Good references....

- Lecture notes on numerical linear algebra: http://gbenthien.net/tutorials.html
- Classic text: Golub and Van Loan
- Excellent lectures on Linear Algebra: http://ocw.mit.edu/courses/mathematics/ 18-06-linear-algebra-spring-2010/

Important properties of matrices

- Condition number
- Norm
- Decompositions:
 - Eigen-decomposition
 - SVD
- Classifications
 - General
 - Symmetric
 - Positive definite
 - Etc.

Induced matrix norm

Start with vector norm:

 Define matrix norm by considering action of matrix on all vectors:

$$||A|| = max \left(\frac{||Ax||}{||x||} : x \in K^n \right)$$

Find largest extension of unit circle induced by matrix.

Extension: Visualizing a matrix

- One way: Action of A on vector x where ||x|| = 1. (That is, action of A on unit circle.)
 - Largest point on resulting ellipse is induced norm ("spectral norm")
 - Ratio of two axes lengths is condition number
 - Ratio of singular values is also condition number
- "Looking at shadow cast by the matrix."

/home/sdb/Northeastern1/Class3/ellipses.m

Action of matrix A on circle

Plot of

$$y = A x$$

where

$$x = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

$$0 \le t \le 2\pi$$

```
>> ellipses
cond(A) = 16.369359, norm(A) = 1.989071 svd = [1.989071, 0.121512]
ans =

0.1873    -1.9330
-0.0825    -0.4390
```

Matlab "eigshow"

Matrix norm, eigenvalues and SVD

• Eigenvalue decomposition: Square matrix

$$A = Q \Lambda Q^{-1}$$

Singular value decomposition: Arbitrary rectangular matrix

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ \sigma_2 & \cdots \\ 0 & \sigma_3 \end{pmatrix}$$

Where does the SVD come from?

Eigenvalue equation:

$$A\vec{x}_i = \lambda_i \vec{x}_i$$

Transformed vector lies in same space as x. (Only stretching along eigenvectors)

SVD equation (works for rectangular matrix):

u, v are unit vectors

Transformed vector lies in different space

Rearranging:

$$A = \vec{u}_i \sigma_i \vec{v}_i^T -$$

Because $\vec{v}_i^T = \vec{v}_i^{-1}$ (\vec{v}_i is unit vector)

SVD

$$A = U \sum V^T$$

- *U*, *V* are unitary. Composed of unit column vectors.
- Σ is diagonal. Diagonal elements are the "singular values".
 - By convention, they are written in decreasing order, from largest to smallest.
 - Non diagonal entries are zero.

```
>> A = rand(4,6)
A =
    0.3161
               0.3424
                          0.3774
                                    0.1260
                                               0.6010
                                                          0.9383
    0.1267
               0.2041
                          0.0862
                                    0.6835
                                               0.8032
                                                          0.1889
    0.6724
               0.5746
                          0.4193
                                    0.8314
                                               0.7251
                                                          0.9041
                          0.6413
                                    0.8550
                                               0.7012
                                                          0.9235
    0.9151
               0.5423
\gg [U, S, V] = svd(A)
U =
   -0.3928
              -0.5424
                          0.7297
                                    0.1378
   -0.3069
               0.8323
                          0.4155
                                    0.2012
   -0.5858
               0.0431
                                   -0.7984
                         -0.1325
   -0.6390
              -0.1059
                        -0.5266
                                    0.5506
S =
    2.9439
                               0
                                                               0
               0.7147
          0
                                          0
                                                     0
                                                                0
          0
                    0
                          0.4932
                                     0.1428
          0
                               0
V =
   -0.3878
              -0.1874
                         -0.5835
                                    0.2524
                                              -0.3358
                                                         -0.5455
   -0.2990
              -0.0679
                         -0.0548
                                   -0.5037
                                               0.7121
                                                         -0.3770
   -0.2820
              -0.2558
                         -0.1665
                                    0.6139
                                               0.5097
                                                          0.4366
   -0.4391
               0.6239
                         -0.3741
                                   -0.2669
                                              -0.1087
                                                          0.4415
   -0.4604
               0.4190
                          0.6224
                                    0.3611
                                              -0.0128
                                                         -0.3074
                                                          0.2833
   -0.5252
              -0.5745
                          0.3185
                                   -0.3226
                                              -0.3290
```

