SUGGESTED ANSWER PRE-PSPM 2324

No.	Suggested Answer		
1.	[T] = T	G1	
	$\frac{1}{1}$		
	$\frac{[l]^{\frac{1}{2}}}{[g]^{\frac{1}{2}}} = \frac{[L]^{1/2}}{[LT^{-2}]^{1/2}}$		
	$\left[\left[g \right]^{\frac{1}{2}} \right]^{\frac{L}{1}}$		
	$=\frac{\sqrt{L^{\frac{1}{2}}}}{\left[\frac{L^{\frac{1}{2}}}{L^{\frac{1}{2}}}T^{-1}\right]}$		
	$\begin{bmatrix} -1 \\ 2 \end{bmatrix} T^{-1}$	C1	
	= T	G1	
	I HS - DHS : aquation is dimensionally correct		
	LHS = RHS ∴ equation is dimensionally correct TOTAL	2	
2.(a)(i)	I: $v = u + at$		
	30 = 20 + 4t t = 2.5 s		
	t = 2.3 3		
	II: $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$		
	$0 = 30^2 + 2a(50)$ $50 = 30t + \frac{1}{2}(-9)t^2$		
	$a = -9 ms^{-2} \qquad \qquad t = 3.33 s$		
	$t_{II} = 2.5 + 3.33 = 5.83 s$		
	$III: t_{III} = 5.83 + 5 = 10.83 s$		
	v (ms ⁻¹)		
	Correct axis & unit	D1	
	Correct shape of graph	D1	
	Correct value 2.5 s, 5.83 s and 10.83 s	D1	
	20		
	t (s)		
	2.5 5.83 10.83		
2.(a)(ii)	T-4-1 4:4 1 y 2 5 y (20 + 20) + 1 y 20 y (10 02 - 5 02)		
2.(3)(11)	Total distance = $\frac{1}{2} \times 2.5 \times (20 + 30) + \frac{1}{2} \times 30 \times (10.83 - 5.83)$ = 112.45 m		
	@		
	125(2022)52		
	Total distance $=\frac{1}{2} \times 2.5 \times (20 + 30) + 50$ = 112.5 m		
	— 112.5 III		

_		
2.(b)(i)	$s_x = u_x t$ $5 = u_x (0.5)$ $u_x = 10 \text{ ms}^{-1}$	G1
	$u_x = 10 \text{ ms}^{-1}$	
	$s_y = u_y t - \frac{1}{2}gt^2$	
	$1.5 = u_y(0.5) - \frac{1}{2}(9.81)(0.5)^2$	G1
	$u_y = 5.45 ms^{-1}$	
	$u = \sqrt{10^2 + 5.45^2} = 11.39 ms^{-1}$	GJU1
2.(b)(ii)	$v_x = u_x = 10 \ ms^{-1}$	
	$v_y = u_y - gt$	G1
	$v_y = 5.45 - 9.81(0.5)$ $v_y = 0.545 ms^{-1}$	G1
	v _y	
	$v = \sqrt{10^2 + 0.545^2} = 10.01 ms^{-1}$	GJU1
	• • • • • • • • • • • • • • • • • • • •	GJUI
	TOTAL	10
3.(a)	x-component:	
	$m_A u_{Axi} + m_B u_{Bxi} = m_A v_{Axf} + m_B v_{Bxf}$	KG1
	$25 = v_{Axf} + 10\cos 30$	KUI
	$v_{Axf} = 16.34 ms^{-1}$	
	y-component:	
	$m_A u_{Ayi} + m_B u_{Byi} = m_A v_{Ayf} + m_B v_{Byf}$	
	$0 = v_{Ayf} + 10\sin 30$	KG1
	$v_{Ayf} = -5 ms^{-1}$	
	$v_A = \sqrt{16.34^2 + (-5)^2} = 17.09 \text{ ms}^{-1}$	
		GJU1
	$\theta = tan^{-1} \left \frac{-5}{16.34} \right = 17.01^{\circ} \text{ below positive } x - axis$	
	[10.34]	
3.(b)	250. ▼ T	
	T ₁ ▼35° Θ ▼ T ₃	
	T_2 T_2	
	$W_1 = 40N$ $W_2 = 50N$	
	$\Sigma F_{x} = 0$ $\Sigma F_{x} = 0$	
	$T_1 = 0$ $T_2 - T_1 \sin 35 = 0$ $T_3 \sin \theta - T_2 = 0$	
	$T_2 = 48.83 \sin 35$ $T_3 \sin \theta = 28 (1)$	GJU1(T ₂)
	$T_2 = 28N$ $T_3 \sin 29.25 = 28$	GJU1(T ₃)
	$T_3 = 57.3N$	0301(13)

