

Global United Technology Services Co., Ltd.

Report No.: GTS201611000157E01

SPECTRUM REPORT (Bluetooth)

Applicant: Red Bear Electronic (Shenzhen) Co Ltd

Address of Applicant: Rm 610, 6/F, Block B, JinYuan Building, 302 XiXiang Avenue,

Bao An District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: BLE Module

Model No.: MB-N2, Nano2, Blend2

Applicable standards: ETSIEN 300 328 V1.9.1 (2015-02)

Date of sample receipt: November 23, 2016

Date of Test: November 23-25, 2016

Date of report issue: November 25, 2016

Test Result: PASS *

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 1999/5/EC are considered.

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

2 Version

Version No.	Version No. Date Descri		
00	November 25, 2016	Original	

Prepared By:	Tiger. Chen	Date:	November 25, 2016
Check By:	Project Engineer Any w	Date:	November 25, 2016
	Reviewer		

3 Contents

			Page
1	COVE	R PAGE	1
2	VERS	ION	2
3	CONT	ENTS	3
4	TEST	SUMMARY	4
5	GENE	RAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST FACILITY	7
		TEST LOCATION	
		DESCRIPTION OF SUPPORT UNITS	
		DEVIATION FROM STANDARDS	
		ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
6	TEST	INSTRUMENTS LIST	8
7	RADIO	O TECHNICAL SPECIFICATION IN ETSI EN 300 328	10
	7.1	TEST ENVIRONMENT AND MODE	10
	7.2	TRANSMITTER REQUIREMENT	11
	7.2.1	RF Output Power	11
	7.2.1	Power Spectral Density	14
	7.2.2	Occupied Channel Bandwidth	
	7.2.3	Transmitter unwanted emissions in the OOB domain	19
	7.2.4	Transmitter unwanted emissions in the spurious domain	
		RECEIVER REQUIREMENT	
	7.3.1	Spurious Emissions	28
8	TEST	SETUP PHOTO	32
۵	EUT (CONSTRUCTIONAL DETAILS	22

4 Test Summary

Radio Spectrum Matter (RSM) Part of Tx						
Test	Test Requirement	Test method	Limit/Severity	Uncertainty	Result	
RF Output Power	Clause 4.3.2.2	Clause 5.3.2.2	20dBm	±1.5dB	PASS	
Power Spectral Density	Clause 4.3.2.3	Clause 5.3.3.2	10dBm/MHz	±3dB	PASS	
Duty Cycle, Tx- sequence, Tx-gap	Clause 4.3.2.4	Clause 5.3.2.2	Clause 4.3.2.4.3	±5 %	N/A	
Medium Utilisation (MU) factor	Clause 4.3.2.5	Clause 5.3.2.2	≤ 10%	±5 %	N/A	
Adaptivity	Clause 4.3.2.6	Clause 5.3.7.2	Clause 4.3.2.6.2.2 & Clause 4.3.2.6.3.2 & Clause 4.3.2.6.4.2		N/A	
Occupied Channel Bandwidth	Clause 4.3.2.7	Clause 5.3.8.2	Clause 4.3.2.7.3	±5 %	PASS	
Transmitter unwanted emissions in the OOB domain	Clause 4.3.2.8	Clause 5.3.9.2	Clause 4.3.2.8.3	±3dB	PASS	
Transmitter unwanted emissions in the spurious domain	Clause 4.3.2.9	Clause 5.3.10.2	Clause 4.3.2.9.3	±6dB	PASS	
Radio Spectrum Matter (RSM) Part of Rx						
Receiver spurious emissions	Clause 4.3.2.10	Clause 5.3.11.2	Clause 4.3.2.10.3	±6dB	PASS	
Receiver Blocking	Clause 4.3.2.11	Clause 5.3.7.2	Clause 4.3.2.11.3		N/A	

Remark:

Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver.

Temperature (Uncertainty): ±1°C Humidity(Uncertainty): ±5%

Uncertainty: ± 3%(for DC and low frequency voltages)

N/A: Not applicable

5 General Information

5.1 Client Information

Applicant:	Red Bear Electronic (Shenzhen) Co Ltd
Address of Applicant:	Rm 610, 6/F, Block B, JinYuan Building, 302 XiXiang Avenue, Bao An District, Shenzhen, China
Manufacturer/Factory:	Red Bear Electronic (Shenzhen) Co Ltd
Address of Manufacturer/Factory:	Rm 610, 6/F, Block B, JinYuan Building, 302 XiXiang Avenue, Bao An District, Shenzhen, China

5.2 General Description of EUT

Product Name:	BLE Module
Model No.:	MB-N2, Nano2, Blend2
Test Model:	MB-N2
	are identical in the same PCB layout, interior structure and electrical circuits. odel name and battery capacity for commercial purpose.
Operation Frequency:	2402~2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation technology:	GFSK
Bluetooth Version:	V4.0
Antenna Type:	Ceramic antenna
Antenna gain:	1.3dBi (declare by Applicant)
Power Supply:	DC 3.3V

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
. !			. !	•	. !	•	. !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

The test frequencies are below:

Channel	Frequency (MHz)
Lowest:	2402
Middle:	2440
Highest:	2480

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

The EUT has been tested as an independent unit.

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

5.8 Other Information Requested by the Customer

None.

6 Test Instruments List

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 29 2016	June. 28 2017	
4	Loop Antenna	Zhinan	ZN30900A	GTS534	June. 29 2016	June. 28 2017	
5	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 29 2016	June. 28 2017	
6	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 29 2016	June. 28 2017	
7	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June. 29 2016	June. 28 2017	
8	RF Amplifier	HP	8347A	GTS204	June. 29 2016	June. 28 2017	
9	RF Amplifier	HP	8349B	GTS206	June. 29 2016	June. 28 2017	
10	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 29 2016	June. 28 2017	
11	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June. 29 2016	June. 28 2017	
12	Universal Radio Communication tester	ROHDE&SCHWARZ	CMU 200	GTS538	June. 29 2016	June. 28 2017	
13	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
14	Coaxial cable	GTS	N/A	GTS210	N/A	N/A	
15	Coaxial Cable	GTS	N/A	GTS211	N/A	N/A	
16	Thermo meter	N/A	N/A	GTS256	June. 29 2016	June. 28 2017	

Con	Conducted:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Signal Analyzer	Agilent	N9010A	MY48030494	June. 29 2016	June. 28 2017	
2	vector Signal Generator	Agilent	E4438C	MY49070163	June. 29 2016	June. 28 2017	
3	splitter	Mini-Circuits	ZAP-50W	NN256400424	June. 29 2016	June. 28 2017	
4	Directional Coupler	Agilent	87300C	MY44300299	June. 29 2016	June. 28 2017	
5	vector Signal Generator	Agilent	E4438C	US44271917	June. 29 2016	June. 28 2017	
h	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080020	June. 29 2016	June. 28 2017	
7	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54110001	June. 29 2016	June. 28 2017	
×	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY53480008	June. 29 2016	June. 28 2017	
u	X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080019	June. 29 2016	June. 28 2017	
10	4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063507	June. 29 2016	June. 28 2017	
11	4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063513	June. 29 2016	June. 28 2017	
12	splitter	Mini	PS3-7	4463	June. 29 2016	June. 28 2017	

7 Radio Technical Specification in ETSI EN 300 328

7.1 Test Environment and Mode

Test mode:						
Transmitting mode:		Keep the EUT in transmitting mode with modulation.				
Receiving mode		Keep the EUT in receiving mode.				
Operating Environm	Operating Environment:					
. No		mal	Extreme condition			
Item	cond	lition	NVHT	NVLT		
Temperature	+25	5ºC	+55°C	-10°C		
Humidity		20%-95%				
Atmospheric Pressure:		1008 mbar				

Setting	Value
Modulation	Other (GFSK)
Adaptive	Yes
Number of Transmission Chains	1
Antenna Gain 1	1.3dBi
Nominal Channel Bandwidth	1.2MHz
Maximum EIRP	-2.64dBm
DUT Frequency not configurable	No
Frequency Low	2402MHz
Frequency Mid	2440MHz
Frequency High	2480MHz
Attenuation/Pathloss File 1	Attenuator Port1
DUT Port Occupied Channel Bandwidth	1
LBT/DAA Based	Yes
DUT Port Adaptivity	1
Channel Occupation Time	13ms

