

Software Defined Networking

Olaf Hagemann
SE Director for DACH and HGM
ohagemann@extremenetworks.com

SDN Drivers

User, Device, App Mobility

Cloud-Sourcing

Consumerization
of IT

Silo'd Workflows

Dynamism

Scale

Complexity

Vendor
Dependence

Cost

Remember the Mainframe?

Programmable Open Interface

Open Interface

- Vertically integrated
- Closed, proprietary
- Slow innovation
- Controlled industry

- Open interfaces
- Rapid innovation
- Broad industry Participation

What is SDN: Networking

Software Defined Networking (SDN) Model

Make Control and Management Plane Programmable

Centralize Network Intelligence

Abstract Network Infrastructure for Applications

Separate Control Plane from Data Plane

Today – Closed Boxes, Fully Distributed Protocols

Another Approach – Centralized Control

The “Software-defined Network”

3. Well-defined open API

2. At least one good operating system
Extensible, possibly open-source

Extreme Networks SDN Approach

SDN Apps

VM Lifecycle Management (XNV)

User Identity Management

BYOD

Application Performance Management

....

Management Platforms

Ridgeline

XOS – Extensible, Open Secure

XML

Scripts

External App SDK

OpenStack Quantum Plugin

OpenFlow

Modular

Predictable Performance

Memory Protected

Hardware Abstracted

High Performance Converged Open Fabric

Low Latency

High Capacity

MLAG

DCB

Programmability: New Open Interfaces For SDN

Extending SDN Strategy
with OpenFlow

- Support for OpenFlow across all Ethernet Switch products
- Powered by ExtremeXOS
- Will be available as a dynamically downloadable module
- Hybrid mode of operation

Open Multi-Vendor
Approach to SDN

- Supporting multiple OpenFlow controllers

Extending SDN Strategy
with Openstack

- Support for OpenStack Quantum with Plug-In

Creating SDN Developer
Community Portal with
XKit

- Launching Xkit for collaborative
- Programmable Network Applications

SDN (OpenFlow) Details

What is OpenFlow?

OpenFlow is a protocol that allows an external node to control the forwarding tables of a switch.

What is OpenFlow?

- Started 2008 at Stanford University
- Is now driven by Open Networking Foundation(ONF)
- ONF has over 70 members including:
 - Extreme Networks
 - Broadcom
 - Google
 - Microsoft
 - Yahoo
 - Facebook
 - Deutsche Telekom
 -

What is OpenFlow?

- Definitions:
 - **OpenFlow-only switch**: supports the mandatory client features of the OpenFlow protocol.
 - **OpenFlow-capable switch**: supports the mandatory client features of OpenFlow in addition to normal switch functions (e.g., STP, EAPS).
 - **Controller**: supports the server feature of the OpenFlow protocol. Manages the forwarding behavior of one or more OpenFlow switches.
 - **Flow entry**: the basic unit of forwarding management.
 - **Flow table**: consists of a set of priority ordered flow entries. A switch may support more than one flow table.
 - **Emergency flow table**: flow table that the switch uses in case connectivity with all configured controllers fails.
- A switch may simultaneously connect to multiple Controllers, but only one controller is master.
 - **Flowvisor**: can be used to slice a switch into multiple logical switches, each managed by a different Controller.

New Programmable Interfaces For SDN: OpenFlow

- OpenFlow 1.0 API XMOD; Hybrid Support
- OpenFlow controller redundancy; Out-of-band management port

Flow Entry Actions

- Forward: forward packet to the following physical or virtual ports:
 - Output port: forward to a specified physical output port
 - ALL: forward to all ports, excluding the incoming port
 - CONTROLLER: encapsulate packet (Packet-In message) and send it to the controller
 - LOCAL: forward via the switch's local networking stack
 - TABLE: perform actions in the flow table (for Packet-Out messages only)
 - IN_PORT: forward the packet back out of the incoming port
 - NORMAL (optional): forward according to the traditional forwarding path (e.g., generated by STP + learning)
 - FLOOD (optional): flood the packet along the minimum spanning tree, excluding the incoming port
- Drop: drop the packet
- Enqueue (optional): enqueue the packet in a specified output port queue.
- Modify-Field (optional): modify a header field

Flow Entry Modify Actions

- Set VLAN ID
- Set VLAN Priority
- Strip VLAN header
- Modify Ethernet MAC SA
- Modify Ethernet MAC DA
- Modify IPv4 SA (and update IPv4/TCP/UDP checksum)
- Modify IPv4 DA (and update IPv4/TCP/UDP checksum)
- Modify IPv4 ToS (DSCP)
- Modify TCP/UDP source port
- Modify TCP/UDP destination port

OpenFlow Startup Example

- Switch connects to controller. Both exchange Hello's. Version negotiation.
- Controller requests features with Features-Request.
- Switch responds with Features-Reply to indicate supported features and OpenFlow-enabled ports.

