epiworld

0.0-1

Generated by Doxygen 1.9.1

1 Example: 00-hello-world	1
2 Benchmarking	3
3 Contributor Code of Conduct	5
4 epiworld c++ template library	7
4.1 Main features	7
4.2 Algorithm	7
4.3 Hello world (C++)	8
4.4 Surveillance simulation	8
4.4.1 Preliminary results	9
4.4.2 Cases detected	10
5 MIT License	11
6 model1	13
7 EPI Simulator	15
7.1 Disease dynamics	15
7.2 Network dynamics	15
7.3 Contagion dynamics	15
7.4 Time dynamics	15
7.5 Updating agent's status	16
7.5.1 Other parameters	16
8 Namespace Index	17
8.1 Namespace List	17
9 Hierarchical Index	19
9.1 Class Hierarchy	19
10 Class Index	21
10.1 Class List	21
11 File Index	25
11.1 File List	25
12 Namespace Documentation	27
12.1 epiworld::sampler Namespace Reference	27
12.1.1 Detailed Description	27
12.1.2 Function Documentation	27
12.1.2.1 make_sample_virus_neighbors()	27
12.1.2.2 make_update_susceptible()	28
12.1.2.3 sample_virus_single()	28
12.2 sampler Namespace Reference	30

	12.2.1 Detailed Description	30
	12.2.2 Function Documentation	30
	12.2.2.1 make_sample_virus_neighbors()	30
	12.2.2.2 make_update_susceptible()	31
	12.2.2.3 sample_virus_single()	31
13	Class Documentation	35
	13.1 Action< TSeq > Struct Template Reference	35
	13.1.1 Detailed Description	35
	13.1.2 Constructor & Destructor Documentation	36
	13.1.2.1 Action()	36
	13.2 epiworld::Action < TSeq > Struct Template Reference	37
	13.2.1 Detailed Description	37
	13.2.2 Constructor & Destructor Documentation	37
	13.2.2.1 Action()	37
	13.3 AdjList Class Reference	38
	13.3.1 Constructor & Destructor Documentation	39
	13.3.1.1 AdjList()	39
	13.3.2 Member Function Documentation	39
	13.3.2.1 read_edgelist()	39
	13.4 epiworld::AdjList Class Reference	40
	13.4.1 Constructor & Destructor Documentation	40
	13.4.1.1 AdjList()	40
	13.4.2 Member Function Documentation	41
	13.4.2.1 read_edgelist()	41
	13.5 Agent < TSeq > Class Template Reference	41
	13.5.1 Detailed Description	43
	13.5.2 Member Function Documentation	44
	13.5.2.1 operator()()	44
	13.5.2.2 swap_neighbors()	44
	13.5.3 Friends And Related Function Documentation	45
	13.5.3.1 default_rm_entity	45
	13.6 epiworld::Agent < TSeq > Class Template Reference	45
	13.6.1 Detailed Description	47
	13.6.2 Member Function Documentation	48
	13.6.2.1 operator()()	48
	13.6.2.2 swap_neighbors()	48
	13.6.3 Friends And Related Function Documentation	48
	13.6.3.1 default_rm_entity	49
	13.7 AgentsSample < TSeq > Class Template Reference	49
	13.7.1 Detailed Description	49
	19.7.9 Constructor 9. Destructor Desumentation	ΕO

13.7.2.1 AgentsSample()	50
13.8 epiworld::AgentsSample < TSeq > Class Template Reference	50
13.8.1 Detailed Description	51
13.8.2 Constructor & Destructor Documentation	51
13.8.2.1 AgentsSample()	51
13.9 DataBase < TSeq > Class Template Reference	52
13.9.1 Detailed Description	53
13.9.2 Member Function Documentation	54
13.9.2.1 generation_time()	54
13.9.2.2 get_transmissions()	54
13.9.2.3 operator==() [1/3]	55
13.9.2.4 operator==() [2/3]	55
13.9.2.5 operator==() [3/3]	55
13.9.2.6 record_variant()	55
13.9.2.7 reproductive_number()	56
13.9.2.8 transition_probability()	56
13.10 epiworld::DataBase < TSeq > Class Template Reference	56
13.10.1 Detailed Description	58
13.10.2 Member Function Documentation	58
13.10.2.1 generation_time()	58
13.10.2.2 get_transmissions()	59
13.10.2.3 operator==()	59
13.10.2.4 record_variant()	60
13.10.2.5 reproductive_number()	60
13.10.2.6 transition_probability()	60
13.11 Entities < TSeq > Class Template Reference	61
13.11.1 Detailed Description	61
13.12 epiworld::Entities < TSeq > Class Template Reference	61
13.12.1 Detailed Description	62
13.13 Entities_const< TSeq > Class Template Reference	62
13.13.1 Detailed Description	63
13.14 epiworld::Entities_const< TSeq > Class Template Reference	63
13.14.1 Detailed Description	63
13.15 Entity< TSeq > Class Template Reference	64
13.15.1 Friends And Related Function Documentation	64
13.15.1.1 default_rm_entity	65
13.16 epiworld::Entity< TSeq > Class Template Reference	65
13.16.1 Friends And Related Function Documentation	66
13.16.1.1 default_rm_entity	66
13.17 epiworld::GlobalAction< TSeq > Class Template Reference	66
13.17.1 Detailed Description	67
13.17.2 Constructor & Destructor Documentation	67

13.17.2.1 GlobalAction()	67
13.18 GlobalAction < TSeq > Class Template Reference	67
13.18.1 Detailed Description	68
13.18.2 Constructor & Destructor Documentation	68
13.18.2.1 GlobalAction()	68
13.19 epiworld::LFMCMC< TData > Class Template Reference	68
13.19.1 Detailed Description	69
13.20 LFMCMC< TData > Class Template Reference	70
13.20.1 Detailed Description	71
13.21 epiworld::Model < TSeq > Class Template Reference	71
13.21.1 Detailed Description	78
13.21.2 Member Function Documentation	79
13.21.2.1 actions_add()	79
13.21.2.2 actions_run()	79
13.21.2.3 add_global_action()	80
13.21.2.4 clone_ptr()	80
13.21.2.5 load_agents_entities_ties()	80
13.21.2.6 reset()	81
13.21.2.7 run_multiple()	81
13.21.2.8 set_agents_data()	82
13.21.2.9 set_name()	82
13.21.2.10 write_data()	82
13.21.3 Member Data Documentation	83
13.21.3.1 rbinomd	83
13.21.3.2 rexpd	83
13.21.3.3 rgammad	83
13.21.3.4 rlognormald	84
13.21.3.5 rnormd	84
13.21.3.6 runifd	84
13.21.3.7 time_elapsed	84
13.22 Model < TSeq > Class Template Reference	85
13.22.1 Detailed Description	92
13.22.2 Member Function Documentation	92
13.22.2.1 actions_add()	92
13.22.2.2 actions_run()	93
13.22.2.3 add_global_action()	93
13.22.2.4 clone_ptr()	94
13.22.2.5 load_agents_entities_ties()	94
13.22.2.6 reset()	94
13.22.2.7 run_multiple()	95
13.22.2.8 set_agents_data()	95
13.22.2.9 set_name()	96

13.22.2.10 write_data()
13.22.3 Member Data Documentation
13.22.3.1 rbinomd
13.22.3.2 rexpd
13.22.3.3 rgammad
13.22.3.4 rlognormald
13.22.3.5 rnormd
13.22.3.6 runifd
13.22.3.7 time_elapsed
13.23 epiworld::epimodels::ModelDiffNet< TSeq > Class Template Reference
13.23.1 Detailed Description
13.24 ModelDiffNet< TSeq > Class Template Reference
13.24.1 Detailed Description
13.25 epiworld::epimodels::ModelSEIR< TSeq > Class Template Reference
13.25.1 Detailed Description
13.25.2 Member Data Documentation
13.25.2.1 update_exposed_seir
13.25.2.2 update_infected_seir
13.26 ModelSEIR < TSeq > Class Template Reference
13.26.1 Detailed Description
13.26.2 Member Data Documentation
13.26.2.1 update_exposed_seir
13.26.2.2 update_infected_seir
13.27 epiworld::epimodels::ModelSEIRCONN < TSeq > Class Template Reference
13.27.1 Constructor & Destructor Documentation
13.27.1.1 ModelSEIRCONN()
13.27.2 Member Function Documentation
13.27.2.1 clone_ptr()
13.27.2.2 reset()
13.28 ModelSEIRCONN< TSeq > Class Template Reference
13.28.1 Constructor & Destructor Documentation
13.28.1.1 ModelSEIRCONN()
13.28.2 Member Function Documentation
13.28.2.1 clone_ptr()
13.28.2.2 reset()
13.29 ModelSEIRCONNLogit < TSeq > Class Template Reference
13.29.1 Constructor & Destructor Documentation
13.29.1.1 ModelSEIRCONNLogit()
13.30 epiworld::epimodels::ModelSEIRD< TSeq > Class Template Reference
13.30.1 Detailed Description
13.31 ModelSEIRD< TSeq > Class Template Reference
13.31.1 Detailed Description

13.32 epiworld::epimodels::ModelSIR< TSeq > Class Template Reference
13.32.1 Detailed Description
13.33 ModelSIR < TSeq > Class Template Reference
13.33.1 Detailed Description
13.34 epiworld::epimodels::ModelSIRCONN< TSeq > Class Template Reference
13.34.1 Constructor & Destructor Documentation
13.34.1.1 ModelSIRCONN()
13.34.2 Member Function Documentation
13.34.2.1 clone_ptr()
13.34.2.2 reset()
13.35 ModelSIRCONN < TSeq > Class Template Reference
13.35.1 Constructor & Destructor Documentation
13.35.1.1 ModelSIRCONN()
13.35.2 Member Function Documentation
13.35.2.1 clone_ptr()
13.35.2.2 reset()
13.36 epiworld::epimodels::ModelSIRLogit< TSeq > Class Template Reference
13.36.1 Constructor & Destructor Documentation
13.36.1.1 ModelSIRLogit()
13.36.2 Member Function Documentation
13.36.2.1 clone_ptr()
13.36.2.2 reset()
13.37 ModelSIRLogit < TSeq > Class Template Reference
13.37.1 Constructor & Destructor Documentation
13.37.1.1 ModelSIRLogit()
13.37.2 Member Function Documentation
13.37.2.1 clone_ptr()
13.37.2.2 reset()
13.38 epiworld::epimodels::ModelSIS< TSeq > Class Template Reference
13.38.1 Detailed Description
13.39 ModelSIS< TSeq > Class Template Reference
13.39.1 Detailed Description
13.40 epiworld::epimodels::ModelSURV< TSeq > Class Template Reference
13.41 ModelSURV < TSeq > Class Template Reference
13.42 Network< Nettype, Nodetype, Edgetype > Class Template Reference
13.43 epiworld::PersonTools < TSeq > Class Template Reference
13.44 PersonTools< TSeq > Class Template Reference
13.45 epiworld::Progress Class Reference
13.45.1 Detailed Description
13.46 Progress Class Reference
13.46.1 Detailed Description
13.47 epiworld::Queue < TSeq > Class Template Reference

13.47.1 Detailed Description
13.48 Queue < TSeq > Class Template Reference
13.48.1 Detailed Description
13.49 RandGraph Class Reference
13.50 epiworld::SAMPLETYPE Class Reference
13.51 SAMPLETYPE Class Reference
13.52 epiworld::Tool < TSeq > Class Template Reference
13.52.1 Detailed Description
13.53 Tool < TSeq > Class Template Reference
13.53.1 Detailed Description
13.54 epiworld::Tools < TSeq > Class Template Reference
13.54.1 Detailed Description
13.55 Tools < TSeq > Class Template Reference
13.55.1 Detailed Description
13.56 epiworld::Tools_const< TSeq > Class Template Reference
13.56.1 Detailed Description
13.57 Tools_const < TSeq > Class Template Reference
13.57.1 Detailed Description
13.58 epiworld::UserData < TSeq > Class Template Reference
13.58.1 Detailed Description
13.58.2 Constructor & Destructor Documentation
13.58.2.1 UserData()
13.59 UserData< TSeq > Class Template Reference
13.59.1 Detailed Description
13.59.2 Constructor & Destructor Documentation
13.59.2.1 UserData()
13.60 epiworld::vecHasher< T > Struct Template Reference
13.60.1 Detailed Description
13.61 vecHasher < T > Struct Template Reference
13.61.1 Detailed Description
13.62 epiworld::Virus< TSeq > Class Template Reference
13.62.1 Detailed Description
13.63 Virus < TSeq > Class Template Reference
13.63.1 Detailed Description
13.64 epiworld::Viruses < TSeq > Class Template Reference
13.64.1 Detailed Description
13.65 Viruses < TSeq > Class Template Reference
13.65.1 Detailed Description
13.66 epiworld::Viruses_const< TSeq > Class Template Reference
13.66.1 Detailed Description
13.67 Viruses_const< TSeq > Class Template Reference
13.67.1 Detailed Description

14 File Documentation	161
14.1 include/epiworld/agent-meat-state.hpp File Reference	161
14.1.1 Detailed Description	162
Index	163

Example: 00-hello-world

Output from the program:

```
Running the model...
```

Benchmarking

Here we keep a list of scenarios where we compare epiworld with other ABM simulation engines. Although the comparison is made at the speed level, we also list features of capabilities and main differences between the engines.

4 Benchmarking

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory comments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers who do not follow the Code of Conduct may be removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is adapted from the Contributor Covenant (http://contributor-covenant.org), version 1.0.0, available at http://contributor-covenant.org/version/1/0/0/

epiworld c++ template library

4.1 Main features

This C++ template-header-only library provides a general framework for epidemiologic simulation. The main features of the library are:

- 1. Four key classes: Model, Person, Tool, and Virus.
- 2. The model features a social networks of Persons.
- 3. Persons can have multiple Tools as a defense system.
- 4. Tools can reduce contagion rate, transmissibility, death rates, and improve recovery rates.
- 5. Viruses can mutate (generating new variants).
- 6. Models can feature multiple states, e.g., HEALTHY, SUSCEPTIBLE, etc.
- 7. Models can have an arbitrary number of parameters.
- 8. **REALLY FAST** About 6.5 Million person/day simulations per second.

4.2 Algorithm

Setup

- · Create viruses.
- · Create tools (arbitrary).
- · Set model parameters (arbitrary).
- Create global events (e.g., surveillance).
- · Set up the population: small world network (default).
- Set up rewiring (optional).
- Set states (arbitrary number of them).

Run

- 1. Distribute the tool(s) and virus(es)
- 2. For each t in 1 -> Duration:
 - Update state for susceptible/infected/removed(?)
 - Mutate virus(es) (each individual)
 - Run global actions (e.g., surveillance)
 - · Run rewiring algorithm

Along update:

- · Contagion events are applied recorded.
- · New variants are recorded.
- · Optional user data is recorded.

4.3 Hello world (C++)

```
#include "include/epiworld/epiworld.hpp"
int main()
  // Creating a virus
 epiworld::Virus<> covid19("covid 19");
 covid19.set_infectiousness(.8);
  // Creating a tool
 epiworld::Tool<> vax("vaccine");
 vax.set_contagion_reduction(.95);
// Creating a model
  epiworld::Model<> model;
  // Adding the tool and virus
 model.add_virus(covid19, .01);
 model.add_tool(vax, .5);
  // Generating a random pop
 model.population_from_adjlist(
   epiworld::rgraph_smallworld(1000, 5, .2)
 // Initializing setting days and seed
model.init(60, 123123);
 // Running the model
model.run();
 model.print();
 return;
```

4.4 Surveillance simulation

- Incubation time of the disease $\sim~\text{Gamma}$ (3, ~1)
- Duration of the disease \sim Gamma (12, 1)
- · Probability of becoming symptomatic: 0.9
- Prob. of transmission: 1.0.
- · Vaccinated population: 25%
- · Vaccine efficacy: .9.
- · Vaccine reduction on transmission: 0.5.
- Surveillance program of x% of the population at random.
- Individuals who test positive become isolated.

4.4.1 Preliminary results

```
# With low surveillance
pop_size <- 20e3
pop_seed <- pop_size * .01
s_levels <- c(0.0001, 0.002)
system(sprintf("./07-surveillance.o %i %i 100 %.04f 2>&1", pop_seed, pop_size, s_levels[1]), intern = TRUE)
 cat(sep = "\n")
## Running the model...
##
##
##
## SIMULATION STUDY
##
                   : 20000
## Population size
## Days (duration)
                  : 200 (of 200)
## Number of variants : 1
## Last run elapsed t : 505.00ms
## Rewiring
                    : off
##
## Virus(es):
## - Covid19 (baseline prevalence: 100 seeds)
## Tool(s):
##
   - Vaccine (baseline prevalence: 25.00%)
##
## Model parameters:
                           : 12.0000
## - Infect period
## - Latent period
## - Latent period : 3.0000
## - Prob of symptoms : 0.7000
## - Prob of transmission : 1.0000
## - Prob. death
                           : 0.0010
## - Prob. reinfect
                          : 0.1000
## - Surveilance prob. : 1.0e-04
## - Vax efficacy : 0.9000
## - Vax redux transmision : 0.5000
##
## Distribution of the population at time 200:
## - Total susceptible (S) : 19900 -> 2106
## - Total recovered (S)
                                            0 -> 17369
## - Total latent (I)
                                          100 -> 109
## - Total symptomatic (I)
                                           0 -> 155
                                           0 -> 2
## - Total symptomatic isolated (I) :
##
   - Total asymptomatic (I)
  - Total asymptomatic isolated (I) :
                                           0 -> 0
##
## - Total removed (R)
                                           0 -> 187
##
## (S): Susceptible, (I): Infected, (R): Recovered
## _
hist1 <- read.csv("07-surveillance_hist.txt", sep = " ")</pre>
surv1 <- read.csv("07-surveillance_user_data.txt", sep = " ")</pre>
# With high surveillance
system(sprintf("./07-surveillance.o %i %i 100 %.04f 2>&1", pop_seed, pop_size, s_levels[2]), intern = TRUE)
 cat(sep = "\n")
## Running the model...
##
##
##
## SIMULATION STUDY
## Population size : 20000 . 200 (duration)
## Days (duration)
                    : 200 (of 200)
## Number of variants : 1
## Last run elapsed t : 530.00ms
## Rewiring
##
## Virus(es):
```

```
## - Covid19 (baseline prevalence: 100 seeds)
## Tool(s):
## - Vaccine (baseline prevalence: 25.00%)
##
## Model parameters:
## - Infect period
                           : 12.0000
                          : 3.0000
##
   - Latent period
## - Prob of symptoms
                            : 0.7000
  - Prob of transmission : 1.0000
                           : 0.0010
   - Prob. death
##
   - Prob. reinfect
##
                            : 0.1000
  - Surveilance prob.
                           : 0.0020
## - Vax efficacy
                          : 0.9000
##
   - Vax redux transmision : 0.5000
##
## Distribution of the population at time 200:
  - Total susceptible (S)
##
                                       : 19900 -> 2125
## - Total recovered (S)
                                              0 -> 17325
  - Total latent (I)
                                             100 -> 109
##
##
   - Total symptomatic (I)
                                              0 -> 155
## - Total symptomatic isolated (I)
                                               0 -> 8
                                      :
## - Total asymptomatic (I)
                                              0 -> 76
##
   - Total asymptomatic isolated (I) :
                                               0 -> 1
  - Total removed (R)
                                               0 -> 201
##
## (S): Susceptible, (I): Infected, (R): Recovered
## _
hist2 <- read.csv("07-surveillance_hist.txt", sep = " ")</pre>
surv2 <- read.csv("07-surveillance_user_data.txt", sep = " ")</pre>
hist_comb <- rbind(
 cbind(sim = as.character(s_levels[1]), hist1),
 cbind(sim = as.character(s_levels[2]), hist2)
qqplot(hist\_comb, aes(x = date, y = counts + 1, colour = state, linetype=sim)) +
 geom_line() +
 # scale_y_log10() +
labs(y = "Counts (log)")
```

4.4.2 Cases detected

MIT License

Copyright (c) 2021 George G. Vega Yon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

12 MIT License

model1

The dynamics of the simulation process are:

- 1. Discrete Markov process.
- 2. The simulation has the following parameters:
 - a. New variant emergence at rate X. b. For each variant k:
 - Unvaccinated individuals become sick rate C(k),
 - Mortality rate D(k),
 - Recovery rate H(k),
 - Vaccines have an efficaccy rate $\mathbb{E}\left(v,k\right)$ and pseudo vaccines (recovered) have efficacy rate $\mathbb{E}\left(r,k\right)$ $< \mathbb{E}\left(v,k\right)$. In general, the probability of i acquiring the disease k from j will be equal to

```
``` P(i gets the disease from j | their states) = C(k) * (1 - E(i,k)) * (1 - E(j, k)) ```
```

where (i,j) in (u,v,r). Efficacy rate for unvaccinated is zero.

- Vaccinated individuals have a reduced mortality rate D(k,v) > D(k), and recovered individuals D(k,r) in (D(k,v), D(k)]
- Vaccinated individuals have an increased recovery rate H (k, v) > H (k), whereas recovered's rate H (k, r) in [H(k), H(k, v)).

The sum of mortality and recovery rates is less than one since the difference represents no change.

- c. Each country vaccinates citizens at rate V function of A (availability) and B (citizens' acceptance rate.) d. In each country i, the entire population N(i) distributes between the following states:
  - Healthy unvaccinated (N (i,t,u)),
  - Healthy vaccinated ( $\mathbb{N}(i,t,v)$ ),
  - Deceased (N(i,t,d)),
  - Recovered (N(i,t,r)),
  - Unvaccinated and sick with variant (N(i,t,s,k|u))k., and
  - Vaccinated and sick with variant (N (i,t,s,k|v)) k .

