לוגיקה - תרגול 9

תחשיב היחסים - סינטקס

. מורכב מסימני יחס, סימני פונקציה וסימני קבוע. $au=\langle R_1^{n_1},R_2^{n_2},\ldots,F_1^{m_1},F_2^{m_2},\ldots,c_1,c_2,\ldots
angle$ מילון ביי מילון מילון יחס, מילון ביי מילון מילון מילון ביי מילון מילון ביי מילון מילון ביי מילון מילון מילון מילון מילון מילון ביי מילון מיל

- . הוא אינדקס ויז היחס היחס הוא המקומיות חוא חו $n_i:R_i^{n_i}$ הוא סימן סימן סימן סימן יחס פדרך מקומי" במקום (בדרך בלל נסמן "סימן יחס" יחס היחס (בדרך בלל נסמן "סימן יחס").
- . הוא אינדקס וi הוא המקומיות של הפונקציה ו $m_i:F_i^{m_i}$ הוא הינדקס. פרדך כלל נסמן "סימן פונקציה ו $m_i:F_i^{m_i}$ במקום (בדרך כלל נסמן "סימן פונקציה ווקר").
 - . סימן קבוע $i:c_i$ הוא אינדקס ullet
 - $. ext{Var} = \{x_0, x_1, x_2, \dots\}$ המשתנים זהים בכל מילון ונסמן

תלת־מקומים והפונקציה תלת־מקומים שני היחסים שני $au_1=\left\langle R_1^2,R_2^2,F_1^3,c_1 \right\rangle$ בימון נוסף $au_1=\left\langle R_1\left(\circ,\circ\right),R_2\left(\circ,\circ\right),F_1\left(\circ,\circ,\circ\right),c_1 \right\rangle$ סימון נוסף

כאשר: $\mathrm{Term}\left(au
ight)=X_{B_{term},F_{term}}$ קבוצה אינדוקטיבית מעל מילון מעל מילון מעל מילון בוצת הגדרה 2:

(סימני הקבוע שבמילון au והמשתנים) והמשתנים $B_{term} = \mathrm{Var} \, \cup \, \{c_1, c_2, \dots\}$

 $F_{term} = \{ au$ סימני הפונקציה שבמילון קסימני פעולות:

 $: au_1$ דוגמאות לשמות עצם מעל המילון

 x_1

 c_1

 $F_1(x_2, x_2, c_1)$

 $F_1(x_1, x_2, F_1(c_1, x_1, x_3))$

. האם ש"ע מעל F_1 לא, כי F_1 היא ש"ע מעל F_1 האם הוא ש"ע מעל F_1

הגדרה 3: קבוצת הנוסחאות האטומיות מעל מילון au היא הקבוצה $\operatorname{AF}(au)$ המוגדרת באופן הבא:

- au אם הוא סימן יחס ח־מקומי מהמילון אם אם הוא חס $R_{\rm i}$ הוא הוא שומית. וו R_i היא נוסחה אטומית. הם שמות עצם מעל אז היא t_1,t_2,\dots,t_n
 - . אטומית נוסחה אטומית ($t_1pprox t_2$) אז אין מעל מעל שמות שמות שמות t_1 היא ullet

$: au_2$ דוגמאות לנוסחאות אטומיות מעל המילון

$$R_1\left(c_1,x_1\right)$$

$$(c_1 \approx x_1)$$

$$R_2(F_1(x_1,x_2,c_1),x_2)$$

$$(F_1(x_1, x_2, c_1) \approx c_1)$$

. אינו ש"ע. $R_{2}\left(c_{1},x_{1}
ight)$ לא, כי (וסחה אטומית? היא היא $R_{1}\left(c_{1},R_{2}\left(c_{1},x_{1}
ight)
ight)$ האם

כאשר: אוסף הנוסחאות מעל מילון היא קבוצה אינדוקטיבית אוסף מעל מילון באר מילון מעל מילון אוסף אוסף אוסף הגדרה בי

בסיס: $B_{form} = \mathrm{AF}\left(au
ight)$ (הנוסחאות האטומיות)

כאשר ,
$$F_{form}=\{\lnot,\land,\lor,
ightarrow,\leftrightarrow\}\,\cup\,\{orall x_i\mid i\in\mathbb{N}\}\,\cup\,\{\exists x_i\mid i\in\mathbb{N}\}$$
 בעולות:

- הפעלת קשרים מתבצעת באופן זהה לתחשיב הפסוקים.
 - הפעלת כמתים מתבצעת כך:

. אם φ נוסחה אז לכל \mathbb{N} גם $(\forall x_i \varphi)$ גם $(\forall x_i \varphi)$ הן נוסחאות אם φ

: au_1 דוגמאות לנוסחאות מעל המילון

$$R_1(c_1,x_1) \wedge (c_1 \approx x_1)$$

$$(\forall x_1 R_1 (c_1, x_1)) \to (F_1 (x_2, x_2, c_1) \approx c_1)$$

האם x_1 היא נוסחה? לא!

