symmetric matrix \mathbf{A} and a vector $\mathbf{x} = [x_1, x_2, ..., x_k]'$ the quantity $\mathbf{x}' \mathbf{A} \mathbf{x}$ is called a *quadratic form*
- Note that $x'Ax = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}x_{i}x_{j}$
- If $x'Ax \ge 0$ for any vector x, both A and the quadratic form are said to be *non-negative definite*.
- If x'Ax > 0 for any vector $x \neq 0$, both A and the quadratic form are said to be *positive definite*.

Example 2.11

- Show that the matrix of the quadratic form $3x_1^2 + 2x_2^2 2\sqrt{2}x_1x_2$ is positive definite.
- For

$$\mathbf{A} = \begin{bmatrix} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{bmatrix},$$

the eigenvalues are $\lambda_1=4, \lambda_2=1$. Then $\mathbf{A}=4\mathbf{e}_1\mathbf{e}_1'+\mathbf{e}_2\mathbf{e}_2'$. Write

$$x'Ax = 4x'e_1e_1'x + x'e_2e_2'x$$

= $4y_1^2 + y_2^2 \ge 0$,

and is zero only for $y_1 = y_2 = 0$.

y₁, y₂ cannot be zero because

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}'_1 \\ \boldsymbol{e}'_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = P'_{2\times 2} \boldsymbol{x}_{2\times 1}$$

with P' orthonormal so that $(P')^{-1} = P$. Then $\mathbf{x} = P\mathbf{y}$ and since $\mathbf{x} \neq 0$ it follows that $\mathbf{y} \neq 0$.

- Using the spectral decomposition, we can show that:
 - A is positive definite if all of its eigenvalues are positive.
 - A is non-negative definite if all of its eigenvalues are ≥ 0 .

Distance and Quadratic Forms

• For $\mathbf{x} = [x_1, x_2, ..., x_p]'$ and a $p \times p$ positive definite matrix \mathbf{A} .

$$d^2 = x'Ax > 0$$

when $x \neq 0$. Thus, a positive definite quadratic form can be interpreted as a squared distance of x from the origin and vice versa.

ullet The squared distance from ${\it x}$ to a fixed point μ is given by the quadratic form

$$(\mathbf{X} - \boldsymbol{\mu})' \mathbf{A} (\mathbf{X} - \boldsymbol{\mu}).$$

 We can interpret distance in terms of eigenvalues and eigenvectors of A as well. Any point x at constant distance c from the origin satisfies

$$\mathbf{x}'A\mathbf{x} = \mathbf{x}'(\sum_{j=1}^{p} \lambda_j \mathbf{e}_j \mathbf{e}_j')\mathbf{x} = \sum_{j=1}^{p} \lambda_j (\mathbf{x}'\mathbf{e}_j)^2 = c^2,$$

the expression for an ellipsoid in p dimensions.

• Note that the point $\mathbf{x} = c\lambda_1^{-1/2}\mathbf{e}_1$ is at a distance c (in the direction of \mathbf{e}_1) from the origin because it satisfies $\mathbf{x}'A\mathbf{x} = c^2$. The same is true for points $\mathbf{x} = c\lambda_j^{-1/2}\mathbf{e}_j$, j = 1, ..., p. Thus, all points at distance c lie on an ellipsoid with axes in the directions of the eigenvectors and with lengths proportional to $\lambda_j^{-1/2}$.

Distance and Quadratic Forms (cont'd)

Square-Root Matrices

Spectral decomposition of a positive definite matrix A yields

$$m{A} = \sum_{j=1}^p \lambda_j m{e}_j m{e}_j' = m{P} \wedge m{P},$$

with $\mathbf{\Lambda}_{k \times k} = \mathrm{diag}\{\lambda_j\}$, all $\lambda_j > 0$, and $\mathbf{P}_{k \times k} = [\mathbf{e}_1 \ \mathbf{e}_2 \ \dots \ \mathbf{e}_{\rho}]$ an orthonormal matrix of eigenvectors. Then

$$oldsymbol{A}^{-1} = oldsymbol{P} \wedge^{-1} oldsymbol{P}' = \sum_{j=1}^p rac{1}{\lambda_j} oldsymbol{e}_j oldsymbol{e}_j'$$

