Unconstrained Optimization

Taylor's Theorem

We can use this theorem to approximate functions when f is of class C^2 , (page 14)

$$f(\mathbf{x} + \mathbf{p}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T p + \frac{1}{2} p^T \nabla^2 f(\mathbf{x}) p + O(||p||^3)$$

Q/Quotient Convergence

A sequence $\{x_k\}$ which converges to x^* , is said to converge (**page 619**)

- Linearly with rate of convergence c. if r=1 and $c \in (0,1)$.
- Superlinearly if r = 1 and c = 0.

• Quadratically if r = 2 and c is finite.

$$c = \lim_{k \to \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||^r}$$

Types of minima

A point x^* is is a **global** minima of f if,

$$f(x^*) \le f(x) \ \forall \ x \in \mathbb{R}^n$$

A point x^* is a **strict/strong local** minima of f if $\exists \mathbb{N}$ such that,

$$f(x^*) < f(x) \ \forall \ x \in \mathbb{N}$$

A point x^* is a **weak local** minima of f if $\exists \mathbb{N}$ such that,

$$f(x^*) \le f(x) \ \forall \ x \in \mathbb{N}$$

 $oldsymbol{x}_1$: strict global minimizer; $oldsymbol{x}_2$: strict local minimizer; $oldsymbol{x}_3$: local minimizer

In both cases, \mathbb{N} is a neighbourhood of x^* , that is any open set containing x^* . (page 12)

Optimality conditions

If f is continuously differentiable in an open neighbourhood of x^* and if x^* is also a weak local minima then the **first order necessary** condition is just $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

The second order necessary conditions are $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(x^*)$ is positive semi definite.

The **second order sufficient** conditions for x^* to be a strong local minima is $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(x^*)$ is positive definite. (page 15)

Line search and Trust region Overview

These are the two broad strategies used to move from x_k to the next iterate x_{k+1} ,

- 1. Line Search : Choose a direction p_k , solve $min_{\alpha>0}$ $f(x_k+\alpha p_k)$ to get the step length α . Now $x_{k+1}=x_k+\alpha p_k$
- 2. Trust Region : Choose a trust radius Δ_k . Approximate f around x_k as a quadratic function, $m_k(x_k+p)=f_k+p^T\nabla f_k+\frac{1}{2}p^TB_kp$. Now we find $x_{k+1}=x_k+p$ by solving $min_p\ m_k(x_k+p)$ for p where $|x_{k+1}-x_k|<\Delta_k$. If this new iterate is not satisfactory we shrink Δ_k and repeat the steps.

 ∇f_k is the gradient of f evaluated at x_k . $\nabla^2 f_k$ is the hessian of f evaluated at x_k . B_k is an approximation of $\nabla^2 f_k$. (page 19)

Line search directions

- 1. Steepest Direction : $p_k = \frac{-\nabla f_k}{||\nabla f_k||}$, we get the most rapid decrease in this direction from $f(x_k)$.
- 2. Newton Direction : $p_k = -(\nabla^2 f_k)^{-1} \nabla f_k$, the exact solution to the quadratic approximation of f. It is a descent direction only if the hessian is positive definite.
- 3. Quasi Newton Direction : $p_k = B_k^{-1} \nabla f_k$, where we avoid the costly hessian computation by using either Symmetric-rank-one (SR1) or BFGS iterative approximation. We impose symmetry and secant equation conditions, $B_k^T = B_k$ and $B_{k+1}(x_{k+1} x_k) = \nabla f_{k+1} \nabla f_k$.
- 4. Non Linear Conjugate Gradient directions : $p_k = -\nabla f_k + \beta_k p_{k-1}$, here β_k is a scalar that ensures p_k and p_{k-1} is conjugate. (page 21)

Wolfe Conditions

The armijo condition (to ensure sufficient decrease) and the curvature condition (to ensure the steps are not too small) are together known as the Wolfe conditions. (page 33)

