## Homework 2 - Solutions

STAT 212 (Fall 2022)

10/21/2022

### Problem 1

(a)

In the following derivations I write  $\sum_{i=1}^{n}$  as simply  $\sum$ , where the limits are assumed to be from 1 to n and the index is i.

The least squares objective is

$$\sum (\log Y_i - \beta_0 - \beta_1 x_i)^2,$$

and setting derviatives with respect to  $\beta_0$  and  $\beta_1$  equal to 0 gives

$$-2\sum(\log Y_i - \beta_0 + \beta_1 x_i) = 0 \text{ and}$$
$$-2\sum(\log Y_i - \beta_0 + \beta_1 x_i)x_i = 0.$$

Notice that these equation are the same as those for the usual simple linear regression, as in page 14 of the notes. The only difference is that instead of  $Y_i$  we have  $\log Y_i$ . Then the least squares estimates should be the same as in simple linear regression, only we replace  $Y_i$  with  $\log Y_i$  and  $\bar{Y}$  with  $\bar{Y}_{\log}$ :

$$\hat{\beta}_1 = \frac{\sum (\log Y_i - \bar{Y}_{\log})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{Y}_{\log} - \hat{\beta}_1 \bar{x}$$

#### Problem 2

(a)

```
source("AIC-Leaps.R")  # make sure AIC-leaps.R is in your working directory

df <- read.csv("Baseball-Salary-Data.csv")

df <- df[, -18]

leaps_ic <- leaps.AIC(df[, 2:17], df[, 1])

## [1] "AIC values"

## [1] 5562.674 5464.568 5414.059 5403.523 5388.926 5381.472 5377.825 5377.144

## [9] 5376.926 5377.207 5377.837 5378.910 5380.296 5381.541 5382.850 5384.824

## [1] "BIC values"

## [1] 5574.134 5479.849 5433.159 5426.444 5415.666 5412.032 5412.206 5415.345

## [9] 5418.947 5423.048 5427.499 5432.391 5437.598 5442.663 5447.792 5453.585

leaps_output <- leaps(df[, 2:17], y = df[, 1], nbest = 1)</pre>
```

| Model Size | AIC      | BIC      |
|------------|----------|----------|
| 1          | 5562.674 | 5574.134 |
| 2          | 5464.568 | 5479.849 |
| 3          | 5414.059 | 5433.159 |
| 4          | 5403.523 | 5426.444 |
| 5          | 5388.926 | 5415.666 |
| 6          | 5381.472 | 5412.032 |
| 7          | 5377.825 | 5412.206 |
| 8          | 5377.144 | 5415.345 |
| 9          | 5376.926 | 5418.947 |
| 10         | 5377.207 | 5423.048 |
| 11         | 5377.837 | 5427.499 |
| 12         | 5378.910 | 5432.391 |
| 13         | 5380.296 | 5437.598 |
| 14         | 5381.541 | 5442.663 |
| 15         | 5382.850 | 5447.792 |
| 16         | 5384.824 | 5453.585 |

Based on the table the lowest values for BIC is the 6 parameter model. BIC is penalizes the number of parameters more harshly than AIC and often gives better predictive results, so we will choose the 6 parameter model. The variables of this model are

```
var_names <- colnames(df[, 2:17])
var_mask <- leaps_output$which[6, ]
model_vars <- var_names[var_mask]
model_vars</pre>
```

```
## [1] "home.runs" "rbi" "strike.outs"
## [4] "stolen.bases" "free.agent.eligible" "arbitration.eligible"
```

## (b)

We fit the chosen model, get standardized residuals, and plot standardized residuals with lines indicating the 3 standard deviations threshold.

```
fit <- lm(salary ~ ., data = df[, c("salary", model_vars)])
resids <- fit$residuals
std_resid <- (resids - mean(resids)) / sd(resids)

plot(std_resid)
abline(h = c(-3, 3), col = "blue")</pre>
```



We find the indexes of the players with residuals exceeding the threshhold:

```
extremes <- which(abs(std_resid) > 3)
extremes
```

## 25 114 218

## 25 114 218

Let's look at them:

#### df[extremes, ]

| ## |     | salary  | batting  | .average | on.base.perce  | ent  | runs  | hits   | doubles   | triples   | home.runs |
|----|-----|---------|----------|----------|----------------|------|-------|--------|-----------|-----------|-----------|
| ## | 25  | 6100    |          | 0.302    | 0.3            | 391  | 102   | 174    | 44        | 6         | 18        |
| ## | 114 | 3600    |          | 0.235    | 0.3            | 353  | 39    | 67     | 10        | 0         | 11        |
| ## | 218 | 5300    |          | 0.316    | 0.3            | 397  | 78    | 153    | 35        | 3         | 31        |
| ## |     | rbi wal | lks stri | ke.outs  | stolen.bases e | erro | rs fi | cee.ag | gent.elig | gible fre | ee.agent  |
| ## | 25  | 100     | 90       | 67       | 2              |      | 15    |        |           | 1         | 1         |
| ## | 114 | 33      | 48       | 92       | 14             |      | 3     |        |           | 1         | 0         |
| ## | 218 | 100     | 65       | 121      | 6              |      | 7     |        |           | 1         | 1         |
| ## |     | arbitra | ation.el | igible a | rbitration     |      |       |        |           |           |           |
| ## | 25  |         |          | 0        | 0              |      |       |        |           |           |           |
| ## | 114 |         |          | 0        | 0              |      |       |        |           |           |           |
| ## | 218 |         |          | 0        | 0              |      |       |        |           |           |           |

Compare to the mean of each variable:

## colMeans(df)

| ## | salary       | batting.average | on.base.percent |
|----|--------------|-----------------|-----------------|
| ## | 1.248528e+03 | 2.578249e-01    | 3.239733e-01    |
| ## | runs         | hits            | doubles         |
| ## | 4.669733e+01 | 9.283383e+01    | 1.667359e+01    |
| ## | triples      | home.runs       | rbi             |
| ## | 2.338279e+00 | 9.097923e+00    | 4.402077e+01    |
| ## | walks        | strike.outs     | stolen.bases    |

```
3.501780e+01
                                 5.670623e+01
                                                       8.246291e+00
##
##
                 errors
                        free.agent.eligible
                                                         free.agent
           6.771513e+00
                                 3.976261e-01
                                                       1.157270e-01
##
## arbitration.eligible
                                  arbitration
           1.928783e-01
                                 2.967359e-02
```

These players have much higher salaries than what the model predicted. They have much higher rbis than average. They also have more walks than average.

(c)





We see that the variance of residuals increases for increasing predicted value, violating the homoskedasticity assumption of linear regression.

(d)

```
qqnorm(std_resid)
qqline(std_resid)
```

# Normal Q-Q Plot



We see that the higher quantiles of the standardized residual distribution do not match the higher quantiles of a standard normal distribution, suggesting a violation of the normality assumption for residuals.





No observations have Cook's D greater than 1.5, so no points are influential.