

Désimperméabilisation Urbaine

Pierre-Antoine Chiron

Laboratoire d'InfoRmatique en Image et Systèmes d'information

Tuteurs encadrant: Gilles Gesquière, John Samuel

Tuteur école: Rémy Chaput

Plan

- Cas d'étude
- Problématiques
- Solution implémentée
- Résultats
- Conclusion

État de l'art scientifique et technique

- Premier travail: étudiants du master géonumérique
- Cas d'étude
 - Méthode EPODES (Évaluation du Potentiel de Désimperméabilisation des Sols) [1]
 - Etude pour la lutte contre l'imperméabilisation et la désimperméabilisation des sols sur le territoire Esterel Côte d'Azur Agglomération [2]

- Sources:
 - [1] https://www.cerema.fr/fr/actualites/fiche-pratique-methode-identification-du-potentiel
 - [2] https://esterelcotedazur-agglo.fr/wp-content/uploads/2025/01/4090275_Strategie_desimper_Esterel_V6_compressed.pdf

Un cas concret: étude sur le territoire Esterel Côte d'Azur Agglomération

Objectif de l'étude: définir des zones où la gestion à la source et le recours à l'infiltration est pertinent

Similaire à la méthode EPODES dans la chaine de construction de la carte finale

Méthodologie de création de la carte d'infiltrabilité

Carte d'imperméabilisation (par pas de 20%)

Carte d'infiltrabilité

Carte du potentiel d'action

Un cas concret: Méthode EPODES (CEREMA)

Fonctionnement:

- (1): Zones potentiellement perméables
- (2): Zones des critères environnementaux
- (3): Carte des Zones Potentiellement Infiltrables = Somme raster de (1) et (2)
- (4): Carte de l'imperméabilité des sols
- (5): Carte de Potentiel de désimperméabilisation des sols = (3) + (4), seuil d'imperméabilité à 50%

Logigramme decrivant les étapes d'élaboration de la carte du PDS.

Image par CEREMA

Un cas concret: Méthode EPODES (CEREMA)

- Inconvénients de ces cas d'étude:
- Pas d'information sur les calculs et méthode de création des cartes
- Cartes de critères environnementaux dépend des singularités du territoire d'étude

Carte de Potentiel de Désimperméabilisation des Sols (CEREMA)

Problématiques

- Comment analyser des données topographiques dans un contexte urbain et à quelles résolutions pour avoir des résultats pertinents ?
- Comment discrétiser et agréger des données pour rester fidèle à la topographie locale et au comportement de l'eau sur cette zone ?
- Comment répondre aux deux problématiques données en restant dans un contexte de reproductibilité, configurabilité et frugalité ?

Données explorées

- Données Raster (GeoTiff):
 - Imperviousness Density 2018 (Résolution de 10m par pixel) [1]
 - BD ALTI/RGE ALTI (Résolutions de 25m, 5m, 1m, 0.5m par pixel) [2]
- Données Vecteur
 - Urban Atlas Land Cover (Copernicus) [3]
- Conclusion: Données vectorielles trop lourdes et longues à faire tourner
- Sources:
 - [1] https://land.copernicus.eu/en/products/high-resolution-layer-imperviousness/imperviousness-density-2018#download
 - [2] https://geoservices.ign.fr/bdalti et https://geoservices.ign.fr/rgealti
 - [3] https://land.copernicus.eu/en/products/urban-atlas/urban-atlas-2018

Implémentation de la solution

- Méthode des casiers
- IBK
- Implémentation configurable

Méthode des casiers: qu'est ce qu'un casier?

En 2D:

Vue en coupe transversale de casiers « idéaux », fidèles au terrain

Vue en coupe transversale de casiers simples, de taille constante

Méthode des casiers : Pentes

Nombreuses méthodes disponibles

Pour moyenne seuilée, variance de pente, maximum et pente avec bruit éliminé

Pente par plan ajusté

3D Plane of Best fit, Documentation Scikit-learn

Méthode d'agrégation de données

Résolution de 25 par pixel, casiers de 150m

Conclusion: Utilisation du calcul de pente par plan ajusté pour être plus fidèle au terrain

Méthode des casiers

Résolution de 50cm par pixel, casiers de 5m

Score d'infiltration

Valeur de pente par plan ajusté, normalisées

Indice d'imperméabilité

Méthode des casiers a différentes résolutions

Résolution de 50cm, casiers de 5m, Campus de la Doua

Résolution de 1m , casiers de 10m, Croix-Rousse

Résolution de 5m, casiers de 30m, Croix-Rousse

Conclusion: Utiliser des casiers de plus petites tailles est plus représentatif pour cette méthode

Indice de Beven-Kirkby

- Quantifie le contrôle topographique sur les processus d'écoulement
- Indice conçu pour les caténas, donc peu pertinent sur les zones plates
- Dépendant des caractéristiques du sol pour la surface drainée

- Inconvénients
 - Zones planes influe sur les résultats
 - Proximité aux cours d'eau aussi pour notre utilisation

Figure par Mattivi et al. 2019

- a: Aire d'accumulation de l'eau
- b: Direction du flux
- c: Tangente de la pente

Indice de Beven-Kirkby

IBK à des résolutions différentes

Conclusion: Meilleur sur résolutions larges à cause des artéfacts sur résolutions fines

