# E303: Communication Systems

Professor A. Manikas Chair of Communications and Array Processing

Imperial College London

An Overview of Fundamentals of Spread Spectrum: PN-codes and PN-signals

| _                                                                            |    |
|------------------------------------------------------------------------------|----|
| Table of Contents                                                            |    |
| 1 Introduction                                                               | 3  |
| Pre-4G Evolution                                                             | 4  |
| <ul> <li>Definition of a SSS</li> </ul>                                      | 7  |
| <ul> <li>Classification of SSS</li> </ul>                                    | 11 |
| <ul> <li>Modelling of b(t) in SSS</li> </ul>                                 | 12 |
| <ul> <li>Applications of Spread Spectrum Techniques</li> </ul>               | 13 |
| Definition of a Jammer                                                       | 14 |
| <ul> <li>Definition of a MAI</li> </ul>                                      | 15 |
| <ul> <li>Processing Gain (PG)</li> </ul>                                     | 16 |
| Equivalent EUE                                                               | 17 |
| 2 Principles of PN-sequences                                                 | 21 |
| Comments on PN-sequences Main Properties                                     | 22 |
| An Important "Trade-off"                                                     | 26 |
| 3 m-sequences                                                                | 28 |
| Shift Registers and Primitive Polynomials                                    | 29 |
| <ul> <li>Implementation of an 'm-sequence'</li> </ul>                        | 31 |
| Auto-Correlation Properties                                                  | 33 |
| <ul> <li>Some Important Properties of m-sequences</li> </ul>                 | 34 |
| <ul> <li>Cross-Correlation Properties &amp; Preferred m-sequences</li> </ul> | 36 |
| <ul> <li>A Note on m-sequences for CDMA</li> </ul>                           | 38 |
| Gold Sequences                                                               | 39 |
| Introductory Comments                                                        | 39 |
| Auto-Correlation Properties                                                  | 41 |
| Cross-Correlation Properties                                                 | 43 |
| Balanced Gold Sequences                                                      | 44 |

| _ | Ammondicos                                                         | 45 |
|---|--------------------------------------------------------------------|----|
| • | Appendices                                                         | 45 |
|   | A: Properties of a Purely Random Sequence                          | 45 |
|   | <ul> <li>B: Auto and Cross Correlation functions of two</li> </ul> |    |
|   | PN-sequences                                                       | 45 |
|   | • C: The concept of a 'Primitive Polynomial' in GF(2)              | 45 |
|   | D: Finite Field - Basic Theory                                     | 45 |
|   | <ul> <li>E: Table of Irreducible Polynomials over GF(2)</li> </ul> | 45 |
|   |                                                                    |    |

### Introduction

• General Block Diagram of a Digital Comm. System (DCS)



### Pre-4G Evolution



HSCDS: High Speed Circuit Switched Data GPRS: General Packet Radio Systems (2+)

EDGE: Enhanced Data Rate GSM Evolution (2+)

UMTS:Universal Mobile Telecommunication Systems (3G)



Note: CDMA  $\in$  Spread Spectrum Comms

 Industry Transformation and Convergence [from Ericsson 2006, LZT 123 6208 R5B]



WCDMA (Wideband CDMA) is a 3G mobile comm system. It is a wireless system where the telecommunications, computing and **media** industry converge and is based on a Layered Architecture design. (Note: CDMA Systems  $\in$  the class of SSS).

### Definition (Spread Spectrum System (SSS))

When a DCS becomes a Spread Spectrum System (SSS)



## Lemma (CS $\triangleq$ SSS)

$$CS \triangleq SSS \ iff \left\{ \begin{array}{l} \circ \ B_{ss} \gg \ message \ bandwidth \ (i.e. \ BUE=large) \\ \circ \ B_{ss} \neq f\{_{message}\} \\ \circ \ spread \ is \ achieved \ by \ means \ of \ a \ code \ which \ is \neq f\{_{message}\} \\ where \ B_{ss} = \ transmitted \ SS \ signal \ bandwidth \end{array} \right.$$

• our AIM: ways of accomplishing LEMMA-1.

◆ロト ◆部ト ◆注ト ◆注ト 注 りへで

#### N.B.:

- PCM, FM, etc spread the signal bandwidth but do not satisfy the conditions to be called SSS
- ullet  $B_{ ext{transmitted-signal}} \gg B_{ ext{message}}$ 
  - $\Rightarrow$ SSS distributes the transmitted energy over a wide bandwidth
  - $\Rightarrow$  SNIR at the receiver input is LOW.

Nevertheless, the receiver is capable of operating successfully because the transmitted signal has distinct characteristics relative to the noise

- **← ロ → ← 団 → ← 団 → ・ □ ・ ・ ○ へ** 





### (b) CDMA (K users):



- The PN signal b(t) is a function of a PN sequence of  $\pm 1$ 's  $\{\alpha[n]\}$ 
  - ▶ The sequences  $\{\alpha[n]\}$  must agreed upon in advance by Tx and Rx and they have status of password.
  - This implies that :
    - ★ knowledge of  $\{\alpha[n]\}$  ⇒demodulation=possible
    - ★ without knowledge of  $\{\alpha[n]\}$  ⇒demod.=very difficult
  - ▶ If  $\{\alpha[n]\}$  (i.e. "password") is purely random, with no mathematical structure, then
    - ★ without knowledge of  $\{\alpha[n]\}$  ⇒demodulation=impossible
  - However all practical random sequences have some periodic structure. This means:

$$\alpha[n] = \alpha[n + N_c] \tag{1}$$

where  $N_c$  =period of sequence

i.e. pseudo-random sequence (PN-sequence)

### Classification of SSS



# Modelling of b(t) in SSS

DS-SSS (Examples: DS-BPSK, DS-QPSK):

$$b(t) = \sum_{n} \alpha[n] \cdot c(t - nT_c)$$
 (2)

where  $\{\alpha[n]\}$  is a sequence of  $\pm 1$ 's;

c(t) is an energy signal of duration  $\mathcal{T}_c = \operatorname{rect}\left\{rac{t}{\mathcal{T}_c}
ight\}$ 



FH-SSS (Examples: FH-FSK)

$$b(t) = \sum_{n} \exp \{ j(2\pi k[n]F_1 t + \phi[n]) \} .c(t - nT_c)$$
 (3)

where  $\{\mathsf{k}[n]\}$  is a sequence of integers such that  $\{\alpha[n]\} \mapsto \{\mathsf{k}[n]\}$  and  $\{\alpha[n]\}$  is a sequence of  $\pm 1$ 's;

c(t) is an energy signal of duration  $T_c$ 

and with  $\phi[n]= ext{random: pdf}_{\phi[n]}=rac{1}{2\pi} ext{rect}\{rac{arphi}{2\pi}\}$ 

# Applications of Spread Spectrum Techniques

- Interference Rejection: to achieve interference rejection due to:
  - Jamming (hostile interference). N.B.: protection against cochannel interference is usually called anti-jamming (AJ)
  - Other users (Multiple Access Interefence MAI): Spectrum shared by "coordinated " users.
  - Multipath: Self-Jamming by delayed signal
- Energy Density Reduction (or Low Probability of Intercept LPI). LPI' main objectives:
  - to meet international allocations regulations
  - to reduce (minimize) the detectability of a transmitted signal by someone who uses spectral analysis
  - privacy in the presence of other listeners
- 3 Range or Time Delay Estimation

NB: interference rejection = most important application



• Jamming source, or, simply Jammer is defined as follows:

 $oxed{\mathsf{Jammer}} riangleq ext{intentional (hostile) interference}$ 



- \* the jammer has full knowledge of SSS design except the jammer does not have the key to the PN-sequence generator,
- ★ i.e. the jammer may have full knowledge of the SSSystem but it does not know the PN sequence used.

4 D > 4 A > 4 B > 4 B > B = 900

• Multiple Access Interference (MAI) is defined as follows:



- PG: is a measure of the interference rejection capabilities
- definition:

$$PG \triangleq \frac{B_{ss}}{B} = \frac{1/T_c}{1/T_{cs}} = \frac{T_{cs}}{T_c}$$
 (4)

where B=bandwidth of the conventional system

- PG is also known as "spreading factor" (SF)
- PG = very important in DS-SSS
- PG  $\neq$  very important in FH-SSS



#### Remember:

- ★ Jamming source, or, simply Jammer = intentional interference
- ★ Interfering source = unintentional interference



- ★ With area-B = area-A we can find  $N_i$
- \*  $P_j = 2 \times \underbrace{\text{area} \mathbf{A}}_{} = 2 \times \underbrace{\text{area} \mathbf{B}}_{} = N_j B_j \Rightarrow N_j = \frac{P_j}{B_i}$

17 / 46

if

$$B_J = qB_{ss}; \ 0 < q \le 1 \tag{5}$$

then

$$EUE_J = \frac{E_b}{N_J} = \frac{P_s.B_J}{P_J.r_b} = \frac{P_s.q.B_{ss}}{P_J.B} = PG \times SJR_{in} \times q \quad (6)$$

$$EUE_{equ} = \frac{E_b}{N_0 + N_J}$$
 (7)

$$= \mathsf{PG} \times \mathsf{SJR}_{in} \times q \times \left(\frac{\mathsf{N}_0}{\mathsf{N}_i} + 1\right)^{-1} \tag{8}$$

where

$$SJR_{in} \triangleq \frac{P_s}{P_I} \tag{9}$$



SS Transmission in the presence of a Jammer (or MAI)



• SS Reception in the presence of a Jammer (or MAI)



- PN-codes (or PN-sequences, or spreading codes) are sequences of +1s and -1s (or 1s and 0s) having special correlation properties which are used to distinguish a number of signals occupying the same bandwidth.
- Five Properties of Good PN-sequences:

| Property-1 | easy to generate                        |
|------------|-----------------------------------------|
| Property-2 | randomness                              |
| Property-3 | long periods                            |
| Property-4 | impulse-like auto-correlation functions |
| Property-5 | low cross-correlation                   |

# Comments on PN-sequences Main Properties

- Comments on Properties 1, 2 & 3
  - Property-1 is easily achieved with the generation of PN sequences by means of shift registers, while
  - Property-2 & Property-3 are achieved by appropriately selecting the feedback connections of the shift registers.

#### Comments on Property-4

- to combat multipath, consecutive bits of the code sequences should be uncorrelated.
   i.e. code sequences should have impulse-like autocorrelation functions.
  - Therefore it is desired that the auto-correlation of a PN-sequence is made as small as possible.
- ► The success of any spread spectrum system relies on certain requirements for PN-codes. Two of these requirements are:
  - 1 the autocorrelation peak must be sharp and large (maximal) upon synchronisation (i.e. for time shift equal to zero)
  - the autocorrelation must be minimal (very close to zero) for any time shift different than zero.
- ▶ A code that meets the requirements (1) and (2) above is the m-sequence which is ideal for handling multipath channels.



► The figure below shows a shift register of 5 stages together with a modulo-2 adder. By connecting the stages according to the coefficients of the polynomial  $D^5 + D^2 + 1$  an m-sequence of length 31 is generated (output from Q5).

The autocorrelation function of this m-sequence signal is shown in the previous page





(b)

- Comments on Property-5
  - ▶ If there are a number of PN-sequences

$$\{\alpha_1[k]\}, \{\alpha_2[k]\}, ..., \{\alpha_K[k]\}$$
 (10)

then if these code sequences are not totally uncorrelated, there is always an interference component at the output of the receiver which is proportional to the cross-correlation between different code sequences.

► Therefore it is desired that this cross-correlation is made as small as possible.

# An Important "Trade-off"

- There is a trade-off between Properties-4 and 5.
- In a CDMA communication environment there are a number of PN-sequences

$$\{\alpha_1[k]\}, \{\alpha_2[k]\}, ...., \{\alpha_K[k]\}$$

of period  $N_c$  which are used to distinguish a number of signals occupying the same bandwidth.

- Therefore, based on these sequences, we should be able to
  - \* combat multipath (which implies that the auto-correlation of a PN-sequence  $\{\alpha_i[k]\}$  should be made as small as possible)
  - remove interference from other users/signals, (which implies that the cross-correlation should be made as small as possible).

### Corollary

The following inequality is always valid:

$$R_{auto}^2 + R_{cross}^2 > a \ constant \ which \ is \ a \ function \ of \ period \ N_c$$
 (11)

i.e. there is a trade-off between the peak autocorrelation and cross-correlation parameters.

- Thus, the autocorrelation and cross-correlation functions cannot be both made small simultaneously.
- The design of the code sequences should be therefore very careful.

#### N.B.:

- A code with excellent autocorrelation is the m-sequence.
- A code that provides a trade-off between auto and cross correlation is the gold-sequence.

