Virtual IoT Lab

Ontwikkelen van een ZeroConfig client-to-client secure channel

Analyse

Sean Visser
Cybersecurity Noord-Nederland

Samenvatting

Inhoudsopgave

Samenvatting

- 1. Inleiding
- 2. Context
 - **2.1.** Introductie onderwerp
 - 2.2. Stakeholder analyse
 - 2.3. Vereisten en randvoorwaarden
 - 2.4. Geraadpleegde literatuur
- 3. Probleemstelling
- 4. Probleemanalyse
- 5. Mogelijke oplossingen
 - **5.1.** TURN
 - **5.2.** STUN
 - **5.3.** Domain Name System Service Discovery (DNS-SD)
 - **5.4.** Eenzijdige configuratie
 - 5.5. Tweezijdige configuratie
- 6. Secure Channel Protocollen
 - **6.1.** OpenVPN
 - **6.2.** WireGuard
 - **6.3.** IPSec
 - **6.4.** SSL/TLS
- 7. Conclusie
- 8. Advies

Literatuurlijst

Verklarende woordenlijst

Bijlagen

1. Inleiding

Gemakkelijk op afstand veilig een laboratorium ontsluiten, een pentestuitvoeren of toegang krijgen tot interne gedeeltes van een netwerk is niet zonder complicaties. Het opzetten van een *client-to-client secure channel* tussen twee bedrijfsnetwerken wordt verhindert door Network Address Translation(NAT). Wanneer een datapakket binnenkomt op het NAT-netwerk, zonder dat er een sessie aanwezig is in de NAT tabel, zal dit datapakket *gedropped* worden. Veel bedrijfsnetwerken hebben een of meerdere NAT(s) aanwezig in hun netwerk wegens veiligheidsoverwegingen en het gebrek aan beschikbare publieke IP adressen voor elke host/client in het netwerk. In dit verslag worden manieren onderzocht waarmee, zonder configuratie in de bedrijfsnetwerken, gemakkelijk en veilig een client-to-client verbinding opgezet kan worden.

Cybersecurity Noord-Nederland is een stichting die zich inzet voor onderzoek en kennisontwikkeling op het gebied van Cybersecurity te versnellen en zichtbaar te maken. Met deze kennis wil Cybersecurity Noord-Nederland de cyberweerbaarheid van (MKB) bedrijven vergroten. Cybersecurity Noord-Nederland wil twee bedrijfsnetwerken met elkaar verbinden zonder configuratie om een veilige omgeving te faciliteren voor lab ontsluiting, en remote pentesting.

Het verhinderen van *client-to-client* verbindingen tussen NAT netwerken is een veel voorkomend probleem binnen *IPv4-networking*. Om deze reden zijn er verscheidende manieren bedacht om de NAT te omzeilen. Dit wordt ook wel NAT-traversal genoemd. Echter veel beschreven NAT-traversal methodes zoals UDP/TCP *pinholing* en *relaying* voldoen niet aan de randvoorwaarden en vereisten gesteld door CyberSecurity Noord-Nederland. De randvoorwaarden en vereisten kunnen worden ingezien in *2.3: Vereisten en randvoorwaarden*.

Onderzoeken hoe gemakkelijk en veilig een *client-to-client* verbinding kan worden opgezet tussen twee bedrijfsnetwerken ondersteunt CyberSecurity Noord-Nederland bij haar doel om bij te dragen aan cyberweerbaarheid van (MKB) bedrijven.

In dit verslag zal allereerst de context nader verklaard worden in hoofdstuk 2. Hierna wordt de probleemstelling SMART geformuleerd in hoofdstuk 3. Vervolgens wordt in hoofdstuk 4 het probleem nader en concreet geanalyseerd. Aansluitend worden mogelijke oplossingen voor het NAT probleem geanalyseerd ten opzichte van de randvoorwaarden en vereisten in hoofdstuk 5. Verder worden Secure Channel protocollen geanalyseerd ten opzichte van de randvoorwaarden en vereisten in hoofdstuk 6. Tot slot zal er in hoofdstuk 7 een conclusie gevormd worden over welke mogelijke oplossing het best aansluit bij Cybersecurity Noord-Nederland. Hierna wordt de literatuurlijst verklaard.

