Analiza sintactica Seminar saptamanile 9, 10, 11, 12

Continut:

1	Analizorul descendent cu reveniri	1
2	Functiile FIRST ₁ , FOLLOW ₁	1
3	Analiza sintactica descendenta LL(1)	2
	Analiza sintactica LR* (LR(0), SLR, LR(1),LALR)	
	Gramatica de precedenta simpla	

1 Analizorul descendent cu reveniri

1. Fie gramatica:

 $S \rightarrow aSbS$

 $S \rightarrow aS$ $S \rightarrow c$

Folosind analizorul descendent cu reveniri verificati daca:

- $acbc \in L(G)$ (?)
- $cb \in L(G)$ (?).

Rezolvare:

 $S \rightarrow aSbS$ (S_1)

 $S \rightarrow aS$ (S_2)

 $S \rightarrow c$ (S_3)

 $acbc \in L(G)$? (n=4)

$$(q,1,\epsilon,S)$$
 |- $(expandare)$

 $(q,1,S_1,aSbS)$ |- (avans)

 $(q,2,S_1a,SbS)$ |- (expandare)

 $(q,\!2,\!S_1aS_1,\!aSbSbS)\mid \text{-} \stackrel{(insucces\ de\ moment)}{}$

 $(r,\!2,\!S_1a\textcolor{red}{S_1},\!\textcolor{red}{aSbS}bS)\mid -\textcolor{blue}{}^{-\textcolor{blue}{(alt\check{a}\;\hat{n}cercare)}}$

 $(q,2,S_1aS_2,aS_bS)$ |- (insucces de moment)

 $(r,\!2,\!S_1aS_2,\!aSbS)\mid^{-\frac{1}{(alt\check{a}\;\hat{i}ncercare)}}$

 $(q,2,S_1aS_3,cbS)$ |- $^{(avans)}$

 $(q,3,S_1aS_3c,bS)$ |- $^{(avans)}$

```
(q,4,S_1aS_3cb,S) |- ^{(expandare)}
(q,\!4,\!S_1aS_3cbS_1,\!aSbS) \mid \text{-} \stackrel{(insucces\ de\ moment)}{}
(r,\!4,\!S_1aS_3cbS_1,\!aSbS)\mid \text{-} \ ^{(alt\check{a}\ \hat{n}ncercare)}
(q,4,S_1aS_3cbS_2,aS) \mid - \text{ (insucces de moment)}
(r,\!4,\!S_1aS_3cbS_2,\!aS) \mid \text{-} \text{ (altă încercare)}
(q,4,S_1aS_3cbS_3,c) |- ^{(avans)}
(q,5,S_1aS_3cbS_3c,\varepsilon) |- (succes)
(t,5,S_1aS_3cbS_3c,\varepsilon)
```

=> acbc \in L(G)

Observatie: sirul producțiilor utilizate pentru obținerea cuvantului este:

$$S_1$$
, S_3 și S_3

$$\begin{array}{l} cb \in L(G)? \ (n=2) \\ (q,1,\epsilon,S) \mid - \ ^{(expandare)} \\ (q,1,S_1,aSbS) \mid - \ ^{(insucces\ de\ moment)} \\ (r,1,S_1,aSbS) \mid - \ ^{(altă\ încercare)} \\ (q,1,S_2,aS) \mid - \ ^{(insucces\ de\ moment)} \\ (r,1,S_2,aS) \mid - \ ^{(alta\ încercare)} \\ (q,1,S_3,c) \mid - \ ^{(avans)\ ...} \\ (q,2,S_3c,\epsilon) \mid - \ ^{(insucces\ de\ moment)} \\ (r,2,S_3c,\epsilon) \mid - \ ^{(revenire)} \\ (r,1,S_3,c) \mid - \ ^{(alta\ încercare)} \\ (e,1,\epsilon,S) \\ => cb \not\in L(G) \end{array}$$

2. Analog pentru gramatica:

 $S \rightarrow + S S$

 $S \rightarrow -S S$

 $S \rightarrow a$

si secventa: +a-aa.

