4. HEAT TREATMENT

HEAT TREATMENT: It's a secondary process after production of steel to improve mechanical properties without changing chemical composition, but only changing grain structure of material by heating and cooling.

	STEPS IN HEAT TREATMENT PROCESS					
	HEATING (Grain Growth) HOLDING/ SOAKING COOLING					
a.	Residual Stresses are relieved due	To get uniform grain formation	Slow Cooling	Fast Cooling		
b.	to atomic vibration at boundary. Enlargement of grains	And Holding time depends on thickness of the material	Coarse Grains Obtained	Fine Grains Obtained.		

COARSE GRAINS/ SLOW COOLING	FINE GRAINS/ FAST COOLING	
Grain Boundary are low so low restriction of movement	Grain Boundary are high so high restriction of	
of dislocation.	movement of dislocation.	
1. Low Strength and hardness	1. High Strength and hardness	
2. High Ductility and Machinability	2. Low Ductility and Machinability	
3. Low Residual Stress	3. High Residual Stress	

HARDENING PROCESS: It's Applied for steel to improve **hardness** and **wear resistance** of material. **Applicable:** L-CS, M-CS, H-CS.

- Transformation of phase starts at Lower Critical Temp. and ends at Upper Critical Temp.
- αFe is not harden able due to low C%. Hence, we are heating **hypoeutectoid** steel 50 °C above upper Critical Temp. And **hypereutectoid** steel 50 °C above lower Critical Temp. (Fig. 4.1)

HARDENING STRAINS: It's Residual stresses generated in the material without applied forces.

- In hardening process, due to **RAPID COOLING**, the outer layer transforms into **Martensite** from austenite but inner core is in retained austenite form due to lack of sufficient time. (**Martensite is Body Centred Tetragonal**)
- The inner core (γFe) is in expansion state and outer layer is in contraction state and due to expansion and contraction hardening strain are generated (Fig. 4.2). To relieve Strain Hardening Tempering process are performed.

HARDENABILITY: It's the depth from the surface of the specimen up to which Martensite is present (Fig. 4.3).

• **Jhomny End Quench Test method** is used to measure the hardenability of steel.

Factors Affecting Hardenability:

- 1) Composition of material: By adding allowing elements hardenability increases E.g. TTT diagram shifts tight side,
- 2) Type of Cooling: Quenching Medium effects on time E.g. $(D_h)_{Brine} > (D_h)_{Water} > (D_h)_{Oil}$,
- 3) Shape of the component: $(D_h)_{Thin\ Element} > (D_h)_{Thick\ Element}$.

FULL ANNEALING: This process is applicable for all types of steels to increase ductility and to get uniform grain formation of material.

Applicable: L-CS, M-CS, H-CS.

we are heating **hypoeutectoid** steel 50 °C above upper Critical Temp. And **hypereutectoid** steel 50 °C above lower Critical Temp. (Fig. 4.1) After that we are **cooling in the furnace** with slow cooling so that grain boundaries more. Properties: 1) Good Ductility, 2) Good Machinability, 3) Low Strength and hardness, 4) Low Residual Stresses.

PROCESS ANNEALING:

To increase processability of a cold worked (Rolling, Forging, Drawing...etc.) and welded components. we are heating steel 50 °C below Lower Critical Temp. And **Cooling in Furnace** so it's slow cooling.

Applicable: L-CS, M-CS. Because H-CS is generally not used for cold working.

NOTE: In Cold Working Process Large Internal Stress are generated due to accumulation of dislocations at grain boundary. And due to that next machining process is difficult, so to solve the problem process annealing is applied.

	Hardening	Full Annealing	Process Annealing
Grain Size	Small	Large	Medium Because Less heating temp.
Strength (\propto (Grain Size) ⁻¹)	More	Less	Medium
Ductility	Less	More	Medium
Residual Stress	More	Less	Medium

SPHEROIDISE ANNEALING: This process is applicable for M-CS, H-CS to increase machinability of a material. **NOTE:** The machinability if H-CS is low due to more harder phase Fe₃C present in it.

Machinability increased by 1) sulphur and Selenium at the time of production of steel, 2) Spheroidise annealing at after production of steel.

DIFFUSION ANNEALING: This process is applied for M-CS, H-CS to get uniform chemical composition and uniform properties of a casted of solidified component.

Heating up to elevated temperature & Holing at that temperature to get uniform diffusion and cooling in the furnace.

Applicable: L-CS, M-CS, H-CS. Cast ability: L-CS < M-CS < H-CS.

NOTE: Diffusion is a transfer of mass from high concentration level to low concentration level.

NORMALIZING PROCESS: This process is applied for all types of steels to get normal fined **perlite structure**. Heating up to Below mentioned temperature & Holing at that temperature to get perlite structured **cooling in Air.** we are heating **hypoeutectoid** steel 50 °C above upper Critical Temp. (AC3) And **hypereutectoid** steel 50 °C above upper Critical Temp. (ACm) (Fig. 4.5)

APPLICABLE: L-CS, M-CS, H-CS

Advantages: 1) Uniformed Grain Structure, 2) Residual stress relieved, 3) Machinability increased, 4) Strength and hardness increased (Compared with full annealing)

Increasing order for each property	Hardening	Normalising	Process Annealing	Full Annealing
Grain Size	1	2	3	4
Strength/ hardness	4	3	2	1
Ductility	1	2	3	4
Residual Stress	4	3	2	1

TEMERING PROCESS: This process is a secondary process applied to the steel after hardening to relieve residual stress (Hardening Strains) and to increase toughness of the material.

stress (Hardennig Strains) and to increase toughness of the material.					
	Low Temperature Tempering (LTT)				TT)
	Heating (150-250 °C)		Holding/ Soaking		Cooling
	Hardened Co	emponent (Body	Fined grained Cementite and		Air Cooling, we get Troosite.
TEMERING	cantered tetra	agonal)	soft ferrite phase		(BCC at room temp) (LTTT)
PROCESS		High Temperature Tempering (HT		Γ Γ)	
	Heating (650 °C)		Holding/ Soaking		Cooling
	Hardened Component (Body		Relatively large grained.		Air Cooling, we get Sorbite.
cantered tetra		gonal)			(BCC at room temp) (HTTS)
·		Low Temperate	ure Tempering (LTT)	High Ten	nperature Tempering (HTT)
Grain Size		Low		High	
Strength/ hardness		High		Low	
Ductility		Low		High	
Residual Stress		High		Low	
Toughness		Low		High	
Eg.		Cutting tool		Shafts, Gears	

TIME TEMPERATURE TRANSFORMATION DIAGRAM(TTT):

Fe-Fe ₃ C Phase Diagram	Time Temperature Transformation Diagram
It's phase diagram. And it gives information about	It's not phase diagram. It gives information about
phases of an Fe-C Alloy.	different forms of steel.
Temperature Vs. Chemical Composition diagram at	Temperature Vs. Cooling rate at constant chemical
constant cooling rate (Quasistatically).	composition.
It's Equilibrium diagram.	It's non equilibrium diagram.
Useful in Research Application.	Useful in industrial application.
No Martensite	Martensite is present.

CRITICAL COOLING

TIME: It's The maximum cooling time for austenite material to transform into martensite.

Bain has done experiment with 3 specimens:

- 1. Rapid cooling: Martensite
- 2. Air Cooling: Perlite
- 3. Rapid Cooling + Isothermal Cooling: Bainite.

Process of making bainite is called **Austempering**.

Properties	Martensite	Perlite	Bainite
Type of cooling	Rapid Cooling (Water	Air Cooling	Interrupted Cooling (Rapid +
	Cooling)		Isothermal Cooling)
Process of Formation	Diffusion Less Process	Diffusion Process	Both
Grain Size	Fine	Coarse	M < B < P
Strength/ Hardness	High	Low	M > B > P
Ductility	Low	High	M < B < P
Residual Stresses	High	Low	M > B > P

CONTINUOUS COOLING TRANSFORMATION DIAGRAM (CCT DIAGRAM):

- In CCT Curve, No bainite formation.
- In CCT Curve, Continuous cooling is present/ No Isothermal Cooling.

Hardness	Strength
(BHN)	(MPa)
16	700
30	1000
45	1500
60	2000
	(BHN) 16 30 45

FACTORS AFFECTING TTT OR CCT DIAGRAM				
Grain Size	Carbon Content	Alloying Elements		
Coarse Grain: Curve moves Right	Increasing C%: More Martensite	Increasing Elements: Curve moves		
and Critical cooling rate increases.	Forms. hence, Curve moves Right	Right and Critical cooling rate		
Coarse Grain: Curve moves Left	and Critical cooling rate increases.	increases and Critical cooling rate		
and Critical cooling rate decreases.	And Hardenability increases.	increases.		

SURFACE HARDENING PROCESS: This process is applied to the steel, to get hard and wear resistance surfaces with tough core of a material.

Eg. Gear Teeth, Cam Shaft, Crack Pin, Tools & dies.

SURFACE HARDENING PROCESS			
Hardening & Tempering Process Chemical Heat Treatment/ Case Hardening Process			
1. Flame Hardening	1. Carburizing		
2. Induction Hardening	2. Nitriding		
	3. Cyaniding		

PRECIPITATION PROCESS: This is applied for non-ferrous alloys to increase strength and hardness of a material. (Due to strain hardening, Strength & hardness of the component is increased.)

(200	Due to strain nardening, strength & naraness of the component is increased.)				
Eg	. Al-Cu Alloy (Eutectic Alloy)				
1)	Solution Treatment: The specimen is heated up to above				
	solvus (Eutectic Line) and hold for some time to form				
	complete solid solution α —phase.				
2)	Quenching: After heating & Holding quench the specimen				
	to form super saturated solid solution α —phase.				
3)	Precipitation Treatment (Aging): again, the specimen is				
	heated below the solves line to form precipitates of				
	β –phase. And then cooled to the room temperature.				