2. Context

In dit onderdeel wordt de context van de opdracht verklaard. Allereerst zal het onderwerp geïntroduceerd worden in 2.1: Introductie onderwerp. Vervolgens wordt een stakeholderanalyse uitgevoerd in 2.2: Stakeholderanalyse. Hierna wordt in 2.3: Vereisten en randvoorwaarden de opgestelde vereisten en randvoorwaarden van Cybersecurity Noord-Nederland verklaard. Vervolgens wordt in 2.4: Geraadpleegde literatuur de geraadpleegde literatuur verklaard en de toepassing hiervan binnen de opdracht.

2.1. Introductie onderwerp

In dit onderdeel wordt het onderwerp van de opdracht geïntroduceerd.

Steeds meer apparaten hebben de mogelijkheid verbinding te maken met andere apparaten over het internet. Microscopen, televisies en andere meet- en huishoudapparatuur zijn hier geen uitzondering meer op. Laboratoria kunnen met deze functionaliteit mogelijk apparatuur op afstand beschikbaar stellen, televisiefabrikanten kunnen hiermee pentesters de mogelijkheid bieden om op afstand producten te pentesten, en nog veel meer is mogelijk met toegang tot het internet. Echter, het is essentieel dat het ontsluiten van laboratoria en het faciliteren van remote pentesting gemakkelijk veilig gefaciliteerd wordt. Het opzetten van de veilige verbinding dient zonder eindgebruiker configuratie voldaan te worden.

Om deze reden wil Cybersecurity Noord-Nederland het veilig ontsluiten van laboratoria, remote pentesting toegankelijk maken voor (MKB) bedrijven door een tool waarmee gemakkelijk een client-to-client secure channel opgezet kan worden tussen twee bedrijfsnetwerken.

2.2. Stakeholderanalyse

In dit onderdeel wordt een stakeholderanalyse uitgevoerd om een overzicht te krijgen van belanghebbende partijen.

Stakeholder	Primair	Secundair
	Heeft direct invloed op	Heeft indirect invloed op
	projectaanpak of resultaat	projectaanpak of resultaat
Interne stakeholder	Projectmanager	Cybersecurity Noord-
Betrokken bij het project	Teamleden	Nederland
vanuit de eigen organisatie		
Externe stakeholder		Hanzehogeschool Groningen
Bij het project betrokken	-	
buiten de eigen organisatie		
Interface stakeholder	Lokale overheid	Laboratoria
Niet bij het project		(MKB) Bedrijven
betrokken partij, die wel		
een legitiem belang heeft		

Stakeholder	Belang	Aanpak
	Belang van stakeholder in	Passende
	het project	benaderingsaanpak voor
		stakeholder
Projectmanager	Bijdrage aan	Tevreden houden
	bedrijfsdoelstelling	
Teamleden	Bijdrage aan	Tevreden houden
	bedrijfsdoelstelling	
Cybersecurity Noord-	Bijdrage aan	Sleutelfiguur
Nederland	cyberweerbaarheid van	
	(MKB) bedrijven	
Lokale overheid	Verantwoording	Informeren
	cybersecurity op nationaal	
	niveau	
Hanzehogeschool Groningen		Informeren
Laboratoria	Verhuur van laboratoria	Informeren
	apparatuur	
(MKB) bedrijven	Faciliteren van een veilige	Informeren
	manier voor het ontsluiten	
	van (gevoelige) apparatuur	
	voor bijvoorbeeld	
	pentesting	

2.3. Vereisten en randvoorwaarden

In dit onderdeel worden de gestelde eisen en randvoorwaarden vanuit Cybersecurity Noord-Nederland bekend gemaakt.