2 Functiile FIRST₁, FOLLOW₁

1. Determinati FIRST₁ si FOLLOW₁ pentru neterminalele urmatorei gramatici:

 $S \rightarrow abA$

 $S \rightarrow \epsilon$

 $A \rightarrow Saa$

 $A \rightarrow b$

3 Analiza sintactica descendenta LL(1)

1. Fie gramatica:

S -> if c then S endif

S -> if c then S else S endif

 $S \rightarrow stmt$

Daca inlocuim: $if\ c\ then\ {\it cu}\ a,\ else\ {\it cu}\ b$, $endif\ {\it cu}\ c$, ${\it si}\ stmt\ {\it cu}\ i$ avem:

 $S \rightarrow a S c$

 $S \rightarrow a S b S c$

 $S \rightarrow i$

Pentru una dintre cele 2 gramatici de mai sus:

- a) Verificati daca gramatica este LL(1).
- b) Incercati sa transformati gramatica in una echivalenta LL(1) aplicand factorizarea la stanga. Verificati daca noua gram. este LL(1).
- c) Folosind un analizor descendent verificati daca secventa:

if c then if c then stmt else stmt endif endif

(sau echivalenta ei scrisa cu a,b,c,i)

apartine limbajului generat de gramatica.

2. Fie gramatica ambigua:

 $S \rightarrow if c then S else S | if c then S | stmt$

Daca inlocuim: if c then cu a, else cu b si stmt cu i avem:

 $S \rightarrow a S$

 $S \rightarrow a S b S$

 $S \rightarrow i$

Pentru una dintre cele 2 gramatici de mai sus:

a) Verificati daca gramatica este LL(1).

- b) Incercati sa transformati gramatica in una echivalenta LL(1) aplicand factorizarea la stanga. Verificati daca gramatica obtinuta este LL(1).
- c) Discutati, impreuna cu cadrul didactic, cum se poate modifica tabelul de analiza astfel incat sa se elimine conflictele.
- d) Folosind analizorul LL(1), verificati daca secventa:

if c then if c then stmt else stmt

(sau echivalenta ei scrisa cu a,b,c,i)

apartine limbajului generat de gramatica.

3. Fie gramatica:

E -> T + E | T

 $T \rightarrow T * F | F$

F -> (E) | a

- a) Verificati daca gramatica este LL(1).
- b) Incercati sa transformati gramatica in una echivalenta LL(1) aplicand factorizarea la stanga. Verificati daca gramatica obtinuta este LL(1).
- c) Folosind un analizor descendent verificati daca secventa:

a + a

apartine limbajului generat de gramatica.

4. Fie gramatica:

List -> id

List -> id sep List

- a) Verificati daca gramatica este LL(1).
- b) Incercati sa transformati gramatica in una echivalenta LL(1) aplicand factorizarea la stanga. Verificati daca gramatica obtinuta este LL(1).
- 5. Fie gramatica:

S -> begin Slist end

 $S \rightarrow stmt$

SList -> S

SList -> S; SList

- a) Verificati daca gramatica este LL(1).
- b) Incercati sa transformati gramatica in una echivalenta LL(1) aplicand factorizarea la stanga. Verificati daca gramatica obtinuta este LL(1).

4 Analiza sintactica LR* (LR(0), SLR, LR(1),LALR)

1. Fie gramatica:

 $S \rightarrow AA$

 $A \rightarrow aA$

 $A \rightarrow b$

- a) Verificati daca este LR(0)
- b) Verificati daca este LR(1)
- c) Verificati daca este LALR
- d) Folosind un analizor de tip LR(K), verificati daca secventa: abab apartine limbajului generat de gramatica.

Analizorul va fi ales in functie de raspunsul la intrebarile de mai sus.

