Content

- Segmenting Multiple Blobs
- 3D Pose Estimation for Known Objects
 - Introduction
 - Camera Intrinsic Parameters
 - Camera Extrinsic Parameters
 - Camera Calibration
 - 3D Pose Estimation
- Depth Perception for Arbitrary Objects
 - Introduction
 - Stereo Disparity
 - Correspondence Problem
 - Non-coplanar Cameras

Introduction

- Last week, we have learnt a few techniques in robot vision or image processing to perform:
 - Feature extraction e.g. detect edges, corners
 - Part identification e.g. selecting conical shaped parts out of many different parts.

Today, we will learn about:

 Pose estimation – obtaining the 3D pose (translation and orientation) of parts, to allow robotic handling.

Robot identifying parts and esimating the 3D pose https://i.ytimg.com/vi/mQpVCSM8Vgc/maxresd efault.jpg

Introduction

- The idea behind 3D pose estimation is to estimate the position and orientation of the object, with respect to a camera (location known to robot).
- Once these are known, we can command the robot to manipulate the object.

Introduction

- Estimation of the position/orientation of camera can be captured under the topic "Camera Calibration".
- The goal of camera calibration is to find out:
 - The intrinsic parameters of the camera: Resolution
 - Focal length
 - Scaling factor
 - Distortion
 - Etc.
 - The extrinsic parameters of the camera:
 - Translation to world coordinate frame
 - Rotation to world coordinate frame

This is what we were looking for ____

 We will obtain both the intrinsic and extrinsic parameters through the process of calibration, the latter representing the 3D pose of the camera.

Content

- Segmenting Multiple Blobs
- 3D Pose Estimation for Known Objects
 - Introduction
 - Camera Intrinsic Parameters
 - Camera Extrinsic Parameters
 - Camera Calibration
 - 3D Pose Estimation
- Depth Perception for Arbitrary Objects
 - Introduction
 - Stereo Disparity
 - Correspondence Problem
 - Non-coplanar Cameras

Pinhole Projection Model:

 Light ray comes through the pinhole (camera center), and is projected onto the film or CCD, which is at focal length, f, distance away from pinhole.

- It is obvious that the image will become upside down.
- To simplify calculation, it is proposed to have a "virtual" image plane at distance f in front of the camera instead, so that the image is not rotated.

The scenario is thus as follows:

The scenario is thus as follows:

Pinhole Projection Equation

 From the 2-dimensional sketch, it is easy to see that (due to similar triangles):

$$\implies \frac{\widetilde{y}}{f} = \frac{y_c}{z_c}$$

This gives:

$$\widetilde{y} = f \frac{y_c}{z_c}$$

Similarly, we will have:

$$\widetilde{x} = f \frac{x_c}{z_c}$$

Pixel Value

 The point location in the image coordinate will then need to be given in terms of the pixels.

Pixel Value

 The point location in the image coordinate will then need to be given in terms of the pixels.

- For example:
 - If the x-location of a point in image plane is $\tilde{x} = 3 \mu m$,
 - And if the dimension of a pixel is $dx = 1.5 \mu m$,
 - Then the pixel value (ignoring the translation) is 2.

• With reference to the pixel coordinate system, the point (\tilde{x}, \tilde{y}) has the value:

Location in image plane

Shift the center (0,0) of image to a corner

$$x = \frac{\widetilde{x}}{dx} + x_0$$

$$y = \frac{\widetilde{y}}{dy} + y_0$$

Location in terms of pixels

Scale by physical dimension of pixel

Camera Calibration Matrix

- Combining all equations we have so far, i.e.
 - From camera coordinate system to image coordinate system:

From image coordinate system to pixel coordinate system:

$$x = \frac{\tilde{x}}{dx} + x_0 \qquad y = \frac{\tilde{y}}{dy} + y_0$$

We can write:

Camera Calibration Matrix

The final equations,

$$\Rightarrow$$

$$x = \frac{f}{dx} \frac{x_c}{z_c} + x_0$$

$$x = \frac{f}{dx} \frac{x_c}{z_c} + x_0 \qquad y = \frac{f}{dy} \frac{y_c}{z_c} + y_0$$

Can be expressed in a matrix form (homogeneous form, i.e. adds a component to a 2D vector to make it a 3D vector):

proportional sign, NOT equal sign.

