Министерство образования Российской Федерации

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

Лабораторная работа №4 на тему:

«Исследование мультиплексоров»

Вариант 4

Преподаватель:

Ковынев Н.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-54

Репозиторий работы: https://github.com/ledibonibell/Module05-ECE

Москва 2024

Цель работы

Изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Входные данные

Задание 1:

Вариант	Схема синтеза
4	MS 8x1

Задание 2:

Вариант	Входная последовательность	
4	00111010	

Задание 3:

Вариант	-
4	-

Задание 4:

Вариант	Значения разрядов чисел А и В	
4	1010101011000011	

Перечень приборов

Генератор слова XWG1;

Логический анализатор XLA1;

Лампочка;

Ход работы

Задание 1. Выполните синтез и исследуйте схему мультиплексора (рис. 1).

Рис. 1 - Схема MS 3х8 мультиплексора.

No	A2	A1	A0	F
1	0	0	0	D0
2	0	0	1	D1
3	0	1	0	D2
4	0	1	1	D3
5	1	0	0	D4
6	1	0	1	D5
7	1	1	0	D6
8	1	1	1	D7

Табл. 2 - Таблица истинности

Также рассмотрим уравнение логики:

$$F = D_0 \, \overline{A_2} \, \overline{A_1} \, \overline{A_0} \, \cup D_1 \, \overline{A_2} \, \overline{A_1} \, A_0 \, \cup D_2 \, \overline{A_2} \, A_1 \, \overline{A_0} \, \cup D_3 \, \overline{A_2} \, A_1 A_0 \, \cup D_4 \, A_2 \, \overline{A_1} \, \overline{A_0} \\ \cup \, D_5 \, A_2 \, \overline{A_1} \, A_0 \, \cup D_6 \, A_2 \, A_1 \, \overline{A_0} \, \cup D_7 \, A_2 A_1 A_0$$

Задание 2. Воспроизвести на мультиплексоре входную функцию (рис. 2).

Рис. 2 - Схема исследования воспроизведения заданной функции.

X0	X1	X2	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Табл. 2 - Входная таблица истинности

Рис. 3 - Временная диаграмма.

Задание 3. Исследование мультиплексора MS 3x8 (рис. 4).

Рис. 4 - Мультиплексор MS 3x8.

Рис. 5 - Временная диаграмма.

Задание 4. Исследование многоразрядного мультиплексора (рис. 6).

Рис. 6 - Схема многоразрядного мультиплексора.

Рис. 7 - На выходе А.

Рис. 6 - На выходе В.

Вывод

Было изучено: принцип построения, практические применения и экспериментальные исследования мультиплексоров. Во всех исследованиях мультиплексоры выдавали ожидаемый ответ, соответствующий таблице истинности.