18.303 Problem Set 6

Due Wednesday, 30 October 2013.

Problem 1: Distributions

Let $f(x) = \frac{1}{\sqrt{x}}$ for x > 0, and f(x) = 0 for $x \le 0$.

- (a) Explain why f defines a regular distribution, even though f(x) blows up as $x \to 0^+$.
- (b) Let $g(x) = -\frac{1}{2} \frac{1}{x^{3/2}}$ for x > 0, and g(x) = 0 for $x \le 0$: g(x) matches the ordinary derivative f'(x) everywhere f'(x) is defined (i.e. everywhere but x = 0). Explain why g(x) does *not* correspond to any regular distribution.
- (c) Viewed as a distibution, f must have a derivative. Give an explicit formula for $f'\{\phi\}$ in terms of an integral of $\phi(x) \phi(0)$ (not ϕ'). Hint: $f\{\phi\} = \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{\phi(x)}{\sqrt{x}} dx$ (why does this limit exist?), and integrate by parts using $\phi'(x) = \frac{d}{dx} [\phi(x) \phi(0)]$. How is this different from trying to define a distribution directly from g(x)?
- (d) Give a similar formula for $f''\{\phi\}$ in terms of $\phi(x) \cdots$ (no ϕ' or ϕ''), and compare to the 18.01 f''(x) (which exists for $x \neq 0$ only).

Problem 2: Green's function of a 1d Helmholtz equation

Recall that the displacement u(x,t) of a stretched string [with fixed ends: u(0,t) = u(L,t) = 0] satisfies the wave equation $\frac{\partial^2 u}{\partial x^2} + f(x,t) = \frac{\partial^2 u}{\partial t^2}$, where f(x,t) is an external force density (pressure) on the string.

- (a) Suppose that $f(x,t) = \text{Re}[g(x)e^{-i\omega t}]$, an oscillating force with a frequency ω . Show that, instead of solving the wave equation with this f(x,t), we can instead use a complex force $\tilde{f}(x,t) = g(x)e^{-i\omega t}$, solve for a complex $\tilde{u}(x,t)$, and then take $u = \text{Re } \tilde{u}$ to obtain the solution for the original f(x,t).
- (b) Suppose that $f(x,t) = g(x)e^{-i\omega t}$, and we want to find a *steady-state* solution $u(x,t) = v(x)e^{-i\omega t}$ that is oscillating everywhere at the same frequency as the input force. (This will be the solution after a long time if there is any dissipation in the system to allow the initial transients to die away.) Write an equation $\hat{A}v = g$ that v solves. Is \hat{A} self-adjoint? Positive/negative definite/semidefinite?

(Your resulting equation is called a *Helmholtz* equation.)

- (c) Solve for the Green's function G(x, x') of this \hat{A} , assuming that $\omega \neq n\pi/L$ for any integer n (i.e. assume ω is not an eigenfrequency [why?]). [Write down the continuity conditions that G must satisfy at x = x', solve for $x \neq x'$, and then use the continuity conditions to eliminate unknowns.]
- (d) Form a finite-difference approximation A of your \hat{A} (code from previous psets and lectures will be helpful here). Compute an approximate G(x, x') in Julia by $A \setminus dk$, where d_k is the unit vector of all 0's except for one $1/\Delta x$ at index $k = x'/\Delta x$ [in Julia: dk=zeros(N); dk[k] = 1/dx], and compare (by plotting both) to your analytical solution from the previous part for a couple values of x' and a couple of different frequencies ω (one $<\pi/L$) and one $>\pi/L$) with L=1.
- (e) Show the limit $\omega \to 0$ of your G relates in some expected way to the Green's function of $-\frac{d^2}{dx^2}$ from class.