Shape 1

Surface No.: 1

Given:

Equations:

• $x = 1.6(\cos(\partial))^3$

• $y = 1.6(\cos(\theta)\sin(\partial))^3$

• $z = 1.6\sin(\theta)\sin(\partial)$

Parameters:

• 0≤θ≤2π

● 0≤∂≤π

Result:

File: Shape1.wrl

Notes:

Parametric equations:

- x1=1.6*cos(pi*v)^3;
- y1=1.6*(cos(2*pi*u)*sin(pi*v))^3;
- z1=1.6*sin(2*pi*u)*sin(pi*v);

Parametric parameters:

• u ∈ [0 1]

• v ∈ [0 1]

The parameter range of θ is from $0 \le \theta \le 2\pi$. To convert θ into $u \in [0\ 1]$, θ is converted into 2^*pi^*u . The parameter range of ∂ is from $0 \le \partial \le \pi$. To convert ∂ into $v \in [0\ 1]$, ∂ is converted into pi^*v .

Resolution: [75 75]

When the resolutions are [50 50], it results in an unsmooth surface. At resolution of [75 75], shape 1 have a smooth surface. Therefore, the higher the resolution, the smoother the surface of shape 1 as higher resolution results in higher number of polygons to be created when the shape is rendered.

Shape 2

Surface No.: 6

Given:

Equations:

- $x = (1+0.25\cos(\theta))\cos(b\pi)$
- $y = (1+0.25\cos(\theta))\sin(b\pi)$
- $z = 0.25\sin(\theta)$

Parameters:

- 0≤θ≤2π
- 0≤b≤2

Result:

File: Shape2.wrl

Notes:

Parametric equations:

- x2=(1+0.25*cos(2*pi*u))*cos(2*v*pi);
- y2=(1+0.25*cos(2*pi*u))*sin(2*v*pi);
- z2=0.25*sin(2*pi*u);

Parametric parameters:

- u ∈ [0 1]
- v ∈ [0 1]

The parameter range of θ is from $0 \le \theta \le 2\pi$. To convert θ into $u \in [0\ 1]$, θ is converted into 2^*pi^*u . The parameter range of b is from $0 \le b \le 2$. To convert b into $v \in [0\ 1]$, b is converted into v^*pi .

Resolution: [75 75]

Similar to shape 1, when the resolutions are [50 50], it results in an unsmooth surface. At resolution of [75 75], shape 2 have a smooth surface. Therefore, the higher the resolution, the smoother the surface of shape 2 as higher resolution results in higher number of polygons to be created when the shape is rendered.

Animated Shape

File:morphing.wrl

Shapes:

Notes:

```
Functions definition:
function parametric_x(u,v,w,t)
\{x1=x1=1.6*\cos(pi*v)^3;
x2=(1+0.25*\cos(2*pi*u))*\cos(2*v*pi);
return x1+(x2-x1)*t;
\{y1=1.6*(\cos(2*pi*u)*\sin(pi*v))^3;
y2=(1+0.25*\cos(2*pi*u))*\sin(2*v*pi);
return y1+(y2-y1)*t;
\{z1=1.6*\sin(2*pi*u)*\sin(pi*v);
z2=0.25*\sin(2*pi*u);
return z1+(z2-z1)*t;
\}
```

To allow morphing from one shape to another, each shape is defined as a variable before using linear interpolation of each coordinate to transit from shape 1 to shape 2 and using time, t, as the parameter. The result is then returned to the caller that called the function.

Examples of linear interpolation of coordinates to transit from shape 1 to shape 2:

- x1+(x2-x1)*t
- y1+(y2-y1)*t
- z1+(z2-z1)*t

Resolution: [75 75]

When the resolutions are [50 50], it results in an unsmooth surface. At resolution of [100 100], the shapes have smooth surfaces. However, jitter could be observed during morphing transition animation from shape 1 to shape 2. At resolution of [75 75], both shapes have smooth surfaces and no jitter was observed during the morphing transition animation from shape 1 to shape 2. Therefore, the higher the resolution, the smoother the surface of shape 2 as higher resolution results in higher number of polygons to be created when the shape is rendered.