Construção e Análise de Algoritmos

aula 16: Árvores geradoras mínimas

1 Introdução

O governo do estado anunciou um novo projeto de infraestrutura que está causando desconfiança na capital.

Ele promete melhorar a vida dos habitantes de várias cidades que ninguém consegue encontrar no mapa: Cajuzeiro do Norte, Quicá Dá, Qui Será Meufim, Itamendoin, Guaranámiranga, Pacotin, e por aí vai ...

A ideia é asfaltar estradas que conectam essas cidades, de modo que qualquer um possa ir de uma cidade a outra (passando por mais cidades, se necessário), viajando apenas por estradas asfaltadas.

Nem todo par de cidades possui uma estrada entre elas.

E o custo de asfaltar estradas diferentes também pode ser diferente.

O governo afirma, é claro, que espera gastar a menor quantidade de recursos possível nesse projeto.

Pronto, aqui nós temos mais um problema de otimização.

A melhor maneira de visualizar o problema é através de um grafo (i.e., um diagrama de vértices e arestas).

Abaixo nós temos um exemplo.

Cada vértice do grafo corresponde a uma cidade do problema, e a presença de uma aresta entre dois vértices indica uma estrada entre as respectivas cidades, que pode ser asfaltada. O número ao lado da aresta corresponde ao custo de asfaltar essa estrada.

Não é difícil ver que uma solução para o problema corresponde a um subconjunto das arestas que conectam todos os vértices.

Abaixo nós temos dois exemplos

O segundo exemplo já nos permite fazer uma primeira observação importante:

• Como o objetivo é minimizar o custo total, a solução não deve conter um ciclo.

(Porque?)

Para eliminar o ciclo, basta remover qualquer uma de suas arestas.

Por exemplo,

Note que, ao remover uma aresta do ciclo, a segunda solução passa a ter o mesmo número de arestas que a primeira.

Essa observação nos dá uma segunda informação importante sobre o nosso problema:

 \bullet Qualquer solução para um problema com n vértices (ou cidades) deve conter exatamente n-1 arestas

(Porque?)

Portanto, qualquer solução para o problema é sempre

- uma coleção de n-1 arestas
- que não forma ciclos
- e que conecta todos os vértices

Não é difícil ver que um problema pode ter diversas soluções válidas.

E o objetivo é encontrar uma solução de custo mínimo.

2 Estratégia gulosa

Uma última observação importante é que nós podemos eliminar a terceira condição acima:

- uma coleção de n-1 arestas
- que não forma ciclos
- (X) x xxx xxxxxxx xxxxx xx xxxxxxx

Quer dizer, toda coleção com n-1 arestas que não forma ciclos certamente conecta todos os vértices.

(Porque?)

Essa observação implica que nós só precisamos nos preocupar em construir uma coleção com n-1 arestas sem ciclos, que possui custo mínimo.

Vendo as coisas dessa maneira, a estratégia gulosa parece evidente:

ullet Vá pegando as arestas de menor custo até formar uma coleção de tamanho n-1

Quase isso ...

É preciso tomar cuidado para não formar ciclos durante o processo.

Abaixo nós temos uma descrição mais precisa do procedimento guloso

Ordenar as arestas de acordo com o seu custo

Para cada aresta nessa lista

Se a aresta não forma ciclo com as arestas da solução

Selecione essa aresta para a solução

Vejamos como esse procedimento resolve o nosso problema exemplo.

Ordenando as arestas de acordo com o seu custo (e resolvendo os empates pela ordem alfabética), nós obtemos

- \bullet $A \stackrel{1}{-} B$
- \bullet $C \stackrel{2}{-} D$
- \bullet $A \stackrel{3}{-} D$
- \bullet $A \stackrel{4}{--} B$
- \bullet $B \stackrel{4}{-} C$
- \bullet $B \stackrel{4}{-} D$
- \bullet $C \stackrel{4}{-} F$
- \bullet $E \stackrel{5}{---} F$
- \bullet $D \stackrel{6}{-} F$

Agora, basta aplicar a regra gulosa.

A primeira aresta não forma ciclo porque ainda não existe nenhuma aresta na solução, logo ela é selecionada

A segunda aresta também não forma ciclo

Mas a terceira forma, logo ela é ignorada.

A quarta aresta não forma ciclo, e é selecionada para a solução.

Continuando dessa maneira o procedimento eventualmente produz a seguinte solução

 $\acute{\rm E}$ possível verificar que essa é uma solução ótima.

(Quer tentar?)

Mas, será que o procedimento guloso encontra uma solução ótima em todos os casos?

3 Argumento de otimalidade

Sim.

E, para demonstrar isso, nós vamos construir um argumento utilizando a mesma estratégia da aula passada.

