

Квантовая макрофизика.

Лекция 2. Теплоёмкость твёрдых тел. Квантование колебаний решётки. Фононы.

Часть 1: Спектр упругих волн в кристалле

Напоминание: Продольные колебания в однородной цепочке

$$\omega = \sqrt{\frac{4C}{M}} \left| \sin\left(\frac{ka}{2}\right) \right| = \frac{2s}{a} \left| \sin\left(\frac{ka}{2}\right) \right|$$

Напоминание: Продольные колебания в однородной цепочке

$$\omega = \sqrt{\frac{4C}{M}} \left| \sin \left(\frac{k \, a}{2} \right) \right| = \frac{2s}{a} \left| \sin \left(\frac{k \, a}{2} \right) \right|$$

Напоминание: неоднородной

Несколько общих утверждений о колебаниях.

• 1 атом в примитивной элементарной ячейке: 3 типа (поляризации) акустических колебаний;

- 2 атома в примитивной элементарной ячейке: 3 акустических, 3 оптических
- N атомов в примитивной элементарной ячейке: 3 акустических, 3(N-1) оптических, всего 3N.

Что это даёт?

Колебания атомов — это форма теплового движения в кристалле. Если описание колебаний на языке волн окажется удобным...

...мы сможем описать термодинамику кристаллов, в частности - теплоёмкость

Колебательное движение атомов может нарушать идеальность регулярной кристаллической решетки, мешать движению электронов в проводниках...

...нужно уметь описывать это движение, оценивать вносимую им степень беспорядка

Часть 2. Теплоёмкость твёрдых тел: способ измерения.

Методы измерения теплоёмкости.

Фотография системы PPMS. Слева - стойка электроники, справа - дьюар.

Примеры стандартных вставок в установку PPMS. Слева и справа вставка для электрических измерений (в перевёрнутом и нормальном виде), по центру - калориметрическая вставка.

Релаксационный метод измерения теплоёмкости.

Релаксационный метод измерения теплоёмкости.

Релаксационный метод измерения теплоёмкости.

$$C_{tot} \frac{dT_p}{dt} = -K_w (T_p - T_b) + P(t)$$

Пример кривой отклика термометра при измерении теплоёмкости. Из руководства Quantum Design, PPMS Heat Capacity Option User's Manual, Quantum Design, 11-th edition, 2004

Релаксационный мето $T_p = T_b + \Delta T e^{-(K_w/C_{tot})t}$

$$T_p = T_b + \Delta T e^{-(K_w/C_{tot})t}$$

 $C_{tot} \frac{dT_p}{dt} = -K_w (T_p - T_b) + P(t)$

Пример кривой отклика термометра при измерении теплоёмкости. Из руководства Quantum Design, PPMS Heat Capacity Option User's Manual, Quantum Design, 11-th edition, 2004

Часть 3: Теплоёмкость твёрдых тел: Энергия тепловых колебаний решётки.

Напоминание: аналогия с АЧТ

Напоминание: аналогия с АЧТ

Шаг 1: Подсчёт числа колебаний.

Шаг 1: Подсчёт числа колебаний.

Шаг 1: Подсчёт числа колебаний. Граничные условия.

Граничные условия:

периодические

закреплённые

$$\vec{u}(0, y, z) = \vec{u}(L_x, y, z) = 0$$
 etc

$$u(0,t)=u(N,t)$$

$$u(0,t)=u(N,t)$$

$$1 = e^{i kL} = e^{i k N a}$$
$$k a N = 2 \pi p$$

$$u(j,t)=u_0e^{i(kx_j-\omega t)}$$

$$u(0,t)=u(N,t)$$

$$1 = e^{i kL} = e^{i k N a}$$
$$k a N = 2 \pi p$$

k в 1-ой зоне Бриллюэна: p={0, 1,..., N-1} или {-N/2,..., N/2}

$$k = 0; \pm \frac{2\pi}{Na}; \pm \frac{2\pi}{Na} \times 2; \pm \frac{2\pi}{Na} \times 3; \pm \frac{2\pi}{Na} \times 4; \dots \pm \frac{2\pi}{Na} \times p; \dots; \frac{\pi}{a};$$

$$u(0,t)=u(N,t)$$

$$1 = e^{i kL} = e^{i k N a}$$
$$k a N = 2 \pi p$$

k в 1-ой зоне Бриллюэна: p={0, 1,..., N-1} или {-N/2,..., N/2}

$$k = 0; \pm \frac{2\pi}{Na}; \pm \frac{2\pi}{Na} \times 2; \pm \frac{2\pi}{Na} \times 3; \pm \frac{2\pi}{Na} \times 4; \dots \pm \frac{2\pi}{Na} \times p; \dots; \frac{\pi}{a};$$

число мод в интервале ∆К

$$\Delta N = \frac{\Delta K}{(2\pi/L)} = \frac{\Delta K \cdot L}{2\pi}$$

Число колебаний в 1D. Закреплённые граничные условия.

$$u(x=0,t)=u(x=Na,t)=0$$

Число колебаний в 1D. Закреплённые граничные условия.

$$u(x=0,t)=u(x=N a,t)=0$$

$$A=0$$

$$\sin(kNa)=0$$

$$kaN=\pi p>0$$

Число колебаний в 1D. Закреплённые граничные условия.

$$u(x=0,t)=u(x=N a,t)=0$$

$$A=0$$

$$\sin(kNa)=0$$

$$kaN=\pi p>0$$

$$k = \frac{\pi}{Na}; \frac{\pi}{Na} \times 2; \frac{\pi}{Na} \times 3; \frac{\pi}{Na} \times 4; \dots \frac{\pi}{Na} \times p; \dots; \frac{\pi}{a}$$

число мод в интервале ∆К

$$\Delta N = \frac{\Delta K}{(\pi/L)} = \frac{\Delta K \cdot L}{\pi}$$

Сравнение результатов для разных граничных условий в 1D.

