

Rotation
Move point(s) by repositioning along circular arc(s) centered on the rotation point (x_r, y_r)
New position is such that the angle from the rotation point to each rotated point increases by θ . Positive rotation is counter-clockwise.
Rotation is also a "rigid body" transformation. 3

Rotation Matrix	
$x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$	
$\mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \mathbf{P}' = \mathbf{R} \cdot \mathbf{P}$ $\mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	6

 Matrix Representations Assume series of transformations Translate, rotate, scale, etc. Can apply them in sequence Multiple matrix calculations Is there a better way? 	
	12

Homogeneous Coordinates

- Normal 2-D Cartesian
 - Two coordinate values
 - X, y
- Homogeneous
 - Three coordinate values
 - x_h, y_h, h
 - Often choose h=1

$$x = \frac{x_h}{h}$$

$$y = \frac{y_h}{h}$$

Homogeneous?

Remember from MA-235 (DiffEq)?
Homogeneous polynomial
All terms of same degree (e.g., x4y+7y5)
Line:
Ax + By + C = 0
mixed degree therefore non-homogeneous
Ax_h/h + By_h/h + C = 0
Ax_h + By_h + Ch = 0
homogeneous polynomial of degree 1 in (x, y, h)
Transformation representation
All in matrix form

Matrix Form of Transformation $\mathbf{P} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \mathbf{P}' = \mathbf{T} \cdot \mathbf{P}$ $\mathbf{T} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$ $\mathbf{P}' = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$

Matrix Exam	ıple 2
$\mathbf{T} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{P} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
$\mathbf{P'} = \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix}$	$= \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$ Recognize this result?

41	Matri	x Exar	npl	e 3		
	$\cos \theta$	$-\sin\theta$ $\cos\theta$ 0	0		$\lceil x \rceil$	
T =	$\sin \theta$	$\cos \theta$	0	P =	y	
	0	0	1		1	
					How abo this one	
		$\lceil ? \rceil$	$\int x c$	$\cos \theta - y$	$\sin \theta$	
F	$\mathbf{P}' = \mathbf{T} \cdot \mathbf{F}$	$\mathbf{r} = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} =$	xs	$ in \theta + y $	$\cos \theta$	
		[?]		1		.8

Matrix Example 6	
$\mathbf{T} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{P} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	
$\mathbf{P'} = \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix} = \begin{bmatrix} x + ay \\ y \\ 1 \end{bmatrix}$	21

Composite Transformations

- Each transformation
 - Represented by a 3x3 matrix
 - Applied by matrix multiplication
- Can combine transformations
 - By multiplying matrices
- Full transformation in one step!

$$ABCDx = A(B(C(Dx))) = (((AB)C)D)x$$

Composite Example 1 $\mathbf{T}_{1} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{T}_{2} = \begin{bmatrix} 1 & 0 & c \\ 0 & 1 & d \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ $\mathbf{P}' = \mathbf{T}_{1} \cdot \mathbf{T}_{2} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & a+c \\ 0 & 1 & b+d \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+a+c \\ y+b+d \\ 1 \end{bmatrix}$

4	Summary
	Transformation representation
	 Represent any transform by 3x3 matrix Equivalent to 2x2 separate operations Addition, multiplication Composite formed by matrix product Can't do this with 2x2 operations!
•	Apply to each point To yield transformed point
•	Try it yourself!