### m-sequences

- m-seq.: widely used in SSS because of their very good autocorrelation properties.
- PN code generator: is periodic
  - i.e. the sequence that is produced repeats itself after some period of time

### Definition (m-sequence)

A sequence generated by a linear *m*-stages Feedback shift register is called a maximal length, a maximal sequence, or simply m-sequence, if its period is

$$N_c = 2^m - 1 \tag{12}$$

(which is the maximum period for the above shift register generator)

• The initial contents of the shift register are called initial conditions.

# Shift Registers and Primitive Polynomials

• The period  $N_c$  depends on the feedback connections (i.e. coefficients  $c_i$ ) and  $N_c=max$ , i.e.  $N_c=2^m-1$ , when the characteristic polynomial

$$c(D) = c_m D^m + c_{m-1} D^{m-1} + \dots + c_1 D + c_0$$
 with  $c_0 = 1$  (13)

is a primitive polynomial of degree m.

rule: if 
$$c_i = \begin{cases} 0 \Longrightarrow \text{ no connection} \\ 1 \Longrightarrow \text{ there is connection} \end{cases}$$
 (14)

 Definition of PRIMITIVE polynomial = very important (see Appendix C)



## Examples (Some Primitive Polynomials)

| degree- <i>m</i> | polynomial      |  |  |
|------------------|-----------------|--|--|
| 3                | $D^3 + D + 1$   |  |  |
| 4                | $D^4 + D + 1$   |  |  |
| 5                | $D^5 + D^2 + 1$ |  |  |
| 6                | $D^6 + D + 1$   |  |  |
| 7                | $D^7 + D + 1$   |  |  |

• Please see Appendix E for some tables of irreducible & primitive polynomial over GF(2).

<ロ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □ > ← □

### Implementation of an m-sequence

use a maximal length shift register
 i.e. in order to construct a shift register generator for sequences of any permissible length, it is only necessary to know the coefficients of the primitive polynomial for the corresponding value of m

$$f_c = \frac{1}{T_c} = \text{chip-rate} = \text{clock-rate}$$
 (15)



$$c(D) = c_m D^m + c_{m-1} D^{m-1} + \dots + c_1 D + c_0$$
 (16)

Example 
$$(c(D) = D^3 + D + 1 = \text{primitive} \implies \text{power} = m = 3)$$

• coefficients= $(1,0,1,1) \Rightarrow N_c = 7 = 2^m - 1$  i.e.period= $7T_c$ 



|                          | <b>1</b> st | <b>2</b> nd | o/p<br><b>3</b> rd |
|--------------------------|-------------|-------------|--------------------|
| initial condition        | 1           | 1           | 1                  |
| clock pulse No.1         | 0           | 1           | 1                  |
| clock pulse No.2         | 0           | 0           | 1                  |
| clock pulse No.3         | 1           | 0           | 0                  |
| clock pulse No.4         | 0           | 1           | 0                  |
| clock pulse No. <b>5</b> | 1           | 0           | 1                  |
| clock pulse No. <b>6</b> | 1           | 1           | 0                  |
| clock pulse No.7         | 1           | 1           | 1                  |

• Note that the sequence of 0's and 1's is transformed to a sequence of  $\pm 1s$  by using the following function

$$o/p = 1 - 2 \times i/p \tag{18}$$

Prof. A. Manikas (Imperial College) EE303: PN-codes & PN-signals v.16c3 32 / 46

# Auto-Correlation Properties

ullet An m-sequ.  $\{\alpha[n]\}$  has a two valued auto-correlation function:

$$R_{\alpha\alpha}[k] = \sum_{n=1}^{N_c} \alpha[n]\alpha[n+k] = \begin{cases} N_c & k = 0 \mod N_c \\ -1 & k \neq 0 \mod N_c \end{cases}$$
(19)

• This implies that  $R_{bb}(\tau)$  is also a "two-valued"



• Remember that a sequence  $\{\alpha[n]\}$  of period  $N_c = 2^m - 1$ , generated by a linear FB shift register, is called a maximal length sequence.

# Some Properties of m-sequences

- ullet There is an appropriate balance of -1s and +1s
  - In any period there are  $\left\{ \begin{array}{ll} N_{c-}=2^{m-1} & \text{No. of -1s} \\ N_{c+}=2^{m-1}-1 & \text{No. of +1s} \end{array} \right\}$  i.e.

$$Pr(+1) \simeq Pr(-1) \tag{20}$$

- shift-property of m-sequences:
  - if  $\{\alpha[n]\}$  is an m-sequence then

$$\{\alpha[n]\} + \underbrace{\{\alpha[n+m]\}}_{\text{shift by } m} = \underbrace{\{\alpha[n+k]\}}_{\text{shift by } k \neq m}$$
(21)



- In a complete SSS we use more than one different m-sequences
  - Thus the number of m-sequs of a given length is an IMPORTANT property
    - because in a CDMA system several users communicate over a common channel so that different -sequences are necessary to distinguish their signals
  - ▶ Number of m-sequs of length  $N_c$ :

No. of m-sequs of length 
$$N_c \triangleq \frac{1}{m} \Phi \{ N_c \}$$
 (22)

where

$$\Phi \{N_c\} \triangleq \text{Euler totient function}$$
 (23)  
= No of (+)ve integers <  $N_c$  and relative prime to  $N_c$ 

▶ Note: if  $N_c = p.q$  where p, q are prime numbers then

$$\Phi\{N_c\} = (p-1).(q-1) \tag{24}$$

(□ ▶ ◀♬ ▶ ◀불 ▶ ◀불 ▶ · 볼 · 쒼٩æ

# Cross-Correlation Properties and Preferred m-sequences

- ullet sequences of period  $N_c$  are used to distinguish two signals occupying the same bandwidth.
- A measure of interaction between these signals is their cross-correlation:

$$R_{\alpha_i\alpha_j}[k] = \sum_{n=1}^{N_c} \alpha_i[n] \alpha_j[n+k]$$

- However,
  - there exist certain pairs of sequences that have large peaks and noise-like behaviour in their cross-correlation
  - while others exhibit a rather smooth three valued cross-correlation.
- The latter are called preferred sequences.

4 D > 4 B > 4 E > 4 E > 9 Q O

• It can be shown that the cross-correlation of **preferred sequences** takes on values from the set

$$\{-1, -R_{cross}, R_{cross} - 2\} \tag{25}$$

where

$$R_{cross} = \begin{cases} 2^{\frac{m+1}{2}} + 1 & m = odd \\ 2^{\frac{m+2}{2}} + 1 & m = even \end{cases}$$
 (26)

$$R_{b_ib_i}(\tau)$$
 =preferred:



$$R_{b_ib_j}( au)=\mathit{non} ext{-preferred}$$
:



Prof. A. Manikas (Imperial College)

## A Note on m-sequences for CDMA

- Because of the high cross-correlation between m-sequences, the interference between different users in a CDMA environment will be large.
  - ► Therefore, m-sequences are not suitable for CDMA applications.
- However, in a complete synchronised CDMA system, different offsets of the same m-sequence can be used by different users.
  - ▶ In this case the excellent autocorrelation properties (rather than the poor cross-correlation) are employed.
  - Unfortunately this approach cannot operate in an asynchronous environment.

## Gold Sequences

- Although m-sequences possess excellent randomness (and especially autocorrelation) properties, they are not generally used for CDMA purposes as it is difficult to find a set of m-sequences with low cross-correlation for all possible pairs of sequences within the set.
- However, by slightly relaxing the conditions on the autocorrelation function, we can obtain a family of code sequences with lower cross-correlation.
- Such an encoding family can be achieved by Gold sequences or Gold codes which are generated by the modulo-2 sum of two *m*-sequences of equal period.

- The Gold sequence is actually obtained by the modulo-2 sum of two m-sequences with different phase shifts for the first m-sequence relative to the second.
- Since there are  $N_c = 2^m 1$  different relative phase shifts, and since we can also have the two m-sequences alone, the actual number of different Gold-sequences that can be generated by this procedure is  $2^{m}+1$ .



#### Auto-Correlation Properties

- Gold sequences, however, are not maximal length sequences.
- Therefore, their auto-correlation function is not the two valued one given by Equ. (19), i.e.

$$\{N_c, -1\} \tag{27}$$

 The auto-correlation still has the periodic peaks, but between the peaks the auto-correlation is no longer flat.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ - 臺 - 釣९()~!









## Cross-Correlation Properties

- Gold-sequences have the same cross-correlation characteristics as preferred m-sequences,
   i.e. their cross-correlation is three valued.
- Gold sequences have higher  $R_{auto}$  and lower  $R_{cross}$  than m-sequences, and the trade-off (see Equ. 11) between these parameters is thus verified.

#### Balanced Gold codes.

- Balanced Gold Sequence: The number of "-1s" in a code period exceed the number of "1s" by one as is the case for m-sequences.
- We should note that not all Gold codes (generated by modulo-2 addition of 2 m-sequences) are balanced, i.e. the number of "-1s" in a code period does not always exceed the number of "1s" by one.
- For example, for m = odd only  $2^{m-1} + 1$  code sequences of the total  $2^m + 1$  are balanced, while the rest code  $2^{m-1} 1$  sequences have an excess or a deficiency of -1s.
- For m = 7, for instance, only 65 balanced Gold codes can be produced, out of a total possible of 129. Of these, 63 are non-maximal and two are maximal length sequences.
- Balanced Gold codes have more desirable spectral characteristics than non-balanced.
- Balanced Gold codes are generated by appropriately selecting the relative phases of the two original m-sequences.
- SUMMARY: By selecting any preferred pair of primitive polynomials it is
  easy to construct a very large set of PN-sequences (Gold-sequences).
  Thus, by assigning to each user one sequence from this set, the
  interference from other users is minimised.



#### **Appendices**

- Appendix A: Properties of a purely random sequence
- Appendix B: Auto and Cross Correlation functions of two PN-sequences
- Appendix C: The concept of a 'Primitive Polynomial' in GF(2⊂)
- Appendix D: Finite Field - Basic Theory
- Appendix E: Table of Irreducible Polynomials over GF(2)





# **Appendices**

## Appendix A: Properties of $\{\alpha[n]\}$ if it is a purely random sequence

Let the sequence  $\{\alpha[n]\}$  be the output of a discrete, memoryless source

INFORMATION SOURCE of 
$$\pm$$
 1s 
$$\begin{cases} P(\alpha[n] = 1) = 0.5 \\ P(\alpha[n] = -1) = 0.5 \end{cases} \rightarrow \{\alpha[n]\}$$

with

$$\mathcal{E}\{\alpha[n]\} = 0 \qquad (= 1 \times 0.5 + (-1) \times 0.5 = 0)$$

$$Var\{\alpha[n]\} = 1 \qquad (= 1^2 \times 0.5 + (-1)^2 \times 0.5 = 1)$$
(3)

The auto-correlation of the sequence  $\{\alpha[n]\}$  over M symbols is defined as follows

$$R_{\alpha\alpha}^{M}[k] \equiv \sum_{n=1}^{M} \alpha[n]\alpha[n+k] = \begin{cases} \sum_{n=1}^{M} \alpha[n]^{2} = \sum_{n=1}^{M} 1 = M & k = 0\\ \text{random} & k \neq 0 \end{cases}$$

$$(4)$$

Therefore the mean and the variance of the autocorrelation function  $R^M_{\alpha\alpha}[k]$  are as follows

$$\mathcal{E}\left\{R_{\alpha\alpha}^{M}[k]\right\} = \sum_{n=1}^{M} \mathcal{E}\left\{\alpha[n]\alpha[n+k]\right\} = \begin{cases} \sum_{n=1}^{M} \mathcal{E}\left\{\alpha[n]^{2}\right\} = \sum_{n=1}^{M} 1 = M & \text{if } k = 0\\ \sum_{n=1}^{M} \mathcal{E}\left\{\alpha[n]\right\} \mathcal{E}\left\{\alpha[n+k]\right\} = 0 & \text{if } k \neq 0 \end{cases}$$

$$(5)$$

$$Var\left\{R_{\alpha\alpha}^{M}[k]\right\} = \mathcal{E}\left\{R_{\alpha\alpha}^{M}[k]^{2}\right\} - \mathcal{E}\left\{R_{\alpha\alpha}^{M}[k]\right\}^{2} =$$

$$= \sum_{n=1}^{M} \sum_{m=1}^{M} \mathcal{E}\left\{\alpha[n]\alpha[n+k]\alpha[m]\alpha[m+k]\right\} - \mathcal{E}\left\{R_{\alpha\alpha}^{M}[k]\right\}^{2} =$$

$$= \begin{cases} \sum_{n=1}^{M} \sum_{m=1}^{M} \mathcal{E}\left\{\alpha^{2}[n]\right\} \cdot \mathcal{E}\left\{\alpha^{2}[m]\right\} - \mathcal{E}\left\{R_{\alpha\alpha}^{M}[0]\right\}^{2} = M^{2} - M^{2} = 0 & \text{if } k = 0 \\ \sum_{n=1}^{M} \mathcal{E}\left\{\alpha^{2}[n]\right\} \cdot \mathcal{E}\left\{\alpha^{2}[n+k]\right\} - \mathcal{E}\left\{R_{\alpha\alpha}^{M}[k]\right\}^{2} = M - 0 = M & \text{if } k \neq 0 \end{cases}$$

One may also define the cross-correlation of two sequences  $\{\alpha_1[n]\}$  and  $\{\alpha_2[n]\}$ 

$$R_{\alpha_1 \alpha_2}^M[k] = \sum_{n=1}^M \alpha_1[n] \alpha_2[n+k]$$
 (7)

Since  $\{\alpha_1[n]\}$  and  $\{\alpha_2[n]\}$  are independent the results are essentially the same as for the auto-correlation of  $\{\alpha_1[n]\}$  with non-zero lag k. This shows that completely random sequences have nice auto- and cross-correlation properties.