	$\Sigma E = 0$	$\Sigma E = 0$	
	$T_1 \cos 35 - 40 = 0$	$\Sigma F_{y} = 0$ $T_{3} \cos \theta - 50 = 0$	GJU1(T ₁)
	$T_1 = 48.83N$	$T_3 \cos \theta = 50 (2)$	
	$(1) \div (2) \frac{T_3 \sin \theta}{T_3 \cos \theta} = \frac{28}{50}$		G1
	$\tan \theta = 0.56$		
	$\theta = 29.25^{o}$		JU1
3.(c)	a N f T W_1		
	$\Sigma F_x = ma$	$\Sigma F_y = ma$	G1(1)
	$T + \mu N - (6 \times 9.81) \sin 40 = -6a$ T = -6a + 37.83 - (0.15)(45.09) T = -6a + 31.07 (1)		G1(2)
	$\Sigma F_y = 0$ $N - (6 \times 9.81) \cos 40 = 0$ N = 45.09N (subst. into (1))		G1
	(1) = (2) -6a + 31.07 = 19.62 $a = 1.4$	2 + 2a <mark>13 ms⁻²(subst. into (2))</mark>	JU1
	T = 19.62 + 2(1.43) T = 22.48N		JU1
		TOTAL	13
4.(i)	$mgh = \frac{1}{2}$	kx^2	K1
			G1
	$(5)(9.81)h = \frac{1}{2}(4000)(0.23)^2$		
	h = 2.16	o m	JU1
4.(ii)	$mah = \frac{1}{k}x^2 + \frac{1}{mv^2}$		K1
	$mgh = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$ $(5)(9.81)(2.16) = \frac{1}{2}(4000)(0.15)^2 + \frac{1}{2}(5)v^2$		G1
	$(5)(9.81)(2.16) = \frac{1}{2}(4000)(0.15)^2 + \frac{1}{2}(5)v^2$ $v = 7.81 \text{ ms}^{-1}$		
	v = 7.81 n		JU1
4.(iii)	$P = \frac{\Delta E}{t} = \frac{\frac{1}{2}mc}{2}$	$\frac{(v^2-u^2)}{t}$	

	$P = \frac{\frac{1}{2}(5)(7.81^2 - 0^2)}{50 \times 10^{-3}}$	
	50×10^{-3} $P = 3049.81 W$	
	TOTAL	8
5.(i)	$r = 0.5\cos 30 = 0.43 m$	8
	$\Sigma F_{x} = ma_{C} \qquad \Sigma F_{y} = 0$	G1(1)
	$T\sin 30 = 0.2 \ a_C$ (1) $T\cos 30 - W = 0$ (2) 2.27 $\sin 30 = 0.2 \ a_C$ $T = \frac{(0.2)(9.81)}{\cos 30}$	G1(2)
	$a_C = 5.68 \text{ ms}^{-2}$ $T = 2.27 N \text{ (subst. into (1))}$	JU1
5.(ii)	$a_C = r\omega^2$ $5.68 = 0.43\omega^2$ $\omega = 3.63 \ rad \ s^{-1}$	GJ1
	$T = \frac{2\pi}{\omega}$ $T = \frac{2\pi}{3.63}$ $T = 1.73 s$	GJU1
	TOTAL	5
6.(a)(i)	$v = A\omega \cos \omega t$ $v = (0.05)(4\pi) \cos 4\pi t$ $v = 0.2\pi \cos 4\pi t \text{ where v in ms}^{-1}, \text{ t in s.}$	
6.(a)(ii)	$a = -A\omega^2 \sin \omega t$ $a = -(0.05)(4\pi)^2 \sin(4\pi(15))$ $a = 0 \text{ ms}^{-2}$	G1 JU1
6.(a)(iii)	$\frac{T_{new}}{T_{old}} = \frac{2\pi\sqrt{\frac{m}{k}}}{2\pi\sqrt{\frac{2m}{k}}}$ $T_{new} = \frac{1}{\sqrt{2}} T_{old}$	G1
	$T_{new} = \frac{1}{\sqrt{2}} T_{old}$	JU1

6.(b)(i)	$5 = \left(\frac{1}{0.5}\right)\lambda$	G1
	$\lambda = 2.5 m$ $Value S = 250 cm$	JU1
6.(b)(ii)	$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.5} = 4\pi$	
	$k = \frac{2\pi}{\lambda} = \frac{2\pi}{250} = 0.025 \ cm^{-1}$	
	$y = A\sin(\omega t \pm kx)$ y = 6 sin(4\pi t - 0.025x) where y and x in cm, t in s.	GJU1
6.(b)(iii)	$v = \pm \omega \sqrt{A^2 - y^2}$ $v = \pm 4\pi \sqrt{0.06^2 - 0.035^2}$	G1
	$v = \pm 0.612 ms^{-1}$	JU1
6.(c)(i)	$y = 8\cos(5\pi(1.2))$ $y = 8 cm$	GJU1
6.(c)(ii)	$\omega = 2\pi f$ $\frac{\pi}{2} = 2\pi f$ $f = 0.25 Hz$	G1
	$k = \frac{2\pi}{\lambda}$ $5\pi = \frac{2\pi}{\lambda}$ $\lambda = 0.4 \text{ cm}$	G1
	$v = f\lambda$ v = (0.25)(0.4) $v = 0.1 \text{ cm s}^{-1}$	GJU1
6.(d)(i)	$1\frac{3}{4}\lambda = l$ $\frac{7}{4}\lambda = 0.3$	K1
	$\lambda = 0.17 m$	JU1
6.(d)(ii)	$f = \frac{nv}{4l}$ $2100 = \frac{n(343)}{4(0.3)}$ $n = 7$	G1 JU1

