

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:
 C12N 15/12, C07K 13/00
 C12N 15/62, C12P 21/08
 C12Q 1/68, G01N 33/68

(11) International Publication Number: WO 93/235.3

(43) International Publication Date: 25 November 1993 (25.1)

(21) International Application Number:

PCT/US93/04654

(22) International Filing Date:

13 May 1993 (13.05.93)

(30) Priority data:

07/882,711

13 May 1992 (13.05.92)

US

(71) Applicant: DANA-FARBER CANCER INSTITUTE, INC. [US/US]; 44 Binney Street, Boston, MA 02115 (US).

(72) Inventors: KAELIN, William, G., Jr.; 12 Commonwealth Avenue, #301, Boston, MA 02116 (US). FLEMING-TON, Erik; 32 Russell Street, Brookline, MA 02146 (US). DeCAPRIO, James, A.; 5 Putney Road, Wellesley, MA 02181 (US). SELLERS, William; 93 Risley Road, Brookline, MA 02167 (US). LIVINGSTON, David, M.; 11 Powell Street, Brookline, MA 02146 (US).

(74) Agent: PASTERNACK, Sam; Choate, Hall & Stewart, change Place, 53 State Street, Boston, MA 02109 (U.S.)

(81) Designated States: AU, CA, JP, European patent (AT, BI CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NI PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: RETINOBLASTOMA-ASSOCIATED PROTEIN I cDNA

(57) Abstract

We have discovered a nuclear protein in normal human cells, "retinoblastoma-associated protein 1" ("RBAP-1") that binds directly to the retinoblastoma protein pocket of the underphosphorylated form of the retinoblastoma protein ("RB") and does not bind to phosphorylated RB or to RB with inactivating mutations. The translated RBAP-1 sequence does not resemble other proteins whose sequences are known, and RBAP-1 does not contain a sequence homologous to the transforming element common to viral proteins that bind to the RB pocket. RBAP-1 and the E2F transcription activity have similar DNA-binding specificities and can bind to at least some of the same proteins, such as RB and E4.

BEST AVAILABLE COPY

ĊĴ.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	'MW	Malawi
BB	Barbados	GB	United Kingdom	, NL	Netherlands
BE	Belgium	· GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE,	Ireland	PT	Portugal
BR	Brazil	IT.	italy	RO	Romania
CA	Canada	JР	Japan	RU	Russian Federation
CF ·	Central African Republic	KP.	Democratic People's Republic	SD	Sudan
CG ·	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire	K2	Kazakhstan	SN	Schegal
CM	Cameroon	LI	Licehtenstein	su	Soviet Union
cs	Czechoslovakia .	LK.	Sri Lanka	TD	Chad
CZ	Czech Republic	I.U	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES .	Spain	Mi.	Mali .	VN	Viet Nam
FI	Finland	MN	Moneolia		

15

1

RETINOBLASTOMA-ASSOCIATED PROTEIN 1 cDNA Background of the Invention

This invention was made in the course of work supported in part by U.S. Government funds, and the government has certain rights in the invention.

This invention relates to tumor suppressor genes.

The human retinoblastoma gene ("RB-1") is considered to be the prototype of a class of genes, generally known as "tumor suppressor genes", thought to be involved in suppressing neoplastic growth. Mutations in the retinoblastoma gene and dysfunction of its product have been implicated in the pathogenesis of a wide range of human tumors other than retinoblastomas, including bladder, breast, and small cell lung carcinomas, osteosarcomas, and soft tissue sarcomas. Furthermore, in cell populations where both copies of RB-1 are mutated, introduction of a wild-type copy of the gene can lead to a decrease in the growth rate or in the tumorigenicity of the cells expressing the exogenous gene (Huang et al., 1988, Science, Vol. 242, pp. 1563-1566). The retinoblastoma gene product, "RB", is believed to regulate cell growth, although the manner in which it does so is not well understood.

Several viral transforming proteins, the adenovirus E1A protein ("E1A"), the simian virus large T antigen ("T"), and the human papilloma virus E7 protein ("E7"), bind specifically to RB. The binding of the viral proteins to RB has been mapped to a region of RB termed the "pocket" (Hu et al., 1990, EMBO J., Vol. 9, pp. 1147-1155; Kaelin et al., 1990, Mol. Cel. Biol., Vol. 10, pp 3761-3769; Huang et al., 1990, EMBO J., Vol. 9, pp. 1815-1822). The viral proteins share a short, homologous, colinear, transforming element, having at its core the amino acid sequence LXCXE, that is capable of binding to the RB pocket. A synthetic peptide of this viral element is capable of binding to the RB pocket and when bound blocks the binding of viral proteins to the RB pocket.

Analysis of RB throughout the cell cycle has demonstrated that it is phosphorylated and dephosphorylated at specific stages of the cell cycle. RB is non-phosphorylated, or "underphosphorylated", in the Go and G1 phases and becomes phosphorylated at the start of S phase, the G1/S boundary, and remains phosphorylated throughout S phase, G2 and early mitosis (Buchkovich *et al.*,

1989, Cell, Vol. 58, pp. 1097-1105; Chen et al., 1989, Cell, Vol. 58, pp. 1193-1198; DeCaprio et al., 1989, Cell, Vol. 58, pp. 1085-1095; Mihara et al., 1989, Science, Vol. 246, pp. 1300-1303; Xu et al., 1989, Oncogene, Vol. 4, pp. 807-812). In terminally differentiated cells and cells that are induced to terminally differentiate, RB is underphosphorylated (Mihara et al., 1989; Furukawa et al., 1990, Proc. Natl. Acad. Sci. USA, Vol. 87, pp. 2770-2774). Interaction of the viral transforming proteins with RB is cell-cycle regulated. For example, T does not bind to the phosphorylated form of RB (Ludlow et al. 1989, Cell, Vol. 56, pp. 57-65), suggesting that some of the growth suppressor functions of RB may be carried out by the underphosphorylated form of RB. The interaction of the viral transforming proteins with RB at specific stages of the cell cycle further supports the proposal that RB is involved in the pathogenesis of some human cancers.

Summary of the Invention

We have discovered a nuclear protein in normal human cells, here termed "retinoblastoma-associated protein 1" ("RBAP-1") that, based on *in vitro* evidence, binds directly to the RB pocket of the underphosphorylated form of RB and does not bind to phosphorylated RB or to RB with inactivating mutations. The direct binding of RBAP-1 to RB suggests that RBAP-1 is involved in the RB signal transduction pathway.

We have fully sequenced a near full length clone of RBAP-1 encoding DNA ("RBAP-1"), and deduced the RBAP-1 amino acid sequence. A search of DNA sequence data bases reveals that RBAP-1 does not resemble other proteins whose DNA sequences are known. The deduced amino acid sequence of RBAP-1 also reveals that RBAP-1 does not contain a colinear sequence, LXCXE, homologous to the transforming element common to viral proteins that bind to RB, although it appears to bind to the same region of RB as do the viral transforming elements.

Analysis of RBAP-1 gene expression in cell culture demonstrated that

RBAP-1 is expressed primarily during S phase of the cell cycle. RB becomes phosphorylated at the beginning of S phase and we propose that RBAP-1 carries out a function related to the entry into, or traversal of, S phase by the cells.

25

Analysis of the DNA-binding properties of RBAP-1 has demonstrated that RBAP-1 binds to a DNA sequence that is also bound by cellular extracts that contain an activity known as E2F. E2F activity was originally described as an E1A-targeted component of the functional transcription complex of the adenovirus promoter and was later shown to be normally complexed to cellular 5 proteins in most cell types. E2F has been functionally defined as a transcription factor that is a DNA-binding protein, and more recently has been shown to be a cellular target of RB (Bandara et al., 1991, Nature, Vol. 351, pp. 494-497; Chellappan et al., 1991, Cell, Vol 65, pp. 1053-1061; Bagchi et al., 1991, Cell, Vol. 65, pp. 1063-1072; Chittenden et al., 1991, Cell, Vol. 65, pp. 1073-1082). 10 Also, E2F activity containing extracts have been shown to bind to the RB pocket, and this protein complex can be disrupted by E1A or E7. Interestingly, the RB bound E2F activity can recognize more than one DNA sequence (Chittenden et al., 1991). The binding of more than one DNA sequence by the E2F activity suggests that E2F may be a family of proteins. 15

In one general aspect the invention features a portion of a normal human nuclear protein that is capable of binding to the RB pocket.

