Exercício de Programa 2

Caio Vnícius Dadauto 7994808 23 de abril de 2013

Item A

Figura 1: Circuito A.

Aplicando Kirchhoff ao circuito A se obtem as seguintes relações.

$$U_1 - I_1 R_1 - I_3 R_4 - U_2 - I_1 R_2 = 0 (1)$$

$$U_3 + I_2 R_3 - I_3 R_4 - U_4 = 0 (2)$$

$$I_1 - I_2 - I_3 = 0 (3)$$

Onde $R_1 = 5\Omega$, $R_2 = 7\Omega$, $R_3 = 5\Omega$, $R_4 = 2\Omega$, $U_1 = 24V$, $U_2 = 24V$ e $U_3 = 24V$.

A partir das relações apresentadas acima, tem-se o seguinte sistema:

$$\begin{cases}
12I_1 - 2I_3 &= 15 \\
5I_2 - 2I_3 &= 3 \\
I_1 - I_2 - I_3 &= 0
\end{cases}$$
(4)

que na forma matricial é dado por:

$$\begin{bmatrix} 12 & 0 & 2 \\ 0 & 5 & 2 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 3 \\ 0 \end{bmatrix}$$

Item B

Tendo em vista a solução do sistema apresentado no item A e, ainda, a solução de qualquer sistema de n equações e n variaveis, é possível implementar um programa para determinar tal solução. Programa que utiliza do método de eliminação de Gauss com pivotação parcial. O programa trabalha com n < 100 e matrizes que nao possuem fileiras nulas (colunas ou linhas).

Programa 1: Implementação para solução de sistemas pelo método de Gauss.

```
#include <stdio.h>
   #define MAX 100
   void resolucao uper (double matriz [] [MAX], int n, double *solucao) {
5 \cdots int
6 · · · · · · i ,
7 · · · · · j;
9 \cdots \mathbf{for} \ (i = 0; i < n; ++ i)
10 \cdots solução[i] = matriz[i][n];
11 ···· for (i = n - 1; i >= 0; -- i) {
_{12} ......for (j = n - 1; j >= i; --- j) {
_{13} \ \cdots \cdots \ \mathbf{i} \ \mathbf{f} \ (\ i \ != \ j \ )
14 ·····solucao[i] -= matriz[i][j] * solucao[j];
15 · · · · · · else
16 · · · · · · · solucao [i] /= matriz [i] [j];
17 · · · · · }
18 ...}
19
   }
20
```

```
void eliminacao (double matriz [] [MAX], int n, int ep) {
_{22} \quad \cdots int \\
23 ······i,
_{24} \cdots j;
_{25} \cdots double
26 ····· elimina,
27 ····· pivo;
29
  \cdots pivo = matriz[ep][ep];
oomega of 30 \cdots for (i = ep + 1; i < n; ++ i) {
31 \cdots elimina = matriz[i][ep];
32 \cdots \mathbf{for} (j = ep; j \le n; ++ j)
   \cdots \cdots matriz[i][j] = matriz[i][j] -
   ····· (matriz[ep][j] * elimina / pivo);
   ...}
   }
36
  void imprime (FILE *entrada, double matriz[][MAX], int n) {
39 \cdots int
40 \cdots i,
41 \cdots j;
  \cdots for (i = 0; i < n; ++ i) {
44 · · · · · for (j = 0; j \le n; + + j) {
   \cdots  if (j == n)
46 ······ fprintf (entrada, "%.5f\\\n", matriz[i][j]);
48 ····· fprintf (entrada, "%.5f\t&\t", matriz[i][j]);
50 ...}
51 ··· fprintf (entrada, "\n");
52 }
void pivotamento (int etapa, double matriz[][MAX], int n) {
55 \cdots double
_{56} \cdots - aux [MAX],
57 · · · · · max;
58 \cdots int
59 · · · · · · i ,
60 \cdots j,
61 ······linha;
63 \cdots max = matriz[etapa][etapa];
64 \cdots linha = etapa;
65 ··· for (i = etapa + 1; i < n; ++ i) {
66 \quad \cdots \quad if \quad (max < matriz[i][etapa])  {
67 \cdots \cdots \max = \text{matriz}[i][\text{etapa}];
```

```
68 \quad \cdots \quad linha = i;
69 · · · · · }
70 \cdots 
71 ··· for (j = 0; (j \le n) \&\& (linha != etapa); ++ j) {
 72 \quad \cdots \quad aux[j] = matriz[etapa][j];
 73 ····· matriz [etapa][j] = matriz [linha][j];
74 ····· matriz [linha][j] = aux[j];
   • • • }
 75
 76
    }
77
78
    int main () {
 79
    \cdots int
80
81 ····· etapa,
82 \cdots i,
 83 ·····j,
 85 \cdots double
 86 ····· solucao [MAX],
 87 · · · · · matriz [MAX] [MAX];
    \cdots FILE
89 ·····* arquivo;
91 ··· arquivo = fopen ("saida.tex", "w");
    \cdots printf ("Entre com o únmero n de equacoes do \
93 \cdots sistema (n < 100): ");
94 ···scanf ("%d", &n);
95 \cdots for (i = 0; i < n; ++ i) {
    \cdots \cdots \mathbf{for} \ (\ j \ = \ 0\ ; \ \ j \ <= \ n \ ; \ +\!\!\!+ \ \ j \ ) \ \{
97 \cdots \cdots printf ("Entre com o valor a(%d, %d) da matriz \
    \cdots \cdots expandida do sistema: ", i + 1, j + 1);
99 ·····scanf ("%lf", &matriz[i][j]);
    . . . . . }
100
101 ...}
103 \cdots for (etapa = 0; etapa < n - 1; ++ etapa) {
    ··· pivotamento (etapa, matriz, n);
    · · · imprime (arquivo, matriz, n);
    · · · eliminacao (matriz, n, etapa);
107 ...}
    · · · imprime (arquivo, matriz, n);
109 ··· resolucao uper (matriz, n, &solucao [0]);
110 ··· for (i = 0; i < n; ++ i)
111 ····· fprintf (arquivo, "I_%d = %.5f\n", i + 1, solucao[i]);
    · · · fclose (arquivo);
113 \cdots return 0;
114 }
```

