

Lecture: Linear algebra.

- 1. Subspaces.
- 2. Orthogonal complement.
- 3. The four fundamental subspaces
- 4. Solutions of linear equation systems
 - The fundamental theorem of linear algebra
- 5. Determining the fundamental subspaces

Vector Spaces

A vector space V is a set on which vector addition + and scalar multiplication \cdot are such that

V1 For all
$$v_1, v_2, v_3 \in V$$
, $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$

- V2 Exists a zero vector $0 \in V$, such that v+0 = 0+v = v for all $v \in V$
- V3 For each $v \in V$ there exists a unique $-v \in V$ such that v+(-v)=(-v)+v=0
- V4 For all $v_1, v_2 \in V$, $v_1 + v_2 = v_2 + v_1$
- V5 For all $v \in V$, $1 \cdot v = v$
- V6 For all $\alpha, \beta \in \mathbb{R}$ and all $v \in V$, $\alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v$
- V7 For all $\alpha, \beta \in \mathbb{R}$ and all $v \in V$, $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$
- V8 For all $\alpha \in \mathbb{R}$ and all $v_1, v_2 \in V$, $\alpha \cdot (v_1 + v_2) = \alpha \cdot v_1 + \alpha \cdot v_2$

Subspaces

Definition 1. A subset $\mathcal{M} \subset \mathbf{R}^n$ is called a subspace in \mathbf{R}^n if for all $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{M}$ and $\alpha_1, \alpha_2 \in \mathbf{R}$ it holds that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \in \mathcal{M}$$

Note that it always holds that $0 \in \mathcal{M}$.

Basis for a subspace

The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent if there exists no scalars $\alpha_1, \cdots, \alpha_k$ (not all zero) such that $\sum_{\ell=1}^k \alpha_\ell \mathbf{v}_\ell = 0$.

Definition 2. \mathcal{M} is spanned by $\mathbf{v}_1, \dots, \mathbf{v}_k$ if for each $\mathbf{v} \in \mathcal{M}$ there are $\alpha_1, \dots, \alpha_k \in \mathbf{R}$ such that

$$\sum_{l=1}^{k} \alpha_l \mathbf{v}_l = \mathbf{v}$$

If $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent, then they form a basis for \mathcal{M} and the dimension of \mathcal{M} is k, and it is denoted dim $\mathcal{M} = k$.

Notation:

$$\mathcal{M} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\} = \{\sum_{l=1}^k \alpha_l \mathbf{v}_l : \alpha_l \in \mathbf{R}; \ l = 1, \dots, k\}.$$

Sums of subspaces and orthogonal subspaces

Given two subspaces \mathcal{M}_1 and \mathcal{M}_2 , the subset

$$\mathcal{M}=\{\mathbf{v}_1+\mathbf{v}_2:\ \mathbf{v}_1\in\mathcal{M}_1,\mathbf{v}_2\in\mathcal{M}_2\}$$
 is a subspace and we write $\mathcal{M}=\mathcal{M}_1+\mathcal{M}_2.$

Two vectors \mathbf{v}_1 and \mathbf{v}_2 are orthogonal if $\mathbf{v}_1^\mathsf{T}\mathbf{v}_2 = \|\mathbf{v}_1\|\|\mathbf{v}_2\|\cos\theta = 0$, i.e., the angle θ between them is $\pi/2$, and we write $\mathbf{v}_1 \perp \mathbf{v}_2$.

Two subspaces \mathcal{M}_1 and \mathcal{M}_2 are orthogonal if $\mathbf{v}_1 \perp \mathbf{v}_2$ for all $\mathbf{v}_1 \in \mathcal{M}_1$ and $\mathbf{v}_2 \in \mathcal{M}_2$, and we write $\mathcal{M}_1 \perp \mathcal{M}_2$.

If dim $\mathcal{M}=\dim\mathcal{M}_1+\dim\mathcal{M}_2$, then every $\mathbf{v}\in\mathcal{M}$ can be uniquely written on the form $\mathbf{v}=\mathbf{v}_1+\mathbf{v}_2$, where $\mathbf{v}_1\in\mathcal{M}_1$ and $\mathbf{v}_2\in\mathcal{M}_2$.

