MOMENT-ANGLE COMPLEXES, TORIC MANIFOLDS, AND TWISTED COHOMOLOGY

Alex Suciu

Northeastern University

Topology Seminar
Institute of Mathematics of the Romanian Academy
June 22, 2012

GENERALIZED MOMENT-ANGLE COMPLEXES

- Let (X, A) be a pair of topological spaces
- Let K be a simplicial complex on vertex set [m].
- Corresponding generalized moment-angle complex:

$$\mathcal{Z}_{K}(X,A) = \bigcup_{\sigma \in K} (X,A)^{\sigma} \subset X^{\times m}$$

where
$$(X, A)^{\sigma} = \{x \in X^{\times m} \mid x_i \in A \text{ if } i \notin \sigma\}.$$

- Construction interpolates between $A^{\times m}$ and $X^{\times m}$.
- Homotopy invariance:

$$(X, A) \simeq (X', A') \implies \mathcal{Z}_K(X, A) \simeq \mathcal{Z}_K(X', A').$$

• Converts simplicial joins to direct products: $\mathcal{Z}_{K*I}(X, A) \cong \mathcal{Z}_{K}(X, A) \times \mathcal{Z}_{I}(X, A)$.

• Takes a cellular pair
$$(X, A)$$
 to a cellular subcomplex of $X^{\times m}$.

Usual moment-angle complexes:

- Complex moment-angle complex, $\mathcal{Z}_{\kappa}(D^2, S^1)$.
 - \bullet $\pi_1 = \pi_2 = \{1\}.$
- Real moment-angle complex, $\mathcal{Z}_{\kappa}(D^1, S^0)$.
 - $\pi_1 = W_K'$, the derived subgroup of W_K , the right-angled Coxeter group associated to $K^{(1)}$.

EXAMPLE

Let K = two points. Then:

$$\begin{split} \mathcal{Z}_K(\textit{D}^2,\textit{S}^1) &= \textit{D}^2 \times \textit{S}^1 \cup \textit{S}^1 \times \textit{D}^2 = \textit{S}^3 \\ \mathcal{Z}_K(\textit{D}^1,\textit{S}^0) &= \textit{D}^1 \times \textit{S}^0 \cup \textit{S}^0 \times \textit{D}^1 = \textit{S}^1 \end{split}$$

EXAMPLE

Let *K* be a circuit on 4 vertices. Then:

$$\mathcal{Z}_{\mathcal{K}}(D^2, S^1) = S^3 \times S^3$$

 $\mathcal{Z}_{\mathcal{K}}(D^1, S^0) = S^1 \times S^1$

EXAMPLE

More generally, let K be an n-gon. Then:

$$\mathcal{Z}_{K}(D^{2}, S^{1}) = \#_{r=1}^{n-3} r \cdot {n-2 \choose r+1} S^{r+2} \times S^{n-r}$$

$$\mathcal{Z}_K(\mathit{D}^1, S^0) = \text{an orientable surface of genus } 1 + 2^{n-3}(n-4)$$

The second equality was proved by H.S.M. Coxeter in 1937.

- If $(M, \partial M)$ is a compact manifold of dim d, and K is a PL-triangulation of S^m on n vertices, then $\mathcal{Z}_K(M, \partial M)$ is a compact manifold of dim (d-1)n+m+1.
- (Bosio–Meersseman) If K is a *polytopal* triangulation of S^m , then $\mathcal{Z}_K(D^2, S^1)$ if n + m + 1 is even, or
 - $\mathcal{Z}_K(D^2, S^1) \times S^1$ if n + m + 1 is odd

is a complex manifold.

- This construction generalizes the classical constructions of complex structures on $S^{2p-1} \times S^1$ (Hopf) and $S^{2p-1} \times S^{2q-1}$ (Calabi–Eckmann).
- In general, the resulting complex manifolds are not symplectic, thus, not Kähler. In fact, they may even be non-formal (Denham–Suciu).

- The GMAC construction enjoys nice functoriality properties in both arguments. E.g:
 - Let $f: (X, A) \to (Y, B)$ be a (cellular) map. Then $f^{\times n}: X^{\times n} \to Y^{\times n}$ restricts to a (cellular) map $\mathcal{Z}_K(f): \mathcal{Z}_K(X, A) \to \mathcal{Z}_K(Y, B)$.
- Much is known about the fundamental group and the asphericity problem for $\mathcal{Z}_K(X) = \mathcal{Z}_K(X,*)$ (work of Davis et al). E.g.:
 - $\pi_1(\mathcal{Z}_K(X,*))$ is the graph product of $G_V = \pi_1(X,*)$ along the graph $\Gamma = K^{(1)} = (V, E)$, where

$$\mathsf{Prod}_{\Gamma}(G_{\mathsf{v}}) = \underset{\mathsf{v} \in \mathsf{V}}{*} G_{\mathsf{v}}/\{[g_{\mathsf{v}}, g_{\mathsf{w}}] = 1 \text{ if } \{\mathsf{v}, \mathsf{w}\} \in \mathsf{E}, \, g_{\mathsf{v}} \in G_{\mathsf{v}}, \, g_{\mathsf{w}} \in G_{\mathsf{w}}\}.$$

- Suppose X is aspherical. Then: $\mathcal{Z}_K(X, *)$ is aspherical iff K is a flag complex.
- Also: $\mathcal{Z}_K(D^2, S^1) \simeq \mathcal{Z}_K(\mathbb{C}, \mathbb{C}^*) = \mathbb{C}^m \setminus \bigcup_{\sigma \notin K} H_{\sigma}$, where $H_{\sigma} = \{x \in \mathbb{C}^n \mid x_{i_1} = \dots = x_{i_p} = 0\}$ if $\sigma = \{i_1, \dots, i_p\}$.

