Разработка прецизионного метода определения параметров элементарной ячейки для монокристального дифрактометра, оснащенного двумерным детектором

Кудрявцев А.Л.

11 февраля 2025 г.

Содержание

1	Вве	едение					
	1.1	Обзор методов					
	1.2	Метод Бонда					
2	Экс	спериментальная часть					
	2.1	Описание установки					
	2.2	Исследуемые образцы					
	2.3	Описание методики					
		2.3.1 Отбор монокристалла					
		2.3.2 Предварительная съемка					
		2.3.3 Выбор рефлекса					
		2.3.4 Съемка рефлекса					
		2.3.5 Обработка профилей					
		2.3.6 Рассчет межплоскостного расстояния					
	2.4	Учет эксцентриситета					
	2.5	Расчет углового размера пикселя					
3	Обс	суждение результатов					
	3.1	Изучение Si					
	3.2	Изучение Ge					
	3.3 Изучение $(Y_{1-x}Eu_x)_2O_3$						
		3.3.1 Проведение Рентгеноструктурный анализ (РСтА)					
	3.4 Оценка и учет эксцентриситета образца Si						
	3.5	Учет эксцентриситета для Si					
	3.6	Учет эксцентриситета для Ge					

1 Введение

1.1 Обзор методов

Были изучены обзорные статьи [1, 2]. В них производятся обзоры рентгеновских дифракционных методов измерения Параметры элементарной ячейки (ПЭЯ). Среди них выбирался тот, который можно адаптировать под стандартный лабораторный монокристальный дифрактометр. Такой дифрактометр предполагается оснащенным:

- Рентгеновской трубкой с хорошо монохроматизированным и колимированным пучком.
- Как минимум моторизированным однокружным гониометром для образца.
- Матричным детектором регулируемым углом поворота.

Таким образом из всего многообразия методов сразу исключаются интерференционные, полихроматические, а также использующие сильно расходящийся пучок методы. Также исключаются методы, требующие установки дополнительных монохроматоров и колиматоров. Среди оставшихся можно выделить методы:

- Бонда
- Обратного рассеяния
- Компланарных рефлексов
- Реннингера
- Эталонов

Метод Бонда среди них — простой, безэталонный, универсальный в реализации, не имеющий строгих требований и дающий при аккуратном проведении эксперимента очень хорошую точность. Его идея и взята за основу разработанной нами методики.

1.2 Метод Бонда

В оригинальном исполнении [3] схема Бонда представляет собой однокристальный спектрометр. В качестве источника используется колимированный монохроматизированный пучок. Кристалл — это ориентированная монокристаллическая пластинка, размерами превосходящая первичный пучок. Детектор используется точечный, с возможностью вращаться вокруг той же оси, что и кристалл. Само измерение угла дифракции в схеме Бонда выглядит так:

- 1. Выбирается плоскость кристалла, отражение от которой будет измеряться
- 2. Детектор устанавливается под углом, чтобы зарегистрировать отражение от плоскости
- 3. Измеряется зависимость интенсивности на детекторе от угла поворота ω кристалла вблизи отражающего положения
- 4. Из полученной зависимости определяется угол ω_1 при котором достигается максимум интенсивности на детекторе
- 5. Предыдущие три шага повторяются для симметричного положения детектора и определяется второй угол ω_2
- 6. Угол дифракции вычисляется как $2\theta = 180^{\circ} |\omega_1 \omega_2|$

Определение угла 2θ по такой схеме является более точным чем по одиночному отражению, так как вычисляя разницу углов ω исключаются ошибки связанные с эксцентриситетом, поглощением и нулевым положением угла ω .

Схема Бонда была адаптирована и для изучения малых монокристаллов [4, 5]. В этом случае уже не исключаются ошибки, связанные с эксцентриситетом образца. Для их компенсации изначальную методику дополнили измерением углов ω отражений для фриделевской пары изначальной плоскости. Таким образом суммарно для измерения одного межплоскостного расстояния нужно снять профили 4 различных рефлексов.

Для трехкружного гониометра используются методики измерения 8 различных рефлексов [6]. В такой схеме можно учесть все ошибки, связанные со смещением образца от точки сведения осей гониометра, а также определить нулевые положения гониометра.

