EE 287 CIRCUIT THEORY

GIDEON ADOM-BAMFI

What to expect?

Introduction to Two Port Networks

 A pair of terminals through which a current may enter or leave a network is known as a **PORT**.

- Two terminal devices or elements such as resistors, capacitors and inductors result in one-port networks.
- Most of the circuits we have dealt with so far are two-terminal or one-port circuits and can be modelled using Thevenin or Norton equivalent circuits.

Introduction to Two Port Networks II

- The majority of devices (op amps, transistors, transformers) and electric systems have two pairs of terminals.
- These devices are known as two-port networks.
- The standard configuration of a two-port network is as shown below:

Why Two Port Networks?

- A two-port network is an electrical network with two separate ports for input and output.
- Thus a two-port network has two terminal pairs acting as access points.

Our study of two-port networks is for at least two reasons:

- 1. Such networks are useful in communications, control systems, power systems and electronics.
- 2. Knowing the two-port parameters of a network or system enables us to treat it as 'black box' when embedded within a larger network.

Two Port Parameters

To characterize a two-port network requires that we relate the four port variables V_1, V_2, I_1 , and I_2 .

- Depending on which two of the four port variables are given, there exists different ways to describe the relationship between these variables.
- The relationship between voltages and currents are described in terms of quantities known as parameters.

Two Port Parameters

Our goal in this lecture is to learn how to find the characteristic parameters of a two-port network:

- Impedance Parameters
- Admittance Parameters
- Hybrid Parameters
- Transmission Parameters

A two-port network may be voltage-driven or current driven

- The impedance parameters are obtained by expressing the terminal voltages in terms of the terminal currents.
- Given currents I_1 and I_2 , voltages V_1 and V_2 are derived as:

$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

or in matrix form as:

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

where

The z terms are called the **impedance parameters** or simply **z parameters**, and have units of ohms.

The values of the parameters can be evaluated by setting

 $I_1 = 0$ (input port open-circuited)

 $I_2 = 0$ (output port open-circuited)

$$z_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0} \qquad z_{12} = \frac{V_1}{I_2} \Big|_{I_1 = 0}$$

$$Z_{21} = \frac{V_2}{I_1} \Big|_{I_2 = 0} \qquad z_{22} = \frac{V_2}{I_2} \Big|_{I_1 = 0}$$

Since the z-parameters are obtained by open-circuiting the input or output port They are also called the **open-circuit impedance parameters.**

We obtain z_{11} and z_{21} by connecting a voltage V_1 (or current source I_1) to port 1 with port 2 open circuited and finding I_1 and V_2

We then get

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \qquad \qquad \mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_2}$$

Similarly, we obtain z_{12} and z_{22} by connecting a voltage V_2 (or a current source I_2) to port 2 with port 1 open-circuited and finding I_2 and V_1

We then get

$$\mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} \qquad \qquad \mathbf{z}_{22} = \frac{\mathbf{V}_1}{\mathbf{I}_2}$$

T-Equivalent Circuit

- Once we know what the impedance parameters are, we can model the two-port network with an equivalent circuit.
- A reciprocal network $(z_{12} = z_{21})$ can be replaced by the T-equivalent circuit below:

T-Equivalent Circuit

• If the network is not reciprocal, a more general equivalent network is used:

Question 1

Determine the z parameters for the circuit below:

To determine z_{11} and z_{21} , we apply a voltage source V_1 to the input port and leave the output open as shown below:

KVL for the first mesh yields: $-V_1 + 20I_1 + 40I_1 = 0$

Then

$$z_{11} = \frac{V_1}{I_1} = \frac{(20 + 40)I_1}{I_1} = 60 \Omega$$

That is z_{11} is the input impedance at port 1

The transfer impedance z_{21} is:

$$z_{21} = \frac{V_2}{I_1} = \frac{40I_1}{I_1} = 40 \Omega$$

To find z_{12} and z_{22} , we apply voltage source V_2 to the output port and leave the input port open as shown below:

That is z_{11} is the input impedance at port 1

The transfer impedance z_{21} is:

$$z_{21} = \frac{V_2}{I_1} = \frac{40I_1}{I_1} = 40 \Omega$$

To find z_{12} and z_{22} , we apply voltage source V_2 to the output port and leave the input port open as shown below:

Then

$$z_{12} = \frac{V_1}{I_2} = \frac{40I_2}{I_2} = 40 \Omega$$

and

$$z_{22} = \frac{V_2}{I_2} = \frac{(30 + 40)I_2}{I_2} = 70 \Omega$$

Thus

$$[z] = \begin{bmatrix} 60\Omega & 40\Omega \\ 40\Omega & 70\Omega \end{bmatrix}$$

Question 2

Find I₁ and I₂ in the circuit below

We substitute the given z parameters in the matrix shown below:

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = [\mathbf{z}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

and get

$$V_1 = 40I_1 + j20I_2$$

 $V_2 = j30I_1 + 50I_2$

Since we are looking for I_1 and I_2 , we substitute

$$V_1 = 100 \angle 0^\circ$$
, $V_2 = 10I_2$

Into the above the equations above and get the equations on the next slide.

