

SF1624 Algebra och geometri Tentamen Måndag 24 oktober 2022

Skrivtid: 08:00–11:00 Tillåtna hjälpmedel: Inga Examinator: Maria Saprykina

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng. Till antalet erhållna poäng på del A adderas eventuella bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt.

Betygsgränser vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx	
Total poäng	27	24	21	18	16	15	
varav från del C	6	3	-	-	-	-	

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade.

1. Lös matrisekvationen
$$XA = X + A$$
, där $A = \begin{pmatrix} 2 & 3 \\ 1 & 6 \end{pmatrix}$. (6 p)

2. Låt N vara lösningsrummet till det homogena linjära ekvationssystemet

$$\begin{cases} x + 2y - 2w = 0 \\ 2x + y - z - w = 0 \\ -x + y + z - w = 0 \end{cases}$$

Bestäm en ortonormal bas för N och ange dimensionen av N.

 $(6 \, p)$

Del B

- 3. Låt P vara punkten (1,0,3), ℓ linjen (x,y,z)=(2,1,3)+t(1,0,1), där t är en reell parameter, och π planet x-3y+z=4.
 - a) Bestäm det kortaste avståndet mellan punkten P och linjen ℓ . (3 p)
 - b) Bestäm en linje L i parameterform som tillhör planet π och skär linjen ℓ under rät vinkel. (3 p)
- 4. De två linjära avbildningarna $S: \mathbb{R}^3 \to \mathbb{R}^3$ och $T: \mathbb{R}^3 \to \mathbb{R}^3$ har matriserna

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 3 \\ 1 & a & 3 \end{pmatrix} \quad \text{resp.} \quad B = \begin{pmatrix} 4 & 1 & 3 \\ 7 & 1 & b \\ 3 & 0 & 2 \end{pmatrix},$$

där a och b är konstanter.

- a) För alla värden på *a* bestäm en bas för värderummet (bildrummet) av *S*. (3 p)
- b) Bestäm vilka värden a och b kan ha för att S och T ska ha samma värderum (bildrum).

(3p)

Del C

- 5. I en kub med kantlängd 1, enligt figuren, införs ett koordinatsystem med bas $B = \{u, v, w\}$ och origo i punkten O.
 - a) Ange koordinaterna för vektorn \overrightarrow{OQ} i basen B. (2 p)
 - b) Bestäm matrisen i basen *B* för en rotation kring axeln *OP* med vinkeln $\pi/2$ i riktning enligt figuren. (4 p)

6. Låt v_1 och v_2 vara två egenvektorer till samma linjära avbildning med egenvärden λ_1 och λ_2 där $\lambda_1 \neq \lambda_2$. Bevisa att $\{v_1, v_2\}$ är linjärt oberoende. (6 p)