CSCI 544: Applied Natural Language Processing

Sequence Labeling-I

Xuezhe Ma (Max)

Logistical Points

For Team Projects

- If you have not joined a team, please write you name on the <u>spreadsheet</u> below all teams.
- We will assign you randomly

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models
- Maximum Likelihood Estimation (MLE)

Hidden Markov Model (HMM)

- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Log-Linear Models

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRFs)

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models
- Maximum Likelihood Estimation (MLE)
- Hidden Markov Model (HMM)
 - Basic definitions
 - Parameter estimation
 - The Viterbi algorithm
- Log-Linear Models
 - Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRFs)

What is Structured Prediction

- Unstructured Prediction
 - Output Y consists of a single component

• Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$

• Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$

• Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$

- Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$
- (Strong) correlations between output components

- Y consists of multiple components $Y = \{y_1, y_2, ..., y_n\}$
- (Strong) correlations between output components
- Exponential output space
 - Decoding: $y^* = \operatorname{argmax}_{y \in \mathscr{Y}} p(y \mid x)$

What is Sequence Labeling?

A type of structured prediction tasks

$$Y = \langle y_i, y_2, ..., y_n \rangle \qquad \text{NNP} \qquad \text{VBZ} \qquad \text{IN} \qquad \text{NNP} \qquad \\ X = \langle x_i, x_2, ..., x_n \rangle \qquad \text{USC} \qquad \text{is} \qquad \text{in} \qquad \text{California}$$

Assigning each token of X, e.g. x_i a corresponding label y_i

Why Sequence Labeling?

Information Extraction

What are Part-of-Speech (POS) Tags

- Word classes or syntactic categories
- Reveal useful information about the syntactic role of a word (and its neighbors!)

Part of Speech

- Different words have different syntactic functions
- Can be roughly divided into two classes
 - Closed class: fixed membership, function words
 - e.g. prepositions (in, on, of), determiners (a, the)
 - Open class: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives and adverbs.

Part of Speech

 How many part of speech tags do you think English has?

- A. < 10
- B. 10 30
- C. 30 50
- D. > 50

Penn Tree Bank Tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	or "
LS	list item marker	1, 2, One	TO	"to"	to	**	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	<i>IBM</i>	VBG	verb gerund	eating		sent-end punc	. ! ?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

45 tags! (Marcus et al., 1993)

The Task of Part of Speech Tagging

- Tag each word with its part of speech
- Disambiguation task: each word might have different senses/functions
 - The/DT back/ADJ door/NN
 - On/IN my/PRP\$ back/NN
 - Win/VB the/DT voters/NNS back/RP

Types:	Types:		SJ	Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

Figure 8.2 Tag ambiguity for word types in Brown and WSJ, using Treebank-3 (45-tag) tagging. Punctuation were treated as words, and words were kept in their original case.

A Simple Baseline

- Many words might be easy to disambiguate
- Most Frequent Class: Assign each token (word) to the class it occurred most in the training data. (e.g. student/NN)
 - Entirely discarding contextual information
- How accurate do you think this baseline would be at tagging words?
 - A. < 50%
 - B. 50% 75%
 - C. 75% 90%
 - D. > 90%

Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)

POS Tagging Not Solved!

- State of the art: $\sim 97\%$
- Sentence level accuracies
 - Average length of English sentence \sim 14 words
 - $-0.92^{14} = 31\% \text{ vs. } 0.97^{14} = 65\%$
- Highly relying on domain information
 - Training data and testing data mush be from the same domain
 - < 70% on data from social media

Some Observations

- The function (or POS) of a word depends on its context
 - The/DT back/ADJ door/NN
 - On/IN my/PRP\$ back/NN
 - Win/VB the/DT voters/NNS back/RP
- Certain POS combinations are extremely unlikely
 - *<JJ*, *DT*> ("good the") or *<DT*, *IN*> ("the in")
- Better to make predictions on entire sentences instead of individual words

Sequence Labeling Models!

Overview

• The Sequence Labeling Problem

- General Structured Prediction Tasks
- Part-of-speech Tagging: A case study
- Generative Models vs. Discriminative Models
- Maximum Likelihood Estimation (MLE)

Hidden Markov Model (HMM)

- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Log-Linear Models

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRFs)

Hidden Markov Models

Markov Sequences

- ▶ Consider a sequence of random variables X_1, X_2, \ldots, X_m where m is the length of the sequence
- Each variable X_i can take any value in $\{1, 2, \ldots, k\}$
- How do we model the joint distribution

$$P(X_1 = x_1, X_2 = x_2, \dots, X_m = x_m)$$

7

The Markov Assumption

$$P(X_1=x_1,X_2=x_2,\ldots,X_m=x_m)$$

$$=P(X_1=x_1)\prod_{j=2}^m P(X_j=x_j|X_1=x_1,\ldots,X_{j-1}=x_{j-1})$$

$$=P(X_1=x_1)\prod_{j=2}^m P(X_j=x_j|X_{j-1}=x_{j-1})$$
 Markov assumption

- The first equality is exact (by the chain rule).
- ▶ The second equality follows from the Markov assumption: for all $j = 2 \dots m$,

$$P(X_j = x_j | X_1 = x_1, \dots, X_{j-1} = x_{j-1}) = P(X_j = x_j | X_{j-1} = x_{j-1})$$

