LOGARITAMSKA FUNKCIJA

Funkcija <u>inverzna</u> eksponencijalnoj funkciji $y = a^x$ $(a \ne 1, a > 0, a \in R)$ naziva se logaritamska funkcija. Označava se sa:

$$y = \log_a x$$

(čita se logaritam od x za osnovu a)

Ako je
$$a = e \rightarrow y = \ln x$$

Ako je $a = 10 \rightarrow y = \log x$ ili neki profesori pišu $y = \lg x$

Za osnovne logaritamske funkcije važi:

- 1) Funkcije su definisane za $x \in (0, \infty)$
- 2) Nula funkcije je x = 1 tj. grafik seče x-osu u tački A(1,0)
- 3) Monotonost (rašćenje i opadanje) VAŽNO!
 - a) Ako je osnova a > 1 funkcija je <u>rastuća</u>
 - b) Ako je osnova 0 < a < 1 funkcija je <u>opadajuća</u>
- 4) Znak funkcije:
 - a) Ako je osnova a > 1, znak je:

$$y > 0$$
 za $x \in (1, \infty)$

$$y < 0$$
 za $x \in (0,1)$

b) Ako je osnova 0 < a < 1, znak je:

$$y > 0 \text{ za } x \in (0,1)$$

$$y < 0$$
 za $x \in (1, \infty)$

Evo par primera osnovnih grafika:

Primer 1. Skicirati grafik funkcije $y = \log_2 x$

Napravimo tablicu, ali vrednosti za x biramo pametno $x = \{1,2,4,8, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\}$

Videćemo zašto!

Ideja je da se koriste osnovna svojstva logaritama....

Za x=1
$$\Rightarrow$$
 $y = \log_2 1 = 0$

Za x=2
$$\Rightarrow$$
 $y = \log_2 2 = 1$

Za x=4
$$\Rightarrow$$
 $y = \log_2 4 = \log_2 2^2 = 2\log_2 2 = 2 \cdot 1 = 2$

Za x=8
$$\Rightarrow$$
 $y = \log_2 2^3 = 3 \log_2 2 = 3 \cdot 1 = 3$

Za
$$\mathbf{x} = \frac{1}{2}$$
 $\Rightarrow y = \log_2 \frac{1}{2} = \log_2 2^{-1} = -1 \cdot \log_2 2 = -1 \cdot 1 = -1$

Za
$$\mathbf{x} = \frac{1}{4} \implies y = \log_2 \frac{1}{4} = \log_2 2^{-2} = -2$$

Za
$$\mathbf{x} = \frac{1}{8} \implies y = \log_2 \frac{1}{8} = \log_2 2^{-3} = -3$$

X	1	1	1	1	2	4	8
	8	$\frac{\overline{4}}{4}$	$\overline{2}$				
y	-3	-2	-1	0	1	2	3

Sad ove tačke nanesemo na grafik:

Kako je a = 2 > 0 ona je rastuća!

Primer 2. Skicirati grafik funkcije $y = \log_{\frac{1}{2}} x$

Ajmo najpre da malo "prepravimo" funkciju koristeći svojstvo logaritma: $\log_{a^s} x = \frac{1}{s} \log_a x$

$$y = \log_{\frac{1}{2}} x = \log_{2^{-1}} x = \frac{1}{-1} \log_2 x \to y = -\log_2 x$$

Slično kao malopre pravimo tablicu, birajući pametno vrednosti za x:

Za x=1
$$\Rightarrow y = -\log_2 1 = 0$$

Za x=2 $\Rightarrow y = -\log_2 2 = -1$
Za x=4 $\Rightarrow y = -\log_2 4 = -\log_2 2^2 = -2\log_2 2 = -2 \cdot 1 = -2$
Za x=8 $\Rightarrow y = -\log_2 2^3 = -3\log_2 2 = -3 \cdot 1 = -3$
Za x= $\frac{1}{2}$ $\Rightarrow y = -\log_2 \frac{1}{2} = -\log_2 2^{-1} = -(-1) \cdot \log_2 2 = +1 \cdot 1 = 1$
Za x= $\frac{1}{4}$ $\Rightarrow y = -\log_2 \frac{1}{4} = -\log_2 2^{-2} = -(-2) = 2$
Za x= $\frac{1}{8}$ $\Rightarrow y = 3$

Ubacimo ove vrednosti u tablicu:

X	1	1	1	1	2	4	8
	$\frac{-}{8}$	$\frac{}{4}$	$\frac{}{2}$				
V	3	2	1	0	-1	-2	-3

Dakle, kad je osnova $a = \frac{1}{2}$ izmedju 0 i 1 grafik je opadajući!

