

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

Τοπικά δίκτυα

Local Area Network (LAN)

- Το τοπικό δίκτυο (LAN) είναι ο συνήθης τρόπος διασύνδεσης υπολογιστών
 - μέσα σε ένα κτίριο, πανεπιστημιούπολη ή εταιρικό δίκτυο
- Οι τυπικές τοπολογίες είναι:
 - артпріа (bus)
 - δακτύλιος (ring)
 - αστέρας (star)

Bus LAN

Ring LAN

Τοπικά δίκτυα

- Η ζεύξη μεταξύ των υπολογιστών (hosts) συνήθως είναι ένας δίαυλος εκπομπής (broadcast channel)
 - Όλοι οι υπολογιστές μπορούν να μιλήσουν και ακούσουν τους άλλους
 - Η πρόσβαση στο διαδίκτυο γίνεται μέσω δρομολογητή (router) που είναι και αυτός συνδεδεμένος στο LAN

Ethernet

Η "επικρατέστερη" τεχνολογία LAN:

- η πρώτη τεχνολογία LAN που χρησιμοποιήθηκε ευρέως
- φθηνή (~10 €)
- απλούστερη και φθηνότερη από τα LAN με σκυτάλη
- χρησιμοποιεί πρωτόκολλο CSMA/CD
- ταχύτητες μετάδοσης: 10, 100 Mbps, 1, 10, 40, 100, 200, 400 Gbps

Το πρώτο σκαρίφημα του Metcalfe που οδήγησε στο Ethernet 10Base5

Τοπολογίες Ethernet

- Το Ethernet αρχικά ήταν τοπολογία αρτηρίας
 - Η τοπολογία αρτηρίας ήταν δημοφιλής μέχρι τα μέσα της δεκαετίας 1990
 - Όλοι οι κόμβοι βρίσκονται στην ίδια επικράτεια συγκρούσεων
- Τώρα επικρατεί η τοπολογία αστέρα
 - Ενεργό στοιχείο (hub ή switch) στο κέντρο
 - Hub: δημιουργεί μια επικράτεια συγκρούσεων
 - Switch: κάθε ακτίνα αποτελεί ένα διαφορετικό δίκτυο Ethernet στο οποίο δεν έχουμε συγκρούσεις

Ethernet

- Προσφέρει αναξιόπιστη υπηρεσία μετάδοσης δεδομενογραμμάτων χωρίς σύνδεση
 - Χωρίς σύνδεση: δεν ανταλλάσσεται σηματοδοσία μεταξύ των καρτών προσαρμογής εκπομπής και λήψης
 - Αναξιόπιστη: η κάρτα προσαρμογής λήψης δεν στέλνει ΑCK ή NACK στην κάρτα προσαρμογής εκπομπής
 - η ροή των δεδομενογραμμάτων, που διαβιβάζονται στο στρώμα δικτύου, μπορεί να έχει κενά
 - τα κενά θα συμπληρωθούν, αν η εφαρμογή χρησιμοποιεί TCP
 - αλλιώς, τα κενά θα γίνουν αντιληπτά στην εφαρμογή

Το Ethernet χρησιμοποιεί CSMA/CD

- Όχι χρονοσχισμές
- Η κάρτα προσαρμογής δεν μεταδίδει, όταν ανιχνεύσει ότι κάποια άλλη κάρτα μεταδίδει, δηλαδή, έχουμε ανίχνευση φέροντος (carrier sense)
- Η κάρτα προσαρμογής που μεταδίδει σταματά, όταν ανιχνεύσει ότι στέλνει και κάποια άλλη κάρτα, δηλαδή, έχουμε ανίχνευση σύγκρουσης (collision detection)
- Η κάρτα προσαρμογής περιμένει για τυχαίο χρονικό διάστημα πριν επιχειρήσει επαναμετάδοση, δηλαδή, έχουμε τυχαία πρόσβαση (random access)

Αλγόριθμος CSMA/CD στο Ethernet

- Η κάρτα προσαρμογής λαμβάνει το datagram από το στρώμα δικτύου και δημιουργεί ένα πλαίσιο
- 2. Αν ανιχνεύσει ελεύθερο δίαυλο αρχίζει τη μετάδοση του πλαισίου, αλλιώς, αναστέλλει τη μετάδοση μέχρι να ελευθερωθεί ο δίαυλος
- 3. Αν μεταδώσει όλο το πλαίσιο χωρίς να ανιχνεύσει άλλη μετάδοση, παύει η ενασχόλησή της με το υπόψη πλαίσιο

- 4. Αν ανιχνεύσει άλλη μετάδοση, σταματά τη μετάδοση και στέλνει σήμα συνωστισμού (jam signal)
- 5. Μετά την παύση μετάδοσης, πραγματοποιεί εκθετική υποχώρηση (exponential backoff):
 - μετά την η-στη σύγκρουση, επιλέγει τυχαίο Κ από το {0,1,2,...,2^m-1}, όπου m=min(n,10)
 - περιμένει Κ x 512 διάρκειες
 bit και επιστρέφει στο Βήμα
 2.

Αλγόριθμος CSMA/CD του Ethernet

Σήμα συνωστισμού:

- εξασφαλίζει την ενημέρωση όλων των άλλων σταθμών για τη σύγκρουση
- έχει μήκος 48 bit

Χρόνος αναμονής:

- η διάρκεια bit για Ethernet 10 Mbps είναι 0.1 μsec
- για m=10, δηλαδή K=1023, ο χρόνος αναμονής είναι περίπου 52.4 msec

Εκθετική υποχώρηση:

- Στόχος: προσαρμογή των προσπαθειών επαναμετάδοσης στο εκτιμώμενο τρέχον φορτίο
 - μεγάλο φορτίο: η τυχαία αναμονή θα είναι μεγαλύτερης διάρκειας
- πρώτη σύγκρουση: επιλογή του Κ από {0,1} και καθυστέρηση Κ x 512 διάρκειες bit
- μετά τη δεύτερη σύγκρουση:
 επιλογή του Κ από {0,1,2,3}
- ...
- μετά 10 συγκρούσεις, επιλογή του Κ από {0,1,2,3,4,...,1023}

