Exercise 10

David Wiedemann

11 mai 2021

We will write V for the set of vertices of G.

Let $e \in E(G) \setminus E(T)$, we can write e as $e = \{a, b\}, a, b \in V$.

Since E(T) is connected, there exists a path in T of the form $(a, v_1, \ldots, v_n, b), v_i \in G$.

We define $K = T + e - \{v_n, b\}$.

Clearly, K is still spanning since it still contains v_n,a and b^1 .

We now show that K is a tree.

First, we show that K still is connected.

Indeed, consider two vertices $x, y \in V$.

Consider the path of T which would connect x to $y: x, u_0, \ldots, u_n, y$.

If there exists $0 \le i \le n$ such that $\{u_i, u_{i+1}\} = e$, replace u_i, u_{i+1} in the path with the path connecting a and b, we are left with a path contained in K.

Hence, K is connected.

We now show that K contains no cycle.

For the sake of contradiction, suppose K contains a cycle of the form c_0, \ldots, c_k, c_0 .

If $\forall 0 \leq j \leq k, \{c_j, c_{j+1}\} \neq e$, then the cycle is contained in T which is a contradiction since T is a tree.

Hence, suppose there exists a j such that $\{c_j, c_{j+1}\} = e$, without loss of generality, suppose that $c_j = a$ and $c_{j+1} = b$.

If that were the case, we could again create a new cycle of the form $c_0, \ldots, c_{j-1}, a, v_1, \ldots, v_n, b, c_{j+2}, \ldots$

^{1.} v_n is still contained in K because $\{v_{n-1}, v_n\}$ is contained in K