Peal III

$$S = \int_{0}^{\infty} f(x) dx = F(b) - F(a)$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots = -\frac{3}{7} \ln 2$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

Зміст

1	Ряди			
	1.1	Первинний аналіз збіжності та арифметика рядів	3	
	1.2	Знакододатні ряди	5	
	1.3	Знакозмінні ряди	10	
	1.4	Трошки детально про абсолютно збіжні ряди	12	
	1.5	Трошки про умовно збіжні ряди	14	
	1.6	Добуток Коші	16	
	1.7	Нескінченні добутки	18	
2	Функціональні ряди			
	2.1	Функціональні послідовності	21	
	2.2	Функціональні ряди	25	
	2.3	Властивості рівномірно збіжних функціональних рядів	27	
	2.4	Степеневі ряди	29	
	2.5	Ряди Тейлора	31	
3	Інтеграл Рімана-Стілтьєса 34			
	3.1	Коротко про монотонні функції	34	
	3.2		36	
	3.3		38	
	3.4		39	
		3.4.1 Означення за Ріманом	39	
			39	
	3.5		40	
	3.6	•	40	
	3.7	Властивості інтегралів	40	
	3.8	-	41	
	3.9		41	
	3.10	Граничний перехід в інтегралі Стілтьєса	42	
4	Вступ до \mathbb{R}^m (багатовимірний математичний аналіз)			
	4.1	Про простір \mathbb{R}^m	43	
	4.2		44	
	4.3	Границя послідовності	46	
	4.4		48	
	4.5	Неперервність функції	50	
	4.6	Символіка Ландау	51	
	4.7	Границя та неперервність векторнозначної функції кількох змінних, символіка Ландау	53	
	4.8	Крива в \mathbb{R}^m	54	
5	Диф	реренційованість	55	
	5.1	Для функції із багатьма змінними	55	
	5.2	Для векторнозначних функцій	58	
	5.3	Похідна за напрямком. Градієнт	60	
	5.4	Неявно задані функції	61	
	5.5	Обернені функції	63	
	5.6		64	
			64	
			65	
			66	
	5.7		66	
	5.8		70	
	5.9		71	
	5.10	Умовні локальні екстремуми	73	

Ряди 1

Definition 1.0.1 Рядом називають формальну нескінченну суму нескінченної послідовності чисел $\{a_n, n \ge 1\}$:

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Частковою сумою даного ряда називають суму перших k членів:

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k$$

В такому випадку в нас виникає послідовність часткових сум $\{S_k, k \geq 1\}$.

Якщо така послідовність часткових сум є збіжною, то ряд $\sum a_n$ називають **збіжним** та **сумма** цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} S_k = S$$

Інакше – розбіжним.

Example 1.0.2 Знайдемо суму: $1 + q + q^2 + \dots$

Розглянемо часткову суму $S_k = 1 + q + \dots + q^k = \frac{1 - q^k}{1 - a}$ – сума геометричної прогресії.

$$\lim_{k\to\infty}S_k=\lim_{k\to\infty}\frac{1-q^k}{1-q}=\begin{bmatrix}\frac{1}{1-q},|q|<1\\ \infty,|q|>1\end{bmatrix}.$$
 При $q=1$ маємо: $1+1+1+\ldots$, тобто $S_k=k\implies\lim_{k\to\infty}S_k=\infty.$

Підсумуємо:

- сума є збіжною при |q| < 1 та $1 + q + q^2 + \dots = \frac{1}{1 q}$;
- сума є розбіжнрю при $|q| \ge 1$.

Первинний аналіз збіжності та арифметика рядів

Proposition 1.1.1 Необхідна ознака збіжності ряду

Задано
$$\sum_{n=1}^{\infty} a_n$$
 – збіжний. Тоді $\lim_{n \to \infty} a_n = 0$.

Зафіксуємо часткові суми:
$$S_{k+1} = \sum_{n=1}^{k+1} a_n$$
 $S_k = \sum_{n=1}^k a_n.$

Оскільки ряд є збіжним, то звідси
$$\lim_{k\to\infty} S_{k+1} = \lim_{k\to\infty} S_k = S. \text{ Тоді } \lim_{k\to\infty} a_{k+1} = \lim_{k\to\infty} (S_{k+1} - S_k) = S - S = 0.$$

Example 1.1.2 Розглянемо ряд $\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots$ Оскільки $\not \exists \lim_{n \to \infty} (-1)^n$, то за необхідною ознакою збіжності, маємо, що ряд – розбіжний.

3

Theorem 1.1.3 Критерій Коші

$$\operatorname{Pяд} \sum_{n=1}^{\infty} a_n - \operatorname{збіжний} \iff \forall \varepsilon > 0: \exists K \in \mathbb{N}: \forall k \geq K: \forall p \geq 1: \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon.$$

Proof.

$$\sum_{n=1}^{\infty}a_n$$
 – збіжний $\iff \exists \lim_{k\to\infty}S_k$ - збіжна границя $\stackrel{\text{критерій Koшi}}{\iff}$

$$\iff \forall \varepsilon > 0 : \exists K : \forall k \ge K : \forall p \ge 1 : |S_{k+p} - S_k| = \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon$$

Example 1.1.4 Важливий

Розглянемо $\sum_{i=1}^{\infty} \frac{1}{n}$ – гармонічний ряд. Доведемо, що даний ряд – розбіжний, використовуючи

критерій Копі, тобто
$$\exists \varepsilon>0: \forall K: \exists k_1,k_2\geq K: \left|\sum_{n=k_1}^{k_2}\frac{1}{n}\right|\geq \varepsilon$$

Дійсно, якщо
$$\varepsilon=0.5, k_1=K, k_2=2K,$$
 то отримаємо $\left|\sum_{n=K}^{2K} \frac{1}{n}\right| = \frac{1}{K} + \frac{1}{K+1} + \dots + \frac{1}{2K} > K \frac{1}{2K} = 0.5.$

Отже, цей ряд – розбіжний.

Один з прикладів, що підтверджує, що необіхдна умова збіжності не є достатньою.

Remark 1.1.5 Колись ми виводили константу Ойлера-Маскероні
$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right)$$

Позначимо $H_k = \sum_{n=1}^{\infty} \frac{1}{n}$ — часткова сума гармонічного ряда. Тоді $\gamma = \lim_{n \to \infty} (H_n - \ln n)$. Ця границя

$$\lim_{n \to \infty} \frac{H_n}{\gamma + \ln n} = \lim_{n \to \infty} \left(\frac{H_n - \ln n}{\gamma + \ln n} + \frac{\ln n}{\gamma + \ln n} \right) = 0 + 1 = 1.$$

дозволяє показати нам, що $H_n \sim \gamma + \ln n$ при $n \to \infty$. Дійсно, $\lim_{n \to \infty} \frac{H_n}{\gamma + \ln n} = \lim_{n \to \infty} \left(\frac{H_n - \ln n}{\gamma + \ln n} + \frac{\ln n}{\gamma + \ln n} \right) = 0 + 1 = 1.$ Це дозволяє приблизно обчислити значення часткової суми гармонічного ряда. Зокрема $H_{10^6} \approx$ $\gamma + \ln 10^6 \approx 14.392\dots$ Тут можна зауважити, що гармонічний ряд надзвичайно повільно росте, але все одно прямує до нескінченності (тобто розбіжний, як ми зазначили).

Proposition 1.1.6 Задані $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$ – збіжні. Тоді збіжними будуть й наступні ряди:

1)
$$\forall \alpha \in \mathbb{R} : \sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n;$$

2)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
.

Proof.

Доведу друге. Перший пункт аналогічно. Зафіксуємо часткові суми:

2)
$$S_k(a) = \sum_{n=1}^k a_n$$
, $S_k(b) = \sum_{n=1}^k b_n$.

Тоді
$$S_k(a) + S_k(b) = \sum_{n=1}^k (a_n + b_n) = \sum_{n=1}^k a_n + \sum_{n=1}^k b_n.$$

Оскільки
$$\sum_{n=1}^{\infty}a_n, \quad \sum_{n=1}^{\infty}b_n$$
 - збіжні, то $\lim_{k\to\infty}S_k(a)=S(a), \quad \lim_{k\to\infty}S_k(b)=S(b).$

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{k \to \infty} (S_k(a) + S_k(b)) = S(a) + S(b) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Definition 1.1.7 Хвостом (або **остачею**) ряду $\sum_{n=1}^{\infty} a_n$ називають ряд $\sum_{n=m}^{\infty} a_n$, де $m \in \mathbb{N}$.

Тобто ми відкидуємо перші m-1 доданків та сумуємо, починаючи з m.

Proposition 1.1.8
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \sum_{n=m}^{\infty} a_n$ - збіжний, причому $\forall m \in \mathbb{N}$.

Proof.

$$\sum_{n=1}^{\infty}a_n - збіжний \stackrel{\mathrm{критерій \ Komi}}{\Longleftrightarrow} \forall \varepsilon > 0 : \exists K : \forall k \geq K : \forall p \geq 1 : \left|\sum_{n=k+1}^{k+p}a_n\right| < \varepsilon \iff$$

$$\iff \exists K' = \max\{K,m\} : \forall k \geq K' : \forall p \geq 1 : \left|\sum_{n=k+1}^{k+p}a_n\right| < \varepsilon \iff \sum_{n=m}^{\infty}a_n - збіжний.$$

1.2 Знакододатні ряди

Тобто розглядаємо зараз лише ряди $\sum_{n=1}^{\infty} a_n$, такі, що $\forall n \geq 1: a_n \geq 0$.

Proposition 1.2.1 $\{S_k, k \geq 1\}$ – мононтонно неспадна послідовність.

Proof.

$$\forall k \ge 1: S_{k-1} - S_k = a_{k+1} \ge 0 \Rightarrow S_k \le S_{k+1}.$$

Proposition 1.2.2 Якщо $\{S_k, k \geq 1\}$ – обмежена, то тоді $\sum_{n=1}^{\infty} a_n$ – збіжний.

Proof.

Щойно дізнались що послідовність часткових сум монотонна. До того ж, вона є обмеженою за умовою. Отже, $\exists\lim_{k\to\infty}S_k=S,$ тобто $\sum_{n=1}^\infty a_n$ – збіжний.

Theorem 1.2.3 Ознака порівняння в нерівностях

Задані $\sum_{n=1}^{\infty}a_n$ $\sum_{n=1}^{\infty}b_n$ таким чином, що $\forall n\geq 1:a_n\leq b_n.$ Тоді:

1) якщо
$$\sum_{n=1}^{\infty}b_n$$
 – збіжний, то $\sum_{n=1}^{\infty}a_n$ – збіжний теж;

2) якщо
$$\sum_{n=1}^{\infty} a_n$$
 – розбіжний, то $\sum_{n=1}^{\infty} b_n$ – розбіжний теж.

Proof

Оскільки $\forall n\geq 1: a_n\leq b_n,$ то тоді $\sum_{n=1}^k a_n\leq \sum_{n=1}^k b_n,$ де $k\in\mathbb{N}.$

1) Нехай
$$\sum_{n=1}^{\infty} b_n$$
 – збіжний ряд, тоді $\lim_{k \to \infty} \sum_{n=1}^k b_n = \tilde{S}$.

Отже, в нашій нерівності, якщо $k \to \infty$, то маємо $0 \le \sum_{n=1}^\infty a_n \le \sum_{n=1}^\infty b_n = \tilde{S}.$

Отже, існує границя, а тому $\sum_{n=1}^{\infty} a_n$ – збіжний.

2) Це є оберненим твердженням до 1).

Example 1.2.4 Важливий

Розглянемо далі $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - ряд Діріхлє. Дослідимо на збіжність.

Нехай $\alpha < 1$, тоді $\forall n \geq 1 : \frac{1}{n} < \frac{1}{n^{\alpha}}$.

За ознакою порівняння та минулим прикладом, отримаємо, що $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ – розбіжний.

Нехай $\alpha>1$, тоді отримаємо таку оцінку:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots \le$$

$$\leq 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \dots = 1 + \frac{1}{2^{\alpha - 1}} + \frac{1}{4^{\alpha - 1}} + \frac{1}{8^{\alpha - 1}} + \dots = \frac{1}{1 - \frac{1}{2^{\alpha - 1}}}.$$

Наш ряд – обмежений, а послідовність часткових сум – монотонна. Отже, $\sum_{i=1}^{\infty} \frac{1}{n^{\alpha}}$ – збіжний.

Підсумуємо:
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 - $\begin{bmatrix} \mathrm{poз}$ біжний, $lpha \leq 1 \\$ збіжний, $lpha > 1 \end{bmatrix}$.

До речі, на основі цього прикладу ми можемо визначити так звану ζ-функцію Рімана таким чином:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

У силу того, коли даний ряд збіжний, ми вимагаємо s > 1.

Theorem 1.2.5 Ознака порівняння в границях

Задані $\sum_{n=1}^{\infty} a_n \quad \sum_{n=1}^{\infty} b_n$, тут члени строго додатні. Відомо, що $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l$. Тоді:

- 1) Якщо $l \neq 0$ та $l \neq \infty$, то $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ збіжні або розбіжні одночасно;
- 2) Якщо l=0, то зі збіжності $\sum_{i=0}^{\infty}b_{n}$ випливає збіжність $\sum_{i=0}^{\infty}a_{n}$.

Remark 1.2.6 До речі, $l \ge 0$, оскільки всі члени – додатні.

Proof.
1)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l \neq 0$$
, тобто $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \left| \frac{a_n}{b_n} - l \right| < \varepsilon$.

Оберемо
$$\varepsilon=\frac{l}{2},$$
 тоді $\frac{l}{2}<\frac{a_n}{b_n}<\frac{3l}{2}\Rightarrow\frac{l}{2}b_n< a_n<\frac{3l}{2}b_n,\ \forall n\geq N.$

Припустимо, що $\sum_{n=N}^{\infty} b_n$ – збіжний, тоді збіжним буде $\sum_{n=N}^{\infty} \frac{3l}{2} b_n$, а отже, за попередньою теоремою,

$$\sum_{n=N}^{\infty}a_n$$
 — збіжний. Отже, $\sum_{n=1}^{\infty}a_n$ — збіжний.

Якщо
$$\sum_{n=N}^{\infty} a_n$$
 - збіжний, тоді збіжним буде $\sum_{n=N}^{\infty} \frac{l}{2} b_n$, а отже $\sum_{n=N}^{\infty} b_n$ - збіжний. Тому $\sum_{n=1}^{\infty} b_n$ - збіжний. Аналогічними міркуваннями доводиться розбіжність.

Тобто
$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$
 – збіжні або розбіжні одночасно.

2)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l = 0$$
, тобто $\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_n}{b_n} \right| < \varepsilon$ Оберемо $\varepsilon = 1$, тоді $\forall n \ge N : a_n < b_n$. Тоді виконується попередня теорема, один з двох пунктів. \blacksquare

Example 1.2.7 Дослідити на збіжність
$$\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$$

Example 1.2.7 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$. Маємо $a_n = \frac{\arctan n}{1+n^2}$. Встановимо $b_n = \frac{1}{n^2}$. Обчислимо границю їхніх відношень:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 \arctan n}{1 + n^2} = \lim_{n \to \infty} \frac{\arctan n}{1 + \frac{1}{n^2}} = \frac{\pi}{2}.$$

A оскільки $\sum_{n=1}^{\infty} \frac{1}{n^2}$ – збіжний, то $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$ – збіжний.

Theorem 1.2.8 Ознака д'Аламбера

Задано
$$\sum_{n=1}^{\infty} a_n$$
 – строго додатний. Тоді:

1) Якщо
$$\varlimsup_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$$
, то ряд – збіжний;

1) Якщо
$$\varlimsup_{n\to\infty}\frac{a_{n+1}}{a_n}<1$$
, то ряд – збіжний; 2) Якщо $\varliminf_{n\to\infty}\frac{a_{n+1}}{a_n}>1$, то ряд – розбіжний.

Proof.

1) Маємо
$$\overline{\lim}_{n\to\infty}\frac{a_{n+1}}{a_n}=q<1$$
, тоді $\forall \varepsilon>0$, зокрема для $\varepsilon=\frac{1-q}{2}$, проміжок $(q+\varepsilon,+\infty)$ має скінченну кількість членів послідовності $\left\{\frac{a_{n+1}}{a_n}\right\}$, тобто $\exists N: \forall n\geq N: \frac{a_{n+1}}{a_n}< q+\varepsilon=\frac{1+q}{2}$.

Звідси випливає, що $a_{n+1} < \frac{1+q}{2}a_n$

$$\implies a_{N+1} < \frac{1+q}{2}a_N$$

$$\implies a_{N+2} < \frac{1+q}{2} a_{N+1} < \left(\frac{1+q}{2}\right)^2 a_N$$

$$\implies \forall k \ge 1: a_{N+k} < \left(\frac{1+q}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k$$

еометрична прогресія, збіжний.

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 – збіжний, отже, $\sum_{n=1}^{\infty}a_n$ – збіжний.

2) Маємо
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q>1$$
, тоді $\forall \varepsilon>0$, зокрема для $\varepsilon=\frac{q-1}{2}$, проміжок $(-\infty,q-\varepsilon)$ має скінченну кількість членів послідовності $\left\{\frac{a_{n+1}}{a_n}\right\}$, тобто $\exists N: \forall n\geq N: \frac{a_{n+1}}{a_n}>q-\varepsilon=\frac{1+q}{2}$.

Аналогічними міркуваннями отримаємо $\forall k \geq 1 : a_{N+k} > \left(\frac{q+1}{2}\right)^{\kappa} a_N$.

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{q+1}{2} \right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{q+1}{2} \right)^k$$

А тут геометрична прогресія при виразі, що більше одиниці – розбіжний. Тоді
$$\sum_{k=1}^{\infty} a_{N+k} = \sum_{n=N+1}^{\infty} a_n$$
 – розбіжний, отже, $\sum_{n=1}^{\infty} a_n$ - розбіжний.

Corollary 1.2.9 Ознака д'Аламбера (стандартний вигляд)

Задано $\sum_{n\to\infty}^{\infty} a_n$ – строго додатний. Нехай $\exists \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний;
- 2) Якщо q > 1, то ряд розбіжний;
- 3) Якщо q = 1, то відповіді нема.

Якщо $\exists\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$, то автоматично $\exists\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$, $\exists\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$. Ну а далі чисто за попередньою теоремою.

3) А тепер в чому проблема при q=1. Розглянемо обидва ряди: $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Використаємо

для обох ознаку д'Аламбера:
$$\lim_{n\to\infty}\frac{1}{n+1}\cdot n=1 \quad \lim_{n\to\infty}\frac{1}{(n+1)^2}\cdot n^2=1.$$

Результат – однаковий, проте один ряд – розбіжний, а інший – збіжний. Тож q=1 не дає відповіді, шукаємо інші методи.

Example 1.2.10 Дослідити на збіжність
$$\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!}$$
.
$$a_n = \frac{3^n (n!)^2}{(2n)!} \qquad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n+1)^2}{(2n+1)(2n+2)} = \frac{3}{4} < 1.$$
 Отже, наш ряд – збіжний за д'Аламбером.

Theorem 1.2.11 Радикальна ознака Коші

Задано $\sum_{n=0}^{\infty} a_n$ – додатний. Нехай $\exists \overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний;
- 2) Якщо q > 1, то ряд розбіжний;
- 3) Якщо q = 1, то відповіді нема.

Proof.

1) $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = q < 1$, тобто $\forall \varepsilon > 0$: проміжок $(q + \varepsilon, +\infty)$ має скінченну кількість елементів, тобто $\forall \varepsilon > 0$: $\exists N : \forall n \geq N : \sqrt[n]{a_n} < q + \varepsilon \implies a_n < (q + \varepsilon)^n$. Оберемо $\varepsilon = \frac{1-q}{2}$. Тоді маємо: $a_n < \left(\frac{1+q}{2}\right)^n$.

Оберемо
$$\varepsilon=rac{1-q}{2}.$$
 Тоді маємо: $a_n<\left(rac{1+q}{2}
ight)^n.$

Розглянемо ряд $\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$ – геометрична прогресія, вираз в сумі менше за одиниці – збіжний.

Отже,
$$\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$$
 – збіжний, а тому $\sum_{n=1}^{\infty} a_n$ – збіжний.

2) $\exists \overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = q > 1$, тобто $\exists \{\sqrt[n]{a_{n(p)}}, p \ge 1\} : \lim_{p \to \infty} \sqrt[n]{a_{n(p)}} = q$ — така підпослідовність, що

містить цю границю
$$\implies \forall \varepsilon > 0: \exists P: \forall p \geq P: \left| \sqrt[n(p)]{a_{n(p)}} - q \right| < \varepsilon$$

містить цю границю
$$\implies \forall \varepsilon > 0: \exists P: \forall p \geq P: \left| \sqrt[n(p)]{a_{n(p)}} - q \right| < \varepsilon.$$
 Оберемо $\varepsilon = \frac{q-1}{2}$, тоді $a_{n(p)} > \left(\frac{q+1}{2}\right)^{n(p)}$. Тоді $\lim_{p \to \infty} a_{n(p)} \geq \lim_{p \to \infty} \left(\frac{q+1}{2}\right)^{n(p)} = \infty.$ Отже, $\lim_{n \to \infty} a_n \neq 0$. Це означає, що необхідна умова збіжності не виконується – розбіжний.

3) Для
$$q=1$$
 треба розглянути такі самі ряди як при доведенні ознаки д'Аламбера.

Example 1.2.12 Дослідити на збіжність $\sum_{n=0}^{\infty} \frac{\left(\frac{n+1}{n}\right)^n}{3^n}$.

Example 1.2.12 Дослідити на зоїжність
$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

$$a_n = \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n} \qquad \sqrt[n]{a_n} = \frac{\left(\frac{n+1}{n}\right)^n}{3} = \frac{1}{3}\left(1 + \frac{1}{n}\right)^n$$

$$\overline{\lim_{n\to\infty}}\sqrt[n]{a_n}=\lim_{n\to\infty}\frac{1}{3}\left(1+\frac{1}{n}\right)^n=\frac{e}{3}<1.$$
 Отже, наш ряд – збіжний за Коші.

Theorem 1.2.13 Інтегральна ознака Коші

Задано $\sum_{n=0}^{\infty} a_n$ – додатний. Встановимо функцію $f\colon [1,+\infty) \to \mathbb{R}$, яка під такими умовами:

- 1) $\forall n \geq 1 : a_n = f(x);$ 2) f не зростає на $[1, +\infty)$.

Тоді $\sum_{n=0}^{\infty} a_n$ та $\int_{1}^{+\infty} f(x) dx$ збіжні або розбіжні одночасно.

Оскільки f(x) спадає, то $\forall k \geq 1 : \forall x \in [k, k+1] :$

$$a_k \ge f(x) \ge a_{k+1}$$
.

$$a_k = \int_k^{(k+1)} a_k \, dx \ge \int_k^{(k+1)} f(x) \, dx \ge \int_k^{(k+1)} a_{k+1} \, dx = a_{k+1}.$$

Просумуємо ці нерівності від k = 1 до k = M, отримаємо:

$$\sum_{k=1}^{M} a_k \ge \int_{1}^{M+1} f(x) \, dx \ge \sum_{k=1}^{M} a_{k+1}.$$

Нехай $\sum_{k=1}^{m}$ – збіжний. Тоді якщо $M \to \infty$, то отримаємо, що $\int_{1}^{+\infty} f(x) \, dx$ приймає скінченне значе-

Нехай $\int_1^{+\infty} f(x) \, dx$ – збіжний. Тому $\sum_{k=1}^{N} a_{k+1}$ - обмежений. А оскільки він додатній, то звідси, збі-

Випадок розбіжності доводиться від супротивного.

Example 1.2.14 Дослідити на збіжність $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$.

Маємо функцію $f(x)=\frac{1}{x\ln^2 x}$. Зрозуміло, що f спадає на $[2,+\infty)$, бо $x,\ln^2 x$ там зростають.

$$\int_{2}^{+\infty} \frac{1}{x \ln^{2} x} dx = -\frac{1}{\ln x} \Big|_{2}^{+\infty} = \frac{1}{\ln 2} - збіжний.$$
 Отже, наш ряд – збіжний за Коші інтегральним.

Theorem 1.2.15 Ознака Раабе

Задано
$$\sum_{n=1}^{\infty}a_n$$
 - строго додатний. Нехай $\exists\lim_{n\to\infty}n\left(\frac{a_n}{a_{n+1}}-1\right)=q$. Тоді:

- 1) Якщо q < 1, то ряд розбіжний;
- 2) Якщо q > 1, то ряд збіжний:
- 3) Якщо q = 1, то відповіді нема.

Маємо
$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = q$$
, тобто можна сказати $n \left(\frac{a_n}{a_{n+1}} - 1 \right) - q = o(1)$ при $n \to \infty$. Або $\frac{a_n}{a_{n+1}} = 1 + \frac{q}{n} + o\left(\frac{1}{n}\right)$ при $n \to \infty$.

Одночасно ми розглянемо
$$b_n=\frac{1}{n^{\alpha}}$$
, тоді звідси $\frac{b_n}{b_{n+1}}=\left(1+\frac{1}{n}\right)^{\alpha}=1+\frac{\alpha}{n}+o\left(\frac{1}{n}\right)$ при $n\to\infty$.

1) q>1,тоді ми зможемо знайти $\alpha\in(1,q).$ Звідси

$$\frac{a_n}{a_{n+1}} - \frac{b_n}{b_{n+1}} = \frac{q - \alpha}{n} + o\left(\frac{1}{n}\right) > 0$$
, починаючи з деякого номеру.

Тоді
$$\frac{a_n}{a_{n+1}}>\frac{b_n}{b_{n+1}}\implies \frac{a_{n+1}}{a_n}<\frac{b_{n+1}}{b_n}.$$
 Оскільки $\alpha>1$, то тоді $\sum_{n=1}^\infty b_n$ - збіжний. А із цієї нерівності

випливає, що $\sum_{n=1}^{\infty} a_n$ – збіжний.

2) q < 1, то тоді ми зможемо знайти $\alpha \in (q,1)$. А далі всі процедури аналогічні.

3) Розглянути ряди
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 - розбіжний та $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$ — збіжний за інтегральною ознакою Коші. Обидві дають одиничну границю.

Example 1.2.16 Дослідити на збіжність
$$\sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^{2022}$$
.

$$a_n = \left(\frac{(2n-1)!!}{(2n)!!} \right)^{2022}$$
. Тоді маємо:

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\left(\frac{2n+2}{2n+1} \right)^{2022} - 1 \right) = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{2n+1} \right)^{2022} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1 + \frac{2022}{2n+1} + o\left(\frac{1}{2n+1} \right) - 1}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{2022n}{2n+1} = 1011 > 1.$$

Таким чином, заданий ряд – збіжний за Раабе.

1.3Знакозмінні ряди

Definition 1.3.1 Ряд $\sum_{n=0}^{\infty} a_n$ називається **абсолютно збіжним**, якщо збігається ряд $\sum_{n=0}^{\infty} |a_n|$.

Definition 1.3.2 Ряд $\sum_{n=1}^{\infty} a_n$ називається **умовно збіжним**, якщо $\sum_{n=1}^{\infty} a_n$ – збіжний, але $\sum_{n=1}^{\infty} |a_n|$ – не збіжний.

Proposition 1.3.3 $\sum_{n=1}^{\infty} a_n$ – абсолютно збіжний. Тоді $\sum_{n=1}^{\infty} a_n$ – збіжний.

Proof.

$$\sum_{n=1}^{\infty}a_n - \text{абсолютно збіжний} \implies \sum_{n=1}^{\infty}|a_n| - \text{збіжний} \implies \forall \varepsilon > 0: \exists K: \forall k \geq K: \forall p \geq 1:$$

$$\left|\sum_{n=1}^{k+p}|a_n|\right| < \varepsilon \implies \left|\sum_{n=1}^{k+p}a_n\right| \leq \left|\sum_{n=1}^{k+p}|a_n|\right| < \varepsilon \implies \sum_{n=1}^{\infty}a_n - \text{збіжний}.$$

Theorem 1.3.4 Ознака Ляйбніца

Задано ряд вигляду $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, де $a_n \geq 0$ – **знакозмінний ряд**. Відомо, що:

- 1) $\{a_n, n \ge 1\}$ монотонно спадає;

 $2)\lim_{n o\infty}a_n=0.$ Тоді заданий ряд – збіжний.

Розглянемо послідовність часткових сум $\{S_{2k}, k \geq 1\}$. Отримаємо наступне:

Розглянемо послідовність часткових сум
$$\{S_{2k}, k \ge 1\}$$
. Отримаємо $S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \ge 0.$

$$\geq 0 \qquad \geq 0 \qquad \geq 0$$
 $S_{2k} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2k-2} - a_{2k-1}) - a_{2k} \le a_1.$

$$\geq 0 \qquad \geq 0 \qquad \geq 0$$
Тобто $0 \le S_{2k} \le a_k - \text{обмумена послідовність}$

$$\geq 0$$
 ≥ 0 ≥ 0 ≥ 0 Tootro $0 \leq S_{01} \leq a_1$ - of Mexerial Rochitan Residue Resi

Тобто $0 \le S_{2k} \le a_1$ — обмежена послідовність. Також $S_{2(k+1)} = S_{2k} + (a_{2k+1} - a_{2k+2}) \ge S_{2k}$ — монотонна. Таким чином, $\exists \lim_{k \to \infty} S_{2k} = S$. Розглянемо ще одну послідовність часткових сум $\{S_{2k+1}, k \ge 1\}$. Зрозуміло, що $S_{2k+1} = S_{2k} + a_{2k+1}$ $\Longrightarrow \lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} S_{2k} + \lim_{k \to \infty} a_{2k+1} = S + 0 = S$.

Остаточно, маємо, що послідовність
$$\{S_m, m \geq 1\}$$
 - збіжна, тоді $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ – збіжний.

Corollary 1.3.5 $\forall k \geq 1 : |S - S_k| \leq a_{k+1}$.

Розглянемо хвіст ряду
$$S-S_k=\sum_{n=k+1}^{\infty}(-1)^{n+1}a_n$$
. А також розглянемо $\tilde{S_m}=\sum_{n=k+1}^{m}(-1)^{n+1}a_n$. Тоді

$$\tilde{S_m} = S_m - S_k = (-1)^{k+1} \left(a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k \not 2 \end{bmatrix}$$

$$\Rightarrow |\tilde{S_m}| = \begin{vmatrix} a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k \vdots 2 \end{bmatrix} = a_m + a_m$$

$$= a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k \not 2 \end{bmatrix} \le a_{k+1}$$

$$\implies |S - S_k| = \lim_{m \to \infty} |\tilde{S}_m| \le a_{k+1}.$$

Example 1.3.6 Обчислити суму $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ з точністю до $\varepsilon = 10^{-5}$.

Зрозуміло, що $a_n = \frac{1}{n!} \ge 0$, монотонно спадає та н.м. Отже, виконуються ознаки Ляйбніца, а тому

$$|S - S_k| \le a_{k+1} < \varepsilon \implies \frac{1}{(k+1)!} < \frac{1}{10^5} \implies (k+1)! > 100000.$$

$$|S-S_k| \le a_{k+1} < \varepsilon \implies \frac{1}{(k+1)!} < \frac{1}{10^5} \implies (k+1)! > 100000.$$
 Достатньо взяти нам $k=8$. Тому ми отримаємо: $S \approx S_8 = -1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \frac{1}{40320} = \frac{-3641}{5760}$

Theorem 1.3.7 Ознаки Діріхлє та Абеля

Задано ряд вигляду $\sum_{n=1}^{\infty} a_n b_n$. Нехай виконано один з двох блок умов:

$$\sum_{n=1}^k a_n$$
 — обмежена.
$$\{b_n, n \geq 1\}$$
 — монотонна та н.м.
$$\{b_n, n \geq 1\}$$
 — монотонна та обмежена.
$$\{b_n, n \geq 1\}$$
 — монотонна та обмежена.
$$oзнака\ \textit{Діріхле}$$

Тоді
$$\sum_{n=1}^{\infty} a_n b_n$$
 – збіжний.

Спочатку почнемо з ознаки Діріхле. Припустимо
$$b_n$$
 спадає. Застосуємо критерій Коші.
$$\left|\sum_{n=k+1}^{k+p}a_nb_n\right| = \left|A_{k+p}b_{k+p} - A_kb_{k+1} - \sum_{n=k+1}^{k+p-1}A_n(b_{n+1} - b_n)\right| = \left|A_{k+p}b_{k+p} - A_kb_{k+1} + \sum_{n=k+1}^{k+p-1}A_n(b_n - b_{n+1})\right| \le \sum_{n=k+1}^{k+p-1}A_n(b_n - b_n)$$

$$|A_{k+p}b_{k+p} - A_kb_{k+1}| + \sum_{n=k+1}^{k+p-1} |A_n||b_{n+1} - b_n|| \le 1$$

За умовою,
$$A_k = \sum_{n=1}^k a_n$$
 – обмежена, тобто $\exists C > 0 : \forall k \ge 1 : |A_k| \le C$.

Також
$$b_n$$
 – н.м., тоді $\forall \varepsilon > 0: \exists K: \forall k \geq K: |b_k| < \varepsilon.$ Тоді $|A_{k+p}b_{k+p} - A_kb_{k+1}| \leq |A_{k+p}||b_{k+p}| + |A_k||b_{k+1}| < 2C\varepsilon.$ Також $\sum_{n=k+1}^{k+p-1} |A_n||b_{n+1} - b_n| \leq C \sum_{n=k+1}^{k+p-1} (b_n - b_{n+1}) = C(b_{k+1} - b_{k+p}) \leq Cb_{k+1} < C\varepsilon$

$$\leq 3C\varepsilon$$
. Виконано $\forall \varepsilon > 0$ та $\forall k \geq K : \forall p \geq 1$. Отже, $\sum_{n=1}^{\infty} a_n b_n$ – збіжний.

Далі доводимо ознаку Абеля. Оскільки $\sum_{n=1}^{\infty} a_n$ – збіжний, то тоді обмежений. Оскільки $\{b_n\}$ моно-

тонна та обмежена, то $b_n \to B$. Якщо розглянути $c_n = b_n - B$, то маємо $\{c_n, n \ge 1\}$ – монотонна та

Отже, ряд
$$\sum_{n=1}^{\infty} a_n c_n$$
 – збіжний за Діріхле. А далі ясно, що $\sum_{n=1}^{\infty} a_n b_n$ – збіжний.

Example 1.3.8 Дослідити на збіжність ряд $\sum_{n=0}^{\infty} \frac{\sin n}{n}$.

Будемо для цього використовувати ознаку Діріхле, встановимо $a_n = \sin n, b_n = \frac{1}{n}$

$$\sum_{n=1}^{k} \sin n = \sum_{n=1}^{k} \frac{\sin(1 \cdot n) \sin \frac{1}{2}}{\sin \frac{1}{2}} = \frac{1}{2 \sin \frac{1}{2}} \sum_{n=1}^{k} \left(\cos \left(n - \frac{1}{2} \right) - \cos \left(n + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \frac{3}{2} + \cos \frac{3}{2} - \cos \frac{5}{2} + \dots + \cos \left(k - \frac{1}{2} \right) - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k$$

$$\frac{\sin\frac{k+1}{2}\sin\frac{k}{2}}{\sin\frac{1}{2}}.$$

Таким чином,
$$\left|\sum_{n=1}^k \sin n\right| = \left|\frac{\sin\frac{k+1}{2}\sin\frac{k}{2}}{\sin\frac{1}{2}}\right| \le \frac{1}{\sin\frac{1}{2}} \implies \sum_{n=1}^k \sin n$$
 — обмежена.

Зрозуміло, що $\frac{1}{n}$ монотонна та н.м

Отже,
$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$
 – збіжний.

Example 1.3.9 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{\sin n}{n} e^{-n}$.

Будемо для цього використовувати ознаку Абеля, встановимо $a_n = \frac{\sin n}{n}, b_n = e^{-n}$.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$
 — збіжний за попереднім прикладом.

$$e^{-n}$$
 – монотонна, оскільки $e^{-n-1}-e^{-n}=e^{-n}(e^{-1}-1)<0$. e^{-n} – обмежена, оскільки $0< e^{-n}< e$.

$$e^{-n}$$
 – обмежена, оскільки $0 < e^{-n} < e$.

Отже,
$$\sum_{n=1}^{\infty} \frac{\sin n}{n} e^{-n}$$
 – збіжний.

Трошки детально про абсолютно збіжні ряди

Для кожного числа $a \in \mathbb{R}$ визначимо додатну та від'ємну частину числа:

$$a^{+} = \begin{cases} a, & a > 0 \\ 0, & a \le 0 \end{cases} \qquad a^{-} = \begin{cases} 0, & a \ge 0 \\ -a, & a < 0 \end{cases}.$$

Маємо кілька зауважень. Перше з них – це $0 \le a^+ \le |a|$ та $0 \le a^- \le |a|$. Більш того, $a = a^+ - a^-$.

Тепер ми можемо розділити ряд $\sum_{n=0}^{\infty} a_n$ на додатну частину $\sum_{n=0}^{\infty} a_n^+$ та на від'ємну частину $\sum_{n=0}^{\infty} a_n^-$.

Proposition 1.4.1 $\sum_{n=1}^{\infty} a_n$ – збіжний абсолютно $\iff \sum_{n=1}^{\infty} a_n^+, \sum_{n=1}^{\infty} a_n^-$ – обидва збіжні (як невід'ємні

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-, \qquad \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

Для доведення в обидві сторони треба зауважити, що справедлива рівність:
$$0 \le \sum_{n=k+1}^{k+p} |a_n| = \sum_{n=k+1}^{k+p} a_n^+ + \sum_{n=k+1}^{k+p} a_n^-$$

$$a_n = k+1$$
 $a_n = k+1$ $a_n = k+1$ $a_n = k+1$ А з даної рівності безпосередньо випливають дві нерівності: $0 \le \sum_{n=k+1}^{k+p} a_n^+ \le \sum_{n=k+1}^{k+p} |a_n|$ $0 \le \sum_{n=k+1}^{k+p} a_n^- \le \sum_{n=k+1}^{k+p} |a_n|$.

Ми таким чином доведемо твердження в обидві сторони.

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n^+ - \lim_{k \to \infty} \sum_{n=1}^{k} a_n^- = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-.$$

$$\sum_{n=1}^{\infty} |a_n| = \lim_{k \to \infty} \sum_{n=1}^{k} |a_n| = \lim_{k \to \infty} \sum_{n=1}^{k} a_n^+ + \lim_{k \to \infty} \sum_{n=1}^{k} a_n^- = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

Definition 1.4.2 Заданий ряд $\sum_{n=0}^{\infty} a_n$.