• With $\mathbf{\Lambda}^{1/2} = \operatorname{diag}\{\lambda_i^{1/2}\}$, a square-root matrix is

$${m A}^{1/2} = {m P} {f \Lambda}^{1/2} {m P}' = \sum_{j=1}^{
ho} \sqrt{\lambda_j} {m e}_j {m e}_j'$$

- The square root of a positive definite matrix A has the following properties:
 - Symmetry: $(\mathbf{A}^{1/2})' = \mathbf{A}^{1/2}$
 - **3** $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$ **4** $\mathbf{A}^{-1/2} = \sum_{j=1}^{p} \lambda_{j}^{-1/2} \mathbf{e}_{j} \mathbf{e}'_{j} = \mathbf{P} \mathbf{\Lambda}^{-1/2} \mathbf{P}'$
 - $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$ $A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$

Note that there are other ways of defining the square root of a positive definite matrix: in the Cholesky decomposition A = LL', with L a matrix of lower triangular form, L is also called a square root of A.

Random Vectors and Matrices

- A random matrix (vector) is a matrix (vector) whose elements are random variables.
- If $X_{n \times p}$ is a random matrix, the *expected value of X* is the $n \times p$ matrix

$$E(\mathbf{X}) = \begin{bmatrix} E(X_{11}) & E(X_{12}) & \cdots & E(X_{1p}) \\ E(X_{21}) & E(X_{22}) & \cdots & E(X_{2p}) \\ \vdots & \vdots & \cdots & \vdots \\ E(X_{n1}) & E(X_{n2}) & \cdots & E(X_{np}) \end{bmatrix},$$

where

$$E(X_{ij}) = \int_{-\infty}^{\infty} x_{ij} f_{ij}(x_{ij}) dx_{ij}$$

with $f_{ij}(x_{ij})$ the density function of the continuous random variable X_{ij} . If X is a discrete random variable, we compute its expectation as a sum rather than an integral.

Expectations of Linear Combinations

 The usual rules for expectations apply. If X and Y are two random matrices and A and B are two constant matrices of the appropriate dimensions, then

$$E(X + Y) = E(X) + E(Y)$$

$$E(AX) = AE(X)$$

$$E(AXB) = AE(X)B$$

$$E(AX + BY) = AE(X) + BE(Y)$$

Further, if c is a scalar-valued constant then

$$E(cX) = cE(X).$$

Mean Vectors and Covariance Matrices

- Suppose that X is a p × 1 (continuous) random vector drawn from some p—dimensional distribution.
- Each element of X, say X_j has its own marginal distribution with marginal mean μ_j and variance σ_{jj} defined in the usual way:

$$\mu_{j} = \int_{-\infty}^{\infty} x_{j} f_{j}(x_{j}) dx_{j}$$

$$\sigma_{jj} = \int (x_{j} - \mu_{j})^{2} f_{j}(x_{j}) dx_{j}$$

- To examine association between a pair of random variables we need to consider their joint distribution.
- A measure of the linear association between pairs of variables is given by the covariance

$$\sigma_{jk} = E[(X_j - \mu_j)(X_k - \mu_k)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (X_j - \mu_j)(X_k - \mu_k) f_{jk}(X_j, X_k) dX_j dX_k.$$

• If the joint density function $f_{jk}(x_j, x_k)$ can be written as the product of the two marginal densities, e.g.,

$$f_{ik}(x_i, x_k) = f_i(x_i) f_k(x_k),$$

then X_i and X_k are independent.

- More generally, the p-dimensional random vector X has mutually independent elements if the p-dimensional joint density function can be written as the product of the p univariate marginal densities.
- If two random variables X_j and X_k are independent, then their covariance is equal to 0. [Converse is not always true.]

Mean Vectors and Covariance Matrices (continued)

 We use μ to denote the p × 1 vector of marginal population means and use Σ to denote the p × p population variance-covariance matrix:

$$\Sigma = E[(X - \mu)(X - \mu)']$$
.

• If we carry out the multiplication (outer product)then Σ is equal to:

$$E\begin{bmatrix} (X_1 - \mu_1)^2 & (X_1 - \mu_1)(X_2 - \mu_2) & \cdots & (X_1 - \mu_1)(X_p - \mu_p) \\ (X_2 - \mu_2)(X_1 - \mu_1) & (X_2 - \mu_2)^2 & \cdots & (X_2 - \mu_2)(X_p - \mu_p) \\ \vdots & \vdots & \ddots & \vdots \\ (X_p - \mu_p)(X_1 - \mu_1) & (X_p - \mu_p)(X_2 - \mu_2) & \cdots & (X_p - \mu_p)^2 \end{bmatrix}.$$

• By taking expectations element-wise we find that

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}.$$

- Since $\sigma_{jk} = \sigma_{kj}$ for all $j \neq k$ we note that Σ is symmetric.
- Σ is also non-negative definite: this can be shown from the fact that for any vector a, the variance of a'X is nonnegative.

