ZÁKLADY MOLEKULÁRY <3

ÚVOD

- Molekulární biologie spíš technika/nástroj, než obor, ale pořád je to jakoby vědní obor
 - Definice přístup k vnímání světa, ke studiu biologických procesů, ke studiu přírody a biologie (co vidíme i molekulární plán)
 - Zkoumá všechny organismy v celé jejich šíři: <u>eukaryota, bakteria, archea</u>
 - NEPOUŽÍVAT POJEM PROKARYOTA! jsou to organismy bez jádra, ale existují mezi nimi i velmi odlišné bakterie a archea

Centrální dogma (DNA -> RNA -> proteiny)

- Základní pravidlo toku gen inf, DNA a RNA (viry) se mohou replikovat, RNA se může přepisovat do DNA (reverzní transkripce)
- Molekulární biologie se zabývá <u>procesy vedoucími k tomuto toku genetické informace</u> (a chybách v něm)

HISTORICKÉ OKÉNKO

- Johann Gregor Mendel (1822-1884)

- 1 Zákon o uniformitě F1 generace a identitě reciprokých křížení
- 2 Náhodná segregace alel a čistota vloh recesivní alela se neruší, i když se neprojeví, při křížení 2 heterozygotů může být
 potomkovi předána každá ze dvou alel se stejnou pravděpodobností
- o <u>3 Zákon o nezávislé kombinovatelnosti alel</u> při dihybridismu dochází k pravidelné a náhodně segregaci
- Pokusy prováděl na hrachu cca v padesátých letech 19. století, nejdřív si musel připravit čistou linii

Miescher (1869)

- Švýcarský medik, <u>izolace obsahu jádra buňky</u>, první částečná izolace a charakteristika DNA -> obsah jádra nazval <u>nuklein</u>
- Chtěl izolovat co je v jádře, hledal buňky, které budou mít vzhledem k ostatnímu obsahu co největší jádro (-> lymfocyty)
- Z fáčů (obvazy pacientů s gangrénou -> s hnisem) vymýval lymfocyty, ze kterých izoloval nuklein
- o Pak používal thymus telete od toho tehdejší první název DNA, kys thymonukleinová, pak použil mlíčí lososa (salmon sperm DNA)
- Wismann (konec 19. století) sídlem dědičnosti jsou chromozomy

- Thomas Hunt Morgan (1926)

- Morganovy zákony chtěl vyvrátit teorii, že geny leží na chromozomech, místo toho ji dokázal
- 🗅 <u>1 Geny leží lineárně za sebou, 2 Geny jednoho chromozomu tvoří vazebnou skupinu</u> počet skupin je počet párů homologů
- 3 Mezi geny páru homologů může probíhat genová výměna crossing over, frekvence je přímo úměrná vzdálenosti genů

Fred Griffith (1928)

- Pokusy s různými kmeny Streptococcus pneumoninae
 - S kmeny (smooth) virulentní kmen, na povrchu polysacharidový obal, imunita je neumí rozeznat, zabíjí hostitele
 - R kmeny (rough) nemají polysacharidový obal, jsou snadno fagocytovány, nezabíjí hostitele
- v Vzal určité množství virulentního S kmenu a injikoval ho do myši myš umře, menší množství R kmene většina myší přežije
- Když se S kmen zabije teplem (mrtvé, ale DNA v celku) a píchne se do myši, myš neumře (očkování vlastně), když se ale smíchá s živým R kmenem, myši umřou a je v nich živý virulentní kmen (po vyizolování)
- Transformační princip dochází k přenosu informace z mrtvého virulentního do živého nevirulentního kmene
- Kochova pravidla pro izolaci patogenního agens
 - Když chceme získat čistou formu patogenního agens, musíme to, co si myslíme, že je čistá forma, použít k vyvolání choroby ve zkoumaném objektu
 - Z toho objektu pak musíme být schopni patogenní agens znovu izolovat v nezměněné podobě (u Griffitha to neplatí!)
- Atsbury (1938-1941) první difrakční obraz DNA, izoloval tak čistě a kvalitně DNA, že dokázal provést difrakci a najít jednotky kolmé k ose

- Bedale a Tatum (1941)

- o Pokusy s Neurospora crassa, už tehdy dobře prozkoumána, dala se pěstovat na minimálním médiu (zdroj C, anorg soli, biotin)
- Vše ostatní si umí syntetizovat sama, zkoumání <u>auxotrofních (nutričních) mutant</u>, neschopny žit na minimálním médiu, ale schopny růst na kompletním
 - Indukovali RTG zářením mutace v Neurospoře, mutanty kultivovaly na kompletním médiu a když je přenesli na minimální a ony umřely, kultura obsahovala <u>nutriční mutaci</u>
 - Přenášeli nutriční mutanty na různá upravená média a zjišťovali, v syntéze jaké látky je mutace
 - Měli kolekci auxotrofních mutant, pro každou enzymatickou reakci existuje mutace, hypotéza jeden gen = jeden enzym

Avery, McLeod, McCarthy

- Objasnili Griffithův experiment hledali složku S kmenů (cukry, tuky, proteiny, NK), která transformuje R kmeny
- o Předpokládalo se, že genetická informace je uložena v pouzdře bakterie tvořeném polysacharidy, postupně degradovali složky
 - Nejdřív sacharidy a lipidy transformace fungovala, degradace RNA transformace fungovala, proteázy funguje
 - Degradace DNA (DNázy) transformace nefunguje -> <u>DNA má asi schopnost přenášet gen inf</u> (dokázalo se to později)

Erwin Chagraff (1950)

- o Izoloval DNA z různých zdrojů, zkoumal poměr purinů a pyrimidinů, zlepšil techniky izolace a analýzy DNA a RNA
- <u>Chagraffova pravidla</u> adenin se váže s thyminem a cytosin s guaninem, v DNA je vždy stejný poměr purinů a pyrimidinů
- Linus Pauling (1951) navrhl <u>alfa helix</u> a <u>beta sheet</u>, <u>peptidovou vazbu</u>
- Rosalind Franklin <3 (1951) ostré difrakční obrazce DNA
- Hershey-Chase experiment (1952)
 - Potvrzení Averyho výsledků, pracovali se sudými bakteriofágy (T2, T4), nožičky a hlavičky zůstávají na povrch, dovnitř jde jen DNA
 - Nechali infikovat bakterie radioaktivně značenými fágy (jedna skupina se značenou S: proteiny, druhá se značeným P: NK)
 - Odpojili značené fágy od bakterií a zkoumali, kde mají radioaktivitu značená S na povrchu, značený P uvnitř
 - Pokud nechali fágy pomnožit, potomstvo od značeného P měla radioaktivně značenou DNA, proteiny byly čisté
 - Nositelem genetické informace je skutečně DNA

- Watson, Crick (1952) trojrozměrný model DNA
- Crick, Gamov (1957) první formulace centrálního dogmatu
- ROZLUŠTĚNÍ GENETICKÉHO KÓDU (1960-1966)
 - Do té doby se něco zkoumalo v laborkách, tam se na to přišlo a publikovalo u genetického kódu to tak moc nešlo, laborky spolupracovaly a měnily si zkušenosti, vědce to bavilo a byl díky tomu docela rychle rozluštěn
 - Nierenberg, Matthaer měli polynuklidfosforylázu z bakterií, co umí nasyntetizovat RNA z nukleosidtrifosfátů, měli bezbuněčné systémy (co je potřeba k translaci – ribozomy, AK, tRNA, enzymy atd – in vitro)
 - Nasyntetizovali umělé RNA, každé tvořené jen z jednoto typu nukleotidů (poly-U, A, C) homopolymery
 - Sledovali, jak se nasyntetizuje polypeptid podle umělé RNA, v systémech měli vždy 20 AK, ale jen jedna značená aby kontrolovali, která konkrétní kys se zařadila (poly-U – alanin, poly-A lysin, poly-C prolin)
 - Rozluštění prvních tří kodónů (z homopolymerů) UUU, AAA, CCC
 - Pak heteropolymery vždy třeba dva, věděli, v jakém poměru jsou báze ve směsi (1A:5C), zařazení nevěděli
 - Z toho vypočítali pravděpodobnost zařazení kombinací složení tripletů pro AK, ale ne pořadí nukleotidů
 - Nirenberg, Leder triplet-binding assay, přítomnost trinukleotidů stačí pro stimulaci specifické vazby tRNA-ribozom
 - Uměli nasyntetizovat triplety ribonukleotidů, tRNA se navázala, zjistili pořadí bází v rozluštění 50 kodonů
 - Khorana syntéza dlouhých RNA složených z opakujících se krátkých sekvencí, polypeptidy složené jen z určitých AK 0
 - Zkoumal polynukleotidové sekvence a porovnával shody, jaké AK se opakovaly 61 kodónů
 - Stop kodony 3 volná místa, nonsense terminační kodony UAA, UAG UGA
 - Brenner přišel s tím, že to jsou signály pro zastavení syntézy, pracoval s mutantními kmeny bakteriofága
 - Mutanti se lišili složením proteinového pláště, různě dlouhé proteiny předčasné ukončení sekvence?
 - Porovnal sekvence pro syntézu proteinu jaká AK by měla následovat a jaké kodony je kódují, všiml si, že jednou změnou jednoho písmenka může dojít ke vzniku stop kodonu a sekvence se zastaví
- Jacob, Monod (1961) operonový model regulace bakteriálního genu, lac operon
- Gellert (1967) objev ligázy: enzymu, který uměl řetězce rozštěpené restrikční endonukleázou zase spojit
- Baltimore, Temin (1970) objev <u>reverzní transkriptázy</u>
- Založení společnosti Genentech (1976) první velká biotechnologická společnost, velmi úspěšná dodnes
 - 1978 první komerční výroba lidského somatostatinu (léčivo)
- Czech, Altman (1983) objev enzymové aktivity u některých RNA molekul -> ribozymy
- Mullis (1985) využití termostabilní DNA polymerázy pro PCR
- Založení HUGO (1988) human genome organisation, sekvenování lidského genomu

- Pruisner, Gajdusek (1991) objevení prionů, proteiny jako infekční agens
- Human Genome Sequencing Consortium and Celera Genomics (2001) zkomopletování a anotace většiny lidského genomu
- **ENCODE Program (2003)**
 - Encyclopedia of DNA Elements, člověk má asi 20k genů kódujících proteiny, což je asi 1,5 % lidského genomu
 - Cílem ENCODE je určit, jakou funkci nese nekódující část genomu regulační elementy, určení jejich polohy a vlivu na transkripci
 - Odhalení příčin nemocí, mapování epigenetických znaků (epigenetika změny v genové expresi, co nejsou způsobeny změnou nt)
- Od 70 let velký rozmach molekulární biologie, vycházeli z jiných oborů, vývoj vlastních technik (PCR), komercionalizace, peníze, rozkvět
 - Mladá a rychle se rozvíjející disciplína

MODELOVÉ ORGANISMY

- Je potřeba si vždycky uvědomit, jaký model stojí za výslednými daty
- Obecné vlastnosti ideálního modelu
 - Musí být vhodný pro položené otázky a typ experimentu, který hodláme provést (zkoumám obecné/konkrétní vlastnosti?)
 - <u>Krátká generační doba</u> krátký životní cyklus a jeho dobrá definovanost, schopnost produkovat <u>relativně velké množství potomků</u>
 - Malá velikost, snadná dostupnost a manipulace, snadná kultivace a možnost kontroly křížení, možnost kontroly párování 0
 - Možnost využít genetické inženýrství dobře známé genetické pozadí, maximálně probádaný org techniky, kmeny, mapy... 0
 - Musí zajímat společnost, protože jinak se neseženou finanční prostředky 💀 získání peněz na výzkum je zásadní

	Viry (*)	Escherichia coli	Člověk
Kultivace	často lehce kultivovatelné v čisté kontrolované kultuře	lehce kultivovatelná v čisté kontrolované kultuře	kontrola nemožná
Generační doba	často velmi krátká	desítky minut	relativně dlouhá
Životní cyklus	často dobře definovatelný	velmi dobře známý	dobře známý
Genetické pozadí	často snadná příprava cílených mutací	mnoho mutantních kmenů k dispozici, relativně snadná příprava mutantů	mnoho nemocí dobře charakterizováno
Stupeň charakterizace genomu	Není problém rychle sekvenovat kterýkoliv nový druh	Je známa celá nukleotidová sekvence. Kompletní fyzikální mapa.	Většina genomu sekvenována. Dobře zmapovaný genom. Velké populační studie.
Velikost genomu	malý	4,6 Mbp	3 300 Mbp
Genticky modifikovatelný	ano	ano	nepřípustně
Kontrola křížení	sledování rekombinace - ano	ano	nepřípustné
Šance získání financí na výzkum	někdy, zvláště u různých patogenů, velmi vysoká	postupně klesá	velmi vysoká
Zvláštnosti	Často kódují jen několik proteinů – možnost vytvoření dobře definovaného systému. Velká rozmanitost – výsledky často nelze jednoduše zobecnit. Možnost využití jako vektorů nebo při výzkumu některých funkcí u jejich hostitelů.	Buněčný cyklus je velmi dobře definován, stejně jako genom a mnoho proteinů a buněčných struktur. Výsledky často netze jednoduše zobecnit pro vyšší organismy.	Mnoho výzkumu lze provádět pouze nepřímo pomocí dalších modelů nebo s využitím buněčných kultur

Příklady jednotlivých organismů

- Většina učebnicových dat o bakteriích je získána na základě e-coli, která ale není vzhledem k výskytu úplně vypovídající
- o <u>Sacharomyces cerevisiae</u> model pro eukaryota, ještě horší model pro eukaryota než e-coli pro bakterie 💀
- o Další OGs (znáte z genetiky): Arabidopsis thaliana, Drosophila melanogaster, Mus musculus, Caenorhabditis elegans
- o Další (trochu víc trapný): Neurospora crassa, Synechocystis, Schizosaccharomyces pombe, Danio rerio, drápatka, topol

- Výzkum

- Společnost chce zobecnitelné závěry, důležitá je aktuálnost a lukrativita výzkumu
- Výzkum IRES specifická místa na RNA, zesilovače translace umožňující některým virům obejít kontrolní mechanismy buňky
 - Ukázalo se, že u některých buněčných dna IRES existují
 - IRES hepatitidy C nejprozkoumanější IRES, pokud chceme dojít k dalším detailům, je dobře začít na tomhle pevném základu a jít do hloubky
- Je důležité pracovat na solidních základech, přemýšlet kriticky
 - Když na něčem stavíme, musíme přemýšlet nad tím, jestli vůbec autor stavěl na solidních základech

DĚLENÍ MODELŮ

- Taxonomické hledisko jedno z hlavních dělení, modely jaderné (eukaryota) a bezjaderné (bakterie, archea)
 - Nejjednodušší formou života je buňka, většina žijících organismů je jednobuněčných
 - Buňky mohou být sdruženy do shluků, být vysoce specializované a vytvářet mnohobuněčné org
 - Dva základní typy buněk
 - Bakterie a archea bezjaderné a bez membránových komponent
 - Eukaryota jaderné, se složitými membránovými strukturami
- Hledisko velikosti genomů (v bp) bylo by fajn to tušit prej
 - O Přirovnání k telefonním seznamům člověk 200 knih, drosophila 10 knih, kvasinka 1 kniha, e-coli 300 stran, kvasinka 14 stran
- Úrovně charakterizace modelových organismů
 - Genom veškerá DNA buňky (struktura primární, sekundární a vyšší, její funkce, regulace, interakce atd)
 - o **Transkriptom** veškerá přepisovaná RNA organismu (jako genom + úroveň exprese)
 - Analýza transkriptomu dovoluje třeba najít geny, které způsobují rakovinu, nebo jsou specificky umlčeny nádorem
 - Rozdíly v expresi mRNA mezi různými typy lidských nádorových buněk
 - o Proteom proteiny organismu, produkty translace (transkriptom + tvorba, modifikace a interakce se složkami metabolomu)
 - Metabolom veškeré nízkomolekulární látky, produkty metabolismu

STUDIUM GENOMŮ, SEKVENOVÁNÍ, DATABÁZE

- Sekvenace -> skládání -> anotace
 - o Rozvoj nastartován sekvenačními programy, **sekvenace** řada písmenek, **anotace** musíme popsat, co úseky znamenají
 - Sekvenování automaticky nebo manuálně, existují databáze, kde lze najít jak je který organismus osekvenovaný
 - o NCBI jedna z databází, kde je řada osekvenovaných a popsaných genomů (eukaryot, bakterií, archeí, virů, plazmidů, organel..)
- **Homologie genomů** stejnost genomů různých organismů díky společnému původu (společný předek)
 - Ortology geny u různých druhů, které vznikly od společného předka speciací, funkce bývá zachována
 - o Paralogy homology odvozené od společného předka genovou duplikací (myoglobin, alfa-hemoglobin, beta-hemoglobin)
 - Xenology homology získané horizontálním přenosem (geny pro rezistenci k antibiotikům)
 - Synology homology v jednom organismu získané fúzí dvou nepříbuzných organismů (mitochondrie, chloroplasty)
- Nejčastější vlivy na evoluci genu podle relativního významu
 - o 1 <u>mutace</u>, 2 <u>speciace</u>, 3 <u>genová duplikace</u>, 4 <u>ztráta genu</u>, 5 <u>horizontální přenos genu</u>, 6 <u>fúze</u>
- Sport genes (ALE JE TO NEETICKÉ!!)
 - Je známo víc než 200 polymorfismů, které zvyšují fyzickou výkonnost, jedná se o většinou polygenní predispozice, ale je to cool
 - Polymorfismus v intronu genu pro angiotensin konvertující enzym (ACE) ACE má vliv na vznik funkčního angiotensinu, ten ovlivňuje homeostázu iontů v těle, krevní tlak.. -> homozygoti II výhodnější pro vytrvalostní sporty, DD pro rychlostní
 - o Mutace v genu pro myostatin myostatin blokuje tvorbu svalové hmoty, když je mutovaný, růst svalů není tolik omezen
 - Mutace v receptoru pro erythropoetin (EPO) vede ke zvýšené aktivaci a zvýšení přenosu kyslíku do tkání
 - Sportovní dopping injekce s erythropoetinem, kdysi třeba při Tour de France běžné
 - **Genetický lék repoxygen** virový vektor s EPO pod kontrolou genetického elementu, který detekuje hypoxii a umožní expresi EPO (ale je to nebezpečný a asi to bylo použito jako doping)
- Metagenomika
 - o Studuje genetický materiál získaný z různých prostředí (ne z kultivovaných vzorků), nejčastěji mikrobiální genomy
 - Vyizoluju DNA z kaluže, můžu jí osekvenovat/dát jí do bakterií a zjistit, co to s nima udělá

HLAVNÍ KOMPONENTY BUŇKY

- Buňky jsou složené z poměrně limitovaného množství prvků, 99% hmotnosti tvoří ¹²C, ¹H, ¹⁴N, ¹⁶O
- Voda, H2O
 - Nejčastější molekula, polární charakter, schopnost vodíkové vazby (tvoří flickering clusters), vysoké povrchové napětí
 - Rozpouštědlo polárních látek rozpouští je a obklopuje je
 - Vliv na nepolární molekuly nutí je se shlukovat a uspořádávat se do vyšších celků
 - **Clathrates** nepolární hydrofobní molekuly netvoří vodíkové můstky, ve vodě se rozpouští omezeně, voda se kolem nich shlukuje do klathrátových struktur, snižuje entropii (kyslíky v tetraedru vůči sobě)

Cukry, MK, AK, nukleotidy

- o Čtyři základní organické látky, mohou tvořit složitější molekuly, mnohopolymery atd, vysoká variabilita
- o Chemické vlastnosti složených molekul jsou určeny složením, prostorovým uspořádáním, způsobem vytvoření...
 - Ze dvou glukózových podjednotek jde vytvořit jedenáct různých disacharidů s brutálně jinými vlastnostmi
 - Ze 20 základních AK jde vytvořit 160 000 tetrapeptidů, ne všechny mají dramaticky odlišné vlastnosti, ale některé jo
 - Běžný protein (,běžný prací prášek) o délce 300 AK, odpovídá průměrnému genu, můžeme dostat 10³⁹⁰ variant

Složení buňky (exponenciálně rostoucí kultura e-coli)

- Nejlépe definovanou buňku máme z <u>exponenciálně rostoucí kultury</u> pokud je růst omezen, buňky se začnou lišit a nejde moc říct, jak vypadá samostatná buňka
 - Pokus z takové kultury data nepochází, autoři materiálů by to měli uvádět
 - V přírodě je ale exponenciální růst velmi vzácný
- Nejvíc z ribonukleových kys je rRNA molekulární stroj, který se přímo účastní na tvorbě bílkovin (ještě při exponenciálním růstu)

	Procento z celkové	Přibližný počet druhů
	hmotnosti buňky	molekul
Voda	70 %	1
Anorganické látky (ionty)	1 %	20
Cukry (+prekurzory)	1 %	250
AK (+prekurzory)	0,4 %	100
Nukleotidy (+prekurzory)	0,4 %	100
MK (+prekurzory)	1 %	50
Další malé molekuly	0,2 %	300
Makromolekuly	26 %	3000
(proteiny, NK, polysach)		

	Podíl z celkové suché hmotnosti buňky		
Proteiny	55 %		
DNA	3,1 %		
rRNA (nejvíc z RNA!)	víc z RNA!) 16,7 %		
tRNA	3 %		
mRNA	0,8 %		
Lipidy	9,1 %		
Lipopolysacharidy	3,4 %		
Peptidoglykan	2,5 %		

Chemické složení biopolymerů

- o <u>Kovalentní vazba</u> základní vazba, <u>slabé vazebné interakce</u> vnitřní dynamika, funkce, prostorové uspořádání
 - Život je založen na stabilitě kovalentních vazeb a možnosti jejich snadného kontrolovaného štěpení/přeskupování
 - Slabé interakce jsou zase zásadní, protože umožňují interakce biopolymerů samy se sebou/s jinými látkami
- Vodné prostředí naprosto zásadní, ovlivňuje sílu vazeb (síla iontových a vodíkových vazeb ve vakuu je mnohem vyšší)

	Síla vazby (kcal/mol)	
Kovalentní	15-170	
Iontová	3-7	
Vodíková	1-7	
VDW interakce	0,5-1	
Hydrofobní interakce	0,5-3	

STRUKTURA NUKLEOVÝCH KYSELIN

- Nukleotid základní stavební jednotka polymeru, báze + ribóza/2-deoxyribóza + fosfát (zbytek od kys hydrogenfosforečné)
 - o **Terminologie** nukleosid a fosfát/5'-fosfát, když je fosfát jinde než na 5'-> specifikovat, <u>adenosin-5'-fosfát</u> --->
 - Báze N-glykosidickou vazbou připojena na cukr (ribóza/deoxyribóza), od všech existují varianty
 - Kanonické puriny adenin, guanin, kanonické pyrimidiny uracil, thymin, cytosin
 - V DNA se kanonicky vyskytuje thymin, v RNA uracil, ale není to striktní (může být i opačně)
 - Cukr hlavní rozdíl mezi DNA a RNA (báze je vlastně jedno), ribóza (RNA), 2-deoxyribóza (DNA)
 - Přítomnost –OH skupiny na 2-deoxyribóze výrazně mění chemické vlastnosti a reakce molekuly
 - Na C1' SE VÁŽE BÁZE (purin přes N9, pyrimidin přes N1), na C5' SE VÁŽE FOSFÁT
- Nukleosid báze + ribóza/2-deoxyribóza
 - o **Terminologie** <u>adenosin</u>, <u>guanosin</u>, <u>cytidin</u>, <u>thymidin</u>, <u>uridin</u>

TVORBA POLYMERU Z NUKLEOTIDŮ, PÁROVÁNÍ

- Fosfodiesterová vazba spojuje fosfáty a nukleotidy do nukleosidů, nukleotidy mají směr 5'->3' (směr replikace)
 - o Když je odlišnost ve směru nukleotidu, je třeba specifikovat automaticky se předpokládá základní směr
 - V kreslení molekul mohou být chyby dělají je grafici, kterým jde spíš o estetiku, a ne o správnost!
 - Nejflexibilnější kloub celé NK může docházet k rotacím a vyrovnává pnutí
- Kostra z bází trčí do prostoru, mohou s něčím reagovat, třeba s druhým řetězcem NK (dvoušroubovice), rigidní molekuly
- Nukleosidy umožňují **28 typů párování** za různých okolností se vyskytují různé typy
 - o Za normálních okolností je nejběžnější WC párování -> nejnižší volná energie
- Watson Crickovské párování
 - Klasické, jedno z párování tvořící dvoušroubovici DNA, A=T (2 H-můstky), G=C (3 H-můstky), komplementární a antiparalelní
 - Vzdálenost C1 uhlíku 10 angstermů
 - Vždycky stejná symetrie, pokud by se spárovaly 2 puriny a 2 pyrimidiny, vzdálenost by klesla (8,6)
 - Změna vzdálenosti by znamenala změnu tvaru na celkové dvoušroubovici, takové místo buňka rozpozná a řeší
 - o **B-konformace** základní Watson-Crickovský model, pravotočivá dvoušroubovice DNA
 - o Malý a velký žlábek jen u WC párování a B-konformace
 - Není je moc možný definovat vizuálně, definují se vzhledem k N-glykosidické vazbě
 - Malý žlábek u purinu na té straně, kde je N3 a C4, u pyrimidinu C2
 - **Velký žlábek** druhá strana, purin C7, pyrimidin C5, obsahuje <u>víc funkčních skupin</u>, variabilnější prostředí pro navázání dalších biopolymerů/jiných látek, váže se sem většina TF a dalších DNA vazebných proteinů
- Hoogsteenovo, reverzní Hoogsteenovo atd

NEKANONICKÉ TYPY BÁZÍ

- Existuje velké množství různých nukleotidů, DNA bývá na modifikace chudší, ale také se vyskytují modifikované nukleosidy
 - <u>Pseudouridin</u> dyskerin modifikuje uridin na pseudouridin, jiné číslování!, <u>tRNA</u>, <u>rRNA</u>, <u>snRNA</u>, <u>telomerázová RNA</u>
 - o <u>Dihydrouridin</u> typické nukleotidy popisující <u>různé smyčky u tRNA</u>
 - o <u>5-methylcytidin</u> podíl na <u>heterochromatizaci chromatinu v CpG ostrůvkách</u>
 - o Inosin deaminovaný adenosin, nukleosid z ribózy a hypoxantinu navázaného na ribózu β-N9-glykodisidickou vazbou
 - Méně typický nukleosid, ale vyskytuje se běžně v <u>tRNA</u> a umožňuje <u>wobble párování kodonu s antikodonem</u>
 - Inosin na wobble pozici antikodonu může párovat s cytosinem, adeninem i uracilem
 - o 6-methyladenosin adenosin methylován v sekvenci GATC DAM methyltransferázou, mRNA, tRNA, rRNA, snRNA
 - o <u>7-methylguanosin</u> zásadní u <u>eukaryot na 5' konci mRNA (5' methylguanosinová čepička)</u>

- Modifikace/glykosylace báze nemusí znamenat chybu v genomu
 - Glykosylované nukleotidy u T sudých bakteriofágů, 70-100 % methylcytosinů glykosylovanýh, stabilnější prostředí pro fágy, obrana proti antivirovým mechanismům bakterie

ZMĚNY NA NUKLEOTIDECH OVLIVŇUJÍCÍ NK

Co ovlivňuje sekundární struktury NK – modifikace bází, alternativní typy párování, konformační flexibilita ribózy, rotace kolem Nglykosidické vazby, naklonění nt v rámci bázových párů, konformace bázových párů vůči sobě, přítomnost aduktů, koncentrace solí...

