résumé

Numération par position

Différentes bases (10, 2 et 16) mais un même système : numération par position.

systeme	base	chiffres
Décimal	10	0123456789
Binaire	2	01
Héxadécimal	16	$0123456789 {\rm ABCDEF}$

Convertir en décimal :

- **Décimal**: $2019 = 2 \times 1000 + 1 \times 10 + 9 = 2 \times 10^3 + 1 \times 10^1 + 9 \times 10^0$
- Binaire: $0b1101 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 8 + 4 + 1 = 13$
- Hexadécimal: $0xA5F = 0xA \times 16^2 + 0x5 \times 16^1 + 0xF \times 16^0 = 10 \times 256 + 5 \times 16 + 15 = 2655$

Les entiers ne changent pas, leur représentation varie : 103 = 0b1100111 = '0x67'

Remarques:

- Dans la mémoire d'une machine : binaire. À l'écran, ça varie, on peut avoir les trois.
- Taille (= nombre de chiffre) des résultats opérations. Même principe dans toutes les bases :
 - la taille d'une **somme** est \leq à 1 + la plus grande des deux tailles.
 - la taille d'un **produit** est \leq à la somme des deux tailles.

Convertir en binaire, convertir en hexadécimal

On utilise l'algorithme des divisions successives :

- 1. On divise par 2 jusqu'à ce que le quotient soit 0
- 2. On lit les bits en montant de droite à gauche : 167 = 0b10100111

Cet algorithme se programme en python:

```
def bina(entier):
    if entier == 0:
        return "0"
    bits = ""
    while entier != 0:
        reste = entier % 2
        entier = entier // 2
        bits = str(reste) + bits
    return bits
```

La conversion décimal -> hexadécimal se fait par des divisions par 16.

divisions successives

Figure 1: divisions successives

demi-additionneur

Figure 2: demi-additionneur

Information dans la machine.

On regroupe les bits par paquet de 8 bits : 8 bits = 1 octet.

Attention, en anglais : octet se dit byte!

Les notations : 1000 bits = 1 kilo bit = 1 kb ; 1000 octets = 1 kilo octet = 1 ko = 1 kB

Il faut 2 chiffres hexadécimaux pour représenter un octet : 0xaf = 175

Booléens et portes logiques.

George Boole (1815-1864) créateur de l'algèbre de Boole qu'on utilise pour représenter la logique interne de la machine.

Utilise deux états "Vrai : 1", "Faux : 0". Notés True et False en python.

Opérateurs booléens.

opérateur	description	exemple	python
non	contraire	non vrai = faux	not
et	et logique	vrai et faux = faux	and
ou	ou logique	vrai ou faux = vrai	or
xor	ou exclusif	vrai xor faux = vrai	pas implémenté en Python

On utilise des tables de vérité pour les représenter :

Ā	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Circuits: le demi additionneur

La porte logique du haut est un XOR et celle du bas un AND.

Il est appelé demi-additionneur car il réalise l'addition de 2 bits ($\bf A$ et $\bf B$), le résultats de cette somme est représentée par $\bf S$ et la retenue éventuelle par $\bf R$.

Opérations bits à bits

Une opération "bits à bits" est réalisée pour chaque bit des deux entrées. Le nombre final est la combinaison des résultats.

Exemple: un masque est un "et bit à bit".

nombre	1011.1100
masque	1101.0101
et bit à bit	1001.0100
-	

Représentation d'un texte en machine

Attendu : Identifier l'intérêt des différents systèmes d'encodage. Convertir un fichier texte dans différents formats d'encodage.

Commentaires : Aucune connaissance précise des normes d'encodage n'est exigible.

La machine ne "comprend" pas les textes. Elle attribue à chaque symbole un entier dans une table prédéfinie. C'est l'encodage de ce caractère. Il existe de nombreux encodages.

Pourquoi différents encodages de caractères ?

Parce qu'ils sont tous imparfaits. L'encodage a longtemps été local : chaque pays avait le sien...