In preferred embodiments the human nuclear protein is RBAP-1, having the sequence shown in Fig. 1. In other preferred embodiments RBAP-1 is synthesized *in vitro* using an RBAP-1 encoding DNA, or is made *in vivo* using an RBAP-1 encoding DNA or using the RBAP-1 gene. In some embodiments the portion of the human nuclear protein is the RB pocket binding portion of RBAP-1, comprising the nucleotide sequence 1191-1397 as shown in Fig. 1, or may be some other portion, and may be the entire RBAP-1 protein.

In another general aspect, the invention features a RBAP-1 encoding DNA. In preferred embodiments the RBAP-1 encoding DNA includes the nucleotide sequence shown in Fig. 1. In some embodiments the invention features a vector containing a portion of the RBAP-1 encoding DNA and may contain the entire RBAP-1 encoding DNA.

In another general aspect the invention features a vector containing a RBAP-1 gene.

10

15

20

25

30

In another general aspect, the invention features a method for diagnosing a condition of tumorigenicity in a subject, including the steps of obtaining a tissue sample from a subject and detecting the presence of non-wildtype RBAP-1 encoding gene in the sample, or detecting alterations in the expression of wildtype RBAP-1 encoding gene in the sample. "Alteration of expression" as used herein includes an absence of expression, or a substantially decreased expression, or an overexpression of the gene.

In another general aspect, the invention features a nucleic acid probe complementary to a portion of a RBAP-1 gene. The complementary nucleic acid probe, as used herein, can be complementary to any portion of a RBAP-1 gene including sense and anti-sense strands of the gene, and including coding and non-coding sequences.

In another general aspect, the invention features a ligand capable of binding to the RBAP-1 protein. In preferred embodiments, the ligand can bind to the RBAP-1 protein or to an RBAP-1/RB protein complex. The ligand can be a protein other than RB, a fusion protein, a polypeptide, or a small molecule. "Small molecule", as that term is used herein, means a chemical compound, a peptide, an oligonucleotide, having a sequence other than the sequences known to be bound by the E2F activity, or a natural product. Preferably the small molecule is a therapeutically deliverable substance.

In another general aspect, the invention features a ligand that is capable of altering the activation of a gene by RBAP-1. The ligand may alter gene activation by RBAP-1 by decreasing, the affinity of RBAP-1 for the specific DNA site, or decreasing, RBAP-1 transactivation of the promoter that is downstream from the DNA binding site.

In another general aspect, the invention features a ligand that is capable of disrupting the interaction of a viral transforming protein and RB, while not disrupting the interaction of RBAP-1 and RB.

In another general aspect the invention features methods for assaying for a ligand that is capable of disrupting the interaction of a viral transforming protein and RB, while not disrupting the interaction of RBAP-1 and RB. In one aspect the method comprises the steps of: immobilizing RB on a solid support;

10

15

20

25

ζ.

71

contacting the ligand and a viral transforming reptein with the immobilized RB and separately contacting the ligand and RBAF-1, or a RB binding portion of RBAP-1; determining binding of the viral protein to RB and of RBAP-1 to RB in the presence of the ligand.

In another aspect the method comprises the steps of: transforming a first cell with vectors containing a reporter gene having an activatible promoter, and containing DNA encoding RB and RBAP-1 where one of the potential binding partners is fused to a transactivating domain and the other is fused to a site specific DNA binding domain; transforming a second cell with vectors containing a reporter gene having an activatible promoter, and containing DNA encoding RB and one viral transforming protein where one of the potential binding partners is fused to a transactivating domain and the other is fused to a site specific DNA binding domain; culturing the transformed cells in the presence of a ligand and determining the expression of the reporter gene. A preferred "cell" is a cultured eukaryotic cell, such as a yeast, for example S. cerevisiae, or a mammalian cell. An "activatible promoter", as used herein, is a promoter having a sequence specific binding site upstream of the transcriptional start site that is activated by the binding of a sequence specific DNA binding domain to the specific site and the proximity of a transactivating domain to the DNA binding domain. Each of these domains is fused to one protein of a pair that can interact to form a protein-protein complex and thus the domains are brought into the proximity required to activate transcription from the gene.

In another aspect the method comprises the steps of: transforming a mammalian cell expressing a viral transforming protein with vectors containing a reporter gene having an activatible promoter, and containing DNA encoding RB and RBAP-1 where one of the potential binding partners is fused to a transactivating domain and the other is fused to a site specific DNA binding domain; culturing the transformed cell in the presence of a ligand and determining expression of the reporter gene.

In another general aspect, the invention features a monoclonal antibody directed to RBAP-1. In preferred embodiments the monoclonal antibody is

10

15

20

25

30

directed against a portion of RBAP-1 including the amino acid residues encoded by nucleotides 1191-1655 of RBAP-1 encoding DNA, as shown in Fig 1.

In another general aspect the invention features eukaryotic homologues of RBAP-1. In preferred embodiments that eukaryotic homologues have been cloned using a portion of the RBAP-1 encoding DNA sequence as a probe.

Description of the Preferred Embodiments

Drawings

Fig. 1 is a diagram showing the nearly complete nucleic acid sequence of the RBAP-1 encoding DNA, and the deduced amino acid sequence. A candidate initiator methionine, M, is shown, although the sequence 5' of the corresponding ATG is open. The underlined sequence is the sequence of RBAP-1 that contains the RB pocket binding site.

Cloning and Characterization of RBAP-1

The following description, presented by way of example, details the cloning and characterization of RBAP-1. It will be appreciated that the genes of proteins that bind to RBAP-1 or the RBAP-1/RB protein complex can be cloned and characterized in an analogous manner.

The RBAP-1 encoding DNA was cloned from a λ gt11 expression library using radiolabelled RB ("*RB") as a probe, according to cloning techniques generally known in the art (see for example, Singh et al., 1989, Biotechniques, Vol. 7, pp. 252-162). *RB was prepared using the pGEX-2TK plasmid which is a modification of the commercially available expression vector pGEX-2T (Pharmacia). pGEX-2T has been modified to encode a GST fusion protein in which a recognition sequence for the catalytic subunit of cAMP dependent protein kinase from heart muscle was interposed between the GST leader polypeptide and the polypeptide encoded by the inserted cDNA. Briefly, the library was plated at approximately 40,000 pfu/150 mm plate on 30 plates (pfu = plaque forming units). The expression of β -galactosidase fusion proteins was induced using IPTG impregnated nitrocellulose. The nitrocellulose was probed with *RB by incubating the nitrocellulose in a buffered solution containing *RB, and the unbound proteins were washed off. The plaques corresponding to the

10

15

2

20

fusion proteins bound by *RB were picked and purified using further rounds of hybridization as is standard in the art. The DNA from the pure plaques was prepared and the sequence representing the RB-binding fusion protein was subcloned into pBKSTM (Stratagene) for sequencing. DNA sequencing was performed using a SequenaseTM 2.0 kit (available from United States Biochemical Corp.) according to a protocol provided by the manufacturer.

Analysis of the DNA sequence demonstrated that 4 of the clones contained overlapping DNA sequence and were derived from a common mRNA. Additional clones were obtained by screening another library and rescreening the original library with one of the above clones. The 2465 bp sequence of RBAP-1 was deduced from examination of multiple clones; the sequence shown in Fig 1 is nearly the full length sequence of RBAP-1 encoding DNA, but may be missing about 500 bp from the 5' end, as determined by Northern Blot analysis.

