0.1 单项选择

1. 让大量热化的自旋通过 Stern-Gerlach 装置SG \hat{z} ,测得 S_+^z 的概率是?

大量热化自旋表示充分随机, 所以
$$P(S_+^z) = ||\chi_+^{z\dagger} \frac{1}{\sqrt{2}} (\chi_+^z + \chi_-^z)||^2 = \boxed{\frac{1}{2}}$$

2. **Pauli** 矩阵
$$\sigma^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 那么 $\sigma^x \sigma^z$ 等于?
$$\sigma^x \sigma^z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

3. 混态可以用混态的密度矩阵来描述. 假设系统处于态 $|\phi_i\rangle$ 的概率为 p_i ,注意 $\sum_i p_i=1$,那么该系统的密度矩阵为 $ho=\sum_i |\phi_i\rangle p_i\langle\phi_i|$,那么 ${\bf Tr}[
ho]$ 应满足?

因为密度矩阵的迹表示系统的总概率, 而概率必须归一化, 即 $\mathrm{Tr}[\rho] = \sum_i p_i = \boxed{1}$

4. 如果 ρ 是混态的密度矩阵, 那么 $Tr[\rho^2]$ 应满足?

对任意密度矩阵总有
$$\hat{\rho} = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$$
. 那么 $\hat{\rho}^2 = \sum_{\alpha} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}| \sum_{\beta} p_{\beta} |\psi_{\beta}\rangle\langle\psi_{\beta}| = \sum_{\alpha} p_{\alpha}^2 |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$. 对于纯态 $(p_n^2 = p_n)$ Tr $[\rho^2] = \text{Tr}[\rho] = 1$, 而混态 $(p_n^2 \neq p_n)$ 则是 Tr $[\rho^2]$ < 1 .

5. 考虑系统哈密顿量 H 不显含时间,时间演化算符为 $U(t,0)=e^{-iHt/\hbar}$. 在海森堡绘景中,我们让算符承载时间演化,海森堡绘景中的算符定义为 $A_H(t)=U^\dagger(t,0)AU(t,0)$,其中 A 是薛定谔绘景中的算符,如果 A 不显含时间,那么 $\mathrm{d}A_H(t)/\mathrm{d}t$ 等于?

$$\frac{\mathrm{d}A_{H}(t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{iHt/\hbar} A e^{-iHt/\hbar} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{iHt/\hbar} \right) A e^{-iHt/\hbar} + e^{iHt/\hbar} \frac{\mathrm{d}}{\mathrm{d}t} \left(A e^{-iHt/\hbar} \right)
= \frac{iH}{\hbar} e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A \frac{iH}{\hbar} e^{-iHt/\hbar} = \frac{i}{\hbar} \left(H e^{iHt/\hbar} A e^{-iHt/\hbar} - e^{iHt/\hbar} A e^{-iHt/\hbar} H \right)
= \frac{i}{\hbar} \left[H, A_{H}(t) \right] = \left[\frac{1}{i\hbar} \left[A_{H}(t), H \right] \right]$$

6. 电磁场中电荷为 q 的单粒子哈密顿量为 $H=\frac{(\vec{p}-q\vec{A})^2}{2m}+q\phi$,那么薛定谔方程 $i\hbar\frac{\partial\psi}{\partial t}=H\psi$ 满足规范不变性: $\vec{A}\to\vec{A}-\nabla\Lambda$, $\phi\to\phi+\frac{\partial\Lambda}{\partial t}$, $\psi\to$?

推导极其麻烦, 建议直接背结论, 不要试图考场现推. 假设 $\psi' = \psi e^{if(\vec{r},t)}$ 是满足规范变换的, 其中 $f(\vec{r},t)$ 是待定函数. 连同其它的规范变换, 代入薛定谔方程得到 $f(\vec{r},t)$ 的微分方程:

$$\begin{split} i\hbar\frac{\partial}{\partial t}\left[\psi e^{if(\vec{r},t)}\right] &= \left[\frac{(-i\hbar\vec{\nabla}-q(\vec{A}-\vec{\nabla}\Lambda))^2}{2m} + q\left(\phi + \frac{\partial\Lambda}{\partial t}\right)\right]\left[\psi e^{if(\vec{r},t)}\right] \\ i\hbar\frac{\partial}{\partial t}\left[\psi e^{if(\vec{r},t)}\right] &= \left[i\hbar\frac{\partial\psi}{\partial t} - \hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)} \\ \vec{\nabla}\left(\psi e^{if(\vec{r},t)}\right) &= \left(\vec{\nabla}\psi + \psi i\vec{\nabla}f\right)e^{if(\vec{r},t)} \\ \left[-i\hbar\vec{\nabla}-q(\vec{A}-\vec{\nabla}\Lambda)\right]\left[\psi e^{if(\vec{r},t)}\right] &= \left[-i\hbar\vec{\nabla}\psi + \hbar\psi\vec{\nabla}f - q(\vec{A}-\vec{\nabla}\Lambda)\psi\right]e^{if(\vec{r},t)} \end{split}$$

$$\begin{split} & \left[-i\hbar \vec{\nabla} - q(\vec{A} - \vec{\nabla}\Lambda) \right]^2 \left[\psi e^{if(\vec{r},t)} \right] = \left[-i\hbar \vec{\nabla} - q(\vec{A} - \vec{\nabla}\Lambda) \right] \left\{ \left[-i\hbar \vec{\nabla}\psi + \hbar \psi \vec{\nabla} f - q(\vec{A} - \vec{\nabla}\Lambda) \psi \right] e^{if(\vec{r},t)} \right\} \\ & = \left(-i\hbar \right) \left\{ \left[-i\hbar \nabla^2 \psi + \hbar (\vec{\nabla}\psi) \cdot (\vec{\nabla}f) + \hbar \psi \nabla^2 f - q(\vec{\nabla} \cdot \vec{A} - \nabla^2 \Lambda) \psi - q(\vec{A} - \vec{\nabla}\Lambda) \cdot (\vec{\nabla}\psi) \right] e^{if(\vec{r},t)} \right\} \\ & + \left[-i\hbar \vec{\nabla}\psi + \hbar \psi \vec{\nabla} f - q(\vec{A} - \vec{\nabla}\Lambda) \psi \right] \cdot i(\vec{\nabla}f) e^{if(\vec{r},t)} \right\} \\ & - q(\vec{A} - \vec{\nabla}\Lambda) \cdot \left[-i\hbar \vec{\nabla}\psi + \hbar \psi \vec{\nabla} f - q(\vec{A} - \vec{\nabla}\Lambda) \psi \right] e^{if(\vec{r},t)} \end{split}$$

展开变换前的薛定谔方程:

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{(-i\hbar\vec{\nabla}-q\vec{A})^2}{2m} + q\phi\right]\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A})\psi + \frac{i\hbar q}{m}\vec{A}\cdot(\vec{\nabla}\psi) + \frac{q^2A^2}{2m}\psi + q\phi\psi \right] \tag{1}$$

展开变换后的薛定谔方程:

$$\begin{split} &\left[i\hbar\frac{\partial\psi}{\partial t}-\hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)}\\ &=e^{if(\vec{r},t)}\left[-\frac{\hbar^2}{2m}\nabla^2\psi-\frac{i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)-\frac{i\hbar^2}{2m}\psi\nabla^2f+\frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A}-\nabla^2\Lambda)\psi+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi)\right.\\ &\left.+\frac{-i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)+\frac{\hbar^2}{2m}(\vec{\nabla}f)^2\psi-\frac{\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi\right.\\ &\left.+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)(\vec{\nabla}\psi)-\frac{q\hbar}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi+\frac{q^2}{2m}(\vec{A}-\vec{\nabla}\Lambda)^2\psi\right.\\ &\left.+q\left(\phi+\frac{\partial\Lambda}{\partial t}\right)\psi\right] \end{split}$$