The equation becomes

$$100 = 40I_1 + j20I_2 \tag{1}$$

and

$$-10I_2 = j30I_1 + 50I_2 \Rightarrow I_1 = j2I_2$$
 (2)

Substituting (2) into (1)

$$100 = j80I_2 + j20I_2$$
 \Rightarrow $I_2 = \frac{100}{j100} = -j$

From (2)

$$I_1 = j2(-j) = 2$$

Thus

$$I_1 = 2A \angle 0^{\circ}, \ I_2 = 1A \angle -90^{\circ}$$

- Admittance parameters are obtained by expressing the terminal currents in terms of the terminal voltages.
- That is given voltages V_1 and V_2 , currents I_1 and I_2 are derived:

$$I_1 = y_{11}V_1 + y_{12}V_2$$

$$I_2 = y_{21}V_1 + y_{22}V_2$$

or in matrix form

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = [y] \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

- The y terms are known as the **admittance parameters** or y parameters and have units of 'siemens'.
- The values of the parameters can be obtained by setting $V_1 = 0$ (input port short-circuited) or $V_2 = 0$ (output port short-circuited)

Thus

$$y_{11} = \frac{I_1}{V_1} | V_2 = 0$$
 $y_{12} = \frac{I_1}{V_2} | V_1 = 0$

$$y_{21} = \frac{I_2}{V_1} | V_2 = 0$$
 $y_{22} = \frac{I_2}{V_2} | V_1 = 0$

Since the y parameters are obtained by short-circuiting the input or out put port They are also called **short-circuiting admittance parameters.**

We obtain y_{11} and y_{21} by connecting a current I_1 to port 1 and short-circuiting port 2

Find V₁ and I₂ and then calculate

$$y_{11} = \frac{I_1}{V_1}, \qquad y_{21} = \frac{I_2}{V_1}$$

Similarly, we obtain y_{12} and y_{22} by connecting a current source I_2 to port 2 and short-circuiting port 1.

Find I₁ and V₂ and then calculate:

$$y_{12} = \frac{I_1}{V_2}, \qquad y_{22} = \frac{I_2}{V_2}$$

π-Equivalent Circuit

- For a two-port network that is linear and has no dependent sources
- The transfer admittances are equal $(y_{12} = y_{21})$
- A reciprocal network $(y_{12} = y_{21})$ can be modelled by the π -equivalent circuit as shown below:

π-Equivalent Circuit

• If the network is not reciprocal, a more general equivalent network is shown below:

Question 1

Obtain the y parameters for the π network shown below:

To find y_{11} and y_{21}

Short-circuit the output port and connect a current source I₁ to the input port as shown below:

Since the 8- Ω resistor is short-circuited, the 2- Ω resistor is in parallel with the 4- Ω Hence

$$V_1 = I_1(4//2) = \frac{4}{3}I_1$$
 $y_{11} = \frac{I_1}{V_1} = \frac{I_1}{\frac{4}{3}I_1} = 0.75S$

By current division

$$-I_2 = \frac{4}{4+2}I_1 = \frac{2}{3}I_1 \quad y_{21} = \frac{I_2}{V_1} = \frac{-\frac{2}{3}I_1}{\frac{4}{3}I_1} = -0.5S$$

To get y_{12} and y_{22}

Short-circuit the input port and connect a current source I₂ to the output port as shown below:

The 4- Ω resistor is short-circuited so the 2- Ω and the 8- Ω resistors are in parallel

$$V_2 = I_2(8//2) = \frac{8}{5}I_2$$
 $y_{22} = \frac{I_2}{V_2} = \frac{I_2}{\frac{8}{5}I_2} = \frac{5}{8} = 0.625S$

By current division

$$-I_1 = \frac{8}{8+4}I_2 = \frac{4}{5}I_2 \qquad \qquad y_{12} = \frac{I_1}{V_2} = \frac{-\frac{4}{5}I_2}{\frac{8}{5}I_2} = -0.5S$$

3 Hybrid Parameters

Hybrid Parameters

- This set of parameters is based on making V_1 and I_2 the dependent variable
- That is given V₂ and I₁, V₁ and I₂ are derived

Thus we obtain

$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$

Or in matrix form

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = [\mathbf{h}] \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

Hybrid Parameters

- The h terms are known as the hybrid parameters or simply the h parameters.
- The h parameters are very useful for describing electronic devices such as transistors.
- It is much easier to measure experimentally the h parameters of such devices than to measure the z or y parameters
- The values of the parameters are determined as:

$$h_{11} = \frac{V_1}{I_1} | V_2 = 0$$
 $h_{12} = \frac{V_1}{V_2} | I_1 = 0$

$$h_{21} = \frac{I_2}{I_1} | V_2 = 0$$
 $h_{22} = \frac{I_2}{V_2} | I_1 = 0$

Procedure for calculating the h parameters

- We apply a voltage or current source to the appropriate port.
- Short-circuit or open-circuit the other port, depending on the parameter of interest, and perform regular circuit analysis
- For reciprocal networks

$$h_{12} = -h_{21}$$

The figure below shows the hybrid model of a two-port network

Question 1

Find the hybrid parameters for the two-port network shown below

To find h_{11} and h_{21}

We short circuit the output port and connect a current source I₁ to the input port as shown below:

