Approfondimento 14.1

Risoluzione SLD

Le clausole definite permettono una naturale lettura procedurale basata sulla *risoluzione*, una regola di inferenza, completa per insiemi di clausole, introdotta da Robinson ed usata nell'ambito della dimostrazione automatica. Nell'ambito della programmazione logica si usa la *risoluzione SLD*, ossia la risoluzione lineare guidata da regola di selezione per clausole definite (SLD è un acronimo per Selection rule-driven Linear resolution for Definite clauses).

Questa regola può essere descritta come segue. Siano G il goal B_1, \ldots, B_k e C la clausola (definita) $H: -A_1, \ldots, A_n$. Diciamo che G' è derivato da G e C usando ϑ o, equivalentemente, G' è un risolvente di G e C, se (e solo se) valgono le seguenti condizioni:

- 1. B_m , con $1 \le m \le k$, è un atomo *selezionato* fra quelli in G;
- 2. ϑ è l'm.g.u. di B_m e H;
- 3. G' è il goal $(B_1, \ldots, B_{m-1}, A_1, \ldots, A_n, B_{m+1}, \ldots, B_k)\vartheta$.

Si noti che, a differenza di quanto fatto nel Paragrafo 14.4.3, qui occorre applicare ϑ anche agli altri atomi che appaiono nel goal G, perché le teste delle clausole contengono generici termini e dunque ϑ potrebbe istanziare delle variabili anche nel goal.

Dato un goal G ed un programma logico P, una derivazione SLD di $P \cup G$ consiste di una sequenza (possibilmente infinita) di goal G_0, G_1, G_2, \ldots , di una sequenza C_1, C_2, \ldots di clausole in P ridenominate in modo da evitare catture di nomi variabili e di una sequenza $\vartheta_1, \vartheta_2, \ldots$ di m.g.u. tali che G_0 è G e, per $i \geq 1$, ogni G_i è derivato da G_{i-1} e G_i usando G_i . Una G_i una derivazione G_i di G_i di G_i de una derivazione G_i finita di G_i che ha la clausola vuota come ultimo risolvente della derivazione. Se G_i G_i sono gli m.g.u. usati nella refutazione di G_i diciamo che la sostituzione G_i G_i ristretta alle variabili che compaiono in G_i è la G_i sostituzione di G_i risposta calcolata di G_i (o anche, per il goal G_i nel programma G_i).

Risultati classici, dovuti a K. L. Clark, mostrano che questa regola è corretta e completa rispetto alla tradizionale interpretazione logica del prim'ordine.

Infatti si può dimostrare che se ϑ è la sostituzione di risposta calcolata per il goal G nel programma P allora $G\vartheta$ è conseguenza logica di P (correttezza). Inoltre, se $G\vartheta$ è conseguenza logica di P allora, qualsiasi sia la regola di selezione usata, esiste una refutazione SLD di $P\cup G$ con risposta calcolata σ tale che $G\sigma$ è più generale di $G\vartheta$ (completezza forte).