MAST 90138: MULTIVARIATE STATISTICAL TECHNIQUES

See Härdle and Simar, chapter 12.

6 FACTOR ANALYSIS

6.1 ORTHOGONAL FACTOR MODEL

- Let $X = (X_1, \dots, X_p)^T \sim (\mu, \Sigma)$ be a random vector in \mathbb{R}^p .
- In PCA, we've seen that if Σ has only q < p non zero eigenvalues,

$$X - \mu = \Gamma_{(1)} Y_{(1)} \tag{1}$$

where

$$\Gamma_{(1)} = (\gamma_1 | \dots | \gamma_q),$$

and

$$Y_{(1)} = (Y_1, \dots, Y_q)^T,$$

the latter being the first q PCs in $Y = \Gamma^T(X - \mu)$.

- ightharpoonup Recall that $Y_{(1)} \sim (0, \Lambda_1)$, where $\Lambda_1 = diag(\lambda_1, \dots \lambda_q)$.
- Letting $Q = \underbrace{\Gamma_{(1)}\Lambda_{(1)}^{1/2}}_{p\times q}$ and $F = \underbrace{\Lambda_{(1)}^{-1/2}Y_{(1)}}_{q\times 1}$, rewrite (1) as $X = \mu + QF$.
- Now we have

$$E(F) = 0$$

$$var(F) = \Lambda_{(1)}^{-1/2} var(Y_{(1)}) \Lambda_{(1)}^{-1/2} = I_q$$

$$\Sigma = var(X) = Q \ var(F) \ Q^T = QQ^T = \sum_{j=1}^q \lambda_j \gamma_j \gamma_j^T.$$

• X is a weighted sum of the uncorrelated factors in $F = (F_1, \dots, F_q)^T$, i.e.

$$X = \mu + F_1 Q_1 + \dots + F_q Q_q,$$

where Q_1, \ldots, Q_q are the columns of

$$Q = (Q_1|\dots|Q_q).$$

- Σ , originally with $p + \binom{p}{2} = \frac{p(p+1)}{2}$ free parameters (the diagonal and the unique off-diagonal entries), is completely explained by the orthogonal factors via the loading matrix Q, which has qp entries.
- ightharpoonup When q << p,
 - $\Rightarrow \frac{p(p+1)}{2}$ is roughly of order $O(p^2)$.
 - $\Rightarrow qp$ is roughly of order O(p).
 - ⇒ Achieved **dimension reduction**! (b/c # parameters reduced)
- lacksquare Actually, the # of free parameters in Q is a subtle issue, not just qp....
- More on that later.

- ightharpoonup Orthogonal factor model: A similar but more nuanced model for X.
- ightharpoonup For a $p \times q$ non-random matrix

$$Q = (q_{j\ell})_{\substack{1 \le j \le p \\ 1 \le \ell \le q}} = (Q_1 | \dots | Q_q),$$

there is a random vector

$$F = (F_1, \dots, F_q)^T$$
 of q common factors

and a random vector

$$U = (U_1, \dots, U_p)^T$$
 of p specific factors,

such that

$$X = \mu + QF + U$$

= $\mu + F_1Q_1 + \dots + F_qQ_q + U$.

- rightharpoonup F and U: assumed to be **latent** (i.e. unobserved).
- The components $q_{j\ell}$ of Q are called **loadings**.

- It is assumed:
 - $\bullet E(F) = E(U) = 0$
 - $\bullet var(F) = I_q$
 - $var(U) \equiv \Psi \equiv diag(\psi_1, \dots, \psi_p)$ (i.e., a diagonal matrix)
 - $cov(U_i, U_j) = 0$ if $i \neq j$
 - $\bullet cov(F, U) = 0.$
- Hence,

$$\Sigma \equiv var(X) = var(QF + U)$$
$$= var(QF) + var(U)$$
$$= QQ^{T} + \Psi.$$

Think of it as a covariance matrix model of the form

$$QQ^T + \Psi$$
.

- Inferential goal: estimate Q and Ψ .
- **●** Dimensionality reduction? Yes, only qp + p many entries in (Q, Ψ) , much less than p(p+1)/2 when q << p.

