INF2010 - ASD

Recherche de chaînes de caractères

Plan

- I Problématique
- II Algorithme naïf
- III Rabin-Karp
- IV Automate FSM

I – Problématique

Problématique:

Chercher la chaîne de caractères P[1..m] dans un texte T[1..n]. où m ≤ n.

Ayant m ≤ n, on traduit le problème par chercher tous les s ≤ n-m+1 pour lesquels T[s+1...s+m] = P[1..m]

Exemples:

- Chercher un mot dans un fichier
- Chercher un fichier dans un volume (HDD, Clé Flash, CD-ROM)
- Chercher un mot dans des fichiers
- Chercher un mot dans le web (google, yahoo)

```
Pour s=0 à n-m
Pour j= 1 à m
Si T[s+j] != P[j]
Reprendre au s suivant
Sinon Si j=m
Inclure s dans S
Retourner S
```


$$s=0, j=1$$

$$s=0, j=2$$

$$s=0, j=3$$

$$s=1, j=1$$

$$s=2, j=1$$

$$s=3, j=2$$

Complexité de l'algorithme?

$$O(m(n-m+1))$$

Idée intéressante: réutiliser les résultats et analyser la chaîne de caractère P

III – Rabin-Karp

Objectif: battre l'algorithme naïf de complexité

O(m(n-m+1))

Analyser la chaîne de caractère: pétraîtement (*preprocessing*)

Réutiliser les résultats précédent: accélération

Idée:

Pour un alphabet Σ , écrire P sous forme d'un nombre dans la base $d=|\Sigma|$

Analyser la chaîne de caractère: Trouver une fois la valeur p associée à P

Pour l'exemple, on utilise les chiffre 0-9:

Pour un alphabet $\Sigma = \{0, 1, 2, ..., 8, 9\}$, écrire P sous forme d'un nombre dans la base $d = |\Sigma| = 10$

Exemple:

$$p = 1235$$

$$p = 1235$$

$$p = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 5 \cdot 10^0$$

Pour une longueur quelconque m, la phase de prétraîtement peut s'avérer ardue.

$$p = 1 235$$

$$p = ((1.10^{1} + 2).10^{1} + 3).10^{1} + 5.10^{0}$$

En utilisant l'algorithme de Horner, on réduit le nombre d'opérations pour le prétraîtement.

```
Calculer par Horner p de P[1..m]

Pour s=0 à n-m

Calculer par Horner t_s de T[s+1..s+m]

Si t_s = p

Inclure s dans S
```

Retourner S

$$p = 1235$$

$$s=0$$

$$p = 1235$$

$$s=1$$

$$p = 1235$$

$$s=2$$

$$p = 1235$$

$$s=3$$

$$p = 1235$$

$$s=4$$

$$p = 1235$$

$$p = 1235$$

$$p = 2351$$

$$p = 1235$$

$$p = 1235$$

Réutiliser les résultats précédent:

accélération

$$t_{s+1} = 10(t_s-10^{m-1}T[s+1]) + T[m+s+1]$$

$$s=0$$

$$p = 1235$$

$$s=1$$

$$T_s = 10(1 \ 323-1000\cdot 1)+4=3 \ 234$$

$$p = 1235$$

$$s=2$$

$$t_s = 10(3\ 234-1000\cdot3)+1=2\ 341$$

$$p = 1235$$

$$s=3$$

$$t_s = 10(2\ 341-1000\cdot 2)+2=3\ 412$$

$$p = 1235$$

$$s=4$$

$$t_s = 10(3 \ 412-1000\cdot3)+3=4 \ 123$$

$$p = 1235$$

$$p = 1235$$

$$p = 2351$$

$$p = 1235$$

$$S = \{5\}$$

$$t_s = 10(3\ 512-1000\cdot3)+3=5\ 123$$

$$p = 1235$$

Problème:

L'alphabet Σ n'est pas celui des chiffres 0-9 et la base d=|Σ|≠10

ASCII étendu : 256 charactères d = 256 UNICODE: 65536 charactères d = 65536

Utiliser Horner et la technique itérative sur t_s risque de poser problème quand même. Les nombres vont être grands, et la représentation en virgule flottante risque de donner de faux-positifs.