Note that pure random sequences could be used as code sequences, but since the receiver needs a replica of the desired code sequence in order to despread the signal, PN sequences are used instead in practice.

# Appendix B: Auto and Cross Correlation functions of two PN-sequences $\{\alpha \ i[n]\}$ and $\{\alpha \ j[n]\}$

• Consider the  $\infty$ -sequences of  $\pm 1$ s of period N:

$$\{\alpha_i[n]\} = ...., \alpha_i[N-1], \alpha_i[N], \alpha_i[1], \alpha_i[2], ...., \alpha_i[N-1], \alpha_i[N], \alpha_i[1], ....$$
  
$$\{\alpha_j[n]\} = ...., \alpha_j[N-1], \alpha_j[N], \alpha_j[1], \alpha_j[2], ...., \alpha_j[N-1], \alpha_j[N], \alpha_j[1], ....$$

• Then, there are three different cross-correlation functions

$$\Rightarrow \text{ periodic cross-correlation: } R_{\alpha_i \alpha_j}[k] \equiv \sum_{n=1}^{N} \alpha_i[n] \alpha_j[n+k]$$
 (9)

$$\diamond$$
 odd cross-correlation function:  $\overset{\sim}{R}_{\alpha_i\alpha_j}[k] = C_{\alpha_i\alpha_j}[k] - C_{\alpha_i\alpha_j}[k-N]$  (10)

- Note that:
  - ♦ it is easy to see that

$$R_{\alpha_i \alpha_j}[k] = C_{\alpha_i \alpha_j}[k] + C_{\alpha_i \alpha_j}[k - N] \tag{11}$$

$$R_{\alpha_i \alpha_i}[k] = R_{\alpha_i \alpha_i}[N - k] \tag{12}$$

the name of "odd cross-correlation" function follows from the property

$$\widetilde{R}_{\alpha_i \alpha_j}[k] = -\widetilde{R}_{\alpha_i \alpha_j}[N-k] \tag{13}$$

• For a single code sequence, the corresponding autocorrelation functions have similar properties.

• For best CDMA system performance, all  $C_{\alpha_i\alpha_j}[k]$ ,  $R_{\alpha_i\alpha_j}[k]$ ,  $R_{\alpha_i\alpha_j}[k]$  should be as small as possible, since they are proportional to the interference from other users.

The out-of-phase (i.e. for lag not equal to zero) autocorrelation functions should also be made as small as possible, since these affect the multipath suppression capabilities and the acquisition and tracking performance of the receivers.

We thus define the peak cross-correlation parameters

$$\begin{cases}
R_{\text{cross}} = \max \left\{ \left\| R_{\alpha_{i}\alpha_{j}}[k] \right\|, \, \forall (i,j,k; \ i < j) \right\} \\
\widetilde{R}_{\text{cross}} = \max \left\{ \left\| \widetilde{R}_{\alpha_{i}\alpha_{j}}[k] \right\|, \, \forall (i,j,k; \ i < j) \right\}, \\
C_{\text{cross}} = \max \left\{ \left\| C_{\alpha_{i}\alpha_{j}}[k] \right\|, \, \forall (i,j,k; \ i < j) \right\}
\end{cases} (14)$$

Similarly we define the peak autocorrelation parameters

$$\begin{cases}
R_{\text{auto}} = \max\{ \|R_{\alpha_{i}\alpha_{i}}^{N}[k]\|, \forall i; \forall k \neq 0 \pmod{N} \}, \\
\widetilde{R}_{\text{auto}} = \max\{ \|\widetilde{R}_{\alpha_{i}\alpha_{i}}^{N}[k]\|, \forall i; \forall k \neq 0 \pmod{N} \}, \\
C_{\text{auto}} = \max\{ \|C_{\alpha_{i}\alpha_{i}}^{N}[k]\|, \forall i; \forall k \neq 0 \pmod{N} \}
\end{cases}$$
(15)

• Finally we define

$$\begin{cases} R_{\text{peak}} = \max\{R_{\text{auto}}, R_{\text{cross}}\} \\ \widetilde{R}_{\text{peak}} = \max\{\widetilde{R}_{\text{auto}}, \widetilde{R}_{\text{cross}}\} \\ C_{\text{peak}} = \max\{C_{\text{auto}}, C_{\text{cross}}\} \end{cases}$$
(16)

• With the above definitions we can see that the smaller the peak correlation parameters  $R_{\rm peak}$ ,  $\widetilde{R}_{\rm peak}$  and  $C_{\rm peak}$ , the better the performance of a system. These parameters, however, cannot be made as small as we wish. For example, for a set of K sequences of period N, according to the Welch lower bound,

$$R_{\text{peak}} \ge N \sqrt{\frac{K-1}{NK-1}} \qquad C_{\text{peak}} \ge N \sqrt{\frac{K-1}{2NK-K-1}}$$
 (17)

Therefore for large values of K and N the lower bounds on  $R_{\rm peak}$  and  $C_{\rm peak}$  are approximately

$$R_{\rm peak} \ge \sqrt{N}$$
  $C_{\rm peak} \ge \sqrt{\frac{N}{2}}$  (18)

Moreover, it can show that

$$R_{\text{auto}}^2 + R_{\text{cross}}^2 > N \qquad \qquad C_{\text{auto}}^2 + C_{\text{cross}}^2 > \frac{N}{2}$$
 (19)

The above shows that not only is there a lower bound on the maximum correlation parameters, but also a trade-off between the peak autocorrelation and cross-correlation parameters. Thus the autocorrelation and cross-correlation functions cannot be both made small simultaneously. The design of the code sequences should be therefore very careful so that all the of above quantities of interest remain as small as possible.

# Appendix C: The concept of a 'Primitive Polynomial' in GF(2) (see Appendix 4E for 'finite field' basic theory).

• Consider a polynomial f(D) over the binary field GF(2):  $f(D) = f_n D^n + f_{n-1}D^{n-1} + \dots + f_1D + f_0$   $\downarrow p$   $\downarrow p$   $\downarrow p$   $\downarrow p$ 

The largest power of D with non-zero coef. is called **degree** of f(D) over GF(2)

$$\bullet \text{ if } f(D), g(D) \in \mathrm{GF}(2) \quad \text{then} \quad \left\{ \begin{array}{l} f(D) + g(D) & \in \mathrm{GF}(2) \\ f(D) \cdot g(D) & \in \mathrm{GF}(2) \end{array} \right.$$

## divisible polynomial:

A polynomial  $g(D) \in GF(2)$  is said to divide  $f(D) \in GF(2)$  if  $\exists h(D): f(D) = h(D).g(D)$ . Then the polynomial f(D) is called divisible

## irreducible polynomial:

A polynomial  $f(D) \in GF(2)$  of degree m is called irreducible if f(D) is not divisible by any polynomial over GF(2) of degree less than m but greater than zero.

(or equivalently if it cannot factored into polynomials of smaller degree whose coefs are also 0 and 1 - i.e. the polynomials belong to GF(2))

• two important properties of <u>irreducible polynomials</u>: if f(D)=irreducible  $\Rightarrow \begin{cases} f(0) \neq 0 \\ f(D) \text{ has odd number of terms} \end{cases}$ 

primitive polynomial:

if 
$$\begin{cases} f(D) = \text{irreducible (of degree } m) \text{ polynomial, and} \\ f(D) \boxed{(D^k - 1)} \quad \text{i.e. } f(D) \text{ does not divide } D^k - 1 \text{ for any } k < 2^m - 1 \\ \neq 0 \end{cases}$$

then  $f(D) \equiv primitive polynomial$ 

e.g. 
$$D^3 + D^2 + 1$$
;  $D^4 + D + 1$ 

- only a small number of polynomials are *primitive*, **but**  $\forall m \exists$  at least one *primitive* polynomial.
- examples:  $f(D) = D^3 + D^2 + 1 = primitive$   $f(D) = D^4 + D^2 + 1 = irreducible \ but \ not \ primitive$

## **Appendix D: FINITE FIELD -BASIC THEORY**

•Consider a set  $S = \{s_1, s_2, ..., s_M\}$  having M elements.

A finite field is constructed by defining two binary operations on the set called addition & multiplication such that certain conditions are satisfied. Addition and multiplication of two elements  $s_i$  and  $s_j$  are denoted  $s_i + s_j$  and  $s_i + s_j$  respectively.

- The conditions that must be satisfied for S and the two operations to be a finite field are:
- 1. The addition or multiplication of any two elements of S must yield an element of S. That is, the set is closed under both addition and multiplication.
- 3. The set S must contain an **additive identity** element which will always be denoted by 0.

$$s_i + 0 = s_i$$

4. The set S must contain an <u>additive inverse</u> element  $-s_i$  for every element  $s_i$ 

$$s_i + (-s_i) = 0$$

5. The set S must contain a **multiplicative identity** element which will always be denoted by 1.

$$s_{i}.1 = s_{i}$$

6. The set S must contain a <u>multiplicative inverse</u> element  $s_i^{-1}$  for every element  $s_i$  (excluding the additive identity 0)

$$s_i.s_i^{-1} = 1$$

- 7. Multiplication must be <u>distributive</u> over addition.  $\rightarrow s_{\ell} + (s_{\ell} + s_{k}) = (s_{\ell} + s_{k}) + s_{k}$
- 8. Both addition and multiplication must be <u>Associative</u>.  $\rightarrow (s_{\downarrow}+s_{\downarrow}) \cdot s_{k}=s_{\downarrow}s_{k}+s_{\downarrow}s_{k}$

#### • EXAMPLE

It is easy to verify that  $S=\{0,1,2\}$  with addition and multiplication defined as follows

| modulo-3 + | 0 | 1 | 2 | modulo-3 × | 0 | 1 | 2 |
|------------|---|---|---|------------|---|---|---|
| 0          | 0 | 1 | 2 | 0          | 0 | 0 | 0 |
| 1          | 1 | 2 | 0 | 1          | 0 | 1 | 2 |
| 2          | 2 | 0 | 1 | 2          | 0 | 2 | 1 |

is a field of 3 elements

e.g.

additive inverse 
$$-0 = 0$$

$$-1 = 2$$

$$-2 = 1$$

additive inverse -0 = 0 multiplicative inverse  $1^{-1} = 1$ 

$$2^{-1} = 2$$

#### • EXAMPLE

It is easy also to verify that  $S = \{0, 1\}$ , with addition and multiplication defined as follows:

| modulo-2 + | 0 | 1 |
|------------|---|---|
| 0          | 0 | 1 |
| 1          | 1 | 0 |

| modulo-2 | X | 0 | 1 |
|----------|---|---|---|
|          | 0 | 0 | 0 |
|          | 1 | 0 | 1 |

is a field of 2 elements

e.g.

additive inverse 
$$-0 = 0$$
  
 $-1 = 1$ 

additive inverse 
$$-0 = 0$$
 multiplicative inverse  $1^{-1} = 1$ 

•Note that  $S = \{0, 1\}$  field above is the binary number field. Furthermore that addition can be performed electronically using EXCLUSIVE-OR gate and multiplication can be performed using an AND-gate.

## •An Important Result (presented without proof):

The set of integers  $S = \{0, 1, 2, \dots, M-1\}$ , where  $\begin{cases} M \text{ is prime, and} \\ addition \text{ and multiplication are carried out modulo-} M \end{cases}$ 

is a field. These fields are called **prime fields**.

#### Subtraction and Division:

The operations of subtraction and division are also easily defined for any field using the addition and multiplication tables, just as is done with the real-number field.

Subtraction is defined as the addition of the additive inverse and division is defined as multiplication by the multiplicative inverse.

For example for the field  $S = \{0,1,2\}$  subtraction is defined by 1 + (-2) = 1 + 1 = 2. Similarly,  $1 \div 2 = 1 \cdot (2^{-1}) = 1.2 = 2$ .

