
Sequence Listing was accepted with existing errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Tue Jun 05 19:54:47 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: Version No: 10507446 2.1

Input Set:

Output Set:

Started: 2007-06-05 19:54:40.016 Finished:

2007-06-05 19:54:40.692

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 676 ms

Total Warnings: Total Errors: 6

No. of SeqIDs Defined: 10

> Actual SeqID Count: 10

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
E	224	$<\!220\!>\!,<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
E	224	$<\!220\!>\!,<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
E	224	$<\!220\!>\!{},\!<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
E	224	$<\!220\!>\!{},\!<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
E	224	$<\!220\!>\!,<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
E	224	$<\!220\!>\!,<\!223\!>$ section required as $<\!213\!>$ has Artificial sequence or Unknown in SEQID (10)

SEQUENCE LISTING

<110>	GOTO, Hidetsugu NAKANO, Shigeru	
<120>	GENE PARTICIPATING IN ACETIC ACID TOLERANCE, ACETIC ACID BACTER BRED USING THE GENE, AND PROCESS FOR PRODUCING VINEGAR WITH THE USE OF THE ACETIC ACID BACTERIA	
<130>	4439-4024	
<140> <141>	US/10/507,446 2004-09-13	
<150> <151>	PCT/JP03/02946 2003-03-12	
<160>	10	
<170>	PatentIn version 3.2	
<210> <211> <212> <213>	1 2016 DNA Gluconacetobacter entanii	
<400>	1	
gatatca	aatg gcagcagcaa gatcgttgag gatctggcct ttgattcact ggccgtcatg	60
aatttto	gtca tggaaatcga ggacacgctc gacgtttccg tgccgcttga ccggctggct	120
gatatco	cgca ccattgatga tctggctgcc tgtatcgtct ctctcaagca ggcatcctga	180
tacacca	atgt cgattttctc gaaatatgaa ggccttgcgt ccgccctgtc ggcggtaacg	240
gccgato	ggtg ggcgcaaccc gttcaacgtc gtgatcgaaa agcccatttc ctccacggtc	300
gggctga	atcg aagggegega gaegettetg tteggeacea acaactatet tgggetgage	360
cagtccc	ccgg ccgcgatcga agcggcggtg gaagccgcca gggcttatgg tgtcggcacg	420
accggat	tege geategeeaa tggeaegeag ggtetgeaee geeagttgga agageggetg	480
tgcacct	ttet teegtegteg geactgeatg gtgtttteea eeggttaeea ggeeaatetg	540
ggcacga	attt ccgcactggc gggcaaggac gattatctgc tgcttgatgc ggacagccat	600
gccagca	atet atgatggcag eegeettgge eatgegeagg teateegett eegteaeaae	660
gacgccc	gatg acctgcataa acgcctgcgc cgccttgatg gtacgcccgg agcgaaactg	720
gtcgtg	gtcg aaggcatcta ttccatgatg ggcgacgtcg ttcccatggc ggaattcgcg	780
gccgtca	aagc gggaaaccgg tgcatggctg ctggcggatg aagcacattc cgttggtgta	840

