VE203 Discrete Math

Spring 2022 — Worksheet 5

March 25, 2022

Exercise 5.1 Group

In Exercises 1 through 6, determine whether the binary operation * gives a group structure on the given set. If no group results, give the first axiom in the order $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ from Definition that does not hold.

- 1. Let * be defined on \mathbb{Z} by letting a*b=ab.
- 2. Let * be defined on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ by letting a * b = a + b.
- 3. Let * be defined on \mathbb{R}^+ by letting $a * b = \sqrt{ab}$.
- 4. Let * be defined on \mathbb{Q} by letting a*b=ab.
- 5. Let * be defined on the set \mathbb{R}^* of nonzero real numbers by letting a*b=a/b.
- 6. Let * be defined on \mathbb{C} by letting a * b = |ab|.

Exercise 5.2 Group

Let S be the set of all real numbers except -1. Define * on S by

$$a * b = a + b + ab.$$

- a. Show that * gives a binary operation on S.
- b. Show that $\langle S, * \rangle$ is a group.
- c. Find the solution of the equation 2 * x * 3 = 7 in S.

Exercise 5.3 Subgroup

In Exercises 1 through 6, determine whether the given subset of the complex numbers is a subgroup of the group $\mathbb C$ of complex numbers under addition.

- $1. \mathbb{R}$
- $2. \mathbb{Q}^+$
- $3.7\mathbb{Z}$
- 4. The set $i\mathbb{R}$ of pure imaginary numbers including 0
- 5. The set $\pi \mathbb{Q}$ of rational multiples of π
- 6. The set $\{\pi^n \mid n \in \mathbb{Z}\}$

Exercise 5.4 Cyclic Group

In Exercises 1 through 5, find all orders of subgroups of the given group.

- 1. \mathbb{Z}_6
- $2. \mathbb{Z}_8$
- 3. \mathbb{Z}_{12}
- 4. \mathbb{Z}_{20}
- 5. \mathbb{Z}_{17}

Exercise 5.5 Permutation Group

In Exercises 1 through 5, compute the indicated product involving the following

permutations in
$$S_6$$
: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$, $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$

- 2. $\tau^2 \sigma$
- 3. $\mu\sigma^2$
- 4. $\sigma^{-2}\tau$
- 5. $\sigma^{-1}\tau\sigma$

Exercise 5.6 Permutation Group

In Exercises 1 through 4, compute the expressions shown for the permutations σ, τ and μ defined prior to Exercise 5.5.

- 1. $|\langle \sigma \rangle|$
- 2. $|\langle \tau^2 \rangle|$ 3. σ^{100}
- 4. μ^{100}

Exercise 5.7 Homomorphism

Determine whether the given map ϕ is a homomorphism.

- 1. Let $\phi: \mathbb{Z} \to \mathbb{R}$ under addition be given by $\phi(n) = n$.
- 2. Let $\phi: \mathbb{R} \to \mathbb{Z}$ under addition be given by $\phi(x) = \text{the greatest integer} \leq x$.
- 3. Let $\phi: \mathbb{R}^* \to \mathbb{R}^*$ under multiplication be given by $\phi(x) = |x|$.

Exercise 5.8 Coset and Lagrange Theorem

- 1. Find all cosets of the subgroup $4\mathbb{Z}$ of $2\mathbb{Z}$.
- 2. Find all cosets of the subgroup $\langle 2 \rangle$ of \mathbb{Z}_{12} .
- 3. Find all cosets of the subgroup $\langle 4 \rangle$ of \mathbb{Z}_{12} .
- 4. Find all cosets of the subgroup $\langle 18 \rangle$ of \mathbb{Z}_{36} .
- 5. Find the index of $\langle 3 \rangle$ in the group \mathbb{Z}_{24} .
- 6. Let $\sigma = (1, 2, 5, 4)(2, 3)$ in S_5 . Find the index of $\langle \sigma \rangle$ in S_5 .
- 7. Let $\mu = (1, 2, 4, 5)(3, 6)$ in S_6 . Find the index of $\langle \mu \rangle$ in S_6 .

Reference

- 1. Rosen, Kenneth H., and Kamala Krithivasan. Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education, 2012.
- 2. Fraleigh, John B. A first course in abstract algebra. Pearson Education India, 2003.