Inserindo como entrada do programa acima a matriz expandida do sistema (4), obtem-se o seguinte conjunto de matrizes para cada etapa de eleminação;

Etapa 1:

$$\begin{bmatrix} 12.00000 & 0.00000 & 2.00000 & 15.00000 \\ 0.00000 & 5.00000 & -2.00000 & 3.00000 \\ 1.00000 & -1.00000 & -1.00000 & 0.00000 \end{bmatrix}$$

Etapa 2:

$$\begin{bmatrix} 12.00000 & 0.00000 & 2.00000 & 15.00000 \\ 0.00000 & 5.00000 & -2.00000 & 3.00000 \\ 0.00000 & -1.00000 & -1.16667 & -1.25000 \end{bmatrix}$$

Etapa 3:

$$\left[\begin{array}{ccccc} 12.00000 & 0.00000 & 2.00000 & 15.00000 \\ 0.00000 & 5.00000 & -2.00000 & 3.00000 \\ 0.00000 & 0.00000 & -1.56667 & -0.65000 \end{array} \right]$$

obtendo como solução:

$$I_1 = 1.18085A$$
 $I_2 = 0.76596A$ $I_3 = 0.41489A$

Item C

Tendo em vista solucionar o mesmo sistema do item A, porém agora utilizando do método de Jacobi, é necessário que a matriz dos coeficientes do sistema (4) satisfaça o critério das linhas, dado por:

$$\sum_{j=1}^{n} \frac{|a_{kj}|}{|a_{kk}|} < 1, \quad j \neq k \tag{5}$$

onde a é o elemento de linha k e coluna j da matriiz dos coeficientes. Para isso as duas primeiras linhas do sistema (4) precisam ser trocadas, antes de

ser aplicado o método de Jacobi. Obtendo a seguinte matriz expandida:

```
\begin{bmatrix}
12.000 & 0.000 & 2.000 & 15.000 \\
0.000 & 5.000 & -2.000 & 3.000 \\
1.000 & -1.000 & -1.000 & 0.000
\end{bmatrix} 

(6)
```

Segue abaixo o programa que implementa o método de Jacobi.