Rotace kolem N-glykosidické vazby

- N-glykosidická vazba vzniká mezi dusíkem báze (purin N9, pyrimidin N1) a C1' uhlíkem ribózy
 - Je popisována torzními úhly zahrnujícími atomy O4'-C1'-N1-C2 pyrimidinů a O4'-C1'-N9-C4 purinů
- Rovina je popsána přímkou a bodem, úhel mezi dvěma rovinami je torzní úhel, kterým popisujeme rotaci
 - Anti úhel -> 180°+ -30° (B-konformace, WC párování), syn úhel -> 0°+ -30° (modifikované nukleosidy)
 - Modifikované nukleosidy tendence se překlápět do syn konformace, může to hrát roli ve tvorbě konformace NK
 - Fyziologické prostředí základní nukleosidy a nukleotidy mají tendenci se vyskytovat v anti konformaci
 - 🛕 Guanosin 🛕 (výjimka) ve fyziologickém prostředí má aspoň z 15 % tendenci být syn, i když je v prostředí a WC párování přirozená anti, modifikace syn tendence zvyšují (bromace C8', volná –OH – stabilizace syn H-můstkem)

Struktura ribózy

Má vliv na to, jak se k sobě přiblíží a jak spolu interagují jednotlivé báze nad sebou

C3' endo (b) – konformace je pravděpodobnější, čím elektronegativnější substituent je na C2' (v RNA – váže se tam OH

Fosfáty – C3' a C5' fosfáty se přiblíží až na vzdálenost 5,9 angstrém, patra bází blízko

C2' endo (c) – nad rovinou C1'-C4' je C2', typičtější v DNA (typické pro WC B-konformaci)

Hydratační obaly

Velký vliv na uspořádání sekundárních struktur NK, dsDNA je víc polární než ssDNA (víc polární povrch)

Stabilizace struktury – vody mezi sebou tvoří H-můstky, ale můžou i přemostit dva substituenty (části) nt v DNA

Primární hydratační obal – 20 molekul na jednom nukleotidu v dsDNA, nepropustný pro kationty

Tvoří se kolem molekuly NK hned, kolem něj mohou být uspořádány vyšší hydratační obaly

Vážou se na fosfátové kyslíky, fosfodiesterové kyslíky a furanózový O4', fční skupiny bází (amino, imino, keto)

Sekundární hydratační obal – mírně vyšší uspořádání než okolní voda, propustný pro ionty

<u>Difrakční obrazce dsDNA</u> – autor Franklinová a Wilkins, Watson a Crick to jenom převzali, jejich příprava se podařila jen díky tomu, že se začalo pracovat v hydratovaných komůrkách a došlo k hydrataci DNA (sledovali B-konformaci)

Jiné možnosti párování

Jednotlivé součásti bází tvoří akceptory/donory vodíkové vazby, migrace vodíku v rámci heterocyklu změní charakter báze

Keto a amino forma – nukleosidy ve fyziologických podmínkách (ale i tady je pravděpodobnost jiné formy)

Enol a imino forma – změna podmínek (odlišné pH atd) nebo modifikace nukleotidů (chovají se jako jiný nt)

Tautomerie – změna forem v rámci nukleosidu

Chybné párování – může k němu dojít, chybovost v replikaci, ale DNA-poly ho umí i poznat

Wobble – kolísavé párování bází při translaci, tautomerie bází zde hraje roli, podobné jako WC

Vodíkové můstky – mezi bázemi, stabilita šroubovice (taje, když se můstky naruší), rozpoznají komplementaritu

Stacking interakce (síly vrstvení)

- Hydrofobní a VDW mezi páry nad sebou, na dvoušroubovici je třeba koukat z hlediska směru (molekula se chová jinak!)
- Termální stabilita umožňují ji tyto interakce, taky změna stability v závislosti na vnějším prostředí
 - Nejsilnější stabilita v místech, kde jsou alterované CG-GC páry, nejnižší tam, kde jsou AT páry
- Termální stabilita dvouřetězcových NK nejsnazší způsob, jak ji sledovat je denaturace a následná renaturace příslušné NK
 - Absorbanční křivka DNA maximum při 260 nm (absorbční maximum aromatických bází), absorbanci sledujeme při denaturaci
 - <u>Denaturační křivka</u> růst absorbance, sledujeme, jak DNA taje a co se s ní děje
 - Teplota tání (T_m) empirická, teplota, při níž dosáhneme <u>inflexního bodu</u> (polovina bází je denaturovaná)
 - Důležitý parametr pro hybridizační experimenty, experimenty typu PCR, hybridizace s oligonukleotidy atd
 - Závisí na iontové síle prostředí, pH, sekvenci NK (závisí na množství GC a AT párů a jejich posloupnosti stacking interactions)
 - Denaturace a renaturace se používá v genovém inženýrství:
 - **Denaturace** oddělení řetězců DNA od sebe na dva jednoduché řetězce
 - Zahříváním až k varu, hyperchromní efekt pokud dsNK zahříváme a mění se na ssNK, absorbance roste, i když množství látky je stejné, čím víc ji zahříváme, tím víc denaturuje a tím větší je absorbance bez změny látkového množství
 - Změnou pH dochází ke změnám protonace jednotlivých atomů v heterocyklech, nejdřív se změna ukáže na dusících uvnitř heterocyklu, ne na aminoskupinách/kyslíku (už při malých změnách pH)
 - Alkalické prostředí první deprotonován N3 uracilu a N1 guaninu, DNA ho snáší lépe (má o OH víc), RNA ne
 - Slabě kyselé prostředí první protonován dusík N3 cytosinu a N1 adeninu
 - Po dusíkách uvnitř heterocyklu se mění protonace u aminoskupin, hraje to roli při tvorbě H-můstků

- Pomocí činidla interferuje s vodíkovými vazbami a naruší je (močovina, formamid ve vysokých koncentracích)
- o Renaturace probíhá na základě komplementarity, má dvě fáze
 - Pomalá fáze musí se najít dlouhá iniciální sekvence, to trvá, rychlá fáze pak to jde jako po másle

KONFORMACE NUKLEOVÝCH KYSELIN

Všechno to jsou rodiny konformací

- B-konformace

- o Fyziologické podmínky, anti rotace, W-C model, malý a velký žlábek vidět, stejně hluboké, pravotočivá, obrátka = 10 bp
- o Páry bází jsou kolmo na osu helixu, v průřezu jsou bázové páry naskládané přes osu helixu, cukrfosfátová kostra po stranách
- Relativně polymorfní je od ní odvozeno víc konformací, které na ni navazují a odpovídají na ní (tvoří rodinu)

A-konformace

- Typická pro <u>dsRNA</u>, může být i A-DNA při nízké vlhkosti, páry bází po obvodu osy helixu, <u>pravotočivá</u>, obrátka = 11 bp
- OH skupina na C2' převážné ustavení ribózy C3' endo, přiblížení jednotlivých párů bází, pnutí, páry se od sebe odtahují (široká)
- Velký a malá žlábek méně patrné (vymezeny N-glykosidickou vazbou)

- Z-konformace (zig-zag)

- Opakující se jednotka jsou dva bázové páry nad sebou, obrátka = 6 párů párů, vždycky o kousek pootočená
- <u>Levotočivá</u> vzniká to hlavně v <u>alterovaných sekvencích GC-CG párů</u>
 - Protože guanosin má tendenci přecházet do syn, ta tlačí ribózu do C1' exo, řetězec se stočí na druhou stranu
 - Byla objevena na krátkých oligonukleotidech s alternovanými sekvencemi GC-CG právě
- *Experimenty, Z-konformace a výskyt v biologických systémech*
 - Nutno detekovat Z konformaci v biologických systémech tak, že mám protilátku (jinou molekulu, která strukturu specificky rozezná), připravenou ve fyziologických podmínkách
 - <u>Z-konformace v nefyziologických podmínkách</u> vysoká koncentrace solí, nízká humidita, alterované GC páry, příprava bromováním guanosinu (8-bromodeoxyguanosin), tvorba oligont a on sám přejde do Z-konformace -> **protilátky**
 - Protilátky se označily fluorescenčně a hledalo se, jestli se někde ve zdravé buňce vyskytuje Z-konformace
- Funkce Z-DNA v buňkách byly nalezeny <u>proteiny</u>, které se <u>specificky vážou na Z-NK</u>, třeba adar vazebné domény rozeznávající
 Z-dsNK (souvisí s editací NK a antivirovou ochranou buňky)

Parameter	B-form	A-form	Z-form
Helix handedness	right	right	left
Base pairs/turn	10	11	12
Base pairs/repeating unit	1	1	2
χ orientation	anti	anti	anti, syn
Sugar conformation	C2'-endo	C3'-endo	C2'-endo, C3'-endo
Rise/base pair (Å) ^a	3.4	2.6	3.7
Major groove width (Å)	11.7	2.7	8.8
Major groove depth (Å)	8.8	13.5	3.7
Minor groove width (Å)	5.7	11.0	2.0
Minor groove depth (Å)	7.5	2.8	13.8

- Trojřetězcové NK

- o Dva řetězce párují WC, jeden Hoogsteenovsky (nebo jinak, víc možností), často homopolymery (homopurin s homopyridinem)
- U sekvencí s delšími úseky purinů ve dvojřetězci možno vložit oligopyrimidinový řetězec
- <u>Čtyřřetězcová DNA</u> vyskytuje se tam, kde je velké množství guanosinu (třeba telomery)

- <u>Stackování</u>

- o Když vezmu nukleotidy a dám je do roztoku, začnou se na sebe stackovat vrstvit, stacking a hydrofobní interakce
- o Homopolymer ssNK může dojít k vrstvení bází nad sebou, vede to ke stáčení řetězce

- P-DNA (funfact)

o Experimentální artefakt vycházející z původních úvah o tom, jak vypadá dsDNA

TOPOLOGIE NUKLEOVÝCH KYSELIN

Několik topologických forem

- o <u>Cirkulární DNA</u> pokud se dostává do prostředí, kde dochází k pnutí, vznikají nadšroubovice (circ nadšroubovicová topologie)
- Lineární DNA pokud upevníme konce a upravíme prostředí a bude vznikat pnutí, nadšroubovice (lin nadšroubovicová topologie)
- Většina NK je přirozeně v nějaké formě nadšroubovice, buňka musí mít nějaký aparát, jak s těmito nadšroubovicemi pracovat
 - <u>Denaturace dsDNA</u> vzniká ssDNA, denaturační podmínky pominou, <u>renaturace</u>, mohou vznikat stejné řetězce jako předtím (ne identické, ale komplementární

<u>Denaturace kruhové DNA</u> – uzavřená v kruhové molekule, po denaturaci vzniká <u>klubko</u>, 2 řetězce, které kolem sebe byly ovinuty, obvykle skončí zase spolu

- Renaturace docela dlouho trvá hledání řetězců, pak když se to najde, jde to samo (jako zip na bundě), kinetika má dvě část vyhledávání komplementárních sekvencí a reasociace
- Čím větší je kruh, tím pomaleji probíhá renaturace pokud denaturujeme bakteriální DNA, první renaturují plazmidy
- Pokus je kruhová molekula v nějakém místě přestřižená, může dojít k plnému oddělení řetězců (nezůstávají spolu)
- <u>Denaturační/renaturační křivka</u> na jejím základě se dokážou usuzovat různé vlastnosti (AT/GC bohaté atd)

Nadšroubovice při replikaci kruhové DNA

- o Replikace bez obrátek vzniknou dva kruhové oddělené dvouřetězce (není příliš blízko realitě)
- Replikace, na které jsou krátké obrátky vznik dvou dvouřetězců, které jsou spojeny katenátem, bližší realitě
 - Buňka musí pracovat s nadšroubovicemi a s tím, že při replikaci můžou vzniknout i takto spojené řetězce

Definice nadšroubovic

- Linking number (Lk) = twisting number (Tw) + writhing number (Wr)
- Twisting number počet obrátek řetězce DNA kolem osy helixu
 - Páry bazí se točí kolem osy, když se jeden pár dostane přesně nad jiný = 1 obrátka
 - Idealizovaná konformace B říká, že 1 obrátka = 10 párů bazí
- Writhing number počet obrátek osy kolem sebe
 - Počet obrátek osy helixu kolem osy helixu, situace, kdy vzniká nadšroubovice (supercoil)
 - Když <u>nejsou nadšroubovice</u> -> Wr = 0, takže <u>Lk = Tw</u>

- Komentář k obrázku vpravo

- o Idealizovaná šroubovice (vlevo nahoře) 36 obrátek, Lk = Tw = 36
- ► Hypotetická myšlenka (vpravo dole) 2 řetězce, rozpojíme je, rozvineme je a rozpojíme čtyři obrátky -> vzniká bublina
 - DNA v tomhle stavu nevydrží, pokud se nenavážou SSB proteiny, aby to stabilizovaly, energeticky nevýhodný stav
 - Pokud se nezměnily podmínky, dojde k pnutí, které se vybalancuje <u>nadšroubovicovými obrátkami</u>, dojde překřížení osy helixu přes osu helixu
 - Protože jsme to rozvíjeli, má to znaménko mínus, a použili jsme čtyři obrátky, takže <u>Wr = -4</u>, <u>Lk = 36 (Tw) 4 (Wr)= 32</u>

- Typy nadšroubovic

- o **Negativní nadobrátky (undertwisting)** genom je svým způsobem relaxovaný, pnutí (nadobrátky) umožňují snazší rozmotávání
 - Genom je tak přístupný enzymům pro replikaci, transkripci a podobně, snáz se k němu dostanou a pracují s ním
 - Většina genomů živých organismů je v <u>negativních nadobrátkách</u>, když nedochází k replikaci
- Pozitivní nadobrátky (overtwisting) jsou hned opravovány, utahují dvoušroubovici
- Genomy jsou udržovány v nadobrátkovém stavu
 - o <u>Lineární DNA</u> je tak velká, že je uchycena na pevné body (jaderná matrix, lamina), vznikají nadobrátky, buňka s nima pracuje

APARÁT PRACUJÍCÍ S NADOBRÁTKAMI

- DNA topoizomerázy enzymy, které mění topologii, ze stejné DNA tvoří různé topologické formy (topologické izomery), dvě hlavní rodiny
 - o **Topoizomeráza I** na dvouřetězci přeštípnou <u>jeden řetězec</u>, přetočí v přesně tom místě kolem druhého a zase řetězec spojí, kdyby pracovala chybně, vznikala by jednořetězcová přerušení
 - Do Topoizomeráza II rychlejší, řetězec přeštípne na <u>dvou místech</u>, přetočí oba řetězce najednou, častěji provádí dekatenace
 - Gyráza topoizomeráza II účastnící se bakteriální replikace, nadobrátky uvolňuje velmi rychle
 - Reverzní gyráza vytváří pozitivní nadobrátky u <u>archeí</u>, které žijí v extrémních podmínkách (DNA v prostředí denaturuje), pozitivní nadobrátky umožní organismu držet DNA v <u>kompaktním stavu</u>
- Aby zůstala zachována informace, kde je jaký konec, topoizomeráza se kovalentně váže na konec/konce DNA
 - O Vazba DNA na protein proteinový řetězec topoizomerázy obsahuje AK s OH skupinou (tyrosin), OH skupina je využita k vazbě

nukleotidu <u>fosfoesterovou vazbou</u>

Elektroforéza – mimo jiné ověření funkce topoizomerázy, funguje jako síto

- Do elektrického pole můžeme vložit nabité molekul, pokud jsou ve vhodném roztoku, pohybují podle náboje k +/-
- o Když tam dám DNA, při neutrálním pH je záporně nabitá (disociované fosfáty), <u>na každém nt DNA jednotkový záporný náboj</u>
- Dáme různým molekulám do cesty vhodné molekulové síto (agarózový gel), který má vhodnou porozitu pro dělení NK
- Vložím vzorek, spustím proud na obě strany vaničky, můžeme DNA dělit záporně nabitá DNA půjde k + elektrodě
- <u>Dělení i podle tvaru</u> tar ovlivňuje, jak se molekula bude helem hýbat, na elektroforéze můžeme sledovat topologické změny
 - DNA v nadšroubovicové formě je kompaktní, jako takový míček haha
 - Jednořetězcové přerušení relaxace, kroužek už není tak kompaktní

Komentář k obrázku (elektroforéza DNA z SV40 virionu)

- Nadšroubovicový stav (1) kompaktní molekuly putují daleko
- Po inkubaci 3 min s topo I (2) nadšroubovice, které se postupně relaxují, vidíme spektrum molekul, které jsou v různé míře relaxovanosti, kompaktní nadšroubovice dolezou dál, rozvolněné u začátku
- Po inkubaci 30 mnut s topo I (3) většina molekul je plně relaxovaná, a jsou spíš u startu (neprojdou gelem daleko)

Inhibitory topoizomeráz

- Nejaktivnější topoizomerázy jsou v rychle se množících buňkách, včetně <u>rakovinných</u>, inhibitory se používají jako cytostatika
- Protože se eukaryotní topoizomerázy hodně liší od bakteriálních, jejich inhibitory se používají i jako antibiotika
- Camptothecin (cytostatikum) inhibitor topoizomerázy I
 - Jeho účinné deriváty topotecan a irinotecan se používají na léčení nádorových/autoimunitních onemocnění
 - Zastaví komplex DNA a topo I, vznikají naštěpené úseky DNA s jednořetězcovým štěpem s navázanou topo, pokud se toho v buňce objeví hodně, <u>zastaví se replikace</u>, to může vést až k <u>apoptóze</u>
 - Pochází z čínského stromu, drobné využití v tradiční medicíně, po objevu této dřeviny prakticky vymizela z volné přírody
- Etoposide inhibitor topoizomerázy II
 - Navazuje se na rozpojenou DNA a topoizomerázu a brání znovuspojení, podporuje apoptózu v rakovinných buňkách
- Ciprofloxacin inhibitor <u>bakteriální topoizomerázy II (gyrázy)</u>
 - Patří do skupiny fluorochinolonů, funguje jako antibiotikum

STRUKTURA GENOMŮ V BUŇCE (viz genetika <3)

Různé organizace

- Kmenová buňka velké jádro, kondenzované mitochondrie, jadérko, genetická informace zabírá obrovskou část buňky
- Euglena gracelis tvorba tubulární struktury, ve které jsou vidět mtch genomy a jaderný genom
 - Mtch spolu mohou <u>interagovat, vyměňovat si genomy</u> v rámci buňky, některé mtch mohou obsahovat víc genomů
- Nukleová kyselina musí být organizována
 - Nutnost <u>spiralizace DNA</u>, tvorba <u>složitějších struktur</u> začnou se uplatňovat další molekuly
 - Histony specifické proteiny organizující genom, některé jsou si funkčně podobné, jiné i strukturně (archea, eukaryota)
 - Alba proteiny popsány u <u>archeí</u>, jejich strukturní motivy popsány u <u>všech domén života</u>

EUKARYOTNÍ CHROMATIN, CHROMOZOMY

Nejlépe prozkoumaným modelem organizace chromatinu je <u>eukaryotní jaderný genom</u>

- Histony

Kanonický základ organizace DNA v eukaryotním <u>bazické domény</u>, dobře interagují s kyselou DNA, spolu tvoří **nukleozom**

Tetramer H3 H4 – tvoří jádro, dva heterodimery H2A H2B – nad a pod tetramerem, dohromady tvo<u>ří oktamer</u>

• Linker histon H1 – není součást nukleozomu, ale drží DNA pod nukleozomem Histone fold – konzervované jádro histonů, krátké C-konce a dlouhé prodloužené N-konce

Prodloužené N-konce – obsahují různé AK, které mohou být modifikovány (vliv na funkci)

- Modifikace histonů (acetylace, metylace, fosforylace, ubikvitinace..)
 - o Nejčastěji modifikovanými AK na histonech jsou lysin, arginin a serin, slouží k regulaci a ovlivnění funkce
 - Acetylace lysinu 9 histonu H3 typická pro transkripčně aktivní oblasti, následná deacetylace slouží k inaktivaci transkripce, deaktivace se může prohloubit metylací
 - Význam v medicíně řada popsaných patologických stavů a mutací v guenech pro lidské histon-de/acetyltransferázy
 - Řada těchto onemocnění se týká buněk, které se rychle množí, třeba krevní buňky, mutace -> různé typy leukémií

Nekanonické histony

- o Aktuálnější pohled na eukaryotní chromatin, mohou nahrazovat kanonické histony, mají různé funkce
- o **H2A.X** účastní se <u>rozpoznávání poškozených míst DNA</u>, které je třeba opravit, **H3.3** umístěním <u>aktivuje transkripci</u>
- CENP-A nahrazením za histon H3 <u>označuje místo centromery</u>, ovlivňuje místo <u>sestavení kinetochoru</u>
- H2A.Z ovlivňuje genovouch expresi, segregaci chromozomů, jejich přítomnost <u>zamezuje vzniku represních chromatinových</u> <u>struktur</u>, takže je chromatin přístupnější pro replikaci

Nukleozomové chaperony (třeba CAF-1)

o Jsou odpovědné za vznik nukleozomů, ty se totiž neobjevují náhodně; vazba na DNA vychází z určitých center (specifické sekvence)

Bílkoviny remodelující chromatin

- o Pracují s chromatinem tak, že může vznikat kondenzovanější/rozvolněnější chromatin, mohou z něj uvolňovat nukleozomy
- Mohou nahrazovat specifické kanonické histony uvnitř nukleozomu nekanonickými histony
- Bridging molecules (H1 histon) bílkoviny způsobující propojení jednotlivých řetězců <u>do nukleozomů</u> a další kondenzaci chromatinu
- MHG proteiny (high mobility group) kompetují s H1 (a podobnými) o místo, mohou ho regulovaně vytlačit a rozvolňovat chromatin

Organizace chromozomů v jádře

- o Výrazně proměnlivá a dynamická struktura, <u>chromozomová teritoria</u> > <u>chromozomové kompartmenty</u> > <u>TADs</u> > <u>smyčky</u>
- TADs (topologicky asociované domény)
 - Domény, kde se jednotlivé úseky daného ch častěji vyskytují spolu, blízko jaderné membrány/laminy (vážou se tam)
 - V každé doméně je možné najít určité strukturní oblasti, které mohou být mapovány, a které se vyskytují blízko u sebe
- Smyčky SMC proteiny (koheziny, kondenziny) drží DNA tak, že vzniká organizovaná smyčka
- o Cik cak struktura DNA nukleozomy nejsou nalajnovaný, vzájemně spolu interagují

o Kontroverzní 30 nm vlákno

- Je to spíš druh <u>experimentálního artefaktu</u>, který vzniká tím, že při zkoumání podoby chromatinu v přibližně nativním prostředí (in vitro) nastavují vědci takové podmínky, v jakých chromatin to vlákno hezky tvoří
- Pokud jsou koncentrace draselných a hořečnatých <u>nižší</u>, <u>vlákno se rozpadá</u>, když <u>vyšší</u> (blíž in vivo), vlákno přechází do <u>liquid-like nepravidelného foldingu</u> (shluky cik cak struktur)

Jak si představit chromatin v buňce

- Struktury různé interagujících nukleozomů podle toho, jak došlo k remodelaci chromatinu, a podle modifikací N-konců
- Jako tekutou strukturu, která má potenciál kondenzovat, nebo se dynamicky přetvářet do jiných struktur jiných tvarů

BAKTERIÁLNÍ CHROMOZOM

- Velká cirkulární molekula připojena k plazmatické membráně, bakterie nemají jádro, zaujímá asi 1/3 objemu, rozprostřen v celé buňce
 - o Zablokování translace bakterií nukleoid zkondenzuje do kompaktní jednotky (nemá dost bílkovin na udržení, kolaps)
 - o Pomalá lýza bakterie v hypotonickém prostředí tím že nemají jádro se DNA prostě volně vylije ven z buňky
- Tvořen množstvím smyček a domén, asociován s různými bílkovinami, RNA a nízkomolekulárními látkami (neutralizace náboje DNA)
 - o Jednotlivé proteinové podjednotky (bazické) drží DNA ve smyčkách a zároveň se účastní replikace nebo transkripce
 - o Bakterie NEMAJÍ histony ani histon-like proteiny, ale bohužel jsou takto pojmenovány:

- H-NS proteiny (histon-like nucleoid structuring proteins)

- o Typické u všech bakterií (H1 u e-coli), zařizují strukturu a architekturu chromozomu, organizace genomu
- o Jedná se o rodinu proteinů, u různých bakterií se jmenují různě, ale jsou si navzájem podobné
- **IHF, Hu** bridging molekuly u ecoli

ARCHEÁLNÍ CHROMOZOM

- V mnoha ohledech podobnost archeí s eukaryoty (neplatí vždy a nedá se zobecňovat), způsobené vznikem eukaryot (endosymbióza)
 - Ale kóduje <u>proteiny podobné bakteriím</u> (metabolismus, syntéza malých molekul, transport atd) i <u>eukaryotům</u> (zpracování gen inf, replikace, transkripce, translace)
- Chybí jaderná membrána, cirkulární molekula, někdy vícereplikonový genom, někdy část genomu v plazmidech, asociace DNA s proteiny

Archeální histony

- o Nefungují v nukleozomech jako oktamery, fungují jako homo a heterodimery, které spolu patrově interagují
- o Jsou menší a neobsahují N-terminální molekuly (<u>méně epigenetických modifikací)</u>, mohou asociovat i s **ALBA proteiny**
- Chrání cca 60 nt před degradací mikrokokovou nukleázou, delece histonů nemusí být letální

ALBA proteiny

- Domény typické pro všechny živé organismy (E, B, A), <u>různé funkce</u> (nemusí to mít ani nic společného s DNA, proteinů je hodně)
- Doména A kooperativní vazba na DNA, tvorba DNA-proteinových filament a přemostění (rodiny Alba 1, Alba 2)
- **Bridging proteiny** pomáhají spiralizovat vlákno do vyšších struktur
- Taxonomie archeí se v posledních letech mění
 - o Většina archeí obsahuje ve svém genomu geny kódující (nebo pravděpodobně kódující) histony a kódující ALBA proteiny

MITOCHONDRIÁLNÍ GENOM

Savčí mtch DNA

- o Model pro mitochondriální genom, protože je to malá a redukovaná DNA (většina mtch genomu byla předána do jádra)
- o Kódující kapacita samotných mtch je docela nízká a dobře se zkoumá (většinu mtch proteinů kóduje to jádro)
- Nyní se ale klasicky ukazuje, že to nebylo tak dobrý musíme se koukat na celou diverzitu modelů
- Většinou cirkulární, ale ne nutně, obrovské velikostní rozpětí a rozpětí kódující kapacity
 - o <u>Kvasinková mtch DNA</u> větší než savčí, mtch DNA hub a kvasinek je většinou **lineární** (vysoká diverzita ukončení lineárních konců)

- Co mitochondrie kóduje

- o <u>Některé proteiny dýchacího řetězce</u>, <u>řadu vlastních RNA</u> (r, tRNA) u některých org je ale mtch tRNA kódovaná v jádře a transport
- Předávání funkcí do iádra
 - o Redukuje se množství a velikost používané RNA (rRNA i tRNA), protože jsou to hydrofilní nabité molekuly a transport je těžký
 - O Vznikl selekční tlak na to, že si <u>mtch drží kódující kapacitu různých RNA</u> pro syntézu vlastních mtch bílkovin

Kvasinková mtch DNA

O Větší než savčí, mtch DNA u hub a u kvasinek je povětšinou v **lineární formě** (vysoká diverzita ukončení lineárních konců)

