Week 1 Review Session

Gov January Linear Algebra Review Soubhik Barari Harvard University

Jan 11, 2021

Linear algebra is an accounting system for multidimensional data (represented as **matrices**, which is composed of row or column **vectors**).

Some broad "operations" that this accounting system allows us to do with data:

Linear algebra is an accounting system for multidimensional data (represented as **matrices**, which is composed of row or column **vectors**).

Some broad "operations" that this accounting system allows us to do with data:

- Transposition
- Transformation
- Elimination
- Inversion
- Combination
- Summarization
- ► Factorization or Decomposition

Linear algebra is an accounting system for multidimensional data (represented as **matrices**, which is composed of row or column **vectors**).

Some broad "operations" that this accounting system allows us to do with data:

- Transposition
- Transformation
- Elimination
- Inversion
- Combination
- Summarization
- ► Factorization or Decomposition

Why should we care?

Linear algebra is an accounting system for multidimensional data (represented as **matrices**, which is composed of row or column **vectors**).

Some broad "operations" that this accounting system allows us to do with data:

- Transposition
- Transformation
- Elimination
- Inversion
- Combination
- Summarization
- Factorization or Decomposition

Why should we care? *Every* statistical method in social science explicitly or implicitly relies on this accounting system.

We need $\underline{\text{tools}}$ (e.g. definitions, theorems, inequalities, processes) to tell us how/when we can perform linear algebraic operations. Week 1 covered valuable tools including:

We need $\underline{\text{tools}}$ (e.g. definitions, theorems, inequalities, processes) to tell us how/when we can perform linear algebraic operations. Week 1 covered valuable tools including:

- Summarising and combining vectors
 - Length (Schwarz inequality, Triangle inequality)
 - Dot products
- Gaussian elimination
- Gauss-Jordan elimination
- Matrix inversion

Plan

Cover four problems \leadsto discuss intuition and connect them to a real application in political science.

- ▶ Problem 3 (1.2.2): summarising, combining vectors
- ▶ Problem 6 (2.1.9): transforming matrices
- ▶ Problem 9 (2.2.1-2): solving unknowns between matrices
- ▶ Problem 11 (2.5.12): inverting matrices

Don't feel self-conscious about interrupting if you're confused or have questions!

The simplest linear algebraic unit is a **vector** in some space (e.g. \mathbb{R}^2), where each dimension usually "means something":

$$u = \begin{bmatrix} -0.6 \\ 0.8 \end{bmatrix}, v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \leftarrow$$
 support for gun control \leftarrow support for abortion access

The simplest linear algebraic unit is a **vector** in some space (e.g. \mathbb{R}^2), where each dimension usually "means something":

$$u = \begin{bmatrix} -0.6 \\ 0.8 \end{bmatrix}, v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \leftarrow ext{support for gun control} \leftarrow ext{support for abortion access}$$

We can summarise a vector by its length (or norm):

$$||u|| = \sqrt{(-0.6)^2 + (0.8)^2} = 1, \quad ||v|| = 5, \quad ||w|| = \sqrt{5}$$

The simplest linear algebraic unit is a **vector** in some space (e.g. \mathbb{R}^2), where each dimension usually "means something":

$$u = \begin{bmatrix} -0.6 \\ 0.8 \end{bmatrix}, v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xleftarrow{} \text{support for gun control} \\ \xleftarrow{} \text{support for abortion access}$$

We can summarise a vector by its length (or norm):

$$||u|| = \sqrt{(-0.6)^2 + (0.8)^2} = 1, \quad ||v|| = 5, \quad ||w|| = \sqrt{5}$$

We can also combine vectors into a single scalar via **dot products**:

$$v \cdot w = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 4 \cdot 1 + 3 \cdot 2 = 10$$

The simplest linear algebraic unit is a **vector** in some space (e.g. \mathbb{R}^2), where each dimension usually "means something":

$$u = \begin{bmatrix} -0.6 \\ 0.8 \end{bmatrix}, v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xleftarrow{} \text{support for gun control} \\ \xleftarrow{} \text{support for abortion access}$$

We can summarise a vector by its length (or norm):

$$||u|| = \sqrt{(-0.6)^2 + (0.8)^2} = 1, \quad ||v|| = 5, \quad ||w|| = \sqrt{5}$$

We can also combine vectors into a single scalar via dot products:

$$v \cdot w = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 4 \cdot 1 + 3 \cdot 2 = 10$$

But, how does this dot product relate to their individual lengths?

According to the **Schwarz inequality**,

$$\underbrace{|v \cdot w|}_{\text{absolute value of dot product}} \leq \underbrace{||v|| \cdot ||w||}_{\text{product of lengths}}$$

According to the **Schwarz inequality**,

$$\underbrace{|v \cdot w|}_{\text{absolute value of dot product}} \leq \underbrace{||v|| \cdot ||w||}_{\text{product of lengths}}$$

Indeed, we can confirm this is true for our vectors!

$$|v \cdot w| = |4 \cdot 1 + 3 \cdot 2| = 10 < 5\sqrt{5} = ||v|| \cdot ||w||$$

According to the **Schwarz inequality**,

$$\underbrace{|v \cdot w|}_{\text{absolute value of dot product}} \leq \underbrace{||v|| \cdot ||w||}_{\text{product of lengths}}$$

Indeed, we can confirm this is true for our vectors!

$$|v \cdot w| = |4 \cdot 1 + 3 \cdot 2| = 10 < 5\sqrt{5} = ||v|| \cdot ||w||$$

Let's visualize this in our example space.

†Roughly, but not exactly the sample covariance; see end of slides for the difference.

Intuitively, the dot product tells us how strongly w and v co-vary[†].

†Roughly, but not exactly the sample covariance; see end of slides for the difference.

Intuitively, the dot product tells us how strongly w and v co-vary \dot{v} .

Geometrically, the dot product can be defined as how strongly *w* projects onto *v*.

We can also combine vectors by addition:

$$v + w = \begin{bmatrix} 4+1\\3+2 \end{bmatrix} = \begin{bmatrix} 5\\5 \end{bmatrix}$$

We can also combine vectors by addition:

$$v + w = \begin{bmatrix} 4+1\\3+2 \end{bmatrix} = \begin{bmatrix} 5\\5 \end{bmatrix}$$

and the **Triangle inequality** tells us how the length of the sum relates to length of its parts:

$$||v + w|| \le ||v|| + ||w||$$

We can also combine vectors by addition:

$$v + w = \begin{bmatrix} 4+1\\3+2 \end{bmatrix} = \begin{bmatrix} 5\\5 \end{bmatrix}$$

and the **Triangle inequality** tells us how the length of the sum relates to length of its parts:

$$||v + w|| \le ||v|| + ||w||$$

In our case:

$$||v + w|| = 5\sqrt{2} \le 5 + \sqrt{5} = ||v|| + ||w||$$

Problem 6 (2.1.9): transforming matrices

Problem 6 (2.1.9): transforming matrices

Consider 3 issues in U.S. politics: free trade, abortion access, and gun control.

Consider 3 issues in U.S. politics: free trade, abortion access, and gun control. Suppose we have the views of voters Maria, Dev, and Jinyang on each issue, their intensities of support (+) or opposition (-) encoded as vectors a_1, a_2, a_3 in \mathbb{R}^3 .

Consider 3 issues in U.S. politics: free trade, abortion access, and gun control. Suppose we have the views of voters Maria, Dev, and Jinyang on each issue, their intensities of support (+) or opposition (-) encoded as vectors a_1, a_2, a_3 in \mathbb{R}^3 .

We can collect these vectors into rows of matrix $\mathbf{A} = [a_1, a_2, a_3]$:

Consider 3 issues in U.S. politics: free trade, abortion access, and gun control. Suppose we have the views of voters Maria, Dev, and Jinyang on each issue, their intensities of support (+) or opposition (-) encoded as vectors a_1, a_2, a_3 in \mathbb{R}^3 .

We can collect these vectors into rows of matrix $\mathbf{A} = [a_1, a_2, a_3]$:

	free trade	abortion access	gun control	\
Maria {	1	2	4	
Dev{	-2	3	1	= A
Jinyang{	_4	1	2]

Suppose we want to scale down each person's views to a single ideology measure in \mathbb{R} and collect it in a vector b. How would we do this?

Let's say we have used some algorithms to compute a vector of the U.S. Democratic party platform's intensity of support/opposition of these three issues $x = [1, 3, 4]^T$.

Let's say we have used some algorithms to compute a vector of the U.S. Democratic party platform's intensity of support/opposition of these three issues $x = [1, 3, 4]^T$.

One method for ideologically scaling our voters is treating their positions as a **linear transformation** of the party's positions \rightsquigarrow **A**x.

$$\mathbf{A}x = \begin{vmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \\ 4 \end{vmatrix} = b$$

Let's say we have used some algorithms to compute a vector of the U.S. Democratic party platform's intensity of support/opposition of these three issues $x = [1, 3, 4]^T$.

One method for ideologically scaling our voters is treating their positions as a **linear transformation** of the party's positions \rightsquigarrow **A**x.

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = b$$

There are two ways to conduct a linear transformation.

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ ? \\ ? \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ ? \\ ? \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ ? \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ ? \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

1. As a dot product of row vectors with x:

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} =$$

1. As a dot product of row vectors with x:

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix}$$

1. As a dot product of row vectors with x:

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} + 3 \cdot \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

1. As a dot product of row vectors with x:

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} + 3 \cdot \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

1. As a dot product of row vectors with x:

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} + 3 \cdot \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

1. As a dot product of row vectors with x:

$$\mathbf{A} x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix} \leftarrow \text{Maria's scaled ideology} \\ \leftarrow \text{Dev's scaled ideology} \\ \leftarrow \text{Jinyang's scaled ideology}$$

2. As a sum of column vectors weighted by x:

$$\mathbf{A}x = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 3 & 1 \\ -4 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} + 3 \cdot \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} + 4 \cdot \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 23 \\ 11 \\ 7 \end{bmatrix}$$

In either case, the results b of the linear transformation of the party positions (x) by our voters' issue positions (A) reveals Maria to be the "strongest Democrat".

Now, suppose that we've collected two voters' issue positions, \mathbf{A} , and we already asked them to numerically scale the strength of their Republican-Democrat affiliation (in \mathbb{R}), collected as vector \mathbf{b} .

Now, suppose that we've collected two voters' issue positions, \mathbf{A} , and we already asked them to numerically scale the strength of their Republican-Democrat affiliation (in \mathbb{R}), collected as vector \mathbf{b} .

Now, suppose that we've collected two voters' issue positions, \mathbf{A} , and we already asked them to numerically scale the strength of their Republican-Democrat affiliation (in \mathbb{R}), collected as vector \mathbf{b} .

$$\text{Rashida} \{ \begin{pmatrix} 2 & 3 \\ \text{Jeb} \{ & 4 & 1 \end{pmatrix} = \mathbf{A}, \ \text{Rashida} \{ \begin{pmatrix} 1 \\ 17 \end{pmatrix} = b$$

This time, we don't have measures of x, the "Democratic-ness" of support for each issue. Can we solve for this, though?

$$\mathbf{A}x = b \quad \sim \quad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \qquad \sim \qquad \begin{aligned} 2x_1 + 3x_2 &= 1 \\ 4x_1 + x_2 &= 17 \end{aligned}$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \qquad \sim \qquad \begin{aligned} 2x_1 + 3x_2 &= 1 \\ 4x_1 + x_2 &= 17 \end{aligned}$$

Step 1. Write down an augmented matrix:

$$[\mathbf{A} \mid b] = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 17 \end{bmatrix}$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \sim 2x_1 + 3x_2 = 1 \\ 4x_1 + x_2 = 17$$

Step 1. Write down an augmented matrix:

$$[\mathbf{A} \mid b] = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 17 \end{bmatrix}$$

<u>Step 2.</u> Reduce augmented matrix, if possible, until an upper triangular matrix appears on left-hand side (row echelon form),

$$\left[\begin{array}{cc|c} U_{11} & U_{12} & b_1' \\ 0 & U_{22} & b_2' \end{array}\right]$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \qquad \sim \qquad \begin{array}{c} 2x_1 + 3x_2 = 1 \\ 4x_1 + x_2 = 17 \end{array}$$

Step 1. Write down an augmented matrix:

$$\begin{bmatrix} \mathbf{A} \mid b \end{bmatrix} = \begin{bmatrix} 2 & 3 \mid 1 \\ 4 & 1 \mid 17 \end{bmatrix}$$

<u>Step 2.</u> Reduce augmented matrix, if possible, until an upper triangular matrix appears on left-hand side (row echelon form),

$$\left[\begin{array}{cc|c}
2 & 3 & 1 \\
4 & 1 & 17
\end{array}\right]$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \sim 2x_1 + 3x_2 = 1 \\ 4x_1 + x_2 = 17$$

Step 1. Write down an augmented matrix:

$$[\mathbf{A} \mid b] = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 17 \end{bmatrix}$$

<u>Step 2.</u> Reduce augmented matrix, if possible, until an upper triangular matrix appears on left-hand side (row echelon form),

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 17 \end{bmatrix} + (-2 \cdot \text{row } 1)$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \qquad \sim \qquad \begin{aligned} 2x_1 + 3x_2 &= 1 \\ 4x_1 + x_2 &= 17 \end{aligned}$$

Step 1. Write down an augmented matrix:

$$[\mathbf{A} \mid b] = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 17 \end{bmatrix}$$

<u>Step 2.</u> Reduce augmented matrix, if possible, until an upper triangular matrix appears on left-hand side (row echelon form),

$$\left[\begin{array}{cc|c}
2 & 3 & 1 \\
4-4 & 1-6 & 17-2
\end{array}\right]$$

Gaussian elimination: A generalized "linear algebraic" way of solving systems of equations.

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix} \qquad \sim \qquad \begin{array}{c} 2x_1 + 3x_2 = 1 \\ 4x_1 + x_2 = 17 \end{array}$$

Step 1. Write down an augmented matrix:

$$[\mathbf{A} \mid b] = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 17 \end{bmatrix}$$

Step 2. Reduce augmented matrix, if possible, until an upper triangular matrix appears on left-hand side (row echelon form),

$$\left[\begin{array}{cc|c} 2 & 3 & 1 \\ 0 & -5 & 15 \end{array}\right]$$

Step 4. Extract solution for x, if it exists.

Step 4. Extract solution for x, if it exists.

Step 4. Extract solution for x, if it exists.

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix}$$

Step 4. Extract solution for x, if it exists.

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim 2x_1 + 3x_2 = 1$$

$$-5x_2 = 15$$

Step 4. Extract solution for x, if it exists.

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim 2x_1 + 3x_2 = 1 \\ x_2 = -3$$

Step 4. Extract solution for x, if it exists.

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim 2x_1 + 3 \cdot -3 = 1 \\ x_2 = -3$$

Step 4. Extract solution for x, if it exists.

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim 2x_1 = 10 \\ x_2 = -3$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \frac{5}{x_2} = -3$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \mathbf{5}$$
$$x_2 = -\mathbf{3}$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \mathbf{5}$$
$$x_2 = -\mathbf{3}$$

$$\left[\begin{array}{c|c}2&3&1\\0&-5&15\end{array}\right]$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \mathbf{5}$$
$$x_2 = -\mathbf{3}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \cdot -\frac{1}{5}$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \mathbf{5}$$
$$x_2 = -\mathbf{3}$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & -3 \end{bmatrix} + (-3 \cdot \text{row } 2)$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \mathbf{5}$$
$$x_2 = -\mathbf{3}$$

$$\left[\begin{array}{c|c} 2 & 0 & 10 \\ 0 & 1 & -3 \end{array}\right] \cdot \frac{1/2}{2}$$

Step 4. Extract solution for x, if it exists.

Option a: In system of equations, start with most obvious solution, and keep substituting in to get others (back-substitution).

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & -5 & 15 \end{bmatrix} \sim x_1 = \mathbf{5}$$
$$x_2 = -\mathbf{3}$$

$$\left[\begin{array}{cc|c} 1 & 0 & \mathbf{5} \\ 0 & 1 & -\mathbf{3} \end{array}\right]$$

Rashida
$$\left\{ \begin{array}{ccc} & & & & \\ & 2 & & & \\ & & 4 & & 1 \end{array} \right) \cdot \begin{bmatrix} \mathbf{5} \\ -\mathbf{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}$$

$$\text{Rashida} \left\{ \left(\begin{array}{ccc} \textbf{2} & \textbf{3} \\ \textbf{3} & \textbf{1} \end{array} \right) \cdot \begin{bmatrix} \textbf{5} \\ \textbf{-3} \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}$$

In either case, the solution x tells us that:

$$\text{Rashida} \left\{ \begin{array}{ccc} & & & & \\ & 2 & & & \\ & & 4 & & 1 \end{array} \right) \cdot \begin{bmatrix} \mathbf{5} \\ -\mathbf{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}$$

In either case, the solution x tells us that:

- ▶ support for public healthcare is a Democratic position → increased support = increases Democratic affiliation by 5
- ▶ support for military spending is a Republican position \rightsquigarrow increased support = decreases Democratic affiliation by -3

$$\text{Rashida} \left\{ \begin{array}{ccc} & & & & \\ & 2 & & & \\ & & 4 & & 1 \end{array} \right) \cdot \begin{bmatrix} \mathbf{5} \\ -\mathbf{3} \end{bmatrix} = \begin{bmatrix} 1 \\ 17 \end{bmatrix}$$

In either case, the solution x tells us that:

- ▶ support for public healthcare is a Democratic position → increased support = increases Democratic affiliation by 5
- ▶ support for military spending is a Republican position \rightsquigarrow increased support = decreases Democratic affiliation by -3

In many cases, there are not enough "independent" columns or rows in $\mathbf{A} \rightsquigarrow$ we fail $\underline{\mathsf{Step 2}}$ and cannot find exactly one solution (more this week).

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

$$\Longrightarrow \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

$$\Rightarrow \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$

$$\Rightarrow x = \mathbf{A}^{-1}b$$

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

$$\Rightarrow \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$

$$\Rightarrow x = \mathbf{A}^{-1}b$$

$$\mathsf{C} = \mathsf{A}\mathsf{B}$$

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

$$\Rightarrow \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$

$$\Rightarrow x = \mathbf{A}^{-1}b$$

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

$$\Rightarrow \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$

$$\Rightarrow x = \mathbf{A}^{-1}b$$

$$\label{eq:constraints} \begin{split} & \textbf{C} & = \textbf{A}\textbf{B} \\ \Longrightarrow \textbf{A}^{-1}\textbf{C} & = \textbf{A}^{-1}\textbf{A}\textbf{B} \\ \Longrightarrow \textbf{A}^{-1}\textbf{C}\textbf{C}^{-1} & = \textbf{B}\textbf{C}^{-1} \end{split}$$

Another method for solving $\mathbf{A}x = b$ would be eliminating \mathbf{A} from the left-hand side of the equation completely via its **inverse**:

$$\mathbf{A}x = b$$

$$\Rightarrow \mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$

$$\Rightarrow x = \mathbf{A}^{-1}b$$

$$\begin{array}{ccc} \textbf{C} & =& \textbf{A}\textbf{B} \\ \Longrightarrow \textbf{A}^{-1}\textbf{C} & =& \textbf{A}^{-1}\textbf{A}\textbf{B} \\ \Longrightarrow \textbf{A}^{-1}\textbf{C}\textbf{C}^{-1} & =& \textbf{B}\textbf{C}^{-1} \\ \Longrightarrow \textbf{A}^{-1} & =& \textbf{B}\textbf{C}^{-1} \end{array}$$

If \mathbf{A}^{-1} does not exist, \mathbf{A} is called **singular**. How would we know \mathbf{A} is singular?

If \mathbf{A}^{-1} does not exist, \mathbf{A} is called **singular**. How would we know \mathbf{A} is singular?

- if there aren't enough independent rows or columns.
- ▶ if the "volume" **A** takes up in space (determinant) is zero.
- ightharpoonup if there is more than one solution to the system $\mathbf{A}x = \mathbf{0}$.

If \mathbf{A}^{-1} does not exist, \mathbf{A} is called **singular**. How would we know \mathbf{A} is singular?

- if there aren't enough independent rows or columns.
- if the "volume" A takes up in space (determinant) is zero.
- ightharpoonup if there is more than one solution to the system $\mathbf{A}x = \mathbf{0}$.

Ok, so how exactly do you invert a non-singular matrix?

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{cc|c}
2 & 3 & 1 & 0 \\
4 & 1 & 0 & 1
\end{array}\right]$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 1 & 0 \\ 4-4 & 1-6 & 0-2 & 1 \\ \end{bmatrix} + (-2 \cdot \text{row } 1)$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{c|cc|c}
2 & 3 & 1 & 0 \\
0 & -5 & -2 & 1
\end{array} \right]$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{c|cc|c}
2 & 3 & 1 & 0 \\
0 & 1 & 2/5 & -1/5
\end{array}\right]$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3-3 & | & 1-6/5 & 0+3/5 \\ 0 & 1 & | & 2/5 & -1/5 \end{bmatrix} + (-3 \cdot \text{row 2})$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{cc|c}
2 & 0 & -1/5 & 3/5 \\
0 & 1 & 2/5 & -1/5
\end{array}\right]$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

$$\left[\begin{array}{cc|c}
1 & 0 & -1/10 & 3/10 \\
0 & 1 & 2/5 & -1/5
\end{array}\right] \cdot 1/2$$

All we have to do is to solve:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We can split these into two systems and solve each via Gauss-Jordan elimination:

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 & 3 & 1 \\ 4 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 3 & 0 \\ 4 & 1 & 1 \end{bmatrix}$$

```
We can verify this in R:
```

```
A <- matrix(c(2,4,3,1), ncol=2, nrow=2) solve(A)
```

```
## [,1] [,2]
## [1,] -0.1 0.3
## [2,] 0.4 -0.2
```

Important Takeaways

- 1. A vector's length captures its' magnitude
 - ex: intensity of a voter's public opinion on select issues
- The dot product between two vectors roughly captures their covariance
 - ex: how well-aligned (positive or negative) two voters' public opinions are
- A matrix (a convenient way of collecting vectors) can be interpreted as a transformation on a (known or unknown) vector
 - ex: scaling voters' public opinions according to party positions
- 4. Matrix multiplication is just a bunch of vector dot products
- 5. Solving for unknown vectors (e.g. system of equations) or matrices (e.g. inversion) can be done via row reduction
- 6. Order of operations matters in linear algebra!
 - ► Triangle and Schwarz Inequality broadly tells us that combination of parts is usually greater than their whole
 - Cancellations in Problem 11 only work if we multiply C⁻¹ to right-hand side

This Coming Week

Suggested concepts to focus on:

- Space and subspace
 - column space
 - row space
 - nullspace
- Linear independence
 - rank
 - basis

Questions?

Appendix: Covariance and Dot Product

The **sample covariance** between two vectors v = [4, 3] and w = [1, 2] is:

$$S_{v,w} = (v_1 - \overline{v}) \cdot (w_1 - \overline{w}) + (v_2 - \overline{v}) \cdot (w_2 - \overline{w})$$

where \overline{v} and \overline{w} are the averages across all entries in each vector respectively. More generally for generic vectors x,y in some d-dimensional space:

$$S_{x,y} = \frac{1}{d-1} \sum_{i=1}^{d} (x_j - \overline{x}) \cdot (y_j - \overline{y})$$

 \leadsto same as taking the **dot product** of the <u>de-meaned</u> (or centered) vectors, $x-\overline{x}$ and $y-\overline{y}$ and dividing by $\frac{1}{d-1}$, so they measure \approx same thing.

However, sample covariance implies that v and w are observations of random variables (which have **covariances**), whereas dot product applies to *any* two vectors \rightsquigarrow we'll return to covariance of random variables in Gov 2002!