Agile Trajectory Generation for Tensile Perching with Aerial Robots

Progress Update

- Integrated the Spline portion.
- Fixed a bug with the plotting.
- Added confirmation at each stage and a choice of 5 different starting positions

Experiments

 Meeting with Atar/Kangle today 3pm to setup and verify that we have appropriate safety mechanisms.

Report Plan

- Main Contributions
 - PyBullet Simulation to approximately model a tether using a variety of pieces.
 - Learning from Demonstrations Integrations.
 - Set of Produced Trajectories optimised for speed.
 - o Controller for Gazebo based on fixed time movement waypoints.

Outcomes

- Number of Demonstrations: Performed main training with 5 full demonstrations.
 - Performs well even with a single demonstration (Due to the way sampling between replay buffers is actually performed)
 - Reasonably resiliant to poor demonstrations In
- Comparison with Optimised Trajectory Approach
 - Uncertainty in live environments
 - In real-world environments a drone may not follow exactly a planned trajectory.
 - The NN approach is resilient to this:
 - If the drone doesn't follow exactly a planned path then using current positions it can reproduce points during operation.
 - This would not be possible in real-time using an optimisation based approach.
 - E.g. For the optimised approaching this can take up to 30 seconds to compute an optimised trajectory this is not feasible to be adaptable during an actual flight.

Report Plan

- Introduction
- Ethical Considerations
- Background mostly re-used from my interim report.
- Environment
 - Scenario Design
 - PyBullet Environment
 - Approximate Tether Modelling
 - Analyse the accuracy compared to real world experiments.

Training

- Wrappers and Effects
 - Waypoint Description of fixed time waypoint system effects on speed in comparison to real life.
 - Dimension Effect of reducing dimension complexity.
 - Symmetry Effects of assuming a symmetric environment alternatives considered and their effects compared to the symmetrical design choice.
 - Other Wrappers: Briefly mention others with less details.
- Training
 - Reward System Design
 - Algorithms SAC, NAC, SACfD
 - Demonstrations Comparison of different training techniques.
- Gazebo Offboard Controller
 - Running modes
 - Safety aspects for live environments

- Evaluation
 - Number of Demonstrations & Non-optimal demonstrations
 - As described in outcomes slide
 - Speed
 - o Uncertainty in Live environments described above.
- Conclusion & Future Outlook

Overall Plan

- Report Deadline 17th June (2.5 weeks)
 - Today & Friday Experiments
 - Aim to have full 1st draft of report by next week 12th June.
 - ∘ 5 days for final revisions.

Questions

Report

- Order of evaluation and implementation.
 - E.g. PyBullet Environment matching real-world tests Visuals that show how the simulated tether and real tether match.
 - Is it better to include smaller evaluation pieces as I describe implementation or in a seperate section?