Ключевой особенностью современных монокристальных дифрактометров является использование двумерных детекторов, которое, с одной стороны уменьшает время собора данных для РСтА, а с другой негативно влияет на их качество [7].

Методика точного измерения угла дифракции при использовании двумерного детектора по аналогии с оригинальной схемой оказывается во многом не удобной. В том числе необходимость ручного суммирования сигнала и обработки большого числа снимков. В качестве альтернативы был выбран метод, использовавшийся в [8].

В этом методе снимается не зависимость интенсивности от угла поворота кристалла $I(\omega)$, а двумерный профиль интенсивности при полном равномерном повороте кристалла вокруг оси ω через отражающее положение. В таком случае, вид зависимости интенсивности от координат детектора в основном определяется спектром первичного пучка. Зная его можно довольно точно определять положения дифракционных пиков на детекторе, из которых в дальнейшем можно определить и углы дифракции.

2 Экспериментальная часть

2.1 Описание установки

Рентгенографические эксперименты проводились на монокристальном дифрактометре Bruker D8 Venture.

- Микрофокусная трубка Incoatec $I\mu S$ 3.0
 - $\operatorname{Cu} K \alpha$ и Мо $K \alpha$ излучение
 - Монохроматизация и фокусировка с помощью многослойных зеркал Монтеля
 - * Диаметр пучка 110 мкм
 - * Расходимость пучка 0.3°
- Двумерный детектором PHOTON III
 - Разрешение 768 × 1024 пикселей
 - Размер пикселя $135 \times 135 \text{ мкм}^2$
 - Ручная установка расстояния до образца
- Трехкружный гониометр FIXED-CHI
 - Угол χ фиксирован и равен 54.7112°
 - Паспортная воспроизводимость установки углов 0.0001°
 - Паспортная точность установки углов не указана, но согласно результатам измерения эталонного образца на порошковом дифрактометре Bruker D8 Advance, оснащенном аналогичным гониометром, она не хуже 0.005°
- Температурная приставка Oxford Cryostream 800Plus
 - Стабильность поддержания температуры 0.2 К
- Управление прибором средствами программного пакета АРЕХЗ [9].

Необходимо отметить, что из-за расположения трубок область доступных углов для детектора оказывается ограниченной. Для использовавшегося расстояния от образца до детектора около 130 мм, угол $2\theta_D$ не мог превосходить примерно 100° .

Значения характеристических длин волн, использованных в этой работе приведены в таблице 2.1.

Анод	$K\alpha_1$, Å	$K\alpha_2$, Å
Cu	1.54059290 (50)	1.54442740 (50)
Mo	0.70931715 (41)	0.713607 (12)

Таблица 1: Использовавшиеся значения характеристических длин волн

2.2 Исследуемые образцы

Для определения точности методики были использованы эталонные монокристаллы Si и Ge.

Изученный монокристалл Si имел линейные размеры примерно 50 мкм. Он является осколком кристалла, который ранее был исследован на однокристальном спектрометре [10]. Значение a=5.430933(12) Å там было получено с использованием значение длины волны $\lambda \text{Cu}K\alpha_1=1.540562$ Å. При пересчете на более точное значение из ??, эталонное значение ПЭЯ для Si

$$a_{Si} = 5.431042(12) \text{ Å}.$$

Изученный монокристалл Ge также был размером около 50 мкм. ПЭЯ Ge уточняли несколько раз методами однокристального спектрометра, многократных отражений и многолучевой дифракции: сводка данных приведена в [10]. Значения ПЭЯ Ge лежат в интервале от 5.65776(2) Å до 5.657837(15) Å, среднее значение 5.65779 наиболее близко к 5.657772(10) Å [11]. Пересчет с использованием более точного значения длины волны приводит к

$$a_{\text{Ge}} = 5.657885(10) \text{ Å}$$

Также с целью определения однородности продукта синтеза был изучен твердый раствор $(Y_{1-x}Eu_x)_2O_3$. Для этого было отобрано 5 различных монокристаллов. Для каждого из них был проведен РСтА и измерение ПЭЯ по разработанной методике.

