Let's go cisco live! #CiscoLive

High Value Wavelength / Private Line Services

Understanding the Customer and Provider Perspective

Christian Schmutzer, Distinguished Engineer

BRKOPT-1005

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKOPT-1005

Wavelengths (Private Lines) are Premium Services

High availability

Diverse payloads

When Only the Very Best will Do...

SAN ... Storage Area Network

Wavelengths, TDM have been the Gold Standard

Meanwhile the Reality in Packet Networks

Brilliant Idea back in 2001 (RFC3985 and RFC3915)

Transport L2 payload over packet networks using a "pseudo" wire service

PROs

- One network for L2 and L3 services
- Efficient use of network bandwidth
- Simple and scalable

CONs & CONCERNS

- Ethernet payloads only
- OAM
- Bandwidth commitment
- Load-balancing

conclusion:

Good for many services but NOT for premium private line use cases

Packet is Like Driving in LA

- Always reserved for your team
- Runs on a schedule
- Put whoever you want in those seats

Shared Bandwidth (rush hour)

Asymmetric routes & latency

Source: google maps

Source: Seatguru

BRKOPT-1005

Massive Shifts in Economics of Routing

Coherent transceivers eliminate the need for DWDM transponders

And there are challenges today

Operating 2 networks is hard & expensive

What if I only have an IP network?

Agenda

It is time for a Change, but...

- Bit-transparency & Non-etherent payloads
- Clocking
- Inband OAM
- MTU and overhead
- Co-routed, bidirectional paths
- Dedicated bandwidth
- + some extra thoughts

Non-Ethernet Payloads

Virtual Private Wire Service (Pseudowire)

- Emulation of a "Telecommunications service"
- Initially defined by IETF PWE3 working group via RFC 3985
 - T-LDP for pseudowire signaling
 - Frame Relay, ATM, Ethernet and TDM
- Modernized by IETF BESS working group via RFC 8214
 - MP-BGP for pseudowire signaling → EVPN-VPWS

Routers do look for Frames on an Ethernet Port

- Incoming bit stream is de-serialized
- Clock is recovered
- Align to PCS stream
 - 8B10B, 64B/66B or 256B/257B
- Identify MAC frames

Bits on the wire 0101010111010101

What if we (want to) stop much earlier?

- We just process bits
- We are unaware of ethernet frames and their boundaries
- We can carry what we want
- (However) we need special hardware to do that

Bits on the wire 0101010111010101

BRKOPT-1005

Solving the Control Protocol Challenge ... finally

- Most products can tunnel/process spanning tree, LACP and OAM properly
- But there is always something new like
 - MACSEC uses EAPOL (IEEE 802.1X-2010) for key exchange
 - EtherType 0x888e and destination MAC 01-80-C2-00-00-03
 - MEF 45.1 is only "recommending" to pass those frames for ethernet private lines (EPLs)

Protocol Type	Protocol Identifier	L2CP Destination Address	L2CP Action
STP[3]/RSTP[4]/MSTP[4]	LLC Address: 0x42	01-80-C2-00-00-00	Pass
E-LMI[15]	EtherType: 0x88EE	01-80-C2-00-00-07	Pass ⁶
LLDP[1]	EtherType: 0x88CC	01-80-C2-00-00-0E	Pass
PTP Peer Delay[8]	EtherType: 0x88F7	01-80-C2-00-00-0E	Pass
GARP[4]/MRP[4] Reserved Address	any	01-80-C2-00-00-20 through 01-80-C2-00-00-2F	Pass

Protocol Type	Protocol Identifier	L2CP Destination Address	L2CP Action
PAUSE[7]	Etherype: 0x8808 Subtype: 0x0001	01-80-C2-00-00-01	Discard
LACP/LAMP[2]	EtherType: 0x8809 Subtypes: 0x01, 0x02	01-80-C2-00-00-02	Pass
Link OAM[7]	EtherType: 0x8809 Subtype: 0x03	01-80-C2-00-00-02	Pass
Port Authentication[6]	EtherType: 0x888E	01-80-C2-00-00-03	Pass
ESMC[11]	EtherType: 0x8809 Subtype: 0x0A	01-80-C2-00-00-02	Pass ⁷

Table 9 - EPL Option 2 L2CP Processing Requirements

Table 10 - EPL Option 2 L2CP Processing Recommendations

Private Line Emulation (PLE) = Bits over Packets

- Encapsulation of bit-stream into packets
 - Extend idea from RFC 4553 (SATOP) beyond T1/E1 to Ethernet, Fibre Channel, OCn/STMn, anything
- Standardization at IETF underway
 - draft-schmutzer-pals-ple