```
Total sick are N(i,t,k,s) = sum(g in \{u,v\}) N(i,t,k,s|g)
```

Globally, we keep track of the prevalence of new variants. Variants can disappear if no more individuals port the variant, i.e., the prevalence rate P(k,t) = sum(i) N(i,s,k) equals zero.

d. Vaccines are manufactured at each country at rates  $\mathbb{M}(i)$  and uniformly shared with other countries at rate  $\mathbb{S}(i)$ . c. Population flows between each country pair (i,j) at a rate  $\mathbb{F}(i,j)$ . Flows between countries do not change Population and are symmetric.

14 model1

- 3. The simulation process is as follows:
  - (a) Countries are initialized with a total population N(i).
  - (b) Variant zero initializes at a random location i, with an initial prevalence P(k,t) = N(i,t,k).
  - (c) For time t in (0,T) do:
    - a. Unvaccinated individuals can become sick of variant  ${\bf k}$  with probability:
    - ```  $Pr(h->s|i,t,k,u) \sim sum(g in \{u,v\}) (N(i,t-1,s,k|g) + sum(j != i) F(i,j) * N(j,t-1,s,k|g)) * C(k) / (N(i) + sum(j != i) N(j)) ```$
    - b. Vaccinated individuals can become sick of variant k with probability:  $\Pr(v->s|i,t,k,v) \sim \Pr(h->s|i,t,k) * (1 E(v,k))$ .
    - b. Recovered individuals can become sick of variant k with probability:  $\Pr(v->s|i,t,k,r) \sim \Pr(h->s|i,t,k) * (1 E(r,k))$ .
    - c. Sick individuals with variant k die with probability D(k) or recover with probability H(k), otherwise they stay infected; with the rates depending on their vaccination status v or n.
    - d. Unvaccinated individuals vaccinate in country i with probability  $P(u->v) \sim V(A(i,t), B(i))$ .
    - e. The country vaccine supply changes.

## **EPI Simulator**

### 7.1 Disease dynamics

Diseases continuously evolve in time. Changes in their genetic sequence make them more or less resistant to the particular version of the vaccine. Mutations also affect the transmissibility level and mortality rate of the disease. Using this approach allows making vaccination efficacy a function of compatibility between the variant and the vaccine.

When an individual becomes infected, the disease accumulates mutations in the new host. Ultimately, there is no single version of the disease present in the model, but rather an infinite number of them, each slightly different from the other.

### 7.2 Network dynamics

We can assume that the Population is organized in fully connected blocks for the first version of the model. Block sizes and the number of connections between blocks are Poisson random variables. Individuals interact with all the members of their blocks, and bridging individuals allow the disease to move across blocks.

### 7.3 Contagion dynamics

The transmission of the disease will be governed by the number of vaccinated, infected, and recovered within each block. Transmission between blocks will be treated in the same way, although individuals bridging the block will only interact with others within the block and their direct connections across the blocks.

### 7.4 Time dynamics

Time dynamics has two components, how biology evolves and how agents react.

The model develops as a continuous-time Markov process. Each block of individuals takes action at rates  $\mathbb{L}\left(\frac{1}{N}\right)$  function of the local number of infections. This way, if

16 EPI Simulator

### 7.5 Updating agent's status

Like most other components, updating agents' states can be personalized. A naive approach allows agents to get infected with a single virus or stay as-is. The probability of this event is conditional on acquiring at most one virus. Since these are independent events, the conditional probability is computed as follows:

#### Where

```
P(only variant k) = P(k) * Prod(m!=v) (1 - P(m))

P(at most 1) = P(None) + Sum(v in variants) P(v) * Prod(m != v) (1 - P(m))

P(None) = Prod(v in variants) (1 - P(v))
```

Furthermore, the (Variant, Person) pairs are treated independently.

### 7.5.1 Other parameters

- · Who did you get the infection from.
- · Omicron is 1.5 more infectious than delta.
- · Surveillance:
  - Pull people to be tested at random.
  - Or at symptoms.
  - A mix of the two.
- Define a class for passing extra functions and datasets, for example, testing surveillance.
- · Exposed people become infectious after k days.
- Network changesthe can be a function of an ERGM. Apply K steps throughout time.
- · Add progress bar.

# Namespace Index

## 8.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

epiworld	::sampler		
	Functions for sampling viruses		27
sampler			
	Functions for sampling viruses	9	30

18 Namespace Index

# **Hierarchical Index**

## 9.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

$Action {} \ldots \ldots$	. 35
${\sf epiworld::} Action < {\sf TSeq} > \ \ldots \$	
AdjList	. 38
epiworld::AdjList	. 40
Agent< TSeq >	
epiworld::Agent< TSeq >	
AgentsSample < TSeq >	
epiworld::AgentsSample < TSeq >	
DataBase < TSeq >	
epiworld::DataBase< TSeq >	
Entities < TSeq >	
epiworld::Entities< TSeq >	
Entities_const< TSeq >	
epiworld::Entities_const< TSeq >	
Entity< TSeq >	
epiworld::Entity< TSeq >	
$epiworld:: Global Action < TSeq > \dots $	
GlobalAction < TSeq >	
epiworld::LFMCMC< TData >	
LFMCMC< TData >	
epiworld::Model < TSeq >	
Model < TSeq >	
${\sf epiworld::} {\sf Model} {\sf  \dots $	. 71
ModelSEIRCONN < TSeq >	108
ModelSEIRCONNLogit < TSeq >	111
ModelSIRCONN < TSeq >	122
ModelSIRLogit < TSeq >	127
ModelSURV < TSeq >	136
epiworld::epimodels::ModelSEIRCONN< TSeq >	106
$epiworld:: epimodels:: Model SIRCONN < TS eq > \dots $	119
epiworld::epimodels::ModelSIRLogit< TSeq >	124
epiworld::epimodels::ModelSURV< TSeq >	133
epiworld::Model< int >	. 71
	100
ModelSEIR< TSeq >	
·	

20 Hierarchical Index

ModelSEIRD< TSeq >	4
ModelSIR < TSeq >	8
ModelSIS< TSeq >	
epiworld::epimodels::ModelDiffNet< TSeq >	
epiworld::epimodels::ModelSEIR< TSeq >	
epiworld::epimodels::ModelSEIRD< TSeq >	
epiworld::epimodels::ModelSIR< TSeq >	
epiworld::epimodels::ModelSIS< TSeq >	0
Network< Nettype, Nodetype, Edgetype >	8
epiworld::PersonTools< TSeq >	8
PersonTools < TSeq >	
epiworld::Progress	
Progress	
epiworld::Queue< TSeq >	
Queue< TSeq >	
RandGraph	
epiworld::SAMPLETYPE	
SAMPLETYPE	
epiworld::Tool< TSeq >	
Tool< TSeq >	
epiworld::Tools< TSeq >	
Tools $<$ TSeq $>$	
epiworld::Tools_const< TSeq >	
Tools_const< TSeq >	
epiworld::UserData< TSeq >	
UserData < TSeq >	
epiworld::vecHasher< T >	
vecHasher< T >	
epiworld::Virus< TSeq >	
Virus< TSeq >	
epiworld::Viruses< TSeq >	
Viruses < TSeq >	
epiworld::Viruses_const< TSeq >	
Viruses_const< TSeq >	9

# **Class Index**

## 10.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Action< TSeq >	
Action data for update an agent	35
epiworld::Action < TSeq >	
Action data for update an agent	37
AdjList	38
epiworld::AdjList	40
Agent < TSeq >	
Agent (agents)	41
epiworld::Agent< TSeq >	
Agent (agents)	45
AgentsSample < TSeq >	
Sample of agents	49
epiworld::AgentsSample < TSeq >	
Sample of agents	50
DataBase < TSeq >	
Statistical data about the process	52
epiworld::DataBase< TSeq >	
Statistical data about the process	56
Entities < TSeq >	
Set of Entities (useful for building iterators)	61
epiworld::Entities< TSeq >	
Set of Entities (useful for building iterators)	61
Entities_const < TSeq >	
Set of Entities (const) (useful for iterators)	62
epiworld::Entities_const< TSeq >	
Set of Entities (const) (useful for iterators)	63
Entity < TSeq >	64
epiworld::Entity < TSeq >	65
epiworld::GlobalAction< TSeq >	
Template for a Global Action	66
GlobalAction < TSeq >	
Template for a Global Action	67
epiworld::LFMCMC< TData >	
Likelihood-Free Markov Chain Monte Carlo	68
LFMCMC< TData >	
Likelihood-Free Markov Chain Monte Carlo	70

22 Class Index

epiworld::Model< TSeq >	
Core class of epiworld	71
Model < TSeq >	
Core class of epiworld	85
epiworld::epimodels::ModelDiffNet< TSeq >	
Template for a Network Diffusion Model	98
ModelDiffNet< TSeq >	
'	100
epiworld::epimodels::ModelSEIR< TSeq >	
	101
ModelSEIR < TSeq >	
	104
	106
· · · · · · · · · · · · · · · · · · ·	108
· · · · · · · · · · · · · · · · · · ·	111
epiworld::epimodels::ModelSEIRD< TSeq >	
	113
ModelSEIRD < TSeq >	
	114
epiworld::epimodels::ModelSIR< TSeq >	
·	116
ModelSIR< TSeq >	
	118
	119
· · · · · · · · · · · · · · · · · · ·	122
	124
	127
epiworld::epimodels::ModelSIS< TSeq >	
. , , ,	130
ModelSIS< TSeq >	404
	131
	133
•	136
	138
	138
•	138
epiworld::Progress	400
, , ,	138
Progress	400
1 1 0	139
epiworld::Queue < TSeq > Controls which agents are verified at each step	120
Queue < TSeq >	139
·	140
· · · · · · · · · · · · · · · · · · ·	141
·	141
•	142
epiworld::Tool< TSeq >	142
	142
Tool < TSeq >	172
·	143
epiworld::Tools< TSeq >	140
	145
Tools < TSeq >	٠٠٦
•	146
epiworld::Tools_const< TSeq >	. 40
Set of Tools (const) (useful for iterators)	147
Cot of 10010 (const) (ascial for iterators)	17/

10.1 Class List

Tools_const< TSeq >	
Set of Tools (const) (useful for iterators)	47
epiworld::UserData < TSeq >	
Personalized data by the user	48
UserData < TSeq >	
Personalized data by the user	50
epiworld::vecHasher< T >	
Vector hasher	52
vecHasher< T >	
Vector hasher	52
epiworld::Virus< TSeq >	
Virus	53
Virus< TSeq >	
Virus	55
epiworld::Viruses< TSeq >	
Set of viruses (useful for building iterators)	57
Viruses < TSeq >	
Set of viruses (useful for building iterators)	57
epiworld::Viruses_const< TSeq >	
Set of Viruses (const) (useful for iterators)	58
Viruses_const< TSeq >	
Set of Viruses (const) (useful for iterators)	59

24 Class Index

# File Index

## 11.1 File List

Here is a list of all documented files with brief descriptions:

epiworld.hpp
include/epiworld/adjlist-bones.hpp??
include/epiworld/adjlist-meat.hpp
include/epiworld/agent-actions-meat.hpp
include/epiworld/agent-bones.hpp
include/epiworld/agent-meat-state.hpp
Sampling functions are getting big, so we keep them in a separate file
include/epiworld/agent-meat-virus-sampling.hpp??
include/epiworld/agent-meat.hpp??
include/epiworld/agentssample-bones.hpp
include/epiworld/config.hpp
include/epiworld/database-bones.hpp
include/epiworld/database-meat.hpp
include/epiworld/entities-bones.hpp
include/epiworld/entity-bones.hpp
include/epiworld/entity-meat.hpp
include/epiworld/ <b>epiworld-macros.hpp</b>
include/epiworld/epiworld.hpp
include/epiworld/globalactions-bones.hpp
include/epiworld/globalactions-meat.hpp
include/epiworld/misc.hpp
include/epiworld/model-bones.hpp??
include/epiworld/model-meat-print.hpp
include/epiworld/model-meat.hpp
include/epiworld/network-bones.hpp
include/epiworld/ <b>progress.hpp</b>
include/epiworld/queue-bones.hpp??
include/epiworld/randgraph.hpp
include/epiworld/random_graph.hpp??
include/epiworld/seq_processing.hpp
include/epiworld/tool-bones.hpp
include/epiworld/tool-meat.hpp??
include/epiworld/tools-bones.hpp
include/epiworld/userdata-bones.hpp
include/epiworld/ <b>userdata-meat.hpp</b>

26 File Index

include/epiworld/virus-bones.hpp	?
include/epiworld/virus-meat.hpp	?
include/epiworld/viruses-bones.hpp	?
include/epiworld/math/lfmcmc.hpp?	?
include/epiworld/math/lfmcmc/lfmcmc-bones.hpp	?
include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp	?
include/epiworld/math/lfmcmc/lfmcmc-meat.hpp?	?
include/epiworld/models/diffnet.hpp	?
include/epiworld/models/globalactions.hpp	?
include/epiworld/models/models.hpp?	?
include/epiworld/models/seir.hpp?	?
include/epiworld/models/seirconnected.hpp?	?
include/epiworld/models/seirconnected_logit.hpp?	?
include/epiworld/models/seird.hpp	?
include/epiworld/models/sir.hpp	?
include/epiworld/models/sirconnected.hpp	?
include/epiworld/models/sirlogit.hpp?	?
include/epiworld/models/sis.hpp	?
include/epiworld/models/surveillance.hpp	?
tests/tests.hpp	?

# **Chapter 12**

# **Namespace Documentation**

# 12.1 epiworld::sampler Namespace Reference

Functions for sampling viruses.

# **Functions**

```
 template<typename TSeq >
 std::function< void(Agent< TSeq > *, Model< TSeq > *)> make_update_susceptible (std::vector<
 epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

```
 template<typename TSeq = int>
 std::function< Virus< TSeq > *(Agent< TSeq > *, Model< TSeq > *)> make_sample_virus_neighbors
 (std::vector< epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

```
 template < typename TSeq = int>
 Virus < TSeq > * sample_virus_single (Agent < TSeq > *p, Model < TSeq > *m)
 Sample from neighbors pool of viruses (at most one)
```

# 12.1.1 Detailed Description

Functions for sampling viruses.

#### 12.1.2 Function Documentation

# 12.1.2.1 make\_sample\_virus\_neighbors()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

# **Template Parameters**

#### **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

# 12.1.2.2 make\_update\_susceptible()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

TSeq	

# **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

# 12.1.2.3 sample\_virus\_single()

Sample from neighbors pool of viruses (at most one)

This function samples at most one virus from the pool of viruses from its neighbors. If no virus is selected, the function returns a nullptr, otherwise it returns a pointer to the selected virus.

This can be used to build a new update function (EPI\_NEW\_UPDATEFUN.)

# **Template Parameters**

TSeq	

#### **Parameters**

р	Pointer to person	
m	Pointer to the model	

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

# 12.2 sampler Namespace Reference

Functions for sampling viruses.

# **Functions**

```
 template<typename TSeq >
 std::function< void(Agent< TSeq > *, Model< TSeq > *)> make_update_susceptible (std::vector<
 epiworld_fast_uint > exclude={})
```

Make a function to sample from neighbors.

template<typename TSeq = int>
 std::function< Virus< TSeq > \*(Agent< TSeq > \*, Model< TSeq > \*)> make\_sample\_virus\_neighbors
 (std::vector< epiworld\_fast\_uint > exclude={})

Make a function to sample from neighbors.

```
 template < typename TSeq = int>
 Virus < TSeq > * sample_virus_single (Agent < TSeq > *p, Model < TSeq > *m)
 Sample from neighbors pool of viruses (at most one)
```

# 12.2.1 Detailed Description

Functions for sampling viruses.

#### 12.2.2 Function Documentation

# 12.2.2.1 make\_sample\_virus\_neighbors()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

#### **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

#### 12.2.2.2 make\_update\_susceptible()

Make a function to sample from neighbors.

This is akin to the function default\_update\_susceptible, with the difference that it will create a function that supports excluding states from the sampling frame. For example, individuals who have acquired a virus can be excluded if in incubation state.

#### **Template Parameters**

TSeq	

# **Parameters**

exclude	unsigned vector of states that need to be excluded from the sampling
---------	----------------------------------------------------------------------

#### Returns

Virus<TSeq>\* of the selected virus. If none selected (or none available,) returns a nullptr;

# 12.2.2.3 sample\_virus\_single()

Sample from neighbors pool of viruses (at most one)

This function samples at most one virus from the pool of viruses from its neighbors. If no virus is selected, the function returns a nullptr, otherwise it returns a pointer to the selected virus.

This can be used to build a new update function (EPI\_NEW\_UPDATEFUN.)

Temi	nlate	Par	ame	ters
ICIIII	νιαις	, ı aı	ann	LUIS

TSeq	

# **Parameters**

р	Pointer to person	
m	Pointer to the model	

# Returns

 $\label{thm:constraint} \mbox{Virus$<$TSeq$>* of the selected virus. If none selected (or none available,) returns a nullptr;}$ 

# **Chapter 13**

# **Class Documentation**

# 13.1 Action < TSeq > Struct Template Reference

Action data for update an agent.

#include <config.hpp>

# **Public Member Functions**

Action (Agent< TSeq > \*agent\_, VirusPtr< TSeq > virus\_, ToolPtr< TSeq > tool\_, Entity< TSeq > \*entity\_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, ActionFun< TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Action object.

# **Public Attributes**

- Agent < TSeq > \* agent
- VirusPtr< TSeq > virus
- ToolPtr< TSeq > tool
- Entity < TSeq > \* entity
- epiworld\_fast\_int new\_state
- epiworld\_fast\_int queue
- ActionFun< TSeq > call
- · int idx agent
- int idx\_object

# 13.1.1 Detailed Description

template < typename TSeq > struct Action < TSeq >

Action data for update an agent.

# **Template Parameters**

# 13.1.2 Constructor & Destructor Documentation

# 13.1.2.1 Action()

Construct a new Action object.

All the parameters are rather optional.

#### **Parameters**

agent_	Agent over who the action will happen
virus_	Virus to add
tool_	Tool to add
virus_idx	Index of virus to be removed (if needed)
tool_idx	Index of tool to be removed (if needed)
new_←	Next state
state_	
queue_	Efect on the queue
call_	The action call (if needed)
idx_⇔	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

The documentation for this struct was generated from the following files:

- include/epiworld/agent-bones.hpp
- · include/epiworld/config.hpp

# 13.2 epiworld::Action < TSeq > Struct Template Reference

Action data for update an agent.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

Action (Agent< TSeq > \*agent\_, VirusPtr< TSeq > virus\_, ToolPtr< TSeq > tool\_, Entity< TSeq > \*entity\_, epiworld\_fast\_int new\_state\_, epiworld\_fast\_int queue\_, ActionFun< TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Action object.

# **Public Attributes**

- Agent < TSeq > \* agent
- VirusPtr< TSeq > virus
- ToolPtr< TSeq > tool
- Entity < TSeq > \* entity
- epiworld\_fast\_int new\_state
- · epiworld\_fast\_int queue
- ActionFun< TSeq > call
- int idx agent
- int idx\_object

# 13.2.1 Detailed Description

template<typename TSeq> struct epiworld::Action< TSeq >

Action data for update an agent.

**Template Parameters** 



# 13.2.2 Constructor & Destructor Documentation

# 13.2.2.1 Action()

```
VirusPtr< TSeq > virus_,
ToolPtr< TSeq > tool_,
Entity< TSeq > * entity_,
epiworld_fast_int new_state_,
epiworld_fast_int queue_,
ActionFun< TSeq > call_,
int idx_agent_,
int idx_object_) [inline]
```

Construct a new Action object.

All the parameters are rather optional.

#### **Parameters**

agent_	Agent over who the action will happen
virus_	Virus to add
tool_	Tool to add
virus_idx	Index of virus to be removed (if needed)
tool_idx	Index of tool to be removed (if needed)
new_←	Next state
state_	
queue_	Efect on the queue
call_	The action call (if needed)
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

The documentation for this struct was generated from the following file:

· epiworld.hpp

# 13.3 AdjList Class Reference

#### **Public Member Functions**

- AdjList (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
   Construct a new Adj List object.
- AdjList (AdjList &&a)
- AdjList (const AdjList &a)
- AdjList & operator= (const AdjList &a)
- void read\_edgelist (std::string fn, int size, int skip=0, bool directed=true)

Read an edgelist.

- std::map< int, int > operator() (epiworld\_fast\_uint i) const
- void **print** (epiworld\_fast\_uint limit=20u) const
- size\_t vcount () const

Number of vertices/nodes in the network.

• size\_t ecount () const

Number of edges/arcs/ties in the network.

- std::vector< std::map< int, int > > & get\_dat ()
- bool is\_directed () const

true if the network is directed.

# 13.3.1 Constructor & Destructor Documentation

# 13.3.1.1 AdjList()

Construct a new Adj List object.

lds in the network are assume to range from 0 to size - 1.

#### **Parameters**

source	Unsigned int vector with the source
target	Unsigned int vector with the target
size	Number of vertices in the network.
directed	Bool true if the network is directed

# 13.3.2 Member Function Documentation

# 13.3.2.1 read\_edgelist()

```
void AdjList::read_edgelist (
 std::string fn,
 int size,
 int skip = 0,
 bool directed = true) [inline]
```

Read an edgelist.

lds in the network are assume to range from 0 to size - 1.

#### **Parameters**

fn	Path to the file
skip	Number of lines to skip (e.g., 1 if there's a header)
directed	true if the network is directed
size	Number of vertices in the network.

The documentation for this class was generated from the following files:

- · include/epiworld/adjlist-bones.hpp
- include/epiworld/adjlist-meat.hpp

# 13.4 epiworld::AdjList Class Reference

# **Public Member Functions**

- AdjList (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
   Construct a new Adj List object.
- AdjList (AdjList &&a)
- AdjList (const AdjList &a)
- AdjList & operator= (const AdjList &a)
- void read\_edgelist (std::string fn, int size, int skip=0, bool directed=true)

Read an edgelist.

- std::map< int, int > operator() (epiworld fast uint i) const
- · void print (epiworld\_fast\_uint limit=20u) const
- size\_t vcount () const

Number of vertices/nodes in the network.

• size\_t ecount () const

Number of edges/arcs/ties in the network.

- std::vector< std::map< int, int > > & get\_dat ()
- · bool is directed () const

true if the network is directed.

#### 13.4.1 Constructor & Destructor Documentation

# 13.4.1.1 AdjList()

Construct a new Adj List object.

Ids in the network are assume to range from 0 to size - 1.

#### **Parameters**

source	Unsigned int vector with the source
target	Unsigned int vector with the target
size	Number of vertices in the network.
directed	Bool true if the network is directed

#### 13.4.2 Member Function Documentation

# 13.4.2.1 read\_edgelist()

