CS-583: Deep Learning Reinforcement Learning

Abdul Rafae Khan

Department of Computer Science Stevens Institute of Technology akhan4@stevens.edu

November 9, 2023

Search Problem

Deterministic Actions

Actions from a give state are deterministic Succ(s, a) is always the same state s'

Stochastic Actions

Actions from a give state are probabilistic (stochastic)

Succ(s, a, t) denotes the next state given the current state s and action a taken at the time t_i

It can either be state B with a probability p_i or state C with probability p_j

Applications

Game:

The player starts with \$0 as the prize money. In each round, the player can take two steps:

- Quit and take \$10
- Answer a question
 - Correctly answer with a probability of $\frac{2}{3}$, get \$4 prize and move to the next round
 - Otherwise get \$4 prize and end the game

Gameshow:

The player starts with 0 as the prize money. In each round, the player can take two steps:

- Quit and take \$10
- Answer a question
 - Correctly answer with a probability of $\frac{2}{3}$ and move to the next round
 - Otherwise take \$4 and end the game

What is the best strategy for the game?

If our policy is to 'answer':

If our policy is to 'answer':

Expected Utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

If our policy is to 'quit':

Expected Utility:

$$1(10) = 10$$

Search problem

s_{start}: start state

Actions(s): all possible actions from state s

Succ(s, a): next possible states given action a is taken from state s

Cost(s, a): cost of transition from state s by taking action a

lsEnd(s): is s a goal state

```
s<sub>start</sub>: start state
```

Actions(s): all possible actions from state s

T(s, a, s'): probability of s' if action a is taken from state s

Reward(s, a, s'): reward from the transition s to s'

lsEnd(s): is s a goal state

 $0 \le \gamma \le 1$: discount factor (default: 1)

Total transition probability: $\sum_{s'} T(s, a, s') = 1$ Discount factor γ is based on how much we value the future reward

 $Succ(s,a) \to T(s,a,s')$ Succ(s,a) can be considered as a special case of transition probability

$$T(s, a, s') =$$

$$\begin{cases}
1 & \text{if } s' = Succ(s, a) \\
0 & \text{otherwise}
\end{cases}$$

 $\mathsf{Cost}(s,a) \to \mathsf{Reward}(s,a,s')$ Instead of minimizing the cost, we maximize the reward Negating one is equivalent to the other

T(s, a, s'): probability of s' if action a is taken from state s

s	а	s'	T(s,a,s')
S _{start}	Quit	Send	1
S _{start}	Question	S _{end}	1/3
s_{start}	Question	S _{start}	2/3

T(s, a, s'): probability of s' if action a is taken from state s

S	а	s'	T(s,a,s')
S _{start}	Quit	Send	1
S _{start}	Question	S _{end}	1/3
s_{start}	Question	S _{start}	2/3

To re-iterate:

Sum of probabilities from a given state s by making an action a is 1

$$\sum_{s' \in states} \mathcal{T}(s, a, s') = 1$$

Successors: states s' where T(s, a, s') > 0

T(s, a, s'): probability of s' if action a is taken from state s

s	а	s'	T(s,a,s')
S _{start}	Quit	S _{end}	1
S _{start}	Question	S _{end}	1/3
S _{start}	Question	S _{start}	2/3

Sum of probabilities from a given state s by making an action a is 1

Policy

Policy: gives an action a for a given $\pi: s \to s$

For deterministic search problems, we wanted the optimal sequence of actions from start to goal For MDP, we want the optimal policy $\pi^*: s \to a$ which maximizes the reward Reward(s, a, s')

Grid World!

Our world is 3×4 grid Start state is at (0,0)Reward +1 at (4,3)Reward -1 at (4,2)

Grid World!

For any state, three possible moves

up: 0.8left: 0.1

• right: 0.1

Grid World!

Optimal policy for $\gamma < -0.04$ There are two optimal policies for state (3,1)

Discount

Additive discount utility

Let say the path is s_0 , $a_1r_1s_1$, $a_2r_2s_2$, (sequence of state, action, and reward)

The utility with discount γ is:

$$R(s, a, s') + \gamma R(s, a, s') + \gamma^2 R(s, a, s') + \cdots$$
 where $\gamma \in [0, 1]$

 $\boldsymbol{\gamma}$ is based on how important current reward is compared to the future reward

Discount

```
Solving the problem of infinite stream of rewards Geometric series: 1+\gamma+\gamma^2+\ldots=1/(1-\gamma) Assume rewards bounded by \pm R_{max} Then r_0+\gamma_1 r_1+\gamma_2 r_2+\ldots is bounded by \pm R_{max}/(1-\gamma)
```

The **utility** is the discounted sum of rewards on the path.