- $\bullet$ Note that nonprime fields do not necessarily employ modulo-M arithmetic.
- Fields can be constructed having any prime number of elements p or  $p^m$ . A field having  $p^m$  elements is called an extension field of the field having p elements.
- $\bullet$  Finite fields are often referred to as Galois fields, using the notation GF(M) for the field having M elements.
- •The remainder of this discussion will be concerned exclusively with the binary number field GF(2) and its extensions  $GF(2^m)$ . The reason for this is that the electronics used to implement the code generators is binary, and some of the shift register generators will be shown to generate the elements of  $GF(2^m)$

# **Appendix E:** Table of Irreducible Polynomials over GF(2)

(from "Error-Correcting Codes" by Peterson & Weldom MIT Press, 1972)



From: "Error-Correcting Codes" by Peterson & Weldon MIT PRESS, 1972.

# Appendix C Tables of Irreducible Polynomials over GF(2)

From Table C.2 all irreducible polynomials of degree 16 or less over GF(2) can be found, and certain of their properties and relations among them are given. A primitive polynomial with a minimum number of nonzero coefficients and polynomials belonging to all possible exponents are given for each degree 17 through 34.

Polynomials are given in an octal representation. Each digit in the table represents three binary digits according to the following code:

0 000 2 010 4 100 6 110 1 001 3 011 5 101 7 111

The binary digits then are the coefficients of the polynomial, with the high-order coefficients at the left. For example, 3525 is listed as a tenth-degree polynomial. The binary equivalent of 3525 is 0.1110101010101, and the corresponding polynomial is  $X^{10} + X^9 + X^8 + X^6 + X^4 + X^2 + 1$ .

The reciprocal polynomial of an irreducible polynomial is also irreducible, and the reciprocal polynomial of a primitive polynomial is primitive. Of any pair consisting of a polynomial and its reciprocal polynomial, only one is listed in the table. Each entry that is followed by a letter in the table is an irreducible polynomial of the indicated degree. For degree 2 through 16, these polynomials along with their reciprocal polynomials comprise all irreducible polynomials of that degree.

APPENDIX C 47

The letters following the octal representation give the following information:

- A, B, C, D Not primitive.
- E, F, G, H Primitive.
- A, B, E, F The roots are linearly dependent.
- C, D, G, H The roots are linearly independent.
- A, C, E, G The roots of the reciprocal polynomial are linearly dependent.
- B, D, F, H The roots of the reciprocal polynomial are linearly independent.

The other numbers in the table tell the relation between the polynomials. For each degree, a primitive polynomial with a minimum number of nonzero coefficients was chosen, and this polynomial is the first in the table of polynomials of this degree. Let  $\alpha$  denote one of its roots. Then the entry following j in the table is the minimum polynomial of  $\alpha^j$ . The polynomials are included for each j unless for some i < j either  $\alpha^i$  and  $\alpha^j$  are roots of the same irreducible polynomial or  $\alpha^i$  and  $\alpha^{-j}$  are roots of the same polynomial. The minimum polynomial of  $\alpha^j$  is included even if it has smaller degree than is indicated for that section of the table; such polynomials are not followed by a letter in the table.

Examples. The primitive polynomial (103), or  $X^6 + X + 1 = p(X)$  is the first entry in the table of sixth-degree irreducible polynomials. If  $\alpha$  designates a root of p(X), then  $\alpha^3$  is a root of (127) and  $\alpha^5$  is a root of (147). The minimum polynomial of  $\alpha^9$  is (015) =  $X^3 + X^2 + 1$ , and is of degree 3 rather than 6.

There is no entry corresponding to  $\alpha^{17}$ . The other roots of the minimum polynomial of  $\alpha^{17}$  are  $\alpha^{34}$ ,  $\alpha^{68} = \alpha^5$ ,  $\alpha^{10}$ ,  $\alpha^{20}$ , and  $\alpha^{40}$ . Thus the minimum polynomial of  $\alpha^{17}$  is the same as the minimum polynomial of  $\alpha^5$ , or (147). There is no entry corresponding to  $\alpha^{13}$ . The other roots of the minimum polynomial  $p_{13}(X)$  of  $\alpha^{13}$  are  $\alpha^{26}$ ,  $\alpha^{52}$ ,  $\alpha^{104} = \alpha^{41}$ ,  $\alpha^{82} = \alpha^{19}$ , and  $\alpha^{38}$ . None of these is listed. The roots of the reciprocal polynomial  $p_{13}^*(X)$  of  $p_{13}(X)$  are  $\alpha^{-13} = \alpha^{50}$ ,  $\alpha^{-26} = \alpha^{37}$ ,  $\alpha^{-52} = \alpha^{11}$ ,  $\alpha^{-41} = \alpha^{22}$ ,  $\alpha^{-19} = \alpha^{44}$  and  $\alpha^{-38} = \alpha^{25}$ . The minimum polynomial of  $\alpha^{11}$  is listed as (155) or  $X^6 + X^5 + X^3 + X^2 + 1$ . The minimum polynomial of  $\alpha^{13}$  is the reciprocal polynomial of this, or  $p_{13}(X) = X^6 + X^4 + X^3 + X + 1$ :

#### 474 APPENDIX C

The exponent to which a polynomial belongs can be found as follows: If  $\alpha$  is a primitive element of  $GF(2^m)$ , then the order e of  $\alpha^j$  is

$$e = \frac{(2^m - 1)}{\text{GCD}(2^m - 1, j)}$$

and c is also the exponent to which the minimum function of  $\alpha^{j}$  belongs. Thus, for example, in  $GF(2^{10})$ ,  $\alpha^{55}$  has order 93, since

$$93 = \frac{1023}{\text{GCD}(1023, 55)} = \frac{1023}{11}$$

Thus the polynomial (3453) belongs to 93. In this regard Table C.1 is useful.

Marsh (1957) has published a table of all irreducible polynomials of degree 19 or less over GF(2). In Table C.2 the polynomials are arranged in lexicographical order; this is the most convenient form for determining whether or not a given polynomial is irreducible.

For degree 19 or less, the minimum-weight polynomials given in this table were found in Marsh's tables. For degree 19 through 34, the minimum-weight polynomial was found by a trial-and-error process in which each polynomial of weight 3, then 5, was tested. The following procedure was used to test whether a polynomial f(X) of degree m is primitive:

Table C.1. Factorization of  $2^m - 1$  into Primes.

```
2^3 - 1 = 7
                                                    2^{19} - 1 = 524287
                                                    2^{20} - 1 = 3 \times 5 \times 5 \times 11 \times 31 \times 41
2^4 - 1 = 3 \times 5
2^5 - 1 = 31
                                                    2^{21} - 1 = 7 \times 7 \times 127 \times 337
                                                    2^{22} - 1 = 3 \times 23 \times 89 \times 683
2^6 - 1 = 3 \times 3 \times 7
                                                    2^{23} - 1 = 47 \times 178481
2^7 - 1 = 127
2^8 - 1 = 3 \times 5 \times 17
                                                    2^{24} - 1 = 3 \times 3 \times 5 \times 7 \times 13 \times 17 \times 241
2^9 - 1 = 7 \times 73
                                                    2^{25} - 1 = 31 \times 601 \times 1801
2^{10} - 1 = 3 \times 11 \times 31
                                                    2^{26} - 1 = 3 \times 2731 \times 8191
2^{11} - 1 = 23 \times 89
                                                    2^{27} - 1 = 7 \times 73 \times 262657
2^{12} - 1 = 3 \times 3 \times 5 \times 7 \times 13
                                                    2^{28} - 1 = 3 \times 5 \times 29 \times 43 \times 113 \times 127
2^{13} - 1 = 8191
                                                    2^{29} - 1 = 233 \times 1103 \times 2089
2^{14} - 1 = 3 \times 43 \times 127
                                                    2^{30} - 1 = 3 \times 3 \times 7 \times 11 \times 31 \times 151 \times 331
2^{15} - 1 = 7 \times 31 \times 151
                                                    2^{31} - 1 = 2147483647
2^{16} - 1 = 3 \times 5 \times 17 \times 257
                                                   2^{32} - 1 = 3 \times 5 \times 17 \times 257 \times 65537
                                                   2^{33} - 1 = 7 \times 23 \times 89 \times 599479
2^{17} - 1 = 131071
2^{18} - 1 = 3 \times 3 \times 3 \times 7 \times 19 \times 73 2^{34} - 1 = 3 \times 43691 \times 131071
```

#### APPENDIX C 475

- 1. The residues of 1, X,  $X^2$ ,  $X^4$ , ...,  $X^{2^{m-1}}$  are formed modulo f(X).
- 2. These are multiplied and reduced modulo f(X) to form the residue of  $X^{2^m}-1$ . If the result is not 1, the polynomial is rejected. If the result is 1, the test is continued.
- 3. For each factor r of  $2^m 1$ , the residue of  $X^r$  is formed by multiplying together an appropriate combination of the residues formed in Step 1. If none of these is 1, the polynomial is primitive.

Each other polynomial in the table was found by solving for the dependence relations among its roots by the method illustrated at the end of Section 8.1.

#### 476 APPENDIX C

**Table C.2.** Irreducible Polynomials of Degree  $\leq$ 34 over GF(2).

| Table C.Z. Irred                                                                                                                                                          | ucible rolyhol                                                                                                                                                           | mais of Degre                                                                                                                                                                                       | e ≥34 0vei 01                                                                                                                                                                                       | (2).                                                                                                                                         |                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEGREE 2                                                                                                                                                                  | 1 7H                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                         |
| DEGREE 3                                                                                                                                                                  | 1 13F                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                         |
| DEGREE 4                                                                                                                                                                  | 1 23F                                                                                                                                                                    | 3 370                                                                                                                                                                                               | 5 07                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                         |
| DEGREE 5                                                                                                                                                                  | 1 45E                                                                                                                                                                    | 3 75G                                                                                                                                                                                               | 5 67H                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                         |
| DEGREE 6<br>11 155E                                                                                                                                                       | 1 103F<br>21 007                                                                                                                                                         | 3 1278                                                                                                                                                                                              | 5 147H                                                                                                                                                                                              | 7 111A                                                                                                                                       | 9 015                                                                                                                                                                                   |
| DEGREE 7<br>11 325G                                                                                                                                                       | 1 211E<br>13 203F                                                                                                                                                        | 3 217E<br>19 313H                                                                                                                                                                                   | 5 235E<br>21 345G                                                                                                                                                                                   | 7 367H                                                                                                                                       | 9 277E                                                                                                                                                                                  |
| DEGREE 8<br>11 747H<br>23 543F<br>51 037                                                                                                                                  | 1 435E<br>13 453F<br>25 433B<br>85 007                                                                                                                                   | 3 567B<br>15 7270<br>27 477B                                                                                                                                                                        | 5 763D<br>17 023<br>37 537F                                                                                                                                                                         | 7 551E<br>19 545E<br>43 703H                                                                                                                 | 9 675C<br>21 613D<br>45 471A                                                                                                                                                            |
| DEGREE 9<br>11 1055E<br>23 1751E<br>39 1715E<br>55 1275E                                                                                                                  | 1 1021E<br>13 1167F<br>25 1743H<br>41 1563H<br>73 0013                                                                                                                   | 3 1131E<br>15 1541E<br>27 1617H<br>43 1713H<br>75 1773G                                                                                                                                             | 5 1461G<br>17 1333F<br>29 1553H<br>45 1175E<br>77 1511C                                                                                                                                             | 7 1231A<br>19 1605G<br>35 1401C<br>51 1725G<br>83 1425G                                                                                      | 9 1423G<br>21 1027A<br>37 1157F<br>53 1225E<br>85 1267E                                                                                                                                 |
| DEGREE 10<br>11 2065A<br>23 2033F<br>35 3023H<br>47 3177H<br>59 3471G<br>83 3623H<br>99 0067<br>147 2355A<br>179 3211G                                                    | 1 2011E<br>13 2157F<br>25 2443F<br>37 3543F<br>49 3525G<br>69 2701A<br>85 2707E<br>101 2055E<br>149 3025G<br>341 0007                                                    | 3 20178<br>15 2653B<br>27 3573D<br>39 2107B<br>51 2547B<br>71 3323H<br>87 2311A<br>103 3575G<br>155 2251A                                                                                           | 5 2415E<br>17 3515G<br>29 2461E<br>41 2745E<br>53 2617F<br>73 3507H<br>89 2327F<br>105 3607C<br>165 0051                                                                                            | 7 3771G<br>19 2773F<br>31 3043D<br>43 2431E<br>55 3453D<br>75 2437B<br>91 3265G<br>107 3171G<br>171 3315C                                    | 9 22578<br>21 3753D<br>33 0075C<br>45 3061C<br>57 3121C<br>77 2413B<br>93 37770<br>109 2047F<br>173 3337H                                                                               |
| DEGREE 11 11 7413H 23 4757B 35 4505E 47 7173H 59 4533F 75 6227H 87 5265E 103 7107H 115 7311C 147 7243H 163 7745G 179 4653F 203 6013H 219 7273H 331 6447H                  | 1 4005E 13 4143F 25 4577F 27 5337F 49 5711E 61 4341E 77 6263H 89 5343B 105 7041G 117 5463F 149 7621G 165 7317H 181 5411E 205 7647H 293 7723H 333 5141E                   | 3 4445E<br>15 4563F<br>27 6233H<br>39 5263F<br>51 5221E<br>67 6711G<br>79 5235E<br>91 4767F<br>107 4251E<br>119 5755E<br>151 7161G<br>167 5205E<br>183 5545E<br>211 6507H<br>299 4303B<br>339 7461G | 5 4215E<br>17 4053F<br>29 6673H<br>41 5361E<br>53 6307H<br>69 6777D<br>81 7431G<br>93 5607F<br>109 5675E<br>137 6675G<br>153 4731E<br>169 4565E<br>185 7565G<br>213 6037F<br>301 5007F<br>341 5253F | 7 4055E 19 5023F 31 7237H 43 5171E 55 6211G 71 7715G 83 6455G 99 4603F 111 4173F 139 7655G 155 4451E 171 6765G 199 6543H 215 7363H 307 7555G | 9 6015G<br>21 5623F<br>33 7335G<br>45 6637H<br>57 5747F<br>73 6343H<br>85 5247F<br>101 6561G<br>113 4707F<br>141 5531E<br>157 6557H<br>173 7535G<br>201 5613F<br>217 7201G<br>309 4261E |
| DEGREE 12<br>11 15647E<br>23 11015E<br>35 10377B<br>47 15621E<br>59 11417E<br>71 11471E<br>83 12255E<br>95 17705A<br>107 14135G<br>119 14315C<br>139 12067F<br>151 14717F | 1 10123F<br>13 125138<br>25 13377B<br>37 13565E<br>49 17703C<br>61 13505E<br>73 16237E<br>85 11673B<br>97 17121G<br>109 14711G<br>121 16521E<br>141 13571A<br>153 13517B | 3 121338<br>15 130778<br>27 14405A<br>39 13321A<br>51 10355A<br>63 10761A<br>75 16267D<br>87 17361A<br>99 173230<br>111 15415C<br>123 13475A<br>143 12111A<br>155 14241C                            | 5 10115A<br>17 16533H<br>29 14127H<br>41 15341G<br>53 15321G<br>65 00141<br>77 15115C<br>89 11271E<br>101 14227H<br>113 13131E<br>133 11433B<br>145 16535C<br>157 14675G                            | 7 121538 19 16047H 31 17673H 43 15053H 55 10201A 67 13275E 79 12515E 91 10011A 103 12117E 115 13223A 135 10571A 147 176570 163 10663F        | 9 11765A<br>21 10065A<br>33 13311A<br>45 15173C<br>57 12331A<br>69 16663C<br>81 17545C<br>93 14755C<br>105 13617A<br>117 16475C<br>137 15437G<br>149 12147F<br>165 10621A               |

