Ewa Figielska – Badania operacyjne ćwiczenia

Modele sieci przepływowych

Zadanie 1. Znajdowanie najkrótszej drogi w grafie skierowanym ważonym.

Algorytm Dijkstry

```
V – zbiór wierzchołków a[u,v] – długość łuku (u,v) s – ustalony wierzchołek początkowy g[v] – długość najkrótszej drogi z wierzchołka początkowego s do wierzchołka v
```

begin

end.

Zadanie 2. Zagadnienie maksymalnego przydziału

Danych jest 4 pracowników i 4 prace. Należy przydzielić pracowników do prac tak, aby:

- każdy pracownik wykonywał co najwyżej jedną pracę;
- każda praca była wykonywana przez co najwyżej jednego pracownika;
- liczba wykonanych prac była jak największa;

Możliwe przydziały pracowników do prac (uwarunkowane kwalifikacjami pracowników) przedstawia poniższa tabela:

		prace				
Α		1	2	3	4	
nic	1	Х				
» 0	2	Х				
pracownicy	3		Х	Х	Х	
ď	4		Х			

Dane

Możliwe przydziały pracowników do prac

	prace				
λ		1	2	თ	4
'nic	1	Х			
» O	2	Х			
pracownicy	3		Х	Х	Х
۵	4		Х		

Model sieciowy zadania

Szukamy maksymalnego przepływu w poniższej sieci:

gdzie wierzchołki s, t oznaczają odpowiednio źródło i ujście, wartości na łukach są to górne przepustowości tych łuków.

Model w postaci zadania programowania liniowego

F – funkcja celu – przepływ w sieci,

 f_{vw} – zmienna - przepływ między wierzchołkiem v i w; f_{vw} jest równy 1, gdy pracownik v jest przydzielony do pracy w, 0 w p.p.

$$\max F = f_{1t} + f_{2t} + f_{3t} + f_{4t}$$

$$f_{11}=f_{s1}$$
 bilans przepływów dla wierzchołka reprezentującego pracownika 1

$$f_{21} = f_{s2}$$
 bilans przepływów dla wierzchołka reprezentującego pracownika 2

$$f_{32} + f_{33} + f_{34} = f_{53}$$
 bilans przepływów dla wierzchołka reprezentującego pracownika 3

$$f_{42}=f_{s4}$$
 bilans przepływów dla wierzchołka reprezentującego pracownika 4

$$f_{1t} = f_{11} + f_{21}$$
 bilans przepływów dla wierzchołka reprezentującego pracę 1

$$f_{2t} = f_{32} + f_{42}$$
 bilans przepływów dla wierzchołka reprezentującego pracę 2

$$f_{3t} = f_{33}$$
 bilans przepływów dla wierzchołka reprezentującego pracę 3

$$f_{4t} = f_{34}$$
 bilans przepływów dla wierzchołka reprezentującego pracę 4

$$0 \leq f_{s1}, f_{s2}, f_{s3}, f_{s4}, f_{11}, f_{21}, f_{32}, f_{33}, f_{34}, f_{42}, f_{1t}, f_{2t}, f_{3t}, f_{4t} \leq 1$$

Rozwiązanie optymalne: maksymalny przepływ F = 3 (da się wykonać 3 prace), możliwy przydział pracowników do prac : 1-1, 3-3, 4-2

Zadanie 3. Zagadnienie najtańszego przydziału

Należy przydzielić 4 pracowników do 4 prac tak, aby:

- każdy pracownik wykonywał dokładnie jedną pracę;
- każda praca była wykonywana przez dokładnie jednego pracownika;
- całkowity koszt wykonania prac był jak najmniejszy;

Koszty przydziałów pracowników do prac przedstawia poniższa tabela (puste pole oznacza, że nie można przydzielić pracownika do pracy):

	prace				
>		1	2	3	4
nic	1	4	3		6
≥	2	7			
pracownicy	3		1	3	2
0	4		8		5

W powyższym sformułowaniu zakładamy, że da się znaleźć taki przydział, w którym wszystkie prace są wykonywane (jeżeli nie, to zadanie nie ma rozwiązania).

Dane

Koszty przydziałów pracowników do prac

	1	2	3	4
1	4	3		6
2	7			
3		1	3	2
4		8		5
	3	2 7	1 4 3 2 7 3 1 1	1 4 3 2 7 3 1 3

Model sieciowy

Szukamy najtańszego przepływu o zadanej wielkości F = 4 w poniższej sieci:

gdzie wierzchołki s, t oznaczają odpowiednio źródło i ujście, pary wartości na łukach oznaczają: górną przepustowość łuku (pierwszy składnik pary) i koszt łuku (drugi składnik pary).

Model w postaci zadania programowania liniowego

K – funkcja celu - całkowity koszt przepływu;

 f_{vw} – zmienna - przepływ między wierzchołkiem v i w; f_{vw} jest równy 1, gdy pracownik v jest przydzielony do pracy w, 0 w p.p.;

F – parametr – żądana wielkość przepływu w sieci; dla podanych danych F=4;

$$min K = 4f_{11} + 3f_{12} + 6f_{14} + 7f_{21} + f_{32} + 3f_{33} + 2f_{34} + 8f_{42} + 5f_{44}$$

$$F \leq f_{1t} + f_{2t} + f_{3t} + f_{4t} \qquad \qquad \text{wymagany przepływ}$$

$$f_{11} + f_{12} + f_{14} = f_{s1}$$

 $f_{11} + f_{12} + f_{14} = f_{s1}$ bilans przepływów dla wierzchołka reprezentującego pracownika 1

bilanse przepływów dla pozostałych wierzchołków sieci reprezentujących pracowników i prace