Optimal policy: $\pi^*(s) = \text{optimal actions from state } s$

It gives highest $U_{\pi}(s)$ for any π

$$U_{\pi}(s) = R(s,a,s') + \gamma R(s,a,s') + \gamma^2 R(s,a,s') + \cdots$$

For a given policy π , we have two variable associated with it:

- Value of the policy $V_{\pi}(s)$
- ullet Q-value of the policy $Q_{\pi}(s,\pi(s))$

For a given policy π , we have two variable associated with it:

- Value of the policy $V_{\pi}(s)$
- Q-value of the policy $Q_{\pi}(s,\pi(s))$

The value can be thought of as the label for the nodes representing the states and the Q-value as the label for the chance nodes

Value is the expected utility from following policy π from state s **Q-value** is the expected utility of taking action a from state s, and then following policy π .

$$V_{\pi}(s) = E[V_{\pi}(s)] = egin{cases} 0 ext{ if } isEnd(s) \ Q_{\pi}(s) ext{ otherwise} \end{cases}$$

$$Q_{\pi}(s) = \sum_{s'} T(s'|s,a)[R(s,a,s') + \gamma V(s')]$$

Let the policy π be 'Answer':

$$egin{aligned} V_\pi(s_{end}) &= 0 \ V_\pi(s_{start}) &= Q_\pi(s_{start}, Answer) \ &= rac{1}{3}(4 + V_\pi(s_{end})) + rac{2}{3}(4 + V_\pi(s_{start})) \ \implies V_\pi(s_{start}) &= rac{1}{3}(4) + rac{2}{3}(4 + V_\pi(s_{start})) \end{aligned}$$

Closed form solution:

$$3V_{\pi}(s_{start}) = 4 + 2 \cdot 4 + 2V_{\pi}(s_{start})$$

 $V_{\pi}(s_{start}) = 12$

Given the recursion $V^*(s) = \max_a Q^*(s, a)$

Value:

$$V^*(s) = \max_{a \in Actions(s)} \sum_{s'} \{P(s'|s, a)[R(s, a, s') + \gamma V(s')]\}$$

Q-value:

$$Q^*(s, a) = \sum_{s'} \{P(s'|s, a)[R(s, a, s') + \gamma V(s')]\}$$

$$= \sum_{s'} \{P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q(s', a')]\}$$

Solving MDPs:

- Value Iteration
- Policy Iteration

Policy Iteration

```
\begin{aligned} V_\pi^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{\text{max}} \\ \text{for each state } s \\ V_\pi^{(t)}(s) &\leftarrow \sum_{s'} T(s'|s,a) [R(s,\pi(s),s') + \gamma V_\pi^{(t-1)}(s')] \end{aligned}
```

Policy Iteration

```
V_{\pi}^{(0)}(s) \leftarrow 0 for i = 1 \cdots t_{max} for each state s V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s'|s,a)[R(s,\pi(s),s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q_{\pi}^{(t-1)}(s)}
```

How many iterations (t_{max}) ? Repeat until there is no/very little change

$$\max_{s \in states} |V_{\pi}^{(t)}(s) - V_{\pi}^{(t-1)}(s)| \leq \epsilon$$

Only save the last two iterations, $V_{\pi}^{(t)}$ & $V_{\pi}^{(t-1)}$

Policy Iteration

```
egin{aligned} V_\pi^{(0)}(s) &\leftarrow 0 \ &	ext{for } i = 1 \cdots t_{max} \ &	ext{for each state } s \ V_\pi^{(t)}(s) &\leftarrow \sum_{s'} T(s'|s,a) [R(s,\pi(s),s') + \gamma V_\pi^{(t-1)}(s')] \end{aligned}
```

Total states: *S*

Actions per state: A

Total successor (with T(s'|s, a) > 0): S'