The binding of the fusion proteins that comprise RBAP-1 to RB was characterized in vitro. Briefly, the purified λ phage of each fusion protein was plated on a separate plate, and the expression of the β -galactosidase fusion proteins was induced using IPTG impregnated nitrocellulose. The proteins on the nitrocellulose were renatured (see Vinson et al., 1988, Genes & Dev., Vol. 2, pp. 801-806) and probed with *RB by incubating the nitrocellulose in a buffered solution containing *RB. The proteins that were bound by *RB were visualized by autoradiography. The results of the autoradiograph demonstrated that all 4 fusion proteins of RBAP-1 were capable of binding directly to RB.

The ability of these proteins to bind to the RB pocket was determined by probing the nitrocellulose with a radiolabelled non-binding mutant of RB, and with *RB in the presence of a synthetic peptide homologous to the E7, E1A, T, viral transforming element. The results showed that the fusion proteins bound directly to the RB pocket and that the binding of these fusion proteins to RB could be significantly reduced or blocked by the viral transforming element.

Nucleotides 1191-1655 of the RBAP-1 encoding DNA, as shown in Fig. 1, were subcloned into pGEX-2T (see Kaelin et al., 1991), to create a glutathione S-transferase fusion protein ("GST-RBAP-1"), and used to determine whether RBAP-1 could bind to the phosphorylated or the underphosphorylated form of

30 .

10

15

20

25

30

RB synthesized in vivo. Briefly, GST-RBAP-1 was purified from E. coli and bound to glutathione-Sepharose[™], a glutathione-linked cellulose gel (Pharmacia). RB was prepared from asynchronously growing cells and incubated with the SepharoseTM bound GST-RBAP-1. After washing, bound proteins were eluted from the Sepharose™ and immunoblotted with a monoclonal antibody against RB (monoclonal 245 available from Pharmigen). The results demonstrated that RBAP-1 specifically binds to the underphosphorylated form of RB.

The expression of the RBAP-1 gene was investigated using Northern analysis. The Northern analysis was performed using a RBAP-1 encoding DNA probe and total RNA obtained from peripheral blood T lymphocytes that were resting (Go cells), blocked at the G1/S boundary, and synchronously growing. The results demonstrated that RBAP-I mRNA accumulates when the cells are blocked at the G1/S boundary and falls after S phase.

The physical properties of RBAP-1 were examined using techniques that are well known in the art, and RBAP-1 was determined to have the same DNA-binding sequence specificity as E2F. Briefly, RBAP-1 co-purifies with E2F activity on DNA affinity columns (see, Means et al., 1992, Mol. Cel. Biol., Vol. 12, pp. 1054-1063). RBAP-1 immunoprecipitated from cell extracts using the monoclonal antibody against RBAP-1, described herein, and bacterially produced RBAP-1 were shown to contain E2F activity by non-denaturing polyacrylamide gel shift analysis using the E2F DNA-binding site for E2F (see. Shirodkar et al., 1992, Cell, Vol. 68, pp. 157-166). Additionally, RBAP-1 binds to the adenovirus E4 protein, a protein that is known to specifically bind to E2F, as was demonstrated by the binding of RBAP-1 to a GST-E4 fusion protein using the method described above (Kaelin et al., 1991).

The role of RBAP-1 in vivo

Without being limited thereby, we here propose a theory of a role of the RBAP-1 protein in vivo. We demonstrated that the RBAP-1 gene is expressed just prior to the point in the cell cycle that RB is phosphorylated, and that RBAP-1 binds specifically to the pocket of the underphosphorylated form of RB. Moreover, the RB pocket region is frequently mutated in human tumors and the

10

15

65... 2. 2. .

20

25

underphosphorylated form of RB is thought to have tumor suppressing effects in that this form is believed to inhibit the progression of the cell cycle.

We propose two alternative models for the significance of RBAP-1 binding to RB. In one model, if RBAP-1 is present before the onset of RB phosphorylation, the binding of RBAP-1 to RB can lead to RB phosphorylation. In this manner RBAP-1 would act "upstream" of RB in a signal transduction pathway and bring about the phosphorylation of RB. This model is consistent with the observation that loss of function RB mutants are hypophosphorylated in vivo, suggesting that cellular ligands of RB must bind to the RB pocket before phosphorylation can occur. Alternatively, RBAP-1 may be a "downstream" target of RB. In this model RBAP-1 binds to dephosphorylated RB generated near the end of M phase or is bound by newly synthesized RB that has not undergone post-translational modification.

The invention provides for identification of ligands that bind to RBAP-1 or the RBAP-1/RB complex, identification of ligands that disrupt the binding of RB to a viral transforming protein, or the viral transforming element, and do not effect the binding of RB to RBAP-1, production of monoclonal antibodies directed to RBAP-1 or any peptide of RBAP-1, and detection of non-wild-type RBAP-1 genes or detection of alteration in the expression of wild-type RBAP-1 genes.

Identification of ligands that bind to RBAP-1 or RBAP-1/RB.

The RBAP-1 protein can be used to identify ligands that bind to or interact with RBAP-1 or with the RB/RBAP-1 complex. The identification of ligands that bind to RBAP-1 or the RBAP-1/RB complex can be approached using the same method by which RBAP-1 was cloned. For instance, labelled RBAP-1 or a complex of labelled RBAP-1/RB can be used as probes for expression libraries of fusion proteins, and the DNA encoding the protein that binds to either RBAP-1 or the RBAP-1/RB complex can be cloned generally as described above.

30 Radioactive labelling is a preferred method for convenient labelling of proteins.

RBAP-1 or a complex of RBAP-1/RB can be used to screen a peptide library. The screening of a peptide library can be done using techniques

10

15

20

25

30

generally known in the art (see for example Scott et al., 1990, Science, Vol. 249, pp. 386-390; Devlin et al., 1990, Science, Vol. 249, pp. 404-406; Lam et al., 1992, Nature, Vol. 354, pp. 82-84). Briefly, RBAP-1 can be linked to a reporter gene, such as alkaline phosphatase ("AP") by cloning an in-frame fusion of RBAP-1 and AP ("AP/RBAP-1"), and used to screen a library of peptides linked to beads. The binding of AP/RBAP-1 to beads can be determined by staining and the amino acid sequence of the peptide on the bead determined by sequencing with a microsequencer (Lam et al.). In another approach, RBAP-1 can be attached to a solid support, such as a petri dish, and an epitope library, a peptide library inserted into a coat protein of filamentous phage such that the peptide is on the surface of the phage capsule, can be passed over the RBAP-1. Successive rounds of binding to RBAP-1 and propagating the phage that bind to RBAP-1 allows the purification of the individual phage clones (Scott et al.; Devlin et al.). The sequence of the peptide that binds to RBAP-1 can be determined by sequencing the DNA.

An *in vitro* assay for ligands, especially small molecules, that interact with RBAP-1 and alter its binding to DNA can be established, for example, by immobilizing RBAP-1 on a solid support, such as a microtiter tray well. The immobilized RBAP-1 can be incubated with a mixture of a ligand and a labelled DNA fragment, containing a sequence bound by the E2F activity. After incubation, the well can be washed to remove unbound species and the amount of label remaining in the well can be measured. A ligand that binds to RBAP-1 and disrupts the binding of RBAP-1 to the labelled DNA fragment can be detected by an absence of label remaining in the well.

