1 Solution approchée d'EDO

1.1 Motivations

1.1.1 Définitions

Soit $f:[a,b]\times\mathbb{R}^d\to\mathbb{R}^d$, $(t,x)\mapsto f(t,x)$, avec $a,b\in\mathbb{R}$, a< b. La fonction f est donnée par ses composantes $f_i:[a,b]\times\mathbb{R}^d\to\mathbb{R}$, $f(t,x)=(f_1(t,x),\ldots,f_d(t,x))^T$. On note $g^{(n)}$ la dérivée d'ordre n d'une fonction $g:\mathbb{R}\to\mathbb{R}$, et g' la dérivée d'ordre 1.

Si $g:[a,b]\to\mathbb{R}^d$ est continue ainsi que toutes ses dérivées jusqu'à l'ordre p, on notera $g\in C^p([a,b],\mathbb{R}^d)$ ou simplement $g\in C^p([a,b])$ s'il n'y a pas d'ambiguïté. On a : $(g_i\in C^p([a,b],\mathbb{R}), \forall i=1,\ldots,d)\iff (g\in C^p([a,b],\mathbb{R}^d))$.

Definition 1.1. • On appelle équation différentielle d'ordre 1 une équation de la forme :

$$y'(t) = f(t, y(t)), \quad \forall t \in [t_0, t_0 + T]$$

- On appelle EDO d'ordre p une équation de la forme $y^{(p)}(t) = f(t, y(t), y'(t), \dots, y^{(p-1)}(t))$, où $f: [a, b] \times (\mathbb{R}^d)^p \to \mathbb{R}^d$ est continue.
- Une fonction y de classe C^p vérifiant une EDO est dite solution de l'EDO.
- Résoudre une EDO, c'est déterminer toutes les solutions de cette EDO.
- Lorsque $d \neq 1$, on parle de système d'EDOs.

Remark 1.2. Toute EDO d'ordre $p \ge 1$ peut se ramener à un système d'EDOs d'ordre 1.

Definition 1.3 (Problème de Cauchy). On appelle problème de Cauchy de l'EDO, la donnée de la valeur de la solution en un point $t_0 \in [a, b]$. Le couple (t_0, y_0) est appelé condition initiale et le problème de Cauchy consiste à trouver y(t) tel que:

$$\begin{cases} y'(t) = f(t, y(t)), & t \in [t_0, t_0 + T] \\ y(t_0) = y_0 \in \mathbb{R}^d \end{cases}$$

La recherche d'une fonction de classe C^1 vérifiant le système ci-dessus. Pour une EDO d'ordre p, $y^{(p)}(t) = f(t, y, y', \dots, y^{(p-1)})$, on donne p conditions initiales : $y(t_0), y'(t_0), \dots, y^{(p-1)}(t_0)$.

1.1.2 Exemples

Example 1.4 (Pendule). L'équation du pendule simple est :

$$y''(t) + \frac{g}{L}\sin(y(t)) = 0$$

C'est une EDO d'ordre 2. Posons $x_1(t) = y(t)$ et $x_2(t) = y'(t)$. Alors on a :

$$x'_1(t) = y'(t) = x_2(t)$$

 $x'_2(t) = y''(t) = -\frac{g}{L}\sin(y(t)) = -\frac{g}{L}\sin(x_1(t))$

On pose $X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} \in \mathbb{R}^2$. Le système s'écrit alors X'(t) = f(t, X(t)) avec

$$f(t,X) = f(t,x_1,x_2) = \begin{pmatrix} x_2 \\ -\frac{g}{L}\sin(x_1) \end{pmatrix}$$

Ici, $f: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$. La fonction f ne dépend pas explicitement de t. La condition initiale serait $y(t_0) = y_0, y'(t_0) = y'_0$, ce qui correspond à $X(t_0) = \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}$.

