2013 级 电路分析基础 A 课程试卷 A 卷及答案

开课学院:	信息与	电子学院	-	任课教师	j:		
试卷用途:	□期中	■期末	□补考				
考试形式:	□开卷	□半开卷	■闭卷				
考试日期:	2015	年1月19日			所需时间:	120	_分钟
考试允许带	:	文具、计算器	E F				_入场
班级:		学号:		姓	名:		

考生承诺:"我确认在次考试是完全通过自己的劳力完成的。"

考生签名:

题序	_	11	111	四	五.	六	七	八	总分
满分	18	14	18	10	10	10	10	10	100
得分									
评卷人									

注意: 1. 试卷正面答题,背面草稿; 2. 试卷不允许拆开; 3. 分析计算题要写过程。

- 一、本题包含3个小题(每小题6分,共18分)
- 1. 电路如图 1.1 所示,(1) 求电流 I; (2) 求电路中 A 点的电位。

2. 电路如图 1.2 所示,(1) 求电流 I; (2) 求电压 U。

3. 图 1.3 所示为-RLC 串联电路, $u_s(t)=10\sqrt{2}\cos(2500t+15^\circ)$ V,当电容 $C=8\mu$ F 时,电路 发生谐振。试求电感 L 的值,求电阻 R 所消耗的平均功率和电路的品质因数 Q。

- 二、本题包含2个小题(每小题7分,共14分)
- 1. 电路如图 2.1 所示, 求电压 uo。

解:

2. 电路如图 2.2 所示,已知 $I_s=5$ mA, $u_s(t)=10\sqrt{2}\cos(10^4t)$ V,电路已处于稳态。求电流 i(t) 及其有效值 I。

- 三、本题包含3个小题(每小题6分,共18分)
- 1. 二阶电路如图 3.1 所示,开关打开前电路已达稳态,试求 $u_c(0_+), i_L(0_+), \frac{\mathrm{d}u_c}{\mathrm{d}t}\Big|_0$ 。 **解:**

2. 正弦稳态电路如图 3.2 所示,若 $\omega = 2 \text{rad/s}$,求自 ab 端向右看的输入阻抗 Z_{ab} ,并用两个串联元件表示等效相量模型。

3. 电路的相量模型如图 3.3 所示,欲使 32Ω 电阻能获得最大功率,求理想变压器的变比 n,并求 32Ω 电阻所获得的最大功率 P_{\max} 。

四、(10分)电路如图 4 所示,已知 r=2。(1)当负载电阻 $R_L=1$ 时,求负载电流 I_L 及负载电阻 R_L 消耗的功率;(2)求当负载电阻 R_L 为何值时可获得最大功率,并求出此最大功率。

五、(10 分)电路如图 5 所示,开关打开前电路处于稳态,(1)求电压 $u_c(t)$ ($t \ge 0$);(2) 求电流 $i_L(t)$ ($t \ge 0$);(3)求电压 u(t) (t > 0)。

六、(10分)二阶电路如图6所示,换路前电路处于稳态。

- (1) 试列写 t≥0 时以 iL(t)为变量的电路微分方程;
- (2) 求电路的固有频率(特征根),并判断响应的类型(临界阻尼,过阻尼,欠阻尼);
- (3) 求电流 *i*_L(t) (*t* ≥0)。

八、(10 分)电路的相量模型如图 8 所示,已知 $\omega M\!\!=\!\!4\Omega$, $\dot{U}_{\rm s}=20\angle0^{\rm o}{\rm V}$ 。试求:

- (1) 电流 \dot{I} , $\dot{I}_{\scriptscriptstyle 1}$;
- (2) 电阻 R 所消耗的平均功率 P。