APPENDIX C 477

Table C.2. Irreducible Polynomials of Degree  $\leq 34$  over GF(2).

| DEGREE 12CC | NT INUED   |            |            |            |            |
|-------------|------------|------------|------------|------------|------------|
| 167 16115G  | 169 16547C | 171 102138 | 173 12247E | 175 167570 | 177 160170 |
| 179 17675E  | 181 10151E | 183 14111A | 185 14037A | 187 14613H | 189 13535A |
| 195 00165   | 197 11441E | 199 10321E | 201 140670 | 203 13157B | 205 14513D |
| 207 10603A  | 209 11067F | 211 14433F | 213 164570 | 215 10653B | 217 135638 |
| 219 116578  | 221 17513C | 227 12753F | 229 13431E | 231 10167B | 233 11313F |
| 235 11411A  | 237 13737B | 239 13425E | 273 00023  | 275 14601C | 277 16021G |
| 279 16137D  | 281 17025G | 283 15723F | 285 17141A | 291 15775A | 293 11477F |
| 295 11463B  | 297 17073C | 299 16401C | 301 12315A | 307 14221E | 309 117638 |
| 311 12705E  | 313 14357F | 315 177770 | 325 00163  | 327 17233D | 329 116378 |
| 331 16407F  | 333 11703A | 339 16003C | 341 11561E | 343 12673B | 345 145370 |
| 347 17711G  | 349 13701E | 355 104678 | 357 15347C | 359 11075E | 361 16363F |
| 363 11045A  | 365 11265A | 371 140430 | 397 12727F | 403 14373D | 405 130038 |
| 407 17057G  | 409 10437F | 411 100778 | 421 14271G | 423 14313D | 425 14155C |
| 427 10245A  | 429 110738 | 435 10743B | 437 12623F | 439 12007F | 441 15353D |
| 455 00111   | 585 00013  | 587 14545G | 589 16311G | 595 13413A | 597 12265A |
| 603 14411C  | 613 15413H | 619 17147F | 661 10605E | 683 10737F | 685 16355C |
| 691 15701G  | 693 12345A | 715 00133  | 717 16571C | 819 00037  | 1365 00007 |
|             |            |            |            |            |            |
| DEGREE 13   | 1 20033F   | 3 23261E   | 5 24623F   | 7 23517F   | 9 30741G   |
| 11 21643F   | 13 30171G  | 15 21277F  | 17 27777F  | 19 35051G  | 21 34723H  |
| 23 34047H   | 25 32535G  | 27 31425G  | 29 37505G  | 31 36515G  | 33 26077F  |
| 35 35673H   | 37 20635E  | 39 33763H  | 41 25745E  | 43 36575G  | 45 26653F  |
| 47 21133F   | 49 22441E  | 51 30417H  | 53 32517H  | 55 37335G  | 57 25327F  |
| 59 23231E   | 61 25511E  | 63 26533F  | 65 33343H  | 67 33727H  | 69 27271E  |
| 71 25017F   | 73 26041E  | 75 21103F  | 77 27263F  | 79 24513F  | 81 32311G  |
| 83 31743H   | 85 24037F  | 87 30711G  | 89 32641G  | 91 24657F  | 93 32437H  |
| 95 20213F   | 97 25633F  | 99 31303H  | 101 22525E | 103 34627H | 105 25775E |
| 107 21607F  | 109 25363F | 111 27217F | 113 33741G | 115 376116 | 117 23077F |
| 119 21263F  | 121 310116 | 123 27051E | 125 35477H | 131 34151G | 133 27405E |
| 135 34641G  | 137 32445G | 139 36375G | 141 22675E | 143 36073H | 145 35121G |
| 147 36501G  | 149 33057H | 151 36403H | 153 35567H | 155 23167F | 157 36217H |
| 159 22233F  | 161 32333H | 163 24703F | 165 33163H | 167 32757H | 169 23761E |
| 171 24031E  | 173 30025G | 175 37145G | 177 31327H | 179 27221E | 181 25577F |
| 183 22203F  | 185 37437H | 187 27537F | 189 31035G | 195 24763F | 197 20245E |
| 199 20503F  | 201 20761E | 203 25555E | 205 30357H | 207 33037H | 209 34401G |
| 211 32715G  | 213 21447F | 215 274215 | 217 20363F | 219 33501G | 221 20425E |
| 223 32347H  | 225 20677F | 227 22307F | 229 33441G | 231 33643H | 233 24165E |
| 235 27427F  | 237 24601E | 239 367216 | 241 34363H | 243 21673F | 245 32167H |
| 247 21661E  | 265 33357H | 267 26341E | 269 31653H | 271 37511G | 273 23003F |
| 275 22657F  | 277 25035E | 279 23267F | 281 34005G | 283 34555G | 285 24205E |
| 291 26611E  | 293 326716 | 295 25245E | 297 31407H | 299 33471G | 301 22613F |
| 303 35645G  | 305 32371G | 307 34517H | 309 26225E | 311 35561G | 313 25663F |
| 315 24043F  | 317 30643H | 323 20157F | 325 37151G | 327 24667F | 329 33325G |
| 331 32467H  | 333 30667H | 335 22631E | 337 26617F | 339 20275E | 341 36625G |
| 343 20341E  | 345 37527H | 347 31333H | 349 31071G | 355 23353F | 357 26243F |
| 359 21453F  | 361 36015G | 363 36667H | 365 34767H | 367 34341G | 369 34547H |
| 371 35465G  | 373 24421E | 375 23563F | 377 36037H | 391 31267H | 393 27133F |
| 395 30705G  | 397 30465G | 399 35315G | 401 32231G | 403 32207H | 405 26101E |
| 407 22567F  | 409 21755E | 411 22455E | 413 33705G | 419 37621G | 421 21405E |
| 423 30117H  | 425 23021E | 427 21525E | 429 36465G | 431 33013H | 433 27531E |
| 435 24675E  | 437 331331 | 439 34261G | 441 33405G | 443 34655G | 453 32173H |
| 455 33455G  | 457 35165G | 459 22705E | 461 37123H | 463 27111E | 465 35455G |
| 467 31457H  | 469 23055E | 471 30777H | 473 37653H | 475 24325E |            |
| 547 35163H  | 549 33433H | 551 37243H | 553 27515E | 555 32137H |            |
| 563 30277H  | 565 20627F | 567 35057H | 569 24315E |            | 557 26743F |
| 583 34273H  | 585 23207F | 587 31113H | 589 36023H | 571 24727F | 581 30331G |
|             |            |            |            | 595 27373F | 597 20737F |
| 599 36235G  | 601 21575E | 603 26215E | 605 21211E | 611 20311E | 613 34003H |
| 615 34027H  | 617 20065E | 619 22051E | 621 22127F | 627 23621E | 629 24465E |
| 651 26457F  | 653 31201G | 659 34035G | 661 27227F | 663 22561E | 665 21615E |
| 667 22013F  | 669 23365E | 675 26213F | 677 26775E | 679 32635G | 681 33631G |
| 683 32743H  | 685 31767H | 691 34413H | 693 22037F | 695 30651G | 697 26565E |
| 711 22141E  | 713 22471E | 715 352716 | 717 37445G | 723 22717F | 725 26505E |
| 727 24411E  | 729 24575E | 731 23707F | 733 25173F | 739 21367F | 741 25161E |
| 743 24147F  | 793 36307H | 795 24417F | 805 20237F | 807 36771G | 809 37327H |
| 811 27735E  | 813 31223H | 819 36373H | 821 33121G | 823 32751G | 825 33523H |
|             |            |            |            |            |            |
|             |            |            |            |            |            |

