

라즈베리파이를 활용한 소형 분광기 제작

류아림, 송다현, 소유진, 김경호

Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract

분광법은 물성을 이해하는 방법의 하나이다. 예를 들어, 불꽃반응 실험에서 금속 염의 불꽃은 다양한 색으로 나타나게 된다. 불꽃색은 다양 한 파장의 빛이 합쳐져서 만들어진 것으로, 금속 염의 불꽃은 고유의 스펙트럼을 가지고 있다. 빛을 파장에 따라 분산시켜 빛의 정량적 측정을 하는 기기를 분광기라고 한다. 하지만 분광기는 **수백에서 수천만 원의 가격**을 형성하고 있어, 중등교육에서 활용하기는 어렵다. 간이 분광기 를 사용하는 방법도 가능하나, 눈으로 관찰하는 것에 그쳐 학생들의 활용범위가 제한된다. 본 연구는 이러한 문제를 해결하기 위해서 **정량** 적 측정이 가능한 교육용 전자식 분광기를 제작하였다.

Introduction

- 3D 프린터와 회절격자 필름을 활용하여 분광기 제작
- 라즈베리파이와 카메라 모듈 이용 분광신호 측정
- 방전광 빛을 이용한 교정 및 분석

Method

Hardware

- Hardware Component
- 1) 라즈베리파이3
- 2) Rpi camera(B)
- 3) ICE Tower Fan V2 for pi
- 4) 회절격자 필름
- 5) Spectrometer structure

- Hardware Modeling

- Outside box
- Inside box
- Optical baffle

- Set up

• 광경로를 고려하여, 방전관과 분광기의 슬릿이 일직선상이 되도록 함.

Software

- Rpi 카메라를 통해 얻은 이미지를 흑백 처리하여 빛의 세기를 얻음.
- 각 픽셀에서의 세기 값과 픽셀의 위치 값으로 세기 그래프를 형성함.

UI Intensity peak점 분석

Result

Helium

Hydrogen

2) 스펙트럼 이미지

Neon

3) 결과 분석 그래프

3) 결과 분석 그래프

3) 결과 분석 그래프 596 450 wavelength(nm)

- 기존 스펙트럼과 관찰한 스펙트럼이 일치함
- 파장에 따른 intensity를 가시적으로 표현이 가능함
- 광량이 적은 경우 스펙트럼 관찰이 어려움 → 노출도 조절로 추후 개선 예정

Conclusion

교육 현장에서 사용하는 간이 분광기의 경우 학생들이 눈으로 관찰하 는 것으로 그쳐 **정량적인 측정이 어렵다**는 한계가 있다. 이를 해결하기 위해, 본 연구는 **소형 전자식 분광기를 제작**하여 파장 별 측정을 가능하 게 하였다. 관찰한 스펙트럼을 교과서 스펙트럼 이미지와 비교하여, 금 속 염 스펙트럼의 특징적인 **파장을 확인**할 수 있다.

라즈베리파이를 활용한 분광기는 **저렴한 가격**으로 중등교육에서 활용 할 수 있다. 이 연구를 활용하여 원소 및 화합물에 대한 학습에 도움이 될 것으로 기대된다.