האם $F_1\left(x_2,x_2,c_1
ight)$ היא נוסחה?

. שימו לב: אם t הוא ש"ע הוא אינו יכול להיות נוסחה שימו לב:

לא! לא! נוסחה? היא $R_1\left(c_1,x_1
ight)
ightarrow F_1\left(x_2,x_2,c_1
ight)$ האם

תחשיב היחסים – סמנטיקה

 $M=\left\langle D^M,R_1^M,R_2^M,\ldots,F_1^M,F_2^M,\ldots,c_1^M,c_2^M,\ldots \right
angle$ בנר מבנה $au=\left\langle R_{n_1,1},R_{n_2,2},\ldots,F_{m_1,1},F_{m_2,2},\ldots,c_1,c_2,\ldots \right
angle$ צבור עבור

- . קבוצת התחום, העולם $D^M
 eq \emptyset$
- . הפירוש של סימן יחס ר $R_i^M\subseteq \underbrace{D^M\times D^M\times \cdots \times D^M}_{n_i}$ •

 $.D^M$ כלומר, R_i^M הוא יחס יחס מעל

. הפירוש של סימן פונקציה - $F_i^M: \underbrace{D^M \times D^M \times \cdots \times D^M}_{m_i} o D^M$ •

 $.D^M$ מעל מקומית מקומית פונקציה m_i היא פונקציה לכומר,

 $.D^M$ היבר בתחום איבר c_i^M , כלומר, c_i סימן קבוע של הפירוש - $c_i^M \in D^M$

 $. au = \langle R\left(\circ,\circ\right), F\left(\circ,\circ\right), c \rangle$ דוגמה למבנה עבור מילון: יהי מילון

$$. \mathrm{first}\left(i,j\right) = i \,\, \mathsf{cm} \,\, M_1 = \left\langle \underbrace{\left\{0,1,2,3\right\}}_{D^M}, \underbrace{\left\{\left(0,0\right),\left(0,1\right),\left(1,2\right)\right\}}_{R^M}, \underbrace{\mathrm{first}}_{F^M}, \underbrace{0}_{c^M} \right\rangle \,: \tau \,\, \mathsf{cm} \,\,$$

$$M_2 = \left\langle \underbrace{\mathbb{N}}_{D^M}, \underbrace{<}_{R^M}, \underbrace{+}_{F^M}, \underbrace{0}_{c^M}
ight
angle : au$$
 מבנה נוסף עבור $: au$

 $s:\{x_0,x_1,\dots\} o D^M$ היא פונקציה M היא עבור מבנה s השמה ביה השמה s האברה היא מבנה $M=\langle\mathbb{Z},\leq,+,1005\rangle$ ההדוגמה הקודמת. נגדיר את ההשמה s עבור m באופן הבא:

$$s\left(x_{i}
ight) = egin{cases} -5 & 0 \leq i < 10 \\ 0 & 10 \leq i < 20 \\ 5 &$$
אחרת

המוגדרת באינדוקציה $\overline{s}: \mathrm{Term}\,(au) o D^M$ היא פונקציה המורחבת ההשמה המוגדרת העצם: על מבנה שמות העצם:

$$\overline{s}\left(x_{i}
ight)=s\left(x_{i}
ight)$$
 , x_{i} משתנה לכל משתנה לכל סימן קבוע לכל סימן לכל סימן לכל סימן קבוע

 $\overline{s}\left(F_{i}\left(t_{1},t_{2},\ldots,t_{n}
ight)
ight)=F_{i}^{M}\left(\overline{s}\left(t_{1}
ight),\overline{s}\left(t_{2}
ight),\ldots,\overline{s}\left(t_{n}
ight)
ight)$ מגור: לכל סימן פונקציה F_{i} מקומי,

הבאה: הרשמה היא המתוקנת היא ההשמה הבאה: $d \in D^M$ ו ביא השמה היא היא לכל: פולכל השמה הבאה:

$$s[x_i \leftarrow d](x_j) = \begin{cases} d & i = j \\ s(x_j) & i \neq j \end{cases}$$

דוגמה:

$$s\left[x_{10} \leftarrow 8\right](x_i) = egin{cases} -5 & 0 \leq i < 10 \\ 8 & i = 10 \\ 0 & 10 < i < 20 \\ 5 &$$

יהיחס φ מוגדר באינדוקציה: M ורs מספקים את φ מוגדר באינדוקציה: M ונוסחה φ היחס ונוסחה φ ונוסחה φ ונוסחה אונוסחה פונים מספקים את אונוסחה מוגדר באינדוקציה:

$$(\overline{s}\left(t_{1}
ight),\overline{s}\left(t_{2}
ight),\ldots,\overline{s}\left(t_{n}
ight))\in R_{i}^{M}$$
 אמ"מ $M\models_{s}R_{i}\left(t_{1},t_{2},\ldots,t_{n}
ight)$ בסיס: $\overline{s}\left(t_{1}
ight)=\overline{s}\left(t_{2}
ight)$ אמ"מ $M\models_{s}t_{1}pprox t_{2}$