#### 478 APPENDIX C

**Table C.2.** Irreducible Polynomials of Degree  $\leq 34$  over GF(2).

```
DEGREE 13--CONTINUED
 839 26415E 841 23737F 843 25425E 845 34603H 851 31047H 853 37305G
 855 21315E 857 35777H 859 32725G 869 20571E 871 30301G 873 34757H
 875 21067F 877 25151E 1171 27513F 1173 33721G 1179 34775G 1189 23571E
1195 27411E 1197 20457F 1203 21557F 1205 30177H 1227 26347F 1279 27477F
1235 34243H 1237 27235E 1323 25175E 1325 31231G 1331 31131G 1333 25503F
1355 33045G 1357 24253F 1363 35351G 1365 26053F
               1 42103F
                          3 40547B
                                      5 43333E
                                                 7 51761E
                                                             9 54055A
  11 40503F
              13 771416
                         15 47645A
                                     17 62677G
                                                 19 44103F
                                                            21 46425A
                                                            33 527378
  23 45145E
              25 76303G
                         27 62603D
                                     29 64457G
                                                 31 57231E
  35 64167F
              37 60153F
                          39 62115C
                                     41 55753F
                                                43 724270
                                                            45 64715A
  47 70423H
              49 47153F
                          51 67653D
                                     53 53255E
                                                55 41753F
                                                            57 74247D
  59 40725E
                                                67 45653F
              61 42667F
                          63 65301A
                                     65 67517H
                                                            69 72501C
  71 674256
              73 42163F
                         75 73757D
                                     77 45555E
                                                 79 74561G
                                                            81 605238
  83 53705E
              85 40123E
                         87 41403B
                                                            93 75547C
                                     89 56625E
                                                91 70311E
                         99 56733A
  95 45627F
              97 67335G
                                    101 53253F
                                               103 66411E 105 57745A
  107 65551G
             109 43017F
                        111 62125A
                                    113 71073E
                                               115 67333H
 119 52215E 121 44177F
                        123 70535C 125 46327F
                                               127 717470
                                                          129 00203
 131 61335G 133 43161E 135 46047B 137 60645G
                                               139 40317F 141 47727A
  143 65001G
            145 54335E
                        147 76175C 149 65153H
                                               151 50351E
                                                           153 42711A
                                               163 41441E 165 54175A
 155 41625E 157 44435E 159 41163A 161 47667F
  167 45713F 169 75267H 171 72051C 173 64223H
                                               175 42337F
  179 65155E
            181 63015E
                        183 57521A 185 67173H
                                               187 50661E
                                                           189 41735A
                                               199 53543F
  191 50645E 193 72433F 195 47043B 197 65133H
                                                           201 62431A
  203 42777F 205 47203F 207 46605A
                                    209 64377H
                                               211 73725G 213 43611A
  215 42301A 217 51145E 219 44307B
                                    221 73647H
                                               223 74427H 225 53747A
  227 45511E 229 42637F
                        231 63117D
                                    233 40363E
                                               235 75201G
                                                          237 63155C
  239 72717G 241 56557F 243 75363D
                                    245 70553F
                                               247 66675G
  251 60263H 261 53043B 263 75303F
                                    265 74315E
                                               267 66031A 269 62505G
  271 60057H 273 54473A 275 60253F 277 45671E
                                                           281 61443E
                                               279 71525C
  283 64635G
            285 64475C 287 67401G 289 44203F
                                               291 50343A 293 77747H
  295 54101E
            297 65645A 299 41177F
                                    301 65661A
                                               303 42361A
                                                          305 43047F
  307 45563F
             309 50717A
                        311 53233E 313 67101G
                                               315 62251C 317 64251E
  323 40635E 325 46113E 327 44367B 329 40665E
                                               331 63331G 333 71545C
                        339 43775A 341 65667E
  335 73107H 337 42727F
                                               343 61677H
                                                           345 53525A
  347 52723F
            349 42323F 351 41433B
                                    353 43173E
                                               355 46305E
                                                           357 45663B
                                               367 52621E
  359 71315E
            361 44031E 363 73457B
                                    365 52577E
            373 45201E 375 77001C 377 45737E
  371 52027F
                                               379 64035G
                                                           381 52225A
  387 00253
            389 60765G 391 66545G 393 71323A 395 62767G
                                                           397 73137H
  399 40145A 401 63265G 403 47551E 405 71711C 407 40353F
  411 70065C 413 73527F 415 67201G 417 43723B
                                               419 61251E 421 47357F
  423 62261C 425 50575E 427 61267H 429 40511A
                                               431 71721G
                                                           433 65121G
  435 61053D 437 45371E 439 54627E 441 77703A 443 65057H
  451 73071G 453 52553B 455 60025E 457 60471G 459 53513B 461 67303H
  463 42763F
            465 52261A 467 53657F 469 75443F 471 67267D
                                                           473 53373B
 475 65165E 477 44037B 479 54737F 481 61175E 483 65031A 485 51707E
  487 57627F 489 57251A 491 44073F 493 45761E 495 63463C
                                                           529 65277F
  531 55247B
            533 56171E
                        535 63513H
                                    537 43377B
                                               539 45641E
                                                           541 63227H
  547 54243F
            549 62055C 551 53061E 553 46321E
                                               555 51431A
                                                           557 71147H
  559 64053D 561 41551A 563 75521E 565 46701E
                                               567 537638
                                                           569 56463F
  571 77057G
             573 41105A
                        579 41171A
                                    581 41307F
                                               583 70425E
                                                           585 74117D
  587 50135E 589 67737H 591 47615A 593 53057F
                                               595 55103F
  599 53051E 601 61555G 603 64157D 605 57407F
                                               611 64653F
                                                           613 65513H
 615 736030
            617 47525E 619 55165E 621 64215C
                                               623 76377H
                                                           625 57365E
 627 50557B 629 45725E 631 71301G 633 56465A
                                               635 51745A
                                                           645 00217
  647 47233F
            649 53015E 651 53361A 653 46215E
                                               655 50613E
                                                           657 77211C
 659 46565E 661 44141E 663 55771A 665 71263G
                                               667 41315E
                                                           669 62225C
 675 51565A 677 76267H 679 62467H 681 64003C 683 71645G
                                                           685 76223G
  687 52627A 689 70665G 691 45773F 693 64033D
                                               695 45533E
                                                           697 50007F
  699 45257B
             701 45311E
                        707 44023F
                                    709 72153G
                                               711 60117D
                                                           713 46617E
  715 70461G 717 475138 719 65575E 721 56435E
                                               723 67157C
  727 46107F 729 65007A 731 50667B 733 55331E
                                               739 52017F
                                                          741 51317B
  743 66163F
            745 70767G 747 70215C 749 76401G
                                               751 63043H
                                                           753 637530
  755 43317F 781 77031G 783 45617B 785 52603F
                                               787 57503F 789 63667D
  791 75761G 793 60075G 795 72307B 797 51633F 803 57475E 805 61533G
```

APPENDIX C 479

Table C.2. Irreducible Polynomials of Degree  $\leq$ 34 over GF(2).

| DEGREE 14CONT     | INUED           |             |        |                      |         |        |
|-------------------|-----------------|-------------|--------|----------------------|---------|--------|
|                   |                 | 62027H 813  | 64633C | 815 6712             | 3F 817  | 43445A |
|                   | 321 54003F 823  |             | 63271C | 827 7133             | 7F 837  | 57715A |
|                   |                 |             | 57017E | 847 5475             | 1E 849  | 42417A |
|                   |                 |             | 50455E | 859 6253             | 3H 861  | 42411A |
|                   |                 |             | 52353B | 875 5532             |         | 67527G |
|                   |                 |             |        | 887 5126             |         | 62723D |
|                   |                 |             |        | 911 6241             |         | 51671E |
|                   |                 | 52457E 909  |        |                      |         | 46125E |
|                   |                 |             | 60227D | 923 7134<br>939 5543 |         | 42531E |
|                   |                 | 55323F 937  | 76005E |                      |         | 47753F |
|                   |                 |             | 52137F | 951 5663             |         |        |
|                   |                 |             |        | 1099 4711            |         | 54021A |
| 1107 44523B 11    | 109 54257F 1111 |             | 43215A | 1115 7366            |         | 45335E |
| 1123 44147E 11    |                 |             |        | 1131 6564            |         | 51055E |
| 1139 47637F 11    | 141 40071E 1143 | 47771A 1161 | 00271  | 1163 5754            |         |        |
| 1171 61621G 11    | 173 51511A 1175 | 57201E 1177 | 70251G | 1179 4363            | 3B 1181 | 53315E |
|                   | 189 55705E 1191 | 404138 1193 | 64641E | 1195 4456            | 7E 1197 | 46451A |
|                   | 05 65705E 1207  |             | 667030 | 1211 5347            | 7F 1221 | 45355A |
|                   |                 | 71763C 1229 |        |                      |         | 47673F |
|                   |                 |             |        | 1251 5564            |         | 46175E |
|                   |                 | 46461E 1301 |        | 1303 5124            |         | 76151C |
|                   |                 | 54517F 1317 |        | 1319 5073            |         | 74045G |
| • • • • • • • • • |                 |             |        | 1335 7763            | 1C 1337 |        |
|                   |                 | 51231E 1333 |        |                      |         |        |
|                   | 353 41777B 1355 | 71675G 1357 | 630/3H | 1363 4753            | 7E 1365 |        |
|                   |                 | 777278 1373 |        |                      |         |        |
| 1383 52267B 13    | 385 63153F 1387 | 72337G 1389 |        |                      |         |        |
| 1419 00211 14     |                 | 73555G 1429 |        |                      |         | 74711E |
| 1435 50325E 14    | 437 70713C 1443 | 72513D 1445 | 57737F | 1447 6133            |         |        |
| 1451 55111E 14    | 453 40633F 1459 | 616416 1461 | 65315C | 1463 4364            | 7F 1465 | 67621G |
| 1479 627450 14    | 481 41755E 1483 | 65727F 1485 | 74263D | 1587 4157            | 3B 1589 | 55631E |
|                   | 593 60121C 1607 | 71615E 1609 | 77615G | 1611 4144            | 78 1613 | 46437F |
|                   |                 |             |        | 1627 7315            |         |        |
|                   |                 | 56007F 1645 |        | 1651 7727            |         |        |
|                   | 685 42645E 1687 | 50045E 1689 |        |                      |         |        |
|                   | 705 61237H 1707 | 47534D 1700 | E6417E | 1715 4517            | 3E 1717 | 61461G |
|                   | 705 6[237H 1707 | 54041E 1737 | 554176 | 1717 4717            | 16 1741 | 52045F |
|                   |                 |             |        |                      |         |        |
|                   | 749 44441A 1751 |             |        |                      | 3D 2341 |        |
|                   |                 | 57143B 2357 |        | 2379 6762            |         |        |
|                   |                 | 62101G 2405 |        | 2411 6526            |         |        |
| 2451 00357 24     | 453 76047H 2459 |             |        | 2475 6137            |         |        |
| 2643 56421A 20    | 645 76213H 2667 | 642130 2709 | 00313  | 2731 4123            |         |        |
| 2739 445378 2     | 741 76505G 2763 | 65375C 2765 | 50721E | 2771 7551            | 7H 2861 | 65357G |
| 2867 47121E 5     | 461 00007       |             |        |                      |         |        |
|                   |                 |             |        |                      |         |        |
| DEGREE 15         | 1 100003F       | 3 102043    | F 5    | 110013F              | 7 12    | 5253B  |
| 9 102067F         | 11 104307F      | 13 100317   |        | 177775E              | 17 10   |        |
| 19 110075E        | 21 127701A      | 23 102061   |        | 114725E              |         | 3251E  |
|                   | 31 103437A      | 33 112611   |        | 1377338              |         | 0265E  |
|                   |                 | 43 161007   |        | 174003E              |         | 3337E  |
| 39 117423F        | 41 106341E      | 53 105257   |        | 114467E              |         | 7207G  |
| 49 1252638        | 51 126007E      |             |        |                      |         |        |
| 59 147047F        | 61 111511E      | 63 127635   |        | 114633E              |         | 3663F  |
| 69 102171E        | 71 170465G      | 73 131427   |        | 161615E              |         | 6143A  |
| 79 115155E        | 81 123067F      | 83 102561   |        | 170057H              |         | 5235E  |
| 89 173117E        | 91 1257478      | 93 124677   |        | 134531E              |         | 5507F  |
| 99 1717376        | 101 152417F     | 103 142305  |        |                      | 107 12  |        |
| 109 136173F       | 111 122231E     | 113 164705  | G 115  | 177757F              | 117 14  | 6637E  |
| 119 1775350       | 121 102643F     | 123 103145  | E 125  | 112751E              |         | 1537G  |
| 129 115135E       | 131 137067E     | 133 122707  | A 135  | 174443E              | 137 10  | 0541E  |
| 139 112273F       | 141 145573F     | 143 114273  | F 145  | 124511E              | 147 12  | 25638  |
| 149 140703F       | 151 101361A     | 153 103125  | E 155  | 150451C              | 157 14  | 7303G  |
| 159 123023F       | 161 103751A     | 163 154463  |        | 177541G              | 167 10  | 1561E  |
| 169 1444736       | 171 162375G     | 173 131013  |        | 117767A              |         | 0521G  |
|                   | 181 102367E     | 183 147363  |        |                      | 187 17  |        |
| 179 1647276       |                 | 193 114505  |        | 176561G              | 197 15  |        |
| 189 1336278       | 191 156333E     | 203 123075  |        | 173357G              | 207 11  |        |
| 199 127143F       | 201 176133E     | 213 173661  |        | 151043F              | 217 14  |        |
| 209 144461E       | 211 151447G     | 213 113001  | C 213  | 1710431              | 211 14  | 23210  |
|                   |                 |             |        |                      |         |        |