Перестановкою даного ряду назвемо ряд $\sum_{m=0}^{\infty} b_m$, для якого виконана така умова:

$$\exists f \colon \mathbb{N} \to \mathbb{N}$$
 – бієкція : $b_m = a_{f(m)}$

Example 1.4.3 Наприклад маємо гармонічний ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ Ми переставимо члени так, що спочатку йдуть парні члени, а згодом непарні – отримаємо новий ряд $\sum_{n=1}^{\infty} b_n = \frac{1}{2} + \frac{1}{4} + \dots + 1 + \frac{1}{3} + \dots$

m=1 Формально кажучи, ми встановили бієкцію $f\colon \mathbb{N} o \mathbb{N}$ таким чином: $b_1=a_2, b_2=a_4, \dots$ та для деяких індексів $b_{m_1} = a_1, b_{m_2} = a_3, \dots$

Remark 1.4.4 Оскільки f – бієкція, то замість рівності $b_m = a_{f(m)}$ можна написати $a_m = b_{f^{-1}(m)}$.

Theorem 1.4.5 Задано $\sum_{n=0}^{\infty} a_n$ – абсолютно збіжний. Тоді кожна перестановка даного ряду збігається туди ж.

Proof.

Задано $\sum a_n$ – абсолютно збіжний. Доведення розіб'ємо на два випадки:

I.
$$\sum_{n=1}^{\infty} a_n$$
 – невід'ємний ряд.

Зафіксуємо перестановочний ряд $\sum_{m=0}^{\infty} b_m$, у цьому випадку $b_m = a_{f(m)}$ та $f \colon \mathbb{N} \to \mathbb{N}$ – бієкція.

Нехай
$$\varepsilon>0$$
. За умовою збіжності, існує $N\in\mathbb{N}$, для якого $0\leq\sum_{k=1}^\infty a_k-\sum_{k=1}^N a_k<\varepsilon$

Нехай $\varepsilon>0$. За умовою збіжності, існує $N\in\mathbb{N}$, для якого $0\leq\sum_{k=1}^\infty a_k-\sum_{k=1}^N a_k<\varepsilon$. Хочеться підібрати такий номер $M\in\mathbb{N}$, щоб члени a_1,a_2,\ldots,a_N містилися серед членів b_1,b_2,\ldots,b_M . Зауважимо, що $a_1=b_{f^{-1}(1)},\ldots,a_N=b_{f^{-1}(N)}$, так можемо записати через бієкцію f. Позначимо $f^{-1}(1)=m_1,\ldots,f^{-1}(N)=m_N$, а згодом зафіксуємо наше $M=\max\{m_1,\ldots,m_N\}$. Тоді в нас буде картина, яку ми бажали: картина, яку ми бажали:

$$\{a_1, a_2, \dots, a_N\} = \{b_{m_1}, b_{m_2}, \dots, b_{m_N}\} \subset \{b_1, b_2, \dots, b_M\}.$$

У результаті такого вкладення (в силу невід'ємності членів) маємо $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{n} b_{j}$.

Нехай маємо m>M, тоді звідси $\sum_{k=1}^N a_k \leq \sum_{i=1}^m b_j \leq \sum_{k=1}^\infty a_k$. Маючи додатково нерівність вище,

отримаємо оцінку $0 \leq \sum_{k=1}^{\infty} a_k - \sum_{j=1}^{m} b_j < \varepsilon$. Залишилося спрямувати $m \to \infty$ – отримаємо оцінку

$$0 \leq \sum_{k=1}^{\infty} a_k - \sum_{j=1}^{\infty} b_j \leq \varepsilon < 2\varepsilon$$
. Оскільки це виконано при всіх $\varepsilon > 0$, то тоді $\sum_{j=1}^{\infty} b_j = \sum_{k=1}^{\infty} a_k$.

II.
$$\sum_{n=1}^{\infty} a_n$$
 – довільний ряд.

Зафіксуємо перестановочний ряд $\sum_{m=1}^{\infty} b_m$. Тоді $\sum_{m=1}^{\infty} b_m^+$, $\sum_{m=1}^{\infty} b_m^-$ перестановочні ряди для $\sum_{n=1}^{\infty} a_n^+$, $\sum_{n=1}^{\infty} a_n^-$.

Оскільки ці ряди невід'ємні, то для них маємо $\sum_{m=1}^{\infty}b_m^+=\sum_{n=1}^{\infty}a_n^+,\;\sum_{m=1}^{\infty}b_m^-=\sum_{n=1}^{\infty}a_n^-.$ Отже, $\sum_{m=1}^{\infty}b_m$ також буде абсолютно збіжних разки

також буде абсолютно збіжним рядом, при цьому
$$\sum_{m=1}^{\infty} b_m = \sum_{m=1}^{\infty} b_m^+ - \sum_{m=1}^{\infty} b_m^- = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} a_n.$$

Example 1.4.6 Обчислити ряд
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
.

Цілком зрозуміло, що це збіжний ряд, (за д'Аламбером), причому абсолютно. Отже, ми можемо переставляти члени ряду, оскільки від цього сума не зміниться за теоремою вище.

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots = \frac{1}{2} + \left(\frac{1}{2^2} + \frac{1}{2^2}\right) + \left(\frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{2^3}\right) + \dots = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^3} + \dots = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} + \frac{1}{2^2} \cdot \frac{1}{1 - \frac{1}{2}} + \frac{1}{2^3} \cdot \frac{1}{1 - \frac{1}{2}} + \dots = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots = \frac{1}{1 - \frac{1}{2}} = 2.$$

1.5 Трошки про умовно збіжні ряди

Theorem 1.5.1 Теорема Рімана

Задано $\sum_{n=1}^{\infty} a_n$ – умовно збіжний. Тоді для довільного $M \in \mathbb{R} \cup \{-\infty, +\infty\}$ буде існувати перестановка даного ряду, яка буде збіжною до числа M.

Proof.

Нехай $\sum_{n=1}^{\infty} a_n$ – умовно збіжний. Тоді $\sum_{n=1}^{\infty} a_n^+ = +\infty$ та $\sum_{n=1}^{\infty} a_n^- = +\infty$ (тобто обидва ряди розбіжні).

Дійсно, якби обидва ряди були збіжними, то $\sum_{n=1}^{\infty} a_n$ став би абсолютно збіжним (неможливо). Якби

лише один з рядів був розбіжним, то $\sum_{n=1}^{\infty} a_n = \infty$, тобто був би розбіжним (неможливо).

Нехай заданий ряд $\sum_{n=1}^{\infty} a_n$ так, щоб $a_n \neq 0$ (якщо знайдеться елемент $a_{n_0} = 0$, то члени ряду перенумеруємо).

Тепер фіксуємо довільне число $M \ge 0$.

Оскільки $\sum_{n=1}^{\infty} a_n^+ = +\infty$, то тоді послідовність часткових сум додатних членів – необмежена, тобто $\exists k_1 \geq 1 \ (\text{оберу найменше можливе}) : a_1^+ + a_2^+ + \dots + a_{k_1}^+ > M.$

Оскільки $\sum_{n=1}^{\infty} a_n^- = +\infty$, то тоді послідовність часткових сум від'ємних членів – необмежена, тобто $\exists m_1 \geq 1$ (оберемо найменше можливе) : $a_1^- + a_2^- + \cdots + a_{m_1}^- > a_1^+ + \cdots + a_{k_1}^+ - M$. Тобто звідси отримаємо $a_1^+ + \cdots + a_{k_1}^+ - a_1^- - \cdots - a_{m_1}^- < M$.

Опишу словесно, що ми зробили. Ми взяли перші k_1 додатних членів нашого ряду $\sum_{n=1}^{\infty} a_n$, допоки

сума не перевисить M; а потім взяли перші m_1 від'ємних членів нашого ряду $\sum_{n=1}^{\infty} a_n$, допоки сума не стане меншою за M.

не стане меншою за M. Далі робимо ту саму процедуру. Ми оберемо перші k_2 додатних членів ряду $\sum_{n=k_1+1}^{\infty} a_n$, допоки сума

не перевисить M; а потім оберемо перші m_2 від'ємних членів ряду $\sum_{n=m_1+1}^{\infty} a_n$, допоки сума не стане меншою за M.

:

У нас виникне ряд $\sum_{i=1}^{\infty}b_{j}=(a_{1}^{+}+\cdots+a_{k_{1}}^{+})-(a_{1}^{-}+\cdots+a_{m_{1}}^{-})+(a_{k_{1}+1}^{+}+\cdots+a_{k_{2}}^{+})-(a_{m_{1}+1}^{-}+\cdots+a_{m_{2}}^{-})+\ldots$

– це перестановочний ряд $\sum_{n=1}^{\infty} a_n$. Позначимо $\sum_{i=1}^q b_j = S_q$ – часткова сума.

Оберемо S_q такий, що останній член ряду – це $a_{k_i}^+$. По-перше, $S_q > M$ за конструкцією; по-друге, оскільки $a_{k_i}^+$ має індекс k_i – найменший можливий індекс, де $S_q > M$ – то звідси $S_{q-1} \le M \Longrightarrow S_q \le M + a_{k_i}^+$. Ці дві отримані нерівності гарантують нам оцінку $M < S_q \le M + a_{k_i}^+ \Longrightarrow 0 < S_q - M \le a_{k_i}^+$. Оберемо S_q такий, що останній член ряду – це $a_{m_j}^-$. Аналогічними міркуваннями доведемо, що $-a_{m_i}^- < S_q - M \le 0.$

Оберемо довільне S_q . Зауважимо, що $S_q^{\text{до останнього від'ємного}} \leq S_q \leq S_q^{\text{до останнього додатного}}$. Значить,

$$-a_{m_{i-1}}^+ < S_q - M < a_{k_i}^+.$$

Оскільки $\sum_{n=0}^{\infty}a_n$, то за необіхдною умовою, $a_n\to 0$ при $n\to \infty$. Значить, $a_n^+\to 0,\ a_n^-\to 0$ як

підпослідовності $\{a_n\}$. Внаслідок у нерівності $-a_{m_{i-1}}^- < S_q - M < a_{k_i}^+$ спрямуємо $q \to \infty$, тоді звідси $i \to \infty$, внаслідок чого $a_{m_{i-1}}^-, a_{k_i}^+ \to 0$ як відповідні підпослідовності $\{a_n^+\}, \{a_n^-\}$. Значить,

залишилося
$$\lim_{q \to \infty} S_q = \sum_{j=1}^{\infty} b_j = M.$$

Тепер фіксуємо довільне число M < 0. Насправді, вся ця процедура абсолютно аналогічна. Тільки ми там спочатку брали додатні числа, потім від'ємні – а в цьому випадку робиться навпаки.

Випадок $M = +\infty$.

Для числа $1+a_1^->0$ буде існувати $k_1\in\mathbb{N}$, для якого $a_1^++\cdots+a_{k_1}^+>1+a_1^-$. Для числа $2+a_2^-+a_1^->0$ буде існувати $k_2\in\mathbb{N}$, для якого $a_1^++\cdots+a_{k_2}^+>2+a_1^-+a_2^-$. Іншими словами, $(a_1^++\cdots+a_{k_1}^+)-a_1^-+(a_{k+1}^++\cdots+a_{k_2}^+)>2+a_2^-$.

У нас виникне ряд $\sum_{k=1}^{\infty} b_j = (a_1^+ + \dots + a_{k_1}^+) - a_1^- + (a_{k_1+1}^+ + \dots + a_{k_2}^+) - a_2^- + \dots$ – це перестановочний

ряд $\sum a_n$. Зауважимо, що всі часткові суми перестановочного ряду $S_q \geq i + a_i^-$, тому при $i \to \infty$

ми отримаємо
$$\lim_{q \to \infty} S_q = \sum_{j=1}^{\infty} = +\infty = M.$$

Випадок $M=-\infty$ аналогічний.

Доведення не найкомпактніше, але намагався розписати більше для кращого прояснення.

Example 1.5.2 Розглянемо ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Неважко показати, що цей ряд збіжний умовно.

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=?$$

$$S_{2n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}=1+\frac{1}{2}+\cdots+\frac{1}{2n-1}+\frac{1}{2n}-2\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2n}\right)=$$

$$=\left(1+\frac{1}{2}+\cdots+\frac{1}{2n}-\ln(2n)\right)-\left(1+\cdots+\frac{1}{n}-\ln n\right)+\ln 2\overset{n\to\infty}{\to}\gamma-\gamma+\ln 2=\ln 2.$$
 У цьому випадку γ – константа Ойлера-Маскероні (див. попередній пдф).
$$S_{2n+1}=S_{2n}+\frac{1}{2n+1}\to\ln 2.$$

$$S_{2n+1} = S_{2n} + \frac{1}{2n+1} \to \ln 2.$$

Таким чином, звідси $\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$. Тобто ми довели, що

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2.$$

Тепер переставимо доданки ряду та обчислимо ось таку суму:

$$\begin{aligned} 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots=?\\ S_{3n}&=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots+\frac{1}{4n-3}+\frac{1}{3n}-\frac{1}{4n-1}=\\ &=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots+\frac{1}{4n-3}+\frac{1}{4n-1}-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=\\ \left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{4n-1}+\frac{1}{4n-2}\right)-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2n-1}\right)-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=\\ &=\left(1+\frac{1}{2}+\cdots+\frac{1}{4n-1}+\frac{1}{4n-2}-\ln(4n-2)\right)+\ln(4n-2)-\\ &-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2n-1}-\ln(2n-1)\right)-\frac{1}{2}\ln(2n-1)-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right)-\frac{1}{2}\ln n\xrightarrow{n\to\infty}\\ &\to\gamma-\frac{1}{2}\gamma-\frac{1}{2}\gamma+\frac{3}{2}\ln 2=\frac{3}{2}\ln 2.\\ S_{3n+1}&=S_{3n}+\frac{1}{4n+1}\to\frac{3}{2}\ln 2\qquad S_{3n+2}&=S_{3n+1}+\frac{1}{4n+3}\to\frac{3}{2}\ln 2.\\ Takum чином, після перестановки отримаємо нове значення:\\ 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots=\frac{3}{2}\ln 2. \end{aligned}$$

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots = \frac{3}{2} \ln 2$$

Добуток Коші

Definition 1.6.1 Задано $\sum_{n=0}^{\infty} a_n$ та $\sum_{n=0}^{\infty} b_n$ – два ряди.

Добутком Коші називають ось такий ряд

$$\sum_{k=0}^{\infty} c_k \stackrel{\text{\tiny{IIO3H.}}}{=} \sum_{i=0}^{\infty} a_i \cdot \sum_{j=0}^{\infty} b_j,$$

де кожний член c_k визначається ось таким чином:

$$c_k = \sum_{l=0}^k a_l b_{k-l}$$

Example 1.6.2 Задано два ряди $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} b_n = \frac{(-1)^n}{\sqrt{n+1}}$. Зауважимо, що ці два ряди збіжні за

Ляйбніцом, проте добуток Коші, тобто $\sum_{i=0}^\infty a_i \cdot \sum_{i=0}^\infty b_j$ буде розбіжним. Дійсно, маємо

$$c_k = \sum_{l=0}^k \frac{(-1)^l}{\sqrt{l+1}} \frac{(-1)^{k-l}}{\sqrt{k-l+1}} = (-1)^k \sum_{l=0}^k \frac{1}{\sqrt{l+1}\sqrt{k-l+1}}$$

$$|c_k| = \sum_{l=0}^k \frac{1}{\sqrt{l+1}\sqrt{k-l+1}} \overset{\text{нер-ть Коші}}{\geq} \sum_{l=0}^k \frac{2}{(l+1)+(k-l+1)} = \frac{2(k+1)}{k+2}.$$
 Тоді через цю оцінку матимемо, що $c_k \not\to 0$ при $k \to \infty$. Порушується необхідна ознака збіжності,

тому добуток Коші буде розбіжним.

Тобто добуток двох збіжних рядів не обов'язково може давати збіжний ряд.

Example 1.6.3 Задамо два ряди $\sum_{n=0}^{\infty} a_n$ та $\sum_{n=0}^{\infty} b_n$, де $a_n = \{2, 2, 2^2, 2^3, \dots\}$ та $b_n = \{-1, 1, 1, \dots\}$. Цілком зрозуміло, що кожний такий ряд розбіжний, однак добуток Коші – збіжний. Дійсно, $c_0 = -2$ та решта $c_n = 0$.

Theorem 1.6.4 Задано $\sum_{n=0}^{\infty} a_n = a$ та $\sum_{n=0}^{\infty} b_n = b$ – два збіжні ряди, причому збігаються абсолютно.

Тоді $\sum_{i=0}^{\infty} a_i \sum_{j=0}^{\infty} b_j = ab$, тобто збіжний, причому теж абсолютно.

Proof.

Спочатку доведемо збіжність $\sum_{n=0}^{\infty} |c_n|$. Маємо таку оцінку:

$$\sum_{n=0}^{k} |c_n| = |a_0b_0| + |a_1b_0| + a_1b_0| + \dots + |a_kb_0| + a_{k-1}b_1 + \dots + a_1b_{k-1} + a_0b_k| \le 1$$

$$\leq \sum_{i+j\leq k} |a_i||b_j| = (|a_0| + |a_1| + \dots + |a_k|)(|b_0| + |b_1| + \dots + |b_k|) = \sum_{n=0}^k |a_n| \sum_{n=0}^k |b_k|.$$

Оскільки ряди $\sum_{n=0}^{\infty} |a_n|$ та $\sum_{n=0}^{\infty} |b_n|$ збіжні, то всі часткові суми обмежені – разом з цим обмеженою

буде $\sum_{n=0}^{\infty} |c_n|$, послідовність часткових сум. Послідовність часткових сум зростає для невід'ємних

рядів. Отже, $\sum c_n$ збігається абсолютно.

Тепер конкретно хочемо довести, що $\sum_{n=0}^{\infty} c_n = ab$. Перш за все, оскільки цей ряд збігається абсо-

лютно, то ми можемо переставити члени ряду – від цього сума не зміниться. Значить, $\sum_{n=0}^{\infty} c_n = 0$

$$\sum_{n=0}^{\infty} (a_n b_0 + \dots + a_0 b_n) \stackrel{\text{переставимо}}{=} \sum_{i,j \geq 0} a_i b_j.$$
 Зауважимо, що
$$(a_0 + a_1 + \dots + a_n)(b_0 + b_1 + \dots + b_n) = \sum_{i+j \leq N} a_i b_j = S_N,$$

де $\{S_N, N \ge 0\}$ – підпослідовність послідовності всіх часткових сум ряду $\sum_{i,j>0} a_i b_j$. Причому $S_n \to 0$

ав. Але оскільки наш ряд збіжний, то послідовність всіх часткових сум збіжний, зокрема й будь-яка підпослідовність (яка прямує до ab). Тому послідовність всіх часткових сум має прямувати до ab, тобтто $\sum_{i,j>0} a_i b_j = ab.$

Theorem 1.6.5 Теорема Мертенса

Задані $\sum_{n=0}^{\infty}a_n=a,\sum_{n=0}^{\infty}b_n=b$ — два збіжні ряди, один з рядів збіжний абсолютно. Тоді $\sum_{i=0}^{\infty}a_i\sum_{i=0}^{\infty}b_j=b$ ab – збіжний абсолютно.

Позначимо A_N, B_N, C_N — відповідні часткові суми ряда $\sum_{n=0}^\infty a_n, \sum_{n=0}^\infty b_n$ та добутку Коші. За умовою,

 $A_N \to A, \ B_N \to B;$ припускаємо, що A_N збігається абсолютним чином. Розглянемо часткову суму C_N детальніше:

$$C_N = a_0b_0 + (a_1b_0 + a_1b_0) + \dots + (a_0b_N + \dots + a_Nb_0) = = a_0(b_0 + b_1 + \dots + b_N) + a_1(b_0 + \dots + b_{N-1}) + \dots + a_Nb_0 = a_0B_N + a_1B_{N-1} + \dots + a_Nb_0.$$

Позначимо хвіст ряду $\beta_N = \sum_{n=N+1}^{\infty} b_n$ — отримаємо наступне:

$$C_N = a_0(B - \beta_N) + a_1(B - \beta_{N-1}) + \dots + a_N(B - \beta_0) =$$

$$= B(a_0 + a_1 + \dots + a_N) - a_0\beta_N - a_1\beta_{N-1} - \dots - a_N\beta_0 = BA_N - \gamma_N, \text{ де}$$

$$=B(a_0+a_1+\cdots+a_N)-a_0\beta_N-a_1\beta_{N-1}-\cdots-a_N\beta_0=BA_N-\gamma_N$$
, де $\gamma_N=a_0\beta_N+\cdots+a_N\beta_0$. Для того, щоб $C_N\to BA$ при $N\to\infty$, нам треба довести, що $\gamma_N\to 0$. Перш за все, за умовою, $\sum_{n=0}^{\infty}|a_n|$ збіжний, тоді звідси $\exists M: \forall k\geq 1: \sum_{n=1}^{k}|a_n|\leq M$. Ше до цього, за умовою, $\beta_N\to 0$ як хвіст, тоді $\exists M_1:\forall N>1: |\beta_N|\leq M_1$.

Ще до цього, за умовою, $\beta_N \to 0$ як хвіст, тоді $\exists M_1 : \forall N \geq 1 : |\beta_N| \leq M_1$. Ми отримали константи M, M_1 , із ними будемо далі працювати. Далі нехай $\varepsilon > 0$.

Оскільки
$$\sum_{n=0}^{\infty}|a_n|$$
 збіжний, то звідси $\exists m: \forall n\geq m: \sum_{n=m+1}^{\infty}|a_n|<rac{arepsilon}{2M_1}.$

Оскільки
$$\beta_N \to 0$$
, то звідси $\exists N_1 : \forall N \geq N_1 - m : |\beta_N| < \frac{\varepsilon}{2M}$. $|\gamma_N| = |a_0\beta_N + \dots + a_m\beta_{N-m} + a_{m+1}\beta_{N-(m+1)} + \dots + a_N\beta_0| \leq$ $\leq (|a_0\beta_N| + \dots + |a_m\beta_{N-m}|) + (|a_{m+1}\beta_{N-(m+1)} + \dots + a_N\beta_0| <$ $< \left(|a_0|\frac{\varepsilon}{2M} + \dots + |a_m|\frac{\varepsilon}{2M}\right) + (|a_{m+1}|M_1 + \dots + |a_N|M_1) =$ $= \frac{\varepsilon}{2M}(|a_0| + \dots + |a_m|) + M_1(|a_{m+1}| + \dots + |a_N|) < \frac{\varepsilon}{2M} \cdot M + M_1 \cdot \frac{\varepsilon}{2M_1} = \varepsilon.$

Нескінченні добутки

Думаю, на основні контенту даного пункту буде цілком зрозуміло скоро, чому я вирішив не відокремлювати йому окремий розділ.

Definition 1.7.1 Нескінченним добутком називають добуток нескінченної послідовності ненульових чисел $\{a_n, n \geq 1\}$:

$$a_1 \cdot a_2 \cdots a_n \cdots = \prod_{n=1}^{\infty} a_n$$

Частковим добутком даного добутку називають добуток перших k членів:

$$P_k = \prod_{n=1}^k a_n = a_1 \cdot a_2 \cdots a_k$$

У такому випадку в нас виникає послідовність часткових добутків $\{P_k, k \geq 1\}$.

Якщо така послідовність часткових добутків є збіжною, то ряд $\prod a_n$ називають збіжним та добуток цього ряду дорівнює

$$\prod_{n=1}^{\infty} a_n = \lim_{k \to \infty} \prod_{n=1}^{k} a_n = \lim_{k \to \infty} P_k = P \neq 0$$

Якщо сам P=0, то кажуть, що добуток **розбіжий дл нуля**. Інакше – просто **розбіжним**.

Proposition 1.7.2 Необхідна ознака збіжності добутку

Задано
$$\prod_{n=1}^{\infty} a_n$$
 – збіжний. Тоді $\lim_{k \to \infty} a_k = 1$.

Proof.

Дійсно,
$$\lim_{k\to\infty}a_k=\lim_{k\to\infty}\frac{a_1\dots a_{k-1}a_k}{a_1\dots a_{k-1}}=\lim_{k\to\infty}\frac{P_k}{P_{k-1}}=\frac{P}{P}=1.$$
 Оскільки в числовій послідовності в нас ненульові члени, то всі переходи легітимні.

Remark 1.7.3 Навпаки дане твердження не працює.

Example 1.7.4 Розглянемо добуток $\prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)$. Зауважимо, що вираз під добутком $1 + \frac{1}{k} \to 1$ при $k \to \infty$. Однак даний добуток – розбіжний.

Дійсно, розглянемо частковий добуток
$$\prod_{n=1}^k \left(1+\frac{1}{n}\right) = \prod_{n=1}^k \frac{n+1}{n} = \frac{2}{1} \frac{3}{2} \dots \frac{k+1}{k} = k+1.$$

Отримаємо, що в такому разі $\prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) = +\infty$. Отже, даний добуток – розбіжний.

Example 1.7.5 Доведемо, що $\prod_{n=1}^{\infty} \cos \frac{1}{2^n}$ збіжний.

Розглянемо частковий добуток $P_k = \cos \frac{1}{2} \cos \frac{1}{2^2} \dots \cos \frac{1}{2^k}$. Помножимо та поділимо на $\sin \frac{1}{2^k}$, тож отримаємо:

$$P_k = \cos \frac{1}{2} \cos \frac{1}{2^2} \dots \cos \frac{1}{2^{k-1}} \frac{1}{2} \sin \frac{1}{2^{k-1}} \frac{1}{\sin \frac{1}{2^k}} = \cos \frac{1}{2} \cos \frac{1}{2^2} \dots \cos \frac{1}{2^{k-2}} \frac{1}{4} \sin \frac{1}{2^{k-2}} \frac{1}{\sin \frac{1}{2^k}} = \dots$$

$$= \frac{1}{2^k} \frac{\sin 1}{\sin \frac{1}{2^k}} \xrightarrow{k \to \infty} \sin 1.$$

Example 1.7.6 Доведемо, що $\prod_{n=2}^{\infty} \left(1 + \frac{1}{n^2 - 1}\right)$ збіжний.

$$P_k = \prod_{n=2}^k \left(1 + \frac{1}{n^2 - 1} \right) = \prod_{n=2}^k \frac{n^2}{n^2 - 1} = \prod_{n=2}^k \frac{n}{n - 1} \prod_{n=2}^k \frac{n}{n + 1} = k \cdot \frac{2}{k + 1} \to 2.$$

Theorem 1.7.7 Критерій збіжності добутку

$$\prod_{n=1}^{\infty}a_n$$
 – збіжний $\iff \sum_{n=1}^{\infty}\ln a_n$ – збіжний. (тут припускається, що всі члени $a_n>0$).

При цьому маємо $\prod_{n=1}^{\infty} a_n = e^{\sum_{n=1}^{\infty} \ln a_n}$.

На цьому emani можна пояснити, чому добуток розбіжний в нулі. Просто тому що ряд буде розбіжним.

Proof.

Розглянемо часткову суму $S_k = \sum_{n=1}^k \ln a_n = \ln \prod_{n=1}^k a_n = \ln P_k$. Тобто звідси $P_k = e^{S_k}$.

$$\Longrightarrow$$
 Дано: $\prod_{n=1}^{\infty} a_n$ – збіжний, тобто $P_k \to P \in \mathbb{R} \implies S_k \to \ln P$.

$$\stackrel{n=1}{\longleftarrow}$$
 Дано: $\sum_{n=1}^{n=1} a_n$ — збіжний, тобто $S_k \to S \in \mathbb{R} \implies P_k \to e^S$.

Theorem 1.7.8
$$\prod_{n=1}^{\infty} (1+a_n)$$
 – збіжний $\iff \sum_{n=1}^{\infty} a_n$ – збіжний (тут вимагається $a_n \geq 0$).

Proof.

 $\stackrel{\sim}{\Longrightarrow}$ Дано: $\prod_{n=1}^{\infty}(1+a_n)$ — збіжний. Тоді за критерієм, $\sum_{n=1}^{\infty}\ln(1+a_n)$ має бути збіжним. Значить,

 $\ln(1+a_k) \to 0$ при $k \to \infty$, але тоді $a_k = e^{\ln(1+a_k)} - 1 \to 0$. Значить, $\ln(1+a_k) \sim a_k$, тож ряд $\sum_{n=1}^{\infty} a_n$ – збіжний.

Example 1.7.9 Зокрема $\prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2}\right)$ збіжний, оскільки $\sum_{n=1}^{\infty} \frac{1}{n^2}$ збіжний.

Remark 1.7.10 Теорема має місце і тоді, коли $-1 < u_n \le 0$.

Theorem 1.7.11 Припустимо, що $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} a_n^2$ – збіжні. Тоді $\prod_{n=1}^{\infty} (1+a_n)$ – збіжний.

Proof.

Нам достатньо буде довести, що збіжним буде ряд $\sum_{n=1}^{\infty} \ln(1+a_n)$.

Зауважимо, що $\sum_{n=1}^{\infty}(a_n-\ln(1+a_n))$ збіжний, тому що $a_n-\ln(1+a_n)\sim \frac{1}{2}a_n^2$ при $n\to\infty$, (за рахунок

того, що $a_n \to 0$), при цьому $\sum_{n=1}^\infty a_n^2$ збіжний. Отже, $\sum_{n=1}^\infty \ln(1+a_n)$ збіжний за рахунок збіжності

$$\sum_{n=1}^{\infty} a_n$$
.

Definition 1.7.12 Добуток $\prod_{n=1}^{\infty} a_n$ називається абсолютно збіжним, якщо

$$\sum_{n=1}^{\infty} \ln a_n$$
 – абсолютно збіжний.

Remark 1.7.13 Для абсолютно збіжного добутка можлива будь-яка перестановка множників без зміни значення добутка.

$\mathbf{2}$ Функціональні ряди

2.1Функціональні послідовності

Definition 2.1.1 Функціональною послідовністю назвемо числову послідовність,

$$\{f_n(x), n \ge 1\},\$$

що визначена при всіх $x \in A$. Усі функції визначені саме на множині A.

Definition 2.1.2 Функція f(x), що задана теж на множині A, називається **поточковою границею** функціональної послідовності $\{f_n(x), n \geq 1\}$, якщо

$$\forall x \in A : \lim_{n \to \infty} f_n(x) = f(x).$$

Оскільки границя числової послідовності єдина, то ми можемо створити як раз ту саму функцію $f\colon A o \mathbb{R}$, де кожному $x\in A$ ставиться у відповідність число $\lim_{x\to a} f_n(x)$ (ми припускаємо збіжність). Цілком ясно, що така функція єдина.

Example 2.1.3 Розглянемо функціональну послідовність $\left\{ f_n(x) = \frac{nx}{1+n+x}, n \ge 1 \right\}$ на [0,5]. Тоді $f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{x}+1+\frac{x}{x}} \xrightarrow{n\to\infty} x = f(x).$

Definition 2.1.4 Функція f(x) називається **рівномірною границею** функціональної послідовності $\{f_n(x), n \ge 1\}$ на множині A, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) \in \mathbb{N} : \forall n \ge N : \forall x \in A : |f_n(x) - f(x)| < \varepsilon$$

Позначення: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$.

Corollary 2.1.5 Часто пишуть ось таке еквівалентне означення:

f(x) – рівномірна границя послідовності $\{f_n(x), n \geq 1\}$ на $A \iff \sup_{x \in A} |f_n(x) - f(x)| \to 0, n \to \infty.$ Дійсно, $\forall x \in A : |f_n(x) - f(x)| < \varepsilon \iff \sup_{x \in A} |f_n(x) - f(x)| \leq \varepsilon$, тому ці два означення еквівалентні.

Proposition 2.1.6 Задано $\{f_n(x), n \geq 1\}$ – послідовність на A. Відомо, що $\{f_n\}$ рівномірно збігається до функції f на A. Тоді $\{f_n\}$ збігається поточково до f на A.

Proof.

За умовою, $f_n \overset{\rightarrow}{\to} f$ на множині $A \implies \forall \varepsilon > 0: \exists N: \forall n \geq N: \forall x \in A: |f_n(x) - f(x)| < \varepsilon.$ Нехай $x\in A$ та $\varepsilon>0$. Тоді за умовою, існує N, для якого $\forall n\geq N$ виконується $|f_n(x)-f(x)|<\varepsilon$. Це й означає, що $\forall x \in A : f_n(x) \to f(x), n \to \infty$.

Corollary 2.1.7 Рівномірно збіжна послідовність має єдину рівномірну границю.

Remark 2.1.8 Отже, єдиний кандидат на рівномірну збіжність послідовність $\{f_n, n \geq 1\}$ – це сама функція f, що була отримана в результаті поточкової збіжності.

Example 2.1.9 Розглянемо функціональну послідовність $\left\{ f_n(x) = \frac{nx}{1+n+x}, n \geq 1 \right\}$ на [0,5].

Маємо
$$f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{n+1+x}} \xrightarrow{n\to\infty} x = f(x).$$

Маємо $f_n(x)=\frac{nx}{1+n+x}=\frac{x}{\frac{1}{n}+1+\frac{x}{n}}\xrightarrow{n\to\infty}x=f(x).$ Отримана функція f(x)=x — це єдиний можливий кандидат, до якого (можливо) прямує функціональна послідовність $\{f_n,n\geq 1\}$ рівномірно. Перевіримо це.

$$\sup_{x \in [0,5]} |f_n(x) - f(x)| = \sup_{x \in [0,5]} \frac{x + x^2}{1 + n + x} \equiv$$

$$x \in [0,5]$$
 $x \in [0,5]$ $1+n+x$ Розглянемо функцію $h(x) = \frac{x+x^2}{1+n+x}$ на $[0,5]$. Знайдемо похідну:
$$h'(x) = \frac{(1+2x)(1+n+x)-x-x^2}{(1+n+x)^2} = \frac{1+n+2x+2nx+x^2}{(1+n+x)^2} > 0.$$
 Отже, h – строго монотонно зростає. Тому найбільше значення досягається при $x=5$.
$$= \frac{5+25}{1+n+5} = \frac{30}{6+n} \xrightarrow{n \to \infty} 0.$$
 Таким чином, $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$ на множині $[0,5]$.

$$\boxed{} \equiv \boxed{\frac{5+25}{1+n+5}} = \frac{30}{6+n} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Ліворуч – рівномірна збіжність. Праворуч – поточкова збіжність.

Тепер найголовніше питання, а для чого власне нам потрібна рівномірна збіжність, чому не достатньо поточкової збіжності. Одну з відповідей на це питання дає такий приклад.

Example 2.1.10 Розглянемо функціональну послідовність $\{f_n(x) = x^n, n \ge 1\}$ на множині [0,1].

Маємо
$$f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1 \end{cases} = f(x).$$

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \begin{cases} 0, & x = 1 \\ x^n, & x \in [0,1) \end{cases} = 1.$$
 В загальному випадку, $\sup_{x \in [0,1]} |f_n(x) - f(x)| \not\to 0$, а тому можемо сказати, що $f_n(x) \not \subset f(x), n \to \infty$.

Найголовніше з цього прикладу, що $f_n \in C([0,1])$, проте $f \notin C([0,1])$, а хотілося би. Саме тому нам потрібні рівномірні збіжності.

Але перед цим надамо деякі нові позначення та певні критерії для зручності. Тому, хто знайомий вже з поняттями нормованих просторів, буде трошки зручніше. Якщо не знаєте, що це, то не переймайтеся за це.

Proposition 2.1.11 Задані функції f,g на множині A. Позначимо $\|f\| = \sup_{x \in A} |f(x)|$. Тоді справедливо наступне:

- $1)\ \|f\|\geq 0,\qquad \|f\|=0\iff f\equiv 0;$
- 2) $\forall \lambda \in \mathbb{R} : ||\lambda f|| = |\lambda|||f||;$
- 3) $||f + g|| \le ||f|| + ||g||$.

Ці три властивості означають, що вираз $\|f\| = \sup_{x \in A} |f(x)|$ є так званою **нормою** функції.

Proof.

Дійсно, доведемо кожу властивість окремо:

- 1) $||f|| \ge 0$ цілком зрозуміло, оскільки під супремумом стоїть невід'ємна функція |f|. Далі $||f|| = 0 \implies \sup_{x \in A} |f(x)| = 0 \implies 0 \le |f(x)| \le 0 \implies f(x) = 0, \forall x \in A.$
- 2) $\|\lambda f\| = \sup_{x \in A} |\lambda f(x)| = |\lambda| \sup_{x \in A} |f(x)| = |\lambda| \|f\|.$

$$3) \ \|f+g\| = \sup_{x \in A} |f(x)+g(x)| \leq \sup_{x \in A} (|f(x)|+|g(x)|) \leq \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)| = \|f\| + \|g\|.$$

Всі властивості доведені. Хотілося би також відокремити таку властивість: $|||f|| - ||g|| \le ||f - g||$. Brasiera: ||f|| = ||f - g + f||, ||g|| = ||g - f + f|| ma 3).

Remark 2.1.12 Тепер рівномірну збіжність до функції можна переписати компактніше: $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty \iff ||f_n - f|| \to 0, n \to \infty.$

Theorem 2.1.13 Критерій Коші

$$f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$$
 на $A \iff \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon.$

 \Rightarrow Дано: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на A.

Тоді
$$\|f_n - f\| \to 0, n \to \infty \implies \forall \varepsilon > 0 : \exists N : \forall n, m \ge N : \frac{\|f_n - f\| < \frac{\varepsilon}{2}}{\|f_m - f\| < \frac{\varepsilon}{2}}$$

$$\implies ||f_n - f_m|| = ||f_n - f + f - f_m|| \le ||f_n - f|| + ||f_m - f|| < \varepsilon.$$

 \leftarrow Дано: $\forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon \implies \forall x \in A : |f_n(x) - f_m(x)| < \varepsilon$. Якщо зафіксувати точку $x_0 \in A$, то отримаємо фундаментальну послідовність $\{f_n(x_0), n \geq 1\}$.

Фундаментальна послідовність збіжна, тоді $\exists \lim_{n \to \infty} f_n(x_0) = f(x_0)$. Якщо спрямувати $m \to \infty$, то маємо, що $|f_n(x_0) - f(x_0)| < \varepsilon$. Оскільки це може бути $\forall x_0 \in A$, то тоді $||f_n - f|| < \varepsilon \implies f_n(x) \xrightarrow{\sim} f(x)$, $n \to \infty$ на A.

Theorem 2.1.14 Задано $\{f_n(x), n \ge 1\}$ – послідовність на множині A та $f_n(x) \xrightarrow{\sim} f(x), n \to \infty$. Відомо, що $\forall n \geq 1: \exists \lim_{x \to x_0} f_n(x) = c_n$, де $x_0 \in \mathbb{R}$ – гранична точка A. Тоді послідовність $\{c_n, n \geq 1\}$ – збіжна, а також $\lim_{x\to x_0} f(x) = \lim_{n\to\infty} c_n$.

