Total: 100 points

1. (15 points) Find the slope of the curve when $\theta = 0$ and $\theta = \pi$.

$$r = -1 + \sin \theta$$

Solution:

• $\theta = 0 \Rightarrow A(-1,0)$ $\theta = \pi \Rightarrow B(-1,\pi)$

$$\frac{dy}{dx} = \frac{r'\sin\theta + r\cos\theta}{r'\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + r\cos\theta}{\cos\theta\cos\theta - r\sin\theta}$$

- Slope at point *A*: $\frac{\cos(0)\sin(0) + (-1)\cos(0)}{\cos(0)\cos(0) - (-1)\sin(0)} = -1.$

- Slope at point *B*: $\frac{\cos(\pi)\sin(\pi) + (-1)\cos(\pi)}{\cos(\pi)\cos(\pi) - (-1)\sin(\pi)} = 1.$

The graph of the curve (red) and the tangent lines (blue) at the given points are

2. (15 points) Find the area shared by the circles $r = 2\cos\theta$ and $r = 2\sin\theta$

Solution:

• Find intersection:

$$2\cos\theta = 2\sin\theta \Rightarrow \theta = \frac{\pi}{4}$$

Therefore,

$$A = \int_0^{\pi/4} \frac{1}{2} (2\sin\theta)^2 d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} (2\cos\theta)^2 d\theta = \int_0^{\pi/4} (1-\cos 2\theta) d\theta + \int_{\pi/4}^{\pi/2} (1+\cos 2\theta) d\theta = \frac{\pi}{2} - 1$$

- 3. (60 points) Let $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$. (5 points for each)
 - (a) Find the gradient of f.
 - (b) Find the directional derivative of f at the point A(1,1) in the direction toward the point B(3,3).
 - (c) Find the maximum increasing rate of change of f at the point A(1,1). Which is the direction of the maximum increasing rate of change?
 - (d) At the point A(1,1), which direction is the direction of zero change?
 - (e) Find the tangent plane of z = f(x, y) at the point $(1, 1, \frac{1}{\sqrt{2}})$.
 - (f) Use linear approximation of f(x,y) at (1,1) to estimate the value of f(1.01,0.99).

Solution:

(a)
$$\nabla f = -\frac{x}{(x^2 + y^2)^{3/2}}\hat{\mathbf{i}} - \frac{y}{(x^2 + y^2)^{3/2}}\hat{\mathbf{j}}$$

- (b) At A(1,1), $\nabla f|_A = -\frac{\sqrt{2}}{4}\hat{\mathbf{i}} \frac{\sqrt{2}}{4}\hat{\mathbf{j}}$. Direction: $\hat{\mathbf{u}} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} = \frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{j}}$. Therefore, the directional derivative is $\nabla f|_A \cdot \hat{\mathbf{u}} = -\frac{1}{2}$
- (c) The maximum **increasing** rate of change of f at the point A(1,1) is $|\nabla f|_A = \frac{1}{2}$. The direction is $\hat{\mathbf{u}} = -\frac{1}{\sqrt{2}}\hat{\mathbf{i}} \frac{1}{\sqrt{2}}\hat{\mathbf{j}}$
- (d) Because $\nabla f|_{(1,1)} = -\frac{\sqrt{2}}{4}\hat{\mathbf{i}} \frac{\sqrt{2}}{4}\hat{\mathbf{j}}$, let the unit vector for the zero change is $\hat{\mathbf{u}} = u_1\hat{\mathbf{i}} + u_2\hat{\mathbf{j}}$ where $u_1^2 + u_2^2 = 1$, then

$$\nabla f|_{(1,1)} \cdot \hat{\mathbf{u}} = 0 \Rightarrow u_1 + u_2 = 0 \Rightarrow u_1 = -\frac{1}{\sqrt{2}}, u_2 = \frac{1}{\sqrt{2}} \quad \text{or} \quad u_1 = \frac{1}{\sqrt{2}}, u_2 = -\frac{1}{\sqrt{2}}$$

Thus, the direction is $\hat{\mathbf{u}} = \frac{1}{\sqrt{2}}\hat{\mathbf{i}} - \frac{1}{\sqrt{2}}\hat{\mathbf{j}}$ or $\hat{\mathbf{u}} = -\frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{j}}$.

(e) Tangent plane is

$$z - \frac{1}{\sqrt{2}} = f_x(1,1)(x-1) + f_y(1,1)(y-1)$$

$$\Rightarrow z - \frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{4}(x-1) - \frac{\sqrt{2}}{4}(y-1) \Rightarrow \frac{\sqrt{2}}{4}x + \frac{\sqrt{2}}{4}y + z = \sqrt{2}$$

(f) Linear approximation at (1,1) is

$$L(x,y) = f(1,1) + f_x(1,1)(x-1) + f_y(1,1)(y-1) = \frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{4}(x-1) - \frac{\sqrt{2}}{4}(y-1).$$

Therefore,

$$f(1.01,0.99)\approx L(1.01,0.99)=\frac{1}{\sqrt{2}}-\frac{\sqrt{2}}{4}(1.01-1)-\frac{\sqrt{2}}{4}(0.99-1)=\frac{1}{\sqrt{2}}.$$

4. (10 points) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (π, π, π) if $\sin(x + y) + \sin(y + z) + \sin(z + x) = 0$.

Solution:

Let
$$F(x, y, z) = \sin(x + y) + \sin(y + z) + \sin(z + x) = 0$$

$$\Rightarrow \frac{\partial F}{\partial x} = \cos(x + y) + \cos(z + x), \quad \frac{\partial F}{\partial y} = \cos(x + y) + \cos(y + z), \quad \frac{\partial F}{\partial z} = \cos(y + z) + \cos(z + x)$$

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{\cos(x + y) + \cos(z + x)}{\cos(y + z) + \cos(z + x)} \Rightarrow \frac{\partial z}{\partial x}\Big|_{(\pi, \pi, \pi)} = -1$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{\cos(x + y) + \cos(y + z)}{\cos(y + z) + \cos(z + x)} \Rightarrow \frac{\partial z}{\partial y}\Big|_{(\pi, \pi, \pi)} = -1$$