Recap
Propositional Logic
- proposition (statement / claim - proposition (statement / claim that is always frome
or always false,
- Propositions Atomic propositions
- Propositions Atomic propositions Compound propositions
_ Logical connectors
The local
- negation (7,~) - negation (7,~)
Given two propositions P, 9 compound proposition
connector compound proposition true; If and q is true A PAQ
V PVQ true; If por q is true; If p is fals
true; If p is fals
- Any proposition can be denoted using a boolean variable.
P! Sky is blue

7p: Sky is not blue

Syntax Vs Semantic in propositional Logic whether given meaning of a gramaticall correct statement proposition is gramatically correct \longrightarrow \times I C Z (gramatically) -IEZ gramatically) I is an integer, true gramatically —) I is not an integer, false correct Det Implication (=>) (This is a logical Given two propositions p and q, we can create compound proposition p=>q(denoted as p implied q"), is true If the truth of p implies truth of q" P- It rains in Bozeman. 2- Bozeman is wet. If "It rains in Bozeman", then "Bozeman is Wet" In order for this compound proposition to be true, Bozeman must be wet, whenever It rains in Bozeman. t=>9 The p is called antecedent (or premise/hypothesis) The q is called consequent (or the conclusion) 2: 2+3=6 P: 1+1 = 2 $Y = (P \Rightarrow 2)$ pis true but q is false Therefore, P=99 is false.

t'. 2+2=4 r: 1+1=3 r>t 61. 1+3=4 a: 1+1=2 $a \Rightarrow b$

d: 2+3=10 c: 1+1 = 6

 $c \Rightarrow d$

Remember! In an implication premise and conclusion do not need to be nelated in order for it to be true. What matters is whenever the premise is true, the conclusion is true.

P=>2 = 7P V 2

Det Exclusive or (16)

Given two propositions p and q, the compound proposition PEQ ("p exclusive or q", "pxorq"), is true, when one of p or q is true, but not both but not both.

In other words, PDq # is false, whenver p and q is true and p and q is false. P! Alex is holding a cup of tea on his right hand q! Alex is holding a cup of coffee on his night hand.

consider r: PD2

- Alex is holding a cup of tea or a cup of

coffee on his right hand, but not on both.

- Note that in English, it is very hard to distinguish between "inelusive or" and "exclusive or"

Det It and only If (, Iff) Given two propositions p and q, the compound proposition P=>q("p if and only it") is true when the proposition p and q has the same truth walle. Also: P=>2 can be written as

 $(P \Rightarrow 2) \land (2 \Rightarrow P)$