实验 5 peviewer

一、实验目的

- 1、 熟悉 PE 文件结构;
- 2、 使用 Windows API 函数读取文件内容

二、实验原理

(1) PE 文件结构

图 1 PE 文件结构

PE 文件结构如图 1 所示。二进制 PE 文件包括: DOS 部首、PE 文件头、块表(Section Table)、块(Section)、调试信息 5 个部分。

DOS 部首是 DOS 系统的残留内容,目的是防止 Windows 系统的可执行程序在 DOS 系统上执行时导致 DOS 系统崩溃。DOS 部首是一段 DOS 程序,输出一段提示信息,说明程序只能运行在 Windows 系统上,不能运行在 DOS 系统上。

-0h	e magic	WORD	?	; DOS 可执行文件标记"MZ"
2h	e cblp	WORD	?	
4h	e cp	WORD	?	
-6h	e_crlc	WORD	?	
8h	e cparhdr	WORD	?	
0ah	e minalloc	WORD	?	
Och	e_maxalloc	WORD	?	
0eh	e_ss	WORD	?	
10h	e sp	WORD	?	
12h	e csum	WORD	?	
14h	e_ip	WORD	?	;DOS 代码人口 IP
16h	e cs	WORD	?	; DOS 代码人口 CS
18h	e_lfarlc	WORD	?	
·lah	e_ovno	WORD	?	
·1ch	e res	WORD	4 dup(?)	
24h	e_oemid	WORD	?	
26h	e_oeminfo	WORD	?	
28h	e res2	WORD	10 dup(?)	
3ch	e lfanew	DWORD	?	;指向 PE 文件头"PE",0,0

图 2 DOS 头的数据结构

PE 文件头记录了各种文件的装载信息,有映像的基地址(ImageBase)、程序的入口地址(EntryPoint)、数据块、编译时间、运行平台、数据目录表等信息。PE 文件头包括 Signature、FileHeader、OptionalHeader 三部分,数据结构如下所示:

IMAGE_NT_HEADERS STRUCT

+0h	Signature	DWORD	?
+4h	FileHeader	IMAGE_FILE_HEADER	<>
+18h	OptionalHead	ler IMAGE_OPTIONAL_I	HEADER32

IMAGE_NT_HEADERS ENDS

<>

Signature 的定义是 IMAGE_NT_HEADER, 值为 00004550h **FileHeader** 的数据结构如下所示:

IMAGE_FILE_HEADER STRUCT

+04h Mac	hine	WC	ORD		?	
+06h Num	nberOfSections	WC	ORD		?	
+08h Time	eDateStamp	DW	ORD		?	
+0Ch Poin	nterToSymbolTable	DW	ORD		?	
+10h Num	nberOfSymbols	DW	ORD		?	
+14h Size	OfOptionalHeader	WC	ORD		?	
+16h Char	racteristics	WC	ORD		?	
OptionalHe	ader 的数据结构如下	所示	<u>.</u>			
IMAGE_OP	TIONAL_HEADER	STR	UCT			
+18h	Magic		WORD)	?	
+1Ah	MajorLinkerVersion		BYTE		?	
+1Bh	MinorLinkerVersion		BYTE		?	
+1Ch	SizeOfCode		DWOR	RD	?	
+20h	SizeOfInitializedData	L	DWOR	2D	?	
+24h	SizeOfUninitializedD	ata	DWOR	2D	?	
+28h	AddressOfEntryPoint		DWOR	D	?	
+2Ch	BaseOfCode		DWOR	2D	?	
+30h	BaseOfData		DWOR	RD	?	
+34h	ImageBase		DWOR	2D	?	
+38h	SectionAlignment		DWOR	2D	?	
+3Ch	FileAlignment		DWOR	2D	?	
+40h	MajorOperatingSystem	mVe	rsion	WC	ORD	?

+42h	MinorOperatingSystemVe	ersion WORD)
+44h	MajorImageVersion	WORD	?
+46h	MinorImageVersion	WORD	?
+48h	MajorSubsystemVersion	WORD	?
+4Ah	MinorSubsystemVersion	WORD	?
+4Ch	Win32VersionValue	DWORD	?
+50h	SizeOfImage	DWORD	?
+54h	SizeOfHeaders	DWORD	?
+58h	CheckSum	DWORD	?
+5Ch	Subsystem	WORD	?
+5Eh	DllCharacteristics	WORD	?
+60h	SizeOfStackReserve	DWORD	?
+64h	SizeOfStackCommit	DWORD	?
+68h	SizeOfHeapReserve	DWORD	?
+6Ch	SizeOfHeapCommit	DWORD	?
+70h	LoaderFlags	DWORD	?
+74h	NumberOfRvaAndSizes	DWORD	?
+78h	DataDirectory		