Programa 2: Implementação para o método de Jacobi.

```
#include <stdio.h>
   \# define EPS 1E-4
   void imprime (FILE *entrada, double *solucao, double *solucao k, int k);
   void interacao (double matriz[][4], double *solucao, double *solucao_k);
   double delta d (double *solucao, double *solucao k);
   void copia vetor (double *a, double *b);
   double modulo (double a, double b);
   void imprime (FILE *entrada, double *solucao, double *solucao_k, int k) {
   \cdots int
12 \cdots i;
13
14 ··· fprintf (entrada, "%d", k);
15 ··· for (i = 0; i < 3; ++ i)
16 ····· fprintf (entrada, " & \%.5f", solucao_k[i]);
   \cdots for (i = 0; i < 3; ++ i)
18 ····· fprintf (entrada, " & %.5f ", modulo (solucao[i], solucao k[i]));
  ... fprintf (entrada, "\\\\n\\midrule\n");
20 }
21
void interacao (double matriz [][4], double *solucao, double *solucao_k) {
_{23} ··· int
24 ·····i,
25 · · · · · i ;
  \cdots for (i = 0; i < 3; ++ i) {
28 \cdots \cdots solucao_k[i] = matriz[i][3] / matriz[i][i];
   \cdots for (j = 0; j < 3; ++ j) {
_{30} \ \cdots \cdots \ \mathbf{i} \ \mathbf{f} \ (\ i \ != \ j \ )
31 ······solucao k[i] -= ((solucao[j] * matriz[i][j]) / matriz[i][i]);
32 \cdots \}
   • • • }
33
   }
34
void copia_vetor (double *a, double *b) {
37 \cdots int
```

```
38
  · · · · · i ;
39
  ... for (i = 0; i < 3; ++ i)
   \cdots a[i] = b[i];
41
   }
42
43
   double modulo (double a, double b) {
44
   \cdots if (a - b < 0)
45
46
   \cdots \cdot \mathbf{return} \ b - a;
   \cdots return a - b;
47
48
   }
49
   double delta_d (double *solucao, double *solucao_k) {
50
51
   \cdots int
52 · · · · · i ;
53 \cdots double
54
   \cdots  max = 0;
  \cdots for (i = 0; i < 3; ++ i) {
   \cdots if (max < modulo (solucao[i], solucao_k[i]))
   ·····max = modulo (solucao[i], solucao_k[i]);
  ...}
   \cdots return max;
   }
61
  int main () {
63
  \cdots FILE
65 ·····* arquivo;
   \cdots int
67 \cdots k = 0;
68 \cdots double
69 ····· solucao [3] = \{0, 0, 0\},
   \cdots  solucao k[3] = \{1, 1, 1\},
  \cdots \max [3][4] = \{\{12, 0, 2, 15\}, \{0, 5, -2, 3\}, \{1, -1, -1, 0\}\};
  ···arquivo = fopen ("saida1.tex", "w");
   ···imprime (arquivo, solucao, solucao k, k);
75 \cdots while (delta_d (solucao, solucao_k) >= EPS) {
  ····· copia vetor (solucao, solucao k);
77 \cdots + k;
   ·····interacao (matriz, solucao, solucao_k);
  ·····imprime (arquivo, solucao, solucao_k, k);
79
80 ...}
81 ··· fclose (arquivo);
   \cdots return 0;
82
83
   }
```

É apresentado na tabela 1 os valores das soluções aproximadas geradas a cada interação pelo programa 2 para a matriz (6).

Interação (k)	$I_1^{(k)}$	$I_2^{(k)}$	$I_3^{(k)}$	$erro_1^{(k)}$	$erro_2^{(k)}$	$erro_3^{(k)}$
0	1.00000	1.00000	1.00000	• • •	• • •	•••
1	1.08333	1.00000	0.00000	0.08333	0.00000	1.00000
2	1.25000	0.60000	0.08333	0.16667	0.40000	0.08333
3	1.23611	0.63333	0.65000	0.01389	0.03333	0.56667
4	1.14167	0.86000	0.60278	0.09444	0.22667	0.04722
5	1.14954	0.84111	0.28167	0.00787	0.01889	0.32111
6	1.20306	0.71267	0.30843	0.05352	0.12844	0.02676
7	1.19860	0.72337	0.49039	0.00446	0.01070	0.18196
8	1.16827	0.79616	0.47523	0.03033	0.07279	0.01516
9	1.17080	0.79009	0.37211	0.00253	0.00607	0.10311
10	1.18798	0.74885	0.38071	0.01719	0.04124	0.00859
11	1.18655	0.75228	0.43914	0.00143	0.00344	0.05843
12	1.17681	0.77565	0.43427	0.00974	0.02337	0.00487
13	1.17762	0.77371	0.40116	0.00081	0.00195	0.03311
14	1.18314	0.76046	0.40392	0.00552	0.01324	0.00276
15	1.18268	0.76157	0.42268	0.00046	0.00110	0.01876
16	1.17955	0.76907	0.42111	0.00313	0.00751	0.00156
17	1.17981	0.76845	0.41048	0.00026	0.00063	0.01063
18	1.18159	0.76419	0.41137	0.00177	0.00425	0.00089
19	1.18144	0.76455	0.41739	0.00015	0.00035	0.00602
20	1.18043	0.76696	0.41689	0.00100	0.00241	0.00050
21	1.18052	0.76676	0.41348	0.00008	0.00020	0.00341
	Continuação na proxima página.					