Figure 3: PLE Encapsulation Layer

Source: draft-schmutzer-pals-ple

PSN ... Packet Switched Network

Converting Packets back to Bits

- Store packets in a de-jitter buffer
 - Packet Delay Variation (PDV)
 - Packet reordering
- Bit from the packet payloads are transmitted using the recovered clock

#CiscoLive

PLE payload types

SONET/SDH OTN **Ethernet** Fibre Channel 1Gbps ODU0 1GE 1GFC OC48/STM16 2GFC ODU1 4GFC 8GFC OC192/STM64 ODU2/ODU2e 10GF 16GFC Supported today 32GFC 64GFC ODU4 100GE 128GFC 200GE +100Gbps 400GE

Emulation is independent of the physical Interface

- Similar to SAToP (RFC 4553) the structure agnostic attachment circuit is independent from the physical port type
- It can either be a physical ethernet port or ODU2e mapped "logical" 10GE port inside a 100Gbps OTU4 interface extracted by the native service processing (NSP) function

It is Not about Latency, but about Jitter!

Router transfer latency

Optical propagation delay

Source: google maps

Network Packet Delay Variation (PDV)

Lets quantify this a bit

Router transfer latency

Optical propagation delay

Lets quantify this a bit

Router transfer latency

Optical propagation delay

 \sim 5 μ s / km

Depening on NPU type and router architecture (number of NPUs passed)

No Oversubscription, buffering can still happen

Growing Interface Speed does help us

Lets quantify this a bit

Router transfer latency

Depening on NPU type and router architecture (number of NPUs passed)

~3-10 µs

Max $\pm 10 \mu s$ variance

Optical propagation delay

 \sim 5 μ s / km

How much Buffer for our Network?

- Per router hop jitter ±10 μs
- Maximum 30 hops
- 30 * \pm 10 = \pm 300 μ s PDV

Requires 100s of µs of dejitter buffer!

Network Packet Delay Variation (PDV)

Configuring a PLE Pseudowire

Define client interface

```
controller Optics0/0/2/2
port-mode FC framing cem-packetize rate FC8
```

Enable L2VPN on the emulation interface

```
interface CEM0/0/2/2
l2transport
```

Configure EVPN-VPWS

```
12vpn
xconnect group PLE
p2p ple_fc8
interface CEM0/0/2/2
neighbor evpn evi 103 target 16022 source 11022
pw-class unprotected_circuit
```

pw-class unprotected_circuit
 encapsulation mpls
 preferred-path sr-te policy srte_c_1_ep_1.0.0.6

BRKOPT-1005

It is time for a Change

 Bit-transparency & Non-etherent payloads

- Clocking
- Inband OAM
- MTU and overhead
- Co-routed, bidirectional paths
- Dedicated bandwidth
- + some extra thoughts

Clocking

The Foundation is a Common Clock

- The two PLE endpoint routers must have synchronous system clocks
- Can be achieved by SyncE or BITS (or PTP)

Indicating Client Clock to the Egress

- Insert RTP timestamps (counter)
- Counter frequency = common clock
- Counter values = how long it takes to fill a packet (depends on client clock)

PSN ... Packet Switched Network

cisco We!

Recover the Client Clock on Egress

- Differential clock recovery (DCR)
 - The RTP timestamp indicates the "difference" between the client and the common clock

Carrier Ethernet merges SyncE Clock Domains

Carrier Ethernet merges SyncE Clock Domains

It is time for a Change, but ...

Bit-transparency & Non-etherent payloads solved

- Clocking solved
- Inband OAM
- MTU and overhead
- Co-routed, bidirectional paths
- Dedicated bandwidth

Agenda

It is time for a Change, but...

 Bit-transparency & Non-etherent payloads

• Clocking Solved

- Inband OAM
- MTU and overhead
- Co-routed, bidirectional paths
- Dedicated bandwidth
- + some extra thoughts

Inband OAM

What does OTN do in Case of a Client Failure?

... what in case of a Network Failure?

OAM during Encapsulation (Ingress)

- Embedded OAM via PW control word
 - Client faults → L bit set
 - Rx pseudowire network fault → R bit set

Source: draft-schmutzer-pals-ple

PSN ... Packet Switched Network

#CiscoLive

OAM during Decapsulation (Egress)

- Client fault indication
 - Too many packets lost
 - If L bit is set in PW Control word
 - Service specific by structure aware NSP
 - see section 4 of draft-schmutzer-pals-ple

