Act-3000 Théorie du risque - Algorithmes récursifs et études de cas

avec Christopher Blier-Wong et Ihsan Chaoubi

Illustrations numériques

Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

2018-10-10

Faculté des sciences et de génie École d'actuariat

Agenda

1 Contexte

- 2 Algorithmes récursifs
 - Algorithme de DePril
 - Algorithme de Panjer
 - Illustration no1
 - Illustration no2
 - Illustration no3
- 3 Études de cas
 - Rappel de la procédure
 - Données no1
- 4 References

Contexte

Les illustrations de ce document portent sur les notions suivantes :

- Algorithme de Panjer, algorithme de DePril, Erlang et exponentielle
- Études de cas, combinant estimation et algorithmes récursifs

Les notions sont expliquées en détails dans [Marceau, 2013] et [Cossette and Marceau, 2018]

Agenda

- 1 Contexte
- 2 Algorithmes récursifs
 - Algorithme de DePril
 - Algorithme de Panjer
 - Illustration no1
 - Illustration no2
 - Illustration no3
- 3 Études de cas
 - Rappel de la procédure
 - Données no1
- 4 References

Algorithme de DePril

On considère une v.a. X discrète où $X \in \{0,1h,2h,...\}$ avec

$$f_X(kh) = \Pr(X = kh),$$

pour $k \in \mathbb{N}$.

On définit

$$S_n = X_1 + \dots + X_n,$$

où les v.a. $X_1,...,X_n$ sont i.i.d. et se comportent comme la v.a. X $(X_i \sim X, i = 1,2,...,n)$.

Algorithme de DePril:

■ Point de départ:

$$f_{S_n}\left(0\right) = f_X\left(0\right)^n.$$

Relation récursive:

$$f_{S_n}(kh) = \frac{1}{f_X(0)} \sum_{j=1}^k \left((n+1) \frac{j}{k} - 1 \right) f_X(jh) f_{S_n}((k-j)h)$$

pour $k \in \mathbb{N}^+$.

Algorithme de Panjer

Soit la v.a. X définie selon l'approche fréquence sévérité

$$X = \begin{cases} \sum_{i=1}^{M} B_i &, M > 0 \\ 0, &, M = 0 \end{cases}$$

avec les hypothèses suivantes :

- $\blacksquare \ \underline{B} = \{B_i, i \in \mathbb{N}^+\} \ ;$
- $\blacksquare B_i \sim B \in A_h = \{0,1h,2h,...\}$;
- \underline{B} et M sont indépendantes ;
- fonction de masse de probabilité de *B* :

$$\Pr(B = hj) = f_B(hj),$$

pour $j \in \mathbb{N}$ avec un pas de discrétisation h > 0 ;

Algorithme de Panjer

L'algorithme de Panjer s'applique à la condition que la loi de M fasse partie de la classe (a,b,0) dont la fonction de masse de probabilité satisfait la relation récursive suivante :

$$f_M(k) = \left(a + \frac{b}{k}\right) f_M(k-1),$$

pour $k \in \mathbb{N}^+$

Seules les lois Poisson, Binomiale et Binomiale Négative sont membres de cette famille.

Algorithme de Panjer

Les valeurs de a et b pour les membres de la famille (a,b,0) sont les suivantes :

- loi de Poisson: a = 0 et $b = \lambda$;
- loi binomiale négative (1ère paramétrisation): a = 1 q et b = (1 q)(r 1);
- loi binomiale: $a = -\frac{q}{1-q}$ et $b = (n+1)\frac{q}{1-q}$.

Algorithme de Panjer - Forme générale

■ Point de départ:

$$f_X(0) = \Pr(X = 0) = \mathcal{P}_M(f_B(0)).$$

Relation récursive:

$$f_X(hk) = \frac{\sum_{j=1}^k \left(a + \frac{bj}{k}\right) f_B(hj) f_X(h(k-j))}{1 - a f_B(0)},$$

pour $k \in \mathbb{N}^+$

10

Loi Poisson:

$$N \sim Pois(\lambda)$$
.