Rezolvare (partiala):

a) Îmbogățim gramatica

 $S' \rightarrow S$ (0)

 $S \rightarrow AA$ (1)

 $A \rightarrow aA$ (2)

 $A \rightarrow b$ (3)

Colecția canonica LR(0):

Tabela de analiză LR(0)

		/			
	Acțiune	S	Α	а	b
\mathbf{I}_{0}	S	I ₁	I ₂	I_3	I_4
\mathbf{I}_{1}	acc				
I_2	S		I ₅	I_3	I_4
I_3	S		I ₆	I_3	I_4
I_4	3				
I_5	1				
I_6	2				

Nu avem conflicte, deci gramatica este de tip LR(0)

Observatie: daca gramatica este LR(0), atunci ea este si LR(1) si LALR

b)

Îmbogățim gramatica:

 $S' \rightarrow S$ (0)

 $S \rightarrow AA$ (1)

 $A \rightarrow aA$ (2)

 $A \rightarrow b$ (3)

	First ₁
S'	a,b
S	a,b
Α	a,b

Colecția canonică LR(1):

(... + tabela LR(1))

c)

c) LALR = LR(1) la care se unesc stările care au același nucleu din colecția canonică dacă nu se generează conflicte Colecția canonică LR(1) –unim cele cu aceași culoare:

După unire: I₀, I₁, I₂, I₃₋₆, I₄₋₇, I₅, I₈₋₉

Tabela de analiză LALR

	S	Α	а	b	\$
I _o	S ₁	S ₂	S ₃₋₆	S ₄₋₇	
l ₁					acc
l ₂		S ₅	S ₃₋₆	S ₄₋₇	
l ₃₋₆		S ₈₋₉	S ₃₋₆	S ₄₋₇	
I ₄₋₇			r ₃	r ₃	r ₃
I ₅					r ₁
l ₈₋₉			r ₂	r ₂	r ₂

Nu avem conflicte, deci gramatica e de tip LALR

Observam ca numarul starilor este 7, ca si in cazul LR(0), in timp ce numarul starilor pentru LR(1) este 10.

d) vom folosi analizorul LR(0)

stiva de lucru	banda de	banda	
	intrare	de iesire	
\$0	abab\$	3	shift
\$0a3	bab\$	ε	shift
\$0a3b4	ab\$	3	reducere 3
\$0aA6	ab\$	3	reducere 2
\$0A2	ab\$	23	shift
\$0aA2a3	b\$	23	shift
\$0aA2a3b4	\$	23	reducere 3
\$0A2a3A6	\$	323	reducere 2
\$0A2A5	\$	2323	reducere 1
\$0\$1	\$	12323	acc
·	·		

acc

 \Rightarrow abab \in L(G), și șirul regulilor de producție utilizate este 1,2,3,2, 3

Echivalent, sirul tranzitiilor poate fi scris si astfel:

$$(\$0,abab\$,\epsilon) \mid - \text{(shift)} (\$0a3,bab\$,\epsilon) \mid - \text{(shift)} (\$0a3b4,ab\$,\epsilon) \mid - \text{(reducere 3)} (\$0a3A6,ab\$,3) \mid - \text{(reducere 2)} (\$0A2,ab\$,23) \mid - \text{(shift)} (\$0A2a3,b\$,23) \mid - \text{(shift)} (\$0A2a3b4,\$,23) \mid - \text{(reducere 3)} (\$0A2a3A6,\$,323) \mid - \text{(reducere 2)} (\$0A2A5,\$,2323) \mid - \text{(reducere 1)} (\$0S1,\$,12323) \mid - \text{(acc)} acc$$

2. Fie gramatica:

S -> if c then S endif

S -> if c then S else S endif

 $S \rightarrow stmt$

Daca inlocuim: if c then $\operatorname{cu} a$, else $\operatorname{cu} b$, endif $\operatorname{cu} c$, si stmt $\operatorname{cu} i$ avem:

 $S \rightarrow a S c$

 $S \rightarrow a S b S c$

 $S \rightarrow i$

Pentru una dintre cele 2 gramatici de mai sus:

- a) Verificati daca gramatica este LR(0).
- b) Verificati daca este SLR.
- c) Este LR(1)?

- d) Folosind un analizor de tip LR(K), verificati daca secventa: if c then if c then stmt else stmt endif endif (sau echivalenta ei) apartine limbajului generat de gramatica. Analizorul va fi ales in functie de raspunsul la intrebarile de mai sus.
- 3. Fie gramatica ambigua:

$$S \rightarrow if c then S else S | if c then S | stmt$$

Daca inlocuim: *if c then* cu *a*, *else* cu *b* si *stmt* cu *i* avem:

 $S \rightarrow a S$ $S \rightarrow a S b S$

 $S \rightarrow i$

Pentru una dintre cele 2 gramatici de mai sus, verificati daca este LR(1).