De opgestelde randvoorwaarden vanuit Cybersecurity Noord-Nederland zijn als volgt:

Randvoorwaarden	Toelichting
Security By Design	Security by Design is een belangrijke pilaar van
	Cybersecurity Noord-Nederland
ZeroConfig	ZeroConfig is een gestelde eis vanuit Cybersecurity Noord-
	Nederland, op deze manier kan worden bijgedragen aan de
	cyberweerbaarheid van (MKB) bedrijven waar geen spreke
	is van adequate kennis over informatie beveiliging
OpenSource Development	OpenSource development tijdens dit project draagt bij aan
	het beschikbaar stellen van kennis op het gebied van
	cybersecurity en hierdoor aan de cyberweerbaarheid van
	(MKB) bedrijven
(Bijna) geen kosten voor het	Cybersecurity Noord-Nederland wil het laagdrempelig
gebruik van product	houden voor (MKB) bedrijven om gebruik te maken van dit
	product. Een (hoge) prijskaart kan gebruik van het product
	minder aantrekkelijk maken. Hiernaast kan het voor (MKB)
	bedrijven aantrekkelijk zijn om bestaande betaalde
	diensten in te ruilen voor de (bijna) gratis dienst van
	Cybersecurity Noord-Nederland.

Voor het veilig faciliteren van een secure channel wordt gebruik gemaakt van het BIV-model uit informatiebeveiliging. Cybersecurity Noord-Nederland stelt hoge eisen aan het niveau van veiligheid in haar diensten en producten.

Aspect	Vereiste gradatie	Implementatie	
		Implementatie van het BIV model wordt verder toegelicht in de design fase	
Beschikbaarheid	Hoog	98% - 99,9%	
Integriteit	Hoog	SHA256 (of vergelijkbaar)	
Vertrouwlijkheid	Hoog	AES-256 (of vergelijkbaar)	
		RSA-2048 (of vergelijkbaar)	

2.4. Geraadpleegde literatuur

In dit hoofdstuk wordt de geraadpleegde literatuur verklaard en de toepassing van de literatuur op het ondersteunen van de probleemanalyse en de bijdrage aan mogelijke oplossingen.

De eerste bron is *TCP Connections for P2P Apps: A Software Approach to Solving the NAT Problem* van *Jeffrey L. Eppingen*. De tweede geraadplegde bron is *Peer-to-Peer Communication Across Network Address Translators* van *Bryan Ford, Pyda Srisuresh & Den Kegel*. Uit deze bronnen is algemene informatie opgedaan over NAT-traversal methoden. Hiernaast bieden deze bronnen informatie over de onderliggende werking van NAT, en wat de complicerende factoren zijn.

Ten derde is *WireGuard Endpoint Discovery and NAT Traversal using DNS-SD* van *Jordan Whited* geraadpleegd. Ten vierde is *NAT-to-NAT VPN with WireGuard* van *Staaldraad* geraadpleegd. Ten vijfde is RFC 4787 geraadpleegd voor identificatie van het probleem in het NAT protocol. Ten zesde is RFC 3489 geraadpleegd voor het identificeren van verschillende type NAT. Tot slot is *Peer-to-Peer NAT-Traversal for IPSEC* geraadpleegd. Deze bronnen bieden informatie over de implementatie van NAT-Traversal methode binnen VPN-protocollen.

3. Probleemanalyse

Er kan geen client-to-client verbinding worden opgezet in een bedrijfsnetwerk door NAT/PAT. NAT/PAT accepteert geen binnenkomende verbindingen als zij niet onderdeel zijn van een sessie. Om een sessie te beginnen dient er eerst een uitgaand pakket vanuit het netwerk verstuurd te worden. Voor het opzetten van een client-to-client verbinding tussen bedrijfsnetwerken, waarbij beide een NAT/PAT aanwezig is, is het nodig om eerst een uitgaand pakket te versturen of een poort open te zetten(pinholing). Echter, hier komen problemen bij kijken in het scenario wat Cybersecurity Noord-Nederland schetst voor het gebruik van het product. Er kan geen client-to-client verbinding worden opgezet tussen twee bedrijfsnetwerken waar NAT/PAT aanwezig is, omdat de *destination port* bij beide netwerken niet bekend is zonder pinholing.