■ Point de départ :

$$f_X(0) = \Pr(X = 0) = e^{-\lambda(1 - f_B(0))}.$$

Relation récursive:

$$f_X(hk) = \frac{\lambda}{k} \sum_{j=1}^k (j) f_B(hj) f_X(h(k-j)),$$

pour $k \in \mathbb{N}^+$

Algorithme de Panjer

Loi Binomiale Négative (1ère paramétrisation):

$$N \sim BNeg(r,q)$$
.

■ Point de départ:

$$f_X(0) = \left(\frac{q}{1 - (1 - q) f_B(0)}\right)^r,$$

Relation récursive:

$$f_X(kh) = \frac{\sum_{j=1}^k \left(1 - q + \frac{(1-q)(r-1)j}{k}\right) f_B(jh) f_X((k-j)h)}{1 - (1-q) f_B(0)},$$

pour $k \in \mathbb{N}^+$

Algorithme de Panjer

Loi Binomiale :

$$N \sim Binom(n,q)$$
.

■ Point de départ:

$$f_X(0) = \Pr(X = 0) = (1 - q + qf_B(0))^n$$

Relation récursive:

$$f_X(hk) = \frac{\sum_{j=1}^k \left(\frac{q}{q-1} + \frac{(n+1)qj}{(1-q)k}\right) f_B(j) f_X(k-j)}{1 + \frac{q}{1-q} f_B(0)}$$

$$= \frac{\sum_{j=1}^k \left(-q + \frac{(n+1)qj}{k}\right) f_B(hj) f_X(h(k-j))}{1 - q + q f_B(0)}$$

pour $k \in \mathbb{N}^+$

Soit la v.a. X avec

$$\mathcal{L}_{X}\left(t\right)=\mathcal{P}_{M}\left(\mathcal{L}_{B}\left(t\right)\right),\ t\geq0,$$

avec

- $B \sim LNorm(\mu,\sigma)$, $\mu = \ln(10) 0.32$ et $\sigma = 0.8$;
- $\mathcal{P}_M(r) = \alpha \exp(\lambda_1(r-1)) + (1-\alpha) \exp(\lambda_2(r-1)), r \in [0,1],$ $\alpha = 0.8, \lambda_1 = 1, \alpha = 0.8, \lambda_2 = 6.$

On déduit :

 \blacksquare Espérance de X :

$$E[X] = 20$$

 \blacksquare Variance de X:

$$Var(X) = 267.269$$

Illustration no1

Soit les v.a. indépendantes $K_i \sim Pois(\lambda_i)$, i = 1,2, avec

$$P_{K_i}(r) = \exp(\lambda_i(r-1)), r \in [0,1], i = 1,2.$$

Soit les v.a. indépendantes $Y_i \sim PoisComp(\lambda_i, F_B)$, i = 1,2, avec

$$\mathcal{L}_{Y_i}(t) = \mathcal{P}_{K_i}(\mathcal{L}_B(t)), t \ge 0, i = 1,2.$$

On déduit :

 \blacksquare fgp de M:

$$\mathcal{P}_{M}(r) = \alpha \mathcal{P}_{K_{1}}(r) + (1 - \alpha) \mathcal{P}_{K_{2}}(r), r \in [0,1]$$
;

 \blacksquare TLS de X:

$$\mathcal{L}_{X}(t) = \alpha \mathcal{P}_{K_{1}}(\mathcal{L}_{B}(t)) + (1 - \alpha) \mathcal{P}_{K_{2}}(\mathcal{L}_{B}(t))$$
$$= \alpha \mathcal{L}_{Y_{1}}(t) + (1 - \alpha) \mathcal{L}_{Y_{2}}(t), t \geq 0;$$

 $\blacksquare F_X$:

$$F_X(x) = \alpha F_{Y_1}(x) + (1 - \alpha) F_{Y_2}(x)$$

Illustration no1

On applique les outils suivants pour évaluer approximativement $F_{X}\left(x\right)$:

- discrétisation upper et lower (h = 1, 0.1);
- algorithme de Panjer.

