Problem 25

Under hypothesis \mathcal{H}_a , an observation $\mathbf{x} = [x_1, x_2]^T$ is equal to a known signal \mathbf{s}_a with additive Gaussian noise \mathbf{w} :

$$x = s_a + w$$

Under hypothesis \mathcal{H}_b , an observation \mathbf{x} is equal to a known signal \mathbf{s}_b with additive Gaussian noise \mathbf{w} :

$$\mathbf{x} = \mathbf{s}_b + \mathbf{w}$$

The two known signals are:

$$\mathbf{s}_a = \left[\frac{5}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^\mathsf{T}$$
 and $\mathbf{s}_b = \left[\frac{-3}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^\mathsf{T}$

while the **Gaussian** noise vector $\mathbf{w} = [w_1, w_2]^T$ is distributed as:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{w})$$

where:

$$C_w = E\{ww^T\} = \sum_{n=1}^2 \lambda_n \mathbf{v}_n \mathbf{v}_n^T$$

and:

$$\lambda_1 = 2.0$$
 $\mathbf{v}_1 = \left[\frac{+1}{\sqrt{2}}, \frac{+1}{\sqrt{2}}\right]^T$

$$\lambda_2 = 1.0$$
 $\mathbf{v}_2 = \left[\frac{+1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]^T$

1. To decorrelate the elements of the noise vector, apply the Karhunen-Loeve transform.

Specifically, determine

- a) the transformed signal vectors \mathbf{s}'_a and \mathbf{s}'_b , and
- b) the covariance matrix of the transformed noise vector \mathbf{w}' .
- 2. Now, using a LRT threshold of $\mathbf{y} = e^4$, determine a LRT for this detection problem, expressed in terms of **transformed** measurement $\mathbf{x}' = \begin{bmatrix} x_1', x_2' \end{bmatrix}^T$.
- 3. Simplify this LRT into a decision rule of the form:

$$T_d(\mathbf{x}') > \mathbf{v}'$$

I.E., provide **explicitly**—and in their **simplest** possible form—the statistic $T_d(\mathbf{x}')$ and threshold \mathbf{y}' .