

Teori Bilangan

Bahan Kuliah IF2091 Struktur Diskrit

**Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0

**Berlawanan dengan bilangan bulat adalah bilangan riil yang mempunyai titik desimal, seperti 8.0, 34.25, 0.02.

Sifat Pembagian pada Bilangan Bulat

- * Misalkan a dan b bilangan bulat, $a \neq 0$.

 a habis membagi b (a divides b) jika terdapat bilangan bulat c sedemikian sehingga b = ac.
- ** Notasi: $a \mid b$ jika b = ac, $c \in \mathbb{Z}$ dan $a \neq 0$.
- **Contoh 1**: $4 \mid 12$ karena 12/4 = 3 (bilangan bulat) atau $12 = 4 \times 3$. Tetapi $4 \nmid 13$ karena 13/4 = 3.25 (bukan bilangan bulat).

Teorema 1 (Teorema Euclidean). Misalkan m dan n bilangan bulat, n > 0. Jika m dibagi dengan n maka terdapat bilangan bulat unik q (quotient) dan r (remainder), sedemikian sehingga

$$m = nq + r \tag{1}$$

dengan $0 \le r < n$.

Contoh 2.

(i) 1987/97 = 20, sisa 47: $1987 = 97 \cdot 20 + 47$

(ii)
$$-22/3 = -8$$
, sisa 2:
 $-22 = 3(-8) + 2$

tetapi -22 = 3(-7) - 1 salah karena r = -1 (syarat $0 \le r < n$)

* Misalkan a dan b bilangan bulat tidak nol.

- Pembagi bersama terbesar (PBB **greatest common divisor** atau gcd) dari a dan b adalah bilangan bulat terbesar d sedemikian hingga $d \mid a$ dan $d \mid b$.
- * Dalam hal ini kita nyatakan bahwa PBB(a, b) = d.

Contoh 3.

Faktor pembagi 45: 1, 3, 5, 9, 15, 45;

Faktor pembagi 36: 1, 2, 3, 4, 9, 12, 18, 36;

Faktor pembagi bersama 45 dan 36: 1, 3, 9

$$\rightarrow$$
 PBB(45, 36) = 9.

*** Teorema 2.** Misalkan m dan n bilangan bulat, dengan syarat n > 0 sedemikian sehingga

$$m = nq + r$$
 , $0 \le r < n$
maka PBB $(m, n) = PBB(n, r)$

Contoh 4: m = 60, n = 18, $60 = 18 \cdot 3 + 6$ maka PBB(60, 18) = PBB(18, 6) = 6

Algoritma Euclidean

* Tujuan: algoritma untuk mencari PBB dari dua buah bilangan bulat.

** Penemu: Euclides, seorang matematikawan Yunani yang menuliskan algoritmanya tersebut dalam buku, *Element*.

* Lukisan Euclides versi lain

Misalkan m dan n adalah bilangan bulat tak negatif dengan $m \ge n$. Misalkan $r_0 = m$ dan $r_1 = n$.

Lakukan secara berturut-turut pembagian untuk memperoleh

$$r_0 = r_1 q_1 + r_2$$
 $0 \le r_2 \le r_1,$ $r_1 = r_2 q_2 + r_3$ $0 \le r_3 \le r_2,$ $r_{n-2} = r_{n-1} q_{n-1} + r_n$ $0 \le r_n \le r_{n-1},$ $r_{n-1} = r_n q_n + 0$

Menurut Teorema 2,

PBB
$$(m, n)$$
 = PBB (r_0, r_1) = PBB (r_1, r_2) = ... = PBB (r_{n-2}, r_{n-1}) = PBB (r_{n-1}, r_n) = PBB $(r_n, 0)$ = r_n

Jadi, PBB dari *m* dan *n* adalah sisa terakhir yang tidak nol dari runtunan pembagian tersebut

Diberikan dua buah bilangan bulat tak-negatif m dan n ($m \ge n$). Algoritma Euclidean berikut mencari pembagi bersama terbesar dari m dan n.

Algoritma Euclidean

- 1. Jika n = 0 maka m adalah PBB(m, n); stop.
 - tetapi jika $n \neq 0$, lanjutkan ke langkah 2.
- 2. Bagilah *m* dengan *n* dan misalkan *r* adalah sisanya.
- 3. Ganti nilai m dengan nilai n dan nilai n dengan nilai r, lalu ulang kembali ke langkah 1.

```
procedure Euclidean (input m, n : integer,
                   output PBB : integer)
{ Mencari PBB(m, n) dengan syarat m dan n bilangan tak-
Masukan: m dan n, m \ge n dan m, n \ge 0
 Keluaran: PBB (m, n)
Kamus
  r : integer
Algoritma:
  while n \neq 0 do
     r \leftarrow m \mod n
     m \leftarrow n
    n \leftarrow r
   endwhile
   \{ n = 0, maka PBB(m,n) = m \}
  PBB ← m
```

Contoh 4. m = 80, n = 12 dan dipenuhi syarat $m \ge n$

Sisa pembagian terakhir sebelum 0 adalah 4, maka PBB(80, 12) = 4.

Kombinasi Lanjar

* PBB(*a*,*b*) dapat dinyatakan sebagai **kombinasi lanjar** (*linear combination*) *a* dan *b* dengan dengan koefisien-koefisennya.

Contoh 6: PBB(80, 12) = 4,
$$4 = (-1) \cdot 80 + 7 \cdot 12$$
.

Teorema 3. Misalkan a dan b bilangan bulat positif, maka terdapat bilangan bulat m dan n sedemikian sehingga PBB(a, b) = ma + nb.

— — - |- — — - |- — — - |- — — - |- — — - |- — — - |- — — - |- — — - |- — — - |- — — - |- — — - |- — — - |- —

Solusi:

$$45 = 2(21) + 3$$

$$21 = 7(3) + 0$$

Sisa pembagian terakhir sebelum 0 adalah 3, maka PBB(45, 21) = 3

Substitusi dengan persamaan—persamaan di atas menghasilkan:

$$3 = 45 - 2(21)$$

yang merupakan kombinasi lanjar dari 45 dan 21

Solusi: Terapkan algoritma Euclidean untuk memperoleh PBB(312, 70):

$$312 = 4 \cdot 70 + 32 \tag{i}$$

$$32 = 5 \cdot 6 + 2 \tag{iii}$$

$$6 = 3 \cdot 2 + 0 \tag{iv}$$

Sisa pembagian terakhir sebelum 0 adalah 2, maka PBB(312, 70) = 2

Susun pembagian nomor (iii) dan (ii) masing-masing menjadi

$$2 = 32 - 5 \cdot 6$$
 (iv)

$$6 = 70 - 2 \cdot 32 \tag{v}$$

Sulihkan (v) ke dalam (iv) menjadi

$$2 = 32 - 5 \cdot (70 - 2 \cdot 32) = 1 \cdot 32 - 5 \cdot 70 + 10 \cdot 32 = 11 \cdot 32 - 5 \cdot 70$$
 (vi)

Susun pembagian nomor (i) menjadi

$$32 = 312 - 4 \cdot 70$$
 (vii)

Sulihkan (vii) ke dalam (vi) menjadi

$$2 = 11 \cdot 32 - 5 \cdot 70 = 11 \cdot (312 - 4 \cdot 70) - 5 \cdot 70 = 11 \cdot 312 - 49 \cdot 70$$

Jadi, PBB(312, 70) = $2 = 11 \cdot 312 - 49 \cdot 70$

Relatif Prima

** Dua buah bilangan bulat a dan b dikatakan relatif prima jika PBB(a, b) = 1.

* Contoh 9.