Example 1.5 (Chute libre avec frottement). L'équation est z'' = -g + k(z')z', où z est l'altitude et k(z') modélise le coefficient de frottement qui dépend de la vitesse z'. C'est une EDO d'ordre 2. Posons $v_1 = z$ et $v_2 = z'$. Le système devient :

$$v'_1 = z' = v_2$$

 $v'_2 = z'' = -g + k(v_2)v_2$

On pose $V(t) = \begin{pmatrix} v_1(t) \\ v_2(t) \end{pmatrix}$. Le système s'écrit V'(t) = F(t,V(t)) avec

$$F(t,V) = F(t,v_1,v_2) = \begin{pmatrix} v_2 \\ -g + k(v_2)v_2 \end{pmatrix}$$

C'est un système différentiel d'ordre 1.

Example 1.6 (Épidémiologie - Modèle SI). Considérons un modèle simple Susceptible-Infecté (SI). Soit X(t) la proportion de susceptibles et Y(t) la proportion d'infectés. On suppose X(t) + Y(t) = 1. Le taux de nouvelles infections est proportionnel aux rencontres entre susceptibles et infectés.

$$Y'(t) = aX(t)Y(t)$$
$$X'(t) = -aX(t)Y(t)$$

où a est le taux de transmission. En utilisant X(t) = 1 - Y(t), on peut réduire à une seule équation pour Y(t):

$$Y'(t) = a(1 - Y(t))Y(t)$$

C'est une EDO d'ordre 1 pour Y(t). Le diagramme représente un modèle avec une population N_{pop} divisée en individus sains X_{sains} et malades $X_{malades}$, avec un taux d'infection a.

Figure 1: Diagramme simplifié d'un modèle épidémiologique.

Le bloc de code suivant semble définir une fonction pour une API, sans lien direct avec le modèle SI décrit ci-dessus.

```
\begin{array}{l} \textbf{import} \  \, \text{numpy as np} \\ \textbf{def } F(t \,, \, y) : \\ v1 \,, \  \, v2 \, = \, y \, [0] \,, \  \, y \, [1] \\ \textbf{return} \  \, \text{np.array} \, ( \left[ \, v2 \,, \, -g * L * np. \exp(-ay) \, \right] ) \  \, * \, \, \text{np.exp}(-ay) \end{array}
```

1.1.3 Illustration (Graphique)

Considérons le problème de Cauchy x'(t) = f(t, x(t)), $x(t_0) = x_0$. On cherche à approcher la solution x(t) sur l'intervalle $[t_0, T]$. On discrétise l'intervalle de temps : $t_0 < t_1 < \cdots < t_N = T$. Souvent, on utilise un pas constant $\Delta t = (T - t_0)/N$, et $t_n = t_0 + n\Delta t$. On calcule une suite de points $(x_n)_{n=0}^N$ où x_n est une approximation de $x(t_n)$. x_0 est donné par la condition initiale. On place les points (t_n, x_n) sur un graphique. En reliant ces points, on obtient une approximation du graphe de la solution x(t).

Figure 2: Illustration graphique de l'approximation d'une solution d'EDO par des points (t_n, x_n) .

1.1.4 Nécessité de la solution approchée

On considère le point suivant :

- 1. Il existe des solutions x(t) pour le problème de Cauchy $x'(t) = f(t, x(t)), x(t_0) = x_0$ sur $[t_0, t_0 + T]$.
- 2. On ne sait pas résoudre (analytiquement) la plupart des EDOs. Par exemple, l'équation $y' = \sin(t^2)$ n'a pas de primitive exprimable avec des fonctions usuelles. Des cas particuliers comme les EDOs linéaires ou à variables séparées peuvent être résolus.
- 3. L'objectif est de trouver x(t) tel que x'(t) = f(t, x(t)).

1.2 Problème de population des lapins

Considérons un modèle prédateur-proie (Lotka-Volterra modifié). Soit L(t) la population de lapins (proies) et R(t) la population de renards (prédateurs). On a le problème de Cauchy suivant :

$$\begin{cases} L'(t) = R(t)L(t)(1 - pL(t)) \\ R'(t) = R(t)(L(t)^2 - pR(t)^2) \\ L(0) = L_0 \\ R(0) = R_0 \end{cases}$$

où p, L_0, R_0 sont des paramètres (notation L_2, pL, pR_2 from notes seems unclear, interpreting based on context as L_0, R_0, p). Ce système n'est pas résoluble analytiquement en général.

