Learning Mean-Field Games

Anran Hu

UC Berkeley, IEOR

email: anran_hu@berkeley.edu

Joint work with Xin Guo, Renyuan Xu and Junzi Zhang
INFORMS 2019

Generalized Mean-Field Games (GMFG)

Motivating Problem General N-player game and GMFG Existence and Uniqueness of GMFG solution

GMFG with RL

Generalized Mean-Field Games (GMFG)

 $\begin{array}{ll} \mbox{Motivating Problem} \\ \mbox{General N-player game and GMFG} \\ \mbox{Existence and Uniqueness of GMFG solution} \end{array}$

GMFG with RL

Generalized Mean-Field Games (GMFG)

Motivating Problem

General N-player game and GMFG Existence and Uniqueness of GMFG solutior

GMFG with RL

Motivation: a sequential auction game

Ad auction problem for advertisers:

- ► Ad auction: a stochastic game on an ad exchange platform among a large number of players (the advertisers)
- ► <u>Environment</u>: in each round, a web user requests a page, and then a Vickrey-type *second-best-price* auction is run to incentivize advertisers to bid for a slot to display advertisement
- ► Characteristics:
 - partial information (unknown conversion of clicks)
 - ► large population

Question: how should one bid in this sequential game with a **large** population of competing bidders and **unknown** distributions of the conversion of clicks/rewards?

Motivation: sequential auction game

Literature

Reinforcement Learning

Solution: the simultaneous learning and decision-making problem in a sequential auction with a large number of homogeneous bidders.

Mean-Field Games

- **Full model** approach: solve it as an N-player game
 - multi-agent reinforcement learning: computationally intractable
- ► **Approximation** approaches:
 - ▶ independent learners (regarding others as environment) (IL)
 - multi-agent reinforcement learning with first-order (expectation) mean-field approximation (MF-Q, Yang et al., 2018)
- ► Our approach: Reinforcement Learning (RL) + full distribution Mean-Field Game (MFG) approximation

Generalized Mean-Field Games (GMFG)

Motivating Problem

General N-player game and GMFG

Existence and Uniqueness of GMFG solution

GMFG with RL

Classcial N-player Games

N-player game

$$\begin{split} \text{maximize}_{\pi_i} \quad V^i(\pmb{s},\pmb{\pi}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r^i(\pmb{s}_t,a_t^i) | \pmb{s}^0 = \pmb{s}\right] \\ \text{subject to} \quad s_{t+1}^i \sim P^i(\pmb{s}_t,a_t^i) \end{split}$$

- ▶ N players, state space S, action space A;
- $m{s}_t = (s_t^1, \dots, s_t^N) \in \mathcal{S}^N$ is the state vector;
- ▶ $a_t = (a_t^1, \dots, a_t^N) \in \mathcal{A}^N$ is the action vector;
- ▶ admissible (Markovian) policy $\pi_i : \mathcal{S}^N \to \mathcal{P}(\mathcal{A})$, with $\mathcal{P}(\mathcal{X})$ the space of all probability measures over \mathcal{X} ;
- $ightharpoonup r^i$ is the reward function for player i;
- ▶ P^i is the transition dynamics for player i;
- $ightharpoonup \gamma$ is the discount factor;

N-player Games

Definition (N-player game: Nash equilibrium (NE))

NE is a set of strategies such that no agent can benefit from unilaterally deviating from this set of strategies. Formally, π^* is an NE if for all i and s,

$$V^{i}(\mathbf{s}, \boldsymbol{\pi}^{\star}) \geq V^{i}(\mathbf{s}, (\pi_{1}^{\star}, \dots, \pi_{i}, \dots, \pi_{N}^{\star}))$$

holds for any $\pi_i: \mathcal{S}^N \to \mathcal{P}(\mathcal{A})$.

From N-player Game to MFG

N-player game

$$\begin{split} \text{maximize}_{\pi_i} \quad V^i(\pmb{s},\pmb{\pi}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r^i(\pmb{s}_t,a_t^i) | \pmb{s}_0 = \pmb{s}\right] \\ \text{subject to} \quad s_{t+1}^i \sim P^i(\pmb{s}_t,a_t^i). \end{split}$$

Assume identical, indistinguishable and interchangeable players. When the number of players goes to infinity, view the limit of $s_t^{-i} = (s_t^1, \dots, s_t^{i-1}, s_t^{i+1}, \dots, s_t^N)$ as population state distribution μ_t .

