Sprawozdanie Zadanie 2: Układy równań liniowych Lucyna Zielezińska

Kacper Dondziak (intel i5 8300H)

(L)H1: Dla dowolnego ustalonego rozmiaru macierzy czas działania metody Gaussa w kolejnych wersjach (1, 2, 3) rośnie.

Na wykresie przedstawiono różnice czasu(w milisekundach) w działaniu poszczególnych implementacji algorytmów Gaussa w zależności od wielkości tablicy.

FullGauss działa najwolniej.

Wykres przedstawia różnicę gaussa i part gaussa.(gauss-partgauss)

Średnia wyników wynosi dla 20 testów wynosi: -13. Stąd wniosek, że Gauss działa szybciej niż partGauss, chociaż nie jest to jednoznaczne.

(L)H2: Dla dowolnego ustalonego rozmiaru macierzy błąd uzyskanego wyniku metody Gaussa w kolejnych wersjach (1, 2, 3) maleje.

Poniższy wykres przedstawia błędy bezwzględne dla trzech implementacji Gaussa w zależności od rozmiaru macierzy.

Stąd jednoznacznie wynika, że błąd bezwzględny jest największy przy implementacji metody Gaussa bez wyboru podstawowego.

Różnica pomiędzy błędem bezwzględnym z częściowym i pełnym wyborem (częściowy - pełny)

Implementacja z pełnym wyborem elementu podstawowego daje wyniki o mniejszym błędzie bezwzględnym niż implementacja z częściowym wyborem, jednak z większym niż implementacja bez wyboru podstawowego.

(KD)H3: Użycie własnej arytmetyki na ułamkach zapewnia bezbłędne wyniki niezależnie od wariantu metody Gaussa i rozmiaru macierzy.

Użycie własnego typu zapewnia bezbłędne wyniki niezależnie od metody i rozmiaru.

Rozmiar/metoda	Gauss	Częściowy wybór	Pełny wybór
20	0.0	0.0	0.0
50	0.0	0.0	0.0
100	0.0	0.0	0.0

(KD)Q1: Jak zależy dokładność obliczeń (błąd) od rozmiaru macierzy dla dwóch wybranych przez Ciebie wariantów metody Gaussa gdy obliczenia prowadzone są na typie podwójnej precyzji (TD)?

W badaniu wzięto pod uwagę zwykłą metodę Gaussa(czerwone punkty) oraz metodę z częściowym wyborem(niebieskie punkty). Używając metody częściowego wyboru popełniamy mniejszy błąd (3 - 5 rzędów wielkości). Do pokazania błędu użyto skali logarytmicznej. Zauważono tendencję wzrostową błędu przy wzroście rozmiaru macierzy.

(L)Q2: Jak przy wybranym przez Ciebie wariancie metody Gaussa zależy czas działania algorytmu od rozmiaru macierzy i różnych typów?

Jak widać na wykresie najmniej wydajniej działa algorytm Gaussa zastosowany na własnym typie.

W celu rozstrzygnięcia, czy Gaussa działa wydajniej dla typu float czy double zamieszczam wykres przedstawiający porównanie czasów dla większych macierzy niż w poprzednim.

Dla typu float implementacja Gaussa działa najefektywniej.

(KD)E1: Podaj czasy rozwiązania układu równań uzyskane dla macierzy o rozmiarze 100 dla 9 testowanych wariantów.

Typ danych/Metoda	Gauss	Wybór częściowy	Pełny wybór
Float	0.029s	0.032s	0.037s
Double	0.033s	0.035s	0.039s
Ułamek	88.25s	93.644s	91.953s

Czas obliczeń wyliczony ze średniej (po 5 prób). Komputer, na którym prowadzono obliczenia posiada przyspieszenie sprzętowe w zależności od obciążenia. Obliczenia prowadzono w miarę możliwości niezależnie od siebie.