Complexity: $O(SS't_{max})$

Policy Iteration

Let the policy π be 'Answer':

$$egin{aligned} V_{\pi}^{(t)}(s_{end}) &= 0 \ V_{\pi}^{(t)}(s_{start}) &= rac{1}{3}(4 + V_{\pi}^{(t-1)}(s_{end})) + rac{2}{3}(4 + V_{\pi}^{(t-1)}(s_{start})) \end{aligned}$$

Iteration (t)	$V_{\pi}^{(t)}(s_{end})$	$V_{\pi}^{(t)}(s_{start})$
0	0.00	0.00
1	0.00	4.00
2	0.00	6.67
3	0.00	8.44
100	0.00	12.00

$$V_{\pi}^{(t)}(s_{start})=12$$

Goal: try to get directly at maximum expected utility $V_{opt}(s)=$ is the maximum value obtained by any policy

Given the recursion $V_{opt}(s) = \max_a Q_{opt}(s, a)$

Value:

$$V_{opt}(s) = \max_{a \in Actions(s)} \sum_{s'} \{T(s'|s, a)[R(s, a, s') + \gamma V_{opt}(s')]\}$$

Q-value:

$$\begin{aligned} Q_{opt}(s, a) &= \sum_{s'} \{ T(s'|s, a) [R(s, a, s') + \gamma V_{opt}(s')] \} \\ &= \sum_{s'} \{ T(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_{opt}(s', a')] \} \end{aligned}$$

Policy evaluation used the action from a fixed policy π Now we pick the action which maximizes the Q-value $Q_{opt}(s)$

$$V_{opt}(s) = egin{cases} 0 ext{ if } isEnd(s) \ \max_{a \in Actions(s)} Q_{opt}(s) ext{ otherwise} \end{cases}$$

$$Q_{opt}(s) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{opt}(s')]$$

Optimal Policy

As for any state s, $Q_{\pi}(s)$ gives you the value of taking the policy $\pi(s)$ Therefore, **Optimal policy** π_{opt} in state s is the one which gives the largest value for $Q_{opt}(s)$

$$\pi_{opt}(s) = \underset{s \in Actions(s)}{\operatorname{arg max}} Q_{opt}(s)$$

```
\begin{aligned} V_{opt}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{max} \\ \text{for each state } s \\ V_{opt}^{(t)}(s) &\leftarrow \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')] \end{aligned}
```

```
V_{opt}^{(0)}(s) \leftarrow 0 for i = 1 \cdots t_{max} for each state s V_{opt}^{(t)}(s) \leftarrow \max_{a \in Actions(s)} \underbrace{\sum_{s'} T(s, a, s')[R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')]}_{Q_{opt}^{(t-1)}(s)}
```

```
\begin{aligned} V_{opt}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{max} \\ \text{for each state } s \\ V_{opt}^{(t)}(s) &\leftarrow \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')] \end{aligned}
```

Total states: S

Actions per state: A Total successor: S'

Complexity: $O(SAS't_{max})$

```
\begin{aligned} V_{opt}^{(0)}(s) &\leftarrow 0 \\ \text{for } i &= 1 \cdots t_{max} \\ \text{for each state } s \\ V_{opt}^{(t)}(s) &\leftarrow \max_{a \in Actions(s)} \sum_{s'} T(s, a, s') [R(s, \pi(s), s') + \gamma V_{opt}^{(t-1)}(s')] \end{aligned}
```

 argmax instead of max will give the optimal policy π_{opt}

Iteration (t)	$V_{opt}^{(t)}(s_{end})$	$V_{opt}^{(t)}(s_{start})$	$\pi_{opt}(s_{end})$	$\pi_{opt}(s_{start})$
0	0.00	0.00	-	-
1	0.00	10.00	-	Quit
2	0.00	10.67	-	Answer
3	0.00	11.11	-	Answer
100	0.00	12.00	-	Answer

$$V_{\pi}^{(t)}(s_{start})=12$$

Recap

 s_{start} : start state Actions(s): all possible actions from state s T(s, a, s'): probability of s' if action a is taken from state s Reward(s, a, s'): reward from the transition s to s' IsEnd(s): is s a goal state $0 \le \gamma \le 1$: discount factor (default: 1)

Unknown Transitions & Reward

```
s_{start}: start state Actions(s): all possible actions from state s T(s, a, s'): probability of s' if action a is taken from state s Reward(s, a, s'): reward from the transition s to s' IsEnd(s): is s a goal state 0 \le \gamma \le 1: discount factor (default: 1)
```

Unknown Transitions & Reward

```
s_{start}: start state Actions(s): all possible actions from state s T(s, a, s'): probability of s' if action a is taken from state s Reward(s, a, s'): reward from the transition s to s' IsEnd(s): is s a goal state 0 \le \gamma \le 1: discount factor (default: 1)
```

Reinforcement Learning!

