Quantum Mechanics Note

Dait

Class 00, Department of Engineering Physics, Tsinghua University. daiyj20@mails.tsinghua.edu.cn

2021/5/18 - 6/21

Contents

1	Fou	ndamental Posulates	1
	1.1	State Description	1
	1.2	Measurable Physical Properties	1
		1.2.1 Position Operator X	2
		1.2.2 Momentum Operator P	2
		1.2.3 Angular Momentum Operator L	4
		1.2.4 Function of Operator	9
	1.3	Measurement	11
		1.3.1 Probability and Expectation	11
		1.3.2 Uncertainty	12
	1.4	Schrödinger Equation	13
		1.4.1 Time Dependent Schrödinger Equation	13
		1.4.2 Time Independent Schrödinger Equation	14
		1.4.3 Ehrenfest Theorem	15
	1.5	Conclusion	16
		1.5.1 Example: Spin-1/2 System	17
2	Sim	aple Systems	21
	2.1	Free Particle	21
	$\frac{2.1}{2.2}$	Infinite Potential Well	$\frac{21}{22}$
	$\frac{2.2}{2.3}$	Potential Step	23
	$\frac{2.3}{2.4}$	Potential Barrier	$\frac{25}{25}$
	$\frac{2.4}{2.5}$	Finite Potential Well	$\frac{26}{26}$
	$\frac{2.5}{2.6}$	Harmonic Oscillator	27
	$\frac{2.0}{2.7}$	Hydrogen Atom	29
	2.1	2.7.1 Solution of Legendrian	$\frac{29}{30}$
		2.7.2 Solution of Radial Part	$\frac{30}{32}$
		2.7.2 Solution of Itadial Late	JZ
3	App	pendix	35
	3.1	Nabla	35
		3.1.1 Definition	35
		3.1.2 Nabla Notation in Coordinate Transformation	37
	3.2	Functions and Integrals	41
		3.2.0 Fourier Transformation	41
		3.2.1 Gaussian Function	42
		3.2.2 Hermite Polynomial	43
		3.2.3 Legendre Function	43
		3.2.4 Laguerre Function	44
		3.2.5 Bessel Function	44

QM Note by Dait

1 Foundamental Posulates

1.1 State Description

Quantum state is a vector $|\psi\rangle$ in Hilbert space.

definition 1.1.1: Dirac Notation

The **ket** $|\psi\rangle$ is the $n \times 1$ column vector, and the **bra** $\langle \psi | = |\psi\rangle^{\dagger}$,

$$|\psi\rangle = [\psi_1 \ \cdots \ \psi_n]^\top, \qquad \langle \psi| = [\psi_1^* \ \cdots \ \psi_n^*].$$

The inner product of two vectors $|a\rangle$ and $|b\rangle$ is

$$\langle a|b\rangle := a_1^*b_1 + \dots + a_n^*b_n = \sum_{i=1}^n a_i^*b_i.^{\mathrm{I}}$$

The quantum state should be **normalized**, i.e. $\langle \psi | \psi \rangle = 1$.

theorem 1.1.1: Gram-Schmidt

Given a linearly independent bases $|v_1\rangle, \ldots, |v_n\rangle$, we can form linear combinations of the basis vectors to obtain an orthonormal basis. Thus we could find a set of orthonormal bases $|a_i\rangle$, and

$$\langle a_i | a_j \rangle = \delta_{ij}$$
 $\sum |a_i \rangle \langle a_i| = I.$

In the $|a_i\rangle$ base, the representation of a vector is $|\psi\rangle = \sum \psi_i |a_i\rangle$.

 $\langle x|\psi\rangle=\psi(x)$ is the wave function.

1.2 Measurable Physical Properties

Measurable physical properties can be represented by Hermite operator A.

theorem 1.2.1: Eigenvalues of Hermitian

The eigenvalues of Hermite A are **real**, because if $A|a\rangle = a|a\rangle$,

$$\langle a| \mathbf{A} |a\rangle^{\dagger} = \langle a| \mathbf{A} |a\rangle,^{\mathrm{I}}$$

 $a^* \langle a|a\rangle = a \langle a|a\rangle,$

thus $a \in \mathbb{R}$.

^II'll omit the upper and lower mark for simplicity.

^IHere the dagger symbol acts on the whole bracket $\langle a|A|a\rangle$.

theorem 1.2.2: Eigenvectors of Hermitian

The eigenvectors corresponding to different eigenvalues are **orthogonal**, because if $A |a_1\rangle = a_1 |a_1\rangle$, $A |a_2\rangle = a_2 |a_2\rangle$

$$\langle a_2 | A | a_1 \rangle^{\dagger} = \langle a_1 | A | a_2 \rangle$$

 $a_1^* \langle a_1 | a_2 \rangle = a_2 \langle a_1 | a_2 \rangle$,

for $a_1^* = a_1 \neq a_2$, $\langle a_1 | a_2 \rangle = 0$.

1.2.1 Position Operator X

Position operator X in $|x\rangle$ base satisfies: every position $|x\rangle$ is an eigenvector with its position x as the eigenvalue, thus

$$X|x\rangle = x|x\rangle$$
.

The base $|x\rangle$ is continuous, where $x \in \mathbb{R}$, and is orthonormal

$$\langle x'|x\rangle = \delta(x'-x), \qquad \int_{-\infty}^{+\infty} |x\rangle\langle x| \, \mathrm{d}x = I.$$

 $X|\psi\rangle$ is a new state, which could be represented as

$$\langle x | \mathsf{X} | \psi \rangle = x \langle x | \psi \rangle = x \psi(x).$$

example 1.2.1: Verifying the Hermitian

X is Hermite because

$$\langle \varphi | \mathsf{X} | \psi \rangle = \int \langle \varphi | x \rangle \langle x | \mathsf{X} | \psi \rangle \, \mathrm{d}x$$

$$= \int \langle x | \varphi \rangle \, x \, \langle x | \psi \rangle \, \mathrm{d}x = \int x \varphi^*(x) \psi(x) \mathrm{d}x;$$

$$\langle \psi | \mathsf{X} | \varphi \rangle = \int x \psi^*(x) \varphi(x) \, \mathrm{d}x = \langle \varphi | \mathsf{X} | \psi \rangle^{\dagger} \,. \quad (x^* = x)$$

1.2.2 Momentum Operator P

Momentum operator P in $|p\rangle$ base, similarily

$$P|p\rangle = p|p\rangle$$
.

We consider the state $|\psi\rangle$ in $|x\rangle$, $|k\rangle$ base, that $\langle x|\psi\rangle = \psi(x)$, $\langle k|\psi\rangle =: \hat{\psi}(k)$. Then by the **Fourier Transfromation**:

$$\psi(x) = \mathcal{F}^{-1}[\hat{\psi}(k)] = \frac{1}{\sqrt{2\pi}} \int \hat{\psi}(k) \exp(ikx) \, \mathrm{d}k.$$

According to the **de Broglie relation**: $p = \hbar k$, thus $\langle k|\psi\rangle \propto \langle p|\psi\rangle =: \varphi(p)$,

$$\psi(x) \propto \int \varphi(p) \exp\left(i\frac{p}{\hbar}x\right) dp,$$

$$\langle x|\psi\rangle = \int \langle x|p\rangle\langle p|\psi\rangle dp,$$

the lower formula is the calculation of $\langle x|\psi\rangle$, comparing these two formulas, we could conclude that the eigenfunction p(x) is

$$p(x) = \langle x|p\rangle \propto \exp\left(\frac{ip}{\hbar}x\right),$$

which meets the equation

$$\frac{\mathrm{d}\langle x|p\rangle}{\mathrm{d}x} = \frac{ip}{\hbar}\langle x|p\rangle,$$

From the definition $P|p\rangle = p|p\rangle$, we have the eigenfunction p(x) satisfies

$$\langle x| \mathsf{P} | p \rangle = p \langle x| p \rangle = -i\hbar \frac{\mathrm{d} \langle x| p \rangle}{\mathrm{d} x}.$$

Therefore, the momentum operator P in $|x\rangle$ base is $P \rightarrow -i\hbar d/dx$,

$$\left\langle x\right|\mathsf{P}\left|\psi\right\rangle = -i\hbar\frac{\mathrm{d}}{\mathrm{d}x}\left\langle x|\psi\right\rangle = -i\hbar\frac{\mathrm{d}\psi(x)}{\mathrm{d}x}.$$

example 1.2.2: Verifying the Hermitian

P is Hermite because

$$\langle \varphi | \mathsf{P} | \psi \rangle = \int \langle \varphi | x \rangle \langle x | \mathsf{P} | \psi \rangle \, \mathrm{d}x = -i\hbar \int \varphi^*(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} \mathrm{d}x$$
$$= -i\hbar \left[\underbrace{\varphi^*(x)\psi(x)}_{-\infty} - \int \psi(x) \frac{\mathrm{d}\varphi^*(x)}{\mathrm{d}x} \mathrm{d}x \right]$$
$$= i\hbar \int \psi(x) \frac{\mathrm{d}\varphi^*(x)}{\mathrm{d}x} \mathrm{d}x = \langle \psi | \mathsf{P} | \varphi \rangle^{\dagger}.$$

Note: $x \to \infty$, $\psi(x), \varphi(x) \to 0$

definition 1.2.1: Commutator

The commutator of two operators is

$$[A, B] := AB - BA$$

And anti-commutator $\{A, B\} := AB + BA$, which is also useful later.

example **1.2.3**: [X, P

$$\begin{split} \left\langle x \right| \left[\mathsf{X}, \mathsf{P} \right] \left| \psi \right\rangle &= \left\langle x \right| \mathsf{XP} \left| \psi \right\rangle - \left\langle x \right| \mathsf{PX} \left| \psi \right\rangle = x \left\langle x \right| \mathsf{P} \left| \psi \right\rangle - \left\langle x \right| \mathsf{P} \left(\mathsf{X} \left| \psi \right\rangle \right) \\ &= -i\hbar \left(x \frac{\mathrm{d} \left\langle x \right| \psi \right\rangle}{\mathrm{d}x} - \frac{\mathrm{d} \left\langle x \right| \mathsf{X} \left| \psi \right\rangle}{\mathrm{d}x} \right) = -i\hbar \left(x \frac{\mathrm{d} \left\langle x \right| \psi \right\rangle}{\mathrm{d}x} - \frac{\mathrm{d} x \left\langle x \right| \psi \right\rangle}{\mathrm{d}x} \right) \\ &= -i\hbar \left[x \frac{\mathrm{d} \left\langle x \right| \psi \right\rangle}{\mathrm{d}x} - \left(x \frac{\mathrm{d} \left\langle x \right| \psi \right\rangle}{\mathrm{d}x} + \left\langle x \right| \psi \right\rangle \right) \right] = i\hbar \left\langle x \right| \psi \right\rangle, \end{split}$$

then we conclude that

$$[X,P]=i\hbar.$$

3-D case $P \rightarrow -i\hbar \nabla$,

$$\langle \boldsymbol{r}| \, \mathsf{P} \, |\psi \rangle = -i\hbar \nabla \psi(\boldsymbol{r}) = -i\hbar \left(\frac{\partial \psi}{\partial x} \hat{\boldsymbol{i}} + \frac{\partial \psi}{\partial y} \hat{\boldsymbol{j}} + \frac{\partial \psi}{\partial z} \hat{\boldsymbol{k}} \right).$$

1.2.3 Angular Momentum Operator L

The classical angular momentum is

$$L = r \times p$$
.

In the quantum, the momentum $\mathsf{P} = -i\hbar\nabla$, and

$$\begin{split} \mathsf{L} &= -i\hbar\,\pmb{r}\times\nabla\\ &= -i\hbar\left[\,y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\,,\,z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z}\,,\,x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\,\right]^\top\,, \end{split}$$

 L_x, L_y, L_z are three portions of L, and the angular momentum squared is

$$\mathsf{L}^2 = \mathsf{L}_x^2 + \mathsf{L}_y^2 + \mathsf{L}_z^2.$$

example 1.2.4: $[\mathsf{L}_x, \mathsf{L}_y] \& [\mathsf{L}^2, \mathsf{L}_x]$

$$\mathsf{L}_{x}\mathsf{L}_{y} = -\hbar^{2} \left(y \frac{\partial}{\partial x} + yz \frac{\partial^{2}}{\partial z \partial x} - xy \frac{\partial^{2}}{\partial z^{2}} - z^{2} \frac{\partial^{2}}{\partial y \partial x} + xz \frac{\partial^{2}}{\partial y \partial z} \right);$$

$$\mathsf{L}_{y}\mathsf{L}_{x} = -\hbar^{2} \left(yz \frac{\partial^{2}}{\partial x \partial z} - z^{2} \frac{\partial^{2}}{\partial x \partial y} - xy \frac{\partial^{2}}{\partial z^{2}} + x \frac{\partial}{\partial y} + xz \frac{\partial^{2}}{\partial z \partial y} \right);$$

$$\left[\mathsf{L}_{x}, \mathsf{L}_{y} \right] = -\hbar^{2} \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right) = i\hbar \, \mathsf{L}_{z}.$$

Similarily,

$$\left[\mathsf{L}_x, \mathsf{L}_y \right] = i\hbar \, \mathsf{L}_z \quad \left[\mathsf{L}_y, \mathsf{L}_z \right] = i\hbar \, \mathsf{L}_x, \quad \left[\mathsf{L}_z, \mathsf{L}_x \right] = i\hbar \, \mathsf{L}_y.$$

Then calculate $[\mathsf{L}^2,\mathsf{L}_x] = [\mathsf{L}_x^2,\mathsf{L}_x] + [\mathsf{L}_y^2,\mathsf{L}_x] + [\mathsf{L}_z^2,\mathsf{L}_x],$

$$\begin{split} \left[\mathsf{L}_{x}^{2},\mathsf{L}_{x}\right] &= \mathsf{L}_{x}^{3} - \mathsf{L}_{x}^{3} = 0, \\ \left[\mathsf{L}_{y}^{2},\mathsf{L}_{x}\right] &= \mathsf{L}_{y} \big[\mathsf{L}_{y},\mathsf{L}_{x}\big] + \big[\mathsf{L}_{y},\mathsf{L}_{x}\big]\mathsf{L}_{y} \\ &= -i\hbar\,\mathsf{L}_{y}\mathsf{L}_{z} - i\hbar\,\mathsf{L}_{z}\mathsf{L}_{y} = -i\hbar\,\{\mathsf{L}_{y},\mathsf{L}_{z}\}, \\ \left[\mathsf{L}_{z}^{2},\mathsf{L}_{x}\right] &= \mathsf{L}_{z} \big[\mathsf{L}_{z},\mathsf{L}_{x}\big] + \big[\mathsf{L}_{z},\mathsf{L}_{x}\big]\mathsf{L}_{z} = i\hbar\,\{\mathsf{L}_{z},\mathsf{L}_{y}\}. \end{split}$$

