

STAT011 Statistical Methods I

Lecture 17 Two-Sample t Procedures II

Lu Chen Swarthmore College 3/28/2019

Review

- ▶ Matched-pairs two-sample t procedures
 - Use one-sample t procedures
- Two-sample t procedures
 - Two-sample t confidence interval $(\bar{x}_1 \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
 - Two-sample t test $t = \frac{(\bar{x}_1 \bar{x}_2) 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \stackrel{approx.}{\sim} t(k)$
 - k is approximated by either the Welch-Satterthwaite formula or the smaller of $n_1 1$ and $n_2 1$
 - t.test(x = , y =) or t.test(Reponse ~ Explanatory, data =)

Outline

- ▶ Pooled two-sample *t* procedures
 - Pooled two-sample t confidence interval
 - Pooled two-sample *t* test
- Comparing inferences for population means
- Guidelines for using one-sample and two-sample *t* procedures
- Robustness
- Statistical analysis

Population SDs are equal

- The t statistic in the two-sample t procedures does not follow an exact t distribution but can be approximated by t(k) mainly because the SDs of the two samples are different.
- When the two SDs are equal, the *t* statistic follows an exact *t* distribution if the populations are normally distributed.
- Assume $\sigma = \sigma_1 = \sigma_2$,

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sigma\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

• We need to estimate the universal SD σ from the data.

Population SDs are equal

The best estimate for σ from the data is s_p , the **pooled estimator of** σ .

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

- \triangleright S_p is weighted by the degrees of freedom of the two samples.
- It gives more weight to the larger sample.
- It has degree of freedom $n_1 + n_2 2$.

Population SDs are equal

The pooled two-sample z statistic

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$$

The pooled two-sample t statistic

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

where
$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Pooled two-sample t confidence interval

Suppose that an SRS of size n_1 is drawn from a Normal population with unknown mean μ_1 and that an independent SRS of size n_2 is drawn from another Normal population with unknown mean μ_2 . Suppose also that the two populations have the same standard deviation. A level C confidence interval for $\mu_1 - \mu_2$ is

$$(\bar{x}_1 - \bar{x}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Here t^* is the value for the $t(n_1 + n_2 - 2)$ density curve with area C between $-t^*$ and t^* .

Pooled two-sample t test

To test the hypothesis $H_0: \mu_1 = \mu_2$, compute the pooled two-sample t statistic

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

In terms of a random variable T having the $t(n_1 + n_2 - 2)$ distribution, the P-value for a test of H_0 against

 $H_a: \mu_1 > \mu_2 \text{ is } P(T \ge t)$

 $H_a: \mu_1 < \mu_2 \text{ is } P(T \leq t)$

 $H_a: \mu_1 \neq \mu_2 \text{ is } 2P(T \geq |t|)$

Equality of the two population SDs

How do we know the two population SDs are equal?

If the larger standard deviation is **less than twice** the smaller standard deviation, we can use methods based on the assumption of equal standard deviations, and our results will still be approximately correct.

Use the two-sample *t* procedures if

$$\frac{S_{large}}{S_{small}} \ge 2$$

Use the pooled two-sample t procedures if

$$\frac{S_{large}}{S_{small}} < 2$$

Example - Emoji

Within-platform score of mis-communication (25 emoji for each platform)

	Apple		Google		Microsoft		Samsung		\mathbf{LG}		Carala MC Cara
		3.64	2	3.26	¥	4.40	(2)	3.69	<u></u>	2.59	Google, MS, Sam LG together
Top 3		3.50				2.94		2.36		2.53	Mean and SD:Number of em
	11	2.72	**	2.61		2.35		2.29	ŮÚ	2.51	
			4-				(3)				Apple
Bottom 3	0	1.25		1.13		1.12		1.23	Θ	1.30	• Average and S
	•	0.65		1.06	3	1.08		1.09		1.26	
	: 2 Z	0.45	*	0.62	·	0.66	6	1.08	U	0.63	

nsung and

- : 1.84, 0.50
- noji's: 100

- SD: 2.00, 0.60
- noji's: 25
- Is the average score of the four platforms different from the average score of Apple?

Example - Emoji

$$\bar{x}_1 = 1.84, s_1 = 0.50, n_1 = 100$$

$$\bar{x}_2 = 2.00$$
, $s_2 = 0.60$, $n_2 = 25$

LG

Google

Microsof

Samsung

ng

 $s_2/s_1 = 1.2 < 2$, pooled two-sample *t* procedure.

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{99 \times 0.5^2 + 24 \times 0.6^2}{99 + 24}} = 0.521, df = 123$$

95% confidence interval
$$(\bar{x}_1 - \bar{x}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

=
$$(1.84 - 2.00) \pm 1.979 \times 0.521 \sqrt{\frac{1}{100} + \frac{1}{25}} = -0.16 \pm 0.23$$

$$t^* = qt(0.975, df=123)$$

▶ We are 95% confident that the population mean diffeence in the score of miscommunication between the four platforms and Apple will be within [−0.39, 0.07]. 0 does fall into the interval. The mean difference is NOT significantly different from 0.

Example - Emoji

$$\bar{x}_1 = 1.84, s_1 = 0.50, n_1 = 100$$

$$\bar{x}_2 = 2.00$$
, $s_2 = 0.60$, $n_2 = 25$

Google

Microsoft

Samsung

LG

 $S_2/S_1 = 1.2 < 2$, pooled two-sample t procedure.

VS.

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{99 \times 0.5^2 + 24 \times 0.6^2}{99 + 24}} = 0.521, df = 123$$

Apple

Level 0.05 test, $H_0: \mu_1 = \mu_2, H_a: \mu_1 \neq \mu_2$

ver 0.03 test,
$$H_0: \mu_1 = \mu_2, H_a: \mu_1 \neq \mu_2$$

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(1.84 - 2) - 0}{0.521 \sqrt{\frac{1}{100} + \frac{1}{25}}} = \frac{-0.16}{0.116} = -1.373$$

$$t > t^* = -1.98 = qt(0.025, df=123)$$
 or $P = 2*(1-pt(1.373, df=123))$
= 0.172 > 0.05

We cannot reject H_0 at level 0.05. The difference in mean score of miscommunication between the four platforms and Apple is not significant.

Regular and Pooled two-sample t in R

```
aggregate(AreaGuess ~ AreaAnchor, data=Survey, FUN=mysummary) # s2/s1<2

## AreaAnchor AreaGuess.mean AreaGuess.sd AreaGuess.n
## 1 50000 62.85715 70.18477 91.00000

## 2 100000 109.70252 74.57255 21.00000

## Regular two-sample t procedure
t.test(AreaGuess ~ AreaAnchor, data=Survey)
## Pooled two-sample t procedure
t.test(AreaGuess ~ AreaAnchor, data=Survey, var.equal=TRUE)</pre>
```

Regular and Pooled two-sample t in R

t.test(AreaGuess ~ AreaAnchor, data=Survey) ## Regular

```
##
## Welch Two Sample t-test
##
## data: AreaGuess by AreaAnchor
## t = -2.6231, df = 28.745, p-value = 0.0138
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -83.38516 -10.30558
## sample estimates:
## mean in group 50000 mean in group 100000
## 62.85715 109.70252
```

- ▶ 95% CI: [-83.4, -10.3]
- Level 0.05 test: $H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \neq \mu_2$ t = -2.62, df = 28.75 and P = 0.014 < 0.05

Regular and Pooled two-sample t in R

t.test(AreaGuess ~ AreaAnchor, data=Survey, var.equal = TRUE) # Pooled

```
##
## Two Sample t-test
##
## data: AreaGuess by AreaAnchor
## t = -2.7253, df = 110, p-value = 0.007476
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -80.91017 -12.78057
## sample estimates:
## mean in group 50000 mean in group 100000
## 62.85715 109.70252
```

- ▶ 95% CI: [-80.9, -12.8]
- Level 0.05 test: $H_0: \mu_1 = \mu_2$ vs. $H_a: \mu_1 \neq \mu_2$ $t = -2.73, df = n_1 + n_2 - 2 = 110$ and P = 0.0075 < 0.05
- When $s_{large}/s_{small} < 2$, the results from unpooled and pooled two-sample t procedures are quite close.

Two-Sample t Procedures

Two-sample t procedures

- Two-sample t confidence interval $(\bar{x}_1 \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
- Two-sample t test $t = \frac{(\bar{x}_1 \bar{x}_2) 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t(k)$
 - k is approximated by either the Welch-Satterthwaite formula or the smaller of $n_1 1$ and $n_2 1$

▶ Pooled two-sample *t* procedures

- Pooled two-sample t confidence interval $(\bar{x}_1 \bar{x}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- Pooled two-sample t test $t = \frac{(\bar{x}_1 \bar{x}_2) 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 2)$

Inferences for population means

Inference for	μ (σ known)	μ (σ unknown)	$\mu_1 - \mu_2$ $(\sigma_1 \neq \sigma_2)$	$\mu_1 - \mu_2$ $(\sigma_1 = \sigma_2)$
Name	One-sample z procedures	One-sample <i>t</i> procedures (Paired two- sample <i>t</i> procedures)	Two-sample <i>t</i> procedures	Pooled two-sample <i>t</i> procedures
Based on	N(0, 1)	t(n-1)	t(k)	$t(n_1+n_2-2)$
Estimate	\bar{x}	\bar{x}	$\bar{x}_1 - \bar{x}_2$	$\bar{x}_1 - \bar{x}_2$
Level C C.I.	$\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$	$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$	$\bar{x}_1 - \bar{x}_2 \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$\bar{x}_1 - \bar{x}_2 \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

k is computed by Welch-Satterthwaite formula or the smaller of $n_1 - 1$ and $n_2 - 1$.

