ChE 597 Computational Optimization

Homework 8

March 22nd 11:59 pm

1. Given is the integer programming problem

$$\max Z = 1.2y_1 + y_2$$
s.t. $y_1 + y_2 \le 1$

$$1.2y_1 + 0.5y_2 \le 1$$

$$y_1, y_2 = 0, 1$$

- (a) Plot the contours of the objective and the feasible region for the case when the binary variables are relaxed as continuous variables $y_1, y_2 \in [0, 1]$.
- (b) Determine from inspection the solution of the relaxed problem.
- (c) Enumerate the four 0-1 combinations in your plot to find the optimal solution.
- (d) Solve the relaxed LP problem by hand and derive Gomory mixed-integer cuts based on the LP relaxation (from the optimal simplex tableau) and verify that they cut-off the relaxed LP solution.

- 2. For each of the three sets below, find a missing valid inequality and verify graphically that its addition to the formulation gives conv(X).
 - (a) $X = \{x \in \{0,1\}^2 : 3x_1 4x_2 \le 1\}$
 - (b) $X = \{(x, y) \in \{0, 1\} \times \mathbb{R}^1_+ : y \le 20x, y \le 7\}$
 - (c) $X = \{(x,y) \in \mathbb{Z}^1 \times \mathbb{R}^1_+ : y \le 6x, y \le 16\}.$

3. Consider the Haverly's pooling problem (reference: http://www.ii.uib.no/~lennart/drgrad/Adhya1999.pdf) Formulate this problem using the P-formulation, Q-formulation, and PQ-formulation in pyomo and solve them using Gurobi.

Table 1: Summary

Category	Quality	Unit Cost	
Pool Sources	1: 3% sulfur	\$6	
	2: 1% sulfur	\$16	
Direct Supply	3: 2% sulfur	\$10	
Category	Max Quality	Unit Price	Max Demand
Products	1: 2.5% sulfur	\$9	100
	2: 1.5% sulfur	\$15	200

You don't need to consider the availability of raw materials and the pool capacity.

Figure 1: Haverly's pooling problem

4. Consider a k-means clustering problem. Each data point has dimension of 10. We have 20 data points, k = 3. Formulate the MIQCP and solve with gurobi

The data set given in https://github.com/li-group/ChE-597-Computational-Optimization/blob/main/HW%208/data_HW8_Q4.csv

5. Consider the following set of squares with lengths as shown below:

~		
Square	Length	
1	2	
2	3	
3	6	
4	9	
5	10	
6	12	

Try to pack these squares into a rectangle whose height and width are at least 10 and at most

^{25.} What is optimum dimensions of the rectangle and how are the squares packed?