Continuação da página anterior.							
22	1.18109	0.76539	0.41376	0.00057	0.00137	0.00028	
23	1.18104	0.76550	0.41570	0.00005	0.00011	0.00193	
24	1.18072	0.76628	0.41554	0.00032	0.00077	0.00016	
25	1.18074	0.76621	0.41444	0.00003	0.00006	0.00110	
26	1.18093	0.76578	0.41453	0.00018	0.00044	0.00009	
27	1.18091	0.76581	0.41515	0.00002	0.00004	0.00062	
28	1.18081	0.76606	0.41510	0.00010	0.00025	0.00005	
29	1.18082	0.76604	0.41475	0.00001	0.00002	0.00035	
30	1.18088	0.76590	0.41478	0.00006	0.00014	0.00003	
31	1.18087	0.76591	0.41498	0.00000	0.00001	0.00020	
32	1.18084	0.76599	0.41496	0.00003	0.00008	0.00002	
Solução aproximada							
$I_1 = 1.18084A$ $I_2 = 0.76599A$ $I_3 = 0.41496A$							

Tabela 1: Resultados obtidos pelo método de Jacobi.

Item C

Partindo do mesmo sistema (4), mas agoro utilizando o método de Gauss-Seidel para a solução do mesmo, há a necessidade de satisfazer o critério de Sassenfeld que é dado por:

$$\beta = \max_{1 \le i \le n} \{\beta_i\} < 1 \tag{7}$$

onde,

$$\beta_i = \frac{\sum_{j=1}^{i-1} \beta_j |a_{ij}| + \sum_{j=i+1}^n |a_{ij}|}{|a_{ii}|}$$

sendo que a matriz expandiada (6) satisfaz tal critério.

Segue o código para solucionar a matriz (6) pelo métodode Gauss-Seidel.

Programa 3: Implementação para o método de Jacobi.

```
#include <stdio.h>
# define EPS 1E-4
```

