		Page 1	
Name:			IIT Kanpı CS772A (PML
Roll N	o.:	Dept.:	End-sem Exar Date: April 29, 202
Instru	actions:		Total: 100 mark
1. 2. 3. 4.	pages designated for rough work. Ad Write/mark your answers clearly in t	+ 1 page for rough lditional rough she the provided space ons (you may use to	work). No part of your answers should be on ets may be provided if needed. Please keep your answers precise and concise the rough sheet for that). In some cases, you
Section	1 (True or False: 15 X $1 = 15$ marks)	. For each of the fe	ollowing simply write ${\sf T}$ or ${\sf F}$ in the box.
1. [2. [Gibbs sampling is applicable every Choosing the likelihood and the form posterior distribution.		cal) conjugacy. tial family distributions results in a closed
3. [4. [5. [Unlike MCMC, variational infered Denoising diffusion models are sl	lower at generation	
6. [7. [] EM does not provide any uncerta	*	any of the unknowns of the model. dodel is equal to the product of their condi-
8. [9. [4		and global optima for global variables. ation of acceptance probability significantly
10. [-		posterior can be obtained from the point
11. [· ·	same approximation of the posterior.
12. [13. [Likelihood is a function, not a pr It is not possible to do MLE or	*	the parameters of a generative adversarial

Monte Carlo sampling can be used to compute both ELBO as well as its derivatives.

1. If the target distribution has multiple modes, standard SGLD is prone to generating samples near one of the modes. How can SLGD, or other gradient based sampling methods similar to SGLD, address this issue and generate samples from around the multiple modes of the distribution? Justify your answer briefly.

Generalized linear model (GLM) is a generative model.

network (GAN).

Section 2 (15 short answer questions: $15 \times 3 = 45$ marks). .

IIT Kanpur CS772A (PML) **End-sem Exam**

Name:		
Roll No.:	Dept.:	

Date: April 29, 2023 2. Give two reasons as to why Gaussian Process (GP) is a good method to estimate the surrogate model of the function being optimized via Bayesian Optimization. Why won't you use a Bayesian linear regression model for this purpose? 3. Briefly explain how entropy of the posterior distribution of model parameters can be used for active learning. 4. Suppose you have run MCMC to generate (a sufficiently large number of) samples from a distribution p(z). How would you use the generated samples to find the maxima (mode) of this distribution (need not be the true mode; an approximate mode is fine)?

lam	ie:						CS772A (PM
oll	No. :			Dept.:			End-sem Example: April 29, 20
5.	Can	the integral $\int_{-\infty}^{\infty}$	$\sum_{\infty}^{\infty} \exp[-\lambda(x-\mu)]$	$d^{2}dx$ be comput	ed exactly? l	If yes, write its v	alue. If no, state why
6.		*	ossed a coin a m θ is the probabili			*	compute the probabi to do this.
		_			, GC		
7.	sion i	model, assumin	g no additional v	ariables are intr	oduced for th	ne model: (1) Exp	ghts $oldsymbol{w}$ of logistic reg pectation-Maximizat at Langevin Dynam
	. ,	ly justify your		Trasumgs Dam	piiig, (+) 50		
8.	Can	we use the gen	erative approach	to learn a regr	ession model	? If yes, can it b	be done in the same $p(y)p(x y) = p(y)$
	as we justif	y your answer.	ncation model us	sing a generativ	e approach,	i.e., defining $p(y)$	$y x) = rac{p(y)p(x y)}{p(x)}$? Bri

Name:

IIT Kanpur CS772A (PML) End-sem Exam

Roll	No.:		$egin{aligned} \mathbf{Dept.:} \end{aligned} egin{bmatrix} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{a$		Date: April 29, 2023
9.	Briefl is par	ly state how the two hyperparame	ters β, α of sing expects	this model (ation-maximize) and prior $p(\theta \alpha)$ on the parameters θ , one is part of likelihood and the other zation (EM) if (1) We want their point zions.
10.		e 3 advantages (should be distinct frelized supervised learning models, su			an Process based models over standard, such as nearest neighbors.
11.		t is the difference between variation tional EM as opposed to standard I		and variation	onal EM? When would you need to use

Nam	ie:		1 age 0		IIT Kanpur CS772A (PML)
Roll	No.:		Dept.:	Da	End-sem Exam <i>te:</i> April 29, 2023
12.		t is the advantage of selecting the "best to using cross-validation?	t" hyperparamete	r values using an MLE-II	approach as com-
13.	prior	ro-mean Gaussian prior is equivalent to be used to impose different amounts of s, how? If no, why not?			
14.		ly state why the marginal likelihood of ictive distribution.	f a model can als	o be seen as a special cas	e of the posterior
15.	classi	me you have K candidate models (assuffication problem and don't know which each handle this problem.			