CHLOROPLASTOVÝ GENOM

- *Jak ho popsal Bendich na kukuřici*
 - o Díky špatné interpretaci v 70. letech se myslelo, že se jedná o genom cirkulární bylo zjištěno, že tomu tak být nemusí
 - Roku 2004 dospěl k tomu, že cirkulární struktura je výsledkem pracovní metody, která byla použita k výzkumu, a že je in vivo
 plastidová DNA lineární

- O Vlivem replikace na sekvencích ale mohou vznikat s využitím invertovaných repetic replikační intermediáty a síťovité struktury
- To, jak cpDNA vypadá, se <u>mění během života rostliny</u> v mladých listech je cpDNA víc, se stárnutím listů obsah klesá
- Kódující kapacita
 - o Z evolučního hlediska se mtch dostala do buněk dřív než chloroplasty
 - o Chloroplasty si do dnešního dne zachovala víc funkcí než mtch, má <u>větší kódující kapacitu než mtch</u>
- Co chloroplasty kódují
 - $\circ \quad \text{Proteiny} \ \underline{\text{fotosynt\'ezy}}, \ \text{vlastn\'i} \ \underline{\text{rRNA}}, \ \underline{\text{ribozom\'aln\'i}} \ \text{proteiny}, \ \text{podjednotky} \ \underline{\text{chloroplastov\'e RNA poly}}, \ \underline{\text{enzymy metabolismu NK}}$

REPLIKACE DNA

- Vznik dvou stejných <u>dceřinných kopií (replik) jedné mateřské molekuly NK</u>, princip navržen WC na základě modelu <u>ant</u>iparalelní dsDNA
- 3 základní fáze iniciace, elongace, terminace
 - o Tohle dělení není vždycky úplně přesné a správné, hlavní podnět pro tohle dělení je rozdílná míra a váha regulace každé fáze
 - Hlavní váha všech regulací jde hlavně na iniciaci

OBECNĚ O SYNTÉZE

- Enzymová syntéza NK probíhá vždy ve směru 5'->3' nového řetězce, z prekurzorů 5'(deoxy)ribonukleosidtrifosfáty
 - o Prekurzor má na <u>5' straně</u> navázané <u>tři fosfátové skupiny</u>, připojuje se touhle stranou na 3'OH skupinu předchozího nukleotidu
 - Při zařazení nukleotidu dojde k <u>odštěpení pyrofosfátu (Pi-Pi)</u> z jeho 5' konce, z<u>ůstane tam jeden fosfát</u>, co ho pojí s předchozím nt
 - o Fosfát tvoří fosfodiesterovou vazbu s 3'OH očkem ta 3'OH atakuje fosfát, protože je velmi reaktivní, reakce je vratná (nízké G)
 - Aby byla kinetika reakce posunuta směrem k tvorbě řetězce, je pyrofosfát odštěpen pyrofosfatázou
 - Tím se <u>uvolní dostatečné množství volné energie</u> na to, aby byla syntéza DNA prakticky <u>nevratná</u>
- Syntéza jako biochemická reakce
 - Substrát templát, deoxynukleosidtrifosfát, produkt nově vznikající řetězec, pyrofosfát
 - o Inhibice nedostatek substrátu, hromadění produktu (produkt musí být odčerpáván a přeměňován), inhibice inhibitorem
 - **Řešení** buňka se v přípravě <u>naplní nukleosidtrifosfáty</u>, a pak <u>recykluje pyrofosfát</u> (je to labilní molekula, která je v prostředí buňky rychle hydrolyzována)
 - o Děje jsou dynamické, stochastické (hodnoty v každou chvíli různé), enzymové děje mají vlastní kinetiku a jsou různě ovlivňovány

ENZYMY KATALYZUJÍCÍ SYNTÉZU NK

- Polymerázy (místo dependentní říkal programované)
 - <u>DNA-depe-DNA-poly</u> <u>klasika</u>, <u>DNA-depe-RNA-poly</u> <u>transkripce</u>, <u>RNA-depe-RNA-poly</u> replikace <u>virových RNA</u>
 - RNA-depe-DNA-poly polymeráza syntetizující DNA řetězec podle RNA templátu, telomeráza, reverzní transkriptázy
 - Co které potřebují
 - RNA poly produkují <u>transkripty</u>, nepotřebují pro zahájení činnosti očko, syntéza začíná sestavením aparátu, ne primeru, zároveň <u>nemají opravnou aktivitu</u> (rychlá mutace virů)
 - DNA poly vždycky <u>vyžadují očko (primer, volnou 3'OH)</u>, nikdy nezahajují syntézu de novo, všechny poly templát

Exonukleázová aktivita DNA poly

- Kromě polymerační aktivity umí i tohle, umí štěpit NK postupně z jednoho konce, oprava chyby nebo třeba úprava Okazakiho frag
- 5'->3' exonukleázová aktivita umožňuje DNA-poly syntetizovat a zároveň před sebou odbourávat řetězec
 - Bakteriální <u>DNA Pol I</u>, úprava <u>Okazakiho fragmentů</u>
- 3'->5' exonukleázová aktivita (opravná proofreading aktivita)
 - Opravná aktivita funguje tehdy, když DNA-poly rozpozná špatně párující nt, DNA-poly má dvě soutěžící podjednotky
 - Soutěží polymerázová a exonukleázová aktivita, když je blbě napojená báze (třeba tautomerie), DNA začne tát -> začne dominovat exonukleázová aktivita a chybný nt odštěpí
 - Pro polymerázovou aktivitu je naopak vhodným substrátem plně komplementární řetězec
- o Rozpoznání pomocí dvou aktivních míst
 - Syntetické místo váže nový nukleotid, exonukleázové místo váže špatně párovaný nukleotid
 - Když polymeráza narazí na tautomerní bázi, může představovat špatný substrát pro poly aktivní místo, ale dobrý pro
 exonukleázové místo
- *Důkaz proofreading aktivity DNA poly*
 - Srovnání jednotlivých konzervovaných domén s proofreadingovou aktivitou enzymů u různých organismů (i nepříbuzných)
 - Aspartát bylo objeveno, že je konzervován a přítomen v exonukleázových doménách naprosto u všech organismů -> analýza
 - Alanine-scanning mutace aspartátu v exonukleázovém místě na alanin, relativně častý způsob, jak něco analyzovat
 - Vznikly rekombinantní myši heterozygoti a homozygoti pro tuhle pozměněnou polymerázu, sledovali je 18 měsíců
 - Homozygotní myši v průměru umíraly po 10 měsících, u řady z nich se vyvinuly nádory
 - Heterozygotní a wild-type myši nic se nedělo, vznikalo nízké množství nádorů
 - Vyvození pokud poškodíme v savčím genomu opravnou aktivitu Pol δ, má to zásadní význam na vznik mutací atd
 - Mutace polymeračního místa polymerázy
 - **Očekávání** nebude probíhat replikace, myšky se vůbec nenarodí, ale nevědělo se, jak moc bude polymeráza nefunkční
 - Pokusy se dvěma mutacemi v tomto aktivním místě leucin na glycin (méně vážné), leucin za lysin (mega průser)
 - Homozygoti úmrtí už jako embryo u obou variant mutací
 - Heterozygoti nic moc se nedělo, zvýšená tvorba nádorů, myš se ale narodí a nějak vajbuje
 - Conclusion
 - Když mám dvě alely pro DNA poly, jedna je vadná a druhá ok, správná kopie je schopná sama fungovat a replikace je ok
 - Mutace na polymerázové straně myší DNA Pol δ vnáší genomovou nestabilitu a podněcuje tumorogenezi
- Enzymy syntetizující NK bez předlohy (nejsou depe = programované)
 - o **Terminální nukleotidyl transferáza** tvorba protilátek, vyšší variabilita, nespecificky vkládá nt do genů pro Ig, DNA bez předlohy
 - o **PolyA polymeráza** syntetizuje poly A na 3' konci mRNA (posttranskripční úpravy), tvorba RNA bez předlohy
 - o **tRNA-CCA nukleotidyl transferáza** přidává na konec tRNA CCA sekvenci

OBECNĚ O REPLIKACI, POJMY A AKTÉŘI

- Replikace je semikonzervativní
 - Konzervativní replikace mám dvojřetězec NK, vzniká mateřský a dceřinný dvouřetězec, oba mají obě vlákna stejně stará
 - Replikace RNA u dsRNA virů (třeba retroviry), molekula RNA je replikována uvnitř partikule, ven z partikule jdou ssRNA

First

- V mateřské partikuli RNA zůstává, dceřinná partikule je produkována ven a je dosyntetizován druhý řetězec
- Semikonzervativní replikace na vznikajících dvouřetězecích je jedno vlákno mateřské a jedno dceřinné
- *Meselson-Stahl experiment, 1958*
 - o Kultivovali bakterie na normálním médiu, izolovali z nich DNA a analyzovali ho v izopiknickém gradientu (cesium chloridu)
 - <u>Centrifugace</u> v nějakém gradientu, kde se látka uspořádají podle <u>vznášivé hustoty</u>, vznikne gradient hustot
 - o Pak dali do média místo normálního dusíku jeho <u>těžký izotop</u>, izolovali DNA a zase ho <u>centrifugovali</u>
 - Podle rozdílů vznášivých hustot izotopů dusíku byli schopni oddělit vlákna s rozdílnými izotopy (<u>těžký izotop těžší lol</u>)
 - Udělali synchronní kulturu
 - Bakteriemi s těžkým dusíkem na <u>normálním médiu</u>, většina bakterií v kultuře se dělí současně
 - 1. generace po izolaci DNA měli proužek někde mezi normálním a těžkým, došlo k <u>zakomponování lehkého izotopu</u> do následující generace DNA zhruba z poloviny -> semikonzervativní proces
 - 2. generace vznikl proužek z předchozí generace a další, co odpovídal kultivaci s lehkým izotopem
 - 10. generace (teoreticky) obrovské množství DNA by bylo v proužku pro lehký dusík, v ideálním případě by bylo stálé množství v mezistavu (mezi těžkým a lehkým)
- Vsuvka o sedimentaci
 - o Isokinetická sedimentace rychlost sedimentace závisí na <u>tvaru, velikosti</u> atd, výsledkem je <u>sedimentační konstanta</u>
 - o **Isopiknická sedimentace** před nebo v průběhu centrifugace utvoříme ve zkumavce <u>gradient soli</u>, který má proměnlivou hustotu od kraje ke dnu zkumavky, v průběhu centrifugace se ustanoví <u>gradient</u>, molekuly se posouvají nahoru/dolů podle hustoty
- Replikon nezávisle replikované úseky
 - Jeden na molekule DNA viry, malé plazmidy, bakteriální ch, několik na molekule DNA velké plazmidy, eukaryotní chromozomy
- Replikační počátek start replikace, replikační konec terminus
- Replikační vidlička (uzel) místo replikace na DNA v daném okamžiku, pohyb vidličky je vždycky po dvojvlákně
 - Směr replikace replikace může být jednosměrná nebo dvousměrná, je to něco jiného než směr syntézy (ten vždy 5'->3'!!)
- Primery
 - o Může jím být cokoliv, co poskytuje volnou –OH skupinu (<u>DNA, RNA, protein</u>), **DNA primer** typicky <u>opravy DNA</u>
 - RNA primer typicky zahájení replikace, RNA-poly umí de novo syntézu bez primeru replikaci zahajuje specializovaná primáza
 - Proteinový primer poskytuje OH očko u některých virů a plazmidů
 - Buď poskytuje OH přímo zbytek, nebo zbytek váže nukleotid, který tu OH poskytuje kovalentní vazba nukleotidu
 - Když se proteinový primer dostane na specifický konec specifické DNA sekvence, může prostě na pohodu běžet syntéza od začátku do konce
- Pohyb replikační vidličky
 - o V místě roztahování vidličky funguje <u>komplex enzymů a proteinů</u>, uzel se <u>pohybuje po vlákně</u> jedním směrem
 - Pohyb obrovského komplexu je komplikovaný, dá se to vysvětlit i tak, že se vlákno pohybuje skrz komplex
 - Jedná se tedy o <u>vzájemný pohyb vlákna a komplexu proteinů a enzymů podílejících se na replikaci</u>
 - Zatímco se uzel pohybuje jedním směrem, nové vlákno je vždy syntetizováno ve směru 5'->3'
 - Vedoucí (leading) strand kontinuální syntéza
 - Opožďující se (lagging) strand diskontinuální syntéza, Okazakiho fragmenty, asi 1k-2k bp u prokaryot, 100-200 u
 eukaryot, DNA-poly potřebuje vždycky OH očko, <u>každý kousek má svůj primer</u> (syntetizuje ho <u>primáza</u>)
- *Pokus, jak se přišlo na směr pohybu vlákna*
 - Mám kulturu replikujících se buněk, přidávám <u>radioaktivní prekurzory DNA</u> (značené tritiem), nechám to nějaký čas růst
 - o Pak přidám <u>nadbytek studených neradioaktivních prekurzorů</u>, a tak aby se nepoškodila DNA buňky <u>jemně zlyzuju</u>
 - Lyzované buňky
- Actual fiber autoradiographic pattern

 ← ORI →

 ORI →
- Byly pokryté fotografickou emulzí, došlo k jeho vyvolání a byl zkoumán obrázek po elektronovým mirkoskopem
- Tmavě jsou <u>radioaktivně značené věci</u>, obrázek ukazuje, že replikační počátky jsou <u>obousměrné</u>: byla zahájena replikace a dva replikační uzly se rozběhly dvěma směry
- o Do buňky, kde se zahájila replikace, byl přidán na chvíli <u>radioaktivní thymidin</u>, a pak velké množství <u>neradioaktivního thymidinu</u>
- Vyizolované DNA
 - DNA byla vyizolována a vzorek byl exponován fotografickou emulzí a pak byla vlákna zkoumána pod mikroskopem
 - Byly pozorovány počátky, kde se z obou stran ve stejné vzdálenosti vyskytoval <u>radioaktivní thymidin</u>, a z obou stran se
 z větší blízkosti vyskytoval <u>neradioaktivní thymidin</u>

REPLIKAČNÍ POČÁTKY

- Všechny replikační počátky mají společné znaky týkající se funkce a uspořádání
 - Vazebná oblast pro replikační faktory musí je mít všechny počátky, faktory tam ten počátek rozpoznávají
 - Tyto oblasti jsou často repetitivní sekvence, protože se často váže několik faktorů kooperativně
 - Origin recognition elements faktory, které teprve označují replikační počátek
 - o Sekvence bohaté na AT AT bohaté sekvence snáze tají, zvlášť když je dvoušroubovice v negativních nadobrátkách
 - Oblasti helikální nestability oblasti schopné zlomu, větší šance, že se dvouřetězec DNA rozvine a vznikne tam bublina (<u>DUE</u>)
 - GATC oblasti místa, která jsou modifikována (metylována) na adenosinu, slouží jako regulace četnosti replikace

- Porovnání replikačních počátku mezi doménami

- Výše jsou společné vlastnosti archeálních, bakteriálních i eukaryotních genomových replikačních počátků
- o Vzájemná použitelnost počátků napříč doménami života (rody, druhy), už je slabší, jsou často druhově velmi druhově unikátní
 - **Bakteriální DnaA** její homolog nebo tahle bílkovina je přítomna u všech bakterií, váže se na origin recognition elementy a dělá tání dvoušroubovice, ale <u>sekvence</u>, co jí rozpoznávají, se liší druh od druhu

BAKTERIE

- o 1 nukleotid/1 počátek (OriC) na hlavním chromozomu, na plazmidech je jich zpravidla více, počátky rozdílné u různých druhů
- <u>DnaA boxy</u> někdy se značí jako 9 nt repetice, váže se sem <u>bílkovina DnaA</u>, která je schopná <u>kooperovat sama se sebou</u>
- <u>DUE sekvence</u> DNA unwinding element, sekvence <u>bohatá na AT páry</u>, dochází tady k prvotnímu rozdělení DNA

EUKARYOTA

- o Mnoho počátků, nejsou definovány sekvenčně, ale stavem chromatinu AT páry, obsah CpG, modifikace, topologie DNA atd
 - S velikostí a segmentací genomu vzrůstá i počet počátků, replikační počátek nemusí být vždy na stejném místě
- o Variabilita mezi organismy
 - Saccharomyces cerevisiae počátek určen sekvenčně (má A-element bohatý na AT), má asi 400 počátků na genom
 - Člověk 10⁴ až 10⁵ replikačních počátků na genom
- o ORC (origin of recognition complex) skupina faktorů, které rozeznávají počátek

ARCHEA

- Několik počátků, jeden až jednotky na genom/megaplazmid, mohou být nahloučeny v jedné oblasti
- <u>DUE sekvence</u> sekvence <u>bohaté na AT páry</u>, kde dochází k prvotnímu rozvolnění DNA
- ORBs (origin recognition boxes) repetitivní sekvence, váže se sem protein iniciující replikaci

REPLIKACE U BAKTERIÍ

HLAVNÍ AKTÉŘI

- Procesivita jak dlouho polymeráza vydrží syntetizovat řetězec, než odpadne, každý enzym ji potřebuje mít jinak velkou
 - o Nízkoprocesivní polymerázy nasyntetizují desítky nt, odpadnou, na jejich místo přijdou jiné, kousek, odpadnou atd (Pol I)
 - o Vysokoprocesivní polymerázy umí dát třeba i polovinu bakteriálního chromozomu bez odpadnutí (Pol III)
 - o **Zvýšení procesivity** dimerizace katalytických podjednotek pomocí tau proteinu, interakce se svírací β-svorkou
- Rychlost replikace u bakterií asi 15 000 bp za minutu

DNA Pol I

- Kornbergův enzym (objevil ji), musí být nízkoprocesivní, jinak by začala odbourávat DNA
- Kromě polymerační aktivity má i 3'->5' a 5'->3' exonukleázovou aktivitu
 - Může využít 3'OH očko <u>Okazakiho fragmentu</u>, <u>odbourat primer</u> a zároveň <u>syntetizovat DNA</u>
 - Syntetizuje, odbourává a posunuje single strand přerušení, zároveň konkuruje s DNA ligázou, co umí ss přerušení spojit

- DNA Pol III

- Specifická pro ssDNA substrát, je to hlavní replikační enzym, obrovská procesivita a rychlost
 - Její rychlost narůstá od aktivního jádra, když se k tomu přidávají další a další proteiny
- Dimerizační protein Tau dimerizuje (drží u sebe) katalytické podjednotky polymeráz, aby zvýšil jejich procesivitu

- β-svorka

- Výrazně zvyšuje procesivitu DNA poly kolik je polymeráza schopna odsyntetizovat nukleotidů, než odpadne
- o Homodimer dvou proteinů interagujících head to tail (od N k C konci), obepíná vznikající řetězec DNA a drží na něm DNA poly

Komplex y δ δ' (beta clamp loader)

- o Funguje na **opožďujícím se vlákně**, znovu nandavá β-svorku, když DNA poly narazí na už nově syntetizovanou DNA místo primeru
- o Má 5 podjednotek a spotřebovává ATP (je to ATPáza) váže ATP, váže svorku, vloží do svorky DNA, hydroláza ATP, zavření svorky
- o AAA+ peotein patří sem loader, hraje u nich roli ATP (modifikuje schopnosti a kam se můžou vázat), obecný pojem
- DnaA rozpoznává replikační počátek, iniciační faktor, jeho koncentrace určuje, jestli replikace vůbec začne

- DnaB helikáza

- o Enzym rozvolňující dvouřetězec DNA, rozšiřuje replikační bublinu a umožňuje posun replikačního uzlu, homohexamer
- o ATPáza u rozvolňování spotřebovává ATP, má ATP vazebné oblasti, přináší ji na místo rozpletení DnaC helicase loader

SSB proteiny (single strand binding proteins)

- Specificky se vážou na rozvolněnou jednořetězcovou DNA, zařizuje, aby byla vidlička stabilní a nezavírala se po rozvolnění
- Přenáší kinetiku reakce směrem k jednořetězci a ke vzniku bubliny

- DnaG primáza

- DnaB s SSB je vhodným substrátem pro primázu, je to DNA-depe-RNA-poly, syntetizuje podle templátu, zahajuje syntézu de novo
- Nasyntetizuje krátký řetízek RNA primer, má volné reaktivní 3'OH očko (musí být využito rychle), kde může syntetizovat DNApoly
- Gyráza bakteriální topoizomeráza, rozvolňuje pnutí, odstraňuje pozitivní nadobrátky vznikající před vidličkou

- RNAsa H
 - H, protože funguje na hybridní molekule DNA párující se s RNA
 - Dává pryč většinu primeru, kromě posledního nukleotidu, ten je odstraněn 5'oxonukleázovou aktivitou
- DNA ligáza β-svorka spojuje jednořetězcová přerušení za spotřeby ATP, jako templát vyžaduje dsDNA s ss přerušením

INICIACE REPLIKACE

- Do OriC se v průběhu buněčného cyklu váže **DnaA** (u ecoli asi 20-40 molekul) tím začíná **tání dvoušroubovice**
 - Oblast je rozpoznána DnaC (helicase loader), která přináší DnaB (helikázu) -> vzniká bublina, navážou se SSB proteiny
- Komplex jednořetězcové DNA s navázanými SSB proteiny a helikázou je rozpoznán jako substrát pro DnaG (primáza)
- Zabránění vícenásobné replikace
 - Přítomnost SeqA
 - Bílkovina, která použitý replikační počátek vtahuje do membrány, a fyzicky brání násobné replikaci
 - Rozpoznání počátku je hemimethylován, protože u ecoli probíhá až nějakou dobu po začátku syntézy methylace na vrcholové aminoskupině adenosinu v GATC (tato sekvence je v počátku jedenáctkrát)
 - Na hemimethylovaný počátek se váže SegA a fyzicky brání dalšímu použití
 - o Není dostupné DnaA ATP je hydrolyzováno těsně po sestavení pre-iniciačního komplexu
 - Regulace DnaA
 - Reguace exprese reguluje se exprese genu DnaA
 - **Regulace funkce** je aktivní ve formě s <u>navázaným ATP</u>, když se naváže, dojde k hydrolýze na <u>ADP</u>, DnaA-ADP může být recyklován <u>reaktivačními sekvencemi DARS</u>
 - Regulace přes IHF je to bridging molekula, váže se na bakteriální chromozom a <u>pozitivně ovlivňuje aktivaci počátku</u> <u>pomocí DnaA-ATP</u>
 - O Pokud všechno směřuje k tomu, že má být zahájena replikace, dojde k iniciaci
 - Objeví se nové negativní faktory a k modifikaci/degradaci funkčních pozitivních regulačních faktorů
 - Je rychle zabráněno opakovanému použití replikačního počátku

ELONGACE

- Elongační komplex svorkové proteiny, CLC (clamp loader), DNA poly, přídatné proteiny
 - Po syntetizování primerů dochází v místě rozhraní primer/templát k vazbě clamp proteinu díky clamp loaders
- **DNA Pol III** hlavní enzym, syntetizuje obě vlákna
- Syntéza lagging strandu
 - Okazakiho fragmenty u bakterií jsou dlouhé asi 1000-2000 bází (u eukaryot asi 10x kratší)
 - Primáza periodicky asociuje s helikázou a syntetizuje nový primer (pro každé zahájení syntézy OF)
 - Nový primer stává se cílem pro clamp loading protein, ten tam dá clamp protein, váže se DNA poly a syntéza začíná
 - Helikáza postupuje po lagging strand ve směru 5'->3', DNA Pol III interaguje s helikázou přes tau protein
 - Po dokončení OF je DNA poly uvolněna z clamp proteinu a vlákna DNA
 - Odstranění primerů RNA primer může být odbourán buď přímo DNA Pol I (5'->3' exo aktivita) nebo RNÁzou H
 - RNA primer je vyštěpen, 3' konec předchozího OF se posouvá a jeho 5' konec je degradován
 - o Zacelování díry: kompetice
 - DNA Pol I nasedne, nasyntetizuje několik nukleotidů a odpadá/ligáza nasedne, zacelí to spojením, odejde

TERMINACE REPLIKACE

- Ter (terminátory) sekvence na DNA v místě terminace
 - o Tus (termination utilization substance) násobné proteiny, vážou se na Tus sekvence, vždycky jsou z jedné strany průchozí
 - o Terminace probíhá setkáním a fúzí dvou vidliček
- **Teorie 1** systém terminátorů se několikrát na sobě nezávisle vyvinul
- Teorie 2 transkripce probíhá po směru replikace, tyhle terminátory hrají roli i v transkripci, bakterie tím brání replikaci a transkripci

terB terC terA terD

REPLIKACE U EUKARYOT

- Replikace je u eukaryot složitější než u bakterií, proto se replikace u eukaryot probíhá spíš jako analogie

HLAVNÍ AKTÉŘI

- DNA Pol ε zejména syntéza leading strand
- DNA Pol δ syntéza lagging strand, má vytěsňovací aktivitu, vznikají vytěsněné kousky OF
- DNA Pol α
 - o RNA poly primázová aktivita je to eukaryotní primáza, nasynteizuje kousek RNA řetízku, vzniká DNA 3'OH očko
 - o DNA poly aktivita po nasyntetizování svého primeru prostě pokrašuje dál jako DNA poly, hlavně při syntéze telomer
- ORC komplex a protein Cdc6 (regulovaný během buněčného cyklu)
 - Cdc6 rozeznává ORC proteiny navázané do oblasti počátku a umožňuje iniciaci daného replikačního počátku eukaryot
- PCNA (proliferating cell nuclear antigen) analog beta svorky, head to tail heterotrimer (není dimer!)
- **RFC clamp loader (replication factor C)** při syntéze Okazakiho fragmentů přenáší PCNA svorku
- RPA (replication protein A) typ SSB proteinu, stabilizuje jednořetězec, aby se celý komplex za helikázou nezavíral
- Helikáza MCM (mini chromosome maintenance) heterohexamer, MCM 2-7
- WRN helikáza (není hlavní replikační!)
 - Interaguje s Polδ, PCNA, topoizo I, RPA (replikace), Ku (stabilizace konců DNA), p53 (odpověď buňky na poškození DNA)
 - Wernerův syndrom způsobuje ho mutace ve WRN helikáze, velmi rychlé předčasné stárnutí organismu včetně mentální stránky
- Histonové chaperony (CAF-1)
 - Umožnují uvolnění (rozpad) nukleozomů před replikační a nanášení (znovusestavení) nukleozomů na vlákna po replikaci
 - o Dále interagují s helikázou, PCNA a dalšími proteiny
- RNÁza H1 odštěpí RNA fragment, zbyteček RNA (poslední nukleotid) a DNA primer (syntetizovaný polymerázou)
- Endonukleázy vzájemně se doplňují
 - Dna2 umí odštěpovat delší úseky než Fen, i tak dlouhé, na které se naváže RPA, dokáže vyštěpit mírně reasociovaný primer
 - FEN1 je schopna odstřihnout kratičký řetízek, který trčí z dvojřetězece a přesahuje, spolupracuje s Pol δ, která řetězec vytlačuje, nastupuje po Dna2

