Consider the language L that generates strings with twice as many a's as b's over the input alphabet $\Sigma = \{a,b\}$. The language does not care about the order in which the symbols a's and b's occur.

The CFG for the language L is as follows:

 $T \to Saab \mid aSab \mid aaSb \mid aabS \mid Saba \mid aSba \mid abSa \mid abaS \mid Sbaa \mid bSaa \mid baSa \mid baaS \mid S \to T \mid \varepsilon$

Now, prove the grammar is correct using the induction.

The smallest possible strings that are generated by the grammar are $\{aab,aba,baa\}$. Let w be the string from the set of smallest possible strings, such that $f_a(w) = 2f_b(w)$, where $f_a(w)$ is the number of a's in the string w and $f_b(w)$ is the number of b's in the string w. Hence, all the smallest possible strings have twice as many a's as b's.

$$f_a(w_n) = 2f_b(w_n)$$
(1)

(where w_n represents the string of length n)

Now, show that $f_a(w_{n+1}) = 2f_b(w_{n+1})$ holds.

Obtain the string w_{n+1} by inserting any of the strings $\{\varepsilon, aab, aba, baa\}$ in to w_n . The insertions may result in addition of 0 a's and 0 b's or 2 a's and 1 b.

Case 1:

When ε is inserted, (inserting 0 a's and 0 b's)

$$f_a(w_{n+1}) = f_a(w_n) + f_a(\varepsilon) = f_a(w_n) + 0 = f_a(w_n) \qquad \dots \dots (2)$$

$$f_b(w_{n+1}) = f_b(w_n) + f_b(\varepsilon) = f_b(w_n) + 0 = f_b(w_n) \qquad \dots \dots (3)$$

Now, substitute (2) and (3) in (1).

$$f_a(w_n) = 2f_b(w_n)$$

 $f_a(w_{n+1}) = 2f_b(w_{n+1})$

Case 2:

When aab or aba or baa is inserted, (inserting 2 a's and 1 b)

$$f_a(w_{n+1}) = f_a(w_n) + f_a(w) = f_a(w_n) + 2$$
(4)
 $f_b(w_{n+1}) = f_b(w_n) + f_b(w) = f_b(w_n) + 1$ (5)
(where w is aab or aba or baa)

Using (4),

$$f_a(w_{n+1}) = f_a(w_n) + 2$$
 (from (4))
= $2f_b(w_n) + 2$ (from (1))
= $2(f_b(w_n) + 1)$
 $f_a(w_{n+1}) = 2f_b(w_{n+1})$ (from (5))

From both the cases, it is proved that $f_a(w_{n+1}) = 2f_b(w_{n+1})$.

Hence, from the principle of mathematical induction the grammar is correct.

Therefore, the CFG generates the language of strings with twice as many a 's as b 's.