GENERALIZED DAVIS-JANUSZKIEWICZ SPACES

- G abelian topological group $G \rightsquigarrow GDJ$ space $\mathcal{Z}_K(BG)$.
- $G = S^1$: Usual Davis–Januszkiewicz space, $\mathcal{Z}_K(\mathbb{CP}^{\infty})$.
 - $\pi_1 = \{1\}.$
 - $H^*(\mathcal{Z}_K(\mathbb{CP}^{\infty}), \mathbb{Z}) = S/I_K$, where $S = \mathbb{Z}[x_1, \dots, x_m]$, deg $x_i = 2$.
- $G = \mathbb{Z}_2$: Real Davis–Januszkiewicz space, $\mathcal{Z}_K(\mathbb{RP}^{\infty})$.
 - $\pi_1 = W_K$: right-angled Coxeter group associated to $K^{(1)} = (V, E)$.
 - $W_K = \langle v \in V \mid v^2 = 1, vw = wv \text{ if } \{v, w\} \in E \rangle.$
 - $H^*(\mathcal{Z}_K(\mathbb{RP}^{\infty}), \mathbb{Z}_2) = R/I_K$, where $R = \mathbb{Z}_2[x_1, \dots, x_m]$, deg $x_i = 1$.
- $G = \mathbb{Z}$: Toric complex, $\mathcal{Z}_K(S^1)$.
 - $\pi_1 = G_K$: right-angled Artin group associated to $K^{(1)}$.
 - $G_K = \langle v \in V \mid vw = wv \text{ if } \{v, w\} \in E \rangle$.
 - $H^*(\mathcal{Z}_K(S^1), \mathbb{Z}) = E/J_K$, where $E = \bigwedge [e_1, \dots, e_m]$, deg $e_i = 1$.

(Denham–Suciu) Let p: (E, E') → (B, B') be a map of pairs, such that both p: E → B and p|_{E'}: E' → B' are fibrations, with fibers F and F', respectively. Suppose that either F = F' or B = B'. Then the product fibration, p^{×n}: E^{×n} → B^{×n}, restricts to a fibration

$$\mathcal{Z}_K(F,F') \longrightarrow \mathcal{Z}_K(E,E') \xrightarrow{\mathcal{Z}_K(p)} \mathcal{Z}_K(B,B')$$
.

• Let $G \to EG \to BG$ be universal G-bundle. Applying the above lemma to the relative G-bundle $(G, G) \to (EG, G) \to (BG, *)$, we obtain a bundle

$$G^m \to \mathcal{Z}_K(EG, G) \to \mathcal{Z}_K(BG).$$

- If G is a finitely generated (discrete) abelian group, then $\pi_1(\mathcal{Z}_K(BG))_{ab} = G^m$, and thus $\mathcal{Z}_K(EG, G)$ is the universal abelian cover of $\mathcal{Z}_K(BG)$.
- In particular, $\mathcal{Z}_K(\mathbb{RP}^{\infty})^{ab} \simeq \mathcal{Z}_K(D^1, S^0)$.

 (Bahri, Bendersky, Cohen, Gitler) Let K a simplicial complex on m vertices. There is a natural homotopy equivalence

$$\Sigma(\mathcal{Z}_K(X,A)) \simeq \Sigma\left(\bigvee_{I\subset[m]}\widehat{\mathcal{Z}}_{K_I}(X,A)\right),$$

where K_l is the induced subcomplex of K on the subset $l \subset [m]$.

 In particular, if X is contractible and A is a discrete subspace consisting of p points, then

$$H_k(\mathcal{Z}_K(X,A);R)\cong\bigoplus_{I\subset [m]}\bigoplus_{1}^{(p-1)^{|I|}}\widetilde{H}_{k-1}(K_I;R).$$

TORIC MANIFOLDS AND SMALL COVERS

- Let P be an n-dimensional convex polytope; facets F_1, \ldots, F_m .
- Assume P is simple (each vertex is the intersection of n facets).
- Then P determines a dual simplicial complex, $K = K_{\partial P}$, of dimension n-1:
 - Vertex set $[m] = \{1, ..., m\}$.
 - Add a simplex $\sigma = (i_1, \dots, i_k)$ whenever F_{i_1}, \dots, F_{i_k} intersect.