```
void AdjList::read_edgelist (
 std::string fn,
 int size,
 int skip = 0,
 bool directed = true) [inline]
```

Read an edgelist.

lds in the network are assume to range from 0 to size - 1.

#### **Parameters**

fn	Path to the file
skip	Number of lines to skip (e.g., 1 if there's a header)
directed	true if the network is directed
size	Number of vertices in the network.

The documentation for this class was generated from the following file:

• epiworld.hpp

# 13.5 Agent < TSeq > Class Template Reference

```
Agent (agents)
```

```
#include <agent-bones.hpp>
```

# **Public Member Functions**

```
 Agent (Agent < TSeq > &&p)
```

- Agent (const Agent < TSeq > &p)
- Agent < TSeq > & operator= (const Agent < TSeq > &other\_agent)
- int get\_id () const

Id of the individual.

- VirusPtr< TSeq > & get\_virus (int i)
- Viruses < TSeq > get\_viruses ()
- const Viruses\_const< TSeq > get\_viruses () const
- size\_t get\_n\_viruses () const noexcept
- ToolPtr< TSeq > & get\_tool (int i)
- Tools < TSeq > get\_tools ()
- const Tools\_const< TSeq > get\_tools () const
- size\_t get\_n\_tools () const noexcept

- void mutate\_variant ()
- void add\_neighbor (Agent < TSeq > &p, bool check\_source=true, bool check\_target=true)
- void swap\_neighbors (Agent < TSeq > &other, size\_t n\_this, size\_t n\_other)

Swaps neighbors between the current agent and agent other

- std::vector< Agent< TSeq > \* > get\_neighbors ()
- size\_t get\_n\_neighbors () const
- void change\_state (Model < TSeq > \*model, epiworld\_fast\_uint new\_state, epiworld\_fast\_int queue=0)
- const epiworld\_fast\_uint & get\_state () const
- void reset ()
- · bool has tool (epiworld fast uint t) const
- bool has\_tool (std::string name) const
- bool has\_tool (const Tool < TSeq > &t) const
- bool has\_virus (epiworld\_fast\_uint t) const
- · bool has virus (std::string name) const
- bool has\_virus (const Virus < TSeq > &v) const
- void print (Model < TSeq > \*model, bool compressed=false) const
- Entities < TSeq > get\_entities ()
- const Entities\_const< TSeq > get\_entities () const
- const Entity < TSeq > & get\_entity (size t i) const
- Entity < TSeq > & get\_entity (size t i)
- size\_t get\_n\_entities () const
- bool operator== (const Agent < TSeq > &other) const
- bool operator!= (const Agent < TSeq > &other) const

#### Add/Remove Virus/Tool

Any of these is ultimately reflected at the end of the iteration.

#### **Parameters**

tool	Tool to add
virus	Virus to add
status_new	state after the change
queue	

- void add\_tool (ToolPtr< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void **add\_tool** (Tool< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int queue=-99)
- void add\_virus (VirusPtr< TSeq > virus, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int queue=-99)
- void add\_virus (Virus < TSeq > virus, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void add\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int gueue=-99)
- void rm\_tool (epiworld\_fast\_uint tool\_idx, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int gueue=-99)
- void rm\_tool (ToolPtr< TSeq > &tool, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int gueue=-99)
- void rm\_virus (epiworld\_fast\_uint virus\_idx, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int queue=-99)
- void rm\_virus (VirusPtr< TSeq > &virus, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_entity (epiworld\_fast\_uint entity\_idx, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int queue=-99)

- void rm\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_agent\_by\_virus (epiworld\_fast\_uint virus\_idx, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)

Agent removed by virus.

void rm\_agent\_by\_virus (VirusPtr< TSeq > &virus, Model< TSeq > \*model, epiworld\_fast\_int status
 —new=-99, epiworld\_fast\_int queue=-99)

Agent removed by virus.

#### Get the rates (multipliers) for the agent

#### **Parameters**

```
v A pointer to a virus.
```

#### Returns

epiworld double

- epiworld\_double get\_susceptibility\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_transmission\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get recovery enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_death\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- double & operator() (size\_t j)

Access the j-th column of the agent.

- double & operator[] (size\_t j)
- double operator() (size\_t j) const
- double operator[] (size\_t j) const

# **Friends**

- class Model < TSeq >
- class Virus < TSeq >
- class Viruses < TSeq >
- class Viruses\_const< TSeq >
- class Tool < TSeq >
- class Tools < TSeq >
- class Tools const< TSeq >
- class Queue < TSeq >
- class Entities < TSeq >
- class AgentsSample < TSeq >
- void default\_add\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void  $default\_add\_tool$  (Action< TSeq > &a, Model< TSeq > \*m)
- void default\_add\_entity (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_tool (Action< TSeq > &a, Model< TSeq > \*m)
- void default rm entity (Action < TSeq > &a, Model < TSeq > \*m)

#### 13.5.1 Detailed Description

```
template<typename TSeq> class Agent< TSeq >
```

Agent (agents)

# **Template Parameters**

TSeq | Sequence type (should match TSeq across the model)

#### 13.5.2 Member Function Documentation

# 13.5.2.1 operator()()

Access the j-th column of the agent.

If an external array has been specified, then these two functions can be used to access additional agent's features not included in the model.

The <code>operator[]</code> method is with no boundary check, whereas the <code>operator()</code> method checks boundaries. The former can result in a segfault.

# **Parameters**

j

#### Returns

double&

# 13.5.2.2 swap\_neighbors()

Swaps neighbors between the current agent and agent other

#### **Parameters**

other	
n_this	
n_other	

#### 13.5.3 Friends And Related Function Documentation

# 13.5.3.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/agent-meat.hpp

# 13.6 epiworld::Agent< TSeq > Class Template Reference

```
Agent (agents)
#include <epiworld.hpp>
```

#### **Public Member Functions**

```
 Agent (Agent < TSeq > &&p)
```

- Agent (const Agent < TSeq > &p)
- Agent < TSeq > & operator= (const Agent < TSeq > &other\_agent)
- · int get\_id () const

Id of the individual.

- VirusPtr< TSeq > & get\_virus (int i)
- $\bullet \quad \text{Viruses} < \mathsf{TSeq} > \textbf{get\_viruses} \; ()$
- const  $Viruses\_const$  <  $TSeq > get\_viruses$  () const
- size\_t get\_n\_viruses () const noexcept
- ToolPtr< TSeq > & get\_tool (int i)
- Tools < TSeq > get\_tools ()
- const Tools\_const < TSeq > get\_tools () const
- size\_t get\_n\_tools () const noexcept
- void mutate\_variant ()
- void add\_neighbor (Agent < TSeq > &p, bool check\_source=true, bool check\_target=true)
- void swap\_neighbors (Agent < TSeq > &other, size\_t n\_this, size\_t n\_other)

Swaps neighbors between the current agent and agent other

- std::vector< Agent< TSeq > \* > get\_neighbors ()
- size\_t get\_n\_neighbors () const
- void **change\_state** (Model < TSeq > \*model, epiworld\_fast\_uint new\_state, epiworld\_fast\_int queue=0)
- const epiworld\_fast\_uint & get\_state () const
- void reset ()

- · bool has tool (epiworld fast uint t) const
- · bool has\_tool (std::string name) const
- bool has\_tool (const Tool < TSeq > &t) const
- · bool has\_virus (epiworld\_fast\_uint t) const
- · bool has virus (std::string name) const
- bool has\_virus (const Virus < TSeq > &v) const
- void print (Model < TSeq > \*model, bool compressed=false) const
- Entities < TSeq > get\_entities ()
- const Entities const< TSeq > get entities () const
- const Entity < TSeq > & get\_entity (size t i) const
- Entity < TSeq > & get\_entity (size t i)
- size\_t get\_n\_entities () const
- bool operator== (const Agent < TSeq > & other) const
- bool operator!= (const Agent < TSeq > &other) const

#### Add/Remove Virus/Tool

Any of these is ultimately reflected at the end of the iteration.

#### **Parameters**

tool	Tool to add
virus	Virus to add
status_new	state after the change
queue	

- void add\_tool (ToolPtr< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void **add\_tool** (Tool< TSeq > tool, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void add\_virus (VirusPtr< TSeq > virus, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int gueue=-99)
- void add\_virus (Virus < TSeq > virus, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int queue=-99)
- void add\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_tool (epiworld\_fast\_uint tool\_idx, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void **rm\_tool** (ToolPtr< TSeq > &tool, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int queue=-99)
- void rm\_virus (epiworld\_fast\_uint virus\_idx, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int gueue=-99)
- void rm\_virus (VirusPtr< TSeq > &virus, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld fast int gueue=-99)
- void rm\_entity (epiworld\_fast\_uint entity\_idx, Model< TSeq > \*model, epiworld\_fast\_int status\_new=99, epiworld fast int queue=-99)
- void rm\_entity (Entity < TSeq > &entity, Model < TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)
- void rm\_agent\_by\_virus (epiworld\_fast\_uint virus\_idx, Model< TSeq > \*model, epiworld\_fast\_int status\_new=-99, epiworld\_fast\_int queue=-99)

Agent removed by virus.

void rm\_agent\_by\_virus (VirusPtr< TSeq > &virus, Model< TSeq > \*model, epiworld\_fast\_int status
 —new=-99, epiworld\_fast\_int queue=-99)

Agent removed by virus.

## Get the rates (multipliers) for the agent

#### **Parameters**

v A pointer to a virus.

#### Returns

epiworld double

- epiworld\_double get\_transmission\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld\_double get\_recovery\_enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get death reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- double & operator() (size\_t j)

Access the j-th column of the agent.

- double & operator[] (size t j)
- double operator() (size\_t j) const
- double operator[] (size\_t j) const

#### **Friends**

- class Model < TSeq >
- class Virus < TSeq >
- class Viruses < TSeq >
- class Viruses\_const< TSeq >
- class Tool < TSeq >
- class Tools < TSeq >
- class Tools\_const< TSeq >
- class Queue < TSeq >
- class Entities < TSeq >
- class AgentsSample < TSeq >
- void default\_add\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_add\_tool (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_add\_entity (Action < TSeq > &a, Model < TSeq > \*m)
- void default rm virus (Action< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_tool (Action< TSeq > &a, Model< TSeq > \*m)
- void default rm entity (Action < TSeq > &a, Model < TSeq > \*m)

# 13.6.1 Detailed Description

template<typename TSeq> class epiworld::Agent< TSeq >

Agent (agents)

**Template Parameters** 

TSeq | Sequence type (should match TSeq across the model)

# 13.6.2 Member Function Documentation

# 13.6.2.1 operator()()

Access the j-th column of the agent.

If an external array has been specified, then these two functions can be used to access additional agent's features not included in the model.

The operator[] method is with no boundary check, whereas the operator() method checks boundaries. The former can result in a segfault.

#### **Parameters**



#### Returns

double&

#### 13.6.2.2 swap\_neighbors()

Swaps neighbors between the current agent and agent other

#### **Parameters**

other	
n_this	
n_other	

# 13.6.3 Friends And Related Function Documentation

# 13.6.3.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.7 AgentsSample < TSeq > Class Template Reference

Sample of agents.

```
#include <agentssample-bones.hpp>
```

#### **Public Member Functions**

• AgentsSample ()=delete

Default constructor.

• AgentsSample (const AgentsSample < TSeq > &a)=delete

Copy constructor.

AgentsSample (AgentsSample < TSeq > &&a)=delete

Move constructor.

- AgentsSample (Model < TSeq > &model\_, size\_t n, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Entity < TSeq > &entity , size t n, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Agent < TSeq > &agent\_, size\_t n, bool truncate=false)

Sample from the agent's entities.

- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector < Agent < TSeq > \* >::iterator end ()
- Agent< TSeq > \* operator[] (size\_t n)
- Agent< TSeq > \* operator() (size\_t n)
- size\_t size () const noexcept

## 13.7.1 Detailed Description

```
template<typename TSeq> class AgentsSample< TSeq >
```

Sample of agents.

This class allows sampling agents from Entity<TSeq> and Model<TSeq>.

# **Template Parameters**

# 13.7.2 Constructor & Destructor Documentation

#### 13.7.2.1 AgentsSample()

Sample from the agent's entities.

For example, how many individuals the agent contacts in a given point in time.

# **Template Parameters**



#### **Parameters**

agent⊷	
_	
n	Sample size
truncate	If the agent has fewer than $n$ connections, then truncate = true will automatically reduce the number of possible samples. Otherwise, if false, then it returns an error.

The documentation for this class was generated from the following file:

• include/epiworld/agentssample-bones.hpp

# 13.8 epiworld::AgentsSample < TSeq > Class Template Reference

Sample of agents.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

• AgentsSample ()=delete

Default constructor.

AgentsSample (const AgentsSample < TSeq > &a)=delete

Copy constructor.

AgentsSample (AgentsSample < TSeq > &&a)=delete

Move constructor.

- AgentsSample (Model < TSeq > &model\_, size\_t n, bool truncate=false)
- AgentsSample (Model < TSeq > \*model, Entity < TSeq > &entity\_, size\_t n, bool truncate=false)
- $\bullet \ \ AgentsSample \ (Model < TSeq > *model, \ Agent < TSeq > \&agent\_, \ size\_t \ n, \ bool \ truncate=false)\\$

Sample from the agent's entities.

- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- Agent< TSeq > \* operator[] (size\_t n)
- Agent< TSeq > \* operator() (size\_t n)
- size\_t size () const noexcept

# 13.8.1 Detailed Description

```
template<typename TSeq>
class epiworld::AgentsSample< TSeq>
```

Sample of agents.

This class allows sampling agents from Entity<TSeq> and Model<TSeq>.

**Template Parameters** 

TSeq	
-	

#### 13.8.2 Constructor & Destructor Documentation

# 13.8.2.1 AgentsSample()

Sample from the agent's entities.

For example, how many individuals the agent contacts in a given point in time.

#### **Template Parameters**

#### **Parameters**

agent⊷	
_	
n	Sample size
truncate	If the agent has fewer than $n$ connections, then truncate = true will automatically reduce the number of possible samples. Otherwise, if false, then it returns an error.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.9 DataBase < TSeq > Class Template Reference

Statistical data about the process.

#include <database-bones.hpp>

#### **Public Member Functions**

- DataBase (Model < TSeq > &m)
- DataBase (const DataBase < TSeq > &db)
- void record\_variant (Virus < TSeq > &v)

Registering a new variant.

- void record\_tool (Tool < TSeq > &t)
- void set\_seq\_hasher (std::function< std::vector< int >(TSeq)> fun)
- · void reset ()
- Model < TSeq > \* get\_model ()
- · void record ()
- const std::vector< TSeq > & get\_sequence () const
- const std::vector< int > & get\_nexposed () const
- size\_t size () const
- void write\_data (std::string fn\_variant\_info, std::string fn\_variant\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_transmission, std::string fn\_transition, std::string fn\_const
   reproductive\_number, std::string fn\_generation\_time) const
- void record\_transmission (int i, int j, int variant, int i expo date)
- size\_t get\_n\_variants () const
- size\_t get\_n\_tools () const
- void set\_user\_data (std::vector < std::string > names)
- void add\_user\_data (std::vector< epiworld\_double > x)
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- UserData < TSeq > & get\_user\_data ()
- std::vector< epiworld\_double > transition\_probability (bool print=true) const

Calculates the transition probabilities.

- bool operator== (const DataBase < TSeq > &other) const
- bool operator!= (const DataBase < TSeq > &other) const
- bool operator== (const DataBase< std::vector< int >> &other) const
- bool operator== (const DataBase< std::vector< int >> &other) const

# Get recorded information from the model

#### **Parameters**

```
what std::string, The state, e.g., 0, 1, 2, ...
```

#### Returns

In get\_today\_total, the current counts of what.
In get\_today\_variant, the current counts of what for each variant.
In get\_hist\_total, the time series of what
In get\_hist\_variant, the time series of what for each variant.

- In get\_hist\_total\_date and get\_hist\_variant\_date the corresponding date
- int get\_today\_total (std::string what) const
- int get today total (epiworld fast uint what) const
- void get\_today\_total (std::vector< std::string > \*state=nullptr, std::vector< int > \*counts=nullptr) const
- void get\_today\_variant (std::vector< std::string > &state, std::vector< int > &id, std::vector< int > &counts) const
- void get\_hist\_total (std::vector< int > \*date, std::vector< std::string > \*state, std::vector< int > \*counts) const
- void get\_hist\_variant (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_tool (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_transition\_matrix (std::vector< std::string > &state\_from, std::vector< std::string > &state\_to, std::vector< int > &date, std::vector< int > &counts, bool skip\_zeros) const
- void get\_transmissions (std::vector< int > &date, std::vector< int > &source, std::vector< int > &target, std::vector< int > &variant, std::vector< int > &source\_exposure\_date) const

Get the transmissions object.

- void get\_transmissions (int \*date, int \*source, int \*target, int \*variant, int \*source\_exposure\_date) const
- MapVec\_type< int, int > reproductive\_number () const

Computes the reproductive number of each case.

- void reproductive\_number (std::string fn) const
- void generation\_time (std::vector< int > &agent\_id, std::vector< int > &virus\_id, std::vector< int > &time, std::vector< int > &gentime) const
- void **generation\_time** (std::string fn) const

#### **Friends**

- class Model < TSeq >
- void default\_add\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_add\_tool (Action< TSeq > &a, Model< TSeq > \*m)
- void default\_rm\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default rm\_tool (Action < TSeq > &a, Model < TSeq > \*m)

#### 13.9.1 Detailed Description

template<typename TSeq> class DataBase< TSeq >

Statistical data about the process.

# **Template Parameters**

TSea	
, 009	

# 13.9.2 Member Function Documentation

# 13.9.2.1 generation\_time()

```
template<typename TSeq >
void DataBase< TSeq >::generation_time (
 std::vector< int > & agent_id,
 std::vector< int > & virus_id,
 std::vector< int > & time,
 std::vector< int > & gentime) const [inline]
```

# Calculates the generating time

#### **Parameters**

# 13.9.2.2 get\_transmissions()

```
template<typename TSeq >
void DataBase< TSeq >::get_transmissions (
 std::vector< int > & date,
 std::vector< int > & source,
 std::vector< int > & target,
 std::vector< int > & variant,
 std::vector< int > & source_exposure_date) const [inline]
```

Get the transmissions object.

#### **Parameters**

date	
source	
target	
variant	
source_exposure_date	

# 13.9.2.3 operator==() [1/3]

const DataBase< std::vector< int >> & other ) const [inline]

- < Date of the transmission eve,
- < Id of the sour,
- < Id of the targ,
- < Id of the varia,
- < Date when the source acquired the varia,

# 13.9.2.5 operator==() [3/3]

- < Id of the targ
- $<\mbox{Id}$  of the varia
- < Date when the source acquired the varia

# 13.9.2.6 record\_variant()

Registering a new variant.

#### **Parameters**

*v* Pointer to the new variant. Since variants are originated in the agent, the numbers simply move around. From the parent variant to the new variant. And the total number of infected does not change.

# 13.9.2.7 reproductive\_number()

```
template<typename TSeq >
MapVec_type< int, int > DataBase< TSeq >::reproductive_number [inline]
```

Computes the reproductive number of each case.

By definition, whereas it computes R0 (basic reproductive number) or Rt/R (the effective reproductive number) will depend on whether the virus is allowed to circulate naïvely or not, respectively.

#### **Parameters**

*fn* File where to write out the reproductive number.

# 13.9.2.8 transition\_probability()

Calculates the transition probabilities.

# Returns

```
std::vector< epiworld_double >
```

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- include/epiworld/database-meat.hpp

# 13.10 epiworld::DataBase< TSeq > Class Template Reference

Statistical data about the process.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- DataBase (Model < TSeq > &m)
- DataBase (const DataBase < TSeq > &db)
- void record variant (Virus < TSeq > &v)

Registering a new variant.

- void record\_tool (Tool < TSeq > &t)
- void set\_seq\_hasher (std::function< std::vector< int >(TSeq)> fun)
- void reset ()
- Model < TSeq > \* get\_model ()
- · void record ()
- const std::vector< TSeq > & get\_sequence () const
- const std::vector< int > & get\_nexposed () const
- · size t size () const
- void write\_data (std::string fn\_variant\_info, std::string fn\_variant\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_transmission, std::string fn\_transition, std::string fn\_erroductive\_number, std::string fn\_generation\_time) const
- void **record\_transmission** (int i, int j, int variant, int i\_expo\_date)
- size\_t get\_n\_variants () const
- size t get n tools () const
- void set user data (std::vector< std::string > names)
- void add\_user\_data (std::vector< epiworld\_double > x)
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- UserData < TSeq > & get\_user\_data ()
- std::vector< epiworld\_double > transition\_probability (bool print=true) const

Calculates the transition probabilities.

- bool operator== (const DataBase< TSeq > &other) const
- bool operator!= (const DataBase < TSeq > &other) const

#### Get recorded information from the model

#### **Parameters**

```
what std::string, The state, e.g., 0, 1, 2, ...
```

#### Returns

*In* get\_today\_total, the current counts of what.

*In* get\_today\_variant, the current counts of what for each variant.

In get\_hist\_total, the time series of what

In get\_hist\_variant, the time series of what for each variant.

In get\_hist\_total\_date and get\_hist\_variant\_date the corresponding date

- int get\_today\_total (std::string what) const
- int get\_today\_total (epiworld\_fast\_uint what) const
- void get\_today\_total (std::vector < std::string > \*state=nullptr, std::vector < int > \*counts=nullptr) const
- void get\_today\_variant (std::vector< std::string > &state, std::vector< int > &id, std::vector< int > &counts) const
- void get\_hist\_total (std::vector< int > \*date, std::vector< std::string > \*state, std::vector< int > \*counts) const
- void get\_hist\_variant (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_tool (std::vector< int > &date, std::vector< int > &id, std::vector< std::string > &state, std::vector< int > &counts) const
- void get\_hist\_transition\_matrix (std::vector< std::string > &state\_from, std::vector< std::string > &state\_to, std::vector< int > &date, std::vector< int > &counts, bool skip\_zeros) const

 $\hbox{ • void get\_transmissions (std::vector< int > \&date, std::vector< int > \&source, std::vector< int > \&target, std::vector< int > \&variant, std::vector< int > \&source\_exposure\_date) const } \\$ 

Get the transmissions object.

- void get\_transmissions (int \*date, int \*source, int \*target, int \*variant, int \*source\_exposure\_date) const
- MapVec\_type < int, int > reproductive\_number () const
   Computes the reproductive number of each case.
- · void reproductive\_number (std::string fn) const
- void generation\_time (std::vector< int > &agent\_id, std::vector< int > &virus\_id, std::vector< int > &time, std::vector< int > &gentime) const
- void generation\_time (std::string fn) const

#### **Friends**

- class Model < TSeq >
- void default\_add\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_add\_tool (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_tool (Action < TSeq > &a, Model < TSeq > \*m)

# 13.10.1 Detailed Description

template<typename TSeq> class epiworld::DataBase< TSeq>

Statistical data about the process.

**Template Parameters** 



# 13.10.2 Member Function Documentation

# 13.10.2.1 generation\_time()