Illustration no1

Soit les v.a. discrètes $\widetilde{B}^{(up,h)}$ et $\widetilde{B}^{(low,h)}$ résultant de l'approximation par discrétisation de la distribution de la v.a. continue B

Soit les v.a. correspondantes
$$\widetilde{Y}_1^{(up,h)}$$
, $\widetilde{Y}_1^{(low,h)}$, $\widetilde{Y}_2^{(up,h)}$, $\widetilde{Y}_2^{(low,h)}$, $\widetilde{X}^{(up,h)}$ et $\widetilde{X}^{(low,h)}$.

Étapes pour l'évaluation des approximations de F_X :

- 1 Discrétisation de la v.a. $B\Rightarrow f_{\widetilde{B}^{(up,h)}}$ et $f_{\widetilde{B}^{(low,h)}}$;
- 2 Algo de Panjer : calcul des valeurs de $f_{\widetilde{Y}_i^{(low,h)}}\left(kh\right)$ et $f_{\widetilde{Y}_i^{(low,h)}}\left(kh\right)$, $k\in\{0,1,...,k_0\}$, i=1,2;
- 3 Calcul des valeurs de $f_{\widetilde{X}^{(up,h)}}\left(kh\right)$ et $f_{\widetilde{X}^{(low,h)}}\left(kh\right)$, $k \in \{0,1,...,k_0\}$, avec

$$f_{\widetilde{X}^{(up,h)}}(kh) = \alpha \times f_{\widetilde{Y}_{1}^{(up,h)}}(kh) + (1-\alpha) f_{\widetilde{Y}_{2}^{(up,h)}}(kh),$$

et

$$f_{\widetilde{X}^{(low,h)}}\left(kh\right) = \alpha \times f_{\widetilde{Y}_{1}^{(low,h)}}\left(kh\right) + \left(1 - \alpha\right) f_{\widetilde{Y}_{2}^{(low,h)}}\left(kh\right),$$

pour $k \in \{0,1,...,k_0\}$,

Valeurs des fonctions de masse de probabilité f_{K_1} , f_{K_2} , et f_M :

Illustration no1

Valeurs de $F_{\widetilde{Y_1}^{(up,h)}}$ et $F_{\widetilde{Y_1}^{(low,h)}}$, h = 1,0.1 :

Valeurs de
$$F_{\widetilde{Y_2}^{(up,h)}}$$
 et $F_{\widetilde{Y_2}^{(low,h)}}$, h = $1{,}0.1$:

Valeurs de $F_{\widetilde{X}(up,h)}$ et $F_{\widetilde{X}(low,h)}$, h = 1,0.1 :

Illustration no2

Soit les v.a. indépendantes X_1 et X_2 avec

$$\mathcal{L}_{X_{i}}\left(t\right)$$
 = $\mathcal{P}_{M_{i}}\left(\mathcal{L}_{B_{i}}\left(t\right)\right),\ t\geq0$,

avec

- $B_i \sim Exp(\beta_i)$, i = 1, 2, $\beta_1 = \frac{1}{10}$ et $\beta_2 = \frac{1}{2}$ (note : $\beta_2 > \beta_1$);
- $\mathcal{P}_{M_i}(r) = \exp(\lambda_i(r-1)), r \in [0,1], \lambda_1 = 2, \lambda_2 = 10.$

On définit

$$S = X_1 + X_2$$
.

On déduit :

- Espérance de X_1 et X_2 : $E[X_1] = 20$, $E[X_2] = 20$.
- Variance de X_1 et X_2 : $Var(X_1) = 600$, $Var(X_2) = 120$.
- **E**spérance de S: E[S] = 40.
- Variance de S: Var(S) = 720.

23

Objectif : Évaluer F_S (et les mesures de risque associée à S) Stratégie :

1 Étape 1: Démontrer que

$$F_{S}\left(x
ight)=\gamma_{0}+\sum_{k=1}^{\infty}\gamma_{k}H\left(x;k,\beta_{2}
ight)$$
 , $x\geq0$;

- 2 Étape 2: Utiliser l'algorithme de Panjer pour évaluer γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1-\sum_{k=1}^\infty \gamma_k \le \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon=10^{-10}$).
- **3** Étape 3: On évalue $F_S(x)$, avec γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1 \sum_{k=1}^{\infty} \gamma_k \le \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon = 10^{-10}$).

