Análisis y diseño de algoritmos

4. Programación Dinámica

José Luis Verdú Mas, Jose Oncina, Mikel L. Forcada

Dep. Lenguajes y Sistemas Informáticos Universidad de Alicante

Índice

- 1 Ejemplo introductorio: Cálculo del coeficiente binomial
- Otro ejemplo Introductorio: Corte de tubos
- 3 La programación dinámica
- 4 El problema de la mochila

Índice

- 1 Ejemplo introductorio: Cálculo del coeficiente binomial
- Otro ejemplo Introductorio: Corte de tubos
- 3 La programación dinámica
- 4 El problema de la mochila

Obtener el valor del coeficiente binomial

• Identidad de Pascal:

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}; \quad \binom{n}{0} = \binom{n}{n} = 1$$

```
Coeficiente binomial
                                        precondición: \{ n \ge r, n \in \mathbb{N}, r \in \mathbb{N} \}
1 unsigned binomial( unsigned n, unsigned r){
     if (r == 0 | | r == n)
         return 1:
     return binomial( n-1, r-1 ) + binomial( n-1, r );
```

Complejidad temporal (relación de recurrencia múltiple)

$$T(n,r) = \begin{cases} 1 & r = 0 \lor r = n \\ 1 + T(n-1,r-1) + T(n-1,r) & \text{en otro caso} \end{cases}$$

La solución recursiva es ineficiente

- Aproximando a una relación de recurrencia lineal:
- si suponemos que:

$$T(n-1,r) \geq T(n-1,r-1)$$

$$T(n,r) \sim g(n,r) = egin{cases} 1 & n=r \ 1+2g(n-1,r) & ext{en otro caso} \end{cases}$$

$$g(n,r) = 2^k - 1 + 2^k g(n-k,r) \quad \forall k = 1 \dots (n-r)$$

Por tanto:

$$T(n,r) \sim g(n,r) \in O(2^{n-r})$$

La solución recursiva es ineficiente

Si suponemos

$$T(n-1,r) \leq T(n-1,r-1)$$

$$T(n,r) \sim g(n,r) = egin{cases} 1 & r=0 \ 1+2g(n-1,r-1) & ext{en otro caso} \end{cases}$$
 $g(n,r) = 2^k - 1 + 2^k g(n-k,r-k) \quad orall k = 1 \dots r$

Por tanto:

$$T(n,r) \sim g(n,r) \in O(2^r)$$

Combinando ambas posibilidades:

$$T(n,r) \sim g(n,r) \in O(2^{\min(r,n-r)})$$

¡Esta solución recursiva no es aceptable!

Algunos números

$(n,r) = \binom{n}{r}$	Pasos
(40, 0)	1
(40, 1)	79
(40, 2)	1559
(40, 3)	19759
(40, 4)	182779
(40, 5)	$1.3{ imes}10^{06}$
(40, 7)	3.7×10^{07}
(40, 9)	5.4×10^{08}
(40, 11)	4.6×10^{09}
(40, 15)	8.0×10^{10}
(40, 17)	$1.8{ imes}10^{11}$
(40, 20)	2.8×10^{11}

$(n,r)=\binom{n}{r}$	Pasos
(2, 1)	3
(4, 2)	11
(6, 3)	39
(8, 4)	139
(10, 5)	503
(12, 6)	1847
(14, 7)	6863
(16, 8)	25739
(18, 9)	97239
(20, 10)	369511
(22, 11)	1410863
(24, 12)	5408311

- Caso más costoso: n = 2r; crecimiento aprox. 2^n .
- los resultados son claramente prohibitivos

La innecesaria repetición de cálculos

- ¿Por qué es ineficiente?
 - Los problemas se reducen en subproblemas de tamaño similar (n-1).
 - Un problema se divide en dos subproblemas, y así sucesivamente.
 - ⇒ Esto lleva a complejidades prohibitivas (p.e. exponenciales)
- Pero, jel total de subproblemas diferentes no es tan grande!
 - sólo hay nr posibilidades distintas

¡La solución recursiva está generando y resolviendo el mismo problema muchas veces!

• ¡Cuidado! la ineficiencia no es debida a la recursividad

La innecesaria repetición de cálculos

• Solución recursiva: ejemplo para n = 6 y r = 4

- INCONVENIENTE: subproblemas repetidos.
 - Pero sólo hay nr subproblemas diferentes: \Rightarrow uso de almacenes

¿Cómo evitar la repetición de cálculos?

⇒ almacenar los valores ya calculados para no recalcularlos:

```
Una solución recursiva mejorada
                                                                   \{n \geq r, n \in \mathbb{N}, r \in \mathbb{N}\}
1 unsigned binomial (unsigned M[][100], unsigned n, unsigned r) {
      if( M[n][r] != 0 ) return M[n][r];
      if( r == 0 || r == n ) return 1:
      M[n][r] = binomial(M, n-1, r-1) + binomial(M, n-1, r);
      return M[n][r];
10
11 unsigned binomial (unsigned n, unsigned r) {
      unsigned M[100][100];
12
13
      for( unsigned i = 0; i <= n; i++ )</pre>
14
          for( unsigned j = 0; j <= r; j++ )</pre>
              M[i][j] = 0;
16
17
18
      return binomial( M, n, r);
19 }
```

Memoización (para varios problemas)

```
Memoización
                                                                  \{n \geq r, n \in \mathbb{N}, r \in \mathbb{N}\}
1 unsigned binomial( unsigned M[][100], unsigned n, unsigned r) {
    if( M[n][r] != 0 )
                             return M[n][r]:
    if( r == 0 || r == n ) return 1;
    M[n][r] = binomial(M, n-1, r-1) + binomial(M, n-1, r);
    return M[n][r]:
6 }
8 unsigned binomial( unsigned n, unsigned r) {
    static unsigned M[100][100];
    static bool initialized = false:
10
11
    if(!initialized) {
12
      for( unsigned i = 0; i <= n; i++ )</pre>
13
         for( unsigned j = 0; j <= r; j++ )</pre>
           M[i][j] = 0;
15
      initialized = true:
16
    }
17
18
19
    return binomial( M, n, r);
20 }
```

Memoización (para varios problemas relacionados)

```
Memoización
                                                                  \{n \geq r, n \in \mathbb{N}, r \in \mathbb{N}\}
1 class Binomial {
2 public:
    Binomial() {
      for( unsigned i = 0; i < 100; i++ )</pre>
         for( unsigned j = 0; j < 100; j++)
      M[i][i] = 0;
    unsigned operator()( unsigned n, unsigned r ) {
       if( M[n][r] != 0 )
                             return M[n][r];
      if( r == 0 || r == n ) return 1:
10
      M[n][r] = operator()(n-1, r-1) + operator()(n-1, r);
      return M[n][r];
12
13
14 private:
15
    unsigned M[100][100];
16 }:
18 Binomial binomial:
```

Algunos números

$(n,r)=\binom{n}{r}$	Ingenuo	Mem.	$(n,r)=\binom{n}{r}$	Ingenuo	Mem.
(40, 0)	1	1	(2, 1)	3	3
(40, 1)	79	79	(4, 2)	11	8
(40, 2)	1559	116	(6, 3)	20	15
(40, 3)	19759	151	(8, 4)	139	24
(40, 4)	182779	184	(10, 5)	503	35
(40, 5)	$1.3{ imes}10^{06}$	215	(12, 6)	1847	48
(40, 7)	3.7×10^{07}	271	(14, 7)	6863	64
(40, 9)	$5.4{ imes}10^{08}$	319	(16, 8)	25739	80
(40, 11)	4.6×10^{09}	359	(18, 9)	97239	99
(40, 15)	$8.0{ imes}10^{10}$	415	(20, 10)	369511	120
(40, 17)	$1.8{ imes}10^{11}$	432	(22, 11)	1410863	143
(40, 20)	2.8×10^{11}	440	(24, 12)	5408311	168

- En el caso n=2r, el crecimiento es del tipo $(n/2)^2+n\in\Theta(n^2)$.
- Los resultados mejoran muchísimo cuando se añade un almacén

¿Cómo evitar la recursividad?

- ¿Se puede evitar la recursividad? En este caso sí
 - Resolver los subproblemas de menor a mayor
 - Almacenar sus soluciones en una tabla M[n][r] donde

$$M[i][j] = \binom{i}{j}$$

- El almacén de resultados parciales permite evitar repeticiones.
- La tabla se inicializa con la solución a los subproblemas triviales:

$$M[i][0] = 1$$
 $\forall i = 1 \cdots (n-r)$
 $M[i][i] = 1$ $\forall i = 1 \cdots r$

Puesto que

$$egin{pmatrix} m \ 0 \end{pmatrix} = egin{pmatrix} m \ m \end{pmatrix} = 1, \quad orall m \in \mathbb{N}$$

Recorrido de los subproblemas

 Resolviendo los subproblemas en sentido ascendente y almacenando sus soluciones:

$$M[i][j] = M[i-1][j-1] + M[i-1][j]$$

$$\forall (i,j) : (1 \le j \le r, j+1 \le i \le n-r+j)$$

Una solución polinómica (mejorable)

• Ejemplo: Sea n = 6 y r = 4

Celdas sin utilizar ¡desperdicio de memoria! Instancias del caso base: perfil o contorno de la matriz Soluciones de los subproblemas. Obtenidos, en este caso, de arriba hacia abajo y de izquierda a derecha Solución del problema inicial. $M[6][4]={6 \choose 4}$

Solución trivial de programación dinámica

 $\{n \ge r, \ n \in \mathbb{N}, r \in \mathbb{N}\}$

Una solución polinómica (mejorable)

Solución trivial de programación dinámica $\{n \geq r, n \in \mathbb{N}, r \in \mathbb{N}\}$ 1 unsigned binomial(unsigned n, unsigned r){ unsigned M[n+1][r+1]; for (unsigned i=0; i <= n-r; i++) M[i][0]= 1;</pre> for (unsigned i=1; i <= r; i++) M[i][i]= 1;</pre> for (unsigned j=1; j<=r; j++)</pre> for (unsigned i=j+1; i<=n-r+j; i++)</pre> M[i][j] = M[i-1][j-1] + M[i-1][j];return M[n][r]; 11 }

Coste temporal exacto:

$$T(n,r) = 1 + \sum_{i=0}^{n-r} 1 + \sum_{i=1}^{r} 1 + \sum_{j=1}^{r} \sum_{i=j+1}^{n-r+j} 1 = rn + n - r^2 + 1 \in \Theta(rn)$$

• Idéntico al descendente con memoización (almacén)

10

Complejidad espacial

```
Solución trivial de programación dinámica
                                                                     \{n \geq r, n \in \mathbb{N}, r \in \mathbb{N}\}
1 unsigned binomial(unsigned n, unsigned r){
     unsigned M[n+1][r+1];
     for (unsigned i=0; i <= n-r; i++) M[i][0]= 1;</pre>
    for (unsigned i=1; i <= r; i++) M[i][i]= 1;</pre>
    for (unsigned j=1; j<=r; j++)</pre>
         for (unsigned i=j+1; i<=n-r+j; i++)</pre>
                     M[i][j] = M[i-1][j-1] + M[i-1][j];
    return M[n][r]:
11 }
```

• Coste espacial: $\Theta(rn)$ ¿Se puede mejorar?

10

Mejorando la complejidad espacial

- Ejercicios propuestos: Reducción de la complejidad espacial:
 - Modificar la función anterior de manera que el almacén no sea más que dos vectores de tamaño $1 + \min(r, n r)$
 - Modificar la función anterior de manera que el almacén sea un único vector de tamaño $1 + \min(r, n r)$
 - Con estas modificaciones, ¿queda afectada de alguna manera la complejidad temporal?

Índice

- 1 Ejemplo introductorio: Cálculo del coeficiente binomia
- 2 Otro ejemplo Introductorio: Corte de tubos
- 3 La programación dinámica
- 4 El problema de la mochila

- Una empresa compra tubos de longitud *n* y los corta en tubos más cortos, que luego vende
- El corte le sale gratis
- El precio de venta de un tubo de longitud i (i = 1, 2, ..., n) es p_i Por ejemplo:

- ¿Cual es la forma óptima de cortar un tubo de longitud *n* para maximizar el precio total?
- Probar todas las formas de cortar es prohibitivo (¡hay 2^{n-1} !)

Buscamos una descomposición

$$n = i_1 + i_2 + \ldots + i_k$$

por la que se obtenga el precio máximo

El precio es

$$r_n=p_{i_1}+p_{i_2}+\ldots+p_{i_k}$$

- Una forma de resolver el problema recursivamente es:
 - Cortar el tubo de longitud *n* de las *n* formas posibles,
 - y buscar el corte que maximiza la suma del precio del trozo cortado p_i y del resto r_{n-i} ,
 - suponiendo que el resto del tubo se ha cortado de forma óptima:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}); \qquad r_0 = 0$$

Corte de tubos: solución recursiva descendente 1 precio cortar_tubo(precio p[], longitud n) { 2 if (n==0) 4 return 0; 5 precio q = -1; 6 precio q = -1; 7 for (unsigned i = 1; i <= n; i++) 8 q = max(q, p[i] + cortar_tubo(p, n-i)); 9 return q; 11 }</pre>

Es ineficiente

• Complejidad de la solución recursiva:

$$T(n) = egin{cases} 1 & ext{si } n = 0 \ n + \sum_{j=0}^{n-1} T(j) & ext{en otro caso} \end{cases}$$

Observando que:

$$T(n) = 1 + 2T(n-1)$$

Tenemos:

$$T(n) = 2^n - 1 + 2^n \in O(2^n)$$

Corte de tubos: solución recursiva con almacén

```
1 precio cortar_tubo( precio r[], precio p[], longitud n ){
      if ( r[n] >= 0 ) return r[n];
      if ( n == 0 ) return 0;
      precio q = -1;
      for ( unsigned i = 1; i <= n; i++ )</pre>
           q = max( q, p[i] + cortar_tubo( r, p, n-i ) );
      r[n] = q;
      return q;
9 }
10
11 precio cortar_tubo( precio p[], longitud n ){
      precio r[n+1];
12
      for( unsigned i = 0; i <= n; i++ )</pre>
13
          r[i] = -1;
14
15
      return cortar_tubo( r, p, n );
16 }
```

- Complejidad espacial: O(n)
- Complejidad temporal: $O(n^2)$


```
Corte de tubos: Solución iterativa
1 precio cortar_tubo(precio p[], longitud n) {
    precio r[n+1];
    r[0] = 0;
    for ( indice j = 1; j <= n; j++ ) {
      precio q = -1;
      for ( indice i=1; i <= j; i++ )</pre>
         q = max(q, p[i] + r[j-i]);
      r[j] = q;
10
11
    return r[n];
12
13 }
```

- Complejidad espacial: O(n)
- Complejidad temporal: $O(n^2)$

Índice

- 1 Ejemplo introductorio: Cálculo del coeficiente binomia
- Otro ejemplo Introductorio: Corte de tubos
- 3 La programación dinámica
- 4 El problema de la mochila

¿Qué hemos aprendido de estos ejemplos?

Hay problemas . . .

- ... con soluciones recursivas elegantes, compactas e intuitivas
- pero prohibitivamente lentas debido a que resuelven repetidamente los mismos problemas.

Hemos aprendido a:

- Evitar repeticiones guardando resultados de subproblemas (memoización) . . .
- ...a expensas de aumentar la complejidad espacial.

Esto se llama Programación Dinámica.

Subestructura óptima

Definición:

Un problema tiene una subestructura óptima si una solución óptima puede construirse eficientemente a partir de las soluciones óptimas de sus subproblemas.

- Esto también se conoce como principio de optimalidad.
- Esta es una condición necesaria para que se puede aplicar Programación Dinámica.
- Ejemplos:
 - Cálculo del coeficiente binomial
 - Corte de tubos
 - Quicksort
 - Mergesort

Paso de DyV a PD

Esquema DyV

```
Solucion DyV( Problema p ) {
   if( es_pequeno(p) ) return trivial(p);

list<Solucion> s;
   for( Problema q : descomponer(p) ) s.push_back( DyV(q) );
   return combinar(s);
}
```

Esquema Programación dinámica (recursiva)

```
1 Solucion PD( Problema p ) {
2    if( ya_resuelto(p) ) return A[p];
3    if( es_pequeno(p) ) return trivial(p);
4
5    list<Solucion> s;
6    for( Problema q : descomponer(p) ) s.push_back( PD(q) );
7    A[p] = combinar(s);
8    return A[p];
9 }
```

Paso A PD iterativa

Esquema Programación dinámica (recursiva)

```
Solucion PD( Problema P) {
    vector<Solucion> A;
    Enumeracion e(P);
    while( !empty(e) ) {
      Problem p = pop_next(e);
      if( es_pequeno(p) )
        A[p] = trivial(p);
      else {
        list<Solucion> s:
10
        for( Problema q : descomponer(p) ) s.push_back( A[q] );
11
        A[p] = combinar(s);
12
13
    return A[P];
14
15 }
```

Le enumeración ha de cumplir:

- todo problema en descomponer(p) aparece antes que p
- el problema P es el último de la enumeración.

Ejemplos de aplicación

- Problemas clásicos para los que resulta eficaz la programación dinámica
 - El problema de la mochilla 0-1 (que veremos a continuación)
 - Cálculo de los números de Fibonacci.
 - Problemas con cadenas:
 - La subsecuencia común máxima (longest common subsequence) de dos cadenas.
 - La distancia de edición (edit distance) entre dos cadenas.
 - Problemas sobre grafos:
 - El viajante de comercio (travelling salesman problem)
 - Caminos más cortos en un grafo entre un vértice y todos los restantes (alg. de Dijkstra)
 - Existencia de camino entre cualquier par de vértices (alg. de Warshall)
 - Caminos más cortos en un grafo entre cualquier par de vértices (alg. de Floyd)

Índice

- Ejemplo introductorio: Cálculo del coeficiente binomia
- Otro ejemplo Introductorio: Corte de tubos
- 3 La programación dinámica
- El problema de la mochila

El problema de la mochila (Knapsack problem)

- Sean n objetos con valores $(v_i \in R)$ y pesos $(p_i \in R^{>0})$ conocidos.
- Sea una mochila con capacidad máxima de carga P.
- ¿Cuál es el valor máximo que puede transportar la mochila sin sobrepasar su capacidad?
- Un caso particular: La mochila 0/1 con pesos discretos
 - ullet Los objetos no se pueden fraccionar (mochila 0/1 o mochila discreta)
 - La variante más difícil
 - Los pesos son cantidades discretas o discretizables
 - Se utilizarán para indexar una tabla
 - Una versión menos general que suaviza su dificultad

Formalización

- Es un problema de optimización:
 - Secuencia de decisiones: $(x_1, x_2 \dots x_n)$: $x_i \in \{0, 1\}, 1 \le i \le n$
 - En x_i se almacena la decisión sobre el objeto i
 - Si x_i es escogido $x_i = 1$, en caso contrario $x_i = 0$
 - Una secuencia óptima de decisiones es la que maximiza $\sum_{i=1}^{n} x_i v_i$ sujeto a las restricciones:
 - $\bullet \ \sum_{i=1}^n x_i p_i \le P$
 - $\bullet \ \forall i: 1 \leq i \leq n, \ x_i \in \{0,1\}$
- Representamos mediante mochila(i,C) al problema de la mochila con los objetos 1 hasta j y capacidad C
 - El problema inicial es, por tanto, mochila(n,P)

Subestructura óptima (I)

- Sea $(x_1, x_2 ... x_n)$ una secuencia óptima de decisiones para el problema mochila(n, P)
 - Si $x_n = 0$ entonces $(x_1 \dots x_{n-1})$ es una secuencia óptima para el subproblema mochila(n-1, P)
 - Si $x_n = 1$ entonces $(x_1 \dots x_{n-1})$ es una secuencia óptima para el subproblema $mochila(n-1, P-p_1)$

Demostración:

Si existiera una solución mejor $(x'_1 \dots x'_{n-1})$ para cada uno de los subproblemas entonces la secuencia $(x_1, x'_2 \dots x'_n)$ sería mejor que $(x_1, x_2 \dots x_n)$ para el problema original lo que contradice la suposición inicial de que era la óptima.

⇒ La solución al problema presenta una subestructura óptima

Aproximación matemática

- Se toman decisiones en orden descendente: $x_n, x_{n-1}, \ldots x_1$
- Ante la decisión x_i hay dos alternativas:
 - Rechazar el objeto $i: x_i = 0$.
 - No hay ganancia adicional pero la capacidad de la mochila no se reduce
 - Seleccionar el objeto i: $x_i = 1$.
 - La ganancia adicional es v_i , a costa de reducir la capacidad en p_i
- Se selecciona la alternativa que mayor ganancia global resulte

Solución

$$\{ P \ge 0, n > 0 \}$$

$$exttt{Mochila}(n,P) = exttt{máx} egin{cases} exttt{Mochila}(n-1,P) \ exttt{Mochila}(n-1,P-p_n) + v_n \end{cases}$$

con:

- Mochila $(i, P) = -\infty$ si P < 0
- Mochila(0, P) = 0, P > 0

Una solución recursiva

• Escribiendolo en forma de programa:

```
Solución recursiva (ineficiente)
1 vector <float> v;
2 vector <unsigned> p;
4 float Mochila (int i, unsigned P){
    if( i < 0 ) return 0;</pre>
    float S1 = 0.0;
    if (p[i] <= P) //Aun hay sitio en la mochila para el objeto
         S1= v[i] + Mochila(i-1,P-p[i]);
    float S2= Mochila(i-1,P); //Se descarta el objeto
10
11
    return max(S1,S2); //lo mejor de entre tomarlo o no tomarlo
12
13 }
```

Versión recursiva: Complejidad temporal

- En el mejor de los casos: ningún objeto cabe en la mochila, se tiene $T_{\mathrm{mejor}}(n) \in \Omega(n)$
- En el peor de lo casos:

$$T(n) = egin{cases} 1 & ext{si } n = 0 \ 1 + 2T(n-1) & ext{en otro caso} \end{cases}$$

El témino general queda como:

$$T(n) = 2^i - 1 + 2^i T(n-i)$$

Que terminará cuando n - i = 0, o sea:

$$T(n) = 2^n - 1 + 2^n \in O(2^n)$$

Version recursiva: Subproblemas repetidos

$$n = 4, P = 5$$

• Ejemplo: p = (3, 2, 1, 1)v = (6, 6, 2, 1)

Nodos: (i, P, Mochila(i, P)); izquierda, $x_i = 1$; derecha, $x_i = 0$.

Almacén de resultados parciales

• Ejemplo: Sean n = 5 objetos con pesos (p_i) y valores (v_i) indicados en la tabla. Sea P = 11 el peso máximo de la mochila.

T [05][011]	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
$p_1 = 2, v_1 = 1$	0	0	1	1	1	1	1	1	1	1	1	1
$p_2 = 2, v_2 = 7$	<u>0</u>	0	7	7	8	8	8	8	8	8	8	8
$p_3 = 5, v_3 = 18$	0	0	7	7	8	<u>18</u>	18	25	25	26	26	26
$p_4 = 6, v_4 = 22$	0	0	7	7	8	18	22	25	29	29	30	<u>40</u>
$p_5 = 7, v_5 = 28$	0	0	7	7	8	18	22	28	29	35	35	40

 $T[i][j] \equiv$ Ganancia máxima con los i primeros objetos y con una carga máxima j. Por tanto, solución en T[5][11]

Solución al problema Contorno o perfil

$$T[i][j] = \max(\underbrace{T[i-1][j]}_{\text{rechazar } i}, \underbrace{T[i-1][j-p_i] + v_i}_{\text{seleccionar } i})$$

$$T[5][11] = \max \left(\frac{T[4][11]}{T[4][11 - p_5]} + v_5 \right) = \max(40, 36). \quad 5 \text{ no se toma}$$

$$T[4][11] = \max \left(\frac{T[3][11]}{T[3][11 - p_4]} + v_4 \right) = \max(26, 40). \quad 4 \text{ sí se toma}$$

$$T[3][5] = \max \left(\frac{T[2][5]}{T[2][5 - p_3]} + v_3 \right) = \max(8, 18). \quad 3 \text{ sí se toma}$$

$$T[2][0] = T[1][0] = 0. \quad 1 \text{ y 2 no se tomation}$$

Una versión iterativa

```
Una solución iterativa
1 float Mochila (int n, unsigned P){
      float M[n+1][P+1];
      for (unsigned i=0; i<=n; i++) M[i][0]=0; //sin espacio, ganancia 0
      for (unsigned j=1; j<=P; j++) M[0][j]=0; //sin objetos, ganancia 0
      for (unsigned i=1; i<=n; i++)</pre>
           for (unsigned j=1; j<=P; j++) {</pre>
               float S1 = 0.0;
               if (p[i] <= j ) // Aun hay sitio en la mochila
10
                   S1 = v[i] + M[i-1][j-p[i]];
11
               float S2 = M[i-1][i];
12
               M[i][j] = max(S1,S2);
13
14
      return M[n][P]:
15
16 }
```

