MLA Data Challenge – Group 37

Anomaly Detection in Pneumatic Cylinder Production

Motivation and Goals

- Background is a manufacturing process of a pneumatic cylinder by a CNC-Milling machine
- Task is to develop a machine learning model, that uses internal and external machine data to classify the bottom parts into:

False: Anomaly, True: No Anomaly

Motivation and Goals

In this way, the required quality can be ensured before the next production steps and the functionality of the product can be guaranteed at an early stage

Data and Feature Exploration

- Seperating true and false parts
- Investigation of time series for different sensors

The time series of the external frontside sensor signals for parts with anomalies

The time series of the external frontside sensor signals for parts without anomalies

Data and Feature Exploration

 Deriving features as input data for further processing

Concept and Methodology

Data Preparation:

Feature Extraction Feature Selection Data Split Class Imbalance Scaling

Machine Learning Models:

MLP

SVM

RF

Data Preparation

Feature Extraction

Feature Extraction

- Computed various statistical measures for each sensor
- Measures included mean, root mean square, kurtosis, skewness, etc.
- Chosen for their ability to describe time series characteristics.
- Assist in understanding patterns and variations.
- Resulted in 900 features per data point.

frontside_aaCurr6_margin_factor
frontside_aaCurr6_abs_mean
frontside_aaCurr6_impulse_factor
frontside_aaCurr6_coef_var

Data Preparation

Feature Extraction

Feature Selection

Feature Selection

- Feature selection reduces data dimensionality.
- A correlation-based method was used.
- Pearson correlation coefficient measured relationship strength.
- Features with correlation < 0.1 were filtered out.
- Reduced features from 900 to 161, significantly.

Data Preparation

Feature Extraction

Feature Selection

Data Split

Data Split

- Data split into training and validation sets.
- Training set for model training.
- Validation set for model performance evaluation.
- Ratio: 80% training, 20% validation.
- Stratified to preserve class distribution.

Data Preparation

Feature Extraction

Feature Selection

Data Split

Class Imbalance

Class Imbalance

Oversampled data:

- Data c class imbalance.
- Addressed using SMOTE technique.
- SMOTE generates new minority class samples.
- Parameters: sampling_strategy.

Number of Anomaly Classes Number of Anomaly Classes 400 400 350 350 300 300 250 250 200 · ਰੂ 200 150 150 100 100 50 50

Data Preparation

Feature Extraction

Feature Selection

Data Split

Class Imbalance Feature Scaling

Feature Scaling

- Data scaled using standard scaler.
- Transforms features to have mean zero, std deviation one.
- Improves performance of sensitive models.

Machine Leraning Models

- Multilayer perceptron (MLP)
- Support vector machine (SVM)
- Random forest (RF)

MLP

SVM

RF

Multilayer perceptron (MLP)

- Learns complex nonlinear patterns
- Parameters:
 hidden_layer_sizes=(128, 64),
 activation='relu', alpha=0.01,
 max iter=20, random state=42.
- Chosen based on trial and error.
- Specifies layer sizes, activation function, regularization, and iterations.

Multi-layer perceptron (MLP-NN) basic Architecture. | Download Scientific Diagram (researchgate.net)

Support vector machine (SVM)

- Finds hyperplane to separate data into classes.
- Can handle nonlinear data using kernel function.
- Default parameters: kernel='rbf', C=1.
- 'rbf' kernel commonly used for nonlinear data.
- C parameter set to 1 for moderate penalty balance.

Random forest (RF)

- Ensemble learning combining multiple decision trees.
- Reduces variance and overfitting.
- Chosen based on trial and error.
- n_estimators set to 100 for effective ensemble learning.

Classification using frontside sensor data

- Frontside acceleration data has visible variations in different anomaly classes
- Used for
 - CNN Time Series Classification
 - Random Forest Classifier
 - Decision Tree Classifier

Part 100101 frontside_external_sensor_signals Anomaly 0

Part 111102 frontside external sensor signals Anomaly 1

Model Evaluation

Testing the models on the 20% test split

Assessment based on the f1-score

Scores

- Highest Score: Random Forest Classifier using correlation-based features at 94.74%
- Promising: Time Series and Random Forest Classification based on acceleration data

	Correlation-based features (all channels)			Frontside acceleration data		
	Multi Layer Perceptron	Support Vector Machine	Random Forest	CNN (Time Series)	Random Forest	Decision Tree
f1-score	79.07%	89.47%	94.74%	93.33%	94.74%	87.18%
False positives	5.04%	0.84%	0%	0%	0.88%	2.63%
False negatives	2.52%	2.52%	1.68%	1.74%	0.88%	1.75%

Final Model

High number of features → high chance that

useful features can be found

Makes use of all the data channels

Fast actual training

Feature correlation might be coincidental

Can't detect details in the signal course

Needs heavy data preprocessing

Applicability of the ML Models

Models are already quite accurate

Can help reduce quality control expenses

Not reliable yet

Strategies for Improvement

- Stronger oversampling of anormal parts
 - Should improve reliability
 - Might induce losses in general accuracy

Collect further data