FIGURE: A prism P and its dual simplicial complex K

- Let χ be an *n*-by-*m* matrix with coefficients in $G = \mathbb{Z}$ or \mathbb{Z}_2 .
- χ is *characteristic* for P if, for each vertex $v = F_{i_1} \cap \cdots \cap F_{i_n}$, the n-by-n minor given by the columns i_1, \ldots, i_n of χ is unimodular.
- Let $\mathbb{T} = S^1$ if $G = \mathbb{Z}$, and $\mathbb{T} = S^0 = \{\pm 1\}$ if $G = \mathbb{Z}_2$.
- Given $q \in P$, let $F(q) = F_{j_1} \cap \cdots \cap F_{j_k}$ be the maximal face so that $q \in F(q)^{\circ}$. The map χ yields a k-dimensional subtorus

$$T_{F(q)} = T_{F_{i_1}} \cap \cdots \cap T_{F_{i_{\nu}}} \subset \mathbb{T}^n$$
.

• Here, if F is a face, and $\chi_F \colon G \to G^n$ is the corresponding column vector, then $T_F = \ker(\widehat{\chi_F} \colon \mathbb{T}^n \to \mathbb{T}) \cong \mathbb{T}^{n-1}$.

• To the pair (P, χ) , M. Davis and T. Januszkiewicz associate the *(quasi-) toric manifold*

$$X = T^n \times P / \sim$$

where $(t, p) \sim (u, q)$ if p = q and $t \cdot u^{-1} \in \mathbb{T}_{F(q)}$.

- The projection map $X \to P$ has fibers
 - \mathbb{T}^n over points in the interior of P,
 - $\mathbb{T}^{n-1} = T_F$ over points on a face F, etc.
- For $G = \mathbb{Z}$, the space X is a *complex* toric manifold, denoted $M_P(\chi)$. It is a closed, orientable manifold of dimension 2n.
- For $G = \mathbb{Z}_2$, the space X is a *real* toric manifold (or, *small cover*), denoted $N_P(\chi)$. It is a closed, not necessarily orientable manifold of dimension n.

EXAMPLE (TORIC MANIFOLDS OVER THE *n*-SIMPLEX)

Let $P = \Delta^n$ be the *n*-simplex, and χ the $n \times (n+1)$ matrix $\begin{pmatrix} \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$.

Then

$$M_P(\chi) = \mathbb{CP}^n$$
 and $N_P(\chi) = \mathbb{RP}^n$.

EXAMPLE (TORIC MANIFOLDS OVER THE SQUARE)

• If X is a smooth, projective toric variety, then $X(\mathbb{C}) = M_P(\chi)$, for some P and χ , and $X(\mathbb{R}) = N_P(\chi \mod 2\mathbb{Z})$.

On the other hand:

- $M = \mathbb{CP}^2 \sharp \mathbb{CP}^2$ is a toric manifold over the square, but it does not admit any (almost) complex structure. Thus, $M \ncong X(\mathbb{C})$.
- If P is a 3-dim polytope with no triangular or quadrangular faces, then, by a theorem of Andreev, $N_P(\chi)$ is a hyperbolic 3-manifold. Hence, by a theorem of Delaunay, $N_P(\chi) \not\cong X(\mathbb{R})$.
- Concrete example: P = dodecahedron. (Characteristic matrices χ do exist for P, by work of Garrison and Scott.)

Davis and Januszkiewicz showed that:

- $M_P(\chi)$ admits a perfect Morse function with only critical points of even index.
- Moreover,

$$\operatorname{rank} H_{2i}(M_P(\chi), \mathbb{Z}) = h_i(P),$$

where $(h_0(P), ..., h_n(P))$ is the *h*-vector of *P*, which depends only on the number of *i*-faces of P ($0 \le i \le n$).

- $N_P(\chi)$ admits a perfect Morse function over \mathbb{Z}_2 .
- Moreover,

$$\dim_{\mathbb{Z}_2} H_i(N_P(\chi), \mathbb{Z}_2) = h_i(P).$$

• They also gave presentations for the cohomology rings $H^*(M_P(\chi), \mathbb{Z})$ and $H^*(N_P(\chi), \mathbb{Z}_2)$, similar to the ones given by Danilov and Jurkiewicz for toric varieties.

- In work with A. Trevisan, we compute $H^*(N_P(\chi), \mathbb{Q})$, both additively and multiplicatively.
- The (rational) Betti numbers of $N_P(\chi)$ no longer depend just on the h-vector of P, but also on the characteristic matrix χ .

EXAMPLE

Recall there are precisely two small covers over the square *P*:

- The torus $T^2 = N_P(\chi)$, with $\chi = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.
- The Klein bottle $K\ell = N_P(\chi')$, with $\chi' = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$.

Then
$$b_1(T^2) = 2$$
, yet $b_1(K\ell) = 1$.