2.3 Описание методики

Первое описание методики дано в статье [12]. Общая схема проведения измерений выглядит примерно так:

- 1. Отбор монокристалла
- 2. Предварительная съемка
- 3. Выбор рефлекса
- 4. Съемка рефлекса
- 5. Обработка профилей
- 6. Расчет межплоскостного расстояния

2.3.1 Отбор монокристалла

Отбор монокристалла проводится так же, как и для РСтА. Монокристалл выбирается так, чтобы не превосходить размера первичного пучка. В нашем случае оптимальный размер равен приблизительно 50 мкм.

2.3.2 Предварительная съемка

Предварительная съемка проводится с целью определения ориентации кристалла, его дифракционного класса и получения данных об интенсивности рефлексов.

Сама съемка состоит серии полных сканирований при вращении вокруг оси φ с шагом 0.5° для при фиксированном угле ω . Три таких сканирования выполняются при углах детектора $2\theta_D = -45^{\circ}, 0^{\circ}, 45^{\circ}$ при фиксированном расстоянии до образца $D \approx 70$ мм.

Обработка снимков и получение ориентации производится в программе APEX3. На выходе программы получается файл формата p4p, где информация об ориентации кристалла содержится в виде UB матрицы [13].

2.3.3 Выбор рефлекса

Выбор рефлекса для съемки происходит так, чтобы погрешность измерений была минимальной. Основными критериями в таком случае оказываются наибольшие угол 2θ и интенсивность рефлекса. При этом необходимо учитывать геометрию установки, так как не все рефлексы оказывается возможно вывести в отражающее положение для двух симметричных положений в экваториальной плоскости.

Средствами программы APEX3 производить такой перебор рефлексов неэффективно и крайне проблематично, так как программа рассчитывает для одного рефлекса максимум только одну пару углов (φ, ω) из двух возможных в общем случае. Поэтому была специально написана программа [14] для перебора всех рефлексов, расчета для них углов гониометра и отбора случаев когда в оказывается возможным вывести

рефлекс в два симметричных положения, а также когда доступна для выведения и его фриделевская пара.

Программа позволяет находить среди множества плоскостей, связанных симметрией такие, которые можно вывести в отражающее положение хотя бы при одном (из двух симметричных) положений детектора. Для этого используется информация о текущей ориентации кристалла на гониометре, т.е. р4р-файл, в котором находится матрица ориентации UB и предварительные значения ПЭЯ. Используя известную длину волны, размеры пикселя, расстояние до детектора, и другие неизменные параметры прибора, программа вычисляет углы гониометра (φ, ω) , необходимые для выведения каждой плоскости в отражающее положение на экваториальную плоскость. В каждом случае проверяются геометрические ограничения прибора. Полученная информация для всех подходящих рефлексов собирается в таблицу Excel, ее можно проанализировать и провести отбор.

2.3.4 Съемка рефлекса

Съемка рефлекса представляет собой сканирование при вращении вокруг оси ω в диапазоне $\pm 2^{\circ}$ относительно рассчитанного значения ω для отражающего положения. Время съемки выставлялось таким, чтобы максимум на профиле пика составлял не менее 10000 имп.

В программе АРЕХЗ невозможно выставить время съемки больше 10 мин., поэтому для достижения последнего условия производились несколько одинаковых съемок по 10 мин. пока не будет достигнута требуемая интенсивность.

2.3.5 Обработка профилей

Обработка профилей состоит из нескольких этапов, по завершению которых можно рассчитать межплоскостное расстояние. Реализована она была тоже в виде программы [14].

На входе она использует р4р-файл и информацию о примерном положении центра детектора (результат юстировки, прямое определение, калибровка). Из экспериментального фрейма вырезается центральная область $X=\pm 30$ пикс., $Y=\pm 15$ пикс., в которой, исходя из условия $2\theta_D\approx 2\theta$, должен находиться искомый рефлекс. Медианное значение интенсивности принимается за начальное значение фона. Пиксели с интенсивностью больше заранее заданной принимаются за "горячие пиксели" и их значения приравниваются среднему значению по 8 соседним пикселям. После учета горячих пикселей максимум интенсивности в выбранной области назначается примерным положением $K\alpha_1$ —составляющей. Далее, исходя из значений D и 2θ рассчитывается положение $K\alpha_1$ —составляющей и обе точки смещаются так, чтобы теоретическое положение $K\alpha_1$ совпадало с координатами найденного максимума интенсивности. Аппроксимация дублета проводится двумя независимыми функциями 2D-Gauss, т.е. без закрепления междублетного расстояния и соотношения интенсивностей составляющих 2/1. Направлениями главных осей берутся вдоль координат детектора X и Y детектора. В наших экспериментах именно функция 2D-Gauss наиболее хорошо описывала форму пика при минимальном числе уточняемых параметров: координаты максимума, полуширины (ширина на половине высоты, FWHM) в направлениях X и Y, и интегральная интенсивность.

