Angular Correlation Function

$$F = 1 + a \frac{\mathbf{p_e} \cdot \mathbf{p_{\nu}}}{E_e E_{\nu}} + b \frac{m_e}{E} + c \left(\frac{\mathbf{p_e} \cdot \mathbf{p_{\nu}}}{3E_e E_{\nu}} - \frac{(\mathbf{p_e} \cdot \mathbf{j})(\mathbf{p_{\nu}} \cdot \mathbf{j})}{E_e E_{\nu}} \right)$$
$$+ \frac{\mathbf{J}}{J} \cdot \left(A \frac{\mathbf{p_e}}{E_e} + B \frac{\mathbf{p_{\nu}}}{E_{\nu}} + D \frac{\mathbf{p_e} \times \mathbf{p_{\nu}}}{E_e E_{\nu}} \right)$$

Spherical Coordinates (J parallel to positive Z axis)

$$\beta_{\mathbf{e}} = (r = \beta_{\mathbf{e}}; \theta = \theta_{\mathbf{e}}; \phi = 0), \cos(\theta_{\mathbf{e}}) \equiv z_{\mathbf{e}}, \ \beta_{\mathbf{e}} = \frac{|\mathbf{p}_{\mathbf{e}}|}{E} = \sqrt{1 - \frac{m_{\mathbf{e}}^2}{E^2}}$$

$$\beta_{\nu} = (r = 1; \theta = \theta_{\nu}; \phi = \phi), \quad \cos(\theta_{\nu}) \equiv z_{\nu}$$

$$\beta_{\mathbf{e}} \cdot \beta_{\nu} = \beta_{\mathbf{e}}(\cos\theta_{\mathbf{e}}\cos\theta_{\nu} + \sin\theta_{\mathbf{e}}\sin\theta_{\nu}\cos\phi) =$$

$$\beta_{\mathbf{e}}(z_{\mathbf{e}}z_{\nu} + \sqrt{1 - z_{\mathbf{e}}^2}\sqrt{1 - z_{\nu}^2}\cos\phi)$$

$$\beta_{\mathbf{e}} \cdot \mathbf{j} = \beta_{\mathbf{e}}\cos\theta_{\mathbf{e}} = \beta_{\mathbf{e}}z_{\mathbf{e}}$$

$$\beta_{\nu} \cdot \mathbf{j} = \cos\theta_{\nu} = z_{\nu}$$

$$\mathbf{j} \cdot (\beta_{\mathbf{e}} \times \beta_{\nu}) = \beta_{\mathbf{e}}\sin\theta_{\mathbf{e}}\sin\theta_{\nu}\sin\phi = \beta_{\mathbf{e}}\sqrt{1 - z_{\mathbf{e}}^2}\sqrt{1 - z_{\nu}^2}\sin\phi$$

$$\mathbf{j} \cdot (\beta_{\mathbf{e}} \times \beta_{\nu}) = \beta_{\mathbf{e}}\sin\theta_{\mathbf{e}}\sin\theta_{\nu}\sin\phi = \beta_{\mathbf{e}}\sqrt{1 - z_{\mathbf{e}}^2}\sqrt{1 - z_{\nu}^2}\sin\phi$$

Angular Correlation Factor

$$(\beta_{\mathbf{e}} \cdot \mathbf{j})(\beta_{\nu} \cdot \mathbf{j}) = z_{\mathbf{e}} z_{\nu}$$

Putting all together:

$$F = 1 + a\beta(z_{e}z_{\nu} + \sqrt{1 - z_{e}^{2}}\sqrt{1 - z_{\nu}^{2}}\cos\phi) + b\frac{m_{e}}{E} + \\ + c\beta\left(-\frac{2}{3}z_{e}z_{\nu} + \frac{1}{3}\sqrt{1 - z_{e}^{2}}\sqrt{1 - z_{\nu}^{2}}\right) + A\beta z_{e} + Bz_{\nu} + \\ + D\beta\sqrt{1 - z_{e}^{2}}\sqrt{1 - z_{\nu}^{2}}\sin\phi = \\ = 1 + b\frac{m_{e}}{E} + \left(a - \frac{2}{3}c\right)\beta z_{e}z_{\nu} + A\beta z_{e} + Bz_{\nu} + \\ + \beta\sqrt{1 - z_{e}^{2}}\sqrt{1 - z_{\nu}^{2}}\left(\left(a + \frac{c}{3}\right)\cos\phi + D\sin\phi\right)$$

