Theory of Automata

Context Free Languages and Grammars

Dr. Sabina Akhtar

Revision

- Regular Languages
 - Finite Automata
 - Regular Expressions
 - Example:
 - $0^n \mid n > = 0$
- Non-Regular Languages

Not all languages are regular

- So what happens to the languages which are not regular?
- E.g., balanced paranthesis problem
- (5*(7+9))
- Can we still come up with a language recognizer?
 - i.e., something that will accept (or reject) strings that belong (or do not belong) to the language?

Context-Free Languages

- A language class larger than the class of regular languages
- Supports natural, recursive notation called "context- free grammar"
- Applications:
 - Parse trees, compilers
 - -XML

Informal Comments

- A *context-free grammar* is a notation for describing languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Informal Comments – (2)

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- These variables are defined recursively, in terms of one another.
- Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Definition: CFG

- A context-free grammar G=(V,T,P,S), where:
 - V: set of variables or non-terminals
 - T: set of terminals (= alphabet U {ε})
 - P: set of productions, each of which is of the form
 V ==> α₁ | α₂ | ...
 - Where each α_i is an arbitrary string of variables and terminals
 - S ==> start variable

Examples

- $L_1 = \{ 0^n \mid n \ge 0 \}$
- $L_2 = \{w \mid w \text{ is of the form } 0^n 1^n \text{, for all } n \ge 1\}$
- CFG for L₁
- $S \rightarrow \varepsilon$
- S -> OS

• W=000

Example: CFG for $\{0^n1^n \mid n \geq 1\}$

- Basis: 01 is in the language.
- Induction: if w is in the language, then so is 0w1.

- Productions:
 - -S -> 01
 - -S -> 0S1

Structure of a production

The above is same as:

1.
$$A ==> \alpha_1$$

2. $A ==> \alpha_2$
3. $A ==> \alpha_3$
...
K. $A ==> \alpha_k$

Parse Tree

Draw parse tree for a1*(1+b0)

Parse tree for a + 1

```
Start Variable: E
```

$$V = ?$$

$$T = ?$$

Draw parse tree for Parse Tree a1*(1+b0)

Start Variable: E

$$V = ?$$

$$T = ?$$

Parse tree for a + 1

An Example

- A palindrome is a word that reads identical from both ends
 - E.g., madam, redivider, malayalam, 010010010
- Let L = { w | w is a binary palindrome}
- Is L regular?

An Example

- A palindrome is a word that reads identical from both ends
 - E.g., madam, redivider, malayalam, 010010010
- Let L = { w | w is a binary palindrome}
- Is L regular?
 - No.
 - Proof:
 - Let w=0^N10^N (assuming N to be the p/l constant)
 - By Pumping lemma, w can be rewritten as xyz, such that xy^kz is also L (for any k≥0)
 - But |xy|≤N and y≠ε
 - ==> y=0+
 - ==> xy^kz will NOT be in L for k=0
 - ==> Contradiction

But the language of palindromes...

is a CFL, because it supports recursive substitution (in the form of a CFG)

This is because we can construct a "grammar" like this:

A ==> 1A1

```
1. A ==> \varepsilon
2. A ==> 0

3. A ==> 1
4. A ==> 0A0

Variable or non-terminal

Variable or non-terminal
```

Productions

How does this grammar work?

Class Activity

- Draw the parse tree for 0110 using
- G:

 $A \rightarrow 0A0|1A1|0|1|E$

How does the CFG for palindromes work?

An input string belongs to the language (i.e., accepted) iff it can be generated by the CFG

- Example: w=01110
- G can generate w as follows:
 - 1. A => 0A0
 - _{2.} => 01A10
 - **3.** => 01110

Generating a string from a grammar:

- Pick and choose a sequence of productions that would allow us to generate the string.
- At every step, substitute one variable with one of its productions.

Definition CFG

- A context-free grammar G=(V,T,P,S), where:
 - V: set of variables or non-terminals
 - T: set of terminals (= alphabet U {ε})
 - P: set of productions, each of which is of the form
 V ==> α₁ | α₂ | ...
 - Where each α_i is an arbitrary string of variables and terminals
 - S ==> start variable

```
CFG for the language of binary palindromes:
G=({A},{0,1},P,A)
P: A ==> 0 A 0 | 1 A 1 | 0 | 1 | ε
```

CFG conventions

- A, B, C,... are variables.
- a, b, c,... are terminals.
- ..., X, Y, Z are either terminals or variables.
- ..., w, x, y, z are strings of terminals only.
- α , β , γ ,... are strings of terminals and/or variables.

