1 Chosal form of Smoothing Splines Let Na(x), Na(x),,Nn(x)
1. Clasal form of Smoothing Splines. Let V1(x), N2(x),,Nn(x) be the n-basis for natural cubic splines (a). Derive the closed form of smoothing spline solution
(a). Derive the closed form of smoothing spline solution
Given that the solution is in fact that of a natural spline, we use the equation $f(x) = \sum_{j=1}^{n} N_j(x) G_j$ where $N_j(x)$ is a set of
spline, we use the equation $f(x) = \sum N_i(x) f_i$ where
Nj(x) is a set of
N-dimensional basis fundions used to represent natural
cubic Splines.
$f''(t) = \sum_{i=1}^{n} N_i''(t) O_i$ for some i and t
Let us square this double derivative and take the
integral
•
[F"(t)]2dt=[[\$\text{N;"(t)}\text{D;]*[\$\text{N;"(t)}\text{D;]}}
Let us rearrange
V
V
= = N; W N; "(+) dt 0; 0;
= = = N;"(1) N;"(1) H; (1) H; O; O; = OT NO
= = N; W N; "(+) dt 0; 0;

We can reduce the criterion to $RSS(0, \lambda) = (y-N0)^T (y-N0) + \lambda 0^T 20^T + \lambda 0^T 2$

Let us take the derivative of the above w.r.t θ_2 $-2N^T(Y-N\hat{\theta})+2\lambda \mathcal{D}\hat{\theta}=0$ $2\lambda \mathcal{D}\hat{\theta}=2N^T(Y-N\hat{\theta})$ $\lambda \mathcal{D}\hat{\theta}=N^TY-N^TN\hat{\theta}$ $\hat{\theta}=(N^TN+\lambda \mathcal{I}Z)^{-1}N^TY$

The parelider $f(x) = \sum_{j=1}^{2} N_j(x) \hat{\theta}_j$ is fitted as smoothing spline

(b). Please comment on the relationship between the smoothing spline estimator and the natural cubic spline estimator.

A smoothing spline estimator finds a function among the set of functions where both the first and second derivatives are continuous. The goal is to minimize the equation

RSS(fin)= = Ly:-f(x)32+ 2) [f"(t)3d4. Sweething parameter

The function that minimizes the above equation is in fact a natural cubic spline.

(c). Write down the definition of degree of freedom for smoothing splines

Let f denote the n-vector of fitted values $f(x_i)$ at the training predictors x_i . $f = N(N^TN + \lambda J_u)^{-1}N^Ty = 5xy$.

Suppose B_{ϵ} is a matrix with a rows and m columns. Each column represent a cubic spline basis function evaluated at training point x_i . The knot sequence is denoted by ϵ . In our situation, m is strictly smaller than n. The vector of fitted spline values is governed by the equation $f = B_{\epsilon}(B_{\epsilon}B_{\epsilon})^{-1}B_{\epsilon}^{T}y$ which is equal to $H_{\epsilon}y$.

He is a projection matrix. Remarkably, M is equivalent to the trace of our matrix HE. Hence, the effective degree of freedom df_{λ} is equal to the trace of S_{λ} .

(d) Comment on why smoothing splines do not suffer from overfitting Since f(xi) is never equal to yi for the smoothing spline
overfitting
since f(x;) is never equal to yi for the smoothing spline
. •
Ž {y;-f(xi)}²+λ∫{f"(tt)², the curve is forced to omit
X (y:-f(xi)) ² +λ)(f"(tt)) the curve is forced to omit many observations. The penalty of λ)(f"(t)) keeps the
variance low.