MATH 307: Individual Homework 18

Shaochen (Henry) ZHONG, sxz517@case.edu

Due and submitted on 04/14/2021 Spring 2021, Dr. Guo

Problem 1

See HW instruction.

The question worded as "find a basis for both range(A) and $range(A^*)$ ", I am a bit unsure if I should find one basis for range(A) and another basis $range(A^*)$, or should I find a single basis for both of them – it seems like the question is asking the latter one, but I don't think that is possible given that $A \in F^{m \times n}$; and if $m \neq n$, the dimension of row and column space is intrinctly different.

Let $\sigma_1, \sigma_2, ..., \sigma_r$ be the nonzero singular values in Σ of $A = U\Sigma V^*$, we know that $\{u_1, u_2, ..., u_r\}$ is a basis for range(A) because of the following.

W.T.S. $range(A) \subset span(u_1, u_2, ..., u_r)$

 $\forall y \in range(A), \ y = Ax \text{ for some } x \in F^n.$ Since we know that V is unitary, columns of V form a basis for F^n . Thus, we have $x = \sum \alpha_i v_i$; also known that $AV = U\Sigma$, we have:

$$y = Ax = A(\sum_{i=1}^{r} \alpha_i v_i)$$

$$= \sum_{i=1}^{r} \alpha_i A v_i$$

$$= \sum_{i=1}^{r} \alpha_i \sigma_i u_i \in span(u_1, u_2, ..., u_r)$$

This implies $range(A) \subset span(u_1, u_2, \dots, u_r)$

W.T.S. $span(u_1, u_2, \dots, u_r) \subset range(A)$

$$AV = U\Sigma$$

 $Av_i = \sigma_i u_i \text{ for } i = 1, \dots, r$
 $u_i = A(\frac{v_i}{\sigma_i})$
 $\Longrightarrow u_i \in range(A)$

This implies $span(u_1, u_2, ..., u_r) \subset range(A)$. Combine both findings, we have $range(A) = span(u_1, u_2, ..., u_r)$. As $u_1, u_2, ..., u_r$ are linearly independent, it is a basis for range(A) the col-

umn space of A.

Similarly, we have $A^* = V\Sigma U^*$ for V being unitary (implies orthogonal and linearly independent columns). So, we have $\{v_1, v_2, \dots, v_r\}$ to be basis for $range(A^*)$ the row space of A.

Since both $\{u_1, u_2, \dots, u_r\}$ and $\{v_1, v_2, \dots, v_r\}$ have a dimension of r. The column rank is same as the row rank of A.

Problem 2

See HW instruction.

(a)

As we have previously established in the above **Problem 1**. The row rank of A is the number of nonzero singular values in Σ of $A = U\Sigma V^*$. In this case, we have 5 nonzero singular values, so the row rank of A is 5. The orthonormal basis of $range(A^*)$ will therefore be $\{v_1, v_2, \ldots, v_5\}$.

For proving. We know that $\{v_1, v_2, \ldots, v_5\}$ is a orthonormal set as it came out from an unitary matrix V. We also know there must be $span(v_1, v_2, \ldots, v_5) = range(A^*)$ as we have previously showned in **Problem 1**. Thus, $\{v_1, v_2, \ldots, v_5\}$ is a basis of $range(A^*)$.

(b)

The rank-nullity theorem tells us that n = r + l for r stands for rank and l stands for nullity. In this case n = 6 as $A^* \in F^{8 \times 6}$, we have the nullity being l = n - r = 6 - 5 = 1.

As $A^* = V\Sigma U^*$, we have $\{u_{r+1}, \ldots, u_n\} = \{u_6\}$ to be the basis of $null(A^*)$. As we have $null(A^*) \subset span(u_6)$ because they are both $\in F^m$. We also have $span(u_6) \subset null(A^*)$ as:

$$A^*U = V\Sigma$$

 $A^*u_i = \sigma_i v_i \text{ for } i = r+1, \dots, n$
 $A^*u_i = 0$
 $\Longrightarrow span(u_{r+1}, \dots, u_n) \subset null(A^*)$

Which is equivalent to $span(u_6) \subset null(A^*)$. Combine the two findings we have $span(u_6) = null(A^*)$. As $\{u_6\}$ is obviously linearly independent, $\{u_6\}$ is the basis of $null(A^*)$.