MATEMATICKÉ STRUKTURY V INFORMATICE

Půlsemestrální písemná zkouška za 20 bodů skupina C

1. Dokažte větu $\exists x(\neg \varphi) \Rightarrow (\forall x \varphi \Rightarrow \psi)$ Postup:

(1) Použijte tautologii $\varphi \Rightarrow \neg \neg \varphi$.

(2) Proveďte distribuci kvantifikátoru \forall .

(3) Užijte třetí axiom výrokové logiky ve tvaru $(A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A)$.

(4) Aplikujte pravidlo odloučení.
(5) Použijte tautologii ¬(∀xφ) ⇒ (∀xφ ⇒ ψ).

(6) Složte implikace ze (4) a (5).

(7) Provedte úpravu (nahraďte kvantifikátor $\forall x$ kvantifikátorem $\exists x$).

2. Převeďte negaci formule $(\forall xp(x,y) \Rightarrow \exists x \forall yq(x,y)) \land \exists y (\forall xp(y,y) \Rightarrow \forall xp(x,y))$ do prenexního tvaru.

3. Buď $\mathcal{A}=(\mathbb{Z};f)$ algebra typu (1) (\mathbb{Z} značí množinu celých čísel), kde f(z)=|z|-8 pro každé $z\in\mathbb{Z}$. Popište

(1) podalgebru $\mathcal{B} = \langle \{-4\} \rangle$ algebry \mathcal{A} ,

(2) přímý součin algeber $\mathcal{B} \times (\{0,1,2\};g)$, kde g je permutace g=(1,2) (v cyklickém zápisu).

4. Vypočtěte v tělese $(\mathbb{Z}_5, \cdot, +)$

$$(\frac{1}{1} + \frac{1}{2} + \frac{1}{3}) \cdot \frac{1}{4}$$

5. Mějme grupu regulárních matic řádu 2 nad tělesem reálných čísel $\mathbb R$ spolu s operací násobení matic, označíme ji $(GL(2,\mathbb R),\cdot)$. Uvažujme binární relaci \sim na $(GL(2,\mathbb R),\cdot)$ definovanou předpisem $A\sim B\Leftrightarrow |A|=|B|$ (kde $|\cdot|$ značí determinant). Dokažte, že

(1) ~ je kongurence na grupě $(GL(2,\mathbb{R}),\cdot)$ a

- (2) faktorová grupa $(GL(2,\mathbb{R})/\sim,\cdot)$ je izomorfní s grupou $(\mathbb{R}\setminus\{0\},\cdot)$ všech nenulových reálných čísel s násobením.
- (3) Definujte normální podgrupu grupy $(GL(2,\mathbb{R}),\cdot)$, která odpovídá kongruenci \sim .