ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỀN SINH ĐẠI HỌC NĂM 2010 Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 04 trang)

ĐÁP ÁN - THANG ĐIỂM

Câu	Đáp án	Điểm
I (2,0 điểm)	1. (1,0 điểm)	
(2,0 <i>aiem</i>)	Khi $m=1$, ta có hàm số $y=x^3-2x^2+1$. • Tập xác định: \mathbb{R} . • Sự biến thiên: - Chiều biến thiên: $y'=3x^2-4x$; $y'(x)=0 \Leftrightarrow x=0$ hoặc $x=\frac{4}{3}$.	0,25
	Hàm số đồng biến trên các khoảng $(-\infty; 0)$ và $\left(\frac{4}{3}; +\infty\right)$; nghịch biến trên khoảng $\left(0; \frac{4}{3}\right)$. - Cực trị: Hàm số đạt cực đại tại $x = 0$; $y_{\text{CD}} = 1$, đạt cực tiểu tại $x = \frac{4}{3}$; $y_{\text{CT}} = -\frac{5}{27}$. - Giới hạn: $\lim_{x \to -\infty} y = -\infty$; $\lim_{x \to +\infty} y = +\infty$.	0,25
	- Bảng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đồ thị: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	2. (1,0 điểm) Phương trình hoành độ giao điểm: $x^3 - 2x^2 + (1 - m)x + m = 0$ $\Leftrightarrow (x - 1)(x^2 - x - m) = 0 \Leftrightarrow x = 1 \text{ hoặc } x^2 - x - m = 0 \text{ (*)}$	0,25
	Đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt, khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt, khác 1.	0,25
	Ký hiệu $g(x) = x^2 - x - m$; $x_1 = 1$; x_2 và x_3 là các nghiệm của (*). Yêu cầu bài toán thỏa mãn khi và chỉ khi: $\begin{cases} \Delta > 0 \\ g(1) \neq 0 \\ x_2^2 + x_3^2 < 3 \end{cases}$	0,25
	$\Leftrightarrow \begin{cases} 1 + 4m > 0 \\ -m \neq 0 & \Leftrightarrow -\frac{1}{4} < m < 1 \text{ và } m \neq 0. \\ 1 + 2m < 3 \end{cases}$	0,25

Câu	Đáp án	Điểm
П	1. (1,0 điểm)	- 1
(2,0 điểm)	Điều kiện: $\cos x \neq 0$ và $1 + \tan x \neq 0$.	
	Khi đó, phương trình đã cho tương đương: $\sqrt{2} \sin\left(x + \frac{\pi}{4}\right) (1 + \sin x + \cos 2x) = (1 + \tan x)\cos x$	0,25
	$\Leftrightarrow (\sin x + \cos x)(1 + \sin x + \cos 2x) = \frac{\sin x + \cos x}{\cos x} \cos x \iff \sin x + \cos 2x = 0$	0,25
	$\Leftrightarrow 2\sin^2 x - \sin x - 1 = 0 \Leftrightarrow \sin x = 1 \text{ (loại) hoặc } \sin x = -\frac{1}{2}$	0,25
	$\Leftrightarrow x = -\frac{\pi}{6} + k2\pi \text{ hoặc } x = \frac{7\pi}{6} + k2\pi (k \in \mathbb{Z}).$	0,25
	2. (1,0 điểm)	