Singular values & eigenvalues

• Singular values related to eigenvalues of $A^T A$

• Proof:
$$A = \vec{u}_i \sigma_i \vec{v}_i^T$$
 $A^T = \vec{v}_i \sigma_i^T \vec{u}_i^T$
 $A^T A = (\vec{v}_i \sigma_i^T \vec{u}_i^T) (\vec{u}_i \sigma_i \vec{v}_i^T)$ $A A^T = (\vec{u}_i \sigma_i \vec{v}_i^T) (\vec{v}_i \sigma_i^T \vec{u}_i^T)$
 $= \vec{v}_i \sigma_i^T \sigma_i \vec{v}_i^T$ $= \vec{u}_i \sigma_i \sigma_i^T \vec{u}_i^T$
 $(A^T A) \vec{v}_i = \vec{v}_i \sigma_i^T \sigma_i \vec{v}_i^T \vec{v}_i$ $(A A^T) \vec{u}_i = \vec{u}_i \sigma_i \sigma_i^T \vec{u}_i^T \vec{u}_i^T$
 $(A A^T) \vec{u}_i = (\sigma_i \sigma_i^T) \vec{u}_i$

• Therefore: $\sigma_i = \sqrt{eig_i(A^T A)} = \sqrt{eig_i(A A^T)}$

Singular values corollary

• For positive, symmetric definite matrix:

$$\sigma_{i} = \sqrt{eig_{i}(A^{T}A)} I$$

$$= \sqrt{eig_{i}(\vec{v}_{i}\sigma_{i}^{T}\vec{v}_{i}^{T})(\vec{u}_{i}\sigma_{i}\vec{v}_{i}^{T})} I$$

$$= \sqrt{eig_{i}(\vec{v}_{i}\sigma_{i}^{T}\sigma_{i}\vec{v}_{i}^{T})} I$$

$$= \sqrt{eig_{i}(\sigma_{i}^{T}\sigma_{i}\vec{v}_{i}\vec{v}_{i}^{T})}$$

$$= \sqrt{eig_{i}(\sigma_{i}^{T}\sigma_{i}\vec{v}_{i}\vec{v}_{i}^{T})}$$

$$= \sqrt{eig_{i}(\sigma_{i}^{T}\sigma_{i})}$$

Therefore:

Singular values
$$\sigma_i = |\lambda_i|$$
 Eigenvalues

Action of a matrix on unit ball

Demonstration

- 1. Red: Unit circle *x*
- 2. Blue: $V^T x$
- 3. Light blue: SV^Tx
- 4. Black:

$$USV^{T}x$$

5. Red: Ax

~/SVDTransform/svd_transform.m

Induced matrix norm & SVD

- "Induced norm"
 = largest
 singular value
 (see picture).
- SVD: $A = U \Sigma V^T$
- Singular values:

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ \sigma_2 & \cdots \\ 0 & \sigma_3 \end{pmatrix}$$

• Norm often written $||A|| = max \left(\frac{||Ax||}{||x||} : x \in K^n \right)$

Condition number

• SVD: $A = U \Sigma V^T$

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ \sigma_2 & \cdots \\ 0 & \sigma_3 \end{pmatrix}$$

Condition number:

$$k = \frac{\sigma_{max}}{\sigma_{min}}$$

$$= \frac{\sigma_1}{\sigma_2} \quad \text{In this}$$

$$= \frac{\sigma_2}{\sigma_2} \quad \text{example}$$

 For general matrix, the stretching occurs in N dimensions.

Why is high condition number bad?

Condition number near 1

Small change in x => small change in Ax. Robust to perturbations.

High condition number

Small change in x =>
large change in Ax for
some values of x. Result
is sensitive to small
perturbations in x.

Rule of thumb for error in A\b

- Compute k = cond(A). You will lose
 maximum log10(k) digits of accuracy when
 solving Ax = b. (This is an upper bound.)
- Examples:
 - Consider doubles. They provide 16 digits. Take A with cond(A) = 1000.
 Solving Ax = b provides x values good to roughly 13 digits.
 - Consider floats. They provide 7 digits.
 Take A with cond(A) = 1000. Solving Ax
 = b provides x good to 4 digits.

