Test-script for applying a model to subsets of dataset

Andrew Nguyen 2016-March-07

Contents

load in libraries	1
Loading in mock dataset	1
Fittign ANOVA model	3
Parsing output of model	4
Let's visualize gene "a" expression	5
Play script to show how to apply a stat model to a dataset	

load in libraries

```
#library(dplyr)
library(ggplot2)
library(plyr)
library(MASS)
```

Loading in mock dataset

Histogram of babyURCH\$gene

$\#visualize\ dataset$

str(babyURCH)

```
## 'data.frame':
                   64 obs. of 6 variables:
                   : Factor w/ 2 levels "a", "b": 1 1 1 1 1 1 1 1 1 1 ...
   $ Gene
##
##
   $ Splice_variant: Factor w/ 4 levels "g","t","x","z": 4 4 4 4 4 4 4 4 4 4 ...
                   : int 1 1 1 1 2 2 2 2 3 3 ...
  $ rep
## $ Day
                   : int 1717171717...
                   : Factor w/ 2 levels "high", "low": 1 1 2 2 1 1 2 2 1 1 ...
##
   $ acid
                   : num 1100 1101 1099 1100 1099 ...
##
   $ gene_xp
```

#check replicates per treatment

ddply(babyURCH,.(Gene,Splice_variant,Day,acid),summarize,counts=length(rep))

```
Gene Splice_variant Day acid counts
##
## 1
         a
                             1 high
## 2
                             1 low
         a
## 3
                             7 high
         a
                         Х
## 4
                             7 low
         a
                         х
## 5
                             1 high
         a
                         z
## 6
                         z
                             1 low
         a
## 7
                             7 high
                         z
## 8
                             7 low
         a
                         z
## 9
                             1 high
         b
                         g
## 10
         b
                             1 low
                         g
## 11
                             7 high
         b
                         g
## 12
         b
                             7 low
## 13
                             1 high
         b
```

```
## 14 b t 1 low 4
## 15 b t 7 high 4
## 16 b t 7 low 4
```

Fittign ANOVA model

```
#fitting models
#specifying the model with 3 way interaction
aovmod<-function(df){</pre>
  aov(gene_xp~Splice_variant*acid*Day,data=mutate(df))
#specifying the model with forward selection (can do backward or both too)
step.aovmod<-function(df){</pre>
  summary(stepAIC(aov(gene_xp~Splice_variant*acid*Day,data=mutate(df)),direction="forward"))
  #stepAIC(aov(gene_xp~Splice_variant*acid*Day,data=mutate(df)),direction="forward")
#applying the model for every gene
#. (Gene) splits the data based on gene
#models<-dlply(babyURCH,.(Gene),step.aovmod)</pre>
#alternative way of doing it with lapply(this is better)
models2<-sapply(split(babyURCH,list(babyURCH$Gene)),step.aovmod)</pre>
## Start: AIC=2.22
## gene_xp ~ Splice_variant * acid * Day
## Start: AIC=17.02
## gene_xp ~ Splice_variant * acid * Day
models2
## $a
##
                          Df Sum Sq Mean Sq F value Pr(>F)
## Splice_variant
                          1 0.7426 0.7426 0.8567 0.36388
## acid
                           1 1.6508 1.6508 1.9045 0.18030
## Day
                            1 0.1135 0.1135 0.1309 0.72064
## Splice_variant:acid
                           1 0.3917 0.3917 0.4519 0.50784
## Splice_variant:Day
                           1 0.6167 0.6167 0.7114 0.40729
                            1 0.0182 0.0182 0.0210 0.88586
## acid:Day
## Splice_variant:acid:Day 1 3.4841 3.4841 4.0196 0.05638 .
                           24 20.8027 0.8668
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## $b
                           Df Sum Sq Mean Sq F value
##
                            1 12.095 12.0946 8.7854 0.006759 **
## Splice_variant
```

Parsing output of model

```
#putting the model in a dataframe
full<-ldply(models2,data.frame)

#this line of code took the longest...grabbing the predictor names
#and just adding it to the dataframe!!
full$variables<-c(t(ldply(models2,row.names))[-1,])

#adding a new dataframe to indicate whether predictor
#was significant at 0.05 level. Can toggle to lower if you want
full$sig<-ifelse(full$Pr..F.<0.05,"sig","nonsig")

#let's nicely visualize the dataframe!!
knitr::kable(full)</pre>
```

