

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Introdução à trigonometria

Olímpio Rudinin Vissoto Leite

■ As razões trigonométricas

Do ponto de vista matemático, o desenvolvimento da trigonometria está associado à descoberta de constantes nas relações entre lados de um triângulo retângulo.

Considere o triângulo retângulo ABC:

Dizemos que, em relação ao ângulo Â, o cateto \overline{BC} é oposto e o cateto \overline{AB} é adjacente.

Exemplo:

As medidas dos lados dos triângulos retângulos ABC, ADE e AFG estão indicadas na figura. O ângulo \hat{A} mede α . Que razões podem ser estabelecidas entre os lados desses triângulos?

Solução:

Podemos estabelecer algumas relações, dentre elas as 3 relações seguintes.

1.a) razões entre os catetos opostos a \hat{A} e as hipotenusas:

$$\frac{BC}{AC} = \frac{3}{5}$$

$$\frac{DE}{AE} = \frac{6}{10} = \frac{3}{5}$$
As razões $\frac{BC}{AC}$, $\frac{DE}{AE}$, $\frac{FG}{AG}$ são iguais à constante $\frac{3}{5}$.
$$\frac{FG}{AG} = \frac{9}{15} = \frac{3}{5}$$

Essas razões são chamadas de *seno* de Â. Indica-se: $sen \alpha = \frac{3}{5}$.

2.a) razões entre os catetos adjacentes ao ângulo \hat{A} e as hipotenusas:

$$\frac{AB}{AC} = \frac{4}{5}$$

$$\frac{AD}{AE} = \frac{8}{10} = \frac{4}{5}$$
As razões $\frac{AB}{AC}$, $\frac{AD}{AE}$, $\frac{AF}{AG}$ são iguais à constante $\frac{4}{5}$.
$$\frac{AF}{AG} = \frac{12}{15} = \frac{4}{5}$$

Essas razões são chamadas de *cosseno* de Â. Indica-se $\cos \alpha = \frac{4}{5}$.

3.a)razões entre o cateto oposto e o cateto adjacente:

$$\frac{AB}{AC} = \frac{3}{4}$$

$$\frac{AD}{AE} = \frac{6}{8} = \frac{3}{4}$$
As razões são iguais à constante $\frac{3}{4}$.
$$\frac{AF}{AC} = \frac{9}{12} = \frac{3}{4}$$

Essas razões são chamadas de *tangente* de Â. Indica-se tg $\alpha = \frac{3}{4}$.

Resumindo:

$$sen x = \frac{cateto oposto}{hipotenusa} = \frac{b}{a}$$

$$cos x = \frac{cateto adjacente}{hipotenusa} = \frac{c}{a}$$

$$tg x = \frac{cateto oposto}{cateto adjacente} = \frac{b}{c}$$

Como calcular o seno, o cosseno e a tangente de um ângulo agudo?

A partir do desenho de um triangulo retângulo qualquer, você poderá obter valores aproximados para o seno, o cosseno ou a tangente de um dos ângulos agudos.

Exemplo:

Achar o seno, o cosseno e a tangente do ângulo de 20°.

Solução:

Desenhamos um triangulo retângulo, de modo que um dos ângulos agudos meça 20°. Construímos a hipotenusa com 10cm, para facilitar os cálculos:

Assim,

Seno de
$$20^{\circ} \cong \frac{3,4}{10}$$
. Indica-se: sen $20^{\circ} \cong 0,34$.

Cosseno de 20°
$$\cong \frac{9,4}{10}$$
. Indica-se: cos 20° $\cong 0,94$.

Tangente de
$$20^{\circ} \cong \frac{3,4}{9,4}$$
. Indica-se: tg $20^{\circ} \cong 0,36$.

