- **1.** Відомо, що в понеділок Настя добиралася на автомобілі на роботу більше однієї години. Також відомо, що протягом будь-якої години руху середня швидкість її автомобіля дорівнювала 80 км/год. Чи могла його середня швидкість протягом усього шляху дорівнювати 100 км/год?
- **2.** У Олесі є необмежена кількість цифр 3 та рівно одна цифра 4. Вона хоче утворити число, яке б ділилося на найбільшу можливу кількість чисел з множини: $\{1, 2, 3, ..., 9\}$. Яке найменше число може утворити Олеся?

(Рубльов Богдан)

- **3.** У клітини дошки 8×8 можна ставити зірочки (не більше 1 зірочки у клітину) таким чином, щоб у кожному рядку, кожному стовпчику та кожній діагоналі було не більше ніж 4 зірочки. Яку максимальну кількість зірочок можна поставити на дошку за таких умов?
- **4.** У чотирикутнику ABCD виконується умова AD = AB + CD. Бісектриси кутів BAD і ADC перетинаються в точці P, як це показане на рис. 2. Доведіть, що BP = CP.

(Рожкова Марія)

3.1. У клітини дошки 6×6 можна ставити зірочки (не більше 1 зірочки у клітину) таким

чином, щоб у кожному рядку, кожному стовпчику та кожній з двох великих діагоналей було не більше ніж 3 зірочки. Яку максимальну кількість зірочок можна поставити на дошку за таких умов?

4.1. Сторони трикутників ABC та ACD задовольняють такі умови: AB = AD = 3 см, BC = 7 см, DC = 11 см. Які значення може приймати довжина сторони AC, якщо вона дорівнює цілій кількості сантиметрів, є середньою у ΔACD та найбільшою у ΔABC ?

1. Задача № 1 за 7 клас.

2. Відомо, що M та N два послідовних чотирицифрових числа. Яке найбільше значення може приймати різниця між сумами цифр чисел M та N?

Відомо, що M та N два послідовних чотирицифрових числа. Яке найбільше значення може приймати різниця між сумами цифр чисел M та N?

- **3.** Чи можна розставити у комірках таблиці 3×5 числа 1, 2, ..., 15 таким чином, щоб:
- *а)* суми чисел в усіх рядках були однакові, а також, щоб суми чисел в усіх стовпчиках були однакові, але, можливо, відмінні від сум чисел у рядках;
- б) суми чисел в усіх трьох рядках та усіх п'яти стовпчиках були однакові?

(Рубльов Богдан)

- **4.** Нехай p(a) найменший дільник натурального числа a > 1, що не дорівнює 1.
 - а) Доведіть, що рівняння:

$$m+n = (p(m) + p(n))(p(m) - p(n)),$$

де m, n взаємно прості натуральні числа, має нескінченно багато розв'язків в натуральних числах, що не дорівнюють одиниці.

б) Знайдіть усі такі натуральні числа m > 1, для яких існує принаймні одне натуральне n > 1 таке, що справджується рівність:

$$m+n=(p(m)+p(n))(p(m)-p(n)).$$

(Чорний Максим)

5. Заданий рівносторонній ΔABC , у якого A_1, B_1, C_1 — середини сторін BC, AC, AB відповідно. Пряма l проходить через вершину A, позначимо через P,Q — проекції точок B,C на пряму l відповідно (пряма l та точки Q, A, P розташовані так, як це показано на рис. 6). Позначимо через T — точку перетину прямих B_1P та C_1Q . Доведіть, що пряма A_1T перпендикулярна прямій l.

(Сердюк Назар)

4.1. Прості числа p, q та натуральні x, y задовольняють умови: x < p, y < q та $\frac{p}{x} + \frac{q}{y}$ — ціле число. Доведіть, що x = y.

Розв'язання. За умовою, $py+qx:xy \Rightarrow py+qx:x \Rightarrow py:x \Rightarrow y:x$, аналогічно x:y, що й треба було довести.

5.1. На стороні AB трикутника ABC відмітили точку K. Відрізок CK перетинає медіану AM у точці F. Відомо, що AK = AF. Знайдіть відношення MF : BK.

- **1.** Знайдіть натуральне число n, для якого існує найбільша кількість пар ненульових цифр a, b, що задовольняють умову: $\overline{ab} \overline{ba} = n$.
- **2.** Два кола c_1, c_2 проходять через центр O кола c та дотикаються до нього внутрішнім чином у точках A та B відповідно. Доведіть, що на прямій AB лежить спільна точка кіл c_1, c_2 .
- **3.** *а)* Чи можна розставити у комірках таблиці 3×5 числа 1, 2, ..., 15 таким чином, щоб суми чисел в усіх рядках були однакові, а також, щоб суми чисел в усіх стовпчиках були однакові, але, можливо, відмінні від сум чисел у рядках?
- $\boldsymbol{\delta}$) Чи можна розставити у комірках таблиці 4×5 числа 1, 2, ..., 20 таким чином, щоб суми чисел в усіх рядках були однакові, а також, щоб суми чисел в усіх стовпчиках були однакові, але, можливо, відмінні від сум чисел у рядках?