Étape 1.

La TLS de S est donnée par

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times \mathcal{L}_{X_{2}}(t) = \mathcal{P}_{N}(\mathcal{L}_{C}(t)), t \geq 0,$$

οù

 \blacksquare fgp de N :

$$\mathcal{P}_{N} = \exp(\lambda_{N}(r-1)), r \in [0,1]$$
;

- \blacksquare TLS de C

$$\mathcal{L}_{C}(t) = p_{1}\mathcal{L}_{B_{1}}(t) + p_{2}\mathcal{L}_{B_{2}}(t)$$

$$= p_{1}\left(\frac{\beta_{1}}{\beta_{1}+t}\right) + p_{2}\left(\frac{\beta_{2}}{\beta_{2}+t}\right), t \geq 0;$$

Illustration no2

On rérrange les termes de $\mathcal{L}_{C}\left(t\right)$.

La TLS de la v.a. C est

$$\mathcal{L}_{C}(t) = \alpha \left(\frac{\beta_{1}}{\beta_{1} + t}\right) + (1 - \alpha) \left(\frac{\beta_{2}}{\beta_{2} + t}\right). \tag{1}$$

Dans (1), on a

$$\left(\frac{\beta_1}{\beta_1 + t}\right) = q\left(\frac{\beta_2}{\beta_2 + t}\right) \frac{1}{1 - (1 - q)\left(\frac{\beta_2}{\beta_2 + t}\right)}$$

où
$$q = \frac{\beta_1}{\beta_2}$$
.

On introduit la v.a. discrète J (avec support \mathbb{N}^+) avec

$$\mathcal{P}_{J}(r) = qr \frac{1}{1 - (1 - q)r}, r \in [0, 1].$$

On observe

$$\mathcal{P}_{J}(r) = qr \frac{1}{1 - (1 - q)r}$$
$$= r \sum_{k=0}^{\infty} q (1 - q)^{k} \times r^{k}$$

avec $q = \frac{\beta_1}{\beta_2} \in (0,1)$.

Ainsi, dans (1), on remplace

$$\left(\frac{\beta_1}{\beta_1 + t}\right)$$

par

$$\left(\frac{\beta_{1}}{\beta_{1}+t}\right) = \mathcal{P}_{J}\left(\frac{\beta_{2}}{\beta_{2}+t}\right) = \mathcal{P}_{J}\left(\mathcal{L}_{D}\left(t\right)\right),$$

οù

$$\mathcal{L}_{D}\left(t\right) = \left(\frac{\beta_{2}}{\beta_{2} + t}\right).$$

Alors, (1) devient

$$\mathcal{L}_{C}(t) = \alpha \left(\frac{\beta_{1}}{\beta_{1}+t}\right) + (1-\alpha)\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \alpha \mathcal{P}_{J}\left(\frac{\beta_{2}}{\beta_{2}+t}\right) + (1-\alpha)\left(\frac{\beta_{2}}{\beta_{2}+t}\right). \tag{2}$$

On introduit une v.a. discrète K sur le support \mathbb{N}^+ = $\{1,2,\ldots\}$ dont la f.g.p. est

$$\mathcal{P}_K(r) = \alpha \mathcal{P}_J(r) + (1 - \alpha) \times r, \tag{3}$$

pour $r \in [0,1]$. [Note : Pr(K = 0) = 0.]

Illustration no2

La fgp de la v.a. K est

$$\mathcal{P}_{K}(r) = \sum_{k=0}^{\infty} \eta_{k} \times r^{k}$$

$$= \alpha \mathcal{P}_{J}(r) + (1 - \alpha) \times r$$

$$= \alpha \sum_{k=0}^{\infty} f_{J}(k) \times r^{k} + (1 - \alpha) \times r$$
(4)

οù

$$f_{J}(k) = \begin{cases} 0 & , & k = 0 \\ q(1-q)^{k-1} & , & k \in \mathbb{N}^{+} \end{cases}$$
 (5)

