

LARIK ATAU ARRAY

PERTEMUAN 9

LARIK ATAU ARRAY

Larik atau Array adalah tipe terstruktur yang terdiri dari sejumlah komponen yang mempunyai tipe data yang sama.

Variabel Array terdiri dari:

- 1. Array Berdimensi Satu
- 2. Array Berdimensi Dua

1. Array Berdimensi Satu

Bentuk Umum:

Tipe_Data Nama_Variabel [ukuran]

Contoh:

Elemen Larik: nilai[1], nilai[2], nilai[3], nilai[4], nilai[5], nilai[6]

Indeks larik: 1,

2,

3,

5,

Nilai

1	
1	

Isi dari elemen larik nilai[3]: 3

Algoritma pengisian dari larik nilai diatas adalah:

Karena nilai yang akan diisi = nilai i Maka cukup menggunakan atau memanfaatkan Nilai I untuk nilai data yang akan diisi ke array

- Penerapan dari array berdimensi satu dapat digunakan untuk mencari bilangan dari sejumlah data yang ada. Pencarian bilangan disini akan menggunakan teknik linear search
- Data sudah ditentukan terlebih dahulu untuk memudahkan model pencarian beserta lokasi indeks dari data yang dicari
- Apabila data ditemukan akan menginformasikan letak indeksnya.

Linear Search

```
int linear_search(int [], int, int);
main()
clrscr();
const int array_size=10;
int array[array_size]={25,36,2,48,0,69,14,22,7,19};
cout<<"====== Linear Search
  COUt<<"=======
  "<<endl:
gotoxy(1,24);
cout<<"======
gotoxy(1,5);
cout<<" Isi dari array adalah: "<<endl;
cout<<"\n Array : "<<"\t\t Data : "<<endl;
for(int count=0; count < array_size; count++)
```


Linear Search (Lanjutan)

```
Program Lanjutan:
 cout<<"\t"<<" array ["<<count<<"]"<<"\t\t";
 cout<<array[count]<<endl; }
int searching_element=0;
int flag=0;
cout<<"\n\n Masukan data yang Anda cari : ";
cin>>searching_element;
flag=linear_search(array,array_size,searching_element);
if (flag != -1)
  cout<<"\n Data tersebut ditemukan pada posisi : array [ "<<flag<<"]";
else
  cout<<"\n Data tersebut tidak ditemukan ";
getch();
return 0;
```


Tampilan Output

```
Isi dari array adalah :
                        Data:
Array
       array [0]
                             25
                             36
       array [1]
       array [2]
                             \overline{48}
       arra<u>y [3]</u>
                             5
       array [4]
                             69
       array [5]
       array [6]
                             14
                             22
       array [7]
       array [8]
       array [9]
Masukan data yang Anda cari : 69
Data tersebut ditemukan pada posisi : array [ 5]
```


Contoh Soal

 Buatlah sebuah program untuk mencari nilai Maximum dan Minimum dari 10 elemen data yang sudah ada sebagai berikut:

data[10]={23,11,5, 2, 3, 9,67, 83, 8, 4};

algoritma:

- indeks pertama dari data tersebut akan dijadikan sebagai acuan untuk membandingkan dengan indek data selanjutnya.
- max=min=data[0];

Algoritma untuk membandingkan data:

Source Code Program C++:

```
main()
   int i, n=10, max, min;
 int data[10]={23,11,5,2,3,9,67,83,8,4};
 cout<<"Diketahui data yang ada :";
 for(i=0;i<10;i++)
   cout<<data[i];
   cout<<" ";
   cout<<endl<
   max=min=data[0];
   for(i=0;i< n;)
   { if(data[i]>max)
                    { max=data[i]; }
    else if(data[i]<min)
                    min=data[i];
                    j++;
 cout<<"Nilai maksimum dari data di atas adalah: "<<max<<endl<<endl;
 cout<<"Nilai minimum dari data di atas adalah: "<<min; getche(); }
```


Output Program:

2. Array Berdimensi Dua

Bentuk Umum:

Tipe_Data Nama_Variabel [index-1] [index-2]

Contoh:

jumlah baris
nama array
tipe data ele

tipe data elemen array

Contoh I:

```
int i, j;
int tabel [3] [2];
for (i=0; i<=2; i++)
  for (j=0; j<=1; j++)
    cout<< "data ke - "<< i << j<<endl;
    cout<< "nilai =";
    cin>> tabel [ i ] [ j ];
```

Hasil Tabel _____

Tabel[0][0]	Tabel[0][1]
Tabel[1][0]	Tabel[1][1]
Tabel[2][0]	Tabel[2][1]

Contoh Matriks A dengan ukuran 2X3:

	1	2	3
1	A[1,1]	A[1,2]	A[1,3]
2	A[2,1]	A[2,2]	A[2,3]

Urutan lokasi penyimpanan matriks A-nya adalah:

- A[1,1], A[1,2], A[1,3], A[2,1], A[2,2], A[2,3] secara baris
- A[1,1], A[2,1], A[1,2], A[2,2], A[2,2], A[2,3] secara kolom

Ilustrasi penyimpanannya sebagai berikut:

Row Major

1	X[1,1]
1	X[1,2]
1	X[1,3]
2	X[2,1]
2	X[2,2]
2	X[2,3]
1 1 2 2	X[1,2] X[1,3] X[2,1] X[2,2]

Column Major

_	
X[1,1]	Kolom ke-1
X[2,1]	Kolom ke-1
X[1,2]	Kolom ke-2
X[2,2]	Kolom ke-2
X[1,3]	Kolom ke-3
X[2,3]	Kolom ke-3

Contoh Implementasi Larik Terstruktur

Tabel IPK Mahasiswa Kelas 12.2A.04

NIM	Nama Mahasiswa	IPK
12120007	Siti Fatimah	3.00
12120008	Fauzi Amri	3.02
12120009	Badrun	3.43
12120010	Veronica	3.17
12120011	Tutik	3.28
12120012	Suprapto	3.56

Data dari setiap mahasiswa terdiri dari NIM (Nomor Induk Mahasiswa), Nama Mahasiswa, dan IPK (Indeks Prestasi Kumulatif).

Contoh II:

Diberikan matriks A sebagai berikut:

- 1 1 1 1
- 0 1 1 1
- 0 0 1 1
- 0 0 0 1

Perintah pokok yg digunakan pd pengisian matriks A adalah :

$$A[i,j] = 1$$
, jika i $<=j$, $A[i,j] = 0$, jika i $> j$

1. Diberikan matriks A sebagai berikut :

- 1 2 3 4
- 0 2 3 4
- 0 0 3 4
- 0 0 0 4

Perintah pokok yg digunakan pd pengisian matriks A adalah :

2. Diberikan matriks A sebagai berikut :

1 0 0 0

2 2 0 0

3 3 3 0

4 4 4 4

Perintah pokok yg digunakan pd pengisian matriks A adalah

3. Diberikan matriks A sebagai berikut :

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Perintah pokok yg digunakan pd pengisian matriks A adalah :

4. Diberikan algoritma sbb:

```
int i;
int nilai[4];
for(i=0;i<=3;i++)
{
    a[i] = 2 * i + 1;
    cout<<a[i];
}</pre>
```

Algoritma di atas akan menghasilkan nilai

5. Diberikan algoritma sbb, diketahui nilai dari array x[0]=10, x[1]=12, x[2]=12, x[3]=10 dan y[0]=2, y[1]=3, y[2]=4, y[3]=5

```
int i;
int x[4], y[4];
float hasil ;
hasil=0;
for(i=0; i<=3; i++)
    hasil = hasil + x[i] / y[i];
    cout<<"hasil="<<hasil;</pre>
```

Maka nilai hasil dari algoritma diatas adalah.....

Ketentuan Tugas

Tugas Kelompok (max 5 orang)

Buatlah program dengan menggunakan C++

- 1. Penjumlahan dua buah matriks
- 2. Pengurangan dua buah matriks

Ket:

- Masing-masing kelompok dapat memilih salah satu dari program di atas.
- Listing program & output dicetak
- Nama, Nim dan Kelas dicetak di listing program

LATIHAN SOAL

PERTEMUAN 9

 Kumpulan Elemen – Elemen yang terurut dan memiliki tipe data yang sama disebut:

a. Rekursif

d. File

b. Record

e. Direktori

c. Array

2. int nilai [6];

Variabel <u>nilai</u> dalam statement diatas merupakan :

a. tipe data

d. jenis array

b. nama array

e. Jenis Data

c. jumlah baris

2. int nilai [6];

Variabel <u>nilai</u> dalam statement diatas merupakan :

a. tipe data

d. jenis array

b. nama array

e. Jenis Data

c. jumlah baris

3. Sebuah matriks dideklarasikan sbb:

Int nilai [3] [4];

Jumlah elemen dari matriks tsb adalah:

a. 7

d. 12

b. 4

e. 8

c. 3

3. Sebuah matriks dideklarasikan sbb:

Int nilai [3] [4];

Jumlah elemen dari matriks tsb adalah:

a. 7

d. 12

b. 4

e. 8

- c. 3
- 4. Pada Array 2 Dimensi dengan Ordo 4x4, dengan kondisi A[I,J] = I , Jika I <= J, A[I,J] = J, Jika I>J

Dari pernyataan diatas nilai dari A[3,2] adalah :

a. 1

d. 4

b. 2

e. 6

c. 3

4. Pada Array 2 Dimensi dengan Ordo 4x4, dengan kondisi A[I,J] = I , Jika I <= J, A[I,J] = J, Jika I>J

Dari pernyataan diatas nilai dari A[3,2] adalah :

a. 1

d. 4

b. 2

e. 6

c. 3

5. Dibawah ini merupakan hal-hal yang harus dikemukakan dalam mendeklarasikan suatu bentuk Array, kecuali:

a. tipe array

d. nama array

b. tipe data

e. ukuran Data

c. ukuran array

5. Dibawah ini merupakan hal-hal yang harus dikemukakan dalam mendeklarasikan suatu bentuk Array, kecuali :

a. tipe array

d. nama array

b. tipe data

e. ukuran Data

c. ukuran array

 Kumpulan Elemen – Elemen yang terurut dan memiliki tipe data yang sama disebut:

a. Rekursif

d. File

b. Record

e. Direktori

c. Array