

Objectives

By the end of this lesson, you will be able to:

- O Describe the Blockchain transaction process
- Generate a public key and a digital signature
- Generate a nonce, a hash code, and a Blockchain block
- Work with a distributed system and perform Blockchain transactions

Overview of Blockchain

Blockchain can operate in a peer-to-peer fashion with zero intervention from third parties

Blockchain

Blockchain is a decentralized ledger of all transactions across a peer-to-peer network. It is a technology that enables Bitcoin and is also applied to many business processes. lt not only performs transactions but also ensures anonymity and security of the users.

©Simplilearn. All rights reserved.

simpl_ilearn

Blockchain

BLOCKCHAIN

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved.

Current Banking System

Issues in Banking System

©Simplilearn. All rights reserved.

Blockchain Solution for the Issues

Scenario: Transaction between John and Kat in a Bitcoin Network

Blockchain Solution for the Issues

Scenario: Transaction between John and Kat in a Bitcoin Network

©Simplilearn. All rights reserved.

Blockchain Solution for the Issues

simpl_ilearn

The blockchain comprises of a single ledger shared among all participants

Blockchain Solution for the Issues

Blockchain tackled the issues in the previous system with some of its features mentioned below:

Blockchain Transaction Process

Steps of Blockchain Transaction

Blockchain transaction works by implementing one of the following features in each step:

©Simplilearn. All rights reserved.

simpl_ilearn

Features of Blockchain

©Simplilearn. All rights reserved.

Features of Blockchain

Asymmetric Key Cryptography

Symmetric Key Cryptography

©Simplilearn. All rights reserved.

simpl_ilearn

Asymmetric Key Cryptography

©Simplilearn. All rights reserved.

Symmetric Key Cryptography

©Simplilearn. All rights reserved.

simpl_ilearn

Digital Signature

A digital signature provides authentication and validation like normal signatures.

It ensures the security and integrity of data recorded on the Blockchain.

It uses asymmetric cryptography in which information can be shared using a public key.

Primary keys are linked to users providing digital signatures a quality of nonrepudiation.

©Simplilearn. All rights reserved.

Digital Signature Creation

Features of Blockchain

It is a system where Miners play an important role in the validation of transaction taking place.

Types of Network

Decentralized Network

Centralized Network

©Simplilearn. All rights reserved.

simpl_ilearn

Types of Network

Features of Blockchain

It is an algorithm where Miners validate the transaction using mathematical puzzles.

Consensus Protocol

It is a fault-tolerant protocol that is used to achieve the necessary agreement on a single data value or a single state of

It is a set of rules that decides on the contribution of the various participants of the Blockchain

It ensures that all transactions occurring on the network are genuine and all participants agree on the consensus of the ledger.

©Simplilearn. All rights reserved.

Blockchain Protocols

Blockchain Protocol holds the real transformative power of Bitcoin

Features of Consensus Protocol

simpl;learn

Role of Miner Alice seath to seed Bob two bitcoin. One sends a TRANSACTION SIGNATE to the Brook block-thain, a distributed database running on thousands of computers globally. Computers brown as MINERS verify this transaction (e.g. check Alice is blackers a standard and analyses of the standard analyses of the

©Simplilearn. All rights reserved.

simpl_ilearn

Proof of Work

Consensus algorithm is used to confirm transactions and produce new blocks to the chain.

Proof of Work

Nonce

Nonce: Number Used Once

A random number whose value is set so that the hash of the block will contain a run of leading zeros.

Hash Code

The main purpose of hash code is to assist with efficient lookup and insertion in data collections that are contingent on a hash table.

©Simplilearn. All rights reserved.

simpl_ilearn

Hash Code

Transaction

Hash Pointer

- Hash pointer is a pointer to the location where information or hash of that information is stored
- If we retrieve information that the pointer points at, we can get hash of the information and confirm it to be unchanged
- It requires information of previous hash

https://andersbrownworth.com/blockchain/public-private-keys/signatures

Proof of Stake

A low cost, low energy consuming algorithm which states that a person can mine and validate transaction based on how many coins he or she holds.

©Simplilearn. All rights reserved.

Proof of Elapsed Time

Consensus algorithm prevents high energy consumption and resource utilization following a lottery system.

©Simplilearn. All rights reserved.

simpl_ilearn

PBFT

Practical Byzantine Fault Tolerance (PBFT) improves the robustness and performance of transaction by directing peer-to-peer messages with minimal latency.

PRACTICAL BYZANTINE FAULT TOLERANCE

Blockchain Block Structure

©Simplilearn. All rights reserved.

simpl_ilearn

Blockchain Identifiers

©Simplilearn. All rights reserved.

Blockchain Merkle Tree

Data structure used for summarizing and verifying the integrity of large sets of data. It is also known as **Binary Hash Tree.**

©Simplilearn. All rights reserved.

simpl_ilearn

Advantages of Merkle Tree

Features of Blockchain in Transaction Process

The diagrams show the usage of Blockchain features in every step of the Blockchain transaction process.

Types of Blockchain

Types of Blockchain

©Simplilearn. All rights reserved.

simpl_ilearn

Types of Blockchain

A private Blockchain is a closed network that offers its participants the benefit of the technology

©Simplilearn. All rights reserved.

Types of Blockchain

Types of Blockchain

©Simplilearn. All rights reserved.

©Simplilearn. All rights reserved. simpl;learn

Blockchain Platforms

Blockchain Application Templates

