UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO ESTATÍSTICA MAT185 - Análise das Séries Temporais

Prof(a): Gecynalda Gomes

Análise da série temporal do fechamento das ações da GOOGLE

Gerson Rodrigues Primo Junior

12 de dezembro de 2011

Sumário

1	Intr	odução	2									
2	Met	Metodologia										
	2.1											
		2.1.1 Holt-Winters Aditivo										
		2.1.2 Holt-Winters Multiplicativo	3									
	2.2	Método de Box & Jenkis	3									
		2.2.1 Modelo SARIMA										
		2.2.2 Identificação do Modelo										
		2.2.3 Diagnóstico do Modelo										
3	Res	ıltados e Discussões	5									
	3.1	Analise Descritiva	5									
	3.2	Ajuste pelo método de Holt-Winters (HW)										
	3.3	Ajuste método de Box & Jenkis										
	3.4	Comparação dos ajustes	9									
4	Cor	clusões 1	١0									
\mathbf{R}	eferê	ncias 1	۱ 1									
\mathbf{A}	nexo	1	2									
	Ane	co - A	12									
		to - B										
		50 - C										

1 Introdução

A Google é uma empresa voltada para serviços online, no qual seu faturamento se baseia em publicidade pelo $AdWords^1$. Idealizada em 1996, como projeto de pesquisa de Larry Page e Sergey Brin, até então estudantes de dourando na Universidade Stanford a google teve um crescimento em paralelo com o da internet e sem dúvida é hoje o principal meio de busca online. Desde seu surgimento a google foi uma das empresas que mais cresceu nos últimos anos e segundo a Brandz em 2010 a google ficou em 1ª lugar no ranking das maiores empresas do mundo.

A primeira venda das ações da Google no mercado de ações ocorreu em agosto de 2004, marco importante para o crescimento da empresa, pois a mesma começa a atrai investidores do mundo todo tendo assim uma grande demanda da suas ações e por consequência sua valorização. Através dos métodos de suavização de Holt-Winters e o de Box & Jenkis o presente trabalho tem como objetivo avaliar o crescimento das ações da Google desdo inicio de sua comercialização, como também fazer previsões futuras.

2 Metodologia

Analisou-se a série referente ao fechamento das ações mensal da empresa GOOGLE durante o período de agosto de 2004 a setembro de 2011 e a base de dados foi obtida no site *yahoo financias*².

As principais técnicas utilizadas no relatório são os modelos de série temporais descritos a seguir, devido a série estudada apresentar tendência e sazonalidade identificados a parti da analise gráfica e pelos o teste de Cox-Stuart para avaliar tendência e o teste de Kruskal-Wallis para avaliar a sazonalidade. Para os testes utilizados adotou-se o nível de significância de 5%.

2.1 Modelo de Suavização de Holt-Winters (HW)

Quando a série apresenta tendência e sazonalidade um modelo proposto para trabalhar com a série é o modelo de suavização de Holt-Winters, pois ele consegue incorporar as flutuações da série, no qual o modelo é escrito por três componentes (nível, tendência e sazonalidade) e dividido em dois modelos (Aditivo e Multiplicativo).

2.1.1 Holt-Winters Aditivo

Para o modelo Aditivo temos a seguinte expressão

$$Z_t = \mu_t + T_t + F_t + a_t$$

Onde;

Fator sazonal: $\hat{F}_t = D(Z_t - \bar{Z}_t) + (1 - D)\hat{F}_{t-s}, 0 < D < 1$, Fator de nível: $\bar{Z}_t = A(Z_t - \hat{F}_{t-s}) + (1 - A)(\bar{Z}_{t-1} - \hat{T}_{t-1}, 0 < A < 1$ Fator de tendência: $\hat{T}_t = C(\bar{Z}_t - \bar{Z}_{t-1}) + (1 - C)\hat{T}_{t-1}, 0 < C < 1$

Sendo A,B e C constantes de suavização e a_t o resíduo aleatório com média zero e variância constante (σ_a^2) .

Previsão da série sazonal aditiva

Considerando os resultados acima temos que:

$$\hat{Z}_t(h) = \bar{Z}_t + h\hat{T}_t + \hat{F}_{t+h-s}, \ h = 1, 2, ..., 2;$$

 $\hat{Z}_t(h) = \bar{Z}_t + h\hat{T}_t + \hat{F}_{t+h-2s}, \ h = s+1, ..., 2s;$
etc

Dado que \bar{Z}_t , \hat{T}_t e \hat{F}_t são obtido parti dos fatores sazonal, nível e tendência é feita as atualizações, considerando a série sazonal aditiva.