Wanneer gekeken wordt naar RFC 4787 wordt duidelijk dat het probleem veroorzaakt wordt door NAPT. NAPT biedt de mogelijkheid voor meerdere interne hosts om gebruik te maken van hetzelfde externe IP-adres. Dit wordt mogelijk gemaakt door een sessie waarin NAPT een combinatie van publiek IP en publieke poortnummer toewijst aan het interne IP en interne poort nummer. Deze sessie wordt enkel aangemaakt wanneer een interne host eerst een uitgaand verzoek verstuurd. In de casus die Cybersecurity Noord-Nederland schetst is er geen sprake van pinholing. Hierdoor is het niet mogelijk om een NAPT-sessie te krijgen, omdat de combinatie van publiek IP en publiek poort nummer niet bekend zijn bij beide netwerken. Om deze reden zal het pakket gedropped worden.

Hiernaast zijn in de praktijk meer problemen dan de NAPT-sessie. Er zijn verschillende soorten manieren waarop een NAT zich kan gedragen. Volgens RFC 3489 zijn er vier verschillende NAT categorieën, namelijk: Full Cone NAT, Restricted Cone NAT, Port Restricted Cone NAT en Symmetric NAT.

Ook zijn er twee verschillende manieren waarop NAT sessies *mapped*, dit wordt ook wel NAT modes genoemd. De eerste is *Endpoint Independent Mapping*(EIM) en de tweede is *Endpoint Dependent Mapping*(EDM). EDM is lastiger om mee te werken voor NAT traversal, doordat EDM meer informatie bijhoudt over de sessie. Welke informatie bijgehouden wordt in EIM en EDM is in de onderstaande tabel weergegeven.

NAT mode	Sessie informatie
Endpoint Independent Mapping (EIM)	- Bron IP-adres
	- Bron IP-poort
	- Protocol
	- FIB table index
Endpoint Dependent Mapping (EDM)	- Bron IP-adres
	- Bron IP-poort
	 Bestemming IP-adres
	- Bestemming IP-poort
	- Protocol
	- FIB table index

4. Probleemstelling

In dit onderdeel wordt het probleem SMART geformuleerd aan de hand van het probleemanalyse in 3: Probleemanalyse.

Er kan geen zeroconfig client-to-client verbinding worden opgezet tussen bedrijfsnetwerken, omdat NAPT geen sessie heeft in de routeringstabel voor inkomende verbindingen waarbij niet eerst een uitgaand pakket verstuurd is.

5. Mogelijke oplossingen

In dit onderdeel worden mogelijke passende NAT traversal methodes onderzocht voor Cybersecurity Noord-Nederland. NAT traversal methodes worden geanalyseerd op basis van de vereisten en randvoorwaarden die gesteld zijn door Cybersecurity Noord-Nederland.

5.1. TURN

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de keuze
	traversal methode voldoet	
Security By Design	Nee	TURN is niet secure by design,
Security by besign	1100	omdat verkeer unencrypted
		verstuurd wordt als standaard
ZeroConfig	Nee/ja	In de casus van CSNN dient elke
		gebruiker van het product hun
		eigen STUN server in te richten,
		dit kan niet gemakkelijk
		ZeroConfig gebeuren door het
		verschil in factoren. Orchestration
OnenCourse Development	lo.	kan wel
OpenSource Development	Ja	https://github.com/coturn/coturn
Kosten	ja	Docker op azure
Beschikbaarheid	Nee	TURN kan op firewal
		tegengehouden worden binnen
		bedrijfsnetwerken, omdat het
		afwijkt van verkeer dat normaal is
		op poort 443. Hierdoor kan een
		hoge (schaalbare)
		beschikbaarheid niet
Late and take		gegarandeerd worden.
Integriteit	-	
Vertrouwlijkheid	Ja	TLS kan gebruikt worden

5.2. STUN

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode	keuze
	voldoet	
Security By Design	Nee	Verkeer wordt standaard
		unencrypted verstuurd
ZeroConfig	Nee	
OpenSource Development	Ja	https://www.stunprotocol.org/
Kosten	Nee	
Beschikbaarheid	Ja	Volgens "Research on
		Symmetric NAT Traversal in
		P2P applications"(
		DOI:10.1109/ICCGI.2006.60)
		kan STUN een succesratio van
		99% behalen
Integriteit	-	-
Vertrouwlijkheid	Ja	Kan gebruik maken van TLS

5.3. Domain Name System - Service Discovery (DNS-SD)

Deze methode is door Cybersecurity Noord-Nederland afgekeurd vanwege moreel/ethisch bezwaar. Om deze reden is de tabel niet ingevuld.

