Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 1º Mini-teste, MR-T1-VA

Este mini-teste dura 45 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

N^{o}	Nome	f T	MEFT5F

1. Determine o seguinte conjunto: $\{x \in \mathbb{R} : |2x+5| > 1\}$.

2. Determine o seguinte conjunto: $\{x \in \mathbb{R} : |2x^2 - 3x - 1| > 1\}$.

3. Prove por indução que $\sum_{k=1}^{n} (2k+1)3^k = n3^{n+1}$, para qualquer $n \in \mathbb{N}$.

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 1º Mini-teste, MR-T1-VB

Este mini-teste dura 45 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

N^{o}	Nome	T	MEFT5F	
---------	------	---	--------	--

1. Determine o seguinte conjunto: $\{x \in \mathbb{R} : |5-2x| < 1\}$.

2. Determine o seguinte conjunto: $\{x \in \mathbb{R} : |2x^2 + 3x - 1| \le 1\}$.

3. Prove por indução que $\sum_{k=1}^{n} (k+1)2^k = n2^{n+1}$, para qualquer $n \in \mathbb{N}$.

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 2º Mini-teste, MR-T2-VA

Este mini-teste dura 40 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

No	Nome		\mathbf{T}	Biom3F
----	------	--	--------------	--------

Não use a regra de Cauchy na resolução deste mini-teste.

1. Calcule os seguintes limites ou mostre que não existem. Os limites poderão ser finitos ou infinitos.

(a)
$$\lim_{x \to 0} \frac{\operatorname{sen}(2\tan x)}{\operatorname{sen} x}$$

(b)
$$\lim_{x \to +\infty} \ln \left(\frac{\sqrt{x+2}}{1+x} \right)$$
.

2. A função dada por $f(x) = \ln\left(\frac{1-\cos x}{x^2}\right)$ é prolongável por continuidade a x=0?

3. Seja f uma função contínua em [0,1], tal que $0 \le f(x) \le 1$ para todo o $x \in [0,1]$. Prove que existe $c \in [0,1]$ com f(c) = c.

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 2º Mini-teste, MR-T2-VB

Este mini-teste dura 40 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

N^{o}	Nome	${f T}$	Biom3F

Não use a regra de Cauchy na resolução deste mini-teste.

1. Calcule os seguintes limites ou mostre que não existem. Os limites poderão ser finitos ou infinitos.

(a)
$$\lim_{x \to 0} \frac{\ln(1+2x^2)}{3x^2}$$

(b)
$$\lim_{x \to +\infty} \operatorname{sen}\left(\pi \frac{1-x^2}{1+2x^2}\right)$$
.

2. A função dada por $f(x) = x^{x^2}$ é prolongável por continuidade a x = 0?

3. Seja f uma função contínua em $[0,+\infty[$ e suponha que existe b>0 tal que f(b)< f(x) para todo o x>b. Mostre que f tem mínimo em $[0,+\infty[$.

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 3° Mini-teste, MR-T2-VA

Este mini-teste dura 40 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

N^{o}	Nome	T	Biom6F
- 1	1,01110		Biomor

1. Determine todas as primitivas de $f(x) = \frac{1-x}{1+\sqrt{x}} + \frac{1}{x+2}$.

2. Seja p_2 o polinómio de Taylor de ordem 2 em a=0 de $f(x)=\sin(\sin x)$. Determine p_2 e diga se a diferença $g(x)=f(x)-p_2(x)$ muda de sinal quando x=0.

3. Mostre que a função F definida abaixo é prolongável por continuidade a x = 0. Sendo G esse prolongamento, calcule G'(0) se existir. Sugestão: Não tente calcular o integral apresentado, mas recorde a regra de Cauchy.

$$F(x) = \frac{1}{x} \int_0^x e^{\sin t} dt$$

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 3° Mini-teste, MR-T2-VB

Este mini-teste dura 40 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

No	Nome	T	Biom6F
----	------	---	--------

1. Determine todas as primitivas de $f(x) = \frac{1}{\sqrt{2-2x^2}} + \frac{2}{1+9x^2}$.

2. Seja p_2 o polinómio de Taylor de ordem 2 em a=0 de $f(x)=\cos(1-x^2)$. Determine p_2 e diga se a diferença $g(x)=f(x)-p_2(x)$ muda de sinal quando x=0.

3. Mostre que a função F definida abaixo é prolongável por continuidade a x = 0. Sendo G esse prolongamento, calcule G'(0) se existir. Sugestão: Não tente calcular o integral apresentado, mas recorde a regra de Cauchy.

$$F(x) = \frac{1}{x^2} \int_0^x \arctan(t^2) dt$$

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 4° Mini-teste, MR-T3-VA

Este mini-teste dura 45 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

No	Nome	S	4F20

1. Calcule primitivas de
$$f(x) = \frac{x+4}{x^3+4x}$$
 e $g(x) = \frac{1}{\sqrt{1-x}} \frac{1}{\sqrt{x}}$.

2. Determine a natureza das seguintes séries. No caso das séries convergentes, diga se a convergência é absoluta ou simples.

(a)
$$\sum \frac{n^2 + 1}{n^4 + n^2 + 1}$$

(b)
$$\sum \frac{n!2^n}{n^n}$$

(c)
$$\sum \frac{(-1)^n}{n(\ln n)^2}$$

Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT - 2017-18 - 4° Mini-teste, MR-T3-VB

Este mini-teste dura 45 minutos. Só deve ter na sua mesa de trabalho o enunciado e a sua caneta. Vire este enunciado para ver a última pergunta.

No	Nome	S	4F20

1. Calcule primitivas de
$$f(x) = \frac{x-2}{(x^2-2x+2)(x-1)}$$
 e $g(x) = \frac{1}{x \ln x}$.

- 2. Determine a natureza das seguintes séries. No caso das séries convergentes, diga se a convergência é absoluta ou simples.
 - (a) $\sum \frac{2^n}{3^n n}$
- (b) $\sum \frac{n!3^n}{n^n}$
- (c) $\sum \frac{(-1)^n}{ne^n}$