MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name: Last name:	Point	s:
------------------------	-------	----

Assignment 10, due Friday, April 25, noon

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $f:\mathbb{R}\to [0,\infty)$ and

$$A(f) = \{(x, y) \in \mathbb{R}^2 : 0 < y < f(x)\}.$$

Show that if f is Lebesgue-measurable, then A(f) is a Lebesgue-measurable set in \mathbb{R}^2 , and if \mathfrak{m}_2 is the Lebesgue measure on \mathbb{R}^2 , then

$$m_2(A(f)) = \int_{\mathbb{R}} f dm$$
.

Hint: Approximate f by a sequence of simple functions.

Problem 2

Let $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$, for $1 \leq p \leq \infty$. Show that

$$f * g(x) = \int_{\mathbb{D}} f(x - y)g(y)dm(y)$$

is defined for almost every x, that $f*g\in L^p(\mathbb{R}),$ and that

$$\|f * g\|_p \le \|f\|_1 \|g\|_p$$
.

Problem 3

Use Fubini's theorem and the identity

$$\frac{1}{x} = \int_0^\infty e^{-xt} dt$$

to prove

$$\lim_{A\to\infty}\int_0^A \frac{\sin(x)}{x} dx = \frac{\pi}{2}.$$