

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

ДОМАШНЕЕ ЗАДАНИЕ

Дисциплина: Программирование параллельных процессов

Студент	ИУ7-31М		Е.В. Брянская
•	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватели	6		А.П. Ковтушенко
-		(Подпись, дата)	(И.О. Фамилия)

Постановка задачи

Разработать процедуру быстрой сортировки. Обосновать проектное решение (выбор алгоритма). Обеспечить равномерную загрузку процессоров. Результат вынести в текстовый файл построчно.

Исследовать зависимость времени счета от размерности задачи и количества процессоров.

Способы реализации

Ключевые моменты алгоритма быстрой сортировки:

- 1. на очередном шаге выбирается опорный элемент им может быть любой элемент массива;
- 2. все остальные элементы массива сравниваются с опорным и те, которые меньше него, ставятся слева от него, а которые больше или равны справа;
- 3. для двух получившихся блоков массива (меньше опорного, и больше либо равны опорному) производится точно такая же операция выделяется опорный элемент и всё идёт точно так же, пока в блоке не останется один элемент.

С привлечением МРІ возможны следующие реализации данного алгоритма.

1 способ.

0 узел рассылает всем остальным узлам исходный массив.

Все узлы делятся на подгруппы, которые в свою очередь входят в другие подгруппы более высокого уровня, например, каждый из узлов входит в подгруппу из одного узла, которые входят в подгруппу из двух, и так далее. В каждой подгруппе выделяется лидер.

0 узел производит одну итерацию быстрой сортировки и отправляет лидеру старшей подгруппы часть массива, которая расположена правее опорной точки, после этого снова выполняет сортировку и отправку правой части массива, но уже подгруппе уровня ниже предыдущего. Так продолжается до

тех пор, пока число элементов в подгруппе не дойдёт до 1, то есть 0 узел остаётся единственным представителем, в таком случае, выполняется финальная итерация быстрой сортировки.

Аналогичные действия происходят и на других узлах, после получения своей части массива.

2 способ

Исходный массив разделяется на примерно равные части по числу доступных процессоров. Далее 0 узел рассылает каждому из них соответствующие им части массива.

Каждый из узлов, получив свою часть массива, производит сортировку и отправляет его 0 узлу, который сливает свой массив с тем, что получил от очередного процессора.

<u> 3 способ</u>

Модификация 2 способа, отличие в том, что отсортированные части массива узлы сливают попарно, а не отправляют всё 0 узлу.

Результаты

Были проведены замеры времени по следующим параметрам:

- число узлов 1, 2, 4, 8, 10;

Результаты представлены в таблице ниже.

Проста	я реализация	ı	1 способ 2 способ		3 способ							
•	•		Cast, ит	еративное р	азделение	Каждыі	Каждый узел по фрагменту		2 спосо	2 способ + попарное слияние		
			массива			массива	массива, сливает 0 узел		подмассивов			
Число	Размер	Время, с	Число	Размер	Время, с	Число	Размер	Время, с	Число	Размер	Время, с	
узлов	массива		узлов	массива		узлов	массива		узлов	массива		
1	1,00E+03	0,000134	1	1,00E+03	0,000124	1	1,00E+03	0,000127	1	1,00E+03	0,000120	
	1,00E+04	0,002508		1,00E+04	0,001556		1,00E+04	0,001544		1,00E+04	0,001499	
	1,00E+05	0,018430		1,00E+05	0,018149		1,00E+05	0,018762		1,00E+05	0,018414	
	1,00E+06	0,232421		1,00E+06	0,206677		1,00E+06	0,220227		1,00E+06	0,215197	
	1,00E+07	2,540060		1,00E+07	2,434754		1,00E+07	2,486289		1,00E+07	2,465110	
	4,00E+07	10,270959		4,00E+07	10,154075		4,00E+07	10,437589		4,00E+07	10,411373	
	6,00E+07	16,228383		6,00E+07	15,584503		6,00E+07	15,855670		6,00E+07	15,770660	
	1,00E+08	27,104227		1,00E+08	26,164843		1,00E+08	26,624076		1,00E+08	26,786284	
			2	1,00E+03	0,011356	2	1,00E+03	0,011378	2	1,00E+03	0,011318	
				1,00E+04	0,012510		1,00E+04	0,012133		1,00E+04	0,012866	
				1,00E+05	0,024822		1,00E+05	0,020749		1,00E+05	0,021212	
				1,00E+06	0,195171		1,00E+06	0,134922		1,00E+06	0,138236	
				1,00E+07	2,191241		1,00E+07	1,433813		1,00E+07	1,467939	
				4,00E+07	8,935597		4,00E+07	5,941506		4,00E+07	6,114605	
				6,00E+07	13,811556		6,00E+07	8,974751		6,00E+07	9,157403	
				1,00E+08	23,165154		1,00E+08	15,014164		1,00E+08	15,420049	
			4	1,00E+03	0,021881	4	1,00E+03	0,031686	4	1,00E+03	0,032779	
				1,00E+04	0,021862		1,00E+04	0,032034		1,00E+04	0,033631	
				1,00E+05	0,030377		1,00E+05	0,038440		1,00E+05	0,037782	
				1,00E+06	0,165307		1,00E+06	0,114217		1,00E+06	0,109340	
				1,00E+07	2,069434		1,00E+07	1,017964		1,00E+07	0,958958	
				4,00E+07	9,227727		4,00E+07	4,159074		4,00E+07	3,787686	
				6,00E+07	8,046086		6,00E+07	6,069553		6,00E+07	5,663826	
				1,00E+08	17,661725		1,00E+08	10,242729		1,00E+08	9,610553	
			8	1,00E+03	0,032696	8	1,00E+03	0,072052	8	1,00E+03	0,073569	
				1,00E+04	0,034939		1,00E+04	0,071992		1,00E+04	0,074436	
				1,00E+05	0,032759		1,00E+05	0,076626		1,00E+05	0,078705	
				1,00E+06	0,106812		1,00E+06	0,152238		1,00E+06	0,139428	
				1,00E+07	1,969279		1,00E+07	0,949020		1,00E+07	0,712671	
				4,00E+07	5,612908		4,00E+07	3,711682		4,00E+07	3,518538	

