

Bobinas de Helmholtz

Relatório 2

Mecânica e campo eletromagnético (MCE) – Trabalho prático 2

Ano Letivo 2024/2025 | Turma: PL2

119255 Guilherme Goulart

112938 Martim Calisto Pinheiro

120202 Paulo Lacerda

Índice

1.Breve Introdução Teórica	3
2. Introdução	3
3. Contextualização Teorico-experimental	5
4. Análise Experimental	6
5. Conclusão	10

1. Breve Introdução Teórica

PRODUÇÃO DE CAMPOS MAGNÉTICOS A PARTIR DE CORRENTES: O SOLENÓIDE PADRÃO

Correntes elétricas e cargas em movimento produzem campos magnéticos que podem ser calculados através da Lei de Biot-Savart ou através da Lei de Ampère. Do ponto de vista físico, o solenoide pode considerar-se como um conjunto de anéis idênticos, alinhados lado a lado e percorridos pela mesma corrente I_s . No caso de um solenoide de comprimento infinito, a expressão do campo magnético no seu interior tem apenas a componente longitudinal (isto é, paralela ao eixo principal) e é dada por:

$$B_{sol} = \mu_0 \left(\frac{N}{I}\right) I_S$$

sendo N/l o número de espiras por unidade de comprimento do solenoide, I_s , a corrente elétrica que o percorre e a constante μ_0 é a permeabilidade magnética do vácuo ($\mu_0 = 4\pi \times 10^{-7}$ Tm/A). Esta expressão pode considerar-se válida para um solenoide finito, cujo comprimento é muito maior que o raio, l >> R. Um enrolamento deste tipo designa-se por solenoide-padrão

BOBINAS DE HELMHOLTZ

As bobinas de Helmholtz são um outro dispositivo que, sendo constituído por dois enrolamentos paralelos em que $R\gg l$, parecem-se bastante mais com anéis de corrente do que com solenoides-padrão, permitindo criar, no espaço entre esses enrolamentos e ao longo do respetivo eixo, um campo magnético muito mais uniforme do que o campo devido a apenas um enrolamento (bobina).

Figura 1. Esquema representativo do posicionamento das bobinas a uma distância R.

Esta característica consegue-se desde que as bobinas sejam idênticas (mesmo raio e número de espiras), paralelas, coaxiais e estejam situadas entre si a uma distância igual ao seu raio, sendo ainda percorridas por correntes iguais e com o mesmo sentido. Nesta configuração é possível obter uma expressão para o campo magnético criado pelas duas bobinas num ponto x genérico do seu eixo, a partir da expressão do campo magnético no eixo de um anel de corrente (centrado em $x = x_0$):

$$\vec{B}(x) = \frac{\mu_0 I R^2}{2 (R^2 + (x - x_0)^2)^{3/2}} \hat{x}$$

Se $B_{\rm H}(x)$ é a expressão do campo criado pelas Bobinas de Helmholtz pode deduzir-se que o campo magnético atinge o seu valor máximo, $B_{\rm HM\acute{e}x}$, no ponto médio da porção do eixo entre as bobinas (x = 0, na Figura 1), considerando que o campo total é a soma dos campos de cada bobina: $\vec{B}_{Total} = \vec{B}_1 + \vec{B}_2$

Analisando a variação do valor de $B_{\rm H}$ ao longo do eixo, pode ainda concluir-se que o valor de $B_{\rm H}$ não é inferior a 95% de $B_{\rm HMáx}$, sendo, em 60% dessa mesma secção, superior a 99% de $B_{\rm HMáx}$.

Usando a Equação 2, a representação gráfica do campo magnético ao longo do eixo de duas bobines na configuração de Helmholtz para as várias correntes possíveis é a seguinte: $\vec{B}_{Total} = \vec{B}_1 + \vec{B}_2$

Figura 2. B(x) na configuração de Helmholtz

2. Contextualização Teórico-Experimental

Este relatório tem como objetivo aprofundar o conhecimento na área dos campos eletromagnéticos, explorando diferentes tipos de campos e as suas características associadas. Para esse propósito, serão realizadas duas atividades experimentais: a primeira envolve a utilização de uma sonda de efeito de Hall aplicada a um solenoide padrão, enquanto a segunda consiste na medição do campo magnético ao longo do eixo de duas bobinas.

Com estas experiências, pretende-se calcular a constante de calibração na Parte A e determinar o número de espiras na Parte B. Adicionalmente, na Parte B, será possível demonstrar o princípio da sobreposição.

