PRÁCTICO 3 - Lógica Combinacional

Ejercicio 5

Un circuito combinacional comparador toma dos números de 2 bits, $\mathbf{A} = (A_1, A_0)$ y $\mathbf{B} = (B_1, B_0)$ y retorna tres salidas ("**A>B**", "**A=B**" y "**A<B**") de 1 bit cada una.

Ej: si A = (00) y B = (10), entonces "A>B" = (0), "A=B" = (0) y "A<B" = (1).

- a. Construir la tabla de verdad para dicho sistema.
- b. Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos.
- c. Encontrar la función minimizada de cada salida como suma de productos usando mapas de Karnaugh.
- d. Implementar el sistema con compuertas lógicas básicas.

Respuesta

a) Para construir la tabla de verdad de este ejercicio, lo primero que hay que hacer es identificar cuántas variables existen en el problema, en este caso son A y B pero cada una es de dos bits, por lo tanto las variables son 4 y la tabla tendrá 2^4 = 16 filas:

A1	A0	B1	В0	O2 (A>B)	O1 (A=B)	O0 (A <b)< th=""></b)<>
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

El enunciado detalla que existen tres salidas distintas: A>B, A=B y A<B, se las denomina O2, O1 y O0 respectivamente. Para completar la tabla, se deben interpretar por un lado A1 y A0 como un número de dos bits y por otro B1 y B0 como otro número de dos bits y analizar cada uno de los tres casos (respectivos a cada salida), si la condición se cumple la salida es uno, en caso contrario es cero. De esta forma, la tabla quedaría como sigue:

A1	A0	B1	B0	O2 (A>B)	O1 (A=B)	O0 (A <b)< th=""></b)<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

b) Dado que existen tres salidas, se necesitan tres funciones, una para cada salida:

Suma de minitérminos

$$02 = \overline{A1} A0 \overline{B1} \overline{B0} + A1 \overline{A0} \overline{B1} \overline{B0} + A1 \overline{A0} \overline{B1} \overline{B0} + A1 \overline{A0} \overline{B1} B0 + A1 A0 \overline{B1} \overline{B0} + A1 A0 \overline{B1} B0 + A1 A0 \overline{B1} B0 + A1 A0 \overline{B1} B0 + A1 A0 B1 \overline{B0}$$

$$O1 = \overline{A1} \overline{A0} \overline{B1} \overline{B0} + \overline{A1} \overline{A0} \overline{B1} B0 + \overline{A1} \overline{A0} \overline{B1} \overline{B0} + \overline{A1} \overline{A0} B1 \overline{B0} + \overline{A1} \overline{A0} B1 B0$$

$$O0 = \overline{A1} \overline{A0} \overline{B1} B0 + \overline{A1} \overline{A0} B1 \overline{B0} + \overline{A1} \overline{A0} B1 \overline{B0} + \overline{A1} \overline{A0} B1 B0 + \overline{A1} \overline{A0} B1 B0 + \overline{A1} \overline{A0} B1 B0$$

Producto de maxitérminos

$$O2 = (A1 + A0 + B1 + B0) \cdot (A1 + A0 + B1 + \overline{B0}) \cdot (A1 + A0 + \overline{B1} + B0) \cdot (A1 + A0 + \overline{B1} + \overline{B0}) \cdot (A1 + \overline{A0} + \overline{B1} + \overline{B0}) \cdot (A1 + \overline{A0} + \overline{B1} + \overline{B0}) \cdot (A1 + \overline{A0} + \overline{B1} + \overline{B0}) \cdot (\overline{A1} + \overline{A0} + \overline{B1} + \overline{B0})$$

$$O1 = (A1 + A0 + B1 + \overline{B0}) \cdot (A1 + A0 + \overline{B1} + B0) \cdot (A1 + A0 + \overline{B1} + \overline{B0})$$

$$. (A1 + \overline{A0} + B1 + B0) . (A1 + \overline{A0} + \overline{B1} + B0) . (A1 + \overline{A0} + \overline{B1} + \overline{B0}) .$$

$$. (\overline{A1} + A0 + B1 + B0) . (\overline{A1} + A0 + B1 + \overline{B0}) . (\overline{A1} + A0 + \overline{B1} + \overline{B0}) .$$

$$. (\overline{A1} + \overline{A0} + B1 + B0) . (\overline{A1} + \overline{A0} + B1 + \overline{B0}) . (\overline{A1} + \overline{A0} + \overline{B1} + B0) .$$

$$. (\overline{A1} + A0 + B1 + B0) . (A1 + \overline{A0} + B1 + B0) . (A1 + \overline{A0} + B1 + \overline{B0}) . (A1 + \overline{A0} + B1 + \overline{B0}) .$$

$$. (\overline{A1} + A0 + B1 + B0) . (\overline{A1} + A0 + B1 + \overline{B0}) . (\overline{A1} + \overline{A0} + \overline{B1} + B0) .$$

$$. (\overline{A1} + \overline{A0} + B1 + B0) . (\overline{A1} + \overline{A0} + B1 + \overline{B0}) . (\overline{A1} + \overline{A0} + \overline{B1} + B0) .$$

$$. (\overline{A1} + \overline{A0} + B1 + B0) . (\overline{A1} + \overline{A0} + B1 + \overline{B0}) . (\overline{A1} + \overline{A0} + \overline{B1} + B0) .$$

c)

$$O2 = A1 \overline{B1} + A0 \overline{B1} \overline{B0} + A1 A0 \overline{B0}$$

$$O1 = \overline{A1} \, \overline{A0} \, \overline{B1} \, \overline{B0} + \overline{A1} \, A0 \, \overline{B1} \, B0 + A1 \, A0 \, B1 \, B0 + A1 \, \overline{A0} \, B1 \, \overline{B0}$$

$$O0 = \overline{A1} B1 + \overline{A1} \overline{A0} B0 + \overline{A0} B1 B0$$

d)