Thus

$$\left[\mathsf{L}^{2},\mathsf{L}_{x}\right]=0-i\hbar\left\{\mathsf{L}_{y},\mathsf{L}_{z}\right\}+i\hbar\left\{\mathsf{L}_{z},\mathsf{L}_{y}\right\}=0.$$

Similarily,

$$[L^2, L_x] = [L^2, L_y] = [L^2, L_z] = 0.$$

definition 1.2.2: Ladder Operator

Define the useful ladder operator $L_{\pm} := L_x \pm i L_y$.

example 1.2.5: Denote L^2 by L_+ & L

$$\begin{aligned} \mathsf{L}^2 &= \mathsf{L}_{\pm} \mathsf{L}_{\mp} + \mathsf{L}_z^2 \mp \hbar \, \mathsf{L}_z, \text{ because} \\ &\mathsf{L}_{\pm} \mathsf{L}_{\mp} = (\mathsf{L}_x \pm i \, \mathsf{L}_y) (\mathsf{L}_x \mp i \, \mathsf{L}_y) \\ &= \mathsf{L}_x^2 + \mathsf{L}_y^2 \mp i \, (\mathsf{L}_x \mathsf{L}_y - \mathsf{L}_y \mathsf{L}_x) = \mathsf{L}^2 - \mathsf{L}_z^2 \pm \hbar \, \mathsf{L}_z. \end{aligned}$$

From the definition, its commutator with $\mathsf{L}_z,\mathsf{L}^2$ is

$$[L_z, L_{\pm}] = \pm \hbar L_{\pm}, \quad [L^2, L_{\pm}] = 0.$$

As $[L^2, L_z] = 0$, L_2, L_z have the same eigenfunction $|\psi\rangle$, i.e.

$$\mathsf{L}^2 \ket{\psi} = \lambda \ket{\psi}, \quad \mathsf{L}_z \ket{\psi} = \mu \ket{\psi}.$$

Considering $L_{\pm} |\psi\rangle$,

$$\mathsf{L}^{2}\mathsf{L}_{\pm}\left|\psi\right\rangle = \mathsf{L}_{\pm}\mathsf{L}^{2}\left|\psi\right\rangle = \lambda\mathsf{L}_{\pm}\left|\psi\right\rangle,\,$$

 $|\psi\rangle$, $L_{\pm}|\psi\rangle$ share the **same** eigenvalue of L^2 .

$$\mathsf{L}_z \mathsf{L}_{\pm} |\psi\rangle = \left(\mathsf{L}_{\pm} \mathsf{L}_z \pm \hbar \, \mathsf{L}_{\pm}\right) |\psi\rangle = \left(\mu \pm \hbar\right) \mathsf{L}_{\pm} |\psi\rangle.$$

We call L_+ the **rasing operator**, as it increases the eigenvalue of L_z by \hbar , and L_- the **lowering operator**.

Simplify $|\psi_n\rangle := \mathsf{L}^n_+ |\psi\rangle$, $(n \geqslant 0)$

$$\langle \mathsf{L}^2 \rangle = \langle \psi_n | \mathsf{L}^2 | \psi_n \rangle = \lambda.$$

$$\langle \mathsf{L}_z^2 \rangle = \langle \psi_n | \mathsf{L}_z^2 | \psi_n \rangle = (\mu + n\hbar)^2.$$

While

$$\langle \mathsf{L}^2 \rangle = \langle \mathsf{L}_x^2 \rangle + \langle \mathsf{L}_y^2 \rangle + \langle \mathsf{L}_z^2 \rangle \geqslant \langle \mathsf{L}_z^2 \rangle.$$

Hence, the rising progress can't go on forever, there must exist a **top** $|\psi_t\rangle$:

$$\mathsf{L}_{+} | \psi_t \rangle = 0, \quad \text{then } | \psi_n \rangle \equiv 0, \ \forall \, n > t.$$

Let $\ell\hbar$ be the eigenvalue of L_z at $|\psi_t\rangle$, i.e. $L_z |\psi_t\rangle = \ell \hbar |\psi_t\rangle$.

$$\mathsf{L}^{2} |\psi_{t}\rangle = \left(\mathsf{L}_{-}\mathsf{L}_{+} + \mathsf{L}_{z}^{2} + \hbar \,\mathsf{L}_{z}\right) |\psi_{t}\rangle$$
$$= \left(0 + \ell^{2}\hbar^{2} + \ell \,\hbar^{2}\right) |\psi_{t}\rangle = \ell(\ell+1)\hbar^{2} |\psi_{t}\rangle.$$

Also, there exists a **bottom** $|\psi_b\rangle$ that $L_-|\psi_b\rangle = 0$, $L_z |\psi_b\rangle = j \hbar |\psi_b\rangle$

$$\mathsf{L}^{2} |\psi_{b}\rangle = \left(\mathsf{L}_{+}\mathsf{L}_{-} + \mathsf{L}_{z}^{2} - \hbar\mathsf{L}_{z}\right) |\psi_{b}\rangle$$
$$= \left(0 + \jmath^{2}\hbar^{2} - \jmath\hbar^{2}\right) |\psi_{b}\rangle = \jmath(\jmath - 1)\hbar^{2} |\psi_{b}\rangle.$$

Because $\forall n, \mathsf{L}^2 | \psi_n \rangle \equiv \lambda | \psi_n \rangle$,

$$\lambda = \ell(\ell+1)\hbar^2 = \gamma(\gamma-1)\hbar^2 \quad \Rightarrow \quad \gamma = -\ell \text{ or } \gamma = \ell+1.$$

While $L_z |\psi\rangle = m\hbar |\psi\rangle$, where $m = -\ell, \ldots, \ell$ in N integer steps, hence, $2\ell \in \mathbb{N}$. $|\psi\rangle$ contains two numbers ℓ, m , using the notation $|\ell, m\rangle := |\psi\rangle$ is more clear for different $|\psi\rangle$,

$$\mathsf{L}^2 |\ell, m\rangle = \ell(\ell+1)\hbar^2 |\ell, m\rangle, \quad \mathsf{L}_z |\ell, m\rangle = m\hbar |\ell, m\rangle.$$

where $\ell = 0, 1/2, 1, 3/2, \dots; m = -\ell, -\ell + 1, \dots, \ell$.

example 1.2.6: L_{\pm} changes m

 L_{\pm} changes the value of m, i.e.

$$\mathsf{L}_{+} |\ell, m\rangle = \alpha |\ell, m+1\rangle, \quad \mathsf{L}_{-} |\ell, m+1\rangle = \beta |\ell, m\rangle,$$

We set $\alpha, \beta \in \mathbb{R}_+$.

$$(\mathsf{L}_{+} |\ell, m\rangle)^{\dagger} = \langle \ell, m | \mathsf{L}_{-} = \alpha \langle \ell, m + 1 |,$$

right multiply $|\ell, m+1\rangle$,

$$\begin{split} \langle \ell, m | \, \mathsf{L}_- \, | \ell, m+1 \rangle &= \beta \, \langle \ell, m | \ell, m \rangle = \alpha \, \langle \ell, m+1 | \ell, m+1 \rangle \,, \\ &\Rightarrow \quad \alpha = \beta. \end{split}$$

$$\mathsf{L}_{-}\mathsf{L}_{+}\left|\ell,m\right\rangle = \left(\mathsf{L}^{2} - \mathsf{L}_{z}^{2} - \hbar\,\mathsf{L}_{z}\right)\left|\ell,m\right\rangle$$
$$\alpha^{2}\left|\ell,m\right\rangle = \left[\ell(\ell+1) - m(m+1)\right]\hbar^{2}\left|\ell,m\right\rangle.$$

$$\Rightarrow$$
 $\mathsf{L}_{\pm} |\ell, m\rangle = \sqrt{\ell(\ell+1) - m(m\pm 1)} \hbar |\ell, m\pm 1\rangle.$

Spherical Expression The nabla in spherical coordinate,

$$\nabla = \frac{\partial}{\partial r} \, \hat{r} + \frac{1}{r} \frac{\partial}{\partial \theta} \, \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \, \hat{\phi}.$$

Because $\mathbf{r} = r \,\hat{\mathbf{r}}$, and $\hat{\mathbf{r}} \times \hat{\mathbf{r}} = \mathbf{0}$, $\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}}$, $\hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}} = -\hat{\boldsymbol{\theta}}$,

$$\mathsf{L} = -i\hbar \cdot r \,\hat{\boldsymbol{r}} \times \nabla = -i\hbar \left(\frac{\partial}{\partial \theta} \,\hat{\boldsymbol{\phi}} - \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \,\hat{\boldsymbol{\theta}} \right),$$

Back to Cartesian components,

$$\hat{\boldsymbol{\theta}} = \cos \theta \cos \phi \, \hat{\boldsymbol{i}} + \cos \theta \sin \phi \, \hat{\boldsymbol{j}} - \sin \theta \, \hat{\boldsymbol{k}},$$

$$\hat{\boldsymbol{\phi}} = -\sin \phi \, \hat{\boldsymbol{i}} + \cos \phi \, \hat{\boldsymbol{i}}.$$

Evidently,

$$\begin{split} \mathsf{L}_x &= +i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cos \phi \cot \theta \frac{\partial}{\partial \phi} \right), \\ \mathsf{L}_y &= -i\hbar \left(\cos \phi \frac{\partial}{\partial \theta} - \sin \phi \cot \theta \frac{\partial}{\partial \phi} \right), \end{split}$$

Then,

$$\mathsf{L}_{\pm} = \mathsf{L}_{x} \pm i \, \mathsf{L}_{y} = \hbar \, e^{\pm i\phi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \phi \, \frac{\partial}{\partial \phi} \right).$$

$$\begin{split} \mathsf{L}_{+}\mathsf{L}_{-} &= -\hbar^{2} \left(\frac{\partial^{2}}{\partial \theta^{2}} + \cot \theta \frac{\partial}{\partial \theta} + \cot^{2} \theta \frac{\partial^{2}}{\partial \phi^{2}} + i \frac{\partial}{\partial \phi} \right). \\ \mathsf{L}^{2} &= \mathsf{L}_{+}\mathsf{L}_{-} + \mathsf{L}_{z}^{2} - \hbar \, \mathsf{L}_{z} = -\hbar^{2} \Lambda^{2}, \end{split}$$

where the Legendrian

$$\Lambda^2 := \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2},$$

the eigenfunction of L^2 , i.e.

$$\mathsf{L}^2\psi = -\hbar^2\Lambda^2\psi = \lambda\psi,$$

is the Legendre function we'll solve in H-Atom.^I

 $[\]overline{}^{\rm I}$ Note, parenthetically, that eigenfunctions of L^2 have been known since the 19th century, long before quantum mechanics was born.

1.2.4 Function of Operator

Using the Taylor Expansion

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \cdots,$$

just replace x by A,

$$f(A) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} A^k = f(0) + f'(0) A + \frac{1}{2} f''(0) A^2 + \cdots$$

theorem 1.2.3: About eigenvectors

If $A|a_i\rangle = a_i|a_i\rangle$, then

$$f(\mathsf{A})|a_i\rangle = f(a_i)|a_i\rangle$$
.

Because $A^n |a_i\rangle = a_i^n |a_i\rangle$ and $f(A) = \sum c_n A^n$

$$f(A)|a_i\rangle = \sum c_n A^n |a_i\rangle = f(a_i)|a_i\rangle.$$

thus
$$f(\mathsf{A}) = \sum f(\mathsf{A}) |a_i\rangle\!\langle a_i| = \sum f(a_i) |a_i\rangle\!\langle a_i|$$
.

example 1.2.7: K & V(X)

Kinetic energy $K := K(P) = \frac{P^2}{2m}$, and potential energy function V(X)

$$\begin{split} \left\langle x\right|\mathsf{K}\left|\psi\right\rangle &=\frac{1}{2m}\left\langle x\right|\mathsf{P}^{2}\left|\psi\right\rangle =\frac{1}{2m}\left\langle x\right|\mathsf{P}(\mathsf{P}\left|\psi\right\rangle) \\ &=\frac{\hbar}{2im}\frac{\mathrm{d}\left\langle x\right|\mathsf{P}\left|\psi\right\rangle }{\mathrm{d}x}=-\frac{\hbar^{2}}{2m}\frac{\mathrm{d}^{2}\psi(x)}{\mathrm{d}x^{2}}. \\ \left\langle x\right|V(\mathsf{X})\left|\psi\right\rangle &=\int\left\langle x\right|V(\mathsf{X})\left|x'\right\rangle\left\langle x'\right|\psi\right\rangle\mathrm{d}x' \\ &=\int V(x')\left\langle x|x'\right\rangle\psi(x')\mathrm{d}x'=V(x)\psi(x). \end{split}$$

And the Hamiltonian H = K + V(X).

theorem 1.2.4: About Commutator

Commutator is anti-Hermite, because

$$[A, B]^{\dagger} = B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger} = BA - AB = -[A, B],$$

The first thing about commutator is that

$$[\mathsf{A},\mathsf{A}^n]=0, \qquad \forall \, n\in\mathbb{N}.$$

Therefore,

$$[A, f(A)] = 0.$$

Commutator is much like cross product for they both satisfy the **inverse exchange law**:

$$[\mathsf{B},\mathsf{A}] = -[\mathsf{A},\mathsf{B}] \quad \leftrightarrow \quad \boldsymbol{b} \times \boldsymbol{a} = -\boldsymbol{a} \times \boldsymbol{b}.$$

In cross product, we have the Lagrange equation:

$$(a \times b) \times c = (a \cdot c) b - a (b \cdot c);$$

 $a \times (b \times c) = b (a \cdot c) - (a \cdot b) c.$

In the commutator, the relation is similar:

•
$$[AB, C] = [A, C]B + A[B, C]$$

$$[AB,C] = ABC - CAB$$

$$= ABC - ACB + ACB - CAB = [A,C]B + A[B,C].$$

•
$$[A, BC] = B[A, C] + [A, B]C$$

$$[A, BC] = ABC - BCA$$
$$= BAC - BCA + ABC - BAC = B[A, C] + [A, B]C.$$

Let B = C, then

$$\lceil A, B^2 \rceil = B \lceil A, B \rceil + \lceil A, B \rceil B = \{ \lceil A, B \rceil, B \}.$$

Especially, when B[A, B] = [A, B]B,

•
$$[A, B^n] = [A, B^{n-1}]B + [A, B]B^{n-1}$$

= $[A, B^{n-2}]B^2 + 2[A, B]B^{n-1} = \cdots = n[A, B]B^{n-1}$

$$\bullet [A, f(B)] = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} [A, B^n] = \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} [A, B] n B^{n-1}$$

$$= \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{(n-1)!} B^{n-1} [A, B] = f'(B) [A, B].$$

1.3 Measurement

The system in a state $|\psi\rangle$ which is normalized, and A is any operator observable, then $|\psi\rangle$ can be represented as

$$|\psi\rangle = \sum |a_i\rangle\langle a_i|\psi\rangle = \sum c_i |a_i\rangle$$

where $c_i = \langle a_i | \psi \rangle$ is the probability amplitude of getting $|a_i\rangle$ if measuring A.

