

UNIVERSITÄT BERN

Einführung in die Wirtschaftsinformatik

Vernetzte Rechner-Infrastrukturen

Prof. Dr. Thomas Myrach Universität Bern Institut für Wirtschaftsinformatik Abteilung Informationsmanagement

Logischer Aufbau

Lernziele

- Sie kennen den Unterschied zwischen einer zentralen und einer dezentralen Datenverarbeitung.
- Sie wissen um die Rolle von Rechnernetzen bei der Realisierung von dezentralen Datenverarbeitung.
- Sie bekommen einen Einblick in das Client-Server-Prinzip.
- Sie können einen Server als Software-Komponente von einem Server als Rechner abgrenzen.
- Sie haben einen Überblick über moderne IT-Infrastrukturen.
- Sie wissen, welche Ausprägungen des IT-Sourcing relevant sind.
- Sie kennen das Konzept des Cloud Computing.

Gliederung

Zentralisierte DV

- Die klassische Datenverarbeitung basiert auf Grossrechnern (Mainframes).
- Diese sind in speziell ausgerüsteten Rechenzentren zusammengefasst.
- Auf einem Grossrechner können gleichzeitig mehrere Benutzer arbeiten (Mehrbenutzerbetrieb).
- Sie können unterschiedliche Programme nutzen.

Computer-Terminals

- Der Zugang zu Grossrechnern (Ein- und Ausgabe) erfolgt über Terminals.
- Terminals bestehen aus Bildschirmen und Tastaturen.
- Ein Terminal hat keine eigene Verarbeitungskapazität.
- Die gesamte Verarbeitung findet auf dem verbundenen Grossrechner statt.

Dezentralisierte DV: Personal Computer

UNIVERSITÄ[.] BERN

- Neuer Gerätetyp seit den 1980'er Jahren.
- Relativ einfach aufgebaute Einplatz-Systeme.
- Arbeitsplatzrechner, die gleichzeitig von einem einzigen Benutzer genutzt werden.
- Wurden ursprünglich alleinstehend (standalone) betrieben.
- Einsatz vor allem bei der Unterstützung von Büro-Tätigkeiten.

Nachteile dezentraler DV

- In Organisationen wird kollaborativ gearbeitet.
- Arbeitsergebnisse werden kollektiv erstellt und genutzt.
- Individuell erstellte Arbeitsergebnisse werden anderen verfügbar gemacht.
- Auf einem PC erstellte Arbeitsergebnisse stehen erst einmal dem Benutzer dieses PC's zur Verfügung.
- Sie können nicht ohne weiteres an andere Benutzer bzw. deren Rechner transferiert werden.
- Statt die elektronische Datei zu transferieren können diese auch ausgedruckt werden.
- Dies erscheint jedoch nicht unbedingt zweckmässig.

Gliederung

Vernetzte DV

- Alleinstehende Computer wurden zunehmend in Rechnernetzen zusammengeschlossen.
- Dadurch können Ressourcen gemeinsam genutzt werden.
- Beispiele dafür sind Drucker, Speichermedien, Dateien.
- Daten und Dateien können ausgetauscht werden.
- Neuartige Prinzipien, wie Computer arbeitsteilig zusammenarbeiten.

Rechnernetz

- Räumlich verteiltes System von Rechnern
- Durch Datenübertragungswege miteinander verbunden
- Standards und Protokolle regeln die Kommunikation zwischen den Rechnern auf unterschiedlichen Ebenen
 - von der physikalische Ebene der Nachrichtenübertragung (z.B. IEEE 802.11 für drahtlose Übertragung in lokalen Netzen)
 - bis zur Anwendungsschicht
 (z.B. HTTP zur Übertragung von Daten im Hypertext-Format)

Kategorien von Rechnernetzen

- Local Area Network (LAN)
 - Private Netzwerke
 - Lokale Verbindung von Arbeitsplatzrechnern
 - Beispiele: Ethernet, Token Ring
- Metropolitan Area Network (MAN) und Wide Area Network (WAN)
 - Öffentliche Netzwerke
 - Werden von Unternehmen zu kommerziellen Zwecken betrieben
 - (Über-) Regionale Verbindungen zwischen Rechnern
 - Beispiele: FDDI, ATM