Em algumas situações precisamos determinar os valores do seno, cosseno e tangente de ângulos quaisquer. Para isso utilizamos calculadoras científicas ou tabelas como esta a seguir:

Tabela de seno, cosseno e tangente

Ângulo	sen	cos	tg	Ângulo	sen	cos	tg
1º	0,017	1,000	0,017	46°	0,719	0,695	1,036
2°	0,035	0,999	0,035	47°	0,731	0,682	1,072
3°	0,052	0,999	0,052	48°	0,743	0,669	1,111
40	0,070	0,998	0,070	49°	0,755	0,656	1,150
5°	0,087	0,996	0,087	50°	0,766	0,643	1,192
6°	0,105	0,995	0,105	51°	0,777	0,629	1,235
7°	0,122	0,993	0,123	52°	0,788	0,616	1,280
8°	0,139	0,990	0,141	53°	0,799	0,602	1,327
9°	0,156	0,988	0,158	54°	0,809	0,588	1,376
10°	0,174	0,985	0,176	55°	0,819	0,574	1,428
110	0,191	0,982	0,194	56°	0,829	0,559	1,483
12°	0,208	0,978	0,213	57°	0,839	0,545	1,540
13°	0,225	0,974	0,231	58°	0,848	0,530	1,600
14°	0,242	0,970	0,249	59°	0,857	0,515	1,664
15°	0,259	0,966	0,268	60°	0,866	0,500	1,732

	Ângulo	sen	cos	tg	Ângulo	sen	cos	tg
ĺ	16º	0,276	0,961	0,287	61°	0,875	0,485	1,804
	17°	0,292	0,956	0,306	62°	0,883	0,469	1,881
	18°	0,309	0,951	0,325	63°	0,891	0,454	1,963
	19°	0,326	0,946	0,344	64°	0,899	0,438	2,050
	20°	0,342	0,940	0,364	65°	0,906	0,423	2,145
	21°	0,358	0,934	0,384	66°	0,914	0,407	2,246
	22°	0,375	0,927	0,404	67°	0,921	0,391	2,356
	23°	0,391	0,921	0,424	68°	0,927	0,375	2,475
	24°	0,407	0,914	0,445	69°	0,934	0,358	2,605
	25°	0,423	0,906	0,466	70°	0,940	0,342	2,747
	26°	0,438	0,899	0,488	71°	0,946	0,326	2,904
	27°	0,454	0,891	0,510	72°	0,951	0,309	3,078
	28°	0,469	0,883	0,532	73°	0,956	0,292	3,271
	29°	0,485	0,875	0,554	74°	0,961	0,276	3,467
	30°	0,500	0,866	0,577	75°	0,966	0,259	3,732
	31°	0,515	0,857	0,601	76°	0,970	0,242	4,011
	32°	0,530	0,848	0,625	77°	0,974	0,225	4,332
	33°	0,545	0,839	0,649	78°	0,978	0,208	4,705
	34°	0,559	0,829	0,675	79°	0,982	0,191	5,145
Į	35°	0,574	0,819	0,700	80°	0,985	0,174	5,671
	36°	0,588	0,809	0,727	81°	0,988	0,156	6,314
	37°	0,602	0,799	0,754	82°	0,990	0,139	7,115
	38°	0,616	0,788	0,781	83°	0,993	0,122	8,144
	39°	0,629	0,777	0,810	84°	0,995	0,105	9,514
Į	40°	0,643	0,766	0,839	85°	0,996	0,087	11,430
	41°	0,656	0,755	0,869	86°	0,998	0,070	14,301
	42°	0,669	0,743	0,900	87°	0,999	0,052	19,081
	43°	0,682	0,731	0,933	88°	0,999	0,035	28,636
	440	0,695	0,719	0,966	89°	1,000	0,017	57,290
	45°	0,707	0,707	1,000	_	_	_	_

Exemplos:

1. Determine o seno, o cosseno e a tangente de 51º.

Solução:

Consultando a tabela trigonométrica anterior, você encontrará:

sen 51° ≈ 0,777

 $cos 51^{\circ} \approx 0,629$

tq 51° ≈ 1,235

2. Determine o ângulo agudo de medida x, tal que sen x = 0.951.

Solução:

Consultando a tabela dos senos, você vai verificar que o ângulo correspondente a 0,951 é o de 72 $^{\circ}$. Assim, sen 72 $^{\circ}$ \cong 0,951.