Unknown Transitions & Reward

MDPs:

Know how the word works: Environment is observable Find a policy which maximizes the reward

Reinforcement learning:

Do not know about the world: Environment is not observable Find a policy which maximizes the reward Perform actions and collect the reward

Reinforcement Learning

The agent performs actions and observes the rewards
This feedback loop helps learn the missing values (transition probabilities and reward)

Reinforcement Learning

Overall algorithm

```
for t=1,2,3,\cdots
Choose action a_t=\pi_{act}(s_{t-1})
Get reward r_t and new state s_t
Update parameters
```

```
Data: s_0; a_1r_1s_1; a_2, r_2, s_2; a_3, r_3, s_3; ...
Estimate T(s, a, s') \& R(s, a, s')
```

$$\hat{T}(s, a, s') = \frac{\text{No. of times } s, a, s' \text{ occurs}}{\text{No. of times } s, a \text{ occurs}}$$

$$\hat{R}(s,a,s') = \text{reward observed by } s,a,s'$$

Iteration: 0

Policy π is Answer

Iteration: 1

 $\textbf{Data:} s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end}$

Policy π is Answer

Iteration: 2

Data: s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{end}

Policy π is Answer

Iteration: 3

Data: s_{start} ; Ans, 4, s_{end}

Can converge to true values Compute policy using value Iteration for the estimated MDP (with \hat{T} and \hat{R})

If $a \neq \pi(s)$ (a = Quit), s, a will not be seen

Exploration: try unknown actions to get information

We can use the computed transitions and rewards And compute the optimal Value and Q-value

$$\hat{V}_{opt}(s) = E[\hat{V}_{opt}(s)] = egin{cases} 0 ext{ if } isEnd(s) \ \hat{Q}_{opt}(s) ext{ otherwise} \end{cases}$$

$$\hat{Q}_{opt}(s,a) = \sum_{s'} \hat{T}(s,a,s') [\hat{R}(s,a,s') + \gamma \hat{V}_{opt}(s')]$$

Pros:

Makes efficient use of experiences

Cons:

- May not scale to large state spaces
 - Learns model one state-action pair at a time
 - Cannot solve MDP for very large |S|

Model-based vs Model-free

Goal: Compute the age of CS students

P(A) is known

$$\mathbb{E}[A] = \sum_{a} P(A) \cdot a$$
$$= 0.35 \times 20 + \cdots$$

Model-based vs Model-free

Without P(A), collect samples $[a_1, a_2, \cdots, a_N]$

Unknown P(A): Model-based

$$\hat{P}(A) = \frac{num(a)}{N}$$
 $\mathbb{E}[A] \approx \sum_{a} \hat{P}(A)$

Because, eventually the correct model is learnt

Unknown P(A): Model-free

$$\mathbb{E}[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Because, samples appear with right frequencies

Model-based vs Model-free

Model based vs. Model free:

Do we estimate T(s, a, s') and R(s, a, s'), or just learn values/policy directly

Online vs Batch:

Learn while exploring the world, or learn from fixed batch of data

Active vs Passive:

Does the learner actively choose actions to gather experience? or, is a fixed policy provided?