Isto é, nós vamos comparar a solução encontrada pelo nosso algoritmo guloso com uma outra solução qualquer.

Denote por $S = \{s_1, s_2, \dots, s_{n-1}\}$ a árvore encontrada pelo algoritmo guloso — onde as arestas s_1, s_2, \dots aparecem na ordem em que elas foram selecionadas pelo algoritmo.

E seja $T = \{t_1, t_2, \dots, t_{n-1}\}$ uma outra árvore geradora do grafo que alguém encontrou (sabe-se lá como ...).

Dessa vez, a ordem t_1, t_2, \ldots não tem qualquer significado.

Logo, não faz sentido comparar, por exemplo, as arestas s_1 e t_1 .

Portanto, nós vamos raciocinar de maneira ligeiramente diferente do que fizemos na aula passada.

Vejamos.

O nosso objetivo é mostrar que $\operatorname{custo}(S) \leq \operatorname{custo}(T)$.

E a primeira observação é que a aresta s_1 pode fazer parte da árvore T ou não.

Suponha que não.

Nesse caso, nós podemos adicionar a aresta s_1 a T.

Fazendo isso, a árvore T deixa de ser uma árvore, pois ela passa a ter um ciclo.

Porque?

A resposta é fácil.

Suponha que s_1 seja a aresta (u, v).

Como T é uma árvore geradora, já havia em T um caminho entre u e v.

Quando nós adicionamos a aresta $s_1 = (u, v)$ a T, esse caminho se fecha em um ciclo

A próxima observação é que s_1 é uma aresta de custo mínimo do grafo — pois ela foi a primeira aresta selecionada pelo algoritmo guloso.

Isso significa que todas as outras arestas do ciclo possuem custo ao menos $\mathsf{custo}(s_1)$ — talvez mais.

A ideia, então, é remover uma das outras arestas do ciclo, digamos, (z, w)

A observação chave, a seguir, é que após a adição da aresta $s_1 = (u, v)$ e a remoção da aresta (u, w)

$$T' = T \cup \{s_1\} - (z, w)$$

nós ainda temos uma árvore geradora do grafo.

(Porque?)

Além disso, como $\operatorname{custo}(s_1) \leq \operatorname{custo}(z, w)$, segue que

$$\operatorname{custo}(T') \leq \operatorname{custo}(T)$$

Nesse ponto, é conveniente fazer uma pausa para esclarecer as coisas.

O nosso objetivo inicial era mostrar que

$$\mathsf{custo}(S) \quad \leq \quad \mathsf{custo}(T) \tag{1}$$

Agora, nós acabamos de transformar T e T', satisfazendo

$$custo(T') \leq custo(T) \tag{2}$$

Mais adiante, se nós conseguirmos mostrar que

$$custo(S) \leq custo(T') \tag{3}$$

então (2) e (3) vão implicar que (1) vale.

Portanto, a partir de agora nós vamos trabalhar com a árvore T'^* .

^{*}No caso em que T já tinha a aresta s_1 , nós simplesmente passamos a chamar T de T'.

Vamos adiante.

A seguir, nós observamos que a aresta s_2 pode fazer parte de T' ou não.

Suponha que não.

Nesse caso, nós podemos adicionar a aresta $s_2 = (x, y)$ a T', criando um ciclo.

Dessa vez é preciso um pouco mais de cuidado, pois a aresta s_1 pode fazer parte do ciclo, e é possível que $custo(s_1) < custo(s_2)$.

Mas, apesar disso, nós podemos afirmar com segurança que o ciclo contém alguma aresta $(g,h) \neq s_1, s_2$.

Porque?

Ora, porque s_1 e s_2 sozinhas não podem formar um ciclo — as duas arestas fazem parte de S, e S não possui ciclos.

Portanto, é possível identificar alguma aresta $(g,h) \neq s_1, s_2$ nesse ciclo e removê-la, para obter uma nova árvore geradora:

$$T'' = T' \cup \{s_2\} - (g,h)$$

Além disso, nós podemos concluir que

$$\operatorname{custo}(s_2) \leq \operatorname{custo}(g,h)$$

(Porque?)

E isso implica que

$$\operatorname{custo}(T'') \leq \operatorname{custo}(T')$$

A seguir, nós vamos trabalhar com T''^{\dagger} .

Note que a coisa está ficando repetitiva ...

Mas, nós vamos dar mais um passo no argumento para examinar um último detalhe: o caso em que o algoritmo guloso descarta uma aresta.

[†]Mais uma vez, se a aresta s_2 já faz parte de T', nós simplesmente passamos a chamar T' de T''.

Como usual, nós observamos que a aresta s_3 pode fazer parte de T'' ou não.

Suponha que não.

