TD

1 Mesures

Exercice 1. Donner une définition plus succincte d'une tribu.

Exercice 2. Prouver la Proposition 1.8 du cours.

Proposition. Si (X, Σ_X, ν) est un espace mesuré où $\nu : \Sigma_X \to \mathbb{R}^+$, nous avons les propriétés suivantes :

- 1. Pour tout $A, B \in \Sigma_X$, $A \cap B = \emptyset$ implique $\nu(A \sqcup B) = \nu(A) + \nu(B)$;
- 2. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) = \nu(A) + \nu(B) \nu(A \cap B)$;
- 3. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) \le \nu(A) + \nu(B)$;
- 4. Pour tout $A, B \in \Sigma_X$, $\nu(A \cap B) \leq \min(\nu(A), \nu(B))$;
- 5. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) \ge \max(\nu(A), \nu(B))$.

Exercice 3. Prouver la Proposition 1.14 du cours.

Proposition. Si $(\Omega, \Sigma_{\Omega}, \mu)$ est un espace probabilisé, nous avons :

1. Pour tout $A \in \Sigma_{\Omega}$, $\mu(\overline{A}) = 1 - \mu(A)$.

2 Fonction simple

Exercice 4. Prouver le Théorème 2.4 du cours.

Théorème. Soient un espace mesurable (X, Σ_X) et $f: X \to \mathbb{R}$ une fonction simple, alors f est une fonction mesurable.

Exercice 5. Prouver le théorème suivant, qui est une version simplifiée du Théorème 2.5.

Théorème. Soient un espace mesurable (X, Σ_X) et $f: X \to \mathbb{R}^+$ une fonction mesurable positive, alors il existe une séquence de fonctions simples $\{f_n\}_{n\in\mathbb{N}}$ telle que

$$pour \ tout \ x \in X, \quad \textit{nous avons} \quad \lim_{n \to \infty} f_n(x) = f(x).$$

3 Intégrale de Lebesgue

Exercice 6. Prouver le théorème suivant, qui est une version simplifiée du Théorème 2.10.

Théorème. Soient un espace mesuré (X, Σ_X, ν) et $f: X \to \mathbb{R}^+$ et $g: X \to \mathbb{R}^+$ des fonctions intégrables positives, alors

1. pour tout $c \geq 0$,

$$\int_X (c \cdot f(x)) \, d\nu(x) = c \cdot \int_X f(x) d\nu(x),$$

2. nous avons

$$\int_X \left(f(x)+g(x)\right)d\nu(x) = \int_X f(x)d\nu(x) + \int_X g(x)d\nu(x),$$

3. pour tout $A \in \Sigma_X$,

$$\int_X \mathbb{1}[x \in A] f(x) d\nu(x) = \int_A f(x) d\nu(x).$$

4 Lois

Exercice 7. Prouver Propositions 4.14 et 4.15.

Proposition. Soit $T \sim \mathcal{G}(p)$ avec $p \in [0, 1]$. Nous avons

$$\forall k \in \mathbb{N}^*, \quad \underset{T \sim \mathcal{G}(p)}{\mathbb{P}} [T > k] = (1 - p)^k.$$

Proposition. Soit $T \sim \mathcal{G}(p)$ avec $p \in [0, 1]$. Nous avons

$$\forall s,t \in \mathbb{N}, \quad \underset{T \sim \mathcal{G}(p)}{\mathbb{P}} \left[T > s + t \mid T > s \right] = \underset{T \sim \mathcal{G}(p)}{\mathbb{P}} \left[T > t \right].$$

Exercice 8. Prouver Propositions 4.23 et 4.24.

Proposition. Soit $T \sim \mathcal{E}(\lambda)$ avec $\lambda \in \mathbb{R}$. Nous avons

$$\forall s \in \mathbb{R}^+, \quad \mathbb{P}_{T \sim \mathcal{E}(\lambda)}[T > s] = e^{-\lambda s}.$$

Proposition. Soit $T \sim \mathcal{E}(\lambda)$ avec $\lambda \in \mathbb{R}$. Nous avons

$$\forall s,t \in \mathbb{R}^+, \quad \underset{T \sim \mathcal{E}(\lambda)}{\mathbb{P}} \left[T > s + t \mid T > s \right] = \underset{T \sim \mathcal{E}(\lambda)}{\mathbb{P}} \left[T > t \right].$$

5 Simulation de lois

Exercice 9. Soit un espace probabilisé $([-1,+1]^2,\Sigma_{[-1,+1]^2},\mathcal{U})$, où \mathcal{U} est une distribution uniforme sur $[-1,+1]^2$, et soit $x\sim\mathcal{A}$ un point retourné par l'algorithme générant un point dans le disque unité D par la méthode du rejet. Développer l'expression

$$\mathop{\mathbb{P}}_{x\sim\mathcal{A}}[x\in A]$$
 , où $A\in\Sigma_{[-1,+1]^2}$ t.q. $A\subseteq D$,

afin d'exprimer les probabilités en fonction de la distribution \mathcal{U} .

Exercice 10. Montrer que l'algorithme du rejet généralisé génère selon la distribution p.

6 Apprentissage statistique

Exercice 11. Nous avons vu le modèle linéaire simple ; pour rappel, il est défini de la manière suivante :

$$h(\mathbf{x}) = \theta^0 + \theta^1 x_i^1 + \dots + \theta^p x_i^p.$$

Proposer une amélioration du modèle pour le rendre non linéaire.