Alternatively, an *in vivo* assay for ligands that bind to RBAP-1 and alter the activation of a gene that is transactivated by RBAP-1 can be established. For example this assay can be accomplished by transforming a cell, such as the yeast cell S. cerevisiae, with a reporter gene, such as β -galactosidase, under the control of an activatible promoter that has a sequence bound by the E2F activity upstream of the promoter. The cell is also transformed with a plasmid encoding RBAP-1. These cells can be grown in the presence of the chromogenic substrate X-gal, and the cells will produce a blue pigment if the β -galactosidase reporter

10

15

20

25

30

÷.

gene is transactivated by RBAP-1 and transcribed. Cells can be cultured in the presence of different ligands and the ability of the ligand to disrupt the transactivation of the reporter gene can be measured by assaying for the disappearance of the blue color from cell colonies. Ligands that alter the activation of a gene by RBAP-1, either by decreasing the binding of RBAP-1 to the DNA or by decreasing the transactivation of the gene by RBAP-1 may be useful for therapeutic treatment of individuals that are lacking functional RB.

Identification of ligands that disrupt RB binding to viral transforming proteins without disrupting RB binding to RBAP-1.

RBAP-1 can be used to identify ligands that bind to RB and disrupt the binding of the viral transforming proteins to RB without affecting the binding of RBAP-1 to RB. The following methods for the identification of ligands are described for purposes of example only, and as will be appreciated methods within the invention may differ in particulars from those described.

An in vitro assay for ligands that disrupt the binding of RB and a viral RB binding protein, such as E7, E1A or T, can be established by immobilizing RB, RBAP-1 or a viral RB binding protein on a solid support, such as in a microtiter tray well. For example, RB can be immobilized on the solid support, and a mixture of a ligand and either labelled RBAP-1 ("*RBAP-1") or labelled E7 ("*E7") can be added to the wells of the microtiter plate. After incubation the wells can be washed to remove unbound species and the amount of label remaining in the well determined. A ligand that disrupts binding to RB can be detected by an absence of label remaining in the well. In particular, a ligand that specifically disrupts the binding of RB to E7 would be demonstrated by a lack of label remaining in the well where RB, *E7 and the ligand had been incubated together, and the presence of label in the well where RB, *RBAP-1, and the same ligand had been incubated. Radioactive labelling of the proteins is a preferred method for convenient labelling of proteins.

An in vivo assay for ligands can be established, for example, by using the yeast S. cerevisiae that contains a reporter gene, such as β -galactosidase, under the control of an activatible promoter, such as a promoter with multiple GALA binding sites. S. cerevisiae can be transformed with plasmids encoding chimeric

BNSDOCID: <WO 9323539A1 L >

10

15

20

25

proteins in which the DNA-binding region of GAL4 can be fused to RB ("GAL4-RB") and the transactivating region of VP16 can be fused to E7 ("VP16-E7") (see for example, Fields et al., 1989, Nature, Vol. 340, pp. 245-246; Dang et al., 1991, Mol. Cell. Biol., Vol. 11, pp. 954-962). These cells can be grown in the presence of the chromogenic substrate X-gal, and the cells produce a blue pigment if GAL4-RB fusion binds to the VP16-E7 fusion protein. The cells can be cultured in replicate in the presence of different ligands and the ability of the ligand to disrupt the binding of RB and E7 can be evidenced by an absence of blue pigment produced by the cells. In order to confirm a specific interaction between E7 and Rb, the ligand can be tested for its ability to disrupt the binding of RBAP-1 to RB using a VP16-RBAP-1 fusion protein in place of the VP16-E7 fusion protein in a similar assay.

An in vivo assay for ligands that disrupt the binding of RB and a viral transforming protein can alternatively be established in a mammalian cell in an analogous manner. For example a cervical carcinoma cell that expresses E7, such as HeLa cells, can be transformed with DNA-binding and transactivating fusion proteins of RB and RBAP-1, and a reporter gene downstream of an activatible promoter. These cells can be grown in the presence of different ligands in order to find a ligand that is capable of restoring the binding between RB and RBAP-1.

Ligands that appear to disrupt the binding of RB to the viral transforming element without disrupting the binding of RB to RBAP-1, can be assayed for the specificity of this disruption by determining their capacity to interfere with the binding of an unrelated pair of binding proteins. If the ligand is unable to disrupt the binding of other binding proteins then it can be concluded that the ligand interacts specifically with either RB or the viral transforming element to disrupt their binding.

A ligand that selectively disrupts RB binding to the viral transforming element may do so by binding to RB in such a way as to prevent the binding of the transforming element without disrupting the normal RB/RBAP-1 interaction, or may bind to the transforming element with a higher affinity than the affinity of RB and the transforming element. In either case such a ligand can be used in

10

15

20

25

30

treatment of individuals suffering from a pathologic disease state, such as cervical carcinoma or a malignancy in which the RB signal transduction pathway has been disrupted.

Deletions of the RBAP-1 encoding DNA to define functional portions of the protein.

The RB pocket binding region of RBAP-1 can be further defined by constructing deletions of the RBAP-1 encoding DNA and determining binding of the proteins encoded by these deletion mutants to the RB pocket. Deletion mutations of RBAP-1 can be constructed from knowledge of the RBAP-1 sequence using techniques well known in the art. For example, a polymerase chain reaction technique can be used to construct a subclone of a specific portion of the DNA; or a series of deletion constructs, such as 3' deletions, can be constructed by cutting the DNA at a convenient restriction endonuclease site upstream of the stop codon and digesting the DNA with an exonuclease to produce a series of deletions in the 3' end of the DNA. Proteins encoded by deletion mutants of RBAP-1 can be assayed for their ability to specifically bind to the RB pocket as described above.

Monoclonal antibodies against RBAP-1.

Monoclonal antibodies were raised against a peptide of RBAP-1 using techniques generally known in the art (Harlow et al., 1988, Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 6). As will be understood, a monoclonal antibody against any portion of RBAP-1 can be produced using the techniques described below, or any of the techniques described by Harlow et al.

Briefly, the GST-RBAP-1 fusion protein described above, that is composed of nucleotides 1191-1655 of Fig. 1 fused to glutathione S-transferase, was overexpressed in *E. coli* and isolated. The fusion protein was suspended in complete Freund's adjuvant and injected intraperitoneally into mice. Each mouse was boosted with the isolated fusion protein in incomplete Freund's adjuvant by another intraperitoneal injection approximately two weeks later, and serum was collected from the mouse by tail bleed an additional 10 or more days later. The serum was tested for antibodies against RBAP-1, and subsequent rounds of

boosting and bleeding were done as necessary. Serum samples were checked for specific recognition of RBAP-1 by immunoprecipitation of radiolabelled RBAP-1 and the mice which had produced the best response were prepared for hybridoma fusion. The final booster injection was given 3 weeks after the latest boost, and about 3 days prior to hybridoma fusion, the booster was delivered both as an intravenous injection and an intraperitoneal injection. The spleen was removed from the immunized mice and the cells were separated. The spleen cells were fused to myeloma cells with polyethylene glycol, and the fused cells were aliquoted into wells of a microtiter plate. The cells were grown in selective medium to select for the growth of hybridoma cells only. The wells containing colonies of hybridomas were screened by removing a portion of the cell culture supernatant and detecting the secretion of antibodies by antibody capture on permeabilized cells or in solution. The specific hybridoma colony that secretes antibody was cloned by limiting dilution and expanded by growing in successively larger containers.

Detection of non-wild-type RBAP-1 or alterations in expression of wild-type RBAP-1.

The detection of alterations of expression of wild-type RBAP-1 or the presence of non-wild-type RBAP-1 in a tissue sample from a subject, using techniques well known in the art, can provide for early diagnosis of a neoplasm. The following methods are presented for purposes of example only, the methods employed can differ from the described methods and remain within the spirit of the invention.

Alterations in the level of RBAP-1 expression can be detected by a well known technique such as Northern blotting of the RBAP-1 mRNA.

Mutations in the RBAP-1 gene, including point mutations and specific deletions or insertions of the coding sequence, the 5' untranslated region and the 3' untranslated region, can be detected by cloning and sequencing the RBAP-1 allele present in the sample taken from the subject. If desired, the RBAP-1 mRNA can be sequenced directly, or the polymerase chain reaction technique ("PCR") can be used to amplify RBAP-1 or its mRNA to produce encoding DNA ("cDNA") and the resultant cDNA can be sequenced. PCR can also be used to

5

10

20

25

10

15

20

25

30

selectively amplify a region of the RBAP-1 allele; this can be especially useful to identify mutations at the splice-donor sites and in the 3' and 5' untranslated regions.