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Transmitter Requirement

7.2.1 RF Output Power

	NOTE 2: In case of insufficient dynamic range, the value of 30dB may need to be reduced appropriately.
	Step 4:
	Between the start and stop times of each individual burst calculate the RMS power over the burst using the formula below. Save these Pburst values, as well as the start and stop times for each burst.
	$=\frac{1}{2}\sum_{i=1}^{n}$
	With "k" being the total number of samples and "n" the actual sample
	number
	Step 5:
	The highest of all Pburst values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.
	Step 6:
	Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
	If applicable, add the additional beamforming gain "Y" in dB.
	If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
	The RF Output Power (P) shall be calculated using the formula below:
	P = A + G + Y
	Step 7:
	This value, which shall comply with the limit given in clause 4.3.1.2.3 or clause 4.3.2.2.3, shall be recorded in the test report.
Measurement Record:	Uncertainty: ± 1.5dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data

Test conditions	Channel	Burst RMS power (dBm)	Antenna Gain(dBi)	Calculated Power (dBm)	Limit (dBm)	Result
	Lowest	-4.11	1.30	-2.81		
Normal	Middle	-4.18	1.30	-2.88		
	Highest	-3.94	1.30	-2.64		
	Lowest	-4.22	1.30	-2.92		
NVHT	Middle	-4.20	1.30	-2.90	20	Pass
	Highest	-4.01	1.30	-2.71		
	Lowest	-4.14	1.30	-2.84		
NVLT	Middle	-4.19	1.30	-2.89		
	Highest	-3.98	1.30	-2.68		

Remark:

1>. Volt= Voltage, Temp= Temparature

2>. Antenna Gain=1.30dBi

7.2.1 Power Spectral Density

Test Requirement:	ETSI EN 300 328 claus	se 4.3.2.3		
Test Method:	ETSI EN 300 328 claus	ETSI EN 300 328 clause 5.3.3.2.1		
Limit:	10dBm/MHz	10dBm/MHz		
Test setup:	Spectrum Analyser	Attenuator & DC block EUT Power Supply		
Test procedure:	Step 1:			
	Connect the UUT to the	e spectrum analyser and use the following settings:		
	Start Frequency:	2400 MHz		
	Stop Frequency:	2483.5 MHz		
	Resolution BW:	10 kHz		
	Video BW:	30 kHz		
	Sweep Points:	> 8350		
	-	m analysers not supporting this number of sweep cy band may be segmented.		
	Detector:	RMS		
	Trace Mode:	Max Hold		
	Sweep time:	10s; the sweep time may be increased further until a value where the sweep time has no impact on the RMS value of the signal		
	For non-continuous sig data) set to a file.	nals, wait for the trace to stabilize. Save the (trace		
	Step 2:			
	operating mode 2 or 3 each of the transmit pour the coincident power.	For conducted measurements on smart antenna systems using either operating mode 2 or 3 (see clause 5.1.3.2), repeat the measurement for each of the transmit ports. For each sampling point(frequency domain), add up the coincident power values(in mW) for the different transmit chains and use this as the new data set.		
	Step 3:			
	Add up the values for p below.	power for all the samples in the file using the formula		
		$=\sum_{=1} \qquad ()$		
	With "k" being the total Number.	number of samples and "n" the actual sample		
	Step 4:			
	•			

Project No.: GTS201611000157

Page 14 of 34

	,
	Normalize the individual values for power(in dBm) so that the sum is equal to the RF output Power (e.i.r.p.) measured in clause 5.3.2 and save the corrected data. The following formulas can be used:
	With"n" being the actual sample number
	Step 5:
	Starting from the first sample in the file (lowest frequency), add up the power(in mW) of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.
	Step 6:
	Shift the start point of the samples added up in step 5 by one sample and repeat the procedure in step 5 (i.e. sample #2 to
	#101).
	Step 7:
	Repeat step 6 until the end of the data set and record the Power Spectral Density values for each of the 1 MHz segments.
	Step 8:
	From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT. This value, which shall comply with the limit given in clause 4.3.2.3.3, shall be recorded in the test report.
Measurement Record:	Uncertainty: ±3dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data

Bluetooth mode				
Channel	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)	Result	
Lowest	-4.78			
Middle	-4.41	10.00	Pass	
Highest	-4.27			

