Fifth Semester

Course Details: UNIT 1 INTRODUCTION

ERP: An Overview, Enterprise – An Overview, Benefits of ERP, ERP and Related Technologies, Business Process Reengineering (BPR), Data Warehousing, Data Mining, OLAP, SCM [9hrs., CO1]

UNIT II ERP IMPLEMENTATION

ERP Implementation Lifecycle, Implementation Methodology, Hidden Costs, Organizing the Implementation, Vendors, Consultants and Users, Contracts with Vendors, Consultants and Employees, Project Management and Monitoring [9hrs., CO2]

UNIT III THE BUSINESS MODULES

Business modules in an ERP Package, Finance, Manufacturing, Human Resources, Plant Maintenance, Materials Management, Quality Management, Sales and Distribution [9hrs., CO3]

UNIT IV THE ERP MARKET

ERP Market Place, SAP AG, Peoplesoft, Baan, JD Edwards, Oracle, QAD, SSA [9hrs., CO4]

UNIT V ERP - PRESENT AND FUTURE

Turbo Charge the ERP System, EIA, ERP and e-Commerce, ERP and Internet, Future Directions

[6hrs., CO1]

TEXT BOOK

1. Alexis Leon, "ERP Demystified", Tata McGraw Hill, New Delhi, 2000

REFERENCES

- 1. Joseph A Brady, Ellen F Monk, Bret Wagner, "Concepts in Enterprise Resource Planning", Thompson Course Technology, USA, 2001.
- 2. Vinod Kumar Garg and Venkitakrishnan N K, "Enterprise Resource Planning Concepts and Practice", PHI, New Delhi, 2003

Course outcomes: The students at the end will be able;

CO1: To know the basics of ERP

CO2: To understand the key implementation issues of ERP

CO3: To know the business modules of ERP

CO4: To be aware of some popular products in the area of ERP

Course Code: BTCS501-18 Course Title: Database Management Systems 3L:0T:0P 3Credits

Detailed Contents:

Module 1: Database system architecture

Data Abstraction, Data Independence, Data Definition Language (DDL), Data Manipulation Language (DML). Data models: Entity-relationship model, network model, relational and object oriented Data models, integrity constraints, data manipulation operations.

[7hrs] (CO1,2)

Module 2: Relational query languages

Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQL server. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Lossless design. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms. [10hrs] (CO2,4)

Module 3:

Storage strategies, Indices, B-trees, hashing.

[3hrs] (CO3)

Module 4: Transaction processing

Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi-version and optimistic Concurrency Control schemes, Database recovery. [6hrs] (CO3)

Module 5: Database Security

Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection. [8hrs] (CO 4,5)

Module 6: Advanced Topics

Object oriented and object relational databases, Logical databases, Web databases, Distributed databases. [8hrs] (CO 5)

Course Outcomes:

At the end of study the student shall be able to:

CO1: write relational algebra expressions for a query and optimize the Developed expressions

CO2: design the databases using ER method and normalization.

CO3: construct the SQL queries for Open source and Commercial DBMS-MYSQL, ORACLE, and DB2.

CO4: determine the transaction atomicity, consistency, isolation, and durability.

CO5: Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Text Books:

1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.

Reference Books:

- 1. "Principles of Database and Knowledge–Base Systems", Vol1 by J. D. Ullman, Computer Science Press.
- 2. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, Pearson Education.
- 3. "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley.

Course Code: BTCS502-18	Course Title: Formal Language &	3L:1T:0P	3Credits	42 Hours
	Automata Theory			

Detailed Contents

Module 1: Introduction

Alphabet, languages and grammars, productions and derivation, Chomsky hierarchy of languages. [3hrs] (CO1)

Module 2: Regular languages and finite automata:

Regular expressions and languages, deterministic finite automata (DFA) and equivalence with regular expressions, nondeterministic finite automata (NFA) and equivalence with DFA, regular grammars and equivalence with finite automata, properties of regular languages, pumping lemma for regular languages, minimization of finite automata. [8hrs] (CO2)

Module 3: Context-free languages and pushdown automata

Context-free grammars (CFG) and languages (CFL), Chomsky and Greibach normal forms, nondeterministic pushdown automata (PDA) and equivalence with CFG, parse trees, ambiguity in CFG, pumping lemma for context-free languages, deterministic pushdown automata, closure properties of CFLs.

