Classic Models

Kuan-Yu Chen (陳冠宇)

2017/09/21 @ TR-509, NTUST

Review

- Query & Information Need
- Relevance
- Information Retrieval & Data Retrieval

IR Modeling

- Modeling in IR is a complex process aimed at producing a ranking function
 - Ranking function is a function that assigns scores to documents with regard to a given query
- This process consists of two main tasks
 - The conception of a logical framework for representing documents and queries
 - Representation
 - The definition of a ranking function that allows quantifying the similarities among documents and queries
 - Ranking

Ranking

- A ranking is an ordering of the documents that reflects their relevance to a user query
- Any IR system has to deal with the problem of predicting which documents the users will find relevant
- This problem naturally embodies a degree of uncertainty, or vagueness
 - Relevance!

Formal Expression

- An IR model is a **quadruple** $[\mathbf{D}, \mathbf{Q}, F, R]$
 - **D** is a set of documents in the collection $\mathbf{D} = \{d_1, \dots, d_{|\mathbf{D}|}\}$
 - \mathbf{Q} is a set of user queries $\mathbf{Q} = \{q_1, \dots, q_{|\mathbf{Q}|}\}$
 - F is a function that translates the queries and documents into a sort of representations
 - *R* is a ranking function

Taxonomy of Classic IR Models

Index Term

- Each document is represented by a set of representative keywords or index terms
 - An index term is a word or group of consecutive words in a document
- A pre-selected set of index terms can be used to summarize the document contents
- However, it might be interesting to assume that all words are index terms (full text representation)

- Boolean model is a simple model, which based on set theory and Boolean algebra
- Documents are represented by a term-document incidence matrix
 - Terms are units
- Queries specified as Boolean expressions
 - quite intuitive and precise semantics
 - neat formalism

For documents

- d_1 = The way to avoid linearly scanning is to index the documents in advance
- d_2 = The model views each document as just a set of words
- d_3 = We will discuss and model these size assumption

d_1	d_2	d_3
1	0	0
1	1	0
0	1	1
1	0	0
0	1	0
0	0	1
1	0	0
		1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0

- For term-document matrix
 - Each row associates with a term, which shows the documents it appears in
 - Each column associates with a document, which reveals the terms that occur in it

	d_1	d_2	d_3
way	1	0	0
document	1	1	0
model	0	1	1
avoid	1	0	0
view	0	1	0
discuss	0	0	1
advance	1	0	0
1			

• Let's query "way"

$$way = [1\ 0\ 0]$$

 \therefore answer = d_1

	d_1	d_2	d_3
1			
way	1	0	0
document	1	1	0
model	0	1	1
avoid	1	0	0
view	0	1	0
discuss	0	0	1
advance	1	0	0

Let's query non-"way"

$$\neg way = \neg[1\ 0\ 0] = [0\ 1\ 1]$$

$$\therefore$$
 answer = $d_2 \& d_3$

	d_1	d_2	d_3
way	1	0	0
document	1	1	0
model	0	1	1
avoid	1	0	0
view	0	1	0
discuss	0	0	1
advance	1	0	0

• Let's query "document" and "model"

$$document \land model = [1 \ 1 \ 0] \land [0 \ 1 \ 1] = [0 \ 1 \ 0]$$

$$\therefore$$
 answer = d_2

	d_1	d_2	d_3
1			
way	1	0	0
document	1	1	0
model	0	1	1
avoid	1	0	0
view	0	1	0
discuss	0	0	1
advance	1	0	0
i i			

• Let's query "avoid" or "view"

$$avoid \ \forall view = [1\ 0\ 0] \ \forall [0\ 1\ 0] = [1\ 1\ 0]$$

$$\therefore$$
 answer = $d_1 \& d_2$

	d_1	d_2	d_3
i i			
way	1	0	0
document	1	1	0
model	0	1	1
avoid	1	0	0
view	0	1	0
discuss	0	0	1
advance	1	0	0

