Unmanned Aircraft Design, Modeling and Control

Extended Kalman Filter

For questions: slynen@ethz.ch

Abstract

This exercise is derives and implements an attitude estimator using the indirect extended Kalman filter formulation. Sensor inputs are a gyroscope and an orientation estimate from a camera..

Note: The tasks are given as TODOs in the file attitude.m. See below for hints about the different steps of the exercise.

1 Getting familiar with the simulation environment

- a) Download and unzip the archive containing the exercise materials from the lecture homepage. Start Matlab. Add the subfolder helper_files to your path.
- b) In the subfolder EKF there is the simulation environment. It consists of:
 - attitude.m Defines the simulation parameters and contains your tasks. This file needs to be executed to run the simulation.
 - plot_trajectory.m Plots the trajectory we are simulating.
- c) In the subfolder helper_files you can find methods for quaternion math (the ones you wrote in your last exercise) and some other generic helpers:
 - find_closest.m Finds the elements in another sequence that has minimal distance to a given element.
 - mulquat.m Computes the resulting quaternion from the operation $q \otimes p$.
 - invertquat.m Computes the quaternion inverse (complex conjugate).
 - quat2rotvel.m Converts a rotation within a time-span dt to respective rotational velocity.
 - quat2rot.m Converts quaternion to respective rotation matrix as in $C_W B = [f(q_W B)]_{3x3}$.

- quat2rpy.m Converts quaternion to roll-pitch-yaw for plotting.
- skew.m Computes $|v_X|$ for the 3x1-vector v.
- quat_skew.m Computes $\lfloor q_X \rfloor$ for the 3x1-imaginary part of the quaternion q.

In the data file realdata.mat you find:

- q_CW_m: the measured orientation of the world frame of reference w.r.t. the camera frame of reference q_{CW_m} over time
- ullet t_q_CW_m: the time stamps corresponding to q_{CW_m}
- omega_m: the measured rotational velocity of the IMU over time
- t_omega_m: the time stamps corresponding to ω_m
- q_WI_gt: ground truth attitude $q_{WI_{gt}}$ over time
- t_q_WI_gt: the time stamps corresponding to $q_{WI_{gt}}$.
- d) Visualize the trajectory by running: plot_trajectory.m

2 Hints for solving the tasks:

- a) Filter initialization:
 - The IMU and camera are fixed together as a rigid body.
 - The rotation between them is $q_{IC} = [0.0020, -0.0330, -0.0050, 0.9994]^T$ with: $\vec{v}_C = C(q_{IC})^T \vec{v}_I$
 - We would like to estimate the IMU attitude w.r.t. the world frame of reference q_{WI} .
 - We know nothing about the IMU bias so the best initial estimate is that there is none.
- b) State and covariance propagation:
 - The manufacturer states an angular velocity noise characteristic of $4.5rad/\sqrt{h}$.
 - Assume the bias noise to be 100 times smaller than the angular velocity noise.
 - dF and dQ has been already calculated for you in the framework. Details about the calculations can be found in the suggested quaternion tutorial
 - Implement the zeroth order quaternion integration presented in the lecture.
- c) The update step:
 - Assume the measurement noise to have a standard deviation of 0.1 rad.

- ullet Derive the measurement matrix H.
- Calculate the error of your estimate vs. your measurement.
- Correct your state.