(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

. LOURN BUILDIN DE COMBENIAN COM COM COM FOOT LE DE COMPETITION COMPETITION COMP

(43) 国際公開日 2004年10月21日(21.10.2004)

PCT

(10) 国際公開番号 WO 2004/089967 A1

(51) 国際特許分類⁷: 31/7056, A61P 3/10, 43/00 C07H 17/02, A61K

(21) 国際出願番号:

PCT/JP2004/001272

(22) 国際出願日:

2004年2月6日(06.02.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-097838 2003 年4 月1 日 (01.04.2003) P 特願2003-404959 2003 年12 月3 日 (03.12.2003) P

- (71) 出願人 (米国を除く全ての指定国について): 大正製薬 株式会社 (TAISHO PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒1708633 東京都豊島区高田 3 丁目 2 4 番 1 号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 柿沼 浩行 (KAK-INUMA, Hiroyuki) [JP/JP]; 〒1708633 東京都豊島区高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 佐藤正和 (SATO, Masakazu) [JP/JP]; 〒1708633 東京都豊島区高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 天田英明 (AMADA, Hideaki) [JP/JP]; 〒1708633 東京都豊島区高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 浅沼 肇 (ASANUMA, Hajime) [JP/JP]; 〒1708633 東京都豊島区高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 土屋優子 (TSUCHIYA, Yuko) [JP/JP]; 〒1708633 東京都豊島

区高田3丁目24番1号大正製薬株式会社内 Tokyo (JP).

- (74) 代理人: 社本 一夫、外(SHAMOTO, Ichio et al.); 〒 1000004 東京都千代田区大手町二丁目 2番 1 号 新大手町ピル2 0 6 区 ユアサハラ法律特許事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: HETEROARYL 5-THIO- β -D-GLUCOPYRANOSIDE DERIVATIVES AND REMEDIES FOR DIABETES CONTAINING THE SAME

(54) 発明の名称: ヘテロアリール 5ーチオーβーDーグルコピラノシド誘導体及びそれを含有する糖尿病治療薬

(57) Abstract: It is intended to provide heteroaryl 5-thio- β -D-glucopyranoside compounds represented by the following general formula which show an effect of inhibiting the activity of SGLT2, pharmaceutically acceptable salts thereof or hydrates of the same; and drugs containing the same as the active ingredient, in particular, remedies for diabetes, diabetes-related diseases or complications of diabetes.

(57) 要約:

本発明は、SGLT2の活性阻害作用を示す、下記式で表されるヘテロアリール 5-fオー $\beta-D-f$ ルコピラノシド化合物若しくはその製薬学的に許容される塩又はそれらの水和物、及びそれらを有効成分として含有する医薬、特に糖尿病、糖尿病関連疾患又は糖尿病性合併症の予防又は治療薬を提供する。

明細書

ヘテロアリール 5 ーチオーβ ー D ー グルコピラノシド誘導体及びそれを含有する糖尿病治療薬

5

10

15

20

25

技術分野

本発明は、腎臓に特異的に存在しているグルコース再吸収に関わるナトリウム 依存性グルコース供輸送体 2(SGLT2)の活性を阻害するヘテロアリール 5-チ オー $\beta-$ Dーグルコピラノシド化合物及び該化合物を有効成分とする医薬、特に 糖尿病治療薬に関する。

背景技術

慢性的な高血糖が、インスリン分泌を低下させると共にインスリン感受性を低下させ、これらがさらに血糖の上昇を引き起こし糖尿病を悪化させると考えられている。これまでに、糖尿病治療薬として、ビグアナイド薬、スルホニルウレア薬、グリコシダーゼ阻害薬、インスリン抵抗性改善薬等が使用されている。しかしながら、ビグアナイド薬には乳酸アシドーシス、スルホニルウレア薬には低血糖、グリコシダーゼ阻害薬には下痢及び重篤な肝機能障害等の副作用が報告されている。従って、これまでとは異なった新しい作用機序の糖尿病治療薬の開発が望まれている。

天然から単離されたグルコース誘導体であるフロリジンは、腎臓での過剰なグルコースの再吸収を阻害し、グルコースの排泄を促進して血糖降下作用があることが示された (J. Clin. Invest., 第80巻, 1037項, 1987年、J. Clin. Invest., 第87巻, 1510項, 1987年)。その後、このグルコースの再吸収が、腎臓近位尿細管の S1 サイトに存在するナトリウム依存性グルコース供輸送体 2(SGLT2)によることが明らかとなった (J. Clin. Invest., 第93巻, 397項, 1994年)。

この様な背景から、SGLT2 阻害作用に基づく糖尿病治療薬の研究が盛んに行われ、数多くのフロリジン誘導体が報告されている(ヨーロッパ特許公開 EP0850948 号、国際特許公開 W00168660 号、W00116147 号、W00174834 号、W00174835 号、

W00253573 号、W00268439 号、W00268440 号、W00236602 号、W00288157 号参照)。 また、フロリジン誘導体は経口投与すると、小腸に存在するグリコシダーゼでグリコシド結合が加水分解され、未変化体での吸収効率が悪く、血糖降下作用が弱い。そこで、フロリジン誘導体をプロドラッグにして投与し吸収効率を上げる、

又はグリコシド結合を炭素に変換した化合物を合成し分解を防ぐなどの工夫がなされてきた (米国特許 US20010041674 号、国際特許公開 W00127128 号、W00283066 号参照)。

しかし、グルコースの環内酸素原子を硫黄原子に変換した 5 - チオグルコース の誘導体に関しては、β - 選択的グルコシル化の化学合成法がなかったため、ヘ テロアリール 5 - チオーβ - D - グルコピラノシド誘導体に関する報告例は一 切ない。したがって、ヘテロアリール 5 - チオーβ - D - グルコピラノシド誘導体の SGLT 阻害作用に関する報告もない。

発明の開示

10

20

25

15 本発明は、腎臓でのグルコース再吸収に関わる SGLT2 の活性を阻害し、尿糖排泄を促進することで血糖降下作用を示す、新規化合物を提供することを目的としている。

本発明者らは前記課題を解決する目的で鋭意探索研究した結果、 $5-チオ-\beta$ $-D-グルコピラノシドを選択的に合成できる方法を発見して、その方法により ヘテロアリール <math>5-チオ-\beta-D-グルコピラノシド誘導体又はその製薬学的 に許容される塩(以下、「本発明化合物」という)を合成し、これらの化合物が SGLT2 阻害作用を有することを見出し、本発明を完成した。$

すなわち、本発明は、下記式で表されるヘテロアリール 5 ーチオーβ – D ー グルコピラノシド化合物若しくはその製薬学的に許容される塩又はそれらの水和 物を提供する。

[式中、

Bは、任意の置換基で置換されてもよいヘテロアリール基であり、

R^{1A}、R^{2A}、R^{3A}及びR^{4A}は同一又は異なって、

5 水素原子、 C_{2-10} アシル基、 C_{7-10} アラルキル基、 C_{2-6} アルコキシカルボニル基、 C_{1-6} アルコキシ C_{2-10} アシル基又は C_{1-6} アルコキシ C_{2-6} アルコキシカルボニル基であり、

QxはN又はCを示す、

 X^A は-(CH_2) n-、-CO(CH_2) n-、-C(OH)(CH_2) n-、10 -O-(CH_2) n-、-CONH(CH_2) n-、-NHCO(CH_2) n- (CH_2) CH_2) CH_2 0 (CH_2 1) CH_2 1) CH_2 2 (CH_2 3) CH_2 4 (CH_2 3) CH_2 4 (CH_2 4) CH_2 5 (CH_2 6) CH_2 6 (CH_2 6) CH_2 7 (CH_2 8) CH_2 8 (CH_2 9) CH_2 9 (

15 R⁵、R⁶、R⁷、R⁸及びR⁹は同一又は異なって、

水素原子;ハロゲン原子;水酸基;ハロゲン原子及び水酸基からなる群から選択される1個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)の置換基で置換されてもよい C_{1-6} アルキル基;

- (CH₂) m' -Q'

20 {式中、m'は、 $0 \sim 4$ の整数であり、Q'は、ホルミル基; アミノ基; ニトロ基; シアノ基; カルポキシル基; スルホン酸基; ハロゲン原子で置換されてもよい C_{1-6} アルコキシ基; C_{2-10} アシルオキシ

基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニル基;-NHC(=O)H; C_{2-10} アシルアミノ基; C_{1-6} アルキルスルホニルアミノ基; C_{1-6} アルキルルアミノ基; C_{1-6} アルキル)アミノ基; C_{1-6} アルキル)アミノ基;カルバモイル基; C_{1-6} アルキル)アミノカルボニル基;若しくは C_{1-6} アルキル)アミノカルボニル基;方は

 $1\sim 4$ 個の置換基で置換されてもよい、 C_{3-7} シクロアルキル基; C_{3-7} シクロアルキルオキシ基; C_{7-10} アラルキル基; C_{7-10} アラルキルオキシ基; C_{7-10} アラルキルアミノ基;ヘテロアリール基若しくは $4\sim 6$ 員へテロシクロアルキル基(ここで、置換基は、ハロゲン原子、水酸基、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される)である〕

発明を実施するための最良の態様

本発明の他の態様によると、 X^A が-(CH_2)n-又は-CO(CH_2)n- (nは0-3の整数である)である上記化合物若しくはその製薬学的に許容される塩又はそれらの水和物を提供する。

本発明の他の態様によると、 X^A が $-CH_2$ -又は-CO-である上記化合物若 20 しくはその製薬学的に許容される塩又はそれらの水和物を提供する。

本発明の他の態様によると、 X^A が $-CH_2$ -である、上記化合物若しくはその 製薬学的に許容される塩又はそれらの水和物を提供する。

25 本発明の他の態様によると、

式

5

10

で表される部分が、

[式中、 $Q^A \sim Q^D$ において、いずれか1つ以上が窒素原子であり、その他が独立して $-C-Z^Y$ である、但し、 Q^D がCである場合、環内窒素原子のいずれか1つは Z^X で置換されることができる

 $(Z^{x}$ は、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、ハロゲン原子で置 換されてもよいC₃₋₇シクロアルキル基、C₂₋₁₀アシル基、C₂₋₆アルコキシカ ルポニル基、ハロゲン原子; C_{1-6} アルキル基; C_{1-6} アルコキシ基;アミノ基; ニトロ基;シアノ基;カルボキシル基; C_{2-1} 0アシル基; C_{2-6} アルコキシカル ポニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキ 10 ルスルホニル基; C_{2-10} アシルアミノ基; C_{1-6} アルキルアミノ基; N, Nージ (C 1-6アルキル)アミノ基; N- (C₁₋₆アルキル)アミノカルボニル基;及びN,N -ジ(C_{1-6} アルキル)アミノカルボニル基からなる群から選択される1個以上 (好ましくは、1~4個) の置換基で置換されてもよい、フェニル基若しくはC 7-10アラルキル基、ピリジル基、チエニル基、フラニル基又はピリミジニル基で 15 あり(Z^{x} は、好ましくは、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、 ハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基、 C_{2-10} アシル基、C $_{2-6}$ アルコキシカルボニル基、又はハロゲン原子; C_{1-6} アルキル基; 及び C_{1-6} アルコキシ基からなる群から選択される1個以上(好ましくは、 $1\sim4$ 個)の置 換基で置換されてもよいフェニル基若しくは C_{7-10} アラルキル基であり)、 Z^{Y} 20 は、独立して、水素原子、ハロゲン原子、ハロゲン原子;水酸基;及び C_{1-6} ア ルコキシ基からなる群から選択される1個以上の置換基で置換されてもよいC₁ -6アルキル基、ハロゲン原子で置換されてもよいC3-7シクロアルキル基、カル ボキシル基又は C_{2-6} アルコキシカルポニル基である)] で表される基である、 上記化合物若しくはその製薬学的に許容される塩又はそれらの水和物を提供する。 25

本発明の他の態様によると、

PCT/JP2004/001272 WO 2004/089967

定

で表される部分が、

10

15

[式中、 Q^A がNであって、 Q^B が $-N-Z^1$ であるとき、若しくは Q^A が $-N-Z^2$ 5 であって、 Q^B がNであるとき、 Q^c は $-C-Z^3$ であり、又は Q^B がNであって、 Q^cが-N-Z⁴であるとき、若しくはQ^Bが-N-Z⁵であって、Q^cがNである とき、QAは-C-Z6である

(Z¹、Z²、Z⁴及びZ⁵は、独立して、水素原子、ハロゲン原子で置換されても よいて、、。アルキル基、ハロゲン原子で置換されてもよいて3-7シクロアルキル基、 C_{2-10} アシル基、 C_{2-6} アルコキシカルボニル基、ハロゲン原子; C_{1-6} アルキ ル基; C_{1-6} アルコキシ基; アミノ基; ニトロ基; シアノ基; カルボキシル基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} 。アルキルスルフィニル基; C1-6アルキルスルホニル基; C2-10アシルアミノ 基:C₁₋₆アルキルアミノ基;N,N-ジ(C₁₋₆アルキル)アミノ基; N-(C₁₋ 。アルキル) アミノカルポニル基;及び N, N-ジ(C1-6アルキル) アミノカルボ 二ル基からなる群から選択される1個以上(好ましくは、1~4個)の置換基で 置換されてもよい、フェニル基若しくはC₇₋₁₀アラルキル基、ピリジル基、チエ ニル基、フラニル基又はピリミジニル基であり(Z¹、Z²、Z⁴及びZ⁵は、好ま しくは、独立して、水素原子、ハロゲン原子で置換されてもよいC₁₋₆アルキル 20 基、ハロゲン原子で置換されてもよいC3-1シクロアルキル基、C2-10アシル基、 C。_。アルコキシカルポニル基、又はハロゲン原子; C1-6アルキル基; 及びC1 _。アルコキシ基からなる群から選択される1個以上(好ましくは、1~4個)の 置換基で置換されてもよいフェニル基若しくは C_{7-10} アラルキル基であり)、 Z^3 及び26は、独立して、水素原子、ハロゲン原子、ハロゲン原子;水酸基;及び 25

 C_{1-6} アルコキシ基からなる群から選択される1個以上(好ましくは、 $1\sim4$ 個)の置換基で置換されてもよい C_{1-6} アルキル基、ハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基、カルボキシル基又は C_{2-6} アルコキシカルボニル基である)] で表されるピラゾール基である、上記化合物若しくはその製薬学的に許容される塩又はそれらの水和物を提供する。

本発明の他の態様によると、

左

で表される部分が、

10

[式中、 $Q^1 \sim Q^4$ において、いずれか1つがNであり、その他が独立して、-C- Z^7 (Z^7 は、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_1 - $_6$ アルキル基、 C_{1-6} アルコキシ基、アミノ基、 C_{1-6} アルキルアミノ基、N, N-ジ(C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-10} アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)である〕で表されるピリジル基である、上記化合物若しくはその製薬学的に許容される塩又はそれらの水和物を提供する。

20 本発明の他の態様によると、

左

で表される部分が、

PCT/JP2004/001272

WO 2004/089967

5

[式中、 Q^1 及び Q^3 がNであるとき、 Q^2 及び Q^4 は、独立して、 $-C-Z^8$ であるか、又は Q^2 及び Q^4 がNであるとき、 Q^1 及び Q^3 が独立して、 $-C-Z^9$ である(Z^8 及び Z^9 は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、 C_{1-6} アルコキシ基、アミノ基、 C_{1-6} アルキルアミノ基、N, N-ジ(C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-1} 0アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)]

10 で表されるピリミジル基である、上記化合物若しくはその製薬学的に許容される 塩又はそれらの水和物を提供する。

本発明の他の態様によると、

定

で表される部分が、

[式中、 $Q^1 \sim Q^4$ において、 Q^1 及び Q^2 、 Q^2 及び Q^3 、又は Q^3 及び Q^4 がNであ 20 り、その他が $-C-Z^{10}$ (Z^{10} は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、 C_{1-6} アルコキシ基、アミノ基、 C_{1-6} アルキルアミノ基、N,N-ジ(C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-10} アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロア

ルキル基である) である]

で表されるピリダジニル基である、上記化合物若しくはその製薬学的に許容される塩又はそれらの水和物を提供する。

5 本発明の他の態様によると、

式

で表される部分が、

10

15

[式中、 $Q^1 \sim Q^4$ において、 Q^1 及び Q^4 がNであり、その他が $-C-Z^{11}$ (Z^{11} は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、 C_{1-6} アルコキシ基、アミノ基、 C_{1-6} アルキルアミノ基、N,N -ジ(C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-10} アシル基又は ハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)である] で表されるピラジニル基である、上記化合物若しくはその製薬学的に許容される 塩又はそれらの水和物を提供する。

本発明の他の態様によると、

20 下記式で表される 5 ーチオーβ-D-グルコピラノシド化合物 又はその製薬 学的に許容される塩を提供する。

(式中、 Z^A は水素原子、 C_{1-6} アルキル基、ハロゲン原子で置換された C_{1-6} アルキル基、 C_{8-6} シクロアルキル基、ペンジル基、 C_{2-10} アシル基又は C_{2-6} アルコキシカルボニル基であり、 Z^B は C_{1-6} アルキル基又はハロゲン原子で置換された C_{1-6} アルキル基であり、 $R^{5B}\sim R^{9B}$ は同一でも若しくは異なってもよく、水素原子、ハロゲン原子、 C_{1-6} アルキル基、ハロゲン原子で置換された C_{1-6} アルキル基、 C_{3-6} シクロアルキル基、 C_{1-6} アルコキシ基、ハロゲン原子で置換された C_{1-6} アルコキシ基又は C_{1-6} アルコキシ基又は C_{1-6} アルコキシオルボニル基であり、 C_{2-10} アシル基又は C_{2-6} アルコキシカルボニル基である。)

本発明の他の態様によると、上記いずれかの5-チオーβ-D-グルコピラノシド化合物 若しくはその製薬学的に許容される塩又はそれらの水和物を有効成分とする医薬を提供する。

15

25

10

本発明の他の態様によると、ナトリウム依存性グルコース供輸送体2の活性阻害剤である上記医薬を提供する。

本発明の他の態様によると、糖尿病、糖尿病関連疾患又は糖尿病性合併症の予 20 防又は治療薬である上記医薬を提供する。

本発明の他の態様によると、上記いずれかの 5-Fオー β -Dーグルコピラノシド化合物若しくはその製薬学的に許容される塩又はそれらの水和物、並びに PPAR γ アゴニスト; PPAR α/γ アゴニスト; PPAR α/γ アゴニスト; 及び PPAR α/γ グリコンダーゼ阻害薬、ピグアナイド薬、インスリン分泌促進薬、インスリン製剤及びジペプチジ

ルペプチダーゼ IV 阻害薬からなる群より選択される少なくとも1種類の薬剤を 組み合わせてなる医薬を提供する。

本発明の他の態様によると、上記いずれかの5-チオーβーDーグルコピラノシド化合物若しくはその製薬学的に許容される塩又はそれらの水和物、並びにヒドロキシメチルグルタリルコエンザイムA環元酵素阻害薬、フィプラート系化合物、スクアレン合成酵素阻害薬、アシルコエンザイムA:コレステロールアシル基転移酵素阻害薬、低比重リポタンパク受容体促進薬、ミクロソームトリグリセリドトランスファープロテイン阻害剤及び食欲抑制薬からなる群より選択される少なくとも1種類の薬剤を組み合わせてなる医薬を提供する。

5

10

本発明において使用される用語が以下に定義される(定義中、「 C_{x-y} 」とは、その後に続く基がx-y個の炭素原子を有することを示す)。

「ヘテロアリール基」とは、O、S及びNから選択された1つ以上のヘテロ原 子を含有する芳香族複素環基であり、その環系に5~10原子を有する前記芳香族複素環基が好ましい。例えば、ピラゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾリル基、イミダゾリル基、フリル基、チエニル基、オキサゾリル基、イソオキサゾリル基、ピロリル基、(1,2,3) -及び(1,2,4) -トリアゾリル基、テトラゾリル、ピリジル基、ピリミジニル基、ピラジニル基、ピリアゾリル基、トリアジニル基、ピラニル基、オキサジアゾリル基、フラザニル基、キノリル基、イソキノリル基、ペンゾフラニル基、イソベンゾフラニル基、インドリル基、イソインドリル基、インダゾリル基、ベンズイミダゾリル基、ベンズトリアゾリル基、ベンゾオキサゾリル基、ベングチアゾリル基、ベング[b] チオフェニル基、ベンゾチアジアゾリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、キナゾリニル基、シノリニル基等が挙げられる。

また、「ヘテロアリール基」には、芳香族複素環基が部分的に飽和された、単環を有する縮合環も含まれる。例えば、2,3-ジヒドロー1H-インドリル基、2,3-ジヒドロー1H-ベンゾトリアゾリル基、2,3-ジヒドロー1H-ベンゾトリアゾリル基、2,3-ジヒドロー1H-ベンゾオキサゾリル基、2,3-ジヒ

ドロー1Hーベンゾチアゾリル基、ベンゾ[1,3]オキサチオリル基、ベンゾ[1,3]ジオキソリル基、2Hークロメニル基等が挙げられる。

部分的に飽和された縮合複素環は、=0で置換されることができる。その例としては、2-オキソー1、3-ジヒドロー1H-インドリル基、3-オキソー1、

5 2-ジヒドロ-1H-インダゾリル基、2-オキソ-3H-ベンゾオキサゾリル 基、2-オキソ-3H-ペンゾチアゾリル基、2-オキソーペンゾ[1,3]オキサ チオリル基、2-オキソーベンゾ[1,3]ジオキソリル基、2-オキソークロメ ニル基等が挙げられる。

B部分における置換されてもよい「任意の置換基」は、例えば、=O; ハロゲ ン原子; 水酸基; $-^+NH_3$; $-^+N$ (CH_3) $_3$; $-BH_3$; $-O^-$; ハロゲン原子及び水酸基からなる群から選択される1個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)の置換基で置換されてもよい C_{1-6} アルキル基;

$-(CH_2)m-Q$

25

(式中、mは、 $0\sim4$ の整数 (好ましくはmは0である)であり、Qは、ホルミル基;アミノ基;ニトロ基;シアノ基;カルボキシル基;スルホン酸基;ハロゲン原子で置換されてもよい C_{1-6} アルコキシ基; C_{1-6} アルコキシ C_{1-6} アルコキシ基; C_{2-10} アシルオキシ基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニル基;ーNHC(=O)H; C_{2-10} アシルアミノ基; C_{1-6} アルキルスルホニルクシーでは、 C_{1-6} アルキルアミノ基; C_{1-6} アルキル)アミノ基;カルバモイル基; C_{1-6} アルキル)アミノオルボニル基;若しくは C_{1-6} アルキル)アミノカルボニル基;若しくは C_{1-6} アルキル)アミノカルボニル基;若しくは C_{1-6} アルキル)アミノカルボニル基;若しくは C_{1-6} アルキル)アミノカルボニル基である。

 $1\sim 4$ 個の置換基で置換されてもよい、 C_{3-7} シクロアルキル基; C_{3-7} シクロアルキルオキシ基; C_{1-1} アラルキルオキシ基; C_{7-1} 0アラルキルオキシ基; C_{7-1} 0アラルキルアミノ基;ヘテロアリール基若しくは $4\sim 6$ 員へテロシクロアルキル基(ここで、置換基は、ハロゲン原子、水酸基、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、アミノ基、ニトロ基、シアノ基、カルボキシル基、 C_{2-1} 0アシル基、 C_{2-6} アルコキシカルボニル基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルホニル基、 C_{2-10} ア

「 C_{1-6} アルコキシ C_{2-10} アシル基」とは、直鎖状又は分岐鎖状の C_{1-6} アルコキシ基と C_{2-10} アシル基との複合した形態を有している。好ましくは、 C_{1-6} アルコキシ C_{2-6} アルカノイル基が挙げられる。

5

15

25

「 C_{1-6} アルコキシ C_{2-6} アルコキシカルボニル基」とは、直鎖状又は分岐鎖状 $0 C_{1-6}$ アルコキシ基と C_{2-6} アルコキシカルボニル基との複合した形態を有している。

「 C_{2-10} アシル基」とは、直鎖状又は分岐鎖状の炭素原子数 2-10 の脂肪族アシル基(好ましくは、 C_{2-6} アルカノイル基である)及び芳香族アシル基を意味し、例えばアセチル基、プロピオニル基、ピバロイル基、ブチリル基、イソブチリル基、パレリル基、ベンゾイル基等が挙げられ、このうちアセチル基が好ましい。

「 C_{7-10} アラルキル基」とは、炭素原子数 7-10のアリールアルキル基をいい、例えば、ベンジル基、フェニルエチル基が挙げられる。

「 C_{1-6} アルコキシ基」は、炭素原子を1-6個有する直鎖状又は分枝状のア 20 ルコキシ基を意味し、 C_{1-4} アルコキシ基が好ましい。 C_{1-4} アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-7トキシ基、イソプトキシ基、tert-7トキシ基などが挙げられる。

「 C_{2-6} アルコキシカルボニル基」とは、直鎖状又は分岐鎖状の C_{1-6} アルコキシ基とカルボニル基との複合した形態を有しており、好ましくは、 C_{2-5} アルコキシカルボニル基であり、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、プトキシカルボニル基等が挙げられ、このうちメトキシカルボニル基が好ましい。

「 C_{1-6} アルキル基」とは、炭素原子を1-6個有する直鎖状又は分枝状のアルキル基を意味し、例えば、メチル基、エチル基、n-プロピル基、イソプロピ

ル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、tert-アミル基、3-メチルブチル基、ネオペンチル基などが挙げられる。