Απόδοση του CSMA/CD

- PROP = μέγιστος χρόνος διάδοσης μεταξύ 2 σταθμών στο LAN
- TRANSF = χρόνος για τη μετάδοση πλαισίου μέγιστου μήκους

$$\eta = \frac{1}{1 + 5 \cdot PROP/TRANSF}$$

- Πολύ καλύτερη απόδοση από εκείνη του ALOHA, για αποκεντρωμένη πρόσβαση
 - η \rightarrow 1 καθώς το PROP \rightarrow 0
 - η \rightarrow 1 καθώς το TRANSF $\rightarrow \infty$

Το πλαίσιο Ethernet

Πακέτο και πλάσιο Ethernet

- Κοινή δομή πλαισίου για όλες τις τεχνολογίες
 Ethernet
 - Αυτός είναι ο πραγματικός λόγος της επιτυχίας του
 - Ανάλογο της χρήσης του ΙΡ στο διαδίκτυο

Πεδία πλαισίου Ethernet

- Address: 6 byte σε κάθε πεδίο
 - Είναι παγκόσμια μοναδικές
 - Κάθε διεύθυνση αντιστοιχεί σε μία κάρτα δικτύου
- Type: 2 byte, στην ενθυλάκωση Ethernet II, δείχνει το πρωτόκολλο του ανώτερου στρώματος, π.χ. IP (0x0800)
 - Υποστηρίζονται και άλλα πρωτόκολλα, όπως π.χ. ARP (0x0806), RARP (0x8035), Novell IPX (0x8037)
- Length: 2 byte, στην ενθυλάκωση ΙΕΕΕ 802.3, είναι το μήκος του πλαισίου
 - Πώς διακρίνουμε το είδος της ενθυλάκωσης;
- Data: 46-1500 byte δεδομένων
- Frame Check Sequence (FCS): CRC μήκους 4 byte
 - ελέγχεται στον δέκτη, αν ανιχνευθεί σφάλμα το πλαίσιο απορρίπτεται

Προοίμιο και διάκενο

• Preamble:

- χρησιμοποιείται για τον συγχρονισμό του δέκτη με τον αποστολέα και δείχνει την αρχή του πλαισίου
- 7 byte της μορφής 10101010 ακολουθούμενα από 1 byte της μορφής 10101011
- το προοίμιο δεν είναι μέρος του πλαισίου και δεν προσμετρείται στο μήκος του
 - Μέγιστο μέγεθος πλαισίου 6+6+2+1500+4=1518 byte
 - Ελάχιστο μέγεθος πλαισίου 6+6+2+46+4=64 byte

Interframe Gap (IFG):

- διάκενο μεταξύ πλαισίων μήκους 96 bit

Επεκτάσεις

VLAN Tag:

- Πεδίο 4 byte μεταξύ διεύθυνσης πηγής και τύπου πλαισίου, για την υποστήριξη εικονικών τοπικών δικτύων (Virtual LANs)

Jumbo frame:

- Αύξηση του μήκους δεδομένων από 1500 σε 9000
- Υποστηρίζεται από πολλούς κατασκευαστές, αλλά δεν αποτελεί πρότυπο

Extension bits:

- Σειρά bit στο τέλος του πλαισίου το επεκτείνει ώστε να έχει μήκος 512 byte (Gigabit Ethernet, λειτουργία half duplex)

Frame busts (ριπές πλαισίων) :

- Πολλά πλαίσια στη σειρά μέχρι συνολικά 8192 byte
- Το διάκενο μεταξύ των πλαισίων γεμίζει με extension bit (σε Gigabit Ethernet και λειτουργία half duplex)

Ελάχιστο μήκος πλαισίου Ethernet

- Επιβάλλεται για να δοθεί στον host εκπομπής επαρκής χρόνος για την ανίχνευση συγκρούσεων
 - Το ελάχιστο μήκος πλαισίου είναι 64 bytes
 - δύο διευθύνσεις MAC των 6 byte, 2 byte για το πεδίο type,
 4 byte CRC και 46 byte δεδομένα
- Αν ο host έχει να στείλει λιγότερα από 46 byte, η κάρτα προσαρμογής παραγεμίζει (προσθέτει) byte για να γίνουν 46
- Η αποδοχή ελαχίστου μήκους για τα πλαίσια, λόγω του πρωτοκόλλου CSMA/CD, εισάγει περιορισμούς στο μέγιστο μήκος του δικτύου
 - Ποια είναι η σχέση μεταξύ ελάχιστου μήκους πλαισίου και του μήκους του LAN;

Μέγιστο μήκος LAN

- a) Time = t: ο host 1 αρχίζει τη μετάδοση
- β) Time = t+d: ο host 2 αρχίζει τη μετάδοσή του, λίγο πριν αντιληφθεί τη μετάδοση του host 1
- γ) Time = t+2d: ο host 1 ακούει τη μετάδοση του host 2
- → ανιχνεύει τη σύγκρουση

$$\frac{\pi \lambda \alpha \text{isio elácistou mákous}}{\rho \upsilon \theta \text{más metádoshs}} \geq 2 \times \frac{M \text{nkos LAN}}{\tau \alpha \text{cúthta diádoshs}}$$

Μήκος LAN
$$\leq \frac{1}{2} \times \frac{\pi \lambda \alpha$$
ίσιο ελάχιστου μήκους \times ταχύτητα διάδοσης \times δίκτυα Υπολογιστών

Απόδοση του CSMA/CD

- PROP = μέγιστος χρόνος διάδοσης μεταξύ 2 σταθμών στο LAN
- TRANSF = χρόνος για τη μετάδοση πλαισίου μέγιστου μήκους

$$\eta = \frac{1}{1 + 5 \cdot PROP/TRANSF}$$

- Πολύ καλύτερη απόδοση από εκείνη του ALOHA, για αποκεντρωμένη πρόσβαση
 - η \rightarrow 1 καθώς το PROP \rightarrow 0
 - η \rightarrow 1 καθώς το TRANSF $\rightarrow \infty$

Τεχνολογίες Ethernet

Τα πρότυπα ΙΕΕΕ 802

- ΙΕΕΕ 802 είναι οικογένεια προτύπων για LAN που προδιαγράφει ένα στρώμα LLC και πολλά υπο-στρώματα ΜΑC
- Το Ethernet (πρωτόκολλο ΜΑС και πρωτόκολλα PHY)
 προτυποποιούνται από τις ομάδες εργασίας IEEE 802.3

