Parallel Algorithms

PART 2

Last time ...

- ▶ Introduction to Parallel Algorithms
- Complexity analysis
- Work/Depth model
- Prefix Sum, Parallel Select

Questions?

Parallel Select

Select numbers < pivot</p>

$$A \leftarrow [1 \quad 2 \quad 3 \quad 0 \quad 4 \quad 0 \quad 2 \quad 3 \quad 0 \quad 1 \quad 3 \quad 4]$$

pivot $\leftarrow 2$

Parallel Select the $a_i < pv$

```
[l,m] ← select_lower (a, n, pv)

// t = t[0,...,n-1]

parfor (i=0; i<n; ++i) t[i] ← a[i] < pv;

s ← scan (t); m ← s(n-1);

parfor (i=0; i<n; ++i) if t[i] l[s[i] - 1] ← a[i];</pre>
```

$$W(n) = O(n)$$
$$D(n) = O(\log n)$$

Today ...

Intro to Parallel Algorithms

- ▶ Parallel Search
- ▶ Parallel Sorting
 - ▶ Merge sort
 - ▶ Sample sort
 - ▶ Bitonic sort
- ► Communication costs

CS 5965/6965 - Big Data Systems - Fall 2014

Parallel Search

- Problem Description
 - \blacktriangleright Given a sorted list X of size n and an element y
 - Find the index $i \mid x_i \le y < x_{i+1}$
- Sequential
 - ▶ Use binary search
 - $ightharpoonup O(\log n)$ time
- Work depth
 - ▶ parfor(i) if $x_i \le y < x_{i+1}$ return i; // no duplicates W = n, D = 1
- ▶ PRAM
 - $ightharpoonup O\left(\frac{\log n}{\log p}\right)$ using p processes

CS 5965/6965 - Big Data Systems - Fall 2014

Ranking

- \blacktriangleright Given ordered lists, A, B of lengths s, t
- Define:

 $rank(z: A) \leftarrow number of elements \ a_i \mid a_i \leq z$

Define:

$$rank(B:A) := (r_1, r_2, ..., r_t)$$

$$r_i \leftarrow rank(b_i:A)$$

Ranking

- $ightharpoonup A = [7 \ 13 \ 25 \ 26 \ 31 \ 54]$
- ▶ $B = [1 \ 8 \ 13 \ 27]$
- ▶ $rank(B:A) = [0 \ 1 \ 2 \ 4]$
- ightharpoonup rank $(A:B) = [1 \ 3 \ 3 \ 4 \ 4 \ 4]$

- ▶ Use binary search
- Consider a multithreaded vs Hadoop implementation

Parallel Sort

MERGE SORT

Divide & Conquer Merge Sort

- Divide X into X_1 and X_2
- Sort X_1 and X_2
- Merge X_1 and X_2
- Uses a Binary Tree
 - ▶ Bottom-up approach
 - Start with the leaves
 - Climb to the root
 - Merge the branches
- Requires parallel Merge

example

Merge sort

```
b = Merge_Sort(a,n)
    if n < 100
        return seqSort(a, n);
    b1 = Merge_Sort(a[0,...,n/2-1], n/2);
    b2 = Merge_Sort(a[n/2,...,n-1], n/2);
    return Merge (b1, b2);</pre>
```


Merge Sort - Complexity

Parallel Merge

CS 5965/6965 - Big Data Systems - Fall 2014

Merging two lists of lengths n, m

- ▶ Problem description $(m \le n)$
 - Given, $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$
 - $ightharpoonup a_i < a_{i+1} \ \forall i$
 - ▶ $b_i < b_{i+1}$ $\forall i$
 - $\blacktriangleright A \cap B = \emptyset$
 - ▶ Build $C = (c_1, c_2, ..., c_{n+m})$
 - $ightharpoonup c_i \in A \cup B$
 - $ightharpoonup c_i < c_{i+1} \quad \forall i$

Merging two sorted lists

- Best Sequential Time: O(n)
- Parallel Merge:
 - ▶ Tradeoffs between
 - ▶ Depth-Optimal
 - ▶ Work-Optimal

