Dataset Tables Summary

April 16, 2018

Col.	Col. Name	Format	Units	Range	Description
1	NODE_ID	int	-	1 - 960	Node ID
2	$STATE_NAME$	str	-	-	State in which node is located
3	NEM_REGION	str	-	-	NEM region in which node is located
4	NEM_ZONE	str	-	-	NEM zone in which nodes is located
5	$VOLTAGE_KV$	int	kV	110 - 500	Node voltage
6	RRN	int	-	0 - 1	If 1 node is a RRN, if 0 node is not a RRN
7	PROP_REG_D	float	-	0 - 0.124	Proportion of NEM regional demand consumed at node
8	LATITUDE	float	N°	-42.716.9	Latitude (GDA94)
9	LONGITUDE	float	E°	135.6 - 153.4	Longitude (GDA94)

Table 1: Network nodes dataset summary (network_nodes.csv)

Col.	Col. Name	Format	Units	Range	Description
1	LINE_ID	str	-	-	Network edge ID
2	NAME	str	-	-	Name of network edge
3	FROM_NODE	int	-	1 - 960	Node ID for origin node
4	TO_NODE	int	-	1 - 960	Node ID for destination node
5	R_PU	float	p.u.	$6.1 \times 10^{-9} - 4 \times 10^{-4}$	Per-unit resistance
6	X_{PU}	float	p.u.	$1.5 \times 10^{-5} - 0.83$	Per-unit reactance
7	B_PU	float	p.u.	$3.4 \times 10^{-8} - 4.0 \times 10^{-3}$	Per-unit line charging susceptance
8	NUM_LINES	int	-	1 - 4	Number of parallel lines

Table 2: Network edges dataset summary (network_edges.csv)

Col.	Col. Name	Format	Units	Range	Description
1	HVDC_LINK_ID	str	-	_	HVDC link ID
2	$FROM_NODE$	int	-	1 - 960	Node ID of origin node
3	TO_NODE	int	-	1 - 960	Node ID of destination node
4	FORWARD_LIMIT_MW	float	MW	107 - 650	'From' node to 'To' node power-flow limit
5	$REVERSE_LIMIT_MW$	float	MW	210 - 650	'To' node to 'From' node power-flow limit
6	VOLTAGE_KV	float	kV	132 - 400	HVDC link voltage

Table 3: Network HVDC links dataset summary (network_hvdc_links.csv)

Col.	Col. Name	Format	Units	Range	Description
1	INTERCONNECTOR_ID	str	-	-	Interconnector ID
2	$FROM_NODE$	int	-	1 - 960	Node ID of origin node
3	$\overline{\text{TO}}_{\text{NODE}}$	int	-	1 - 960	Node ID of destination node
4	FORWARD_LIMIT_MW	float	MW	300 - 650	'From' node to 'To' node power-flow limit
5	REVERSE_LIMIT_MW	float	MW	650 - 1078	'To' node to 'From' node power-flow limit

 ${\bf Table\ 4:\ Network\ interconnectors\ dataset\ summary\ (network_interconnectors.csv)}$

Col.	Col. Name	Format	Units	Range	Description
1	DUID	string	-	-	Unique ID for each unit
2	STATIONID	string	-	-	ID of station to which DUID belongs
3	STATIONNAME	string	-	-	Name of station to which DUID belongs
4	NEM_REGION	string	-	-	Region in which DUID is located
5	NEM_ZONE	string	-	-	Zone in which DUID is located
6	NODE	int	-	9 - 940	Node to which DUID is assigned
7	$FUEL_TYPE$	string	-	-	Primary fuel type
8	$FUEL_CAT$	string	-	-	Primary fuel category
9	EMISSIONS	float	$\mathrm{tCO_2/MWh}$	0 - 1.56	Equivalent CO2 emissions intensity
10	SCHEDULE_TYPE	string	-	-	Schedule type for unit
11	REG_CAP	int	MW	1 - 1500	Registered capacity
12	MIN_GEN	float	MW	0 - 347.2	Minimum dispatchable output
13	RR_STARTUP	float	$\mathrm{MW/h}$	60 - 12000	Ramp-rate for start-up
14	RR_SHUTDOWN	float	$\mathrm{MW/h}$	40 - 9999	Ramp-rate for shut-down
15	RR_UP	float	$\mathrm{MW/h}$	61.3 - 10080	Ramp-rate up when running
16	RR_DOWN	float	$\mathrm{MW/h}$	88.7 - 10080	Ramp-rate down when running
17	MIN_ON_TIME	int	h	0 - 16	Minimum on time
18	MIN_OFF_TIME	int	h	0 - 16	Minimum off time
19	SU_COST_COLD	int	\$	0 - 260400	Cold start start-up cost
20	SU_COST_WARM	int	\$	0 - 29760	Warm start start-up cost
21	SU_COST_HOT	int	\$	0 - 89280	Hot start start-up cost
22	VOM	float	MWh	0 - 12.5	Variable operations and maintenance costs
23	HEAT_RATE	float	$\mathrm{GJ/MWh}$	0 - 15.7	Heat rate
24	NL_FUEL_CONS	float	-	0 - 0.3	No-load fuel consumption as a proportion of full load consumption
25	$FC_2016-17$	float	J	0 - 8.6	Fuel cost for the year YYYY-YY e.g. 2016-17
26	$SRMC_2016-17$	float	MWh	0 - 129.7	Short-run marginal cost for year YYYY-YY

Table 5: Generator dataset summary (generators.csv)

Col.	Col. Name	Format	Units	Range	Description
1	SETTLEMENTDATE	timestamp	-	1/6/2017 12:30:00 AM -	Trading interval
				1/7/2017 12:00:00 AM	
2	NSW1	float	MW	6298.7 - 11652.8	New South Wales demand signal
3	QLD1	float	MW	4864.0 - 7728.7	Queensland demand signal
4	SA1	float	MW	1002.9 - 2287.1	South Australia demand signal
5	TAS1	float	MW	921.1 - 1708.7	Tasmania demand signal
6	VIC1	float	MW	3795.8 - 7357.3	Victoria demand signal

 $Table\ 6:\ Regional\ demand\ signals\ (signals_regional_demand.csv)$

Col.	Col. Name	Format	Units	Range	Description
1	SETTLEMENTDATE	timestamp	-	1/6/2017 12:30:00 AM -	Trading interval
				1/7/2017 12:00:00 AM	
2-265	(DUID)	float	MW	-	DUID dispatch profile

Table 7: DUID dispatch profiles (signals_dispatch.csv)