```
template<typename TSeq >
void DataBase< TSeq >::generation_time (
```

```
std::vector< int > & agent_id,
std::vector< int > & virus_id,
std::vector< int > & time,
std::vector< int > & gentime) const [inline]
```

# Calculates the generating time

#### **Parameters**

```
agent_id,virus_id,time,gentime | vectors where to save the values agent_id
```

# 13.10.2.2 get\_transmissions()

```
template<typename TSeq >
void DataBase< TSeq >::get_transmissions (
 std::vector< int > & date,
 std::vector< int > & source,
 std::vector< int > & target,
 std::vector< int > & variant,
 std::vector< int > & source_exposure_date) const [inline]
```

#### Get the transmissions object.

#### **Parameters**

date	
source	
target	
variant	
source_exposure_date	

# 13.10.2.3 operator==()

- < Date of the transmission eve
- < Id of the sour
- < Id of the targ
- < Id of the varia
- < Date when the source acquired the varia

#### 13.10.2.4 record\_variant()

Registering a new variant.

#### **Parameters**

Pointer to the new variant. Since variants are originated in the agent, the numbers simply move around. From the parent variant to the new variant. And the total number of infected does not change.

# 13.10.2.5 reproductive\_number()

```
template<typename TSeq >
MapVec_type< int, int > DataBase< TSeq >::reproductive_number [inline]
```

Computes the reproductive number of each case.

By definition, whereas it computes R0 (basic reproductive number) or Rt/R (the effective reproductive number) will depend on whether the virus is allowed to circulate naïvely or not, respectively.

#### **Parameters**

*fn* File where to write out the reproductive number.

# 13.10.2.6 transition\_probability()

Calculates the transition probabilities.

# Returns

```
std::vector< epiworld_double >
```

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.11 Entities < TSeq > Class Template Reference

Set of Entities (useful for building iterators)

```
#include <entities-bones.hpp>
```

#### **Public Member Functions**

- Entities (Agent< TSeq > &p)
- std::vector< Entity< TSeq > \* >::iterator begin ()
- std::vector< Entity< TSeq > \* >::iterator end ()
- Entity < TSeq > & operator() (size\_t i)
- Entity< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- bool operator== (const Entities < TSeq > & other) const

# **Friends**

- class Entity< TSeq >
- class Agent < TSeq >

# 13.11.1 Detailed Description

```
template<typename TSeq> class Entities< TSeq >
```

Set of Entities (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/entities-bones.hpp

# 13.12 epiworld::Entities < TSeq > Class Template Reference

Set of Entities (useful for building iterators)

```
#include <epiworld.hpp>
```

# **Public Member Functions**

```
• Entities (Agent < TSeq > &p)
```

- std::vector< Entity< TSeq > \* >::iterator end ()
- Entity< TSeq > & operator() (size\_t i)
- Entity < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- bool **operator==** (const Entities < TSeq > &other) const

#### **Friends**

- class Entity< TSeq >
- class Agent < TSeq >

# 13.12.1 Detailed Description

template<typename TSeq> class epiworld::Entities< TSeq >

Set of Entities (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.13 Entities\_const < TSeq > Class Template Reference

Set of Entities (const) (useful for iterators)

```
#include <entities-bones.hpp>
```

# **Public Member Functions**

- Entities\_const (const Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::const\_iterator end ()
- const Entity < TSeq > & operator() (size\_t i)
- const Entity < TSeq > & operator[] (size\_t i)
- size t size () const noexcept
- bool operator== (const Entities\_const < TSeq > &other) const

## **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

## 13.13.1 Detailed Description

```
template < typename TSeq >
class Entities_const < TSeq >
Set of Entities (const) (useful for iterators)
Template Parameters
```

TSeq

The documentation for this class was generated from the following file:

· include/epiworld/entities-bones.hpp

# 13.14 epiworld::Entities\_const< TSeq > Class Template Reference

Set of Entities (const) (useful for iterators)

#include <epiworld.hpp>

## **Public Member Functions**

- Entities\_const (const Agent < TSeq > &p)
- std::vector< Entity< TSeq > \* >::const\_iterator begin ()
- std::vector< Entity< TSeq > \* >::const\_iterator end ()
- const Entity< TSeq > & operator() (size\_t i)
- const Entity < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept
- bool operator== (const Entities\_const< TSeq > &other) const

## **Friends**

- class Virus< TSeq >
- class Agent < TSeq >

## 13.14.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{typename TSeq} > \\ \mbox{class epiworld} :: \mbox{Entities_const} < \mbox{TSeq} > \\
```

Set of Entities (const) (useful for iterators)

## **Template Parameters**

TSea	
1009	

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.15 Entity < TSeq > Class Template Reference

## **Public Member Functions**

- Entity (std::string name)
- void add\_agent (Agent < TSeq > &p, Model < TSeq > \*model)
- void add\_agent (Agent < TSeq > \*p, Model < TSeq > \*model)
- void rm\_agent (size\_t idx)
- size\_t size () const noexcept
- void set\_location (std::vector< epiworld double > loc)
- std::vector< epiworld\_double > & get\_location ()
- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- std::vector< Agent< TSeq > \* >::const\_iterator begin () const
- std::vector< Agent< TSeq > \* >::const\_iterator end () const
- Agent< TSeq > \* operator[] (size\_t i)
- int get\_id () const noexcept
- · const std::string & get name () const noexcept
- void set\_state (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld fast int \*init, epiworld fast int \*post)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- · void reset ()
- bool operator== (const Entity < TSeq > & other) const
- bool operator!= (const Entity < TSeq > &other) const

#### **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class Model < TSeq >
- void default\_add\_entity (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_entity (Action < TSeq > &a, Model < TSeq > \*m)

## 13.15.1 Friends And Related Function Documentation

## 13.15.1.1 default\_rm\_entity

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/entity-bones.hpp
- include/epiworld/entity-meat.hpp

# 13.16 epiworld::Entity < TSeq > Class Template Reference

```
• Entity (std::string name)
```

- void add\_agent (Agent < TSeq > &p, Model < TSeq > \*model)
- void add\_agent (Agent < TSeq > \*p, Model < TSeq > \*model)
- · void rm\_agent (size t idx)
- · size\_t size () const noexcept
- void set\_location (std::vector< epiworld\_double > loc)
- std::vector< epiworld\_double > & get\_location ()
- std::vector< Agent< TSeq > \* >::iterator begin ()
- std::vector< Agent< TSeq > \* >::iterator end ()
- std::vector < Agent < TSeq > \* >::const\_iterator begin () const
- std::vector < Agent < TSeq > \* >::const\_iterator end () const
- Agent < TSeq > \* operator[] (size\_t i)
- int get\_id () const noexcept
- · const std::string & get\_name () const noexcept
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- · void reset ()
- bool operator== (const Entity < TSeq > &other) const
- bool operator!= (const Entity < TSeq > &other) const

## **Friends**

```
- class Agent < TSeq >
```

- class AgentsSample < TSeq >
- class Model < TSeq >
- void default\_add\_entity (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_entity (Action < TSeq > &a, Model < TSeq > \*m)

## 13.16.1 Friends And Related Function Documentation

## 13.16.1.1 default\_rm\_entity

- < Last entity of the agent
- < Last agent of the entity

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.17 epiworld::GlobalAction < TSeq > Class Template Reference

Template for a Global Action.

```
#include <epiworld.hpp>
```

- GlobalAction (GlobalFun< TSeq > fun, std::string name, int day=-99)
  - Construct a new Global Action object.
- void **operator()** (Model < TSeq > \*m, int day)
- void set\_name (std::string name)
- std::string get\_name () const
- void set\_day (int day)
- int get\_day () const
- · void print () const
- bool operator== (const GlobalAction < TSeq > &other) const
- bool operator!= (const GlobalAction < TSeq > &other) const

## 13.17.1 Detailed Description

```
template<typename TSeq>
class epiworld::GlobalAction< TSeq>
```

Template for a Global Action.

Global actions are functions that Model<TSeq> executes at the end of a day.

## 13.17.2 Constructor & Destructor Documentation

## 13.17.2.1 GlobalAction()

Construct a new Global Action object.

#### **Parameters**

fun	A function that takes a Model <tseq> * as argument and returns void.</tseq>	
name	A descriptive name for the action.	
day	The day when the action will be executed. If negative, it will be executed every day.	

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.18 GlobalAction < TSeq > Class Template Reference

Template for a Global Action.

```
#include <globalactions-bones.hpp>
```

- GlobalAction (GlobalFun < TSeq > fun, std::string name, int day=-99)
   Construct a new Global Action object.
- void operator() (Model < TSeq > \*m, int day)
- void set name (std::string name)
- std::string get\_name () const
- void set\_day (int day)
- int get\_day () const
- · void print () const
- bool operator== (const GlobalAction < TSeq > &other) const
- bool operator!= (const GlobalAction< TSeq > &other) const

## 13.18.1 Detailed Description

```
template<typename TSeq> class GlobalAction< TSeq>
```

Template for a Global Action.

Global actions are functions that Model<TSeq> executes at the end of a day.

## 13.18.2 Constructor & Destructor Documentation

## 13.18.2.1 GlobalAction()

Construct a new Global Action object.

## **Parameters**

fun	A function that takes a Model <tseq> * as argument and returns void.</tseq>	
name	A descriptive name for the action.	
day The day when the action will be executed. If negative, it will be executed every day		

The documentation for this class was generated from the following files:

- include/epiworld/globalactions-bones.hpp
- include/epiworld/globalactions-meat.hpp

# 13.19 epiworld::LFMCMC< TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

```
#include <epiworld.hpp>
```

- void **run** (std::vector< epiworld\_double > param\_init, size\_t n\_samples\_, epiworld\_double epsilon\_)
- LFMCMC (TData &observed\_data\_)
- void set\_observed\_data (TData &observed\_data\_)
- void  $set\_proposal\_fun$  (LFMCMCProposalFun< TData > fun)

- void set\_simulation\_fun (LFMCMCSimFun < TData > fun)
- void set\_summary\_fun (LFMCMCSummaryFun < TData > fun)
- void set\_kernel\_fun (LFMCMCKernelFun< TData > fun)
- size t get n samples () const
- size t get n statistics () const
- size\_t get\_n\_parameters () const
- epiworld\_double **get\_epsilon** () const
- const std::vector< epiworld\_double > & get\_params\_now ()
- const std::vector< epiworld double > & get params prev ()
- const std::vector< epiworld\_double > & get\_params\_init ()
- const std::vector< epiworld double > & get statistics obs ()
- const std::vector< epiworld\_double > & get\_statistics\_hist ()
- const std::vector< bool > & get\_statistics\_accepted ()
- const std::vector< epiworld\_double > & get\_posterior\_lf\_prob ()
- const std::vector< epiworld double > & get\_drawn\_prob ()
- std::vector< TData > \* get sampled data ()
- void set\_par\_names (std::vector< std::string > names)
- void set stats names (std::vector < std::string > names)
- std::vector< epiworld\_double > get\_params\_mean ()
- std::vector< epiworld\_double > get\_stats\_mean ()
- void print ()

## Random number generation

#### **Parameters**

ena

- void set\_rand\_engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (epiworld\_fast\_uint s)
- void **set\_rand\_gamma** (epiworld\_double alpha, epiworld\_double beta)
- epiworld double runif ()
- epiworld double rnorm ()
- epiworld\_double rgamma ()
- epiworld\_double runif (epiworld\_double lb, epiworld\_double ub)
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld\_double rgamma (epiworld\_double alpha, epiworld\_double beta)

## 13.19.1 Detailed Description

template<typename TData> class epiworld::LFMCMC< TData >

Likelihood-Free Markov Chain Monte Carlo.

**Template Parameters** 

TData Type of data that is generated

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.20 LFMCMC< TData > Class Template Reference

Likelihood-Free Markov Chain Monte Carlo.

#include <lfmcmc-bones.hpp>

#### **Public Member Functions**

- void run (std::vector< epiworld\_double > param\_init, size\_t n\_samples\_, epiworld\_double epsilon\_)
- LFMCMC (TData &observed\_data\_)
- · void set observed data (TData &observed data )
- void set proposal fun (LFMCMCProposalFun < TData > fun)
- void set\_simulation\_fun (LFMCMCSimFun < TData > fun)
- void set summary fun (LFMCMCSummaryFun < TData > fun)
- void set\_kernel\_fun (LFMCMCKernelFun < TData > fun)
- size\_t get\_n\_samples () const
- size\_t get\_n\_statistics () const
- size\_t get\_n\_parameters () const
- epiworld double get epsilon () const
- const std::vector< epiworld double > & get\_params\_now ()
- const std::vector< epiworld\_double > & get\_params\_prev ()
- const std::vector< epiworld\_double > & get\_params\_init ()
- const std::vector< epiworld\_double > & get\_statistics\_obs ()
- const std::vector< epiworld\_double > & get\_statistics\_hist ()
- const std::vector< bool > & get\_statistics\_accepted ()
- const std::vector< epiworld\_double > & get\_posterior\_lf\_prob ()
- const std::vector< epiworld double > & get\_drawn\_prob ()
- std::vector< TData > \* get sampled data ()
- void set par names (std::vector< std::string > names)
- void set\_stats\_names (std::vector < std::string > names)
- std::vector< epiworld double > get\_params\_mean ()
- std::vector< epiworld\_double > get\_stats\_mean ()
- · void print ()

## Random number generation

## **Parameters**

eng

- void set\_rand\_engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (epiworld\_fast\_uint s)
- void set rand gamma (epiworld double alpha, epiworld double beta)
- epiworld double runif ()
- epiworld double rnorm ()
- epiworld\_double rgamma ()
- epiworld\_double runif (epiworld\_double lb, epiworld\_double ub)
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld\_double rgamma (epiworld\_double alpha, epiworld\_double beta)

## 13.20.1 Detailed Description

template<typename TData> class LFMCMC< TData>

Likelihood-Free Markov Chain Monte Carlo.

**Template Parameters** 

TData Type of data that is generated

The documentation for this class was generated from the following files:

- include/epiworld/math/lfmcmc/lfmcmc-bones.hpp
- include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp
- include/epiworld/math/lfmcmc/lfmcmc-meat.hpp

# 13.21 epiworld::Model < TSeq > Class Template Reference

Core class of epiworld.

#include <epiworld.hpp>

Collaboration diagram for epiworld::Model < TSeq >:



## **Public Member Functions**

- DataBase < TSeq > & get\_db ()
- epiworld\_double & operator() (std::string pname)
- size\_t size () const
- void load\_agents\_entities\_ties (std::string fn, int skip)

Associate agents-entities from a file.

- size\_t get\_n\_variants () const
- size\_t get\_n\_tools () const

- · epiworld\_fast\_uint get\_ndays () const
- epiworld fast uint get n replicates () const
- void set\_ndays (epiworld\_fast\_uint ndays)
- bool get\_verbose () const
- void verbose off ()
- void verbose\_on ()
- · int today () const

The current time of the model.

void write\_data (std::string fn\_variant\_info, std::string fn\_variant\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_total\_hist, std::string fn\_transmission, std::string fn\_transmi

Wrapper of DataBase::write\_data

- std::map< std::string, epiworld double > & params ()
- virtual void reset ()

Reset the model.

- · void print (bool lite=false) const
- Model < TSeq > && clone () const
- void get\_elapsed (std::string unit="auto", epiworld\_double \*last\_elapsed=nullptr, epiworld\_double \*total\_
  elapsed=nullptr, std::string \*unit abbr=nullptr, bool print=true) const
- void add\_global\_action (std::function< void(Model< TSeq > \*)> fun, std::string name="A global action", int date=-99)

Set a global action.

- void add\_global\_action (GlobalAction < TSeq > action)
- GlobalAction < TSeq > & get\_global\_action (std::string name)

Retrieve a global action by name.

GlobalAction < TSeq > & get\_global\_action (size\_t i)

Retrieve a global action by index.

void rm\_global\_action (std::string name)

Remove a global action by name.

void rm\_global\_action (size\_t i)

Remove a global action by index.

- void run\_global\_actions ()
- void clear\_state\_set ()
- const std::vector< VirusPtr< TSeq >> & get\_viruses () const
- const std::vector< ToolPtr< TSeq > > & get\_tools () const
- Virus < TSeq > & get\_virus (size\_t id)
- Tool < TSeq > & get\_tool (size\_t id)
- void set\_agents\_data (double \*data\_, size\_t ncols\_)

Set the agents data object.

- double \* get\_agents\_data ()
- size\_t get\_agents\_data\_ncols () const
- void set name (std::string name)

Set the name object.

- std::string **get\_name** () const
- bool operator== (const Model < TSeq > & other) const
- bool operator!= (const Model < TSeq > &other) const

## Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

void set\_backup ()

## Random number generation

#### **Parameters**

eng	Random number generator
S	Seed

- void set rand engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (size\_t s)
- void set rand norm (epiworld double mean, epiworld double sd)
- void set rand unif (epiworld double a, epiworld double b)
- void set rand exp (epiworld double lambda)
- void set rand gamma (epiworld double alpha, epiworld double beta)
- void set rand lognormal (epiworld double mean, epiworld double shape)
- void set\_rand\_binom (int n, epiworld\_double p)
- epiworld\_double runif ()
- epiworld\_double runif (epiworld\_double a, epiworld\_double b)
- epiworld double rnorm ()
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld double rgamma ()
- epiworld\_double rgamma (epiworld\_double alpha, epiworld\_double beta)
- epiworld double rexp ()
- epiworld double rexp (epiworld double lambda)
- epiworld double rlognormal ()
- epiworld double **riognormal** (epiworld double mean, epiworld double shape)
- int rbinom ()
- int **rbinom** (int n, epiworld\_double p)

#### Add Virus/Tool to the model

This is done before the model has been initialized.

## **Parameters**

V	Virus to be added	
t	Tool to be added	
preval		
	integer indicating number of individuals.	

- void add\_virus (Virus < TSeq > &v, epiworld double preval)
- void add\_virus\_n (Virus< TSeq > &v, epiworld\_fast\_uint preval)
- void add\_virus\_fun (Virus < TSeq > &v, VirusToAgentFun < TSeq > fun)
- void add\_tool (Tool < TSeq > &t, epiworld\_double preval)
- void add\_tool\_n (Tool< TSeq > &t, epiworld\_fast\_uint preval)
- void add\_tool\_fun (Tool< TSeq > &t, ToolToAgentFun< TSeq > fun)
- void add\_entity (Entity < TSeq > e)
- void rm virus (size t virus pos)
- void rm\_tool (size\_t tool\_pos)
- void rm\_entity (size\_t entity\_pos)

## Accessing population of the model

#### Parameters

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
size	Size of the network.
al	AdjList to read into the model.

- void agents\_from\_adjlist (std::string fn, int size, int skip=0, bool directed=false)
- void agents\_from\_edgelist (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
- void agents\_from\_adjlist (AdjList al)
- · bool is directed () const
- std::vector< Agent< TSeq > > & get\_agents ()
- std::vector< Entity< TSeq > > & get\_entities ()
- void agents\_smallworld (epiworld\_fast\_uint n=1000, epiworld\_fast\_uint k=5, bool d=false, epiworld\_
   double p=.01)
- void agents\_empty\_graph (epiworld\_fast\_uint n=1000)

## Functions to run the model

#### **Parameters**

seed	Seed to be used for Pseudo-RNG.	
ndays	Number of days (steps) of the simulation.	
fun	In the case of run_multiple, a function that is called after each experiment.	

- void update state ()
- void mutate variant ()
- void next ()
- virtual void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

void run\_multiple (epiworld\_fast\_uint ndays, epiworld\_fast\_uint nexperiments, int seed\_=-1, std::function 
 void(size\_t, Model < TSeq > \*) > fun=make\_save\_run < TSeq >(), bool reset=true, bool verbose=true, int nthreads=1)

## Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if  $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$ , the reciprocal is also true, i.e.,  $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$ .

#### **Parameters**

Proportion of ties to be rewired.	proportion
-----------------------------------	------------

#### Returns

A rewired version of the network.

- void set\_rewire\_fun (std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld double)> fun)
- void set\_rewire\_prop (epiworld\_double prop)
- epiworld\_double get\_rewire\_prop () const
- · void rewire ()

## Export the network data in edgelist form

## **Parameters**

fn	std::string. File name.
source	Integer vector
target	Integer vector

When passing the source and target, the function will write the edgelist on those.

- · void write edgelist (std::string fn) const
- void write\_edgelist (std::vector< int > &source, std::vector< int > &target) const

## Manage state (states) in the model

The functions get\_state return the current values for the states included in the model.

#### **Parameters**

```
lab std::string Name of the state.
```

#### Returns

add\_state\* returns nothing.

get state \* returns a vector of pairs with the states and their labels.

- void add\_state (std::string lab, UpdateFun< TSeq > fun=nullptr)
- const std::vector< std::string > & get\_states () const
- const std::vector< UpdateFun< TSeq > > & get\_state\_fun () const
- void print\_state\_codes () const

#### Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the epiworld\_fast\_uint method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The par() function members are aliases for get\_param().

In the case of the function read\_params, users can pass a file listing parameters to be included in the model. Each line in the file should have the following structure:

```
[name of parameter 1]: [value in double]
[name of parameter 2]: [value in double]
```

The only condition for parameter names is that these do not include a colon.

## **Parameters**

initial_val	
pname	Name of the parameter to add or to fetch
fn	Path to the file containing parameters

#### Returns

The current value of the parameter in the model.

- epiworld\_double add\_param (epiworld\_double initial\_val, std::string pname)
- void read\_params (std::string fn)
- epiworld\_double **get\_param** (epiworld\_fast\_uint k)
- epiworld\_double **get\_param** (std::string pname)
- void set\_param (std::string pname, epiworld double val)
- epiworld\_double par (std::string pname)

#### Set the user data object

#### **Parameters**

names string vector with the names of the variables.

void set\_user\_data (std::vector< std::string > names)

- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- void add\_user\_data (std::vector< epiworld\_double > x)
- UserData < TSeq > & get\_user\_data ()

## Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

• void queuing on ()

Activates the queuing system (default.)

void queuing\_off ()

Deactivates the queuing system.