Algumas relações entre seno, cosseno e tangente de ângulos agudos

1.a) Tangente, seno e cosseno

Do triângulo retângulo a seguir, temos:

$$\begin{cases} \operatorname{sen} x = \frac{b}{a} \\ \cos x = \frac{c}{a} \\ \operatorname{tg} x = \frac{b}{c} \end{cases}$$

Mas,
$$\frac{sen x}{cos x} = \frac{\frac{b}{a}}{\frac{c}{a}} = \frac{b}{c} = tg x$$

Assim,
$$tg x = \frac{sen x}{cos x}$$

2.ª)Seno e cosseno

Do triângulo retângulo a seguir, temos:

$$\begin{cases} \operatorname{sen} x = \frac{b}{a} \\ \cos x = \frac{c}{a} \end{cases}$$

Mas,
$$(\text{sen x})^2 + (\cos x)^2 = \left(\frac{b}{a}\right)^2 + \left(\frac{c}{a}\right)^2 = .$$
 Logo,

$$sen^2 x + cos^2 x = \frac{b^2 + c^2}{a^2} = \frac{a^2}{a^2} = 1.$$

Portanto,
$$sen^2 x + cos^2 x = 1$$

3.ª)Seno e cosseno de ângulos complementares.

Do triângulo retângulo a seguir, temos:

$$x + y = 90^{\circ}$$
 (x e y são complementares)

$$sen x = \frac{b}{a}$$

$$\cos x = \frac{c}{a}$$

sen y =
$$\frac{c}{a}$$

$$\cos y = \frac{b}{a}$$

Então:

Se
$$x + y = 90^{\circ}$$
, então sen $x = \cos y$ ou sen $x = \cos(90^{\circ} - x)$

Exemplos:

1. São dados a medida x de um ângulo agudo e sen $x = \frac{3}{5}$. Determine os valores de cos x e tg x, usando as relações entre seno, cosseno e tangente.

Solução:

Como sen² x + cos² x = 1, então
$$\left(\frac{3}{5}\right)^2$$
 + cos² x = 1.
Daí, cos² x = $\frac{16}{25}$.

Portanto, $\cos x = \frac{4}{5}$ (só consideramos o valor positivo, porque x é medida de um ângulo agudo).

Logo:

$$tgx = \frac{sen x}{cos x} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}.$$

2. Sabendo que cos 23° ≈ 0,921, determinar quanto vale sen 67°.

Solução:

Como $67^\circ = 90^\circ - 23^\circ$, então 23° e 67° são ângulos complementares. Logo, sen $67^\circ = \cos 23^\circ \cong 0,921$.

3. São dadas a medida x de um ângulo agudo e tg x = $\frac{5}{12}$. Determine sen x e cos x.

Solução:

Construímos um triângulo retângulo com catetos medindo 5 e 12 em alguma unidade de comprimento. A seguir, aplicando Pitágoras, obtemos o valor da hipotenusa:

$$a^2 = 12^2 + 5^2$$
. Logo, $a = 13$. Assim, sen $x = \frac{5}{13}$ e cos $x = \frac{12}{13}$

Exercícios

1. A partir da figura a seguir, determine um valor aproximado para sen 35°, cos 35° e tg 35°.

- **2.** Calcule *x* nos triângulos retângulos a seguir:
 - a) sen $30^{\circ} = 0.5$

b)
$$\cos 60^{\circ} = 0.5$$

c) $tg 45^{\circ} = 1$

d) sen 50° ≈ 0,8

3. Utilizando o teorema de Pitágoras, obtenha a medida da diagonal do quadrado a seguir. Em seguida, calcule o valor exato e um valor aproximado se sen 45°, cos 45° e tg 45°; sabendo $\sqrt{2} \approx 1,4$.