Число колебаний в 3D.

Число колебаний в 3D.

Периодические граничные условия (удобнее)

$$\vec{u}(x, y, z) = \vec{u}(x + L, y, z) =$$

= $\vec{u}(x, y + L, z) = \vec{u}(x, y, z + L)$

$$k_{x,y,z} = 0; \pm \frac{2\pi}{L}; \pm \frac{2\pi}{L} \times 2; \pm \frac{2\pi}{L} \times 3; \pm \frac{2\pi}{L} \times 4; \dots \pm \frac{2\pi}{L} \times p; \dots; \frac{\pi}{a};$$

Число колебаний в 3D.

Перио (удобн

 \vec{u} $=\vec{u}$

$$k_{x,y,z} = 0; \pm \frac{2\pi}{L}; \pm \frac{2\pi}{L} \times 2; \pm \frac{2\pi}{L}$$

На одно колебание объём k-пространства:

$$\left(\frac{2\pi}{L}\right)^3 = \frac{(2\pi)^3}{V}$$

Число колебаний:

$$d N = \frac{d^3 k}{(2\pi)^3 / V} = \frac{V d^3 k}{(2\pi)^3}$$

 $d N = D(\omega) d \omega$

$$dN = D(\omega)d\omega$$

1D: спектр
$$\omega = \omega_{max} \left| \sin \left(\frac{k \, a}{2} \right) \right|$$
 периодич. гран. усл. $d \, N = \frac{L \, d \, k}{2 \, \pi}$

$$dN = D(\omega)d\omega$$

1D: спектр
$$\omega = \omega_{max} \left| \sin \left(\frac{k \, a}{2} \right) \right|$$
 периодич. гран. усл. $d \, N = \frac{L \, d \, k}{2 \, \pi}$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk} \frac{1}{d\omega/dk}$$

$$dN = D(\omega)d\omega$$

1D: спектр
$$\omega = \omega_{max} \left| \sin \left(\frac{k \, a}{2} \right) \right|$$
 периодич. гран. усл. $d \, N = \frac{L \, d \, k}{2 \, \pi}$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk}\frac{1}{d\omega/dk} = 2\frac{L}{2\pi}\frac{1}{\omega_{max}\times(a/2)\times\cos(ka/2)}$$

$$d N = D(\omega) d \omega$$

1D: спектр
$$\omega = \omega_{max} \left| \sin \left(\frac{k \, a}{2} \right) \right|$$
 периодич. гран. усл. $d \, N = \frac{L \, d \, k}{2 \, \pi}$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk} \frac{1}{d\omega/dk} = 2\frac{L}{2\pi} \frac{1}{\omega_{max} \times (a/2) \times \cos(ka/2)} =$$
$$= \frac{2L}{\pi a} \frac{1}{\sqrt{\omega_{max}^2 - \omega^2}}$$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk} \frac{1}{d\omega/dk} = 2\frac{L}{2\pi} \frac{1}{\omega_{max} \times (a/2) \times \cos(ka/2)} =$$
$$= \frac{2L}{\pi a} \frac{1}{\sqrt{\omega_{max}^2 - \omega^2}}$$

 $dN = D(\omega)$

спен

пері

гран

1D:

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk} \frac{1}{d\omega/dk} = 2\frac{L}{2\pi} \frac{1}{\omega_{max} \times (a/2) \times \cos(ka/2)} =$$
$$= \frac{2L}{\pi a} \frac{1}{\sqrt{\omega_{max}^2 - \omega^2}}$$

1D:

Шаг 3. Энергия тепловых колебаний решётки.

$$E_{n} = \hbar \omega \left(n + \frac{1}{2} \right)$$

$$\overline{E} = \frac{\sum_{n} E_{n} e^{-E_{n}/T}}{\sum_{n} e^{-E_{n}/T}} = \frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} = \left(\frac{1}{2} + n(\omega) \right) \hbar \omega$$

Шаг 3. Энергия тепловых колебаний решетки.

$$E_{n} = \hbar \omega \left(n + \frac{1}{2} \right)$$

$$\overline{E} = \frac{\sum E_{n} e^{-E_{n}/T}}{\sum e^{-E_{n}/T}} = \frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} = \left(\frac{1}{2} + n(\omega) \right) \hbar \omega$$

суммируем вклады всех колебаний:
$$E = \sum_{i} \int_{13.E.} \overline{E}\left(\omega_i(\vec{k})\right) \frac{Vd^3k}{(2\pi)^3}$$

$$E = \sum_{i} \int_{0}^{\infty} D_i(\omega) \left(\frac{1}{2} + n(\omega)\right) \hbar \omega d \omega$$

Плотность состояний для упругих колебаний в реальном кристалле.

Плотность состояний для упругих волн в кристалле алюминия. Вычисление по экспериментально измеренным спектрам упругих колебаний, распространяющихся в различных направлениях. Показаны отдельно вклады разных поляризаций.

Для каждой моды

$$\int_{0}^{\infty} D(\omega) d\omega = N$$

число *примитивных* элементарных ячеек

Часть 4. Модель Дебая и модель Эйнштейна

Модель Эйнштейна и модель Дебая.