	Điều kiện: $x \ge 0$. Ta có: $\sqrt{2(x^2 - x + 1)} = \sqrt{x^2 + (x - 1)^2 + 1} > 1$, suy ra $1 - \sqrt{2(x^2 - x + 1)} < 0$.	0,25
	Do đó, bất phương trình đã cho tương đương với: $\sqrt{2(x^2-x+1)} \le 1-x + \sqrt{x}$ (1)	
	Mặt khác $\sqrt{2(x^2 - x + 1)} = \sqrt{2(1 - x)^2 + 2(\sqrt{x})^2} \ge 1 - x + \sqrt{x}$ (2), do đó:	0,25
	(1) $\Leftrightarrow \sqrt{2(x^2 - x + 1)} = 1 - x + \sqrt{x}$ (3) Để ý rằng: + Dấu bằng ở (2) xảy ra chỉ khi: $1 - x = \sqrt{x}$ đồng thời $1 - x + \sqrt{x} \ge 0$. + $1 - x = \sqrt{x}$ kéo theo $1 - x + \sqrt{x} \ge 0$, do đó: (3) $\Leftrightarrow 1 - x = \sqrt{x}$	0,25
	$\Leftrightarrow \begin{cases} 1 - x = \sqrt{x} \\ \Leftrightarrow \begin{cases} 1 - x \ge 0 \\ (1 - x)^2 = x \end{cases} \Leftrightarrow \begin{cases} x \le 1 \\ x^2 - 3x + 1 = 0 \end{cases}$ $\Leftrightarrow x = \frac{3 - \sqrt{5}}{2}, \text{ thỏa mãn điều kiện } x \ge 0.$	0,25
III (1,0 điểm)	$I = \int_{0}^{1} \left(x^{2} + \frac{e^{x}}{1 + 2e^{x}} \right) dx = \int_{0}^{1} x^{2} dx + \int_{0}^{1} \frac{e^{x}}{1 + 2e^{x}} dx.$	0,25
	Ta có: $\int_{0}^{1} x^{2} dx = \frac{1}{3}x^{3} \Big _{0}^{1} = \frac{1}{3}$	0,25
	$va \int_{0}^{1} \frac{e^{x}}{1 + 2e^{x}} dx = \frac{1}{2} \int_{0}^{1} \frac{d(1 + 2e^{x})}{1 + 2e^{x}}, \text{ suy ra:}$	0,25
	$I = \frac{1}{3} + \frac{1}{2}\ln(1+2e^x)\Big _0^1 = \frac{1}{3} + \frac{1}{2}\ln\frac{1+2e}{3} = \frac{1}{3} + \frac{1}{2}\ln\frac{1+2e}{3}.$	0,25
IV (1,0 điểm)	• Thể tích khối chóp S.CDNM. $S_{CDNM} = S_{ABCD} - S_{AMN} - S_{BCM}$ $= AB^2 - \frac{1}{2}AM.AN - \frac{1}{2}BC.BM$ $= a^2 - \frac{a^2}{8} - \frac{a^2}{4} = \frac{5a^2}{8}.$	0,25
	$V_{S,CDNM} = \frac{1}{3} S_{CDNM}.SH = \frac{5\sqrt{3} a^3}{24}.$	0,25
	 • Khoảng cách giữa hai đường thẳng DM và SC. ΔADM = ΔDCN ⇒ ÂDM = DCN ⇒ DM ⊥ CN, kết hợp với DM ⊥ SH, suy ra DM ⊥ (SHC). Hạ HK ⊥ SC (K ∈ SC), suy ra HK là đoạn vuông góc chung của DM và SC, do đó: d(DM, SC) = HK. 	0,25

Câu	Đáp án	Điểm
	Ta có: $HC = \frac{CD^2}{CN} = \frac{2a}{\sqrt{5}}$ và $HK = \frac{SH.HC}{\sqrt{SH^2 + HC^2}} = \frac{2\sqrt{3}a}{\sqrt{19}}$, do đó: $d(DM, SC) = \frac{2\sqrt{3}a}{\sqrt{19}}$.	0,25
V (1,0 điểm)	Điều kiện: $x \le \frac{3}{4}$; $y \le \frac{5}{2}$. Phương trình thứ nhất của hệ tương đương với: $(4x^2 + 1).2x = (5 - 2y + 1)\sqrt{5 - 2y}$ (1)	0,25
