Encyclopaedia of Mathematics and Physics

Robin Adams

# Contents

| 1  | Set Theory                                                                                                                                                                            | 5                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2  | Relations                                                                                                                                                                             | 7                                |
| 3  | Order Theory                                                                                                                                                                          | 9                                |
| 4  | Field Theory 4.1 Ordered Fields                                                                                                                                                       | <b>11</b><br>13                  |
| 5  | Real Analysis  5.1 Construction of the Real Numbers  5.2 Properties of the Real Numbers  5.2.1 Logarithms  5.2.2 Intervals  5.2.3 The Cantor Set  5.3 The Extended Real Number System | 15<br>21<br>27<br>28<br>28<br>28 |
| 6  | Complex Analysis 6.1 Algebraic Numbers                                                                                                                                                | <b>31</b><br>35                  |
| Ι  | Linear Algebra                                                                                                                                                                        | 37                               |
| 7  | Vector Spaces 7.1 Convex Sets                                                                                                                                                         | <b>39</b>                        |
| 8  | Real Inner Product Spaces 8.1 Balls                                                                                                                                                   | <b>41</b><br>42                  |
| 9  | Complex Inner Product Spaces 9.1 Hilbert Spaces                                                                                                                                       | <b>43</b>                        |
| 10 | Lie Algebras 10.1 Lie Algebar Homomorphisms                                                                                                                                           | <b>45</b>                        |

4 CONTENTS

| Π             | Topology                                   | 47   |
|---------------|--------------------------------------------|------|
| 11            | Metric Spaces                              | 49   |
|               | 11.1 Balls                                 | . 49 |
|               | 11.2 Limit Points                          | . 50 |
|               | 11.3 Closed Sets                           | . 50 |
|               | 11.4 Interior Points                       | . 50 |
|               | 11.5 Open Sets                             |      |
|               | 11.6 Perfect Sets                          |      |
|               | 11.7 Bounded Sets                          | . 54 |
|               | 11.8 Dense Sets                            | . 54 |
|               | 11.9 Closure                               | . 54 |
|               | 11.10Compact Sets                          | . 56 |
|               | 11.11Connected Sets                        | . 61 |
|               | 11.12Separable Spaces                      | . 63 |
|               | 11.13Bases                                 |      |
|               | 11.14Condensation Points                   | . 64 |
| <b>12</b>     | Convergence                                | 67   |
|               | 12.1 Cauchy Sequences                      | . 73 |
|               | 12.2 Complete Metric Spaces                | . 73 |
|               | 12.3 Divergent Sequences                   |      |
|               | 12.4 Infinite Series                       |      |
|               | 12.5 The Number $e$                        |      |
|               | 12.6 Power Series                          |      |
|               | 12.7 Summation by Parts                    |      |
|               | 12.8 Absolute Convergence                  |      |
|               | 12.9 Addition and Multiplication of Series |      |
|               | 12.10Rearrangements                        |      |
|               | 12.11Completion of a Metric Space          |      |
| 13            | Continuity                                 | 93   |
|               | 13.1 Limit of a Function                   | . 93 |
|               | 13.2 Continuous Functions                  |      |
|               | 13.3 Limits from the Left and the Right    |      |
|               | 13.4 Uniform Continuity                    |      |
| II            | I More Algebra                             | 101  |
| 14 Lie Groups |                                            |      |

# Set Theory

**Proposition 1.1.** Every infinite subset of a countably infinite set is countable.

```
Proof:
\langle 1 \rangle 1. Let: i: A \hookrightarrow \mathbb{N} be an infinite subset of \mathbb{N}.
\langle 1 \rangle 2. Define j : \mathbb{N} \to A by: j(k) is the element such that i(j(k)) is least such
        that i(j(k)) \notin \{i(j(0)), \dots, i(j(k-1))\}.
\langle 1 \rangle 3. j is a bijection.
Proposition 1.2. A countable union of countable sets is countable.
```

Proof:

```
\langle 1 \rangle 1. Let: (A_n) be a sequence of countable sets.
\langle 1 \rangle 2. For n \in \mathbb{N}, PICK an enumeration (e_{nm})_m of A_n.
\langle 1 \rangle 3. Let: (p_k) be the following enumeration of \mathbb{N} \times \mathbb{N}:
```

 $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),\ldots$  $\langle 1 \rangle 4$ .  $(e_{\pi_1(p_k)\pi_2(p_k)})_k$  is an enumeration of  $\bigcup_n A_n$ .

## Theorem 1.3. $2^{\mathbb{N}}$ is uncountable.

### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction  $f : \mathbb{N} \approx 2^{\mathbb{N}}$
- $\langle 1 \rangle 2$ . Let:  $S = \{ n \in \mathbb{N} : n \notin f(n) \}$
- $\langle 1 \rangle 3$ . For all n, we have  $n \in S \Leftrightarrow n \notin f(n)$
- $\langle 1 \rangle 4$ . For all n we have  $S \neq f(n)$ .
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 1$ .

# Relations

**Definition 2.1** (Antisymmetric). A relation R on a set A is antisymmetric iff, whenever xRy and yRx, then x = y.

**Definition 2.2** (Transitive). A relation R on a type A is *transitive* iff, whenever xRy and yRz, then xRz.

# Order Theory

**Definition 3.1** (Linear Order). A *linear order* on a set A is a binary relation  $\leq$  on A that is transitive, antisymmetric and:

$$\forall x, y \in A.x \le y \lor y \le x$$
.

A linearly ordered set is a pair  $(A, \leq)$  where A is a set and  $\leq$  is a binary relation on A.

We write x < y for  $x \le y$  and  $x \ne y$ .

**Definition 3.2** (Upper Bound). Let S be a linearly ordered set,  $u \in S$  and  $E \subseteq S$ . Then u is an *upper bound* in E iff  $\forall x \in E.x \leq u$ . We say E is *bounded above* iff it has an upper bound.

The *up-set* of E, denoted  $E \uparrow$ , is the set of upper bounds of E.

**Definition 3.3** (Lower Bound). Let S be a linearly ordered set,  $l \in S$  and  $E \subseteq S$ . Then u is an *lower bound* in E iff  $\forall x \in E.l \leq x$ . We say E is *bounded below* iff it has a lower bound.

The down-set of E, denoted  $E \downarrow$ , is the set of lower bounds of E.

**Definition 3.4** (Supremum). Let S be a linearly ordered set,  $u \in S$  and  $E \subseteq S$ . Then u is the *least upper bound* or *supremum* of E iff u is an upper bound for E and, for any upper bound u' for E, we have  $u \le u'$ .

**Definition 3.5** (Infimum). Let S be a linearly ordered set,  $l \in S$  and  $E \subseteq S$ . Then l is the *greatest lower bound* or *infimum* of E iff l is a lower bound for E and, for any lower bound l' for E, we have  $l' \leq l$ .

**Definition 3.6** (Least Upper Bound Property). A linearly ordered set S has the *least upper bound property* iff every nonempty subset of S that is bounded above has a least upper bound.

**Proposition 3.7.** Let S be a linearly ordered set and  $E \subseteq S$ .

1. If  $E \downarrow has$  a supremum l, then l is the infimum of E.

2. If  $E \uparrow has$  an infimum u, then U is the supremum of E.

PROOF

- $\langle 1 \rangle 1$ . If  $E \downarrow$  has a supremum l, then l is the infimum of E.
  - $\langle 2 \rangle 1$ . l is a lower bound for E.
    - $\langle 3 \rangle 1$ . Let:  $x \in E$
    - $\langle 3 \rangle 2$ . x is an upper bound for  $E \downarrow$ .

PROOF: For all  $y \in E \downarrow$  we have  $y \leq x$ .

- $\langle 3 \rangle 3. \ l \leq x$
- $\langle 2 \rangle 2$ . For any lower bound l' for E, we have  $l' \leq l$ .

PROOF: Since l is an upper bound for  $E \downarrow$ .

 $\langle 1 \rangle$ 2. If  $E \uparrow$  has an infimum u, then u is the supremum of E. PROOF: Dual.

П

**Corollary 3.7.1.** A linearly ordered set has the least upper bound property if and only if every nonempty set bounded below has an infimum.

**Definition 3.8** (Closed Downwards). Let S be a linearly ordered set and  $E \subseteq S$ . Then E is closed downwards iff, whenever  $x \in E$  and y < x, then  $y \in E$ .

**Definition 3.9** (Closed Upwards). Let S be a linearly ordered set and  $E \subseteq S$ . Then E is *closed upwards* iff, whenever  $x \in E$  and x < y, then  $y \in E$ .

**Definition 3.10** (Greatest). Let S be a linearly ordered set and  $u \in S$ . Then u is greatest in S iff  $\forall x \in S.x \leq u$ .

**Definition 3.11** (Least). Let S be a linearly ordered set and  $l \in S$ . Then l is least in S iff  $\forall x \in S.l \leq x$ .

**Proposition 3.12.** Let  $\leq$  be a linear order on a set S and  $E \subseteq S$ . Then  $\leq \cap E^2$  is a linear order on E.

Proof: Easy.  $\sqcup$ 

Given a linearly ordered set  $(S, \leq)$  and  $E \subseteq S$ , we write just E for the linearly ordered set  $(E, \leq \cap E^2)$ .

**Definition 3.13** (Lexicographic Order). Let A and B be linearly ordered sets. The *lexicographic order* or *dictionary order* on  $A \times B$  is the order defined by

$$(a,b) \le (a',b') \Leftrightarrow a = a' \lor (a < a' \land b \le b')$$
.

Proposition 3.14. The lexicographic order is a linear order.

# Field Theory

**Definition 4.1** (Field). A *field* F consists of a set F, two operations  $+, \cdot : F^2 \to F$  and an element  $0 \in F$  such that:

- $\bullet$  + is commutative.
- $\bullet$  + is associative.
- $\bullet \ \forall x \in F.x + 0 = x$
- $\forall x \in F. \exists y \in F. x + y = 0$
- $\bullet$  · is commutative.
- $\bullet$  · is associative.
- There exists  $1 \in F$  such that  $1 \neq 0$  and  $\forall x \in F.x1 = x$  and  $\forall x \in F.x \neq 0 \Rightarrow \exists y \in F.xy = 1$
- Distributive Law  $\forall x, y, z \in F.x(y+z) = xy + xz$

**Proposition 4.2.** In any field F, the element 0 is the unique element such that  $\forall x \in F.x + 0 = x$ .

PROOF: If 0 and 0' both have this property then 0 = 0 + 0' = 0'.  $\square$ 

**Proposition 4.3.** In any field F, given  $x \in F$ , there is a unique  $y \in F$  such that x + y = 0.

PROOF: If 
$$x + y = x + y' = 0$$
 then 
$$y = y + 0$$
$$= y + x + y'$$
$$= 0 + y'$$
$$= y'$$

**Definition 4.4.** Let F be a field. Let  $x \in F$ . We denote by -x the unique element of F such that x + (-x) = 0.

Given  $x, y \in F$ , we write x - y for x + (-y).

**Proposition 4.5.** In any field F, if x + y = x + z then y = z.

PROOF: If x+y=x+z we have -x+x+y=-x+x+z  $\therefore 0+y=0+z$   $\therefore y=z$ 

**Proposition 4.6.** In any field F, we have -(-x) = x.

PROOF: Since x + (-x) = 0.  $\square$ 

**Proposition 4.7.** In any field F, the element 1 such that  $\forall x \in F.x1 = x$  is unique.

PROOF: If 1 and 1' both have this property then  $1 = 1 \cdot 1' = 1'$ .  $\square$ 

**Proposition 4.8.** In any field F, given  $x \in F$  with  $x \neq 0$ , the element y such that xy = 1 is unique.

PROOF: If y and y' both have this property then we have

$$y = y1$$

$$= yxy'$$

$$= 1y'$$

$$= y'$$

**Definition 4.9.** In any field F, if  $x \neq 0$ , we write  $x^{-1}$  for the unique element such that  $xx^{-1} = 1$ .

We write x/y for  $xy^{-1}$ .

**Proposition 4.10.** In any field F, if xy = xz and  $x \neq 0$  then y = z.

Proof:

$$y = 1y$$

$$= x^{-1}xy$$

$$= x^{-1}xz$$

$$= 1z$$

$$= z$$

**Proposition 4.11.** In any field F, if  $x \neq 0$  then  $x^{-1} \neq 0$  and  $(x^{-1})^{-1} = x$ .

PROOF: Since  $xx^{-1} = 1$ .  $\square$ 

**Proposition 4.12.** In any field F, we have x0 = 0.

13

Proof:

$$x0 + 0 = x0$$

$$= x(0 + 0)$$

$$= x0 + x0$$

$$\therefore 0 = x0$$

**Proposition 4.13.** In any field F, if xy = 0 then x = 0 or y = 0.

PROOF: If xy = 0 and  $x \neq 0$  then we have  $y = x^{-1}xy = x^{-1}0 = 0$ .  $\square$ 

**Proposition 4.14.** In any field F, we have (-x)y = -(xy).

Proof:

$$xy + (-x)y = (x + (-x))y$$

$$= 0y$$

$$= 0 (Proposition 4.12) \square$$

Corollary 4.14.1. In any field F, we have (-x)(-y) = xy.

Proof:

$$(-x)(-y) = -(x(-y))$$

$$= -(-(xy))$$

$$= xy (Proposition 4.6) \Box$$

**Proposition 4.15.** Let K be a field. Let  $a, b \in K$ . If  $a^2 = b^2$  then a = b or a = -b.

Proof:

$$a^2 - b^2 = 0$$
$$\therefore (a - b)(a + b) = 0$$

Hence either a - b = 0 or a + b = 0, and the conclusion follows.  $\square$ 

## 4.1 Ordered Fields

**Definition 4.16** (Ordered Field). An ordered field F consists of a field F and a linear order  $\leq$  on F such that:

- For all  $x, y, z \in F$ , if y < z then x + y < x + z
- For all  $x, y \in F$ , if x > 0 and y > 0 then xy > 0.

We call x positive iff x > 0 and negative iff x < 0.

**Example 4.17.**  $\mathbb{Q}$  is an ordered field.

**Proposition 4.18.** In any ordered field, if x is positive then -x is negative.

PROOF: If 
$$x > 0$$
 then  $0 = x + (-x) > 0 = (-x) = -x$ .  $\Box$ 

**Proposition 4.19.** In any ordered field, if y < z and x is positive then xy < xz.

PROOF: If y < z then we have

$$0 < z - y$$

$$0 < x(z - y)$$

$$= xz - xy$$

$$xy < xz$$

**Proposition 4.20.** In any ordered field, if y < z and x is negative then xy > xz.

Proof:

- $\langle 1 \rangle 1$ . -x is positive.
- $\langle 1 \rangle 2$ . (-x)y < (-x)z
- $\langle 1 \rangle 3. -(xy) < -(xz)$
- $\langle 1 \rangle 4$ . xz < xy

**Proposition 4.21.** In any ordered field, if  $x \neq 0$  then  $x^2 > 0$ .

 $\langle 1 \rangle 1$ . If x > 0 then  $x^2 > 0$ .

PROOF: Proposition 4.19.

 $\langle 1 \rangle 2$ . If x < 0 then  $x^2 > 0$ .

Proof: Proposition 4.20.

Corollary 4.21.1. In any ordered field, we have 1 > 0.

**Proposition 4.22.** In any ordered field, if x is positive then  $x^{-1}$  is positive.

PROOF: If  $x^{-1} < 0$  then we would have  $1 = xx^{-1} < x0 = 0$  contradicting Corollary 4.21.1.  $\square$ 

**Proposition 4.23.** In any ordered field, if 0 < x < y then  $y^{-1} < x^{-1}$ .

- $\langle 1 \rangle 1$ . Assume: 0 < x < y
- $\langle 1 \rangle 2$ .  $x^{-1}$  and  $y^{-1}$  are positive.

Proof: Proposition 4.22.

- $\langle 1 \rangle 3. \ xy^{-1} < yy^{-1} = 1$  $\langle 1 \rangle 4. \ y^{-1} = x^{-1}xy^{-1} < x^{-1}1 = x^{-1}$

**Lemma 4.24.** Let K be an ordered field. Let  $b \in K$  with b > 1. Let n be a positive integer. Then

$$b^n - 1 \ge n(b - 1)$$

Proof:

$$b^{n} - 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1)$$

$$\geq (b-1)(1+1+\dots+1)$$

$$= n(b-1)$$

# Real Analysis

## 5.1 Construction of the Real Numbers

**Definition 5.1** (Cut). A *cut* is a subset  $\alpha$  of  $\mathbb{Q}$  such that:

- $\emptyset \neq \alpha \neq \mathbb{Q}$
- $\alpha$  is closed downwards.
- $\alpha$  has no greatest element.

In this section, we write R for the set of all cuts.

**Proposition 5.2.** R is linearly ordered by  $\subseteq$ .

```
PROOF: The only difficult part is to prove that, for any cuts \alpha and \beta, either \alpha \subseteq \beta or \beta \subseteq \alpha. 
(1)1. Assume: \alpha \nsubseteq \beta Prove: \beta \subseteq \alpha
```

 $\langle 1 \rangle 2$ . PICK  $q \in \alpha$  such that  $q \notin \beta$   $\langle 1 \rangle 3$ . Let:  $r \in \beta$ 

 $\langle 1 \rangle 4. \ q \not< r$ 

 $\langle 1 \rangle 5. \ r < q$ 

 $\langle 1 \rangle 6. \ r \in \alpha$ 

**Proposition 5.3.** R has the least upper bound property.

### Proof:

 $\langle 1 \rangle 1$ . Let:  $E \subseteq R$  be nonempty and bounded above.

 $\langle 1 \rangle 2$ . Let:  $s = \bigcup E$ 

Prove: s is a cut.

 $\langle 1 \rangle 3. \ \emptyset \neq s$ 

PROOF: Since E is nonempty and every element of E is nonempty.

 $\langle 1 \rangle 4. \ s \neq \mathbb{Q}$ 

- $\langle 2 \rangle 1$ . PICK an upper bound u for E.
- $\langle 2 \rangle 2$ . Pick  $q \notin u$ Prove:  $q \notin s$
- $\langle 2 \rangle 3. \ \forall \alpha \in E.\alpha \subseteq u$
- $\langle 2 \rangle 4. \ s \subseteq u$
- $\langle 2 \rangle 5. \ q \notin s$
- $\langle 1 \rangle 5$ . s is closed downwards.
  - $\langle 2 \rangle 1$ . Let:  $q \in s$  and r < q.
  - $\langle 2 \rangle 2$ . Pick  $\alpha \in E$  such that  $q \in \alpha$ .
  - $\langle 2 \rangle 3. \ r \in \alpha$
  - $\langle 2 \rangle 4. \ r \in s$
- $\langle 1 \rangle 6$ . s has no greatest element.
  - $\langle 2 \rangle 1$ . Let:  $q \in s$
  - $\langle 2 \rangle 2$ . PICK  $\alpha \in E$  such that  $q \in \alpha$ .
  - $\langle 2 \rangle 3$ . Pick  $r \in \alpha$  such that q < r.
- $\langle 2 \rangle 4. \ r \in s$

**Definition 5.4** (Addition). Given cuts  $\alpha$  and  $\beta$ , we define

$$\alpha + \beta = \{q + r : q \in \alpha, r \in \beta\} .$$

**Proposition 5.5.** Given cuts  $\alpha$  and  $\beta$ , we have  $\alpha + \beta$  is a cut.

### Proof:

 $\langle 1 \rangle 1$ .  $\alpha + \beta$  is nonempty.

PROOF: Since  $\alpha$  and  $\beta$  are nonempty.

- $\langle 1 \rangle 2. \ \alpha + \beta \neq \mathbb{Q}$ 
  - $\langle 2 \rangle 1$ . Pick  $q \in \mathbb{Q} \alpha$  and  $r \in \mathbb{Q} \beta$ . Prove:  $q + r \notin \alpha + \beta$
  - $\langle 2 \rangle 2$ . Assume: for a contradiction  $q + r \in \alpha + \beta$ .
  - $\langle 2 \rangle 3$ . Pick  $x \in \alpha$  and  $y \in \beta$  such that q + r = x + y
  - $\langle 2 \rangle 4$ . x < q
  - $\langle 2 \rangle 5$ . y < r
  - $\langle 2 \rangle 6$ . x + y < q + r
  - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 3$ .  $\alpha + \beta$  is closed downwards.
  - $\langle 2 \rangle 1$ . Let:  $q \in \alpha$ ,  $r \in \beta$  and x < q + r
  - $\langle 2 \rangle 2$ . x q < r
  - $\langle 2 \rangle 3. \ x q \in \beta$
  - $\langle 2 \rangle 4. \ x \in \alpha + \beta$
- $\langle 1 \rangle 4$ .  $\alpha + \beta$  has no greatest element.
  - $\langle 2 \rangle 1$ . Let:  $q \in \alpha$  and  $r \in \beta$ .

PROVE: q + r is not greatest in  $\alpha + \beta$ .

- $\langle 2 \rangle 2$ . Pick  $q' \in \alpha$  with q < q' and  $r' \in \beta$  with r < r'.
- $\langle 2 \rangle 3. \ q + r < q' + r' \in \alpha + \beta$

**Proposition 5.6.** Addition is commutative and associative on R.

PROOF: Immediate from definitions and the fact that addition is commutative and associative on  $\mathbb{Q}$ .  $\square$ 

**Definition 5.7.** For any  $q \in \mathbb{Q}$ , let  $q^* = \{r \in \mathbb{Q} : r < q\}$ .

**Proposition 5.8.** For any  $q \in \mathbb{Q}$ , we have  $q^*$  is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. \ q^* \neq \emptyset
   PROOF: Since q - 1 \in q^*.
\langle 1 \rangle 2. \ q^* \neq \mathbb{Q}
   PROOF: Since q \notin q^*.
\langle 1 \rangle 3. q^* is closed downwards.
   PROOF: Immediate from definition.
```

 $\langle 1 \rangle 4$ .  $q^*$  has no greatest element.

PROOF: For all  $r \in q^*$  we have  $r < (q+r)/2 \in q^*$ .

**Proposition 5.9.** For any cut  $\alpha$  we have  $\alpha + 0^* = \alpha$ .

## Proof:

$$\begin{array}{l} \langle 1 \rangle 1. \ \alpha + 0^* \subseteq \alpha \\ \langle 2 \rangle 1. \ \text{Let:} \ q \in \alpha \ \text{and} \ r \in 0^* \\ \text{Prove:} \ q + r \in \alpha \\ \langle 2 \rangle 2. \ r < 0 \\ \langle 2 \rangle 3. \ q + r < q \\ \langle 2 \rangle 4. \ q + r \in \alpha \\ \langle 1 \rangle 2. \ \alpha \subseteq \alpha + 0^* \\ \langle 2 \rangle 1. \ \text{Let:} \ q \in \alpha \\ \langle 2 \rangle 2. \ \text{Pick} \ r \in \alpha \ \text{such that} \ q < r \\ \langle 2 \rangle 3. \ q = r + (q - r) \in \alpha + 0^* \end{array}$$

**Proposition 5.10.** For any cut  $\alpha$ , there exists a cut  $\beta$  such that  $\alpha + \beta = 0$ .

```
\langle 1 \rangle 1. Let: \beta = \{ p \in \mathbb{Q} : \exists r > 0. - p - r \notin \alpha \}
\langle 1 \rangle 2. \beta is a cut.
    \langle 2 \rangle 1. \ \beta \neq \emptyset
         \langle 3 \rangle 1. Pick q \notin \alpha
         \langle 3 \rangle 2. -q - 1 \in \beta
     \langle 2 \rangle 2. \ \beta \neq \mathbb{Q}
         \langle 3 \rangle 1. Pick q \in \alpha
                      Prove: -q \notin \beta
         \langle 3 \rangle 2. Assume: for a contradiction -q \in \beta
```

```
\langle 3 \rangle 3. Pick r > 0 such that q - r \notin \alpha
         \langle 3 \rangle 4. \ q - r < q
         \langle 3 \rangle 5. Q.E.D.
            PROOF: This contradicts the fact that \alpha is closed downwards.
    \langle 2 \rangle 3. \beta is closed downwards.
         \langle 3 \rangle 1. Let: p \in \beta and q < p.
         \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
         \langle 3 \rangle 3. -p-r < -q-r
         \langle 3 \rangle 4. -q - r \notin \alpha
         \langle 3 \rangle 5. \ q \in \beta
    \langle 2 \rangle 4. \beta has no greatest element.
         \langle 3 \rangle 1. Let: p \in \beta
         \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
         \langle 3 \rangle 3. \ -(p+r/2) - r/2 \notin \alpha
         \langle 3 \rangle 4. \ p + r/2 \in \beta
\langle 1 \rangle 3. \ \alpha + \beta \subseteq 0^*
    \langle 2 \rangle 1. Let: p \in \alpha and q \in \beta.
    \langle 2 \rangle 2. Pick r > 0 such that -q - r \notin \alpha.
    \langle 2 \rangle 3. p < -q - r
    \langle 2 \rangle 4. p+q < -r
    \langle 2 \rangle 5. p+q < 0
    \langle 2 \rangle 6. \ p+q \in 0^*
\langle 1 \rangle 4. \ 0^* \subseteq \alpha + \beta
    \langle 2 \rangle 1. Let: v \in 0^*
    \langle 2 \rangle 2. Let: w = -v/2
    \langle 2 \rangle 3. \ w > 0
    \langle 2 \rangle 4. PICK an integer n such that nw \in \alpha and (n+1)w \notin \alpha.
    \langle 2 \rangle5. Let: p = -(n+2)w
    \langle 2 \rangle 6. \ p \in \beta
    \langle 2 \rangle 7. \ v = nw + p
    \langle 2 \rangle 8. \ v \in \alpha + \beta
```

**Proposition 5.11.** Given  $\alpha, \beta, \gamma \in R$ , if  $\beta < \gamma$ , then  $\alpha + \beta < \alpha + \gamma$ .