1.3.1 Probability and Expectation

The possibility of getting a_i is

$$P(a_i) = |c_i|^2 = |\langle a_i | \psi \rangle|^2.$$

The expectation result when measuring A is

$$\langle \mathsf{A} \rangle = \sum P(a_i)a_i = \sum |c_i|^2 a_i.$$

theorem 1.3.1

$$\langle A \rangle = \langle \psi | A | \psi \rangle$$
.

$$\begin{split} \text{Proof:} \;\; \langle \psi | \, \mathsf{A} \, | \psi \rangle &= \sum \langle \psi | \, \mathsf{A} \, | a_i \rangle \langle a_i | \psi \rangle = \sum \langle \psi | \, a_i \, | a_i \rangle \langle a_i | \psi \rangle \\ &= \sum a_i \, \langle \psi | a_i \rangle \, \langle a_i | \psi \rangle = \sum |c_i|^2 a_i, \end{split}$$

For continuous case, the **probability density** is

$$P(x) = |\langle x|\psi\rangle|^2 = |\psi(x)|^2,$$
$$\langle \psi|\psi\rangle = \int \langle \psi|x\rangle\langle x|\psi\rangle \,dx = \int |\psi(x)|^2 dx = \int P(x) \,dx = 1.$$

P(x) dx is the probability between x and x + dx. And the average

$$\langle \mathsf{A} \rangle = \langle \psi | \mathsf{A} | \psi \rangle = \int \langle \psi | \mathsf{A} | x \rangle \langle x | \psi \rangle \, \mathrm{d}x$$

example 1.3.1

The average of x, p is

$$\langle \mathsf{X} \rangle = \int x |\psi(x)|^2 dx, \quad \langle \mathsf{P} \rangle = -i\hbar \int \psi'(x) \psi^*(x) dx$$

Warning: $\langle \mathsf{P} \rangle = \int p(x) |\psi(x)|^2 \mathrm{d}x$.

1.3.2 Uncertainty

If the measurements result in many values, then the deviation is $\Delta A = A - \langle A \rangle$

$$\begin{split} \left\langle \Delta \mathsf{A}^2 \right\rangle &= \left\langle \left(\mathsf{A} - \left\langle \mathsf{A} \right\rangle \right)^2 \right\rangle = \left\langle \mathsf{A}^2 - 2\mathsf{A} \left\langle \mathsf{A} \right\rangle + \left\langle \mathsf{A} \right\rangle^2 \right\rangle \\ &= \left\langle \mathsf{A}^2 \right\rangle - 2 \left\langle \mathsf{A} \right\rangle \! \left\langle \mathsf{A} \right\rangle + \left\langle \mathsf{A} \right\rangle^2 = \left\langle \mathsf{A}^2 \right\rangle - \left\langle \mathsf{A} \right\rangle^2. \end{split}$$

Define the uncertainty $\sigma_A^2 := \langle \Delta A^2 \rangle$. II

theorem 1.3.2: Uncertainty Principle

lemma Schwarz

$$\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \geqslant |\langle \alpha | \beta \rangle|^2 \,. \tag{1}$$

Proof: $\forall \lambda \in \mathbb{R}$.

$$||\alpha\rangle + \lambda |\beta\rangle|^2 = (\langle \alpha| + \lambda \langle \beta|)(|\alpha\rangle + \lambda |\beta\rangle)$$
$$= \langle \alpha|\alpha\rangle + \lambda (\langle \alpha|\beta\rangle + \langle \beta|\alpha\rangle) + \lambda^2 \langle \beta|\beta\rangle \geqslant 0,$$

for λ , it is a quadratic inequality, so

$$\Delta = (2\operatorname{Re}\langle\alpha|\beta\rangle)^{2} - 4\langle\alpha|\alpha\rangle\langle\beta|\beta\rangle$$
$$= 4|\langle\alpha|\beta\rangle|^{2} - 4\langle\alpha|\alpha\rangle\langle\beta|\beta\rangle \leqslant 0,$$

that is what we need to proof. lemma If $A^{\dagger}=A$ Hermitian, $\langle A \rangle \in \mathbb{R}$ for

$$\langle \psi | \mathbf{A} | \psi \rangle^{\dagger} = \langle \psi | \mathbf{A}^{\dagger} | \psi \rangle = \langle \psi | \mathbf{A} | \psi \rangle.$$

If $A^{\dagger} = -A$ anti-Hermitian, $\langle A \rangle \in i \mathbb{R}$ for

$$\left\langle \psi\right|\mathsf{A}\left|\psi\right\rangle^{\dagger}=\left\langle \psi\right|\mathsf{A}^{\dagger}\left|\psi\right\rangle =-\left\langle \psi\right|\mathsf{A}\left|\psi\right\rangle .$$

We take $|\alpha\rangle \to \Delta A |\psi\rangle$, $|\beta\rangle \to \Delta B |\psi\rangle$, from the Schwarz Lemma,

$$\sigma_{\mathrm{A}}^{2}\sigma_{\mathrm{B}}^{2}=\left\langle \Delta\mathrm{A}^{2}\right\rangle\!\!\left\langle \Delta\mathrm{B}^{2}\right\rangle \geqslant\left|\left\langle \Delta\mathrm{A}\Delta\mathrm{B}\right\rangle \right|^{2}.$$

Noticing that

$$\langle \Delta A \Delta B \rangle = \langle (A - \langle A \rangle)(B - \langle B \rangle) \rangle = \langle AB \rangle - \langle A \rangle \langle B \rangle.$$

Decompose AB,

$$AB = \frac{1}{2}[A, B] + \frac{1}{2}\{A, B\},$$

[A, B] = AB - BA is anti-Hermitian, and $\{A, B\} = AB + BA$ is Hermitian,

$$\langle \Delta A \Delta B \rangle = \langle AB \rangle + \langle A \rangle \langle B \rangle = \underbrace{\frac{1}{2} \left\langle \left[A,B\right] \right\rangle}_{\mathrm{Im-part}} + \underbrace{\frac{1}{2} \left\langle \left\{A,B\right\} \right\rangle - \left\langle A \right\rangle \! \langle B \right\rangle}_{\mathrm{Re-part}}.$$

^{II}Textbooks tend to confuse ΔA and σ_A , it's understandable because ΔA 's original definition in a single experiment doesn't matter.

Then

$$\sigma_{\mathsf{A}}\sigma_{\mathsf{B}} \geqslant |\langle \Delta \mathsf{A}\Delta \mathsf{B}\rangle| \geqslant |\mathrm{Im}\langle \Delta \mathsf{A}\Delta \mathsf{B}\rangle| = \frac{1}{2} |\langle [\mathsf{A},\mathsf{B}]\rangle|.$$

For $[X,P] = i\hbar$, we conduct the **Uncertainty Principle**

$$\sigma_{\mathsf{X}}\sigma_{\mathsf{P}}\geqslant rac{\hbar}{2},$$

which means we can't precisely measure X and P simultaneously.

1.4 Schrödinger Equation

The Schrödinger Equation is

$$i\hbar \frac{\mathrm{d}\left|\psi\right\rangle}{\mathrm{d}t} = \mathsf{H}\left|\psi\right\rangle,\tag{2}$$

where Hamiltonian H = K + V(X).

1.4.1 Time Dependent Schrödinger Equation

Left multiply Eqn.(2) by $\langle x|$, we get

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x)\psi(x,t), \tag{3}$$

definition 1.4.1: Probability Current

Let's review the calculation of

$$P(a \leqslant x \leqslant b) = \int_{a}^{b} |\psi(x)|^{2} dx.$$

From Sch-Eqn.(3):
$$\frac{\partial \psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2} + \frac{1}{i\hbar} V \psi$$
,

$$\begin{split} \frac{\mathrm{d}P}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{b} \psi^{*} \psi \mathrm{d}x = \int_{a}^{b} \left(\frac{\partial \psi^{*}}{\partial t} \psi + \psi^{*} \frac{\partial \psi}{\partial t} \right) \mathrm{d}x \\ &= \int_{a}^{b} \left[\left(-\frac{i\hbar}{2m} \frac{\partial^{2} \psi^{*}}{\partial x^{2}} - \frac{1}{i\hbar} \nabla \psi^{*} \right) \psi + \psi^{*} \left(\frac{i\hbar}{2m} \frac{\partial^{2} \psi}{\partial x^{2}} + \frac{1}{i\hbar} \nabla \psi \right) \right] \mathrm{d}x \\ &= \frac{i\hbar}{2m} \int_{a}^{b} \left(\psi^{*} \frac{\partial^{2} \psi}{\partial x^{2}} - \psi \frac{\partial^{2} \psi^{*}}{\partial x^{2}} \right) \mathrm{d}x = \frac{i\hbar}{2m} \int_{a}^{b} \frac{\partial}{\partial x} \left(\psi^{*} \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^{*}}{\partial x} \right) \mathrm{d}x \\ &= \frac{i\hbar}{2m} \left[\psi^{*} \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^{*}}{\partial x} \right]^{b} =: j(a, t) - j(b, t), \end{split}$$

where
$$j:=\frac{i\hbar}{2m}\left(\psi\frac{\partial\psi^*}{\partial x}-\psi^*\frac{\partial\psi}{\partial x}\right)$$
 is the **probability current**.

Directly solving Eqn.(3) is difficult, we need the eigenfunctions.

1.4.2 Time Independent Schrödinger Equation

If we use $|E\rangle$ base, which is the eigenvector of H, i.e.

$$H|E\rangle = E|E\rangle, \tag{4}$$

and left multiply Eqn.(2) by $\langle E|$,

$$\left\langle E\right|\mathsf{H}\left|\psi\right\rangle =i\hbar\frac{\mathrm{d}\left\langle E|\psi\right\rangle }{\mathrm{d}t}=E\left\langle E|\psi\right\rangle .$$

Define $\zeta(t) := \langle E | \psi \rangle$ as a function of t, then

$$i\hbar \frac{\mathrm{d}\zeta(t)}{\mathrm{d}t} = E\zeta(t),$$

which is easy to solve and the solution is

$$\zeta(t) = \zeta(0)e^{E/i\hbar t}$$
.

Because $|\psi\rangle = \sum |E_n\rangle\langle E_n|\psi\rangle = \sum \zeta_n(t) |E_n\rangle$,

$$|\psi\rangle = \sum \zeta_n(0)e^{-i\omega_n t} |E_n\rangle, \quad \omega_n = \frac{E_n}{\hbar},$$

Define $\psi(x) := \langle x|E\rangle$, left multiply Eqn.(4) by $\langle x|$,

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + V(x)\psi(x) = E\psi(x). \tag{5}$$

Clarify Here $\psi(x)$ is different from $\psi(x,t)$ in Eqn.(3). $\psi(x,t)$ is the wave function; $\psi(x)$ is the eigenfunction of Eqn.(5), and it's independent of t.

Link Taking different E_n , we get a series of $\psi_n(x)$ by sloving Eqn.(5), $|E_n\rangle$ is the base in space so

$$\psi(x,0) = \sum c_n \psi_n(x),$$

then as t evolves,

$$\psi(x,t) = \sum c_n e^{-i\omega_n t} \psi_n(x), \quad \omega_n = \frac{E_n}{\hbar}.$$

1.4.3 Ehrenfest Theorem

theorem 1.4.1: Ehrenfest

$$\frac{\mathrm{d}\langle \mathsf{A}\rangle}{\mathrm{d}t} = \frac{1}{i\hbar}\langle [\mathsf{A},\mathsf{H}]\rangle.$$

$$\text{Proof: } \frac{\mathrm{d}\left\langle \mathsf{A}\right\rangle }{\mathrm{d}t} = \frac{\mathrm{d}\left\langle \psi\right|\mathsf{A}\left|\psi\right\rangle }{\mathrm{d}t} = \frac{\mathrm{d}\left\langle \psi\right|}{\mathrm{d}t}\mathsf{A}\left|\psi\right\rangle + \left\langle \psi\right|\mathsf{A}\frac{\mathrm{d}\left|\psi\right\rangle }{\mathrm{d}t}.^{\mathrm{I}}$$

From Sch-Eqn.(2): $\frac{\mathrm{d}|\psi\rangle}{\mathrm{d}t} = \frac{1}{i\hbar}\mathsf{H}|\psi\rangle$, $\frac{\mathrm{d}\langle\psi|}{\mathrm{d}t} = -\frac{1}{i\hbar}\langle\psi|\mathsf{H}$, hence,

$$\frac{\mathrm{d}\left\langle \mathsf{A}\right\rangle }{\mathrm{d}t}=\left(-\frac{1}{i\hbar}\left\langle \psi\right|\mathsf{H}\right)\mathsf{A}\left|\psi\right\rangle +\left\langle \psi\right|\mathsf{A}\left(\frac{1}{i\hbar}\mathsf{H}\left|\psi\right\rangle \right)=\frac{1}{i\hbar}\left\langle \left[\mathsf{A},\mathsf{H}\right]\right\rangle .$$

example 1.4.1: A = X

$$\frac{\mathrm{d}\langle \mathsf{X}\rangle}{\mathrm{d}t} = \frac{1}{i\hbar}\langle [\mathsf{X},\mathsf{H}]\rangle = \frac{\langle \mathsf{P}\rangle}{m}.$$

For

$$[\mathsf{X},\mathsf{H}] = \frac{1}{2m}[\mathsf{X},\mathsf{P}^2] + [\mathsf{X},V(\mathsf{X})] = \frac{\mathsf{P}}{m}[\mathsf{X},\mathsf{P}] + 0 = \frac{i\hbar}{m}\mathsf{P}.$$