• Let's query "avoid" and ("view" or non-"model")

$$avoid \land (view \lor \neg model) = [1\ 0\ 0] \land ([0\ 1\ 0] \lor \neg [0\ 0\ 1])$$

$$[1\ 0\ 0] \land ([0\ 1\ 0] \lor [1\ 1\ 0])$$

$$[1\ 0\ 0] \land [1\ 1\ 0]$$

 $[1\ 0\ 0]$

 \therefore answer = d_1

	d_1	d_2	d_3
1			
way	1	0	0
document	1	1	0
model	0	1	1
avoid	1	0	0
view	0	1	0
discuss	0	0	1
advance	1	0	0

Boolean Model – Drawbacks

- Retrieval based on binary decision criteria with no notion of partial matching
 - Data retrieval?
- **No ranking** of the documents is provided (absence of a grading scale)
- Information need has to be translated into a Boolean expression, which most users find awkward
 - The Boolean queries formulated by the users are most often too simplistic
- The model frequently returns either too few or too many documents in response to a user query

The Probabilistic Model

- The probabilistic model captures the IR problem using a probabilistic framework
 - Tries to estimate the **probability** that a document will be relevant to a user query
 - $P(R_q|d_j)$
 - Assumes that this probability depends on the query and document representations only
 - Hyper-links and other information
 - The **ideal answer set**, referred to as *R*, should maximize the probability of relevance

Formal Expression

- R_q be the set of relevant documents to a given query q
- \bar{R}_q be the set of non-relevant documents to query q
- $P(R_q|d_j)$ be the probability that d_j is relevant to the query q
- $P(\bar{R}_q|d_i)$ be the probability that d_i is non-relevant to q
- The relevance degree can be defined as

$$sim(d_j, q) = \frac{P(R_q|d_j)}{P(\overline{R}_q|d_j)}$$

Document Collection

Derivation

By using Bayes' rule

$$sim(d_{j},q) = \frac{P(R_{q}|d_{j})}{P(\bar{R}_{q}|d_{j})} = \frac{\frac{P(R_{q},d_{j})}{P(d_{j})}}{\frac{P(\bar{R}_{q},d_{j})}{P(d_{j})}} = \frac{P(R_{q},d_{j})}{\frac{P(\bar{R}_{q},d_{j})}{P(\bar{R}_{q},d_{j})}}$$

$$= \frac{\frac{P(R_{q},d_{j})}{P(R_{q})}P(R_{q})}{\frac{P(\bar{R}_{q},d_{j})}{P(\bar{R}_{q})}P(\bar{R}_{q})} = \frac{P(d_{j}|R_{q})P(R_{q})}{\frac{P(d_{j}|R_{q})}{P(d_{j}|\bar{R}_{q})}P(\bar{R}_{q})} \propto \frac{P(d_{j}|R_{q})}{\frac{P(d_{j}|R_{q})}{P(d_{j}|\bar{R}_{q})}}$$

Constant for the given query q

The probabilistic model can be computed by

$$sim(d_j,q) = \frac{P(d_j|R_q)P(R_q)}{P(d_j|\bar{R}_q)P(\bar{R}_q)} \propto \frac{P(d_j|R_q)}{P(d_j|\bar{R}_q)}$$

- $P(d_j|R_q)$ probability of randomly selecting the document d_j from the set R_q
- $P(R_q)$ probability that a document randomly selected from the entire collection is relevant to query
- $P(d_j|\bar{R}_q)$ and $P(\bar{R}_q)$ are analogous and complementary

 We make the Naive Bayes conditional independence assumption that the presence or absence of a word in a document is independent of the presence or absence of any other word

$$sim(d_j,q) \approx \frac{P(d_j|R_q)}{P(d_j|\bar{R}_q)} = \frac{\left(\prod_{w_i \in d_j} P(w_i|R_q)\right) \left(\prod_{w_i \notin d_j} P(\bar{w}_i|R_q)\right)}{\left(\prod_{w_i \in d_j} P(w_i|\bar{R}_q)\right) \left(\prod_{w_i \notin d_j} P(\bar{w}_i|\bar{R}_q)\right)}$$

