Data Mining (EECS 6412)

Neural Networks (Introduction and Backpropagation)

Aijun An
Department of Electrical Engineering and Computer Science
York University

What is an Artificial Neural Network?

- ▶ It is a formalism for representing functions inspired from biological systems
- ▶ It consists of a few layers of interconnected computing units
- ► Each unit computes a simple function.
- The inputs of the units in one layer are the outputs of the units in the previous layer.
- ► Each connection is associated with a weight.
- ▶ Parallel computing can be performed among the units in each layer

Biological Motivation

- ▶ Biological Learning Systems are built of very complex webs of interconnected neurons.
 - ▶ Number of neurons: 10¹⁰
 - ▶ Connections per neuron: $10^4 10^5$
- ▶ Information-Processing abilities of biological neural systems must follow from highly *parallel processes* operating on representations that are distributed over many neurons
 - ▶ Scene recognition time: 0.1 second
- ANNs attempt to capture this mode of computation

3

An Example of Neural Networks

- Each hidden or output node or unit is called a neuron
- ▶ Each connection is associated with a weight
- ▶ The network is usually *fully connected*, unless otherwise specified.
 - Each unit provides an input to each unit in the next layer

Feed-Forward Neural Network

- ► The network is *feed-forward* if none of the connections cycles back to an input unit or a unit of a previous layer.
- ▶ An example:

5

Single-layer Feed-Forward Neural Network

▶ A single-layer network does not have hidden layers

► The input layer is not counted as a "layer" because no computation is performed there.

Multi-layer Feed-Forward Neural Network

- ► A multilayer network contains one or more hidden layers
- ► The examples in slides 4 and 5 are *multi-layer feed-forward neural networks*.
- ▶ It is the popular neural network structure
- ▶ It overcomes the limitation of single-layer NN: single-layer NN cannot handle non-linearly separable learning tasks.

7

What Happens inside a Neuron?

▶ A neuron is the basic information processing unit of a NN

- A neuron first sums the weighted inputs and then apply an activation function
- Activation function maps a large input domain onto a smaller range (thus called *squashing function*)

Examples of Activation Functions

▶ Threshold logic function, such as,

$$f(x) = sign(x) = \begin{cases} 1 & x > 0 \\ -1 & otherwise \end{cases}$$

- ▶ Sigmoid function:
 - commonly used

$$f(x) = \frac{1}{1 + e^{-x}}$$

differentiable:

$$f'(x) = f(x)(1 - f(x))$$

a good feature for the purpose of training neural networks

9

Examples of Activation Functions

▶ Tanh function:

- ► Tanh is a scaled sigmoid: tanh(x)=2sigm(2x)-1
- ▶ Range: (-1, 1)
- Differentiable.
- ▶ Advantage over sigmoid: larger derivative
 - ► For input range [-1,1], the derivative of Tanh ranges [0.42, 1], while the derivative of Sigmoid ranges [0.20, 0.25].

Examples of Activation Functions

- ▶ Rectified Linear Units (ReLU),
 - $f(x) = \max(0, x)$

- ▶ Commonly used in deep neural networks
- Differentiable:

$$f'(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$$

- ▶ Major advantages:
 - ▶ Efficient computation
 - ▶ Sparse activation
 - ▶ No vanishing gradient problem in network training

Function Modeled by a Neural Network

- A neural network can be used to model a function:
 - $\mathbf{y} = \mathbf{f}(\mathbf{x})$ where \mathbf{x} is the input vector and \mathbf{y} is the output vector
- ▶ The function it models is determined by
 - ▶ Topology of the neural network:
 - the number of input units in the input layer
 - ▶ the number of hidden layers
 - ▶ the number of units in each hidden layer
 - ▶ the number of units in the output layer
 - ▶ Values of weights
 - ▶ Activation function chosen.

13

What function does this NN model?

