218LC 1380

Final Assessment Test (FAT) - June 2022

		Semester	Winter Semester 2021-22
Programme	B. Tech	Course Code	BCHY101L
Course Title	ENGINEERING CHEMISTRY	Slot	A2+TA2
Faculty Name	Prof. Fatch Veer Singh		CH2021222300154
		Max. Marks	100
Time	Answer ANY 10 questions.		

Section A (10 X 10 Marks) Answer any 10 questions

- In an isochoric process, the temperature of five moles of an ideal gas was increased from 300 K to 400 K after absorbing 200 Kcal of heat. Calculate the change in internal energy, molar heat capacity at constant volume and pressure and change in enthalpy.

 (Given: R = 2 calorie mot K-1)
- (a) Prove that the t_{1/2} for the first order reaction is independent on the initial concentration of the reactants.
 - (b) The rate constant of a reaction at 27 °C and 127 °C are 0.01 and 0.04 sec $^{-1}$, respectively. Calculate the activation energy the same reaction. (Given: R = 2 calorie mol $^{-1}$ K^{-1})
- 3. 1(a) Explain hybridization and geometry of [Ni(CO)₄) based on valence bond theory. [10]
 - (b) Calculate the CSFE of [Co(H2O)6]Cl1 and K1[Co(CN)6]
- How will you synthesize benzyl alcohol and benzoic acid starting from Grignard Reagent? Write
 your answer with proper chemical reactions. Suggest the possible mechanism for both reactions.
- 5. * (a) Benzylic carbanion is more stable than the allylic carbanion. Explain with proper reason. [10]
 - (b) Explain the planarity of the following chemical species:

6. Explain the criteria of aromaticity for following compounds:

- Construct a cell for given cell representation. Write the half-cell reactions and calculate the EMF [10] of the cell at 127 °C.
 - Sn | Sn⁻² (0.1 M) | Ag⁻¹ (0.01 M) | Ag
 - (Given: $E^{0}_{S0,S0}^{-2} = -0.14 \text{ eV}$; $E^{0}_{Ag}^{-}_{/Ag} = +0.80 \text{ eV}$; Faraday constant is 96500 C/mol, $R = 2.0 \text{ Cal mol}^{-1} \text{ K}^{-1}$)
- 8 *(a) A Ruthenium based dye molecule absorbs light in the visible region. Explain how it can be used to harvest solar energy to produce electricity.
 - (b) Differentiate between thermoplastic and thermosetting polymers.

[10]

9. c(a) Describe the key properties and application of nanomaterials.	
 (b) What are doped conducting polymers? Explain their types with suitable examples. 10, Explain the principle involved in IR and UV instrumentation techniques. 11. (a) Write a note on the importance of NMR in Chemistry. 	1
(b) Explain a suitable water purification method which could be used for the purification of sea water. Give your answer with suitable diagram.	
to be a language The water equivalent of the calorimates and	

(b) Describe anodic and cathodic metal coating process with proper electrochemical reactions.

the latent heat of steam are given as 2.5 Kg and 580 Cal/g, respectively. The rise in temperature observed for 1500 g water is given as 5 °C. If the fuel contains 10% of hydrogen, calculate its