Fórmulas utilizadas:

Para a realização do relatório foram utilizadas várias fórmulas, sendo originadas através do método de dedução:

$$B_{sol} = \mu_o(\frac{N}{l})I_s \tag{1}$$

$$\frac{\Delta C}{C} = \frac{\frac{\Delta N}{\Delta 1}}{\frac{N}{L}} + \frac{\Delta m}{m} \tag{2}$$

$$B = B_c V_h \tag{3}$$

$$\vec{B}(x) = \frac{\mu_0 I R^2}{2(R^2 + (x - x_0)^2)^{3/2}}$$
 (4)

$$C_c = \frac{\mu_o \frac{N}{l}}{m} \tag{5}$$

$$\frac{N}{l} = \frac{B_{max}}{B_x} \tag{6}$$

Para algumas destas fórmulas foi usada a constante μ_o que representa a permeabilidade magnética do vácuo, e é equivalente a $4\pi * 10^{-7}$ (T * m/A).

3. Análise Experimental

3.1 Material utilizado

- 1. Voltímetro
- 2. Amperímetro
- 3. Fonte de tensão de 15 V
- 4. Resistência de 10 Ω
- 5. Reóstato de 330 Ω
- 6. Sonda de efeito de Hall
- 7. Solenoide
- 8. Bobines de Helmholtz

Figura 1 - Esquema de Montagem

3.2 Parte A

Objetivo

A etapa inicial deste trabalho teve como objetivo calibrar a sonda de efeito Hall, determinando sua constante de calibração (C_c), que será utilizada na segunda parte do estudo (Parte B).

Procedimento experimental:

- 1 Conectou-se a sonda ao voltímetro e ajustou-se o potenciómetro da sonda até que o voltímetro indicasse 0 V na ausência de um campo magnético.
- 2 Em seguida, montou-se o restante do circuito conforme ilustrado na figura 2.1.
- 3 Anotou-se o valor de $\frac{N}{l}$, que representa o número de espiras por unidade de comprimento do solenoide.
- 4 Posicionou-se a sonda dentro do solenoide, localizando o ponto onde a aproximação de solenoide infinito era válida.

Figura 2 – Montagem em Laboratório (Parte A)

atenção aos algarismos significativos!

Corrente	Tensão de		
elétrica(±0.01A)	Hall		
	(±0.0001V)		
0,029	0,0042		
0,04	0,0058		
0,051	0,0076		
0,075	0,0108		
0,134	0,02		
0,258	0,0375		

Gráfico 1- Variação da Tensão de Hall em função do campo elétrico

3.3 Parte B

Objetivo

Nesta etapa, procedeu-se à medição do valor da tensão de Hall ao longo do eixo de cada bobina isoladamente e, de seguida, para ambas as bobinas ligadas. É importante salientar que, durante este procedimento, manteve-se a corrente aproximadamente constante, *I* = 0,50 *A*

Procedimento experimental

- Colocaram-se as bobinas na configuração de Helmholtz, garantindo que a distância entre elas era igual ao respetivo raio.
- 2. Registaram-se as características das bobinas, como o raio e a posição de cada uma.
- Montou-se o restante do circuito, conforme ilustrado na figura 2.1, substituindo apenas o solenoide por uma das bobinas.
- 4. Ajustou-se o reóstato para fixar a corrente em I=0,50 A que permaneceu constante durante toda a experiência.
- 5. Mediu-se o campo magnético gerado pela bobina ao longo do seu eixo, em intervalos de um centímetro, registando-se cada par de valores: posição e tensão de Hall (V_H) .
- 6. Repetiram-se os passos 3, 4 e 5, mas desta vez para a segunda bobina, utilizando as mesmas posições definidas anteriormente.
- 7. Por fim, conectaram-se ambas as bobinas em série.

Figura 3 – Montagem em Laboratório (Parte B)

Análise dos resultados obtidos: atenção aos algarismos significativos! esta tabela não terá campo em vez de tensão?

Tabela 1		Tabela 2		Tabela 3		Tabela 4	
este err Bobão Nest á bem				Bobine Nº1 + Bobine Nº2		Curva Teórica	
Distancia(±	Tensão(± 0,1	Distancia(±	Tensão(± 0,1	Distancia(±	Tensão(± 0,1	Distancia(±	Tensão(± 0,1
0,05 m)	V)	0,05 m)	V)	0,05 m)	mV)	0,05m)	V)
0.2	0.00034687	0.2	0.00006279	0.2	0.00040368	0.2	0.000409661
0.19	0.00039770	0.19	0.00008373	0.19	0.00047246	0.19	0.000481427
0.18	0.00042760	0.18	0.00011064	0.18	0.00052329	0.18	0.000538241
0.17	0.00043059	0.17	0.00014054	0.17	0.00056216	0.17	0.000571133
0.16	0.00040667	0.16	0.00017941	0.16	0.00057711	0.16	0.000586084
0.15	0.00035285	0.15	0.00023025	0.15	0.00058608	0.15	0.000583094
0.14	0.00030201	0.14	0.00028706	0.14	0.00058608	0.14	0.000589075
0.13	0.00024520	0.13	0.00033790	0.13	0.00058608	0.13	0.000583094
0.12	0.00019137	0.12	0.00038574	0.12	0.00058010	0.12	0.000577114
0.11	0.00014652	0.11	0.00040667	0.11	0.00055917	0.11	0.000553192
0.1	0.00011363	0.1	0.00040966	0.1	0.00052030	0.1	0.00052329
0.09	0.00008971	0.09	0.00039172	0.09	0.00046349	0.09	0.000481427
0.08	0.00006578	0.08	0.00033790	0.08	0.00040069	0.08	0.000403681
0.07	0.00004784	0.07	0.00029603	0.07	0.00033192	0.07	0.000343876
0.06	0.00003588	0.06	0.00023623	0.06	0.00026613	0.06	0.000272111
0.05	0.00002691	0.05	0.00018539	0.05	0.00021231	0.05	0.000212306