ASCII

ASCII (*American Standard Code for Information Interchange*) est la première norme largement utilisée pour encoder des caractères. Comme son nom l'indique cette norme est américaine et elle n'inclut donc que les **lettres latines non accentuées**, les chiffres, des symboles de ponctuation et certains caractères spéciaux.

Voici les caractères de la table ASCII (les 33 premiers, et le dernier, ne sont pas imprimables):

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	ESP	!	"	#	\$	%	&	1	()	*	+	,	_		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	^	_
6	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7	p	q	r	s	t	u	v	W	x	У	Z	{	1	}	~	DEL

128 caractères composent la table ASCII, ce qui permet de les représenter sur 7 bits (en pratique plutôt 8 bits afin d'occuper un octet complet).

ISO-8859-1

Par la suite d'autres encodages ont vu le jour afin de pallier les limites de l'ASCII. L'ISO-8859-1 (aussi appelé *Latin-1*), pour l'Europe occidentale, a vu le jour en 1986. Celui-ci comble les manques pour la plupart des langues d'Europe occidentale. Pour le français il manque cependant le œ, le Œ et le Ÿ et, bien entendu, le symbole €. L'encodage en ISO-8859-1 utilise 8 bits, les 128 premières valeurs de l'ISO-8859-1 sont identiques à l'ASCII, ce qui assure une compatibilité avec cet encodage.

C'est l'encodage courant sous windows.

UTF-8

Cet encodage est le meilleur à ce jour. On l'utilise autant que possible

À nouveau le codage ISO-8859-1 (et les autres codages de la famille ISO-8859) présentent des limites. Dans les années 1990, le projet Unicode de codage unifié de tous les alphabets est né. Différents codages sont utilisés pour représenter des caractères Unicode (UTF-8, UTF-16, UTF-32...). Ici nous nous concentrons sur l'UTF-8

Le codage UTF-8 est un codage de longueur variable. Certains caractères sont codés sur un seul octet, ce sont les 128 caractères du codage ASCII. Les autres caractères peuvent être codés sur 2, 3 ou 4 octets. Ainsi l'UTF-8 permet en théorie de représenter $2^{21} = 2\,097\,152$ caractères différents, en réalité un peu moins.

Actuellement ~100.000 caractères encodés en UTF-8.

Les caractères en UTF-8 doivent avoir une forme particulière décrite dans la table ci-dessous :

Nbre octets codant	Format de la représentation binaire					
1	0xxxxxx					
2	110xxxxx 10xxxxxx					
3	1110xxxx 10xxxxxx 10xxxxxx					
4	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx					

L'encodage UTF-8 est lui aussi compatible avec l'ASCII. En revanche ISO-8859-1 et UTF-8 sont incompatibles entre eux pouvant conduire à des caractères illisibles.

Complément à deux : comment coder les entiers négatifs dans une machine ?

Ce qu'on a vu jusqu'ici ne permet que d'encoder des nombres positifs.

Deux approches possibles:

Approche insatisfaisante : binaire signé

On fixe la taille mémoire de chaque nombre (par exemple 4 bits). Le premier bit est le **bit de signe** : 1 pour les négatif, 0 pour les positifs.

- En binaire signé sur 4 bits : 0b1001 = -1, 0b1011 = -3, 0b0111 = 7 etc.
- L'addition présentée plus haut ne fonctionne plus : 0b1001 + 0b0001 = -1 + 1 = 0 mais bit à bit cela donne : 0b1010 = -2... Le binaire signé c'est nul.

Complément à deux

on fixe la taille mémoire de chaque nombre (par exemple 4 bits).

- Les nombres positifs sont encodés comme d'habitude.
- Les nombres négatifs sont encodés ainsi : (exemple : -3)
 - 1. Coder la valeur absolue du nombre en base 2 : 3 = 0b11
 - 2. compléter l'octet avec des 0 devant (jusqu'à la taille): 0b0011
 - 3. échanger tous les bits $(1 \leftrightarrow 0)$: 0b1100
 - 4. ajouter 1. -3 = 0b1101
- Le complément à deux permet de conserver le même algorithme pour l'addition :

```
-3 + 2 = 0b1101 + 0b0010 = 0b1111 = -1
```

• le complément à deux c'est bien... MAIS il faut prédéfinir une taille !!!

