ESc201: Introduction to Electronics

Counters and Registers

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Recap: Counters

Binary down counter

Decade counter

Modulo-10 Counter

Modulo-5 Counter

Recap: Counter with Unused States

PS	NS			
<u> </u>	ABC	$J_A K_A$	$J_B K_B$	J _C K _C
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	0 1 0	0 X	1 X	X 1
0 1 0	1 0 0	1 X	X 1	0 X
1 0 0	1 0 1	X 0	0 X	1 X
1 0 1	1 1 0	X 0	1 X	X 1
1 1 0	0 0 0	X 1	X 1	0 X

There are two unused states 011 and 111. one approach to handle this situation is that, while evaluating expressions for J K, we use don't care conditions corresponding to these unused states

Recap:

We can see that if by chance the counter goes into unused states 111 or 011, then after a clock cycle it enters one of the used states.

Example From a frequency of 10KHz, generate the following signal of frequency 2KHz

A divide by 5 counter is required that has 5 states.

A will give the required waveform.

Ripple Counter

T FF toggles when T = 1; otherwise Hold state

FF is negative edge Triggered

Ripple Counter

0 1 2 3 4 5 ₋₋₋₋₁₅

0 1 0 1 0 1 -----1 0

0 0 1 1 0 0 ·····1

0 0 0 0 1 1 -----1

0 0 0 0 0 0 -----1

Ripple Down Counter

0 1 0

0 1 1

0 1

0 1 1

Example: A flip-flop has a 3ns delay from the time the clock edge occurs to the time the output is complemented. What is the maximum delay in a 10-bit counter that uses this type of flip-flop?

The worst case is when all 10 flip-flops are complemented. The maximum delay is $10 \times 3 \text{ns} = 30 \text{ns}$.

The maximum frequency then will be:
$$f = \frac{1}{30ns} = 33.3MHz$$

Register

4-bit Register with parallel load

Load = 0

Equivalent Circuit

Load = 1

Equivalent Circuit

4-bit Shift Register

4-bit universal Register

		_	- 4		_	_
_	ш	n	CI	М	റ	n
	u		U	יוו	U	

S ₁	S_0	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel Load

Serial IN for Shift Left

Function

_	S ₁	S_0	Register Operation	
	0	0	No change	
	0	1	Shift right	
	1	0	Shift left	
	1	1	Parallel Load	

The register maintains its state

$S_1 S_0 = 01$: Shift right

$S_1 S_0 = 10$: Shift left

 $S_1 S_0 = 11$: Parallel Load

Example: Design a 4-bit register with 4 D FFs and four 4-to-1 multiplexers with control inputs s1 and s2 such that when S1S2 = 00, there is no change in the register content; when 01 the outputs are complemented; when 10 the register is cleared to 0 synchronously and when 11 the parallel data is synchronously loaded

The register is made of 4 stages each of which has the structure shown below

Quiz-3 Discussion

All the best for the exams!