atgggcgaac atggccgtgg cgtggcggaa tccgacggcg tggaagatga tgtcgatttt 900

gtcgtcggca ccttttccaa aagccttggc acggttggtg gctactgtgt ttccaaccat 960 gccgggctgg acctgatccg gctgtgttcg cgtccgtaca tgttcaccgc atccctgccg 1020 ccggaagtca tcgccgcgac catggccgcg ctgactgaac tggaaaaccg gccggaactg 1080 cgcgtgcggt tgatggacaa tgcacgcagg cttcatgacg ggctgcaggc ggccggcctg 1140 cgcaccggcc cgcaggccag tcctgtcgtg tccgtcattc tggatgatgt ggcggttgcc 1200 gtggcgttct ggaaccggct gctggacctt ggggtttacg tcaacctcag cctgccgcct 1260 gcaacgcccg accagcatcc cctgctgcgg acctccgtca tggcgaccca tacgccggag 1320 cagatagacc gggccgtgga aatcttcgcc gttgtagcgg gcgagatggg tatcaaccgc 1380 gccgcctgaa aaaacctgcc tgccgtaatt tccacagcag atacggcagg cagaccagcg 1440 gatgeegtte egaaaaegge eecageggea gtteaatgee ggaatgeege etgatettee 1500 atgcgatata gcgcgcgcca ccttcaaacg tgaaggcccc cttgaacagg cggctgacat 1560 tragracgeg coccagooga coacgoager accagootto gtacatotto oggogoagtt 1620 caggtqtcag ctqqqqqqtt aqttqatcqc cctcaqaccq qaacqqcaqq ccatcqqcqc gccatacatc cggcagcagg cgcctgtacc gtgcttcctg cccctgtagc aggctacgcg 1740 gcctgcggcc gttctccaca cgcagttccg caccgtaagt atgggcgaac agggccagcc 1800 agtagtcatc ggccgtgccc tgtgccggac ccagggcggc agcccagcgc cccgcctgcc ccaccgcgcg gataatgcag gccaggatgg catcggccgc gtccggttcc ctgacccata 1920 caagecqcac aggetggeag aagegtgeec agacegtggt atccaaegtg gegegteeeg 1980 tcatgcggcg gaactgcgct atggacagga tggcca 2016

<210> 2

<211> 400

<212> PRT

<213> Gluconacetobacter entanii

<400> 2

Met Ser Ile Phe Ser Lys Tyr Glu Gly Leu Ala Ser Ala Leu Ser Ala

Val Thr Ala Asp Gly Gly Arg Asn Pro Phe Asn Val Val Ile Glu Lys 20 25 30

Pro Ile Ser Ser Thr Val Gly Leu Ile Glu Gly Arg Glu Thr Leu Leu 35 45

40

Phe	Gly 50	Thr	Asn	Asn	Tyr	Leu 55	Gly	Leu	Ser	Gln	Ser 60	Pro	Ala	Ala	Ile
Glu 65	Ala	Ala	Val	Glu	Ala 70	Ala	Arg	Ala	Tyr	Gly 75	Val	Gly	Thr	Thr	Gly 80
Ser	Arg	Ile	Ala	Asn 85	Gly	Thr	Gln	Gly	Leu 90	His	Arg	Gln	Leu	Glu 95	Glu
Arg	Leu	Суз	Thr 100	Phe	Phe	Arg	Arg	Arg 105	His	Суз	Met	Val	Phe 110	Ser	Thr
Gly	Tyr	Gln 115	Ala	Asn	Leu	Gly	Thr 120	Ile	Ser	Ala	Leu	Ala 125	Gly	Lys	Asp
Asp	Tyr 130	Leu	Leu	Leu	Asp	Ala 135	Asp	Ser	His	Ala	Ser 140	Ile	Tyr	Asp	Gly
Ser 145	Arg	Leu	Gly	His	Ala 150	Gln	Val	Ile	Arg	Phe 155	Arg	His	Asn	Asp	Ala 160
Asp	Asp	Leu	His	Lys 165	Arg	Leu	Arg	Arg	Leu 170	Asp	Gly	Thr	Pro	Gly 175	Ala
Lys	Leu	Val	Val 180	Val	Glu	Gly	Ile	Tyr 185	Ser	Met	Met	Gly	Asp 190	Val	Val
Pro	Met	Ala 195	Glu	Phe	Ala	Ala	Val 200	Lys	Arg	Glu	Thr	Gly 205	Ala	Trp	Leu
	Ala 210	Asp	Glu	Ala	His	Ser 215	Val	Gly	Val	Met	Gly 220	Glu	His	Gly	Arg
Gly 225	Val	Ala	Glu	Ser	Asp 230	Gly	Val	Glu	Asp	Asp 235	Val	Asp	Phe	Val	Val 240
Gly	Thr	Phe	Ser	Lys 245	Ser	Leu	Gly	Thr	Val 250	Gly	Gly	Tyr	Суз	Val 255	Ser
Asn	His	Ala	Gly 260	Leu	Asp	Leu	Ile	Arg 265	Leu	Суз	Ser	Arg	Pro 270	Tyr	Met

