TITLE

by

Kraig Andrews

Ph.D. Disseration Prospectus

YEAR		
Advisor		
Advisor		

${\bf ABSTRACT}$

TITLE HERE

by

Kraig J. Andrews

August 2008

Advisor: Dr. Zhixain Zhou

Major: Physics

Degree: Doctor of Philosophy

Abstract here

ACKNOWLEDGEMENTS

 ${\bf Acknowledgements\ here...}$

Table of Contents

	List of Figures	
	List of Tables	V
1	Introduction	1
	1.1 The Conception of Semiconductors	1
	1.2 Evolution of Semiconductors	2
	1.3 Interest and Development of Two-dimensional Materials	2
	1.4 Current State of Two-dimensional Materials	2
2	Experimental Details	3
	2.1 Nano-device Fabrication	3
	2.1.1 Subsect 1	3
3	Results and Discussion of Experiment	4
	3.1 Section Heading	4
4	Future Works and Conclusion	5
	4.1 Heading	5
	4.2 Limitations	
Aı	ppendices	7
A	Acronyms	8

List of Figures

1.1	Name	1
1.2	name	1
1.3	main caption	2

List of Tables

1.1	Properties of selected semiconductors	-
1.2	Band gaps of typical TMDs and other materials	

Introduction

1.1 The Conception of Semiconductors

Here we present work by [2, 1].

Semiconductor	Band Gap (eV)	Electron Mobility ¹ $(cm^2/V \cdot s)$	Hole Mobility ¹ $(cm^2/V \cdot s)$	Lattice Constant (Å)
Si	1.12	1,500	470	5.43095^{a}
Ge	0.67	3,900	1,900	$5.64613^{\rm a}$
GaAs	1.42	8,500	400	$5.6533^{ m b}$
CdS	2.5	300	50	5.8320^{c}
AlAs	2.16	1,200	400	$5.6622^{ m b}$
ZnS	3.66	165	5	$5.410^{\rm d}$

Table 1.1: Selected properties of some common semiconductors at $T = 300 \,\mathrm{K}$. Adapted from ref. [5].

^d Notes on ZnS structure.

Figure 1.2: name

Testing macros... $140\,\mathrm{cm^{-2}V^{-1}s^{-1}}$, hBN, K, m s²

¹ Drift mobilities in the purest materials.

^a Diamond cubic crystal structure [4].

^b Zinc blende crystal structure [3].

^c Hexagonal and cubic... citation needed.

2D material	theoretical E_g (eV)	experimental E_g (eV)
graphene	0	0
bilayer graphene	0	0
bulk h -BN		5.97
monolayer h -BN		6.07
few layer (2-5) h -BN		5.92
bulk MoS_2	1.2^{a}	$1.0 \text{-} 1.29^{\mathrm{a}}$
monolayer MoS_2	$\sim 1.90^{\rm b}$	$\sim 1.90^{\rm b}$
bulk WS_2	$\sim 1.30^{\rm a}$	$\sim 1.35^{\rm a}$
$\underline{\hspace{1cm}} \text{monolayer WS}_2$	$\sim 2.10^{\rm b}$	

Table 1.2: Summary of the band gaps of typical monolayer, bilayer, and bulk TMDs and h-BN materials. Table adapted from ref. [6].

^b Direct band gap semiconductor.

Figure 1.3: main caption

1.2 Evolution of Semiconductors

1.3 Interest and Development of Two-dimensional Materials

1.4 Current State of Two-dimensional Materials

^a Indirect band gap semiconductor.

Experimental Details

- 2.1 Nano-device Fabrication
- 2.1.1 Subsect 1

Results and Discussion of Experiment

3.1 Section Heading

Future Works and Conclusion

- 4.1 Heading
- 4.2 Limitations

Bibliography

- [1] J. W. Allen. Gallium Arsenide as a Semi-insulator. Nature, 187:403–405, jul 1960.
- [2] M. Cutler and N. F. Mott. Observation of Anderson Localization in an Electron Gas. *Physical Review*, 181:1336–1340, may 1969.
- [3] A. Ledwith and S. J. Moss. *Chemistry of the Semiconductor Industry*. Springer Science, New York, NY, 1 edition, 1989.
- [4] W.C. O'Mara, R.B. Herring, and L.P. Hunt. *Handbook of Semiconductor Silicon Technology*. Materials science and process technology series. Noves Publications, 1990.
- [5] Dieter K. Schroder. Semiconductor Material and Device Characterization. John Wiley and Sons, Inc., Hoboken, New Jersey, 3rd edition, 2006.
- [6] Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen. Graphene-like two-dimensional materials. *Chemical Reviews*, 113(5):3766–3798, 2013. PMID: 23286380.

Appendices

Appendix A

Acronyms