

07 Hyperspectral imaging and other spectroscopic techniques

Professur für Diagnostische Sensorik

Prof. Sebastian Zaunseder, <u>sebastian.zaunseder@uni-a.de</u> 16.12.24, Augsburg

Motivation a Background MM 550nm detector two-photon fluorescence b d ocular water immersion emission objective filter glass coverslip dichroic [https://www.ptglab.com/news/blog/if-imaging-widefield-versus-confocal-microscopy/, 06.12.2023] dental acrylic mirror light sou 100 µm excitation artificial filter CSF e pial veins objective diving venules and arterioles cortical specimen arteries capillary beds

, 06.12.2023]

https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-2-74

Motivation

- Definitions hyperspectral, imaging, spectroscopy
- Spectroscopy always refers to multiple wavelengths
 - (Conventional) Spectroscopy vs. spectroscopic imaging: single spot vs. spatial resolution
 - Difference multi- and hyperspectral
 - Multispectral: 4 to 10 spectral bands (no exact definition)
 - Hyperspectral: 10 up to 100 with specialty cases going into 1000
- In the end, light needs to be separated into wavelengths
- Separation approaches → required for all techniques
 - Dispersive elements (prism, diffraction grating)
 - Filters (Dicroic mirrors, tuneable filters / bandpass filters)
 - Tunable illumination

https://en.wikipedia.org/wiki/Diffraction_grating#/media/File:Comparison_refraction_diffraction_spectra.svg

Motivation

•	Feature	Monochrome	RGB	Spectroscopy	Multispectral	Hyperspectral
[Karim2022]	Spatial information	Yes	Yes	No	Yes	Yes
	Band Numbers	1	3	From several dozens to hundreds	3 to 10	From several dozens to hundreds
	Spectral information	No	No	Yes	Limited	Yes
	Multiconstituent information	No	Limited	Yes	Limited	Yes
	Sensitivity to minor components	No	No	Yes	Limited	Yes

Outline

I Introduction

- 1 Hyperspectral imaging basics
- 2 (Absorption) Hyperspectral imaging applications
- 3 Overview on related concepts
- S Summary

HYPERSPECTRAL IMAGING BASICS

Basics - taxonomies

- General problem: a 2D sensor needs to capture a 3D data structure \rightarrow any spectral discrimination has to take place before the light is captured by the sensor pixels (compare Bayer filter array)
- Possible taxonomies
 - According to wavelength range
 - Ultraviolet
 - Visible

otics.com/knowledge-

- Near-infrared
- Midinfrared

- According to hyperspectral data collection
 - Whiskbroom (scanning)
 - Pushbroom (scanning)
 - Spectral Scanning (scanning)
 - **Snapshot (non-scanning)**

- According to measurement type
- "Absorption type" (absorption, reflection, scattering, transmission)
- Fluorescence type
- Raman type

- According to spectral dispersion mode
 - Prisms/grating types
 - Tunable filter types
 - Single-lens imaging types

Collection modes

- Whiskbroom (point scanning)
- Pushbroom (line scanning)
- Spectral Scanning (staring)
- Snapshot (full registration at once)
- Computational /indirect approaches

Collection modes

- Whiskbroom (point scanning)
 - Spectrum at a single location
 - Either translational or rotational scanning
 - Light path does not change
 - Slow operation (→ motion artifacts) and precise positioning required
- Pushbroom (line scanning)
 - Scene along one spatial dimension is captured (by narrow slit aperture)
 - Perpendicular axis is used for spectral discrimination
 - Either translational or rotational scanning to capture second dimension (→ motion artifacts)
- Spectral Scanning (staring)
 - 2D grayscale image of one color band
 - Sequential color band acquisition (→ motion artifacts)
 - Simple optics and detectors, tuneable/exchangeable filters or light source

[https://collab.dvb.bayern/display /TUMzfp/Hyper-+and+multispectral+imaging, 13.12.2023]