MFG

$$\begin{split} \text{maximize}_{\pi} \quad V(s,\pi,\{\mu_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t,\mu_t) | s_0 = s\right] \\ \text{subject to} \quad s_{t+1} \sim P(s_t,a_t,\mu_t). \end{split}$$

Mean-Field Games (MFG)

MFG

$$\begin{split} \text{maximize}_{\pi} \quad & V(s,\pi,\{\mu_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t,\mu_t) | s_0 = s\right] \\ \text{subject to} \quad & s_{t+1} \sim P(s_t,a_t,\mu_t). \end{split}$$

- ▶ infinite number of homogeneous players, state space S, action space A;
- ▶ $s_t \in \mathcal{S}$ and $a_t \in \mathcal{A}$ are the state and action of a representative agent at time t;
- ▶ $\mu_t \in \mathcal{P}(\mathcal{S})$ is the population state distribution at time t;
- ▶ admissible policy $\pi: \mathcal{S} \times \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{A})$;
- ightharpoonup r is the reward function, P is the transition dynamics.

Mean-Field Games (MFG)

Definition (Stationary NE for MFGs)

In MFGs, a pair (π^*, μ^*) is called a stationary NE if

1. (Single agent side) For any policy π and any initial state $s \in \mathcal{S}$, we have

$$V(s, \pi^{\star}, \{\mu^{\star}\}_{t=0}^{\infty}) \ge V(s, \pi, \{\mu^{\star}\}_{t=0}^{\infty}).$$

2. (Population side) $\mathbb{P}_{s_t} = \mu^*$ for all $t \geq 0$, where $\{s_t\}_{t=0}^{\infty}$ is the dynamics under control π^* starting from $s_0 \sim \mu^*$, with $a_t \sim \pi^*(s_t, \mu^*)$, $s_{t+1} \sim P(\cdot | s_t, a_t, \mu^*)$.

General N-player Games

$N{\operatorname{\mathsf{-player}}}$ game

$$\begin{split} \text{maximize}_{\pi_i} \quad V^i(\boldsymbol{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\boldsymbol{s}_t, \boldsymbol{a}_t^i) | \boldsymbol{s}_0 = \boldsymbol{s} \right] \\ \text{subject to} \quad s_{t+1}^i \sim P^i(\boldsymbol{s}_t, \boldsymbol{a}_t^i). \end{split}$$

General N-player game

$$\begin{split} \text{maximize}_{\pi_i} \quad V^i(\boldsymbol{s}, \boldsymbol{\pi}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r^i(\boldsymbol{s}_t, \boldsymbol{a}_t) | \boldsymbol{s}_0 = \boldsymbol{s}\right] \\ \text{subject to} \quad s^i_{t+1} \sim P^i(\boldsymbol{s}_t, \boldsymbol{a}_t) \end{split}$$

General N-player Games

$N{\operatorname{\mathsf{-player}}}$ game

$$\begin{split} \text{maximize}_{\pi_i} \quad V^i(\boldsymbol{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\boldsymbol{s}_t, a^i_t) | \boldsymbol{s}_0 = \boldsymbol{s} \right] \\ \text{subject to} \quad s^i_{t+1} \sim P^i(\boldsymbol{s}_t, a^i_t). \end{split}$$

General N-player game

$$\begin{split} & \text{maximize}_{\pi_i} \quad V^i(\pmb{s},\pmb{\pi}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r^i(\pmb{s}_t, \textcolor{red}{\pmb{a}_t}) | \pmb{s}_0 = \pmb{s}\right] \\ & \text{subject to} \quad s^i_{t+1} \sim P^i(\pmb{s}_t, \textcolor{red}{\pmb{a}_t}) \end{split}$$

$$\mathbf{a_t} = (a_t^1, \cdots, a_t^N).$$

Generalized Mean-Field Games (GMFG)

MFG

$$\begin{split} & \text{maximize}_{\pi} \quad V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) | s_0 = s\right] \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, \mu_t). \end{split}$$

GMFG

$$\begin{split} \text{maximize}_{\pi} \quad & V(s, \pi, \{L_t\}_{t=0}^{\infty}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \textcolor{red}{L_t}) | s_0 = s\right] \\ \text{subject to} \quad & s_{t+1} \sim P(s_t, a_t, \textcolor{red}{L_t}). \end{split}$$

▶ $L_t \in \Delta^{|\mathcal{S}||\mathcal{A}|}$ is the population state-action pair distribution at time t, with state marginal μ_t and action marginal α_t (population action distribution);

Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair $(\pi^\star,\,L^\star)$ is called a stationary NE if

1. (Single agent side) For any policy π and any initial state $s \in \mathcal{S}$, we have

$$V(s, \pi^*, \{L^*\}_{t=0}^{\infty}) \ge V(s, \pi, \{L^*\}_{t=0}^{\infty}).$$

2. (Population side) $\mathbb{P}_{s_t,a_t} = L^\star$ for all $t \geq 0$, where $\{s_t,a_t\}_{t=0}^\infty$ is the dynamics under control π^\star starting from $s_0 \sim \mu^\star$, with $a_t \sim \pi^\star(s_t,\mu^\star)$, $s_{t+1} \sim P(\cdot|s_t,a_t,L^\star)$, and μ^\star being the population state marginal of L^\star .

Generalized Mean-Field Games (GMFG)

Motivating Problem
General N-player game and GMFG
Existence and Uniqueness of GMFG solution

GMFG with RL

Fixed point/Three-step approach

▶ Step 1 (Γ_1) : given L, solve the stochastic control problem to get π_L^{\star} :

$$\begin{split} \text{maximize}_{\pi} \quad V(s,\pi,L) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t,L) | s_0 = s\right], \\ \text{subject to} \quad s_{t+1} \sim P(s_t,a_t,L). \end{split}$$

- ▶ Step 2 (Γ_2) : given π_L^{\star} , update from L for one time step to get L' following the dynamics.
- ▶ Step 3: Check whether L' matches L, and repeat.

Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu & Zhang, 2019)

For any GMFG, if $\Gamma_2 \circ \Gamma_1$ is contractive, then there exists a unique stationary NE. In addition, the three-step approach converges.

Question: How to solve the GMFG when there is uncertainty in r and P?

Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu & Zhang, 2019)

For any GMFG, if $\Gamma_2 \circ \Gamma_1$ is contractive, then there exists a unique stationary NE. In addition, the three-step approach converges.

Question: How to solve the GMFG when there is uncertainty in r and P?

Generalized Mean-Field Games (GMFG)

Motivating Problem General N-player game and GMFG Existence and Uniqueness of GMFG solution

GMFG with RL

GMF-Q: Q-learning in GMFG

Convergence and Complexity of RL Numerical Performance

Reinforcement learning: Q-learning

lacktriangle Single agent problem with unknown P and r

$$\begin{split} & \text{maximize}_{\pi} \quad V(s,\pi) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t) | s_0 = s\right], \\ & \text{subject to} \quad s_{t+1} \sim P(s_t,a_t), \quad a_t \sim \pi(s_t), \quad t \geq 0. \end{split}$$

- ▶ Optimal value $V^*(s) := \max_{\pi} V(s, \pi)$
- ▶ Q-function: $Q^*(s,a) := \mathbb{E}r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^*(s')$
- Bellman equation (for Q-function):

$$Q^{\star}(s, a) = \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a'} Q^{\star}(s', a')$$

Q-learning: stochastic approximation to the Bellman equation:

$$Q^{k+1}(s, a) \leftarrow (1 - \beta_t(s, a))Q^k(s, a) + \beta_t(s, a) \left[r(s, a) + \gamma \max_{a'} Q^k(s', a') \right]$$

Bridge MFG with RL: Finding NE

Three-step approach revisited:

▶ Step 1: given L, solve the stochastic control problem to get π_L^{\star} :

$$\begin{split} & \text{maximize}_{\pi} \quad V(s,\pi,L) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t,L) | s_0 = s\right], \\ & \text{subject to} \quad s_{t+1} \sim P(s_t,a_t,L). \end{split}$$

- Step 2: given π_L^{\star} , update from L for one time step to get L' following the dynamics.
- ▶ Step 3: Check whether L' matches L.

Bridge MFG with RL: Finding NE

Three-step approach revisited (when P and R are unknown):

- ▶ Step 1: given L, solve a RL problem with transition dynamics $P_L(s'|s,a) := P(s'|s,a,L)$ and reward $r_L(s,a) := r(s,a,L)$ via Q-learning.
- Step 2: given π_L^{\star} , update from L for one time step to get L' following the dynamics.
- ▶ Step 3: Check whether L' matches L.

Remark: $\pi_L^{\star}(s) \in \operatorname{argmax}_a Q_L^{\star}(s,a)$. When argmax is non-unique, replace it with $\operatorname{argmax-e}$, which assigns equal probability to the maximizers.

