Image is NOT Perfect Sometimes

Image Enhancement for Visually Impaired Patients

http://www.eri.harvard.edu/faculty/peli/projects/enhancement.html

Image Enhancement

- Introduction
- Spatial domain techniques
 - Point operations
 - Histogram equalization and matching
 - Applications of histogram-based enhancement
- Frequency domain techniques
 - Unsharp masking
 - Homomorphic filtering*

Recall:

- There is no boundary of imagination in the virtual world
- In addition to geometric transformation (warping) techniques, we can also photometrically transform images
 - Ad-hoc tools: point operations
 - Systematic tools: histogram-based methods
 - Applications: repair under-exposed or overexposed photos, increase the contrast of iris images to facilitate recognition, enhance microarray images to facilitate segmentation.

Point Operations Overview

Point operations are **zero-memory** operations where a given gray level $x \in [0,L]$ is mapped to another gray level $y \in [0,L]$ according to a transformation

$$y = f(x)$$

L=255: for grayscale images

Lazy Man Operation

$$y = x$$

No influence on visual quality at all

Digital Negative

$$y = L - x$$

Contrast Stretching

$$y = \begin{cases} \alpha x & 0 \le x < a \\ \beta(x-a) + y_a & a \le x < b \\ \gamma(x-b) + y_b & b \le x < L \end{cases}$$

$$a = 50, b = 150, \alpha = 0.2, \beta = 2, \gamma = 1, y_a = 30, y_b = 200$$

Clipping

$$y = \begin{cases} 0 & 0 \le x < a \\ \beta(x-a) & a \le x < b \\ \beta(b-a) & b \le x < L \end{cases}$$

$$a = 50, b = 150, \beta = 2$$

Range Compression

$$y = c \log_{10}(1+x)$$

c = 100

Summary of Point Operation

- So far, we have discussed various forms of mapping function f(x) that leads to different enhancement results
 - MATLAB function >imadjust
- The natural question is: How to select an appropriate f(x) for an arbitrary image?
- One systematic solution is based on the histogram information of an image
 - Histogram equalization and specification

Histogram based Enhancement

Histogram of an image represents the relative frequency of occurrence of various gray levels in the image

MATLAB function >imhist(x)

Why Histogram?

Histogram information reveals that image is under-exposed

Another Example

Over-exposed image

How to Adjust the Image?

- Histogram equalization
 - Basic idea: find a map f(x) such that the histogram of the modified (equalized) image is flat (uniform).
 - Key motivation: cumulative probability function (cdf) of a random variable approximates a uniform distribution

Suppose h(t) is the histogram (pdf)
$$s(x) = \sum_{t=0}^{x} h(t)$$

Histogram Equalization

http://en.wikipedia.org/wiki/Inverse transform sampling

MATLAB Implementation

```
function y=hist_eq(x)
[M,N]=size(x);
                                   Calculate the histogram
for i=1:256
                                   of the input image
h(i)=sum(sum(x==i-1));
End
y=x;s=sum(h);
for i=1:256
                                    Perform histogram
I=find(x==i-1);
                                    equalization
y(I)=sum(h(1:i))/s*255;
end
```

Image Example

before after

Histogram Comparison

Adaptive Histogram Equalization

http://en.wikipedia.org/wiki/Adaptive histogram equalization

Histogram Specification/Matching

Given a target image B, how to modify a given image A such that the histogram of the modified A can match that of target image B?

Application (I): Digital Photography

Application (II): Iris Recognition

before after

Application (III): Microarray Techniques

Application (IV)Gamma Correction

- Gamma correction is important if displaying an image accurately on a computer screen is of concern
- Reproducing accurate color also requires some knowledge of gamma correction because varing the value of gamma correction changes not only the brightness, but also the ratios of red to green to blue
- Example

Application (V): Entertainment

Adaptive instruction - equalized

¹Eric P. Bennett and Leonard McMillan. "Video enhancement using per-pixel virtual exposures," In ACM SIGGRAPH 2005

Image Enhancement

- Introduction
- Spatial domain techniques
 - Point operations
 - Histogram equalization and matching
 - Applications of histogram-based enhancement
- Frequency domain techniques
 - Unsharp masking
 - Homomorphic filtering*

Frequency-Domain Techniques (I): Unsharp Masking

$$y(m,n) = x(m,n) + \lambda g(m,n), \lambda > 0$$

g(m,n) is a high-pass filtered version of x(m,n)

• Example (Laplacian operator)

$$g(m,n) = x(m,n) - \frac{1}{4} [x(m-1,n) + x(m+1,n) + x(m,n-1) + x(m,n+1)]$$

MATLAB Implementation

% Implementation of Unsharp masking

function y=unsharp_masking(x,lambda)

```
% Laplacian operation
h=[0 -1 0;-1 4 -1;0 -1 0]/4;
dx=filter2(h,x);
y=x+lambda*dx;
```

1D Example

 $g(n)=x(n)-x_{lp}(n)$

$$y(n) = x(n) + \lambda g(n)$$

2D Example

MATLAB command >roidemo

Frequency-Domain Techniques (II): Homomorphic filtering

Basic idea:

$$f(x,y) = i(x,y)r(x,y)$$
Illumination reflectance (low freq.) (high freq.)
$$\ln f(x,y) = \ln i(x,y) + \ln r(x,y)$$
freq. domain enhancement

Image Example

before after

Summary of Nonlinear Image Enhancement

- Understand how image degradation occurs first
 - Play detective: look at histogram distribution, noise statistics, frequency-domain coefficients...
 - Model image degradation mathematically and try inverseengineering
- Visual quality is often the simplest way of evaluating the effectiveness, but it will be more desirable to measure the performance at a system level
 - Iris recognition: ROC curve of overall system
 - Microarray: ground-truth of microarray image segmentation result provided by biologists