Эйнштейн

$$D(\omega) = N \delta(\omega - \omega_0)$$

Все атомы колеблются на одной частоте, *N* — число примитивных элементарных ячеек.

Дебай

$$\omega = sk$$

Спектр заменяется изотропным линейным спектром.

Модель Эйнштейна и модель Дебая.

Эйнштейн

$$D(\omega) = N \delta(\omega - \omega_0)$$

Все атомы колеблются на одной частоте, *N* — число примитивных элементарных ячеек.

Дебай

$$\omega = sk$$

Спектр заменяется изотропным линейным спектром.

$$\int_{0}^{\infty} D(\omega)d\omega = N$$

по определению верно

необходимо ограничить доступные в модели частоты

$$\int_{0}^{\infty} D(\omega) d\omega = N$$

$$D(\omega) = \frac{dN}{d\omega} =$$

$$\int_{0}^{\infty} D(\omega) d\omega = N$$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk}\frac{1}{d\omega/dk} = 2\frac{L}{2\pi}\frac{1}{s} = \frac{L}{\pi s}$$

$$\int_{0}^{\infty} D(\omega) d\omega = N$$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk}\frac{1}{d\omega/dk} = 2\frac{L}{2\pi}\frac{1}{s} = \frac{L}{\pi s}$$

$$\omega_{D} \frac{L}{\pi s} = N$$

$$\omega_{D} = \frac{\pi s}{a} = \frac{\pi}{2} \omega_{max}$$

$$k_{D} = \frac{\omega_{D}}{s} = \frac{\pi}{a} = k_{Ep}$$

$$\int_{0}^{\infty} D(\omega) d\omega = N$$

$$D(\omega) = \frac{dN}{d\omega} = 2\frac{dN}{dk}\frac{1}{d\omega/dk} = 2\frac{L}{2\pi}\frac{1}{s} = \frac{L}{\pi s}$$

$$\omega_{D} \frac{L}{\pi s} = N$$

$$\omega_{D} = \frac{\pi s}{a} = \frac{\pi}{2} \omega_{max}$$

$$k_{D} = \frac{\omega_{D}}{s} = \frac{\pi}{a} = k_{Ep}$$

Дебаевская частота и дебаевский волновой вектор в трёхмерном случае.

$$\omega = s k$$

$$d N = \frac{V d^{3} k}{(2\pi)^{3}} = \frac{V 4\pi k^{2} d k}{(2\pi)^{3}}$$

Дебаевская частота и дебаевский волновой вектор в трёхмерном случае.

$$\omega = s k$$

$$d N = \frac{V d^{3} k}{(2\pi)^{3}} = \frac{V 4\pi k^{2} d k}{(2\pi)^{3}}$$

$$D(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk} \frac{1}{d\omega/dk} = \frac{1}{s} \frac{Vk^{2}}{2\pi^{2}} = \frac{V\omega^{2}}{2\pi^{2}s^{3}}$$

Дебаевская частота и дебаевский волновой вектор в трёхмерном случае.

on density of states, g_{Ph}

$$\omega = s k$$

$$d N = \frac{V d^{3} k}{(2\pi)^{3}} = \frac{V 4\pi k^{2} d k}{(2\pi)^{3}}$$

$$D(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk} \frac{1}{d\omega/dk} = \frac{1}{s} \frac{Vk^{2}}{2\pi^{2}} = \frac{V\omega^{2}}{2\pi^{2}s^{3}}$$

Дебаевская частота и дебаевский волновой вектор в трёхмерном случае.

$$\omega = s k$$

$$d N = \frac{V d^{3} k}{(2\pi)^{3}} = \frac{V 4\pi k^{2} d k}{(2\pi)^{3}}$$

$$D(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk} \frac{1}{d\omega/dk} = \frac{1}{s} \frac{Vk^{2}}{2\pi^{2}} = \frac{V\omega^{2}}{2\pi^{2}s^{3}}$$

$$N = \int_{0}^{\omega_{D}} D(\omega) d\omega = \frac{V}{6\pi^{2}} \frac{\omega_{D}^{3}}{s^{3}}$$

$$\omega_{D} = s \sqrt[3]{6\pi^{2} \frac{N}{V}} = s \sqrt[3]{6\pi^{2} n}$$

$$k_{D} = \sqrt[3]{6\pi^{2} n}$$

$$\omega_{D} = s \sqrt[3]{6 \pi^{2} \frac{N}{V}} = s \sqrt[3]{6 \pi^{2} n_{gq}}$$

$$k_{D} = \sqrt[3]{6 \pi^{2} n_{gq}}$$

on density of states, g_{Ph}

Дебаевская частота и дебаевский волновой вектор в трёхмерном случае.

$$\omega = s k$$

$$d N = \frac{V d^{3} k}{(2\pi)^{3}} = \frac{V 4\pi k^{2} d k}{(2\pi)^{3}}$$

$$D(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk} \frac{1}{d\omega/dk} = \frac{1}{s} \frac{V}{2}$$

Для кристалла с простой кубической решёткой

$$k_D = \sqrt[3]{6\pi^2 n_{gq}} = \frac{\sqrt[3]{6\pi^2}}{a} > \frac{\pi}{a} = k_{Ep}$$

