Regressão Linear

Gileno Filho

O que é Regressão (estatística)?

- Variável Explicada / Dependente (Y)
- Variável Explicativa / Independente (X)
- Valores Reais
- Uma Equação: Y = B * X

O que é Regressão (estatística)?

Problemas de Regressão

- Avaliação
 - imóvel
 - carro
- Pontuação de Crédito
- Variação de Salário
 - desemprego
 - região

Técnicas de Regressão

- Regressão Linear Múltipla
 - OLS (Ordinary least squares)
- Redes Neurais
- k-NN (k-nearest neighbors algorithm)
- SVM (Support vector machine)
- Entre outros

Regressão Linear Simples

Regressão Linear Simples

- Tangente $45^\circ = 1$
- P = 30 + 1 * A
- 30 é o valor do intercepto (slope)
- Interpretação:
 - Para cada 1 metro quadrado de área o valor do terreno aumenta R\$ 1

OLS (Ordinary Least Squares)

- Minimizar o quadrado dos erros
- Encontra a melhor equação possível com base nos erros
- Solução geral via matrizes

Dado	Idade (I)	Preço (P)	Pc = 3 - I	e = P - Pc	e²
1	0	3	3	0	0
2	1	2	2	0	0
3	1	1	2	-1	1
4	2	1	1	0	0
5	1	3	2	1	1
Soma				0	2

- Para cada parâmetro Beta uma equação será gerada
- Utilizando derivadas parciais encontra-se um sistema de equações
- Para uma solução geral é possível utilizar matrizes

$$B = (X' * X)^{-1} * (X' * Y)$$

$$B = B_0, B_1, B_2... B_n$$

$$X = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \quad Y = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \\ 3 \end{bmatrix} \quad X'*X = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 2 & 1 \\ 3 \end{bmatrix} \quad X'*X = \begin{bmatrix} 5 & 5 \\ 5 & 7 \end{bmatrix} \quad X'*Y = \begin{bmatrix} 10 \\ 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 5 \\ 5 & 7 \end{bmatrix} \quad \begin{bmatrix} -1 \\ 8 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0,7 & -0,5 \\ -0,5 & 0,5 \end{bmatrix} \quad \begin{bmatrix} 10 \\ 8 \end{bmatrix} \quad \Rightarrow \quad B = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

$$B_0 = 3$$
 $B_1 = -1$

$$\hat{P} = 3 + ((-1) * Idade)$$

$$\hat{P} = 3 - Idade$$