

Хамгийн урт аялал

IOI 2023-ын зохион байгуулагч нарт том асуудал тулгарчээ! Тэд удахгүй болох Опустазер руу хийх аялалаа төлөвлөхөө мартжээ. Гэхдээ одоохондоо оройтоогүй байж магадгүй ...

Опустазерт 0-ээс N-1 хүртлэх тоонуудаар дугаарлагдсан N тооны дурсгалт газар байдаг. Эдгээр дурсгалт газруудын зарим хос нь хоорондоо хоёр чиглэлтэй **замуудаар** холбогдсон байдаг. Дурсгалт газар бүр дээд тал нь нэг замаар холбогдсон байна. Зохион байгуулагч нар аль дурсгалт газрууд замаар холбогдсоныг мэдэхгүй.

Хэрэв Опустазерын 3 ялгаатай дурсгалт газар бүр хоорондоо дор хаяж δ тооны замтай бол замын сүлжээ нь **дор хаяж** δ **нягттай** байна гэж хэлнэ. Өөрөөр хэлбэл $0 \le u < v < w < N$ байх (u,v,w) дурсгалт газрын гурвал бүрийн хувьд (u,v),(v,w) ба (u,w) гэсэн дурсгалт газрын хосуудаас дор хаяж δ нь замаар холбогдсон байх юм.

Зохион байгуулагч нар замын сүлжээний нягт нь дор хаяж D байх тийм D эерэг бүхэл тоог мэддэг. D нь 3-аас их байж болохгүйг анхаараарай.

Зохион байгуулагч нар Опустазер дахь утасны оператор руу **дуудлага** хийж тодорхой дурсгалт газруудыг хоорондоо замаар холбогдсон эсэх талаар мэдээллийг цуглуулж чадна. Дуудлага бүрт $[A[0],\ldots,A[P-1]]$ ба $[B[0],\ldots,B[R-1]]$ гэсэн дурсгалт газруудын хоёр хоосон биш массивыг зааж өгөх ёстой. Дурсгалт газрууд хос хосоороо ялгаатай байх ёстой буюу дараах нөхцөлийг хангаж байна,

- ullet $0 \le i < j < P$ байх i ба j бүрийн хувьд A[i]
 eq A[j];
- ullet $0 \leq i < j < R$ байх i ба j бүрийн хувьд B[i]
 eq B[j];
- ullet $0 \leq i < P$ ба $0 \leq j < R$ байх i ба j бүрийн хувьд A[i]
 eq B[j].

Дуудлага бүрийн хувьд оператор A дурсгалт газраас B-г холбосон зам байгаа эсэх талаар хариулна. Тодруулбал, оператор $0 \le i < P$ ба $0 \le j < R$ байх бүх i ба j хосууд дээр давтана. Хэрэв тэдгээрийн аль нэгнийх нь хувьд A[i] ба B[j] газрууд замаар холбосон бол оператор true утга буцаана. Бусад тохиолдолд оператор false утга буцаана.

l урттай **аялал** гэж i-гийн 0-ээс l-2 хүртлэх утга бүрийн хувьд t[i] ба t[i+1] дурсгалт газрууд замаар холбогдсон байх $t[0], t[1], \ldots, t[l-1]$ гэсэн *ялгаатай* дурсгалт газруудын дарааллыг хэлнэ. Хэрэв дор хаяж l+1 урттай аялал оршин байдаггүй бол l урттай аяллыг **хамгийн урт аялал** гэж нэрлэнэ.

Таны даалгавар бол оператор руу дуудлагууд хийх замаар зохион байгуулагч нарт хамгийн урт аяллыг олоход нь туслах явдал юм.

Хэрэгжүүлэлтийн мэдээлэл

Та доорх процедурыг хэрэгжүүлнэ:

```
int[] longest_trip(int N, int D)
```

- N: Опустазер дахь дурсгалт газрын тоо.
- D: замын сүлжээний баталгаат минимум нягт.
- Энэ процедур нь хамгийн урт аяллыг илэрхийлэх $t = [t[0], t[1], \dots, t[l-1]]$ массивыг буцаана.
- Энэ процедурыг тест бүр дээр олон удаа дуудаж болно.

