Model Discrimination Design Generation for Accelerated Life Testing Experiments via Hybridized Optimization Algorithms

Kuan-Yuan Lin

National Taipei University

Advisor: Professor [Ping-Yang Chen]

Outline

- Model Discrimination Design
 - Approximation Design
 - Optimal Design Criteria & PSO-QN Algorithm
 - Toy Example:Fidalgo Case
 - Model Discrimination Design for Accelerated Life Testing
- Numerical Results
 - ALT Case-Fixed the Variance of True Model and Rival Model
 - ALT Case-Parameterized Variance
 - Meeker Case-Variance Dependent on Stress
- Conclusion

Approximation design

Two models:

$$f_1(y \mid x, \theta_1, \sigma_1^2) = \beta_0 + \beta_1 x$$

 $f_2(y \mid x, \theta_2, \sigma_2^2) = \beta_0 + \beta_1 x + \beta_2 x^2$

- ex.Advertising expenses (x): $10,000 \sim $500,000$ VS. Sales volume (y)
- Approximation design: $\xi = \begin{bmatrix} x_1 & x_2 & \dots & x_n \\ w_1 & w_2 & \dots & w_n \end{bmatrix}$, x_i are support point and $w_i \in [0,1], \sum_{i=1}^n w_i = 1$ with $i = 1, 2, \dots, n$.
 - If experimental budget allows for 100 runs.

KL-optimal design

- Chen et al. (2020)
- When models do not have homoscedastic or normally distributed errors.
- KL divergence: $\mathcal{L}(\textit{f}_{\textit{tr}},\textit{f}_2,\textit{x},\theta_2) = \int \textit{f}_{\textit{tr}}(\textit{y} \mid \textit{x},\sigma_1^2) \log \left\{ \frac{\textit{f}_{\textit{tr}}(\textit{y} \mid \textit{x},\sigma_1^2)}{\textit{f}_2(\textit{y} \mid \textit{x},\theta_2,\sigma_2^2)} \right\} \textit{d}\textit{y}$

KL-optimal criterion:

$$\max_{\xi \in \Xi} \mathsf{KL}_{2,\mathsf{tr}}(\xi) = \max_{\xi \in \Xi} \min_{\theta_2 \in \Theta_2} \mathcal{L}(\mathsf{f}_{\mathsf{tr}}, \mathsf{f}_2, \mathsf{x}, \theta_2)$$

Equivalence theorem:

$$\psi_{\mathit{KL}}(\mathbf{x}, \xi_{\mathit{KL}}^*) = \mathcal{L}(\mathbf{f}_{\mathit{tr}}, \mathbf{f}_2, \mathbf{x}, \hat{\theta}_2(\xi_{\mathit{KL}}^*)) - \mathit{KL}_{2,\mathit{tr}}(\xi_{\mathit{KL}}^*) \leq 0$$

T-optimal design

- Atkinson and Fedorov(1975)
- Suppose we have 2 homoscedastic Gaussian models.

T-optimal criterion:

$$\max_{\xi \in \Xi} \mathcal{T}_{2,tr}(\xi) = \max_{\xi \in \Xi} \min_{\theta_2 \in \Theta_2} \int_{\mathcal{X}} \left[\eta_{tr}(\mathbf{x}) - \eta_2(\mathbf{x}, \theta_2) \right]^2 \xi(\mathbf{dx})$$

Equivalence theorem:

$$\psi_{T}(\mathbf{X}, \xi_{T}^{*}) = \Delta_{2,tr}(\mathbf{X}, \hat{\theta}_{2}(\xi_{T}^{*})) - T_{2,tr}(\xi_{T}^{*}) \leq 0$$

ŏoo

PSO(Particle Swarm Optimization)

• Local Best L_i : historical best solution of the *i*th particle

• Global Best G: historical best solution of all particles

$$v_i^{t+1} = \underline{w \cdot v_i^t} + \underline{c_1 \cdot r_1(L_i - x_i^t)} + \underline{c_2 \cdot r_2(G - x_i^t)}$$
$$x_i^{t+1} = x_i^t + v_i^{t+1}$$

- w, c_1, c_2 are tuning parameters.
- r_1 , r_2 are uniform random vectors.

