The Finite Potential and Tunneling CHEM 361B: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 8

Table of contents

- Finite Potential Well
- 2 Tunneling

Learning Objective: Develop an understanding on how boundary conditions link wavefunctions in regions with different potentials to describe quantum effects.

References:

• McQuarrie Problems 4-51 and 4-54

Consider the finite square well potential

$$U(x) = \begin{cases} 0 & \text{for } -a < x < a \\ U_0 & \text{for } |x| > a \end{cases}$$

For this case, assume that $E < U_0$. This is called a bound state.

- Find $\psi(x)$ for x < -aAnswer: $\psi(x) = Ae^{\frac{\sqrt{2m(U_0 E)x}}{\hbar}}$
- ② Find $\psi(x)$ for -a < x < aAnswer: $\psi(x) = C \cos(\frac{\sqrt{2mE}x}{k}) + D \sin(\frac{\sqrt{2mE}x}{k})$
- **3** Find $\psi(x)$ for x > aAnswer: $\psi(x) = Fe^{-\frac{\sqrt{2m(U_0 - E)}x}{\hbar}}$

Graphical Solutions to the Finite Square Well

We will assume that

• $\psi(x)$ and $d\psi/dx$ are continuous at -a and a

We will evaluate these boundary conditions where:

$$\psi(x) = \begin{cases} Fe^{-\alpha x} & x > a \\ C\cos(kx) + D\sin(kx) & -a < x < a \\ Ae^{\alpha x} & x < -a \end{cases}$$

where
$$k = \frac{\sqrt{2mE}}{\hbar}$$
 and $\alpha = \frac{\sqrt{2m(U_0 - E)}}{\hbar}$

We will find that the energy of the bound states are quantized and are defined by

$$\tan(ka) = \frac{\alpha}{k} = -\cot(ka)$$

Particle in a Box - Finite Potential Well (cont.)

Particle in a Box - Finite Potential Well (cont.)

- Energy levels are calculated as when the line α/k crosses either tan(ka) (even) or -cot(ka) (odd) solutions. As a result there are only a finite number of energy levels trapped in the well.
- As U_0 gets bigger then the spot α/k crosses the x-axis moves to the right. This means
 - for every $\pi/2$ increase, a new energy state is trapped in the well.
 - ullet that when $U_0 o \infty$, all the energy levels present in the infinite square well appear here.
- As U_0 goes to zero (but is never equal to zero), the spot α/k crosses the x-axis moves to the left. This means
 - energy levels become free from the potential well.
 - regardless of the depth of the well, there will always be at least one bound state.

Lifting Boulders Classically vs Quantum Mechanically

Quantum Tunneling

Since ψ can exist in a finite potential barrier then there is a chance that the particle can penetrate the barrier even if $E < U_0$.

A Note on Traveling Waves

Given the typical solution to the Schrödinger equation

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$

where k is some constant that is a function of energy, if we apply the momentum operator to each solution individually then

$$\hat{P}Ae^{ikx} = -i\hbar \frac{d}{dx}Ae^{ikx} \qquad \qquad \hat{P}Be^{-ikx} = -i\hbar \frac{d}{dx}Be^{-ikx}$$

$$= -i\hbar A(ik)e^{ikx} \qquad \qquad = -i\hbar B(-ik)e^{-ikx}$$

$$= k\hbar Ae^{ikx} \qquad \qquad = -k\hbar Be^{ikx}$$

The solution is a combination of a wave moving to the right, and a wave moving to the left with the same momentum $k\hbar$ (hence why $\langle p \rangle = 0$ in the particle in a box problem)

Quantum Tunneling Setup

Consider the potential barrier

$$U(x) = \begin{cases} 0 & \text{for } x < 0 \\ U_0 & \text{for } 0 \le x \le a \\ 0 & \text{for } x > a \end{cases}$$

For this case, assume that $E < U_0$ so that classically a particle traveling from the left can not overcome the barrier.

- Find $\psi(x)$ for x < 0Answer: $\psi(x) = Ae^{i\frac{\sqrt{2mE}}{\hbar}x} + Be^{-i\frac{\sqrt{2mE}}{\hbar}x}$
- ② Find $\psi(x)$ for $0 \le x \le a$ Answer: $\psi(x) = Ce^{\frac{\sqrt{2m(U_0 - E)}}{\hbar}x} + De^{-\frac{\sqrt{2m(U_0 - E)}}{\hbar}x}$
- Find $\psi(x)$ for x > aAnswer: $\psi(x) = Ee^{i\frac{\sqrt{2mE}}{h}x}$

Finding Tunneling Probabilities

It can be assumed that B can be used to determine the probability of a particle reflecting off the barrier $(|B|^2/|A|^2)$, and E can be used to determine the probability of a particle tunneling through the barrier $(|E|^2/|A|^2)$.

Rearranging the three wavefunctions and using the fact that $\psi(x)$ and $\frac{d\psi}{dx}$ must be continuous at the boundaries of the potential then

$$|E|^2/|A|^2 = rac{1}{1 + rac{(e^{\kappa a} - e^{-\kappa a})^2}{4(E/U_0)(1 - E/U_0)}}$$
 where $\kappa = rac{\sqrt{2m(U_0 - E)}}{\hbar}$

Plot of Transmission Probability

Tunneling Examples

- What is the tunneling probability of a 2000 kg truck moving through a square speed bump 0.1 m high and 0.1 m long traveling at 1.39 m/s?
- ② What is the tunneling probability of an electron moving through a 8.0109×10^{-18} J barrier that is 1 angstrom wide traveling at 1% the speed of light?

Summary

- Finite potentials more closely resemble real systems
- The finite potential well gives a proper example on how to match up wavefunctions at the boundaries. The solution shows that the particle exists in the barrier.
- Since the wavefunction is non-zero in finite potential barriers, there are instances where quantum particles can tunnel through the barrier even if it does not have the energy to go over it.