DIVISEURS SUR LES SURFACES DE RIEMANN COMPACTES

Surface de Riemann compacte quelconque

- $\operatorname{Princ}(X) \subseteq \operatorname{Div}^0(X) \subseteq \operatorname{Div}(X)$.
- Princ(X) = $\mathcal{M}(X)^*/(f_1 = \alpha f_2, \alpha \in \mathbb{C}^2)$.
- Les classes d'équivalence Div(X)/Princ(X) sont contenues dans les iso-degré.
- $Eff(X) \cap Princ(X) = \{cstes\}.$
- Div(X) = Eff(X) Eff(X).
- $L(D) := \{ f \in \mathcal{M}(X) \mid \operatorname{div}(f) \ge -D \} \cup \{0\}$ l'ensemble des diviseurs d'ordre de « pôle » au plus n_i en p_i si $D = \sum_i n_i p_i$.
- Les classes d'équivalence Div(X)/Princ(X) sont contenues dans les iso- $\ell(D)$.
- Si $D \in \text{Div}^0(X)$, $D \in \text{Princ}(X) \Leftrightarrow \ell(D) \geq 1$.
- Si $D \in \text{Div}^0(X)$, $\ell(D) = \ell(-D)$.
- $L(D) \neq 0 \Leftrightarrow D \sim E \geq 0$.

- Tout diviseur est associé à une section méromorphe d'un certain fibré en droites.
- L'équivalence entre diviseurs traduit l'isomorphie des fibrés en droites associés
- (Riemann-Roch) K canonique, ie associé à une forme : $\ell(D) + \ell(K D) = \deg(D) g(X) + 1$. Où $L(D) = \{F \in \mathcal{M}(X) \mid (F) \ge -D\} \cup \{0\}$ et $L(K - D) = \{\omega \in \mathcal{M}^1(X) \mid (\omega) \ge D\} \cup \{0\}$. Rappel : $\ell(K) = g(X)$. On en déduit $\deg(K) = -\chi(X)$.
- (Existence) $\ell((g+1)[p]) \ge 2$.
- $\ell(D) \ge \deg(D) g(X) + 1$.
- Si $\deg(D) > -\chi(X)$, $\ell(D) = \deg(D) g(X) + 1$.
- (Abel) $Princ(X) = Div^{0}(X) \cap ker(J)$ avec la fonction $J: D = \sum_{i=1}^{n} z_{i} p_{i} \in Div^{0}(X) \mapsto \left(\sum_{i} \int_{z_{i}}^{p_{i}} \alpha_{1}, \dots, \sum_{i} \int_{z_{i}}^{p_{i}} \alpha_{g}\right) où (\alpha_{i})_{i}$ est une base de $\Omega^{1,0}(X)$.

Sphère de Riemann

- $\operatorname{Princ}(\mathbb{CP}^1) = \operatorname{Div}^0(\mathbb{CP}^1)$.
 - → Si deg(D) = 0, D ≠ 0, ℓ (D) = 1.
 - \rightarrow Si deg(D) > 0, $\ell(D) = \deg(D) + 1$.

Courbes elliptiques

- Princ $(E_{\tau}) = \text{Div}^{0}(E_{\tau}) \cap \text{ker}(J)$ où $J: z \in E_{\tau} \mapsto [z]$. (Ainsi si $D = \sum a_{i} - b_{i}, J(D) = 0 \Leftrightarrow \sum a_{i} - b_{i} \in \Lambda_{\tau}$.)
- Si deg(D) > 0, D ~ E = deg(D). $[p_0] > 0$.
 - \rightarrow Si $E \in \text{Eff}(X)$, $\ell(D) \leq \deg(D)$.
 - \rightarrow Si deg(D) > 0, $\ell(D) = \deg(D)$.
 - \rightarrow Si deg(D) = 0, $\ell(D)$ = 1 si J(D) = 0 et $\ell(D)$ = 0 sinon.