Vektorit

Juulia Lahdenperä ja Lotta Oinonen

2. lokakuuta 2015

Sisältö

1	Vekto	ori	1
	1.1	xy-koordinaatisto	1
	1.2	Vektorin komponentit	1
	1.3	Kahden pisteen välinen vektori	2
	1.4	Vektorin pituus	3

1 Vektori

1.1 xy-koordinaatisto

JOKIN TERÄVÄ ALOITUS.

KUVA (koordinaatisto ja piste P)

Tehtävä 1.1.1. Tutki yllä olevaa kuvaa ??.

- (a) Nimeä kuvaan x- ja y-akselit.
- (b) Kuinka monta askelta siirrytään x-akselin suuntaan, jotta päästään pisteeseen P?
- (c) Kuinka monta askelta siirrytään y-akselin suuntaan, jotta päästään pisteeseen P?

Tason piste ilmoitetaan lukuparina (x, y), missä ensimmäinen luku x ilmoittaa xakselin suuntaisten ja toinen luku y y-akselin suuntaisten askelten lukumäärän. Näitä lukuja kutsutaan **pisteen koordinaateiksi**. Kuvan ?? piste P sijaitsee siinä tason pisteessä, missä x=3 ja y=4. Näin ollen pistettä P merkitään P=(3,4). Koordinaattien avulla kaikki tason pisteet voidaan määrittää yksikäsitteisesti.

Koordinaattiakselit jakavat tason neljään osaan. Osat nimetään yleensä järjestysnumeroilla I, II, III ja IV alla olevan kuvan ?? mukaisesti. Koordinaattiakselien leikkauskohtaa kutsutaan **origoksi**. Origoa merkitään yleensä kirjaimella O, ja sen koordinaatit ovat O = (0,0).

KUVA (koordinaatiston neljä osaa)

Tehtävä 1.1.2. Valitse kuvasta ?? jokaiselta koordinaatiston neljänneksellä jokin piste ja ilmoita sen koordinaatit. Miten eri neljännekset vaikuttavat koordinaattien etumerkkeihin?

Tehtävä 1.1.3. (a) Piirrä koordinaatistoon pisteet (0,2), (0,-4) ja (0,3).

- (b) Piirrä koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (0, y).
- (c) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (0, y).
- (d) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (x,0).

1.2 Vektorin komponentit

Tarkastellaan seuraavaa kuvaa ??. Kuvassa on nuoli \bar{v} , yhden x-akselin suuntaisen askeleen pituinen nuoli $\bar{\iota}$, sekä yhden y-akselin suuntaisen askeleen pituinen nuoli $\bar{\iota}$.

KUVA (vektorin komponentit)

Huomataan, että nuolen \bar{v} päästä on sen kärkeen kolme x-akselin suuntaista askelta ja kaksi y-akselin suuntaista askelta. Tällainen nuoli \bar{v} voidaan ilmoittaa nuolien $\bar{\imath}$ ja $\bar{\jmath}$ avulla muodossa $\bar{v}=3\bar{\imath}+2\bar{\jmath}$.

Vektori on nuoli koordinaatistossa. Edellisen kuvan nuoli \bar{v} on siis vektori \bar{v} , joka voidaan ilmaista vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektoreita $\bar{\imath}$ ja $\bar{\jmath}$ sanotaan komponenttivektoreiksi, ja summattavia $3\bar{\imath}$ ja $2\bar{\jmath}$ vektorin \bar{v} **komponenteiksi**.

Tehtävä 1.2.1. Tarkastellaan seuraavaa kuvaa ??

KUVA (vektorin komponentit tehtava samat erit vektorit)

- (a) Ilmoita kaikki kuvassa olevat vektorit komponenttivektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Mitä huomaat?
- (b) Mitä huomaat vektoreista, jotka lähtevät origosta?

Origosta lähtevän vektorin $\bar{v} = x\bar{\imath} + y\bar{\jmath}$ kärki on pisteessä (x,y). Kyseistä vektoria \bar{v} kutsutaan pisteen (x,y) paikkavektoriksi.

Tehtävä 1.2.2. EI TÄHÄN

- (a) Piirrä komponenttivektorit $\bar{\imath}$ ja $\bar{\jmath}$ koordinaatistoon siten, että ne lähtevät origosta.
- (b) Minkä pisteiden paikkavektoreita ne ovat?

1.3 Kahden pisteen välinen vektori

Tehtävä 1.3.1. EI TÄHÄN

- (a) Piirrä koordinaatistoon kaksi pistettä. Merkitse myös pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} komponenttivektorien \bar{i} ja \bar{j} avulla.
- (d) Miten komponenttitekijät voitaisiin saada pisteiden x- ja y-koordinaattien avulla?

Kahden pisteen välinen vektori saadaan vähentämällä pisteiden x- ja y-koordinaatit keskenään. Esimerkiksi pisteestä A=(4,1) lähtevä ja pisteeseen (B=-1,3) päättyvä vektori \bar{v} on $\bar{v}=((-1)-4)\bar{\imath}+(3-1)\bar{\jmath}=-5\bar{\imath}+2\bar{\jmath}$. Kahden pisteen välinen vektori voi kulkea kahteen eri suuntaan. Nämä ovat erit vektorit. Pisteestä A pisteeseen B kulkevaa vektoria merkitään $A\bar{B}$, ja pisteestä B pisteeseen A kulkevaa vektoria merkitään $B\bar{A}$. Esimerkkimme vektori $\bar{v}=-5\bar{\imath}+2\bar{\jmath}$, joka lähti pisteesta A ja päättyi pisteeseen B on siis vektori \overline{AB} .

Tehtävä 1.3.2. (a) Piirrä koordinaatistoon pisteet A ja B Merkitse myös niiden koordinaatit.

- (b) Laske pisteiden koordinaattien avulla vektorin \bar{AB} komponenttiesitys.
- (c) Laske pisteiden koordinaattien avulla vektorin \bar{BA} komponenttiesitys.

samansuuntaiset, vastakkaissuuntaiset yms.

komponenttiesitys on yksikäsitteinen - mainitse, että intuitiivisesti x- ja y-akseleiden suuntaisten askeleiden tulee olla samat samoille vektoreille.

1.4 Vektorin pituus

Vektorin pituus saadaan laskettua Pythagoraan lauseen avulla. (KUVA) Esimerkiksi vektorin $\bar{a}=-2\bar{\imath}+3\bar{\jmath}$ pituus saadaan yhtälöstä

$$|\bar{a}|^2 = 2^2 + 3^2.$$

Vektorin \bar{a} pituudeksi saadaan $|\bar{a}| = \sqrt{2^2 + 3^2}$.

Tehtävä 1.4.1. Tutkitaan vektoria $\bar{b} = 3\bar{\imath} - 4\bar{\jmath}$.

- (a) Piirrä vektori \bar{b} koordinaatistoon.
- (b) Laske vektorin \bar{b} pituus $|\bar{b}|$ Pythagoraan lauseen avulla.
- (c) Kuinka moneen osaan vektori \bar{b} pitäisi jakaa, jotta yhden osan pituus olisi 1?

Yksikkövektori

Määritelmä 1.4.2. Vektoria, jonka pituus on 1, sanotaan yksikkövektoriksi.

Esimerkiksi vektorin $\bar{v}=8\bar{\imath}+6\bar{\jmath}$ pituudeksi saadaan $|\bar{v}|=\sqrt{8^2+6^2}=\sqrt{100}=10$. Sen kanssa samansuuntainen yksikkövektori saadaan ottamalla vektorista \bar{v} kymmenesosa eli

$$\frac{1}{10}\bar{v} = \frac{1}{10}(8\bar{\imath} + 6\bar{\jmath}) = 0.8\bar{\imath} + 0.6\bar{\jmath}$$

(KUVA)

Tehtävä 1.4.3. Jatkoa tehtävään ??. Tutkitaan edelleen vektoria $\bar{b} = 3\bar{\imath} - 4\bar{\jmath}$.

- (a) Määritä vektorin \bar{b} kanssa samansuuntainen yksikkövektori eli vektori, joka pituus on 1. Piirrä se koordinaatistoon.
- (b) Määritä vektorin \bar{b} kanssa samansuuntainen vektori, jonka pituus on 10. Piirrä se koordinaatistoon.
- (c) Määritä vektorin b kanssa vastakkaissuuntainen yksikkövektori. Piirrä se koordinaatistoon.