возникают нефизические моды колебаний

$$N = \int_{0}^{\omega_{D}} D(\omega) d\omega = \frac{V}{6\pi^{2}} \frac{\omega_{D}^{3}}{s^{3}}$$

$$N = \int_{0}^{\omega_{D}} D(\omega) d\omega = \frac{V}{6\pi^{2}} \frac{\omega_{D}^{3}}{s^{3}}$$

$$\omega_{D} = s \sqrt[3]{6\pi^{2} \frac{N}{V}} = s \sqrt[3]{6\pi^{2} n_{gq}}$$

$$k_{D} = \sqrt[3]{6\pi^{2} n_{gq}}$$

Теория теплоёмкости Дебая (3D)

$$E = \sum_{i} \int_{0}^{\infty} D_{i}(\omega) \left(\frac{1}{2} + n(\omega)\right) \hbar \omega d \omega$$
$$D(\omega) = \frac{V}{2\pi^{2}} \frac{\omega^{2}}{s^{3}}, \quad \omega < \omega_{D}$$

Теория теплоёмкости Дебая (3D)

$$E = \sum_{i} \int_{0}^{\infty} D_{i}(\omega) \left(\frac{1}{2} + n(\omega)\right) \hbar \omega d \omega$$
$$D(\omega) = \frac{V}{2\pi^{2}} \frac{\omega^{2}}{s^{3}}, \quad \omega < \omega_{D}$$

$$E - E_0 = 3 \times \frac{V}{2\pi^2 s^3} \int_0^{\omega_D} \omega^2 \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} d\omega = T^4 \frac{3V}{2\pi^2 \hbar^3 s^3} \int_0^{\Theta/T} \frac{x^3 dx}{e^x - 1}$$

$$\Theta = \hbar \omega_D / k_B = \frac{\hbar s}{k_B} (6 \pi^2 n_{_{94}})^{1/3}$$
 |!!! здесь вернули |!!! постоянную Больцмана

Теория теплоёмкости Дебая (3D)

$$E = \sum_{i} \int_{0}^{\infty} D_{i}(\omega) \left(\frac{1}{2} + n(\omega)\right) \hbar \omega d \omega$$
$$D(\omega) = \frac{V}{2\pi^{2}} \frac{\omega^{2}}{s^{3}}, \quad \omega < \omega_{D}$$

$$E - E_0 = 3 \times \frac{V}{2\pi^2 s^3} \int_0^{\omega_D} \omega^2 \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} d\omega = T^4 \frac{3V}{2\pi^2 \hbar^3 s^3} \int_0^{\Theta/T} \frac{x^3 dx}{e^x - 1}$$

$$\Theta = \hbar \omega_D / k_B = \frac{\hbar s}{k_B} (6\pi^2 n_{gq})^{1/3}$$
 |!!! здесь вернули |!!! постоянную Больцмана

$$E - E_0 = 9N k_B T \left(\frac{T}{\Theta}\right)^3 \times \int_0^{\Theta/T} \frac{x^3 dx}{e^x - 1}$$

Порядки величины дебаевской температуры

$$\Theta = \hbar \omega / k_B = \frac{\hbar s}{k_B} \left(6 \pi^2 n_{gq} \right)^{1/3}$$

$$\Theta \sim \frac{3 \,h \,s}{k_B a} \sim \frac{3 \times 10^{-27} \times 3 \times 10^5}{1.4 \times 10^{-16} \times 3 \times 10^{-8}} \sim 2 \times 10^2 \,K = 200 \,K$$

вещество	Θ, Κ	вещество	Θ, Κ	вещество	Θ, Κ
Алмаз	2200	Ag	227	Si	645
Mg	400	Au	162	Ge	374
Cu	344	He	26	Ar	92
Fe	470	NaCl	275	Pb	105
Al	428	Pt	239		

Теория теплоёмкости Дебая (3D). Предельные случаи.

$$E - E_0 = 9N k_B T \left(\frac{T}{\Theta}\right)^3 \times \int_0^{\Theta/T} \frac{x^3 dx}{e^x - 1}$$

$$T\gg\Theta, \ \Theta/T\ll1$$

$$\int_{0}^{\Theta/T} \frac{x^{3} dx}{e^{x}-1} \approx \int_{0}^{\Theta/T} x^{2} dx = \frac{1}{3} \left(\frac{\Theta}{T}\right)^{3}$$

$$E-E_{0}=3N k_{B}T$$

$$C=3N k_{B}$$

Закон Дюлонга-Пти

$$T \ll \Theta, \quad \Theta/T \gg 1$$

$$\int_{0}^{\Theta/T} \frac{x^{3} dx}{e^{x} - 1} \approx \int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$E - E_{0} = \frac{3\pi^{4} N k_{B}}{5} \frac{T^{4}}{\Theta^{3}}$$

$$C = \frac{12\pi^{4} N k_{B}}{5} \left(\frac{T}{\Theta}\right)^{3}$$

Закон Т³ Дебая

Теория теплоёмкости Дебая (3D). Общий случай.

$$E - E_0 = 3 \times \frac{V}{2\pi^2 s^3} \int_0^{\omega_D} \omega^2 \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} d\omega$$

$$C = 3 \times \frac{V}{2\pi^{2} s^{3}} \int_{0}^{\omega_{D}} \omega^{2} \frac{\hbar \omega \times e^{\hbar \omega/T} \times (\hbar \omega/T^{2})}{(e^{\hbar \omega/T} - 1)^{2}} d\omega =$$

$$= \frac{3VT^{3}}{2\pi^{2} \hbar^{3} s^{3}} \int_{0}^{\Theta/T} \frac{x^{4} e^{x} dx}{(e^{x} - 1)^{2}} = 9Nk_{B}T \left(\frac{T}{\Theta}\right)^{3} \times \int_{0}^{\Theta/T} \frac{x^{4} e^{x} dx}{(e^{x} - 1)^{2}}$$