AIS ... Alarm Indication Signal

LF ... Local Fault

NSP ... Native Service Processing

PLE OAM for a Client Failure

Verifying PLE OAM Statistics

```
RP/0/RP0/CPU0:peyto#show controllers cem 0/0/2/2
Detected Alarms
                             : None
Statistics Info
Ingress packets : 569295050, Ingress packets drop
                                                     : 0
Egress packets
                     : 409658267, Egress packets drop
                                                     : 0
Total error
                 : 0
      Missing packets : 0, Malformed packets
                                                     : 0
      Jitter buffer underrun : 0, Jitter buffer overrun
                                                     : 0
      Misorder drops : 0
                                                             We also have "ITU-style"
Reordered packets : 0, Frames fragmented
Error seconds : 0, Severely error seconds
                                                             Performance Monitoring
Unavailable seconds
                     : 0, Failure counts
Generated L bits
                     : 409658183, Received L bits
                                                    : 409658267
Generated R bits
                    : 0, Received R bits
                                                    : 2541
```


Agenda

It is time for a Change, but...

 Bit-transparency & Non-etherent payloads

- Clocking solved
 Inband OAM solved
- MTU and overhead
- Co-routed, bidirectional paths
- Dedicated bandwidth
- + some extra thoughts

MTU and Overhead

Ethernet PW Overhead reduces Customer MTU

- For a carrier MTU of 9216, customer MTU must be 9176 or less
- Overhead % is frame size dependent

PLE VPWS Overhead is just Overhead

- Customer MTU can still be 9216 (actually anything)
- 6-10% overhead (frame independent)

Dealing with Overhead is Easy Nowadays

10GE Nx10GE

- Link bundle / ECMP
- -5-tuple hashing?

- 100GE expensive
- limited router choice

Present

- -more than enough bandwidth
- -Good reach variety

- -Pluggable coherent optics
- -Open ecosystem

Agenda

It is time for a Change, but...

 Bit-transparency & Non-etherent payloads

- Clocking FLE Solved
- Inband OAM solved
- MTU and overhead

- Co-routed, bidirectional paths
- Dedicated bandwidth
- + some extra thoughts

Co-routed, bidirectional Paths
&
Guaranteed Bandwidth

Classic View: Two very different Models

- Native packet transport
 - Bandwidth only consumed when customer is sending data
 - Allows for multiple traffic classes and forwarding behaviors

- TDM transport
 - Static timeslot allocation

Circuit Emulation = Constant Traffic Load!

- Native packet transport
 - Bandwidth only consumed when customer is sending data
 - Allows for multiple traffic classes and forwarding behaviors
- Fmulation
 - Bit transparency
 - Constant network load
- TDM transport
 - Static timeslot allocation

Premium Transport for Premium Services

Why do protection schemes matter?

MPLS-TE FRR

Local bypass protection, without bandwidth allocated

Loop Free Alternate (LFA)

Post convergence path, without bandwidth allocated

Path Protection

pre-allocated bandwidth end2end

Only with path protection you know "a priori" that there won't be congestion

Circuit-Style Segment Routing (CS-SR)

Path protected, co-routed, bi-directional SR policy

Deterministic and persistent SR paths

- Manual adjacency SIDs → persistent across node reloads
- Unprotected adjacency SIDs → no traffic rerouting due to TI-LFA

Persistency - ignore newly added Resources

Persistency - don't adjust to Network Changes

Configuring a "static" CS-SR Policy

```
segment-routing
  traffic-eng
  policy protected_manual
  color 2 end-point ipv4 1.0.0.6
  path-protection
  !
  candidate-paths
    preference 50
    explicit segment-list via_three eight
    reverse-path segment-list via_eight three
    !
  !
  preference 100
    explicit segment-list via_two_four
    reverse-path segment-list via_four_two
```



```
segment-list via four two
  index 10 mpls label 15004
  index 20 mpls label 15002
 index 30 mpls label 15001
 segment-list via two four
 index 10 mpls label 15002
 index 20 mpls label 15004
 index 30 mpls label 15006
 segment-list via eight three
 index 10 mpls label 15008
 index 20 mpls label 15003
  index 30 mpls label 15001
 segment-list via three eight
 index 10 mpls label 15003
  index 20 mpls label 15008
  index 30 mpls label 15006
```

BRKOPT-1005

PCC-initated CS-SR policy creation

- A SR policy is configured on both endpoints
- Each endpoint requests a path via PCEP from a central PCE
 - Common bi-directional association
 - Required bandwidth
 - Path constraints
- The central PCE maintains a real time view of
 - The network topology (BGP-LS)
 - All path/bandwidth requests (PCEP)

1) Cisco Crosswork Optimization Engine (COE)

Configuring a "dynamic" CS-SR Policy

```
segment-routing
traffic-eng
 policy protected dynamic
   bandwidth 8000000
  color 3 end-point ipv4 1.0.0.6
  path-protection
  candidate-paths
   preference 100
       type latency
      segments
      protection unprotected-only
      adjacency-sid-only
      disjoint-path group-id 16 type link
      co-routed
      association-id 10
```

```
preference 50
 dynamic
  рсер
  metric
   type latency
 lock
  duration 60
 constraints
  segments
   protection unprotected-only
   adjacency-sid-only
  disjoint-path group-id 16 type link
 bidirectional
  co-routed
  association-id 11
```

```
preference 10
dynamic
  рсер
  metric
   type iap
 lock
  duration 60
backup-ineligible
 constraints
  seaments
   protection unprotected-only
   adjacency-sid-only
 bidirectional
  co-routed
  association-id 12
```


CS-SR PCE is in CNC5.0

How to Guarantee Bandwidth?

