Applied Machine Learning

HMM Inference

Hidden Markov Models - Inference

- Inference in HMMs
- Trellis
- Viterbi algorithm for Inference in HMMs

HIMIS: Inference

- Inference
 - Estimate sequence of hidden states X_i for known HMM for sequence of observations Y_i
- Maximum a Posteriori Inference or MAP Inference
 - sequence of hidden states $X_1, X_2, ..., X_N$

maximize posterior

$$P(X_1, X_2, ..., X_N | Y_1, Y_2, ..., Y_N, P, Q, \pi)$$

Minimize cost function

$$-([log P(X_1) + log P(Y_1|X_1)] + [log P(X_2|X_1) + log P(Y_2|X_2)] + ... + [log P(X_N|X_{N-1}) + log P(Y_N|X_N)]$$

Trellis

- States X_i : [hot = 0, warm = 1, cool = 2]
- . Transition Probability Matrix: $P = \begin{bmatrix} 0.3 & 0.7 & 0 \\ 0.2 & 0.7 & 0.1 \\ 0 & 0.8 & 0.2 \end{bmatrix}$
- Possible outputs Y_i : O = [high = 0, medium = 1, low = 2]
- Emission distribution: $Q = \begin{bmatrix} 0.7 & 0.29 & 0.01 \\ 0.1 & 0.8 & 0.1 \\ 0.01 & 0.19 & 0.8 \end{bmatrix}$
- Observed data:
 - $Y = [Y_1 = low = 2, Y_2 = high = 0, Y_3 = high = 0, Y_4 = medium = 1]$
- Trellis:
 - Node weights $-\log(P(Y_n|X_n=i)) = -\log(q_{i,Y_n})$
 - Edge weights: $-\log(P(X_{n+1} = j | X_n = i)) = -\log(p_{i,j})$

HMM Inference - Viterbi Algorithm

- Viterbi Algorithm
 - Find lowest cost path
 - Dynamic Programming
 - Optimal solution for problem includes optimal solution of subproblems
 - Best path from node in column n is part of best paths between columns n-1 and n
 - Iterate from last column backwards

HMM Inference - Viterbi Algorithm

- COST TO GO for node in column n
 - $C_n(i)$: cost of best path segment starting at node i in column n
 - choose cost of minimum edge $(i, B_n(i))$
 - $B_n(i)$: landing node on the best edge
 - Cost of node
- Iterative: for (n = number_of_columns; n > 1; n--)

$$B_{n-1}(i) = \operatorname{argmin}_{u} \left[-\log P(X_n = u | X_{n-1} = i) - \log P(Y_n | X_n = u) \right]$$

•
$$C_{n-1}(i) = \min_{u} \left[-\log P(X_n = u | X_{n-1} = i) - \log P(Y_n | X_n = u) \right]$$

• Recursive: for each node \$i\$ in column \$n=1\$, compute:

$$B_n(i) = \operatorname{argmin}_u \left[-\log P(X_{n+1} = u | X_n = i) - \log P(Y_{n+1} | X_{n+1} = u) - C_{n+1}(u) \right]$$

•
$$C_n(i) = \min_u \left[-\log P(X_{n+1} = u | X_n = i) - \log P(Y_{n+1} | X_{n+1} = u) - C_{n+1}(u) \right]$$

• Report $B_1(\hat{j}), B_2(B_1(\hat{j})), ...)$

HMM Inference - Viterbi Algorithm

- Completion of Text
 - Markov states as n-grams
 - frequencies of n-grams: $P(Y_i | X_i)$
 - frequencies of next symbols: $P(X_{n+1} | X_n)$
- Other uses:
 - Communication Errors
 - robustness to noise in sequential measurements

Fitting HMMs

- Known: potential observations Y
- Unknown: states X

- Known: states X, potential observations Y
- Unknown: emission distribution P(Y|X)

Expectation Maximization

Hidden Markov Models - Inference

- Inference in HMMs
- Trellis
- Viterbi algorithm for Inference in HMMs

Applied Machine Learning

HMM Inference