Чмурова Мария, Р3132, Вариант – 38 Домашняя работа №3

Алгоритм Робертса-Флореса

Исходная матрица соединений R:

	e ₁	e ₂	e ₃	e 4	e 5	e ₆	e ₇	e 8	e 9	e ₁₀	e ₁₁	e ₁₂
e ₁	0	4	2	1	1	4						
e ₂	4	0			2		4		4		3	
e ₃	2		0	4		3	4	3	4	1	4	
e 4	1		4	0		1	1		4	4	3	
e ₅	1	2			0	4	4	2	1	3		
e ₆	4		3	1	4	0		1	4	1	5	2
e 7		4	4	1	4		0	4	1		4	4
e ₈			3		2	1	4	0			5	1
e 9		4	4	4	1	4	1		0			
e ₁₀			1	4	3	1				0	4	
e ₁₁		3	4	3		5	4	5		4	0	2
e ₁₂						2	4	1			2	0

1. Нахождение гамильтонова цикла

Включаем в S вершину $x1. S=\{x1\}$

Возможная вершина: x2. $S=\{x1,x2\}$

Возможная вершина: $x5. S=\{x1,x2,x5\}$

Возможная вершина: $x6. S=\{x1,x2,x5,x6\}$

Возможная вершина: $x3. S=\{x1,x2,x5,x6,x3\}$

Возможная вершина: x4. $S=\{x1,x2,x5,x6,x3,x4\}$

Возможная вершина: x7. $S=\{x1,x2,x5,x6,x3,x4,x7\}$

Возможная вершина: $x8. S=\{x1,x2,x5,x6,x3,x4,x7,x8\}$

Возможная вершина: x11. $S=\{x1,x2,x5,x6,x3,x4,x7,x8,x11\}$

Возможная вершина: x10. $S=\{x1,x2,x5,x6,x3,x4,x7,x8,x11,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x8, x11\}$

Возможная вершина: x12. $S=\{x1,x2,x5,x6,x3,x4,x7,x8,x11,x12\}$

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x8, x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x8\}$

Возможная вершина: x12. $S=\{x1,x2,x5,x6,x3,x4,x7,x8,x12\}$

Возможная вершина: x11. $S=\{x1,x2,x5,x6,x3,x4,x7,x8,x12,x11\}$

Возможная вершина: x10. $S=\{x1,x2,x5,x6,x3,x4,x7,x8,x12,x11,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x8, x12, x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х12.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x8, x12\}$

У х12 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S = \{x1, x2, x5, x6, x3, x4, x7\}$

Возможная вершина: $x9. S=\{x1,x2,x5,x6,x3,x4,x7,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S = \{x1, x2, x5, x6, x3, x4, x7\}$

Возможная вершина: x11. $S=\{x1,x2,x5,x6,x3,x4,x7,x11\}$

Возможная вершина: $x8. S=\{x1,x2,x5,x6,x3,x4,x7,x11,x8\}$

Возможная вершина: x12. $S=\{x1,x2,x5,x6,x3,x4,x7,x11,x8,x12\}$

У х12 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x11, x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x11\}$

Возможная вершина: x10. $S=\{x1,x2,x5,x6,x3,x4,x7,x11,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x11\}$

Возможная вершина: x12. $S=\{x1,x2,x5,x6,x3,x4,x7,x11,x12\}$

Возможная вершина: $x8. S=\{x1,x2,x5,x6,x3,x4,x7,x11,x12,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х12.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x11, x12\}$

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S = \{x1, x2, x5, x6, x3, x4, x7, x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S = \{x1, x2, x5, x6, x3, x4, x7\}$

Возможная вершина: x12. $S=\{x1,x2,x5,x6,x3,x4,x7,x12\}$

Возможная вершина: $x8. S=\{x1,x2,x5,x6,x3,x4,x7,x12,x8\}$

Возможная вершина: x11. $S=\{x1,x2,x5,x6,x3,x4,x7,x12,x8,x11\}$

Возможная вершина: x10. $S=\{x1,x2,x5,x6,x3,x4,x7,x12,x8,x11,x10\}$

...И так далее по алгоритму проходимся по вершинам, пока не будет найдет Гамильтонов цикл:

 $S = \{x1, x2, x5, x6, x3, x9, x7, x8, x12, x11, x10, x4\}$

2. Построение графа пересечений G'

Перенумеруем вершины графа таким образом, чтобы ребра гамильтонова цикла были внешними.