Angular Correlation Factor

Figure: (Right) Values of the angular correlation Factor with c=1, E=5000 keV and rest of variables 0. (Left) Location of maximum (blue, value =1.995) and minimum (orange, value =0.005)

Angular Correlation Factor

Figure: (Right) 2D projection of previous 3D image at $\phi=0$ (Left) 1D projections at $\phi=0$, and either $z_{\nu}=0$ or $z_{\nu}=1$

Sampling

Figure: Pair plots for N=100000 decays with c=1, E=1000 keV

Marginal distributions

For z_e (and z_{ν} by symmetry of the expresions), we can observe reason why the marginal distribution becomes constant:

$$f(z_e) = N \int_{-1}^{1} dz_{\nu} \int_{0}^{2\pi} d\phi F =$$

$$= N \int_{-1}^{1} dz_{\nu} \int_{0}^{2\pi} d\phi \left(1 + c\beta \left(-\frac{2}{3} z_e z_{\nu} + \frac{1}{3} \sqrt{1 - z_e^2} \sqrt{1 - z_{\nu}^2} \cos \phi \right) \right)$$

$$= N \int_{-1}^{1} dz_{\nu} \int_{0}^{2\pi} d\phi = 4\pi N = N$$

Marginal distributions

For ϕ , we can derive the expected shape:

$$f(\phi) = N \int_{-1}^{1} dz_{\nu} \int_{-1}^{1} dz_{e} F$$

$$= N \int_{-1}^{1} dz_{\nu} \int_{-1}^{1} dz_{e} \left(1 + c\beta \left(-\frac{2}{3} z_{e} z_{\nu} + \frac{1}{3} \sqrt{1 - z_{e}^{2}} \sqrt{1 - z_{\nu}^{2}} \cos \phi \right) \right)$$

$$= N \left(4 + a\beta \left(\frac{\pi}{2} \right)^{2} \cos \phi / 3 \right) = N \left(1 + a\beta \frac{\pi^{2}}{48} \cos \phi \right)$$

Marginal distributions

Figure: Histogram showing the values of ϕ with c = 1, E = 1000 keV for N = 100000 decays, and curve showing the theoretical distribution

Since term proportional to c depends on E, we can consider different ratios by either:

- Fixing c = B = 1 and modifying the energy
- ▶ Same as before, but now B = -1
- ▶ Fixing B=1 and $E\gg m_{\rm e} o \beta_{\rm e} \approx 1$ and modifying c>B

We recall

$$F = 1 + c eta_e \left(-rac{2}{3} z_e z_
u + rac{1}{3} \sqrt{1 - z_e^2} \sqrt{1 - z_
u^2} \cos \phi
ight) + B z_
u$$

Maxima and minima with $z_e=\pm 1, z_
u\pm 1
ightarrow \mathbf{p_e} \parallel \mathbf{p_
u} \parallel \mathbf{J}$

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) c=1, B=1 and (Left) c=1, B=-1; with E=520 keV and rest of variables 0 for both.

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) c=1, B=1 and (Left) c=1, B=-1; with E=5000 keV and rest of variables 0 for both.

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) a=c, B=1, E=800 keV and (Left) c=5, B=1, E=5000 keV; with the rest of variables 0 for both.