- **4.** Sabendo que sen $55^{\circ} \approx 0.82$, calcule:
 - a) a altura do triângulo;
 - b) a área do triângulo.

5. Uma estrada tem inclinação de 7%, isto é, eleva-se 7m a cada 100m. Consulte a tabela e determine a medida x do ângulo de inclinação dessa estrada.

6. Um poste telegráfico é fixado ao solo por um cabo (AC), que forma um ângulo de 54º com o chão.

A distância entre as extremidades inferiores do poste e do cabo é de 30m. Determine a medida da altura do poste.

7. Em um determinado ponto de calçada observo o topo de um prédio, sob um ângulo de 30°. Caminho 20m em direção ao prédio. Desse outro ponto, vejo todo o topo do prédio sob um ângulo de 60°. Desprezando a altura do observador, calcule, em metros, a altura do prédio.

Seno, cosseno e tangente de um ângulo obtuso

A necessidade de efetuar cálculos em triângulos obtusos levou o homem a definir seno, cosseno e tangente de um ângulo obtuso.

Considere uma semicircunferência de raio 1 – em alguma unidade de comprimento – com centro na origem de um referencial cartesiano:

Com base na figura anterior onde a semicircunferência tem raio de uma unidade, definimos:

Seno de um ângulo AÔB é a ordenada (valor de y) do ponto B.

Cosseno de um ângulo $A\hat{O}B$ é a abscissa (valor de x) do ponto B.

A partir da figura, temos:

sen 30° = ordenada do ponto
$$B_1 = \frac{1}{2}$$

cos 30° = abscissa do ponto $B_1 = \frac{\sqrt{3}}{2} \approx 0.87$

sen 45° = ordenada do ponto
$$B_2 = \frac{\sqrt{2}}{2} \approx 0.71$$

sen 45° = abscissa do ponto $B_2 = \frac{\sqrt{2}}{2} \approx 0.71$

$$\begin{cases} sen 60^{\circ} = ordenada do ponto B_3 = \frac{\sqrt{3}}{2} \approx 0,87 \\ cos 60^{\circ} = abscissa do ponto B_3 = \frac{1}{2} \end{cases}$$

sen 120° = ordenada do ponto
$$B_4 = \frac{\sqrt{3}}{2} \cong 0,87$$
 (igual a sen 60°)
cos 120° = abscissa do ponto $B_4 = -\frac{1}{2}$ (oposto do cos 60°)

sen 135° = ordenada do ponto
$$B_5 = \frac{\sqrt{2}}{2} \approx 0,71$$
 (igual a sen 45°)
sen 135° = abscissa do ponto $B_5 = -\frac{\sqrt{2}}{2} \approx -0,71$ (oposto do cos 45°)

sen 150° = ordenada do ponto
$$B_6 = \frac{1}{2}$$
 (igual a sen 30°)
$$\cos 150° = abscissa do ponto $B_6 = -\frac{\sqrt{3}}{2} \approx -0.87 \text{ (oposto do cos 30°)}$$$

Dos exemplos anteriores, concluímos que:

Se
$$x + y = 180^\circ$$
, então sen $x = \text{sen } y$, ou seja, sen $x = (180^\circ - x)$
Se $x + y = 180^\circ$, então cos $x = -\cos y$, ou seja, cos $x = -(180^\circ - x)$

Exemplos:

Solução:

sen
$$160^{\circ}$$
 = sen 20°
Logo, sen $160^{\circ} \approx 0.34$.

2. Sabendo que cos $33^{\circ} \approx 0.84$, quanto vale cos 147° ?

Solução:

$$\cos 147^{\circ} = -\cos 33^{\circ}$$

Logo, $\cos 147^{\circ} = -0.84$.

E os ângulos de 0°, 90° e 180°?

Podemos, ainda, obter os valores dos senos e cossenos dos ângulos de 0°, 90° e 180°, que não são agudos nem obtusos.

Veja o desenho a seguir:

Por definição, temos:

sen
$$0^\circ$$
 = ordenada do ponto $B_1 = 0$
cos 0° = abcissa do ponto $B_1 = 1$
sen 90° = ordenada do ponto $B_2 = 1$
cos 90° = abscissa do ponto $B_2 = 0$
sen 180° = ordenada do ponto $B_3 = 0$
cos 180° = abscissa do ponto $B_3 = -1$

A tangente de um ângulo obtuso

Para completar o estudo da trigonometria da meia-volta (ângulos de 0° a 180°), falta analisar a tangente de um ângulo obtuso.

Define-se a tangente de um ângulo obtuso de maneira análoga a de um ângulo agudo. Assim:

$$tgx = \frac{sen x}{cos x}$$

Tangentes de alguns ângulos obtusos:

tg 120° =
$$\frac{sen 120°}{cos 120°} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3} = -tg 60°.$$

tg 135° =
$$\frac{sen \ 135°}{\cos \ 135°} = \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = -1 = -\text{tg } 45°.$$

tg 150° =
$$\frac{sen\ 150°}{cos\ 150°} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{3} = -\text{tg } 30°.$$

Se
$$x + y = 180^{\circ}$$
, então $tg x = -tg y$, ou seja, $tg x = -tg (180^{\circ} - x)$.

■ Tangente dos ângulos de 0°, 90° e 180°:

$$tg \ 0^{\circ} = \frac{sen \ 0^{\circ}}{cos \ 0^{\circ}} = \frac{0}{1} = 0$$

tg 90° = não se define, pois cos 90° = 0

tg
$$180^\circ = \frac{sen\ 180^\circ}{cos\ 180^\circ} = \frac{0}{-1} = 0$$

Exemplos:

1. Obter o valor de tg 125°

Solução:

Consultando a tabela:

Como 180° – 125° = 55° e tg 55° ≅ 1,428, então tg 125° ≅ –1,428.

2. Determine o valor do ângulo x, tal que tg x = -0.9.

Solução:

Consultando a tabela:

$$tg \ y = +0.9 \ para \ y \approx 42^{\circ}. \ Logo, \ x = 180^{\circ} - 42^{\circ} = 138^{\circ}$$

Assim, $tg \ 138^{\circ} \approx -0.9$

Exercícios

8. Observe o desenho a seguir e dê o valor de:

- a) sen 117°
- b) cos 117°
- c) sen 170°
- d) cos 170°

- 9. Os catetos do triângulo retângulo abaixo medem 4 e 3 (numa mesma unidade de comprimento). Determine:
 - a) sen θ , cos θ e tg θ

b) sen α , cos α , tg α

10. É dada a medida do ângulo teta: $\theta = 150^{\circ}$. Obtenha, a partir da tabela, o valor de sen θ , cos θ e tg θ .

11. Sabendo que sen $45^{\circ} \approx 0.71$, cos $45^{\circ} \approx 0.71$ e tg $45^{\circ} = 1$ determine o valor de sen 135° , cos 135° e tg 135° .

- **12.** Observe o gráfico cartesiano a seguir e encontre:
 - a) $tg \theta$

b) $tg \alpha$

13. Observando o gráfico abaixo ache os valores de tg θ e tg α .

14. Consulte a tabela para determinar valores aproximados do ângulo obtuso θ , em cada caso:

a) sen
$$\theta = 0.342$$

b)
$$\cos \theta = -0.866$$

c)
$$tg \theta = -1,732$$

15. Lembrando que sen² x + cos² x = 1 e sen x = $\frac{5}{13}$, determine os valores de cos x, sem consultar a tabela. (Note que sen² x = (sen x)²)

Lei dos senos

Dado um triângulo ABC qualquer podemos estabelecer a seguinte relação:

$$\frac{a}{sen A} = \frac{b}{sen B} = \frac{c}{sen C}$$
 \Rightarrow a esta relação damos o nome de lei dos senos.