En combinant (4) et (3), on déduit que

$$f_K(k) = \eta_k = \begin{cases} 0 & , & k = 0 \\ \alpha \times q + (1 - \alpha) & , & k = 1 \\ \alpha \times q (1 - q)^{k-1} & , & k = 2,3,... \end{cases}$$

Avec (2) et (3), et puisque $\left(\frac{\beta_2}{\beta_2+t}\right) \in [0,1]$ pour $t \ge 0$, on conclut que

$$\mathcal{L}_{C}\left(t\right) = \mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2} + t}\right)$$

Clairement,

$$\sum_{k=1}^{\infty} \eta_k = \alpha \sum_{k=1}^{\infty} f_J(k) + (1 - \alpha)$$
$$= \alpha \times 1 + (1 - \alpha) = 1.$$

Illustration no2

Maintenant, on revient à la TLS de S

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times \mathcal{L}_{X_{2}}(t) = \mathcal{P}_{N}(\mathcal{L}_{C}(t)), t \geq 0,$$

οù

lacksquare fgp de N :

$$\mathcal{P}_N = \exp(\lambda_N (r-1)), r \in [0,1]$$
;

- \blacksquare TLS de C

$$\mathcal{L}_{C}(t) = p_{1}\mathcal{L}_{B_{1}}(t) + p_{2}\mathcal{L}_{B_{2}}(t)$$

$$= p_{1}\left(\frac{\beta_{1}}{\beta_{1}+t}\right) + p_{2}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2}+t}\right), t \geq 0;$$

Alors, la TLS de S devient

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times \mathcal{L}_{X_{2}}(t)$$

$$= \mathcal{P}_{N}(\mathcal{L}_{C}(t))$$

$$= \mathcal{P}_{N}\left(\mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)\right), t \geq 0,$$
(6)

On introduit la v.a. discrète L dont la fonction de masse de probabilité et la fgp sont respectivement

$$\Pr(L = k) = \gamma_k, k \in \mathbb{N},$$

et

$$\mathcal{P}_{L}\left(r\right) = \mathcal{P}_{N}\left(\mathcal{P}_{K}\left(r\right)\right) = \sum_{k=0}^{\infty} \gamma_{k} r^{k}.$$

Illustration no2

Puisque $N \sim Pois\left(\lambda_N\right)$, on utilise l'algorithme de Panjer pour calculer les valeurs de γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1 - \sum_{k=1}^{\infty} \gamma_k \leq \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon = 10^{-10}$).

En combinant (6) et (7), on obtient

$$\mathcal{L}_{S}(t) = \mathcal{P}_{N}\left(\mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)\right)$$

$$= \mathcal{P}_{L}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \sum_{k=0}^{\infty} \gamma_{k}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{k}, t \geq 0.$$
(8)

De la TLS de S en (8), on déduit

$$F_S(x) = \gamma_0 + \sum_{k=1}^{\infty} \gamma_k H(x; k, \beta_2), x \ge 0.$$

Étape 2.

On applique l'algorithme de Panjer pour calculer γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1-\sum_{k=1}^{\infty}\gamma_k \leq \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon=10^{-10}$).

k	0	1	5	10	20
γ_k	6.144212×10^{-6}	0.000026543	0.000348132	0.001599818	0.007537266

Étape 3.

On évalue $F_S(x)$, avec γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1 - \sum_{k=1}^{\infty} \gamma_k \leq \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon = 10^{-10}$).

x	;	0	5	10	20	50
F_S ((x)	6.144212×10^{-6}	0.00026746	0.00125063	0.00788859	0.10987205

Algorithmes récursifs

Illustration no2

Valeurs de F_S :

Soit les v.a. indépendantes $X_1 \sim Gamma\left(\alpha_1,\beta_1\right)$ et $X_2 \sim Gamma\left(\alpha_2,\beta_2\right)$ avec

$$\mathcal{L}_{X_i}\left(t\right) = \left(\frac{\beta_i}{\beta_i + t}\right)^{\alpha_i}, \ t \ge 0,$$

avec $\beta_2 > \beta_1 > 0$.

On définit la v.a. $S = X_1 + X_2$.

Objectif : Évaluer $F_S(x)$, $x \ge 0$.