Коротше кажучи, в цьому випадку $\lim_{x\to x_0}\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty}\lim_{x\to x_0} f_n(x)$, тобто можна змінювати границі місцями.

Proof.

Оскільки $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$, то за критерієм Коші, $\forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon \implies$ $\forall x \in A: |f_n(x) - f_m(x)| < \varepsilon$. Якщо спрямувати $x \to x_0$, то отримаємо, що $|c_n - c_m| \le \varepsilon < 2\varepsilon$. Тоді за критерієм Коші, $\{c_n, n \ge 1\}$ — збіжна, тобто $\exists \lim_{n \to \infty} c_n = c$. Залишилось довести, що $\lim_{x \to x_0} f(x) = c$.

Оскільки $f_n(x) \xrightarrow{\rightarrow} f(x), \ n \to \infty$, тоді $\forall \varepsilon > 0 : \exists N_1 : \forall n, m \ge N_1 : \forall x \in A : |f_n(x) - f(x)| < \varepsilon$.

Оскільки $c_n \to c, n \to \infty$, то тоді для такого самого $\varepsilon > 0: \exists N_2: \forall n \geq N_2: |c_n - c| < \varepsilon.$

Зафіксуємо $N=\max\{N_1,N_2\}$. Тоді $\lim_{x\to x_0}f_N(x)=c_N$ \Longrightarrow $\exists \delta: \forall x\in A: |x-x_0|<\delta$ \Longrightarrow $|f_N(x)-c_N|<\varepsilon.$

 $\Longrightarrow |f(x) - c| = |f(x) - f_N(x) + f_N(x) - c_N + c_N - c| \le |f(x) - f_n(x)| + |f_N(x) - c_N| + |c_N - c| < 3\varepsilon.$ Остаточно, $\lim_{x \to x_0} f(x) = c = \lim_{n \to \infty} c_n.$

Corollary 2.1.15 Задано $\{f_n(x), n \geq 1\}$ – послідовність на множині A та $f_n(x) \xrightarrow{\sim} f(x), n \rightarrow \infty$. Відомо, що $\forall n \geq 1 : f_n(x) \in C(A)$. Тоді $f(x) \in C(A)$, а також $\lim_{n \to \infty} f_n(x_0) = \lim_{x \to x_0} f(x)$.

Theorem 2.1.16 Задано $\{f_n(x), n \ge 1\}$ - послідовність на множині [a, b] та $f_n(x) \xrightarrow{\sim} f(x), n \to \infty$.

Відомо, що $\forall n \geq 1: f_n(x) \in \mathcal{R}([a,b]).$ Тоді $f(x) \in \mathcal{R}([a,b]),$ а також $\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$

Коротше кажучи, в цьому випадку $\lim_{n\to\infty}\int_{-\infty}^b f_n(x)\,dx=\int_{-\infty}^b \lim_{n\to\infty} f_n(x)\,dx$, тобто можна границю виносити поза межами інтеграла.

Маємо
$$f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty \implies \forall \varepsilon > 0 : \exists N : \forall n \ge N : \forall x \in [a,b] : |f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)}.$$

Зокрема
$$\forall x \in [a,b]: |f_N(x)-f(x)| < \frac{\varepsilon}{4(b-a)} \implies f_N(x) - \frac{\varepsilon}{4(b-a)} < f(x) < f_N(x) + \frac{\varepsilon}{4(b-a)}.$$

Тоді
$$\forall k = 1, \dots, n$$
 виконуються нерівності: $m_k(f) \geq f_N(x) - \frac{\varepsilon}{4(b-a)} \geq m_k(f_N) - \frac{\varepsilon}{4(b-a)}$.

$$M_k(f) \le f_N(x) + \frac{\varepsilon}{4(b-a)} \le M_k(f_N) + \frac{\varepsilon}{4(b-a)}.$$

Звідси випливає, що $M_k(f) - m_k(f) \le M_k(f_N) - m_k(f_N) + \frac{\varepsilon}{2(b-a)}$.

Оскільки $f_N \in \mathcal{R}([a,b]),$ то $\exists \tau: U(f_N,\tau) - L(f_N,\tau) < rac{arepsilon}{2}.$ Тоді

$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k(f) - m_k(f)) \Delta x_k \le \sum_{k=1}^{n} \left(M_k(f_N) - m_k(f_N) + \frac{\varepsilon}{2(b-a)} \right) \Delta x_k = \frac{\varepsilon}{2(b-a)}$$

$$= (U(f_N, \tau) - L(f_N, \tau)) + \sum_{k=1}^n \frac{\varepsilon}{2(b-a)} \Delta x_k < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)} (b-a) = \varepsilon \implies f \in \mathcal{R}([a, b]).$$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{n}(x) - f(x) dx \right| \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx = \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx = \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx = \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx$$

$$= \|f - f_n\|(b - a) \xrightarrow{n \to \infty} 0.$$
 Отже, $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$

Theorem 2.1.17 Задано $\{f_n(x), n \ge 1\}$ – послідовність на множині [a, b]. Відомо, що:

- 1) $\exists x_0 \in [a, b] : \{f_n(x_0), n \ge 1\}$ збіжна послідовність;
- 2) $\forall n \geq 1 : f_n$ диференційована на [a, b];
- 3) $\{f_n', n \ge 1\}$ рівновірно збіжна послідовність на [a, b].

Тоді $\{f_n, n \geq 1\}$ – рівномірно збіжна послідовність на [a, b]. Звідси можна визначити функцію $f(x) \stackrel{\text{def.}}{=} \lim_{n \to \infty} f_n(x)$, тоді f – диференційована на [a,b], а також $f'(x) = \lim_{n \to \infty} f'_n(x)$.

Коротше кажучи, у цьому випадку $\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f_n'(x)$.

Proof.

 $\{f_n'\}$ рівномірно збіжна на $[a,b] \implies \forall \varepsilon > 0: \exists N_1: \forall n,m \geq N_1: \forall x \in [a,b]: |f_n'(x) - f_m'(x)| < \varepsilon.$ $\{f_n(x_0)\}$ збіжна $\implies \forall \varepsilon > 0 : \exists N_2 : \forall n, m \ge N : |f_n(x_0) - f_m(x_0)| < \varepsilon.$

Позначимо $\varphi_{n,m}(x) = f_n(x) - f_m(x)$. Тоді ми маємо такі нерівності:

 $|\varphi'_{n,m}(x)| < \varepsilon$ $|\varphi_{n,m}(x_0)| < \varepsilon.$

Фіксуємо деяку точку $x \in [a,b]$, а також $N = \max\{N_1,N_2\}$. Тоді $\forall n,m \geq N$ і за теоремою Лагранжа:

 $arphi_{n,m}(x) - arphi_{n,m}(x_0) = arphi'_{n,m}(\xi)(x-x_0)$, причому $\xi \in (x,x_0)$ або (x_0,x) . $\Longrightarrow |f_n(x) - f_m(x)| = |arphi_{n,m}(x)| = |arphi_{n,m}(x) - arphi_{n,m}(x_0) + arphi_{n,m}(x_0)| \le |arphi_{n,m}(x_0)| + |arphi'_{n,m}(\xi)||x-x_0| < |arphi_{n,m}(x_0)| \le |arphi_{n,m}(x_0)| + |arphi'_{n,m}(\xi)||x-x_0| < |arphi_{n,m}(x_0)| + |arphi'_{n,m}(x_0)| + |arphi'_{n,m}(\xi)||x-x_0| < |arphi_{n,m}(x_0)| + |arphi'_{n,m}(x_0)| + |arphi'_{n,m}(\xi)||x-x_0| < |arphi'_{n,m}(x_0)| + |arphi'_{n,m}(x_0)| + |arphi'_{n,m}(\xi)||x-x_0| < |arphi'_{n,m}(x_0)| + |$ $< \varepsilon + (b-a)\varepsilon = (b-a+1)\varepsilon.$

Таким чином, ми довели критерієм Коші, що $\{f_n\}$ рівномірно збіжна на [a,b]. Зокрема звідси визначаємо функцію (як в теоремі) $f(x) \stackrel{\text{def.}}{=} \lim_{x \to \infty} f_n(x)$.

Далі беремо будь-яку точку $x_{00} \in [a,b]$. Покажемо, що f в цій точці диференційована

Маємо
$$f'_n(x_{00}) = \lim_{x \to x_{00}} \frac{f_n(x) - f_n(x_{00})}{x - x_{00}}$$
. Позначимо $\psi_n(x) = \frac{f_n(x) - f_n(x_{00})}{x - x_{00}}$, $\psi(x) = \frac{f(x) - f(x_{00})}{x - x_{00}}$. $|\psi_n(x) - \psi(x)| = \frac{1}{|x - x_{00}|} |f_n(x) - f_n(x_{00}) - f(x) + f(x_{00})| = \frac{1}{|x - x_{00}|} |\varphi_{n,\infty}(x) - \varphi_{n,\infty}(x_{00})| = \frac{1}{|x - x_{00}|} |\psi_n(x) - \psi(x)| = \frac{1}{|x - x_{00}|} |\varphi_{n,\infty}(x) - \varphi_{n,\infty}(x_{00})| = \frac{1}{|x - x_{00}|} |\psi_n(x) - \psi(x)| = \frac{1}{|x - x_{00}|} |\psi_n(x) - \psi(x)| = \frac{1}{|x - x_{00}|} |\varphi_{n,\infty}(x) - \varphi_{n,\infty}(x_{00})| = \frac{1}{|x - x_{00}|} |\psi_n(x) - \psi(x)| = \frac{1$

$$= \frac{1}{|x - x_{00}|} |\varphi'_{n,\infty}(\xi)| |x - x_{00}| = |\varphi'_{n,\infty}(\xi)| \le \varepsilon.$$

Рівність \equiv за Лагранжем, причому $\xi \in (x,x_{00})$ або $(x_{00},x);$ \leq за пунктом 3) теореми. Тоді $\psi_n(x) \rightrightarrows \psi(x), n \to \infty$ на $[a,b] \setminus \{x_{00}\}$. А оскільки $\psi_n \in C([a,b] \setminus \{x_{00}\})$, то звідси

 $\lim_{x \to x_0} \lim_{n \to \infty} \psi_n(x) = \lim_{n \to \infty} f'_n(x) = f'(x).$

Theorem 2.1.18 Теорема Діні

Задано $\{f_n(x), n \geq 1\}$ – монотонна послідовність на множині [a,b], причому $\exists \lim_{n \to \infty} f_n(x) = f(x)$. Відомо, що $\forall n \geq 1 : f_n \in C([a,b])$ та $f \in C([a,b])$. Тоді $f_n \xrightarrow{\rightarrow} f, n \to \infty$ на [a,b].

Ми припустимо, що $\{f_n(x), n \geq 1\}$ монотонно зростає, бо для спадної майже аналогічно. Оскільки також $f_n(x) \to f(x)$, то звідси в силу монотонності $f_n(x) \le f(x)$.

Тепер розглянемо функцію $r_n(x)=f(x)-f_n(x)$. За умовою, $r_n\in C([a,b])$, далі $\{r_n(x),n\geq 1\}$ монотонно спадає, а також $r_n(x) \to 0$. Зараз необхідно довести, що $r_n(x) \stackrel{\rightarrow}{\to} 0$.

Нехай $x_0 \in [a,b]$, тоді $r_n(x_0) \to 0 \implies \forall x \in [a,b]: \forall \varepsilon > 0: \exists N: r_N(x_0) < \varepsilon. \ r_N \in C([a,b])$, зокрема неперервна в точці x_0 , тому $\exists \delta: \forall x \in [a,b]: |x-x_0| < \delta \implies |r_N(x)-r_N(x_0)| < \varepsilon$. Звідси та з попередньої нерівності випливає, що $r_N(x) < 2\varepsilon$, і це виконано в $U_\delta(x_0) \cap [a,b]$.

Відрізок [a,b] можна покрити скінченною кількістю інтервалів за лемою Гайне-Бореля, тобто в нашому випадку знайдуться точки $x_1, \ldots, x_k \in [a, b]$, для яких знайдуться номера N_1, \ldots, N_k , а також околи, які покриють відрізок.

Встановимо $N = \max\{N_1, \dots, N_k\}$. Якщо взяти довільне $y \in [a, b]$, то знайдеться окіл точки $x_i, i =$ 1,k, де справедлива нерівність $r_N(y) < \varepsilon$. Не забуваємо, що в нас спадна послідовність.

Отже, $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall y \in [a, b] : r_n(y) < r_N(y) < \varepsilon$.

Таким чином, $r_n(x) \to 0$, що приводить до результату теореми Діні.

2.2Функціональні ряди

Definition 2.2.1 Функціональним рядом називають суму членів функціональної послідовності $\{a_n(x), n \ge 1\}$:

$$a_1(x) + a_2(x) + \dots + a_n(x) + \dots = \sum_{n=1}^{\infty} a_n(x)$$

Частковою сумою даного ряда називають суму перших k функцій:

$$S_k(x) = \sum_{n=1}^k a_n(x) = a_1(x) + a_2(x) + \dots + a_k(x)$$

У такому випадку в нас виникає функціональна послідовність часткових сум $\{S_k(x), k \ge 1\}$. Якщо така послідовність збігається в точці x_0 , то ряд є збіжним в точці x_0 та сума цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n(x_0) = \lim_{k \to \infty} S_k(x_0) = S(x_0)$$

Інакше – розбіжним.

Definition 2.2.2 Множина B, де $\forall x \in B$ ряд збігається, називається **областю збіжності**. Аналогічно визначається область абсолютної збіжності та область умовної збіжності.

Example 2.2.3 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$.

Для початку перевіримо на абсолютну збіжність, для цього ми досліджуємо $\sum_{n=1}^{\infty} \left| \frac{x^n}{1+x^{2n}} \right|$. Засто-

суемо ознаку д Аламоера в цьому випадку:
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{|x^{n+1}(1+x^{2n})|}{|(1+x^{2n+2})x^n|}=\lim_{n\to\infty}\left|\frac{x+x^{2n+1}}{1+x^{2n+2}}\right|=\\=\lim_{n\to\infty}\left|\frac{\frac{1}{x^{2n+1}}+\frac{1}{x}}{\frac{1}{x^{2n+2}}+1}\right|=\frac{1}{|x|}$$
при $|x|>1$.

$$=|x|$$
 при $|x|<1$.

$$= 1$$
 при $|x| = 1$.

Отже, при $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$ в перших двох випадках, тобто при $|x|\neq 1$. Це означає збіжність. При $|x|=1\implies x=\pm 1$ ознака д'Аламбера відповіді не дає, тож треба додатково дослідити.

$$x=1 \implies \sum_{n=1}^{\infty} \frac{1}{1+1} = +\infty \implies$$
 розбіжний.

$$x=-1\implies \sum_{n=1}^{\infty} \frac{(-1)^n}{1+1}$$
 — розбіжний, бо $ot\equiv\lim_{n\to\infty} \frac{(-1)^n}{2}$, тобто необхідна умова збіжності порушена.

Таким чином, область абсолютної збіжності $B_{abs} = \mathbb{R} \setminus \{-1, 1\}$; область умовної збіжності $B_{cond} = \emptyset$.

Definition 2.2.4 Якщо послідовність часткових сум $\{S_k(x), k \geq 1\}$ збігається рівномірно на множині A, то ряд $\sum_{i=1}^{n} a_n(x)$ називають **рівномірно збіжним** на A.

Theorem 2.2.5 Критерій Коші

$$\sum_{n=1}^{\infty}a_n(x)$$
 – рівномірно збіжний на множині $A\iff \forall \varepsilon>0: \exists K: \forall k\geq K: \forall p\geq 1: \left\|\sum_{n=k+1}^{k+p}a_n(x)\right\|<\varepsilon.$

Випливае з критерію Коші рівновірної збіжності функціональних послідовностей

Corollary 2.2.6 Необхідна умова рівномірної збіжності

Задано $\sum_{n=0}^{\infty} a_n(x)$ – рівномірно збіжний на A. Тоді $a_k(x) \stackrel{\rightarrow}{\to} 0, k \to \infty$ на A.

Bказівка: критерій Kowi npu p=1.

Theorem 2.2.7 Мажорантна ознака Ваєрштрасса

Задано $\sum_{n=1}^{\infty}a_n(x)$ – ряд на множині A. Відомо, що виконується наступне: 1) $\exists \{c_n,n\geq 1\}: \forall n\geq 1: \forall x\in A: |a_n(x)|\leq c_n;$

1)
$$\exists \{c_n, n \ge 1\} : \forall n \ge 1 : \forall x \in A : |a_n(x)| \le c_n$$

2)
$$\sum_{n=1}^{\infty} c_n$$
 – збіжний. Його ще називають мажорантним рядом.

Тоді
$$\sum_{n=1}^{\infty} a_n(x)$$
 збігається рівномірно на множині A .

Proof.

$$\text{За критерієм Коші,} \sum_{n=1}^{\infty} c_n - \text{збіжний} \iff \forall \varepsilon > 0: \exists K: \forall k \geq K: \forall p \geq 1: \left| \sum_{n=k+1}^{k+p} c_n \right| < \varepsilon.$$

Тоді
$$\forall x \in A: \left|\sum_{n=k+1}^{k+p} a_n(x)\right| \leq \sum_{n=k+1}^{k+p} |a_n(x)| \leq \sum_{n=k+1}^{k+p} c_n < \varepsilon.$$

Тому за критерієм Коші,
$$\sum_{n=1}^{\infty} a_n(x)$$
 – рівномірно збіжний на множині A .

Example 2.2.8 Розглянемо ряд $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$.

Оскільки
$$\left|\frac{\cos nx}{n^2}\right| \leq \frac{1}{n^2}$$
, причому це виконано завжди, а мажорантний ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ – збіжний, то за

ознакою Ваєрштрасса,
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$
 - збіжний рівномірно на \mathbb{R} .

Theorem 2.2.9 Ознаки Діріхлє та Абеля

Задано $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ – ряд на множині A. Нехай виконаний один з двох блок умов:

$$\sum_{n=1}^{k}a_n(x)$$
 – рівномірно обмежена на A
$$\{b_n(x),n\geq 1\}$$
 – монотонна та $b_n(x) \stackrel{\rightarrow}{\to} 0$ на A
$$\begin{cases}b_n(x),n\geq 1\}$$
 – монотонна та рівномірно обмежена на A ознаки Діріхле
$$(b_n(x),n\geq 1)$$
 – монотонна та рівномірно обмежена на A ознаки Абеля
$$(a_n(x),n\geq 1)$$
 – монотонна та рівномірно обмежена на A ознаки Абеля

Тоді
$$\sum_{i=1}^{\infty} a_n(x)b_n(x)$$
 – збіжний рівномірно на множині $A.$

Доводиться так само, як було в числових рядах.

Example 2.2.10 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}},$ якщо $0 < \alpha \leq 1.$

Аналогічними міркуваннями як в $\mathbf{Ex.}$??? (TODO: лінкування) ми можемо отримати таку форму-

$$\sum_{n=1}^k \sin nx = \frac{\sin\left(\frac{k+1}{2}x\right)}{\sin\frac{x}{2}} \sin\frac{kx}{2}$$
 за умовою, що $\sin\frac{x}{2} \neq 0 \implies x \neq 2\pi m, m \in \mathbb{Z}.$

Тоді
$$\left|\sum_{n=1}^k \sin nx\right| \leq \frac{1}{\left|\sin\frac{x}{2}\right|} \leq \frac{1}{C}$$
, за умовою, що розглядається область $[a,b] \subset (2\pi m, 2\pi (m+1))$.

Ну й також $\frac{1}{n^{\alpha}}$ – монотонна та рівномірно н.м. (тому що від x не залежить) на [a,b].

Таким чином, $\sum_{i=1}^{\infty} \frac{\sin nx}{n^{\alpha}}$ збігається рівномірно в будь-якому відрізку $[a,b] \subset (2\pi m, 2\pi (m+1))$.

Розглянемо тепер відрізок $[0, \delta]$, де $\delta > 0$, та покажемо криетрієм Коші, що ряд розбіжний.

Дійсно, $\exists \varepsilon > 0: \forall K: \exists k > K: \exists p = 2k \ge 1: \exists x = \frac{1}{k} \in [0, \delta]:$

$$\left| \sum_{n=k+1}^{2k} \frac{\sin nx}{n^{\alpha}} \right| = \left| \sum_{n=k+1}^{2k} \frac{\sin \frac{n}{k}}{n^{\alpha}} \right| \ge \left| \sum_{n=k+1}^{2k} \frac{\sin 1}{n^{\alpha}} \right| = \sin 1 \sum_{n=k+1}^{2k} \frac{1}{n^{\alpha}} \ge \sin 1 \sum_{n=k+1}^{2k} \frac{1}{(2k)^{\alpha}} \ge \sin 1 \sum_{n=k+1}^{2k} \frac{1}{2k} = \frac{\sin 1}{2} = \varepsilon.$$

2.3 Властивості рівномірно збіжних функціональних рядів

Theorem 2.3.1 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ – рівномірно збіжний на A. Відомо, що $\forall n \geq 1 : \exists \lim_{x \to x_0} a_n(x) = c_n$,

де
$$x_0 \in \mathbb{R}$$
 – гранична точка A . Тоді $\sum_{n=1}^\infty c_n$ – збіжний, а також $\lim_{x \to x_0} \sum_{n=1}^\infty a_n(x) = \sum_{n=1}^\infty c_n$.

Proof.

Із умови теореми випливає, що $\forall k \geq 1: \lim_{x \to x_0} S_k(x) = \lim_{x \to x_0} \sum_{n=1}^k a_n(x) = \sum_{n=1}^k c_n$. Оскільки ряд – рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ – рівномірно збіжна. Тоді за (ТОДО: лінкування),

$$\lim_{x \to x_0} S(x) = \sum_{n=1}^{\infty} c_n.$$

Corollary 2.3.2 Задано $S(x)=\sum_{n=1}^\infty a_n(x)$ – рівномірно збіжний на A. Відомо, що $\forall n\geq 1:a_n(x)\in C(A)$. Тоді $S(x)\in C(A)$.

Example 2.3.3 Довести, що $\lim_{x\to 1}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}x^n=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}$.

Спочатку треба довести рівномірну збіжність ряду $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ в деякому лівому околі точці $(-1)^{n+1}$

x=1. Застосуємо ознаку Абеля при $a_n(x)=rac{(-1)^{n+1}}{n}, b_n(x)=x^n.$

 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ — збіжна за ознакою Ляйбніца, а оскільки вона не залежить від x, то тому ще й рівномірно в околі точки x=1

рівномірно в околі точки x=1. x^n – зрозуміло, монотонна та монотонно обмежена, оскільки $|x^n| \leq 1.$

Таким чином, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ – рівномірно обмежена в лівому околі точки x=1.

А далі $\frac{(-1)^{n+1}}{n}x^n\in C$, а отже, $\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}x^n\in C$, в тому числі в точці x=1.

Таким чином, $\lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \sum_{n=1}^{\infty} \lim_{x \to 1} \frac{(-1)^{n+1}}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \stackrel{\text{насправді}}{=} \ln 2.$

Theorem 2.3.4 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ – рівномірно збіжний на [a,b]. Відомо, що $a_n(x) \in \mathcal{R}([a,b])$,

причому $\forall n \geq 1$. Тоді $S(x) \in \mathcal{R}([a,b])$, а також

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) dx \right).$$

Proof.

Із умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{n=1}^k a_n(x) \in \mathcal{R}([a,b])$ як сума інтегрованих функцій.

Оскільки ряд – рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ – рівномірно збіжна. Тоді за (ТОДО: лінкування), $S(x) \in \mathcal{R}([a,b])$. Доведемо тепер тотожність:

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_{n}(x) \right) dx = \int_{a}^{b} \left(\lim_{k \to \infty} \sum_{n=1}^{k} a_{n}(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_{n}(x) \right) dx = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_{n}(x) dx \right) = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int$$

$$= \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) \, dx \right).$$

Example 2.3.5 Довести, що $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)$ для всіх $x \in (-1,1]$.

Розглянемо ряд $\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}$. Аналогічними міркуваннями (як в попередньому прикладі) ми можемо довести, що ряд збіжний рівномірно на (-1,1]. Покладемо деяке число x>0. Оскільки $(-1)^n t^n \in \mathcal{R}([0,x])$, то звідси $\sum_{n=0}^{\infty} (-1)^n t^n \in \mathcal{R}([0,x])$. Таким чином,

з одного боку,
$$\int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty \int_0^x (-1)^n t^n = \sum_{n=1}^\infty \frac{(-1)^n}{n} x^n;$$

із іншого боку,
$$\int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \int_0^x \frac{1}{1+t} dt = \ln(1+x).$$

Остаточно отримали, що $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)$ для всіх $x \in (-1,1]$.

Theorem 2.3.6 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$. Відомо, що виконується наступне:

- $1) \ \exists x_0 \in [a,b] : \sum_{n=1}^\infty a_n(x_0) \text{збіжний};$ $2) \ \forall n \geq 1 : a_n(x) \text{диференційовані на } [a,b];$
- 3) $\sum_{n=1}^{\infty} a'_n(x)$ рівномірно збіжний на [a,b].

Тоді S(x) – збіжний рівномірно, S(x) – диференційована на [a,b], а також $\left(\sum_{n=0}^{\infty}a_n(x)\right)^n=\sum_{n=0}^{\infty}a_n'(x)$.

Маємо, $\{S_k(x), k \geq 1\}$, де $S_k(x) = \sum_{n=1}^{\kappa} a_n(x)$. Зауважимо, що виконується наступне:

- 1) $\forall n \geq 1: a_n$ диференційовані на [a,b], а тому $\forall k \geq 1: S_k$ також диференційована на [a,b].
- 2) Відомо, що $\exists x_0 \in [a,b]$: $\sum_{i=1}^{\infty} a_n(x_0)$ збіжний, тобто послідовність $\{S_k(x_0), k \geq 1\}$ збіжна.
- 3) Маємо $S_k'(x) = \sum_{n=1}^k a_n'(x)$, про яку відомо, що $S_k'(x) \xrightarrow{\sim} S'(x)$, $k \to \infty$.

$$S'(x) = \left(\sum_{n=1}^{\infty} a_n(x)\right)' = \left(\lim_{k \to \infty} \sum_{n=1}^{k} a_n(x)\right)' = \lim_{k \to \infty} \sum_{n=1}^{k} a'_n(x) = \sum_{n=1}^{\infty} a'_n(x).$$

Example 2.3.7 Знайдемо похідну ряда $S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^2}$ на відрізку (-1,1]. Треба пересвідчитись, що можна це робити диференціювання: $1) \ (-1)^{n-1} \frac{x^n}{2^n} - всі диференційовані;$

- 2) Якщо x=1, то ряд $S(1)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2}$ збіжний за ознакою Ляйбніца.
- $\sum_{n=0}^{\infty} \left((-1)^{n-1} \frac{x^n}{n^2} \right)' = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{n-1}}{n}$ рівномірно збіжний за Абелем.

Отже,
$$S'(x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^{n-1}}{n}\implies xS'(x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n}=\ln(1+x).$$
 Остаточно $S'(x)=\frac{\ln(1+x)}{x}$, додатково $S'(0)=0.$

2.4 Степеневі ряди

Definition 2.4.1 Степеневим рядом називаємо ми такий функціональний ряд:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

де $\{a_n, n \ge 0\}$ – довільна числова послідовність.

Theorem 2.4.2 Теорема Коші-Адамара

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 – степеневий ряд. Нехай $\frac{1}{\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}}=R$ – радіус збіжності. Тоді ряд:

при $|x-x_0| < R$ – збіжний абсолютно;

при $|x - x_0| > R$ – розбіжний;

при $|x - x_0| = R$ – відповіді нема.

Proof.

Ргоот.

Скористаємось радикальною ознакою Коші для нашого ряду: $\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n(x-x_0)|^n} = |x-x_0| \overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|} = q \text{ (перша рівність випливає з нерівностей про часткові границі, дивись pdf з мат. аналізу першої частини). Тоді: <math display="block"> \text{При } q < 1, \text{ тобто } |x-x_0| < \frac{1}{\overline{\lim_{n\to\infty}}} \sqrt[n]{|a_n|} = R - \text{збіжний абсолютно;}$ $\text{При } q > 1, \text{ тобто } |x-x_0| > \frac{1}{\overline{\lim_{n\to\infty}}} \sqrt[n]{|a_n|} = R - \text{розбіжний;}$ При q = 1 - нема відповіді.

При
$$q<1$$
, тобто $|x-x_0|<\dfrac{1}{\varlimsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}=R$ – збіжний абсолютно

При
$$q>1,$$
 тобто $|x-x_0|>\dfrac{1}{\overline{\lim_{n\to\infty}\sqrt[n]{|a_n|}}}=R$ — розбіжний;

При q=1 – нема відповід

Corollary 2.4.3 Наслідок із ознаки д'Аламбера

Corollary 2.4.3 Наслідок із ознаки д'Аламбера
Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд. Нехай $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = R$ – радіус збіжності. Тоді ряд:

при $|x - x_0| < R$ – збіжний абсолютно;

при $|x - x_0| > R$ – розбіжний;

при $|x - x_0| = R$ – відповіді нема.

Proof.

Скористаємось ознакою д'Аламбера для нашого р
$$\lim_{n\to\infty}\left|\frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n}\right|=|x-x_0|\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q.$$
 Тоді:

При
$$q<1$$
, тобто $|x-x_0|<\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ – збіжний абсолютно; При $q>1$, тобто $|x-x_0|>\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ – розбіжний; При $q=1$ – нема відповіді.

При
$$q > 1$$
, тобто $|x - x_0| > \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R$ — розбіжний

Example 2.4.4 Знайдемо область збіжності ряду $\sum_{n=0}^{\infty} \frac{(x-7)^n}{2^n(n+1)}$.

Маємо
$$a_n = \frac{1}{2^n(n+1)}$$
, тоді $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{2(n+2)}{n+1} = 2$. Отже, при $|x-7| < 2 \implies x \in (5,9)$ ряд збіжний абсолютно. Також при $|x-7| > 2 \implies x \in (5,9)$

 $(-\infty,5)\cup(9,+\infty)$ ряд розбіжний.

A ось в точках x = 5, x = 9 треба додатково обстежити.

При
$$x=9$$
 маємо $\displaystyle\sum_{n=0}^{\infty} \frac{1}{n+1}$ — розбіжний.

При x=5 маємо $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ – збіжний за Ляйбніцем, але умовно.

Отже, область збіжності B = [5, 9).

Theorem 2.4.5 Теорема Абеля

 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ – рівномірно збіжний на будь-якому відрізку, що міститься в області збіжності.

Proof.

Зафіксуємо довільний відрізок [a, b]. Будемо розглядати декілька випадків.

1. $[a,b] \subset (x_0 - R, x_0 + R)$.

Зафіксуємо число $M = \max\{|x_0 - a|, |x_0 - b|\}$. Звідси $\forall x \in [a,b]: |x - x_0| < M < R$, а тому $|a_n(x-x_0)^n| < |a_n|M^n.$

Розглянемо мажорантний ряд $\sum_{n=0}^{\infty} a_n M^n$. Застосуємо ознаку Коші:

 $\lim_{n \to \infty} \sqrt[n]{|a_n| M^n} = M \lim_{n \to \infty} \sqrt[n]{|a_n|} < R \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$. Отже, цей ряд – збіжний. Тоді за ознакою Вейерштраса, степеневий ряд – збіжний рівномірно на [a,b].

В принципі, на цьому можна закінчити доведення. Але припустимо, що окрім $(x_0 - R, x_0 + R)$ у нає існують крайові точки, де теж збіжність відбувається. Ось тут варто окремо розглянути, що буде відбуватися.

2. $[a,b] \subset [x_0,x_0+R]$.

Розпишемо ряд
$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x - x_0}{R} \right)^n$$
.

Розглянемо випадок, коли ряд $\sum_{n=0}^{\infty} a_n R^n$ – збіжний. Збіжність ряду проведемо за ознакою Абеля:

$$g_n(x) = \left(\frac{x - x_0}{R}\right)^n$$

Домовились, що $\sum_{n=0}^{\infty} f_n(x)$ – збіжний, причому рівномірно, оскільки не залежить від x.

Послідовність $\left\{g_n(x)=\left(\frac{x-x_0}{R}\right)^n, n\geq 1\right\}$ — рівномірно обмежена, оскільки

$$\forall x \in [a,b] \subset [x_0,x_0+R]: |x-x_0| \leq R \Rightarrow \forall n \geq 1: \left|\frac{x-x_0}{R}\right|^n \leq 1.$$
 А також послідовність є монотонною, тому що $\frac{x-x_0}{R} < 1.$

Отже, за Абелем, ряд – рівномірно збіжний на $[a, \overline{b}]$

Аналогічно, коли $[a,b]\subset [x_0-R,x_0]$ за умовою, що $\sum_{n=0}^\infty a_n(-R)^n$ - збіжний.

3. $[a,b] \subset [x_0 - R, x_0 + R]$.

Тоді відрізок [a,b] розбивається на $[a,x_*] \cup [x_*,b]$. На цих відрізках ряд збіжний рівномірно за 2.

Example 2.4.6 Зокрема ряд $\sum_{n=0}^{\infty} \frac{(x-7)^n}{2^n(n+1)}$ збіжний рівномірно в будь-якому відрізку із області збіжності [5,9), у тому числі в тому відрізку, що містить точку x=5

А тепер ми позначимо степеневий ряд $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Theorem 2.4.7 $S \in C$ в області збіжності.

Proof.

Візьмемо якусь точку $x_* \in (x_0 - R, x_0 + R)$. Зафіксуємо деякий відрізок $[a, b] \ni x_*$. На відрізку [a,b] ряд – збіжний рівномірно за теоремою Абеля, члени ряду – неперервні функції. Отже, $S(x) \in$ $C([a,b]) \implies S(x) \in C(\{x_*\}).$

Оскільки точка x_* була довільною, то одразу $S(x) \in C((x_0 - R, x_0 + R))$.

Theorem 2.4.8 $S \in \mathcal{R}$ в області збіжності, а також $\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n (t-x_0)^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$.

Причому радіус збіжності нового степеневого ряду зберігається.

Proof.

На відрізку $[x_0, x_*]$ або $[x_*, x_0]$, де $x_* \in (x_0 - R, x_0 + R)$, степеневий ряд збігається рівномірно за Абелем. Тому $S \in \mathcal{R}([x_0, x_*]$ або $[x_*, x_0]$). Тотожність випливає з цієї ж теореми. Тепер перевіримо, що радіус збіжності дійсно такий самий. За Коші-Адамара,

$$R_{\text{new}} = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{\left| \frac{a_n}{n+1} \right|}} = \overline{\lim_{n \to \infty}} \sqrt[n]{\frac{n+1}{|a_n|}} = \overline{\lim_{n \to \infty}} \sqrt[n]{n+1} \cdot \frac{1}{\overline{\lim_{n \to \infty}} |a_n|} = 1 \cdot R = R.$$

Theorem 2.4.9 S – диференційований в області збіжності, а також $\left(\sum_{n=0}^{\infty} a_n (x-x_0)^n\right)$ =

$$=\sum_{n=1}^{\infty}a_{n}\cdot n(x-x_{0})^{n-1}$$
. Причому радіус збіжності нового степеневого ряду зберігається.

Розглянемо ряд $\sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1}$. Радіус збіжності збігається, оскільки

$$R_{\text{new}} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{n|a_n|}}} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}} = R.$$

Візьмемо якусь точку $x_* \in (x_0 - R, x_0 + R)$. Нехай відрізок $[a, b] \ni x_*$. На відрізку [a, b] ряд – збіжний рівномірно за теоремою Абеля. Використаємо далі умови для диференціювання:

- 1) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ збіжний принаймні в одній точці;
- 2) Всі члени ряду диференційовані функції;

$$a_n = \sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1} = \sum_{n=0}^{\infty} a_n^* (x-x_0)^n$$
 — рівномірно збіжний на $[a,b]$ за Абелем.

Отже, S(x) – диференційований на [a,b], зокрема і в точці x_* . Оскільки точка x_* була довільною, то одразу S(x) – диференційований в $(x_0 - R, x_0 + R)$.

Тому дійсно,
$$S'(x) = \sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$$
.

Corollary 2.4.10 $S \in C^{\infty}$ в області збіжності.

2.5 Ряди Тейлора

Definition 2.5.1 Функцію f називають **аналітичною** в точці $x_0 \in \mathbb{R}$, якщо в околі точки x_0

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Тобто в околі точки x_0 функцію f можна подати в вигляді степеневого ряду.

Example 2.5.2 Функція
$$f(x) = \ln(1+x)$$
 – аналітична на $(-1,1]$, оскільки $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$.

Оскільки степеневий ряд – нескінченно-диференційований, то $f \in C^{\infty}$. У такому випадку можемо знайти коефіцієнти:

$$f(x_0) = a_0$$

$$f'(x_0) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} |_{x = x_0} = a_1$$

$$f''(x_0) = \sum_{n=2}^{\infty} n(n-1) a_n (x - x_0)^{n-2} |_{x = x_0} = 2a_2$$

Продовжуючи пошук коефіцієнтів, аналітична функція задається степеневим рядом вигляду нижче, який ще називають рядом Тейлора:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Remark 2.5.3 Із цього випливає, що аналітична функція задає степеневий ряд рядом Тейлора однозначно.

Remark 2.5.4 Якщо $x_0 = 0$, то ряд Тейлора зазвичай це називають **рядом Маклорена**.

Remark 2.5.5 f – аналітична $\implies f \in C^{\infty}$. У зворотному випадку не завжди працює.

Example 2.5.6 Зокрема
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
. Функція $f \in C^{\infty}(0-R,0+R)$, але $f^{(n)}(0) = 0$,

причому $\forall n \geq 1$. Якщо допустити розклад функції в ряд Тейлора, то отримаємо $f(x) \equiv 0$, що суперечить початковим умовам.

Theorem 2.5.7 Теорема Тейлора

Задано функцію f та точку $x_0 \in \mathbb{R}$. Відомо, що виконується наступне:

1)
$$f \in C^{(\infty)}((x_0 - R, x_0 + R))$$

2)
$$\exists M \in \mathbb{R} : \forall n \ge 1 : \forall x \in (x_0 - R, x_0 + R) : |f^{(n)}(x)| \le M^n$$
.

1) $f \in C^{(\infty)}((x_0 - R, x_0 + R));$ 2) $\exists M \in \mathbb{R} : \forall n \geq 1 : \forall x \in (x_0 - R, x_0 + R) : |f^{(n)}(x)| \leq M^n.$ Тоді f – аналітична в точці x_0 , тобто $\forall x \in (x_0 - R, x_0 + R)$ функція розкладеться в ряд Тейлора $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$, причому рівномірно збіжний на (x_0-R,x_0+R) (при $R=+\infty$ ряд

Proof.

