Análise Matemática II C

 $(2022/23\ 2^{\circ}\ semestre)$

Lista 2 - Coordenadas polares, esféricas e cilíndricas.

- 1. Escreva em coordenadas polares e represente geometricamente o conjunto definido pelas seguintes inequações: $0 < x^2 + y^2 \le 1, -\sqrt{3} x \le y \le \frac{\sqrt{3}}{3} x$.
- 2. Escreva em coordenadas cartesianas e represente geometricamente os conjuntos definidos em coordenadas polares por:
 - (a) $\theta = \pi$;
 - (b) $\pi \le \theta < \frac{5\pi}{3} \text{ e } 1 < r \le 3.$
- 3. Escreva as seguintes equações em coordenadas polares:
 - (a) y = 3;
 - (b) $x^2 + y^2 = 9$;
 - (c) $x^2 + (y-2)^2 = 4$;
 - (d) y = x;
 - (e) $x^2 y^2 = 4$;
 - (f) $(x^2 + y^2)^2 = 2xy$.
- 4. Identifique as curvas, representadas em coordenadas polares, e escreva as equações em coordenadas cartesianas:
 - (a) $r\cos(\theta) = 4$;
 - (b) $r = \frac{2}{1 \cos(\theta)};$
 - (c) $r = 4\sin(\theta + \pi)$;
 - (d) $\tan(\theta) = 2$;
 - (e) $\theta = \frac{5\pi}{4}$.
- 5. Seja $f(x,y) = \sqrt{4 x^2 y^2} + \log(y)$.

- (a) Determine o domínio D de f.
- (b) Represente o conjunto D em coordenadas polares.
- 6. Descreva em coordenadas cilíndricas:
 - (a) o sólido de \mathbb{R}^3 definido pelas condições

$$x^2 + y^2 \le z$$
, $x^2 + y^2 + z \le 8$, $y \ge 0$,

- (b) o sólido em \mathbb{R}^3 limitado pelo paraboló
ide de equação $x^2+y^2=1-z$ e pela folha superior da superfície cónica $(z+1)^2=x^2+y^2;$
- (c) a região do espaço limitada pelas superfícies $z=1-\sqrt{1-x^2-y^2}$ e $z=\sqrt{x^2+y^2}.$

7. Seja
$$f(x, y, z) = \frac{1}{\sqrt{xy}} + \log(z - x^2 - y^2) + \sqrt{3 - z}$$
.

- (a) Determine o domínio D de f.
- (b) Represente o conjunto D em coordenadas cilíndricas.
- 8. Escreva em coordenadas esféricas ou cilíndricas os seguintes conjuntos:

(a)
$$\{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 + z^2 < 2, z \ge 0, y \ge 0, x > 0\};$$

(b)
$$\{(x, y, z) \in \mathbb{R}^3 : z^2 \le \frac{x^2 + y^2}{2}, \ 0 < z < 2\};$$

(c)
$$\{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z \le \sqrt{6 - x^2 - y^2} \land y \ge 0\}.$$

- 9. Escreva em coordenadas esféricas:
 - (a) o sólido em \mathbb{R}^3 definido por

$$V = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{\frac{x^2 + y^2}{3}} \le z \le \sqrt{x^2 + y^2} \land x^2 + y^2 + z^2 \le 1\};$$

(b) o sólido em \mathbb{R}^3 limitado pelas superfícies

$$z = \sqrt{1 - x^2 - y^2}$$
 e $z = \sqrt{x^2 + y^2}$.

10. Escreva em coordenadas cartesianas e represente geometricamente os subconjuntos de \mathbb{R}^3 definidos nas coordenadas indicadas:

- (a) $\varphi = \frac{3\pi}{4}$ (esféricas); (b) z = r (cilíndricas); (c) $\theta = \frac{\pi}{6}$ (esféricas).