¹São anúncios em forma de links encontrados, principalmente, nos sites de busca relacionados às palavras-chave que o internauta está procurando no motor de busca da página.

²http://br.finance.yahoo.com/

$$\begin{split} \hat{F}_{t+1} &= D(Z_{t+1} - \bar{Z}_{t+1}) + (1-D)\hat{F}_{t+1-s}, \\ \bar{Z}_{t+1} &= A(Z_{t+1} - \hat{F}_{t+1-s}) + (1-A)(\bar{Z}_{t-1} - \hat{T}_t) \\ \hat{T}_{t+1} &= C(\bar{Z}_{t+1} - \bar{Z}_t) + (1-C)\hat{T}_t \end{split}$$
 Diante as atualizações a previsão para o valor Z_{t+h} efeito por:
$$\hat{Z}_t(h-1) &= \bar{Z}_{t+1} + (h-1)\hat{T}_{t+1} + \hat{F}_{t+1+h-s}, \ h = 1, 2, ..., s+1; \\ \hat{Z}_t(h-1) &= \bar{Z}_{t+1} + (h-1)\hat{T}_{t+1} + \hat{F}_{t+1+h-2s}, \ h = s+2, ..., 2s+1; \end{split}$$

2.1.2 Holt-Winters Multiplicative

Para o modelo Multiplicativo temos a seguinte expressão

$$Z_t = \mu_t F_t + T_t + a_t; t = 1, ..., N$$

Onde;

etc

Fator sazonal:
$$\hat{F}_t = D(\frac{Z_t}{\bar{Z}_t}) + (1-D)\hat{F}_{t-s}, 0 < D < 1 \text{ e } t = s+1,...,N$$

Fator de nível: $\bar{Z}_t = A(\frac{Z_t}{\hat{F}_{t-s}}) + (1-A)(\bar{Z}_{t-1} - \hat{T}_{t-1}), 0 < A < 1 \text{ e } t = s+1,...,N$
Fator de tendência: $\hat{T}_t = C(\bar{Z}_t - \bar{Z}_{t-1}) + (1-C)\hat{T}_{t-1}, 0 < C < 1 \text{ e } t = s+1,...,N$

Sendo A,B e C constantes de suavização e a_t o resíduo aleatório com média zero e variância constante (σ_a^2) .

Previsão da série sazonal multiplicativa

Considerando os resultados acima temos que:

$$\hat{Z}_{t}(h) = (\bar{Z}_{t} + h\hat{T}_{t})\hat{F}_{t+h-s}, h = 1, 2, ..., 2;$$

$$\hat{Z}_{t}(h) = (\bar{Z}_{t} + h\hat{T}_{t})\hat{F}_{t+h-2s}, h = s + 1, ..., 2s;$$
etc

Dado que \bar{Z}_t , \hat{T}_t e \hat{F}_t são obtido parti dos fatores sazonal, nível e tendência é feita as atualizações, considerando a série sazonal multiplicativa.

erando a serie sazonal multiplicativa.
$$\hat{F}_{t+1} = D(\frac{Z_{t+1}}{\bar{Z}_{t+1}}) + (1-D)\hat{F}_{t+1-s},$$

$$\bar{Z}_{t+1} = A(\frac{Z_{t+1}}{\hat{F}_{t+1-s}}) + (1-A)(\bar{Z}_{t-1} - \hat{T}_t)$$

$$\hat{T}_{t+1} = C(\bar{Z}_{t+1} - \bar{Z}_t) + (1-C)\hat{T}_t$$

Diante as atualizações a previsão para o valor Z_{t+h} efeito por:

$$\hat{Z}_{t}(h-1) = (\bar{Z}_{t+1} + (h-1)\hat{T}_{t+1})\hat{F}_{t+1+h-s}, \ h = 1, 2, ..., s+1;$$

$$\hat{Z}_{t}(h-1) = (\bar{Z}_{t+1} + (h-1)\hat{T}_{t+1})\hat{F}_{t+1+h-2s}, \ h = s+2, ..., 2s+1;$$

Segundo (MORETTIN & TOLOI, 1981) as previsões obtidas por meio da expressões acima é ótima se Z_t for gerado por um processo ARIMA sazonal. Porém uma dificuldade do ajustamento pela suavização de Holt-Winters é encontrar os valores mais adequados paras as constantes A, C e D. Ressaltando que as constantes devem ser obtidas de forma que minimize a soma dos quadrados dos erros de ajustamento técnica conhecida dentro da estatística com Erro Erro

2.2 Método de Box & Jenkis

Se tratando de analise paramétrica de série temporal é bastante utilizado o os modelos ARIMA (Modelos auto-regressivos integrados de médias movéis) proposto por George Box e Gwilym Jenkins. De forma generalizada refere-se, respectivamente, às ordens de auto-regressão (p), de integração (d) e de média móvel (q), em que o modelo é expresso por: $ARIMA(p,d,q)^3$.

