Spring 2019

Problem 2

Consider the function $f:[0,1]\to defined$ by

$$f(x) = \begin{cases} x \log x & x \in (0, 1] \\ 0 & x = 0 \end{cases}$$

- (a) Is f Lipschitz continuous on [0, 1]?
- (b) Is f uniformly continuous on [0, 1]?
- (c) Suppose (p_n) is a sequence of polynomial functions on [0,1], converging uniformly to f. Is the set $A = \{p_n : n \ge 1\} \cup \{f\}$ equicontinuous?

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

The function is not Lipschitz, to see this note that:

$$\lim_{n \to \infty} \frac{f(1/n) - f(0)}{(1/n) - 0} = \lim_{n \to \infty} \log(1/n) = -\infty,$$

so f cannot be Lipschitz. However the function is continuous as by L'Hopital's rule:

$$\lim_{x \to 0} x \log(x) = \lim_{n \to \infty} \frac{\log(1/n)}{(1/n)} = \lim_{n \to \infty} \frac{1}{n} = 0,$$

so f is continuous and hence uniformly continuous since we are working over a compact set.

For part (c.), fix $\epsilon > 0$ and let $N \in \mathbb{N}$ be sufficiently large so that $||p_n - f|| < \epsilon/3$. Next, since f is uniformly continuous let $\delta > 0$ be sufficiently small so that if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon/3$. Then for all n > N, if $|x - y| < \delta$ then:

$$|p_n(x)-p_n(y)| \le |p_n(x)-f(x)|+|f(x)-f(y)|+|f(y)-p_n(y)| \le 2 ||p_n-f||+|f(x)-f(y)| < \epsilon$$

Finally, since p_1, \ldots, p_N are each uniformly continuous there exist corresponding $\delta_1, \ldots, \delta_N$ so $\delta_0 = \min\{\delta, \delta_1, \ldots, \delta_N\}$ works for all the $\{p_n\} \cup \{f\}$, hence the set is equicontinuous.

Problem 1

Prove that every metric subspace of a separable metric space is separable.

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

Let (X, d) be a separable metric space and let $S \subseteq X$ be a metric subspace of X.

Since X is separable, there exists a countable dense subset $\{x_i\}_{i=1}^{\infty}$ such that

$$X \subseteq \bigcup_{i=1}^{\infty} B_{\epsilon}(x_i)$$

for any $\epsilon > 0$.

In particular, S is also contained in this union. For each x_i and every $n \in \mathbb{N}$ with $B_{1/n}(x_i) \cap S \neq 0$, choose $s_j \in B_{1/n}(x_i) \cap S$. We claim that $\{s_j\}_{j=1}^{\infty}$ is a countable dense subset of S. Indeed, $\{s_j\}_{j=1}^{\infty}$ is countable because it is a countable union of countable sets. Moreover, for any $s \in S$, we know that there exists x_i such that $d(x_i, s) < \epsilon/2$ because $\{x_i\}$ is dense in X. Choosing $s_j \in \{s_j\}$ such that $d(s_j, x_i) < \epsilon/2$ then gives us that

$$d(s_i, s) \le d(s_i, x_i) + d(x_i, s) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Thus, we have produced a countable, dense subset of S and it follows that S is separable.

Problem 3

Prove or disprove the following statement: If $f \in C^{\infty}([0,1])$ is a smooth function, then there exists a sequence of polynomials (p_n) on [0,1] such that $p_n^{(k)} \to f^{(k)}$ uniformly on [0,1] as $n \to \infty$ for every integer $k \ge 0$. Here $f^{(k)}$ denotes the k-th derivative of f.

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

The statement is true. Let $\mathcal{P} = \mathcal{P}([0,1])$ be the space of polynomials on [0,1] and for $k \geq 0$ let $C^k([0,1])$ be the space of functions f such that $f^{(i)}$ exists and is continuous for all $i = 0, \ldots, k$. Equip $C^k([0,1])$ with its usual norm:

$$||f||_{C^k} = \sum_{i=0}^k ||f^{(i)}||_{\infty}.$$

We first show that \mathcal{P} is dense in $C^k([0,1])$ for all $k \geq 0$. Fix $\epsilon > 0$ and let $f \in C^k([0,1])$ be arbitrary. Then $f^{(k)} \in C([0,1])$ so by the Stone-Weierstrass Theorem there exists a polynomial $p_k \in \mathcal{P}$ such that $||f^{(k)} - p_k||_{\infty} < \epsilon/k$. Now consider the function p_{k-1} given by