Correlation Matrix

• The population correlation matrix is the $p \times p$ matrix with off-diagonal elements equal to ρ_{jk} and diagonal elements equal to 1.

$$\begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{21} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ \rho_{p1} & \rho_{p2} & \cdots & 1 \end{bmatrix}.$$

- Since $\rho_{ij} = \rho_{ji}$ the correlation matrix is symmetric
- The correlation matrix is also non-negative definite
- The $p \times p$ population standard deviation matrix $V^{1/2}$ is a diagonal matrix with $\sqrt{\sigma_{jj}}$ along the diagonal and zeros in all off-diagonal positions. Then

$$\Sigma = \textbf{\textit{V}}^{1/2} \textbf{\textit{P}} \textbf{\textit{V}}^{1/2}$$

and the population correlation matrix is

$$(V^{1/2})^{-1}\Sigma(V^{1/2})^{-1}$$

• Given Σ, we can easily obtain the correlation matrix

Partitioning Random vectors

- If we partition the random $p \times 1$ vector \boldsymbol{X} into two components $\boldsymbol{X}_1, \boldsymbol{X}_2$ of dimensions $q \times 1$ and $(p-q) \times 1$ respectively, then the mean vector and the variance-covariance matrix need to be partitioned accordingly.
- Partitioned mean vector:

$$E(\mathbf{X}) = E\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} E(\mathbf{X}_1) \\ E(\mathbf{X}_2) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

Partitioning Covariance Matrices

Partitioned variance-covariance matrix:

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} \textit{Var}(\boldsymbol{X}_1) & \textit{Cov}(\boldsymbol{X}_1, \ \boldsymbol{X}_2) \\ \textit{Cov}(\boldsymbol{X}_2, \boldsymbol{X}_1) & \textit{Var}(\boldsymbol{X}_2) \end{array} \right] = \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{12}' & \boldsymbol{\Sigma}_{22} \end{array} \right],$$

where Σ_{11} is $q \times q$, Σ_{12} is $q \times (p-q)$ and Σ_{22} is $(p-q) \times (p-q)$.

- Σ₁₁, Σ₂₂ are the variance-covariance matrices of the sub-vectors X₁, X₂, respectively. The off-diagonal elements in those two matrices reflect linear associations among elements within each sub-vector.
- There are no variances in Σ_{12} , only covariances. These covariancs reflect linear associations between elements in the two different sub-vectors.

Linear Combinations of Random variables

 Let X be a p × 1 vector with mean μ and variance covariance matrix Σ, and let c be a p × 1 vector of constants. Then the linear combination c'X has mean and variance:

$$E(\mathbf{c}'\mathbf{X}) = \mathbf{c}'\mu,$$
 and $Var(\mathbf{c}'\mathbf{X}) = \mathbf{c}'\mathbf{\Sigma}\mathbf{c}$

• In general, the mean and variance of a $q \times 1$ vector of linear combinations $\mathbf{Z} = \mathbf{C}_{q \times p} \mathbf{X}_{p \times 1}$ are

$$\mu_{\pmb{Z}} = \pmb{C} \mu_{\pmb{X}}$$
 and $\pmb{\Sigma}_{\pmb{Z}} = \pmb{C} \pmb{\Sigma}_{\pmb{X}} \pmb{C}'$.

Cauchy-Schwarz Inequality

 We will need some of the results below to derive some maximization results later in the course.

Cauchy-Schwarz inequality Let \boldsymbol{b} and \boldsymbol{d} be any two $p \times 1$ vectors. Then,

$$(\mathbf{b}'\mathbf{d})^2 \leq (\mathbf{b}'\mathbf{b})(\mathbf{d}'\mathbf{d})$$

with equality only if $\mathbf{b} = c\mathbf{d}$ for some scalar constant c.

