Autor práce: František Horázný Vedoucí práce: Ing. Igor Szöke, Ph.D.

Akustická detekce pozice řečníka pomocí mikrofonního pole

Mikrofonní pole

Sestava mikrofonů zachytí zvukový signál, který je na jednotlivých mikrofonech zpožděn.

Příjem dat z mikrofonů

Data jsou zpracována sestavou ARM/SHARC. Jádra určená přímo pro zpracování signálů (DSP jádra) a ALSA driver zajišťují záznam zvuku a předání dat aplikaci.

Detekce řeči

Řeč je detekována při překročení implementovaného prahu. Tento práh je zvolen na základě průběhu energie signálů.

Určení korelace signálů

Vybraná korelační metoda NCC (normalized crosscorelation) vypočítá korelační koeficient pro možné posuny mikrofonů.

Výpočet polohy

Polohu zdroje lze zjistit ze zpoždění přijmutí signálů. Je vybrán posun s nejvyšším korelačním koeficientem a rovnicemi hyperbol a Pythágorových vět vypočtena pozice v souřadném systému.

Sestava AMR/SHARC

Na zapůjčeném hardwaru běží aplikace v reálném čase zpracovávající signály z mikrofonů.

Zásadní vlivy na výsledek určení polohy

Celý systém stojí a padá na správném výpočtu korelace. Proto bylo nutné zjistit vlivy na korelační metodu.

Ozvěna

Ozvěna v místnosti snižuje pravděpodobnost úspěšného výpočtu až o 90%, proto je nutné zatlumit co nejvíce prostor, kde se systém souští.

Aliasing

Tento jev způsobuje, že korelační koeficient nabývá vysokých hodnot na více místech. Při kombinaci s ozvěnou znehodnotí výsledek.