- (i) 20 dan 3 relatif prima sebab PBB(20, 3) = 1.
- (ii) 7 dan 11 relatif prima karena PBB(7, 11) = 1.
- (iii) 20 dan 5 tidak relatif prima sebab PBB(20, 5) = $5 \neq 1$.

★ Jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga

$$- +--$$

★ Contoh 10. Bilangan 20 dan 3 adalah relatif prima karena PBB(20, 3) =1, atau dapat ditulis

$$2.20 + (-13).3 = 1 \quad (m = 2, n = -13)$$

Tetapi 20 dan 5 tidak relatif prima karena PBB(20, 5) = $5 \neq 1$ sehingga 20 dan 5 tidak dapat dinyatakan dalam $m \cdot 20 + n \cdot 5 = 1$.

Aritmetika Modulo

* Misalkan a dan m bilangan bulat (m > 0). Operasi $a \mod m$ (dibaca " $a \mod m$ ") memberikan sisa jika a dibagi dengan m.

- ** Notasi: $a \mod m = r$ sedemikian sehingga a = mq + r, dengan $0 \le r < m$.
- ** m disebut **modulus** atau **modulo**, dan hasil aritmetika modulo m terletak di dalam himpunan $\{0, 1, 2, ..., m-1\}$.

- **Contoh** 11. Beberapa hasil operasi dengan operator modulo:
- (i) $23 \mod 5 = 3$ $(23 = 5 \cdot 4 + 3)$
 - (ii) $27 \mod 3 = 0$ $(27 = 3 \cdot 9 + 0)$
 - (iii) $6 \mod 8 = 6$ $(6 = 8 \cdot 0 + 6)$
 - (iv) $0 \mod 12 = 0$ $(0 = 12 \cdot 0 + 0)$
 - $(v) 41 \mod 9 = 4$ (-41 = 9 (-5) + 4)
 - $(vi) 39 \mod 13 = 0$ (-39 = 13(-3) + 0)
- ** Penjelasan untuk (v): Karena a negatif, bagi |a| dengan m mendapatkan sisa r'. Maka a mod m = m r' bila $r' \neq 0$. Jadi $|-41| \mod 9 = 5$, sehingga $-41 \mod 9 = 9 5 = 4$.

- * Misalnya 38 mod 5 = 3 dan 13 mod 5 = 3, maka dikatakan $38 \equiv 13 \pmod{5}$
 - (baca: 38 kongruen dengan 13 dalam modulo 5).
- * Misalkan a dan b bilangan bulat dan m adalah bilangan > 0, maka $a \equiv b \pmod{m}$ jika m habis membagi a b.
- \divideontimes Jika *a* tidak kongruen dengan *b* dalam modulus *m*, maka ditulis *a* \equiv / *b* (mod *m*).

* Contoh 12.

$$17 \equiv 2 \pmod{3} \qquad (3 \text{ habis membagi } 17 - 2 = 15)$$

$$-7 \equiv 15 \pmod{11}$$
(11 habis membagi $-7 - 15 = -22$)

$$12 \equiv / 2 \pmod{7}$$
 (7 tidak habis membagi $12 - 2 = 10$)

$$-7 \equiv /15 \pmod{3}$$
 (3 tidak habis membagi $-7 - 15 = -22$)

* $a \equiv b \pmod{m}$ dalam bentuk "sama dengan" dapat dituliskan sebagai

$$a = b + km$$
 (k adalah bilangan bulat)

***** Contoh 13.

$$17 \equiv 2 \pmod{3} \qquad \rightarrow 17 = 2 + 5 \cdot 3$$

$$-7 \equiv 15 \pmod{11}$$
 $\rightarrow -7 = 15 + (-2)11$

*
$$a \mod m = r \text{ dapat juga ditulis sebagai}$$

$$\underline{a \equiv r \pmod m}$$

* Contoh 14.

(i)
$$23 \mod 5 = 3$$
 $\Rightarrow 23 \equiv 3 \pmod 5$

(ii)
$$27 \mod 3 = 0$$
 $\Rightarrow 27 \equiv 0 \pmod 3$

(iii)
$$6 \mod 8 = 6$$
 $\Rightarrow 6 \equiv 6 \pmod 8$

(iv)
$$0 \mod 12 = 0$$
 $\Rightarrow 0 \equiv 0 \pmod{12}$

$$(v) - 41 \mod 9 = 4$$
 $\rightarrow -41 \equiv 4 \pmod 9$

$$(vi) - 39 \mod 13 = 0 \implies -39 \equiv 0 \pmod{13}$$

Teorema 4. Misalkan *m* adalah bilangan bulat positif.

- 1) Jika $a \equiv b \pmod{m}$ dan c adalah sembarang bilangan bulat maka
 - (i) $(a+c) \equiv (b+c) \pmod{m}$
 - (ii) $ac \equiv bc \pmod{m}$
 - (iii) $a^p \equiv b^p \pmod{m}$, p bilangan bulat tak-negatif
- 2) Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka
 - (i) $(a+c) \equiv (b+d) \pmod{m}$
 - (ii) $ac \equiv bd \pmod{m}$

1(ii)
$$a \equiv b \pmod{m}$$
 berarti:

$$\Leftrightarrow a = b + km$$

$$\Leftrightarrow a - b = km$$

$$\Leftrightarrow (a - b)c = ckm$$

$$\Leftrightarrow ac = bc + Km$$

$$\Leftrightarrow ac \equiv bc \pmod{m}$$

2(i)
$$a \equiv b \pmod{m} \Leftrightarrow a = b + k_1 m$$

 $c \equiv d \pmod{m} \Leftrightarrow c = d + k_2 m + k_3 m + k_4 m + k_5 m + k_5$

$$(1)$$
 \Leftrightarrow (1) (1)

$$\Leftrightarrow (a+c) = (b+d) + (k_1 + k_2)m$$

$$\Leftrightarrow$$
 $(a+c)=(b+d)+km$ $(k=k_1+k_2)$

$$\Leftrightarrow$$
 $(a+c)=(b+d) \pmod{m}$

Contoh 15.

Misalkan $17 \equiv 2 \pmod{3}$ dan $10 \equiv 4 \pmod{3}$, maka menurut Teorema 4,

$$17 + 5 = 2 + 5 \pmod{3} \iff 22 = 7 \pmod{3}$$

17.
$$5 = 5 \cdot 2 \pmod{3}$$
 $\Leftrightarrow 85 = 10 \pmod{3}$

$$17 + 10 = 2 + 4 \pmod{3} \iff 27 = 6 \pmod{3}$$

$$17 \cdot 10 = 2 \cdot 4 \pmod{3} \iff 170 = 8 \pmod{3}$$

* Teorema 4 tidak memasukkan operasi pembagian pada aritmetika modulo karena jika kedua ruas dibagi dengan bilangan bulat, maka kekongruenan tidak selalu dipenuhi.

*** Contoh 16:**

 $10 \equiv 4 \pmod{3}$ dapat dibagi dengan 2 karena $10/2 = 5 \det 4/2 = 2$, dan $5 \equiv 2 \pmod{3}$

 $14 \equiv 8 \pmod{6}$ tidak dapat dibagi dengan 2, karena $14/2 = 7 \det 8/2 = 4$, tetapi $7 \equiv /4 \pmod{6}$.

Latihan

Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$ adalah sembarang bilangan bulat maka buktikan bahwa $ac \equiv bd \pmod{m}$

Solusi

$$a \equiv b \pmod{m} \Rightarrow a = b + k_1 m$$
 $c \equiv d \pmod{m} \Rightarrow c = d + k_2 m$
maka
$$\Leftrightarrow ac = (b + k_1 m)(d + k_2 m)$$

$$\Leftrightarrow ac = bd + bk_2 m + dk_1 m + k_1 k_2 m^2$$

$$\Leftrightarrow ac = bd + Km \text{ dengan } K = bk_2 + dk_1 + k_1 k_2 m$$

$$\Leftrightarrow ac \equiv bd \pmod{m} \text{ (terbukti)}$$

*Di dalam aritmetika bilangan riil, inversi (inverse) dari perkalian adakah pembagian.

Contoh: Inversi 4 adalah 1/4, sebab 4 × 1/4 = 1.

*Di dalam aritmetika modulo, masalah menghitung inversi modulo lebih sukar.

*Balikan dari *a* (mod *m*) adalah bilangan bulat *x* sedemikian sehingga

$$xa \equiv 1 \pmod{m}$$

Dalam notasi lainnya, $a^{-1} \pmod{m} = x$

Bukti: a dan m relatif prima, jadi PBB(a, m) = 1, dan terdapat bilangan bulat x dan y sedemikian sehingga:

$$xa + ym = 1$$

yang mengimplikasikan bahwa $xa + ym \equiv 1 \pmod{m}$

Karena
$$ym \equiv 0 \pmod{m}$$
 (kenapa?), maka $xa \equiv 1 \pmod{m}$

Kekongruenan yang terakhir ini berarti bahwa x adalah balikan dari $a \pmod{m}$.

** Pembuktian di atas juga menceritakan bahwa untuk mencari balikan dari *a* (mod *m*), kita harus membuat kombinasi lanjar dari *a* dan *m* sama dengan 1.

* Koefisien a dari kombinasi lanjar tersebut merupakan balikan dari a (mod m).

Solusi:

* (a) Karena PBB(4, 9) = 1, maka balikan dari 4 (mod 9) ada. Dari algoritma Euclidean diperoleh bahwa

$$9 = 2 \cdot 4 + 1$$

Susun persamaan di atas menjadi

$$-2 \cdot 4 + 1 \cdot 9 = 1$$

Dari persamaan terakhir ini kita peroleh –2 adalah balikan dari 4 (mod 9).

Periksa bahwa $-2 \cdot 4 \equiv 1 \pmod{9}$

★ Catatan: setiap bilangan yang kongruen dengan-2 (mod 9)

juga adalah inversi dari 4, misalnya 7, –11, 16, dan seterusnya, karena

$$7 \equiv -2 \pmod{9}$$
 (9 habis membagi $7 - (-2) = 9$)

$$-11 \equiv -2 \pmod{9}$$
 (9 habis membagi $-11 - (-2) = -9$)

$$16 \equiv -2 \pmod{9}$$
 (9 habis membagi $16 - (-2) = 18$)

$$17 = 2 \cdot 7 + 3$$
 (i)

$$3 = 3 \cdot 1 + 0$$
 (iii) (yang berarti: PBB(17, 7) = 1))

Susun (ii) menjadi:

$$1 = 7 - 2 \cdot 3 \qquad (iv)$$

Susun (i) menjadi

$$3 = 17 - 2 \cdot 7 \qquad (v)$$

Sulihkan (v) ke dalam (iv):

$$1 = 7 - 2 \cdot (17 - 2 \cdot 7) = 1 \cdot 7 - 2 \cdot 17 + 4 \cdot 7 = 5 \cdot 7 - 2 \cdot 17$$

atau

$$-2 \cdot 17 + 5 \cdot 7 = 1$$

Dari persamaan terakhir diperoleh –2 adalah balikan dari 17 (mod 7)

*
$$-2 \cdot 17 \equiv 1 \pmod{7}$$
 (7 habis membagi $-2 \cdot 17 - 1 = -35$)

(c) Karena PBB(18, 10) = $2 \ne 1$, maka balikan dari 18 (mod 10) tidak ada.

Cara lain menghitung balikan

— — - j- — — -

- * Ditanya: balikan dari *a* (mod *m*)
- * Misalkan x adalah balikan dari $a \pmod{m}$, maka $ax \equiv 1 \pmod{m}$ (definisi balikan modulo) atau dalam notasi 'sama dengan':

$$ax = 1 + km$$

atau

$$x = (1 + km)/a$$

Cobakan untuk k = 0, 1, 2, ... dan k = -1, -2, ...

Solusinya adalah semua bilangan bulat yang memenuhi.

Contoh 18: Balikan dari 4 (mod 9) adalah x sedemikian sehingga $4x \equiv 1 \pmod{9}$

$$4x \equiv 1 \pmod{9} \Rightarrow 4x = 1 + 9k \Rightarrow x = (1 + 9k)/4$$
Untuk $k = 0 \Rightarrow x$ tidak bulat
$$k = 1 \Rightarrow x \text{ tidak bulat}$$

$$k = 2 \Rightarrow x \text{ tidak bulat}$$

$$k = 3 \Rightarrow x = (1 + 9 \cdot 3)/4 = 7$$

$$k = -1 \Rightarrow x = (1 + 9 \cdot -1)/4 = -2$$

Balikan dari 4 (mod 9) adalah 7 (mod 9), -2 (mod 9), dst

** Tentukan semua balikan dari 9 (mod 11).

Solusi:

- ***** Misalkan 9⁻¹ (mod 11) = x
- * Maka $9x \equiv 1 \pmod{11}$ atau 9x = 1 + 11k atau x = (1 + 11k)/9

Dengan mencoba semua nilai k yang bulat (k = 0, -1, -2, ..., 1, 2, ...) maka

* diperoleh x = 5. Semua bilangan lain yang kongruen dengan 5 (mod 11) juga merupakan solusi, yaitu -6, 16, 27, ...

