1. Find the volume of a sphere of radius 6.

x Typical Slice:

Volume is $\pi \times^2 dy$. We know that $\chi^2 + \chi^2 = 36$, So volume of the slice is $\pi (36 - \gamma^2) dy$.

The volume of the sphere is

$$\int_{-6}^{6} \pi \left(36 - \gamma^{2}\right) d\gamma : \pi \left[36\gamma - \frac{3}{3}\right]_{-6}^{6}$$

$$= iT \left[\left(210 - \frac{216}{3} \right) - \left(-216 - \frac{-216}{3} \right) \right]$$

$$= \pi \left[216 \left(1 - \frac{1}{3} + 1 - \frac{1}{3} \right) \right]$$

$$-\pi \cdot 216 \cdot \frac{4}{3} = 288\pi$$
.

Typical slice:

Volume is TI. X dy .

The volume of the solid is

$$\left(\frac{1}{9}\pi y dy - \frac{9}{2}\pi y^{2}\right) = \frac{\pi}{18} \cdot \frac{9\pi}{2}.$$

3. For a curve to deepend be defined by parametric equations means that both x and y depend on another variable + (which we think of as time).

For example, if x = 3+and $y = +^2 - 1$ then the following points are on the graph: $\frac{+ |0| 1| 2| 3| 4}{\times |0| 3| 5| 9| 12}$ y |-1| 0| 3| 8| 15

We think of the graph
as representing the motion of
a porticle from (0,-1) (+=0)
to (12, 15) (+=4).

. /			. +	0	TT/4	11/2	11	311/2	24
4.	Some	points "	X	2	V2	D	-2	Q	2
			7	-1	T - 52 4 - 2	# = 2	11+1	3-11-	271 - 1
			, 4 ,						

The graph looks roughly like this.

$$\frac{2}{(-\frac{1}{3}-\frac{1}{2})^{2}(-\frac{1}{3}-\frac{1}{2})(x-1)}$$

(cont.)

We have
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 + \sin t}{-2 \sin t}$$
. When $t = \frac{\pi}{3}$.

This is $\frac{1 + \frac{\sqrt{3}}{2}}{-2 \frac{\sqrt{3}}{2}}$

when
$$t = \frac{\pi}{3}$$
this is $\frac{1+\sqrt{3}}{2}$
 $\frac{1+\sqrt{3$

Also
$$(x,y) = (1, \frac{\pi}{3} - \frac{1}{2})$$

and so the tangent line has equation

$$y - (\frac{1}{3} - \frac{1}{2}) = (-\frac{1}{3} - \frac{1}{2})(x - 1)$$

5. 1 - (c) 2 - (b) 3 - (a).

1 must be (c) because it contains the point (0,0).

2 must be (b) because it is the only graph with

X>0 always.

3 must be (a) because it contains (2,0), or by process of elimination.

The Cortesian coordinates one $\left(-3\cos\frac{\pi}{4}, -3\sin\frac{\pi}{4}\right)$ = $\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$.

7. In Cortesian coordinates me have r=2 cos 20

We have
$$\frac{dy}{dx} = \frac{\frac{dy}{do}}{\frac{d}{do}} = \frac{\frac{d}{do}(r \sin o)}{\frac{d}{do}(r \cos o)}$$

$$= r \cos \phi + \frac{dr}{d\phi} \sin \phi$$

$$- r \sin \phi + \frac{dr}{d\phi} \cos \theta$$

Here,
$$\frac{dr}{d\theta} = -4\sin 4\theta$$
.

If $\theta = \frac{\pi}{3}$ then $\sin \theta = \frac{1}{3}$
 $\cos \theta = \frac{1}{3}$

$$r = 2 \cos\left(\frac{2\pi}{3}\right) = -1$$

$$\frac{dr}{d\theta} = -4\sin\left(\frac{4\pi}{3}\right) = -2\sqrt{3}$$

$$S_0 \frac{dy}{dx} = \frac{\sqrt{3}}{2} \frac{2\sqrt{3} \cdot \sqrt{3}}{2} \frac{(-1)(\frac{1}{2}) - 2\sqrt{3} \cdot \sqrt{3}}{2} \frac{1}{2} \frac{(-1)(\frac{1}{2}) - 2\sqrt{3} \cdot \sqrt{3}}{2} \frac{1}{2} \frac{1}{2}$$

$$(-1)(\frac{1}{2}) - 2J_{5} = \frac{1}{2}$$

$$\frac{-7}{2} = \frac{-7}{2}$$

$$\frac{-7}{2} = \frac{-7}{2}$$

$$\frac{-7}{3} = \frac{-7}{2}$$

$$\frac{-7}{3} = \frac{-7}{2}$$

$$\frac{-7}{3} = \frac{-7}{2}$$

B. The area is given by

 $\int_{a}^{b} \frac{1}{2} r^{2} d\theta = \int_{0}^{2\pi} \frac{1}{2} (2 + 2\cos \theta)^{2} d\theta.$

The actual area is GT.