「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子又はヨウ素原子などが 5 挙げられる。

10

15

「水酸基で置換された C_{1-6} アルキル基」は、その基上の水素原子が1個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)の水酸基によって置換されたアルキル基を示し、好ましくは、1個の水酸基によって置換された C_{1-6} アルキル基であるヒドロキシ C_{1-6} アルキル基、より好ましくは、ヒドロキシ C_{1-4} アルキル基である。例えば、ヒドロキシメチル基、ヒドロキシエチル基(1-ヒドロキシエチル基など)、ヒドロキシプロピル基、ヒドロキシブチル基などが挙げられる。

20 「ハロゲン原子で置換された C_{1-6} アルコキシ基」は、その基上の水素原子が 1個以上(例えば、 $1\sim 6$ 個、好ましくは、 $1\sim 4$ 個)のハロゲン原子によって 置換されたアルコキシ基を示す。例えば、トリフルオロメトキシ基、1,1,1-トリフルオロエトキシ基、1,1,1-トリフルオロプトキシ基などが挙げられる。中でも、トリフルオロメトキシ基、1,1,1-トリフルオロプトキシ基などが挙げられる。中でも、トリフルオロメトキシ基、1,1-トリフルオロエトキシ基などが好ましい。

「 C_{1-6} アルコキシ C_{1-6} アルコキシ基」は、例えば、メトキシメトキシ基などが挙げられる。

「 C_{2-10} アシルオキシ基」とは、 C_{2-10} アシル基と-O-が複合した形態を有しており、好ましくは、 C_{2-6} アルカノイルオキシ基(例えば、アセチルオキ

シ基)、ベンゾイルオキシ基である。

5

25

「 C_{1-6} アルキルチオ基」は、炭素原子を1-6個有する直鎖状又は分枝状のアルキル基と1個のチオ基(-S-)が複合した形態を有しており、 C_{1-4} アルキルチオ基が好ましい。 C_{1-6} アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基などが挙げられる。

「 C_{1-6} アルキルスルフィニル基」は C_{1-6} アルキル基とスルフィニル基(-S0 -)が複合した形態を有しており、メタンスルフィニル基、エタンスルフィニル 基が好ましい。

「 C_{1-6} アルキルスルホニル基」は C_{1-6} アルキル基とスルホニル基($-S0_2$ -) が複合した形態を有しており、メタンスルホニル基、エタンスルホニル基が好ましい。

「 C_{2-10} アシルアミノ基」は C_{2-10} アシル基とアミノ基が複合した形態を有しており、アセチルアミノ基が好ましい。

「 C_{1-6} アルキルアミノ基」は、 C_{1-6} アルキル基とアミノ基が複合した形態を有している。例えば、メチルアミノ基やエチルアミノ基などが挙げられる。

「N, N-ジ (C_{1-6} アルキル) アミノ基」は、2個の C_{1-6} アルキル基とアミ 20 ノ基が複合した形態を有している。例えば、ジメチルアミノ基やジエチルアミノ 基などが挙げられる。

「 $N-(C_{1-6}$ アルキル)アミノカルボニル基」は、 $N-(C_{1-6}$ アルキル)アミノ基とカルボニル基との複合した形態を有しており、好ましくは、 $N-(C_{1-6}$ アルキル)アミノカルボニル基であり、N-メチルアミノカルボニル基などが挙げられる。

「N, N-ジ(C_{1-6} アルキル)アミノカルポニル基」は、N, N-ジ(C_{1-6} アルキル)アミノ基とカルポニル基との複合した形態を有しており、好ましくは、N, N-ジ(C_{1-4} アルキル)アミノカルポニル基であり、N, N-ジメチルアミノカルポニル基などが挙げられる。

 $-(CH_2)$ m-Q及び $-(CH_2)$ m'-Q'において、m及びm'が1以上の整数である場合の例を以下にあげる。

Q及びQ'が C_{1-6} アルコキシ基である場合は、メトキシメチル基などが挙げられる。

5 Q及びQ'がアミノ基である場合は、アミノメチル基などが挙げられる。

Q及びQ'が C_{2-10} アシルオキシ基である場合は、アセチルオキシメチル基、ベンゾイルオキシエチル基などが挙げられる。

Q及びQ'が C_{2-10} アシルアミノ基である場合は、アセチルアミノメチル基などが挙げられる。

10 Q及びQ'がN, N - ジ $(C_{1-6}$ P N + N) P = 1 2 + 1 +

15

25

「 C_{3-7} シクロアルキル基」は、炭素原子を3-7個有する環状アルキル基を意味し、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロペンチル基、シクロペンチル基が好なもの。中でも、シクロプロピル基、シクロブチル基が好ましい。

「ハロゲン原子で置換された C_{3-7} シクロアルキル基」は、その基上の水素原子が1個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)のハロゲン原子(好ましくは、フッ素原子)によって置換された C_{3-7} シクロアルキル基を示す。

「 C_{3-7} シクロアルキルオキシ基」とは、 C_{3-7} シクロアルキル基と-O-が複20 合した形態を有しており、シクロプロピルオキシ基、シクロペンチルオキシ基が挙げられる。

「アリール基」とは、フェニル基、ナフチル基(1-ナフチル基、2-ナフチル基を含む)があげられ、好ましくはフェニル基を示す。

「アリールオキシ基」とは、アリール基と-O-が複合した形態を有しており、 例えば、フェノキシ基、ナフトキシ基が挙げられる。

「 C_{7-10} アラルキルオキシ基」は、 C_{7-10} アラルキル基と-O-が複合した 形態を有しており、例えば、ペンジルオキシ基、フェニルエチルオキシ基が挙げ られる。

 $\lceil C_{7-10}$ アラルキルアミノ基」は、 C_{7-10} アラルキル基と-NH-が複合し

た形態を有しており、例えば、ペンジルアミノ基、フェニルエチルアミノ基が挙 げられる。

「4~6員へテロシクロアルキル基」とは、環内に少なくとも1個のヘテロ原子(酸素原子、窒素原子又は硫黄原子)を含有する4~6員へテロシクロアルキル基をいい、例えば、環内に一つ以上の窒素原子を有し、また一つ以上の酸素原子、硫黄原子が存在してもよい環状アミノ基などが挙げられる。例えば、モルホリノ基、ピペリジニル基、ピペラジニル基、1ーピロリジニル基などが挙げられる。

置換されたヘテロシクロアルキル基の例としては、 C_{1-6} アルキル基で置換さ 10 れたヘテロシクロアルキル基があげられる。

また、「製薬学的に許容される塩」とは、アルカリ金属類、アルカリ土類金属類、アンモニウム、アルキルアンモニウムなどとの塩、鉱酸又は有機酸との塩であり、例えば、ナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩、アルミニウム塩、トリエチルアンモニウム塩、酢酸塩、プロピオン酸塩、酪酸塩、ぎ酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、ステアリン酸塩、コハク酸塩、エチルコハク酸塩、ラクトピオン酸塩、グルコン酸塩、グルコへプトン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、2-ヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩、ラウリル硫酸塩、リンゴ酸塩、アスパラギン酸塩、グルタミン酸塩、アジピン酸塩、システインとの塩、N-アセチルシステインとの塩、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩、よう化水素酸塩、ニコチン酸塩、シュウ酸塩、ピクリン酸塩、チオシアン酸塩、ウンデカン酸塩、アクリル酸ポリマーとの塩、カルボキシビニルポリマーとの塩などを挙げることができる。

25 本発明化合物の代表的な態様を以下にあげる。

5

は、好ましくは、置換されてもよい5または6員の芳香族複素環基であり、より

好ましくは、置換されてもよい環構成原子として窒素を有する芳香族複素環基である。「環構成原子として窒素を有する芳香族複素環基」の例としては、ピロリル基、ピラプリル基、イミダプリル基、(1, 2, 3) - 及び(1, 2, 4) - トリアプリル基、(1, 2, 3) - 及び(1, 2, 4) - トリアプリル基、テトラプリル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基が挙げられる。

 X_A の好ましい例は、- (CH_2) n-及び-CO (CH_2) n- (nは0-3 の整数である) であり、より好ましくは、-C H_2 -及び-CO-であり、さら 10 に好ましくは、-C H_2 -である。

 R^5 、 R^6 、 R^7 、 R^8 及び R^9 の好ましい例は、同一又は異なって、水素原子; ハロゲン原子;水酸基;ハロゲン原子および水酸基からなる群から選択される 1 個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)で置換されてもよい C_{1-6} アルキル基;

- (CH₂) m' -Q'

5

15

20

25

{式中、m'は、0~4の整数(より好ましくは、m'は0である)であり、Q'は、カルボキシル基; C_{2-10} アシルオキシ基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニル基);又は

1-4個の置換基で置換されてもよい C_{3-7} シクロアルキル基; C_{3-7} シクロアルキルオキシ基; C_{7-10} アラルキル基; C_{7-10} アラルキルオキシ基若しくはヘテロアリール基(ここで置換基は、ハロゲン原子、水酸基、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される)である。

R⁵、R⁶、R⁷、R⁸及びR⁹のより好ましい例は、

水素原子; ハロゲン原子; ハロゲン原子および水酸基からなる群から選択される 1 個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)の置換基で置換されてもよい C_{1-6} アルキル基;

- (CH₂) m' -Q'

5

20

{式中、m'は、 $0\sim4$ の整数(より好ましくは、m'は0である)であり、 Q'は、カルボキシル基; C_{2-10} アシルオキシ基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニル基);又は

ハロゲン原子、水酸基、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される1-4個の置換基で置換されてもよい、 C_{3-7} シクロアルキル基、 C_{7-10} アラルキルオキシ基若しくはヘテロアリール基である。

さらに好ましくは、 R^7 のみが上記の好ましい例又はより好ましい例から選択 10 される置換基であり、他の R^5 、 R^6 、 R^8 及び R^9 は、水素原子;ハロゲン原子; 又は1個以上(例えば、 $1\sim6$ 個、好ましくは、 $1\sim4$ 個)のハロゲン原子で置 換されてもよい C_{1-6} アルキル基または C_{1-6} アルコキシ基である。

以下にあげるいずれかの具体的な化合物が好ましい。

4'-(4'-エチルペンジル)-1'-イソプロピル-5'-メチル-1'

15 H-ピラゾール-3' -イル 5-チオー $\beta-$ D-グルコピラノシド(化合物 1) 4' -(4' -エチルベンジル)-5' -メチル-1' H-ピラゾール-3' -イル 5-チオ- $\beta-$ D-グルコピラノシド(化合物 2)

4'-[(3'-7)(3'-4'-4'-4)] -3'-4(3'-7) -3'-4(3'-7) -4'-4' -4' -4' -4' -4' -4' -4' -4' -4' -4' -4' -4' -4' -4' -4' -

4'-[(4'-メトキシフェニル)メチル]-5'-メチル-1'H-ピラゾ 25 ールー3'-イル $5-チオ-\beta-D-グルコピラノシド(化合物 5)$

1'-アセチル-4'-[(3'-フルオロ-4'-メチルフェニル)メチル]

1'ーエトキシカルボニルー4'ー[(4'ーメトキシフェニル)メチル]ー 5'-メチルーピラゾールー3'ーイル 6-Oーエトキシカルボニルー5-チオー $\beta-$ Dーグルコピラノシド(化合物 8)

5

 $4' - (4' - メチルチオベンジル) - 5' - メチル - 1' H - ピラゾール - 3' - イル 5 - チオー<math>\beta$ - D - グルコピラノシド(化合物 9)

 $4'-(4'-メタンスルホニルベンジル)-5'-メチル-1'H-ピラゾール-3'-イル <math>5-チオ-\beta-D-グルコピラノシド(化合物10)$

1' -エトキシカルボニル-4' -[(4' -エチルフェニル)メチル]-5' -メチル-ピラゾール-3' -イル 6 -O-エトキシカルボニル-5-チオー β -D-グルコピラノシド(化合物 1 1)

4' - (4' - シクロプロピルベンジル) - 5' - メチル - 1' H - ピラゾー <math>1 - 3' - 4 1 -

15 4'-(4'-エチルベンジル)-1'-イソプロピル-5'-トリフルオロメチル-1'H-ピラゾール-3'-イル 5-チオー β -D-グルコピラノシド(化合物 1 3)

1' -シクロプチルー4' -(4' -エチルベンジル)-5' -トリフルオロメチル-1' H -ピラゾール-3' -イル 5 -チオ- β -D-グルコピラノシ -20' ド(化合物 -14)

 $4'-(4'-エチルベンジル)-1'-(1',3'-ジフルオロ-2'-プロピル)-5'-トリフルオロメチル-1'H-ピラゾール-3'-イル 5-チオ-<math>\beta$ -D-グルコピラノシド(化合物 1 5)

 $1' - ベンジル-4' - (4' - エチルベンジル) - 5' - トリフルオロメチ 25 ルー1' Hーピラゾールー3' - イル <math>5 - チオ-\beta - D - グルコピラノシド(化 合物 16)$

4' - (4' - エチルベンジル) - 5' - イソプロピル - 1' H - ピラゾール - 3' - イル <math>5 - チオー $\beta -$ D - グルコピラノシド(化合物 1 7)

4'-[(2'-ベンジルオキシフェニル)メチル]-5'-イソプロピルー

1'H-ピラゾール-3'-イル $5-チオ-\beta-D-グルコピラノシド(化合物 18)$

 $1' - (4' - メチルフェニル) - 4' - (4' - エチルベンジル) - 5' - メチル-1' H-ピラゾール-3'-イル 5-チオー<math>\beta$ -D-グルコピラノシド (化合物 19)

4'-(4'-エチルベンジル) ピリジン<math>-3'-イル 5-チオ-β-D-グルコピラノシド(化合物 20)

 $3'-(4'-エチルベンジル) ピリジン-2'-イル <math>5-チオ-\beta-D-グ$ ルコピラノシド(化合物 21)

10 2'-(4'-エチルベンジル)ピリジン-3'-イル 5-チオーβ-D-グ ルコピラノシド(化合物 2 2)

 $3'-(4'-エチルベンジル)-1'H-ピラジン-2'-イル 5-チオ-<math>\beta-D$ -グルコピラノシド(化合物 2 3)

5'-(エチルベンジル)-2',6'-ジメチル-3'H-ピリミジン-4'-

15 イル $5-チオ-\beta-D-グルコピラノシド(化合物 2 4)$

5

25

 $3'-(4'-エチルベンジル)-4',6'-ジメチルピリジン-2'-イル 5-チオー<math>\beta$ -D-グルコピラノシド(化合物 2 5)

3'-(4'-エチルベンジル) ピリジン<math>-4'-イル 5-チオ-β-D-グルコピラノシド(化合物 2 6)

20 4'-(4'-シクロプロピルベンジル)ピリジン-3'-イル 5-チオー β -D-グルコピラノシド(化合物 2 7)

4'-(4'-7) プロピルベンジル) ピリジン-3'-7 ル 5-5 オー $\beta-7$ カーグルコピラノシド(化合物 28)

4'-(4'-メトキシベンジル)ピリジン-3'-イル 5-チオー.β-D-ゲルコピラノシド(化合物 2 9)

 $4'-[4'-(1'-ヒドロキシ-1'-メチルーエチル)ペンジル]ピリジン-3'-イル 5-チオー<math>\beta$ -D-グルコピラノシド(化合物 30)

4' - (4' - メトキシカルボニルベンジル) ピリジン<math>- 3' - 7 - 7 3 - 7 - 7 3 - 7 - 7 3 - 7 - 7 - 8 - 9

4'-(3'-7)ルオロー4'-4トキシペンジル) ピリジンー3'-7ル5-7オー $\beta-D-7$ ルコピラノシド(化合物33)

5 3'-(4'-メトキシペンジル)ピリジン-2'-イル 5-チオーβ-D-グルコピラノシド(化合物 3 4)

4'-(2'-7)ルオロー4'-8トキシベンジル) ピリジンー3'-7ル 5ーチオー β -Dーグルコピラノシド(化合物 3 5)

6'-(N-アセチルアミノ)-3'-(4'-エチルベンジル)ピリジン-2'

10 ーイル 5-チオーβ-D-グルコピラノシド(化合物36)

4'-(4'-ピラゾール-1'-イルベンジル) ピリジン<math>-3'-イル 5ーチオー $\beta-D-グ$ ルコピラノシド(化合物 3 7)

 $4'-(4'-エチルペンジル)-ピリダジン-3'-イル 5-チオー<math>\beta-D-$ グルコピラノシド(化合物 3.8)

15

20

本発明化合物の製造方法を以下に説明する。

さらに、必要に応じて糖水酸基等の保護基の脱保護を行うか、あるいは必要に

応じてプロドラッグ化を行い本発明化合物を製造することができる。

「ヘテロアリールアルコール」とは、ヘテロアリールに〇H基が置換された化合物であり、ケトーエノール互変異性体のケト型も包含する。

5

25

「 $PR^{x}R^{y}R^{z}$ で示されるホスフィン類」において、 $R^{x}\sim R^{z}$ は同一又は異なって、 C_{1-6} アルキル基で置換されてもよいフェニル基(例えば、フェニル基、トリル基)、ピリジル基、 C_{1-6} アルキル基(例えば、メチル基、n-プチル基、t-プチル基を示す)である。ホスフィン類の好ましい例としては、トリフェニルホスフィン、トリーn-プチルホスフィン、トリーt-プチルホスフィン、トリトリルホスフィン、トリトリルホスフィンやジフェニルn-2-ピリジルホスフィン等が挙げられる。中でもトリフェニルホスフィン、ジフェニルn-2-ピリジルホスフィンが好ましく、トリフェニルホスフィンがより好ましい。

「R²¹-N=N-R²²で示されるアゾ試薬」において、R²¹、R²²は同一又は異なって、C₂₋₅アルコキシカルボニル基、N,N-ジC₁₋₄アルキルアミノカルボニル基、又はピペリジノカルボニル基を示す。アゾ試薬の好ましい例としては、ジエチルアゾジカルボキシレート、ジイソプロピルアゾジカルボキシレートやジーtertーブチルアゾジカルボキシレート、1,1'ーアゾピス(N,N-ジメチルホルムアミド)や1,1'-(アゾジカルボニル)ジピペリジン等を用いることができる。中でも、ジエチルアゾジカルボキシレート(DEAD)、ジイソプロピルアゾジカルボ

反応に用いる溶媒はテトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N, N-ジメチルホルムアミド等であり、好ましくはテトラヒドロフラン、トルエンであり、より好ましくはトルエンである。

反応温度は-20℃から室温が好ましい。

キシレートなどが挙げられる。

本発明化合物の製造方法の具体例を以下に示す。

$$R^9$$
 R^8 $R^$

式(VI)のヘテロアリールアルコールと糖水酸基を保護基(例えば、アセチル基等のアシル基)で保護した5-チオグルコース(VII)とを上述した条件の光延反応によって、5-チオー β -D-グルコシド化合物(VIII)を選択的に製造することができる。その後、化合物(VIII)の糖水酸基等の保護基(例えば、アセチル基等のアシル基)を除去する又は以下に説明するように反応収率をあげるために導入した置換基を除去する若しくは他の置換基に変換することによって、化合物(I A)を得、その後、任意にプロドラッグ化することによって、化合物(I A)を得ることができる。

10 保護基の除去は、水酸基の保護基の場合、例えば以下のような条件を用いておこなうことができる。水酸基の保護基がアシル基である場合においては、ナトリウムメトキシド、水酸化ナトリウム、水酸化リチウム、炭酸カリウム、炭酸セシウム、トリエチルアミン等の塩基を用いることができる。また、保護基がアセタール基である場合においては、塩酸、酢酸、pートルエンスルホン酸1水和物等を用いることができる。また、保護基がシリル基である場合においては、n-Bu4NF、フッ化水素ーピリジン等を用いることができる。保護基がアラルキル基である場合においては、Pd 活性炭ー水素等を用いることができる。

上記保護基の除去反応に適当な溶媒はメタノール、エタノール、含水メタノール等である。

5

5

10

プロドラッグ化は、適当な溶媒(コリジン、ピリジン、N,N – ジメチルホルム アミド等)中にて、酸無水物、クロロギ酸エステルなどの試薬を用いて、グリコシドの水酸基及びヘテロアリール基(例えば、ピラゾールの場合、1 位の窒素)のプロドラッグ化を行い、本発明化合物(II_A)(ここで、 R^{1A-4A} はプロドラッグを構成する基を示す)を製造することができる。

「プロドラッグを構成する基」とは、 C_{2-10} アシル基 $\{$ 例えば、 C_{2-8} アルカノイル基 $\}$ (好ましくは C_{2-6} アルカノイル基 $\}$)又はベンゾイル基 $\}$ 、 C_{2-6} アルコキシ $\}$ 0 フルボニル基、 C_{1-6} アルコキシ $\{C_{2-10}\}$ 2 アシル基(好ましくは、 C_{1-6} アルコキシ $\{C_{2-6}\}$ 2 アルカノイル基)、 $\{C_{1-6}\}$ 2 アルコキシ $\{C_{2-6}\}$ 2 アルコキシカルボニル基等のプロドラッグとして一般的に利用できる水酸基又は窒素の保護基を挙げることができる。

また、反応条件を調節することによって、 $-R^{4A}$ のみがプロドラッグを構成する基とすることができる。この場合、 R^{4A} としては、 C_{2-6} アルカノイル基、 C_2 - $_6$ アルコキシカルボニル基などがあげられる。

15 ピラゾリルの環を形成するN原子上への置換基の導入は、ピラゾリル 5-チオーβ-D-グルコシドに、Z¹J (Z¹は水素原子以外の前記の意味である。Jは、ハロゲン原子、メシルオキシ基又はトシルオキシ基である。)を反応させて、ピラゾール環の環を構成するN-Hの水素をZ¹で置換することによって行うことができる。この反応の好ましい溶媒はテトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N, N-ジメチルホルムアミド等である。この時用いる塩基はトリエチルアミン、N-エチル-N,N-ジイソプロピルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水素化ナトリウム、ナトリウムメトキシド、tert-ブトキシカリウム等が好ましく、反応温度は0℃〜室温、好ましくは室温にて2~24時間反応する。

本反応に用いる出発原料は、市販品を用いても、又は下記のように合成しても よい。

5-チオーD-グルコピラノース(IV)は、例えば以下のようにして製造することができる。

ペンターO-アセテート化合物 (B) (Tetrahedron Lett., 第 22 巻, 5061 項, 1981 年、J. Org. Chem., 第 31 巻, 1514 項, 1966 年) はD-グルコフラノー 3, 6-ラクトン (A) から8工程で合成することができる。

次に、化合物(B)を適当な溶媒(DMF、THF、メタノール、エタノール等)中でヒドラジンアセテート(Tetrahedron, Lett.,第33巻,7675項,1992年)、又はベンジルアミン、好ましくはメチルヒドラジンと酢酸の1:1混合物と作用させ、選択的に1位アセチル基を脱保護し化合物(C)を製造することができる。

5

10 また、化合物(C)の 1 位水酸基を保護した(例えば、テトラヒドロピラニル 基で保護)後に、アセチル基を除去し、例えば C_{2-6} アルカノイルクロリド又は ベンゾイルクロリドを塩基性条件にて作用させる場合には、5- チオーD- グル コピラノース化合物 (I V)の中で、 R^1 、 R^2 、 R^3 及び R^4 が同一又は異なって、 C_{2-6} アルカノイル基又はベンゾイル基である化合物に誘導することができ 3 (Chem. Lett., 626 項, 2002 年)。

反応温度は室温から80℃で、反応時間は20分から24時間である。

アグリコンに相当する、式(VI)のヘテロアリールアルコールは、次の文献を参考に合成することができる:国際特許公開 W00116147、W00268439、W00253573、W00268440、W00288157、W00298893、W00236602、W00300712、W00320737。

20 グルコシル化されるヘテロアリールアルコールに電子求引基が置換された化合物またはヘテロアリールアルコールのアルコール酸性度が高い化合物を用いるこ

とによって、高い収率でグルコシル化反応を行うことができる。

これは、ヘテロアリールアルコールのアルコール酸性度が、本発明のグルコシ ル化反応の収率に影響しているからである。

具体的には、ヘテロアリールアルコールの/ 部分が1~4個の電子求引 基で置換されたヘテロアリール基があげられる。高い収率で反応を行うためには、酸性度の指標となるヘテロアリールアルコールの p.K. (25℃、1気圧) が約11以下であることが好ましく、ヘテロアリールアルコールの p.K. が約9以下であることがより好ましい。

ヘテロアリールアルコールのアルコール酸性度が高い化合物とは、例えば、オ 10 キサゾール、チアゾール、チアジアゾール、ベンゾオキサゾール、ベンゾチアゾ ール、ベンゾチアジアゾール等の酸素原子または硫黄原子1個と窒素原子1個以 上を含むヘテロ環が挙げられる。

ここで、「電子求引基」とは、水素原子と比べて、結合原子側から電子を引きつけるすい置換基をいい、誘起効果やメソメリー効果(又は共鳴効果)などの置換基効果の総和として電子を引きつけることを意味している。電子求引基は、ヘテロアリールアルコールの p_{K_a} を約11以下とするような基が好ましく、 p_{K_a} を約9以下とするような基がより好ましい。

15

20

電子求引基として代表的なものは、=O、ホルミル基、ニトロ基、シアノ基、カルボキシル基、スルホン酸基、 $-^+NH_3$ 、 $-^+N$ (CH_3) $_3$ 、 $-BH_3$ 、-O 、ハロゲン原子(好ましくはフッ素原子、塩素原子)で置換された C_{1-6} アルキル基(例えば、 $-CF_3$ 、 $-C(CH_2CH_2F)_2$ 、 $-CCl_3$)、 C_{2-10} アシル基(例えば、 $-COCH_3$ 、-COPh (Ph: フェニル基を意味する))又は C_{2-6} アルコキシカルボニル基(例えば、 $-CO_2CH_3$ 、 $-CO_2C_2H_5$)、 C_{1-6} アルキルスルホニル基(例えば、 $-SO_2CH_3$)及びハロゲン原子が挙げられる。