Naive RL Algorithm for GMFG

Algorithm 1 Naive Q-learning for GMFGs

- 1: Input: Initial population state-action pair L_0
- 2: **for** $k = 0, 1, \cdots$ **do**
- 3: Perform Q-learning to find the Q-function $Q_k^{\star}(s,a) = Q_{L_k}^{\star}(s,a)$ of an MDP with dynamics $P_{L_k}(s'|s,a)$ and reward distributions $R_{L_k}(s,a)$.
- 4: Solve $\pi_k \in \Pi$ with $\pi_k(s) = \operatorname{argmax-e}(Q_k^{\star}(s,\cdot))$.
- 5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k , and obtain L_{k+1} from $\mathcal{G}(s,\pi_k,L_k)$.
- 6: end for

Failure of the Naive Algorithm

Failure examples:

Figure: Fluctuations of Naive Algorithm (30 sample paths).

Problems in the Naive Algorithm: Approximation Errors

Algorithm 1 Naive Q-learning for GMFGs

- 1: **Input**: Initial population state-action pair L_0
- 2: **for** $k = 0, 1, \cdots$ **do**

impossible

3: Perform Q-learning to find the Q-function $Q_k^{\star}(s,a) = Q_{L_k}^{\star}(s,a)$ of an MDP with dynamics $P_{L_k}(s'|s,a)$ and reward distributions $R_{L_k}(s,a)$.

unstable

- 4: Solve $\pi_k \in \Pi$ with $\pi_k(s) = \operatorname{argmax-e}(Q_k^{\star}(s,\cdot))$.
- 5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k , and obtain L_{k+1} from $\mathcal{G}(s,\pi_k,L_k)$.

unstable

6: end for

Stable Algorithm for GMFG (GMF-Q)

Algorithm 2 Q-learning for GMFGs (GMF-Q)

- 1: **Input**: Initial L_0 , tolerance $\epsilon > 0$.
- 2: **for** $k = 0, 1, \cdots$ **do**
- 3: Perform Q-learning for T_k iterations to find the approximate Q-function $\hat{Q}_k^{\star}(s,a) = \hat{Q}_{L_k}^{\star}(s,a)$ of an MDP with dynamics $P_{L_k}(s'|s,a)$ and reward distributions $R_{L_k}(s,a)$.
- 4: Compute $\pi_k \in \Pi$ with $\pi_k(s) = \operatorname{softmax}_c(\hat{Q}_k^{\star}(s,\cdot))$.
- 5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k , and obtain \tilde{L}_{k+1} from $\mathcal{G}(s,\pi_k,L_k)$.
- 6: Find $L_{k+1} = \operatorname{Proj}_{S_{\epsilon}}(L_{k+1})$
- 7: end for

Remark. Here S_{ϵ} is a ϵ -net of L, and $\operatorname{softmax}_{c}(x)_{i} = \frac{\exp(cx_{i})}{\sum_{j=1}^{n} \exp(cx_{j})}$.

Generalized Mean-Field Games (GMFG)

Motivating Problem General N-player game and GMFG Existence and Uniqueness of GMFG solutior

GMFG with RL

GMF-Q: Q-learning in GMFG

Convergence and Complexity of RL

Numerical Performance

Convergence and Complexity of GMF-Q

Theorem 2 (Guo, Hu, Xu & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for any specified tolerances ϵ , $\delta>0$, set T_k , c and S_ϵ appropriately. Then with probability at least $1-2\delta$, $W_1(L_{K_\epsilon},L^\star)=O(\epsilon)$, and the total number of iterations $T=\sum_{k=0}^{K_\epsilon-1}T_k$ is bounded by

$$T = O\left(K_{\epsilon}^{19/3} \left(\log(K_{\epsilon}/\delta)\right)^{41/3}\right).$$

Here $K_{\epsilon} := \left\lceil 2 \max\left\{ (\eta \epsilon)^{-1/\eta}, \log_d(\epsilon/\max\{\operatorname{diam}(\mathcal{S})\operatorname{diam}(\mathcal{A}), 1\}) + 1) \right\} \right\rceil$ is the number of outer iterations.

Here W_1 is the ℓ_1 Wasserstein distance.