Para diferentes valores de p,d,q se tem casos particulares do modelo, como no caso de d=0, tem o modelo ARMA(p, q), e no caso de também q=0, temos os modelo AR(p). O modelo ARIMA(0, 1, 0) é o passeio aleatório. Já no estudo em questão será considerado o modelo SARIMA por levar em consideração a sazonalidade encontrada na série em estudo.

A identificação do modelo com os parâmetros apropriado pode ser conduzida por um circulo interativo de seis estágios, como mostra o seguinte fluxograma.

 $^{^3}p$ é o numero de termos auto-regressivo, d é o numero de diferença, q é o numero de termos da média móvel

Segundo (Morettin, 2006) a fase crítica do procedimento acima é a identificação. É possível que vários pesquisadores identifiquem modelos diferentes para a mesma série temporal.

2.2.1 Modelo SARIMA

Considerando que a série possui sazonalidade deve acrescentar ao método de Box & Jenhins o componente sazonal, logo considere a série Z_t e sejam:

$$\phi(B^s)=1-\phi_1(B^1)-\ldots-\phi_P(B^{Ps}) \text{ o operador autorregressivo de ordem P};$$

$$\theta(B^s)=1-\theta_1(B^1)-\ldots-\theta_Q(B^{Qs}) \text{ o operador autorregressivo sazonal de ordem Q e}$$

$$\Delta^D_s((1-B)^s)^D \text{ o numero de diferenças sazonais}.$$

Logo o modelo SARIMA (p,d,q)x(P,D,Q) é expresso por;

$$1 - \phi_1(B^1) - \dots - \phi_P(B^{Ps}) D_s((1-B)^s)^D Z_t = 1 - \theta_1(B^1) - \dots - \theta_Q(B^{Qs}) Y_t$$
 Onde, $Y_t = Z_t - Z_t(t-s)$

2.2.2 Identificação do Modelo

Uma das etapas mais crítica do método de Box & Jenkis é a identificação do modelo. Esta escolha é feita com base nas autocorrelações parciais estimadas, no qual espera-se representar as respectivas quantidades teoria (desconhecidas). Considerando que exista uma grande correlação entre o valor do evento no tempo t e valores passados do evento (nos pontos t-1, t-2, ...). O que acontece é que a variável Y na equação acima será substituída pela própria variável Z, atrasada k passos (lags). Fazendo isso, será possível estudar a correlação entre uma série Z_t com uma série Z_{t-1} , Z_{t-2} , etc. Geralmente este estudo é feito através das funções de autocovariância (ACVF) e autocorrelação (ACF). Onde ACF ρ_j é estimado por;

$$r_j = \frac{c_j}{c_0}, j = 0, 1, ..., N - 1,$$

Em que c_j é estimativa da ACVF γ ,

$$c_{j} = \frac{1}{N} \sum_{t=1}^{N-j} \{ (Z_{t} - \bar{Z})(Z_{t+j} - \bar{Z}) \}, j = 0, 1, ..., N - 1,$$

Sendo \bar{Z} a média amostral. Desta forma espera-se que: $r_j \pm t_{N-1} \hat{\sigma}_t$, onde $t_N - 1$ é o quantil da distribuição t-student e $\hat{\sigma}^2(r_j) \simeq \frac{1}{N} \left[1 + 2 \sum_{v=1}^q r_v^2 \right], \ j > q$.

2.2.3 Diagnóstico do Modelo

O diagnostico realizado neste trabalho para o modelo SARIMA foi feito considerando resíduo padronizado, que consiste na diferença do valor real com o predito dividido pelo seu desvio padrão, em que se espera que essas diferenças estejam aleatório em torno do 0 (zero), pela medida do ACF dos resíduos e pela estatística de Ljung & Box.

Estatística e Ljung & Box

O teste de Ljung-Box (nome de Greta M. Ljung e George EP Box) é um tipo e de teste estatístico para saber se qualquer grupo de autocorrelações de uma serie temporal são diferentes de zero. Em vez dos testes de aleatoriedade em cada "lag"e as distintas, ele testa a aleatoriedade "global", baseada num número de defasagens.

Sob a hipótese nula (H_0) : Os dados são aleatórios

A estatística de teste é dada por:

$$Q = n(n+2) \sum_{k=1}^{h} \frac{\hat{\rho}_{k}^{2}}{n-k}$$

Onde n é o tamanho da amostra, $\hat{\rho}_k^2$ é a autocorrelação da amostra, K é o "lag", e h é o numero de defasagens a ser testado. Para nível de significância α , a região crítica para rejeição da hipótese de aleatoriedade ocorre quando:

$$Q>\chi^2_{1-\alpha,h}$$

Sendo $\chi^2_{1-\alpha,h}$ o quantil da distribuição $\mathit{Qui-quadrado}$ com h graus de liberdades.