López-Fidalgo et al.(2007)

Pharmacokinetic models are often assumed to be Log-Normally distributed.

- Modified Michaelis-Menten (MMM) model.
- Michaelis-Menten (MM) model.

Pharmacokinetic model
$$\Rightarrow \begin{cases} \mathsf{MMM} : y = \frac{x}{1+x} + x \\ \mathsf{MM} : y = \frac{Vx}{K+x} \end{cases}, X = [0.1, 5]$$

- x is the substrate concentration.
- *y* is the velocity rate of product formation in a chemical reaction.
- V is the maximum velocity rate.
- *K* is the concentration at which half of the maximum velocity rate is reached.

Log-Normal

$$\begin{split} &D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(y) \log \left(\frac{p(y)}{q(y)}\right) dy \\ &= \int_{0}^{\infty} \frac{1}{y\sigma_{1}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}} \log \left(\frac{\frac{1}{y\sigma_{1}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}}}{\frac{1}{y\sigma_{2}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{2})^{2}}{2\sigma_{2}^{2}}}}\right) dy \\ &= \int_{0}^{\infty} \frac{1}{y\sigma_{1}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}} \left(\log \left(\frac{\sigma_{2}}{\sigma_{1}}\right) + \frac{(\log y - \mu_{2})^{2}}{2\sigma_{2}^{2}} - \frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}}\right) dy \\ &= \log \left(\frac{\sigma_{2}}{\sigma_{1}}\right) \int_{0}^{\infty} \frac{1}{y\sigma_{1}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}} dy + \frac{1}{2\sigma_{2}^{2}} \int_{0}^{\infty} \frac{1}{y\sigma_{1}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}} (\log y - \mu_{2})^{2} dy \\ &- \frac{1}{2\sigma_{1}^{2}} \int_{0}^{\infty} \frac{1}{y\sigma_{1}\sqrt{2\pi}} e^{-\frac{(\log y - \mu_{1})^{2}}{2\sigma_{1}^{2}}} (\log y - \mu_{1})^{2} dy \\ &= \log \left(\frac{\sigma_{2}}{\sigma_{1}}\right) + \frac{\sigma_{1}^{2} + (\mu_{1} - \mu_{2})^{2}}{2\sigma_{2}^{2}} - \frac{1}{2} \\ &= \log \left(\frac{\sigma_{2}}{\sigma_{1}}\right) - \frac{\sigma_{2}^{2} - \sigma_{1}^{2} + (\mu_{1} - \mu_{2})^{2}}{2\sigma_{2}^{2}} \\ &= \log \left(\frac{\sigma_{2}}{\sigma_{1}}\right) - \frac{\sigma_{2}^{2} - \sigma_{1}^{2} + (\mu_{2} - \mu_{1})^{2}}{2\sigma_{2}^{2}} \end{split}$$

Assumption:

homoscedasticity and models are assumed to be Log-Normal distributed.

Closed-Form (ξ_{KL-c}^*)

$$\mathbf{f}_{KL-c}^* = \left\{ \begin{array}{ccc} 0.1 & 2.5 & 5\\ 0.538 & 0.329 & 0.133 \end{array} \right\}$$

Computation time is 39 seconds.

Numerical Integration (ξ_{KL-n}^*)

$$\xi_{KL-c}^* = \left\{ \begin{array}{ccc} 0.1 & 2.5 & 5 \\ 0.538 & 0.329 & 0.133 \end{array} \right\} \qquad \qquad \xi_{KL-n}^* = \left\{ \begin{array}{ccc} 0.1 & 2.5 & 5 \\ 0.538 & 0.329 & 0.133 \end{array} \right\}$$

Computation time is 5165 seconds.

