Analys Problem 2

Robin Boregrim

October 8, 2017

Innehållsförteckning

1	1 Uppgiften		
2	Lösning	2	
	2.1	Omskrivning	2
	2.2	Derivata räkning	2
	2.3	Svar	3

1 Uppgiften

För vilka värden på a > 0 har ekvationen $a^x = x$ lösningar?

2 Lösning

2.1 Omskrivning

För att kunna lösa ut a så skriver vi om ekvationen $a^x = x$ så att a blir en funktion av x.

$$a^x = x \tag{1}$$

$$\Leftrightarrow (a^x)^{\frac{1}{x}} = x^{\frac{1}{x}}, x \neq 0$$

$$\Leftrightarrow a = x^{\frac{1}{x}}, x \neq 0 \tag{2}$$

Ekvation (2) inte är definerad för x=0, men detta är inte ett problem då

$$a^0 = 1, \forall a \in \mathbb{R}$$

så a^0 kommer aldrig vara lika med 0, x=0 är därför aldrig en lösning på (1).

En annan sak värd att notera är att det finns inga positiva reella a som är lösning för negativa x. Detta på grund av a^x alltid kommer vara possitivt för positiva reella x så a^x kommer inte kunna vara lika med x för x < 0. Vi vet därför att definitionsmängden på x är

$$D_f = x > 0.$$

2.2 Derivata räkning

Nu vet vi att a beskrivs av funktionen $a = x^{\frac{1}{x}}$ så vi räknar ut derviatan av den funktionen för att sen ta reda på eventuella extrempunkter.

$$a' = \frac{dx}{da} (x^{\frac{1}{x}})$$
$$= \frac{dx}{da} (e^{\ln(x^{\frac{1}{x}})})$$
$$= \frac{dx}{da} (e^{\frac{1}{x}\ln(x)})$$

$$= \frac{dx}{da} \left(\frac{\ln x}{x}\right) \cdot e^{\frac{1}{x} \ln x}$$

$$= \left(\frac{\ln x}{x}\right)' \cdot x^{\frac{1}{x}}$$

$$= \frac{x \cdot \frac{dx}{da} (\ln x) - \ln x \cdot \frac{dx}{da} (x)}{x^2} \cdot x^{\frac{1}{x}}$$

$$= \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2} \cdot x^{\frac{1}{x}}$$

$$a' = \frac{1 - \ln x}{x^2} \cdot x^{\frac{1}{x}}$$
(3)

Nu behöver vi räkna ut för vilka x som a'=0 för att hitta eventuella extrempunkter. Varken $x^{\frac{1}{x}}$ eller $\frac{1}{x^2}$ kan bli 0, vilket betyder att om (3)= 0 måste

$$1 - \ln x = 0$$

$$1 = \ln x$$

$$e^{1} = e^{\ln x}$$

$$e^{1} = e^{\ln x}$$

$$x = e$$

Nu när vi vet att a' endast har en rot som är e vill vi veta om roten är en maximi-, mini- eller terrasspunkt.

Både $x^{\frac{1}{x}}$ och $\frac{1}{x^2}$ är alltid possetiva för $\forall x \in \mathbb{R} \cup D_f$. Detta betyder att a' är positivt eller negativt beroende på om $1 - \ln x$ är positivt eller negativt. Eftersom funktionen $\ln x$ är strängt växande och $\ln e = 1$ är $\ln x < 1$ om x < e och $\ln x > 1$ om x > e.

Vilket i sin tur betyder att a' är positiv för x < e och negativ för x > e. Roten x = e är därför en global maximipunkt för (2).

Av detta följer då att $a \leq e^{\frac{1}{e}}$. Eftersom a var större än noll per definition får vi:

$$0 < a < e^{\frac{1}{e}}$$
.

2.3 Svar

Ekvationen $a^x = x$ har lösningar i internvallet

$$0 < a \le e^{\frac{1}{e}}.$$