

数学实验

Experiments in Mathematics

实验6 非线性方程近似解

清华大学数学科学系

2000-10-27

非线性方程的特点

方程分类:

- 代数方程: a₀x"+a₁x"-1+...+a_n=0;
- · 超越方程: 包含超越函数(如sinx, lnx)的方程;
- · 非线性方程: n(≥2)次代数方程和超越方程。

方程根的特点:

- ·n次代数方程有且只有n个根(包括复根、重根);
- •5次以上的代数方程无求根公式;
- •超越方程有无根,有几个根通常难以判断。

2000-10-27

实验6的基本内容

- 1. 非线性方程 f(x)=0 的数值解法:
- 迭代方法的基本原理;
- 牛顿方法.
- 2. 推广到解非线性方程组
- 3. 实际问题中非线性方程的数值解

2000-10-27

迭代法的收敛性

设 $y = \varphi(x)$ 在 $a \le x \le b$ 连续,且 $a \le y \le b$,若存在 L < 1 使 $|\varphi'(x)| \le L$,则 $x = \varphi(x)$ 在 $a \le x \le b$ 有唯一解x ,且

1) 对于 $x_0 \in (a,b)$, 迭代公式 $x_{k+1} = \varphi(x_k)$ $(k = 0,1,2\cdots)$ 产生的序列 $\{x_k\}$ 收敛于 x^* ;

2)
$$|x_{k+1} - x^*| \le L|x_k - x^*|$$
, $|x_k - x^*| \le \frac{L^k}{1 - L}|x_1 - x_0|$

L不易确定 □ 放宽定理条件,缩小初值范围

局部收敛性: 只要 $\varphi(x)$ 在 x^* 的一个邻域连续且 $|\varphi'(x^*)| < 1$,则对于该邻域内的任意初值 x_0 ,序列 $\{x_k\}$ 就收敛于 x^* 。

2000-10-27

迭代法的收敛速度(收敛阶)

称序列 $\{x_i\}$ p 阶收敛。显然,p 越大收敛越快。

$$\varphi(x_k) = \varphi(x^*) + \varphi'(x^*)(x_k - x^*) + \dots + \frac{\varphi^{(P)}(x^*)}{P^!}(x_k - x)^P + \dots$$

 $\varphi'(x^*) \neq 0, \{x_k\}$ 1阶收敛

$$\varphi'(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0, \quad \varphi^{(p)}(x^*) \neq 0, \quad \{x_k\} p$$
 阶收敛

0-27

迭代法的收敛速度 (收敛阶) 例题 $f(x) = x^2 + x - 14 = 0$

 $x = \varphi_{x}(x) = 14/(x+1)$

$$\varphi'_{2}(x) = \frac{-14}{(x+1)^{2}}, \varphi'_{2}(x^{*}) \neq 0 \Rightarrow \{x_{k}\} \text{ 1}$$
 | \$\text{N}\$ \text{\$\psi_{k}\$}\$

$$x = \varphi_{3}(x) = x - (x^{2} + x - 14)/(2x + 1)$$

$$\varphi_3'(x) = \frac{2(x^2 + x - 14)}{(2x + 1)^2}, \varphi_3'(x^*) = 0,$$

$$\varphi_3''(x^*) \neq 0 \Rightarrow \{x_k\} 2$$
学介收敛

φ(x) 的构造 决定收敛速度

100-10-27

牛顿 f(x)在 x_k 作 Taylor 展开,去掉2 阶及2 阶以上项得 **切线法** $f(x) = f(x_k) + f'(x_k)(x - x_k)$

设 $f'(x_{k}) \neq 0$,用 x_{k+1} 代替右端的x,由 f(x) = 0 得 $x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}, \qquad 即 令 \qquad \varphi(x) = x - \frac{f(x)}{f'(x)}$

 $\varphi'(x^*) = \frac{f(x^*)f''(x^*)}{f'(x^*)^2}, \quad \varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}$

y = f(x) 若 x^* 为单根 $f(x^*) = 0, f'(x^*), f''(x^*) \neq 0$ $\varphi'(x^*) = 0, \varphi''(x^*) \neq 0$

牛顿切线法2阶收敛

用MATLAB解非线性方程

牛顿法

需自行编制程序,如对切线法编写名为 newton1.m 的 m 文件 多项式求根

当f(x)为多项式时可用

r=roots(c) 输入多项式的系数 c (按降幂排列),输出

r 为 f(x) = 0 的全部根;

c=poly(r) 输入 f(x)=0 的全部根 r, 输出 c 为多项

式的系数 (按降幂排列);

df=polyder(c) 输入多项式的系数 c (按降幂排列),输出

df为多项式的微分的系数。

2000-10-27

$$F(x) = 0, \ x = [x_1, \dots x_n]^T, \ F(x) = [f_1(x), \dots f_n(x)]^T$$

$$F'(x) = \left[\frac{\partial f_1}{\partial x_j}\right]_{n \times n} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

$$\begin{array}{c} \text{#} \overrightarrow{F} \overrightarrow{T} \overrightarrow{R} = f(x) = 0 \\ f(x^{k+1}) = f(x^k) + f'(x^k)(x^{k+1} - x^k) \\ x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} \end{bmatrix}$$

$$F(x^{k+1}) = F(x^k) + F'(x^k)(x^{k+1} - x^k)$$

$$x^{k+1} = x^k - [F'(x^k)]^{-1}F(x^k)$$

$$\Rightarrow x^{k+1} = x^k - [F'(x^k)]^{-1}F(x^k)$$

$$\Rightarrow x^{k+1} = x^k + \Delta x^k$$

$$\Rightarrow x^{k+1} = x^k + \Delta x^k$$

模型建立
$$x(t)$$
~健康人, $y(t)$ ~病人, $z(t)$ ~ 病愈免疫 $x(t) + y(t) + z(t) = 1$ $a \sim \mathbf{B}$ 接触率 $b \sim \mathbf{B}$ 治愈率 $N[x(t + \Delta t) - x(t)] = -ax(t)Ny(t)\Delta t$ $N[y(t + \Delta t) - y(t)] = [ax(t)Ny(t) - bNy(t)]\Delta t$ $\frac{dx}{dt} = -axy$ $\frac{dy}{dt} = axy - by$ $x(0) = x_0$ $y(0) = y_0$ 无法求出 $x(t), y(t)$ 解析解

2) 当提高卫生水平使日接触率降低为 <i>a</i> =0.6时,结果如何。						
进一步改进医疗条件使日治愈率提高到 $b=0.5$,结果又如何。						
3)如果在传染病蔓延前采取接种疫苗的办法,使初始时刻易感刻						
者 (*	健康人	的比例	列降低	为 $x_0 = 0.7$	70,结果	!会发生什么变化。
a	b	\mathbf{x}_0	\mathbf{y}_0	X _∞	$\mathbf{y}_{\mathbf{m}}$	
1	0.3	0.98	0.02	0.0399	0 3449	$a\downarrow,b\uparrow\Rightarrow x_{\infty}\uparrow,y_{m}\downarrow$
0.6	0.3	0.98	0.02	0.1965	0.1635	1 🛧 1
0.6	0.5	0.98	0.02	0.6245	0.0316	$x_0 \downarrow \Rightarrow x_\infty \uparrow, y_m \downarrow$
	0.2	0.70	0.02	0.0840	0.1658	
1	0.3					
1 0.6	0.3	0.70	0.02	0.3056	0.0518	

