Sistemas Operativos

Práctica 4: Administración de memoria

Notas preliminares

■ Los ejercicios marcados con el símbolo ★ constituyen un subconjunto mínimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

Ejercicio 1

Indicar las diferencias entre dirección de memoria lógica y física.

Ejercicio 2

Explicar la diferencia entre los conceptos de fragmentación interna y externa.

Ejercicio 3 ★

Se tiene un sistema con 16 MB de RAM que utiliza particiones fijas para ubicar a los programas en memoria. Cuenta con particiones de 8 MB, 1 MB, 4 MB, 512 KB, 512 KB y 2 MB, en ese orden. Se desean ejecutar 5 programas de los siguientes tamaños: 500 KB, 6 MB, 3 MB, 20 KB, 4 MB, en ese orden.

- a) Indicar cómo asignaría las particiones utilizando best fit. ¿Cuál es la cantidad de bytes de memoria desperdiciados?
- b) ¿Alguna de las estrategias de asignación vistas en clase (worst fit, first fit) produce como resultado la imposibilidad de ejecutar los 5 programas a la vez?
- c) ¿Cuál algoritmo hace el uso más eficiente de la memoria?

Ejercicio 4

¿Por qué los tamaños de las tablas de páginas son potencias de 2?

Ejercicio 5 ★

Considerar un sistema con paginación por demanda donde los procesos están haciendo acceso secuencial a los datos de acuerdo a los siguientes patrones de uso:

- Uso de CPU: 20 %.
- El sistema hace thrashing.
- Uso del resto de los dispositivos de E/S: 10 %.

Como se ve, la CPU está siendo ampliamente desaprovechada.

Para cada uno de los siguientes cambios en el sistema indicar si es probable o no que mejore la utilización de la CPU.

- a) Instalar una CPU más rápida.
- b) Instalar un disco de paginado más grande.
- c) Incrementar el grado de multiprogramación.
- d) Disminuir el grado de multiprogramación.
- e) Instalar más memoria principal.
- f) Instalar un disco más rápido.
- g) Incorporar prepaging a los algoritmos de reemplazo de páginas.
- h) Incrementar el tamaño de página.
- i) Incrementar la velocidad del bus de E/S.

Ejercicio 6 ★

Se tiene un espacio de direcciones lógicas de 8 páginas de 1024 palabras cada una, mapeado en una memoria que tiene 32 frames de capacidad.

- a) ¿Cuántos bits tiene una dirección lógica?
- b) ¿Cuántos bits tiene una dirección física?

Ejercicio 7

Un sistema asigna espacios de direccionamiento de 65536 bytes, divididos en páginas de 4096 bytes. Un programa particular tiene 32768 bytes de texto, 16836 bytes de datos y requiere de 15870 bytes para la pila (stack). ¿Se puede ejecutar dicho programa en el espacio de direccionamiento disponible? ¿Cambia la situación si el tamaño de página es de 512 bytes?

Ejercicio 8 ★

Considerar un sistema de paginación en el que la tabla de páginas está almacenada en memoria.

- a) Si una referencia a memoria tarda en realizarse 200 nanosegundos, ¿cuánto tiempo tardará una referencia a memoria paginada?
- b) Si añadimos una TLB y el 75% de todas las referencias a las tablas de paginación se encuentran presentes en la TLB, ¿cuál es el tiempo que se espera que tarde una referencia a memoria en promedio? (suponer que el acceso a la TLB tarda tiempo 0).

Ejercicio 9 ★

¿Bajo qué circunstancias se produce un page fault? ¿Cuáles son las acciones que realiza el sistema operativo para resolver la situación?

Ejercicio 10 ★

Considerar la siguiente secuencia de referencias a páginas:

¿Cuántos fallos de página se producirán con los siguientes algoritmos de reemplazo, suponiendo que se tienen 1, 2, 3, 4, 5, 6 o 7 frames? Al comenzar todos los frames se encuentran vacíos, por lo que la primer referencia a una página siempre genera fallo de página.

- a) Con reemplazo LRU.
- b) Con reemplazo FIFO.
- c) Con reemplazo óptimo.