Maximum and Minimum

Figure: Location of maximum (blue, value = 2.66318) and minimum (orange, value = -0.66318) for (Right) c = B = 1, E = 5000 keV and (Left) c = 1, B = -1, E = 5000 keV

Sampling

Figure: Pairplot with the marginal distributions for a simulation of N = 300000 decays with $c=B=1,\,E=5000$ keV. The 1 variable histograms show the theoretical distribution obtained from numerically integrating F with the constrain F>0

Since both terms proportional to a depends on E, we can consider only consider different ratios by changing one (c), while leaving the other (A) fixed. For convenience $E\gg m_e$.

$$F = 1 + \beta_e \left(c \left(-\frac{2}{3} z_e z_\nu + \frac{1}{3} \sqrt{1 - z_e^2} \sqrt{1 - z_\nu^2} \cos \phi \right) + A z_e \right)$$

Maximum and minimum with $z_{
m e}=\pm 1, z_{
u}\pm 1
ightarrow {
m p}_{
m e} \parallel {
m p}_{
u} \parallel {
m J}$

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) A=1, c=0.25 and (Left) A=1, c=-0.25, with E=100000 keV and rest of variables 0 for both.

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) A=1, c=1 and (Left) A=1, c=-1, with E=100000 keV and rest of variables 0 for both.

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) A=1, c=4 and (Left) A=1, c=-4, with E=100000 keV and rest of variables 0 for both.

Maximum and Minimum

Figure: Location of maximum (blue, value = 2.66664) and minimum (orange, value = -0.66664) for (Right) A = c = 1, E = 100000 keV and (Left) A = 1, c = -1, E = 100000 keV

Sampling

Figure: Pairplot with the marginal distributions for a simulation of N = 300000 decays with c = A = 1, E = 100000 keV. The 1 variable histograms show the theoretical distribution obtained from numerically integrating F with the constrain F>0

Since both terms proportional to a depends on E, we can consider only consider different ratios by changing one (c), while leaving the other (A) fixed. For convenience $E\gg m_e$.

$$F = 1 + \left(a - \frac{2}{3}c\right)\beta z_e z_\nu + \beta \sqrt{1 - z_e^2}\sqrt{1 - z_\nu^2}\left(a + \frac{c}{3}\right)\cos\phi$$

Maximum and minimum depends on the relative signs of a and c

- lacktriangle c and a opposite sign: $z_{f e}=\pm 1, z_{
 u}=\pm 1
 ightarrow {f p_e} \parallel {f p_
 u} \parallel {f J}$
- ightharpoonup c and a same sign: $z_e=0, z_{\nu}=0
 ightarrow \mathbf{p_e} \parallel \mathbf{p_{\nu}} \perp \mathbf{J}$

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) a=1, c=0.25 and (Left) a=1, c=-0.25, with E=100000 keV and rest of variables 0 for both.

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) a=1, c=1 and (Left) a=1, c=-1, with E=100000 keV and rest of variables 0 for both.

Angular Correlation Factor

Figure: Values of the angular correlation Factor with (Right) a=1, c=4 and (Left) a=1, c=-4, with E=100000 keV and rest of variables 0 for both.

Maximum and Minimum

Figure: Location of maximum (blue) and minimum (orange) for (Right) a = c = 1, E = 100000 keV (values 2.33332, -0.33332) and (Left) a = 1, c = -1, E = 100000 keV (values 2.66664, -0.66664)

Sampling

Figure: Pairplot with the marginal distributions for a simulation of N = 300000 decays with c = a = 1, E = 100000 keV. The 1 variable histograms show the theoretical distribution obtained from numerically integrating F with the constrain F>0

Angular Correlation Factor

Since both terms proportional to a depends on E, we can consider only consider different ratios by changing one (c), while leaving the other (D) fixed. For convenience $E \gg m_e$.

$$F=1+eta_{e}\left(-rac{2}{3}cz_{e}z_{
u}+\left(rac{1}{3}c\cos\phi+D\sin\phi
ight)\sqrt{1-z_{e}^{2}}\sqrt{1-z_{
u}^{2}}
ight)$$

Maxima and minima depend on the ratio between D and c:

