ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

5 7 7 7

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6:

A1

(11) Numéro de publication internationale:

WO 95/17518

C12P 21/06, C07K 1/00, 2/00 // 14/47

(43) Date de publication internationale:

29 juin 1995 (29.06.95)

(21) Numéro de la demande internationale: PCT/FR94/01500

20 décembre 1994 (20.12.94) (22) Date de dépôt international:

(30) Données relatives à la priorité:

93/15764

23 décembre 1993 (23.12.93) FR

(71) Déposant (pour tous les Etats désignés sauf US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE [FR/FR]; 147, rue de l'Université, F-75338 Paris Cédex 07 (FR).

(72) Inventeurs: et

- (75) Inventeurs/Déposants (US seulement): CHOBERT, Jean-Marc [FR/FR]: 102, boulevard de Longchamp, F-44300 Nantes (FR). BRIAND, Loïc [FR/FR]; i, rue Paul-Claudel, F-44300 Nantes (FR). HAERTLE, Tomasz [FR/FR]; 39, rue d'Orvault, F-44240 La-Chapelle-sur-Erdre (FR).
- (74) Mandataire: PHELIP, Bruno; Cabinet Harlé & Phélip, 21, rue de La Rochefoucauld, F-75009 Paris (FR).

(81) Etats désignés: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR. KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ. PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), brevet ARIPO (KE, MW, SD, SZ).

Publiée

Avec rapport de recherche internationale.

- (54) Title: METHOD FOR PREPARING PEPTIDE PRODUCTS, AND RESULTING PRODUCTS
- (54) Titre: PROCEDE D'OBTENTION DE PRODUITS PEPTIDIQUES ET PRODUITS OBTENUS
- (57) Abstract

A method in which an esterification reaction is carried out on at least one esterifiable grouping of a protein or peptide contained in an animal or vegetable substrate, and said protein or peptide is exposed to a proteolytic enzyme. The esterification reaction is preferably carried out on at least one carboxylic grouping of the protein or peptide, advantageously by means of an aliphatic alcohol having 1-5 carbon atoms, or an activated derivative thereof. The method may be used to prepare novel peptide populations for use as ingredients or additives in food compositions, pharmaceuticals or cosmetics.

(57) Abrégé

Le procédé selon l'invention consiste à réaliser une réaction d'estérification sur au moins un groupement estérifiable d'une protéine ou d'un peptide contenu dans un substrat d'origine animale ou végétale, puis à soumettre ladite protéine ou ledit peptide à l'action d'une enzyme protéolytique. La réaction d'estérification est de préférence réalisée sur au moins un groupement carboxylique de la protéine ou du peptide; elle est avantageusement conduite par un alcool aliphatique possédant entre 1 et 5 atomes de carbone, ou un de ses dérivés activés. Ce procédé permet d'obtenir de nouvelles populations peptidiques susceptibles d'être utilisées à titre d'ingrédients ou d'additifs dans des préparations alimentaires, pharmaceutiques ou cosmétologiques.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
ΑU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	ΙĒ	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JР	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SI	Slovénie
CI	Côte d'Ivoire	ΚZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	LI	Liechtenstein	SN	Sénégal
CN	Chine	LK	Sri Lanka	TD	Tchad
CS	Tchécoslovaquie	LU	Luxembourg	TG	Togo
CZ	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE	Allemagne	MC	Monaco	TT	Trinité-et-Tobago
DK	Danemark	MD	République de Moldova	ÜA	Ukraine
ES	Espagne	MG	Madagasear	US	Etats-Unis d'Amérique
FI	Finlande	ML	Mali	UZ	Ouzbékistan
FR	France	MN	Mongolie	VN	Viet Nam
GA	Gabon		-	**	

PROCEDE D'OBTENTION DE PRODUITS PEPTIDIQUES ET PRODUITS OBTENUS

La présente invention concerne un procédé d'obtention de produits peptidiques nouveaux, à partir d'un substrat d'origine animale ou végétale contenant au moins une protéine ou un peptide ; elle concerne également les produits issus du procédé.

5

10

15

20

25

30

Selon la présente description l'expression "produits peptidiques" définit des populations peptidiques très variées pouvant contenir diverses entités telles que des peptides, fractions peptidiques, acides aminés, estérifiés et non estérifiés, et leurs mélanges.

Les protéines d'origine animale ou végétale, et les peptides issus de ces protéines, sont utilisés très couramment dans tout genre d'industrie (pharmaceutique, chimique, agro-alimentaire, cosmétologique ...) en raison de leurs propriétés chimiques ou physico-chimiques.

Les hydrolyses enzymatiques des protéines laitières donnent naissance à des peptides aux propriétés biologiques variées. Il en est ainsi des peptides opiacés (Zioudrou C., Streaty R.A. et Klee W.A. (1979), J.Biol Chem. 254, 2446-2449; Brantl V., Teschemacher H., Henschen A. et Lottspeich F. (1981) Life Sci. 28, 1903-1909; Yoshikawa M., Yoshimura T. et Chiba H. (1984), Agric. Biol. Chem. 48, 3185-3187; Loukas S., Varoucha D., Zioudrou C., Streaty R.A. et Klee W.A. (1983), Biochemistry 22, 4567-4573; Chiba H., Tani F. et Yoshikawa M. (1989) J.Dairy Res., 56, 363-366; Fukudome S.I. et Yoshikawa M. (1992), FEBS Lett 296, 107-111; Antila P., Paakkari I., Järvinen

2

A., Mattila M.J., Laukkanen M., Pihlanto-Leppälä A., Mäntsälä P. et Hellman J. (1991) Int. Dairy Journal 1, 215-229; Meisel H. et Frister H. (1989), J.Dairy Res. 56, 343-349).

5

10

15

20

25

30

Οn а également isolé des peptides antihypertenseurs (Maruyama S., Mitachi H., Tanaka H., Tomizuka N. et Suzuki H. (1987) Agric. Biol. Chem. 51, 1581-1586; Komura M., Nio N., Kubo K., Minoshima Y., Munekata E. et Ariyoshi Y. (1989) Agric. 53, 2107-2114), ainsi que des peptides immunostimulants (Berthou J., Migliore-Samour D., Lifchitz A., Delettré J., Floc'h F. et Jollès P. (1987), FEBS Lett. 218(1), 55-58; Migliore Samour D., Floc'h F. et Jollès P. (1989) J.Dairy Res. 56, 357-362), ou des peptides antithrombotiques (Fiat A.M., Levy-Toledano S.P., Caen J. et Jollès P. (1989) J. Dairy Res. 56, 351-355).

D'autre part, les peptides issus des protéines du lait offrent également des propriétés physicochimiques et interfaciales intéressantes (Fox P.F. et Mulvihill D.M. (1983), dans Proceedings of IDF symposium, Holsingor, Denmark, 188-259; Chobert J.M., Bertrand-Harb C. et Nicolas M.G. (1988a), J.Agric. Food Chem. 36, 883-892; Chobert J.M., Sitohy, M.Z. et Whitaker, J.R. (1988b) J.Agric. Food Chem. 36, 220-224; Chobert J.M., Bertrand-Harb C., Dalgalarrondo M. et Nicolas M.G. (1989a), J.Food Biochem. 13, 335-352; Chobert J.M., Touati A., Bertrand-Harb C., Dalgalarrondo M. et Nicolas M.G. (1989b), J.Food Biochem. 13, 457-473; Vuillemard J.C., Gauthier S.

3

et Paquin P. (1989) Lait 69, 323-351; Turgeon L.S., Gauthier F.S., Mollé D. et Léonil J. (1992) J'Agric. Food Chem. 40, 669-675).

Au niveau nutritionnel et thérapeutique, l'hydrolyse enzymatique permet de réduire l'allergénicité des protéines sériques (Jost R., Monti J.C. et Pahud J.J. (1987) Food Technol. 41, 118-121).

5

10

15

20

25

On peut citer également, à titre de référence bibliographique pertinente, le brevet EP-22019 qui décrit un hydrolysat enzymatique total de protéines du lactosérum et les applications de cet hydrolysat à titre de médicament et en nutrition thérapeutique.

Du point de vue physiologique, les hydrolysats de protéines de lactosérum ont la propriété de stimuler la croissance de la régénération de la peau (Wenner V. (1982) Lait 62, 549-565).

Il est connu d'agir sur les protéines ou les peptides d'origine animale ou végétale pour modifier propriétés, notamment greffage par substituants. En particulier le document WO-A-9318180 décrit l'estérification de peptides d'origine animale végétale par un procédé dénommé "synthèse enzymatique d'esters alkyliques de peptides" nécessitant l'emploi d'enzymes possédant à la fois une activité protéolytique et estérolytique. Le procédé en question se caractérise par la mise en contact simultanée du substrat protéique avec l'enzyme et un alcool, aboutissant à la formation d'esters alkyliques de peptides.

4

La présente invention a pour objet un procédé consistant à estérifier une matière protéique d'origine animale ou végétale contenant au moins une protéine ou un peptide, puis à hydrolyser par voie enzymatique la matière protéique estérifiée, ledit procédé conduisant à une population peptidique nouvelle.

5

10

15

20

25

30

La modification des protéines par estérification aboutit à une nouvelle famille de peptides aux propriétés physico-chimiques et biologiques originales.

Le procédé selon l'invention consiste à réaliser une réaction d'estérification d'au moins un groupement estérifiable de l'une au moins des protéines ou peptides contenus dans le substrat d'origine animale ou végétale, dans le but de modifier l'action ultérieure de l'enzyme (sites de coupure et cinétique de réaction).

A titre d'exemple non limitatif de substrat protéique ou peptidique susceptible d'être utilisé, on peut citer : les protéines laitières (caséines et protéines du lactosérum), le gluten de blé ou de maïs, la zéïne, les concentrats et isolats protéiques de soja, pois, féverole ... ou encore le collagène, la sérumalbumine, l'ovalbumine ...

Cette réaction d'estérification est conduite selon les procédures classiques, parfaitement connues de l'homme du métier (Voir par exemple le procédé d'estérification en milieu acide décrit par Fraenkel-Conrat H. et Olcott H.S. 1945., j. Biol. Chem. 161, 259-269). Elle est de préférence réalisée sur au moins un groupement carboxylique de la protéine ; elle est avantageusement conduite en milieu acide au moyen d'un

5

10

15

20

25

30

alcool (ou d'un dérivé active de cet alcool obtenu selon les méthodes classiques bien connues de l'homme du métier).

Par exemple on propose l'utilisation d'un alcool aliphatique possédant entre un et cinq atomes de carbone (méthanol, éthanol...).

Les conditions de mise en oeuvre de la réaction d'estérification (température, durée, pression, concentration en acide ...) sont fonction du taux d'estérification désiré et, plus généralement, des produits finaux que l'on désire obtenir.