Stratégie :

- **1** Étape 1 : Transformer $\left(\frac{\beta_i}{\beta_i+t}\right)^{\alpha_i}$ adéquatement.
- Étape 2 : Démontrer

$$F_S(x) = \sum_{k=0}^{\infty} \gamma_k H(x; \alpha_1 + \alpha_2 + k; \beta_2), x \ge 0.$$

S Étape 3 : Évaluer $F_S(x)$, avec γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1 - \sum_{k=1}^{\infty} \gamma_k \le \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon = 10^{-10}$).

Étape 1.

La TLS de S est donnée par

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times \mathcal{L}_{X_{2}}(t)$$

$$= \left(\frac{\beta_{1}}{\beta_{1}+t}\right)^{\alpha_{1}} \times \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{2}}, t \geq 0.$$
(9)

Dans (9), on a

$$\mathcal{L}_{X_1}(t) = \left(\frac{\beta_1}{\beta_1 + t}\right)^{\alpha_1} = \left(\frac{\beta_2}{\beta_2 + t}\right)^{\alpha_1} \left(\frac{q}{1 - (1 - q)\left(\frac{\beta_2}{\beta_2 + t}\right)}\right)^{\alpha_2}$$

où
$$q = \frac{\beta_1}{\beta_2} \in (0,1)$$
.

On introduit la v.a. discrète J (avec support \mathbb{N}^+) avec

$$\mathcal{P}_{J}(r) = \left(\frac{q}{1 - (1 - q)r}\right)^{\alpha_{1}}$$
$$= \sum_{\kappa=0}^{\infty} \gamma_{k} r^{k}, r \in [0, 1].$$

On reconnaît la fgp de la loi binomiale négative de paramètres α_1 et $q=rac{\beta_1}{\beta_2}$

$$f_J(k) = \gamma_k = \frac{\Gamma(\alpha_1 + k)}{\Gamma(\alpha_1)k!} q^{\alpha_1} (1 - q)^k$$

pour $k \in \mathbb{N}$.

La TLS de X_1 devient

$$\mathcal{L}_{X_{1}}(t) = \left(\frac{\beta_{1}}{\beta_{1}+t}\right)^{\alpha_{1}}$$

$$= \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{1}} \mathcal{P}_{J}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{1}} \sum_{\kappa=0}^{\infty} \gamma_{k} \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{k},$$

où
$$q = \frac{\beta_1}{\beta_2} \in (0,1)$$
.

Étape 2.

Alors, l'expression en (9) de la TLS de la v.a. S devient

$$\mathcal{L}_{S}(t) = \left(\frac{\beta_{1}}{\beta_{1}+t}\right)^{\alpha_{1}} \times \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{2}}$$

$$= \left(\left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{1}} \sum_{\kappa=0}^{\infty} \gamma_{k} \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{k}\right) \times \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{2}}.$$

On réarrange les termes

$$\mathcal{L}_{S}(t) = \sum_{\kappa=0}^{\infty} \gamma_{k} \left(\frac{\beta_{2}}{\beta_{2} + t} \right)^{\alpha_{1} + \alpha_{2} + k}.$$

On déduit que

$$F_S(x) = \sum_{\kappa=0}^{\infty} \gamma_k H(x; \alpha_1 + \alpha_2 + k, \beta_2)$$

ou

$$f_S(x) = \sum_{\kappa=0}^{\infty} \gamma_k h(x; \alpha_1 + \alpha_2 + k, \beta_2),$$

pour $x \ge 0$.

Étape 3.

On évalue $F_S(x)$, avec γ_k , $k \in \{0,1,2,...,k_0\}$, où k_0 est fixé de telle sorte que $1 - \sum_{k=1}^{\infty} \gamma_k \leq \varepsilon$ pour un ε fixé très petit (e.g., $\varepsilon = 10^{-10}$).

Hypothèses de calculs : α_1 = 1.2, α_2 = 4.5, β_1 = $\frac{1.2}{10}$ et β_2 = $\frac{4.5}{30}$.