5.4. Eenzijdige configuratie

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode voldoet	keuze
Security By Design	Ja*	*Afhankelijk van secure
		channel protocol
ZeroConfig	Nee	Een partij dient
		configuraties aan te brengen
		aan het netwerk
OpenSource Development	Ja*	*Afhankelijk van secure
		channel protocol
Kosten	Ja	
Beschikbaarheid	Ja*	*Afhankelijk van secure
		*channel protocol
Integriteit	Ja*	*Afhankelijk van secure
		channel protocol
Vertrouwlijkheid	Ja*	*Afhankelijk van secure
		channel protocol

5.5. Tweezijdige configuratie

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode voldoet	keuze
Security By Design	Ja*	*Afhankelijk van secure
		channel protocol
ZeroConfig	Nee	Beiden partijen
		configuraties aan te brengen
		aan het netwerk
OpenSource Development	Ja*	*Afhankelijk van secure
		channel protocol
Kosten	Ja	
Beschikbaarheid	Ja*	*Afhankelijk van secure
		*channel protocol
Integriteit	Ja*	*Afhankelijk van secure
		channel protocol
Vertrouwlijkheid	Ja*	*Afhankelijk van secure
		channel protocol

6. Secure Channel Protocollen

In dit onderdeel worden Secure Channel protocollen onderzocht voor Cybersecurity Noord-Nederland. De Secure Channel protocollen worden geanalyseerd op basis van de vereisten en randvoorwaarden die gesteld zijn door Cybersecurity Noord-Nederland.

6.1. OpenVPN

https://openvpn.net/

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode voldoet	keuze
Security By Design	Ja/Nee	Ja, omdat het veel
		verschillende manieren voor
		het opzetten van een secure
		channel ondersteund. Nee,
		omdat de attack surface
		groot is dankzij de grote LOC
ZeroConfig	Ja	Setup kan volledig gescript
		worden
OpenSource Development	Ja	OpenVPN is opensource
Kosten	Ja	OpenVPN kan gratis
		gebruikt worden
Beschikbaarheid	-	Afhankelijk van netwerk
Integriteit	Ja	Keuze uit verschillende hash
		methodes voor integriteit
Vertrouwlijkheid	Ja	Keuze uit verschillende
		ciphers

6.2. WireGuard

https://www.wireguard.com/

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode voldoet	keuze
Security By Design	Ja	WireGuard is gemaakt met
		de 'security through
		simplicity' mentaliteit
ZeroConfig	Ja	Setup kan volledig gescript
		worden
OpenSource Development	Ja	WireGuard is opensource
Kosten	Ja	WireGuard is gratis
Beschikbaarheid	-	Afhankelijk van netwerk
Integriteit	Ja	BLAKE2
Vertrouwlijkheid	Ja	ChaCha20 & Poly1305

6.3. IPSec

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode voldoet	keuze
Security By Design	Ja	Ja, het is een standaard bedacht met security als gr
ZeroConfig	Ja	Setup kan volledig gescript worden
OpenSource Development	Ja	IPSec is een opensource standaard
Kosten	Ja	IPSec is gratis
Beschikbaarheid	-	Afhankelijk van netwerk
Integriteit	Ja	IPSec is een standaard waarbij invullingen zoals Hashing algoritmes door de implementatie ingevuld kan worden
Vertrouwlijkheid	Ja	IPSec is een standaard waarbij invullingen zoals Encryptie algoritmes door de implementatie ingevuld kan worden

IPSec in AH mode is niet geschikt voor NAT-traversal omdat IPSec in AH mode faalt zodra de buitenste IP header aangepast wordt. Dit heeft geen invloed op IPSec in ESP mode.

