aula04

$\rm ME315\text{-}2S2025$

brotto

2025-09-08

Sumário

§ Cat						 	 	 	•	 	•	 •	•		•	
§ Natureza	a					 	 	 		 				 		
§ Conjunte	o de Dado	s (CD)	: fligh	ts.cs	v.zip	 	 	 		 				 		
1 44.	TO . 1															
Laboratório	-															
Laboratório § Parte 1:	-					 	 	 		 				 		

§ Cat

cat(1)

1

§ Natureza

Atividade de BD para 09/09/25 – Laboratório Especial.

Tabela 1: Os dois primeiros registros do CD.

YEAR	MONTH	DAY	DAY_O	F_WEEK	AIRLINE	FLIGH	IT_NU	JMBER
2015	1	1	-	4	AS			98
2015	1	1		4	AA			2336
TA	IL_NUMBI	ER C	ORIGIN_A	IRPORT	DESTINAT	ΓΙΟΝ_ΑΙΙ	RPOR	$\overline{\Gamma}$
N4	.07AS		NC		SEA			
N3	KUAA	I	ΔAX		PBI			
SCHEDULED	DEPARTU	RE I	DEPARTU	RE_TIME	DEPART	URE_DE	LAY	TAXI_OUT
0005		2	354				-11	21
0010			002				-8	12
WHEELS_O	FF SCHI	EDULE	D_TIME	ELAPSE	D_TIME	AIR_TIN	ME]	DISTANCE
0015			205		194	1	169	1448
0014			280		279	2	263	2330
WHEELS_ON	TAXI_IN	SCH	EDULED_	ARRIVAL	ARRIVA	L_TIME	ARI	RIVAL_DELAY
0404	4	0430			0408			-22
0737	4	0750			0741			-9
DIVERTED	CANCE	LLED	CANCE	LLATION_	REASON	AIR_SY	STEM	I_DELAY
()	0	NA			NA		
()	0	NA			NA		
SECURITY_DE	LAY AIR	LINE_	DELAY	LATE_AI	RCRAFT_I	DELAY	WEAT	THER_DELAY
NA	NA			NA			NA	
NA	NA			NA	·		NA	

§ Conjunto de Dados (CD): flights.csv.zip

```
## Amostra do CD os 2 primeiros registros
   a = read_csv("flights.csv.zip", n_max = 2)
   lista_partes <- split.default(a, cut(1:ncol(a), breaks = seq(0, ncol(a), by = 1)))

## Trata Tabela 1
   u = (lista_partes %>% kable())[1]
   v = substring(u, 14, nchar(u))
   ss2 = "\\caption{Os dois primeiros registros do CD.}"; ss1 = "\\begin{table}"
   pasteO(ss1,ss2,v) %>% cat()
```

Laboratório Especial

Benilton Carvalho & Carlos Trucios

§ Parte 1:

Crie uma função que:

- a. Receba um valor de TAIL NUMBER (por exemplo, N431WN);
- b. Produza uma tabela (tidy) com todos os trajetos realizados pela aeronave (ordenadas por data e hora, contendo todas as colunas do arquivo flights.csv.zip);
- c. Produza um mapa que apresente todo o trajeto voado pela aeronave ao longo de todo o ano; o trajeto deve ser apresentado de maneira linear no tempo (i.e., segue a sequência do tempo, como no exemplo hipotético dado acima);
- d. O mapa deve ser decorado com estatísticas do seu interesse (por exemplo, velocidade média do vôo como espessura da linha que conecta os aeroportos envolvidos no trajeto);

Função:

```
\begin{split} & \texttt{analisa\_aeronave} = f \circ g : \mathsf{String} \to \mathbb{M} \\ & f : \mathsf{String} \to F(\mathsf{String} \times \mathbb{M}; \mathbb{M}) \\ & g : F(\mathsf{String} \times \mathbb{M}; \mathbb{M}) \to \mathbb{M} \end{split}
```

```
analisa_aeronave = function(tail_number){
  function(arquivo, pos){
    arquivo %>%
    filter(TAIL_NUMBER == tail_number) %>%
    filter(!is.na(ORIGIN_AIRPORT), !is.na(DESTINATION_AIRPORT)) %>%
    group_by(DAY, MONTH, TAIL_NUMBER)
}
```