Розкладемо функцію в ряд Тейлора за остачею Лагранжа:

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}.$$

$$\left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| = \left| \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1} \right| \le \frac{M^{k+1}}{(k+1)!} R^{k+1}.$$

Розглянемо тепер ряд $\sum_{k=0}^{\infty} \frac{M^{k+1}}{(k+1)!} R^{k+1}$. За ознакою д'Аламбера, $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{MR}{k+2} = 0 < 1$.

Цей ряд є збіжним. Отже, за необхідною ознакою збіжності, $\lim_{k\to\infty} a_k = \lim_{k\to\infty} \frac{M^{k+1}}{(k+1)!} R^{k+1} = 0.$

$$\sup_{x \in (x_0 - R, x_0 + R)} \left| f(x) - \sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| \le \frac{M^{k+1}}{(k+1)!} R^{k+1} \to 0, \ k \to \infty.$$

Отримали
$$\sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \stackrel{\rightarrow}{\to} f, k \to \infty$$

Таким чином,
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 – збіжний рівномірно на $(x_0 - R, x_0 + R)$.

$$\exists M = 1 : \forall n \ge 1 : \forall x \in \mathbb{R} : |f^{(n)}(x)| = \left|\cos\left(x + \frac{\pi n}{2}\right)\right| \le 1.$$

Example 2.5.8 Маємо функцію
$$\cos x$$
. Розглянемо деяку точку $x_0=0$, встановимо $R=+\infty$. $\exists M=1: \forall n\geq 1: \forall x\in\mathbb{R}: |f^{(n)}(x)|=\left|\cos\left(x+\frac{\pi n}{2}\right)\right|\leq 1.$ Таким чином, ми можемо розкласти $\cos x$ в ряд Тейлора – отримаємо такий вигляд: $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\dots+(-1)^k\frac{x^{2k}}{(2k)!}+\dots=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k)!}x^{2k}, x\in\mathbb{R}.$

Аналогічними міркуваннями отримаємо розклади інших відомих функцій.

Основні розклади

1.
$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!};$$
 $x \in \mathbb{R}$ 4. $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k};$ $|x| < 1$
2. $\sin x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!};$ $x \in \mathbb{R}$ 5. $\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k};$ $x \in (-1,1]$
3. $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} x^{2k};$ $x \in \mathbb{R}$ 6. $(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1) \dots (\alpha-(k-1))}{k!} x^{k};$ $|x| < 1$

Всі інші функції зазвичай розкладаються вже за основними розкладами цих функцій.

Example 2.5.9 Розкласти функцію
$$f(x) = \ln(1+2x-8x^2)$$
 в ряд Тейлора. Зауважимо, що $\ln(1+2x-8x^2) = \ln(1-2x)(1+4x) = \ln(1-2x) + \ln(1+4x)$.
$$\ln(1-2x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (-2x)^k = -\sum_{k=1}^{\infty} \frac{2^k}{k} x^k$$
 за умовою $|2x| < 1$.
$$\ln(1+4x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (4x)^k = -\sum_{k=1}^{\infty} \frac{(-4)^k}{k} x^k$$
 за умовою $|4x| < 1$.

Остаточно
$$f(x) = -\sum_{k=1}^{\infty} \left(\frac{2^k + (-4)^k}{k}\right) x^k$$
 за умовою $|x| < \frac{1}{4}$.

3 Інтеграл Рімана-Стілтьєса

3.1 Коротко про монотонні функції

Будемо розглядати функції $f:[a,b] \to \mathbb{R}$ переважно неспадні. Для інших буде аналогічно.

Lemma 3.1.1 Маємо функцію $f:(a,b)\to\mathbb{R}$ – монотонна. Нехай $x_0\in(a,b)$, але є точкою розриву. Тоді x_0 обов'язково розрив І роду виду стрибка.

Proof.

Розглянемо випадок неспадної функції f. Ми вже знаємо $\exists \lim_{x \to x_0 = 0} f(x), \lim_{x \to x_0 + 0} f(x)$ (див. теорему в 1 семестрі), проте треба пересвідчитися, що вони скінченні.

!Припустимо, що $\lim_{x \to x_0 - 0} f(x) = +\infty$. Оберемо точку $y < x_0$, тоді за монотонністю $f(y) < f(x_0)$. Якщо f(y) > 0, то існує окіл $(x_0 - \delta, x_0)$, для якого $f(x) > f(y) > f(x_0)$. Якщо $f(y) < 0 \implies f(x_0) > 0$, то тоді все одно існує (можливо, інший) окіл $(x_0 - \delta, x_0)$, де $f(x) > f(x_0)$. У двох випадках суперечність!

Отже, наша точка x_0 – точно точка розриву першого роду. Залишилося довести, що це саме стрибок. !Припустимо, що ці дві границі рівні, тобто $d = \lim_{x \to x_0} f(x)$. У силу розривності $f(x_0) \neq d$. Оберемо $\varepsilon = f(x_0) - d$ або $\varepsilon = d - f(x_0)$. Тоді існуватиме окіл $(x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$, для якого $|f(x) - d| < \varepsilon$. У залежності від ситуації ми отримаємо або $f(x) < f(x_0)$, або $f(x) > f(x_0)$. При деяких точка околу $(x_0 - \delta, x_0 + \delta)$ нерівність неможлива в силу монотонності – суперечність! Отже, x_0 – стрибок.

Definition 3.1.2 Стрибком функції функції f в точці $x_0 \in [a,b]$ назвемо величину

$$f(x_0+0)-f(x_0-0)$$

Lemma 3.1.3 Нехай x_1,\dots,x_n – різні точки з [a,b]. Тоді $\sum_{k=1}^n (f(x_k+0)-f(x_k-0)) \leq f(b)-f(a)$.

Тут функція f — неспадна на [a,b]. Можна аналогічно написати лему для незростаючих функцій.

Припустимо, що точки $x_1 < x_2 < \dots < x_n$. Зауважимо, що виконуються нерівності:

$$f(a) \le f(x_1 - 0), \ f(x_n + 0) \le f(0)$$

 $f(x_{k-1} + x_k) < f(x_k - 0) < f(x_k + x_{k+1})$

Припустимо, що точки
$$x_1 < x_2 < \cdots < x_n$$
. Зауважимо, що виконуються нер $f(a) \le f(x_1 - 0), \ f(x_n + 0) \le f(b)$
$$f\left(\frac{x_{k-1} + x_k}{2}\right) \le f(x_k - 0) \le f(x_k + 0) \le f\left(\frac{x_k + x_{k+1}}{2}\right), \qquad \forall k = \overline{2, n-1}.$$

Це все за рахунок граничних переходів та неспадності функції. Маючи дану оцінку, отримаємо:

$$\sum_{k=1}^{n} (f(x_k + 0) - f(x_k - 0)) \le$$

$$\leq \sum_{k=2}^{n-1} \left(f\left(\frac{x_k + x_{k+1}}{2}\right) - f\left(\frac{x_{k-1} + x_k}{2}\right) \right) + f\left(\frac{x_1 + x_2}{2}\right) - f(x_1 - 0) + f(x_n + 0) - f\left(\frac{x_{n+1} - x_n}{2}\right) = f(x_n + 0) - f(x_1 - 0) \leq f(b) - f(a).$$

Lemma 3.1.4 Множина точок розриву монотонної функції не більш, ніж зліченна.

Proof.

Точки розриву монотонної функції можуть бути лише стрибками. Нехай $\varepsilon > 0$. Тоді кількість точок, які мають стрибок не менший за ε , скінченна.

!Припустимо, що кількість таких точок нескінченна. Оберемо якісь точки x_1, \ldots, x_n , що мають стрибок не менший за ε . За попередньою лемою, $f(b)-f(a)\geq \sum_{k=1}^n (f(x_k+0)-f(x_k-0))\geq n\varepsilon \implies$

$$n \leq \frac{f(b) - f(a)}{c}$$
. Суперечність!

 $n \leq \frac{f(b)-f(a)}{\varepsilon}$. Суперечність! Отже, число точок, в яких стрибок не менше за ε , скінченне. Нехай A_k – множина точок із стрибками не меншим за $\frac{1}{k}$. Тоді $A=\bigcup_{k=1}^{\infty}A_k$ — множина всіх точок розриву функції f на [a,b], де A точно не більше, ніж зліченна.

Corollary 3.1.5 $\sum_{k=1}^{\infty} (f(x_k+0) - f(x_k-0) \le f(b) - f(a)$, де кожна x_k – точка стрибок функції f. Y разі якщо $f \in C([a,b])$, то тоді ліва частина вважається, що дорівнює нулю.

Definition 3.1.6 Нехай $\{x_k, k \ge 1\}$ — множина всіх точок стрибка монотонної функції f на [a,b]. Функція f називається функцією стрибків, якщо

$$\sum_{k=1}^{\infty} (f(x_k + 0) - f(x_k - 0)) = f(b) - f(a)$$

Example 3.1.7 Розглянемо функцію
$$f\colon [0,1] \to \mathbb{R}$$
, що визначена таким чином: $f(0)=0 \qquad f(x)=\sum_{n:q_n< x} \frac{1}{2^n}, \ q_n\in \mathbb{Q}\cap [0,1].$

 $n:q_n < x$ Це приклад функції стрибків. По-перше, цілком ясно, що функція f строго зростає на [0,1]. Подруге, $f(q_n+0)-f(q_n-0)=\frac{1}{2^n}$; чому стрибок приймає таке значення, буде з наступного абзацу.

По-трете,
$$\sum_{n=1}^{\infty} (f(r_n+0) - f(r_n-0)) = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1 = f(1) - f(0).$$

Нехай x>q, розглянемо суму $f(x)=\sum_{n:q_n< q}^{n-1}\frac{1}{2^n}+\frac{1}{2^m}+\sum_{n:q< q_n< x}\frac{1}{2^n}$, де число m відповідає нумерації раціонального числа q. Треба довести, що $\sum_{n:q< q_n< x}\frac{1}{2^n}\to 0$ при $x\to q+0$. Припустимо, що $x_k\to q$ при $x_k>q$, причому монотонним чином (цього досить). Тоді маємо таке вкладення:

$$\mathbb{N} \supset \{n : q < q_n < x_k\} \supset \{n : q < q_n < x_{k+1}\}.$$

при
$$x_k > q$$
, причому монотонним чином (цього досить). Тоди маємо таке вкладення: $\mathbb{N} \supset \{n: q < q_n < x_k\} \supset \{n: q < q_n < x_{k+1}\}.$ Отже, звідси випливає, що $\min\{n: q < q_n < x_k\} \stackrel{\text{позн.}}{=} m_k \to +\infty$. Утім зауважимо, що $\sum_{n:q < q_n < x_k} \frac{1}{2^n} \le \frac{1}{2^{m_k}} + \frac{1}{2^{m_k+1}} + \dots = \frac{1}{2^{m_k-1}} \to 0.$

Значить, отримали $f(q+0) = \sum_{n:q_n < q} \frac{1}{2^n} + \frac{1}{2^m}$. Аналогічним чином можемо довести, що f(q-0) =

$$\sum_{n:q_n < q} \frac{1}{2^n}.$$
 Таким чином, $f(q+0) - f(q-0) = \frac{1}{2^m}.$

Theorem 3.1.8 Задано функцію f – неспадна на [a,b]. Тоді f(x)=g(x)+h(x), де функція g – функція стрибків, яка має стрибки в тих же точках і тієї ж величини, що й функція f; функція h– неспадна та неперервна.

Proof.

Нехай
$$\{x_n, n \geq 1\}$$
 – всі точки стрибка f . Покладемо функцію g таким чином: $g(a) = 0, \qquad g(x) = \sum_{n: x_n < x} (f(x_n + 0) - f(x_n - 0)) + f(x) - f(x - 0).$

$$g(x'') - g(x') = \sum_{n: x' \le x \le x''} (f(x_n + 0) - f(x_n - 0)) + f(x'') - f(x'' - 0) - f(x') + f(x' - 0)$$

Доведемо, що g — неспадна. Дійсно, розглянемо x'' > x' із [a,b]. Розпишемо різницю $g(x'') - g(x') = \sum_{n:x' \le x < x''} (f(x_n + 0) - f(x_n - 0)) + f(x'') - f(x'' - 0) - f(x') + f(x' - 0).$ Якщо точка x' сама є стрибком, то тоді можна із цієї суми відокремити f(x' + 0) - f(x' - 0). Отримаємо $g(x'') - g(x') = f(x' + 0) - f(x') + \sum_{n:x' < x_n < x''} (f(x_n + 0) - f(x_n - 0)) + f(x'') - f(x'' - 0)$. Якщо точка x' не є стрибком, то тоді замість $n: x' \le x < x''$ можна написати n: x' < x < x'' під

сумою, а штуку $f(x'-0) \stackrel{\text{замінюємо}}{=} f(x'+0)$. Отримаємо, що g(x'')-g(x') буде таким самим. Отже, $g(x'')-g(x')=f(x'+0)-f(x')+\sum_{n:x'< x_n< x''}(f(x_n+0)-f(x_n-0))+f(x'')-f(x''-0)$. Зрозуміло, що $f(x'+0)-f(x')\geq 0$, $f(x'')-f(x''-0)\geq 0$, а також сума стрибків невід'ємне число.

Отже,
$$g(x'') - g(x') = f(x'+0) - f(x') + \sum (f(x_n+0) - f(x_n-0)) + f(x'') - f(x''-0)$$

Разом ми отримаємо $q(x'') - q(x') > 0 \implies q(x'') > q(x')$.

Визначимо функцію h(x) = f(x) - g(x).

Спочатку доведемо, що h – теж неспадна. Нехай знову x'' > x' із [a,b]. Якщо повернутися до g(x'') - g(x'), то ця штука схожа на суму всіх стрибків функції f на відрізку [x', x'']. Значить, за **Crl. 3.1.5**, ми отримаємо оцінку $g(x'') - g(x') \le f(x'') - f(x')$. Тоді звідси матимемо f(x') - g(x') = $h(x') \le h(x'') = f(x'') - g(x'').$

Нарешті, доведемо, що h — неперервна. Оберемо точку $x' \in [a,b]$ (у цій точці доводимо неперервність) та довільну точку $x'' \in [a,b]$, щоб $x'' \geq x'$. Справедлива нерівність $g(x'') - g(x') \geq$ f(x'+0)-f(x'). Також мали нерівність $g(x'')-g(x') \le f(x'')-f(x')$. Спрямуємо $x'' \to x'+0-$ отримаємо, що $g(x'+0)-g(x')=f(x'+0)-f(x') \implies h(x')=h(x'+0)$. Аналогічно можна довести h(x') = h(x' - 0).

Remark 3.1.9 Мені більше подобається ось такий початок доведення, щоб приблизно зрозуміти, чому саме таку функцію q ми підбирали.

Нехай $\{x_n, n \geq 1\}$ – всі точки стрибка f. Побудуємо таку функцію g, яка буде функцією стрибків, де стрибки в тих же точках та цієї самої величини, що й в f. Тобто ми хочемо $\sum_{k=0}^{\infty} (g(x_k+0)-g(x_k-0)) = 0$ g(b)-g(a), причому також $g(x_k+0)-g(x_k-0)=f(x_k+0)-f(x_k-0)$. Для зручності покладемо g(a)=0. Матимемо $g(b)=\sum_{k=1}^{\infty}(f(x_k+0)-f(x_k-0))\stackrel{\text{afo}}{=}\sum_{k:x_k< b}(f(x_k+0)-f(x_k-0))+f(b)-f(b-0)$.

Далі ми можемо цю штуку визначити для кожної $x \in (a, \ddot{b}]$ – тоді отримаємо функцію із теореми.

3.2 Функції обмеженої варіації

Definition 3.2.1 Функція $f:[a,b]\to\mathbb{R}$ називається функцією обмеженої варіації на [a,b], якщо

$$\exists L \in \mathbb{R}: \forall au$$
 – розбиття $[a,b]: \sum_{k=1}^n |f(x_k) - f(x_{k-1})| \leq L$

Варіацією функції f на [a,b] називається величина:

$$V(f, [a, b]) = \sup_{\tau} \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

Позначення: BV([a,b]) – множина всіх функцій з обмеженою варіацією на [a,b].

Remark 3.2.2 Якщо f не має обмеженої варіації на [a,b], то кладемо $V(f,[a,b]) = +\infty$.

Proposition 3.2.3 Нехай f – монотонна на [a,b]. Тоді $f \in BV([a,b])$, а його варіація V(f,[a,b]) =|f(b)-f(a)|.

Proof.

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = f(x_n) - f(x_0) = f(b) - f(a).$$
 Отже, дійсно $f \in BV([a,b]).$

Proposition 3.2.4 Задано $f \in BV([a,b])$. Тоді f – обмежена на [a,b].

Proof.

Нехай $x \in (a, b]$. Тоді справедлива така оцінка:

$$|f(x)| \le |f(a)| + |f(x) - f(a)| \le |f(a)| + |f(x) - f(a)| + |f(b) - f(x)| \le |f(a)| + V(f, [a, b]).$$
 Отже, $\forall x \in [a, b] : |f(x)| \le |f(a)| + V(f, [a, b])$, тобто f – обмежена на $[a, b]$.

Remark 3.2.5 Зворотне твердження не виконується.

Example 3.2.6 Розглянемо цікаву функцію f на [0,1], що визначається таким чином:

$$f(0)=0$$
 $f\left(rac{1}{2k-1}
ight)=0$ $f\left(rac{1}{2k}
ight)=rac{1}{2k}.$ На відрізку $\left[rac{1}{2k+1},rac{1}{2k}
ight],\; \left[rac{1}{2k},rac{1}{2k-1}
ight]$ функція f — пряма лінія.

Така функція має необмежену варіацію. Дійсно, розглянемо розбиття відрізка [0,1] ось таке: $\tau_n =$ $\left\{ 0, \frac{1}{2n+1}, \frac{1}{2n}, \frac{1}{2n-1}, \dots, \frac{1}{2}, 1 \right\}.$ Розпишемо варіацію: $\left| f\left(\frac{1}{2n+1}\right) - f(0) \right| + \left| f\left(\frac{1}{2n}\right) - f\left(\frac{1}{2n+1}\right) \right| + \left| f\left(\frac{1}{2n-1}\right) - f\left(\frac{1}{2n}\right) \right| + \dots + \left| f(1) - f\left(\frac{1}{2}\right) \right| =$

$$\left| f\left(\frac{1}{2n+1}\right) - f(0) \right| + \left| f\left(\frac{1}{2n}\right) - f\left(\frac{1}{2n+1}\right) \right| + \left| f\left(\frac{1}{2n-1}\right) - f\left(\frac{1}{2n}\right) \right| + \dots + \left| f(1) - f\left(\frac{1}{2}\right) \right| = \frac{1}{2n+1} \left| \frac{1}{2n+1} \right| + \frac{1}{2n+1}$$

 $+\cdots+1$. Зауважимо, що ця варіація – це часткова суму гармонічного ряду, яка розбіжна.

Тож в будь-якому разі $V(f, [0, 1]) = +\infty$.

При цьому слід зазначити, що функцію $f \in C([0,1])$.

Отже, f обмежена сама на [0,1], проте має необмежену варіацію.

Proposition 3.2.7 Задано функцію $f \in BV([a,b])$. Тоді $V(f,[a,b]) \ge 0$. Більш того, що $|f(b)-f(a)| \le 0$ V(f,[a,b]).

Proposition 3.2.8 Задано функцію $f \in BV([a,b])$. Тоді $\forall c \in \mathbb{R} : cv \in BV([a,b])$.

Proposition 3.2.9 Задані функції $f, g \in BV([a, b])$. Тоді $f + g \in BV([a, b])$.

Proposition 3.2.10 Задані функції $f,g \in BV([a,b])$. Тоді $f \cdot g \in BV([a,b])$.

Proposition 3.2.11 Задані функції $f,g \in BV([a,b])$. Тоді $\frac{f}{g} \in BV([a,b])$ за умовою, що g повністю в $\exists \alpha > 0 : \forall x \in [a, b] : g(x) \ge \frac{1}{-}$.

Все це доводити не буду, оскільки цілком прості в доведенні, якщо на досвіді. Утім наступне твердження все ж таки доведу.

Proposition 3.2.12 $f \in BV([a,b]) \iff f \in BV([a,c]), f \in BV([c,b])$ при a < c < b. Більш того, V(f, [a, b]) = V(f, [a, c]) + V(f, [c, b]).

 $[\Rightarrow]$ Дано: $f \in BV([a,b])$. Нехай τ_1 – розбиття [a,c] та τ_2 – розбиття [c,b]. Позначимо $\tau=\tau_1\cup\tau_2$, що $\overline{\varepsilon}$, насправді, розбиттям відрізка [a,b]. Тоді

$$\sum_{k=1}^{n_1}|f(x_k^1)-f(x_{k-1}^1)|+\sum_{k=1}^{n_2}|f(x_k^2)-f(x_{k-1}^2)|\leq V(f,[a,b]).$$
 Із цієї нерівності випливає, що

$$\sum_{k=1}^{n_1} |f(x_k^1) - f(x_{k-1}^1)| \le V(f, [a, b]).$$

$$\sum_{k=1}^{n_2} |f(x_k^2) - f(x_{k-1}^2)| \le V(f, [a, b]).$$

Отже, ми довели двома нерівностями, що $f \in BV([a,c]), \ f \in BV([c,b]).$ Крім того, із першої нерівності отримаємо $V(f, [a, c]) + V(f, [c, b]) \le V(f, [a, b]).$

 Дано: $f \in BV([a,c]), \ f \in BV([c,b])$ при a < c < b. Нехай τ – розбиття відрізка [a,b]. Оберемо точку $c \in (x_{k_0-1}, x_{k_0})$. Тоді

$$\sum_{k=1}^{n} |f(x_k - f(x_{k-1}))| = \sum_{k=1}^{k_0 - 1} |f(x_k - f(x_{k-1}))| + |f(x_{k_0}) - f(c) + f(c) - f(x_{k_0 - 1})| + \sum_{k=k_0 + 1}^{n} |f(x_k - f(x_{k-1}))| \le V(f, [a, c]) + V(f, [c, b]).$$

Якби $c \in \tau$, тобто $c = x_{k_0}$, то було би ще простіше, розписувати не буду.

Отже, $f \in BV(f,[a,b])$. Крім того, отримали $V(f,[a,b]) \leq V(f,[a,c]) + V(f,[c,b])$.

Дві отримані нерівності під кінець дають рівність V(f, [a, b]) = V(f, [a, c]) + V(f, [c, b]).

Theorem 3.2.13 Теорема Жордана

 $f \in BV([a,b]) \iff f$ записується як різниця монотонно неспадних функцій на [a,b].

 \Rightarrow Дано: $f \in BV([a,b])$. Визначимо наступні функції:

$$\overline{g(a)} = 0 \qquad g(x) = V(f, [a, x]), \ x \in [a, b];$$

$$h(x) = g(x) - f(x).$$

g — монотонно не спадає, оскільки при $x^{\prime\prime}>x^{\prime}$ маємо оцінку:

$$g(x'')=V(f,[a,x''])=V(f,[a,x'])+V(f,[x',x''])\geq V(f,[a,x'])=g(x').$$
 h — монотонно не спадає, оскільки при $x''>x'$ маємо оцінку:

$$h(x'') - h(x') = g(x'') - f(x'') - g(x') + f(x') = V(f, [x', x'']) - (f(x'') - f(x')) \ge 0.$$

Отже, f(x) = g(x) - h(x), причому g, h – монотонно неспадні.

 \sqsubseteq Дано: f(x) = g(x) - h(x), причому g, h – монотонно неспадні. Тоді автоматично $g, h \in BV([a, b])$. $\overline{\text{Звідси}}$ за лінійністю $f \in BV([a,b])$.

Деякі додаткові твердження з функціями обмеженими варіаціями

Proposition 3.3.1 Задано функцію $f:[a,b] \to \mathbb{R}$, що задовольняє умові Ліпшиця. Тоді $f \in BV([a,b])$.

Proof.

Дійсно, маємо $|f(x)-f(y)| \leq L|x-y|$ для деякого $L \geq 0$ та для всіх $x,y \in [a,b]$. Тоді для будь-якого розбиття au відрізка [a,b] маємо

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \le \sum_{k=1}^{n} L|x_k - x_{k-1}| = L(b-a) \implies f \in BV([a,b]).$$

Theorem 3.3.2 Задано функцію $f:[a,b] \to \mathbb{R}$ таким чином, що $f' \in \mathcal{R}([a,b])$. Тоді $f \in BV([a,b])$, причому $V(f,[a,b]) = \int_{a}^{b} |f'(x)| dx$.

Proof.

$$\sum_{k=1}^{n}|f(x_{k})-f(x_{k-1})|=\sum_{k=1}^{n}\left|\int_{x_{k-1}}^{x_{k}}f'(t)\,dt\right|\leq\sum_{k=1}^{n}\int_{x_{k-1}}^{x_{k}}|f'(t)|\,dt=\int_{a}^{b}|f'(t)|\,dt.$$
 Отже, дійсно $f\in BV([a,b])$. Причому якщо подивитися на цю суму, то з іншого боку,

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} |f'(\xi_k)| \Delta x_k = \sigma(f', \tau, \xi_k).$$

Нехай задане $\varepsilon > 0$. Тоді можна підібрати розбиття τ , щоб $V(f,[a,b]) - \sum_{k=1}^n |f(x_k) - f(x_{k-1})| < \varepsilon$.

Тоді, маючи у відомості умову $f' \in \mathcal{R}([a,b])$, маємо

$$V(f, [a, b]) - \int_{a}^{b} |f'(x)| dx = V(f, [a, b]) - \sigma(f', \tau, \xi_k) + \sigma(f', \tau, \xi_k) - \int_{a}^{b} |f'(x)| dx < 2\varepsilon.$$

Значить, довели рівність $V(f,[a,b]) = \int^b |f'(x)| \, dx.$

Corollary 3.3.3 Задана функція $\varphi \in \mathcal{R}([a,b])$ та $f(x) = \int_a^x \varphi(u) \, du$. Тоді $V(f,[a,b]) = \int_a^b |\varphi(u)| \, du$.

3.4 Інтеграл Стілтьєса

3.4.1 Означення за Ріманом

Definition 3.4.1 Маємо τ — розбиття відрізка [a,b] та ξ — обрані точки. Нехай задані функції $f \colon [a,b] \to \mathbb{R}$ та $\alpha \colon [a,b] \to \mathbb{R}$ — монотонно неспадна.

Інтегральною сумою Рімана-Стілтьєса функції f для нашого розбиття τ , відмічених точок ξ та монотонної функції α називають число:

$$\sigma(f, \tau, \xi, \alpha) = \sum_{k=1}^{n} f(\xi_k) (\alpha(x_k) - \alpha(x_{k-1}))$$

Функція f називається **інтегрованою за Ріманом-Стілтьєсом** відносно α на [a,b], якщо існує таке число $I \in \mathbb{R}$, для якого виконана умова:

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (\tau, \xi) : |\tau| < \delta \implies |\sigma(\tau, \xi, f, \alpha) - I| < \varepsilon$$

Число I називають **інтегралом Рімана-Стілтьєса** відносно α .

$$I = \int_{a}^{b} f(x) \, d\alpha(x)$$

Позначення: $I = \lim_{|\tau| \to 0} \sigma(f, \tau, \xi, \alpha)$.

Множина інтегрованих функцій за Ріманом-Стілтьєсом відносно α позначається так: $\mathcal{RS}([a,b],\alpha)$.

3.4.2 Означення за Дарбу

Definition 3.4.2 Маємо τ — розбиття відрізка [a,b]. Нехай задані функції $f:[a,b] \to \mathbb{R}$ — обмежена та $\alpha:[a,b] \to \mathbb{R}$ — монотонно неспадна.

Верхньою та нижньою сумою Дарбу-Стілтьєса називають такі суми:

$$U(f, \alpha, \tau) = \sum_{k=1}^{n} M_k(\alpha(x_k) - \alpha(x_{k-1})) \qquad L(f, \alpha, \tau) = \sum_{k=1}^{n} m_k(\alpha(x_k) - \alpha(x_{k-1}))$$

Позначені $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x), \ m_k = \inf_{x \in [x_{k-1}, x_k]} f(x).$

Remark 3.4.3 Із означення випливає, що $L(f, \alpha, \tau) \le \sigma(f, \alpha, \tau, \xi) \le U(f, \alpha, \tau)$.

Lemma 3.4.4 Задані функції $f\colon [a,b]\to \mathbb{R}$ — обмежена, α — неспадна та будь-яке розбиття τ . Тоді маємо $L(f,\alpha,\tau)=\inf_{\xi}\sigma(f,\alpha,\tau,\xi)$ $U(f,\alpha,\tau)=\sup_{\xi}\sigma(f,\alpha,\tau,\xi).$

Аналогічне доведення.

Lemma 3.4.5 Задані функції $f: [a,b] \to \mathbb{R}$ — обмежена, α — неспадна та розбиття τ . Також задамо підрозбиття τ' . Тоді $U(f,\alpha,\tau) \ge U(f,\alpha,\tau')$, а також $L(f,\alpha,\tau) \le L(f,\alpha,\tau')$. Аналогічне доведення.

Lemma 3.4.6 Задані функції $f:[a,b]\to\mathbb{R}$ — обмежена, α — неспадна. Візьмемо будь-які розбиття τ',τ'' . Тоді $L(f,\alpha,\tau')\leq U(f,\alpha,\tau'')$. Аналогічне доведення.

Definition 3.4.7 Верхнім/нижнім інтегралом Дарбу-Стілтьєса називають такі вирази:

$$I^*(f,\alpha) = \inf_{\tau} U(f,\alpha,\tau) \qquad I_*(f,\alpha) = \sup_{\tau} L(f,\alpha,\tau)$$

Remark 3.4.8 Справедлива така нерівність: $I_*(f, \alpha) \leq I^*(f, \alpha)$.

Proposition 3.4.9 Задані функції $f\colon [a,b]\to \mathbb{R}$ – обмежена та α – неспадна. Тоді $\lim_{|\tau|\to 0} L(f,\alpha,\tau) = I_*(f,\alpha)$ $\lim_{|\tau|\to 0} U(f,\alpha,\tau) = I^*(f,\alpha).$

3.5 Існування інтеграла

Theorem 3.5.1 Необхідна умова інтегрованості

Задано функцію $f \in \mathcal{RS}([a,b],\alpha)$. Тоді f – обмежена на [a,b].

Theorem 3.5.2 Перший критерій інтегрованості

Задано функцію $f:[a,b]\to\mathbb{R}$.

 $f \in \mathcal{RS}([a,b],\alpha) \iff f$ – обмежена на [a,b] та $I_*(f,\alpha) = I^*(f,\alpha)$.

Corollary 3.5.3 Якщо функція $f \in \mathcal{RS}([a,b],\alpha)$ та $I = \int_a^b f(x) \, d\alpha(x)$ – його відповідний інтеграл, то справедлива нерівність:

$$L(f, \alpha, \tau) \le \int_{a}^{b} f(x) d\alpha(x) \le U(f, \alpha, \tau).$$

Theorem 3.5.4 Другий критерій інтегрованості

Задано функцію $f: [a, b] \to \mathbb{R}$.

$$f \in \mathcal{RS}([a,b],\alpha) \iff f$$
 – обмежена на $[a,b]$ та $\forall \varepsilon > 0: \exists \tau: U(f,\alpha,\tau) - L(f,\alpha,\tau) < \varepsilon.$

Remark 3.5.5 Коротко кажучи,
$$f \in \mathcal{RS}([a,b],\alpha) \iff \lim_{|\tau| \to 0} (U(f,\alpha,\tau) - L(f,\alpha,\tau)) = 0.$$

3.6 Класи інтегрованих функцій

Theorem 3.6.1 Задані функції $f, g \in \mathcal{RS}([a, b], \alpha)$. Тоді $f + g \in \mathcal{RS}([a, b], \alpha)$.

Theorem 3.6.2 Задано функцію $f \in \mathcal{RS}([a,b],\alpha)$. Тоді $\alpha f \in \mathcal{RS}([a,b],\alpha), \forall \alpha \in \mathbb{R}$.

Theorem 3.6.3 $f \in \mathcal{RS}([a,b],\alpha) \iff \forall c \in (a,b) : f \in \mathcal{RS}([a,c],\alpha), \ f \in \mathcal{RS}([c,b],\alpha).$

Theorem 3.6.4 Задано функцію $f:[a,b] \to \mathbb{R}$ — монотонна. Тоді $f \in \mathcal{RS}([a,b],\alpha)$ за умовою, що $\alpha \in C([a,b])$.

Proof.

Розглянемо випадок, коли f – нестрого зростає на [a,b].

Нехай $\varepsilon > 0$. За теоремою Кантора $\exists \delta > 0 : \forall x_1, x_2 : |x_1 - x_2| < \delta \implies |\alpha(x_1) - \alpha(x_2)| < \frac{\varepsilon}{f(b) - f(a)}$.

Оберемо розбиття τ відрізка [a,b] таким чином, щоб $|\tau|<\delta$. Тоді

$$U(f,\alpha,\tau) - L(f,\alpha,\tau) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1}))(\alpha(x_k) - \alpha(x_{k-1}) < \frac{\varepsilon}{f(b) - f(a)} \sum_{k=1}^{n} f(x_k - f(x_{k-1})) = \varepsilon.$$
Отже, $f \in \mathcal{RS}([a,b],\alpha)$.

Theorem 3.6.5 Задано функцію $f \in C([a,b])$. Тоді $f \in \mathcal{RS}([a,b],\alpha)$.

3.7 Властивості інтегралів

Theorem 3.7.1 Лінійність

$$\int_{a}^{b} \alpha f(x) + \beta g(x) \, d\alpha(x) = \alpha \int_{a}^{b} f(x) \, d\alpha(x) + \beta \int_{a}^{b} g(x) \, d\alpha(x).$$

Theorem 3.7.2 Адитивність

$$\int_{a}^{b} f(x) d\alpha(x) = \int_{a}^{c} f(x) d\alpha(x) + \int_{c}^{b} f(x) d\alpha(x).$$

Theorem 3.7.3 Задано $f \in \mathcal{RS}([a,b],\alpha)$. Відомо, що $f \geq 0$. Тоді $\int^b f(x) \, d\alpha(x) \geq 0$.

Corollary 3.7.4 Задані $f,g \in \mathcal{RS}([a,b],\alpha)$. Відомо, що $f \leq g$. Тоді $\int_a^b f(x) \, d\alpha(x) \leq \int_a^b g(x) \, d\alpha(x)$.

Corollary 3.7.5
$$\left| \int_a^b f(x) \, d\alpha(x) \right| \leq \int_a^b |f(x)| \, d\alpha(x)$$

Theorem 3.7.6 Задано $f \in \mathcal{RS}([a,b],\alpha_1), f \in \mathcal{RS}([a,b],\alpha_2).$ Тоді $f \in \mathcal{RS}([a,b],\alpha_1+\alpha_2).$ $\int_a^b f(x) d(\alpha_1(x) + \alpha_2(x)) = \int_a^b f(x) d\alpha_1(x) + \int_a^b f(x) d\alpha_2(x).$

Інтеграл відносно функції обмеженої варіації

Задано функцію $\alpha \in BV([a,b])$. За теоремою Жордана, $\alpha = \beta - \gamma$, де кожна β, γ – неспадні на [a,b]. Якщо розписати суму Рімана-Дарбу, то там буде різниця двох сум. Тому буде природно визначити таким чином інтеграл:

$$\int_a^b f(x) \, d\alpha(x) = \int_a^b f(x) \, d\beta(x) - \int_a^b f(x) \, d\gamma(x)$$

Інтеграл $f \in \mathcal{RS}([a,b],\alpha)$ в цьому випадку, якщо $f \in \mathcal{RS}([a,b],\beta) \cap \mathcal{RS}([a,b],\gamma)$.

Proposition 3.8.1 Інтеграл не залежить від розкладу функції (у теоремі Жордана розклад не єдиний).

Proof.

Ргоог. Маємо
$$\alpha = \beta - \gamma$$
 та припустимо ще $\alpha = \tilde{\beta} - \tilde{\gamma}$. Звідси отримаємо $\beta + \tilde{\gamma} = \tilde{\beta} + \gamma$, а тому
$$\int_a^b f(x) \, d(\beta(x) + \tilde{\gamma}(x)) = \int_a^b f(x) \, d(\tilde{\beta}(x) + \gamma(x)).$$
$$\int_a^b f(x) \, d\beta(x) - \int_a^b f(x) \, d\gamma(x) = \int_a^b f(x) \, d\tilde{\beta}(x) - \int_a^b f(x) \, d\tilde{\gamma}(x).$$

Обчислення інтеграла Стілтьєса

Theorem 3.9.1 Задані функції $f \in \mathcal{R}([a,b])$ та $\alpha \in C([a,b])$, диференційована всюди, крім скінченного числа точок [a,b], причому $\alpha' \in \mathcal{R}([a,b])$. Тоді $\int_a^b f(x) \, d\alpha(x) = \int_a^b f(x) \alpha'(x) \, dx$.

Remark 3.9.2 Застереження: оскільки $\alpha' \in \mathcal{R}([a,b])$, то звідси $\alpha \in BV([a,b])$ за Th. 3.3.2. Тому тут все нормально.

Proof.

Нехай $\varepsilon > 0$. За умовою теореми, $\alpha' f \in \mathcal{R}([a,b])$, його інтеграл позначу за I. Тоді існує $\delta > 0$, де $\forall (au, \xi): | au| < \delta \implies |\sigma(f lpha', au, \xi) - I| < arepsilon$. Ми хочемо довести, що $|\sigma(f, lpha, au, \xi) - I| < arepsilon$.

Зауважимо, що
$$\sigma(f,\alpha,\tau,\xi)=\sum_{k=1}^n f(\xi_k)(\alpha(x_k)-\alpha(x_{k-1}))=\sum_{k=1}^n f(\xi_k)\alpha'(\eta_k)\Delta x_k=$$

$$= \sum_{k=1}^{n} f(\xi_k) (\alpha'(\eta_k) - \alpha'(\xi_k)) \Delta x_k + \sum_{k=1}^{n} f(\xi_k) \alpha'(\xi_k) \Delta x_k \text{ при } \eta_k \in (x_{k-1}, x_k).$$

Звідси
$$|\sigma(f,\alpha,\tau,\xi)-I| \leq |\sigma(f\alpha',\tau,\xi)-I| + \left|\sum_{k=1}^n f(\xi_k)(\alpha'(\eta_k)-\alpha'(\xi_k))\Delta x_k\right|.$$

Оскільки $f \in \mathcal{R}([a,b])$, то f – обмежена числом M>0. Нам ще буде потрібна умова $\alpha' \in \mathcal{R}([a,b])$,

що дозволить нам отримати оцінку
$$|\sigma(\alpha', \tau, \xi) - \sigma(\alpha', \tau, \eta)| = \left| \sum_{k=1}^{n} (\alpha'(\eta_k) - \alpha'(\xi_k)) \Delta x_k \right| < \varepsilon.$$

Разом отримаємо $|\sigma(f, \alpha, \tau, \xi) - I| \le \varepsilon + M\varepsilon$.