Proof: The equality is obvious for b=0 or d=0. For other cases, consider b-cd for any constant $c\neq 0$. Then if $b-cd\neq 0$, we have

$$0 < (\mathbf{b} - c\mathbf{d})'(\mathbf{b} - c\mathbf{d}) = \mathbf{b}'\mathbf{b} - 2c(\mathbf{b}'\mathbf{d}) + c^2\mathbf{d}'\mathbf{d},$$

since $\boldsymbol{b} - c\boldsymbol{d}$ must have positive length.

We can add and subtract $({\it {b}}'{\it {d}})^2/({\it {d}}'{\it {d}})$ to obtain

$$0 < \boldsymbol{b}'\boldsymbol{b} - 2c(\boldsymbol{b}'\boldsymbol{d}) + c^2\boldsymbol{d}'\boldsymbol{d} - \frac{(\boldsymbol{b}'\boldsymbol{d})^2}{\boldsymbol{d}'\boldsymbol{d}} + \frac{(\boldsymbol{b}'\boldsymbol{d})^2}{\boldsymbol{d}'\boldsymbol{d}} = \boldsymbol{b}'\boldsymbol{b} - \frac{(\boldsymbol{b}'\boldsymbol{d})^2}{\boldsymbol{d}'\boldsymbol{d}} + (\boldsymbol{d}'\boldsymbol{d})\left(c - \frac{\boldsymbol{b}'\boldsymbol{d}}{\boldsymbol{d}'\boldsymbol{d}}\right)^2$$

Since c can be anything, we can choose $c = \mathbf{b}' \mathbf{d}/\mathbf{d}' \mathbf{d}$. Then,

$$0 < \mathbf{b}'\mathbf{b} - \frac{(\mathbf{b}'\mathbf{d})^2}{\mathbf{d}'\mathbf{d}} \qquad \Rightarrow \qquad (\mathbf{b}'\mathbf{d})^2 < (\mathbf{b}'\mathbf{b})(\mathbf{d}'\mathbf{d})$$

for $\mathbf{b} \neq c\mathbf{d}$ (otherwise, we have equality).

Extended Cauchy-Schwarz Inequality

If \boldsymbol{b} and \boldsymbol{d} are any two $p \times 1$ vectors and \boldsymbol{B} is a $p \times p$ positive definite matrix, then

$$({\it b}'{\it d})^2 \leq ({\it b}'{\it B}{\it b})({\it d}'{\it B}^{-1}{\it d})$$

with equality if and only if $\mathbf{b} = c\mathbf{B}^{-1}\mathbf{d}$ or $\mathbf{d} = c\mathbf{B}\mathbf{b}$ for some constant c.

Proof: Consider $\mathbf{B}^{1/2} = \sum_{i=1}^{p} \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i'$, and $\mathbf{B}^{-1/2} = \sum_{i=1}^{p} \frac{1}{(\sqrt{\lambda_i})} \mathbf{e}_i \mathbf{e}_i'$. Then we can write

$$b'd = b'Id = b'B^{1/2}B^{-1/2}d = (B^{1/2}b)'(B^{-1/2}d) = b^{*'}d^*.$$

To complete the proof, simply apply the Cauchy-Schwarz inequality to the vectors \mathbf{b}^* and \mathbf{d}^* .

Optimization

Let \boldsymbol{B} be positive definite and let \boldsymbol{d} be any $p \times 1$ vector. Then

$$\max_{\boldsymbol{x}\neq 0}\frac{(\boldsymbol{x}'\boldsymbol{d})^2}{\boldsymbol{x}'\boldsymbol{B}\boldsymbol{x}}=\boldsymbol{d}'\boldsymbol{B}^{-1}\boldsymbol{d}$$

is attained when $\mathbf{x} = c\mathbf{B}^{-1}\mathbf{d}$ for any constant $c \neq 0$. **Proof:** By the extended Cauchy-Schwartz inequality:

 $(x'd)^2 \le (x'Bx)(d'B^{-1}d)$. Since $x \ne 0$ and B is positive definite, x'Bx > 0 and we can divide both sides by x'Bx to get an upper bound

$$\frac{(\mathbf{x}'\mathbf{d})^2}{\mathbf{x}'\mathbf{B}\mathbf{x}} \leq \mathbf{d}'\mathbf{B}^{-1}\mathbf{d}.$$

Differentiating the left side with respect to \boldsymbol{x} shows that maximum is attained at $\boldsymbol{x} = cB^{-1}\boldsymbol{d}$.

