

2020-2021 第一学期《高等数学 I (1)》期中考试试题

- 一、填空题(每空3分)
- 1、函数 $f(x) = \frac{1}{x-|x|}$ 的定义域是_____.
- $2 \cdot \lim_{n \to \infty} \sqrt[n]{2^n + 3^n + 5^n + 9^n} = \underline{\qquad}.$
- 3、设 y = f(x), 其中 f(x) 可导且 f(x) > 0, 则 $dy = _____ dx$.
- 4、设 $f(x) = \begin{cases} x \arctan \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$, 则左导数 f'(0) =______.
- 5、函数 $y = 2 (x-1)^{\frac{1}{3}}$ 的凸区间为______, 拐点为_____.
- 6、曲线 $y = x \ln(e + \frac{1}{x})$ 的斜渐近线方程为______.
- 二、选择题(每空3分)
- 1、设当 $x \to x_0$ 时, $\alpha(x)$, $\beta(x)$ 都是等价无穷小($\beta(x) \neq 0$),则当 $x \to x_0$ 时,下列 表达式中不一定为无穷小的是(
 - (A) $\alpha^2(x) + \beta^2(x)\sin\frac{1}{x}$ (B) $\frac{\alpha^2(x)}{\beta(x)}$

(C) $\ln(1+\alpha(x)\beta(x))$

- (D) $|\alpha(x)| + |\beta(x)|$
- 2、已知曲线 $y = a\sqrt{x}(a > 0)$ 与 $y = \ln \sqrt{x}$ 在 P(x, y)有公共切线。则常数 a 的值与点 P 的坐标分别为(

- (A) $\frac{1}{e}$, $(e^2, 1)$ (B) $\frac{1}{e}$, (e, 1) (C) $\frac{1}{e^2}$, (e, 1) (D) $\frac{1}{e^2}$, $(e^2, 1)$
- 三、计算下列极限(每小题6分)
- 1. $\lim_{x\to 0} \frac{\sin x \tan x}{(\sqrt[3]{1+x^2}-1)(e^{\sin x}-1)}$
- 2. $\lim_{x\to 0} \left(2 \frac{\ln(1+x)}{x}\right)^{\frac{1}{x}}$

四、
$$f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}}, & x > 0 \\ x^2 g(x), x \le 0 \end{cases}$$
,其中 $g(x)$ 是有界函数,则 $f(x)$ 在 $x = 0$ 处极限是否存

在?是否连续?是否可导?(本题6分)

五、求函数
$$y = \frac{x+1}{x^2+x+1}$$
 的单调区间和极值. (本题 6

六、设
$$y = y(x)$$
 由方程 $xy = e^{z+y}$ 确定,求 $\frac{dy}{dx}$. (本题 8 分)

七、设 $f(x) = \lim_{t \to +\infty} \frac{x^2 e^{t(x-2)} + ax - 1}{e^{t(x-2)} + 1}$,若 f(x) 在 $(-\infty, +\infty)$ 上连续,求常数 a. (本题 8 分)

八、设
$$f(x) = \begin{cases} \frac{x(x-3)}{\sin \pi x}, x < 0, & x \neq -n \\ 1+x, x \geq 0 \end{cases}$$
 , n 为正整数,试求 $f(x)$ 的间断点,并指出间

断点的类型(要说明理由).(本题8分)

九、求 $f(x) = (2x-5)\sqrt[3]{x^2}$ 的极值点与极值. (本题 8 分)

十、当x>0时,试证不等式 $x-\frac{x^2}{2}<\ln(1+x)$ 成立. (本题 8 分)

十一、设 f(x) 在 $\begin{bmatrix} 0.1 \end{bmatrix}$ 上连续,在 (0.1) 内可导,且 f(1)=0,证明:至少存在一点 $\xi \in (0.1)$, 使 $3f(\xi)+\xi f'(\xi)=0$. (本题 6 分)