- A. Last Name: Kaushik.
- B. Date: 14th Aug, 2017.
- C. This solution is reflects a good mix of concepts of EDA, feature engineering, Model selection and parameter tuning to derive significant Out-of-Bag validation score.
- D. Estimated AUC: 0.91
- E. Paramter Tuning using Out-of-Bag validation resuts.

Importing Required Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        from sklearn import model_selection, preprocessing, ensemble
        from sklearn import metrics
        from sklearn.ensemble import RandomForestClassifier
        from collections import OrderedDict
        import warnings
        warnings.filterwarnings("ignore")
        import matplotlib.pyplot as plt
        %matplotlib inline
```

Reading the data

```
In [2]: train = pd.read_csv("train0.csv")
        test = pd.read_csv("test0.csv")
In [3]: #Glimpse of the dataset
        train.head()
```

Out[3]:

	age	cost_of_ad	device_type	gender	in_initial_launch_location	income	n_drivers	n_vehicles	prior_ins_tenure	outcome
0	56	0.005737	iPhone	М	0	62717	2	1	4	0
1	50	0.004733	desktop	F	0	64328	2	3	2	0
2	54	0.004129	laptop	М	0	83439	1	3	7	0
3	16	0.005117	Android	F	0	30110	2	3	0	0
4	37	0.003635	desktop	М	0	76565	2	1	5	0

```
In [4]: #Correcting the daat types
        train['device_type'] = train['device_type'].astype('category')
        train['gender'] = train['gender'].astype('category')
        test['device_type'] = test['device_type'].astype('category')
        test['gender'] = test['gender'].astype('category')
In [5]: train.dtypes
Out[5]: age
                                         int64
        cost_of_ad
                                       float64
        device_type
                                      category
        gender
                                      category
        in_initial_launch_location
                                         int64
        income
                                         int64
        n_drivers
                                         int64
        n_vehicles
                                         int64
        prior_ins_tenure
                                         int64
        outcome
                                         int64
        dtype: object
```

EDA

In [6]: #Ouutcome Class Distribution in percentage (train.outcome.value_counts()/len(train.outcome))*100 Out[6]: 0 90.18

9.82

Name: outcome, dtype: float64

Class Skew is high and Approaches like:

- 1. Undersampling.
- 2. Oversampling.
- 3. Using Error Functions like F-Score, logloss for training.

Can be used. But since the evaluation metric in this test is auc, we'll use auc as well on the orignam dataset simulate the performance on test set through crossvalidation

train.income.hist()

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9409ed43c8>

Generally the income distributions have long tails. This looks preety normally distributed. The data must have been treated beforehand.

train.prior_ins_tenure.hist()

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9409df6cc0>

The distribution has heavy positive sckew. We can reduce the scew in this case by taking log(k+n) transformation.

In [9]: np.log(2+train.prior_ins_tenure).hist()

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9438176630>

In [10]: train.prior_ins_tenure = np.log(2+train.prior_ins_tenure)
 test.prior_ins_tenure = np.log(2+test.prior_ins_tenure)

In [11]: pd.crosstab(train.outcome, train.device_type, rownames=['Outcome'], colnames= ['Device_Type'], margins=True)

Out[11]:

Device_Type	Android	desktop	iPhone	laptop	other	All
Outcome						
0	1719	1685	1803	1901	1910	9018
1	304	347	165	90	76	982
All	2023	2032	1968	1991	1986	10000

laptop and other devices have significantly lower ad click proportion compared to other platforms

In [12]: pd.crosstab(train.outcome, train.gender, rownames=['Outcome'], colnames=['gen der'], margins=True)

Out[12]:

gender	F	М	All
Outcome			
0	4677	4081	8758
1	293	680	973
All	4970	4761	9731

There are more number of females but males have more than double ad clicks than females.

In [13]: pd.crosstab(train.outcome, train.in_initial_launch_location, rownames=['Outco me'], colnames=['in_initial_launch_location'], margins=True)

Out[13]:

in_initial_launch_location	0	1	All
Outcome			
0	4705	4313	9018
1	320	662	982
All	5025	4975	10000

Also, being in in initial launch location doubles the chances of clicking on an ad.

```
In [14]: sns.lmplot(x='age', y='income', data=train,
                    fit_reg=False, # No regression line
                    hue='outcome') # Color by evolution stage
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x7f9400542c18>


```
In [15]: sns.lmplot(x='age', y='prior_ins_tenure', data=train,
                    fit_reg=False,
                    hue='outcome')
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x7f940042ff60>


```
In [16]: sns.lmplot(x='income', y='cost_of_ad', data=train,
                       fit_reg=False,
hue='outcome')
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x7f94003b5160>

Observatios:

- 1. All these plots conforms our hypothisis that the data has been processed as it the plots look very indifferent.
- 2. By observing the color dimension, its clear that the outcome exhibits non-linear relationship with majority of the preictors. Therefore, tree based models are suited for this dataset. I'll use Random Forest model for this problem which leverages the bagging concept (growing multiple decesion trees with sample of features on bootstrap samples of the orignal data) to overcome the high variance issue observed in single decision trees.

