From Contingency Table To Logistic Regression

With the French Skiiers Data

Andy Grogan-Kaylor

2023-09-23

Table of contents

1	The Data	1
2	Contingency Table2.1 Risk (R) and Risk Differences (RD) 2.2 Odds Ratios (OR)	
3	Logistic Regression	3

1 The Data

We use the French Skiiers data that we have used in other examples.

```
use "FrenchSkiiers.dta"
```

2 Contingency Table

```
tabulate Tx Outcome [fweight = Count]
```

	Outcome		
Tx	No Cold	Cold	Total
	+		+
Placebo	109	31	140
Ascorbic Acid	122	17	139
	+		+
Total	231	48	279

For the sake of teaching and exposition, I re-arrange the numbers slightly.

	Develop Outcome	Do Not Develop Outcome
Exposed	а	b
Not Exposed	С	d

	Cold	No Cold
Ascorbic Acid Placebo	17 (a) 31 (c)	122 (b) 109 (d)

2.1 Risk (R) and Risk Differences (RD)

$$R = \frac{a}{a+b}$$
 (in Exposed)

$$RD =$$

 ${\sf risk\ in\ exposed} - {\sf risk\ in\ not\ exposed} =$

$$a/(a+b) - c/(c+d) =$$

$$(17/139) - (31/140) =$$

-.09912641

2.2 Odds Ratios (OR)

	Develop Outcome	Do Not Develop Outcome
Exposed	a	b
Not Exposed	С	d

OR =

```
\begin{array}{l} \underline{\text{odds that exposed person develops outcome}}\\ \underline{\frac{a}{a+b}/\frac{b}{a+b}}\\ \frac{c}{c+d}/\frac{d}{c+d} = \\ \\ \frac{a/b}{c/d} = \\ \\ \frac{ad}{bc} = \\ (17*109)/(122*31) = \\ \end{array}
```

3 Logistic Regression

.4899526

As discussed, the formula for logistic regression is:

$$\ln\left(\frac{p(\mathsf{outcome})}{1 - p(\mathsf{outcome})}\right) = \beta_0 + \beta_1 x$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(\text{outcome})}{1-p(\text{outcome})}$ is the odds of the outcome.

Hence, $\ln\left(\frac{p(\mathsf{outcome})}{1-p(\mathsf{outcome})}\right)$ is the $\log odds$ of the outcome.

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios: $OR = e^{\beta}$

We see that the odds ratio given by logistic regression, . 4899526, is the exact same as that given by manually calculating the odds ratio from a contingency table.

An advantage of logistic regression is that it can be extended to multiple independent variables.

```
logit Outcome Tx [fweight = Count], or
```

```
Iteration 0: Log likelihood = -128.09195
Iteration 1: Log likelihood = -125.68839
Iteration 2: Log likelihood = -125.65611
Iteration 3: Log likelihood = -125.6561
```

Logistic regression

Number of obs = 279

LR chi2(1) = 4.87 Prob > chi2 = 0.0273 Pseudo R2 = 0.0190

Log likelihood = -125.6561

	 Odds ratio				[95% conf.	interval]
Tx	.4899526 .2844037	.1613519	-2.17	0.030		.9342712

Note: _cons estimates baseline odds.