- 1. Armijo condition : $f(x_k + \alpha p_k) \leq f(x_k) + c_1 \alpha \nabla f_k^T p_k$: this enforces sufficient decrease in f_k every iteration. $c_1 \in (0,1)$, usually 10^{-4}
- 2. Curvature condition: $\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$: here $c_2 \in (c_1, 1)$ (usually 0.9) and this ensures the new slope $\phi'(\alpha)$ is less negative than $c_2 \times \phi'(0)$. Where $\phi(\alpha) = f(x_k + \alpha p_k)$

Algorithm flow chart of line search methods

Convergence of line search methods

To analyze convergence, we use the angle between our descent direction and the steepest descent direction. (Page-37)

$$\cos \theta_k = \frac{-\nabla f_k^T p_k}{||\nabla f_k|| ||p_k||}$$

Zoutendijk Theorem:

(Theorem-3.2)

Consider any iteration of the form $x_{k+1} = x_k + \alpha_k p_k$,

- where p_k is a descent direction
- α_k satisfies the Wolfe conditions
- ullet f is bounded below in ${\rm I\!R}^{\rm n}$
- f is continuously differentiable in an open set N containing the level set $L = \{x : f(x) \le f(x_0)\},\$
- Assume also that the gradient ∇f is Lipschitz continuous on N. Then,

$$\sum_{k>0} \cos^2 \theta_k ||\nabla f_k||^2 < \infty \tag{1}$$

(1) is called **Zoutendijk condition** which implies that

$$\cos^2 \theta_k ||\nabla f_k||^2 \to 0 \tag{2}$$

when $-90^{\circ} < \theta_k < 90^{\circ}$ for all k. It follows immediately from (2) that

$$\lim_{k \to \infty} ||\nabla f|| = 0 \tag{3}$$

The algorithms which satisfy (3) are called **globally convergent**. Zoutendijk condition shows that the steepest descent method is globally convergent. For other algorithms it describes how far p_k can deviate from the steepest descent direction and still give rise to a globally convergent iteration.

(a) iterates generated by the generic line search steepestdescent method

(b) iterates generated by the Generic Line search Newton

Contours for the objective function $f(x,y) = 10(y-x^2)^2 + (x-1)^2$ (Rosenbrock function)

Rate of Convergence

Convergence of Steepest Descent

- $p_k = \frac{-\nabla f_k}{||\nabla f_k||}$ Globally convergent (converges to a local minimiser from any starting point x_0).
- many other methods resort to steepest descent in bad cases
- \bullet not scale invariant (changing the inner product on IR^n changes the notion of gradient!).
- convergence is usually very (very!) slow (linear)
- numerically often not convergent at all

Convergence of Newton's method

- $\bullet \ p_k = -\nabla^2 f_k^{-1} \nabla f_k$
- convergence is often faster than steepest descent
- may be viewed as "scaled" steepest descent
- If Hessian matrix $\nabla^2 f_k^{-1}$ is not Positive definite then p_k is not a descent direction. Two ways for obtaining globally convergent iteration:
 - line search approach, in which the Hessian is modified, to make it positive definite.
 - trust region approach, in which Hessian is used to form a quadratic model that is minimized in a ball.

Scribe: Akanksha M Rajak IISc Bangalore

Step length Selection algorithm

The line search is done in two stages: A **bracketing phase** finds an interval containing desirable step lengths, and a **bisection or interpolation phase** computes a good step length within this interval.

$$\phi(\alpha) = f(x_k + \alpha p_k)$$

If f is a convex quadratic, $f(x) = \frac{1}{2}x^TQx - b^Tx$, its one-dimensional minimizer along the ray $x_k + \alpha p_k$ can be computed analytically and is given by

$$\alpha_k = \frac{-\nabla f_k^T p_k}{p_k^T Q p_k}$$

For general nonlinear functions, it is necessary to use an iterative procedure. The line search procedure deserves particular attention because it has a major impact on the robustness and efficiency of all nonlinear optimization methods.