Demonstration

/home/sdb/Northeastern1/Class4/ConditionError

```
octave:21> test condition error(10)
ans = 6.5403e-16
octave:22> test condition error(10)
ans = 8.2444e-16
octave:23> test condition error(10)
ans = 9.0921e-16
octave:24> test condition error(10)
ans = 1.1156e-15
octave:25> test condition error(10)
ans = 1.5464e-15
octave:26>
octave:26>
octave:26>
octave:26> test condition error(1000)
ans = 3.1365e-14
octave:27> test condition error(1000)
ans = 8.3084e-14
octave:28> test condition error(1000)
ans = 1.2118e-13
octave:29> test condition error(1000)
ans = 1.6971e-14
octave:30> test condition error(1000)
ans = 1.3272e-14
octave:31> test condition error(1000)
ans = 1.6214e-13
```

- 1. Generate random A, x
- 2. Compute b = Ax
- 3. Compute and print residual

$$r = Ax - b$$

Computing the condition number

- Never directly compute $||A|| \cdot ||A^{-1}||$
- Condition numbers are generally computed as a byproduct to a solver algorithm (e.g. LU).
- As an end-user, you should use call a condition number routine.
 - LAPACK has several condition number routines for different types of matrices, using different norms.
 - MATLAB has several routines which wrap LAPACK's implementations, including cond().

Summary: Triangle of concepts

$$SVD$$

$$A = U \Sigma V^{T}$$

$$\Sigma = \begin{vmatrix} \sigma_{1} & 0 \\ \sigma_{2} & \cdots \\ 0 & \sigma_{3} \end{vmatrix}$$

Matrix norm (induced norm)

$$||A|| = max \left(\frac{||Ax||}{||x||} : x \in K^n \right)$$

$$= \sigma_{max}$$

Matrix condition number

$$k = \frac{\sigma_{max}}{\sigma_{min}}$$
$$= ||A|| \cdot ||A^{-1}||$$

Concept: Matrix rank

- Consider matrix A of size [N, M].
- rank(A) is number of linearly independent cols/cols in A.
- rank(A) is number of non-zero singular values of A.

Non-singular matrix

```
\gg A = rand(3,4)
A =
    0.7248
             0.1833
                           0.6014
                                      0.2990
    0.3741
            0.9401
                           0.0266
                                      0.3543
    0.7022
            0.2276
                           0.7808
                                      0.1509
>> rank(A)
                     Matrix has full rank – all columns/rows
ans =
                     are linearly independent
>> svd(A)
                       All singular values are non-zero
ans =
    1.6103
    0.8492
    0.1516
```

$$>> B = [1 2 3 4; -2 4 -6 8; 2 4 6 8]$$

Singular matrix

2

Matrix is not full rank – only two of three rows are linearly independent

$$>> [U, S, V] = svd(B)$$

Notice zero singular value on diagonal

V =

Matlab implementation of rank

 Count the number of singular values larger than some tolerance.

```
s = svd(A);
tol = max(size(A))*eps(max(s));
r = sum(s > tol);
```

- Tolerance depends upon:
 - Largest sized dimension of matrix
 - Scaling factor deduced using max singular value.
- Tolerance algorithm needed to handle matrices with high condition number.

SVD and matrix inverse

 A square matrix has an inverse if all singular values are non-zero.

Matrix inverse

• If one or more singular values are zero, the matrix has no inverse (i.e. it is singular)

Important library LAPACK

- LAPACK contains routines used for many linear algebra computations:
 - SVD
 - Solvers
 - Eigendecompositions
 - Etc.
- Built on top of BLAS.

http://www.netlib.org/lapack/lug/lapack_lug.html

More matrix visualizations: Nonzeros of a large, sparse matrix

```
>> A = sprandn(200, 200, .01);
>> nnz(A)
ans =
   398
>> 200*200
ans =
       40000
>> spy(A)
```


Matlab "spy" command

Sparsity patterns of common matrices

Browse others at: http://math.nist.gov/MatrixMarket/

NIST Matrix Market – sparse matrix collection

by contributor

the top ten

Typical FEM matrices

- Matrix BCSSTK19: BCS Structural Engineering Matrices (eigenvalue problems)
 - Part of a suspension bridge

Next topic: Visualizing a matrix as a quadratic form

• Another visualization: Consider quadratic forms. $f(u)=u^TBu$

where f is scalar function of input vector u.