 Idea: use finite covers involving (up to homotopy) certain generalized moment-angle complexes:

$$\mathbb{Z}_2^{m-n} \longrightarrow \mathcal{Z}_K(D^1, S^0) \longrightarrow N_P(\chi) ,$$

$$\mathbb{Z}_2^n \longrightarrow N_P(\chi) \longrightarrow \mathcal{Z}_K(\mathbb{RP}^{\infty}, *) .$$

FINITE ABELIAN COVERS

- Let X be a connected, finite-type CW-complex, $\pi = \pi_1(X, x_0)$.
- Let $p: Y \to X$ a (connected) regular cover, with group of deck transformations Γ . We then have a short exact sequence

$$1 \longrightarrow \pi_1(Y, y_0) \xrightarrow{\rho_{\sharp}} \pi_1(X, x_0) \xrightarrow{\nu} \Gamma \longrightarrow 1 \ .$$

- Conversely, every epimorphism $\nu \colon \pi \twoheadrightarrow \Gamma$ defines a regular cover $X^{\nu} \to X$ (unique up to equivalence), with $\pi_1(X^{\nu}) = \ker(\nu)$.
- If Γ is abelian, then $\nu = \chi \circ$ ab factors through the abelianization, while $X^{\nu} = X^{\chi}$ is covered by the universal abelian cover of X:

• Let $C_q(X^{\nu}; \mathbb{k})$ be the group of cellular q-chains on X^{ν} , with coefficients in a field \mathbb{k} . We then have natural isomorphisms

$$C_q(X^{\nu}; \mathbb{k}) \cong C_q(X; \mathbb{k}\Gamma) \cong C_q(\widetilde{X}) \otimes_{\mathbb{k}\pi} \mathbb{k}\Gamma.$$

• Now suppose Γ is finite abelian, $k = \overline{k}$, and char k = 0. Then, all k-irreps of Γ are 1-dimensional, and so

$$C_q(X^{
u}; \Bbbk) \cong igoplus_{
ho \in \mathsf{Hom}(\Gamma, \Bbbk^{ imes})} C_q(X; \Bbbk_{
ho \circ
u}),$$

where $\mathbb{k}_{\rho \circ \nu}$ denotes the field \mathbb{k} , viewed as a $\mathbb{k}\pi$ -module via the character $\rho \circ \nu \colon \pi \to \mathbb{k}^{\times}$.

• Thus, $H_q(X^{\nu}; \mathbb{k}) \cong \bigoplus_{\rho \in \text{Hom}(\Gamma, \mathbb{k}^{\times})} H_q(X; \mathbb{k}_{\rho \circ \nu}).$

- Now let P be an n-dimensional, simple polytope with m facets, and let $K = K_{\partial P}$ be the simplicial complex dual to ∂P .
- Let $\chi \colon \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ be a characteristic matrix for P.
- Then $\ker(\chi) \cong \mathbb{Z}_2^{m-n}$ acts freely on $\mathcal{Z}_K(D^1, S^0)$, with quotient the real toric manifold $N_P(\chi)$.
- $N_P(\chi)$ comes equipped with an action of $\mathbb{Z}_2^m/\ker(\chi) \cong \mathbb{Z}_2^n$; the orbit space is P.
- Furthermore, $\mathcal{Z}_{\mathcal{K}}(\mathcal{D}^1, \mathcal{S}^0)$ is homotopy equivalent to the maximal abelian cover of $\mathcal{Z}_{\mathcal{K}}(\mathbb{RP}^{\infty})$, corresponding to the sequence

$$1 \longrightarrow W_K' \longrightarrow W_K \xrightarrow{ab} \mathbb{Z}_2^m \longrightarrow 1$$
.

• Thus, $N_P(\chi)$ is, up to homotopy, a regular \mathbb{Z}_2^n -cover of $\mathcal{Z}_K(\mathbb{RP}^\infty)$, corresponding to the sequence

$$1 \longrightarrow \pi_1(N_P(\chi)) \longrightarrow W_K \xrightarrow{\chi \circ ab} \mathbb{Z}_2^n \longrightarrow 1.$$

To sum up, we have a diagram

$$\begin{split} \mathcal{Z}_{K}(\mathbb{RP}^{\infty})^{ab} &\simeq \mathcal{Z}_{K}(D^{1}, S^{0}) \\ & \downarrow^{/\mathbb{Z}_{2}^{m-n}} \\ \mathcal{Z}_{K}(\mathbb{RP}^{\infty})^{\chi \circ ab} &\simeq N_{P}(\chi) \xrightarrow{/\mathbb{Z}_{2}^{m}} P \\ & \downarrow^{/\mathbb{Z}_{2}^{n}} \\ \mathcal{Z}_{K}(\mathbb{RP}^{\infty}) \end{split}$$

with vertical arrows regular covers, and horizontal arrow the "stratified" (small) cover defining $N_P(\chi)$.

THE HOMOLOGY OF ABELIAN COVERS OF GDJ SPACES

- Let K be a simplicial complex on m vertices.
- Identify $\pi_1(\mathcal{Z}_K(B\mathbb{Z}_p))_{ab} = \mathbb{Z}_p^m$, with generators x_1, \ldots, x_m .
- Let $\lambda \colon \mathbb{Z}_p^m \to \mathbb{k}^{\times}$ be a character; $supp(\lambda) := \{i \in [m] \mid \lambda(x_i) \neq 1\}.$
- Let K_{λ} be the induced subcomplex on vertex set $supp(\lambda)$.

LEMMA (SUCIU-TREVISAN)

$$H_{\alpha}(\mathcal{Z}_{K}(B\mathbb{Z}_{p}); \mathbb{k}_{\lambda}) \cong \widetilde{H}_{\alpha-1}(K_{\lambda}; \mathbb{k}).$$

Sketch of proof:

• The inclusion $(S^1, *) \hookrightarrow (B\mathbb{Z}_p, *)$ induces a cellular inclusion

$$T_K = \mathcal{Z}_K(S^1) \hookrightarrow \mathcal{Z}_K(B\mathbb{Z}_p).$$

• The inclusion $\phi \colon K_{\lambda} \hookrightarrow K$ induces a cellular inclusion

$$T_{K_{\lambda}} \hookrightarrow T_{K}$$
.