- \rightarrow x₁ and x₂ takes binary values of $\{-1, 1\}$
- ▶ Activation function is:

$$f(x) = sign(x) = \begin{cases} 1 & x > 0 \\ -1 & otherwise \end{cases}$$

Neural Networks for Classification

- A neural net can be used for both regression and classification.
- ▶ To model a classification function
 - If there are two classes, we can use one output unit y.
 - ▶ If y>0.5, class 1
- ▶ If y>0, class 1
- ▶ If y<0.5, class 0
- ▶ If y<0, class 0
- ▶ If there are more than two classes,
 - we can use one output unit per class.
 - ► Example is classified into the class corresponding to the output unit with the largest output value.
 - ▶ To output probability of each class, a *soft-max* layer is added:

$$z_i = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

15

Inputs to Neural Networks

- ▶ Neural net can take continuous input variables naturally.
- A discrete attribute can be encoded by
 - using one input unit per value of the attribute
 - ▶ For example, if the domain of attribute A is {a1, a2, a3}
 - ▶ We assign 3 input units to represent A.
 - ▶ If A=a1, the input to the 3 units is 1, 0, 0.
 - ▶ If A =a2, the input to the 3 units is 0, 1, 0.
 - ▶ If A=a3, the input to the 3 units is 0, 0, 1.
- The input values to a neural net are usually normalized to speed up the learning phase.

Training a Neural Network

- ▶ Before training can begin, the user must decide on the network topology
 - ▶ # of hidden layers and # of units in each hidden layer
 - ▶ Type of the activity function
 - no clear rules on the best topology
 - network design is a trial-and-error process
- ▶ The objective of training
 - search in the space of sets of weights to obtain a set of weights that makes almost all the tuples in the training data classified correctly.
- ▶ Also called *connectionist* learning
- ► Most popular neural network learning algorithm is *backpropagation*

13

Training: Backpropagation algorithm

- ▶ Performs learning on a multi-layer feed-forward neural network, given a set of *N* labeled training examples
- Objective: searches for weight values that minimize a loss function, e.g., the total error of the network over the set of training examples (training set):

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (t_k^n - o_k^n)^2$$

N is the number of training examples, K is the number of output units, t is the true output and o is the computed output

Training: Backpropagation algorithm

- ► The algorithm first initializes the weights with small random values
- ► Then backpropagation consists of the repeated application of the following two passes:
 - ► Forward pass: in this step the network is activated on one example and the output of the network is computed.
 - ▶ Backward pass: in this step, starting at the output layer, the error of the output layer is computed and is propagated backwards through the network, layer by layer, and weights are updated.

19

Backpropagation

▶ Back-propagation training algorithm

▶ Backprop adjusts the weights of the NN in order to minimize the network total mean squared error.

Steps of Backpropagation Algorithm

- ▶ Initialize the weights with small random values (e.g., ranging from -1.0 to 1.0, or -0.5 to 0.5)
- ► For each training example, (assuming sigmoid function is used)
 - ▶ Propagate the inputs forward to obtain the output
 - the activation values of the hidden and then output units are computed.
 - ▶ <u>Backpropagate the error</u> to update weights
 - ▶ For each output unit *k*, calculate the error term:

$$\delta_k = o_k (1 - o_k)(t_k - o_k)$$

where o_k is the computed output and t_k is the true output.

▶ For each hidden unit *h*, calculate the error term:

$$\boldsymbol{\delta}_h = \boldsymbol{o}_h (1 - \boldsymbol{o}_h) \sum_{k \in next_higher_layer} \!\!\! \boldsymbol{w}_{hk} \boldsymbol{\delta}_k$$

▶ Update each network weight w_{ij}

$$W_{ij} = W_{ij} + \Delta W_{ij}$$

where $\Delta w_{ij} = \eta \delta_j o_i$ and η is learning rate (0-1)

21

How Δw_{ij} is derived

▶ Objective: minimize the mean square error:

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (t_k^n - o_k^n)^2$$

 ${\it N}$ is the number of training examples, ${\it K}$ is the number of output units, ${\it t}$ is the true output and ${\it o}$ is the computed output.

 $\blacktriangleright \Delta w_{ij}$ is calculated by

$$\Delta w_{ij} = -\eta \, \frac{\partial E_d}{\partial w_{ii}}$$

where E_d is the error on training example d, summed over all output units in the network:

$$E_d = \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

► This weight-updating rule is called the *delta* rule or gradient descent rule

Backpropagation (Cont'd)

- Weight updates can be either case-based or epochbased
 - ► Case updating: weights are updated after presentation of each training example (as in our description)
 - ► Epoch updating: weight increments are accumulated and are updated after all the training examples have been presented
 - Mini-batch updating: present a randomly-selected subset of examples; weight increments are accumulated, and weights are updated after all the selected examples have been presented Stochastic Gradient Descent (SGD)
- ▶ Terminating condition: Training stops when
 - ▶ all Δw_{ij} are smaller than a specified threshold, or
 - the percentage of examples misclassified in the previous epoch is below some threshold, or
 - a pre-specified number of epochs has expired.