Weibull

$$\begin{split} &D_{KL}(P \parallel Q) = \int_{-\infty}^{\infty} p(y) \log \left(\frac{p(y)}{q(y)}\right) dy \\ &= \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} \log \left(\frac{\frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}}}{\frac{k_{2}}{\lambda_{2}} \left(\frac{y}{\lambda_{2}}\right)^{k_{2}-1} e^{-\left(\frac{y}{\lambda_{2}}\right)^{k_{2}}}}\right) dy \\ &= \log \left(\frac{k_{1}}{k_{2}}\right) \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} dy + \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right) \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} dy \\ &+ (k_{1}-1) \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} \log \left(\frac{y}{\lambda_{1}}\right) dy - \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} dy \\ &- (k_{2}-1) \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} \log \left(\frac{y}{\lambda_{2}}\right) dy - \frac{\gamma}{k_{1}} + \int_{0}^{\infty} \frac{k_{1}}{\lambda_{1}} \left(\frac{y}{\lambda_{1}}\right)^{k_{1}-1} e^{-\left(\frac{y}{\lambda_{1}}\right)^{k_{1}}} \left(\frac{y}{\lambda_{2}}\right)^{k_{2}} dy \\ &= \log \left(\frac{k_{1}}{k_{2}}\right) + \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right) - \frac{k_{1}-1}{k_{1}} \gamma - 1 - (k_{2}-1) \log \left(\frac{\lambda_{1}}{\lambda_{2}}\right) + \frac{k_{2}-1}{k_{1}} \gamma + \left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{k_{2}} \Gamma \left(\frac{k_{2}}{k_{1}} + 1\right) \end{split}$$

Assumption:

homoscedasticity and models are assumed to be Weibull distributed.

Closed-Form (ξ_{KL-c}^*)

$$\xi_{KL-c}^* = \left\{ \begin{array}{ccc} 0.504 & 2.989 & 5\\ 0.570 & 0.310 & 0.120 \end{array} \right\}$$

Computation time is 40 seconds.

Numerical Integration (ξ_{KL-n}^*)

$$\xi_{KL-c}^* = \left\{ \begin{array}{ccc} 0.504 & 2.989 & 5 \\ 0.570 & 0.310 & 0.120 \end{array} \right\} \qquad \qquad \xi_{KL-n}^* = \left\{ \begin{array}{ccc} 0.507 & 2.991 & 5 \\ 0.570 & 0.310 & 0.120 \end{array} \right\}$$

Computation time is 102768 seconds.

Model Discrimination Design for Accelerated Life Testing

Accelerated Life Testing

Nasir and Pan(2014)

Model Discrimination Design for Accelerated Life Testing

Accelerated Life Testing

Nasir and Pan(2014)

The Arrhenius life-temperature:

$$t(T) = Aexp\left(rac{E_a}{K imes Temp}
ight)$$

Type I censored data (time censoring):

$$Pr(t > C) = 1 - F(C), C > 0$$

Disadvantages of using bayesian approach:

- Computation time is too long.
- Results are not reproducible.

Model Discrimination Design for Accelerated Life Testing

Accelerated Life Testing

Park and Shin(2012)

Consider the Type I censored variable min(X, C), where C is a fixed censoring point. The density function becomes:

$$f_{\mathbf{C}}(\mathbf{x}) = egin{cases} f(\mathbf{x}) & \textit{if } \mathbf{x} < \mathbf{C}, \\ 1 - F(\mathbf{C}) & \textit{if } \mathbf{x} = \mathbf{C}, \\ 0 & \textit{if elsewhere}. \end{cases}$$

The Kullback–Leibler (KL) divergence between two censored densities f_{tr} and f_r is:

$$D_{CKL}(f_{tr}, f_r) = \int_{-\infty}^{C} f_{tr} \log \left\{ \frac{f_{tr}}{f_r} \right\} dy + \bar{F}_{tr}(C) \log \left\{ \frac{\bar{F}_{tr}(C)}{\bar{F}_r(C)} \right\}$$

Divergence Measures

- A.Pakgohar et al.(2019) proposed another three divergence measures under Type I censored data.
 - Lin-Wong (LW) divergence:

$$D_{CLW}(f_{tr},f_r) = \int_{-\infty}^{C} f_{tr} \log \left\{ \frac{2f_{tr}}{f_{tr}+f_r} \right\} dy + \bar{F}_{tr}(C) \log \left\{ \frac{2\bar{F}_{tr}(C)}{\bar{F}_{tr}(C) + \bar{F}_{r}(C)} \right\}$$