25 好ましい電子求引基の種類及び置換位置は置換されるヘテロアリール基によって任意に選択される。

例えば、ピラゾール基の場合、環を構成するN原子上に置換基が置換される場

合には、 C_{2-10} アシル基(例えば、 $-COCH_3$ 、-COPh)、 C_{2-6} アルコキシカルボニル基(例えば、 $-CO_2CH_3$ 、 $-CO_2C_2H_5$)などが好ましい。これらの基はグルコシル化反応後に加水分解によって容易に除去できるので、N無置換ピラゾール基を有する化合物を高収率に得るために導入する置換基として好都合である。

5 ピリジル基の場合には、環を構成するN原子上に一BH₃-、一〇つなどを導入して ピリジニウム塩を形成することも、上記と同様な理由によりピリジル基を有する 化合物を高収率に得るために好都合である。

また、ヘテロアリールアルコールが部分的に飽和された縮合複素環(例えば、2-オキソ-1,3-ジヒドロ-1H-インドリル基、3-オキソ-1,2-ジ10 ヒドロ-1H-インダゾリル基、2-オキソ-3H-ベンゾオキサゾリル基、2-オキソ-3H-ベンゾチアゾリル基、2-オキソーベンゾ[1,3]オキサチオリル基、2-オキソーベンゾ[1,3]ジオキソリル基、2-オキソークロメニル基等)の場合、=Oで置換されると高収率でグリコシル化することができる。

グルコシル化されるヘテロアリール基に電子求引基を導入し、グルコシル化反 応を行い、その後、接触水素添加、加水分解、脱炭酸などによって電子求引基を 除去するか又は当業者に周知の方法(例えば、還元)を用いて他の置換基に変換 することによって目的のヘテロアリール 5ーチオーβーDーアルドヘキソピラ ノシド化合物 を高収率に得ることができる。

例えば、ピラゾールの環を構成するN原子上にアセチル基等の電子吸引基を導
20 入した原料を用いて、高収率にグルコシル化反応を行うことができる。その後、
アセチル基等を加水分解することで、N無置換のピラゾリル 5 - チオーβ - D
- グルコピラノシド化合物をより効率よく製造することができる。

具体的には、1, 2-ジヒドロ-4-(4-エチルベンジル)-5-メチル-3 H-ピラゾール-3-オン(13)の代わりにその N-アセチル化合物 (14) を用いると、グルコシル化反応の収率が3倍に向上した。

25

AcO OAc Mitsunobu reaction
$$R^{51}$$
 R^{51}
 R^{51}

5

10

15

また、ピリジン環を構成するN原子上に $-BH_3$ を導入した原料を用いて、グルコシル化反応を行うと副反応を抑えることができる。その後、 $-BH_3$ を加水分解することで、ピリジル 5- チオー $\beta-$ D - グルコピラノシド化合物 を効率よく製造することができる。

具体的には、4-(4-エチルベンジル)-3-ヒドロキシピリジニウムボランを用いると、光延反応時に起こる糖のアシル転移等の副反応が抑えられることを確認している。

また、ベンゾイル基を有するヘテロアリールアルコールを原料に用いて、高収率にグルコシル化反応を行うことができる。その後、ベンゾイル基をベンジル基に変換することにより、より効率よくベンジル置換ヘテロアリール 5- チオー $\beta-$ D- グルコピラノシド化合物を得ることもできる。

具体的には、ペンゾイル基を有するピリジン化合物を用いてグルコシル化した 後に、ペンゾイル基のカルボニル部分を還元することで高収率にペンジル置換ピ リジル $5-チオー<math>\beta-D-グ$ ルコピラノシド化合物を得ることができる。

本発明化合物の製造方法に用いる式(IV)の出発化合物の製造例の1例を以 下に説明する。

4-ベンジル-3-ヒドロキシピラゾール化合物

ピラゾール環を構成するN原子上に置換基を有する化合物は、式(III_A) 化合物から以下のように製造することができる。

10

(式中のPはペンジル基又は tert-ブチルジメチルシリル基等の保護基を表し、

Jはハロゲン原子、メシルオキシ基、トシルオキシ基等の脱離基であり、 R^{20} は水素原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、ハロゲン原子、アミノ基、ニトロ基、シアノ基、カルポキシル基、 C_{2-10} アシル基、 C_{2-6} アルコキシカルポニル基、 C_{1-6} アルキルチオ基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルスルフィニル基、 C_{1-6} アルキルストルホニル基、 C_{2-10} アシルアミノ基、 C_{1-6} アルキルアミノ基、 C_{1-6} アルキル)アミノオルポニル基又は C_{1-6} アルキル)アミノカルポニル基又は C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル)アミノカルポニル基を意味し、 C_{1-6} アルキル

ピラゾール化合物 (III_A)は J. Med. Chem., 第 39 巻, 3920 項, 1996 年又は 10 国際特許 W00116147 号、W00253573 号、W00268439 号、W00268440 号、W00236602 号、W00288157 号明細書を参考に合成することができる。

- (A) ピラゾール(III_A)をN-、O-ジアシル化(上記例ではジアセチル化)(無水酢酸-酢酸、ピリジン-無水酢酸)した後に、適当な溶媒(N,N-ジメチルホルムアミド、テトラヒドロフラン、メタノール、エタノール等)中でナトリウムメトキシド又は炭酸カリウム等を作用させ、O-アシル基(上記例ではアセチル基)を選択的に脱保護し化合物(IV_A)を製造することができる。又は、ピリジン溶媒中にて無水酢酸を1当量用いることで選択的に化合物(III_A)のN-アシル化(上記例ではアセチル化)を行い、化合物(IV_A)を製造することができる。このときの反応温度は、80℃-110℃が好ましい。
- 20 (B)

5

- (1) 又は、ピラゾール(III_A)の水酸基を保護基P (例えば、ベンジル基、又は tert ブチルジメチルシリル基等)で保護して化合物 (V_A) とする。
- (2) 次に、化合物(V_A)に Z^1J (Z^1 は水素原子以外の前記の意味である。 Jは、ハロゲン原子、メシルオキシ基又はトシルオキシ基である。)を反応させて、
- 25 ピラゾール環の環を構成するN-Hの水素をZ¹で置換する。この反応に好ましい溶媒はテトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチル、ジメチルスルホキシド、N, N-ジメチルホルムアミド等である。この時用いる塩基はトリエチルアミン、N, N-ジイソプロピルエチルアミン、ピリジン、炭酸カリウム、炭酸カルシウム、炭酸セシウム、

水素化ナトリウム、ナトリウムメトキシド、tert-ブトキシカリウム等が好ましく、反応温度は0℃~室温、好ましくは室温にて2~24時間反応する。

- または、化合物(V_A)に対応する種々のアルコール(Z^1OH)を用い て、ホスフィン類とアゾ試薬の存在下で光延反応 (Org. Reactions,第 42 巻,第 335 項)を行うことによってピラゾール環の環を構成するN-Hの水素をZ¹で置 換することもできる。ここでの光延反応に用いる溶媒はテトラヒドロフラン、ジ オキサン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、酢酸エチ ル、ジメチルスルホキシド、N、N-ジメチルホルムアミド等であり、好ましく はテトラヒドロフラン、トルエンである。ホスフィン類としてトリフェニルホス フィン、トリーnープチルホスフィン、トリー t ープチルホスフィン、トリトリル 10 フォスフィンやジフェニルー2-ピリジルホスフィン等を用いることができる。 中でもトリフェニルホスフィンが好ましい。アゾ試薬としてジエチルアゾジカル ボキシレート、ジイソプロピルアゾジカルボキシレートやジーtertープチルアゾ ジカルボキシレート等を用いることができる。中でも、ジエチルアゾジカルボキ シレート、ジイソプロピルアゾジカルボキシレートが好ましい。反応温度は-20℃ 15 から室温が好ましい。
 - (2'') または、化合物(V_A)に、フェニルボロン酸誘導体を、適当な溶媒(塩化メチレン、クロロホルム、テトラヒドロフラン等)中で $Cu(OAc)_2$ 、 $PdCl_2$ 、 $Pd(OAc)_2$ または $Pd(PPh_8)_4$ 等を触媒として用い、ピリジンおよびモレキュラーシブス 4A の存在下または非存在下にて反応させることでピラゾール環の環を構成するN-H の水素をフェニル基で置換することもできる。

20

- (3) つづいて保護基Pを通常の方法で脱保護し中間体 $(V I_A)$ を製造することができる。
- 25 <u>3 ベンジル 2 ヒドロキシピリジンまたは4 ベンジル 3 ヒドロキシ</u> ピリジンおよび 3 - ヒドロキシピリダジン化合物

PCT/JP2004/001272

$$\begin{array}{c} R^{10} \\ Q^2 \\ Q^1 \\ OH \end{array} \xrightarrow{\text{protection}} \begin{array}{c} R^{10} \\ Q^2 \\ Q^1 \\ OH \end{array} \xrightarrow{\text{protection}} \begin{array}{c} R^{10} \\ Q^2 \\ Q^2 \\ R^{10} \\ R^{10$$

[式中、 Q^1 及び Q^2 のいずれか1つがNであり、その他が $-C-Z^7$ であるか又は Q^1 及び Q^2 の両方がNである(Z^7 は水素原子、 C_{1-6} アルキル基、ハロゲン原子である)、 R^{10} の好ましい基は水素原子、 C_{1-6} アルキル基、ハロゲン原子であり、

 $R^{5a}\sim R^{9a}$ において好ましい基は水素原子; ハロゲン原子; ハロゲン原子および水酸基からなる群から選択される1個以上の置換基(例えば1-6個、好ましくは1-4個)の置換基で置換されてもよい C_{1-6} アルキル基;

 $10 - (CH_2) m' - Q'$

{式中、m'は、0-4の整数であり、Q'は、アミノ基;カルボキシル基;ハロゲン原子で置換されてもよい C_{1-6} アルコキシ基; C_{1-6} アルコキシと C_{1-6} アルコキシ基; C_{2-10} アシルオキシ基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニルスカーンが、 C_{1-6} アルキルスルホニルアミノ基; C_{1-6} アルキル)アミノ基; C_{1-6} アルキル)アミノオルボニル基である C_{1-6} アルキル)アミノカルボニル基である C_{1-6} アルキル)アミノオルオニル基; C_{3-7} シクロアルキル基; C_{3-7} シクロアルキルオキシ基; C_{7-10} アラルキル基; C_{7-10} アラルキル基; C_{7-10} アラルキル基を C_{7-10} アラルキルオキシ基; C_{7-10} アラルキル基カンに、置換基は、ハロゲン原子、水酸基、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される)である。 C_{1-6}

(1) 化合物(X)の水酸基を保護基P¹(例えば、メチル基、メトキシメチル基、 ペンジル基、tert-ブチルジメチルシリル基、2-(トリエチルシリル)エトキシ

メチル基等) で保護して化合物(XI)とする。

- (2) 次に、化合物(XI)を適当な溶媒中(ジエチルエーテル、テトラヒドロフラン等)、tertープチルリチウム、リチウムジイソプロピルアミド(LDA)、リチウム -2, 2, 6, 6 テトラメチルピペリジド(LTMP)またはメシチルリチウム(2, 4, 6 トリメチルフェニルリチウム)を- 78 $^{\circ}$ 20 $^{\circ}$ にて作用させた後に、化合物(XII)と縮合させ、化合物(XIII)を得ることができる。縮合時の反応温度は- 78 $^{\circ}$ 20 $^{\circ}$ であり、反応時間は 0.5 6時間である。
- (3) 次に、化合物(XIII)のペンジル位のアルコールをパラジウム活性炭または水酸化パラジウム等の触媒を用いて水素雰囲気下にて接触水素添加することにより化合物(XIV)を製造することができる。この時に用いる溶媒としては、例えばメタノール、エタノール、イソプロパノール、酢酸エチル、酢酸等を挙げることができる。または、化合物(XIII)のペンジル位のアルコールをトリエチルシランーBF30Et2やトリエチルシランートリフルオロ酢酸またはPh2SiHCl-InCl3(J.Org. Chem.,第66巻、7741項,2001年)等を用いることで還元することもできる。この時の溶媒はアセトニトリル、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、クロロホルム、1,2ージクロロエタン、N,Nージメチルホルムアミド等が挙げられる。反応温度は用いる試薬や溶媒によって異なるが、-30℃~100℃である。
- (4) 次に、保護基 P^1 を通常の方法で脱保護し中間体(XIV)を製造することが できる。化合物と保護基の組み合わせによっては、 P^1 の脱保護を先に行ってか らベンジル位アルコールの還元反応を行うこともできる。

上記の式 (XIV) 化合物は、下記式に示す方法によっても製造することができる。

25

5

[式中、MはLi、MgBr、MgCl、MgIを示し、

R^{5b}~R^{9b}において好ましい基は水素原子;

 $5 - (CH_2) m' - Q'$

10

15

20

{式中、m'は、0-4の整数であり、Q'は、カルボキシル基; C_{1-6} アルコキシ基; C_{1-6} アルコキシ区₁₋₆アルコキシ基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニル基; C_{1-6} アルキルスルホニルアミノ基;N,N-ジ(C_{1-6} アルキル)アミノ基;N,N-ジ(C_{1-6} アルキル)アミノカルボニル基である);または

1-4個の置換基で置換されてもよい C_{3-7} シクロアルキル基; C_{3-7} シクロアルキルオキシ基; C_{7-10} アラルキル基; C_{7-10} アラルキルオキシ基; アリール基; アリールオキシ基; ヘテロアリール基若しくは4-6 員へテロシクロアルキル基(ここで、置換基は、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される)である。]

(1) 化合物(XV)の水酸基を保護基 P^1 (メチル基、メトキシメチル基、ベンジル基、tert-プチルジメチルシリル基、2-(トリエチルシリル)エトキシメチル基等) で保護して化合物(XVI)とする。次に、化合物(XVI)を適当な溶媒(ジエチルエーテル、テトラヒドロフラン等)中、水素化ジイソプチルアルミニウム等の還元剤を-78 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 化合物(XVII) を得ることができ

る。

10

(1') または、化合物(XI)を適当な溶媒(ジエチルエーテル、テトラヒドロフラン等)中、tertープチルリチウム、LDA、LTMP またはメシチルリチウム(2,4,6 -トリメチルフェニルリチウム)を-78 $^{\circ}$ ~-20 $^{\circ}$ にて作用させた後に、N,

N-ジメチルホルムアミドを加え、化合物(XVII)を得ることができる。この時の反応温度は<math>-7.8 $\mathbb{C} \sim 2.0$ \mathbb{C} 、好ましくは-7.8 $\mathbb{C} \sim -3.0$ \mathbb{C} であり、反応時間は $0.5 \sim 6$ 時間である。

- (2) 次に、化合物(XVII)を適当な溶媒(ジエチルエーテル、テトラヒドロフラン等)中にて化合物(XVIII)を作用させることで、化合物(XIII)を得ることができる。
- (3) 次の工程は前記と同様な方法にて、脱保護および還元を行い化合物(XIV)を製造することができる。

1) reduction

20

- 2) acylation or alkylation of amino group
- 3) deprotection of P1

Q² R¹⁰ R^{9a} R^{7a} Q¹ Q¹ R^{6a}

(XIV)

[式中 P'はメチル基、2-(トリメチルシリル)エトキシメチル基等の保護基であり、その他の記号は前記と同意義である。]

(1) 化合物 (XIII) を Dess-Martin periodine、oーイオドキシベンゾイックア

シド (IBX)、二酸化マンガン(J. Chem. Soc., 1094項, 1952年)等で酸化しケトンを得ることができる。この時の溶媒は、塩化メチレン、クロロホルム、トルエン、テトラヒドロフラン、ジメチルスルホキシド等を挙げることができ、反応温度は0℃~加熱還流である。次に、上記で得たケトンに炭酸カリウム、炭酸ナトリウム、

- 5 炭酸セシウム、水素化ナトリウム等の塩基の存在下にてベンジルアミンを作用させて化合物 (XIII $_{A}$) を得ることができる。(ここで、 Q^{1} 及び Q^{2} のいずれか1つがNであり、その他が-C-NHBnである。)この反応時に用いる溶媒としては N,N-ジメチルホルムアミド、ジエチルエーテル、テトラヒドロフラン等または、無溶媒下でも反応できる。
- 10 (2)次に、パラジウム活性炭または水酸化パラジウム等の触媒を用いて水素雰囲気下にて接触水素添加することにより化合物(XIII_A)のベンジル位を還元すると共に-C-NHBnのBnを除去しアミノ基($-C-NH_2$)に変換できる。この時に用いる溶媒としては、例えばメタノール、エタノール、イソプロパノール、酢酸エチル、酢酸等を挙げることができる。
- 15 (3)次に、上記で得られたアミノ化合物に、無水酢酸または C_{2-10} アシルクロリドを、ピリジン、コリジン、トリエチルアミン、炭酸カリウム等の塩基の存在下作用させ $N-C_{2-10}$ アシル化することができる。

又は、上記アミノ化合物に、C₁₋₆アルキルハライドを、適当な溶媒(N, N-ジメチルホルムアミド、ジエチルエーテル、テトラヒドロフラン等)中にて炭酸カ リウム、炭酸ナトリウム、炭酸セシウム、水素化ナトリウム等の塩基の存在下作 用させ、C₁₋₆アルキルアミノ誘導体又はN, N-ジ(C₁₋₆アルキル)アミノ誘導体を得ることができる。若しくは、上記アミノ化合物に、適当な溶媒(N, N-ジメチルホルムアミド、ジエチルエーテル、テトラヒドロフラン等)中、パラホルムアルデヒドと NaBH₃CN を作用させメチルアミノ誘導体あるいはN, N-ジメチ ルアミノ誘導体を得ることができる。

(4) 最後に、保護基 P¹ を通常の方法で除去し中間体(XIV)を製造することができる。

2-ベンジル-3-ヒドロキシピリジン化合物

(式中、記号は前記と同意義である。)

6 化合物 (XIX) に、適当な溶媒中 (ジエチルエーテル、テトラヒドロフラン等) 2当量の t ープチルリチウムを-78℃~-20℃にて作用させた後に、化合物 (XII) と縮合させ、化合物 (XXI) を得ることができる。縮合時の反応温度は-78℃~20℃であり、反応時間は 0.5~6時間である。次の工程は前記と同様 な方法にて、脱保護および還元を行い化合物 (XXII) を製造することができる。

10

3-ベンジル-4-ヒドロキシピリジン化合物

(式中 J ¹はハロゲン原子であり、その他の記号は前記と同意義である。)

(1) 化合物 (XXIII) を適当な溶媒中 (ジエチルエーテル、テトラヒドロフラン等)、LDA などの塩基を加え-78℃~-20℃にて作用させることで、J¹に対してオルト位を選択的にリチオ化 (lithiation) する (J. Heterocyclic. Chem., 第25巻、81項, 1988年)。得られた化合物と化合物 (XII) とを縮合させ、化合物 (XXIV) を得ることができる。縮合時の反応温度は-78℃~20℃であり、

反応時間は0.5~1時間である。

5

(2) 次に、化合物 (XXIV) を Dess-Martin periodine、IBX、二酸化マンガン (J. Chem. Soc., 1094 項, 1952 年)等で酸化し化合物 (XXV) を得ることができる。

- (3) 次に、化合物 (XXV) を 3 N 塩酸を用いて加熱還流することで、化合物 (XXVI) を得ることができる。 反応時間は $6\sim1$ 2 時間である。
- (4) 次に、ベンゾイル基をパラジウム活性炭または水酸化パラジウム等の触媒を用いて水素雰囲気下にて接触水素添加することにより、化合物 (XXVII) を得ることができる。この時に用いる溶媒としては、例えばメタノール、エタノール、イソプロパノール、酢酸エチル、酢酸等を挙げることができる。または、ベンゾ10 イル基をトリエチルシランーBF₃0Et₂やトリエチルシランートリフルオロ酢酸または Ph₂SiHCl-InCl₃ (J. Org. Chem.,第66巻、7741項,2001年) 等を用いることで還元することもできる。この時の溶媒はアセトニトリル、テトラヒドロフラン、ジオキサン、トルエン、塩化メチレン、1,2ージクロロエタン、クロロホルム、N,Nージメチルホルムアミド等が挙げられる。反応温度は用いる試薬や溶媒によって異なるが、-30℃~100℃である。

ピラジン化合物

(式中の記号は前記と同意義である。)

20 (1) 化合物 (XXVIII) に適当な溶媒中 (ジエチルエーテル、テトラヒドロフラン等)、LTMP を-78 $^{\circ}$ $^{\circ}$ -20 $^{\circ}$ にて作用させた後に、化合物 (XII) と縮合させることで化合物 (XXIX) を得ることができる。縮合時の反応温度は-78 $^{\circ}$

15

20

25

~20℃であり、反応時間は0.5~6時間である。

- (2) 次に、化合物(XXIX)とベンジルアルコールを適当な溶媒中(ベンゼン、トルエン等)、トリス [2-(2-メトキシエトキシ)エチル]アミンの存在下、塩基(水酸化カリウム、水酸化ナトリウム、炭酸カリウム等)を用いて反応させることにより、化合物(XXX)または(XXXI)あるいはそれらの混合物を得ることができる。この時の反応温度は室温~120℃であり、好ましくは加熱還流条件である。
- (3) 次に、化合物(XXX)または(XXXI)あるいはそれらの混合物をパラジウム活性炭または水酸化パラジウム等の触媒を用いて水素雰囲気下にて接触水素添加することにより化合物(XXXII)を得ることができる。この時に用いる溶媒としては、例えばメタノール、エタノール、イソプロパノール、酢酸エチル、酢酸等を挙げることができる。

5-ベンジルー4-ヒドロキシピリミジン化合物

(式中、 R^{13} 、 R^{14} は C_{1-6} アルキル基であり、 R^{15} は C_{1-6} アルキル基、アミノ基、 C_{1-6} アルキルアミノ基、N, N-ジ(C_{1-6} アルキル)アミノ基であり、 I^{3} はハロゲン原子で置換されたメチル基、メシルオキシメチル基、トシルオキシメチル基、ホルミル基であり、その他の記号は前記と同意義である。)

(1) 化合物 (XXXIII) を溶媒中 (テトラヒドロフラン、ジオキサン、1, 2 ージメトキシエタン、N, Nージメチルホルムアミド等)、水素化ナトリウム、tert ープトキシカリウム等の塩基の存在下、化合物 (XXXIV、J³=ハロゲン原子で置換されたメチル基、メシルオキシメチル基、トシルオキシメチル基) と縮合し、化合物 (XXXV) を得ることができる。縮合時の反応温度は0~20℃である。ま

たは、化合物(XXXIII)を溶媒中(アセトニトリル、テトラヒドロフラン、ジオキサン、1, 2-ジメトキシエタン、N, N-ジメチルホルムアミド等)、トリメチルシリルクロリドと NaI の存在下、化合物(XXXIV、 J^3 =ホルミル基)と縮合し、化合物(XXXV)を得ることができる。縮合時の反応温度は $0\sim20$ ℃である。

(2) 次に、化合物 (XXXVI) と化合物 (XXXVI) (または塩酸塩) を溶媒中 (メタノール、エタノール) NaOMe または NaOEt の存在下または非存在下にて反応することにより化合物 (XXXVII) を得ることができる (J. Chem. Soc., 357項, 1946年または J. Prakt. Chem., 第 342巻、504項, 2000年参照)。反応温度は 20℃から加熱還流である。

10

15

5

3-ヒドロキシピリミジン、4(5)-ヒドロキシピリダジン化合物

[式中、 $Q^2 \sim Q^4$ において、 Q^2 及び Q^3 若しくは Q^3 及び Q^4 がNであり、その他は $-C-Z^{10}$ であるか、又は Q^2 及び Q^4 がNであり、 Q^3 は $-C-Z^9$ である(ここで Z^9 及び Z^{10} は水素原子、 C_{1-6} アルキル基、ハロゲン原子である)。その他の記号は前記と同意義である。]

(1) 化合物 (XXXVIII) を適当な溶媒中 (ジエチルエーテル、テトラヒドロフラン等)、tert-プチルリチウム、LDA、LTMP またはメシチルリチウム (2,4,6-20 トリメチルフェニルリチウム) を-78℃~-20℃にて作用させた後に、化合

物 (XII) と縮合させることで、化合物 (XL) を得ることができる。縮合時の反応 温度は-78 ~ 20 \sim であり、反応時間は 0.5 ~ 6 時間である。

(1') または、化合物(XXXVIII)を適当な溶媒中(ジエチルエーテル、テトラヒドロフラン等)、tert-プチルリチウム、LDA、LTMP またはメシチルリチウム (2, 4, 6-トリメチルフェニルリチウム)を-78 \sim -20 \sim にて作用させた後に、N, N-ジメチルホルムアミドを加え、化合物(XXXIX)を得ることができる。この時の反応温度は-78 \sim \sim 20 \sim 、好ましくは-78 \sim \sim \sim \sim \sim \sim \sim 6時間である。

次に、化合物 (XXXIX) を適当な溶媒中 (ジエチルエーテル、テトラヒドロフラ ン等) にて化合物 (XVIII) を作用させることで、化合物 (XL) を得ることができる。

- (2) 次の工程は前記と同様な方法にて、化合物(XL)の脱保護および還元を 行い化合物(XLI)を製造することができる。
- 15 本発明化合物は、腎臓におけるグルコース再吸収に関わるナトリウム依存性グルコース供輸送体 2 (SGLT2) (J. Clin. Invest., 第93巻, 397項, 1994年)を阻害することができる。

本発明化合物は、SGLT2 の阻害によって、糖の再吸収を抑制し、余分な糖を体外に排泄することによって糖尿病を治療することができるので、すい臓のβ細胞に負荷を与えずに高血糖を是正し、またインスリン抵抗性を改善することができる。

