ECS 171 Machine Learning

Lecture 6: Emulating Boolean Functions with ANN, Practice Example

Instructor: Dr. Setareh Rafatirad

Emulating Boolean Functions with a NN

Logical Gates

Name	N	TC		ANI)	1	NAN	D		OR		1	NOI	₹		XOI	3	N	NO	R
Alg. Expr.		Ā		AB			\overline{AB}			A + B	3		A + B	3		$A \oplus B$	3		$A \oplus B$	3
Symbol	<u>A</u>	>∞ <u>×</u>	A B	\supset	×)o—			—			> —	15-		>-			>>-
Truth Table	A 0 1	1 0	B 0 0 1 1	A 0 1 0 1	0 0 0 1	B 0 0 1	0 1 0	1 1 1 0	B 0 0 1	A 0 1 0 1	X 0 1 1	B 0 0 1 1	A 0 1 0 1	1 0 0 0	B 0 0 1 1	A 0 1 0 1	0 1 1 0	0 0 1 1	A 0 1 0 1	1 0 0

Source: https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Neural Network as a Logical AND Gate

Combination function:
$$z = w^T x = w_0 + w_1 x_1 + w_2 x_2$$

A 2-layered NN is called a Perceptron model.

Weights for the input layer

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}$$

- $w = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$ 1) Case (0,0): $w_0 + w_1 x_1 + w_2 x_2 = w_0 = -3 \implies y = 0$
 - 2) Case (0,1): $w_0 + w_2 x_2 = -3 + (2)1 = -1 \implies y=0$
 - 3) Case (1,0): $w_0 + w_2x_2 = -3 + (2)1 = -1 \rightarrow y=0$
 - 4) Case (1,1): $w_0 + w_1x_1 + w_2x_2 = -3 + (2)1 + (2)1 = 1 \rightarrow y=1$

$$-3 + 2x_1 + 2x_2 = 0 \implies x_1 + x_2 = 3/2$$

Goal: find the value of weights which will enable the network to act as a particular gate.

AND Gate Truth Table

	x_1	x_2	<i>y</i> :	g(x; w)
	0	0	0	
	0	1	0	
	1	0	0	
	1	1	1	
1	x	2		: y=0 : y=1

 x_1

```
# Implementing AND Gate
   class AND_Perceptron_model:
 5
       def __init__(self, weights, threshold):
           self.weights=weights
           self.threshold = threshold
 9
       def combination(self, x, w):
10
           return sum(x_i*w_i for x_i, w_i in zip(x, w))
11
12
       def stepactivation(self, sumproduct):
13
           print("Threshold: " , self.threshold)
14
15
           return 1.0 if sumproduct >= self.threshold else 0.0
16
17
18
       def fit(self, train):
19
           for row in train:
20
                layer_1 = row[:-1] # all attributes except the last column (y)
21
                print("For input ")
22
                print(layer_1)
23
                sumproduct= self.combination(layer_1, self.weights)
24
25
                layer_2= self.stepactivation(sumproduct )
26
                print("the sum is" ,sumproduct, "the output is", layer 2)
27
28 initial w = [-3, 2, 2]
29 dataset = [[1,0,0,0],[1,0,1,0],[1,1,0,0],[1,1,1,1]]
31 model = AND_Perceptron_model (initial_w,0.5)
32 model.fit(dataset)
33
```

Emulating Boolean Functions with a NN

Logical Gates

Name	N	TC		ANI)	ı	IAN	D		OR			NOI	3		XOI	3	Σ	NO	R
Alg. Expr.		Ā		AB			\overline{AB}			A + B	3		$\overline{A+I}$	3		$A \oplus B$	3		$A \oplus B$	3
Symbol	<u>A</u>	≫ <u>_x</u>	A B		<u> </u>)o—			—			<u>></u> —	8		>-			> -
Truth	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X
Table	0	1 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		Į.	1	0	0 1	1	0	1 0	1	0	1	1	0	0	1 1	0	1 0	1	0	0

Source: https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Neural Network as a Logical NOR Gate

Combination function:
$$z = w^T x = w_0 + w_1 x_1 + w_2 x_2$$

Goal: find the value of weights which will enable the network to act as a particular gate.

NOR Gate Truth Table

$$\begin{array}{c|cccc}
x_1 & x_2 & y \colon g(x; w) \\
\hline
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}$$

$$w = \begin{bmatrix} w \\ w \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}$$

