

GAN

Generative Adversarial Networks

Training Scheme

Training Sequence

Evaluate Synthetic Data

Referencias:

• GAN — What is Generative Adversarial Networks GAN? – Jonathan Hui, Medium, 2018

★ GAN — GAN Series – Jonathan Hui, Medium, 2018

 Modeling Tabular data using Conditional GAN - Lei Xu, 2019

O1 GAN

Generative Adversarial Networks

It generates synthetic data

Two Neural Networks: Generator & Discriminator

Generative Adversarial Networks

The two networks are trained against each other

. .

Pg(x): Generated data distribution.

- Pg(x): Generated data distribution. Pz(z): Input noise distribution.

MinMax Game

Value function

Entropía cruzada =
$$\sum_{i} p_i \cdot \log q_i$$
, Entropía Relativa: $D_{KL}(P||Q) = \sum_{i} P_i \cdot \ln \frac{P_i}{Q_i}$

 $\min_{G} \sum_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} [ln(D(x))] + \mathbb{E}_{z \sim p_{z}(z)} [ln(1 - D(G(z)))]$

Generator

$$\max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[ln(D(x))] + \mathbb{E}_{z \sim p_z(z)}[ln(1 - D(G(z)))]$$

Discriminator

$$\min_{C} V(D, G) = \mathbb{E}_{z \sim p_z(z)}[ln(1 - D(G(z)))]$$

04 **Evaluate Synthetic** Data

Evaluate Synthetic Data

Correlation Matrix (CM) to show the relations between the variables of the dataset.

Evaluate Synthetic Data

Compress the dataset of high dimension to a 2D representation (UMAP) and show their **10 closest neighbours**.