Дээрх процедур нь доорх процедурыг дуудаж болно:

```
bool are_connected(int[] A, int[] B)
```

- A: ялгаатай дурсгалт газруудын хоосон биш массив.
- B: ялгаатай дурсгалт газруудын хоосон биш массив.
- A ба B нь огтлолцолгүй байна.
- Энэ процедур нь A-гийн аль нэг дурсгалт газар B-гийн аль нэг дурсгалт газартай замаар холбогдсон бол true утгыг буцаана. Эсрэг тохиолдолд false утгыг буцаана.
- Уг процедурыг longest_trip-ын дуудалт бүрийн хувьд дээд тал нь $32\,640$ удаа, нийтдээ дээд тал нь $150\,000$ удаа дуудаж болно.
- Уг процедурын бүх дуудалтуудын хувьд энэ процедурт дамжуулсан A ба B массивуудын нийт урт нь $1\,500\,000$ утгаас хэтэрч болохгүй.

Шалгагч нь **дасан зохицдоггүй** байна. N ба D утгууд болон замаар холбогдсон дурсгалт газрын хосуудын тоо нь longest_trip-ийн дуудалт хийгдэхээс өмнө бэхлэгдсэн байна.

Жишээ

Жишээ 1

 $N=5,\,D=1$ байх бөгөөд замуудын холболт нь доорх зурагт үзүүлснээр байх тохиолдлыг авч үзье:

longest_trip процедурыг доорх байдлаар дуудна:

Уг процедур нь are_connected-ыг доорх байдлаар дуудаж болно.

Дуудалт	Замаар холбогдсон хосууд	Буцаах утга
are_connected([0], [1, 2, 4, 3])	(0,1) ба $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	байхгүй	false

Дөрөв дэх дуудалтын дараа (1,4), (0,4), (1,3) ба (0,3) хосуудын аль нь ч замаар холбогдоогүй гэдэг нь тодорхой болно. Сүлжээний нягт нь дор хаяж D=1 байна гэдгээс (0,3,4) гурвалаас (3,4) хос нь замаар холбогдох ёстой гэж гарна. Үүнтэй адилаар 0 ба 1 дурсгалт газрууд холбоотой байх ёстой байна.

Энэ үед t=[1,0,2,3,4] нь 5 урттай аялал бөгөөд 5-аас илүү урттай аялал байхгүй гэж дүгнэж болно. Иймд $longest_trip$ нь [1,0,2,3,4] утгыг буцааж болно.

 $N=4,\; D=1$ байх бөгөөд замуудын холболт нь доорх зурагт үзүүлснээр байх өөр нэг тохиолдлыг авч үзье:

longest_trip процедурыг доорх байдлаар дуудна:

longest_trip(4, 1)

Энэ тохиолдолд хамгийн урт аяллын урт нь 2 байна. Иймд are_connected-ыг хэдэн удаа дуудсаны дараа longest_trip процедур нь [0,1], [1,0], [2,3] эсвэл [3,2] утгуудын аль нэгийг буцааж болно.

Жишээ 2

Дэд бодлого 0 нь N=256 дурсгалт газар бүхий нэмэлт жишээ тестийг агуулна. Энэ тест нь тэмцээний систем доторх таны татаж авч болох хавсралтын багцад агуулагдаж байгаа.

Хязгаарлалт

- $3 \le N \le 256$
- longest_trip-ийн бүх дуудалтуудын N-үүдийн нийлбэр нь $1\,024$ гэсэн утгаас хэтрэхгүй.
- $1 \le D \le 3$

Дэд бодлого

- 1. (5 оноо) D=3
- 2. (10 оноо) D=2
- 3. (25 оноо) D=1. l^{\star} нь хамгийн урт аяллын урт байг. longest_trip процедур нь l^{\star} урттай аяллыг буцаах албагүй. Харин уг процедур дор хаяж $\left\lceil \frac{l^{\star}}{2} \right\rceil$ урттай аяллыг буцаана.
- 4. (60 оноо) D=1