2.3.6 Рассчет межплоскостного расстояния

Для достаточно малой разницы координат рефлексов искомый угол дифракции можно рассчитать по формуле

$$2\theta = 2\theta_D - \frac{\gamma}{2}(X_+ - X_-),\tag{1}$$

где γ — угловой размер пикселя в точке детектирования рефлекса, X_-, X_+ — координаты рефлексов при отрицательном и положительном углах детектора. В формуле $2\theta_D$ предполагается положительным. Знак перед разницей координат рефлексов зависит от направления координаты X детектора и направлением положительного вращения детектора вокруг оси $2\theta_D$. Если они направлены в разные стороны, то знак "—", если в одну, то "+". В нашей установке направления выбраны так, что перед разницей должен быть "—".

2.4 Учет эксцентриситета

Дополнительная съемка фриделевских пар позволяет учитывать эффект смещения кристалла при вращении вокруг оси ω . Так как рефлекс при съемке выводится в экваториальную плоскость, то угол ω для фриделевской пары изначального рефлекса отличается на 180° . Так как при повороте на 180° положение кристалла как бы отражается относительно оси ω , то среднее значение координат рефлексов в этих двух положения будет соответствовать положению кристалла ровно на оси ω .

Таким образом измерение фриделевской пары позволяет использовать уточненное значение координат рефлекса

$$X_{true} = \frac{1}{2}(X + X_{frid})$$

где X, X_{frid} — координаты обычного рефлекса и его фриделевской пары соответственно. Подставляя это в формулу 1 получим

$$2\theta = 2\theta_D - \frac{\gamma}{4}(X_+ + X_{+frid} - X_- - X_{-frid}). \tag{2}$$

2.5 Расчет углового размера пикселя

Зная линейные размеры пикселя P и расстояние до центра детектора D можно с хорошей точностью рассчитать угловой размер пикселя как

$$\gamma = \frac{P}{D}.\tag{3}$$

В нашем случае P=135 мкм, а расстояние D, указываемое прибором D=128.53 мм.

Однако значение D, которое показывает прибор, всегда можно поставить под сомнение. Правильнее провести калибровку положения детектора, например, согласно методике [15]. Для этого съемка эталонного монокристалла Si была проведена путем ω -сканирования интервалов 10° в области углов 200° при пяти положениях кристалла по углу φ (шаг 10°). Обработка полученных фреймов проведена по программе SearchXY [15]. В результате получено значение D=128.21 мм. Развороты детектора в наших экспериментах можно не учитывать из-за их малости и так как регистрация рефлексов проводится центральной областью детектора.

Полная калибровка занимает достаточно много времени и не всегда целесообразна. Другой подход к определению γ основан на съемке одного и того же рефлекса при двух угловых положениях детектора. Так, рефлекс (11 3 1) эталонного монокристалла Si был отснят при $2\theta_D=96.4^\circ, 97.0^\circ$. Смещение рефлекса ΔX позволяет провести вычисление γ по формуле

$$\gamma = \frac{\Delta 2\theta_D}{\Delta X} \tag{4}$$

Отметим, что такой подход позволяет проводить измерения при минимальных отклонениях рефлекса от центра детектора. Полученное значение идеально совпадает с результатом, полученным по результатам полной калибровки. Итоговое значение, использовавшееся далее