Теория теплоёмкости Дебая (3D). Общий случай.

$$E - E_0 = 3 \times \frac{V}{2\pi^2 s^3} \int_0^{\omega_D} \omega^2 \frac{\hbar \omega}{e^{\hbar \omega/T} - 1} d\omega$$

$$C = 3 \times \frac{V}{2\pi^{2}s^{3}} \int_{0}^{\omega_{D}} \omega^{2} \frac{\hbar \omega \times e^{\hbar \omega/T} \times (\hbar \omega/T^{2})}{1.0}$$

$$= \frac{3VT^{3}}{2\pi^{2}\hbar^{3}s^{3}} \int_{0}^{\Theta/T} \frac{x^{4}e^{x}dx}{(e^{x}-1)^{2}} = 0.8$$

$$0.8$$

$$0.8$$

$$0.95 \text{ от 3R при T=O}$$

$$0.95 \text{ от 3R при T=O}$$

$$0.001$$

$$0.001$$

$$0.001$$

$$0.001$$

$$0.001$$

Теория теплоёмкости Эйнштейна.

$$D(\omega) = N \delta(\omega - \omega_0)$$

$$E = \sum_{i} \int_{0}^{\infty} D_{i}(\omega) \left(\frac{1}{2} + n(\omega) \right) \hbar \omega d \omega$$

$$E - E_0 = \frac{N \hbar \omega_0}{e^{\hbar \omega_0 / T} - 1}$$

Теория теплоёмкости Эйнштейна.

$$D(\omega) = N \delta(\omega - \omega_0)$$

$$E = \sum_{i} \int_{0}^{\infty} D_{i}(\omega) \left(\frac{1}{2} + n(\omega) \right) \hbar \omega d \omega$$

$$E - E_0 = \frac{N \hbar \omega_0}{e^{\hbar \omega_0 / T} - 1}$$

$$C = N k_{B} \left(\frac{\hbar \omega}{k_{B} T} \right)^{2} \frac{e^{\hbar \omega_{0} / (k_{B} T)}}{\left(e^{\hbar \omega_{0} / (k_{B} T)} - 1 \right)^{2}} = \begin{cases} \infty e^{-\hbar \omega_{0} / (k_{B} T)}, & k_{B} T \ll \hbar \omega_{0} \\ N k_{B}, & k_{B} T \gg \hbar \omega_{0} \end{cases}$$

!!! вернули постоянную Больцмана

Эксперимент: Теплоёмкость серебра.

Данные: D.R.Smith and F.R.Fickett, Low-Temperature Properties of Silver ,Journal of Research of the National Institute of Standards and Technology, 100, 119(1995)

Часть 5. Квантование колебаний решётки. Фононы.

Напоминание: дифракция на кристалле

Напоминание: дифракция на кристалле

Учёт колебаний атомов.

Учёт колебаний атомов.

$$\frac{e^{i(kR-\omega t)}}{R}\sum_{\vec{T}}e^{i(\vec{k}-\vec{k}')\vec{T}}=$$

Учёт колебаний атомов.

$$\vec{E} = \vec{C} \frac{e^{i(kR - \omega t)}}{R} \sum_{\vec{T}} e^{i\Delta \phi} = \vec{C} \frac{e^{i(kR - \omega t)}}{R} \sum_{\vec{T}} e^{i(\vec{k} \cdot \vec{L}')\vec{T}}$$

$$\vec{T} = \vec{T}_0 + \vec{\delta} \cos(\vec{K} \cdot \vec{T}_0 - \Omega t), \ \delta \ll |\vec{T}|$$

$$\frac{e^{i(kR - \omega t)}}{R} \sum_{\vec{T}} e^{i(\vec{k} - \vec{k}')\vec{T}} = \frac{e^{i(kR - \omega t)}}{R} \sum_{\vec{T}} e^{i(\vec{k} - \vec{k}')\vec{T}_0} \left[1 + \left((\vec{k} - \vec{k}')\vec{\delta} \right) \frac{e^{i(\vec{K} \cdot \vec{T}_0 - \Omega t)} + e^{-i(\vec{K} \cdot \vec{T}_0 - \Omega t)}}{2} \right]$$

B

упругий процесс:

$$\omega' = \omega$$
, $\vec{k} - \vec{k}' = \vec{G}$

неупругие процессы:

$$\omega' = \omega + \Omega, \quad \vec{k} + \vec{K} - \vec{k}' = \vec{G}$$

$$\omega' = \omega - \Omega, \quad \vec{k} - \vec{K} - \vec{k}' = \vec{G}$$

$$I = I_0 + o \cos(\kappa I_0 - \Sigma I), \delta \ll |\vec{T}|$$

$$\frac{e^{i(k\,R-\omega\,t)}}{R}\sum_{\vec{T}}e^{i(\vec{k}-\vec{k}\,')\vec{T}} = \frac{e^{i(k\,R-\omega\,t)}}{R}\sum_{\vec{T}_0}e^{i(\vec{k}-\vec{k}\,')\vec{T}_0} \left[1 + \left((\vec{k}-\vec{k}\,')\vec{\delta}\right)\frac{e^{i(\vec{k}\,\vec{T}_0-\Omega\,t)} + e^{-i(\vec{k}\,\vec{T}_0-\Omega\,t)}}{2}\right]$$

B

упругий процесс:

$$\omega' = \omega$$
, $\vec{k} - \vec{k}' = \vec{G}$

MOB.