 $0 \leq f_{s1}, f_{s2}, f_{s3}, f_{s4}, f_{11}, f_{21}, f_{32}, f_{33}, f_{34}, f_{42}, f_{1t}, f_{2t}, f_{3t}, f_{4t} \leq 1$

Zadanie 4. Zagadnienie transportowe

Danych jest 2 dostawców towaru: A i B oraz 3 odbiorców towaru: D, E i F. Możliwości dostawców wynoszą: $d_A=6$, $d_B=4$ jednostek towaru. Zapotrzebowania odbiorców wynoszą $z_D=3$, $z_E=4$, $z_F=2$. Znane są jednostkowe koszty transportu po drogach łączących dostawców z odbiorcami. Transport może odbywać się z wykorzystaniem stacji pośredniej C. Należy wyznaczyć plan dostaw towaru zaspokajający zapotrzebowania odbiorców, nieprzekraczający możliwości dostawców i minimalizujący sumaryczne koszty transportu. Plan ma określać wielkości dostaw oraz trasy przejazdu.

Jednostkowe koszty transportu (puste pola oznaczają brak połączeń).

	Α	В	С	D	Ε	F
Α			თ	4	8	
В			2	5		
С				2	1	3

Dane

Możliwości dostawców: $d_A = 6$, $d_B = 4$.

Zapotrzebowania

odbiorców: $z_D = 3$, $z_E =$

 $4, z_F = 2$

Jednostkowe koszty transportu

	Α	В	С	D	Ε	F
Α			თ	4	8	
В			2	5		
С				2	1	3

Model sieciowy

Szukamy najtańszego przepływu o wielkości równej sumie zapotrzebowań (9) wszystkich odbiorców w poniższej sieci:

gdzie wierzchołki s, t oznaczają odpowiednio źródło i ujście, pary wartości na łukach oznaczają: górną przepustowość łuku (pierwszy składnik pary) i koszt łuku (drugi składnik pary).

Najtańsze trasy przewozu towaru

	D	Е	F
Α	(A-D) 4	(A-C-E) 4	(A-C-F) 6
В	(B-C-D) 4	(B-C-E) 3	(B-C-F) 5

Model w postaci zadania programowania liniowego

K - funkcja celu - całkowity koszt przepływu, tzn. przesłania towaru;

 f_{vw} – zmienna – przepływ między wierzchołkiem v i w; f_{vw} reprezentuje ilość (liczbę sztuk) przesyłanego towaru;

$$min K = 4f_{AD} + 4f_{AE} + 6f_{AF} + 4f_{BD} + 3f_{BE} + 5f_{BF}$$

$$f_{Dt} + f_{Et} + f_{Ft} = 9$$
 przepływ wpływający do ujścia t zaspokaja zapotrzebowania odbiorców (3+4+2)

$$f_{AC}+f_{AD}+f_{AE}=f_{SA}$$
 bilans przepływów dla wierzchołka reprezentującego dostawcę A

bilanse przepływów dla pozostałych wierzchołków sieci reprezentujących dostawców i odbiorców

$$0 \le f_{sA} \le 6$$
 możliwości dostawcy A $0 \le f_{sB} \le 4$ możliwości dostawcy B

$$0 \le f_{Dt} \le 3$$
 zapotrzebowanie odbiorcy D $0 \le f_{Et} \le 4$ zapotrzebowanie odbiorcy E $0 \le f_{Ft} \le 2$ zapotrzebowanie odbiorcy F

 $0 \le f_{AD}, f_{AE}, f_{AF}, f_{BD}, f_{BE}, f_{BF} \le M,$ gdzie M oznacza dostatecznie dużą liczbę (uwzględniając wartości danych zadania, parametr M powinien być nie mniejszy niż 9)

Zadanie 5. Wyznaczenie najkrótszego czasu wykonania grupy zadań

Dane są czasy wykonywania zadań na procesorach:

	z1	z2	z3
р1		1	4
p2	2		3
р3	2	4	3

Należy przydzielić zadania do procesorów tak, aby każde zadanie zostało wykonane na dokładnie jednym procesorze, każdy procesor wykonał dokładnie jedno zadanie, a czas wykonania całej grupy zadań był jak najmniejszy. Wszystkie zadania zaczynają się wykonywać w chwili 0.

Załóżmy, że mamy rozwiązanie, dla którego minimalny czas wykonania całej grupy zadań wynosi T=4: $x_{13}=1, x_{21}=1, x_{32}=1$ otrzymane np. przez rozwiązanie zagadnienia maksymalnego przepływu $(x_{ij}=1 \text{ oznacza, że zadanie j zostało przydzielone do procesora i)}.$

Chcemy sprawdzić, czy można wykonać całą grupę zadań w czasie krótszym, np. równym 3. W tym celu modyfikujemy usuwamy możliwości przydziału, dla których czas wykonania jest większy niż 3:

-	z1	z2	z3
р1		1	4
p2	2		3
рЗ	2	4	3

i rozwiązujemy zadanie maksymalnego przepływu dla zmienionych danych.

W wyniku otrzymaliśmy przydział, w którym zostaną wykonane wszystkie 3 zadania: $x_{12}=1,x_{21}=1,x_{33}=1.$

Natomiast, jeżeli wymagalibyśmy, żeby czas wykonania całej grupy zadań T był nie większy niż 2, to nie da się wykonać wszystkich 3 zadań - największa możliwa liczba wykonanych zadań wyniesie 2, np. $x_{12} = 1$, $x_{21} = 1$.

	z1	z2	z3
р1		1	4
p2	2		3
рЗ	2	4	3