Problem Set 1 - Machine Learning Theories

March 20, 2025

Problem 1

- (1) We are given a function $f: \mathbb{R}^D \to \mathbb{R}$, $\mathbf{w} \mapsto f(\mathbf{w}) = (\mathbf{w}^\top \mathbf{X} \mathbf{w})^2$, where $\mathbf{w} \in \mathbb{R}^D$ and $\mathbf{X} \in \mathbb{R}^{D \times D}$. Find the derivative of $f(\mathbf{w})$ with respect to the vector \mathbf{w} . Use the definition of the vector derivative $\left[\frac{df}{d\mathbf{w}}\right]_k = \frac{\partial f}{\partial w_k}$, where w_k is the k-th element of \mathbf{w} .
- (2) We are given a function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$, $\mathbf{A} \mapsto f(\mathbf{A}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{y}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^m$, and $\mathbf{y} \in \mathbb{R}^n$. Find the derivative of $f(\mathbf{A})$ with respect to the matrix \mathbf{A} . Use the definition of the matrix derivative $\left[\frac{df}{d\mathbf{A}}\right]_{ij} = \frac{\partial f}{\partial A_{ij}}$, where A_{ij} is the (i,j) element of \mathbf{A} .
- (3) We are given a function $f: \mathbb{R}^{D \times D} \to \mathbb{R}$, $\mathbf{B} \mapsto f(\mathbf{B}) = Tr(\mathbf{AB})$, where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{D \times D}$, $Tr(\cdot)$ is the trace operator for matrices defined as $Tr(\mathbf{X}) = \sum_{i=1}^{D} X_{ii}$, and X_{ii} is the (i, i) element of \mathbf{X} . Find the derivative of $f(\mathbf{B})$ with respect to the matrix \mathbf{B} .

Consider the following function,

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp\left(-\mathbf{w}^{\top}\mathbf{x}\right)}.$$

For a given dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ with $\mathbf{x}_i \in \mathbb{R}^D$ and $y_i \in \{0, 1\}, i = 1, \dots, N$, find the gradient descent update rule for \mathbf{w} with learning rate η to minimize the following loss:

$$L = \frac{1}{2} \sum_{i=1}^{N} (f(\mathbf{x}_i; \mathbf{w}) - y_i)^2.$$

Evaluate the following integrals:

(1)

$$\int_0^\infty x e^{-x^2} dx$$

(2)

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

(Hint: Consider squaring the integral by multiplying $\int_{-\infty}^{\infty} e^{-y^2} dy$ and transforming the variables (x,y) to polar coordinates.)

(3)

$$\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx$$

(4)

$$\int_{-\infty}^{\infty} x^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx$$

(Hint: Differentiate both sides of the identity $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx = 1$ with respect to σ^2 .)

The probability density function of a D-dimensional Gaussian distribution is given by:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right),$$

where $\mathbf{x} \in \mathbb{R}^D$ and $\mu \in \mathbb{R}^D$ and $\Sigma \in \mathbb{R}^{D \times D}$.

Now, suppose we partition the vectors and the covariance matrix as follows:

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}. \end{pmatrix}$$

Show that the probability density function $p(\mathbf{x})$ can be written as:

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x}_1 - \mu_1')^{\top} {\Sigma_1'}^{-1} (\mathbf{x}_1 - \mu_1') - \frac{1}{2}(\mathbf{x}_2 - \mu_2)^{\top} {\Sigma_{22}}^{-1} (\mathbf{x}_2 - \mu_2)\right).$$

Note that the inverse of Σ can be written as follows:

$$\Sigma^{-1} = \Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix},$$

where

$$\Lambda_{11} = (\Sigma/\Sigma_{22})^{-1}, \quad \Lambda_{12} = -(\Sigma/\Sigma_{22})^{-1}\Sigma_{12}\Sigma_{22}^{-1}, \quad \Lambda_{21} = \Lambda_{12}^{\top}, \quad \Lambda_{22} = \Sigma_{22}^{-1} + \Sigma_{22}^{-1}\Sigma_{21}(\Sigma/\Sigma_{22})^{-1}\Sigma_{12}\Sigma_{22}^{-1}$$
 and the Schur complement of Σ_{22} in Σ is $\Sigma/\Sigma_{22} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$.