Πρότυπο IEEE 802

Δίκτυα Υπολογιστών

Τεχνολογίες Ethernet

Μερικά δημοφιλή φυσικά στρώματα του Ethernet:

Ethernet

10Base5 Thick Ethernet: 10 Mbps ομοαξονικό καλώδιο

10Base2 Thin Ethernet: 10 Mbps ομοαξονικό καλώδιο

10Base-T 10 Mbps διπλαγωγός

Fast Ethernet

100Base-TX 100 Mbps διπλαγωγός Cat. 5 (2 ζεύγη)

Gigabit Ethernet

1000Base-T 1 Gbps διπλαγωγός Cat. 5 (4 ζεύγη)

10GE ń 10GbE ń 10GigE

10GBase-LR 10 Gbps μονότροπη ίνα (μεγάλες αποστάσεις)

10GBase-T 10 Gbps διπλαγωγός Cat6 (4 ζεύγη)

40/100 GE

40/100GBase-LR 40/100 Gbps μονότροπη ίνα

Δίκτυα Υπολογιστών

Εξέλιξη του Ethernet

3 Mb/s experimental Ethernet		DIX Consort formed	ium Spec ve	DIX Ethernet DIX Spec ver. 1 Spec 10 Mb/s Ethernet		IEEE 802.3 10BASE5
1973		1980	198	1 19	82	1983
	Full-duplex Ethernet	100BASE-T	10BASE-F	- 102/102 1		10BASE2
	1997	1995	1993			1985
	1000BASE-X	1000BASE-T	Link aggre	egation 10GE	BASE on fibe	er Ethernet in the First Mile
'	1998	1999	2000		2002	2003
		2,5G/5G	400G/200G	40GBASE-T	40G/100G	6 10GBASE-T
		< 2016	2014	2013	2008	2006

Δίκτυα Υπολογιστών

Τα πρώτα Ethernet LAN (10Base5)

- Στο thick Ethernet η ανάπτυξη του ομοαξωνικού καλωδίου σε χώρους γραφείου ήταν προβληματική
 - ο πομποδέκτης καρφώνονταν στο ομοαξωνικό
 - ανάγκη για εύκαμπτα καλώδια προς τους host
- Βραχυκυκλώματα στον πομποδέκτη κατά την εγκατάσταση νέων ήταν συχνά
 - όλο το δίκτυο εκτός λειτουργίας
- Οδήγησε σε αντικατάσταση του άκαμπτου ομοαξωνικού με λεπτότερο

Τα πρώτα Ethernet LAN (10Base2)

- Στο thin Ethernet η αποσύνδεση των καλωδίων ήταν συνηθισμένο φαινόμενο
 - ο εντοπισμός των διακοπών απαιτούσε σημαντικό χρόνο
 - οδήγησε σε διαφορετική σχεδίαση
 - χρήση υπάρχουσας δομημένης καλωδίωσης (για τηλεφωνία)

Ethernet 10Base-T

- Εισάγεται ο διπλαγωγός ως νέο φυσικό μέσο
- Όλοι οι σταθμοί συνδέονται σε ακτινικό επαναλήπτη (hub)

- Η απόσταση των κόμβων από το hub περιορίζεται στα 100 m
- Η σχεδίαση αυτή αναφέρεται ως 10Base-Τ (Τ σημαίνει διπλαγωγός: twisted pair)

Ethernet 10Base-T

Ethernet 10Base-T

- Το hub είναι επαναλήπτης (στο φυσικό στρώμα):
 - τα bit που εισέρχονται στο hub από μια ζεύξη επαναλαμβάνονται σε όλες τις άλλες ζεύξεις με τον ίδιο ρυθμό μετάδοσης
 - μπορούμε να έχουμε διαφορετικά φυσικά στρώματα ανά ζεύξη
 - τα πλαίσια δεν αποθηκεύονται
 - δεν γίνεται ανίχνευση συγκρούσεων στο hub
 - οι κάρτες των σταθμών ανιχνεύουν τις συγκρούσεις
 - όλοι οι σταθμοί ανήκουν στην ίδια επικράτεια συγκρούσεων (collision domain)

Hub

• Πλεονεκτήματα

- Απλοποιημένη και φθηνή καλωδίωση
- Το hub μπορεί να συγκεντρώνει πληροφορίες επίβλεψης και στατιστικά στοιχεία για να τα εμφανίζει στους διαχειριστές του LAN
- Το hub μπορεί να αποσυνδέει σταθμούς με θόρυβο (απενεργοποίηση πόρτας)
- Υποστήριξη πολλών φυσικών μέσων

Μειονεκτήματα

- η μέγιστη απόσταση κόμβου από το hub περιορίζεται
 - τυπικά στα 100 m
 - εφικτή στα 150 m με καλή ποιότητα καλωδίων
- το κόστος (αρχικά, όχι πλέον)

Πλήρως αμφίδρομο Ethernet

- Το πρότυπο ΙΕΕΕ 802.3x ορίζει ένα δεύτερο τρόπο λειτουργία του Ethernet, τον πλήρως αμφίδρομο (Full Duplex - FD)
 - παρακάμπτει το πρωτόκολλο CSMA/CD
 - το CSMA/CD είναι εγγενώς ημι-αμφίδρομο (Half Duplex -HD), ο κόμβος μπορεί είτε να στείλει είτε να λάβει, αλλά ποτέ και τα δύο ταυτόχρονα
- Η λειτουργία FD περιορίζεται σε ζεύξεις από σημείο σε σημείο
 - Το φυσικό στρώμα πρέπει να υποστηρίζει και ο κόμβος να διαθέτει ανεξάρτητες διαδρομές για αποστολή και λήψη

Πλήρως αμφίδρομο Ethernet

- Πλεονεκτήματα
 - Αύξηση της διέλευσης
 - Κόμβος 10 Mbps σε πλήρως αμφίδρομη λειτουργία χρησιμοποιεί όλο το εύρος ζώνης
 - Εξαλείφονται οι συγκρούσεις στο μέσο!
 - Οι αποστάσεις κόμβων δεν εξαρτώνται από χρονικούς περιορισμούς (διάδοση της σύγκρουσης)

