

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BS-M-102

PUID: 01035 (To be mentioned in the main answer script)

MATHEMATICS-IB

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1.	Choose	the	correct	alternatives	for	any	ten of the
			•	•	•		$10 \times 1 = 10$
	following:		•			. :	10 / 1

i) The value of
$$\int_0^{\frac{\pi}{2}} \sin^6 x \, dx$$
 is

a)
$$\frac{7\pi}{32}$$

b)
$$\frac{7\pi}{16}$$

c)
$$\frac{5\pi}{32}$$

d)
$$\frac{5\pi}{16}$$
.

ii) The value of
$$\Gamma(3)$$
 is

**-1302/1(N)

Turn over

iii)	The singularity of the integral	$\int_{-1}^{2} \frac{dx}{x(x-1)} a$	ıre
-			

a) 1, 2 b) - 1, 2

c) 0, 1 d) 0, 2.

The locus of the centre of curvature is called

envelope a)

- evolute b)
- circle of curvature d) involutes. c)

Which of the following functions does not satisfy v) Rolle's theorem in [-1, 1]?

a)

b) $\frac{1}{x^4 + 2}$

d) $\sqrt{x^2+3}$.

The value of $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$ is vi)

a)

.b)

c) 2

d) does not exist.

All eigenvalues of any nilpotent matrix are

0 · a)

b)

c) 2

d) none of these.

**-1302/1(N)

viii) If
$$f(x, y) = \frac{x^2 + y^2}{\sqrt{x + y}}$$
 then $xf_x + yf_y = \frac{x^2 + y^2}{\sqrt{x + y}}$

a) $\frac{1}{2}$

b) $\frac{1}{2}f$

c) $\frac{3}{2}f$

d) none of these.

ix) The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if

a) $p \ge 1$

b) p > 1

c) p < 1

d) $p \le 1$.

x) The value of the determinant | 100 101 102 | 105 106 107 | 110 111 112 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 111 | 110 11 | 110 11 | 110 11 | 110 11 | 110 11 | 110 11 | 110 11 | 110

a) 2

b) 0

c) 405

d) - 1.

xi) If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial (r, \theta)}{\partial (x, y)}$ is

a) r

b) 1

c) $\frac{1}{r}$

d) none of these.

xii) The value of t for which

 $\overrightarrow{f} = (x+3y) \hat{i} + (y-2x) \hat{j} + (x+tz) \hat{k}$ is solenoidal is

a) 2

b) - 2

c) 0

d) 1.

**-1302/1(N)

3

[Turn over

GROUP – B (Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

2. Show that
$$\int_{0}^{\infty} \frac{dx}{(1+x^2)^5} = \frac{35\pi}{256}.$$

- 3. The circle $x^2 + y^2 = a^2$ is revolved about the *x*-axis. Show that the surface area and the volume of the sphere thus generated are respectively $4\pi a^2$ and $\frac{4}{3}\pi a^3$.
- 4. Evaluate $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$.
- 5. Find the maximum value of x^3y^2 subject to the constraint x + y = 1, using the method of Lagrange's multiplier.
- 6. If $f = x^2y + 2xy + z^2$, then show that curl grad f = 0.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Expanding the determinant by Laplace's method in terms of minors of 2nd order formed from the first two, prove that

$$\begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix} = (af - be + cd)^{2}.$$

b) Find the eigenvalues and the eigenvectors corresponding to the smallest eigenvalue of the matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

c) Check the consistency of the given system of equations and solve if possible:

$$x + 2y - z = 10$$
; $x - y - 2z = -2$; $2x + y - 3z = 8$.

- 8. a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 3 = z$ at the point (2, -1, 2).
 - b) Check the convergence of the series $\left(\frac{2^2}{1^2} \frac{2}{1}\right)^{-1} + \left(\frac{3^2}{2^2} \frac{3}{2}\right)^{-2} + \left(\frac{4^2}{3^2} \frac{4}{3}\right)^{-3} + \dots$
 - c) Use Mean-Value theorem to prove the following inequality $\frac{x}{1+x} < \log(1+x) < x$, if x > 0. 5+5+5

[Turn over

- 9. a) Show that the rectangle of maximum area that can be inscribed in circle is a square.
 - b) Check whether the matrix $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ is diagonalizable or not.
 - Using Parseval's identity corresponding to the Half-Range cosine series of the function f(x) = x, 0 < x < 2, find the sum of the series $\frac{1}{14} + \frac{1}{24} + \frac{1}{54} + \dots$ 5 + 5 + 5
- 10 a) Find the Fourier series of the function

$$f(x) = \begin{cases} \pi + 2x, & -\pi < x < 0 \\ \pi - 2x, & 0 \le x \le \pi \end{cases}$$

and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

- b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 11. a) If $u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$ then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial u^2} = 0.$

b) If $y = \tan^{-1} x$ then prove that

i)
$$(1+x^2)y_1=1$$

ii)
$$(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$$
.

Find the directional derivative of f = xyz at (1, 1, 1) in the direction $2\hat{i} - \hat{j} - 2\hat{k}$.