INICIACE REPLIKACE

- Ori licensing sestavení pre-replikačního komplexu, odehrává se ještě před zahájením S-fáze, určení potenciálních Ori
- Ori firing aktivace některých licencovaných Ori, aby došlo k zahájení replikace
- ORC protein rozeznává protein Cdc6 (hydrolýza ATP) a zprostředkovává vazbu katalytické části replikativní helikázy (MCM proteinu)
 - Da replikační počátek se váže ORC (rozpozná počátek), je rozeznán Cdc6 proteinem, ten umožní nasednutí MHC
 - MHC proteiny jsou rozeznány Cdc45 v komplexu s dalšími bílkovinami, dojde k vytvoření replikativní helikázy
- Replikativní helikáza
 - Replikativní komplex CMG tvořen hexamerem MCM2-7, Cdc45 proteinem a heteroteramerem GINS
 - 🔾 Je esenciální pro průběh replikace, ale není to jeden protein, ale prostě velký komplex několika proteinů a komplexů
- Zabránění násobné replikace
 - Není dostupný Cdc6 je uvolněn v S fázi a pak se uvolní až v G1 fázi, není možná opětovná asociace MCM s počátkem,
 - Nejsou dostupné MCM fosforyluje ho Cdc7/Dbf4 a uvolňují je z chromatinu, dále je fosfoyluje Cdc2/cyklin A/Ea inhibuje jejich reasociaci s chromatinem
 - Vlivem různých modifikací (fosforylace) jsou jednotlivé složky pre-iniciačního komplexu vyřazeny ze hry (inhibice/degradace),
 počátek tak vypadá jinak a není znovu použitelný
- Kryptické replikační počátky
 - Mohou nahradit replikační počátek, když ho i přes připravenost vynechá/přejede replikační vidlička

ELONGACE

- Prakticky totéž, co bakterie, přijde **primáza**, replikace se rozbíhá na obě strany
- Lagging strand
 - Klasicky každý Okazakiho fragment potřebuje primer, přenášení PCNA clamp loaderem RFC
 - Odstranění OF součinnost RNÁzy H1, FEN1, Dna2 a DNA Pol δ

TERMINACE REPLIKACE

- Většinou se nic jako terminátory nepozoruje
 - o Geny rRNA a tRNA silně přepisované, mezi nimi jsou terminátory bránící replikaci z jedné strany, zastaví se replikační komplex

ZKRACOVÁNÍ PŘI REPLIKACI

- Syntéza DNA vždy začíná na 3'OH od primeru, na konci lagging strandu už ale tenhle konec není, protože by musel být primer za koncem
 - Řešení zkracování cirkulární molekuly DNA, cirkularizace nebo vznik konkatemérů, zakončení vlásenkou, variabilní konce (eukaryotní telomery), proteinové primery (adenoviry, lineární DNA bakteriofágů a plazmidů)
- Cirkulární molekula (plazmidy, bakteriofágy, nukleoid)
 - Nemá problém se zkracováním, ale má problém s ukončením replikace, řeší se to replikací mechanismem valivé kružnice
 - Replikace valivou kružnicí
 - Stará řetězec je vytěsňován novým řetězcem, vznikají dva zamotené prstýnky genomů, rozstříhnutí při balení
 - Následně jsou oba prstýnky doplněny o nový řetězec
- Proteinový primer
 - 🔾 U některých virů, syntéza běží od konce ke konci, odpadá problém s koncem lagging strandu, ale nejde použít u většiny genomů

TELOMERY A JEJICH ZKRACOVÁNÍ A REPLIKACE

- Struktura telomer tandemově uspořádané repetice, vytváří na koncích DNA řetězců specifická ukončení:
 - G-kvartety minimálně jeden řetězec je bohatý na guanosin, tvoří G-kvartety
 - Čtyřšroubovice, vytváří se díky tomu, že má G hodně možností na párování (Hogsteenovo párování)
 - Rozpoznávají je specifické bílkoviny, způsobí heterochromatinizaci úseku, stabilizace konců DNA (hlavní fce telomér)
 - Tahle struktura brání zkracování konců chromozomů při replikaci

G-quartet

- Vlásenky taky se tvoří z telomer
- Konce, které nejsou stabilizované telomerami (třeba vzniklé zlomem chromozomů), mají tendenci rekombinovat

Enzym telomeráza (replikace telomer)

- o Obsahuje **telomerázovou RNA**, co používá jako templát pro dosyntézu jednoho z G-bohatých řetězců v telomerách
 - Je to RNA-depe-DNA-poly, v podstatě reverzní transkriptáza, brání zkracování konců chromozomů při replikaci
- Jak funguje
 - Na 3' konci lagging strandu po odstranění primeru <u>chybí OH očko</u>, od kterého by mohla dosyntetizovat DNA-poly
 - Telomeráza podle svého zabudovaného RNA templátu <u>prodlouží 3' konec</u> o krátký úsek odpovídající repetici na konci
 - Může tedy být nasyntetizován poslední primer, aby mohl být doreplikován kódující úsek
- Specifické SSB rozpoznají telomerické repetice, váže se primáza, dosyntéza druhého řetězce
 - Část 3' konce zůstává jako jednořetězec, může ale <u>invadovat zpátky do DNA řetězece</u> vzniká t-smyčka
 - Tato struktura, kde vznikají také G-kvartety, je rozeznávána specifickými proteiny (shelteriny atd), dochází ke TVORBĚ
 HETEROCHROMATINU
- Heterochromatin telomer (poziční efekt) může expandovat a rozšířit na oblasti, které se normálně exprimují, a tím snížit jejich expresi
- Buňky bez aktivní telomerázy
 - Řada somatických buněk to takhle má, aktivita telomerázy může končit s ukončením embryonálního vývoje
 - Stárnutí buněk v průběhu dělení u těchto buněk dochází ke zkracování telomer, když už jsou moc krátké, buňka chcípne :(
- Buňky s aktivní telomerázou
 - Některé somatické buňky kmenové, buňky z tkání, co se dělí po celý život atd
 - Mádorové buňky u většiny buněk s telomerázou je to indikace <u>NÁDOROVÁHO BUJENÍ!</u>, využívá se toho při detekci nádorů

Drosophila zase dělá problémy

Primase and DNA polymerase syntesize the complementary

- o U drosophily **netvoří telomery telomeráza!**, dochází k **repetitivním retrotranspozicím retrotranspozonů**
- Transponují se přes RNA, dochází k <u>reverzní transkripci</u>, telomera syntetizována <u>transpozicí retrotranspozonu</u> (postupné skákání)
 - Telomery Drosophila jsou tedy tvořeny non LTR retrotranspozony, které se přesouvají pomocí reverzní transkripce

Dyskeratosis congenita

- 🔾 Její závažná forma je navázána na mutace v genu pro **diskerin (pseudouridinsyntáza)**, který má strukturní roli v **telomeráza**
- projevy problémy s imunitní odpovědí, problémy s tvorbou krevních buněk (hematologické nemoci), obvykle nízký věk dožití

Nature Reviews | Molecular Cell Biology

REPLIKACE ORGANELNÍCH GENOMŮ

REPLIKACE MITOCHONDRIÁLNÍCH GENOMŮ

- Představa o replikaci mtch DNA není uzavřena, různé modely
 - o Houby, rostliny, kvasinky složitější replikace, může probíhat z více úseků, mohou být lineární a pak cirkularizované molekuly atd
- Iniciace replikace je zahajována z řady promotorů
- Displacement loop replikace kruhové DNA
 - Dva Ori na každém vláknu (lehkém a těžkém)
 - **Promotor těžkého vlákna (HSP)** replikace <u>častěji začíná tady</u>, ale ne vždycky je dokončena (abortivní replikace)
 - DNA poly syntetizuje podle jednoho, vytěsňuje druhé vlákno, vzniká **D-smyčka**
 - S Když vytěsňování dojede do určitého místa (promotor lehkého řetězce LSP), na vytěsňovaném řetězci se odhalí druhý Ori
 - Replikace jede znovu na druhém vlákně, vznikají dva kroužky propojené v jednom místě, odpojí se, dotvoří se řetězce
- Replikace je jednosměrná
- DNA Pol γ mitochondriální, má stejně jako katalytické podjednotky eukaryotních poly i opravnou aktivitu
 - 😊 Vliv poškození této aktivity u DNA Pol γ na mnohobuněčný savčí organismus: <u>předčasné stárnutí, víc mutací, defektní genomy</u>

REPLIKACE CHLOROPLASTOVÝCH GENOMŮ

- Replikace závislá na rekombinaci (nic k tomu neříkal??)

BUNĚČNÝ CYKLUS

- Celý genom musí být zreplikován precizně a během jednoho buněčného dělení, ale taky právě jednou!
 - o Iniciace replikace obvykle uvádí buňky do dalšího buněčného dělení, ale dělení může proběhnout bez dokončení replikace
 - Polytenní chromozomy výjimka ve slinných žlázách dvoukřídlého hmyzu, některé úseky genomu byly zmnoženy víckrát a vznikly silné tlusté úseky, kde došlo k mnohočetné replikaci úseku
- Liší se, po jakých úsecích se genomy replikují
 - BAKTERIE jednoreplikonový genom (když přehlížím plazmidy), jeden replikační počátek
 - o ARCHEA jedno i vícereplikonový genom, EUKARYOTA mnohoreplikonový genom (segmentací genomu, chromozomy atd)

BUNĚČNÝ CYKLUS BAKTERIÍ

- Složitější, hlavně u druhů, které se rychle množí, když mají dobré životní podmínky (třeba **e-coli**)
- B+C+D=T
 - Doba zdvojení (T) 18-180 minut podle podmínek (médium, teplota, živiny, provzdušnění atd)
 - o **Doba replikace (C)** 40 min, pokud je zahájena, je i dokončena, může být delší než doba zdvojení (dokončení replikace a zdvojení)
 - Doba mezi dokončením replikace a dokončením dělení (D) 20 min, interval mezi dokončením a zahájením replikace (B)
- Překryvné cykly
 - o Na jednom bakteriálním chromozomu může běžet víc replikací najednou, což urychlí replikaci (jen když dobré podmínky, pak ne)
 - Replikace je zahájena, pokud buňka syntetizuje bílkoviny (růst) tak rychle, že si vytvoří dostatečné množství iniciačních faktorů, nebo naředí narůstajícím objemem inhibiční faktory
- Rozchod genomů (BAKTERIE i ARCHEA)
 - <u>FtsZ protein</u> prstýnek, který zaškrcuje dělící se buňku a účastní se rozdělení bakteriálního chromozomu do dceřiných buněk, funkční a strukturní homolog tubulinu, váže se v oblasti replikačního počátku

BUNĚČNÝ CYKLUS EUKARYOT

- G1 fáze -> (G0 fáze) -> S fáze -> M fáze -> cytokineze
 - o Kontrolní body mezi fázemi buněčného cyklu, kontroluje se stav, materiály, poškození DNA atd, umožní postup dál
- Překrývané cykly neexistují, podobné kontrolní body jako u archeí
- Rozchod genomů centromery (heterochromatin) a dělící vřeténko (tubulin), druhově specifické sekvence, velká regulace, hodně proteinů

MUTACE A POŠKOZENÍ DNA

- Trvalá dědičná změna v DNA sekvenci, jeden z hlavních zdrojů genetické variability, můžou/nemusí mít vliv na fenotyp
 - Naprostá většina spontánně vznikajících změn v sekvenci DNA je hned opravena a nestane se z nich mutace
 - o Spontánní naprosto random, jsou relativně <u>málo časté</u>, malá četnost vzniku (u eukaryot nižší než u bakterií)
 - o Indukovány mutagenem přirozeným nebo umělým, ne vždy jde poznat důvod, adaptivní v určitých situacích cílené
- Změny v DNA jsou obecně něco neprospěšného pro život a organismy, ale z pohledu evoluce jsou do určité míry výhodné
 - Změna v DNA nemusí být škodlivá ve všech případech a prostředích, závisí na okolnostech (<u>anemie dělá odolnost vůči malárii</u>)
 - Organismy mají také **různou toleranci** k chromozomovým poškozením, vzniku aneuploidií atd (rostliny obecně odolnější)
- Klasifikace <u>MUTACÍ</u> podle různých hledisek
 - o Způsob vzniku spontánní/indukované, typ buněk gametické/somatické, směr působení přímé mutace/reverze
 - Vliv na fenotyp/životaschopnost včetně závislosti projevu na podmínkách, ziskové/ztrátové, letální/vitální
 - Rozsah genové (bodové: tranzice, transverze atd) / chromozomové (přestavby, zlomy atd) / genomové
 - Vliv na sekvenci NK nebo polypeptidu (substituce/adice/delece/změna AK/vznik a zánik STOP kodonu)
 - Oblast genu kterou mutace zasáhne, genová exprese kterou ovlivní (sestřihové/regulační/polární)

KASKÁDA REAKCE NA POŠKOZENÍ

- Jednořetězcová poškození
 - Vznikají třeba v průběhu replikace, když dojde k zastavení pohybu vidličky, když je jich hodně -> signál pro zahájení opravy
 - Buňka <u>zastaví buněčný cyklus</u> a začne se <u>pokoušet o opravu</u>
 - Sensing proteiny (třeba RPA) přijdou k poškození a sednou si na něj
 - ATR kináza dimer ATR s inhibitorem rozpoznávají ss zlomy díky RPA proteinům a dalším co tam sedí
 - Aktivace ATR ta pak fosforyluje a tím aktivuje transducer proteins
 - o Transducers zprostředkují a přenesou signál dál k efektorovým molekulám
 - p53 transkripční faktor, spustí transkripci genu p21, ten blokuje Cdk a zastavuje cyklus až apoptóza
 - Chk1 checkpoint 1 kinase, její aktivování vede k zastavení cyklu, opravám až apoptóze
 - Efektorové proteiny kaskáda vedoucí k zástavě cyklu, spustí se oprava DNA nebo až apoptóza (při rozsáhlém poškození)
- Dvouřetězcová poškození
 - MRN komplex rozpozná poškození a sedne na něj, hromadí se tam i další senzorové proteiny
 - o ATM kináza vyskytuje se jako heterodimer/multimer, interakce s místem poškození vede k aktivaci fosforylace transducers
 - Transducers stejný jako u ss, p53, Chk2 kináza atd
 - **Histon γ-H2AX** fosforylovaná forma histonu H2AX, <u>marker dsDNA zlomů</u> (když se na něj použije specifická protilátka, detekce shluků této formy, detekovat poškození) a jeden z klíčových přenašečů signálu poškození
 - Amplifikace signálu γ-H2AX zpětně indukuje vazbu dalších ATM monomerů, probíhá po určitou dobu
 - Efektorové proteiny kaskáda vedoucí k zástavě cyklu

PŘIČINY POŠKOZENÍ DNA

- Indukované poškození DNA
 - Fyzikální vliv záleží na typu záření, RTG záření ds zlomy, UV záření pyrimidinové dimery, ss zlomy, v-záření ss/ds zlomy
 - o Biologický vliv virové enzymy integrace do DNA, mobilní genetické elementy, restriktázy bakteriální, štěpí DNA,
 - Chemický vliv analogy bází zařazení špatného nt, interkelační agens adice/delece nt, modifikace bází cross-linky, špatný nt
 - Inhibitory topoizomerázy II vznikají dsDNA zlomy, díky nim se dají zkoumat místa zlomů a oprav DNA (ATM, p53 atd)
- Spontánní změny sekvence DNA

DNA breaks

- o Tautomerie a deaminace bází chybné párování, ztráta báze (depurinace/depyrimidinace) ztráta nt, zařazení chybného nt
- Zklouznutí DNA-poly při replikaci přidání nebo ztráta nukleotidu, oxidativní poškození vznikajícími ROS v buňkách

- Poškození DNA Chyby při replikaci působení chemických inačni chyby a fyzikálních vlivů (mutagenů) bodové tranzice, transverze) delece, inzerce přestavby DNA genomové mutace Opravy DNA anėni adduktu – methyttranste 6-methytGi va excizni oprava – głykosylas; vendonukleasy otlidová excizni oprava výhodné prava chybného párování neutrální genetické choroby satch repair) škodlivé karcinogeneze
- podle toho, jak je šipka tlustá, tak jsou mutace častější
- čevené šipky oxidace
- modré šipky hydrolýza

depyrimidinace

zelené šipky – methylace co teda vzniká relativně často? deaminace cytosinu; častější je depurinace než

KONKRÉTNÍ POŠKOZENÍ A OPRAVY

- S-adenosyl-methionin

- Tato látka je vysoce energetická, zdroj methylové skupiny využívaný v celé řadě procesů, poměrně reaktivní
 - Uvnitř buňky vzniká řada metabolitů, které buňka potřebuje, ale také se mohou vázat na DNA a tvořit adukty
- Problém občas methyluje molekuly v buňce bez výzvy, protože si prostě nemůže pomoct třeba právě i DNA

Deaminace cytosinu (cytidinu)

- o Při deaminaci vzniká enol forma uracilu, která přesmykuje do stabilní keto formy dojde k náhradě za uracil
- o Pár uracil-guanin abnormální, ale páruje poměrně dobře, docela stabilní, ale vypadá jinak než ostatní páry
 - Uracil se může v řetězci přetočit do syn polohy -> distorze na dvojřetězci, vyklonění uracilu ven
- OPRAVA: BÁZOVÁ EXCIZNÍ REPARACE (BER)
 - Rozpoznání poškození nejsou sekvenčně specifické, ale rozpoznávají strukturu, kterou sekvence tvoří
 - Tady distorze dsDNA nebo vyklonění uracilu, kterou rozeznává uracil-glykosyláza
 - Uracil-DNA-glykosyláza specifická, po rozpoznání odštěpí uracil a vzniká apyrimidinové místo (u jiných nt apurinní)
 - Endonukleáza rozpozná apurinní/apyrimidinové místo, rozštěpí cukr-fosfát kostru, vzniká ss přerušení
 - **DNA-Pol** β doplní prázdné místo, **ligáza** spojí místo

Deaminace methylovaného cytosinu (cytidinu)

- Cytosin je v genomech velmi často methylován na pozici 5 (5-methylcytosin), když se deaminuje, vzniká thymin (5-methyluracil)
- Pár thymin-guanin buňka musí rozhodnout, která báze je v tomhle páru správná
 - Blbý je, že když je někde methylovanej cytosin, většinou to hraje důležitou regulační roli
- OPRAVA: BÁZOVÁ EXCIZNÍ REPARACE (BER)
 - Častější je posun k AT páru, dojde teda k opravě na úplně nepůvodní pár, thymin-DNA-glykosyláza vyštěpí thymin
 - Evolučně tedy přibývá AT párů v genomech, právě kvůli těmhle popleteným opravám
 - CPG ostrovy vznikají v eukaryotních genomech, cytosin tady často hraje regulační roli, evoluční tlak, aby tam zůstával

Modifikace nt reaktivní molekulou (O-6-methylguanin)

- OPRAVA: ALKYLTRANSFERÁZA umí to řada organismů, odstranění methylové skupiny methyltransferázou
- OPRAVA: NUKLEOTIDOVÁ EXCIZNÍ REPARACE (NER)
 - Mechanismus rozpoznání komplex, <u>RPA protein</u> (SSB, stabilizuje bublinu) a <u>XP proteiny</u>
 - XP proteiny a geny byly objeveny v souvislosti s onemocněním <u>xeroderma pigmentosum</u>, které brání vycházet na světlo, větší náchylnost k rakovině (-> savci nemají fotolyázu, musí to řešit takhle)
 - TF2H víc u transkripce, transkripční faktor polymerázy 2H, hraje roli v <u>rozvíjení DNA řetězce (vzniká bublina)</u>, transkripce ovlivňuje, jak rychle se budou opravovat chyby (čím častější, tím rychlejší oprava)
 - Excinukleázová aktivita udělá dva jednořetězcové zlomy kolem poškození, vyštěpí ho (víc než jeden nukleotid)
 - DNA poly dosyntetizuje chybějící kus, ligáza spojí oba konce přerušení
 - BAKTERIE UvrA a UvrB rozpoznají poškození, UvrC štěpí, UvrD helikáza, DNA-Pol I syntéza, ligáza spojí

Poškození UV zářením (pyrimidinové dimery)

- O Dva pyrimidiny, které jsou vedle sebe na řetězci se mohou spojit cyklobutanovým kruhem
- OPRAVA: DNA-FOTOLYÁZA
 - Není u savců, rozpozná poškození, pro fungování musí dojít k aktivaci světlem (modrá oblast VIS), starý mechanismus
 - Světlo pohltí kofaktor FAD, redukce na FADH₂, uvolní se é, energie využita pro rozpojení kovalentní vazby dimeru

- Chybně vložená báze při replikaci

- OPRAVA: MISMATCH REPARACE (MMR)
 - Koreplikační oprava mimo replikaci neprobíhá, opravuje chyby, které neodhalila proofreading aktivita DNA-poly
 - U všech organismů existují homologní bílkoviny, které se této opravy účastní homology MutS/MutL
 - Dimer MSH2/MSH6 homolog MutS u <u>eukaryot</u>, rozeznává chybu na DNA
 - Dimer Mlh1/Pms2 homolog MutL, interaguje s ním MSH2/MSH6 po rozeznání poškození
 - <u>Klouzající prstýnek</u> vytváří se a pokračuje po řetězci DNA tak daleko, až rozpozná něco pro určení, jestli je to nový nebo starý řetězec, pořád si ale drží místo poškození (smyčka)
 - DCEŘINÝ -> exonukleáza odbourá poškození, DNA-poly a ligáza dosyntetizují chybějící nt a spojí řetězec
 - Rozeznání, jestli je řetězec dceřiný/mateřský
 - **E-coli** chvíli po replikaci na novém řetězci ještě není methylace, <u>hemimethylovaná místa</u> váže se sem **MutH**, když je na řetězci poškození, může sem dojet prstýnek, **MutH** se aktivuje a místo vyštěpí (slabá endonukleáza)
 - **Eukaryota** rozeznávání, jestli jsou dokončeny opravy OF, účastní i PCNA svorka (drží se OF než je odstraněna)

Dvouřetězcové zlomy

- OPRAVA: <u>HOMOLOGNÍ OPRAVY</u>
 - <u>Iniciace</u> rozpoznání ds zlomu, úpravy konců, zvětšení a vznik ssDNA přesahů (helikázy: MRN komplex, nukleázy)
 - <u>Strand invasion</u> najde se homologie, vlákno se vmezeří vytěsňováním RPA (RecA bakterie/Rad51 eukaryota)
 - <u>Branch migration</u> opravná DNA syntéza podle homologního vlákna, rekombinace (helikázy, DNA-poly a dále resolvázy, proteiny syntézy DNA, topoizomerázy atd)

TESTOVÁNÍ MUTAGENICITY

- Člověk je obklopen novými látkami, které syntetizuje a objevuje je potřeba testovat jejich vliv na lidské zdraví
 - o Různé testy pomocí podobných látek, podle reaktivity (in vitro), za použití linií bakterií/buněčných linií nebo živých organismů
 - o Problém je, že každé testování dřív nebo později skončí na **testování na zvířecím modelu!**
 - Obrovský objem testovaných látek bohužel vede k obrovskému množství usmrcených zvířat
- Databáze a katalogy testů mutagenity/toxicity/karcinogeny
 - o EU má dnes vlastní katalog agentura se sídlem v Helsinkách, údaje o všech látkách, které se v EU objeví/vyrobí ve víc než 1 t/rok
 - Neskutečně obrovské množství látek a pořád se přidávají nové
- Mutagenní ne vždycky znamená karcinogenní/tumorogenní

AMESŮV TEST

- Kmeny Salmonella typhimurium
 - o Nejsou schopné syntetizovat histidin aby rostly, musí být histidin přidán do média, když v médiu není, kmeny nerostou
 - o Geny v řetězci pro biosyntézu histidinu jsou poškozeny různým způsobem (bodová delece, inzerce, substituce atd)
- Spontánní reverze mutací studium toho, jak často se objevují kmeny s takovou reverzní mutací, že umí růst na médiu bez histidinu
- Indukce zpětné mutace
 - o Můžu podnítit mutace v místě kolem původní mutace tak, že bakterie pak bude umět růst na médiu bez histidinu
 - o Můžeme sledovat, jestli jsou testované látky mutagenní, a ještě jakým směrem (mnoho kmenů s různými typy mutací)
- PROBLÉMY
 - Řada látek se nedostane do bakterií nebo je bakterie vyhodí
 - Byly připraveny kmeny se <u>zvýšenou schopností uchovat cizorodé látky</u> se sníženou tvorbou lipopolysacharidů
 - Upravené kmeny mají tedy tenčí buněčnou stěnu, přes kterou se látky líp dostanou dovnitř
 - Premutageny
 - Látky (hlavně potraviny a farmaka), u kterých se <u>mutagenicita projeví až metabolizací</u> (hlavně v játrech)
 - <u>In vitro simulace</u> vezme se extrakt z krysích jater a vlivem komplexu enzymů v extraktu dojde k metabolismu in vitro
 - Kmeny s nadprodukcí nitroreduktázy/acetyltransferázy to vytvoří prostředí, pro které chceme látku testovat
 - o Dostanu informaci o tom, že by nějaká látka mohla být mutagenní, ale nemusí to znamenat, že bude mutagenní pro člověka

TRANSKRIPCE

DEFINICE GENU

- Organizovaný úsek NK projevující se a přenášející s jako základní jednotka dědiční informace, kus NK, který se dědí a má nějaký projev
 - o Postupem času je definice složitější a složitější, z hlediska transkripce nás nejvíc zajímají tři druhy genů (níže)
 - o Gen kódující protein kóduje polypeptid, gen kódující funkční RNA kódují tRNA, rRNA, miRNA, a řadu dalších RNA
 - Jediné tyto dva typy genů jsou přepisovány, ale jen RNA genů kódujících protein se mohou dále účastnit i translace
 - Gen jako regulační/strukturní oblast promotory, enhancery, centromery, telomery, gen jako dědičná variabilní oblast satelity
 - Regulační oblasti se berou jako gen, protože mají vliv na fenotyp, některé jsou také přepisovány (ale pak se chovají už
 jako gen pro RNA/protein)
- Regulace exprese genů
 - U genů kódujících proteiny je nejefektivnější a typická na samém počátku -> regulace syntézy mRNA (regulace transkripce)
 - Míra exprese na úrovni transkripce je dáno silou promotorů a genovou dózí (kolik identických genů má organismus pro 1 protein)

ÚVOD DO TRANSKRIPCE, POJMÍKY

- Transkripce probíhá jen ve směru 5'->3, a je asymetrická vždy je přepisováno jen jedno vlákno DNA (-)
 - Kódující vlákno (sense, +) má sekvenci shodnou s přepisovanou RNA, ale při transkripci jakoby nic nedělá
 - o Nekódující vlákno (antisense, -) má sekvenci komplementární ke vznikající RNA, která podle něj vzniká, aktivní účast transkripce
- Transkripční jednotka oblast přepisovaná RNA-polymerázou řízena jedním promotorem (případně končí terminátorem)
 - Promotor oblast začátku transkripce, terminátor oblast ukončení transkripce (není přítomen vždy!)
 - Start transkripce (nt +1) první nukleotid přepisované RNA, odpovídá bodu startu na DNA +1 (0 neexistuje)
 - Upstream (-) proti proudu transkripce, sekvence před tímto bodem, nt mají záporné znaménko
 - Downstream (+) po proudu transkripce, sekvence za tímto bodem, nt mají kladné znaménko
 - Je důležité přemýšlet nad tím, od čeho je to upstream a downstream, je důležitý to zdůraznit, aby v tom nebyl bordelos
 - Nepřepisovaný mezerník (nontranscribed spacer) může oddělovat geny v rámci skupiny, která se přepisuje společně
- Primární (nascentní) transkript
 - Čerstvě přepisovaní RNA, je obvykle velmi nestabilní, řada navázaných dějů tedy probíhají kotranslačně (v průběhu transkripce)
 - o BAKTERIE/ARCHEA velmi často je tento transkript rychle degradován, regulace exprese genů je zaměřena na iniciaci transkripce
 - EUKARYOTA častěji dochází k posttranskripčním modifikacím, mRNA je stabilnější
 - Průměrný poločas života mRNA u eukaryot je asi 12 minut, regulace musí být u eukaryot posunutá dál
 - Je potřeba další stupeň regulace přímo na transkriptu/regulace překládané bílkoviny
 - Regulace a váha regulací musí být u různých domén života různě zaměřena
- Geny kódující bílkoviny
 - o Polycistronní (BAKTERIE/ARCHEA) přepis dlouhého úseku (víc genů), pak se jednotlivé geny překládají (operonová organizace)
 - Monocistronní (EUKARYOTA) čím výš v evoluci, tím delší je transkripční jednotka, ale tím menší procentu jsou kódující úseky
 - Až v procesu sestřihu (splicingu) vzniká monocistronní mRNA, který dává vznik jedné bílkovině
 - ALE (!!):
 - Caenorhabditis elegans má <u>tricistronní</u> transkripční jednotku, do translace jdou ale monocistronní mRNA (jsou transkribovány společně a v rámci splicingu jsou rozděleny na vlastní části)
 - Obecně má mnoho polycistronních transkripčních jednotek, nemůžeme říct, že polycistronní eukaryota nejsou
 - Polycistronní jednotky jsou dále typické pro: Trypanosomy, Nematoda
 - **Drosophila melanogaster** receptory pro chuť a vůni, jsou v <u>polycistronních jednotkách</u>, jak je transkript upraven a co je dále přeložené určuje poměr receptorů a jejich skládání do vyšších struktur (větší možnosti kombinací chutí a vůní)
 - Bicistronní jednotky najdeme prakticky u všech organismů, včetně člověka (eukaryota používají jeden cistron/oba)
 - Je dobré tvrdit, že EUKARYOTA mají převážně polycistronní, a BAKTERIE/ARCHEA převážně monocistronní
- Geny kódující RNA vždycky u všech typů organismů (eukaryota, bakterie, archea) jsou polycistronní
- DNA-depe-RNA-poly katalyzuje transkripci
 - o **VIRY** může být jednoúčelový rychlý enzym syntetizující RNA podle virového/fágového genomu, <u>jednopodjednotková</u>
 - o BAKTERIE variabilní složení, které umožňuje rozeznávat konkrétní typy regulačních oblastí, multipodjednotkové
 - ARCHEA jsou více podobné eukaryotním než bakteriálním, EUKARYOTA složitější než bakteriální, multipodjednotkové