Merging using Ranking

- Assume elements in A and B are distinct
- Let C be the merged result. Given,
 - $\triangleright x \in C$
 - ightharpoonup rank(x:C) = i
 - $ightharpoonup c_i = x$
- Property

$$rank(x:C) = rank(x:A) + rank(x:B)$$

- Solution to the merging problem,
 - \blacktriangleright Find rank(A: B) and rank(B: A)
 - ▶ Parallel searches using p = nm, D = O(1) but $W = O(n^2)$
 - ▶ Concurrent binary searches, $D = O(\log n)$ and $W = O(n \log n)$
 - ► Goal: Parallelize with optimal work

Example

CS 5965/6965 - Big Data Systems - Fall 2014

Work-optimal merge - Merge1

- $lacksquare A = [a_1, ..., a_n], \quad B = [b_1, ..., b_m], \quad n \ge m$
- 1. Partition B into $\frac{m}{\log m}$ blocks
 - ▶ Size of each block $\rightarrow \log m$
- 2. parallel for $i = 1: m/\log m$
 - $ightharpoonup R_i \leftarrow \operatorname{rank}(b_{i \log m} : A)$ using sequential binary search
- 3. Partition A accordingly
 - ▶ Block $A_i:(a_{R_{i-1}+1},...,a_{R_i})$
- 4. Merge blocks A_i and B_i in $O(\log m)$ time using sequential merge
 - ▶ But if $|A_i| \gg |B_i| = \log m$, then recurse ... Merge1 (B_i, A_i)

Sequential Sorting

▶ What is the complexity?

Sequential Sorting

- Comparison based
 - $\triangleright \mathcal{O}(n \log n)$
 - ▶ Can we sort faster than $O(n \log n)$?
- Non-comparison based
 - \triangleright $\mathcal{O}(n)$

Bucket sort

- Assume input is uniformly distributed over an interval [a, b]
- lacktriangle Divide interval into m equal sized intervals (**buckets**)
- Drop numbers into appropriate buckets
- Sort each bucket (say using quicksort)
 - $\blacktriangleright \mathcal{O}\left(n\log\left(\frac{n}{m}\right)\right)$
 - ▶ For $m = \mathcal{O}(n) \rightarrow \mathcal{O}(n)$ sorting
- Radix sort
- dense, uniform distribution

parallel median selection

parallel exchange

bucket data & all2all exchange

- randomly partition input in $\frac{n}{p}$ points
- sort locally
- select p splitters/processor (evenly)
 - guarantees no more 2*n/p elements / bucket (proof?)
- \blacktriangleright gather(splitters) in p_0
- \blacktriangleright sort splitters in p_0 and create buckets
 - \blacktriangleright block partition using p binary search on n/p sorted seq.
- Exchange data
- sort

- Sort locally
- \blacktriangleright Select p-1 splitters per process
- ▶ Gather splitters in p_0
- \blacktriangleright Sort splitters in $\overline{p_0}$
- Broadcast splitters
- Sort again

$$\mathcal{O}\left(\frac{n}{p}\log\frac{n}{p}\right)$$

$$\mathcal{O}(p)$$

$$\mathcal{O}(p^2)$$

$$\mathcal{O}(p^2 \log p)$$

$$\mathcal{O}(p \log p)$$

$$\mathcal{O}\left(\frac{n}{p}\log\frac{n}{p}\right)$$

Sample Sort – load balance

- Guarantees no more $\frac{2n}{p}$ elements / bucket
- Proof:

All entries on p_i must be $> s_{i-1}$ and $\le s_i$

$$(i-2)p + \frac{p}{2}$$
 elements of the sample $\leq s_i$

→ lower bound elements =
$$\frac{\left((i-2)p + \frac{p}{2}\right)n}{p^2}$$

 $(p-i)p-\frac{p}{2}$ elements of the sample $>s_i$

→ upper bound elements =
$$\frac{\left((p-i)p-\frac{p}{2}\right)n}{p^2} + \frac{n}{p^2} - 1$$

Maximum number of elements on processor i,

$$n - ub - lb = \frac{2n}{p} - \frac{n}{p^2} + 1 \le \frac{2n}{p}$$