Lemma 3.9.3 Задано функцію
$$f \colon [a,b] \to \mathbb{R}$$
 – неперервна в точці $c \in [a,b]$. Також $\alpha(x) = \begin{cases} \alpha(c-0), & x < c \\ \alpha(c), & x = c,, \\ \alpha(c+0), & x > c \end{cases}$

причому в нас
$$\alpha(c-0) \leq \alpha(c) \leq \alpha(c+0)$$
. Тоді $\int_a^b f(x) \, d\alpha(x) = f(c)(\alpha(c+0) - \alpha(c-0))$.

Proof.

Нехай $\varepsilon > 0$. Оскільки f неперервна в точці c, то існує $\delta > 0$, для якого $\forall x \in (c - \delta, c + \delta)$: |f(x)-f(c)|<arepsilon. Тепер оберемо будь-яке розбиття au таким чином, що $| au|<\delta$; відмітимо точками ξ . У нас може виникнути один із двох випадків:

I.
$$c \in (x_{k-1}, x_k)$$
. Звідси $\sigma(f, \alpha, \tau, \xi) = f(\xi_k)(\alpha(c+0) - \alpha(c-0))$. Після цього отримаємо $|\sigma(f, \alpha, \tau, \xi) - f(c)(\alpha(c+0) - \alpha(c-0))| = (\alpha(c+0) - \alpha(c-0))|f(\xi_k) - f(c)| < (\alpha(c+0) - \alpha(c-0))\varepsilon$. II. $c = x_k$. Звідси $\sigma(f, \alpha, \tau, \xi) = f(\xi_k)(\alpha(c) - \alpha(c-0)) + f(\xi_{k+1})(\alpha(c+0) - \alpha(c))$. Після цього $|\sigma(f, \alpha, \tau, \xi) - f(c)(\alpha(c+0) - \alpha(c-0))| \le$

 $|f(\xi_k)(\alpha(c)-\alpha(c-0))-f(c)(\alpha(c)-\alpha(c-0))|+|f(\xi_{k+1})(\alpha(c+0)-\alpha(c))-f(c)(\alpha(c+0)-\alpha(c))|<<(\alpha(c)-\alpha(c-0))\varepsilon+(\alpha(c+0)-\alpha(c))\varepsilon=(\alpha(c+0)-\alpha(c-0))\varepsilon.$

У двох випадках довели, що
$$f(c)(\alpha(c+0)-\alpha(c-0))=\int_a^b f(x)\,d\alpha(x).$$

Lemma 3.9.4 Задано функцію $f \in C([a,b])$ та $\alpha \colon [a,b] \to \mathbb{R}$ постійна на інтервалах (z_k,z_{k+1}) , де точки $a=z_1 < z_2 < \dots < z_m = b$. Тоді $\int_a^b f(x) \, d\alpha(x) = \sum_{k=1}^m f(z_k) (\alpha(z_k+0) - \alpha(z_k-0))$.

Theorem 3.9.5 Задано функцію $f \in C([a,b])$ та α на [a,b] неперервна, крім скінченного числа точок z_1,\dots,z_m — точок розриву першого роду. Нехай α' існує за винятком скінченного числа точок, причому $\alpha' \in \mathcal{R}([a,b])$. Тоді $\int_a^b f(x) \, d\alpha(x) = \int_a^b f(x) \alpha'(x) \, dx + \sum_{k=1}^m f(z_k) (\alpha(z_k+0) - \alpha(z_k-0))$.

Example 3.9.6 Обчислити $\int_0^2 2^x \, d(x \, {\rm sgn} \, {\cos} \, \pi x).$ Маємо функцію $f(x) = 2^x$, яка точно неперервна на

Маємо функцію $\alpha(x) = x \operatorname{sgn}(\cos \pi x) = \begin{cases} x, & \cos \pi x > 0 \\ 0, & \cos \pi x = 0, \text{. Зауважимо, що } \cos \pi x > 0 \iff x \in -x, & \cos \pi x < 0 \end{cases}$

$$\left[0,\frac{1}{2}\right)\cup\left(\frac{3}{2},2\right].$$
 Отже, можна записати функцію $\alpha(x)=\begin{cases}x,&x\in\left[0,\frac{1}{2}\right)\cup\left(\frac{3}{2},2\right]\\0,&x\in\left\{\frac{1}{2},\frac{3}{2}\right\}\\-x,&x\in\left(\frac{1}{2},\frac{3}{2}\right)\end{cases}$. Цілком зро-

зуміло, що така функція неперервна, крім $x=\frac{1}{2},\ x=\frac{3}{2}.$ Знайдемо похідну:

$$lpha'(x) = egin{dcases} 1, & x \in \left[0, rac{1}{2}
ight) \cup \left(rac{3}{2}, 2
ight] \\ -1, & x \in \left(rac{1}{2}, rac{3}{2}
ight) \end{cases}$$
. Зауважимо, що $lpha' \in \mathcal{R}([a,b])$, оскільки неперервна, крім скін-

ченного числа точок (де вона взагалі не визначена). Отже,
$$\int_0^2 2^x \, d(x \operatorname{sgn} \cos \pi x) = \int_0^2 2^x \alpha'(x) \, dx + f\left(\frac{1}{2}\right) \left(\alpha \left(\frac{1}{2} + 0\right) - \alpha \left(\frac{1}{2} - 0\right)\right) + f\left(\frac{3}{2}\right) \left(\alpha \left(\frac{3}{2} + 0\right) - \alpha \left(\frac{3}{2} - 0\right)\right).$$

$$\int_0^2 2^x \alpha'(x) \, dx = \int_0^{\frac{1}{2}} 2^x \, dx - \int_{\frac{1}{2}}^{\frac{3}{2}} 2^x \, dx + \int_{\frac{3}{2}}^2 2^x \, dx = \ln 2(2^{\frac{3}{2}} - 2^{\frac{5}{2}} + 3).$$
 Отже,
$$\int_0^2 2^x \, d(x \operatorname{sgn} \cos \pi x) = (2^{\frac{3}{2}} - 2^{\frac{5}{2}} + 3) \ln 2 - 2^{\frac{1}{2}} + 3 \cdot 2^{\frac{3}{2}}.$$

Граничний перехід в інтегралі Стілтьєса

Theorem 3.10.1 Теорема Хеллі

Задано функцію $f \in C([a,b]),$ а також функції α, α_n – неспадні на [a,b]. Припустимо, що $\alpha_n(x) \to$ $\alpha(x)$ для всіх точок $x \in [a,b]$, де функція α неперервна; а також $\alpha_n(a) \to \alpha(a); \alpha_n(b) \to \alpha(b)$. Тоді $\int_{a}^{b} f(x) d\alpha(x) = \lim_{n \to \infty} \int_{a}^{b} f(x) d\alpha_{n}(x).$

Вступ до \mathbb{R}^m (багатовимірний математичний аналіз) 4

На даному етапі допускається, що читач володіє матеріалом лінійної алгебри. Знати треба вже наступне: векторні простори та суміжні поняття, лінійні оператори, евклідові простори, нормовані простори. Буде корисно також знати якусь теорію метричних просторів, але це не обов'язково, бо все одно я буду проходитися з нуля.

Про простір \mathbb{R}^m 4.1

Definition 4.1.1 Простір \mathbb{R}^m містить об'єкти, що називаються арифметичними векторами

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix},$$

де кожний елемент $x_i \in \mathbb{R}$. Ці елементи x_i ще називають **координатами**.

Візьмемо довільні вектори $\vec{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_m \end{pmatrix},\; \vec{y}=\begin{pmatrix} y_1\\y_2\\\vdots\\y_{--} \end{pmatrix}$. Ми можемо створити операції **додавання** та множення на скаляр таким чи

$$\vec{x} + \vec{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_m + y_n \end{pmatrix} \qquad \alpha \vec{x} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_m \end{pmatrix}, \alpha \in \mathbb{R}$$

Також позначимо $\vec{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \hat{0} \end{pmatrix}$ — це буде так званий нульовий вектор.

Proposition 4.1.2 Виконуються ось такі влетивості $\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^m, \ \forall \alpha, \beta \in \mathbb{R}$:

- 1) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$; 5) $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$;
- 2) $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z};$ 6) $(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x};$ 3) $\vec{x} + \vec{0} = \vec{x};$ 7) $\alpha(\beta \vec{x}) = (\alpha \beta)\vec{x};$ 2) $\vec{x} + (\vec{y} + \vec{z})$ (2) $\vec{x} + (\vec{y} + \vec{z})$ (3) $\vec{x} + \vec{0} = \vec{x}$; (4) $\vec{x} + (\vec{z}) = \vec{0}$; (7) $\alpha(\beta \vec{x}) = (\vec{z} + \vec{z})$ (8) $1 \cdot \vec{x} = \vec{x}$.

Ці вісім пунктів свідчать про те, що \mathbb{R}^m утворює лінійний простір.

Вправа: довести.

Надалі ми ще будемо використовувати скалярний добуток, що визначається таким чином:

$$(\vec{x}, \vec{y}) = x_1 y_1 + x_2 y_2 + \dots + x_m y_m$$

Proposition 4.1.3 Виконуються ось такі властивості $\forall \vec{x}, \vec{y}, \vec{x}_1, \vec{x}_2 \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$:

- 1) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x});$
- 2) $(\vec{x}, \vec{x}) \ge 0$, $(\vec{x}, \vec{x}) = 0 \iff \vec{x} = \vec{0}$; 3) $(\vec{x}_1 + \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y})$;
- 4) $(\alpha \vec{x}, \vec{y}) = \alpha(\vec{x}, \vec{y}).$

Ці чотири властивості свідчать про те, що (\vec{x}, \vec{y}) дійсно задає скалярний добуток. При цьому в такому разі простір \mathbb{R}^m буде вже евклідовим.

Вправа: довести.

Далі визначимо ще норму вектора ось таким чином:

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

Ця штука, насправді, є узагальненням такого поняття як довжина вектора.

Theorem 4.1.4 Нерівність Коші-Буняковського

 $(\vec{x}, \vec{y})^2 \le ||\vec{x}|| ||\vec{y}||.$

Можна подивитися доведення в pdf лінійної алгебри.

Proposition 4.1.5 Виконуються ось такі властивості $\forall \vec{x}, \vec{y} \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$:

- 1) $\|\vec{x}\| \ge 0$ $\|\vec{x}\| = 0 \iff \vec{x} = \vec{0};$
- 2) $\forall \alpha \in \mathbb{R} : \|\alpha \vec{x}\| = \alpha \|\vec{x}\|;$
- 3) $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

Отже, заданий $\|\vec{x}\|$ утвроює норму. Відповідно, \mathbb{R}^m буде нормованим простором.

Вправа: довести.

Також нас ще цікавить відстань між двома векторами. Обчислити це можна таким чином:

$$d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\| \stackrel{\text{мкщо розписати}}{=} \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_m - y_m)^2}$$

Буквально так само ми рахували відстань між точками в одновимірному випадку.

Proposition 4.1.6 Виконуються такі властивості $\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^m$:

- 1) $d(\vec{x}, \vec{y}) \ge 0$;
- 2) $d(\vec{y}, \vec{x}) = d(\vec{x}, \vec{x});$
- 3) $d(\vec{x}, \vec{y}) \le d(\vec{x}, \vec{z}) + d(\vec{z}, \vec{y}).$

Ці три властивості дають підстави нам казати, що $d(\vec{x}, \vec{y})$ задає відстань між двома об'єктами. У такому разі простір \mathbb{R}^m називають метричним.

Вправа: довести.

4.2 Топологія та принцип аналіза в \mathbb{R}^m

Означеня будуть абсолютно аналогічними, просто тепер буде випадок з векторами.

Definition 4.2.1 ε **-околом** точки \vec{x} будемо називати таку множину:

$$U_{\varepsilon}(\vec{x}) = \{ \vec{a} \in \mathbb{R}^m : ||\vec{x} - \vec{a}|| < \varepsilon \}$$

Її ще також називають **відкритим шаром** з радіусом ε в центрі точки \vec{x} та позначають як $B(\vec{x}, \varepsilon)$. Але про це можна детально побачити в розділі про метричні простори.

Definition 4.2.2 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in A$.

Точку \vec{a} називають **внутрішньою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{a}) \subset A$$

A множина A називається **відкритою**, якщо кожна її точка — внутрішня.

Definition 4.2.3 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in \mathbb{R}^m$.

Точку \vec{a} називають **граничною** множини A, якщо

$$\forall \varepsilon > 0: \exists \vec{x} \in A: \vec{x} \neq \vec{a}: \vec{x} \in U_{\varepsilon}(\vec{a})$$

A множина A називається **замкненою**, якщо вона містить всі граничні точки.

Definition 4.2.4 Задано множину $A \subset \mathbb{R}^m$ та точка $\vec{x} \in A$.

Точка \vec{x} називається **ізольованою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A = \{\vec{x}\}\$$

Також решта тверджень будуть схожі на ті твердження, що були при топології \mathbb{R} . Доведення теж аналогічні, тому доводити я повторно не буду, просто залишу формулювання.

Proposition 4.2.5 Якщо $\{A_{\lambda}\}$ – сім'я відкритих підмножин, то $\bigcup A_{\lambda}$ – відкрита.

Proposition 4.2.6 Якщо $\{A_{\lambda}\}$ – скінченна сім'я відкритих підмножин, то $\bigcap A_{\lambda}$ – відкрита.

Proposition 4.2.7 \vec{a} – гранична точка $A \subset \mathbb{R}^m \iff \forall \varepsilon > 0 : A \cap U_{\varepsilon}(\vec{a})$ – нескінченна множина.

Proposition 4.2.8 A – відкрита множина $\iff A^c$ – замкнена множина.

Proposition 4.2.9 Точка $\vec{x} \in A$ – ізольована $\iff \vec{x}$ – не гранична для A.

Proposition 4.2.10 \mathbb{R}^m , \emptyset – одночасно відкриті та замкнені множини.

Proposition 4.2.11 Відкритий шар $B(\vec{a},r) = \{ \vec{x} \in \mathbb{R}^m : \|\vec{x} - \vec{a}\| < r \}$ є дійсно відкритим. Замкнений шар $B[\vec{a},r] = \{\vec{x} \in \mathbb{R}^m : ||\vec{x} - \vec{a}|| \le r\}$ є дійсно замкненим.

Proof.

Нехай $\vec{x} \in B(\vec{a},r) \implies \|\vec{x}-\vec{a}\| < r$. Встановимо $\varepsilon = r - \|\vec{x}-\vec{a}\|$. Тоді $\vec{y} \in U_{\varepsilon}(\vec{x}) \implies \|\vec{y}-\vec{x}\| < \varepsilon \implies \|\vec{y}-\vec{a}\| = \|\vec{y}-\vec{x}+\vec{x}-\vec{a}\| \leq \|\vec{y}-\vec{x}\| + \|\vec{x}-\vec{a}\| < \varepsilon + \|\vec{x}-\vec{a}\| = 0$

Отже, $U_{\varepsilon}(\vec{x}) \subset B(\vec{a},r)$, так для кожної точки $\vec{x} \in B(\vec{a},r)$. А тому множина $B(\vec{a},r)$ – відкрита.

 $B[\vec{a},r]=\mathbb{R}^m\setminus B(\vec{a},r)=\mathbb{R}^m\cap B^c(\vec{a},r)$ - обидві множини є замкненими. Тому перетин замкнена.

Definition 4.2.12 Задано множину $A \subset \mathbb{R}^m$.

Вона називається обмеженою, якщо

$$\exists R > 0 : \forall \vec{x} \in A : \|\vec{x}\| \le R$$

Або інакше це можна записати таким чином:

$$\exists R > 0 : A \subset U_R(\vec{0})$$

Example 4.2.13 Зокрема одинична сфера $S^{m-1} = \{ \vec{x} \in \mathbb{R}^m : \|\vec{x}\| = 1 \}$ буде обмеженою. Досить важлива множина, бо з нею ми будемо неодноразово працювати.

Зараз буде нове поняття, яке не було бажання вводити в мат. аналізі в \mathbb{R} .

Definition 4.2.14 Задамо множину $A \subset \mathbb{R}^m$.

Межею множини A називають множину точок, в кожному околі яких є точки з A та з A^c . Тобто це можна записати так:

$$\partial A = \{ \vec{x} \in \mathbb{R}^m \mid \forall \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A \neq \emptyset \text{ Ta } U_{\varepsilon}(\vec{x}) \cap A^c \neq \emptyset \}$$

Example 4.2.15 Зокрема розглянемо відкриту двовимірну кулю $B(\vec{0},1)$. Зауважимо, що $\partial B(\vec{0},1) =$ S^{1} – одинична сфера (тобто коло в нашому випадку).

Перше червоне – це відкрита куля. Друге червоне – його межа.

Також специфічні приклади. Маємо $\partial \emptyset = \emptyset$, а також $\partial \mathbb{R}^m = \emptyset$ (тут тіпа безмежна множина).

Example 4.2.16 Якщо повернутися до одновимірного випадку, то $\partial(a,b) = \partial(a,b) = \partial[a,b) =$ $\partial[a,b]=\{a,b\}$. У нас тут межа містить точки, які ніяк не зв'язуються на числовій прямій, тому ми й не розглядали межі.

Proposition 4.2.17 Маємо $A \subset \mathbb{R}^m$. Тоді межа ∂A – замкнена множина.

Proof.

Нехай \vec{x} – гранична точка ∂A ; тоді треба довести, що $\vec{x} \in \partial A$.

Для кожного $\varepsilon > 0$, за умовою, існує $\vec{y} \in \partial A, \vec{y} \neq \vec{x}$, для якого $\|\vec{y} - \vec{x}\| < \varepsilon$. Оскільки $\vec{y} \in \partial A$, то тоді існують $\vec{z}_1 \in A, \vec{z}_2 \in A^c$, які не збігаються з точкою \vec{y} і для яких $\|y - \vec{z}_1\| < \varepsilon, \ \|y - \vec{z}_2\| < \varepsilon$. Маючи нерівність трикутників для норми, маємо $\|\vec{x} - \vec{z}_1\| < 2\varepsilon, \|\vec{x} - \vec{z}_2\| < 2\varepsilon$. Оскільки це виконується для всіх $\varepsilon > 0$, то звідси доводимо $\vec{x} \in \partial A$.

Corollary 4.2.18 S^m — одинична сфера — замкнена множина.

4.3 Границя послідовності

Definition 4.3.1 Вектор $\vec{a} \in \mathbb{R}^m$ називається **границею** послідовності векторів $\{\vec{a}^{(n)}, n > 1\}$, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : \|\vec{a}^{(n)} - \vec{a}\| < \varepsilon$$

Позначення: $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}$.

Theorem 4.3.2 Для послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ існує $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a} \iff$ \iff для всіх координат послідовності $\{a_j^{(n)}, n \geq 1\}$ існують $\lim_{n \to \infty} a_j^{(n)} = a_j, j = \overline{1, m}.$

Proof.

$$\Rightarrow$$
 Дано: $\exists \lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}$, тобто $\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : ||\vec{a}^{(n)} - \vec{a}|| < \varepsilon$.

У нас границя визначається вектором $\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$. Тоді $\|\vec{a}^{(n)} - \vec{a}\| = \sqrt{(a_1^{(n)} - a_1)^2 + \dots + (a_1^{(m)} - a_m)^2}$ $\implies \forall j = \overline{1, m} : |a_j^{(n)} - a_j| = \sqrt{(a_j^{(n)} - a_j)^2} < \sqrt{(a_1^{(n)} - a_1)^2 + \dots + (a_1^{(m)} - a_m)^2} < \varepsilon.$ Отже, $\exists \lim_{n \to \infty} a_j^{(n)} = a_j$.

$$\sqsubseteq$$
 Дано: $\forall j=\overline{1,m}:\exists\lim_{n\to\infty}a_j^{(n)}=a_j.$ Тоді $\forall \varepsilon>0:\exists N:\forall n\geq N:|a_j^{(n)}-a_j|<\dfrac{\varepsilon}{\sqrt{m}}.$ $\Longrightarrow \|\vec{a}^{(n)}-\vec{a}\|=\sqrt{(a_1^{(n)}-a_1)^2+\cdots+(a_m^{(n)}-a_m)^2}<\sqrt{\dfrac{\varepsilon^2}{m}+\cdots+\dfrac{\varepsilon^2}{m}}=\varepsilon.$ Отже, $\exists\lim_{n\to\infty}\vec{a}^{(n)}=\vec{a}.$

Definition 4.3.3 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n, k \ge N : \|\vec{a}^{(n)} - \vec{a}^{(k)}\| < \varepsilon$$

Theorem 4.3.4 Критерій Коші

 $\{\vec{a}^{(n)}, n \geq 1\}$ – збіжна $\iff \{\vec{a}^{(n)}, n \geq 1\}$ – фундаментальна.

і Дано: $\{\vec{a}^{(n)}, n \geq 1\}$ — збіжна, тобто $\forall j = \overline{1,m}: \{a_j^{(n)}, n \geq 1\}$ — збіжні. Тоді всі вони — фундаментальні за критерієм Коші мат.аналіза \mathbb{R} , тобто $\forall \varepsilon > 0: \exists N_j: \forall n,k \geq N_j: |a_j^{(n)} - a_j^{(k)}| < \frac{\varepsilon}{\sqrt{m}}.$

$$\forall \varepsilon > 0 : \exists N_j : \forall n, k \ge N_j : |a_j^{(n)} - a_j^{(k)}| < \frac{\varepsilon}{\sqrt{m}}.$$

$$\implies \exists N = \max\{N_1, \dots, N_m\} : \forall n, k \ge N$$

$$\Rightarrow \exists N = \max\{N_1, \dots, N_m\} : \forall n, k \ge N :$$

$$\|\vec{a}^{(n)} - \vec{a}^{(k)}\| = \sqrt{(a_1^{(n)} - a_1^{(k)})^2 + \dots + (a_m^{(n)} - a_m^{(k)})^2} < \sqrt{\frac{\varepsilon^2}{m} + \dots + \frac{\varepsilon^2}{m}} = \varepsilon.$$

Отже, наша послідовність - фундаментальна.

 Дано: $\{\vec{a}^{(n)}, n \geq 1\}$ — фундаментальна, тобто $\forall \varepsilon > 0: \exists N(\varepsilon): \forall n, k \geq N: \|\vec{a}^{(n)} - \vec{a}^{(k)}\| < \varepsilon$. Тоді $\forall j = \overline{1, m}: |a_j^{(n)} - a_j^{(k)}| < \varepsilon$ (зрозуміло), тобто $\forall j = \overline{1, m}: \{a_j^{(n)}, n \geq 1\}$ — фундаментальні. Отже, вони всі збіжні, а тому $\{\vec{a}^{(n)}, n \geq 1\}$ – збіжна.

Definition 4.3.5 Послідовність $\{\vec{a}^{(n)}, n \ge 1\}$ називається **обмеженою**, якщо

$$\exists C>0: \forall n\geq 1: \|\vec{a}^{(n)}\|\leq C$$

Definition 4.3.6 Підпослідовність послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ називається послідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$, де $\{n_l, l \geq 1\}$ – строго зростаюча послідовність в \mathbb{N} .

Theorem 4.3.7 Теорема Бользано-Ваєрштрасса

Будь-яка обмежена послідовність векторів має збіжну підпослідовність векторів.

Proof.

Маємо обмежену послідовність $\{\vec{a}^{(n)}, n \geq 1\}$, тобто $\exists C > 0 : \forall n \geq 1 : \|\vec{a}^{(n)}\| \leq C$. Тоді кожна координата є обмеженою, оскільки $\forall j = \overline{1,m} : |a_j^{(n)}| \leq \sqrt{\left|a_1^{(n)}\right|^2 + \cdots + \left|a_m^{(n)}\right|^2} \leq C$.

Тобто всі послідовності $\{a_i^{(n)}, n \ge 1\}$ – обмежені.

Розглянемо $\{a_1^{(n)}, n \geq 1\}$ – обмежена. Тоді існує збіжна підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$ (теорема Бользано-Ваєрштраса в мат.аналізі \mathbb{R}).

Розглянемо підпослідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$. Вона також є обмеженою, тому всі координатні послідовності - обмежені.

Розглянемо $\{a_2^{(n_l)}, l \ge 1\}$ – обмежена. Тоді існує збіжна підпідпослідовність $\{a_2^{(n_{l_k})}, k \ge 1\}$. Оскільки підпослідовність $\{a_1^{(n_{l_i})}, l \geq 1\}$ – збіжна, то збіжною буде й підпідпослідовність $\{a_1^{(n_{l_k})}, k \geq 1\}$. Розглянемо підпідпослідовність $\{\vec{a}^{(n_{l_k})}, k \geq 1\}$ – за аналогічними міркуваннями, теж обмежена.

Розглянемо підпідпослідовність $\{a_3^{(n_{l_k})}, k \geq 1\}$ – обмежена. Тоді існує збіжна підпідпідпослідовність $\{a_3^{(n_{l_{k_p}})}, p \geq 1\}$. Оскільки підпідпослідовності $\{a_1^{(n_{l_k})}, k \geq 1\}$, $\{a_2^{(n_{l_k})}, k \geq 1\}$ – збіжні, то збіжними будуть підпідпідпослідовності $\{a_1^{(n_{l_{k_p}})}, p \geq 1\}$, $\{a_2^{(n_{l_{k_p}})}, p \geq 1\}$.

Після m кроків отримаємо підпослідовність $\{\vec{a}^{(n_q)}, l \geq 1\}$, у якій всі координатні послідовності є збіжними. Тоді $\{\vec{a}^{(n_q)}, l \geq 1\}$ – збіжна.

Proposition 4.3.8 Задані дві послідовності $\{\vec{a}^{(n)}, n \geq 1\}, \{\vec{b}^{(n)}, n \geq 1\}$, такі, що $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}, \lim_{n \to \infty} \vec{b}^{(n)} = \vec{b}$.

1) $\forall c \in \mathbb{R} : \lim_{n \to \infty} c\vec{a}^{(n)} = c \lim_{n \to \infty} \vec{a}^{(n)};$

2) $\lim_{n \to \infty} (\vec{a}^{(n)} + \vec{b}^{(n)}) = \lim_{n \to \infty} \vec{a}^{(n)} + \lim_{n \to \infty} \vec{b}^{(n)};$ 3) $\lim_{n \to \infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \left(\lim_{n \to \infty} \vec{a}^{(n)}, \lim_{n \to \infty} \vec{b}^{(n)}\right).$

1),2) випливае з властивостей границь в \mathbb{R} , якщо розглянути покоординатну збіжність.

3) $\lim_{n \to \infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \lim_{n \to \infty} (a_1^{(n)} b_1^{(n)} + \dots + a_m^{(n)} b_m^{(n)}) = a_1 b_1 + \dots + a_m b_m = (\vec{a}, \vec{b}) = \left(\lim_{n \to \infty} \vec{a}^{(n)}, \lim_{n \to \infty} \vec{b}^{(n)}\right)$. Всі властивості доведені.

Example 4.3.9 Розглянемо $\vec{x}^{(n)} = \left(\sqrt{n+1} - \sqrt{n} \quad \frac{n-1}{n} \quad \frac{2n^2 - 1}{n^2} \quad \left(1 + \frac{1}{n}\right)^n\right)^T$ – послідовність

векторів в \mathbb{R}^4 . Обчислимо її границю. Ми можемо обчислити покоординатно, згідно з теоріями:

$$\lim_{n \to \infty} x_1^{(n)} = \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

$$\lim_{n \to \infty} x_2^{(n)} = \lim_{n \to \infty} \frac{n-1}{n} = 1.$$

$$\lim_{n \to \infty} x_3^{(n)} = \lim_{n \to \infty} \frac{n}{n^2 - 1} = 2.$$

$$\lim_{n \to \infty} x_4^{(n)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Таким чином, $\lim_{n \to \infty} \vec{x}^{(n)} = \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \quad \frac{n-1}{n} \quad \frac{2n^2-1}{n^2} \quad \left(1+\frac{1}{n}\right)^n \right)^T = \begin{pmatrix} 0 & 1 & 2 & e \end{pmatrix}^T$.

Theorem 4.3.10 Задано множину $A \subset \mathbb{R}^m$. $\vec{x}^0 \in \mathbb{R}^m$ гранична точка для $A \iff \exists \{\vec{x}^{(n)}, n \geq 1\} \subset A : \vec{x}^{(n)} \neq \vec{x}^0 : \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0$

Proof.

 \Rightarrow Дано: \vec{x}^0 – гранична точка для A, тобто $\forall \varepsilon > 0 : U_{\varepsilon}(\vec{x}^0) \cap A$ – нескінченна.

Зафіксуємо
$$\varepsilon = \frac{1}{n} \implies \forall \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A : \|\vec{x}^{(n)} - \vec{x}^0\| < \frac{1}{n}.$$
 Тоді $\forall j = \overline{1,m} : |x_j^{(n)} - x_j^0| < \frac{1}{n}.$ За теоремою про 2 поліцаїв, отримаємо: $\forall j = \overline{1,m} : x_j^{(n)} \stackrel{n \to \infty}{\longrightarrow} x_j^0.$ Із покоординатної збіжності

випливає, що $\vec{x}^{(n)} \stackrel{n \to \infty}{\longrightarrow} \vec{x}^0$ для послідовності $\{\vec{x}^{(n)}, n \ge 1\}$.

$$\sqsubseteq$$
 Дано: $\exists \{\vec{x}^{(n)}, n \geq 1\} \subset A : \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0$. Тобто $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \|\vec{x}^{(n)} - \vec{x}^0\| < \varepsilon$. $\implies \forall n \geq N : \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A$ – тобто нескінченна $\implies \vec{x}^0$ – гранична точка.

Example 4.3.11 Зокрема одинична сфера $S^m = \{ \vec{x} \in \mathbb{R}^m : ||\vec{x}|| = 1 \}$ буде замкненою.

Нехай $\vec{\xi} \in S^m$, хочемо показати, що буде вона граничною. Розглянемо послідовність $\{\vec{x}^{(n)}, n \geq 1\}$

$$x_1^{(n)} = \xi_1 + \frac{1}{n}$$
, починаючи з деякого номера при $\xi_1 \neq 1$ $x_1^{(n)} = \xi_1 - \frac{1}{n}$ при $\xi_1 = 1$ $x_1^{(n)} = \xi_2$

Зауважимо, що
$$\forall n \geq 1: \vec{x}^{(n)} \neq \vec{\xi}$$
, а також $\vec{x}^{(n)} \to \vec{\xi}$ при $n \to \infty$. Тепер розглянемо $\vec{\xi} \not\in S^m$, тобто звідси $\begin{bmatrix} \|\xi\| < 1 \\ \|\xi\| > 1 \end{bmatrix}$.

!Припустимо, що $\vec{\xi}$ – гранична точка для S^m . Тоді $\forall \varepsilon > 0: \exists \vec{x} \in S^m: \vec{x} \neq \vec{\xi}: \|\vec{x} - \vec{\xi}\| < \varepsilon$.

У випадку $\|\vec{\xi}\| > 1$ ми маємо $1 < \|\vec{\xi}\| = \|\vec{\xi} - \vec{x} + \vec{x}\| \le \|\vec{\xi} - \vec{x}\| + \|\vec{x}\| < 1 + \varepsilon$.

Оскільки виконано $\forall \varepsilon > 0$, то звідси $\|\vec{\xi}\| = 1$, що неможливо.

У випадку $\|\vec{\xi}\| < 1$ ми маємо $\varepsilon > \|\vec{x} - \vec{\xi}\| \ge |\|\vec{x}\| - \|\vec{\xi}\|| = |1 - \|\vec{\xi}\|| = 1 - \|\vec{\xi}\| > 0 \implies \varepsilon > 1 - \|\vec{\xi}\| > 0.$

Оскільки виконано $\forall \varepsilon > 0$, то звідси $\|\vec{\xi}\| = 1$, що неможливо.

У двох випадках отримали суперечність!

Таким чином, ми довели, що S^m – закмнена множина.

Функція від декількох змінних. Границя функції 4.4

Ми будемо розглядати функції вигляду $f\colon A\to\mathbb{R}$, де $A\subset\mathbb{R}^m$. Тобто ця функція має аргумент \vec{x} , а повертає деяке дійсне число $f(\vec{x})$. Проте оскільки $\vec{x} = \begin{pmatrix} x_1 & \dots & x_m \end{pmatrix}^T$ складається з m дійсних чисел, то ми можемо функцію сприймати як $f(x_1,\ldots,x_m)$, тобто це функція з m аргументами.

Example 4.4.1 Розглянемо такі приклади:

- 1) Маємо функцію $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, що задана як $f(x,y) = \frac{xy}{x^2 + y^2}$;
- 2) Маємо функцію $f: \mathbb{R}^m \to \mathbb{R}$, що задана як $f(\vec{x}) = f(x_1, \dots, x_m) = x_1 x_2^2 \dots x_m^m$.

Definition 4.4.2 Задано функцію $f\colon A\to \mathbb{R}$ та $\vec{x}^0\in \mathbb{R}^m$ – гранична точка для A. Число a називається **границею функції** $f(\vec{x})=f(x_1,\dots,x_m)$ в **точці** \vec{x}^0 , якщо

$$\forall \varepsilon>0: \exists \delta(\varepsilon)>0: \forall \vec{x}\in A: \vec{x}\neq \vec{x}^0: \|\vec{x}-\vec{x}^0\|<\delta\Rightarrow |f(\vec{x})-a|<\varepsilon \text{ - def. Komi}$$

$$\forall \{\vec{x}^{(n)}, n\geq 1\}\subset A: \forall n\geq 1: \vec{x}^{(n)}\neq \vec{x}^0: \lim_{n\to\infty}\vec{x}^{(n)}=\vec{x}^0\Rightarrow \lim_{n\to\infty}f(\vec{x}^{(n)})=a \text{ - def. Гайне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}^0} f(\vec{x}) = a$.

Theorem 4.4.3 Означення Коші ⇔ Означення Гайне.

Доведення аналогічне як в матані \mathbb{R} .

Proposition 4.4.4 Арифметичні властивості

Задані функції $f,g\colon A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ – гранична точка для A. Відомо, що $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})=\ a,\exists\lim_{\vec{x}\to\vec{x}^0}g(\vec{x})=$

1)
$$\lim_{\vec{x} \to \vec{x}^0} cf(\vec{x}) = ca, \forall c \in \mathbb{R};$$

$$\begin{array}{ll} 2) & \lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) + g(\vec{x})) = a + b; \\ 3) & \lim_{\vec{x} \to \vec{x}^0} f(\vec{x}) g(\vec{x}) = ab; \end{array}$$

3)
$$\lim_{\vec{x} \to \vec{x}^0} f(\vec{x})g(\vec{x}) = ab$$

4)
$$\lim_{\vec{x} \to \vec{x}^0} \frac{f(\vec{x})}{g(\vec{x})} = \frac{a}{b}$$
 при $b \neq 0$.

Всі вони випливають із арифметичних послідовностей та означення Гайне.

Theorem 4.4.5 Критерій Коші

Задано функцію
$$f\colon A\to \mathbb{R}$$
 та $\vec{x}^0\in \mathbb{R}^m$ – гранична точка для A . $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})\iff \forall \varepsilon>0:\exists \delta: \forall \vec{x_1},\vec{x_2}\in A: \|\vec{x_1}-\vec{x_2}\|<\delta\Rightarrow |f(\vec{x_1})-f(\vec{x_2})|<\varepsilon.$

Доведення аналогічне як в матані \mathbb{R} .

Example 4.4.6 Обчислити $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right)$. Можна позначати це інакше: $\lim_{\substack{x\to 1\\y\to\pi}} \left(\frac{y}{x} + \cos(xy)\right)$. $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1$.

$$\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1.$$

Example 4.4.7 Покажемо, що не існує границі $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$. Для доведення скористаємось означенням Гайне. Візьмемо дві послідовності:

$$\{(x_n,y_n), n\geq 1\}$$
 так, щоб $y_n=x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\frac{2x_ny_n}{x^2+y^2}=\frac{2x_n^2}{2x^2}\to 1$

$$\{(x_n,y_n),n\geq 1\}$$
 так, щоб $y_n=x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\dfrac{2x_ny_n}{x_n^2+y_n^2}=\dfrac{2x_n^2}{2x_n^2}\to 1.$ $\{(x_n,y_n),n\geq 1\}$ так, щоб $y_n=-x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\dfrac{2x_ny_n}{x_n^2+y_n^2}=\dfrac{-2x_n^2}{2x_n^2}\to -1.$

Можна конкретизувати, сказати $x_n = \frac{1}{n}$, а можна цього не робити, напевно. У будь-якому випадку, ми показали, що не існує границі.

Тобто ми прямували до точки (0,0) з двох сторін: вздовж прямої y=x та y=-x.

Theorem 4.4.8 Границя в полярних координатах

Задано функцію $f: \mathbb{R}^2 \to \mathbb{R}$. Припустимо, що $f(\rho\cos\varphi, \rho\sin\varphi) = F_1(\rho)F_2(\varphi)$, причому $\lim_{\rho \to 0} F_1(\rho) = 0$ та $F_2(\varphi)$ – обмежена. Тоді $\lim_{(x,y)\to(0,0)}f(x,y)=0.$

Proof.

Маємо $\lim_{\rho \to 0} F_1(\rho) = 0 \implies \forall \varepsilon > 0 : \exists \delta : \forall \rho : |\rho| < \delta \implies |F_1(\rho)| < \varepsilon.$

Також F_2 – обмежена, тобто $\exists M>0: \forall \varphi: |F_2(\varphi)| < M$.

Нехай $\varepsilon > 0$. Тоді існує таке $\delta > 0$, що $\forall (x,y)$, якщо $\|(x,y)\| = \sqrt{x^2 + y^2} = \sqrt{\rho^2} = |\rho| < \delta$, то звідси

$$\begin{split} |f(x,y)| &= |f(\rho\cos\varphi,\rho\sin\varphi)| = |F_1(\rho)||F_2(\varphi)| < M\varepsilon. \\ \text{Таким чином, дійсно, } \lim_{(x,y)\to(0,0)} f(x,y) &= 0. \end{split}$$

Example 4.4.9 Обчислити $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$.