Idée:

Utiliser une écriture modulaire. Pour un alphabet Σ , écrire P sous forme d'un nombre p dans la base $d=|\Sigma|$ modulo q

Choix de q:

On prend q de telle sorte que d·q tiennent dans un mot machine (32 bits) :

Raison: essayer d'exprimer p en fonction de Horner...

Pour illustrer l'algorithme, reprenons l'exemple, on utilise les chiffre 0-9: on traduit P sous la forme du nombre p dans la base $d=|\Sigma|=10$ modulo q=11

P 1 2 3 5

```
p = \{[\{[\{1\cdot 10 + 2\} \mod 11]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[\{[\{12\} \mod 11]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[\{[1]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[2]\cdot 10 + 5\} \mod 11
p = \{25\} \mod 11 = 3
```

Pour illustrer l'algorithme, reprenons l'exemple, on utilise les chiffre 0-9: on traduit P sous la forme du nombre p dans la base $d=|\Sigma|=10$ modulo q=11


```
p = 1 235 \mod 11 = 3 ?
```

```
p = \{[\{[\{1\cdot 10 + 2\} \mod 11]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[\{[\{12\} \mod 11]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[\{[1]\cdot 10 + 3\} \mod 11]\cdot 10 + 5\} \mod 11
p = \{[2]\cdot 10 + 5\} \mod 11
p = \{25\} \mod 11 = 3
```

Réutiliser les résultats précédent: accélération

$$t_{s+1} = \{d(t_s-hT[s+1]) + T[m+s+1]\} \mod q$$

$$h = d^{m-1} \mod q$$

$$p = 1 235 \mod 11 = 3$$

$$s=0$$

$$t_s = 1 323 \mod 11 = 3$$

$$p = 3$$

$$s=0$$

$$t_s = 1 323 \mod 11 = 3$$

$$p = 3$$

$$s=0$$

$$t_s = 1 323 \text{mod } 11 = 3$$

$$p = 3$$

$$p = 3$$

$$s=2$$

$$p = 3$$

$$s=3$$

$$p = 9$$

$$s=4$$

$$p = 3$$

p = 3

p = 3

$$p = 3$$

$$p = 1235$$

III – Rabin-Karp

Complexité de l'algorithme à cause des faux-positifs

Néanmoins, l'exécution de Rabin Karp est **plus rapide** que l'algorithme naïf.

Objectif: meilleure complexité

Battre O(m(n-m+1))

Meilleure performances que Rabin-Karp

Analyser la chaîne de caractère:

Construire une machine à états (prétraîtement)

Réutiliser les résultats précédent:

L'automate possède une mémoire interne de son état (accélération)

Construire - Le nombre d'états est égal à m+1

Construire - Le dernier état valide l'entrée

Construire – Les arcs répondent au unités

Construire – Ajouter les arcs restants

Traîter – La chaîne T est traversée une fois

Quelques définitions

```
Ensemble des états Q=\{q_0, q_1, q_2,...\}
```

Les états peuvent être représentés par un entier (leur indice)

État initial: 0

État final: m

Fonction post-fixe est notée: ⊃

Fonction préfixe est notée: ⊂

Le préfixe de P de longueur i est noté P_i (P_i P)

Alphabet: ∑

Alphabet réduit aux lettre du patron: ∑p

Fonction de transition $\delta: Q \times \sum_{D} \rightarrow Q$

Exemple

```
Rechercher: aabab
```

$$Q = \{q0, q1, q2, q3, q4, q5\}$$

$$Q0 = 0$$

$$\Sigma_p = \{a, b\}$$

Exemple

Fonction de transition δ:

Exemple

Construction

Idée: chaque état a reconnu le préfixe de la chaîne à rechercher qui lui est associe

 $q_0 \leftrightarrow \epsilon$

 $q_1 \leftrightarrow a$

 $q_2 \leftrightarrow aa$

 $q_3 \leftrightarrow aab$

 $q_4 \leftrightarrow aaba$

 $q_5 \leftrightarrow aabab$

Construction

Algorithme

```
Initialiser \delta à 0

Pour q = 0 : m

Pour chaque caractère a dans \Sigma_P

k = min(m+1, q+2)

Répéter

k = k - 1

Tant que k>0 et ( (P_k \supset P_q a) est faux)

\delta(q, a) = k

Fin Pour
```