Mutations in the RBAP-1 gene can alternatively be detected using single strand conformation polymorphisms (Orita et al., 1989, Proc. Natl. Acad. Sci., USA, Vol. 86, pp. 2766-2770). This technique detects deletions and is sensitive enough to detect nucleotide substitutions. For the analysis, RBAP-1 can be cloned from a sample taken from the subject, or the genomic DNA can be prepared from the sample and either amplified using the polymerase chain reaction technique ("PCR") or directly digested with a restriction endonuclease. If the DNA sample is cloned or prepared by PCR then the sample can be radiolabelled, denatured, and subjected to neutral polyacrylamide gel electrophoresis. The gel can be dried and exposed to film to determine any differences in mobility between the sample from the patient and the wild-type RBAP-1 control sample. If the DNA sample is prepared by digestion of genomic DNA, it is denatured, subjected to neutral polyacrylamide gel electrophoresis, and the single-stranded DNA's are transferred to nitrocellulose or nylon membrane. The transferred DNA's are probed with radiolabelled RBAP-1 and any differences in mobility between the DNA from the sample and the wild-type RBAP-1 control can be visualized by an autoradiographic exposure of the DNA's.

Mutations in the RBAP-1 gene can also be detected using a nucleic acid probe that is complementary to a portion of RBAP-1. This technique is traditionally used to detect point mutations, and one can use a riboprobe (sense or antisense) which is complementary to the wild-type RBAP-1 gene sequence to detect point mutations in the coding DNA. The riboprobe is first annealed to either mRNA or DNA isolated from the tissue sample, then cleaved with ribonuclease to specifically cleave the riboprobe at mismatches between it and the sample. The cleaved products are separated by gel electrophoresis, and mismatches are detected as segments of the riboprobe smaller than the full length riboprobe. The point mutations can also be detected using a DNA probe.

Mutations in the RBAP-1 gene that have previously been identified can be

10

detected using allele-specific probes containing a gene sequence corresponding to that mutation. Presence of a specific mutation is confirmed when an allele-specific probe hybridizes with *RBAP-1* sequences from the sample.

Cloning of the genomic RBAP-1 DNA

The RBAP-1 gene can be cloned, for example, by first screening Southern blots of restriction endonuclease digests of genomic DNA from normal peripheral blood lymphocytes with labelled RBAP-1 encoding DNA to determine the size of the RBAP-1 gene and determine an appropriate cosmid library with which to pursue the cloning of the gene. The cosmid library can then be screened using conventional techniques with labelled RBAP-1 encoding DNA and the RBAP-1 gene can be subcloned into an appropriate plasmid vector, such as pBluescript^M which is a useful cloning vector that contains a polylinker that is flanked by standard primer sequences (Vector), and sequenced.

Cloning of eukaryotic homologues to RBAP-1

The RBAP-1 encoding DNA ("cDNA") can be used to select probes to 15 clone the cDNA or genomic DNA that encodes the RBAP-1 homologue in other eukaryotic species. A "homologue", as that term is used herein, means a protein in another eukaryotic species that has the same functional properties as the RBAP-1 protein in humans. Techniques for cloning homologues to a known gene are generally known in the art. For example, a Southern blot of DNA from a desired eukaryote can be screened at low stringency using a labelled portion of RBAP-1 probe or a labelled oligodeoxynucleotide, that was chosen based upon the RBAP-1 sequence, as a probe, and the RBAP-1 homologue can be cloned using an appropriate DNA library from the eukaryote (see for example, Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2rd Ed., Cold **25**° Spring Harbor Laboratory Press). In another technique the sequence of the RBAP-1 cDNA can be used to design degenerate oligodeoxynucleotide primers, and a polymerase chain reaction can be conducted using the degenerate primers and DNA from a desired eukaryote (see for example, Hanks et al., 1987, Proc.

Natl. Acad. Sci., USA, Vol. 84, pp. 388-392; Lee et al., 1988, Science, Vol.

239, pp. 1288-1291)

Other embodiments are within the following claims.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Kaelin Jr., William G.

Flemington, Erik

Sellers, William

DeCaprio, James A.

Livingston, David M.

- (ii) TITLE OF INVENTION: Retinoblastoma-Associated Protein 1 cDNA
- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Choate, Hall & Stewart
 - (B) STREET: Exchange Place, 53 State Street
 - (C) CITY: Boston
 - (D) STATE: Massachusetts
 - (E) COUNTRY: U.S.A.
- (F) ZIP: 02109
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE: 13-MAY-1992
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Kaplan, Warren
 - (B) REGISTRATION NUMBER: 34,199
 - (C) REFERENCE/DOCKET NUMBER: DFCI#236PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (617) 227-5020
 - (B) TELEFAX: (617) 227-7566
 - (C) TELEX: 289374
 - (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2456 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

 GGGATCGAGC CCTCGCCGAG GCCTGCCGCC ATGGGCCCGC GCCGCCGCCG CCGCCTGTCA

					GGCGGCCCAT	120
			CCGGCGCGCT			180
			CCAGCGCCCC			240
CGGCGCCCGC	cecceeccc	TGCGACCCTG	ACCTGCTGCT	CTTCGCCACA	CCGCAGGCGC	300
			CGCTCGGCCG			360
TGGACCTGGA	AACTGACCAT	CAGTACCIGG	CCGAGAGCAG	TGGGCCAGCT	CGGGGCAGAG	420
GCCGCCATCC	AGGAAAAGGT	GTGAAATCCC	CGGGGGAGAA	GTCACGCTAT	GAGACCTCAC	480
TGAATCTGAC	CACCAAGCGC	TTCCTGGAGC	TGCTGAGCCA	CTCGGCTGAC	GGTGTCGTCG	540
ACCIGAACIG	GGCTGCCGAG	GTGCTGAAGG	TGCAGAAGCG	GCGCATCTAT	GACATCACCA	600
			AGAAGTCCAA			660
GCAGCCACAC	CACAGTGGGC	GTCGGCGGAC	GGCTTGAGGG	GTTGACCCAG	GACCTCCGAC	720
			ACCTGATGAA			780
GCCTGCTCTC	CGAGGACACT	GACAGCCAGC	GCCTGGCCTA	CGTGACGTGT	CAGGACCTTC	840
			TTATGGTGAT			900
			TTCAGATCTC			960
			CCGTAGGTGG			1020
			ACAGGGCCAC			1080
			TCACCACAGA			1140
		•	TGGGCAGCCT			1200
			CGCTCCTGGA		_	1260
•			TITCCCCACC	•		1320
			GAGACCTCTT			1380
			AGGGACCAGG			1440
		•	TGGCCGTCCT			1500
			AAGCTTCTAG			1560
			AGTCTGTGTG			1620
			GTGTGTGAGC			1680
			GTGCACTGCA			1740
			TGGGGGGCT			1800
			AGTGCCTGCT			1860
			GGGCGTGTAG			1920
			TGGAGCGTTA			1980
			GAGGGGTGTG			2040
					CTGAAGGAAC	2100
			GTGAGGGAGG			2160
			CTCCAGGGGG			2220
			TGAGTGGGGG			2280
			ACCCTGTGGT			2340
			TCCAATCTGC .			2400
AGCTCTGTTC	CCTCCTGCTT	TGGTTTTAAT	AAATATTTTG .	ATGACGTTAA	AAAAA	2456

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 437 amino acids
 - (B) TYPE: amino acid