3

```
void imprime (FILE *entrada, double *solucao, double *solucao_k, int k);
   void interacao (double matriz[][4], double *solucao, double *solucao_k);
   double delta d (double *solucao, double *solucao k);
   void copia vetor (double *a, double *b);
   double modulo (double a, double b);
   void imprime (FILE *entrada, double *solucao, double *solucao k, int k) {
10
   \cdots int
11
12 \cdots i;
14 ··· fprintf (entrada, "%d", k);
15 ··· for (i = 0; i < 3; ++ i)
16 ····· fprintf (entrada, " & \%.5f", solucao_k[i]);
17 ··· for (i = 0; i < 3; ++ i)
18 ····· fprintf (entrada, " & %.5f ", modulo (solucao[i], solucao k[i]));
19 ··· fprintf (entrada, "\\\\n\\midrule\n");
20
21
void interacao (double matriz [][4], double *solucao, double *solucao k) {
_{23} ··· int
_{24} \quad \cdots \quad j ,
25 ····· i;
_{26} \cdots double
27 ····· aux [3];
28
29 ···copia_vetor (aux, solucao);
30 ··· for (i = 0; i < 3; ++ i)
31 \cdots solucao_k[i] = matriz[i][3] / matriz[i][i];
   ····· for (j = 0; j < 3; ++ j) {
\mathbf{i} 33 \cdots \mathbf{i} \mathbf{f} (i!= j)
34 ······solucao k[i] = ((aux[j] * matriz[i][j]) / matriz[i][i]);
35 · · · · · }
36 \cdots aux[i] = solucao k[i];
37 ...}
   }
38
39
40 void copia vetor (double *a, double *b) {
_{41} · · · · int
42 · · · · · i ;
   \cdots for (i = 0; i < 3; ++ i)
  \cdots\cdots a\,[\,i\,]\ =\ b\,[\,i\,]\,;
45
47
   double modulo (double a, double b) {
   \cdots if (a - b < 0)
50 \cdots \mathbf{return} \ b - a;
```

```
51 \cdots \mathbf{return} \ a - b;
52
   }
53
    double delta\_d (double *solucao, double *solucao\_k) {
54
   \cdots int
55
56 · · · · · · i ;
57 \cdots double
   \cdots  max = 0;
59
60 ··· for (i = 0; i < 3; ++ i) {
   ·····if (max < modulo (solucao[i], solucao_k[i]))
   \cdots \cdots \max = \text{modulo (solução[i], solução_k[i])};
   • • • }
63
64
   \cdots return max;
   }
65
66
   int main () {
_{68} \cdots FILE
69 ·····*arquivo;
70 \cdots int
71 \quad \cdots \quad k = 0;
72 \cdots double
  \cdots \cdots \operatorname{solucao} \left[ 3 \right] \; = \; \left\{ 0 \,, \;\; 0 \,, \;\; 0 \right\},
_{74} \quad \cdots \quad \text{solucao} \quad k[3] = \{1, 1, 1\},
   \cdots \max [3][4] = \{\{12, 0, 2, 15\}, \{0, 5, -2, 3\}, \{1, -1, -1, 0\}\};
76
77 ··· arquivo = fopen ("saida1.tex", "w");
78 \cdotsimprime (arquivo, solucao, solucao_k, k);
   ···while (delta_d (solucao, solucao_k) >= EPS) {
so \cdots copia\_vetor (solucao, solucao\_k);
81 \cdots + k;
82 ·····interacao (matriz, solucao, solucao_k);
   ·····imprime (arquivo, solucao, solucao k, k);
84 ...}
85 ··· fclose (arquivo);
86 \cdots return 0;
87
   }
```

É apresentado na tabela 2 os valores das soluções aproximadas geradas a cada interação pelo programa 3 para a matriz (6).

Interação (k)	$I_1^{(k)}$	$I_2^{(k)}$	$I_3^{(k)}$	$erro_1^{(k)}$	$erro_2^{(k)}$	$erro_3^{(k)}$	
0	1.00000	1.00000	1.00000				
1	1.08333	1.00000	0.08333	0.08333	0.00000	0.91667	
2	1.23611	0.63333	0.60278	0.15278	0.36667	0.51944	
3	1.14954	0.84111	0.30843	0.08657	0.20778	0.29435	
4	1.19860	0.72337	0.47523	0.04906	0.11774	0.16680	
5	1.17080	0.79009	0.38071	0.02780	0.06672	0.09452	
6	1.18655	0.75228	0.43427	0.01575	0.03781	0.05356	
7	1.17762	0.77371	0.40392	0.00893	0.02142	0.03035	
8	1.18268	0.76157	0.42111	0.00506	0.01214	0.01720	
9	1.17981	0.76845	0.41137	0.00287	0.00688	0.00975	
10	1.18144	0.76455	0.41689	0.00162	0.00390	0.00552	
11	1.18052	0.76676	0.41376	0.00092	0.00221	0.00313	
12	1.18104	0.76550	0.41554	0.00052	0.00125	0.00177	
13	1.18074	0.76621	0.41453	0.00030	0.00071	0.00100	
14	1.18091	0.76581	0.41510	0.00017	0.00040	0.00057	
15	1.18082	0.76604	0.41478	0.00009	0.00023	0.00032	
16	1.18087	0.76591	0.41496	0.00005	0.00013	0.00018	
17	1.18084	0.76598	0.41486	0.00003	0.00007	0.00010	
18	1.18086	0.76594	0.41491	0.00002	0.00004	0.00006	
Solução aproximada							
I	$I_1 = 1.18086A$ $I_2 = 0.76594A$ $I_3 = 0.41491A$						

Tabela 2: Resultados obtidos pelo método de Gauss-Seidel.