• bool is\_queuing\_on () const

Query if the queuing system is on.

Queue < TSeq > & get\_queue ()

Retrieve the Queue object.

## Get the susceptibility reduction object

## **Parameters**



## Returns

epiworld\_double

- $\bullet \ \ \mathsf{void} \ \textbf{set\_susceptibility\_reduction\_mixer} \ (\mathsf{MixerFun}{<} \ \mathsf{TSeq} > \mathsf{fun})$
- void set\_transmission\_reduction\_mixer (MixerFun < TSeq > fun)
- void set\_recovery\_enhancer\_mixer (MixerFun< TSeq > fun)
- void set\_death\_reduction\_mixer (MixerFun < TSeq > fun)

## **Protected Member Functions**

- void dist\_tools ()
- void dist virus ()
- void chrono\_start ()
- void chrono\_end ()
- void actions\_add (Agent< TSeq > \*agent\_, VirusPtr< TSeq > virus\_, ToolPtr< TSeq > tool\_, Entity<
   TSeq > \*entity\_, epiworld\_fast\_uint new\_state\_, epiworld\_fast\_int queue\_, ActionFun< TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Action object.

• void actions\_run ()

Executes the stored action.

## **Protected Attributes**

```
std::string name = ""
 Name of the model.

 DataBase< TSeq > db = DataBase<TSeq>(*this)

std::vector< Agent< TSeq > > population = {}
• bool using_backup = true

 std::vector< Agent< TSeq > > population_backup = {}

• bool directed = false
std::vector< VirusPtr< TSeq >> viruses = {}
std::vector< epiworld_double > prevalence_virus = {}
 Initial prevalence virus of each virus.
std::vector< bool > prevalence_virus_as_proportion = {}

 std::vector< VirusToAgentFun< TSeq > > viruses dist funs = {}

std::vector< ToolPtr< TSeq >> tools = {}
std::vector< epiworld_double > prevalence_tool = {}
std::vector< bool > prevalence_tool_as_proportion = {}

 std::vector< ToolToAgentFun< TSeq >> tools_dist_funs = {}

std::vector< Entity< TSeq >> entities = {}

 std::vector< Entity< TSeq > > entities_backup = {}

• std::mt19937 engine
· std::uniform real distribution runifd

 std::normal_distribution rnormd

• std::gamma_distribution rgammad
· std::lognormal distribution rlognormald
· std::exponential distribution rexpd
· std::binomial distribution rbinomd

 std::function< void(std::vector< Agent< TSeq >> *, Model< TSeq > *, epiworld_double)> rewire_fun

• epiworld double rewire prop = 0.0

 std::map< std::string, epiworld_double > parameters

• epiworld fast uint ndays = 0
· Progress pb
std::vector< UpdateFun< TSeq >> status_fun = {}
std::vector< std::string > states_labels = {}
• epiworld_fast_uint nstatus = 0u
• bool verbose = true
• int current date = 0
• std::chrono::time point< std::chrono::steady clock > time start

 std::chrono::time point< std::chrono::steady clock > time end

 std::chrono::duration< epiworld_double, std::micro > time_elapsed

• epiworld_fast_uint n_replicates = 0u

 std::vector< GlobalAction< TSeq > > global_actions

 Queue < TSeq > queue

• bool use queuing = true

 std::vector < Action < TSeq > > actions = {}

 Variables used to keep track of the actions to be made regarding viruses.
• epiworld fast uint nactions = 0u
```

## $\label{lem:auxiliary variables} \textbf{Auxiliary variables for AgentsSample} < \textbf{TSeq} > \textbf{iterators}$

These variables+objects are used by the AgentsSample<TSeq> class for building efficient iterators over agents. The idea is to reduce the memory allocation, so only during the first call of AgentsSample<TSeq>::Agents← Sample(Model<TSeq>) these vectors are allocated.

std::vector< Agent< TSeq > \* > sampled\_population

- size\_t sampled\_population\_n = 0u
- std::vector< size t > population\_left
- size\_t population\_left\_n = 0u

#### **Agents features**

Optionally, a model can include an external data source pointing to agents information. The data can then be access through the Agent::operator() method.

- double \* agents data = nullptr
- size\_t agents\_data\_ncols = 0u

#### **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class DataBase< TSeq >
- class Queue < TSeq >

## **Tool Mixers**

These functions combine the effects tools have to deliver a single effect. For example, wearing a mask, been vaccinated, and the immune system combine together to jointly reduce the susceptibility for a given virus.

- MixerFun< TSeq > susceptibility reduction mixer = susceptibility reduction mixer default<TSeq>
- MixerFun< TSeq > transmission reduction mixer = transmission reduction mixer default<TSeq>
- MixerFun< TSeq > recovery enhancer mixer = recovery enhancer mixer default<TSeq>
- MixerFun< TSeq > death\_reduction\_mixer = death\_reduction\_mixer\_default<TSeq>
- std::vector< epiworld\_double > array\_double\_tmp
- std::vector< Virus< TSeq > \* > array\_virus\_tmp
- virtual Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

- Model ()
- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &m)=delete
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- virtual ∼Model ()
- void clone\_population (std::vector< Agent< TSeq > > &other\_population, std::vector< Entity< TSeq > > &other\_entities, Model< TSeq > \*other\_model, bool &other\_directed) const
- $\bullet \ \ \mathsf{void} \ \textbf{clone\_population} \ (\mathsf{const} \ \mathsf{\underline{Model}} \! < \mathsf{TSeq} > \& \mathsf{other\_model})$

## 13.21.1 Detailed Description

template<typename TSeq> class epiworld::Model< TSeq >

Core class of epiworld.

The model class provides the wrapper that puts together Agent, Virus, and Tools.

## **Template Parameters**

TSeq

Type of sequence. In principle, users can build models in which virus and human sequence is represented as numeric vectors (if needed.)

## 13.21.2 Member Function Documentation

## 13.21.2.1 actions\_add()

## Construct a new Action object.

## **Parameters**

agent_	Agent over which the action will be called
virus_	Virus pointer included in the action
tool_	Tool pointer included in the action
entity_	Entity pointer included in the action
new_←	New state of the agent
state_	
call_	Function the action will call
queue_	Change in the queue
idx_←	Location of agent in object.
agent_	
idx_←	Location of object in agent.
object_	

## 13.21.2.2 actions\_run()

```
template<typename TSeq >
void Model< TSeq >::actions_run [inline], [protected]
```

Executes the stored action.

#### **Parameters**

model←	Model over which it will be executed.

## 13.21.2.3 add\_global\_action()

```
template<typename TSeq >
void Model< TSeq >::add_global_action (
 std::function< void(Model< TSeq > *) > fun,
 std::string name = "A global action",
 int date = -99) [inline]
```

Set a global action.

## **Parameters**

fun	A function to be called on the prescribed date	
name	Name of the action.	
date	Integer indicating when the function is called (see details)	

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called only at the end of the indicated date.

## 13.21.2.4 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * Model< TSeq >::clone_ptr [inline], [protected], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

## **Parameters**

сору

 $\label{localized-conn} Reimplemented in ModelSIRLogit < TSeq >, ModelSIRCONN < TSeq >, ModelSEIRCONN < TSeq >, epiworld::epimodels::ModelSEIRCONN < TSeq >, and epiworld::epimodels::ModelSIRCONN < TSeq >.$ 

## 13.21.2.5 load\_agents\_entities\_ties()

Associate agents-entities from a file.

The structure of the file should be two columns separated by space. The first column indexing between 0 and nagents-1, and the second column between 0 and nentities - 1.

## **Parameters**

fn	Path to the file.
skip	How many rows to skip.

## 13.21.2.6 reset()

```
template<typename TSeq >
void Model< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

 $\label{localized} Reimplemented in ModelSIRLogit < TSeq >, ModelSIRCONN < TSeq >, ModelSEIRCONN < TSeq >, epiworld::epimodels::ModelSEIRCONN < TSeq >, and epiworld::epimodels::ModelSIRCONN < TSeq >.$ 

#### 13.21.2.7 run\_multiple()

#### **Parameters**

```
ndays | Multiple runs of the simulation
```

## 13.21.2.8 set\_agents\_data()

Set the agents data object.

The data should be an array with the data stored in a column major order, i.e., by column.

## **Parameters**

data⊷	Pointer to the first element of an array of size size() *	
_	ncols	
ncols⇔	Number of features included in the data.	
_		

## 13.21.2.9 set\_name()

Set the name object.

## **Parameters**

name

## 13.21.2.10 write\_data()

Wrapper of DataBase::write\_data

## **Parameters**

fn_variant_info	Filename. Information about the variant.
fn_variant_hist	Filename. History of the variant.
fn_tool_info	Filename. Information about the tool.
fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (state)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.
fn_reproductive_number	Filename. Case by case reproductive number

## 13.21.3 Member Data Documentation

## 13.21.3.1 rbinomd

## 13.21.3.2 rexpd

```
template<typename TSeq >
std::exponential_distribution epiworld::Model< TSeq >::rexpd [protected]
```

## Initial value:

std::exponential\_distribution<>()

std::gamma\_distribution<>()

## 13.21.3.3 rgammad

```
template<typename TSeq >
std::gamma_distribution epiworld::Model< TSeq >::rgammad [protected]
Initial value:
```

## 13.21.3.4 rlognormald

## 13.21.3.5 rnormd

```
template<typename TSeq >
std::normal_distribution epiworld::Model< TSeq >::rnormd [protected]

Initial value:
=
```

## 13.21.3.6 runifd

std::normal\_distribution<>(0.0)

## 13.21.3.7 time\_elapsed

```
template<typename TSeq >
std::chrono::duration<epiworld_double,std::micro> epiworld::Model< TSeq >::time_elapsed [protected]
```

## Initial value:

```
std::chrono::duration<epiworld_double,std::micro>::zero()
```

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.22 Model < TSeq > Class Template Reference

Core class of epiworld.

#include <model-bones.hpp>

Collaboration diagram for Model < TSeq >:



## **Public Member Functions**

- DataBase < TSeq > & get\_db ()
- epiworld\_double & operator() (std::string pname)
- size\_t size () const
- · void load\_agents\_entities\_ties (std::string fn, int skip)

Associate agents-entities from a file.

- size\_t get\_n\_variants () const
- size\_t get\_n\_tools () const
- epiworld\_fast\_uint get\_ndays () const
- epiworld\_fast\_uint get\_n\_replicates () const
- void set\_ndays (epiworld\_fast\_uint ndays)
- · bool get verbose () const
- void verbose\_off ()
- void verbose\_on ()
- · int today () const

The current time of the model.

void write\_data (std::string fn\_variant\_info, std::string fn\_variant\_hist, std::string fn\_tool\_info, std::string fn\_tool\_hist, std::string fn\_transmission, std::string fn\_transition, std::string fn\_c
 reproductive\_number, std::string fn\_generation\_time) const

Wrapper of DataBase::write\_data

- std::map< std::string, epiworld\_double > & params ()
- · virtual void reset ()

Reset the model.

- · void print (bool lite=false) const
- Model < TSeq > && clone () const
- void **get\_elapsed** (std::string unit="auto", epiworld\_double \*last\_elapsed=nullptr, epiworld\_double \*total\_←
  elapsed=nullptr, std::string \*unit abbr=nullptr, bool print=true) const
- void add\_global\_action (std::function< void(Model< TSeq > \*)> fun, std::string name="A global action", int date=-99)

Set a global action.

- void add\_global\_action (GlobalAction < TSeq > action)
- GlobalAction < TSeq > & get\_global\_action (std::string name)

Retrieve a global action by name.

GlobalAction < TSeq > & get global action (size ti)

Retrieve a global action by index.

void rm global action (std::string name)

Remove a global action by name.

void rm\_global\_action (size\_t i)

Remove a global action by index.

- void run\_global\_actions ()
- void clear state set ()
- const std::vector< VirusPtr< TSeq > > & get\_viruses () const
- const std::vector< ToolPtr< TSeq > > & get\_tools () const
- Virus< TSeq > & get\_virus (size\_t id)
- Tool < TSeq > & get\_tool (size t id)
- void set\_agents\_data (double \*data\_, size\_t ncols\_)

Set the agents data object.

- double \* get\_agents\_data ()
- · size t get agents data ncols () const
- void set name (std::string name)

Set the name object.

- std::string get\_name () const
- bool operator== (const Model < TSeq > &other) const
- bool operator!= (const Model < TSeq > &other) const

## Set the backup object

backup can be used to restore the entire object after a run. This can be useful if the user wishes to have individuals start with the same network from the beginning.

void set\_backup ()

## Random number generation

## **Parameters**

eng	Random number generator
s	Seed

- void set\_rand\_engine (std::mt19937 &eng)
- std::mt19937 & get\_rand\_endgine ()
- void seed (size\_t s)
- void set rand norm (epiworld double mean, epiworld double sd)
- void **set\_rand\_unif** (epiworld\_double a, epiworld\_double b)
- void set\_rand\_exp (epiworld\_double lambda)
- void set\_rand\_gamma (epiworld\_double alpha, epiworld\_double beta)
- void set\_rand\_lognormal (epiworld\_double mean, epiworld\_double shape)
- void set\_rand\_binom (int n, epiworld\_double p)
- epiworld double runif ()
- epiworld double runif (epiworld double a, epiworld double b)
- epiworld double rnorm ()
- epiworld\_double rnorm (epiworld\_double mean, epiworld\_double sd)
- epiworld\_double rgamma ()
- epiworld\_double rgamma (epiworld\_double alpha, epiworld\_double beta)

- epiworld\_double rexp ()
- epiworld\_double rexp (epiworld\_double lambda)
- epiworld\_double rlognormal ()
- epiworld\_double rlognormal (epiworld\_double mean, epiworld\_double shape)
- int rbinom ()
- int **rbinom** (int n, epiworld\_double p)

## Add Virus/Tool to the model

This is done before the model has been initialized.

#### **Parameters**

V	Virus to be added
t	Tool to be added
preval	Initial prevalence (initial state.) It can be specified as a proportion (between zero and one,) or an integer indicating number of individuals.

- void add\_virus (Virus < TSeq > &v, epiworld double preval)
- void add virus n (Virus < TSeq > &v, epiworld fast uint preval)
- void add\_virus\_fun (Virus< TSeq > &v, VirusToAgentFun< TSeq > fun)
- void add\_tool (Tool < TSeq > &t, epiworld\_double preval)
- void add\_tool\_n (Tool< TSeq > &t, epiworld\_fast\_uint preval)
- void add\_tool\_fun (Tool< TSeq > &t, ToolToAgentFun< TSeq > fun)
- void add\_entity (Entity < TSeq > e)
- void **rm\_virus** (size\_t virus\_pos)
- void rm\_tool (size t tool pos)
- void rm\_entity (size\_t entity\_pos)

## Accessing population of the model

## **Parameters**

fn	std::string Filename of the edgelist file.
skip	int Number of lines to skip in fn.
directed	bool Whether the graph is directed or not.
size	Size of the network.
al	AdjList to read into the model.

- void **agents\_from\_adjlist** (std::string fn, int size, int skip=0, bool directed=false)
- void agents\_from\_edgelist (const std::vector< int > &source, const std::vector< int > &target, int size, bool directed)
- void agents\_from\_adjlist (AdjList al)
- bool is\_directed () const
- std::vector< Agent< TSeq > > & get\_agents ()
- std::vector< Entity< TSeq > > & get\_entities ()
- void agents\_empty\_graph (epiworld\_fast\_uint n=1000)

#### Functions to run the model

## Parameters

seed	Seed to be used for Pseudo-RNG.
ndays	Number of days (steps) of the simulation.
fun	In the case of run_multiple, a function that is called after each experiment.

Generated by Doxygen

- void update\_state ()
- void mutate\_variant()
- void next ()
- virtual void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

void run\_multiple (epiworld\_fast\_uint ndays, epiworld\_fast\_uint nexperiments, int seed\_=-1, std::function
 void(size\_t, Model< TSeq > \*)> fun=make\_save\_run< TSeq >(), bool reset=true, bool verbose=true, int nthreads=1)

#### Rewire the network preserving the degree sequence.

This implementation assumes an undirected network, thus if  $\{(i,j), (k,l)\} \rightarrow \{(i,l), (k,j)\}$ , the reciprocal is also true, i.e.,  $\{(j,i), (l,k)\} \rightarrow \{(j,k), (l,i)\}$ .

#### **Parameters**

ortion of ties to be rewired.	proportion
-------------------------------	------------

#### Returns

A rewired version of the network.

- void set\_rewire\_fun (std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld\_double)> fun)
- void **set\_rewire\_prop** (epiworld\_double prop)
- epiworld\_double get\_rewire\_prop () const
- · void rewire ()

## Export the network data in edgelist form

#### **Parameters**

fn	std::string. File name.
source	Integer vector
target	Integer vector

When passing the source and target, the function will write the edgelist on those.

- void write\_edgelist (std::string fn) const
- void write\_edgelist (std::vector< int > &source, std::vector< int > &target) const

## Manage state (states) in the model

The functions get\_state return the current values for the states included in the model.

#### **Parameters**

lab	std::string Name of the state.
-----	--------------------------------

## Returns

add\_state\* returns nothing.
get\_state\_\* returns a vector of pairs with the states and their labels.

- void add\_state (std::string lab, UpdateFun< TSeq > fun=nullptr)
- const std::vector< std::string > & get\_states () const
- const std::vector< UpdateFun< TSeq >> & get\_state\_fun () const

· void print\_state\_codes () const

## Setting and accessing parameters from the model

Tools can incorporate parameters included in the model. Internally, parameters in the tool are stored as pointers to an std::map<> of parameters in the model. Using the epiworld\_fast\_uint method directly fetches the parameters in the order these were added to the tool. Accessing parameters via the std::string method involves searching the parameter directly in the std::map<> member of the model (so it is not recommended.)

The par() function members are aliases for get\_param().

In the case of the function read\_params, users can pass a file listing parameters to be included in the model. Each line in the file should have the following structure:

```
[name of parameter 1]: [value in double]
[name of parameter 2]: [value in double]
```

The only condition for parameter names is that these do not include a colon.

#### **Parameters**

initial_val	
pname	Name of the parameter to add or to fetch
fn	Path to the file containing parameters

#### Returns

The current value of the parameter in the model.

- epiworld\_double add\_param (epiworld\_double initial\_val, std::string pname)
- void read\_params (std::string fn)
- epiworld\_double get\_param (epiworld\_fast\_uint k)
- epiworld\_double **get\_param** (std::string pname)
- void **set\_param** (std::string pname, epiworld\_double val)
- epiworld\_double par (std::string pname)

## Set the user data object

#### **Parameters**

names	string vector with the names of the variables.
-------	------------------------------------------------

- void set\_user\_data (std::vector< std::string > names)
   [@
- void add\_user\_data (epiworld\_fast\_uint j, epiworld\_double x)
- void add\_user\_data (std::vector< epiworld\_double > x)
- UserData < TSeq > & get\_user\_data ()

## Queuing system

When queueing is on, the model will keep track of which agents are either in risk of exposure or exposed. This then is used at each step to act only on the aforementioned agents.

- void queuing\_on ()
  - Activates the queuing system (default.)
- void queuing off ()
  - Deactivates the queuing system.
- bool is\_queuing\_on () const
  - Query if the queuing system is on.
- Queue < TSeq > & get\_queue ()

Retrieve the Queue object.

## Get the susceptibility reduction object

#### **Parameters**

```
V
```

## Returns

epiworld double

- void set susceptibility reduction mixer (MixerFun < TSeq > fun)
- void set\_transmission\_reduction\_mixer (MixerFun < TSeq > fun)
- void set\_recovery\_enhancer\_mixer (MixerFun< TSeq > fun)
- void set\_death\_reduction\_mixer (MixerFun < TSeq > fun)

## **Protected Member Functions**

- · void dist\_tools ()
- · void dist virus ()
- void chrono\_start ()
- void chrono end ()
- void actions\_add (Agent< TSeq > \*agent\_, VirusPtr< TSeq > virus\_, ToolPtr< TSeq > tool\_, Entity<
   TSeq > \*entity\_, epiworld\_fast\_uint new\_state\_, epiworld\_fast\_int queue\_, ActionFun< TSeq > call\_, int idx\_agent\_, int idx\_object\_)

Construct a new Action object.

void actions\_run ()

Executes the stored action.

## **Protected Attributes**