Where:
$$K = \begin{bmatrix} \alpha_x & 0 & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $\alpha_x = \frac{f}{dx}$ $\alpha_y = \frac{f}{dy}$ is called the Camer

$$\alpha_x = \frac{f}{dx}$$

$$\alpha_{y} = \frac{f}{dy}$$

is called the Camera Calibration Matrix.

Camera Calibration Matrix

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha_x & 0 & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

How does the equation work?
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim \begin{bmatrix} \alpha_x & 0 & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} \begin{bmatrix} x \\ y \\ z_c \end{bmatrix} = S \begin{bmatrix} \alpha_x & \alpha_y & \alpha_y \\ \alpha_x & \alpha_y & \alpha_y \\ \alpha_y & \alpha_y & \alpha_y \\ \alpha_y$$

- The proportional sign means "Equal up to Scale".
- The equation gives:

$$\begin{bmatrix} x \\ y \\ -1 \end{bmatrix} \sim \begin{bmatrix} \alpha_x x_c + x_0 z_c \\ \alpha_y y_c + y_0 z_c \\ -1 \end{bmatrix}$$

It is clear that the row should be 1 = 1. Therefore, we divide the right hand by z_c and get:

$$\Rightarrow$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{vmatrix} \alpha_x \frac{x_c}{z_c} + x_0 \\ \alpha_y \frac{y_c}{z_c} + y_0 \\ 1 \end{vmatrix} = \begin{vmatrix} \frac{f}{d_x} \frac{x_c}{z_c} + x_0 \\ \frac{f}{d_y} \frac{y_c}{z_c} + y_0 \\ 1 \end{vmatrix}$$
Same eq. From the Previous

Distortion

- The pinhole camera model is not necessarily valid for all camera.
- Most images suffer from lens distortion:
- Barrel Distortion:

- A type of "radial distortion".
- The amount of "bulging out" depends on how far a point is from the center.

Distortion

The relationship between undistorted and distorted point (in image coordinate system) is:

$$\begin{bmatrix} \widetilde{x}_{dist} \\ \widetilde{y}_{dist} \end{bmatrix} = \left(1 + K_1 r^2 + K_2 r^4 \right) \begin{bmatrix} \widetilde{x}_{un} \\ \widetilde{y}_{un} \end{bmatrix}$$
$$= \left(1 + K_1 \left(\widetilde{x}_{un}^2 + \widetilde{y}_{un}^2\right) + K_2 \left(\widetilde{x}_{un}^2 + \widetilde{y}_{un}^2\right)^2 \right) \begin{bmatrix} \widetilde{x}_{un} \\ \widetilde{y}_{un} \end{bmatrix}$$

- We can stop at r² if the distortion not serious, or we can go up to higher degree if distortion is serious.
- We can estimate K1 and K2 using checkerboard, for e.g. using Least Squares Algorithm.
- Then, to undo the distortion, we can use the inverse relationship between distorted and undistorted point.
- For the remainder of this lecture, we will not consider this distortion effect.

Content

- Segmenting Multiple Blobs
- 3D Pose Estimation for Known Objects
 - Introduction
 - Camera Intrinsic Parameters
 - Camera Extrinsic Parameters
 - Camera Calibration
 - 3D Pose Estimation
- Depth Perception for Arbitrary Objects
 - Introduction
 - Stereo Disparity
 - Correspondence Problem
 - Non-coplanar Cameras

Extrinsic Parameters

 The extrinsic parameters give the relationship between the World Coordinate System and the Camera Coordinate System.

- The object point has coordinates (x_c, y_c, z_c) in Camera coordinate system.
- It also has coordinates
 (X,Y,Z) in World
 coordinate system.

Extrinsic Parameters

 We can convert the point from World Coordinate System to Camera Coordinate System by a rotation and translation:

- R = Orientation of World Coordinate System wrt. Camera Coordinate System.
- T = Position of the origin of World Coordinate System expressed in Camera Coordinate System.
- The values of the rotation matrix and translation vector are what we call the Extrinsic Parameters of a camera.