$$\gamma = 0.06033^{\circ}$$

3 Обсуждение результатов

3.1 Изучение Si

Измерение проводилось в нескольких переустановках образца и разных расстояниях D и углах $2\theta_D$. Также для оценки возможности использования рефлексов отстоящих от центра детектора съемка фриделевской пары $(\overline{9}\,7\,1)/(9\,\overline{7}\,\overline{1})$ была проведена при положении детектора $2\theta_D=\pm 97.5^\circ$, что является крайним положением для D=128.5 мм, которое отличается от идеального почти на 0.8° . Исследование фриделевской пары $(3\,\overline{3}\,1)/(\overline{3}\,3\,\overline{11})$ показало разницу координат Y всего 4 пикс. Среднее значение отклонение экспериментально полученных значений 2θ от эталонных составило 0.0003° , а среднее значение ПЭЯ отличается от эталонного на 0.0001 Å. Относительная погрешность определения d и ПЭЯ составила 5×10^{-5} .

3.2 Изучение Ge

На монокристалле Ge проводили контроль воспроизводимости установки образца и детектора. Для этого было выполнено несколько переустановок образца, в том числе с коррекцией ориентации кристалла, изменением D и угла $2\theta_D$. При D=138.6 мм изучены рефлексы $(5\,\overline{11}\,\overline{1})$ и $(1\,\overline{11}\,\overline{5})$ с существенно отличными углами выведения в отражающее положение (φ,ω) . Для оценки возможности использования рефлексов, значительно отстоящих от центра детектора, съемка рефлекса $(7\,\overline{7}\,\overline{7})$ была проведена при двух разных значениях $2\theta_D$. Причем положение $\pm 99.9^\circ$ отличалось от идеального почти на 1° . Исследование фриделевской пары $(3\,\overline{3}\,11)/(\overline{3}\,3\,\overline{11})$ показало хороший уровень точности выведения рефлексов на экваториальную плоскость: разница координат Y не превысила ≈ 7 пикс., что составляет $\approx 0.4^\circ$. В результате обработки профилей рефлексов были получены координаты максимумов и по формуле 1 определены углы 2θ , а из них рассчитаны значения d и ПЭЯ. Среднее отклонение полученых значений 2θ от теоретических составило 0.004° , что соответствует точности гониометра. Если ориентироваться на полученную величину,

то относительная погрешность определения межплоскостного расстояния $\Delta d/d = 6 \times 10^{-5}$. Таким образом, абсолютную погрешность определения ПЭЯ для Ge можно оценить как 0.0003 Å. Среднее значение $a_{\rm Ge} = 5.6579$ Å отличается от эталонного значения меньше, всего на 0.0001 Å.

${f 3.3}$ Изучение $({f Y}_{1-x}{f E}{f u}_x)_2{f O}_3$

При выборе рефлекса, подходящего для уточнения ПЭЯ, мы столкнулись с проблемой оценки его интенсивности из-за хиральности точечной группы симметрии кристалла. Так, например, теоретические значения структурной амплитуды рефлексов (6 8 20) и (8 6 20) соотносятся как 7 к 1. Естественно, предпочтительно использовать наиболее интенсивное отражение. Для решение этой проблемы предварительная съемка кристалла была скорректирована — расстояние D уменьшено до 60 мм, а углы $2\theta_D$ увеличены до $\pm 75^\circ$. В результате были построены сечения обратного пространства, захватывающие область углов $2\theta = [95^\circ \div 100^\circ]$. Сопоставление интенсивностей рефлексов с результатами вычислений программы позволило выбрать оптимальные индексы. По такой схеме было проведено исследование 5 монокристаллов. Значения ПЭЯ лежат в интервале $[10.6902 \div 10.7045]$ Å. Разница крайних значений составляет 0.0143 Å. Это значительно превосходит абсолютную погрешность определения ПЭЯ, равную 0.0007 Å. Таким образом, можно однозначно утверждать, что синтезированный продукт не однороден.

Для оценки соотношения Y/Eи в изученных монокристаллах $(Y_{1-x}Eu_x)_2O_3$ можно использовать правило Вегарда. Для построения соответствующей прямой были использованы литературные данные [16, 17].

3.3.1 Проведение РСтА

Расчет стратегии съемки для накопления полного массива данных производился для каждого кристалла автоматически с учетом его симметрии $(m\overline{3})$ по предварительно определенной матрице ориентации с использованием пакета программ APEX3. Далее проводили интегрирование экспериментальных интенсивностей и вводили поправки на поглощение. Структуры решены с помощью программы SHELXT [18] и уточнены с SHELXL [19] в графическом интерфейсе OLEX2 [20]. Параметры атомных смещений были уточнены в анизотропном приближении.

