《基础物理实验》实验报告

实验	名称_			简单电学实验	指导教师	丰家峰
姓	名	陈苏	_ 学号	2022K8009906009	组号01-1	号(例:01-1)
实验	日期	2023年 09	月 25 日	实验地点_教学楼 702_	调课/补课_□是	成绩评定

一. 实验内容与实验记录

使用实验设备为:信号发生器:RIGOL-DG4162,示波器:RIGOL-MSO2302A,面包板:ELC-1106直流电源:RIGOL-DP832,万用表:FLUKE-17B+。

1. 面包板的使用

将 LED 连通直流电源 CH1 通道两极,电路图如下。将 CH1 通道的输出电压从零开始逐渐升高,观察 LED 亮度的变化。

图 1-1 点亮 LED 电路图

图 1-2 点亮 LED 实物图

用万用表测量可调电阻的最大阻值为 $R_{\text{max}} = 0.462 \text{k}\Omega$ 。

用万用表测量二极管的正反向电阻,判断二极管的正向。将二极管与电阻($R=1k\Omega$)串联接到面包板上,面包板连通直流电源 CH1 通道两极,电路图如下。改变 CH1 通道的输出电压和电阻阻值,测量电阻上的电压。

将直流电源改为信号发生器,面包板连通信号发生器 CH1 通道,输入正弦信号。将信号发生器 CH1 通道输出接入示波器 CH1 通道,将电阻两端接入示波器 CH2 通道。观察信号源和电阻上电压的波形。

图 2 正弦信号连通二极管电路图

图 3 波源和二极管上电压测量实物图

表 1 电阻上的电压关系表

	频率f/kHz	输入电压 <i>U</i> ₀ /V	电阻电压 <i>U/</i> V
1) 直流输入		1.940	1.320
2) 交流输入	1.000	最大值 2.180	最大值 1.840
		最小值-2.180	最小值-80.00×10 ⁻³

2. 全波整流电路

将 4 个二极管和电阻(R=1k Ω)如图所示接到面包板上,面包板连通信号发生器 CH1 通道,输入正弦信号(U=1.000V,f=1.000kHz)。将示波器 CH1,CH2 通道分别接到电阻两端,然后用 Math 中的 A-B模式得到电阻上电压的波形。测得电阻上电压的幅值为 1.320V。

图 4-1 全波整流电路图

图 4-2 全波整流实物图

图 4-3 全波整流电路测试波形图

3. 测量电阻和二极管的伏安特性 将电阻接到直流电源两端,从零开始增大电压,用万用表测量电阻上电压和电流的关系。

表 2 电阻伏安特性测量表

电压 <i>U/</i> V	电流I/mA
0.572	0.58
0.628	0.63
0.683	0.69
0.741	0.75
0.799	0.81
0.856	0.87
0.913	0.98
1.027	1.04
1.083	1.10
1.141	1.15

图 5 电阻伏安特性图

表 3 二极管伏安特性测量表

电压 <i>U/</i> V	电流I/mA
0.305	0.00063
0.350	0.0208
0.502	0.1027
0.530	0.1927
0.575	0.494
0.598	0.807
0.614	1.133
0.621	1.316

0.630 1	.603
	.003
0.641 1	.974
0.648 2	.34
0.655 2	.72
0.661 3	.03
0.665 3	.36
0.668 3	.60
0.672 3	.89
0.675 4	.18
0.678 4	.41
0.680 4	.70
0.684 5	.12
0.686 5	.32
0.690 5	.74
0.693 6	.15
0.696 6	.57
0.698 6	.99
0.701 7	.41
0.706 7	.82
0.712	.24

图 6 二极管伏安特性图

二. 实验思考与心得

这次实验学习了示波器,信号发生器,万用表和直流电源的用法,了解了电学的仪器和实验方法。实验前前要做好预习,正确操作仪器,实验后认真整理实验数据。