Za malo složenije grafike je moguće izvršiti pomeranje duž *x* i *y*-ose (slično kao kod kvadratne funkcije) ali za ozbiljnije zadatke će nam biti potrebno znanje iz IV godine srednje škole.

Primer 3. Data je funkcija $y = \log_a (3x^2 - 2x)$ $(a > 0, a \ne 1)$

- a) Za koje vrednosti argumenata *x* funkcija ima smisla u skupu realnih brojeva?
- b) Odrediti nule date funkcije
- c) Odrediti *x* tako da za osnovu $a = \sqrt{5}$ vrednost funkcije bude 2.

Rešenje: $y = \log_a(3x^2 - 2x)$

Pazi: Sve iza log mora biti > 0

Znači: $3x^2 - 2x > 0 \rightarrow$ upotrebimo znanje iz kvadratne nejednačine! (podseti se)

Najpre rešimo kvadratnu jednačinu pa : kvadratni trinom ima znak broja *a* svuda osim izmedju nula (rešenja)

Pa je oblast definisanosti: $x \in (-\infty,0) \cup \left(\frac{2}{3},\infty\right)$

b) Nule f-je su rešenja jednačine y = 0

Znači: $\log_a (3x^2 - 2x) = 0$ Kako je $\log_a 1 = 0$ to mora biti: $3x^2 - 2x = 1$ $3x^2 - 2x - 1 = 0$

$$x_{1,2} = \frac{2 \pm 4}{6}$$

$$x_1 = 1$$

$$x_2 = -\frac{1}{3}$$

Ova funkcija ima nule $x_1 = 1$ i $x_2 = -\frac{1}{3}$

c)
$$y = \log_a (3x^2 - 2x) = 0$$
 $a = \sqrt{5}$ zamenimo $y = 2$

$$\log_{\sqrt{5}}(3x^2 - 2x) = 2$$

Idemo po definiciji $\log_A B = \otimes \iff B = A^{\otimes}$

$$3x^2 - 2x = \sqrt{5}^2$$

$$3x^2 - 2x = 5$$

$$3x^2 - 2x - 5 = 0$$

$$x_{1,2} = \frac{2 \pm 8}{6}$$

$$x_1 = \frac{10}{6} = \frac{5}{3}$$

$$x_2 = \frac{-6}{6} = -1$$

oblast definisanosti smo našli pod a): $x \in (-\infty,0) \cup \left(\frac{2}{3},\infty\right)$ pa su oba rešenja dobra!

Primer 4. Odrediti nule funkcije: $y = \log_3(\sqrt{x^2 + 21} - \sqrt{x^2 + 12})$

Rešenje:

Najpre razmislimo o oblasti definisanosti (sve iza log mora da je > 0)

$$\sqrt{x^2 + 21} - \sqrt{x^2 + 12} > 0$$

Ovo uvek važi!

Zašto?

$$\sqrt{x^2+12+7} - \sqrt{x^2+12} > 0 \Leftrightarrow \sqrt{x^2+12+7} > \sqrt{x^2+12}$$

Prva potkorena veličina je sigurno veća od druge, pa je njihova razlika uvek pozitivna!

Sad tražimo nule:

$$\log_3\left(\sqrt{x^2 + 21} - \sqrt{x^2 + 12}\right) = 0$$
$$\sqrt{x^2 + 21} - \sqrt{x^2 + 12} = 1$$

Ovo je iracionalna jednačina (pogledajte taj istoimeni fajl)

$$\sqrt{x^2 + 21} = \sqrt{x^2 + 12} + 1$$
.....kvadriramo
 $x^2 + 21 = \left(\sqrt{x^2 + 12} + 1\right)^2$

$$x^{2} + 21 = x^{2} + 12 + 2\sqrt{x^{2} + 12} + 1$$

$$2\sqrt{x^2+12} = 21-12-1$$

$$2\sqrt{x^2 + 12} = 8$$

$$\sqrt{x^2 + 12} = 4$$
....kvadriramo

$$x^2 + 12 = 16$$

$$x^2 = 4 \rightarrow x = \pm \sqrt{4} \rightarrow \boxed{x_1 = -2} \land \boxed{x_2 = 2}$$

Uslovi za iracionalnu jednačinu bi bili $x^2 + 21 > 0 \land x^2 + 12 > 0$ što važi za svako x pa ne predstavlja nikakva ograničenja.