

SDU Summer School

Deep Learning

Summer 2022

Welcome to the Summer School

Optimization for Deep Learning

- Parameter Initialization
- Batch Normalization
- Pre-Training

Types of Initialization

- 1. Non-iterative optimization requires no initialization
 - Simply solve for solution point
- 2. Iterative but converge regardless of initialization
 - Acceptable solutions in acceptable time
- 3. Iterative but affected by choice of Initialization
 - Deep learning training algorithms are iterative
 - Initialization determines whether it converges at all
 - Can hugely determine how quickly learning converges

Modern Initialization Strategies

- They are simple and heuristic
- Based on achieving nice properties
- But problem is a difficult one
 - Some initial points are beneficial for optimization but detrimental to generalization
- Only property known with certainty: Initial parameters must be chosen to break symmetry
 - If two hidden units have the same inputs and same activation function, then they must have different initial parameters
 - Usually best to initialize each unit to compute a different function
 - This motivates use random initialization of parameters

Choice of biases

- Biases for each unit are heuristically chosen constants
- Only the weights are initialized randomly
- Extra parameters such as conditional variance of a prediction are constants like biases

Weights drawn from Gaussian

- Weights are almost always drawn from a Gaussian or uniform distribution
 - Choice of Gaussian or uniform does not seem to matter much but not studied exhaustively
- Scale of the initial distribution does have an effect on outcome of optimization and ability to generalize
 - Larger initial weights will yield stronger symmetry-breaking effect, helping avoid redundant units
 - Too large may result in exploding values

Heuristics for initial scale of weights

One heuristic is to initialize the weights of a fully connected layer with N inputs and M outputs by sampling each weights from Uniform(-r,r) with

$$r = \frac{1}{\sqrt{N}}$$

Another heuristic is normalized initiation with

$$r = \sqrt{\frac{6}{N + M}}$$

Which is a compromise between the goal of initializing all layers to have the same activation variance and the goal of having all layers having the same gradient variance

Initialization for the biases

- Bias settings must be coordinated with setting weights
- Setting biases to zero is compatible with most weight initialization schemes
- Situations for nonzero biases:
 - Bias for an output unit: initialize to obtain right marginal statistics for output
 - Set bias to inverse of activation function applied to the marginal statistics of the output in the training set
 - Assuming that the weights in the beginning are so small, that output is driven only by biases
 - Choose bias to causing too much saturation at initialization

Optimization for Deep Learning

- Parameter Initialization
- Batch Normalization
- Pre-Training

Batch Normalization

- Batch normalization: exciting recent innovation
- Method is to replace activations with zero-mean with unit variance activations
- Motivation is difficulty of choosing learning rate ϵ in deep networks
 - Method adds an additional step between layers, in which the output of the earlier layer is normalized
 - By standardizing the mean and standard deviation of each individual unit
 - It is a method of adaptive re-parameterization
 - It is not an optimization algorithm at all
 - A method to reduce internal covariate shift in neural networks

Motivation: Difficulty of composition

Very deep models involve compositions of several functions or layers

$$f(x, w) = f^{(l)} \left(\dots f^{(3)} \left(f^{(2)} \left(f^{(1)}(x) \right) \right) \right)$$

The gradient tells us how to update each parameter

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \epsilon \nabla_{\mathbf{w}} J(f(\mathbf{x}, \mathbf{w}), y)$$

- Under assumption that other layers do not change
- **BUT**: We update all *l* layers simultaneously
- When we make the change unexpected results can happen
- Because many functions are changed simultaneously, effects can accumulate

Choosing learning rate ϵ in multilayer

Simple example:

l layers, one multiplication unit per layer, no activation function

Network simply computes

$$\hat{y} = x \cdot w_1 \cdot w_2 \dots \cdot w_l$$

- Output of Layer i is $h_i = h_{i-1}w_i$
- Output is a linear function of input x but a nonlinear function of the weights
 w_i

Gradient in Simple example

- Suppose our cost function has put a gradient of 1 on \hat{y} , so we wish to decrease \hat{y} slightly.
- The back-propagation algorithm can then compute a gradient

$$\boldsymbol{g} = \nabla_{\boldsymbol{w}} \hat{y}$$

- Which corresponds to the gradient g evaluated at $y = \hat{y}$
- When using the update $\mathbf{w} \leftarrow \mathbf{w} \epsilon \mathbf{g}$ predicts that $\hat{\mathbf{y}}$ decreases by $\epsilon \boldsymbol{q}^T \boldsymbol{q}$
- If we want to decrease \hat{y} by 0.1, we could set the learning rate to

$$\epsilon = rac{0.1}{m{g}^Tm{g}}$$

Difficulty of Multilayer learning Rate

With the first order information, we would set the learning rate to

$$\epsilon = \frac{0.1}{\boldsymbol{g}^T \boldsymbol{g}}$$

Problem: We have to deal with many 2nd, 3rd ... effects. The new value in fact is

$$x(w_1 - \epsilon g_1)(w_2 - \epsilon g_2) \dots (w_l - \epsilon g_l)$$

- One example for a second order term would be $\epsilon^2 g_1 g_2 \prod_{i=3}^l w_i$
- This term might be negligible if $\prod_{i=3}^{l} w_i$ is small or exponentially large if weights are larger than 1.
- This makes it very hard to choose ε because the effects of an update for one layer depend so strongly on all other layers
 - Higher order methods tackle this problem, but still only for small l

The Batch Normalization Solution

- Provides an elegant way of re-parameterizing almost any network
- Significantly reduces the problem of coordinating updates across many layers
- Can be applied to any input or hidden layer in a network

Batch Normalization Equations

- **H**: minibatch of activations of layer to normalize

- - deviation of each unit
 - The arithmetic here is based on broadcasting the vector μ and the vector σ to be applied to every row of **H**
 - Within each row, the arithmetic is element-wise
 - $H_{i,j}$ is normalized by subtracting μ_i & dividing by σ_i

Normalization Details

- Rest of the network operates on H' in the same way that the original network operated on H
- At training time

$$\mu = \frac{1}{m} \sum_{i} H_{i} \quad and \quad \sigma = \sqrt{\delta + \frac{1}{m} \sum_{i} (H - \mu)_{i}^{2}}$$

- where δ is a small positive value such as 10^{-8} imposed to avoid encountering the undefined gradient of z=0
 - Crucially we back propagate through these operations for computing the mean and std dev
 - And for applying them to normalize H
 - This means that the gradient will never propose an operation that acts simply to increase std dev or mean of h_i the normalization operations remove the effect of such an action and aero out the component in the gradient

Batch Normalization at Test time

- At test time, μ and σ may be replaced by running averages that were collected during training time
- This allows the model to be evaluated on a single example without needing to use definitions of μ and σ that depend on an entire minibatch

Revisiting the simple example

- Revisiting the $\hat{y} = x \cdot w_1 \cdot w_2 \dots \cdot w_l$ example we can mostly resolve the difficulties in learning the model by normalizing h_{l-1}
- Suppose that x is drawn from a unit Gaussian
- Then h_{l-1} will also come from a Gaussian, because the transformation from x to h_I is linear
- However h_{l-1} will no longer have zero mean, unit variance

Restoring zero-mean unit variance

- After applying batch normalization, we obtain the normalized \hat{h}_{l-1} that restores zero mean and unit variance
 - For almost any update to the lower layers, \hat{h}_{l-1} will remain a unit Gaussian
 - Output \hat{y} may be learned as a simple linear function $\hat{y} = w_l \hat{h}_{l-1}$
- Learning in this model is now very simple
 - Because parameters at the lower layers do not have an effect in most cases
- Their output is always renormalized to a unit Gaussian

Batch Normalization -> learning easy

- Without normalization, updates would have an extreme effect of the statistics of h_{l-1}
- Batch normalization has thus made this model easier to learn
- In this example the ease of learning came from making the lower layers useless
 - In our linear example: Lower layers not harmful but not beneficial either
 - Because we have normalized-out all effects of higher order than 1st and 2nd order stats
- In a deep neural network lower levels still can perform useful nonlinear transformations

Reintroducing Expressive Power

- Normalizing the mean and standard deviation can reduce the expressive power of the neural network containing that unit
- To maintain the expressive power replace the batch of hidden unit activations H' with $\gamma H' + oldsymbol{eta}$
 - γ and β are learned parameters that allow the new variable to have any mean and standard deviation
- Why did we normalize to zero and std. dev. when we then allow all means and deviations again?
 - Has different learning dynamics than unnormalized approach
 - It has the same power as H, but the values of H where determined by a complicated interaction between the parameters in the layers below
 - lacktriangle The new parametrization, the mean is only determined by $oldsymbol{eta}$

Optimization for Deep Learning

- Parameter Initialization
- Batch Normalization
- Pre-Training

Motivation

- Sometimes, directly training a model to solve a specific task can be too ambitious, if:
 - Model is too complex and hard to optimize
 - The task is very difficult
- It may be more effective to
 - Train a simpler model to solve the task, then move on to confront the final task
 - Methods collectively known as pretraining

Greedy Supervised Pretraining

Greedy Algorithm:

- Break a problem into many components
- Solve for the optimal version of each component in isolation
- Combine the solutions 3.
- Combining the component solutions may not yield an optimal complete solution
- However, greedy algorithms can be computationally much cheaper than algorithms that solve for the best joint solution
- Quality of a greedy solution is often acceptable if not optimal
- Initializing the joint optimization algorithm with a greedy solution can speed it up and improve the quality of the solution

Training each layer separately

- Supervised learning involving only a subset of the layers in the final neural network
- An example of greedy supervised pretraining
 - In which each added hidden layer is pretrained as part of a shallow supervised MLP
 - Taking as input the output of the previously trained hidden layer

Extension to Transfer Learning

- Pretraining extends the idea to transfer learning
- Pretrain convolutional net with k layers on tasks
 - E.g. on a subset of 1000 ImageNet object categories
- Then initialize same-size network with the first k layers of the first net
 - All layers of second network (with upper layers initialized randomly) are then jointly trained to perform a different set of tasks
 - E.g. another subset of 1000 ImageNet categories, with fewer training examples than for the first set of tasks

FitNets

- While depth improves performance, it also makes gradient-based training more difficult since deeper networks are more non-linear.
- Solution is to train a network with low enough depth (e.g. 5) and great enough width (no. of units per layer) to be easy to train
- This network becomes a teacher for a second network, designated the student
- Student network is much deeper and thinner and would be difficult to train with SGD, (e.g., 15-20 layers)

Training the student network

- Task is made easier by training student network not only to predict output for original task, but also to predict value of middle layer of the teacher network
- This extra task provides a set of hints about how the hidden layers should be used and can simplify the optimization problem
- Additional parameters are introduced to regress the middle layer of the 5-layer teacher network from the middle layer of the deeper student network

Predicting Intermediate Layers

- Instead of predicting the final classification target, the objective is to predict the middle hidden layer of the teacher network
- Objectives of Lower layers of student network:
 - 1. Help outputs of student network accomplish task
 - 2. Predict intermediate layer of the teacher network
- A thin-deep network may be more difficult to train than a wideshallow network, but may generalize better and has lower computational cost if it is thin enough to have far fewer parameters.