Национальный исследовательский университет ИТМО

Факультет Программной Инженерии и Компьютерной техники

Основы профессиональной деятельности Лабораторная работа №3 Выполнение циклических программ Вариант №9008

Выполнил: Кузьмин Дмитрий Анатольевич

> Группа: Р3109

Преподаватель: Ткешелашвили Н. М.

Содержание

1	Задание	2
2	Ход работы	3
	2.1 Текст исходной программы	3
	2.2 Описание программы	3
	2.3 Таблица трассировки	5
3	Вывод	5
J	Быбод	O

1 Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Введит	9008		
51D: 51E: 51F: 520: 521: + 522: 523: 524: 525: 526: 527: 528: 529: 52A:	0534 0200 4000 0200 AF80 0740 0680 EEFB AF03 EEF8 4EF5 EEF5 ABF4 0480	52B: 52C: 52D: 52E: 52F: 530: 531: 532: 533: 534: 535: 536:	F401 CE04 0400 7EF1 F901 EEEF 851F CEF6 0100 CE00 1101 0E00
		•	

Рис. 1: Задание

2 Ход работы

2.1 Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии
51D	0534	FirstIndex	
51E	0200	LastIndex	
51F	4000	Len	
520	0200	Result	
521	AF80	LD 80	Записывается 0080 -> АС
522	0740	DEC	Декремент AC - 1 -> AC
523	0680	SWAB	Обмен старшего и младшего байтов
323	0000	SWAD	аккумулятора
524	EEFB	ST IP - 4	аккумулятора Записывает в ячейку с адресом IP - 4 значение
524	EEFD	51 11 - 4	из АС
525	AF03	LD 03	Записывается 0003 -> АС
526	EEF8	ST IP - 7	Записывает в ячейку с адресом IP - 7 значение
320	EEFO	51 11 - 1	записывает в ячеику с адресом 1г - 7 значение из АС
527	4EF5	ADD IP - 10	Записывает в АС -> АС + М
528	EEF5	ST IP - 10	
528	EEF 5	51 1P - 10	Записывает в ячейку с адресом IP - 10 значение из AC
529	ABF4	LD -(IP - 11)	из АС Загружает в аккумулятор значение из ячейки с
329	ADF4	LD -(IF - II)	загружает в аккумулятор значение из ячеики с адресом IP - 11 - 1
52A	0480	ROR	адресом 17 - 11 - 1 АС и С сдвигаются вправо АС0 -> С, С -> АС15
52A 52B	F401	BHIS IP + 1	Переход, если С==1
52B 52C	CE04	$\frac{\text{JUMP (IP + 1)}}{\text{JUMP (IP + 4)}}$	В IP запишется значение IP + 5
52D	0400	ROL	АС и С сдвигаются влево, AC15 -> C, C -> AC0
52E	7EF1	CMP (IP - 14)	Установить флаги по результату АС - М
52F	F901	BGE IP + 1	Переход через команду если АС больше или
700	BBBB	CE ID 4.0	равно М
530	EEEF	ST IP - 16	Записывает в ячейку с адресом ІР - 16 значение
701	0545	100D X4D	из АС
531	851F	LOOP 51F	M - 1 -> M ; если $M <= 0$, то $IP + 1$ -> IP
532	CEF6	JUMP (IP - 9)	(IP - 9) -> IP
533	0100	HLT	Останов
534	CE00	arr	1 ячейка массива
535	1101	arr	2 ячейка массива
536	0E00	arr	3 ячейка массива

Таблица 1: Текст исходной программы

2.2 Описание программы

• Функция, реализуемая программой:

Поиск минимального нечетного элемента массива

 \bullet Область представления: arr[i], result - знаковые 16 разрядные числа i - беззнаковые 11 разрядные числа firstindex, lastindex - беззнаковые 11 разрядные числа

• ОДЗ:

$$len \in [1, 127]$$

$$i \in [0; 2^{11} - 1]$$

$$arr[i], result \in [-2^{15}; 2^{15} - 1]$$

$$firstindex \in [0; 41E] \cup [537; 7FF]$$

2.3 Таблица трассировки

Адр	Знач	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знач
XXX	XXXX	XXX	XXXX	XXX	XXXX	XXX	XXXX	XXXX	XXXX	XXX	XXXX
521	AF80	522	AF80	521	FF80	000	FF80	FF80	1000		
522	0740	523	0740	522	0740	000	0522	FF7F	1001		
523	0680	524	0680	523	0680	000	0523	7FFF	0001		
524	EEFB	525	EEFB	520	7FFF	000	FFFB	7FFF	0001	520	7FFF
525	AF03	526	AF03	525	0003	000	0003	0003	0001		
526	EEF8	527	EEF8	51F	0003	000	FFF8	0003	0001	51F	0003
527	4EF5	528	4EF5	51D	0420	000	FFF5	0423	0000		
528	EEF5	529	EEF5	51E	0423	000	FFF5	0423	0000	51E	0423
529	ABF4	52A	ABF4	422	FFFD	000	FFF4	FFFD	1000	51E	0422
52A	0480	52B	0480	52A	0480	000	052A	7FFE	0011		
52B	F401	52D	F401	52B	F401	000	0001	7FFE	0011		
52D	0400	52E	0400	52D	0400	000	052D	FFFD	1010		
52E	7EF1	52F	7EF1	520	7FFF	000	FFF1	FFFD	0011		
52F	F901	530	F901	52F	F901	000	052F	FFFD	0011		
530	EEEF	531	EEEF	520	FFFD	000	FFEF	FFFD	0011	520	FFFD
531	851F	532	851F	51F	0002	000	0001	FFFD	0011	51F	0002
532	CEF6	529	CEF6	532	0529	000	FFF6	FFFD	0011		
529	ABF4	52A	ABF4	421	00C8	000	FFF4	00C8	0001	51E	0421
52A	0480	52B	0480	52A	0480	000	052A	8064	1010		
52B	F401	52C	F401	52B	F401	000	052B	8064	1010		
52C	CE04	531	CE04	52C	0531	000	0004	8064	1010		
531	851F	532	851F	51F	0001	000	0000	8064	1010	51F	0001
532	CEF6	529	CEF6	532	0529	000	FFF6	8064	1010		
529	ABF4	52A	ABF4	420	0013	000	FFF4	0013	0000	51E	0420
52A	0480	52B	0480	52A	0480	000	052A	0009	0011		
52B	F401	52D	F401	52B	F401	000	0001	0009	0011		
52D	0400	52E	0400	52D	0400	000	052D	0013	0000		
52E	7EF1	52F	7EF1	520	FFFD	000	FFF1	0013	0000		
52F	F901	531	F901	52F	F901	000	0001	0013	0000		
531	851F	533	851F	51F	0000	000	FFFF	0013	0000	51F	0000
533	0100	534	0100	533	0100	000	0533	0013	0000		

Таблица 2: Трассировка программы

3 Вывод

Во время выполнения данной лабораторной работы я научился работать с командами ветвления и циклами в БЭВМ. Также разобрался в работе различных видов косвенной адресации.