Topology OpenFlow Application Example

Switch and controller startup already complete.

Topology OpenFlow Application Example

- Each switch forwards the LLDP's out the indicated ports.
- Each switch forwards the LLDP's to the controller as Packet-in's.
- Controller now knows the network topology.

Reactive OpenFlow Application Example

Extreme Networks SDN Controlled Fabric *in action*

SDN Community Portal – XKIT

Crowdsourcing, Network Applications store

Open Multi-vendor Approach

BigSwitch, NEC, Floodlight Controller etc.

Extending SDN with OpenStack

Network-as-a-service, Quantum Plugin

Enabling SDN with OpenFlow

OpenFlow 1.0 API, XMOD, Hybrid Support

Key SDN OpenFlow Features in EXOS

Open vSwitch (OVS) based OpenFlow

Robust implementation based on OVS Long Term Support (LTS)

Advanced Traffic Management

*Traffic distributed using LAG hashing
Queuing support based on EXOS profiles*

Multiple Tables for Deployment Flexibility

*FDB based flows for simple L2 flows – Higher Scale
ACL based flows for complex match & set conditions*

Multiple VLANs with Edit actions

*Simple OF based routing between VLANs
Support Applications requiring control of multiple VLANs*

MAC Address Rewrite

*Rewrite source and destination MAC
Support L3 SDN applications requiring MAC rewrite*

EXOS SDN Differentiation: Advanced Traffic Management

OpenFlow traffic distributed using LAG hashing function, instead of one port

OpenFlow traffic distributed through different QoS Profiles on egress port

SDN OpenFlow: Deployment Flexibility with Unified Forwarding Table

Legacy

L2 MAC

L3 IPv4/
v6

IP
Multicast

ACL/Flow

*Optimal
Table
Utilization*

Unified Forwarding Table (UFT)

*SDN
Deployment
Profiles*

L2/L3 Balanced

L3 Heavy

Flow/ACL Heavy

SDN OpenFlow: Multiple Tables for Deployment Flexibility

OpenFlow needs flow oriented architecture scaling requirements

L2 MAC

FDB Tables can be used for macro flows that doesn't need finer-granular traffic control

L3 IPv4/v6

LPM Tables can be used for some complex flows involving IP address match conditions

ACL/Flow

ACL Tables can be used for micro flows that requires finer granular control of traffic with complex match and set conditions

OpenFlow abstracts all these tables into one table. From controller's perspective, OpenFlow behaves as if there is a single table

X-Kit: Application Portal

The screenshot shows the homepage of the xKIT Portal. At the top, there's a navigation bar with the Extreme Networks logo, the title "xKIT Portal", a search bar, and links for "Sign Up" and "Sign In". Below the navigation is a menu bar with "Store" (selected), "Developers", "Forums", "Support", and "Contact Us". The main content area features a banner for "Network Computing Data Center Product of the Year" featuring the BlackDiamond X8 switch, followed by the "NETWORK computing AWARDS 2012" logo. Below this are two sections: "Featured" and "Popular Apps", each displaying icons for various mobile and desktop applications. The "Featured" section includes "Clean ExtremeXOS Switch", "Extreme Monitor for Android", "ExtremeEDU", "Extreme Monitor for iPad", and "iSCSI Auto-provisioning". The "Popular Apps" section lists the top 6 most popular apps: 1. iSCSI Auto-provisioning, 2. Extreme Monitor for iPad, 3. Broadcast storm Detection, 4. Network Reconnaissance Detection, 5. Extreme Monitor for Android, and 6. Clean ExtremeXOS Switch. At the bottom, there's a footer with copyright information and links for "Terms & Conditions" and "Privacy Statement".