20

したがって、本発明は、SGLT2 の活性を阻害することで改善しうる疾患又は状態、例えば、糖尿病、糖尿病関連疾患及び糖尿病合併症を予防又は治療するための医薬を提供する。

25 ここで、「糖尿病」とは、1型糖尿病、2型糖尿病、特定の原因によるその他の型の糖尿病を包含する。

ここで、「糖尿病関連疾患」とは、肥満、高インスリン血症、糖代謝異常、高脂質血症、高コレステロール血症、高トリグリセリド血症、脂質代謝異常、高血圧、 うっ血性心不全、浮腫、高尿酸血症、痛風などが挙げられる。

ここで、「糖尿病合併症」は、急性合併症及び慢性合併症に分類される。

「急性合併症」には、高血糖(ケトアシドーシスなど)、感染症(皮膚、軟部組織、胆道系、呼吸系、尿路感染など)などが挙げられる。

「慢性合併症」には、細小血管症(腎症、網膜症)、動脈硬化症(アテローム性動脈硬化症、心筋梗塞、脳梗塞、下肢動脈閉塞など)、神経障害(感覚神経、運動神経、自律神経など)、足壊疽などが挙げられる。

主要な合併症は、糖尿病網膜症、糖尿病腎症、糖尿病神経障害である。

5

10

また、本発明化合物は SGLT 2 活性阻害薬以外のことなった作用機序の糖尿病治療薬、糖尿病合併症治療薬、高脂血症治療薬、高血圧治療薬等と併用して使用することもできる。本発明化合物とその他の薬剤を組み合わせることによって、上記疾患においてそれぞれ単剤で得られる効果よりも併用した場合に相加的な効果が期待できる。

併用可能な「糖尿病治療薬、糖尿病合併症治療薬」としては、例えば、インス リン感受性増強薬 ($PPAR\gamma$ アゴニスト、 $PPAR\alpha/\gamma$ アゴニスト、 $PPAR\delta$ アゴニスト、 $PPAR \alpha/\gamma/\delta$ アゴニスト等)、グリコシダーゼ阻害薬、ビグアナイド薬、インスリ 15 ン分泌促進薬、インスリン製剤、グルカゴン受容体アンタゴニスト、インスリン 受容体キナーゼ促進薬、トリペプチジルペプチダーゼ II 阻害薬、ジペプチジルペ プチダーゼ IV 阻害薬、プロテインチロシンホスファターゼー1B 阻害薬、グリコ ーゲンホスホリラーゼ阻害薬、グルコース-6-ホスファターゼ阻害薬、糖新生 阻害薬、フルクトースビスホスファターゼ阻害薬、ピルビン酸デヒドロゲナーゼ 20 阻害薬、グルコキナーゼ活性化薬、D-カイロイノシトール、グリコーゲン合成酵 素キナーゼ3阻害薬、グルカゴン様ペプチドー1、グルカゴン様ペプチドー1類 **縁体、グルカゴン様ペプチドー1アゴニスト、アミリン、アミリン類縁体、アミ** リンアゴニスト、グルココルチコイド受容体アンタゴニスト、 11β -ヒドロキシス テロイドデヒデロゲナーゼ阻害薬、アルドース還元酵素阻害薬、プロテインキナ 25 ーゼ C 阻害薬、γ-アミノ酪酸受容体アンタゴニスト、ナトリウムチャンネルア ンタゴニスト、転写因子 $NF-\kappa$ B 阻害薬、 $IKK\beta$ 阻害薬、脂質過酸化酵素阻害薬、 N-acetylated-α-linked-acid-dipeptidase 阻害薬、インスリン様成長因子-I、 血小板由来成長因子(PDGF)、血小板由来成長因子(PDGF)類緣体、上皮增殖因子

(EGF)、神経成長因子、カルニチン誘導体、ウリジン、5-ヒドロキシ-1-メチルヒダントイン、EGB - 761、ピモクロモル、スロデキシド、Y-128、TAK-428 などが挙げられる。

糖尿病治療薬、糖尿病合併症治療薬としては、以下のような薬剤が例示される。 「ピグアナイド薬」としてメトフォルミン塩酸、フェンフォルミン等が挙げられる。

5

10

15

25

「インスリン分泌促進薬」のうちスルホニルウレア系としては、例えばグリブリド (グリベンクラミド)、グリピジド、グリクラジド、クロルプロパミド等が、非スルホニルウレア系としてはナテグリニド、レパグリニド、ミチグリニド等が挙げられる。

「インスリン製剤」は、遺伝子組換えヒトインスリンと動物由来インスリンを含む。また、作用時間によって3種類に分類され、即効型(ヒトインスリン、ヒト中性インスリン)、中間型(インスリンーヒトイソフェンインスリン水性懸濁、ヒトインスリンーヒトイソフェンインスリン水性懸濁、ヒトインスリン亜鉛水性懸濁、インスリン亜鉛水性懸濁)、持続型(ヒト結晶性インスリン亜鉛懸濁)等が挙げられる。

「グリコシダーゼ阻害薬」としては、アカルボース、ボグリボース、ミグリトール等が挙げられる。

「インスリン感受性増強薬」のうち、PPAR γ アゴニストとしては、トログリタ グン、ピオグリタゾン、ロシグリタゾン等が、PPAR α/γ dual アゴニストとしては、MK-767(KRP-297)、Tesaglitazar、LM4156、LY510929、DRF-4823、TY-51501 等が、PPAR δ アゴニストとしては、GW-501516 等が挙げられる。

「トリペプチジルペプチダーゼ II 阻害薬」としては UCL-139 等が挙げられる。 「ジペプチジルペプチダーゼ IV 阻害薬」としては NVP-DPP728A、LAF-237、P32/98、 TSL-225 等が挙げられる。

「アルドース還元酵素阻害薬」としては、ガモレン酸アスコルビル、トルレス タット、エパルレスタット、フィダレスタット、ソルビニール、ポナルレスタッ ト、リサレスタット、ゼナレスタット等が挙げられる。

 $\lceil \gamma - T
vert > 1$ | 一アミノ酪酸受容体アンタゴニスト」としては、トピラマート等が挙げら

れる。

「ナトリウムチャンネルアンタゴニスト」としては、メキシレチン塩酸等が挙げられる。

「転写因子NF-κB阻害薬」としては、dexlipotam等が挙げられる。

5 「脂質過酸化酵素阻害薬」としてはメシル酸チリラザド等が挙げられる。 「N-acetylated-α-linked-acid-dipeptidase 阻害薬」としては、GPI-5693 等が 挙げられる。

「カルニチン誘導体」としては、カルニチン、レバセカルニン塩酸等が挙げられる。

併用可能な「高脂血症治療薬、高血圧治療薬」としては、例えば、ヒドロキシメ 10 チルグルタリルコエンザイム A 還元酵素阻害薬、フィブラート系化合物、β。-ア ドレナリン受容体アゴニスト、AMPK 活性化薬、アシルコエンザイム A:コレステロ ールアシル基転移酵素阻害薬、プロブコール、甲状腺ホルモン受容体アゴニスト、 コレステロール吸収阻害薬、リパーゼ阻害薬、ミクロソームトリグリセリドトラ ンスファープロテイン阻害剤、リポキシゲナーゼ阻害薬、カルニチンパルミトイ 15 ルトランスフェラーゼ阻害薬、スクアレン合成酵素阻害薬、低比重リポタンパク 受容体促進薬、ニコチン酸誘導体、胆汁酸吸着薬、ナトリウム共役胆汁酸トラン スポーター阻害薬、コレステロールエステル輸送蛋白阻害薬、アンジオテンシン 変換酵素阻害薬、アンジオテンシン II 受容体拮抗薬、エンドセリン変換酵素阻害 薬、エンドセリン受容体アンタゴニスト、利尿薬、カルシウム拮抗薬、血管拡張 20 性降圧薬、交感神経遮断薬、中枢性降圧薬、α₂-アドレナリン受容体アゴニスト、 抗血小板薬、尿酸生成阻害薬、尿酸排泄促進薬、尿アルカリ化薬、食欲抑制薬、 AGE 阻害薬、アディポネクチン受容体アゴニスト、GPR40 アゴニスト、GPR40 アン タゴニスト等を挙げることができる。

25 高脂血症治療薬、高血圧治療薬としては、以下のような薬剤が例示される。

「ヒドロキシメチルグルタリルコエンザイム A 還元酵素阻害薬」としては、フルバスタチン、ロバスタチン、プラバスタチン、セリバスタチン、ピタバスタチン、学が挙げられる。

「フィブラート系化合物」としては、ペザフィブラート、ペクロブラート、ビ

ニフィブラート等が挙げられる。

10

「スクアレン合成酵素阻害薬」としては、TAK-475、 α ーホスホノスルホネート誘導体 (USP5712396) 等が挙げられる。

「アシルコエンザイム A:コレステロールアシル基転移酵素阻害薬」としては、 5 CI-1011、NTE-122、FCE-27677、RP-73163、MCC-147、DPU-129 等が挙げられ る。

「低比重リポタンパク受容体促進薬」としては、MD-700、LY-295427 等が挙げられる。

「ミクロソームトリグリセリドトランスファープロテイン阻害剤 (MTP 阻害剤)」 としては、USP5739135, USP5712279, USP5760246 等に記載の化合物が挙げられる。

「食欲抑制薬」としては、アドレナリン・ノルアドレナリン作動薬(Mazindol、エフェドリン等)、セロトニン作動薬(選択的セロトニン再取込み阻害薬、例えば、Fluvoxamine等)、アドレナリン・セロトニン作動薬(Sibutramine等)、メラノコルチン4受容体 (MC4R) アゴニスト、 α -メラノサイト刺激ホルモン (α -MCH)、

15 レプチン、cocaine-and amphetamine-regulated transcript (CART) 等が挙げられる。

「甲状腺ホルモン受容体アゴニスト」としては、リオチロニンナトリウム、レポチロキシンナトリウム等が挙げられる。

「コレステロール吸収阻害薬」としては、エゼチミブ等が挙げられる。

20 「リパーゼ阻害薬」としてはオルリスタット等が挙げられる。

「カルニチンパルミトイルトランスフェラーゼ阻害薬」としては、エトモキシル等が挙げられる。

「ニコチン酸誘導体」としては、ニコチン酸、ニコチン酸アミド、ニコモール、ニコランジル等が挙げられる。

25 「胆汁酸吸着薬」としては、コレスチラミン、コレスチラン、塩酸コレセベラ ム等が挙げられる。

「アンジオテンシン変換酵素阻害薬」としては、カプトリル、マレイン酸エナ ラプリル、アラセプリル、シラザプリル等が挙げられる。

「アンジオテンシン II 受容体拮抗薬」としては、カンデサルタンシレキセチル、

ロサルタンカリウム、メシル酸エプロサルタン等が挙げられる。

10

15

「エンドセリン変換酵素阻害薬」としては、CGS-31447、CGS-35066 等が挙げられる。

「エンドセリン受容体アンタゴニスト」としては、L-749805、TBC-3214、 BMS-182874 等が挙げられる。

例えば、糖尿病等の治療において、本発明化合物とインスリン感受性増強薬 $(PPAR \gamma P J = Z + PPAR \alpha / \gamma P J = Z + PPAR \alpha / \gamma P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta P J = Z + PPAR \alpha / \gamma / \delta PP$

または、本発明化合物とヒドロキシメチルグルタリルコエンザイム A 還元酵素 阻害薬、フィブラート系化合物、スクアレン合成酵素阻害薬、アシルコエンザイム A:コレステロールアシル基転移酵素阻害薬、低比重リポタンパク受容体促進薬、ミクロソームトリグリセリドトランスファープロテイン阻害剤及び食欲抑制薬からなる群より選択される少なくとも1種類の薬剤との併用が好ましいと考えられる。

本発明の医薬は、全身的又は局所的に経口又は直腸内、皮下、筋肉内、静脈内、経皮等の非経口投与することができる。

本発明の化合物を医薬として用いるためには、固体組成物、液体組成物、及び その他の組成物のいずれの形態でもよく、必要に応じて最適のものが選択される。 本発明の医薬は、本発明の化合物に薬学的に許容されるキャリヤーを配合して製造することができる。具体的には、常用の賦形剤、増量剤、結合剤、崩壊剤、被 覆剤、糖衣剤、pH 調整剤、溶解剤、又は水性若しくは非水性溶媒などを添加し、 常用の製剤技術によって、錠剤、丸剤、カプセル剤、顆粒剤、粉剤、散剤、液剤、 乳剤、懸濁剤、注射剤、などに調製する事ができる。賦形剤、増量剤としては、 たとえば、乳糖、ステアリン酸マグネシウム、デンプン、タルク、ゼラチン、寒 天、ペクチン、アラビアゴム、オリーブ油、ゴマ油、カカオバター、エチレングリコールなどやその他常用されるものをあげる事ができる。

また、本発明化合物は、 α 、 β 若しくは γ -シクロデキストリン又はメチル化

シクロデキストリン等と包接化合物を形成させて製剤化することができる。

本発明化合物の投与量は、疾患、症状、体重、年齢、性別、投与経路等により異なるが、成人に対し、好ましくは $0.1\sim1000$ mg / kg 体重/日であり、より好ましくは $0.1\sim200$ mg / kg 体重/日であり、これを1日1回又は数回に分けて投与することができる。

参考例

5

以下に、本発明化合物を製造するための中間体の製造例を参考例によって示す。 参考例 1

10 4-(4-エチルベンジル)-3-ヒドロキシ-1-イソプロピル-5-メチルー1 H-ピラゾールの製造

 $^{1}H-NMR$ (300MHz, CDCl₃): δ 1.21 (t, J=7.6Hz, 3H), 2.11 (s, 3H), 2.60 (q, J=7.6Hz, 2H), 3.66 (s, 2H), 5.24 (s, 2H), 7.03-7.15 (m, 4H). ESI m/z=307 (M+H).

mp 80.0−83.0℃.

25

上記で得た 3 ーペンジルオキシー 4 ー (4 ーエチルペンジル) ー 5 ーメチルー 1 H ーピラゾール (200mg, 0.65mmol) 及び炭酸セシウム (1.06g, 3.25mmol) のN, N ージメチルホルムアミド (4mL) 懸濁液に室温でイソプロピルアイオダイド (350mg, 2.06mmol) を滴下した。室温にて 1.3 時間攪拌した後に、さらに炭酸セシウム

(1.06g, 3.25mmol)及びイソプロピルアイオダイド(350mg, 2.06mmol)を加えた。 室温でさらに3時間攪拌した後に、反応液に水を加え酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)にて精製し、淡茶色油状の3ーペンジルオキシー4ー(4ーエチルペンジル)ー1ーイソプロピルー5ーメチルー1Hーピラゾール(179mg, 79%)を得た。

 1 H-NMR (300MHz, CDCl₃): δ 1.20 (t, J=7.6Hz, 3H), 1.39 (d, J=6.5Hz, 6H), 2.17 (s, 3H), 2.59 (q, J=7.6Hz, 2H), 3.62 (s, 2H), 4.20-4.32 (m, 1H), 5.23 (s, 2H), 7.00-7.12 (m, 4H), 7.22-7.42 (m, 5H). ESI m/z=371 (M+Na)

上記で得た 3 - ベンジルオキシー4 - (4 - エチルベンジル) - 1 - イソプロピル-5 - メチル-1 H-ピラゾール(160mg, 0.46mmol)のメタノール(3mL)溶液に室温で20%水酸化パラジウム/炭素(58mg)を加えて水素雰囲気下、室温で終夜攪拌した。不溶物をろ過した後に溶媒を減圧下留去して、無色粉末状の4-(4-エチルベンジル)-3-ヒドロキシー1-イソプロピルー5-メチルー1 H-ピラゾール(109mg, 92%)を得た。

 1 H-NMR (300MHz, CDCl₃): δ 1.21 (t, J = 7.6Hz, 3H), 1.39 (d, J = 6.7Hz, 20 6H), 2.07 (s, 3H), 2.60 (q, J = 7.6Hz, 2H), 3.66 (s, 2H), 4.19-4.30 (m, 1H), 7.07 (d, J = 8.0Hz, 2H), 7.17 (d, J = 8.0Hz, 2H). ESI m/z=257 (M-H).

25 参考例 2

mp 164.0−169.0℃.

10

1-アセチル-4-[(3-フルオロ-4-メトキシフェニル)メチル]-3-ヒド ロキシ-5-メチル-1H-ピラゾールの製造

1. 2-ジヒドロー4-[(3-フルオロー4-メトキシフェニル)メチル]-5

ーメチルー3Hーピラゾールー3ーオン (WO0236602にしたがって合成;4.11g,0.0174mol)、無水酢酸(41mL)及び酢酸(41mL)の混合物を135℃で8時間、室温で12時間攪拌した。反応液を濃縮した後にトルエンを加え再度濃縮した。得られた残渣にメタノール(400mL)と25wt%ナトリウムメトキシドのメタノール溶液(0.37mL)を加え20時間攪拌した。反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1~1:1)にて精製し、無色粉末状の1ーアセチルー4ー[(3ーフルオロー4ーメトキシフェニル)メチル]ー3ーヒドロキシー5ーメチルー1Hーピラゾール(960mg,20%)を得た。1H−NMR(300MHz,CDCl₃):δ2.50(s,3H),2.51(s,3H),3.61(s,2H),3.85(s,3H),6.80−6.99(m,3H).

参考例3

1-シクロプチル-4-(4-エチルベンジル)-3-ヒドロキシ-5-トリフル オロメチル-1H-ピラゾールの製造

15

20

10

25 た。

次に、上記で得た1-シクロプチルー4-(4-Xチルベンジル)-3-O-tープチルジメチルシリルー5-トリフルオロメチルー1 Hーピラゾール(80mg, 0.182mmol)のテトラヒドロフラン(1.0mL)の溶液に 1mol/L テトラプチルアンモニウムフルオリドのテトラヒドロフラン溶液(0.2mL)を加えた。反応混合物を室

温で30分攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=95:5~4:1~1:1)にて精製し、表題化合物(29mg, 31%)無色結晶として得た。

 1 H-NMR (300MHz, CDCl₃): δ 1.20 (t, J = 7.6Hz, 3H), 1.69-1.90 (m, 2H), 2.30-2.40 (m, 2H), 2.54-2.68 (m, 4H), 3.80 (s, 2H), 4.72 (quint, J = 8.0Hz, 1H), 7.08 (d, J = 8.1Hz, 2H), 7.18 (d, J = 8.1Hz, 2H), 10.97 (brs, 1H).

参考例4

5

15

20

25

2ーペンジルオキシベンズアルデヒド(2.0g)のメタノール(20mL)溶液に氷冷下にてNaBH₄(356mg, 9.42mmol)を加え、1時間攪拌した。さらに、NaBH₄(49mg)を加え室温にて1.5時間攪拌した。反応混合物を濃縮し、得られた残渣に水を加え、その混合物を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して2ーペンジルオキシベンジルアルコール(2.1g)を無色油状物として得た。

2ーベンジルオキシベンジルアルコール(2.1g, 9.42mmol)のテトラヒドロフラン(10mL)溶液に氷冷下にて、トリエチルアミン(1.38mL, 9.89mmol)とメタンスルホニルクロリド(0.766mL, 9.89mmol)を加え、室温にて30分攪拌した。不溶物をろ過した後に、ろ液を濃縮して(2ーベンジルオキシフェニル)メチルメシレート(3.24g)を得た。メチル イソブチリルアセテート(1.43g, 9.89mmol)と水素化ナトリウム(60% oil; 396mg, 9.89mmol)とジメトキシエタン(10mL)のけんだく液に、(2ーベンジルオキシフェニル)メチルメシレート(3.24g)のジメトキシエタン(10mL)溶液を加え、70℃にて一昼夜攪拌した。反応混合物に0.5M HCl を加え、これを酢酸エチルで2回抽出した。合わせた有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して油状物を得た。この油状物にトルエン(20mL)とヒドラジン1水和物(317mg, 9.89mmol)を加え、混合物を3時間加熱還流した。反応液を室温まで冷却した後に、酢酸エチルで希釈し、これを水

で洗浄し無水硫酸マグネシウムで乾燥した。反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1~8:1) にて精製し、表題化合物(750mg, 25%)淡黄色アモルファスとして得た。

 1 H-NMR (200MHz, CDCl₃): δ 1.08 (d, J = 7.5Hz, 6H), 2.93 (quint, J = 7.5Hz, 1H), 3.75 (s, 2H), 5.12 (s, 2H), 6.82-6.95 (m, 2H), 7.09-7.19 (m, 2H), 7.31-7.50 (m, 5H).

ESI m/z = 345 (M+Na).

参考例5

5

10 1-(4-メチルフェニル)-4-(4-エチルペンジル)-3-ヒドロキシ-5-メチル-1H-ピラゾールの製造

4-(4-エチルペンジル)-3-O-t-ブチルジメチルシリル-5-メチル - 1 H-ピラゾール(249mg, 0.753mmol)のクロロホルム(5mL)溶液に4-メチル フェニルボロン酸(205mg, 1.51mmol)と Cu(OAc), (208mg, 1.15mmol)、モレキュ 15 ラーシープス4A (750mg)、ピリジン(0.122mL, 1.51mmol)を加えた。反応混合物 を室温にて15時間攪拌し、不溶物をろ過した。そのろ液を濃縮し得られた残渣 をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1~1 0:1)にて精製し4-(4-エチルベンジル)-3-O-t-ブチルジメチルシリ $\mathcal{W} = 5 - \mathcal{Y} + \mathcal{W} - 1 - (4 - \mathcal{Y} + \mathcal{W}) - 1 + \mathcal{W} - \mathcal{W} + \mathcal{W} - 1 + \mathcal{W} -$ 20 得た。次に、4-(4-エチルベンジル)-3-O-t-ブチルジメチルシリル-5-メチル-1-(4-メチルフェニル)-1H-ピラゾール(50mg, 0.158mmol)のテトラヒドロフラン(1.0mL)の溶液に 1mol/L テトラブチルアンモニウムフル オリドのテトラヒドロフラン溶液 (0.2mL) を加えた。反応混合物を室温で1時間 攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフ 25 ィー(ヘキサン:酢酸エチル=1:1)にて精製し、表題化合物(31mg, 64%)無色 結晶として得た。

 1 H-NMR (300MHz, CDCl₃): δ 1.21 (d, J = 7.6Hz, 3H), 2.13 (s, 3H), 2.38 (s, 3H), 2.61 (q, J = 7.6Hz, 1H), 3.29 (s, 2H), 7.09 (d, J = 8.2Hz, 2H), 7.18

(d, J = 8.2Hz, 2H), 7.22 - 7.25 (m, 4H). ESI m/z = 329 (M+Na).

参考例6

5 4-(4-エチルベンジル)-3-ヒドロキシピリジンの製造

CI m/z = 226 (M+).

次に、3-[2-(トリメチルシリル)エトキシメトキシ]ピリジン(23.0g, 102mmol)とテトラヒドロフラン(400ml)の混合物に-70℃で1.47mol/L t-ブチルリチウム n-ペンタン溶液(80ml, 118mmol)を25分間かけて滴下した。20 -70℃で1時間攪拌した後に4-エチルペンズアルデヒド(17.7g, 132mmol)のエーテル溶液を25分間かけて加えた。-70℃で2時間および室温で2時間攪拌した。室温まで温めた後に、反応液を飽和塩化アンモニウム水溶液に注ぎエーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=501た残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=501と50)にて精製し、淡黄色粉末状の(4-エチルフェニル)-[3-[2-(トリメチルシリル)エトキシメトキシ]ピリジン-4-イル]ーメタノール(20.1g, 55%)を得た。

ESI m/z = 382 (M+Na).

次に、(4-エチルフェニル)-[3-[2-(トリメチルシリル)エトキシメト

キシ] ピリジン-4-イル] -メタノール (20g, 55.6mmol)、テトラヒドロフラン (500ml) および水 (20ml) の混合物に p-トルエンスルホン酸 1 水和物 (26.3g, 138mmol) を加えた。50℃で4時間、室温で15.5時間、50℃で3時間攪拌した後に飽和炭酸水素ナトリウム水溶液で中和し、クロロホルムで3回抽出した。 合わせた有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム:メタノール=10:1)にて精製し、淡黄色アモルファス状の (4-エチルフェニル) - (3-ヒドロキシピリジン-4-イル) -メタノール (10.9g, 86%)を得た。 ESI m/z = 230 (M+H).

次に、(4-エチルフェニル) - (3-ヒドロキシピリジン-4-イル) ーメタノール (10.54g, 46.0mmol) および酢酸 (100ml) の混合物に 5%パラジウム/炭素 (5.0g) を加えて水素雰囲気下、室温で7時間攪拌した。不溶物をろ過した後に減圧下濃縮して得られた残渣を再結晶(酢酸エチル) して無色粉末の表題化合物 (3.91g, 40%) を得た。さらに母液をNHシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1) にて精製し、淡茶色分末状の4-(4-エチルベンジル) -3-ヒドロキシピリジン(4.55g,46%)を得た。
 ESI m/z = 214 (M+Na).

参考例7

25

20 4-(4-エチルベンジル)-3-ヒドロキシピリジニウムポランの製造

4- (4-エチルベンジル) -3-ヒドロキシピリジン (300mg, 1.41mmol) と テトラヒドロフラン (1.5mL) の懸濁液に窒素雰囲気下、0℃にて1Mポランーテトラヒドロフランコンプレックス (7.2mL, 7.2mmol) を加え室温にて1時間攪拌した。反応混合物にメタノール (1mL) を注意深く加え、室温にて1時間攪拌した。混合物に酢酸エチルを加え、これを食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50) にて精製し、無色粉末状の表題化合物 (200mg, 62%) を得た。

 ${}^{1}H-NMR$ (200MHz, CDCl₃): δ 1.23 (t, J=7.6Hz, 3H), 2.64 (q, J=7.6Hz, 2H), 4.00 (s, 2H), 7.09-7.19 (m, 5H), 8.04 (d, J=5.7Hz, 1H), 8.15 (s, 1H). ESI m/z = 250 (M+Na), 226 (M-H).