Bhattacharyya (B) distance measure:

$$D_{CB}(f_{tr}, f_r) = \int_{-\infty}^{C} \sqrt{f_{tr} \cdot f_r} \, dy + \sqrt{ar{F}_{tr}(C) \cdot ar{F}_{r}(C)}$$

• Chi-Square (χ^2) distance measure:

$$D_{C\chi^2}(f_{tr}, f_r) = \int_{-\infty}^{C} \frac{(f_{tr})^2}{f_r} dy + \frac{\left(\bar{F}_{tr}(C)\right)^2}{\bar{F}_r(C)} - 1$$

So we propose four optimal design:CKL-,CLW-,CB-,Cχ²-optimal design

Arrhnius model

$$\begin{split} t(T) &= A exp\left(\frac{E_a}{K \times Temp}\right) \\ &\Rightarrow \log(t(T)) = \log(A) + \frac{E_a}{K \times Temp} \\ &\Rightarrow \underbrace{\log(t(T))}_{\mu} = \underbrace{\log(A)}_{\beta_0} + \underbrace{\frac{E_a}{K}}_{\beta_1} \times \underbrace{\frac{1}{Temp}}_{x}. \end{split}$$

• The true model M₁ is a quadratic form:

$$\eta_{tr}(\mathbf{x},\theta_1) = \zeta_1 + \zeta_2 \mathbf{x} + \zeta_3 \mathbf{x}^2.$$

• The rival model M_2 is a linear form:

$$\eta_2(\mathbf{x}, \theta_2) = \delta_1 + \delta_2 \mathbf{x}.$$

- 18 simulation cases were conducted (fixed the variance of true model and rival model)
- Setting:
 - Censoring time:5000
 - The true model parameters: $\theta_{tr} = (\zeta_1, \zeta_2, \zeta_3) = (-5.0, -1.5, 0.05)$
 - The parameter space of the rival model: $\theta_2 = (\delta_1, \delta_2) \in [-100, -10] \times [0.1, 5.0]$
 - The design space: $x \in [10, 80]$
- CKL-optimal design: 12 $\sqrt{, 3 \triangle, 3 \times}$.
- CLW-optimal design: 4 √, 6 △, 8 ×.
- CB-optimal design: $0 \sqrt{14} \triangle 4 \times 10^{-5}$
- $C\chi^2$ -optimal design: 2 $\sqrt{, 7 \triangle, 9 \times}$.

The optimality check results are classified into three levels:

- ullet value of the optimality conditions:
 - each support point has a non-zero weight; the directional derivative function lies entirely below zero; the design points correspond to local maxima of the function with value exactly zero; and the curve is smooth and continuous in shape.
- ullet \triangle indicates partial satisfaction. Typically arising in the following scenarios:

× indicates that the optimality conditions are not satisfied.

Dis.	σ		ξ_{CKL}^*		$C^*(\hat{C})$	$\hat{ heta}_2(\xi^*_{CKL})$	Eqv.	Opt?	Time
LN	0.98	$\int 33.557$	56.829	80)	0.00927	(-66.712, 2.017)	A.1a	_	18386
LIV		0.330	0.436	0.234	(0.00927)	(-00.712, 2.017)	71.1a	V	10000
LN	1.48	$\int 29.699$	55.482	80	0.00517	(-67.204, 2.031)	A.1c	√	58458
LIV		0.360	0.413	0.227	(0.00517)				
LN	1.98	$\int 25.854$	55.196	80)	0.00385	(-66.268, 2.006)	A.1e	Δ	49577
LIV		0.366	0.407	0.227	(0.00380)	(-00.200, 2.000)	71.10		47377
WB	0.98	$\int 32.545$	57.686	80)	0.00822	(-66.459, 2.010)	A.1b		59919
VVD		0.368	0.415	0.217	(0.00822)	(-00.439, 2.010)	A.IU		37717
WB	1.48	$\int 25.576$	55.791	80)	0.00489	(-67.083, 2.028)	A.1d	\ \	68091
VVD		0.441	0.359	0.200	(0.00489)	(-07.083, 2.028)	A.Iu	V	00071
WB	1.98	J 18.386	53.830	80)	0.00386	(-63.987, 1.944)	A.1f	×	62045
VVD	1.90	0.484	0.325	0.191	(0.00386)	(-05.567, 1.544)	A.II		02043

