Comments on bnclassify package runtimes

Bojan Mihaljevic, Concha Bielza, Pedro Larranaga 2015-11-18

Contents

1	Prediction	1
2	Wrapper algorithms	1
3	Incomplete data	2
\mathbf{R}	eferences	3

1 Prediction

bnclassify implements fast prediction for augmented naive Bayes models with complete data. On the car evaluation data set (see vignette("introduction", package="bnclassify")) it is roughly 100 times faster than prediction with the gRain (Højsgaard 2012) package.

```
library(bnclassify)
data(car)
nb <- lp(nb('class', car), car, smooth = 0)</pre>
gr <- as_grain(nb)</pre>
library(microbenchmark)
microbenchmark(bnclassify = predict(nb, car),
               gRain = gRain::predict.grain(gr, 'class', newdata = car),
               times = 1)
#> Unit: milliseconds
#>
          expr
                       min
                                             mean
                                                      median
                40.28362
                             40.28362
                                        40.28362
                                                    40.28362
    bnclassify
         qRain 2656.59152 2656.59152 2656.59152 2656.59152 2656.59152
#>
#>
           max neval
#>
      40.28362
                    1
#> 2656.59152
```

2 Wrapper algorithms

The wrapper algorithms can be computationally intensive. The following are runtimes for tan_hc on a Windows 7, 2.80 GHz, 16 GB RAM machine.

```
microbenchmark(
  tan_hc = {set.seed(0); t \leftarrow b \leftarrow tan_hc('class', car, k = 10,
                                              epsilon = 0)},
  tan_hc5 = {set.seed(0); t \leftarrow b \leftarrow tan_hc('class', car, k = 5,
                                              epsilon = 0)},
  times = 1)
#> Unit: seconds
       expr
                  min
                              lq
                                     mean
                                             median
                                                            uq
                                                                    max neval
     tan_hc 1.568964 1.568964 1.568964 1.568964 1.568964 1.568964
#>
#> tan_hc5 1.074946 1.074946 1.074946 1.074946 1.074946 1.074946
```

5-fold cross-validation should take roughly 5 times more than learning.

With the Soybean data set, which has 36 features, and 562 instances after removing the incomplete ones, tan_hc takes about 80 seconds on the above mentioned Windows 7 machine.

3 Incomplete data

bnclassify uses gRain to compute the class posterior of instances with missing values (NAs). Even with a single NA in a dataset, runtime degrades significantly.

This is especially relevant for wrapper learners, which call prediction during learning. It is therefore probably not a bad idea to use wrappers with incomplete data sets, unless these are rather small.

References

Højsgaard, Søren. 2012. "Graphical Independence Networks with the gRain Package for R." Journal of Statistical Software 46 (10): 1–26.