NYU Computer Science Bridge to Tandon Course

Winter 2021

Homework 3

Name: Zecheng Zhang

1 Question 7

- 3.1.1.a Answer:True
- 3.1.1.b Answer:False
- 3.1.1.c Answer:True
- 3.1.1.d Answer:False
- 3.1.1.e Answer:True
- 3.1.1.f Answer:False
- 3.1.1.g Answer:False
- 3.1.2.a Answer:False
- 3.1.2.b Answer:True
- 3.1.2.c Answer:True
- 3.1.2.d Answer:True
- 3.1.2.e Answer:False
- **3.1.5.b Answer:** $\{x \in N^+ : x = 3k, k \in N^+\}$, **infinite**
- **3.1.5.d** Answer: $\{x \in N : x = 10k, k \in N \text{ and } k \leq 100\}$, the cardinality is **101.**

- 3.2.1.a Answer:True
- 3.2.1.b Answer:True
- 3.2.1.c Answer:False
- 3.2.1.d Answer:False
- 3.2.1.e Answer:True
- 3.2.1.f Answer:True
- 3.2.1.g Answer:True
- 3.2.1.h Answer:False
- 3.2.1.i Answer:False
- 3.2.1.j Answer:False
- 3.2.1.k Answer:False

3.2.4.b Answer: $x = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$

$$\begin{split} P(A) &= \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\} \\ &\because \{\mathbf{x} \in P(A) : 2 \in x\} \\ &\therefore x = &\{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\} \end{split}$$

- **3.3.1.c Answer:** $\{-3, 1, 17\}$
- **3.3.1.d Answer:** $A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$
- **3.3.1.e Answer:** $A \cap B \cap C = \{1\}$
- **3.3.3.a** Answer: $\bigcap_{i=2}^{5} A_i = \{1\}$
- $A_2 = \{1, 2, 4\}$
- $A_3 = \{1, 3, 9\}$
- $A_4 = \{1, 4, 16\}$
- $A_5 = \{1, 5, 25\}$
- **3.3.3.b** Answer: $\bigcup_{i=2}^{5} A_i = \{1, 2, 3, 4, 5, 9, 16, 25\}$
- **3.3.3.e** Answer: $\bigcap_{i=1}^{100} C_i = \{x \in \mathbb{R} : -\frac{1}{100} \le x \le \frac{1}{100}\}$
- $C_1 = \{x \in \mathbb{R} : -1 \le x \le 1\}$
- $C_2 = \{x \in \mathbb{R} : -1/2 \le x \le 1/2\}$
- ... $C_{100} = \{x \in \mathbb{R} : -\frac{1}{100} \le x \le \frac{1}{100}\}$
- **3.3.3.f Answer:** $\bigcup_{i=1}^{100} C_i = \{x \in \mathbb{R} : -1 \le x \le -1\}$
- **3.3.4.b** Answer: $P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$
- **3.3.4.d Answer:** $P(A) \cup P(B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$
- $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- $P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$

3.5.1.b Answer: (foam, venti, whole)

3.5.1.c Answer: {(foam,non-fat),(foam,whole),(no-foam,non-fat),(no-foam,whole)}

3.5.3.b Answer:True

3.5.3.c Answer:True

3.5.3.e Answer:True

3.5.6.d Answer: $xy = \{01, 011, 001, 0011\}$

 $x \in \{0, 00\}, y \in \{1, 11\}$

3.5.6.e Answer: $xy = \{aaa, aaaa, aba, abaa\}$

 $x \in \{aa, ab\}, y \in \{a, aa\}$

3.5.7.c Answer: $(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$

 $A \times B = \{aa, ac\}, A \times C = \{aa, ab, ad\}$

3.5.7.f Answer: $P(A \times B) = \{\emptyset, \{ab\}, \{ac\}, \{ab, ac\}\}$

 $A \times B = \{ab, ac\}$

3.5.7.g Answer:

$$P(A) = \{\emptyset, \{a\}\}$$

$$\mathbf{P}(\mathbf{B}) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$$

$$P(A) \times P(B) = \{(\emptyset, \emptyset), (\emptyset, \{b\}), (\emptyset, \{c\}), (\emptyset, \{b, c\}), (\{a\}, \emptyset), (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{b, c\})\}\}$$

3.6.2.b Answer:

$(B \cup A) \cap (\overline{B} \cup A)$	
$A \cup B \cap (A \cup \overline{B})$	commutative law
$A \cup (B \cap \overline{B})$	distributive law
$A \cup \emptyset$	complement law
A	identity laws

3.6.2.c Answer:

$\overline{A \cap \overline{B}}$	
$\overline{A} \cup \overline{\overline{B}}$	De Morgan's law
$\overline{A} \cup B$	Double negation law

3.6.3.b Answer:

$$\begin{aligned} &\text{if } A = \{a,b\}, B = \{a,c\} \\ &B \cap A = \{a\} \\ &A - (B \cap A) = \{b\} \neq A \end{aligned}$$

3.6.3.d Answer:

$$\begin{aligned} &\text{if } A = \{a,b\}, B = \{b,c\} \\ &B - A = \{c\} \\ &(B - A) \cup A = \{a,b,c\} \neq A \end{aligned}$$

3.6.4.b Answer:

$A \cap (B-A)$	
$A \cap (B \cap \overline{A})$	set substraction law
$A \cap (\overline{A} \cap B)$	commutative law
$(A \cap \overline{A}) \cap B$	associative law
$\emptyset \cap B$	complement law
Ø	domination law

3.6.4.c Answer:

$A \cup (B - A)$	
$A \cup (B \cap \overline{A})$	set subtraction law
$(A \cup B) \cap (A \cup \overline{A})$	distributive law
$(A \cup B) \cap U$	complement law
$A \cup B$	identity law