TRANSKRIPCE BAKTERIÍ

- Transkripce **není izolovaná od translace** (a dalších dějů), naopak je s ní úzce spřažena
 - pyradeje Tyto děje jsou u bakterií na sobě závislé, dochází k propojeným regulacím na rozhraní transkripce a translace
- Mají jedinou RNA-polymerázu, relativně nízká variabilita v promotorech (v rámci jednoho druhu bakterií) a omezený počet TF
 - <u>Mezi jednotlivými druhy</u> jsou velké rozdíly v sekvencích promotorů a v AK sekvencích RNA-poly a transkripčních kofaktorů
 - o RNA polymerázy jsou si ale mezidruhově velmi podobné podobné struktury katalytických jader atd (evolučně dané)
- Primární transkripty jsou obvykle **polycistronní** a mRNA obvykle **není posttranskripčně modifikována**, protože je <u>ihned použita</u>
 - o Hned po zahájení syntézy se na nascentní konec transkriptu váže ribozom a začíná translace (syntéza polypeptidu)
 - o Žádné modifikace teda ani nedávají smysl, protože je transkript okamžitě použit

- Bakteriální RNA-polymeráza

- o Vnitřní afinita k DNA má ji na rozdíl od eukaryot, většinu času jsou vázány na nukleoidu (když je promotor volný, poly se chytne)
 - Má vlastní afinitu k jakékoliv části DNA, může docházet i k abortivní transkripci
 - Represe hlavní způsob regulace genové exprese, navázání faktorů, které brání nasednutí RNA-poly (opak eukaryotní
 regulace, tam jsou naopak aktivátory a RNA-poly eukaryot nemá afinitu k DNA)
- Specifická asociace s promotorem zajišťují ji specifické bílkoviny, hlavně sigma faktor (součást poly), určí konkrétní promotor
- s Katalytické jádro a skládání dvě dimerizační podjednotky α, katalytické podjednotky β a β' a taky faktory ω a σ
- σ-faktor
 - Určuje specifitu dané RNA polymerázy k určitému typu promotoru
 - σ-70 základní a kanonický, jiné σ pro konkrétní podmínky, aktivace jen někdy, pomáhají překonávat třeba hladovění
 - U sporulujících bakterií je sporulace řízena mimo jiného i <u>rozsáhlá kaskáda různých σ faktorů</u>
 - Počet a druhy sigma faktorů závisí na životním stylu bakterie, umožňují odpovědi na vnější podmínky
 - σ-54 faktor pro hladovění na dusík
 - Neumožňuje zahájení transkripce RNA-poly, ale umožní rozpoznat konkrétní promotor, pak v závislosti na interakci s proteiny, které umožní transkripci, spustí transkripci
 - σ-32 faktor pro teplotní šok

<u>Neesenciální podjednotky</u>

- Nejsou esenciální, ale mají vliv na fitness: při nepřítomnost chybné rozpoznávání σ faktoru, deregulace genomu
 - Kompetitivní assay měří se díky tomu fitness třeba po deleci, sleduje se, jaká kultura se namnoží víc
- Omega podjednotka u všech bakterií, vliv na sestavování a <u>stabilizaci komplexu</u>, zachycení a aktivaci σ faktoru
- Delta a epsilon podjednotka hlavně u G+ bakterií, taky vliv na stabilitu komplexu

INICIACE (HLAVNÍ REGULAČNÍ DĚJ!!)

- Transkripce je popsána na modelu e-coli (a příbuzných bakterií)

Rozpoznání templátu, iniciace

- Sigma podjednotka RNA Pol <u>rozpozná koncensus sekvenci</u>, nalezení promotoru, <u>vazba na DNA</u>, syntéza prvního nukleotidu
- Bakeriální promotor pro různé příležitosti jsou promotory různě silné, obsahují konsensus sekvenci čeho je tam nejvíc
 - -10 konsensus Pribnowova sekvence, začíná 7 bází od prvního nukleotidu (obvykle purin), T₈₀A₉₅T₄₅A₆₀A₅₀T₉₆
 - -35 konsensus začíná 17 bází od -10 oblasti, T₈₂T₈₄G₇₈A₆₅C₅₄A₄₅
 - Čísla u bází říkají, jak často se ty báze vyskytují v procentech na těchhle pozicích, prostě co je tam nejčastěji
 - **Vyvracení mýtů** konsensus sekvence v organismu vůbec nemusí být, není nejlepší a neříká nám nic o aktivitě, jen nám umožňuje popsat danou oblast (možnost, jak klasifikovat sekvence)
 - Vazebná místa pro TF vyskytují se v promotorech a přilehlých oblastech, mohou být aktivační nebo represivní
- o RNA Pol v komplexu se σ-faktorem nasedá na promotor do -35 oblasti a posunuje se k -10 oblasti
 - V této fázi chrání sekvenci v rozmezí 55 až +20, VYTVÁŘÍ SE INICIAČNÍ BUBLINA NA DNA
- o Topologie výhodná pro transkripci negativní nadšroubovicová DNA je nejlepší, je přístupnější a snadněji se rozvolní

Co ovlivní množství primárního transkriptu

- o Síla promotoru síla může být laděna v závislosti na různých podmínkách, dochází k tomu vlivem spousty koaktivátorů
 - Vždycky je relativní danému organismu v daných podmínkách
- o **Genová dóze** počet kopií genu, který poskytuje konkrétní transkript
 - Multiplikace signálu strukturní geny, mRNA může být přeložena víckrát, ale většina takových genů je v org unikátní
 - Podobné strukturní geny může to znamenat, že mají jinou funkci, nebi že je produkt daného genu naprosto esenciální
 - Platí to hlavně pro jednobuněčné organismy s rychlou replikační strategií, snaha udržet malý genom

ELONGACE

- Rychlost syntéza 40-60 nukleotidů za sekundu (tím že je translace s transkripcí spřažena, rychlost je stejná 15-20 AK za sekundu)
 - Rychlost transkripce rRNA je daleko vyšší, třetí možnost regulace (kromě genové dóze a promotoru)
 - Je sice velmi strukturovaná, ale asi byla někdy v evoluci vyčištěna od oblastí, co můžou způsobit kryptickou terminaci
 - Zároveň tím, že bakterie transkribuje a translatuje najednou, potřebuje hodně ribozomů (proto taková rychlost)
- Modelová situace, regulace
 - o Mám polycistronní transkript, na něm za sebou geny A, B, C přepisovány naráz hned jak se přepíšou
 - Mutace v B na stop kodon A se přeloží úplně, B bude zkrácený, C se nepřeloží vůbec, dojde k předčasné terminaci
 - Konec genu B pak bude odhalen při transkripci, mohou se tam objevit kryptické terminátory a nemusí se ani přepsat
 - Distribuce ribozomů má významný vliv z hlediska regulace, gen B ani gen C by se pak nemusely přeložit (?)

Elongační faktory

- Nus faktory (A, B, G) antiterminační, u bakterií esenciální, zvyšují rychlost polymerace, účastní se transkripce na genech rRNA
- GreA, GreB faktory
 - Významné homology i u archeí a eukaryot (TF2S), účastní se "proofreading" aktivity (jiná než u DNA poly)
 - Mají <u>slabou endonukleázovou aktivitu</u>, když RNA Pol zastaví, posune se o kousek zpátky, GreA/GreB <u>odštěpí několik nt</u>
 - Vznikne <u>čerstvé OH očko</u>, RNA Pol tak může jet vesele dál NEBO se vlivem štěpení <u>celý komplex rozpadne</u> a vzniká nový
 - NEJDE O KOREKCI CHYB

transcription start

0.5 μm

- Vzniká ternární komplex nenašla jsem pořádně co to je, předpokládám RNA Pol-DNA-faktory (ternární = trojstranný)
- Po syntéze asi 9 bází se <u>uvolní sigma faktor</u> a případně se navážou další faktory
 - Abortivní iniciace do uvolnění sigma faktoru, všechny RNA Pol jsou schopné syntézy malého množství nedokončené RNA, i když transkripce oficiálně neběží, vzniká při ní spoustu krátkých transkriptů, pak se RNA Pol uvolňuje
 - ALE u některých bakterií je sigma faktor i nadále součástí komplexu

Píďalkovitý pohyb

- Jak se pohybuje RNA Pol, kroky 7-8 bází nascentního transkriptu
 - RNA Pol musí průběžně **měnit konformaci** (asi po 15-20 bp), zatímco se posouvá dál
- Zelená antisense (3'->5'), <u>růžová</u> sense (5'->3'), RNA Pol k němu má větší afinitu, větší kontakt

TERMINACE

- Zánik ternárního komplexu ukončení transkripce a disociace jednotlivých komplexů
- Terminátory
 - Terminace je vždycky závislá na struktuře a sekvenci nascentního transkriptu (nově vzniklé pre-mRNA)
 - Dva typy, fungují na úrovni RNA: buď transkripci zastaví přímo struktura vytvořená na RNA, nebo ρ-faktor (rozpozná terminátor)
- **p-faktor** funguje jako hexamer a má ATPázovou (helikázovou) aktivitu, interagují s NusA, NusG a p-podjednotkou RNA Pol

Terminátory závislé na ρ

- Obecně terminátory rozpoznávané proteinovým faktorem, co umožní zastavení RNA Pol na daném místě a ukončení transkripce
- Rozpoznání ρ-faktorem
 - Faktor nejdřív putuje do DNA, musí dohnat RNA Pol na místě, které zároveň rozpoznává, naváže se tam
 - p-utilization sequence sekvence terminátoru bohatá na cytidin, na ni se váže faktor (umí se vázat jen na nascentní tr)
 - Po navázání faktor díky svým helikázovým schopnostem za <u>spotřeby ATP vyvlékne RNA z RNA Pol</u>
 - Dokud je RNA obsazena ribozomy (translace probíhá při transkripci), faktor má smůlu
 - Přepsání posledního genu v polycistronní jednotce nějaká downstream sekvence naváže p-faktor
- PROBLÉM sekvencí a oblastí, které p-faktor rozpoznává (bohaté na C), může být v genomu mnoho

- <u>Terminátory nezávislé na ρ (obligátní)</u>

- Obecně fungují jako struktura, co vznikne na nascentní RNA, a zabrání další transkripci (terminátor teda má vnitřní strukturu)
- GC bohatá vlásenka tyto GC oblasti stabilizují dsRNA strukturu vlásenky, ta se tvoří v aktivním centru RNA Pol
- 3' konec zbytek kys uridylové, je to tedy U bohatá <u>nestabilní oblast</u>, proti všem U je A (nestabilní nukleotidové páry)
 - Když se vlásenka vytvoří, vzniknou i ty UA nestabilní oblasti a dojde k destabilizaci a uvolnění celého komplexu
- Polární efekt na transkripci distálních genů, mutace na antisense vlákně (přepisovaném) může ovlivnit vedlejší geny
 - O Může dojít třeba k posunu čtecího rámce, který vytvoří úsek neobsazený ribozomy zafunguje jako ρ-závislý terminátor
 - o Polární efekt mohou kromě <u>frame-shift mutací</u> vyvolat i <u>mutace nonsense</u>

TURNOVER RNA V BUŇCE

- rRNA 70-80 % celkového obsahu RNA, tRNA 15 %
 - o Stabilizovány posttranskripčními modifikacemi (účast různých enzymů), terciární strukturou nebo asociací s proteiny
- mRNA 3-4 %, velmi nestabilní průměrný poločas rozpadu je 40 s
 - Degradace většinou ji startuje <u>endonukleotické štěpení od 5' konce</u> (prvně přepisovaný konec, nasekání na víc kousků) a následné <u>exonukleotické 3'->5' štěpení</u> vzniklých fragmentů (3' konce fragmentů označeny oligo-A)
- INICIACE TRANSKRIPCE JE HLAVNÍ REGULAČNÍ DĚJ GENOVÉ EXPRESE U BAKTERIÍ

TRANSKRIPCE EUKARYOT

- Kompartmentace transkripce není spřažena s translací, transkripce v jádře/organelách, pak export mRNA a translace v cytoplazmě
 - o mRNA je často posttranskripčně modifikována (pro export nebo pro odstranění intronů v genech), delší poločas rozpadu
 - o Regulace častější regulace i na úrovni translace, kombinatorický a kooperativní způsob regulace transkripce
- Víc RNA polymeráz v základu RNA Pol I, Pol II a Pol III, u rostlin navíc RNA Pol IV a Pol V
- Monocistronní transkripty u eukaryot převažují
- Typy buněčných RNA
 - mRNA messenger, rRNA ribozomální (u savců 5.8S, 18S, 28S, 5S,), hnRNA heterogenní jaderná, prekurzorová, pre-mRNA
 - trna transferová, snrna, snorna, scrna, mirna malé buněčné RNA, Incrna long non coding RNA

HLAVNÍ AKTÉŘI

- Buněčné RNA polymerázy

- Více podjednotkové enzymy katalyzující transkripci
 - Základní RNA Pol se liší strukturou, počtem podjednotek, citlivostí k různým inhibitorům a funkcí (kdy je buňka používá)
 - Jsou poměrně podobné bakteriálním polymerázám, struktura RNA poly je evolučně velmi stará (narozdíl od DNA poly)
- o RNA Pol I ribozomální RNA v jadérku, RNA Pol II hnRNA a řada malých RNA, RNA Pol III tRNA, 5S rRNA a řada malých RNA
 - Většina RNA je syntetizována RNA Pol II, ve většině případů se vyznačují čepičkou na 5' konci

<u>C-terminální doména (CTD)</u>

- Sestává z repetic heptapeptidů (7 AK), repetic je spousta, takový ocásek RNA poly, v průběhu evoluce expandovala
- Tyrosin-serin-prolin-threonin-serin-prolin-serin
 - Konsensus repetice, neznamená to, že každá CTD vypadá takhle!, už klasicky víme, co je konsensus, že
 - Tyrosin, serin, theronin mají OH skupiny, bývají fosforylovány (hlavně tam, kde je masivní transkripce),
 v blízkosti počátku hlavně P-Ser5 a málo P-Ser2, v průběhu naopak víc fosforyluje Ser2 a Ser5 defosforyluje
 - Prolin dělá z CTD nestrukturovaný dlouhý úsek přístupný k různým násobným modifikacím, regulační funkce
- Expanze a regulace CTD hraje obrovskou roli v regulaci genové exprese
 - Počet opakování repetice vrůstá se složitostí organismu (experiment velké zkrácení neslučitelné se životem)

Transkripční faktory

🔻 Hrají podstatnou roli v iniciaci transkripce, ta vyžaduje řadu TF fungujících v definovaném sledu s přesnými vazebnými specifitami

Obecné transkripční faktory

- TF <u>rozpoznávající promotor</u> označený modifikacemi chromatinu a aktivátory/represory
- Umožní sestavení pre-iniciačního a iniciačního komplexu RNA polymerázy, spolu s ní tvoří základní transkripční aparát
- Speciální transkripční faktory
 - Konstantní u mnohobuněčných jen v určité tkáni, každá tkáň má jiný proteinový obsah, sada TF způsobuje transkripci konkrétních proteinů pro tu danou tkáň
 - Indukovatelné objevují/aktivují se jen jako <u>reakce</u> na nějaký vnější nebo vnitřní podnět
- Často několik nezávislých domén
 - DNA vazebná doména interakce s DNA, bývají bazické, regulační doména interakce s dalšími proteiny
 - Aktivační doména velmi nespecifické obsahují <u>bazické</u> oblasti proteinů, mohou reagovat podobně
 - Kyselá aktivační– mají ji některé TF (kyselé TF), zvyšují koncentraci TF v oblasti promotorů, vazba TFIIB atd

TRANSKRIPCE RNA Pol I

- Přepisuje rRNA, je přepisována jako velká prekurzorová RNA (45S u savců), která je pak rozstříhána na 18S, 5.8S a 28S rRNA
 - o Geny pro 45S pre-rRNA a jednotlivé rRNA uvnitř této velké jednotky jsou <u>odděleny mezerníky</u>
 - o Jadérko zmnožené geny pro rRNA, v buňce je potřeba extrémní produkce rRNA (silné promotory, velká genová dóze)
- Promotor pro rRNA má dvě hlavní konsensus oblasti
 - Základní oblast (-45 až +20) stačí pro zahájení transkripce, regulační oblast (-180 až -107) UCE (upstream control element)
 - Obě oblasti jsou z většiny identické a hodně GC bohaté, sekvence obou rozeznává UBF1 faktor a váže se na ně
 - UBF1 faktor (upstream binding factor)
 - Rozpoznává promotor a váže se na něj, může se vázat i na oblasti upstream (UCE) od promotoru (navýšení efektivity)
 - Čím víc vazebných míst pro UBF1, tím větší pravděpodobnost, že dojde k transkripci, dále se na něj váže komplex SL1
 - SL1 faktory rozpoznávají/vážou se na UBF1, mají v sobě TBP (TATA binding proteins), součást rozpoznávacích komplexů RNA Pol

TERMINACE

- Transkripce končí na nějaké krátké **terminátorové sekvenci** (18bp) kousek od reálného 3' konce pre-mRNA
- Dojde k <u>rozpoznání sekvence</u>, k <u>vazbě terminačního faktoru</u> a k <u>zastavení RNA Pol I</u>

TRANSKRIPCE RNA Pol III

- Přepisuje 5S RNA, tRNA a snRNA
 - Interní promotor pro 5S RNA a tRNA, promotor je uvnitř přepisované části (kompaktnější gen)
 - Box B, box A názvy promotorových oblastí typických pro tRNA, Box C, box A typické pro 5S RNA
 - o **Promotor pro snRNA** druhý typ, strukturně podobný promotorům pro RNA Pol II

TF rozeznávající interní promotory

- TFIIIA rozeznává Box C (faktor i box C se vyskytují jen při transkripci 5S RNA), umožňují nasednutí TBIIIC
- o TFIIIC velký faktor (víc než 500kDa a 5 polypeptidů), rozeznává Box B a umožňuje nasednutí TFIIIB
- TFIIIB když se naváže, už pro iniciaci nepotřebuje navázané TFIIIA a TFIIIC, obsahuje TBP (TATA binding)
 - Zůstává na promotoru navázaný déle, může být využit pro víc cyklů RNA Pol III (šetři se čas skládání komplexu), recyklace

Jak to funguje

- o Geny pro tRNA TFIIIC rozpozná a naváže se na interní promotor (box B a A), to přivolá TFIIIB, co se naváže upstream na TFIIIC
- Geny pro 5S RNA je to stejný, ale po navázání TFIIIC (na box B a A) se naváže ještě TFIIIA na box C a pak až TFIIIB

TERMINACE

- Připomíno ró nezávislou terminaci prokaryot, lze rozeznat vlásenkovité struktury na konci transkripčních jednotek
- Mohou vznikat i složitější struktury na 3' konci nascentní RNA ukončeny několika zbytky kys uridinové (přepsaná GC oblast)

TRANSKRIPCE RNA Pol II

- Přepisuje geny pro mRNA, obrovské množství a komplexita promotorů, složitá regulace, kombinování různých kontrolních elementů
 - Nejde přesně určit, jak vypadá typický eukaryotní promotor, v každý učebnici je to jinak, nedefinuje ho konkrétní sekvence!!
 - o Je možné si představit promotor Pol II jako modulární skládačku, vyskytují se různé kombinace dílků různě často, různá regulace
 - Koupím si několik krabic lega, z dílků můžu poskládat zahrádku, psí boudu, ale i třeba letadlo (lmao)

Konsensus oblasti promotorů

- Oblast Inr initiator, vyskytuje se asi nejčastěji (i tak je ale v necelé polovině lidských genů pro Pol II), významná pro iniciaci
- o TATA box (-25 oblast) často ohraničený GC oblastí, nevyskytuje se ani zdaleka tak často, jak si myslíme, váže se sem TBP
- O CAAT box (-75 oblast) funkční v obou orientacích, mutace mají vliv na sílu promotoru
- GC box (-90 oblast) taky funguje v obou orientacích, často ve více kopiích, vliv na sílu promotoru
- Promotorové proximální oblasti (-120 oblast) a promotorové distální oblasti (enhancery)

TBP (TATA binding protein)

- součást transkripčních faktorů u všech tří DNA Pol, jako jeden z mála TF se váže do **malého žlábku**, způsobuje **ohnutí DNA**
 - Zvlášť u DNA v negativních nadobrátkách ohnutí <u>usnadňuje tání DNA</u> na specifickém místě, vazba RNA Pol
 - Funguje jako umisťovací faktor, určuje, kde bude +1 stav, a kde bude zahájena transkripce
- o Dvě domény jedna rozpoznává TATA box (když není TATA box, nějaké proteiny dovedou TBP na pozici), jedna ohýbá DNA
- Pre-iniciační komplex transkripční aktivátory, transkripční faktory, mediátorový komplex, regulační a remodelační proteiny

INICIACE TRANSKRIPCE (posloupnost)

- o Vazba TFIID na TATA box obsahuje TBP (rozpoznává oblast aktivátorů transkripce), největší z faktorů
- O Vazba TFIIA aktivuje TBP na TFIID, celý komplex stabilizuje
- o Vazba TFIIB váže se na komplex víc po proudu transkripce, rozeznává ho RNA Pol II, nestarší faktor (i u archeí)
- Vazba RNA Pol II přes TFIIF polymeráza a TFIIF vytváří katalytický komplex, přináší se do promotoru
- Vznik ternárního komplexu vzniká vytvořením první fosfodiesterové vazby
- Vazba TFIIE komplex se rozrůstá, na něj se mohou vázat další faktory
- 🔾 🔾 🔾 Vazba TFIIH a TFIIJ mají <u>kinázovou a helikázovou aktivitu</u> (ATPázy), vážou se přes TFIIE a zůstávají na RNA Pol II i během elongace
 - Jedná se o regulační faktory, dělají s preiniciačního komplexu iniciační komplex
 - TFIIH může hrát roli při elongaci pohyb RNA Pol II (hydrolýza ATP), ale i vliv na opravy DNA asociované s transkripcí

Fosforvlace CTD RNA Pol II

- CTD fosforylují TFIIH A TFIII, vyvolá to zahájení syntézy RNA: fosforylace je signál pro další sled děju a komplexů
 - Zamávání startovací vlajkou a zároveň maják pro další proteiny a komplexy
- Mediátorový komplex zprostředkovává interakci s dalšími transkripčními faktory a enhancery
- o Na DNA tak sedí brutálně velký komplex, asi 2MDa (1MDa všechny TF a další 1MDa mediátorový komplex)

- TERMINACE

Recruitment

IID

IIE

romoter DNA

- V ukončení hrají roli dvě nezávislé oblasti/děje ukončení vlastního transkriptu a vlastní ukončení transkripce
- <u>Ukončení vlastního transkriptu</u>
 - Je to přesně dané místo, rozpoznání polyadenylačního signálu a elementů downstream (po proudu transkripce)
 - Sestavení polyadenylačního komplexu vede to k přestřižení transkriptu a k jeho upravení na 3' konci polyA řetízkem
 - Mezitím ale RNA Pol II dál transkribuje, je potřeba ještě ukončit tu transkripci:

Vlastní ukončení transkripce

Preinitiation

Pol II

- Defosforylace CTD
 - Spouští ji rozpoznání polyadenylačního signálu, postupné zastavování RNA poly (brzdná dráha)
 - Stále je ale přepisován nascentní transkript, už ale nemá s původně přepisovaným genomem nic společného
- Torpédo model
 - Exonukleáza RAD1/XRN2 degraduje od 5' konce nascentní transkript až k RNA poly, ta se zastaví

Regulace na úrovni pre-iniciačního a iniciačního komplexu

Reinitiation

Podoba těchto komplexů v přítomnosti dalších TF určuje, jak je modifikovaná CTD

Scaffold complex

Celý komplex se rozpadá

Liší se to třeba u dlouhých transkriptů pre-mRNA (strukturní geny) a krátkých snoRNA (krátké jadérkové)

Fosforylace CTD

Fosforylace CTD

- O V každé další chvíli transkripce je CTD a její modifikace jiná, silnice, která se mění z pěšiny lesem na dálnici a zase zpět
 - Tyto různé stavy (hlavně fosforylace a nefosforylace) CTD jsou dobře vidět na polyténních chromozomech
- $\circ \hspace{0.5cm}$ Mění se i **iniciační schopnosti** a to, co se tam třeba dál naváže za proteiny
 - Počátek větší pravděpodobnost interakce s komplexem enzymů, které syntetizují 5' čepičku
 - Konec větší pravděpodobnost, že bude interagovat se sestřihovým aparátem a enzymem pro polyadenylaci
- Průběh fosforylace
 - Začátkem dochází k fosforylaci časně fosforylovaných Ser (5, 7), v průběhu transkripce jsou tyto Ser spíš defosforylovány
 - Během elongace dochází k fosforylaci dalších skupin, blízko konci pak dojde k finální defosforylaci

Pauza RNA polymerázy (Metazoa)

- s RNA Pol II rozběhne syntézu a zůstává <u>stát po určitou dobu asociovaná s templátem</u>, ve vzdálenosti asi 50 nukleotidů
- o Elongační faktory
 - Vlezou tam když poly stojí (výměna faktorů), jsou zodpovědné za regulaci během elongace (jsou ale taky regulovány)
 - DSIF, NELF (negativní elongační faktor)
 - NELF se váže na místo jiných faktorů, které pak tu poly zase uvolní, ale když je tam ten NELF, poly stojí
 - DSIF má homologie u bakterií i archeí, účastní se uvolnění RNA Pol
- Uvolnění
 - TFIIS funkční homolog bakteriálních GreA, GreB, uvolňuje polymerázu z pauzy
 - PTFB (pozitivní transkripční elongační F) komplex, co obsahuje Cdk kinázu 9
 - Tahle kináza mimo jiné i fosforyluje seriny na CTD, taky ale může fosforylovat negativní regulátory
 - Fosforylací dojde k <u>uvolnění RNA Pol II</u>
 - K uvolnění může dojít i tím, že nastane abortivní transkripce
- o Pauza trvá <u>několik sekund</u> (na transkripci je to ale stejně dlouhý čas), přesnost a úroveň regulace neznáme

