CS 6041 Theory of Computation

Regular language

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Where are we now?

Regular language

 A language is called a regular language if some finite automaton (DFA) recognizes it

 A language is called a regular language if some nondeterministic finite automaton (NFA) recognizes it

- Regular language:
 - L=L(M)
 - M is DFA or NFA

Regular operations

	DFA/NFA/RL	PDA	TM
Union	close	?	?
Concatenation	close	?	?
Star	close	?	?
Complement	close	?	?
Boolean operation	close	?	?

Closure under the union

 Theorem: regular language is closed under the union operation.

Proof idea:

In the past, we prove this by creating a DFA. This time we prove it by creating a NFA.

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cup L_2$

Build $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$. $Q_3 = Q_1 \times Q_2$;

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cup L_2$

Build $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$. $\delta_3((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$;

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cup L_2$

Build
$$M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$$
.
 $q_3 = (q_1, q_2)$;

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cup L_2$

Build $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$. $F_3 = (F_1 \times Q_2) \cup (Q_1 \times F_2)$. One accept state in M1 with all states in M2 One accept state in M2 with all states in M1

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cup L_2$

```
Build M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3).

Q_3 = Q_1 \times Q_2;

\delta_3((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));

q_3 = (q_1, q_2);

F_3 = (F_1 \times Q_2) \cup (Q_1 \times F_2).
```

 $L(M_3) = L_1 \cup L_2$, so $L_1 \cup L_2$ is still regular language

Closure under the union

• Theorem: regular language (L_1, L_2) is closed under the union operation $(L_1 \cup L_2)$.

Proof idea:

Closure under the union

- Theorem: regular language is closed under the union operation.
- Proof:

Let NFA $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i , i = 1, 2.

Create NFA

 $N=(Q,\Sigma,\delta,q_0,F)$ to recognize $A_1\cup A_2$

Let
$$Q=Q_1\cup Q_2\cup \{q_0\}$$

$$F=F_1 \cup F_2$$

$$\delta(q,a) = \begin{cases} \delta_1(q,a), & \text{if } q \in Q_1 \\ \delta_2(q,a), & \text{if } q \in Q_2 \\ \{q_1,q_2\}, & \text{if } q = q_0 \text{ and } a = \varepsilon \\ \emptyset, & \text{if } q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

N

Closure under the concatenation

 Theorem: regular language is closed under the concatenation operation.

Proof idea:

In the past, we prove this by creating a DFA. This time we prove it by creating a NFA.

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cap L_2$

Build $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$. $Q_3 = Q_1 \times Q_2$;

• Proof:

Let $L_i = L(M_i)$ is a regular language, $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$, i = 1, 2. We need to build a finite automata to recognize $L_1 \cap L_2$

Build
$$M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$$
.
 $\delta_3((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$;

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cap L_2$

Build
$$M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$$
.
 $q_3 = (q_1, q_2)$;

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cap L_2$

Build $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$.

 $F_3 = F_1 \times F_2$.

One accept state in M1 with One accept state in M2

• Proof:

Let $L_i=L(M_i)$ is a regular language, $M_i=(Q_i,\Sigma,\delta_i,q_i,F_i)$, i=1,2. We need to build a finite automata to recognize $L_1 \cap L_2$

```
Build M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3).

Q_3 = Q_1 \times Q_2;

\delta_3((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));

q_3 = (q_1, q_2);

F_3 = F_1 \times F_2.
```

 $L(M_3) = L_1 \cap L_2$, so $L_1 \cap L_2$ is still regular language

Closure under the concatenation

• Theorem: regular language (L_1, L_2) is closed under the concatenation operation $(L_1 \cap L_2)$.

Closure under the concatenation

Theorem: regular language is closed under the concatenation operation.

Proof:

Let NFA $N_i=(Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i , i=1,2.

Create NFA

 $N=(Q,\Sigma,\delta,q_1,F)$ to recognize $A_1\cap A_2$

$$\text{Let } \mathbf{Q} = \mathbf{Q}_1 \cup \mathbf{Q}_2 \\ \mathsf{F} = \mathsf{F}_2 \\ \delta(q, a) = \begin{cases} \delta_1(q, a), & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & \text{if } q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a), & \text{if } q \in Q_2 \end{cases}$$

$$if \ q \in Q_1 \ and \ q \notin F_1$$

$$if \ q \in F_1 \ and \ a \neq \varepsilon$$

$$if \ q \in F_1 \ and \ a = \varepsilon$$

$$if \ q \in Q_2$$

• Theorem: regular language is closed under the star operation. $A^* = A \times A \times ... \times A$

i.e., $A=\{0,1\}$, $A^2=\{00,01,10,11\}$

i.e.,
$$A=\{0,1\}$$
, $A^2=\{\epsilon,1,0,00,01,10,11\}$

$$A^2 = A \times A$$

0 is computed on 1st A 1 is computed on 2nd A

• Theorem: regular language is closed under the star operation. $A^* = A \times A \times ... \times A$

i.e., $A=\{0,1\}$, $A^2=\{\epsilon,1,0,00,01,10,11\}$

Is this correct? Why?

Wrong! Because the start state q_1 does not accept originally in N_1 . It also should not accept in N

Theorem: regular language is closed under the star operation.

• Proof:

let
$$A_1$$
=L(N₁), A_1 *=L(N), NFA N₁=(Q₁, Σ , δ ₁,q₁,F₁).
create NFA N=(Q, Σ , δ ,q₀,F).

$$Q=Q_1\cup\{q_0\};$$

$$F=F_1 \cup \{q_0\};$$

$$\delta(q, a) = \begin{cases} \delta_1(q, a), \\ \delta_1(q, a), \\ \delta_1(q, a), \\ \delta_1(q, a) \cup \{q_1\}, \\ \{q_1\}, \\ \emptyset, \end{cases}$$

if
$$q \in Q_1$$
 and $q \notin F_1$
if $q \in F_1$ and $a \neq \varepsilon$
if $q \in F_1$ and $a = \varepsilon$
if $q = q_0$ and $a = \varepsilon$

if $q = q_0$ and $a \neq \varepsilon$

Regular operations

	DFA/NFA/RL	PDA	TM
Union	close	?	?
Concatenation	close	?	?
Star	close	?	?
Complement	close	?	?
Boolean operation	close	?	?