Struktur eines lokalen Netzwerkes

Beispiel Ethernet

- Weit verbreiteter Standard für LANs.
- Genormt als IEEE 802.3 (seit 1980)
 - Diffusionsnetzwerk
 - Übertragungskapazität 10 Mbit/s
 - Kostengünstig und hohe Betriebssicherheit
 - Basiert auf einer (logischen) Bus-Architektur
 - Daten werden als Pakete verschickt (Ethernet-Rahmen)
 - Ethernet-Adressen (6 Byte) für Ziel und Absender
 - Beispiel: 00:00:0C:07:AC:E0 (hexadezimal)
 - Konkurrierendes Zugriffsverfahren über CSMA/CD.
- Weiterentwicklungen mit höherer Übertragungskapazität.

Internet

- Virtuelles Netzwerk, das wenigstens zwei voneinander unabhängige Netze zusammenschliesst.
- Für die Benutzer entsteht der Eindruck, als handle es sich um ein einziges Netzwerk.
- Unabhängig von der verwendeten Netzwerk-technologie.

Kooperative Formen der Informationsverarbeitung

UNIVERSITÄT BERN

Gegenüberstellung zweier Modelle

Client-Server-Modell

- Die Aufgaben werden von Programmen erledigt, die in Clients und Server unterschieden werden.
- Der Client kann auf Wunsch einen Dienst vom Server anfordern.
- Der Server beantwortet die Anforderung und stellt den Dienst bereit.
- Üblicherweise arbeitet ein Server gleichzeitig für mehrere Clients.

Peer-to-Peer-Modell

- Alle Programme sind prinzipiell gleichberechtigt und k\u00f6nnen sowohl Dienste in Anspruch nehmen, als auch zur Verf\u00fcgung stellen.
- In modernen P2P-Netzwerken werden die Netzwerkteilnehmer jedoch häufig in verschiedene Gruppen eingeteilt.
- Je nach Zuordnung zu einer Gruppe kann ein Teilnehmer in einem Netz spezifische Aufgaben übernehmen.

Client-Server-Modell

u^{b}

UNIVERSITÄT BERN

Systemstapel in verteilter Umgebung

Client-Server-Modell

UNIVERSITÄT BERN

Typische Dienste in Rechnernetzen

Datei-Server

- Ermöglicht den Zugriff auf Dateien auf einem Server- Laufwerk.
- Dadurch können Rechner Dateien auf einem zentralen Laufwerk ablegen und aufrufen.
- Für einen Benutzer stellt sich das von dem Datei-Server zur Verfügung gestellte Laufwerk genauso dar, wie eine Speichereinheit des eigenen Rechners.

Drucker-Server

- Ermöglicht den Zugriff von den Arbeitsplätzen auf die verschiedenen Drucker innerhalb eines lokalen Netzwerks.
- Ein Benutzer kann einen über den Drucker-Server zur Verfügung gestellten Drucker genau gleich in Anspruch nehmen, wie einen direkt an den eigenen Rechner angeschlossenen Drucker.

Client-Server-Modell

u^{b}

Beispiel: Datei-Server

Lokale oder entfernte Datenhaltung

UNIVERSITÄT BERN

Vorteile entfernter Datenhaltung

- Lokale Ressourcen werden weniger in Anspruch genommen.
- –Datenteilung mit anderen Personen möglich.
- -Zugriff auf die Daten mit unterschiedlichen Geräten möglich.
- -Sicherheitsfunktionen auf Servern.
- Vermeidung von Datenverlusten beim Verlust des Endgerätes.

Nachteile entfernter Datenhaltung

- Kein Datenzugriff, falls kein Netzzugang möglich ist.
- Datenübertragung über das Netzwerk kostet Zeit und Geld
- -Sicherheitsrisiken bei der Übertragung.
- –Mangelnde Kontrolle über die extern gespeicherten Daten.

Gliederung

Hardware-Infrastruktur

Rechnerkategorien

UNIVERSITÄ[.] Bern

Client-Rechner

- Sind der Geräte, mit denen die Anwender arbeiten.
- Haben alleinstehende Software installiert.
- Sind im Netz mit anderen Anwendungen verbunden.
- Dafür haben sie Client-Software installiert.