Regulace v rámci terminace

- o Liší se u různých RNA třeba ne všechny eukaryotní mRNA jsou zakončeny polyA, histonové mRNA nejsou (je štěpena)
- **Faktory**
 - Nrd1 hlavně ukončování transkriptů, co <u>nejsou polyadenylovány</u> (geny pro krátké RNA, kryptické transkripty atd)
 - Pcf11 účastní se polyadenylace na 3'konci většiny eukaryotní mRNA (syntéza poly-A řetízku)

- RAD1 (5'->3' exonukleáza) hraje roli při ukončování transkripce, dále interaguje s dalšími faktory (Pcf11)
- CPSF faktory, které se účastní <u>štěpení</u> mRNA a rozpoznání jejího polyadenylačního signálu
- Další vlivy rozvrstvení a změny modifikace histonů, obecně transkripční aparát je velmi dynamická a proměnlivá věc

ENHANCERY

- Často repetice nebo tandemové uspořádání může být i velmi daleko od promotorové oblasti
 - Hlavní funkcí enhancerů je zvyšování koncentrace TF v oblasti promotoru, zvyšuje interakci mediátorového komplexu
 - o Začíná být aktivní už během vzniku pre-iniciačního komplexu, ovlivňuje jeho strukturu a rozpoznávání ostatními TF
- Interakce s komplexem mediátoru (1 MDa)
 - o Tento komplex zprostředkovává interakci RNA Pol II a aktivátory transkripce, asi 30 různých polypeptidů, reguluje CTD kinázu
 - o Pre-iniciační komplex se při iniciaci skládá s mediátorovým komplexem, proteiny regulujícími transkripci a remodelačními proteiny

TRANSKRIPCE V ORGANELÁCH

- Mitochondrie RNA polymerázy jsou malé, redukovaná a připomínají bakteriální (nebo fágové)
- Chloroplasty dva typy polymeráz, jedna připomíná tu <u>bakteriální</u> (má sigma faktor), druhý je jednosložková a připomíná <u>virovou</u>

TRANSKRIPCE U ARCHEA

- Archeální RNA polymeráza připomíná tu <u>eukaryotní</u>, je vícepodjednotková (13-14 podjednotek)
- Regulace transkripce transkripční jednotky obvykle polycistronní, způsob regulace je tedy spíš podobný <u>bakteriální regulaci</u>
- Transkripční faktory
 - Homologní <u>eukaryotickým TFIIB a TBP</u>, vážou se na AT bohatou oblast v promotoru
 - U archea najdeme i transkripční aktivátory a transkripční represory

INICIACE

- o Rozpoznání promotoru vazba TBP (TATA binding protein) homologního s eukaryotním na archeální TATA box
- o Vazba TBF zas homologie s eukaryota (TFIIB), stabilizace komplexu, interaguje s U-bohatou BRE sekvencí TATA boxu
- Vazba RNA Pol váže se na oblast DNA po proudu (downstream) TATA boxu, překrývá transkripční start až do +18

POST(KO)TRANSKRIPČNÍ ÚPRAVY RNA

- Hlavně v eukaryotní buňce dochází k úpravám masivně, k řadě úprav dochází už kotranskripčně (během transkripce)
 - RNA je v buňce často navázaná na bílkoviny/v komplexu s bílkovinami hraje to obrovskou roli
 - o Žádná RNA v buňce není nahá hrozí degradace, štěpení, spousta RNA si spinká obalená v proteinech jako ve spacáku

hnRNA (primární transkript)

- o Přítomna v jádře jako hnRNP ribonuclear-protein komplex, víc než 20 proteinů, další faktory účastnící se modifikací atd
- o RNP motiv
 - Nejčastější motiv RNA vazebných proteinů, <u>dvě domény</u> (RNP1, RNP2), <u>čtyřikrát beta skládaný list</u>
 - Existuje ale i řada nekanonických domén
 - Umožňuje interakci RNA s RNA a RNA s proteiny, RNA obsazená RNP, nezaujímá sekundární struktury
- Řada bílkovin s jinou popsanou funkcí mohou taky interagovat s RNA

Základní typy úprav hnRNA

- Vazba do RNP, polyadenylace pre-mRNA, syntéza čepičky na 5' konci pre-mRNA, sestřih pre-mRNA (sestřih, pak spojování exonů)
 - Sestřih pre-rRNA a pre-tRNA, modifikace rRNA a tRNA, úprava primárních transkriptů v organelách (sestřih a modifikace)
- o Další úpravy (třeba editace) finální RNA má jinou sekvenci, než bychom očekávali podle kódující DNA, změny malých RNA

POLYADENYLACE

- Souvisí s terminací transkripce (kotranskripční), dochází k ní na 3' konci pre-mRNA, má vliv na celou řadu dějů
 - o Polyadenylace má vliv třeba na <u>stabilitu</u>, <u>způsob translace</u> (hlavně iniciace translace), <u>maturace pre-mRNA</u>
- Polyadenylační signál
 - Konsensus AAUAAA a GU/U bohatá oblast po proudu transkripce, ale některé organismy mohou používat jiný (třeba samé A)
 - Nada sekvencí může fungovat jako polyadenylační signál, je podobný u všech eukaryot

- Variabilita v délce

- Délka 3' konce
 - Za různých podmínek vznikají různé pre-mRNA s různě dlouhými 3'konci (než jsou ukončeny polyA signálem)
 - I kdyby dvě RNA kódovaly stejnou bílkovinu, 3' UTR může mít různé regulační možnosti (regulace intenzity atd)
- Délka polyA
 - Určuje, jak dobře bude RNA překládána; jak moc se z ní budou tvořit proteiny, s jakou frekvencí a jak stabilní
 - Při každém průběhu translace se tento řetízek zkracuje, je to značka, kolikrát byla RNA přeložena

Ne všechny geny mají poly A řetízek

- o mRNA replikativních histonů
 - Tvoří vlásenku na 3'konci a reasociuje s U7 snRNA v místě konsensus sekvence, 5'-AAGAAAGA-3'
 - ALE histony, které se syntetizují ve chvíli, kdy není replikace (neúčastní se replikace) obvykle řetízek mají
- o snRNA, snoRNA
 - Ukončeny NRD komplexem, který rozezná NRD sekvenci na RNA, umožní to vytržení RNA z transkripčního komplexu
 - RNA může mít sekvenci NRD, ale pokud není chráněna speciálními proteiny, je rychle degradována

MECHANISMUS

- Cleavage komplex

- CFII, CFII (cleavage), CsTF (cleavage stimulalatory), CPSF (cleavage and polyA specifity) účastnící se faktory, vícepodjednotkové
- Generace 3' konce
 - Faktory rozeznají signální sekvenci na nascentním transkriptu (RNA Pol pořád syntetizuje) a přeštípnou RNA
 - Nascentní RNA se uvolní, pro RNA Pol je to signál, aby došlo k <u>defosforylaci CTD</u>, odpadnou elongační faktory

PolyA-polymeráza

- Naváže se na 3' konec hned po naštípnutí, začne se tam rovnou syntetizovat polyA, polymeráza <u>syntetizuje bez předlohy</u>
 - Nasyntetizuje pár áček a dojde k <u>rozpadnutí cleavage komplexu</u>

PABP (polyA binding protein)

- Už během syntézy obsadí polyA řetízek, hraje roli v transportu RNA z jádra a v iniciaci translace
- Ve chvíli, kdy je na RNA navázání několik PABP, dojde ke zvýšení procesivity a efektivity polyA-poly

Polyadenylace tedy vlastně probíhá <u>ve dvou krocích</u>

Úvodní pomalejší syntéza (závislá na cleavage komplexu), pak rychlá syntéza po navázání několika PABP (nezávislá na CF)

SYNTÉZA 5' ČEPIČKY (CAPPING)

- 5' čepička je syntetizována několika enzymatickými reakcemi ve chvíli, kdy je nasyntetizováno prvních 20-30 nt, je to kotranskripční
 - Na CTD musí dojít k <u>fosforylaci Ser 5</u>, enzymový komplex syntetizující čepičku se díky tomu dostane do blízkosti transkriptu

- Enzymatické reakce

- o <u>Trifosfatáza</u> odštěpí gama fosfát z 5' konce, co zůstane na prvním nt po začátku transkripce (1.nt je většinou A, vždycky purin)
- o <u>Guanyltranferáza</u> na beta fosfát je navázán <u>guanosin-fosfát (GMP)</u>
- o <u>7N-methyltransferáza</u> hned jak je GMP zařazen, je <u>methylován na pozici N7</u>

- 7N-methylguanosin-5'-5'-trifosfátpurin (čepička)

- Ochrana a stabilizace velmi jedinečný útvar s 5'-5' trifosfoesterovou vazbou, moc enzymu jí neumí štěpit (ochrana)
 - Degradace RNA často začíná právě odštěpením čepičky specifickým enzymem, označení pro degradaci a destabilizace
- o Praporek hlásá, že tady je 5' konec RNA, která byla přepsána RNA Pol II, a že musí být chycena a vyhozena z jádra
- V běžných regulačních procesech (i degradace) slouží 5' konec často ke specifickému rozpoznání vazebnými proteiny
- Typy čepiček mohou vypadat i jinak, vlivem modifikace a stabilizace (třeba u vyšších eukaryot, rostlin atd)
 - Cap0 basic average čepička eukaryot
 - Cap1
 - Methylace na N6 adenosinu
 - Methylace na C2'-OH molekula bude <u>hydrofobní</u>, je možná interakce s nějakými proteiny (rozpoznávací translační proteiny mají 2 Try, ty jsou <u>taky hydrofobní</u>), C2'-OH je taky jinak dost reaktivní, takže se <u>sníží reaktivita</u>
 - o Cap2
 - Methylace C2'-OH na druhém nukleotidu za čepičkou

SESTŘIH JADERNÉ pre-mRNA

- Zahrnuje vystřižení intronů a spojení exonů, neprobíhá pomocí endonukleózy, ale systémem několika transesterifikačních reakcí
 - Když k vystřižení <u>nedojde</u>, RNA sice je exportovaná z jádra, ale většinou je k hovnu a nedává funkční protein větší pravděpodobnost výskytu STOP kodonu
 - o Možnosti alternativních sestřihu zvyšují variabilitu možných transkriptů, a tedy i variabilitu proteinů ze stejného genu (regulace)

- Introny

- ο Nalezeny i u bakterií, fágů (λ) i archeí, mohou být v tRNA, rRNA (ty jsou často ale sestřihovány jinak) a pre-mRNA
- O Variabilita v délce a počtu (roste ke člověku)
 - Množství introny přerušených genů stoupá od nižších k vyšším eukaryotám
 - Kvasinka má asi 6100 genů, jen 239 intronů na genom, naprostá většina genů má jeden intron
 - Hmyz a savci introny tvoří obrovskou část genů, větší délka (větší genom), geny obsahují 7-8 intronů
 - Množství intronů zvyšuje možnosti buňky produkovat různé proteiny v reakci na různé podněty (různý sestřih)
 - Když je buňka v háji (nějaký stres atd), klíčové protein mohou mít redukovaný počet intronů, nebo třeba vůbec žádné
- Obsahují spoustu STOP kodonů ve všech čtecích rámcích
 - Není tam evoluční tlak, aby tam zůstávala nějaká informace o bílkovině (jako u exonů)

- <u>Exony</u>

- o I když jsou geny přerušeny introny, pořadí exonů ve finálním produktu <u>zůstává vždy stejné</u>, i když třeba některé chybí
- Variabilita v délce (klesá ke člověku)
 - <u>Kvasinka</u> průměr 1,4 kbp, <u>hmyz a savci</u> průměr 5 kbp a víc, <u>člověk</u> průměr 100 bp

- Základní rozdělení systémů pro sestřih RNA

- o Sestřih ve spliceozomu systém rozeznávání sekvence na rozhraní intron-exon a uvnitř intronu, transesterifikační reakce
- O Autokatalytická činnost ribozym, sama se sestříhá pomocí transesterifikace
- o Intron vyštěpen bílkovinou enzymatická aktivita endonukleáz, <u>není</u> to transesterifikační reakce

OBECNÉ INFO K SESTŘIHU pre-mRNA KÓDUJÍCÍ PROTEIN

- Sekvence určující sestřih jsou v intronu a nejsou nijak dlouhé
 - Místa sestřihu jsou obecná, nejsou specifická pro daný typ pre-mRNA, introny jsou ale jen uvnitř (nikdy ne na krajích)
 - Introny jsou odstraňovány ve více méně definovaném sledu, pravděpodobný vliv konformace pre-mRNA na sestřih
 - Ale nejsou vystřihovány v pořadí, v jakém byly transkribovány, dochází k odhalování v průběhu splicingu

Introny vyšších eukaryot

- o Jsou velmi heterogenní ve velikosti a sekvencích, jaderné introny vyšších eukaryot obsahují jen několik invariantních sekvencí
- o Konsensus sekvence
 - Chambonovo pravidlo téměř stoprocentní shoda na koncích intronů
 - AG úsek invariantní polypyrimidinový úsek na 3' konci
 - GU úsek invariantní GU oblast na 5' konci
 - Adenosin (místo větvení) invariantní adenosin, místo, které je atakováno 5' koncem intronu za vzniku lariátu
 - Polypyrimidinový úsek mezi místem větvení a 3' koncem

- Aparát sestřihu

- o Účastní se <u>vystřižení intronů</u> a <u>spojení exonů</u>, zprostředkovává <u>transesterifikační reakce</u>
- o Bazální aparát samotný vlastní aparát pro sestřih
- o Další faktory je jich řada, mohou se vázat na introny, exony, rozhraní, mohou pomáhat vazbě komplexu a vystřižení intronů

Kinetika sestřihu (nějaký experiment)

- o Zahájení extrémně rychlé
 - Chytnou primární transkript je těžké, ale pak brutálně rychlá reakce, molekula je největší
 - Primární transkript tam skoro není, nahrává to tomu, že to probíhá kotranskripčně
- Introny nejsou vyštěpovány postupně
 - Vyštěpovány na základě změn molekuly a interakčních partnerů, pořadí exonů ale zůstává zachováno
 - Jsou postupně <u>odhalovány sekvence</u>, ty jsou nabídnuty aparátu, dojde k sestřihu, <u>změně konformace</u>, odhalení dalších struktur, změně struktury <u>celé pre-mRNA</u>, navázání bílkovin a další vyštěpení

Problémy spojené se splicingem

- Může docházet k <u>mutacím způsobujícím chyby</u>: chyby v poměru jednotlivých proteinů a RNA složek a změny v nich
- B-talasemie porucha tvorby erytrocytů, řada důvodů, jeden z nich jsou chyby/změny v sestřihu

Alternativní sestřih

- Zařazeny <u>nové exony, přeskočeny exony, změna 5' a 3' konce exonů (kromě toho ještě alternativní promotory a polyA signál)</u>
 - VARIABILITA (!) zvlášť u vyšších eukaryot vzniká mnohem víc bílkovin, než by člověk na základě počtu genů čekal
 - Nikdy ale nedojde k přehození pořadí exonů, to je prostě pravidlo
- Dystofin mRNA je ultimátně dlouhá (14k bp), ale gen pro dystrofin je ještě delší (2 milion bp, cca 60 dlouhých exonů)

VLASTNÍ SESTŘIH pre-Mrna

- Role UTR
 - o Vážou se tam bílkoviny, u zdravých buněk jsou UTR dlouhé -> může se tam navázat hodně regulačních bílkovin
 - Rakovinné buňky mají UTR krátký, regulace různých procesů je u nich složitá

Zúčastněné partikule

- o Spliceozom
 - Tvoří ho sestřihový aparát, je to prostě chuchel, kde se soustředí větší množství <u>aktivních složek</u> na jenom místě
 - Pomáhá <u>přiblížení</u> jednotlivých složek systému (<u>remodelace</u>), zařizuje <u>efektivní</u> a rychlý sestřih na <u>správném místě</u>
- Ribonukleoproteinové partikule
 - Hlavní složka spliceozomu, tvoří je RNA a navázané proteiny, tyhle dvě části spolupracují
 - snRNA (malé jaderné) účastní se tenhle typ, konkrétně jsou to U1, U2, U4, U5, U6 (interagují spolu)
- Další bílkoviny A-RNA helikázy, PRP proteiny (pre-mRNA processing)

Energetika

- o Energie z vnějšku (velké množství) je potřeba zejména na remodelaci celého systému, změny uspořádání proteinů atd
- Na samotné reakce se energie nespotřebovává bere se z makroergních vazeb, které se při nich rozseknou (odštěpí se pyrofosfát)

- Transesterifikační reakce

- o Neúčastní se žádné proteinové enzymy, jedná se o přenos esterové vazby
- První transesterifikační reakce
 - Nukleofilní atak <u>2'OH skupiny adenosinu</u> na <u>5' exon-intron rozhraní</u> (fosfát), vzniká lariát na exonu 2 a samotný exon 1
 - Adenosin je během reakce nespárován s RNA rozhraní, umožňuje mu to reagovat s branch pointem
- Druhý transesterifikační reakce
 - Volná <u>3' OH skupina exonu 1</u> atakuje <u>3' exon-intron rozhraní</u>, je **spojen exon 1 a 2**, intron uvolněn ve formě lariátu

Mechanismus sestřihu

- o Vazba U1 na 5' konec intronu (5' konec exon-intron rozhraní), spolu s ním se vážou i další faktory
- Vazba U2 na branching point a do oblasti polypyrimidinového řetězce, taky i další faktory

- Takto došlo k rozpoznání obou důležitých míst v intronu bez nutnosti jakékoliv sekvence uvnitř intronu
- Vazba U4, U6, U5 párování U6-U4
- První transesterifikační reakce
 - Je spuštěna po <u>uvolnění U4</u>, remodelace komplexu a <u>změna párování na U6-U2</u>, vzniká **lariát**
 - U6 páruje s 5' místem a spolu s U2 připomíná strukturou introny II skupiny (šest charakteristických smyček)
- o Druhá transesterifikační reakce
 - Přichází rychle po první, vazba U5 na 3' exon-intron rozhraní, nukleofilní atak a vyštěpení lariátu

- Minor-spliceosome mechanismus

- Není tak častá, účastní se funkčně stejné snRPN (ale jiná struktura a sekvence) U11, U12, U4ATAC, U5 (společný), U6ATAC
- ATAC introny sestřihovány tímto komplexem, introny s jinou sekvencí na 3' a 5', archaická skupina

- Rozhraní exon-intron a branch site (opáčko)

- Branch site sekvence uvnitř intronu poblíž 3' rozhraní, obsahuje adenin, který se účastní formování lariátu
- 5' rozhraní začínají konsensus sekvencí <u>GU</u>, 3' rozhraní končí konsensus sekvencí <u>AG</u>

AUTOKATALYTICKÉ INTRONY

- Výskyt hlavně u bakterií a bakteriofágů, v organelových RNA (mRNA, tRNA, rRNA) a introny I i v jádře nižších eukaryot
 - Dvě skupiny intronů liší se strukturou, mechanismem splicingu a kofaktory, za <u>určitých okolností</u> jsou schopné autokatalýzy

- Autokatalýza

- o **Extrémní podmínky** aby mohla autokatalýza jet <u>bez bílkovin</u>, vysoké koncentrace dvojmocných kationtů, zvýšená teplota
- Realita v buňce takové podmínky tam prostě většinou nejsou, takže se přece jenom podílejí bílkoviny a RNA

Introny I. skupiny

- o Kofaktor může to být GTP, GDP (vlastně všechno, co má guanosin), k tomu jednomocný nebo dvojmocný kation (hlavně Mg²+)
- o Fosforibosyltransferáza tak můžeme nazvat RNA, která tvoří aktivní místo, přenáší esterovou vazbu
- Mechanismus
 - Katalytické centrum je uvnitř intronu, při vyštěpování nevzniká lariát (intron je lineární)
 - Intron (samotná RNA) tvoří vazebné místo pro kofaktor (guanosin) <u>guanosin atakuje svojí 3' OH skupinou 5' rozhraní</u> a kovalentně se <u>váže na 5' konec toho intronu</u>
 - 5' konec exonu (jiný, tentokrát interní guanosin) potom <u>atakuje 3' rozhraní</u> a dochází k vyštěpení intronu a spojení exonů

Laboratoř Thomase Czecha

- Tyhle introny objevili, snažili se studovat normální sestřih (sestavili aparát in vitro), všechno bylo normální
- Pak jednou nechali tu misku někde stát a zapomněli na to, a došlo k sestřihu, i když aparát nepřidali
- Zjistili, že guanosin funguje jako kofaktor, co se váže do katalytického místa struktury a funguje jako enzym

- Introny II. skupiny

- Výskyt v pre-mRNA, pre-tRNA, pre-rRNA mitochondrií a chloroplastů některých rostlin a hub
- Mechanismus
 - Sestřih velmi podobný jaderným intronům eukaryot, konzervovaný evoluční krok vývoje snRNA
 - Intron je velmi strukturován, je tam <u>nespárovaný adenosin</u> (funguje podobně, jako adenosin v branch site), který poskytuje <u>volnou 3' OH skupinu</u>
- Často kódují další enzymové aktivity (endonukleázy, reverzní transkriptázy, maturázy)

TRANS-SPLICING

- Cis sestřih klasika, tak to probíhá obvykle, introny jsou vyštěpovány a exony spojovány
- Trans sestřih třeba situace, kdy jsou k sobě <u>připojeny dvě molekuly RNA</u>, z jedné je vystřižen intron, vzniklý exon je 3' připojen k jiné
 - Caenorhabdithis elegans asi 25 % genů, má víc vícecistronních transkriptů, translačnímu aparátu jsou předložena jako monocistronní díky trans-sestřihu
 - Chloroplasty některý řas a některé další

ÚPRAVY tRNA A rRNA

- Mnohem výraznější úpravy než u mRNA, úpravy ale nemají nic společného se splicingem, ale je to sled řady enzymů (endonukle, ligázy..)
 - Dochází ke štěpení z prekurzorů, k úpravě konců, ke spojování různých fragmentů atd, dochází k tomu u všech organismů
 - Buňka obratlovců roste rychle, 80 % rRNA (molekulární továrny rychle tvořící proteiny), 15 % tRNA

- Modifikace nukleotidů

- Řada RNA (i mRNA eukaryot -> další typ modifikace mRNA) je modifikována na jednotlivých nukleotidech
- Typicky metylace na <u>C5 cytosinu</u>, <u>N6 adenosinu</u>, <u>N1 adeonsinu</u> atd

- <u>rRNA</u>

- o U všech organismů je více kopií genomu rRNA, ve všech buňkách se rRNA přepisuje jako <u>dlouhý prekurzor</u>, co je <u>rozštěpen</u>
- o Pre-rRNA (45S)
 - Společný prekurzor pro 18S, 5.8S a 28S rRNA, 5S rRNA je syntetizována jinde a jinak (RNA Pol III u eukaryot
 - Tandemová repetice 18S-5.8S-28S-mezerník (není to intron)-18S-5.8S-28S a tak dále
 - 5' vedoucí sekvence 16S-mezerník (často tRNA)-23S-5S 3' koncová sekvence
 - Mezerníky (ITS) nejsou to introny, jednotlivé vlastní rRNA se liší v jejich délce, dá se to použít k rozlišení taxonů
- Metylace a pseudouridinylace
 - Metylace na <u>2' OH ribózy</u> a <u>rotace uridinu</u> tak, že je na ribózu vázán přes C5, v organismech v různém množství
 - Chyby mají vliv na přesnost ribozomu, asociaci s proteiny, tvorbu podjednotek a exportu z jádra
- o Sestřih z polycistronního primárního transkriptu, účast řady snoRNA, RNAsy P, endo/exonukleáz atd

- trna

- o Malé molekuly (74-95 bp typicky), může docházet k vystřižení intronů (když jsou přítomny), modifikace mnoha nukleotidů
 - Jsou vždy přepisovány jako větší úsek a následně jsou dotvořeny, podílí se komplikovaný enzymový systém
- o RNAzy
 - Specifické endonukleázy, rozpoznávají 3' a 5' konec, funkční katalytickou složkou je RNA, archea je mají trochu jiné
 - RNAza P odštěpuje 5' konec z pre-tRNA, účastní se maturace tRNA, katalytický ribonukleoprotein
 - RNAza Z rozpoznává 3' konec tím, že v prekurzoru <u>není spárován</u>
- 3'-nukleotidyl transferáza
 - Syntetizuje <u>invariantní CCA konec 3' tRNA</u>, mění se tak, že nabízí nukleotidům párování s AK zbytky tak, že se dá CCA
 - Po každém připojení se změní konformace enzymu (bcs se mění substrát) a odkryje se dalšíjmísto pro párování
 - Úsek syntetizuje <u>bez předlohy</u> v genomu

AUTOKARALYTICKÉ RNA VIROIDŮ A VIRUSOIDŮ

- Malé cirkulární RNA, kruh tvoří nepřesně spárovanou strukturu, můžeme je nalézt zejména u virů/virusoidů rostlin

- Hammerhead

- Autokatalytický ribozym (RNA enzym), tvoří ho tři vlásenkovité struktury, umožňuje štěpení řetězce ze struktury po replikaci
 - Nejmenší autokatalytické RNA, které existují
- Valivá kružnice mechanismus replikace těchto RNA, vznikají svázané kroužky, které hammerhead <u>rozštípe</u>

Významné pro výzkum

- O Jak připravit RNA/DNA, které mají enzymovou funkci, dělali se pokusy o izolaci autokatalytické RNA z lidského genomu atd
- o CPEB3 ribozym v intronu tohoto genu (ten reguluje polyadenylaci mRNA), podobá se ribozymům viru hepatitidy D
 - Je součástí savčí zakonzervované sekvence, takže je možné, že hepatitida D povstala z lidského transkriptomu

EDITACE RNA

- Proces, kde vzniká **sekvence RNA, která neodpovídá DNA genu**, ze kterého pochází došlo ke změně jednotlivých nukleotidů
 - Některé mechanismy editace RNA fungují i v lidských buňkách

SUBSTITUCE

Dochází k záměně nukleotidu oproti původní sekvenci, při záměně RNA už nedochází k opravě

- Deaminace cytosinu

- O Dojde k záměně cytosinu za **uracil**, když k tomu dojde v kódující oblasti, vzniká <u>jiný triplet</u>
- o Apolipoprotein B první objevená, deaminací C vzniká STOP kodon (CAA -> UAA), vzniká zkrácený protein ve střevním epitelu
- APOBEC (alipoprotein B editace C)
 - Komplex proteinů, které na mRNA rozpoznají nějakou sekvenci, navážou se na ni a <u>deaminují konkrétní cytosin</u>
 - Umí deaminovat i <u>DNA</u>, ale nedeaminují tu chromozomální, tři hlavní skupiny: **APOBEC 1, APOBEC 2**
 - **APOBEC 3** hraje roli ve <u>virové imunitní odpovědi</u> buňky deaminací jejich ssDNA (inaktivace viru) a v boji proti retrotranspozonům, když v tomto systému dojde k chybě, je to průser

Deaminace adenosinu

- Vzniká hypoxanthin nebo inosin, který má jiné párování, dochází ke změně tripletu, hrozí vznik STOP kodonu/záměna AK
- ADAR (adenosin deaminázy RNA)
 - V lidském genomu tři typy:
 - ADAR1, ADAR2 deaminují na specifických řetězcích, kde RNA tvoří intramolekulární řetězce
 - ADAR3 podobný APOBEC 3, taky boj proti retrotranspozonům a virům
 - Obecně deaminují nesprávné adenosiny ve dvouřetězcových úsecích, kde páruje intron-exon sekvence