		6,00E+07	7,487763		6,00E+07	5,594829		6,00E+07	4,626111
		1,00E+08	17,696990		1,00E+08	10,281099		1,00E+08	6,648949
	10	1,00E+03	0,033358	10	1,00E+03	0,091995	10	1,00E+03	0,092632
		1,00E+04	0,033279		1,00E+04	0,091553		1,00E+04	0,092625
		1,00E+05	0,040896		1,00E+05	0,096811		1,00E+05	0,096196
		1,00E+06	0,112668		1,00E+06	0,180145		1,00E+06	0,145656
		1,00E+07	1,489346		1,00E+07	0,981820		1,00E+07	0,726073
		4,00E+07	5,427860		4,00E+07	3,862866		4,00E+07	2,855161
		6,00E+07	7,329851		6,00E+07	5,800010		6,00E+07	4,091891
		1,00E+08	18,356675		1,00E+08	11,087198		1,00E+08	6,893851

Графики зависимостей

Зависимость времени от количества узлов

Исходя из замеров, можно сделать вывод о том, что целесообразно исследовать показатели только на больших размерах массива. Ниже приведено два графика для 6e7 и 1e8 элементов.

Далее будут приведены расчёты только для размера 1е8.

Ускорение от числа узлов

Эффективность

OpenMP

Число	Размер массива	Время, с
потоков	T domep nadoniba	270, 0
1	1,00E+03	0,000134
	1,00E+04	0,002508
	1,00E+05	0,018430
	1,00E+06	0,232421
	1,00E+07	2,540060
	4,00E+07	10,270959
	6,00E+07	16,228383
	1,00E+08	27,104227
2	1,00E+03	0,000271
	1,00E+04	0,001240
	1,00E+05	0,013231
	1,00E+06	0,163178
	1,00E+07	1,711063
	4,00E+07	7,268493
	6,00E+07	11,413092
	1,00E+08	18,678325
4	1,00E+03	0,000548
	1,00E+04	0,001280
	1,00E+05	0,009520
	1,00E+06	0,120951
	1,00E+07	1,005451
	4,00E+07	5,502056
	6,00E+07	6,338169
	1,00E+08	12,188033

Ускорение и эффективность рассчитываются для массива в 1е8 элементов.

Число	Ускорение
потоков	
1	1
2	1,45110587
4	2,22383932

Число	Эффективность
потоков	
1	1
2	0,72555293
4	0,55595983

Далее все замеры производятся с привлечением 4 потоков и только числе узлов равном 1, 2, 4, т.к. на момент проведения замеров 3 из 10 узлов были не доступны.

Число	Размер массива	Время, с
узлов		
1	1,00E+03	0,000343
	1,00E+04	0,001049
	1,00E+05	0,010519
	1,00E+06	0,105294
	1,00E+07	1,349855

4,00E+07	4,689517
6,00E+07	7,073439
1,00E+08	11,042553
1,00E+03	0,012162
1,00E+04	0,012659
1,00E+05	0,016407
1,00E+06	0,076262
1,00E+07	1,060716
4,00E+07	3,573357
6,00E+07	7,454172
1,00E+08	9,235273
1,00E+03	0,032819
1,00E+04	0,033342
1,00E+05	0,037332
1,00E+06	0,091422
1,00E+07	0,765110
4,00E+07	3,215622
6,00E+07	5,132323
1,00E+08	7,937487
	6,00E+07 1,00E+08 1,00E+03 1,00E+04 1,00E+05 1,00E+06 1,00E+07 4,00E+07 6,00E+07 1,00E+08 1,00E+03 1,00E+04 1,00E+05 1,00E+06 1,00E+07 4,00E+07 6,00E+07