Phe Thr Ala Ser Leu Pro Pro Glu Val Ile Ala Ala Thr Met Ala Ala 275 280 285

Leu Thr Glu Leu Glu Asn Arg Pro Glu Leu Arg Val Arg Leu Met Asp 290 295 300

Asn Ala Arg Arg Leu His Asp Gly Leu Gln Ala Ala Gly Leu Arg Thr 305 310 315 320

Gly Pro Gln Ala Ser Pro Val Val Ser Val Ile Leu Asp Asp Val Ala 325 330 335

Val Ala Val Ala Phe Trp Asn Arg Leu Leu Asp Leu Gly Val Tyr Val 340 345 350

Asn Leu Ser Leu Pro Pro Ala Thr Pro Asp Gln His Pro Leu Leu Arg 355 360 365

Thr Ser Val Met Ala Thr His Thr Pro Glu Gln Ile Asp Arg Ala Val 370 375 380

Glu Ile Phe Ala Val Val Ala Gly Glu Met Gly Ile Asn Arg Ala Ala 385 390 395 400

<210> 3

<211> 1360

<212> DNA

<213> Acetobacter aceti

<400> 3

gaagacaget tggatgtate tatecegete gacaaactgg etgatateeg aacgattaat 60 gaccttgccg cttgcattgt tgctctgaaa aacaaagggt gaggcgtgga tgacatcact attttccaaa tttgaaggta cggcaggcgc gctgggttcc gttgtggccg taggcggtcg 180 caaccetttt getgttgtta ttgaaaaace tgtetettea aetgttggaa ttattgaagg 240 tcgggaaacg cttctttttg gcaccaataa ctatttgggg cttagtcaat ccaaaaatgc 300 cattcaagca gcccagcagg ctgccgcggc atgtggcgta ggcacaacgg gctcacgcat 360 tgcaaatggc acacaatccc tgcaccgaca gcttgaaaaa gatattgccg cgttttttgg 420 teggegtgat gecatggttt ttteeaeggg gtateaggea aaceteggea ttattteeae 480 540 gctggcaggt aaggatgacc acctgtttct ggatgctgat agccacgcca gtatctatga 600 tggcagccgc ctgagtgcag cagaagttat tcgcttccgc cataatgatc cagacaacct

ttataaacgc	cttaaacgca	tggatggcac	gccaggcgcc	aaattgattg	tggttgaagg	660
catttattcc	atgacgggta	atgttgcccc	gattgcagaa	tttgttgctg	ttaaaaaaga	720
aacaggcgct	tacctgctgg	tagatgaagc	ccattcttt	ggcgtgttgg	gtcaaaatgg	780
gcgtggtgcc	gctgaggctg	atggcgtgga	agctgatgtg	gactttgttg	tcggcacatt	840
ttccaaaagc	ttgggcacag	ttggcggtta	ctgcgtatct	gaccatcctg	agctggagtt	900
tgtgcgctta	aactgccggc	cctatatgtt	tacggcatcg	ctaccgccgg	aagttattgc	960
tgccacaacg	gctgccttga	aagatatgca	ggcacatcct	gaattgcgta	agcagcttat	1020
ggcaaacgcg	cagcaactac	atgcaggttt	tgtagatatt	gggctaaatg	ccagcaaaca	1080
cgcaacccca	gttattgccg	ttacattgga	aacagctgaa	gaagctattc	ccatgtggaa	1140
caggcttttg	gaacttggtg	tttatgtaaa	tctcagcctt	cctccggcta	caccagattc	1200
gcggccgttg	ctccgttgtt	ccgtaatggc	cacccatacg	cccgaacaaa	ttgcgcaggc	1260
tattgccata	ttcaggcagg	ctgcggcaga	agtaggcgta	accatcacac	cctccgctgc	1320
ttaaaaaaaa	gctatttgcg	cttgaatgcc	ccttgctgcc			1360