La protéine estérifiée est ensuite soumise à l'action d'au moins une enzyme protéolytique, conditions habituelles dи domaine technique considéré, pour scinder la chaîne d'acides aminés (Voir par exemple l'ouvrage édité par A.Neuberger K.Brocklehurst (1987), coll.New Comprehensive Biochemistry - Vol.16 - Hydrolytic Enzymes, Elsevier, ou encore l'ouvrage édité par R.J. Beynon et J.S.Bond (1989), coll. The Practical Approach Series - Protelytic enzymes, a practical approach-IRL PRESS). Dans cette étape, toute enzyme protéolytique et/ou peptidasique (protéase, peptidase), peut être utilisée (pepsine, papaine, trypsine, chymosine, chymotrypsine, thermolysine ...) ; l'hydrolyse peut être réalisée par l'une de ces enzymes ou par une pluralité d'entre elles, successivement ou simultanément.

Selon une variante du procédé de l'invention, la réaction d'estérification est précédée par une hydrolyse partielle de la protéine, au moyen d'une **WO** 95/17518

5

10

15

20

25

30

ou de plusieurs enzymes protéolytiques ou peptidasiques. Le taux d'hydrolyse partielle est laissé à l'appréciation de l'opérateur qui aura une large latitude d'action en fonction des produits qu'il désire obtenir. La seule contrainte sera de ne pas obtenir une hydrolyse totale de la protéine ou du peptide.

PCT/FR94/01500

De façon étonnante, le fait de faire précéder d'estérification l'opération par réaction d'hydrolyse, permet d'augmenter ou de changer sensibilité de la protéine à l'hydrolyse enzymatique. L'enzyme est "leurrée" par la modification protéine ; en fonction des produits utilisés et des conditions opératoires, par rapport à la protéine native, on peut obtenir de nouveaux sites de coupure et/ou supprimer certains sites traditionnels. façon d'opérer permet l'obtention de sites de coupure atypiques qui conduisent à l'obtention de peptides nouveaux, dont certains au moins sont estérifiés.

La mise en oeuvre du procédé selon l'invention aboutit à un mélange de peptides ou d'acides aminés et de leurs esters. Ces peptides, acides aminés et esters correspondants peuvent ensuite être séparés et purifiés pour obtenir des populations homogènes.

Dans le cadre d'une estérification par un alcool aliphatique, on obtient une protéine estérifiée niveau de son groupement carboxylique C-terminal niveau des groupements carboxyliques latéraux résidus aspartyls et/ou certains des glutamyls. L'action ultérieure de l'enzyme protéolytique d'obtenir peptide terminal dont l e חט groupement carboxylique C-terminal est estérifié ; tous les autres

7

peptides obtenus, estérifiés ou non, comportent un groupement carboxylique C-terminal non estérifié.

Cette substitution au niveau du groupe carboxyle permet de supprimer une charge négative sur la protéine ou le peptide obtenu (suppression de charge au-dessus du pK du COOH des acides aspartiques et glutamiques constitutifs). On augmente le point isoélectrique de la protéine ou du peptide ; on les rend plus basiques et plus hydrophobes ce qui entraîne une meilleure affinité et interaction avec les interfaces biologiques et artificielles chargées en majorité négativement.

5

10

15

2 C

25

30

Selon l'invention, le traitement dе résidus d'acides aminés par estérification, suivi d'une protéolyse, permet de formuler de nouvelles protéines ou populations peptidiques. Les moyens à mettre sont simples, peu coûteux, non toxiques préservent la majorité des valeurs nutritionnelles de la protéine.

Les peptides estérifiés obtenus ont des propriétés électrostatiques, une hydrophobicité et une amphiphilie différentes qui leur confèrent des propriétés interfaciales, physiologiques, biologiques et immunologiques particulières.

L'estérification peut aussi constituer un moyen simple pour augmenter la sensibilité d'une protéine structurée à une action enzymatique.

Les domaines d'application de l'invention sont variés ; les produits obtenus peuvent avantageusement être utilisés à titre d'ingrédients, d'additifs ou d'agents actifs dans des préparations alimentaires, pharmaceutiques ou cosmétologiques.

PCT/FR94/01500

5

15

20

25

De telles applications sont similaires à celles déjà décrites pour les hydrolyses enzymatiques de protéines connues, telles qu'elles ont été rappelées dans les références bibliographiques citées au début de la description et illustrant l'art antérieur.

Exemples

Exemple l : Protéolyse pepsique de la bêta lactoglobuline

La bêta-lactoglobuline de bovin (variant B) est préparée selon la méthode de Mailliart, P., Rib.deau Dumas, B. (1988, j. FOOD Sci. 53, 743-745).

Estérification

Les esters de bêta-lactoglobuline sont préparés en utilisant un procédé dérivé de celui décrit par Fraenkel-Conrat, H., Olcott, H.S. (1945, j. Biol. Chem. 161, 259-268).

La bêta-lactoglobuline est mise en suspension dans l'éthanol pour obtenir une suspension à 2 %. Sous agitation, de l'acide chlorhydrique 12N est ajouté doucement pour obtenir une suspension de protéine-alcool 0,06-0,68N en acide. Cette préparation est placée sous agitation à 4°C pendant plusieurs jours en fonction du degré d'estérification désiré. Après séchage sous vide, les échantillons sont stockés à une température de -80°C. Un échantillon témoin est préparé de la même manière sans addition d'HCl.

PCT/FR94/01500

5

10

15

20

25

30

Analyse des protéines estérifiées

Pour déterminer le degré d'estérification de la bêta-lactoglobuline avec l'éthanol, on a utilisé la réaction colorée utilisant l'hydrochlorure d'hydroxylamine développée par Halpin, M.I., Richardson, T. (1945, j. Dairy Sci. 68, 3189-3198), modifiée selon Bertrand-Harb, C., Chobert, J.M., Dufour, E., Haertle, T. (1991, Sci. Aliments 11, 641-652).

Dans le cas présent, la bêta-lactoglobuline a été

Hydrolvse

estérifiée à 40 %.

Les échantillons de bêta-lactoglobuline et de bêtalactoglobuline estérifiée ont ensuite été hydrolysés par la pepsine (pepsine porcine : 3,200-4,500 BAEE U/mg de la société Sigma Chimie, St-QUENTIN FALLAVIER, FRANCE).

La pepsine (1 mg/ml de H₂O, en concentration initiale) est ajoutée dans un rapport enzyme/substrat protéique (E/S) de 2 %. Le mélange est placé à incubation à 37°C. Des échantillons sont prêlevés après une, deux, quatre, vingt et quarante heures ; l'hydrolyse est stoppée par addition de 1,5 volume d'un tampon Tris-HCl O,2M, pH8,O.

Résultats

Les divers peptides obtenus ont été purifiés et identifiés par leur composition en acides aminés et leur séquence N-Terminale.

Le profil chromatographique CLHP de l'hydrolysat pepsique (après 40 heures d'hydrolyse) de la bêta-lactoglobuline éthylée est représenté sur la figure

10

l (Colonne C₁₈, porosité 10 microns, longueur 25 cm, diamètre intérieur 0,4 cm de la SFCC SHANDON, GAGNY, FRANCE).

La structure primaire de la bêta-lactoglobuline B apparaît sur la figure 2, avec les sites de coupure pepsiques(*).

5

10

15

20

25

30

La figure 3 montre, sous forme de tableaux, la composition en acides aminés et séquences N-Terminales des peptides pepsiques de la bêta-lactoglobuline éthylée (ester).

L'étude cinétique de l'action enzymatique sur un dérivé estérifié de la bêta-lactoglobuline montre que la protéine estérifiée est hydrolysée très rapidement en solution aqueuse alors que la protéine native est insensible à une telle protéolyse.

L'invention rend possible l'hydrolyse de cette protéine qui, sans la modification décrite ne serait pas hydrolysée; d'autre part, elle conduit à la création de sites de coupure non conventionnels pour l'enzyme utilisé.

Pour la bêta-lactoglobuline éthylée, 31 sites de coupure ont été identifiés : Gln5-Thr6 ; Thr6-Met7; Leu10-Asp11 ; Asp11-Ile12 ; Gln13-Lys14 ; Trp19-Tyr20; Leu22-Ala23 ; Ser27-Asp28 ; Asp28-Ile29 ; Leu32-Asp33; Leu39-Arg40 ; Val41-Tyr42 ; Leu46-Lys47 ; Ile56-Leu57; Leu57-Leu58 ; Trp61-Glu62 ; Lys75-Thr76 ; Val81-Phe82; Phe82-Lys83 ; Leu87-Asn88 ; Glu89-Asn90 ; Val92-Leu93; Leu93-Val94 ; Asp98-Tyr99 ; Met107-Glu108 ; Leu117-Ala118 ; Asp130-Glu131 ; Leu133-Glu134 ; Phe136-Asp137; Asp137-Lys138 ; Leu149-Ser150.

1.1

Exemple 2 : Hydrolyse pepsique de la bêta-caséine

La bêta-caséine Al brute est préparée selon la méthode décrite par Zittle, C.A., Custer, J.H. (1963, j. Dairy Sci. 46, 1183-1188). Le substrat est ensuite purifié par chromatographie selon la méthode de Mercier, J.C., Maubois, J.L. Poznanski, S., Ribadeau-Dumas, B. (1968, Bull. Soc. Chim. Biol. 50, 521-530) sur une colonne Q-Sepharose fast flow (marque déposée), de la Société PHARMACIA, UPPSALA, SUEDE.

Exemple 2a

5

10 -

15

20

2.5

30

Estérification

La bêta-caséine estérifiée est préparée en utilisant une modification de la méthode décrite par Fraenkel-Conrat et Olcott (1945), citée supra. La bêta-caséine purifiée est dispersée dans l'éthanol pour obtenir une suspension à 2 %. Sous agitation, on ajoute doucement à la suspension protéine-alcool de l'acide chlorhydrique 12N pour obtenir une suspension 0,06-0,68N en acide. Le produit obtenu est maintenu sous agitation à 4°C pendant plusieurs jours en fonction du degré d'estérification désiré. Après séchage sous vide, les échantillons sont stockés à une température de -80°C. Un échantillon témoin a été préparé de la même manière sans acide chlorhydrique.

Analyse des protéines estérifiées

La détermination du taux d'estérification de la bêta-caséine avec l'éthanol a été réalisée en utilisant la réaction colorée avec l'hydrochlorure d'hydroxylamine mise au point par Halpin et Richardson

PCT/FR94/01500 12

(1985), modifiée selon Bertrand Harb et autres (1991) Dans le cas présent, la bêta-caseine a été estérifiée à 55 %.

