

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA
Departamento de Informática
Integrado / Análise e Desenvolvimento de Sistemas / Licenciatura em Computação

Transações

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Classificação de Sistemas DBMS

 Sistemas de gerenciamento de bancos de dados (SGBDs ou DBMSs) podem ser classificados de acordo o número de usuários:

Monousuário

Um usuário por vez acessando e modificando dados

Multiusuário

 Vários usuários interagindo com os dados simultaneamente

Modelo de DBMS

- Considere que temos um banco de dados com registros, cada um com um nome, capaz de realizar as seguintes operações:
 - o read_item(X)
 - Lê um registro de nome X para uma variável de mesmo nome X
 - write_item(X)
 - Grava o valor da variável X no registro do DB de mesmo nome X

Transação

Composta por conjuntos de operações

Transação 1 (T₁):

- read_item(X)
- X := X-5
- write_item(X)
- read_item(Y)
- Y := X * Y
- write_item(Y)

Transação 2 (T₂):

- read_item(X)
- X := X+2
- write item(X)

Problema da Concorrência

- Transações (sem controle) realizadas por diversos usuários simultaneamente podem gerar problemas de concorrência:
 - Problema de atualização perdida
 - Problema de atualização temporária (leitura suja)
 - Problema de resumo incompleto

Problema da atualização perdida

- Duas transações acessam os mesmos itens do DB
- As operações das transações são intercaladas antes de atualizar o DB

Problema da atualização perdida

Variável	Valor da variável	Valor em disco
N	20	-
М	70	-
X (T1)	100	100

Variável	Valor da variável	Valor em disco
N	20 -	
М	70	-
X (T1)	100-20 = 80	100

Variável	Valor da variável	Valor em disco
N	20	-
М	70	-
X (T1)	80	100
X (T2)	100	100

Variável	Variável Valor da variável	
N	20	-
М	70	-
X (T1)	80	100
X (T2)	100+70 = 170	100

Variável	Valor da variável	Valor em disco
N	20	-
M	70	-
X (T1)	80	80
X (T2)	170	80

Variável	Valor da variável	Valor em disco
N	20	-
М	70	-
X (T1)	80	80
X (T2)	170	80
Y (T1)	200	200

Variável	Valor da variável	Valor em disco
N	20	-
M	70	-
X (T1)	80	170
X (T2)	170	170
Y (T1)	200	200

Variável	Valor da variável	Valor em disco
N	20	-
M	70	-
X (T1)	80	170
X (T2)	170	170
Y (T1)	200	200

O valor de X, salvo em disco, está incorreto. Se T1 executasse primeiro, seguido de T2, X deveria ser igual a 150

Item X tem um valor incorreto porque sua atualização por T_1 é perdida (sobrescrita).

Problema da atualização temporária (leitura suja)

- Uma transação atualiza um item do banco de dados e depois a transação falha
- Nesse meio tempo o item atualizado é acessado por outra transação

Problema do resumo incorreto

Uma transação realiza função de resumo de agregação

Enquanto outras transações estão atualizando alguns desses

mesmos itens

T ₁	T ₃	
	<pre>sum := 0; read_item(A); sum := sum + A;</pre>	
	:	
read_item(X); X := X - N; write_item(X);	•	
- , ,	read_item(X); sum := sum + X; read_item(Y); sum := sum + Y;	T₃ lê X depois que N é subtraído e lê Y antes que N seja somado; um resumo errado é o resultado (defasado por N).
read_item(Y); Y := Y + N; write_item(Y);		

Falhas em Transações

- Um SGBD precisa garantir que as operações de uma transação sejam executadas com sucesso
 - Todas as operações devem ser realizadas e armazenadas permanentemente em disco

Falhas em Transações

- Um SGBD precisa garantir que as operações de uma transação sejam executadas com sucesso
 - Todas as operações devem ser realizadas e armazenadas permanentemente em disco
 - Se qualquer operação da transação falhar, todas as operações que foram executadas até então precisam ser desfeitas (operações UNDO)

Falhas em Transações

- Um SGBD precisa garantir que as operações de uma transação sejam executadas com sucesso
 - Todas as operações devem ser realizadas e armazenadas permanentemente em disco
 - Se qualquer operação da transação falhar, todas as operações que foram executadas até então precisam ser desfeitas (operações UNDO)
 - O sistema irá tentar executar as transações que falharam novamente (operações REDO)

Operações UNDO / REDO

- As operações UNDO e REDO devem ser idempotentes
 - "Executar cada operação UNDO ou REDO várias vezes é equivalente a executá-las apenas uma vez"
 - Essa propriedade permite que várias tentativas de recuperar o DB sejam executadas

