Innovative Daylighting Systems

MSc Architecture, Energy & Sustainability
Module ADP033
Daylighting & Energy Efficient Artificial Lighting

Dr Axel Jacobs 2012/13

Structure

- Light shelves
- Louvres and blinds
- Light transport
- General thoughts

A Quick Reminder

- Modern glass coatings can ensure low solar heat gains (g-value) and a high visible transmittance (τ)
- A high g-value might be desirable for passive solar buildings so that the sun's energy can be harvested in winter.
 Beware of low-angle solar glare.

John Soane's Museum

Sir John Soane's Museum, London

Light Shelves

- Used to even out levels of daylight in a room
- Illuminance near the window is reduced, but illuminance at the back of the room is increased
- Like all daylighting systems, they need to be optimised for the predominant sky condition:
 - Overcast: outside, sloped, reflective
 - Sunny: inside or outside (doubles as shading), horizontal, diffuse (to avoid glare)
- Light shelves are often seen as the solution to any daylighting problem. They never are...

Light Shelves

- The ceiling becomes an important part of the system
- LS are only viable with sufficient ceiling height. This is not usually given in the UK.

Light Shelves

For overcast skies

For clear skies

http://www.new-learn.info/learn/packages/clear/visual/buildings/elements/exterior/lightshelf.html

Louvres and Blinds

- May obstruct, absorb, reflect and/or transmit solar radiation (diffuse and direct) to a building's interior
- Position: exterior, interior or mid-pane
- Slats can be flat or curved
- Effect such as view out, glare, redirection of sunlight are highly dependent on slat angle

Dual-slat angle reflective blinds

Dual-slat angle reflective blinds

- Separate treatment for upper and lower part of the window
- Lower part view: like normal Venetian blinds, can be raised/lowered and tilted to prevent glare
- Upper part daylight: Lamellae are curved upward and highly reflective. When lower part is closed under sunny conditions, the upper part remains open and reflects sunlight onto the ceiling.
- Avoids the sun-out blinds-down lights-on effect.

Light Re-directing Louvres

Light Re-directing Louvres

High angle sun and the associated heat is reflected

back out — 'retro-reflection'

- Upper window: Light is reflected into the room – 'intro-reflection'
- Lower window: Light is reflected upwards onto the ceiling
- High diffuse transmittance and view out are maintained

Light Re-directing Louvres

Prismatic Louvres

- Work like a cat-eye (corner reflector) through total inner reflection
- Unlike cat-eyes, they only reflect in the normal direction, other (diffuse) light is transmitted
- PLs work best with elevation-tracking of the sun

Prismatic Louvres

- Fine laser cuts in a thin acrylic sheet
- Designed to replace glass in clerestory windows and atria to improve the distribution and penetration of daylight in rooms
- Incoming ray is split into two components: one continues to travel in the same direction, the other is deflected

Serraglaze

- Two very thin sheets of acrylic incorporating micro-replicated prisms, bonded together to create microscopic air pockets
- Those lamellae act as light shelves set perpendicular to the faces of the sheet.
- When applied to a window, prevents high incidence sky light from passing directly down to the floor, thus reducing glare and acting as a sunshade
- Similar to LCP

Translucent Shading – Fabric

- Umbrella-like frames with translucent fabric
- Shading follows the sun, opens and closes to provide optimum protection, but only as long as needed
- The fabric, when hit by direct sunlight might itself turn into a source of glare
- Internal blinds still needed for glare protection

Translucent Shading – Ceramic

Lee and Selkowitz: The New York Times Headquarters daylighting mockup: Monitored performance of the daylighting control system, E&B 38 (2006)

Micro Louvres

- Allow diffuse DL to pass, but reflect direct sunlight back
- Need to be in sealed units for protection
- Careful alignment is necessary

- Affordable systems for top-floor daylighting
- Aluminium tube with highly reflective inner coating
- Come in different diametres
- Can accommodate bends, but loss of transmittance
- Increasingly used, e.g. in supermarkets
- The don't 'funnel' light into the building—they are simply openings with low reflection losses.

Olympic hand ball arena: 88 large-diamer light pipes

Berlin, Potzdamer Platz Station

Hollow Light Guides

- Like fibre optics, they are based on total inner reflection
- Unlike FO, they are hollow
- Part of the light is not reflected and leaks out, giving a glow appearance

Hollow Light Guides

Arthelio project

Hollow Light Guides

Fibre Optics

- FO can transport light through flexible cables
- Material may be plastic, glass or liquid
- Beware of scorching of the common end, and of hot spots caused by microscopic cracks (fire risk!)

Heliostat

UFO – Heliostat

UFO – Panel

Heliostat

Bartenbach Lichtlabor, Innsbruck, Austria

SynthLight: Courtyard with heliostats in Karl-Scharnagl-Ring in Munich Concept and design by Bartenbach LichtLabor, Austria

Secondary mirror

Primary mirror, suntracker

Tertiary mirror feeds sunlight into a prismatic light guide. Sunlight can be topped up with fluorescent light (the boxes below the round light guide).

About the only DL system that works well with diffuse daylight

Scartezzini: Innovation and Daylight in Buildings

Questions to Ask

- Have I really done what is possible to optimise 'normal' daylighting through windows, rooflights?
- Is it useful to apply an ADLS in my case?
- What kind of problems can I resolve with an ADLS?
- What benefits could I achieve with an ADLS?
- Which system should I choose?

Key Parameters

- Site daylighting conditions: latitude, cloudiness, obstructions
- Daylighting objectives
- Daylighting strategies implied in the architectural design
- Window scheme and function
- Energy and peak power reduction objectives
- Operational constraints: fixed/operable, maintenance
- Integration constraints: architecture and construction
- Economic constraints

	Solar Contrtol	Daylighting	Glare Control	Maintenance	Availability	Lifetime	Retrofit	View to Exterior
Internal Blinds	0	0	0	0		0		
Window Film	0		0					
Fixed Louvre Sunshades			•	\bigcirc		0	0	0
Motorised Blinds (Internal)	0			0		0		
Motorised Sunshades						•	0	
Lightshelves					0	0		
Holographic Optical Elements	0		0	0		•	0	
Electrochromic Glazing					•	•		
Vacuum Glazing	•			\bigcirc	0	•		
Reflective Prismatic Elements			0		0	0	0	
Retro-Lamellae				0	0		0	
Spectrally Selective Glazing			•					
Low-e Glazing	0		•	0		0		
Sun-Directing Glass	•		•		0			

Help

http://d-lite.mit.edu/dlite_matrix.php

Objectives

- redirecting daylight to under-lit zones
- improving daylighting for task illumination
- improving visual comfort, glare control
- achieving solar shading, thermal control.

Resources

- Siteco Daylighting Systems
- Comfortable Low Energy Architecture, CLEAR
- Daylight in Buildings
- D-Lite database