Model-free Monte Carlo

Policy π is Answer

Iteration: 0

Data:

Model-free Monte Carlo

Policy π is Answer

Iteration: 1

Data: s_{start} ; Ans, 4, s_{end}

Model-free Value Iteration

Policy π is Answer

Iteration: 2

Data: s_{start} ; $Ans, 4, s_{start}$; $Ans, 4, s_{end}$

Model-free Value Iteration

Policy π is Answer

Iteration: 3

Data: s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{start} ; Ans, 4, s_{end}

Model-free Value Iteration

We are estimating Q_{π} and not Q_{opt}

Model-free Value Iteration

Policy π is Answer

Data: s_1 ; a_1 , r_1 , s_1 ; a_2 , r_2 , s_2 ; · · · ; a_n , r_n , s_n

$$\hat{Q}(s,a)=$$
 average of u_t where $s_{t-1}=s, a_t=a$

Equivalent formulation (convex combination)

for each
$$(s,a,u)$$

$$\eta = \frac{1}{1 + \mathsf{No.} \ \mathsf{of} \ \mathsf{updates} \ (s,a)}$$

$$\hat{Q}_\pi(s,a) \leftarrow (1-\eta)\hat{Q}_\pi(s,a) + \eta u$$

Model-free Value Iteration

Convex combination:

for each
$$(s,a,u)$$
 $\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta u$

Stochastic Gradient:

for each
$$(s, a, u)$$

$$\hat{Q}_{\pi}(s, a) \leftarrow \hat{Q}_{\pi}(s, a) - \eta [\hat{Q}_{\pi}(s, a) - \underbrace{u}_{target}]$$

Objective (Least squares): $(\hat{Q}_{\pi}(s,a) - u)^2$

Using the Utility

Policy π is Answer Data:

```
s_{start}; Ans, 4, s_{end} u = 4
s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end} u = 8
s_{start}; Ans, 4, a_{start}; a_{start};
```

Model-free Monte Carlo:

for each
$$(s,a,u)$$

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{u}_{data}$$

Using the reward+Q-value

Current estimate: $Q_{\pi}(s, Ans) = 11$

Data:

```
s_{start}; Ans, 4, s_{end} 4 + 0

s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end} 4 + 11

s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end} 4 + 11

s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{start}; Ans, 4, s_{end} 4 + 11
```

SARSA:

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{\begin{bmatrix} r \\ \text{data} \end{bmatrix}}_{\text{estimate}} + \gamma \underbrace{\hat{Q}_{\pi}(s',a')}_{\text{estimate}}$$

Model-free Monte Carlo vs SARSA

Model-free Monte Carlo:

for each
$$(s,a,u)$$

$$\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta \underbrace{u}_{data}$$

SARSA:

for each
$$(s, a, r, s', a')$$

$$\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta \underbrace{\begin{bmatrix} r \\ data \end{bmatrix}}_{estimate} + \gamma \underbrace{\hat{Q}_{\pi}(s', a')}_{estimate}$$

SARSA uses $\hat{Q}_{\pi}(s,a)$ instead of raw data u SARSA doesn't have to wait till it reaches the terminal node to update

Model-free Monte Carlo vs SARSA

Output	MDP	Reinforcement Learning	
$\overline{Q_{\pi}}$	Policy Evaluation	Model-free Monte Carlo, SARSA	
Q_{opt}	Value Iteration	Q-Learning	

Q-Learning

Bellman optimality equation:

$$Q_{opt}(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{opt}(s')]$$

Q-Learning:

$$\hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \underbrace{\hat{Q}_{opt}(s, a)}_{prediction} + \eta \underbrace{(r + \gamma V_{opt}(s'))}_{target}$$

Q-Learning

Recall (Bellman optimality equation):

$$Q_{opt}(s,a) = \sum_{s'} \mathcal{T}(s,a,s')[R(s,a,s') + \gamma V_{opt}(s')]$$

Q-Learning:

$$\begin{aligned} \text{for each } (s, a, r, s') \\ \hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \underbrace{\hat{Q}_{opt}(s, a)}_{prediction} + \eta \underbrace{(r + \gamma V_{opt}(s'))}_{target} \\ \hat{V}_{opt}(s') &= \max_{a' \in Actions(s')} \hat{Q}_{opt}(s', a') \end{aligned}$$

SARSA vs Q-Learning

SARSA:

$$\begin{aligned} \text{for each } (s, a, r, s', a') \\ \hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta) \hat{Q}_{\pi}(s, a) + \eta \big[r + \gamma \hat{Q}_{\pi}(s', a') \big] \end{aligned}$$

Q-Learning:

$$\begin{split} \text{for each } (s, a, r, s') \\ \hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \hat{Q}_{opt}(s, a) + \eta \big(r + \gamma \max_{a' \in Actions(s')} \hat{Q}_{opt}(s', a') \big) \end{split}$$