Nesse caso, nós podemos adicionar a aresta $s_3 = (a, b)$ a T'', criando um ciclo

Como no caso anterior, esse ciclo pode conter as arestas s_1 e s_2 , que podem ter custo menor que $\mathsf{custo}(s_3)$.

Além disso, em princípio, o ciclo pode conter arestas que foram descartadas pelo algoritmo guloso antes da seleção de s_3 — e que podem ter custo menor que $\mathsf{custo}(s_3)$.

Mas, isso é impossível!

Porque?

Ora, nós sabemos que a árvore T'' contém as arestas s_1, s_2 .

Logo, se T'' contivesse alguma aresta descartada pelo algoritmo guloso (antes da seleção de s_3), então T'' teria um ciclo.

Mas, isso não é o caso.

Com base nessa observação, nós podemos dizer com segurança que o ciclo contém alguma aresta (e, f) diferente de qualquer aresta examinada pelo algoritmo até a seleção de s_3 .

Removendo essa aresta do ciclo

nós obtemos mais uma árvore geradora

$$T''' = T'' \cup \{s_3\} - (e, f)$$

com a garantia de que

$$\mathsf{custo}(T''') \quad \leq \quad \mathsf{custo}(T'')$$

E, a seguir, nós continuamos trabalhando com T'''.

(Você quer tentar dar mais um passo?)

Prosseguindo dessa maneira, nós vamos construindo uma sequência de árvores T', T'', T''', \dots que possuem cada vez mais arestas de S.

No final das contas, nós vamos obter uma árvore T'' que possui todas as arestas de S:

$$T''^{\dots} = \{s_1, s_2, \dots, s_{n-1}\}$$

Ora, mas nesse caso T''... é a própria árvore S, de modo que a seguinte igualdade é trivial

$$\mathsf{custo}(S) \quad \leq \quad \mathsf{custo}(T''^{\ldots})$$

Finalmente, com a série de desigualdades produzidas pelo argumento

$$\mathsf{custo}(T''^{\ldots}) \quad \leq \quad \ldots \quad \leq \quad \mathsf{custo}(T'') \quad \leq \quad \mathsf{custo}(T') \quad \leq \quad \mathsf{custo}(T)$$

nós podemos concluir que

$$\operatorname{custo}(S) \leq \operatorname{custo}(T)$$

Esse argumento demonstra que a árvore S encontrada pelo algoritmo guloso tem custo menor ou igual ao custo de uma árvore qualquer T.

E isso significa que S é uma solução ótima.

4 Algoritmo e análise de complexidade

Agora que sabemos que a nossa estratégia gulos é ótima, só nos resta construir o algoritmo e analisar o seu tempo de execução.

Dessa vez, como o procedimento guloso é muito simples, nós podemos implementá-lo na forma de um único laço.

```
Procedimento AGM-Gul ( V,A: listas de vértices e arestas )
{
1. Ordenar a lista A de acordo com o custo das arestas
2. S <-- vazio
3. Para cada aresta ai em A (na ordem acima)
{
4. Se ( ai não forma ciclo com as arestas de S )
5. Incluir a aresta ai na solução
}
6. Retorna (S)
}
```

Agora, denote por n, m as quantidades de vértices e arestas do grafo, respectivamente.

É imediato ver que a linha 1 executa em tempo $\Theta(n \log n)$.

E também é imediato ver que o laço das linhas 3-5 dá m voltas.

Caso as linhas no interior do laço executassem em tempo O(1), a análise acabava aqui.

Mas, a tarefa de verificar se um conjunto de arestas forma um ciclo pode levar mais tempo do que isso — dependendo de como a coisa é implementada.

(Pense um pouco sobre isso ...)

Portanto, a chave para a eficiência do algoritmo está em encontrar uma maneira inteligente de realizar esse teste.

E, para fazer isso, é útil examinar em mais detalhe a maneira como o algoritmo trabalha.

Considere esse outro exemplo de grafo

Segundo a lógica do nosso algoritmo, a primeira aresta a ser incluída na solução é A-G

Depois o algoritmo seleciona a aresta C-D

E, a seguir, a aresta B - E é selecionada

A observação importante aqui é que as arestas que fazem parte da solução (parcial) estão todas espalhadas pelo grafo.

Mas, veja o que acontece em seguida.

A próxima aresta selecionada pelo algoritmo é A-B

Aqui aconteceu uma coisa interessante: as arestas da solução que formavam 3 grupos de vértices (ou componentes), agora formam apenas 2

Isso faz sentido, pois a ideia é que no final do processo as arestas formem

Finalmente, dando mais um passo, nós descobrimos uma coisa ainda mais interessante.

A aresta que é considerada pelo algoritmo em seguida é B-G.

< Figura: detecção de ciclo >

Mas, como se pode ver na figura, ela não será incluída na solução pois ela forma um ciclo com as demais.