В результате установлено, что все изученные кристаллы изоструктурны и представляют собой твердые растворы $(Y_{1-x}Eu_x)_2O_3$, причем смешанными оказываются обе позиции металла.

3.4 Оценка и учет эксцентриситета образца Si

Несмотря на тщательную центрировку образца, в том числе с контрольными разворотами по оси ω , крайне сложно точно определить его центр, особенно при неопределенной форме кристалла. Можно ожидать, что при повороте вокруг оси ω центр образца движется по окружности, а сам образец описывает торообразную поверхность. Подобную картину можно ожидать и при повороте образца вокруг оси φ . Так как для использованного гониометра паспортное значение диаметра сферы сведения осей составляет 7 мкм, центр образца при повороте вокруг обеих осей движется по достаточно сложной траектории.

Для оценки смещений центра образца при повороте вокруг оси φ , среди доступных для измерения рефлексов типов $\{11\,3\,1\}$, $\{9\,7\,1\}$ и $\{9\,5\,5\}$, было выбрано 10 вариантов, у которых значения ω лежат в интервале $[-82^\circ\div95^\circ]$. Это примерно соответствует позиции образца при центрировании. Все съемки проведены при одном положении детектора: $2\theta_D=-96.7^\circ$, D=128.53 мм.

Для оценки эксцентриситета при повороте вокруг оси ω , были отобраны случаи, когда значения φ лежат в интервале [283.6° ÷ 300.7°]. При этом соответствующие им углы ω лежат в интервале [63.3° ÷ 296.5°]. Область ±60° недоступна из-за геометрических ограничений гониометра.

Таким образом, проведенные два эксперимента показали одинаковую картину для эксцентриситетов, связанных с поворотами образца вокруг осей φ и ω . При измерении ПЭЯ наиболее разумно исключить влияние именно последнего, тогда далее можно использовать подход, описанный выше [5].

Среди всех вариантов рефлексов были выделены 5 фриделевских пар.

3.5 Учет эксцентриситета для Si

При произвольном выборе рефлексов расчет по 1 приводит к значениям угла 2θ в интервале [96.722° \div 96.747°]. Учет эксцентриситета по формуле 2 уменьшает интервал значений до [96.730° \div 96.736°], а отклонения от теоретического значения не превышают 0.004°. Использование рефлексов с близкими значениями $\varphi = 66.31$ °, 59.35° позволяет пренебречь эксцентриситетом, связанным с поворотам вокруг оси φ . Конечные результаты уточнения представлены в таблице 2.

Можно отметить, что полученное значение ПЭЯ отклоняется от эталонного на 0.00006 Å. Т. е. относительная разница составляет 1×10^{-5} . Еще раз подчеркнем, что результат получен лишь при частичном учете эксцентриситета, связанного с поворотом кристалла вокруг оси φ . Чтобы полностью исключить

2θ	96.732°			
d	0.47452(3) Å			
$\Delta d/d$	6.2×10^{-5}			
a	5.4311(3) Å			

Таблица 2: Результаты измерений ПЭЯ Si с учетом эксцентриситета.

такое влияние можно вывести одно из кристаллографических направлений вдоль оси ω . Тогда измерения можно проводить на рефлексах типа hk0. При использовании трехкружного гониометра для образца такая проблема не возникает. В нашем случае угол χ — фиксирован, а штатные гониометрические головки предполагают только линейные смещения образца.

3.6 Учет эксцентриситета для Ge

Для устранения эксцентриситета, связанного с поворотом кристалла вокруг оси φ , монокристалл Ge был смонтирован на оригинальной гониометрической головке, имеющей возможность поворота образца вокруг одной оси на $\pm 10^\circ$ (далее гониометрическая χ -головка). После определения ориентации кристалла были рассчитаны углы для выведения кристаллографического направления вдоль оси ω . Алгоритм этого процесса описан в [14].