	Nhận xét: (1) có dạng $f(2x) = f(\sqrt{5-2y})$, với $f(t) = (t^2 + 1)t$. Ta có $f'(t) = 3t^2 + 1 > 0$, suy ra f đồng biến trên \mathbb{R} . Do đó: (1) $\Leftrightarrow 2x = \sqrt{5-2y} \Leftrightarrow \begin{cases} x \ge 0 \\ y = \frac{5-4x^2}{2} \end{cases}$.	0,25
	Thế vào phương trình thứ hai của hệ, ta được: $4x^2 + \left(\frac{5}{2} - 2x^2\right)^2 + 2\sqrt{3 - 4x} - 7 = 0$ (3). Nhận thấy $x = 0$ và $x = \frac{3}{4}$ không phải là nghiệm của (3). Xét hàm $g(x) = 4x^2 + \left(\frac{5}{2} - 2x^2\right)^2 + 2\sqrt{3 - 4x} - 7$, trên khoảng $\left(0; \frac{3}{4}\right)$.	0,25
	$g'(x) = 8x - 8x \left(\frac{5}{2} - 2x^2\right) - \frac{4}{\sqrt{3 - 4x}} = 4x \left(4x^2 - 3\right) - \frac{4}{\sqrt{3 - 4x}} < 0, \text{ suy ra hàm } g(x) \text{ nghịch biến.}$ $\text{Mặt khác } g\left(\frac{1}{2}\right) = 0, \text{ do đó (3) có nghiệm duy nhất } x = \frac{1}{2}; \text{ suy ra } y = 2.$ $\text{Vậy, hệ đã cho có nghiệm: } (x; y) = \left(\frac{1}{2}; 2\right).$	0,25
VI.a	1. (1,0 điểm)	
(2,0 điểm)	$d_1 \text{ và } d_2 \text{ cắt nhau tại } O, \cos(d_1, d_2) = \frac{ \sqrt{3}.\sqrt{3} - 1.1 }{\sqrt{3 + 1}.\sqrt{3 + 1}} = \frac{1}{2} \text{ và tam giác}$ $d_1 \bigvee d_2$ $OAB \text{ vuông tại } B, \text{ do đó } \widehat{AOB} = 60^\circ \Rightarrow \widehat{BAC} = 60^\circ.$	0,25
	Ta có: $S_{ABC} = \frac{1}{2}AB.AC.\sin 60^{\circ} = \frac{\sqrt{3}}{4}(OA.\sin 60^{\circ}).(OA.\tan 60^{\circ})$ $= \frac{3\sqrt{3}}{8}OA^{2}.$ Do đó: $S_{ABC} = \frac{\sqrt{3}}{2}$, suy ra $OA^{2} = \frac{4}{3}$.	0,25
	Tọa độ $A(x; y)$ với $x > 0$, thỏa mãn hệ: $\begin{cases} \sqrt{3} x + y = 0 \\ x^2 + y^2 = \frac{4}{3} \end{cases} \Rightarrow A\left(\frac{1}{\sqrt{3}}; -1\right).$ Đường thẳng AC đi qua A và vuông góc với d_2 , suy ra AC có phương trình: $\sqrt{3} x - 3y - 4 = 0$. Tọa độ $C(x; y)$ thỏa mãn hệ: $\begin{cases} \sqrt{3} x - y = 0 \\ \sqrt{3} x - 3y - 4 = 0 \end{cases} \Rightarrow C\left(\frac{-2}{\sqrt{3}}; -2\right).$	0,25
	Đường tròn (<i>T</i>) có đường kính <i>AC</i> , suy ra tâm của (<i>T</i>) là $I\left(\frac{-1}{2\sqrt{3}}; -\frac{3}{2}\right)$ và bán kính $IA = 1$. Phương trình (<i>T</i>): $\left(x + \frac{1}{2\sqrt{3}}\right)^2 + \left(y + \frac{3}{2}\right)^2 = 1$.	0,25

