Systemy AI 2 - Python

Podstawy Numpy

- Zdefiniuj następujące tablice:
 - a=[14353]
 - b = [3.14, 4, 2, 3] z określonym typem int32

 - $c = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$ $d = \begin{bmatrix} -3.0 & 2.3 \\ 0.1 & 5.0 \\ 8.0 & 11.0 \end{bmatrix}$
 - e = [[[2,4], [1,2], [8,9]], [[7,6], [-3,4] ,[0,8]]]
- Dla tablic z punktu 1 sprawdź wartości parametrów:
 - ndim ilość wymiarów tablicy
 - shape kształt tablicy
 - size rozmiar tablicy (ilość elementów)
 - dtype typ tablicy
 - itemsize rozmiar jednego elementu
 - nbytes całkowity rozmiar tablicy
- 3. Zdefiniuj:
 - Tablicę X1 zawierającą dowolne liczby o kształcie (shape): (3,2,4)
 - Tablicę X2 zawierającą same 0 o kształcie: (2,3)
 - Tablicę X3 zawierającą tylko wartości 7 o kształcie: (6,2,1,2)
 - Tablicę X4 zawierającą wartości losowe int z przedziału [2,20) o kształcie: (5,7)
 - Tablicę X5 jednostkową o kształcie (5,5)

Wypisz:

- Zawartość trzeciego (3) elementu w drugim (2) wierszu tablicy X4.
- Zawartość trzeciego (3) wiersza tablicy X4.
- Zawartość drugiej (2) kolumny tablicy X5.
- W dowolny sposób zdefiniuj tablice A o kształcie (4,5).
 - Zdefiniuj tablicę B zawierającą drugą (2) i trzecią (3) kolumnę tablicy A czyli:

Zdefiniuj tablicę C zawierającą zaznaczony fragment tablicy A czyli:

Sprawdź, że zmiana wartości w tablicy B lub C powoduje zmianę wartości w macierzy A. WNIOSEK: Tablice B i C są widokami a nie kopiami fragmentów tablicy A.

- Zdefiniuj tablice B1 i C1 będące kopiami odpowiednich fragmentów tablicy A.
- Zdefiniuj tablicę D o kształcie (12,) zawierającą kolejne liczby całkowite od 0 do 11 a następnie wykorzystując metodę reshape():
 - Tablicę D1 o kształcie (6,2)
 - Tablicę D2 o kształcie (3,2,2)
 - Tablice D3 o kształcie (6,2,1)
 - Pozostałe dające się zdefiniować tablice D4, D5,... rzędu 3.
- Wykorzystując operację np.concatenate:
 - Sklej na wszystkie możliwe sposoby tablice c i d.
 - Sklej na wszystkie możliwe sposoby tablice c i X2.
 - Sklej na wszystkie możliwe sposoby tablice X1 i X2.
 - Sklej na wszystkie możliwe sposoby dwie wybrane tablice z Zadania 5.
- Wykonaj następujące operacje:
 - d+6, d-8, d*8, d/8
 - abs(8), np.exp(d), np.power(d,4), np.log(d)
 - Zdefiniuj tablicę A o dowolnej zawartości i wykonaj operacje: A+X2, A-X2, A*X2
- 8. Sprawdź czy możliwe jest wykonanie operacji:
 - $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ + $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$
 - [[0][1][2]]+[0 1 2]