

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Computación Cuántica II

			Computation	Oddittica ii		
Clave:	Clave: Semestre: Eje temático:				No. Créditos:	
	7-8 Ciencias Computacionales					10
Carácter: Optativa			Horas		Horas por semana	Total de Horas
Tino, Toórico Práctico			Teoría:	Práctica:		
Tipo: Teórico-Práctica 3 4 7		112				
Modalidad: Curso		Duración del programa: Semestral				

Asignatura con seriación indicativa antecedente: Computación Cuántica I

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivo general:

Conocer y aplicar las herramientas del álgebra lineal necesarias para describir los postulados de la mecánica cuántica para sistemas de más de una partícula (multipartitos).

Conocer los espacios de Hilbert de n² dimensiones, cada una de ellas finita.

Conocer el funcionamiento de los algoritmos cuánticos que existen en la actualidad, así como su poder de cómputo.

Hacer uso de software de cálculo simbólico para poder implementar pequeños algoritmos cuánticos en una computadora no-cuántica.

Conocer y aplicar la notación de Dirac para describir procesos cuánticos de más de una partícula.

Conocer los fundamentos de la Teoría de la Información Cuántica.

Índice temático				
Unidad	Temas	Horas		
Uniuau	Temas	Teóricas Prác	Prácticas	
ı	Información cuántica	7.5	10	
II	Sistemas multipartitos	12	16	
III	Limitantes de la simulación clásica de sistemas cuánticos	12	16	

IV	Simulación de algoritmos cuánticos en una computadora clásica	10.5	14
V	Hipercómputo	6	8
	Total de horas:	48	64
	Suma total de horas:	: 112	

Contenido temático				
Unidad	Tema			
I Información cuántica				
I.1	Entrelazamiento.			
1.2	Algoritmo de teleportación.			
1.3	Reversibilidad.			
	s multipartitos			
II.1	Producto tensorial.			
II.2	Cuarto postulado de la mecánica cuántica.			
II.3	Operador de densidad reducido.			
II.4	Entanglement, Estados de Bell y el PER.			
II.5	Factorización tensorial.			
II.6	Separabilidad.			
II.7	Experimento Stern-Gerlach.			
II.8	Medidas de cuantificación de entanglement.			
II.9	Compuertas generadoras de entanglement.			
II.10	Entropía cuántica.			
	es de la simulación clásica de sistemas cuánticos			
III.1	Limitante de Feynman			
III.2	Programación clásica de algoritmos cuánticos			
III.3	Máquinas virtuales cuánticas.			
III.4	Lenguajes de programación cuánticos.			
III.5	Cálculo simbólico para computación cuántica.			
III.6	Generación de los tres componentes de la computación cuántica.			
III.7	Entanglement.			
III.8	Generación de estados puros y mixtos en computadora clásica.			
III.9	Generación de estados entangled en computadora clásica.			
	ción de algoritmos cuánticos en una computadora clásica			
IV.1	Algoritmos de corrección de errores.			
IV.2	Algoritmo de Shor.			
IV.3	Algoritmo de Grover.			
IV.4	Algoritmo de Teleportación.			
V Hipercó				
V.1	Breve repaso de Teoría de la complejidad.			
V.2	Sistema RSA y su importancia para la seguridad.			
V.3	Algoritmo de Shor.			

Bibliografía básica:

- 1. Bengtsson, Ingemar. Zyczkowsky, Karol, *Geometry of Quantum States*, Cambridge University Press. USA, 2008.
- 2. Peres, Asher, *Quantum Theory: Concepts and Methods*, Kluwer Academic Publishers. USA, 1995.
- 3. Nielsen, Michael A. y Chuang, Isaac, *Quantum Computation and Quantum Information*, Cambridge University Press. USA, 2003.
- 4. Kaye, Phillip; LaFlamme, Raymond, *An Introduction to Quantum Computing*, Oxford University Press. USA, 2007.
- 5. Hirvensalo, Mika, *Quantum Computing*, Springer. USA, 2004.

Bibliografía complementaria:

- 1. Preskill, John, Notas *para curso de computación cuántica*, Caltech, USA, 2004. http://www.theory.caltech.edu/people/preskill/ph229/#lecture
- 2. Chen, Goong; Brylinski, Ranee, editors, *Mathematics of Quantum Computation*, Chapman and Hall, USA, 2004.
- 3. Samuel J. Lomonaco, Jr. y Howard E. Brandt, editores, *Quantum Computation and Quantum Information*, AMS Contemporary Mathematics, Vol. 305, American Mathematical Society, Providence, RI(2002).

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	()
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	()	Prácticas de laboratorio	()
Seminarios	()	Exposición de seminarios por los alumnos	()
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	()	Asistencia	()
Prácticas de taller o laboratorio	(X)	Proyectos de programación	()
Prácticas de campo	()	Proyecto final	()
-	• • •	Seminario	()
Otras:			
		Otras:	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina.Con experiencia docente.