(Рубльов Богдан)

4. Розв'яжіть у натуральних числах x, y, z систему рівнянь:

$$\begin{cases} 2x^2 = 4y^2 + 3z^2 + 2, \\ 13x = 4y + 3z + 29. \end{cases}$$

(Гоголєв Андрій)

- **5.** Нехай a , b , c сторони гострокутного трикутника. Доведіть, що $\sqrt{a^2+b^2-c^2}+\sqrt{b^2+c^2-a^2}+\sqrt{c^2+a^2-b^2}\leq \sqrt{3\big(ab+bc+ca\big)}\,.$ (Сердюк Назар)
- **4.1.** Знайдіть усі такі натуральні n, для яких числа 12n-119 та 75n-539 ϵ точними квадратами натуральних чисел.
- **5.1.** Дійсні числа a,b задовольняють умову: $a^{2014}+b^{2014}=a^{2016}+b^{2016}$. Доведіть, що справджується нерівність: $a^2+b^2\leq 2$.

1. Розв'яжіть нерівність:

$$\frac{(x+1)^4}{(x-1)^3} + \frac{x-1}{16} \ge \frac{(x+1)^2}{2(x-1)}.$$

(Анікушин Андрій)

2. Чи існують четвірки дійсних чисел a,b,c,d, що задовольняють умови:

$$a+b+c=d$$
 Ta $\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=\frac{1}{ad}+\frac{1}{bd}+\frac{1}{cd}$.

(Рубльов Богдан)

- 3. Задача № 4 за 9 клас.
- **4.** У гострокутному трикутнику ABC проведені висоти AA_1 , BB_1 та CC_1 . З вершини A на пряму A_1B_1 опущено перпендикуляр AK, а з вершини B опущено перпендикуляр BL на пряму C_1B_1 . Доведіть, що $A_1K = B_1L$.

(Рожкова Марія)

5. Є опуклий 11-кутник. Його діагоналі пофарбовані у декілька кольорів. Два кольори називаються такими, що перетинаються, якщо існують два відрізки, що пофарбовані у ці кольори і які перетинаються у деякій внутрішній точці цих відрізків. Яка найбільша кількість різних кольорів може бути використана, щоб кожні два використані кольори були такими, що перетинаються.

(Рубльов Богдан)

- **4.1.** У трикутнику ABC сторона $AC = \frac{1}{2}(AB + BC)$, BL бісектриса $\angle ABC$, K, M середини сторін AB і BC відповідно. Знайдіть величину $\angle KLM$, якщо $\angle ABC = \beta$.
- **5.1.** На дошці записаний вираз **...*, що складається з непарної кількості зірочок. Андрій та Олеся грають у таку гру: вони по черзі (Андрій перший) замінюють будьяку ще не замінену зірочку будь-якою цифрою (на перше місце не можна ставити цифру 0). Якщо в решті вийде число, що кратне 11, то перемагає Андрій, якщо ні, то Олеся. Хто переможе при правильній грі?

- **1.** Знайдіть усі розв'язки рівняння $2^{\sin x} = \sin 2^x$ на проміжку [0; π).
- **2.** *а)* Відомо, що у нескінченній арифметичній прогресії натуральних чисел ϵ деякий член, який ϵ k –м степенем натурального числа, більшого від 1. Доведіть, що серед членів прогресії ϵ нескінченна кількість таких, що також ϵ k –ми степенями натуральних чисел.
- *б)* Чи існує нескінченна зростаюча арифметична прогресія натуральних чисел жоден член якої не є степенем натурального числа більше першої?

(Рубльов Богдан)

3. Задача № 5 за 9 клас.

4. У трикутнику ABC, для якого AC < AB < BC, на сторонах AB та BC вибрали точки K та N відповідно таким чином, що KA = AC = CN. Прямі AN та CK перетинаються в точці O. З точки O провели відрізок $OM \perp AC$ ($M \in AC$). Доведіть, що кола, які вписані у трикутники ABM та CBM, дотикаються одне одного.

(Нагель Ігор)

5. Задача № 5 за 10 клас.

4.1. Побудуємо для трикутника ABC коло S, що проходить через точку B і дотикається до прямої CA у точці A, коло T, що проходить через точку C і дотикається до прямої BA у точці A. Другу точку перетину кіл S та T позначимо через D. Точку перетину прямої AD та описаного кола ΔABC позначимо через E. Доведіть, що D — середина відрізку AE.

5.1. Задача № 5.1 за 10 клас.