<210> 4

<211> 404

<212> PRT

<213> Acetobacter aceti

<400> 4

Met Thr Ser Leu Phe Ser Lys Phe Glu Gly Thr Ala Gly Ala Leu Gly 5 10 15

Ser Val Val Ala Val Gly Gly Arg Asn Pro Phe Ala Val Val Ile Glu 20 25 30

Lys Pro Val Ser Ser Thr Val Gly Ile Ile Glu Gly Arg Glu Thr Leu 40 35

Leu Phe Gly Thr Asn Asn Tyr Leu Gly Leu Ser Gln Ser Lys Asn Ala 50 55 60

Ile Gln Ala Ala Gln Gln Ala Ala Ala Cys Gly Val Gly Thr Thr 65 70 75

Gly Ser Arg Ile Ala Asn Gly Thr Gln Ser Leu His Arg Gln Leu Glu 85

90

Lys As	p Ile	Ala 100	Ala	Phe	Phe	Gly	Arg 105	Arg	Asp	Ala	Met	Val 110	Phe	Ser
Thr Gl	y Tyr 115	Gln	Ala	Asn	Leu	Gly 120	Ile	Ile	Ser	Thr	Leu 125	Ala	Gly	Lys
Asp As	_	Leu	Phe	Leu	Asp 135	Ala	Asp	Ser	His	Ala 140	Ser	Ile	Tyr	Asp
Gly Se	r Arg	Leu	Ser	Ala 150	Ala	Glu	Val	Ile	Arg 155	Phe	Arg	His	Asn	Asp 160
Pro As	p Asn	Leu	Tyr 165	Lys	Arg	Leu	Lys	Arg 170	Met	Asp	Gly	Thr	Pro 175	Gly
Ala Ly	s Leu	Ile 180	Val	Val	Glu	Gly	Ile 185	Tyr	Ser	Met	Thr	Gly 190	Asn	Val
Ala Pr	o Ile 195	Ala	Glu	Phe	Val	Ala 200	Val	Lys	Lys	Glu	Thr 205	Gly	Ala	Tyr
Leu Le 21		Asp	Glu	Ala	His 215	Ser	Phe	Gly	Val	Leu 220	Gly	Gln	Asn	Gly
Arg Gl 225	y Ala	Ala	Glu	Ala 230	Asp	Gly	Val	Glu	Ala 235	Asp	Val	Asp	Phe	Val 240
Val Gl	y Thr	Phe	Ser 245	Lys	Ser	Leu	Gly	Thr 250	Val	Gly	Gly	Tyr	Cys 255	Val
Ser As	p His	Pro 260	Glu	Leu	Glu	Phe	Val 265	Arg	Leu	Asn	Cys	Arg 270	Pro	Tyr
Met Ph	e Thr 275	Ala	Ser	Leu	Pro	Pro 280	Glu	Val	Ile	Ala	Ala 285	Thr	Thr	Ala
Ala Le 29	_	Asp	Met	Gln	Ala 295	His	Pro	Glu	Leu	Arg 300	Lys	Gln	Leu	Met
Ala As 305	n Ala	Gln	Gln	Leu 310	His	Ala	Gly	Phe	Val 315	Asp	Ile	Gly	Leu	Asn 320

```
Ala Ser Lys His Ala Thr Pro Val Ile Ala Val Thr Leu Glu Thr Ala
             325
                               330
Glu Glu Ala Ile Pro Met Trp Asn Arg Leu Leu Glu Leu Gly Val Tyr
          340
                  345
Val Asn Leu Ser Leu Pro Pro Ala Thr Pro Asp Ser Arg Pro Leu Leu
      355 360 365
Arg Cys Ser Val Met Ala Thr His Thr Pro Glu Gln Ile Ala Gln Ala
  370
                    375
                                       380
Ile Ala Ile Phe Arg Gln Ala Ala Glu Val Gly Val Thr Ile Thr
                390
                                  395
Pro Ser Ala Ala
<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> synthetic primer
<400> 5
                                                                30
ctggctgcct gtatcgtctc tctcaagcag
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> synthetic primer
<400> 6
acggctgcag ctggtctgcc tgccgtatct
                                                                30
```

<210> 7 <211> 30

```
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> synthetic primer
<400> 7
                                                                     30
ggcaaacctc ggcattattt ccacgctggc
<210> 8
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(29)
<223> synthetic primer
<400> 8
gcgaatctgg tgtagccgga ggaaggctg
                                                                     29
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> synthetic primer
<400> 9
gccagcgtgg aaataatgcc gaggtttgcc
                                                                     30
<210> 10
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(29)
<223> synthetic primer
<400> 10
cagcetteet eeggetacae eagattege
                                                                     29
```