5 参考例 8

4- (4-シクロプロピルベンジル)-3-ヒドロキシピリジンの製造

3-[2-(トリメチルシリル) エトキシメトキシ] ピリジン (39.3g, 0.174mol) のテトラヒドロフラン (250ml) 溶液に-70℃で1.47mol/L t-プチルリチウム n-ペンタン溶液 (154ml, 0.227mol) を40分間かけて滴下した。-70℃で1 時間攪拌した後に N,N-ジメチルホルムアミド (40mL, 0.522mol) を30分間かけて加え、-70℃で1.5時間攪拌した。-20℃まで温めた後に、反応液に飽和塩化アンモニウム水溶液を加え酢酸エチルで2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=80:20) にて精製し、茶色油状の4-ホルミル-3-[2-(トリメチルシリル)エトキシメトキシ] ピリジン (24.5g, 58%) を得た。

4ーシクロプロピルプロモペンゼン(WO0268439にしたがって合成; 2.5g, 0.0127mol)のテトラヒドロフラン(20ml)溶液に-70℃で1.58mol/Ln-20 プチルリチウム/n-ヘキサン溶液(8.4ml, 0.0133mol)を8分間かけて滴下した。 -70℃で1時間攪拌した後に4ーホルミルー3ー[2ー(トリメチルシリル)エトキシメトキシ]ピリジン(4.2g, 0.0165mol)のテトラヒドロフラン溶液を5分間かけて加え、-70℃で2.5時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え室温まで温ため、酢酸エチルで2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50)にて精製し、茶色固体の(4ーシクロプロピルフェニル)-[3-[2-(トリメチルシリル)エトキシメトキシ]ピリジン-4-イル1ーメタノール(2.5g, 53%)を得た。

次に、(4-シクロプロピルフェニル)-[3-[2-(トリメチルシリル)エト

キシメトキシ] ピリジン-4ーイル] -メタノール (2.4g, 6.46mmol)のクロロホル ム(34mL)溶液に Dess-Martin Periodine(3.0g, 7.10mmoL)を加え、室温にて 1.5 時間攪拌した。さらに、Dess-Martin Periodine(0.3g, 0.710mmoL)を加え、1.5 時間攪拌した。不溶物をろ過し、そのろ液を飽和炭酸水素ナトリウム水溶液、飽 和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得ら 5 れた残渣を NH型シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 50:50)にて精製し、4-(4-シクロプロピルペンゾイル)-[3-[2-(ト リメチルシリル) エトキシメトキシ]ピリジン(2.25g、94%)を得た。次に、4 - (4-シクロプロピルペンゾイル) -[3-[2-(トリメチルシリル) エトキ シメトキシ] ピリジン (2.25g, 6.06mmol) のテトラヒドロフラン溶液(56mL)にp 10 ートルエンスルホン酸 1 水和物 (3.46g, 18.2mmol)を加え、65℃で1時間攪拌した。 室温まで冷却した後に、反応混合物を飽和炭酸水素ナトリウム水溶液に注ぎ、酢 酸エチルで2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮 して黄色油状の4-(4-シクロプロピルベンゾイル)-3-ヒドロキシピリジ ン(1.97g)を得た。続いてテトラヒドロフラン(20mL)中の4-(4-シクロプロピ 15 ルベンゾイル) -3-ヒドロキシピリジン(1.97g)にトリエチルアミン(1.69mL, 12.1mmol) とメチルクロロホルメート(859mg, 9.09mmol)を加え、室温にて30分攪 拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を注ぎ、酢酸エチルで2回 抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して茶色油状の 4-(4-シクロプロピルベンゾイル)-3-メトキシカルボニルオキシピリジ 20 ン(2.22g)を得た。次に、4-(4-シクロプロピルペンゾイル)-3-メトキシカルボニルオキシピリジン(2.22g)のテトラヒドロフラン(40mL)-水(20mL)溶液 に氷冷下にて NaBH₄(1.38g, 36.4mmol)を加え、室温にて36時間攪拌した。反応 混合物を1M塩酸にてpH8.0に調整した後に、酢酸エチルで2回抽出した。有機 層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し 25 て得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル =50:50) にて精製し、4-(4-シクロプロピルベンジル)-3-ヒドロ キシピリジン(270mg)をえた。

BSI m/z = 248 (M+Na).

参考例9

15

20

4-(4-メトキシカルボニルベンジル)-3-ヒドロキシピリジンの製造

- 3 ーヒドロキシピリジン(50.0g, 0.525mol)、テトラヒドロフラン(107mL)と N, N ージメチルホルムアミド(285mL)の混合物に t ープトキシカリウム(65g, 0.579mol)を-15℃にて加えた。25分後にクロロメチルメチルエーテル(44.4g, 0.552mol)を-15℃にてゆっくり加えた。反応温度を2時間かけて昇温し、反応混合物を濃縮した。得られた油状物を飽和食塩水に注ぎ、酢酸エチルで抽出した。
- 10 有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカ ゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50)にて精製 し、3-(メトキシメトキシ)ピリジン(54.7g, 75%)を得た。

次に、3-(メトキシメトキシ)ピリジン(10.0g, 71.9mmol)とジエチルエーテル(1000ml)の混合物に-70℃で1.47mol/L t-ブチルリチウム n-ペンタン溶液(62ml, 86.2mmol)を25分間かけて滴下した。-70℃で1時間攪拌した後に4-メトキシカルボニルベンズアルデヒド(14.0g, 90.5mmol)のジエチルエーテル溶液(80mL)を30分間かけて加え、-70℃で1.5時間攪拌した。室温まで温めた後に、反応液を飽和塩化アンモニウム水溶液に注ぎ酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:80)にて精製し、黄色粉末状の(4-メトキシカルボニルフェニル)-[3-(メトキシメトキシ)ピリジン-4-イル]-メタノール(2.06g, 9.4%)を得た。

次に、(4-メトキシカルボニルフェニル) - [3-(メトキシメトキシ)ピリジン-4-イル]-メタノール (2.06g, 6.79mmol)、メタノール(35mL)、 濃塩酸 (4.4mL)の混合物を20分間加熱還流した。室温に冷却した後に、反応液を濃縮した。残渣にメタノールと酢酸エチルを加え析出した結晶をろ過し、(4-メトキシカルボニルフェニル) - (3-ヒドロキシピリジン-4-イル)-メタノール塩酸 (1.87g, 81%)を得た。

次に、(4-メトキシカルボニルフェニル) -(3-ヒドロキシピリジン-4-イル) -メタノール塩酸(1.87g, 5.50mmol)、メタノール(50ml)、<math>10%パラジウム/炭素(0.94g)の混合物を水素雰囲気下、室温で3日間攪拌した。不溶物をろ過した後に減圧下濃縮して得られた残渣を飽和 $NaHCO_3$ 水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた結晶をジエチルエーテルから再結晶し表題化合物(1.27g, 95%)を得た。

ESI m/z = 266 (M+Na).

10 参考例 1 0

25

4-[4-(2-ベンゾイルオキシエチル)ベンジル]-3-ヒドロキシピリジンの 製造

4ープロモフェニルエチルアルコール(12g, 59.7mmol)、エチルジイソプロピル アミン(11.5g, 89.5mmol)とクロロホルム(200mL)の混合物に、クロロメチルメチルエーテル(7.2g, 89.5mmol)を0℃にてゆっくり加えた。反応混合物を0℃にて1時間、室温にて2.5時間攪拌し、水に注いだ。混合物をクロロホルムで2回抽出し、合わせた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧下濃縮してプロモー4ー(2ーメトキシメトキシエチル)ベンゼン(15.1g)を20 得た。

次に、プロモー4ー(2ーメトキシメトキシエチル)ベンゼン(12.0g, 49.0mmol) とテトラヒドロフラン(75ml)の混合物に-78℃で1.58mol/L n-ブチルリチウムn-ヘキサン溶液(34ml, 53.7mmol)を10分間かけて滴下した。-78℃で1時間攪拌した後にN,N-ジメチルホルムアミド(11.4mL, 147mmol)のテトラヒドロフラン溶液(5mL)を加え、-78℃で1.5時間攪拌した。室温まで温めた後に、反応液を飽和塩化アンモニウム水溶液に注ぎ酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥し、濃縮後得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=80:20)にて精製し、4-(2-3+2)

次に、4-(2-メトキシメトキシエチル)ベンズアルデヒド(8.2g, 42.1mmol) とメタノール(160mL)と水(6mL)と濃塩酸(4mL)混合物を60℃で17.5時間攪拌 した。室温に冷却した後に、反応液を水酸化ナトリウム水溶液で中和し、メタノ ールを減圧下留去した。残渣を酢酸エチルで2回抽出した。合わせた有機層を飽 和食塩水で洗浄し無水硫酸マグネシウムで乾燥し、濃縮後得られた残渣をシリカ 5 ゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=90:10~50:5 0) にて精製し、4-(2-ヒドロキシエチル)ペンズアルデヒド(6.3g)を得た。 次に、4-(2-ヒドロキシエチル)ベンズアルデヒド(6.3g, 42.2mmol)とク ロロホルム(170mL)の混合物に、0℃にてトリエチルアミン(5.1g, 50.6mmol)、ベ ンゾイルクロリド(7.1g, 50.6mmol)、4-ジメチルアミノピリジン(515mg, 10 4.2mmol)を加え、反応混合物を室温で2時間攪拌し、酢酸エチルと水の混合物に 注いだ後に、これを酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水 硫酸マグネシウムで乾燥し、濃縮後得られた残渣を中性シリカゲルカラムクロマ トグラフィー(ヘキサン:酢酸エチル=20:1~10:1)にて精製し、4-(2 ーペンゾイルオキシエチル)ベンズアルデヒド(5.4g)を得た。 15

次に、3-(メトキシメトキシ)ピリジン(2.4g, 17.4mmol)とジエチルエーテル (240ml)の混合物に-70℃で1.47mol/L t-ブチルリチウム n-ペンタン溶液 (15ml, 22.0mmol)を15分間かけて滴下した。-70℃で1時間攪拌した後に 4-(2-ベンゾイルオキシエチル)ベンズアルデヒド(5.35g, 21.0mmol)のジエチルエーテル溶液を10分間かけて加え、-70℃で1.5時間攪拌した。室温まで温めた後に、反応液を飽和塩化アンモニウム水溶液に注ぎ酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:80)にて精製し、黄色粉末状の[4-(2-ベンゾイルオキシエチル)フェニル]-[3-(メトキシメトキシ)ピリジン-4-イル]-メタノール(2.2g, 32%)を得た。

20

25

次に、[4-(2-ベンゾイルオキシエチル)フェニル]-[3-(メトキシメトキシ)ピリジン-4-イル]-メタノール(2.62g, 6.67mmol)とメタノール(34mL)のけんだく液に濃塩酸(4.3mL)を加え、反応混合物を<math>100℃で10分攪拌した。室温

に冷却した後に、反応液を濃縮した。残渣に酢酸エチルを加え析出した結晶をろ過し 2.58g の黄色結晶を得た。この結晶 (1.55g)、メタノール(40 ml)、10%パラジウム/炭素 (0.80g) の混合物を水素雰囲気下、室温で14時間攪拌した。不溶物をろ過した後に減圧下濃縮して得られた残渣を飽和 NaHCO3 水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣を NH 型シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50~クロロホルム:メタノール=10:1)にて精製し、無色粉末状の表題化合物(0.37g)を得た。

 $^{1}H-NMR$ (200MHz, CDCl₃): δ 3.05 (t, J=7.0Hz, 2H), 4.02 (s, 2H), 4.52 (t, J=7.0Hz, 2H), 6.98 (d, J=5.0Hz, 2H), 7.16-7.28 (m, 4H), 7.36-7.58 (m, 3H), 7.95-8.05 (m, 3H), 8.29 (s, 1H). ESI m/z = 356 (M+Na).

参考例11

15 2-(4-エチルベンジル)-3-ヒドロキシピリジンの製造

2 ープロモー3 ーヒドロキシピリジン(15g, 0.0862mo1)のクロロホルム(260m L)溶液に、0℃下にてエチルジイソプロピルアミン(18mL, 0.103mo1)と2 ー(トリエチルシリル)エトキシメチルクロリド(16.7mL, 0.0948mo1)を加えた。その混合 物を室温で2時間攪拌した後に、水(50mL)を加え、析出した不溶物をろ過した。 ろ液の有機層を分離後、水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン: 酢酸エチル=9:1)にて精製し、淡黄色油状の2ープロモー3ー[2ー(トリエチルシリル)エトキシメトキシ]ピリジン(20.3g, 77%)を得た。

次に、2ープロモー3ー[2ー(トリエチルシリル)エトキシメトキシ]ピリジン(2.0g, 6.57mmol)のTHF(22mL)溶液に-78℃にて1.47M tertープチルリチウムのn-ペンタン溶液(9.6mL, 14.1mmol)をゆっくり滴下した。20分後、反応混合物に4ーエチルペンズアルデヒド(1.0g, 7.45mmol)のTHF(5mL)溶液を滴下した。-78℃にて10分攪拌した後に、室温まで温め、飽和塩化アンモニウム水溶液を加

え、酢酸エチルにて抽出した。有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)にて精製し、4-エチルフェニルー[3-[2-(トリエチルシリル)エトキシメトキシ]]ピリジン-2-イルメタノール(0.89g、38%)を得た。

4-エチルフェニルー[3-[2-(トリエチルシリル)エトキシメトキシ]]ピリジン-2-イルメタノール(2.35g, 6.54mmol)のTHF-水(25:1;60mL)溶液にp-トルエンスルホン酸1水和物(2.8g, 16.4mmol)を加え、室温で20時間、つづいて40℃で4時間攪拌した。反応液を室温に冷却した後に飽和炭酸水素ナトリウム溶液(100mL)を加え、酢酸酢酸エチルにて抽出した。有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)にて精製し、4-エチルフェニル-3-ヒドロキシピリジン-2-イルメタノール(0.62g)を得た。

- 15 4-エチルフェニル-3-ヒドロキシピリジン-2-イルメタノール(0.60g, 2.62mmol)、20%水酸化パラジウム/炭素(300mg)と酢酸(8mL)の混合物を水素雰囲気下にて76時間攪拌した。不溶物をろ過し、ろ液をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)にて精製し2-(4-エチルベンジル)-3-ヒドロキシピリジン(0.46g, 82%)を無色粉末として得た。
- ¹H-NMR (300MHz, CDCl₃): δ 1.19 (t, J= 7.7Hz, 3H), 2.59 (q, J= 7.7Hz, 2H), 4.19 (s, 2H), 7.04-7.26 (m, 6H), 8.09 (m, 1H). ESI m/z=252 (M+Na).

参考例12

5

25 3-(4-エチルベンジル)-4-ヒドロキシピリジンの製造

1.58M n-ブチルリチウムの n-ヘキサン溶液(30.1mL, 0.0476mol)と THF(125mL)の混合物に-20℃にて、ジイソプロピルアミン(6.67mL,0.0476mol)の THF(25mL)溶液を滴下し25分間攪拌した。-78℃に冷却した後に、反応液に4-

クロロピリジン(5.4g, 0.0476mol)の THF (25mL)溶液を滴下した。15 分後、4-エチルベンズアルデヒド(6.4g, 0.0477mol)の THF (25mL)溶液を滴下し、30 分間 攪拌した。室温まで温めた後に、飽和塩化アンモニウム水溶液を加え、反応混合 物を酢酸エチルにて 2 回抽出した。合わせた有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)にて精製し、(4ークロロピリジン-3ーイル)ー(4ーエチルフェニル)メタノール(8.4g, 71%)を淡黄色結晶として得た。

次に、(4-クロロピリジン-3-イル)-(4-エチルフェニル)メタノール (3.2g, 0.0129mol)のクロロホルム(45mL)溶液に、Dess-Martin periodine (6.5g, 0.0154mol)を氷冷下にて加え、反応混合物を室温にて5時間攪拌した。析出した 不溶物をろ過し、そのろ液を1 M NaOH(40mL)、飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣を NH型シリカゲルクロマトグラフィー(酢酸エチル)にて精製し、4-クロロ-3-(4-エチルベンゾイル)ピリジン(3.4g)を黄色油状物質として得た。4-クロロ-3-(4-エチルベンゾイル)ピリジン(3.4g)と3 M HC1(35mL)と30%H₂O₂2滴の混合物を6.5時間 加熱還流した。室温まで冷却した後に、反応液をNa₂CO₃にて中和した。析出した 結晶をろ過し、酢酸エチルにて洗浄して淡黄色結晶の3-(4-エチルベンゾイル)-4-ヒドロキシピリジン(2.9g, 2工程92%)を得た。

20 ESI m/z=250 (M+Na).

25

5

次に、3-(4-x + y) ベンゾイル) -4-y ドロキシピリジン(2.69g, 0.0118mol)、20% 水酸化パラジウム/炭素(530mg)とメタノール(60mL)の混合物を水素雰囲気下にて 18 時間攪拌した。 20% 水酸化パラジウム/炭素(300mg)追加し、6 時間攪拌した後、さらに 20% 水酸化パラジウム/炭素(340mg)追加して15 時間攪拌した。不溶物をろ過し、ろ液をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)にて精製し 3-(4-x + y) ベンジル) -4-y ヒドロキシピリジン(2.09g, 83%)を無色アモルファスとして得た。 -1 H-NMR (300MHz, CDCl₃): -1 1.19 (t, -1 1.7 THz, -1 3H), 2.59 (q, -1 1.7 THz, 2H), 3.77 (s, 2H), 6.38 (d, 1H), 7.05 (s, 4H), 7.29 (s, 1H), 7.39 (m, 1H).

参考例13

20

25

3-(4-エチルペンジル)-1H-ピラジン-2-オンの製造

1.58M n-プチルリチウムの n-ヘキサン溶液(19.0mL, 0.0300mol)と THF(50mL)の混合物に-78℃にて、2,2,6,6-テトラメチルピペリジン(4.2g,0.0300mol)を加え、0℃に昇温し20分間攪拌した。再度、反応混合物を-78℃に冷やした後に、2-クロロピラジン(2.5g,0.0218mol)の THF(5mL)溶液を滴下し、-78℃にて1時間攪拌した。反応混合物に4-エチルベンズアルデヒド(3.3g,0.0240mol)の THF(5mL)溶液を滴下し、30分間攪拌した。反応混合物に濃塩酸

(10mL)とエタノール(5mL)を加えた。室温まで温めた後に、飽和炭酸水素ナトリウム水溶液に反応液を注ぎ、混合物を酢酸エチルにて2回抽出した。合わせた有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=

15 3:2)にて精製し、(2-クロロピラジン-3-イル)-(4-エチルフェニル)メ タノール(3.1g, 57%)を茶色油状として得た。

次に、2-ペンジルオキシ-3-(4-エチルペンジル) ピラジン(420mg, 1.38mmo1)、10%パラジウム炭素(40mg)とエタノール(5mL)の混合物を水素雰囲気下にて 18 時間攪拌した。不溶物をろ過し、ろ液をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:2)にて精製し3-(4-エチルペンジル)-1

H-ピラジン-2-オン(120mg, 40%)を黄色結晶として得た。 ^1H-NMR (300MHz, CDCl₃): δ 1.21 (t, J=7.7Hz, 3H), 2.60 (q, J=7.7Hz, 2H), 4.11 (s, 2H), 7.07 (m, 1H), 7.16 (m, 2H), 7.29 (m, 2H), 7.38 (m, 1H).

5 参考例14

5-(エチルベンジル)-2,6-ジメチル-3H-ピリミジン-4-オンの製造

アセトアミジン塩酸 (2.86g, 0.030mol) のメタノール(86mL)溶液に、0℃にて25wt% ナトリウムメトキシドのメタノール溶液(6.48mL, 0.030mol)を加え10 分間攪拌した。析出した結晶をセライトを通してろ過し、得られたろ液に2-(4-エチルベンジル)アセト酢酸メチル(5.0g, 0.020mol)のメタノール(10mL)溶液を加え、室温にて5時間攪拌した。反応混合物を濃縮して得られた残渣に水を加え、混合物を酢酸エチルにて2回抽出した。合わせた有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して得られた結晶を酢酸エチルで懸濁し、ろ過して無色粉末状の表題化合物(1.49g, 31%)を得た。

15 エチルで懸濁し、ろ過して無色粉末状の表題化合物(1.49g, 31%)を得た。

1 H-NMR (300MHz, DMSO): δ 1.15 (t, J=7.7Hz, 3H), 2.14 (s, 3H), 2.21 (s, 3H), 2.52 (q, J=7.7Hz, 2H), 3.70 (s, 2H), 7.06 (s, 4H).

参考例15

25

20 4-(4-エチルペンジル)-2H-ピリダジン-3-オン

テトラヒドロフラン (500ml) に-50℃で 1.58mol/L n-ブチルリチウム n-ヘキサン溶液 (67.4ml, 107mmol) を加えた。この溶液に-50℃で2,2,6,6 ーテトラメチルピペリジンを加え、この混合物を0℃にて1時間攪拌した。次に、この混合物に-60℃にて3-クロロ-6-メトキシピリダジン (7.0g,48.4mmol) のテトラヒドロフラン (180ml) 溶液を20分間かけて加えた。40分間攪拌した後に、この混合物に4-エチルペンズアルデヒド (7.8g,58.1mmol) のテトラヒドロフラン (140ml) 溶液を加え、反応混合物を-60℃にて2時間攪拌した。これに塩酸:エタノール:テトラヒドロフラン (1:4:5、100ml)

を加え、室温まで昇温した後に、飽和塩化アンモニウム水溶液を加え、この混合物を酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= $5:1\sim2:1$)にて精製し、黄色油状の(4-エチルフェニル)-(3-クロロ-6-メトキシピリダジン-5-イル)-メタノールと(4-エチルフェニル)-(3-クロロ-6-メトキシピリダジン-4-イル)-メタノールの6:1混合物 (10.7g,79%) を得た。

(4-エチルフェニル) -(3-クロロ-6-メトキシピリダジン-5-イル) -メタノールと (4-エチルフェニル) -(3-クロロ-6-メトキシピリダジン-4-イル)-メタノールの6:1混合物(10.7g)、5%パラジウム/炭素(5.4g) および酢酸(80ml)のけんだく液を水素雰囲気下、室温22時間攪拌した。不溶物をろ過した後に減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:2~クロロホルム:メタノール=10:1) にて精製し、4-(4-エチルベンジル)-3-メトキシーピリダジン(2.88g) および4-(4-エチルベンジル)-3-メトキシーピリダジン酢酸塩(3.32g)を得た。

4-(4-エチルベンジル) -3-メトキシーピリダジン(2.11g, 9.24mmol)とクロロホルム(20ml)の混合物にトリメチルシリルヨード(1.45ml, 10.2mmol)を加え、この反応混合物を 60° にて 25 時間攪拌した。室温まで冷却した後に、

20 反応液にメタノールを加えこれを濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、表題化合物を黄色粉末(1.36g, 69%)として得た。

 $^{1}H-NMR$ (300MHz, CDCl₃): δ 1.22 (t, J=7.6Hz, 3H), 2.63 (q, J=7.6Hz, 2H), 3.90 (s, 2H), 6.79 (d, 1H), 7.15-7.20 (m, 4H), 7.66 (d, 2H), 10.7 (brs, 1H).

ESI m/z = 237 (M+Na).

参考例16

25

4-(4-エチルペンゾイル)-3-ヒドロキシピリジンの製造

ジメチルスルホキシド(15mL)中の0-イオドキシベンゾイックアシド(IBX)溶液に(4-エチルフェニル)-[3-[2-(トリメチルシリル)エトキシメトキシ]ピリジン-4-イル]-メタノール(参考例6にて合成;3.0g,8.34mmol)のテトラヒドロフラン(20mL)溶液を加え、反応混合物を室温で17.5時間攪拌した。反応液に水を加え、析出した結晶をろ過し、酢酸エチルで洗った。そのろ液を水、飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去して4-(4-エチルベンゾイル)-[3-[2-(トリメチルシリル)エトキシメトキシ]ピリジン(3.4g)を得た。

次に、4-(4-エチルベンゾイル)-[3-[2-(トリメチルシリル) エトキシメトキシ]ピリジン(3.4g)、p-トルエンスルホン酸1水和物(3.46g, 18.2mmol)及びテトラヒドロフラン(60mL)の混合物を、80℃で2時間攪拌した。室温まで冷却した後に、反応混合物を飽和炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50)にて精製し、表題化合物(1.57g, 83%)を得た。

ESI m/z = 228 (M+H), 226 (M-H)

20 参考例17

25

5

2,3,4,6-テトラー〇-アセチル-5-チオーDーグルコピラノースの製造

1,2,3,4,6-ペンター〇-アセチルー5-チオーDーグルコピラノース (34.0g,0.0837mol) のN,Nージメチルホルムアミド (200 mL) 溶液に、メチルヒドラジン (6.70mL,0.125mol)、酢酸 (7.2mL,0.125mol) 及びN,Nージメチルホルムアミド (25mL) の混合物を氷冷下加えた。反応液を室温にて 2.5 時間撹拌した後に、反応液に 0.5M HCl (300mL)を氷冷下にて加え、これを酢酸エチル(250mL)で2回抽出した。合わせた有機相を水(200mL)、飽和 NaHCO3水(100mL)、水(100mL)、水(00mL

した後に、ろ液を減圧下濃縮した。得られた残渣をイソプロピルエーテル(70㎡) から結晶化し、2,3,4,6-テトラ-〇-アセチル-5-チオーグルコピラノー ス (26.9g. 88%) を無色結晶として得た。

実施例 5

以下に実施例をあげて本発明をさらに詳しく説明するが、本発明はこれらの記 載によって限定的に解釈されるものではない。

実施例1

- 4'-(4'-エチルベンジル)-5'-メチル-1'H-ピラゾール-3'-イ 10 ル 2, 3, 4, 6ーテトラー〇ーアセチルー5ーチオー β ーDーグルコピラノシ ドの製造
- 2,3,4,6-テトラ-〇-アセチル-5-チオ-D-グルコピラノース (937mg, 2.6mmol)、1, 2-ジヒドロ-4-(4-エチルベンジル)-5-メチル 15 -3H-ピラゾール-3-オン(2.78g, 12.9mmol)及びトリフェニルホスフィン (1.35g, 5.1mmol)のテトラヒドロフラン(14mL)溶液にジエチルアゾジカルボキシ レート(40%トルエン溶液、5.1mmol)を室温で滴下した。室温にて4時間攪拌した 後に、反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(へ キサン:酢酸エチル=50:50~35:65)にて精製し、淡黄色アモルファス状 20 の 表題化合物(292mg, 20%)を得た。

 $^{1}H-NMR$ (300MHz, CDCl₃): δ 1.19 (t, J=7.6Hz, 3H), 1.85 (s, 3H), 2.00 (s, 3H), 2.03 (s, 3H), 2.07 (s, 3H), 2.13 (s, 3H), 2.58 (q, J = 7.6Hz, 2H), 3.28-3.37 (m, 1H), 4.08-4.16 (m, 1H), 4.34 (dd, J=5.0 and 12.0Hz, 1H), 3.50-3.64 (m, 2H), 5.13 (dd, J=8.9 and 9.3Hz, 1H), 5.38 (dd, J=9.3 and

10.1Hz, 1H), 5.55 (dd, J = 8.6 and 8.9Hz, 1H), 5.81 (d, J = 8.6Hz, 1H), 7.00 -7.10 (m, 4H).