• Let $\bar{\lambda} \colon \mathbb{Z}^m \to \mathbb{Z}_p^m \xrightarrow{\lambda} \mathbb{k}^{\times}$. We then get (chain) retractions

$$C_{q}(T_{K}; \mathbb{k}_{\bar{\lambda}})$$

$$\downarrow$$

$$C_{q}(\mathcal{Z}_{K}(B\mathbb{Z}_{p}); \mathbb{k}_{\lambda}) \longrightarrow C_{q}(T_{K_{\lambda}}; \mathbb{k}_{\bar{\lambda}}) \stackrel{\cong}{\longrightarrow} \widetilde{C}_{q-1}(K_{\lambda}; \mathbb{k})$$

• Hence: $\dim_{\mathbb{k}} H_q(\mathcal{Z}_K(B\mathbb{Z}_p); \mathbb{k}_{\lambda}) \geqslant \dim_{\mathbb{k}} \widetilde{H}_{q-1}(K_{\lambda}; \mathbb{k}).$

For the reverse inequality, we use [BBCG], which, in this case, says

$$H_q(\mathcal{Z}_K(E\mathbb{Z}_p,\mathbb{Z}_p);\mathbb{k})\cong\bigoplus_{I\subset [m]}\bigoplus_{1}^{(p-1)^{|I|}}\widetilde{H}_{q-1}(K_I;\mathbb{k}),$$

and the fact that $\mathcal{Z}_K(E\mathbb{Z}_p, \mathbb{Z}_p) \simeq (\mathcal{Z}_K(B\mathbb{Z}_p))^{ab}$, which gives

$$H_q(\mathcal{Z}_K(E\mathbb{Z}_p,\mathbb{Z}_p);\mathbb{k}) \cong \bigoplus_{\rho \in \mathsf{Hom}(\mathbb{Z}_p^m,\mathbb{k}^\times)} H_q(\mathcal{Z}_K(B\mathbb{Z}_p);\mathbb{k}_\rho).$$

THEOREM (S-T)

Let $\mathcal{Z}_K(B\mathbb{Z}_p)^\chi$ be the abelian cover defined by an epimorphism $\chi\colon (\mathbb{Z}_p)^m \twoheadrightarrow \Gamma$. Then

$$H_q(\mathcal{Z}_K(B\mathbb{Z}_p)^\chi; \mathbb{k}) \cong \bigoplus_{
ho \in \mathsf{Hom}(\Gamma; \mathbb{k}^\times)} \widetilde{H}_{q-1}(K_{
ho \circ \chi}; \mathbb{k}),$$

where $K_{\rho \circ \chi}$ is the induced subcomplex of K on vertex set $supp(\rho \circ \chi)$.

THE Q-HOMOLOGY OF REAL TORIC MANIFOLDS

- Let again P be a simple polytope, and set $K = K_{\partial P}$.
- Let $\chi \colon \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ be a characteristic matrix for P.
- For each subset S of $[n] = \{1, \ldots, n\}$:
 - Compute $\chi_S = \sum_{i \in S} \chi_i$, where χ_i is the *i*-th row of χ .
 - Find the induced subcomplex $K_{\chi,S}$ of K on vertex set

$$supp(\chi_S) = \{j \in [m] \mid \text{ the } j\text{-th entry of } \chi_S \text{ is non-zero}\}.$$

Compute the reduced simplicial Betti numbers

$$\tilde{b}_q(\textit{K}_{\chi,\mathcal{S}}) = \dim_{\mathbb{Q}} \widetilde{\textit{H}}_q(\textit{K}_{\chi,\mathcal{S}};\mathbb{Q}).$$

THEOREM (S-T)

The Betti numbers of the real toric manifold $N_P(\chi)$ are given by

$$b_q(N_P(\chi)) = \sum_{S \subseteq [n]} \tilde{b}_{q-1}(K_{\chi,S}).$$

As an application, we recover a result of Nakayama and Nishimura.

COROLLARY

A real, n-dimensional toric manifold $N_P(\chi)$ is orientable if and only if there is a subset $S \subseteq [n]$ such that $K_{\chi,S} = K$.

Reason: $N_P(\chi)$ is orientable iff $b_n(N_P(\chi)) = 1$

EXAMPLE

- Again, let *P* be the square, $K = K_{\partial P}$ the 4-cycle.
- Let $T^2=N_P(\chi)$, $\chi=\left(\begin{smallmatrix}1&0&1&0\\0&1&0&1\end{smallmatrix}\right)$, and $K\ell=N_P(\chi')$, $\chi'=\left(\begin{smallmatrix}1&0&1&0\\0&1&1&1\end{smallmatrix}\right)$.

S	Ø	{1}	{2}	{1,2}
χs	(0000)	(1010)	(0101)	(1111)
$K_{\chi,S}$	Ø	{{1}, {3}}	{{2}, {4}}	K
$\chi_{\mathcal{S}}'$	(0000)	(1010)	(0111)	(1101)
$K_{\chi',S}$	Ø	{{1}, {3}}	$\{\{2,3\},\{3,4\}\}$	{{1, 2}, {1, 4}}

Hence:

$$\begin{array}{ll} b_0(T^2) = \tilde{b}_{-1}(\varnothing) = 1 & b_0(K\ell) = \tilde{b}_{-1}(\varnothing) = 1 \\ b_1(T^2) = \tilde{b}_0(K_{\chi,\{1\}}) + \tilde{b}_0(K_{\chi,\{2\}}) = 2 & b_1(K\ell) = \tilde{b}_0(K_{\chi',\{1\}}) + \tilde{b}_0(K_{\chi',\{2\}}) = 1 \\ b_2(T^2) = \tilde{b}_1(K_{\chi,\{1,2\}}) = 1 & b_2(K\ell) = \tilde{b}_1(K_{\chi',\{1,2\}}) = 0 \end{array}$$

THE HESSENBERG MANIFOLDS

- Every Weyl group W determines a smooth, complex projective toric variety \mathcal{T}_W .
 - Fan given by the reflecting hyperplanes of W.
 - Polytope P_W is the convex hull of a regular orbit $W \cdot x_0$.
 - $\dim_{\mathbb{C}} \mathcal{T}_W = \operatorname{rank} W$.
- $\mathcal{T}_n = \mathcal{T}_{S_n}$ is the Hessenberg variety, of cx dim n-1; polytope is the permutahedron P_n (the iterated truncation of the simplex Δ_{n-1}).
- \mathcal{T}_n is isomorphic to the De Concini—Procesi wonderful model $\overline{Y_{\mathcal{G}}}$, where \mathcal{G} is the building set in $(\mathbb{C}^n)^*$ which consists of all subspaces spanned by $\{x_i \mid i \in I\}$, where $\emptyset \neq I \subseteq [n]$.
- Thus, \mathcal{T}_n can be obtained by iterated blow-ups:
 - ① Blow up \mathbb{CP}^{n-1} at the *n* coordinate points.
 - 2 Blow up along the proper transforms of the $\binom{n}{2}$ coordinate lines.
 - 3 Blow up along the proper transforms of the $\binom{n}{3}$ coordinate planes...

- Remark: There is another De Concini–Procesi model, $\overline{Y_{\mathcal{H}}}$, isomorphic to the moduli space $\overline{\mathcal{M}_{0,n+2}}$, and a surjective, S_n -equivariant birational morphism $\overline{\mathcal{M}_{0,n+2}} \twoheadrightarrow \mathcal{T}_n$.
- The real locus of \mathcal{T}_W , denoted $\mathcal{T}_W(\mathbb{R})$, is a smooth, connected, compact real toric variety of dimension equal to the rank of W.
- $\mathcal{T}_n(\mathbb{R})$ is a smooth, real toric variety of dim n-1, with associated polytope the permutahedron P_n .

THEOREM (HENDERSON 2010)

$$b_i(\mathcal{T}_n(\mathbb{R})) = A_{2i}\binom{n}{2i},$$

where A_{2i} is the Euler secant number, defined as the coefficient of $x^{2i}/(2i)!$ in the Maclaurin expansion of $\sec(x)$,

We may recover Henderson's computation, using our general approach. To start with, note that:

- P_n has $2^n 2$ facets: each subset $\emptyset \neq Q \subset [n]$ determines a facet F^Q with vertices in which all coordinates in positions in Q are smaller than all coordinates in positions not in Q.
- The corresponding column vectors of the characteristic matrix $\chi \colon \mathbb{Z}_2^{2^n-2} \to \mathbb{Z}_2^{n-1}$ are given by: $\chi^i = i$ -th standard basis vector of \mathbb{R}^{n-1} $(1 \leqslant i < n)$,

$$\chi^n = \sum_{i < n} \chi^i, \qquad \chi^Q = \sum_{i \in Q} \chi^i.$$

EXAMPLE

- \circ P_3 is a truncated triangle, that is, a hexagon.
- Characteristic matrix

$$\chi = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

• $\mathcal{T}_3(\mathbb{R})$ is obtained from \mathbb{RP}^2 by blowing up 3 points.

EXAMPLE

P₄ is a truncated octahedron; it has 14 facets (6 squares and 8 hexagons). Characteristic matrix:

- The dual simplicial complex, $K_n = K_{\partial P_n}$, is the barycentric subdivision of the boundary of the (n-1)-simplex.
- Given a subset $S \subseteq [n-1]$, the induced subcomplex on vertex set $supp(\chi_S)$ depends only on r := |S|, so denote it by $K_{n,r}$.
- $K_{n,r}$ is the order complex associated to a rank-selected poset of a certain subposet of the Boolean lattice B_n . Thus, $K_{n,r}$ is Cohen–Macaulay; in fact,

$$K_{n,2r-1}\simeq K_{n,2r}\simeq\bigvee^{A_{2r}}S^{r-1}.$$

• Hence:

$$\begin{split} b_i(\mathcal{T}_n(\mathbb{R})) &= \sum_{S \subset [n-1]} \tilde{b}_{i-1}((K_n)_{\chi,S}) = \sum_{r=1}^{n-1} \binom{n-1}{r} \tilde{b}_{i-1}(K_{n,r}) \\ &= \left(\binom{n-1}{2i-1} + \binom{n-1}{2i} \right) A_{2i} = \binom{n}{2i} A_{2i}. \end{split}$$