Markov Sequences

A Generative Model for Sequences

Pick x_1 at random from the distribution $P(X_1)$

Pick x_2 at random from the distribution $P(X_2 | X_1 = x_1)$

Pick x_t at random from the distribution $P(X_t | X_{t-1} = x_{t-1})$

Modeling Pairs of Sequences

• In Sequence Labeling, we need to model pairs of sequences

$$S=S_i,S_2,\ldots,S_n$$
 NNP VBZ IN NNP
$$X=X_i,X_2,\ldots,X_n$$
 USC is in California

Hidden Markov Models (HMMs) allow us to jointly reason over X and S

Hidden Markov Models

We have two sequences of random variables: X_1, X_2, \ldots, X_m and S_1, S_2, \ldots, S_m

- Intuitively, each X_i corresponds to an "observation" and each S_i corresponds to an underlying "state" that generated the observation. Assume that each S_i is in $\{1, 2, ..., k\}$, and each X_i is in $\{1, 2, ..., o\}$
- How do we model the joint distribution

$$P(X_1 = x_1, \dots, X_m = x_m, S_1 = s_1, \dots, S_m = s_m)$$

?

The HMM Assumptions

1. Markov Assumption on S

$$P(S_j = s_j | S_{j-1} = s_{j-1}, ..., S_1 = s_1) = P(S_j = s_j | S_{j-1} = s_{j-1})$$

2. Conditional Independence on X given S

$$P(X_1 = x_j, ..., X_m = x_m | S_1 = s_1, ..., S_m = s_m) = \prod_{j=1}^{m} P(X_j = x_j | S_j = s_j)$$
Emission Probabilities

Transition Probabilities

The HMM Assumptions

1. Markov Assumption on S

$$P(S_3 = IN | S_2 = VBZ, S_1 = NNP) = P(S_3 = IN | S_2 = VBZ)$$

2. Conditional Independence on \boldsymbol{X} given \boldsymbol{S}

 $P(\mathsf{USC}\;\mathsf{is}\;\mathsf{in}\;\mathsf{CA}\;|\;\mathsf{NNP}\;\mathsf{VBZ}\;\mathsf{IN}\;\mathsf{NNP}) = P(\mathsf{USC}\;|\;\mathsf{NNP})P(\mathsf{is}\;|\;\mathsf{VBZ})P(\mathsf{in}\;|\;\mathsf{IN})P(\mathsf{CA}\;|\;\mathsf{NNP})$

Which assumption do you think is stronger?

Second assumption is stronger..why? Becoz its more powerful than the markov assumption

Joint Distribution of Sequence Pairs in HMMs

$$P(X_1 = x_j, ..., X_m = x_m, S_1 = s_1, ..., S_m = s_m)$$

Output Independence

$$\times P(S_1 = s_1, ..., S_m = s_m)$$

Markov Assumption

$$= \prod_{j=1}^{m} P(X_j = x_j | S_j = s_j)$$

How to model $P(X_j = x_j | S_j = s_j)$ and $P(S_j = s_j | S_{j-1} = s_{j-1})$?

$$\times P(S_1 = s_1) \prod_{j=1}^{m} P(S_j = s_j | S_{j-1} = s_{j-1})$$

Homogeneous HMMs

• In a homogeneous HMM, we make an additional assumption:

$$P(S_j = s_j | S_{j-1} = s_{j-1}) = t(s_j | s_{j-1})$$

$$P(X_j = x_j | S_j = s_j) = e(x_j | s_j)$$

• Idea behind this assumption: the transition and emission probabilities do not depend on the position in the Markov chain (do not depend on the index j)

The Model Form for Homogeneous HMMs

► The model takes the following form:

$$p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta}) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

- Parameters in the model:
 - 1. Initial state parameters t(s) for $s \in \{1, 2, ..., k\}$
 - 2. Transition parameters t(s'|s) for $s, s' \in \{1, 2, \dots, k\}$
 - 3. Emission parameters e(x|s) for $s \in \{1, 2, \dots, k\}$ and $x \in \{1, 2, \dots, o\}$

Example: Sequence Probability

What is the joint probability *P*(the cat, DT NN)?

A) (0.8*0.8)*(0.9*0.5)

B) (0.2*0.8)*(0.9*0.5)

C) (0.3*0.7)*(0.5*0.5)

Dummy	start	state
-------	-------	-------

o_t				
	the	cat		
DT	0.9	0.1		
NN	0.5	0.5		

HMMs are Generative Models

- 1. Pick s_1 at random from the distribution t(s). Pick x_1 from the distribution $e(x|s_1)$
- 2. For j = 2 ... m:
 - Choose s_j at random from the distribution $t(s|s_{j-1})$
 - Choose x_j at random from the distribution $e(x|s_j)$

HMMs are Generative Models

- 1. Pick s_1 at random from the distribution t(s). Pick x_1 from the distribution $e(x|s_1)$
- 2. For j = 2 ... m:
 - Choose s_j at random from the distribution $t(s|s_{j-1})$
 - Choose x_j at random from the distribution $e(x|s_j)$

Learning a Hidden Markov Model

Parameter Estimation

• Assuming we have fully observed data $\{X_i, S_i\}_{i=1}^N$, e.g. WSJ

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/Maximum Likelihood Estimate: join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ di Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsev N.V./NNP,/, the/DT Dutch/NNP publishing/VBG group/ 3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/N ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/ this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD peopl of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD help Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sendin them/PRP to/TO San/NNP Francisco/NNP instead/RB ./

$$\max_{t(\cdot|\cdot),e(\cdot|\cdot)} \prod_{i=1}^{N} P(X_i, S_i)$$

$$t(s'|s) = \frac{\text{count}(s \to s')}{\text{count}(s)}$$

$$e(x \mid s) = \frac{\text{count}(s \to x)}{\text{count}(s)}$$

Learning Example

- 1. the/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. the/DT old/NN man/VB the/DT boats/NNS

$$t(NN|DT) = \frac{3}{4}$$

$$e(cat|NN) = \frac{3}{4}$$

Decoding with HMMs

Decoding with HMMs

▶ Goal: for a given input sequence x_1, \ldots, x_m , find

$$\underset{s_1,\ldots,s_m}{\operatorname{arg}} \max p(x_1\ldots x_m,s_1\ldots s_m;\underline{\theta})$$

▶ This is the most likely state sequence $s_1 \dots s_m$ for the given input sequence $x_1 \dots x_m$

Decoding with HMMs

$$S^* = \arg\max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

How can we maximize this over all state sequences?

Greedy Decoding

Decode/reveal one state at a time

$$s_1^* = \arg \max_{s_1} t(s_1)e(x_1 | s_1)$$

$$S^* = \arg\max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

Greedy Decoding

Decode/reveal one state at a time

$$s_2^* = \arg\max_{s_2} t(s_2 | s_1^*) e(x_2 | s_2)$$

$$S^* = \arg \max_{s_1, \dots, s_m} p(x_1, \dots, x_m, s_1, \dots, s_m) = t(s_1) \prod_{j=2}^m t(s_j | s_{j-1}) \prod_{j=1}^m e(x_j | s_j)$$

Greedy Decoding

$$s_{j}^{*} = \arg\max_{s_{j}} t(s_{j} | s_{j-1}^{*}) e(x_{j} | s_{j}), \quad \forall j$$

TIME COMPLEXITY OF THE ALGO: O(KN) where k is the number of the number of the

- Local decisions
- Not guaranteed to produce the overall optimal sequence

The Viterbi algorithm is a dynamic programming algorithm.
Basic data structure:

$$\pi[j,s]$$

will be a table entry that stores the maximum probability for any state sequence ending in state s at position j. More formally: $\pi[1,s]=t(s)e(x_1|s)$, and for j>1,

$$\pi[j,s] = \max_{s_1...s_{j-1}} \left[t(s_1)e(x_1|s_1) \left(\prod_{k=2}^{j-1} t(s_k|s_{k-1})e(x_k|s_k) \right) t(s|s_{j-1}) e(x_j|s) \right]$$

$$\pi[2, \mathbf{NN}] = \max_{s_1} \pi[1, s_1] t(\mathbf{NN}|s_1)e(\mathbf{cat}|\mathbf{NN})$$

▶ Initialization: for $s = 1 \dots k$

$$\pi[1,s] = t(s)e(x_1|s)$$

▶ For j = 2 ... m, s = 1 ... k:

$$\pi[j, s] = \max_{s' \in \{1...k\}} \left[\pi[j-1, s'] \times t(s|s') \times e(x_j|s) \right]$$

We then have

$$\max_{s_1...s_m} p(x_1 \dots x_m, s_1 \dots s_m; \underline{\theta}) = \max_s \pi[m, s]$$

▶ The algorithm runs in $O(mk^2)$ time

Pros and Cons

- HMMs are simple to train
 - Just need to compile counts from the training corpus
- Performs relatively well
 - > 96% on POS tagging (92.3% of most frequent class)
 - > 90% on Named Entity Recognition
- Main difficulty is modeling $e(word \mid tag)$
 - Words are very complex
 - Unknown words

Reading Materials

- Notes from Michael Collins:
 - Sequence Labeling and HMMs
 - EM Algorithm