Em seguida está a representação gráfica das tabelas acima em função da posição da sonda de Hall:

Gráfico 2- Representação gráfica da variação do campo magnético em função da posição da sonda de Hall nos diferentes estudos

Para o cálculo da C_c:

$$Cc = \frac{\mu 0 \times \frac{N}{L}}{m} = \frac{4\pi \times 10^{-7} \times 3467}{0.1457} \approx 0.0299 \text{ V/A} \text{ o que \'e V/A?}$$

O erro absoluto associado é:

$$\Delta C_{c} = \left| \frac{dC_{c}}{dm} * \Delta m \right| + \left| \frac{dC_{c}}{d\frac{N}{l}} * \Delta \frac{N}{l} \right|$$

$$\left| \frac{dC_c}{dm} * \Delta m \right| = |-0.2052 * 0.00051| \approx 0.0001014652$$

$$\Delta C_c = |-0.2052 * 0.00051| + \left| \frac{4 \pi * 10^{-7}}{0.1457} * 60 \right| \approx 0.00062 \text{ T/V}$$

O erro relativo associado é:

entao, a unidade de Cc é V/A e a unidade do seu erro é T/V?

Erro relativo =
$$\left| \frac{0.00062}{0.0299} \right| *100 = 2,0735 \%$$
 é preciso?

Cc=0,0299+-0,0006

Número de espiras:

Assumimos que o valor genérico e max são iguais, logo x = 0

$$B_t = \frac{\mu_0}{2} * \frac{IR^2}{(R^2 + x^2)^{\frac{3}{2}}} = \frac{4\pi * 10^{-7}}{2} * \frac{0.5 * 0.0650^2}{(0.0650^2 + 0^2)^{\frac{3}{2}}} = 4,833 * 10^{-6}T$$

Sabendo que V_H = 13.7 mV, podemos calcular o campo magnético máximo:

$$B \; = \; C_c V_H = 0.0299 * 0.0137 \; = \; 0.00040963 \; T$$

Logo conseguimos calcular o número de espiras de uma bobine:

$$B = N * B_t <=> N = \frac{B_p}{B_t} <=> N = \frac{0.00040963}{4.833*10^{-6}} \approx 85$$

falta o erro do nº de espiras...

Erro associado ao número de espiras

Erro associado =
$$100 - \frac{85}{95} * 100 \approx 10.5 \%$$

O Princípio da Sobreposição do campo magnético estabelece que, em uma configuração de Helmholtz, a soma dos campos gerados individualmente em uma determinada posição da sonda de Hall será equivalente ao valor medido quando ambas as bobinas estiverem ativas simultaneamente.

4. Conclusão

Com a realização deste trabalho, pretendíamos não só calibrar uma sonda de efeito Hall, como também observar as características do campo magnético ao longo da variação da distância das bobinas de Helmholtz e verificar o princípio da sobreposição dos campos magnéticos com sucesso. De seguida, através da utilização das bobinas de Helmholtz e da sonda de Hall, traçámos diferentes gráficos do campo magnético em função da posição da sonda para 3 situações: cada uma das bobinas isoladamente, para ambas as bobinas ligadas no mesmo sentido. Para confirmar o sucesso da experiência calculou-se a curva teórica através de médias, confirmando assim a curva experimental.

Relativamente às principais fontes de erro, o principal destaque é o erro humano associado às medições do raio das bobines. Além disso, o aquecimento do reóstato, associado à demora na recolha de valores, pode ter sido um dos fatores pela qual a corrente elétrica não se manteve constante.

Seguindo este raciocínio, para melhoria desta atividade prática poderíamos efetuar várias medições de raio por diferentes pessoas e, assim que possível, desligar sempre a fonte para evitar o seu aquecimento.

Em suma, apesar de terem ocorrido estes pequenos erros, consideramos que estes não afetaram o trabalho de modo significativo, visto que conseguimos alcançar todos os objetivos propostos e os resultados experimentais são congruentes com as análises teóricas.