CUP PRODUCTS IN ABELIAN COVERS OF GDJ-SPACES

As before, let $X^{\nu} \to X$ be a regular, finite abelian cover, corresponding to an epimorphism $\nu \colon \pi_1(X) \twoheadrightarrow \Gamma$, and let $\Bbbk = \mathbb{C}$. The cellular cochains on X^{ν} decompose as

$$C^q(X^{
u}; \Bbbk) \cong igoplus_{
ho \in \mathsf{Hom}(\Gamma, \Bbbk^{ imes})} C^q(X; \Bbbk_{
ho \circ
u}),$$

The cup product map, $C^p(X^{\nu}, \Bbbk) \otimes_{\Bbbk} C^q(X^{\nu}, \Bbbk) \xrightarrow{\smile} C^{p+q}(X^{\nu}, \Bbbk)$, restricts to those pieces, as follows:

$$C^{p}(X; \mathbb{k}_{\rho \circ \nu}) \otimes_{\mathbb{k}} C^{q}(X; \mathbb{k}_{\rho' \circ \nu}) \xrightarrow{\smile} C^{p+q}(X; \mathbb{k}_{(\rho \cdot \rho') \circ \nu})$$

$$\downarrow \cong \qquad \qquad \uparrow \Delta^{*}$$

$$C^{p+q}(X \times X; \mathbb{k}_{\rho \circ \nu} \otimes_{\mathbb{k}} \mathbb{k}_{\rho' \circ \nu}) \xrightarrow{\mu^{*}} C^{p+q}(X \times X; \mathbb{k}_{(\rho \otimes \rho') \circ \nu})$$

where μ^* is induced by the multiplication map on coefficients, and Δ^* is induced by a cellular approximation to the diagonal $\Delta \colon X \to X \times X$.

Proposition (S–T)

Let $\mathcal{Z}_K(B\mathbb{Z}_p)^{\nu}$ be a regular abelian cover, with characteristic homomorphism $\chi \colon \mathbb{Z}_p^m \to \Gamma$. The cup product in

$$H^*(\mathcal{Z}_K(BG)^{\nu}; \mathbb{k}) \cong \bigoplus_{q=0}^{\infty} \left(\bigoplus_{\rho \in \mathsf{Hom}(\Gamma; \mathbb{k}^{\times})} \widetilde{H}^{q-1}(K_{\rho \circ \chi}; \mathbb{k}) \right)$$

is induced by the following maps on simplicial cochains:

$$\begin{split} \widetilde{C}^{p-1}\big(\textit{K}_{\rho\circ\chi}; \Bbbk^{\times}\big) \otimes \widetilde{C}^{q-1}\big(\textit{K}_{\rho'\circ\chi}; \Bbbk^{\times}\big) &\to \widetilde{C}^{p+q-1}\big(\textit{K}_{(\rho\otimes\rho')\circ\chi}; \Bbbk^{\times}\big) \\ \hat{\sigma} \otimes \hat{\tau} &\mapsto \begin{cases} \pm \widehat{\sigma \sqcup \tau} & \textit{if } \sigma \cap \tau = \varnothing, \\ 0 & \textit{otherwise,} \end{cases} \end{split}$$

where $\sigma \sqcup \tau$ is the simplex with vertex set the union of the vertex sets of σ and τ , and $\hat{\sigma}$ is the Kronecker dual of σ .

FORMALITY PROPERTIES

- A finite-type CW-complex X is *formal* if its Sullivan minimal model is quasi-isomorphic to $(H^*(X,\mathbb{Q}),0)$ —roughly speaking, $H^*(X,\mathbb{Q})$ determines the rational homotopy type of X.
- (Notbohm–Ray) If X is formal, then $\mathcal{Z}_K(X)$ is formal.
- In particular, toric complexes $T_K = \mathcal{Z}_K(S^1)$ and generalized Davis–Januszkiewicz spaces $\mathcal{Z}_K(BG)$ are always formal.
- (Félix, Tanré) More generally, if both X and A are formal, and the inclusion $i: A \hookrightarrow X$ induces a surjection $i^*: H^*(X, \mathbb{Q}) \to H^*(A, \mathbb{Q})$, then $\mathcal{Z}_K(X, A)$ is formal.

• (Baskakov, Denham–A.S.) Moment angle complexes $\mathcal{Z}_K(D^2, S^1)$ are not always formal: they can have non-trivial triple Massey products. For instance, K =

- (Denham–A.S.) There exist polytopes P and dual triangulations $K = K_{\partial P}$ for which $\mathcal{Z}_K(D^2, S^1)$ is not formal.
- Thus, there are real moment-angle complexes (even manifolds) $\mathcal{Z}_L(D^1, S^0)$ which are not formal.
- (Panov–Ray) Complex toric manifolds $M_P(\chi)$ are always formal.
- Question: are the real toric manifolds $N_P(\chi)$ always formal?