До перенумерации	e1	e2	e5	e6	e3	e9	e7	e8	e12	e11	e10	e4
После перенумерации	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e11

Тогда граф G (X, U) будет выглядеть так

v/v	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	X	1	1	1	1	0	0	0	0	0	0	1
e2	1	X	1	0	0	1	1	0	0	1	0	0
e3	1	1	X	1	0	1	1	1	0	0	1	0
e4	1	0	0	X	1	1	0	1	1	1	1	1
e5	1	0	0	1	X	1	1	1	0	1	1	1
e6	0	1	0	1	1	X	1	0	0	0	0	1
e7	0	1	0	0	1	1	X	1	1	1	0	1
e8	0	0	0	1	1	0	1	X	1	1	0	0
e9	0	0	0	1	0	0	1	1	X	1	0	0
e10	0	1	0	1	1	0	1	1	1	X	1	1
e11	0	0	0	1	1	0	0	0	0	1	X	1
e12	1	0	0	1	1	1	1	0	0	1	1	X

Определим p_{210} . Ребро (e_2e_{10}) пересекается c (e_1e_3) , (e_1e_4) , (e_1e_5)

Определим p_{27} . Ребро (e_2e_7) пересекается c (e_1e_3) , (e_1e_4) , (e_1e_5)

Определим p_{26} . Ребро (e_2e_6) пересекается c (e_1e_3) , (e_1e_4) , (e_1e_5)

Определим p_{311} . Ребро (e_3e_{11}) пересекается $c(e_1e_4), (e_1e_5), (e_2e_6), (e_2e_7), (e_2e_{10})$

Определим p_{38} . Ребро (e_3e_8) пересекается c (e_1e_4) , (e_1e_5) , (e_2e_6) , (e_2e_7)

Определим p_{37} . Ребро (e_3e_7) пересекается c (e_1e_4) , (e_1e_5) , (e_2e_6)

Определим p_{36} . Ребро (e_3e_6) пересекается c (e_1e_4) , (e_1e_5)

Определим p_{412} . Ребро (e_4e_{12}) пересекается c (e_1e_5) , (e_2e_6) , (e_2e_7) , (e_2e_{10}) , (e_3e_6) , (e_3e_7) , (e_3e_8) , (e_3e_{11})

Определим p_{411} . Ребро (e_4e_{11}) пересекается c (e_1e_5) , (e_2e_6) , (e_2e_7) , (e_2e_{10}) , (e_3e_6) , (e_3e_7) , (e_3e_8)

Определим p_{410} . Ребро (e_4e_{10}) пересекается c (e_1e_5) , (e_2e_6) , (e_2e_7) , (e_3e_6) , (e_3e_7) , (e_3e_8)

Определим p_{49} . Ребро (e_4e_9) пересекается c (e_1e_5) , (e_2e_6) , (e_2e_7) , (e_3e_6) , (e_3e_7) , (e_3e_8)

Определим p_{48} . Ребро (e_4e_8) пересекается $c(e_1e_5), (e_2e_6), (e_2e_7), (e_3e_6), (e_3e_7)$

Ограничимся 15 ребрами

		p ₁₃	p ₂₁₀	p ₁₄	p ₁₅	p ₂₇	p ₂₆	p ₃₁₁	p ₃₈	p ₃₇	p ₃₆	p ₄₁₂	p ₄₁	p ₄₁₀	p ₄₉	p ₄₈
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p ₁₃	1	1	1			1	1									
p ₂₁₀	2	1	1	1	1			1				1	1			
p ₁₄	3		1	1		1	1	1	1	1	1					
p ₁₅	4		1		1	1	1	1	1	1	1	1	1	1	1	1
p ₂₇	5	1		1	1	1		1	1			1	1	1	1	1
p ₂₆	6	1		1	1		1	1	1	1		1	1	1	1	1
p ₃₁₁	7		1	1	1	1	1	1				1				
p ₃₈	8			1	1	1	1		1			1	1	1	1	
p ₃₇	9			1	1		1			1		1	1	1	1	1
p ₃₆	10			1	1						1	1	1	1	1	1
p ₄₁₂	11		1		1	1	1	1	1	1	1	1				
p ₄₁₁	12		1		1	1	1		1	1	1		1			
p ₄₁₀	13				1	1	1		1	1	1			1		
p ₄₉	14				1	1	1		1	1	1				1	
p ₄₈	15				1	1	1			1	1					1

3. Построение семейства $\psi_{G'}$

В первой строке матрицы R(G') находим номера нулевых элементов.