#### 480 APPENDIX C

919 130745E

921 177517H

**Table C.2.** Irreducible Polynomials of Degree  $\leq 34$  over GF(2).

DEGREE 15--CONTINUED 219 166775E 221 153143G 223 172213F 225 105213E 227 156053H 229 156745G 231 1706238 233 140373G 235 152361G 237 142157H 239 117633F 241 103605E 243 116361E 245 137523A 247 101705E 249 116135E 251 102337E 253 173515G 259 136321A 261 120447F 263 117511E 265 115141E 267 173613F 269 131735E 271 114225E 273 121125A 275 136577F 277 113227E 279 114533B 281 166151E 283 112231E 285 165033E 291 126051E 287 1201778 289 117547F 295 177101G 293 111335E 297 143703G 299 106047E 301 1374278 303 110427F 305 131211E 307 110037F 309 160511G 311 153731G 313 144275G 315 151513C 317 133775E 319 134447E 321 127347E 323 163767H 325 110717E 327 175001E 329 100377A 331 125121E 333 136237F 335 132103F 337 171035G 339 132651E 341 134105A 343 100261A 345 170227H 347 101233F 349 100445E 351 144707G 353 165355E 355 150243H 357 163353C 359 114041E 361 113025E 363 104447F 365 143301G 367 165011G 369 137361F 371 117201A 373 141655G 375 160113G 379 140575E 377 106715E 381 112123E 387 140733F 389 124243E 391 116073E 393 147321E 395 123721E 399 134741A 397 150225G 401 157111G 405 172317G 403 134411A 407 153327E 409 140573H 411 113625E 413 101673B 415 170543F 417 176735E 419 115307F 421 141635E 423 157241G 425 153005E 427 167051A 429 177175G 431 146331G 433 166541G 435 102513F 437 123121E 439 162463G 441 1340378 443 174571E 445 123433F 447 150167H 449 175465E 451 113255E 453 137325A 455 123045A 457 133571E 459 135215E 461 110221E 465 121437A 463 157435E 467 177707G 469 143501C 471 161667F 473 157427G 475 150671G 477 112407F 481 112053E 479 165563E 483 135363B 485 130617F 487 125613F 489 114713F 491 165113G 493 143733G 495 162155E 497 135017B 499 126753F 501 137765E 503 106577E 521 112113F 523 105555E 525 153425C 527 115313A 529 105761E 531 132165E 541 124757F 533 176147H 535 114621E 537 135751E 539 152763C 543 112245E 545 123221E 547 141757G 549 160547F 551 101331E 553 156065C 555 156725G 557 113373E 559 137643F 561 156237G 563 141151G 565 126015E 567 171335C 569 146717H 571 130305E 573 121355E 579 166021G 581 145361C 585 157155E 583 134325E 587 124647E 589 163761C 591 114457E 593 155243G 595 153137D 597 137253F 599 151551G 601 113645E 603 150305G 605 163745G 607 165473F 609 1130578 611 160173H 613 177663F 615 161117H 617 144115E 619 156635G 621 150633H 623 115061A 625 143253H 627 165451G 629 160305E 631 146025E 633 106751E 635 132625E 637 160553D 643 123561E 645 116637F 647 111423E 649 117107E 651 466761C 653 153555G 655 132127F 657 112333E 659 135267F 661 146727H 663 132753F 665 143343A 667 131705E 669 141005E 671 113147F 681 120661E 675 123235E 673 125323F 677 103653F 679 173025C 683 154545G 685 133553F 687 132001E 689 153773G 691 1752416 693 160237B 695 171131E 697 172415E 699 145111G 701 122603F 707 170507C 709 160757G 711 171207G 713 147553B 715 112365E 717 146111E 719 122003F 721 1212738 723 122005E 725 135401E 727 102441E 729 175515G 731 132507E 733 130223F 735 142713C 743 173643F 737 102615E 739 105713F 741 134241E 745 163617G 755 120247B 747 175043E 749 132051A 751 104217F 753 115523F 757 164447H 759 173667F 761 137051E 775 104073B 777 177065C 779 117071E 781 115537E 783 135201E 785 146643F 787 113465E 789 152263G 791 177617D 793 104755E 795 147415G 799 170307F 801 174425E 805 173263C 797 126001E 803 112475E 807 176643H 809 130303F 811 125471E 813 173711G 815 165547E 819 116075A 821 150677G 825 166407H 817 163723G 823 175227G 827 152447H 829 126205E 835 120557E 837 160335A 839 125543E 841 144377H 843 100713E 845 121251E 847 141123D 849 174517F 851 106251E 853 116277F 855 106611E 857 174563H 859 140023H 861 132037A 863 147767G 865 164531G 867 155065E 869 146263F 871 160401G 873 102057F 875 146133C 879 147003F 877 117021E 881 127723F 883 120471E 885 162455G 887 130627F 889 152135C 891 157057H 901 162153F 903 151755C 905 170277H 907 165633H 909 173105E 911 102507F 913 176037H 915 171627G 917 1621710

923 114327F

925 127167F

927 133113E

APPENDIX C 481

Table C.2. Irreducible Polynomials of Degree  $\leq 34$  over GF(2).

| DEGREE | 15CONT  | INUED |         |      |         |      |         |        |        |
|--------|---------|-------|---------|------|---------|------|---------|--------|--------|
| 929    | 160461E | 931   | 1171378 | 933  | 134323F | 935  | 123361E | 937 1  | 05237F |
| 939    | 166737F | 941   | 147571G | 943  | 127743F | 945  | 116351A | 947 1  | 57315E |
| 949    | 162645G | 951   | 162403G | 953  | 105335E | 955  | 124767E | 957 1  | 75301E |
| 963    | 134755E | 965   | 116645E | 967  | 143307G | 969  | 124125E | 971 1  | 55261G |
| 973    | 104163A | 975   | 167753F | 917  | 127423F | 979  | 115667F | 981 1  | 40171E |
| 983    | 133041E | 985   | 156767H | 987  | 116037A | 989  | 142267G | 991 1  | 30635E |
| 1057   | 000057  | 1059  | 104427F | 1061 | 113075E | 1063 | 162133H | 1065 1 | 20717F |
| 1067   | 144713F | 1069  | 121605E | 1071 | 122225A | 1073 | 134657E | 1075 1 | 30125E |
| 1077   | 1776216 | 1079  | 110741E | 1081 | 136745E | 1083 | 152531G | 1085 1 | 15455A |
| 1091   | 161235G | 1093  | 144137G | 1095 | 140675E | 1097 | 145277G | 1099 1 | 143038 |
| 1101   | 101507E | 1103  | 115271E | 1105 | 151735E | 1107 | 157205G |        | 14011E |
| 1111   | 171125E | 1113  | 147071A | 1115 | 134721E | 1117 | 122123F | 1123 1 | 04735E |
| 1125   | 133011E | 1127  | 162337A | 1129 | 105261E | 1131 | 101427E |        | 56563F |
| 1135   | 103663E | 1137  | 146043H | 1139 | 151403H | 1141 | 100157A | 1143 1 | 63653E |
| 1145   | 105413F | 1147  | 143651C | 1157 | 156157E | 1159 | 102463F | 1161 1 | 51025G |
| 1163   | 176657H | 1165  | 166425G | 1167 | 103617E | 1169 | 160021A | 1171 1 | 61277H |
| 1173   | 1655650 | 1175  | 152153F | 1177 | 111243E | 1179 | 165655G |        | 34165E |
| 1187   | 171467H | 1189  | 150161E | 1191 | 122011E | 1193 | 125403F |        | 70007H |
| 1197   | 167765C | 1199  | 103415E | 1201 | 137703E | 1203 | 111563F | 1205 1 | 47305G |
| 1207   | 156257F | 1209  | 175177B | 1211 | 141317B | 1213 | 177467H |        | 40421G |
| 1221   | 127071E | 1223  | 142457F | 1225 | 122021A | 1227 | 146771E | 1229 1 | 10211E |
| 1231   | 134567F | 1233  | 156321G | 1235 | 114335E | 1237 | 111603E | 1239 1 | 21275A |
| 1241   | 110103E | 1243  | 127161E | 1245 | 163273H | 1251 | 144533F | 1253 1 | 73135C |
| 1255   | 155445E | 1257  | 140441E | 1259 | 103761E | 1261 | 173523F | 1263 1 | 67307F |
| 1265   | 127457F | 1267  | 102205A | 1269 | 112251E | 1291 | 106311E | 1293 1 | 41633F |
| 1295   | 135151A | 1297  | 106641E | 1299 | 102265E | 1301 | 164453G | 1303 1 | 63071G |
| 1305   | 111641E | 1307  | 134403E | 1309 | 102667A | 1315 | 177055E | 1317 1 | 15373F |
| 1319   | 150231G | 1321  | 175651G | 1323 | 160377B | 1325 | 136063E | 1327 1 | 01073F |
| 1329   | 165303G | 1331  | 116675E | 1333 | 140221A | 1335 | 100201E | 1337 1 | 03223B |
| 1339   | 105415E | 1341  | 122445E | 1347 | 143631E | 1349 | 137441E | 1351 1 | 04421A |
| 1353   | 154023H | 1355  | 127225E | 1357 | 176427H | 1359 | 151265C | 1361 1 | 50215E |
| 1363   | 1442256 | 1365  | 115205A | 1367 | 123307E | 1369 | 133437E | 1371 1 | 66653E |
| 1373   | 101515E | 1379  | 126023B | 1381 | 166553H | 1383 | 172701E | 1385 1 | 40271G |
| 1387   | 121143E | 1389  | 111577E | 1391 | 132747E | 1393 | 143057C | 1395 1 | 111378 |
| 1397   | 127401E | 1399  | 150317E | 1401 | 177731G | 1415 | 155335G | 1417 1 | 23057F |
| 1419   | 117715E | 1421  | 162657B | 1423 | 171745G | 1425 | 130527F | 1427 1 | 44467G |
| 1429   | 115045E | 1431  | 177115G | 1433 | 155751G | 1435 | 103767A |        | 15127E |
| 1443   | 176741E | 1445  | 141475G | 1447 | 112553E | 1449 | 154307D |        | 05621E |
| 1453   | 170051G | 1455  | 147707F | 1457 | 160445A | 1459 | 161031E |        | 31405E |
| 1463   | 164121A | 1465  | 111003F | 1467 | 167331E | 1469 | 165311G | 1475 1 | 57405G |
| 1477   | 140557A | 1479  | 156655G | 1481 | 164561G | 1483 | 114231E |        | 06407F |
| 1487   | 111033F | 1489  | 172123G | 1491 | 1466670 | 1493 | 143523G | 1495 1 | 70765G |
| 1497   | 105725E | 1499  | 132155E | 1501 | 150261G | 1507 | 122517E |        | 07567E |
| 1511   | 166267E | 1561  | 153461C | 1563 | 166011G | 1565 | 133445E |        | 56365G |
| 1573   | 1761116 | 1575  | 137331A | 1577 | 165407G | 1579 | 106445E |        | 45551C |
| 1583   | 124341E | 1585  | 127215E | 1587 | 135005E | 1589 | 117731A |        | 10141E |
| 1593   | 152345G | 1595  | 164441G | 1605 | 172621G | 1607 | 143567G |        | 53443H |
| 1611   | 146203E | 1613  | 120417F | 1615 | 103553F | 1617 | 110567A |        | 26067F |
| 1621   | 140747F | 1623  | 107037F | 1625 | 135503E | 1627 | 126735E |        | 72445G |
| 1635   | 117131E | 1637  | 105173F | 1639 | 105071E | 1641 | 174167G |        | 14745A |
| 1645   | 133407A | 1647  | 136715E | 1649 | 153113H | 1651 | 141321E |        | 32523F |
| 1655   | 136335E | 1657  | 167255E | 1671 | 146301G | 1673 | 131265A |        | 20133F |
| 1677   | 157557E | 1679  | 107711E | 1681 | 174751E | 1683 | 133257F |        | 51217G |
| 1687   | 144653C | 1689  | 176203H | 1691 | 155213H | 1693 | 135207F |        | 31367F |
| 1701   | 146543C | 1703  | 130033F | 1705 | 166311A | 1707 | 150213G |        | 43227F |
| 1711   | 176013G | 1713  | 147751G | 1715 | 131543B | 1717 | 131111E |        | 11267F |
| 1721   | 1441516 | 1723  | 110433F | 1733 | 171173F | 1735 | 116367F |        | 15421E |
| 1739   | 112223F | 1741  | 111635E | 1743 | 157165C | 1745 | 135223F |        | 06143F |
| 1749   | 176015G | 1751  | 142461G | 1753 | 154233E | 1755 | 114677F |        | 03363A |
| 1763   | 150327F | 1765  | 126325E | 1767 | 126105A | 1769 | 111713F |        | 72303B |
| 1773   | 170763G | 1775  | 124175E | 1777 | 176357F | 1807 | 164667E |        | 36611E |
| 1811   | 163123E | 1813  | 151037D | 1815 | 121431E | 1817 | 110165E |        | 72005G |
| 1821   | 104265E | 1827  | 154763A | 1829 | 1527030 | 1831 | 163555G |        | 35021E |
| 1835   | 124071E | 1837  | 164247H | 1839 | 166113H | 1841 | 101625A |        | 45427H |
|        | 106633F |       | 155437E |      | 174633H |      | 161657H |        | 74605G |
| 1047   | 100000  | 1341  |         | ,    |         | 1    |         |        |        |
|        |         |       |         |      |         |      |         |        |        |