Дэд бодлого 4 дээр таны оноог longest_trip-ын нэг дуудалт дээр are_connected процедурыг хэдэн удаа дуудсан дээр үндэслэн тодорхойлно. q нь уг дэд бодлогын тест бүр дээрх longest_trip-ийн бүх дуудалтуудын хувьд хамгийн олон удаа дуудсан тоо байг. Уг дэд бодлого дээрх таны оноог доорх хүснэгтийн дагуу тооцоолно:

Нехцел	Оноо
$2750 < q \le 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Хэрэв аль нэг тест дээр are_connected-ын дуудалтууд нь Хэрэгжүүлэлтийн мэдээлэл дээр бичсэн хязгаарлалтуудыг хангахгүй бол эсвэл $longest_trip$ -ийн буцаасан массив нь буруу бол таны бодолтын тухайн дэд бодлого дээрх оноо нь 0 болно.

Жишээ шалгагч

C-гээр тохиолдлын тоо буюу longest_trip-ийн дуудалтын тоог тэмдэглэе. Жишээ шалгагч нь оролтыг доорх хэлбэрээр уншина:

• мөр 1: *C*

 ${\it C}$ тооны тохиолдлын тайлбар нь доорх байдалтай байна.

Жишээ шалгагч нь тохиолдол бүрийн тодорхойлолтыг доорх хэлбэрээр уншина:

- мөр 1:N D
- мөр 1+i ($1 \leq i < N$): $U_i[0]$ $U_i[1]$ \dots $U_i[i-1]$

Энд U_i ($1 \leq i < N$) бүр нь i хэмжээтэй массив ба аль дурсгалт газрууд замаар холбогдсоныг илэрхийлнэ. $1 \leq i < N$ ба $0 \leq j < i$ байх i болон j бүрийн хувьд:

- хэрэв j ба i дурсгалт газрууд замаар холбогдсон бол $U_i[j]$ -гийн утга нь 1 байна;
- хэрэв j ба i дурсгалт газруудыг холбосон зам байхгүй бол $U_i[j]$ -гийн утга нь 0 байна.

Тохиолдол бүрийн хувьд longest_trip-ыг дуудахын өмнө жишээ шалгагч нь замын сүлжээний нягт нь дор хаяж D байгаа эсэхийг шалгана. Хэрэв энэ нөхцөл хангагдаагүй байвал Insufficient Density мэдэгдлийг хэвлээд гарна.

Хэрэв жишээ шалгагч нь протоколын зөрчил илрүүлбэл жишээ шалгагчийн гаралт нь Protocol Violation: <MSG> хэлбэртэй байх ба энд <MSG> нь доорх алдааны мэдэгдлүүдийн нэг байна:

- ullet invalid array: are_connected-ын дуудалтын үед A ба B массивуудын дор хаяж нэг нь
 - о хоосон, эсвэл
 - $\circ 0$ -ээс N-1 хүртлэх бүхэл тоо биш байх элемент агуулсан, эсвэл
 - нэг элементийг дор хаяж хоёр удаа агуулсан.
- ullet non-disjoint arrays: are_connected-ын дуудалтын үед A ба B массивууд нь огтлолцоогүй биш байх.
- too many calls: are_connected-ын дуудалтын тоо нь longest trip-ын нэг дуудалтын хувьд $32\,640$ утгаас хэтэрсэн эсвэл нийтдээ $150\,000$ утгаас хэтэрсэн.
- too many elements: are_connected-ын бүх дуудалтын хувьд түүн рүү дамжуулсан дурсгалт газруудын нийт тоо нь $1\,500\,000$ утгаас хэтэрсэн.

Эсрэг тохиолдолд longest_trip-ын ямар нэг тохиолдлын хувьд буцаасан массивыг $t[0], t[1], \ldots, t[l-1]$ гэж тэмдэглэе (l нь сөрөг бус бүхэл тоо). Жишээ шалгагч нь энэ тохиолдлын хувьд доорх хэлбэрээр гурван мөрийг хэвлэнэ:

- мөр 1: *l*
- мөр 2: t[0] t[1] ... t[l-1]

• мөр 3: энэ тохиолдол дахь are_connected-ын дуудалтын тоо

Эцэст нь жишээ шалгагч доорхийг хэвлэнэ:

• мөр $1+3\cdot C$: longest_trip-ийн дуудалтууд дотроос are_connected-ыг дуудсан хамгийн их тоо