[8hrs] (CO3)

Module 4: Context-sensitive languages

Context-sensitive grammars (CSG) and languages, linear bounded automata and equivalence with CSG. [5hrs] (CO4)

Module 5: Turing machines

The basic model for Turing machines (TM), Turing recognizable (recursively enumerable) and Turing-decidable (recursive) languages and their closure properties, variants of Turing machines, nondeterministic TMs and equivalence with deterministic TMs, unrestricted grammars and equivalence with Turing machines, TMs as enumerators. [8hrs] (CO 5)

Module 6: Undecidability & Intractablity:

cycle), number problem (partition), set cover

Church-Turing thesis, universal Turing machine, the universal and diagonalization languages, reduction between languages and Rice's theorem, undecidable problems about languages.

Intractability: Notion of tractability/feasibility. The classes NP and co-NP, their importance. Polynomial time many-one reduction. Completeness under this reduction. Cook-Levin theorem: NP-completeness of propositional satisfiability, other variants of satisfiability. NP-complete

problems from other domains: graphs (clique, vertex cover, independent sets, Hamiltonian

[12hrs] (CO5)

Course Outcomes: The student will be able to:

CO1: Write a formal notation for strings, languages and machines.

CO2: Design finite automata to accept a set of strings of a language.

CO3: Design context free grammars to generate strings of context free language.

CO4: Determine equivalence of languages accepted by Push Down Automata and languages generated by context free grammars

CO5: Distinguish between computability and non-computability and Decidability and undecidability.

Text Books:

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson Education Asia.

Reference Books:

- 1. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, Pearson Education Asia.
- 2. Dexter C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science, Springer.
- 3. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing.
- 4. John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill.

Course Code: BTCS503-18 | Course Title: Software Engineering | 3L:1T:0P | 3Credits | 42 Hours

Detailed Contents:

Module 1:

Evolution and impact of Software engineering, software life cycle models: Waterfall, prototyping, Evolutionary, and Spiral models. Feasibility study, Functional and Non-functional requirements, Requirements gathering, Requirements analysis and specification.

[10hrs] (CO 1)

Module 2:

Basic issues in software design, modularity, cohesion, coupling and layering, function-oriented software design: DFD and Structure chart, object modeling using UML, Object-oriented software development, user interface design. Coding standards and Code review techniques.

[8hrs] (CO₂)

Module 3:

Fundamentals of testing, White-box, and black-box testing, Test coverage analysis and test case design techniques, mutation testing, Static and dynamic analysis, Software reliability metrics, reliability growth modeling.

[10hrs] (CO 3)

Module 4:

Software project management, Project planning and control, cost estimation, project scheduling using PERT and GANTT charts, cost-time relations: Rayleigh-Norden results, quality management [8hrs] (CO4)

Module 5:

ISO and SEI CMMI, PSP and Six Sigma. Computer aided software engineering, software maintenance, software reuse, Component-based software development.

[6hrs] (CO5)

Text Books:

1. Roger Pressman, "Software Engineering: A Practitioners Approach,(6th Edition), McGraw Hill, 1997.

Reference Books:

- 1. Sommerville, "Software Engineering, 7th edition", Adison Wesley, 1996.
- 2. Watts Humphrey, "Managing software process", Pearson education, 2003.
- 3. James F. Peters and Witold Pedrycz, "Software Engineering An Engineering Approach", Wiley.
- 4. Mouratidis and Giorgini. "Integrating Security and Software Engineering–Advances and Future", IGP. ISBN 1-59904-148-0.
- 5. Pankaj Jalote, "An integrated approach to Software Engineering", Springer/Narosa.
- 6. Fundamentals of Software Engineering by Rajib Mall, PHI-3rd Edition, 2009.

Course Outcomes:

At the end of the course the student should be able to:

- CO 1: Students should be able to identify the need for engineering approach to software development and various processes of requirements analysis for software engineering problems.
- CO 2: Analyse various software engineering models and apply methods for design and development of software projects.
- CO 3: Work with various techniques, metrics and strategies for Testing software projects.
- CO 4: Identify and apply the principles, processes and main knowledge areas for Software Project Management
- CO 5: Proficiently apply standards, CASE tools and techniques for engineering software projects

Course Code: BTCS 504-18 | Course Title: Computer Networks | 3L:1T:0P | 3Credits | 42 Hours

Detailed Contents:

Module 1: Data Communication Components

Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.

[8hrs] (CO1)

Module 2: Data Link Layer and Medium Access Sub Layer

Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking, Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA, CSMA/CDCDMA/CA. [10 hrs] (CO2)

Module 3: Network Layer

Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols. [8 hrs] (CO3)

Module 4: Transport Layer

Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm. [8 hrs] (CO3)

Module 5: Application Layer

Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.

[8 hrs] (CO4)

Course Outcomes: The student will be able to:

CO1: Explain the functions of the different layer of the OSI Protocol;

CO2: Describe the function of each block of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs);

CO3: Develop the network programming for a given problem related TCP/IP protocol; &

CO4: Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

Text Books:

- 1. Data Communication and Networking, 4th Edition, Behrouz A. Forouzan, McGraw-Hill.
- 2. Data and Computer Communication, 8th Edition, William Stallings, Pearson Prentice Hall India.