#### 482 APPENDIX C

**Table C.2.** Irreducible Polynomials of Degree  $\leq 34$  over GF(2).

DEGREE 15--CONTINUED 1863 136701E 1865 144425E 1867 126747F 1869 157441C 1871 167015E 1881 102147E 1873 142737H 1875 152301E 1877 131727E 1879 120221E 1883 106457B 1885 152253H 1891 157645A 1893 141541G 1897 141677C 1899 102733E 1901 135443F 1903 124251E 1905 1507316 1909 100347F 1907 127137F 1911 130415A 2185 1471616 2187 154247F 2199 154507G 2189 161205G 2195 101313E 2201 121055A 2197 175203F 2203 113061E 2205 1702110 2211 102763E 2213 167367H 2215 106503F 2217 133641E 2227 103035E 2219 160175C 2221 161061E 2229 173037F 2247 1445770 2231 130737F 2233 166137C 2235 130017F 2245 122213F 2249 117027F 2251 106273F 2253 107217F 2259 146373F 2261 153445C 2263 1457270 2265 121451A 2267 146607F 2269 113543F 2275 161013A 2277 1771316 2279 112633E 2281 137545E 2283 140227F 2285 112377F 2329 155027G 2323 123163F 2325 100725A 2327 162315G 2331 173551C 2345 124005A 2341 117457F 2343 143403H 2333 132357F 2339 141231E 2347 137601E 2349 143271G 2355 143727F 2357 107447F 2359 136401A 2361 1577116 2373 166257D 2375 131733E 2377 176453H 2363 170337E 2391 100641F 2379 116057F 2381 156773H 2387 114371A 2389 155505G 2393 151573E 2397 177751G 2403 175601G 2405 177563G 2395 106713F 2419 170433F 2413 126375E 2407 155175G 2409 170367G 2411 132015E 2453 107323F 2421 1517476 2443 1731538 2445 111505E 2451 127243F 2459 153577H 2461 150341G 2467 155737H 2455 106745E 2457 165327B 2477 101023E 2469 150005G 2471 146007A 2473 146155E 2475 117655E 2489 105143F 2483 126227F 2485 1731638 2487 103175E 2491 1747436 2509 126657E 2501 101433F 2503 155757H 2505 121017F 2507 100425E 2515 172363H 2517 120463E 2519 154561G 2601 126771E 2603 156161E 2617 125057E 2605 1477250 2611 1775270 2613 121641E 2615 111365E 2631 1426116 2633 110435E 2635 104575A 2637 164313G 2643 126163E 2651 141365G 2649 131667F 2653 116307B 2645 112347F 2647 126155E 2667 110343A 2659 143531E 2661 141445E 2663 104141E 2665 167001G 2675 107121E 2677 106125E 2699 167203G 2701 175337F 2669 111047F 2707 1652016 2709 106767B 2711 152351G 2713 144731G 2715 161043G 2717 113171E 2723 133533A 2725 175405G 2727 177231G 2729 127653E 2739 146177H 2741 121327E 2743 132277F 2731 165535G 2733 114701E 2765 104263A 2745 1531756 2759 155407A 2761 145433H 2763 167463H 2773 176255E 2771 127437F 2775 134435E 2777 124335E 2779 1433730 2793 155773B 2781 1705016 2787 126711E 2789 103257E 2791 120601E 2839 134255E 2841 103737F 2843 164001G 2845 161147F 2851 135565E 2857 116631E 2859 131623E 2861 1557256 2853 110573E 2855 175711E 2867 154537F 2869 1143478 2871 140755G 2873 113515E 2887 120155E 2893 121725E 2899 157255G 2901 141401G 2891 163647B 2889 160137E 2915 147635E 2905 107337A 2907 117125E 2909 144603H 2903 1411256 2919 115607A 2921 154411E 2923 154155E 2925 122275E 2917 1543316 2965 150371G 2967 173331E 2931 136457F 2957 126433F 2963 154515E 2971 132741E 2973 145477H 3171 000073 3173 174115E 2969 146753E 3179 117443F 3181 163335E 3187 115675E 3175 127365E 3177 107645E 3219 170523H 3221 167313H 3223 137127F 3225 140205E 3213 131651A 3237 163365G 3239 172027H 3241 131165A 3243 162241E 3227 102357B 3245 1422236 3251 164155G 3253 176753H 3255 1524338 3257 125271E 3273 100647E 3275 121101E 3277 142751E 3283 115721A 3271 177377G 3291 142633H 3301 156527H 3287 177443H 3289 101613F 3285 1444376 3367 107675A 3369 115133E 3371 101551E 3355 165725E 3365 110405E 3381 114363A 3383 161253F 3385 160413F 3379 155621C 3373 133213E 3399 127077E 3401 136213E 3403 171115E 3405 121553E 3411 140007G 3417 100223E 3419 126643E 3429 133231E 3413 116601E 3415 147437H 3433 141027E 3435 125255E 3437 166275A 3475 171621G 3431 162037H 3479 125337A 3493 114055A 3477 107373E 3481 110255E 3483 114611E 3499 146375G 3501 126557F 3507 125361A 3495 110501E 3497 104111E 3509 121617F 3511 103333F 3513 103053E 3527 171371E 4681 000013 4685 123735E 4691 142175G 4693 131645E 4699 167637G 4683 133261A 4715 160215G 4717 163275G 4755 124053F 4757 1332015 4709 155303H 4773 161105E 4779 100021E 4781 116567B 4787 145675G 4763 141115G 4811 137613F 4813 105701E 4819 121305E 4821 146705E 4789 123471E 4907 124621A 4909 122443E 4915 123537E 4917 124317F 4939 106677E 4947 131601E 4949 113405A 4955 155517G 5285 000045 4941 160723H 5291 155707H 5293 134277F 5299 140513C 5301 111041A 5323 127273F

APPENDIX C 483

Table C.2. Irreducible Polynomials of Degree  $\leq 34$  over GF(2).

| DEGREE     | 15CONT             |            |                    |            |                    |            |                    |            |                    |
|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|
| 5325       | 117243F            | 5331       | 141707H            |            | 134205E            |            | 107417F            |            | 122401E            |
| 5427       | 170037E            | 5429       | 107127E            | 5451       | 161465E            | 5453       | 1710270            | 5459       | 174707H            |
| 5461       | 145453E            |            |                    |            |                    |            |                    |            |                    |
|            | • •                |            | 2100125            | 3          | 215435A            | 5          | 227215A            | 7          | 234313F            |
| DEGREE     | 16                 |            | 210013F<br>233303F | 13         | 307107H            | 15         | 3115130            | 17         | 336523D            |
| 19         | 225657B            | 11<br>21   | 363501C            | 23         | 306357H            | 25         | 3535730            | 27         | 3573330            |
| 29         | 307527H<br>201735E | 31         | 272201E            | 33         | 3103270            | 35         | 304341C            | 37         | 242413F            |
| 39         | 327721C            | 41         | 270155E            | 43         | 302157H            | 45         | 374111C            | 47         | 210205E            |
| 49         | 305667H            | 51         | 2374038            | 53         | 236107F            | 55         | 212113B            | 57         | 314061C            |
| 59         | 271055E            | 61         | 313371G            | 63         | 333575C            | 65         | 2673138            | 67         | 311405G            |
| 69         | 323527D            | 71         | 346355G            | 73         | 350513H            | 75         | 237421A            | 77         | 203213F            |
| 79         | 233503F            | 81         | 261105A            | 83         | 3062216            | 85         | 267075A            | 87         | 235063B            |
| 89         | 244461E            | 91         | 204015E            | 93         | 327421C            | 95         | 226455A            | 97         | 202301E            |
| 99         | 351641C            | 101        | 376311G            | 103        | 201637F            | 105        | 365705C            | 107        | 352125G            |
| 109        | 273435E            | 111        | 202545A            | 113        | 243575E            | 115        | 251645A            | 117        | 277535A            |
| 119        | 327277D            | 121        | 250723F            | 123        | 3400470            | 125        | 274761A            |            |                    |
| 129        | 357047D            | 131        | 214443F            | 133        | 277213F            | 135        | 315633D            | 137        | 300205G            |
| 139        | 367737H            | 141        | 230535A            | 143        | 342567H            | 145        | 2651578            | 147        | 371771C            |
| 149        | 217137F            | 151        | 262367F            | 153        | 301663D            | 155        | 370565C            | 157        | 201045E            |
| 159        | 304731C            | 161        | 303657H            | 163        | 212653F            | 165        | 245351A            | 167        | 347433H            |
| 169        |                    | 171        | 311651C            | 173        | 256005E            | 175        | 2063538            | 177        | 362053D            |
| 179        | 352603H            | 181        | 310017H            | 183        | 3330130            | 185        | 256415A            | 187        | 376175C            |
| 189        |                    | 191        | 312301G            | 193        | 260475E            | 195        | 347211C            | 197        |                    |
| 199        |                    | 201        | 362555C            | 203        | 333643H            | 205        | 3042610            | 207        | 230541A<br>247353F |
| 209        |                    | 211        | 333117H            | 213        | 274317B            | 215        | 301425C            | 217<br>227 | 214215E            |
| 219        | 254601A            | 221        | 212063B            | 223        | 207661E            | 225<br>235 | 317171C<br>200215A | 237        | 3241270            |
| 229        | 322661G            | 231        | 274635A            | 233<br>243 | 326035G<br>305471C | 245        | 242437B            | 247        | 363637H            |
| 239        | 230653F            | 241        |                    | 253        | 266663F            | 255        | 3616170            | 257        |                    |
| 249        | 330561C            | 251        | 211473F<br>344733D | 263        | 311155G            | 265        | 3402070            | 267        | 273211A            |
| 259<br>269 |                    | 261<br>271 |                    | 273        | 207753B            | 275        | 226315A            | 277        |                    |
| 209        | 243111A            | 281        | 242225E            | 283        | 204703F            | 285        | 323563D            | 287        |                    |
| 289        |                    | 291        | 271725A            | 293        | 353263H            | 295        | 306575C            |            |                    |
| 299        |                    | 301        | 213375E            | 303        | 340333D            | 305        | 2320138            |            |                    |
|            | 233017B            | 311        | 266701E            | 313        | 262351E            | 315        | 3241410            | 317        | 365221G            |
| 319        |                    | 321        | 200365A            | 323        | 2156138            | 325        | 207221A            | 327        | 323077D            |
| 329        |                    | 331        | 302335G            | 333        | 251211A            | 335        | 262421A            |            | 360667H            |
| 339        | 223133B            | 341        | 356255G            | 343        | 337553H            | 345        | 215015A            |            | 221213F            |
| 349        | 276531E            | 351        | 325413D            | 353        | 362737H            | 355        | 240171A            | 357        |                    |
| 359        | 274353F            | 361        |                    | 363        | 231753B            |            | , 227065A          | 367        |                    |
| 369        | 254471A            | 371        |                    | 373        | 235275E            | 375        | 372075C            | 377        |                    |
| 379        |                    | 381        |                    | 383        | 311515G            | 385        |                    |            | 254241A            |
| 389        |                    | 391        |                    | 393        | 227157B            | 395        | 2377338            |            | 207717F            |
|            | 303375C            | 401        |                    | 403        | 245367F            | 405        | 324631C            |            | 274621E            |
|            | 211101E            | 411        |                    | 413        | 326261G            | 415        | 236555A            |            | 3413430            |
| 419        |                    | 421        |                    | 423        | 374163D            | 425<br>435 | 264255A<br>325757D |            | 234015E<br>241677F |
| 429        |                    | 431        |                    | 433<br>443 | 243631E<br>230355E | 445        |                    |            | 264433B            |
| 439        |                    | 441        |                    | 453        | 344045C            | 455        | 3171630            | 457        |                    |
| 449        |                    | 451<br>461 |                    | 463        | 276645E            | 465        | 3467250            |            | 301535G            |
| 459<br>469 |                    | 471        |                    | 473        | 247617F            | 475        | 325475C            |            | 343213D            |
| 479        |                    | 481        | 341741G            | 483        | 3613530            | 485        |                    |            | 276727F            |
| 489        |                    | 491        | 233743F            | 493        | 252023B            | 495        | 272423B            | 497        |                    |
|            | 273015E            | 501        | 267421A            | 503        | 351353H            | 505        | 377171C            | 507        |                    |
|            | 202703F            | 519        |                    | 521        | 356057H            | 523        | 217633F            |            | 277215A            |
| 527        |                    | 529        |                    | 531        | 311661C            | 533        | 235145E            | 535        | 202411A            |
| 537        |                    | 539        |                    | 541        | 212115E            | 543        |                    |            | 3543770            |
| 547        |                    | 549        |                    | 551        | 241251E            | 553        |                    |            | 2457338            |
| 557        |                    | 559        | 201031E            | 561        | 3716430            | 563        |                    | 565        | 200751A            |
| 567        |                    | 569        |                    | 571        | 374721G            | 573        |                    | 575        |                    |
| 577        |                    | 579        |                    | 581        | 375213H            | 583        |                    |            | 273007B            |
| 587        |                    | 589        |                    | 591        | 200451A            | 593        |                    |            | 345267D            |
| 597        |                    | 599        |                    | 601        | 252623F            | 603        |                    |            | 241175A            |
| 607        | 355507H            | 609        | 261177B            | 611        | 317203H            | 613        | 361541G            | 615        | 363211C            |
|            |                    |            |                    |            |                    |            |                    |            |                    |

Spread Spectrum Systems