Dis.	σ		$\xi_{C\chi^2}^*$		$C^*(\hat{C})$	$\hat{\theta}_2(\xi_{C\chi^2}^*)$	Eqv.	Opt?	Time
LN	0.98	80	80	80	4.938×10^{11}	(-75.507, 2.289)	A.10a	×	3394
		(0.014	0.449	0.537 J	(-1.698×10^{-10})				
LN	1.48	∫ 41.953	46.694	47.929	726.370	(-65.563, 1.983)	A.10c	×	2277
	1.10	0.000	0.000	1.000	(-9.216×10^{-6})		71.100	_ ^	
LN	1.98	∫ 22.557	28.732	34.66	0.0230	(-64.951, 1.967)	A.10e	Δ	1353
LIN		0.000	1.000	0.000	(0.0233)				
WB	0.98	∫ 11.049	16.362	34.388	0.0296	(-59.045, 1.819)	A.10b		25836
VVD		0.000	0.000	1.000	(-4.966×10^{-9})	(-59.045, 1.819)	A.100		23636
WB	1.48	J 29.181	46.269	61.937	0.0196	(-71.474, 2.151)	A.10d	×	65818
VVD	1.40	0.999	0.000	0.001	(-4.332×10^{-9})	(-71.474, 2.131)	A.10u	_ ^	03010
WB	1.98	J 12.069	23.116	31.719	0.0146	(-62.198, 1.919)	A.10f	×	47360
1440	1.90	0.000	1.000	0.000	(-4.941×10^{-9})	(-02.136, 1.919)	A.101	_ ^	47.500

Parameterized Variance:

- The true model parameters: $\theta_{tr} = (\zeta_1, \zeta_2, \zeta_3) = (-5.0, -1.5, 0.05)$, with the variance fixed 0.9780103 and 1.4780103.
- The rival model parameters: $(\delta_1, \delta_2) \in [-100, -10] \times [0.1, 5.0]$, with an additional unknown constant variance parameter $\sigma_2 \in [0.4780103, 4.9780103]$.
- The design space is $x \in [10, 80]$.
- $\bullet \ \theta_2 = (\delta_1, \delta_2, \sigma_2)$
- The true model M_1 is a quadratic form:

$$\eta_{tr}(\mathbf{x},\theta_1) = \zeta_1 + \zeta_2 \mathbf{x} + \zeta_3 \mathbf{x}^2.$$

• The rival model M_2 is a linear form:

$$\eta_2(\mathbf{X}, \theta_2) = \delta_1 + \delta_2 \mathbf{X}.$$

Both models follow the Log-Normal distribution:

$$\sigma_1 = 0.9780103$$

$$\xi_{CKL-a}^* = \left\{ \begin{array}{ccc} 33.799 & 57.185 & 80\\ 0.317 & 0.443 & 0.240 \end{array} \right\}$$

$$\hat{\theta}_2(\xi_{CKL}^*) = (-66.584, 2.013, 0.965)$$

Computation time is 144836 seconds.

$$\sigma_1 = 1.4780103$$

$$\xi^*_{CKL-a} = \left\{ \begin{array}{ccc} 33.799 & 57.185 & 80 \\ 0.317 & 0.443 & 0.240 \end{array} \right\} \qquad \xi^*_{CKL-d} = \left\{ \begin{array}{ccc} 29.974 & 56.272 & 80 \\ 0.339 & 0.423 & 0.238 \end{array} \right\}$$

$$\hat{\theta}_2(\xi_{CKL}^*) = (-66.986, 2.025, 1.457)$$

Computation time is 149893 seconds.

Both models follow the Weibull distribution:

$$\sigma_1 = 0.9780103$$

$$\xi_{CKL-c}^* = \left\{ \begin{array}{ccc} 33.531 & 58.185 & 80 \\ 0.340 & 0.434 & 0.226 \end{array} \right]$$

$$\hat{\theta}_2(\xi_{CKL}^*) = (-66.207, 2.002, 0.957)$$

Computation time is 134408 seconds.

$$\sigma_1 = 1.4780103$$

$$\xi_{CKL-c}^* = \left\{ \begin{array}{ccc} 33.531 & 58.185 & 80 \\ 0.340 & 0.434 & 0.226 \end{array} \right\} \qquad \xi_{CKL-d}^* = \left\{ \begin{array}{ccc} 26.713 & 57.032 & 80 \\ 0.396 & 0.382 & 0.222 \end{array} \right\}$$

$$\hat{\theta}_2(\xi_{CKL}^*) = (-66.560, 2.013, 1.441)$$

Computation time is 85551 seconds.