- Visualization works for square matrix.
- The idea is to plot the values of f(u) vs u.
- If all eigenvalues of B are positive, then f(u) is a parabola opening upward.

Positive definite matrix

- All eigenvalues positive <=> matrix is positive definite.
- Consider $f(u)=u^TBu$ where u=[x; y]
- If B is positive definite, then f(u) is a parabola opening upward.
- Points obeying $f(u)=u^TBu=1$ form an ellipse.

/home/sdb/Northeastern/Class5/PositiveDefinite

What if A is negative definite?

```
>> B = randn_cond(2, 2, 1.3)
B =
  1.4193 0.1978
  0.2916 1.5877
>> A = -B'*B
A =
 -2.0995 -0.7437
 -0.7437 -2.5599
>> eig(A)
ans =
 -3.1082
 -1.5512
>> plot_surface(A)
```

What surface corresponds to a negative definite matrix?

What if A is negative definite?

>> B = randn_cond(2, 2, 1.3)

B =

1.4193 0.1978 0.2916 1.5877

>> A = -B'*B

A =

-2.0995 -0.7437 -0.7437 -2.5599

>> eig(A)

ans =

-3.1082 -1.5512

>> plot_surface(A)

If matrix is neither positive nor negative definite?

```
>> cd PositiveDefinite/
>> B = randn(2)
B =
  0.3188 -0.4336
 -1.3077 0.3426
>> eig(B)
ans =
 -0.4224
  1.0838
>> plot surface(B)
```

What surface corresponds to an indefinite matrix?

If matrix is neither positive nor negative definite?

```
>> cd PositiveDefinite/
>> B = randn(2)
```

B =

0.3188 -0.4336 -1.3077 0.3426

>> eig(B)

ans =

-0.4224 1.0838

>> plot_surface(B)

Solution set of $f(u)=u^TBu=1$ is a hyperbola

Visualization

- Consider $f(u)=u^TBu=c$ for some c.
- If NxN matrix is positive definite (which many useful matrices are), then think of the solution set *u* as an N-Dimensional ellipsoid.
 - Condition number is ratio of longest to shortest semi-axis of ellipse.
- If NxN matrix is not positive definite (positive and negative eigenvalues), think of the surface as a complicated mixture of hyperboloids and ellipsoids in some N-dimensional space.

Positive definite matrix

Parabola from quadratic form

$$f(u)=u^TBu$$

Contours of equal height

$$f(u)=u^TBu=c$$

Extension to 3D (and beyond...)

 For SPD matrix, think of ellipses in ND space

 For symmetricindefinite matrix, think of combinations of ellipses and hyperbolas

Applicable to symmetric matrices.

Now tie the two visualizations together

 Matrix as transform (any matrix)

 Matrix as quadratic form (symmetric only)

$$u^{T}Au=C$$

• I claim: $A = (B^{-1})^T (B^{-1})$

Proof

- I claim: $A = (B^{-1})^T (B^{-1})$
- Start with: $u^T A u$
- Recall: u = Bx
- So:

$$(x^{T}B^{T})A(Bx)$$

$$(x^{T}B^{T})(B^{-1})^{T}(B^{-1})(Bx)$$

• Use: $B^{T}(B^{-1})^{T} = (B^{-1}B)^{T} = I$

$$x^{T}(I)(I)x$$

$$=x^{T}x=C Q.E.D.$$

Comparison of B & A

• Output of program which plots u=Bx and levelsets of $u^TA = C$

$$A = (B^{-1})^T (B^{-1})$$

Note angle of ellipses is the same

Main points made in this session

- Concepts: matrix norm, SVD, condition number, and rank.
- These concepts are all linked by the SVD.
- Visualize matrix by its effect on a circle.
 - Works for any matrix.
- Visualize matrix via quadratic form.
 - Works for square, symmetric, positive definite matrix.