Составляем список $J(j) = \{3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$

Для первого нулевого элемента составляем дизьюнкцию

 $M_{13} = r_1 \vee r_3 = 110011000000000 \vee 0110111111100000 = 1110111111100000$

В строке M_{13} находим номера нулевых элементов

Составляем список $J' = \{4, 11, 12, 13, 14, 15\}.$

Записываем дизъюнкцию:

В строке M_{134} все 1. Построено $\psi \mathbf{1} = \{\mathbf{p_{13}}, \, \mathbf{p_{14}}, \, \mathbf{p_{15}}\}$

Записываем дизъюнкцию:

Записываем дизъюнкцию:

Записываем дизъюнкцию:

 $M_{1\,3\,11\,12\,13} = M_{1\,3\,11\,12} \, \text{V} \, r_{13} = 1111111111111000 \, \text{V} \, 000111011100100 = 111111111111100$

В строке $M_{1\,3\,11\,12\,13}$ находим номера нулевых элементов, составляем список J' = $\{14,\,15\}$.

Записываем дизъюнкцию:

$$M_{1\,3\,11\,12\,13\,14} = M_{1\,3\,11\,12\,13} \ V \ r_{14} = 11111111111111100 \ V \ 000111011100010 = 111111111111110$$

В строке $M_{1\,3\,11\,12\,13\,14}$ находим номера нулевых элементов, составляем список $J'=\{15\}.$

Записываем дизъюнкцию:

В строке $M_{1\,3\,11\,12\,13\,14\,15}$ все 1. Построено ψ 2={ p_1 3, p_1 4, p_4 12, p_4 11, p_4 10, p_4 9, p_4 8}

... По такому же алгоритму проходимся по строкам матрицы R(G'), пока мы не сможем закрыть 0 на какой-либо позиции

Получаем следующее семейство максимально внутренне устойчивых

множеств Ψ_{G} :

$$\begin{array}{l} \psi 1 = \{p_{1\,3},\,p_{1\,4},\,p_{1\,5}\} \\ \psi 2 = \{p_{1\,3},\,p_{1\,4},\,p_{4\,12},\,p_{4\,11},\,p_{4\,10},\,p_{4\,9},\,p_{4\,8}\} \\ \psi 3 = \{p_{1\,3},\,p_{3\,11},\,p_{3\,8},\,p_{3\,7},\,p_{3\,6}\} \\ \psi 4 = \{p_{1\,3},\,p_{3\,11},\,p_{3\,8},\,p_{4\,8}\} \\ \psi 5 = \{p_{1\,3},\,p_{3\,11},\,p_{4\,11},\,p_{4\,10},\,p_{4\,9},\,p_{4\,8}\} \\ \psi 6 = \{p_{2\,10},\,p_{2\,7},\,p_{2\,6},\,p_{3\,6}\} \\ \psi 7 = \{p_{2\,10},\,p_{2\,7},\,p_{3\,7},\,p_{3\,6}\} \\ \psi 8 = \{p_{2\,10},\,p_{3\,8},\,p_{3\,7},\,p_{3\,6}\} \\ \psi 9 = \{p_{2\,10},\,p_{3\,8},\,p_{4\,8}\} \\ \psi 10 = \{p_{2\,10},\,p_{4\,10},\,p_{4\,9},\,p_{4\,8}\} \\ \psi 11 = \{p_{1\,5}\} \end{array}$$

Для каждой пары множеств найдем значение критерия:

$$\alpha_{\gamma\delta} = |\psi_{\gamma}| + |\psi_{\delta}| - |\psi_{\gamma} \cap \psi_{\delta}|$$
:

$$\alpha_{12} = |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = 3{+}7{-}2 = 8$$

$$\alpha_{13} = |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 3 + 5 - 1 = 7$$