3 Resultados e Discussões

3.1 Analise Descritiva

Durante os anos de 2004 a 2011 a cotação das ações de fechamento da GOOGLE, em média, foi de 325,78 milhões de dolares, com o coeficiente de variação em torno de 27%. No qual teve a cotação mínima (84,75 milhões) no início do estudo e a cotação máxima (484,63 milhões) em outubro de 2007 (ver Figura 1).

Tabela 1: Medidas descritivas do fechamento das ações da GOOGLE (2004-2011).

Mínimo	Máximo	Média	Desvio-Padrão	C.V(%)
84,75	484,63	325,78	88.80	27,26

Considerando o teste de Cox-Stuart, temos evidencias estatísticas, ao nível de significância de 5%, para rejeitarmos que o fechamento das ações da Google não tem tendência (p=0,001). Já para avaliar a sazonalidade pelo do teste Kruskal-Wallis foi feita a primeira diferenciação para retirar a tendência e pelo teste de Cox-Stuart verificou que a primeira diferenciação não apresenta tendência (p=0,1215) e então com o teste Kruskal-Wallis note-se que a mesma apresenta sazonalidade (p=0,02947). Assim como pela Figura 1 pode ser observado o comportamento da tendência e sazonalidade indicado pelos testes, que de forma clara a Figura 1(b) mostra a tendência da série como pela Figura 1(c) a presença da sazonalidade.

Figura 1: Decomposição e correlograma das ações de fechamento da Google.

Afim de verificar a bondade do ajuste na predição de valores futuros retirou-se as observações referentes aos 12 últimos meses da série e então refeito as analises descritivas, na qual apresentou as mesmas características da série completa, apresentando tendência e sazonalidade (em Anexo). Adiante disso utilizou a série dos últimos 12 meses para verificar a bondade do ajuste pelos métodos abortados no trabalho.

3.2 Ajuste pelo método de Holt-Winters (HW)

Aplicando o método de HW aditivo no fechamento das ações da Google com periodicidade 12 obteve, pelo erro quadrático médio, os valores $\alpha=0,884,~\beta=0,0374$ e $\gamma=1,000$ para o vetor das contantes de suavização e pelo método multiplicativo obteve os seguinte valores $\alpha=0,765,~\beta=0,049$ e $\gamma=1,000,$ o qual não mostra um diferença gritante entre as estimativas dos parâmetros. A tabela 2 mostra os valores preditos pelo método de HW aditivo e HW multiplicativo para os 12 meses a frente a parti de outubro de 2010 e comparando com os valores reais deste período notase o método de HW-Aditivo houve uma maior subestimação do verdadeiro valor que o método HW-Multiplicativo.

A nível de esclarecimento o viés abordado na Tabela 2 é oriundo da subtração do valor predito do valor real e considerando o viés médio, o método de HW-multiplicativo demostra captar melhor a dinâmica da série. No entanto quando analisado o viés em termos do seu desvio-padrão (SD)

Tabela 2: Previsões obtidas para o fechamento das ações da Google pelos métodos de Holt-Winters aditivo e multiplicativo com 12 passos à frente.

Valor F	Real	HW-Ac	HW-Multiplicativo		
Mês $(2010-11)$	Valor real	Predito	Viés	Predito	Viés
Outubro	442,910	422,430	20,480	422,481	20,430
Novembro	431,160	434,424	-3,264	$422,\!354$	8,806
Dezembro	$454,\!500$	451,742	2,758	444,934	$9,\!566$
Janeiro	$434,\!450$	447,763	-13,313	$440,\!416$	-5,966
Fevereiro	442,050	406,344	35,706	396,866	$45,\!184$
Março	$413,\!270$	387,333	25,937	358,986	$54,\!284$
Abril	$362,\!470$	403,345	-40,875	$367,\!100$	-4,630
Maio	364,840	419,786	-54,946	375,727	-10,887
Junho	347,000	434,014	-87,014	390,005	-43,005
Julho	$422,\!550$	432,165	-9,614	404,173	18,377
Agosto	$376,\!580$	426,657	-50,077	408,788	-32,208
Setembro	384,820	431,901	-47,081	$417,\!353$	-32,533
		Viés médio(SD)	-18,442(37,610)		2,285(30,110)

nota-se que apesar de ser, em média, menos viezado apresenta uma dispersão muito grande. A figura 3 ajudar visualizar melhor o comportamento das previsões para ambos os métodos.