```
• std::string name = ""
```

Name of the model.

- DataBase< TSeq > db = DataBase<TSeq>(\*this)
- std::vector< Agent< TSeq >> population = {}
- bool using\_backup = true
- std::vector< Agent< TSeq >> population\_backup = {}
- bool directed = false
- std::vector< VirusPtr< TSeq > > viruses = {}
- std::vector< epiworld\_double > prevalence\_virus = {}

Initial prevalence\_virus of each virus.

- std::vector< bool > prevalence\_virus\_as\_proportion = {}
- std::vector< VirusToAgentFun< TSeq > > viruses dist funs = {}
- std::vector< ToolPtr< TSeq >> tools = {}
- std::vector< epiworld\_double > prevalence\_tool = {}
- std::vector< bool > prevalence\_tool\_as\_proportion = {}
- std::vector< ToolToAgentFun< TSeq >> tools\_dist\_funs = {}
- std::vector< Entity< TSeq >> entities = {}
- std::vector< Entity< TSeq >> entities\_backup = {}
- std::mt19937 engine
- · std::uniform real distribution runifd
- std::normal\_distribution rnormd

- · std::gamma\_distribution rgammad
- std::lognormal\_distribution rlognormald
- · std::exponential distribution rexpd
- · std::binomial distribution rbinomd
- std::function< void(std::vector< Agent< TSeq >> \*, Model< TSeq > \*, epiworld\_double)> rewire\_fun
- epiworld\_double rewire\_prop = 0.0
- std::map< std::string, epiworld\_double > parameters
- epiworld fast uint ndays = 0
- · Progress pb
- std::vector< UpdateFun< TSeq > > status\_fun = {}
- std::vector< std::string > states\_labels = {}
- epiworld\_fast\_uint nstatus = 0u
- bool verbose = true
- int current date = 0
- std::chrono::time point< std::chrono::steady clock > time start
- std::chrono::time point< std::chrono::steady clock > time end
- std::chrono::duration< epiworld\_double, std::micro > time\_elapsed
- epiworld fast uint n\_replicates = 0u
- std::vector< GlobalAction< TSeq > > global\_actions
- Queue < TSeq > queue
- bool use queuing = true
- std::vector< Action< TSeq >> actions = {}

Variables used to keep track of the actions to be made regarding viruses.

• epiworld\_fast\_uint nactions = 0u

## Auxiliary variables for AgentsSample<TSeq> iterators

These variables+objects are used by the AgentsSample<TSeq> class for building efficient iterators over agents. The idea is to reduce the memory allocation, so only during the first call of AgentsSample<TSeq>::Agents⇔ Sample(Model<TSeq>) these vectors are allocated.

- std::vector< Agent< TSeq > \* > sampled\_population
- size\_t sampled\_population\_n = 0u
- std::vector< size t > population left
- size\_t population\_left\_n = 0u

## **Agents features**

Optionally, a model can include an external data source pointing to agents information. The data can then be access through the Agent::operator() method.

- double \* agents\_data = nullptr
- size\_t agents\_data\_ncols = 0u

## **Friends**

- class Agent < TSeq >
- class AgentsSample < TSeq >
- class DataBase< TSeq >
- class Queue < TSeq >

## **Tool Mixers**

These functions combine the effects tools have to deliver a single effect. For example, wearing a mask, been vaccinated, and the immune system combine together to jointly reduce the susceptibility for a given virus.

- MixerFun< TSeq > susceptibility\_reduction\_mixer = susceptibility\_reduction\_mixer\_default<TSeq>
- MixerFun< TSeq > transmission\_reduction\_mixer = transmission\_reduction\_mixer\_default<TSeq>
- MixerFun< TSeq > recovery\_enhancer\_mixer = recovery\_enhancer\_mixer\_default<TSeq>
- MixerFun< TSeq > death reduction mixer = death reduction mixer default<TSeq>
- std::vector< epiworld\_double > array\_double\_tmp
- std::vector< Virus< TSeq > \* > array\_virus\_tmp
- virtual Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

- · Model ()
- Model (const Model < TSeq > &m)
- Model (Model < TSeq > &m)=delete
- Model (Model < TSeq > &&m)
- Model < TSeq > & operator= (const Model < TSeq > &m)
- virtual ∼Model ()
- void clone\_population (std::vector< Agent< TSeq > > &other\_population, std::vector< Entity< TSeq > > &other\_entities, Model< TSeq > \*other\_model, bool &other\_directed) const
- void clone\_population (const Model < TSeq > &other model)

## 13.22.1 Detailed Description

```
template<typename TSeq> class Model< TSeq>
```

Core class of epiworld.

The model class provides the wrapper that puts together Agent, Virus, and Tools.

**Template Parameters** 

TSec

Type of sequence. In principle, users can build models in which virus and human sequence is represented as numeric vectors (if needed.)

## 13.22.2 Member Function Documentation

## 13.22.2.1 actions add()

```
ToolPtr< TSeq > tool_,
Entity< TSeq > * entity_,
epiworld_fast_uint new_state_,
epiworld_fast_int queue_,
ActionFun< TSeq > call_,
int idx_agent_,
int idx_object_) [inline], [protected]
```

## Construct a new Action object.

## **Parameters**

agent_	Agent over which the action will be called
virus_	Virus pointer included in the action
tool_	Tool pointer included in the action
entity_	Entity pointer included in the action
new_←	New state of the agent
state_	
call_	Function the action will call
queue_	Change in the queue
idx_⊷	Location of agent in object.
agent_	
idx_⊷	Location of object in agent.
object_	

## 13.22.2.2 actions\_run()

```
template<typename TSeq >
void Model< TSeq >::actions_run [inline], [protected]
```

Executes the stored action.

## **Parameters**

model←	Model over which it will be executed.

## 13.22.2.3 add\_global\_action()

Set a global action.

#### **Parameters**

fun	A function to be called on the prescribed date	
name	Name of the action.	
date	Integer indicating when the function is called (see details)	

When date is less than zero, then the function is called at the end of every day. Otherwise, the function will be called only at the end of the indicated date.

## 13.22.2.4 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * Model< TSeq >::clone_ptr [inline], [protected], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

# 13.22.2.5 load\_agents\_entities\_ties()

Associate agents-entities from a file.

The structure of the file should be two columns separated by space. The first column indexing between 0 and nagents-1, and the second column between 0 and nentities - 1.

#### **Parameters**

fn	Path to the file.	
skip	How many rows to skip.	

## 13.22.2.6 reset()

```
template<typename TSeq >
void Model< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

## 13.22.2.7 run\_multiple()

#### **Parameters**

Multiple runs of the simu	lation
---------------------------	--------

## 13.22.2.8 set\_agents\_data()

Set the agents data object.

The data should be an array with the data stored in a column major order, i.e., by column.

#### **Parameters**

data⊷	Pointer to the first element of an array of size size() *	
_	ncols	
ncols⇔	Number of features included in the data.	
_		

## 13.22.2.9 set\_name()

```
template<typename TSeq >
void Model< TSeq >::set_name (
 std::string name) [inline]
```

Set the name object.

## **Parameters**

name

## 13.22.2.10 write\_data()

Wrapper of DataBase::write\_data

## **Parameters**

fn_variant_info	Filename. Information about the variant.
fn_variant_hist	Filename. History of the variant.
fn_tool_info	Filename. Information about the tool.
fn_tool_hist	Filename. History of the tool.
fn_total_hist	Filename. Aggregated history (state)
fn_transmission	Filename. Transmission history.
fn_transition	Filename. Markov transition history.
fn_reproductive_number	Filename. Case by case reproductive number

## 13.22.3 Member Data Documentation

## 13.22.3.1 rbinomd

```
template<typename TSeq >
std::binomial_distribution Model< TSeq >::rbinomd [protected]
```

```
Initial value:
```

=
std::binomial\_distribution<>()

## 13.22.3.2 rexpd

```
template<typename TSeq >
std::exponential_distribution Model< TSeq >::rexpd [protected]
```

#### Initial value:

std::exponential\_distribution<>()

## 13.22.3.3 rgammad

```
template<typename TSeq >
std::gamma_distribution Model< TSeq >::rgammad [protected]
```

## Initial value:

std::gamma\_distribution<>()

## 13.22.3.4 rlognormald

```
template<typename TSeq >
std::lognormal_distribution Model< TSeq >::rlognormald [protected]
```

## Initial value:

std::lognormal\_distribution<>()

## 13.22.3.5 rnormd

```
template<typename TSeq >
std::normal_distribution Model< TSeq >::rnormd [protected]
```

## Initial value:

std::normal\_distribution<>(0.0)

## 13.22.3.6 runifd

```
template<typename TSeq >
std::uniform_real_distribution Model< TSeq >::runifd [protected]

Initial value:
=
 std::uniform_real_distribution<> (0.0, 1.0)
```

## 13.22.3.7 time\_elapsed

```
template<typename TSeq >
std::chrono::duration<epiworld_double,std::micro> Model< TSeq >::time_elapsed [protected]
```

## Initial value:

```
std::chrono::duration<epiworld_double,std::micro>::zero()
```

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/model-bones.hpp
- include/epiworld/model-meat-print.hpp
- include/epiworld/model-meat.hpp

# 13.23 epiworld::epimodels::ModelDiffNet< TSeq > Class Template Reference

Template for a Network Diffusion Model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelDiffNet< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelDiffNet< TSeq >:



## **Public Member Functions**

- **ModelDiffNet** (ModelDiffNet< TSeq > &model, std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_← ncols=0u, std::vector< size\_t > data\_cols={}, std::vector< double > params={})
- ModelDiffNet (std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_ncols=0u, std::vector< size\_t > data← \_cols={}, std::vector< double > params={})

#### **Public Attributes**

- bool normalize\_exposure = true
- std::vector< size\_t > data\_cols
- std::vector< double > params

#### **Static Public Attributes**

- static const int NONADOPTER = 0
- static const int ADOPTER = 1

## **Additional Inherited Members**

## 13.23.1 Detailed Description

template<typename TSeq = int> class epiworld::epimodels::ModelDiffNet< TSeq >

Template for a Network Diffusion Model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
genetaled by by algence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.24 ModelDiffNet< TSeq > Class Template Reference

Template for a Network Diffusion Model.

```
#include <diffnet.hpp>
```

Inheritance diagram for ModelDiffNet< TSeq >:



Collaboration diagram for ModelDiffNet< TSeq >:



#### **Public Member Functions**

- ModelDiffNet (ModelDiffNet < TSeq > &model, std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_← ncols=0u, std::vector < size\_t > data\_cols={}, std::vector < double > params={})
- ModelDiffNet (std::string innovation\_name, epiworld\_double prevalence, epiworld\_double prob\_adopt, bool normalize\_exposure=true, double \*agents\_data=nullptr, size\_t data\_ncols=0u, std::vector< size\_t > data← \_cols={}, std::vector< double > params={})

## **Public Attributes**

- bool normalize\_exposure = true
- $std::vector < size_t > data_cols$
- std::vector< double > params

## **Static Public Attributes**

- static const int **NONADOPTER** = 0
- static const int ADOPTER = 1

## **Additional Inherited Members**

## 13.24.1 Detailed Description

```
template<typename TSeq = int> class ModelDiffNet< TSeq >
```

Template for a Network Diffusion Model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/diffnet.hpp

# 13.25 epiworld::epimodels::ModelSEIR< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSEIR< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIR < TSeq >:



## **Public Member Functions**

- ModelSEIR (ModelSEIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double incubation\_days, epiworld\_double recovery)
- **ModelSEIR** (std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double incubation\_days, epiworld\_double recovery)

#### **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected\_seir

## **Additional Inherited Members**

## 13.25.1 Detailed Description

template < typename TSeq = int > class epiworld::epimodels::ModelSEIR < TSeq >

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

## 13.25.2 Member Data Documentation

## 13.25.2.1 update\_exposed\_seir

```
template<typename TSeq = int>
epiworld::UpdateFun<TSeq> epiworld::epimodels::ModelSEIR< TSeq >::update_exposed_seir
```

#### Initial value:

## 13.25.2.2 update\_infected\_seir

```
template<typename TSeq = int>
epiworld::UpdateFun<TSeq> epiworld::epimodels::ModelSEIR< TSeq >::update_infected_seir
```

## Initial value:

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.26 ModelSEIR < TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#include <seir.hpp>

Inheritance diagram for ModelSEIR< TSeq >:



Collaboration diagram for ModelSEIR< TSeq >:



## **Public Member Functions**

- **ModelSEIR** (ModelSEIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double incubation\_days, epiworld\_double recovery)
- **ModelSEIR** (std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_← double incubation\_days, epiworld\_double recovery)

## **Public Attributes**

- epiworld::UpdateFun< TSeq > update\_exposed\_seir
- epiworld::UpdateFun< TSeq > update\_infected\_seir

## **Additional Inherited Members**

## 13.26.1 Detailed Description

```
\label{template} \begin{tabular}{ll} template < typename TSeq = int > \\ class ModelSEIR < TSeq > \\ \end{tabular}
```

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

## 13.26.2 Member Data Documentation

## 13.26.2.1 update\_exposed\_seir

```
template<typename TSeq = int>
epiworld::UpdateFun<TSeq> ModelSEIR< TSeq >::update_exposed_seir

Initial value:
= [](
 epiworld::Agent<TSeq> * p,
 epiworld::Model<TSeq> * m
) -> void {
 if (m->runif() < 1.0/(m->par("Incubation days")))
 p->change_state(m, ModelSEIR<TSeq>::INFECTED);
 return;
 }
```

#### 13.26.2.2 update\_infected\_seir

The documentation for this class was generated from the following file:

• include/epiworld/models/seir.hpp

# 13.27 epiworld::epimodels::ModelSEIRCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSEIRCONN< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRCONN < TSeq >:



### **Public Member Functions**

 ModelSEIRCONN (ModelSEIRCONN 
 TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld \_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double incubation\_days, epiworld\_double prob\_recovery)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- **ModelSEIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double incubation\_days, epiworld\_double prob← \_recovery)
- void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

Model < TSeq > \* clone ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

## **Static Public Attributes**

- static const int **SUSCEPTIBLE** = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **RECOVERED** = 3

## **Additional Inherited Members**

#### 13.27.1 Constructor & Destructor Documentation

## 13.27.1.1 ModelSEIRCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

## **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

## 13.27.2 Member Function Documentation

## 13.27.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSEIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 13.27.2.2 reset()

```
template<typename TSeq >
void ModelSEIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

 $\label{eq:local_problem} \mbox{Reimplemented from epiworld::} \mbox{Model} < \mbox{EPI\_DEFAULT\_TSEQ} >.$ 

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.28 ModelSEIRCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSEIRCONN< TSeq >:



Collaboration diagram for ModelSEIRCONN< TSeq >:



## **Public Member Functions**

ModelSEIRCONN (ModelSEIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld 
 \_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double incubation\_days, epiworld\_double prob\_recovery)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

- **ModelSEIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double incubation\_days, epiworld\_double prob← \_recovery)
- void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Static Public Attributes**

- static const int SUSCEPTIBLE = 0
- static const int **EXPOSED** = 1
- static const int INFECTED = 2
- static const int **RECOVERED** = 3

#### **Additional Inherited Members**

## 13.28.1 Constructor & Destructor Documentation

## 13.28.1.1 ModelSEIRCONN()

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

## 13.28.2 Member Function Documentation

#### 13.28.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSEIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

## **Parameters**



Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

## 13.28.2.2 reset()

```
template<typename TSeq >
void ModelSEIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from epiworld:: $Model < EPI\_DEFAULT\_TSEQ >$ .

The documentation for this class was generated from the following file:

• include/epiworld/models/seirconnected.hpp

## 13.29 ModelSEIRCONNLogit < TSeq > Class Template Reference

Inheritance diagram for ModelSEIRCONNLogit < TSeq >:



Collaboration diagram for ModelSEIRCONNLogit< TSeq >:



#### **Public Member Functions**

 ModelSEIRCONNLogit (ModelSEIRCONNLogit < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double reproductive\_number, epiworld\_double prob\_transmission, epiworld\_double incubation\_days, epiworld\_double prob\_recovery, double \*covars, std::vector< double > logit\_params)

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

\_double reproductive\_number, epiworld\_double prob\_transmission, epiworld\_double incubation\_days, epiworld\_double prob\_recovery double \*covars, std::vector< double > logit\_params)

#### **Public Attributes**

```
std::vector< epiworld::Agent<> * > tracked_agents_infected = {}

 std::vector< epiworld::Agent<> * > tracked_agents_infected_next = {}

 bool tracked_started = false
```

- int tracked\_ninfected = 0
- int tracked\_ninfected\_next = 0

### **Additional Inherited Members**

#### 13.29.1 Constructor & Destructor Documentation

#### 13.29.1.1 ModelSEIRCONNLogit()

```
template<typename TSeq >
ModelSEIRCONNLogit < TSeq >::ModelSEIRCONNLogit (
 ModelSEIRCONNLogit < TSeq > & model,
 std::string vname,
 epiworld_fast_uint n,
 epiworld_double prevalence,
 epiworld_double reproductive_number,
 epiworld_double prob_transmission,
 epiworld_double incubation_days,
 epiworld_double prob_recovery,
 double * covars,
 std::vector< double > logit_params) [inline]
```

Template for a Susceptible-Exposed-Infected-Removed (SEIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
reproductive_number	Reproductive number (beta)
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

The documentation for this class was generated from the following file:

• include/epiworld/models/seirconnected\_logit.hpp

# 13.30 epiworld::epimodels::ModelSEIRD< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSEIRD< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSEIRD< TSeq >:



## **Public Member Functions**

- ModelSEIRD (ModelSEIRD < TSeq > &model, std::string vname)
- ModelSEIRD (std::string vname, epiworld\_double prevalence, epiworld\_double incu\_shape, epiworld → double incu\_rate, epiworld\_double infe\_shape, epiworld\_double infe\_rate, epiworld\_double p\_hosp, epiworld\_double p\_hosp\_rec, epiworld\_double p\_hosp\_die, epiworld\_double p\_transmission, epiworld → double p\_transmission\_entity, size\_t n\_entities, size\_t n\_interactions)
- ModelSEIRD (std::string fn, std::string vname)

## **Protected Types**

enum S {
 Susceptible , Exposed , Infected , Hospitalized ,
 Recovered , Deceased }

## **Static Protected Member Functions**

- static void update\_exposed (epiworld::Agent < TSeq > \*p, epiworld::Model < TSeq > \*m)
- static void update\_infected (epiworld::Agent < TSeq > \*p, epiworld::Model < TSeq > \*m)
- static void update\_hospitalized (epiworld::Agent< TSeq > \*p, epiworld::Model< TSeq > \*m)
- static void contact (Model < TSeq > \*m)

Transmission by contact outside home.

## **Additional Inherited Members**

## 13.30.1 Detailed Description

```
template<typename TSeq = int>
class epiworld::epimodels::ModelSEIRD< TSeq >
```

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.31 ModelSEIRD< TSeq > Class Template Reference

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

```
#include <seird.hpp>
```

Inheritance diagram for ModelSEIRD< TSeq >:



Collaboration diagram for ModelSEIRD< TSeq >:



#### **Public Member Functions**

- ModelSEIRD (ModelSEIRD < TSeq > &model, std::string vname)
- ModelSEIRD (std::string vname, epiworld\_double prevalence, epiworld\_double incu\_shape, epiworld
   —double incu\_rate, epiworld\_double infe\_shape, epiworld\_double infe\_rate, epiworld\_double p\_hosp,
   epiworld\_double p\_hosp\_rec, epiworld\_double p\_hosp\_die, epiworld\_double p\_transmission, epiworld
   —double p transmission entity, size t n entities, size t n interactions)
- **ModelSEIRD** (std::string fn, std::string vname)

## **Protected Types**

```
 enum S {
 Susceptible , Exposed , Infected , Hospitalized ,
 Recovered , Deceased }
```

## **Static Protected Member Functions**

- static void **update\_exposed** (epiworld::Agent< TSeq > \*p, epiworld::Model< TSeq > \*m)
- static void  $update\_infected$  (epiworld::Agent < TSeq > \*p, epiworld::Model < TSeq > \*m)
- static void update\_hospitalized (epiworld::Agent< TSeq > \*p, epiworld::Model< TSeq > \*m)
- static void contact (Model < TSeq > \*m)

Transmission by contact outside home.

#### **Additional Inherited Members**

## 13.31.1 Detailed Description

```
template<typename TSeq = int> class ModelSEIRD< TSeq >
```

Template for a Susceptible-Exposed-Infected-Removed-Deceased (SEIRD) model.

The documentation for this class was generated from the following file:

include/epiworld/models/seird.hpp

# 13.32 epiworld::epimodels::ModelSIR< TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

#include <epiworld.hpp>

Inheritance diagram for epiworld::epimodels::ModelSIR< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIR< TSeq >:



## **Public Member Functions**

- **ModelSIR** (ModelSIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)
- **ModelSIR** (std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)

## **Additional Inherited Members**

## 13.32.1 Detailed Description

 $\label{template} \mbox{template} < \mbox{typename TSeq = int} > \\ \mbox{class epiworld::epimodels::ModelSIR} < \mbox{TSeq} > \\ \mbox{}$ 

Template for a Susceptible-Infected-Removed (SIR) model.

## **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

• epiworld.hpp

## 13.33 ModelSIR < TSeq > Class Template Reference

Template for a Susceptible-Infected-Removed (SIR) model.

#include <sir.hpp>

Inheritance diagram for ModelSIR < TSeq >:



Collaboration diagram for ModelSIR < TSeq >:



## **Public Member Functions**

- **ModelSIR** (ModelSIR< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)
- **ModelSIR** (std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)

## **Additional Inherited Members**

## 13.33.1 Detailed Description

template<typename TSeq = int> class ModelSIR< TSeq >

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/sir.hpp

# 13.34 epiworld::epimodels::ModelSIRCONN< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRCONN< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRCONN< TSeq >:



## **Public Member Functions**

ModelSIRCONN (ModelSIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld
 \_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double
 prob\_recovery)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double prob\_recovery)
- void run (epiworld fast uint ndays, int seed=-1)

Runs the simulation (after initialization)

• void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

### **Additional Inherited Members**

## 13.34.1 Constructor & Destructor Documentation

#### 13.34.1.1 ModelSIRCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

## 13.34.2 Member Function Documentation

### 13.34.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

## 13.34.2.2 reset()

```
template<typename TSeq >
void ModelSIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.35 ModelSIRCONN< TSeq > Class Template Reference

Inheritance diagram for ModelSIRCONN< TSeq >:



Collaboration diagram for ModelSIRCONN < TSeq >:



## **Public Member Functions**

ModelSIRCONN (ModelSIRCONN < TSeq > &model, std::string vname, epiworld\_fast\_uint n, epiworld
 \_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double
 prob\_recovery)

Template for a Susceptible-Infected-Removed (SIR) model.

- **ModelSIRCONN** (std::string vname, epiworld\_fast\_uint n, epiworld\_double prevalence, epiworld\_double contact\_rate, epiworld\_double prob\_transmission, epiworld\_double prob\_recovery)
- void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

· void reset ()

Reset the model.

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

## **Additional Inherited Members**

## 13.35.1 Constructor & Destructor Documentation

## 13.35.1.1 ModelSIRCONN()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

#### 13.35.2 Member Function Documentation

## 13.35.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRCONN< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

### **Parameters**



Reimplemented from epiworld::Model < EPI DEFAULT TSEQ >.

### 13.35.2.2 reset()

```
template<typename TSeq >
void ModelSIRCONN< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirconnected.hpp

# 13.36 epiworld::epimodels::ModelSIRLogit< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSIRLogit< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIRLogit < TSeq >:



## **Public Member Functions**

ModelSIRLogit (ModelSIRLogit < TSeq > &model, std::string vname, double \*data, size\_t ncols, std
 ::vector < double > coefs\_infect, std::vector < double > coefs\_recover, std::vector < size\_t > coef\_infect\_
 cols, std::vector < size\_t > coef\_recover\_cols, epiworld\_double prob\_infect, epiworld\_double prob\_recover, epiworld\_double prevalence)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRLogit (std::string vname, double \*data, size\_t ncols, std::vector< double > coefs\_infect, std 
  ::vector< double > coefs\_recover, std::vector< size\_t > coef\_infect\_cols, std::vector< size\_t > coef\_
  recover\_cols, epiworld\_double prob\_infect, epiworld\_double prob\_recover, epiworld\_double prevalence)
- void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

· void reset ()

Reset the model.