Kekongruenan Lanjar

* Kekongruenan lanjar berbentuk:

$$ax \equiv b \pmod{m}$$

(m > 0, a dan b sembarang bilangan bulat, dan x adalah peubah bilangan bulat).

Pemecahan:
$$ax = b + km \implies x = \frac{b + km}{a}$$

(Cobakan untuk k = 0, 1, 2, ... dan k = -1, -2, ... yang menghasilkan x sebagai bilangan bulat)

Contoh 19.

Tentukan solusi: $4x \equiv 3 \pmod{9}$ dan $2x \equiv 3 \pmod{4}$

Penyelesaian:

(i)
$$4x \equiv 3 \pmod{9}$$

$$x = \frac{3 + k \cdot 9}{4}$$

$$k = 0 \rightarrow x = (3 + 0 \cdot 9)/4 = 3/4$$
 (bukan solusi)

$$k = 1 \rightarrow x = (3 + 1 \cdot 9)/4 = 3$$

$$k = 2 \rightarrow x = (3 + 2 \cdot 9)/4 = 21/4$$
 (bukan solusi)

$$k = 3$$
, $k = 4$ tidak menghasilkan solusi

$$k = 5 \rightarrow x = (3 + 5 \cdot 9)/4 = 12$$

. . .

$$k = -1 \rightarrow x = (3 - 1 \cdot 9)/4 = -6/4$$
 (bukan solusi)

$$k = -2 \rightarrow x = (3 - 2 \cdot 9)/4 = -15/4$$
 (bukan solusi)

$$k = -3 \rightarrow x = (3 - 3 \cdot 9)/4 = -6$$

. . .

$$k = -6 \Rightarrow x = (3 - 6 \cdot 9)/4 = -15$$

. . .

Nilai-nilai x yang memenuhi: 3, 12, ... dan -6, -15, ...

Cara lain menghitung solusi $ax \equiv b \pmod{m}$

* Seperti dalam persamaan biasa,

 $4x = 12 \rightarrow$ kalikan setiap ruas dengan 1/4 (yaitu invers 4), maka 1/4 . $4x = 12 \cdot 1/4 \rightarrow x = 3$

* $4x \equiv 3 \pmod{9}$ \Rightarrow kalikan setiap ruas dengan balikan dari $4 \pmod{9}$ (dalam hal ini sudah kita hitung, yaitu -2) $(-2) \cdot 4x \equiv (-2) \cdot 3 \pmod{9} \Leftrightarrow -8x \equiv -6 \pmod{9}$

Karena $-8 \equiv 1 \pmod{9}$, maka $x \equiv -6 \pmod{9}$. Semua blangan bulat yang kongruen dengan $-6 \pmod{9}$ adalah solusinya, yitu 3, 12, ..., dan -6, -15, ...

(ii)
$$2x \equiv 3 \pmod{4}$$

$$x = \frac{3 + k \cdot 4}{2}$$

Karena 4k genap dan 3 ganjil maka penjumlahannya menghasilkan ganjil, sehingga hasil penjumlahan tersebut jika dibagi dengan 2 tidak menghasilkan bilangan bulat. Dengan kata lain, tidak ada nilai-nilai x yang memenuhi $2x \equiv 3 \pmod{5}$.

Sebuah bilangan bulat jika dibagi dengan 3
bersisa 2 dan jika ia dibagi dengan 5 bersisa
3. Berapakah bilangan bulat tersebut

Solusi

Misal: bilangan bulat = x

$$x \mod 3 = 2 \quad \rightarrow \quad x \equiv 2 \pmod 3$$

$$x \mod 5 = 3 \rightarrow x \equiv 3 \pmod 5$$

Jadi, terdapat sistem kekongruenan:

$$x \equiv 2 \pmod{3}$$
 (i)

$$x \equiv 3 \pmod{5}$$
 (ii)

Untuk kongruen pertama:

$$x = 2 + 3k_1 \tag{iii}$$

Substitusikan (iii) ke dalam (ii):

$$2 + 3k_1 \equiv 3 \pmod{5} \rightarrow 3k_1 \equiv 1 \pmod{5}$$

diperoleh

$$k_1 \equiv 2 \pmod{5}$$
 atau $k_1 = 2 + 5k_2$

$$x = 2 + 3k_1$$

= 2 + 3 (2 + 5 k_2)
= 2 + 6 + 15 k_2
= 8 + 15 k_2
atau
 $x \equiv 8 \pmod{15}$

Semua nilai *x* yang kongruen dengan 8 (mod 15) adalah solusinya, yaitu

$$x = 8$$
, $x = 23$, $x = 38$, ..., $x = -7$, dst

* Pada abad pertama, seorang matematikawan China yang bernama Sun Tse mengajukan pertanyaan sebagai berikut:

Tentukan sebuah bilangan bulat yang bila dibagi dengan 5 menyisakan 3, bila dibagi 7 menyisakan 5, dan bila dibagi 11 menyisakan 7.

* Misakan bilangan bulat tersebut = x. Formulasikan kedalam sistem kongruen lanjar:

$$x \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod{7}$$

$$x \equiv 7 \pmod{11}$$

Teorema 5. (Chinese Remainder Theorem) Misalkan $m_1, m_2, ..., m_n$ adalah bilangan bulat positif sedemikian sehingga $PBB(m_i, m_j) = 1$ untuk $i \neq j$. Maka sistem kongruen lanjar

$$x \equiv a_k \pmod{m_k}$$

mempunyai sebuah solusi unik dalam modulo $m = m_1 \cdot m_2 \cdot \ldots \cdot m_n$.

Contoh 15.

11.

Tentukan solusi dari pertanyaan Sun Tse di atas.

Penyelesaian: $x \equiv 3 \pmod{5} \rightarrow x = 3 + 5k_1 \text{ (i)}$

Sulihkan (i) ke dalam kongruen kedua menjadi:

$$3 + 5k_1 \equiv 5 \pmod{7} \rightarrow k_1 \equiv 6 \pmod{7}$$
, atau $k_1 = 6 + 7k_2$ (ii)

Sulihkan (ii) ke dalam (i):

$$x = 3 + 5k_1 = 3 + 5(6 + 7k_2) = 33 + 35k_2$$
 (iii)

Sulihkan (iii) ke dalam kongruen ketiga menjadi:

$$33 + 35k_2 \equiv 7 \pmod{11} \rightarrow k_2 \equiv 9 \pmod{11}$$
 atau $k_2 = 9 + 11k_3$.

Sulihkan k_2 ini ke dalam (iii) menghasilkan:

$$x = 33 + 35(9 + 11k_3) = 348 + 385k_3$$

atau $x \equiv 348 \pmod{385}$. Ini adalah solusinya.