Generalized Mean-Field Games (GMFG)

Motivating Problem General N-player game and GMFG Existence and Uniqueness of GMFG solution

GMFG with RL

Repeated Auction Example Revisited

At each round t:

- randomly select M-1 players (from N, possibly infinite players) to compete with the representative advertiser
- $lackbox{ } a_t^M$: second best price among the bids from M players
- $\qquad \qquad \text{reward } r_t = \mathbf{I}_{w_t^M = 1} \left[(v_t a_t^M) (1 + \rho) \mathbf{I}_{s_t < a_t^M} (a_t^M s_t) \right]$
 - \triangleright v_t : conversion
 - w_t : indicator of winning (bid the highest price)
 - ▶ s_t: current budget
 - ho: penalty of overbidding
- dynamic of the budget:

$$s_{t+1} = \left\{ \begin{array}{ll} s_t, & w_t \neq 1, \\ s_t - a_t^M, & w_t = 1 \text{ and } a_t^M \leq s_t, \\ 0, & w_t = 1 \text{ and } a_t^M > s_t. \end{array} \right.$$

▶ Budget fulfillment: modify the dynamics of s_{t+1} with a non-negative random budget fulfillment $\Delta(s_{t+1})$ after the auction clearing, such that $\hat{s}_{t+1} = s_{t+1} + \Delta(s_{t+1})$.

Performance against full-information

When transition P and reward r are known, replace **Q-learning** with value iteration (VI) – **GMF-V**.

$$Q_L^{k+1}(s,a) \leftarrow \mathbb{E}r(s,a,L) + \gamma \mathbb{E}_{s' \sim P(s,a)} \max_{a'} Q_L^k(s',a'),$$

Table: Q-table with $T_k^{\textit{GMF-V}} = 5000$.

T_k^{GMF-Q}	1000	3000	5000	10000
ΔQ	0.21263	0.1294	0.10258	0.0989

Here $\Delta Q:=\frac{\|Q_{\mathrm{GMF-V}}-Q_{\mathrm{GMF-Q}}\|_2}{\|Q_{\mathrm{GMF-V}}\|_2}$ is the relative L_2 distance between the Q-tables.

Performance against full-information

Figure: Q-tables: GMF-Q vs. GMF-V. 20 outer iterations.

Conclusion: our algorithm (requiring no specific information on P and R) can learn almost as well as algorithms with full information.

Performance metric:

$$C(\boldsymbol{\pi}) = \frac{1}{N|\mathcal{S}|^N} \sum\nolimits_{i=1}^N \sum\nolimits_{\boldsymbol{s} \in \mathcal{S}^N} \frac{\max_{\pi^i} V_i(\boldsymbol{s}, (\boldsymbol{\pi}^{-i}, \pi^i)) - V_i(\boldsymbol{s}, \boldsymbol{\pi})}{|\max_{\pi^i} V_i(\boldsymbol{s}, (\boldsymbol{\pi}^{-i}, \pi^i))| + \epsilon_0}.$$

Here $\epsilon_0>0$ is a safeguard, and is taken as 0.1 in the experiments. If $\pmb{\pi}^*$ is an NE, by definition, $C(\pmb{\pi}^*)=0$ and it is easy to check that $C(\pmb{\pi})\geq 0$.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player game with first-order mean-field approximation, Yang et al., 2018).

Figure: Learning accuracy based on $C(\pi)$. |S| = |A| = 10, N = 20.90% confidence interval, 20 sample paths.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player game with first-order mean-field approximation, Yang et al., 2018).

Figure: Learning accuracy based on $C(\pi)$. $|\mathcal{S}| = |\mathcal{A}| = 20$, N = 20. 90% confidence interval, 20 sample paths.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player game with first-order mean-field approximation, Yang et al., 2018).

Figure: Learning accuracy based on $C(\pi)$. $|\mathcal{S}| = |\mathcal{A}| = 10, N = 40.90\%$ confidence interval, 20 sample paths.

Conclusions

In this work, we

- build a generalized mean-field games framework with learning in a MFG;
- establish the unique existence for the GMFG solution for the discrete time version;
- propose a Q-learning algorithm with convergence and complexity analysis;
- numerical experiments demonstrate superior performance compared to existing RL algorithms.

Thank you!

Reference:

Guo, X., Hu, A., Xu, R. and Zhang, J. (2019). Learning Mean-Field Games. arXiv preprint arXiv:1901.09585.

Shah, D. and Xie, Q. (2018). **Q-learning with Nearest Neighbors.**In Advances in Neural Information Processing Systems, pp. 3111-3121.