

RF Power Transistors

2N3866

Silicon N-P-N Overlay Transistor

High-Gain Driver for VHF/UHF Applications in Military and Industrial Communications Equipment

Features

- High Power Gain, Unneutralized Class C Amplifier
 - 1 W output at 400 MHz (10 dB gain)
 - 1 W output at 250 MHz (15 dB gain)
 - 1 W output at 175 MHz (17 dB gain)
 - 1 W output at 100 MHz (20 dB gain)
- Low Output Capacitance Cobo = 3 pF max.

MAXIMUM RATINGS, Absolute-Maximum Values:

* COLLECTOR-TO-BASE VOLTAGE VCBO	55	V
COLLECTOR-TO-EMITTER VOLTAGE:		
With external base-to-emitter		
resistance (R_{BE}) = 10Ω VCER	55	٧
* With base open · · · · · · · · VCEO	30	V
* EMITTER-TO-BASE VOLTAGE · · · · · VEBO	3.5	V
* CONTINUOUS COLLECTOR		
CURRENT 1C	0.4	Α
* CONTINUOUS BASE CURRENT IB	0.4	Α
* TRANSISTOR DISSIPATION PT		
At case temperature up to 25°C · · · ·	5	W
At case temperatures above 25°C	See Fig. 4	
* TEMPERATURE RANGE:		
Storage & Operating (Junction)	-65 to +200	oC
* LEAD TEMPERATURE		
At distances > 1/16 in. (1.58 mm)		
from seating plane for 10 s max	230	oC

employing an advanced version of the RCA-developed "overlay" emitter-electrode design. This electrode consists of many isolated emitter sites connected together through the use of a diffused-grid structure and a metal overlay which is deposited on a silicon oxide insulating layer by means of a photo-etching technique. This overlay design provides a very high emitter periphery-to-emitter area ratio resulting in low output capacitance, high rf current handling capability, and substantially higher power gain.

RCA-2N3866 is an epitaxial silicon n-p-n planar transistor

The 2N3866 is intended for class-A, -B, or -C amplifier, frequency-multiplier, or oscillator circuits: it may be used in output, driver, or pre-driver stages in vhf and uhf equipment.

Fig. 1 - Power output vs. frequency

Fig. 2 - RF amplifier circuit for power output test (400-MHz operation)

ELECTRICAL CHARACTERISTICS, At Case Temperature (T_C) = 25°C

STATIC

	SYMBOL	TEST CONDITIONS							
CHARACTERISTIC		DC Voltage (V)		DC Current (mA)		t	LIMITS		UNITS
		VCE	VEB	ŧΕ	ΙB	Ic	Min.	Max.	
* Collector-Cutoff Current: Base-emitter junction reverse biased	ICEX	55	1.5					0.1	mA
T _C = 200°C		30	1.5	 	0			0.1 20	μА
Base open	ICEO	28		 			<u> </u>		
* Collector-to-Base Breakdown Voltage	V(BR)CBO	<u> </u>		0		0.1	55		V
* Collector-to-Emitter Breakdown Voltage: With base open	V(BR)CEO		_		0	5_	30		v
With base connected to emitter through 10-ohm resistor	V(BR)CER		0			5	55	_	
* Emitter-to-Base Breakdown Voltage	V(BR)EBO			0.1		0	3.5		٧
* Emitter-Cutoff Current	^I EBO		3.5				-	0.1	mA
* Collector-to-Emitter Saturation Voltage	VCE(sat)				20	100	_	1.0	V
* DC Forward-Current Transfer Ratio	hFE	5 5				360 50	5 10	_ 200	
Thermal Resistance: (Junction-to-Case)	θЈ.С						-	35	oC/W

DYNAMIC

TEST & CONDITIONS	SYMBOL	FREQUENCY	LIN	UNITS	
TEST & CONDITIONS	STIVIBUL	MHz	MINIMUM	MAXIMUM	0,1110
Power Output (V _{CC} = 28 V): PIE = 0.1 W	POE	400	1.0	-	w
Large-Signal Common-Emitter Power Gain (V _{CC} = 28 V): PIE = 0.1 W	GPE	400	10	_	dB
Collector Efficiency (V _{CC} = 28 V): P _{IE} = 0.1 W, P _{OE} = 1 W,Source Impedance = 50Ω	η _C	400	45	_	%
Magnitude of Common-Emitter, Small Signal, Short-Circuit Forward-Current Transfer Ratio IC = 50 mA, VCE = 15 V	 h _{fe}	200	2.5	_	
Available Amplifier Signal Input Power, $POE = 1 \text{ W}$, Source Impedance = 50Ω (See Fig. 2)	Pi	400	-	0.1	w
Common-Base Output Capacitance (VCB = 28 V)	Cobo	1	-	3	pF

^{*} In accordance with JEDEC registration data format JS-6 RDF-3

Fig. 3 - Gain-bandwidth product vs. collector current

Fig. 4 - Dissipation derating curve

92C5-10446R2

Fig. 5 - Safe area for dc operation

Fig. 6 - Variation of collector-to-base capacitance

DESIGN DATA

Fig. 7 - Typical S parameters vs. frequency

Fig. 8 - Typical series input resistance vs. frequency

Fig. 10 - Typical parallel output resistance vs. frequency

DIMENSIONAL OUTLINE JEDEC No. TO-39

SEATING PLANE PLANE 12 40 TEMPERATURE MEASURING POINT 92CS-1564IR2

Note 1: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed 0.010 in (0.254 mm).

Note 2: (Three leads) φb₂ applies between I₁ and I₂. φb applies between I₂ and 0.5 in (12.70 mm) from seating plane. Diameter is uncontrolled in I₁ and beyond 0.5 in (12.70 mm) from seating plane.

Note 3: Measured from maximum diameter of the actual device.

Note 4: Details of outline in this zone optional.

Fig. 9 - Typical series input reactance vs. frequency

Fig. 11 - Typical parallel output capacitance vs. frequency

SYMBOL	INCHES		MILLIN	NOTES	
- IIIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
φa	0.190	0.210	4.83	5.33	
Α	0.240	0.260	6.10	6.60	
φb	0.016	0.021	0.406	0.533	2
φ b 2	0.016	0.019	0.406	0.483	2
φD	0.350	0.370	8.89	9.40	
φD1	0.315	0.335	8.00	8.51	
h	0.009	0.041	0.229	1.04	Ì
j	0.028	0.034	0.711	0.864	
k	0.029	0.040	0.737	1.02	3
1	0.500	0.562	12.70	14.27	2
11		0.050		1.27	2
12	0.250		6.35		2
P	0.100		2.54		1
Q	'	'			4
a	45º NOMINAL				1
β	900 NO	MINAL			