	'1	,, 10		. 107	7 7116	ar		•							
(ii)	MOI	ECUI	E TY	PE:	pept	ide.								•	
iii)	HYP	отне	TICA	L: N	O										
(xi)	SEÇ	UENC	E DE	SCRI	PTIC	N:S	EQ I	D NC	:2:	•					
Met	Ala	Lev	Ala	Gly	Ala	Pro	Ala	Gly	Gly	Pro	Сув	Ala	a Pro	o Ala	a Leu
1	•			5					10		_			15	
Glu	Ala	Leu	Leu	Gly	Ala	Gly	Ala	Leu	Arg	Leu	. Leu	aaA ı	Sei		Gln
			20					25					30		
Ile	Val	Ile	Ile	Ser	Ala	Ala	Gln	Asp	Ala	Ser	Ala	Pro	Pro	Ala	Pro
		35			~	-	40	,				45			
Thr	Gly	Pro	Ala	Ala	Pro	Ala	Ala	Gly	Pro	Cys	Asp	Pro	Asp	Leu	Leu
	50					55			j.	٠.	60				
Leu	Phe	Ala	Thr	Pro	Gln	Ala	Pro	Arg	Pro	Thr	Pro	Ser	Ala	Pro	Arg
65					70					75				•	80
Pro	Ala	Leu	Gly	Arg	Pro	Pro	Val	Lys	Arg	Arg	Leu	Asp	Leu	Glu	Thr
				85					90					95	
Asp	His	Gln	Tyr	Leu	Ala	Glu	Ser	Ser	Gly	Pro	Ala	Arg	Gly	Arg	Gly
		_	100					105					110		
			Gly	Lys	Gly	Val	Lys	Ser	Pro	Gly	Glu	Lys	Ser	Arg	Tyr
~3		115	_		·		120					125			
Giu		Ser	Leu	Asn	Leu		Thr	Lys	Arg	Phe	Leu	Glu	Leu	Leu	Ser
***	130		~ 1	_		135					140				
	ser	Ara	GIĀ	Asp		Val	Asp	Leu	Asn		Ala	Ala	Glu	Val	Leu
145	370 7	C1	T	2	150		_	_		155					160
пув	vaı	GIII	гур	165	Arg	TTE	Tyr	Asp		Thr	Asn	Val	Leu		Gly
Tle	Gln	T.OU	т10	_	T	T ====	0	T	170	***	~7 -	~ 3	_	175	
	GIII	Deu	180	ма	тур	тур	ser	Lys 185	Asn	HIS	тте	Gin		Leu	Gly
Ser	His	Thr		٧al	Glv	TeV.	Glar	Gly	7~~	T 011	C1	C1	190	m1	63 .
		195			CLY	741	200	Gry	Arg	пеп	Gru	205	Ten	Ini	GIÜ
Asp	Leu		Gln	Leu	Gln	Glu		Glu	Gln	GIn	Len		Hie	T.011	Mot
-	210	_				215				0	220	wop	117.0	Deu	Met
Asn	Ile	Сув	Thr	Thr	Gln		Arq	Leu	Leu	Ser		asp	Thr	Asp	Ser
225					230		_			235					240
Gln	Arg	Leu	Ala	Tyr	Val	Thr	Сув	Gln	qaA	Leu	Arq	Ser	Ile	Ala	
				245					250		_			255	
Pro	Ala	Glu	Gln	Met	Val	Met	Val	Ile	Lys	Ala	Pro	Pro	Glu		Gln
			260					265	-				270		
Leu	Gln	Ala	Val	Asp	Ser	Ser	Glu	Asn	Phe	Gln	Ile	Ser	Leu	Lys	Ser
		275					280					285		-	
Lys	Gln	Gly	Pro	Ile	qaA	Val	Phe	Leu	Сув	Pro	Glu	Glu	Thr	Val	Gly
	290					295					300	•			-
Gly	Ile	Ser	Pro	Gly	Lys	Thr	Pro	Ser	Gln	Glu	Val	Thr	Ser	Glu	Glu
305					310					315					320
Glu	Asn	Arg	Ala	Thr	qaA	Ser .	Ala	Thr	Ile	Val	Ser	Pro	Pro	Pro	Ser

					325			٠		330					335	
	Ser	Pro	Pro	Ser	Ser	Leu	Thr	Thr	Asp	Pro	Ser	Gln	Ser	Leu	Leu	Ser
				340					345					350		
	Leu	Glu	Gln	Glu	Pro	Leu	Leu	Ser	Arg	Met	Gly	Ser	Leu	Arg	Ala	Pro
٠.,		1	355		•	• W. S.	" " " " " " " " " " " " " " " " " " "	360					365			
	Val	qaA	Glu	qaÀ	Arg	Leu	Ser	Pro	Leu	Val	Ala	Ala	Asp	Ser	Leu	Leu
;	1	370		٠,			3 7 5	•				380	÷ •		•	
	Glu	His	Val	Arg	Glu	Asp	Phe	Ser	Gly	Leu	Leu	Pro	Glu	Glu	Phe	Ile
٠, '	385	÷ -	•			390			٠.	•	395			•		400
	Ser	Leu	Ser	Pro	Pro	Hís	Glu	Ala	Leu	Asp	Tyr	His	Phe	Gly	Leu	Glu
·: •					405					410		٠.	-		415	
	Glu	Gly	Glu	Gly	Ile	Arg	Asp	Leu	Phe	qaA	Cys	qaA	Phe	Gly	Asp	Leu
			:	420		•			425					430		
	Thr	Pro	Leu	qaA	Phe				•		•				:	
	٠. ٠.		435				•					.11 .11 		:	1	

Claims

- 1. A RB pocket binding portion of RBAP-1.
- 2. The RB pocket binding portion of RBAP-1 in claim 1, having an amino acid sequence including a portion of the amino acid sequence shown in SEQ. ID NO. 1.
- 3. The RB pocket binding portion of RBAP-1 of claim 2, wherein the said RB pocket binding portion comprises the amino acids from 369-437 as shown in SEQ. ID NO. 1.
- 4. A substantially purified human protein RBAP-1 encoded by a nucleotide sequence, a portion of which nucleotide sequence is shown in Seq. ID No. 1.
- 5. The substantially purified human protein RBAP-1 of claim 4 wherein said protein RBAP-1 is capable of binding to protein RB.
- 6. The substantially purified human protein RBAP-1 of claim 4 wherein said protein RBAP-1 is capable of binding directly to an RB pocket region of protein RB.
- 7. The substantially purified human protein RBAP-1 of claim 6 wherein said protein RBAP-1 is further capable of binding to an underphosphorylated form of protein RB.
- 8. The substantially purified human protein RBAP-1 of claim 7 wherein said protein RBAP-1 is further incapable of binding to a phosphorylated form of protein RB.
- 9. The substantially purified human protein RBAP-1 of claim 4 wherein said protein RBAP-1 is capable of binding to an adenovirus E4 protein.
- 10. The substantially purified human protein RBAP-1 of claim 4, capable of binding to a pocket region of RB protein, said protein lacking a pentapeptide amino acid sequence having amino acids leucine, cysteine, and glutamic, acid in a first, third, and fifth position respectively.
- 11. The substantially purified human protein RBAP-1 of claim 10 wherein said protein RBAP-1 is further capable of binding to an underphosphorylated form of protein RB.