Lei dos cossenos

Dado um triângulo ABC qualquer, quando queremos determinar a medida de um de seus lados, conhecidas as medidas dos outros dois lados e o ângulo entre eles, utilizamos a seguinte relação:

$$a^2 = b^2 + c^2 - 2bc \cdot cos A$$
 \Rightarrow a esta relação damos o nome de lei dos cossenos.

Exercícios

16. Calcule *x* nos triângulos abaixo:

a)

b)

17. Determine sen θ e consulte a tabela para obter o ângulo agudo θ :

a)

18. Um agrimensor quer medir a distância \overline{AB} entre duas árvores que se encontram em margens opostas de um rio. A partir de um ponto C, ele obteve as seguintes medidas: AC = 20m, $B\hat{A}C = 75^{\circ}$ e $A\hat{C}B = 45^{\circ}$. Qual é a distância entre as duas árvores?

19. Calcule *x* nos triângulos abaixo:

20. Determine o valor de cos θ . A seguir, consultando a tabela, determine θ , em graus:

21. Calcule a medida da diagonal \overline{AC} do paralelogramo abaixo, sabendo que \hat{A} mede 70° e \cos 70° \cong 0,34.

22. A figura abaixo representa a trajetória ABC de um helicóptero. Em \overline{AB} , o helicóptero percorreu 12km e em \overline{BC} , paralelo ao solo, 14km. Sendo AC = 20km, determine $\cos\theta$ e consulte a tabela para obter os valores de θ .

Gabarito

Introdução à trigonometria

1. sen
$$35^{\circ} \cong \frac{5,7}{10} \cong 0,57$$

 $\cos 35^{\circ} \cong \frac{8,2}{10} \cong 0,82$
 $tg 35^{\circ} \cong \frac{5,7}{8,2} \cong 0,7$

2.

a) sen
$$30^{\circ} = \frac{x}{6} \Rightarrow x = 0.5 \cdot 6 = 3$$

b)
$$\cos 60^{\circ} = \frac{x}{10} \Rightarrow x = 0.5 \cdot 10 = 5$$

c)
$$tg 45^{\circ} = \frac{15}{x} \Rightarrow x = \frac{15}{1} = 15$$

d) sen
$$50^\circ = \frac{16}{x} \Rightarrow x \cong \frac{16}{0.8} \cong 20$$

3.
$$d = 4\sqrt{2}$$
 cm
 $sen 45^{\circ} = \frac{\sqrt{4}}{4\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = \frac{1,4}{2} = 0,7$
 $cos 45^{\circ} = \frac{4}{4\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = \frac{1,4}{2} = 0,7$
 $tg 45^{\circ} = \frac{4}{4} = 1$

4.

a) sen
$$55^{\circ} \cong \frac{h}{10} \Rightarrow h \cong 0.82 . 10 \cong 8.2$$

b)
$$A \cong \frac{12.8,2}{2} \cong 49,2$$

5.
$$tg x \cong \frac{7}{100} \cong 0.07$$

Consultando a tabela temos $x \cong 4^{\circ}$.

6.
$$tg 54^{\circ} = \frac{BC}{30} \Rightarrow BC \cong 1,376.30 \cong 41,28m$$

7.

$$\begin{cases} tg 60^{\circ} = \frac{h}{x} \Rightarrow x = \frac{h}{\sqrt{3}} \\ tg 30^{\circ} = \frac{h}{x + 20} \end{cases}$$

Resolvendo o sistema, encontramos; $h = 10 \sqrt{3} \text{ m} \approx 17 \text{m}$

8.