$. \mathrm{id}$	Df	$\operatorname{Sum.Sq}$	Mean.Sq	F.value	PrF.	variables	sig
a	1	0.7425664	0.7425664	0.8566966	0.3638789	Splice_variant	nonsig
a	1	1.6507688	1.6507688	1.9044870	0.1802982	acid	nonsig
a	1	0.1134806	0.1134806	0.1309222	0.7206441	Day	nonsig
a	1	0.3917165	0.3917165	0.4519222	0.5078444	Splice_variant:acid	nonsig
a	1	0.6166606	0.6166606	0.7114395	0.4072948	Splice_variant:Day	nonsig
a	1	0.0182426	0.0182426	0.0210464	0.8858640	acid:Day	nonsig
a	1	3.4841439	3.4841439	4.0196463	0.0563783	Splice_variant:acid:Day	nonsig
a	24	20.8026895	0.8667787	NA	NA	Residuals	NA
b	1	12.0945864	12.0945864	8.7854020	0.0067585	Splice_variant	sig
b	1	1.5335857	1.5335857	1.1139833	0.3017273	acid	nonsig
b	1	2.1596773	2.1596773	1.5687707	0.2224534	Day	nonsig
b	1	0.0653719	0.0653719	0.0474856	0.8293400	Splice_variant:acid	nonsig
b	1	0.4375895	0.4375895	0.3178612	0.5781266	Splice_variant:Day	nonsig
b	1	1.0280814	1.0280814	0.7467893	0.3960497	acid:Day	nonsig
b	1	0.1499257	0.1499257	0.1089047	0.7442578	Splice_variant:acid:Day	nonsig
b	24	33.0400448	1.3766685	NA	NA	Residuals	NA

```
#writing out data frame into csv file :-)!
write.csv(full, "Test_output_model_dataframe.csv")
```

Let's visualize gene "a" expression

Grab my ggplot defaults: http://adnguyen.github.io/blog/2016/02/12/ggplot_defaults

The gray background and grids are so annoying.

default<-theme_bw()+theme(text=element_text(size=30),axis.text=element_text(size=30), legend.text=element_text(size=30), legend.text(size=30), legend.text(size=30), legend.text(size=30), legend.text(size=30), legend.text(

Loading required package: lattice

```
#grab averages
tc<-summarySE(babyURCH,measurevar="gene_xp",groupvars=c("Gene","Day","acid","Splice_variant"))
#grouping splice variant and acid levels together for coloring purposes
tc$grouping<-paste(tc$acid,tc$Splice_variant)
#visualize it
knitr::kable(tc)</pre>
```

Gene	Day	acid	Splice_variant	N	gene_xp	sd	se	ci	grouping
a	1	high	X	4	1099.393	0.4922160	0.2461080	0.7832256	high x
a	1	high	\mathbf{Z}	4	1099.805	0.5094212	0.2547106	0.8106028	high z
a	1	low	X	4	1100.334	0.7406555	0.3703277	1.1785481	low x
a	1	low	\mathbf{Z}	4	1099.868	0.7053037	0.3526518	1.1222955	low z
a	7	high	X	4	1100.260	0.2376525	0.1188262	0.3781581	high x
a	7	high	Z	4	1098.796	1.6846759	0.8423379	2.6806953	high z
a	7	low	X	4	1099.785	1.5319707	0.7659853	2.4377072	low x
a	7	low	Z	4	1100.084	0.3806229	0.1903114	0.6056559	low z
b	1	high	g	4	1101.357	0.6684302	0.3342151	1.0636216	high g
b	1	high	\mathbf{t}	4	1100.121	1.0788632	0.5394316	1.7167121	high t
b	1	low	g	4	1100.788	1.1570969	0.5785484	1.8411993	low g
b	1	low	\mathbf{t}	4	1099.097	1.1165316	0.5582658	1.7766510	low t
b	7	high	g	4	1100.382	1.1683093	0.5841546	1.8590408	high g
b	7	high	\mathbf{t}	4	1099.340	1.3737656	0.6868828	2.1859676	high t
b	7	low	g	4	1100.256	1.7579498	0.8789749	2.7972904	low g
b	7	low	\mathbf{t}	4	1099.307	0.6888551	0.3444276	1.0961222	low t

```
pd <- position_dodge(0.5) #offset parameter in plotting points
#only looking at the "a" gene
a.gene<-subset(tc,tc$Gene=="a")

#mock figure
ggplot(a.gene,aes(y=gene_xp,x=factor(Day),color=grouping,shape=acid))+default+geom_errorbar(aes(ymin=gene_aes))
geom_line(position=pd,size=1.5,stat="identity")+geom_point(position=pd,size=8)</pre>
```


probably want boxplots because it better represents non-normal expression data (I think John assumed his expression data to be a negative binomial distribution).

You'll

let's try a boxplot

```
a.gene2<-subset(babyURCH,babyURCH$Gene=="a")
a.gene2$grouping<-paste(a.gene2$acid,a.gene2$Splice_variant)
ggplot(a.gene2,aes(y=gene_xp,x=factor(Day),color=grouping,fill=grouping))+default+geom_boxplot()</pre>
```