- Two simple rules
 - Traffic of CS-SR is limited (policed) to requested bandwidth
 - During congestion only other traffic is dropped, not CS-SR
- To adhere to 2)
 - Don't commit what you don't have
 - Treat CS-SR at highest data priority

Agenda

It is time for a Change, but...

 Bit-transparency & Non-etherent payloads

- · Clocking solver
- Inband OAM Solved
- MTU and overhead
- Co-routed, bidirectional paths 5-5R solved
- Dedicated bandwidth
- + some extra thoughts

CS-SR with STAMP adds OAM to Transport

- Bidirectional Liveness and performance measurement via a single protocol (STAMP)
- Loopback probes with exact reverse path encoded providing bidirectional detection

Enabling Candidate Path Liveness

```
performance-measurement
liveness-profile name cs protect
 liveness-detection
  multiplier 3
 probe
  tx-interval 100000
 liveness-profile name cs working
 liveness-detection
  multiplier 3
 probe
  tx-interval 3300
 npu-offload
  enable
```

```
segment-routing
traffic-eng
policy protected_manual
...
performance-measurement
liveness-detection
liveness-profile backup name cs_protect
liveness-profile name cs_working
```


Agenda

It is time for a Change, but..

Bit-transparency& Non-etherent payloads

- · Clocking 50/Ved
- Inband OAM Solver solved
- MTU and overhead solver
- Co-routed, bidirectional paths
- Dedicated bandwidth
- + some extra thoughts

So far so good ... lets try to deploy this

PLE is real since XR 7.7.1 (July 2022)!

- Supported client types
 - 1GE, 10GE
 - OC48/STM16, OC192/STM64
 - Fibre channel (1, 2, 4, 8, 10, 16 and 32G)
 - OTU2, OTU2e
- Any mix of client types supported
- Supported in NCS-55A2 (peyto) and NCS-57C3 (Eryie)

NCS-55A2

NC55-OIP-02

NCS-57C3

Applying PLE to Storage Area Networks

Easy "Pay-as-you-grow" Insertion for Carriers

At Customer Premise or in Central Office

Connecting a Customer - more Details

- One fiber pair to customer premise
- Generally there is a pair of routers in the CO/POP
- The challenge:
 - How to connect the NID to two routers via a single fiber pair?

25GE BiDi Transceivers

- Allows for a 25GE link over a single strand of single-mode fiber
- Two SFP28 variants
 - SFP-10/25G-BX40D-I (1330nm TX)
 - SFP-10/25G-BX40U-I (1270nm TX)
- Achievable distance
 - ~18dB power budget
 - 40km reach (CD limited)

No extra passive components needed!

10G PLE at Customer Premise

... ah there is one more thing

CS-SR, Dynamic Recovery from Double Failures

Key take aways

CS-SR ... a new Transport Behavior

Service overlay

EVPN-VPWS

- Ethernet only
- No special hardware required

Underlay transport

Circuit-style SR (CS-SR)

- bi-directional path with bandwidth guarantees
- End-to-end path protection and restoration

connection-oriented

"classic" SR

Scale & simplicity

connection-less

CS-SR is bringing Order onto "Planet Packet"

BRKOPT-1005

PLE completes the Service Portfolio

Service overlay

PLE

- Bit transparent
- Other payloads: FibreChannel, ...

EVPN-VPWS

- Ethernet only
- No special hardware required

Underlay transport

Circuit-style SR (CS-SR)

- bi-directional path with bandwidth guarantees
- End-to-end path protection and restoration

connection-oriented

"classic" SR

Scale & simplicity

connection-less

From Closed Optical to Open Packet Private Lines

Big Routers with standard interfaces

draft-schmutzer-pals-ple draft-schmutzer-spring-cs-sr-policy draft-sidor-pce-circuit-style-pcep-extensions Cost-efficient, standards-based solution

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Challenge** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Tip: Check out related sessions by searching for "BRKOPT-" in the session catalog

Continue your education

- Visit the <u>Cisco Showcase</u> for related <u>demos</u>
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- 1 Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive