NOME:
Ι

Un esercizio si considera risolto se le risposte sono corrette e sono giustificate in maniera chiara e completa.

Esercizio n. 1 – In uno spazio metrico (X,d), siano $E\subset X$ un arbitrario sottoinsieme e

$$f(x) = \inf\{d(x,y), y \in E\}.$$

- (i) dimostrare che f è una funzione Lipschitziana, e determinarne la costante di Lipschitz;
- (ii) dimostrare che $\{x\in X\,:\,\,f(x)>0\}=\,\,{\rm int}\,(X\setminus E)$.

Esercizio n. 2 – Dato lo spazio C([0,1]) delle funzioni continue in [0,1], con la usuale norma del sup, definiamo

$$(Lf)(x) = \int_0^1 e^{-(x+2)t} f(t) dt, \quad \forall f \in C([0,1]).$$

- Si provi che $Lf \in C([0,1]) \ \forall f \in C([0,1]);$
- si provi che $\exists ! u \in C([0,1])$ tale che Lu = u.

Esercizio n. 3 – Studiare la convergenza puntuale, uniforme e totale della serie

$$\sum_{k=1}^{\infty} \frac{(x^2 + 2x)^k}{k \ln(k+1)} \, .$$

Esercizio n. 4 – Dato il problema di Cauchy

$$\begin{cases} y' = y(y-3) \\ y(0) = \alpha \end{cases}$$

- (i) si determini il parametro reale α in modo che la soluzione massimale sia definita in tutto \mathbb{R} e risulti infinitesima per $t \to +\infty$;
- (ii) determinare la soluzione massimale per $\alpha = \frac{3}{2}$.

Analisi Matematica I – Prova scritta del $20/06/2019$	
COGNOME:	NOME:
CANALE: Canale I (Siconolfi) Canale II (Leoni)	

Esercizio n. 1 – In uno spazio metrico (X,d), siano $E \subset X$ un arbitrario sottoinsieme e

$$f(x) = \inf\{d(x,y), y \in E\}.$$

- (i) dimostrare che f è una funzione Lipschitziana, e determinarne la costante di Lipschitz;
- (ii) dimostrare che $\{x \in X : f(x) > 0\} = \operatorname{int}(X \setminus E)$.

Esercizio n. 2 – Dato lo spazio C([0,1]) delle funzioni continue in [0,1], con la usuale norma del sup, definiamo

$$(Lf)(x) = \int_0^1 e^{-(x+3)t} f(t) dt, \quad \forall f \in C([0,1]).$$

- Si provi che $Lf \in C([0,1]) \ \forall f \in C([0,1]);$
- si provi che $\exists ! u \in C([0,1])$ tale che Lu = u.

Esercizio n. 3 – Studiare la convergenza puntuale, uniforme e totale della serie

$$\sum_{k=1}^{\infty} \frac{(4x^2 + 4x)^k}{k(\ln k + 1)} \, .$$

Esercizio n. 4 – Dato il problema di Cauchy

$$\begin{cases} y' = y(y-2) \\ y(0) = \alpha \end{cases}$$

- (i) si determini il parametro reale α in modo che la soluzione massimale sia definita in tutto \mathbb{R} e risulti infinitesima per $t \to +\infty$;
- (ii) determinare la soluzione massimale per $\alpha = 1$.