Problem 1

The following table gives data from a retrospective study between esophageal cancer and daily alcohol consumption adjusted for age.

	Case		Control	
Age	Daily Alcohol Consumption		Daily Alcohol Consumption	
	0-79 g	$80+ \mathrm{g}$	0-79 g	$80+ \mathrm{g}$
25-34	0	1	106	9
35-44	5	4	164	26
45-54	21	25	138	29
55-64	34	42	139	27
65-74	36	19	88	18
75+	8	5	31	0

- 1. Fit a prospective model to the data to study the relation between alcohol consumption, age, and disease (model age as a continuous variable taking values 25, 35, 45, 55, 65, and 75). Interpret the result.
- 2. (Optional; required for PhD) Let Ψ_j be the odds ratio relating alcohol consumption and disease in the jth age group (j = 1, ..., 6). Assume different age groups have different odds. Compare the following two models: $M_0: \Psi_j = 1$ for all j;

 $M_1: \Psi_j = \Psi$ (where Ψ is an unknown constant);

(Hint: First write out the models and check if they are nested; if so, use deviance analysis to compare the two models.)

Problem 2

The following table provides data from a study of the germination of two species of Orobanche seeds. The seeds were grown on 1/125 dilutions of two different root extract media (cucumber or bean) in a 2x2 factorial layout with replicates. The data (y_i/m_i) consist of the number of seeds, m_i , and the number germinating, y_i , for each batch. Interest focuses on the possible differences in germination rates for the two types of seed and root extract.

O. aegy	yptiaca 75	O. aegyptiaca 73		
Bean	$\operatorname{Cucumber}$	Bean	Cucumber	
10/39	5/6	8/16	3/12	
23/62	53/74	10/30	22/41	
23/81	55/72	8/28	15/30	
26/51	32/51	23/45	32/51	
17/39	46/79	0/4	3/7	
	10/13			

1. Fit a logistic regression model to study the relation between germination rates and different types of seed and root extract. Interpret the result.

- 2. Is there over dispersion? If so, what is the estimate of dispersion parameter? Update your model and reinterpret the result.
- 3. What is a plausible cause of the over dispersion?