

STM32F3 Technical Training

For reference only

Refer to the latest documents for details

Reset and Clock control RCC

RCC introduction 3

Reset:

- Initialize the device
- Wakeup device
- Safety functions (watchdog)

Clocks:

- Select appropriate clock source:
 - Internal
 - External
- Select appropriate speed:
 - High speed
 - Low speed
 - Speed regulation
- Modify clock parameters for:
 - Core
 - Peripherals
- Security functions:
 - In case of clock source malfunction

Reset sources 4

System RESET

- Resets all registers except some RCC registers and Backup domain
- Sources:
 - Low level on the NRST pin (External Reset)
 - WWDG & IWWDG end of count condition
 - A software reset (through NVIC)
 - Low power management reset
 - Option byte loader reset (FORCE_OBL bit)

Power RESET

- Resets all registers except the Backup domain
- Sources:
 - Power On/Power down Reset (POR/PDR)
 - Exit from STANDBY

Backup domain RESET

- Resets in the Backup domain: RTC registers + Backup Registers + RCC_BDCR register
- Sources:

- BDRST bit in RCC_BDCR register
- POWFR Reset

Reset block diagram

Reset sources in STM32F3 family and their relation to RESET pin:

Clock features (1/2)

System Clock (SYSCLK) sources:

- HSE (High Speed External oscillator or crystal)
 - 4MHz to 32MHz,
 - can be bypassed by user clock
- HSI (High Speed Internal RC):
 - factory trimmed internal RC oscillator 8MHz +/- 1%
- PLL x2, x3, .. x16
 - From HSF or HSI/2
 - 16MHz 72MHz output

Additional clock sources:

- LSI (Low Speed Internal RC):
 - ~40kHz internal RC
- LSE (Low Speed External oscillator):
 - 32.768kHz
 - can be bypassed by user clock
 - Configurable driving strength (power/robustness compromise)

Clock features (2/2)

- Clock-out capability on the MCO:
 - LSI, LSE, SYSCLK, HSI, HSE, PLL/2
- Clock Security System (CSS) to switch to backup clock:
 - In case of HSE clock failure
 - Enabled by SW w/ interrupt capability linked to NMI
 - Could generate BREAK for Timers
- RTC Clock sources:
 - LSE, LSI and HSE/32
- USART, I2C & CEC have multiple possible clock sources:
 - Possibility to wakeup device if there is no system clock:
 - For USART: HSI, LSE
 - For I2C: HSI
 - For HDMI-CEC: LSE, HSI

Clock scheme STM32F37x

Clock scheme STM32F30x

HSI/LSI/ext. clock measurement 10

TIM14 (in F37x) and TIM16 (in F30x) input capture can be

triggered by:

- GPIO pin
- RTCCLK
- HSE/32
- MCO output

Purposes:

- Measure HSI frequency using the precise LSE clock. HSI is used as system clock. Knowing the (more precise) LSE frequency we can determine the HSI frequency.
- Measure the LSI frequency using HSE or HSI. To fine tune IWWDG and/or RTC timing (if LSI used as RTC clock).
- Have rough indication of the frequency of external crystal by comparing HSI and HSE/32

- What is the maximum AHB and APB1 and APB2 clock frequencies?
- What is the purpose of connecting LSE clock to TIM14/16 CH1 input capture and how it could be done?
- What is the purpose of the CSS?

STM32 Releasing your creativity

Thank you !

