Казначеев М.А.

Лабораторная работа №4

Измерение промежутков времени

Содержание

Ι	Теоретические сведения	2
II	Описание установки	2
III	Результаты измерений и обработка данных	2
IV	Вывод	6
\mathbf{V}	Контрольные вопросы	7

Аннотация

Цель работы: Изучить механический метод измерения промежутков времени.

В работе используются: Секундомер, математический маятник.

I Теоретические сведения

В физике единицей времени считается атомная секунда, то есть временной промежуток, за который совершается 9 192 631 770, колебаний электромагнитного излучения, которое соответствует переходу между двумя определенными сверхтонкими уровнями основного состояния атома ¹³³Се в отсутствие внешних полей.

Один из методов измерения продолжительных промежутков времени— механический. Он предполагает использование таких приборов, как часы, метроном, секундомер или хронограф в качестве механических автоколебательных систем.

II Описание установки

Установка представляет собой математический маятник с регулируемой длиной, который снабжён электронным секундомером.

III Результаты измерений и обработка данных

$N_1 = 10$								
k	l_k ,	i	t_{ki} ,	$\bar{t}_k,$	Δt_{ki} ,	$(\Delta t_{ki})^2$,	$S_{\bar{t}_k},$	Δt_k ,
	СМ	•	c	c	c	c^2	c	c
		1	11,026		-0,001	10^{-6}		
1	30	2	11,026	11,027	-0,001	10^{-6}	0,0007	0,003
		3	11,028	*	0,001	10^{-6}		
		1	11,947	11,945	0,002	$4 \cdot 10^{-6}$	0,0012	0,005
2	35	2	11,946		0,001	10^{-6}		
		3	11,943		-0,002	$4 \cdot 10^{-6}$		
	40	1	12,649	12,650	-0,001	10^{-6}	0,0007	0,003
3		2	12,651		0,001	10^{-6}		
		3	12,649		-0,001	10^{-6}		
	45	1	13,521	13,521	0,000	0	0,0006	0,003
4		2	13,520		-0,001	10^{-6}		
		3	13,522		0,001	10^{-6}		
		1	14,246		-0,001	10^{-6}		
5	50	2	14,246	14,247	-0,001	10^{-6}	0,0014	0,006
		3	14,250		0,003	$9 \cdot 10^{-6}$		

Таблица 1. Результаты измерений и вычислений для $N_1=10$

Доверительную вероятность примем равной P=95%. Тогда коэффициент Стьюдента при n=3 измерениях будет равен $t_P(n)=4,3$.

$N_2 = 20$								
k	l_k ,	i	t_{ki} ,	$\bar{t}_k,$	Δt_{ki} ,	$(\Delta t_{ki})^2$,	$S_{\bar{t}_k},$	Δt_k ,
10	СМ	1	c	c	c	c^2	c	c
		1	22,062		0,005	$25 \cdot 10^{-6}$		
1	30	2	22,058	22,057	0,001	10^{-6}	0,0032	0,014
		3	22,051		-0,006	$36 \cdot 10^{-6}$		
		1	23,889		-0,003	$9 \cdot 10^{-6}$		
2	35	2	23,888	23,892	-0,004	$16 \cdot 10^{-6}$	0,0035	0,015
		3	23,899		0,007	$49 \cdot 10^{-6}$		
		1	25,298		0,004	$16 \cdot 10^{-6}$		
3	40	2	25,288	25,294	-0,006	$36 \cdot 10^{-6}$	0,0031	0,013
		3	25,296		0,002	$4 \cdot 10^{-6}$		
		1	27,041		0,002	$4 \cdot 10^{-6}$		
4	45	2	27,042	27,039	0,003	$9 \cdot 10^{-6}$	0,0025	0,011
		3	27,034		-0,005	$25 \cdot 10^{-6}$		
		1	28,506		0,000	0		
5	50	2	28,506	28,506	0,000	0	0,0000	0,001
		3	28,506		0,000	0		