Fast Ethernet

To taxú Ethernet

- Πρότυπο ΙΕΕΕ 802.3u
 - αποτελεί προσθήκη στο υπάρχον πρότυπο 802.3, για να δοθεί έμφαση στην προς τα πίσω συμβατότητα
- Βασική ιδέα:
 - Διατήρηση της μορφής των πλαισίων
 - Διατήρηση του CSMA/CD
 - Μείωση της διάρκειας των bit από 0.1 μsec σε 10 nsec
 - Χρήση της ίδιας καλωδίωσης με το 10Base-T
 - Περιορισμός της απ' άκρη σ' άκρη απόστασης (επικράτεια συγκρούσεων) για να διατηρείται η κανονικοποιημένη καθυστέρηση διάδοσης μικρή

Φυσικό στρώμα

100Base-T4

- 4 διπλαγωγοί UTP Cat.3
- Ένας διπλαγωγός για εκπομπή, ένας για λήψη και οι άλλοι δύο έχουν τη δυνατότητα να μεταχθούν προς την τρέχουσα κατεύθυνση μετάδοσης
- Εγγενώς ημι-αμφίδρομο (half duplex)
- Κωδικοποίηση 8B6T στα 25 Mbaud, 25x(8/6) = 33.3 Mbps ανά ζεύγος, με διαμόρφωση PAM-3 (pulse-amplitude modulation με 3 στάθμες)

100Base-TX

- 2 διπλαγωγοί STP ή 2 διπλαγωγοί UTP Cat.5
- Ένας διπλαγωγός προς το hub και ένας από αυτό
- Κωδικοποίηση 4B5B στα 125 Mbaud, 125x(4/5) = 100 Mbps με διαμόρφωση MLT-3
- Πλήρως αμφίδρομο σύστημα
- Απόσταση μεταξύ σταθμού και hub 100 m

•100Base-FX

- 2 πολύτροπες οπτικές ίνες, λ = 1330 nm
- Ίδια κωδικοποίηση και διαμόρφωση με το 100Base-TX
- Μέγιστο μήκος τμήματος 400 m για hub και 2 km για switch

Ethernet switch

 Το ταχύ Ethernet μπορεί να λειτουργήσει με hub ή switch

Ethernet Hub ή Ethernet Switch

- Το Ethernet switch είναι μεταγωγέας πακέτων
 - αποθηκεύει και προωθεί πλαίσια Ethernet
 - backplane υψηλής ταχύτητας
 - κάθε θύρα είναι απομονωμένη και δημιουργεί τη δική της επικράτεια συγκρούσεων
 - μπορεί να εξυπηρετήσει μίγμα σταθμών των 10 και 100 Mbps
 - είναι δυνατή η αναβάθμιση (συμβατότητα προς τα πίσω)
- Το Ethernet Hub είναι επαναλήπτης
 - δεν αποθηκεύει
 - δημιουργούνται συγκρούσεις εάν δύο πλαίσια φτάσουν την ίδια στιγμή

Μεταγωγέας Ethernet

- Κάθε θύρα αποθηκεύει τα εισερχόμενα πλαίσια
- Τα εισερχόμενα πλαίσια εξετάζονται και μεταφέρονται στην κατάλληλη έξοδο
- Κάθε εισερχόμενη γραμμή είναι και ένα πεδίο σύγκρουσης
- Υπάρχουν συγκρούσεις;

Μεταγωγέας Ethernet

- Κάθε host έχει δική του σύνδεση στον μεταγωγέα
- Οι μεταγωγείς αποθηκεύουν και προωθούν
 - ο μεταγωγέας μεταδίδει το πολύ ένα πλαίσιο τη φορά προς κάθε υπολογιστή
- Με ξεχωριστή γραμμή για κάθε κατεύθυνση αμφίδρομο (full duplex) τρόπο λειτουργίας δεν υπάρχουν πλέον συγκρούσεις
- Δεν χρειάζεται CSMA/CD!

Gigabit Ethernet

Gigabit Ethernet

- Πρότυπα ΙΕΕΕ 802.3z και ΙΕΕΕ 802.3ab
 - IEEE 802.3z (χαλκός STP, πολύτροπη, μονότροπη ίνα)
 - IEEE 802.3ab (χαλκός UTP)
- Υποστηρίζονται δύο τρόποι λειτουργίας
 - αμφίδρομη (full-duplex), ημιαμφίδρομη (half-duplex)
- Αμφίδρομη μετάδοση
 - → μεταγωγέας χωρίς το CSMA/CD
- Ημιαμφίδρομη μετάδοση (ασυνήθης πλέον)
 - → hub και CSMA/CD
- Διατηρεί τη μορφή πλαισίου Ethernet, προσθέτει
 - Carrier extension: bit επέκτασης του πλαισίου στα 512 byte για διατήρηση περιορισμών ελαχίστης διάρκειας μετάδοσης
 - Frame bursting: αποστολή πολλών πλαισίων σε κάθε μετάδοση

Φυσικό στρώμα

• 1000Base-SX

- Μικρό μήκος, πολύτροπη ίνα, λ = 770-860 nm
- Μέγιστο τμήμα 220~550 m (FD), κωδικοποίηση 8B/10B

1000Base-LX

- Μεγάλο μήκος, μονότροπη ίνα, λ = 1270-1335 nm
- Μέγιστο τμήμα 5000 m (FD), κωδικοποίηση 8B/10B

• 1000Base-CX

- Χάλκινες συνδέσεις, θωρακισμένος διπλαγωγός STP
- Μέχρι 25 m (HD ή FD), κωδικοποίηση 8B/10B

1000Base-T ή IEEE 802.3ab

- 4 ζεύγη, UTP Cat.5, πλήρως αμφίδρομη μετάδοση στα 125 Mbaud με ακυρωτή ηχούς και διαμόρφωση PAM-5

10GigE

- Πρότυπο ΙΕΕΕ 802.3αε, υποστηρίζει μόνο αμφίδρομη (full-duplex) μετάδοση
 - Ημι-αμφίδρομη (half-duplex) μετάδοση, hub και CSMA/CD δεν υπάρχουν
- Διατηρεί τη μορφή πλαισίου Ethernet και σχετικούς περιορισμούς μήκους