Model($\sigma = 0.9780103$)	Point	Weight	Cumulative Probability
Log-Normal (fixed θ_2)			
	33.557	0.330	0.0902
	56.829	0.436	1.000
	80	0.234	1
Log-Normal (unknown θ_2)			
	33.799	0.317	0.102
	57.185	0.443	1.000
	80	0.226	1
Weibull (fixed θ_2)			
	32.545	0.368	0.177
	57.686	0.415	1
	80	0.217	1
Weibull (unknown θ_2)			
	33.531	0.340	0.229
	58.185	0.434	1
	80	0.226	1

¹Cumulative Probability=F(C; x)

Model(σ = 1.4780103)	Point	Weight	Cumulative Probability
Log-Normal (fixed θ_2)			
	29.699	0.360	0.0506
	55.482	0.413	0.997
	80	0.227	1
Log-Normal (unknown θ_2)			
	29.974	0.339	0.0566
	56.272	0.423	0.998
	80	0.238	1
Weibull (fixed θ_2)			
	25.576	0.441	0.0801
	55.791	0.359	1
	80	0.200	1
Weibull (unknown θ_2)			
	26.713	0.396	0.100
	57.032	0.382	1
	80	0.222	1

¹Cumulative Probability=F(C; x)

Stress-Dependent Variance

- Pascual and Meeker (1997)
- Their study estimated the parameter $\gamma = 75.71$
- Censoring time:1000
- The true model M_1 is:

$$\eta_{tr}(\mathbf{x}, \theta) = \zeta_1 + \zeta_2 \log(\mathbf{x} - \gamma)$$
 $\sigma_1 = \exp \left\{ \phi_1 + \phi_2 \log(\mathbf{x} - \gamma) \right\}$

• The rival model M_2 :

$$\eta_2(\mathbf{x}, \theta) = \delta_1 + \delta_2 \log(\mathbf{x} - \gamma)$$
 $\sigma_2 = \exp\left\{\kappa_1 + \kappa_2 \log(\mathbf{x} - \gamma)\right\}$

•
$$\theta_2(\xi_{CKL}^*) = (\delta_1, \delta_2, \kappa_1, \kappa_2)$$

Stress-Dependent Variance

	D	is.		Λ	I_1		M_2				
Case	M_1	M_2	ζ_1	ζ_2	ϕ_1	ϕ_2	δ_1	δ_2	κ_1	κ_2	
(1)			14.75	-1.39	10.97	-2.5	[12.06,17.44]	[-2.02,-0.76]	[10,20]	[-3,-0.01	
(2)			14.75	-1.39	10.97	-2.5	[15.9,21.45]	[-2.81,-0.92]	[10,20]	[-3,-0.01	
(3)	LM	WB	10	-2	0.63	-0.91	[9.5,15]	[-2.1,-1]	[0.5,1]	[-1,-0.81	
(4)	LIN	WB	43	-0.63	4.32	-0.88	[5,50]	[-1,-0.05]	[3.12,5.32]	[-1,-0.5	
(5)			458	-53	4.32	-0.88	[432,480]	[-100,-1]	[3.12,5.32]	[-1,-0.5	
(6)			53.39	-7.81	4.32	-0.88	[50,60]	[-10,-5]	[3.12,5.32]	[-1,-0.5	
(7)			14.75	-1.39	10.97	-2.5	[12.06,17.44]	[-2.02,-0.76]	[10,20]	[-3,-0.01	
(8)			14.75	-1.39	10.97	-2.5	[15.9,21.45]	[-2.81,-0.92]	[10,20]	[-3,-0.01	
(9)	WD	LN	10	-2	0.63	-0.91	[9.5,15]	[-2.1,-1]	[0.5,1]	[-1,-0.81	
(10)	WB	LIN	43	-0.63	4.32	-0.88	[5,50]	[-1,-0.05]	[3.12,5.32]	[-1,-0.5	
(11)			458	-53	4.32	-0.88	[432,480]	[-100,-1]	[3.12,5.32]	[-1,-0.5	
(12)			53.39	-7.81	4.32	-0.88	[50,60]	[-10,-5]	[3.12,5.32]	[-1,-0.5	