Operações UNDO / REDO

- As operações UNDO e REDO devem ser idempotentes
 - "Executar cada operação UNDO ou REDO várias vezes é equivalente a executá-las apenas uma vez"
 - Essa propriedade permite que várias tentativas de recuperar o DB sejam executadas
 - "O estado de DB continua consistente e válido independente do número de tentativas de recuperação necessárias para corrigir as transações que falharam"

Exemplos de Falhas em Transações

- Falha de software, hardware ou rede
- Falhas por condição de exceção
 - Ex: Saque de dinheiro de uma conta com saldo 0
- Falhas por problemas físicos
 - Ex: falta de energia, incêndio, roubo de equipamentos

Transação

- Unidade atômica de trabalho, composta por operações tal que:
 - Todas as operações devem ser concluídas totalmente ou nenhuma operação deve ser executada
 - "Ou tudo é executado ou nada"

Odeio metades, ou seja tudo, ou não seja nada.

> Sistemas de Banco de Dados

- A fim de evitar problemas de concorrência e falhas graves, as transações possuem as propriedades chamadas ACID:
 - Atomicidade
 - Consistência
 - Isolamento
 - Durabilidade

Atomicidade:

Uma transação é uma unidade de processamento atômica, que deve ser realizada (executada) em sua totalidade ou não ser realizada

Atomicidade:

Uma transação é uma unidade de processamento atômica, que deve ser realizada (executada) em sua totalidade ou não ser realizada

Consistência:

Uma transação executada por completo deve levar o banco de dados de um estado consistente para o outro

Atomicidade:

Uma transação é uma unidade de processamento atômica, que deve ser realizada (executada) em sua totalidade ou não ser realizada

Isolamento:

A execução de uma transação não deve sofrer interferência de quaisquer outras transações em execução

Consistência:

Uma transação executada por completo deve levar o banco de dados de um estado consistente para o outro

Atomicidade:

Uma transação é uma unidade de processamento atômica, que deve ser realizada (executada) em sua totalidade ou não ser realizada

Isolamento:

A execução de uma transação não deve sofrer interferência de quaisquer outras transações em execução

Consistência:

Uma transação executada por completo deve levar o banco de dados de um estado consistente para o outro

Durabilidade:

Mudanças aplicadas ao banco de dados devem persistir

Responsabilidade do DBMS

Atomicidade:

Uma transação é uma unidade de processamento atômica, que deve ser executada por completo ou não ser realizada

Isolamento:

A execução de uma transação não deve sofrer interferência de quaisquer outras transações em execução

Responsabilidade do DBMS

Responsabilidade do DBA

Consistência:

Uma transação executada por completo deve levar o banco de dados de um estado consistente para o outro

Durabilidade:

Mudanças aplicadas ao banco de dados devem persistir

Responsabilidade do DBMS

Operações de Transações

- SGBDs utilizam as operações abaixo para controlar transações:
 - read / write
 - begin_transaction
 - end_transaction
 - o commit
 - rollback

Operações de Transações

read / write

Operação de leitura e escrita de dados

begin_transaction

Marca o início de uma transação

end_transaction

- Marca o fim de uma transação
- Nesse momento, o SGBD verifica se todas as operações da transação foram bem sucedidas

Operações de Transações

commit

- Indica que uma transação foi concluída com sucesso
- SGBD salva as operações permanentemente em disco

rollback

- Indica que houve falha na execução da transação
- SGBD irá reverter (desfazer) todas as operações que foram executadas pela transação

Estados de Transações

Log do Sistema

- Um SGBD consegue reverter as operações de uma transação com a ajuda do log do sistema
 - Log: registra todas as operações de uma transação
 - Arquivo sequencial, armazenado em disco
 - Possui registros (entradas) de log, cada um contendo um ID de transação
 - Cada transação possui um ID exclusivo, utilizado para identificar cada transação,
 - O ID é gerado automaticamente pelo SGBD

Log do Sistema

- Log possui o registro das operações write de cada transação
 - Objetivo: retornar o sistema para um estado coerente, caso falhas ocorram na execução de transações

Log do Sistema

- Log possui o registro das operações write de cada transação
 - Objetivo: retornar o sistema para um estado coerente, caso falhas ocorram na execução de transações
 - Como: rastreando o log de volta, e recuperando os valores antigos dos itens alterados
- 1. [start_transaction, T]. Indica que a transação T iniciou sua execução.
- [write_item, T, X, valor_antigo, valor_novo]. Indica que a transação T mudou o valor do item do banco de dados X de valor_antigo para valor_novo.
- [read_item, T, X]. Indica que a transação T leu o valor do item de banco de dados X.
- [commit, T]. Indica que a transação T foi concluída com sucesso, e afirma que seu efei-

Referencial Bibliográfico

 KORTH, H.; SILBERSCHATZ, A.; SUDARSHAN, S.
 Sistemas de bancos de dados. 5. ed. Rio de Janeiro: Ed. Campus, 2006.

 DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Ed. Campus, 2004. Tradução da 8ª edição americana.