Lec 10

Quotient is subtle

Recall things on tutorial: 4th Isomorphism Theorem:

between lattices

- recall this \$G\$ has to be finite
- $G: B = [\sqrt{G}: \sqrt{B}]$
- \$\bar{A \cap C} = \bar{A} \cap \bar{C}\$
- \$\bar{A} \triangleleft \bar{B}\$ iff \$A \trianglelefteq B\$
- \$<\bar{A},\bar{B}> = \bar{<A, B>}\$
- this is an isomorphism between lattices of subgroups
- the lattice of subgroup of \$G/N\$ and of \$G\$ containing \$N\$ are "the same"

Propositions:

- Suppose \$G\$ is abelian and \$p | ord(G)\$, some prime \$p\$
 - then \$G\$ contains an element of order \$p\$
 - 0
- · this theorem is not true in general
- to some extent this is the converse of lagrange theorem
- proof. (complete) induction
 - Given a group G, assume the result holds for all groups \$H\$ with size less than \$|G|\$

- we will use that to prove the result for \$G\$
 - Suppose $x \in G$, if $p \mid ord(x)$ then |x| = pk i.e.
 - $x^{pk} = e$, so x^k is the generator for a prime order group
 - Suppose \$p \not | G\$, let \$N = \trianglelefteq G\$, (since \$G\$ is abeilean)
 - and it is a proper subset since \$p | ord(G)\$
 - consider \$G/N\$, thus \$p | ord(G/N)\$ and p divides it and then we can apply induction hypothesis
 - thus there exists $y \in G/N$ s.t. $y^p = e$
 - we translate back y into G, that $(y'N) ^ p = N$ by abelian, $y'^p \in N$ but $y'^k \in N$ for $1 \le p$
 - if $y'^p = e$, we are done.
 - otherwise \$|y'| > p\$. Write \$|y'| = pm\$