(②) - (①) $\cdot e^{if(\vec{r},t)}$, 得到

$$\begin{split} &\left[i\hbar\frac{\partial\psi}{\partial t}-\hbar\psi\frac{\partial f}{\partial t}\right]e^{if(\vec{r},t)}\\ &=e^{if(\vec{r},t)}\left[-\frac{\hbar^2}{2m}\vec{\nabla^2\psi}-\frac{i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)-\frac{i\hbar^2}{2m}\psi\nabla^2f+\frac{i\hbar q}{2m}(\vec{\nabla}\cdot\vec{A}-\nabla^2\Lambda)\psi+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi)\right.\\ &+\frac{-i\hbar^2}{2m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f)+\frac{\hbar^2}{2m}(\vec{\nabla}f)^2\psi-\frac{\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi\\ &+\frac{i\hbar q}{2m}(\vec{A}-\vec{\nabla}\Lambda)(\vec{\nabla}\psi)-\frac{q\hbar}{2m}(\vec{A}-\vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi+\frac{q^2}{2m}\bigg(\vec{A}^2+(\vec{\nabla}\Lambda)^2-2\vec{A}\cdot(\vec{\nabla}\Lambda)\bigg)\psi\\ &+q\bigg(\phi+\frac{\partial\Lambda}{\partial t}\bigg)\psi\bigg] \end{split}$$

$$\begin{split} -\hbar\psi\frac{\partial f}{\partial t} &= -\frac{i\hbar^2}{m}(\vec{\nabla}\psi)\cdot(\vec{\nabla}f) - \frac{i\hbar^2}{2m}\psi\nabla^2f - \frac{i\hbar q}{2m}\psi\nabla^2\Lambda - \frac{i\hbar q}{m}(\vec{\nabla}\Lambda)\cdot(\vec{\nabla}\psi) \\ &+ \frac{\hbar^2}{2m}\psi(\nabla f)^2 - \frac{\hbar q}{m}(\vec{A} - \vec{\nabla}\Lambda)\cdot(\vec{\nabla}f)\psi \\ &+ \frac{q^2}{2m}\left[(\vec{\nabla}\Lambda)^2 - 2\vec{A}\cdot(\vec{\nabla}\Lambda)\right]\psi \\ &+ q\frac{\partial\Lambda}{\partial t}\psi \end{split}$$

重点观察含 \vec{A} 的项, 由于需要对任意 \vec{A} 都成立, 所以 \vec{A} 的系数必须为 0, 即

$$\vec{A} \cdot \left(-\frac{\hbar q}{m} \vec{\nabla} f - \frac{q^2}{2m} 2 \vec{\nabla} \Lambda \right) = 0$$

(2)

最简单的解法即 $f = \frac{-q\Lambda}{\hbar}$, 所以规范变换后的波函数为 $\psi' = \boxed{\psi e^{-iq\Lambda/\hbar}}$. 需要关注一开始给出的 Λ 的符号, 从而影响整体变换的正负.

$$\begin{cases} \vec{A} \rightarrow \vec{A} - \nabla \Lambda \\ \phi \rightarrow \phi + \frac{\partial \Lambda}{\partial t} \\ \psi \rightarrow \psi \mathrm{exp} \left(-\frac{iq\Lambda}{\hbar} \right) \end{cases}, \quad \begin{cases} \vec{A} \rightarrow \vec{A} + \nabla \Lambda \\ \phi \rightarrow \phi - \frac{\partial \Lambda}{\partial t} \\ \psi \rightarrow \psi \mathrm{exp} \left(+\frac{iq\Lambda}{\hbar} \right) \end{cases}$$

7. 角动量的对易关系为 $[J_i,J_j]=i\hbar\epsilon_{ijk}J_k$,升降算符定义为 $J_\pm=J_x\pm iJ_y$,那么 $[J_+,J_-]=$?

$$\begin{split} [J_+,J_-] &= [J_x+iJ_y,J_x-iJ_y] \\ &= [J_x,J_x]-i[J_x,J_y]+i[J_y,J_x]+[J_y,J_y] = -2i[J_x,J_y] = -2i(i\hbar J_z) \\ &= \boxed{2\hbar J_z} \end{split}$$

- 8. 二维谐振子的哈密顿量为 $H=\hbar\omega\left(a_1^{\dagger}a_1+a_2^{\dagger}a_2+1\right)$ 其第一激发态的简并度为?
 - 二维谐振子的哈密顿量用粒子数算符写作 $\hat{H} = \hbar\omega \left(\hat{n}_1 + \hat{n}_2 + \frac{1}{2}\right)$, 所以第一激发态即 $n_1 + n_2 = 1$, 这代表了 $|01\rangle$ 和 $|10\rangle$ 两个正交态, 所以简并度为 2.
- 9. 量子比特 A 和 B 构成双量子比特体系,双量子比特态 $|\psi\rangle$ 中量子比特 A 的纠缠熵定义为 $S(A) = -\mathbf{Tr}[\rho_A \ln \rho_A]$,其中 ρ_A 是约化密度矩阵,由密度矩阵求迹掉量子比特 B 的自由度得到.考虑自旋单态 $|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$,计算可得量子比特 A 的纠缠熵为?

