Transfer of Peripheral Fixation Training Across Retinal Eccentricities

Dylan Rose, Peter Bex

Northeastern University, Psychology Department

Introduction

In a previous work [1], we demonstrated that explicit training could be used to reduce the variability and magnitude of fixational errors made at peripheral locations (effectively "pseudo-PRLs") in the retina. As a follow up, in two experiments, we tested whether:

- pseudo-PRL eccentricity relative to the fovea affects performance on the same metrics.
- there is an independent effect of visual feedback on performance during this task.

Methods

Experiment 1: Effect of Eccentricity

- Participants: eight with normal or corrected to normal vision. Naive to task.
- Task: use peripheral vision to center gaze-contingent ring over PRL target.
- **Trials:** Two training sessions, roughly a week apart. 100 trials per session, broken into two sub-blocks of 50; break between sub-blocks.

Experiment 2: Effect of Feedback

- Participants: four with normal or corrected to normal vision. Naive to task.
- **Task:** identical to Experiment 1.
- **Trials**: one training session with fifty trials.

Outcomes

Results

Experiment 1: Effect of Eccentricity

No effect of eccentricity condition on accuracy

Significant BCEA size reduction in far condition

Conclusions & Next Steps

- \bullet No significant main effect of eccentricity or interaction between eccentricity condition & order
- Feedback significantly enhances (at least early) performance
- Investigate impact of explicit feedback on functional effects of training (c.f. [2])

Experiment 2: Effect of Feedback

Feedback significantly enhances accuracy

Feedback significantly reduces BCEA size at baseline

References

- [1] Dylan Rose and Peter Bex.
 Peripheral Oculomotor Control Training in Healthy Individuals: Effects of Training and Training Transfer.

 Journal of Vision, 15(12):1278–1278, 2015.
- [2] Rong Liu and MiYoung Kwon.

 Integrating oculomotor and perceptual training to induce a pseudofovea: A model system for studying central vision loss.

 Journal of Vision, 16(6):10–10, 2016.