

Projeto Integrador 1: Pensamento Computacional 17 de junho de 2024 **Simulador de eletromagnetismo na guitarra usando p5.js**

Clóvis de Almeida Pelosini¹

Centro Universitário Senac - Campus Santo Amaro

Introdução

Sempre gostei muito de tocar música, des de muito pequeno, toco guitarra e conforme o tempo foi passando ficava mais curioso para saber como que o instrumento funciona, como eu toco uma corda e ele sai algum som para o cabo, um dia acabei perguntando para um professor de guitarra e ele me explicou o básico do funcionamento, assim pensando que seria uma ótima ideia transformar isso em algo visível e interativo, mostrando a força do eletromagnetismo.

Metodologia

A metodologia que usei foi primeiro pensar em qual o problema/ideia que teria que resolver e o melhor jeito de se executa-la, após pensar bem, passei a ideia para código sempre começando com partes simples e depois deixando-as mais complexas. Quando tenho alguma dúvida não gosto de pesquisar antes de tentar algo da minha cabeça, acredito que isso ajude bastante no processo do aprendizado.

Desenvolvimento

Primeiramente, pensei em representar o funcionamento da simulação. Comecei testando com uma corda da guitarra para simular a vibração e sua frequência, utilizando a seguinte função trigonométrica:

$$f(x) = amp \cdot \sin((x + mov) \cdot freq \cdot T) \tag{1}$$

Onde **amp** é a amplitude da onda, **x** é o ângulo (ou posição no eixo X), **mov** é o deslocamento para criar movimento, e **freq** é a frequência multiplicada por **T**, uma constante temporal. Com essa fórmula, simulei uma corda e depois adicionei outras cinco cordas fixas. Criei um algoritmo para identificar a corda selecionada pelo clique do usuário, transformando-a em uma onda. Após implementar a seleção e ajuste das cordas com sliders, pensei na identificação das notas pela frequência. Encontrei tabelas como a disponível em **Muted.io Note Frequencies**.

Observando as tabelas, percebi que não era eficiente armazenar todas as frequências no p5. Notei que a frequência de uma nota em oitavas diferentes é um múltiplo de 2 da frequência base. Assim, a frequência de uma nota pode ser calculada por:

$$noteFreq \cdot (2^{oct-1}) \tag{2}$$

Ou seja, a frequência base da nota multiplicada por 2 elevado ao número da oitava menos um. Basicamente, o afinador funciona com esse cálculo para determinar a oitava da nota, a nota mais próxima e a distância até ela. Isso permite que o traço vermelho do afinador indique a distância, positiva ou negativa, conforme a direção.

Para o som, usei a biblioteca **Oscillator** do P5, que gera um som com a frequência e amplitude fornecidas. Além disso, implementei uma transição para que a onda, visualmente, perca amplitude ao longo do tempo, acompanhando a diminuição do som.

Resultado

Essa é uma ideia de como o meu projeto ficou, com essa imagem pode-se observar que a primeira corda está selecionada e criando uma onda com aplitude 5 e frequencia de aproximadamente 425hz, que de acordo com o nosso afinador à direita, a nota que ela representa é um **Sol Sustenido** que está a uma distancia de aproximadamente 10hz da nota exata.

Figura: Simulação em andamento

Tecnologia

Todo o trabalho foi feito utilizando a própria IDE online do P5.js, que em base é uma portabilidade do Processing para a web utilizando como linguagem base o javascript, além das funções básicas do próprio P5.js, também utilizo o **Oscillator** que é uma classe dentro do P5.

Referências

- Muted.io
- ► Liutaiomottola.com
- **►** Electricity-magnetism.org