DELECE, INZERCE

- Editaci zařizuje specifická guide RNA (gRNA), nejčastěji dochází k enzymatickému inzerci/deleci U (endonukle, terminaluridyltransfe atd)
- Probíhá třeba v kinetoplastu prvoků, mtch strunatců a chloroplastech vyšších rostlin
 - Trypanosomy, Leishmanie v kinetoplastu se syntetizují guide RNA, na jejich základě je v tzv editozomu opravována a měněna mRNA, která se páruje ve své specifické gRNA

GENETICKÝ KÓD

- Pravidlo pro převod posloupnosti nukleotidů do posloupnosti AK
- 1. TRIPLETOVÝ 4 typy bází (nukleotidů), 20 hlavních AK, 43 kombinací nukleotidů (64), 3 nukleotidy kódují 1 AK
 - o Kodón trojice nukleotidů v mRNA, kóduje 1 AK, antikodon komplementární trojice nukleotidů v tRNA, nese AK
- 2. NEPŘEKRÝVAJÍCÍ SE trojice nukleotidů jdou za sebou a čtou se odděleně, skončí jedna a začne druhá (úvahové důkazy)
- 3. NEPŘERUŠOVANÝ jednotlivé triplety jsou čteny jeden za druhým, nejsou mezi nimi žádné mezery
- 4. DEGENEROVANÝ jedna AK může být determinována víc než jedním kodónem (64 trojic, 20 AK), methionin 1, tryptofan 1
 - O Určující je hlavně **druhý** a potom první kodon, třetí variabilní
 - o Izoakceptorové tRNA tRNA nesoucí stejnou AK a rozeznávající různé kodony (můžou/nemusí se lišit antikodonem)
- 5. USPOŘÁDANÝ chemicky podobné aminokyseliny mají obvykle na 2. místě kodonu stejné nukleotidy
 - Zásadité 2. A/G, kyselé 2. A, polární 2. G/C/A, nepolární 2. U/C
- 6. UNIVERZÁLNÍ tenhle triplet odpovídá za tuhle AK platí téměř pro všechny organismy, změny jsou zakázány
 - Frozen accident theory (Crick)
 - Vývoj translace se musel zastavit v určitém období, protože další vývoj by vedl k poškození organismu (v období, kdy
 začaly být důležité proteiny ty by byly poškozeny)
 - DNA se nemůže dál vyvíjet, jinak by všechno zkolabovalo -> není to pravda
 - o Odchylky chloroplastový a mitochondrální genom se docela vyvíjí, většinou zjednodušování, je to velmi pomalý proces

Start kodon

- Všechny nascentní polypeptidy začínají N-formylmetioninem (prokaryota) nebo methioninem (eukaryota)
- Iniciační triplet je v naprosté většině kodon AUG, výjimečně kodon GUG (u prokaryot, uvnitř polypeptidu kóduje valin)

Stop kodony

- Terminační triplety, je zde ukončena syntéza, jsou tři: UAA (ochre), UAG (amber, pyrolysin), UGA (opal, selenocystein)
- Selenocystein (UGA)
 - Příslušná tRNA je nabíjena serinem (seryl-aminoacyl-tRNA-syntetasa), ten je pak modifikován selenem
 - NEMÁ VLASTNÍ AMINOACYL-tRNA-SYNTETAZU
 - Selenocystein-tRNA ve specifických případech rozpoznává UGA, zařizuje vložení selenocysteinu do polypeptidu
 - Tehdy, když se ve směru 3' od STOP kodonu (u eukaryot ve 3' UTR) vyskytuje sekundární struktura selenocystein insertion
 - Tato struktura je rozpoznána <u>elongačním faktorem</u>, který přenáší selenocysteinyl-tRNA do ribosomu a umožní <u>překonat stop kodon</u>, jinak by translace skončila
- Pyrrolysin (UAG)
 - Pyrrolysyl-aminoacyl-tRNA syntetasa u některých archeí, zařazuje pyrolysin kotranslačně

ROZLUŠTĚNÍ GENETICKÉHO KÓDU (částečně převzato z genetiky)

Byla to velká týmová práce, laboratoře spolu komunikovaly a spolupracovaly

Nierenberg (<u>tripletový</u>, <u>50 kodonů</u>)

- Nasyntetizovali umělé RNA, každé tvořené jen z jednoto typu nukleotidů (poly-U, A, C) homopolymery
- o Měli bakteriální polynuklidfosforylázu, co umí nasyntetizovat RNA z nukleosidtrifosfátů, a bezbuněčné systémy se vším potřebným
 - Rozluštění prvních tří kodónů (z homopolymerů) UUU, AAA, CCC
- Pak heteropolymery vždy třeba dva, věděli, v jakém poměru jsou báze ve směsi (1A:5C), zařazení nevěděli
 - Z toho vypočítali pravděpodobnost zařazení kombinací složení tripletů pro AK, ale ne pořadí nukleotidů
- Uměli nasyntetizovat triplety ribonukleotidů, tRNA se navázala, zjistili pořadí bází v rozluštění 50 kodonů

Khorana (<u>rozluštění dalších 11</u> -> <u>61 kodonů</u>)

- Syntéza dlouhých RNA složených z opakujících se krátkých sekvencí, polypeptidy složené jen z určitých AK
- O Zkoumal polynukleotidové sekvence a porovnával shody, jaké AK se opakovaly 61 kodónů

Brenner (stop kodony)

- o 3 volná místa, nonsense terminační kodony UAA, UAG UGA, přišel s tím, že to jsou signály pro zastavení syntézy
- Pracoval s <u>mutantními kmeny bakteriofága</u>
 - Mutanti se lišili složením proteinového pláště, různě dlouhé proteiny předčasné ukončení sekvence?
 - Porovnal sekvence pro syntézu proteinu jaká AK by měla následovat a jaké kodony je kódují, všiml si, že jednou změnou jednoho písmenka může dojít ke vzniku stop kodonu a sekvence se zastaví

TRANSLACE

- Překlad genetické informace z mRNA do polypeptidového řetězce, probíhá ve směru 5'->3'
 - Iniciace sestavení iniciačního komplexu z mRNA, obou podjednotek ribozomu, iniciační tRNA, relativně pomalá fáze
 - Elongace prodlužování polypeptidu, nejméně regulovaní fáze (míň možností regulace u eukaryot), nejrychlejší fáze
 - o **Terminace** disociace ribozomu, mRNA a polypeptidu
- Vznik peptidové vazby je důležitý konec tRNA v P místě, tRNA zodpovědná za syntézu peptidové vazby, ribozom jen přiblíží substráty
- Energetika
 - Eukaryota energie se spotřebovává hlavně při skenování RNA helikázou, prokaryota 1ATP na nabití tRNA, 1GTP faktor Tu

ZÁKLADNÍ TRANSLAČNÍ APARÁT

- Ribozomální část zahrnuje mRNA, tRNA a ribozomy
- Neribozomální část aminoacyl-tRNA-syntetázy, řada dalších faktorů (iniciační, elongační, terminační) a proteinů, co nabíjí tRNA

STRUKTURA A FUNKCE tRNA

- Adaptor umožňující a určující přesné přiřazení určité AK ke tripletu bází, má i funkce spojené s boji proti mutacemi
- Primární struktura délka 74-95 bp, číslování 5'->3', na 3' konci ukončeny sekvencí CCA3'OH, velké množství modifikací a minoritních bází
- Sekundární struktura
 - o Struktura jetelového listu tvořeného 4+1 raménky všechny kromě akceptorového ramene jsou vlásenky ze stonku a smyčky
 - Variabilita v délce tRNA je způsobena variabilitou v délkách D ramene a variabilní smyčky
 - o Akceptorové rameno obsahuje 5' i 3' konec, v nabitém stavu <u>nese aminokyselinu</u> na 3' konci
 - D-rameno (dihydrouridinové, D smyčka) obsahuje invariantní (neměnící se) bázi dihydrouridin
 - Antikodonové rameno nese antikodonový triplet, je ve středu antikodonové smyčky, obecně nejvíc modifikována
 - Nukleotid 34 nejčastěji modifikován, první nukleotid antikodonu, třetí kodonu
 - ΤψC rameno (T smyčka) obsahuje invariantní triplet T-pseudouridin(ψ)-C
 - Variabilní smyčka různá délka

Terciální struktura (L struktura)

- Akceptorové a pseudouridinové rameno tvoří dvoušroubovici a jednu stranu písmena L, antikodonové rameno a D rameno spolu tvoří taky dvoušroubovici a druhou stranu písmena L
 - W-C ale spíš non-W-C párování, struktura je taky silně stabilizována vrstvením bází (stacking)
- tRNA je taky často posttranskripčně modifikována, nejčastěji na pseudouridinu a dihydrouridinu

Wobbling

- o Kolísání párování na 1. antikodonu a 3.kodonu, umožňuje to snížit počet nezbytných tRNA molekul v buňce
 - Reálně má ale buňka i tak víc tRNA pro častěji se vyskytující kodony
 - Nukleotid 34 je modifikován, zde totiž dochází k tomu kolísání!! a k evoluci genetického kódu

Nukleot Rozpoznání tRNA

- tRNA musí být rozpoznána celým aparátem v ribozomální části, dvě podmínky, které musí splňovat (společné pro všechny tRNA)
- Podobné rysy aby byly rozpoznány prvním místem na ribozomu, elongačními a iniciačními faktory
- Specifické musí být specifické, aby byly rozpoznány různými aminoacyl-tRNA-syntetázami a navázaly na sebe různé AK

obsazení 1. pozice antikodónu	možné párování na 3. pozici antokodón
G	U nebo C
U	A nebo G
I (inosin)	U, C, A
5-metoxyuridin nebo uridin-5-oxyoctová kyselina	A, G, U
RNAO OH uridine (U)	RNAO OH pseudouridine (Y)

5° GCGGAUUUAGCUC<mark>AGDDGGGA</mark>GAGCGCCAGACUGAAYAYCUGGAGGUCCUGU<mark>GTYCGAUC</mark>CACAGAAUUCGCACCA 3°

AMINOACYL-tRNA-SYNTETÁZY

- Enzymy, které nabíjí tRNA aminokyselinami za spotřeby ATP, jsou zodpovědné za přesnost překladu a stabilitu genetického kódu
 - Jsou to strukturně i sekvenčně <u>heterogenní skupina</u>, jsou to mono, di i tetramery velké 40-110 kD
 - Dají se dělit do dvou skupin podle uspořádání domén a způsobu interakce s tRNA
- Tři vazebná místa: pro ATP, pro AK, pro tRNA
 - o Aminokyselina se může napojit na **3' i na 2' OH skupinu** ribózy koncového adenylu příslušné tRNA
 - Jedna syntetáza rozeznává jedinou AK, ale celou řadu tRNA (izoakceptorových)

- Mechanismus (neribozomální fáze translace)

Aktivace AK – rozpoznání správné AK, reakce AK + ATP -> aminoacyl-adenylát (aminoacyl-AMP) + PP

- Aktivace tRNA rozpoznání vhodné tRNA, reakce <u>aminoacyl-AMP + tRNA -> aminoacyl-tRNA + AMP</u>
 - Rozpoznání tRNA je usnadněno změnou konformace, energie vazby mezi AK a AMP je využita ke vzniku aminoacyl-tRNA
 - Při rozpoznání se syntetázy se orientují hlavně podle akceptorového konce a antikodonu

Proofreading aktivita

- o Vazebná místa jsou specifická, ale i tak může dojít k chybě, mají tedy postsyntetickou opravnou aktivitu
 - Je možná ve dvou situacích po syntéze aminoacetyl-AMP nebo po syntéze aminoacyl-tRNA
 - Každá chyba, kterou aminoacyl-tRNA-syntetáza udělá vede k poškození polypeptidu
- o Špatná tRNA navázáním špatné tRNA nedojde ke změně konformace a je tam větší časové okno na její disociaci
- Poškození tRNA dojde buď k degradaci enzymem, nebo je enzymem tRNA-nukleotidyl-transferázou dosyntetizováno poškození
- Chybovost určuje velikost proteinu, aby byly proteiny větší, musí se chybovost při translaci zmenšit
- **Přesnost** určuje maximální <u>přesnost translace</u>

RIBOZOM

- Tvořeny z rRNA a ribozomálních proteinů, jsou složeny z malé a velké podjednotky (hodnota sedimentace není součet)
 - o rRNA je tam daleko víc než proteinů, ale počet proteinů narůstá od bakterií, přes archea, k eukaryotům B < A < E
 - Bakteriální jsou menší než eukaryotní, archea víc podobné eukaryotům (byla u nich nalezena 5.8 S rRNA)
- Podjednotky ribozomu
 - Prokaroytní ribozom 70S
 - 30S podjednotka 16S rRNA, 21 proteinů, 50S podjednotka 5S, 23S rRNA, 31 proteinů
 - Eukaryotní ribozom 80S
 - 40S podjednotka 18S rRNA, 33 proteinů, 60S podjednotka 5S, 28S, 5.8S rRNA, 46 proteinů
- Tři stavy celé nedisociované ribozomy, translatující ribozomy v komplexech a ribozomy disociované na podjednotky

Hlavní úpravy rRNA

- Oblasti úprav jsou rozpoznávány <u>komplementaritou ke snoRNA</u> (malé jadérkové), co se vyskytují v ribonukleové formě (snoRNP)
- Metylace (hlavně 2' OH a nukleotidů)
 - Disceratis congenita jedna z forem je způsobena mutací v proteinu, co interaguje s snRNA, problém s modifikací rRNA
 - **Zvýšený výskyt nádorů** mutace tohoto typu dále vedou ke <u>snížení schopnosti ribozomů</u> překládat mRNA pro proteiny, které hlavní roli při <u>apoptóze a proliferaci</u>
- o Pseudouridinilace (CD box, H/ACA box)
 - V sekundární struktuře dochází k dokonalému párování s výjimkou uridinu, ten je pak izomerován na pseudouridin
 - Účastní se dyskerin, který se jinak podílí i na modifikaci telomerázové RNA

Vazebná místa na ribozomu

- A místo (aminoacylové) oblast vstupu aminoacly-tRNA, vazba tRNA na antikodon
- o P místo (peptidylové) oblast vazby peptidyl-tRNA
- E místo (výstupní, exit) místo, odkud je vykopnuta vybitá tRNA
- o Peptidyltransferázová doména katalytické místo peptidyltransferázy (syntéza peptidové vazby)

- o A a P místo jsou tvořeny <u>malou a velkou podjednotkou</u>, E místo a peptidyltranferázová doména <u>velkou podjednotkou</u>
- o Pohyb ribozomů po mRNA provází rychlá vazba nabitých a uvolnění vybitých tRNA spolu s cyklickým uvolňováním elong faktorů
 - mRNA je při syntéze asociován s malou podjednotkou, ribozom kryje asi 30 bp (10 kodonů)
- Kanál, kudy prochází nově vtvořený polypeptid, je tvořen tak, aby polypeptid procházel rovně, pak se stáčí do tvaru

BAKTERIÁLNÍ TRANSLACE

- Ribozomy jsou v buňce volné i vázané jako volné podjednotky (30S + 50S) nebo komplety (70S), mezi těmito stavy existuje rovnováha
 - o 5 % genomu bakterií je vyhrazeno pro translační aparát, 90 % energie metabolismu je využito na proteosyntézu
 - o Většina antibiotik je <u>zacíleno na translaci</u>, mimo jiné je totiž taky dost jiná než eukaryotní, takže na ni nepůsobí

INICIACE

- Zahajování vždy probíhá přes malou podjednotku (společné pro všechny), zároveň je zde možné regulovat celou proteosyntézu
- Iniciační komplex 30S podjednotka, iniciační faktory (3 hlavní faktory:)
 - o IF1 brání vstupu iniciační tRNA do A místa, IF2 GTPáza, interaguje s fMet-tRNA, IF1 a 30S podjednotkou (malou)

- o IF3 umožňuje disociovat ribozom na dvě podjednotky (pozmění konformaci malé), translace je totiž zahajována jen malou
- o Iniciátor N-formyl-methionyl-tRNA (fMet-tRNA) tvořen formylací methionyl-tRNA za použití formyl-tetrahydrofolátu (kofaktor)
 - Rozeznává kodony AUG (někdy GUG, UUG) na Shine-Delgarno oblast, funguje to následovně:
 - Na základě komplementárního párování mezi určitým úsekem mRNA a části 3' konce 16S rRNA na malé podjednotce

Posloupnost jevů

- IF3 a 30S vážou se na <u>mRNA</u> na takzvanou <u>RBS (</u>ribosome binding site), její součástí je <u>Shine-Delgarno sekvence</u>
- o **IF1 se váže** váže se na celý komplex a <u>stabilizuje ho</u>
- O Vzniká ternární komplex (IF2, GTP, fMet-tRNA)
 - Iniciační tRNA jak už je výše, kóduje N-formylmethionin, je jiná než normální, je rozpoznávána iniciačními faktory, nasedá do P místa
 - IF2 zajišťuj funkci několika dalších faktorů, je poměrně komplikovaný
- Navázání velké podjednotky (50S)
 - Rozpoznává N-formylmehtionyl-tRNA v P místě, váže se za hydrolýzy GTP na GDP a P, uvolní se iniciační faktory
 - Díky uvolnění faktorů se uvolní i A místo, které do teď bránil faktor IF1

Shine-Delgarno sekvence

 Není u eukaryot, jen u bakterií a archeí, usnadňuje translaci polycistronních transkriptů, takže ribozom nemusí skenovat RNA a hledat sekvenci, co má být přepisovaná, jen podle iniciačního kodonu

ELONGACE

- Elongační faktor EF-Tu
 - o Přináší do A místa nabité aminoacyl-tRNA, co se na něj vážou pomocí GTP a dalších proteinů (vzniká další ternární komplex)
 - Po správném zařazení AK dojde k <u>hydrolýze GTP</u> na GDP a P, mění se konformace Tu a už <u>nemůže vázat</u> aminoacyl-tRNA
 - Pak se <u>uvolňuje z A místa</u>
 - o Jeho množství v buňce v podstatě odpovídá množství tRNA v buňce, je to jedna z nejvíc <u>abundantních bílkovin v buňce</u>

Syntéza peptidové vazby

- Aminoskupina AK atakuje C-konec peptidu na P místě, vzniká peptidová vazba
- prenos peptidu moderuje adenin, který je nejblíž z 23S rRNA, která tvoří v ribozomu aktivní místo

Elongační faktor EF-G

Naváže se s vázaným GTP, pomocí jeho <u>hydrolýzy</u> zprostředkuje translokaci a přenos peptidyl-tRNA z A místa na P místo

- Faktor Ts

- Umožňuje vazbu EF-Tu a GTP, díky němu tedy dochází k jeho recyklaci (recyklaci GDP na GTP)
- Je ho v buňce o dost míň než EF-Tu, odpovídá přibližně množství ribozomů

Střídání EF na P místě

- Dochází k <u>cyklickému střídání</u> fází, protože ribozom nemůže najednou vázat EF-G a EF-Tu
- Buď dochází ke vnášení nové aminokyseliny do peptidového zbytku, anebo k translokaci ribozomu po mRNA
- Rychlost a síla párování kodonu a antikodonu určuje, jestli dojde k <u>uvolnění EF-Tu a hydrolýze GTP</u>, nebo jestli se uvolní <u>celý komplex</u>

TERMINACE

- STOP kodon – nemá tRNA na, ale má <u>release faktory</u>, které způsobí <u>uvolnění ribozomu za hydrolýzy GTP</u>

- Release faktory

- o **RF1** rozpoznává UAA a UAG, **RF2** rozpoznává UAA a UGA, **RF3** váže GTP, při <u>hydrolýze na GDP</u> dojde k rozpadu a hydrolýze
- Pozmění funkci peptidyl-transferázy, takže místo adici aminokyseliny katalyzuje adici vody na peptidyl tRNA
 - Dochází k hydrolýze a <u>uvolnění C-konce</u> z tRNA a následně z ribozomu
- Po uvolnění se ribozom <u>rozpadá na podjednotky</u>

TRANSLACE EUKARYOT

- Velmi podobné prokaryotům s výjimkou iniciace, energetická náročnost se pohybuje kolem 5-10 %
- Eukaryotní mRNA je specifická a naprosto rozdílná od prokaryotních
 - O PolyA, methylová čepička čepičku je rozpoznávána speciálními iniciační faktory, umí přitáhnou celý iniciační komplex
 - UTR na 3' a 5' často regulační funkce, umožňují vazbu mnoha bílkovin, ovlivnění <u>efektivity translace</u> nebo <u>stability mRNA</u>

INICIACE

- Preiniciační komplex
 - Malá ribozomální podjednotka (40S) a všechny různé faktory, vážou se na 5' čepičku
 - Faktor EIF4 rozpoznává 5' čepičku, komplex se pak musí dostat přes UTR, takže dochází ke skenování
 - Při skenování jede malá podjednotka po mRNA (neváže se!) a může tam docházet k regulaci genové exprese
 - o Rozpoznání AUG rozpozná ho ten komplex, AUG je vždy v nějakém kontextu
 - Kozak sequence sekvence Kozakové, zvyšuje pravděpodobnost, že bude AUG rozpoznán
- Interakce konců
 - o Na polyA se váže polyA binding protein, který může interagovat s EIF4, a konce se jakoby spojí (uzavřená smyčka)
 - o Pomáhá to <u>zvýšit koncentraci iniciačních faktorů</u> u 5' konce
- <u>Navázání iniciačního komplexu</u> (IF2-GTP, methionyl-tRNA)
- IF5 spojí velkou a malou podjednotku a zahájí se translace

ELONGACE

Funkční analogy elongačních faktorů, EF-1α (EF-Tu), EF-1βγ (Ts), EF-2 (EF-G)

TERMINACE

- Všechny STOP kodony jsou rozpoznávány jen jedním RF: rozpoznává eRF1, interaguje s eRF3 (GTPáza)

TRANSLACE ARCHEA

- Aparát a faktory jsou **spíš eukaryotní**, ale taky mají Shine-Delgarno sekvenci stejně jako **bakterie**

ANTIBIOTIKA

- Některá antibiotika jsou cílena proti všem částem translace, jiná třeba na syntézu buněčné stěny
- Streptomycin
 - o Strukturou aminoglykosid aminocukr spojený O-glykosidickou vazbou, produkuje ho Streptomyces
 - Mechanismus váže se do <u>malé ribozomální podjednotky</u> (30S) a dělá <u>špatné párování kodon-antikodon</u>
 - Působí na přesnost proteosyntézy podobně jako některá jiná aminoglykosidová antibiotika (karamicin, deptamicin)
- <u>Rifampicin</u> blokuje funkci bakteriální <u>RNA Pol</u>
- Puromycin
 - o Používá se hlavně ve vědě a při studiu translace (ne tolik v léčbě), mimikuje <u>CCA konec aminoacyl-tRNA</u>
 - Mechanismus zastaví proteosyntézu tím, že se váže do A místa, přenese na sebe peptidyl a rozpustí celý komplex
 - V buňce tak je spoustu zkrácených peptidylů, které mají na C-konci puromycin, buňce dojde energie na proteosyntézu

CH₃

- Erythromycin
 - o Makrolidové antibiotikum, dobrá prostupnost tkáněmi, produkuje ho Streptomyces
 - o Mechanismus blokuje výstupní kanál pro nově vznikající polypeptid, váže se na velkou podjednotku (50S), zastavuje translaci
- <u>Tetracyklin</u> produkuje ho *Streptomyces*, blokuje <u>A místo</u> v <u>malé podjednotce</u> (30S), brání navázání aminoacyl-tRNA
- Betalaktamová antibiotika (penicilin, ampicilin, cefalosporinová antibiotika) blokují transpeptidázu při syntéze peptidoglykanu
- <u>Trimethoprim</u> blokuje <u>dihydrofurát reduktázu</u> v syntéze <u>tymidinu</u>, blok syntézy prekurzorů replikace

REGULACE GENOVÉ EXPRESE

- Vlastně se tím zabývá celá regulace genové exprese, existuje šíleně moc příkladů, odpovídá na vnější a vnitřní vlivy
 - o Portfolio proteinů v buňce se vlivem různých věcí v čase mění a liší, buňka vyšších eukaryot syntetizuje 10k-20k proteinů
- Možná na všech stupních toku informace a různými způsoby
 - o Primární sekvence NK, transkripce, kontrola RNA, její transport, translace, kontroly aktivity proteinů atd
 - o Interakce různých molekul, hlavně NK-NK nebo NK-protein
- Nejčastěji regulace probíhá na počátku dějů ekonomicky výhodné, buňka nevyhodí energii, nejčastěji INICIACE TRANSKRIPCE
- Rvchlost se liší
 - Rychlá odpověď když už mám produkt, který chci regulovat (rychlá změna konformace proteinu tím, že na něj něco navážu)
 - Pomalá odpověď při <u>transkripci</u>, hlavně u eukaryot s dlouhými geny, transkripce trvá dlouho (až 24 hodin)

BAKTERIE/ARCHEA

- o Jiná regulace, **odpadá** regulace na úrovni <u>transportu</u> (nemají jádro), <u>posttranskripčních úprav</u> (mRNA skoro hned translatována)
- o Některé typy regulací mohou **přibývat** ty, které využívají <u>spřažení translace/transkripce</u> nebo <u>polycistronních transkriptů</u>

REGULACE NA ÚROVNI TRANSKRIPCE

PROTEINOVÉ MOTIVY UMOŽŇUJÍCÍ INTERAKCI S DNA

- Bílkoviny jsou schopny se vázat na DNA různě silně/slabě, interakce zahrnují iontové, vodíkové a hydrofobní interakce
- Velký žlábek DNA většina TF se váže sem, poskytuje hodně variant pro rozpoznání, umožňuje vázat celou škálu bílkovin

- Helix-turn-helix

- o <u>C-terminální helix</u> (rozpoznávací) se váže do velkého žlábku a je spojen <u>krátkou sekvencí</u> s <u>druhým helixem</u>
 - Fixní úhel drží ho mezi sebou helixy, může být ovlivněn dalšími molekulami, které se vážou na TF
 - Fungují jako dimery velmi časté, napomáhá k zesílení vazby do žlábku DNA
- Nejčastěji represory u bakterií a archeí (u eukaryot spíš ne)
 - Příklady: <u>Trp represor</u>, <u>lambda represor</u>, <u>homeodoména</u>

Zinc fingers

- Typicky eukaryotní transkripční faktor, atom Zn je vázán mezi dvěma cysteiny a dvěma histidiny
- Dělí se do několika skupin
 - α-helix a β-list jejich struktura je fixována koordinačním zinkem, snadno tvoří řetězce podobných domén, vzniká tak protein s vysokou afinitou k RNA, příklad je TFIIIA
 - Dva α-helixy stabilizuje je zinek, struktura připomíná turn-helix-turn, taky tvoří dimery a váže se do velkého žlábku
 - Coiled-coil dimery stabilizované zinkem

Leucinový zip

- Typicky eukaryotní faktor, název podle struktury (ne funkce), umožňuje vazbu na DNA a dimerizaci (homo i heterodimery)
- Struktura
 - Zip je tvořen <u>dvěma α-helixy</u>, kde je <u>každá 7 AK leucin</u>, který je střídán <u>hydrofobními AK</u>
 - V dimerové struktuře interagují právě ty **hydrofobní strany**, které tvoří <u>coiled-coik</u>
 - Vazebná doména silně bazické přilehlé části proteinu, bazická proto, aby dobře interagovala s DNA
- Příklady: faktory jun a fos