- ightharpoonup Correlations among X_1, \ldots, X_p : entirely explained by the common factors F. (via the loadings Q)
- U_j adds extra noise specific to the component X_j , $j = 1, \ldots, p$.
- ullet QF and U: the unobserved systematic and error parts of X.
- Well-known *psychology* application by Charles Spearman: When q = 1, F is a latent **general intelligence factor**, where X_j 's are scores for different cognitive tasks.

6.2 Interpreting the factors

ightharpoonup Component by component, for each $j = 1, \ldots, p$,

$$X_j = \mu_j + \sum_{\ell=1}^{q} q_{j\ell} F_{\ell} + U_j,$$

where $q_{j\ell}$ is the (j,ℓ) -th element of Q.

ightharpoonup Since cov(U, F) = 0, $var(F) = I_q$ and $var(U) = diag(\psi_1, \dots, \psi_p)$,

$$var(X_j) = \sum_{\ell=1}^{q} q_{j\ell}^2 + \psi_j,$$

where

- $-\sum_{\ell=1}^{q}q_{j\ell}^{2}$ is called the communality
- ψ_j is called the specific variance (or *uniqueness* in some text) .

• The proportion of $var(X_j)$ explained by the q common factors is

$$\frac{\sum_{\ell=1}^{q} q_{j\ell}^2}{var(X_j)}. (2)$$

(The closer to 1, the better $var(X_j)$ is explained by Q.)

ightharpoonup Correlation between X and F: Since $X = QF + U + \mu$,

$$cov(X, F) = cov(QF + U, F) = cov(QF, F) = Q,$$

and since $var(X_j) = \sigma_{jj}$ and $var(F_j) = 1$, we deduce that

$$corr(X, F) = D^{-1/2}Q$$

where $D = diag(\sigma_{11} \dots, \sigma_{pp})$.

ightharpoonup Like in PCA, by analysing these correlations, we can see which X_j 's are strongly correlated with each factor, and interpret the factors.

6.3 SCALE INVARIANCE PROPERTIES

• What if we change the scale of the X_j 's? Suppose we use Y = CX instead of X, where $C = diag(c_1, \ldots, c_p)$. Recalling that

$$X = \mu + QF + U,$$

we deduce that

$$Y = \mu_Y + Q_Y F + U_Y, \tag{3}$$

where we've defined

$$Q_Y = CQ$$
, $U_Y = CU$, $\mu_Y = C\mu$.

- F hasn't changed, the new model (3) still orthogonally factorial:
 - ullet E(F)=0, $var(F)=I_q$
 - $E(U_Y) = 0$, $cov(U_{Y,i}, U_{Y,j}) = 0$ if $i \neq j$
 - $var(U_Y) \equiv \Psi_Y = C\Psi C^T$ (still diagonal as C is diagonal)
 - $\bullet cov(F, U_Y) = 0.$

 ■ In many applications, the search of the loadings will be done through
the scaled and centered data

$$Y = D^{-1/2}(X - \mu).$$

(Recall
$$D = diag(\sigma_{11} \dots, \sigma_{pp})$$
)

ightharpoonup That is, we aim to estimate Q_Y and Ψ_Y in the model

$$Y = Q_Y F + U_Y.$$

under the same assumptions as before.

• Let $q_{Y,j\ell}$ denote the (j,ℓ) -th element of Q_Y . Then for $j=1,\ldots,p$

$$\sum_{\ell=1}^{q} q_{Y,j\ell}^2 + \psi_{Y,j} = var(Y_j) = 1,$$

- ► If the communality $\sum_{\ell=1}^{q} q_{Y,j\ell}^2$ is close to 1, then the first q factors explain well the jth variable X_j .
- Recall in the non-scaled case, we found in (2) that

$$\sum_{\ell=1}^{q} q_{j\ell}^2 / \sigma_{jj}$$

is the proportion of variance of X_j explained by the q factors.

ightharpoonupSince $q_{Y,j\ell} = q_{j\ell}/\sqrt{\sigma_{jj}},$

$$\sum_{\ell=1}^{q} q_{Y,j\ell}^2 = \sum_{\ell=1}^{q} q_{j\ell}^2 / \sigma_{jj}$$

is already the proportion of variance of X_j explained by the q factors.