ESI m/z=561 (M-H).

25

実施例2

1' -アセチルー4' - [(3' - フルオロー4' - メトキシフェニル)メチル] - 5' - メチルー1' H - ピラゾールー3' - イル 2, 3, 4, 6 - テトラー〇ーアセチルー5 - チオー β - D - グルコピラノシドの製造

5

- 2,3,4,6-テトラーO-アセチル-5-チオーDーグルコピラノース (629mg, 1.73mmol)、1-アセチル-4-[(3-フルオロ-4-メトキシフェニル)メチル]-3-ヒドロキシー5-メチル-1H-ピラゾール (960mg, 3.45mmol)、トリフェニルホスフィン (601mg, 2.29mmol)及びテトラヒドロフラン (7.9mL)の混合物に、0℃下で、ジイソプロピルアゾジカルボキシレート (40%トルエン溶液、2.04mL, 3.45mmol)をゆっくり滴下した。室温で2時間攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=7:3)にて精製し、無色アモルファス状の表題化合物(647mg, 60%)を得た。
- 15 ${}^{1}H-NMR$ (300 MHz, CDCl₃): δ 1.94 (s, 3H), 2.01 (s, 3H), 2.05 (s, 3H) 2.06 (s, 3H), 2.50 (s, 3H), 2.59 (s, 3H), 3.35 (m, 1H), 3.54 (m, 2H), 3.85 (s, 3H), 4.14 (dd, J=4.2 and 11.9Hz, 1H), 4.27 (dd, J=5.4 and 11.9Hz, 1H), 5.18 (dd, J=9.4, 7.9Hz, 1H), 5.39 (t, J=9.4Hz, 1H), 5.50 (t, J=7.9Hz, 1H), 5.96 (d, J=7.9Hz, 1H), 6.80-6.89 (m, 3H).
- 20 ESI m/z = 647 (M+Na). mp 118.0-122.0°C.

実施例3

4'-(4'-エチルベンジル)-1'-イソプロピル-5'-メチル-1'H-25 ピラゾール-3'-イル 5-チオ- β -D-グルコピラノシドの製造

2,3,4,6ーテトラー〇ーアセチルー5ーチオーDーグルコピラノース (200mg, 0.55mmol)、4ー(4ーエチルペンジル)ー3ーヒドロキシー1ーイソプロピルー5ーメチルー1 Hーピラゾール(425mg, 1.36mmol)及びトリフェニルホス

フィン (288mg, 1.10mmo1)のトルエン(5mL) 懸濁液にジエチルアゾジカルボキシレート(40%トルエン溶液、478mg, 1.10mmo1)を氷冷下滴下した。室温にて13時間攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)にて精製し、4'ー(4'ーエチルベンジが)ー1'ーイソプロピルー5'ーメチルー1'Hーピラゾールー3'ーイル2,3,4,6ーテトラー〇ーアセチルー5ーチオーβーDーグルコピラノシドの粗生成物(58mg)を得た。4'ー(4'ーエチルペンジル)ー1'ーイソプロピルー5'ーメチルー1'Hーピラゾールー3'ーイル2,3,4,6ーテトラー〇ーアセチルー5ーチオーβーDーグルコピラノシドの粗生成物(50mg)のメタノール(2mL)溶液に室温でナトリウムメトキシド(18mg,0.3mmo1)を加えた。室温で14時間攪拌した後に溶媒を減圧下留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1~25:1~20:1)にて精製し、無色粉末状の表題化合物(11mg,5%)を得た。

¹H-NMR (300MHz, MeOH-d₄): δ 1.18 (t, J = 7.6Hz, 3H), 1.37 (d, J = 6.7Hz, 6H), 2.08 (s, 3H), 2.57 (q, 7.6Hz, 2H), 2.71-2.80 (m, 1H), 3.18-3.26 (m, 1H), 3.50-3.58 (m, 1H), 3.65 (d, J = 3.6Hz, 2H), 3.70-3.78 (m, 2H), 3.84 -3.92 (m, 1H), 4.35-4.45 (m, 1H), 5.40 (d, J = 8.7Hz, 1H), 7.00-7.10 (m, 4H).

ESI m/z=435 (M-H).

20 mp 54.0-58.5℃.

実施例4

 $4'-(4'-エチルベンジル)-1'-イソプロピルー5'-トリフルオロメチルー1'Hーピラゾールー3'-イル 2,3,4,6-テトラー〇ーアセチル 25 -5-チオー<math>\beta$ -D-グルコピラノシドの製造

2,3,4,6ーテトラー〇ーアセチルー5ーチオーDーグルコピラノース (237mg, 0.650mmol)、4ー(4ーエチルベンジル)ー3ーヒドロキシー1ーイソプロ ピルー5ートリフルオロメチルー1 H - ピラゾール(W00236602 にしたがって合

成;84mg, 0.269mmol)及びトリフェニルホスフィン(170mg, 0.650mmol)のトルエン(2.3mL)懸濁液にジイソプロピルアゾジカルボキシレート(40%トルエン溶液、33mg, 0.650mmol)を氷冷下滴下した。室温にて15時間攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=70:30)にて精製し、4'-(4'-x+)ルーンジル)ー1'-x+1リーンプロピルー5'-トリフルオロメチルー1'Hーピラゾールー3'-イル 2,3,4,6ーテトラーOーアセチルー5-x+1-カークルコピラノシド(67mg, 38%)を得た。

 $^{1}\text{H-NMR}$ (300MHz, CDCl₃): δ 1.19 (t, J = 7.7Hz, 3H), 1.42 (d, J = 6.5Hz, 6H), 1.91 (s, 3H), 2.00 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.59 (q, J = 7.7Hz, 2H), 3.31 (m, 1H), 3.71 (brd, J = 0.93Hz, 2H), 4.15 (dd, J = 4.0, 11.8Hz, 1H), 4.28 (dd, J = 5.3, 11.8Hz, 1H), 4.49 (m, 1H), 5.16 (dd, J = 8.3, 9.3Hz, 1H), 5.39 (dd, J = 9.3, 9.9Hz, 1H), 5.54 (t, J = 8.3Hz, 1H), 5.85 (d, J = 8.3Hz, 1H), 7.08 (s, 4H).

15 ESI m/z = 681 (M+Na).

実施例5

5

25

1' -シクロブチルー4' -(4' -エチルベンジル) - 5 ' -トリフルオロメチル- 1 ' H -ピラゾール- 3 ' -イル 2, 3, 4, 6 -テトラ-O-アセチル 20 - 5 -チオ- β -D-グルコピラノシドの製造

2,3,4,6ーテトラー〇ーアセチルー5ーチオーDーグルコピラノース (49mg, 0.134mmol)、1ーシクロブチルー4ー(4ーエチルペンジル)ー3ーヒドロキシー5ートリフルオロメチルー1Hーピラゾール(29mg, 0.0894mmol)及びトリフェニルホスフィン (35mg, 0.134mmol)のテトラヒドロフラン(0.5mL)溶液にジイソプロピルアゾジカルボキシレート(40%トルエン溶液、0.079mL, 0.134mmol)を氷冷下滴下した。室温にて15時間攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)にて精製し、表題化合物 (27mg, 45%)を得た。

¹H-NMR (300MHz, CDCl₃): δ 1.19 (t, J = 7.6Hz, 3H), 1.70—1.85 (m, 2H), 1.92 (s, 3H), 2.00 (s, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 2.26—2.39 (m, 2H), 2.58 (q, J = 7.6Hz, 2H), 2.58—2.75 (m, 2H), 3.33 (m, 1H), 3.70 (brs, 2H), 4.15 (dd, J = 4.2, 11.9Hz, 1H), 4.28 (dd, J = 5.4, 11.9Hz, 1H), 4.73 (m, 1H), 5.19 (dd, J = 8.1, 9.1Hz, 1H), 5.40 (dd, J = 9.1, 9.8Hz, 1H), 5.55 (t, J = 8.1Hz, 1H), 5.92 (d, J = 8.1Hz, 1H), 7.08 (s, 4H).

実施例 6

10 4'-(4'-エチルベンジル) ピリジン-3'-イル 2,3,4,6-テトラーO -アセチル-5-チオー β -D-グルコピラノシドの製造

2,3,4,6-テトラーO-アセチルー5-チオーD-グルコピラノース(1.5g,4.12mmol)、4-(4-エチルベンジル)-3-ヒドロキシピリジン(2.63g,12.3mmol)、トリフェニルホスフィン(2.16g,8.24mmol)及びトルエン(15mL)の混合物に、氷冷下、ジイソプロピルアゾジカルボキシレート(40%トルエン溶液、4.16g)をゆっくり滴下した。室温で21時間攪拌した後に、反応液を濃縮し得られた残渣をNHシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:90)及びシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=50:50~40:60~30:70)にて精製し、淡黄色アモルファス状の表題化合物(477mg,21%)を得た。

¹H-NMR (300MHz, CDCl₃): δ 1. 22 (t, J = 7. 6Hz, 3H), 1. 95 (s, 3H), 2. 02 (s, 3H), 2. 05 (s, 3H), 2. 06 (s, 3H), 2. 62 (q, J = 7. 6Hz, 2H), 3. 25-3. 35 (m, 1H), 3. 88 (s, 2H), 4. 15 (dd, J = 3. 6 and 12. 0Hz, 1H), 4. 21 (dd, J = 5. 5 and 12. 0Hz, 1H), 5. 18 (dd, J = 8. 9 and 9. 4Hz, 1H), 5. 39 (d, J = 8. 7Hz, 1H), 5. 40 (dd, J = 9. 4Hz, 10. 4Hz, 1H), 5. 64 (dd, J = 8. 7 and 8. 9Hz, 1H), 6. 97 (d, J = 4. 8Hz, 1H), 7. 06 (d, J = 8. 2Hz, 2H), 7. 13 (d, J = 8. 2Hz, 2H), 8. 22 (d, J = 4. 8Hz, 1H), 8. 46 (s, 1H).

ESI m/z = 582 (M+Na).

25

実施例7

5

2,3,4,6-テトラー〇ーアセチルー5ーチオーDーグルコピラノース (1.57g,4.32mmol)、4ー(4ーメトキシカルポニルペンジル)-3ーヒドロキシピリジン (0.70g,2.88mmol)及びトリフェニルホスフィン (1.13g,4.32mmol)のテトラヒドロフラン(7.0mL)溶液にジイソプロピルアゾジカルポキシレート(40%トルエン溶液、2.17g,4.32mmol)を 0℃で滴下した。室温にて 15 時間攪拌した後に、反応液を濃縮して得られた残渣を中性シリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=2:3)にて精製し、さらに NH 型シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:3) にて2度精製し表題化合物(323mg,19%)を得た。

¹H-NMR (300MHz, CDCl₃): δ 1.95 (s, 3H), 2.02 (s, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 3.25-3.35 (m, 1H), 3.90 (s, 3H), 3.97 (s, 2H), 4.12 (dd, J = 3.6 and 11.8Hz, 1H), 4.30 (dd, J = 5.4 and 11.8Hz, 1H), 5.19 (dd, J = 8.7 and 9.3Hz, 1H), 5.39 (dd, J = 9.3Hz, 10.4Hz, 1H), 5.41 (d, J = 8.7Hz, 1H), 5.60 (t, J = 8.7Hz, 1H), 6.98 (d, J = 5.0Hz, 1H), 7.23 (d, J = 8.5Hz, 2H), 7.98 (d, J = 8.5Hz; 2H), 8.24 (d, J = 5.0Hz, 1H), 8.49 (s, 1H).

実施例8

4'-[4'-(2'-ベンゾイルオキシエチル)ベンジル] ピリジン-3'-イル 25 2,3,4,6-テトラ-O-アセチル-5-チオーβ-D-グルコピラノシドの 製造

2,3,4,6ーテトラーOーアセチルー5ーチオーDーグルコピラノース (2.13g, 5.85mmol)、4-[4-(2-ペンゾイルオキシエチル)ペンジル]-3-ヒ

ドロキシピリジン (1.30g, 3.90mmol)及びトリフェニルホスフィン (1.53g, 5.85mmol)のテトラヒドロフラン (7.0mL)溶液にジイソプロピルアゾジカルボキシレート (40%トルエン溶液、2.96g, 5.85mmol)を 0℃で滴下した。室温にて 3 時間 攪拌した後に、反応液を濃縮して得られた残渣を中性シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3)にて精製し、さらに NH型シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:2) にて精製し表題化合物とトリフェニルホスフインオキシドの混合物として(1.66g)を得た。この物をこれ以上精製することなく実施例 1.6 に用いた。

¹H-NMR (300MHz, CDCl₃): δ 1.95 (s, 3H), 2.02 (s, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 3.01 (t, J = 7.0Hz, 2H), 3.25-3.35 (m, 1H), 3.89 (s, 2H), 4.15 (dd, J = 3.9 and 12.0Hz, 1H), 4.21 (dd, J = 5.6 and 12.0Hz, 1H), 4.51 (t, J = 7.0Hz, 2H), 5.18 (dd, J = 9.0 and 9.5Hz, 1H), 5.38 (d, J = 8.6Hz, 1H), 5.39 (dd, J = 9.5Hz, 10.2Hz, 1H), 5.63 (dd, J = 8.6 and 9.0Hz, 1H), 6.96 (d, J = 4.8Hz, 1H), 7.11 (d, J = 8.2Hz, 2H), 7.23 (d, J = 8.2Hz, 2H), 7.99-8.02 (m, 2H), 8.23 (d, J = 4.2Hz, 1H), 8.45 (s, 1H).

ESI m/z = 702 (M+Na).

実施例9

25

5

3'-(4'-エチルベンジル)-1'H-ピラジン-2'-イル 2,3,4,620 $-テトラ-O-アセチル-5-チオ-\beta-D-グルコピラノシドの製造$

2,3,4,6-テトラー〇ーアセチルー5ーチオーDーグルコピラノース (408mg, 1.12mnol)、3ー(4ーエチルベンジル)ー1Hーピラジンー2ーオン (120mg, 0.560mnol)及びトリフェニルホスフィン (195mg, 0.743mnol)のトルエン (2.0mL)溶液にジイソプロピルアゾジカルボキシレート (40%トルエン溶液、0.662mL, 1.12mnol)を0℃で滴下した。室温にて2時間攪拌した後に、反応液を 濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=70:30)にて精製し、無色油状の 表題化合物(200mg, 64%)を得た。 ¹H-NMR (300MHz, CDCl₂): δ1.19 (t, J=7.5Hz, 3H), 1.88 (s, 3H), 2.03 (s,

3H), 2.05 (s, 3H), 2.06 (s, 3H), 2.60 (q, J=7.5Hz, 2H), 3.38 (m, 1H), 4.02-4.38 (m, 3H), 4.30 (dd, J=5.3, 12.0Hz, 1H), 5.20 (dd, J=8.5, 9.3Hz, 1H), 5.45 (dd, J=9.3, 10.1Hz, 1H), 5.64 (t, J=8.5Hz, 1H), 6.30 (d, J=8.5Hz, 1H), 7.09-7.12 (m, 2H), 7.19-7.21 (m, 2H), 8.00 (d, J=2.7Hz, 2H), 8.18 (d, J=2.7Hz, 1H).

ESI m/z = 583 (M+Na).

実施例10

5

 $5'-(エチルベンジル)-2', 6'-ジメチル-3'H-ピリミジン-4'-イー10 ル 2,3,4,6ーテトラー〇ーアセチル-5ーチオー<math>\beta$ -Dーグルコピラノシドの製造

2,3,4,6ーテトラー〇ーアセチルー5ーチオーDーグルコピラノース (677mg, 1.86mmol)、5ー(エチルベンジル)ー2,6ージメチルー3Hーピリミジンー4ーオン (300mg, 1.23mmol)及びトリフェニルホスフィン (324mg, 1.24mmol)のテトラヒドロフラン(4.0mL)溶液にジイソプロピルアゾジカルボキシレート (40%トルエン溶液、1.1mL, 1.86mmol)を 0℃で滴下した。室温にて 14 時間攪拌した後に、反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=60:40)にて精製し、淡黄色油状の 表題化合物 (180mg, 25%)を得た。

¹H-NMR (300MHz, CDCl₃): δ 1. 19 (t, J = 7. 6Hz, 3H), 1. 83 (s, 3H), 1. 94 (s, 3H), 2. 05 (s, 3H), 2. 06 (s, 3H), 2. 40 (s, 3H), 2. 58 (q, J = 7. 6Hz, 2H), 2. 60 (s, 3H), 3. 40 (m, 1H), 3. 82 (d, J = 15. 5Hz, 1H), 3. 92 (d, J = 15. 5Hz, 1H), 4. 14 (m, 1H), 4. 27 (dd, J = 5. 4, 11. 8Hz, 1H), 5. 19 (dd, J = 8. 4, 9. 2Hz, 1H), 5. 38 (dd, J = 9. 2, 9. 9Hz, 1H), 5. 51 (t, J = 8. 4Hz, 1H), 6. 47 (d, J = 8. 4Hz, 1H), 6. 96-6. 98 (m, 2H), 7. 06-7. 08 (m, 2H).

実施例11

25

1'ーアセチルー4'ー[(3'ーフルオロー4'ーメトキシフェニル)メチル]
5 ー5'ーメチルー1'Hーピラゾールー3'ーイル 2,3,4,6ーテトラー〇ーアセチルー5ーチオーβーDーグルコピラノシド(556mg, 0.890mmol)とメタノール(6 mL)の混合物に 25wt%ナトリウムメトキシドのメタノール溶液 (0.096mL)を加え、室温にて 2 4時間攪拌した。反応液にドライアイスを加え中和し、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノールー5:1)にて精製し、無色粉末状の表題化合物(261mg, 70%)を得た。

1H-NMR (300MHz, MeOH-d4) δ:2.06 (s, 3H), 2.83 (m, 1H), 3.25 (t, J=8.8Hz,

THENMIX (SOUMHZ, MEONE d_4) 0 . 2. 66 (s, 615), 2. 66 (m, 115), 6126 (t), 5 = 6131, 1H), 3. 56 (t, J = 8.8Hz, 1H), 3. 61 (m, 2H), 3. 68 – 3. 79 (m, 2H), 3. 80 (s, 3H), 3. 89 (dd, J = 3.9 and 11. 5Hz, 1H), 5. 41 (d, J = 8.8Hz, 1H), 6. 87 – 6. 97 (m, 3H). ESI m/z = 437 (M+Na).

15 mp 145.0−147.0℃.

実施例12

25

1' -アセチル-4' -[(3' -フルオロ-4' -メチルフェニル)メチル] -5' -メチルーピラゾール-3' -イル 5 -チオー β -D -グルコピラノシド 20 の製造

テトラヒドロフラン(5.0mL)中の4'-[(3'-フルオロー4'-メチルフェニル)メチル]-5'-メチルー1'Hーピラゾールー3'-イル 5ーチオー β -Dーグルコピラノシド(150mg, 0.376mmol)懸濁液に、無水酢酸(0.05mL)と酢酸(0.05mL)を加え 72 時間撹拌した。反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)にて精製し、無色粉末状の表題化合物(89mg, 54%)を得た。

ESI m/z = 463 (M+Na).

mp 184.0-194.0℃ (decomp.).

実施例13

5

1' -エトキシカルボニル-4' -[(4' -メトキシフェニル)メチル]-5' -メチル-ピラゾール-3' -イル 6-O-エトキシカルボニル-5-チオ- β

4'-[(4'-メトキシフェニル)メチル]-5'-メチル-1'H-ピラゾール-3'-イル 5-チオーβ-D-グルコピラノシド(59mg, 0.149mmol)とコリジン(1.0mL)の混合物にクロロ炭酸エチル(49mg, 0.449mmol)を加え室温で16時間撹拌した。反応液を10%クエン酸で中和した後に酢酸エチルで希釈し、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)にて精製し、無色粉末状の表題化合物(32mg, 40%)を得た。

¹H-NMR (500MHz, MeOH-d₄) δ : 1.26 (t, J = 7.3Hz, 3H), 1.41 (t, J = 6.7Hz, 3H), 2.40 (s, 3H), 3.11 (ddd, J = 3.7, 6.7 and 9.8Hz, 1H), 3.32 (dd, J = 8.6 and 9.2Hz, 1H), 3.56 (dd, J = 9.2 and 9.8Hz, 1H), 3.74 (s, 3H), 3.75 (t, J = 8.6Hz, 1H), 4.15 (q, J = 6.7Hz, 2H), 4.32 (dd, J = 6.7 and 11.6Hz, 1H), 4.40-4.48 (m, 3H), 5.78 (d, J = 8.6Hz, 1H), 6.79 (m, 2H), 7.09 (m, 2H). ESI m/z = 563 (M+Na).

20 mp 106.0−110.0℃.

実施例14

25

を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=9:1)にて精製し、無色粉末状の表題化合物(230mg, 82%)を得た。 1 H-NMR(300MHz, CD₃OD): δ 1.20(t, J=7.6Hz, 3H), 2.60(q, J=7.6Hz, 2H), 2.93-3.03 (m, 1H), 3.60(dd, J=9.2 and 10.0Hz, 1H), 3.76-4.10 (m, 5H), 5.32 (d, J=8.7Hz, 1H), 7.07(d, J=4.8Hz, 1H), 7.08-7.16 (m, 4H), 8.08 (d, J=4.8Hz, 1H), 8.53 (s, 1H). ESI m/z = 414 (M+Na).

10 実施例15

mp 184.0−187.0℃.

4'-(4'-エチルベンジル)ピリジン-3'-イル 5-チオーβ-D-グル コピラノシドの製造 No2

2,3,4,6-テトラー〇-アセチルー5-チオーDーグルコピラノース (481mg, 1.32mmol)、4-(4-エチルベンジル)-3-ヒドロキシピリジニウム 15 ボラン (200mg, 0.881mmol)及びトリフェニルホスフィン (230mg, 1.32mmol)のテ トラヒドロフラン (2.5mL) 溶液にジイソプロピルアゾジカルポキシレート (40%ト ルエン溶液、0.781mL, 1.32mmol)を0℃で滴下した。室温にて2.5時間攪拌した 後に、反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(へ キサン:酢酸エチル=2:1)にて精製し、無色油状の 4-(4-エチルベンジル) 20 -3-(2,3,4,6-テトラーO-アセチルー5-チオー $\beta-$ D-グルコピラノ シルオキシ) ピリジニウムボランの粗精製物(440mg)を得た。この粗精製物にトリ エチルアミン: メタノール: 水(2:1:1,3 mL)を加え、混合物を室温にて 24時間攪拌した。反応混合物を濃縮して得た残渣に、精製することなく、メタ ノール(1.8mL)と2M HC1(1.8mL)を加え室温にて30分攪拌した。反応液に氷冷 25 下飽和炭酸水素ナトリウム溶液を加え、クロロホルム(5mLx4)にて抽出した。有 機層を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホ ルム:メタノール=7:1)にて精製し、表題化合物(30mg, 9%)を得た。

実施例16

実施例8で得られた4'-[4'-(2'-ベンゾイルオキシエチル)ベンジル] 5 ピリジン-3' -イル 2, 3, 4, 6 -テトラ-O-アセチル- 5 -チオ- β - D - グルコピラノシドの粗生成物(1.66g)とメタノール(10mL)の混合物に1M NaOMe(0.25mL)を加え、反応液を室温で加え23時間攪拌した。少量のドライアイ スを加えて反応液を中和した後に、反応液を濃縮し得られた残渣をシリカゲルカ ラムクロマトグラフィー (クロロホルム:メタノール=5:1) にて精製し、表 10 題化合物と α アイソマーの5:1の混合物として (193mg, 12%)を得た。この混合 物にピリジン(4mL)と無水酢酸(0.44mL)を加えた。反応液を2時間攪拌し、濃縮し た。残渣にトルエンを加え再度濃縮した。得られた残渣を NH 型シリカゲルカラム クロマトグラフィー(ヘキサン:酢酸エチル=1:3) にて精製し4'-[4'-(2'-アセチルオキシエチル)ペンジル]ピリジン-3'-イル 2,3,4,6-15 テトラー〇ーアセチルー 5 ーチオー β ーDーグルコピラノシド (185mg, 63%) を得 た。4'-[4'-(2'-アセチルオキシエチル)ベンジル]ピリジン-3'-イ ル 2,3,4,6ーテトラーOーアセチルー5ーチオー β ーDーグルコピラノシド (185mg, 0.300mmol) とトリエチルアミン:メタノール:水(5:1:1,7mL)

20 の混合物を室温にて17時間攪拌した。反応混合物を濃縮して得た残渣を、中性 シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=5:1)にて 精製し、表題化合物(62mg, 51%)を得た。

¹H-NMR (300MHz, CD₃0D): δ 2.78 (t, J = 7.2Hz, 2H), 2.95-3.02 (m, 1H), 3.58 (dd, J = 9.0 and 10.3Hz, 1H), 3.72 (t, J = 7.2Hz, 2H), 3.78 (dd, J = 6.0, 11.8Hz, 1H), 3.83 (t, J = 8.9Hz, 1H), 3.93 (dd, J = 3.7, 11.8Hz, 1H), 3.93 -4.09 (m, 2H), 5.31 (d, J = 8.9Hz, 1H), 7.09 (d, J = 4.8Hz, 1H), 7.13-7.18 (m, 4H), 8.13 (d, J = 4.8Hz, 1H), 8.52 (s, 1H).

