Linear Algebra Cheatsheet

i Eventual outline

• Part 1: Vectors

- Vectors
- Plane geometry
- Generalizing beyond \mathbb{R}^3 : vector spaces
- Projections
- Gram-Schmidt
- Applications of projections: linear regression least squares

• Part 2: Matrices

- Linear transformations (as matrices)
- Types of linear transformations (geometric perspective)
- Matrix multiplication
 - * Maybe: application: Markov chain/linear dynamical systems
- Matrix algebra rules (transpose, various indentities, etc.)
- Special matrices (symmetric, orthogonal, etc.)

• Part 3: Linear systems

- Matrix inverses
- Systems of equations as matrices
- LU and QR decompositions

• Part 4: Further matrix algebra (or name this eigenvalues)

- Eigenvalues and eigenvectors
- Spectral theorem (diagonolization) and definiteness of symmetric matrices
- Singular value decomposition
- The Hessian and the second derivative test

• Part 5: Matrix calculus and optimization

- Aside: Lagrange multipliers (constrained optimization)
- Calculus with vectors and matrices
 - * Gradient, Jacobian, Hessian, chain rule
- Basics of convex optimization
- Momentum

- Extra:
 - * Gauss-Newton method
 - * CS 205L stuff

I. Vectors

Definition 0.1 (\mathbf{R}^2 , \mathbf{R}^3 , \mathbb{R}^n). The set \mathbf{R}^2 is the set of all ordered pairs of real numbers ($\mathbf{R}^2 = \{(x,y): x,y \in \mathbf{R}\}$). The set itself should be thought of as a plane (i.e. the xy-cartesian plot). The set \mathbf{R}^3 is the set of all ordered triples of real numbers ($\mathbf{R}^3 = \{(x,y,z): x,y,z \in \mathbf{R}\}$). The set itself should be thought of as ordinary space. This generalizes to higher dimensions (\mathbf{R}^n).