HW4

April 3, 2019

1 HW4 Chenyu Zhao

2 Problem 4.1

```
In [1]: import pandas as pd
        import numpy as np
        from sklearn.linear_model import LinearRegression
        import statsmodels.api as sm
        from scipy.stats import pearsonr
In [2]: data = pd.read_csv('BetaExample.txt',sep="|")
        data.DATE=pd.to_datetime(data.DATE)
        data=data.dropna()
In [3]: data1=data.loc[data.TICKER=="IBM"]
        data2=data.loc[data.TICKER=="AAPL"]
        data3=data.loc[data.TICKER=="TSLA"]
2.1 (a)
2.1.1 IBM
In [4]: d=data1[data1.DATE<pd.to_datetime("2015-01-01")]</pre>
        X=np.array(d[["RM"]])
        y=np.array(d["R"])
In [5]: est = sm.OLS(y, X)
        est2 = est.fit()
        print(est2.summary())
```

OLS Regression Results

_____ Dep. Variable: R-squared: 0.332 Model: OLS Adj. R-squared: 0.332 Least Squares F-statistic: Method: 3133. Date: Wed, 03 Apr 2019 Prob (F-statistic): 0.00 Time: 10:09:54 Log-Likelihood: 17657. No. Observations: 6301 AIC: -3.531e+04 Df Residuals: 6300 BIC: -3.531e+04

Df Model: 1 Covariance Type: nonrobust

	, p					
	coef	std err	t	P> t	[0.025	0.975]
x1	0.9067	0.016	55.970	0.000	0.875	0.938
Omnibus: Prob(Omnibus)	١.	1227.5		n-Watson: e-Bera (JB):		1.964 34867.449
Skew:		0.1	- .			0.00
Kurtosis:	========	14.5 	519 Cond.	No. =======	========	1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $\beta_{IBM} = 0.91$, **P** is low, we reject the null hypothesis.

2.1.2 AAPL

```
In [6]: d=data2[data2.DATE<pd.to_datetime("2015-01-01")]</pre>
        X=np.array(d[["RM"]])
        y=np.array(d["R"])
```

In [7]: est = sm.OLS(y, X) est2 = est.fit() print(est2.summary())

OLS Regression Results

			===========
Dep. Variable:	у	R-squared:	0.192
Model:	OLS	Adj. R-squared:	0.192
Method:	Least Squares	F-statistic:	1500.
Date:	Wed, 03 Apr 2019	Prob (F-statistic):	1.61e-294
Time:	10:09:54	Log-Likelihood:	13915.
No. Observations:	6301	AIC:	-2.783e+04
Df Residuals:	6300	BIC:	-2.782e+04
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err		t	P> t	[0.025	0.975]
x1	1.1363	0.029	38	3.728	0.000	1.079	1.194
Omnibus: Prob(Omnibus): Skew:			.903 .000 .417		in-Watson: 1e-Bera (JB): (JB):		1.980 232261.428 0.00

Kurtosis:	32.732	Cond. No.	1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $\beta_{AAPL} = 1.14$, P is low, we reject the null hypothesis.

2.1.3 TSLA

OLS Regression Results

Dep. Variable:	у	R-squared:		0.122
Model:	OLS	Adj. R-squared:		0.121
Method:	Least Squares	F-statistic:		157.4
Date:	Wed, 03 Apr 2019	Prob (F-statistic):		6.51e-34
Time:	10:09:54	Log-Likelihood:		2219.2
No. Observations:	1135	AIC:		-4436.
Df Residuals:	1134	BIC:		-4431.
Df Model:	1			
Covariance Type:	nonrobust			
=======================================			======	
coe	f std err	t P> t	[0.025	0.975]
x1 1.310	1 0.104 1	2.548 0.000	1.105	1.515
Omnibus:	262.175	Durbin-Watson:		2.005
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):		2947.095
Skew:	0.726	Prob(JB):		0.00
Kurtosis:	10.760	Cond. No.		1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $\beta_{TSLA} = 1.14$, P is low, we reject the null hypothesis.