Hvdrolvse

5

10

bêta-caséine et la bêta-caséine estérifiée (2 mg/ml) ont été dissoutes dans de l'acide citrique 20mM, pH2,6. La pepsine (1 mg/ml d' $\mathrm{H}_2\mathrm{O}$ en concentration initiale) a été ajoutée dans un rapport enzyme/substrat protéique (E/S) de 0,2 %. Le mélange obtenu a été incubé à 20°C. Des échantillons ont été prélevés à 1, 2, 4, 20 et 40 Heures ; l'hydrolyse a été stoppée par addition de 1,5 volume d'un tampon Tris HCl 0,2M, pH8.0.

Exemple ?b

Une estérification similaire a été conduite 15 sur la bêta-caséine avec du méthanol à la place de l'éthanol ; l'hydrolyse postérieure a été réalisée la bêta-caséine méthylée, d'une façon identique à celle de la caséine bêta éthylée décrite ci-avant. Pour cet exemple également, la bêta-caséine a été 20 estérifiée à 55 %.

Résultats

La figure 4 montre le profil chromatographique CLHP d'un hydrolysat pepsique de caséine bêta native après 10 Heures d'hydrolyse.

25 La figure 5 montre le profil chromatographique CLHP (après 10 heures d'hydrolyse) d'un hydrolysat pepsique de caséine bêta méthylée (ester), préparé selon l'exemple 2b.

13

La figure 6 montre le profil chromatographique CLHP (après 10 heures d'hydrolyse) d'un hydrolysat pepsique de caséine bêta éthylée (ester), préparé selon l'exemple 2a.

La figure 7 montre la structure primaire de la caséine bêta Al avec les sites de coupure pepsique au sein de la caséine bêta native (*), au sein de la caséine bêta méthylée (+), et au sein de la caséine bêta éthylée (o).

5

10

1.5

25

30

Les figures 8, 9 et 10 montrent, respectivement et sous forme de tableaux, les compositions en acides aminés et séquences N-terminales des peptides pepsiques de la caséine bêta native, de la caséine bêta méthylée (ester) et de la caséine bêta éthylée (ester).

Dans le cas de la caséine bêta estérifiée, six sites de coupure nouveaux ont été identifiés : Glull-Ilel2 ; Asn73-Ile74 ; Met156-Phe157 ; Val162-Leu163; Leu198-Gly199 ; Ile207-Ile208.

20 <u>Exemple 3 : Hydrolyse trypsique de la bêta-lactoglobuline</u>

La bêta-lactoglobuline et la bêta-lactoglobuline estérifiée sont préparées selon l'exemple l et hydrolysées par la trypsine (trypsine bovine traitée TPCK 10,000-13,000 U/mg; de la Société Sigma Chimie).

La bêta-lactoglobuline et la bêta-lactoglobuline estérifiée (2 mg/ml) sont dissoutes dans un tampon TrisHCl, 0,2M, de pH8,0. La trypsine, auparavant solubilisée dans HCl 0,01N, est ajoutée dans un rapport

enzyme/substrat protéique (E/S) de 2,5 %. Le mélange obtenu est incubé à 37°C et l'hydrolyse est stoppée après 24 Heures par l'addition de 0,5 volume d'HCl 0,2N.

5 <u>Résultats</u>

10.

15

20

25

La figure 11 montre le profil chromatographique CLHP d'un hydrolysat trypsique de la bêta-lactoglobuline native (après 24 heures d'hydrolyse).

La figure 12 montre le profil chromatographique CLHP (après 24 heures d'hydrolyse) d'un hydrolysat trypsique de la bêta-lactoglobuline éthylée (ester).

La figure 13 montre la structure primaire de la bêta-lactoglobuline B; on y indique les 16 peptides trypsiques obtenus et le site de clivage atypique (*) de la bêta-lactoglobuline estérifiée.

Les figures $14\underline{a}$, $14\underline{b}$ et $14\underline{c}$ montrent, sous forme de tableaux, la composition en acides aminés et séquences N-terminales des peptides trypsiques de la bêta-lactoglobuline native et de la bêta-lactoglobuline éthylée.

L'analyse des peptides trypsiques de la bêtalactoglobuline montre que l'estérification n'empêche aucune liaison cible d'être coupée même quand un résidu aspartyle ou glutamyle estérifié est au voisinage de la liaison cible, ce qui conduit à l'obtention de peptides estérifiés. Un site de coupure atypique a été mis en évidence : Met145-His146.

15

Exemple 4 : Hydrolyse trypsique de la bêta-caséine

5

10

1.5

20

25

La bêta-caséine et la bêta-caséine estérifiée obtenues selon l'exemple 2 ont été soumises à l'action de la trypsine (trypsine de bovin traitée TPCK; 10,000-13,000 U/mg).

La bêta-caséine native et la bêta-caséine estérifiée (2 mg/ml) sont dissoutes dans un tampon Tris-HCl O,2M, de pH8,O. La trypsine auparavant solubilisée dans HCl O,01N est ajoutée dans un rapport enzyme/substrat protéique (E/S) de 1,25 %. Le mélange obtenu est incubé à 20°C; l'hydrolyse est stoppée après 24 Heures par addition de 0,5 volume d'HCl O,2N. Résultats

La figure 15 montre le profil chromatographique CLHP d'un hydrolysat trypsique de caséine bêta native (après 24 heures d'hydrolyse).

La figure 16 montre le profil chromatographique CLHP (après 24 heures d'hydrolyse) d'un hydrolysat trypsique de caséine bêta méthylée (ester).

La figure 17 montre le profil chromatographique CLHP (après 24 heures d'hydrolyse) d'un hydrolysat trypsique de caséine bêta éthylée (ester).

La figure 18 montre la structure primaire de la caséine bêta Al ; les lettres A à N indiquent les peptides trypsiques de la caséine bêta native et on a indiqué les sites de clivage atypique : pour la caséine bêta éthylée (o) et pour la caséine bêta méthylée (*).

16

Les figures 19<u>a</u> et 19<u>b</u> montrent, sous forme de tableaux, la composition en acides aminés et séquences N-terminales des peptides trypsiques de la caséine bêta native, de la caséine bêta méthylée et de la caséine bêta éthylée.

Comme pour la bêta-lactoglobuline, l'analyse des peptides trypsiques de la caséine bêta montre que l'estérification n'empêche aucune liaison cible d'être coupée, même quand un résidu aspartyle ou glutamyle estérifié est au voisinage de la liaison cible, ce qui conduit à l'obtention de peptides estérifiés. Des sites de coupure atypique ont été mis en évidence : Phe52-Ala53 ; Gln79-Thr80 ; Ser122-Gln123 ; Ser124-Leu125 ; Phe190-Leu191 ; Tyr193-Gln194 ; Val197-Leu198.

10

5

- REVENDICATIONS -

1.- Procédé d'obtention de produits peptidiques nouveaux consistant à soumettre un substrat d'origine animale ou végétale contenant au moins une protéine ou un peptide à une réaction d'estérification d'au moins un groupement estérifiable de ladite protéine ou dudit peptide, puis à réaliser une hydrolyse enzymatique de la protéine ou du peptide estérifié.

5

10

15

20

- 2.- Procédé selon la revendication l, caractérisé en ce qu'il consiste à réaliser la réaction d'estérification sur au moins un groupement carboxylique de la protéine ou du peptide.
- 3.- Procédé selon la revendication 2, caractérisé en ce que l'estérification de la protéine ou du peptide est réalisée en présence d'un alcool.
- 4.- Procédé selon la revendication 3, caractérisé en ce que l'estérification est réalisée en présence d'un alcool aliphatique possédant entre 1 et 5 atomes de carbone.
- 5.- Procédé selon l'une quelconque des revendications l à 4, caractérisé en ce que la réaction d'estérification est précédée d'une hydrolyse partielle de la protéine.
- 6.-Procédé selon l'une quelconque revendications l à 5, caractérisé en ce que la réaction 25 d'estérification est suivie d'une succession d'opérations d'hydrolyse différentes аu moyen dе enzymes protéolytiques ou peptidasiques.

18

7.- Procédé selon l'une quelconque des revendications l à 6, caractérisé en ce qu'on utilise un substrat protéique d'origine laitière contenant notamment de la bêta-caséine ou de la bêta-lactoglobuline.

5

10

15

20

25

- 8.- Mélange de peptides ou d'acides aminés et d'esters de peptides ou d'acides aminés, obtenu par le procédé selon l'une quelconque des revendications l à 7.
- 9.- Peptide ou acide aminé estérifié obtenu par le procédé selon l'une quelconque des revendications l à 7.
- 10.- Produits peptidiques obtenus par le procédé selon l'une quelconque des revendications l à 7 dont la composition en acides aminés et séquences N-terminales sont décrites dans les tableaux des figures 3, 9, 10, 14.1, 14.2, 14.3, 19.1 et 19.2.
- ll.- Peptide estérifié au niveau de l'un au moins de ses groupements carboxyliques, à l'exception du groupement carboxylique C-terminal de l'enchaînement.
- 12.- Peptide selon la revendication ll dont l'un au moins de ses groupements carboxyliques est estérifié par un alcool aliphatique possédant entre un et cinq atomes de carbone.