Code public

- Méthode en casier et méthode IBK sont publiques
- Code configurable via des arguments en ligne de commande ou fichier de configuration (casier ou IBK, méthode de calcul de pente...)
- Conteneurisé avec paramètres de base pour reproductibilité
- Tutoriel documenté (fichier README.md) et code commenté

Schéma de la structure du code

Dossier GitHub: https://github.com/VCityTeam/UD-IArbre-Research/tree/master/desealing

Conclusion

- Chaque méthode a des résultats plus pertinents sur des résolutions différentes
- IBK pour des analyses sur très grandes zones, ou en première couche pour savoir où appliquer les autres méthodes
- Méthode des casiers bonne sur résolution fines
- Code reproductible

Désimperméabilisation Urbaine

Pierre-Antoine Chiron

Laboratoire d'InfoRmatique en Image et Systèmes d'information

20 mars 2025

Tuteurs encadrant: Gilles Gesquière, John Samuel

Tuteur école: Rémy Chaput

Récapitulatif

Données	Type de données	Calculs/Utilité	Méthode des casiers	ІВК	Master Géonumérique	EPODES/Esterel Côte d'azur
MNT 1x1m	Raster	Calculs de pentes	✓	✓	✓	✓
Casiers 10x10m	Raster	Calcul de pentes/ infiltration moyenne	✓			
Carte d'imperméabilité	Raster	Imperméabilité moyenne/seuil	✓			√
Carte d'infiltrabilité/ZPP	Raster	?			✓	✓
Carte des critères environnementaux	Raster	?				√
Carte de potentiel de désimperméabilisation	Raster	?				✓
Carte du potentiel d'action	Raster	?				✓
Urban Atlas	Vecteur				✓	

Classification de chaque facteur

Pour chaque facteur, séparation en quatre ou cinq catégories

Score	Justification
1 : Totalement imperméable	Ces zones sont couvertes principalement par des bâtiments, infrastructures, routes bitumineuses ou bétonnées, et surfaces industrielles, empêchant toute infiltration d'eau. Les infrastructures ferroviaires, les quais portuaires et les aéroports, composés de matériaux imperméables, contribuent à cette imperméabilité totale.
2 : Presque imperméable	Les surfaces de cette catégorie incluent des zones urbaines denses, des chantiers et des sites d'extraction ou de décharge, avec une couverture bâtie importante et des sols souvent compactés, limitant fortement l'infiltration d'eau.
3 : Peu perméable	Ces zones, comprenant des espaces urbains à faible densité, des terrains en friche, des installations sportives et des structures isolées, possèdent une proportion significative d'espaces ouverts, améliorant légèrement leur capacité d'infiltration d'eau.
4 : Semi-perméable Les tissus urbains à très faible densité, les espaces verts urb terres agricoles permettent une infiltration partielle de l'eau, bie aménagements comme les allées, certaines infrastructures ag l'usage de machines puissent limiter cette capacité.	
5 : Majoritairement perméable	Regroupant les forêts, prairies naturelles, dunes, zones humides et plans d'eau, ces surfaces favorisent grandement l'infiltration de l'eau grâce à leur couverture végétale dense, leur structure poreuse ou leur fonction naturelle de régulation hydrique.

Score	% de pentes
1 : Pente très faible	0,1<<2,9
2 : Pente faible	2,9<<6,2
3 : Pente modérée	6,2<<10,7
4 : Pente forte	10,7<<17,3
5 : Pente très forte	<17,3

Répartition des pentes

La carte d'imperméabilité du sol et des pentes sont utilisées pour donner un score à chaque entité étudiée avec une pondération 80/20 entre perméabilité du sol et pente du terrain

Figure 9 : Histogramme de distribution et de discrétisation des ruptures naturelles (jenks) de l'IUC

1300 - 1	32,008
¥ 1000 - 1	
5000	
0 5 10 15 20 25 30	35
Figure 11 : Histogramme de distribution et de discrétisation des bassins de rétenti	on d'eau

Figure 11	: Histogramme	e de distribution	et de	discrétisation	des	bassins	de rétention d'eau	

Score	Densité d'espaces verts
1 : Végétation absente	5 850 m² <
2 : Faible densité de végétation	5 850 m² << 12 814 m²
3 : Densité modérée de végétation	12 814 m² << 20 651 m²
4 : Forte densité de végétation	20 651 m² << 32 413 m²
5 : Végétation très dense	> 32 413 m²

Classification en utilisant la méthode de discrétisation de Jenks

Score	Rétention d'eau
1 : Pas ou peu de rétention d'eau	0,06° <
2 : Légère rétention d'eau	0,06° << 0,36°
3 : Rétention d'eau modérée	0,36° << 0,8°
4 : Forte rétention d'eau	0,8° << 2,1°
5 : Très forte rétention d'eau	> 2,1°

Classification utilisant la méthode des quantiles

Les données sur les sites pollués sont croisées avec les données de rétention d'eau selon leur proximité afin d'en déterminer la gravité

Figure 14 : Schématisation de la connectivité des sites industriels dans le score de pollution des sols pour le découpage Urban Atlas

Score	Score de pollution
1 : Très faible pollution	= 0
2 : Faible pollution	0 << 12, 05
3 : Pollution modérée	12,05 << 53,38
4 : Pollution élevée	53,38 << 105,04
5 : Pollution très élevée	> 105,04

Figure 15 : Tableau de création du score de pollution