2.2 (b)

```
let h = (a, b, c)<sup>T</sup>
    from self-financing condition, we get a + b + c = 0
    from unit exposure to AAPL, we get b = 1
    from zero exposure to beta, we get aβ<sub>IBM</sub> + bβ<sub>AAPL</sub> + c * β<sub>TSLA</sub> = 0
    we use following code to solve this linear problem

In [33]: a = np.array([[1,1,1], [0,1,0], [0.91,1.14,1.31]])
        b = np.array([0.0,1.0,0.0])
        x = np.linalg.solve(a, b)
        x

Out [33]: array([-0.425, 1. , -0.575])

∴ h = (-0.425,1,-0.575)<sup>T</sup>

2.3 (C)

In [11]: d1=data1[data1.DATE>=pd.to_datetime("2015-01-01")]
        d2=data2[data2.DATE>=pd.to_datetime("2015-01-01")]
        d3=data3[data3.DATE>=pd.to_datetime("2015-01-01")]
```

In [17]: sum(d1.R*(-0.425))+sum(d2.R*1)+sum(d3.R*(-0.575))

cumulative sum of return in 2015 is -0.0214

Out[17]: -0.021396825000000078

2.4 (d)

P-value is 0.65, not greater than 0.95. So it is not significantly different from 0.

3 Problem 4.2

3.1 (a)

$$E[h'r] = \frac{1}{n} \sum_{i} E[r_i] = \beta E[r_m] + \frac{1}{n} \sum_{i} E[\epsilon_i]$$

$$V[h'r] = \frac{1}{n^2} \sum_{i} (\beta^2 \sigma_m^2 + \sigma_i^2) + \frac{1}{n^2} \sum_{i,j,i \neq j} \beta^2 \sigma_m^2 = \beta^2 \sigma_m^2 + \sum_{i} \frac{1}{n^2} \sigma_i^2$$

$$\therefore f(\beta, \sigma_m^2) = \beta^2 \sigma_m^2 \qquad g(\sigma_1^2, \dots, \sigma_n^2) = \frac{1}{n^2} \sum_{i} \sigma_i^2$$

3.2 (b)

```
In [2]: beta=0.5
        sigmaM=0.2
        sigmaI=0.03
        def f(n):
            return beta**2*sigmaM**2
        def g(n):
            return sigmaI**2/n
        def fraction(n):
            return f(n)/(f(n)+g(n))
        x = \prod
        y=[]
        for i in range(2,31):
            x.append(i)
            y.append(fraction(i))
        import matplotlib.pyplot as plt
        plt.plot(x,y)
        plt.title("fractin of variance explained by the market")
        plt.xlabel('n')
        plt.show()
```

fractin of variance explained by the market

3.3 (c)

In this case,

$$E[h'r] = \frac{1}{n} \sum_{i} \beta E[r_M] + E[\epsilon_i]$$

```
In [3]: Eepsilon=1.5*sigmaI
        ErM=0.07
        def E(n):
            return beta*ErM+Eepsilon
        def V(n):
            return f(n)+g(n)
        def Sharpe(n):
            return (E(n)-0.01)/np.sqrt(V(n))
        \mathbf{x} = []
        y=[]
        for i in range(2,31):
            x.append(i)
            y.append(Sharpe(i))
        plt.plot(x,y)
        plt.title("Sharpe Ratio")
        plt.xlabel('n')
        plt.show()
```


If we change Sharpe of ϵ_i from 1.5 to 2.0

3.4 (d)

Suppose Sharpe of ϵ_i is 1.5

$$E[h'r] = E[\epsilon_i] = 1.5\sigma_i$$

$$V[h'r] = \sigma_i^2$$

$$\therefore Sharpe = \frac{1.5\sigma_i - 0.01}{\sigma_i} = 1.4$$

Compare to above scenario, this is much better.