Content

- Segmenting Multiple Blobs
- 3D Pose Estimation for Known Objects
 - Introduction
 - Camera Intrinsic Parameters
 - Camera Extrinsic Parameters
 - Camera Calibration
 - 3D Pose Estimation
- Depth Perception for Arbitrary Objects
 - Introduction
 - Stereo Disparity
 - Correspondence Problem
 - Non-coplanar Cameras

Camera Matrix

- Summary:
- The extrinsic parameters give relationship between World Coordinate System (X,Y,Z) and Camera Coordinate System (x_c, y_c, z_c) :

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = R \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

• The intrinsic parameters give relationship between Camera Coordinate System (x_c, y_c, z_c) and Pixel Coordinate System (x, y, z):

$$\Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim K \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

Camera Matrix

We can combine the both to get:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \sim K \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = K \begin{bmatrix} R \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = K \begin{bmatrix} R \\ T \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
i.e.:

• Where $P = K[R \ T]$ is called the Camera Matrix. (Not to be confused with Camera Calibration Matrix K).

But how do we get P?

This is the goal of camera calibration (also called resectioning) → To estimate P from known x and X.

- Imagine the following scenario:
- Now, do the following:
 - Attach the World CS onto the object.

- But how do we get P?
- This is the goal of camera calibration (also called resectioning) → To estimate P from known x and X.
- Imagine the following scenario:
- Now, do the following:
 - Attach the World CS onto the object.
 - Then choose at least six points on the object (Not all on the same Z-plane).
 - The location of these points with reference to World CS can be easily determined (measurement or CAD file).

- But how do we get P?
- This is the goal of camera calibration (also called resectioning) → To estimate P from known x and X.
- Imagine the following scenario:
- Now, do the following:
 - Attach the World CS onto the object.
 - Then choose at least six points on the object (Not all on the same Z-plane).
 - The location of these points with reference to World CS can be easily determined (measurement or CAD file).
 - Determine the pixel value of the corresponding points on the image plane.

3x4 P = K [RT] 3x4

For each point, we have:

$$\Rightarrow \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \sim P \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \sim \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix} \qquad \begin{bmatrix} Y_{12} & Y_{13} & Y_{14} \\ Y_{13} & Y_{14} & Y_{15} \\ Y_{15} & Y_{15} & Y_{15} Y_{15} & Y_{15} &$$

- Remember, the relationship is only "proportional", not equal. How can we solve it?
- The proportionality means that $\begin{bmatrix} x_i & y_i & 1 \end{bmatrix}^T$ is a scalar multiple of $P[X_i & Y_i & Z_i & 1]^T$
- Therefore, their cross product is zero.

In other words:

$$\begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \times \begin{bmatrix} p_{11}X_i + p_{12}Y_i + p_{13}Z_i + p_{14} \\ p_{21}X_i + p_{22}Y_i + p_{23}Z_i + p_{24} \\ p_{31}X_i + p_{32}Y_i + p_{33}Z_i + p_{34} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} i & j & k \\ x_i & y_i & 1 \\ p_{11}X_i + p_{12}Y_i \\ + p_{13}Z_i + p_{14} \end{pmatrix} \begin{pmatrix} p_{21}X_i + p_{22}Y_i \\ + p_{23}Z_i + p_{24} \end{pmatrix} \begin{pmatrix} p_{31}X_i + p_{32}Y_i \\ + p_{33}Z_i + p_{34} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$y_i (p_{31}X_i + p_{32}Y_i + p_{33}Z_i + p_{34}) - (p_{21}X_i + p_{22}Y_i + p_{23}Z_i + p_{24}) = 0$$

$$x_i (p_{31}X_i + p_{32}Y_i + p_{33}Z_i + p_{34}) - (p_{11}X_i + p_{12}Y_i + p_{13}Z_i + p_{14}) = 0$$

(Only two independent equations).

unknown P's (12)

From the last equation, we can write:

Known values
$$\begin{bmatrix} 0 & 0 & 0 & 0 & X_i & Y_i & Z_i & 1 & -y_i X_i & -y_i Y_i & -y_i Z_i & -y_i \\ X_i & Y_i & Z_i & 1 & 0 & 0 & 0 & -x_i X_i & -x_i Y_i & -x_i Z_i & -x_i \end{bmatrix} \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \\ p_{21} \\ p_{22} \\ p_{23} \\ p_{24} \\ p_{31} \\ p_{32} \\ p_{33} \\ p_{34} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- There are 12 parameters but only 2 equations, for one point.
- Not solvable.