- a) 0,9
- b) -0,45
- c) 0.17
- d) 0,98

9.
$$a^2 = 3^2 + 4^2 \Rightarrow a = 5$$

a) sen
$$\theta = \frac{3}{5}$$

$$\cos \theta = \frac{4}{5}$$

$$tg \theta = \frac{3}{4}$$

b) sen
$$\alpha = \text{sen } \theta = \frac{3}{5}$$

$$\cos \alpha = -\cos \theta = -\frac{4}{5}$$

$$tg \alpha = -tg \theta = -\frac{3}{4}$$

10. sen
$$150^{\circ}$$
 = sen 30° = 0,5

$$\cos 150^{\circ} = -\cos 30^{\circ} \cong -0.866$$

$$tg\ 150^{\circ} = -tg\ 30^{\circ} \cong -0,577$$

11. sen
$$135^\circ = \text{sen } 45^\circ \cong 0,71$$

 $\cos 135^\circ = -\cos 45^\circ \cong -0,71$
 $\tan 135^\circ = -\tan 45^\circ = -1$

18.
$$\frac{AB}{\text{sen }45^{\circ}} = \frac{20}{\text{sen }60^{\circ}} \Rightarrow AB = \frac{20 \sqrt{6}}{3} \text{ m}$$

12.

a)
$$tg \theta = \frac{2}{2} = 1$$

b)
$$tg \alpha = -tg \theta = -1$$

13.
$$tg \theta = \frac{4}{8} = \frac{1}{2}$$

 $tg \alpha = tg (180^{\circ} - \theta) = -tg \theta = -\frac{1}{2}$

a)
$$x^2 = 4^2 + 6^2 - 2 \cdot 4 \cdot 6 \cdot \frac{1}{2}$$

 $\Rightarrow x = 2\sqrt{7}$

19.

20.

b)
$$x^2 = (\sqrt{2})^2 - 2^2 - 2\sqrt{2} \cdot 2 \cdot \left(-\frac{\sqrt{2}}{2}\right)$$

 $\Rightarrow x = \sqrt{10}$

14.

a)
$$\theta = 160^{\circ}$$

b)
$$\theta = 150^{\circ}$$

15.
$$\left(\frac{5}{13}\right)^2 + \cos^2 x = 1 \Rightarrow \cos x = \pm \frac{12}{13}$$

a) $14^2 = 6^2 + 10^2 - 2.6.10. \cos \theta \Rightarrow$ $\cos \theta = -\frac{1}{2}$ Logo, $\theta = 120^\circ$.

b)
$$8^2 = 5^2 + 7^2 - 2.5.7 \cdot \cos \theta$$

 $\Rightarrow \cos \theta = \frac{1}{7} \approx 0,143$
Logo, $\theta \approx 82^\circ$.

16.

a)
$$\frac{x}{\text{sen }60^{\circ}} = \frac{10}{\text{sen }45^{\circ}} \Rightarrow x = 5\sqrt{6}$$

b)
$$\frac{x}{\text{sen } 30^{\circ}} = \frac{20}{\text{sen } 120^{\circ}} \Rightarrow x = \frac{20 \sqrt{3}}{3}$$

21. $AC^2 = 10^2 + 5^2 - 2 \cdot 10 \cdot 5 \cdot (-0.34)$ $\Rightarrow AC = \sqrt{159}$

22.
$$12^2 = 12^2 + 20^2 - 2 \cdot 12 \cdot 20 \cdot \cos \theta \Rightarrow \cos \theta = 0,725$$

Logo, $\theta = 44^\circ$.

17.

a)
$$\frac{6}{\operatorname{sen} \theta} = \frac{8}{\operatorname{sen} 60^{\circ}} \Rightarrow \operatorname{sen} \theta \approx 0,649$$

Logo, $\theta \approx 40^{\circ}$.

b)
$$\frac{14}{\text{sen } 120^{\circ}} = \frac{6}{\text{sen } \theta} \Rightarrow \text{sen } \theta \cong 0,371$$

Logo, $\theta \cong 22^{\circ}$.