Example: Formal CFG

- Here is a formal CFG for $\{0^n1^n \mid n > 1\}$.
- Terminals = $\{0, 1\}$.
- Variables = {S}.
- Start symbol = S.
- Productions =

```
S -> 01
```

S -> 0S1

- Provide formal CFG for
 - A grammar for L = {0^m1ⁿ | m≥n}

- Provide formal CFG for
 - A grammar for L = {0^m1ⁿ | m≥n}

How would you interpret the string "00000111" using this grammar?

- Provide formal CFG for
 - Language of balanced paranthesise.g., ()(((())))((()))....

- Provide formal CFG for
 - Language of balanced paranthesise.g., ()(((())))((()))....
 - CFG?

How would you "interpret" the string "(((()))()())" using this grammar?

Exercise

^A2.3 Answer each part for the following context-free grammar G.

$$egin{aligned} R &
ightarrow XRX \mid S \ S &
ightarrow \mathtt{a} T\mathtt{b} \mid \mathtt{b} T\mathtt{a} \ T &
ightarrow XTX \mid X \mid oldsymbol{arepsilon} \ X &
ightarrow \mathtt{a} \mid \mathtt{b} \end{aligned}$$

- **a.** What are the variables of G?
- **b.** What are the terminals of G?
- **c.** Which is the start variable of G?
- **d.** Give three strings in L(G).
- **e.** Give three strings *not* in L(G).
- **f.** True or False: $T \Rightarrow aba$.
- **g.** True or False: $T \stackrel{*}{\Rightarrow}$ aba.
- **h.** True or False: $T \Rightarrow T$.

- i. True or False: $T \stackrel{*}{\Rightarrow} T$.
- j. True or False: $XXX \stackrel{*}{\Rightarrow} aba$.
- **k.** True or False: $X \stackrel{*}{\Rightarrow}$ aba.
- 1. True or False: $T \stackrel{*}{\Rightarrow} XX$.
- **m.** True or False: $T \stackrel{*}{\Rightarrow} XXX$.
- **n.** True or False: $S \stackrel{*}{\Rightarrow} \varepsilon$.
- **o.** Give a description in English of L(G).

Class Activity

Provide CFG for accepting simple expressions like

```
- a+b, b*b, ...
```

Example #4

```
A program containing if-then(-else) statements
if Condition then Statement else Statement
(Or)
if Condition then Statement
CFG?
```

More examples

- Parenthesis matching in code
- Syntax checking
- In scenarios where there is a general need for:
 - Matching a symbol with another symbol, or
 - Matching a count of one symbol with that of another symbol, or
 - Recursively substituting one symbol with a string of other symbols

Applications of CFLs & CFGs

- Compilers use parsers for syntactic checking
- Parsers can be expressed as CFGs
 - Balancing paranthesis:
 - B ==> BB | (B) | Statement
 - Statement ==>
 - 2. If-then-else:
 - S ==> SS | if Condition then Statement else Statement | if Condition then Statement | Statement
 - Condition ==>
 - Statement ==>
 - 3. C paranthesis matching { ... }
 - Pascal begin-end matching
 - YACC (Yet Another Compiler-Compiler)

Class Activity

- Design grammar that accepts addition and subtraction operations on all the numbers using plain and extended BNF format.
- Example:
 - -1+2,
 - -2-3+5,...

Exercise

- **2.4** Give context-free grammars that generate the following languages. In all parts, the alphabet Σ is $\{0,1\}$.
 - ^Aa. $\{w \mid w \text{ contains at least three 1s}\}$
 - **b.** $\{w \mid w \text{ starts and ends with the same symbol}\}$
 - c. $\{w | \text{ the length of } w \text{ is odd} \}$
 - Ad. $\{w \mid \text{ the length of } w \text{ is odd and its middle symbol is a 0} \}$
 - **e.** $\{w | w = w^{\mathcal{R}}, \text{ that is, } w \text{ is a palindrome}\}$
 - **f.** The empty set

References

- Book Chapter
- Lectures from Stanford University
 - http://infolab.stanford.edu/~ullman/ialc/spr10/sp r10.html#LECTURE%20NOTES
- Lectures from Washington State University
 - http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/