On-policy: evaluate or improve the data-generating policy **Off-policy:** evaluate or learn using data from another policy

	On-Policy	Off-Policy
Policy Evaluation (Q_{π})	Monte-Carlo, SARSA	
Policy Optimization (Q_{opt})		Q-Learning

Algorithm	Estimating	Based On
Model-Based Monte Carlo	$\hat{\mathcal{T}},\hat{\mathcal{R}}$	$s_0, a_1, r_1, s_1, \cdots$
Model-Free Monte Carlo	\hat{Q}_{π}	и
SARSA	\hat{Q}_{π}	$r+\hat{Q}_{\pi}$
Q-Learning	\hat{Q}_{opt}	$r+\hat{Q}_{opt}$

Overall algorithm

```
for t=1,2,3,\cdots
Choose action a_t=\pi_{act}(s_{t-1})
Get reward r_t and new state s_t
Update parameters
```

```
Overall algorithm
```

```
for t=1,2,3,\cdots
Choose action a_t=\pi_{act}(s_{t-1}) (how?)
Get reward r_t and new state s_t
Update parameters (how?)
s_0; a_1, r_1, s_1; a_2, r_2, s_2; a_3, r_3, s_3, \cdots; a_n, r_n, s_n
What policy \pi_{act} should be used?
```

Choosing the policy

Option1: Select the best policy

 $\pi_{act}(s) = \operatorname{arg\,max}_{a \in Actions(s)} \hat{Q}_{\pi}(s, a)$

Problem: $\hat{Q}_{\pi}(s,a)$ estimates are inaccurate. Too greedy

Option2: Select a random policy $\pi_{act}(s) = \text{random from } Actions(s)$ **Problem:** Exploration is not guided

Epsilon-Greedy Policy

$$\pi_{act}(s) = egin{cases} {
m arg\,max}_{a \in Actions(s)} \ \hat{Q}_{\pi}(s,a) & {
m probability} \ 1-\epsilon \ {
m random \ from} \ Actions(s) & {
m probability} \ \epsilon \end{cases}$$

A balance between the two!

Function Approximation

Stochastic Gradient update:

$$\hat{Q}_{opt}(s, a) \leftarrow (1 - \eta) \hat{Q}_{opt}(s, a) + \eta \Big[\underbrace{\hat{Q}_{opt}(s, a)}_{prediction} - \underbrace{(r + \gamma \hat{V}_{opt}(s', a'))}_{target} \Big]$$

How to generalize to unseen states/actions

Function Approximation

Linear Regression:

Use features $\phi(s, a)$ and weights **w**

$$\hat{Q}_{opt}(s,a;\mathbf{w}) = \mathbf{w} \cdot \phi(s,a)$$

Grid World:

$$\phi_1(s, a) = 1[a = Up]$$

 $\phi_2(s, a) = 1[a = Left]$
...

$$\phi_7(s, a) = 1[s = (1, *)]$$

 $\phi_8(s, a) = 1[s = (*, 2)]$
...

Function Approximation

Q-Learning with Function Approximation:

for each
$$(s, a, r, s')$$
:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \Big[\underbrace{\hat{Q}_{opt}(s, a; \mathbf{w})}_{prediction} - \underbrace{(r + \gamma \hat{V}_{opt}(s'))}_{target} \Big] \phi(s, a)$$

Objective Function:

$$\left(\underbrace{\hat{Q}_{opt}(s,a;\mathbf{w})}_{prediction} - \underbrace{\left(r + \gamma \hat{V}_{opt}(s')\right)}_{target}\right)^2$$

Recap

Deterministic vs Stochastic Markov Decision Process

- Transition
- Reward
- Policy
- Discount

Policy value & Q-value Solving MDPs

- Policy Iteration
- Value Iteration

Recap

Reinforcement Learning
Model-based Monte Carlo Learning
Model-free Monte Carlo Learning
SARSA
Q-Learning
Epsilon-Greedy
Function Approximation

References

Stuart Russell and Xiaodong Song (2021)
CS 188 — Introduction to Artificial Intelligence

University of California, Berkeley

Chelsea Finn and Nima Anari (2021)

CS221 — Artificial Intelligence: Principles and Techniques

Stanford University

The End