348 adalah bilangan bulat positif terkecil yang merupakan solusi sistem kekongruenan di atas. Perhatikan bahwa 348 mod 5 = 3, 348 mod 7 = 5, dan 348 mod 11 = 7. Catatlah bahwa $385 = 5 \cdot 7$

* Solusi unik ini mudah dibuktikan sebagai berikut. Solusi tersebut dalam modulo:

$$m = m_1 \cdot m_2 \cdot m_3 = 5 \cdot 7 \cdot 11 = 5 \cdot 77 = 11 \cdot 35.$$

Karena 77 . $3 \equiv 1 \pmod{5}$,

$$55 \cdot 6 \equiv 1 \pmod{7}$$
,

$$35 \cdot 6 \equiv 1 \pmod{11},$$

maka solusi unik dari sistem kongruen tersebut adalah

$$x \equiv 3 \cdot 77 \cdot 3 + 5 \cdot 55 \cdot 6 + 7 \cdot 35 \cdot 6 \pmod{385}$$

$$\equiv 3813 \pmod{385}$$

$$\equiv 348 \pmod{385}$$

Bilangan Prima

**Bilangan bulat positif p (p > 1) disebut bilangan prima jika pembaginya hanya 1 dan p.

** Contoh: 23 adalah bilangan prima karena ia hanya habis dibagi oleh 1 dan 23.

* Karena bilangan prima harus lebih besar dari 1, maka barisan bilangan prima dimulai dari 2, yaitu 2, 3, 5, 7, 11, 13,

- * Seluruh bilangan prima adalah bilangan ganjil, kecuali 2 yang merupakan bilangan genap.
- ** Bilangan selain prima disebut bilangan **komposit** (*composite*). Misalnya 20 adalah bilangan komposit karena 20 dapat dibagi oleh 2, 4, 5, dan 10, selain 1 dan 20 sendiri.

Teorema 6. (*The Fundamental Theorem of Arithmetic*). Setiap bilangan bulat positif yang lebih besar atau sama dengan 2 dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima.

Contoh 16.

$$9 = 3 \times 3$$

 $100 = 2 \times 2 \times 5 \times 5$
 $13 = 13$ (atau 1 × 13)

- * Tes bilangan prima:
 - (i) bagi n dengan sejumlah bilangan prima, mulai dari 2, 3, ..., bilangan prima $\leq \sqrt{n}$.
 - (ii) Jika *n* habis dibagi dengan salah satu dari bilangan prima tersebut, maka *n* adalah bilangan komposit,
 - (ii) tetapi jika *n* tidak habis dibagi oleh semua bilangan prima tersebut, maka *n* adalah bilangan prima.

- Contoh 17. Tes apakah (i) 171 dan (ii) 199 merupakan bilangan prima atau komposit.
 Penyelesaian:
 - (i) $\sqrt{171} = 13.077$. Bilangan prima yang $\leq \sqrt{171}$ adalah 2, 3, 5, 7, 11, 13.

Karena 171 habis dibagi 3, maka 171 adalah bilangan komposit.

(ii) $\sqrt{199} = 14.107$. Bilangan prima yang $\leq \sqrt{199}$ adalah 2, 3, 5, 7, 11, 13.

Karena 199 tidak habis dibagi 2, 3, 5, 7, 11, dan 13, maka 199 adalah bilangan prima.

****Teorema 6** (**Teorema Fermat**). Jika p adalah bilangan prima dan a adalah bilangan bulat yang tidak habis dibagi dengan p, yaitu PBB(a, p) = 1, maka

$$a^{p-1} \equiv 1 \pmod{p}$$

Contoh 18. Tes apakah 17 dan 21 bilangan prima atau bukan dengan Teorema Fermat

- Ambil a = 2 karena PBB(17, 2) = 1 dan PBB(21, 2) = 1.
 - (i) $2^{17-1} = 65536 \equiv 1 \pmod{17}$ karena 17 habis membagi 65536 - 1 = 65535Jadi, 17 prima.
 - (ii) $2^{21-1} = 1048576 \equiv 1 \pmod{21}$ karena 21 tidak habis membagi 1048576 - 1 = 1048575. Jadi, 21 bukan prima

*Kelemahan Teorema Fermat: terdapat bilangan komposit n sedemikian sehingga $2^{n-1} \equiv 1 \pmod{n}$. Bilangan bulat seperti itu disebut bilangan **prima semu** (*pseudoprimes*).

- — — - j - — — - j - — — - j - — — - j - — - - - j - — - - j - — - - - j - — - - - j - — - - - j - — - - - j - —

* Contoh: 341 adalah komposit (karena 341 = 11 · 31) sekaligus bilangan prima semu, karena menurut teorema Fermat,

$$2^{340} \equiv 1 \pmod{341}$$

- * Untunglah bilangan prima semu relatif jarang terdapat.
- * Untuk bilangan bulat yang lebih kecil dari 10¹⁰ terdapat 455.052.512 bilangan prima, tapi hanya 14.884 buah yang merupakan bilangan prima semu terhadap basis 2.

- ****** ISBN (International Book Serial Number)
- * Fungsi hash
- * Kriptografi
- * Pembangkit bilangan acak-semu
- ₩ dll

ISBN

- ★ Kode ISBN terdiri dari 10 karakter, biasanya dikelompokkan dengan spasi atau garis, misalnya 0-3015-4561-9.
- **X** ISBN terdiri atas empat bagian kode:
 - kode yang mengidentifikasikan bahasa,
 - kode penerbit,
 - kode unik untuk buku tersebut,
 - karakter uji (angka atau huruf X (=10)).

$$\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}$$

* Karakter uji

$$(\sum_{i=1}^{9} ix_i) \mod 11 = \text{karakter uji}$$

0 : kode kelompok negara berbahasa Inggris,

4561 : kode unik buku yang diterbitkan

8: karakter uji.

Karakter uji ini didapatkan sebagai berikut:

$$1 \cdot 0 + 2 \cdot 3 + 3 \cdot 0 + 4 \cdot 1 + 5 \cdot 5 + 6 \cdot 4 +$$

$$7 \cdot 5 + 8 \cdot 6 + 9 \cdot 1 = 151$$

★ Jadi, karakter ujinya adalah 151 mod 11 = 8.

Fungsi Hash

* Tujuan: pengalamatan di memori untuk tujuan pengaksesan data dengan cepat.