Collection modes

Snapshot

- Combination of image-division and dispersion (wavelength-discriminating) optical elements in front of the sensor and data processing.
- Techniques
 - Integral Field Spectrometry (IFS; split the image into multiple parts, either by a slicer mirror assembly, a fiber bundle or an lenslet array, to be rearranged, dispersed and projected on the sensor)
 - Multispectral beamsplitting (MSBS; filters and microlenses)
 - Spectrally resolving detector arrays (SRDA; also called mosaic filteron-chip cameras; place an array of color filters directly on the sensor pixels (similar to Beyer filters)
 - ..
- Software / indirect approaches
 - Multi-camera imaging (using RGB)
 - Sparse sampling (spatial or spectral reconstruction from few support points) and other algorithmic reconstruction approaches

(ABSORPTION)
HYPERSPECTRAL
IMAGING
APPLICATIONS

articles/kent-imaging-announces

Overview

- Technique in early stage → no/rare routine use in clinics but
 - Wide possibilities
 - Many current research works
- Available information
 - Tissue / blood composition assessment (including oxygenation, hemoglobin concentration, tissue classification, ...)
 - Perfusion assessment
- Medical applications
 - Assessment of skin disease and wounds
 - Peripheral arterial disease
 - Tumor detection/segmentation
 - Hyperspectral microscopy

Clinical HSI system Tivita (pushbroom system by Diaspective Vision)

https://diaspectivevision.com/produkt/tivita-2-<u>0/</u>, 13.12.2023]

Kent SNAPSHOTNIR 4.0*

Overview – Analytic procedure (opposed to purely data driven)

Background (absoprtion by media; for scattering similar relations hold)

$$\ln\left(\frac{I_0}{I(d)}\right) := A(\lambda) = \mu_a \cdot d = \sum_{n=1}^{N} \epsilon_n(\lambda) \cdot c_n \cdot d$$

Common handling in HSI → scattering assumed a wavelength independent factor (e.g. [Miclos2015])

$$A(x,y,\lambda) := -\log_{10}\left(\frac{I_t(x,y,\lambda) - B(x,y,\lambda)}{I_c(x,y,\lambda) - B(x,y,\lambda)}\right) = G(x,y) + \sum_{n=1}^{N} \epsilon_n(x,y,\lambda) \cdot c_n(x,y,\lambda)$$

 $I_c(x, y, \lambda)$... white reference, G(x, y) ... Scattering factor, $B(x, y, \lambda)$... black reference

 Example from "Wavelength and model selection for hyperspectral imaging of tissue oxygen saturation" using HSI [Chen2015]

$$A(x,y,\lambda) = \epsilon_{HbO_2}(\lambda) \cdot c_{HbO_2}(x,y) + \epsilon_{Hb}(\lambda) \cdot c_{Hb}(x,y)$$

$$A(x,y,\lambda) = \epsilon_{HbO_2}(\lambda) \cdot c_{HbO_2}(x,y) + \epsilon_{Hb}(\lambda) \cdot c_{Hb}(x,y) + \epsilon_{melanin}(\lambda) \cdot c_{melanin}(x,y)$$

$$A(x,y,\lambda) = \epsilon_{HbO_2}(\lambda) \cdot c_{HbO_2}(x,y) + \epsilon_{Hb}(\lambda) \cdot c_{Hb}(x,y) + G(x,y)$$

$$A(x,y,\lambda) = \epsilon_{HbO_2}(\lambda) \cdot c_{HbO_2}(x,y) + \epsilon_{Hb}(\lambda) \cdot c_{Hb}(x,y) + \epsilon_{melanin}(\lambda) \cdot c_{melanin}(x,y) + G(x,y)$$

→ MBL3C model is the most suitable for the assessment of StO2 (best wavelengths [516–580] nm)

Peripheral arterial disease (PAD)

- Peripheral arterial disease (PAD)
 - Vascular disorder with abnormal narrowing of arteries
 - Symptoms: pain, wounds
 - Risk factors: smoking, high blood pressure, high sugar,

Assessment by HIS

- [Grambow2022]
 - Main idea: assessment of angiosomes after surgery (angiosome is a three-dimensional unit of skin and underlying tissues vascularized by a source artery)
 - Finding (e.g.): increase in tissue oxygenation StO2 and NIR perfusion index

[Geskin2022]