Pas d'entiers de taille arbitraire en complément à deux !

1111 0011 = ???

Devant une série de bits, on ne peut deviner ce qu'ils représentent.

Est-ce un entier positif ? négatif (binaire signé, complément à deux) ? autre chose ?

Le contexte (pour vous : l'énoncé) précise ce qu'il faut comprendre.

Table de valeurs du complément à 2 sur 8 bits

et Python là dedans?

Les opérations précédentes ont toutes supposées une taille fixe des entiers : codés sur un octet par exemple.

Dans Python les entiers ont une taille arbitraire, il ne peut afficher nativement le complément à deux.

```
>>> bin(12)
'0b1100'
>>> bin(-12)
'-0b1100'
```

Flottants

Afin de représenter des nombres à virgule en machine plusieurs approches sont envisageables : la virgule fixe ou la virgule flottante.

Pour l'un comme l'autre l'espace mémoire est le même : chaque nombre occupe le même nombre de bits. La précision possible est très différente.

Virgule fixe

On décide une fois pour toute de l'emplacement de la virgule. Pour le reste c'est comme en binaire.

Par exemple, sur 8 bits, avec une virgule après 4 bits : 1011,0011.

La précision est limitée par le nombre de bits après la virgule et la taille maximale aussi.

Peu commode.

Virgule flottante

On s'inspire de la notation scientifique : $3.45678 \times 10^3 = 3456.78$.

Et donc, pour un flottant :

$$1.1001101 \times 2^4 = 1\ 1001.101$$
 soit $16 + 8 + 1 + \frac{1}{2} + \frac{1}{8}$.

Les bits après la virgule sont les *inverses* des puissances de 2.

En machine, il faut encoder plusieurs informations:

- le signe,
- l'exposant,
- les bits après la virgule. Pour le premier, c'est toujours 1, on peut l'ignorer.

C'est ce qui est fait dans la norme IEE 754 de 1985.

IEE 754

Dans cette norme (IEEE 754, double précision), les nombres dyadiques sont codés sur 64 bits en réservant :

- 1 bit pour le signe S,
- 11 bits pour l'exposant E,
- 52 bits pour la mantisse M.

La valeur du nombre est alors :

$$(-1)^S \times M \times 2^{E-1033}$$

Ce qu'on peut résumer ainsi :

Norme	Encodage	Signe	Exposant	Mantisse	Valeur	Précision
Double précision	64 bits	1 bit	11 bits	52 bits	$(-1)^S \times M \times 2^{E-1033}$	53 bits

Erreurs de calculs

De la même manière qu'avec la notation scientifique, des erreurs apparaissent nécessairement lorsqu'on calcule avec des flottants.

La plus frappante est certainement

```
>>> 0.1 + 0.2
0.3000000000000004
```

Elle provient d'une erreur de conversion en binaire de 0.1, 0.2 et 0.3 qui ne sont pas dyadiques. C'est-à-dire qu'ils n'admettent pas de représentation finie en binaire.

Egalité impossible entre les floats.

```
>>> 0.1 + 0.2 == 0.3
False
```

Il est impossible de tester l'égalité de deux flottants.

Autres erreurs.

D'autres existent, comme par exemple des problèmes d'amplitude :

Avec la double précision, on ne peut représenter 10^{40000} qui dépasse largement le plus grand nombre qu'on puisse représenter : $2^{1024} - 2^{971} \approx 1,80 \times 10^{308}$.

On évite ces problèmes en proposant deux valeurs supplémentaires : NaN et les infinis.

NaN et infinis

- Les infinis se rencontrent lorsqu'un calcul dépasse le plus grand nombre représentable. Ils sont *plus grands* que toute valeur.
- les NaN, pour *not a number* se rencontrent lorsqu'on n'est pas capable de représenter un nombre par manque de précision. Par exemple, soustraire des infinis ou les diviser entre eux.