

TrenchT2[™] GigaMOS[™] HiperFET[™]

MMIX1F360N15T2

Power MOSFET

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ra	tings
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}$	150	V
V _{DGR}	$T_{_J}$ = 25°C to 175°C, $R_{_{GS}}$ = 1M Ω	150	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	$T_{c} = 25^{\circ}C$	235	Α
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	900	Α
I _A	$T_{c} = 25^{\circ}C$	180	Α
E _{as}	$T_{c} = 25^{\circ}C$	3	J
P _D	$T_c = 25^{\circ}C$	680	W
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 175^{\circ}\mathrm{C}$	20	V/ns
T _J		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T,	1.6mm (0.062 in.) from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
V _{ISOL}	50/60 Hz, 1 Minute	2500	V~
F _c	Mounting Force	50200 / 1145	N/lb.
Weight		8	g

Symbol	Test Conditions	Characteristic Values		;	
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max	
BV _{DSS}	$V_{GS} = 0V, I_{D} = 3mA$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 8mA$	2.5		5.0	V
GSS	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ Note 2,	T _J = 150°C		50 5	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 100A, Note 1$			4.4	mΩ

 $V_{DSS} = 150V$ $I_{D25} = 235A$ $R_{DS(on)} \le 4.4m\Omega$ $t_{rr} \le 150ns$

G = Gate D = Drain S = Source

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Substrate
- Excellent Thermal Transfer
- Increased Temperature and Power Cycling Capability
- High Isolation Voltage (2500V~)
- 175°C Operating Temperature
- Very High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Very Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters and Off-Line UPS
- Primary-Side Switch
- High Speed Power Switching Applications

Symbol	Test Conditions	Chara	cteristic	Values
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	140	230	S
C _{iss}			47.5	nF
C _{oss}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1MHz$		3060	pF
C _{rss}			665	pF
R _{GI}	Gate Input Resistance		2.7	Ω
t _{d(on)}			50	ns
t _r	Resistive Switching Times		170	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 100A$ $R_{G} = 1\Omega$ (External)		115	ns
t _f	n _G = 152 (External)		265	ns
$Q_{g(on)}$			715	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 180A$		185	nC
Q _{gd}			200	nC
R _{thJC}				0.22 °C/W
R _{thCS}			0.05	°C/W
R _{thJA}			30	°C/W

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			cteristic Values Typ. Max.	
I _s	$V_{GS} = 0V$		360	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$		1440	Α
V _{SD}	$I_{\rm F} = 60A, \ V_{\rm GS} = 0V, \ \ { m Note} \ 1$		1.2	V
t _{rr}	$I_{_{\rm F}} = 160 {\rm A}, \ V_{_{\rm GS}} = 0 {\rm V}$ $-{\rm di}/{\rm dt} = 100 {\rm A}/{\rm \mu s}$ $V_{_{\rm R}} = 60 {\rm V}$	9 500	150	ns A nC

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Part must be heatsunk for high-temp Ices measurement.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Package Outline

MYZ	INC	HES	MILLIMETER	
2114	MIN	MAX	MIN	MAX
Α	.209	.224	5.30	5.70
A1	.154	.161	3.90	4.10
A2	.055	.063	1.40	1.60
b	.035	.045	0.90	1.15
С	.018	.026	0.45	0.65
D	.976	.994	24.80	25.25
E	.898	.915	22.80	23.25
E1	.543	.559	13.80	14.20
е	.079 BSC		2.00 BSC	
e1	.315	.315 BSC		DSC
Н	1.272	1.311	32.30	33.30
L	.181	.209	4.60	5.30
L1	.051	.067	1.30	1.70
L2	.000	.006	0.00	0.15
S	.736	.760	18.70	19.30
Т	.815	.839	20.70	21.30
X	0	4.	0	4*

PIN: 1 = Gate 5-12 = Source 13-24 = Drain

MMIX1F360N15T2

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 180A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 180A Value vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

MMIX1F360N15T2

MMIX1F360N15T2

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.
Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.

Gate Resistance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 19. Maximium Transient Thermal Impedance

