

Faculty of Computers and Artificial intelligence

Discrete Mathematics

Lecture 8 Relations Part 2

□ Definition - Composite

Let R be a relation from a set A to a set B and S a relation from B to a set C. The *composite* of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

□ Example 1:

SOR

What is the composite of the relations R and S, where R is the relation from {1, 2, 3} to {1, 2, 3, 4} with

 $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with

$$S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}$$
?

□ Definition - Composite

$$S = \left\{ (1,0), (2,0), (3,1), (3,2), (4,1) \right\}$$

$$S \circ R$$

□ Example 1:

Solution:

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

□ Definition - Powers

Let R be a relation on the set A.

The powers R^n , n = 1, 2, 3, ..., are defined recursively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

The definition shows that $R^2 = R \circ R$, $R^3 = R^2 \circ R$, and so on.

$$R^4 = R^3 \circ R \quad R^5 = R^4 \circ R$$

□ Example 2:

Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}.$

Find the powers R^n , n = 2, 3, 4, ...

Solution:

$$R^2 = R \circ R = \{(1,1), (2,1), (3,1), (4,2)\}$$

$$R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$$

$$R^4 = R^3 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$$

 R^4 is the same R^3 , it is also following that $R^n = R^3$, n = 5, 6, 7, ...

□ n-ary Relations

Let $A_1, A_2, ..., A_n$ be sets. An *n-ary relation* on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

The sets $A_1, A_2, ..., A_n$ are called the *domains* of the relation, and n is called its *degree*.

□ Example 1:

Let R be the relation on $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ consisting of triples (a, b, c), where a, b, and c are integers with a < b < c.

Then $(1,2,3) \in R$, but $(2,4,3) \notin R$. The degree of this relation is 3. Its domains are all equal to the set of natural numbers **N**.

Representing Relations Using Matrices

A relation between finite sets can be represented using a **zero-one matrix**. Suppose that R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ to $B = \{b_1, b_2, \dots, b_n\}$.

The relation R can be represented by the matrix $\mathbf{M}_R = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 \text{ if } (a_i, b_j) \in R, \\ 0 \text{ if } (a_i, b_j) \notin R. \end{cases}$$

Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Let R be the relation from A to B containing (a, b) if $a \in A$, $b \in B$, and a > b.

What is the matrix representing R (\mathbf{M}_R) if $a_1 = 1$, $a_2 = 2$, and $a_3 = 3$, and $b_1 = 1$ and $b_2 = 2$?

Solution:

What is the matrix representing if

$$R = \{(2,1), (3,1), (3,2)\}$$

□ Example 2:

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d, e\}$. Which ordered pairs are in the relation R represented by the matrix

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}?$$

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}?$$

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}?$$

$$\mathbf{M}_{R} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}?$$

Solution:

$$R = \{(1,b), (2,a), (2,c), (2,d), (3,a), (3,c), (3,e)\}$$

□ Example 3:

Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation R represented by the matrix

$$M_R = \left[egin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array}
ight]?$$

Solution: Because R consists of those ordered pairs (a_i,b_j) with $m_{ij}=1$, it follows that:

$$R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), \{(a_3, b_3), (a_3, b_5)\}.$$

The zero-one Matrix for a Reflexive Relation. (Off diagonal elements can be 0 or 1):

Matrices for Symmetric and Antisymmetric Relations (Diagonal elements can be 0 or 1):

(b) Antisymmetric

□ Example 4:

Suppose that the relation R on a set is represented

by the matrix

$$\mathbf{M}_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Is *R* reflexive, symmetric, and/or antisymmetric? Solution:

Because all the diagonal elements of this matrix are equal to $\mathbf{1}$, R is **reflexive**. Moreover, \mathbf{M}_R is **symmetric**. It is also easy to see that R is **not antisymmetric**.

□ The Boolean Operations

The Boolean operations *join* and *meet* can be used to find the matrices representing the union and the intersection of two relations.

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2}$$
 and $\mathbf{M}_{R_1 \cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2}$.

□ Example 4:

Suppose that the relations R_1 and R_2 on a set A are represented by the matrices

$$\mathbf{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

What are the matrices representing $R_1 \cup R_2$ and $R_1 \cap R_2$?

□ Example 4:

$$\mathbf{M}_{R_1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R_2} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

What are the matrices representing $R_1 \cup R_2$ and $R_1 \cap R_2$?

Solution:

$$\mathbf{M}_{R_1 \cup R_2} = \mathbf{M}_{R_1} \vee \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$

$$\mathbf{M}_{R_1\cap R_2} = \mathbf{M}_{R_1} \wedge \mathbf{M}_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Questions?