$$p_{k-1}(x) = f^{(k-1)}(0) + \int_0^x p_k(y)dy.$$

Note $p_{k-1} \in \mathcal{P}$ and by the fundamental theorem of calculus $p_{k-1}^{(1)} = p_k$. Next, note that for any $x \in [0,1]$ we have:

$$|f^{(k-1)}(x) - p_{k-1}(x)| = \left| f^{(k-1)}(0) + \int_0^x f^{(k)}(y) dy - \left(f^{(k-1)}(0) + \int_0^x p_k(y) dy \right) \right|$$

$$\leq \int_0^x |f^{(k)}(y) - p_k(y)| dy$$

$$\leq \int_0^1 ||f^{(k)} - p_k||_{\infty} dy$$

$$\leq \epsilon/k.$$

Hence $||f^{(k-1)} - p_{k-1}||_{C^1} \le 2\epsilon/k$. Now repeat this process, at each step defining a new polynomial p_i so that

$$p_i(x) = f^{(i)}(0) + \int_0^x p_{i+1}(y)dy.$$

It follows from the same argument as above that $||f - p_0||_{C^k} \le \epsilon$. Since ϵ was taken to be arbitrary we have that \mathcal{P} is dense in $C^k([0,1])$.

Returning to the original problem, let $f \in C^{\infty}([0,1])$. For $k \geq 0$, let $(p_n^k)_{n=1}^{\infty} \subset \mathcal{P}$ be a sequence such that $p_n^k \to f$ in $C^k([0,1])$, these sequences are guaranteed to exist by the prior argument. Now define a "diagonal" sequence $(q_m)_{m=1}^{\infty} \subset \mathcal{P}$ by setting q_m to be the first term from (p_n^m) such that $||f - p_n^m||_{C^m} < 2^{-m}$. It follows that for any fixed k, $||f^{(k)} - q_m^{(k)}||_{\infty} \to 0$ as $m \to \infty$ so (q_m) is our desired sequence.

Spring 2017

Problem 2

Suppose that (X,d) is a metric space such that every continuous function $f:X\to {\rm is}$ bounded. Prove that X is complete.

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

Let (x_n) be a Cauchy sequence in X, so that (x_n) converges to some $y \in \tilde{X}$, the completion of X. We want to show that $y \in X$, so suppose by way of contradiction that $y \notin X$. Recall that the metric d is a continuous function from $X \times X \to_{\geq 0}$. Hence the function $f: X \to \text{defined by } f(x) = d(x,y)$ is continuous. What's more, since $y \notin X$ we have that $f(x) = d(x,y) \neq 0$ for all $x \in X$. Thus the function $g(x) = \frac{1}{f(x)}$ is also a continuous function on X. But since $x_n \to y$ we have that $d(x_n, y) \to 0$, so $g(x_n) \to \infty$, contradicting that every continuous function on X is bounded. Thus it must be the case that $y \in X$.

Problem 4

Let $C_0()$ denote the Banach space of continuous functions $f :\to \text{such that } f(x) \to 0 \text{ as } |x| \to \infty$, equipped with the sup-norm.

(a) For $n \in \mathfrak{h}$, define $f_n \in C_0()$ by

$$f_n = \begin{cases} 1 & |x| \le n \\ \frac{n}{|x|} & |x| > n \end{cases}$$

Show that $F = \{f_n : n \in \mathbb{N}\}$ is a bounded, equicontinuous subset of $C_0()$, but that the sequence (f_n) has no uniformly convergent subsequence. Why doesn't this example contradict the Arzelà-Ascoli theorem?

(b) A family of functions $F \subset C_0()$ is said to be tight if for every $\epsilon > 0$ there exists a constant M > 0 such that $|f(x)| < \epsilon$ for all $x \in \text{with } |x| \geq M$ and all $f \in F$. Prove that $F \subset C_0()$ is pre-compact in $C_0()$ if it is bounded, equicontinuous, and tight.

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

(a) We get boundededness immediately as $|f_n| \leq 1$ for all n. For equicontinuity let $x \in$ and fix $\epsilon > 0$. Since the f_n 's are even we may assume without loss of generality that $x \geq 0$. Hence let $N = \lfloor x \rfloor$, so $x \in [N, N+1]$. Note that for all n > N+1 $f_n(u) = 1$ for all $|u| \leq N+2$, hence if |u-x| < 1 then |f(u) - f(x)| = 0. Then since $f_1, f_2, \ldots, f_{N+1}$ are continuous there exist $\delta_1, \delta_2, \ldots, \delta_{N+1}$ such that if $|u-x| < \delta_i$ then $|f_i(u) - f_i(x)| < \epsilon$ for each $i = 1, 2, \ldots N+1$. Hence letting $\delta = \min\{1, \delta_1, \ldots, \delta_{N+1}\}$ we have that $|u-x| < \delta \implies |f_n(u) - f_n(x)| < \epsilon$ for all $n \in \mathbb{N}$. Hence F is equicontinuous.