Direct sums of subspaces

A linear space \mathcal{M} (for example \mathbf{R}^n) is a direct sum of the subspaces $\mathcal{M}_1, \mathcal{M}_2$ (i.e. $\mathcal{M}_1, \mathcal{M}_2 \subset \mathcal{M}$) if $\mathcal{M}_1 \perp \mathcal{M}_2$ and $\mathcal{M}_2 + \mathcal{M}_2 = \mathbf{R}^n$. The direct sum is denoted $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$, and every $\mathbf{v} \in \mathcal{M}$ can be written uniquely $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ for some $\mathbf{v}_1 \in \mathcal{M}_1$ and $\mathbf{v}_2 \in \mathcal{M}_2$.

Example 1. Assume

$$\mathcal{M}_1 = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$$
 $\mathcal{M}_2 = \operatorname{span}\{\mathbf{v}_{k+1}, \dots, \mathbf{v}_l\}$ $\mathcal{M} = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_l\}$

where v_1, \ldots, v_l are linearly independent vectors. Then it holds that

$$\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$$

if
$$\mathbf{v}_i \perp \mathbf{v}_j$$
 for all $i = 1, \dots, k$ and $j = k + 1, \dots, l$.

Orthogonal complement

The orthogonal complement to a subspace $\mathcal{M} \subset \mathbf{R}^n$ is defined by

$$\mathcal{M}^{\perp} = \{ \mathbf{w} \in \mathbf{R}^n : \mathbf{w}^T \mathbf{v} = 0, \ \forall \, \mathbf{v} \in \mathcal{M} \}$$

The following holds

- \mathcal{M}^{\perp} is a subspace
- $\mathbf{R}^n = \mathcal{M} \oplus \mathcal{M}^{\perp}$.
- If dim $\mathcal{M} = k$, then dim $\mathcal{M}^{\perp} = n k$.
- $(\mathcal{M}^{\perp})^{\perp} = \mathcal{M}$.

The four fundamental subspaces

Consider the linear operator $A: \mathbf{R}^n \to \mathbf{R}^m$,

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{a}}_1 & \hat{\mathbf{a}}_2 & \dots & \hat{\mathbf{a}}_n \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{a}}_1^\mathsf{T} \\ \bar{\mathbf{a}}_2^\mathsf{T} \\ \vdots \\ \bar{\mathbf{a}}_m^\mathsf{T} \end{bmatrix}$$

The Range space: $\mathcal{R}(\mathbf{A}) = \{\mathbf{A}\mathbf{x}|\mathbf{x} \in \mathbf{R}^n\} =$

$$= \left\{ \sum_{j=1}^{n} \hat{\mathbf{a}}_j x_j | x_j \in \mathbf{R}^n, \ j = 1, \dots, n \right\}$$

The Null space: $\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbf{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0}\}$ $= \left\{\mathbf{x} \in \mathbf{R}^n | \mathbf{\bar{a}}_i^\mathsf{T}\mathbf{x} = \mathbf{0}, \ i = 1, \dots, m\right\}$

The Row space: $\mathcal{R}(\mathbf{A}^\mathsf{T}) = \left\{ \mathbf{A}^\mathsf{T} \mathbf{u} | \mathbf{u} \in \mathbf{R}^m \right\}$

$$= \left\{ \sum_{i=1}^{m} \bar{\mathbf{a}}_i u_i | u_i \in \mathbf{R}^n, \ i = 1, \dots, m \right\}$$

The left Null space:
$$\mathcal{N}(\mathbf{A}^\mathsf{T}) = \left\{ \mathbf{u} \in \mathbf{R}^m | \mathbf{A}^\mathsf{T} \mathbf{u} = \mathbf{0} \right\}$$

$$= \left\{ \mathbf{u} \in \mathbf{R}^m | \hat{\mathbf{a}}_j^\mathsf{T} \mathbf{u} = \mathbf{0}, \ j = 1, \dots, n \right\}$$

$$= \left\{ \mathbf{u} \in \mathbf{R}^m | \mathbf{u}^\mathsf{T} \mathbf{A} = \mathbf{0} \right\}$$

- ullet $\mathcal{R}(\mathbf{A})$ and $\mathcal{N}(\mathbf{A}^\mathsf{T})$ are subspaces in \mathbf{R}^m
- $\mathcal{R}(\mathbf{A}^\mathsf{T})$ and $\mathcal{N}(\mathbf{A})$ are subspaces in \mathbf{R}^n

The orthogonal complement of the fundamental subspaces

Theorem 25.1 The following orthogonality relations hold

(i)
$$\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^{\mathsf{T}}).$$

(ii)
$$\mathcal{R}(\mathbf{A}^{\mathsf{T}})^{\perp} = \mathcal{N}(\mathbf{A}).$$

(iii)
$$\mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}^{\mathsf{T}}).$$

$$(iv) \mathcal{N}(\mathbf{A}^{\mathsf{T}})^{\perp} = \mathcal{R}(\mathbf{A}).$$

The Fundamental Theorem of Linear algebra

Theorem Let $A \in \mathbb{R}^{m \times n}$. Then the following direct sums hold

(a)
$$\mathbf{R}^n = \mathcal{R}(\mathbf{A}^T) \oplus \mathcal{N}(\mathbf{A})$$

(b)
$$\mathbf{R}^m = \mathcal{R}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A}^\mathsf{T})$$

where $\mathcal{R}(\mathbf{A}^{\mathsf{T}}) \perp \mathcal{N}(\mathbf{A})$ and $\mathcal{R}(\mathbf{A}) \perp \mathcal{N}(\mathbf{A}^{\mathsf{T}})$.

Furthermore, it holds that dim $\mathcal{R}(\mathbf{A}) = \dim(\mathbf{A}^{\mathsf{T}})$.

Proof: Since $\mathcal{N}(\mathbf{A})$, $\mathcal{R}(\mathbf{A}^{\mathsf{T}}) \subset \mathbf{R}^n$ according to the previous theorem,

$$\mathcal{R}(\mathbf{A}^{\mathsf{T}})^{\perp} = \mathcal{N}(\mathbf{A})$$
 it holds that $\mathbf{R}^n = \mathcal{R}(\mathbf{A}^T) \oplus \mathcal{N}(\mathbf{A})$.

The proof of (b) follows from the same argument.

Solution of linear equation systems

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$ and consider the linear equation system

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

- (A) When does there exist a solution ?
- (B) Is the solution unique? Which solution is chosen otherwise?
- (C) How do we construct the solution?

The fundamental theorem of linear algebra answers the questions above.

Geometric illustration of the fundamental theorem of linear algebra

The picture answers the questions (A) - (C) above.

- ullet The equation system $\mathbf{A}\mathbf{x}=\mathbf{b}$ has a solution iff $\mathbf{b}\in\mathcal{R}(\mathbf{A})$.
- The solution is unique if, and only if, $\mathcal{N}(\mathbf{A}) = 0$. Otherwise, every solution can be decomposed into two components $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n$ where $\mathbf{x}_r \in \mathcal{R}(\mathbf{A}^\mathsf{T})$ satisfies $\mathbf{A}\mathbf{x}_r = \mathbf{b}$ and $\mathbf{x}_n \in \mathcal{N}(\mathbf{A})$. Often we select the smallest norm solution, *i.e.*, $\mathbf{x}_n = \mathbf{0}$.

The following three slides dicusses the questions (A) - (C) in more detail.

- (A) There is a solution to (1) if $b \in \mathcal{R}(A)$
- (B) The solution is unique iff $\mathcal{N}(\mathbf{A}) = \mathbf{0}$. This follows since every $\mathbf{x} \in \mathbf{R}^n$ uniquely can be written $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n$ where $\mathbf{x}_r \in \mathcal{R}(\mathbf{A}^\mathsf{T})$ and $\mathbf{x}_n \in \mathcal{N}(\mathbf{A})$. We have $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{x}_r + \mathbf{A}\mathbf{x}_n = \mathbf{A}\mathbf{x}_r$. The component $\mathbf{x}_n \in \mathcal{N}(\mathbf{A})$ is thus arbitrary and the solution is unique iff $\mathcal{N}(\mathbf{A}) = \mathbf{0}$.

Which solution do we chose if $\mathcal{N}(\mathbf{A}) \neq \mathbf{0}$?

One choice is to take the solution that has the shortest length measured in the Euclidean norm $\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}}$. It follows that we should choose $\mathbf{x}_n = \mathbf{0}$.

- (C) Assume $b \in \mathcal{R}(A)$. There are three cases for the construction of solutions
 - (i) $\mathcal{N}(\mathbf{A}) = \mathbf{0}$ and m = n (quadratic matrix). Then the solution is determined by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.
 - (ii) If $\mathcal{N}(\mathbf{A}) \neq 0$, then we choose the minimum norm solution solution given by $\mathbf{x} = \mathbf{A}^\mathsf{T}\mathbf{u}$, where $\mathbf{u} \in \mathbf{R}^m$ solves $\mathbf{A}\mathbf{A}^\mathsf{T}\mathbf{u} = \mathbf{b}$. If $\mathbf{A}\mathbf{A}^\mathsf{T}$ is invertible then the closed form is $\mathbf{x} = \mathbf{A}^\mathsf{T}(\mathbf{A}\mathbf{A}^\mathsf{T})^{-1}\mathbf{b}$.
 - (iii) $\mathcal{N}(\mathbf{A}) = \mathbf{0}$ and m > n (overdetermined system). Then the solution is obtained by $\mathbf{x} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b}$.

Determining the four fundamental subspaces

Two methods for determining the fundamental subspaces.

- Singular Value Decomposition.
 The best method from a numerical point of view.
- Gauss-Jordan's method.
 We focus on this method

Minimal rank factorization

Theorem 26.1 Let $A \in \mathbb{R}^{m \times n}$ and A = BC, where $B \in \mathbb{R}^{m \times r}$ has linearly independent columns and $C \in \mathbb{R}^{r \times n}$ has linearly independent rows. Then A and A^T both have ranges of dimension r. Furthermore,

$$\mathcal{N}(A) = \mathcal{N}(C)$$
 $\mathcal{N}(A^T) = \mathcal{N}(B^T)$
 $\mathcal{R}(A) = \mathcal{R}(B)$
 $\mathcal{R}(A^T) = \mathcal{R}(C^T)$

Summary of Gauss-Jordan's method

 $\underline{\mathsf{Step 1}}$ Perform elementary row operations to transform \mathbf{A} to "staircase form".

$$\mathbf{PA} = \mathbf{T} = \begin{bmatrix} \mathbf{U} \\ \mathbf{O} \end{bmatrix} \tag{2}$$

where ${f P}$ is a product of elementary row operation matrices, while ${f U}$ is a staircase matrix on the form

Step 1 (cont.) The staircase columns have indices β_1, \ldots, β_r , where $r = \text{rang}(\mathbf{A}) = \dim \mathcal{R}(\mathbf{A})$ (rang of the matrix).

The other columns have the indices ν_1, \ldots, ν_l , l = n - r.

Step 2 Define

$$\mathbf{A}_{\beta} = \begin{bmatrix} \hat{a}_{\beta_1} & \dots & \hat{a}_{\beta_r} \end{bmatrix}$$
 $\mathbf{U}_{\beta} = \begin{bmatrix} u_{\beta_1} & \dots & u_{\beta_r} \end{bmatrix} = \mathbf{I}_r$
 $\mathbf{U}_{\nu} = \begin{bmatrix} u_{\nu_1} & \dots & u_{\nu_l} \end{bmatrix}$
 $\mathbf{S} = \mathbf{P}^{-1}$

Note that U_{β} (the staircase columns in U) is an identity matrix.

Step 2 (cont.) Let $S = P^{-1}$, then an equivalent expression for (2) is

$$\mathbf{A} = \mathbf{ST} = egin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 \end{bmatrix} egin{bmatrix} \mathbf{U} \ \mathbf{O} \end{bmatrix} = \mathbf{S}_1 \mathbf{U}$$

If we consider the columns with indices β_1, \ldots, β_r we have

$$\mathbf{A}_{\beta} = \mathbf{S}_1 \mathbf{U}_{\beta} = \mathbf{S}_1,$$

and then $\mathbf{A} = \mathbf{A}_{\beta}\mathbf{U}$.

Step 3 The factorization $A = A_{\beta}U$ is of the form A = BC where

m rows
$$\left\{ \begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{C} \end{bmatrix} \right\}$$
 r linearly independent rows n columns r linearly independent columns

According to ch. 26

$$egin{aligned} \mathcal{R}(\mathbf{A}) &= \mathcal{R}(\mathbf{A}_eta \mathbf{U}) = \mathcal{R}(\mathbf{A}_eta) = \operatorname{span}\{\hat{a}_{eta_1}, \dots, \hat{a}_{eta_r}\} \ \mathcal{N}(\mathbf{A}) &= \mathcal{N}(\mathbf{A}_eta \mathbf{U}) = \mathcal{N}(\mathbf{U}) = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{U}\mathbf{x} = \mathbf{0}\} \ &= \{\mathbf{x} \in \mathbf{R}^n : \mathbf{U}_eta \mathbf{x}_eta + \mathbf{U}_
u \mathbf{x}_
u = \mathbf{0}\} \ &= \{\mathbf{x} \in \mathbf{R}^n : \mathbf{x}_eta = -\mathbf{U}_
u \mathbf{x}_
u; \ \mathbf{x}_
u \in \mathbf{R}^l\} \end{aligned}$$

Step 3 (cont.) Furthermore, using the previous factorization

$$\mathcal{R}(\mathbf{A}^\mathsf{T}) = \mathcal{R}(\mathbf{U}^\mathsf{T}\mathbf{A}_eta^T) = \mathcal{R}(\mathbf{U}^T)$$

Finally,

$$\mathcal{N}(\mathbf{A}^\mathsf{T}) = \mathcal{R}(\mathbf{A})^\perp = \{\mathbf{y} \in \mathsf{R}^m : \mathbf{A}_eta^\mathsf{T} \mathbf{y} = \mathbf{0}\}$$

which corresponds to solving an equation system.

Solving linear equation systems

Existence and uniqueness of a linear equation system

$$Ax = b$$

can be determined using

- 1. the fundamental Theorem of linear algebra
 - Gives theoretical insight and solution formulas.
- 2. Gauss-Jordan's method
 - Practical method for calculations by hand.

Gauss-Jordan's method for solving equation systems

Transform the equation system using elementary row operations

where

Observe that

- 1. A solution does not exist, if and only if, $ar{\mathbf{b}}_n
 eq 0$
- 2. If $\bar{\mathbf{b}}_n = 0$, there exists solutions, and they can all be written on the form $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n$ where $\mathbf{x}_n \in \mathcal{N}(\mathbf{A})$ and

$$\mathbf{x} = \begin{cases} \mathbf{x}_{\beta_l}, & \text{for coefficients corresponding to staircase columns} \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

where

$$\mathbf{x}_{\beta} = \begin{bmatrix} x_{\beta_1} \\ \vdots \\ x_{\beta_k} \end{bmatrix} = \mathbf{\bar{b}}_r$$

Determine the nullspace and rangespace for the matrix

$$A = egin{bmatrix} 1 & -1 & 1 & 1 & 0 \ 1 & 2 & 7 & 3 & 1 \ 2 & 1 & 8 & 1 & 4 \ -1 & 0 & -3 & 1 & -3 \end{bmatrix}$$

Perform elementary row operations to transform A into staircase form.