```
PROOF:  \begin{array}{l} \langle 1 \rangle 1. \ \alpha + \beta \subseteq \alpha + \gamma \\ \text{PROOF: Immediate from definitions.} \\ \langle 1 \rangle 2. \ \alpha + \beta \neq \alpha + \gamma \\ \text{PROOF: If } \alpha + \beta = \alpha + \gamma \text{ then } \beta = \gamma \text{ by cancellation.} \\ \end{array}
```

**Definition 5.12.** Given cuts  $\alpha$  and  $\beta$ , define  $\alpha\beta$  by:

$$\alpha\beta = \begin{cases} \{p \in \mathbb{Q} : \exists r \in \alpha. \exists s \in \beta (p \le rs \land r > 0 \land s > 0\} & \text{if } \alpha > 0^* \text{ and } \beta > 0^* \\ (-\alpha)(-\beta) & \text{if } \alpha < 0^* \text{ and } \beta < 0^* \\ -((-\alpha)\beta) & \text{if } \alpha < 0^* \text{ and } \beta < 0^* \\ -(\alpha(-\beta)) & \text{if } \alpha > 0^* \text{ and } \beta < 0^* \\ 0^* & \text{if } \alpha > 0^* \text{ and } \beta < 0^* \end{cases}$$

**Proposition 5.13.** For any cuts  $\alpha$  and  $\beta$ , we have  $\alpha\beta$  is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. If \alpha > 0^* and \beta > 0^* then \alpha \beta is a cut.
```

- $\langle 2 \rangle 1. \ \alpha \beta \neq \emptyset$ 
  - $\langle 3 \rangle 1$ . Pick  $q \in \alpha$  and  $r \in \beta$  such that  $q, r \notin 0^*$
  - $\langle 3 \rangle 2$ . Assume: w.l.o.g. 0 < q and 0 < r.

PROOF: Since  $\alpha$  and  $\beta$  have no greatest element.

- $\langle 3 \rangle 3. \ qr \in \alpha \beta$
- $\langle 2 \rangle 2$ .  $\alpha \beta \neq \mathbb{Q}$ 
  - $\langle 3 \rangle 1$ . PICK  $r \notin \alpha$  and  $s \notin \beta$ PROVE:  $rs \notin \alpha \beta$
  - $\langle 3 \rangle 2$ . Assume: for a contradiction  $rs \in \alpha \beta$ .
  - $\langle 3 \rangle 3$ . Pick  $r' \in \alpha$  and  $s' \in \beta$  such that  $rs \leq r's'$  and r' > 0 and s' > 0.
  - $\langle 3 \rangle 4$ . r' < r and s' < s
  - $\langle 3 \rangle 5$ . r's' < rs
  - $\langle 3 \rangle 6$ . Q.E.D.

PROOF: This is a contradiction.

- $\langle 2 \rangle 3$ .  $\alpha \beta$  is closed downwards.
  - $\langle 3 \rangle 1$ . Let:  $p \in \alpha \beta$  and p' < p
  - $\langle 3 \rangle 2$ . Pick  $r \in \alpha$  and  $s \in \beta$  such that  $p \leq rs$ , r > 0 and s > 0
  - $\langle 3 \rangle 3. \ p' \leq rs$
  - $\langle 3 \rangle 4. \ p' \in \alpha \beta$

П

- $\langle 2 \rangle 4$ .  $\alpha \beta$  has no greatest element.
  - $\langle 3 \rangle 1$ . Let:  $p \in \alpha \beta$
  - $\langle 3 \rangle 2$ . Pick  $r \in \alpha$  and  $s \in \beta$  such that  $p \leq rs$ , r > 0 and s > 0.
  - $\langle 3 \rangle 3$ . Pick  $r' \in \alpha$  and  $s' \in \beta$  with r < r' and s < s'.
  - $\langle 3 \rangle 4. \ p < r's' \in \alpha \beta$
- $\langle 1 \rangle 2$ . For any cuts  $\alpha$  and  $\beta$ , we have  $\alpha \beta$  is a cut.

PROOF: Since if  $\alpha$  is a cut then  $-\alpha$  is a cut.

**Proposition 5.14.** For any cuts  $\alpha$  and  $\beta$  we have  $\alpha\beta = \beta\alpha$ .

PROOF: Easy from the definitions.  $\square$ 

**Proposition 5.15.** For any cuts  $\alpha$ ,  $\beta$  and  $\gamma$  we have

$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$
.

 $\langle 1 \rangle 1$ . Case:  $\alpha$ ,  $\beta$  and  $\gamma$  are all positive.

PROOF: In this case  $\alpha(\beta\gamma) = (\alpha\beta)\gamma = \{p \in \mathbb{Q} : \exists r \in \alpha. \exists s \in \beta. \exists t \in \gamma. (p \leq rst \land r > 0 \land s > 0 \land t > 0)\}.$ 

 $\langle 1 \rangle 2$ . Case: One of  $\alpha$ ,  $\beta$  or  $\gamma$  is  $0^*$ .

PROOF: Then  $\alpha(\beta\gamma) = (\alpha\beta)\gamma = 0^*$ .

 $\langle 1 \rangle 3.$  Case:  $\alpha$  and  $\beta$  are positive,  $\gamma$  is negative. Proof:

$$\alpha(\beta\gamma) = \alpha(-(\beta(-\gamma)))$$

$$= -(\alpha(\beta(-\gamma)))$$

$$= -((\alpha\beta)(-\gamma))$$

$$= (\alpha\beta)\gamma$$
(\langle 1\rangle 1)

 $\langle 1 \rangle 4.$  Case:  $\alpha$  is positive,  $\beta$  is negative,  $\gamma$  is positive. Proof:

$$\alpha(\beta\gamma) = \alpha(-((-\beta)\gamma))$$

$$= -(\alpha((-\beta)\gamma))$$

$$= -((\alpha(-\beta))\gamma)$$

$$= (-(\alpha(-\beta)))\gamma$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1\rangle 1)$$

 $\langle 1 \rangle 5.$  Case:  $\alpha$  is positive,  $\beta$  and  $\gamma$  are negative. Proof:

$$\alpha(\beta\gamma) = \alpha((-\beta)(-\gamma))$$

$$= (\alpha(-\beta))(-\gamma)$$

$$= (-(\alpha\beta))(-\gamma)$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

 $\langle 1 \rangle$ 6. Case:  $\alpha$  is negative,  $\beta$  and  $\gamma$  are positive. Proof: Similar to  $\langle 1 \rangle$ 3.

 $\langle 1 \rangle 7.$  Case:  $\alpha$  is negative,  $\beta$  is positive,  $\gamma$  is negative. Proof:

$$\alpha(\beta\gamma) = \alpha(-(\beta(-\gamma)))$$

$$= (-\alpha)(\beta(-\gamma))$$

$$= ((-\alpha)\beta)(-\gamma)$$

$$= (-(\alpha\beta))(-\gamma)$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

 $\langle 1 \rangle 8$ . Case:  $\alpha$  and  $\beta$  are negative,  $\gamma$  is positive. Proof: Similar to  $\langle 1 \rangle 5$ .

 $\langle 1 \rangle 9$ . Case:  $\alpha$ ,  $\beta$  and  $\gamma$  are all negative.

$$\alpha(\beta\gamma) = \alpha(-(-\beta)(-\gamma))$$

$$= -((-\alpha)((-\beta)(-\gamma)))$$

$$= -(((-\alpha)(-\beta))(-\gamma))$$

$$= -((\alpha\beta)(-\gamma))$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

П

**Proposition 5.16.** For any cut  $\alpha$  we have  $\alpha 1^* = \alpha$ .

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. \  \, \text{Case:} \  \, \alpha \  \, \text{is positive.} \\ \langle 2 \rangle 1. \  \, \alpha 1^* \subseteq \alpha \\ \langle 2 \rangle 2. \  \, \alpha \subseteq \alpha 1^* \\ \langle 1 \rangle 2. \  \, \text{Case:} \  \, \alpha = 0^* \\ \underline{\langle 1 \rangle} 3. \  \, \text{Case:} \  \, \alpha \  \, \text{is negative.} \end{array}
```

**Theorem 5.17.** There exists an ordered field with the least upper bound property.

**Proposition 5.18.** There is no rational p such that  $p^2 = 2$ .

PROOF:

```
PROOF: \langle 1 \rangle 1. Assume: for a contradiction p^2 = 2. \langle 1 \rangle 2. PICK integers m, n not both even such that p = m/n. \langle 1 \rangle 3. m^2 = 2n^2 \langle 1 \rangle 4. m is even. \langle 1 \rangle 5. PICK an integer k such that m = 2k. \langle 1 \rangle 6. 4k^2 = 2n^2 \langle 1 \rangle 7. 2k^2 = n^2 \langle 1 \rangle 8. n is even. \langle 1 \rangle 9. Q.E.D. PROOF: \langle 1 \rangle 2, \langle 1 \rangle 4 and \langle 1 \rangle 8 form a contradiction.
```

**Theorem 5.19.** Any two complete ordered fields are isomorphic.

**Definition 5.20.** Let  $\mathbb{R}$  be the complete ordered field. We call its elements *real numbers*.

## 5.2 Properties of the Real Numbers

**Theorem 5.21.**  $\mathbb{Q}$  is a subfield of  $\mathbb{R}$ .

**Theorem 5.22** (Archimedean Property). Let  $x, y \in \mathbb{R}$  with x > 0. There exists a positive integer n such that nx > y.

- $\langle 1 \rangle 1$ . Let:  $A = \{ nx : n \in \mathbb{Z}^+ \}$
- $\langle 1 \rangle 2$ . Assume: for a contradiction there is no positive integer n such that nx > y.
- $\langle 1 \rangle 3$ . y is an upper bound for A.
- $\langle 1 \rangle 4$ . Let:  $\alpha = \sup A$
- $\langle 1 \rangle 5$ .  $\alpha x$  is not an upper bound for A.
- $\langle 1 \rangle 6$ . Pick a positive integer m such that  $\alpha x < mx$
- $\langle 1 \rangle 7$ .  $\alpha < (m+1)x \in A$
- $\langle 1 \rangle 8$ . Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 4$ .

П

## **Theorem 5.23.** $\mathbb{Q}$ is dense in $\mathbb{R}$ .

### Proof:

- $\langle 1 \rangle 1$ . Let:  $x, y \in \mathbb{R}$  with x < y
- $\langle 1 \rangle 2$ . PICK a positive integer n such that

$$n(y-x) > 1 .$$

PROOF: Archimedean property.

 $\langle 1 \rangle 3$ . PICK a positive integer  $m_1$  such that  $m_1 > nx$ 

Proof: Archimedean property.

- $\langle 1 \rangle 4$ . PICK a positive integer  $m_2$  such that  $m_2 > -nx$  PROOF: Archimedean property.
- $\langle 1 \rangle 5$ .  $-m_2 < nx < m_1$
- $\langle 1 \rangle 6$ . Let: m be the integer such that

$$m-1 \le nx < m$$
.

- $\langle 1 \rangle 7$ .  $nx < m \le 1 + nx < ny$
- $\langle 1 \rangle 8. \ x < m/n < y$

**Theorem 5.24.** For every real number x > 0 and positive integer n, there exists a unique positive real number y such that  $y^n = x$ .

## Proof:

- $\langle 1 \rangle 1$ . There exists a real y > 0 such that  $y^n = x$ .
  - $\langle 2 \rangle 1$ . Let:  $E = \{ t \in \mathbb{R}^+ : t^n < x \}$
  - $\langle 2 \rangle 2$ . Let:  $y = \sup E$ 
    - $\langle 3 \rangle 1. \ E \neq \emptyset$ 
      - $\langle 4 \rangle 1$ . Let: t = x/(x+1)
      - $\langle 4 \rangle 2. \ 0 < t < 1$
      - $\langle 4 \rangle 3. \ t^n < t < x$
      - $\langle 4 \rangle 4. \ t \in E$
    - $\langle 3 \rangle 2$ . x+1 is an upper bound for E.
      - $\langle 4 \rangle 1$ . Let: t > x + 1
      - $\langle 4 \rangle 2$ .  $t^n > t > x$
      - $\langle 4 \rangle 3. \ t \notin E$

$$\langle 2 \rangle 3. \ y^n = x$$

 $\langle 3 \rangle 1. \ y^n \not< x$ 

 $\langle 4 \rangle 1$ . Assume: for a contradiction  $y^n < x$ .

 $\langle 4 \rangle 2$ . Pick h such that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}$$
.

$$\langle 4 \rangle 3. \ (y+h)^n - y^n < x - y^n$$

Proof:

$$(y+h)^n - y^n = ((y+h) - y) \sum_{i=0}^{n-1} (y+h)^{n-1-i} y^i$$

$$= h \sum_{i=0}^{n-1} (y+h)^{n-1-i} y^i$$

$$\leq hn(y+h)^{n-1}$$

$$\leq hn(y+1)^{n-1}$$

$$< x - y^n$$

$$\langle 4 \rangle 4$$
.  $(y+h)^n < x$ 

$$\langle 4 \rangle 5. \ y + h \in E$$

 $\langle 4 \rangle 6$ . Q.E.D.

PROOF: This contradicts the fact that y is an upper bound for E.

$$\langle 3 \rangle 2. \ y^n \not> x$$

 $\langle 4 \rangle 1$ . Assume: for a contradiction  $y^n > x$ 

 $\langle 4 \rangle 2$ . Let:

$$k = \frac{y^n - x}{ny^{n-1}}$$

 $\langle 4 \rangle 3$ . 0 < k < y

 $\langle 4 \rangle 4$ . y - k is an upper bound for E.

$$\langle 5 \rangle 1$$
. Let:  $t \geq y - k$ 

$$\langle 5 \rangle 2$$
.  $y^n - t^n \le y^n - x$ 

Proof:

$$\begin{split} y^n - t^n &\leq y^n - (y - k)^n \\ &= (y - (y - k)) \sum_{i=0}^{n-1} y^{n-i} (y - k)^i \\ &= k \sum_{i=0}^{n-1} y^{n-i} (y - k)^i \\ &\leq k n y^{n-1} \\ &= y^n - x \end{split}$$

$$\langle 5 \rangle 3. \ t^n \ge x$$

$$\langle 5 \rangle 4. \ t \notin E$$

 $\langle 4 \rangle 5$ . Q.E.D.

PROOF: This contradicts the fact that y is the least upper bound of E.  $\langle 1 \rangle 2$ . If y and y' are positive reals with  $y^n = y'^n$  then y = y'.

Proof: Since the function that sends y to  $y^n$  is strictly monotone.  $\square$ 

**Definition 5.25** (*n*th Root). Given any real number x > 0 and positive integer n, the nth root of x, denoted  $x^{1/n}$ , is the unique positive real such that

$$(x^{1/n})^n = x .$$

We write  $\sqrt{x}$  for  $x^{1/2}$ .

**Proposition 5.26.** Let a and b be positive real numbers and n a positive integer. Then

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$
.

PROOF: Since  $(a^{1/n}b^{1/n})^n = ab$ .  $\square$ 

**Lemma 5.27.** Let b be a real number with b > 1. Let n be a positive integer. Then

$$b-1 \ge n(b^{1/n}-1)$$
.

Proof: From Lemma 4.24.  $\Box$ 

**Lemma 5.28.** Let b and t be real numbers with b > 1 and t > 1. For any positive integer n, if  $n > \frac{b-1}{t-1}$  then  $b^{1/n} < t$ .

Proof:

$$b-1 \ge n(b^{1/n}-1)$$

$$\therefore \frac{b-1}{n} \ge b^{1/n}-1$$

$$\therefore t-1 > b^{1/n}-1$$

$$\therefore t > b^{1/n}$$

**Lemma 5.29.** Let b be a real number with b > 0. Let m, n, p, q be integers with n > 0 and q > 0. Assume m/n = p/q. Then

$$(b^m)^{1/n} = (b^p)^{1/q}$$
.

Proof:

$$\langle 1 \rangle 1. \ (b^m)^{1/n} = (b^{1/n})^m$$

Proof:

$$((b^{1/n})^m)^n = ((b^{1/n})^n)^m$$
  
=  $b^m$ 

$$\langle 1 \rangle 2. \ ((b^m)^{1/n})^q = b^p$$

Proof:

$$((b^m)^{1/n})^q = (b^{1/n})^{mq}$$
$$= (b^{1/n})^{np}$$
$$= b^p$$

**Definition 5.30.** For a a positive real and q a rational number, we may therefore define  $a^q$  by

$$a^{m/n} = (a^m)^{1/n}$$

for m and n integers with n > 0.

**Proposition 5.31.** Let a be a positive real and r, s rational numbers. Then

$$a^{r+s} = a^r a^s$$
.

Proof:

$$a^{m/n+p/q} = a^{(mq+np)/nq}$$

$$= (a^{mq+np})^{1/nq}$$

$$= (a^{mq})^{1/nq} (a^{np})^{1/nq}$$

$$= a^{m/n} a^{p/q}$$

**Proposition 5.32.** Let b > 1 be a real number and q a rational number. Then

$$b^q = \sup\{b^t : t \in \mathbb{Q}, t \le q\}$$

PROOF: It is the greatest element of this set.  $\square$ 

**Definition 5.33.** Let b > 1 be a real number and x a real number. Then

$$b^x = \sup\{b^t : t \in \mathbb{Q}, t \le x\} .$$

**Lemma 5.34.** Let b, w and y be real numbers with b > 1. Assume  $b^w < y$ . Then there exists a positive integer n such that  $b^{w+1/n} < y$ .

Proof:

- $\langle 1 \rangle 1$ . Let:  $t = yb^{-w}$
- $\langle 1 \rangle 2$ . PICK a positive integer n such that  $n > \frac{b-1}{t-1}$ .
- $\langle 1 \rangle 3. \ b^{1/n} < t$

PROOF: Lemma 5.28.

PROOF: Lemma 
$$\langle 1 \rangle 4$$
.  $b^{w+1/n} < y$ 

**Lemma 5.35.** Let b, w and y be real numbers with b > 1. Assume  $b^w > y$ . Then there exists a positive integer n such that  $b^{w-1/n} < y$ .

Proof:

- $\langle 1 \rangle 1$ . Let:  $t = b^w/y$
- $\langle 1 \rangle 2$ . PICK a positive integer n such that  $n > \frac{b-1}{t-1}$
- $\langle 1 \rangle 3. \ b^{1/n} < t$

Proof: Lemma 5.28.

$$\langle 1 \rangle 4. \ y < b^{w-1/n}$$

**Proposition 5.36.** For b and x real numbers with b > 1 we have

$$b^x = \sup\{b^t : t \in \mathbb{Q}, t < x\} .$$

### Proof:

- $\langle 1 \rangle 1$ .  $b^x$  is an upper bound for  $\{b^t : t \in \mathbb{Q}, t < x\}$ .
- $\langle 1 \rangle 2$ . Let: u be any upper bound for  $\{b^t : t \in \mathbb{Q}, t < x\}$ . Prove:  $b^x \leq u$
- $\langle 1 \rangle 3.$  Let: q be a rational number with  $q \leq x.$  Prove:  $b^q \leq u$
- $\langle 1 \rangle 4$ . Assume: for a contradiction  $b^q > u$ .
- $\langle 1 \rangle$ 5. PICK a positive integer n such that  $b^{q-1/n} > u$ .

PROOF: Lemma 5.35.

 $\langle 1 \rangle 6. \ b^{q-1/n} \le u$ PROOF:  $\langle 1 \rangle 2$ 

PROOF:  $\langle 1 \rangle 2$   $\langle 1 \rangle 7$ . Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 4$ .

**Lemma 5.37.** Let A be a set of positive real numbers with supremum a > 0 and B a set of positive real numbers with supremum b > 0. Then ab is the supremum of  $\{xy : x \in A, y \in B\}$ .

### Proof:

- $\langle 1 \rangle 1$ . For all  $x \in A$  and  $y \in B$  we have  $xy \leq ab$ .
- $\langle 1 \rangle 2$ . If u is any upper bound for  $\{xy : x \in A, y \in B\}$  then  $ab \leq u$ .
  - $\langle 2 \rangle 1$ . Let: u be an upper bound for  $\{xy : x \in A, y \in B\}$ .
  - $\langle 2 \rangle 2$ . For all  $x \in A$  we have u/x is an upper bound for B.
  - $\langle 2 \rangle 3$ . For all  $x \in A$  we have  $b \leq u/x$
  - $\langle 2 \rangle 4$ . For all  $x \in A$  we have  $x \leq u/b$
  - $\langle 2 \rangle 5$ .  $a \leq u/b$
  - $\langle 2 \rangle 6. \ ab \leq u$

**Proposition 5.38.** *Let*  $b, x, y \in \mathbb{R}$  *with* b > 1. *Then* 

$$b^{x+y} = b^x b^y .$$

## Proof:

- $\langle 1 \rangle 1$ . For any rational number q < x + y, there exist rational numbers r < x and s < y such that q = r + s.
  - $\langle 2 \rangle 1. \ q x < y$
  - $\langle 2 \rangle 2$ . Pick a rational t such that q x < t < y
  - $\langle 2 \rangle 3$ . q = t + (q t) and t < y, q t < x
- $\langle 1 \rangle 2$ .  $b^x b^y = b^{x+y}$

$$\begin{split} b^x b^y &= \sup\{b^q b^r : q, r \in \mathbb{Q}, q < x, r < y\} \\ &= \sup\{b^{q+r} : q, r \in \mathbb{Q}, q < x, r < y\} \\ &= \sup\{b^q : q \in \mathbb{Q}, q < x + y\} \\ &= b^{x+y} \end{split}$$

## 5.2.1 Logarithms

**Proposition 5.39.** Let b and y be real numbers with b > 1 and y > 0. There exists a unique real x such that  $b^x = y$ .