- $P(w_i|R_q)$ is the probability that the term w_i is present in a document randomly selected from R_q
- $P(\overline{w}_i|R_q)$ is the probability that w_i is not present in a document randomly selected from the set R_q
- probabilities with \bar{R}_q : analogous to the ones just described

$$P(w_i|R_q) + P(\overline{w}_i|R_q) = 1$$

$$P(w_i|\overline{R}_q) + P(\overline{w}_i|\overline{R}_q) = 1$$

Since we assume index terms follow the Bernoulli distributions

$$P(w_i|R_q) + P(\overline{w}_i|R_q) = 1$$

$$P(w_i|\overline{R}_q) + P(\overline{w}_i|\overline{R}_q) = 1$$

The probabilistic model can be translated to:

$$sim(d_{j},q) \approx \frac{\left(\prod_{w_{i} \in d_{j}} P(w_{i}|R_{q})\right) \left(\prod_{w_{i} \notin d_{j}} P(\overline{w}_{i}|R_{q})\right)}{\left(\prod_{w_{i} \in d_{j}} P(w_{i}|\overline{R}_{q})\right) \left(\prod_{w_{i} \notin d_{j}} P(\overline{w}_{i}|\overline{R}_{q})\right)}$$

$$= \frac{\left(\prod_{w_{i} \in d_{j}} P(w_{i}|R_{q})\right) \left(\prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|R_{q})\right)\right)}{\left(\prod_{w_{i} \in d_{j}} P(w_{i}|\overline{R}_{q})\right) \left(\prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|\overline{R}_{q})\right)\right)}$$

Then, we take logarithms:

$$sim(d_{j},q) \approx \frac{\left(\prod_{w_{i} \in d_{j}} P(w_{i}|R_{q})\right) \left(\prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|R_{q})\right)\right)}{\left(\prod_{w_{i} \in d_{j}} P(w_{i}|\bar{R}_{q})\right) \left(\prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|\bar{R}_{q})\right)\right)}$$

$$\propto log \prod_{w_{i} \in d_{j}} P(w_{i}|R_{q}) + log \prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|R_{q})\right)$$

$$- log \prod_{w_{i} \in d_{j}} P(w_{i}|\bar{R}_{q}) - log \prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|\bar{R}_{q})\right)$$

By using a trick

$$sim(d_{j}, q)$$

$$\propto log \prod_{w_{i} \in d_{j}} P(w_{i}|R_{q}) + log \prod_{w_{i} \notin d_{j}} (1 - P(w_{i}|R_{q}))$$

$$+ log \prod_{w_{i} \in d_{j}} (1 - P(w_{i}|R_{q})) - log \prod_{w_{i} \in d_{j}} (1 - P(w_{i}|R_{q}))$$

$$- log \prod_{w_{i} \in d_{j}} P(w_{i}|\bar{R}_{q}) - log \prod_{w_{i} \notin d_{j}} (1 - P(w_{i}|\bar{R}_{q}))$$

$$+ log \prod_{w_{i} \in d_{j}} (1 - P(w_{i}|\bar{R}_{q})) - log \prod_{w_{i} \in d_{j}} (1 - P(w_{i}|\bar{R}_{q}))$$

Consequently, we can obtain

$$\begin{split} & sim(d_{j},q) \\ & \propto log \prod_{w_{i} \in d_{j}} P(w_{i}|R_{q}) + log \prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|R_{q})\right) + log \prod_{w_{i} \in d_{j}} \left(1 - P(w_{i}|R_{q})\right) - log \prod_{w_{i} \in d_{j}} \left(1 - P(w_{i}|R_{q})\right) \\ & - log \prod_{w_{i} \in d_{j}} P(w_{i}|\bar{R}_{q}) - log \prod_{w_{i} \notin d_{j}} \left(1 - P(w_{i}|\bar{R}_{q})\right) + log \prod_{w_{i} \in d_{j}} \left(1 - P(w_{i}|\bar{R}_{q})\right) - log \prod_{w_{i} \in d_{j}} \left(1 - P(w_{i}|\bar{R}_{q})\right) \\ & = log \prod_{w_{i} \in d_{j}} \frac{P(w_{i}|R_{q})}{1 - P(w_{i}|R_{q})} + log \prod_{w_{i}} \left(1 - P(w_{i}|R_{q})\right) + log \prod_{w_{i} \in d_{j}} \frac{1 - P(w_{i}|\bar{R}_{q})}{P(w_{i}|\bar{R}_{q})} - log \prod_{w_{i}} \left(1 - P(w_{i}|\bar{R}_{q})\right) \end{split}$$