§ Execução

Leitura em blocos:

$\Delta t = 24.3804819583893 \ s$

YEAR	MONTH	DAY	AIRLINE	TAIL_NUMBER	ORIGIN_AIRPORT	DESTINATION_AIRPORT
2015	1	1	DL	N651DL	SEA	MSP
2015	1	1	DL	N651DL	MSP	SEA
2015	1	1	DL	N651DL	SEA	DTW
2015	1	1	DL	N651DL	DTW	MCO
2015	1	2	DL	N651DL	MCO	ATL
2015	1	2	DL	N651DL	ATL	SEA
2015	1	2	DL	N651DL	SEA	ATL
2015	1	3	DL	N651DL	ATL	SFO
2015	1	3	DL	N651DL	SFO	DTW
2015	1	3	DL	N651DL	DTW	LAX

IATA_CODE	AIRPORT	CITY	STATE	COUNTRY	LATITUDE	LONGITUDE
ABE	Lehigh Valley International Airport	Allentown	PA	USA	40.65236	-75.44040
ABI	Abilene Regional Airport	Abilene	TX	USA	32.41132	-99.68190
ABQ	Albuquerque International Sunport	Albuquerque	NM	USA	35.04022	-106.60919
ABR	Aberdeen Regional Airport	Aberdeen	SD	USA	45.44906	-98.42183
ABY	Southwest Georgia Regional Airport	Albany	GA	USA	31.53552	-84.19447
ACK	Nantucket Memorial Airport	Nantucket	MA	USA	41.25305	-70.06018
ACT	Waco Regional Airport	Waco	TX	USA	31.61129	-97.23052
ACV	Arcata Airport	Arcata/Eureka	CA	USA	40.97812	-124.10862
ACY	Atlantic City International Airport	Atlantic City	NJ	USA	39.45758	-74.57717
ADK	Adak Airport	Adak	AK	USA	51.87796	-176.64603

airports\$COUNTRY %>% unique()

```
## [1] "USA"
```

```
install.packages("farver")
install.packages("ggplot2")
install.packages("maps")
install.packages("mapdata")

library(farver)
library(ggplot2)
library(maps)
library(mapdata)
g1 = ggplot() +
```

borders("world", colour = "gray50", fill = "gray90") +

theme_minimal()

