WHY DO BUILDINGS COLLAPSE?

A PREDICTIVE AND DESCRIPTIVE ANALYSIS OF EARTHQUAKE DAMAGE

Álvaro Bernal, Álvaro González, Antonio Rodríguez, Adrián Romero FID – Mon. 16 Dec. 2024

Available at

https://github.com/FID2425/ml-olympiad-earthquake-dmg-24

WHAT WE'LL COVER

- 1. Introduction
 - a. Dataset
 - b. Team
- 2. Data Mining Journey
 - a. Exploratory Data Analysis
 - b. Preprocessing
 - c. Supervised Learning
 - d. Unsupervised Learning
- 3. Discussion
- 4. Conclusion

INTRODUCTION

- Context: Gorkha earthquake in Nepal on 25th April 2015.
 - Magnitude 7.8.
 - +8,000 deaths.
 - +20,000 injured.
 - ~500k buildings affected.
- Featured at ML Olympiad 2024.

Figure 1: Aftermath of the Gorkha Earthquake 1

¹Source: National Geographic - Nepal Earthquake Strikes One of Earth's Most Quake-Prone Areas

- Context: Gorkha earthquake in Nepal on 25th April 2015.
 - Magnitude 7.8.
 - +8,000 deaths.
 - +20,000 injured.
 - ~500k buildings affected.
- Featured at ML Olympiad 2024.

Figure 1: Aftermath of the Gorkha Earthquake 1

¹Source: National Geographic - Nepal Earthquake Strikes One of Earth's Most Quake-Prone Areas

- Context: Gorkha earthquake in Nepal on 25th April 2015.
 - Magnitude 7.8.
 - +8,000 deaths.
 - +20,000 injured.
 - ~500k buildings affected.
- Featured at ML Olympiad 2024.

Figure 1: Aftermath of the Gorkha Earthquake 1

¹Source: National Geographic - Nepal Earthquake Strikes One of Earth's Most Quake-Prone Areas

- Context: Gorkha earthquake in Nepal on 25th April 2015.
 - Magnitude 7.8.
 - +8,000 deaths.
 - +20,000 injured.
 - ~500k buildings affected.
- Featured at ML Olympiad 2024.

Figure 1: Aftermath of the Gorkha Earthquake 1

¹Source: National Geographic - Nepal Earthquake Strikes One of Earth's Most Quake-Prone Areas

- Target: damage_grade
 - Ordinal variable.
 - 1, 2, **3**.
- Features: 38 features.
 - Row → building.
 - Regarding buildings' structure & legal ownership.
 - Categorical, ints and binary.

INTRODUCTION - TEAM

- Divided into pairs:
 - EDA and Unsupervised learning:
 - Adrián Romero.
 - Antonio Rodríguez.
 - Preproc. and Supervised learning:
 - Álvaro Bernal.
 - Álvaro González.

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

1. Data Overview:

-36 columns \times 4000 rows.

2. Data Consistency:

- No inconsistencies found.
- Clean, with no missing values.

3. Data Visualization:

- Percentages.
- Numerical.
- Categorical.
- Binaries.

4. Data Correlation.

EDA - PERCENTAGES VISUALIZATION

EDA - NUMERICAL VISUALIZATION

EDA - NUMERICAL VISUALIZATION

EDA - NUMERICAL VISUALIZATION

EDA - BINARY VISUALIZATION

- Two main groups:
 - Superstructure: 11 features.
 - Secondary use: 11 features.
- "Camouflaged" categorical feature?

EDA - BINARY VISUALIZATION

Distribution of Secondary Use Combinations

No Secondary Use (78.1%) and Agriculture with Rental (5.1%).

EDA - BINARY VISUALIZATION

Distribution of Superstructure Combinations

Mud Mortar Stone (23.9%), Mud Mortar Stone with Timber (14.6%), Cement Mortar Brick (8.2%) and No Superstructure (6.7%).

EDA - DATA CORRELATION

- Correlation with target variable:
 - **Age** (0.269).
 - Area Percentage (-0.325).
 - Roof Type (-0.324).
 - Sup.str. Mud Mortar Stone (0.393).
 - Sup.str. Cement Mortar Brick (-0.415).
 - Sup.str. RC No Engineered (-0.221).
 - Sup.str. RC Engineered (-0.259).

EDA - PROPOSED PREPROCESSING

- One-Hot encoding for categorical features.
- Deal with imbalanced data on target.
- Remove redundant columns to reduce dimensions and noise.
- Combine Secondary Use columns.

PREPROCESSING

PREPROCESSING

4 steps:

- 1. Data Cleaning: Column Unification and Elimination.
- 2. Train-Test Split: 80-20 split.
- 3. One-Hot Encoding.
- 4. Correlation Analisis:
 - land_surface_condition_n and position_s.
 - land_surface_condition_t and position_t.
- Other techniques:
 - PCA.
 - Handle Imbalanced Data.

PREPROCESSING - PCA

- Dimensionality reduction technique.
- Outstanding task: Kaiser Criterion:
 - Retained 13 principal components.

