

MEASURE DERIVATIVES

Why

TODO

Definition

Defining Result

Prop. 1. Let (X, A) be a measurable space. Let μ and ν be finite measures with $\nu \ll \mu$.

There exists $g: X \to [0, \infty)$ such that

$$\nu(A) = \int_A g \, d\mu$$

for all $A \in \mathcal{A}$. The function g is μ -almost everywhere unique.

Proof. Define

$$\mathcal{F} = \left\{ f : X \to [0, \infty) \mid f \text{ measurable and } \int_A f d\mu \le \nu(A) \right\}.$$

The function $f \equiv 0$ is in \mathcal{F} , since it is a measurable simple function whose integral over every measurable set is zero.

If f_1 and f_2 are in \mathcal{F} , then $f_1 \vee f_2$ is in \mathcal{F} . To check, let $A \in \mathcal{A}$, and define the sets $A_1 = \{x \in A \mid f_1(x) > f_2(x)\}$ and $A_2 = \{x \in A \mid f_1(x) \leq f_2(x)\}$. A_1 and A_2 partition A, so

$$\int_{A} f_{1} \vee f_{2} = \int_{A_{1}} f_{1} \vee f_{2} + \int_{A_{2}} f_{1} \vee f_{2}$$

$$= \int_{A_{1}} f_{1} + \int_{A_{2}} f_{2}$$

$$\leq \nu(A_{1}) + \nu(A_{2})$$

Since A_1 and A_2 partition A,

$$\nu(A_1) + \nu(A_2) = \nu(A_1 \cup A_2) = \nu(A).$$

Select a sequence of functions $(f_n)_n$ in \mathcal{F} so that

$$\lim_{n} \int f_n = \sup \left\{ \int f \mid f \in \mathcal{F} \right\}.$$

Toward ensuring the sequence is increasing, define $g_1 = f_1$, $g_2 = g_1 \vee f_2$, and $g_n = g_{n-1} \vee f_n$ for $n \geq 3$. Using the observation in the previous paragraph, $g_n \in \mathcal{F}$ for each n.

Let g be the pointwise limit of the $(g_n)_n$. The monotone convergence of integrals shows

$$\int_A g = \lim_n \int_A g_n.$$

for each $A \in \mathcal{A}$. Since $\int_A g_n \leq \nu(A)$, so too is the limit and thus so too is $\int_A g$. Thus, $g \in \mathcal{F}$. By construction, for A = X, $\int g = \sup\{\int f \mid f \in \mathcal{F}\}$. We have constructed an element of \mathcal{F} attaining the supremum.

We know that the integral of g on A with respect to μ is bounded above by $\nu(A)$. We want the gap to be zero. Regardless of the gap, the function $\nu_0: \mathcal{A} \to [0, \infty)$ defined by

$$\nu_0(A) = \nu(A) - \int (g, A, \mu).$$

for each $A \in \mathcal{A}$ is a positive measure If ν_0 is identically zero, then there is no gap.

Suppose there is a gap: then there exists a measurable set with strictly positive measure under ν_0 . Since the base set contains this set, and measures are monotone, the base set must have stricty

positive measure. Since μ is finite, there exists a natural number n so that

$$\nu_0(X) > \frac{1}{n}\mu(X).$$

Define a new measure $\nu_1 = \nu_0 - \frac{1}{n}\mu$. Denote a signed-set decomposition of ν_1 by (P, N). Then $\nu_1(A \cap P) \geq 0$, or equivalently,

$$\nu_0(A \cap P) - \frac{1}{n}\mu(A \cap P) \ge 0,$$

for all A so. and so

$$\nu(A) = \nu_0(A) + \int (g, A, \mu)$$
$$\geq \nu_0(A \cap P) + \int (g, A, \mu).$$

Some call the above the $Radon-Nikodym\ theorem$.

Notation

