Verão IME-USP 2019 - Álgebra Linear - Lista 4

araujofpinto

fevereiro 2019

- 1. Sejam V um espaço vetorial real e $T:V\to V$ uma transformação linear, $v\in V$ um autovetor de T associado ao autovalor λ . Mostre que, para quaisquer α,β em \mathbb{R} , vale que v é autovetor de $\alpha T+\beta I_V$ associado ao autovalor $\alpha\lambda+\beta$.
- 2. Sejam V um espaço vetorial real e $T:V\to V$ uma transformação linear. Mostre que $\lambda=0$ é autovalor de T se, e somente se, T não é injetora.
- 3. Sejam V um espaço vetorial real e $T:V\to V$ uma transformação linear, $v\in V$ um autovetor de T associado ao autovalor λ . Considere a transformação linear $T^n:\mathbb{V}\to\mathbb{V}$, definida por $T^n(v)=(T\circ T\circ\ldots\circ T)(v)$, para todo $v\in V$. Mostre que v é um autovetor de T^n associado ao autovalor λ^n , para qualquer $n\in\mathbb{N}$.
- 4. Sejam V um espaço vetorial real e $T:V\to V$ um isomorfismo, $v\in V$ um autovetor de T associado ao autovalor $\lambda\neq 0$. Mostre que v é um autovetor de T^{-1} associado ao autovalor $\frac{1}{\lambda}$.
- 5. Sejam V um espaço vetorial real e $T:V\to V$ um isomorfismo. Dizemos que T é **nilpotente**, se existir um $n\in\mathbb{N}$ tal que $T^n(v)=0_V$, para todo $v\in V$. Nessas condições mostre que o único autovalor de T é $\lambda=0$.
- 6. Determine uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, que satisfaça as duas seguintes propriedades simultaneamente:
 - a) $\lambda = 1$ é um autovalor de T associado aos autovetores da forma $v_1 = (y, -y)$, onde $y \neq 0$.
 - b) $\lambda = 3$ é um autovalor de T associado aos autovetores da forma $v_1 = (0, y)$, onde $y \neq 0$.
- 7. Sejam $A, B \in \mathbb{M}_n(\mathbb{R})$, matrizes semelhantes. Mostre que se A é invertível, então B é invertível e vale que A^{-1} e B^{-1} são semelhantes.
- 8. Sejam $A, B \in \mathbb{M}_n(\mathbb{R})$, matrizes semelhantes. Estabeleça a relação entre os autovalores e autovetores de A e B.
- 9. Sejam \mathbb{R}^4 com produto interno usual, W = [(1, -1, 0, 1), (-1, 0, 1, 1)] e $P : V \to V$ é a projeção ortogonal sobre W. Determine os autovalores e autovetores de P.
- 10. Determine os autovalores e autovetores da transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, definida por T(x,y,z) = (x+y,x-y+2z,2x+y-z).
- 11. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear tal que $[T]_{can} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Determine os autovalores e os autovetores de T.
- 12. Determine os autovalores e os autovetores de Te T^{-1} , onde $T: \mathbb{R}^2 \to \mathbb{R}^2$ é a transformação linear tal que $[T]_{can} = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}$.
- 13. Determine os autovalores e os autovetores de T, R e S, onde T, R, $S : \mathbb{R}^4 \to \mathbb{R}^4$ são transformações lineares tais que

$$[T]_{can} = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}, [R]_{can} = \begin{pmatrix} 6 & 2 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix} [S]_{can} = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

14. Sejam $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear, $B = \{v_1, v_2, v_3\}$ uma base de \mathbb{R}^3 e $U = [v_1, v_3]$. Sabendo que T(v) = v, para todo $v \in U$ e que $T(v_2) = v_1 + 2v_2 + 3v_3$, determine os autovalores e autovetores de T.