Figura 2: Serie temporal do fechamento das ações da Google, segundo o método de HW.

3.3 Ajuste método de Box & Jenkis

A seleção do modelo pelo método de Box & Jenkis foi utilizado o critério de AIC^4 , onde foram ajustado diferentes modelos, variando os valores de p e q entre 0 e 3, os valores de d, P,D e Q entre 0 e 1. A Tabela 3 mostra os modelos que apresentaram os menores AIC no qual os modelos selecionados para fazer as previsões foram SARIMA(1,1,1)x(1,1,0) e SARIMA(2,1,1)x(1,1,0).

⁴AIC(Akaike Information Criterion) é um valor dado por: AIC = -2logL + 2(p+q), onde L é função de verossimilhança, p+q o numero de parâmetros e n o numero de observações e quanto menor o AIC melhor o modelo.

Tabela 3: Modelo encontrados pelo método de Box & Jenkis.

Modelo	(p,d,q)x(P,D,Q)	AIC
SARIMA1	(2,1,1)x $(1,1,0)$	643,65
SARIMA2	(1,1,1)x $(1,1,0)$	$631,\!46$
SARIMA3	(1,1,1)x $(1,0,1)$	728,15
SARIMA4	(2,1,1)x $(1,1,0)$	$632,\!87$
SARIMA5	(2,1,1)x $(1,0,1)$	728,88

Já a tabela 4 apresenta os resultados das previsões dos modelos SARIMA 2 e SARIMA 4, onde vemos que o viés médio do SARIMA 4 foi de 2,506, menor que o SARIMA 2, no entanto ambos os modelos apresentam variabilidade grande para o viés e a parti do diagnostico mostrado na Figura 3 tanto o modelo SARIMA 2, quanto o SARIMA 4 se ajustaram bem aos dados, pois apresentaram uma certa aleatoriedade dos resídios padronizados, o ACF dos resíduos mantiveram dentro do intervalo especificado e com relação a estatística de Ljung & Box em todos os caso, ao nível de 5%, não rejeita a aleatoriedade dos dados.

Tabela 4: Previsões obtidas para o fechamento das ações da Google pelo de método de Box & Jenkis com 12 passos à frente.

Valor Real		SARIMA(1,1	,1)x $(1,1,0)$	SARIMA(2,1,1)x(1,1,0)		
Mês (2010-11) Valor real		Predito	Viés	Predito	Viés	
Outubro	442,910	405,665	37,245	407,469	35,441	
Novembro	431,160	380,428	50,732	$379,\!542$	51,618	
Dezembro	$454,\!500$	392,345	$62,\!156$	389,315	$65{,}185$	
Janeiro	$434,\!450$	402,315	$32{,}135$	398,267	$36,\!183$	
Fevereiro	442,050	402,069	39,981	$397,\!466$	$44,\!584$	
Março	$413,\!270$	413,254	0,016	408,349	4,921	
Abril	$362,\!470$	430,406	-67,936	$425,\!462$	-62,992	
Maio	364,840	421,833	-56,993	$416,\!828$	-51,988	
Junho	347,000	414,351	-67,351	$409,\!365$	-62,365	
Julho	$422,\!550$	423,985	-1,435	419,010	3,540	
Agosto	$376,\!580$	421,956	$-45,\!376$	416,998	-40,418	
Setembro	384,820	443,583	-58,763	$438,\!605$	-53,785	
		Viés médio(SD)	-6,299(50,360)		2,506(49,100)	

Figura 3: Diagnostico dos modelos: SARIMA 2 (a) e SARIMA 4 (b)

Com relação as estimativas pelo método de Box & Jenkis nota-se que para os dois modelos selecionados acompanham bem a dinâmica da série nos primeiros anos e a parti do ano de 2006 as séries ajustadas tiveram uma oscilação menor que a série real, como mostra a Figura 4. E quanto as previsões a Figura 4 mostra que as previsões para 12 passos a frente os modelos não mostram satisfatórios.

Figura 4: Série Temporal do Fechamento das ações da Google, segundo o método de Box & Jenkis

3.4 Comparação dos ajustes

Entre os métodos de suavização de Holt-Winters e o de Box & Jenkis pode observar que a suavização de Holt-Winters captou melhor a dinâmica da série, onde considerando a predição dos 12 passos a frente, constata uma melhor aproximação das suavizações de Holt-Winters com o valor real do período, como mostra a Figura 5. E ainda tomando com base o desvio médio das Tabelas 2 e 4, nota-se que o modelo de suavização de HW multiplicativo teve o menor viés médio (2,285) com a menor variabilidade (30,110), Ressaltando ainda que mesmo o viés médio do modelo de suavização de HW aditivo ter sido maior, em termos absoluto, que os do método de Box & Jenkis, a suavização de HW aditivo apresentou uma melhor predição (ver Figura 5).