23

Some Other Loss Functions

▶ Cross entropy:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[y_k^{(i)} \log \hat{y}_k^{(i)} + \left(1 - y_k^{(i)} \right) \log \left(1 - \hat{y}_k^{(i)} \right) \right]$$

► Mean absolute error: $\int_{J(\theta)} e^{-\frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|}$

Prevent Overfitting

- ▶ Regularization
 - Add regularization term to the objective function to penalize big weights

$$J_{reg}(\theta) = J(\theta) + \lambda \sum_{k} \theta_{k}^{2}$$
 L2 norm of θ

- Dropout
 - Randomly drop units (along with their connections) during training
- Early stopping
 - ▶ Use validation error to decide when to stop training
 - ▶ Stop when monitored quantity has not improved after n subsequent epochs

Advantages of Neural Networks

- ▶ Solve problems that are too complicated for conventional techniques
 - can model both linear or non-linear functions
 - ▶ the output of target function may be discrete-valued, real-valued, or a vector of several real- or discrete-valued
- ▶ Able to learn from complicated or noisy data
- ▶ Problem solving (e.g., classification) with a neural network is fast

27

Limitations

- ▶ Training is slow
 - could take hours or days
- ► In general, few rules for setting up the parameters regarding the topology of the network
- ▶ Difficult for human to understand the learned target function
 - ► Effective "Black Boxes" whose rules of operation are completely unknown
- ► Important to have many known examples for training (inputs and related outputs)

Appropriate Problems for Neural Network Learning

- ▶ The training examples may contain errors.
- ▶ Long training times are acceptable.
- ► Fast evaluation of the learned target function may be required.
- ► The ability for humans to understand the learned target function is not important.
- Instances are represented by many attribute-value pairs (e.g., the pixels of a picture. ALVINN [Mitchell, p. 84]).
- The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes.

Applications

- ▶ Speech Recognition
- ▶ Computer Vision
- ▶ Pattern Recognition
- ▶ Financial prediction
- Screening Mortgage & Credit Applications
- ▶ Oil & Gas Exploration
- Medical Diagnosis
- ► Targeted Marketing

History of Neural Networks

- ▶ 1943: McCulloch and Pitts proposed a model of a neuron --> Perceptron.
- ▶ 1960s: Widrow and Hoff explored Perceptron networks (which they called "Adelines") and the delta rule.
- ▶ 1962: Rosenblatt proved the convergence of the perceptron training rule.
- ▶ 1969: Minsky and Papert showed that the Perceptron cannot deal with nonlinearly-separable data sets---even those that represent simple function such as X-OR.
- ▶ 1970-1985: Very little research on Neural Nets
- ▶ 1986: Invention of Backpropagation [Rumelhart and McClelland, but also Parker and earlier on: Werbos] which can learn from nonlinearly-separable data sets.
- ▶ Since 1986: A lot of research in Neural Nets!

21

Deep Neural Networks

- Deep neural network
 - ▶ Neural network with several layers of nodes between input and output
- ▶ The previous NN training algorithm is
 - ▶ good for training networks with 1 or 2 hidden layers

Not good at learning networks with more hidden layers.

Perform worse than NN with 1 or 2 layers

▶ Reason: many basins in loss function exist, easily get stuck in poor local minima.

Deep Learning – Intermediate Layers

Intermediate layers are each trained to be auto encoders (or similar)

Deep Learning – Final Layer

Final layer trained to predict class based on outputs from previous layers

Deep Learning

- ▶ That's the basic idea
- ▶ There are many types of deep learning
- ▶ Different kinds of autoencoder, variations on architectures and training algorithms, etc...
- ▶ Very fast growing area ...

Deep Learning Architectures

- ▶ Deep belief networks (to learn representations layer by layer, like autoencoder)
- ▶ Recurrent neural networks
- Convolutional deep neural networks
- ▶ Residual neural networks

Next Class

▶ Clustering