```
Proof:
```

```
\langle 1 \rangle 1. Let: x = \sup\{w : b^w < y\}
        PROVE: b^x = y
   \langle 2 \rangle 1. \ \{ w : b^w < y \} \neq \emptyset
      Proof: It contains 0.
   \langle 2 \rangle 2. \{w : b^w < y\} is bounded above.
      \langle 3 \rangle 1. Let: n be the least integer such that
         PROOF: Archimedean property.
      \langle 3 \rangle 2. Let: w be a real number with b^w < y
              Prove: w < n
      \langle 3 \rangle 3. \ b^w < n(b-1)+1
      \langle 3 \rangle 4. \ b^w < b^n
      \langle 3 \rangle 5. \ w < n
\langle 1 \rangle 2. \ b^x \leq y
   \langle 2 \rangle 1. Assume: for a contradiction b^x > y
   \langle 2 \rangle 2. PICK a positive integer n such that b^{x-1/n} > y
      Proof: Lemma 5.35.
   \langle 2 \rangle 3. Pick w such that x - 1/n < w and b^w < y
      PROOF: Since x - 1/n is not an upper bound for \{w : b^w < y\}.
   \langle 2 \rangle 4. \ b^{x-1/n} < y
   \langle 2 \rangle 5. Q.E.D.
     PROOF: This contradicts \langle 2 \rangle 2.
\langle 1 \rangle 3. \ b^x \geq y
   \langle 2 \rangle 1. Assume: for a contradiction b^x < y.
   \langle 2 \rangle 2. Pick a positive integer n such that b^{x+1/n} < y.
   \langle 2 \rangle 3. \ x + 1/n \le x
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This is a contradiction.
```

**Definition 5.40** (Logarithm). Let b and y be real numbers with b > 1 and y > 0. The *logarithm* of y to *base* b, denoted  $\log_b y$ , is the unique real number

such that

$$b^{\log_b y} = y .$$

## 5.2.2 Intervals

**Definition 5.41** (Intervals). Let  $a, b \in \mathbb{R}$ .

The open interval (a, b) is  $\{x \in \mathbb{R} : a < x < b\}$ .

The closed interval [a, b] is  $\{x \in \mathbb{R} : a \le x \le b\}$ .

The half-open intervals [a, b) and (a, b] are defined by

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$

**Definition 5.42** (k-cell). Let k be a positive integer. A k-cell is a subset of  $\mathbb{R}^k$  of the form

$$\{\vec{x} \in \mathbb{R}^k : \forall i = 1, \dots, k.a_i \le x_i \le b_i\}$$

for some real numbers  $a_1, \ldots, a_k, b_1, \ldots, b_k$  with  $a_i \leq b_i$  for each i.

## 5.2.3 The Cantor Set

**Definition 5.43** (Cantor Set). Define a sequence  $E_n$  of unions of intervals as follows:

- $E_0 = [0, 1]$
- $E_{n+1}$  is formed from  $E_n$  by replacing every interval [a, b] with [a, (2a+b)/3] and [(a+2b)/3, b].

The Cantor set is  $\bigcap_{n=0}^{\infty} E_n$ .

## 5.3 The Extended Real Number System

**Definition 5.44** (Extended Real Number System). The *extended real number* system is the set  $\mathbb{R} \cup \{+\infty, -\infty\}$ .

We extend the ordering  $\leq$  to the extended reals by defining

$$-\infty < x < +\infty$$

for every  $x \in \mathbb{R}$ .

We extend +,  $\cdot$  and / to partial operations on the extended real by defining:

$$x + (+\infty) = +\infty \qquad (x \in \mathbb{R})$$

$$x + (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) + x = +\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) + (+\infty) \text{ is undefined}$$

$$(+\infty) + (-\infty) \text{ is undefined}$$

$$(-\infty) + x = -\infty \qquad (x \in \mathbb{R})$$

$$(-\infty) + (+\infty) \text{ is undefined}$$

$$x \cdot (+\infty) = +\infty \qquad (x \in \mathbb{R})$$

$$x \cdot (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) \cdot x = +\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) \cdot (+\infty) \text{ is undefined}$$

$$(+\infty) \cdot (-\infty) \text{ is undefined}$$

$$(-\infty) \cdot x = -\infty \qquad (x \in \mathbb{R})$$

$$(-\infty) \cdot (+\infty) \text{ is undefined}$$

$$(-\infty) \cdot (+\infty) \text{ is undefined}$$

$$(-\infty) \cdot (-\infty) \text{ is undefined}$$

$$x/(+\infty) = 0 \qquad (x \in \mathbb{R})$$

$$(+\infty)/x \text{ is undefined}$$

$$(+\infty)/(+\infty) \text{ is undefined}$$

$$(+\infty)/(+\infty) \text{ is undefined}$$

$$(+\infty)/(+\infty) \text{ is undefined}$$

$$(-\infty)/x \text{ is undefined}$$

$$(-\infty)/x \text{ is undefined}$$

$$(-\infty)/(+\infty) \text{ is undefined}$$

$$(-\infty)/(+\infty) \text{ is undefined}$$

 $(-\infty)/(-\infty)$  is undefined

# Complex Analysis

**Definition 6.1** (Complex Numbers). A *complex number* is a pair of real numbers. We write  $\mathbb{C}$  for the set of complex numbers.

Define + and  $\cdot$  on  $\mathbb{C}$  by:

$$(a,b) + (c,d) = (a+c,b+d)$$
  
 $(a,b)(c,d) = (ac-bd,ad+bc)$ 

**Theorem 6.2.** The complex numbers form a field.

**Theorem 6.3.** The function that maps a to (a,0) is an embedding of  $\mathbb{R}$  in  $\mathbb{C}$ .

Definition 6.4.

$$i = (0, 1)$$

Lemma 6.5.

$$(a,b) = a + ib$$

PROOF: Since (a, 0) + (0, 1)(b, 0) = (a, b).

Lemma 6.6.

$$i^2 = -1$$

PROOF: Immediate from definitions.  $\square$ 

**Corollary 6.6.1.** There is no linear order on  $\mathbb C$  that makes  $\mathbb C$  into an ordered field.

**Definition 6.7** (Complex Conjugate). For any complex number z, the complex conjugate  $\overline{z}$  is defined by

$$\overline{a+ib} = a-ib \qquad (a,b \in \mathbb{R}) .$$

**Definition 6.8** (Real Part). For any complex number z, the *real part* of z, denoted Re(z), is defined by

$$\operatorname{Re}(a+ib) = a \qquad (a, b \in \mathbb{R}) .$$

**Definition 6.9** (Imaginary Part). For any complex number z, the *imaginar* part of z, denoted Im(z), is defined by

$$\operatorname{Im}(a+ib) = b \qquad (a, b \in \mathbb{R}) .$$

**Theorem 6.10.** For all  $z, w \in \mathbb{C}$  we have

$$\overline{z+w} = \overline{z} + \overline{w} .$$

Proof:

$$\overline{(a+ib)+(c+id)} = \overline{(a+c)+i(b+d)}$$

$$= (a+c)-i(b+d)$$

$$= (a-ib)+(c-id)$$

$$= \overline{a+ib}+\overline{c+id}$$

**Theorem 6.11.** For all  $z, w \in \mathbb{C}$  we have

$$\overline{zw} = \overline{z} \cdot \overline{w} \ .$$

Proof:

$$\overline{(a+ib)(c+id)} = \overline{(ac-bd) + i(ad+bc)}$$

$$= (ac-bd) - i(ad+bc)$$

$$= (a-ib)(c-id)$$

$$= \overline{a+ib} \cdot \overline{c+id}$$

**Theorem 6.12.** For all  $z \in \mathbb{C}$  we have

$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
.

Proof:

$$(a+ib) + \overline{a+ib} = (a+ib) + (a-ib)$$

$$= 2a$$

$$= 2\operatorname{Re}(a+ib)$$

**Theorem 6.13.** For all  $z \in \mathbb{C}$  we have

$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}) .$$

Proof:

$$(a+ib) - \overline{a+ib} = (a+ib) - (a-ib)$$

$$= 2ib$$

$$= 2i\operatorname{Im}(a+ib)$$

**Theorem 6.14.** For all  $z \in \mathbb{C}$  we have  $z\overline{z}$  is a non-negative real.

$$(a+ib)(\overline{a+ib}) = (a+ib)(a-ib)$$
$$= a^2 + b^2$$

**Theorem 6.15.** For any  $z \in \mathbb{C}$ , if  $z\overline{z} = 0$  then z = 0.

PROOF: Let z = a + ib. Then  $z\overline{z} = a^2 + b^2 = 0$  iff a = b = 0.  $\square$ 

**Definition 6.16** (Absolute Value). For  $z \in \mathbb{C}$ , the absolute value of z is

$$|z|=(z\overline{z})^{1/2}$$
.

**Proposition 6.17.** For x a non-negative real we have |x| = x.

PROOF: Since  $|x| = \sqrt{x^2} = x$ .  $\square$ 

**Proposition 6.18.** For x a negative real we have |x| = -x.

Proof: Since  $|x| = \sqrt{x^2} = -x$ .  $\square$ 

**Theorem 6.19.** For any complex number z we have  $|z| \ge 0$ .

PROOF: Immediate from definition.  $\Box$ 

**Theorem 6.20.** For any complex number z, if |z| = 0 then z = 0.

PROOF: From Theorem 6.15.  $\square$ 

**Theorem 6.21.** For any complex number z we have

$$|\overline{z}| = |z|$$
.

PROOF: Immediate from definitions.  $\Box$ 

**Theorem 6.22.** For any complex numbers z and w we have

$$|zw| = |z||w|$$
.

Proof:

$$|zw| = \sqrt{zw\overline{z}w}$$
  
 $= \sqrt{z\overline{z}}\sqrt{w\overline{w}}$  (Proposition 5.26)  
 $= |z||w|$ 

**Theorem 6.23.** For any complex number z we have

$$|\operatorname{Re} z| \le |z|$$

PROOF: Let z = a + ib. Then

$$|\operatorname{Re} z| = \sqrt{a^2} \le \sqrt{a^2 + b^2}$$
.

**Theorem 6.24.** For any complex numbers z and w we have

$$|z+w| \le |z| + |w| .$$

$$|z+w|^2 = (z+w)(\overline{z}+\overline{w})$$

$$= z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w}$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2 \qquad \text{(Theorem 6.12)}$$

$$\leq |z|^2 + 2|z\overline{w}| + |w|^2 \qquad \text{(Theorem 6.23)}$$

$$= |z|^2 + 2|z||w| + |w|^2 \qquad \text{(Theorem 6.22)}$$

$$= (|z| + |w|)^2 \qquad \Box$$

**Theorem 6.25** (Schwarz Inequality). Let  $a_1, \ldots, a_n, b_1, \ldots, b_n$  be complex numbers. Then

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2.$$

Proof:

 $\langle 1 \rangle 1$ . Let:  $A = \sum_{j=1}^{n} |a_j|^2$   $\langle 1 \rangle 2$ . Let:  $B = \sum_{j=1}^{n} |b_j|^2$   $\langle 1 \rangle 3$ . Let:  $C = \sum_{j=1}^{n} a_j \overline{b_j}$   $\langle 1 \rangle 4$ . Assume: w.l.o.g. B > 0

PROOF: If B=0 then  $b_1=\cdots=b_n=0$  and both sides of the inequality are

$$\langle 1 \rangle$$
5.  $\sum_{j=1}^{n} |Ba_j - Cb_j|^2 = B(AB - |C|^2)$ 

$$\sum_{j=1}^{n} |Ba_{j} - Cb_{j}|^{2} = \sum_{j=1}^{n} (Ba_{j} - Cb_{j})(B\overline{a_{j}} - \overline{Cb_{j}})$$

$$= B^{2} \sum_{j=1}^{n} |a_{j}|^{2} - B\overline{C} \sum_{j=1}^{n} a_{j}\overline{b_{j}} - BC \sum_{j=1}^{n} \overline{a_{j}}b_{j} + |C|^{2} \sum_{j=1}^{n} |b_{j}|^{2}$$

$$= B^{2}A - 2B|C|^{2} + B|C|^{2}$$

$$= B(AB - |C|^{2})$$

$$\langle 1 \rangle 6. \ B(AB - |C|^{2}) \ge 0$$

$$\langle 1 \rangle 7. \ AB \ge |C|^{2}$$

Proposition 6.26. For any non-zero complex number w, there are exactly two complex numbers z such that  $z^2 = w$ .

Proof:

- $\langle 1 \rangle 1$ . There are at most two complex numbers z such that  $z^2 = w$ . Proof: Proposition 4.15.
- $\langle 1 \rangle 2$ . There are at least two complex numbers z such that  $z^2 = w$ .

 $\langle 2 \rangle 1$ . Let: w = u + iv

 $\langle 2 \rangle 2$ . Let:  $a = \sqrt{\frac{|w| + u}{2}}$ 

 $\langle 2 \rangle 3$ . Let:  $b = \sqrt{\frac{|w|-u}{2}}$ 

$$\begin{array}{lll} \langle 2 \rangle 4. & {\rm Case:} \ v \geq 0 \\ \langle 3 \rangle 1. & {\rm Let:} \ z = a + ib \\ \langle 3 \rangle 2. & z^2 = w \\ & {\rm Proof:} \end{array}$$
 
$$z^2 = (a + ib)^2 \\ & = a^2 - b^2 + 2iab \\ & = u + i\sqrt{|w|^2 - u^2} \\ & = u + iv \\ & = w \end{array}$$
 
$$\langle 3 \rangle 3. & (-z)^2 = w \\ \langle 2 \rangle 5. & {\rm Case:} \ v \leq 0 \\ \langle 3 \rangle 1. & {\rm Let:} \ z = a - ib \\ \langle 3 \rangle 2. & z^2 = w \\ & {\rm Proof:} \end{array}$$
 
$$z^2 = (a - ib)^2 \\ & = a^2 - b^2 - 2iab \\ & = u - i\sqrt{|w|^2 - u^2} \\ & = u - i|v| \\ & = w \end{array}$$

## 6.1 Algebraic Numbers

**Definition 6.27** (Algebraic). A complex number z is algebraic iff there exist integers  $a_0, a_1, \ldots, a_n$  not all zero such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$$
;

otherwise, it is transcendental.

**Proposition 6.28.** The set of algebraic numbers is countable.

PROOF: There are countably many finite sequences of integers  $(a_0, a_1, \ldots, a_n)$ , and for each one, there are only finitely many complex numbers z such that  $a_0z^n + a_1z^{n-1} + \cdots + a_n = 0$ .  $\square$ 

# Part I Linear Algebra

# Chapter 7

# **Vector Spaces**

# 7.1 Convex Sets

**Definition 7.1** (Convex). Let  $E \subseteq \mathbb{R}^k$ . Then E is *convex* iff, for all  $\vec{x}, \vec{y} \in E$  and  $\lambda \in (0,1)$ ,

$$\lambda \vec{x} + (1 - \lambda) \vec{y} \in E .$$

**Proposition 7.2.** Every k-cell is convex.

```
Proof:
```

```
\langle 1 \rangle 1. Let: C = \{ \vec{x} \in \mathbb{R}^k : \forall i.a_i \leq x_i \leq b_i \} be a k-cell.
```

 $\langle 1 \rangle 2$ . Let:  $\vec{x}, \vec{y} \in C$  and  $\lambda \in (0, 1)$ .

PROVE:  $\lambda \vec{x} + (1 - \lambda) \vec{y} \in C$ 

 $\langle 1 \rangle 3$ . For each i we have  $a_i \leq \lambda x_i + (1 - \lambda)y_i \leq b_i$ 

PROOF: Since  $\lambda a_1 + (1 - \lambda)a_i \le \lambda x_i + (1 - \lambda)y_i \le \lambda b_i + (1 - \lambda)b_i$ .

# Chapter 8

# Real Inner Product Spaces

**Definition 8.1** (Inner Product). Given  $\vec{x}, \vec{y} \in \mathbb{R}^k$ , define the inner product  $\vec{x} \cdot \vec{y}$  by

$$(x_1, \ldots, x_k) \cdot (y_1, \ldots, y_k) = x_1 y_1 + \cdots + x_k y_k$$
.

**Definition 8.2** (Norm). Define the *norm* of a vector  $\vec{x} \in \mathbb{R}^k$  by

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$$
.

Proposition 8.3.

$$\|\vec{x}\| \ge 0$$

PROOF: Immediate from the definition.  $\Box$ 

**Proposition 8.4.** *If*  $||\vec{x}|| = 0$  *then*  $\vec{x} = \vec{0}$ .

PROOF: If  $\|\vec{x}\| = 0$  then  $x_1^2 + \dots + x_n^2 = 0$  so  $x_1 = \dots = x_n = 0$ .  $\square$ 

**Proposition 8.5.** For  $\alpha \in \mathbb{R}$  and  $\vec{x} \in \mathbb{R}^k$ ,

$$\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\| .$$

Proof: Easy.  $\square$ 

**Proposition 8.6.** For  $\vec{x}, \vec{y} \in \mathbb{R}^k$ , we have

$$||\vec{x} \cdot \vec{y}|| \le ||\vec{x}|| ||\vec{y}||$$
.

PROOF: By the Schwarz inequality.  $\square$ 

**Proposition 8.7.** For  $\vec{x}, \vec{y} \in \mathbb{R}^k$  we have

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$
.

Proof:

$$\|\vec{x} + \vec{y}\|^{2} = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y})$$

$$= \vec{x} \cdot \vec{x} + 2\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y}$$

$$\leq \|\vec{x}\|^{2} + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^{2}$$
 (Proposition 8.6)
$$= (\|\vec{x}\| + \|\vec{y}\|)^{2}$$

Corollary 8.7.1. For  $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^k$  we have

$$\|\vec{x} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$
.

**Definition 8.8** (Bounded Function). Let E be a set. Let  $f: E \to \mathbb{R}^k$ . Then f is bounded iff f(E) is bounded.

# 8.1 Balls

**Definition 8.9** (Closed Ball). Let  $\vec{x} \in \mathbb{R}^k$  and r > 0. The *closed ball* with *centre*  $\vec{x}$  and *radius* r is

$$\{y \in \mathbb{R}^k : ||y - x|| \le r\} .$$

Proposition 8.10. Every closed ball is convex.

PROOF:

 $\langle 1 \rangle 1$ . Let: B be the closed ball with center  $\vec{a}$  and radius r.

 $\langle 1 \rangle 2$ . Let:  $\vec{x}, \vec{y} \in B$ 

 $\langle 1 \rangle 3$ . Let:  $\lambda \in (0,1)$ 

 $\langle 1 \rangle 4$ .  $\lambda \vec{x} + (1 - \lambda) \vec{y} \in B$ 

Proof:

$$\begin{split} \|\lambda \vec{x} + (1-\lambda)\vec{y} - \vec{a}\| &= \|\lambda(\vec{x} - \vec{a}) + (1-\lambda)(\vec{y} - \vec{a})\| \\ &= \lambda \|\vec{x} - \vec{a}\| + (1-\lambda)\|\vec{y} - \vec{a}\| \\ &\leq \lambda r + (1-\lambda)r \\ &= r \end{split}$$

# Chapter 9

# Complex Inner Product Spaces

**Definition 9.1** (Inner Product). Let V be a complex vector space. An *inner product* on V is a function  $\langle \ , \ \rangle : V^2 \to \mathbb{C}$  such that, for all  $x,y,z \in V$  and  $\alpha \in \mathbb{C}$ :

- $\langle y, x \rangle = \overline{\langle x, y \rangle}$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\bullet \ \langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$
- $\langle x, x \rangle \ge 0$
- If  $\langle x, x \rangle = 0$  then x = 0.

An inner product space consists of a complex vector space V and an inner product on V.

**Definition 9.2** (Norm). Let V be an inner product space and  $x \in V$ . The norm of x is

$$||x|| = \sqrt{\langle x, x \rangle}$$
.

Proposition 9.3. An inner product space is a metric space under

$$d(x,y) = ||x - y||.$$

**Definition 9.4** (Bounded). Let  $V_1$  and  $V_2$  be inner product spaces and  $T:V_1 \to V_2$  a linear transformation. Then T is bounded iff  $\{\|T(x)\|: \|x\|=1\}$  is bounded above.

**Proposition 9.5.** Every linear transformation between finite dimensional inner product spaces is bounded.

**Definition 9.6** (Outer Product). Let V be an inner product space and  $|\psi\rangle$ ,  $|\phi\rangle \in V$ . The *outer product* of  $|\psi\rangle$  and  $|\phi\rangle$  is

$$|\psi\rangle\langle\phi|:V\to V$$
.

#### **Hilbert Spaces** 9.1

Definition 9.7 (Hilbert Space). A Hilbert space is a complete inner product space.

**Theorem 9.8** (Completeness Relation). Let  $\mathcal{H}$  be a Hilbert space. Let  $\{|e_n\rangle\}_{n\in\mathbb{N}}$ be a countable orthonormal basis for H. Then

$$\sum_{n=0}^{\infty} |e_n\rangle \langle e_n| = I .$$

Proof:

 $\begin{array}{l} \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(2)} & \text{(2)$ 

$$\sum_{n=0}^{\infty} \langle e_n | \phi \rangle | e_n \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \alpha_m \langle e_n | e_m \rangle | e_n \rangle$$
$$= \sum_{n=0}^{\infty} \alpha_n | e_n \rangle$$
$$= | \psi \rangle$$

**Definition 9.9** (Separable). A Hilbert space is *separable* iff it has a countable dense orthonormal basis.

# Chapter 10

# Lie Algebras

**Definition 10.1** (Lie Algebra). Let K be a field. A Lie algebra  $\mathcal{L}$  over K consists of a vector space  $\mathcal{L}$  over K and an operation

$$[\ ,\ ]:\mathcal{L}^2 \to \mathcal{L}\ ,$$

the *Lie bracket* or *commutator*, such that, for all  $x, y, z \in \mathcal{L}$  and  $\alpha \in K$ :

$$\begin{split} [x+y,z] &= [x,z] + [y,z] \\ [x,y+z] &= [x,y] + [x,z] \\ [\alpha x,y] &= \alpha [x,y] \\ [x,x] &= 0 \\ [x,[y,z]] + [y,[z,x]] + [z,[x,y]] &= 0 \end{split} \tag{Jacobi identity}$$

**Lemma 10.2.** If K has characteristic 0 then the condition [x, x] = 0 can be replaced with [x, y] = -[y, x].

**Proposition 10.3.** The commutator is determind by its values on any basis for  $\mathcal{L}$ .

**Example 10.4.**  $\mathbb{R}^3$  with the cross product is a real Lie algebra.

**Example 10.5.** For any  $n \geq 0$ , we have GL(n, K) is a Lie algebra over K under

$$[A, B] = AB - BA .$$

**Definition 10.6** (Linear Lie Algebra). A *linear Lie algebra* over K is a Lie algebra over K that is a subalgebra of GL(n, K) for some n.

**Example 10.7** (Special Linear Algebra). The special Linear algebra  $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : \text{tr} = 0\}$  is a real linear Lie algebra.

**Example 10.8** (Orthogonal Lie Algebra). The *orthogonal Lie algebra*  $SO(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : A \text{ is skew-symmetric} \}$  is a real linear Lie algebra.

**Example 10.9.** Let u(n) be the set of all skew-Hermitian  $n \times n$ -matrices as a real Lie algebra.

Let  $su(n) = u(n) \cap SL(n, \mathbb{R})$ .

**Proposition 10.10.** SU(2) is spanned by the Pauli matrices

$$\sigma_x = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \qquad \sigma_y = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_z = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

which satisfy

$$[\sigma_x, \sigma_y] = \sigma_z$$
$$[\sigma_y, \sigma_z] = \sigma_x$$
$$[\sigma_z, \sigma_x] = \sigma_y$$

# 10.1 Lie Algebar Homomorphisms

**Definition 10.11** (Homomorphism). Let  $L_1$  and  $L_2$  be Lie algebras over the same field. A *Lie algebra homomorphism*  $\phi: L_1 \to L_2$  is a linear transformation such that

$$\phi([x,y]) = [\phi(x), \phi(y)]$$

for all  $x, y \in L_1$ .

Lemma 10.12. Every bijective Lie algebra homomorphism is an isomorphism.

**Definition 10.13** (Representation). Let L be a real (complex) Lie algebra. A representation of L is a Lie algebra homomorphism  $L \to GL(n, \mathbb{R})$  ( $GL(n, \mathbb{C})$ ) for some n.

**Example 10.14.** The linear transformation  $\mathbb{R}^3 \to su(2)$  defined by

$$i \mapsto \sigma_x, j \mapsto \sigma_y, k \mapsto \sigma_z$$

is a representation of  $\mathbb{R}^3$ .

# Part II Topology

# Chapter 11

# Metric Spaces

**Definition 11.1** (Metric). A *metric* on a set X is a function  $d: X^2 \to \mathbb{R}$  such that, for all  $x, y, z \in X$ :

- $d(x,y) \geq 0$
- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- Triangle Inequality  $d(x,z) \le d(x,y) + d(y,z)$

A  $metric\ space\ X$  consists of a set X and a metric on X.

**Example 11.2.**  $\mathbb{R}^k$  is a metric space under  $d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$ . The triangle inequality is Corollary 8.7.1.

**Example 11.3.** For any set X, the discrete metric on X is defined by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

**Proposition 11.4.** Let (X,d) be a metric space and Y a subset of X. Then  $d \upharpoonright Y^2$  is a metric on Y.

Proof: Easy.

# 11.1 Balls

**Definition 11.5** (Open Ball). Let  $\vec{x} \in \mathbb{R}^k$  and r > 0. The open ball with centre  $\vec{x}$  and radius r is

$$\{y \in \mathbb{R}^k : \|y - x\| < r\} .$$

**Proposition 11.6.** Every open ball in  $\mathbb{R}^k$  is convex.

Proof:

```
\langle 1 \rangle 1. Let: B be the open ball with center \vec{a} and radius r.
```

$$\langle 1 \rangle 2$$
. Let:  $\vec{x}, \vec{y} \in B$ 

$$\langle 1 \rangle 3$$
. Let:  $\lambda \in (0,1)$ 

$$\langle 1 \rangle 4$$
.  $\lambda \vec{x} + (1 - \lambda) \vec{y} \in B$ 

Proof:

$$\begin{split} \|\lambda \vec{x} + (1 - \lambda)\vec{y} - \vec{a}\| &= \|\lambda (\vec{x} - \vec{a}) + (1 - \lambda)(\vec{y} - \vec{a})\| \\ &= \lambda \|\vec{x} - \vec{a}\| + (1 - \lambda)\|\vec{y} - \vec{a}\| \\ &< \lambda r + (1 - \lambda)r \\ &= r \end{split}$$

# 11.2 Limit Points

**Definition 11.7** (Limit Point). Let X be a metric space. Let  $E \subseteq X$  and  $p \in X$ . Then p is a *limit point* of E iff every open ball with centre p contains a point of E other than p.

**Proposition 11.8.** Let X be a metric space. Let  $E \subseteq X$ . Let p be a limit point of E. Then every neighbourhood of p contains infinitely many points of E.

#### Proof:

- $\langle 1 \rangle 1$ . Assume: for a contradiction N is a neighbourhood of p that contains only finitely many points  $q_1, \ldots, q_n$  of  $E \{p\}$ .
- $\langle 1 \rangle 2$ . Let:  $r = \min(q_1, \ldots, q_n)$
- $\langle 1 \rangle 3$ . Let: B be the open ball with centre p and radius r.
- $\langle 1 \rangle 4$ . B is a neighbourhood of p that contains no points of E other than p.

Corollary 11.8.1. A finite set has no limit points.

**Definition 11.9** (Isolated Point). Let X be a metric space. Let  $E \subseteq X$  and  $p \in X$ . Then p is an *isolated point* of E iff  $p \in E$  and p is not a limit point of E.

# 11.3 Closed Sets

**Definition 11.10** (Closed Set). Let X be a metric space. Let  $E \subseteq X$ . Then E is *closed* iff every limit point of E is a member of E.

# 11.4 Interior Points

**Definition 11.11** (Interior Point). Let X be a metric space. Let  $E \subseteq X$  and  $p \in X$ . Then p is an *interior point* of E iff there exists an open ball E with centre E such that E if there exists an open ball E with the E if there exists an open ball E is the exist E if the exist E if the exist E is the exist E if the exist E is the exist E if the exist E if the exist E is the exist E if the exist E is the exist E if the exist E is the exist E if E if E is the exist E is the exist E if E is the exist E

11.5. OPEN SETS

**Definition 11.12** (Interior). The *interior* of a set E, denoted  $E^{\circ}$ , is the set of all its interior points.

51

**Proposition 11.13.** The interior of E is the largest open set that is included in E.

```
Proof:
\langle 1 \rangle 1. Let: I be the interior of E.
\langle 1 \rangle 2. I is open.
    \langle 2 \rangle 1. Let: p \in I
    \langle 2 \rangle 2. PICK an open ball B with centre p such that B \subseteq E.
    \langle 2 \rangle 3. \ B \subset I
       \langle 3 \rangle 1. Let: q \in B
       \langle 3 \rangle 2. There exists an open ball B' with centre q such that B' \subseteq B.
       \langle 3 \rangle 3. There exists an open ball B' with centre q such that B' \subseteq E.
       \langle 3 \rangle 4. \ q \in I
\langle 1 \rangle 3. If J is any open set and J \subseteq E then J \subseteq I.
    \langle 2 \rangle 1. Let: J be an open set.
    \langle 2 \rangle 2. Assume: J \subseteq E
    \langle 2 \rangle 3. For all p \in J, there exists an open ball B with centre p such that B \subseteq J.
    \langle 2 \rangle 4. For all p \in J, there exists an open ball B with centre p such that B \subseteq E.
    \langle 2 \rangle 5. \ p \in I
П
```

# 11.5 Open Sets

**Definition 11.14** (Open Sets). Let X be a metric space. Let  $E \subseteq X$ . Then E is *open* iff every point in E is an interior point of E.

Proposition 11.15. Every open ball is open.

```
Proof:
\langle 1 \rangle 1. Let: B be an open ball with centre c and radius r.
\langle 1 \rangle 2. Let: x \in B
\langle 1 \rangle 3. Let: \epsilon = r - d(x, c)
\langle 1 \rangle 4. Let: B' be the open ball with centre x and radius \epsilon.
        Prove: B' \subseteq B
\langle 1 \rangle 5. Let: y \in B'
\langle 1 \rangle 6. \ d(y,c) < r
   Proof:
                  d(y,c) \le d(y,x) + d(x,c)
                                                                      (Triangle Inequality)
                             < \epsilon + d(x,c)
                                                                                            (\langle 1 \rangle 5)
                                                                                            (\langle 1 \rangle 3)
                             = r
```

Proposition 11.16. A set is open if and only if its complement is closed.