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ -4 \end{bmatrix}$$

1) Case (0,0):
$$w_0 + w_1 x_1 + w_2 x_2 = w_0 = 3 \rightarrow y = 1$$

2) Case
$$(0,1): w_0 + w_2x_2 = 3 + (-4)1 = -1 \rightarrow y=0$$

3) Case (1,0):
$$w_0 + w_2 x_2 = 3 + (-4)1 = -1 \implies y=0$$

4) Case
$$(1,1): w_0 + w_1x_1 + w_2x_2 = 3 + (-4)1 + (-4)1 = -5 \rightarrow y=0$$

$$3 - 4x_1 - 4x_2 = 0 \implies x_1 + x_2 = 3/4$$

Emulating Boolean Functions with a NN

Logical Gates

NO	TC		ANI)	l I	IAN	D		OR			NOI	3		XOI	3	λ	NO	R
7	Ā		AB			\overline{AB}			A + B	3		$\overline{A+I}$	3		$A \oplus B$	3	3	$A \oplus B$	3
<u>A</u>	>> <u>×</u>	A B	\supset	<u>x</u>		\supset)o—	=		—			> —	25		<u>></u>			> -
A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X
0	1	- 23	0	055		0	1	7,000	0	0	578	0	5.00	16	0	0	1.05	0	1
1	0	0	1	0	0	1	1	0	1	1	0	1	0	0	1	1	0	1	0
	51	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	1	0	0
		1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	1
	A 0	A X 0 1	$ \begin{array}{c cccc} \hline A & X & B \\ \hline 0 & 1 & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A AB A X AB B A X B 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

Source: https://medium.com/autonomous-agents/how-to-teach-logic-to-your-neuralnetworks-116215c71a49

Neural Network as a Logical XOR Gate

Combination function: $z = w^T x = w_0 + w_1 x_1 + w_2 x_2$

Weights for the input layer

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \\ 1 \end{bmatrix}$$
 1) Case $(0,0) : w_0 + w_1 x_1 + w_2 x_2 = w_0 = -0.5 \Rightarrow y = 0$
2) Case $(0,1) : w_0 + w_2 x_2 = -0.5 + (1)1 = 0.5 \Rightarrow y = 1$

- 3) Case (1,0): $w_0 + w_2x_2 = -0.5 + (1)1 = 0.5 \rightarrow y=1$
- 4) Case $(1,1): w_0 + w_1x_1 + w_2x_2 = -0.5 + (1)1 + (1)1 = 1.5 \rightarrow y=1$

Goal: find the value of weights which will enable the network to act as a particular gate.

XOR Gate Truth Table

x_1	x_2	y:	g(x; w)
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Possible Solutions for Separability Problem

- Add non-linear features called "kernel trick"
- 2. Add extra layers known as "deep network"

Neural Network as a Logical XOR Gate: Kernel Trick

$$g(z) = \begin{cases} 0 & \text{if } g(z) < 0.5 \\ 1 & \text{if } g(z) \ge 0.5 \end{cases}$$

Weights for the input layer

$$w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \\ 1 \\ -2 \end{bmatrix}$$
1) Case $(0,0) : w_0 = -0.5 \Rightarrow y = 0$
2) Case $(0,1) : w_0 + w_2 x_2 = -0.5 + (1)1 = 0.5 \Rightarrow y = 1$
3) Case $(1,0) : w_0 + w_2 x_2 = -0.5 + (1)1 = 0.5 \Rightarrow y = 1$

- 4) Case (1,1): $w_0 + w_1x_1 + w_2x_2 + w_3x_1x_2 =$ $-0.5 + (1)1 + (1)1 + (-2)(1)(1) = -0.5 \rightarrow y=0$

$$g(z) = -0.5 + x_1 + x_2 - 2 x_1 x_2$$

Goal: find the value of weights which will enable the network to act as a particular gate.

XOR Gate Truth Table

x_1	x_2	<i>y</i> :	g(x; w)	
0	0	0		
0	1	1		
1	0	1		
1	1	0		
:	x_2		•	: y=0 : y=1
				→ x ₁

Neural Network as a Logical XOR Gate: Add Extra Layers

XOR(x1,x2) can be thought of as NOR(NOR(x1,x2),AND(x1,x2))

Truth Table for the network

x_1	x_2	<i>N</i> 1	<i>N</i> 2	Nz
0	0	?	?	0
0	1	?	?	1
1	0	?	?	1
1	1	?	?	0

3-Layer ANN Emulating XOR

Truth Table for the network

				(XOR)
x_1	x_2	<i>N</i> 1	<i>N</i> 2	Nz
0	0	1	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0

Layer1 weights

$$w_{01} = 3$$

$$w_{11} = -4$$

$$w_{21} = -4$$

$$w_{02} = -3$$

$$w_{12} = 2$$

$$w_{22} = 2$$

Layer2 weights

$$w_{1z} = -2$$

$$w_{2z} = -2$$

$$w_{0z}=1$$

1) Case (1,0) :
$$w_{0z} + w_{1z} = 1 + (-2) \rightarrow y = 0$$

2) Case
$$(0,0)$$
: $w_{0z} = 1 \rightarrow y=1$

3) Case (0,0):
$$w_{0z} = 1 \rightarrow y=1$$

4) Case
$$(0,1): w_{0z} + w_{2z} = 1 + (-2) \implies y=0$$

Practice Example

 What is this gate? Identify the logical gate for every neuron. Show all the steps taken to solve this. Assume the threshold for the activation function is 0.

x_1	x_2	y:	g(x;	w)
0	0	?		
0	1	?		
1	0	?		
1	1	?		

Optional Activity2

• Using the previous slide, design a similar question and include the solution.