Perceptron

Image source: https://naadispeaks.wordpress.com/2017/11/08/artificial-neural-networks-with-net-in-azure-ml-studio/

Realize a network implementing a perceptron which takes $N_{IN}=10$ inputs x_n represented by using $b_x=8$ bit. The network carries out the products between x_n and generic coefficients w_n and adds the result with a bias b. w_n and b are represented by using $b_w=9$ bits. x_n, w_n and b shall be considered in the range [-1,1].

The activation function of the perceptron shall be the one represented in the next figure:

The output of the system shall be represented by using $b_{out}=16$ bits, truncating the least significant bits.

Final report must presents:

- Introduction (algorithm description, possible applications, possible architectures, ...)
- Architecture description (block diagram, I/O interface, etc.)
- VHDL code (with detailed comments)
- Test-plan and relevant Testbenches for the functional verification of the system
- Report the power consumption, the maximum clock frequency and the resource utilization on a Zync Xilinx FPGA. Explain possible logic synthesis warning messages
- Conclusion

Hint: The activation function can be realized without using a look up table through a custom network which tests the amplitude of x and assigns the correct output y. In example, calling $a = b + \sum_{i=0}^{N_{IN}-1} w_n \cdot x_n$, when $-2 \le a \le 2$, the output shall be calculated through the linear function represented in figure, when a > 2, y = 1 and so on. By using b_a bits to represent a, the comparison shall be realized by using the correspondent integer values of -2 and 2 in the range necessary to contain a. (e.g. if a could be contained in the range [-4,4] for each combination of the inputs x_n , by using b = 10 bits, the integer representation of 2 would be: floor(2 / lsb) = 256, where lsb = 4 / (2^(b - 1)) = 0.0078,).