Feature Engineering

Performing one hot encoding for device_type and gender features

```
In [17]: oh = pd.get_dummies(train[['device_type', 'gender']])
         train.drop(['device_type', 'gender'], axis=1, inplace=True)
         train = pd.concat([train, oh], axis = 1)
In [18]: oh2 = pd.get_dummies(test[['device_type', 'gender']])
         test.drop(['device_type', 'gender'], axis=1, inplace=True)
         test = pd.concat([test, oh2], axis = 1)
```

Creating a feature for income to age ratio

```
In [19]: train['income_by_age'] = train.income/ train.age
         test['income_by_age'] = test.income/ test.age
```

Creating a feature for no. of drivers per vehicle

```
In [20]: train['drivers_per_vehicle'] = train.n_vehicles/train.n_drivers
         test['drivers_per_vehicle'] = test.n_vehicles/test.n_drivers
```

Data Prepration

```
In [21]: train_y = train.outcome
          train.drop('outcome', axis=1, inplace=True)
          train_X = train
In [22]: test_X = test
In [23]: print(train_X.shape)
         print(train_y.shape)
          print(test_X.shape)
         (10000, 16)
          (10000,)
          (10000, 16)
```

Modelling

Findding the optimal paramteres on out of sample error.

```
In [24]: RANDOM_STATE = 0
         ensemble_clfs = [
             ("RandomForestClassifier, max_features='sqrt'",
                  RandomForestClassifier(warm_start=False, oob_score=True,
                                         max_features="sqrt",
                                         random_state=RANDOM_STATE)),
              ("RandomForestClassifier, max_features='log2'",
                  RandomForestClassifier(warm_start=False, max_features='log2',
                                         oob_score=True,
                                         random_state=RANDOM_STATE)),
              ("RandomForestClassifier, max_features=None",
                  RandomForestClassifier(warm_start=False, max_features=None,
                                         oob_score=True,
                                         random_state=RANDOM_STATE))
         # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
         error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)
         # Range of `n_estimators` values to explore.
         min estimators = 10
         max_estimators = 500
         for label, clf in ensemble_clfs:
             for i in range(min_estimators, max_estimators, 50):
                  clf.set_params(n_estimators=i)
                 clf.fit(train_X, train_y)
                 # Record the OOB error for each `n_estimators=i` setting.
                 oob_error = 1 - clf.oob_score_
                 error_rate[label].append((i, oob_error))
         # Generate the "OOB error rate" vs. "n_estimators" plot.
         for label, clf_err in error_rate.items():
             xs, ys = zip(*clf_err)
             plt.plot(xs, ys, label=label)
         plt.xlim(min_estimators, max_estimators)
         plt.xlabel("n_estimators")
         plt.vlabel("00B error rate")
         plt.legend(loc="upper right")
         plt.show()
```


Fitting the Random Forest model

Feature Importance

```
In [26]: imp_df_rf = pd.DataFrame(
             {'Predictors': train_X.columns,
              'Importance': model.feature_importances_.tolist()
         imp_df_rf = imp_df_rf.sort(['Importance'], ascending=False)
         imp_df_rf
```

Out[26]:

	Importance	Predictors		
1	0.176602	cost_of_ad		
3	0.166930	income		
14	0.164967	income_by_age		
0	0.132809	age		
6	0.093298	prior_ins_tenure		
15	0.051307	drivers_per_vehicle		
2	0.046438	in_initial_launch_location		
5	0.034792	n_vehicles		
8	0.024634	device_type_desktop		
7	0.021213	device_type_Android		
13	0.019849	gender_M		
10	0.017014	device_type_laptop		
4	0.015992	n_drivers		
11	0.014292	device_type_other		
12	0.012280	gender_F		
9	0.007584	device_type_iPhone		

Expected Accuracy on test set

Let's check an estimate of the accuracy of our model on test set by looking at the model's out of bag accuracy.

```
In [27]: model.oob_score_
Out[27]: 0.91020000000000001
```

Predicting for test

Predicting Labels

```
In [28]: preds = model.predict(test_X)
In [29]: pd.value_counts(pd.Series(preds))
Out[29]: 0    9615
          1     385
          dtype: int64
```

Predicting probabilities which can be used for leading propensity based advertising campaigns. Also, it can halp in evaluation like observing the aur-roc cure, etc

```
In [30]: pred_prob = model.predict_proba(test_X)
```

Outputing First 5 preictions

```
In [31]: preds[:5]
Out[31]: array([0, 0, 0, 0])
```

Outputing First 5 preiction probabilities | Of being 1 and 0 respectively

In []: