Ch 32 Light: Reflection and Refraction

Working with Spherical Mirrors

Note: 7	There are 2	2 central	ideas ii	n Ch 32:	spherical	mirrors	and refraction
---------	-------------	-----------	----------	----------	-----------	---------	-----------------------

- I. Use the mirror equation to solve problems involving spherical mirrors
 - \square By following the **sign convention** behind variables f, d_i, d_o , and m

Content Review: [5mins]

■ The **mirror equation** is given by

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

where

 $d_o =$ distance from object to mirror $d_i =$ distance from image to mirror f =focal length of mirror

■ For **spherical mirrors**, the focal length can be given by

$$f = \frac{1}{2}R$$
, where R is the radius of the mirror

- \blacksquare The **sign convention** for using the mirror equation is . . .
 - \Box d_o is ALWAYS **positive**
 - \Box d_i is **positive** when the image is ______
 - \Box h_o is ALWAYS **positive**
 - \Box h_i is **positive** when the image is _____
 - \square m is **positive** when _____

Guided Practice (leader - student)

[10mins]

A $4.5\,\mathrm{cm}$ tall object is placed $26\,\mathrm{cm}$ in front of a spherical mirror. It is described to produce a virtual image that is upright and $3.5\,\mathrm{cm}$ tall.

- (a) what type of spherical mirror should be used? (convex / concave)
- (b) where is the image located?

NOTE: The math can tell us whether the mirror is convex / concave as well as whether the image is virtual / real; we just have to make sure to follow the sign convention

Solution

- (a) Convex mirror
- (b) $d_i = 20 \, \text{cm}$

Group Activity (student - student)

[25mins]

A dentist uses a curved mirror to view the back side of teeth in the upper jaw. Suppose she wants an upright image with a magnification of 1.5x when the mirror is $1.2\,\mathrm{cm}$ from a tooth. Should she use a convex or concave mirror? What focal length should it have?

Solution

 $f=3.6\,\mathrm{cm},$ convex mirror since f>0

Group Activity (student - student)

(continued)

A $2.0\,\mathrm{cm}$ tall object is placed in front of a mirror. A $1.0\,\mathrm{cm}$ tall upright image is formed behind the mirror, $150\,\mathrm{cm}$ away from the object. What is the focal length of the mirror?

NOTE: The $150\,\mathrm{cm}$ is the distance between the object and the image.

Solution

 $f = -100 \, \mathrm{cm}$