On peut cependant résoudre numériquement ce problème et obtenir une approximation de la solution. La condition de résolution numérique dépend de plusieurs facteurs :

- Stabilité : Dépendance continue de la solution vis-à-vis des données du problème.
- Régularité de la solution.
- Existence et unicité de la solution.
- Le problème est bien posé.

1.3 Théorème de Cauchy-Lipschitz

Ce théorème garantit l'existence et l'unicité de la solution pour une classe importante de problèmes de Cauchy.

Definition 1.7 (Fonction Lipschitzienne). On dit que $f:[a,b]\times\mathbb{R}^d\to\mathbb{R}^d$ est Lipschitzienne par rapport à sa seconde variable s'il existe une constante positive K, appelée constante de Lipschitz, telle que pour tout $t\in[a,b]$ et pour tous $y_1,y_2\in\mathbb{R}^d$:

$$||f(t, y_1) - f(t, y_2)|| \le K||y_1 - y_2||$$

où $\|\cdot\|$ est une norme sur \mathbb{R}^d .

Theorem 1.8 (Cauchy-Lipschitz). Soit $f:[t_0,t_0+T]\times\mathbb{R}^d\to\mathbb{R}^d$ une fonction continue. Si f est Lipschitzienne par rapport à sa seconde variable sur $[t_0,t_0+T]\times\mathbb{R}^d$, alors pour tout $y_0\in\mathbb{R}^d$, le problème de Cauchy

$$\begin{cases} y'(t) = f(t, y(t)), & t \in [t_0, t_0 + T] \\ y(t_0) = y_0 \end{cases}$$

admet une unique solution $y \in C^1([t_0, t_0 + T], \mathbb{R}^d)$.

1.4 Exemple de schémas numériques

1.4.1 Formulation Intégrale

Proposition 1.9. Si $x \in C^1([t_0, t_0 + T])$ est solution de x'(t) = f(t, x(t)), alors x(t) vérifie l'équation intégrale :

$$x(t) = x(t_0) + \int_{t_0}^t f(s, x(s))ds, \quad \forall t \in [t_0, t_0 + T]$$

Preuve. On intègre l'équation x'(s) = f(s, x(s)) entre t_0 et t:

$$\int_{t_0}^{t} x'(s)ds = \int_{t_0}^{t} f(s, x(s))ds$$

Par le théorème fondamental de l'analyse, $\int_{t_0}^t x'(s)ds = x(t) - x(t_0)$. Donc, $x(t) - x(t_0) = \int_{t_0}^t f(s, x(s))ds$, ce qui donne le résultat.

1.4.2 Construction du schéma d'Euler explicite

On cherche à approcher x(t) aux points de la discrétisation $t_n = t_0 + n\Delta t$. On part de la formulation intégrale entre t_n et t_{n+1} :

$$x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} f(s, x(s)) ds$$

L'idée des méthodes numériques est d'approcher l'intégrale. Pour le schéma d'Euler explicite, on approxime l'intégrale par la méthode des rectangles à gauche :

$$\int_{t_n}^{t_{n+1}} f(s, x(s)) ds \approx (t_{n+1} - t_n) f(t_n, x(t_n)) = \Delta t f(t_n, x(t_n))$$

En remplaçant $x(t_n)$ par son approximation x_n et $x(t_{n+1})$ par x_{n+1} , on obtient le schéma :

$$x_{n+1} = x_n + \Delta t f(t_n, x_n)$$

Avec la condition initiale $x_0 = x(t_0)$. Ceci permet de calculer x_1, x_2, \dots, x_N de proche en proche.

Étapes de la construction

1. Étape 1: Maillage du domaine

On choisit $N \in \mathbb{N}^*$ et on définit le pas de temps $\Delta t = (T - t_0)/N$. Les points de discrétisation sont $t_n = t_0 + n\Delta t$ pour $n = 0, 1, \dots, N$.

2. Étape 2: Formulation Intégrale

Sur chaque sous-intervalle $[t_n, t_{n+1}]$, la solution exacte vérifie :

$$x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} f(s, x(s)) ds$$

3. Étape 3: Approximation des Intégrales (Formules de Quadrature)

On remplace l'intégrale par une formule de quadrature et $x(t_k)$ par x_k .

1.4.3 Approximation des Intégrales (Formules de Quadrature)

Schéma d'Euler Explicite (Rectangles à gauche) On approxime f(s, x(s)) par sa valeur en t_n , soit $f(t_n, x_n)$.

$$\int_{t_n}^{t_{n+1}} f(s, x(s)) ds \approx \Delta t f(t_n, x(t_n))$$

Le schéma est :

$$x_{n+1} = x_n + \Delta t f(t_n, x_n), \quad n = 0, \dots, N-1$$

L'erreur locale est en $O(\Delta t^2)$.

Schéma du Point Milieu On approxime l'intégrale par la valeur au point milieu $t_n + \Delta t/2$.

$$\int_{t_n}^{t_{n+1}} f(s, x(s)) ds \approx \Delta t f(t_n + \Delta t/2, x(t_n + \Delta t/2))$$

On a besoin d'approcher $x(t_n + \Delta t/2)$. On peut utiliser une étape d'Euler : $x(t_n + \Delta t/2) \approx x(t_n) + (\Delta t/2) f(t_n, x(t_n)) \approx x_n + (\Delta t/2) f(t_n, x_n)$. Le schéma devient :

$$x_{n+1} = x_n + \Delta t f\left(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)\right), \quad n = 0, \dots, N - 1$$

L'erreur locale est en $O(\Delta t^3)$.

Schéma des Trapèzes (Implicite) On approxime l'intégrale par la moyenne des valeurs aux extrémités

 $\int_{t_{n+1}}^{t_{n+1}} f(s, x(s)) ds \approx \frac{\Delta t}{2} [f(t_n, x(t_n)) + f(t_{n+1}, x(t_{n+1}))]$

Le schéma est :

$$x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_{n+1}, x_{n+1})], \quad n = 0, \dots, N-1$$

Ce schéma est implicite car x_{n+1} apparaît des deux côtés de l'équation (dans $f(t_{n+1}, x_{n+1})$). Il faut résoudre une équation (souvent non linéaire) à chaque étape pour trouver x_{n+1} . L'erreur locale est en $O(\Delta t^3)$.

1.4.4 Autres schémas et forme générale des schémas explicites

Schéma d'Euler Implicite (Rectangle à droite) On approxime l'intégrale par la valeur à l'extrémité droite t_{n+1} .

$$\int_{t_n}^{t_{n+1}} f(s, x(s)) ds \approx \Delta t f(t_{n+1}, x(t_{n+1}))$$

Le schéma est :

$$x_{n+1} = x_n + \Delta t f(t_{n+1}, x_{n+1}), \quad n = 0, \dots, N-1$$

C'est un schéma implicite.

Schéma de Crank-Nicolson C'est un autre nom pour le schéma des trapèzes vu précédemment.

$$x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_{n+1}, x_{n+1})]$$

Il est implicite.

Schéma de Heun (Euler amélioré / Runge-Kutta d'ordre 2) C'est un schéma explicite qui combine une étape de prédiction (type Euler explicite) et une étape de correction (type trapèze utilisant la prédiction).

- Prédiction : $\tilde{x}_{n+1} = x_n + \Delta t f(t_n, x_n)$
- Correction: $x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_{n+1}, \tilde{x}_{n+1})]$

Le schéma s'écrit en une seule ligne :

$$x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_{n+1}, x_n + \Delta t f(t_n, x_n))], \quad n = 0, \dots, N - 1$$

Ce schéma est explicite. L'erreur locale est en $O(\Delta t^3)$.

Généralisation des schémas à un pas (explicites) Un schéma numérique à un pas explicite peut s'écrire sous la forme générale :

$$x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t), \quad n = 0, \dots, N-1$$

avec x_0 donné, et où $\Phi: \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^d$ est appelée fonction d'incrément.

- Euler explicite : $\Phi(t, y, \Delta t) = f(t, y)$
- \bullet Point Milieu : $\Phi(t,y,\Delta t) = f(t+\frac{\Delta t}{2},y+\frac{\Delta t}{2}f(t,y))$
- Heun : $\Phi(t, y, \Delta t) = \frac{1}{2} [f(t, y) + f(t + \Delta t, y + \Delta t f(t, y))]$