Iterativo: Complejidad temporal y espacial

Complejidad temporal

$$T(n,P) = 1 + \sum_{i=1}^{n} 1 + \sum_{i=0}^{P} 1 + \sum_{i=1}^{n} \sum_{j=1}^{P} 1 = 1 + n + P + 1 + P(n+1)$$

Por tanto.

$$T(n, P) \in \Theta(nP)$$

Complejidad espacial

$$T_S(n, P) \in \Theta(nP)$$

• la complejidad espacial es mejorable . . .

Una solución recursiva

```
1 float Mochila( unsigned n, unsigned P ) {
    float M[100][100];
    for( int i = 0; i <= n; n++ )</pre>
      for( int j = 0; j <= P; j++ )</pre>
         M[i][i] = -1;
    return Mochila( M, n, P );
8 }
10 float Mochila( float M[100][100], unsigned n, unsigned P){
    if( M[n][P] > 0 ) return M[n][P];
11
    if( n < 0 ) return 0;</pre>
12
13
    float S1 = 0.0:
14
    if (p[n] \leftarrow P)
15
      S1 = Mochila(n-1, P-p[i]);
16
    float S2 = Mochila( n-1, P );
17
    M[n][P]=max(S1, S2);
18
19
    return M[n][P]:
20
21 }
```

PD-recursiva con almacén

• Ejemplo: Sean n = 5 objetos con pesos (p_i) y valores (v_i) indicados en la tabla. Sea P = 11 el peso máximo de la mochila.

T[05][011]	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0		0		0	
$p_1 = 2, v_1 = 1$	0		1	1	1	1	1			1		1
$p_2 = 2, v_2 = 7$	<u>0</u>				8	8	8					8
$p_3 = 5, v_3 = 18$					8	<u>18</u>						26
$p_4 = 6, v_4 = 22$					8							<u>40</u>
$p_5 = 7, v_5 = 28$												40

• El 60 % de las celdas no se han utilizado por lo tanto:

El subproblema asociado no ha sido resuelto ¡Ahorro computacional!

40 Solución al problema Contorno o perfil Celdas sin uso

$$T[5][11] = \max\left(\frac{T[4][11]}{T[4][11 - p_5]} + v_5\right) = \max(40, 36). \quad 5 \text{ no se toma}$$

$$T[4][11] = \max\left(T[3][11], \frac{T[3][11 - p_4]}{T[2][5]} + v_4\right) = \max(26, 40). \quad 4 \text{ si se toma}$$

$$T[3][5] = \max\left(T[2][5], \frac{T[2][5 - p_3]}{T[2][5]} + v_3\right) = \max(8, 18). \quad 3 \text{ si se toma}$$

$$T[2][0] = T[1][0] = 0. \quad 1 \text{ y 2 no se toman}$$

Conclusiones

- La complejidad temporal de la solución obtenida mediante programación dinámica está en $\Theta(nP)$
 - Un recorrido descendente a través de la tabla permite obtener también, en tiempo $\Theta(n)$, la secuencia óptima de decisiones tomadas.
- Si P es muy grande entonces las solución obtenida mediante programación dinámica no es buena
- Si los pesos p_i o la capacidad P pertenecen a dominios continuos (p.e. los reales) entonces esta solución no sirve
- La complejidad espacial de la solución obtenida se puede reducir hasta $\Theta(P)$
- En este problema, la solución PD-recursiva puede ser más eficiente que la iterativa
 - Al menos, la versión que no realiza cálculos innecesarios es más fácil de obtener en recursivo

Ejercicios Propuestos

- ¿Se puede reducir la complejidad espacial de la solución iterativa propuesta?
 - ¿Cuántos vectores harían falta y de qué tamaño?
 - ¿Sacrifica esto la complejidad temporal?
- Escribe una función para obtener la secuencia de decisiones óptima a partir de la tabla completada por el algoritmo iterativo
 - ¿Qué complejidad temporal tiene esa función?