1

- 15. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear tal que $[T]_{can} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Determine a multiplicidade algébrica e geométrica dos autovalores de T.
- 16. Verifique se a transformação $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (-3x-4y,2x+3y,-z) é diagonalizável.
- 17. Verifique se a transformação $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ dada por $T(a+bx+cx^2) = (2b+c) + (2b-c)x + 2cx^2$ é diagonalizável.
- 18. Sejam V um espaço vetorial real tal que dim(V) = n e $T: V \to V$ uma transformação linear que possui somente dois autovalores λ_1, λ_2 , com $\lambda_1 \neq \lambda_2$ e $dim(V_{\lambda_1}) = (n-1)$. Prove que T é diagonalizável.
- 19. Dê um exemplo de um operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ diagonalizável tal que Ker(T) = [(1,0,1)].
- 20. Dê um exemplo de um operador linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ diagonalizável tal que Im(T) = [(1,1,0),(1,0,1)].
- 21. Dê um exemplo de um operador linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ diagonalizável tal que $Ker(T) = \{(x, y, z, t) \in \mathbb{R}^4 : x + y z + t = 0, z t = 0\}, \lambda = -3$ é autovalor de T, T((0,0,1,0)) = (0,0,2,0) e $(0,1,0,0) \in Im(T)$.
- 22. Determine um operador linear $T: \mathbb{R}^4 \to \mathbb{R}^4$ diagonalizável tal que $Ker(T) = \{(x, y, z, t) \in \mathbb{R}^4 : x + y z + t = 0, z t = 0\}, \lambda = 2$ é autovalor de T, com a multiplicidade algébrica igual à 2 e Im(T) = [(1, 0, 0, 0), (0, 1, 1, 0)].
- 23. Seja $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ a transformação linear dada por

$$T(a + bx + cx^{2}) = -a + (a - b)x + 3cx^{2}.$$

- a) Determine os autovalores e autovetores de T.
- b) Vale que T é diagonalizável? Justifique a sua resposta!
- 24. Considere $\mathcal{P}_1(\mathbb{R})$ o espaço dos polinômios de grau 1. Seja $B = \{-x, 1-x\}$ base de $\mathcal{P}_1(\mathbb{R})$. Seja $T : \mathcal{P}_1(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ uma transformação linear, tal que sua representação matricial em relação à base B é

$$[T]_{B,B} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}$$

- a) Mostre que para todo $a + bx \in \mathcal{P}_1(\mathbb{R})$ temos T(a + bx) = a (2a + b)x.
- b) Mostre que para todo $a + bx \in \mathcal{P}_1(\mathbb{R})$ temos $T^{-1}(a + bx) = a (2a + b)x$.
- c) Vale que T é um isomorfismo? Justifique!
- d) Vale que T é diagonalizável? Quais são os autovalores de T? Vale que -x, e 1-x são autovetores de T? Justifique!
- 25. Usando o método dos mínimos quadrados, ajuste os dados $\begin{pmatrix} x & | & 1 & 2 & 3 & 4 & 5 \\ y & | & 0.5 & 0.9 & 1.6 & 2 & 2.4 \end{pmatrix}$
 - (a) por uma reta.
 - (b) por uma parábola.
 - (c) por uma função da forma $f(x) = \alpha + \beta \sin x + \gamma \cos x$.
- 26. Encontre a solução geral das seguintes equações diferenciais ordinárias (EDOs):
 - (a) x' = x
 - **(b)** x' x = 2
 - (c) $x' x = t^2$
 - (d) x'' = -x
 - (e) $x'' + x = \sin 2t$
 - (f) x'' + 3x' + 2x = 5
 - (g) $x'' + 3x' + 2x = 5e^{2t}$
 - (h) $x'' 3x' + 5x = 2e^t 3$
 - (i) $x'' 3x' + 2x = 3e^{2t}$
 - (j) $x'' 4x' + 3x = te^{3t}$
 - (k) $x'' 3x' = t^2$