Valeurs numériques :

- E[S] = 40, q = 0.8
- γ_k , (k = 0,1,2,3): 0.765082000; 0.183619680; 0.040396330; 0.008617884
- $F_S(x)$, (x = 40.80) : 0.5564092; 0.9767901; 0.9995224 (valeurs calculées en R avec $k_0 = 1000$)

Valeurs de
$$f_{X_1}(x) = h(x; \alpha_1, \beta_1)$$
 et $f_{X_1} = \sum_{\kappa=0}^{\infty} \gamma_k h(x; \alpha_1 + k, \beta_2)$:

Comme prévu, les deux courbes se superposent parfaitement.

Valeurs de f_{X_1} , f_{X_2} et f_S :

Algorithmes récursifs

Illustration no3

Valeurs de $TVaR_{\kappa}(X_1)$, $TVaR_{\kappa}(X_2)$, $TVaR_{\kappa}(S)$ et $TVaR_{\kappa}(X_1) + TVaR_{\kappa}(X_2)$:

Agenda

- 1 Contexte
- 2 Algorithmes récursifs
 - Algorithme de DePril
 - Algorithme de Panjer
 - Illustration no1
 - Illustration no2
 - Illustration no3
- <u>Études de cas</u>
 - Rappel de la procédure
 - Données no1
- 4 References

Illustration de la procédure

Contexte:

- Montants complets de sinistres
- Temps d'occurrence
- Période d'observation = (0,30]
- 99 observations : $(x_i,t_i), i = 1,2,...,99$

Données no1

Parcours du processus de comptage vs intentité cumulée pour un processus de Poisson

Parcours du processus de comptage

Données no1

Montants de sinistres vs temps d'occurrence

Données no1

Fonction de répartition empirique - Sinistres

Données no1

Fonction de répartition empirique - Temps inter-inistres

Données no1

Fonctions d'excès moyen: [Embrechts and Schmidli, 1994]

Fig. 2.1. Mean-residual-life function e(x) for a wide class of distributions: (1) exponential (1), (2) gamma (3), (3) gamma (0.5), (4) Weibull (2), (5) Weibull (0.7), (6) lognormal (-0.2, 1) and (7) Pareto (1.5)

Données no1

Fonctions d'excès moyen empirique : temps inter-sinistres

Données no1

Fonctions d'excès moyen empirique : montants de sinistres

Données no1

QQ-plot - Loi exponentielle : temps inter-sinistres

QQ-plot - Loi Exponentielle

Données no1

QQ-plot - Loi exponentielle : montants de sinistres

QQ-plot - Loi Exponentielle

Données no1

QQ-plot - Loi lognormale : montants de sinistres

QQ-plot - Loi Lognormale

Estimation MV - montant de sinistre X:

- Loi lognormale : $X \sim LNorm(\mu, \sigma)$
- $\mu = 1.796876, \sigma = 0.8439212$

Estimation MV - processus de comptage \underline{N} :

- lacktriangle Processus de Poisson homogène avec intensité λ
- \blacksquare Temps inter-sinistre : loi exponentielle avec paramètre λ
- $\lambda = \frac{99}{33} = 3.3$

On examine le comportement de l'accroissement S(30,31] du processus de Poisson composé \underline{S}

On applique les outils suivants pour évaluer approximativement $F_{S(30,31]}\left(x
ight)$:

- discrétisation upper et lower (h = 1, 0.1);
- algorithme de Panjer.

Données no1

Valeurs de $F_{\widetilde{S(30,31]}^{(up,h)}}$ et $F_{\widetilde{S(30,31]}^{(low,h)}}$, h = 1,0.1 :

Agenda

- 1 Contexte
- 2 Algorithmes récursifs
 - Algorithme de DePril
 - Algorithme de Panjer
 - Illustration no1
 - Illustration no2
 - Illustration no3
- 3 Études de cas
 - Rappel de la procédure
 - Données no1
- 4 References

Références |

Cossette, H. and Marceau, E. (2018).

Mathématiques actuarielles du risque : modèles, mesures de risque et méthodes quantitatives.

Modelling of extremal events in insurance and finance. *Zeitschrift für Operations Research*, 39(1):1–34.

Marceau, E. (2013).

Modélisation et évaluation quantitative des risques en actuariat: Modèles sur une période.

Springer.