```
Proof:
\langle 1 \rangle 1. Let: E \subseteq X
\langle 1 \rangle 2. If E is open then X - E is closed.
   \langle 2 \rangle 1. Assume: E is open.
   \langle 2 \rangle 2. Let: p be a limit point of X - E.
           PROVE: p \in X - E
   \langle 2 \rangle 3. Assume: for a contradiction p \in E.
   \langle 2 \rangle 4. PICK an open ball B with centre p such that B \subseteq E.
   \langle 2 \rangle5. B contains a point of X - E.
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 6. Q.E.D.
      PROOF: This contradicts \langle 2 \rangle 4.
\langle 1 \rangle 3. If X - E is closed then E is open.
   \langle 2 \rangle 1. Assume: X - E is closed.
   \langle 2 \rangle 2. Let: p \in E
   \langle 2 \rangle 3. Assume: for a contradiction no open ball with centre p is a subset of
   \langle 2 \rangle 4. Every open ball with centre p intersects X - E.
   \langle 2 \rangle5. p is a limit point of X - E.
   \langle 2 \rangle 6. \ p \in X - E
      Proof: \langle 2 \rangle 1
   \langle 2 \rangle 7. Q.E.D.
      Proof: This contradicts \langle 2 \rangle 2.
Corollary 11.16.1. A set is closed if and only if its complement is open.
Proposition 11.17. The union of a set of open sets is open.
\langle 1 \rangle 1. Let: \mathcal{U} be a set of open sets.
\langle 1 \rangle 2. Let: p \in \bigcup \mathcal{U}
\langle 1 \rangle 3. PICK U \in \mathcal{U} such that p \in U.
\langle 1 \rangle 4. PICK an open ball B with centre p such that B \subseteq U.
\langle 1 \rangle 5. \ B \subseteq \bigcup \mathcal{U}
Corollary 11.17.1. The intersection of a set of closed sets is closed.
Proposition 11.18. The intersection of two open sets is open.
Proof:
\langle 1 \rangle 1. Let: U and V be open.
\langle 1 \rangle 2. Let: p \in U \cap V
\langle 1 \rangle 3. PICK open balls B_1 and B_2 with centre p such that B_1 \subseteq U and B_2 \subseteq V.
\langle 1 \rangle 4. Assume: w.l.o.g. the radius of B_1 is \leq the radius of B_2.
\langle 1 \rangle 5. \ B_1 \subseteq U \cap V
```

Corollary 11.18.1. The union of two closed sets is closed.

**Example 11.19.** The intersection of a set of open sets is not necessarily open.

For every positive integer n, we have (-1/n, 1/n) is open in  $\mathbb{R}$ , but  $\bigcap_{n=1}^{\infty} (-1/n, 1/n) =$  $\{0\}$  is not open.

**Theorem 11.20.** Let X be a metric space. Let  $Y \subseteq X$  and  $E \subseteq Y$ . Then E is open in Y if and only if there exists an open subset G of X such that  $E = G \cap Y$ .

## Proof:

- $\langle 1 \rangle 1$ . If E is open in Y then there exists an open subset G of X such that  $E = G \cap Y$ .
  - $\langle 2 \rangle 1$ . Assume: E is open in Y.
  - $\langle 2 \rangle 2$ . For  $p \in E$ , Pick  $r_p > 0$  such that the open ball in Y with centre p and radius  $r_p$  is included in E.
  - $\langle 2 \rangle 3$ . For  $p \in E$ ,

Let:  $V_p$  be the open ball in X with centre p and radius  $r_p$ .

- $\langle 2 \rangle 4$ . Let:  $G = \bigcup_{p \in E} V_p$  $\langle 2 \rangle 5$ . G is open in Y.

Proof: Proposition 11.17.

- $\langle 2 \rangle 6$ .  $E = G \cap Y$ 
  - $\langle 3 \rangle 1. \ E \subseteq G \cap Y$ 
    - $\langle 4 \rangle 1$ . Let:  $p \in E$
    - $\langle 4 \rangle 2. \ p \in V_p$
    - $\langle 4 \rangle 3. \ p \in G$
  - $\langle 3 \rangle 2$ .  $G \cap Y \subseteq E$ 
    - $\langle 4 \rangle 1$ . Let:  $x \in G \cap Y$
    - $\langle 4 \rangle 2$ . PICK  $p \in E$  such that  $x \in V_p$
    - $\langle 4 \rangle 3. \ d(x,p) < r_p$
    - $\langle 4 \rangle 4. \ x \in E$
- $\langle 1 \rangle 2$ . For any open subset G of X, we have  $G \cap Y$  is open in Y.
  - $\langle 2 \rangle 1$ . Let: G be an open subset of X.
  - $\langle 2 \rangle 2$ . Let:  $p \in G \cap Y$
  - $\langle 2 \rangle 3$ . PICK r > 0 such that the open ball in X with centre p and radius r is included in G.
- $\langle 2 \rangle 4$ . The open ball in Y with centre p and radius r is included in  $G \cap Y$ .

#### Perfect Sets 11.6

**Definition 11.21** (Perfect Set). Let X be a metric space. Let  $E \subseteq X$ . Then E is perfect iff E is closed and every point in E is a limit point of E.

# 11.7 Bounded Sets

**Definition 11.22** (Bounded Set). Let X be a metric space. Let  $E \subseteq X$ . Then E is bounded iff there exists a real number M and  $q \in X$  such that, for all  $p \in E$ , we have d(p,q) < M.

**Definition 11.23** (Diameter). Let X be a metric space and  $E \subseteq X$  be bounded. Then the *diameter* of E is  $\sup\{d(x,y): x,y\in E\}$ .

**Proposition 11.24.** Let X be a metric space. Let  $E \subseteq X$  be bounded. Then  $\overline{E}$  is bounded and

$$\dim \overline{E} = \dim E .$$

```
PROOF:
```

- $\langle 1 \rangle 1$ . diam E is an upper bound for  $\{d(x,y) : x,y \in \overline{E}\}$ .
  - $\langle 2 \rangle 1$ . Let:  $x, y \in \overline{E}$
  - $\langle 2 \rangle 2$ . For all  $\epsilon > 0$  we have  $d(x,y) < \dim E + \epsilon$ .
    - $\langle 3 \rangle 1$ . Let:  $\epsilon > 0$
    - $\langle 3 \rangle 2$ . Pick  $x', y' \in E$  such that  $d(x', x) < \epsilon/2$  and  $d(y', y) < \epsilon/2$
    - $\langle 3 \rangle 3$ . d(x', y') < diam E
    - $\langle 3 \rangle 4$ .  $d(x,y) < \operatorname{diam} E + \epsilon$
  - $\langle 2 \rangle 3. \ d(x,y) \leq \operatorname{diam} E$
- $\langle 1 \rangle 2$ . diam  $\overline{E}$  is an upper bound for  $\{d(x,y) : x,y \in E\}$ .

PROOF: This follows since  $E \subseteq \overline{E}$ .

П

## 11.8 Dense Sets

**Definition 11.25** (Dense Set). Let X be a metric space. Let  $E \subseteq X$ . Then E is *dense* iff every point of X is either a limit point of E or a point of E, or both.

# 11.9 Closure

**Definition 11.26** (Closure). Let X be a metric space. Let  $E \subseteq X$ . Then the closure of E, denoted  $\overline{E}$ , is the union of E and the set of limit points of E.

**Proposition 11.27.**  $\overline{E}$  is the smallest closed set that includes E.

#### Proof:

- $\langle 1 \rangle 1$ .  $\overline{E}$  is closed.
  - $\langle 2 \rangle 1$ . Let: p be a limit point of  $\overline{E}$ .
  - $\langle 2 \rangle 2$ . Assume:  $p \notin E$

PROVE: p is a limit point of E.

- $\langle 2 \rangle$ 3. Let: B be the open ball with centre p and radius r. Prove: B intersects E.
- $\langle 2 \rangle 4$ . Pick a point  $q \in B \cap \overline{E}$ .
- $\langle 2 \rangle$ 5. Pick an open ball B' with centre q such that  $B' \subseteq B$ .

11.9. CLOSURE 55

```
\langle 2 \rangle 6. Pick a point r \in E \cap B'
```

 $\langle 2 \rangle 7. \ r \in E \cap B$ 

 $\langle 1 \rangle 2$ . If C is closed and  $E \subseteq C$  then  $\overline{E} \subseteq C$ .

- $\langle 2 \rangle 1$ . Assume: C is closed.
- $\langle 2 \rangle 2$ . Assume:  $E \subseteq C$
- $\langle 2 \rangle 3$ . Let:  $p \in \overline{E}$
- $\langle 2 \rangle 4$ . Assume: for a contradiction  $p \notin C$
- $\langle 2 \rangle 5$ . p is a limit point of C.
  - $\langle 3 \rangle 1$ . Let: B be an open ball with centre p.
  - $\langle 3 \rangle 2$ . B intersects E.
  - $\langle 3 \rangle 3$ . B intersects C.
  - $\langle 3 \rangle 4$ . B intersects C in a point other than p. Proof:  $\langle 2 \rangle 3$

 $\langle 2 \rangle 6$ . Q.E.D.

Proof: This contradicts  $\langle 2 \rangle 1$ .

Corollary 11.27.1. E is closed if and only if  $E = \overline{E}$ .

**Theorem 11.28.** Let E be a nonempty set of real numbers bounded above. Then  $\sup E \in \overline{E}$ .

#### Proof:

 $\langle 1 \rangle 1$ . Assume:  $\sup E \notin E$ 

PROVE:  $\sup E$  is a limit point of E.

- $\langle 1 \rangle 2$ . Let: B be an open ball with centre sup E and radius r.
- $\langle 1 \rangle 3$ . There exists  $x \in E$  such that  $x > \sup E r$ .
- $\langle 1 \rangle 4$ . E intersects B in a point other than p.

# Proposition 11.29.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

# Proof:

- $\langle 1 \rangle 1$ .  $\overline{A} \cup \overline{B}$  is a closed set that includes  $A \cup B$ .
- $\langle 1 \rangle 2$ . If C is a closed set that includes  $A \cup B$  then  $\overline{A} \cup \overline{B} \subseteq C$ .

**Example 11.30.** It is not true in general. that  $\overline{\bigcup A} = \bigcup_{A \in A} \overline{A}$ . In  $\mathbb{R}$ , let  $\mathcal{A} = \{\{1/n\} : n \in \mathbb{Z}^+\}$ . Then

$$\overline{\bigcup \mathcal{A}} = \{1/n : n \in \mathbb{Z}^+\} \cup \{0\}$$
$$\bigcup_{A \in \mathcal{A}} \overline{A} = \{1/n : n \in \mathbb{Z}^+\}$$

## Proposition 11.31.

$$X - E^{\circ} = \overline{X - E}$$

Proof:

$$p \in X - E^{\circ} \Leftrightarrow p \notin E^{\circ}$$
  
 $\Leftrightarrow \forall B$  an open ball with centre  $p.B \nsubseteq E$   
 $\Leftrightarrow \forall B$  an open ball with centre  $p.B$  intersects  $X - E$   
 $\Leftrightarrow p \in \overline{X - E}$ 

# 11.10 Compact Sets

**Definition 11.32** (Open Cover). Let X be a metric space. Let  $E \subseteq X$ . An open cover of E is a set  $\mathcal{U}$  of open sets such that  $E \subseteq \bigcup \mathcal{U}$ .

**Definition 11.33** (Compact Set). Let X be a metric space. Let  $K \subseteq X$ . Then K is *compact* iff every open cover of K includes a finite subcover.

**Proposition 11.34.** Every finite set is compact.

Proof: Easy.  $\square$ 

**Theorem 11.35.** Let X be a metric space. Let  $Y \subseteq X$  and  $K \subseteq Y$ . Then K is compact in Y if and only if K is compact in X.

#### PROOF:

- $\langle 1 \rangle 1$ . If K is compact in Y then K is compact in X.
  - $\langle 2 \rangle 1$ . Assume: K is compact in Y.
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{U}$  be an open cover of K in X.
  - $\langle 2 \rangle 3$ .  $\{ U \cap Y : U \in \mathcal{U} \}$  is an open cover of K in Y.
  - $\langle 2 \rangle 4$ . PICK a finite subcover  $\{U_1 \cap Y, \dots, U_n \cap Y\}$
  - $\langle 2 \rangle 5$ .  $\{U_1, \ldots, U_n\}$  is a finite subset of  $\mathcal{U}$  that is an open cover of K is X.
- $\langle 1 \rangle 2$ . If K is compact in X then K is compact in Y.
  - $\langle 2 \rangle 1$ . Assume: K is compact in X.
  - $\langle 2 \rangle 2$ . Let:  $\mathcal{U}$  be an open cover of K in Y.
  - $\langle 2 \rangle 3$ .  $\{ U \text{ open in } X : U \cap Y \in \mathcal{U} \}$  is an open cover of K in X.
  - $\langle 2 \rangle 4$ . PICK a finite subcover  $\{U_1, \ldots, U_n\}$ .
- $\langle 2 \rangle$ 5.  $\{U_1 \cap Y, \dots, U_n \cap Y\}$  is a subset of  $\mathcal{U}$  that is an open cover of E in Y.

Proposition 11.36. Every compact set is closed.

#### Proof:

- $\langle 1 \rangle 1$ . Let: E be compact.
- $\langle 1 \rangle 2$ . Let:  $p \in X E$

PROVE: There exists an open ball with centre p that is a subset of X-E.

- $\langle 1 \rangle 3$ . For all  $q \in E$ , there exist disjoint open balls B with centre q and B' with centre p.
- $\langle 1 \rangle 4$ . The set of open balls B such that there exists a disjoint open ball B' with centre p is an open cover of E.
- $\langle 1 \rangle$ 5. PICK a finite subcover  $\{B_1, \ldots, B_n\}$ .

 $\langle 1 \rangle$ 6. For  $i = 1, \ldots, n$ , PICK an open ball  $B_i'$  with centre p such that  $B_i \cap B_i' = \emptyset$ .  $\langle 1 \rangle$ 7.  $B_1' \cap \cdots \cap B_n'$  is an open ball with centre p that is a subset of X - E.

Proposition 11.37. Every closed subset of a compact set is compact.

#### Proof:

- $\langle 1 \rangle 1$ . Let: E be compact and  $C \subseteq E$  be closed.
- $\langle 1 \rangle 2$ . Let:  $\mathcal{U}$  be an open cover of C.
- $\langle 1 \rangle 3$ .  $\mathcal{U} \cup \{X C\}$  is an open cover of E.
- $\langle 1 \rangle 4$ . PICK a finite subcover  $\{U_1, \ldots, U_n\}$  or  $\{U_1, \ldots, U_n, X C\}$ .
- $\langle 1 \rangle 5. \{U_1, \dots, U_n\} \text{ covers } C.$

Corollary 11.37.1. The intersection of a compact set and a closed set is compact.

**Proposition 11.38.** Let K be a nonempty set of compact sets. If every nonempty finite subset of K has nonempty intersection, then  $\bigcap K$  is nonempty.

#### Proof:

- $\langle 1 \rangle 1$ . Pick  $K \in \mathcal{K}$
- $\langle 1 \rangle 2$ . Assume:  $\bigcap \mathcal{K} = \emptyset$
- $\langle 1 \rangle 3$ .  $\{X K' : K' \in \mathcal{K}\}$  is an open cover of K.
- $\langle 1 \rangle 4$ . PICK a finite subcover  $\{X K_1, \dots, X K_n\}$ .
- $\langle 1 \rangle$ 5. There exists  $p \in K \cap K_1 \cap \cdots \cap K_n$
- $\langle 1 \rangle 6$ . Q.E.D.

PROOF:  $\langle 1 \rangle 4$  and  $\langle 1 \rangle 5$  form a contradiction.

**Corollary 11.38.1.** Let  $(K_n)$  be a sequence of nonempty compact sets such that  $K_0 \supseteq K_1 \supseteq \cdots$ . Then  $\bigcap_{n=0}^{\infty} K_n \neq \emptyset$ .

**Theorem 11.39.** Let X be a metric space and  $E \subseteq X$ . Then E is compact if and only if every infinite subset of E has a limit point in E.

### Proof:

- $\langle 1 \rangle 1$ . If E is compact then every infinite subset of E has a limit point in E.
  - $\langle 2 \rangle 1$ . Assume: E is compact.
  - $\langle 2 \rangle 2$ . Let:  $A \subseteq E$  be infinite.
  - $\langle 2 \rangle 3$ . Assume: for a contradiction E has no limit point in K.
  - $\langle 2 \rangle 4$ . For all  $p \in K$ , there exists an open ball B with centre p such that B does not intersect E outside p.
  - $\langle 2 \rangle$ 5. The set of open balls that intersect E in at most one point is an open cover for K.
  - $\langle 2 \rangle 6$ . PICK a finite subcover  $B_1, \ldots, B_n$ .
  - $\langle 2 \rangle 7$ . E has at most n points.
  - $\langle 2 \rangle 8$ . Q.E.D.

PROOF: This contradicts the fact that E is finite.

```
\langle 1 \rangle 2. If every infinite subset of K has a limit point in K then K is compact.
   \langle 2 \rangle 1. Assume: Every infinite subset of K has a limit point in K.
   \langle 2 \rangle 2. Let: \mathcal{U} be an open cover of K.
   \langle 2 \rangle 3. Assume: w.l.o.g. \mathcal{U} is countable.
      PROOF: We may replace \mathcal{U} with the set of all open balls B with centres in
      \mathbb{Q}^2 and rational radius such that there exists U \in \mathcal{U} such that B \subseteq U.
   \langle 2 \rangle 4. Pick an enumeration \mathcal{U} = \{G_n : n \in \mathbb{N}\}.
   \langle 2 \rangle 5. For n \in \mathbb{N},
   LET: F_n = \bigcup_{i=0}^n G_n. \langle 2 \rangle 6. For all n \in \mathbb{N}, we have K - F_n \neq \emptyset.
       PROOF: Since \{G_0, \ldots, G_n\} does not cover K.
   \langle 2 \rangle 7. \bigcap_{n=0}^{\infty} F_n = \emptyset
      PROOF: Since \{G_n : n \in \mathbb{N}\} covers K.
   \langle 2 \rangle 8. For n \in \mathbb{N}, PICK a_n \in K - F_n
   \langle 2 \rangle 9. Let: E = \{a_n : n \in \mathbb{N}\}
   \langle 2 \rangle 10. E is infinite.
       \langle 3 \rangle 1. Let: n \in \mathbb{N}
                PROVE: there exists m such that a_m \notin \{a_0, a_1, \dots, a_n\}.
       \langle 3 \rangle 2. For i = 0, \ldots, n, PICK k_i such that a_i \in G_{k_i}.
       \langle 3 \rangle 3. Let: m = \max(k_0, \dots, k_n)
       \langle 3 \rangle 4. Assume: for a contradiction a_m = a_i for some i = 0, \ldots, n
       \langle 3 \rangle 5. \ a_i \in G_{k_i}
       \langle 3 \rangle 6. \ a_i \notin F_m
       \langle 3 \rangle 7. Q.E.D.
          PROOF: This is a contradiction since k_i \leq m.
   \langle 2 \rangle 11. PICK a limit point l for E in K.
       Proof: From \langle 2 \rangle 1.
   \langle 2 \rangle 12. PICK n such that l \in G_n.
   \langle 2 \rangle 13. Pick an open ball B with centre l such that B \subseteq G_n
   \langle 2 \rangle 14. B \cap E is infinite.
       Proof: Proposition 11.8.
   \langle 2 \rangle 15. Pick m \geq n such that a_m \in B.
   \langle 2 \rangle 16. \ a_m \in G_n
   \langle 2 \rangle 17. Q.E.D.
```

**Theorem 11.40** (Heine-Borel). Let  $E \subseteq \mathbb{R}^k$ . Then E is compact if and only if it is closed and bounded.

## Proof:

 $\langle 1 \rangle 1$ . If E is compact then E is closed.

Proof: Proposition 11.36.

 $\langle 1 \rangle 2$ . If E is compact then E is bounded.

PROOF: Otherwise  $\{(-N,N)^k : N \in \mathbb{Z}^+\}$  would be an open cover of E with no finite subcover.

 $\langle 1 \rangle 3$ . If E is closed and bounded then E is compact.

PROOF: This is a contradiction since  $a_m \notin F_m$ .

```
\langle 2 \rangle 1. Assume: E is closed and bounded.
```

 $\langle 2 \rangle 2$ . Pick  $\vec{c}$  and M such that  $\forall \vec{x} \in E. ||\vec{x} - \vec{c}|| < M$ .

$$\langle 2 \rangle 3. \ E \subseteq \prod_{i=1}^k [c_i - M, c_i + M]$$

 $\langle 2 \rangle 4$ . E is compact.

Proof: Proposition 11.37.

Corollary 11.40.1 (Weierstrass's Theorem). Every bounded infinite subset of  $\mathbb{R}^k$  has a limit point.

Proof: It is a bounded infinite subset of some k-cell and therefore has a limit point in that k-cell.  $\square$ 

Example 11.41. It is not true that, in any metric space, a set is compact if and only if it is closed and bounded.

In  $\mathbb{Q}$ , the set  $\{p \in \mathbb{Q} : 2 < p^2 < 3\}$  is closed and bounded but not compact.

**Theorem 11.42.** Every nonempty perfect set in  $\mathbb{R}^k$  is uncountable.

 $\langle 1 \rangle 1$ . Let: P be a nonempty perfect set in  $\mathbb{R}^k$ .

 $\langle 1 \rangle 2$ . P is infinite.

Proof: Corollary 11.8.1.

 $\langle 1 \rangle 3$ . Assume: for a contradiction P is countable.

 $\langle 1 \rangle 4$ . PICK an enumeration  $P = \{x_n : n \in \mathbb{N}\}.$ 

 $\langle 1 \rangle$ 5. PICK a sequence  $(V_n)$  of open balls such that, for all n, we have  $\overline{V_{n+1}} \subseteq V_n$ and  $x_n \notin \overline{V_{n+1}}$  and  $V_n \cap P \neq \emptyset$ 

 $\langle 2 \rangle 1$ . Assume: as induction hypothesis we have picked  $V_0, \ldots, V_{n-1}$  that satisfy these conditions.

 $\langle 2 \rangle 2$ . PICK  $p \in P \cap V_n$  such that  $p \neq x_n$ 

PROOF: We cannot have  $P \cap V_n = \{x_n\}$  because then  $V_n$  would be a neighbourhood of  $x_n$  that only intersects P at  $x_n$ .

 $\langle 2 \rangle 3$ . PICK an open ball B with centre p such that  $B \subseteq V_n \cap P - \{x_n\}$ 

 $\langle 2 \rangle 4$ . Let:  $V_{n+1}$  be the open ball with centre p and half the radius of B.

 $\langle 2 \rangle$ 5.  $\overline{V_{n+1}} \subseteq V_n$ PROOF: Since  $\overline{V_{n+1}} \subseteq B \subseteq V_n$ .

 $\langle 2 \rangle 6. \ x_n \notin \overline{V_{n+1}}$ 

PROOF: Since  $\overline{V_{n+1}} \subseteq B \subseteq P - \{x_n\}$ .

 $\langle 2 \rangle 7. \ V_{n+1} \cap P \neq \emptyset$ 

PROOF: Since  $p \in V_{n+1} \cap P$ .

 $\langle 1 \rangle 6$ . For  $n \in \mathbb{N}$ ,

Let: 
$$K_n = \overline{V_n} \cap P$$
.

 $\langle 1 \rangle 7$ . For all  $n \in \mathbb{N}$ ,  $K_n$  is compact.

PROOF: By the Heine-Borel Theorem.

 $\langle 1 \rangle 8. \bigcap_{n=0}^{\infty} K_n \cap P = \emptyset$ PROOF: Since for each n we have  $x_n \notin K_{n+1}$ .

 $\langle 1 \rangle 9. \bigcap_{n=0}^{\infty} K_n = \emptyset$ PROOF: Since  $\bigcap_{n=0}^{\infty} K_n \subseteq P$ .

 $\langle 1 \rangle 10$ . Q.E.D.

Proof: This contradicts Proposition 11.38.

**Corollary 11.42.1.** For any  $a, b \in \mathbb{R}$  with a < b, the closed interval [a, b] is uncountable.

Corollary 11.42.2.  $\mathbb{R}$  is uncountable.

Corollary 11.42.3. The set of transcendental numbers is uncountable.

Proof: Since the set of algebraic numbers is countable.  $\Box$ 

**Example 11.43.** The Cantor set is a perfect set in  $\mathbb{R}$  that does not include any open interval.

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $(E_n)$  be the sequence of unions of closed intervals from the definition of the Cantor set, and C be the Cantor set.
- $\langle 1 \rangle 2. \ C \neq \emptyset$

PROOF: Since  $0 \in C$ .

 $\langle 1 \rangle 3$ . C is closed.

PROOF: Each  $E_n$  is closed and C is their intersection.

- $\langle 1 \rangle 4$ . Every point of C is a limit point of C.
  - $\langle 2 \rangle 1$ . Let:  $p \in C$
  - $\langle 2 \rangle 2$ . Let: B be an open ball with centre p and radius r.
  - $\langle 2 \rangle 3$ . Pick n such that each of the intervals that make up  $E_n$  has length < r/2.
  - $\langle 2 \rangle 4$ . Let: I be the interval in  $E_n$  that contains p.
  - $\langle 2 \rangle 5$ .  $I \subseteq B$
  - $\langle 2 \rangle 6$ . The endpoint of I that is not p is in  $P \cap B$ .
- $\langle 1 \rangle 5$ . C does not include any open interval.
  - $\langle 2 \rangle 1$ . Let:  $(\alpha, \beta)$  be any open interval.
  - $\langle 2 \rangle 2$ . PICK m such that  $3^{-m} < (\beta \alpha)/6$
  - $\langle 2 \rangle 3$ . PICK k such that  $\left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) \subseteq (\alpha, \beta)$

  - $\langle 2 \rangle 4. \ \left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) \subseteq P$  $\langle 2 \rangle 5. \ \left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) \cap E_m = \emptyset$
  - $\langle 2 \rangle 6$ . Q.E.D.

PROOF: This is a contradiction.

Corollary 11.43.1. The Cantor set is uncountable.

**Proposition 11.44.** Let X be a metric space. Let  $(K_n)$  be a sequence of compact sets in X such that  $K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots$ . Assume diam  $K_n \to 0$  as  $n \to \infty$ . Then  $\bigcap_{n=0}^{\infty} K_n$  is a singleton.

## Proof:

 $\langle 1 \rangle 1. \bigcap_n K_n \neq \emptyset$ 

# 11.11 Connected Sets

**Definition 11.45** (Separated). Let X be a metric space. Let  $A, B \subseteq X$ . Then A and B are separated iff  $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ .

Proposition 11.46. Any two disjoint open sets are separated.

