Sprawozdanie z laboratorium nr 8

226543 Tomasz Kaliciak

5 czerwca 2017

1 Wstęp

Celem ćwiczenia było zaimpementowanie samoorganizującego się binarnego drzewa przeszukiwań oraz przeanalizowanie jego czasu przeszukiwania. Wybrano implementację drzewa czerwono-czarnego, ponieważ operacje dodawania i usuwania elementów są mniej kosztowne niż w przypadku drzew AVL. Oczekiwana złożoność obliczeniowa wyszukiwania to O(logn).

2 Pomiary

Podczas badania złożności obliczeniowej przeszukiwania drzewa wypełniono je elementami o losowych wartościach. Mierzony był czas wyszukania elementu o największej wartości. Pomiary powtórzono 100-krotnie dla każdego rozmiaru problemu.

2.1 Wyniki

Tabela 1: Zestawienie czasów przeszukiwania drzewa

F		
	Ilość elementów	Czas przeszukiwania [ms]
	10^{1}	0.00005
	10^{2}	0.00008
	10^{3}	0.00015
	10^{4}	0.00025
	10^{5}	0.0003
	10^{6}	0.000625

Wykres 1: Czas przeszukiwania od ilości elementów

3 Wnioski

- Na podstawie wykresu 1 można zauważyć, że złożoność obliczeniowa operacji wyszukiwania pokrywa się z teoretyczną złożonością O(logn).
- Drzewo czerwono-czarne charakteryzuje się niską złożonością obliczeniową operacji wyszukiwania, jednak implementacja tej struktury danych jest dość skomplikowana.
- Drzewo czerwono-czarne swoją niską złożoność obliczeniową przeszukiwania zawdzięcza sposobowi swojej samoorganizacji. Gdy po dodaniu elementu drzewo nie spełnia własności drzewa czerwono-czarnego odpowiednia metoda dokonuje modyfikacji struktury drzewa. Dzięki temu drzewo jest zrównoważone.