7.2.2 Occupied Channel Bandwidth

Test Requirement:	ETSI EN 300 328 clause	4.3.2.7	
Limit:		andwidth for each hopping frequency shall fall	
	completely within the ban	d 2400MHz ~ 2483.5MHz.	
	·	cy Hopping equipment with e.i.r.p greater than 10	
		nel Bandwidth for every occupied hopping to or less than the value declared by the supplier.	
		not be greater than 5 MHz.	
Test setup:	Attenuator &		
	Attenuator & DC block DC block EUT Power Supply		
	Spectrum Analyser		
Test Precedure:	Step 1:		
	Connect the UUT to the s	pectrum analyser and use the following settings:	
	Centre Frequency:	The centre frequency of the channel under test	
	Resolution BW:	~ 1 % of the span without going below 1 %	
	Video BW:	3 × RBW	
	Frequency Span for Lowest frequency separation that is used frequency hopping within the hopping sequence		
	equipment:		
	Frequency Span for other types of		
	equipment:	2 x Nominal Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)	
	Detector Mode: RMS		
	Trace mode:	Max Hold	
	Sweep time:	1 s	
	Step 2:		
	Wait for the trace to stabi	ilize.	
	Find the peak value of peak.	the trace and place the analyser marker on this	
	Step 3:		
	Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.		
	NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement.		
Test Instruments:	See section 6.0		
Test mode:	Transmitting mode		
<u> </u>	·		

Measurement Data:

Bluetooth mode					
Test Channel	99% Bandwidth (MHz)	Declared Bandwidth (MHz)	F _L /F _H (MHz)	Limit	Result
Lowest	1.018	1.2	2401.50	2400MHz ~	Pass
Highest	1.019	1.2	2480.51	2483.5MHz	Pass

Test plots are below:

Highest Channel

7.2.3 Transmitter unwanted emissions in the OOB domain

Test Requirement:	ETSI EN 300 328 clause	ETSI EN 300 328 clause 4.3.2.8		
Test Method:	ETSI EN 300 328 clause	ETSI EN 300 328 clause 5.3.9.2		
Limit:		ed emissions in the out-of-band domain but outside all not exceed the values provided by the mask in		
		- Sf		
	Spurious Domain Out Of Band Don	main (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Domain		
	A			
	В			
	С			
	2 400 MHz - 2BW 2 400 MHz	- BW 2 400 MHz 2 483,5 MHz 2 483,5 MHz + BW 2 483,5 MHz + 2BW		
	A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p.	BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater		
	C: Spurious Domein limits	Figure 3: Transmit mask		
Test setup:				
		enuator & C block		
		EUT Power Supply		
	Spectrum Analyser			
Test procedure:		defined by the measurement results from the tests 5.3.8 (Occupied Channel Bandwidth).		
	•	ons within the different horizontal segments of the		
		1 and 3 shall be measured using the steps below he spectrum analyser is equipped with the Time		
	Step 1:			
	-	spectrum analyser and use the following settings:		
	Centre Frequency:	2 484 MHz		
	Span:	Hz		
	Resolution BW:	1 MHz		
	Filter mode:	Channel filter		
	Video BW:	3 MHz		
	Detector Mode:	RMS		
	Trace Mode:	Max Hold		
	Sweep Mode:	Continuous		
	Sweep Points:	Sweep Time [s] / (1 μ s) or 5 000 whichever is greater		
	Trigger Mode:	Video trigger		

NOTE 1: In case video triggering is not possible, an external trigger source may be used.

Sweep Time: >120 % of the duration of the longest burst

detected during the measurement of the

RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

Adjust the trigger level to select the transmissions with the highest power level.

For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.

Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.

Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.

Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - BW + 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz. (which means this may partly overlap with the previous 1 MHz segment).

Step 6:

In case of conducted measurements on equipment with a single transmit

	chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
	In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
	Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figure 1 or figure 3.
	Option 2: the limits provided by the mask given in figure 1 or figure 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.
	NOTE 2: Ach refers to the number of active transmit chains.
	It shall be recorded whether the equipment complies with the mask provided in figure 1 or figure 3.
Measurement Record:	Uncertainty: ± 1.5dB
Test Instruments:	See section 6.0
Test mode:	Transmitting mode

Measurement Data:

Test Condition	Test Channel	Antenna	Frequency (MHz)	Level (dBm)	Limit (dBm)
	Lowest Channel	Antenna 1	2399.48	-55.59	-10
Normal	Lowest Charmer	Antenna 1	2398.48	-57.97	-20
Nominal	Highest Channel	Antenna 1	2484.02	-55.93	-10
	nighest Chairle	Antenna 1	2485.02	-57.95	-20
	Lowest Channel Highest Channel	Antenna 1	2399.48	-56.22	-10
NVLT		Antenna 1	2398.48	-56.80	-20
INVLI		Antenna 1	2484.02	-56.65	-10
		Antenna 1	2485.02	-55.35	-20
	Lowest Channel	Antenna 1	2399.48	-56.04	-10
NVHT	Lowest Channel	Antenna 1	2398.48	-54.56	-20
INVITI	Lishaat Channal	Antenna 1	2484.02	-55.45	-10
	Highest Channel	Antenna 1	2485.02	-56.24	-20