```
Proof:
```

- $\langle 1 \rangle 1$ . Let: A and B be disjoint open sets.
- $\langle 1 \rangle 2$ . Assume: for a contradiction  $p \in \overline{A} \cap B$ .
- $\langle 1 \rangle 3$ . B is a neighbourhood of p.
- $\langle 1 \rangle 4$ . B intersects A.

**Definition 11.47** (Connected). Let X be a metric space. Let  $E \subseteq X$ . Then E is *connected* iff E is not the union of two nonempty separated sets.

**Theorem 11.48.** A subset E of the real line is connected if and only if it is convex.

#### Proof:

- $\langle 1 \rangle 1$ . If E is connected then E is convex.
  - $\langle 2 \rangle 1$ . Assume: E is connected.
  - $\langle 2 \rangle 2$ . Let:  $x, y \in E$
  - $\langle 2 \rangle 3$ . Let:  $z \in (x, y)$
  - $\langle 2 \rangle 4. \ z \in E$

PROOF: Otherwise  $E \cap (-\infty, z)$  and  $E \cap (z, +\infty)$  would be a separation of E.

- $\langle 1 \rangle 2$ . If E is convex then E is connected.
  - $\langle 2 \rangle 1$ . Assume: E is convex.
  - $\langle 2 \rangle 2$ . Assume: for a contradiction  $E = A \cup B$  where A and B are nonempty and separated.
  - $\langle 2 \rangle 3$ . Pick  $a \in A$  and  $b \in B$ .
  - $\langle 2 \rangle 4$ . Assume: w.l.o.g. a < b
  - $\langle 2 \rangle 5$ . Let:  $z = \sup(A \cap [a, b])$
  - $\langle 2 \rangle 6. \ z \in \overline{A}$
  - $\langle 2 \rangle 7. \ z \notin B$

```
\begin{array}{l} \langle 2 \rangle 8. \ z < b \\ \langle 2 \rangle 9. \ \text{Case:} \ z \in A \\ \langle 3 \rangle 1. \ z \notin \overline{B} \\ \langle 3 \rangle 2. \ \text{Pick} \ z_1 \in (z,b) \ \text{such that} \ z_1 \notin B \\ \langle 3 \rangle 3. \ a < z_1 < b \\ \langle 3 \rangle 4. \ z_1 \notin E \\ \text{Proof:} \ \text{We have} \ z_1 \notin A \ \text{from} \ \langle 2 \rangle 5 \ \text{since} \ z_1 \in [a,b] \ \text{and} \ z_1 > z, \ \text{and} \\ z_1 \notin B \ \text{from} \ \langle 3 \rangle 2. \\ \langle 3 \rangle 5. \ \text{Q.E.D.} \\ \text{Proof:} \ \text{This contradicts} \ \langle 2 \rangle 1. \\ \langle 2 \rangle 10. \ \text{Case:} \ z \notin A \\ \text{Proof:} \ \text{Then} \ a < z < b \ \text{and} \ z \notin E \ \text{contradicting} \ \langle 2 \rangle 1. \\ \end{array}
```

**Proposition 11.49.** Every connected metric space with more than one point is uncountable.

#### PROOF:

- $\langle 1 \rangle 1$ . Let: X be a connected metric space with more than one points.
- $\langle 1 \rangle 2$ . Pick distinct points  $p, q \in X$ .
- $\langle 1 \rangle 3$ . Let:  $\epsilon = d(p,q)$
- $\langle 1 \rangle 4$ . For every  $r \in (0, \epsilon)$ , there exists a point  $x \in X$  such that d(p, x) = r. Proof: Otherwise  $\{x \in X : d(p, x) < r\}$  and  $\{x \in X : d(p, x) > r\}$  would form a separation of X.

**Proposition 11.50.** The closure of a connected set is connected.

## Proof:

- $\langle 1 \rangle 1$ . Let: X be a metric space.
- $\langle 1 \rangle 2$ . Let: E be a connected subspace of X.
- $\langle 1 \rangle$ 3. Assume: for a contradiction A and B form a separation of  $\overline{E}$  Prove:  $A \cap E$  and  $B \cap E$  form a separation of E.
- $\langle 1 \rangle 4$ .  $A \cap E \neq \emptyset$ 
  - $\langle 2 \rangle 1$ . Assume: for a contradiction  $A \cap E = \emptyset$
  - $\langle 2 \rangle 2$ .  $E \subseteq B$
  - $\langle 2 \rangle 3. \ \overline{E} \subseteq \overline{B}$
  - $\langle 2 \rangle 4. \ A \subseteq \overline{B}$
  - $\langle 2 \rangle 5. \ A \cap \overline{B} = A \neq \emptyset$
  - $\langle 2 \rangle 6$ . Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 3$ .

 $\langle 1 \rangle 5. \ B \cap E \neq \emptyset$ 

Proof: Similar.

 $\langle 1 \rangle 6. \ \overline{A \cap E} \cap B \cap E = \emptyset$ 

PROOF: Since  $\overline{A \cap E} \cap B \cap E \subseteq \overline{A} \cap B$ .

 $\langle 1 \rangle 7$ .  $A \cap E \cap \overline{B \cap E} = \emptyset$ 

PROOF: Similar.

П

**Example 11.51.** The interior of a connected set is not necessarily connected.

Two touching discs in  $\mathbb{R}^2$  form a connected set but the interior is disconnected.

**Proposition 11.52.** Every convex set in  $\mathbb{R}^k$  is connected.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } E \text{ be a convex set in } \mathbb{R}^k. \\ \langle 1 \rangle 2. \text{ Assume: for a contradiction } A \text{ and } B \text{ form a separation of } E. \\ \langle 1 \rangle 3. \text{ Pick } \vec{a} \in A \text{ and } \vec{b} \in B. \\ \langle 1 \rangle 4. \text{ Define } p: [0,1] \to \mathbb{R}^k \text{ by } p(t) = (1-t)\vec{a}+t\vec{b}. \\ \langle 1 \rangle 5. \ p^{-1}(A) \text{ and } p^{-1}(B) \text{ are separated sets in } \mathbb{R}. \\ \langle 1 \rangle 6. \text{ Pick } x \in [0,1] \text{ such that } x \notin p^{-1}(A) \text{ and } x \notin p^{-1}(B). \\ \text{PROOF: There exists such an } x \text{ since } [0,1] \text{ is connected.} \\ \langle 1 \rangle 7. \ p(x) \in E \\ \text{PROOF: Since } E \text{ is convex.} \\ \langle 1 \rangle 8. \ p(x) \notin A \cup B \\ \langle 1 \rangle 9. \ Q.E.D. \\ \text{PROOF: This contradicts } \langle 1 \rangle 2. \\ \square
```

# 11.12 Separable Spaces

**Definition 11.53** (Separable). A metric space is *separable* iff it has a countable dense subset.

**Example 11.54.**  $\mathbb{R}^k$  is separable since  $\mathbb{Q}^k$  is dense.

Proposition 11.55. Every compact metric space is separable.

```
Proof:  \langle 1 \rangle 1. \text{ Let: } X \text{ be a compact metric space.}   \langle 1 \rangle 2. \text{ For } n \in \mathbb{Z}^+, \text{ pick finitely many points } a_{n1}, \ldots, a_{nr_n} \text{ such that } \{B(a_{ni}, 1/n) : 1 \leq i \leq r_n\} \text{ covers } X.  Proof: Since \{B(x, 1/n) : x \in X\} \text{ covers } X.   \langle 1 \rangle 3. \ \{a_{ni} : n \in \mathbb{Z}^+, 1 \leq i \leq r_n\} \text{ is dense.}   \langle 2 \rangle 1. \text{ Let: } U \text{ be an open set and } p \in U.   \langle 2 \rangle 2. \text{ Pick } \epsilon > 0 \text{ such that } B(p, \epsilon) \subseteq U.   \langle 2 \rangle 3. \text{ Pick } n \text{ such that } 1/n < \epsilon.   \langle 2 \rangle 4. \text{ Pick } i \text{ such that } p \in B(a_{ni}, 1/n)   \langle 2 \rangle 5. \ a_{ni} \in U
```

# 11.13 Bases

**Definition 11.56** (Basis). A basis for a metric space X is a set  $\mathcal{B}$  of open sets such that, for every open set U and point  $p \in U$ , there exists  $B \in \mathcal{B}$  such that  $p \in B \subseteq U$ .

Proposition 11.57. Every separable metric space has a countable basis.

```
Proof:
```

- $\langle 1 \rangle 1$ . Let: X be a separable metric space.
- $\langle 1 \rangle 2$ . PICK a countable dense set D in X.
- $\langle 1 \rangle 3$ . Let:  $\mathcal{B} = \{ B(p, \epsilon) : p \in D, \epsilon \in \mathbb{Q}^+ \}$ Prove:  $\mathcal{B}$  is a basis.
- $\langle 1 \rangle 4$ . Let: U be an open set in X and  $p \in U$
- $\langle 1 \rangle$ 5. Pick  $\epsilon > 0$  such that  $B(p, \epsilon) \subseteq U$
- $\langle 1 \rangle 6$ . Pick  $q \in B(p, \epsilon) \cap D$
- $\langle 1 \rangle 7$ . PICK a rational  $\delta$  such that  $d(p,q) < \delta < \epsilon$ .
- $\langle 1 \rangle 8. \ B(q, \delta) \in \mathcal{B} \text{ and } B(q, \delta) \subseteq U.$

## 11.14 Condensation Points

**Definition 11.58** (Condensation Point). Let X be a metric space,  $p \in X$  and  $E \subseteq X$ . Then p is a *condensation point* of E iff every neighbourhood of p contains uncountably many points in E.

**Proposition 11.59.** Let X be a metric space. Let  $E \subseteq X$ . Let P be the set of condensation points of E. Then P is perfect.

# PROOF:

- $\langle 1 \rangle 1$ . P is closed.
  - $\langle 2 \rangle 1$ . Let:  $p \in X P$
  - $\langle 2 \rangle 2$ . Pick a neighbourhood U of p that contains only countably many points of E.
  - $\langle 2 \rangle 3$ . For every  $x \in U$ , we have that U is a neighbourhood of x that contains only countably many points of E.
  - $\langle 2 \rangle 4. \ p \in U \subseteq X P$
- $\langle 1 \rangle 2$ . Every point in P is a limit point of P.

PROOF: Immediate from definitions.

**Proposition 11.60.** Let X be a metric space with a countable basis. Let  $E \subseteq X$  be uncountable. Let P be the set of condensation points of E. Then E - P is countable.

#### Proof:

- $\langle 1 \rangle 1$ . PICK a countable basis  $\mathcal{B}$  for X.
- $\langle 1 \rangle 2$ . Let:  $W = \bigcup \{ B \in \mathcal{B} : E \cap B \text{ is countable} \}$

```
\langle 1 \rangle 3. \ P = X - W
   \langle 2 \rangle 1. \ P \subseteq X - W
       \langle 3 \rangle 1. Assume: for a contradiction p \in P \cap W
       \langle 3 \rangle 2. PICK B \in \mathcal{B} such that p \in B and E \cap B is countable.
       \langle 3 \rangle 3. E \cap B is uncountable.
       \langle 3 \rangle 4. Q.E.D.
          PROOF: This is a contradiction.
   \langle 2 \rangle 2. X - W \subseteq P
       \langle 3 \rangle 1. Let: p \in X - W
       \langle 3 \rangle 2. Let: U be a neighbourhood of p.
       \langle 3 \rangle 3. Pick B \in \mathcal{B} such that p \in B \subseteq U.
       \langle 3 \rangle 4. E \cap B is uncountable.
          PROOF: Since p \notin W.
       \langle 3 \rangle 5. E \cap W is uncountable.
\langle 1 \rangle 4. E - P = E \cap W
\langle 1 \rangle5. E - P is countable.
```

Corollary 11.60.1. Every closed subset of a metric space with a countable basis is the union of a perfect set and a countable set.

```
Proof:
```

- $\langle 1 \rangle 1$ . Let: X be a metric space with a countable basis.
- $\langle 1 \rangle 2$ . Let: E be a closed subset of X.
- $\langle 1 \rangle 3$ . Let: P be the set of condensation points of E.
- $\langle 1 \rangle 4$ . E P is countable.

Proof: Proposition 11.60.

- $\langle 1 \rangle 5$ .  $P \cap E$  is perfect.
  - $\langle 2 \rangle 1$ .  $P \cap E$  is closed.

PROOF: Proposition 11.59.

- $\langle 2 \rangle 2$ . Every point in  $P \cap E$  is a limit point of  $P \cap E$ .
  - $\langle 3 \rangle 1$ . Let:  $l \in P \cap E$
  - $\langle 3 \rangle 2$ . Let: U be a neighbourhood of l.
  - $\langle 3 \rangle 3$ . Pick  $x \in P \cap U$
  - $\langle 3 \rangle 4$ . *U* is a neighbourhood of *x*.
  - $\langle 3 \rangle$ 5. U contains uncountably many points of E.
  - $\langle 3 \rangle 6$ . U intersects  $P \cap E$

PROOF: It cannot be that every point in U and E is not in P since E-P is countable.

Corollary 11.60.2. Let X be a metric space with a countable basis. Then every countable set in X has an isolated point.

# Chapter 12

# Convergence

**Definition 12.1** (Converge). Let X be a metric space. Let  $(p_n)$  be a sequence in X and  $l \in X$ . Then we say  $(p_n)$  converges to the *limit* l, and write

$$p_n \to l \text{ as } n \to \infty$$
,

iff for every  $\epsilon > 0$ , there exists an integer N such that, for all  $n \geq N$ , we have  $d(p_n, l) < \epsilon$ .

We say  $(p_n)$  diverges iff it does not converge to any limit.

Proposition 12.2. A sequence has at most one limit.

#### Proof:

- $\langle 1 \rangle 1$ . Assume:  $p_n \to l$  and  $p_n \to m$  as  $n \to \infty$ .
- $\langle 1 \rangle 2$ . Assume: for a contradiction  $l \neq m$ .
- $\langle 1 \rangle 3$ . Let:  $\epsilon = d(l,m)/2$
- $\langle 1 \rangle 4$ . There exists N such that  $\forall n \geq N. d(p_n, l) < \epsilon$  and  $d(p_n, m) < \epsilon$
- $\langle 1 \rangle 5.$   $d(l,m) < 2\epsilon$
- $\langle 1 \rangle 6$ . Q.E.D.

PROOF: This is a contradiction.

Proposition 12.3. Every convergent sequence is bounded.

## Proof:

- $\langle 1 \rangle 1$ . Let:  $p_n \to l$  as  $n \to \infty$
- $\langle 1 \rangle 2$ . PICK N such that  $\forall n \geq N.d(p_n, l) < 1$
- $\langle 1 \rangle 3$ . Let:  $M = \max(d(p_0, l), \dots, d(p_{N-1}, l), 1)$
- $\langle 1 \rangle 4$ . For all n, we have  $d(p_n, l) \leq M$ .

۱ (

**Proposition 12.4.** If l is a limit point of E, then there exists a sequence in E that converges to l.

Proof:

 $\langle 1 \rangle 1$ . For  $n \in \mathbb{Z}^+$ , PICK a point  $a_n \in E$  such that  $d(a_n, l) < 1/n$ . PROOF: Since B(l, 1/n) intersects E.

$$\langle 1 \rangle 2. \ a_n \to l \text{ as } n \to \infty.$$

Corollary 12.4.1. Every sequence in a compact metric space has a convergent subsequence.

PROOF: By Theorem 11.39.  $\square$ 

**Proposition 12.5.** Assume  $s_n \to s$  and  $t_n \to t$  in  $\mathbb{R}^k$ . Then  $s_n + t_n \to s + t$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 2$ . PICK N such that, for all  $n \geq N$ , we have  $||s_n s|| < \epsilon/2$  and  $||t_n t|| < \epsilon/2$ .
- $\langle 1 \rangle 3$ . For all  $n \geq N$  we have  $||(s_n + t_n) (s + t)|| < \epsilon$ . PROOF: Since  $||(s_n + t_n) - (s + t)|| \leq ||s_n - s|| + ||t_n - t||$ .

**Lemma 12.6.** If  $s_n \to s$  as  $n \to \infty$  in  $\mathbb{C}$ , and  $c \in \mathbb{C}$ , then  $cs_n \to cs$  as  $n \to \infty$ .

#### Proof:

- $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 2$ . Assume: w.l.o.g.  $c \neq 0$
- $\langle 1 \rangle 3$ . Pick N such that  $\forall n \geq N . |s_n s| < \epsilon / |c|$ .
- $\langle 1 \rangle 4. \ \forall n \ge N. |cs_n cs| < \epsilon$

**Proposition 12.7.** If  $s_n \to s$  and  $t_n \to t$  in  $\mathbb{C}$  then  $s_n t_n \to st$ .

#### Proof:

- $\langle 1 \rangle 1$ .  $(s_n s)(t_n t) \to 0$  as  $n \to \infty$ 
  - $\langle 2 \rangle 1$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 2$ . PICK N such that, for all  $n \geq N$ , we have  $|s_n s| < \sqrt{\epsilon}$  and  $|t_n t| < \sqrt{\epsilon}$ .
  - $\langle 2 \rangle 3$ . For all  $n \geq N$  we have  $|(s_n s)(t_n t)| < \epsilon$
- $\langle 1 \rangle 2$ .  $s_n t_n st \to 0$  as  $n \to \infty$

Proof:

$$s_n t_n - st = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s)$$

$$\to 0 \qquad \text{as } n \to \infty$$

**Proposition 12.8.** If  $s_n \to s$  as  $n \to \infty$  in  $\mathbb{C}$ , and every  $s_n$  and s is nonzero, then  $1/s_n \to 1/s$  as  $n \to \infty$ .

## PROOF:

- $\langle 1 \rangle 1$ . PICK m such that, for all  $n \geq m$ , we have  $|s_n s| < \frac{1}{2}|s|$ .
- $\langle 1 \rangle 2$ .  $\forall n \geq m . |s_n| > \frac{1}{2} |s|$
- $\langle 1 \rangle 3$ . Let:  $\epsilon > 0$

 $\langle 1 \rangle 4$ . PICK N > m such that, for all  $n \geq N$ , we have

$$|s_n - s| < \frac{1}{2}|s|^2 \epsilon .$$

 $\langle 1 \rangle 5$ . For all  $n \geq N$ , we have

$$\left|\frac{1}{s_n} - \frac{1}{s}\right| < \epsilon .$$

Proof:

$$\left| \frac{1}{s_n} - \frac{1}{s} \right| = \frac{|s_n - s|}{|s_n||s|}$$

$$< \frac{|s|^2 \epsilon}{2|s_n||s|}$$

$$= \frac{|s|\epsilon}{2|s_n|}$$

$$< \epsilon$$

**Theorem 12.9.** Let  $(\vec{x_n})$  be a sequence in  $\mathbb{R}^k$  and  $\vec{l} \in \mathbb{R}^k$ . Then  $\vec{x_n} \to \vec{l}$  as  $n \to \infty$  iff, for i = 1, ..., k, we have  $\pi_i(\vec{x_n}) \to \pi_i(\vec{l})$  as  $n \to \infty$ .

Proof:

 $\langle 1 \rangle 1$ . If  $\vec{x_n} \to \vec{l}$  then  $\pi_i(\vec{x_n}) \to \pi_i(l)$ .

$$\langle 2 \rangle 1. \ \|\vec{x_n} - \vec{l}\| \to 0 \text{ as } n \to \infty.$$

$$\langle 2 \rangle 2. \quad \sqrt{\sum_{i=1}^{k} (\pi_i(\vec{x_n}) - \pi_i(l))^2} \to 0 \text{ as } n \to \infty.$$

$$\langle 2 \rangle 3. \quad \sum_{i=1}^{k} (\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0 \text{ as } n \to \infty.$$

$$\langle 2 \rangle 4. \quad (\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0 \text{ as } n \to \infty.$$

$$\langle 2 \rangle 3. \sum_{i=1}^k (\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0 \text{ as } n \to \infty.$$

$$\langle 2 \rangle 4$$
.  $(\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0$  as  $n \to \infty$ 

$$\langle 2 \rangle 5$$
.  $\pi_i(\vec{x_n}) - \pi_i(l) \to 0$  as  $n \to \infty$ .

 $\langle 1 \rangle 2$ . If  $\pi_i(\vec{x_n}) \to \pi_i(\vec{l})$  for every i then  $\vec{x_n} \to l$ .

$$\langle 2 \rangle 1$$
. Assume:  $\pi_i(\vec{x_n}) \to \pi_i(\vec{l})$  for every  $i$ .

$$\langle 2 \rangle 2. \ \vec{x_n} \rightarrow \vec{l}$$

Proof:

$$\|\vec{x_n} - \vec{l}\|^2 = \sum_{i=1}^k (\pi_i(\vec{x_n}) - \pi_i(\vec{l}))^2$$

$$\to 0$$

Corollary 12.9.1. If  $\beta_n \to \beta$  in  $\mathbb{R}$  and  $\vec{x_n} \to \vec{l}$  in  $\mathbb{R}^k$ , then  $\beta_n \vec{x_n} \to \beta \vec{l}$ .

**Proposition 12.10.** If  $\vec{x_n} \to \vec{x}$  and  $\vec{y_n} \to \vec{y}$  in  $\mathbb{R}^k$ , then  $\vec{x_n} \cdot \vec{y_n} \to \vec{x} \cdot \vec{y}$ .

Proof:

$$\vec{x_n} \cdot \vec{y_n} = \sum_{i=1}^k \pi_i(\vec{x_n}) \pi_i(\vec{y_n})$$

$$\rightarrow \sum_{i=1}^k \pi_i(\vec{x}) \pi_i(\vec{y})$$

$$= \vec{x} \cdot \vec{y}$$

**Proposition 12.11.** Let  $(p_n)$  be a sequence in the metric space X. The set  $E^*$  of all limits of convergent subsequences is a closed set.

#### PROOF:

- $\langle 1 \rangle 1$ . Assume: w.l.o.g.  $\{p_n : n \in \mathbb{N}\}$  is infinite.
- $\langle 1 \rangle 2$ . Let: q be a limit point of  $E^*$ . Prove:  $q \in E^*$
- $\langle 1 \rangle 3$ . PICK an integer  $n_0$  such that  $q \neq p_{n_0}$ .
- $\langle 1 \rangle 4$ . Extend a strictly increasing sequence of integers  $(n_i)$  such that, for all i, we have  $d(q, p_{n_i}) \leq 2^i d(q, p_{n_0})$ .
  - $\langle 2 \rangle 1$ . Assume: as induction hypothesis we have picked  $n_0 < n_1 < \cdots < n_i$  such that, for  $0 \le j \le i$ , we have  $d(q, p_{n_j}) \le 2^j d(q, p_{n_0})$ .
  - $\langle 2 \rangle 2$ . PICK  $x \in E^*$  such that  $d(x,q) < 2^{-(i+2)} \delta$
  - $\langle 2 \rangle 3$ . There exists a subsequence of  $(p_n)$  that converges to x.
  - $\langle 2 \rangle 4$ . There exists  $n_{i+1} > n_i$  such that  $d(p_{n_{i+1}}, x) < 2^{-(i+2)} \delta$ .
  - $\langle 2 \rangle 5. \ d(p_{n_{i+1}}, q) < 2^{-(i+1)} \delta$
- $\langle 1 \rangle 5. \ p_{n_i} \to q \text{ as } i \to \infty.$
- $\langle 1 \rangle 6. \ q \in E^*$

**Theorem 12.12.** Every monotonically increasing sequence in  $\mathbb{R}$  that is bounded above converges to its supremum.

## Proof:

- $\langle 1 \rangle 1$ . Let:  $(s_n)$  be a monotonically increasing sequence with supremum s.
- $\langle 1 \rangle 2$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 3$ . PICK S such that  $|s_N s| < \epsilon$
- $\langle 1 \rangle 4$ . For all  $n \geq N$ , we have  $s \epsilon < s s_N \leq s s_n \leq s$ .
- $\langle 1 \rangle 5. \ \forall n \geq N. |s_n s| < \epsilon$

**Theorem 12.13.** Every monotonically decreasing sequence in  $\mathbb{R}$  that is bounded below converges to its infimum.

Proof: Similar.  $\square$ 

**Proposition 12.14** (Sandwich Theorem). Let  $(a_n)$ ,  $(b_n)$  and  $(c_n)$  be sequences of real numbers and  $l \in \mathbb{R}$ . Assume  $\forall n.a_n \leq b_n \leq c_n$  and  $a_n \to l$  and  $c_n \to l$ . Then  $b_n \to l$ .

Proof:

 $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$ 

 $\langle 1 \rangle 2$ . PICK N such that, for all  $n \geq N$ , we have  $|a_n - l| < \epsilon$  and  $|c_n - l| < \epsilon$ .

$$\langle 1 \rangle 3. \ \forall n \geq N. |b_n - l| < \epsilon$$

**Theorem 12.15.** For any real p > 0 we have

$$\frac{1}{(n+1)^p} \to 0$$

as  $n \to \infty$ .

