4.6.3 The LR-Parsing Algorithm

A schematic of an LR parser is shown in Fig. 4.35. It consists of an input, an output, a stack, a driver program, and a parsing table that has two parts (ACTION and GOTO). The driver program is the same for all LR parsers; only the parsing table changes from one parser to another. The parsing program reads characters from an input buffer one at a time. Where a shift-reduce parser would shift a symbol, an LR parser shifts a *state*. Each state summarizes the information contained in the stack below it.

Figure 4.35: Model of an LR parser

The stack holds a sequence of states, $s_0s_1\cdots s_m$, where s_m is on top. In the SLR method, the stack holds states from the LR(0) automaton; the canonical-LR and LALR methods are similar. By construction, each state has a corresponding grammar symbol. Recall that states correspond to sets of items, and that there is a transition from state i to state j if $GOTO(I_i, X) = I_j$. All transitions to state j must be for the same grammar symbol X. Thus, each state, except the start state 0, has a unique grammar symbol associated with it.⁴

⁴The converse need not hold; that is, more than one state may have the same grammar

Structure of the LR Parsing Table

The parsing table consists of two parts: a parsing-action function ACTION and a goto function GOTO.

- 1. The ACTION function takes as arguments a state i and a terminal a (or \$, the input endmarker). The value of ACTION[i,a] can have one of four forms:
 - (a) Shift j, where j is a state. The action taken by the parser effectively shifts input a to the stack, but uses state j to represent a.
 - (b) Reduce $A \to \beta$. The action of the parser effectively reduces β on the top of the stack to head A.
 - (c) Accept. The parser accepts the input and finishes parsing.
 - (d) Error. The parser discovers an error in its input and takes some corrective action. We shall have more to say about how such error-recovery routines work in Sections 4.8.3 and 4.9.4.
- 2. We extend the GOTO function, defined on sets of items, to states: if $GOTO[I_i, A] = I_j$, then GOTO also maps a state i and a nonterminal A to state j.