Regression Analysis

Analysis of Variance

#### Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

**Basics Concepts** 





#### ANOVA: Analysis of Variance

Population 1:  $(\mu_1, \sigma_1^2)$   $\longrightarrow$  Sample 1: $(Y_{1,1},...,Y_{1,n_1})$   $\longrightarrow$   $(\overline{Y}_1, s_1^2)$ 

Population 2:  $(\mu_2, \sigma_2^2)$   $\longrightarrow$  Sample 2:  $(Y_{2,1}, ..., Y_{2,n_2})$   $\longrightarrow$   $(\overline{Y}_2, s_2^2)$ 

.....

Population k:  $(\mu_k, \sigma_k^2)$   $\longrightarrow$  Sample k:  $(Y_{k,1}, ..., Y_{k,n_k})$   $\longrightarrow$   $(\bar{Y}_k, s_k^2)$ 

ANOVA: Comparing the means of multiple samples



### ANOVA Example 1: Global Suicide

#### **Data Source:**

Suicide Rate: Kaggle

https://www.kaggle.com/russellyates88/ suicide-rates-overview-1985-to-2016





## ANOVA Example 1: Suicide Rate & Region



- 1. Is there a difference in the suicide rate by region?
- 2. Which region has higher suicide rate?



### ANOVA Example 2: Keyboard Layout

Three different keyboard layouts are being compared in terms of typing speed.



| Layout 1 | Layout 2 | Layout 3 |
|----------|----------|----------|
| 23.8     | 30.2     | 27.0     |
| 25.6     | 29.9     | 25.4     |
| 24.0     | 29.1     | 25.6     |
| 25.1     | 28.8     | 24.2     |
| 25.5     | 29.1     | 24.8     |
| 26.1     | 28.6     | 24.0     |
| 23.8     | 28.3     | 25.5     |
| 25.7     | 28.7     | 23.9     |
| 24.3     | 27.9     | 22.6     |
| 26.0     | 30.5     | 26.0     |
| 24.6     | *        | 23.4     |
| 27.0     | *        | *        |



#### Operation Time by Keyboard Layout



- 1. Is there a difference in the time taken to perform a task?
- 2. Which layout is more effective?



#### ANOVA: Objectives

#### Primary objectives in ANOVA:

- 1. Analysis of the variability in the data the ANOVA table
- 2. Testing for equal means

$$H_o: \mu_1 = \mu_2 = ... = \mu_k$$

3. Estimation of simultaneous confidence intervals for the mean differences

$$\mu_i - \mu_j$$
 for i and  $j = 1, ..., k$ 

# Summary