(1) Expand the quadratic term $-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)$ in the exponent of $p(\mathbf{x})$ and express it as a perfect square in terms of \mathbf{x}_1 while treating \mathbf{x}_2 as a constant as follows:

$$-\frac{1}{2}(\mathbf{x}_1 - \mu_1')^{\top} \Sigma_1'(\mathbf{x}_1 - \mu_1') + const.$$

Then, derive explicit expressions for μ_1' and Σ_1' in terms of $\mu_1, \mu_2, \Sigma_{11}, \Sigma_{12}, \Sigma_{21}$, and Σ_{22} .

(2) Express the remaining terms (that is, those not involving \mathbf{x}_1) from part (1) as a perfect square in terms of \mathbf{x}_2 . Specifically, show that these remaining terms take the form:

$$-\frac{1}{2}(\mathbf{x}_2 - \mu_2)^{\top} \Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2).$$

(3) Combining the results from (1) and (2) to conclude that $p(\mathbf{x})$ can be rewritten as:

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}(\mathbf{x}_1 - \mu_1')^{\top} {\Sigma_1'}^{-1} (\mathbf{x}_1 - \mu_1') - \frac{1}{2}(\mathbf{x}_2 - \mu_2)^{\top} {\Sigma_{22}}^{-1} (\mathbf{x}_2 - \mu_2)\right).$$

Suppose that $\mathbf{x} \in \mathbb{R}^D$ follows a Gaussian distribution with mean $\mu \in \mathbb{R}^D$ and covariance matrix $\Sigma \in \mathbb{R}^{D \times D}$, i.e., $\mathbf{x} \sim N(\mu, \Sigma)$. Show that the linearly transformed variable

$$\mathbf{z} = A\mathbf{x} + b$$

where $A \in \mathbb{R}^{D \times D}$ is an invertible matrix and $b \in \mathbb{R}^D$, also follows a Gaussian distribution. Derive its probability density function $p(\mathbf{z})$.

(Hint: Use the coordinate transformation rule of the probability density functions, i.e.,

$$p(\mathbf{z}) = p(\mathbf{x}) \left| \frac{\partial \mathbf{x}}{\partial \mathbf{z}} \right|,$$

where $\frac{\partial \mathbf{x}}{\partial \mathbf{z}} \in \mathbb{R}^{D \times D}$ is the Jacobian of \mathbf{x} with respect to \mathbf{z} . Then plug in $\mathbf{x} = A^{-1}(\mathbf{z} - b)$.)

Derive the following results:

- (1) Let $\mathbf{x} \sim N(\mu, \Sigma)$ be a Gaussian random variable with mean $\mu \in \mathbb{R}^D$ and covariance matrix $\Sigma \in \mathbb{R}^{D \times D}$. Show that $\mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] = \mu\mu^{\top} + \Sigma$ using the properties $\mathbb{E}[\mathbf{x}] = \mu$ and $\mathbb{E}[(\mathbf{x} \mu)(\mathbf{x} \mu)^{\top}] = \Sigma$.
- (2) Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathbb{R}^D$ be independent and identically distributed (i.i.d.) samples from a Gaussian distribution $N(\mu, \Sigma)$. Show that

$$\mathbb{E}[\mathbf{x}_m \mathbf{x}_n^\top] = \mu \mu^\top + I_{mn} \Sigma,$$

where $\mathbb{E}[\cdot]$ denotes the expectation with respect to $\mathbf{x}_m, \mathbf{x}_n$ and I_{mn} is the (m, n) entry of the identity matrix $I \in \mathbb{R}^{N \times N}$.

(3) Using the above results, show that for the maximum likelihood estimators of the mean and covariance $\hat{\mu}_{ML} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$ and $\hat{\Sigma}_{ML} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \hat{\mu}_{ML})(\mathbf{x}_i - \hat{\mu}_{ML})^{\top}$, the expectations satisfy:

$$\begin{split} \mathbb{E}[\hat{\mu}_{ML}] &= \mu, \\ \mathbb{E}[\hat{\Sigma}_{ML}] &= \frac{N-1}{N} \Sigma, \end{split}$$

where $\mathbb{E}[\cdot]$ denotes the expectation with respect to $\mathbf{x}_1, \dots, \mathbf{x}_N$.

Given a dataset $\mathcal{D} = \{m_i\}_{i=1}^N$ where $m_i \in \{0, 1, ..., M\}$ with $M \in \mathbb{N}$, determine the Maximum Likelihood Estimator (MLE) for the parameter $\mu \in [0, 1]$ in the following probability model:

$$p(m_i; \mu) = \binom{M}{m_i} \mu^{m_i} (1 - \mu)^{M - m_i},$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ denotes the binomial coefficient.