- 12. The substantially purified human protein RBAP-1 of claim 11 wherein said protein RBAP-1 is further incapable of binding to a phosphorylated form of RB.
- 13. The substantially purified human protein RBAP-1 of claim 4, comprising a peptide fragment capable of binding to a pocket domain of RB protein, said peptide fragment being encoded by nucleotides 1191-1397 of Seq. ID No. 1.
- 14. The substantially purified human protein RBAP-1 of claim 13, wherein said peptide fragment is encoded by a portion of the nucleotides 1191-1397 of Seq. ID No. 1.
- 15. A substantially purified eukaryotic protein that binds to protein RB having amino acid homology to protein RBAP-1, a portion of which amino acid sequence of said RBAP-1 protein is shown in Seq. ID No. 2.
- 16. The eukaryotic protein having homology to RBAP-1 in claim 15, wherein said protein was cloned using a probe derived from the RBAP-1 nucleotide sequence, a portion of which nucleotide sequence is shown in Seq. ID No. 1.
- 17. An RBAP-1 encoding DNA having a nucleotide sequence including the sequence shown in SEQ. ID No. 1.
 - 18. A vector containing the RBAP-1 encoding DNA of claim 16.
 - 19. A vector containing a RBAP-1 gene.
 - 20. A nucleic acid probe complementary to a RBAP-1 gene.
- 21. A method for diagnosing a condition of tumorigenicity in a subject, comprising the steps of obtaining a tissue sample from the subject and detecting the presence of a non wild-type RBAP-1 encoding gene in the sample.
- 22. A method for diagnosing a condition of tumorigenicity in a subject, comprising the steps of obtaining a tissue sample from the subject and detecting an alteration in the expression of a wild-type RBAP-1 encoding gene in the sample.
 - 23. A ligand capable of binding to the RBAP-1 protein.
 - 24. A ligand capable of binding to the RB/RBAP-1 protein complex.
 - 25. The ligand of claims 23 or 24 wherein said ligand is a protein.
 - 26. The ligand of claims 23 or 24 wherein said ligand is a fusion protein.

- 27. The ligand of claims 23 or 24 wherein said ligand is a polypeptide.
- 28. The ligand of claims 23 or 24 wherein said ligand is a small molecule.
- 29. The ligand of claim 23 wherein said ligand is capable of decreasing RBAP-1 transactivation of a gene.
- 30. The ligand of claim 23 wherein said ligand is capable of decreasing the binding of RBAP-1 to its specific DNA binding site.
- 31. A ligand capable of disrupting the binding of RB and a viral transforming protein wherein said ligand does not disrupt the binding of the RBAP-1 protein and RB.
- 32. A method for assaying for a ligand that is capable of disrupting the interaction of a viral transforming protein and RB, while not disrupting the interaction of RBAP-1 and RB comprising the steps of,
 - immobilizing RB on a solid support,

contacting RB with one viral transforming protein in the presence of said ligand,

separately contacting RB with RBAP-1 in the presence of said ligand, determining binding of the viral transforming protein to RB and binding of RBAP-1 to RB in the presence of said ligand.

33. A method for assaying for a ligand that is capable of disrupting the binding of a viral transforming protein to RB, while not disrupting the binding of RBAP-1 to RB comprising the steps of,

transforming a cell with vectors containing a reporter gene having an activatible promoter, and containing DNA encoding RB and RBAP-1 where one of the potential binding partners is fused to a transactivating domain and the other is fused to a site specific DNA binding domain,

transforming a cell with vectors containing a reporter gene having an activatible promoter, and containing DNA encoding RB and one viral transforming protein where one of the potential binding partners is fused to a transactivating domain and the other is fused to a site specific DNA binding domain,

culturing said transformed cells in the presence of said ligand, determining expression of said reporter gene. 34. A method for assaying for a ligand that can disrupt the binding of a viral transforming protein to RB, while not disrupting the binding of RBAP-1 to RB comprising the steps of,

transforming a mammalian cell expressing a viral transforming protein with vectors containing a reporter gene having an activatible promoter, and containing DNA encoding RB and RBAP-1 where one of the potential binding partners is fused to a transactivating domain and the other is fused to a site specific DNA binding domain,

culturing said transformed cell in the presence of said ligand, determining expression of said reporter gene.

- 35. A monoclonal antibody that is directed to the gene product of any portion of said DNA molecule in claim 23.
- 36. The monoclonal antibody of claim 35 comprising a monoclonal antibody directed against the peptide encoded by nucleotides 1191-1655 of Fig. 1.

1	GGGA	TCGA	GCC	СТС	GCC	GAG	GGC(CTGC	CGC	CAT	GGC	6000	GCG	CCC	CCC	CCC	GCC	SCCT	GTCA
	CCCG	GGCC	GCG	CGG	GCC		SAG(CGTC	ATG .M	GCC A	TTG L	GCC A	GGG G	GCC A	CCT P	GC6 A	GGG G	CGGC G	CCAT P
121 12	GCGC(GCCG P	GCG A	CTG L	GAG E	GCC A	CCT(L	CTC L	GGG G	GCC A	GGC G	GCG A	CTG L	CGG R	CTG	CTC L	GAC D	CTCC S	TCGC S
	AGATO Q I	CGTC V	ATC	ATC I	TCC S	GCC A	GCC A	SCAG Q	GAC D	GCC.	AGC S	GCC A	CCG P	CCG P	GCT A	CCC	ACC	GGC G	CCCG P
241 52	CGGCC A A	SCCC P	GCC A	GCC A	GGC G	CCC P	TGC	GAC D	CCT P	GAC D	CTG L	CTG L	CTC L	TTC F	GCC A	ACA T	CCG P	CAG Q	GCGC A
	CCCGG P R	SCCC P	ACA T	CCC P	AGT S	GCC A	CCG P	CGG R	CCC P	GCG(A	CTC L	GGC G	CGC R	CCG P	CCG P	GTG V	AAG K	CGG R	AGGC R
361 92	TGGAC L D	CCTG	GAA. E	ACT T	GAC D	CAT H	CAC	TAC	CTG L	GCC(GAG E	AGC S	AGT S	GGG G	CCA P	GCT A	CGG R	GGC.	AGAG R
	GCCGC G R	CCAT H	CCA P	GGA. G	AAA K	GGT G	GTG V	AAA K	TCC S	CCG(P	GG G	GAG E	AAG K	TCA S	CGC R	TAT Y	GAG E	ACC	TCAC S
481 132	TGAAT L N	CTG L	ACC.	ACC.	AAG K	CGC R	TTC F	CTG	GAG(CTG(CTG	AGC S	CAC	TCG S	GCT A	GAC D	GGT G	GTC V	GTCG V
	ACCTO D L	SAAC N	TGG(W	ĞCT A	GCC A	GAG E	GTG V	CTG.	AAG(K	GTG(V	CAG	AAG K	CGG R	CGC R	ATC I	TAT Y	GAC D	ATC	ACCA T
601 172	ACGTO N V	CTT L	GAG E	GGC	ATC	CAG Q	CTC	ATT	GCC/ A	AAGA K	AAG K	TCC S	AAG. K	AAC N	CAC. H	ATC I	CAG Q	TGG(CTGG L
	GCAGO G S	CAC.	ACC/ T	ACA(GTG(V	GGC G	GTC V	GGC(GGA(CGG(R	TT L	GAG E	GGG [*]	TTG.	ACC T	CAG Q	GAC D	CTC	CGAC R
721 212	AGCTG Q L	CAG Q	GAG/ E	AGC(GAG(CAG Q	CAG Q	CTG	GAC(D	CACC	CTG.	ATG M	AAT. N	ATC	TGT. Ç	ACT T	ACG T	CAGO	CTGC L
	GCCTG R L	CTC	TCC(S	GAG(E	GAC/ D	ACT T	GAC D	AGC(CÁG(Q	CGCC R	CTG	GČČ A	TAC(Y	GTG/ V	ACG ⁻	TGT C	CAG Q	GAC(CTTC L

FIG.1a

-)