Crowd-Sourced Knowledge Base for SDN Applications

SDN Differentiations

Extreme Networks has specific capabilities that provide clear differentiation among competition. **Shipping TODAY !**

Hardware Link Aggregation

- EXOS represents the LAG as a single virtual interface to the OpenFlow controller enabling bandwidth scaling, load balancing and link redundancy

Hybrid Mode Support

- Standard Ethernet switching and OpenFlow based forwarding on a “per-vlan” basis.

Hardware Quality of Service

- Configured profile queues are reported to the OpenFlow controller, enabling flows to be programmed directly to hardware queues.

Automated Flow Management

- EXOS intelligently classifies and maps flows to hardware resources, both the ACL and FDB tables, allowing up to 100,000 flows per switch.

Extreme Networks Products & SDN Support

Campus Enterprise

Summit X350

Summit X250e

Summit X150

Altitude 45xx/
46xx/47xx

Summit X450a/e

Summit X440

WM3xxx

Altitude 4511

BlackDiamond X8

Summit X670

Summit X650

Summit X480

Summit X460

Data Center

Summit X460

Summit X460

BlackDiamond 8800

Mobile Backhaul

POWERED BY
 ExtremeXOS™

N/S: Not Supported

© 2011 Extreme Networks, Inc. All rights reserved.

extreme
networks

SDN Technology Leadership Continues....

OpenFlow Implementation Plan-of-Record*

*FUTURE AVAILABILITY – PRODUCTS AND FEATURES SUBJECT TO CHANGE

OpenStack Implementation Plan-of-Record*

*FUTURE AVAILABILITY – PRODUCTS AND FEATURES SUBJECT TO CHANGE

Controller & Applications

Multi-Vendor Interoperability & Applications with OpenFlow

Big Switch

Floodlight

NEC

Future Support

VMware

Applications

Controller tier

OpenFlow API

Data plane tier

Big Network Controller mit Hyperglance

Big Network Controller mit Hyperglance

Floodlight Dashboard

Floodlight - Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

Floodlight + 192.168.139.50:8080 Google Live updates

Floodlight Dashboard Topology Switches Hosts

Healthy: true
Uptime: 176 s
JVM memory bloat: 18137680 free out of 45858816
Modules loaded: n.f.topology.TopologyManager, n.f.flowcache.FlowReconcileManager, n.f.devicemanager.internal.DefaultEntityClassifier, n.f.storage.memory.MemoryStorageSource, n.f.debugcounter.DebugCounter, n.f.counter.CounterStore, n.f.restserver.RestApiServer, n.f.firewall.Firewall, n.f.core.FloodlightProvider, n.f.perfmon.PktInProcessingTime, n.f.devicemanager.internal.DeviceManagerImpl, n.f.linkdiscovery.internal.LinkDiscoveryManager, n.f.threadpool.ThreadPool, n.f.flowcache.FlowCache, n.f.staticflowentry.StaticFlowEntryPusher, n.f.loadbalancer.LoadBalancer,

Switches (6)

DPID	IP Address	Vendor	Packets	Bytes	Flows	Connected Since
00:00:00:04:96:7e:08:89	/192.168.139.13:43803	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:51
00:00:00:04:96:7d:f7:0d	/192.168.139.14:36970	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:50
00:00:00:04:96:82:32:be	/192.168.139.11:59262	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:50
00:00:00:04:96:82:32:d9	/192.168.139.12:44247	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:56
00:00:00:04:96:7d:ee:9e	/192.168.139.16:50775	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:56
00:00:00:04:96:7e:2e:4f	/192.168.139.15:58711	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:56

Hosts (4)

MAC Address	IP Address	Switch Port	Last Seen
00:21:70:b9:be:04		00:00:00:04:96:82:32:d9-9	Sonntag, 2. Juni 2013 09:13:58
5c:26:0a:2a:5d:45	10.66.61.12	00:00:00:04:96:7e:08:89-7	Sonntag, 2. Juni 2013 09:14:12
5c:26:0a:23:ab:3a	10.66.61.13	00:00:00:04:96:7d:f7:0d-7	Sonntag, 2. Juni 2013 09:14:12

Floodlight Topology View

Floodlight Switchview Detail

Floodlight - Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

Floodlight +

192.168.139.50:8080/switch/00:00:00:04:96:7e:08:89

Google

Floodlight Dashboard Topology Switches Hosts Live updates

Ports (11)