Server-Rechner

- Sind die Geräte, die anderen Rechnern Dienste zur Verfügung stellen.
- Dazu ist auf ihnen Server-Software installiert.
- Anwender greifen indirekt auf die Dienste von Servern zu.
- Dabei ist ihnen selten transparent, welche Server-Rechner für sie arbeiten.

Personal Computer als Endbenutzergeräte

UNIVERSITÄT BERN

Das Konzept des Personal Computers hat sich über die Jahre ausdifferenziert.

Verkauf von Personal Computer

Verkauf von PC, Tablets und Smartphones

Personal Computer als Endbenutzergeräte

$oldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄ BERN

Teleworking und Desk Sharing

- Mobile Geräte erlauben es, an verschiedenen Orten zu arbeiten.
- Das kann zu Hause, unterwegs oder beim Kunden sein.
- Mitarbeiter kommen unter Umständen nur gelegentlich ins Büro.
- Beim Desk Sharing setzen sie sich einfach an einen freien Platz.

Endbenutzergeräte

$u^{^{\mathsf{b}}}$

UNIVERSITÄT BERN

Nutzung eigener (Client-) Geräte

- Mitarbeiter besitzen auch privat mobile Geräte wie Laptops, Tablets und Smartphones.
- Es besteht ein Bedürfnis, diese auch für die Arbeit zu nutzen.
- Dazu müssen sie in das Netzwerk der Organisation eingebunden werden.
- Dies bringt Technik- und Sicherheitsprobleme mit sich.

Begriff Server

UNIVERSITÄT BERN

Software

- Programm, welches anderen
 Programmen Dienste zur Verfügung stellt.
- Es bedient Anfragen von Client-Programmen.
- Server-Programme laufen ununterbrochen.

Hardware

- Spezieller Computer, der eine Server-Funktion hat.
- > Eigenschaften sollten der Server-Funktion entsprechen.
- Dies betrifft etwa
 Leistungsfähigkeit und
 Ausfallsicherheit.
- Server laufen oftmals rund um die Uhr.

Das Wort Server bezeichnet primär bestimmte Software-Komponenten, wird aber auch für Rechner in einer spezifischen Funktion verwendet.

Server-Farmen und Server-Racks

UNIVERSITÄ[.] Bern

- In IT-Infrastrukturen werden typischerweise mehrere Server-Rechner eingesetzt.
- Diese übernehmen verschiedene Server-Funktionen.
- Man spricht dabei auch von Server-Farmen.
- Server-Blades sind Server-Computer, die als schlanke Einsätze konzipiert sind.
- Mehrere Server-Blades können in ein Rack geschoben werden.

Speichersysteme

UNIVERSITÄT BERN

 Im IT-Umfeld wird bei technischen Lösungen zur Speicherung digitaler Daten von Storage gesprochen.

Direct Attached Storage (DAS)

 Bezeichnet an einen einzelnen Host angeschlossene Festplatten, die sich in einem separaten Gehäuse befinden.

Network Attached Storage (NAS)

Bezeichnet einen spezifischen und einfach zu verwaltenden Dateiserver.

Storage Area Network (SAN)

 Netzwerk zur Anbindung von Festplattensubsystemen und Tape-Libraries an Server-Systeme.

Weitere Komponenten der IT-Infrastruktur

- Die IT-Infrastruktur besteht nicht nur aus Server-Rechnern und Speicherlösungen.
- Der sichere Betrieb dieser Komponenten erfordert bestimmte Voraussetzungen.
- Dazu gehören:
 - Klimatisierung
 - Schutzanlagen gegen Stromunterbruch
 - Schutzanlagen gegen Brände
 - Sicherheitssysteme

Wo ist der Unterschied?

Gliederung

Eigenerstellung oder Fremdbezug

- Grundsätzliche betriebswirtschaftliche Problemstellung
- Stellt sich besonders auch bezüglich IT-Infrastrukturen und Anwendungen.
- IT-Anwendungen:
 - Eigenentwicklung
 - Fremdentwicklung (Individualsoftware, Standardsoftware)
- IT-Infrastrukturen:
 - Eigener Betrieb von IT-Ressourcen.
 - Fremdbezug von IT-Ressourcen als Dienste.

Begriffe bei der Auslagerung der IT

UNIVERSITÄT BERN

 Server-Housing: Betreiben der Server in einem professionellen Rechenzentrum (z.B. in eigenem Cage)

– Outsourcing:

- Einzelne Applikation extern betreiben und warten (z.B. ERP)
- Ganze Informatik durch externen Dienstleister betreiben
- Cloud Computing:«IT aus der Steckdose»

Server-Housing

- Unterbringung und Netzanbindung eines Kundenservers im Rechenzentrum eines Anbieters.
- Hardware wird vom Kunden oder Mieter gestellt.
- Der Anbieter stellt infrastrukturelle
 Dienstleistungen und
 Betriebsunterstützung bereit.
- Hardware des Kunden wird in einem gesicherten Bereich untergebracht (Cage).
- Die gemeinsame Nutzung eines RZ wird auch als Co-Location bezeichnet.

Outsourcing

- Allgemein: Auslagerung von Unternehmensaufgaben und –funktionen an externe Dienstleister.
- Besonders für die IT relevant.
- Ausmass kann sich unterscheiden:
 - Komplette IT-Funktion wird extern erbracht.
 - Teile der IT-Funktion werden extern erbracht, z.B. PC-Support.
- Vorteil der besseren Nutzung von Spezialwissen und von Skaleneffekten.
- Auslagerung und Länder mit niedrigeren Lohnniveau möglich (Offshoring, Nearshoring)
- Gegenteilige Entwicklung: Insourcing.

Cloud-Computing

- Cloud Computing beschreibt die Bereitstellung von IT-Ressourcen als Dienstleistung über das Internet.
- IT-Ressourcen werden über ein Rechnernetz zur Verfügung gestellt.
- Angebot und Nutzung der Dienstleistungen erfolgen durch technische Schnittstellen und Protokolle, etwa mittels eines Web-Browsers.
- Die im Rahmen des Cloud Computings angebotenen Dienstleistungen betreffen unterschiedliche Schichten des Systemstapels.

Technologie-Schichten

UNIVERSITÄT BERN

Fachanwendungen

Standard-Software

Anwendungsdaten

Datenbanken

Middleware

Betriebssystem

Virtualisierung

Server-Rechner

Speichersysteme

Netzwerk

Software

Plattform

Endbenutzer

Programmierer

Systemspezialist

Cloud Computing

Cloud Computing Angebote

UNIVERSITÄT

– Software as a Service:

- SalesForce.com
- Google Applications (Email, Drive, Docs etc.)

- Amazon AWS Elastic Beanstalk
- Redhat OpenShift

- green.ch, Swisscom
- Amazon AWS EC2, Rackspace

Vor- und Nachteile von Cloud Computing

UNIVERSITÄT BERN

Vorteile:

- Einfachheit
- Time-to-Market
- Kostenersparnis
- Skalierbarkeit
- Professionalität
- Verfügbarkeit
- Zukunftssicherheit (?)
- Nachhaltigkeit (ökologisch)

Nachteile:

- Abhängigkeit
- Internetzugang
- Verwaltung
- Verlässlichkeit
- Interoperabilität
- Sicherheit und Datenschutz
- Compliance
- Überwachung (NSA etc.)

Fazit

- Informationsverarbeitung geschieht heutzutage vor allem in Rechnerverbünden.
- Dies wird unterstützt durch geeignete Rechnerarchitekturen.
- Eine weit verbreitete Rechnerarchitektur ist das Client-Server-Modell.
- Benutzer gebrauchen Client-Programme von ihren verschiedenen Endbenutzergeräten.
- Mit den Client-Programmen sprechen sie Server-Programme an, die auf leistungsstarken Server-Rechnern installiert sind.
- Server-Rechner sind zu Server-Farmen im Rahmen von Rechenzentren zusammengefasst.
- Es gibt verschiedene Möglichkeiten, die Dienste von IT-Infrastrukturen von externen Dienstleistern zu beziehen.