

Mobile Robots | Introduction and Lecture Overview Autonomous Mobile Robots

Roland Siegwart

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza

Autonomous mobile robot | the key questions

- The three key questions in Mobile Robotics
 - Where am I?
 - Where am I going ?
 - How do I get there ?
- To answer these questions the robot has to
 - have a model of the environment (given or autonomously built)
 - perceive and analyze the environment
 - find its position/situation within the environment
 - plan and execute the movement

Motion Control | kinematics and motion control

- Wheel types and its constraints
 - Rolling constraint
 - no-sliding constraint (lateral)
- Motion control

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\dot{\varphi}_1 \cdots \dot{\varphi}_n, \theta, geometry)$$

$$\begin{bmatrix} \dot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_n \end{bmatrix} = f(\dot{x}, \dot{y}, \dot{\theta})$$

Perception | sensing

- Laser scanner
 - time of flight

Perception | information extraction

Filtering / Edge Detection

- **Keypoint Features**
 - features that are reasonably invariant to rotation, scaling, viewpoint, illumination
 - FAST, SURF, SIFT, BRISK, ...

Image from [Rosten et al., PAMI 2010]

- Keypoint matching
 - **BRISK** example

Localization | where am I?

- SEE: The robot queries its sensors
 → finds itself next to a pillar
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)

Cognition | Where am I going ? How do I get there ?

Cognition | Where am I going ? How do I get there ?

- Global path planning
 - Graph search

10	9	8	7	8 S
11	10		6	7
			5	6
1	2		4	5
G ₀ ✓	1	_2	3	4

- Local path planning
 - Local collision avoidance

Autonomous mobile robot | about the course

- Around 30 short video lectures that we call "segments".
- The "segments" are complemented with:
 - short questions for each segment to verify your understanding and progress
 - various exercises
 - videos showing the current state-of-the-art in the field
- Based on lecture at ETH Zurich
- Textbook "Introduction to Autonomous Mobile Robots" Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza The MIT Press

Autonomous mobile robot | your teachers

Roland Siegwart, ETH Zurich

Paul Furgale, ETH Zurich

Marco Hutter, ETH Zurich

Margarita Chli, Univ. of Edinburgh

Davide Scaramuzza, Univ. of Zürich

Martin Rufli, IBM Research

Autonomous mobile robot | we invite you to join the course

We look forward having you as our students in this course