Proof:

 $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$ 

 $\langle 1 \rangle 2$ . PICK N such that  $N > (1/\epsilon)^{1/p}$ .

 $\langle 1 \rangle 3$ . Let:  $n \geq N$ 

$$\langle 1 \rangle 4. \ 1/n^p < \epsilon$$

**Theorem 12.16.** For any real p > 0 we have

$$p^{\frac{1}{n+1}} \to 1$$

as  $n \to \infty$ .

Proof:

 $\langle 1 \rangle 1$ . Case: p > 1

 $\langle 2 \rangle 1$ . For  $n \in \mathbb{N}$ 

LET:  $x_n = p^{\frac{1}{n+1}} - 1$ .

 $\langle 2 \rangle 2. \ \forall n \in \mathbb{N}. x_n > 0$ 

 $\langle 2 \rangle 3. \ \forall n \in \mathbb{N}.$ 

$$1 + (n+1)x_n < p$$

 $1+(n+1)x_n \leq p \ .$  Proof: Since  $1+(n+1)x_n \leq (1+x_n)^{n+1}$  by the Binomial Theorem.

 $\langle 2 \rangle 4. \ \forall n \in \mathbb{N}.$ 

$$0 < x_n \le \frac{p-1}{n+1} .$$

 $\langle 2 \rangle 5$ .  $x_n \to 0$  as  $n \to \infty$ .

PROOF: Sandwich Theorem.

 $\langle 1 \rangle 2$ . Case: p = 1

Proof: Trivial.

 $\langle 1 \rangle 3$ . Case: p < 1

PROOF: Then  $p^{1/(n+1)} = 1/((1/p)^{1/(n+1)}) \to 1/1 = 1$  by  $\langle 1 \rangle 1$ .

Theorem 12.17.

$$(n+1)^{1/(n+1)} \to 1 \text{ as } n \to \infty$$

Proof:

$$\begin{array}{ll} \langle 1 \rangle 1. \ \ \text{For} \ n \in \mathbb{N}, \\ \text{Let:} \ \ x_n = (n+1)^{1/(n+1)} - 1. \end{array}$$

$$\langle 1 \rangle 2. \ \forall n \in \mathbb{N}. x_n \geq 0$$

$$\langle 1 \rangle 3. \ \forall n \in \mathbb{N}$$

$$n+1 \ge \frac{n(n+1)}{2}x_n^2.$$

PROOF: Since  $(1+x_n)^{n+1} \ge \frac{n(n+1)}{2}x_n^2$  by the Binomial Theorem.

 $\langle 1 \rangle 4. \ \forall n \geq 1$ 

$$0 \le x_n \le \sqrt{\frac{2}{n}}$$

 $\langle 1 \rangle 5$ .  $x_n \to 0$  as  $n \to \infty$ .

PROOF: Sandwich Theorem.

**Theorem 12.18.** Let p and  $\alpha$  be real numbers with p > 0. Then

$$\frac{n^{\alpha}}{(1+p)^n} \to 0 \text{ as } n \to \infty .$$

Proof:

 $\langle 1 \rangle 1$ . PICK a positive integer k such that  $k > \alpha$ .

PROOF: Archimedean Property.

 $\langle 1 \rangle 2$ .  $\forall n > 2k$ 

$$(1+p)^n > \frac{n^k p^k}{2^k k!} .$$

$$(1+p)^n > \binom{n}{k} p^k$$
 (Binomial Theorem)
$$= \frac{n(n-1)\cdots(n-k+1)}{k!} p^k$$

$$> \frac{n^k p^k}{2^k k!}$$
  $(n>2k \text{ so if } n-k < i \le n \text{ then } i > n/2)$ 

$$\langle 1 \rangle 3. \ \forall n>2k$$

$$0 < \frac{n^{\alpha}}{(1+p)^n} < \frac{2^k k!}{p^k} n^{\alpha-k}$$
.

 $\langle 1 \rangle 4$ .  $n^{\alpha-k} \to 0$  as  $n \to \infty$ 

PROOF: Theorem 12.15.  $\langle 1 \rangle 5$ .  $\frac{n^{\alpha}}{(1+p)^n} \to 0$  as  $n \to \infty$ .

PROOF: Sandwich Theorem.

Corollary 12.18.1. For any real number x with |x| < 1 we have  $x^n \to 0$  as  $n \to \infty$ .

Proof: Taking  $\alpha = 0$ .

### 12.1 Cauchy Sequences

**Definition 12.19** (Cauchy Sequence). Let  $(p_n)$  be a sequence in the metric space X. Then  $(p_n)$  is a Cauchy sequence iff, for every  $\epsilon > 0$ , there exists N such that, for all  $m, n \geq N$ , we have  $d(p_m, p_n) < \epsilon$ .

**Proposition 12.20.** Let  $(p_n)$  be a sequence in the metric space X and let  $E_N = \{p_n : n \geq N\}$  for all N. Then  $(p_n)$  is a Cauchy sequence if and only if diam  $E_N \to 0$  as  $N \to \infty$ .

PROOF: Immediate from definitions.  $\square$ 

Theorem 12.21. Every convergent sequence is Cauchy.

```
Proof:
```

```
\langle 1 \rangle 1. Let: (p_n) be a convergent sequence with limit l. \langle 1 \rangle 2. Let: \epsilon > 0 \langle 1 \rangle 3. Pick N such that, for all n \geq N, we have d(p_n, l) < \epsilon/2 \langle 1 \rangle 4. \forall m, n \geq N. d(p_m, p_n) < \epsilon
```

### 12.2 Complete Metric Spaces

**Definition 12.22** (Complete Metric Space). A metric space is *complete* iff every Cauchy sequence converges.

Theorem 12.23. Every compact metric space is complete.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } X \text{ be a compact metric space.}   \langle 1 \rangle 2. \text{ Let: } (p_n) \text{ be a Cauchy sequence in } X.   \langle 1 \rangle 3. \text{ For } N \in \mathbb{N},   \text{ Let: } \underline{E_N} = \{p_n : n \geq N\}.   \langle 1 \rangle 4. \text{ diam } \overline{E_N} \to 0 \text{ as } N \to \infty.   \langle 1 \rangle 5. \text{ For all } N, \text{ every } \overline{E_N} \text{ is compact.}   \text{PROOF: Proposition } 11.37.   \langle 1 \rangle 6. \text{ For all } N \text{ we have } \overline{E_N} \supseteq \overline{E_{N+1}}.   \langle 1 \rangle 7. \text{ Let: } l \text{ be the unique point in } \bigcap_{N=0}^{\infty} \overline{E_N}   \text{PROVE: } p_n \to l \text{ as } n \to \infty.   \text{PROOF: Proposition } 11.44.   \langle 1 \rangle 8. \text{ Let: } \epsilon > 0   \langle 1 \rangle 9. \text{ PICK } N_0 \text{ such that } \forall N \geq N_0. \text{ diam } \overline{E_N} < \epsilon.   \langle 1 \rangle 10. \forall q \in E_N. d(l,q) < \epsilon   \langle 1 \rangle 11. \forall n \geq N. d(l,p_n) < \epsilon   \square
```

Corollary 12.23.1. Let X be a metric space. If every closed bounded set in X is compact, then X is complete.

- $\langle 1 \rangle 1$ . Let: S be a Cauchy sequence in X.
- $\langle 1 \rangle 2$ . S is bounded.
- $\langle 1 \rangle 3$ .  $\overline{S}$  is closed and bounded.
- $\langle 1 \rangle 4$ .  $\overline{S}$  is compact.
- $\langle 1 \rangle 5$ . S is a Cauchy sequence in  $\overline{S}$ .
- $\langle 1 \rangle 6$ . S converges.

Corollary 12.23.2. For every natural number k, we have  $\mathbb{R}^k$  is complete.

Corollary 12.23.3. Every closed subspace of a complete metric space is complete.

**Proposition 12.24.** Let X be a complete metric space. Let  $(E_n)$  be a sequence of nonempty closed bounded sets in X with

$$E_0 \supseteq E_1 \supseteq \cdots$$

and diam  $E_n \to 0$  as  $n \to \infty$ . Then  $\bigcap_{n=0}^{\infty} E_n$  consists of exactly one point.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $K = \bigcap_{n=0}^{\infty} E_n$  $\langle 1 \rangle 2$ . K has at least one point.
  - $\langle 2 \rangle 1$ . For each n, PICK  $a_n \in E_n$
  - $\langle 2 \rangle 2$ .  $(a_n)$  is Cauchy.
    - $\langle 3 \rangle 1$ . Let:  $\epsilon > 0$
    - $\langle 3 \rangle 2$ . Pick N such that  $\forall n \geq N$ . diam  $E_n < \epsilon$
    - $\langle 3 \rangle 3. \ \forall m, n \ge N. d(a_m, a_n) < \epsilon$
  - $\langle 2 \rangle 3$ . Let:  $l = \lim_{n \to \infty} a_n$
  - $\langle 2 \rangle 4. \ l \in K$ 
    - $\langle 3 \rangle 1$ . Let:  $n \in \mathbb{N}$
    - $\langle 3 \rangle 2$ . For all  $m \geq n$  we have  $a_m \in E_n$
    - $\langle 3 \rangle 3. \ l \in E_n$
- $\langle 1 \rangle 3$ . K has at most one point.
  - $\langle 2 \rangle 1$ . Assume: for a contradiction  $a, b \in K$  such that  $a \neq b$
  - $\langle 2 \rangle 2$ . Pick n such that diam  $E_n < d(a,b)$
  - $\langle 2 \rangle 3. \ a,b \in E_n$
  - $\langle 2 \rangle 4$ . Q.E.D.

Proof: This is a contradiction.

**Theorem 12.25** (Baire's Theorem). Let X be a complete metric space. Let  $(G_n)$  be a sequence of dense open subsets of X. Then  $\bigcap_{n=0}^{\infty} G_n$  is not empty.

П

 $\langle 1 \rangle 1$ . PICK a sequence  $(E_n)$  of open balls such that  $E_0 \supseteq E_1 \supseteq \cdots$  and diam  $E_n \leq 1/2^n$  and  $\overline{E_n} \subseteq G_n$ .