Маємо $x=\rho\cos\varphi$ та $y=\rho\sin\varphi$. Тоді функція $\frac{x^2y^2}{x^2+y^2}=\frac{\rho^4\cos^2\varphi\sin^2\varphi}{\rho^2}=\rho^2\cos^2\varphi\sin^2\varphi.$

Ми змогли розбити на функції $F_1(\rho) = \rho^2 \stackrel{\rho \to 0}{\longrightarrow} 0$ та $F_2(\varphi) = \cos^2 \varphi \sin^2 \varphi$ — обмежена, бо $|F_2(\varphi)| \le 1$. Таким чином, $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = \lim_{\rho \to 0} \rho^2 \cos^2 \varphi \sin^2 \varphi = 0$.

Remark 4.4.10 Якщо так станеться, що для двох різних кутів θ при ho o 0 ми отримаємо два різних ліміта, то тоді $otag \lim_{(x,y) \to (0,0)} f(x,y).$

Definition 4.4.11 Число $L = \lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ називається **повторною границею**, якщо

$$\exists \lim_{y \to y_0} f(x, y) = g(y)$$

Аналогічно визначається $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$.

Останне дається для загального знання, таке ми точно використовувати не будемо. Тут надто багато плутанини з ними.

Example 4.4.12 Маємо функцію $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$.

Якщо шукати $\lim_{x\to 0}\lim_{x\to 0}f(x,y)$, то вона не існує, тому що при фіксованому x ми маємо порахувати

границю від $\sin \frac{1}{y}$, якого не існує. Також не існує $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ за аналогічними міркуваннями.

Проте! Подвійна границя $\lim_{(x,y)\to(0,0)} \left(x\sin\frac{1}{y} + y\sin\frac{1}{x}\right) = 0.$ Дійсно, $\left|x\sin\frac{1}{y} + y\sin\frac{1}{x}\right| \leq \left|x\sin\frac{1}{y}\right| + \left|y\sin\frac{1}{x}\right| \leq |x| + |y| < 2\delta = \varepsilon.$

$$\left| x \sin \frac{1}{y} + y \sin \frac{1}{x} \right| \le \left| x \sin \frac{1}{y} \right| + \left| y \sin \frac{1}{x} \right| \le |x| + |y| < 2\delta = \varepsilon.$$

Остання оцінка отримана в силу $\|(x,y)\|<\delta$, кладемо $\delta=rac{arepsilon}{2}$ – границя доведена.

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} 0 = 0 \qquad \lim_{y \to 0} \lim_{x \to 0} \frac{x^2 + y^2}{x^2 + y^2} = \lim_{y \to 0} 0 = 0.$$

Example 4.4.13 Маємо функцію $f(x,y)=\frac{xy}{x^2+y^2}$. $\lim_{x\to 0}\lim_{y\to 0}\frac{xy}{x^2+y^2}=\lim_{x\to 0}0=0\qquad \lim_{y\to 0}\lim_{x\to 0}\frac{xy}{x^2+y^2}=\lim_{y\to 0}0=0.$ Проте! Подвійної границі $\lim_{(x,y)\to (0,0)}\frac{xy}{x^2+y^2} \text{ не існує. Дійсно, якщо } x=\rho\cos\varphi, y=\rho\sin\varphi, \text{ то тоді}$

$$f(x,y) = \frac{\rho^2 \cos \varphi \sin \varphi}{\rho^2} = \frac{1}{2} \sin 2\varphi.$$

Для різного напрямку кривої отримаємо різні границі, а тому не існує. Цим активно зловживати не будемо.

Remark 4.4.14 Окремо можуть виникнути границі вигляду $\lim_{(x,y)\to(\infty,\infty)} f(x,y)$. У такому разі необхідні уточнення, що мається увазі під цим лімітом. Або дивитись на контекст задачі.

Маємо ось таку оцінку:
$$0 \le (x^2 + y^2)e^{-(x+y)} = \frac{x^2 + y^2}{e^{x+y}} \le \frac{(x+y)^2}{e^{x+y}}$$
.

Example 4.4.15 Маємо $\lim_{(x,y)\to(+\infty,+\infty)}(x^2+y^2)e^{-(x+y)}$. У даному контексті маєтсья на увазі, що x,y робимо скільки завгодно великими одночасно. Маємо ось таку оцінку: $0 \le (x^2+y^2)e^{-(x+y)} = \frac{x^2+y^2}{e^{x+y}} \le \frac{(x+y)^2}{e^{x+y}}$. Оскільки x>0,y>0 в силу характеру прямування, то ця нерівність справедлива. Цілком зрозуміло, що при $x\to+\infty,y\to+\infty$ одночасно маємо $x+y\to+\infty$, а тому $\frac{(x+y)^2}{e^{x+y}}\to 0, x+y\to+\infty$. Таким чином, $\lim_{(x,y)\to(+\infty,+\infty)}(x^2+y^2)e^{-(x+y)}=0$.

Неперервність функції

Definition 4.5.1 Задано функцію $f\colon A\to \mathbb{R}$ та $\vec{x}^0\in A$ – гранична точка. Функція f називається **неперервною в точці** \vec{x}^0 , якщо $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})=f(\vec{x}^0)$. В будь-якій ізольованій точці \vec{x}^0 функція f також неперервна.

Функція f називається **неперервною на множині** A, якщо в $\forall \vec{x} \in A : f$ – неперервна.

Remark 4.5.2 Можна було спочатку дати означення через ε - δ мову, а згодом прийти до еквівалентного означення, як ми це робили в мат. аналізі \mathbb{R} , однак буде все аналогічно.

Proposition 4.5.3 Задані функції $f,g\colon A\to \mathbb{R}$ та $\vec{x}^0\in A$ – гранична точка. Відомо, що f,g – неперервні в точці \vec{x}^0 . Тоді:

- 1) cf неперервна в точці $\vec{x}^0, \forall c \in \mathbb{R}$;
- 2) f+g неперервна в точці \vec{x}^0 ;
- 3) fg неперервна в точці \vec{x}^0 ;
- 4) $\frac{f}{g}$ неперервна в точці \vec{x}^0 , якщо $g(\vec{x}^0) \neq 0$.

Випливають з властивостей границь функцій та неперервності.

Theorem 4.5.4 Наступні функції є неперервними на своїй множині A:

- 1) $f(\vec{x}) = const \text{константа}, A = \mathbb{R}^m$;
- 2) $f(\vec{x}) = x_j, j = \overline{1,m}$ координата, $A = \mathbb{R}^m$
- 3) $P(x_1,x_2,\ldots,x_m)=\sum_{\substack{0\leq k_1\leq n_1\\0\leq k_2\leq n_2}}^{1}a_{k_1k_2\ldots k_m}\cdot x_1^{k_1}x_2^{k_2}\ldots x_m^{k_m}$ многочлен від m змінних, $A=\mathbb{R}^m$; $0 \le k_m \le n_n$

- 4) $R(x_1, \dots, x_m) = \frac{P(x_1, \dots, x_m)}{O(x_1, \dots, x_m)}$ раціональна функція від m змінних, $A = \mathbb{R}^m \setminus \{\vec{x} : Q(\vec{x}) = 0\}$.
- 1) Все зрозуміло.
- 2) $|f(\vec{x}) f(\vec{x}^0)| = |x_j x_j^0| < \varepsilon$, тому встановлюється $\delta = \varepsilon$.
- 3) Безпосередньо випливае з (ТОДО: лінкування) як сума та добуток функцій 1),2).
- 4) Безпосередньо випливае з (TODO: лінкування) як частка двох функцій 3).

Example 4.5.5 Доведемо, що функція $f(x,y)=\frac{1}{\sqrt{x^2+y^2}}$ неперервна на $\mathbb{R}^2\setminus\{0\}$.

$$|\sqrt{x^2+y^2}-\sqrt{x_0^2+y_0^2}| = \frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x^2+y^2}+\sqrt{x_0^2+y_0^2}} \leq \frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x_0^2+y_0^2}} \to 0 \text{ при } (x,y) \to (x_0,y_0)$$

Для цього покажемо, що
$$\sqrt{x^2+y^2}$$
 – неперервна в деякій точці $(x_0,y_0)\in\mathbb{R}\setminus\{0\}$. Дійсно, $|\sqrt{x^2+y^2}-\sqrt{x_0^2+y_0^2}|=\frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x^2+y^2}+\sqrt{x_0^2+y_0^2}}\leq \frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x_0^2+y_0^2}}\to 0$ при $(x,y)\to(x_0,y_0)$. Ми вже знаємо, що $f(x,y)=x^2+y^2$ – неперервна в точці (x_0,y_0) , а тому $\lim_{(x,y)\to(x_0,y_0)}(x^2+y^2)=x_0^2+y_0^2$, тож вище все правильно. Отже, $\lim_{(x,y)\to(x_0,y_0)}\frac{1}{\sqrt{x^2+y^2}}=\frac{1}{\lim_{(x,y)\to(x_0,y_0)}\sqrt{x^2+y^2}}=\frac{1}{\sqrt{x_0^2+y_0^2}}$.

А це й доводить неперервність функції f в будь-якій точці $(x_0, y_0) \in \mathbb{R}^2 \setminus \{0\}$

Example 4.5.6 Взагалі-то кажучи, про точки розриву в матані \mathbb{R}^m ніхто не розповідає, бо не сильно це й треба, але хай буде даний приклад. Дослідити на розривність функцію $f(x,y)=\frac{x+y}{x^3+y^3}$

Точки, де відбувається розрив – це точки x=-y. Тобто маємо $(x,y)=(a,-a), a\in\mathbb{R}$ — точка

$$\lim_{(x,y)\to(a,-a)} \frac{x+y}{x^3+y^3} = \lim_{(x,y)\to(a,-a)} \frac{1}{x^2-xy+y^2} = \begin{cases} \frac{1}{3a^2}, & a\neq 0\\ \infty, & a=0 \end{cases}.$$

Отже, маємо (0,0) – точка нескінченного розриву та $(a,-a), a \neq 0$ – точка усуненого розриву.

Theorem 4.5.7 Теорема Варштраса 1, 2

Задано множину A – замкнена та обмежена; функція $f \colon A \to \mathbb{R}$ – неперервна на A. Тоді:

1. f – обмежена на A;

2.
$$\exists \begin{bmatrix} \vec{x}^* \in A \\ \vec{x}_* \in A \end{bmatrix} : \begin{bmatrix} f(\vec{x}^*) = \max_{\vec{x} \in A} f(\vec{x}) \\ f(\vec{x}_*) = \min_{\vec{x} \in A} f(\vec{x}) \end{bmatrix}$$

Доведення аналогічне як в матані \mathbb{R} .

Definition 4.5.8 Задано функцію $f: A \to \mathbb{R}$.

Функція f називається **рівномірно неперервною** на множині A, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall \vec{x_1}, \vec{x_2} \in A : ||\vec{x_1} - \vec{x_2}|| < \delta \Rightarrow |f(\vec{x_1}) - f(\vec{x_2})| < \varepsilon$$

Theorem 4.5.9 Задано функцію $f \colon A \to \mathbb{R}$ – рівномірно неперервна на A. Тоді вона є неперервною

Доведення аналогічне як в матані \mathbb{R} .

Theorem 4.5.10 Теорема Кантора

Задано функцію $f\colon A\to \mathbb{R}$ та A – замкнена, обмежена. Відомо, що f – неперевна на A. Тоді вона є рівномірно неперервною на A.

Доведення аналогічне як в матані \mathbb{R} .

4.6 Символіка Ландау

Definition 4.6.1 Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}$ – гранична точка A. Функція f називається **О-великою** від функції g в точці \vec{x}^0 , якщо

$$\exists L > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies |f(\vec{x})| \le L|g(\vec{x})|$$

Позначення: $f(\vec{x}) = O(g(\vec{x})), \vec{x} \rightarrow \vec{x}^0$.

Функція f називається **о-малою** від функції g в точці \vec{x}^0 , якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies |f(\vec{x})| < \varepsilon |g(\vec{x})|$$

Позначення: $f(\vec{x}) = o(g(\vec{x})), \vec{x} \to \vec{x}^0$.

Всі властивості символік Ландау для функції від однієї змінної переходять на функцію від декількох змінних в силу аналогічності доведення.

Example 4.6.2 Зокрема $xy = o(\sqrt{x^2 + y^2 + z^2})$ при $(x,y,z) \to (0,0,0)$. Дійсно,

$$\left|\frac{xy}{\sqrt{x^2+y^2+z^2}}\right| \leq \frac{|x||y|}{\sqrt{x^2}} = |y| \to 0 \text{ при } (x,y,z) \to (0,0,0). \text{ Отже, } \lim_{(x,y,z)\to(0,0,0)} \frac{xy}{\sqrt{x^2+y^2+z^2}} = 0.$$

Границя та неперервність векторнозначної функції кількох змінних, символіка Ландау

Ми будемо розглядати вектор-функції кількох (або однієї) змінної вигляду $\vec{f}:A\to\mathbb{R}^k$, де $A\subset\mathbb{R}^m$.

Тобто тепер
$$\vec{f}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_k(\vec{x}) \end{pmatrix}$$
.

Example 4.7.1 Маємо деяку функцію $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$, що задана таким чином: $\begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$. Або зазвичай це пишуть так: $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$.

Definition 4.7.2 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ - гранична точка для A. Вектор \vec{b} називається границею вектор-функції $\vec{f}(\vec{x})$ в точці \vec{x}^0 , якщо

$$\forall \varepsilon>0: \exists \delta(\varepsilon)>0: \forall \vec{x}\in A: \vec{x}\neq \vec{x}^0: ||\vec{x}-\vec{x}^0||<\delta\Rightarrow ||\vec{f}(\vec{x})-\vec{b}||<\varepsilon \text{ - def. Komi}$$

$$\forall \{\vec{x}^{(n)}, n\geq 1\}\subset A: \forall n\geq 1: \vec{x}^{(n)}\neq \vec{x}^0: \lim_{n\to\infty}\vec{x}^{(n)}=\vec{x}^0\Rightarrow \lim_{n\to\infty}\vec{f}(\vec{x}^{(n)})=\vec{b}\text{ - def. Гайне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{b}$.

Theorem 4.7.3 Означення Коші 👄 Означення Гайне

Все аболютно аналогічно.

Proposition 4.7.4 Задано функцію $\vec{f}:A\to\mathbb{R}^k$ та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для A. $\exists\lim_{\vec{x}\to\vec{x}^0}\vec{f}(\vec{x})=\vec{u}\iff \forall j=\overline{1,k}:\exists\lim_{\vec{x}\to\vec{x}^0}f_j(\vec{x})=u_j.$

 $\vec{x} \to \vec{x^0}$ \vec{y} (\vec{x}) — \vec{u} — \vec{v} \vec{J} — \vec{J}

Proposition 4.7.5 Арифметичні властивості

Задані функції $\vec{f}, \vec{g}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ - гранична точка для A. Відомо, що $\exists \lim_{ec{x} o ec{x^0}} ec{f}(ec{x}) = ec{u}, \exists \lim_{ec{x} o ec{x^0}} ec{g}(ec{x}) = ec{v}.$ Тоді:

- 1) $\lim_{\vec{x} \to \vec{x}^0} c\vec{f}(\vec{x}) = c\vec{u}, \forall c \in \mathbb{R};$
- 2) $\lim_{\vec{x} \to \vec{x}^0} (\vec{f}(\vec{x}) + \vec{g}(t)) = \vec{u} + \vec{v};$
- 3) $\lim_{\vec{x} \to 0} (\vec{f}(\vec{x}), \vec{g}(\vec{x})) = (\vec{u}, \vec{v}).$

Всі вони випливають із векторних послідовностей та означення Гайне.

Remark 4.7.6 У випадку векторної функції $\vec{a}: A \to \mathbb{R}^k$, де $A \subset \mathbb{R}$, оскільки прямування йде за дійсною множиною, то ми можемо визначти границю зліва та справа даної функції. Тут все зрозуміло, як виглядатиме означення.

Example 4.7.7 Знайти границю $\lim_{t\to 0+0} \left(\frac{\sin 2t}{t} \quad t^t\right)^T$.

За одним твердженням, ми можемо покоординатно шукати границі:

$$\lim_{t \to 0+0} \frac{\sin 2t}{t} = 2 \qquad \lim_{t \to 0+0} t^t = 1.$$
 Отже,
$$\lim_{t \to 0+0} \left(\frac{\sin 2t}{t} - t^t\right)^T = \begin{pmatrix} 2 & 1 \end{pmatrix}^T.$$

Definition 4.7.8 Задана функція $f:A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - гранична точка. Функція \vec{f} називається **неперервною в точці** \vec{x}^0 , якщо $\exists \lim_{n \to \infty} \vec{f}(\vec{x}) = \vec{f}(\vec{x}^0)$.

Remark 4.7.9 Аналогічно сума неперервних функцій - неперервна; множення на скаляр - все одно неперервна. До речі, також скалярний добуток неперервний функцій - теж неперервна.

Remark 4.7.10 Ще тут виконується теорема Ваєрштраса 1, 2 для таких функцій.

Theorem 4.7.11 Задані множини $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^k$

Задані функції $\vec{f}: A \to B$ - неперервна в точці $\vec{x}^0, \vec{g}: B \to \mathbb{R}^n$ - неперервна в точці $\vec{f}(\vec{x}^0)$.

Тоді функція $h: A \to \mathbb{R}^n: h(\vec{x}) = \vec{q}(\vec{f}(\vec{x}))$ - неперервна в точці $\vec{x_0}$.

Доведення аналогічне як в матані \mathbb{R} .

Definition 4.7.12 Задані функції $\vec{f}, \vec{g}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ - гранична точка A. Функція \vec{f} називається **О-великою** від функції \vec{g} в точці \vec{x}^0 , якщо

$$\exists L > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : \|\vec{x} - \vec{x}^0\| < \delta \implies \|\vec{f}(\vec{x})\| \le L \|\vec{g}(\vec{x})\|$$

Позначення: $\vec{f}(\vec{x}) = \vec{O}(\vec{g}(\vec{x})), \vec{x} \rightarrow \vec{x}^0$.

Функція \vec{f} називається **о-малою** від функції \vec{g} в точці \vec{x}^0 , якщо

$$\forall \varepsilon > 0: \exists \delta > 0: \forall \vec{x}: \vec{x} \neq \vec{x}^0: \|\vec{x} - \vec{x}^0\| < \delta \implies \|\vec{f}(\vec{x})\| < \varepsilon \|\vec{g}(\vec{x})\|$$

Позначення: $\vec{f}(\vec{x}) = \vec{o}(\vec{g}(\vec{x})), \vec{x} \to \vec{x}^0$.

$$\textbf{Corollary 4.7.13} \ \vec{f}(\vec{x}) = o(\vec{g}(\vec{x})), \vec{x} \rightarrow \vec{x}^0 \iff \lim_{\vec{x} \rightarrow \vec{x}^0} \frac{\|\vec{f}(\vec{x})\|}{\|\vec{g}(\vec{x})\|} = 0.$$

4.8 Крива в \mathbb{R}^m

Definition 4.8.1 Кривою в \mathbb{R}^m називають множину значень вектор-функції: $\vec{r}:[a,b]\to\mathbb{R}^m,$ причому \vec{r} - неперервна на [a,b]:

$$\Gamma = \{ \vec{r}(t) : t \in [a, b] \}$$

Definition 4.8.2 Крива Γ називається **простою**, якщо

$$\vec{r}(t_1) = \vec{r}(t_2) \implies t_1 = t_2$$
 and $\{t_1, t_2\} = \{a, b\}$

Крива Γ називається **замкненою**, якщо $\vec{r}(a) = \vec{r}(b)$.

Просту та замкнену криву називають жордановою.

Диференційованість 5

Для функції із багатьма змінними 5.1

Definition 5.1.1 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Функція f називається **диференційованою** в точці \vec{x}^0 , якщо

$$\exists L_1, \dots, L_m \in \mathbb{R} : f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$$

Тобто диференційованість означає, що поверхня навколо точки \vec{x} дуже схожа на площину, що проходить через точку \vec{x} .

Example 5.1.2 Розглянемо функцію $f(x,y) = x^2 - xy - y^2$ на \mathbb{R} . Вона є диференційованою в будьякій точці (x_0,y_0) . Дійсно, розпишемо різницю:

якій точці
$$(x_0,y_0)$$
. Дійсно, розпишемо різницю:
$$f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=(x_0+\Delta x)^2-(x_0+\Delta x)(y_0+\Delta y)-(y_0+\Delta y)^2-(x_0^2-x_0y_0-y_0^2)=\\ =x_0^2+2x_0\Delta x+\Delta x^2-x_0y_0-x_0\Delta y-y_0\Delta x-\Delta x\Delta y-y_0^2-2y_0\Delta y-\Delta y^2-x_0^2+x_0y_0+y_0^2=\\ =(2x_0-y_0)\Delta x+(-x_0-2y_0)\Delta y+(\Delta x^2-\Delta x\Delta y-\Delta y^2).$$
 Залишилось довести, що $\Delta x^2-\Delta x\Delta y-\Delta y^2=o(\|(\Delta x,\Delta y)\|)$ при $(\Delta x,\Delta y)\to(0,0)$. Дійсно,
$$\lim_{\substack{\Delta x\to 0\\\Delta y\to 0}}\frac{\Delta x^2-\Delta x\Delta y-\Delta y^2}{\sqrt{\Delta x^2+\Delta y^2}}=\lim_{\rho\to 0}\frac{\rho^2\cos^2\varphi-\rho^2\sin\varphi\cos\varphi-\rho^2\sin^2\varphi}{\rho}=$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta x^2 - \Delta x \Delta y - \Delta y^2}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\rho \to 0} \frac{\rho^2 \cos^2 \varphi - \rho^2 \sin \varphi \cos \varphi - \rho^2 \sin^2 \varphi}{\rho} =$$

 $= \lim_{n \to \infty} \rho(\cos^2 \varphi - \sin \varphi \cos \varphi - \sin^2 \varphi) = 0.$

$$\begin{array}{l} - \lim_{\rho \to 0} \rho(\cos \varphi - \sin \varphi \cos \varphi - \sin \varphi) = 0. \\ \text{Отже, } f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = (2x_0 - y_0) \Delta x + (-x_0 - 2y_0) \Delta y + o(\|(\Delta x, \Delta y)\|). \\ (\Delta x, \Delta y) \to (0.0) \end{array}$$

Proposition 5.1.3 Задано функцію $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що функція f– диференційована в точці \vec{x}^0 . Тоді f – неперервна в точці \vec{x}^0 .

f – диференційована в точці \vec{x}^0 , тобто $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||).$

Або можна це записати інакше:

Нос можна де записати мание:
$$f(\vec{x}) - f(\vec{x}^0) = L_1(x_1 - x_1^0) + \dots + L_m(x_m - x_m^0) + o(||\vec{x} - \vec{x}^0||) \implies \lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) - f(\vec{x}^0)) =$$
 Всі дужки прямують покоординатно до нуля, *о*-маленьке також, в силу н.м.

$$= 0 \implies f$$
 – неперервна в точці \vec{x}^0 .

Definition 5.1.4 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка.

Частинною похідною функції f за змінною x_i в точці \vec{x}^0 називають величину:

$$\frac{\partial f}{\partial x_j}(x_1^0,\ldots,x_j^0,\ldots,x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0,\ldots,x_j^0+\Delta x_j,\ldots,x_m^0) - f(x_1^0,\ldots,x_j^0,\ldots,x_m^0)}{\Delta x_j}$$

Якщо уважно придивитись на означення, то, насправді, ми просто підставили $x_1^0,\dots,x_{j-1}^0,x_{j+1}^0,\dots,x_m^0$ та отримали функцію $g(x_j)=f(x_1^0,\dots,x_{j-1}^0,x_j,x_{j+1}^0,\dots,x_m^0)$ — функція від одного агрументу x_j та обчислили похідну цієї функції в точці x_i^0 . Отже,

$$\frac{\partial f}{\partial x_i}(x_1^0, \dots, x_j^0, \dots, x_m^0) = g'(x_j^0)$$

Example 5.1.5 Маємо функцію $f(x,y)=1-x^2-y$. Знайдемо всі її частинні похідні. $\frac{\partial f}{\partial x}=-2x \qquad \qquad \frac{\partial f}{\partial u}=-1$

$$\frac{\partial f}{\partial x} = -2x \qquad \qquad \frac{\partial f}{\partial y} = -1$$

Сенс $\frac{\partial f}{\partial x}$ – знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь OX. Аналогічно $\frac{\partial f}{\partial u}$ – знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь OY.

Таких дотичних прямих існують безліч, але про це згодом.

Proposition 5.1.6 Необхнідна умова диференційованості

Задано функцію $f\colon A o \mathbb{R}$ — диференційована в точці $\vec{x}^0\in A$ - внутрішня точка. Тоді вона має частинні похідні в точці \vec{x}^0 , причому $\frac{\partial f}{\partial x_i}(x_1^0,\ldots,x_j^0,\ldots,x_m^0)=L_j.$

Proof.

$$f - диференційована в точці \vec{x}^0 , тоді $\exists L_1, \dots, L_m \in \mathbb{R}$:
$$f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$
 У окремому випадку, встановити можна $\Delta \vec{x} = \begin{pmatrix} 0 & \dots & \Delta x_j & \dots & 0 \end{pmatrix}^T.$ Тоді
$$\frac{\partial f}{\partial x_j}(x_1^0, \dots, x_j^0, \dots, x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0, \dots, x_j^0 + \Delta x_j, \dots, x_m^0) - f(x_1^0, \dots, x_j^0, \dots, x_m^0)}{\Delta x_j} \xrightarrow{f - \text{диференційована}} = \lim_{\Delta x_j \to 0} \frac{L_1 \cdot 0 + \dots + L_j \Delta x_j + \dots + L_m \cdot 0 + o(|\Delta x_j|)}{\Delta x_j} = \lim_{\Delta x_j \to 0} \frac{L_j \Delta x_j + o(\Delta x_j)}{\Delta x_j} = L_j.$$$$

Remark 5.1.7 У зворотному напрямку це не завжди вірно.

Example 5.1.8 Маємо функцію $f(x,y) = \sqrt{|xy|}$. Розглянемо її в околі точки $(x_0,y_0) = (0,0)$.

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{|\Delta x \cdot 0| - 0}}{\Delta x} = 0.$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{|0 \cdot \Delta y| - 0}}{\Delta y} = 0.$$
Тобто в точці (x_0,y_0) функція має частинні похідні. Проте виявляється, що в (x_0,y_0) вона не ди-

ференційована. Дійсно,

ференциована. Диспо,
$$f(\Delta x, \Delta y) = 0\Delta x + 0\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) = o(\sqrt{\Delta x^2 + \Delta y^2}), \text{ тобто}$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(\Delta x, \Delta y)}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{\Delta x^2 + \Delta y^2}} \xrightarrow[]{\text{полярна заміна}} \lim_{\rho \to 0} \sqrt{|\cos \varphi \sin \varphi|} - \text{не існує, тому рівність}$$

Можливо виникне питання, а чи існують інші числа $(L_1, L_2) \neq (0, 0)$. Ні. Це випливає з необхідної умови диференційованості.

Виникає тоді інше питання, а коли ми можемо гарантувати диференційованість через існування частинних похідних.

Theorem 5.1.9 Достатня умова диференційованості

Задано функцію $f\colon A\to\mathbb{R}$ та $\vec{x}^0\in A$ – внутрішня точка. Відомо, що в деякому околі точки \vec{x}^0 існують всі частинні похідні, які неперервні в точці \vec{x}^0 . Тоді f – диференційована в точці \vec{x}^0 .

Mu будемо доводити при m=2. Для більших аргументів – аналогічно, але більш технічна справа.

Proof.

Отже, дано f(x,y) та в околі точці (x_0,y_0) існують частинні похідні $\frac{\partial f}{\partial x}$ та $\frac{\partial f}{\partial y}$, які неперервні в (x_0, y_0) . Розглянемо приріст аргументу $\Delta x, \Delta y$ так, щоб ми були всередині околу точці (x_0, y_0) . Нехай $\Delta x > 0$, $\Delta y > 0$, для інших все аналогічно.

 $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) + f(x_0 + \Delta x, y_0) - f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0 + \Delta x, y_0)$

Позначу $h(t) = f(x_0 + \Delta x, y_0 + t), t \in [0, \Delta y]$. Тоді $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) = h(\Delta y) - h(0)$. Функція h – диференційована на $[0, \Delta y]$, оскільки існує $\frac{\partial f}{\partial y}$, яка неперервна. Тому $h \in C([0, \Delta y])$, а значить, за теоремою Лагранжа,

$$h(\Delta y) - h(0) = h'(c_1)\Delta y, c_1 \in (0, y)$$

$$h'(t) = f'_t(x_0 + \Delta x, y_0 + t) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + t)$$

$$\implies h(\Delta y) - h(0) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y.$$

Аналогічно розглянемо функцію $g(s) = f(x_0 + s, y_0), s \in [0, \Delta x]$. Тоді

$$f(x_0 + \Delta x, y_0) - f(x_0, y_0) = g(\Delta x) - g(0)$$
 ^{Th. Лагранжа} = $g'(c_2)\Delta x = \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x, c_2 \in (0, \Delta x)$. Повертаємось до нашої рівності.

$$\boxed{=} \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x$$

Залишилось довести, що виконується наступна рівність:

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||).$$

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) =$$

$$= \left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x\right) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) =$$

$$= \left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right)\Delta x + \left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right)\Delta y.$$
 Якщо $\Delta x \to 0, \Delta y \to 0$, то звідси $c_1 \to 0, c_2 \to 0$ та за умовою того, що частинні похідні є неперерв-

$$\left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \stackrel{\text{\tiny HO3H}}{=} \alpha \to 0$$

$$\left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \stackrel{\text{\tiny HO3H}}{=} \alpha \to 0$$

$$\left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \beta \to 0$$

Далі, використовуючи нерівність Коші-Буняковського, отримаємо таке:

Далі, використовуючи нерівність Коші-Буняковського, отримаємо таке:
$$\left| \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \stackrel{\text{K-B}}{\leq} \left| \frac{\sqrt{\alpha^2 + \beta^2} \sqrt{\Delta x^2 + \Delta y^2}}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \to 0 \implies \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \to 0, \Delta x \to 0, \Delta y \to 0.$$
 Остаточно отримуємо:

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||)$$

Тобто звідси f – диференційована в точці (x_0, y_0) .

Definition 5.1.10 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. **Похідною функції** f в точці \vec{x}^0 називається ковектор

$$f'(\vec{x}^0) = \left(\frac{\partial f}{\partial x_1} \quad \dots \quad \frac{\partial f}{\partial x_m}\right)(\vec{x}^0)$$

Таким чином, ми можемо визначити лінійний функціонал по
$$\Delta \vec{x}$$
 ось так:
$$f'(\vec{x}^0)\Delta \vec{x} = \frac{\partial f}{\partial x_1}(\vec{x}^0)\Delta x_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0)\Delta x_m.$$

Тоді означення диференційованої функції f перепишеться в такому вигляді: $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = f'(\vec{x}^0) \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$

Proposition 5.1.11 Задані функції $f,g\colon A\to \mathbb{R}$ та $\vec{x}^0\in A$ – внутрішня точка. Відомо, що f,g – диференційовані в точці \vec{x}^0 . Тоді:

- 1) αf диференційована в точці \vec{x}^0 , $\forall \alpha \in \mathbb{R}$, похідна $(\alpha f)'(\vec{x}^0) = \alpha f'(\vec{x}^0)$;
- 2) f + g диференційована в точці \vec{x}^0 , похідна $(f + g)'(\vec{x}^0) = f'(\vec{x}^0) + g'(\vec{x}^0)$;
- 3) fg диференційована в точці \vec{x}^0 , похідна $(fg)'(\vec{x}^0) = f'(\vec{x}^0)g(\vec{x}^0) + f(\vec{x}^0)g'(\vec{x}^0)$.

Proof

Доведемо кожну (ну окей, майже кожну) властивість.

1) Зрозуміло.

$$2) \ (f(\vec{x}^0 + \Delta \vec{x}) + g(\vec{x}^0 + \Delta \vec{x})) - (f(\vec{x}^0) + g(\vec{x}^0)) = (f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0)) + (g(\vec{x}^0 + \Delta \vec{x}) - g(\vec{x}^0)) = \\ = f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) = (f'(\vec{x}^0) + g'(\vec{x}^0)) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$

3)
$$f(\vec{x}^0 + \Delta \vec{x})g(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0)g(\vec{x}^0) =$$

= $(f(\vec{x}^0) + f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) \cdot (g(\vec{x}^0) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) - f(\vec{x}^0)g(\vec{x}^0)$ = Після розкриття дужок ми залишимо лише доданки $(f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x}$ та $(g(\vec{x}^0)f'(\vec{x}^0)) \cdot \Delta \vec{x}$. Ось чому:

$$\begin{array}{ll} f(\vec{x}^0)o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) & g(\vec{x}^0)o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) \\ (f'(\vec{x}^0) \cdot \Delta\vec{x}) \cdot (g'(\vec{x}^0) \cdot \Delta\vec{x}) = o(\|\Delta\vec{x}\|), \text{ тому що, розписавши, побачимо } \Delta x_i \Delta x_j = o(\|\Delta\vec{x}\|). \\ (f'(\vec{x}^0) \cdot \Delta\vec{x})o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) & (g'(\vec{x}^0) \cdot \Delta\vec{x})o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) \\ \text{тому що, розписавши, побачимо } \Delta x_j o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|). \\ (o(\|\Delta\vec{x}\|))^2 = o(\|\Delta\vec{x}\|) & \end{array}$$

Повертаємось до рівності:

Майже всі властивості доведені.

Definition 5.1.12 Задано функцію $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Диференціалом функції f(x) в точці \vec{x}^0 називається такий вираз:

$$df(\vec{x}^0, \Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}$$

Частіше позначають ще диференціал в точці ось так: $df_{\vec{x}^0}$.

Remark 5.1.13 Якщо згадати лінійну алгебру, то $df_{\vec{x}^0} : \mathbb{R}^m \to \mathbb{R}$ – це, насправді, лінійний функціонал, де в нас записується ковектор $f'(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{x}^0) & \dots & \frac{\partial f}{\partial x_n}(\vec{x}^0) \end{pmatrix}$. І ми маємо: $df_{\vec{x}^0}(\Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}$.

Як й раніше, аргумент $\Delta \vec{x}$ опускають, а також позначають $\Delta \vec{x} = \vec{dx}$, тобто $\Delta x_1 = dx_1, \dots, \Delta x_m = dx_m$. Тоді маємо інший вигляд:

$$df(\vec{x}^0) = f'(\vec{x}^0) \cdot d\vec{x} = \frac{\partial f}{\partial x_1}(\vec{x}^0) dx_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0) dx_m$$

Example 5.1.14 Маємо функцію $f(x,y) = 1 - x^2 - y$. Ми вже знайшли $\frac{\partial f}{\partial x} = -2x, \frac{\partial f}{\partial y} = -1$, вони є неперервними в будь-якій точці. Отже, f – диференційована будь-де. Знадемо тепер диференціал функції. Це дуже просто:

$$df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = (-2x) dx - dy \stackrel{\text{a6o}}{=} (-2x - 1) d\vec{r}.$$

5.2 Для векторнозначних функцій

Definition 5.2.1 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. Вектор-функція \vec{f} називається **диференційованою** в точці \vec{x}^0 , якщо

$$\exists M \in \operatorname{Mat}(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$$

Зараз дізнаємось, що це за матриця $M=\begin{pmatrix} M_{11}&\dots&M_{1m}\\ \vdots&\ddots&\vdots\\ M_{kn}&\dots&M_{km} \end{pmatrix}$ під час доведення твердження.

Proposition 5.2.2 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. $ec{f}$ – диференційована в точці $ec{x}^0 \iff f_1,\ldots,f_k$ – диференційовані в точці $ec{x}^0$.

Proof.

 \Rightarrow Дано: \vec{f} – диференційована в \vec{x}^0 , тобто $\exists M \in \operatorname{Mat}(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$.

$$\begin{pmatrix} f_1(\vec{x}^0 + \Delta \vec{x}) \\ \vdots \\ f_k(\vec{x}^0 + \Delta \vec{x}) \end{pmatrix} - \begin{pmatrix} f_1(\vec{x}^0) \\ \vdots \\ f_k(\vec{x}^0) \end{pmatrix} = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_m \end{pmatrix} + \begin{pmatrix} o(||\Delta \vec{x}||) \\ \vdots \\ o(||\Delta \vec{x}||) \end{pmatrix}$$

Із цієї рівності випливає, що
$$\forall j=1,k:$$
 $f_j(\vec{x}^0+\Delta\vec{x})-f_j(\vec{x}^0)=M_{j1}\Delta x_1+\cdots+M_{jm}\Delta x_m+o(||\Delta\vec{x}||).$ $\Delta\vec{x}\to 0$

Це означає, що f_j – диференційована в точці \vec{x}^0 . Тоді звідси випливає, що:

$$M_{j1}=rac{\partial f_j}{\partial x_1}(\vec{x}^0),\ldots,M_{jm}=rac{\partial f_j}{\partial x_m}(\vec{x}^0).$$
В результаті отримаємо ось такий вигляд матриці:

$$M = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_m} \end{pmatrix} (\vec{x}^0) = \begin{pmatrix} f_1' \\ \vdots \\ f_k' \end{pmatrix} (\vec{x}^0) = J(x) = \vec{f}'(\vec{x}^0)$$
 – це називається **матрицею Якобі**.

Матриця Якобі описує **похідну** вектор-функції \vec{f} в точці \vec{x}^0 , тобто \vec{f}' – це лінійний оператор. А якщо матриця буде квадратною, то ми можемо обчислити $\det \vec{f'}(\vec{x}^0)$ – це називається **якобіаном**.

 \leftarrow Дано: f_1, \ldots, f_k – диференційовані в точці \vec{x}^0 . Хочемо довести, що $\overrightarrow{f}(\overrightarrow{x}^0 + \Delta \overrightarrow{x}^0) - \overrightarrow{f}(\overrightarrow{x}^0) - M\Delta \overrightarrow{x} = \overrightarrow{o}(\|\Delta \overrightarrow{x}\|), \Delta \overrightarrow{x} \to \overrightarrow{0}$, але це є правда, тому що $\forall j = \overline{1,k} : f_j$ – диференційована $\implies f_j(\overrightarrow{x}^0 + \Delta \overrightarrow{x}^0) - f_j(\overrightarrow{x}^0) - f_j'(\overrightarrow{x}^0) \cdot \Delta \overrightarrow{x} = o(\|\Delta \overrightarrow{x}\|), \Delta \overrightarrow{x} \to \overrightarrow{0}$ – виконана покоординатна рівність.

Proposition 5.2.3 Задано функцію $\vec{f} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що векторфункція \vec{f} – диференційована в точці \vec{x}^0 . Тоді \vec{f} – неперервна в точці \vec{x}^0 .

Дійсно, $\lim_{\vec{x} \to \vec{x}^0} \left(M(\vec{x} - \vec{x}^0) + \vec{o}(||\vec{x} - \vec{x}^0||) \right) = \vec{0}$, оскільки виконується покоординатна границя.

