НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

РОЗРАХУНКОВА РОБОТА

по курсу "Комп'ютерна логіка-2"

Виконав: Бас Андрій Васильович

Група Ю-22, Факультет ЮТ,

Залікова книжка № 2201

Номер технічного завдання 100010011001

(підпис керівника)

Завдання:

- 1. Числа X_2 і Y_2 в прямому коді записати у формі з плаваючою комою (з порядком і мантисою, а також з характеристикою та мантисою), як вони зберігаються у пам'яті. На порядок відвести 8 розрядів, на мантису 16 розрядів (з урахуванням знакових розрядів).
- 2. Виконати 8 операцій з числами X_2 і Y_2 з плаваючою комою (чотири способи множення, два способи ділення, додавання додавання та віднімання). Номери операцій (для п.3) відповідають порядку переліку (наприклад, 6 ділення другим способом). Для обробки мантис кожної операції, подати:
 - 2.1 теоретичне обгрунтування способу;
 - 2.1 операційну схему;
 - 2.2 змістовний мікроалгоритм;
- 2.3 таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 15 основних розрядів мантиси результату;
 - 2.4 функціональну схему з відображенням управляючих сигналів;
- 2.5 закодований мікроалгоритм (мікрооперації замінюються управл. сигналами);
 - 2.6 граф управляючого автомата Мура з кодами вершин;
 - 2.7 обробку порядків (показати у довільній формі);
 - 2.8 форму запису нормалізованого результату з плаваючою комою в пам'ять.

Операцію додавання до етапу нормалізації результату можна проілюструвати у довільній формі. Вказані пункти виконати для етапу нормалізації результату з урахуванням можливого нулевого результату.

3. Для операції з двійковим номером $x_3x_2x_1+1$ побудувати управляючий автомат Мура на тригерах ($x_2x_1=00$ відповідає RS-тригеру; 01-D-тригеру; 10-D-тригеру; 11-T-тригеру) і елементах булевого базису..

Визначення та обгрунтування варіанту:

Перевести номер залікової книжки в двійкову систему. Записати два двійкових числа:

$$\boldsymbol{X}_{2} = -1\boldsymbol{x}_{10}\boldsymbol{x}_{9}1\boldsymbol{x}_{8}\boldsymbol{x}_{7}\boldsymbol{x}_{6}\boldsymbol{1}, \boldsymbol{x}_{5}\boldsymbol{x}_{4}\boldsymbol{0}\boldsymbol{x}_{3}\boldsymbol{1}\boldsymbol{x}_{2}\boldsymbol{x}_{1} \text{ i } \boldsymbol{Y}_{2} = +1\boldsymbol{x}_{10}\boldsymbol{1}\boldsymbol{x}_{9}\boldsymbol{x}_{8}, \boldsymbol{x}_{7}\boldsymbol{x}_{6}\boldsymbol{1}\boldsymbol{x}_{5}\boldsymbol{x}_{4}\boldsymbol{0}\boldsymbol{x}_{3}\boldsymbol{x}_{2}\boldsymbol{x}_{1}\boldsymbol{1},$$

де x_i - двійкові цифри номера залікової книжки у двійковій системі числення (x_i молодший розряд).

$$2201_{10} = 100010011001_2;$$

$$X_2 = -1x_{10}x_91x_8x_7x_61, x_5x_40x_31x_2x_1 = -10011001, 1100101;$$

$$Y_2 = +1x_{10}1x_9x_8, x_7x_61x_5x_40x_3x_2x_11 = +10101,0011100011;$$

Основна частина:

Завдання №1

$$X_{\pi\kappa} = 1.10011001,1100101;$$

$$Y_{\text{TIK}} = 0.10101,0011100011;$$

Представлення чисел у формі з плаваючою точкою з порядком і мантисою:

 X_2 :

 Y_2 : 0 0 0 0 0 1 0 1

Представлення чисел у формі з плаваючою точкою з характеристикою і мантисою:

$$E = P + 2^m,$$

$$m = 7$$
;

$$2^7 = 10000000_2$$

$$E_x = 100000000 + 1000 = 10001000$$

 X_2 :

$$E_y = 10000000 \, + 101 = 10000101$$

Y₂:

Завдання №2

2.1 Перший спосіб множення.

2.1.1 Теоретичне обтрунтування першого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис першим способом здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим. Тоді добуток двох чисел представляється у вигляді:

$$Z=YX=Yx_n2^{-n}+Yx_{n-1}2^{-n+1}...+Yx_12^{-1}=$$

$$= ((...(0+Yx_n) 2^{-1} + Yx_{n-1}) 2^{-1} + ... + Yx_i) 2^{-1} + ... + Yx_1) 2^{-1};$$

$$Z = \sum_{i=1}^{n} (Z_{i-1} + Yx_{n-i+1}) 2^{-1};$$

2.1.2 Операційна схема:

Рисунок 2.1.1- Операційна схема.