IIT Kanpur CS772A (PML) End-sem Exam

Date: April 29, 2023

Section 3	(4	not-so-short	answer	questions:	8+8+	-8+16	= 40	marks).	
-----------	----	--------------	--------	------------	------	-------	------	---------	--

Assume N observations $\mathbf{X} = \{x_1, \dots, x_N\}$ drawn i.i.d. from the exponential distribution, which is $p(x_n \theta) = \theta \exp(-\theta x_n)$ and the prior on the parameter $\theta > 0$ is $p(\theta) = \operatorname{Gamma}(\theta a,b) = \frac{b^a}{\Gamma(a)}\theta^{a-1}$	lefined
What is the marginal likelihood $p(\mathbf{X} a,b)$? Give your answer as a closed-form expression (not an avoid very detailed derivation; show only the basic steps and write down the final expression.	integr
Avoid very detailed derivation; snow only the basic steps and write down the final expression.	

2. Briefly describe what collapsing means in the context of approximate Bayesian inference, and what are the benefits of collapsing? You may use an example, such as a model like Gaussian mixture model or Latent Dirichlet Allocation. You don't need to be excessively detailed (i.e., no derivations etc); it would suffice to explain via a simple example the basic difference between the uncollapsed vs collapsed inference.

Page 7

Name:

Roll No.:

Dept.:

IIT Kanpur CS772A (PML) End-sem Exam

Date: April 29, 2023

- 3. Suppose you are given a dataset of N labeled images $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$, where each image is either a picture of a cat or a dog. You want to train a logistic regression model with weights \boldsymbol{w} to predict whether a new image is of a cat or a dog. However, some of the images in the dataset are mislabeled (i.e., some of the images labeled as "cat" are actually dogs, and vice versa). Let's assume that the mislabeling is random, such that each image is mislabeled with probability p, independently of all other images.
 - (a) Write the expression for the likelihood function for this problem. (3 marks)
 - (b) Assuming a suitable prior that corresponds to an L2 regularizer, write the expression for the posterior distribution of \boldsymbol{w} . You only need to write it up to a proportionality constant. (2 marks)
 - (c) Given the posterior distribution, how would you compute the probability of correctly classifying a new image? How does this probability depend on the mislabeling probability p? (3 marks)

new image?	How does this probability	depend on the mislabe	eling probability p ? (3 ma	rks)

Page 8	8
--------	---

Name:	
Roll No.:	Dept.:

IIT Kanpur CS772A (PML) End-sem Exam

Date: April 29, 2023

4. Consider a linear regression model $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$ with $\mathbf{y} = [y_1, \dots, y_N]^{\top}$ is the $N \times 1$ response vector, \mathbf{X} is the $N \times D$ feature matrix, and $\boldsymbol{\epsilon} = [\epsilon_1, \dots, \epsilon_N]^{\top}$ is the $N \times 1$ vector of i.i.d. Gaussian noise $\mathcal{N}(0, \sigma^2)$. Let us assume the following prior on each entry of the weight vector $\mathbf{w} \in \mathbb{R}^D$

$$p(w_d|\sigma, \gamma_d) = \begin{cases} \mathcal{N}(0, \sigma^2 v_0), & \text{if } \gamma_d = 0\\ \mathcal{N}(0, \sigma^2 v_1), & \text{if } \gamma_d = 1 \end{cases}$$

where $v_1 \gg v_0 > 0$. Further assume the priors $p(\gamma_d) = \text{Bernoulli}(\theta)$, d = 1, ..., D, $p(\theta) = \text{Beta}(a_0, b_0)$, and $p(\sigma^2) = \text{IG}(\nu/2, \nu\lambda/2)$, where IG denotes the inverse-gamma prior in its shape-scale parametrization. Note that the prior on w_d can also be written as $p(w_d|\sigma, \gamma_d) = \mathcal{N}(0, \sigma^2 \kappa_{\gamma_d})$ with $\kappa_{\gamma_d} = \gamma_d v_1 + (1 - \gamma_d) v_0$.

- What is the effect of assuming the above prior on \boldsymbol{w} (4 marks)?
- Derive an EM algorithm for this model. Your algorithm should give the posterior over the weight vector \boldsymbol{w} and point estimates (MAP) for the remaining unknowns $\boldsymbol{\gamma}, \sigma^2, \theta$ (12 marks).

Name:	IIT Kanpur CS772A (PML) End-sem Exam	
Roll No.:	Dept.:	End-sem Exam Date: April 29, 2023

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS772A (PML) End-sem Exam

Date: April 29, 2023

Some distributions and their properties:

- For $x \in (0,1)$, Beta $(x|a,b) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$, where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ and Γ denotes the gamma function s.t. $\Gamma(x) = (x-1)!$ for a positive integer x. Expectation of a Beta r.v.: $\mathbb{E}[x] = \frac{a}{a+b}$.
- For $x \in \{0, 1, 2, \ldots\}$ (non-negative integers), $Poisson(x|\lambda) = \frac{\lambda^x \exp(-\lambda)}{x!}$ where λ is the rate parameter.
- For $x \in \mathbb{R}_+$, Gamma $(x|a,b) = \frac{b^a}{\Gamma(a)}x^{a-1}\exp(-bx)$ (shape and rate parameterization), and Gamma $(x|a,b) = \frac{1}{\Gamma(a)b^a}x^{a-1}\exp(-\frac{x}{b})$ (shape and scale parameterization)
- For $x \in \mathbb{R}$, Univariate Gaussian: $\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$
- For $x \in \mathbb{R}^D$, D-dimensional Gaussian: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\}$. Trace-based representation: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\{-\frac{1}{2}\mathrm{trace}[\boldsymbol{\Sigma}^{-1}\mathbf{S}]\}$, $\mathbf{S} = (\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^\top$. Information form: $\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-D/2}|\boldsymbol{\Lambda}|^{1/2}\exp\left[-\frac{1}{2}\left(\boldsymbol{x}^\top \boldsymbol{\Lambda} \boldsymbol{x} + \boldsymbol{\xi}^\top \boldsymbol{\Lambda}^{-1}\boldsymbol{\xi} - 2\boldsymbol{x}^\top \boldsymbol{\xi}\right)\right]$ where $\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^{-1}$ and $\boldsymbol{\xi} = \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}$
- For $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$, Dirichlet $(\boldsymbol{\pi} | \alpha_1, \dots, \alpha_K) = \frac{1}{B(\alpha_1, \dots, \alpha_K)} \prod_{k=1}^K \pi_k^{\alpha_k 1}$ where $B(\alpha_1, \dots, \alpha_K) = \frac{\prod_{k=1}^K \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^K \alpha_k)}$, and $\mathbb{E}[\pi_k] = \frac{\alpha_k}{\sum_{k=1}^K \alpha_k}$
- For $x_k \in \{0, N\}$ and $\sum_{k=1}^K x_k = N$, multinomial $(x_1, \dots, x_K | N, \boldsymbol{\pi}) = \frac{N!}{\boldsymbol{x}_1! \dots, x_K!} \pi_1^{x_1} \dots \pi_K^{x_K}$ where $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$. The multinoulli is the same as multinomial with N = 1.

Some other useful results:

- If $\mathbf{x} = \mathbf{A}\mathbf{z} + \mathbf{b} + \epsilon$, $p(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$, $p(\boldsymbol{\epsilon}) = \mathcal{N}(\boldsymbol{\epsilon}|\mathbf{0}, \mathbf{L}^{-1})$ then $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{A}\mathbf{z} + \mathbf{b}, \mathbf{L}^{-1})$, $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\top} + \mathbf{L}^{-1})$, and $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{\Sigma}\left\{\mathbf{A}^{\top}\mathbf{L}(\mathbf{x} \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\right\}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma} = (\boldsymbol{\Lambda} + \mathbf{A}^{\top}\mathbf{L}\mathbf{A})^{-1}$.
- Marginal and conditional distributions for Gaussians: $p(\boldsymbol{x}_a) = \mathcal{N}(\boldsymbol{x}_a|\boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa}),$ $p(\boldsymbol{x}_a|\boldsymbol{x}_b) = \mathcal{N}(\boldsymbol{x}_a|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$ where $\boldsymbol{\Sigma}_{a|b} = \boldsymbol{\Lambda}_{aa}^{-1} = \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} \boldsymbol{\Sigma}_{ba}, \, \boldsymbol{\mu}_{a|b} = \boldsymbol{\Sigma}_{a|b} \left\{ \boldsymbol{\Lambda}_{aa} \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{ab} (\boldsymbol{x}_b - \boldsymbol{\mu}_b) \right\} = \boldsymbol{\mu}_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} (\boldsymbol{x}_b - \boldsymbol{\mu}_b) = \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\boldsymbol{x}_b - \boldsymbol{\mu}_b), \text{ where symbols have their usual meaning. :)}$
- $\frac{\partial}{\partial u}[\mu^{\top} \mathbf{A} \mu] = [\mathbf{A} + \mathbf{A}^{\top}] \mu$, $\frac{\partial}{\partial \mathbf{A}} \log |\mathbf{A}| = \mathbf{A}^{-\top}$, $\frac{\partial}{\partial \mathbf{A}} \operatorname{trace}[\mathbf{A} \mathbf{B}] = \mathbf{B}^{\top}$
- For a random variable vector \boldsymbol{x} , $\mathbb{E}[\boldsymbol{x}\boldsymbol{x}^{\top}] = \mathbb{E}[\boldsymbol{x}]\mathbb{E}[\boldsymbol{x}]^{\top} + \text{cov}[\boldsymbol{x}]$