Ejercicio 11

Una computadora tiene cuatro marcos de página. El tiempo de carga, tiempo de último acceso, y el bit R (referenciado) para cada página están como se muestra a continuación:

Page	Loaded	Last Ref.	\mathbf{R}
0	126	280	1
1	230	265	0
2	140	270	0
3	110	285	1

- a) ¿Qué página reemplazará el algoritmo FIFO?
- b) ¿Qué página reemplazará el algoritmo LRU?
- c) ¿Qué página reemplazará el algoritmo Second Chance?

Ejercicio 12

Se tiene la siguiente matriz:

```
int A[][] = new int[100][100];
```

donde A[0][0] está cargado en la posición 200, en un sistema de memoria paginada con páginas de tamaño 200. Un proceso de manipulación de matrices se encuentra cargado en la primer página, de la posición 0 a 199, por lo que todo *fetch* de instrucciones es a la misma página.

Si se tienen sólo 3 frames de páginas, ¿Cuántos fallos de página serán generados por los siguientes ciclos, utilizando el algoritmo de reemplazo LRU? Suponer que el programa se encuentra en el primer frame, y los otros dos están vacíos.

```
a) for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)
A[i][j] = 0;
```

```
b) for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)
A[i][j] = 0;
```

Ejercicio 13 ★

Dado un sistema que no realiza copy on write, ¿cómo le agregaría esa funcionalidad? Considerar:

- Llamadas al sistema a modificar.
- Cambios de hardware.
- Cambios en el manejo de segmentos y páginas.

Ejercicio 14 ★

Se tiene un sistema operativo que debe controlar un celular, cuya función principal es atender llamadas.

- a) ¿Tiene sentido implementar segmentación? ¿Y si el usuario puede descargarse programas de Internet?
- b) ¿Tiene sentido que haya páginas que nunca sean *swappeadas*? En caso afirmativo, ¿tiene sentido que estas páginas estén en marcos de página prefijados?

Ejercicio 15

Se tienen dos sistemas embebidos:

- A: Hace procesamiento secuencial de archivos. Los bloques se leen, se procesan y se escriben.
- B: Medidor de clima. Hay un proceso principal que detecta fenómenos meteorológicos (lluvia, vientos, granizo, sol intenso) y lanza programas específicos para hacer mediciones apropiadas. El clima puede cambiar abruptamente y cuando aparece el fenómeno nuevo se lo debe medir de inmediato.

Indicar cuál de las siguientes políticas de reemplazo de páginas es más apropiada para cada uno. Justificar.

- I. Bajar la página más recientemente usada.
- II. LRU
- III. Segunda oportunidad + páginas estáticas.

Ejercicio 16

Suponer que se tiene un sistema con 2 MB de RAM y se desea ejecutar un programa de 4 MB ubicado en un disco de 200 GB.

- a) Explicar cómo funciona el mecanismo de paginación que permite ejecutar un programa más grande que la memoria física disponible.
- b) Si el tamaño de *frame* es de 4 KB y suponiendo que el programa tarde o temprano ejecuta todo su código. ¿Cuántos fallos de página se producirán como mínimo?
- c) ¿Bajo qué contexto tiene sentido que varios procesos compartan páginas? Indique por lo menos 2 situaciones y justifique.

Ejercicio 17

Se tiene un sistema operativo para una arquitectura multiprocesador con un modelo de memoria plano, es decir, donde las direcciones virtuales son las direcciones físicas. Interesa modificarlo para poder cargar los programas en cualquier lugar de la memoria.

- a) Explique por qué en un sistema como el descripto (en la versión actual, sin modificaciones) no resultaría posible cargar un programa en una posición arbitraria de la memoria física.
- b) ¿Puede la segmentación ayudar a lograr el objetivo? En caso negativo, explique por qué no. En caso afirmativo, explique cómo, sin omitir una descripción de las acciones que debe llevar a cabo el SO al cargar un nuevo proceso en memoria. Indique también si será o no necesario modificar los programas existentes antes de poder utilizarlos con la nueva versión.
- c) ¿Puede la paginación ayudar a lograr el objetivo? En caso negativo, explique por qué no. En caso afirmativo, explique cómo, sin omitir una descripción de las acciones que debe llevar a cabo el SO al cargar un nuevo proceso en memoria. Indique también si será o no necesario modificar los programas existentes antes de poder utilizarlos con la nueva versión.