Proposition 5.2.4 Задані функції $\vec{f}, \vec{g} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що \vec{f}, \vec{g} диференційовані в точці \vec{x}^0 . Тоді $\alpha \vec{f} + \beta \vec{g}$ – диференційована в точці \vec{x}^0 , похідна $(\alpha \vec{f} + \beta \vec{g})'(\vec{x}^0) = \alpha \vec{f}'(\vec{x}^0) + \beta \vec{g}'(\vec{x}^0).$

Випливае з арифметики матриці. Тут цілком зрозуміло.

Example 5.2.5 Важливий

Маємо вектор-функцію $\binom{x}{y} = \binom{\rho\cos\varphi}{\rho\sin\varphi}$. Знайдемо її похідну та якобіан.

$$\vec{f'}(\vec{x}^0) = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{pmatrix} \qquad \det \vec{f'}(\vec{x}^0) = \cos \varphi \rho \cos \varphi + \sin \varphi \rho \sin \varphi = \rho.$$

Proposition 5.2.6 Задані функції $\vec{f} \colon A \to B$ та $\vec{g} \colon B \to \mathbb{R}^k$, де $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$. Відомо, що \vec{f} – диференційована в точці \vec{x}^0 та \vec{g} – диференційована в точці \vec{y}^0 . Тоді $\vec{g} \circ \vec{f}$ – диференційована в точці \vec{x}^0 , похідна $(\vec{g} \circ \vec{f})'(\vec{x}^0) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)$.

Lemma 5.2.7 Задано матрицю $A \in \operatorname{Mat}(m \times k)$. Тоді $\exists C \geq 0 : \forall \vec{h} \in \mathbb{R}^m : ||A\vec{h}|| \leq C||\vec{h}||$.

Дійсно,
$$A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{km} \end{pmatrix} \implies A\vec{h} = \begin{pmatrix} a_{11}h_1 + \dots + a_{1m}h_m \\ \vdots \\ a_{k1}h_1 + \dots + a_{km}h_m \end{pmatrix}$$

$$\implies \|A\vec{h}\| = \sqrt{(a_{11}h_1 + \dots + a_{1m}h_m)^2 + \dots + (a_{k1}h_1 + \dots + a_{km}h_m)^2} \overset{\text{K-B}}{\leq}$$

$$\leq \sqrt{(a_{11}^2 + \dots + a_{1m}^2)(h_1^2 + \dots + h_m^2) + \dots + (a_{k1}^2 + \dots + a_{km}^2)(h_1^2 + \dots + h_m^2)} =$$

$$= \|\vec{h}\| \sqrt{(a_{11}^2 + \dots + a_{1m}^2) + \dots + (a_{k1}^2 + \dots + a_{km}^2)} = C\|\vec{h}\|.$$

Тепер безпосередньо доведення твердження.

Proof.

$$\begin{split} &\vec{g} \circ \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) = \vec{g}(\vec{f}(\vec{x}^0 + \Delta \vec{x})) - \vec{g}(\vec{f}(\vec{x}^0)) = \vec{g}(\vec{f}(\vec{x}^0) + \vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)) - \vec{g}(\vec{f}(\vec{x}^0)) = \\ &= \vec{g}(\vec{y}^0 + \Delta \vec{y}) - \vec{g}(\vec{y}^0) = \vec{g}'(\vec{y}^0)\Delta \vec{y} + o(\|\Delta \vec{y}\|) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \\ &\exists \text{алишилось довести, що } \vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \vec{o}(\|\Delta \vec{x}\|), \text{ якщо } \Delta \vec{x} \to \vec{0}, \text{ тобто} \\ &\lim_{\Delta \vec{x} \to \vec{0}} \frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} = 0. \\ &\frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} \leq \frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \|\vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} \overset{\text{Lm.}}{\leq} C \frac{\vec{o}(\|\Delta \vec{x}\|)}{\|\Delta \vec{x}\|} + \frac{\vec{o}(\|\Delta \vec{y}\|)}{\|\Delta \vec{x}\|} = \\ &= C \frac{\vec{o}(\|\Delta \vec{x}\|)}{\|\Delta \vec{x}\|} + \frac{\vec{o}(\|\Delta \vec{y}\|)}{\|\Delta \vec{y}\|} \frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|}. \end{split}$$

Якщо $\Delta \vec{x} \to \vec{0}$, то перший доданок прямує до нуля, а другий буде прямувати до нуля, якщо $\frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|}$

буде обмеженою. Зараз це й покажемо:
$$\frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|} = \frac{\|\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|} \leq \frac{\|\vec{f}'(\vec{x}^0)\Delta \vec{x}\| + \|\vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|} \overset{\text{Lm.}}{\leq} C^* + \frac{\|\vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|}$$

Якщо $\Delta \vec{x} \rightarrow \vec{0}$, то отримаємо обмеженість

Отже, остаточно,
$$\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta\vec{x}\|) + \vec{o}(\|\Delta\vec{y}\|) = \vec{o}(\|\Delta\vec{x}\|)$$
, якщо $\Delta\vec{x} \to \vec{0}$, а значить $\vec{g} \circ \vec{f}(\vec{x}^0 + \Delta\vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta\vec{x} + \vec{o}(\|\Delta\vec{x}\|)$ при $\Delta\vec{x} \to \vec{0}$.

Corollary 5.2.8 Задано функцію $\vec{f} \colon A \to B$ та $g \colon B \to \mathbb{R}$, де $A \subset \mathbb{R}^m, B \subset \mathbb{R}^n$. Відомо, що \vec{f} — диференційована в точці \vec{x}^0 та g — диференційована в точці \vec{y}^0 . Тоді $\frac{\partial h}{\partial x_j}(\vec{x}^0) = \frac{\partial g}{\partial y_1}(\vec{y}^0) \frac{\partial f_1}{\partial x_j}(\vec{x}^0) + \frac{\partial g}{\partial y_2}(\vec{y}^0) \frac{\partial f_2}{\partial x_j}(\vec{x}^0) + \dots + \frac{\partial g}{\partial y_n}(\vec{y}^0) \frac{\partial f_n}{\partial x_j}(\vec{x}^0)$, виконано $\forall j = \overline{1,m}$. Тут $h(\vec{x}) = g(\vec{f}(\vec{x}))$.

Example 5.2.9 Маємо функцію $f\left(xy,\frac{x}{y}\right)$. Знайдемо частинні похідні за x,y.

Позначимо $u(x,y)=xy,\,v(x,y)=\frac{x}{y}.$ Тоді маємо:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x} = \frac{\partial f}{\partial u}\cdot y + \frac{\partial f}{\partial v}\cdot \frac{1}{y}$$
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y} = \frac{\partial f}{\partial u}\cdot x + \frac{\partial f}{\partial v}\cdot \frac{-x}{y^2}.$$

Схематично, як шукати $\frac{\partial f}{\partial x}$.

5.3 Похідна за напрямком. Градієнт

Definition 5.3.1 Задано функцію $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. А також задано вектор \vec{l} , такий, що $\|\vec{l}\| = 1$. Його ще називають **напрямком**.

Похідною функції f за напрямком \vec{l} в точці \vec{x}^0 називають величину

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t}$$

Як вже було зазначено, дотичних прямих буває дуже багато, тому ми й задаємо напрямок.

Remark 5.3.2 Якщо всі координати вектора \vec{l} будуть нулевими, окрім $l_j = 1$, то $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \frac{\partial f}{\partial x_i}(\vec{x}^0)$.

Theorem 5.3.3 Задано функцію f – диференційована в точці $\vec{x}^0 \in A$ – внутрішня точка. Тоді $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = f'(\vec{x}^0) \cdot \vec{l} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m$.

Proof.

f – диференційована в точці \vec{x}^0 , тобто $f(\vec{x}^0+t\vec{l})-f(\vec{x}^0)=rac{\partial f}{\partial x_1}tl_1+\cdots+rac{\partial f}{\partial x_m}tl_m+o(\|t\vec{l}\|)$. Тому

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t} = \lim_{t \to 0} \frac{\frac{\partial f}{\partial x_1} t l_1 + \dots + \frac{\partial f}{\partial x_m} t l_m + o(\|t\vec{l}\|)}{t} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m. \quad \blacksquare$$

Example 5.3.4 Маємо функцію $f(x,y) = 1 - x^2 - y$. Знайти похідну за напрямком $\vec{l} = (0.6, 0.8)$.

$$\frac{\partial f}{\partial x} = -2x \qquad \frac{\partial f}{\partial y} = -1.$$

$$\implies \frac{\partial f}{\partial \vec{l}} = -0.6 \cdot 2x - 0.8 \cdot 1 = -1.2x - 0.8.$$

Definition 5.3.5 Задано функцію $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Γ радієнтом функції f в точці \vec{x}^0 називають такий вектор

$$\operatorname{grad} f(\vec{x}^0) \stackrel{\text{a6o}}{=} \boldsymbol{\nabla} f(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_m} \end{pmatrix} (\vec{x}^0)$$

Похідну функції \vec{f} за напрямком \vec{l} в точці \vec{x}^0 можна записати інакше: $\frac{\partial f}{\partial \vec{l}} = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right)$.

Example 5.3.6 Зокрема для функції $f(x,y) = 1 - x^2 - y$ маємо, що grad $f(\vec{x}) = \begin{pmatrix} -2x \\ -1 \end{pmatrix}$.

 $\operatorname{grad} f(\vec{x}^0)$ описує, який треба взяти напрямок руху в точці \vec{x}^0 , щоб ріст функції був найбільшим. Цей факт підтвердить наступне твердження:

Proposition 5.3.7 $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає:

- max значення $\iff \vec{l} \uparrow \uparrow \operatorname{grad} \vec{f}(\vec{x}^0);$
- min значення $\iff \vec{l} \uparrow \downarrow \operatorname{grad} \vec{f}(\vec{x}^0)$.

Дійсно, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right) = \|\operatorname{grad} f(\vec{x}^0)\| \|\vec{l}\| \cos \alpha = \|\operatorname{grad} f(\vec{x}^0)\| \cos \alpha :$

- $\begin{array}{ll} -\max \iff \alpha=0; \\ -\min \iff \alpha=\pi. \end{array}$

Неявно задані функції 5.4

Remark 5.4.1 Приклад для розуміння

Задано рівняння кола на площині \mathbb{R}^2 – один з прикладів неявної функції: $x^2 + y^2 - 1 = 0.$

Зрозуміло, що це – не графік функції однієї змінної. Просто тому що (майже) кожному значенню x тут ставиться у відповідність два значення y. Проте якщо розглядати деякий малий окіл точки (x_0, y_0) , то ми отримаємо деякий шматок малюнку, що й буде графіком функції. Зокрема в нашому випадку або $y = \sqrt{1 - x^2}$, або $y = -\sqrt{1 - x^2}$.

Проте існують певні точки, де цього зробити не можна – точки (1,0), (-1,0). Як би ми не зменшували окіл цієї точки, там існують ікси, які ставлять у відповідність два ігрика. Я цю точку позначил червоним кольором.

Саме тому з'явилась мотивацію створити теорему, де через рівняння F(x,y) = 0 ми можемо отримати y = f(x) в деякому околі точки (x_0, y_0) під деякими важливими умовами.

Важливо розуміти, що функція існує, проте явну формулу отримати не завжди вийде. Зокрема маємо неявну функцію $y^5 + y^3 + y + x = 0$. Щоб знати y = f(x), треба розв'язати рівняння п'ятого степеня, проте корені цього многочлена не можна виразити через формулу. І тим не менш, під деякими умовами, ми можемо знати функцію y = f(x), просто без формули.

Theorem 5.4.2 Задано неявну функцію F — неперервно-диференційована в околі точки (x_0, y_0) . Відомо, що виконуються такі умови:

Відомо, що виконуються такі умови:
1)
$$F(x_0, y_0) = 0$$
;
2) $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$.
Тоді існує єдина функція f – неперервно-диференційована в меншому околі точки x_0 , причому $F(x,y) = 0 \iff y = f(x)$, а також $f'(x) = -\frac{\partial F}{\partial x}(x,y)\Big|_{(x,f(x))}$.

Додатково, якщо $F \in C^{(m)}$, то $f \in C^{(m)}$. Без доведення.

Причому $\frac{\partial F}{\partial y} \neq 0 \iff y \neq 0.$

Тому за попередньою теоремою, дійсно, існує функція y = f(x), але найголовніше: $f'(x) = -\frac{x}{y}$

Theorem 5.4.4 Задано неявну вектор-функцію \vec{F} — неперервно-диференційована в околі точки $(\vec{x}^0, \vec{y}^0) \in \mathbb{R}^{m+k}$. Відомо, що виконуються такі умови:

1) $\vec{F}(\vec{x}^0, \vec{y}^0) = \vec{0};$

1)
$$F(\vec{x}, \vec{y}) = 0,$$

2) $\exists \left(\vec{F}_y'(\vec{x}^0, \vec{y}^0) \right)^{-1}$ – оборотна матриця похідних за \vec{y} .

Тоді існує єдина вектор-функція \vec{f} – неперервно-диференційована в меншому околі точки \vec{x}^0 , причому $\vec{F}(\vec{x},\vec{y}) = \vec{0} \iff \vec{y} = \vec{f}(\vec{x})$, а також $\vec{f}'(\vec{x}) = -(\vec{F}_y'(\vec{x},\vec{y}))^{-1} \cdot \vec{F}_x'(\vec{x},\vec{y}) \Big|_{(\vec{x},\vec{f}(\vec{x}))}$.

Без доведення.

Example 5.4.5 Задано вектор-функцію \vec{F} таким чином: $\begin{cases} x^2 + y_1^2 - \frac{1}{2}y_2^2 = F_1(x, y_1, y_2) = 0 \\ x + y_1 + y_2 - 2 = F_2(x, y_1, y_2) = 0 \end{cases}$

Маємо
$$\det \vec{F}_y'(x, y_1, y_2) = \det \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{pmatrix} = \det \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} = 2y_1 + y_2 \neq 0 \iff y_2 \neq -2y_1, \text{ a}$$

тому й $x \neq 2 + y_2$.

Тоді враховуючи обмеження, існує вектор-функція $\vec{f}(\vec{x}) = \vec{y}$, але тепер знайдемо похідну. Маємо:

$$\vec{F}'_y = \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} \implies (\vec{F}'_y)^{-1} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix}$$

$$\vec{F}'_x = \begin{pmatrix} 2x \\ 1 \end{pmatrix}$$

$$\vec{f'} = -(\vec{F'_y})^{-1} \vec{F'_x} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix} \begin{pmatrix} 2x \\ 1 \end{pmatrix} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 2x + y_2 \\ -2x + 2y_1 \end{pmatrix} = \begin{pmatrix} \frac{2x + y_2}{2y_1 + y_2} \\ \frac{-2x + 2y_1}{2y_1 + y_2} \end{pmatrix}.$$

$$\begin{pmatrix}
\frac{\partial F_1}{\partial x} \\
\frac{\partial F_2}{\partial x} \\
\frac{\partial F_2}{\partial x}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\
\frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2}
\end{pmatrix}$$

Тут записано матрицю Якобі для функції \vec{F} . Червоним виділено \vec{F}'_y , а синім виділено \vec{F}'_x .

5.5 Обернені функції

Theorem 5.5.1 Задано вектор-функцію \vec{g} : $U(\vec{y}^0) \to U(\vec{x}^0)$, де $\vec{x}^0 = \vec{g}(\vec{y}^0)$, де $U(\vec{x}^0), U(\vec{y}^0) \subset \mathbb{R}^n$. Відомо, що виконуються такі умови:

- 1) \vec{q} неперервно-диференційована;
- 2) $\exists (\vec{g}'(\vec{y}^0))^{-1}$.

Тоді існує вектор-функція $\vec{f} \colon U(\vec{x}^0) \to U(\vec{y}^0),$ причому:

- 1) \vec{f} неперервно-диференційована;
- 2) $\vec{f}'(\vec{x}) = (\vec{g}'(\vec{f}(\vec{x})))^{-1}$.

Proof.

Розглянемо функцію $\vec{F}(\vec{x}, \vec{y}) = \vec{x} - \vec{g}(\vec{y})$. Про неї відомо, що:

- 1) $\vec{F}(\vec{x}^0, \vec{y}^0) = \vec{0}$, просто тому що $\vec{x}^0 = \vec{g}(\vec{y}^0)$;
- 2) $\exists (\vec{F}_y'(\vec{x}^0, \vec{y}^0))^{-1}$, тому що зауважимо, що $\vec{F}_y'(\vec{x}^0, \vec{y}^0) = -\vec{g}'(\vec{y}^0)$, а для такої матриці оборотна матрица існує за умовою.

Отже, $\exists ! f$, для якого $F(\vec{x}, \vec{y}) = \vec{0} \iff \vec{x} = \vec{g}(\vec{y}) \iff \vec{y} = \vec{f}(\vec{x}).$

Нарешті, $\vec{f}'(\vec{x}) = -(\vec{F}_y'(\vec{x}, \vec{y}))^{-1} \vec{F}_x'(\vec{x}, \vec{y}) = (\vec{g}'(\vec{y}))^{-1}$.

У цьому випадку $\vec{F}_x'(\vec{x}, \vec{y}) = \mathbb{I}$, де \mathbb{I} – одинична матриця.

Example 5.5.2 Задано функцію $\vec{g} \colon A \to \mathbb{R}^2$, де множина $A = \{(x,y) : 0 < y < x\}$.

$$\vec{g}(x,y) \begin{pmatrix} g_1(x,y) \\ g_2(x,y) \end{pmatrix} = \begin{pmatrix} x+y \\ xy \end{pmatrix}.$$

Спробуємо знайти обернену функцію.

Зрозуміло, що \vec{g} – неперервно-диференційована. Доведемо, що $\exists (\vec{g}'(x,y))^{-1}$.

$$\vec{g}'(x,y) = \begin{pmatrix} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ y & x \end{pmatrix} \implies \det \vec{g}'(x,y) = x - y \neq 0, \text{ оскільки } 0 < x < y.$$

Тоді існує обернена вектор-функція $\vec{f} = \vec{g}^{-1}$. Спробуємо її знайти:

$$\begin{cases} x + y = u \\ xy = v \end{cases}$$

$$\frac{v}{y} + y = u \implies y^2 - uy + v = 0 \implies y = \frac{u - \sqrt{u^2 - 4v}}{2} \implies x = \frac{u + \sqrt{u^2 - 4v}}{2}.$$

I все це за умовою, що $u^2-4v>0$ та u,v>0. Отже, $\vec{g}^{-1}(u,v)=\begin{pmatrix}g_1^{-1}(u,v)\\g_2^{-1}(u,v)\end{pmatrix}=\frac{1}{2}\begin{pmatrix}u+\sqrt{u^2-4v}\\u-\sqrt{u^2-4v}\end{pmatrix}$.

5.6 Геометричне та алгебраїчне застосування

Дотична площина, нормальна пряма поверхні

Задамо функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A \subset \mathbb{R}^2$ – внутрішня точка. Встановимо таку поверхню:

$$\Pi=\{(x,y,z):z=f(x,y)\}$$

Відомо, що площина в \mathbb{R}^3 , що проходить через точку $(x_0, y_0, z_0), z_0 = f(x_0, y_0)$, задається рівнянням:

$$z = z_0 + K_1(x - x_0) + K_2(y - y_0),$$
 $K_1, K_2 \in \mathbb{R}$

Definition 5.6.1 Дотичною площиною до поверхні Π в точці (x_0, y_0) називається площина в \mathbb{R}^3 , що проходить через точку (x_0, y_0, z_0) , для якої виконана рівність

$$z - f(x, y) = o(||(x - x_0, y - y_0)||), (x, y) \to (x_0, y_0)$$

Theorem 5.6.2 Поверхня Π має дотичну площину в точці $(x_0, y_0) \iff f$ – диференційована в точці (x_0,y_0) . Причому $K_1=\dfrac{\partial f}{\partial x}(x_0,y_0), K_2=\dfrac{\partial f}{\partial y}(x_0,y_0).$

Доведення аналогічне, як в матані \mathbb{R}

Отже, дотична площина для диференційованої функції f задається таким рівнянням:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Definition 5.6.3 Нормальною прямою до поверхні Π в точці (x_0, y_0) називається пряма в просторі, що проходить через точку (x_0, y_0, z_0) та перпендикулярна дотичній площині.

Вектор нормалі дотичної площини $\vec{N}=\left(\frac{\partial f}{\partial x}(x_0,y_0),\frac{\partial f}{\partial u}(x_0,y_0),-1\right)$. Це буде напрямленим вектором для нормалі. Тоді нормальна пряма задається таким рівнян

$$\frac{x - x_0}{\frac{\partial f}{\partial x}(x_0, y_0)} = \frac{y - y_0}{\frac{\partial f}{\partial y}(x_0, y_0)} = \frac{z - z_0}{-1}$$

Example 5.6.4 Задамо функцію $f(x) = x^2 + y^2$. Знайдемо дотичну площину та нормальну пряму в точці (1, -1).

$$f(1,-1) = 2.$$

$$\frac{\partial f}{\partial x}(1,-1) = 2x\Big|_{(1,-1)} = 2 \qquad \frac{\partial f}{\partial x}(1,-1) = 2y\Big|_{(1,-1)} = -2.$$

 $\frac{\partial f}{\partial x}(1,-1) = 2x\Big|_{(1,-1)} = 2$ $\frac{\partial f}{\partial x}(1,-1) = 2y\Big|_{(1,-1)} = -2.$ Всі частинні похідні в околі точки (1,-1) неперервні, а тому диференційовані. Отже, можемо отримати дотичну:

$$z-2=2(x-1)-2(y+1) \implies 2x-2y-z=2;$$
 та нормаль: $\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z-2}{-1}.$

5.6.2 Дотична пряма, нормальна площина кривої

Definition 5.6.5 Крива в просторі \mathbb{R}^3 задається таким рівнянням

$$\begin{cases} x = x(t) \\ y = y(t) & t \in (a, b) \\ z = z(t) \end{cases}$$

Відомо, що пряма в просторі \mathbb{R}^3 , що проходить через точку $(x_0,y_0,z_0), x_0=x(t_0), y_0=y(t_0), z=y(t_0)$ $z(t_0)$, задається таким рівнянням:

$$\begin{cases} x = (t - t_0)l_1 + x_0 \\ y = (t - t_0)l_2 + y_0 \\ z = (t - t_0)l_3 + z_0 \end{cases}, t \in \mathbb{R}$$

Definition 5.6.6 Дотичною прямою до кривої $\vec{x} = \vec{x}(t)$ називається пряма в просторі, що проходить через точку (x_0, y_0, z_0) , для якої виконана рівність

$$\begin{cases} x(t) - (x_0 + l_1(t - t_0)) = o(|t - t_0|) \\ y(t) - (y_0 + l_2(t - t_0)) = o(|t - t_0|) \\ z(t) - (z_0 + l_3(t - t_0)) = o(|t - t_0|) \end{cases} , t \to t_0$$

Theorem 5.6.7 Пряма
$$\begin{cases} x=(t-t_0)l_1+x_0\\y=(t-t_0)l_2+y_0\\z=(t-t_0)l_3+z_0 \end{cases}$$
 - дотична до кривої
$$\begin{cases} x=x(t)\\y=y(t)\\z=z(t) \end{cases}$$
 ференційована в точці t_0 , а також $l_1=x'(t_0), l_2=y'(t_0), l_3=z'(t_0).$

Відносно зрозуміло.

Отже, дотична пряма задається рівнянням:

$$\begin{cases} x = (t - t_0)x'(t_0) + x_0 \\ y = (t - t_0)y'(t_0) + y_0 \\ z = (t - t_0)z'(t_0) + z_0 \end{cases}, t \in \mathbb{R}$$

Напрямлений вектор прямої $\vec{l}=(x'(t_0),y'(t_0),z'(t_0))$. Тоді це буде нормальним вектором для нормальної плоищини. Нормальна площина задається таким рівнянням:

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0$$

Example 5.6.8 Маємо криву $\begin{cases} x=2\sin t\\ y=2\cos t\\ z=-\sin 2t \end{cases}$, де параметр $t\in[0,2\pi]$. Знайдемо дотичну пряму та

нормальну площину в $t_0 = \frac{5\pi}{6}$. Тобто в точці $\left(-1, \sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

$$\begin{cases} x'(t_0) = 2\cos t \Big|_{t=t_0} = \sqrt{3} \\ y'(t_0) = -2\sin t \Big|_{t=t_0} = 1 \\ z'(t_0) = -2\cos 2t \Big|_{t=t_0} = -1 \end{cases}$$

$$\frac{x+1}{\sqrt{3}} = \frac{y-\sqrt{3}}{1} = \frac{z-\frac{\sqrt{3}}{2}}{-1};$$
та нормальну площину:

$$\sqrt{3}(x+1) + (y-\sqrt{3}) - \left(z - \frac{\sqrt{3}}{2}\right) = 0.$$

5.6.3 Приблизне обчислення

Маємо
$$f$$
 — диференційована в точці \vec{x}^0 , тобто
$$f(\vec{x}) - f(\vec{x}^0) = \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0) + o(\|\vec{x} - \vec{x}^0\|)$$
 при $\vec{x} \to \vec{x}^0$. Якщо \vec{x}_0 близлький до \vec{x} , тобто $\|\vec{x} - \vec{x}^0\| \ll 1$, то тоді
$$f(\vec{x}) \approx f(\vec{x}^0) + \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0).$$

$$f(\vec{x}) \approx f(\vec{x}^0) + \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0).$$

Example 5.6.9 Приблизно обчислити $\sqrt{(2.03)^2 + 5e^{0.02}}$.

$$z \approx z_0 + \frac{\partial z}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial z}{\partial y}(x_0, y_0)(y - y_0)$$
. Маємо:

Ехаприе 3.6.9 Приолизно обчислити
$$\sqrt{(2.03)^2+3e^{6.02}}$$
. Розглянемо функцію $z=\sqrt{x^2+5e^y}$. У нашому випадку $(x_0,y_0)=(2,0)$ та $(x,y)=(2.03,0.02)$. Оскільки $\|(x-x_0,y-y_0)\|=\|(0.03,0.02)\|\ll 1$, то можемо застосувати формулу: $z\approx z_0+\frac{\partial z}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial z}{\partial y}(x_0,y_0)(y-y_0)$. Маємо: $z_0=\sqrt{2^2+5e^0}=3$ $\frac{\partial z}{\partial x}(2,0)=\frac{x}{\sqrt{x^2+5e^y}}\Big|_{(0,2)}=\frac{2}{3}$ $\frac{\partial z}{\partial y}(2,0)=\frac{5e^y}{2\sqrt{x^2+5e^y}}\Big|_{(0,2)}=\frac{5}{6}$. Отже, $z=\sqrt{(2.03)^2+5e^{0.02}}\approx 3+\frac{2}{3}\cdot 0.03+\frac{5}{6}\cdot 0.02=\frac{101}{30}$.

Диференціювання та похідні старших порядків 5.7

Definition 5.7.1 Задано функцію $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f – диференційована в точці \vec{x}^0 .

Частинними похідними другого роду від функції f в точці \vec{x}^0 називається вираз:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} (\vec{x}^0) \right) = \frac{\partial^2 f}{\partial x_j \partial x_k} (\vec{x}^0)$$

Example 5.7.2 Знайдемо всі частинні похідні другого порядку функції $f(x,y) = x^4 + y^4 - 4x^2y^2$.

$$\frac{\partial f}{\partial x} = 4x^3 - 8xy^2 \implies \begin{cases} \frac{\partial^2 f}{\partial x^2} = 12x^2 - 8y^2 \\ \frac{\partial^2 f}{\partial y \partial x} = -16xy \end{cases} \qquad \frac{\partial f}{\partial y} = 4y^3 - 8x^2y \implies \begin{cases} \frac{\partial^2 f}{\partial x \partial y} = -16xy \\ \frac{\partial^2 f}{\partial y \partial y} = 12y^2 - 8x^2 \end{cases}.$$

Можемо зауважити, що $\frac{\partial^2 f}{\partial u \partial x} = \frac{\partial^2 f}{\partial x \partial u}$. Проте в загальному випадку це не так.

Example 5.7.3 Приклад Шварца

Розглянемо функцію $f(x,y)=\begin{cases} xy\frac{x^2-y^2}{x^2+y^2} & (x,y)\neq (0,0)\\ 0 & (x,y)=(0,0) \end{cases}$. Зосередимось лише на знаходженні

$$\frac{\partial^2 f}{\partial y \partial x}(0,0), \frac{\partial^2 f}{\partial x \partial y}(0,0).$$

$$\frac{\partial f}{\partial x} = \begin{cases} y \frac{x^4 - y^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial y} = \begin{cases} y \frac{x^4 - y^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{\Delta x \to 0} \frac{\frac{\partial f}{\partial y}(\Delta x,0) - \frac{\partial f}{\partial y}(0,0)}{\Delta x} = 1$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{\Delta y \to 0} \frac{\frac{\partial f}{\partial x}(0,\Delta y) - \frac{\partial f}{\partial x}(0,0)}{\Delta y} = -1$$
 Таким чином,
$$\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}.$$

Theorem 5.7.4 Теорема Шварца

Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що $\exists \frac{\partial^2 f}{\partial x_j \partial x_k}(\vec{x}), \frac{\partial^2 f}{\partial x_k \partial x_j}(\vec{x})$ в околі точки \vec{x}^0 та є неперервними в точці \vec{x}^0 . Тоді $\frac{\partial^2 f}{\partial x_i \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_j}$.

Mu будемо доводити при m=2. Для більших аргументів – аналогічно, але більш технічна справа.

Proof.

Отже, дано f(x,y) та в околі точки (x_0,y_0) існують частинні похідні другого порядку $\exists \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ які неперервні в (x_0,y_0) .

Розглянемо вираз $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0).$ Покладемо функцію $k(s) = f(s, y_0 + \Delta y) - f(s, y_0), s \in [x_0, x_0 + \Delta x].$ Тоді $\Delta = k(x_0 + \Delta x) - k(x_0).$ $k'(s) = (f(s, y_0 + \Delta y) - f(s, y_0))'_s = \frac{\partial f}{\partial s}(s, y_0 + \Delta y) - \frac{\partial f}{\partial s}(s, y_0).$

Оскільки нам відомі другі частинні похідні, то зрозуміло, що в нас існує $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, причому в тому самому околі точки (x_0,y_0) . Тобто звідси k - диференційована на $[x_0,x_0+\Delta x]$, тоді за теоремою Лагранжа, $\exists \xi_1 \in (x_0,x_0+\Delta x): \Delta = k(x_0+\Delta x)-k(x_0)=k'(\xi_1)\Delta x=\left(\frac{\partial f}{\partial s}(\xi_1,y_0+\Delta y)-\frac{\partial f}{\partial s}(\xi_1,y_0)\right)\Delta x.$

Покладемо функцію $m(t) = \frac{\partial f}{\partial s}(\xi_1, t), t \in [y_0, y_0 + \Delta y].$ Тоді $\Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x.$

$$m'(t) = \left(\frac{\partial f}{\partial s}(\xi_1,t)\right)_t' = \frac{\partial}{\partial t}\left(\frac{\partial f}{\partial s}(\xi_1,t)\right) = \frac{\partial^2 f}{\partial t \partial s}(\xi_1,t).$$
 Похідна дійсно існує за умовою теореми, тобто m - диференційована на $[y_0,y_0+\Delta y]$, тоді за теоремою

Похідна дійсно існує за умовою теореми, тобто m - диференційована на $[y_0, y_0 + \Delta y]$, тоді за теоремою Лагранжа, $\exists \eta_1 \in (y_0, y_0 + \Delta y) : \Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x = m'(\eta_1)\Delta y\Delta x = \frac{\partial^2 f}{\partial t\partial s}(\xi_1, \eta_1)\Delta y\Delta x.$

Повернімось до виразу $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0)$, ми розглянемо її з іншої сторони.

Покладемо функцію $p(t) = f(x_0 + \Delta x, t) - f(x_0, t), t \in [y_0, y_0 + \Delta y].$ Тоді $\Delta = p(y_0 + \Delta y) - p(y_0).$

А далі я буду просто продовжувати рівність, міркування аналогічні, що пов'язані зі застосуванням теореми Лагранжа двічі:

$$\Delta = p(y_0 + \Delta y) - p(y_0) = p'(\eta_2) \Delta y = \left(f(x_0 + \Delta x, t) - f(x_0, t)\right)_t'(\eta_2) \Delta y = \left(\frac{\partial f}{\partial t}(x_0 + \Delta x, \eta_2) - \frac{\partial f}{\partial t}(x_0, \eta_2)\right) \Delta y = 0$$

Покладемо функцію $q(s)=\dfrac{\partial f}{\partial t}(s,\eta_2).$ А далі аналогічно.

Отримали таку рівність: $\frac{\partial^2 f}{\partial t \partial s}(\xi_1,\eta_1) \Delta y \Delta x = \frac{\partial^2 f}{\partial s \partial t}(\xi_2,\eta_2) \Delta x \Delta y \implies \frac{\partial^2 f}{\partial t \partial s}(\xi_1,\eta_1) = \frac{\partial^2 f}{\partial s \partial t}(\xi_2,\eta_2).$ Нарешті, за умовою задачі, другі частинні похідні є неперервними в точці (x_0,y_0) , тому далі одно-

часно прямуємо $x \to x_0, y \to y_0 \implies \Delta x \to 0, \Delta y \to 0$. Оскільки $\xi_1, \xi_2 \in (x_0, x_0 + \Delta x) \ \eta_1, \eta_2 \in$

 $(y_0,y_0+\Delta y)$, то звідси $\xi_1,\xi_2\to x_0$ та $\eta_1,\eta_2\to y_0$. Остаточно отримаємо $\frac{\partial^2 f}{\partial y\partial x}(x_0,y_0)=\frac{\partial^2 f}{\partial x\partial y}(x_0,y_0)$ (літери s,t я замінив на x,y, результат не зміниться).

Definition 5.7.5 Задано функцію $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка.

Функція f називається **двічі диференційованою** в точці \vec{x}^0 , якщо всі частинні похідні існують в околі точки \vec{x}^0 та диференційовані в точці \vec{x}^0 .

Example 5.7.6 Маємо функцію $z = x^2 + 2y^2 - 5xy$. З'ясуємо, чи буде ця функція двічі диференці-

$$\frac{\partial z}{\partial x} = 2x - 5y$$
 $\frac{\partial z}{\partial y} = 4y - 5z$

$$\frac{\partial^2 z}{\partial x^2} = 2 \qquad \frac{\partial^2 z}{\partial u \partial x} = -5$$

Ехаmple 5.7.6 Маємо функцію $z=x^-+zy^--5xy$. З'ясуємо, чи буде ца функція дві і дваренції йованою. $\frac{\partial z}{\partial x}=2x-5y \qquad \frac{\partial z}{\partial y}=4y-5x$ Усі отримані частинні похідні існують в будь-якому околі деякої точки. $\frac{\partial^2 z}{\partial x^2}=2 \qquad \frac{\partial^2 z}{\partial y\partial x}=-5$ Отримані частинні похідні визначені та неперервні в будь-якій точці. Таким чином, за $\mathbf{Th.4.1.8.}$, функція $\frac{\partial z}{\partial x}$ - диференційована. $\frac{\partial^2 z}{\partial x\partial y}=-5 \qquad \frac{\partial^2 z}{\partial y^2}=4$ Отримані частинні похідні визначені та неперервні в будь-якій точці. Таким чином, за $\mathbf{Th.4.1.8.}$, . . . ∂z функція $\frac{\partial z}{\partial u}$ - диференційована.

Отже, за означенням, z - двічі диференційована функція. (ТООО: лінкування)

Proposition 5.7.7 Функція f двічі диференційована в точці $\vec{x}^0 \iff \operatorname{grad} f$ – диференційований в точці \vec{x}^0 .

Proof.

Дійсно, f – двічі диференційована в точці $\vec{x}^0 \iff \forall j = \overline{1,m}: \exists \frac{\partial f}{\partial x_i}$ – диференційована в точці

$$ec{x}^0\iff \mathrm{grad} f=egin{pmatrix} \dfrac{\partial f}{\partial x_1} \\ \vdots \\ \dfrac{\partial f}{\partial x_m} \end{pmatrix}$$
 — як вектор-функція — диференційована в точці $ec{x}^0.$

Розпишемо диференційованість вектор-функції grad f в точці \vec{x}^0 за означенням: $\operatorname{grad} f(\vec{x}^0 + \Delta \vec{x}) - \operatorname{grad} f(\vec{x}^0) = M \Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$

Звідси ми маємо, що
$$M = \begin{pmatrix} \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1} \right) & \dots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_1} \right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_m} \right) & \dots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_m} \right) \end{pmatrix} =$$

$$=\begin{pmatrix} \frac{\partial^2 f}{\partial x_1{}^2} & \cdots & \frac{\partial^2 f}{\partial x_m \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_m} & \cdots & \frac{\partial^2 f}{\partial x_m{}^2} \end{pmatrix} (\vec{x}^0) = H(\vec{x}^0) = f''(\vec{x}^0) - \text{це називається матрицею Гесе.}$$

Матриця Γ есе описує **другу похідну** функції f в точці \vec{x}^0 та одночасно **похідну** вектор-функції grad f в точці \vec{x}^0 . Дана матриця – квадратна, тож ми можемо обчислити $\det f''(\vec{x}^0)$ – це називається

Definition 5.7.8 Задано функцію $f\colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f - диференційо-

Другим диференціалом функції f називають вираз:

$$d^2 f(\vec{x}^0) = d(df(\vec{x}^0))$$

З'ясуємо, як цей вираз можна по-інакшому записати. Маємо

$$d^{2}f = d\left(df\right) = d\left(\frac{\partial f}{\partial x_{1}}\,dx_{1} + \dots + \frac{\partial f}{\partial x_{m}}\,dx_{m}\right) = d\left(\frac{\partial f}{\partial x_{1}}\,dx_{1}\right) + \dots + d\left(\frac{\partial f}{\partial x_{m}}\,dx_{m}\right) = \\ = d\left(\frac{\partial f}{\partial x_{1}}\right)\,dx_{1} + \dots + d\left(\frac{\partial f}{\partial x_{m}}\right)\,dx_{m} = \left(\frac{\partial}{\partial x_{1}}\left(\frac{\partial f}{\partial x_{1}}\right)\,dx_{1} + \dots + \frac{\partial}{\partial x_{m}}\left(\frac{\partial f}{\partial x_{1}}\right)\,dx_{m}\right)\,dx_{1} + \dots + \\ \left(\frac{\partial}{\partial x_{1}}\left(\frac{\partial f}{\partial x_{m}}\right)\,dx_{1} + \dots + \frac{\partial}{\partial x_{m}}\left(\frac{\partial f}{\partial x_{m}}\right)\,dx_{m}\right)\,dx_{m} = \\ = \left(\frac{\partial^{2}f}{\partial x_{1}^{2}}\,dx_{1}^{2} + \dots + \frac{\partial^{2}f}{\partial x_{m}\partial x_{1}}\,dx_{m}\,dx_{1}\right) + \dots + \left(\frac{\partial^{2}f}{\partial x_{1}\partial x_{m}}\,dx_{1}\,dx_{m} + \dots + \frac{\partial^{2}f}{\partial x_{m}^{2}}\,dx_{m}^{2}\right) = \sum_{i,j=1}^{m} \frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}\,dx_{i}\,dx_{j}.$$

Отже, маємо іншу формулу для другого диференціалу в точці \vec{x}^0 :

$$d^2 f(\vec{x}^0) = \sum_{i=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j} (\vec{x}^0) \, dx_i \, dx_j$$

Якщо придивитись, то $d^2 f(\vec{x}^0)$ виглядає як квадратична форма.