If we now use 6 or more points, we can obtain:

12 eps, 12 unknown /

The equation is of the form:

$$\Rightarrow$$
 $Ap = 0$

- Because it is a homogeneous equation (right hand side equals zero), the solution is not unique.
- There are a few ways to solve for p, for e.g.
 - If exactly six points measured: Find null-space of A. Then pick the one with ||p||=1.
 - If more than six points are measured, it is not possible to get null space of A due to measurement noise.
 - Minimize ||Ap|| subject to ||p|| = 1.
 - Using Singular Value Decomposition of A $A = U\Sigma V^T$.
 - Then set p = last column of V.
 - One more method on the next slide...

We know that

- i.e. the equation is correct up to a scale.
- We can arbitrarily fix one element, e.g. $P_{34} = 1$, and then solve for the remaining ones.
- (Continue next slide)

This means:

(Continue next slide)

P's (11)

• Or:

$$\Rightarrow$$

$$\widetilde{A}\widetilde{P} = \theta$$

• With this, the vector p can be calculated using least squares method, i.e.

$$\Rightarrow \widetilde{P} = (\widetilde{A}^T \widetilde{A})^{-1} \widetilde{A}^T \theta$$

Content

- Segmenting Multiple Blobs
- 3D Pose Estimation for Known Objects
 - Introduction

UNKYOWY

- Camera Calibration -> Solve Pur Pir n ----
- 3D Pose Estimation -> P -> Extract R, T
- Depth Perception for Arbitrary Objects
 - Introduction
 - Stereo Disparity
 - Correspondence Problem
 - Non-coplanar Cameras

Recovering the Parameters

- In the last section, we have obtained the matrix P.
- We now need to recover all the individual parameters (intrinsic and extrinsic) from the matrix P.
- We split the (3 x 4) matrix P into:
- Also, recall that: P = K R
 - Therefore:

- For P₁, K is an upper triangular matrix, and R is orthogonal (rotation matrix).
 - There is a standard algorithm, called RQ decomposition to solve it.
 - Thus, assume we have K and R now.
- $T = K^{-1} \cdot P_2$ With known K, we can then calculate T from:

Some Details

- Note, in MATLAB we only have QR decomposition. (Q orthogonal and R upper triangular)
- However, what we need is RQ decomposition.
- Trick: use inverse, i.e.:

• We know
$$P_1 = K \cdot R$$
 $3 \times 3 \quad upper \quad orthogonal \quad triangle$

• Then
$$\underbrace{P_1^{-1}}_{3\times 3} = \left(\underbrace{\underline{K}}_{\substack{upper \\ triangle}} \cdot \underline{R}_{\substack{orthogonal \\ triangle}}\right)^{-1} = \underbrace{\underline{R}^{-1}}_{\substack{orthogonal \\ triangle}} \cdot \underline{K}^{-1}_{\substack{orthogonal \\ triangle}}$$

- This is suitable for QR decomposition. \rightarrow Matlab [Rinv, Kinv] = qr(P1inv)
- After decomposition, we then invert Rinv and Kinv to get R and K

Some Details

- Another issue with the RQ decomposition is that the answer is not unique!
 - Sometimes we might get negative diagonal elements of K, which is weird because if the camera looks in positive direction, f must be positive.

$$K = \begin{bmatrix} \alpha_x & 0 & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \alpha_x = \frac{f}{dx} \qquad \alpha_y = \frac{f}{dy}$$

$$\alpha_{x} = \frac{f}{dx}$$

$$\alpha_{y} = \frac{f}{dy}$$

Solution:

$$X(-1)$$

- Notice that if any column of K is negated, and the corresponding row of R is also negated, then $P_1 = KR$ is still the same.
- Therefore, we can force the diagonal terms of K to be positive.

3D Pose Estimation

- Up to this stage, we have already calculated the R and T matrices.
- Thus, we have already estimated the 3D pose of the camera w.r.t. the world frame (also object, since we attach the world frame onto the object).
- Finally, we can command the robot manipulator to move towards the object and grasp it.

Following is a box with known dimension.

• A frame is fixed at one of the vertices and the other points are given wrt. the frame.