Câu	Đáp án	Điểm
	2. (1,0 điểm)	
	Dường thẳng Δ có vectơ chỉ phương $\vec{v} = (2; 1; -1)$ và mặt phẳng (P) có vectơ pháp tuyến $\vec{n} = (1; -2; 1)$.	0,25
	Gọi H là hình chiếu của M trên (P) , ta có $\cos \widehat{HMC} = \left \cos(\vec{v}, \vec{n})\right $.	0,25
	$d(M, (P)) = MH = MC.\cos\widehat{HMC} = MC. \left \cos(\vec{v}, \vec{n})\right $	0,25
	$= \sqrt{6} \cdot \frac{ 2-2-1 }{\sqrt{6} \cdot \sqrt{6}} = \frac{1}{\sqrt{6}}.$	0,25
VII.a	Ta có: $\bar{z} = (1 + 2\sqrt{2} i) (1 - \sqrt{2} i)$	0,25
(1,0 điểm)	$= 5 + \sqrt{2} i, \text{ suy ra:}$	0,25
	$z = 5 - \sqrt{2} i.$	0,25
	Phần ảo của số phức z bằng: $-\sqrt{2}$.	0,25
VI.b (2,0 điểm)	1. (1,0 điểm)	
	Gọi H là trung điểm của BC , D là trung điểm AH , ta có $AH \perp BC$. Do đó tọa độ $D(x;y)$ thỏa mãn hệ: $\begin{cases} x+y-4=0\\ x-y=0 \end{cases} \Rightarrow D(2;2) \Rightarrow H(-2;-2).$	0,25
	Đường thẳng BC đi qua H và song song d , suy ra BC có phương trình: $x + y + 4 = 0$.	0,25
	Điểm B , C thuộc đường thẳng BC : $x + y + 4 = 0$ và B , C đối xứng nhau qua $H(-2; -2)$, do đó tọa độ B , C có dạng: $B(t; -4-t)$, $C(-4-t; t)$. Điểm $E(1; -3)$ nằm trên đường cao đi qua đỉnh C của tam giác ABC , suy ra: $\overrightarrow{AB} \cdot \overrightarrow{CE} = 0$ $\Leftrightarrow (t-6)(5+t) + (-10-t)(-3-t) = 0$	0,25
	$\Leftrightarrow 2t^2 + 12t = 0 \Leftrightarrow t = 0 \text{ hoặc } t = -6.$ Ta được: $B(0; -4)$, $C(-4; 0)$ hoặc $B(-6; 2)$, $C(2; -6)$.	0,25
	2. (1,0 điểm)	
	Đường thẳng Δ đi qua điểm $M(-2; 2; -3)$, nhận $\vec{v} = (2; 3; 2)$ làm vecto chỉ phương. Ta có: $\overrightarrow{MA} = (2; -2; 1)$, $\left[\vec{v}, \overrightarrow{MA} \right] = (7; 2; -10)$.	0,25
	Suy ra: $d(A, \Delta) = \frac{\left[\vec{v}, \overline{MA}\right]}{\left \vec{v}\right } = \frac{\sqrt{49 + 4 + 100}}{\sqrt{4 + 9 + 4}} = 3.$	0,25
	Gọi (S) là mặt cầu tâm A , cắt Δ tại B và C sao cho $BC = 8$. Suy ra bán kính của (S) là: $R = 5$.	0,25
	Phương trình (S): $x^2 + y^2 + (z+2)^2 = 25$.	0,25
VII.b	Ta có: $(1-\sqrt{3}i)^3 = -8$.	0,25
(1,0 điểm)	Do đó $\overline{z} = \frac{-8}{1-i} = -4 - 4i$, suy ra $z = -4 + 4i$.	0,25
	$\Rightarrow z + iz = -4 - 4i + (-4 + 4i)i = -8 - 8i.$	0,25
	$V_{ay}: \left \overline{z} + iz \right = 8\sqrt{2} .$	0,25

----- Hết -----