This makes perfect sense because in classic

$$v = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{p}{m}.$$

example 1.4.2: A = P

$$\frac{\mathrm{d}\langle \mathsf{P}\rangle}{\mathrm{d}t} = \frac{1}{i\hbar}\langle [\mathsf{P},\mathsf{H}]\rangle = -\langle V'(\mathsf{X})\rangle.$$

For

$$[\mathsf{P},\mathsf{H}] = \frac{1}{2m} [\mathsf{P},\mathsf{P}^2] + [\mathsf{P},V(\mathsf{X})] = 0 + V'(\mathsf{X}) [\mathsf{P},\mathsf{X}] = -i\hbar V'(\mathsf{X}).$$

This alse makes sense,

$$F = \frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\mathrm{d}V(x)}{\mathrm{d}x}.$$

In 3-D space,

$$\frac{\mathrm{d}\left\langle \mathsf{P}\right\rangle }{\mathrm{d}t}=-\left\langle \nabla V\right\rangle ,$$

 $^{^{\}rm I}{\rm Most}$ operators are independent of time, i.e. $\partial {\sf A}/\partial t \equiv 0.$

and for the angular momentum, like $\boldsymbol{\tau} = \frac{\mathrm{d} \boldsymbol{L}}{\mathrm{d} t} = \boldsymbol{r} \times \boldsymbol{F},$

$$\frac{\mathrm{d}\left\langle \mathsf{L}\right\rangle }{\mathrm{d}t}=\left\langle -\boldsymbol{r}\times\nabla V(\boldsymbol{r})\right\rangle$$

theorem 1.4.2: Time-Energy Uncertainty Principle

Let's go back to the Uncertainty Principle

$$\sigma_{\mathsf{A}}\sigma_{\mathsf{B}}\geqslant\frac{1}{2}\left|\left\langle \left[\mathsf{A},\mathsf{B}\right]\right\rangle \right|,$$

when $\mathsf{B} \equiv \mathsf{H}$, from Ehrenfest Theorem: $\langle [\mathsf{A},\mathsf{H}] \rangle = i\hbar \; \mathrm{d} \langle \mathsf{A} \rangle / \mathrm{d} t$

$$\sigma_{\mathsf{A}}\sigma_{\mathsf{H}}\geqslant rac{1}{2}\left|\langle\left[\mathsf{A},\mathsf{H}
ight]
angle
ight|=rac{\hbar}{2}\left|rac{\mathrm{d}\langle\mathsf{A}
angle}{\mathrm{d}t}
ight|,$$

when $A \equiv T$, which is the time operator

$$\sigma_{\mathsf{T}}\sigma_{\mathsf{H}}\geqslant rac{\hbar}{2}.$$

1.5 Conclusion

General strategy working on Quantum.

• Predict measurement result.

$$\mathsf{A}\left|a_{i}\right\rangle = a_{i}\left|a_{i}\right\rangle, \quad \left|\psi\right\rangle = \sum \left\langle a_{i}|\psi\rangle|a_{i}\right\rangle.$$

• Transfromation between bases.

$$\begin{split} \mathsf{B} \, |b_j\rangle &= b_j \, |b_j\rangle \,, \quad |\psi\rangle = \sum \langle b_j |\psi\rangle |b_j\rangle \,. \\ \langle b_j |\psi\rangle &= \sum \langle b_j |a_i\rangle \langle a_i |\psi\rangle \,. \end{split}$$

• Time evolution - Expand as components of $|\psi_{E_a}\rangle$.

1.5.1 Example: Spin-1/2 System

There is another type of angular momentum, called **spin angular momentum**, represented by the spin operator

$$S = S_x \hat{\boldsymbol{i}} + S_y \hat{\boldsymbol{j}} + S_z \hat{\boldsymbol{k}},$$

and the eigenvalue is just the same as the orbit angular momentum, III

$$S^2 |s, s_z\rangle = s(s+1)\hbar^2 |s, s_z\rangle$$
, $S_z |s, s_z\rangle = s_z\hbar |s, s_z\rangle$.

where $s = 0, 1/2, 1, 3/2, \dots; s_z = -s, -s + 1, \dots, s$.

example 1.5.1: Stern-Gerlach Experiment

In classic, the magnetic dipole μ of an electron rotating in a circle is

$$\boldsymbol{\mu} := I \boldsymbol{S} = rac{e v}{2 \pi r} \cdot \pi r^2 \, \hat{\boldsymbol{n}} = rac{e v r}{2} \hat{\boldsymbol{n}}.$$

While the angular momentum of electron is $\mathbf{L} = -mvr\hat{\mathbf{n}}$,

$$\boldsymbol{\mu} = g_L \boldsymbol{L}, \qquad g_L = -\frac{e}{2m}.$$

In quantum,

$$\mu = g_s \mathsf{S}, \qquad g_s = g_0 g_L,$$

interestingly, $g_0 = 2.00 \cdots$ is not a integer.

When magnetic pole μ interacts with magnetic feild B, the torque

$$\tau = \mu \times B$$
.

Then the energy

$$U = \int \mu B \sin \theta \, d\theta = -\mu B \cos \theta = -\boldsymbol{\mu} \cdot \boldsymbol{B}.$$

In the experiment, $\mathbf{B} = B_z \hat{\mathbf{k}}$, thus

$$H = -g_s S_z B_z$$
.

Shoot electrons into a magnetic field B whose z-axis direction field strength B_z is not a const, then the electrons will be deflected

$$F = -\frac{\partial H_{\text{int}}}{\partial z} = g_z S_z \frac{\mathrm{d}B_z}{\mathrm{d}z},$$

^{III}Spin is often depicted as a particle literally spinning around an axis, but this is only a metaphor: spin is an intrinsic property of a particle, unrelated to any sort of (yet experimentally observable) motion in space. All elementary particles have a characteristic spin, which is usually nonzero. For example, electrons always have spin-1/2 while photons always have spin-1.

Stern-Gerlach Experiment Setup

Eventually there are two bands shown on the screen, indicating that there are only two values for the spin S_z of the electron, i.e.

$$\begin{split} s_z &= \pm \tfrac{1}{2}, \quad \mathsf{S}_z \to \pm \tfrac{1}{2}\hbar, \\ s &= \tfrac{1}{2}, \quad |\mathsf{S}| \to \tfrac{\sqrt{3}}{2}\hbar, \end{split}$$

which is the spin-1/2 system.

Define the spin notation:

$$\left|\uparrow_{z}\right\rangle :=\left|s=\tfrac{1}{2},s_{z}=\tfrac{1}{2}\right\rangle ,\quad \left|\downarrow_{z}\right\rangle :=\left|s=\tfrac{1}{2},s_{z}=-\tfrac{1}{2}\right\rangle .$$

In the $|\uparrow_z\rangle$, $|\downarrow_z\rangle$ base,

$$|\uparrow_z\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad |\downarrow_z\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}.$$

As

$$S_z |\uparrow_z\rangle = \frac{\hbar}{2} |\uparrow_z\rangle , \quad S_z |\downarrow_z\rangle = -\frac{\hbar}{2} |\downarrow_z\rangle .$$

Thus

$$\mathsf{S}_z = \frac{\hbar}{2} \left|\uparrow_z\rangle\langle\uparrow_z\right| - \frac{\hbar}{2} \left|\downarrow_z\rangle\langle\downarrow_z\right| = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Transformation between bases After the S-G experimental setup, $|\uparrow_z\rangle$ and $|\downarrow_z\rangle$ are separated, and the percent is 50%-50%, then shoot the $|\uparrow_z\rangle$ part into another S-G setup, however, this time along x-axis, the outcome is that $|\uparrow_x\rangle$ and $|\downarrow_x\rangle$ are separated, and the percent is also 50%-50%, i.e.

$$\left|\langle \uparrow_x | \uparrow_z \rangle \right|^2 = \frac{1}{2}, \quad \left|\langle \downarrow_x | \uparrow_z \rangle \right|^2 = \frac{1}{2}.$$

Then we can let

$$|\uparrow_{x}\rangle = \frac{1}{\sqrt{2}}|\uparrow_{z}\rangle + \frac{1}{\sqrt{2}}e^{i\theta_{+}}|\downarrow_{z}\rangle,$$

$$|\downarrow_{x}\rangle = \frac{1}{\sqrt{2}}|\uparrow_{z}\rangle + \frac{1}{\sqrt{2}}e^{i\theta_{-}}|\downarrow_{z}\rangle,$$

where $e^{i\theta_+}, e^{i\theta_-}$ are just the phase difference,

$$\left|\langle \downarrow_x | \uparrow_x \rangle \right|^2 = \frac{1}{2} + \frac{1}{2} \cos(\theta_+ - \theta_-) = 0,$$

thus $e^{i\theta_{-}} = -e^{i\theta_{+}}$. For y-axis, similarly,

$$\begin{split} |\uparrow_{x}\rangle &= \frac{1}{\sqrt{2}} |\uparrow_{z}\rangle + \frac{1}{\sqrt{2}} e^{i\theta_{+}} |\downarrow_{z}\rangle \,, \qquad |\uparrow_{y}\rangle = \frac{1}{\sqrt{2}} |\uparrow_{z}\rangle + \frac{1}{\sqrt{2}} e^{i\theta'_{+}} |\downarrow_{z}\rangle \,, \\ |\downarrow_{x}\rangle &= \frac{1}{\sqrt{2}} |\uparrow_{z}\rangle - \frac{1}{\sqrt{2}} e^{i\theta_{+}} |\downarrow_{z}\rangle \,, \qquad |\downarrow_{y}\rangle = \frac{1}{\sqrt{2}} |\uparrow_{z}\rangle - \frac{1}{\sqrt{2}} e^{i\theta'_{+}} |\downarrow_{z}\rangle \,, \end{split}$$

while

$$\left| \langle \uparrow_x | \uparrow_y \rangle \right|^2 = \frac{1}{2} + \frac{1}{2} \cos(\theta'_+ - \theta_+) = \frac{1}{2},$$

the convention is to set $\theta_+ = 0, \theta'_+ = \pi/2$, i.e.

$$|\uparrow_{x}\rangle = \frac{1}{\sqrt{2}}|\uparrow_{z}\rangle + \frac{1}{\sqrt{2}}|\downarrow_{z}\rangle, \qquad |\uparrow_{y}\rangle = \frac{1}{\sqrt{2}}|\uparrow_{z}\rangle + \frac{i}{\sqrt{2}}|\downarrow_{z}\rangle, |\downarrow_{x}\rangle = \frac{1}{\sqrt{2}}|\uparrow_{z}\rangle - \frac{1}{\sqrt{2}}|\downarrow_{z}\rangle, \qquad |\downarrow_{y}\rangle = \frac{1}{\sqrt{2}}|\uparrow_{z}\rangle - \frac{i}{\sqrt{2}}|\downarrow_{z}\rangle,$$

thus,

$$\mathsf{S}_x = rac{\hbar}{2} \left[egin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right], \quad \mathsf{S}_y = rac{\hbar}{2} \left[egin{matrix} 0 & -i \\ i & 0 \end{matrix} \right],$$

 S_x, S_y, S_z contains the Pauli spin matrixes

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

For any a normalized vector

$$\hat{\boldsymbol{u}} = [\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta]^{\top},$$

the spin operator along this direction is

$$\begin{aligned} \mathsf{S}_u &= \hat{\boldsymbol{u}} \cdot \mathsf{S} = \frac{\hbar}{2} \left(\sin \theta \cos \phi \ \sigma_x + \sin \theta \sin \phi \ \sigma_y + \cos \theta \ \sigma_z \right) \\ &= \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{bmatrix}. \end{aligned}$$

The eigenvalues are still $\pm \hbar/2$ and the eigenvectors

$$\begin{split} \mathsf{S}_{u} \left| \uparrow_{u} \right\rangle &= \frac{\hbar}{2} \left| \uparrow_{u} \right\rangle, \quad \mathsf{S}_{u} \left| \downarrow_{u} \right\rangle = -\frac{\hbar}{2} \left| \downarrow_{u} \right\rangle, \\ \left| \uparrow_{u} \right\rangle &= +\cos \frac{\theta}{2} e^{-i\phi/2} \left| \uparrow_{z} \right\rangle + \sin \frac{\theta}{2} e^{i\phi/2} \left| \downarrow_{z} \right\rangle, \\ \left| \downarrow_{u} \right\rangle &= -\sin \frac{\theta}{2} e^{-i\phi/2} \left| \uparrow_{z} \right\rangle + \cos \frac{\theta}{2} e^{i\phi/2} \left| \downarrow_{z} \right\rangle, \end{split}$$

Predict the measurements

$$P(s_z = \frac{1}{2}) = |\langle \uparrow_z | \uparrow_u \rangle|^2 = \cos^2 \frac{\theta}{2};$$

$$P(s_x = \frac{1}{2}) = |\langle \uparrow_x | \uparrow_u \rangle|^2 = \frac{1}{2} \left| \cos \frac{\theta}{2} e^{-i\phi/2} + \sin \frac{\theta}{2} e^{i\phi/2} \right|^2$$

$$= \frac{1}{2} \left(1 + \sin \theta \cos \phi \right);$$

$$P(s_y = \frac{1}{2}) = |\langle \uparrow_y | \uparrow_u \rangle|^2 = \frac{1}{2} \left| \cos \frac{\theta}{2} e^{-i\phi/2} + i \sin \frac{\theta}{2} e^{i\phi/2} \right|^2$$

$$= \frac{1}{2} \left(1 + \sin \theta \sin \phi \right).$$

Evolution in a const B_0

$$\mathsf{H} = -g_s \mathsf{S}_z B_0 = \Omega \mathsf{S}_z, \quad \Omega := -g_s B_0,$$

then $\left|\uparrow_{z}\right\rangle,\left|\downarrow_{z}\right\rangle$ are the eigenvectors of H

$$\mathsf{H}\left|\uparrow_{z}\right\rangle = \frac{\hbar\Omega}{2}\left|\uparrow_{z}\right\rangle, \qquad \mathsf{H}\left|\downarrow_{z}\right\rangle = -\frac{\hbar\Omega}{2}\left|\downarrow_{z}\right\rangle,$$

then time evolution for $|\psi\rangle = |\uparrow_u\rangle$

$$|\psi(t)\rangle = \cos\frac{\theta}{2}e^{-i(\phi+\Omega t)/2}|\uparrow_z\rangle + \sin\frac{\theta}{2}e^{i(\phi+\Omega t)/2}|\downarrow_z\rangle$$