- # Bentuk: $h(K) = K \mod m$
 - m: jumlah lokasi memori yang tersedia
 - K: kunci (integer)
 - *h*(*K*) : lokasi memori untuk *record* dengan kunci unik *K*

NIM	Nama	MatKul	Nilai
13598011	Amir	Matematika Diskrit	A
13598011	Amir	Arsitektur Komputer	В
13598014	Santi	Algoritma	D
13598015	Irwan	Algoritma	C
13598015	Irwan	Struktur Data	C
13598015	Irwan	Arsitektur Komputer	В
13598019	Ahmad	Algoritma	E
13598021	Cecep	Algoritma	В
13598021	Cecep	Arsitektur Komputer	В
13598025	Hamdan	Matematika Diskrit	В
13598025	Hamdan	Algoritma	A
13598025	Hamdan	Struktur Data	C
13598025	Hamdan	Arsitektur Komputer	В

Contoh: m = 11 mempunyai sel-sel memori yang diberi indeks 0 sampai 10. Akan disimpan data record yang masing-masing mempunyai kunci 15, 558, 32, 132, 102, dan 5.

$$h(15) = 15 \mod 11 = 4$$

 $h(558) = 558 \mod 11 = 8$
 $h(32) = 32 \mod 11 = 10$
 $h(132) = 132 \mod 11 = 0$
 $h(102) = 102 \mod 11 = 3$
 $h(5) = 5 \mod 11 = 5$

132			102	15	5			558		32
0	1	2	3	4	5	6	7	8	9	10

* Jika terjadi kolisi, cek elemen berikutnya yang kosong.

Contoh:
$$K = 71 \rightarrow h(71) = 74 \mod 11 = 8$$

132			102	15	5			558		32
0	1	2	3	4	5	6	7	8	9	10

Oleh karena elemen pada indeks 8 sudah berisi 558, maka 74 ditaruh pada elemen kosong berikutnya: 9

132			102	15	5			558	74	32
0	1	2	3	4	5	6	7	8	9	10

Fungsi *hash* juga digunakan untuk me-*locate* elemen yang dicari.

Rinaldi M/IF2091 Struktur Diskrit

71

- * Dari Bahasa Yunani yang artinya "secret writing"
- * Kriptografi adalah ilmu dan seni untuk menjaga keamanan pesan dengan cara menyandikannya menjadi bentuk lain yang tidak bermakna.
- * Tujuan: agar pesan yang bersifat rahasia tidak dapat dibaca oleh pihak yang tidak berhak.

* Pesan: data atau informasi yang dapat dibaca dan dimengerti maknanya. Nama lain: plainteks (plaintext)

Cipherteks (*ciphertext*): pesan yang telah disandikan sehingga tidak memiliki makna lagi.

Contoh:

Plainteks: culik anak itu jam 11 siang

Cipherteks: t^\$gfUi9rewoFpfdWqL: [uTcxZy

* Dekripsi (decryption): Proses mengembalikan cipherteks menjadi plainteksnya.

- 1. Pengiriman data melalui saluran komunikasi (data encryption on motion).
 - > pesan dikirim dalam bentuk cipherteks
- 2. Penyimpanan data di dalam *disk storage* (*data encryption at rest*)
 - → data disimpan di dalam memori dalam bentuk cipherteks

Data ditransmisikan dalam bentuk chiperteks. Di tempat penerima chiperteks dikembalikan lagi menjadi plainteks.

* Data di dalam media penyimpanan komputer (seperti *hard disk*) disimpan dalam bentuk chiperteks. Untuk membacanya, hanya orang yang berhak yang dapat mengembalikan chiperteks menjadi plainteks.

Contoh enkripsi pada dokumen

Plainteks (plain.txt):

Ketika saya berjalan-jalan di pantai, saya menemukan banyak sekali kepiting yang merangkak menuju laut. Mereka adalah anak-anak kepiting yang baru menetas dari dalam pasir. Naluri mereka mengatakan bahwa laut adalah tempat kehidupan mereka.

Cipherteks (cipher.txt):

Cipherteks (lena2.bmp):

Plainteks (siswa.dbf):

NIM	Nama	Tinggi	Berat
000001	Elin Jamilah	160	50
000002	Fariz RM	157	49
000003	Taufik Hidayat	176	65
000004	Siti Nurhaliza	172	67
000005	Oma Irama	171	60
000006	Aziz Burhan	181	54
000007	Santi Nursanti	167	59
000008	Cut Yanti	169	61
000009	Ina Sabarina	171	62

NIM	Nama	Tinggi	Berat
000001	tüp}vzpz/ t}äyä/{äâ	äzp}	épêp
000002	t}tâpé/spüx/sp	péxü=	ztwxsä□
000003	ât □pâ/ztwxsä□p}/	}/ tü	spüx/
000004	épêp/ t}t äzp}/qpêpz	qp}êpz	wxsä
000005	étzp{x/zt□xâx}v êp}	päâ/psp	étzp{
000006	spüx/sp{p /□péxü=/]	xâx}v	ttüzp/
000007	Ztâxzp/épêp/qtüypp}<	äzp}	}äyä/{
000008	qpwåp/{päâ/psp{pw	Ztwxs	xâx}v
000009	}t äzp}/qp}êpz/ép{	qp}êp	äzp}/qp

Keterangan: hanya field Nama, Berat, dan Tinggi yang dienkripsi.

* Tiap huruf alfabet digeser 3 huruf ke kanan secara wrapping

Contoh: Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

Cipherteks: DZDVL DVWHULA GDQ WHPDQQBA REHOLA

•
$$A = 0, B = 1, C = 2, ..., Z = 25$$

maka secara matematis enkripsi dan dekripsi pada Caesar *cipher* dirumuskan sebagai berikut:

Enkripsi:
$$c_i = E(p_i) = (p_i + 3) \mod 26$$

Dekripsi:
$$p_i = D(c_i) = (c_i - 3) \mod 26$$

Contoh:

Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

Cipherteks: DZDVL DVWHULA GDQ WHPDQQBA REHOLA

$$p_1 = \text{`A'} = 0 \implies c_1 = E(0) = (0+3) \mod 26 = 3 = \text{`D'}$$
 $p_2 = \text{`W'} = 22 \implies c_2 = E(22) = (22+3) \mod 26 = 25 = \text{`Z'}$
 $p_3 = \text{`A'} = 0 \implies c_3 = E(0) = (0+3) \mod 26 = 3 = \text{`D'}$
 $p_4 = \text{`S'} = 18 \implies c_4 = E(18) = (18+3) \mod 26 = 21 = \text{`V'}$
dst...

★ Jika pergeseran huruf sejauh k, maka:

Enkripsi:
$$c_i = E(p_i) = (p_i + k) \mod 26$$

Dekripsi:
$$p_i = D(c_i) = (c_i - k) \mod 26$$

k = kunci rahasia

- Pada *Caesar Cipher*, k = 3
- Untuk alfabet ASCII 256 karakter,

Enkripsi:
$$c_i = E(p_i) = (p_i + k) \mod 256$$

Dekripsi:
$$p_i = D(c_i) = (c_i - k) \mod 256$$

```
program enkripsi;
{ Mengenkripsi berkas 'plain.txt'
  menjadi 'cipher.txt' dengan
  metode caesar cipher }
uses
  crt;
var
   F1, F2 : text;
   p : char;
   c : integer;
   k : integer;
begin
   assign(F1, 'plain.txt');
   reset(F1);
   assign(F2, 'cipher.txt');
   rewrite(F2);
   write('k = ?'); readln(k);
   while not EOF(F1) do
    begin
      while not EOLN(F1) do
       begin
         read(F1, p);
         c := (ord(p) + k) \mod 256;
         write(F2, chr(c));
       end:
      readln(F1);
      writeln(F2);
   end;
   close(F1);
   close(F2);
end.
```

```
program dekripsi;
{ Mendekripsi berkas 'cipher.txt'
  menjadi 'plain2.txt' dengan
  metode caesar cipher }
uses
  crt;
var
   F1, F2 : text;
   p : char;
   c : integer;
   k : integer;
begin
   assign(F1, 'cipher.txt');
   reset(F1):
   assign(F2, 'plain2.txt');
   rewrite(F2);
   write('k = ?'); readln(k);
   while not EOF(F1) do
    begin
      while not EOLN(F1) do
       begin
         read(F1, p);
         c := (ord(p) - k) \mod 256;
         write(F2, chr(c));
       end:
      readln(F1);
      writeln(F2);
   end;
   close(F1);
   close(F2)
end.
```

Algoritma RSA

Dibuat oleh tiga peneliti dari MIT (Massachussets Institute of Technology), yaitu Ron Rivest, Adi Shamir, dan Len Adleman, pada tahun 1976.

- * Termasuk algoritma kriptografi asimetri.
- * Asimetri: kunci untuk enkripsi berbeda dengan kunci untuk dekripsi

- * Setiap pengguna memiliki sepasang kunci:
 - 1. Kunci publik, e: untuk enkripsi pesan
 - 2. Kunci privat, p: untuk dekripsi pesan
- * Kunci publik tidak rahasia, kunci privat rahasia

Algoritma pembangkitan pasangan kunci

- 1. Pilih dua bilangan prima, p dan q (rahasia)
- 2. Hitung n = pq. Besaran n tidak perlu dirahasiakan.

- 3. Hitung m = (p-1)(q-1).
- 4. Pilih sebuah bilangan bulat untuk kunci publik, e, relatif prima terhadap m.
- 5. Hitung kunci dekripsi, d, melalui kekongruenan $ed \equiv 1 \pmod{m}$.

$$n = p \times q = 3337$$

 $m = (p-1)\times(q-1) = 3220.$

Pilih kunci publik e = 79 (yang relatif prima dengan 3220.

Nilai e dan n dapat dipublikasikan ke umum.

* Catatan: Dalam praktek, nilai a, b, dan e adalah bialngan yang sangat besar (minimal 200 digit)

$$e \times d \equiv 1 \pmod{m}$$

$$d = \frac{1 + (k \times 3220)}{79}$$

Diperoleh nilai d = 1019. Ini adalah kunci dekripsi.

Algoritma enkripsi-dekripsi:

Enkripsi: $c_i = p_i^e \mod n$

Dekripsi: $p_i = c_i^d \mod n$,

atau dalam desimal ASCII: 7265827332737873

Pecah pesan menjadi blok yang lebih kecil (misal 3 digit):

$$p_1 = 726$$
 $p_4 = 273$
 $p_2 = 582$ $p_5 = 787$
 $p_3 = 733$ $p_6 = 003$

* Enkripsi setiap blok:

$$c_1 = 726^{79} \mod 3337 = 215$$

$$c_2 = 582^{79} \mod 3337 = 776$$

dst untuk sisa blok lainnya

Keluaran: chiperteks C = 21577617439331731158.

* Dekripsi (menggunakan kunci privat d = 1019)

$$p_1 = 215^{1019} \mod 3337 = 726$$

$$p_2 = 776^{1019} \mod 3337 = 582$$

dst untuk sisi blok lainnya

Keluaran: plainteks = 7265827332737873 atau dalam kode ASCII karakternya adalah HARI INI.

Pembangkit Bilangan Acak

* Pembangkit bilangan acak yang berbasis kekongruenan lanjar adalah *linear congruential generator* atau *LCG*:

$$X_n = (aX_{n-1} + b) \bmod m$$

 X_n = bilangan acak ke-n dari deretnya

 X_{n-1} = bilangan acak sebelumnya

a = faktor pengali

b = increment

m = modulus

Kunci pembangkit adalah X_0 yang disebut **umpan** (seed).

Contoh: $X_n = (7X_{n-1} + 11) \mod 17$, dan $X_0 = 0$

n	X_n 0			
0	0			
1	11			
2	3			
3	- - -15- - -			
4	14			
5	7			
1 2 4 5 6 7 8 9	11 3 -•-15-• 14 7 9			
7	6 2 8 16			
8	2			
9	8			
10	16			
11 12	4 5 12 10			
12	5			
13	12			
13 14 15	10			
15	13			
16	0			
17	11			
18	3			
19	15			
20	13 0 11 3 15 14 7 9			
21	7			
21 22 23 24	9			
23	6 2			
24	2			

Latihan Soal Teori Bilangan

Soal 1

** Buktikan untuk setiap bilangan bulat positif n dan a, PBB(a, a + n) habis membagi n.

🔭 Jawaban:

Misalkan PBB(a, a + n) = d.

Maka:

$$d \mid a + n \rightarrow a + n = k_1 d$$

$$d \mid a \qquad \rightarrow a = k_2 d$$

$$a + n - a = (k_1 - k_2)d$$

 $n = Kd \text{ (misal } k_1 - k_2 = K)$
 $n = Kd \rightarrow d \mid n \text{ (terbukti)}$

Soal 2

Perlihatkan bahwa bila $n \mid m$, yang dalam hal ini n dan m adalah bilangan bulat positif yang lebih besar dari 1, dan jika $a \equiv b \pmod{m}$ dengan a dan b adalah bilangan bulat, maka $a \equiv b \pmod{n}$.

🎇 Jawaban:

Diketahui bahwa $n \mid m$ atau dapat dituliskan sebagai :

$$m = k_1 . n(i)$$

Jika $a \equiv b \pmod{m}$ maka m habis membagi a - b atau dapat dituliskan :

$$a = b + k_2 . m(ii)$$

Substitusikan (i) ke dalam (ii):

$$a = b + k_2 \cdot k_1 \cdot n$$

$$a = b + k_3$$
. n (misalkan $k_3 = k_2$. k_1)(iii)

$$a-b=k_3$$
. n yang berarti bahwa $n\mid (a-b)$ atau

$$a \equiv b \pmod{n}$$

** Salah satu program enkripsi di dalam sistem operasi *Linux* adalah rot13. Enkripsi dilakukan dengan mengganti sebuah huruf dengan huruf ke-13 berikutnya dari susunan alfabet.

- (a) Nyatakan fungsi enkripsi dan dekripsi di dalam rot13 sebagai persamaan aritmetika modulo dalam p_i dan c_i .
- (b) Jika enkripsi dilakukan dua kali berturut-turut terhadap plainteks, apa yang terjadi?

★ Jawaban:

a)
$$c_i = E(p_i) = (p_i + 13) \mod 26$$

 $p_i = D(c_i) = (c_i - 13) \mod 26$

b) Jika dilakukan 2 kali enkripsi thd *plaintext*, maka hasilnya sama dengan *plaintext* awal.