Exemple de construction

Position: 012345 Chaine: aabab

 $P_0 = \varepsilon$ $P_1 = a$ $P_2 = aa$ $P_3 = aab$ $P_4 = aaba$ $P_5 = aabab$

P_i est le préfixe de P de i lettres

Exemple de construction

Algorithme Patron: aabab

```
Initialiser \delta à 0

Pour q = 0: m

Pour chaque caractère a dans \Sigma_P

k = min(m+1, q+2)

Répéter

k = k - 1

Tant que k > 0 et (P_k \supset P_q a) est faux)

\delta(q, a) = k

Fin Pour
```

	а	b
q0	0	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, a

1:
$$m \leftarrow 5$$

2: $q \leftarrow 0$
3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 2)$
 $k \leftarrow 2$
5: $k \leftarrow 1$
6: $a \supset \epsilon a$?
 $a \supset a \quad \sqrt{}$
7: $\delta(0, a) \leftarrow 1$

	а	D
q0	0	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, a

1:
$$m \leftarrow 5$$

2: $q \leftarrow 0$
3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 2)$
 $k \leftarrow 2$
5: $k \leftarrow 1$
6: $a \supset \epsilon a$?
 $a \supset a \quad \sqrt{}$
7: $\delta(0, a) \leftarrow 1$

	a	b
q0	1	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, a

 δ (0, a) \leftarrow 1

Transition 0, b

3: a ← 'b' 4: $k \leftarrow \min(6, 2)$ ← 2 5: k ← 1 6: a \supset εb $a \supset b$ $\leftarrow \mathsf{F}$ 5: k ← 0 6: $\epsilon \supset \epsilon b$ $\mathsf{d} \subset \mathsf{3}$ $\leftarrow \mathsf{T}$ 7: $\delta(0, b) \leftarrow 0$

	а	b
q0	1	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 0, b

 $\delta(0, b) \leftarrow 0$

Transition 1, a

2: q ← 1 3: a ← 'a' 4: k ← min(6, 3) ← 3 5: k ← 2 6: aa ⊃ aa ← T 7: δ(1, a) ← 2

_	а	D
q0	1	0
q1	0	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 1, a

2:
$$q \leftarrow 1$$

3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 3)$
 $\leftarrow 3$
5: $k \leftarrow 2$
6: $aa \supset aa$
 $\leftarrow T$
7: $\delta(1, a) \leftarrow 2$

	а	b
q0	1	0
q1	2	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 1, a

 δ (1, a) \leftarrow 2

Transition 1, b

3:
$$a \leftarrow \text{'b'}$$
4: $k \leftarrow \min(6, 3)$
 $\leftarrow 3$
5: $k \leftarrow 2$
6: $aa \supset ab$
 $\leftarrow F$
5: $k \leftarrow 1$
6: $a \supset ab$
 $\leftarrow F$
5: $k \leftarrow 0$
6: $\epsilon \supset ab$
 $\leftarrow T$
7: $\delta(1, b) \leftarrow 0$

a b
q0 1 0
q1 2 0
q2 0 0
q3 0 0

q4

q5

Transition 1, b

 $\delta(1, b) \leftarrow 0$

Transition 2, a

2:
$$q \leftarrow 2$$

3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 4)$
 $\leftarrow 4$
5: $k \leftarrow 3$
6: $aab \supset aaa$
 $\leftarrow F$
5: $k \leftarrow 2$
6: $aa \supset aaa$
 $\leftarrow T$
7: $\delta(2, a) \leftarrow 2$

	а	b
q0	1	0
q1	2	0
q2	0	0
q3	0	0
q4	0	0
q5	0	0

Transition 2, a

2:
$$q \leftarrow 2$$

3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 4)$
 $\leftarrow 4$
5: $k \leftarrow 3$
6: $aab \supset aaa$
 $\leftarrow F$
5: $k \leftarrow 2$
6: $aa \supset aaa$
 $\leftarrow T$
7: $\delta(2, a) \leftarrow 2$