10GigE: Φυσικό στρώμα

- 10GBASE-SR (short range) πολύτροπη ίνα με 850 nm laser
 - Κωδικοποίηση 64B/66B, ρυθμός μετάδοσης 10.3125 Gbps
 - Απόσταση περί τα 26~33 m σε παλαιές ίνες 300~400 m σε καλύτερης ποιότητας ίνες
- 10GBASE-LR (long reach) για μονότροπη ίνα με 1310 nm laser
 - Κωδικοποίηση 64B/66B, ρυθμός μετάδοσης 10.3125 Gbps
 - Απόσταση τυπικά 10 km και συχνά μέχρι 25 km
- 10GBASE-Τ ή IEEE 802.3an για διπλαγωγούς
 - 4 πλήρως αμφίδρομα ζεύγη με ακυρωτή ηχούς
 - Μετάδοση στα 800 Mbaud με διαμόρφωση PAM-16
 - Απόσταση τουλάχιστον 100 m σε UTP Cat.7
 - τουλάχιστον 55 m μέχρι 100 m σε UTP Cat. 6
- 2.5/5GBASE-Τ ή IEEE 802.3bz για διπλαγωγούς
 - τουλάχιστον 100 m σε UTP Cat. 5 ή 6

40/100GigE

- Πρότυπο ΙΕΕΕ 802.3ba
- Πρώτη φορά που ένα πρότυπο ορίζει δύο ταχύτητες
- 40 Gbps
 - Εφαρμογή σε τοπικούς εξυπηρετητές
- 100 Gbps
 - Για τον κορμό του Internet
- Υποστηρίζει μόνο αμφίδρομη (full-duplex) μετάδοση
- Διατηρεί τη μορφή πλαισίου Ethernet και σχετικούς περιορισμούς μήκους
- Υποστηρίζει ρυθμό λαθών (BER) καλύτερο από 10⁻¹²

40/100GigE: Φυσικό στρώμα

- 40GBASE-CR4, 100GBASE-CR10 για χαλκό
 - Απόσταση μέχρι 7 m
 - Κωδικοποίηση 64B/66B, ρυθμός μετάδοσης 10.3125 Gbps ανά λωρίδα (lane)
 - 4 ή 10 λωρίδες μετάδοσης με διπλό ομοαξονικό καλώδιο
- 40GBASE-LR4, 100GBASE-LR4 yıa iva
 - Μονότροπη οπτική ίνα μέχρι 10 km
 - Κωδικοποίηση 64B/66B, ρυθμός μετάδοσης 10.3125 Gbps avá λωρίδα (lane)
 - 4 ή 10 λωρίδες μετάδοσης
- 40GBASE-Τ ή IEEE 802.3bq για διπλαγωγούς
 - 4 πλήρως αμφίδρομα ζεύγη
 - Μετάδοση στα 3200 Mbaud με διαμόρφωση PAM-16
 - Απόσταση μέχρι 30 m σε UTP Cat.8

200/400GigE

- Πρότυπο IEEE 802.3bs
- Ορίζει δύο ταχύτητες
- 200 Gbps каі 400 Gbps
- Υποστηρίζει μόνο αμφίδρομη (full-duplex) μετάδοση
- Διατηρεί τη μορφή πλαισίου Ethernet και σχετικούς περιορισμούς μήκους
- Υποστηρίζει ρυθμό λαθών (BER) καλύτερο από 10⁻¹³

200/400GigE: Φυσικό στρώμα

- 200 GBASE-LR4 yıa iva
 - Μονότροπη οπτική ίνα μέχρι 10 km
 - Διαμόρφωση PAM4, ρυθμός μετάδοσης 26.5625 Gbps ανά λωρίδα (lane)
 - 4 λωρίδες μετάδοσης σε ένα ζεύγος με χρήση WDM
- 400 GBASE-LR8 yıa iva
 - Μονότροπη οπτική ίνα μέχρι 10 km
 - Διαμόρφωση PAM4, ρυθμός μετάδοσης 26.5625 Gbps ανά λωρίδα (lane)
 - 8 λωρίδες μετάδοσης σε ένα ζεύγος με χρήση WDM
- 200GBASE-CR4 ή 802.3cd για χαλκό
 - Απόσταση μέχρι 3 m
 - Διαμόρφωση PAM4, ρυθμός μετάδοσης 26.5625 Gbps ανά λωρίδα (lane)
 - 4 λωρίδες μετάδοσης με διπλό ομοαξονικό καλώδιο

Ethernet in the First Mile

- Πρότυπο ΙΕΕΕ 802.3ah
- Ethernet πάνω από τον συνδρομητικό βρόχο (last mile)
 - Αντίθετα με τα άλλα φυσικά μέσα ο ρυθμός μετάδοσης δεν είναι σταθερός
 - Εξαρτάται από την απόσταση και ποιότητα του καλωδίου χαλκού
- 2 BASE-TL σε χαλκό για μετάδοση φωνής
 - Μέχρι 2700 m
 - Ταχύτητα τουλάχιστον 2 Mbps (μέγιστη 5,69 Mbps)
 - Τεχνολογία S.HDSL
- 10 PASS-TS σε χαλκό για μετάδοση φωνής
 - Μέχρι 750 m
 - Ταχύτητα τουλάχιστον 10 Mbps
 - Τεχνολογία VDSL
- 100/1000 BASE-LX10 για οπτική ίνα Point to point
- 100/1000 BASE-PX10 για οπτική ίνα GPON

Διασύνδεση LAN

Διασύνδεση LAN

- Συχνά υπάρχει ανάγκη να διασυνδεθούν πολλά
 LAN και να σχηματισθεί ένα εκτεταμένο LAN
- Η διασύνδεση μπορεί να γίνει στο
 - Φυσικό στρώμα
 - Επαναλήπτες (Repeaters)
 - Hubs
 - Στρώμα ζεύξης δεδομένων
 - Γέφυρες (Bridges)
 - Μεταγωγείς (Switches)
 - Οι μεταγωγείς είναι στην ουσία γέφυρες με πολλές πόρτες
 - Ό,τι αναφερθεί για τις γέφυρες ισχύει επίσης και για τους μεταγωγείς
 - Εικονικά LAN (VLANs)

Επαναλήπτες

- Λειτουργούν στο φυσικό στρώμα
- Μεταδίδουν και προς τις δύο κατευθύνσεις
- Ενώνουν δύο τμήματα καλωδίου
- Δεν έχουν χώρο προσωρινής αποθήκευσης
- Δεν υπάρχει λογική απομόνωση των τμημάτων
- Αν δύο σταθμοί σε διαφορετικά τμήματα στείλουν ταυτόχρονα, τα πακέτα συγκρούονται
- Μόνο μία διαδρομή τμημάτων και επαναληπτών μεταξύ δύο οποιωνδήποτε σταθμών