неупругие процессы:

$$\omega' = \omega + \Omega, \quad \vec{k} + \vec{K} - \vec{k}' = \vec{G}$$

$$\omega' = \omega - \Omega, \quad \vec{k} - \vec{K} - \vec{k}' = \vec{G}$$

$$\frac{e^{i(kR-\omega t)}}{R}\sum_{\vec{T}}e^{i(\vec{k}-\vec{k}')\vec{T}}$$

$$\omega, \vec{k}$$

$$\Omega, \vec{K} + \vec{G}$$

 ω' , \vec{k}'

$$-i\left(\vec{K}\vec{T}_{0}-\Omega t\right)$$

упругий процесс:

$$\omega' = \omega$$
, $\vec{k} - \vec{k}' = \vec{G}$

неупругие процессы:

$$\omega' = \omega + \Omega, \quad \vec{k} + \vec{K} - \vec{k}' = \vec{G}$$

$$\omega' = \omega - \Omega, \quad \vec{k} - \vec{K} - \vec{k}' = \vec{G}$$

При взаимодействии с фотоном квант колебаний решётки ведёт себя как квазичастица (фонон) с энергией $\hbar \Omega$

квазиимпульсом

$$\hbar(\vec{K} + \vec{G})$$

$$\frac{e^{i(kR-\omega t)}}{R} \sum_{\vec{T}} e^{i(\vec{k}-\vec{k}')\vec{T}}$$

$$\omega$$
, \vec{k}

$$\Omega$$
, \vec{K} + \vec{G}

 ω' , k'

$$-i(\vec{K}\vec{T}_0-\Omega t)$$

Часть 6. А можно ли строго...

Квантовый подход к описанию колебаний атомов. Элементы вторичного квантования.

 $\{\psi_k\}$ «привычные» волновые функции N_k количество частиц в k-ом состоянии

 $\{N_k\}$

эквивалентный способ задания состояния системы

Квантовый подход к описанию колебаний атомов. Элементы вторичного квантования.

 $\{\psi_k\}$ «привычные» волновые функции N_k количество частиц в k-ом состоянии

 $\{N_k\}$ эквивалентный способ задания состояния системы

$$\hat{a}_n ig| N_{1,} N_{2,} \dots$$
 , N_n , ... $ig> = \sqrt{N_n} ig| N_{1,} N_{2,} \dots$, $N_n - 1$, ... $ig>$ уничтожение $\hat{a}_n^+ ig| N_{1,} N_{2,} \dots$, N_n , ... $ig> = \sqrt{N_n + 1} ig| N_{1,} N_{2,} \dots$, $N_n + 1$, ... $ig>$ рождение

Квантовый подход к описанию колебаний атомов. Элементы вторичного квантования.

 $\{ \psi_k \}$ «привычные» волновые функции N_k количество частиц в k-ом состоянии

 $\{N_k\}$

эквивалентный способ задания состояния системы

$$\hat{a}_{n}ig|N_{1,}N_{2,}...,N_{n},...ig
angle = \sqrt{N_{n}}ig|N_{1,}N_{2,}...,N_{n}-1,...ig
angle$$
 уничтожение $\hat{a}_{n}^{+}ig|N_{1,}N_{2,}...,N_{n}+1ig|N_{1,}N_{2,}...,N_{n}+1,...ig
angle$ рождение

Число частиц:

$$\hat{a}_n^+ \hat{a}_n = N_n$$

Энергия:
$$\hat{H} = \sum_{n} \varepsilon_{n} N_{n} = \sum_{n} \varepsilon_{n} \hat{a}_{n}^{\dagger} \hat{a}_{n}$$

взаимодействие:
$$\sum_{n,n',m,m'} H_{nn'mm'}^{(2)} \hat{a}_m^{\dagger} \hat{a}_n \hat{a}_m^{\dagger} \hat{a}_{n'}$$

Кван колебаний

Если подобрать такое преобразование операторов исходных физических величин

$$\hat{a}_n = \hat{f}(\{\hat{x}_i\}, \{\hat{p}_i\})$$

 $\{\psi_k\}$ «привы количе

что гамильтониан примет вид

$$\hat{H} = \sum \varepsilon_n \hat{a}_n^+ \hat{a}_n$$

 $\hat{a}_n | N_{1,} N_{2,} \dots$, Λ частиц

то нам удалось переформулировать нашу задачу на задачу невзаимодействующих

 $\hat{a}_{n}^{+}|_{N_{1},N_{2},\ldots,I}$ ϵ_{n} энергетический спектр этих частиц

Число частиц:

$$\hat{a}_n^+ \hat{a}_n = N_n$$

Энергия: $\hat{H} = \sum \varepsilon_n N_n = \sum \varepsilon_n \hat{a}_n^{\dagger} \hat{a}_n$

взаимодействие: $\sum H_{nn'mm'}^{(2)}, \hat{a}_m^{\dagger}, \hat{a}_n \hat{a}_m^{\dagger}, \hat{a}_n$

Вторичное квантование упругих колебаний «крупными мазками».

$$\hat{H} = \sum_{j=1}^{N} \frac{1}{2M} \hat{p}_{j}^{2} + \frac{C}{2} (x_{j+1} - x_{j})^{2}$$

$$x_r = \frac{1}{\sqrt{N}} \sum_{k} X_k e^{ikr}$$

$$\hat{p}_r = \frac{1}{\sqrt{N}} \sum_{k} P_k e^{-ikr}$$

$$\hat{H} = \sum_{k} \frac{1}{2M} P_{k} P_{-k} + C (1 - \cos(ka)) X_{k} X_{-k}$$

Вторичное квантование упругих колебаний «крупными мазками».

$$\hat{H} = \sum_{k} \frac{1}{2M} P_{k} P_{-k} + C (1 - \cos(ka)) X_{k} X_{-k}$$

$$a_{k}^{+} = \frac{1}{\sqrt{2 \hbar M \omega_{k}}} \left(M \omega_{k} X_{-k} - i P_{k} \right)$$

$$a_{k}^{-} = \frac{1}{\sqrt{2 \hbar M \omega_{k}}} \left(M \omega_{k} X_{k} + i P_{-k} \right)$$

$$\omega_{k} = \sqrt{\frac{2C}{M}} (1 - \cos(ka)) = \omega_{-k}$$

$$\omega_k = \sqrt{\frac{2C}{M}} (1 - \cos(ka)) = \omega_{-k}$$

$$\hat{H} = \frac{1}{2} \hbar \sum_{k} \omega_{k} \left(a_{k} a_{k}^{+} + a_{k}^{+} a_{k} \right) = \hbar \sum_{k} \omega_{k} \left(a_{k}^{+} a_{k} + \frac{1}{2} \right) = \hbar \sum_{k} \omega_{k} \left(n_{k} + \frac{1}{2} \right)$$

Вторичное квантование упругих колебаний «крупными мазками».

$$\hat{H} = \sum_{k} \frac{1}{2M} H$$

Исходный гамильтониан $\hat{H} = \sum_{k=1}^{N} \frac{1}{2M} P$ взаимодействующих гармоническим потенциалом атомов преобразован в гамильтониан невзаимодействующих частиц (т.е. фононов!) со спектром $\omega(k)$.

$$(ka)) = \omega_{-k}$$

$$a_k^+ =$$

$$a_k =$$

Преобразование *строгое* = в гармоническом приближении фононы не взаимодействуют друг с другом.

$$\hat{H} = \frac{1}{2} \hbar \sum_{k} \omega_{k} \left(a_{k} a_{k}^{+} + a_{k}^{+} a_{k} \right) = \hbar \sum_{k} \omega_{k} \left(a_{k}^{+} a_{k} + \frac{1}{2} \right) = \hbar \sum_{k} \omega_{k} \left(n_{k} + \frac{1}{2} \right)$$

Бонус (на лекции не было). Амплитуды тепловых и квантовых колебаний атомов.

Амплитуды тепловых и квантовых колебаний атомов.

$$\langle (u(\vec{r},t))^2 \rangle = ?$$

Амплитуды тепловых и квантовых колебаний атомов.

$$\langle (u(\vec{r},t))^2 \rangle = ?$$

$$\vec{u}(\vec{r},t) = \sum_{\vec{k},\alpha} \vec{A}_{\vec{k},\alpha} \cos(\vec{k}\,\vec{r} - \omega\,t + \varphi_{\vec{k},\alpha})$$

$$\langle \vec{u}^2 \rangle = \frac{1}{2} \sum_{\vec{k},\alpha} \langle (\vec{A}_{\vec{k},\alpha})^2 \rangle$$

Среднеквадратичные амплитуды мод колебаний в «чистой моде колебаний».

$$u_i = A\cos(\vec{k}\,\vec{r}_i - \omega\,t)$$

Для гармонических колебаний средние кинетические и потенциальные энергии равны

$$E = \langle E \rangle = \left\langle \sum_{i} C \frac{(u_{i} - u_{i+1})^{2}}{2} + m \frac{(du_{i}/dt)^{2}}{2} \right\rangle = N m \left\langle (du_{i}/dt)^{2} \right\rangle =$$

$$= \frac{1}{2} N m \omega^{2} A^{2}$$

Среднеквадратичные амплитуды мод колебаний в «чистой моде колебаний».

$$u_i = A\cos(\vec{k}\,\vec{r}_i - \omega\,t)$$

Для гармонических колебаний средние кинетические и потенциальные энергии равны

$$E = \langle E \rangle = \left\langle \sum_{i} C \frac{(u_{i} - u_{i+1})^{2}}{2} + m \frac{(du_{i}/dt)^{2}}{2} \right\rangle = N m \langle (du_{i}/dt)^{2} \rangle =$$

$$= \frac{1}{2} N m \omega^{2} A^{2}$$

Для квантового осциллятора

$$E = \hbar \omega \left(n + \frac{1}{2} \right)$$

Среднеквадратичные амплитуды мод колебаний в «чистой моде колебаний».

$$u_i = A\cos(\vec{k}\,\vec{r}_i - \omega\,t)$$

Для гармонических колебаний средние кинетические и потенциальные энергии равны

$$E = \langle E \rangle = \left\langle \sum_{i} C \frac{(u_{i} - u_{i+1})^{2}}{2} + m \frac{(du_{i}/dt)^{2}}{2} \right\rangle = N m \left\langle (du_{i}/dt)^{2} \right\rangle =$$

$$= \frac{1}{2} N m \omega^{2} A^{2}$$

Для квантового осциллятора

$$E = \hbar \omega \left(n + \frac{1}{2} \right)$$

$$\langle A_k^2 \rangle = \frac{2\hbar}{M\omega_k} \left(n + \frac{1}{2} \right)$$

Амплитуды тепловых и квантовых колебаний атомов.