密度矩阵为

$$\rho = |\psi\rangle\langle\psi| = \frac{1}{\sqrt{2}} (|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B) \frac{1}{\sqrt{2}} (\langle\uparrow|_A\langle\downarrow|_B - \langle\downarrow|_A\langle\uparrow|_B))$$

$$= \frac{1}{2} (|\uparrow\rangle_A\langle\uparrow|_A \otimes |\downarrow\rangle_B\langle\downarrow|_B - |\uparrow\rangle_A\langle\downarrow|_A \otimes |\downarrow\rangle_B\langle\uparrow|_B - |\downarrow\rangle_A\langle\uparrow|_A \otimes |\uparrow\rangle_B\langle\downarrow|_B + |\downarrow\rangle_A\langle\downarrow|_A \otimes |\uparrow\rangle_B\langle\uparrow|_B)$$

接下来进行部分求迹,从而得到所需的约化密度矩阵 ρ_A . 迹被定义为对角线元素之和,所以我们通过矢量 $\mathbb{I}_A\otimes |\uparrow\rangle_B$ 和 $\mathbb{I}_A\otimes |\downarrow\rangle_B$ 来提取对角元素. 具体方法是

$$(\mathbb{I}_{A} \otimes \langle \uparrow |_{B}) \rho(\mathbb{I}_{A} \otimes | \uparrow \rangle_{B}) = \frac{1}{2} |\downarrow \rangle_{A} \langle \downarrow |_{A},$$

$$(\mathbb{I}_{A} \otimes \langle \downarrow |_{B}) \rho(\mathbb{I}_{A} \otimes |\downarrow \rangle_{B}) = \frac{1}{2} |\uparrow \rangle_{A} \langle \uparrow |_{A},$$

$$\Rightarrow \rho_{A} = \sum_{i}^{\uparrow,\downarrow} (\mathbb{I}_{A} \otimes \langle i|_{B}) \rho(\mathbb{I}_{A} \otimes |i \rangle_{B}) = \frac{1}{2} (|\downarrow \rangle_{A} \langle \downarrow |_{A} + |\uparrow \rangle_{A} \langle \uparrow |_{A}) = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

由于 ρ_A 已经是对角阵, 所以对角线上元素即为特征值 $\lambda_{A,i}$. 计算 ρ_A 的纠缠熵:

$$S(A) = -\text{Tr}[\rho_A \ln \rho_A] = -\sum_{i}^{\uparrow,\downarrow} \lambda_{A,i} \ln \lambda_{A,i}$$
$$= -\left(\frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2}\right) = \boxed{\ln 2 = 1 \text{ bit}}$$

10. 假设哈密顿量 H 是厄密的,其基态能量为 E_0 ,给定某个态 Ψ ,测得能量期望值为 $E[\Psi]=\frac{\langle\Psi|H|\Psi\rangle}{\langle\Psi|\Psi\rangle}$, $E(\Psi)$ 和 E_0 的关系为?

任意态均可通过基矢展开, 形式为 $|\Psi\rangle=\sum_{n}|n\rangle\langle n|\Psi\rangle_{,\,\,\mathrm{U}}$

$$E[\Psi] = \left(\sum_{m} \langle \Psi | m \rangle \langle m | \right) \hat{H} \left(\sum_{n} |n \rangle \langle n | \Psi \rangle \right) = \sum_{m,n} \langle \Psi | m \rangle \langle m | \hat{H} | n \rangle \langle n | \Psi \rangle$$
$$= \sum_{m,n} c_{m}^{*} E_{n} \delta_{mn} c_{n} = \sum_{n} |c_{n}|^{2} E_{n} \geq \sum_{n} |c_{n}|^{2} E_{0} = E_{0}$$