Physique moderne - TD 2

12 octobre 2024 - Chimie Shanghai - 华东理工大学 email: pascal.wang.tao@ecust.edu.cn

Objectifs du TD 2

Objectifs de ce TD: s'entraîner sur le formalisme de la physique statistique (统计物理学)

Exercice 1 : l'expérience de Stern et Gerlach

Expérience historique (1922) qui a mis en évidence le spin des électrons (电子自旋)

Exercice 2: le gaz parfait monoatomique (完美的单原子气体)

Démonstration de la loi des gaz parfaits (理想气体定律) PV = nRT

Exercice 1 - Expérience de Stern et Gerlach

Les atomes d'argent (Ag, Z=47), passent dans une région de champ magnétique $\overrightarrow{B}=B_z \overrightarrow{e}_z$. Les atomes d'argent possèdent un moment magnétique $\overrightarrow{\mu}$ et subissent donc une force magnétique

$$\overrightarrow{F} = (\overrightarrow{\mu} \cdot \overrightarrow{\nabla})\overrightarrow{B} = \mu_z \frac{\partial B_z}{\partial z} \overrightarrow{e_z} = \pm \frac{e\hbar}{2m_e} \frac{\partial B_z}{\partial z} \overrightarrow{e_z}$$

- 1) a) Déterminer la configuration électronique (电子配置) d'un atome d'argent.
 - b) En déduire la valeur du nombre quantique azimutal (方位量子数) ℓ de l'électron de valence.
- 2) Pour décrire l'assemblée d'atomes d'argent dans l'expérience de Stern et Gerlach, dans quel ensemble statistique (microcanonique, canonique, grand canonique) faut-il se placer?

Méthode de résolution

Etape 1: Déterminer l'ensemble statistique pertinent. lci c'est l'ensemble canonique (正则系综) i.e. température (温度) T et nombre de particules N fixés.

Etape 2: Déterminer les micro-états (微观状态) et éventuellement leur dégénérescence W(E) (简并度) ou la densité d'états $\rho(E)$ (状态密度)

Etape 3: Calculer la fonction de partition (配分函数) Z en sommant sur les micro-états

Etape 4: On déduit toutes les grandeurs thermodynamiques (热力学量) avec Z et ses dérivées (导数). Par exemple

énergie (能量)
$$\langle E \rangle = -\frac{\partial}{\partial \beta} (\ln Z)$$
 énergie libre (自由能) $F = -k_B T \ln Z$

entropie (熵)
$$S = (\langle E \rangle - F)/T$$
 pression (压力) $P = -\left(\frac{\partial F}{\partial V}\right)_{TN}$ etc.

Exercice 1 - Expérience de Stern et Gerlach

Les atomes d'argent (Ag, Z=47), passent dans une région de champ magnétique $\overrightarrow{B}=B_z \overrightarrow{e}_z$. Les atomes d'argent possèdent un moment magnétique $\overrightarrow{\mu}$ et subissent donc une force magnétique

$$\overrightarrow{F} = (\overrightarrow{\mu} \cdot \overrightarrow{\nabla})\overrightarrow{B} = \mu_z \frac{\partial B_z}{\partial z} \overrightarrow{e_z} = \pm \frac{e\hbar}{2m_e} \frac{\partial B_z}{\partial z} \overrightarrow{e_z}$$

- 3. Donner l'énergie (能量) des atomes d'argent et montrer qu'elle ne peut prendre que deux valeurs E_\pm dont on donne l'expression en fonction de B_z et du magnéton de Bohr (玻尔磁子) μ_B défini par $\mu_B = \frac{e\hbar}{2m_a}$.
- 4. Donner l'expression de la fonction de partition (配分函数) Z_N des atomes d'argent.

Méthode de résolution

Etape 1: Déterminer l'ensemble statistique pertinent. lci c'est l'ensemble canonique (正则系综) i.e. température (温度) T et nombre de particules N fixés.

Etape 2: Déterminer les micro-états (微观状态) et éventuellement leur dégénérescence W(E) (简并度) ou la densité d'états $\rho(E)$ (状态密度)

Etape 3: Calculer la fonction de partition (配分函数) Z en sommant sur les micro-états

Etape 4: On déduit toutes les grandeurs thermodynamiques (热力学量) avec Z et ses dérivées (导数). Par exemple

énergie (能量)
$$\langle E \rangle = -\frac{\partial}{\partial \beta} (\ln Z)$$
 énergie libre (自由能) $F = -k_B T \ln Z$

entropie (熵)
$$S = (\langle E \rangle - F)/T$$
 pression (压力) $P = -\left(\frac{\partial F}{\partial V}\right)_{T,N}$ etc.

Exercice 1 - Expérience de Stern et Gerlach

5. Montrer que l'expression de l'énergie moyenne (平均能量) $\langle E \rangle$ des atomes est

$$\langle E \rangle = -N\mu_B B_z \operatorname{th} \left(\beta \mu_B B_z\right)$$

- 6. Donner l'expression de l'énergie libre F (自由能) des atomes d'argent.
- 7.a. En déduire l'expression de l'entropie (熵) S des atomes d'argent.
- 7.b. Montrer que $\lim_{B_{\tau}\to 0} S = \lim_{T\to +\infty} S = Nk_B \ln 2$. puis commenter.
- 7.c Montrer que $\lim_{B_{\tau} \to +\infty} S = \lim_{T \to 0} S = 0$ puis commenter.

Exercice 2 - Le gaz parfait monoatomique (完美的单原子气体)

Etape 1: On a justifie que l'ensemble statistique pertinent est l'ensemble canonique (正则系综)

 Etape 3: Calculer la fonction de partition (配分函数) Z_N

 ${
m Etape~4}$: On déduit toutes les grandeurs thermodynamiques (热力学量) et l'équation d'état (状态方程) avec Z et ses dérivées (导数). Par exemple

énergie (能量)
$$\langle E \rangle = -\frac{\partial}{\partial \beta} (\ln Z)$$
 énergie libre (自由能) $F = -k_B T \ln Z$

entropie (熵)
$$S = (\langle E \rangle - F)/T$$
 pression (压力) $P = -\left(\frac{\partial F}{\partial V}\right)_{T,N} = \frac{nRT}{V}$ ici