Natural Language Processing (CS310) Final Project Report

Detecting Human and LLMs-generated Texts using Supervised Learning-based and Zero-shot Approach across Diverse Domains

Fitria Zusni Farida, Sreyny Tha, Tan Hao Yang
Taught by Prof. Yang Xu
Department of Computer Science and Technology
Southern University of Science and Technology
{12112351, 12113053, 12212027}@mail.sustech.edu.cn

1. Introduction

To effectively detect large language models (LLMs)-generated texts, especially to distinguish them from real human-written ones, is becoming a more and more important task. The task can be approached with two technical paths: 1) supervised learning-based detection; 2) likelihood metrics-based zero-shot detection. The former is similar to building a text classification model for tasks such as sentiment analysis etc., which can be done by fine-tuning a transformer encoder-based model (e.g., BERT) on an annotated dataset with binary labels (e.g., "0" for human-written and "1" for LLM-generated). The main advantage of this approach is that a supervised learning model can perform well provided with sufficient amount of data, and will be useful for a focused task-domain (e.g., news, fictions etc.). The limitation is also obvious – it is not a generic method, which means a detection model trained on one type of text data may fail on others, that is, relatively poor out-of-domain (OOD) performance. The latter approach, likelihood-based zero-shot detection, is a more generic solution – the detection algorithm/pipeline developed for one text-domain/languages/LLM can also work well on others, that is, better overall OOD performance. (This introduction is referenced from the project docs)

The goal of this project is two-fold:

- (1) Implement a series of supervised learning-based detection models, and test their performances under the OOD condition.
- (2) Implement zero-shot detection methods, and test it on the same setting.

Our documentation is in this github ¹repository:

-

¹ https://github.com/always-hy/CS310 NLP Project

2. Experimental Setups

- A. English text classification
 - 1) Datasets and data preprocessing

The dataset used is the provided *ghostbuster* dataset. Data preprocessing includes tidying up the given .txt files into json files and dropping samples which are empty. Finally, the datasets used are organized as follows:

• **gb-dataset:** The dataset used for training contains 21,994 samples, specifically from three domains: 8,000 samples of *reuter*, 7000 samples of *wp*, and 6,994 samples of *essay*. The dataset contains texts and labels with 2,994 samples of human written text and 19,000 samples of AI-generated (gpt, gpt_prompt1, gpt_prompt2, gpt_semantic, gpt_semantic, and claude). The dataset distribution is as follows.

Figure 1. gb-dataset distribution for supervised fine-tuning from human and AI-generated texts in *reuter*, *wp*, *and essay* domain

- **gb-pair-dataset:** The dataset contains human and AI-generated (gpt, gpt_prompt1, gpt_prompt2, gpt_semantic, gpt_semantic, and claude) pairs with respect to its context. The domains are the same with gb-dataset (200 pair texts from *essay*, 1,000 pair texts from *reuter*, and 200 pair texts from *wp*).
- **gb-ood-dataset:** out-of-domain datasets are used to test the model's performance out of the domain used during the training. The domains are specifically from: *poet* (1,800 samples) and *mental health counseling conversation* (602 samples).

• **gb-pair-comp-dataset:** This dataset is used for unsupervised-based zero-shot to compare with supervised-based. It contains human and AI-generated (using GPT-4o-mini) with respect to its context. The domains are specifically from: *poet* (302 pairs) and *mental health counseling conversation* (200 pairs).

2) Methodology

(a) Supervised learning-based classification

For this task to classify human-generated vs AI-generated texts implementing supervised-based classifiers, we will fine-tune the **BERT**² (specifically bert-base-uncase variant) model in **gb-dataset**. To test the performance out of the trained domain, **gb-ood-dataset** will be used.

(b) Zero-shot classification

For this task to classify human-generated vs AI-generated texts implementing unsupervised-based classifiers, we will implement zero-shot approach FourierGPT³ pairwise heuristic-based with GPT-2 model to obtain the NLL score (negative likelihood) and applying zscore normalization. The dataset used for this implementation is gb-pair-dataset. Also, another testing will be performed using gb-pair-comp-dataset.

B. Chinese text classification

1) Datasets and data preprocessing

The dataset used is the provided *face2* dataset. Data preprocessing includes tidying up the given .txt files into json or csv files and dropping samples which are empty. Finally, the datasets used are organized as follows:

• **face-dataset**: The dataset used for training is specifically from three domains: *news*, *webnovel*, and *wiki*. It contains normally distributed texts and labels with 14,967 samples of AI-generated (model to generate is not specified) chinese text and 13,145 samples of human-generated chinese text.

² https://huggingface.co/google-bert/bert-base-uncased

³ https://aithub.com/CLCS-SUSTech/FourierGPT

- **face-pair-dataset:** Pairwise (human and AI-generated pairwise with respect to the input) used is specifically from three domains (same as above). It contains 4,530 pairwise chinese texts from *news* domain, 4997 pairwise chinese texts from *webnovel* domain, and 3,607 pairwise chinese texts from *wiki* domain.
- **face-ood-dataset:** Out-of-domain datasets are used to test the model's performance out of the domain used during the training. The domains are specifically from: *finance* (3,543 samples), *medicine* (1,195 samples), and *law* (2,148 samples).
- **face-pair-comp-dataset:** This dataset is used for unsupervised-based zero-shot to compare with supervised-based. It contains human and AI-generated pairwise. The domains are specifically from: *finance* (1,384 pairs), *medicine* (1,074 pairs), and *law* (425 pairs).