#	Link Status	TX Bytes	RX Bytes	TX Pkts	RX Pkts	Dropped	Errors
2	DOWN	0	0	0	0	0	0
5	DOWN	0	0	0	0	0	0
25	UP 10 Gbps FDX	139054	139792	1570	1585	0	0
7	UP 100 Mbps FDX	236293	119264	2551	1361	0	0
26	UP 10 Gbps FDX	20572	72178	137	695	0	0
1	UP 1 Gbps FDX	73338	72521	702	710	0	0
4	DOWN	0	0	0	0	0	0
3	DOWN	0	0	0	0	0	0
6	DOWN	0	0	0	0	0	0
8	DOWN	0	0	0	0	0	0
65534 (br0)	UP 1 Gbps FDX	0	0	0	0	0	0

Flows (2)

Cookie	Priority	Match	Action	Packets	Bytes	Age	Timeout
9007199254740992	0	port=7, VLAN=-1, prio=0, src=5c:26:0a:2a:5d:45, dest=5c:26:0a:23:ab:3a	output 25	285	0	277 s	5 s
9007199254740992	0	port=25, VLAN=-1, prio=0, src=5c:26:0a:23:ab:3a, dest=5c:26:0a:2a:5d:45	output 7	284	0	277 s	5 s

Floodlight © Big Switch Networks, IBM, et. al. Powered by Backbone.js, Bootstrap, jQuery, D3.js, etc.

Floodlight Switchview

Floodlight - Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

Floodlight +

192.168.139.50:8080/switches

Dashboard Topology **Switches** Hosts Live updates

Switches (6)

DPID	IP Address	Vendor	Packets	Bytes	Flows	Connected Since
00:00:00:04:96:7e:08:89	/192.168.139.13:43803	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:51
00:00:00:04:96:7d:f7:0d	/192.168.139.14:36970	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:50
00:00:00:04:96:82:32:be	/192.168.139.11:59262	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:50
00:00:00:04:96:82:32:d9	/192.168.139.12:44247	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:56
00:00:00:04:96:7d:ee:9e	/192.168.139.16:50775	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:56
00:00:00:04:96:7e:2e:4f	/192.168.139.15:58711	Extreme Networks	0	0	0	Sonntag, 2. Juni 2013 09:13:56

Floodlight © Big Switch Networks, IBM, et. al. Powered by Backbone.js, Bootstrap, jQuery, D3.js, etc.

Software-Defined Networking: Myths vs. Reality

“SDN is just a research topic”

⇒ Seeing real production deployments for early adopters, moving to early majority

“OpenFlow can (can’t) solve any real-world network problem”

⇒ OpenFlow is at version 1.0 and can solve a few problems well, but is expanding
⇒ Key point: it is a *control* (not a data) protocol

“SDN == OpenFlow”

⇒ OpenFlow is an *open, standard* protocol between the control & data planes in an SDN architecture

“SDN == Network Virtualization”

⇒ Network Virtualization is an important, key application for SDN, but others are possible

“We’ve been doing SDN with scripts for years...”

⇒ There has been a trend toward central controllers, but a programmable dataplane is different from configuration automation

“OpenFlow can’t scale”

⇒ Google’s entire datacenter backbone runs on OpenFlow 1.0

“SDN/OpenFlow deployment is rip-and-replace ”

⇒ All our current deployments have SDN/OpenFlow interoperating with existing networks

Architectural Disruptions

Open architectures bring waves of innovation

Linux OS

X86 Architecture

Closed,
Proprietary
Systems

Compute

Mobile

Networking

Looking to the Future of SDN and OpenFlow

OpenFlow becomes the Android of networking

- Open network OS and controller for Ethernet switches and routers
- OpenFlow and related specifications all available as Open Source

Apps for every need

- From QoS, to PBR, to Identity Management, to Mobility Management, to multi-tenancy and so on

Controller vendors eventually become application developers

- Apps come in free, premium, and freemium models

Switch vendors continue to build and sell switches

- Much like phone vendors continue to sell phones

App Stores and Marketplaces for OpenFlow and SDN Apps

And the Hardware.....?

extreme
networks

....still matters!

extreme
networks

THANK YOU