Διασύνδεση με Hub

Διασύνδεση με Hub

- Κάθε συνδεδεμένο LAN αναφέρεται ως τμήμα (segment) του LAN
- Τα hub δεν απομονώνουν τις επικράτειες σύγκρουσης
 - Ένας κόμβος μπορεί να συγκρούεται με οιονδήποτε κόμβο που βρίσκεται σε οποιοδήποτε τμήμα του LAN
- Πλεονεκτήματα των hub:
 - απλές, φθηνές διατάξεις
 - τα πολλαπλά επίπεδα σύνδεσης παρέχουν "ευγενική" υποβάθμιση λειτουργίας
 - τα τμήματα του LAN συνεχίζουν να λειτουργούν εάν κάποιο hub πάθει βλάβη
 - επεκτείνουν τη μέγιστη απόσταση μεταξύ των κόμβων (100m avá hub)

Περιορισμοί στη χρήση των hub

- το ενιαίο πεδίο συγκρούσεων έχει ως αποτέλεσμα το να μην αυξάνει η μέγιστη διέλευση
 - η διέλευση στα πολλαπλά τμήματα είναι η ίδια με εκείνη του ενός τμήματος
- κάθε τεχνολογία Ethernet έχει περιορισμούς ως προς
 - μέγιστο αριθμό κόμβων ανά επικράτεια συγκρούσεων
 - μέγιστη απόσταση μεταξύ δύο κόμβων ανά επικράτεια συγκρούσεων
 - μέγιστο αριθμός επιπέδων σε πολυεπίπεδη αρχιτεκτονική οι οποίοι θέτουν φραγμούς και στον συνολικό αριθμό host και στη γεωγραφική κάλυψη ενός πολυεπίπεδου LAN

Διασύνδεση με γέφυρα

- Διασυνδέει δύο τμήματα LAN στο στρώμα ζεύξης δεδομένων
 - αποθηκεύει και προωθεί πλαίσια
 - εξετάζει τη διεύθυνση προορισμού του πλαισίου
 - συμβουλεύεται τον πίνακα προώθησης
 - προωθεί το πλαίσιο στο κατάλληλο τμήμα LAN
 - μπορεί να συνδέει LAN διαφορετικών τεχνολογιών
- διαφανής
 - οι host αγνοούν την ύπαρξη της γέφυρας
- •συνδέεται και λειτουργεί αμέσως (plug-and-play)
- είναι αυτοεκπαιδευόμενη
 - η γέφυρα δεν χρειάζεται καμιά αρχική ρύθμιση

Φιλτράρισμα, προώθηση

- φιλτράρισμα: η ικανότητα μια γέφυρας να καθορίζει το κατά πόσο ένα πλαίσιο πρέπει να προωθηθεί ή όχι μέσω κάποιας διεπαφής
- προώθηση: η ικανότητα να προσδιορίζει τις διεπαφές προς τις οποίες πρέπει να κατευθυνθεί ένα πλαίσιο και στη συνέχεια να προωθεί το πλαίσιο στις διεπαφές αυτές
- Το φιλτράρισμα και η προώθηση γίνονται με τη βοήθεια του πίνακα προώθησης της γέφυρας

Φιλτράρισμα/Προώθηση πλαισίων

Όταν η γέφυρα λαμβάνει ένα πλαίσιο:

Συμβουλεύεται τον πίνακα χρησιμοποιώντας την MAC dest. address

```
if υπάρχει εγγραφή για τον προορισμό then {
    if ο προορισμός είναι στο τμήμα από όπου ήρθε το πλαίσιο then απορρίπτει το πλαίσιο else προωθεί το πλαίσιο στην έξοδο που αναφέρει ο πίνακας }
    else χρησιμοποιεί πλημμύρα
```

προωθεί το πλαίσιο σε όλες τις εξόδους εκτός εκείνης από την οποία ήρθε

Αυτοεκπαίδευση

- η γέφυρα μαθαίνει ποιοι host είναι προσβάσιμοι και από ποιες διεπαφές
- διατηρεί πίνακα προώθησης
 - όταν λαμβάνεται ένα πλαίσιο, η γέφυρα "μαθαίνει" τη θέση του αποστολέα, δηλαδή το LAN εισόδου
 - καταγράφει τη θέση του αποστολέα στον πίνακα προώθησης
- καταχώρηση στον πίνακα προώθησης:
 - (Node MAC Address, Bridge Interface, Time Stamp)
 - οι παλιές καταχωρήσεις στον πίνακα προώθησης διαγράφονται (χρόνος διατήρησης π.χ. 60 min)

Διεύθυνση ΜΑС	Διεπαφή	Χρόνος
00-30-05-59-8 <i>C</i> -1 <i>C</i>	1	10:43
00-15-58-09-2E-EF	3	10:45

Αυτοεκπαίδευση γέφυρας

LAN με μεταγωγή

Μεταγωγέας Ethernet

- Ο μεταγωγέας Ethernet γενικεύει τη λειτουργία των γεφυρών
 - Ουσιαστικά, είναι γέφυρα με πολλές πόρτες
- Προωθεί πλαίσια (στρώμα 2)
 και φιλτράρει χρησιμοποιώντας
 διευθύνσεις LAN
 - Η προσωρινή αποθήκευση αντιμετωπίζει τον ανταγωνισμό
- Μεταγωγή: Α-προς-Α' και Βπρος-Β' ταυτόχρονα
 - Ethernet, αλλά δίχως συγκρούσεις
- συνήθης χρήση: ανεξάρτητοι host, συνδέονται στον μεταγωγέα με τοπολογία αστέρα

Απομόνωση κίνησης

- Η εγκατάσταση γέφυρας ή μεταγωγέα χωρίζει το δίκτυο σε τμήματα LAN
 - τα τμήματα αποτελούν ξεχωριστές επικράτειες συγκρούσεων (collision domains)

