Econ 106: Data Analysis for Economics

Lecture 6 Fall 2024

slides adapted from https://stats.oarc.ucla.edu/r/seminars/ggplot2_intro/

Reminders

Lab 1 is due Sunday, 11:59pm (Q3 was updated)

https://pollev.com/vsovero

#tidytuesday

Outline

- Color setting vs mapping
- Bar graphs

Basic Elements of ggplot

- **1. Data**: the data you want to plot
- **2.** Layout: mapping variables on the plot
- **3.** Data display: how you want the data to be visualized (points, lines, bars, etc.)

Scatter plots

Which geom? geom_point()

What type of data?
 Two numeric variables

Line graphs

Which geom? geom_line()

 What type of data? a date/time variable and a numeric variable

Adjusting Plot Settings

- color: color of 1-d objects
- fill: fill color of 2-d objects
- linetype: how lines should be drawn (solid, dashed, dotted, etc.)
- shape: shape of markers in scatter plots
- size: how large objects appear
- alpha: transparency of objects (value between 0 and 1)

Color Mapping

- Color points by clarity
- **Input**: **color** = categorical variable
- Remember, anything that references variables in the dataset must be inside aes():
- Output: a colored plot by clarity

Color Mapping (line graph)

- when we use the color argument for a line graph, it will:
- create a separate line for each country
- assign each country a unique color

```
gapminder %>%
  filter(region=="South America") %>%
ggplot(mapping=aes(x=year, y=fertility)) +
  geom_line(aes(color=country))
```


Color: Setting vs. Mapping

- Color Setting: color is a fixed value
- Set aesthetics to a constant outside the aes() function.

- Color Mapping: color will vary based on the value of a variable
- Map aesthetics to variables inside the aes() function

Setting vs. Mapping

https://pollev.com/vsovero

The color is set to blue (<u>color setting</u>):

Color is mapped to the clarity variable (color mapping):

 use the jobs_gender data frame to create a scatter plot of total_earnings on the x-axis and wage_percent_of_male on the y-axis, color mapping by major_category

Aesthetic Mappings

- Quantitative and Categorical variables work for:
 - color and fill: color gradient scales or evenly-spaced hue scales
- Only categorical variables work for:
 - shape
 - linetype
- Your code will run, but you really should only use quantitative variables for:
 - size
 - alpha

- make a scatter plot of:
 - total_earnings on the x-axis and wage_percent_of_male on the y-axis
 - map total_employees to size
 - alpha of .2

Bar plot

 Counting frequencies of a single categorical variable

Bar plot (frequency counts are in the data)

```
computer_engineering_science <- jobs_gender %>%
  filter(major_category=="Computer, Engineering, and
Science")
```

```
computer_engineering_science
                                236 obs. of 12 variables
                           : num [1:236] 2013 2013 2013 2013 ...
    $ year
                           : chr [1:236] "Computer and information research s
    $ occupation
                           : chr [1:236] "Computer, Engineering, and Science"
    $ major_category
                           : chr [1:236] "Computer and mathematical" "Compute
    $ minor_category
      total_workers
                                        12993 441538 50853 374314 924888
    $ workers_male
                           : num [1:236] 9222 280626 40681 298175 741308 ...
    $ workers_female
                           : num [1:236] 3771 160912 10172 76139 183580 ...
```

Bar plot (frequency counts are in the data)

 geom_col() is adding up the total workers for each value of minor_category

Bar plot (counts are not in the data)

- in this dataset, there is no variable that counts the frequency of each cut
- we have to ask ggplot to count for us

^	carat ‡	cut	color [‡]	clarity [‡]	depth [‡]	table [‡]	price [‡]	x	y	z
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium		VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good		SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Good		VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Good		VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39
11	0.30	Good		SI1	64.0	55.0	339	4.25	4.28	2.73
12	0.23	Ideal		VS1	62.8	56.0	340	3.93	3.90	2.46
13	0.22	Premium	F	SI1	60.4	61.0	342	3.88	3.84	2.33
14	0.31	Ideal		SI2	62.2	54.0	344	4.35	4.37	2.71
15	0.20	Premium	E	SI2	60.2	62.0	345	3.79	3.75	2.27

Bar plot (ggplot counts the frequencies)

https://pollev.com/vsovero

Data Example

https://github.com/rfordatascience/tidytuesday/tree/master/data/2019/2019-09-10

 we will use the safer_parks data from this tidy Tuesday challenge (code to load the data is in the lecture script)

 create a bar graph that shows the frequencies of each value of industry sector

Color Mapping with geom_bar()

- How do we color map a bar plot?
- Same idea as before- has to go within the aes() function
- use fill option to color the entire bar

Color mapping with fill

- create a bar graph that shows the frequencies of each value of industry sector
- color the bars by industry sector

Stacked barplot (counts)

 The counts of clarity are broken down further by cut

- filter for amusement rides
- only keep injury reports where the gender reported is male or female
- create a bar graph that shows the frequencies of each value of device category
- within each device category, show the gender counts

- filter for amusement rides
- only keep injury reports where the gender reported is male or female
- create a bar graph that shows the frequencies of each value gender
- within each gender, show the device category counts

Grouped Bar plot (counts)

 the we use the dodge position to creates a separate bar for every combination of cut and clarity

Stacked Bar plot (proportions)

- we use the fill position to show proportions within each value of clarity
- we can see that the proportion of ideal cut diamonds is greater for diamonds with higher clarity

- filter for amusement rides
- only keep injury reports where the gender reported is male or female
- create a bar graph that shows the frequencies of each value of device category
- within each device category, show the gender proportions

Some parting words of wisdom

Things to be mindful of:

- Know if your variables are quantitative or categorical
- Know how your data is currently structured vs. how it needs to be structured for visualization (wrangle your data as needed)

Plan ahead

What type of data do I have?

What information do I want to convey?

What type of plot will visualize this information?

What plot do I need?

Data	Information	Plot		
Two quantitative variables	Relationship between two variables	scatterplot		
Quantitative variable and time	Trend over time	Line plot		
Categorical variable	Frequencies within a single variable	barplot		
Two categorical variables	Frequencies across variables	Grouped barplot		
Two categorical variables	Relative frequencies across variables	Stacked barplot		

What geom() do I need?

Plot	geom		
scatterplot	geom_point()		
Line plot	geom_line()		
barplot	geom_bar() or geom_col()		
Grouped barplot	geom_bar()		
Stacked barplot	geom_bar()		