Practice Problems 6: Generating Functions Solutions

1. (a)
$$\frac{4}{1-x}$$

(b)
$$\frac{2}{(1-x)^2}$$

(c)
$$\frac{2x^3}{(1-x)^2}$$

(d)
$$\frac{1}{1-5x}$$

(e)
$$\frac{1}{1+3x}$$

(f)
$$\frac{1}{1-5x^2}$$

(g)
$$\frac{x}{(1-x^3)^2}$$

2. (a)
$$0, 4, 4, 4, 4, 4, \dots$$

(b)
$$1, 4, 16, 64, 256, \dots$$

(c)
$$0, 1, -1, 1, -1, 1, -1, \dots$$

(d)
$$0, 3, -6, 9, -12, 15, -18, \dots$$

(e)
$$1, 3, 6, 9, 12, 15, \dots$$

- 3. (a) The second derivative of $\frac{1}{1-x}$ is $\frac{2}{(1-x)^3}$ which expands to $2+6x+12x^2+20x^3+30x^4+\cdots$. Dividing by 2 gives the generating function for the triangular numbers.
 - (b) Compute A xA and you get $1 + 2x + 3x^2 + 4x^3 + \cdots$ which can be written as $\frac{1}{(1-x)^2}$. Solving for A gives the correct generating function.
 - (c) The triangular numbers are the sum of the first n numbers $1, 2, 3, 4, \ldots$ To get the sequence of partial sums, we multiply by $\frac{1}{1-x}$ so this gives the correct generating function again.
- 4. Call the generating function A. Compute $A xA = 4 + x + 2x^2 + 3x^3 + 4x^4 + \cdots$. Thus $A xA = 4 + \frac{x}{(1-x)^2}$. Solving for A gives $\frac{4}{1-x} + \frac{x}{(1-x)^3}$.

$$5. \ \frac{1+2x}{1-3x+x^2}$$

6. Compute $A - xA - x^2A$ and the solve for A. The generating function will be $\frac{x}{1 - x - x^2}$.

7.
$$\frac{x}{(1-x)(1-x-x^2)}$$

$$8. \ \frac{2}{1-5x} + \frac{7}{1+3x}.$$

9.
$$a_n = 3 \cdot 4^{n-1} + 1$$

10. Hint: you should "multiply" the two sequences. Answer: 158.