Расчеты для монокристалла Ge показали, что вдоль оси ω можно вывести направление b, так как для него значения угла $\chi=2.2^\circ$. После поворота, исследование по нашей методике было проведено по рефлексам типа $\{1006\}$. Им соответствовало значение угла $2\theta=93.943^\circ$. Все рефлексы регистрировались при одинаковых значениях угла $\varphi=-179.06^\circ$. Геометрические ограничения позволили отснять при $2\theta_D=\pm93.9^\circ$ только 12 из 16 теоретически возможных рефлексов. При произвольных сочетаниях рефлексов значения 2θ , вычисленные по 1 лежат в интервале [93.935° \div 93.958°]. Максимальные отклонения от теоретического значения достигают 0.015° . При использовании формулы 2 углы 2θ укладываются в интервал [93.943° \div 93.945°]. Отклонения от теоретического значения в таком случае не превышают 0.001° . Финальные значения для Ge представлены в таблице 3. Отклонение полученного значения ПЭЯ от теоретического составляет 0.0001 Å.

2θ	93.945°
d	0.48515(3) Å
$\Delta d/d$	6.5×10^{-5}
a	5.6578(4) Å

Таблица 3: Результаты измерений ПЭЯ Ge с учетом эксцентриситета.

Анализ координат Y рефлексов Ge позволяет оценить точность выведения направления b вдоль оси ω . Для этого можно построить зависимости $Y(\omega)$ для экспериментов, проведенных при дух симметричных положенях детектора $2\theta_D=\pm 93.9^\circ$. В обоих случаях зависимости хорошо описываются синусоидами, но при $2\theta_D=-93.9^\circ$ фаза сдвигается на θ , а при $2\theta_D=+93.9^\circ$ на $\theta+180^\circ$. Для обработки всех рефлексов одновременно значения сдвигов вычитались из первичных значений ω . Из построенной аппроксимации следует, что максимальное отклонение направления b от оси ω составляет ≈ 2.2 пикс., что эквивалентно 0.13° . Такое значение соответствует цене нониуса дуги гониометрической головки. Так как отклонение лежит в ее плоскости, то можно утверждать что оно связано преимущественно с погрешностью установки угла χ , а не φ .

Список литературы

- [1] В. В. Лидер. Прецизионное определение параметров кристаллической решётки. Успехи физических наук, 190(9):971–994, 2020.
- [2] E. Gałdecka. International Tables for Crystallography Volume C: Mathematical, physical and chemical tables, chapter X-ray diffraction methods: single crystal, pages 505–508. Wiley Online Library, 2006.
- [3] W. L. Bond. Precision lattice constant determination. Acta Crystallographica, 13(10):814-818, Oct 1960.
- [4] C. R. Hubbard and F. A. Mauer. Precision and accuracy of the Bond method as applied to small spherical crystals. *Journal of Applied Crystallography*, 9(1):1–8, Feb 1976.
- [5] В. И. Пономарев and Д. М. Хейкер. Методика исследования малых кристаллов в рентгеноском дифрактометре ДРОН-1. *Аппаратура и Методы Рентгеноструктурного Анализа*, выпуск VII:185—193, 1969.
- [6] H. E. King, Jnr and L. W. Finger. Diffracted beam crystal centering and its application to high-pressure crystallography. *Journal of Applied Crystallography*, 12(4):374–378, Aug 1979.
- [7] А. П. Дудка, Е. С. Смирнова, И. А. Верин, and Н. Б. Болотина. Алгоритм и программа для прецизионного определения параметров элементарной ячейки монокристаллов с учетом эксцентриситета образца. Кристаллография, 62(4):669–677, 2017.
- [8] П.С. Серебренникова, В.Ю. Комаров, А.С. Сухих, and С.А. Громилов. К вопросу о точности определения параметров элементарной ячейки монокристаллов на современных лабораторных дифрактометрах. *Журнал Структурной Химии*, 62(5):734, 2021.
- [9] Bruker AXS Inc. APEX3 v.2019.1-0, SAINT v.8.40a and SADABS v.2016/2. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- [10] В. И. Лисойван. Измерения параметров элементарной ячейки на однокристальном спектрометре. Новосибирск: Наука, 1982.
- [11] A. S. Cooper. Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire. *Acta Crystallographica*, 15(6):578–582, Jun 1962.
- [12] А. Л. Кудрявцев, П. С. Серебренникова, Н. Г. Наумов, and С.А. Громилов. Реализация схемы Бонда на монокристальном дифрактометре. Изучение однородности монокристаллов $(Y_{1-x}Eu_x)_2O_3$. Журнал Структурной Химии, 65(10):133158, 2024.
- [13] W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. *Acta Crystallographica*, 22(4):457–464, Apr 1967.
- [14] А. Л. Кудрявцев and С.А. Громилов. Учет эксцентриситета образца при измерении параметров элементарной ячейки малых монокристаллов в схеме Бонда на современных дифрактометрах. Журнал Структурной Химии, 65(12):137338, 2024.
- [15] А. В. Панченко, П.С. Серебренникова, В.Ю. Комаров, and С.А. Громилов. Новые подходы к калибровке дифрактометра. Изучение insb в интервале 90–490 k. *Журнал Структурной Химии*, 64(8):114114, 2023.
- [16] H. E. Swanson and G. M. Ugrinic. Circular of the bureau of standards no. 539 volume 3::standard x-ray diffraction powder patterns, 1954.
- [17] M. C. Morris, H. F. McMurdie, E. H. Evans, B. Paretzkin, H. S Parker, N. P. Pyrros, and C. R Hubbard. Standard x-ray diffraction powder patterns ::section 20- data for 71 substances, 1984.
- [18] G. M. Sheldrick. SHELXT Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71(1):3–8, Jan 2015.
- [19] George M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71(1):3–8, Jan 2015.
- [20] Oleg V. Dolomanov, Luc J. Bourhis, Richard J. Gildea, Judith A. K. Howard, and Horst Puschmann. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2):339–341, Apr 2009.