$$\alpha_{14} = |\psi_1| + |\psi_4| - |\psi_1 \cap \psi_4| = 3 + 4 - 1 = 6$$

$$\alpha_{15} = |\psi_1| + |\psi_5| - |\psi_1 \cap \psi_5| = 3{+}6{-}1 = 8$$

$$\begin{array}{l} \alpha_{16} = |\psi_1| + |\psi_6| - |\psi_1 \cap \psi_6| = 3{+}4{-}0 = 7 \\ \alpha_{17} = |\psi_1| + |\psi_7| - |\psi_1 \cap \psi_7| = 3{+}4{-}0 = 7 \\ \alpha_{18} = |\psi_1| + |\psi_8| - |\psi_1 \cap \psi_8| = 3{+}4{-}0 = 7 \\ \alpha_{19} = |\psi_1| + |\psi_9| - |\psi_1 \cap \psi_9| = 3{+}3{-}0 = 6 \\ \alpha_{110} = |\psi_1| + |\psi_{10}| - |\psi_1 \cap \psi_{10}| = 3{+}4{-}0 = 7 \\ \alpha_{111} = |\psi_1| + |\psi_{11}| - |\psi_1 \cap \psi_{11}| = 3{+}1{-}1 = 3 \\ \alpha_{23} = |\psi_2| + |\psi_3| - |\psi_2 \cap \psi_3| = 7{+}5{-}1 = 11 \\ \alpha_{24} = |\psi_2| + |\psi_4| - |\psi_2 \cap \psi_4| = 7{+}4{-}2 = 9 \\ \alpha_{25} = |\psi_2| + |\psi_5| - |\psi_2 \cap \psi_5| = 7{+}6{-}5 = 8 \\ \alpha_{26} = |\psi_2| + |\psi_6| - |\psi_2 \cap \psi_6| = 7{+}4{-}0 = 11 \\ \alpha_{27} = |\psi_2| + |\psi_7| - |\psi_2 \cap \psi_7| = 7{+}4{-}0 = 11 \\ \alpha_{28} = |\psi_2| + |\psi_8| - |\psi_2 \cap \psi_9| = 7{+}3{-}1 = 9 \\ \alpha_{210} = |\psi_2| + |\psi_{10}| - |\psi_2 \cap \psi_{10}| = 7{+}4{-}3 = 8 \\ \alpha_{211} = |\psi_2| + |\psi_{11}| - |\psi_2 \cap \psi_{11}| = 7{+}1{-}0 = 8 \end{array}$$

Таким же образом сделаем для остальных $\alpha_{\gamma\delta}$, результат отобразим в матрице:

	1	2	3	4	5	6	7	8	9	10	11
1	0	8	7	6	8	7	7	7	6	7	3
2		0	11	9	8	11	11	11	9	8	8
3			0	6	9	8	7	6	7	9	6
4				0	7	8	8	7	5	7	5
5					0	10	10	10	8	7	7
6						0	5	6	6	7	5
7							0	5	6	7	5
8								0	5	7	5
9									0	5	4
10										0	5
11											0

 $\max \ \alpha_{\gamma\delta} = \alpha_{23} = \alpha_{26} = \alpha_{27} = \alpha_{28} = 11$ дают четыре пары множеств: Ψ_2 и Ψ_3 , Ψ_2 и Ψ_6 , Ψ_2 и Ψ_7 , Ψ_2 и Ψ_8

Возьмем множества Ч2 и Ч3:

$$\psi 2 = \{p_{1\,3},\,p_{1\,4},\,p_{4\,12},\,p_{4\,11},\,p_{4\,10},\,p_{4\,9},\,p_{4\,8}\}$$

$$\psi 3 = \{p_{1\,3},\,p_{3\,11},\,p_{3\,8},\,p_{3\,7},\,p_{3\,6}\}$$

Проводим внутри гамильтонова цикла ребра Ψ_2 , а вне его – ребра Ψ_3 :

$$\begin{split} &\psi 2 = \{p_{1\,3},\,p_{1\,4},\,p_{4\,12},\,p_{4\,11},\,p_{4\,10},\,p_{4\,9},\,p_{4\,8}\}\\ &\psi 3 = \{p_{1\,3},\,p_{3\,11},\,p_{3\,8},\,p_{3\,7},\,p_{3\,6}\}\\ &\text{Удаляем из }\Psi_{G'}\,\text{ребра, вошедшие в }\Psi_2\,\text{и }\Psi_3 \end{split}$$

$$\begin{split} &\psi 1 = \{p_{1\,5}\} \\ &\psi 4 = \{\} \\ &\psi 5 = \{\} \\ &\psi 6 = \{p_{2\,10},\, p_{2\,7},\, p_{2\,6}\} \\ &\psi 7 = \{p_{2\,10},\, p_{2\,7}\} \\ &\psi 8 = \{p_{2\,10}\} \\ &\psi 9 = \{p_{2\,10}\} \\ &\psi 10 = \{p_{2\,10}\} \\ &\psi 11 = \{p_{1\,5}\} \end{split}$$

Удаляем из семейства Ψ_4 , Ψ_5 , так как они пусты и объединяем одинаковые семейства:

$$\begin{split} \psi_1 &= \{p_{1\,5}\} \\ \Psi_6 &= \{p_{210},\, p_{27},\, p_{26}\} \end{split}$$

Проведем нереализованные ребра и получим следующий итоговый граф: Проводим внутри гамильтонова цикла ребра ψ_1 , а вне него – ребра ψ_6

Удаляем из $\Psi_{G'}$ ребра, вошедшие в Ψ_1 и Ψ_6 В $\Psi_{G'}$ пусто — граф планиризирован