2.1.3 Змістовний мікроалгоритм:

Рисунок 2.1.2 - Змістовний мікроалгоритм виконання операції множення першим способом.

2.1.4 Таблиця станів регістрів:

Таблиця 2.1.1-Таблиця станів регістрів для першого способу множення.

N₀	RG1	RG2	RG3	CT
пс	0	100110011100101	0101010011100011	1111
1	+0101010011100011			
	=0101010011100011			
	0010101001110001	110011001110010		1110
2	0001010100111000	111001100111001		1101
3	+0101010011100011			
	=0110101000011011			
	0011010100001101	111100110011100		1100
4	0001101010000110	111110011001110		1011
5	0000110101000011	011111001100111		1010
6	+0101010011100011	001111100110011		1001
	=0110001000100110			
	0011000100010011			
7	+0101010011100011			
	=1000010111110110			
	0100001011111011	000111110011001		1000
8	+0101010011100011			
	=1001011111011110			
	0100101111101111	000011111001100		0111
9	0010010111110111	100001111100110		0110
10	0001001011111011	110000111110011		0101
11	+0101010011100011			
	=0110011111011110			
	0011001111101111	011000011111001		0100
12	+0101010011100011			
	=1000100011010010			
	0100010001101001	001100001111100		0011
13	0010001000110100	100110000111110		0010
14	0001000100011010	010011000011111		0001
15	+0101010011100011			
	=0110010111111101			
	0011001011111110	101001100001111		0000

2.1.5 Функціональна схема:

Рисунок 2.1.3- Функціональна схема.

2.1.6 Закодований мікроалгоритм

Таблиця 2.1.2-Таблиця кодування операцій і логічних умов.

Кодування мік	рооперацій	Кодування л	югічних умов
MO	УС	ЛУ	Позначення
G1:=0	R	RG2[0]	X1
RG2≔X	W2	CT=0	X2
RG3:=Y	W3		
CT:=15	\mathbf{W}_{CT}		
RG1:=RG1+RG3	W1		
RG1:=0.r(RG1)	ShR1		
RG2:=RG1[0].r(RG2)	ShR2		
CT≔CT-1	dec		

Рисунок 2.1.4-Закодований мікроалгоритм.

2.1.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.1.5-Граф автомата Мура

2.1.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x$$
=8; P_v =5; P_z =13₁₀=1101₂

2.1.9 Нормалізація результату:

Отримали результат: 011001011111110101001100001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо зсув результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

 ${\tt 11001011111110101001100001111}; P_z \! = \! \! 12;$

0	0	0	0	1	1	0	0	1	1	1	0	0	1	0	1	1	1	1	1	1	1	0	1
U			U	-	-	U	0	-	_	_	U	U	-	U	-	-	_	-	_	_		U	-

2.2 Другий спосіб множення.

2.2.1 Теоретичне обгрунтування другого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис другим способом здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою.

$$Z=YX_n2^{-n} + YX_{n-1}2^{-n+1}...+YX_12^{-1};$$

$$Z=((0+YX_n2^{-n})+YX_{n-1}2^{-n+1})...+YX_12^{-1};$$

$$Z=\sum_{i=1}^n Z_{i-1}+YX_{n-i+1}2^{-n+i-1};$$

$$Z_0=0;$$

$$Y_0=0$$

2.2.2 Операційна схема:

Рисунок 2.2.1- Операційна схема

2.2.3 Змістовний мікроалгоритм:

Рисунок 2.2.2 - Змістовний мікроалгоритм.

2.2.4 Таблиця станів регістрів:

Таблиця 2.2.1-Таблиця станів регістрів.

N₀	RG1	RG3 ←	RG2 →
пс	0	000000000000000101010011100011	100110011100101
1	+00000000000000101010011100011	000000000000001010100111000110	010011001110010
	=00000000000000101010011100011		
2	00000000000000101010011100011	000000000000010101001110001100	001001100111001
3	+00000000000010101001110001100	00000000000101010011100011000	000100110011100
	=000000000000011010100001101111		
4	00000000000011010100001101111	00000000001010100111000110000	000010011001110
5	00000000000011010100001101111	00000000010101001110001100000	000001001100111

6	+00000000010101001110001100000	00000000101010011100011000000	000000100110011
	=000000000011000100010011001111		
7	+00000000101010011100011000000	00000001010100111000110000000	00000010011001
	=000000001000010111110110001111		
8	+0000000101010111000110000000	00000010101001110001100000000	00000001001100
	=000000010010111110111100001111		
9	000000010010111110111100001111	000000101010011100011000000000	000000000100110
10	000000010010111110111100001111	000001010100111000110000000000	000000000010011
11	+0000010101001110001100000000000	000010101001110001100000000000	000000000001001
	=000001100111110111101100001111		
12	+00001010100111000110000000000000000000	0001010100111000110000000000000	000000000000100
	=000100010001101001001100001111		
13	000100010001101001001100001111	00101010011100011000000000000000	000000000000010
14	000100010001101001001100001111	01010100111000110000000000000000	000000000000001
15	+01010100111000110000000000000000000000	101010011100011000000000000000000000000	000000000000000
	=0110010111111110101001100001111		

2.2.5 Функціональна схема:

Рисунок 2.2.3- Функціональна схема.