Constant for the given query q and document d_i

So, we have

$$sim(d_j,q) \propto log \prod_{w_i \in d_j} \frac{P(w_i|R_q)}{1 - P(w_i|R_q)} + log \prod_{w_i \in d_j} \frac{1 - P(w_i|\bar{R}_q)}{P(w_i|\bar{R}_q)}$$

- Further, lets make an additional simplifying assumption that we **only consider terms that occurring in the query**
 - This is a key expression for ranking computation in the probabilistic model

$$sim(d_j,q) \propto \sum_{w_i \in d_j \& w_i \in q} log \frac{P(w_i|R_q)}{1 - P(w_i|R_q)} + log \frac{1 - P(w_i|\bar{R}_q)}{P(w_i|\bar{R}_q)}$$

How to Estimate? - 1

- For a given query, if we have
 - *N* be the number of documents in the collection
 - n_i be the number of documents that contain term w_i
 - R_q be the total number of relevant documents to query q
 - r_i be the number of relevant documents that contain term w_i

	Relevant	Non-relevant	All Documents
Documents that contain w_i	r_i	$n_i - r_i$	n_i
Documents that do not contain w_i	$R_q - r_i$	$N - n_i - (R_q - r_i)$	$N-n_i$
All documents	R_q	$N-R_q$	N

How to Estimate? – 2

The probabilities can be estimated by:

$$P(w_i|R_q) = \frac{r_i}{R_q}$$

$$P(w_i|\bar{R}_q) = \frac{n_i - r_i}{N - R_q}$$

	Relevant	Non-relevant	All Documents
Documents that contain w_i	r_i	$n_i - r_i$	n_i
Documents that do not contain w_i	$R_q - r_i$	$N - n_i - (R_q - r_i)$	$N-n_i$
All documents	R_q	$N-R_q$	N

• Then, the equation for ranking computation in the probabilistic model could be rewritten as

$$sim(d_{j},q) \propto \sum_{w_{i} \in d_{j} \& w_{i} \in q} log \frac{P(w_{i}|R_{q})}{1 - P(w_{i}|R_{q})} + log \frac{1 - P(w_{i}|\bar{R}_{q})}{P(w_{i}|\bar{R}_{q})}$$

$$= \sum_{w_{i} \in d_{j} \& w_{i} \in q} log \frac{\frac{r_{i}}{R_{q}}}{1 - \frac{r_{i}}{R_{q}}} + log \frac{1 - \frac{n_{i} - r_{i}}{N - R_{q}}}{\frac{n_{i} - r_{i}}{N - R_{q}}}$$

$$= \sum_{w_{i} \in d_{j} \& w_{i} \in q} log \left(\frac{r_{i}}{R_{q} - r_{i}} \cdot \frac{N - R_{q} - n_{i} + r_{i}}{n_{i} - r_{i}}\right)$$

In Practice - 1

• For handling small values of r_i , we add 0.5 to each of the terms in the formula

$$sim(d_j, q) \propto \sum_{w_i \in d_j \& w_i \in q} log\left(\frac{r_i + 0.5}{R_q - r_i + 0.5} \cdot \frac{N - R_q - n_i + r_i + 0.5}{n_i - r_i + 0.5}\right)$$

Robertson-Sparck Jones Equation

In Practice – 2

- In real case, it is hard to obtain the statistics of R_q and r_i
 - Ground truth?
 - A simplest way is to assume they are zero!