Inference for population means

Inference for	μ (σ known)	μ (σ unknown)	$\mu_1 - \mu_2 \\ (\sigma_1 \neq \sigma_2)$	$\mu_1 - \mu_2$ $(\sigma_1 = \sigma_2)$
Name	One-sample z procedures	One-sample <i>t</i> procedures (Paired two- sample <i>t</i> procedures)	Two-sample <i>t</i> procedures	Pooled two-sample <i>t</i> procedures
H_0	$\mu = \mu_0$	$\mu = \mu_0$	$\mu_1 = \mu_2$	$\mu_1 = \mu_2$
Test statistic	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$ approx. $N(0, 1)$	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$ $\stackrel{approx.}{\sim} t(n-1)$	$t = \frac{\bar{x}_1 - \bar{x}_2 - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $approx. \qquad t(k)$	$t = \frac{\bar{x}_1 - \bar{x}_2 - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $ \approx t(n_1 + n_2 - 2)$

k is computed by Welch-Satterthwaite formula or the smaller of $n_1 - 1$ and $n_2 - 1$.

Critical values

For level C confidence interval

```
z^* = \text{qnorm}(1-(1-C)/2)

t^* = \text{qt}(1-(1-C)/2, df = )
```

For level α significance test

- H_a : greater
 - $z^* = \text{qnorm}(1-\text{alpha}), t^* = \text{qt}(1-\text{alpha}, df =)$
- H_a : less
 - $z^* = \text{qnorm(alpha)}, t^* = \text{qt(alpha, df} =)$
- H_a : not equal
 - $z^* = \text{qnorm}(1-\text{alpha/2}), t^* = \text{qt}(1-\text{alpha/2}, df =)$

P-values

- H_a : greater
 - z procedures, $P = P(Z \ge z) = 1-pnorm(z)$
 - t procedures, $P = P(T \ge t) = 1-pt(t, df =)$
- H_a : less
 - z procedures, $P = P(Z \le z) = pnorm(z)$
 - t procedures, $P = P(T \le t) = pt(t, df =)$
- H_a : not equal
 - z procedures, $P = 2P(Z \ge |z|) = 2*(1-pnorm(abs(z)))$
 - t procedures, $P = 2P(T \ge |t|) = 2*(1-pt(abs(z), df =))$

Guidelines for one-sample t procedures

For sample size n,

- n < 15: Use t procedures if the data are close to Normal. If the data are clearly non-Normal or if outliers are present, do not use t.
- ▶ 15 \leq *n* < 40: The *t* procedures can be used except in the presence of outliers or strong skewness.
- $n \ge 40$: The *t* procedures can be used even for clearly skewed distributions when the sample is large.

Guidelines for two-sample t procedures

For sample size n_1 and n_2 ,

- $n_1 + n_2 < 15$: Use t procedures if the data are close to Normal. If the data are clearly non-Normal or if outliers are present, do not use t.
- ▶ 15 $\leq n_1 + n_2 <$ 40: The *t* procedures can be used except in the presence of outliers or strong skewness.
- $n_1 + n_2 \ge 40$: The *t* procedures can be used even for clearly skewed distributions when the sample is large.

Robustness

A statistical inference procedure is called **robust** if the required probability calculations are insensitive to violations of the assumptions made.

The *t* procedure is quite robust.

- Normality assumption
 - If the population is normally distributed, the confidence intervals and the p-values based on *t* distribution are exact.
 - If the population is NOT normally distributed, the confidence intervals and the p-values based on *t* distribution are approximate when *n* large.
- Standard deviation assumption
 - When *n* is large, *s* is a good estimate of σ .

Robustness of the two-sample procedures

- The two-sample *t* procedures are particularly robust when the population distributions are symmetric and when the two sample sizes are equal.
- The pooled *t* procedures are reasonably robust against both non-Normality and unequal SDs when the sample sizes are nearly the same.
- In general, the two-sample *t* procedures are more robust than the one-sample *t* methods. And the one-sample *t* procedures are more robust than the one-sample *z* procedures.

Statistical analysis

Exploratory data analysis: summary statistics and data visualization

- Quantitative (one-sample): histogram, boxplot
- Quantitative vs. categorical (two-sample): boxplot Boxplot is useful in looking for suspected outliers.

Checking assumptions: is it appropriate to use the method?

Distribution Normal or skewed? Outliers? Sample size?

Inferece

- Level *C* confidence interval
- Level α significance test

Statistical analysis - Choosing method

Is the problem about one population mean or two population means?

- ▶ One population mean: one-sample problem
 - Population SD is known: one-sample z
 - Population SD is unknown: one-sample t
- ▶ Two population means: two-sample problem
 - Matched pairs: take the difference of each pair and use one-sample z or t
 - Unpaired: two-sample z or t
 - $\sigma_1 \neq \sigma_2$ ($s_{large}/s_{small} \geq 2$): regular (unpooled) two-sample z or t
 - $\sigma_1 = \sigma_2 (s_{large}/s_{small} < 2)$: pooled two-sample z or t
- ▶ What about more than two population means?
- To compare more than two population means, we use Ananlysis of Variance (ANOVA), which is covered in STAT 21.