841 GTAGCATTGCAGACCCTGCAGAGCAGATGGTTATGGTGATCAAAGCCCCTCCTGAGACCC 252 R S I A D P A E Q M V M V I K A P P E T AGCTCCAAGCCGTGGACTCTTCGGAGAACTTTCAGATCTCCCTTAAGAGCAAACAAGGCC DSSENFQISLKSKQG 961 CGATCGATGTTTTCCTGTGCCCTGAGGAGACCGTAGGTGGGATCAGCCCTGGGAAGACCC 292 P I D V F L C P E E T V G G I S P G K T CATCCCAGGAGGTCACTTCTGAGGAGGAGGAGGACAGGGCCACTGACTCTGCCACCATAGTGT SEEENRATDS GCCTGGAGCAAGAACCGCTGTTGTCCCGGATGGGCAGCCTGCGGGCTCCCGTGGACGAGG S L E Q E P L L S R M G S L R A P V D E 1201 ACCGCCTGTCCCCGCTGGTGGCGGCCGACTCGCTCCTGGAGCATGTGCGGGAGGACTTCT CCGGCCTCCTCGAGGAGTTCATCAGCCTTTCCCCACCCCACGAGGCCCTCGACTACC 1321 ACTTCGGCCTCGAGGAGGGCGAGGGCATCAGAGACCTCTTCGACTGTGACTTTGGGGACC GEGIRD TCACCCCCTGGATTTCTGACAGGGCTTGGAGGGACCAGGGTTTCCAGAGATGCTCACCT 1441 TGTCTCTGCAGCCCTGGAGCCCCCTGTCCCTGGCCGTCCTCCCAGCCTGTTTGGAAACAT TTAATTTATACCCCTCTCCTGTCTCCAGAAGCTTCTAGCTCTGGGGTCTGGCTACCGC

FIG. 1b

1681	GGGAATGAAGGTGAACATACACCTCTGTGTGTGCACTGCAGACACGCCCCAGTGTGTCCA
	CATGTGTGTGCATGAGTCCATGTGTGCGCGTGGGGGGGCTCTAACTGCACTTTCGGCCCT
1801	TTTGCTCTGGGGGTCCACAAGGCCCAGGGCAGTGCCTGCTCCCAGAATCTGGTGCTCTGA
	CCAGGCCAGGTGGGGAGGCTTTGGCTGGCTGGGCGTGTAGGACGGTGAGAGCACTTCTGT
1921	CTTAAAGGTTTTTCTGATTGAAGCTTTAATGGAGCGTTATTTAT
•	TGGTGAGCCTGGGGAATCAGCAAAGGGGAGGAGGGGTGTGGGGTTGATACCCCAACTCCC
2041	TCTACCCTTGAGCAAGGGCAGGGGTCCCTGAGCTGTTCTTCTGCCCCATACTGAAGGAAC
•	TGAGGCCTGGGTGATTTATTTATTGGGAAAGTGAGGGAGG
2161	CATGGGTGGTCAGATGGTGGGGTGGGCCCTCTCCAGGGGGCCAGTTCAGGGCCCCAGCTG
(CCCCCAGGATGGATATGAGATGGGAGAGGTGAGTGGGGGACCTTCACTGATGTGGGCAG
2281	GAGGGGTGGTGAAGGCCTCCCCCAGCCCAGACCCTGTGGTCCCTCCTGCAGTGTCTGAAG
· · · · · (CGCCTGCCTCCCACTGCTCTGCCCCACCCTCCAATCTGCACTTTGATTTGCTTCCTAAC
2401 /	AGCTCTGTTCCCTCCTGCTTTGGTTTTAATAAATATTTTGATGACGTTAAAAAAAA

FIG.1c

PCT/US 93/04654

I CLASSIFICATION OF SURT	Deve he arrived the second about the second	International Application No	
	ECT MATTER (if several classification s at Classification (IPC) or to both National C		
Int.Cl. 5 C12N15/1 C12Q1/68	2; C07K13/00;	Classification and IPC C12N15/62;	C12P21/08
II. FIELDS SEARCHED			
	Minimum Docum	entation Searched?	
Classification System		Classification Symbols	
Int.Cl. 5	C12N; ;	C120 ; G01	N .
	Documentation Searched other to the Extent that such Documents:	than Minimum Documentation are included in the Fields Searched	
III. DOCUMENTS CONSIDERE	<u></u>		
Category Chation of Do	ocument, 11 with indication, where appropris	ite, of the relevant passages 12	Relevant to Claim No.13
SCIENCES vol. 90, US	INGS OF THE NATIONAL ACS OF USA., no. 8, 15 April 1993,		1-20, 23-31, 35,36
HUBER HE DR;HUANG A;HEIMBR binds DN see page	525 - 3529 E;EDWARDS G;GOODHART PJ G PS;IVEY-HOYLE M;BARNE ROOK DC; 'Transcription NA as a heterodimer.' E 3525, column 2, line o	TT SF;OLIFF factor E2F	
see page	e 3527, column 1, line a clumn 2, line 6	20 - page -/	
		* *	1 %
*		1 - MA 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
			<u>.</u>
"E" earlier document but publis filing date "L" document which may throw which is cited to establish t citation or other special rea "O" document referring to an o other means "P" document published prior to later than the priority date	eral state of the art which is not lar relevance shed on or after the international value on priority claim(s) or the publication date of another ason (as specified) oral disclosure, use, exhibition or the international filing date but	"T" later document published after the or priority date and not in conflict cited to understand the principle of invention document of particular relevance; cannot be considered novel or can involve an inventive step document of particular relevance; cannot be considered to involve as document is combined with one or ments, such combination being oh in the art. "A" document member of the same pair	t with the application but or theory underlying the the claimed invention anot be considered to the claimed invention in inventive step when the r more other such docu- vious to a person skilled
IV. CERTIFICATION			
Date of the Actual Completion of th O4 OCTOB		Date of Mailing of this Internation 1 4 -10- 199	
international Searching Authority		Signature of Authorized Officer	
EUROPEA	N PATENT OFFICE	S.A. NAUCHE	

Category o		
	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
		·
P,X	MOLECULAR AND CELLULAR BIOLOGY	1-36
	vol. 12, no. 12, December 1992, WASHINGTON	
	US	
Ì	pages 5620 - 5631	
	SHAN, B. ET AL.; 'Molecular cloning of	
	cellular genes encoding	
	retinoblastoma-associated proteins: identification of a gene with properties	
	of the transcription factor E2F.	
:	see the whole document	
P,X	CELL	1-36
ŀ	vol. 70, no. 2, 24 July 1992, CAMBRIDGE, NA US	
	pages 351 - 364	
-	KAELIN WG JR; KREK W; SELLERS WR; DECAPRIO	
	JA;AJCHENBAUM F;FUCHS CS;CHITTENDEN T;LI	
	Y; FARNHAM PJ; BLANAR MA; ET AL; 'Expression	3
	cloning of a cDNA encoding a	
	retinoblastoma-binding protein with E2F-like properties.'	
	see the whole document	
P,X	CELL	1-36
	vol. 70, no. 2, 24 July 1992, CAMBRIDGE, NA US	
	pages 337 - 350	
ŀ	HELIN K; LEES JA; VIDAL M; DYSON N; HARLOW	
	E;FATTAEY A; 'A cDNA encoding a	
	pRB-binding protein with properties of the	
	transcription factor E2F.' see the whole document	:
	See the whole document	: :
x	WO,A,8 906 703 (DRYJA,T ET AL.; US)	23,25-28
	27 July 1989	
A	See the abstract, claims 1-5	31-34
x	EMBO JOURNAL.	24-28
	vol. 6, no. 7, 1987, EYNSHAM, OXFORD GB	2. 20
	pages 2061 - 2068	·
	YEE, A.S. ET AL.; 'Promoter interaction of	
	the E1A-inducible factor E2F and its	
	<pre>potential role in the formation of a multi-component complex¹</pre>	
	see page 2067, column 2, line 15 - page	
	2067, column 2, line 39	
4	-/	
.		
	· ·	
1.		'
	· · · · · · · · · · · · · · · · · · ·	ı
		l

Form PCT/ISA/210 (extra sheet) (Jamesry 1965)

THIS PAGE BLANK (USPTO)

(x,y) = (x,y) + (x,y

TO THE RESERVE OF THE REPORT OF THE PROPERTY O

The state of the s

The late of the second of the

Andrew Control of the Control of the

E WE THE SPECT ON HER BY THE FOR MORNING

The carling of the sometimes

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

AND PAGE BLANK (USPTO)