	·
	A.L.
Q_{λ}	
TATE OF THE PROPERTY OF THE PR	

Ala-Met-Ala-Ala-Ser-Asp-He-Ser-Leu-Leu-Asp-Ala-Glu-Ser-Ala-Pro-Leu-Arg-Val-Tyr-Val-Glu-Glu-

Leu-Lys-Pro-Thr-Pro-Glu-Gly-Asp-Leu-Glu-Ile-Leu-Gln-Lys-Trp-Glu-Asn-Gly-Glu-Cys-Ala-

Chi-Lys-Lys-He-He-Ala-Glu-Lys-Thr-Lys-He-Pro-Ala-Val-Phe-Lys-He-Asp-Ala-Leu-Asn-Glu-Asn-

Lys-Val-Leu-Val-Leu-Asp-Thr-Asp-Tyr-Lys-Lys-Tyr-Leu-Leu-Phe-Cys-Met-Glu-Asn-Ser-Ala-Glu-Pro-Glu-Glu-Ser-Leu-Ala-Cys-Glu-Cys-Leu-Val-Arg-Thr-Pro-Glu-Val-Asp-Asp-Glu-Ala-Leu-Glu-

Lys-Phe-Asp-Lys-Ala-Leu-Lys-Ala-Leu-Pro-Met-His-Ile-Arg-Leu-Ser-Phe-Asn-Pro-Thr-Gln-Leu-

Glu-Glu-Glu-Cys-His-He.OH

		•			
Ċ					
					,
@					
			4>		
			•		
*					
	0.50				

3/22

-3	11) 11 0		(1) 19:0		2.23 (2)			0.72 (1)	0.23 (1)	0.84(1)	1.34 (2)	(1) 69:0	Leu-Ilc-Val	Leu1-Leu10																					
12	0.97 (1)	135(3)			1.99 (3)		0.62 (1)		0.18(1)	0.65(1)	2.33 (3)	0.59 (0)	Tyr-ser-Leu	Tyr20-Leu32	3,6	(1)	0.74(1)				0.41(1)	0.43(1)	~~	(2) 75:1			0.43(1)		1.12(1)	1.98 (3)		1.82 (2)		Asp-Lys-Ala	Asp137-Leu149
=	1.63 (3)	<u> </u>			(1) (1)			0.41(1)		1.14(1)	1.25(1)	1.92 (2)	Lys-fic-Asp	Lys 83-Leu93	7.5	5			0.96 (1)	0.98 (0)									(1) (0)	1.96 (2)				lle-Ser-Leu	lle29-Leu32
2	0.98(1)	(*) (*)			0.77 (1)						0.87 (1)	0.63 (1)	Glu-Als-Leu	Glu 131-Asp 137	1,5	C7	0.96(1)	0.32(0)					0.92(1)	(3) (2) (1)	È	0.88(1)			1.53 (2)	2.61 (1)	0.52(1)	2.00(2)		The-Lys-tle	Thr76-Leu87
6	0.84 (1)		0.86 (1)		(1) 77:0				0.55(1)	(1) 29'0	0.98 (1)	0.83 (1)	Thr-Met-Lys	Thré-Gin13	5	77	1.46 (2)	1.60(1)					0.85(7)	1.05(2)	() () () () () () () () () ()	(1) 16:0			1.02 (2)	1.12(1)	0.75(1)	1.75 (2)		Thr.Lys.lle	Thr76-Glu89
	1.14(1)		0.78 (1)						0.43 (1)		(1) 16:0	0.84 (1)	Mct-Lys-Gly	Mct7-Asp11		17	0.49(1)	0.63(0)								0.94 (1)				(1) 01.1		1.08 (1)		Asn-Lys-Val	Asin90-Leu93
7	1	(1) (2)										0.48 (1)	Glu-Lys-Phe	Glu 134-Phc 136	04701	197.20	3.20 / 2.96 (3)	3.92 / 4.01 (4)	2.08 / 1.96 (1)		0.00 / 0.12 (1)		1.82 / 1.65 (2)	0.3270.47(0)	0.89 / 0.78 (2)	0.42 / 0.38 (1)	0.42 / 0.46 (1)	0.46 / 0.51 (2)	0.52 / 0.63 (1)	3.96 / 3.58 (5)	1.82 / 1.87 (2)	1.96 / 1.86 (2)		Leu-Val-Leu Ser-Phe-Asn	Leu93- Met107
9	17.00	(1) \$6.1		_	0.87 (1)						0.84 (1)		Glu-Ala-Leu	Tyr42-Leu46 Glu131-Leu133	9	2	0.71 (3)	1.83 (4)	0.62 (2)				0.47 (0)	(5) (6)	1.03 (2)		0.45(1)	0.46(1)	0.60 (0)	3.01 (3)	0.43 (1)	2.00(2)		Tyr-Lys-lys	Tyr99-Leull7
4/5	27 77 1700	(7) 55:1 706:1					(1) 92/1/20	0.69 / 1.14 (1)			0.94 / 0.14 (1)		Tyr-Val-Glu	Tyr42-Leu46	:	/1	1.96 (2)	\$.75 (6)	1.90 (2)	1.20(1)		1.23 (1)	1.21(1)	2,30(2)	(3) (3)	1.60 (2)	0.3(0)		1.89 (2)	4.60 (7)		2.00 (2)	(i) ·	lle-Ser-Leu	lle29-Trp61
3	0.92(1)	0.95(1)			1.35 (2)	0.25(1)					0.82 (1)		Asp-Ala-Gln	Asp33-Leu39	,	0	0.36(1)	4.98 (5)		0.85(1)			1.32(1)	7.20(3)	6.8.	(1) 19:0		0.40(1)		(.14 (1)		3.85 (5)	(i) ·	Leu-Gla-Lys	Leu58-Va181
1	(1) 66:0							0.90(1)				0.91(1)	Asn-Lys-Val	Asn90-Val92		C		0.48 (1)		1.58(1)		-	1.36(1)	(1) 70''		0.63(1)			0.92(1)			0.92 (1)	(1)	lle-Gla-Lvs	lle12-Tq19
		0.8(1)			1.21 (3)				(1) (1)				Ala-Met-Ala	Ala23-5cr27	:	14	1.51 (2)	3.26 (5)	1.13(1)	0.80(1)		0.46(1)	0.74 (1)	2.04 (2)	021(3)	1.36 (2)			0.86(1)	2.7 (3)		(1) 80 1		Asp. Ala-Glu	Asp.13-11c56
Peptide	A S	Şe di	g X	Ar8	Thr	Pro	1,1	le V	Nei	21	ş	<u>ኛ</u> 3	N.Term	Sequence		Peplide	ΥSΥ	ð	Ser	ซ้	Ē	Arg	글 .	e	2 2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Me	Š	2	Leu	Phe	Lys	Tr	N-Term	Sequence

fig. 3

		÷	

4/22

				154-2	
Œ					
		4			

5/22

FEUILLE DE REMPLACEMENT (REGLE 26)

				**	
				· ·	
		% .			
- , , , ,					
	A ² E				

FEUILLE DE REMPLACEMENT (REGLE 26)

	91
	•
0.0	
	1
	K.
•	
	1.5
	430

II.Arg-Glu-Leu-Glu-Glu-Leu-Asn-Val-Pro-Gly-Glu-Ile-Val-Glu-SerP-Leu-SerP-SerP-Glu-Glu-

Ser-Ile-Thr-Arg-Ile-Asn-Lys-Lys-Ile-Glu-Lys-Phe-Gln-SerP-Glu-Glu-Gln-Gln-Gln-Thr-Glu-Asp-Glu*

Leu-Gln-Asp-Lys-Ile-His-Pro-Phe-Ala-Gln-Thr-Gln-Ser-Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-

.\sn-Ser-Leu-Pro-Gln-Asn-Ile-Pro-Pro-Leu-Thr-Gln-Thr-Pro-Val-Val-Val-Pro-Pro-Phe-Leu-Gln-Pro-

Glu-Val-Met-Gly-Val-Ser-Lys-Val-Lys-Glu-Ala-Met-Ala-Pro-Lys-His-Lys-Glu-Met-Pro-Phe-Pro-Lys-

Tyr-Pro-Val-Glu-Pro-Phe-Thr-Glu-Ser-Gln-Ser-Leu-Thr-Leu-Thr-Asp-Val-Glu-Asn-Leu-His-Leu-114

Pro-Leu-Pro-Leu-Gln-Ser-Trp-Met-His-Gln-Pro-His-Gln-Pro-Leu-Pro-Pro-Thr-Val-Met-Phe-

Pro-Pro-Gln-Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-Lys-Val-Leu-Pro-Val-Pro-Gln-Lys-Ala-Val-Pro-Tyr-

Pro-Gln-Arg-Asp-Met-Pro-Ile-Gln-Ala-Phe-Leu-Tyr-Gln-Glu-Pro-Val-Leu-Gly-Pro-Val-Arg-

(;ly-Pro-Phe-Pro-He-He-Val.OH

f.g.7

- 52		

				_												,		_
2	2.95 (3)	13.12 (16)	5.51 (6)	1.26 (1)		2.04 (2)	3.40 (4)		1.02 (1)		2.00 (2)		3.44 (4)	3.57 (4)	0.97 (1)	3.00 (3)	Ar-dlu-Leu	And-Leu45
2		4.80 (5)	2.50 (3)	0.71 (1)	0.62 (1)		1.47 (2)	1.72 (2)	5.00 (5)	(1) 0970	3.31 (3)	1.53 (2)		235(2)	(2) 06.1	4.54 (5)	Gly-Val-Scr	Glyst-Leu127
=		-												134(2)	() X ()		Photou-leu	Phel 90 Lou 192
01		5.32(5)	3.30 (3)	1.30(1)	0.85(1)		1.54(3)	1.90 (2)	5.20(5)	0.51(1)	2.98 (3)	1.36 (2)		0.79 (1)	1.81 (2)	4.94 (5)	Cly-Val-Ser	Leuds-Leus8 Seri64-Gin188 Ser164-Leu191 Gly94-Leu125 Gly94-Thr126 Phe190-Leu192 Gly94-Leu127
٥		5.26 (5)	3.10(3)	0.70(1)	0.92(1)		0.94(E)	1.68 (2)	5.36 (5)	0.43(1)	2.91 (3)	1.40(2)		1.06(1)	1.80(2)	4.80 (5)	Gly-Val-Ser	Olyst Leu 125
8	0.71 (1)	4.32 (4)	3.23 (3)			(1)00:1		2.13 (2)	5.00 (5)	(1) 16:0	3.20(3)	1.32(1)	(1)00(1)	2.73 (3)	(1) 190	2.23 (2)	Ser-Leu-Ser	Ser164-Leu191
7	(1) 68:0	4.40 (4)	2.57 (3)			(1) 190		1.12(1)	4.53 (5)	0.14(1)	2.59 (3)	(1) 86:0	0.73 (1)	1.39 (2)		2.39 (2)	Ser-Leu-Ser	Scr164-Gln188
9	(1) (90	3.09(1)	1.06(1)		0.70(1)		0.88 (1)	1.28 (1)	1.16(1)			-	0.67 (1)	1.62 (2)	1.12(1)	1.06(1)	Leu-Gln-Asp	Leu45-Leu58
\$								1:00(1)						0.76(1)	0.85(1)		Als-Phe-Leu	Ala 189-Leu 191
+	0.70(1)	2.81 (3).	0.82(1)		0.70(1)		0.93 (1)	0.85(1)	0.80(1)				0.97 (1)	1.29(1)	1.02(1)	1.24(1)	Gln-Asp-Lys	Gln46-LeusB
3	0.64(1)	1.84 (2)			0.40 (1)		1.05(1)	0.92(1)	1.12(1)				(1) 06:0		0.65(1)	(1)801	Gln-Asp-Lys	Gln46-Thr55
7	1.02(1)	3.04 (3)	1.10(3)		0.64(1)		0.94(1)	1.02 (1)	1.02(1)		,		0.80 (1)		0.92(1)	(1) (6)	Are-Glu-Leu Gln-Aso-Lys Gln-Asp-Lys Gln-Asp-Lys	Sequence Argl-Glus Gln46-Ser37 Gln46-Thr55 Gln46-Leu58 Aia189-Leu191
_		2.86 (3)				0.79(1)	•				-		-	1090			Are-Glu-Leu	Argl-Glu5
Pepiide	Asx	5	Ser	Ġ	Œ	Arg	` <u>È</u>	Ala	Pro	<u></u>	` \$	Ž.	=		ž	<u> </u>	E	Sequence

