Finite Groups

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 22, 2014

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation ★ is associative,
- there exists an identity element e ∈ G such that for any a ∈ G

$$a \star e = e \star a = a$$
,

• for every $a \in G$, there exists an element $b \in G$ such that

$$a \star b = b \star a = e$$
.

Example

• Modulo *n* addition on $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group *G* is its cardinality.

Definition

A cyclic group is a finite group *G* such that each element in *G* appears in the sequence

$$\{g, g \star g, g \star g \star g, \ldots\}$$

for some particular element $g \in G$, which is called a generator of G.

Example

 $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ is a cyclic group with a generator 1

Group Isomorphism

Example

- $\mathbb{Z}_2 = \{0, 1\}$ is a group under modulo 2 addition
- $R=\{1,-1\}$ is a group under multiplication \mathbb{Z}_2 R $0\oplus 0=0$ $1\times 1=1$ $1\oplus 0=1$ $-1\times 1=-1$ $0\oplus 1=1$ $1\times -1=-1$

$$1 \oplus 1 = 0 \qquad -1 \times -1 = 1$$

Definition

Groups G and H are isomorphic if there exists a bijection $\phi: G \to H$ such that

$$\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in G$.

Cyclic Groups and \mathbb{Z}_n

Theorem

Every cyclic group G of order n is isomorphic to \mathbb{Z}_n

Proof.

Let *h* be a generator of *G*. Define $h^i = \underbrace{h \star h \star \cdots \star h}_{i \text{ times}}$.

The function $\phi: G \to \mathbb{Z}_n$ defined by $\phi(h^i) = i \mod n$ is a bijection.

Corollary

Every finite cyclic group is abelian.

Subgroups

Definition

A nonempty subset S of a group G is called a subgroup of G if

- $\alpha + \beta \in S$ for all $\alpha, \beta \in S$
- $-\alpha \in S$ for all $\alpha \in S$

Example

 $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ has subgroups

- {0}
- {0,3}
- {0,2,4}
- $\{0, 1, 2, 3, 4, 5\}$

Lagrange's Theorem

Theorem

If S is a subgroup of a finite group G, then |S| divides |G|.

Definition

Let S be a subgroup of a group G. For any $g \in G$, the set $S \oplus g = \{s \oplus g | s \in S\}$ is called a coset of S.

Example

```
\begin{array}{l} S = \{0,3\} \text{ is a subgroup of } \mathbb{Z}_6 = \{0,1,2,3,4,5\}. \text{ It has cosets} \\ S \oplus 0 = \{0,3\} \,, \quad S \oplus 1 = \{1,4\} \,, \quad S \oplus 2 = \{2,5\} \,, \\ S \oplus 3 = \{0,3\} \,, \quad S \oplus 4 = \{1,4\} \,, \quad S \oplus 5 = \{2,5\} \,. \end{array}
```

Lemma

Two cosets of a subgroup are either equal or disjoint.

Lemma

If S is finite, then all its cosets have the same cardinality.

Application of Lagrange's Theorem

Prove that $2^{p-1} = 1 \mod p$ for any prime p > 2.

• Consider the group $\mathbb{Z}_p^* = \{1, 2, 3, \dots, p-1\}$ under the operation

$$a \odot b = ab \mod p$$

Consider the subgroup S generated by 2

$${2,2^2,2^3,\ldots,2^{n-1},2^n=1}$$

What can we say about the order of S?

Subgroups of Cyclic Groups

Example

 $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ has subgroups $\{0\},\,\{0,3\},\,\{0,2,4\},\,\{0,1,2,3,4,5\}$

Theorem

Every subgroup of a cyclic group is cyclic.

Proof.

• If h is a generator of a cyclic group G of order n, then

$$G = \{h, h^2, h^3, \dots, h^n = 1\}$$

- Every element in a subgroup S of G is of the form hⁱ where 1 < i < n
- Let h^m be the smallest power of h in S
- Every element in S is a power of h^m

Subgroups of Cyclic Groups

Example

```
\mathbb{Z}_6 = \{0,1,2,3,4,5\} has subgroups \{0\},\,\{0,3\},\,\{0,2,4\},\,\{0,1,2,3,4,5\}
```

Theorem

If G is a finite cyclic group with |G| = n, then G has a unique subgroup of order d for every divisor d of n.

Proof.

- If $G = \langle h \rangle$ and d divides n, then $\langle h^{n/d} \rangle$ has order d
- Every subgroup of G is of the form $\langle h^k \rangle$ where k divides n
- If k divides n, $\langle h^k \rangle$ has order $\frac{n}{k}$
- If a subgroup has order d, it is equal to $\langle h^{n/d} \rangle$

Number of Generators of a Cyclic Group

Examples

- $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ has four generators 1, 2, 3, 4
- $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ has two generators 1, 5
- $\mathbb{Z}_{10} = \{0, 1, 2, \dots, 9\}$ has four generators 1, 3, 7, 9

Theorem

A cyclic group of order n has $\phi(n)$ generators where

 $\phi(n) = No.$ of integers in $\{0, 1, \dots, n-1\}$ relatively prime to n

Order of an Element in a Cyclic Group

Example

- $\mathbb{Z}_{10} = \{0, 1, 2, \dots, 9\}$ has
 - four elements 1, 3, 7, 9 of order 10
 - four elements 2, 4, 6, 8 of order 5
 - one element 5 of order 2
 - one element 0 of order 1

Theorem

$$n = \sum_{d:d|n} \phi(d)$$

Questions? Takeaways?