Action Plan สำหรับทีม: โครงงานเสาวัดระดับน้ำอัจฉริยะ

แผนปฏิบัติการนี้ถูกออกแบบมาสำหรับทีม 3 คน โดยแบ่งหน้าที่และความรับผิดชอบอย่างชัดเจนเพื่อให้การทำงานราบรื่นและมีประสิทธิภาพ

แนะนำบทบาท (Roles)

- นักเรียน A: ผู้จัดการโครงการและผู้เชี่ยวชาญ GIS (Project Manager & GIS Specialist)
 - หน้าที่หลัก: ดูแลภาพรวมของโครงการ, ติดตามความคืบหน้า,
 เป็นคนหลักในการรวบรวมข้อมูลเชิงพื้นที่ และสร้างแผนที่สวยๆ ด้วยโปรแกรม QGIS
- นักเรียน B: โปรแกรมเมอร์และนักวิเคราะห์หลัก (Lead Programmer & Analyst)
 - หน้าที่หลัก: รับผิดชอบส่วนที่เป็น "สมอง" ของโครงการ คือการเขียนโค้ด Python เพื่อคำนวณหาตำแหน่งติดตั้งที่ดีที่สด
- นักเรียน C: นักวิจัยและฝ่ายเอกสาร (Research & Documentation Lead)
 - หน้าที่หลัก: ค้นคว้าข้อมูลทฤษฎี, เรียบเรียงและเขียนรายงานโครงงานทั้งหมด,
 และจัดทำสไลด์สำหรับนำเสนอ

เฟสที่ 1: การเตรียมการและรวบรวมข้อมูล (ระยะเวลา: 1-2 สัปดาห์)

ขั้นตอน -	รายละเอียดกิจกรรม	ผู้รับผิดชอบหลัก	ผู้ช่วย / ร่วมดำเนินการ
1.1	ประชุมกำหนดขอบเขต	ทั้ง 3 คน	-
	เลือกพื้นที่ลำน้ำสายหลัก และหมู่บ้านเป้าหมาย		
1.2	รวบรวมข้อมูลเชิงพื้นที่	นักเรียน A	นักเรียน C
	- หาและดาวน์โหลดไฟล์ Shapefile ของลำน้ำและขอบเขตกา รปกครอง		(ช่วยค้นหาแหล่งข้อมูล)
1.3	รวบรวมพิกัดหมู่บ้าน	นักเรียน A	นักเรียน C
	- ใช้ Google Maps หาพิกัด GPS ของทุกหมู่บ้านเป้าหมาย		(ช่วยตรวจสอบความถูกต้ อง)
	- จัดทำตารางข้อมูลใน Google Sheets (ชีต villages)		

1.4	ติดตั้งโปรแกรม	ทั้ง 3 คน	-
	- นักเรียน A: เน้นติดตั้งและทำความคุ้น เคยกับ QGIS		
	- นักเรียน B: เน้นติดตั้ง Python และไลบรารีที่จำเป็น		
	- นักเรียน C: ติดตั้งทั้งสองโปรแกรมเ พื่อใช้ดูข้อมูลประกอบกา รเขียนรายงาน		

เฟสที่ 2: การประมวลผลข้อมูล (ระยะเวลา: 1 สัปดาห์)

ขั้นตอน -	รายละเอียดกิจกรรม	ผู้รับผิดชอบหลัก	จุดส่งต่องาน (Handoff)
2.1	เตรียมข้อมูลใน QGIS	นักเรียน A	-
	- นำเข้าข้อมูลทั้งหมด, แปลงระบบพิกัด (CRS) ให้เป็นมาตรฐานเดียวกัน		
2.2	สร้างจุดจำลองบนลำน้ำ	นักเรียน A	-
	- ใช้เครื่องมือใน QGIS สร้างจุดที่เป็นไปได้ (Candidate Points) ตามแนวลำน้ำ		
2.3	ส่งออกข้อมูลให้ทีม	นักเรียน A	ส่งไฟล์ .csv ให้ นักเรียน B
	- Export ข้อมูลพิกัด "หมู่บ้าน" และ "จุดจำลอง" เป็นไฟล์ .csv		
	นำข้อมูลจุดจำลองไปใส่ใ น Google Sheets (ชีต candidate_points)		

เฟสที่ 3: การวิเคราะห์และหาตำแหน่งที่ดีที่สุด (ระยะเวลา: 2-3 สัปดาห์)

ขั้นตอน	รายละเอียดกิจกรรม	ผู้รับผิดชอบหลัก	ผู้ช่วย / ร่วมดำเนินการ
3.1	เขียนสคริปต์ Python	นักเรียน B	นักเรียน C
	- เขียนโค้ดเพื่ออ่านไฟล์ .csv ที่ได้รับจากนักเรียน A		(ช่วยค้นคว้าทฤษฎีการคำ นวณ)
	- เขียนฟังก์ชันคำนวณระย ะทางระหว่างจุดสองจุด		
3.2	พัฒนา Logic การหาคำตอบ	นักเรียน B	-
	- เขียนโค้ดเพื่อวนลูปสร้าง ชุดค่าผสมของตำแหน่งเซ็ นเซอร์ (Combinations)		
	- เขียนโค้ดเพื่อคำนวณ "คะแนน" ของแต่ละชุดค่าผสมตามเ กณฑ์ที่เลือก		
3.3	รันโปรแกรมและหาผลลั พธ์	นักเรียน B	นักเรียน A
	- รันสคริปต์เพื่อหาชุดตำแ หน่งเซ็นเซอร์ที่ได้คะแนน ดีที่สุด		(รอรับผลลัพธ์พิกัด)
	- ส่งมอบผลลัพธ์: ส่งพิกัด GPS ที่ดีที่สุด (Optimal Locations) ให้นักเรียน A และ C		

เฟสที่ 4: การแสดงผลและจัดทำรายงาน (ระยะเวลา: 1-2 สัปดาห์)

ขั้นตอน	รายละเอียดกิจกรรม	ผู้รับผิดชอบหลัก	ผู้ช่วย / ร่วมดำเนินการ
4.1	สร้างแผนที่นำเสนอ	นักเรียน A	นักเรียน C
	- นำพิกัดที่ดีที่สุดจากนักเรียน B มาลงใน QGIS		(ให้ความเห็นเรื่องความสวยงาม)
	- สร้างแผนภาพ Voronoi และจัดองค์ประกอบแผนที่ให้สวยงาม สื่อความหมายชัดเจน		
4.2	เขียนรายงานโครงงาน	นักเรียน C	นักเรียน A, B
	- บทที่ 1-2: ที่มา, วัตถุประสงค์, ทฤษฎีที่เกี่ยวข้อง (Voronoi, Optimization)		
	- บทที่ 3: วิธีการดำเนินงาน (สรุปจาก Action Plan นี้)		(A และ B ช่วยอธิบายส่วนของตัวเอง)
	- บทที่ 4-5: ผลการวิเคราะห์, สรุปและอภิปรายผล, ข้อเสนอแนะ		(A และ B ช่วยสรุปผล)
4.3	จัดทำสไลด์นำเสนอ	นักเรียน C	นักเรียน A
	- ออกแบบสไลด์โดยใช้ข้อมูลจากรายงานแล ะแผนที่ที่นักเรียน A สร้างขึ้น		(ช่วยหาภาพประกอบ)