$$sim(d_{j}, q)$$

$$\propto \sum_{w_{i} \in d_{j} \& w_{i} \in q} log\left(\frac{r_{i} + 0.5}{R_{q} - r_{i} + 0.5} \cdot \frac{N - R_{q} - n_{i} + r_{i} + 0.5}{n_{i} - r_{i} + 0.5}\right)$$

$$\approx \sum_{w_{i} \in d_{j} \& w_{i} \in q} log\left(\frac{N - n_{i} + 0.5}{n_{i} + 0.5}\right)$$

Pros and Cons

- Advantages:
 - Docs ranked in decreasing order of probability of relevance
- Disadvantages:
 - need to estimate $P(w_i|R_q)$
 - method does not take "frequency" into account
 - the lack of document length normalization
 - The longer the document, the larger the score?

Overlap Score Model

Term Weighting – 1

- The terms of a document are not equally useful for describing the document contents
 - There are index terms which are vaguer
- There are (occurrence) properties of an index term which are useful for evaluating the importance of the term in a document
 - For instance, a word which appears in all documents of a collection is completely useless for retrieval tasks
 - However, deciding on the importance of a term for summarizing the contents of a document is not a trivial issue

Term Weighting – 2

- To characterize term importance, we associate a weight $k_{i,j} > 0$ with each term w_i that occurs in the document d_j
 - If w_i that does not appear in the document d_i , then $k_{i,j} = 0$
- The weight $k_{i,j}$ quantifies the importance of the index term w_i for describing the contents of document d_i
- These weights are useful to **compute a rank** for each document in the collection with regard to a given query

Formal Expression

- w_i be an index term and d_j be a document
- $V = \{w_1, ..., w_{|V|}\}$ be the set of all index terms
- $k_{i,j} > 0$ be the weight associated with w_i and d_j

• We can define a |V|-dimensional weighted vector d_j that contains the weight of each index term $w_i \in V$ in the document d_i

Term Frequency – 1

- The value of $k_{i,j}$ is proportional to the term frequency
 - Luhn Assumption
 - The weights $k_{i,j}$ can be computed using the **frequencies of** occurrence of the term within the document

$$k_{i,j} = t f_{i,j}$$

- This is based on the observation that high frequency terms are important for describing documents
 - The more often a term occurs in the text of the document, the higher its weight

Term Frequency – 2

• Several variants of tf weight have been proposed

Binary	{0, 1}
Raw Frequency	$tf_{i,j}$
Log Normalization	$1 + log_2(tf_{i,j})$
Double Normalization 0.5	$0.5 + 0.5 \frac{tf_{i,j}}{max_j tf_{i,j}}$
Double Normalization σ	$\sigma + (1 - \sigma) \frac{tf_{i,j}}{max_j tf_{i,j}}$

Term Frequency – 3

Take "Log Normalization" for example

$$\overline{t}f_{i,j} = \begin{cases} 1 + log_2(tf_{i,j}) & \text{if } tf_{i,j} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Vo	Vocabulary		
1	to		
2	do		
3	is		
4	be		
5	or		
6	not		
7	I		
8	am		
9	what		
10	think		
11	therefore		
12	da		
13	let		
14	it		

$tf_{i,1}$	$tf_{i,2}$	$tf_{i,3}$	$tf_{i,4}$
3	2	-	-
2	-	2.585	2.585
2	-	-	-
2	2	2	2
-	1	-	-
-	1	-	-
-	2 2	2	-
-	2	1	-
-	1	-	-
-	-	1	-
-	-	1	-
-	-	-	2.585
-	-	-	2
-	-	-	2

Inverse Document Frequency – 1

- Raw term frequency as above suffers from a critical problem
 - All terms are considered equally important when it comes to assessing relevancy on a query
 - In fact certain terms have little or no discriminating power in determining relevance
- An immediate idea is to scale down the term weights by leveraging the document frequency of each term
 - Document Frequency df_i : the number of documents in the collection that contain the term w_i