The probability evolving with time is

$$P(s_z = \frac{1}{2}) = \cos^2 \frac{\theta}{2},$$

$$P(s_x = \frac{1}{2}) = \frac{1}{2} [1 + \sin \theta \cos(\phi + \Omega t)].$$

 S_z is a well state because it commute with H

$$\langle \mathsf{S}_z \rangle = \cos^2 \frac{\theta}{2} \cdot \frac{\hbar}{2} + \sin^2 \frac{\theta}{2} \left(-\frac{\hbar}{2} \right) = \frac{\hbar \cos \theta}{2}, \qquad \frac{\mathrm{d} \langle \mathsf{S}_z \rangle}{\mathrm{d}t} = 0.$$

QM Note by Dait

2 Simple Systems

2.1 Free Particle

Free means $V(x) \equiv 0$, then $|p\rangle$ is the eigenvector of H because

$$\begin{split} \mathsf{H}\left|p\right\rangle &= \frac{\mathsf{P}^2}{2m}\left|p\right\rangle = \frac{p^2}{2m}\left|p\right\rangle,\\ E &= \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m} \quad \Rightarrow \quad \omega = \frac{E}{\hbar} = \frac{\hbar k^2}{2m}. \end{split}$$

Knowing $\psi(x,0)$, we could know $\hat{\psi}(k)$,

$$\hat{\psi}(k) = \mathcal{F}[\psi(x,0)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \psi(x,0)e^{-ikx} dx,$$

then we will know

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{\psi}(k) e^{ikx} e^{-i\frac{\hbar k^2}{2m}t} dk$$

example 2.1.1: Trivial

$$|\psi_0\rangle = |p_0\rangle, \psi(x,0) = \frac{1}{\sqrt{2\pi\hbar}} e^{ik_0 x}, \quad k_0 := \frac{p_0}{\hbar}.$$

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} e^{i(k_0 x - \omega t)}, \quad \omega = \frac{\hbar k_0^2}{2m}.$$

Phase speed $v_{\varphi} = \frac{\omega}{k_0} = \frac{\hbar k_0}{2m}$; and group speed $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{\hbar k_0}{m} = \frac{p_0}{m}$.

example 2.1.2: Gaussian Wavepacket

The Gaussian wavepacket is

$$\psi(x,0) = Ae^{-x^2/\sigma^2}e^{ik_0x},$$

A is the normalization coefficient

$$\int_{-\infty}^{+\infty} e^{-2x^2/\sigma^2} \mathrm{d}x = \sqrt{\frac{\pi}{2}} \sigma, \qquad A = \sqrt[4]{\frac{2}{\pi\sigma^2}}.$$

Work out $\hat{\psi}(k) = \mathcal{F}[\psi(x,0)]$

$$\hat{\psi}(k) = \sqrt[4]{\frac{\sigma^2}{2\pi}} e^{-\sigma^2(k-k_0)^2/4}.$$

Then

$$\psi(x,t) = \frac{1}{\sqrt{2\pi}} \sqrt[4]{\frac{\sigma^2}{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{\sigma^2(k-k_0)^2}{4}} e^{ikx} e^{-i\frac{\hbar k^2}{2m}t} dk$$
$$= \sqrt[4]{\frac{\sigma^2}{2\pi}} \frac{e^{i(k_0x-\varphi_0)}}{\sqrt[4]{\sigma^4 + \frac{4\hbar^2t^2}{m^2}}} \exp\left[-\frac{\left(x - \frac{\hbar k_0}{m}t\right)^2}{\sigma^2 + \frac{2i\hbar t}{m}}\right].$$

where
$$\varphi_0 = \frac{1}{2} \arctan \frac{2\hbar t}{m\sigma^2} + \frac{\hbar k_0^2}{2m} t^{\text{I}}$$
.

$$|\psi(x,t)|^2 = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\sigma^2 + \frac{4\hbar^2 t^2}{m^2 \sigma^2}}} \exp\left[-\frac{2\left(x - \frac{\hbar k_0}{m}t\right)^2}{\sigma^2 + \frac{4\hbar^2 t^2}{m^2 \sigma^2}}\right].$$

2.2 Infinite Potential Well

$$V(x) = \begin{cases} 0 , & 0 \leqslant x \leqslant a \\ \infty, & \text{elsewhere} \end{cases}.$$

In region I and III, $\psi \equiv 0$, in region II, use Eqn.(5)

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = E\psi, \qquad k^2 := \frac{2mE}{\hbar^2}$$

then

$$\psi = Ae^{ikx} + Be^{-ikx} = C\cos kx + D\sin kx.$$

Boundary condition:

$$\begin{cases} \psi_{\rm I}(0) = \psi_{\rm II}(0), \\ \psi_{\rm II}(a) = \psi_{\rm III}(a), \end{cases} \Rightarrow \begin{cases} C = 0, \\ D\sin ka = 0, \end{cases}$$

thus $ka = n\pi$, after normalized,

$$\psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right), \quad E_n = \frac{\hbar^2 k^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}.$$

 $^{^{\}rm I} \rm Everyone$ should calculate it once in their lifetime. - Shuo Jiang.

If we shift the rigion II to the center $-a/2 \le x \le a/2$, then

$$\psi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x + \frac{n\pi}{2}\right) = \begin{cases} (-1)^k \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right), & n = 2k + 1, \\ (-1)^k \sqrt{\frac{2}{a}} \cos\left(\frac{n\pi}{a}x\right), & n = 2k. \end{cases}$$

which is either odd or even.

example 2.2.1: Verifying the Uncertainty Principle

 ψ_n^2 is even, $x\psi_n^2$ and $\psi_n^*\psi_n'$ is always odd.

$$\begin{split} \langle \mathsf{X} \rangle &= \int_{-a/2}^{a/2} x \psi_n^2 \mathrm{d} x = 0. \qquad \langle \mathsf{P} \rangle = -i\hbar \int_{-a/2}^{a/2} \psi_n^* \psi_n' \mathrm{d} x = 0. \\ \langle \mathsf{X}^2 \rangle &= \int_{-a/2}^{a/2} x^2 \psi_n^2 \mathrm{d} x = \frac{2}{a} \int_{-a/2}^{a/2} \frac{x^2}{2} \left[1 - \cos \left(\frac{2n\pi}{a} x + n\pi \right) \right] \mathrm{d} x \\ &= \left(\frac{1}{12} - \frac{1}{2n^2 \pi^2} \right) a^2. \\ \langle \mathsf{P}^2 \rangle &= -\hbar^2 \int_{-a/2}^{a/2} \psi_n^* \psi_n'' \mathrm{d} x = \frac{n^2 \pi^2 \hbar^2}{a^2} \int_{-a/2}^{a/2} \psi_n^2 \mathrm{d} x = \frac{n^2 \pi^2 \hbar^2}{a^2}. \end{split}$$

Thus

$$\sigma_{\mathsf{X}}\sigma_{\mathsf{P}} = \frac{\hbar}{2}\sqrt{\frac{n^2\pi^2}{3} - 2} \geqslant \frac{\hbar}{2}\sqrt{\frac{\pi^2}{3} - 2} \doteq 1.1357 \times \frac{\hbar}{2} > \frac{\hbar}{2}.$$

2.3 Potential Step

$$V_0$$

$$V(x) = \begin{cases} 0, x \leq 0 \\ V_0, x > 0 \end{cases}$$

1.
$$E > V_0$$

$$\begin{split} & \mathrm{I}: \quad \frac{\mathrm{d}^2 \psi_{\mathrm{I}}}{\mathrm{d}x^2} + \frac{2mE}{\hbar^2} \psi_{\mathrm{I}} = 0, & k_1^2 := \frac{2mE}{\hbar^2}, \\ & \mathrm{II}: \quad \frac{\mathrm{d}^2 \psi_{\mathrm{II}}}{\mathrm{d}x^2} + \frac{2m(E-V_0)}{\hbar^2} \psi_{\mathrm{II}} = 0, & k_2^2 := \frac{2m(E-V_0)}{\hbar^2}. \\ & \Rightarrow \quad \psi_{\mathrm{I}} = Ae^{ik_1x} + Be^{-ik_1x}, \quad \psi_{\mathrm{II}} = Ce^{ik_2x} + De^{-ik_2x}. \end{split}$$

Boundary condition at x = 0:

$$\begin{cases} \psi_{\mathrm{I}}(0) = \psi_{\mathrm{II}}(0) \\ \psi'_{\mathrm{I}}(0) = \psi'_{\mathrm{II}}(0) \end{cases} \Rightarrow \begin{cases} A + B = C + D \\ k_1 A - k_1 B = k_2 C - k_2 D \end{cases}$$
$$\Rightarrow \begin{bmatrix} 1 & 1 \\ k_1 & -k_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ k_2 & -k_2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix}.$$

We have the transfromation

$$\begin{bmatrix} A \\ B \end{bmatrix} = \mathsf{M} \begin{bmatrix} C \\ D \end{bmatrix}, \quad \begin{bmatrix} B \\ C \end{bmatrix} = \mathsf{S} \begin{bmatrix} A \\ D \end{bmatrix},$$

where M is the transfer matrix, S is the reflect matrix,

$$\mathsf{M} = \frac{1}{2k_2} \begin{bmatrix} k_1 + k_2 & k_2 - k_1 \\ k_2 - k_1 & k_1 + k_2 \end{bmatrix}, \quad \mathsf{S} = \frac{1}{k_1 + k_2} \begin{bmatrix} k_2 - k_1 & 2k_2 \\ 2k_1 & k_2 - k_1 \end{bmatrix}.$$

Suppose incident wave only from left (D=0):

$$\frac{B}{A} = \mathsf{S}_{11} = \frac{k_1 - k_2}{k_1 + k_2}, \qquad \frac{C}{A} = \mathsf{S}_{21} = \frac{2k_2}{k_1 + k_2}.$$

For a wave $\psi = Ae^{-ikx}$, its pribability current

$$j = \frac{i\hbar}{2m} \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right) = |A|^2 \frac{\hbar k}{m},$$

then the Reflection Probability R and the Transmission Probability T is

$$R = \frac{j_r}{j_i} = \left| \frac{B}{A} \right|^2 \frac{k_1}{k_1} = \left(\frac{k_1 - k_2}{k_1 + k_2} \right)^2,$$

$$T = \frac{j_t}{j_i} = \left| \frac{C}{A} \right|^2 \frac{k_2}{k_1} = \frac{4k_1 k_2}{(k_1 + k_2)^2}.$$

thus R + T = 1.

2. $0 < E < V_0$ Evanescent Wave

$$k_1^2 = \frac{2mE}{\hbar^2},$$
 $\psi_{\rm I} = Ae^{ik_1x} + Be^{-ik_1x},$ $\kappa_2^2 = \frac{2m(V_0 - E)}{\hbar^2},$ $\psi_{\rm II} = Ce^{-\kappa_2 x}.$ $(De^{\kappa_2 x} \text{ diverges})$

Then the boundary condition is

$$\begin{cases} A+B=C \\ ik_1A-ik_1B=\kappa_2C \end{cases} \Rightarrow \qquad \frac{B}{A}=\frac{k_1-i\kappa_2}{k_1+i\kappa_2}, \quad \frac{C}{A}=\frac{2k_1}{k_1+i\kappa_2},$$

you'll notice that R = 1, actually it makes sense because ψ_{II} contains no wave, it dosen't spread energy, thus T = 0.

2.4 Potential Barrier

1. $E > V_0$ Transmission

$$k_1^2 = \frac{2mE}{\hbar^2}, \qquad \psi_{\rm I} = Ae^{ik_1x} + Be^{-ik_1x}, \psi_{\rm II} = Ce^{ik_2x} + De^{-ik_2x}, k_2^2 = \frac{2m(E - V_0)}{\hbar^2}, \qquad \psi_{\rm III} = Fe^{ik_1x} + Ge^{-ik_1x}.$$

Boundary condition:

$$A + B = C + D$$

$$k_1 A - k_1 B = k_2 C - k_2 D$$

$$Ce^{ik_2 a} + De^{-ik_2 a} = Fe^{ik_1 a} + Ge^{-ik_2 a}$$

$$k_2 Ce^{ik_2 a} - k_2 De^{-ik_2 a} = k_1 Fe^{ik_1 a} - k_1 Ge^{-ik_2 a}$$

Let G = 0,

$$\begin{bmatrix} C \\ D \end{bmatrix} = \mathsf{M}_{\mathrm{I}} \begin{bmatrix} A \\ B \end{bmatrix}, \quad \begin{bmatrix} F \\ G \end{bmatrix} = \mathsf{M}_{\mathrm{II}} \begin{bmatrix} C \\ D \end{bmatrix} = \mathsf{M} \begin{bmatrix} A \\ B \end{bmatrix}, \quad \begin{bmatrix} B \\ F \end{bmatrix} = \mathsf{S} \begin{bmatrix} A \\ G \end{bmatrix}.$$

The transmission probability is

$$T = \left[1 + \frac{1}{4} \left(\frac{k_1^2 - k_2^2}{k_1 k_2}\right)^2 \sin^2 k_2 a\right]^{-1} = \left[1 + \frac{\sin^2 k_2 a}{4\varepsilon(\varepsilon - 1)}\right]^{-1}, \varepsilon := \frac{E}{V_0} > 1,$$

when $k_2 a = m\pi$, $T_{\text{max}} = 1$.

2. $0 < E < V_0$ Tunneling

$$T = \left[1 + \frac{1}{4} \left(\frac{k_1^2 + \kappa_2^2}{k_1 \kappa_2}\right)^2 \sinh^2 \kappa_2 a\right]^{-1} = \left[1 + \frac{\sinh^2 \kappa_2 a}{4\varepsilon (1 - \varepsilon)}\right]^{-1} \stackrel{=}{=} 16\varepsilon (1 - \varepsilon) e^{-2\kappa_2 a},$$

where $\kappa_2^2 = \frac{2m(V_0 - E)}{\hbar^2}$, thus there exists the poprability of tunneling the barrier.

2.5 Finite Potential Well

1.
$$-V_0 < E < 0$$

$$k_1^2 = -\frac{2mE}{\hbar^2},$$
 $\psi_{\rm I} = Ae^{k_1x}, \; (Be^{-k_1x} \; {\rm diverges})$ $\psi_{\rm II} = C \cos k_2 x + D \sin k_2 x,$ $k_2^2 = \frac{2m(E+V_0)}{\hbar^2},$ $\psi_{\rm III} = Ge^{-k_1x}. \; (Fe^{k_1x} \; {\rm diverges})$

theorem 2.5.1: Even Potential

If V(x) is even, ψ can have either even or odd solution.

For even ψ , D = 0, G = A. Boundary condition at x = a,

$$\begin{cases} Ae^{-k_1 a} = C \cos k_2 a \\ k_1 Ae^{-k_1 a} = k_2 C \sin k_2 a \end{cases} \Rightarrow \tan k_2 a = \frac{k_1}{k_2} = \sqrt{\frac{2mV_0}{\hbar^2 k_2^2} - 1}.$$

Define $z:=k_2a, z_0^2:=\frac{2mV_0a^2}{\hbar^2}$ (z_0 is the potnetial parameter),

$$\tan z = \sqrt{\frac{z_0^2}{z^2} - 1}.$$

For odd ψ , the equation is

$$-\cot z = \sqrt{\frac{z_0^2}{z^2} - 1}.$$

When $V_0 \to \infty$, $z = \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \ldots$, with is exactly the infinite well condition. The number of the bound state is fixed by z_0 :

$$\frac{n}{2}\pi < z_0 < \frac{n+1}{2}\pi, \quad \to \quad (n+1) \text{ states.}$$

2. E > 0 The condition is the same as 2.4 Barrier $E > V_0$.

2.6 Harmonic Oscillator

 $V(x) = \frac{1}{2}kx^2$, the Time Independent Schrödinger Equation is

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{1}{2}kx^2\psi = E\psi.$$

 $\omega^2:=\frac{k}{m}, \xi:=\sqrt{\frac{m\omega}{\hbar}}x, K:=\frac{2E}{\hbar\omega},$ the equation becomes

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}\xi^2} + (K - \xi^2)\psi = 0,\tag{6}$$

which is Hermite Equation.

Considering the asymptote behavior: when $\xi \to \infty$, Eqn.(6) approach

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}\xi^2} - \xi^2 \psi = 0,$$

thus when $\xi \to \infty$, $\psi \to Ae^{-\xi^2/2}$ ($Be^{\xi^2/2}$ diverges unless $B \equiv 0$). Guess $A = h(\xi)$, expand it

$$h(\xi) = a_0 + a_1 \xi + a_2 \xi^2 + \dots = \sum_{i=0}^{\infty} a_i \xi^i,$$

because V(x) is even, $h(\xi)$ can be either odd or even, i.e.

$$h(\xi) = \sum_{m=0}^{\infty} a_j \xi^j, \quad j \equiv 2m \text{ xor } j \equiv 2m + 1.^{\text{IV}}$$

Substitute into the original Eqn.(6),

$$\frac{\mathrm{d}\psi}{\mathrm{d}\xi} = (h' - \xi h) e^{-\xi^2/2},$$

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}\xi^2} = [h'' - 2\xi h' + (\xi^2 - 1)h]e^{-\xi^2/2},$$

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}\xi^2} + (K - \xi^2)\psi = [h'' - 2\xi h' + (K - 1)h]e^{-\xi^2/2}.$$

Thus $h'' - 2\xi h' + (K-1)h = 0$:

$$\sum_{m=0}^{\infty} j(j-1)a_j \xi^{j-2} - 2\sum_{m=0}^{\infty} ja_j \xi^j + (K-1)\sum_{m=0}^{\infty} a_j \xi^j = 0,$$

$$\Rightarrow a_{j+2} = \frac{2j+1-K}{(j+2)(j+1)}a_j.$$

 $^{^{\}rm IV}$ The xor (exclusive or) means either one, but not both. Its symbol \oplus is too ugly to use.

When $j \to \infty$,

$$\frac{a_{j+2}\xi^{j+2}}{a_j\xi^j} \to \frac{\xi^2}{m}.$$

While
$$e^{\xi^2} = \sum_{m=0}^{\infty} \frac{\xi^{2m}}{m!}$$
, i.e.

$$h(\xi) \to e^{\xi^2}, \quad \psi \to e^{\xi^2/2} \text{ (diverges)}.$$

The only way out of the dilemma is $a_j = 0$ when $j \geqslant n$, i.e. K = 2n + 1,

$$E_n = \frac{\hbar\omega}{2}K = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 0, 1, 2, \dots$$

For the certain n, $\psi_n = h_n(\xi)e^{-\xi^2/2}$, then work out the coefficients through the recursion

$$a_{j-2} = \frac{j(j-1)}{2(j-n-2)}a_j, \quad j=n, n-2, \dots,$$

and the normalization $\langle \psi_n | \psi_n \rangle = 1$.

example 2.6.1: n = 0

$$h(\xi) = a_0, \ \psi_0 = a_0 e^{-\xi^2/2},$$

$$\int_{-\infty}^{+\infty} \psi_0^2 dx = a_0^2 \int_{-\infty}^{+\infty} e^{-m\omega x^2/\hbar} dx = a_0^2 \sqrt{\frac{\pi\hbar}{m\omega}} = 1.$$

Thus
$$\psi_0 = \sqrt[4]{\frac{m\omega}{\pi\hbar}}e^{-\xi^2/2}$$
.

The general wave function is

$$\psi_n = \sqrt[4]{\frac{m\omega}{\pi\hbar}} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}, \quad \xi = \sqrt{\frac{m\omega}{\hbar}} x.$$

where the Hermite Polynomial

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2}.$$

example 2.6.2: Table of Hermite

The first few items are

$$H_0 = 1,$$
 $H_2 = 4x^2 - 2,$ $H_4 = 16x^4 - 48x^2 + 12,$ $H_1 = 2x,$ $H_3 = 8x^3 - 12x,$ $H_5 = 32x^5 - 160x^3 + 120x.$

2.7 Hydrogen Atom

For a system consists of a proton p and a electron e, the distance between is r. The Hamiltonian in $|x\rangle$ base is

$$\label{eq:Hamiltonian} \mathbf{H} = -\frac{\hbar^2}{2m_p}\nabla_p^2 - \frac{\hbar^2}{2m_e}\nabla_e^2 + V(r),$$

Decompose H into the free-particle motion of the total mass, and relative motion of reduced mass.

For the center of mass part, $M = m_p + m_e$, $R_{CM} = \frac{m_p R_p + m_e R_e}{m_p + m_e}$; for the

reduced mass part, $m = \frac{m_p m_e}{m_p + m_e}$, $r = R_p - R_e$.

$$\label{eq:HCM} \mathsf{H}_{CM} = -\frac{\hbar^2}{2M} \nabla_{CM}^2, \qquad \mathsf{H}_m = -\frac{\hbar^2}{2m} \nabla_r^2 + V(r).$$

We know how to solve the free particle and here we shall only concentrate on the relative motion $\psi(r, \theta, \phi)$:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi. \tag{7}$$

Separation of Variables Since the potential V(r) only depends on distance, not on direction. It has the spherical symmetry, in spherical coordinate

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}.$$

Because the three variables r, θ, ϕ are independent, the wave function can be decomposed, i.e.

$$\psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi),$$

where the R(r) is the radial part, and $Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$ is the angular part. Then substitute into the Eqn.(7),

$$-\frac{\hbar^2}{2mr^2} \left[\frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\phi^2} \right] + (V - E)RY = 0,$$

$$\frac{1}{R} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) - \frac{2mr^2}{\hbar^2} (V - E) = -\frac{1}{Y} \Lambda^2 Y,$$

Thus $LHS(r) = RHS(\theta, \phi) = J$ (constant).

The Legendrian Λ^2 have been mentioned in angular momentum, and Y is the eigenfunction of L^2

$$1^{2}Y = -\hbar^{2}\Lambda^{2}Y = J\hbar^{2}Y.$$

2.7.1 Solution of Legendrian

 $Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$, separate variables,

$$-\frac{1}{\Theta\Phi} \left[\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \frac{1}{\sin^2\theta} \frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2} \right] = J,$$
$$\frac{\sin\theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + J\sin^2\theta = -\frac{1}{\Phi} \frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2}.$$

 $\Rightarrow LHS(\theta) = RHS(\phi) = m^2 \text{ (constant)}.$

Solving Φ in the RHS

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} + m^2 \Phi = 0, \quad \Rightarrow \quad \Phi(\phi) = e^{im\phi}.$$

As $\Phi(\phi + 2\pi) = \Phi(\phi)$, $m = 0, \pm 1, \pm 2, \dots; \Phi$ is the eigenfunction of L_z

$$\mathsf{L}_z \Phi = -i\hbar \frac{\partial \Phi}{\partial \phi} = m\hbar \Phi.$$

Solving Θ in the LHS $^{\rm V}$

$$\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + J \sin^2 \theta = m^2.$$

Let $x = \cos \theta, y = \Theta(\theta)$, then

$$(1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + \left(J - \frac{m^2}{1 - x^2}\right) y = 0.$$

Guess $y = (1 - x^2)^{m/2} v$,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(1 - x^2\right)^{m/2} \left(v' - \frac{mx}{1 - x^2}v\right),$$

$$\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \left(1 - x^2\right)^{m/2} \left[v'' - \frac{2mx}{1 - x^2}v' + \frac{m(m-1)x^2 - m}{\left(1 - x^2\right)^2}v\right].$$

Thus $(1-x^2)v'' - 2(m+1)xv' + [J-m(m+1)]v = 0.$

$$\sum_{t} t(t-1)c_t x^{t-2} - \sum_{t} t(t-1)c_t x^t$$

$$-2(m+1)\sum_{t} tc_t x^t + [J - m(m+1)]\sum_{t} c_t x^t = 0,$$

$$\Rightarrow c_{t+2} = \frac{(t+m+1)(t+m) - J}{t(t+1)}c_t.$$

 $^{^{}m V}$ In the LHS, m's sign dosen't really matter, thus we take m positive.

To converge,
$$J = \ell(\ell + 1)$$
, and $\ell = t_0 + m = 0, 1, 2, 3, ..., (s, p, d, f, ...)$
 $\Theta(\theta) = AP_{\ell}^{m}(\cos \theta)$,

where Legendre Function $P_{\ell}^{m}(x)$

$$P_{\ell}^{m}(x) = \frac{(1-x^{2})^{m/2}}{2^{\ell}\ell!} \frac{\mathrm{d}^{\ell+m}}{\mathrm{d}x^{\ell+m}} (x^{2}-1)^{\ell},$$

$$Y_{\ell}^{m} = \pm \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\phi},$$

where - is taken only when $m = 1, 3, 5, \ldots$

example 2.7.1: Table of Legendre

Legendre Polynomial P_l and associated Legendre Function $P_l^m(\cos\theta)$

$$\begin{split} P_0 &= 1 & P_0^0 = 1. \\ P_1 &= x & P_1^0 = \cos \theta & P_1^1 = \sin \theta. \\ P_2 &= \frac{1}{2}(3x^2 - 1) & P_2^0 = \frac{1}{2}(3\cos^2 \theta - 1) & P_2^1 = 3\sin \theta \cos \theta \\ & P_2^2 = 3\sin^2 \theta. \\ P_3 &= \frac{1}{2}(5x^3 - 3x) & P_3^0 = \frac{1}{2}(5\cos^3 \theta - 3\cos \theta) & P_3^1 = \frac{3}{2}\sin \theta (5\cos^2 \theta - 1) \\ & P_3^2 = 15\sin^2 \theta \cos \theta & P_3^3 = 15\sin^3 \theta. \end{split}$$

example 2.7.2: Thale of Y_l^m

$$\begin{split} Y_0^0 &= \frac{1}{2\sqrt{\pi}}, & Y_2^{\pm 2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\phi}, \\ Y_1^0 &= \sqrt{\frac{3}{4\pi}} \cos \theta, & Y_3^0 &= \sqrt{\frac{7}{16\pi}} (5\cos^3 \theta - 3\cos \theta), \\ Y_1^{\pm 1} &= \mp \sqrt{\frac{3}{8\pi}} \sin \theta e^{\pm i\phi}, & Y_3^{\pm 1} &= \mp \sqrt{\frac{21}{64\pi}} \sin \theta (5\cos^2 \theta - 1) e^{\pm i\phi}, \\ Y_2^0 &= \sqrt{\frac{5}{16\pi}} (3\cos^2 \theta - 1), & Y_3^{\pm 2} &= \sqrt{\frac{105}{32\pi}} \sin^2 \theta \cos \theta e^{\pm 2i\phi}, \\ Y_2^{\pm 1} &= \mp \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\phi}, & Y_3^{\pm 3} &= \mp \sqrt{\frac{35}{64\pi}} \sin^3 \theta e^{\pm 3i\phi}. \end{split}$$

2.7.2 Solution of Radial Part

$$\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) - \frac{2mr^2}{\hbar^2}(V - E) = \ell(\ell+1),$$

where
$$V = -\frac{e^2}{4\pi\varepsilon_0 r}$$
.

Noticing

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) = 2r\frac{\mathrm{d}R}{\mathrm{d}r} + r^2\frac{\mathrm{d}^2R}{\mathrm{d}r^2} = r\frac{\mathrm{d}^2rR}{\mathrm{d}r^2}.$$

To simplify, define $u:=rR,\,k=\sqrt{-\frac{2mE}{\hbar^2}},\,\xi:=kr,\,N=\frac{me^2}{2\pi\varepsilon_0\hbar^2k},$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} = \left[1 - \frac{N}{\xi} + \frac{\ell(\ell+1)}{\xi^2}\right] u. \tag{8}$$

Asymptote behavior

$$\xi \to +\infty,$$
 $\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} = u$ $\Rightarrow u \to Ae^{-\xi}, (Be^{\xi} \text{ diverges})$
 $\xi \to 0,$ $\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} = \frac{\ell(\ell+1)}{\xi^2} u$ $\Rightarrow u \to C\xi^{\ell+1}, (D\xi^{-\ell} \text{ diverges})$

therefore, $u = v(\xi)\xi^{\ell+1}e^{-\xi}$.

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = [v'\xi + v(\ell+1) - v\xi]\xi^{\ell}e^{-\xi},$$

$$\frac{\mathrm{d}^{2}u}{\mathrm{d}\xi^{2}} = [v''\xi^{2} + 2v'(\ell+1)\xi - 2v'\xi^{2} + v(\ell+1)\ell - 2v(\ell+1)\xi + v\xi^{2}]\xi^{\ell-1}e^{-\xi}$$

$$\left[1 - \frac{N}{\xi} + \frac{\ell(\ell+1)}{\xi^{2}}\right]u = [\xi^{2} - N\xi + \ell(\ell+1)]v\xi^{\ell-1}e^{-\xi}.$$

Then $\xi v'' + 2(\ell + 1 - \xi)v' + [N - 2(\ell + 1)]v = 0.$

$$\sum t(t-1)c_t\xi^{t-1} + 2(\ell+1)\sum tc_t\xi^{t-1}$$
$$-2\sum tc_t\xi^t + [N-2(\ell+1)]\sum c_t\xi^t = 0.$$
$$\Rightarrow c_{t+1} = \frac{2(t+\ell+1)-N}{(t+1)(t+2\ell+2)}c_t.$$

To converge, N = 2n, and $n = t_0 + \ell + 1$.

$$\begin{split} N &= 2n = \frac{me^2}{2\pi\varepsilon_0\hbar^2}\frac{1}{k}, \quad k = \frac{1}{n}\frac{me^2}{4\pi\varepsilon_0\hbar^2}, \\ E &= -\frac{\hbar^2k^2}{2m} = -\frac{1}{n^2}\frac{m}{2\hbar^2}\left(\frac{e^2}{4\pi\varepsilon_0}\right)^2. \end{split}$$

Define the reduced Bohr radius $^{
m VI}$

$$a = \frac{4\pi\varepsilon_0\hbar^2}{me^2} = 0.53 \times 10^{-10} \,\mathrm{m},$$

and the ground energy at n = 1,

$$E_1 = -\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 = -13.6 \text{ eV}.$$

For the certain $n, \ell, k = \frac{1}{na}, \xi = kr$

$$R = \frac{u}{r} = v(\xi)\xi^{\ell}e^{-\xi}, \ (k \text{ in the } v)$$

then work out the coefficients through the recursion

$$c_{j+1} = \frac{2(j+\ell+1-n)}{(j+1)(j+2\ell+2)}c_j, \quad j=0,1,\ldots,n-\ell-2,$$

and the normalization

example 2.7.3: 1s orbit

$$n = 1, \ell = 0, m = 0, R = c_0 e^{-\xi} = c_0 e^{-r/a}$$

$$\int_0^{+\infty} R^2 r^2 dr = c_0^2 \int_0^{+\infty} r^2 e^{-2r/a} dr = \frac{a^3 c_0^2}{4} = 1.$$

Thus

$$R_{10} = \frac{2}{\sqrt{a^3}} e^{-r/a},$$

While
$$Y_0^0 = \frac{1}{2\sqrt{\pi}}$$
, $\psi_{100} = R_{10}Y_0^0 = \frac{1}{\sqrt{\pi a^3}}e^{r/a}$.

Define
$$\rho = 2\xi = \frac{2r}{na}, p = 2\ell + 1, q = n - \ell - 1$$
, then

$$\rho v'' + (p+1-\rho)v' + qv = 0, \quad \Rightarrow \quad v \propto L_q^p(\rho).$$

$$R_{n\ell} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-\ell-1)!}{2n(n+l)!}} \rho^{\ell} e^{-\rho/2} L_q^p(\rho),$$

where the Laguerre Function $L_q^p(x)$

$$L_a^p(x) = (-1)^p L_{n+a}^{(p)}(x)$$

and the Laguerre Polynomial $L_q(x)$

$$L_q(x) = \frac{e^x}{q!} \frac{\mathrm{d}^q}{\mathrm{d}x^q} \frac{x^q}{e^x}.$$

VIThe original Bohr radius uses m_e in the mass part, the reduced mass m (or μ) $\doteq 0.999 \, m_e$.

example 2.7.4: Table of R_{nl}

$$R_{10} = 2a^{-3/2}e^{-\xi},$$

$$R_{20} = \frac{a^{-3/2}}{\sqrt{2}}(1-\xi)e^{-\xi},$$

$$R_{21} = \frac{a^{-3/2}}{\sqrt{6}}\xi e^{-\xi},$$

$$R_{30} = \frac{2a^{-3/2}}{3\sqrt{3}}(2-6\xi+3\xi^2)e^{-\xi},$$

$$R_{31} = \frac{a^{-3/2}}{3\sqrt{6}}(4\xi-3\xi^2)e^{-\xi},$$

$$R_{32} = \frac{a^{-3/2}}{\sqrt{30}}\xi^2 e^{-\xi},$$

$$R_{40} = \frac{a^{-3/2}}{12}(3-9\xi+6\xi^2-\xi^3)e^{-\xi},$$

$$R_{41} = \frac{a^{-3/2}}{8\sqrt{15}}(5\xi-5\xi^2+\xi^3)e^{-\xi},$$

$$R_{42} = \frac{a^{-3/2}}{12\sqrt{5}}(3\xi^2-\xi^3)e^{-\xi},$$

$$R_{43} = \frac{a^{-3/2}}{12\sqrt{35}}\xi^3 e^{-\xi}.$$

$$\psi_{m\ell n} = R_{n\ell}(r) Y_{\ell}^{m}(\theta, \phi).$$

The meaning of n,l,m

- n is the Principle Quantum Number: $\mathsf{H}\left|\psi\right\rangle=E_{1}n^{-2}\left|\psi\right\rangle$.
- ℓ is the Azzimuthal Quantum Number: $\mathsf{L}^2 |\psi\rangle = \ell(\ell+1)\hbar^2 |\psi\rangle$.
- m is the Magnetic Quantum Number: $\mathsf{L}_z \left| \psi \right> = m \hbar \left| \psi \right>$.

The values are quantized: $n=1,2,3,\ldots;\ell=0,1,\ldots,n-1; m=0,\pm 1,\ldots,\pm \ell.$

More n, ℓ, m is still not enough, the spin S should also be taken into account, i.e.

$$|\psi\rangle = |n, \ell, m\rangle \otimes |s, s_z\rangle$$
.

 \otimes is the tensor product, meaning the value of s,s_z is independent of $n,\ell,m.$

QM Note by Dait

3 Appendix

3.1 Nabla

3.1.1 Definition

Introduction We could use linear function to approximate a function near a certain point, that is

$$f(x) \sim f(x_0) + f'(x_0)(x - x_0)$$

$$= f(x_0) + f'(x_0)\Delta x,$$

$$f(x,y) \sim f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

$$= f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right] \cdot [\Delta x, \Delta y],$$

then f(x, y, z) at $P_0(x_0, y_0, z_0)$

$$\nabla f(P_0) := \left[\frac{\partial f}{\partial x}(P_0), \frac{\partial f}{\partial y}(P_0), \frac{\partial f}{\partial z}(P_0) \right] = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right]_{P_0}$$
$$f(P) \sim f(P_0) + \nabla f(P_0) \cdot \Delta P.$$

Gradient In Cartesian coordinates,

$$\nabla f = \frac{\partial f}{\partial x} \,\hat{\boldsymbol{i}} + \frac{\partial f}{\partial y} \,\hat{\boldsymbol{j}} + \frac{\partial f}{\partial z} \,\hat{\boldsymbol{k}}.$$

We take the notation nabla ∇

$$\nabla = \frac{\partial}{\partial x}\,\hat{\boldsymbol{i}} + \frac{\partial}{\partial y}\,\hat{\boldsymbol{j}} + \frac{\partial}{\partial z}\,\hat{\boldsymbol{k}},$$

which is very useful later.

Divergence The flux Φ of F through a surface S.

$$\Phi = \int_{S} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S}.$$

If closed surface $S = \partial V$,

$$\Phi = \oint_{\partial V} \mathbf{F} \cdot \mathrm{d}\mathbf{S} = \sum_{i=1}^{N} \frac{1}{V_i} \oint_{\partial V_i} \mathbf{F} \cdot \mathrm{d}\mathbf{S} \, V_i.$$

Define divergence

$$\operatorname{div} \boldsymbol{F} := \lim_{V \to 0} \frac{1}{V} \oint_{\partial V} \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{S},$$

then we conduct the Gauss's law

$$\Phi = \oint_{\partial V} \mathbf{F} \cdot d\mathbf{S} = \int_{V} \operatorname{div} \mathbf{F} \, dV.$$

Take V as a cube origin at (x, y, z) with a delta $(\Delta x, \Delta y, \Delta z)$, thus

$$\Delta V = \Delta x \, \Delta y \, \Delta z$$

In the z direction,

$$\int F_z \, dS_z = F_z(x, y, z + \Delta z) \Delta x \Delta y - F_z(x, y, z) \Delta x \Delta y$$
$$= \frac{F_z(x, y, z + \Delta z) - F_z(x, y, z)}{\Delta z} \Delta x \Delta y \Delta z.$$

Therefore,

$$\operatorname{div} \boldsymbol{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}.$$

Noticing that this formally fit

$$\nabla \cdot \boldsymbol{F} = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right] \cdot \left[F_x, F_y, F_z \right] = \frac{\partial}{\partial x} F_x + \frac{\partial}{\partial y} F_y + \frac{\partial}{\partial z} F_z,$$

we can use the notation:

$$\nabla \cdot \mathbf{F} = \operatorname{div} \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}.$$

Curl Path integral

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{\ell} = \sum_{i=1}^{N} \frac{1}{S_i} \oint_{\partial S_i} \mathbf{F} \cdot d\mathbf{\ell} S_i.$$

Define curl, whose projection along the unit vector $\hat{\boldsymbol{n}}$ direction is

$$\operatorname{curl} \boldsymbol{F} \cdot \hat{\boldsymbol{n}} := \lim_{S \to 0} \frac{1}{S} \oint_{\partial S} \boldsymbol{F} \cdot d\boldsymbol{\ell},$$

then we conduct the Stokes's law

$$\oint_{\partial S} \mathbf{F} \cdot d\mathbf{\ell} = \int_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}.$$

As $\hat{\boldsymbol{n}} = \hat{\boldsymbol{k}}$, take S_k as a square origin at (x, y, z) with a delta $(\Delta x, \Delta y, 0)$, thus

$$\Delta S_k = \Delta x \Delta y$$
.

$$F_x(x,y,z)\Delta x + F_y(x+\Delta x,y,z)\Delta y - F_x(x,y+\Delta y,z)\Delta x - F_y(x,y,z)\Delta y$$

$$= \left[\frac{F_x(x,y,z) - F_x(x,y+\Delta y,z)}{\Delta y} + \frac{F_y(x+\Delta x,y,z) - F_y(x,y,z)}{\Delta x} \right] \Delta x \Delta y.$$

Therefore,

$$(\operatorname{curl} \mathbf{F})_z = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}.$$

That is,

$$\operatorname{curl} \boldsymbol{F} = \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right].$$

Noticing that this formally fit

$$\nabla \times \boldsymbol{F} = \begin{vmatrix} \hat{\boldsymbol{i}} & \hat{\boldsymbol{j}} & \hat{\boldsymbol{k}} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ F_x & F_y & F_z \end{vmatrix}.$$

we can use the notation:

$$\nabla \times \boldsymbol{F} = \operatorname{curl} \boldsymbol{F}$$
.

Laplacian In the Possion equation

$$\frac{\mathrm{d}^2\varphi}{\mathrm{d}x^2} + \frac{\mathrm{d}^2\varphi}{\mathrm{d}y^2} + \frac{\mathrm{d}^2\varphi}{\mathrm{d}z^2} = \frac{\rho}{\varepsilon_0}.$$

The Laplacian can be written as the divergence of the nabla:

$$\nabla^2 = \nabla \cdot \nabla = \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{\mathrm{d}^2}{\mathrm{d}y^2} + \frac{\mathrm{d}^2}{\mathrm{d}z^2}.$$

3.1.2 Nabla Notation in Coordinate Transformation

In Cartesian coordinates, bases $\{\hat{i}, \hat{j}, \hat{k}\}$,

$$\boldsymbol{r} = x_1 \,\hat{\boldsymbol{i}} + x_2 \,\hat{\boldsymbol{j}} + x_3 \,\hat{\boldsymbol{k}}.$$

In another orthogonal normalized bases $\{\hat{e}_1, \hat{e}_2, \hat{e}_3\}$,

$$r = \xi_1 \, \hat{e}_1 + \xi_2 \, \hat{e}_2 + \xi_3 \, \hat{e}_3$$

We have the mapping \mathcal{T} :

$$\mathcal{T}: (\xi_1, \xi_2, \xi_3) \to (x_1, x_2, x_3),$$

i.e. $x_i = x_i(\xi_1, \xi_2, \xi_3)$, and

$$dx_i = \frac{\partial x_i}{\partial \xi_1} d\xi_1 + \frac{\partial x_i}{\partial \xi_2} d\xi_2 + \frac{\partial x_i}{\partial \xi_3} d\xi_3,$$

compose as $d\mathbf{r} = dx_1 \,\hat{\mathbf{i}} + dx_2 \,\hat{\mathbf{j}} + dx_3 \,\hat{\mathbf{k}},^{\text{VII}}$

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial \xi_1} d\xi_1 + \frac{\partial \mathbf{r}}{\partial \xi_2} d\xi_2 + \frac{\partial \mathbf{r}}{\partial \xi_3} d\xi_3.$$

VII Warning: $\partial \mathbf{r}/\partial \xi_i \neq \partial r/\partial \xi_i \hat{\mathbf{r}}$, i.e. $\partial \mathbf{r}/\partial \xi_i$ isn't along $\hat{\mathbf{r}}$.

Decompose the small displacement d**r** along $\hat{e}_1, \hat{e}_2, \hat{e}_3$ directions:

$$\mathrm{d} \boldsymbol{r} = \mathrm{d} \boldsymbol{\ell}_1 + \mathrm{d} \boldsymbol{\ell}_2 + \mathrm{d} \boldsymbol{\ell}_3.$$

Noticing that $d\ell_i \neq d\xi_i^{\text{VIII}}$, we use the Lame coefficient: $d\ell_i = H_i d\xi_i \hat{e}_i$.

$$d\mathbf{r} = H_1 d\xi_1 \,\hat{\mathbf{e}}_1 + H_2 d\xi_2 \,\hat{\mathbf{e}}_2 + H_3 d\xi_3 \,\hat{\mathbf{e}}_3.$$

Thus

$$\frac{\partial \boldsymbol{r}}{\partial \xi_i} = \frac{\partial x_1}{\partial \xi_i} \, \hat{\boldsymbol{i}} + \frac{\partial x_2}{\partial \xi_i} \, \hat{\boldsymbol{j}} + \frac{\partial x_3}{\partial \xi_i} \, \hat{\boldsymbol{k}} = H_i \, \hat{\boldsymbol{e}}_i,$$

we can calculate H_i

$$H_i = \left| \frac{\partial \mathbf{r}}{\partial \xi_i} \right| = \sqrt{\left(\frac{\partial x_1}{\partial \xi_i} \right)^2 + \left(\frac{\partial x_2}{\partial \xi_i} \right)^2 + \left(\frac{\partial x_3}{\partial \xi_i} \right)^2}$$

example 3.1.1: Lame Coefficient in Spherical Coordinate

Gradient Follow the definition

$$\nabla f := \sum_{i=1}^{3} \frac{\partial f}{\partial \ell_i} = \sum_{i=1}^{3} \hat{e}_i \frac{\partial f}{H_i \partial \xi_i}.$$

We take the notation:

$$\nabla \equiv \sum_{i=1}^{3} \hat{e}_{i} \frac{\partial}{H_{i} \partial \xi_{i}}.$$

 $[\]overline{\text{VIII}}$ If so, $d\mathbf{r} = d\xi_1 \,\hat{\mathbf{e}}_1 + d\xi_2 \,\hat{\mathbf{e}}_2 + d\xi_3 \,\hat{\mathbf{e}}_3$, the new coordinate is just a rotated Cartesian, the form won't change.

Divergence Follow the definition

$$abla \cdot \boldsymbol{F} := \lim_{V \to 0} \frac{1}{V} \oint_{\partial V} \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{S}.$$

Taking V as a cube origin at (ξ_1, ξ_2, ξ_3) with a delta $(d\ell_1, d\ell_2, d\ell_3)$, thus

$$dV = d\ell_1 \wedge d\ell_2 \wedge d\ell_3 = H_1 H_2 H_3 d\xi_1 d\xi_2 d\xi_3,$$

$$dS_i = d\ell_j \wedge d\ell_k = H_j H_k d\xi_j d\xi_k, \quad (ijk) = (123)$$

In the e_k direction,

$$\int F_i \, dS_i = \frac{\partial F_i H_j H_k}{\partial \ell_i} d\ell_i \, d\xi_j d\xi_k,$$

$$\Rightarrow \oint_{\partial V} \mathbf{F} \cdot d\mathbf{S} = \sum_{ijk} \frac{\partial F_i H_j H_k}{\partial \xi_i} d\xi_i d\xi_j d\xi_k.$$

Then,

$$\nabla \cdot \mathbf{F} = \frac{1}{H_1 H_2 H_3} \sum_{ijk} \frac{\partial}{\partial \xi_i} F_i H_j H_k.$$

Curl Follow the definition

$$(\nabla \times \mathbf{F}) \cdot \hat{\mathbf{n}} := \lim_{S \to 0} \frac{1}{S} \oint_{\partial S} \mathbf{F} \cdot d\mathbf{\ell}.$$

Take $\hat{\boldsymbol{n}} = \hat{\boldsymbol{e}}_i$, S_i as square origin at (ξ_j, ξ_k) with a delta $(\mathrm{d}\ell_j, \mathrm{d}\ell_k)$, thus

$$dS_{i} = d\ell_{j} \wedge d\ell_{k} = H_{j}H_{k} d\xi_{j}d\xi_{k}.$$

$$\oint_{\partial S_{i}} \mathbf{F} \cdot d\mathbf{\ell} = \frac{\partial F_{k}H_{k}}{\partial \ell_{j}} d\ell_{j} d\xi_{k} - \frac{\partial F_{j}H_{j}}{\partial \ell_{k}} d\ell_{k} d\xi_{j}.$$

By using antisymmetric tensor ε_{ijk}

$$\varepsilon_{ijk} = \begin{cases} 1, & (ijk) = (123); \\ -1, & (ijk) = (321); \\ 0, & \text{otherwise.} \end{cases}$$

We can simplify the formula

$$\nabla \times \boldsymbol{F} = \sum_{ijk} \varepsilon_{ijk} \, \hat{\boldsymbol{e}}_i \frac{\partial}{H_j H_k \partial \xi_j} F_k H_k$$

$$= \frac{1}{H_1 H_2 H_3} \begin{vmatrix} H_1 \boldsymbol{e}_1 & H_2 \boldsymbol{e}_2 & H_3 \boldsymbol{e}_3 \\ \partial/\partial \xi_1 & \partial/\partial \xi_2 & \partial/\partial \xi_3 \\ H_1 F_1 & H_2 F_2 & H_3 F_3 \end{vmatrix}$$

Laplacian Follow the definition

$$\begin{split} \nabla^2 := & \nabla \cdot \nabla = \nabla \cdot \sum_{i=1}^3 e_i \frac{\partial}{H_i \partial \xi_i} \\ = & \frac{1}{H_1 H_2 H_3} \sum_{ijk} \frac{\partial}{\partial \xi_i} H_j H_k \frac{\partial}{H_i \partial \xi_i} \end{split}$$

example 3.1.2: Nabla in Spherical Coordinate

$$H_r = 1$$
, $H_\theta = r$, $H_\phi = r \sin \theta$,

Gradient

$$\nabla = \left[\frac{\partial}{\partial r}, \frac{1}{r}\frac{\partial}{\partial \theta}, \frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\right];$$

Divergence

$$\nabla \cdot \boldsymbol{F} = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} \left(r^2 \sin \theta \, F_r \right) + \frac{\partial}{\partial \theta} \left(r \sin \theta \, F_\theta \right) + \frac{\partial}{\partial \phi} \left(r F_\phi \right) \right]$$
$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 F_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \, F_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} F_\phi;$$

Warning:

$$\nabla \cdot \mathbf{F} = \frac{\partial F_r}{\partial r} + \frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}.$$

actually,

$$\nabla \cdot \boldsymbol{F} = \frac{2}{r} F_r + \frac{\partial F_r}{\partial r} + \frac{\cos \theta}{r \sin \theta} F_{\theta} + \frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}$$

Curl

$$\nabla \times \boldsymbol{F} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & r \hat{\boldsymbol{\theta}} & r \sin \theta \, \hat{\boldsymbol{\phi}} \\ \partial / \partial r & \partial / \partial \theta & \partial / \partial \phi \\ F_r & r F_{\theta} & r \sin \theta \, F_{\phi} \end{vmatrix}$$
$$= \left[\frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (F_{\phi} \sin \theta) - \frac{\partial}{\partial \phi} F_{\theta} \right), \right.$$
$$\left. \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \phi} F_r - \frac{\partial}{\partial r} (r F_{\phi}) \right), \frac{1}{r} \left(\frac{\partial}{\partial r} (r F_{\theta}) - \frac{\partial}{\partial \theta} F_r \right) \right];$$

Laplacian

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$
$$= \frac{2}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

3.2 Functions and Integrals

There are some important and useful functions to have a look.^{IX}

3.2.0 Fourier Transformation

We shall define the **inner product** in $[-\pi,\pi]$ of real functions f(x) and g(x):

$$\langle f|g\rangle := \int_{-\pi}^{\pi} f(x)g(x) \,\mathrm{d}x.$$

Omit math $proofs^X$, we take it for granted the definition is **complete** in physics. On the other hand:

$$\int_{-\pi}^{\pi} \sin nx \, dx = \int_{-\pi}^{\pi} \cos nx \, dx = 0.$$

$$\int_{-\pi}^{\pi} \sin nx \sin mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos(n-m)x - \cos(n+m)x \, dx = \pi \delta_{nm};$$

$$\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin(n+m)x + \sin(n-m)x \, dx = 0;$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos(n-m)x + \cos(n+m)x \, dx = \pi \delta_{nm}.$$

Therefore, The set

$$\{1, \sin nx, \cos nx \mid n \in \mathbb{N}_+\} = \{1, \sin x, \cos x, \sin 2x, \ldots\}$$

consists a set of bases in $[-\pi, \pi]$. Normalize it:

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots\right\}$$

Then, for f(x) with period 2π can be expand

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right),$$

which is the ${\bf Fourier\ Expansion},$ where

$$a_n = \frac{1}{\pi} \langle f | \cos nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx,$$
$$b_n = \frac{1}{\pi} \langle f | \sin nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx.$$

^{IX}Sorry, I haven't yet learned Mathematical Physics Equations and Special Functions.

XIn math, something may not be strictly valid, but they're indeed useful in physics.

Use $e^{ix} = \cos x + i \sin x$, we can write

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{inx}, \quad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

For any period $T = \lambda$, $k_0 = 2\pi/\lambda$ function f(x)

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{ink_0 x}, \quad c_n = \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(x) e^{-ink_0 x} dx.$$

When f(x) is non-period, Fourier Expansion can't be taken into use.

However, we could take very LARGE $\lambda = 2N, \Delta k = \frac{2\pi}{\lambda}, k := n\Delta k$,

$$f(x) = \sum_{k} \left[\frac{\Delta k}{2\pi} \int_{-N}^{N} f(x)e^{-ikx} dx \right] e^{ikx}.$$

When $N \to \infty, \Delta k \to 0$, define

$$\hat{f}(k) := \int_{-\infty}^{\infty} f(x)e^{-ikx} \, \mathrm{d}x,$$

then,

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} \, \mathrm{d}k,$$

which is the Fourier Transformation. In Shou's Note, for symmetrization,

$$\hat{f}(k) = \mathcal{F}[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} \, \mathrm{d}x,$$
$$f(x) = \mathcal{F}^{-1}[\hat{f}(k)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k)e^{ikx} \, \mathrm{d}k.$$

3.2.1 Gaussian Function

The Gaussian is

$$f(x) = e^{-x^2/\sigma^2}.$$

The integral is

$$\int_{-\infty}^{+\infty} e^{-x^2/\sigma^2} \mathrm{d}x = \sqrt{\pi}\sigma.$$

The Fourier Transformation is

$$\mathcal{F}\left(e^{-x^2/\sigma^2}\right) = \frac{\sigma}{\sqrt{2}}e^{-\sigma^2k^2/4}.$$

3.2.2 Hermite Polynomial

The conventional solution of

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}\xi^2} + (K - \xi^2)\psi = 0,$$

is K = 2n + 1, and

$$\psi_n = AH_n(\xi)e^{-\xi^2/2}, \quad n = 0, 1, 2, \dots,$$

where the Hermite Polynomial

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2},$$

which is the solution of

$$y'' - 2xy' + 2ny = 0.$$

The integral is

$$\int_{-\infty}^{+\infty} H_n H_{n'} e^{-x^2} dx = 2^n n! \sqrt{\pi} \delta_{nn'},$$

3.2.3 Legendre Function

The solution of

$$(1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + \left[J - \frac{m^2}{1 - x^2} \right] y = 0,$$

is $J = \ell(\ell+1)$ and $\ell = 0, 1, 2, ...; m = 0, \pm 1, ..., \pm \ell$, XI

$$y = AP_{\ell}^{m}(x),$$

where the Legendre Function $P_n^m(x)$

$$P_n^m(x) = P_n^{-m}(x) = (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_n(x),$$

and the Legendre Polynomial $P_n(x)$

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n.$$

Which is the solution of

$$(1 - x2)y'' - 2xy' + n(n+1)y = 0.$$

The integral

$$\int_{-1}^{1} P_n P_{n'} dx = \frac{2}{2n+1} \delta_{nn'},$$

$$\int_{-1}^{1} P_n^m P_{n'}^{m'} dx = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{nn'} \delta_{mm'}.$$

^{XI}In the calculation, we neglect m's sign, i.e. in the formula, m = |m|.

3.2.4 Laguerre Function

The solution of

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\xi^2} = \left[1 - \frac{N}{\xi} + \frac{\ell(\ell+1)}{\xi^2}\right] u,$$

is N = 2n and $n = 1, 2, ...; \ell = 1, 2, ..., n - 1,$

$$R = A\rho^{\ell} e^{-\rho/2} L_q^p(\rho),$$

where the Laguerre Function $L_q^p(x)$

$$L_q^p(x) = (-1)^p \frac{\mathrm{d}^p}{\mathrm{d}x^p} L_{p+q}(x),$$

and the Lagrange Polynomial $L_q(x)$

$$L_q(x) = \frac{e^x}{q!} \frac{\mathrm{d}^q}{\mathrm{d}x^q} \frac{x^q}{e^x}.$$

Which is the solution of

$$xy'' + (1 - x)y' + qy = 0.$$

The integral

$$\begin{split} \int_0^{+\infty} L_q L_{q'} e^{-x} \mathrm{d}x &= \delta_{qq'}, \\ \int_0^{+\infty} L_q^p L_{q'}^{p'} x^p e^{-x} \mathrm{d}x &= \frac{(p+q)!}{q!} \delta_{pp'} \delta_{qq'}, \\ \int_0^{+\infty} L_q^p L_{q'}^{p'} x^{p+1} e^{-x} \mathrm{d}x &= (2q+p+1) \frac{(p+q)!}{q!} \delta_{pp'} \delta_{qq'}. \end{split}$$

3.2.5 Bessel Function

$$x^{2}y'' + xy' + (x^{2} - p^{2})y = 0.$$

$$J_{p}(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1)\Gamma(n+1+p)} \left(\frac{x}{2}\right)^{2n+p}.$$

Postscript

About the Note This is a biref note taken by me after finishing the General Physics II taught by Shuo Jiang. Shuo is a nice teacher and I strongly recommend you to have a listen. Much of the note is taken from what Shuo wrote on the blackboard and I simply copied them. Hope that this note is helpful for you.

If you find any mistakes in this note, please let me know. My WeChat is Dait_Pef.

Dait_Pef.

Index

Lagrange Polynomial, 44

angular momentum operator L, 4 Laguerre Function, 33, 44 anti-commutator, 4 Laguerre Polynomial, 33 Laplacian, 37, 40 base, 2, 14 Legendre Function, 31, 43 Legendre Polynomial, 43 commutator, 4 Legendrian Λ^2 , 8, 29 coordinate transformation, 37 curl, 36, 39 momentum operator P, 2 de Broglie relation, 3 nabla ∇ , 4, 35 devergence, 39 divergence, 35 Pauli spin matrixes, 19 position operator X, 2 Ehrenfest Theorem, 15 potential V, 9eigenfunction, 3 pribability current, 24 eigenvalue, 1 probability amplitude, 11 eigenvector, 2 probability current, 13 Evanescent wave, 24 probability density, 11 expectation, 11 quantum state, 1 Fourier Expansion, 41 Fourier Transformation, 41 Schrödinger Equation, 13 Fourier Transfromation, 3 Schwarz Lemma, 12 spherical coordinate, 7, 40 Gaussian Function, 42 spin angular momentum S, 17 Gaussian wavepacket, 21 spin-1/2 system, 18 gradient, 35, 38 Taylor Expansion, 9 Hamiltonian H, 9 Time Dependent Schrödinger Hermite, 1 Equation, 13 Hermite Equation, 27 Time Independent Schrödinger Hermite Polynomial, 28, 43 Equation, 14 transmission, 25 inner product, 1, 41 tunneling, 25 inverse exchange law, 10 kinetic energy K, 9 uncertainty, 12 Uncertainty Principle, 13, 16 ladder operator L_+ , 5

wave function, 1