											_					 _		_
26	1.56 (2)	3.66 (4)	0.84 (1)	0.96(1)	1.04 (1)		1.46 (2)	101773	(01) 60.	0.77(1)	4.23 (5)	0.72 (1)	1.74 (2)	3.66 (4)	1.96 (2)		Lea-Val-Tyr	LeuSs-Mcr93
25	1.60 (2)	3.71 (4)	0.88 (1)	1.13(3)	0.73 (I)		1.48 (2)	(01) (1)	6.43 (10)	() () ()	4.15(5)	0.54 (I)	152(2)	2.60(3)	1.67 (2)		Val-Tyr-Pro	Vals9-Mer93
и	(1) 16:0	130(1)	0.86(3)	1.29(1)	0.40(1)			8	3.	0.13 (1)	1.22(3)		0.58 (1)	0.91 (1)	0.73 (1)		Val-Tyr-Pro	Vals9-Gln72
ສ		2.44 (2)		2.44 (2)		0.83 (1)		-	(s) 2.5		2.46 (3)		1.74 (2)	1.89 (2)	0.83 (1)		Lea-Lea-Tyr	Leu 191-Val 209
Ħ		2.00 (2)		1.75 (2)		1.00(1)		3,0,0	3.38 (4)	034(3)	3.25 (3)		2.34 (2)	1.30(1)	1.10(1)		Lea-Tyr-Ola	Tyr193-Val209 Thr128-Child Leu192-Val209 Leu191-Val209
n n	1.95 (2)	2.07 (2)			1.20(1)		1.08 (1)	9	2.36(2)		1.27 (1)			5.00(5)			Thr-Asp-Val	Thr128-Cln141
20		2.25 (2)		2.33 (2)		(1) 66:0			4.00(4)	0.31 (1)	2.59 (3)		1.54 (2)	1.33 (1)	0.92 (1)		Tyr-Gln-Glu	Tyr193-Val209
19		2.21 (2)	-			-			4 .10 (4)		3.20(4)	0.51(1)		1.30(1)	0.96(1)		Pro-Vel-Vel	Pro\$1-Met93
81	2.30(2)	4.71 (5)	2.60(3)		1.23 (3)		1.78 (2)		7.75(8)		3.22 (3)	1.17(2)	:	8.22 (8)	1.18(1)	= :	Lev-Thr-Asp	Leui27-Seri64
-	(2) (3)	1.26 (2)	0.91 (1)		0.96(1)		0.72 (1)		2.19(2)		1.02(1)			4.46 (5)	,			Thr 128-Ser 142
91		3.23 (3)	0.93 (1)		1.81(2)		(1) (0)		(9) 00.9		1.81 (2)	1 55 (2)		2 23 (2)	0.95(1)	Ξ.	Tra-Met-His	Tp143.Lcu163
SI	0,71(1)	4.00 (4)	1.13(0)	0.56(1)					0.97 (1)		0.55(1)		(1) 18 0	0.62(1)			Val. Twe. Pro Glu. Glu. Leu Tro-Met-His The Asp-Val	Sequence Val59-Thr80 Glud-Ser15 Tp143-Leu163 Thr128-Ser142 Leu127-Ser164
4	1 87 (2)	1.90 (2)	(1) 00 1	1 20 (1)	0.80(1)		1.90 (2)		5.20 (6)	0.54(1)	107(1)		104731	(2) (2)	(2)		Val. Tvr. Pro	Val59-Thr80
Pentide	2	5 5	5	: è	Ē	- A	Ê	el V	Pro	7,1		: 3	=	¥ .	i i	 , <u>E</u>	L Z	Sequence

fig 8_

				•
		*?		
			÷	

_												?		/	2	2		_	
31181.		1.95/2.33 (2)		0 59/0.84 (2)		0.36/0.39 (1)			3.50/3.50 (4)	0.24/0.30(1)	1.58/1 86 (2)		(1) 8(1)	(1) 17 0/69.0	2 (1) [[0) [[0]			Tyr-Gln-Glu	Tyr193.11c201
12		2.38 (2)		0 60 (2)		0.30(1)			3.50 (4)	0.26(1)	1.82(3)		1 93 (2)	0.53(1)	0.77 (1)			Lev-Tyr-Gln	Leu192.Val209
.11/16.		1.99/2.40 (2)		1.51/1.64 (2)		0.44/0.35 (1)			3.20/3.50 (4)	0.21/0.23(1)	2.30/2.78 (3)		1.70/1.61 (2)	(1) 19:0/51:0	(1) 18.0/08.0			Tyr-Cln-Glu	Tyr193.Val209
.10/14.		2.23/2.23 (2)		1.65/1.77 (2)		0.35/0.32 (1)			3.43/3.66(4)	0.22/0.25 (1)	1.48/1.65 (2)		0.69/0.57 (1)	1.36/1.36 (1)	0.70/0.73 (1)		-	Lew-Tyr-Gln	11274-Mer93 Leu 192-11c207 Tyr 193. Val 209 Leu 192. Val 209 Tyr 193. 11c 20
6		3.22 (3)					1.48 (2)		5.58 (6)		3.30 (4)	0.49(1)	1.03(1)	1.87 (2)	1.01 (1)			Ne-Pro-Pro	
80	1.20 (1)	7.42(7)	3.40 (4)		1.83 (2)	0.87(1)	1.23 (1)	1.63 (2)	4.96 (5)	0.55 (1)	3.95 (5)	1.64 (3)	1.37(1)	4.20 (5)	1.81 (2)	2.00 (2)	· (I)	Trp-Mct-His	Trp143-Leu198
۲		1.49 (2)							1.13(1)	0.18(1)	0.85(1)			2.30 (3)	(1) 00:1			Phe-Leu-Leu	requence Arg1-Glu5 Leu6-Glu11 Tyr193-Leu198 Ala189-Leu198 Ser164-Leu191 Phe190-Leu198 Typ143-Leu198
9	1.07 (1)	4.08 (4)	3.13 (3)			1.34 (1)		1.70 (2)	5.10 (5)	0.50(1)	3.03 (3)	0.61(1)	1,07 (1)	2.70 (3)	0.49(1)	1.91 (2)		Ser-Leu-Ser	Ser164-Leu191
S		1.68 (2)						0.89 (1)	0.78 (1)	0.42(1)	0.75(1)			2.46 (3)	0.83 (1)			Ala-Phe-Leu	Ala189-Leu198
4		2.20 (2)						0.77(1)	1.05 (1)	0.34 (1)				(1) 26:0				N Term Arg-Glu-Len Leu-Asn-Val Tyr-Gln-Glu	Tyr193-Leu198
	0.80(1)	1.44(1)		100(1)					1.14(1)		1.04(1)			1.07(1)				Lcu-Asn-Val	Leu6-Glu11
7/1		2.70/3.06 (3)				1 00/0 85 (1)								(1) 101 (1) 90 1/15 1				Arg-Glu-Len	Arg1-Glu5
i ptak	451	5	Ser	:Si	- Si	بارة	Ξ	7.	Pro	TyT	leA	Net	2	l.c.	Phc	L.y.s	Ţ	Z Term	יכיושבווכנ

fig. 9

		pΔa
		(*)
		(e
4 - 2		· ·

10/22

_	, .						_	_		_	_	_							
=	133 (2)	4.65 (4)	1.22(1)	0.89(1)	0.81(1)		1.82 (2)		9.05 (10)	0.71 (1)	4.35 (S)	0.86(1)	(2) (3)	3.60(2)	2.42 (2)			Vel-Tyr-Pro	ValS9-Met93
.15/17.		2120.34(3)		1.74/1.42 (2)		0.99/0.70 (1)			3.670.52 (4)	033044(1)	2360237 (3)		236/1.93 (2)	1.00/1.12 (1)	1.00-0.98 (1)			Lev-Tyr-Gin Val-Tyr-Pro	Lew 192-Val 209
.13/16.		2.101.96(2)		1241.44(2)		0.54/0.68(1)			4.470.24 (4)	0.30/0.47(1)	2,112,26(3)	•	2.10/1.36 (2)	1.07.00.97 (1)	1.160.14 (1)			Tyr-Gln-Glu	[yr 193-Val 209
.12/14	1,25/0.62 (1)	4.410.32(4)	3.16/1.92 (3)			1.06/0.83 (1)		1.411.26(2)	(5) (1) (7)	0.56.0.33 (1)	3.422.81(3)		0.99/0.96 (1)	3,51,3,67 (4)	1.24/1.08 (1)	2.35/1.53 (2)		Ser-Lev-Ser	Seri64-Leu192
0.		326(3)	1.43 (2)		1.40(2)		1.00(3)		6 .00 (6)		171(2)	157(2)		231(2)	1.12(1)		(I)	Trp-Met-Hls	Trp143-Se164
6	0.16(1)	4.20 (4)	2.02 (2)			0.89(1)		1.48 (2)	4.65 (5)	0.56(1)	2.80 (3)		(C) #5:	(C) 13:1	000	0111		Lev-Ser-Lev	Leu 163-Phe 190
-	1.51 (2)	2.45 (2)	1.18(1)	0.93 (1)	0.45 (1)		1.26 (2)		4.19 (6)	0.33(1)	1.33 (1)		1.41 (2)	1.90 (2)	1.01 (1)				VelS9.Thr80
.7/11.	1.05/1.00(1)	3.95/4.14 (4)	2.402.34 (3)			1,20/0,83 (1)		1.60/1.33 (2)	4.25/5.00 (5)	0.41/0.62(1)	2.45/2.15 (3)		0.91.0.81 (1)	2.10/3.12 (3)	1.50/1.07 (1)	1.45/1.82 (2)		Ser-Leu-Ser Val-Tyr-Pro	Ser 164-Leu 191
6		1.49 (2)		•					1.00(1)	0.21(1)	0.55(1)			2.66 (3)	1.35(1)			Phe-Leu-Leu	Seri64-Ais189 Mai 190-Leu 188 Seri64-Leu 191 Valso-Thuso Leu 163-The 190 Traist-Seri64 Seri64-Leu 192 Tyr193-Yu 200 Leu 192 - Vu 200 Valso-Meros
	1.09 (1)	(F) 09:F	2.72 (3)			1.06(3)		1.69 (2)	4.44 (5)	0.53(1)	2.94 (3)	0.66 (1)	1:00(1)	1.97 (2)		(2) 16.1		Ser-Leu-Ser	Ser164-Ala189
+	1.36(1)	4.55 (5)	4.00 (4)			0.78 (1)		(5) 07.1	7.08 (7)	0.52 (1)	2.83 (3)	1.28 (1)	1.09 (1)	4.02 (4)	1.99 (2)	1.25 (2)		Phe-Pro-Pro	
3		2.36 (2)			0.68 (1)		0.49(1)	0.88 (1)	0.92(1)				0.60(1)	0.87 (1)	0.77 (1)	0.76(1)		Gin-Asp-Lys	Gin46-Leu58
2		1.94 (2)			0.78 (1)		0.84(1)	1.17(1)	0.95(1)				0.83 (1)		0.74 (1)	0.69 (1)		Gin-Asp-Lys Gin-Asp-Lys Phe-Pro-Pro	Gin46-Thr\$5
-	0.63(1)	3.33 (3)	0.56(1)		0.83 (1)		0.78(1)	1.17(1)	(100)				0.79 (1)		0.94(1)	0.66 (1)		Gln-Asp-Lyf	Sequence Cln46-Ser57 Gin46-Thr55 Gin46-Leu58 Phe157-Leu191
Peptide	Υįγ	ទី	ž	ਨੂੰ	£	¥.	Ē		Pro	Tyr	I _e ,	Net	¥	3	£.	č	Trp	N.Tem	Sequence

fig. 10

		*	
i de la companya de			

FEUILLE DE REMPLACEMENT (REGLE 26)

					•	
					ï	
					ĝ.	
	• ()	V				
			· ·			
		o é s				
, 6 ,						

FEUILLE DE REMPLACEMENT (REGLE 26)

	• 10
V	

Lcu-Asp-Ala-Gln-Ser-Ala-Pro-Leu-Arg-Val-Tyr-Val-Glu-Glu-Leu-Lys-Pro-Thr-Pro-Glu-Gly-Asp-Leu-Glu-Ile-Leu-Leu-Gln-Lys-Trp-Glu li Leu-lle-Val-Thr-Glu-Thr-Met-Lys-Gly-Leu-Asp-lle-Gln-Lys-Val-Ala-Gly-Thr-Trp-Tyr-Ser-Leu-Ala-Met-Ala-Ala-Ser-Asp-lle-Ser-Leu-San-Gly-Glu-Cys-Ala-Gln-Lys-Lys-Ile-Ile-Ala-Glu-Lys-Thr-Lys-Ile-Pro-Ala-Val-Phe-Lys-Ile-Asp-Ala-Leu-Asn-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Lys-Val-Leu-San-Glu-Asn-Clu-As 94 ... 'al-Lcu-Asp-Thr-Asp-Tyr-Lys-Lys-Tyr-Leu-Leu-Phe-Cys-Met-Glu-Asn-Ser-Ala-Glu-Pro-Glu-Glu-Glu-Ser-Leu-Ala-Cys-Gln-Cys-Leu-Val-10 Thr-Gln-Leu-Glu-Glu-Gln-Cys-His-Ile.OH

fig. 13_

FEUILLE DE REMPLACEMENT (REGLE 26)

			e e e e e e e e e e e e e e e e e e e

Penides	=:		4-5	4-5-16.	=		.12-13-14.	3-14.	.10Lys.	ys.	.2-3".	3".	.3'-4.	4.	.4-5-	4-5-15-16.
Amino	Molar Nearest		Molar	Nearest	Molar	Molar Nearest	Molar	Molar Nearest	Molar	Molar Nearest	Molar	Molar Nearest Molar Nearest	Molar		Molar	Nearcs1
ncid	ratio integer		ratio	integer	ratio integer		ratio	integer	ratio	integer	ratio	integer	ratio	integer	ratio	integer
Asx	0.89	Ξ	3.30	3(3)	0.9	<u>(C)</u>	2.10	2(3)	1.88	2(2)	0.97	€.	2.53	3(3)	2.13	2(3)
čl×	4.57	5(5)	11.60	12(12)	4.27	4 (5)	3.07	3(3)			1.17	<u> </u>	4.50	5(6)	10.00	10(12)
Ser			Ξ:	01	1.89	2(2)							3.48	3(4)	1.09	Θ.
Gly	1.19	<u>(E)</u>	2.00	2(2)					_		0.90	1(2)	1.12	<u>(</u>)	2.08	2(2)
His			0.90	13											0.82	1(3)
Arg				_	0.64	13							1.01	<u></u>	0.40	(1)0
Tir.	20.	Ξ	2.30	2(2)			0.82	<u> </u>	1.07	Ξ	0.58	€	0.71	€	2.08	2(2)
Ala			1.41	9	0.94	1 (2)	1.36	1(2)			0.70	<u> </u>	4.78	5(5)	1.62	2 (2)
Pro	2.32	2(2)	3.23	3(3)	1.33	13	96:0	0					2.67	3(3)	4.39	4 (4)
Tyr	09:0	<u></u>	0.85	13	0.30	(1)0			0.36	0(1)	0.26	(i) ₀	0.20	(i) ₀	0.70	<u> </u>
Val	1.86	2(2)	1.89	2(2)	1.17	<u> </u>	0.80	3	1.95	2(2)	0.77	13	0	1(3)	2.05	2(2)
McI					0.30	0(1)							0.94	Ξ	0.53	Ξ-
Cys			1.23	1 (2)	1.78	2 (3)									0.75	1 (2)
의	0.99	<u> </u>	1.92	2(2)							0.87	€	1.7.1	2(2)	2.56	3(3)
Leu	4.25	£)	6.36	(9) 9	3.06	3 (4)	2.04	2(2)	<u> </u>	2(2)	0.87	1(3)	6.20	6(8)	6.98	7(7)
Phe			0.87	(E)	0.94	€	0.51	<u>=</u>							1.0	01
Lys	1.83	3 (2)	2.89	3(3)			2.68	3(3)	1.73	2(2)	0.97	<u> </u>	1.67	2(2)	3.07	3(3)
Trp.				(I)								€			'	Θ
			Val-Tyr-Val	lc V.											Val-Tyr-Val	r-Val
N-Terminal				i			. F	5	-			•		1	-	Š
Sequence	Val-Tyr-Val	le/	Leu-Ser-Phe	-Phc	<u>خ</u>	Tyr-Leu-Leu	1 1 1	Ihr-Pro-Cilo	7-ie/2	านา-โวยา-งา	- - - - - - -	Cily-Leu-Asp	7-12	Scr-Leu-Ala	Ala-Lcu-rro	U-FT0
Sequence	Val41-Lys60	ys60	Val41-Lys69	-ys69	Tyr10	Tyr102-Arg124 Thr125-Lys141 Val92-Lys101 Gly9-Tyr20	Thr 12	5-Lys14	Val92.	Lys101	Gly9.	Tyr20	Ser21	Ser21-Lys60	Val41-Lys69	Lys69
			Lcu149-11c162	-IIc162											Ala142	Ala142-Ilc162

fig. 14a_

	*	

	75	-	_	_				_			_			_		_	<u> </u>						_	
.3.	Molar Nearest	integer	2(2)	Ξ	3(4)			Ξ.		5 (5)	<u>-</u>			Ξ.		Ξ.	3 (4)					Ser-Leu-Ala	Arg4	
	Molar	oite	1.72	1.03	3.48			0.92		4.62	00.1	_		0.79		0.88	3.48					Ser-L	Scr21-Arg40	
	carest	integer	Ξ	3(4)	Ξ		Ξ		Ξ		Ξ				0(1)	Ξ	2(2)	Ξ				Phc	llc162	
.16.	Nearest Molar Nearest	ratio in	0.78	3.46	1.00		0.50		92.0		0.94				0.30	0.72	2.14	0.86				Leu-Ser-Phe	Leu 149-11c162	
	arest	integer	2(2)	3	<u>.</u>	Ξ	Ξ		<u>=</u>	Ξ	<u>-</u> ≘				<u> </u>	<u> </u>	2(2)	<u>-</u>	<u> </u>	ε	_			70
.16-5.							-		_		-					_		_			Trp-Glu-Asn	Leu-Ser-Phe	Trp61-Lys69	47-1101
	Molar	Oi Oi	1.76	6.58	61.1	0.66	0.89		0.96	1.47	1.14				1.16	0.02	2.23	0.98	1.04	_		Ęę.	Trp6	rconi
Lys.	Nearest	integer	2(2)	7(7)	Ξ	<u> </u>	Ξ		Ξ	Ξ	Ξ.				1(2)	<u>-</u>	2(2)	Ξ	2(2)	()	l'rp-Glu-Asn	or-Plic	Lys70	Lcu 49-11c 62 Lcu 49-11c 62
.16-5Lys.	Molar	ratio	1.86	6.75	1.03	99.0	16.0		0.96	1.08	1.04				1.24	0.86	2.05	1.8	1.96	•	Դր-G	Lcu-Scr-Plic	Trp61-	1,cu 14
1.	Molar Nearest Molar Nearest Molar Nearest	integer	3(3)	4 (5)	(%)			13	9	2(2)	$\widehat{\Xi}$	(2)	2(3)	(i) 0	(3)		4(6)	<u> </u>	2(2)			-Val	Thr 125-Lys 138 Val92-Lys 100 Val92-Arg 124 17p61-Lys 70	
.10-11.	Molar N	ratio ii	3.44	3.64	1.20			0.52	0.85	1.52	1.20	1.39	2.24	0.36	1.28		4.20	0.58	2.12			Val-Leu-Val	/al92-/	
	sarest	integer	2(2)						Ξ.			<u> </u>	2(2)				2(2)		Ξ				001s/	1
.10	lolar No	ratio in	8						0.98			0.77	1.73				1.71		0.89			Val-Leu-Val	a192-L)	
		integer re	3(3)	3(3)				_	<u>ε</u>	Ξ	Ξ	<u> </u>	<u> </u>				$\frac{-}{\varepsilon}$	Ξ	2(2)				v8138 V	1
.12-13.	Molar Nearest								_								-					Thr-Pro-Glu	125-L3	
		ratio	2.68	2.82					0.71	1.13	1.17		1.09	-			0.9	0.97	1.87			Ē	T_	-
8.	Neares	integer								Ξ	Ξ		Ξ:			Θ		Ξ	<u>-</u>			elV-c	Lys83	
	Molar	ratio								1.02	90:1		0.93			0.95		0.81	0.89			Nc-Pro-Ala	11c78-Lys83	
	Nearest Molar Nearest	integer				<u>=</u>			<u>:</u>	$\widehat{\Xi}$		$\widehat{\Xi}$	£		•					Ξ		ķ	120	
.3".	Molar					1.03			0.5	76.0		04	00.1									Val-Ala-Gly	115-Ty	
_		ratio				_	_	_	_		_	_	_	_			_						۲. ۲.	_
.15.	Molar Nearest	integer					Ξ.	Ξ.		<u> </u>	Ξ			<u> </u>		<u> </u>	_					Ata-Len-Pin	Ala142-Arg148 Val15-Tyr20	
	Mola	Elic					0.73	0 88		107	6() ;			1.0		0.81	0.72		٠				Z I I	
Peptides	Amino	acid	Asx	Č	Ser	(ily	His	71.9	Thr	۸Ia	Pro	Ty.	Val	Net	Cys	IIc	l_cu	Plic	Lys	Trp		N-Terminal Sequence	Sequence	
ล	<			_										_	_		_	_			<u> </u>	z ž	.X.	