Inverse Document Frequency – 2

• Denoting as usual the total number of documents in a collection by N, we define the *inverse document frequency* of a term w_i as follows

$$idf_i = log \frac{N}{df_i}$$

- The *idf* of a rare term is high, whereas the *idf* of a frequent term is likely to be low
- idf is used to reveal the term specificity

Inverse Document Frequency – 3

• Five distinct variants of *idf* weight

Unary	1
Inverse Frequency	$log \frac{N}{n_i}$
Inverse Frequency Smooth	$log\left(1+\frac{N}{n_i}\right)$
Inverse Frequency Max	$log\left(1 + \frac{max_i(n_i)}{n_i}\right)$
Probabilistic Inverse Frequency	$log rac{N-n_i}{n_i}$

TF-IDF

 We now combine the definitions of term frequency and inverse document frequency, to produce a composite weight for each term in each document

$$TF - IDF_{i,j} = tf_{i,j} \times idf_i$$

- $TF IDF_{i,j}$ assigns to term w_i a weight in document d_j
 - $TF IDF_{i,j}$ will be higher when w_i occurs many times within a small number of documents
 - It will be lower when the term occurs fewer times in a document, or occurs in many documents
 - It will be the lowest when the term occurs in virtually all documents ($idf_i = 0$)

Overlap Score Model – 1

- At this point, we may view each document as a vector with one component corresponding to each term in the dictionary
 - The weight for each component is determined by its $TF IDF_{i,j}$
 - For dictionary terms that do not occur in the document, this weight is zero

Overlap Score Model – 2

• The score of a document d_j is the sum, over all query terms, of the $TF - IDF_{i,j}$ weight of the query terms occurs in d_j

$$sim(q, d_j) = \sum_{w_i \in q} TF - IDF_{i,j}$$

Vector Space Model

The Vector Space Model – 1

- Opposite to the overlap score model, we now present queries as vectors in the same vector space as the document collection
 - In other word, documents and queries are all vectors, and the weight for each component is determined by its TF IDF
- The relevance degree between a given query and a document can be computed by referring to the cosine similarity measure

$$sim(q, d_j) = \frac{\vec{q} \cdot \vec{d}_j}{|\vec{q}||\vec{d}_j|}$$

The Vector Space Model – 2

- Similarity between a document d_j and a query q
 - Since $w_{i,q} > 0$ and $w_{i,j} > 0$, we have $0 \le sim(q, d_j) \le 1$

$$sim(q, d_j) = cos(\theta) = \frac{\vec{q} \cdot \vec{d}_j}{|\vec{q}| |\vec{d}_j|} = \frac{\sum_{w_i \in V} w_{i,q} \times w_{i,j}}{\sqrt{\sum_{w_i \in V} w_{i,q}^2} \times \sqrt{\sum_{w_i \in V} w_{i,j}^2}}$$

Why cosine similarity measure? Why not Euclidean distance?

The Vector Space Model – 2

• Recommended TF-IDF weighting schemes

Scheme	Document Term Weight	Query Term Weight
1	$tf_{i,j} \times log \frac{N}{n_i}$	$\left(0.5 + 0.5 \frac{tf_{i,q}}{max_i(tf_{i,q})}\right) \times log \frac{N}{n_i}$
2	$1 + t f_{i,j}$	$log\left(1+\frac{N}{n_i}\right)$
3	$\left(1 + t f_{i,j}\right) \times \log \frac{N}{n_i}$	$\left(1 + t f_{i,q}\right) \times \log \frac{N}{n_i}$

Pros & Cons

Advantages

- Term-weighting improves quality of the answer set
- Partial matching is somewhat allowed
- Cosine ranking formula sorts documents according to a degree of similarity to the query
- Document length normalization is naturally built-in into the ranking

Disadvantages

It assumes independence of index terms

Discussion & Comparison

TF vs. IDF

The role of index terms

IR as a binary clustering Relevance vs. Non-relevance

- Which index terms (features) better describe the relevant class
 - Intra-cluster similarity (TF-factor)
 - Inter-cluster dissimilarity (IDF-factor)