Figura 5: Previsão para 12 passos a frente do fechamento das ações da Google

E considerando o erro padrão (SSE) e o erro padrão médio (MSE) nota-se que, entre os modelos selecionados o que apresenta mais apropriado para o comportamento do fechamento das ações da

google são os modelos de suavização de Holt-Winters, como nota-se na Tabela 5 foram os ajustes que obtiveram os menores valores para o SSE e o MSE.

Tabela 5: SSE e MSE dos modelos selecionados.

Modelo	SSE	MSE
HW-Aditivo	19640,55	1636,71
HW-Multiplicativo	10033,26	836,11
SARIMA 2	28369,12	2364,09
SARIMA 4	$26589,\!89$	$2215,\!82$

4 Conclusões

O trabalho buscou identificar um modelo que mais se apropriava a série de fechamento das ações da Google e com base na teoria estuda nota-se que os modelos obtidos pelos os métodos de suavização de Holt-Winters foram os modelos que apresentaram os melhores ajustes, sobre tudo o HW-Multiplicativo. Onde pode ser visto tanto pelos Figuras 2 (b) quanto pela Figura 5 e Tabela 5 a maior eficiência do ajuste.

Referências

- [1] Gomes, A.S (2003), Modelagem e previsão da arrecadação do imposto de renda no Brasil, dissertação de mestrado, UFPE, Recife-PE.
- [2] Morettin, P.A & Toloi, C.M.C (2006), *Análise de Séries Temporais*, 2.ed São Paulo, Edgard Blucher.
- [3] Pacheco, A.G.F (200x), Estudo de influências de variáveis meteorológicas no aparecimento de casos graves de leptospirose em Salvador-Ba via modelos de séries temporais, Fundação Oswaldo Cruz, Salvador-BA.

.

Anexo - A

• Descritivas dos dados sem os últimos meses

Tabela 6: Medidas descritivas do fechamento das ações da GOOGLE (08/2004 - 09/2010).

Mínimo	Máximo	Média	Desvio-Padrão	C.V(%)
84,75	484.63	312,70	87.93	28,12

Figura 6: Série temporal das ações de fechamento das ações da Google (2004-2011)

Figura 7: Decompese das ações de fechamento das ações da Google, retirado os 12 últimos meses.