ABELIAN DUALITY & PROPAGATION OF RESONANCE

- Let X be a connected, finite-type CW-complex, with $G = \pi_1(X)$.
- In the background for much of these computations lie the jump loci for cohomology with coefficients in rank 1 local systems,

$$\mathcal{V}^{i}(X) = \{ \rho \in \mathsf{Hom}(G, \mathbb{C}^{\times}) \mid H^{i}(X, \mathbb{C}_{\rho}) \neq 0 \}.$$

Also, the closely related "resonance varieties",

$$\mathcal{R}^i(X) = \{ a \in H^1(X, \mathbb{C}) \mid H^i(H^*(X, \mathbb{C}), \cdot a) \neq 0 \}.$$

- Question: How do the duality properties of a space X affect the nature of its cohomology jump loci?
- Recall that X is a *duality space* of dimension n if $H^p(X, \mathbb{Z}G) = 0$ for $p \neq n$ and $H^n(X, \mathbb{Z}G) \neq 0$ and torsion-free.
- By analogy, we say X is an abelian duality space of dimension n if $H^p(X, \mathbb{Z}G^{ab}) = 0$ for $p \neq n$ and $H^n(X, \mathbb{Z}G^{ab}) \neq 0$ and torsion-free.

THEOREM (DENHAM-SUCIU-YUZVINSKY)

Let X be an abelian duality space of dim n. For any character $\rho \colon G \to \mathbb{C}^*$, if $H^p(X, \mathbb{C}_\rho) \neq 0$, then $H^q(X, \mathbb{C}_\rho) \neq 0$ for all $p \leqslant q \leqslant n$. Thus, the characteristic varieties of X "propagate":

$$\mathcal{V}^1(X) \subseteq \mathcal{V}^2(X) \subseteq \cdots \subseteq \mathcal{V}^n(X).$$

COROLLARY

If X admits a minimal cell structure, and X is an abelian duality space of dim n, then resonance propagates:

$$\mathcal{R}^1(X) \subseteq \mathcal{R}^2(X) \subseteq \cdots \subseteq \mathcal{R}^n(X).$$

REMARK

Propagation of \mathcal{V}^i 's does not imply propagation of \mathcal{R}^i 's. Eg, let $M = H_{\mathbb{R}}/H_{\mathbb{Z}}$ be the 3-dim Heisenberg manifold. Then $\mathcal{V}^1 = \mathcal{V}^2 = \mathcal{V}^3 = \{1\}$, but $\mathcal{R}^1 = \mathcal{R}^2 = \mathbb{C}^2$, and $\mathcal{R}^3 = \{0\}$.

TORIC COMPLEXES

- Let K be a simplicial complex of dimension d, on vertex set V, and let $T_K = \mathcal{Z}_K(S^1, *)$ be the respective toric complex.
- T_K is a connected, minimal CW-complex, with dim $T_K = d + 1$.
- $\pi_1(T_K) = G_\Gamma$ is the RAAG associated to the graph $\Gamma = K^{(1)}$.
- $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .

THEOREM (PAPADIMA-A.S.)

$$\mathcal{V}^i(T_K) = \bigcup_W (\mathbb{C}^{\times})^W$$
 and $\mathcal{R}^i(T_K) = \bigcup_W \mathbb{C}^W$

where the union is taken over all $W \subseteq V$ for which there is a simplex $\sigma \in L_{V \setminus W}$ and an index $j \leqslant i$ such that $\widetilde{H}_{i-1-|\sigma|}(lk_{L_W}(\sigma), \mathbb{C}) \neq 0$.

• K is Cohen–Macaulay if for each simplex $\sigma \in K$, the cohomology $\widetilde{H}^*(lk(\sigma), \mathbb{Z})$ is concentrated in degree $n - |\sigma|$ and is torsion-free.

THEOREM (BRADY-MEIER, JENSEN-MEIER)

 G_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, G_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY)

 T_K is an abelian duality space (of dimension d+1) if and only if K is Cohen–Macaulay, in which case both $\mathcal{V}^i(T_K)$ and $\mathcal{R}^i(T_K)$ propagate.

EXAMPLE (PS)

Let $\Gamma = \circ - \circ$. Then resonance does not propagate:

$$\mathcal{R}^1(\textit{G}_{\Gamma}) = \mathbb{C}^4, \quad \text{but} \quad \mathcal{R}^2(\textit{G}_{\Gamma}) = \mathbb{C}^2 \times \{0\} \cup \{0\} \times \mathbb{C}^2.$$

REFERENCES

- A. Suciu, A. Trevisan, *Real toric varieties and abelian covers of generalized Davis–Januszkiewicz spaces*, preprint 2012.
- G. Denham, A. Suciu, S. Yuzvinsky, Abelian duality and propagation of resonance, preprint 2012.

Further references:

- G. Denham, A. Suciu, *Moment-angle complexes, monomial ideals, and Massey products*, Pure Appl. Math. Q. **3** (2007), no. 1, 25–60.
- S. Papadima, A. Suciu, *Toric complexes and Artin kernels*, Adv. Math. **220** (2009), no. 2, 441–477.