#### **Public Attributes**

- std::vector< double > coefs\_infect
- std::vector< double > coefs\_recover
- std::vector< size\_t > coef\_infect\_cols
- std::vector< size\_t > coef\_recover\_cols

#### **Additional Inherited Members**

#### 13.36.1 Constructor & Destructor Documentation

## 13.36.1.1 ModelSIRLogit()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

vname	Name of the virus.
coefs_infect	Double ptr. Infection coefficients.
coefs_recover	Double ptr. Recovery coefficients.
ncoef_infect	Unsigned int. Number of infection coefficients.
ncoef_recover	Unsigned int. Number of recovery coefficients.
coef_infect_cols	Vector <unsigned int="">. Ids of infection vars.</unsigned>
coef_recover_cols	Vector <unsigned int="">. Ids of recover vars.</unsigned>
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

## 13.36.2 Member Function Documentation

## 13.36.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRLogit< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

#### 13.36.2.2 reset()

```
template<typename TSeq >
void ModelSIRLogit< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

· epiworld.hpp

# 13.37 ModelSIRLogit < TSeq > Class Template Reference

Inheritance diagram for ModelSIRLogit < TSeq >:



Collaboration diagram for ModelSIRLogit < TSeq >:



## **Public Member Functions**

ModelSIRLogit (ModelSIRLogit < TSeq > &model, std::string vname, double \*data, size\_t ncols, std
 ::vector < double > coefs\_infect, std::vector < double > coefs\_recover, std::vector < size\_t > coef\_infect\_←
 cols, std::vector < size\_t > coef\_recover\_cols, epiworld\_double prob\_infect, epiworld\_double prob\_recover,
 epiworld\_double prevalence)

Template for a Susceptible-Infected-Removed (SIR) model.

- ModelSIRLogit (std::string vname, double \*data, size\_t ncols, std::vector< double > coefs\_infect, std 
  ::vector< double > coefs\_recover, std::vector< size\_t > coef\_infect\_cols, std::vector< size\_t > coef\_
  recover\_cols, epiworld\_double prob\_infect, epiworld\_double prob\_recover, epiworld\_double prevalence)
- void run (epiworld\_fast\_uint ndays, int seed=-1)

Runs the simulation (after initialization)

Model < TSeq > \* clone\_ptr ()

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

• void reset ()

Reset the model.

## **Public Attributes**

- std::vector< double > coefs\_infect
- std::vector< double > coefs recover
- std::vector < size t > coef\_infect\_cols
- std::vector< size\_t > coef\_recover\_cols

## **Additional Inherited Members**

#### 13.37.1 Constructor & Destructor Documentation

#### 13.37.1.1 ModelSIRLogit()

Template for a Susceptible-Infected-Removed (SIR) model.

#### **Parameters**

vname	Name of the virus.
coefs_infect	Double ptr. Infection coefficients.
coefs_recover	Double ptr. Recovery coefficients.
ncoef_infect	Unsigned int. Number of infection coefficients.
ncoef_recover	Unsigned int. Number of recovery coefficients.
coef_infect_cols	Vector <unsigned int="">. Ids of infection vars.</unsigned>
coef_recover_cols	Vector <unsigned int="">. Ids of recover vars.</unsigned>
model	A Model <tseq> object where to set up the SIR.</tseq>
vname	std::string Name of the virus
prevalence	Initial prevalence (proportion)
contact_rate	Average number of contacts (interactions) per step.
prob_transmission	Probability of transmission
prob_recovery	Probability of recovery

## 13.37.2 Member Function Documentation

## 13.37.2.1 clone\_ptr()

```
template<typename TSeq >
Model< TSeq > * ModelSIRLogit< TSeq >::clone_ptr [inline], [virtual]
```

Advanced usage: Makes a copy of data and returns it as undeleted pointer.

#### **Parameters**

сору

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

### 13.37.2.2 reset()

```
template<typename TSeq >
void ModelSIRLogit< TSeq >::reset [inline], [virtual]
```

Reset the model.

Resetting the model will:

- · clear the database
- restore the population (if set\_backup() was called before)
- · re-distribute tools
- · re-distribute viruses
- · set the date to 0

Reimplemented from epiworld::Model < EPI\_DEFAULT\_TSEQ >.

The documentation for this class was generated from the following file:

• include/epiworld/models/sirlogit.hpp

# 13.38 epiworld::epimodels::ModelSIS< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible (SIS) model.

```
#include <epiworld.hpp>
```

Inheritance diagram for epiworld::epimodels::ModelSIS < TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSIS < TSeq >:



## **Public Member Functions**

- **ModelSIS** (ModelSIS< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)
- **ModelSIS** (std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)

## **Additional Inherited Members**

## 13.38.1 Detailed Description

template<typename TSeq = int>
class epiworld::epimodels::ModelSIS< TSeq >

Template for a Susceptible-Infected-Susceptible (SIS) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.39 ModelSIS< TSeq > Class Template Reference

Template for a Susceptible-Infected-Susceptible (SIS) model.

```
#include <sis.hpp>
```

Inheritance diagram for ModelSIS< TSeq >:



Collaboration diagram for ModelSIS < TSeq >:



## **Public Member Functions**

- **ModelSIS** (ModelSIS< TSeq > &model, std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld double recovery)
- **ModelSIS** (std::string vname, epiworld\_double prevalence, epiworld\_double infectiousness, epiworld\_double recovery)

## **Additional Inherited Members**

## 13.39.1 Detailed Description

template<typename TSeq = int> class ModelSIS< TSeq >

Template for a Susceptible-Infected-Susceptible (SIS) model.

#### **Parameters**

vname	std::string Name of the virus
initial_prevalence	epiworld_double Initial prevalence
initial_efficacy	epiworld_double Initial susceptibility_reduction of the immune system
initial_recovery	epiworld_double Initial recovery rate of the immune system

The documentation for this class was generated from the following file:

• include/epiworld/models/sis.hpp

# 13.40 epiworld::epimodels::ModelSURV< TSeq > Class Template Reference

Inheritance diagram for epiworld::epimodels::ModelSURV< TSeq >:



Collaboration diagram for epiworld::epimodels::ModelSURV < TSeq >:



## **Public Member Functions**

## Construct a new ModelSURV object

The ModelSURV class simulates a survaillence model where agents can be isolated, even if asyptomatic.

#### **Parameters**

vname	String. Name of the virus
prevalence	Integer. Number of initial cases of the virus.
efficacy_vax	Double. Efficacy of the vaccine (1 - P(acquire the disease)).
latent_period	Double. Shape parameter of a Gamma (latent_period, 1) distribution. This coincides with the expected number of latent days.
infect_period	Double. Shape parameter of a Gamma (infected_period, 1) distribution. This coincides with the expected number of infectious days.
prob_symptoms	Double. Probability of generating symptoms.
prop_vaccinated	Double. Probability of vaccination. Coincides with the initial prevalence of vaccinated individuals.
prop_vax_redux_transm	Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect	Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob	Double. Probability of testing an agent.
prob_transmission	Double. Raw transmission probability.
prob_death	Double. Raw probability of death for symptomatic individuals.
prob_noreinfect	Double. Probability of no re-infection.

This model features the following states:

- Susceptible
- · Latent
- · Symptomatic
- · Symptomatic isolated
- Asymptomatic
- · Asymptomatic isolated
- · Recovered
- Removed

#### Returns

An object of class epiworld\_surv

- ModelSURV ()
- ModelSURV (ModelSURV < TSeq > &model, std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop-vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_tob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_tob=0.001, epiworld\_tob=0.001,
- **ModelSURV** (std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0. ← 9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_← symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)

#### **Additional Inherited Members**

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.41 ModelSURV < TSeq > Class Template Reference

Inheritance diagram for ModelSURV < TSeq >:



Collaboration diagram for ModelSURV < TSeq >:



#### **Public Member Functions**

#### Construct a new ModelSURV object

The ModelSURV class simulates a survaillence model where agents can be isolated, even if asyptomatic.

#### **Parameters**

vname	String. Name of the virus
prevalence	Integer. Number of initial cases of the virus.
efficacy_vax	Double. Efficacy of the vaccine (1 - P(acquire the disease)).
latent_period	Double. Shape parameter of a Gamma (latent_period, 1) distribution.  This coincides with the expected number of latent days.
infect_period	Double. Shape parameter of a Gamma (infected_period, 1) distribution. This coincides with the expected number of infectious days.
prob_symptoms	Double. Probability of generating symptoms.

#### **Parameters**

prop_vaccinated	Double. Probability of vaccination. Coincides with the initial prevalence of
	vaccinated individuals.
prop_vax_redux_transm	Double. Factor by which the vaccine reduces transmissibility.
prop_vax_redux_infect	Double. Factor by which the vaccine reduces the chances of becoming infected.
surveillance_prob	Double. Probability of testing an agent.
prob_transmission	Double. Raw transmission probability.
prob_death	Double. Raw probability of death for symptomatic individuals.
prob_noreinfect	Double. Probability of no re-infection.

This model features the following states:

- · Susceptible
- Latent
- · Symptomatic
- · Symptomatic isolated
- · Asymptomatic
- · Asymptomatic isolated
- · Recovered
- Removed

#### Returns

An object of class epiworld\_surv

- · ModelSURV ()
- **ModelSURV** (ModelSURV < TSeq > &model, std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0.9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_⇔ prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_⇔ double prob\_noreinfect=0.9)
- **ModelSURV** (std::string vname, epiworld\_fast\_uint prevalence=50, epiworld\_double efficacy\_vax=0. ← 9, epiworld\_double latent\_period=3u, epiworld\_double infect\_period=6u, epiworld\_double prob\_← symptoms=0.6, epiworld\_double prop\_vaccinated=0.25, epiworld\_double prop\_vax\_redux\_transm=0.5, epiworld\_double prop\_vax\_redux\_infect=0.5, epiworld\_double surveillance\_prob=0.001, epiworld\_double prob\_transmission=1.0, epiworld\_double prob\_death=0.001, epiworld\_double prob\_noreinfect=0.9)

#### **Additional Inherited Members**

The documentation for this class was generated from the following file:

• include/epiworld/models/surveillance.hpp

# 13.42 Network< Nettype, Nodetype, Edgetype > Class Template Reference

#### **Public Member Functions**

- NType ()
- Edgetype **operator()** (int i, int j)
- bool is\_directed () const
- size\_t vcount () const
- size\_t ecount () const
- void add\_edge (int i, int j)
- void **rm\_edge** (int i, int j)

The documentation for this class was generated from the following file:

• include/epiworld/network-bones.hpp

## 13.43 epiworld::PersonTools < TSeq > Class Template Reference

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.44 PersonTools < TSeq > Class Template Reference

The documentation for this class was generated from the following file:

• include/epiworld/config.hpp

## 13.45 epiworld::Progress Class Reference

A simple progress bar.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- Progress (int n\_, int width\_)
- void start ()
- void next ()
- void **end** ()

#### 13.45.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.46 Progress Class Reference

A simple progress bar.

```
#include progress.hpp>
```

#### **Public Member Functions**

- Progress (int n\_, int width\_)
- · void start ()
- void next ()
- void end ()

#### 13.46.1 Detailed Description

A simple progress bar.

The documentation for this class was generated from the following file:

• include/epiworld/progress.hpp

## 13.47 epiworld::Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- void operator+= (Agent < TSeq > \*p)
- void operator-= (Agent < TSeq > \*p)
- epiworld\_fast\_int & operator[] (epiworld\_fast\_uint i)
- void reset ()
- bool operator== (const Queue < TSeq > &other) const
- bool operator!= (const Queue < TSeq > &other) const

#### **Static Public Attributes**

- static const int NoOne = 0
- static const int OnlySelf = 1
- static const int **Everyone** = 2

#### **Friends**

class Model < TSeq >

#### 13.47.1 Detailed Description

```
template<typename TSeq> class epiworld::Queue< TSeq>
```

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.48 Queue < TSeq > Class Template Reference

Controls which agents are verified at each step.

```
#include <queue-bones.hpp>
```

#### **Public Member Functions**

- void operator+= (Agent < TSeq > \*p)
- void operator-= (Agent < TSeq > \*p)
- epiworld\_fast\_int & operator[] (epiworld\_fast\_uint i)
- · void reset ()
- bool operator== (const Queue < TSeq > &other) const
- bool operator!= (const Queue < TSeq > &other) const

#### **Static Public Attributes**

- static const int **NoOne** = 0
- static const int OnlySelf = 1
- static const int Everyone = 2

#### **Friends**

class Model < TSeq >

#### 13.48.1 Detailed Description

template < typename TSeq > class Queue < TSeq >

Controls which agents are verified at each step.

The idea is that only agents who are either in an infected state or have an infected neighbor should be checked. Otherwise it makes no sense (no chance to recover or capture the disease).

#### **Template Parameters**

TSeq	
------	--

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- · include/epiworld/queue-bones.hpp

## 13.49 RandGraph Class Reference

#### **Public Member Functions**

- RandGraph (int N )
- void init (int s)
- void set\_rand\_engine (std::mt19937 &e)
- epiworld\_double runif ()

The documentation for this class was generated from the following file:

• include/epiworld/random\_graph.hpp

## 13.50 epiworld::SAMPLETYPE Class Reference

#### **Static Public Attributes**

- static const int MODEL = 0
- static const int **ENTITY** = 1
- static const int AGENT = 2

The documentation for this class was generated from the following file:

· epiworld.hpp

#### 13.51 SAMPLETYPE Class Reference

#### **Static Public Attributes**

- static const int MODEL = 0
- static const int ENTITY = 1
- static const int AGENT = 2

The documentation for this class was generated from the following file:

• include/epiworld/agentssample-bones.hpp

## 13.52 epiworld::Tool < TSeq > Class Template Reference

Tools for defending the agent against the virus.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- Tool (std::string name="unknown tool")
- void set\_sequence (TSeq d)
- void set\_sequence (std::shared\_ptr< TSeq > d)
- std::shared\_ptr< TSeq > get\_sequence ()
- void set\_name (std::string name)
- std::string **get\_name** () const
- Agent < TSeq > \* get\_agent ()
- int get\_id () const
- void set\_id (int id)
- void set\_date (int d)
- int get\_date () const
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void **set\_queue** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*post)
- void **get\_queue** (epiworld fast int \*init, epiworld fast int \*post)
- bool operator== (const Tool < TSeq > &other) const
- bool operator!= (const Tool < TSeq > &other) const
- · void print () const

#### Get and set the tool functions

#### **Parameters**

V	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_susceptibility\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)

- epiworld\_double get\_death\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- void set\_susceptibility\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_transmission\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_recovery\_enhancer\_fun (ToolFun< TSeq > fun)
- void set\_death\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_susceptibility\_reduction (epiworld\_double \*prob)
- void set\_transmission\_reduction (epiworld\_double \*prob)
- void set\_recovery\_enhancer (epiworld\_double \*prob)
- void set\_death\_reduction (epiworld\_double \*prob)
- void set\_susceptibility\_reduction (epiworld\_double prob)
- void **set\_transmission\_reduction** (epiworld\_double prob)
- void set\_recovery\_enhancer (epiworld\_double prob)
- void set\_death\_reduction (epiworld\_double prob)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- void default\_add\_tool (Action < TSeq > &a, Model < TSeq > \*m)
- void default rm\_tool (Action < TSeq > &a, Model < TSeq > \*m)

#### 13.52.1 Detailed Description

```
template<typename TSeq> class epiworld::Tool< TSeq>
```

Tools for defending the agent against the virus.

**Template Parameters** 

```
TSeq Type of sequence
```

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.53 Tool < TSeq > Class Template Reference

Tools for defending the agent against the virus.

```
#include <tool-bones.hpp>
```

#### **Public Member Functions**

- Tool (std::string name="unknown tool")
- void set sequence (TSeq d)
- void set\_sequence (std::shared\_ptr< TSeq > d)
- std::shared\_ptr< TSeq > get\_sequence ()
- void set name (std::string name)
- std::string get\_name () const
- Agent < TSeq > \* get\_agent ()
- int get id () const
- void set\_id (int id)
- · void set\_date (int d)
- · int get date () const
- void **set\_state** (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int post)
- void get\_state (epiworld fast int \*init, epiworld fast int \*post)
- void get queue (epiworld fast int \*init, epiworld fast int \*post)
- bool operator== (const Tool < TSeq > &other) const
- bool operator!= (const Tool < TSeq > &other) const
- · void print () const
- bool operator== (const Tool < std::vector < int >> &other) const
- bool operator== (const Tool < std::vector < int >> &other) const

#### Get and set the tool functions

#### **Parameters**

V	The virus over which to operate
fun	the function to be used

#### Returns

#### epiworld\_double

- epiworld\_double get\_transmission\_reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get\_recovery\_enhancer (VirusPtr< TSeq > v, Model< TSeq > \*model)
- epiworld double get death reduction (VirusPtr< TSeq > v, Model< TSeq > \*model)
- void set\_susceptibility\_reduction\_fun (ToolFun < TSeq > fun)
- void set\_transmission\_reduction\_fun (ToolFun < TSeq > fun)
- void set recovery enhancer fun (ToolFun < TSeq > fun)
- void set death reduction fun (ToolFun < TSeq > fun)
- void set\_susceptibility\_reduction (epiworld\_double \*prob)
- void set\_transmission\_reduction (epiworld\_double \*prob)
- void set\_recovery\_enhancer (epiworld\_double \*prob)
- void set death reduction (epiworld double \*prob)
- void set susceptibility reduction (epiworld double prob)
- void set\_transmission\_reduction (epiworld\_double prob)
- void set\_recovery\_enhancer (epiworld\_double prob)
- void set\_death\_reduction (epiworld\_double prob)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- void default\_add\_tool (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_tool (Action< TSeq > &a, Model< TSeq > \*m)

#### 13.53.1 Detailed Description

```
template<typename TSeq> class Tool< TSeq>
```

Tools for defending the agent against the virus.

**Template Parameters** 

TSeq Type of sequence	
-----------------------	--

The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/tool-bones.hpp
- · include/epiworld/tool-meat.hpp

## 13.54 epiworld::Tools < TSeq > Class Template Reference

Set of tools (useful for building iterators)

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- Tools (Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::iterator **begin** ()
- std::vector< ToolPtr< TSeq > >::iterator end ()
- ToolPtr < TSeq > & operator() (size\_t i)
- ToolPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

### 13.54.1 Detailed Description

```
template<typename TSeq> class epiworld::Tools< TSeq >
```

Set of tools (useful for building iterators)

#### **Template Parameters**

TSeq	
,	

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.55 Tools < TSeq > Class Template Reference

Set of tools (useful for building iterators)

```
#include <tools-bones.hpp>
```

#### **Public Member Functions**

- Tools (Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::iterator begin ()
- std::vector< ToolPtr< TSeq > >::iterator end ()
- ToolPtr< TSeq > & operator() (size\_t i)
- ToolPtr < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

### 13.55.1 Detailed Description

template < typename TSeq> class Tools < TSeq >

Set of tools (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

## 13.56 epiworld::Tools\_const< TSeq > Class Template Reference

Set of Tools (const) (useful for iterators)

#include <epiworld.hpp>

#### **Public Member Functions**

- Tools const (const Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::const\_iterator begin () const
- std::vector< ToolPtr< TSeq > >::const\_iterator end () const
- const ToolPtr< TSeq > & operator() (size t i)
- const ToolPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

#### 13.56.1 Detailed Description

template<typename TSeq>
class epiworld::Tools\_const< TSeq>

Set of Tools (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.57 Tools\_const < TSeq > Class Template Reference

Set of Tools (const) (useful for iterators)

#include <tools-bones.hpp>

#### **Public Member Functions**

- Tools\_const (const Agent < TSeq > &p)
- std::vector< ToolPtr< TSeq > >::const\_iterator begin () const
- std::vector< ToolPtr< TSeq > >::const\_iterator end () const
- const ToolPtr< TSeq > & operator() (size\_t i)
- const ToolPtr < TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Tool < TSeq >
- class Agent < TSeq >

### 13.57.1 Detailed Description

```
template<typename TSeq> class Tools_const< TSeq>
```

Set of Tools (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/tools-bones.hpp

## 13.58 epiworld::UserData < TSeq > Class Template Reference

Personalized data by the user.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- UserData (Model < TSeq > &m)
- UserData (Model < TSeq > \*m)
- UserData (std::vector< std::string > names)

Construct a new User Data object.

- std::vector< std::string > & get\_names ()
- std::vector< int > & get\_dates ()
- std::vector< epiworld\_double > & get\_data ()
- void **get\_all** (std::vector< std::string > \*names=nullptr, std::vector< int > \*date=nullptr, std::vector<</li>
   epiworld\_double > \*data=nullptr)
- epiworld\_fast\_uint nrow () const
- epiworld fast uint ncol () const
- void write (std::string fn)
- · void print () const

#### Append data

#### **Parameters**

X	A vector of length ncol() (if vector), otherwise a epiworld_double.
j	Index of the data point, from 0 to ncol () - 1.

- void add (std::vector< epiworld\_double > x)
- void add (epiworld\_fast\_uint j, epiworld\_double x)

#### Access data

#### **Parameters**

i	Row (0 through ndays - 1.)	
j	Column (0 through ncols()).	

#### Returns

epiworld\_double&

- epiworld\_double & operator() (epiworld\_fast\_uint i, epiworld\_fast\_uint j)
- epiworld\_double & **operator()** (epiworld\_fast\_uint i, std::string name)

#### **Friends**

- class Model < TSeq >
- class  ${\bf DataBase}{<}{\,{\sf TSeq}}{\,>}$

#### 13.58.1 Detailed Description

template < typename TSeq> class epiworld::UserData < TSeq>

Personalized data by the user.

**Template Parameters** 

TSeq

#### 13.58.2 Constructor & Destructor Documentation

#### 13.58.2.1 UserData()

Construct a new User Data object.

#### **Parameters**

names	A vector of names.	The length of the vector sets the number of columns to record.
-------	--------------------	----------------------------------------------------------------

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.59 UserData < TSeq > Class Template Reference

Personalized data by the user.