2) Methodology

(a) Supervised learning-based classification

For this task to classify human-generated vs AI-generated texts implementing supervised-based classifiers, we will fine-tune the **BERT**⁴ (specifically bert-base-chinese variant) model in **face-dataset**. To test the performance out of the trained domain, **face-ood-dataset** will be used.

(b) Zero-shot classification

For this task to classify human-generated vs AI-generated texts implementing unsupervised-based classifiers, we will implement zero-shot approach FourierGPT pairwise heuristic-based with GPT-2⁵ model to obtain the NLL score (negative likelihood) and applying zscore normalization. The dataset used for this implementation is face-pair-dataset and face-pair-comp-dataset.

3. Experiment Results

- A. English text classification
 - (a) Supervised-based classification

⁴ https://huggingface.co/google-bert/bert-base-chinese

⁵ https://huggingface.co/docs/transformers/model_doc/gpt2

Fine-tuning BERT model (bert-base-uncased) using following hyperparameters:

```
test_size = 0.2

num_epochs = 10

learning_rate = 2e-5

max_length = 512

batch_size = 64
```


Figure 2. Training loss fine tuning BERT in **gb-dataset** and accuracy, precision, recall, F1-score, and AUC-ROC in validation set for English texts classification

Figure 3. Accuracy, precision, recall, F1-score, and AUC-ROC out-of-domain in **gb-ood-dataset** for English texts classification

(b) Zero-shot classification

Zero-shot Accuracy (%) English text

	Essay	Reuter	Wp
GPT	k = 5 62.50%	k = 5 65.20%	k = 24 79.00%
GPT prompt 1	k = 10 62.50%	k = 48 59.80%	k = 24 73.50%
GPT prompt 2	k = 6 56.00%	k = 44 71.00%	k = 9 69.00%
GPT semantic	k = 5 58.50%	k = 46 66.10%	k = 30 75.00%
GPT writing	k = 5 62.00%	k = 11 57.10%	k = 21 62.00%
Claude	k = 4 64.00%	k = 4 67.10%	k = 9 65.60%
Best k accuracy Higher = model Higher = humo			

Figure 4. Accuracy and best k implementing FourierGPT in gb-pair-dataset across various LLMs and domains

for English texts classification.

Note: best k is the number of the first k frequency components (from low to high) that produces the best accuracy

Zero-shot Accuracy (%) English text

Dataset	besk k accuracy	
Mental health conversation	k = 18 73.09%	
Poem	k = 50 87.27%	
Higher = n	nodel Higher = humar	

Figure 5. Accuracy and best k implementing FourierGPT in gb-pair-comp-dataset for English texts classification.

Note: best k is the number of the first k frequency components (from low to high) that produces the best accuracy

B. Chinese text classification

(a) Supervised-based classificationFine-tuning BERT model (bert-base-chinese) using following hyperparameters:

```
test_size = 0.2

num_epochs = 10

learning_rate = 2e-5

max_length = 512

batch_size = 64
```


Figure 6. Training loss fine tuning BERT in **face-dataset** and accuracy, precision, recall, F1-score, and AUC-ROC in validation set for Chinese texts classification

OOD Performance Metrics Across Domains Medicine 0.6145 0.9802 0.7218 0.5647 1.0000 Metric Value 1.00 Domain 0.75 0.5448 0.9618 0.6495 0.4814 0.9980 Law 0.50 0.25 0.00 Finance 0.6376 0.9562 0.7553 0.6070 0.9995 AUROC F1-Score Accuracy Precision Recall Metric

Figure 7. Accuracy, precision, recall, F1-score, and AUC-ROC out-of-domain in **face-ood-dataset** for English texts classification

(b) Zero-shot classification

Zero-shot Accuracy (%) Chinese text

Dataset	besk k accuracy	
News	k = 4 60.32%	
Webnovel	k = 1 60.83%	
Wiki	k = 5 59.06%	
Higher = r	model Higher = human	

Figure 8. Accuracy and best k implementing FourierGPT in **face-pair-dataset** for Chinese texts classification.

Note: best k is the number of the first k frequency components (from low to high) that produces the best accuracy

Zero-shot Accuracy (%) Chinese text

Dataset	besk k accuracy	
Finance	k = 8 85.45%	
Law	k = 32 92.71%	
Medicine	k = 29 62.31%	
Higher =	model Higher = human	

Figure 9. Accuracy and best k implementing FourierGPT in **face-pair-comp-dataset** for Chinese texts classification.

Note: best k is the number of the first k frequency components (from low to high) that produces the best accuracy

4. Conclusion

- 1) Supervised fine-tuning BERT performed well, especially for in-domain datasets for both English and Chinese classification tasks.
- 2) Supervised Fine-tuning BERT performed poorly in OOD compared with in-domain dataset.
- 3) Zero-shot FourierGPT approach performed worse compared to supervised fine-tune for in-domain dataset.
- 4) Zero-shot FourierGPT was better compared with fine-tuning BERT in OOD.
- 5) In zero-shot FourierGPT, the result showed model-generated tends to have higher average power value on the selected frequency components.