ESI m/z = 430 (M+Na).

mp 194.5-195.0℃

25

実施例17

4'-[4'-(1'-ヒドロキシ-1'-メチルーエチル)ペンジル] ピリジンー <math>3'-イル 5-チオーβ-D-グルコピラノシドの製造

5

20

4'ー(4'ーメトキシカルボニルベンジル)ピリジンー3'ーイル 2,3,4,6ーテトラー〇ーアセチルー5ーチオーβーDーグルコピラノシド(241mg,0.409mmol)とテトラヒドロフラン(3mL)の混合物に1mmol/mL MeMgBr のテトラヒドロフラン溶液(4.1mL,4.1mmol)を-20℃にて加えた。1.5時間かけて室温まで 月温した後に、1mmol/mL MeMgBr のテトラヒドロフラン溶液(1.5mL,1.5mmol)を-20℃にて加えた。反応混合物を室温にて1.5時間攪拌した後に、再度1mmol/mL MeMgBr のテトラヒドロフラン溶液(2.5mL,2.5mmol)を-20℃にて加えた。30分後、反応混合物を酢酸にて中和後、濃縮し、得られた残渣を中性シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1~5:1)にて精製し、表題化合物(116mg,67%)を無色油状物として得た。

15 し、表題化合物 (116mg, 67%) を無色油入物として特元。

1H-NMR (300MHz, CD₃OD): δ1.50 (s, 6H), 2.93-3.03 (m, 1H), 3.59 (t, J=8.8Hz, 1H), 3.78 (dd, J=6.4, 11.3Hz, 1H), 3.84 (t, J=8.8Hz, 1H), 3.93 (dd, J=3.6, 11.3Hz, 1H), 3.98-4.11 (m, 2H), 5.32 (d, J=8.8Hz, 1H), 7.10 (d, J=4.9Hz, 1H), 7.21 (d, J=8.5Hz, 2H), 7.41 (d, J=8.5Hz, 2H), 8.03 (d, J=4.9Hz, 1H), 7.21 (d, J=8.5Hz, 2H), 7.41 (d, J=8.5Hz, 2H), 8.03 (d, J=4.9Hz, 1H), 7.21 (d, J=8.5Hz, 2H), 7.41 (d, J=8.5Hz, 2H), 8.03 (d, J=8.5Hz, 2H), 8.03

J = 4.9Hz, 1H), 8.53 (s, 1H).

ESI m/z = 444 (M+Na), 420 (M-H).

実施例18

 $3'-(4'-エチルペンジル)-1'H-ピラジン-2'-イル <math>5-チオ-\beta$ 25 -D-グルコピラノシドの製造

 $3'-(4'-エチルベンジル)-1'H-ピラジン-2'-イル 2,3,4,6--テトラー〇ーアセチルー5-チオー<math>\beta$ -Dーグルコピラノシド (180mg,0.321mmol) とメタノール (3mL) の混合物に 1M ナトリウムメトキシドのメタノール

PCT/JP2004/001272 WO 2004/089967

溶液 (0.032mL)を加え、室温にて2時間攪拌した。反応液をドライアイスを加え 中和し、析出した沈殿物をろ過し、無色粉末状の表題化合物(44mg)を得た。さら にろ液濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホ ルム:メタノール=10:1)にて精製し、無色粉末状の表題化合物(50mg, total75%)を得た。

 $^{1}\text{H-NMR}$ (300MHz, CD₃0D) : δ 1.18 (t, J = 7.6Hz, 3H), 2.58 (q, J = 7.6Hz, 2H), 2.94 (m, 1H), 3.60 (dd, J = 8.9, 9.9Hz, 1H), 3.74 (dd, J = 6.2 and 11.3Hz, 1H), 3.87 (t, J = 8.9Hz, 1H), 3.91 (dd, J = 3.7 and 11.3Hz, 1H), 4.02 (d, J = 14.0 Hz, 1H), 4.22 (d, J = 14.0 Hz, 1H), 6.15 (d, J = 8.9 Hz, 1H), 7.08 (m, $J_{AB} = 7.9 \text{Hz}$, 2H), 7.19 (m, $J_{AB} = 7.9 \text{Hz}$, 2H), 8.05-8.08 (m, 2H).

ESI m/z = 415 (M+Na)

mp 181.0-183.5℃

10

実施例19

5'-(エチルベンジル)-2',6'-ジメチル-3'H-ピリミジン-4'-イル 15 5-チオーβ-D-グルコピラノシドの製造

5'-(エチルベンジル)-2',6'-ジメチル-3'H-ピリミジン-4'-イ ル 2,3,4,6ーテトラーO-アセチルー5ーチオー β -Dーグルコピラノシ ド(160mg, 0.271mmol)とメタノール(3mL)の混合物に 1M ナトリウムメトキシドの 20 メタノール溶液 (0.027mL)を加え、室温にて2時間攪拌した。反応液をドライア イスを加え中和し、濃縮して得られた残渣をシリカゲルカラムクロマトグラフィ ー(クロロホルム:メタノール=10:1)にて精製し、無色粉末状の表題化合物 (62mg, 54%)を得た。

 $^{1}\text{H-NMR}$ (300MHz, CD₃OD) : δ 1.18 (t, J = 7.6Hz, 3H), 2.35 (s, 3H), 2.53 (s, 25 3H), 2.57 (q, J = 7.6Hz, 2H), 2.99 (m, 1H), 3.57 (dd, J = 8.9, 9.9Hz, 1H), 3.74 (dd, J = 6.4 and 11.5Hz, 1H), 3.80 (t, J = 8.9Hz, 1H), 3.85 (d, J = 15.2Hz, 1H), 3.93 (dd, J = 3.9 and 11.5Hz, 1H), 4.05 (d, J = 15.2 Hz, 1H), 6.33 (d, J = 8.9 Hz, 1H), 7.04-7.10 (m, 4H).

ESI m/z = 443 (M+Na) mp 143.0-147.5°C

実施例20

5 6'-(N-アセチルアミノ)-3'-(4'-エチルベンジル)ピリジン-2'-イル 5-チオー β -D-グルコピラノシドの製造

2,3,4,6ーテトラー〇ーアセチルー5ーチオーDーグルコピラノース (1.01g, 2.77mmol)、6-(N-アセチルアミノ)-3-(4-エチルペンジル)-1 H -ピリジン-2-オン (W003000712 に従って合成;500mg, 1.85mmol)及びトリフ

10 ェニルホスフィン (720mg, 2.77mmol)のテトラヒドロフラン(4.5mL)溶液にジイソプロピルアゾジカルボキシレート(40%トルエン溶液、1.40g, 2.77mmol)を 0℃で滴下した。室温にて15時間攪拌した後に、反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1~1:2)にて精製し、6'ー(Nーアセチルアミノ)-3'ー(4'ーエチルペンジル)ピリジン

15 -2' -4ル 2, 3, 4, 6 -テトラ-O-アセチル-5 -チオ $-\beta$ -D-グル コピラノシド(520mg, 46%)を得た。ESI m/z = 639 (M+Na), 615 (M-H)。

6'-(N-アセチルアミノ)-3'-(4'-エチルベンジル)ピリジン-2'-イル 2,3,4,6-テトラーO-アセチルー5-チオー β -D-グルコピラノシド(520mg, 0.843mmol)とトリエチルアミン:メタノール:水(5:1:1、

20 14mL) の混合物を室温にて43時間攪拌した。反応混合物を濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=5:1)にて精製し、表題化合物(223mg, 58%)を得た。

¹H-NMR (300MHz, CD₃OD): δ 1.20 (t, J = 7.6Hz, 3H), 2.15 (s, 3H), 2.59 (q, J = 7.6Hz, 2H), 2.91 (ddd, J = 3.6.6.5 and 10.3Hz, 1H), 3.58 (t, J = 9.9Hz,

25 1H), 3.70-3.98 (m, 5H), 6.16 (d, J = 8.7Hz, 1H), 7.08-7.13 (m, 4H), 7.38 (d, J = 7.9Hz, 1H), 7.62 (brd, J = 7.9Hz, 1H).

ESI m/z = 471 (M+Na), 447 (M-H).

実施例21

 $4'-(4'-エチルベンジル)-ピリダジン-3'-イル 5-チオー<math>\beta-D-$ グルコピラノシドの製造

2,3,4,6-テトラーO-アセチルー5-チオーDーグルコピラノース (3.13g,8.58mmol)、4-(4-エチルベンジル)-2H-ピリダジン-3-オン (1.22g,5.72mmol)及びトリフェニルホスフィン (2.25g,8.58mmol)のテトラヒドロフラン(14mL)溶液にジイソプロピルアゾジカルポキシレート(40%トルエン溶液、4.33g,8.58mmol)を0℃で滴下した。室温にて15時間攪拌した後に、反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エ チル=1:1)にて精製し、4'-(4'-エチルベンジル)ーピリダジン-3'-イル 2,3,4,6-テトラーO-アセチルー5-チオーβ-Dーグルコピラノシド(1.47g)を粗精製物として得た。

¹H-NMR (300MHz, CDCl₃): δ 1.23 (t, J = 7.6Hz, 3H), 1.94 (s, 3H), 2.02 (s, 3H), 2.06 (s, 3H), 2.06 (s, 3H), 2.63 (q, J = 7.6Hz, 2H), 3.40 (m, 1H), 3.82 (m, 2H), 4.15 (dd, J = 3.9, 11.7Hz, 1H), 4.30 (dd, J = 5.5, 11.7Hz, 1H), 5.22 (dd, J = 8.3, 9.2Hz, 1H), 5.44 (dd, J = 9.2, 9.9Hz, 1H), 5.66 (t, J = 8.3Hz, 1H), 6.65 (d, J = 8.2Hz, 1H), 7.06-7.08 (m, 3H), 7.16-7.18 (m, 2H), 8.76 (d, J = 4.7Hz, 2H).

ESI m/z = 561 (M+H), 583 (M+Na).

15

4'ー(4'ーエチルベンジル)ーピリダジンー3'ーイル 2,3,4,6ーテトラー〇ーアセチルー5ーチオーβーDーグルコピラノシド(1.24g)とトリエチルアミン:メタノール:水(5:1:1、35mL)の混合物を室温にて18時間攪拌した。反応混合物を濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=5:1)にて精製し、さらにNH型シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=5:1)にて精製し表題化合物(247mg,11%)を得た。

¹H-NMR (300MHz, CD₃0D): δ 1. 21 (t, J = 7. 6Hz, 3H), 2. 62 (q, J = 7. 6Hz, 2H), 3. 00 (m, 1H), 3. 35 (t, J = 9. 9Hz, 1H), 3. 63 (dd, J = 9. 0, 9. 9Hz, 1H), 3. 80 (dd, 1H), 3. 87 – 3. 93 (m, 2H), 3. 96 (s, 2H), 6. 37 (d, J = 8. 7Hz, 1H). 7. 17

(s, 4H), 7.24 (d, J = 4.7Hz, 1H), 8.68 (d, J = 4.7Hz, 1H). ESI m/z = 415 (M+Na).

実施例22

5 4'-(4'-エチルベンゾイル) ピリジン-3'-イル 2,3,4,6-テトラー O-アセチル-5-チオーβ-D-グルコピラノシドの製造

2,3,4,6-テトラー〇ーアセチルー5ーチオーDーグルコピラノース (0.53g, 1.47nmol)、4ー(4ーエチルペンゾイル)ー3ーヒドロキシピリジン (1.0g, 4.40nmol)、トリフェニルホスフィン (0.77g, 2.94nmol)及びトルエン (5nL)の混合物に、氷冷下、ジイソプロピルアゾジカルポキシレート(40%トルエン溶液、1.74nL, 2.94nmol)をゆっくり滴下した。室温で4時間攪拌した後に、反応液を濃縮し得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=2:3)にて精製し、淡黄色アモルファス状の表題化合物 (570ng, 68%)を得た。

¹H-NMR (300MHz, CDCl₃): δ 1. 27 (t, J = 7. 6Hz, 3H), 1. 87 (s, 3H), 1. 94 (s, 3H), 2. 02 (s, 3H), 2. 06 (s, 3H), 2. 73 (q, J = 7. 6Hz, 2H), 3. 26 (m, 1H), 4. 12 (dd, J = 3. 7, 12. 0Hz, 1H), 4. 28 (dd, J = 5. 6, 12. 0Hz, 1H), 5. 24 (dd, J = 9. 3, 10. 0Hz, 1H), 5. 30 - 5. 32 (m, 2H), 7. 21 (d, J = 4. 8Hz, 1H), 7. 62 - 7. 71 (m, 4H), 8. 47 (d, J = 4. 8Hz, 1H), 8. 72 (s, 1H).

20 8.47 (d, J = 4.8Hz, 1H), 8.72 (s,

ESI m/z = 596 (M+Na).

実施例23

1' -フェニル-1' H-1', 2', 4' -トリアゾール-3' -イル 2, 3, 25 4, 6 -テトラ-O-アセチル-5 -チオー β -D-グルコピラノシドの製造

2,3,4,6ーテトラー〇ーアセチルー5ーチオーDーグルコピラノース (677mg,1.86mmol)、3ーヒドロキシー1ーフェニルー1H-1,2,4ートリアゾール (200mg,1.24mmol) (BioNet 社から購入)、及びトリフェニルホスフィン

(324mg, 1.24mmol)のテトラヒドロフラン(4.0mL)溶液にジイソプロピルアゾジカルボキシレート(40%トルエン溶液、1.1mL, 1.86mmol)を 0℃で滴下した。室温にて2時間攪拌した後に、反応液を濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=60:40-50:50)にて精製し、無色油状の表題化合物(240mg, 38%)を得た。

5

10

¹H-NMR (300MHz, CDCl₃): δ 2.03 (s, 3H), 2.04 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.37 (ddd, J = 4.4, 5.3, 9.4Hz, 1H), 4.20 (dd, J = 4.4, 11.8Hz, 1H), 4.35 (dd, J = 5.3, 11.8Hz, 1H), 5.21 (dd, J = 8.4, 9.4Hz, 1H), 5.43 (t, J = 9.4Hz, 1H), 5.59 (dd, J = 7.9, 8.4Hz, 1H), 6.00 (d, J = 7.9Hz, 1H), 7.38 (m, 1H), 7.45-7.52 (m, 2H), 7.61-7.64 (m, 2H), 8.28 (s, 1H).

相当する出発原料と反応物を用い、上記実施例と同様な操作を行なうことにより、下記表に示す本発明化合物を得た。上記実施例化合物と合わせ、本発明化合物の好ましい化合物を表1に示した。

¹ NMR , MS , mp	¹ H-NMR (300MHz, CD ₃ 0D): δ 1.18 (t, $J = 7.6$ Hz, 3H), 1.37 (d, $J = 6.7$ Hz, 6H), 2.08 (s, 3H), 2.57 (q, 7.6Hz, 2H), 2.71-2.80 (m, 1H), 3.18-3.26 (m, 1H), 3.50-3.58 (m, 1H), 3.65 (d, $J = 3.6$ Hz, 2H), 3.70-3.78 (m, 2H), 3.84-3.92 (m, 1H), 4.35-4.45 (m, 1H), 5.40 (d, $J = 8.7$ Hz, 1H), 7.00-7.10 (m, 4H). BSI m/z=435 (M-H) mp 54.0-58.5 $\%$	¹ H-NMR (300MHz, CD ₃ 0D): δ 1.18 (t, $J = 7.8$ hz, 3H), 2.05 (s, 3H), 2.57 (q, $J = 7.8$ Hz, 2H), 2.75–2.85 (m, 1H), 3.20–3.28 (m, 1H), 3.50–3.60 (m, 1H), 3.65 (d, $J = 8.0$ Hz, 2H), 3.70–3.80 (m, 2H), 3.89 (dd, $J = 4.0$, 11.5Hz, 1H), 5.39 (d, $J = 8.9$ Hz, 1H), 7.03–7.10 (m, 4H).	¹ H-NMR (300MHz, CD ₃ 0D): δ 2.06 (s, 3 H), 2.18 (m, 3 H), 2.83 (m, 1 H), 3.25 (t, J = 8.9 Hz, 1 H), 3.56 (t, J = 8.9 Hz, 1 H), 3.65 (m, 2 H), 3.74 (t, J = 8.9 Hz, 1 H), 3.76 (dd, J = 5.9, 11.5 Hz, 1 H), 3.89 (dd, J = 3.7, 11.5 Hz, 1 H), 5.41 (d, J = 8.9 Hz, 1 H), 6.90 (m, 2 H), 7.07 (t, J = 7.93 Hz, 1 H).	¹ H-NMR (300MHz, CD ₃ 0D): δ 2.06 (s, 3 H), 2.83 (m, 1 H), 3.25 (t, J = 8.8 Hz, 1 H), 3.56 (t, J = 8.8 Hz, 1 H), 3.61 (m, 2 H), 3.68–3.79 (m, 2 H), 3.80 (s, 3 H), 3.89 (dd, J = 3.9, 11.5 Hz, 1 H), 5.41 (d, J = 8.8 Hz, 1 H), 6.87–6.97 (m, 3 H). BSI m/z=437 (M+Na) mn 145.0–147.0°C
構造式	OH N-N HO HO OH	HO, HO, HO	HO HO HO HO	HO N-N HO HO OH
化合物 番号		九 2 8	カ る を を	化 4

化合物 5	HO HO HO HO	¹ H-NMR (300MHz, CD ₃ 0D): δ 2.05 (s, 3 H), 2.82 (m, 1 H), 3.24 (t, J = 8.9 Hz, 1 H), 3.55 (t, J = 8.9 Hz, 1 H), 3.62 (m, 2 H), 3.68–3.79 (m, 2 H), 3.80 (s, 3 H), 3.89 (dd, J = 3.7, 11.5 Hz, 1 H), 5.39 (d, J = 8.9 Hz, 1 H), 6.79 (m, J_{AB} = 8.8 Hz, 2H). ESI m/z=419 (M+Na) mp 145.0–147.0°C
化合物 6	HO HO HO HO	¹ H-NMR (300MHz, CD ₃ 0D): δ 2.07 (s, 3 H), 2.84 (m, 1 H), 3.24 (t, J = 8.9 Hz, 1 H), 3.56 (t, J = 8.9 Hz, 1 H), 3.61 (s, 2 H), 3.71–3.79 (m, 2 H), 3.80 (s, 3 H), 3.88 (dd, J = 3.8, 11.5 Hz, 1 H), 5.41 (d, J = 8.9 Hz, 1 H), 6.58–6.64 (m, 2H), 7.04 (dd, J = 8.4, 9.2 Hz, 1H).
化合物 7	HO HO HO HO OH	ESI m/z = 463 (M+Na) mp 184.0-194.0°C
化 8 8	ON-N HO, HO OH OH	BSI m/z = 563 (M+Na) mp 106.0-110.0℃

	HO N-N HO HO OH	ESI m/z = 435 (M+Na) mp 135.0-137.5°C
分 01	N-N HO HO OH	ESI m/z = (M+Na) mp 149, 0-150, 0°C
化 11	N-N HO, HO OH	¹ H-NMR (300MHz, CD30D): δ 1.18 (t, $J = 7$.6Hz, 3H), 1.26 (t, $J = 7$.2Hz, 3H), 1.41 (t, $J = 7$.2Hz, 3H), 2.40 (s, 3H), 2.57 (q, $J = 7$.6Hz, 2H), 3.11 (m, 1H), 3.51–3.88 (m, 4H), 4.15 (q, $J = 7$.2Hz, 2H), 4.28–4.52 (m, 4H), 5.78 (d, $J = 8$.4Hz, 1H), 7.08 (s, 4H). ESI m/z = 561 (M+Na) mp 79.0–80.0 $^{\circ}$
化合物 12	HO N-N HO HO HO	¹ H-NMR (300MHz, CD ₃ 0D): δ 0. 60 (m, 2H), 0.88 (m, 2H), 1.83 (m, 1H), 2.04 (s, 3H), 2.82 (m, 1H), 3.25 (t, $J=8.9$ Hz, 1H), 3.56 (dd, $J=9.0$, 10.1Hz, 1H), 3.60–3.81 (m, 4H), 3.88 (dd, $J=3.9$, 11.5Hz, 1H), 5.39 (d, $J=8.9$ Hz, 1H), 6.93 (m, 2H), 7.04 (m, 2H). ESI m/z=429 (M-H) mp 157.0–158.0 $^{\circ}$ C
化合物 13	HO S O HO H	ESI m/z=513 (M+Na) mp 44.0-45.0°C

化 14	HO N-N HO HO HO	¹ H-NMR (300MHz, CD30D): δ 1.18 (t, $J = 7.6$ Hz, 3H), 1.83 (m, 2H), 2.36 (m, 2H), 2.56 (q, $J = 7.6$ Hz, 2H), 2.69 (m, 2H), 2.90 (m, 1H), 3.58 (t, $J = 9.3$ Hz, 1H), 3.68—3.81 (m, 4H), 3.92 (dd, $J = 3.7$, 11.3Hz, 1H), 4.80 (m, 1H), 5.71 (d, $J = 8.7$ Hz, 1H), 7.05 (m, 4H).
化 15	HO HO HO HO	¹ H-NMR (300MHz, CD30D): δ 1.19 (t, J = 7.6Hz, 3H), 2.57 (q, J = 7.6Hz, 2H), 2.89 (m, 1H), 3.57 (dd, J = 9.2, 9.8Hz, 1H), 3.71—3.82 (m, 4H), 3.91 (dd, J = 3.7, 11.3Hz, 1H), 4.60—4.94 (m, 5H), 5.65 (d, J = 8.5Hz, 1H), 7.06 (m, 4H).
88 分 6 16	HO S HO HO HO HO HO	BSI m/z=561 (M+Na) mp 145.0-147.0℃
化合物 17	H HO HO OH	ESI m/z=445 (M+Na) mp 117.0-132.0°C

分 48 を	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	ESI m/z=523 (M+Na) np 102.0-112.0°C
6 19	HO, HO, HO HO	¹ H-NMR (300MHz, CD30D): δ 1.19 (t, J = 7.6Hz, 3H), 2.09 (s, 1H), 2.39 (s, 1H), 2.58 (q, J = 7.6Hz, 2H), 2.85 (m, 1H), 3.76 (t, J = 9.0Hz, 1H), 3.70—3.80 (m, 4H), 3.90 (dd, J = 3.9, 11.51Hz, 1H), 5.54 (d, J = 8.9Hz, 1H), 7.08 (d, J = 8.1Hz, 2H), 7.14 (d, J = 8.1Hz, 2H), 7.28 (s, 4H).
15 20 20 20 30	HO S OH	¹ H-NMR (300MHz, CD ₃ 0D) : δ 1. 20 (t, J = 7.6Hz, 3H), 2.60 (q, J = 7.6Hz, 2H), 2.93-3.03 (m, 1H), 3.60 (dd, J = 9.2 and 10.0Hz, 1H), 3.76-4.10 (m, 5H), 5.32 (d, J = 8.7Hz, 1H), 7.07 (d, J = 4.8Hz, 1H), 7.08-7.16 (m, 4H), 8.08 (d, J = 4.8Hz, 1H), 8.53 (s, 1H) . ESI m/z = 414 (M+Na) mp 184.0-187.0°C
化合物 21	NON HO, OH	ESI m/z = 414 (M+Na) mp 147.0-149.0℃

		¹ H-NMR (300MHz, CD ₃ 0D) : δ 1.17 (t, $J = 7.6$ Hz, 3H), 2.56 (q, $J = 7.6$ Hz, 2H), 2.95
化合物 22	N OH OH	(ddd, $J = 3.6$, 6.2 and 10.1Hz 1H), 3.58 (dd, $J = 9.1$ and 10.1Hz, 1H), 3.70 (dd, $J = 6.2$ and 11.3Hz, 1H), 3.84 (t, $J = 8.7$ Hz, 1H), 3.92 (dd, $J = 3.6$ and 11.3Hz, 1H), 4.05 (d, $J = 14.0$ Hz, 1H), 4.25 (d, $J = 14.0$ Hz, 1H), 5.23 (d, $J = 8.7$ Hz, 1H), 7.05 (d, $J = 8.2$ Hz, 2H), 7.17 (d, $J = 8.2$ Hz, 2H), 7.27 (m, 2H), 7.75 (d, $J = 8.5$ Hz, 1H), 8.08 (dd, $J = 1.2$ and 5.0Hz, 1H).
化合物 23	S OH HO, HO	THE CASE (1) $L_{AB} = 1.00$ (1) $L_{AB} = 1.0$ (2) $L_{AB} = 1.0$ (3) $L_{AB} = 1.0$ (4) $L_{AB} = 1.0$ (5) $L_{AB} = 1.0$ (7) $L_{AB} = 1.0$ (8) $L_{AB} = 1.0$ (9) $L_{AB} = 1.0$ (1) $L_{AB} = 1.0$ (1
化合物 24	HO HO HO HO	The construction of the c
化合 25	HO, HO, HO	¹ H-NMR (300MHz, CD30D) : δ 1.17 (t, $J = 7.6$ Hz, 3H), 2.15 (s, 3H), 2.38 (s, 3H), 2.56 (q, $J = 7.6$ Hz, 2H), 2.95 (m, 1H), 3.56 (dd, $J = 9.0$, 10.1Hz, 1H), 3.74 (dd, $J = 6.5$ and 11.6Hz, 1H), 3.74-3.88 (m, 2H), 3.92 (dd, $J = 3.9$ and 11.6Hz, 1H), 4.60 (d, $J = 15.2$ Hz, 1H), 6.23 (d, $J = 8.9$ Hz, 1H), 6.70 (s, 1H), 7.05 (s, 4H). ESI m/z = 442 (M+Na) mp 155.0—157.0 \mathbb{C}

化合物 26	НО S OH	¹ H-NMR (300MHz, CD30D): δ 1. 20 (t, J = 7. 6Hz, 3H), 2. 60 (q, J = 7. 6Hz, 2H), 3. 09 (m, 1H), 3. 24 (t, J = 9.0Hz, 1H), 3. 54 (dd, J = 9.0 and 10. 3Hz, 1H), 3. 70–3. 84 (m, 4H), 3. 92 (m, 1H), 5. 00 (d, J = 9.9 Hz, 1H), 6. 42 (d, J = 7. 6Hz, 1H), 7. 11–7. 16 (m, 4H), 7. 57 (d, J = 2. 5Hz, 1H), 7. 82 (dd, J = 2. 5 and 7. 6Hz, 1H).
化合物 27	N HO, HO OH	$ ^{1}\text{H-NMR} \ (300\text{MHz, CD}_{3}\text{OD}) : \delta \ 0.63 \ (\text{m}, 2\text{H}), \ 0.92 \ (\text{m}, 2\text{H}), \ 1.86 \ (\text{m}, 1\text{H}), \ 2.98 \ (\text{m}, 1\text{H}), \ 3.59 \ (\text{dd}, J = 9.0, 10.1\text{Hz}, 1\text{H}), \ 3.77-3.94 \ (\text{m}, 3\text{H}), \ 3.97 \ (\text{d}, J = 15.0\text{Hz}, 1\text{H}), \ 4.03 \ (\text{d}, J = 15.0\text{Hz}, 1\text{H}), \ 5.31 \ (\text{d}, J = 8.7\text{Hz}, 1\text{H}), \ 6.99 \ (\text{m}, J_{AB} = 8.2\text{Hz}, 2\text{H}), \ 7.06 \ (\text{d}, J = 8.2\text{Hz}, 2\text{H}), \ 8.07 \ (\text{m}, 1\text{H}), \ 8.52 \ (\text{s}, 1\text{H}). $ ESI m/z=426 (M+Na) mp 155.0-159.0°C
化合物 28	N HO, OH	ESI m/z=428 (M+Na) mp 78.0-81.5°C
化合物 29	N HO HO OH	ESI m/z=416 (M+Na) mp 145.0-160.0°C
化合物 30	HO N HO HO OH	¹ H-NMR (300MHz, CD30D): δ 1.50 (s, 6H), 2.93-3.03 (m, 1H), 3.59 (t, J = 8.8Hz, 1H), 3.78 (dd, J = 6.4, 11.3Hz, 1H), 3.84 (t, J = 8.8Hz, 1H), 3.93 (dd, J = 3.6, 11.3Hz, 1H), 3.98-4.11 (m, 2H), 5.32 (d, J = 8.8Hz, 1H), 7.21 (d, J = 8.5Hz, 2H), 7.41 (d, J = 8.5Hz, 2H), 8.03 (d, J = 4.9Hz, 1H), 8.53 (s, 1H).