From the figure above

$$V_1 = I_1(2+3//6) = 4I_1$$

Hence

$$h_{11} = \frac{V_1}{I_1} = 4\Omega$$

By current division

$$-I_2 = \frac{6}{6+3}I_1 = \frac{2}{3}I_1$$

Hence

$$h_{21} = \frac{I_2}{I_1} = -\frac{2}{3}$$

To obtain h_{12} and h_{22} , we open-circuit the input port and connect a voltage source V_2 to the output port as shown in the figure below

By voltage division

$$V_1 = \frac{6}{6+3} V_2 = \frac{2}{3} V_2$$

Hence

$$h_{12} = \frac{V_1}{V_2} = \frac{2}{3}$$

$$V_2 = (3+6)I_2 = 9I_2$$

Thus

$$h_{22} = \frac{I_2}{V_2} = \frac{1}{9} S$$

- Another set of parameters relates the variables at the input port to those at the output port.
- The direction of the output current is reversed

Thus

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

Or in matrix form

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix} = [T] \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

These equations relate the input variables (V_1 and I_1) to the output variables (V_2 and $-I_2$)

Notice that in computing the transmission parameters, - I₂ is used rather than I₂, because the current is considered to be leaving the network as shown in the circuit below:

- This is done merely for conventional reasons
- When you cascade two-ports (output to input) it is most logical to think of I₂ as leaving the two-port

- It is also customary in the power industry to consider I_2 as leaving the two-port.
- The two-port parameters provide a measure of how a circuit transmits voltage and current from a source to a load.

- They are useful in the analysis of transmission lines.
- Also known as ABCD parameters and are used in the design of telephone, microwave networks and radars.

The transmission parameters are determined as:

$$A = \frac{V_1}{V_2} |_{I_2 = 0}$$
 $B = -\frac{V_1}{I_2} |_{V_2 = 0}$

$$C = \frac{I_1}{V_2} \Big|_{I_2 = 0}$$
 $D = -\frac{I_1}{I_2} \Big|_{V_2 = 0}$

Specifically,

A = Open-circuit voltage ratio

B = Negative short-circuit transfer impedance

C = Open-circuit transfer admittance

D = Negative short-circuit current ratio

Example 1

Find the transmission parameters for the two-port network in the figure shown below

To determine A and C

We leave the output port open as shown below so that ${\rm I_2}=0$ and place a voltage source ${\rm V_1}$ at the input port

we have

$$V_1 = (10 + 20)I_1 = 30I_1$$
 and $V_2 = 20I_1 - 3I_1 = 17I_1$

Thus

$$A = \frac{V_1}{V_2} = \frac{30I_1}{17I_1} = 1.765$$

$$C = \frac{I_1}{V_2} = \frac{I_1}{17I_1} = 0.0588S$$

To obtain B and D

We short-circuit the output port so that $V_2=0$ and place a voltage source V_1 at the input

port. See figure below

KCL at node a gives

$$\frac{V_1 - Va}{10} - \frac{V_a}{20} + I_2 = 0$$

But

$$V_a = 3I_1$$

$$V_a = 3I_1$$
 and $I_1 = \frac{V_1 - V_2}{10}$

Combining these equations

$$V_a = 3I_1$$

$$V_a = 3I_1 \qquad V_1 = 13I_1$$

Substituting them in the KCL equation yields

$$I_1 - \frac{3I_1}{20} + I_2 = 0 \implies \frac{17}{20}I_1 = -I_2$$

Therefore

$$D = -\frac{I_1}{I_2} = \frac{20}{17} = 1.176$$

and

$$B = -\frac{V_1}{I_2} = \frac{-13I_1}{\left(-\frac{17}{20}\right)I_1} = 15.29\Omega$$

5 Interconnection of Networks

Interconnection of networks

- A large complex network may be divided into subnetworks for the purpose of analysis and design.
- The subnetworks are modelled as two-port networks interconnected to form the original network.
- The two-port networks may therefore be regarded as building blocks that can be interconnected to form a complex network.
- The interconnection can be in series, in parallel, or in cascade although the interconnected network can be described by any of the six parameters.
- A certain set of parameters may have a definite advantage.

Interconnection of networks

For example,

- When the networks are in series, their individual z parameters add up to give the z parameters of the large network.
- When they are in parallel, their individual y parameters add up to give the y parameters of the larger network.
- When they are cascaded, their individual transmission parameters can be multiplied together to give the transmission parameters of the larger network.

Series Connection of 2 Two-Port Networks

Consider the series connection of two two-port networks as shown below

Parallel Connection of 2 Two-Port Networks

Consider the parallel connection of two two-port networks as shown below

58

Cascade Connection of 2 Two-Port Networks

Consider the cascade connection of two two-port networks as shown below

Thanks! Any questions?