Supplementary Material: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

Andrew Gordon Wilson Carnegie Mellon University andrewgw@cs.cmu.edu Hannes Nickisch
Philips Research Hamburg
hannes@nickisch.org

Figure 1: Global vs. local kernel interpolation. Triangle markers denote the inducing points used for interpolating k(x,u) from k(U,u). Here $u=0, U=\{0,1,\ldots,10\}$, and x=3.4. a) All conventional inducing point methods, such as SoR or FITC, perform global GP regression on $K_{U,u}$ (a vector of covariances between all inducing points U and the point u), at test point $x_*=x$, to form an approximate \tilde{k} , e.g., $k_{\text{SoR}}(x,u)=K_{x,U}K_{U,U}^{-1}K_{U,u}$, for any desired x and u. b) SKI can perform local kernel interpolation on $K_{U,u}$ to form the approximation $k_{\text{SKI}}(x,u)=\mathbf{w}_x^{\top}K_{U,u}$.