PREPROCESSING - IMBALANCED DATA

- Outstanding task: SMOTE:
 - Synthetic samples based on nearest neighbours.
- Weight Allocation:
 - Assign weight based on class distribution.

PREPROCESSING - FINAL DATASETS

Train:

- onehot_train.csv
- filtered_onehot_train.csv
- pca_train.csv
- smote_train.csv
- weighted_train.csv

Test:

- onehot_test.csv
- filtered_onehot_test.csv
- pca_test.csv

SUPERVISED LEARNING

SUPERVISED LEARNING

- Goal: predict earthquake damage.
- Data: 5 previous datasets.
- Algorithms:
 - Random Forest.
 - Gradient Boosting Machine.
 - Stochastic Gradient Boosting.
- Metrics:
 - Confusion Matrix & associated metrics.
 - Outstanding task: Multi-class AUC².

² Jesús S Aguilar-Ruiz and Marcin Michalak. "Classification performance assessment for imbalanced multiclass data". In: Scientific Reports 14.1 (2024), p. 10759

SUPERVISED LEARNING - RESULTS

- We obtained 15 different models.
- We chose the 6 best according to the metrics.

Metric	Best Models		
Best Precision	rf_filtered&rf_weighted		
Best Recall	rf_weighted&gbm_pca		
Best F1 Score	rf_onehot&gbm_smote		
Best AUC	gbm_filtered&gbm_smote		

SUPERVISED LEARNING - PRECISION

Model	Class 1	Class 2	Class 3	Avg
rf_onehot	0.655	0.554	0.492	0.568
rf_filtered	0.664	0.548	0.568	0.594
rf_weighted	0.503	0.567	0.434	0.501
gbm_filtered	0.617	0.549	0.453	0.540
gbm_pca	0.000	0.518	0.070	0.197
gbm_smote	0.574	0.551	0.454	0.526

SUPERVISED LEARNING - RECALL

Model	Class 1	Class 2	Class 3	Avg
rf_onehot	0.548	0.760	0.250	0.519
rf_filtered	0.526	0.879	0.096	0.500
rf_weighted	0.719	0.295	0.662	0.558
gbm_filtered	0.526	0.671	0.331	0.509
gbm_pca	0.000	0.884	0.019	0.301
gbm_smote	0.519	0.584	0.435	0.513

SUPERVISED LEARNING - F1 SCORE

Model	Class 1	Class 2	Class 3	Avg
rf_onehot	0.597	0.641	0.332	0.523
rf_filtered	0.587	0.675	0.164	0.475
rf_weighted	0.591	0.387	0.423	0.501
gbm_filtered	0.568	0.603	0.382	0.518
gbm_pca	NA	0.653	0.030	0.341
gbm_smote	0.545	0.567	0.444	0.519

SUPERVISED LEARNING - AUC

Model	Value	
rf_onehot	0.436	
rf_filtered	0.432	
rf_weighted	0.423	
gbm_filtered	0.443	
gbm_pca	0.342	
gbm_smote	0.444	

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING

- Clustering:
 - K-Means.
 - Hierarchical.
 - DBSCAN.
- High Dimensionality Visualization:
 - Outstanding task: Autoencoder.
 - Outstanding task: t-SNE.

UNSUPERVISED LEARNING - CLUSTERING

K-means

- Elbow & Silhouette method.
 - 2 main clusters.
 - No patterns identified.
- Hierarchical
 - No good results.

UNSUPERVISED LEARNING - CLUSTERING

K-means

- Elbow & Silhouette method.
 - 2 main clusters.
 - No patterns identified.
- Hierarchical
 - No good results.

UNSUPERVISED LEARNING - AUTOENCODER

- Reduced 43 dimensions into 8:
 - MAE 0,05.
- Reduced 43 dimensions into 3:
 - MAE 0,10.

UNSUPERVISED LEARNING - AUTOENCODER VS PCA

2 clusters, separating damage_grade 1 from 2-3.

UNSUPERVISED LEARNING - T-SNE

UNSUPERVISED LEARNING - T-SNE & DBSCAN

13 clusters, with no relation to damage_grade.

DISCUSSION

DISCUSSION

Data Challenges:

- Low interpretability of categorical features.
- Limited variability in features, reducing generalization.
- Unbalanced class distribution, affecting accuracy for damage grades 2 and 3.

Dimensionality Reduction Insights:

- PCA, autoencoders, and t-SNE helped visualize clusters.
- Clusters lacked correlation with target variable.

Missing Data:

 Distance from earthquake epicentre, adjacent structures, and environmental factors.

CONCLUSIONS

CONCLUSIONS

- This study highlights significant limitations in the dataset's influence on earthquake damage prediction.
- Challenges: Low interpretability and variability, unbalanced distribution.
- Clustering and dimensionality reduction techniques failed to provide robust segmentation.
- Future Improvements: Collect and integrate additional relevant features, avoid arbitrary selection biases in data preparation to ensure more representative distributions.

That's all!

Thanks for your attention.

