	Ejercicio 1. Sea $\Gamma \subseteq \mathbf{Form}$ un conjunto satisfacible de fóormulas de la lógica proposicional.
	1. Probar que si existe una única valuación que satisface a Γ entonces $\Gamma \models \alpha$ o $\Gamma \models \neg \alpha$ para toda fórmula proposicional α .
	2. Si $\Gamma \models \alpha$ o $\Gamma \models \neg \alpha$ para toda fórmula α , ¿es cierto que existe una única valuación que satisface a Γ ?
	1. J. ~/ ~= r= r= r×a pour tolo founda a.
	·
	Sobernon que pour todo a, vi Fa o vi F 7a.
Sea &	/ ~ = x
	qug: vFr => v=x
	Jon HIP VER of TE a . En la dem volución VET a folos > VET → VERDADER
Tandam	nd, ṽknd po HIP ṽEry ṽknd. En la dema valuocione ṽkr e F = vÆr+ v knd J ṽ£RDAVERO
	2. Vale (Fx o (Xx pour tolo formela x =) 1: 7/ F= [?
	Guideren lon a que porter de PROP (P;)
	Sobeno que [=P: o [= 7Pi por HIP
	t to the total the total
	Entonces, para toda valuacion v que satisfaga a Gamma, v tiene que satisfacer a alfa.
	Supongamos que existen 2 valuaciones w y w' que hacen verdaderas a Gamma, esas valuaciones difieren en alguna pi. O sea que w(pi) != w'(pi).
	Pero supusimos que w = Gamma y w' = Gamma => pi no puede ser consecuencia de Gamma.
	Analogamente tampoco lo puede ser ¬pi

Eiercicio 2

Sea \mathcal{L} un lenguaje de primer orden con igualdad y un símbolo de función binaria $d_{\mathcal{I}}$. Consideremos la \mathcal{L} -estructura $\mathcal{I} = (\mathbb{R}, d_{\mathcal{I}})$, donde la interpretación del símbolo $d_{\mathcal{I}}$ es la función distancia usual $d_{\mathcal{I}}(r, s) = |r - s|$.

- (a) Probar que 0 es distinguible.
- (b) Probar que los siguientes conjuntos son expresables

$$\begin{split} A &= \left\{ (x,y,z) \in \mathbb{R}^3 : x \neq y \text{ y } z \text{ es el promedio de } x \in y \right\} \\ B &= \left\{ (x,y,z) \in \mathbb{R}^3 : x \neq y \text{ y } z \text{ es la mitad de la distancia entre } x \in y \right\} \end{split}$$

a)
$$l_0(x) = (\forall x) [d(x,y) = x]$$

b)
$$\int_A (x,7,2) = x \neq y \wedge d(x,2) = d(y,2)$$

$$\psi_{8}(x,y,z) = x \neq y \wedge d(0,z) = d(x, \ell_{A}(x,y,z))$$

$$= \times \neq \nearrow \land (\forall a,b) [? \circ (a) \land ? \land (x,?,b) \Rightarrow d(a,z) = d(x,b) \land \exists \exists d(a,z)$$

X es distinto de Y y la distancia entre 0 y z es igual a la distancia entre X y el promedio de X,Y y ademas z es positivo.

Ejercicio 3. Sea \mathcal{L} un lenguaje de primer orden con igualdad, con un símbolo de constante 0 y un símbolo de función unaria f . Dada una \mathcal{L} -estructura \mathcal{M} , decimos que f tiene soporte finito en \mathcal{M} si el conjunto
$Supp(\mathcal{M}) = \{x : f_{\mathcal{M}}(x) \neq 0_{\mathcal{M}}\}$ es finito.
Demuestre que no existe una sentencia φ tal que para toda estructura \mathcal{M} , $\mathcal{M} \models \varphi$ si y sólo si f tiene soporte finito en \mathcal{M} .
l're interpreto como: " of tiene vojorte finito en M"
$f_{1}:(\exists x)[(x) \neq 0]$
$\forall i : (\exists x_1,, x_i) \left[\neq (x_1,, x_i) \land \{(x_i) \neq 0 \land \land \{(x_i) \neq 0 \} \right]$
r = {\forall :, i \in N}
[" = r v {Y}
Empiezo suponiendo que Gamma' es SAT. Entonces sabemos que phi vale. Luego, existe un i Nat / Supp(M) = i.
Pero sabemos que Gamma vale, entonces vale phi_{i+1} y eso implica que Supp(M) > i. ABS!
Venn SAT
Tomo Gamma0 finito subconjunto de Gamma. Entonces, tiene un maximo i / phi_{i} in Gamma0, llamemos a ese i: MAX.
$I: \langle N, _{I}(x) = \begin{cases} 1 & x \leq rhx \\ 0 & cc \end{cases} \rangle$
Podemos ver que se cumple que hay por lo menos MAX elementos distintos / $f(x) != 0$, por lo que phi_{MAX} y todas las phi_{i} en Gamma0 son verdaderas. Ademas como la cantidad de $x / f(x) != 0$ es finito tambien vale phi.
Entonces por compacidad, como todo Gamma0 finito es SAT => Gamma es SAT.