Anexo - B

• Roteiro do R - Analise da série temporal das ações de fechamento da Google

```
################### Analise de Série Temporal - GOOGLE ##########################
### Banco de dados
dados=read.table("table_mensal.csv",head=T)
google = ts(dados,start=c(2004,8),frequency=12)
google
library(tseries)
plot(google, type="1",xlab="Ano",ylab="Fechamento (U$)")
summary(google);sd(google)
CV=(sd(google)/mean(google))*100;CV;sd(google)
# Decompondo a serie
plot(decompose(google),xlab="Ano",sub="(a)")
# Testes para tendência e sazonalidade
 cox.stuart.test(google) # Ultilizou implementação fornecida em sala
 grupo=c(rep(seq(1,12),7),c(1,2))
 kruskal.test(google,grupo) # Teste de Sazonalidade
# Primeira Diferenciação
 cox.stuart.test(diff(google,difference=1))
 grupo=c(rep(seq(1,12),7),1)
 kruskal.test(diff(google,difference=1),grupo) # Teste de Sazonalidade 10 diferenciação
# Correlograma
 par(mfrow=c(1,2))
 acf(google,main="Série Real",sub="(b)")
 acf(diff(google,difference=1),main="1a Diferenciação",sub="(c)")
#### Retirando os ultimos 12 meses
 base=google[-c(75:86)]
 base_comp=google[75:86]
 google2=ts(base,start=c(2004,8),frequency=12); google2
 google_comp=ts(base_comp,start=c(2010,10),frequency=12)
# Descritiva
plot(google2, type="1",xlab="Ano",ylab="Fechamento (U$)",
     main="Serie Temporal do fechamento das ações da Google(2004-2010).")
 summary(google2);sd(google2)
CV=(sd(google2)/mean(google2))*100;CV;sd(google2)
# Decompondo a serie
plot(decompose(google2),xlab="Ano",ylab=c("obe","sas","sss","sss"))
# Testes para tendência e sazonalidade
 cox.stuart.test(google2) # Ultilizou implementação fornecida em sala
 grupo=c(rep(seq(1,12),6),c(1,2))
 kruskal.test(google2,grupo) # Teste de Sazonalidade
```

```
# Primeira Diferenciação
 cox.stuart.test(diff(google2,difference=1))
 grupo=c(rep(seq(1,12),6),1)
 kruskal.test(diff(google2,difference=1),grupo) # Teste de Sazonalidade 10 diferenciaçã
 plot(diff(google2,difference=1))
########################### Ajuste por HW ###############################
 ajuste1=HoltWinters(google2) #previsão considerando sazonalidade aditiva
 VF1=predict(ajuste1,12)
 ajuste2=HoltWinters(google2, seasonal="multiplicative") # previsão considerando
 # sazonalidade multiplicativa
 VF2=predict(ajuste2,12)
# Gráfico do ajuste pelo HW - comparar os ajustamentos
 par(mfrow=c(1,2))
 plot(ajuste1, VF1, xlab="Ano", ylab="Fechamento (U$)",
    main="",sub="(a)");lines(google,type="1",lwd=1,col="black")
 leg.txt=c("Valor real", "HW-Aditivo"); cores=c("black","red")
legend(list(x=2007.4,y=150), legend = leg.txt, col=cores, lwd=2, merge=FALSE)
plot(ajuste2, VF2, xlab="Ano", ylab="Fechamento (U$)",
    main="",sub="(b)");lines(google,type="l",lwd=1,col="black")
 leg.txt=c("Valor real", "HW-Multiplicativo"); cores=c("black", "red")
 legend(list(x=2007,y=150), legend = leg.txt, col =cores, lwd=2, merge=TRUE)
# Matriz com os valores predito e real
 predA= ts(VF1,start=c(2010,10),frequency=12)
 predB= ts(VF2,start=c(2010,10),frequency=12)
 testHW=data.frame(cbind(google_comp,predA,predB))
### Ajuste do modelo ARIMA(p,d,q)x(P,D,Q)
arima.bic=arima
fix(arima)
y=google2 # Série utilizada
lag.entrada=c(1,2) # Variavéis de Entrada
prev=12
l=max(lag.entrada) # Numero máximo de defasagens
n=length(y)
              # Numero de observações
#### Contruindo a matriz de entrada Y
# Constroi a matriz de entrada para os lags especificos antes
Y=matrix(nrow=length(y),ncol=length(lag.entrada))
for(m in 1:length(lag.entrada)){
e=lag.entrada[m]
for(i in 1:length(y)){
  if(i \le e)
 for(a in 1:e)\{Y[a,m]=0\}
else Y[i,m]=y[i-e]
}
}
```

```
### Ajuste do modelo ARIMA
  y.teste=y[(n-prev+1):n] # Dados de teste
  X.teste=Y[(n-prev+1):n,]
  y=y[(1+1):(n-prev)]
  X=Y[(1+1):(n-prev),] ## Matriz do modelo apos eliminação dos zeros
###### Seleção do modelo ARIMA(p,1,q)x(0,1,1)-original #########
#d=1, Com a primeira diferenciaçção obteve a ssérie estacionaria
  selecao.de.modelos <- function(serie=y, p.max=2,q.max=2,d=1,P=0,D=0,Q=0){</pre>
  M<-matrix(0,p.max+1,q.max+1) ## Matriz para armazenar os resultados
  if(P==0 && Q==0){
      for(i in 0:p.max){
           for(j in 0:q.max){