 $[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]$

 $IMAGE_DATA_DIRECTORY <>$

IMAGE_OPTIONAL_HEADER ENDS

块表 (Section Table) 描述代码块、数据块、资源块等不同数据块

的文件和内存的映射,数据块的各种属性。

块(Section)分别存储了程序的代码、数据、资源等信息。

(2) Windows 文件读操作

读一个文件用到的 Windows API 函数有 CreateFile、SetFilePointer、ReadFile、CloseHandle。

CreateFile 的 MSDN 文档地址 https://docs.microsoft.com/en-

us/previous-versions/aa914735(v=msdn.10), 函数的原型如下:

```
HANDLE CreateFile(
   LPCTSTR lpFileName,
   DWORD dwDesiredAccess,
   DWORD dwShareMode,
   LPSECURITY_ATTRIBUTES lpSecurityAttributes,
   DWORD dwCreationDisposition,
   DWORD dwFlagsAndAttributes,
   HANDLE hTemplateFile
   );
```

CreateFile 在 MASM 汇编语言中的应用实例如图 3 所示。

```
invoke CreateFile, ADDR buf2, \
GENERIC_READ, \
FILE_SHARE_READ, \
0, \
OPEN_EXISTING, \
FILE_ATTRIBUTE_ARCHIVE, \
0

MOV hfile, EAX
invoke SetFilePointer, hfile, 0, 0, FILE_BEGIN
invoke ReadFile, hfile, ADDR buf3, 4000, 0, 0

MOV EAX, DWORD PTR buf3
invoke dw2hex, EAX, ADDR buf4
invoke StdOut, ADDR buf4
invoke CloseHandle, hfile
```

图 3 MASM 汇编中调用 CreateFile、SetFilePointer、ReadFile、CloseHandle 的示例

SetFilePointer 函数的 MSDN 文档地址

https://docs.microsoft.com/en-us/previous-

```
versions/aa911934(v%3dmsdn.10), 函数原型如下:
    DWORD SetFilePointer(
      HANDLE hFile,
      LONG lDistanceToMove,
      PLONG lpDistanceToMoveHigh,
      DWORD dwMoveMethod
        ):
    SetFilePointer 函数的 MASM 调用示例如图 3 所示。
```

ReadFile 函数的 MSDN 文档地址 https://docs.microsoft.com/enus/previous-versions/aa914377(v%3dmsdn.10), 函数原型如下:

```
BOOL ReadFile(
 HANDLE hFile,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToRead,
 LPDWORD lpNumberOfBytesRead,
 LPOVERLAPPED lpOverlapped
);
```

ReadFile 函数的 MASM 调用示例如图 3 所示。

CloseHandle 函数的 MSDN 文档地址

https://docs.microsoft.com/en-us/previous-

versions/aa914720(v%3dmsdn.10), 函数原型如下:

```
BOOL CloseHandle(
  HANDLE hObject
);
```

CloseHandle 函数的 MASM 调用示例如图 3 所示。

三、 实验环境

Windows 操作系统, MASM32 编译环境。

四、 实验内容:

D:\>peviewer.exe Please input a PE file: hello.exe IMAGE DOS HEADER e magic: 5A4D e 1fanew: 000000B0 IMAGE NT HEADERS Signature: 00004550 IMAGE FILE HEADER NumberOfSections: 0003 TimeDateStamp: 5E829C15 Charateristics: 010F IMAGE FILE HEADER NumberOfSections: 0003 TimeDateStamp: 5E829C15 Charateristics: 010F IMAGE OPTIONAL HEADER AddressOfEntryPoint: 00001000 ImageBase: 00400000 SectionAlignment: 00001000 FileAlignment: 00000200

图 4 peviewer 实验演示

- (1) 输入 PE 文件的文件名, peviewer 程序调用 Windows API 函数, 打开指定的 PE 文件;
- (2) 从文件的头部开始,读取 IMAGE_DOS_HEADER 结构中的 e_magic 和 e_lfanew 字段的值,按照实验演示的方式输出到命令行窗口;
- (3) 继续读取 PE 文件的 IMAGE_NT_HEADER 结构中的 Signature 字段的值,按照实验演示的方式输出到命令行 窗口;
- (4)继续读取 IMAGE_NT_HEADER 结构中的
 IMAGE_FILE_HEADER 结构,从中读取出字段
 NumberOfSections、TimeDateStamp、Characteristics 的值,按照实验演示的方式输出到命令行窗口;

(5)继续读取 IMAGE_NT_HEADER 结构中的
IMAGE_OPTIONAL_HEADER 结构,从中读取字段
AddressOfEntryPoint、ImageBase、SectionAlignment、
FileAlignment 的值,按照实验演示的方式输出到命令行窗口;

五、 实验报告

- (1) peviewer 程序的设计说明和控制流图
- (2) peviewer.asm 的源代码和注释
- (3) peviewer.exe 运行截图