Maximization of a Quadratic Form on a Unit Sphere

• **B** is positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ and associated eigenvectors (normalized) $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_p$. Then

$$\max_{\boldsymbol{x}\neq 0} \frac{\boldsymbol{x}'B\boldsymbol{x}}{\boldsymbol{x}'\boldsymbol{x}} = \lambda_1, \quad \text{attained when } \boldsymbol{x} = \boldsymbol{e}_1$$

$$\min_{\boldsymbol{x}\neq 0} \frac{\boldsymbol{x}'B\boldsymbol{x}}{\boldsymbol{x}'\boldsymbol{x}} = \lambda_p, \quad \text{attained when } \boldsymbol{x} = \boldsymbol{e}_p.$$

• Furthermore, for $k = 1, 2, \dots, p-1$,

$$\max_{\boldsymbol{x}\perp\boldsymbol{e}_1,\boldsymbol{e}_2,\cdots,\boldsymbol{e}_k}\frac{\boldsymbol{x}'B\boldsymbol{x}}{\boldsymbol{x}'\boldsymbol{x}}=\lambda_{k+1} \quad \text{is attained when } \boldsymbol{x}=\boldsymbol{e}_{k+1}.$$

See proof at end of chapter 2 in the textbook (pages 80-81).

Determinant, Inverse of Symmetric Partitioned Matrix

$$\bullet \ \ \text{Let} \ \boldsymbol{\Sigma} = \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right] \ \text{and} \ \boldsymbol{\Sigma}^{-1} = \left[\begin{array}{cc} \boldsymbol{\Sigma}^{11} & \boldsymbol{\Sigma}^{12} \\ \boldsymbol{\Sigma}^{21} & \boldsymbol{\Sigma}^{22} \end{array} \right]$$

- The determinant and matrix inverses and the determinants have representations as follows:
 - Then the determinant of Σ can be written as:

$$|\boldsymbol{\Sigma}| = |\boldsymbol{\Sigma}_{11}||\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}|$$

• The inverse Σ^{-1} has partitioned elements given by:

$$\begin{array}{lcl} \boldsymbol{\Sigma}^{11} & = & \boldsymbol{\Sigma}_{11}^{-1} + \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \\ \boldsymbol{\Sigma}^{12} & = & -\boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \\ \boldsymbol{\Sigma}^{22} & = & (\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \end{array}$$

37/46

.

Matrix derivatives: Some useful results

- The following results are often useful in statistics:

 - $\frac{\mathsf{d} a' \Sigma}{\mathsf{d} \Sigma} = a$
 - 3 $\frac{d \log(|\Sigma|)}{d\Sigma} = \Sigma^{-1}$ for symmetric Σ
 - 4 $\frac{d_{a'}\Sigma^{-1}b}{d\Sigma} = -\Sigma^{-1}ab'\Sigma^{-1}$ for symmetric Σ
 - These results are useful in coming up with MLEs for the multivariate normal distribution.
- What should we do if we cannot find a formula that we need?
 - Use matrix differential calculus!

Matrix derivatives: preliminaries

- Suppose that $\Sigma = (\sigma_1, \dots, \sigma_n)$ is $m \times n$ matrix
- *vec* operator is defined as $vec(\Sigma) = (\sigma'_1, \dots, \sigma'_n)'$.
 - Thus, $vec(\Sigma)$ is a vector of length mn
- If $\Sigma = (\sigma_1, \dots, \sigma_n)$ is a symmetric $m \times m$ matrix, then a vech operator is defined as $\operatorname{vech}(\Sigma) = (\sigma_{11}, \dots, \sigma_{m1}, \sigma_{22}, \dots, \sigma_{m2}, \dots, \sigma_{mm})'$
 - Thus, $vech(\Sigma)$ is a vector of length m(m+1)/2
- Note that
 - vec(a') = vec(a) = a
 - $vec(ab') = b \otimes a$, where \otimes denotes Kronecker's product
- Important property: vec(abC) = (C' ⊗ a)vec(b), where a, b and C are matrices such that the product matrix abC exists (prove at home)
 - This is a major tool for taking derivatives with respect to matrices and vectors

Matrix derivatives: notation

 It is important to introduce "good" notation (see Magnus and Neudecker, 1999)

-	scalar	vector	matrix
	variable	variable	variable
Scalar function	$f(\sigma)$	$f(\sigma)$	$f(\mathbf{\Sigma})$
Vector function	$f(\sigma)$	$f(\sigma)$	$f(\mathbf{\Sigma})$
Matrix function	$\boldsymbol{F}(\sigma)$	$F(\sigma)$	$F(\Sigma)$