Case	ξ* _{CKL}	$C^*(\hat{C})$	$\hat{ heta}_2(\xi_{CKL}^*)$	Eqv.	Opt?	Time
(1)	\[\begin{cases} 88.245 & 115.191 & 122.132 & 123.571 \\ 1.000 & 0.000 & 0.000 & 0.000 \end{cases} \end{cases} \]	2.023×10^{-8} (4.956×10^{-9})	(14.918, -1.350, 11.824, -2.942)	A.13a	Δ	4083
(2)	{ 76.389 86.024 94.240 112.132 0.000 1.000 0.000 0.000	6.725×10^{-8} (2.136×10^{-8})	(20.968, -2.056, 10, -2.397)	A.13b	Δ	5043
(3)	\[\begin{cases} 111.009 & 112.296 & 113.75 & 150 \ 0.000 & 0.000 & 1.000 & 0.000 \end{cases} \]	27.167 (6.275×10^{-5})	(10.597, -1.873, 0.723, -0.922)	A.13c	×	4245
(4)	$\left\{ \begin{array}{cccc} 77.297 & 78.038 & 109.932 & 132.334 \\ 1.000 & 0.000 & 0.000 & 0.000 \end{array} \right\}$	2.449×10^{-12} (5.462×10^{-14})	(36.931, -0.523, 3.791, -0.878)	A.13d	×	3897
(5)	$\left\{ \begin{array}{cccc} 90.99 & 98.775 & 108.941 & 116.822 \\ 0.464 & 0.231 & 0.271 & 0.035 \end{array} \right\}$	0 (0)	(455.318, -49.116, 4.219, -0.533)	A.13e	Δ	1376
(6)	$\left\{\begin{array}{cccc} 123.238 & 123.969 & 125.026 & 127.373 \\ 0.022 & 0.977 & 0.000 & 0.000 \end{array}\right\}$	2.265×10^{-14} (-4.305×10^{-49})	(55.951, -6.358, 3.846, -0.928)	A.13f	Δ	7386
(7)	$\left\{ \begin{array}{cccc} 76 & 86.748 & 126.815 & 150 \\ 0.476 & 0.247 & 0.000 & 0.277 \end{array} \right\}$	1.235×10^{-4} (1.208×10^{-4})	(17.44, -1.638, 10, -2.028)	A.14a	Δ	48506
(8)	$\left\{ \begin{array}{cccc} 76 & 87.744 & 97.631 & 150 \\ 0.469 & 0.242 & 0.000 & 0.289 \end{array} \right\}$	1.173×10^{-4} (1.156×10^{-4})	(18.350, -1.781, 10.011, -2.012)	A.14b	Δ	54794
(9)	$\left\{ \begin{array}{cccc} 80.622 & 94.153 & 94.67 & 127.625 \\ 0.259 & 0.519 & 0.000 & 0.221 \end{array} \right\}$	0.0907 (0.0872)	(9.972, -1.995, 0.882, -0.839)	A.14c	×	217023
(10)	\[\begin{pmatrix} 76 & 76.879 & 76.950 & 118.382 \ 0.000 & 0.000 & 1.000 & 0.000 \end{pmatrix} \]	3.197×10^{-9} (3.808×10^{-10})	(27.531, -0.658, 4.374, -0.728)	A.14d	Δ	1487
(11)	\[\begin{pmatrix} 79.235 & 94.878 & 110.173 & 150 \ 0.000 & 1.000 & 0.000 & 0.000 \end{pmatrix} \]	1.808×10^{-91} (1.534×10^{-92})	(473.842, -9.458, 4.621, -0.364)	A.14e	Δ	1436
(12)	$\left\{ \begin{array}{cccc} 104.273 & 113.865 & 130.105 & 150 \\ 0.982 & 0.000 & 0.000 & 0.018 \end{array} \right\}$	8.222×10^{-8} (4.220×10^{-8})	(54.974, -7.423, 4.200, -0.586)	A.14f	Δ	6743