- Main idea: Assessment of foot microcirculation as well as macrovascular and microvascular correlation
- Increases in tissue oxygenation StO2 and Oxyhemoglobin HbO; no correlation between used parameters to assess macro- and micro

PTA Posterior tibial artery, SA sural artery, PA peroneal artery, ATA anteriror tibial artery, DPA dorsal pedal artery, MPS medial plantar artery, LPA lateral plantar artery

[Grambow2022]

[Geskin2022

Assessment of skin disease and wounds

- Wounds show variable compositions and perfusion pattern
- HSI is very well suited as spatial assessment is fundamental
- Multiple HSI based parameter relevant (tissue oxygenation, total oxyhaemoglobin, total deoxyhaemoglobin, total haemoglobin,...)
- Findings
 - [Promny2022] Significant differences between healthy skin and wound areas (of variable strength)
 - E.g. Burn depth assessment possible

[Promny2022]

Revised: 7 July 2020 Accepted: 15 July 2020 DOI: 10.1111/iwj.13474 eskin2020] WILEY ORIGINAL ARTICLE

Mean TT Std TT

value .0

0.46

p-value

§ 60

Reflectance (

Tumor detection/segmentation

- Tumor section is a (often) life saving intervention
- In brain tumors, segmentation is highly critical (opposing demands)
- Typically, machine learning approaches to distinguish tissue

Reflection characteristics form turmor tissue (TT) and normal tissue (NT)

Reflection characteristics from turmor tissue (TT) and blood vessel (BV)

03

OTHER
SPECTROSCOPIC
TECHNIQUES

Overview

- Multiple spectroscopic techniques available
- In principle, all techniques can be applied as spot (spectroscopy) or areal (hyperspectral imaging) measurements
- "Type" is fundamental difference
 - "Absorption type" (absorption, reflection, scattering, transmission)
 - Fluorescence type
 - Raman type

	Spectroscopic technique	Description and function		
	Fluorescence spectroscopy	Based on examining the fluorescence spectra of molecules to determine their basic molecular behavior characteristics, to identify infectious diseases, and to perform noninvasive biopsies		
-	Fluorescent correlation spectroscopy (FCS)	Examines spontaneous fluorescent intensity fluctuations to determine concentrations and diffusion coefficients of molecules and large molecular complexes		
	Elastic scattering spectroscopy (ESS)	Also called <i>diffuse reflectance spectroscopy</i> and <i>light scattering spectroscopy</i> ; based on analyzing the relative intensity of elastic backscattered light to distinguish diseased from healthy tissue		
	Diffuse correlation spectroscopy (DCS)	A noninvasive technique that probes deep into tissue to measure blood flow by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal		
	Raman spectroscopy	A non-invasive, label-free biomedical optics tool for evaluating the chemical composition of biological tissue samples (variations: CARS; time-resolved; wavelength-modulated)		
	Surface-enhanced Raman scattering (SERS) spectroscopy	Combines Raman scattering effects with surface plasmon resonance to identify a molecular species and to quantify different targets in a mixture of different types of molecules		
	Coherent anti-Stokes Raman scattering (CARS) spectroscopy	A nonlinear optical four-wave-mixing process for label-free imaging of a wide range of molecular assemblies based on the resonant vibrational spectra of their constituents		
	Stimulated Raman scattering (SRS) spectroscopy	Uses two laser beams to coherently excite a sample for straightforward chemical analyses		
	Photon correlation spectroscopy (PCS)	Uses dynamic light scattering to measure density or concentration fluctuations of small particles in a highly diluted suspending fluid to examine sizes and movements of scattering particles		
	Fourier transform infrared (FTIR) spectroscopy	Precisely measures light absorption per wavelength over a broad spectral range to identify materials, determine their constituent elements, and check their quality		
	Brillouin scattering spectroscopy	Optical technique for noninvasively determining the elastic moduli or stiffness of materials		

295]

, page

[Keiser2022

Fluorescence spectroscopy

- Fluorescence
 - Three stage process
 - Fluorophores are modelcules that allow fluorescence
 - Jablonski diagram visualizes processes
- In fluorescence, emission may generally relax to a variety of vibrational levels (v=n) of the ground state (S₀) → large bandwidth (i.e. range of possible wavelengths) of emitted photons
- Stokes shift: wavelength difference between excitation and emission (emission wavelength is smaller)