Приложение

hkl	D, mm	$2\theta_D$, °	φ , °	ω , °	<i>Y</i> , пикс.	<i>X</i> , пикс.	
$(11\overline{1}3)$		-96.7 8.5	-66.31	88.2	504.77	389.27	
$(\overline{11}1\overline{3})$				-91.8	503.78	389.53	
$(59\overline{5})$			28.72	84.7	505.36	389.40	
$(\overline{5}\overline{9}5)$				-95.3	503.24	389.41	
$(5\overline{9}\overline{5})$			119.20	-99.5	501.71	389.28	
$(\overline{5}95)$				80.5	506.90	389.58	
(3111)			-138.01	97.4	505.92	389.33	
$(\overline{3}\overline{1}\overline{11})$				-82.6	502.68	389.32	
$(3\overline{1}11)$	128.5		-143.63	84.6	505.92	389.35	
$(\overline{3}1\overline{11})$				-95.4	502.63	389.29	
$(1\overline{3}\overline{11})$			-59.35	-89.3	505.08	388.48	
$(\overline{1}311)$				90.7	504.09	388.18	
$(9\overline{1}7)$		96.7	14.46	83.3	502.92	388.53	
$(\bar{9}1\bar{7})$				-96.7	506.04	388.01	
$(95\overline{5})$			121.79	99.7	503.80	388.21	
$(\overline{9}\overline{5}5)$				121.79	-80.3	505.05	388.27
$(\bar{3}111)$			-142.92	95.7	504.66	388.19	
$(3\overline{11}\overline{1})$				-84.4	504.08	388.26	

Таблица 4: Положения пиков $K\alpha_1$ для эталона Si.

hkl	D, mm	$2\theta_D$, °	φ , °	ω, °	<i>Y</i> , пикс.	X, пикс.
$(\overline{6}010)$	128.5	-93.9	-179.06	-112.4	503.91	388.61
$(60\overline{10})$				67.6	504.56	388.47
$(\overline{10}06)$				-84.3	502.83	388.50
$(100\overline{6})$				95.7	505.40	388.62
(6010)				-174.3	506.26	388.64
(1006)				157.6	506.70	388.74
$(\overline{10}0\overline{6})$		93.9		-108.5	502.39	386.91
(1006)				71.5	506.70	387.32
$(\overline{6}0\overline{10})$				-80.4	502.92	386.82
(6010)				99.6	506.46	387.29
$(100\overline{6})$				9.7	505.43	387.21
$(60\overline{10})$				-18.4	504.69	387.11

Таблица 5: Положения пиков $K\alpha_1$ для эталона Ge.