26

$$A_1 = egin{bmatrix} egin{bmatrix} 1 & -1 & 1 & 1 & 0 \ 0 & 3 & 6 & 2 & 1 \ 0 & 3 & 6 & -1 & 4 \ 0 & -1 & -2 & 2 & -3 \end{bmatrix} = P_1 A, \quad ext{where } P_1 = egin{bmatrix} 1 & 0 & 0 & 0 \ -1 & 1 & 0 & 0 \ -2 & 0 & 1 & 0 \ +1 & 0 & 0 & 1 \end{bmatrix}$$

We note that $\beta_1 = 1$.

$$A_2 = egin{bmatrix} 1 & -1 & 1 & 1 & 0 \ 0 & 1 & 2 & 2/3 & 1/3 \ 0 & 3 & 6 & -1 & 4 \ 0 & -1 & -2 & 2 & -3 \end{bmatrix} = P_2 A_1, \quad ext{where } P_2 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1/3 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 3 & 5/3 & 1/3 \\ 0 & 1 & 2 & 2/3 & 1/3 \\ 0 & 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & 8/3 & -8/3 \end{bmatrix} = P_3 A_2, \text{ where } P_3 = \begin{bmatrix} 1 & +1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & +1 & 0 & 1 \end{bmatrix}$$

We note that $\beta_2 = 2$.

$$A_4 = \begin{bmatrix} 1 & 0 & 3 & 5/3 & 1/3 \\ 0 & 1 & 2 & 2/3 & 1/3 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 8/3 & -8/3 \end{bmatrix} = P_4 A_3, \text{ where } P_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} 1 & 0 & 3 & 0 & 2 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = P_{5}A_{4}, \quad \text{where } P_{4} = \begin{bmatrix} 1 & 0 & -5/3 & 0 \\ 0 & 1 & -2/3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -8/3 & 1 \end{bmatrix}$$

We note that $\beta_3 = 4$, and $\nu_1 = 3$, $\nu_2 = 5$. Rank(A) = 3.

29

Then $P = P_5 P_4 P_3 P_2 P_1$, and $A = P^{-1}T = A_\beta U$ where

$$A_{eta} = egin{bmatrix} 1 & -1 & 1 \ 1 & 2 & 3 \ 2 & 1 & 1 \ -1 & 0 & 1 \end{bmatrix} \quad ext{and } U = egin{bmatrix} 1 & 0 & 3 & 0 & 2 \ 0 & 1 & 2 & 0 & 1 \ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

The range space is now given by $\mathcal{R}(A) = \mathcal{R}(A_{\beta})$ where we know that A_{β} has linearly independent columns.

$$\mathcal{R}(A) = \mathcal{R}(egin{bmatrix} 1 & -1 & 1 \ 1 & 2 & 3 \ 2 & 1 & 1 \ -1 & 0 & 1 \end{bmatrix}) = ext{span}(\hat{a}_1, \hat{a}_2, \hat{a}_4)$$

The nullspace is given by

$$\mathcal{N}(A) = \mathcal{N}(U) = \left\{ I \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = - \begin{bmatrix} 3 & 2 \\ 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_5 \end{bmatrix} \right\}$$

$$\mathcal{N}(A) = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \\ 1 \\ -0 \\ 0 \end{bmatrix} x_3 + \begin{bmatrix} -2 \\ -1 \\ 0 \\ --1 \\ 1 \end{bmatrix} x_5 \right\} = \operatorname{span} \left\{ \begin{bmatrix} -3 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

We also know that

$$\mathcal{R}(A^T) = \mathcal{R}(U^T) = \operatorname{\mathsf{span}} \left\{ egin{array}{c|cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 3 & 2 & 0 \ 0 & 0 & 1 \ 2 & 1 & -1 \ \end{array}
ight\}$$

and

$$\mathcal{N}(A^T) = \mathcal{N}(A_{eta}^T) = \cdots = ext{span} \left\{ egin{array}{c} -2 \ -5 \ 8 \ 9 \end{array}
ight\}$$

follows by similar calculations as for $\mathcal{N}(A)$.

Reading instructions

• Chapter 23-26.