1 Preliminairies: The Closure Operation

Definition: The powerset of a set A is the set of all subsets of A, including the emptyset and A itself. It will be denoted $\mathbb{P}(A)$ here and it is denoted Su(A) in the book, Su meaning subsets.

Definition: If we are given a set A, a mapping $C: \mathbb{P}(A) \to \mathbb{P}(A)$ is called a closure operation on A, if, for $X,Y\subseteq A$, it satisfies: (extensive) $X\subseteq C(X)$ (idempotent) $C^2(X)=C(X)$ (isotone) $X\subseteq Y\to C(X)\subseteq C(Y)$

2 Isomorphic Algebras and Subalgebras

An isomorphism is a concept often used in particular casas like isomorphisms in group theory or lattice theory. All these definitions derive from the general definition of isomorphisms in all algebras.

Definition: Let A and B be two algebras. Then a function $\alpha : A \to B$ is an isomorphism from A to B if α is one-to-one onto, and for every n-ary f, for $a_1, ..., a_n \in A$, we have:

$$\alpha(f^{A}(a_{1},...,a_{n})) = f^{B}(\alpha(a_{1}),...,\alpha(a_{n}))$$

In other words, an isomorphism between two algebras is a bijective morphism (a function mapping elements from A to B) that respects the property written above. A more formal definition, in french:

Soient M et N deux interpétations d'un langage L.

- Un L-morphisme de M dans N est une fonction $\phi: |M| \to |N|$ tele que:
 - Pour chaque symbole de constante c on a: $\phi(c_M) = c_N$
 - Pour chaque symbole de fonction n-aire f et pour $a_1, ... a_n \in |M|$ on a: $\phi(f_M(a_1, ..., a_n)) = f_N(\phi(a_1), ..., \phi(a_n))$.
 - Pour chaque symbole de relation n-aire de R (autre que =) et pour $a_1, ... a_n \in |M|$ on a: $(a_1, ..., a_n) \in R_M$ ssi $(\phi(a_1), ..., \phi(a_n)) \in R_N$.
- Un L-isomorphisme est un L-morphisme bijectif.
- \bullet M et N sont L-isomorphes s'il existe un L-isomorphisme de M dans N.

Remarque et exemple

• La notion de morphisme dépend du langage. Soit $L = \{0, +, -, \times\}$ et $L' = \{1\} \cup L$. Soient $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/12\mathbb{Z}$ les interprétations usuelles. La fonction $\phi: n \to 4n$ de $\mathbb{Z}/3\mathbb{Z}$ dans $\mathbb{Z}/12\mathbb{Z}$ est un L-morphisme puisque $\phi(0_L) = 0'_L = 0_L$, $\phi(0_M +_M 0_M) = \phi(0_M) +_N \phi(0_M) = 0_M +_M + 0_M = 0_M = 4 * 0_M$ ect. Par contre, ϕ n'est pas L'-morphisme puisque $\phi(1_M) = 4 \neq 1_N$.

En guise d'exemple, on peut vérifier que si $L = \{c, f, S\}$ et M et N sont définies par:

- $|M| = \mathbb{R}, c_M = 0, f_M(a, b) = a + b \text{ et } S_M = \{(a, b)/a \le b\}$
- $|N| =]0, \infty[, c_N = 1, f_N(a, b) = ab \text{ et } S_N = \{(a, b)/a \le b\}$

Alors la fonction $\phi: x \to e^x$ est un isomorphisme de M dans N. En effet:

- $\phi(c_M) = c_N$ est vérifié puisque $e^0 = 1$.
- $\phi(f_M(a,b)) = f_N(\phi(a),\phi(b))$ est vérifié puisque $e^{a+b} = e^a e^b$
- $a, b \in S_M$ ssi $\phi(a), \phi(b) \in S_N$ est aussi vérifié puisque $a \leq b$ ssi $e^a \leq e^b$ par croissance de la fonction exponentielle.

Definition: Let A and B be two algebras. Then B is a *subalgebra* of A if $B \subseteq A$ and every fundamental operation of B is the restriction of the corresponding operation of A, ie. for each function symbol f, f^B is f^A restricted to B; we write simply $B \le A$. A *subuniverse* of A is a subset B of A which is closed under the fundamental opperations of A, ie. if f is a fundamental n-ary operation of A and $a_1, ..., a_n \in B$ we would require $f(a_1, ..., a_n) \in B$.

This definition of subalgebras comes with some limitations: for example, we would like a subalgebra of a group to be a group but a subalgebra would only mean subsemigroup (the positive integers are a subsemigroup of the group of all integers). We should consider a suitable modification (enlrargement) so the concept of subalgebras so it coincides with the ususal notion for several examples of algebras (section 1 of the book).

Definition: A function $\alpha: A \to B$ is an *embedding* of A into B if α is one-to-one (bijective) and satisfies $\alpha(f^A(a_1,...,a_n)) = f^B(\alpha(a_1),...,\alpha(a_n))$ (such an α is also called a *monomorphism*) We say A can be *embedded* in B if there is an embedding of A into B.

Theorem

if $\alpha: A \to B$ is an *embedding* then $\alpha(A)$ is a subuniverse of B.

<u>Proof:</u> Let $\alpha: A \to B$ be an embedding. Then for any n-ary function f and $a_1, ..., a_n \in A$:

$$f^{B}(\alpha(a_{1}),...,\alpha(a_{n})) = \alpha(f^{A}(a_{1},...,a_{n}))$$

Given that α is a bijection it is clear that $\alpha(A)$ is a subset of A. In addition, $\alpha(A)$ is closed on B given that any element of $\alpha(A)$ is the result of a function f^B in B like the previous equation states.

3 Algebraic Lattices and Subuniverses

Definition: Given an algebra A, for every $X \subseteq A$,

$$Sg(X) = \bigcap \{B: X \subseteq B \text{ and } B \text{ is a subuniverse of } A\}$$

Sg(X) is the "subuniverse generated by X".