Jablonski diagram for fluorescence and phosphorescence

Fluorescence spectroscopy

- Example of a excitation/emission spectrum
 - Depends on observed atoms/molecules
 - Emission can be broad
- Fluorescence correlation spectroscopy
 - Used to observe particle movements
 - Variation of fluorescence over time is observed (slow processes)

NiN

Raman spectroscopy

- Raman scattering: inelastic scattering
- Raman-Effect vs. Rayleigh scattering: part of the scattered photons will undergo a shift in frequency
- General difference in Raman scattering: Stokes & Anti-Stokes scattering

[https://www.nature.com/articles/s41536-017-0014-3/figures/1 08.11.2023]

Raman spectroscopy

- Results "similar" to fluorescence: novel (broadband) spectral components + exciting wavelength
- Application condition differ as scattering is required

[https://collab.dvb.bayern/pages/viewpage.action?pageId=70096837 , 13.12.2023]

SUMMARY

Summary

Key messages

- Spectroscopy refers to the acquisition of multiple wavelengths
- Multiple spectroscopic techniques available; generally, spectroscopic measurements can be done as a spot measurement and spatially resolved
- Multi- and hyperspectral imaging combine ideas from imaging (2d recordings) and spectroscopy (multiple wavelengths)
- Fluoresence spectroscopy exploits the property of certain marterials to emit light at certain wavelengths upon absorption of light at another wavelength
- Raman spectroscopy exploits the property of certain marterials to vary the wavelength upon scattering (inelastic scattering)

Summary

Literature

[Geskin2022] G. Geskin, M. D. Mulock, N. L. Tomko, A. D'asta, and S. Gopalakrishnan, "Effects of Lower Limb Revascularization on the Microcirculation of the Foot: A Retrospective Cohort Study," Diagnostics, vol. 12, no. 6, pp. 1–13, 2022, doi: 10.3390/diagnostics12061320.

[Grambow2022] E. Grambow *et al.*, "Evaluation of Hyperspectral Imaging for Follow-Up Assessment after Revascularization in Peripheral Artery Disease," *J. Clin. Med.*, vol. 11, no. 3, 2022, doi: 10.3390/jcm11030758.

[Hagen2013] N. Hagen and M. W. Kudenov, "Review of snapshot spectral imaging technologies," Opt. Eng., vol. 52, no. 9, p. 090901, 2013, doi: 10.1117/1.oe.52.9.090901.

[Keiser2022] G. Keiser, *Biophotonics Concepts to Applications*. Singapore: Springer Nature Singapore, 2022. doi: 10.1007/978-981-19-3482-7.

[Lapray2014] P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, "Multispectral filter arrays: Recent advances and practical implementation," Sensors (Switzerland), vol. 14, no. 11, pp. 21626–21659, 2014, doi: 10.3390/s141121626.

[Leon2023] R. Leon et al., "Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection," npj Precis. Oncol., vol. 7, no. 1, 2023, doi: 10.1038/s41698-023-00475-9.

[Promny2022] D. Promny, J. Aich, T. Püski, A. Marti Edo, B. Reichert, and M. Billner, "Evaluation of hyperspectral imaging as a modern aid in clinical assessment of burn wounds of the upper extremity," Burns, vol. 48, no. 3, pp. 615–622, 2022, doi: 10.1016/j.burns.2021.06.013.

[Saiko2020] G. Saiko, P. Lombardi, Y. Au, D. Queen, D. Armstrong, and K. Harding, "Hyperspectral imaging in wound care: A systematic review," Int. Wound J., vol. 17, no. 6, pp. 1840–1856, 2020, doi: 10.1111/iwj.13474.

Vielen Dank für Ihre Aufmerksamkeit

Prof. Dr.-Ing. Sebastian Zaunseder
Professur für Diagnostische Sensorik
Universität Augsburg
sebastian.zaunseder@uni-a.de
www.uni-augsburg.de