	а	b
q0	1	0
q1	2	0
q2	2	0
q3	0	0
q4	0	0
q5	0	0

Transition 2, a

 δ (2, a) \leftarrow 2

Transition 2, b

3:
$$a \leftarrow b'$$

4: $k \leftarrow \min(6, 4)$
 $\leftarrow 4$
5: $k \leftarrow 3$
6: $aab \supset aab$
 $\leftarrow T$
7: $\delta(2, b) \leftarrow 3$

	а	b
q0	1	0
q1	2	0
q2	2	0
q3	0	0
q4	0	0
q5	0	0

Transition 2, b

3:
$$a \leftarrow b'$$

4: $k \leftarrow \min(6, 4)$
 $\leftarrow 4$
5: $k \leftarrow 3$
6: $aab \supset aab$
 $\leftarrow T$
7: $\delta(2, b) \leftarrow 3$

	а	b
q0	1	0
q1	2	0
q2	2	3
q3	0	0
q4	0	0
q5	0	0

Transition 2, b

 δ (2, b) \leftarrow 3

Transition 3, a

2:
$$q \leftarrow 3$$

3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 5)$
 $\leftarrow 5$
5: $k \leftarrow 4$
6: $aaba \supset aaba$
 $\leftarrow T$
7: $\delta(3, a) \leftarrow 4$

_	a	b
q0	1	0
q1	2	0
q2	2	3
q3	0	0
q4	0	0
q5	0	0

Transition 3, a

2:
$$q \leftarrow 3$$

3: $a \leftarrow 'a'$
4: $k \leftarrow min(6, 5)$
 $\leftarrow 5$
5: $k \leftarrow 4$
6: $aaba \supset aaba$
 $\leftarrow T$
7: $\delta(3, a) \leftarrow 4$

	a	b
q0	1	0
q1	2	0
q2	2	3
q3	4	0
q4	0	0
q5	0	0

Transition 3, a

 δ (3, a) \leftarrow 4

Transition 3, b

7:
$$\delta(3, b) \leftarrow 0$$

	а	b
q0	1	0
q1	2	0
q2	2	3
q3	4	0
q4	0	0
q5	0	0

Transition 3, b

Transition 4, a

4:
$$k \leftarrow min(6, 6)$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{T}$$

7:
$$\delta(4, a) \leftarrow 2$$

a	b
_	-

q0	1	0
q0	1	0

Transition 4, a

4:
$$k \leftarrow \min(6, 6)$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{T}$$

7:
$$\delta(4, a) \leftarrow 2$$

a	b
_	-

q0	1	0

Transition 4, a

Transition 4, b

$$\leftarrow \mathsf{T}$$

7:
$$\delta(4, b) \leftarrow 5$$

_	a	b
q0	1	0
q1	2	0
q2	2	3
q3	4	0
q4	2	0
q5	0	0

Transition 4, b

7:
$$\delta(4, b) \leftarrow 5$$

	а	b
q0	1	0
q1	2	0
q2	2	3
q3	4	0
q4	2	5
q5	0	0

Transition 4, b

Transition 5, a

4:
$$k \leftarrow \min(6, 7)$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{T}$$

7:
$$\delta$$
(5, a) ← 1

a	b

q0	1	0

Transition 5, a

4:
$$k \leftarrow \min(6, 7)$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{T}$$

7:
$$\delta$$
(5, a) ← 1

_	\mathbf{n}
7	
_	

q0	1	0
----	---	---

q1	2	0

Transition 5, a

Transition 5, b

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

$$\leftarrow \mathsf{F}$$

6:
$$\epsilon$$
 ⊃ aababb

$$\leftarrow \mathsf{T}$$

7:
$$\delta(5, b) \leftarrow 0$$

	а	b
q0	1	0
q1	2	0
q2	2	3
q3	4	0
q4	2	5
q5	1	0

Transition 5, b

IV – Automate FSM

Dans le meilleur des cas, l'automate FSM donne une complexité

$$O(n) = \Theta(n)$$

La construction de la machine à états peut être coûteuse: O(m³d). Ce qui peut devenir handicapant pour certains problèmes de recherche:

$$O(m^3d)+O(n)$$
 vs. $O(m(n-m+1)+m)$