6.(e)	$v_S = \frac{322 \times 10^3}{60 \times 60} = 89.44 ms^{-1}$	K1
	$v_S = \frac{1}{60 \times 60} = 89.44 \text{ms}^{-1}$	
	$f_A = \left(\frac{v}{v + v_s}\right) f$ $f_A = \left(\frac{343}{343 + 89.44}\right) 750$	K1
	$f_A = \left(\frac{343}{343 + 89.44}\right) 750$ $f_A = 594.88 Hz$	G1
	$f_B = \left(\frac{v}{v - v_S}\right) f$ $f_B = \left(\frac{343}{343 - 89.44}\right) 750$ $f_B = 1014.55 Hz$	G1
	$\frac{f_B}{f_A} = 1.71$	J1
	TOTAL	23
7.(a)(i)	$\frac{U}{V} = \frac{1}{2}\sigma\varepsilon$ $\frac{U}{V} = \frac{1}{2}(4 \times 10^5)(0.2)$ $\frac{U}{V} = 4.0 \times 10^4 J m^{-3}$	GJU1
	$\overline{V} = 4.0 \times 10^4 \text{ J m}^{-3}$	
7.(a)(ii) 7.(b)(i)	Point C	J1
7.(b)(i)	Point C $k_{P} = \frac{20}{100} k_{Q} = 0.2 k_{Q}$	
	$\left(\frac{dQ}{dt}\right)_P = \left(\frac{dQ}{dt}\right)_Q$	
	$-k_P A_P \left(\frac{T_{PQ} - T_P}{\chi}\right) = -k_Q A_Q \left(\frac{T_Q - T_{PQ}}{\chi}\right)$ $(0.2 k_Q) (T_{PQ} - 0) = k_Q (100 - T_{PQ})$	
	$(0.2 k_Q)(T_{PQ} - 0) = k_Q(100 - T_{PQ})$ $T_{PQ} = 83.33 {}^{\circ}\text{C}$	JU1
7.(b)(ii)	T(°C)	
	Correct axis & unit	D1
	83.33 Correct shape and value	D1
	P P+Q x(m)	

7.(c)	$\beta = 2\alpha = 2(9 \times 10^{-6}) = 1.8 \times 10^{-5} ^{\circ}\text{C}$	y-1	K1
	$\Delta A = \beta A_i \Delta T$		
	$\Delta A = (1.8 \times 10^{-5})(9000)(36 - 0)$ $\Delta A = 5.832 cm^2$		GJU1
		TOTAL	8
8.(a)(i)	3RT	101112	0
	$v_{rms} = \sqrt{\frac{3RT}{M}}$		
	$v_{rms} = \sqrt{\frac{3(8.31)(550)}{(2.02 \times 10^{-3})}}$		G1
	$\sqrt{(2.02 \times 10^{-3})}$ $v_{rms} = 2.61 \times 10^{3} ms^{-1}$		JU1
9 (2)(;;)			
8.(a)(11)	$P = \frac{1}{3}\rho v_{rms}^{2}$ $P = \frac{1}{3}(83.75 \times 10^{-3})(2.61 \times 10^{3})^{2}$		
	$P = \frac{1}{3}(83.75 \times 10^{-3})(2.61 \times 10^{3})^{2}$		G1
	$P = 1.90 \times 10^5 Pa$		JU1
8.(a)(iii)	$K_{tr} = \frac{3}{2}kT$ $K_{tr} = \frac{3}{2}(1.38 \times 10^{-23})(550)$		
	$K_{tr} = \frac{3}{2}(1.38 \times 10^{-23})(550)$		
	$K_{tr} = 1.14 \times 10^{-20} J$		GJU1
8.(b)(i)	$P_1V_1 = P_2V_2$ $(1.2 \times 10^5)V_1' = P_2(0.25V_1')$		
	$P_2 = 1.2 \times 10^5 Pa$		GJU1
8.(b)(ii)	$W_{mom \cdot i} = W_{i \cdot i} + W_{i \cdot j}$		K1
	$W_{TOTAL} = W_{isothermal} + W_{isochoric}$ $W_{TOTAL} = nRT \ln \frac{V_2}{V_1}$		111
	V_1 $W_{TOTAL} = (2)(8.31)(50 + 273.15) \ln \frac{0.00}{100}$.251/1	
	$W_{TOTAL} = (2)(8.51)(30 + 275.13) \text{ III} - $ $W_{TOTAL} = -7445.44 J$	V_1	GJU1
0 (1)(''')			
8.(b)(iii)			
	4.8	Correct axis & unit	D1
	1.2	Correct shape and value	D2
	V_2 V_1 $V(m^3)$		
		TOTAL	11