1.각의 크기와 삼각함수의 뜻

- 육십분법 : 직각을 90등분한 1등분을 1°(1도), 1°의 1/60을 (1분), 1°의 1/60을 (1초)라고 함
- 호도법 : 반지름 r인 원에서 반지름과 같은 길이의 원호에 대한 중심각 AOB 의 크기를 1호도(radian) 또는 1 rad라 표시 (radian은 단위가 아니고 표시임)

$$\frac{l}{r} = \theta \ (rad)$$

$$1(rad) = 57^{\circ}17'45$$

$$3(rad) = 171 \dots^{\circ}$$

$$\pi(rad) = 180^{\circ}$$

$$1^{\circ} = \frac{\pi}{180} = 0.01745(rad)$$

$$x \, rad \times \frac{180^o}{\pi} = y^o$$

원주, 원둘레(circumference, perimeter) = 2π r

$$x^o \times \frac{\pi}{180^o} = y \, rad$$

60분법과 호도법의 관계

60분법	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
호도법	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

1. 원의 호의 길이 *l*

$$2\pi r: l = 2\pi: \theta$$

$$\frac{l}{2\pi r} = \frac{\theta}{2\pi}$$

$$: l = r\theta$$

2. 부채꼴 AOB 의 넓이 S

$$\pi r^2 : S = 2\pi : \theta$$

$$\frac{S}{\pi r^2} = \frac{\theta}{2\pi}$$

$$\frac{S}{\pi r^2} = \frac{\theta}{2\pi} \qquad \therefore \quad S = \frac{1}{2}r^2\theta = \frac{1}{2}rl$$

$$90^\circ = -270^\circ$$
 $\theta = 2n\pi + \alpha (n = 0,1,2,3 \dots)$ 양(Positive) : counterclockwise

p.12 : 원운동

어떤 물체가 반지름이 r 인 원 주위를 움직인다고 하자. s가 t시간 동안 원 주위를 움직인 거리라고 하면 물체의 1차 속력(linear speed) v 는 다음과 같이 정의한다

$$v = \frac{s}{t}$$

또 θ 가 t시간 동안 원 주위를 움직인 중심각이라 하면, 이 물체의 각속력 ω 는 다음과 같이 정의한다.

$$\omega = \frac{\theta}{t}$$

p.13 예제 : 어떤 아이가 1분에 180 회전율로 2m 끈의 끝에 돌을 달아서 돌리고 있다. 이 끈을 놓을 때 돌의 1차 속력을 구하라.

풀이:
$$v = \frac{s}{t} = \frac{r\theta}{t} = r\omega$$
 이므로
$$v = 2(m) \cdot 360\pi \frac{\text{라디안}}{\text{분}} = 720\pi \frac{m}{\text{분}}$$

삼각비

right-angled triangle

$$\sin\theta = \frac{(높이)}{(빗변)} = \frac{b}{c}$$

$$\cos\theta = \frac{(밑면)}{(੫면)} = \frac{a}{c}$$

$$\tan \theta = \frac{(높이)}{(밑변)} = \frac{b}{a}$$

이웃변(adjacent side to angle θ)

● 특수각의 삼각비

$$\sin\theta = \frac{a}{c}$$
, $\cos\theta = \frac{b}{c}$, $\tan\theta = \frac{a}{b}$

$$\csc\theta = \frac{c}{a}, \quad \sec\theta = \frac{c}{b}, \quad \cot\theta = \frac{b}{a}$$

삼각비

특수각의 삼각비

표 2.2 특수각에 대한 삼각비의 값

<i>θ</i> 삼각비	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

$$\frac{\sqrt{0}}{2}$$

$$\frac{\sqrt{1}}{2}$$

$$\frac{\sqrt{2}}{2}$$

$$\frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{4}}{2}$$

$$\frac{\sqrt{4}}{2}$$

$$\frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{2}}{2}$$

$$\frac{\sqrt{1}}{2}$$

$$\frac{\sqrt{0}}{2}$$