Greedy Algorithms

Ying Zhao

Department of Computer Science, Tsinghua University

Outline

- Activity-selection problem (Ch16.1)
- ▶ Elements of greedy algorithm (Ch16.2)

Greedy Solutions for Optimization Problems

- Optimization problem: view the optimal solution as a sequence of choices.
- In order to get what you want, just start grabbing what looks best.
- The greedy choice: Commit to the selection that looks the "best" (without solving the subproblems first).
- Surprisingly, many important and practical optimization problems can be solved this way.

Greedy Choice

• Example: Knapsack of capacity W = 5

	<u>item</u>	<u>weight</u>	<u>value</u>
•	1	2	\$12
•	2	1	\$10
	3	3	\$20
	4	2	\$15

- Greedy choice: take the most valuable item!
- Greedy algorithms may not lead to the optimal solution.
 - Wrong! Do not confuse it with heuristic algorithms!

Activity-selection Problem

- ▶ Input: Set A of n activities, $a_1, a_2, ..., a_n$.
 - $ightharpoonup s_i = \text{start time of activity } i$.
 - f_i = finish time of activity i.
- Output: Subset S of maximum number of compatible activities.
 - Two activities are compatible, if their intervals don't overlap.

Example:

Subproblems

Two options:

- \triangleright Suppose an optimal solution includes activity a_n
- \triangleright Suppose an optimal solution does not include activity a_n

Multiple options:

- Suppose an optimal solution first picks activity a₁
- ...
- Suppose an optimal solution first picks activity a_k
- **...**
- Suppose an optimal solution first picks activity a_n

- Suppose an optimal solution does not include activity a_n .
 - Let $A_{1,n}$ be $\{a_1, a_2, ..., a_n\}$, then the remaining subproblem becomes to find the maximum # of compatible activities from $A_{1,n-1}$.

Example:

- Suppose an optimal solution includes activity a_n .
 - How to describe a subproblem whose input must be compatible with a_n ?
 - $A_{1,n-1} = \{a_1, a_2, ..., a_{n-1}\}$ does not work.
 - The "two options" way does not work.

- Suppose an optimal solution includes activity a_k .
 - Activities that are compatible with a_k , either starts after a_k finishes, or finish before a_k starts.
 - So we can use two activities to define a subset of activities.

Example:

- Have activities in order.
 - Let a_0 and a_{n+1} be two dummy activities, a_0 finishes before any activity starts and a_{n+1} starts after all activities finish.
 - ▶ Suppose activities are sorted by finishing times $f_1 \le f_2 \le ... \le f_n$.

- Let $A_{i,j}$ be a subset of activities in A that start after a_i finishes and finish before a_i starts.
 - $A_{0,n+1}$ is the original input A.
- Suppose an optimal solution of $A_{i,j}$ includes activity a_k .
 - This generates two subproblems:
 - \triangleright Selecting maximum # of compatible activities from $A_{i,k}$.
 - ▶ Selecting maximum # of compatible activities from $A_{k,j}$.
- Suppose $S_{i,j}$ is an opt solution to $A_{i,j}$ and $S_{i,j} = \{S_{i,k}, a_k, S_{k,j}\}$, then $S_{i,k}$ and $S_{k,j}$ must be optimal for $A_{i,k}$ and $A_{k,j}$, respectively.
 - Prove by using the cut-and-paste approach.
 - Key: the two subproblems are independent!
 Suppose S' is an opt. solution to A_{i,k} and S'' is an opt. solution to A_{k,j}, activities in S' and activities in S'' are compatible to one another.

Suppose S' is an opt. solution to $A_{i,k}$ and S'' is an opt. solution to $A_{k,j}$, activities in S' and activities in S'' are compatible to one another.

Recursive Solution

- Let c[i,j] = size of maximum-size subset of mutually compatible activities in $A_{i,j}$.
- ▶ Suppose an optimal solution of $A_{i,j}$ includes activity a_k .
 - This generates two subproblems:
 - \triangleright Selecting maximum # of compatible activities from $A_{i,k}$.
 - ▶ Selecting maximum # of compatible activities from $A_{k,j}$.