```
\langle 2 \rangle 1. \text{ Assume: as induction hypothesis we have chosen } E_0, \ldots, E_n \text{ with centres } c_0, \ldots, c_n. \langle 2 \rangle 2. \text{ Pick } x \in E_n \cap G_{n+1} \langle 2 \rangle 3. \text{ Pick } 0 < \epsilon \le 1/2^{n+2} \text{ such that } B(x,\epsilon) \subseteq E_n \cap G_{n+1} \langle 2 \rangle 4. \text{ Let: } E_{n+1} = B(x,\epsilon/2) \langle 2 \rangle 5. E_{n+1} \subseteq E_n \langle 2 \rangle 6. \text{ diam } E_{n+1} \le 1/2^{n+1} \langle 2 \rangle 7. \overline{E_{n+1}} \subseteq G_{n+1} \langle 1 \rangle 2. \text{ Let: } \bigcap_{n=0}^{\infty} \overline{E_n} = \{p\} Proof: Proposition 12.24. \langle 1 \rangle 3. p \in \bigcap_{n=0}^{\infty} G_n
```

### 12.3 Divergent Sequences

**Definition 12.26.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . Then we say  $s_n$  diverges to  $+\infty$ , and write

$$s_n \to +\infty \text{ as } n \to \infty$$
,

iff for every real number M, there exists an integer N such that

$$\forall n \geq N.s_n \geq M$$
.

We say  $s_n$  diverges to  $-\infty$ , and write

$$s_n \to -\infty \text{ as } n \to \infty$$
,

iff for every real number M, there exists an integer N such that

$$\forall n \geq N.s_n \leq M$$
.

**Definition 12.27** (Limit Supremum, Limit Infimum). Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . Let E be the set of all  $l \in \mathbb{R} \cup \{+\infty, -\infty\}$  such that there exists a subsequence of  $(s_n)$  that converges to l.

The *limit supremum* of  $(s_n)$ , denoted

$$\limsup_{n\to\infty} s_n ,$$

is the supremum of E in the extended reals.

The *limit infimum* of  $(s_n)$ , denoted

$$\liminf_{n\to\infty} s_n ,$$

is the infimum of E in the extended reals.

PROOF: The set E is always nonempty because: if  $(s_n)$  is unbounded above then  $+\infty \in E$ ; if it is unbounded below then  $-\infty \in E$ ; and if it is bounded above and below then there is a real number in E by Corollary 12.4.1.  $\square$ 

**Theorem 12.28.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . Then there exists a subsequence of  $(s_n)$  that converges or diverges to  $\limsup_{n\to\infty} s_n$ 

### Proof:

 $\langle 1 \rangle 1$ . Case:  $\limsup_{n} s_n = +\infty$ 

PROOF:  $(s_n)$  is unbounded above and so has a subsequence that diverges to  $+\infty$ .

 $\langle 1 \rangle 2$ . Case:  $\limsup_n s_n \in \mathbb{R}$ 

PROOF: Then  $\limsup s_n$  is in the set of limits of subsequences of  $(s_n)$  by Proposition 12.11.

 $\langle 1 \rangle 3$ . Case:  $\limsup_n s_n = -\infty$ 

PROOF:  $(s_n)$  is unbounded below and so has a subsequence that diverges to  $-\infty$ .

**Theorem 12.29.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . Then there exists a subsequence of  $(s_n)$  that converges or diverges to  $\liminf_{n\to\infty} s_n$ 

Proof: Similar.

**Theorem 12.30.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . If  $x > \limsup_n s_n$ , then there exists N such that  $\forall n \geq N.s_n < x$ .

PROOF: If not, we could choose a subsequence of  $(s_n)$  that converges to a value  $\geq x$ , contradicting the definition of  $\limsup_n s_n$ .  $\square$ 

**Theorem 12.31.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . If  $x < \liminf_n s_n$ , then there exists N such that  $\forall n \geq N. s_n > x$ .

Proof: Similar.

**Theorem 12.32.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . Let  $s^*$  be an extended real such that:

- There exists a subsequence of  $(s_n)$  that converges or diverges to  $s^*$ .
- For any  $x > s^*$ , there exists N such that  $\forall n \geq N.s_n < x$ .

Then  $s^* = \limsup_n s_n$ .

### Proof:

- $\langle 1 \rangle 1$ . Let: E be the set of subsequential limits of  $(s_n)$ .
- $\langle 1 \rangle 2$ .  $s^*$  is an upper bound for E.
  - $\langle 2 \rangle 1$ . Let:  $x \in E$
  - $\langle 2 \rangle 2$ . Assume: for a contradiction  $x > s^*$ .
  - $\langle 2 \rangle 3. \ s^* \in \mathbb{R}$
  - $\langle 2 \rangle 4$ . Let: y = x if  $x \in \mathbb{R}$ , or  $s^* + 1$  if  $x = +\infty$
  - $\langle 2 \rangle$ 5. There exists N such that  $\forall n \geq N.s_n < y$ .
  - $\langle 2 \rangle 6$ . Q.E.D

PROOF: This contradicts the fact that some subsequence of  $(s_n)$  converges or diverges to x.

 $\langle 1 \rangle 3$ . If u is an upper bound for E then  $s^* \leq u$ .

**Theorem 12.33.** Let  $(s_n)$  be a sequence in  $\mathbb{R}$ . Let  $s^*$  be an extended real such that:

- There exists a subsequence of  $(s_n)$  that converges or diverges to  $s^*$ .
- For any  $x < s^*$ , there exists N such that  $\forall n \geq N.s_n > x$ .

Then  $s^* = \liminf_n s_n$ .

Proof: Similar.

**Proposition 12.34.** Let  $(s_n)$  be a sequence of real numbers and  $l \in \mathbb{R}$ . Then  $(s_n)$  converges to l iff  $\limsup_n s_n = \liminf_n s_n = l$ .

### Proof:

 $\langle 1 \rangle 1$ . If  $(s_n)$  converges to l then  $\limsup_n s_n = \liminf_n s_n = l$ .

PROOF: If  $(s_n)$  converges to l then every subsequence of  $(s_n)$  converges to l.

- $\langle 1 \rangle 2$ . If  $\limsup_n s_n = \liminf_n s_n = l$  then  $(s_n)$  converges to l.
  - $\langle 2 \rangle 1$ . Assume:  $\limsup_n s_n = \liminf_n s_n = l$
  - $\langle 2 \rangle$ 2. For all  $\epsilon > 0$ , there exists N such that  $\forall n \geq N.l \epsilon < s_n < l + \epsilon$ . PROOF: Theorem 12.32 and 12.33.
  - $\langle 2 \rangle 3. \ s_n \to l \text{ as } n \to \infty.$

**Theorem 12.35.** Let  $(s_n)$  and  $(t_n)$  be sequences of real numbers and  $N \in \mathbb{N}$ . Assume  $\forall n \geq N. s_n \leq t_n$ . Then

$$\liminf_{n\to\infty} s_n \le \liminf_{n\to\infty} t_n .$$

### Proof:

- $\langle 1 \rangle 1$ . For any subsequence  $(t_{n_r})$  of  $(t_n)$  that converges or diverges to  $\pm \infty$ , we have  $\liminf_n s_n \leq \lim_r t_{n_r}$ 
  - $\langle 2 \rangle 1$ . Let:  $(t_{n_r})$  be a subsequence of  $(t_n)$  with limit l.
  - $\langle 2 \rangle 2$ . PICK m such that a subsequence of  $(s_{n_r})$  has limit m.
  - $\langle 2 \rangle 3. \ \forall r.s_{n_r} \leq t_{n_r}$
  - $\langle 2 \rangle 4. \ m \leq l$
  - $\langle 2 \rangle 5$ .  $\liminf_n s_n \leq l$
- $\langle 1 \rangle 2$ .  $\liminf_n s_n \leq \liminf_n t_n$

**Theorem 12.36.** Let  $(s_n)$  and  $(t_n)$  be sequences of real numbers and  $N \in \mathbb{N}$ . Assume  $\forall n \geq N. s_n \leq t_n$ . Then

$$\limsup_{n \to \infty} s_n \le \limsup_{n \to \infty} t_n .$$

Proof: Similar.

**Theorem 12.37.** For any sequence  $(c_n)$  of positive real numbers, we have

$$\limsup_{n \to \infty} c_n^{1/n} \le \limsup_{n \to \infty} \frac{c_{n+1}}{c_n} .$$

Proof:

 $\langle 1 \rangle 1$ . Let:  $\alpha = \limsup_{n} c_{n+1}/c_n$ 

 $\langle 1 \rangle 2$ . Assume: w.l.o.g.  $\alpha < +\infty$ 

 $\langle 1 \rangle 3$ . For all  $\beta > \alpha$  we have  $\limsup_{n \to \infty} c_n^{1/n} \leq \beta$ .

 $\langle 2 \rangle 1$ . Let:  $\beta > \alpha$ 

 $\langle 2 \rangle 2$ . PICK N such that, for all  $n \geq N$ , we have  $c_{n+1} < \beta$ 

Proof: Theorem 12.30.

 $\langle 2 \rangle 3$ . For all  $k \geq 0$  we have

$$c_{N+k+1} \le \beta c_{N+k}$$
.

 $\langle 2 \rangle 4$ . For all  $n \geq N$  we have

$$c_n \le c_N \beta^{-N} \beta^n .$$

Proof: Induction on n.

 $\langle 2 \rangle 5$ . For all  $n \geq N$  we have

$$c_n^{1/n} \le (c_N \beta^{-N})^{1/n} \beta$$
.

 $\langle 2 \rangle 6$ .

$$\limsup_{n\to\infty} c_n^{1/n} \leq \beta$$

Proof:

$$\limsup_{n \to \infty} c_n^{1/n} \le \limsup_{n \to \infty} (c_N \beta^{-N})^{1/n} \beta$$
 (Theorem 12.36)  
=  $\beta$  (Theorem 12.16)

 $\langle 1 \rangle 4$ .

$$\limsup_{n\to\infty} c_n^{1/n} \leq \alpha$$

**Theorem 12.38.** For any sequence  $(c_n)$  of positive real numbers, we have

$$\liminf_{n \to \infty} \frac{c_{n+1}}{c_n} \le \liminf_{n \to \infty} c_n^{1/n} .$$

Proof: Similar.

**Proposition 12.39.** Let  $(a_n)$  and  $(b_n)$  be sequences of reals. Assume that it is not the case that one of  $\limsup_n a_n$ ,  $\limsup_n b_n$  is  $+\infty$  and the other is  $-\infty$ . Then

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

### 12.4 Infinite Series

**Definition 12.40.** Let  $(a_n)$  be a sequence in  $\mathbb{R}^k$  and  $s \in \mathbb{R}^k$ . We say the infinite series  $\sum_{n=0}^{\infty} a_n$  converges to s, and write

$$\sum_{n=0}^{\infty} a_n = s$$

iff

$$\sum_{n=0}^{N} a_n \to s \text{ as } N \to \infty .$$

If  $(\sum_{n=0}^{N} a_n)$  diverges, we say the infinite series  $\sum_{n=0}^{\infty} a_n$  diverges.

**Theorem 12.41.** Let  $(a_n)$  be a sequence in  $\mathbb{R}^k$ . Then  $\sum_{n=0}^{\infty} a_n$  converges if and only if, for all  $\epsilon > 0$ , there exists N such that, for all  $m, n \geq N$ ,

$$\left\| \sum_{i=m}^{n} a_i \right\| \le \epsilon .$$

PROOF: This is what it means for  $(\sum_{i=0}^{n} a_i)$  to be a Cauchy sequence.  $\square$ 

Corollary 12.41.1. If  $\sum_{n=0}^{\infty} a_n$  converges then  $a_n \to 0$  as  $n \to \infty$ .

**Theorem 12.42.** A series of nonnegative reals converges if and only if its partial sums form a bounded sequence.

PROOF: Its partial sums are a monotonically increasing sequence, and so converge if and only if they are bounded above.  $\Box$ 

**Theorem 12.43** (Comparison Test). Let  $(a_n)$  be a sequence in  $\mathbb{R}^k$  and  $(c_n)$  a sequence of real numbers. If there exists N such that  $\forall n \geq N . ||a_n|| \leq c_n$ , and if  $\sum_n c_n$  converges, then  $\sum_n a_n$  converges.

Proof:

 $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$ 

(1)2. PICK N such that  $\forall n \geq N . ||a_n|| \leq c_n$  and  $\forall m, n \geq N . \sum_{k=m}^n c_k < \epsilon$ .

 $\langle 1 \rangle 3. \ \forall m, n \geq N. \| \sum_{k=m}^{n} a_k \| \leq \epsilon$ 

**Corollary 12.43.1.** Let  $(a_n)$  and  $(d_n)$  be sequences of real numbers. If there exists N such that  $\forall n \geq N.a_n \geq d_n \geq 0$ , and if  $\sum_n d_n$  diverges, then  $\sum_n a_n$  diverges.

**Theorem 12.44** (Geometric Series). For x a real number with  $0 \le x < 1$  we have

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} .$$

PROOF: Since  $\sum_{n=0}^{N} x^n = \frac{1-x^{N+1}}{1-x} \to \frac{1}{1-x}$  as  $n \to \infty$ .

**Theorem 12.45.** For x a real number with  $x \ge 1$  we have  $\sum_{n=0}^{\infty} x^n$  diverges.

PROOF: If x = 1 then  $\sum_{n=0}^{N} x^n = N + 1$ . If x > 1 then  $\sum_{n=0}^{N} x^n = \frac{1 - x^{N+1}}{1 - x}$ . Both of these sequences diverge.  $\square$ 

**Theorem 12.46.** Let  $(a_n)$  be a monotonically decreasing sequence of nonnegative real numbers. Then  $\sum_n a_n$  converges if and only if  $\sum_n 2^n a_{2^n}$  converges.

### Proof:

 $\langle 1 \rangle 1$ . For  $N \in \mathbb{N}$ ,

LET:  $s_N = \sum_{n=0}^N a_n$ .  $\langle 1 \rangle 2$ . For  $N \in \mathbb{N}$ ,

Let:  $t_N = \sum_{n=0}^N 2^n a_{2^n}$ .  $\langle 1 \rangle 3$ . For natural number N and k with  $N < 2^k$  we have  $s_N \le a_0 + t_{k-1}$ . Proof:

$$s_N \le \sum_{n=0}^{2^k - 1} a_n$$

$$= a_0 + \sum_{i=0}^{k-1} \sum_{n=2^i} 2^{i+1} - 1a_n$$

$$\le a_0 + \sum_{i=0}^{k-1} 2^i a_{2^i}$$

$$= a_0 + t_{k-1}$$

 $\langle 1 \rangle 4$ . For natural number N and k with  $N > 2^k$  we have  $t_k < 2s_N$ . Proof:

$$s_N \ge \sum_{n=1}^{2^k} a_n$$

$$\ge \sum_{i=0}^k \sum_{n=2^{i+1}} 2^{i+1} a_n$$

$$\ge \sum_{i=0}^k 2^i a_{2^{i+1}}$$

$$= (1/2)t_k$$

 $\langle 1 \rangle$ 5.  $(s_N)$  converges if and only if  $(t_k)$  converges.

**Theorem 12.47.** If p is a real number with p > 1 then  $\sum_{n} 1/n^{p}$  converges.

PROOF: Since

PROOF: Since 
$$\sum_{n=0}^{\infty} 2^n \frac{1}{2^{np}} = \sum_{n=0}^{\infty} 2^{(1-p)n}$$
 which converges since  $2^{1-p} < 1$ .  $\Box$ 

**Theorem 12.48.** If p is a real number with  $p \le 1$  then  $\sum_{n} 1/n^p$  diverges.

PROOF: If  $p \leq 0$  then  $1/n^p$  does not converge to 0.

If 0 we have

If 
$$0 we have 
$$\sum_{n=0}^\infty 2^n \frac{1}{2^{np}} = \sum_{n=0}^\infty 2^{(1-p)n}$$
 which diverges since  $2^{1-p} \ge 1$ .  $\square$$$

**Theorem 12.49.** Let p be a real number. The series

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

converges if and only if p > 1.

Proof:

$$2^{k} \frac{1}{2^{k} (\ln 2^{k})^{p}} = \frac{1}{(k \ln 2)^{p}}$$
$$= \frac{1}{(\ln 2)^{p}} \cdot \frac{1}{k^{p}}$$

 $=\frac{1}{(\ln 2)^p}\cdot\frac{1}{k^p}$  and this series converges iff  $\sum_k\frac{1}{k^p}$  converges iff p>1.

**Theorem 12.50** (Root Test). Let  $(a_n)_{n\geq 1}$  be a sequence in  $\mathbb{R}^k$ . Let  $\alpha =$  $\limsup_{n\to\infty} \|a_n\|^{1/n}.$ 

- 1. If  $\alpha < 1$  then  $\sum_{n=1}^{\infty} a_n$  converges.
- 2. If  $\alpha > 1$  then  $\sum_{n=1}^{\infty} a_n$  diverges.

Proof:

- $\langle 1 \rangle 1$ . If  $\alpha < 1$  then  $\sum_{n=1}^{\infty} a_n$  converges.
  - $\langle 2 \rangle 1$ . Assume:  $\alpha < 1$
  - $\langle 2 \rangle 2$ . PICK  $\beta$  such that  $\alpha < \beta < 1$
  - $\langle 2 \rangle 3$ . PICK N such that  $\forall n \geq N . ||a_n||^{1/n} < \beta$ PROOF: Theorem 12.30.

- $\langle 2 \rangle 4$ .  $\forall n \geq N . ||a_n|| < \beta^n$  $\langle 2 \rangle 5$ .  $\sum_{n=1}^{\infty} \beta^n$  converges. PROOF: Theorem 12.44.

 $\langle 2 \rangle 6$ .  $\sum_{n=1}^{\infty} a_n$  converges.

PROOF: Comparison Test.  $\langle 1 \rangle 2$ . If  $\alpha > 1$  then  $\sum_{n=1}^{\infty} a_n$  diverges.  $\langle 2 \rangle 1$ . Assume:  $\alpha > 1$ 

- $\langle 2 \rangle 2$ . There exists a sequence of positive integers  $(n_k)$  such that  $||a_{n_k}||^{1/n_k} \to$  $\alpha$  as  $k \to \infty$ .

Proof: Theorem 12.28.

- $\langle 2 \rangle 3$ . There are infinitely many n such that  $||a_n|| > 1$ .
- $\langle 2 \rangle 4$ .  $a_n \to 0$  as  $n \to \infty$ .  $\langle 2 \rangle 5$ .  $\sum_{n=1}^{\infty} a_n$  diverges.

Proof: Corollary 12.41.1.

**Example 12.51.** If  $a_n = 1/n$  then  $|a_n|^{1/n} \to 1$  and  $\sum_n a_n$  diverges. If  $a_n = 1/n^2$  then  $|a_n|^{1/n} \to 1$  and  $\sum_n a_n$  converges.

**Theorem 12.52** (Ratio Test). Let  $(a_n)_{n\geq 0}$  be a sequence in  $\mathbb{R}^k$ .

1. If

$$\limsup_{n \to \infty} \frac{\|a_{n+1}\|}{\|a_n\|} < 1$$

then  $\sum_{n=0}^{\infty} a_n$  converges.

2. If there exists N such that  $\forall n \geq N. \frac{\|a_{n+1}\|}{\|a_n\|} > 1$  then  $\sum_{n=0}^{\infty} a_n$  diverges.

Proof:

- $\begin{array}{l} \text{Thoof:} \\ \langle 1 \rangle 1. \text{ If } \lim\sup_{n \to \infty} \frac{\|a_{n+1}\|}{\|a_n\|} < 1 \text{ then } \sum_{n=0}^{\infty} a_n \text{ converges.} \\ \langle 2 \rangle 1. \text{ Assume: } \lim\sup_{n \to \infty} \frac{\|a_{n+1}\|}{\|a_n\|} < 1 \\ \langle 2 \rangle 2. \lim\sup_{n \to \infty} \|a_n\|^{1/n} < 1 \end{array}$

PROOF: Theorem 12.37.  $\langle 2 \rangle 3$ .  $\sum_{n=0}^{\infty} a_n$  converges.

PROOF: Root Test

 $\langle 1 \rangle 2$ . If there exists N such that  $\forall n \geq N \cdot \frac{\|a_{n+1}\|}{\|a_n\|} > 1$  then  $\sum_{n=0}^{\infty} a_n$  diverges. PROOF: Since  $a_n \to 0$  as  $n \to \infty$ .

**Example 12.53.** If  $a_n = 1/n$  then  $a_{n+1}/a_n \to 1$  and  $\sum_n a_n$  diverges. If  $a_n = 1/n^2$  then  $a_{n+1}/a_n \to 1$  and  $\sum_n a_n$  converges.

### 12.5 The Number e

**Lemma 12.54.** The series  $\sum_{n=0}^{\infty} \frac{1}{n!}$  converges.

Proof:

$$\sum_{n=0}^{N} \frac{1}{n!} \le 1 + \sum_{n=1}^{N} \frac{1}{2^{n-1}}$$
< 3

**Definition 12.55.** The number e is

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} .$$

Theorem 12.56.

$$\left(1 + \frac{1}{n}\right)^n \to e \text{ as } n \to \infty$$

 $\langle 1 \rangle 1$ . For  $n \in \mathbb{N}$ ,

LET:  $s_n = \sum_{k=0}^n \frac{1}{k!}$  $\langle 1 \rangle 2$ . For  $n \in \mathbb{Z}^+$ ,

Let:  $t_n = (1 + \frac{1}{n})^n$  $\langle 1 \rangle 3$ . For  $n \in \mathbb{Z}^+$  we have

$$t_n = \sum_{k=0}^{n} \frac{1}{k!} \prod_{i=1}^{k-1} \left( 1 - \frac{i}{n} \right) .$$

Proof:

$$t_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$
 (Binomial Theorem)
$$= \sum_{k=0}^n \frac{\prod_{i=0}^{k-1} (n-i)}{k!} \frac{1}{n^k}$$

$$= \sum_{k=0}^n \frac{1}{k!} \prod_{i=0}^{k-1} \frac{n-i}{n}$$

$$= \sum_{k=0}^n \frac{1}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right)$$

$$= \sum_{k=0}^n \frac{1}{k!} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right)$$

$$\langle 1 \rangle 4. \text{ For } n \in \mathbb{Z}^+ \text{ we have } t_n \leq s_n.$$

$$\langle 1 \rangle 5. \lim \sup_{n \to \infty} t_n \leq e$$

$$\langle 1 \rangle 6. \text{ For } m, n \in \mathbb{Z}^+ \text{ with } n \geq m \text{ we have}$$

$$t_n \ge \sum_{k=0}^{m} \frac{1}{k!} \prod_{i=1}^{k-1} \left( 1 - \frac{i}{n} \right) .$$

 $\langle 1 \rangle 7$ . For  $m \in \mathbb{Z}^+$  we have

$$\liminf_{n \to \infty} t_n \ge \sum_{k=0}^m \frac{1}{k!} .$$

 $\langle 1 \rangle 8$ . For  $m \in \mathbb{Z}^+$  we have

$$s_m \leq \liminf_{n \to \infty} t_n$$
.

 $\langle 1 \rangle 9$ .

$$e \leq \liminf_{n \to \infty} t_n$$

 $\langle 1 \rangle 10$ .  $t_n \to e$  as  $n \to \infty$ .

PROOF: From  $\langle 1 \rangle 5$  and  $\langle 1 \rangle 9$ .

Theorem 12.57. e is irrational.

- $\langle 1 \rangle 1$ . Assume: for a contradiction e = p/q where p and q are positive integers.
- $\langle 1 \rangle 2$ . For  $n \in \mathbb{N}$ ,

Let: 
$$s_n = \sum_{k=0}^n \frac{1}{k!}$$
.  $\langle 1 \rangle 3$ . For  $n \in \mathbb{Z}^+$  we have

$$0 < e - s_n < \frac{1}{n!n} .$$

$$e - s_n = \sum_{k=n+1}^{\infty} \frac{1}{k!}$$

$$< \frac{1}{(n+1)!} \sum_{k=0}^{\infty} \frac{1}{(n+1)^k}$$

$$= \frac{1}{n!n}$$

 $\langle 1 \rangle 4$ .

$$0 < q!(e - s_q) < \frac{1}{q}$$

- $\langle 1 \rangle 5$ . q!e is an integer.
- $\langle 1 \rangle 6$ .  $q!(e-s_q)$  is an integer.
- $\langle 1 \rangle 7$ . There exists an integer between 0 and 1.
- $\langle 1 \rangle 8$ . Q.E.D.

PROOF: This is a contradiction.

Theorem 12.58. e is transcendental.

Proof: See I. M. Niven. Irrational Numbers p. 25.  $\square$ 

### 12.6 Power Series

**Definition 12.59** (Power Series). Let  $(c_n)$  be a sequence of complex numbers. The *power series* with *coefficients*  $(c_n)$  is the function that maps a complex number z to the series

$$\sum_{n=0}^{\infty} c_n z^n .$$

**Definition 12.60** (Radius of Convergence). Let  $(c_n)$  be a sequence of complex numbers. Let

$$\alpha := \limsup_{n \to \infty} |c_n|^{1/n}$$

$$R := \frac{1}{\alpha}$$

where  $R = +\infty$  if  $\alpha = 0$  and R = 0 if  $\alpha = +\infty$ . Then R is called the radius of convergence of the power series  $\sum_{n} c_n z^n$ .

**Theorem 12.61.** Let R be the radius of convergence of  $\sum_n c_n z^n$ .

1. If 
$$|z| < R$$
 then  $\sum_{n=0}^{\infty} c_n z^n$  converges.

2. If 
$$|z| > R$$
 then  $\sum_{n=0}^{\infty} c_n z^n$  diverges.

 $\langle 1 \rangle 1$ . For  $z \in \mathbb{C}$  and  $n \in \mathbb{N}$ , Let:  $a_n(z) = c_n z^n$ 

 $\langle 1 \rangle 2$ .

$$\limsup_{n \to \infty} |a_n(z)|^{1/n} = |z|/R$$

 $\limsup_{n\to\infty}|a_n(z)|^{1/n}=|z|/R$  (1)3. If |z|< R then  $\sum_{n=0}^\infty a_n(z)$  converges.

PROOF: Root Test.

(1)4. If |z| > R then  $\sum_{n=0}^{\infty} a_n(z)$  diverges.

PROOF: Root Test.

### 12.7Summation by Parts

**Theorem 12.62.** Let  $(a_n)$ ,  $(b_n)$  be two sequences in  $\mathbb{R}^k$ . Let

$$A_n = \sum_{k=0}^n a_k \qquad (n \ge -1) \ .$$

Let p and q be integers with  $0 \le p \le q$ . Then

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

Proof:

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q} (A_n - A_{n-1}) b_n$$

$$= \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1}$$

$$= \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p$$

**Theorem 12.63.** Let  $(a_n)$  be a sequence in  $\mathbb{R}^k$  and  $(b_n)$  be a sequence of real numbers. Assume that:

- 1. The partial sums  $\sum_{n=0}^{N} a_n$  form a bounded sequence.
- 2.  $(b_n)$  is monotone decreasing.
- 3.  $b_n \to 0$  as  $n \to \infty$ .

Then  $\sum_{n=0}^{\infty} a_n b_n$  converges.

Proof:

- $\langle 1 \rangle 1$ . Pick M such that, for all N, we have  $\|\sum_{n=0}^{N} a_n\| \leq M$ .
- $\langle 1 \rangle 2$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 3$ . PICK N such that  $b_N \leq \epsilon/2M$ .
- $\langle 1 \rangle 4$ . Let:  $N \leq p \leq q$
- $\langle 1 \rangle$ 5. For any integer k, LET:  $A_k = \sum_{n=0}^k a_n$ .  $\langle 1 \rangle$ 6.  $\| \sum_{n=p}^q a_n b_n \| \le \epsilon$

$$\langle 1 \rangle 6. \parallel \sum_{n=p}^{q} a_n b_n \parallel \leq \epsilon$$

$$\left\| \sum_{n=p}^{q} a_n b_n \right\| = \left\| \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p \right\| \quad \text{(Summation by Parts)}$$

$$\leq M \left\| \sum_{n=p}^{q-1} (b_n - b_{n+1}) + b_q - b_p \right\|$$

$$= 2M b_p$$

$$\leq 2M b_N$$

$$\leq \epsilon$$

 $\langle 1 \rangle 7$ . Q.E.D.

PROOF: Cauchy criterion.

Corollary 12.63.1 (Alternating Series). Let  $(c_n)$  be a sequence of real numbers. Assume that

- 1.  $(|c_n|)$  is monotone decreasing.
- 2.  $c_n \ge 0$  for all odd n, and  $c_n \le 0$  for all even n.
- 3.  $c_n \to 0$  as  $n \to \infty$

Then  $\sum_{n=0}^{\infty} c_n$  converges.

PROOF: Take  $a_n = (-1)^{n+1}$  and  $b_n = |c_n|$ .  $\square$ 

**Theorem 12.64.** Let  $\sum_{n} c_n z^n$  be a power series with radius of convergence 1. Suppose  $(c_n)$  is monotone decreasing with limit 0. Then  $\sum_n c_n z^n$  converges at every point on the circle |z| = 1 except possibly z = 1.

### Proof:

- $\langle 1 \rangle 1$ . Let: z be a complex number with |z| = 1 and  $z \neq 1$ .
- $\langle 1 \rangle 2$ . For  $n \in \mathbb{N}$ , Let:  $a_n = z^n$ .
- $\langle 1 \rangle 3$ . For  $n \in \mathbb{N}$ , Let:  $b_n = c_n$ .
- $\langle 1 \rangle 4$ . The partial sums  $\sum_{n=0}^{N} a_n$  form a bounded sequence.

$$\left| \sum_{n=0}^{N} a_n \right| = \left| \sum_{n=0}^{N} z^n \right|$$
$$= \left| \frac{1 - z^{N+1}}{1 - z} \right|$$
$$\leq \frac{2}{|1 - z|}$$

 $\langle 1 \rangle 5$ .  $(b_n)$  is monotone decreasing with limit 0.

 $\langle 1 \rangle 6$ . Q.E.D.

PROOF: Theorem 12.63.

### 12.8 Absolute Convergence

**Definition 12.65** (Absolute Convergence). Let  $(a_n)$  be a sequence in  $\mathbb{R}^k$ . Then the series  $\sum_{n=0}^{\infty} a_n$  converges absolutely iff  $\sum_{n=0}^{\infty} \|a_n\|$  converges.

**Theorem 12.66.** If  $\sum_{n=0}^{\infty} a_n$  converges absolutely then  $\sum_{n=0}^{\infty} a_n$  converges.

Proof:

 $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$ 

 $\langle 1 \rangle 2$ . PICK N such that, for all  $p, q \geq N$ , we have

$$\sum_{n=p}^{q} \|a_n\| \le \epsilon .$$

 $\langle 1 \rangle 3$ . For  $p, q \geq N$ , we have

$$\left\| \sum_{n=p}^{q} a_n \right\| \le \epsilon .$$

S

 $\langle 1 \rangle 4$ . Q.E.D.

PROOF: Cauchy criterion.

П

### 12.9 Addition and Multiplication of Series

**Theorem 12.67.** If  $\sum_{n} a_{n} = A \text{ and } \sum_{n} b_{n} = B \text{ then } \sum_{n} (a_{n} + b_{n}) = A + B$ .

Proof:

$$\sum_{n=0}^{N} (a_n + b_n) = \sum_{n=0}^{N} a_n + \sum_{n=0}^{N} b_n$$

$$\to A + B \qquad \text{as } N \to \infty \square$$

Theorem 12.68. If  $\sum_n a_n = A$  then  $\sum_n (ca_n) = cA$ .

88

Proof:

$$\sum_{n=0}^{N} ca_n = c \sum_{n=0}^{N} a_n$$

$$\to cA \qquad \text{as } N \to \infty \square$$

**Definition 12.69** (Cauchy Product). The (Cauchy) product of the series  $\sum_{n=0}^{\infty} a_n$  and  $\sum_{n=0}^{\infty} b_n$  is

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} .$$

**Theorem 12.70.** Let  $(a_n)$  and  $(b_n)$  be sequences of complex numbers. Assume:

- 1.  $\sum_{n=0}^{\infty} a_n$  converges absolutely.
- 2.  $\sum_{n=0}^{\infty} b_n$  converges.

For  $n \in \mathbb{N}$ , let  $c_n = \sum_{k=0}^n a_k b_{n-k}$ . Then

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) .$$

PROOF:

 $\langle 1 \rangle 1$ . Let:

$$A = \sum_{n=0}^{\infty} a_n$$

 $\langle 1 \rangle 2$ . Let:

$$B = \sum_{n=0}^{\infty} b_n$$

 $\langle 1 \rangle 3$ . For  $n \in \mathbb{N}$ , Let:

$$A_n = \sum_{k=0}^n a_k .$$

 $\langle 1 \rangle 4$ . For  $n \in \mathbb{N}$ , LET:

$$B_n = \sum_{k=0}^n b_k \ .$$

 $\langle 1 \rangle$ 5. For  $n \in \mathbb{N}$ , Let:

$$C_n = \sum_{k=0}^n a_k b_{n-k} .$$

 $\langle 1 \rangle 6$ . For  $n \in \mathbb{N}$ , Let:

$$\beta_n = B_n - B$$

 $\langle 1 \rangle 7$ . For  $n \in \mathbb{N}$ ,

$$C_n = A_n B + \sum_{k=0}^n a_k \beta_{n-k} .$$

 $\langle 1 \rangle 8$ . For  $n \in \mathbb{N}$ , Let:

$$\gamma_n = \sum_{k=0}^n a_k \beta_{n-k}$$

 $\langle 1 \rangle 9$ .  $A_n B \to AB$  as  $n \to \infty$ .

 $\begin{array}{l} \langle 1 \rangle 10. \ \gamma_n \to 0 \ \text{as} \ n \to \infty. \\ \langle 2 \rangle 1. \ \text{Let:} \ \alpha = \sum_{n=0}^{\infty} |a_n| \\ \langle 2 \rangle 2. \ \text{For all} \ \epsilon > 0 \ \text{we have} \ \lim \sup_n |\gamma_n| \le \epsilon \alpha. \end{array}$ 

 $\langle 3 \rangle 1$ . Let:  $\epsilon > 0$ 

 $\langle 3 \rangle 2$ . PICK N such that  $\forall n \geq N. |\beta_n| \leq \epsilon$ .

 $\langle 3 \rangle 3$ . For all  $n \geq N$  we have  $|\gamma_n| \leq \left| \sum_{k=0}^N \beta_k \alpha_{n-k} \right| + \epsilon \alpha$ . Proof:

$$|\gamma_n| \le \left| \sum_{k=0}^N \beta_k \alpha_{n-k} \right| + \left| \sum_{k=N+1}^n \beta_k a_{n-k} \right|$$
$$\le \left| \sum_{k=0}^N \beta_k \alpha_{n-k} \right| + \epsilon \alpha$$

 $\langle 3 \rangle 4$ .

$$\limsup_{n \to \infty} |\gamma_n| \le \epsilon \alpha$$

$$\langle 2 \rangle 3$$
.  $\limsup_{n} \gamma_n = 0$   
 $\langle 1 \rangle 11$ .  $C_n \to AB$  as  $n \to \infty$ .

**Theorem 12.71** (Abel). Let  $(a_n)$  and  $(b_n)$  be sequences of complex numbers.

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

for all n. If the series  $\sum_n a_n$ ,  $\sum_n b_n$  and  $\sum_n c_n$  all converge, then

$$\sum_{n} c_n = \left(\sum_{n} a_n\right) \left(\sum_{n} b_n\right) .$$

Proposition 12.72. The Cauchy product of two absolutely convergent series is absolutely convergent.

Proof:

 $\langle 1 \rangle 1.$  Let:  $\sum_n a_n$  and  $\sum_n b_n$  be two absolutely convergent series.  $\langle 1 \rangle 2.$  Let:  $c_n = \sum_{k=0}^n a_k b_{n-k}$   $\langle 1 \rangle 3.$   $\sum_n |c_n|$  converges.

$$\sum_{n=0}^{\infty} |c_n| = \sum_{n=0}^{\infty} \left| \sum_{k=0}^{n} a_k b_{n-k} \right|$$

$$\leq \sum_{n=0}^{\infty} \sum_{k=0}^{n} |a_k| |b_{n-k}|$$

which converges by Theorem 12.70

### 12.10Rearrangements

**Definition 12.73** (Rearrangement). A rearrangement of a sequence  $(a_n)$  is a sequence  $(a_{\phi(n)})$  for some bijection  $\phi : \mathbb{N} \approx \mathbb{N}$ .

**Theorem 12.74** (Riemann). Let  $\sum_{n=1}^{\infty} a_n$  be a series that converges but not absolutely. Let  $\alpha$  and  $\beta$  be extended reals with  $\alpha \leq \beta$ . Then there exists a rearrangement of  $\sum_n a_n$  with partial sums  $s'_n$  such that

$$\limsup_{n \to \infty} s'_n = \alpha, \qquad \liminf_{n \to \infty} s'_n = \beta .$$

Proof:

 $\langle 1 \rangle 1$ . For  $n \in \mathbb{Z}^+$ , Let:

$$p_n = \frac{|a_n| + a_n}{2} .$$

 $\langle 1 \rangle 2$ . For  $n \in \mathbb{Z}^+$ , Let:

$$q_n = \frac{|a_n| - a_n}{2} .$$

 $\langle 1 \rangle 3. \ \forall n \in \mathbb{Z}^+.p_n - q_n = a_n$  $\langle 1 \rangle 4. \ \forall n \in \mathbb{Z}^+.p_n + q_n = |a_n|$ 

 $\langle 1 \rangle 5$ .  $\forall n \in \mathbb{Z}^+ . p_n \geq 0$   $\langle 1 \rangle 6$ .  $\forall n \in \mathbb{Z}^+ . q_n \geq 0$   $\langle 1 \rangle 6$ .  $\forall n \in \mathbb{Z}^+ . q_n \geq 0$   $\langle 1 \rangle 7$ .  $\sum_n p_n$  and  $\sum_n q_n$  both diverge.

 $\langle 2 \rangle 1$ . It is not the case than  $\sum_n p_n$  and  $\sum_n q_n$  both converge. PROOF: This would imply that  $\sum_n |a_n|$  converges by  $\langle 1 \rangle 4$ .

 $\langle 2 \rangle 2$ . It is not the case that  $\sum_n p_n$  converges and  $\sum_n q_n$  diverges. PROOF: This would imply that  $\sum_n a_n$  diverges by  $\langle 1 \rangle 3$ .  $\langle 2 \rangle 3$ . It is not the case that  $\sum_n p_n$  diverges and  $\sum_n q_n$  converges. PROOF: This would imply that  $\sum_n a_n$  diverges by  $\langle 1 \rangle 3$ .

 $\langle 1 \rangle 8$ . Let:  $(P_n)$  be the subsequence of  $(a_n)$  consisting of the non-negative terms.

 $\langle 1 \rangle 9$ . Let:  $(Q_n)$  be the subsequence of  $(|a_n|)$  consisting only of the terms such that  $a_n$  is negative.

 $\langle 1 \rangle 10$ .  $\sum_n P_n$  diverges.

PROOF: It is the series  $\sum_{n} p_n$  with the zero terms removed.

 $\langle 1 \rangle 11$ .  $\sum_{n} Q_n$  diverges.

PROOF: It is the series  $\sum_{n} q_n$  with the zero terms removed.

- $\langle 1 \rangle 12$ . PICK sequences of real numbers  $(\alpha_n)$ ,  $(\beta_n)$  such that  $\alpha_n \to \alpha$ ,  $\beta_n \to \beta$ ,  $\alpha_n < \beta_n$  for all n, and  $\beta_1 > 0$ .
- $\langle 1 \rangle 13$ . PICK strictly increasing sequences of natural numbers  $(m_n)_{n\geq 1}$ ,  $(k_n)_{n\geq 1}$ such that, for all n,

$$\sum_{i=1}^{n-1} \left( \sum_{j=m_{i-1}+1}^{m_i} P_j - \sum_{j=k_{i-1}+1}^{k_i} Q_j \right) + \sum_{j=m_{n-1}+1}^{m_n} P_j > \beta_n$$

$$\sum_{i=1}^{n} \left( \sum_{j=m_{i-1}+1}^{m_i} P_j - \sum_{j=k_{i-1}+1}^{k_i} Q_j \right) < \alpha_n$$

and  $m_n$  and  $k_n$  are the smallest integers that make these inequalities

PROOF: Given the choice of  $m_1, \ldots, m_n$  and  $k_1, \ldots, k_n$ , there must exist such an  $m_{n+1}$  by  $\langle 1 \rangle 10$ , and then there must exist such a  $k_{n+1}$  by  $\langle 1 \rangle 11$ .

such an 
$$m_{n+1}$$
 by  $\langle 1/10 \rangle$ , and then there must exist such a  $k_{n+1}$  by  $\langle 1/11 \rangle$ .  
 $\langle 1 \rangle 14$ . For  $n \in \mathbb{Z}^+$ ,  
LET:  $x_n = \sum_{i=1}^{n-1} \left( \sum_{j=m_{i-1}+1}^{m_i} P_j - \sum_{j=k_{i-1}+1}^{k_i} Q_j \right) + \sum_{j=m_{n-1}+1}^{m_n} P_j$   
 $\langle 1 \rangle 15$ . For  $n \in \mathbb{Z}^+$ ,

$$\langle 1 \rangle 15$$
. For  $n \in \mathbb{Z}^+$ ,  
LET:  $y_n = \sum_{i=1}^n \left( \sum_{j=m_{i-1}+1}^{m_i} P_j - \sum_{j=k_{i-1}+1}^{k_i} Q_j \right)$   
 $\langle 1 \rangle 16$ . For  $n \in \mathbb{Z}^+$  we have

$$|x_n - \beta_n| \le P_{m_n}$$
.

Proof: By minimality of  $m_n$ .  $|x_n - \beta_n| \le P_{m_n} \ .$ 

 $\langle 1 \rangle 17$ . For  $n \in \mathbb{Z}^+$  we have

$$|y_n - \alpha_n| \le Q_{k_n} .$$

PROOF: By minimality of  $k_n$ .

 $\langle 1 \rangle 18. \ P_n \to 0 \text{ as } n \to \infty.$ 

PROOF: Since  $a_n \to 0$  as  $n \to \infty$ .

 $\langle 1 \rangle 19$ .  $Q_n \to 0$  as  $n \to \infty$ .

PROOF: Since  $a_n \to 0$  as  $n \to \infty$ .

 $\langle 1 \rangle 20$ .  $x_n \to \beta$  as  $n \to \infty$ .

Proof:  $\langle 1 \rangle 16$ ,  $\langle 1 \rangle 18$ 

 $\langle 1 \rangle 21. \ y_n \to \alpha \text{ as } n \to \infty.$ 

Proof:  $\langle 1 \rangle 17, \langle 1 \rangle 19$ 

 $\langle 1 \rangle 22$ . No number less than  $\alpha$  or greater than  $\beta$  is a subsequential limit of the partial sums of the series  $P_1 + \cdots + P_{m_1} - Q_1 - \cdots - Q_{k_1} + P_{m_1+1} + \cdots + P_{m_n+1} - Q_n - \cdots - Q_{k_n} + Q_n - \cdots - Q_n - \cdots P_{m_2} - Q_{k_1+1} - \dots - Q_{k_2} + \dots$ 

PROOF: Since every partial sum after the  $m_n + k_n$  term is between  $\alpha_n - Q_{k_n}$ and  $\beta_n + P_{m_n}$ .

**Theorem 12.75.** If  $\sum_n a_n$  is a series in  $\mathbb{R}^k$  that converges absolutely to s, then every rearrangement of  $\sum_n a_n$  converges to s.

- $\langle 1 \rangle 1$ . Let:  $\sum_n a'_n = \sum_n a_{k_n}$  be a rearrangement with partial sums  $s'_n$ .  $\langle 1 \rangle 2$ . Let:  $\epsilon > 0$

$$\sum_{i=1}^{m} \|a_i\| \le \epsilon/3 .$$

- $\langle 1 \rangle 3$ . Pick N such that, for all  $m \geq n \geq N$ , we have  $\sum_{i=n}^m \|a_i\| \leq \epsilon/3 \ .$   $\langle 1 \rangle 4$ . Pick p such that  $\{1,\ldots,N\} \subseteq \{k_1,k_2,\ldots,k_p\}$ .  $\langle 1 \rangle 5$ . For all n>p we have  $\|s_n-s_n'\| \leq \epsilon$ .

$$||s_n - s_n'|| = \left\| \sum_{i=1}^N a_i + \sum_{i=N+1}^n a_i - \sum_{i=1}^p a_{k_i} - \sum_{i=p+1}^n a_{k_i} \right\|$$

$$\leq \left\| \sum_{i=N+1}^n a_i \right\| + \left\| \sum_{\substack{1 \le i \le p \\ k_i > N}} a_{k_i} \right\| + \left\| \sum_{i=p+1}^n a_{k_i} \right\|$$

$$\leq \epsilon$$

$$\langle 1 \rangle 6. \ s_n' \to s \text{ as } n \to \infty.$$

### Completion of a Metric Space 12.11

**Definition 12.76** (Completion). Let X be a metric space. Let  $X^*$  be the set of all Cauchy sequences in X, quotiented by:  $(p_n) \sim (q_n)$  iff  $d(p_n, q_n) \to 0$ . Define the distance function on  $X^*$  by:

$$\Delta((p_n),(q_n)) = \lim_{n \to \infty} d(p_n,q_n) .$$

Then the metric space  $X^*$  is called the *completion* of X.

**Theorem 12.77.** The completion of  $X^*$  is a complete metric space, and X is a dense subspace under the embedding that maps  $p \in X$  to the constant sequence (p).

**Example 12.78.**  $\mathbb{R}$  is the completion of  $\mathbb{Q}$ .

### Chapter 13

# Continuity

### 13.1 Limit of a Function

**Definition 13.1** (Limit). Let X and Y be metric spaces. Let  $E \subseteq X$  and  $f: E \to Y$ . Let p be a limit point of E and  $q \in Y$ . Then we say q is the *limit* of f at p, and write

$$f(x) \to q \text{ as } x \to p, \text{ or } \lim_{x \to p} f(x) = q$$
,

iff for all  $\epsilon > 0$ , there exists  $\delta > 0$  such that, for all  $x \in E$ , if  $0 < d(x, p) < \delta$  then  $d(f(x), q) < \epsilon$ .

**Theorem 13.2.** Let X and Y be metric spaces. Let  $E \subseteq X$  and  $f: E \to Y$ . Let p be a limit point of E and  $q \in Y$ . Then  $f(x) \to q$  as  $x \to p$  if and only if, for every sequence  $(p_n)$  in  $E - \{p\}$  with limit p, we have  $f(p_n) \to q$  as  $n \to \infty$ .

### Proof:

- $\langle 1 \rangle 1$ . If  $f(x) \to q$  as  $x \to p$  then, for every sequence  $(p_n)$  in  $E \{p\}$  with limit p, we have  $f(p_n) \to q$  as  $n \to \infty$ .
  - $\langle 2 \rangle 1$ . Assume:  $f(x) \to q$  as  $x \to p$ .
  - $\langle 2 \rangle 2$ . Let:  $(p_n)$  be a sequence in  $E \{p\}$  with limit p.
  - $\langle 2 \rangle 3$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 4$ . PICK  $\delta > 0$  such that, for all  $x \in E$ , if  $0 < d(x,p) < \delta$  then  $d(f(x),q) < \epsilon$ .
  - $\langle 2 \rangle$ 5. PICK N such that, for all  $n \geq N$ , we have  $d(p_n, p) < \delta$
  - $\langle 2 \rangle 6. \ \forall n \geq N.d(f(p_n),q) < \epsilon$
- (1)2. If, for every sequence  $(p_n)$  in  $E \{p\}$  with limit p, we have  $f(p_n) \to q$  as  $n \to \infty$ , then  $f(x) \to q$  as  $x \to p$ .
  - $\langle 2 \rangle 1$ . Assume:  $f(x) \nrightarrow q$  as  $x \to p$ .
  - $\langle 2 \rangle$ 2. Pick  $\epsilon > 0$  such that, for all  $\delta > 0$ , there exists a  $x \in E$  such that  $0 < d(x,p) < \delta$  and  $d(f(x),q) \ge \epsilon$ .
  - $\langle 2 \rangle 3$ . For all  $n \in \mathbb{Z}^+$ , PICK  $p_n \in E$  such that  $0 < d(p_n, p) < 1/n$  and  $d(f(p_n), q) \ge \epsilon$ .

$$\langle 2 \rangle 4. \ p_n \to p \text{ as } n \to \infty.$$
  
 $\langle 2 \rangle 5. \ f(p_n) \nrightarrow q \text{ as } n \to \infty.$ 

Corollary 13.2.1. A function has at most one limit at any point.

**Theorem 13.3.** Let X be a metric space,  $E \subseteq X$ , and p a limit point of E. Let  $f, g: E \to \mathbb{R}^k$ . Assume  $f(x) \to a$  as  $x \to p$  and  $g(x) \to b$  as  $x \to p$ . Then

$$f(x) + g(x) \rightarrow a + b \text{ as } x \rightarrow p$$
.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $(p_n)$  be a sequence in E that converges to p.
- $\langle 1 \rangle 2$ .  $f(p_n) \to a \text{ as } n \to \infty$ .
- $\langle 1 \rangle 3. \ g(p_n) \to b \text{ as } n \to \infty.$
- $\langle 1 \rangle 4$ .  $f(p_n) + g(p_n) \to a + b$  as  $n \to \infty$ .

Proof: Proposition 12.5.

 $\langle 1 \rangle 5$ . Q.E.D.

PROOF: Theorem 13.2.

**Theorem 13.4.** Let X be a metric space,  $E \subseteq X$ , and p a limit point of E. Let  $f, g: E \to \mathbb{C}$ . Assume  $f(x) \to a$  as  $x \to p$  and  $g(x) \to b$  as  $x \to p$ . Then

$$f(x)g(x) \to ab \ as \ x \to p$$
.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $(p_n)$  be a sequence in E that converges to p.
- $\langle 1 \rangle 2$ .  $f(p_n) \to a \text{ as } n \to \infty$ .
- $\langle 1 \rangle 3. \ g(p_n) \to b \text{ as } n \to \infty.$
- $\langle 1 \rangle 4$ .  $f(p_n)g(p_n) \to ab$  as  $n \to \infty$ .

Proof: Proposition 12.7.

 $\langle 1 \rangle 5$ . Q.E.D.

PROOF: Theorem 13.2.

**Theorem 13.5.** Let X be a metric space,  $E \subseteq X$ , and p a limit point of E. Let  $f: E \to \mathbb{C} - \{0\}$ . Assume  $f(x) \to a \neq 0$  as  $x \to p$ . Then

$$f(x)^{-1} \to a^{-1} \ as \ x \to p$$
.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $(p_n)$  be a sequence in E that converges to p.
- $\langle 1 \rangle 2$ .  $f(p_n) \to a \text{ as } n \to \infty$ .  $\langle 1 \rangle 3$ .  $f(p_n)^{-1} \to a^{-1} \text{ as } n \to \infty$ .

Proof: Proposition 12.8.

 $\langle 1 \rangle 4$ . Q.E.D.

Proof: Theorem 13.2.

П

**Theorem 13.6.** Let X be a metric space,  $E \subseteq X$ , and p a limit point of E. Let  $f, g: E \to \mathbb{R}^k$ . Assume  $f(x) \to a$  as  $x \to p$  and  $g(x) \to b$  as  $x \to p$ . Then

$$f(x) \cdot g(x) \to a \cdot b \text{ as } x \to p$$
.

Proof:

 $\langle 1 \rangle 1$ . Let:  $(p_n)$  be a sequence in E that converges to p.

 $\langle 1 \rangle 2$ .  $f(p_n) \to a \text{ as } n \to \infty$ .

 $\langle 1 \rangle 3. \ g(p_n) \to b \text{ as } n \to \infty.$ 

 $\langle 1 \rangle 4$ .  $f(p_n) \cdot g(p_n) \to a \cdot b$  as  $n \to \infty$ .

Proof: Proposition 12.10.

 $\langle 1 \rangle$ 5. Q.E.D.

PROOF: Theorem 13.2.

### 13.2 Continuous Functions

**Definition 13.7** (Continuous). Let X be a metric space,  $E \subseteq X$  and  $p \in E$ . Then f is *continuous* at p iff, for every  $\epsilon > 0$ , there exists  $\delta > 0$  such that, for all  $x \in E$ , if  $d(x, p) < \delta$  then

$$d(f(x), f(p)) < \epsilon$$
.

f is continuous or continuous on E iff f is continuous at every point.

**Theorem 13.8.** Let X be a metric space,  $E \subseteq X$  and  $p \in E$  be a limit point of E. Then f is continuous at p iff  $f(x) \to f(p)$  as  $x \to p$ .

Proof: Easy.

**Theorem 13.9.** Let X, Y and Z be metric spaces. Let  $E \subseteq X$ . Let  $f: E \to Y$  and  $g: f(E) \to Z$ . Let  $p \in E$ . If f is continuous at p and g is continuous at f(p) then  $g \circ f$  is continuous at p.

### Proof:

- $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle$ 2. PICK  $\delta_1 > 0$  such that, for all  $y \in f(E)$ , if  $d(y, f(p)) < \delta_1$  then  $d(g(y), g(f(p))) < \delta_1$
- $\langle 1 \rangle 3$ . Pick  $\delta_2 > 0$  such that, for all  $x \in E$ , if  $d(x,p) < \delta_2$  then  $d(f(x),f(p)) < \delta_1$
- $\langle 1 \rangle 4$ . For all  $x \in E$ , if  $d(x,p) < \delta_2$  then  $d(g(f(x)), g(f(p))) < \epsilon$ .

**Theorem 13.10.** Let X and Y be metric spaces. Let  $f: X \to Y$ . Then f is continuous if and only if, for every open set  $V \subseteq Y$ , we have  $f^{-1}(V)$  is open in X.

- $\langle 1 \rangle 1$ . If f is continuous then, for every open set V in Y, we have  $f^{-1}(V)$  is open in X.
  - $\langle 2 \rangle 1$ . Assume: f is continuous.
  - $\langle 2 \rangle 2$ . Let: V be an open set in Y. Prove:  $f^{-1}(V)$  is open.
  - $\langle 2 \rangle 3$ . Let:  $x \in f^{-1}(V)$
  - $\langle 2 \rangle 4$ . PICK  $\epsilon > 0$  such that  $B(f(x), \epsilon) \subseteq V$ .
  - $\langle 2 \rangle 5.$  Pick  $\delta > 0$  such that, for all  $x' \in X,$  if  $d(x',x) < \delta$  then  $d(f(x'),f(x)) < \epsilon.$
  - $\langle 2 \rangle 6. \ B(x,\delta) \subseteq f^{-1}(V)$
- $\langle 1 \rangle 2$ . If, for every open set V in Y, we have  $f^{-1}(V)$  is open in X, then f is continuous.
  - $\langle 2 \rangle 1$ . Assume: For every open set V in Y, we have  $f^{-1}(V)$  is open in X.
  - $\langle 2 \rangle 2$ . Let:  $p \in X$
  - $\langle 2 \rangle 3$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 4$ .  $f^{-1}(B(f(p), \epsilon))$  is open in X.
  - $\langle 2 \rangle 5$ . Pick  $\delta > 0$  such that  $B(p, \delta) \subseteq f^{-1}(B(f(p), \epsilon))$ .
  - $\langle 2 \rangle 6$ . For all  $x \in X$ , if  $d(x,p) < \delta$  then  $d(f(x),f(p)) < \epsilon$ .

**Corollary 13.10.1.** Let X and Y be metric spaces. Let  $f: X \to Y$ . Then f is continuous if and only if, for every closed set C in Y, we have  $f^{-1}(C)$  is closed in X.

**Theorem 13.11.** Let X be a metric space. Let  $f: X \to \mathbb{R}^k$ . Then f is continuous if and only if, for i = 1, ..., k, we have  $\pi_i \circ f$  is continuous.

### Proof:

- $\langle 1 \rangle 1$ . Each  $\pi_i$  is continuous.
  - $\langle 2 \rangle 1$ . Let:  $\vec{p} \in \mathbb{R}^k$
  - $\langle 2 \rangle 2$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 3$ . Let:  $\vec{q} \in \mathbb{R}^k$
  - $\langle 2 \rangle 4$ . Assume:  $\| \vec{p} \vec{q} \| < \epsilon$
  - $\langle 2 \rangle 5$ .  $|p_i q_i| < \epsilon$
- $\langle 1 \rangle 2$ . If, for all i, we have  $\pi_i \circ f$  is continuous, then f is continuous.
  - $\langle 2 \rangle 1$ . Assume: For all i, we have  $\pi_i \circ f$  is continuous.
  - $\langle 2 \rangle 2$ . Let:  $p \in X$
  - $\langle 2 \rangle 3$ . Let:  $\epsilon > 0$
  - $\langle 2 \rangle 4$ . For  $i=1,\ldots,k$ , PICK  $\delta_i>0$  such that, for all  $x\in X$ , we have if  $d(x,p)<\delta_i$  then  $|\pi_i(f(p))-\pi_i(f(x))|<\epsilon/\sqrt{k}$
  - $\langle 2 \rangle 5$ . Let:  $\delta = \min(\delta_1, \ldots, \delta_k)$
  - $\langle 2 \rangle 6$ . Let:  $q \in X$  with  $d(p,q) < \delta$ .
  - $\langle 2 \rangle 7$ .  $||f(p) f(q)|| < \epsilon$

$$||f(p) - f(q)|| = \sqrt{\sum_{i=1}^{k} |\pi_i(f(p)) - \pi_i(f(q))|^2}$$

$$< \sqrt{\sum_{i=1}^{k} \epsilon^2 / k}$$

$$= \epsilon$$

**Theorem 13.12.** Let X be a compact metric space and Y a metric space. Let  $f: X \to Y$  be continuous. Then f(X) is compact.

### PROOF:

- $\langle 1 \rangle 1$ . Let:  $\mathcal{V}$  be an open cover of f(X).
- $\langle 1 \rangle 2$ .  $\{ f^{-1}(V) : V \in \mathcal{V} \}$  is an open cover of X.
- $\langle 1 \rangle 3$ . Pick a finite subcover  $\{f^{-1}(V_1), \dots, f^{-1}(V_n)\}.$
- $\langle 1 \rangle 4. \{V_1, \dots, V_n\} \text{ covers } Y.$

**Corollary 13.12.1.** Every continuous function from a compact metric space to  $\mathbb{R}^k$  is bounded.

**Example 13.13.** If  $E \subseteq \mathbb{R}$  is not compact, then there exists a continuous function  $E \to \mathbb{R}$  that is not bounded.

### Proof:

- $\langle 1 \rangle 1$ . Case: E is bounded.
  - $\langle 2 \rangle 1$ . PICK a limit point  $x_0$  of E that is not in E.
  - $\langle 2 \rangle 2$ . Define  $f: E \to \mathbb{R}$  by  $f(x) = 1/(x x_0)$ .
  - $\langle 2 \rangle 3$ . f is continuous and unbounded.
- $\langle 1 \rangle 2$ . Case: E is unbounded.

PROOF: The inclusion  $E \hookrightarrow \mathbb{R}$  is continuous and unbounded.

П

**Theorem 13.14** (Extreme Values Theorem). Let X be a compact metric space. Let  $f: X \to \mathbb{R}$ . Let  $M = \sup f(X)$  and  $m = \inf f(X)$ . Then there exist  $p, q \in X$  such that f(p) = M and  $f(q) \in m$ .

PROOF: Since f(X) is compact and hence closed.  $\square$ 

**Example 13.15.** For any  $E \subseteq \mathbb{R}$  that is not compact, there exists a continuous and bounded function  $E \to \mathbb{R}$  that does not attain its supremum.

### Proof:

- $\langle 1 \rangle 1$ . Case: E is bounded.
  - $\langle 2 \rangle 1$ . PICK a limit point  $x_0$  for E such that  $x_0 \notin E$ .
  - $\langle 2 \rangle 2$ . Define  $g : E \to \mathbb{R}$  by  $g(x) = 1/(1 + (x x_0)^2)$ .

 $\langle 2 \rangle 3$ . g is continuous and bounded but does not attain its supremum 1.

 $\langle 1 \rangle 2$ . Case: E is unbounded.

PROOF: Then  $h(x) = x^2/(1+x^2)$  is continuous and bounded but does not attain its supremum 1.

**Theorem 13.16.** Let X be a compact metric space and Y a metric space. Let  $f: X \approx Y$  be a continuous bijection. Then  $f^{-1}$  is continuous.

### PROOF:

- $\langle 1 \rangle 1$ . Let: V be open in X.
- $\langle 1 \rangle 2$ . X V is compact.
- $\langle 1 \rangle 3$ . f(X-V) is compact.
- $\langle 1 \rangle 4$ . Y f(V) is compact.
- $\langle 1 \rangle 5$ . Y f(V) is closed.
- $\langle 1 \rangle 6$ . f(V) is open.

**Example 13.17.** This example shows we cannot remove the hypothesis of compactness of X, even if Y is compact.

Let  $X = [0, 2\pi)$ . Let  $f: X \to S^1$  be the function  $f(t) = (\cos t, \sin t)$ . Then f is a continuous bijection  $X \approx S^1$ , but the inverse  $f^{-1}$  is not continuous.

**Proposition 13.18.** The continuous image of a connected metric space is connected.

### Proof:

- $\langle 1 \rangle 1$ . Let: X be a connected metric space and Y a metric space.
- $\langle 1 \rangle 2$ . Let:  $f: X \to Y$  be a continuous surjection.
- $\langle 1 \rangle 3$ . Assume: for a contradiction A and B form a separation of Y.
- $\langle 1 \rangle 4$ .  $f^{-1}(A)$  and  $f^{-1}(B)$  form a separation of X.
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This contradicts  $\langle 1 \rangle 1$ .

П

**Corollary 13.18.1** (Intermediate Value Theorem). Let  $f : [a,b] \to \mathbb{R}$  be continuous. If f(a) < c < f(b) or f(a) > c > f(b), then there exists a real number  $x \in (a,b)$  such that f(x) = c.

PROOF: Since f([a,b]) is connected.  $\square$ 

**Example 13.19.** The converse does not hold. Let  $f:[-1,1]\to\mathbb{R}$  be the function

$$f(x) = \begin{cases} \sin 1/x & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

For all  $a, b \in [-1, 1]$  with a < b, and all c with f(a) < c < f(b), there exists  $x \in (a, b)$  such that f(x) = c. Nevertheless, f is discontinuous at 0.

### 13.3 Limits from the Left and the Right

**Definition 13.20** (Limit from the Left). Let  $f:(a,b) \to \mathbb{R}$ . Let  $c \in (a,b]$  and  $q \in \mathbb{R}$ . Then we say q is the *limit* as f approaches c from the left, and write

$$f(x) \to q \text{ as } x \to c-$$

or

$$\lim_{x \to c-} f(x) = q$$

iff, for every sequence  $(t_n)$  in (a,c) such that  $t_n \to c$  as  $n \to \infty$ , we have  $f(t_n) \to q$  as  $n \to \infty$ .

**Definition 13.21** (Limit from the Right). Let  $f:(a,b)\to\mathbb{R}$ . Let  $c\in[a,b)$  and  $q\in\mathbb{R}$ . Then we say q is the *limit* as f approaches c from the right, and write

$$f(x) \to q \text{ as } x \to c+$$

or

$$\lim_{x \to c+} f(x) = q$$

iff, for every sequence  $(t_n)$  in (c,b) such that  $t_n \to c$  as  $n \to \infty$ , we have  $f(t_n) \to q$  as  $n \to \infty$ .

**Proposition 13.22.** Let  $f:(a,b) \to \mathbb{R}$ . Let  $c \in (a,b)$  and  $q \in \mathbb{R}$ . Then  $f(x) \to q$  as  $x \to c$  iff  $f(x) \to q$  as  $x \to c-$  and  $f(x) \to q$  as  $x \to c+$ .

Proof:

 $\langle 1 \rangle 1$ . If  $f(x) \to q$  as  $x \to c$  then  $f(x) \to q$  as  $x \to c-$  and  $f(x) \to q$  as  $x \to c+$ .  $\langle 1 \rangle 2$ . If  $f(x) \to q$  as  $x \to c-$  and  $f(x) \to q$  as  $x \to c+$  then  $f(x) \to q$  as  $x \to c$ .

### 13.4 Uniform Continuity

**Definition 13.23** (Uniformly Continuous). Let X and Y be metric spaces. Let  $f: X \to Y$ . Then f is uniformly continuous iff, for every  $\epsilon > 0$ , there exists  $\delta > 0$  such that, for all  $p, q \in X$ , if  $d(p, q) < \delta$  then  $d(f(p), f(q)) < \epsilon$ .

**Theorem 13.24.** Let X be a compact metric space and Y a metric space. Let  $f: X \to Y$ . If f is continuous then f is uniformly continuous.

Proof:

- $\langle 1 \rangle 1$ . Let:  $\epsilon > 0$
- $\langle 1 \rangle 2$ . For all  $p \in X$ , PICK  $\phi(p) > 0$  such that, for all  $q \in X$ , if  $d(p,q) < \phi(x)$  then  $d(f(p), f(q)) < \epsilon/2$ .
- $\langle 1 \rangle 3$ . For all  $p \in X$ ,

Let:  $J(p) = B(p, \phi(x)/2)$ .

 $\langle 1 \rangle 4$ .  $\{ J(p) : p \in X \}$  is an open cover of X.