fig. 14b_

		-1
		9.5

16/22

Molar	integer ratio integer	La(io	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.69	0.81 1 1.83 2 0.69 1	0.81 1 1.83 2 0.69 1	0.81	0.81 1 1.83 2 0.69 0 0.53	0.81 0.69 0.69 0.53	0.81 1 0.69 0.69 0.63 0.64 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	0.81	0.81 0.69 0.69 0.098 0.098
Nearest Molar Nearest	1111c6v1 1111c	2(2)	2 (2)	2(2)	2 (2) 3 (3)	3 (3)	3 (3)	3 (3)	2 (2) 3 (3) 1 (1) 1 (1)	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1)	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 0.87	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 0.74 1	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 0.74	2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	2 (2) 2 (2) 3 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)	2) 3) 1) 1.11 1) 0.87 1) 0.87 1) 0.84 1) 0.96
l _		4	9 9	4 4	4 4	9 9	9 9	9 9 0	9 9 0 1	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 2 2	0 7 9 0	2 2 0	0 2 9	2 0 0 0	- 0 0 -	2 2 2 2	2 - 0	2 - 2 - 2	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
Molar Nearest ratio integer		(1) 1 (60)	(1) 1 (1)	0.97 1(1)	0.97 1(1)	0.97 1(1)	0.97 1(1) 1.05 1(1) 0.53 1(1)	0.97 1(1)	0.97 1(1)	0.97 1(1)	0.97 1(1)	0.97 1(1)	0.97 1(1)	0.97 1(1)	0.53 1(1)	0.97 1(1) 1.05 1(1) 0.53 1(1) 0.85 1(1) 0.92 1(1)	0.97 1(1) 1.05 1(1) 0.53 1(1) 0.85 1(1) 0.92 1(1)	0.53 1(1) 0.53 1(1) 0.53 1(1) 0.95 1(1) 0.92 1(1)	0.97 1(1) 1.05 1(1) 0.53 1(1) 0.85 1(1) 0.92 1(1)	0.97 1(1) 1.05 1(1) 0.53 1(1) 0.65 1(1) 0.92 1(1) 0.99 1(1)
Molar Nearest Molar Nearest Molar Nearest Molar ratio integer ratio integer ratio integer ratio		3(3)	333 13	3(3)	3(3)	3(3)	3(3)	1.01 1(1)	2.66 3(3)	2.66 3(3)	2.66 3(3)	1.01 1(1)	2.66 3(3)	2.66 3(3)	2.66 3(3) 1.01 1(1) 1.16 1(1) 0.81 1(1)	2.66 3(3) 1.01 1(1) 1.16 1(1) 0.81 1(1) 0.79 1(1)	2.66 3(3) 1.01 1(1) 1.16 1(1) 0.81 1(1) 0.79 1(1)	2.66 3(3) 1.01 1(1) 1.16 1(1) 0.81 1(1) 0.79 1(1)	2.66 3(3) 1.01 1(1) 1.16 1(1) 0.81 1(1) 0.79 1(1)	2.66 3(3) 1.01 1(1) 1.16 1(1) 0.81 1(1) 0.79 1(1) 0.99 1(1)
Molar Nearest ratio integer		(1)	3(3)	1 (1) 3 (3)	3(3)	3(3)	3(3)	1.04 1(1) 3.22 3(3) 0.52 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1) 0.31 0(1)	1.04 1 (1) 3.22 3 (3) 0.52 1 (1) 0.92 1 (1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1) 0.31 0(1)	1.04 1(1) 3.22 3(3) 0.52 1(1) 0.92 1(1) 0.31 0(1) - (1)	1.04 1 (1) 3.22 3 (3) 0.52 1 (1) 0.92 1 (1) 0.31 0 (1) . (1)
Molar Nearest ratio integer			(1) (1)	0.95 1(1)	0.95 1(1)	0.95 1(1)	0.95 1(1)													
Molar Nearest ratio integer	A	(1) 1 08:0																		
Molar Nearest					1		() - C	£ - C	1 (1)	1 (1)	1 (3) 1 (3) 2 (2) 1 (3)	1 (3)	1 (C)	2 (3) 1 (3) 1 (3)	2 (2) 1 (3)	2 (3) 1 (3)	2	2	2 (3) 1 (3) 1 (3) 2 (3) 1 (4)	2 (3) 1 (3) 1 (3) 2 (3) 2 (3) 2 (3) 1 (4)
Molar Nearest N		1	1	1	1	1	1	\	l											
Aunino A	+						× × + > × m	×× - > × 50 -												Asx Glx Ser Gly His Arg Thr Ala Pro Leu Pho Lys Lys

fig. 14c_

FEUILLE DE REMPLACEMENT (REGLE 26)

					<u> </u>	·
ą						
	0					
		P) .		

FEUILLE DE REMPLACEMENT (REGLE 26)

			•	
	,			
•				

FEUILLE DE REMPLACEMENT (RÉGLE 26)

		· S
		્યું
	light.	

44.		
	jū.	

Scr-Ile-Thr-Arg-Ile-Asn-Lys-Lys-Ile-Glu-Lys-Phe-Gln-SerP-Glu-Glu-Gln-Gln-Gln-Thr-Glu-Asp-Glu-22 II.Arg!Glu-Leu-Glu-Glu-Leu-Asn-Val-Pro-Gly-Glu-Ile-Val-Glu-SerP-Leu-SerP-SerP-Glu-Glu-

Leu-Gln-Asp-Lys-Ile-His-Pro-Phe-Ala-Gln-Thr-Gln-Ser-Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-

Asn-Ser-Leu-Pro-Gln-Asn-Ile-Pro-Pro-Leu-Thr-Gln-Thr-Pro-Val-Val-Val-Pro-Pro-Phe-Leu-Gln-Pro
68

F
Glu-Val-Met-Gly-Val-Ser-Lys-Val-Lys-Glu-Ala-Met-Ala-Pro-Lys-His-Lys-Glu-Met-Pro-Phe-Pro-Lys91

Tyr-Pro-Val-Glu-Pro-Phe-Thr-Glu-Ser-Gln-Ser-Leu-Thr-Leu-Thr-Asp-Val-Glu-Asn-Leu-His-Leu-

Pro-Pro-Gln-Ser-Val-Leu-Ser-Leu-Ser-Gln-Ser-Lys-Val-Leu-Pro-Val-Pro-Gln-Lys-Ala-Val-Pro-Tyr-Pro-Leu-Pro-Leu-Leu-Gln-S**er-Trp-Met-His-**Gln-Pro-His-Gln-Pro-Leu-Pro-Pro-Thr-Val-Met-Phe-¹³⁶

Pro-Gln-Arg-Asp-Met-Pro-Ile-Gln-Ala-Phe-Leu-Tyr-Gln-Glu-Pro-Val-Leu-Gly-Pro-Val-Arg-

Gly-Pro-Phe-Pro-Ile-Ile-Val.OH

fig. 18

				•	
	j.				
€					
				-}-	
			·	•	
		39			
-	9				
	(A)				

B.	.0	- 1	- 1		٥	\neg	ان		<u>-</u>		Ξ.		<u>ند</u> :		Ξ		-		- -	
	Molar Nearest Molar Nearest	Molar Nearest	Molar Nearest			ŝ	<u>z</u>	Molar Nearest	Molnr	Molar Nearest	Molnr	Molnr Nearcst	Molar	Molar Nearest	Molar Nearest		Molnr Nearest		Molar Neuron	CHES
ratio integer ratio integer ratio integer ratio	ratio integer ratio integer	integer ratio integer	ratio integer	ł	ł	.6		integer	oilio	integer	oific	integer	ola	integer	offo	integer	ratio in	integer	ratio ii	integer
0.80 1(1) 0.89 1(1) 1.35 1(1) 1.18	1(1) 0.89 1(1) 1.35 1(1)	1(1) 1.35 1(1)	(1) 1.35 1(1)	(E)		Ξ	80	Ξ	25.	2(2)	99.	2 (2)	1.07	Ξ.			1.37	2		
				· · · · · ·					9.00	6) 6	6.40	(9) 9			1.20	3	7.61	8 (9)	1 00	£ (E)
									09:0	$\widehat{\Xi}$	2.25	2(3)					5.63	6(7)		
											2.30	2(2)								
			-								,	8	_				2.54	3(3)		
												_								
									0.93	Ξ	1.92	2 (3)					3.53	4 (4)		
											0.65	(E)	1.57	2 (2)	-					
											8. <u>=</u>	1(11)	1.02	<u> </u>	1.72	2(2)	9.57	(01)01	8.	2(2)
											1	ε					0.57	<u> </u>		
											5.65	(6)					3.89	4 (4)	- 54	2(2)
											0.55	<u> </u>	0.3	(i) ₀	0.56	<u> </u>	1.69	2(2)		
(1) 901 (1) 118 1(1) 611	(1) 1.18 1(1) 1.06 1(1)	(1) 1.06 1(1)	1.06 1(1)	<u>:</u>	_		0.82	Ξ			3.85	4(3)								
									0.70	€	3.75	4 (4)					9.88	(01) 01	0.75	€
					_				1.22	Ξ.	3.40	3(3)			0.87	Ξ.	2.24	2 (2)		
1.00 1(1) 2.00 2(2) 1.78 2(2)	1(1) 2.00 2(2) 1.78 2(2)	2(2) 1.78 2(2)	1.78 2(2)	2(2)			96.0	<u> </u>	1.28	Ξ	0.80	€	<u></u>	Ξ	0.89	Ē	1.03	Ξ	96:0	<u>:</u>
																	·	ε		
										,			i							
lle-Asn-Lys Ile-Asn-Lys Lys-Ile-Glu	Ilc-Asn-Lys Lys-Ilc-Glu	Lys-Ilc-Glu	Lys-Ilc-Glu			I	Ilc-Glu-Lys	Lys	Phc-Gln-Ser	n-Scr	Ilc-His-Pro	-Pro	QIn-A	Glu-Ala-Mct	Glu-Met-Pro	T	Tyr-Pro-Val		Val-Len-Pro	Pro
11c26-1.ys28 11c26-Lys29 Lys29-Lys32	11c26-Lys29 Lys29-Lys32	Lys29-Lys32					Ilc30-Lys32		Phc33.	Phc33-Lys48	11c49.Lys97	.ys97	<u> </u>	Glu100.Lys105 Glu108.Lys113 Tyr114.Lys169 Val170.1.ys176	Clu10	-Lys113	Tyrl14.	Lys169	Val170.	Lys176