$$\langle (u(\vec{r},t))^2 \rangle = ?$$

$$\langle \vec{u}^2 \rangle = \frac{1}{2} \sum_{\vec{k},\alpha} \langle (\vec{A}_{\vec{k},\alpha})^2 \rangle$$

$$\langle A_k^2 \rangle = \frac{2\hbar}{M\omega_k} \left(n + \frac{1}{2} \right)$$

Амплитуды тепловых и квантовых колебаний атомов.

$$\langle (u(\vec{r},t))^2 \rangle = ?$$

$$\langle \vec{u}^2 \rangle = \frac{1}{2} \sum_{\vec{k},\alpha} \langle (\vec{A}_{\vec{k},\alpha})^2 \rangle$$

$$\langle A_k^2 \rangle = \frac{2\hbar}{M\omega_k} \left(n + \frac{1}{2} \right)$$

$$\langle \vec{u}^2 \rangle = N_P \frac{2\hbar}{M} \int \frac{n(\omega) + 1/2}{\omega} \frac{V d^D k}{(2\pi)^D}$$

Случай Т=0.

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{\kappa_k + 1/2}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D}$$

Случай Т=0.

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{\kappa_k + 1/2}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D}$$

$$\omega = s k$$
, 1D:
 $\langle u^2 \rangle \propto \int_0^{\pi/a} \frac{d k}{k}$

длинноволновая расходимость, одномерных кристаллов не существует даже при T=0

Случай Т=0.

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{n_k + 1/2}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D}$$

$$\omega = s k$$
, 1D:
 $\langle u^2 \rangle \propto \int_0^{\pi/a} \frac{d k}{k}$

длинноволновая расходимость, одномерных кристаллов не существует даже при Т=0

$$\omega = s k$$
, 3D, дебаевское приближение: $\langle u^2 \rangle = \frac{3 \hbar}{s \rho} \int_{0}^{k_D} \frac{4 \pi k^2 d k}{k} = \frac{6 \pi \hbar k_D^2}{s \rho} \propto \frac{a}{s m} \simeq \frac{1}{\sqrt{C m}}$

обычно мало

Случай і

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{\kappa_k + 1/\rho}{\omega(\vec{k})}$$

$$\omega = s k$$
, 1D:
 $\langle u^2 \rangle \propto \int_0^{\pi/a} \frac{d k}{k}$

$$\omega = s k$$
, 3D

$$\omega = s k$$
, 3D. 0 1 2 3
 $\langle u^2 \rangle = \frac{3 \hbar}{s \rho} \int_{0}^{k_D} \frac{4 \pi k^2 d k}{k} = \frac{6 \pi \hbar k_D^2}{s \rho} \propto \frac{a}{s m} \simeq \frac{1}{\sqrt{C m}}$

обычно мало

Случай Т>0.

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{n_k + 1/2}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D} = \langle u^2 \rangle_0 + \frac{2 \hbar N_P}{\rho} \int \frac{n_k}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D}$$

Случай Т>0.

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{n_k + 1/2}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D} = \langle u^2 \rangle_0 + \frac{2 \hbar N_P}{\rho} \int \frac{n_k}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D}$$

$$\omega = s k, \omega \to 0$$

$$\int_{0}^{\infty} \frac{1}{e^{\hbar \omega/T} - 1} \omega^{D-1} d\omega \propto T \int_{0}^{\infty} \frac{\omega^{D-1}}{\omega^{2}} d\omega$$

Расходимость при D=2, двумерные кристаллы не существуют при T>0

Случай Т>>Ө, 3D, модель Дебая.

$$\langle u^2 \rangle = \frac{2 \hbar N_P}{\rho} \int \frac{n_k + 1/2}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D} = \langle u^2 \rangle_0 + \frac{2 \hbar N_P}{\rho} \int \frac{n_k}{\omega(\vec{k})} \frac{d^D k}{(2\pi)^D}$$

$$\langle u^2 \rangle \simeq \frac{6}{\rho} T \int_0^{\kappa_D} \frac{4\pi k^2 dk}{s^2 k^2 (2\pi)^3} = \frac{3}{\pi^2} \frac{k_D T}{s^2 \rho} \sim \frac{T}{m \omega_D^2}$$

заметаемая тепловыми колебаниями площадь пропорциональна Т

Случай Т>>Ө, 3D, модель Дебая.

$$\langle u^{2} \rangle = \frac{2 \hbar N_{P}}{\rho} \int \frac{n_{k} + 1/2}{\omega(\vec{k})} \frac{d^{D}k}{(2\pi)^{D}} = \langle u^{2} \rangle_{0} + \frac{2 \hbar N_{P}}{\rho} \int \frac{n_{k}}{\omega(\vec{k})} \frac{d^{D}k}{(2\pi)^{D}}$$

$$\langle u^2 \rangle \simeq \frac{6}{\rho} T \int_0^{k_D} \frac{4\pi k^2 dk}{s^2 k^2 (2\pi)^3} = \frac{3}{\pi^2} \frac{k_D T}{s^2 \rho} \sim \frac{T}{m \omega_D^2}$$

заметаемая тепловыми колебаниями площадь пропорциональна Т

T=1000K, A=50, s=3km/cek

$$\frac{\langle u^2 \rangle}{a^2} \sim \frac{T}{m s^2} \sim \frac{10^{-23} \times 10^3}{10^{-25} \times 10^7} = \frac{1}{100}$$

трёхмерные кристаллы всё-таки существуют

Главное в этой лекции.