```
\begin{split} &\langle 1 \rangle 5. \text{ PICK a finite subcover } \{J(p_1), \dots, J(p_n)\}. \\ &\langle 1 \rangle 6. \text{ Let: } \delta = \min(\phi(p_1), \dots, \phi(p_n))/2 \\ &\langle 1 \rangle 7. \text{ Let: } p, q \in X \text{ with } d(p,q) < \delta. \\ &\langle 1 \rangle 8. \text{ PICK } m \text{ such that } p \in J(p_m). \\ &\langle 1 \rangle 9. \ d(p,p_m) < \phi(p_m)/2 \\ &\langle 1 \rangle 10. \ d(q,p_m) < \phi(p_m) \\ &\langle 1 \rangle 11. \ d(f(p),f(q)) < \epsilon \end{split}
```

**Example 13.25.** Let  $E \subseteq \mathbb{R}$  be bounded but not compact. Then there exists a continuous function  $E \to \mathbb{R}$  that is not uniformly continuous.

PROOF: Pick a limit point  $x_0$  for E that is not in E. Then the function  $f(x) = 1/(x-x_0)$  is continuous but not uniformly continuous.  $\square$ 

# Part III More Algebra

## Chapter 14

# Lie Groups

**Definition 14.1** (Lie Group). A *Lie group* G is a group G that is also an analytic differentiable manifold such that the group operation and inverse operation are analytic.

A  $homomorphism\ of\ Lie\ groups$  is a group homomorphism that is an analytic function.

Lemma 14.2. Every bijective Lie group homomorphism is an isomorphism.

**Definition 14.3** (Unitary Group). The unitary group U(n) is the Lie group of all  $n \times n$  unitary matrices.

**Definition 14.4** (Special Unitary Group). The *special unitary group* SU(n) is the Lie group of all  $n \times n$  unitary matrices with determinant 1.

**Definition 14.5** (Lie Subgroup). Let G be a Lie group. A *Lie subgroup* of G is a subgroup that is also an analytic submanifold of G.

**Example 14.6.** U(n) and SU(n) are Lie subgroups of  $GL(n, \mathbb{C})$ .