Таблица 2. Результаты измерений и вычислений для $N_2=20$

Цена деления шкалы секундомера составляет 0,001 с. Тогда

$$\Delta t_{\rm np} = 0.001 \text{ c}, \quad \Delta t_{\rm okp} = P \cdot \frac{\Delta t_{\rm np}}{2} \approx 0.0005 \text{ c},$$

$$\Delta t_{\rm cucr} = \sqrt{(\Delta t_{\rm np})^2 + (\Delta t_{\rm okp})^2} \approx 0.001 \text{ c}.$$

Измерения будем проводить при длинах маятника 30 см, 35 см, 40 см, 45 см и 50 см. При этом сначала измерения проведём для $N_1=10$ (таб. 1), а потом для $N_2=20$ (таб. 2) колебаний.

Для каждой длины, которой условно присвоен номер k, среднее время вычисляется по формуле

$$\bar{t}_k = \frac{\sum_{i=1}^n t_{ki}}{n}.$$

Величина Δt_{ki} вычисляется, как

$$\Delta t_{ki} = t_{ki} - \bar{t}_k.$$

По формуле

$$S_{\bar{t}_k} = \sqrt{\frac{\sum\limits_{i=1}^{n} (\Delta t_{ki})^2}{n(n-1)}}$$

высчитывается средняя ошибка для времени, а по формуле

$$\Delta t_{k,\text{случ}} = t_P(n) \cdot S_{\bar{t}_k}.$$

случайная погрешность. Наконец, полную абсолютную погрешность найдём, как

$$\Delta t_k = \sqrt{(\Delta t_{k,\text{c,tyy}})^2 + (\Delta t_{\text{chct}})^2} = \sqrt{\left(t_P(n) \cdot S_{\bar{t}_k}\right)^2 + (\Delta t_{\text{chct}})^2}.$$

	$N_1 = 10$							
k	l_k ,	T_k ,	ΔT_k ,	ε_{T_k} ,				
10	СМ	c	С	%				
1	30	1,1027	0,0003	0,03				
2	35	1,1945	0,0005	0,04				
3	40	1,2650	0,0003	0,02				
4	45	1,3521	0,0003	0,02				
5	50	1,4247	0,0006	0,04				

Таблица 3. Результаты вычисления периода для $N_1 = 10$

$N_2 = 20$							
k	l_k ,	T_k ,	ΔT_k ,	ε_{T_k} ,			
	СМ	c	c	%			
1	30	1,1029	0,0007	0,06			
2	35	1,1946	0,0008	0,07			
3	40	1,2647	0,0007	0,06			
4	45	1,3520	0,0006	0,04			
5	50	1,4253	0,0001	0,01			

Таблица 4. Результаты вычисления периода для $N_2=20$

Для каждой длины найдём период колебаний маятника:

$$T_k = \frac{\bar{t}_k}{N}.$$

Абсолютная ошибка этой величины равна

$$\Delta T_k = \sqrt{\left(\frac{\partial T_k}{\partial \bar{t}_k} \Delta t_k\right)^2} = \left|\frac{dT_k}{d\bar{t}_k} \Delta t_k\right| = \frac{\Delta t_k}{N},$$

а относительная —

$$\varepsilon_{T_k} = \frac{\Delta T_k}{T_k} \cdot 100\%.$$

Вычислим теоретические значения периодов Θ_l по формуле

$$\Theta_l = 2\pi \sqrt{\frac{l}{g}}.$$

Так,

$$\Theta_{30} \approx 1,0993 \text{ c}, \quad \Theta_{35} \approx 1,1874 \text{ c}, \quad \Theta_{40} \approx 1,2694 \text{ c}, \quad \Theta_{45} \approx 1,3464 \text{ c}, \quad \Theta_{50} \approx 1,4192 \text{ c}.$$