Test plots at normal condition are followed:

7.2.4 Transmitter unwanted emissions in the spurious domain

Test Requirement:	ETSI EN 300 328 clause 4.3.2.9		
Test Method:	ETSI EN 300 328 clause 5.3.10.2		
Limit:	Frequency Range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
	30 MHz to 47 MHz	-36 dBm	100 kHz
	47 MHz to 74 MHz	-54 dBm	100 kHz
	74 MHz to 87.5 MHz	-36 dBm	100 kHz
	87.5 MHz to 118 MHz	-54 dBm	100 kHz
	118 MHz to 174 MHz	-36 dBm	100 kHz
	174 MHz to 230 MHz	-54 dBm	100 kHz
	230 MHz to 470 MHz	-36 dBm	100 kHz
	470 MHz to 862 MHz	-54 dBm	100 kHz
	862 MHz to 1 GHz	-36 dBm	100 kHz
	1 GHz to 12.75 GHz	-30 dBm	1 MHz
Test Frequency range:	30MHz to 12.75GHz		
Test setup:	Below 1GHz		
	Antenna Tower Antenna Tower (Turntable) Ground Reference Plane Test Receiver		
	Above 1GHz		

Test procedure:

1. Pre-scan

The test procedure below shall be used to identify potential unwanted emissions of the UUT.

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 1 or 4.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

Resolution BW: 100 kHz Video BW 300 kHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: ≥19 400

NOTE 1: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

Sweep time: For non continuous transmissions (duty cycle

less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT.

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping

sequences.

NOTE 2: The above sweep time setting may result in long measuring times in case of frequency hopping equipment. To avoid such long measuring times, an FFT analyser could be used.

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.10.2.1.3

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

and compared to the limits given in table 1 or table 4.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz Video BW 3 MHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: ≥ 23 500

NOTE 3: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

Sweep time: For non continuous transmissions (duty cycle

less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping

sequences.

NOTE 4: The above sweep time setting may result in long measuring times in case of frequency hopping equipment. To avoid such long measuring times, an FFT analyser could be used.

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.10.2.1.3 and compared to the limits given in table 1 or table 4.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.3.10.2.1.3.

Step 4:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (Ach). The limits used to identify emissions during this pre-scan need to be reduced with $10 \times \log 10$ (Ach) (number of active transmit chains).

2. Measurement of the emissions identified during the pre-scan

The steps below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above. This method assumes the spectrum analyser has a Time Domain Power function.

Step 1:

The level of the emissions shall be measured using the following spectrum

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 25 of 34

	analyser settings:		
	Measurement Mode:	Time Domain Power	
	Centre Frequency:	Frequency of emission identified during the pre-scan	
	Resolution BW:	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)	
	Video BW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)	
	Frequency Span:	Zero Span	
	Sweep mode:	Single Sweep	
	Sweep time:	30 ms	
	Sweep points:	>=30 000	
	Trigger:	Video (burst signals) or Manual (continuous signals)	
	Detector:	RMS	
	Step 2:		
	Set a window where the start and stop indicators match the start and end of the burst with the highest level and record the value of the power measured within this window. If the spurious emission to be measured is a continuous transmission, the measurement window shall be set to match the start and stop times of the sweep.		
	Step 3:	surements on smart antenna systems	
		ransmit chains), step 2 needs to be repeated for	
		(within the observed window) for each of the	
	Step 4:		
	The measured values shall and 4.	be compared to the limits defined in tables 1	
Measurement Record:		Uncertainty: ± 6dB	
Test Instruments:	See section 6.0		
Test mode:	Transmitting mode		