Reference Books:

1. Computer Networks, 8th Edition, Andrew S. Tanenbaum, Pearson New International Edition.

- 2. Internetworking with TCP/IP, Volume 1, 6th Edition Douglas Comer, Prentice Hall of India
- 3. TCP/IP Illustrated, Volume 1, W. Richard Stevens, Addison-Wesley, United States of America.

Course Code: BTCS505-18 CourseTitle: Database management System lab 0L:0T:4P 2Credits

List of Experiments:

- **Task 1:** Introduction to SQL and installation of SQL Server / Oracle.
- **Task 2:** Data Types, Creating Tables, Retrieval of Rows using Select Statement, Conditional Retrieval of Rows, Alter and Drop Statements.
- **Task 3:** Working with Null Values, Matching a Pattern from a Table, Ordering the Result of a Query, Aggregate Functions, Grouping the Result of a Query, Update and Delete Statements.
- Task 4: Set Operators, Nested Queries, Joins, Sequences.
- **Task 5:** Views, Indexes, Database Security and Privileges: Grant and Revoke Commands, Commit and Rollback Commands.
- **Task 6:** PL/SQL Architecture, Assignments and Expressions, Writing PL/SQL Code, Referencing Non-SQL parameters.
- Task 7: Stored Procedures and Exception Handling.
- Task 8: Triggers and Cursor Management in PL/SQL.

Suggested Tools - MySQL, DB2, Oracle, SQL Server 2012, Postgre SQL, SQL lite

Course Outcomes:

CO1: This practical will enable students to retrieve data from relational databases using SQL.

CO2: students will be able to implement generation of tables using datatypes

CO3: Students will be able to design and execute the various data manipulation queries.

CO4: Students will also learn to execute triggers, cursors, stored procedures etc.

Course Code: BTCS506-18	Course Title: Software Engineering Lab	0L:0T:2P	1 Credits	

List of Experiments:

- **Task 1:** Study and usage of OpenProj or similar software to draft a project plan
- Task 2: Study and usage of OpenProj or similar software to track the progress of a project
- **Task 3:** Preparation of Software Requirement Specification Document, Design Documents and Testing Phase

- **Task 4:** related documents for some problems
- **Task 5:** Preparation of Software Configuration Management and Risk Management related documents
- Task 6: Study and usage of any Design phase CASE tool
- Task 7: To perform unit testing and integration testing
- Task 8: To perform various white box and black box testing techniques
- Task 9: Testing of a web site

<u>Suggested Tools</u> - Visual Paradigm, Rational Software Architect. Visio, Argo UML, Rational Application Developer etc. platforms.

Course Code: BTCS507-18 | Course Title: Computer Networks Lab | 0L:0T:2P | 1 Credits

List of Experiments:

- **Task 1:** To study the different types of Network cables and network topologies.
- **Task 2:** Practically implement and test the cross-wired cable and straight through cable using clamping tool and network lab cable tester.
- **Task 3:** Study and familiarization with various network devices.
- Task 4: Familiarization with Packet Tracer Simulation tool/any other related tool.
- **Task 5:** Study and Implementation of IP Addressing Schemes
- **Task 6:** Creation of Simple Networking topologies using hubs and switches
- **Task 7:** Simulation of web traffic in Packet Tracer
- Task 8: Study and implementation of various router configuration commands
- **Task 9:** Creation of Networks using routers.
- Task 10: Configuring networks using the concept of subnetting
- **Task 11:** Practical implementation of basic network command and Network configuration commands like ping, ipconfig, netstat, tracert etc. for troubleshooting network related problems.
- **Task 12:**Configuration of networks using static and default routes.

Course Outcomes:

The students will be able to:

CO1: Know about the various networking devices, tools and also understand the implementation of network topologies;

CO2: Create various networking cables and know how to test these cables;

CO3: Create and configure networks in packet trace rtool using various network devices and topologies;

CO4: Understand IP addressing and configure networks using the subnet in;

CO5: Configure routers using various router configuration commands.

Suggested Tools - NS2/3, Cisco packet tracer, Netsim etc..

Course Code: BTCS 510-18 | Course Title: Programming in Python | 3L:0T:0P | 3 Credits | 42 Hours

Detailed Contents:

Module 1:

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules Sequences - Strings, Lists, and Tuples, Mapping and Set Types.

[8hrs] (CO1)

Module 2:

FILES: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, *Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions, Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module, Related Modules

Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules.

[10hrs] (CO1,2)

Module 3:

Regular Expressions: Introduction, Special Symbols and Characters, Res and Python Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules.