To interpret the factors, we can also compute the correlation matrix

$$corr(Y, F) = cov(Y, F) = cov(Q_Y F + U_Y, F) = Q_Y.$$

 \bullet The is the same as the correlation between F and the *original* X:

$$corr(X, F) = D^{-1/2}Q := Q_Y = corr(Y, F).$$

6.4 Non uniqueness of the matrix Q

- ightharpoonup Is the factor loading matrix Q unique? **No**.
- If $X = \mu + QF + U$, since $OO^T = I$ for any orthogonal $q \times q$ matrix O, we also have

$$X = \mu + Q_O F_O + U$$

holds with $Q_O = QO$ and $F_O = O^T F$.

- Still a valid factor model:
 - $\bullet E(F_O) = 0$
 - $var(F_O) = O^T O = I$
 - $\bullet \ E(U) = 0$
 - $cov(U_i, U_j) = 0$ if $i \neq j$
 - $cov(F_O, U) = O^T cov(F, U) = 0$.

Importantly, under the covariance model interpretation,

$$\Sigma = QQ^T + \Psi = Q_O Q_O^T + \Psi.$$

- From inference point of view: **Bad**, since one cannot uniquely recover the loading matrix (Q or Q_O ?) from the covariance Σ .
- From a numerical point of view: **Bad too**, since it is difficult for an algorithm to find a solution.
- Solution: **Impose more restrictions on** *Q*.
- But how?

• How *unrestricted* are we in writing down a $q \times q$ orthogonal matrix? Must abide by these (algebraic) constraints:

All q columns must have unit lengths $\Rightarrow q$ constraints

Any *pair* of columns must give 0 dot-product. $\Rightarrow \binom{q}{2}$ constraints

Hence, the degrees of freedom in writing a $q \times q$ orthogonal matrix (which has q^2 entries) is

$$q^2 - q - \binom{q}{2} = q(q-1)/2$$

ightharpoonup Without no restrictions on Q, the solution set for Q has degrees of freedom q(q-1)/2, because if Q is a solution to

$$\Sigma = QQ^T + \Psi$$

for a fixed Σ , then QO is too for any orthogonal matrix O.

Hence, one generally needs to impose

$$q(q-1)/2 = \begin{pmatrix} q \\ 2 \end{pmatrix}$$
 constraints

to make Q identifiable.

Suggestion: Lower triangular contraints on $Q = (q_{jl})_{\substack{1 \le j \le p \\ 1 \le l \le q}}$, that is, to restrict $q_{jl} = 0$ for all j < l.

There are exactly q(q-1)/2 such zero constraints.

☞ It is motivated by the **Cholesky decomposition** theorem:

For any $p \times p$ positive semidefinite matrix A of rank $q \leq p$, one can find a unique $p \times q$ matrix $L = (l_{il})$ such that

$$A = LL^T$$
,

and

L is lower triangular with positive diagonal entries, i.e. $l_{jj} > 0$ for all j = 1, ..., q, and $l_{jl} = 0$ for all j < l.

- In our context, QQ^T is the rank-q matrix A in question.
- Typically, one further impose diagonal positivity constraints, i.e.

Restrict
$$q_{jj} > 0$$
 for all $j = 1, \dots, q$.

• Without diagonal positivity, if $\Sigma = QQ^T + \Psi$ for a Q, then $\tilde{Q} = -Q$

must also satisfie $\Sigma = \tilde{Q}\tilde{Q}^T + \Psi$, i.e. we can only identify Q up to sign.

- ➡Because the non-identifiability caused by sign change is of a different nature than that caused by multiplying an orthogonal matrix O.

- ullet The lower triangular contraints on Q are popular among some Bayesians.
- Alternatively, another common set of constraints found is to restrict the matrix

$$Q^T \Psi^{-1} Q$$

to be diagonal, with its diagonal elements distinct and arranged in decreasing order of magnitude. (suggested in Härdle and Simar)

• Summary: With a factor model for X_1, \ldots, X_p with q factors, we generally need an additional set of non-redundant q(q-1)/2 constraints to make (Q, Ψ) identifiable from a given covariance matrix Σ .

■ The <u>effective</u> parameter degrees of freedom of an **identifiable factor** model is

$$\underbrace{pq}_{\text{#entries in }Q} + \underbrace{p}_{\text{#diagonal entries in }\Psi} - \underbrace{q(q-1)/2}_{\text{\# constraints imposed on }Q}$$

The parameter degree of freedom of Σ under **no modelling** is simply

$$\underbrace{p(p+1)/2}_{\text{diagonal+the strict upper triangular part}}$$

▼ Factor modeling is for dimension reduction. To avoid over-parametrization, we require

$$p(p+1)/2 \ge pq + p - q(q-1)/2.$$
 (4)

Otherwise, one may find ∞ many (Q, Ψ) that give the same Σ , even after taking q(q-1)/2 identifiability constraints on Q into account.