Measurement Data

		Bluetooth mo	de	
		The lowest cha	nnel	
Frequency (MHz)	Spurious Emission		Limit (dDm)	To et Do evilt
	polarization	Level(dBm)	Limit (dBm)	Test Result
103.69	Vertical	-68.37	-54.00	
549.88	V	-64.50	-54.00	
4804.00	V	-49.34	-30.00	
7206.00	V	-44.76	-30.00	
9608.00	V	-41.33	-30.00	
12010.00	V	-40.74	-30.00	Pass
94.62	Horizontal	-65.63	-30.00	
839.82	Н	-66.80	-54.00	
4804.00	Н	-49.07	-36.00	
7206.00	Н	-45.40	-30.00	
9608.00	Н	-41.25	-30.00	
12010.00	Н	-43.58	-30.00	
		The highest cha	nnel	
	Spurious Emission		Limit (dDm)	To at Door 15
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
79.22	Vertical	-65.63	-36.00	
698.10	V	-67.92	-54.00	
4960.00	V	-50.47	-30.00	Pass
7440.00	V	-45.19	-30.00	
9920.00	V	-41.61	-30.00	
12400.00	V	-40.81	-30.00	
85.02	Horizontal	-67.22	-30.00	
862.39	Н	-68.52	-36.00	
4960.00	Н	-50.40	-36.00	
7440.00	Н	-45.99	-30.00	
9920.00	Н	-41.91	-30.00	
12400.00	Н	-44.15	-30.00	

7.3 Receiver Requirement

7.3.1 Spurious Emissions

Test procedure:

1. Pre-scan

The test procedure below shall be used to identify potential unwanted emissions of the UUT.

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 2 or 5.

Step 2

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

Resolution BW: 100 kHz Video BW 300 kHz

Filter type: 3dB (Gaussian)

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: ≥ 19 400

Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.2 and compared to the limits given in tables 2 or 5.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

Resolution BW: 1 MHz Video BW 3 MHz

Filter type: 3 dB (Gaussian)

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: ≥ 23 500

Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.2 and compared to the limits given in tables 2 or 5.

Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.3.11.2.1.2.

Step 4:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the steps 2 and 3 need to be repeated for each of the active transmit chains (Ach). The limits used to identifyemissions during this pre-scan need to be reduced with $10 \times \log 10$ (Ach) (number of active transmit chains).

2. Measurement of the emissions identified during the pre-scan

The steps below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above.

Step 1

The level of the emissions shall be measured using the following spectrum analyser settings:

Centre Frequency: Frequency of emission identified during the pre-

scan

Resolution BW: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)

Video BW 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)

Frequency Span: Zero Span
Sweep mode: Single Sweep

Sweep time: 30 ms Sweep points: >=30 000

Trigger: Video (for burst signals) or Manual (for

continuous signals)

Detector: RMS

Step 2:

In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the step 1 needs to be repeated for each of the active transmit chains (Ach).

The trace data for each transmit chain has to be recorded.

Sum the power in each of the traces for each individual frequency bin.

Step 3:

Use the marker function to find the highest peak within the measurement trace and record its value and its frequency.

Step 4:

The measured values shall be compared to the limits defined in tables 2 and 5.

Measurement Record:	Uncertainty: ± 6dB
Test mode:	Kept Rx in receiving mode
Test Instruments:	See section 6.0

Measurement Data:

		Bluetooth mo	ode	
		The lowest cha	nnel	
Frequency (MHz)	Spurious Emission		Limit (dDm)	Test Result
Frequency (MHZ)	polarization	Level(dBm)	Limit (dBm)	Test Result
91.03	Vertical	-69.71		
501.15	V	-69.01		
4804.00	V	-61.04		
7206.00	V	-57.09	2nW/ -57dBm	
9608.00	V	-52.10	below 1GHz,	
12400.00	V	-51.10		Pass
83.02	Horizontal	-69.90	20nW/ -47dBm	1 455
807.59	Н	-68.96	above 1GHz.	
4804.00	Н	-63.82		
7206.00	Н	-58.07		
9608.00	Н	-53.59		
12010.00	Н	-55.16		
		The highest cha	innel	1
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result
	polarization	Level(dBm)		Tool Noont
72.58	Vertical	-69.31		
782.23	V	-67.38		
4960.00	V	-62.27		
7440.00	V	-56.98	2nW/ -57dBm below 1GHz,	
9920.00	V	-52.08		
12400.00	V	-51.54		Pass
81.87	Horizontal	-72.18	20nW/ -47dBm	
574.62	Н	-69.70	above 1GHz.	
4960.00	Н	-63.35		
7440.00	Н	-56.52		
9920.00	Н	-52.54		
12400.00	Н	-54.24		

8 Test setup photo

9 EUT Constructional Details

-----End-----