Helix-loop-helix

- o Typicky eukaryotní faktor, tvoří homodimery i heterodimery, jako monomer je totiž vazba jen velmi slabá
- o Struktura
 - Sestává opět ze dvou α-helixů, které jsou odděleny delší smyčkou, dimerizaci opět zajišťují hydrofobní AK
 - Vazebná doména přilehlá <u>bazická</u> doména, zajišťuje <u>vazbu na DNA</u>, když je neaktivní, brání dimerizaci a vazbě na DNA

LAC OPERON

- První složitější regulační systém, který byl objeven, popsán u bakteriálního operonu e-coli
- 3 geny metabolismu laktózy
 - o Permeáza β-galaktosidů (LacY) propouštění laktózy přes PM, acetyltransferáza (LacA)
 - o β-galaktosidáza (LacZ) štěpí laktózu, účastní se utilizace laktózy pro energetické účely, když není nic lepšího (glukóza)
- Operon bude ve větší míře transkribován jen když má buňka přístup k laktóze a nemá přístup ke glukóze
 - o E-coli může růst na různých cukrech, ale preferuje glukózu, ostatní využívá jen když nemá glukózu
 - Lac operon e-coli má víc regulátorů Lac represorem (negativní regulace) a CAP aktivátorem (pozitivní regulace)

Laktóza ANO, glukóza NE

- Do buňky přichází laktóza a je izomerována na β-allolaktózu, ta se váže na represor Lac operonu
 - Represor se <u>odpojí od operátoru</u>, nasedá <u>RNA-poly</u> a dochází k transkripci, buňka štěpí přicházející laktózu
- o Stoupá hladina enzymů Lac operonu, laktóza je zpracována, allolaktóza dojde, pouští represor, ten jde na operátor
- o CAP protein (aktivátor) musí být navázán, pokud má buňka nedostatek Glc, roste koncentrace cAMP (cyklické AMP)
 - cAMP se jako koaktivátor naváže na CAP protein a umožňuje jeho vazbu na Lac operon, transkripce probíhá

Laktóza ANO, glukóza ANO

- o Represor je odstraněn, ale není afinita pro aktivátor, polymeráza s nízkou afinitou trochu transkribuje, trošku mRNA
- Ta trocha mRNA je potřeba, protože geny pro <u>permeázu</u> a <u>izomerázu</u> se musí pořád trochu transkribovat, jinak by laktóza nemohla do buňky ani kdyby s ní buňka přišla do kontaktu

Laktóza NE, glukóza ANO

Represor je navázán, pro aktivátor není dostatečná afinita, nedochází k transkripci

REGULACE SYNTÉZY FLAGELLINU U SALMONELLA

- Bakteriální typ regulace, který funguje jako on a off, geny pro dva typy flagellinu
 - o H2 protein produkuje se jako majoritní protein, H1 protein minoritní, většinu čase se neexprimuje (represe)

- Flagellin

- Hlavní antigenní determinanta, rozeznává ho imunita, populaci se hodí, když čas od času buňky změní kabát (H2 -> H1)
- Rekombinace šance 10⁻⁴, otočí se promotor, nedochází k syntéze H2 ani represoru, místo toho se začne <u>syntetizovat H1</u>, úplný únik imunitní odpovědi

ATENUACE (TRY OPERON)

- Zeslabení exprese, typ bakteriální regulace, využívá se toho, že je u bakterií spřažena transkripce a translace
 - o Výskyt jen operonů, kde má přítomnost produktu genu operonu vliv na rychlost translace (třeba geny pro časté AK)

- Mechanismus

- Máme čtecí rámec, kde jsou <u>dva kodony pro Trp</u> a <u>čtyři úseky</u>, které spolu mohou <u>párovat</u>
 - Rychlost translace určuje, jak rychle poběží transkripce -> buňka sleduje, kolik je tryptofanyl-tRNA (translace)
- o Rychlý ribozom
 - Znamená to, že Trp je hodně, párování v oblasti 3 a 4, tím nám vzniká rho-nezávislý terminátor
 - Dochází tedy k ukončení transkripce

Pomalý ribozom

- Znamená to, že Trp je málo, párování v oblasti 2 a 3 vzniká vyvlastňovací vlásenka, co brání párování 3 a 4
- Nedochází k sestavení terminátoru a operon je celý přepsán

DALŠÍ

- Aktivátory a represory u eukaryot
 - o Mohou fungovat i z dostatečné vzdálenosti, jsou rozpoznávány různými TF, které interagují s mediátorem atd
 - V podstatě odkázal na přednášku o transkripci

Alternativní sestřih

- o Pořadí exonů musí být úplně zachováno, ale sestřih sám může probíhat alternativně, probíhá lépe při vazbě nějakého <u>elementu</u>
- D Alternativní polyadenylace, alternativní začátek transkripce, ovlivňují to různě rozmístěné enhancery a silencery splicingu

EPIGENETICKÁ REGULACE

- Chromatin má určitou strukturu, záleží na míře heterochromatinizace/euchromatinizace, mohou být modifikovány nukleotidy/histony
- Methylace DNA většinou spojena s inaktivací genů
 - o Methylace cytosinu často v CpG ostrůvkách (cytosin-fosfát-guanosin); typické v promotorech, methylace způsobí inaktivaci
 - Udržovací methylace methylace DNA dceřinného řetězce podle mateřského, který už methylovaný je

Acetylace histonů

Většinou spojena s aktivací histonů a utažení DNA, třeba acetylace H3 na Lys9 – aktivace histonu

GENETICKÝ IMPRINTING

- Změna stavu genu beze změny jeho nukleotidové sekvence, trvá to jednu generaci, velmi časté a běžné, může to být typ polymorfismů
 - Obvykle spojeno s methylací DNA, případně s modifikacemi histonů a s remodelací chromatinu
- V zárodečné buněčné linii rodiče se ustanoví imprint (značka), která řekne, jestli se gen exprimuje nebo ne
 - Značka je předána do embrya, imprinty se dědí v embryu, některé geny umlčené od tatínka, některé od maminky
 - o V zárodečných buňkách potomka se imprinty smažou a tvoří se nové, některé geny mohou uniknout reprogramování
- Imprintovaná alela pochází od jednoho z rodičů, je umlčena, přednostní exprese alely pocházejícího od druhého rodiče
 - Maternální imprinting umlčená je od matky, exprimuje se alela od otce, maternální imprinting je častější
 - Paternální imprinting umlčená je alela od otce, exprimuje se alela pocházející od matky

Patologie

- o Uniparentální dizomie jsou přítomny pouze chromozomy od jednoho rodiče (2 alely od maminky, 0 od tatínka)
 - V gametách maminky dojde k nondisjunkci, v gametě od maminky 2 alely a abnormální prázdná gameta
 - · Gameta normální a abnormální, dojde k duplikaci, nebo normální gamety, ztráta chromozomu, duplikace aj
- Geny na 15q11-13
 - Skupina genů, dojde k chybě (delece, poškození atd) a projeví se jeden ze dvou syndromů
 - <u>Prader-Willi syndrom</u> týká se oblasti otcovského původu, obezita, malý vzrůst, mentální retardace, maternálně je imprintován gen pro snoRNA
 - Angelman syndrom týká se oblasti od matky, těžká retardace, záchvaty smíchu, motorické problémy, paternálně je imprintován pro specifickou ubiquitin-ligázu

DETERMINACE POHLAVÍ U DROSOPHILY

- Final boss regulací, kombo a interakce všech možných mechanismů
 - o Regulace na úrovni <u>alternativního sestřihu</u>, na úrovni <u>alternativní formy bílkovin</u>, tvorby <u>alternativních promotorů</u> atd
- XX/XY Drosophila Melanogaster pohlaví určuje poměr X : A, víc A než X je sameček, stejně A jako X je samička
- Sxl gen (sex-lethal gene)
 - o Když je transkribován hned na začátku <u>embryonálního vývoje</u>, jeho transkripce pak běží po <u>celou dobu života</u> a ve <u>všech tkáních</u>
 - Embryonální sex-lethal
 - Může být přepsán v krátkém časovém okně na počátku embryonálního vývoje, hrají roli nějaké maternální inhibitory
 - Začne se produkovat tehdy, když převáží signál specifických transkripčních faktorů z chromozomu X
 - Somatický sex-lethal
 - Interaguje s embryonálním, pokud je přítomen (ten embryonální), reguluje sestřih mRNA <u>Tra genu</u>
 - eSxl přítomen inhibuje sestřih exonu 3, dochází k sestřihu mezi 2 a 4, proteiny s exony 2 a 4 -> samička
 - **eSxl není** produkuje se mRNA, sestřih mezi exony 2 a 3 i mezi 3 a 4, protein i s exonem 3, v něm je STOP kodon, nedochází k vytváření funkčního protein -> <u>sameček</u>
- Tra gen (transformer gene)
 - o Jeho sestřih reguluje somatický sex lethal
 - **sSxl přítomen** přeskočení exonu se STOP kodonem, vzniká <u>funkční protein</u> -> <u>samička</u>
 - sSxl není exon se STOP kodonem není vystřižen, přeloží se a nevznikne funkční protein -> sameček
 - Sám funguje jako sestřihový aktivátor
 - Asociuje s Transformer-2 a hraje roli při alternativním sestřihu pre-mRNA pro double-sex (protein vzniká vždy)
- Double-sex gene
 - o Protein vzniká v obou případech (Tra je i Tra není), ale u každého pohlaví vypadá trochu jinak (liší se C-konec)
 - Sám protein potom řídí transkripci samčích/samičích specifických genů
 - Regulátor exprese, double-sex samičího typu vypíná samčí geny a naopak

- Kompenzace genové dóze
 - Zajišťuje, aby bylo mezi samčím a samičím pohlavím vyrovnané množství transkriptů z chromozomu X, různé mechanismy
 - 0 Člověk – jeden z chromozomů X je u žen umlčen
 - Drosophila regulace produktem genu msl-2 0
 - Sameček gen msl-2 zvyšuje expresi typických genů na X chromozomu, genová dóze taky funguje větší aktivací
 - Samička gen msl-2 nemůže být přítomen, sxl inhibuje translaci genu msl-2

GRADIENTY MATERNÁLNÍ mRNA V OOCYTU DROSOPHILY

- **Oocyt Drosophily**
 - Syncytium s mnoha jádry, obsahuje čtyři klíčové proteiny, jejich mRNA je různě rozprostřená po embryu
 - V každém místě v embryu jiná koncentrace proteinů, vytváří se gradient proteinů a mRNA
- Hutchback a caudal určení předozadní orientace, koncentrace jejich m RNA je po celé délce oocytu zhruba stejná
- Bicoid koncentrace mRNA polarizovaná na jednu stranu, nanos koncentrace mRNA polarizovaná na druhou stranu
 - Tyhle dva proteiny zároveň fungují jako translační inhibitory, bicoid pro caudal, nanos pro hutchback

REGULACE NA ÚROVNI TRANSLACE

REGULACE HOMEOSTÁZY ŽELEZA

- Železo buňka potřebuje, ale jeho vysoká hladina je toxická: reguluje se různě, mimo jiné i na úrovni iniciace translace a stability mRNA
- Cytosolická akonitáza
 - Váže železo (pokud je přítomno), jinak se váže na struktury mRNA, konkrétně na 5'UTR nebo na 3'UTR (pokud je Fe nepřítomno)
 - IRE (iron responsive element) sekvence na mRNA, na kterou se váže cytosolická akonitáza
 - Vazba na 5'UTR taková mRNA se netranslatuje, iniciace translace eukaryot totiž probíhá skenováním od 5' k prvnímu AUG 0
 - Vazba na 3'UTR nachází se tam destabilizační oblast, když se tam akonitáza naváže, stabilizuje ji a mRNA je stabilizována 0
- Ferritin váže na sebe železo
 - Nedostatek Fe ferritin není potřeba, má na <u>5'UTR akonitázu</u> a jeho translace neprobíhá
 - Hodně Fe železo se váže na akonitázu na mRNA, ta se mRNA pouští a translace může probíhat 0
- Transferrin transportuje železo do buňky
 - Nedostatek Fe buňka si musí chytit transferrin se železem, akonitáza se váže na 3'UTR a probíhá translace receptoru transferrinu
 - Hodně Fe železo se váže na akonitázu na mRNA, ta se odpojuje a translace receptoru neprobíhá (mRNA nestabilní, degradace)

REGULACE NA ÚROVNI INTERAKCE RNA-RNA

- Jak ta regulace vypadá
 - Probíhá RNA-RNA, ale za účasti proteinů, nejedná se o dramatickou (silnou) regulaci, ale je tak regulováno až 60 % lidských genů
 - Většinou probíhá vazbou do specifických 3'UTR, některé párují úplně komplementárně, jiné ne
- Hlavní funkce regulace genové exprese a obrana proti parazitické DNA/RNA

miRNA (MIIKRO RNA)

- Dlouhé 21-23 bp, malé nekódující funkční RNA vyskytující se <u>u všech domén</u>, jsou specifické, ale **nepárují vždy komplementárně**

- <u>Funkce</u>
 - Ovlivnění <u>transkripce</u>, ovlivnění <u>translace</u> (hlavně inhibice), <u>degradace RNA</u>, <u>heterochromatinizace</u> DNA v jádře
 - Obrana proti invazivním NK třeba proti transpozonům, nebo třeba i degradace maternální RNA v embryu
- Syntéza, odkud pochází
 - Přes půlku je přepisováno z i<u>ntronových oblastí</u> (kódujících i nekódujících oblastí), někdy v <u>exonech</u> (kódující i nekódující oblasti)
 - Jsou přepisovány jako vlásenky
 - o Komplex Drosha pracuje vlásenky, pak dochází k <u>transportu ven z jádra</u>
 - o Komplex Dicer rozpoznává dsRNA, tedy i tyhle vlásenky, a <u>štěpí je</u> na malé dvouřetězcové RNA (21-23 bp)
 - U rostlin dochází ke štěpení v Diceru už v jádře a krátké dsRNA jsou pak transportovány do cytoplazmy
 - o Komplex RISC RNA induced silencing
 - Vezme ty malé dsRNA, jeden řetězec si <u>nechá pro sebe</u> (k umlčováním konkrétních RNA) a druhý je <u>vyloučen</u>
 - Je schopen fungovat násobně a pomocí aktivních řetězců (co má v sobě) umí ovlivnit víc cílových molekul
- Patologické stavy řada miRNA je s nimi spojena, hrají roli v odpovědi na jejich hypoxii (rakovina, obezita, kardiovaskulární choroby)

siRNA (SMALL INTERFERING RNA)

Dvouvláknové RNA o délce 20-25 RNA, na rozdíl od miRNA s cílenou mRNA perfektně párují

- RNA interference
 - o Proces, kdy siRNA ovlivňuje expresi určitého genu (míru jeho translace), hraje zde roli několik proteinů a komplexů
 - o Komplex Ago (Argonaut) váže na sebe siRNA, která po navázání na mRNA způsobí (za účasti proteinů) její <u>degradaci</u>
 - o Protein GW182
 - Umí na sebe vázat polyA binding protein (PABP) a CCR4-NOT komplex když je aktivní, umí degradovat polyA na mRNA
 - Ztráta polyA konce u eukaryot je signál k <u>odštěpení 5' čepičky</u>, což vede k <u>degradaci mRNA</u>

METODY MOLEKULÁRNÍ BIOLOGIE

- Genom veškeré DNA buňky, primární, sekundární a vyšší struktura, jejich funkce, regulace, interakce s dalšími molekulami atd
- Transkriptom veškeré přepisování RNA organismu, genom a úroveň exprese
- Proteom proteiny organismu, produkty translace (transkriptom, tvorba, modifikace a interakce se složkami metabolitomu)
- Metabolom veškeré <u>nízkomolekulární látky</u>, produkty metabolismu

ELEKTROFORÉZA

Můžeme ji provádět pro NK i bílkoviny, separace látek na základě jejich odlišné pohyblivosti ve stejnosměrném elektrickém poli

ELEKTROFORÉZA NK

- NK se pohybují v agarózovém gelu, do nádoby se vloží dvě elektrody (napětí), pohyb díky zápornému náboji směrem k anodě (+)
 - Provádí se při pH 7,5

Následná vizualizace NK

- Interkelační činidlo jedna možnost, DNA se s ním obarví, je to třeba ethidium bromid, umí se <u>vmezeřit do DNA</u>
- Southern blot
 - Druhá možnost, přenesení na membránu a in situ hybridizace, přidám tam komplementární DNA úsek, co je značený
 - Značený úsek (třeba <u>fluorescenčně</u>) se pak naváže na konkrétní sekvenci nt, kterou hledám
- Northern blot na membránu přenáším a vizualizuju RNA

ELEKTROFORÉZA PROTEINŮ

- V daném pH má každý AK zbytek jiný náboj (problém), AK se pohybují v polyakrylamidovém gelu
- Isoelektrická fokusace
 - Dělení podle náboje, na gelu si vytvořím gradient pH, bílkovina se zastaví v bodě, kde se pH rovná jejímu isoelektrickému bodu 0

Navázání SDS

Dělení podle molekulové hmotnosti, bílkovinám se udělí jednotkový záporný náboj navázáním SDS, pohybují se k anodě (+) SDS (sodium dodecyl sulfate)

- Funguje jako povrchově aktivní činidlo, detergent, hydrofobními částmi se naváže na hydorofobní úseky AK
- Při zahřátí <u>unfolduje protein</u> a pokryje jeho náboj v takovém měřítku, že proteinu poskytne velmi podobné poměry náboje ku hmotnosti (náboj SDS = hmotnost proteinu)

Mechanismus

- Vzorek se zahřeje, bílkovina denaturuje a nesráží s, protože je obalena SDS, na povrch trčí sulfátové hlavičky (-)
- Nanese se to na gel, proteiny se s ním začnou proplétať: větší se proplétají pomaleji než menší
- "běh různě velkých zvířat hustým lesem"

Následná vizualizace proteinů - Western blot

Nanesení proteinů na membránu, vizualizace pomocí konkrétních protilátek (primárně nebo sekundárně značená)

PCR (POLYMERASE CHAIN REACTION)

- Obrovské namnožení určitého úseku DNA, využití pro diagnostiku (patogeny, mutace atd), forenzní praxi a laboratoře (sekvenování atd)
 - Kvalitativní metoda ukazuje, jestli něco někde je nebo není, end point analýza data sbírám až po skončení reakce

Složení PCR směsi

- o Templátová DNA co chci zkoumat, dNTPs deoxynukleosidtrifosfáty, pufr vytváří vhodné prostředí, Mg²+ stíní náboj fosfátů
- Primery reverse a forward, vymezí oblast na množení, je teda jedno co je uvnitř templátové DNA, ale musím znát kraje
- Termostabilní polymeráza
 - DNA-depe-DNA-poly, používají se různé polymerázy s různými vlastnostmi (procesivita, rychlost, chybovost)
 - Taq polymeráza původem z Thermus aquaticus, chybovost: nemá 3'->5' proofreading (exonukleázovou) aktivitu
 - Polymeráza potřebuje 3' OH očko, nedokáže začít syntézu de novo proto jsou potřeba primery

Mechanismus

- Denaturace DNA templát se rozdělí na ssDNA, kolem 95 °C
- Annealing snížení teploty asi na 60 °C, nasednutí primerů (oligonukleotidů) na specifická místa, ohraničení vybrané oblasti
 - Začátek nadbytek primerů, takže se navážou oni místo toho, aby reasociovaly řetězce ssDNA, nalezení komplementárních sekvencí trvá nejdéle (hledám jezdec a zip, snažím se je chytit)
 - Konec po nalezení sekvencí už se primery velmi rychle navázají (jezdec už je v zipu a já zip rychle zapnu)
- DNA syntéza teplota se mírně zvýší asi na 72 °C, aby mohla proběhnout syntéze podle primerů
- Opakování cyklu zase se to denaturuje, annealing, syntéza DNA atd, exponenciální množení molekul
 - Dostanu asi 60 takových divných delších molekul, ale třeba miliardu těch cílových, co chci

RT-PCR

- Detekce RNA pomocí PCR, musí se převést na DNA pomocí reverzní transkriptázy
 - Reverzní transkriptáza má schopnosti RNA-depe-DNA-poly a zároveň RNÁzy H (umí odbourávat primery)

EMULZNÍ PCR

- Probíhá na pevné bázi, účastní se speciální kuličky (partikule), používá se jako amplifikace třeba pro PYROSEKVENOVÁNÍ
- Mechanismus
 - o Fragmentace DNA úsek DNA rozdělím na několik fragmentů, chceme je osekvenovat zároveň, ale číst separátně
 - Ligace adaptérů na konec každého fragmentu napojím adaptér (úsek dsDNA) pomocí ligázy
 - o Vložení kuliček mám speciální kuličky, co mají na povrchu ssDNA oligonukleotidy komplementární s adaptéry na fragmentech
 - Příprava emulze
 - Smíchám olej a vodný pufrovací roztok, v emulzi se udělají bubliny, vložím tam fragmenty a kuličky
 - Do každé <u>bubliny</u> se dostane jen <u>jedna kulička</u> s adaptéry, na každou kuličku se <u>napojí komplementární fragment</u>
 - Vlastní PCR
 - Probíhá v té emulzi separátně v bublinách, v jedné bublině se množí jeden fragment, v celé emulzi se jich množí spousta
 - Jako primer pro syntézu slouží adaptér
 - Syntéza tvorba komplementárního vlákna pevně navázaného na kuličku
 - Původní vlákno se oddělí a chytí se jiného adaptéru na stejné kuličce, kulička je pak obklopená kopií fragmentu
 - Příprava na sekvenaci kuličky nechám zapadnout do jamek na speciální destičce, kde ta sekvenace pak probíhá

MŮSTKOVÉ PCR

- Probíhá na čipu/destičce, na povrchu jsou krátké oligonukleotidy, používá se jako amplifikace třeba pro ILUMINA SEKVENOVÁNÍ
- Mechanismus
 - o Fragmentace DNA jako u emulzního, prostě to rozprcám na kousíčky
 - o Ligace adaptérů na oba konce fragmentů navážu adaptéry, můstky oligonukleotidy na destičce komplementární s adaptéry
 - Vlastní PCR
 - Adaptéry DNA fragmentů hybridizují s můstky (dostatečně daleko od sebe), syntéza druhého vlákna
 - Nové vlákno je <u>kovalentně navázané na destičce</u>, vzorek <u>denaturuju</u>, destička se <u>ohne</u>, adaptér na druhém konci nových vláken se napojí na <u>komplementární můstek</u>, další syntéza
- Získám obrovské množství shluků stejných fragmentů, co dělají oblouky na destičce

• SEKVENOVÁNÍ • •

- Určení nukleotidového složení (různé mechanismy), sekvence DNA je nejvíc detailní typ genetické mapy

SANGER SEQUENCING

- Metoda terminace transkripce řetězce, dnes už se nepoužívá tolik, ale byla to první metoda, využívá se DNA polymeráza (často Taq)
 - o Dále se účastní primery, dNTPs a hlavně malé množství **ddNTPs** dideoxynukleosidfosfáty, nemají 3' OH očko)
- Syntéza
 - Na templátovou DNA nasedá primer s 3' OH (musím znát aspoň kus sekvence), polymeráza <u>prodlužuje</u>, když je zařazen <u>ddNTP</u>,
 řetězec nemůže být dál prodlužován a dojde k terminaci
 - o Zařazování ddNTPs je <u>náhodné</u>, takže vznikají <u>náhodně dlouhé úseky</u>
- <u>Vizualizace ddNTPs</u> fluorescenčně nebo radioaktivně, dostanu řadu proužků, u kterých znám poslední nukleotid
- <u>Elektroforéza</u>
 - Musí umět dělit podle molekulové hmotnosti i relativně dlouhé fragmenty, co se liší právě o jeden nukleotid
 - Zajistím to tak, že všechny fragmenty budou denaturované (běží to za vyšší teploty a za přítomnosti nějakého činidla)
 - o Nejrychlejší jsou malé fragmenty, <u>co doběhlo nejdál je začátek</u>

PYROSEKVENOVÁNÍ

Využívá se DNA polymeráza, účastní se klasické dNTP a ATP, před sekvenací musí dojít k amplifikaci templátu (emulzní PCR)
 Mechanismus

- Probíhá syntéza, když polymeráza přidá na OH skupinu nukleotid, <u>uvolní se pyrofosfát (Pi-Pi)</u> (a vodíku)
- Reakce pyrofosfátu
 - ATP-sulfuryláza katalyzuje reakci pyrofosfátu, kdy se uvolní ATP
 - Luciferáza využívá vzniklé ATP k přeměně <u>luciferinu na oxoluciferin</u>, dochází k luminiscenci (ta je detekována)
- o Nukleotidy přidávám postupně, když mám DNA na kuličkách v jamkách po emulzním PCR, svítí jamky
 - Když se zařadí víc stejných nukleotidů za sebou, zasvítí to násobně silněji, ale detektory nemusí být tak citlivé

ILUMINA

- Přidávám všechny typy nukleotidů najednou, dále přidávám DNA poly a primery
- Cyklické reverzibilní terminátory
 - Speciálně upravené dNTP, co mají na 3' OH navázány <u>reverzibilně odštěpitelný blok</u>, jen dočasně zastaví syntézu
 - Každý typ takto upraveného dNTP je fluorescenčně označen (každý ale jinou barvičkou)

Mechanismus

- o Napojí se nukleotid, reakce se <u>zastaví</u>, v mezičase <u>detekce fluorescence</u>, pak <u>odmytí fluorescenční barvy</u>
- Odstranění bloku z navázaného nukleotidu, reakce pokračuje -> blok -> detekce -> promytí -> reakce -> blok atd

SoLiD SYSTEM (okopírováno z genetiky)

Už se od ní ustupuje, podle templátu se tvoří nový řetězec, ale ne pomocí DNA-poly – úplně umělá syntéza

- Mechanismus

- Mám 16 variant krátkých oligonuklidů, co mají na dvou prvních místech dvě písmena (AT atd), na konci <u>fluorescenční barva</u> (4 –
 jedna barva znamená čtyři možnosti kombinací)
- o Když první dvě písmenka párují s templátem, zachytí se to, <u>DNA-ligáza</u> napojí oligonukleotid, zasvítí to
- Řekne mi to, že mám čtyři možnosti podle barvy, o kus dál se přiřadí další ont, ligáza to spojí, zasvítí to
- Postupně odečítám dvojpísmenka, ale vynechávám páry mezi, posunu primer o jeden nt, dvojpísmena se kryjí

ION TORRENT

- Metoda polovodičového (pH) sekvenování, nukleotidy přidávám postupně za sebou, dále přidávám DNA poly a primery

- Mechanismus

- o Probíhá syntéza, když se přidá na OH skupin nukleotid, dojde k <u>uvolnění vodíku</u> (a pyrofosfátu), kolem místa se <u>trochu změní pH</u>
- Citlivý sekvenátor detekuje změny, ví, kam se přidal nukleotid, když se jich přidá víc za sebou, signál je silnější

NANOPORE STRAND SEQUENCING

- Čte se **přímo templátové vlákno**, není využíváno syntézy, umí sekvenovat i dlouhé molekuly, **nepotřebuje amplifikaci**

- Mechanismus

- o Mám speciální membránu s nanopóry, která je pod el proudem, pórem se postupně souká ssDNA vzorek (je rozplétán helikázou)
 - Podle momentálně procházejícího nukleotidu se mění procházející proud, každý nukleotid proud mění jinak
- Vlákno vzorku je cyklizováno a prochází pórem opakovaně, aby došlo k eliminaci chyb (chybovost je ale i tak VELKÁ)