ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

31 мая 2017г.

ФИО	№ группы	

ВАРИАНТ
\mathbf{A}

1	2	3	4	5	Σ

зад	Итог	
I	II	

1А. Дифракция Фраунгофера наблюдается на двух узких параллельных щелях. Перед щелями установлен светофильтр с относительной полосой пропускания $\Delta \nu/\nu_0 = 10^{-2}$, при этом спектральная интенсивность прошедшего света равномерно распределена по частоте на отрезке $|\nu - \nu_0| \leq \Delta \nu/2$. Найти номер полосы m, вблизи которой видность интерференционной картины равна $V(m) \approx 0.9$. Видность вблизи нулевой полосы V(0) = 1.

2А. В непрозрачном экране проделано круглое отверстие, освещаемое плоской монохроматической волной с интенсивностью I_0 . Точка наблюдения P, находящаяся на оси отверстия, соответствует $m_1=1,5$ открытым зонам Френеля. В центре отверстия размещают круглый прозрачный диск с показателем преломления n, перекрывающий $m_2=0,5$ зон Френеля. Определить наименьшую толщину диска d, при которой интенсивность света в точке P оказывается максимальной. Чему равна эта интенсивность?

3А. В интерференционной схеме, показанной на рис., используется квазимонохроматический протяженный источник света S. Средняя длина волны излучения $\lambda = 5 \cdot 10^{-5}$ см, ширина спектральной линии $\Delta \lambda = 25$ Å, размер источника b = 25 мкм, геометрические размеры установки d = 0.5 см, L = 1 м. Определить: 1) ширину интерференционных полос Δx на экране Э; 2) минимальный m_{\min} и максимальный m_{\max} порядки наблюда-

емых интерференционных полос; 3) максимальную видность полос V_{max} . При расчетах считать, что размеры зеркала не ограничивают максимальный порядок интерференции.

4А. Ячейка Керра, помещённая между двумя скрещенными поляризаторами, используется в качестве электрооптического затвора (прерывателя излучения). Направление напряжённости электрического поля E в конденсаторе составляет угол 45° с плоскостями пропускания поляризаторов. Конденсатор заполнен нитробензолом, для которого разность показателей преломления обыкновенной и необык-

новенной волн равна $\Delta n = \lambda b E^2$, где b — константа Керра. Оказалось, что минимальная напряженность электрического поля в конденсаторе, при которой интенсивность прошедшего через систему излучения не изменяется при повороте выходного поляризатора Π_2 , равна $E_0 = 15$ кВ/см. Найти число прерываний света $N_{\rm пp}$ за период синусоидально изменяющегося напряжения, поданного на конденсатор, если амплитуда напряженности электрического поля в нем равна $E_m = 70$ кВ/см. Поглощением излучения пренебречь.

5А. Распространение коротких радиоволн (от 4 до 30 МГц) и радиолокация на сверхдальние расстояния осуществляется за счет отражения радиоволн от ионосферы Земли. Найти дальность L распространения радиолуча вдоль поверхности Земли через ионосферу, показатель преломления которой зависит от вертикальной координаты z как $n = \sqrt{1 - \mu z}$, где $\mu = \frac{1}{600}$ км $^{-1}$. Нижняя граница ионосферы (z=0) находится

на высоте H=150 км, угол падения луча на неё составляет $\varphi_0=60^\circ$ (см. рис.). До границы с ионосферой считать n=1, поверхность Земли считать плоской.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

31 мая 2017г.

ФИО	№ группы	

ВАРИАНТ
Б

1	2	3	4	5	Σ

зада	Итог	
I	II	

1Б. Дифракция Фраунгофера наблюдается на двух узких параллельных щелях. Оказалось, что интенсивность в максимуме десятой полосы (m=10) на 5% меньше интенсивности нулевой полосы (m=0). Видность картины вблизи нулевой полосы V(0)=1. Найти относительную ширину $\Delta \omega/\omega_0$ спектра излучения, падающего на щели. Считать, что спектральная интенсивность равномерно распределена по частоте на отрезке $|\omega-\omega_0|\leq \Delta\omega/2$.

2Б. Тонкий непрозрачный диск освещается нормально падающей плоской монохроматической волной с интенсивностью I_0 . Точка наблюдения P, находящаяся на оси диска, соответствует $m_1=1,5$ перекрытым зонам Френеля. В центре диска проделывают круглое отверстие, открывающее $m_2=0,5$ зон Френеля, и перекрывают его прозрачной пластинкой с показателем преломления n. Определить наименьшую толщину пластинки d, при которой интенсивность света в точке P оказывается максимальной. Чему равна эта интенсивность?

3Б. На рис. показана интерференционная схема, в которой используется квазимонохроматический протяженный источник света S. На экране Э отчётливо наблюдаются N=100 интерференционных полос шириной $\Delta x=50$ мкм каждая, причем максимальная видность полос равна $V_{\rm max}=4/\pi^2$. Геометрические размеры установки d=5 мм, L=1 м. Определить параметры источника света: среднюю длину волны излучения λ , ширину спектральной линии $\Delta \lambda$, размер источника b. Считать,

ширину спектральной линии $\Delta \lambda$, размер источника b. Считать, что размеры зеркала не дают ограничение на максимальный порядок интерференции.

4Б. Ячейка Керра, помещённая между двумя скрещенными поляризаторами, используется в качестве электрооптического затвора (прерывателя излучения). Направление напряжённости электрического поля E в конденсаторе составляет угол 45° с плоскостями пропускания поляризаторов. Длина конденсатора (вдоль оптического тракта) L = 5 см, конденсатор заполнен нитробензолом, постоян-

ная Керра для которого $b=2,2\cdot 10^{-10}$ см/B² (разность показателей преломления обыкновенной и необыкновенной волн равна $\Delta n=b\lambda E^2$). На конденсатор подано синусоидальное напряжение частоты $\nu=5$ МГц со значением амплитуды напряженности поля $E_m=75$ кВ/см. Найти число прерываний излучения $N_{\rm np}$ за секунду. Поглощением излучения пренебречь.

5Б. Распространение коротких радиоволн (от 4 до 30 МГц) и радиолокация на сверхдальние расстояния осуществляется за счет отражения радиоволн от ионосферы Земли. Найти время τ распространения радиоимпульса вдоль трассы «земля—ионосфера—земля» (см. рис.). Зависимость показателя преломления ионосферы от вертикальной координаты z определяется из соотношения $n^2 = 1 - z/z_0$,

где $z_0=600$ км. Нижняя граница ионосферы (z=0) находится на высоте H=150 км, угол падения луча на неё составляет $\varphi_0=45^\circ$. До границы с ионосферой считать n=1, поверхность Земли считать плоской.

 $\mathit{Указание}$: в ионосфере групповая и фазовая скорости радиоволн связаны соотношением $v_{\rm rp}v_{\rm \varphi}=c^2.$