When the greedy choice DOES work?

- Problems exhibit optimal substructure.
 - an optimal solution to the problem contains within it optimal solutions to subproblems.
- Problems also exhibit the greedy-choice property.
 - greedy-choice property: there is a global optimal solution that contains the greedy choice.
 - Otherwise, taking the greedy choice means WRONG!

In-class Exercise

Give a greedy-choice candidate for the activity selection problem.

Greedy-choice Property

- The problem also exhibits the greedy-choice property.
 - Assume activities are sorted by finishing times.
 - $f_1 \le f_2 \le \dots \le f_n$
 - There is an optimal solution to the subproblem $A_{i,j}$, that includes the activity with the smallest finish time in set $A_{i,j}$
 - The smallest finish time activity in $A_{i,i}$ is?

Greedy-choice Property

- Therefore, we can first make this greedy choice and then solve the remaining subproblems.
- Combine the greedy choice and the solution to the subproblem to get the overall solution. The following recurrence can be simplified.

$$c[i,j] = \begin{cases} 0 & \text{if } A_{i,j} = \emptyset \\ \max_{i < k < j} \{c[i,k] + c[k,j] + 1\} & \text{if } A_{i,j} \neq \emptyset \end{cases}$$

Top-down Algorithm

```
Assuming activities are sorted by finish time.
<u>Greedy-Activity-Selector (s, f)</u>
1. n \leftarrow length[s]
2. A \leftarrow \{a_1\}
i \leftarrow 1
4. for m \leftarrow 2 to n //earliest to finish in S_{i,n+1}
5. if s_m \ge f_i //check compatibility
6. then A \leftarrow A \cup \{a_m\}
             i \leftarrow m
8. Return A
```

Initial Call: Greedy-Activity-Selector(s, f)

Complexity: $\theta(n)$

Example

k	0	1	2	3	4	5	6	7	8	9	10	11	12
s_k		1	3	0	5	3	5	6	8	8	2	12	
f_k	0	4	5	6	7	8	9	10	11	12	13	14	∞

Design Points of GA

Cast the optimization problem as one in which we make a choice and are left with subproblems to solve.

Derive a recurrence:

- Prove that there's always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- ▶ Prove optimal substructure: show that greedy choice and optimal solution to subproblem ⇒ optimal solution to the problem.
- Implement a top-down solution:
 - make the greedy choice and solve the remaining problem.
- May have to preprocess input to put it into the greedy order.
 - <u>Example:</u> Sorting activities by finish time
 - Running time: $O(n \lg n)$ for sorting, and solve a recurrence of T(n)

Comparison with DP

	Greedy Algorithm	Dynamic Programming		
"Recursive" nature	Yes	Yes		
Combine solutions to subproblems	Yes	Yes		
Partition subproblems	Making a greedy choice at a time	Making one choice at a time		
Overlapping subproblems	No	Yes		
Primarily for optimization	Yes	Yes		
Optimal substructure	Yes (to develop a recurrence)	Yes (to develop a recurrence)		
Preprocessing	Usually sorting			
Top-down vs. Bottom-up	Top-down	Bottom-up (but)		
Characteristic running time	Often dominated by $n \lg n$ sort	The space of subproblems		

About Final

- ▶ Time: 19:00-21:00, Dec 24, 2020 (Beijing Time)
 - Same settings as the midterm for on-line students
 - ▶ 19:00-19:30 check identity & get ready
 - ▶ 19:30-21:00 final exam (closed book & notes)
- Review Section:
 - Next Monday, Dec 21, 2020
 - A quick review & comments on HW13-15 and sample exam.
- Office-hours:
 - ▶ 9:00am-11:00am, Dec 23, 2020 (Beijing Time) @my office east-main building 8-204, or @the class Zhumu conference room.
 - ▶ 19:00-21:00, Dec 23, 2020 (Beijing Time) @the class Zhumu conference room.
- ▶ HW15 & Programming Assignment #2 are due on Jan 5, 2021.

Thank you!

