Review of Essential Basics

Electrical

Electrical engineering

Mechanical engineering

MEMS

Material processing

Microfabrication

Silicon as the substrate

Silicon ingots made by Czochralski method

https://www.plutosemi.net/show-14-415-1.html https://www.vritratech.com/store/product/p-type-silicon-wafer-3-inch/ https://www.waferworld.com/post/top-causes-of-silicon-wafer-breakage

https://www.youtube.com/watch?v=aCOyq4YzBtY (Sand to Silicon - The Making of a Chip | Intel)

Demo of silicon wafer and microheater array

Image © Amruta R Behera

Czochralski process

• Process brief:

https://www.youtube.com/watch?v=skRmyhSOu28

https://www.youtube.com/watch?v=2qLI-NYdLy8

Actual footage of fabrication:

https://www.youtube.com/watch?v=jh2z-g7GJxE (video at 2000X)
https://www.youtube.com/watch?v=XbBc4ByimY8

- Ingot footage: https://www.youtube.com/watch?v=O2jrjiRe8cE
- Shipping wafers: https://www.youtube.com/watch?v=bB5iWzsztdc
- Attempt by Adani: https://www.pv-magazine.com/2022/12/09/adani-unveils-indias-first-silicon-ingot/

Conductivity of a semiconductor

Semiconductors allow controlling of their conductivity by

intentionally introduced impurities

Bandgap = 1.11eV

externally applied electric field

charge injection

ambient light

temperature variations

Doping methods

(a) diffusion and (b) ion-implantation techniques

Silicon as a conductor: electrode, heating element

Use of doped Silicon as electrode in MEMS

Basic structure of a micro-electro-mechanical system (MEMS) capacitive microphone.

A piezoelectric vibration energy harvester

https://www.mdpi.com/2072-666X/11/5/484

https://www.researchgate.net/figure/MEMS-device-fabrication-process fig6 318552423

Ion implanter

Furnace for diffusion doping

Oxidation furnace – similar furnace used for doping https://www.youtube.com/watch?v=Hi-1zN1RVqc

Phosphorous diffusion

https://www.youtube.com/watch?v=3MkiUHZsWro

Calculation of charge carrier concentration

$$n=p\equiv n_i$$
.

$$n_i^2 = 4 \left(\frac{4\pi^2 m_n^* m_p^* k^2 T^2}{h^2} \right)^{3/2} e^{\frac{-E_g}{kT}}$$

Commonly accepted values of n_i at $T = 300^{\circ}$ K

Silicon	$1.5 \times 10^{10} \text{ cm}^{-3}$
Gallium arsenide	$1.8 \times 10^6 \text{ cm}^{-3}$
Germanium	$2.4 \times 10^{13} \text{ cm}^{-3}$

Law of mass action $n_0 p_0 = n_i^2$.

$$p_0 + N_d^+ = n_0 + N_a^-.$$

$$n_0 - \frac{n_i^2}{n_0} = N_d^+ - N_a^-$$

$$ax^2 + bx + c = 0$$

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For
$$b^2 \gg c$$

$$n_0 = N_d^+ - N_a^-.$$

$$p_0 = N_a^- - N_d^+$$

$$n_0^2 - (N_d^+ - N_a^-)n_0 - n_i^2 = 0.$$

a=1

$$p_0^2 - (N_a^- - N_d^+)p_0 - n_i^2 = 0.$$

Example 1

Consider a piece of silicon under room temperature and thermal equilibrium. The silicon is doped with boron with a doping concentration of 10^{16} atoms/cm³. Find the electron and hole concentrations.

Number of electrons in intrinsic silicon $1.5 \times 10^{10} / \text{cm}^3$.

Silicon atom density $5 \times 10^{22} \text{/cm}^3$.

Observations

- The concentration of dopants is much smaller compared to the density of lattice atoms.
- The thermal-equilibrium majority and minority carrier concentrations can differ by many orders of magnitude.

Example 2

Determine the thermal equilibrium electron and hole concentrations for a given doping concentration.

Consider an germanium sample at $T = 300^{\circ}$ K in which $N_d = 5 \times 10^{13}$ cm⁻³ and $N_a = 0$. Assume that $n_i = 2.4 \times 10^{13}$ cm⁻³.