<u>fig. 19a</u>

	<u> </u>
	1.2

22/22

	$\overline{}$	_					_	_									_	-		-		
	Molar Nearest	integer	2	۰	2	2	-		n	-	0	-	•	-	2	₹	2	-			n-Thr	Lys97
×	Molar	otici	1.87	6.42	2.10	2.19	1.14		2.17	25.	9.10	0.48	5.45	0.92	2.30	424	2.30	8			Ala-Gln-Thr	Asp184-Phe190 Ala53-Lys97
	carexi	iteger	-	-						-	-			-	- ·		-				<u>.</u>	Phc 190
×	Molar Nearest	ratio integer	0.94	1.37						0.86	8 .			0.72	0.86		1.05				Asp-Mel-Pro	Asp184
	Γ	cgcr		2	_	_			_		۰.4		2	_			_	-				\neg
7	Molar Nearest	ratio integer		2.35	1.14	0.58			0.84		3.58		3.28	09.0		1.40	0.00	0.67			Thr-Pro-Val	Pr 80-L
		Integer		~	_				-		2		_	-			_			Ι.	le V	cr122
7	Molor Nearest	railo Int		2	0.53				0.40		1.83	0.18	17.0				96.0				I yr-Pro-Val	yr114-5
		Integer		7		_		_			2	_	~			ن				1	ž	rg 202
>	Molar Neurest	ratio Inte		2.45	•	0.71		0.89			2.12	0.27	17.1			2.64					Leu-Leu-I yr	V-161n
	Г		_	رز		<u> </u>		<u> </u>	1	_	7	_	_	_	_	~	_			1	<u>:</u>	1197L
IA-VI	Malar Nearest	ratio integer	0.89	2.63						Ξ	8	0.12	0.80	0.89	1.25	19:	1.31			:	Asp-McI-I'ro	1 84-V
			0	3 2	2				_	Ξ.	2	-	<u>-</u>		_	_	<u>-</u>				١	124 A:
E	Molar Nearest	ratlo Integer		2.54	:S3				0.46		8.	0.35	1.10				0.98				I yr-Pro-Val	114.Se
				2 2	_		_	_	<u> </u>		2	<u> </u>	2				0			Г	<u> </u>	E E
=	Molar Neares	railo Integer		8.		93		0.74			99.		99.			Ξ				1	CIN-CIN-PRO	194-Ar
_				<u> </u>		090	-	0					-		_	16:0	_				5	<u>5</u>
z	Neares	Integer				€					2(2)		€		13	<u>(C)</u>	Ξ			1	9-736	33-Val2
	Molar	ratio				0.69					2:00		0.95		- 1	0.48	0.91				<u>.</u>	Glyz
ר	Molar Nearest	ratio integer	Ξ.	3(3)		E		Ξ			3(3)	Ξ	2(2)	0(3)	<u> </u>	3(3)	€			4	Asp.McI-Pro	4. Arg 20
	Molar	ratio	0.68	2.84		0.70		0.80			2.80	0.75	1.95	0.16	090	3.07	:				200	Asp18
	Nemer	integer		Ξ.				$\hat{\varepsilon}$		Ξ	2(2)	0(1)	Ξ	(E)							9	NIA177-AIE183 ASP184-AIE202 GIY203-VA1209 GIN194-AIB202 TY1114-SE1124 ASP184-VA1197 LEU191-AIB202 TY1114-SE1122 Th180-Lys97
×	Mular Nearest	ratio		1.04				87.0		0.78	8	07.0	0.92	0.36						;	AB: val-110	/la17
Peptides	Amino	neid	Asx	čľ	Ser	Gly	His	Λıβ	ŢĮ.	Λľa	Pro	Tyr]E /	NG	<u>ا</u> د	11.7	71.	×.	T.		arribit are	Sequence
ا تـــا	1	ł												_						7	=	ابز

Fig. 19b

FEUILLE DE REMPLACEMENT (REGLE 26)

		. ·•	•
	:4:		
	4		

Inter mal Application No

PCT/FR 94/01500

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12P21/06 C07K1/00

C07K2/00

//C07K14/47

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12P C07K A23J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS	CONSIDERED TO	O BE	RELEVANT
	CONSIDERED 1	O 01.	REELVAIVI

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to elaim No.
Y	WO,A,93 18180 (ULICE) 16 September 1993 cited in the application see the whole document	1-5,8,9
Y	CHEMICAL ABSTRACTS, vol. 116, no. 19, 11 May 1992, Columbus, Ohio, US; abstract no. 192692k, 'Esterification of food proteins: characterization of the derivatives by a colorimetric method and by electrophoresis' page 582; see abstract & SCI. ALIMENTS, vol.11, no.4, 1991 pages 641 - 652 BERTRAND-HARB, C. ET AL.	1-4,7-9

X Patent family members are listed in annex.

				-
* Special	categories :	of cated	documents	•

- "A" document defining the general state of the art which is not considered to be of particular relevance
 - earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the elaimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the arr.
- '&' document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

20 March 1995

Name and mailing address of the ISA

ing address of the ISA

European Patent ()ffice, P.B. 5818 Patentlaan 2

NI. - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax (+31-70) 340-3016

27.03.95

Authorized officer

Gac, G

Form PCT/ISA/210 (second sheet) (July 1992)

2

INTERNATIONAL SEARCH REPORT

inte onal Application No PCT/FR 94/01500

		PC1/FR 94/01500
	auon) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP,A,O O47 879 (TERUMO CORPORATION) 24 March 1982 see page 5 - page 10	1-4,7-9
Y	WO,A,92 15279 (L'OREAL) 17 September 1992 see page 1 - page 4 * exemple 1 pages 6, 7 *	1-5,7-9
A	EP,A,O 088 398 (TERUMO KABUSHIKI KAISHA (TERUMO CORPORATION)) 14 September 1983	1-4,6,8, 9
		70

MILLERMATIONAL DESIGNATIONS

information on patent family members

Inte onal Application No
PCT/FR 94/01500

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9318180	16-09-93	FR-A- 2688229 EP-A- 0630411 FI-A- 944138 NO-A- 943212	28-12-94 08-09-94
EP-A-0047879	24-03-82	JP-C- 1441867 JP-B- 57050480 JP-A- 57050900 BE-A- 890307 CA-A- 1181282 GB-A,B 2083828	27-10-82 25-03-82 04-01-82 22-01-85
WO-A-9215279	17-09-92	FR-A- 2673374 EP-A- 0573554	v. 05 52
EP-A-0088398	14-09-83	JP-C- 1410105 JP-A- 58152498 JP-B- 62017520 US-A- 4940662	10-09-83 17-04-87

e Internationale No PCT/FR 94/01500

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12P21/06 C07K1/00

C07K2/00

//C07K14/47

Selon la classification internationale des brevets (CIB) ou à la fois scion la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 C12P C07K A23J

Documentation consultee autre que la documentation minimale dans la mesure ou ces documents relevent des domaines sur lesquels a porté la recherche

Base de données electronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est realisable, termes de recherche

C. DOCUMENTS CONSIDERES COMME PERTINENTS			
Categorie *	identification des documents cités, avec, le cas echéant, l'indication des passages pertinents	no. des revendications visees	
Y	WO,A,93 18180 (ULICE) 16 Septembre 1993 cité dans la demande voir le document en entier	1-5,8,9	
Y	CHEMICAL ABSTRACTS, vol. 116, no. 19, 11 Mai 1992, Columbus, Ohio, US; abstract no. 192692k, 'Esterification of food proteins: characterization of the derivatives by a colorimetric method and by electrophoresis' page 582; voir abrégé & SCI. ALIMENTS, vol.11, no.4, 1991 pages 641 - 652 BERTRAND-HARB, C. ET AL.	1~4,7-9	

X	Voir la suite du	cadre C pour	la fin de la li	ste des documents
---	------------------	--------------	-----------------	-------------------

X Les documents de familles de brevets sont indiques en annexe

- * Categories speciales de documents cites:
- document définissant l'état general de la technique, non considère comme particulierement pertinent
- "E" document anteneur, mais publié à la date de dépôt international ou apres cette date
- document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison speciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- document publié avant la date de dépôt international, mais posteneurement à la date de priorité revendiquée
- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique perunent, mais cité pour comprendre le principe ou la théone constituant la base de l'invention
- "X" document particulièrement pertinent l'invention revendiquée ne peut être considèrée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associe à un ou plusieurs autres documents de même nature, cette combinaison etant évidente pour une personne du metter
- '&' document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a eté effectivement achevée

Date d'expedition du present rapport de recherche internationale 2**7** -03-, 1995

20 Mars 1995

2

Fonctionnaire autorise

Nom et adresse postale de l'administration chargée de la recherche internationale Office Europeen des Brevets, P.B. 5818 Patentlaan 2 NI. - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Gac, G

Formulaire PCT ISA/210 (deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Der e Internationale No PCT/FR 94/01500

C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS	
Categorie *	Identification des documents ettes, avec, le cas echeant, l'indication des passages pertinent	no. des revendications visees
ſ	EP,A,O 047 879 (TERUMO CORPORATION) 24 Mars 1982 voir page 5 - page 10	1-4,7-9
	WO,A,92 15279 (L'OREAL) 17 Septembre 1992 voir page 1 - page 4 * exemple 1 pages 6, 7 *	1-5,7-9
	EP,A,O 088 398 (TERUMO KABUSHIKI KAISHA (TERUMO CORPORATION)) 14 Septembre 1983	1-4,6,8,
:		

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs au., inembres de familles de brevets

Der 'e Internationale No PCT/FR 94/01500

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO-A-9318180	16-09-93	FR-A- 2688 EP-A- 06304 FI-A- 944 NO-A- 9432	411 28-12-94 138 08-09-94
EP-A-0047879	24-03-82	JP-C- 14418 JP-B- 570504 JP-A- 570509 BE-A- 8903 CA-A- 11812 GB-A,B 20838	27-10-82 900 25-03-82 307 04-01-82 282 22-01-85
WO-A-9215279	17-09-92	FR-A- 2673: EP-A- 0573:	
EP-A-0088398	14 - 09-83	JP-C- 1410: JP-A- 581524 JP-B- 62017! US-A- 49406	198 10-09-83 520 17-04 - 87