To see that F has no uniformly convergent subsequence note that for all $n, f_n(x) \to 0$ as $|x| \to \infty$ but that f_n converges pointwise to 1 as $n \to \infty$. However this does not contradict Arzelà-Ascoli because that

- theorem presupposes that we are working with functions over a compact domain.
- (b) We will show that F is totally bounded since that is equivalent to precompact in a metric space. Fix $\epsilon > 0$. Because F is tight there exists an M > 0 such that $|f(x)| < \epsilon/2$ for all |x| > M. Now consider the set $G = \{g_n = f_n|_{[-M,M]} : n \in \mathbb{N}\} \subset C([-M,M])$. Note that G is bounded and equicontinuous, this is inherited from F. Then since [-M,M] is compact we have that G is compact in C([-M,M]) by the Arzelà-Ascoli theorem.

Hence G is totally bounded so there exist $h_1, \ldots h_N \in G$ such that $G \subseteq \bigcup_{i=1}^N B(h_i, \epsilon)$, where $B(h_i, \epsilon)$ is the ball of radius ϵ centered at h_i , taken with respect to the sup norm on [-M, M]. Now let $f_1, \ldots f_N$ be the corresponding functions in F and consider an arbitrary $f \in F$ and $x \in$. Since the h's form a finite ϵ -net there exists some f_i in our finite collection such that $|f(x) - f_i(x)| < \epsilon$ for all |x| < M. Then for |x| > M we have that $|f(x) - f_i(x)| \le |f(x)| + |f_i(x)| < \epsilon/2 + \epsilon/2 = \epsilon$. Hence $\bigcup_{i=1}^N B(f_i, \epsilon)$ forms an ϵ -net cover of F, so F is totally bounded and pre-compact.

Spring 2011

Problem 6

For $\alpha \in (0,1],$ the space of Hölder continuous functions on the interval [0,1] is defined as

$$C^{9,\alpha}([0,1]) = \{ u \in C[0,1] : |u(x) - u(y) \le C|x - y|^{\alpha} \ \forall x, y \in [0,1] \}$$

and is a Banach space when endowed with the norm

$$||u||_{C^{0,\alpha}([0,1])} = \sup_{x \in [0,1]} |u(x)| + \sup_{x,y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$

Prove that the closed unit ball $\{u \in C^{0,\alpha}([0,1]) : ||u||_{C^{0,\alpha}([0,1])} \le 1\}$ is a compact set in C([0,1]).

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

Let $U = \{u \in C^{0,\alpha}([0,1]) : ||u||_{C^{0,\alpha}([0,1])} \le 1\}$, and let $u \in U$ be arbitrary. Note that for all $x \in [0,1], |u(x)| \le ||u||_{\infty} \le ||u||_{C^{0,\alpha}} \le 1$, so U is uniformly bounded. Now fix $\epsilon > 0$ and note that if $y \in [0,1]$ with $|x-y| < \epsilon^{1/\alpha}$ then we have:

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le ||u||_{C^{0,\alpha}} \le 1 \implies |u(x) - u(y)| < \epsilon,$$

so U is equicontinuous. Then by the Arzelà-Ascoli Theorem we have that U is pre-compact in C([0,1]). Thus we only have left to show that U is closed in C([0,1]), which follows from . . .

Problem 2

Show that if $\{f_n\}$ is a sequence of continuously differentiable function on [0,1] and both the original sequence and the sequence of derivatives are uniformly bounded, then (f_n) has a uniformly convergent subsequence.

Solution by Esha Datta, James Hughes, Edgar Jaramillo Rodriguez, Jeonghoon Kim, Van Vinh Nguyen, Qianhui Wan.

Since the sequence $\{f_n\}$ is uniformly bounded, we can get the equicontinuity of $\{f_n\}$. By the equicontinuity and uniform boundedness of $\{f_n\}$, appling Arzela-Ascoli, $\{f_n\}$ is precompact and there exists a subsequence $\{f_{n_k}\}$ converging uniformly.