g1

airports

```
# A tibble: 322 x 7
##
      IATA_CODE AIRPORT
                                              CITY STATE COUNTRY LATITUDE LONGITUDE
      <chr>
                <chr>
                                              <chr> <chr> <chr>
                                                                      <dbl>
##
                                                                                <dbl>
    1 ABE
                Lehigh Valley International~ Alle~ PA
                                                          USA
                                                                       40.7
                                                                                -75.4
##
                Abilene Regional Airport
                                                          USA
                                                                       32.4
##
   2 ABI
                                              Abil~ TX
                                                                                -99.7
##
   3 ABQ
                Albuquerque International S~ Albu~ NM
                                                          USA
                                                                       35.0
                                                                               -107.
##
    4 ABR
                Aberdeen Regional Airport
                                              Aber~ SD
                                                          USA
                                                                       45.4
                                                                                -98.4
                Southwest Georgia Regional ~ Alba~ GA
   5 ABY
                                                          USA
                                                                       31.5
                                                                                -84.2
##
   6 ACK
                Nantucket Memorial Airport
                                                          USA
                                                                                -70.1
##
                                              Nant~ MA
                                                                       41.3
                                                                                -97.2
    7 ACT
                Waco Regional Airport
                                              Waco TX
                                                          USA
                                                                       31.6
##
##
    8 ACV
                Arcata Airport
                                              Arca~ CA
                                                          USA
                                                                       41.0
                                                                               -124.
  9 ACY
                Atlantic City International~ Atla~ NJ
                                                          USA
                                                                       39.5
                                                                                -74.6
##
## 10 ADK
                Adak Airport
                                              Adak AK
                                                          USA
                                                                       51.9
                                                                               -177.
## # i 312 more rows
   a1 = airports[c("IATA_CODE","LATITUDE","LONGITUDE")]
   local_airports = c(in2$ORIGIN_AIRPORT, in2$DESTINATION_AIRPORT) %>% unique()
seus_dados = a1
seus_dados = seus_dados %>% filter(IATA_CODE %in% local_airports)
```



```
seus_dados = a1
seus_dados = seus_dados %>% filter(IATA_CODE %in% local_airports)

# Esta solução funciona sempre!
plotar_mapa_com_pontos <- function(dados, margem = 0.1) {
    # Calcular limites
    lat_range <- range(dados$LATITUDE, na.rm = TRUE)
    long_range <- range(dados$LONGITUDE, na.rm = TRUE)

# Adicionar margem
lat_margem <- diff(lat_range) * margem
long_margem <- diff(long_range) * margem</pre>
```



```
install.packages("ggrepel")

library(ggrepel)

seus_dados = a1
seus_dados = seus_dados %>% filter(IATA_CODE %in% local_airports)

plotar_pontos_ggrepel <- function(dados, margem = 0.15) {
    # Calcular limites
    lat_range <- range(dados$LATITUDE, na.rm = TRUE)
    long_range <- range(dados$LONGITUDE, na.rm = TRUE)</pre>
```

```
# Adicionar margem
  lat_margem <- diff(lat_range) * margem</pre>
  long_margem <- diff(long_range) * margem</pre>
  ggplot() +
    borders("world", colour = "gray50", fill = "gray90") +
    geom_point(data = dados, aes(x = LONGITUDE, y = LATITUDE, color = IATA_CODE),
               size = 2, alpha = 0.8) +
    # ggrepel evita sobreposição de labels
    geom_text_repel(data = dados, aes(x = LONGITUDE, y = LATITUDE, label = IATA_CODE),
                    size = 2.5, color = "black",
                    box.padding = 0.3, max.overlaps = 20) +
    coord_sf(xlim = c(long_range[1] - long_margem, long_range[2] + long_margem),
             ylim = c(lat_range[1] - lat_margem, lat_range[2] + lat_margem)) +
    theme void() +
    theme(legend.position = "none") # Remove a legenda de cores
plotar_pontos_ggrepel(seus_dados)
```



```
seus_dados = a1
seus_dados = seus_dados %>% filter(IATA_CODE %in% local_airports)
```

```
search = function(string){
  function(x){
    seus_dados[[which(seus_dados$IATA_CODE == x),string]]
}
# Exemplo de estrutura
voos <- data.frame(</pre>
  decolagem_lat = unlist(lapply(in2$ORIGIN_AIRPORT, search("LATITUDE"))),
 decolagem_long = unlist(lapply(in2$ORIGIN_AIRPORT,search("LONGITUDE"))),
  aterrissagem lat = unlist(lapply(in2$DESTINATION AIRPORT, search("LATITUDE"))),
 aterrissagem_long = unlist(lapply(in2$DESTINATION_AIRPORT, search("LONGITUDE"))),
 tail_number = in2$TAIL_NUMBER
plotar_rotas_curvas <- function(dados_voos, margem = 0.2) {</pre>
  todas_lats <- c(dados_voos$decolagem_lat, dados_voos$aterrissagem_lat)
  todas_longs <- c(dados_voos$decolagem_long, dados_voos$aterrissagem_long)</pre>
  lat_range <- range(todas_lats, na.rm = TRUE)</pre>
  long_range <- range(todas_longs, na.rm = TRUE)</pre>
  lat margem <- diff(lat range) * margem</pre>
  long_margem <- diff(long_range) * margem</pre>
  ggplot() +
    borders("world", colour = "gray50", fill = "gray90") +
    # Curvas para rotas
    geom_curve(data = dados_voos,
               aes(x = decolagem_long, y = decolagem_lat,
                   xend = aterrissagem_long, yend = aterrissagem_lat,
                   color = tail_number),
               curvature = 0.2, # Curvatura da linha
               arrow = arrow(length = unit(0.15, "cm")),
               linewidth = 0.8, alpha = 0.1) +
    # Pontos
    geom_point(data = dados_voos,
               aes(x = decolagem_long, y = decolagem_lat),
               color = "darkred", size = 2) +
    coord_sf(xlim = c(long_range[1] - long_margem, long_range[2] + long_margem),
             ylim = c(lat_range[1] - lat_margem, lat_range[2] + lat_margem)) +
    theme_void() +
    ggtitle("Trajetória da Nave: N651DL") +
    theme(legend.position = "none")
}
plotar_rotas_curvas(voos)
```