6.4. SSL/TLS

Randvoorwaarde/vereiste	Voldoet	Reden
	Geeft aan of de NAT	Geeft beredenering voor de
	traversal methode voldoet	keuze
Security By Design	Ja	Ja, het is een standaard
		bedacht met security als gr
ZeroConfig	Ja	Setup kan volledig gescript
		worden
OpenSource Development	Ja	IPSec is een opensource
		standaard
Kosten	Ja	IPSec is gratis
Beschikbaarheid	Nee*	Afhankelijk van netwerk.
		*SSL/TLS VPN's kunnen
		traag zijn doordat zij hogere
		implementaties
		zijn(Webbased VPN).
Integriteit	Ja	IPSec is een standaard
		waarbij invullingen zoals
		Hashing algoritmes door de
		implementatie ingevuld kan
		worden
Vertrouwlijkheid	Ja	IPSec is een standaard
		waarbij invullingen zoals
		Encryptie algoritmes door
		de implementatie ingevuld
		kan worden

7. Conclusie

TURN NAT Traversal methode voldoet aan de vereisten en randvoorwaarden die gesteld zijn door Cybersecurity Noord-Nederland. Secure Channel protocollen voldoen aan de gestelde eisen, echter wordt er voor dit project gebruik gemaakt van "WireGuard". Er is voor "WireGuard" gekozen, omdat "WireGuard" voldoet aan de gestelde eisen en "WireGuard" heeft minder overhead dan andere secure channel protocollen.

Discussie

Er kan ook gekeken worden naar oplossingen waarbij een derde partij geïntroduceerd wordt om de secure channel te faciliteren. Hiermee kan voor afnemende partijen ZeroConfig een secure channel opgezet worden. Echter, hier kunnen extra kosten bij komen.

Lage kosten manieren waarbij een derde partij geïntroduceerd wordt zijn:

- 1. OpenDHT(https://github.com/manuels/wireguard-p2p)
- 2. Azure Lambda Serverless
- 3. Discord Project NAT Traversal
- 4. Detour Encrypted Routed Protocol (tailscale)

Literatuurlijst

De eerste bron is *TCP Connections for P2P Apps: A Software Approach to Solving the NAT Problem* van *Jeffrey L. Eppingen*. De tweede geraadplegde bron is *Peer-to-Peer Communication Across Network Address Translators* van *Bryan Ford, Pyda Srisuresh & Den Kegel*. Uit deze bronnen is algemene informatie opgedaan over NAT-traversal methoden. Hiernaast bieden deze bronnen informatie over de onderliggende werking van NAT, en wat de complicerende factoren zijn.

Ten derde is *WireGuard Endpoint Discovery and NAT Traversal using DNS-SD* van *Jordan Whited* geraadpleegd. Ten vierde is *NAT-to-NAT VPN with WireGuard* van *Staaldraad* geraadpleegd. Ten vijfde is RFC 4787 geraadpleegd voor identificatie van het probleem in het NAT protocol. Ten zesde is RFC 3489 geraadpleegd voor het identificeren van verschillende type NAT. Tot slot is *Peer-to-Peer NAT-Traversal for IPSEC* geraadpleegd. Deze bronnen bieden informatie over de implementatie van NAT-Traversal methode binnen VPN-protocollen.

- 1. TCP Connections for P2P Apps: A Software Approach to Solving the NAT Problem van Jeffrey L. Eppingen
- 2. Peer-to-Peer Communication Across Network Address Translators van Bryan Ford, Pyda Srisuresh & Den Kegel
- 3. WireGuard Endpoint Discovery and NAT Traversal using DNS-SD van Jordan Whited
- 4. NAT-to-NAT VPN with Wireguard van Staaldraad
- 5. RFC 4787
- 6. RFC 3489
- 7. Peer-to-Peer NAT-Traversal for IPSec