• **Implication on** (4): For p variables, there is a bound on the number of factors (q) to model the data, to render an identifiable model.

6.5 LIKELIHOOD METHODS UNDER NORMAL ASSUMPTION

- ightharpoonup Estimating (Q, Ψ) : **Maximum likelihood estimation** (MLE) method, assuming F and U are both normal (and hence so is X).
- Recall: the factor model models the covariance matrix as

$$\Sigma = \Sigma(Q, \Psi) = QQ^T + \Psi.$$

lacksquare For a dataset \mathcal{X} with n samples, recall the normal log likelihood

$$l(\mathcal{X}; \mu, \Sigma) = -\frac{n}{2} \log |2\pi\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (X_i - \mu)^T \Sigma^{-1} (X_i - \mu),$$

where \bar{X} is the sample mean.

• The MLE for μ is always \bar{X} , so after simple algebra we have to maximize

$$\begin{split} l(\mathcal{X}; \bar{X}, \Sigma) &= -\frac{n}{2} \{ \log |2\pi\Sigma| + tr(\Sigma^{-1}\hat{\Sigma}) \} \\ &= -\frac{n}{2} \{ \log |2\pi(QQ^T + \Psi)| + tr((QQ^T + \Psi)^{-1}\hat{\Sigma}) \} \end{split}$$

with respect to (Q, Ψ) , under the requisite constraints for identifiability of Q, where

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T.$$

Not an easy numerical problem; the factanal function in R implements it with the diagonal constraints on $Q^T \Psi^{-1}Q$, using a method described in Lawley & Maxwell (1971).

■ We can also use likelihood ratio (LR) test to determine the number of factors q (in the allowable range that doesn't over-parametrize our data), by testing the null hypothesis

 H_0 : q is the number of factors,

for each allowed q.

The LR statistic for a given *q* is then

$$-2\log\left(\frac{\text{maximized likelihood under }H_0}{\text{maximized likelihood under no modelling}}\right) = n\log\left(\frac{|\hat{Q}\hat{Q}^T + \hat{\Psi}|}{|\hat{\Sigma}|}\right), (5)$$

where \hat{Q} and $\hat{\Psi}$ are the MLEs, for this q.

• When H_0 is true, the LR statistic has an approximation

$$\chi^2_{\frac{1}{2}((p-q)^2 - p - q)}$$

distribution, which can be used to calibrate the p-value for model fit.

ightharpoonup In practice, the n at the front in (5) is replaced by

$$n-1-(2p+4q+5)/6$$

to improve the χ^2 approximation. This is known as *Bartlett's correction*.

Then go with the model with the largest p-value, if we must pick one.

6.6 ROTATION

- One thing people often do is a varimax rotation of the factors, after they have already obtained an estimate \hat{Q} for Q.
- Let $\hat{Q}^* = \hat{Q}G$ where G is an orthogonal matrix to be determined. They choose G that maximises the sum of the variances of the estimated squared loadings $(\hat{q}_{j\ell}^*)^2$ within each column of \hat{Q}^* , i.e., they choose G to maximise:

$$\sum_{\ell=1}^{q} \sum_{j=1}^{p} \left[(\hat{q}_{j\ell}^*)^2 - \frac{\sum_{j=1}^{p} (\hat{q}_{j\ell}^*)^2}{p} \right]^2.$$

- ullet Often the resulting factors are easier to interpret: Groups of X_j 's tend to be associated with less factors.
- The factanal function in R implements "varimax" by default.

Example (Kendall, 1975). In a job interview, 48 applicants were each judged on 15 variables. The variables were

- (1) Form of letter of application
- (2) Appearance
- (3) Academic ability
- (4) Likeability
- (5) Self-confidence
- (6) Lucidity
- (7) Honesty
- (8) Salesmanship
- (9) Experience
- (10) Drive
- (11) Ambition
- (12) Grasp
- (13) Potential
- (14) Keenness to join
- (15) Suitability

Factor loadings before varimax rotation

Table 9.6.2 Maximum likelihood factor solution of applicant data with k = 7 factors, unrotated

Variable	Factor loadings								
	1	2	3	4	5	6	7		
1	0.090	-0.134	-0.338	0.400	0.411	-0.001	0.277		
2	-0.466	0.171	0.037	-0.002	0.517	-0.194	0.167		
3	-0.131	0.466	0.153	0.143	-0.031	0.330	0.316		
4	0.004	-0.023	-0.318	-0.362	0.657	0.070	0.307		
5	-0.093	0.017	0.434	-0.092	0.784	0.019	-0.213		
6	0.281	0.212	0.330	-0.037	0.875	0.001	0.000		
7	-0.133	0.234	-0.181	-0.807	0.494	0.001	-0.000		
8	-0.018	0.055	0.258	0.207	0.853	0.019	-0.180		
9	-0.043	0.173	-0.345	0.522	0.296	0.085	0.185		
10	-0.079	-0.012	0.058	0.241	0.817	0.417	-0.221		
11	-0.265	-0.131	0.411	0.201	0.839	-0.000	-0.001		
12	0.037	0.202	0.188	0.025	0.875	0.077	0.200		
13	-0.112	0.188	0.109	0.061	0.844	0.324	0.277		
14	0.098	-0.462	-0.336	-0.116	0.807	-0.001	0.000		
15	-0.056	0.293	-0.441	0.577	0.619	0.001	-0.000		

Factor loadings after varimax rotation

273 FACTOR ANALYSIS

Table 9.6.3 Maximum likelihood factor solution of applicant data with k = 7 factors, varimax rotation (Kendall, 1975)

Variable	Factor loadings									
	1	2	3	4	5	6	7			
1.	0.129	0.074	0.665	-0.096	0.017	-0.042	0.267			
2	0.329	0.242	0.182	0.095	0.611	-0.013	-0.006			
3	0.048	-0.017	0.097	0.688	0.043	0.007	0.008			
4	0.249	0.759	0.252	-0.058	0.090	-0.096	0.204			
5	0.882	0.184	-0.082	-0.074	0.190	0.059	-0.045			
6	0.907	0.266	0.136	0.046	-0.042	-0.290	-0.016			
7	0.199	0.911	-0.224	-0.013	0.174	-0.094	-0.204			
8	0.875	0.082	0.264	-0.076	0.140	0.043	-0.058			
9	0.073	-0.027	0.718	0.158	0.069	0.036	0.009			
10	0.780	0.197	0.386	0.026	-0.051	0.398	-0.023			
11	0.874	0.036	0.157	-0.052	0.382	0.142	0.205			
12	0.775	0.346	0.286	0.172	0.143	-0.159	0.111			
13	0.703	0.409	0.354	0.329	0.140	0.070	0.193			
14	0.432	0.540	0.381	-0.540	-0.013	0.099	0.275			
15	0.313	0.079	0.909	0.049	0.142	0.027	-0.214			

Interpretation (copied from that book):

- It is very difficult to interpret the unrotated loadings but easier to interpret the rotated loadings.
- The first factor is loaded heavily on variables 5, 6, 8, 10, 11, 12, and 13 and represents perhaps an outward and salesmanlike personality.
- Factor 2, weighting variables 4 and 7, represents likeability.
- Factor 3, weighting variables 1, 9, and 15 represents experience.
- Factors 4 and 5 each represent one variable, academic ability (3), and appearance (2), respectively.
- The last two factors have little importance and variable 14 (keenness) seemed to be associated with several of the factors.

6.7 FACTOR ANALYSIS VERSUS PCA

- In PCA, our goal was to explicitly find linear combinations of the components of X. This is how we constructed the PCs Y_1, \ldots, Y_p and this doesn't depend on any model .
- In factor analysis, the factors are not directly computable, they are latent. They appear after we model a structure on the covariance matrix. The whole factor analysis depends on the factor model we assumed. If the model is wrong, then the analysis will be spurious.
- In factor analysis, the factors are not linear combinations of the original variables, they are factors on their own which often represent characteristics that groups of variables may represent.
- In fact, in factor analysis, instead of taking the factors F to be functions of X, we express X as a function of F.

- In factor analysis, the first factors are often those that are the most interpretable (after rotation).
- ullet Sometimes, PCA and factor analysis give similar results, and we can understand why: as seen earlier, if only q < p eigenvalues of Σ are nonzero, then we can almost write a factor model using the first q PCs, except without the specific factor U.