The pixel coordinates of the points are as follows:

Thus in summary, we have:

$$\begin{cases} X_1 = 0 & Y_1 = 0 \\ X_2 = 45 & Y_2 = 0 \\ X_3 = 45 & Y_3 = 0 \end{cases} \qquad Z_2 = 0 \\ X_4 = 0 & Y_4 = 0 \\ X_5 = 0 & Y_5 = 90 \end{cases} \qquad Z_3 = 20 \\ Z_5 = 20 \\ Z_6 = 0 \end{cases} \qquad \begin{cases} x_1 = 377 & y_1 = 368 \\ x_2 = 500 & y_2 = 256 \\ x_3 = 515 & y_3 = 193 \\ x_4 = 384 & y_4 = 301 \\ x_5 = 123 & y_5 = 133 \\ x_6 = 136 & y_6 = 187 \end{cases}$$

$$\begin{cases} x_1 = 377 & y_1 = 368 \\ x_2 = 500 & y_2 = 256 \\ x_3 = 515 & y_3 = 193 \\ x_4 = 384 & y_4 = 301 \\ x_5 = 123 & y_5 = 133 \\ x_6 = 136 & y_6 = 187 \end{cases}$$

 We can then set the matrix equation below using the numerical values from the previous page:

Complete Example declare Y The MATI AB Code is as follows:

The MATLAB Code is as follows:

```
LHS = [0 \ 0 \ 0 \ X1 \ Y1 \ Z1 \ 1 \ -v1*X1 \ -v1*Y1 \ -v1*Z1;
    X1 Y1 Z1 1 0 0 0 0 -x1*X1 -x1*Y1 -x1*Z1;
    0 0 0 0 X2 Y2 Z2 1 -y2*X2 -y2*Y2 -y2*Z2;
    X2 Y2 Z2 1 0 0 0 0 -x2*X2 -x2*Y2 -x2*Z2;
    0 0 0 0 X3 Y3 Z3 1 -y3*X3 -y3*Y3 -y3*Z3;
    X3 Y3 Z3 1 0 0 0 0 -x3*X3 -x3*Y3 -x3*Z3;
    0 0 0 0 X4 Y4 Z4 1 -v4*X4 -v4*Y4 -v4*Z4;
    X4 Y4 Z4 1 0 0 0 0 -x4*X4 -x4*Y4 -x4*Z4:
    0 0 0 0 X5 Y5 Z5 1 -v5*X5 -v5*Y5 -v5*Z5;
    X5 Y5 Z5 1 0 0 0 0 -x5*X5 -x5*Y5 -x5*Z5:
    0 0 0 0 X6 Y6 Z6 1 -v6*X6 -v6*Y6 -v6*Z6;
    X6 Y6 Z6 1 0 0 0 0 -x6*X6 -x6*Y6 -x6*Z6];
RHS = [v1 x1 v2 x2 v3 x3 v4 x4 v5 x5 v6 x6]';
P = LHS\RHS:
```


The MATLAB Code continued...

```
P=[P, P2] P=KR
% Getting K, R from P %
$$$$$$$$$$$<del>$</del>$$$$$$$$$$$$
P1 = [P(1) P(2) P(3);
   P(5) P(6) P(7);
   P(9) P(10) P(11)];
P1inv = inv(P1);
[Rinv, Kinv] = qr(Plinv);
K = inv(Kinv);
R = inv(Rinv);
% make diagonal of K positive %
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
SIGNS = diag(sign(diag(K)));
               Orientation of world CS wrt. camera-centered CS
```


The MATLAB Code continued...

And the answer given by MATLAB is:

Let's interpret the results. We normalize K such that K(3,3) = 1:

- From camera data sheet, the sensor size is 4.54mm x 3.42mm.
- The image has 640 pixel x 480 pixel. -> 370, 240
- Thus each pixel size is 0.07mm x 0.07mm. \rightarrow dx = 0.07, dy = 0.07
- Focal length of camera is 3.7mm. \rightarrow f = 3.7
- Therefore $\alpha_x = f/dx = 530$ $\alpha_{v} = f / dy = 530$

- Answer (555 and 513) quite close to actual values (530 and 530).
- Also, x0 = 277 pixel and y0 = 142 pixel from the pixel CS origin (somewhat off-centered).

The translation vector was:

19.5326 46.2685 105.3472

 The answer of T looks correct from the figure below. (Remember that camera CS is somewhat off-centered).

- The rotation matrix interpreted as Z-Y-X-Euler angles are:
 - Z: -27.8 degrees
 - Y: -33.8 degrees
 - X: 129.1 degrees
 - Which seems correct.