Example 5.7.9 Знайдемо другий диференціал функції $z=x^3+2y^2-5xy$. Ми вже шукали другі частинні похідні $\frac{\partial^2 f}{\partial x^2}=6x$ $\frac{\partial^2 f}{\partial x\partial y}=\frac{\partial^2 f}{\partial y\partial x}=-5$ $\frac{\partial^2 f}{\partial y^2}=4$. Таким чином, $d^2z = \frac{\partial^2 f}{\partial x^2}\,dx^2 + 2\frac{\partial^2 f}{\partial x \partial y}\,dx\,dy + \frac{\partial^2 f}{\partial y^2}\,dy^2 = 6x\,dx^2 - 10\,dx\,dy + 4\,dy^2.$

Definition 5.7.10 Задано функцію $f\colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f - k разів диференційована в точці \vec{x}^0 .

Частинними похідним k+1-го порядку в точці \vec{x}^0 називають похідну:

$$\frac{\partial}{\partial x_{j_{k+1}}} \left(\frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} \right) (\vec{x}^0) = \frac{\partial^{k+1} f}{\partial x_{j_{k+1}} \partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} (\vec{x}^0)$$

$$i_1 + i_2 + \dots + i_k + i_{k+1} = k + 1$$

Remark 5.7.11 Що таке **похідна** k-го порядку, визначати не буду, бо ще рано. Необхідно щось про тензори знати.

 $f Definition \ 5.7.12$ Задано функцію $f\colon A o \mathbb{R}$ та $ec x^0\in A$ — внутрішня точка. Також f - k разів диференційована в точці \vec{x}^0

k+1-им диференціалом функції f називають вираз:

$$d^{k+1}f(\vec{x}^0) = d(d^k f(\vec{x}^0))$$

Якщо дуже сильно постаратись, то за індукцією можна довести таку формулу диференціала k-го порядку:

$$d^k f(\vec{x}^0) = \sum_{j_1, \dots, j_k=1}^m \frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}} (\vec{x}^0) \cdot dx_{j_1} \dots dx_{j_k}$$

Definition 5.7.13 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка.

Функція f називається k-разів диференційованою в точці \vec{x}^0 , якщо всі частинні похідні (k-1)-го порядку існують в околі точки \vec{x}^0 та всі вони диференційовані в точці \vec{x}^0 .

Позначення: $C^k(A)$ – множина k разів неперервно-диференційованих функцій.

5.8 Формула Тейлора

Зробимо певні позначення:

$$[\vec{x}^0, \vec{x}] = \{(1-t)\vec{x}^0 + t\vec{x} : t \in [0,1]\}$$
$$(\vec{x}^0, \vec{x}) = \{(1-t)\vec{x}^0 + t\vec{x} : t \in (0,1)\}$$

Theorem 5.8.1 Теорема Тейлора (у формі Лагранжа)

Задано функцію f - диференційована n разів на $[\vec{x}^0, \vec{x}]$ та (n+1)-ий раз диференційована на (\vec{x}^0, \vec{x}) .

Тоді
$$\exists \vec{\xi} \in (\vec{x}^0, \vec{x})$$
 або (\vec{x}, \vec{x}^0) , для якого
$$df(\vec{x}^0) = d^2f(\vec{x}^0) = d^nf(\vec{x}^0)$$

$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + \frac{d^{n+1}f(\vec{\xi})}{(n+1)!}$$

Proof.

Розглянемо функцію $p(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$, тут $t \in [0, 1]$ - функція від однієї змінної.

Знайдемо похідні від цієї функції:

$$p'(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))'_t = (f(x_1 + t(x_1 - x_1^0), \dots, x_m + t(x_m - x_m^0)))'_t = (f(u_1, \dots, u_m))'_t =$$

$$= \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial t} + \dots + \frac{\partial f}{\partial u_m} \frac{\partial u_m}{\partial t} = \frac{\partial f}{\partial u_1} (x_1 - x_1^0) + \dots + \frac{\partial f}{\partial u_m} (x_m - x_m^0) = \left(\frac{\partial f}{\partial u_1} \dots \frac{\partial f}{\partial u_m}\right) \begin{pmatrix} x_1 - x_1^0 \\ \vdots \\ x_m - x_m^0 \end{pmatrix} =$$

$$= df(\vec{x}^0 + t(\vec{x} - \vec{x}^0)).$$

$$p''(t) = [f'(\vec{x}^0 + t(\vec{x} - \vec{x}^0)) \cdot (\vec{x} - \vec{x}^0)]_t' \stackrel{\text{ahajoriyho}}{=} d^2 f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$$

$$p^{(k)}(t) = d^k f(\vec{x}^0 + t(\vec{x} - \vec{x}^0)).$$

Коротше, наша функція n разів диференційована на [0,1] та має (n+1) похідну на (0,1). Тому ми можемо розкласти формулу Тейлора як функцію з однією змінною. $\exists \xi \in (0,1)$:

$$p(1) = p(0) + \frac{p'(0)}{1!}(1-0) + \frac{p''(0)}{2!}(1-0)^2 + \dots + \frac{p^{(n)}(0)}{n!}(1-0)^n + \frac{p^{(n+1)}(\xi)}{(n+1)!}(1-0)^{n+1}.$$

А далі підставляємо все, що маємо:

$$p(0) = f(\vec{x}^0)$$

$$p'(0) = df(\vec{x}^0)$$

$$p''(0) = d^2 f(\vec{x}^0)$$

$$p^{(n+1)}(\xi) = d^{n+1}f(\vec{x}^0 + \xi(\vec{x} - \vec{x}^0))$$

Отже,
$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + \frac{d^{n+1}f(\vec{\xi})}{(n+1)!}$$
, де $\vec{\xi} = \vec{x}^0 + \xi(\vec{x} - \vec{x}^0) \in (\vec{x}^0, \vec{x})$.

Theorem 5.8.2 Теорема Тейлора (у формі Пеано)

Задано функцію
$$f$$
 — диференційована n разів в точці \vec{x}^0 . Тоді
$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + o(\|\vec{x} - \vec{x}^0\|^n), \vec{x} \to \vec{x}^0.$$

Без доведення. Але певні плани доведення наве

Позначимо функцію
$$g(\vec{x}) = f(\vec{x}) - \left(f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!}\right)$$
. Наша мета показати, що $g(\vec{x}) = o(\|\vec{x} - \vec{x}^0\|^n)$.

Як і раніше, тут треба показати, що g та всі його частинні похідні до порядка включно n в точці \vec{x}^0 будуть нулями.

А далі вже показуємо, що $g(\vec{x}) = o(\|\vec{x} - \vec{x}^0\|^n)$.

Example 5.8.3 Розкласти функцію
$$f(x,y)=e^{x+y}$$
 відносно точки $(x_0,y_0)=(1,-1).$ Заздалегідь зауважимо, що $\frac{\partial^s f}{\partial x^{s_1}\partial y^{s_2}}(1,-1)=e^{x+y}|_{(1,-1)}=1,$ де $s_1+s_2=s.$

$$f(1,-1) = 1$$

$$f'(1,-1)(\vec{x} - \vec{x}^0) = (x-1) + (y+1)$$

$$f''(1,-1)(\vec{x} - \vec{x}^0)^2 = (x-1)^2 + 2(x-1)(y+1) + (y+1)^2$$

$$f'''(1,-1)(\vec{x} - \vec{x}^0)^3 = (x-1)^3 + 3(x-1)^2(y+1) + 3(x-1)(y+1)^2 + (y+1)^3$$

$$\vdots$$

Таким чином, ми можемо це записати ось так:

$$f(x,y) = 1 + \left[\frac{(x-1)}{1!} + \frac{(y+1)}{1!} \right] + \left[\frac{(x-1)^2}{2!} + \frac{2(x-1)(y+1)}{2!} + \frac{(y+1)^2}{2!} \right] + \dots + \left[\frac{(x-1)^n}{n!} + \frac{C_n^2(x-1)^{n-1}(y+1)}{n!} + \dots + \frac{(y+1)^n}{n!} \right] + o\left(\sqrt{(x-1)^2 + (y+1)^2}\right) = \sum_{k=1}^n \sum_{p=0}^k \frac{C_p^k}{k!} (x-1)^{k-p} (y+1)^p + o\left(\sqrt{(x-1)^2 + (y+1)^2}^n\right), (x,y) \to (1,-1).$$

Remark 5.8.4 Можна формулу Тейлора записати в якості ряда Тейлора за певними умовами, але я цього робити не буду.

5.9 Локальні екстремуми

Definition 5.9.1 Задано функцію $f\colon A\to\mathbb{R}$ та $\vec{x}^0\in A$ – внутрішня точка. Точка \vec{x}^0 називається точкою:

- локального максимуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \geq f(\vec{x});$
- локального мінімуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \leq f(\vec{x}).$ для строгих екстремумів нерівність строга та існують околи $U_{\varepsilon}(\vec{x}^0) \setminus \{\vec{x}^0\}.$

Theorem 5.9.2 Необхідна умова локального екстремуму

Задано функцію $f\colon A\to\mathbb{R}$ — диференційована в точці $\vec{x}^0\in A$ — внутрішня. Відомо, що \vec{x}^0 — локальний екстремум. Тоді $\frac{\partial f}{\partial x_j}(\vec{x}^0)=0, \forall j=\overline{1,m}.$

Proof.

Розглянемо функцію $h(x_1) = f(x_1, x_2^0, \dots, x_m^0)$ – функція від однієї змінної, така, що x_1^0 – локальний екстремум. Для інших змінних аналогічно. Більш того, $h'(x_1) = \frac{\partial f}{\partial x_1}(x_1, x_2^0, \dots, x_m^0)$.

Таким чином, за необхідною умовою локального екстремуму матана в \mathbb{R} ,

$$h'(x_1) = 0 \implies \frac{\partial f}{\partial x_1}(x_1^0, x_2^0, \dots, x_m^0) = 0.$$

$$\textbf{Remark 5.9.3} \ \frac{\partial f}{\partial x_j}(\vec{x}^0) = 0, \forall j = \overline{1,m} \iff df(\vec{x}^0) \equiv 0.$$

⇒ Зрозуміло.

$$=$$
 Підставити в диференціал $(dx_1, dx_2, \dots, dx_n) = (1, 0, \dots, 0)$, щоб отримати $\frac{\partial f}{\partial x_1}(\vec{x}^0) = 0$.

Definition 5.9.4 Точка \vec{x}^0 називається **стаціонарною** для функції f, якщо всі частинні похідні в заданній точці нулеві.

Proposition 5.9.5 Інше означення критичної точки

Точка \vec{x}^0 – стаціонарна $\iff df_{\vec{x}^0}$ – не сюр'єктивне.

Proof.

 \Rightarrow Зрозуміло.

 \sqsubseteq Дано: $df_{\vec{x}^0}$ — не сюр'єктивне. Взагалі, будь-який функціонал уже автоматично сюр'єктивний. Тоді звідси $df_{\vec{x}^0} \equiv 0$ — єдиний варіант. Отже, звідси всі частинні похідні нулеві, а тому \vec{x}^0 — стаціонарна.

Theorem 5.9.6 Достатня умова локального екстремуму

Задано функцію $f: A \to \mathbb{R}$, таку, що f – двічі неперервно-диференційована в околі точки $\vec{x}^0 \in A$ – стаціонарна та внутрішня точка.

1) Нехай $d^2 f(\vec{x}^0)$ – строго додатноозначена. Тоді \vec{x}^0 – строгий локальний мінімум;

- 2) Нехай $d^2f(\vec{x}^0)$ строго від'ємноозначена. Тоді \vec{x}^0 строгий локальний максимум;
- 3) Нехай $d^2 f(\vec{x}^0)$ знакозмінна. Тоді \vec{x}^0 не локальний екстремум.

1) Нехай $d^2 f(\vec{x}^0)$ – додатно визначена.

Оскільки функція f – двічі диференційована в точці \vec{x}^0 , то тоді за теоремою Тейлора в формі Пе-

$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + o(\|\vec{x} - \vec{x}^0\|^2), \vec{x} \to \vec{x}^0.$$

Позначу $\rho = \|\vec{x} - \vec{x}^0\|$, а також $\xi_k = \frac{x_k - x_k^0}{\rho}$, $k = \overline{1,m}$. Можна зауважити, що $\xi_1^2 + \dots + \xi_m^2 = 1$. Оскільки \vec{x}^0 – стаціонарна, то звідси $df(\vec{x}^0) \equiv 0$, бо всі частинні похідні нулі. Таким чином,

$$f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2}d^2f(\vec{x}^0) + o(\rho^2) = \frac{1}{2}\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)(x_i - x_i^0)(x_j - x_j^0) + o(\rho^2) = \frac{1}{2}\rho^2 \left(\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)\xi_i \xi_j + o(1)\right).$$

Розглянемо функцію $F(\xi_1,\ldots,\xi_m)=\sum_{i=1}^m\frac{\partial^2 f}{\partial x_i\partial x_j}(\vec{x}^0)\xi_i\xi_j$, що визначена на одиничній сфері

 $S^m = \{ \vec{\xi} \in \mathbb{R}^m : \|\vec{\xi}\| = 1 \}$, а ця множина – замкнена та обмежена. Також відомо, що $F \in C(S^m)$ як многочлен, а тому вона досягає мінімуму. Проте F - додатно визначена, а отже $\min F > 0$.

Рівність $f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2} \rho^2 (F(\xi_1, \dots, \xi_m) + o(1)), \rho \to 0$ перепишеться таким чином:

$$\exists \delta: \forall \rho < \delta \implies f(\vec{x}) - f(\vec{x}^0) > \frac{1}{4} \rho^2 \min F > 0$$
, остаточно

$$\exists \delta > 0 : \forall \vec{x} : ||\vec{x} - \vec{x}^0|| < \delta \implies f(\vec{x}) - f(\vec{x}^0) > 0.$$

Тобто, знайшли окіл, де $\forall \vec{x}: f(\vec{x}^0) < f(\vec{x})$, а тому \vec{x}^0 - строгий локальний мінімум.

- 2) Все аналогічно.
- 3) А тепер припустимо, що $d^2f(\vec{x}^0)$ знако-невизначена. Ми розглядаємо функцію лише в деякому околі $U_{\delta_0}(\vec{x}^0)$ через диференційованість. Тоді $\exists \vec{\Delta x}: d^2 f(\vec{x}^0, \vec{\Delta x}) > 0$. Ми окіл ще звужимо до $U_{\delta=\parallel\vec{\Delta x}\parallel}(\vec{x}^0)$. Там будемо шукати точку в вигляді $\vec{x}^t = \vec{x}^0 + t\vec{\Delta x}$, де t > 0 – довільне. Тоді за Тейло-

$$f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2} d^2 f(\vec{x}^0, t \vec{\Delta x}) + o(\|\vec{x}^t - \vec{x}^0\|), \text{ ge } \vec{x}^t \to \vec{x}^0.$$

$$f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2} t^2 d^2 f(\vec{x}^0, \vec{\Delta x}) + o(t^2 \|\vec{\Delta x}\|^2) = \frac{t^2}{2} \left(d^2 f(\vec{x}^0, \vec{\Delta x}) + o(1) \right), \text{ ge } t \to 0.$$

Якщо більш детально це розписати o(1), а згодом обрати $\varepsilon = \frac{1}{2}d^2f(\vec{x}^0, \Delta \vec{x})$, то отримаємо, що $\exists \delta^*: \forall t: t < \delta^* \implies f(\vec{x}^t) - f(\vec{x}^0) > 0.$

Якщо так станеться, що $U_{\delta^*}(\vec{x}^0)$ буде більшим за $U_{\delta=\|\vec{\Delta x}\|}(\vec{x}^0)$, то тоді буде ми можемо взяти точку $\vec{x}^0 + \vec{\Delta x}$, для якої $f(\vec{x}^0 + \vec{\Delta x}) - f(\vec{x}^0) > 0$.

Також буде $\exists \vec{\Delta x'}: d^2 f(\vec{x}^0, \vec{\Delta x'}) < 0$ в силу невизначеності знака. І там абсолютно аналогічно.

- якщо U_δ більший за U_{δ_0} , то вже автоматично виконано;
- інакше знайдуться точки по цим крокам.

Отже, \vec{x}^0 - не екстремум.

Example 5.9.7 Дослідити на локальні екстремуми функцію $f(x) = x^3 + 3xy^2 - 39x - 36y + 26$. Спочатку шукаємо критичні точки:

$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 39 = 0\\ \frac{\partial f}{\partial y} = 6xy - 36 = 0 \end{cases} \implies (x, y) \in \{(3, 2), (-3, -2), (2, 3), (-2, -3)\}.$$

$$d^{2}f = \frac{\partial^{2}f}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2}f}{\partial x \partial y} dx dy + \frac{\partial^{2}f}{\partial y^{2}} dy^{2}.$$

$$d^{2}f = 6(x dx^{2} + 2y dx dy + x dy^{2}).$$

Для кожної критичної точки подивимось на цей диференціал.

I. $d^2 f(3,2) = 6(3 dx^2 + 4 dx dy + 3 dy^2)$.

Диференціал $d^2 f(3,2)$ можна розглядати як квадратичну форму $(d^2 f(3,2))(dx,dy)$. Даній квадратичній формі відповідає матриця $H=6\begin{pmatrix}3&2\\2&3\end{pmatrix}=\begin{pmatrix}18&12\\12&18\end{pmatrix}$ (див. лінійну алгебру). До речі, дана матриця - це в точності матриця Гесе.

Застосуємо критерій Сільвестра. Маємо $\Delta_1^H = 18 > 0$ та $\Delta_2^H = \det \begin{pmatrix} 18 & 12 \\ 12 & 18 \end{pmatrix} = 6(3 \cdot 3 - 2 \cdot 2) = 30 > 0$. Отже, за цим критерієм, маємо $d^2f(3,2)$ - додатноозначена. Отже, (3,2) - локальний мінімум.

II. $d^2f(-3,-2)$ - аналогічними міркуваннями доводимо, що (-3,-2) - локальний максимум.

III. $d^2f(2,3)=12(dx^2+3\,dx\,dy+dy^2).$ Знову запишемо матрицею $H=6\begin{pmatrix}2&3\\3&2\end{pmatrix}$. Зауважимо, що матриця має власні числа -1,5. Вони різного знаку, що приводить до висновку: $d^2f(2,3)$ - знакозмінна. Отже, (2,3) - не екстремум.

IV. $d^2f(-2,-3)$ - аналогічними міркуваннями доводимо, що (-2,-3) - не екстремум.

Example 5.9.8 Дослідити на локальні екстремуми функцію $f(x,y) = x^2 + y^4$.

$$\begin{cases} \frac{\partial f}{\partial x} = 2x = 0\\ \frac{\partial f}{\partial y} = 4y^3 = 0\\ \frac{\partial^2 f}{\partial y} = 4x^2 + 12y^2 dy^2 \end{cases} \Longrightarrow (0,0) - \epsilon$$
дина критична точка.

 $d^2f(0,0)=2\,dx^2\geq 0$ – дана квадратична форма невід'ємноозначена, тому що при (dx,dy)=(0,0.1)маємо $d^2 f(0,0) = 0$. Тож скористатися достатньою умовою ми не можемо.

Однак можна зауважити, що $f(0,0) \leq f(x,y)$, причому $\forall (x,y) \in \mathbb{R}^2$, зокрема в будь-якій точці окола (0,0). Таким чином, (0,0) - локальний мінімум.

Example 5.9.9 Дослідити на локальні екстремуми функцію $f(x,y) = x^2 - y^4$. Тут також (0,0) – єдина критична точка, тут також $d^2f(0,0) = 2\,dx^2 \ge 0$ - невід'ємноозначена квадратична форма.

Проте цього разу (0,0) не буде локальним екстремумом. Дійсно, для кожного околу $U_{\delta}(0,0)$ знайдуться точки $(x_1,y_1)=\left(\frac{\delta}{2},0\right)$ та $(x_2,y_2)=\left(0,\frac{\delta}{2}\right)$, причому ці дві точки в середині околу, для

$$f(x_1, y_1) = \frac{\delta^2}{4} > 0 = f(0, 0)$$
 $f(x_2, y_2) = -\frac{\delta^4}{16} < 0 = f(0, 0).$

Умовні локальні екстремуми

Definition 5.10.1 Задано функцію $f \colon A \to \mathbb{R}$ та $A \subset \mathbb{R}^{n+m}$ — відкрита множина. Задано також функції $g_1,\ldots,g_m\colon A\to\mathbb{R}.$ Розглянемо множину $\Gamma_{g_1,\ldots,g_m}=\{\vec{x}\in G:g_1(\vec{x})=\cdots=g_m(\vec{x})=0\}.$ Точка $\vec{x}^0 \in \Gamma_{q_1,...,q_m}$ називається **умовним локальним максимумом (мінімумом)**, якщо вона ϵ локальним максимумом (мінімумом) функцій $\tilde{f}: \Gamma_{q_1,\ldots,q_m} \to \mathbb{R}$, де $\tilde{f} \equiv f$.

Definition 5.10.2 Рівняння вигляду

$$g_1(\vec{x}) = 0,$$

$$\vdots$$

$$g_m(\vec{x}) = 0$$

називається рівняннями зв'язку.

Example 5.10.3 Зокрема маємо функцію $f(x,y) = x^2 - y^2$ та функцію g(x,y) = y = 0. Маємо тоді $\tilde{f}(x,y) = f(x,0) = x^2$, звідси x = 0 – точка локального мінімуму функції \tilde{f} . Отже, x = 0 – точка умовного локального мінімуму функції f.

Definition 5.10.4 Задані функції $g_1,\ldots,g_m\colon A\to\mathbb{R}$, де $A\subset\mathbb{R}^p$ - відкрита множина. Всі функції неперервно диференційовані на A.

Вони називаються **функціонально незалежними** в точці $\vec{x}^0 \in A$, якщо

$$\{g_1'(\vec{x}^0), \dots, g_m'(\vec{x}^0)\}$$
 – лінійно незалежна

Example 5.10.5 Зокрема $\{g_1,g_2\}$, де $g_1(x,y)=x,g_2(x,y)=y$ – функціонально незалежні. Дійсно, $g_1'(x,y) = (1,0)$ та $g_2'(x,y) = (0,1)$ в кожній точці. Ці похідна – лінійно незалежні.

Definition 5.10.6 Задані функції $f,g_1,\ldots,g_m\colon A\to\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ - відкрита множина. Функцією Лагранжа назвемо таку функцію:

$$F_{\vec{\lambda}}(\vec{x}) = f(\vec{x}) - \lambda_1 g_1(\vec{x}) - \dots - \lambda_m g_m(\vec{x}),$$

де
$$\vec{\lambda} = (\lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^m$$
.

Theorem 5.10.7 Необхідна умова умовного локального екстремуму

Задані функції $f,g_1,\ldots,g_m\colon A\to\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ - відкрита множина. Всі функції – неперервно диференційовані на A.

Відомо, що $\bar{x}^0 \in \Gamma_{g_1,\dots,g_m}$ — умовний локальний екстремум функції f, а також $\{g_1,\dots,g_m\}$ — функціонально незалежні в \bar{x}^0 .

Тоді існують $\lambda_1, \ldots, \lambda_m \in \mathbb{R} : \vec{x}^0$ - стаціонарна точка функції Лагранжа.

Ми будемо доводити при n=2, m=1. Для більших аргументів – аналогічно, але більш технічна справа.

Proof.

Нехай f(x,y,z) має локальний екстремум $(x_0,y_0,z_0)\in\Gamma_g$ з рівнянням g(x,y,z)=0.

У силу функціональної незалежності за умовою в точці, маємо $g'(x_0, y_0, z_0) \neq \vec{0}$, тобто всі частинні похідні ненулеві. Тоді за теоремою про неявну функцію, існує $\varphi:U(x_0,y_0)\to U(z_0)$, де $\varphi(x_0, y_0) = z_0$

 $\forall (x,y) \in U(x_0,y_0) : g(x,y,\varphi(x,y)) = \tilde{g}(x,y) = 0.$

Тоді маємо функцію $\tilde{f}(x,y)=f(x,y,\varphi(x,y))$ – функція 2-х змінних, де (x_0,y_0) – точка локального екстремуму. Звідси випливає, що $d\tilde{f}(x_0,y_0)=0$

$$d\tilde{f}(x_0, y_0) = df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

Також оскільки $\tilde{g}(x,y)\equiv 0$, то звідси маємо

$$d\tilde{g}(x_0, y_0) = dg(x_0, y_0) = \frac{\partial g}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial g}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial g}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

$$d\tilde{g}(x_0,y_0) = dg(x_0,y_0) = \frac{\partial g}{\partial x}(x_0,y_0,z_0) \, dx + \frac{\partial g}{\partial y}(x_0,y_0,z_0) \, dy + \frac{\partial g}{\partial z}(x_0,y_0,z_0) \, d\varphi(x_0,y_0) = 0.$$
 Останню рівність домножимо на λ , яка відніметься з першим рівнянням.
$$\left(\frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x}\right)(x_0,y_0,z_0) \, dx + \left(\frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y}\right)(x_0,y_0,z_0) \, dy + \left(\frac{\partial f}{\partial z} - \lambda \frac{\partial g}{\partial z}\right)(x_0,y_0,z_0) \, d\varphi(x_0,y_0) = 0.$$

Оскільки $\frac{\partial g}{\partial z}(x_0,y_0,z_0)\neq 0$ в силу функціональної незалежності, то ми оберемо такий λ , щоб

$$\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial z}(x_0,y_0,z_0) = 0.$$
 Отримаємо:

$$\left(\frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x} \right) (x_0, y_0, z_0) dx + \left(\frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y} \right) (x_0, y_0, z_0) dy = 0.$$
 I ця рівність виконується для всіх $\Delta x, \Delta y$. Отже,

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) - \lambda \frac{\partial g}{\partial x}(x_0, y_0, z_0) = 0$$

$$\frac{\partial f}{\partial y}(x_0, y_0, z_0) - \lambda \frac{\partial g}{\partial y}(x_0, y_0, z_0) = 0.$$

$$\frac{\partial \hat{f}}{\partial u}(x_0, y_0, z_0) - \lambda \frac{\partial \hat{g}}{\partial u}(x_0, y_0, z_0) = 0$$

Маючи ці рівності отримаємо:

$$dF_{\lambda}(x_0, y_0, z_0) = d(f - \lambda g)(x_0, y_0, z_0) =$$

$$\begin{split} dF_{\lambda}(x_0,y_0,z_0) &= d(f-\lambda g)(x_0,y_0,z_0) = \\ &= \frac{\partial (f-\lambda g)}{\partial x}(x_0,y_0,z_0)\,dx + \frac{\partial (f-\lambda g)}{\partial y}(x_0,y_0,z_0)\,dy + \frac{\partial (f-\lambda g)}{\partial z}(x_0,y_0,z_0)\,dz = 0. \end{split}$$
 Це виконано для всіх $\Delta x, \Delta y, \Delta z.$ Отже, (x_0,y_0,z_0) – стаціонарна точка $F_{\lambda}.$

Theorem 5.10.8 Достатня умова умовного локального екстремуму

Задані функції $f,g_1,\ldots,g_m\colon A\to\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ - відкрита множина. Всі функції - двічі неперервно диференційовані на A.

Відомо, що $\vec{x}^0 \in \Gamma_{g_1,...,g_m}$ – стаціонарна точка функції Лагранжа для деякого $\vec{\lambda}$. Нехай $\{g_1,\ldots,g_m\}$ – функціонально незалежні в точці \vec{x}^0 . Розглянемо множину $\Gamma_{g_1,...,g_m}^*(\vec{x}^0) = \{\vec{\Delta x} \in \mathbb{R}^{n+m} : dg_1(\vec{x}^0) = \vec{\lambda} =$

- $\cdots = dg_m(\vec{x}^0) = 0$ }.

 1) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ строго додатноозначена на $\Gamma^*_{g_1,...,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 умовний локальний мінімум;

 2) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ строго від'ємноозначена на $\Gamma^*_{g_1,...,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 умовний локальний макси-

3) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ – знаконеозначена на $\Gamma^*_{g_1,\dots,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 – не умовний локальний екстремум.

Mи будемо доводити при n=2, m=1. Для більших аргументів – аналогічно, але більш технічна cnpaea.

Proof.

Нехай рівняння зв'язку лише g(x,y,z)=0. Функція Лагранжа $F_{\lambda}(x,y,z)=f(x,y,z)-\lambda g(x,y,z)$. За умовою, (x_0, y_0, z_0) – стаціонарна точка F_{λ} для деякого λ .

g – функціонально незалежна в (x_0, y_0, z_0) , тож $g'(x_0, y_0, z_0) \neq \vec{0}$. Ми тут припустимо, що $\frac{\partial g}{\partial z}(x_0, y_0, z_0) \neq \vec{0}$

0. Тоді за теоремою про неявну функцію, існує $\varphi \colon U(x_0, y_0) \to U(z_0)$, для якого $\varphi(x_0,y_0)=z_0$

 $\forall (x,y) \in U(x_0,y_0) : g(x,y,\varphi(x,y)) = \tilde{g}(x,y) = 0.$

Причому сама функція φ також двічі неперервно-диференційована.

Розглянемо функцію $\hat{f}: U(x_0, y_0) \to \mathbb{R}$, що визначена як $\hat{f}(x, y) = f(x, y, \varphi(x, y))$.

Покажемо, що (x_0, y_0) – стаціонарна точка функції \tilde{f} .

$$d\tilde{f}(x_0, y_0) = df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0).$$

$$dF_{\lambda}(x_0, y_0, z_0) = d(f - \lambda g)(x_0, y_0, z_0) = \frac{\partial (f - \lambda g)}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial (f - \lambda g)}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial (f - \lambda g)}{\partial z}(x_0, y_0, z_0) dz = \frac{\partial (f - \lambda g)}{\partial z}(x_0, y_0, z_$$

$$=\left(\frac{\partial f}{\partial x}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial x}(x_0,y_0,z_0)\right)\,dx+\left(\frac{\partial f}{\partial y}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial y}(x_0,y_0,z_0)\right)\,dy+\left(\frac{\partial f}{\partial z}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial z}(x_0,y_0,z_0)\right)\,dz.$$
 Але в силу стаціонарної точки маємо $dF_\lambda(x_0,y_0,z_0)=0$. Зокрема для $dz=d\varphi(x_0,y_0)$ маємо рівність

Оскільки $g(x,y,\varphi(x,y))=0,$ то звідси $dg(x,y,\varphi(x,y))=0, \forall (x,y)\in U, \forall (\Delta x,\Delta y)\in \mathbb{R}^2.$

$$dg(x,y,\varphi(x,y)) = \frac{\partial g}{\partial x}(x,y,\varphi(x,y)) dx + \frac{\partial g}{\partial y}(x,y,\varphi(x,y)) dy + \frac{\partial g}{\partial z}(x,y,\varphi(x,y)) d\varphi(x,y).$$

Зокрема, підставляючи $(x,y)=(x_0,y_0)$, отримаємо:

$$\frac{\partial g}{\partial x}(x_0,y_0,z_0)\,dx+\frac{\partial g}{\partial y}(x_0,y_0,z_0)\,dy+\frac{\partial g}{\partial z}(x_0,y_0,z_0)\,d\varphi(x_0,y_0)=0.$$
 Домножимо це рівняння на λ та додамо його до рівняння $dF_\lambda(x_0,y_0,z_0)=0.$ Отримаємо:

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

Але це теж саме, що $d\tilde{f}(x_0,y_0)=0$, що доводить: (x_0,y_0) – стаціонарна точка \tilde{f} .

Тепер для визначення характеру точки (x_0, y_0) функції \tilde{f} ми обчислимо другий диференціал. Якщо все обережно зробити, отримаємо:

$$d^{2}\tilde{f}(x_{0}, y_{0}) = d^{2}f(x_{0}, y_{0}, z_{0})|_{\Delta z = d\varphi(x_{0}, y_{0})} + \frac{\partial f}{\partial z}(x_{0}, y_{0}, z_{0}) d^{2}\varphi(x_{0}, y_{0}).$$

Аналогічним чином для $\tilde{g}(x,y)$ маємо:

$$d^2 \tilde{g}(x_0,y_0) = d^2 g(x_0,y_0,z_0)|_{\Delta z = d \varphi(x_0,y_0)} + \frac{\partial g}{\partial z}(x_0,y_0,z_0) \, d^2 \varphi(x_0,y_0) = 0.$$
 Попереднє рівняння віднімемо на останнє, помножене на λ – отримаємо:

$$d^2\tilde{f}(x_0,y_0) = d^2(f - \lambda g)(x_0,y_0,z_0)|_{\Delta z = d\varphi(x_0,y_0)} + \left(\frac{\partial f}{\partial z} - \lambda \frac{\partial g}{\partial z}\right)(x_0,y_0,z_0)d^2\varphi(x_0,y_0).$$

$$d^{2}\tilde{f}(x_{0},y_{0}) = d^{2}F_{\lambda}(x_{0},y_{0},z_{0})|_{\Delta z = d\varphi(x_{0},y_{0})} + \frac{\partial F_{\lambda}}{\partial z}(x_{0},y_{0},z_{0})d^{2}\varphi(x_{0},y_{0}).$$

Але (x_0, y_0, z_0) - кртична функція F_{λ} , а тому

 $d^{2}\tilde{f}(x_{0}, y_{0}) = d^{2}F_{\lambda}(x_{0}, y_{0}, z_{0})|_{\Delta z = d\varphi(x_{0}, y_{0})}.$

Більш детально треба пояснити, що дає умова $\Delta z = d\varphi(x_0, y_0)$. Ми вже знаємо, що $g(x, y, \varphi(x, y)) =$ $0, \forall (x, y), \text{ a Tomy}$

 $dg(x,y,\varphi(x,y))(x_0,y_0)=0$, але звідси ж, враховуючи умову, отримаємо

 $dg(x, y, \varphi(x, y))(x_0, y_0) = dg(x_0, y_0, z_0) = 0.$

A це означає, що $(\Delta x, \Delta y, \Delta z) \in \Gamma_q^*(x_0, y_0, z_0)$.

Остаточно $d^2 \tilde{f}(x_0, y_0) = d^2 F_{\lambda}(x_0, y_0, z_0)|_{(\Delta x, \Delta y, \Delta z) \in \Gamma_q^*(x_0, y_0, z_0)}$.

А далі все цілком зрозуміло.

- $d^2F_{\lambda}(x_0,y_0,z_0)>0 \implies d^2 ilde{f}(x_0,y_0)>0 \implies (x_0,y_0)$ локальний мінімум $ilde{f}\implies (x_0,y_0,z_0)$ умовний локальний мінімум f;
- 2) аналогічно;
- 3) аналогічно.

Example 5.10.9 Дослідити функцію f(x, y, z) = xyz на умовний локальний екстремум за умовою (x, y, z) = 3.

У цьому випадку g(x,y,z) = x + y + z - 3 = 0. Запишемо функцію Лагранжа:

$$L_{\lambda}(x, y, z) = xyz - \lambda(x + y + z - 3).$$

Знайдемо всі критичні точки L_{λ} , що лежать на множині Γ_{a} :

$$\begin{cases} \frac{\partial L_{\lambda}}{\partial x} = yz - \lambda = 0\\ \frac{\partial L_{\lambda}}{\partial y} = xz - \lambda = 0\\ \frac{\partial L_{\lambda}}{\partial z} = xy - \lambda = 0\\ g(x, y, z) = x + y + z - 3 = 0 \end{cases}$$

Якщо розв'язати систему рівнянь, отримаємо наступні розв'язки (x,y,z):

 $M_0(1,1,1), M_1(3,0,0), M_2(0,3,0), M_3(0,0,3).$

А також відповідні λ будуть наступні:

$$\lambda_0 = 1, \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0.$$

$$\lambda_0 = 1, \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0.$$
 Дослідимо тепер d^2L_{λ} для кожної точки з відповідним λ .
$$d^2L_{\lambda} = \frac{\partial^2L_{\lambda}}{\partial x^2} dx^2 + \frac{\partial^2L_{\lambda}}{\partial y^2} dy^2 + \frac{\partial^2L_{\lambda}}{\partial z^2} dz^2 + 2\left(\frac{\partial^2L_{\lambda}}{\partial x\partial y} dx dy + \frac{\partial^2L_{\lambda}}{\partial y\partial z} dy dz + \frac{\partial^2L_{\lambda}}{\partial z\partial x} dz dx\right) = 0.$$

Із рівняння зв'язку маємо, що $d(x+y+z)=d(3)=0=dx+dy+dz\implies dz=-dx-dy$.

Підставимо це в d^2L_{λ} :

$$d^{2}L_{\lambda} = 2(-ydx^{2} + (z - x - y) dx dy - x dy^{2}).$$

I. $M_0(1,1,1)$ та $\lambda_0 = 1$.

$$d^2L_{\lambda_0}(M_0) = 2(-dx^2 - dx\,dy - dy^2) = -2\left(\left(dx + \frac{1}{2}\,dy\right)^2 + \frac{3}{4}\,dy^2\right) < 0$$
. Тобто маємо від'ємноозначену

квадратичну форму. Отже, $M_0(1,1,1)$ – умовний локальний максимум.

II.
$$M_1(3,0,0)$$
 та $\lambda_1 = 0$.

 $d^{2}L_{\lambda_{1}}(M_{1})=2(-3\,dx\,dy-3\,dy^{2})=-6(dx+dy)\,dy$. Тобто маємо знаконеозначену квадратичну форму. Отже, $M_1(3,0,0)$ – не умовний локальний екстремум.

III. $M_2(0,3,0)$ та $\lambda_2=0$ – аналогічно не умовний локальний екстремум.

IV. $M_3(0,0,3)$ та $\lambda_3=0$ – аналогічно не умовний локальний екстремум.