

Algoritmos e Estruturas de Dados

(Aula 8 - Introdução a análise de complexidade de algoritmos)

Prof. Me. Diogo Tavares da Silva contato: diogotavares@unibarretos.com.br

Definição

"Análise da complexidade de algoritmos é o estudo que avalia o desempenho de um algoritmo em relação a tempo de processamento e recursos necessários para o processamento"

Questões - Contextualização

- Por que o meu programa está tão lento?
- Quanta memória meu programa vai utilizar?
- E se eu precisar aumentar o número de dados, este algoritmo será útil?
- Vou ter que comprar um computador melhor para ter uma resposta mais rapidamente?

Questões - Contextualização

Através da análise de algoritmos é possível:

- Determinar corretamente o uso de um algoritmo
- Comparar algoritmos
- Determinar o uso de processamento e memória
- Prever o crescimento dos recursos necessários às operações
- Relacionar o uso de recursos com as entradas
- Balancear o uso entre os recursos (espaço e tempo)

Como avaliar desempenho?

- Análise de complexidade temporal
 - A avaliação de desempenho de um algoritmo geralmente é feita de duas formas:
 - Empiricamente (Modelo Experimental)
 - Utilizando modelo experimental
 - Analiticamente (Modelo Matemático)
 - Através de análise teórica

Como avaliar desempenho?

- Avaliação empírica
 - Algoritmo é executado exaustivamente, com entradas diferentes e tamanhos diferentes
 - Calcula-se o tempo de processamento
 - Problemas:
 - Depende muito do hardware
 - Depende da linguagem e compilador escolhido

Como avaliar desempenho?

- Avaliação por análise matemática
 - Feita através de um modelo teórico
 - não existe a necessidade de que o algoritmo seja executado.
 - São considerados:
 - O tamanho da entrada (dados fornecidos)
 - O número de instruções realizadas pelo algoritmo

Análise de desempenho

- A eficiência de um algoritmo é calculada em função do tamanho do problema
 - ou seja, através do número de elementos que serão processados.
- "n" é o <u>"tamanho do problema"</u>, ou número de elementos que serão processados.
 - Calcula-se o número de operações que serão realizadas sobre os n elementos

Análise de desempenho

- deste modo...
- Modelo Matemático
 - Para uma entrada de tamanho n o tempo de execução é um somatório:

Custo*Frequência de cada operação

 Caracteriza o tempo de execução como uma função em relação ao tamanho/tipo da entrada

- "Operações Básicas"
 - que operações considerar?
 - Alocação de variável
 - Atribuição
 - Comparação
 - Operação lógica
 - Operação aritmética
 - Acesso ao vetor
 - Acesso à variável
 - etc

- Estimativa de tempo de execução:
 - Analisar e definir quais operações serão consideradas/importantes (atribuição, comparação, etc.)
 - Considerar como constante o tempo de execução de cada operação
 - Aproximar estes valores utilizando uma função

- Estimativa de tempo de execução:
 - Considerar três casos:
 - Pior caso
 - Caso médio
 - Melhor caso

- Estimativa de tempo de execução:
 - Considerar três casos:
 - Pior caso
 - Caso médio
 - Melhor caso

Ex:

 Quantas instruções são executadas nesse código?

```
 for( int i = 0; i < n; i++)</li>
 vetor[i] = i + 1;
```

Operação	Frequência
Alocação de variável	1
Atribuição	N+1
Comparação menor	N+1
Incremento	N
Soma	N
Acesso de vetor	N

Outro ex:

 Quantas instruções são executadas nesse código?

```
 int count = 0;
 for(int i = 0; i < n; i++)</li>
 if( vetor[i] == 0 )
 count++;
```

Operação	Frequência	
Alocação de variável	l 2	
Atribuição	2	
Comparação menor	N+1	
Incremento	N até 2*N	
Comparação igual	N	
Acesso de vetor	N	

Notação til (~)

- Ao realizar a análise, ignorar os termos de menor ordem
 - a taxa de crescimento não é afetada por eles
 - justificativa:
 - Quando o N é grande:
 - os termos de menor ordem não mudam muito o resultado
 - Quando o N é pequeno:
 - A entrada é pequena, causando pouca diferença

Notação til (~)

• exemplo:

0	1/6 N ³ + 20 N + 16	~ 1/6 N ³
	$3N^2 + 100 N + 3$	~ 3 N ²
	$1/6 \text{ N}^3 - \frac{1}{2} \text{ N}^2 + \frac{1}{3} \text{ N}$	~ 1/6 N ³

Ordem de crescimento

FaculdadeBarretos

Ordem de crescimento

- Conjunto pequeno de funções:
 - Constante: ~1
 - Logarítmica: ~log(N)
 - Linear: ~N
 - Linear-Logarítmica: ~N*log(N)
 - Quadrática: ~N²
 - Cúbica: ~N³
 - Exponencial: ~2^N, n!, nⁿ

