

openSUSE/SUSE: Current State

An overview of the current state of openSUSE and SUSE and more ©

Agenda

- SUSE Bulgaria
- openSUSE Worldwide
 - Board Elections
- openSUSE Bulgaria
 - Overview and Plan
- openSUSE Technical
 - openSUSE Leap 15.3 EOL
 - openSUSE MicroOS

SUSE Bulgaria

Latest News

Latest News

- The office was officially opened on 23.11.2022
- They continue to grow, and are looking for new teammates
- There are various open positions (Linux, Kubernetes, DevOps, etc.)
- So, check the job bulletins regularly ©

openSUSE Worldwide

Board Elections

Board Elections

- Elections closed on 15.12.2022
- The newly (re-)elected members are
 - Douglas Demaio
 - https://en.opensuse.org/User:Ddemaio
 - Gertjan Lettink
 - https://en.opensuse.org/openSUSE:Board election 2022 platform Knurpht
 - Neal Gompa
 - https://en.opensuse.org/openSUSE:Board election 2022 platform Neal Gompa
- More about the Board
 - https://en.opensuse.org/openSUSE:Board

openSUSE Bulgaria

Overview and Plan

Overview of 2022

- Events
 - All events part of IT Tour (Plovdiv, Veliko Tarnovo, Varna, Burgas, and Ruse)
 - TuxCon Plovdiv
 - OpenFest
 - OSCAL, Tirana, Albania
- Meetings
 - None (except for this one) ⊗

Plan for 2023

- Events
 - Attend at least on the same set
 - Cover additional events if possible/applicable/invited
- Meetings
 - Aim for one (online) meeting per month
- Others
 - Execute the SUSE Certified Administrator Journey
 - Include also Rancher set of products

openSUSE Technical

Distributions and Something Else

Distributions Overview *

openSUSE Tumbleweed

• Current. Stable. Secure. Upstream for the rest of the distributions

openSUSE Leap

• Enterprise grade and predictable. Based on SUSE Linux Enterprise

openSUSE MicroOS

 Designed to host container workloads with automated administration & patching. Upstream for SUSE Linux Enterprise Micro

openSUSE Leap Micro

Community version based on SUSE Linux Enterprise Micro

^{*} These are the main ones. In addition, there are a few others

openSUSE Leap 15.3 EOL

- No more security and maintenance updates after 31.12.2022
- Do not hesitate but upgrade
 - Prepare the system

```
zypper refresh && zypper update
```

Update the repositories (if not using the \$releasever variable)

```
sed -i 's/15.3/${releasever}/g' /etc/zypp/repos.d/*.repo
```

Refresh the new repositories

```
zypper --releasever=15.4 refresh
```

Do the upgrade

```
zypper --releasever=15.4 dup
```

openSUSE MicroOS

Small

Lightweight images designed to be deployed for a specific use case

Scalable

Optimized for large deployments while capable as a single machine OS

Always up-to-date

Updates are automatically applied without impacting the running system

Resilient

In case of trouble the system automatically rolls back to last working state

Fast

Doesn't ship with baggage that slows it down

Adaptable Linux Platform (ALP) Intro

- The Adaptable Linux Platform (ALP) is a lightweight operating system
- Instead of applications distributed in traditional software packages, it runs containerized and virtualized workloads
- Benefits
 - High security of running workloads
 - Minimal maintenance with keeping the workloads up to date
 - Stable immutable base operating system that utilizes transactions when modifying the file system
 - Ability to roll back modifications on the file system in case the transaction result is undesirable

Adaptable Linux Platform (ALP) Components

- Base operating system
 - The core of ALP which runs all required services
 - It is an immutable operating system with a read-only root file system
 - The file system is modified by transactional updates which utilize the snapshotting feature of BTRFS
- Transactional updates
 - The **transactional-update** command performs changes on the file system
 - You can use it to install software, update existing workloads, or apply software patches
 - Because it uses file system snapshots, applied changes can be easily rolled back

Adaptable Linux Platform (ALP) Components

Container orchestration

- ALP runs containerized workloads instead of applications packed in software packages
- The default container orchestrator in ALP is **Podman** which is responsible for managing containers and container images

Containerized workloads

Contain all software dependencies required to run a specific application/tool

Cockpit

- A Web-based graphical interface to administer single or multiple ALP workloads from one place
- It helps you manage, for example, user accounts, network settings, or container orchestration

Adaptable Linux Platform (ALP) Installation

- Installation/deployment methods
 - D-Installer
 - Offers a graphical user-friendly interface to walk you through the system configuration and deployment
 - RAW disk image
 - On first boot, you can configure basic system options using a **ncurses** user interface
 - You can fine-tune the deployment setup with Combustion and Ignition tools
- Requirements
 - AMD64/Intel 64 (x86_64-v2) and AArch64 CPU
 - At least 1 GB RAM for the OS
 - At least 12 GB (recommended 20 GB) of disk space for the OS

The Game of Micro-Architectures

- So far, Tumbleweed supported both x86_32 and x86_64 (v1 v4)
- This leads to packages that do not utilize the newer CPU instructions
- Thus, there were plans to go for x86_64-v3 for both Tumbleweed and ALP
- After reevaluation, it was decided to play safe and go for x86_64-v2
- And ALP went for it (x86_64-v2)
- Tumbleweed was about to follow the same path (x86_64-v2)
- But after more discussions, it was decided to stick to x86_64-v1 and utilize further the hwcaps feature in glibc
- The x86_32 edition will be demoted to a port (maintainers needed)

A Word on Micro Architectures

- x86-64 covers CPUs produced for almost 20 years
- Creating and maintaining software that runs on all of them is an issue
- In 2020, through a collaboration between AMD, Intel, Red Hat, and SUSE, three microarchitecture levels on top of the x86-64 baseline were defined
 - x86-64 (v1) (all x86-64 CPUs)
 - x86-64-v2 (Intel Nehalem+ and AMD Jaguar+)
 - CMPXCHG16B, LAHF-SAHF, POPCNT, SSE3, SSE4_1, SSE4_2, SSSE3
 - x86-64-v3 (Intel Haswell+ and AMD Excavator+)
 - AVX, AVX2, BMI1, BMI2, F16C, FMA, LZCNT, MOVBE, OSXSAVE
 - x86-64-v4
 - AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL

Downloads

https://get.opensuse.org/ leap microos leapmicro

tumbleweed

Demo Time

Short Demo

Closing

Any Questions?

Follow us on Facebook at:

https://www.facebook.com/openSUSEBulgaria

See You Soon ©

Γ	Most recent version can be dow	vnloaded from http	s://github.com/s	hekeriev/opensuse	-bg-meetings