 $M \nvDash_s \varphi$ אמ"מ $M \vDash_s \neg \varphi$ דגור:

 $M\vDash_s arphi_1$ או $M\vDash_s arphi_2$ אמ"מ $M\vDash_s arphi_1 \lor arphi_2$

 $M\vDash_s arphi_1$ אמ"מ $M\vDash_s arphi_2$ אמ $M\vDash_s arphi_1 \wedge arphi_2$

 $M\vDash_s \varphi_2$ או $M\nvDash_s \varphi_1$ כלומר ($M\vDash_s \varphi_2$ אז $M\vDash_s \varphi_1$ אמ"מ אם $M\vDash_s \varphi_1 \to \varphi_2$

($M\vDash_s \varphi_2$ אם ורק אם אם אם א מ"מ ($M\vDash_s \varphi_1$) אמ"מ אמ $M\vDash_s \varphi_1 \leftrightarrow \varphi_2$

 $M \models_{s[x_i \leftarrow d]} \varphi$ מתקיים $d \in D^M$ לכל אמ"מ אמ א $M \models_s \forall x_i \varphi$

 $M\models_{s[x_i\leftarrow d]}\varphi$ שמקיים $d\in D^M$ קיים אמ"מ $M\models_s \exists x_i\varphi$

M עבור s ההשמה σ ו־ σ מבנה מעל σ מבנה σ מבנה σ מילון, יהי י σ מילון, יהי יי

הוכיחו/ הפריכו את הטענות הבאות:

$$M \vDash_{s} R(x_{0}, F(x_{0}, F(x_{10}, c))) \lor (x_{0} \approx x_{10})$$
 .1

$$M \vDash_{s} \forall x_0 R(x_0, x_1)$$
 .2

 $M\models_s arphi$ מתקיים s מתקיים לכל השמה אם ונסמן p ונסמן q מספק את כי נאמר כי p נאמר מבנה p ונוסחה q נאמר כי p מספק את אם לכל השמה p

לוגיקה תרגול 9

דוגמה:

 $F(x_0,F(x_{10},t))$ נחשב את הערך ש־ \overline{s} נותנת לש"ע

$$\overline{s}(F(x_0, F(x_{10}, c)) = F^M(\overline{s}(x_0), \overline{s}(F(x_{10}, c))) =$$

$$\overline{s}(x_0) + \overline{s}(F(x_{10}, c)) = s(x_0) + F^M(\overline{s}(x_{10}, \overline{s}(c))) =$$

$$-5 + \overline{s}(x_{10})\overline{s}(c) = -5 + s(x_{10}) + 1005 =$$

$$-5 + 0 + 1005 = 1000$$

תרגיל 1:

 τ מבנה מעל $M=\langle\mathbb{Z},\leq,+,1005\rangle$ יהי $\tau=\langle R(\circ,\circ),F(\circ,\circ),c\rangle$ יהיי יהיו שהוגדרה קודם. M שהוגדרה קודם. S הוכיחו/הפריכו את הטענות הבאות:

$$M \vDash_s R(x_0, F(x_0, F(x_{10}, c))) \lor (x_0 \approx x_{10})$$
 1

$$M \vDash_s \forall x_0 R(x_0, x_1)$$
 .2

$$s(x_p) = \begin{cases} -5 & - \le 1 < 10 \\ 0 & 10 \le i < 20 \\ 5 & \text{otherwise} \end{cases}$$

הוכחה 1:

$$\begin{split} \Leftrightarrow & M \vDash_s R(x_0, F(x_0, F(x_{10}, c))) \lor (x_0 \approx x_{10}) \\ \Leftrightarrow & M \vDash_s R(x_0, F(x_0, F(x_{10}, c))) \text{ or } M \vDash_s (x_0 \approx x_{10}) \\ \Leftrightarrow & (\overline{s}(x_0, s(F(x_0, F(x_{10}, C)))) \text{ or } \overline{s}(x_0) = \overline{s}(x_{10}) \\ \text{(truth)} & -5 \leq 1000 \text{ or (false)} & -5 = 0 \end{split}$$

בסה"כ התנאי מתקיים.

:2 הפרכה

$$\Leftrightarrow M \vDash_s \forall x_0 R(x_0,x_1)$$

$$\Leftrightarrow M \vDash_s [x_0 \leftarrow d] R(x_0,x_1) \text{ and } d \in \mathbb{Z}$$
 לכל
$$\Leftrightarrow (\overline{s}'(x_0),\overline{s}'(x_1)) \in R^M \text{ and prive} d \in \mathbb{Z}$$
 לכל
$$\Leftrightarrow (d,-5) \in R^M \text{ and prive} d \in \mathbb{Z}$$
 לכל
$$d \le -5 \text{ and prive}$$
 לא נכון למשל עבור
$$d = 0$$