- ullet Derivative $m{Df}(m{\sigma})$: $dm{f}(m{\sigma}) = m{a}(m{\sigma})dm{\sigma} \quad \Leftrightarrow \quad m{Df}(m{\sigma}) = m{a}(m{\sigma})$
 - $\mathbf{D}f(\sigma) = \frac{\partial f(\sigma)}{\partial \sigma'}$
 - $Df(\sigma) = \frac{\partial f(\sigma)}{\partial \sigma'}$
 - In a more general case: $DF(\Sigma) = \frac{\partial vec(F(\Sigma))}{\partial vec(\Sigma)'}$

Matrix derivatives: examples

- Example 1:
 - Find the derivative of $F(\Sigma) = a\Sigma b$

 - 2 Therefore, $dvec(\mathbf{F}(\mathbf{\Sigma})) = (\mathbf{b}' \otimes \mathbf{a}) dvec(\mathbf{\Sigma})$
 - **3** Hence, it follows that $DF(\Sigma) = b' \otimes a$
- Example 2:
 - Find the derivative of $f(\Sigma) = \Sigma a$

 - 2 Then, $vec(I(d\Sigma)a) = (a' \otimes I)dvec(\Sigma)$
 - **3** Hence, it follows that $Df(\Sigma) = a' \otimes I$
- Example 3:
 - Find the derivative of $F(\sigma) = \sigma \sigma'$

 - 2 Then, $dvec(\sigma\sigma') = (\sigma \otimes I)dvec(\sigma) + (I \otimes \sigma)dvec(\sigma')$
 - **3** Therefore, $d vec(\sigma \sigma') = (\sigma \otimes I + I \otimes \sigma) d\sigma$
 - Hence, $\mathbf{DF}(\sigma) = \sigma \otimes \mathbf{I} + \mathbf{I} \otimes \sigma$
- Example 4:
 - Find the derivative of $F(\Sigma) = \Sigma^{-1}$, where Σ is nonsingular

 - Then, $dvec(F(\Sigma)) = -((\Sigma')^{-1} \otimes \Sigma^{-1})dvec(\Sigma)$ Hence, $DF(\Sigma) = -(\Sigma')^{-1} \otimes \Sigma^{-1}$

Matrix derivatives: summary of some results

• The following table provides some useful results

function	differential	derivative
$a'\sigma$	$m{a}'$ d σ	a'
$\sigma' {m a} \sigma$	$\sigma'({m a}+{m a}')$ d σ	$oldsymbol{\sigma}'(oldsymbol{a}+oldsymbol{a}')$
$tr\{oldsymbol{a}oldsymbol{\Sigma}\}$	t <i>r</i> { a dΣ}	a'
$ \mathbf{\Sigma} $	$ \mathbf{\Sigma} \mathrm{t} r {\{\mathbf{\Sigma}^{-1}\}} \mathrm{d}\mathbf{\Sigma}$	$ \mathbf{\Sigma} (\mathbf{\Sigma}^{-1})'$
Σ^{-1}	$-\mathbf{\Sigma}^{-1}(d\mathbf{\Sigma})\mathbf{\Sigma}^{-1}$	$-(\mathbf{\Sigma}')^{-1}\otimes\mathbf{\Sigma}^{-1}$

Matrix derivatives: derivatives wrt symmetric matrices

- Issue: some elements are identical
- How should we treat the derivative with respect to symmetric matrices?
 - Recall vech operator: it works similar to vec operator but chooses unique elements only
- Consider a symmetric matrix Σ
- Then, the following relationships hold:
 - vec(Σ) = Gvech(Σ), where G is the unique matrix or zeroes and ones that provides this equality
 - vech(Σ) = Hvec(Σ), where H is generally a nonunique matrix

Matrix derivatives: G-matrix example

Consider a 3 × 3 symmetric matrix Σ

• Then we obtain
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

G is the unique 9 × 6 matrix that consists of 0 and 1 only

Matrix derivatives: H-matrix example

• H matrix is not unique!

Matrix derivatives: G-matrix

- For taking derivatives wrt symmetric matrices, use the following strategy:
 - obtain a derivative in vector form ignoring the symmetric structure
 - adjust the obtained result pre-multipying it by G'
 - the result is a vector consisting of unique derivatives