[8hrs] (CO 2,3)

Module 4:

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

WEB Programming: Introduction, Wed Surfing with Python, Creating Simple Web Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI Application Advanced CGI, Web (HTTP) Servers. [10hrs] (CO 4,6)

Module 5:

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API), Object Relational Managers (ORMs), Related Modules. [6 hrs] (CO5)

Text Books:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

Course Outcomes:

The students should be able to:

- 3. J.D. Foley et al, Computer Graphics, Principles and Practices, 2nd Edition, Addison Wasley, 2004.
- 4. Roy A. Plastock, Gordon Kalley, Computer Graphics, Schaum's Outline Series, 1986.

Course Outcomes: The students shall be able to:

CO1: Understand about fundamentals of Graphics to enable them to design animated scenes for virtual object creations.

CO2: Make the student present the content graphically.

CO3: Work in computer aided design for content presentation for better analogy data with pictorial representation

.....

Course Code: BTCS 518-18	Course Title: Computer Graphics Lab	0L:0T:4P	2 Credits	2 Hours/
				week

List of Experiments:

- **Task 1:** WAP to draw different geometric structures using different functions.
- **Task 2:** Implement DDA line generating algorithm.
- **Task 3:** Implement Bresenham's line generating algorithm.
- **Task 4:** Implement Mid-point circle line generating algorithm.
- **Task 5:** Implementation of Bresenham's circle drawing algorithm.
- **Task 6:** Implementation of mid-point circle generating Algorithm.
- **Task 7:** Implementation of ellipse generating Algorithm.
- **Task 8:** WAP of color filling the polygon using Boundary fill and Flood fill algorithm.
- **Task 9:** To translate an object with translation parameters in X and Y directions.
- **Task 10:** To scale an object with scaling factors along X and Y directions.
- **Task 11:** Program of line clipping using Cohen-Sutherland algorithm.
- **Task 12:** To perform composite transformations of an object.
- **Task 13:** To perform the reflection of an object about major.

Course Code: BTCS 520-18	Course Title: Web Technologies	3L:0T:0P	3 Credits	42 Hours

Detailed Contents:

Module 1:

Introduction: History and evolution of Internet protocols, Internet addressing, Internet Service Provider (ISP), Introduction to WWW, DNS, URL, HTTP, HTTPS, SSL, Web browsers, Cookies, Web servers, Proxy servers, Web applications. Website design principles, planning the site and navigation. [6 hrs][CO1]

Module 2:

HTML and DHTML: Introduction to HTML and DHTML, History of HTML, Structure of HTML Document: Text Basics, Structure of HTML Document: Images, Multimedia, Links,

Audio, Video, Table and Forms, Document Layout, HTML vs. DHTML, Meta tags, Browser architecture and Website structure. Overview and features of HTML5.

[7 hrs][CO2]

Module 3:

Style Sheets: Need for CSS, Introduction to CSS, Basic syntax and structure, Types of CSS – Inline, Internal and External CSS style sheets.CSS Properties - Background images, Colors and properties,Text Formatting, Margin, Padding, Positioning etc., Overview and features of CSS3.

[7 hrs][CO3]

Module 4:

Java Script: Introduction, JavaScript's history and versions, Basic syntax, Variables, Data types, Statements, Operators, Functions, Arrays, Objects, dialog boxes, JavaScript DOM.

[7 hrs][CO4]

Module 5:

PHP and MySQL: Introduction and basic syntax of PHP, Data types, Variables, Decision and looping with examples, String, Functions, Array, Form processing, Cookies and Sessions, Email, PHP-MySQL: Connection to server.

[7 hrs][CO5]

Module 6:

Ajax and JSON: AJAX Introduction, AJAX Components, Handling Dynamic HTML with Ajax, Advantages & disadvantages, HTTP request, XMLHttpRequest Server Response.

JSON- Syntax, Schema, Data types, Objects, Reading and writing JSON on client and server. Using JSON in AJAX applications. [8 hrs][CO6]

Students shall be able to:

- CO1. Understand and apply the knowledge of web technology stack to deploy various web services.
- CO2. Analyze and evaluate web technology components for formulating web related problems.
- CO3. Design and develop interactive client server internet application that accommodates user specific requirements and constraint analysis.
- CO4. Program latest web technologies and tools by creating dynamic pages with an understanding of functions and objects.
- CO5. Apply advance concepts of web interface and database to build web projects in multidisciplinary environments.
- CO6. Demonstrate the use of advance technologies in dynamic websites to provide performance efficiency and reliability for customer satisfaction.

Text Books:

1. Jeffrey C. Jackson, "Web Technologies: A Computer Science Perspective", PearsonEducation