4. Dati gramatica echivalenta neambigua a gramaticii pentru structura if-then-else (gram. ambigua data in problema anterioara)

Dati un cuvant care, in gramatica originala ambigua, poate sa corespunda la doua structuri if cu proprietatea:

- a) cel mai interior if **contine** ramura "else", iar cel exterior **nu contine** ramura "else"
- b) cel mai interior if **nu contine** ramura "else", iar cel exterior **contine** ramura "else"

Verificati, folosind gramatica neambigua echivalenta si analiza LR(1) ca acel cuvant dat anterior este generat de gramatica echivalenta neambigua.

5. Fie gramatica:

 $E \mathbin{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}} E + T$

 $E \rightarrow T$

T -> T * F

 $T \rightarrow F$

 $F \rightarrow id$

F -> (E)

Verificati daca gramatica este LR(1)

6. Fie gramatica:

S -> begin SL end

 $S \rightarrow stmt$

 $SL \rightarrow S$

SL -> S semicolon SL

- a) Verificati daca gramatica este LR(0).
- b) Este SLR?
- c) Folosind un analizor de tip LR(K) , verificati daca secventa: begin stmt semicolon stmt end

Analizorul va fi ales in functie de raspnsul la intrebarile de mai sus.

Rezolvare partiala

b) SLR

Pentru simplitate, vom redenumi: begin cu b, end cu e, stmt cu s, semicolon cu p și SL cu L

Gramatica imbogatita este:

 $S' \rightarrow S$

 $S \rightarrow bLe$ (1)

(0)

 $S \rightarrow s$ (2)

 $L \rightarrow S$ (3)

 $L \rightarrow SpL$ (4)

	FIRST ₁	FOLLOW ₁
S'	b,s	\$
S	b,s	\$, p, e
L	b,s	е

Colectia canonica SLR

Tabelul de analiză SLR:

S	L	b	е	S	р	\$

I ₀	s ₁		s ₂		s ₃		
l ₁							acc
l ₂	S ₅	S ₄	s ₂		S ₃		
l ₃				r ₂		r ₂	r ₂
I ₄				s ₇			
I ₅				r ₃		s ₆	
I ₆	S ₅	s ₈	s ₂		s ₃		
I ₇				r ₁		r ₁	r ₁
I ₈				r ₄			

Nu avem conflicte, deci gramatica e de tip SLR

5 Gramatica de precedenta simpla

1. Fie gramatica:

$$S \rightarrow aSSb$$

$$S \rightarrow c$$

Determinati relatiile de precedent simpla. Verificati daca cuvintele: accb si acb sunt generate de gramatica G.

Rezolvare partiala:

Relatiile de precedenta sunt date mai jos:

	S	a	b	c	\$
S	=.	<.	=.	<.	
a	=.	<.		<.	
b		·>	,>	·>	·>
С		>	; >	>	; >
\$		<		<	

Nu exista conflicte, gramatica indep. de context proprie eps-independenta, unic invertibila

stiva de lucru	banda de intrare	banda de iesire	
\$	<• accb\$	3	deplasare
\$ <• a	<• ccb\$	3	deplasare
\$ <• a <• c	•> cb\$	3	reducere 2
\$ <• a =• S	=• cb\$	2	deplasare
\$<•a=•S<•c	•> b\$	2	reducere 2
\$<•a=•S=•S	=• b\$	22	deplasare
\$<•a=•S=•S=•b	•>\$	22	reducere 1
\$ S	\$	122	

acc

 \Rightarrow accb \in L(G) și șirul producțiilor utiizate este 1, 2, 2

2. Fie gramatica:

$$S \rightarrow a \mid aT \mid [S]$$
$$T \rightarrow b \mid b \mid T$$

Determinati relatiile de precedenta simpla.

Rezolvare:

3. Fie gramatica:

$$E \rightarrow E + a$$

^{=&}gt; gramatica este de precedență simplă

 $E \rightarrow a$

Determinati relatiile de precedenta simpla. Verificati daca cuvantul: a+a este generat de gramatica G.