2.2.6 Закодований мікроалгоритм

Таблиця 2.2.2-Таблиця кодування операцій і логічних умов.

Кодування мі	крооперацій	Кодування логічних умов		
MO	УС	ЛУ	Позначення	
RG1:=0	R	RG2[0]	X1	
RG2:=X	W2	RG2=0	X2	
RG3≔Y	W3			
RG1:=RG1+RG3	W1			
RG2:=0.r(PG2)	ShR			
RG3:=l(RG3).0	ShL			

Рисунок 2.2.4-Закодований мікроалгоритм.

2.2.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.2.5 - Граф автомата Мура

2.2.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x$$
=8; P_y =5; P_z =13₁₀=1101₂

2.2.9 Нормалізація результату:

Отримали результат: 0110010111111110101001100001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця,

Порядок зменшуємо на 1:

 $110010111111111010100111000011111; P_z=12;$

Запишемо нормалізований результат:

2.3 Третій спосіб множення.

2.3.1 Теоретичне обгрунтування третього способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення мантис третім способом здійснюється зі старших розрядів множника, сума часткових добутків і множник зсуваються вліво, а множене нерухоме.

$$\begin{split} Z &= Y X_n 2^{-n} + Y X_{n-1} 2^{-n+1} \ldots + Y X_1 2^{-1}; \\ Z &= Y X_n 2^{-n} + 2 (Y X_{n-1} 2^{-n} + 2 (Y X_{n-2} 2^{-n} \ldots + 2 Y X_1 2^{-n})); \\ Z &= \sum_{i=1}^n 2 Z_{i-1} + Y X_i 2^{-n}; \\ Z_0 &= 0; \\ Y_0 &= 0 \end{split}$$

2.3.2 Операційна схема:

Рисунок 2.3.1 - Операційна схема

2.3.3 Змістовний мікроалгоритм:

Рисунок 2.3.2 - Змістовний мікроалгоритм.

2.3.4 Таблиця станів регістрів:

Таблиця 2.3.1 - Таблиця станів регістрів

Иō	RG1 ←	RG2 ←	RG3	CT
пс	000000000000000000000000000000000000000	100110011100101	101010011100011	1111
1	+000000000000000101010011100011			
	=000000000000000101010011100011			1110
	00000000000001010100111000110	001100111001010		
2	00000000000010101001110001100	011001110010100		1101
3	00000000000101010011100011000	110011100101000		1100
4	+000000000000000101010011100011			
	=0000000000001011111011111111111			1011
	000000000010111110111111110110	100111001010000		
5	+000000000000000101010011100011			
	=00000000001100100110011011001			1010
	00000000011001001100110110010	001110010100000		
6	00000000110010011001101100100	011100101000000		1001
7	00000001100100110011011001000	111001010000000		1000
8	+000000000000000101010011100011			
	=000000001100101011101110101011			0111
	000000011001010111011101010110	110010100000000		
9	+000000000000000101010011100011			
	=000000011001011100110000111001			0110
10	000000110010111001100001110010	100101000000000		
10	+00000000000000010101011100011			0.1.01
	=000000110010111110110101010101	001010000000000		0101
11	000001100101111101101010101010	0010100000000000		0100
11	0000110010111110110101010101010	0101000000000000		0100
	00011001011111011010101010101000	1010000000000000		0011
13	+000000000000000101010111111110001011			0010
	=0001100101111110111111110001011 00110010111111	0100000000000000		0010
14	011001011111101111111100010110	100000000000000000000000000000000000000		0.001
15	+00000000000000010110111111000101100	1000000000000000		0001
13	=011001011111111010100111000111	0000000000000000		0

2.3.5 Функціональна схема:

Рисунок 2.3.3 - Функціональна схема.

2.3.6 Закодований мікроалгоритм:

Таблиця 2.3.2-Таблиця кодування операцій і логі	чних	vmoe.

Кодування мі	крооперацій	Кодування логічних умов		
MO	УС	ЛУ	Позначення	
RG1:=0	R	RG2[n-1]	X1	
RG2:=X	W2	CT=0	X2	
RG3:=Y	W3			
CT:=15	$ m W_{CT}$			
RG1:=RG1+RG3	W1			
RG1:=l(RG1).0	ShL1			
RG2:=l(RG2).0	ShL2			
CT:=CT-1	dec			

Рисунок 2.3.4-Закодований мікроалгоритм.

2.3.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.3.5 - Граф автомата Мура

2.3.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x = 8; P_y = 5; P_z = 13_{10} = 1101_2$$

2.3.9 Нормалізація результату:

Отримали результат: 011001011111110101001100001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця,

порядок зменшуємо на 1:

 $110010111111110101001100001111; P_z\!\!=\!\!12;$

Запишемо нормалізований результат:

2.4 Четвертий спосіб множення.

2.4.1 Теоритичне обгрунтування четвертого способу множення:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Множення здійснюється зі старших розрядів множника, сума часткових добутків залишається нерухомою, множене зсувається праворуч, множник ліворуч.

$$Z = Y \cdot x_n \cdot 2^{-n} + Y \cdot x_{n-1} \cdot 2^{-n+1} + \dots + Y \cdot x_1 \cdot 2^{-1} .$$

$$Z = ((\dots((0+Y\cdot 2^{-1}x_1)+Y\cdot 2^{-2}x_2)+\dots + Y\cdot 2^{-k}x_k)+\dots + Y\cdot 2^{-k}x_k).$$

$$Z_i = Z_{i-1} + 2^{-1}Y_{i-1} \cdot x_i \text{ з початковими значеннями } i=1, Y_0=2^{-1}Y, Z_0=0.$$

2.4.2 Операційна схема:

Рисунок 2.4.1-Операційна схема

2.4.3 Змістовний мікроалгоритм:

Рисунок 2.4.2 - Змістовний мікроалгоритм.

2.4.4 Таблиця станів регістрів:

Таблиця 2.4.1 - Таблиця станів регістрів

		,	1 1
№	RG1	RG3 →	RG2 ←
ПС	000000000000000000000000000000000000000	0101010011100011000000000000000	100110011100101
1	+0101010011100011000000000000000000000	0010101001110001100000000000000	001100111001010
2	0101010011100011000000000000000	000101010011100011000000000000	011001110010100
3	01010100111000110000000000000000	000010101001110001100000000000	110011100101000
4	+000010101001110001100000000000 =01011111011111111	000001010100111000110000000000	100111001010000
5	+000001010100111000110000000000 =0110010011001	000000101010011100011000000000	001110010100000

6	0110010011001101100100000000000	000000010101001110001100000000	011100101000000
7	0110010011001101100100000000000	00000001010100111000110000000	111001010000000
	+00000001010100111000110000000		
8	=0110010101111011101010110000000	00000000101010011100011000000	110010100000000
	+00000000101010011100011000000		
9	=011001011100110000111001000000	00000000010101001110001100000	100101000000000
	+00000000010101001110001100000		
10	=011001011111101101010101010100000	00000000001010100111000110000	0010100000000000
11	011001011111101101010101010100000	000000000000101010011100011000	0101000000000000
12	011001011111101101010101010100000	000000000000010101001110001100	101000000000000
	+000000000000010101001110001100		
13	=01100101111111011111111000101100	000000000000001010100111000110	0100000000000000
14	01100101111111011111111000101100	000000000000000101010011100011	100000000000000
	+00000000000000101010011100011		
15	=0110010111111110101001100001111	000000000000000010101001110001	000000000000000

2.4.5 Функціональна схема:

Рисунок 2.4.3 - Функціональна схема.

2.4.6 Закодований мікроалгоритм

Таблиця 2.4.2-Таблиця кодування операцій і логічних умов.

Кодування	Кодування мікрооперацій Кодування л			
MO	УС	ЛУ	Позначення	
RG1≔0	R	RG2[n-1]	X1	
RG2≔X	W2	RG2=0	X2	
RG3≔Y	W3			
RG1≔RG1+RG3	W1			
RG3:=0.r(RG3)	ShR			
RG2:=l(RG2).0	ShL			

Рисунок 2.4.4-Закодований мікроалгоритм.

2.4.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.4.5 - Граф автомата Мура

2.4.8 Обробка порядків:

Порядок добутку буде дорівнювати сумі порядків множників з урахуванням знаку порядків: $P_z = P_x + P_y$;

$$P_x$$
=8; P_y =5; P_z =13₁₀=1101₂

2.4.9 Нормалізація результату:

Отримали результат: 0110010111111110101001100001111

Знак мантиси: $1 \oplus 0 = 1$.

Робимо здвиг результату вліво, доки у першому розряді не буде одиниця,

Порядок понижаємо на 1:

 $110010111111111010100111000011111; P_z=12;$

Запишемо нормалізований результат:

2.5. Першиий спосіб ділення.

2.5.1 Теоритичне обтрунтування першого способу ділення:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Черговий залишок формується в регістрі RG2 (у вихідному стані в цьому регістрі записаний X). Виходи RG2 підключені до входів СМ безпосередньо, тобто ланцюги видачі коду з RG2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt - тривалість виконання мікрооперації додавання-віднімання; tc - тривалість виконання мікрооперації зсуву.

2.5.2 Операційна схема:

Рисунок 2.5.1-Операційна схема

2.5.3 Змістовний мікроалгоритм:

Рисунок 2.5.2-Змістовний мікроалгоритм

2.5.4 Таблиця станів регістрів:

nc 00100110011100101 101010 1 01001100111001010 +11010101100011101 00000000000000001 =00100010011100111 2 01000100111001110 0000000000000011 =0001101001110101 3 001101001110110 +11010101100011101 +11010101100111001 0000000000000111 =00001010011110011 4 00010100111100110	
1 01001100111001010 +11010101010 +110101100011101 =00100010011101110111 2 01000100111001110 +11010110011101 =000110101110111 3 001101001110110110 +11010110110 +11010110110110110 =0000101001111011 00000000000000111 =00001010011110011	0011100011
+11010101100011101 00000000000000000000	
000000000000000000000000000000000000	
2 01000100111001110 +11010101100011101 00000000	
+11010101100011101 0000000000000011 =00011010011101011 3	
3	
3 00110100111010110 +11010101100011101 00000000	
+11010101100011101 000000000000111 =00001010011110011	
000000000000111 =00001010011110011	
00010100111100110	
+11010101100011101	
00000000001111 =11101010100000011	
5 11010101000000110	
+00101010011100011	
000000000011110 =11111111011101001	
6 11111110111010010	
+00101010011100011	
000000000111100 =001010010110101	
7 01010010101101010	
+11010101100011101	
000000001111001 =00101000010000111	
8 01010000100001110	
+11010101100011101	
000000011110011 =00100110000101011	
9 0100110000101010	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0000000111100111 =00100001101110011 10 01000011011100110	
+1101010111001101	
0000001111001111 =0001100110001101	
11 001100100000011 001100100000011	
+11010101100011101	
0000011110011111 =00000111100100011	
12 000011110011011 = 00000111100100011	
+1101010110011101	
0000111100111111 =11100100101100011	
13 11001001011000110	
+00101010011100011	
0001111001111110 =1111001111010101	
1110011110101010 14 11100111101010010	
+0010101010101011	
0011110011111100 =00010010000110101	
15 00100100001101010	
+11010101100011101	
0111100111111001 =11111001110000111	
16 11110011100001110	
+00101010011100011	
11110011111110010 =000111011111110001	

2.5.5 Функціональна схема:

Рисунок 2.5.3 – Функціональна схема

2.5.6 Закодований мікроалгоритм

Таблиця 2.5.2-Таблиця кодування операцій і логічних умов.

		-	
Кодування мікр	ооперацій	Кодування л	огічних умов
MO	УС	ЛУ	Позначення
RG3:=0	W3	RG2[n-1]	X1
RG2:=X;	W2	RG2=0	X2
RG1≔Y;	W1		
$RG3:=l(RG3).\overline{RG2[n+1]}$	ShL1		
RG2:=l(RG2).0	ShL2		
$RG2:=RG2+\overline{RG1}+1$	W4		
RG2:=RG2+RG1	W5		

Рисунок 2.5.4-Закодований мікроалгоритм.

2.5.7 Граф управляючого автомата Мура з кодами вершин:

Рисунок 2.5.5 - Граф управляючого автомата.

2.5.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку P_x =8; P_y =5; P_z =3;

2.5.8 Нормалізація результату:

Отримали результат: 11110011111110010

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.6. Другий спосіб ділення.

2.6.1 Теоритичне обгрунтування другого способу ділення:

Нехай ділене X і дільник Y ε n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає прискорення відносно 1-го способу.

2.6.2 Операційна схема

Рисунок 2.6.1-Операційна схема

2.6.3 Змістовний мікроалгоритм

Рисунок 2.6.2-Змістовний мікроалгоритм

2.6.4 Таблиця станів регістрів

Таблиця 2.6.1-Таблиця станів регістрів

Nº	RG3 (Z)	Таблиця 2.6.1-Таблиця станів регіст RG2 (X) RG1 (Y)						
пс	(2/		(2)					
110								
	00000000000000001	01001100111001010000000000000000	001010100111000110000000000000					
1		0100110011100101000000000000000						
		+11010101100011101000000000000000						
	0000000000000011	=00100010011100111000000000000000	0001010100111000110000000000000					
2		0010001001110011100000000000000						
		+1110101011000111010000000000000						
	0000000000000111	=0000110100111010110000000000000	0000101010011100011000000000000					
3		000011010011101011000000000000						
		+1111010101100011101000000000000						
	0000000000001111	=000000101001111001100000000000	000001010100111000110000000000					
4		000000101001111001100000000000						
		+111110101011000111010000000000						
	000000000011110	=111111010101000000110000000000	000000101010011100011000000000					
5		111111010101000000110000000000						
		+000000101010011100011000000000						
	000000000111100	=1111111111111011101001000000000	00000010101001110001100000000					
6		1111111111111011101001000000000						
		+00000010101001110001100000000						
	000000001111001	=00000010100101101010100000000	00000001010100111000110000000					
7		00000010100101101010100000000						
		+111111110101011000111010000000						
	0000000011110011	=000000001010000100001110000000	00000000101010011100011000000					
8		00000001010000100001110000000						
	0000000111100111	+111111111010101100011101000000	00000000010101000111000110000					
•	0000000111100111	=0000000010011000010111000000	00000000010101001110001100000					
9		0000000010011000010111000000						
	0000001111001111	+111111111101010110001110100000	0000000000101010011100011000					
10	0000001111001111	=000000000010000110111001100000	00000000001010100111000110000					
10		00000000010000110111001100000						
	0000011110011111	+1111111111110101011000111010000 =00000000	00000000000101010011100011000					
11	0000011110011111		00000000000101010011100011000					
11		000000000000110010000000110000 +11111111						
	0000111100111111	=00000000000000011110010001	000000000000010101001110001100					
12	0000111100111111	0000000000000000111100100011000	00000000000010101001110001100					
		+111111111111101010111000						
	0001111001111110	=1111111111111101010110001110100	000000000000001010100111000110					
13	0001111001111110	111111111111110010010110001100						
		+000000000000010100011000110001100						
	0011110011111100	=1111111111111111001111010110	000000000000000101010011100011					
14	3311113311111100	11111111111111100111101010010	222200000000000000000000000000000000000					
		+00000000000000010101100011						
	0111100111111001	=000000000000000010101011100011	000000000000000010101001110001					
15		000000000000000001001010101						
		+11111111111111111010101100011111						
	1111001111110010	=111111111111111111100111000100	000000000000000001010100111000					
	-							

2.6.5 Функціональна схема з відображенням управляючих сигналів

Рисунок 2.6.3-Функціональна схема

2.6.6 Закодований мікроалгоритм

Таблиця 2.6.2-Таблиця кодування мікрооперацій

Таблиця кодування	мікрооперацій		Таблиця кодування
			логічних умов
MO	УС	ЛУ	Позначення
RG3:=0	R	RG2[2n+1]	X1
RG1≔Y	W1	RG3[n]	X2
RG2≔X	W2		
RG2≔RG2+RG1	W3		
RG1:=0.r(RG1)	ShR		
RG3:=I(RG3).SM(p)	ShL		
$RG2:=RG2+\overline{RG1}+1$	W4		

Рисунок 2.6.4-Закодований мікроалгоритм

2.6.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.6.5- Граф автомата Мура

2.6.8 Обробка порядків:

Порядок частки буде дорівнювати: $P_z = P_x - P_y$;

В моєму випадку P_x =8; P_v =5; P_z =3;

2.6.9 Нормалізація результату:

Отримали результат: 1111001111110010

Знак мантиси: $1 \oplus 0 = 1$.

Нормалізація мантиси не потрібна.

2.7. Операція додавання чисел.

2.7.1 Теоретичне обгрунтування способу

В пам'яті числа зберігаються у ПК. На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком. На другому етапі виконують додавання мантис. Додавання мантис виконується у доповнювальних кодах, при необхідності числа у ДК

переводяться в АЛП. Додавання виконується порозрядно на п-розрядному суматорі з переносом. Останній етап — нормалізація результату. Виконується за допомогою зсуву мантиси результату і коригування порядку результату. Порушення нормалізації можливо вліво і вправо, на 1 розряд вліво і на прозрядів вправо.

1. Порівняння порядків.

$$P_x = +\hat{8}_{10} = +1000_2$$

 $P_y = +5_{10} = +0101_2$
 $P_x > P_y = >$
 $\Delta = P_x - P_y = 8_{10} - 5_{10} = 3_{10} = 11_2$

2. Вирівнювання порядків.

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ не стане 0.

Таблиця 2.7.1-Таблиця зсуву мантиси на етапі вирівнювання порядків

$M_{ m Y}$	Δ	Мікрооперація
0, 101010011100011	11	Початковий стан
0, 010101001110001	10	$M_y=0.r(M_y); \Delta:=\Delta-1$
0, 001010100111000	01	$M_y=0.r(M_y); \Delta:=\Delta-1$
0,000101010011100	00	$M_y=0.r(M_y); \Delta:=\Delta-1$

3. Додавання мантис у модифікованому ДК.

 $X_{MJIK} = 11.011001100011010$

 $Y_{MJIK} = 00.0001010101111000$

Таблиця 2.7.2-Додавання мантис (для додавання)

M_{X}	1	1,	0	1	1	0	0	1	1	0	0	0	1	1	0	1	1
M_{Y}	0	0,	0	0	0	1	0	1	0	1	0	0	1	1	1	0	0
$M_{\rm Z}$	1	1,	0	1	1	1	1	0	1	1	0	1	1	0	1	1	1

 $Z_{\text{TIK}} = 1.100001001001001$

4. Нормалізація результату (В ПК).

Для даного результату додавання нормалізація не потрібна.

2.7.2 Операційна схема

m-кількість розрядів мантиси n-кількість розрядів порядку q=]log₂m[

Рисунок 2.7.1-Операційна схема

Виконаємо синтез КС для визначення порушення нормалізації.

Таблиця 2.7.4-Визначення порушення нормалізації

Po ₃	ряди	регістру	Значення				
RG	Z		функцій				
Z_0	Z_0	Z_1	L	R			
0	0	0	0	1			
0	0	1	0	0			
0	1	0	1	1			
0	1	1	1	0			

$$L=Z_{0}$$
, $R=\overline{Z_{1}}$.

Результат беремо по модулю, знак встановлюємо за Z'_0 до нормалізації.

2.7.3 Змістовний алгоритм

Рисунок 2.7.2-Змістовний мікроалгоритм

2.7.4 Таблиця станів регістрів

1) Додавання

Таблиця 2.7.5- Таблиця станів регістрів

№	RGPZ	RGZ	ЛПН(L)	ППН(R)	CT	Мікрооперація
такту						
ПС	001000	00.111110011001001	0	1	100	
1	000111	00.111100110010010 00.111001100100100	0	0	011	$Z'_0 Z_0 := \overline{Z_0} \overline{Z_0}$ RGZ := I(RGZ).0 RGPZ := RGPZ-1 CT := CT-1

2.7.5 Функціональна схема з відображенням керуючих сигналів

Рисунок 2.7.3 – Функціональна схема

2.7.6 Закодований мікроалгоритм

Таблиця 2.7.7-Таблиця кодування

Таблиця кодування міт	крооперацій
MO	УС
CT:=m;	W
RGZ:=Z;	Wl
$Z'_0 Z_0 := \overline{Z'_0 Z_0}$	W2
RGZ:=RGZ(m+2).r(RGZ)	ShR
RGPZ:=RGPZ+1	inc
RGZ:=l(RGZ).0	ShL
RGPZ:=RGPZ-1	dec
CT:=CT-1;	dec

Таблиця кодування логічних						
ОВ						
Позначення						
Xl						
X2						
X3						
X4						

Рисунок 2.7.4 – Закодований мікроалгоритм

2.7.7 Граф управляючого автомата Мура з кодами вершин

Рисунок 2.7.5 – Граф автомата Мура

2.7.8 Обробка порядків

$$P_{X+Y} = 8_{10} = 1000_2$$

2.7.9 Форма запису результату з плаваючою комою

Результат додавання Z=X+Y.

 $Z_{\text{mx}} = 1.100001001001001$

$$P_z = 8_{10} = 1000_2$$

$$M_z = 100001001001001_2$$

2.8. Операціядобування кореня

2.8.1 Теоритичнеобгрунтування операції обчислення квадратного кореня

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргумента. З мантиси добувається корінь завдяки нерівностям:

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 ${Z_i}^2 \le X \le {Z_i}^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - {Z_i}^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

2. Якщо
$$R_{i+1} \geq 0$$
, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$.

3. Якщо
$$R_{i+1}$$
 < 0, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1} + Z_i - 2^{-i-2}$.

Відновлення остачі додає зайвий такт, але можна зробити інакше:

 $R_{i+2} = 2R_{i+1}' + Z_i + 2^{-i-2} + 2^{-i-3}$, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

2.8.2 Операційна схема операції обчислення квадратного кореня

Рисунок 2.8.1 –Операційна схема

2.8.3 Змістовний мікроалгоритм

Рисунок 2.8.2 – Змістовний мікроалгоритм

2.8.4 Таблиця станів регістрів

Таблиця 2.8.1 – Таблиця станів регістрів

Nº	RZ	RR	RX	CT
пс		000000000000000000		
пз	000000000000000	00000000000000010	100111011101101	1111
1	0000000000000001	+11111111111111111	010011001110010	1110
		=000000000000000001		
		0000000000000101		
2	000000000000011	+11111111111111111	001001100111001	1101
		=0000000000000000000		
		00000000000000010		
3	000000000000110	+1111111111110011	000100110011100	1100
		=1111111111110101		
		1111111111010101		
4	00000000001100	+0000000000011011	000010011001110	1011
		=1111111111110000		
		1111111111000011		
5	00000000011000	+000000000110011	000001001100111	1010
		=1111111111110110		
		11111111111011000		
6	00000000110001	+0000000001100011	000000100110011	1001

		=0000000000111011		
		0000000011101110		
7	00000001100011	+11111111100111011	000000010011001	1000
		=0000000000101001		
		0000000010100110		
8	000000011000110	+11111111001110011	00000001001100	0111
		=11111111100011001		
		11111110001100100		
9	000000110001100	+00000001100011011	00000000100110	0110
		=11111111101111111		
		11111110111111100		
10	000001100011001	+00000011000110011	00000000010011	0101
		=00000010000101111		
		00001000010111100		
11	000011000110011	+11111001110011011	00000000001001	0100
		=00000010001010111		
		00001000101011100		
12	000110001100110	+11110011100110011	00000000000100	0011
		=11111100010001111		
		11110001000111100		
13	001100011001101	+00011000110011011	000000000000000000000000000000000000000	0010
		=00001001111010111		
		00100111101011100		
14	011000110011010	+11001110011001011	000000000000001	0001
		=11110110000100111		
		11011000010011100		
15	110001100110101	+01100011001101011	000000000000000	0000
		=00111011100000111		
		11101110000011100		

2.8.5 Функціональна схема операції обчислення квадратного кореня

Рисунок 2.8.3 – Функціональна схема

2.8.6 Закодований мікроалгоритм

Таблиця 2.8.2 – Таблиця кодування

Таблиця кодування мікрооперацій				
MO	УС			
RX:=X;	WX			
RR:=0;	R			
RZ:=0	R1			
CT:=15	WCT			
RR:=RR+RZ.11	W1			
$RR:=RR+\overline{RZ}.11$	W2			
RR=LL(RR).RX(n-1;n-2)	ShLL			
RX:=LL(RX).00	ShLL0			
$RZ:=L(RZ).\overline{RR(n+1)}$	ShL			
CT:=CT-1	dec			

Таблиця кодування логічних			
умов			
ЛУ Позначення			
RR[n+1]	X1		
RZ[n]	X2		

Рисунок 2.8.4 – Закодований мікроалгоритм

2.8.7Граф управляючого автомата Мура з кодами вершин

Рисунок 2.8.5 – Граф управляючого автомата Мура

2.8.8 Обробка порядків

$$P_z = P_x/2$$
;

В моєму випадку P_z =4;

2.8.93апис результату

Отримали результат Z = 110001100110101;

Результат нормалізований, готовий до запису у мантису:

Завдання 3

$$x_3 x_2 x_1 + 1 = 010_2 = 2_{10}$$
.

Синтез управляючого автомату Мура на D-тригерах для операції множення другим способом

3.1 Таблиця кодування сигналів

Таблиця 3.1 – Таблиця кодування сигналів

R,W2,W3	Y1
W1	Y2
ShR, ShL	Y3

3.2 Мікроалгоритм в термінах управляючого автомата

Рисунок 3.1 – Закодований мікроалгоритм

3.3 Граф автомата

Рисунок 3.2 – Граф циклічного автомата

3.4 Таблиця переходів циклічного автомата на D-тригерах

Таблиця 3.2 – Таблиця переходів

Пер.	Ст. ст.	Нов.	Вх. сигн.	Вих. сигн.	Функції тригерів		ерів
Ticp.	$Q_3Q_2Q_1$	$Q_3Q_2Q_1$	X_2X_1	$Y_1Y_2Y_3$	D_3	D_2	\mathbf{D}_1
$Z_1 \rightarrow Z_2$	000	001		000	0	0	1
$Z_2 \rightarrow Z_3$	001	011	- 1	100	0	1	1
$Z_2 \rightarrow Z_4$	001	010	- 0	100	0	1	0
$Z_3 \rightarrow Z_4$	011	010		010	0	1	0
$Z_4 \rightarrow Z_3$	010	011	0 1	0 0 1	0	1	1
$Z_4 \rightarrow Z_4$	010	010	0 0	0 0 1	0	1	0
$Z_4 \rightarrow Z_5$	010	110	1 -	0 0 1	1	1	0

3.5 Мінімізація функцій тригерів

Рисунок 3.3 – Мінімізація функцій тригерів

Рисунок 3.4 – Діаграми Вейча для вихідних сигналів

$$D_{1} = \overline{Q_{2}} \overline{Q_{1}} v \overline{Q_{2}} X_{1} v \overline{Q_{1}} \overline{X_{2}} X_{1}$$

$$D_{2} = Q_{2} v Q_{1}$$

$$D_{3} = Q_{2} \overline{Q_{1}} X_{2}$$

$$Y1 = \overline{Q_{3}} \overline{Q_{2}} Q_{1}$$

$$Y2 = \overline{Q_{3}} Q_{2} Q_{1}$$

$$Y3 = \overline{Q_{3}} Q_{2} \overline{Q_{1}}$$

3.6 Функціональна схема автомата

Рисунок 3.5 - Функціональна схема

Висновок

У даній розрахунковій роботі було виконано операції з числами в двійковому коді з плаваючою комою, а саме: множення чотирма способами, ділення двома способами, додавання та віднімання. Для операції множення першим способом було побудовано управляючий автомат Мура на D-тригерах і елементах булевого базису. Зроблено мінімізацію функцій тригерів і в середовищі АFDK побудована функціональна схема автомата. На одній з функцій використано фільтр для запобігання виникненню просічок.

Під час виконання даної розрахункової роботи я повторив для себе матеріал курсу «Компютерна логіка - 1», а також закріпив знання з курсу «Компютерна логіка - 2».

Було використано наступну літературу:

- 1) Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів: Навчальний посібник.–К.: Книжкове вид-во НАУ, 2009. 360 с.
- 2) Конспект лекцій з курсу «Комп 'ютерна логіка 1»
- 3) Конспект лекцій з курсу «Комп 'ютерна логіка 2»