1

a

$$l - \text{Link}$$

 $\forall x : \neg \text{scared}(l, x)$

b

$$\forall p : \text{princess}(p) \Rightarrow [\forall s : \text{saved}(s, p) \Rightarrow \text{loves}(p, s)]$$

Though the phrasing *loves her saviour* perhaps makes a pressumption that there is at most one saviour and also that there exists one, resulting in a more complex version which requires the equality operator (hidden in the unique exists operator):

$$\forall p : \operatorname{princess}(p) \Rightarrow [(\forall s : \operatorname{saved}(s, p) \Rightarrow \operatorname{loves}(p, s)) \land \exists ! s : \operatorname{saved}(s, p)]$$

 \mathbf{c}

Here we again require equality.

$$m-\ \text{Master Sword}, a-\ \text{Agahnim}$$

$$\text{sword}(m) \land \text{can_defeat}(m,a) \land \left[\forall s: (\text{sword}(s) \land s \neq m) \Rightarrow \neg \text{can_defeat}(s,a) \right]$$

 \mathbf{d}

We can either define the leader of the Dark World as a constant:

$$d$$
 - leader of the Dark World, lw - Light World is_defeated(d) \Rightarrow is_free(lw)

Or by searching the universum of entities which however also requires the usage of equality since the article the is used. In prepositional logic we would use a specific function.

$$dw - \text{Dark World}, lw - \text{Light World}$$

$$(\exists !d : \text{is_leader}(d, dw)) \land (\forall d : (\text{is_defeated}(d) \land \text{is_leader}(d, dw)) \Rightarrow \text{is_free}(lw))$$

2

2.1

 \mathbf{a}

... = 1 iff
$$[R(x', x'')]^{M_1, g_1} = 1$$
 and $[R(x''', b)]^{M_1, g_1} = 1$
... = 1 iff $(e_2, e_3) \in V_M(R)$ and $(e_5, e_6) \in V_M(R)$
... = 1 iff 1 and $1 \Rightarrow 1$

b

... = 1 iff there is
$$d \in U_M$$
 such that $[\![A(x'') \to R(x'',j)]\!]^{M_1,g_1[x''/d]} = 1$
... = 1 iff there is $d \in U_M$ such that $[\![A(d) \to R(d,j)]\!]^{M_1,g_1} = 1$
... = 1 iff there is $d \in U_M$ such that $[\![\neg A(d) \lor R(d,j)]\!]^{M_1,g_1} = 1$
set $d = e_1$
... = 1 iff $[\![\neg A(e_1) \lor R(e_1,j)]\!]^{M_1,g_1} = 1$
... = 1 iff $[\![\neg 0]\!]^{M_1,g_1} = 1$ or $[\![R(e_1,j)]\!]^{M_1,g_1} = 1$

 \mathbf{c}

2.2

