MATHEMATICS

QUESTIONS

- 1. Write the value of $\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix}$.
- 2. If $\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$ and $\mathbf{BA} = (bij)$, find $b_{21} + b_{32}i$.
- 3. Write the number of all the possible matrices of order 2×3 with each entry 1 or 2.
- 4. Write the coordinates of the point which is the reflection of the point (α, β, γ) in the XZ-plane.
- 5. Find the position vector of the point which divides the join of points with position vectors $\vec{a} + 3\vec{b}$ and $\vec{a} \vec{b}$ in the ratio 1:3.
- 6. If $|\vec{a}| = 4$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 6\sqrt{3}$, then find the value of $|\vec{a} \times \vec{b}|$.
- 7. Solve for $x : tan^{-1} \left(\frac{2-x}{2+x} \right) = \left(\frac{1}{2} \right) tan^{-1} \left(\frac{x}{2} \right), x > 0.$
- 8. Prove that $2\sin^{-1}\left(\frac{3}{5}\right) \tan^{-1}\left(\frac{17}{31}\right) = \left(\frac{\pi}{4}\right)$.
- 9. On her birthday Seema decided to donate some money to children of an rophanage home. If there was 8 children less, everyone would have go ₹10 more. However, if there were 16 children more, every one would have got₹10 less. Using matrix method, find the numbers of children and the amount distributed by Seema. What values are refleced by Seema's decision?
- 10. If $x = e^{\cos 2t}$ and $y = e^{\sin 2t}$, prove that $\frac{dy}{dx} = \frac{-y}{x} \frac{\log x}{\log y}$. Verify mean value theorem for the function $f(x) = 2\sin x + \sin 2x$ on [o, x].
- 11. Find the equation of the tangent line to the curve $y = \sqrt{5}x 3 5$, when parallel to the line 4x 2y = 5 = 0.

1

- 12. Show that the function f given by $fx = \begin{cases} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, & if x \neq 0 \\ -1, & if x = 0 \end{cases}$ is discontinuous at x = 0.
- 13. Evaluate: $\int_1^5 \{|x-1| + |x-2| + |x-3|\} dx$.
- 14. Evaluate: $\int_0^{\pi} \frac{x \sin x}{1 + 3 \cos^2 x} dx.$
- 15. Find: $\int \frac{2x+1}{(x^2)(x^2)} dx$.
- 16. Find $\int (3x+5) \sqrt{5x+4x-2x^2} dx$.
- 17. $x \frac{dy}{dx} + y x + xycotx = 0; x \neq 0.$
- 18. Solve the different equation: $(x^2 + 3xy + y^2) dx x^2 dy = 0$ given that y = 0, when x = 1.
- 19. Find the angle between the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ if $\vec{a} = 2\hat{i} \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} 2\hat{k}$, and hence find a vector perpendicular to both $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$.
- 20. Show that the line $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect. Find their point of intersection.
- 21. A committee of 4 students is selected at random from a group consisting of 7 boys and 4 girls. Find the probability that there are exactly 2 boys in the committee, given that at least one girl must be there in the committee.
- 22. Show that the relation R defined by $(a,b)R(c,d) \Rightarrow a+d=b+c$ on the $A \times A$, where $A = \{1,2,3,...10\}$ is an equivalence class [(3,4)]; $a,b,c,d \in A$.
- 23. Solve for x: $\begin{vmatrix} a + x & a x & a x \\ a x & a + x & a x \\ a x & a x & a + x \end{vmatrix} = 0,$

using properties of determinants.

- 24. Using elementary row operation find the inverse of matrix \mathbf{X} $\mathbf{A}\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ and hence solve the following system of equations 3x 3y + 4z = 21, 2x 3y + 4z = 20, -y + z = 5.
- 25. Show that height of the cylinder of greatest volume which can be in scribed in aright circular cone of height h and semi-vertical angle α is one third that of and greatest volume of cylinder is $\frac{4}{27}\pi \tan^2 \alpha$.
- 26. Find the intervals in which the function $f(x) = \frac{4sinx}{2+cosx} x$; $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.
- 27. Using integration, find the area of the triangle formed by inegative x-axis and tangent and normal to the circle $x^2 + y^2 = 9$ at $(-1, 2\sqrt{2})$.
- 28. Find the coordinates of the foot of perpendicular distance frm the point P (4, 3, 2) to the plane x + 2y + 3z = 2. Also find the image of P in the plane.
- 29. A, B and C throw a pair of dice in that order alternately till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
- 30. A company manufactures two types of cardigans type A and type B. It costs ₹360 to make a type A cardigan and ₹120 to make a type B cardigan. The company can make at most 300 cardigans and spend at most ₹72,000 a day. The number of cardigans of type B cannot exceed the number of cardigans of type A by more than ₹200. The company makes a profit of ₹100 for each cardigan of type A and ₹50 for every cardigan of type B.

Formulate this problem as a linear programming problem to maximise the profit to the company. Solve it graphically and find maximum profit.