Tipos de análise

Melhor caso

 Quando os dados de entrada que levam ao menor número de operações que serão executadas

Pior caso

 Quando os dados de entrada levam ao maior número de operações. Considerando qualquer entrada, este será o maior tempo necessário de processamento

Caso médio

Custo estimado médio. Muito difícil de prever

- Consideram o comportamento das funções de desempenho temporal/espacial para quando o tamanho da entrada n é muito grande
 - ou seja, quando n → ∞

 Exemplo: Dois algoritmos resolvem o mesmo problema com diferentes números de operações

- Algoritmo 1: f1(n) = 2n² + 5n operações
- Algoritmo 2: f2(n) = 500n + 4000 operações

quando n
$$\to \infty$$

Alg 1 = f1(n) = 2n²
Alg 2 = f2(n) = 500n

 Exemplo: Dois algoritmos resolvem o mesmo problema com diferentes números de operações

- Algoritmo 1: f1(n) = 2n² + 5n operações
- Algoritmo 2: f2(n) = 500n + 4000 operações

quando n
$$\to \infty$$

Alg 1 = f1(n) = 2n²
Alg 2 = f2(n) = 500n

Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, temos $|g(n)| \le c|f(n)|$

Notação O ("Big-Oh")

- Define g(n) = O(f(n)) se f(n) domina assintoticamente g(n)
- g(n) tem taxa de crescimento proporcional a f(n), ou seja, é de ORDEM MÁXIMA f(n).
- f expressa um LIMITE SUPERIOR para valores assintóticos de g, ou seja, O(f(n)) NUNCA excede c*f(n) (se n for suficiente grande)

NOTAÇÃO Ω (Big Omega)

Uma função g(n) é $\Omega(f(n))$ se g(n) domina assintoticamente f(n)

- Notação O denota um limite superior
- Notação Ω denota um limite inferior

NOTAÇÃO Θ (Theta)

- Uma função g(n) é Θ(f(n)) se g(n) e f(n)
 dominam assintoticamente uma à outra
- Duas funções crescem de forma similar, mantendo a diferença (limitada por cima e por baixo)

Notações assintóticas

- O é mais utilizada para avaliar o pior caso
- Ω é geralmente mais utilizada para avaliar o melhor caso
- Θ indica limite superior e inferior a função

- Tempo constante: O(1) (raro)
- **Tempo logarítmico (log(n))**: muito rápido (ótimo)
- **Tempo linear**: (O(n)): muito rápido (ótimo)
- Tempo n log n: Comum em algoritmos de divisão e conquista (eficaz)
- Tempo polinomial n^k: Frequentemente de baixa ordem (k
 ≤ 10), considerado eficiente
- **Tempo exponencial**: 2^n , n!, n^n considerados intratáveis

$$F(n) = O(1)$$

- Complexidade constante
- Tempo de execução do algoritmo independe do tamanho da entrada
- Os passos do algoritmo são executados um número fixo de vezes

Ex: determinar se um número é ímpar, inserir na cabeça da lista, acessar um elemento do vetor

$$F(n) = O(\log(n))$$

- Complexidade logarítmica
- Típico de algoritmos "dividir para conquistar"
- Tempo de execução pode ser considerado menor do que uma constante grande
- Quando n é um milhão, log(n) ≈ 20 A base do logaritmo tem impacto pequeno

Exemplo: busca binária

$$F(n) = O(n)$$

- Complexidade linear
- O algoritmo realiza um número fixo de operações sobre cada elemento da entrada
- Melhor situação para um algoritmo que processa n elementos de entrada e produz n elementos de saída

Exemplo: busca sequencial, percurso em vetor, percurso em lista

 $F(n) = O(n \log(n))$

- Complexidade linear logarítmica
- Típico de algoritmos que dividem um problema em subproblemas, resolve cada subproblema de forma independente, e depois combina os resultados

Exemplo: ordenação (eficiente) (algoritmos quicksort, mergesort)

$$F(n) = O(n^2)$$

- Complexidade quadrática
- Típico de algoritmos que operam sobre pares dos elementos de entrada
- Comumente em um loop aninhado
- Útil para resolver problemas pequenos
- Exemplos: ordenação (ineficiente)(bubblesort, insertion sort, selection sort); percurso em matriz

$$F(n) = O(c^n)$$

- Complexidade exponencial
- Típicos de algoritmos que fazem busca exaustiva (força bruta) para resolver um problema
 - Algumas abordagens recursivas
- Problemáticos e pouco úteis do ponto de vista prático

Quando $n \in 20$, $O(2^n) \in \approx um milhão$