Рассмотрим функцию $T^2 = f(l)$. Как показывает теория, зависимость между величинами T^2 и l можно считать линейной и f(l) = 0. Поскольку в опыте всегда присутствует некоторая неточность, точки графика функции f(l) не будут лежать на одной прямой, а значит следует провести аппроксимацию. Воспользуемся методом наименьших квадратов. Очевидно, что

$$f(l) = kl$$

где

$$k = \frac{\langle lT^2 \rangle}{\langle l^2 \rangle}.$$

Ошибка коэффициента вычисляется, как

$$\Delta k = \frac{t_P(n'-2)}{5\sqrt{n'-1}} \sqrt{\frac{\sum_{i=1}^n l_i^2 \sum_{i=1}^n T_i^4 - \left(\sum_{i=1}^n l_i T_i^2\right)^2}{\langle l^2 \rangle^2}},$$

где n'=5. Поскольку

$$t_P(n'-2) = t_P(n) = 4.3, \quad \langle l^2 \rangle = 0.165 \text{ m}^2,$$

 $\langle lT_{10}^2 \rangle \approx 0.6684 \text{ m} \cdot \text{c}^2, \quad \langle lT_{20}^2 \rangle \approx 0.6685 \text{ m} \cdot \text{c}^2,$

где T_i — значение периода при i колебаниях, то

$$k_{10} \approx 4,0510 \pm 0,0547 \text{ c}^2/\text{M}, \quad k_{20} \approx 4,0515 \pm 0,0572 \text{ c}^2/\text{M}.$$

То есть

$$T_{10}^2 = 4,0510 \cdot l, \quad T_{20}^2 = 4,0515 \cdot l.$$

При этом для квадрата теоретического значения периода $\varphi(l) = \Theta^2$ имеем

$$\Theta^2 = \frac{4\pi^2}{q} \cdot l \approx 4,0284 \cdot l$$

(далее угловой коэффициент этой прямой будет обозначен через κ).

Рис. 1. График засисмости $T_{10}^{2}(l)$

Ввиду того, что обе прямые f(l) и прямая $\varphi(l)$ практически совпадают, не имеет смысла пытаться изобразить их на одной координатной плоскости. Это подтверждается величинами углов, которые прямые составляют с осью Ol:

$$\alpha = \operatorname{arctg} k_{10} \approx 76,13^{\circ},$$

 $\beta = \operatorname{arctg} k_{20} \approx 76,14^{\circ},$
 $\gamma = \operatorname{arctg} \kappa \approx 76,06^{\circ}.$

Рис. 2. График засисмости $T_{20}^2(l)$

Рис. 3. График засисмости $\Theta^2(l)$

IV Вывод

Периоды колебаний математического маятника вычислены с достаточной точностью: относительные ошибки не превышают 0,07%. Разница между теоретическеми и экспериментальными значениями периодов составляет не более 8 мс. При этом, чем меньше число колебаний, тем точнее измерения, ввиду уменьшения влияния эффекта затухания колебаний. В среднем, относительные ошибки для измерения периодов при 20 колебаниях превышают таковые для 10 в 1,8 раз.

Точность метода так же подтверждается графиками соответствий длин математического маятника от квадратов периодов его колебаний. Для теоретических и экспериментальных значений они практически совпадают, а разница между наклонами "экспериментальных" прямых составляет всего лишь 0,01°.

Таким образом, механический метод измерения времени, исследуемый в настоящей работе, можно считать удовлетворительно точным.

V Контрольные вопросы

1) Для измерения промежутков времени применяются механические, стробоскопические и электрические методы.

- 2) Система часового механизма является автоколебательной, поскольку колебания в ней некоторое время поддерживаются без вмешательства человека за счёт перехода кинетической энергии механизма в потенциальную и наоборот.
- 3) Стробоскопический метод измерения времени используется, когда требуется измерить периоды или частоты периодических процессов. В основе данного метода лежит освещение отдельными короткими вспышками, следующими через равные промежутки времени.
- **4)** В системе СИ единицей измерения времени признаётся секунда. Так же используются такие единицы, как минута, час, сутки, неделя, месяц, год, век и так далее.