Η μεταγωγή απαλείφει τις συγκρούσεις

LAN με μεταγωγή

Το LAN της Πολυτεχνειούπολης

Επικαλύπτον δένδρο

Τοπολογίες διασύνδεσης

- Σε τοπικά δίκτυα που διασυνδέονται με γέφυρες, πρέπει να εξασφαλίζεται ότι μεταξύ δύο host υπάρχει μία μόνο διαδρομή
- Όμως για μεγαλύτερη αξιοπιστία είναι επιθυμητό να υπάρχουν εναλλακτικές διαδρομές από την πηγή στον προορισμό

Τοπολογίες διασύνδεσης

Με πολλές ταυτόχρονες διαδρομές,
 δημιουργούνται βρόχοι και οι γέφυρες μπορεί να πολλαπλασιάζουν και να προωθούν ένα πλαίσιο για πάντα

Επικαλύπτον δέντρο γεφυρών

- Λύση: οι γέφυρες οργανώνονται σε ένα επικαλύπτον δέντρο απομονώνοντας ένα υποσύνολο των διεπαφών
- Το επικαλύπτον δέντρο μπορεί να βελτιστοποιήσει τα κόστη (π.χ., μεγιστοποίηση του εύρους ζώνης)

Οργάνωση δικτύων σε δέντρα

Πώς οι γέφυρες εγκαθιστούν επικαλύπτον δέντρο;

- Κατανεμημένο πρωτόκολλο επικαλύπτοντος δέντρου (spanning tree protocol)
- Οι γέφυρες ανταλλάσσουν μηνύματα (BPDUs) της μορφής (R,c,S,p) όπου:
 - R η ταυτότητα της ρίζας
 - c το κόστος της συντομότερης διαδρομής ...
 - ... από τη γέφυρα S που στέλνει το μήνυμα
 - και ρ ο αριθμός της θύρας από την οποία στάλθηκε το μήνυμα
- Οι θύρες των γεφυρών έχουν μια από τις καταστάσεις:
 - επιλεγμένη (designated)
 - ριζική (root)
 - απομονωμένες (blocked)

Ο αλγόριθμος

- Επιλέγεται η γέφυρα ρίζα (root) του δέντρου
 - Αρχικά όλες οι γέφυρες θεωρούν ότι είναι ρίζες (S, O, S, p)
 - Η γέφυρα με τον μικρότερο σειριακό αριθμό R γίνεται η ρίζα
 - Όλες οι θύρες της ρίζας είναι επιλεγμένες (designated)
 - Στέλνουν την BPDU (R,O,R,p)
- Επιλογή της ριζικής θύρας (root port)
 - Όλες οι γέφυρες υπολογίζουν για κάθε θύρα την απόσταση προς τη ρίζα προσθέτοντας στο κόστος των BPDU που λαμβάνουν το κόστος της ζεύξης από την οποία φτάνουν οι BPDU
 - Η θύρα με τη μικρότερη απόσταση είναι η ριζική (root)
 - Υπάρχει **μόνο μία** ριζική θύρα για κάθε γέφυρα
 - Η γέφυρα διαφημίζει πλέον την ελάχιστη απόσταση προς τη ρίζα

Ο αλγόριθμος

- Προσδιορισμός επιλεγμένων θυρών (designated port)
 - Οι θύρες όπου το κόστος της γέφυρας είναι μικρότερο από το κόστος των BPDU που αυτή ακούει
 - Στις επιλεγμένες θύρες η γέφυρα προωθεί κίνηση
- Πόρτες που δεν είναι επιλεγμένες ή ριζικές είναι απομονωμένες (blocked)
- Το επικαλύπτον δένδρο σχηματίζεται ενώνοντας τις επιλεγμένες θύρες με τη ριζική
 - Οι επιλεγμένες θύρες και η ριζική θύρα προωθούν πλαίσια
 - Οι απομονωμένες δεν προωθούν κίνηση, λαμβάνουν BPDUs
 - Οι επιλεγμένες θύρες στέλνουν και λαμβάνουν BPDUs
 - Η ριζική θύρα λαμβάνει μόνο BPDUs

Παράδειγμα

Παράδειγμα

Virtual LANs

Διαχωρισμός σε υποδίκτυα

Η παραδοσιακή λύση:

Διαχωρισμός των περιοχών εκπομπής

 Κάθε μικρότερο LAN είναι ένα υποδίκτυο IP

 Διασύνδεση των LAN με δρομολογητές

Μειονέκτημα: Η
συμμετοχή host σε ένα
LAN συνδέεται με τη θέση
του

Εικονικά LAN. Γιατί;

- Ένας χρήστης από την ΣΕΜΦΕ μετακινείται σε γραφείο στην ΣΗΜΜΥ, αλλά θέλει να μείνει στο δίκτυο της ΣΕΜΦΕ
- Μία περιοχή εκπομπής:
 - Όλη η κίνηση εκπομπής στο στρώμα 2 (άγνωστη θέση προορισμού) διασχίζει όλο το LAN

Virtual Local Area Networks

Καλύτερη λύση: VLANs

- Χρησιμοποιούνται σε μεγάλα LAN
- Διαχωρίζουν την περιοχή εκπομπής από τη θέση των host
- Οι μεταγωγείς χειρίζονται την κίνηση εντός των VLAN
- η κίνηση μεταξύ VLAN προωθείται μέσω δρομολόγησης

Διάρθρωση των VLAN

Οι θύρες ενός μεταγωγέα Ethernet μπορούν να αντιστοιχισθούν (χειροκίνητα) σε διαφορετικά VLAN

Έτσι ορίζουμε πολλαπλά εικονικά LAN πάνω από μία

κοινή φυσική υποδομή

VLAN 1: Θύρες 1, 2, 5

VLAN 2: Θύρες 3, 4, 6

Τα VLAN μπορούν να ορισθούν και με βάση τη διεύθυνση ΜΑC, αντί της θύρας

VLAN ανά θύρα (Port-based VLAN)

Ένας μοναδικός μεταγωγέας εμφανίζεται ως πολλοί εικονικοί μεταγωγείς

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

Δίκτυα Υπολογιστών

Προώθηση μεταξύ VLAN

- Ο μεταγωγέας διαχωρίζει πλήρως την κίνηση από διαφορετικά VLAN (απομόνωση κίνησης)
 - Κίνηση από τις θύρες 1,2,5 μπορεί να φτάσει μόνο σε αυτές
- Μεταξύ VLAN η κίνηση προωθείται μέσω δρομολόγησης (ως εάν ήταν διαφορετικοί μεταγωγείς)
 - Στην πράξη οι κατασκευαστές πωλούν συσκευές που συνδυάζουν τη λειτουργία μεταγωγέα και δρομολογητή

VLAN με πολλαπλούς μεταγωγείς

- Εάν το VLAN εκτείνεται σε πολλούς μεταγωγείς, η κίνηση μεταξύ των μεταγωγέων ανήκει σε διαφορετικά VLAN
- Οι μεταγωγείς πρέπει να είναι σε θέση να αποπολυπλέκουν την κίνηση των διαφορετικών VLAN

- → Trunk ports
- → VLAN tags

Θύρες κορμού (Trunk ports)

- Οι θύρες κορμού μεταφέρουν πλαίσια
 διαφορετικών VLAN που ορίζονται πάνω από πολλαπλούς φυσικούς μεταγωγείς
 - Τα πλαίσια ενός VLAN μεταξύ μεταγωγέων έχουν τις ετικέτες VLAN tags 802.1Q

IEEE 802.1Q: Ετικέτες VLAN

- Για κίνηση VLAN μεταξύ μεταγωγέων προστίθεται στα πλαίσια Ethernet μια ετικέτα που προσδιορίζει το LAN
- Οι ετικέτες μπορεί να γίνουν διαφανείς για τα ακραία συστήματα (αφαίρεση κατά την παράδοση)

Τα πεδία της ετικέτας 802.1Q

• Tag Protocol Identifier:

- Η τιμή 0x8100 δηλώνει ετικέτα 802.1Q
- Βρίσκεται στη θέση του πεδίου τύπος
- τα πλαίσια με ετικέτες ξεχωρίζουν εύκολα

User Priority:

- Τίθεται από τον αποστολέα για να δώσει προτεραιότητες σε διαφορετικά είδη κίνησης (π.χ., φωνή, δεδομένα)
- Το Ο αντιστοιχεί σε κίνηση best effort
- Το 1 αντιστοιχεί στη χαμηλότερη προτεραιότητα και το 7 στην μεγαλύτερη

Canonical Format Indicator:

- Ο για μεταγωγείς Ethernet
- 1 εάν η διεύθυνση πρωτοκόλλου MAC δεν είναι στην κανονική μορφή (π.χ. δακτύλιος με σκυτάλη)

VLAN Identifier (VID):

- Προσδιορίζει το VLAN (1 4094)
- Η τιμή 0x000 δείχνει πλαίσιο που δεν ανήκει σε κανένα VLAN (priority tag)
- Η τιμή Oxfff δεν έχει χρήση

Ετικέτες VLAN

Κανονική λειτουργία:

- Ο αποστολέας στέλνει ένα πλαίσιο
- Ο πρώτος μεταγωγέας προσθέτει την ετικέτα
- Ο τελευταίος μεταγωγέας την αφαιρεί

Περισσότερα για τα VLAN

- Οι θύρες μπορεί να αντιστοιχούνται δυναμικά σε VLAN (δυναμική συμμετοχή)
 - Η συμμετοχή σε VLAN μπορεί να βασισθεί στη διεύθυνση ΜΑC, το πρωτόκολλο (π.χ., IPv4, IPv6), το υποδίκτυο, τη θύρα TCP/UDP ή άλλη πληροφορία του πακέτου
- Επιτρέπονται πολλαπλά VLAN ανά θύρα μεταγωγέα (trunking)
 - Βρίσκει χρήση σε εξυπηρετητές
- Η φυσιολογική λειτουργία είναι να υπάρχει ένα επικαλύπτον δένδρο για όλα τα VLAN
 - Υπάρχουν επιπλέον πρωτόκολλα για την υποστήριξη πολλαπλών δένδρων Δίκτυα Υπολογιστών

Δίκτυα Καθοριζόμενα από Λογισμικό

Τυπικός Μεταγωγέας

Έλεγχος (Λογισμικό)

Δεδομένα (Υλικό)

Software Defined Networks (SDN)

- Διαχωρισμός της ευφυΐας του δικτύου από τη λειτουργία της προώθησης.
- Data plane: προώθηση πακέτων
 - Βάση τοπικής πληροφορίας κατάστασης
 - ΜΑC προορισμού, VLAN tag, διεύθυνση ΙΡ, θύρα ΤCΡ κλπ
- Control plane: προσδιορισμός της πληροφορίας κατάστασης
 - Επικοινωνία με το υπόλοιπο δίκτυο
- Το SDN απαιτεί μια μέθοδο ώστε το control plane να επικοινωνεί με το data plane
 - Ένας τέτοιος μηχανισμός είναι το OpenFlow

OpenFlow

- Μια προγραμματιστική διεπαφή (API)
 - Έλεγχος της προώθησης πακέτων
 - Υλοποίηση σε εμπορικούς μεταγωγείς
- Καθιστά τα δίκτυα προγραμματιζόμενα μέσω λογισμικού, όχι απλώς διαχειρίσιμα
- Αποτέλεσμα:
 - Μεγαλύτερη ευελιξία, νέες εφαρμογές
 - Μειωμένο κόστος

Μεταγωγέας OpenFlow

Ελεγκτής OpenFlow

Πρωτόκολλο OpenFlow (SSL/TCP)

Έλεγχος

OpenFlow

Δεδομένα (Υλικό)

Πίνακες OpenFlow

Ελεγκτής

1.2.3.4

Πίνακες OpenFlow

Switch	VLAN	MAC	MAC	Eth	IP	IP	IP	TCP	TCP
		src	dst	type	Src	Dst	Prot	sport	dport

+ μάσκα για τα πεδία που πρέπει να ταιριάζουν

Παραδείγματα

Μεταγωγή

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	TCP	TCP	Δράση
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	
*	*	00:1f:	*	*	*	*	*	*	*	port6

Μεταγωγή ροής

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Δράση
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	Δραση
port3	00:20	00:1f	0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80	port6

Τοίχος προστασίας (Firewall)

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Δράση
*	*	*	*	*	*	*	*	*	22	forward drop

Παραδείγματα

Δρομολόγηση

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Δράση
*	*	*	*	*	*	5.6.7.8	*	*	*	port6

Μεταγωγή VLAN

Switch Port	MAC src	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Δράση
*	*	00:1f	*	vlan1	*	*	*	*	*	port6, port7, port9