▶ If $c^2 < 3D^2$: maximum at $z_e = z_\nu = 0$ and

$$\tan \phi = \frac{3D}{C}$$

$$F = 1 + \beta_e \sqrt{D^2 + \left(\frac{c}{3}\right)^2}$$

Angular Correlation Factor

Since both terms proportional to a depends on E, we can consider only consider different ratios by changing one (c), while leaving the other (D) fixed. For convenience $E \gg m_e$.

$$F = 1 + \beta_e \left(-\frac{2}{3} c z_e z_\nu + \left(\frac{1}{3} c \cos \phi + D \sin \phi \right) \sqrt{1 - z_e^2} \sqrt{1 - z_\nu^2} \right)$$

Maxima and minima depend on the ratio between D and c:

▶ If $c^2 > 3D^2$: maximum at $z_e = z_\nu = \pm 1$ and

$$F = 1 + \frac{2}{3}\beta|c|$$

We look only at properties of the extrema

Maximum and Minimum

Figure: Positions of the maximum and minimum with Factor with (Right) D=1, c=0.25 and (Left) D=1, c=-0.25, with E=100000 keV and rest of variables 0 for both.

Maximum and Minimum

Figure: Positions of the maximum and minimum with with (Right) D = 1, c = 1 and (Left) D = 1, c = -1, with E = 100000 keV and rest of variables 0 for both.

Maximum and Minimum

Figure: Positions of the maximum and minimum with (Right) D=1, c=2 and (Left) D=1, c=-2, with E=100000 keV and rest of variables 0 for both.

Behaviour of maximum

Figure: Behaviour of the ϕ coordinate for the maximum and the maximum value of the angular correlation factor for different values of c. Note discrepancies are a result of a sampling too coarse.

Sampling

Figure: Pairplot with the marginal distributions for a simulation of N = 300000 decays with c = D = 1, E = 100000 keV. The 1 variable histograms show the theoretical distribution obtained from numerically integrating F with the constrain F > 0

Maximum of F

Single variable: a

Figure: Characteristics of the maximum of F for variable a, $\mathsf{E}=100000$ keV, and rest of parameters 0

Maximum of F

Single variable: c

Figure: Characteristics of the maximum of F for variable c, $\mathsf{E}=100000$ keV, and rest of parameters 0

Maximum of F

Single variable: A

Figure: Characteristics of the maximum of F for variable A, $\mathsf{E}=100000$ keV, and rest of parameters 0

Single variable: B

Figure: Characteristics of the maximum of F for variable B, E $=100000\,$ keV, and rest of parameters 0

Single variable: D

Figure: Characteristics of the maximum of F for variable D, E $=100000\,$ keV, and rest of parameters 0

Two variable: a and c

Figure: Characteristics of the maximum of F for a = 1, variable c, E = 100000 keV, and rest of parameters 0

Two variable: a and A

Figure: Characteristics of the maximum of F for a = 1, variable A, E = 100000 keV, and rest of parameters 0

Two variable: a and B

Figure: Characteristics of the maximum of F for a = 1, variable B, E = 100000 keV, and rest of parameters 0

Two variable: a and D

Figure: Characteristics of the maximum of F for a = 1, variable D, E = 100000 keV, and rest of parameters 0

Two variable: c and A

Figure: Characteristics of the maximum of F for c=1, variable A, $E=100000\ keV$, and rest of parameters 0

Two variable: c and B

Figure: Characteristics of the maximum of F for c = 1, variable B, E = 100000 keV, and rest of parameters 0

Two variable: c and D

Figure: Characteristics of the maximum of F for c = 1, variable D, E = 100000 keV, and rest of parameters 0

Two variable: A and B

Figure: Characteristics of the maximum of F for A = 1, variable B, E = 100000 keV, and rest of parameters 0

Two variable: A and D

Figure: Characteristics of the maximum of F for A = 1, variable D, E = 100000 keV, and rest of parameters 0

Two variable: B and D

Figure: Characteristics of the maximum of F for B = 1, variable D, E = 100000 keV, and rest of parameters 0