Lecture 6 The Bayes' Theorem

BIO210 Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences
Southern University of Science and Technology

Basic components

Three basic components in conditional probability:

- 1. $\mathbb{P}(A \cap B)$
- 2. $\mathbb{P}(B)$
- 3. $\mathbb{P}(A|B)$

Generalisation of $\mathbb{P}\left(A\cap B\cap C\cap\cdots\right)$

Generalisation of $\mathbb{P}\left(B\right)$

Sample space Ω

$$\mathbb{P}(B) = \mathbb{P}[(A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B)]$$

$$= \mathbb{P}(A_1 \cap B) + \mathbb{P}(A_2 \cap B) + \dots + \mathbb{P}(A_n \cap B)$$

$$= \mathbb{P}(A_1) \mathbb{P}(B|A_1) + \dots$$

$$\mathbb{P}(A_2) \mathbb{P}(B|A_2) + \dots$$

$$\vdots$$

$$\mathbb{P}(A_n) \mathbb{P}(B|A_n)$$

The total probability theorem:

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) \mathbb{P}(B|A_i)$$

Generalisation of $\mathbb{P}(B)$

$$\mathbb{P}(B) = \mathbb{P}[(A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B)]$$

$$= \mathbb{P}(A_1 \cap B) + \mathbb{P}(A_2 \cap B) + \dots + \mathbb{P}(A_n \cap B)$$

$$= \mathbb{P}(A_1) \mathbb{P}(B|A_1) +$$

$$\mathbb{P}(A_2) \mathbb{P}(B|A_2) +$$

$$\vdots$$

$$\mathbb{P}(A_n) \mathbb{P}(B|A_n)$$

The total probability theorem:

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) \mathbb{P}(B|A_i)$$

Generalisation of $\mathbb{P}\left(A|B ight)$

Sample space Ω

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(A_i) \mathbb{P}(B|A_i)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(A_i) \mathbb{P}(B|A_i)}{\sum_{i=1}^n \mathbb{P}(A_i) \mathbb{P}(B|A_i)}$$

Generalisation of $\mathbb{P}\left(A|B ight)$

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(A_i) \mathbb{P}(B|A_i)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}(A_i) \mathbb{P}(B|A_i)}{\sum_{i=1}^n \mathbb{P}(A_i) \mathbb{P}(B|A_i)}$$

The Bayes Theorem

$$oldsymbol{A_i} \stackrel{\mathsf{causal\ effect}\ \mathbb{P}(B|A_i)}{\longleftarrow} oldsymbol{E}$$
 inference $\mathbb{P}(A_i|B)$

The Bayes' Theorem

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A_i) \mathbb{P}(B|A_i)}{\sum_{i=1}^n \mathbb{P}(A_i) \mathbb{P}(B|A_i)}$$

 $\mathbb{P}\left(A_{i}
ight):$ prior probability

 $\mathbb{P}\left(A_i|B\right)$: posterior probability

Carroll's Pillow Problem #5

There is a ball inside a non-transparent bag. The colour of the ball is unknown, but it is equally likely to be either blue or red. Now you put a red ball into the bag, shake the bag, and take a ball without looking inside. The ball you have just taken out is red. What is the probability that the colour of the remaining ball that is still inside the bag is red?

Pedigree Analysis

