CS5487 Programming Assignment 1

NIE Wan 57120844

October 2022

1 Part 1 Polynomial function

(a)

Implementation of the 5 regression algorithms can be found at the utils.py file in the source code, which was also uploaded on Canvas.

(b)

The mean-squared errors (MSEs) of different regression methods are given in Figure 1.

Figure 1: Regression results of different methods ($\lambda=5, \alpha=1, \sigma^2=10$).

(c)

According to the experiment results in Figures 2 to 6, we can find that:

- (i) $regularized\ LS$, $bayesian\ regression$ and L1-regularized LS have better performance when the dataset is small.
- (ii) least squares and robust regression are more likely to overfit when the dataset is small, illustrated by the larger MSEs and twisted function curves.

MSE (50 runs average) versus Training size

Figure 2: MSE versus training size $(\lambda = 5, \alpha = 1, \sigma^2 = 10)$.

Figure 3: %15 random samples ($\lambda = 5, \alpha = 1, \sigma^2 = 10$).

Figure 4: %25 random samples ($\lambda = 5, \alpha = 1, \sigma^2 = 10$).

Figure 5: %50 random samples ($\lambda = 5, \alpha = 1, \sigma^2 = 10$).

Figure 6: %75 random samples ($\lambda=5, \alpha=1, \sigma^2=10$).

(d)

We added 4 outliers in the sample data. According to the experiment results in Figure 7, we can find that:

- (i) robust regression and bayesian regression are more robust to the presence of outliers compared with the other three methods.
- (ii) robust regression has a L_1 norm of estimation errors, i.e. $||y \phi^T \theta||_1$, which reduces the impact of outliers. The prior knowledge of θ in bayesian regression also limits the data-driven effects.
- (iii) least squares is the most sensitive method because its L_2 norm is prone to large estimation errors if there are outliers in the training sample. Although regularized LS and L1-regularized LS are also using the L_2 norm, the regularization term of θ can reduce the impact of the outliers.

Figure 7: Regression results with outliers ($\lambda = 5, \alpha = 1, \sigma^2 = 10$).

(e)

According to the experiment results in Figures 8 and 9, we can find that:

- (i) least squares tends to overfit the data when learning a more complex model. The function curve of robust regression twists more times than the true function curve. Therefore, robust regression also tends to overfit the data.
- (ii) regularized LS, L1-regularized LS and bayesian regression do not overfit the data.
- (iii) The above two observations can be verified by Figure 9 that both least squares and robust regression have large parameter components, i.e., $|\hat{\theta_i}| > 10$, while other methods' parameters are small.

Figure 8: Regression results of 10th order ($\lambda = 5, \alpha = 1, \sigma^2 = 10$).

	I≣ least_squares ≎	I≣ regularized_LS ≎	III L1-regularized_LS ≎	I≣ robust_regression ≎	I⊞ bayesian_regression_mu ≎	■ bayesian_regression_deviation ÷
1	-0.099	0.82	0.903	-0.772	0.735	0.338
2	3.794	0.219	0.0	3.025	0.115	0.571
3	6.491	0.601	0.411	13.149	0.448	0.719
4	-10.745	-0.292	-0.0	-7.576	-0.202	0.717
5	-5.522	0.067	0.0	-19.78	0.137	0.692
6	8.632	-0.265	-0.394	5.642	-0.237	0.661
7	0.654	-0.135	0.0	12.194	0.004	0.648
8	-3.046	-0.192	-0.157	-2.164	-0.227	0.306
9	0.764	0.24	0.201	-3.157	0.154	0.234
10	0.31	0.01	0.004	0.245	0.016	0.013
11	-0.175	-0.056	-0.053	0.291	-0.043	0.008

Figure 9: Model parameters of different methods ($\lambda = 5, \alpha = 1, \sigma^2 = 10$).

2 Part 2 A real world regression problem – counting people

(a)

The mean-squared errors (MSEs) of different regression methods are given in Figure 10. According to the experiment results, we can find that:

- (i) regularized LS works the best.
- (ii) Performance of different methods is similar.

Figure 10: Regression results of different methods with identity mapping function, i.e., $\phi(x) = x$ ($\lambda = 1, \alpha = 1, \sigma^2 = 5$).

(b1)

Here, we tried the 2nd-order polynomial mapping function to transform the input features, i.e., $\phi(x) = [x_1, \dots, x_9, x_1^2, \dots, x_9^2]^T$. Comparing the experiment results in Figures 10 and 11, we can find that:

(i) The 2nd-order polynomial mapping function has a better performance. The strong ability of the 2nd-order function to capture input features may account for this result.

Figure 11: Regression results of different methods with the 2nd-order polynomial mapping function, i.e., $\phi(x) = \begin{bmatrix} x_1, \dots, x_9, x_1^2, \dots, x_9^2 \end{bmatrix}^T (\lambda = 1, \alpha = 1, \sigma^2 = 5).$

(b2)

Here, we tried the 3rd-order polynomial mapping function to transform the input features, i.e., $\phi(x) = \begin{bmatrix} x_1, \dots, x_9, x_1^2, \dots, x_9^2, x_1^3, \dots, x_9^3 \end{bmatrix}^T$. Comparing the experiment results in Figures 11 and 12, we can find that:

(i) The 3rd-order polynomial mapping function only brings a small improvement to L1-regularized LS.

Figure 12: Regression results of different methods with the 3rd order polynomial mapping function, i.e., $\phi(x) = \begin{bmatrix} x_1, \dots, x_9, x_1^2, \dots, x_9^2, x_1^3, \dots, x_9^3 \end{bmatrix}^T (\lambda = 1, \alpha = 1, \sigma^2 = 5).$