      if(i==0 && j==0) M[1,1] < -NA
    else M[i+1,j+1] <-arima(serie, order=c(i,d,j), seasonal=list(order=c(P,D,Q)))$aic #=BIC
         }
      } else {
           for(i in 0:p.max) {
                for(j in 0:q.max){
           M[i+1,j+1] < -arima(serie,order=c(i,d,j),seasonal=list(order=c(P,D,Q))) aic
    }
  }
  return(M)
  M=selecao.de.modelos(google2)
  p.selec=which(M==min(M),arr.ind=TRUE)[1];p.selec
  q.selec=which(M==min(M),arr.ind=TRUE)[2];q.selec
# Modelos Selecionados
# a obtenção do modelos se deu da seguinte forma:
# atribuiu valores 0,1 para os parametros d,P,Q,D
# e vez todas as possiveis compinações para os
# os valores de p,q variando entre 1 e 3.
# e seleciondos os modelos com menor BIC
  mod1=arima(google2,order=c(2,0,1),seasonal=list(order=c(1,1,0)))
  \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,1,0))); \verb|mod4=arima(google2,order=c(1,1,0))); \verb|mod4=arima(google2,order=c(1,1,0))]; \verb|mod4=arima(google2,order=c(1,1,0))]; \verb|mod4=arima(google2,order=c(1,1,0))]; \verb|mod4=arima(google2,order=c(1,1,0))]; \verb|mod4=arima(google2,order=c(1,1,0))]; \verb|mod4=arima(google2,order=c(1,1,0))); \verb|mod4=arima(google2,order=c
  mod2=arima(google2,order=c(1,1,1),seasonal=list(order=c(1,1,0)));mod2
  mod3=arima(google2,order=c(1,1,1),seasonal=list(order=c(1,0,1)));mod3
  mod5=arima(google2,order=c(2,1,1),seasonal=list(order=c(1,0,1)));mod5
  names (mod2)
## Previsão
y.prev1=predict(mod2,se.fit=FALSE,n.ahead=prev)
y.prev2=predict(mod4,se.fit=FALSE,n.ahead=prev)
###Gráfico da série e das previsões
 par(mfrow=c(1,2))
# SARIMA 2
  a1=mod2[["residuals"]]+google2
```

```
predA1=c(a1,y.prev1s)
 predA1s=ts(predA1,start = c(2004,8), frequency = 12)
 plot(predA1s,col="2",xlim=c(2004,2012),ylab="Fechamento (U$)",xlab="Ano",sub="(a)")
 lines(google); abline(v=2010.9,lty=2)
 leg.txt=c("Valor real", "SARIMA2"); cores=c("black","red")
 legend(list(x=2004,y=500), legend = leg.txt, col =cores, lwd=2, merge=FALSE)
# SARIMA 4
 a2=mod4[["residuals"]]+google2
predA2=c(a2,y.prev2s)
 predA2s=ts(predA2,start = c(2004,8), frequency = 12)
 plot(predA2s,col="2",xlim=c(2004,2012),ylab="Fechamento (U$)",xlab="Ano",sub="(b)")
 lines(google); abline(v=2010.9,lty=2)
 leg.txt=c("Valor real ", "SARIMA4 "); cores=c("black","red")
 legend(list(x=2004,y=500), legend = leg.txt, col =cores, lwd=2, merge=FALSE)
# Previsão - 12 passos
 plot(y.test1,xlab="Ano",lwd=1,ylab="Fechamento (U$)",ylim=c(250,500))
 lines(VF1,lwd=1, col="blue")
 lines(VF2,lwd=1,col="purple")
 lines(y.prev1s,lwd=1,col="red")
 lines(y.prev2s,lwd=1,col="orange")
 leg.txt=c("Valor real", "Valor predito HW Aditivo",
   "Valor predito HW Mutiplicativo",
   "Valor predito SARIMA 2", "Valor predito SARIMA 4")
 cores=c("black", "blue", "purple", "red", "orange")
 legend(list(x=2011,y=320), legend = leg.txt, col =cores, lwd=1, merge=TRUE)
## Diagnóstico
 tsdiag(mod2)
tsdiag(mod4)
# SARTMA
sse1=sum((google_comp-y.prev1s)^2)
mse1=mean((google_comp-y.prev1s)^2)
sse2=sum((google_comp-y.prev2s)^2)
mse2=mean((google_comp-y.prev2s)^2)
#Holt-Winteres
sse.h=sum((google_comp-VF1)^2)
mse.h=mean((google_comp-VF1)^2)
sse.h2=sum((google_comp-VF2)^2)
mse.h2=mean((google_comp-VF2)^2)
aba=matrix(c(sse1,mse1,sse2,mse2,sse.h,
  mse.h,sse.h2,mse.h2),ncol=2,byrow=T)
```

Anexo - C

Tabela 7: Base de dados - Fechamento das ações da Google	Mar Apr May Jun Jul Aug Sep Oct Nov Dec	84,75 103,85 155,47 136,86 141	138,95 169,71 221,17 242,13 240,30 232,43 259,98 309,21 343,28	330,36 $291,98$ $325,25$ $302,30$ $296,05$ $318,55$ $374,34$	397,78 484,63 481,48	375,38 379,28 339,99 304,60 321,50 273,80 286,55	64 259, 65 303, 77 292, 44 300, 00 316, 88 322, 25 337, 84 365, 17 386, 96 431, 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	05 413.27 362.47 364.84 347.00 422.55 376.58 384.82
Tabela 7: Bas	¥ —		,95 169,71 221,17	,71 330,36 291,98	,65 351,05 375,52	,35 375,38 379,28	,65 303,77 292,44	,48 400,03 395,20	362.47 364.84
	$\operatorname{Jan} \operatorname{Feb} \operatorname{Ma}$		142,	357,34 311,85 320	341,	308	264,73 263,64 259	386,80 387,70 419	$434.45 \mid 442.05 \mid 413$
	Ano / Mês	2004	2005	2006	2007		2009	2010	2011