```
#include <userdata-bones.hpp>
```

#### **Public Member Functions**

- UserData (Model < TSeq > &m)
- UserData (Model < TSeq > \*m)
- UserData (std::vector< std::string > names)

Construct a new User Data object.

- std::vector< std::string > & get\_names ()
- std::vector< int > & get\_dates ()
- std::vector< epiworld\_double > & get\_data ()
- void get\_all (std::vector< std::string > \*names=nullptr, std::vector< int > \*date=nullptr, std::vector< epiworld\_double > \*data=nullptr)
- · epiworld fast uint nrow () const
- epiworld\_fast\_uint **ncol** () const
- void write (std::string fn)
- · void print () const

#### Append data

#### **Parameters**

Х	A vector of length ncol () (if vector), otherwise a epiworld_double.
j	Index of the data point, from 0 to ncol () - 1.

- void add (std::vector< epiworld double > x)
- void **add** (epiworld\_fast\_uint j, epiworld\_double x)

#### Access data

#### **Parameters**

i	Row (0 through ndays - 1.)
j	Column (0 through ncols()).

#### Returns

epiworld\_double&

- epiworld\_double & operator() (epiworld\_fast\_uint i, epiworld\_fast\_uint j)
- epiworld\_double & **operator()** (epiworld\_fast\_uint i, std::string name)

#### **Friends**

- class Model < TSeq >
- class DataBase< TSeq >

### 13.59.1 Detailed Description

```
template<typename TSeq> class UserData< TSeq>
```

Personalized data by the user.

**Template Parameters** 



#### 13.59.2 Constructor & Destructor Documentation

#### 13.59.2.1 UserData()

Construct a new User Data object.

#### **Parameters**

names A vector of names. The length of the vector sets the number of columns to record.

The documentation for this class was generated from the following files:

- · include/epiworld/database-bones.hpp
- include/epiworld/userdata-bones.hpp
- include/epiworld/userdata-meat.hpp

## 13.60 epiworld::vecHasher< T > Struct Template Reference

Vector hasher.

#include <epiworld.hpp>

#### **Public Member Functions**

std::size\_t operator() (std::vector< T > const &dat) const noexcept

### 13.60.1 Detailed Description

$$\label{template} \begin{split} & \text{template}{<} \text{typename T}{>} \\ & \text{struct epiworld::vecHasher}{<} \text{ T}{>} \end{split}$$

Vector hasher.

**Template Parameters** 



The documentation for this struct was generated from the following file:

· epiworld.hpp

## 13.61 vecHasher < T > Struct Template Reference

Vector hasher.

#include <misc.hpp>

### **Public Member Functions**

• std::size\_t **operator()** (std::vector< T > const &dat) const noexcept

## 13.61.1 Detailed Description

template < typename T> struct vecHasher < T>

Vector hasher.

#### **Template Parameters**



The documentation for this struct was generated from the following file:

· include/epiworld/misc.hpp

## 13.62 epiworld::Virus < TSeq > Class Template Reference

#### Virus.

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- Virus (std::string name="unknown virus")
- void mutate (Model < TSeq > \*model)
- void set\_mutation (MutFun< TSeq > fun)
- const TSeq \* get\_sequence ()
- void **set\_sequence** (TSeq sequence)
- Agent < TSeq > \* get\_agent ()
- void set\_agent (Agent < TSeq > \*p, epiworld\_fast\_uint idx)
- void set\_date (int d)
- int get\_date () const
- void set\_id (int idx)
- int get\_id () const
- void set\_name (std::string name)
- std::string get\_name () const
- $std::vector < epiworld_double > \& get_data ()$
- bool **operator==** (const Virus < TSeq > &other) const
- bool operator!= (const Virus < TSeq > &other) const
- void **print** () const

#### Get and set the tool functions

#### **Parameters**

٧	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_prob\_infecting (Model< TSeq > \*model)
- epiworld\_double get\_prob\_recovery (Model < TSeq > \*model)
- epiworld\_double get\_prob\_death (Model < TSeq > \*model)
- void post\_recovery (Model < TSeq > \*model)
- void set\_post\_recovery (PostRecoveryFun< TSeq > fun)

- void set\_post\_immunity (epiworld\_double prob)
- void set post immunity (epiworld double \*prob)
- void set\_prob\_infecting\_fun (VirusFun< TSeq > fun)
- void set\_prob\_recovery\_fun (VirusFun < TSeq > fun)
- void set\_prob\_death\_fun (VirusFun < TSeq > fun)
- void set\_prob\_infecting (const epiworld\_double \*prob)
- void set\_prob\_recovery (const epiworld\_double \*prob)
- void set prob death (const epiworld double \*prob)
- void set\_prob\_infecting (epiworld\_double prob)
- void set prob recovery (epiworld double prob)
- void set\_prob\_death (epiworld\_double prob)

#### Get and set the state and queue

After applied, viruses can change the state and affect the queue of agents. These function sets the default values, which are retrieved when adding or removing a virus does not specify a change in state or in queue.

#### **Parameters**

init	After the virus/tool is added to the agent.	
end	After the virus/tool is removed.	
removed	After the agent (Agent) is removed.	

- void set\_state (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- class DataBase < TSeq >
- void default\_add\_virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_virus (Action < TSeq > &a, Model < TSeq > \*m)

#### 13.62.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < typename TSeq > \\ class epiworld:: Virus < TSeq > \\ \end{tabular}$ 

#### Virus.

#### **Template Parameters**

TSeq

Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the agent.

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.63 Virus < TSeq > Class Template Reference

#### Virus.

#include <virus-bones.hpp>

#### **Public Member Functions**

- Virus (std::string name="unknown virus")
- void mutate (Model < TSeq > \*model)
- void set\_mutation (MutFun< TSeq > fun)
- const TSeq \* get\_sequence ()
- void set\_sequence (TSeq sequence)
- Agent < TSeq > \* get\_agent ()
- void set\_agent (Agent < TSeq > \*p, epiworld\_fast\_uint idx)
- void set\_date (int d)
- · int get\_date () const
- void set\_id (int idx)
- int **get\_id** () const
- void set\_name (std::string name)
- std::string get\_name () const
- std::vector< epiworld\_double > & get\_data ()
- bool operator== (const Virus < TSeq > &other) const
- bool operator!= (const Virus< TSeq > &other) const
- · void print () const
- bool operator== (const Virus< std::vector< int >> &other) const
- bool operator== (const Virus< std::vector< int >> &other) const

#### Get and set the tool functions

#### Parameters

٧	The virus over which to operate
fun	the function to be used

#### Returns

epiworld\_double

- epiworld\_double get\_prob\_infecting (Model < TSeq > \*model)
- epiworld\_double get\_prob\_recovery (Model < TSeq > \*model)
- epiworld\_double get\_prob\_death (Model < TSeq > \*model)
- void post\_recovery (Model < TSeq > \*model)
- void set\_post\_recovery (PostRecoveryFun< TSeq > fun)
- void set post immunity (epiworld double prob)
- void set\_post\_immunity (epiworld\_double \*prob)
- void set\_prob\_infecting\_fun (VirusFun< TSeq > fun)
- void  $set\_prob\_recovery\_fun$  (VirusFun< TSeq > fun)
- void set\_prob\_death\_fun (VirusFun< TSeq > fun)
   void set\_prob\_infecting (const epiworld\_double \*prob)

- void set\_prob\_recovery (const epiworld\_double \*prob)
- void set prob death (const epiworld double \*prob)
- void set\_prob\_infecting (epiworld\_double prob)
- void set\_prob\_recovery (epiworld\_double prob)
- void set\_prob\_death (epiworld\_double prob)

#### Get and set the state and queue

After applied, viruses can change the state and affect the queue of agents. These function sets the default values, which are retrieved when adding or removing a virus does not specify a change in state or in queue.

#### **Parameters**

init	After the virus/tool is added to the agent.	
end	After the virus/tool is removed.	
removed	After the agent (Agent) is removed.	

- void set\_state (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void set\_queue (epiworld\_fast\_int init, epiworld\_fast\_int end, epiworld\_fast\_int removed=-99)
- void get\_state (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)
- void get\_queue (epiworld\_fast\_int \*init, epiworld\_fast\_int \*end, epiworld\_fast\_int \*removed=nullptr)

#### **Friends**

- class Agent < TSeq >
- class Model < TSeq >
- class DataBase < TSeq >
- void default add virus (Action < TSeq > &a, Model < TSeq > \*m)
- void default\_rm\_virus (Action < TSeq > &a, Model < TSeq > \*m)

#### 13.63.1 Detailed Description

template<typename TSeq> class Virus< TSeq >

#### Virus.

**Template Parameters** 



Raw transmisibility of a virus should be a function of its genetic sequence. Nonetheless, transmisibility can be reduced as a result of having one or more tools to fight the virus. Because of this, transmisibility should be a function of the agent.

The documentation for this class was generated from the following files:

- · include/epiworld/agent-bones.hpp
- include/epiworld/virus-bones.hpp
- include/epiworld/virus-meat.hpp

## 13.64 epiworld::Viruses < TSeq > Class Template Reference

Set of viruses (useful for building iterators)

#include <epiworld.hpp>

#### **Public Member Functions**

- Viruses (Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::iterator begin ()
- std::vector< VirusPtr< TSeq > >::iterator end ()
- VirusPtr< TSeq > & operator() (size t i)
- VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

#### 13.64.1 Detailed Description

template<typename TSeq> class epiworld::Viruses< TSeq>

Set of viruses (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.65 Viruses < TSeq > Class Template Reference

Set of viruses (useful for building iterators)

#include <viruses-bones.hpp>

#### **Public Member Functions**

- Viruses (Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::iterator begin ()
- std::vector< VirusPtr< TSeq > >::iterator end ()
- VirusPtr< TSeq > & operator() (size\_t i)
- VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

### 13.65.1 Detailed Description

```
template<typename TSeq>class Viruses< TSeq>
```

Set of viruses (useful for building iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

## 13.66 epiworld::Viruses\_const < TSeq > Class Template Reference

Set of Viruses (const) (useful for iterators)

```
#include <epiworld.hpp>
```

#### **Public Member Functions**

- Viruses\_const (const Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::const\_iterator begin () const
- $std::vector < VirusPtr < TSeq > > ::const_iterator \ end \ () \ const$
- const VirusPtr< TSeq > & operator() (size\_t i)
- const VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

#### 13.66.1 Detailed Description

```
template<typename TSeq> class epiworld::Viruses_const< TSeq >
```

Set of Viruses (const) (useful for iterators)

**Template Parameters** 

TSeq	
,	

The documentation for this class was generated from the following file:

· epiworld.hpp

## 13.67 Viruses\_const < TSeq > Class Template Reference

Set of Viruses (const) (useful for iterators)

```
#include <viruses-bones.hpp>
```

#### **Public Member Functions**

- Viruses\_const (const Agent < TSeq > &p)
- std::vector< VirusPtr< TSeq > >::const\_iterator end () const
- const VirusPtr< TSeq > & operator() (size\_t i)
- const VirusPtr< TSeq > & operator[] (size\_t i)
- size\_t size () const noexcept

#### **Friends**

- class Virus < TSeq >
- class Agent < TSeq >

### 13.67.1 Detailed Description

template < typename TSeq > class Viruses\_const < TSeq >

Set of Viruses (const) (useful for iterators)

**Template Parameters** 



The documentation for this class was generated from the following files:

- include/epiworld/agent-bones.hpp
- include/epiworld/viruses-bones.hpp

# **Chapter 14**

# **File Documentation**

## 14.1 include/epiworld/agent-meat-state.hpp File Reference

Sampling functions are getting big, so we keep them in a separate file.

#include "agent-meat-virus-sampling.hpp"
Include dependency graph for agent-meat-state.hpp:



162 File Documentation

This graph shows which files directly or indirectly include this file:



#### **Functions**

- template<typename TSeq = EPI\_DEFAULT\_TSEQ>
   void default\_update\_susceptible (Agent< TSeq > \*p, Model< TSeq > \*m)
- template<typename TSeq = EPI\_DEFAULT\_TSEQ> void **default\_update\_exposed** (Agent< TSeq > \*p, Model< TSeq > \*m)

## 14.1.1 Detailed Description

Sampling functions are getting big, so we keep them in a separate file.

**Author** 

George G. Vega Yon (g.vegayon en gmail)

Version

0.1

Date

2022-06-15

Copyright

Copyright (c) 2022

## Index

```
Action
 Entity< TSeq >, 64
 Action < TSeq >, 36
 epiworld::Agent < TSeq >, 48
 epiworld::Action < TSeq >, 37
 epiworld::Entity< TSeq >, 66
Action < TSeq >, 35
 Entities < TSeq >, 61
 Action, 36
 Entities const< TSeq >, 62
actions add
 Entity< TSeq >, 64
 epiworld::Model < TSeq >, 79
 default_rm_entity, 64
 Model < TSeq >, 92
 epiworld::Action < TSeq >, 37
actions_run
 Action, 37
 epiworld::Model < TSeq >, 79
 epiworld::AdjList, 40
 Model < TSeq >, 93
 AdjList, 40
add_global_action
 read edgelist, 41
 epiworld::Model < TSeq >, 80
 epiworld::Agent < TSeg >, 45
 Model < TSeq >, 93
 default rm entity, 48
AdjList, 38
 operator(), 48
 AdjList, 39
 swap neighbors, 48
 epiworld::AdjList, 40
 epiworld::AgentsSample < TSeq >, 50
 read_edgelist, 39
 AgentsSample, 51
Agent < TSeq >, 41
 epiworld::DataBase< TSeq >, 56
 default_rm_entity, 45
 generation_time, 58
 operator(), 44
 get_transmissions, 59
 swap neighbors, 44
 operator==, 59
AgentsSample
 record variant, 59
 AgentsSample < TSeq >, 50
 reproductive number, 60
 epiworld::AgentsSample < TSeq >, 51
 transition probability, 60
AgentsSample < TSeq >, 49
 epiworld::Entities < TSeq >, 61
 AgentsSample, 50
 epiworld::Entities_const< TSeq >, 63
clone ptr
 epiworld::Entity< TSeq >, 65
 epiworld::epimodels::ModelSEIRCONN< TSeq >,
 default rm entity, 66
 epiworld::epimodels::ModelDiffNet< TSeq >, 98
 epiworld::epimodels::ModelSIRCONN< TSeq >,
 epiworld::epimodels::ModelSEIR< TSeq >, 101
 update exposed seir, 103
 epiworld::epimodels::ModelSIRLogit< TSeq >,
 update infected seir, 103
 126
 epiworld::epimodels::ModelSEIRCONN< TSeq >, 106
 epiworld::Model < TSeq >, 80
 clone ptr, 107
 ModelSEIRCONN, 107
 Model < TSeq >, 94
 ModelSEIRCONN < TSeq >, 110
 reset, 108
 ModelSIRCONN< TSeq >, 123
 epiworld::epimodels::ModelSEIRD< TSeq >, 113
 ModelSIRLogit < TSeq >, 129
 epiworld::epimodels::ModelSIR< TSeq >, 116
 epiworld::epimodels::ModelSIRCONN < TSeq >, 119
DataBase < TSeq >, 52
 clone_ptr, 121
 generation time, 54
 ModelSIRCONN, 120
 get transmissions, 54
 reset, 121
 operator==, 54, 55
 epiworld::epimodels::ModelSIRLogit< TSeq >, 124
 record variant, 55
 clone ptr, 126
 reproductive number, 56
 ModelSIRLogit, 125
 transition probability, 56
 reset, 127
default rm entity
 epiworld::epimodels::ModelSIS< TSeq >, 130
 Agent < TSeq >, 45
 epiworld::epimodels::ModelSURV < TSeq >, 133
```

164 INDEX

epiworld::GlobalAction< TSeq >, 66	epiworld::sampler, 27
GlobalAction, 67	sampler, 30
epiworld::LFMCMC< TData >, 68	make_update_susceptible
epiworld::Model < TSeq >, 71	epiworld::sampler, 28
actions_add, 79	sampler, 31
actions_run, 79	Model < TSeq >, 85
add_global_action, 80	actions_add, 92
clone_ptr, 80	actions_run, 93
load_agents_entities_ties, 80	add_global_action, 93
rbinomd, 83	clone_ptr, 94
reset, 81	load_agents_entities_ties, 94
rexpd, 83	rbinomd, 96
rgammad, 83	reset, 94
rlognormald, 83	rexpd, 97
rnormd, 84	rgammad, 97
run_multiple, 81	rlognormald, 97
runifd, 84	-
•	rnormd, 97
set_agents_data, 82	run_multiple, 95
set_name, 82	runifd, 97
time_elapsed, 84	set_agents_data, 95
write_data, 82	set_name, 95
epiworld::PersonTools< TSeq >, 138	time_elapsed, 98
epiworld::Progress, 138	write_data, 96
epiworld::Queue< TSeq >, 139	ModelDiffNet< TSeq >, 100
epiworld::sampler, 27	ModelSEIR< TSeq >, 104
make_sample_virus_neighbors, 27	update_exposed_seir, 105
make_update_susceptible, 28	update_infected_seir, 105
sample_virus_single, 28	ModelSEIRCONN
epiworld::SAMPLETYPE, 141	epiworld::epimodels::ModelSEIRCONN< TSeq >,
epiworld::Tool< TSeq >, 142	107
epiworld::Tools< TSeq >, 145	ModelSEIRCONN< TSeq >, 109
epiworld::Tools_const< TSeq >, 147	ModelSEIRCONN< TSeq >, 108
epiworld::UserData< TSeq >, 148	clone_ptr, 110
UserData, 149	ModelSEIRCONN, 109
epiworld::vecHasher< T >, 152	reset, 110
epiworld::Virus< TSeq >, 153	ModelSEIRCONNLogit
epiworld::Viruses< TSeq >, 157	ModelSEIRCONNLogit< TSeq >, 112
epiworld::Viruses_const< TSeq >, 158	ModelSEIRCONNLogit< TSeq >, 111
epiwonaviruses_const< 10eq >, 100	ModelSEIRCONNLogit, 112
generation_time	ModelSEIRD< TSeq >, 114
DataBase< TSeq >, 54	ModelSIR< TSeq >, 118
epiworld::DataBase< TSeq >, 58	ModelSIRCONN
get_transmissions	
DataBase < TSeq >, 54	epiworld::epimodels::ModelSIRCONN< TSeq >,
epiworld::DataBase< TSeq >, 59	120
GlobalAction	ModelSIRCONN < TSeq >, 123
	ModelSIRCONN< TSeq >, 122
epiworld::GlobalAction < TSeq >, 67	clone_ptr, 123
GlobalAction < TSeq >, 68	ModelSIRCONN, 123
GlobalAction< TSeq >, 67	reset, 123
GlobalAction, 68	ModelSIRLogit
include/epiworld/agent-meat-state.hpp, 161	epiworld::epimodels::ModelSIRLogit< TSeq >, 125
LEMCMC < Thata > 70	ModelSIRLogit < TSeq >, 128
LFMCMC < TData >, 70	ModelSIRLogit< TSeq >, 127
load_agents_entities_ties	clone_ptr, 129
epiworld::Model < TSeq >, 80	ModelSIRLogit, 128
Model < TSeq >, 94	reset, 130
maka campla virus najahbara	ModelSIS< TSeq >, 131
make_sample_virus_neighbors	1 . 7 -

INDEX 165

ModelSURV< TSeq >, 136	sample_virus_single epiworld::sampler, 28
${\it Network}{<}\ {\it Nettype},\ {\it Nodetype},\ {\it Edgetype}>,\ {\it 138}$	sampler, 31
operator()	sampler, 30
Agent < TSeq >, 44	make_sample_virus_neighbors, 30
epiworld::Agent< TSeq >, 48	make_update_susceptible, 31
• •	sample_virus_single, 31
operator==	SAMPLETYPE, 142
DataBase < TSeq >, 54, 55	set_agents_data
epiworld::DataBase< TSeq >, 59	epiworld::Model < TSeq >, 82
	Model < TSeq >, 95
PersonTools < TSeq >, 138	set name
Progress, 139	epiworld::Model< TSeq >, 82
Queue < TSeq >, 140	Model < TSeq >, 95
	swap_neighbors
RandGraph, 141	Agent < TSeq >, 44
rbinomd	epiworld::Agent< TSeq >, 48
epiworld::Model < TSeq >, 83	
Model < TSeq >, 96	time_elapsed
read_edgelist	epiworld::Model < TSeq >, 84
AdjList, 39	Model < TSeq >, 98
epiworld::AdjList, 41	Tool < TSeq >, 143
•	Tools < TSeq >, 146
record_variant	Tools_const< TSeq >, 147
DataBase< TSeq >, 55	transition_probability
epiworld::DataBase< TSeq >, 59	DataBase < TSeq >, 56
reproductive_number	
DataBase < TSeq >, 56	epiworld::DataBase< TSeq >, 60
epiworld::DataBase< TSeq >, 60	undata ayaaad aair
reset	update_exposed_seir
epiworld::epimodels::ModelSEIRCONN< TSeq >,	epiworld::epimodels::ModelSEIR< TSeq >, 103
108	ModelSEIR< TSeq >, 105
epiworld::epimodels::ModelSIRCONN< TSeq >,	update_infected_seir
121	epiworld::epimodels::ModelSEIR< TSeq >, 103
	ModelSEIR< TSeq >, 105
epiworld::epimodels::ModelSIRLogit< TSeq >,	UserData
	epiworld::UserData < TSeq >, 149
epiworld::Model < TSeq >, 81	UserData < TSeq >, 151
Model < TSeq >, 94	UserData < TSeq >, 150
ModelSEIRCONN< TSeq >, 110	UserData, 151
ModelSIRCONN< TSeq >, 123	osorbata, ror
ModelSIRLogit < TSeq >, 130	vecHasher< T >, 152
rexpd	Virus< TSeq >, 155
epiworld::Model < TSeq >, 83	Viruses< TSeq >, 157
Model < TSeq >, 97	Viruses const< TSeq >, 159
rgammad	viruses_const< rseq >, rse
epiworld::Model < TSeq >, 83	write_data
Model< TSeq >, 97	
rlognormald	epiworld::Model < TSeq >, 82
epiworld::Model < TSeq >, 83	Model < TSeq >, 96
·	
Model < TSeq >, 97	
rnormd	
epiworld::Model< TSeq >, 84	
Model < TSeq >, 97	
run_multiple	
epiworld::Model < TSeq >, 81	
Model < TSeq >, 95	
runifd	
epiworld::Model< TSeq >, 84	
Model< TSeq >, 97	
• •	