Quiz 1

Name:

Roll number:

Be sure to write your name and roll number above. Write only your final answers in the space provided after each question. A seperate sheet is provided to you for rough work.

1. [10 marks] Consider the signal y(t) = (1/5)x(-2t-3) shown below. Determine and carefully sketch the original signal x(t).

2. [10 marks] Consider three continuous time systems S_1 , S_2 , and S_3 . The responses of these systems to the input signal $\cos(\omega_o t)$ is given below.

$$\cos(\omega_o t) \xrightarrow{S_1} 5t \sin(\omega_o t)
\cos(\omega_o t) \xrightarrow{S_2} 3\sin(\omega_o t + 1)
\cos(\omega_o t) \xrightarrow{S_3} e^{-t} \cos(\omega_o t)$$

Given the above information, which of the systems S_1 , S_2 , and S_3 are definitely **not** LTI?

Sour answer:

Source

3. [20 marks] Consider the discrete-time LTI system described by the following input-output relation.

$$y[n] = x[n] + \sum_{i=1}^{\infty} (x[n+i] + x[n-i])\alpha^i,$$

where $\alpha \in (0,1)$.

(a) What is the impulse response for this system?

(b) Is the system causal? BIBO stable? Give reasons for your answers.

The system is not causal,

Since
$$h[m] \neq 0$$
 for $n < 0$.

[5 marks]

The system is stable, since

 $\sum_{-\infty}^{\infty} |h[m]| = \underbrace{1+\alpha}_{1-\alpha} < \infty$
[5 marks]