E agora nós temos uma maneira esperta de detectar ciclos:

- no momento em que uma aresta (u,v) é considerada para fazer parte da solução
- basta verificar se u e v estão no mesmo componente
- se isso for o caso, então a aresta forma um ciclo com as demais

O próximo passo consiste em implementar essa solução no algoritmo.

Especificamente, nós temos 2 problemas:

- encontrar uma maneira de armazenar as informações sobre os componentes
- encontrar uma maneira (eficiente) de atualizar essas informações, a medida que o algoritmo executa

A solução para o primeiro problema é relativamente simples.

Nós vamos imaginar que todo componente tem um chefe.

E vamos assumir que todo vértice "conhece" o chefe do seu componente:

u.chefe: indica o chefe do componente em que u se encontra

E agora é fácil: para testar se dois vértices u, v estão no mesmo componente, basta fazer

Se eles estiverem, então a aresta (u, v) forma um ciclo com aquelas que já estão na solução, e deve ser descartada.

Mas, se eles não estiverem, então a aresta (u, v) será incluída na solução, e os componentes de u e v serão combinados em um único componente.

Na prática, isso significa que os campos .chefe de um dos componentes devem ser atualizados com o chefe do outro componente.

E aqui surge a oportunidade para uma pequena esperteza ...

Se o componente com chefe A tem apenas 2 vértices e o componente com chefe J tem 10 vértices, então é mais fácil (rápido) atualizar os vértices do componente A do que o contrário.

Isto é, é como se o menor componente fosse absorvido pelo maior.

Para implementar essa solução, nós vamos introduzir mais dois campos que serão utilizados pelos vértices chefe:

 $\mathtt{u.tam}$: indica o tamanho do componente que tem u como chefe

u.comp : lista de vértices do componente que tem u como chefe

E agora é fácil:

- no momento em que a aresta (u, v) é incluída na solução
- nós descobrimos os chefes de u e v

- descobrimos qual é o maior componente

- e atualizamos os campos .chefe do menor componente

Abaixo nós temos a nova descrição de alto nível do nosso algoritmo guloso.

```
Procedimento AGM-Gul ( V,A: listas de vértices e arestas )
1.
    Ordenar a lista A de acordo com o custo das arestas
2.
    S <-- vazio
3.
    Inicializar componentes: cada vértice é seu próprio chefe
    Para cada aresta ai=(u,v) em A (na ordem acima)
4.
         Se ( u.chefe é diferente de v.chefe )
5.
6.
            Incluir a aresta ai na solução
7.
            Atualiza-Componentes (u,v)
     }
    Retorna (S)
8.
```

Não é difícil ver que a nova linha 3 executa em tempo $\Theta(n)$.

Mas, nós não temos como determinar o tempo de execução da linha 7.

Quer dizer, esse tempo varia de iteração para iteração — dependendo dos tamanhos dos componentes de u e v.

A solução para essa dificuldade consiste em estimar o tempo total acumulado por todas as chamadas a Atualiza-Componentes().

A primeira vista isso parece difícil, mas outra pequena esperteza resolve o problema.

Note que a "única" coisa que o procedimento Atualiza-Componentes () faz é atualizar os chefes dos vértices, por meio de instruções da forma

Nesse ponto, nós podemos perguntar:

• Quantas vezes um vértice pode ter o seu chefe atualizado (no pior caso)?

Bom, no início, o vértice é o chefe de si mesmo

Mas, em algum momento, ele pode ser absorvido por um outro componente

E, depois, o seu componente pode ser absorvido por um outro componente

A observação chave aqui é que o componente de u só pode ser absorvido por um componente maior ou igual a ele.

E isso significa que, a cada vez que o componente de u é absorvido, ele (ao menos) dobra de tamanho.

Ora, mais o componente de u não pode dobra de tamanho pra sempre ...

Especificamente, como o grafo tem n vértices, o componente de u pode dobrar de tamanho no máximo $\log_2 n$ vezes.

Isso significa que o campo ${\tt u.chefe}$ será atualizado no máximo $\log n$ vezes.

E isso significa que o tempo total acumulado pelo procedimento Atualiza-Componentes() é no máximo $O(n \log n)$ — pois nós temos um total de n vértices.

(Não é legal?)

E agora acabou.

- a linha 1 executa em tempo $\Theta(m \log m)$
- a linha 2 executa em tempo O(1)
- a linha 2 executa em tempo O(n)
- o tempo do laço das linhas 4-7 é dominado pelas chamadas a Atualiza-Componentes (), que levam tempo $O(n \log n)$
- e a linha 8 executa em tempo O(1)

Portanto, o algoritmo executa em tempo

$$\Theta(m\log m) + O(1) + O(n) + O(n\log n) = \Theta(m\log m)$$

(assumindo que $m \geq n$).