(b) Meeker Case (8)

Conclusion and Limitations

- This study considers censored data, a common feature in the field of reliability and survival analysis.
- We propose four divergence measures-based model discrimination criteria: CKL-, CLW-, CB-,and C χ^2 -optimal designs.
- The numerical optimization was implemented using a hybrid method: PSO + L-BFGS.
- The algorithm is refined to accommodate both constant and stress-dependent variance estimation.
- In addition to models with different mean functions, we also explore cases with identical means but different distributional assumptions.

Conclusion and Limitations

- Among the four criteria, the CKL-optimal design consistently outperformed the others.
- The Meeker case shows strong potential for CKL-optimal design.
- The inner objective function, may exhibit multiple local optima or strong non-convexity, limiting the effectiveness of L-BFGS.
- Numerical instability can occur during the integration process.

Future Works and R Implementation

- Improved the integration implementation in the code.
- Revised mathematical form of the censoring term.
- Further investigate the landscape of the inner objective function and explore global or hybrid optimization strategies beyond traditional gradient-based methods.
- Explored a compound CKL + D-optimal design strategy.
- R Code: GitHub/GPLIN514
- R shiny: shinyapps.io/MSGPLIN

Reference

- Atkinson AC, Fedorov VV(1975). The design of experiments for discriminating between two rival models. Biometrika.62(1):57–70.
- A. Pakgohar, A. Habibirad and F. Yousefzadeh(2019). Lin–Wong divergence and relations on type I censored data
- Ehab A. Nasir and Rong Pan(2014). Reliability Engineering and System Safety. Simulation-based Bayesian optimal ALT designs for model discrimination.
- J. López-Fidalgo, C. Tommasi and P. C. Trandafir(2007). An optimal experimental design criterion for discriminating between non-normal models.
 J. R. Statist. Soc. B, Part 2, pp. 231–242.
- Jiaheng Qiu, Ray-Bing Chen, Weichung Wang, Weng Kee Wong(2014).Swarm and Evolutionary Computation.

Reference

- Lo'pez-Fidalgo J, Tommasi C, Trandafir PC(2007). An optimal experimental design criterion for discriminating between non-normal models.69(2):231–242.
- Lindsey JK, Jones B, Jarvis P(2001). Some statistical issues in modelling pharmacokinetic data.
- Pascual, F. G. and Meeker, W. Q. (1997). Analysis of fatigue data with runouts based on a model with nonconstant standard deviation and a fatigue limit parameter. Journal of testing and evaluation, 25(3):292–301.
- Ray-Bing Chen, Ping-Yang Chen, Cheng-Lin Hsu, Weng Kee Wong(2020).
 Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions.
- Sangun Park and Minsuk Shin(2014).Kullback–Leibler information of a censored variable and its applications.

Thank You!

Questions and Discussion are welcome.

Example

Suppose the true model is the quadratic model of the form

$$\eta_{tr}(\mathbf{x}) = \mathbf{x}^2 + 2\mathbf{x} + 1$$

• The rival model is of linear form with unknown parameter $\theta_2 = (\beta_0, \beta_1)$

$$\eta_2(\mathbf{X}, \theta_2) = \beta_1 \mathbf{X} + \beta_0$$

- Consider the exact design $\xi = x_1, x_2, x_3$
- Find the best ξ that discriminate $\eta_{tr}(\mathbf{x})$ and $\eta_2(\mathbf{x}, \theta_2)$ the most.

Example

$$\xi_T^* = \max_{\xi} \left\{ \min_{\boldsymbol{\theta}_2 \in \boldsymbol{\Theta}_2} \int_X \Delta_{2,t}(x, \boldsymbol{\theta}_2) \, \xi(dx) \right\}$$

$$\xi_T^* = \max_{\xi} \left\{ \min_{\theta_2 \in \Theta_2} \int_X \Delta_{2,t}(x, \theta_2) \, \xi(dx) \right\}$$