Comparisons

- Boolean model does not provide for partial matches and is considered to be the weakest classic model
- There is some controversy as to whether the probabilistic model outperforms the vector model
 - Croft suggested that the probabilistic model provides a better retrieval performance
- However, Salton Misshowed that the vector model outperforms probabilistic model with general collections

Homework 1 – Retrieval Model

Homework 1

- In this project, you will have a set of queries (16 queries) and a collection of documents (2265 documents)
 - Each words/term is represented as a number except that the number "-1" is a delimiter
- Our goal is to implement a vector space model, and print out the ranking results for all of the queries

```
20001.query
1 2280 3068 457 26763 27631 14645 732 4332 2690 2923 20646 38527 27352 -1
 3 1407 2986 -1
 4 25607 432 2148 3140 -1
 5 27414 31424 7680 2280 3068 457 24554 30066 855 1715 11629 -1
 6 26763 18571 27631 14645 732 4332 -1
 7 28226 23520 27646 21192 3015 24310 23142 -1
 8 2280 3068 457 1200 -1
 9 596 855 3015 732 1715 2033 -1
10 27414 2345 2471 699 24310 43624 2878 32518 13629 17554 -1
11 17030 18380 9561 -1
12 31765 19448 31359 3012 18828 -1
13 27646 2345 21192 11738 3015 23600 -1
14 596 23600 21189 341 12133 3015 1259 18571 27631 3015 14645 -1
15 7680 2572 8994 2345 21892 3123 2855 -1
16 8250 32818 699 24310 7971 30165 9608 3015 23142 -1
17 2280 3068 457 1200 -1
18 27414 3015 14177 469 1259 732 3237 24583 14177 -1
19 34043 9079 24310 2938 13109 34474 -1
20 20818 3015 13629 34445 13910 -1
21 24310 1408 34770 379 28672 29978 3015 19217 -1
22 21478 16574 10340 28940 -1
23 24054 3015 32474 1906 739 34445 2737 -1
24 9242 2938 1259 10355 3015 15128 -1
25 1155 34179 13023 -1
26 8769 17442 2717 24783 14645 19486 -1
27 3025 3379 39506 -1
28 27414 2345 1728 34975 662 27647 25995 25944 7570 23390 24310 3015 7971 -1
29 1027 -1
```

```
X VOM19980220.0700.0166
  2 02/20/1998 7:02:46.68
 3 02/20/1998 7:03:41.13
 4 40889 44022 10092 2471 9800 9561 38208 32528 3015 16920 16271 -1
 5 10528 28193 16868 2572 11437 -1
 € 33886 -1
 7 38208 1200 -1
 8 38208 13812 17231 3153 2710 2903 3015 16920 -1
 9 40889 16972 2718 44022 43444 38478 2913 508 2718 32035 46265 -1
10 744 3455 9800 38208 1838 1944 2718 612 32528 3015 16920 9561 3025 13674 36506
11 28516 13247 40889 713 16920 26416 16868 3015 25634 -1
12 38208 1838 3429 1715 8775 32528 30081 709 21387 3015 16920 -1
13 24435 596 40889 13703 25312 18366 3015 13894 1330 18318 3082 596 30267 3015 2
14 3043 1259 40889 40526 35251 1200 -1
15 9561 38208 32528 16920 3015 16276 -1
16 44870 29696 38208 18412 24040 3015 30165 -1
17 33886 -1
18 38208 1200 -1
19 38208 3015 25958 17428 13812 596 1944 2718 612 1730 17231 3153 28654 1190 169
```

```
AssessmentTrainSet,txt
   2 20002.query 13
 99 VOM19980225.0700.0585
100 VOM19980303.0900.0396
101 VOM19980303.0900.2128
102 VOM19980304.0700.0737
103 VOM19980304.0700.1058
104 VOM19980305.0700.0703
105 VOM19980305.0900.2093
106 VOM19980306.0700.0971
107 VOM19980311.0700.1487
108 VOM19980326.0700.1793
l109 VOM19980523.0700.0189
1110 VOM19980621.0700.0565
111 VOM19980630.0900.0230
```

Questions?

kychen@mail.ntust.edu.tw