ESI m/z=444 (M+Na) mp 174.0-175.0°C	¹ H-NMR (300MHz, CD30D): δ 2.78 (t, $J = 7$.2Hz, 2H), 2.95-3.02 (m, 1H), 3.58 (dd, $J = 9.0$ and 10.3Hz, 1H), 3.72 (t, $J = 7$.2Hz, 2H), 3.78 (dd, $J = 6.0$, 11.8Hz, 1H), 3.83 (t, $J = 8$.9Hz, 1H), 3.93 (dd, $J = 3.7$, 11.8Hz, 1H), 3.93-4.09 (m, 2H), 5.31 (d, $J = 8$.9Hz, 1H), 7.09 (d, $J = 4$.8Hz, 1H), 7.13-7.18 (m, 4H), 8.13 (d, $J = 8$.1H). ESI $m/z = 430$ (M+Na)		BSI m/z=416 (M+Na) mp 153. 5-155. 0°C
HO N HO HO OH	HO S OH	N HO S OH	HO,,,OH
分 31 31	化合物 32	六 33 8	化合物 34

化合物 35	HO S O F F HO OH N	ESI m/z=434 (M+Na) mp 155.0-157.5°C
化合 36	ONH HO HO OH	¹ H-NMR (300MHz, CD ₃ 0D): δ 1. 20 (t, J = 7. 6Hz, 3H), 2. 15 (s, 3H), 2. 59 (q, J = 7. 6Hz, 2H), 2. 91 (ddd, J = 3. 6. 6. 5 and 10. 3Hz, 1H), 3. 58 (t, J = 9. 9Hz, 1H), 3. 70-3. 98 (m, 5H), 6. 16 (d, J = 8. 7Hz, 1H), 7. 08-7. 13 (m, 4H), 7. 38 (d, J = 7. 9Hz, 1H). Help, 7. 9Hz, 1H).
化合物 · 37	HO, HO, HO	¹ H-NMR (300MHz, CD30D): δ 2. 92—2. 99 (m, 1H), 3. 58 (dd, J = 9. 0, 10. 3Hz, 1H), 3. 73—3. 94 (m, 3H), 4. 14 (d, J = 14. 0Hz, 1H), 4. 34 (d, J = 14. 0Hz, 1H), 5. 27 (d, J = 8. 7Hz, 1H), 6. 48 (dd, J = 1. 9, 2. 5Hz, 1H), 7. 30 (dd, J = 4. 8, 8. 4Hz, 1H), 7. 41 (d, J = 8. 7Hz, 2H), 7. 59 (d, J = 8. 7Hz, 2H), 7. 67 (d, J = 1. 9Hz, 1H), 7. 76—7. 79 (m, 1H), 8. 10—8. 14 (m, 2H).
化合物 38	HO, HO HO HO	¹ H-NMR (300MHz, CD30D): δ 1. 21 (t, $J = 7$. 6Hz, 3H), 2. 62 (q, $J = 7$. 6Hz, 2H), 3. 00 (m, 1H), 3. 35 (t, $J = 9$. 9Hz, 1H), 3. 63 (dd, $J = 9$. 0, 9. 9Hz, 1H), 3. 80 (dd, 1H), 3. 87 — 3. 93 (m, 2H), 3. 96 (s, 2H), 6. 37 (d, $J = 8$. 7Hz, 1H), 7. 17 (s, 4H), 7. 24 (d, $J = 4$. 7Hz, 1H), 8. 68 (d, $J = 4$. 7Hz, 1H).

試験例

5

10

文献 (Aanal. Biochem., 第 201 巻, 301 項, 1984 年) 記載の方法に準じて調製したラット腎刷子縁膜小胞 (brush border membrane vehicle: BBMV) の懸濁液 (蛋白濃度 4mg/mL) 50 μL を 37℃、2 分プレインキュベーションした後、これに、DMS0に溶解した披験化合物 (DMS0 終濃度 1 %) 及び 100mM Mannitol、100mM NaSCN 又は KSCN、10mM HEPES/Tris pH 7.4、D-グルコース (終濃度 0.1mM)、D-[6-³H] グルコース (Amersham) 1 μCi を混合した反応液 150 μL を加えた。37℃で 5 秒間反応を行った後、反応混合物に氷冷した 1 mL の反応停止液 (150mM NaCl、10mM HEPES/Tris pH7.4、0.3mM フロリジン)を加えて反応を停止させた後、直ちに pore size0.45 μm のメンブレンフィルター (HAWP02500、Millipore)を用いて、急速濾過を行い、BBMV を分離した。そのメンブレンフィルターを氷冷した反応停止液4.5mL で 3 回洗浄し、十分に乾燥してから液体シンチレーションカウンター (Beckman)を用いて放射活性の測定を行いメンブレンフィルター上の BBMV に取り込まれたグルコース量を定量した。

15 化合物無添加時のグルコース取り込み量を100%とし、化合物を添加した時のグルコース取り込み量が50%阻害される化合物濃度(IC_{60} 値)を算出した。その結果を表 2 に示した。

表 2

化合物	IC ₅₀ (μM)
化合物1	0.49
化合物 2	0.31
化合物 3	0.18
化合物 4	0.26
化合物 5	0.56
化合物 6	0.52
化合物13	0.63
化合物 2 0	0.14
化合物 2 7	0. 43

産業上の利用可能性

本発明により優れたSGLT2の活性阻害作用を示すへテロアリール 5-チ オー β -D-グルコピラノシド化合物又はその製薬学的に許容される塩の提供が可能となった。本発明化合物は、糖尿病、糖尿病関連疾患又は糖尿病性合併症の 予防又は治療薬して有用である。

請求の範囲

1. 下記式で表される 5 ーチオーβ ー D ー グルコピラノシド化合物若しくはそ の製薬学的に許容される塩又はそれらの水和物。

「式中、

Bは、任意の置換基で置換されてもよいヘテロアリール基であり、

10 R^{1A}、R^{2A}、R^{3A}及びR^{4A}は同一又は異なって、

水素原子、 C_{2-10} アシル基、 C_{7-10} アラルキル基、 C_{2-6} アルコキシカルポニル基、 C_{1-6} アルコキシ C_{2-10} アシル基又は C_{1-6} アルコキシ C_{2-6} アルコキシカルポニル基であり、

QxはN又はCを示す、

 X^A は $-(CH_2)$ n-、 $-CO(CH_2)$ n-、 $-C(OH)(CH_2)$ n-、 $-O-(CH_2)$ n-、 $-CONH(CH_2)$ n-、 $-NHCO(CH_2)$ n- (nは0-3の整数である)、-COCH=CH-、-S-又は-NH-を示す、但し、 Q^X がNである場合には、 X^A は $-(CH_2)$ n-、 $-CO(CH_2)$ n-、 $-C(OH_2)$ n-、 $-CO(CH_2)$ n-、-COCH=CH-を示す、

R⁵、R⁶、R⁷、R⁸及びR⁹は同一又は異なって、

水素原子;ハロゲン原子;水酸基;ハロゲン原子及び水酸基からなる群から選択

される 1 個以上の置換基で置換されてもよい C_{1-6} アルキル基; $-(CH_2)$ m'-Q'

{式中、m'は、 $0\sim4$ の整数であり、Q'は、ホルミル基;アミノ基;ニトロ基;シアノ基;カルボキシル基;スルホン酸基;ハロゲン原子で置換されてもよいC1-6アルコキシ基; C_{1-6} アルコキシ基; C_{2-10} アシルオキシ基; C_{2-10} アシル基; C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} アルキルスルフィニル基; C_{1-6} アルキルスルホニル基; C_{1-6} アルキルスルアミノ基; C_{1-6} アルキルスルホニルアミノ基; C_{1-6} アルキルスルホニルアミノ基; C_{1-6} アルキルアミノ基; C_{1-6} アルキルアミノ基; C_{1-6} アルキルアミノ基; C_{1-6} アルキル)アミノオ・カルバモイル基; C_{1-6} アルキル)アミノカルボニル基;若しくは C_{1-6} アルキル)アミノカルボニル基である};又は

 $1 \sim 4$ 個の置換基で置換されてもよい、 C_{3-7} シクロアルキル基; C_{3-7} シクロアルキルオキシ基; C_{7-10} アラルキル基; C_{7-10} アラルキル基; C_{7-10} アラルキルアミノ基; C_{7-10} アラルキルアミノ基; C_{7-10} アラルキルアミノ基; C_{7-10} アラルキルタミノ基; C_{7-10} 、 C_{1-6} アルキル基及び C_{1-6} アルコキシ基からなる群から選択される)である]

- 2. X^A が $-(CH_2)$ n-Xは $-CO(CH_2)$ n-(nは0-3の整数である) である請求項1に記載の化合物若しくはその製薬学的に許容される塩又はそれらの水和物。
 - 3. X^A が $-CH_2-Z$ は-CO-である請求項1に記載の化合物若しくはその 製薬学的に許容される塩又はそれらの水和物。
- 25 4. X^A が $-CH_2$ -である請求項1に記載の化合物若しくはその製薬学的に許容される塩又はそれらの水和物。

5.

15

20

式

で表される部分が、

5

[式中、 $Q^A \sim Q^D$ において、いずれか1つ以上が窒素原子であり、その他が独立して $-C - Z^Y$ である、但し、 Q^D がCである場合、環内窒素原子のいずれか1つは Z^X で置換されることができる

(Z×は、ハロゲン原子で置換されてもよいC1-6アルキル基、ハロゲン原子で置 換されてもよいC₃₋₁シクロアルキル基、C₂₋₁₀アシル基、C₂₋₆アルコキシカ ルポニル基、ハロゲン原子; C,-6アルキル基; C,-6アルコキシ基; アミノ基; ニトロ基:シアノ基:カルボキシル基; C2-10アシル基; C2-6アルコキシカル 10 ボニル基; C1-6アルキルチオ基; C1-6アルキルスルフィニル基; C1-6アルキ ルスルホニル基; C_{2-10} アシルアミノ基; C_{1-6} アルキルアミノ基; N, N-ジ(C 1-6アルキル) アミノ基; N-(C1-6アルキル) アミノカルボニル基;及びN,N -ジ (C₁₋₆アルキル) アミノカルポニル基からなる群から選択される1個以上 の置換基で置換されてもよい、フェニル基若しくはC,-,0アラルキル基、ピリジ 15 ル基、チエニル基、フラニル基又はピリミジニル基であり、Z^Yは、独立して、 水素原子、ハロゲン原子、ハロゲン原子;水酸基;及びC1-6アルコキシ基から なる群から選択される1個以上の置換基で置換されてもよいC1-6アルキル基、 ハロゲン原子で置換されてもよいC3-7シクロアルキル基、カルポキシル基又は C₂₋₆アルコキシカルボニル基である)]で表される基である、請求項1~4の 20 いずれか1項に記載の化合物若しくはその製薬学的に許容される塩又はそれらの 水和物。

6.

25 式

で表される部分が、

10

15

20

[式中、Q^AがNであって、Q^BがーN-Z¹であるとき、若しくはQ^AがーN-Z²であって、Q^BがNであるとき、Q^cはーC-Z³であり、又はQ^BがNであって、Q^cがーN-Z⁴であるとき、若しくはQ^BがーN-Z⁵であって、Q^cがNであるとき、Q^AはーC-Z⁶である

(Z¹、Z²、Z⁴及びZ⁵は、独立して、水素原子、ハロゲン原子で置換されても よいC1-6アルキル基、ハロゲン原子で置換されてもよいC3-7シクロアルキル基、 C₂₋₁0アシル基、C₂₋₆アルコキシカルボニル基、ハロゲン原子; C₁₋₆アルキ ル基: C, -。アルコキシ基; アミノ基; ニトロ基; シアノ基; カルボキシル基; C_{2-1} 。アシル基: C_{2-6} アルコキシカルボニル基; C_{1-6} アルキルチオ基; C_{1-6} «アルキルスルフィニル基; C₁₋₆アルキルスルホニル基; C₂₋₁₀アシルアミノ 基; C₁₋₆アルキルアミノ基; N, N-ジ(C₁₋₆アルキル) アミノ基; N-(C₁₋ 。アルキル)アミノカルボニル基;及びN,N-ジ(C1-6アルキル)アミノカルボ ニル基からなる群から選択される1個以上の置換基で置換されてもよい、フェニ ル基若しくはC2-10アラルキル基、ピリジル基、チエニル基、フラニル基又はピ リミジニル基であり、Z³及びZ⁶は、独立して、水素原子、ハロゲン原子、ハロ ゲン原子:水酸基:及びC1-4アルコキシ基からなる群から選択される1個以上 の置換基で置換されてもよいC₁₋₆アルキル基、ハロゲン原子で置換されてもよ いて、、、、シクロアルキル基、カルボキシル基又はC。、。アルコキシカルボニル基で ある)]で表されるピラゾール基である、請求項1~4のいずれか1項に記載の化 合物若しくはその製薬学的に許容される塩又はそれらの水和物。

25 7. 式

で表される部分が、

5 [式中、 $Q^1 \sim Q^4$ において、いずれか1つがNであり、その他が独立して、-C $-Z^7$ (Z^7 は、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_1 -6 アルキル基、 C_{1-6} アルコキシ基、アミノ基、 C_{1-6} アルキルアミノ基、N N - ジ(C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-10} アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)である] で表されるピリジル基である、請求項1~4のいずれか1項に記載の化合物若しくはその製薬学的に許容される塩又はそれらの水和物。

8. 式

15 で表される部分が、

20

[式中、 Q^1 及び Q^3 がNであるとき、 Q^2 及び Q^4 は、独立して、 $-C-Z^8$ であるか、又は Q^2 及び Q^4 がNであるとき、 Q^1 及び Q^3 が独立して、 $-C-Z^9$ である(Z^8 及び Z^9 は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、 C_{1-6} アルキルアミ

ノ基、N, N-ジ(C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-1} 0アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)]

で表されるピリミジル基である、請求項1~4のいずれか1項に記載の化合物若 5 しくはその製薬学的に許容される塩又はそれらの水和物。

9. 式

で表される部分が、

10

15

[式中、 $Q^1 \sim Q^4$ において、 Q^1 及び Q^2 、 Q^2 及び Q^3 、又は Q^3 及び Q^4 がNであり、その他が $-C-Z^{10}$ (Z^{10} は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、 C_{1-6} アルコキシ基、アミノ基、 C_{1-6} アルキルアミノ基、 C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-10} アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)である]

で表されるピリダジニル基である、請求項1~4のいずれか1項に記載の化合物 若しくはその製薬学的に許容される塩又はそれらの水和物。

20

10. 式

で表される部分が、

[式中、 $Q^1 \sim Q^4$ において、 Q^1 及び Q^4 がNであり、その他が $-C-Z^{11}$ (Z^{11} は、独立して、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい C_{1-6} アルキル基、アミノ基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルアミノ基、 C_{1-6} アルキル)アミノ基、 C_{2-10} アシルアミノ基、 C_{2-10} アシル基又はハロゲン原子で置換されてもよい C_{3-7} シクロアルキル基である)である]で表されるピラジニル基である、請求項 $1\sim 4$ のいずれか1項に記載の化合物若しくはその製薬学的に許容される塩又はそれらの水和物。

10

11. 下記式で表される5-チオーβ-D-グルコピラノシド化合物 又はその 製薬学的に許容される塩。

15

20

(式中、 Z^A は水素原子、 C_{1-6} アルキル基、ハロゲン原子で置換された C_{1-6} アルキル基、 C_{3-6} シクロアルキル基、ベンジル基、 C_{2-10} アシル基又は C_{2-6} アルコキシカルボニル基であり、 Z^B は C_{1-6} アルキル基又はハロゲン原子で置換された C_{1-6} アルキル基であり、 $R^{5B}\sim R^{9B}$ は同一でも若しくは異なってもよく、水素原子、ハロゲン原子、 C_{1-6} アルキル基、ハロゲン原子で置換された C_{1-6} アルキル基、 C_{3-6} シクロアルキル基、 C_{1-6} アルコキシ基、ハロゲン原子で置換された C_{1-6} アルコキシ基又は C_{1-6} アルコキシ基又は C_{1-6} アルコキシオルボニル基であり、 C_{2-10} アシル基又は C_{2-6} アルコキシカルポニル基である。)

12. 請求項 $1 \sim 11$ のいずれか1 項に記載の5 - チオー $\beta -$ D - グルコピラ ノシド化合物 若しくはその製薬学的に許容される塩又はそれらの水和物を有効 成分とする医薬。

- 5 13. ナトリウム依存性グルコース供輸送体2の活性阻害剤である請求項12 記載の医薬。
 - 14. 糖尿病、糖尿病関連疾患又は糖尿病性合併症の予防又は治療薬である請求項13記載の医薬。
- 15. 請求項1-11のいずれか1項に記載の5-チオーβ-D-グルコピラ ノシド化合物若しくはその製薬学的に許容される塩又はそれらの水和物、並びに PPARィアゴニスト; PPARα/ィアゴニスト; PPARδアゴニスト; 及び PPAR α/ィ/δアゴニストからなる群から選択されるインスリン感受性増強薬、グリコ シダーゼ阻害薬、ピグアナイド薬、インスリン分泌促進薬、インスリン製剤及び ジペプチジルペプチダーゼ IV 阻害薬からなる群より選択される少なくとも1種 類の薬剤を組み合わせてなる医薬。
- 16. 請求項1-11のいずれか1項に記載の5-チオーβ-D-グルコピラ ノシド化合物若しくはその製薬学的に許容される塩又はそれらの水和物、並びに ヒドロキシメチルグルタリルコエンザイムA還元酵素阻害薬、フィブラート系化 合物、スクアレン合成酵素阻害薬、アシルコエンザイムA:コレステロールアシル 基転移酵素阻害薬、低比重リポタンパク受容体促進薬、ミクロソームトリグリセリドトランスファープロテイン阻害剤及び食欲抑制薬からなる群より選択される 少なくとも1種類の薬剤を組み合わせてなる医薬。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/001272

A. CLASSIFIC Int.Cl7	ATION OF SUBJECT MATTER C07H17/02, A61K31/7056, A61P3/	/10, 43/00	
According to Inte	ernational Patent Classification (IPC) or to both national	classification and IPC	
B. FIELDS SE	ARCHED		
Minimum docum	entation searched (classification system followed by class	sification symbols)	
Int.CI	C07H17/02, A61K31/7056, A61P3	710, 43,00	
	•		
Documentation S	earched other than minimum documentation to the extent	t that such documents are included in the	fields searched
Documentations	calched outer than imman documents of the		
Electronic data b	ase consulted during the international search (name of da	ata base and, where practicable, search terms	rms used)
CAPLUS	(STN), REGISTRY (STN), MEDLINE (ST	IN), BIOSIS(SIN), EMBAS	E (SIN)
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	
Category*	Citation of document, with indication, where app		Relevant to claim No.
A	SAKAGUCHI, M. et al., Potentia	al Radiosensiti-	1-16
	zing Agents. 4.2-Nitroimidazo. J.Med.Chem., 1982, Vol.25, No	.11, pages 1339	·
	to 1342	, , ,	
_	 WO 02/68440 Al (Kissei Pharma	coutical Co	1-16
A	Ltd.),	dedicted co.,	
	06 September, 2002 (06.09.02)	,	
	Full text & EP 1364958 A1		
A	WO 01/16147 A1 (Kissei Pharma	aceutical Co.,	1–16
	Ltd.), 08 March, 2001 (08.03.01),		
}	Full text		
	& EP 1213296 A1 & JP	2001-519711 A	
l t			
	<u> </u>		L
× Further de	ocuments are listed in the continuation of Box C.	See patent family annex.	
	gories of cited documents: defining the general state of the art which is not considered	"T" later document published after the int date and not in conflict with the applic	ation but cited to understand
to be of par	ticular relevance	the principle or theory underlying the i	invention
"E" earlier appl filing date	ication or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be consi	dered to involve an inventive
"L" document	which may throw doubts on priority claim(s) or which is tablish the publication date of another citation or other	step when the document is taken alone "Y" document of particular relevance; the	claimed invention cannot be
special reas	on (as specified)	considered to involve an inventive combined with one or more other such	sten when the document is
	eferring to an oral disclosure, use, exhibition or other means sublished prior to the international filing date but later than	being obvious to a person skilled in th	e art
	date claimed	"&" document member of the same patent	ıanıny
Date of the actu	al completion of the international search	Date of mailing of the international sea	rch report
02 Apr	il, 2004 (02.04.04)	20 April, 2004 (20	.04.04)
	ng address of the ISA/ see Patent Office	Authorized officer	
ļ -	Lacont office	The Name No.	
Facsimile No. Form PCT/ISA/2	10 (second sheet) (January 2004)	Telephone No.	<u> </u>

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/001272

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 02/36602 A1 (Ajinomoto Co., Inc.), 10 May, 2002 (10.05.02), Full text & EP 1338603 A1 & US 2004/0006025 A1	1-16
,		

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl'C07H17/02, A61K31/7056, A61P3/10, 43/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl'C07H17/02, A61K31/7056, A61P3/10, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN), MEDLINE (STN), BIOSIS (STN), EMBASE (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A A	SAKAGUCHI, M. et al., Potential Radiosensitizing Agents. 4. 2-Nitroimidazole Nucleosides, J. Med. Chem., 1982, Vol. 25, No. 11, pages 1339-1342	1-16
A	WO 02/68440 A1 (キッセイ薬品工業株式会社) 2002.09.06、全文 & EP 1364958 A1	1-16

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

02.04.2004

国際調査報告の発送日 20. 4. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 伊藤 幸司 4C 9450

電話番号 03-3581-1101 内線 3452

C (続き). 関連すると認められる文献		
引用文献の		関連する 請求の範囲の番号
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	pflがい型団の角方
A	WO 01/16147 A1 (キッセイ薬品工業株式会社) 2001.03.08、全文 & EP 1213296 A1 & JP 2001-519711 A	1-16
A	WO 02/36602 A1 (味の素株式会社) 2002.05.10、全文 & EP 1338603 A1 & US 2004/0006025 A1	1-16