

CSC380: Principles of Data Science

Clustering

Credit:

- Jason Pacheco,
- Kwang-Sung Jun,
- Chicheng Zhang
- Xinchen yu

1

Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 2 : Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5 : Covid, Health, Doctor

Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1 : Health , Medicine, Doctor

Doc 5: Covid, Health, Doctor

Doc 3 : Environment, Planet

Doc 4 : Pollution, Climate

Crisis

Doc 2 : Machine Learning, Computer

5

What is unsupervised learning?

8

- Learning with unlabeled data
- What can we expect to learn?
 - **Clustering**: obtain partition of the data that are well-separated.
 - a preliminary classification without predefined class labels. (unsupervised)
 - **Components**: extract common components
 - e.g., topic modeling given a set of articles: each article talks about a few topics => extract the topics that appear frequently.
- How can we use?
 - · As a summary of the data
 - Exploratory data analysis: what are the patterns even without labels?
 - As a 'preprocessing techniques'
 - e.g., extract useful **features** using soft clustering assignments
 - Soft clustering a topic might be 30% in cluster 1, and 70% in cluster 2.

8

Clustering

9

• Input: k: the number of clusters (hyperparameter)

$$S = \{x_1, ..., x_n\}$$

- Output
 - partition $\{G_i\}_{i=1}^k$ s.t. $S = \bigcup_i G_i$ (disjoint union).
 - · often, we also obtain 'centroids'

Sometimes it is trickier to define centroid

Sometimes addressed by Spectral methods, or dimensionality reductions

q

Warmup

10

• For a set of points $S = \{p_1 \dots p_n\}$, find a point c minimizing

$$\sum_{i}^{3} dist^{2} (p_{i}, c) = \sum_{i} (p_{i} - c)^{2}$$

Solution

$$c = \frac{1}{n} \left(\sum x(p_i), \sum y(p_i) \right)$$

Center of mass, centroid

Other common disance functions:

- 1) minimize radius of enclosing ball. (that is, minimize distance from center of cluster to furthest point
- 2) Minimize distances $\sum distance(p_i, c)$

Total quality of clustering: Max, sum or sum of squares of distances of all clusters

10

Centroid-based Clustering

If the locations of the centauroids is fixed, Then clusters are created in an obvious way: Each data point is assigned to the nearest centroid.

So the cluster of the red triangles are all data points whose distance to red triangle
distance to other centroids.

Question: How to pick centroid's location?

Distribution-based Clustering

(probabilistic treatment)

12

Clustering

13

• Input: k: the number of clusters (hyperparameter)

$$S = \{x_1, \dots, x_n\}$$

- Output
 - partition $\{G_i\}_{i=1}^k$ s.t. $S = \bigcup_i G_i$ (disjoint union).
 - · often, we also obtain 'centroids'

- Q: if we are given the groups, what would be a reasonable definition of centroids?
 - The **point** that has the minimum average **distance** to the datapoints?
 - The datapoint that has the minimum average distance to the datapoints?
 - The **point** that has the minimum average **squared distance** to the datapoints?

=> Turns out, the last one corresponds to the average point!

k-means Clustering

14

<u>Lloyd's algorithm</u>: solve it approximately (heuristic)

Observation: The chicken-and-egg problem.

- If you knew the cluster assignments... just find the centroids as the average
- If you knew the centroids... make cluster assignments by the closest centroid.

Why not: start from some centroids and then alternate between the two?

14

15

Arbitrary/random initialization of c_1 and c_2

Iterating until Convergence

Animation from Kaggle

20

k-means clustering

21

 $\underline{\textbf{Input}}: k: \text{num. of clusters, } \mathcal{S} = \{x_1, \dots, x_n\}$

[Initialize] Pick c_1, \dots, c_k as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max_iter

- [Assignments] $\forall x \in S$, $a_t(x) = \arg\min_{j \in [k]} ||x c_j||_2^2$
- If $t \neq 1$ AND $a_t(x) = a_{t-1}(x), \forall x \in S$
 - break

k-means clustering

22

Input: k: num. of clusters, $S = \{x_1, ..., x_n\}$

[Initialize] Pick $c_1, ..., c_k$ as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max_iter

Calculate for each data point the nearest cluster head

- [Assignments] $\forall x \in S$, $a_t(x) = \arg\min_{j \in [k]} ||x c_j||_2^2$
- If $t \neq 1$ AND $a_t(x) = a_{t-1}(x), \forall x \in S$
 - break

Cluster j are all data points with $a_t(x) = j$

• [Centroids] $\forall j \in [k], c_i \leftarrow \text{average}(\{x \in S: a_t(x) = j\})$

Could be replaced by

Output: $c_1, ..., c_k$ and $\{a_t(x_i)\}_{i \in [n]}$

center of smallest disk containing points points in the cluster

22

But,

It may converge to a local rather than global minimum.

24

Issue 1: Unreliable solution

25

- You usually get suboptimal solutions
- You usually get different solutions every time you run.
- <u>Standard practice</u>: Run it 50 times and take the one that achieves the smallest objective function
 - Recall: $\min_{c_1,\dots,c_k} \sum_{i=1}^n \min_{j \in [k]} \left\| x_i c_j \right\|_2^2$ Each run of algorithm outputs c_1,\dots,c_k . Compute this to evaluate the quality!
- And/or, change the initialization (next slide)
 - Idea: ensure that we pick a widespread c_{1},\dots,c_{k}

Alternative initialization

26

• k-means++

- Pick $c_1 \in \{x_1, ..., x_n\}$ uniformly at random
- For j = 2, ..., k
 - Define a distribution $\forall i \in [n]$, $\mathbb{P} \left(c_j = x_i \right) \propto \min_{j' = 1, \dots, j-1} \| x_i c_{j'} \|_2^2$
 - Draw c_i from the distribution above.

More likely to choose x_i that is farthest from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!

26

Suppose we have the small dataset

(7,4),(8,3),(5,9),(3,3),(1,3),(10,1) to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

X	$\min(d(x,z_i)^2)$
(7,4)	
(8,3)	
(5,9)	
(3,3)	
(1,3)	
(10.1)	

X

From Sara Jensen's Youtube Channel

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

X	$\min(d(x,z_i)^2)$
(7,4)	
(8,3)	2
(5,9)	29
(3,3)	17
(1,3)	37
(10,1)	18

28

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

X	prob
(7,4)	-
(8,3)	2/103
(5,9)	29 103
(3,3)	17/103
(1,3)	37/103
(10,1)	18/103

Suppose we have the small dataset

[(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (1,3) to the list of cluster centers.

X	$\min(d(x,z_i)^2)$
(7,4)	-
(8,3)	
(5,9)	
(3,3)	4
(1,3)	-
(10,1)	1

30

Suppose we have the small dataset

[(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (1,3) to the list of cluster centers.

X	$\min(d(x,z_i)^2)$
(7,4)	-
(8,3)	2
(5,9)	29
(3,3)	4
(1,3)	-
(10,1)	18

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (1,3) to the list of cluster centers.

X	prob
(7,4)	-
(8,3)	2/53
(5,9)	29/53
(3,3)	4/53
(1,3)	-
(10,1)	18/53

32

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (5,9) to the list of cluster centers.

X	prob
(7,4)	-
(8,3)	
(5,9)	-
(3,3)	
(1,3)	-
(10,1)	

• No principled way. • Elbow method: see where you get saturation. Objective function

https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb