

Workshop 9

Advanced Stream Processing Pipelines

Workshop Objectives

Learn how to work with:

- Batch processing: Create automated batch processing pipelines to keep dimensional models current as source data changes (OLTP to OLAP updates)
- 2. Data staging: Implement reliable data movement using staging tables to transfer data between source and target systems safely
- Monitoring: Implement audit logging tables to track successful loads and provide operational monitoring
- 4. Dimension updates: Apply Type 1 Slowly Changing Dimension (SCD) updates to overwrite old customer data with new values, maintaining only current information

Why Batch Processing?

- Common Use Cases
 - Daily sales reports and dashboards
 - Weekly performance summaries
 - Monthly analytics refreshes

What regular reporting or analytics tasks in your organisation currently use or might benefit from batch processing?

How frequently do these need to update?

Why Batch Processing?

- Key Benefits
 - Efficient processing of large data volumes
 - Predictable resource usage
 - Simple scheduling and monitoring

Looking at these benefits, where in your organisation have you seen these work well or struggle?

For example, has scheduling regular loads ever been challenging?

Workshop Alignment with IFATE Pass Descriptors

Star Schemas and Data Warehousing (K15)

Building and maintaining a star schema with Type 1 SCD updates in Azure Synapse

Data Engineering Tools (K20)

Practical experience with Azure SQL, Azure Synapse, and Dedicated SQL Pools

Pipeline Deployment (K8)

End-to-end deployment of automated batch update pipeline

Data Store Monitoring (K1, S7)

Implementing audit logging and pipeline monitoring for reliable updates

Data engineer / Institute for Apprenticeships and Technical Education

Morning activity

Building the pipeline

What We'll Build Today

- Automated data warehouse updates using Azure Synapse
- Focus on Customer dimension maintenance
- Type 1 SCD implementation with audit logging

Building on Workshop 3's static star schema and Workshop 6's design work

Our Architecture

- Key Components
 - Source: Sakila OLTP database in Azure SQL (OLTP)
 - Ingestion: Azure Data Factory pipeline
 - **Staging:** Choice of:
 - Azure Synapse staging tables
 - Data Lake Storage
 - Update: Azure Synapse dimension table (OLAP)
- Pipeline Operations.
 - 1. Extract the latest customer data
 - 2. Stage with audit columns
 - 3. Process Type 1 SCD updates

Workshop Flow

Morning

- Building the Pipeline
 - 1. Environment setup
 - 2. Schema and table creation
 - 3. Pipeline development
 - 4. Testing with simulated changes
- Going Further (time permitting)
 - Data Lake integration
 - Data Flow transformations
 - PySpark notebook processing

Afternoon

- Workshop Reflection
 - What went well?
 - Technical challenges?
 - Learning points and insights?
- Project Application
 - Project data sources
 - Update patterns and data models
 - Implementation strategies

Workshop Instructions: Your Step-by-Step Guide

- Key concepts and terminology
- Task breakdown and dependencies
- Optional "Going Further" sections
- How to ask for help

We will now walk through the document structure and highligh how each section builds on the previous one to create a complete pipeline

Afternoon activity

Reflecting on the morning activity and how it applies to your project

Workshop reflection

- 1 \(\rightarrow\) Which parts of the pipeline came together smoothly?
- 2 Where did you encounter challenges?
- 3 PWhat debugging approaches worked best?

- 🕨 1 🢡 What key concepts clicked today?
- 2 Which concepts need more exploration?
- 3 how does this compare to any previous pipeline work?

Build on Your Learning from E-Learning Module 06.3

- The next questions in the following two slides distil key ideas from 06.3
 Batch Processing: OLTP Data Source Integration, which you may have completed prior to this workshop.
- If you haven't yet completed it, we encourage you to do so. It provides:
 - A foundation in batch processing concepts and their practical applications.
 - Key reflective prompts to align these ideas with your project and role.
- Use questions in 6.3 to deepen your understanding of:
 - The batch processing patterns most relevant to your project.
 - Robust pipeline design, update patterns, and optimisation techniques.
 - How these align with user and business needs
- These reflections aren't just for today:
 - Use them as a starting point for future discussions with your PDE in 121s.
 - Identify areas for improvement and questions to explore further with your PDE.

Project Application Discussion

- 1 What type(s) of data sources does your project handle?
 GOUTH Control of the control of the
- 2 What challenges do the formats present? 🊧
- 3 What access methods are needed for each source type, and how are they configured securely?
- 4 Does the origin of your data (e.g., normalised tables, JSON files) impact your pipeline design?
- 🔸 3 What security and access patterns do you need to consider? 🔒

- 1 What update pattern best fits your use case? ☐ Full refresh ☐ incremental updates → CDC?
- 2 B What drives this choice (data volume, change frequency, etc)?
- 3 How can you track and validate changes? 🔽
- 4 What could be your strategy for handling failed updates or reprocessing?

Project Application Discussion

- 1 Have you defined clear user and business requirements yet?
- 2 Does your chosen data model support these effectively? 🎯
- 3 How do you handle historical data needs? Is Type 1 SCD sufficient or do you need Type 2?
- 🔹 4 How do you validate data quality? 🔽

- 1 What tools and frameworks are you using/considering? Cloudnative services? Local or on-prem tools?

 Orchestration tools?
- 2 ⁽²⁾ Why are these the right choices for your needs?
- 3 How are you optimising performance? Partitioning strategy? Indexing approach? Compression techniques? Query optimisation? Hardware/resource allocation? Parallel processing?
- 4 What monitoring and logging is appropriate?
- 5 Are your pipelines idempotent, and how do you handle retries?