Soal 4

Buktikan dengan induksi matematika bahwa semua bilangan berbentuk 11...1 pasti kongruen dengan 0 (mod 11) atau 1 (mod 11) (misalnya 111 ≡ 1 (mod 11) dan 111111 ≡ 0 (mod 11))

- Jawaban:
 (i) Basis: 1 ≡ 1 (mod 11). Benar.
 (ii) Balaurana:
- (ii) Rekurens:
- * Jika 11...1 (n suku) \equiv 1 (mod 11), maka 11...1 (n+1 suku) \equiv {11...1 (n suku) x 10 + 1} (mod 11) \equiv {1 x 10 + 1} (mod 11) \equiv 0 (mod 11)
- # Jika 11...1 (n suku) $\equiv 0 \pmod{11}$, maka

 11...1(n+1 suku) $\equiv \{11...1 (n \text{ suku}) \times 10 + 1\} \pmod{11}$ $\equiv \{0 \times 10 + 1\} \pmod{11}$ $\equiv 1 \pmod{11}$
- * Menurut PIM, benar.

Carilah semua bilangan bulat positif yang tidak habis dibagi 2 dan bersisa 2 jika dibagi 3

***** Jawaban:

Misal bilangan tersebut adalah x = 2k+1

$$2k + 1 \equiv 2 \pmod{3} \Leftrightarrow 2k \equiv 1 \pmod{3} \Leftrightarrow k \equiv 2 \pmod{3}$$

$$k \equiv 2 \pmod{3} \rightarrow k = 3n+2$$

Berarti x = 2(3n+2)+1 = 6n+5

Jadi bilangan-bilangan yang memenuhi adalah

$$x = \{5, 11, 17, 23, ...\}$$

Soal 6

Tentukan x dan y bilangan bulat yang memenuhi persamaan 312x + 70y = 2, lalu hitunglah nilai dari : y mod x.

Jawaban:

Dengan menggunakan algoritma Euclid, ditemukan bahwa:

$$312 = 4.70 + 32$$
 (i)

$$70 = 2.32 + 6$$

$$32 = 5.6 + 2$$

$$6 = 3.2 + 0$$

Persamaan (iii) dapat dituliskan menjadi : 2 = 32 - 5.6

 (\mathbf{v})

(viii)

Persamaan (ii) dapat dituliskan menjadi : 6 = 70 - 2.32

(vi)

Sulihkan persamaan (vi) ke persamaan (v):

$$2 = 32 - 5.(70 - 2.32)$$

$$2 = 32 - 5.70 + 10.32$$

$$2 = 11.32 - 5.70$$
 (vii)

Persamaan (i) dapat dituliskan menjadi : 32 = 312 - 4.70

Sulihkan persamaan (viii) ke persamaan (vii):

$$2 = 11.(312 - 4.70) - 5.70$$

$$2 = 11.312 - 44.70 - 5.70$$

$$2 = 11.312 - 49.70$$

Dari persamaan (ix) diketahui x dan y yang memenuhi adalah x = 11 dan y = -49, sehingga $y \mod x = -49 \mod 11 = 6$

(ix)

Soal 7

Sebuah buku terbitan September 2008 memiliki ISBN 9X7-2309-97. Tentukan nilai X dan karakter uji dari nomor ISBN tersebut jika diketahu $3X \equiv 2 \pmod{5}$

★ Jawaban:

$$3X \equiv 2(mod 5)$$
 $\rightarrow X = \frac{2+5k}{3}$ untuk k sebarang bilangan bulat
Untuk nilai k =

$$k = 1 \rightarrow X = 2/3$$

$$k = 2 \rightarrow X = 4$$

$$k = 3 \rightarrow X = 17/3$$

$$k = 4 \rightarrow X = 22/3$$

$$k = 5 \rightarrow X = 9$$

$$k = 6 \rightarrow X = 32/3$$

$$k = 7 \rightarrow X = 37/3$$

$$k = 8 \rightarrow X = 14$$

...dst

★ Dapat dilihat di atas, untuk k = 2, 5, 8, ... nilai X bulat, namun untuk kode ISBN di atas, nilai X haruslah dalam rentang bilangan bulat 0-9, jadi nilai X yang memenuhi adalah 4 dan 9.

Untuk mencari karakter uji, diketahui
$$\sum_{i} ix_i \mod 11 = \text{karakter uji}$$

Maka nilai karakter uji untuk:

kode ISBN 947-2309-97 dapat dicari sebagai berikut :

$$\sum_{i=i}^{9} ix_i = 1(9) + 2(4) + 3(7) + 4(2) + 5(3) + 6(0) + 7(9) + 8(9) + 9(7) = 259$$

Jadi karakter uji untuk ISBN di atas = $259 \mod 11 = 6$

kode ISBN 997-2309-97 dapat dicari sebagai berikut :

$$\sum_{i=i}^{9} ix_i = 1(9) + 2(9) + 3(7) + 4(2) + 5(3) + 6(0) + 7(9) + 8(9) + 9(7) = 269$$

Jadi karakter uji untuk ISBN di atas = $269 \mod 11 = 5$

** Sebuah area parkir mempunyai sejumlah *slot* atau *space* yang dinomori 0 sampai 25. Mobil yang hendak parkir di area tersebut ditentukan dengan sebuah fungsi *hash*. Fungsi *hash* tersebut menentukan nomor *slot* yang akan ditempati mobil yang hendak parkir <u>berdasarkan 3 angka terakhir</u> pada plat nomor polisinya.

- (a) Tentukan fungsi *hash* yang dimaksudkan.
- (b) Tentukan nomor *slot* yang ditempati mobil yang datang berturut-turut dengan plat nomor polisinya adalah 423251, 76540, 17121, 2310, 4124, 1102, 1724

Jawaban:

- (a) $h = x \mod 26$
- (b) $423251 \rightarrow 3$ angka terakhir = $251 \rightarrow 251 \mod 26 = 17 \pmod{17}$
 - 76540 \rightarrow 3 angka terakhir = 540 \rightarrow 540 mod 26 = 20 (slot 20)
 - 17121 \rightarrow 3 angka terakhir = 121 \rightarrow 121 mod 26 = 17 (tetapi slot nomor 17 sudah terisi, jadi isi slot kosong berikutnya, yaitu 18)
 - 2310 \rightarrow 3 angka terakhir = 310 \rightarrow 310 mod 26 = 24 (slot 24)
 - $4124 \rightarrow 3$ angka terakhir = $124 \rightarrow 124 \mod 26 = 20$ (slot 21 karena slot 20 sudah terisi)
 - 1102 → 3 angka terakhir = $102 \rightarrow 102 \mod 26 = 24$ (slot 25 karena slot 24 sudah terisi)
 - 1724 \rightarrow 3 angka terakhir = 724 \rightarrow 724 mod 26 = 22 (slot 22)

Jadi, mobil-mobil yang datang mengisi slot 17, 20, 18, 24, 21, 25, dan 22