

ANDREA FOPPIANI MELISSA MARTINOLI DAVIDE MONTANARI LISANA SHIDQINA

FLOOR PLAN & BUILDING DETAILS

FLOOR PLAN

MILAN

BANGKOK

TORONTO

Site and Source Energy

	-			•
		Total Energy [GJ]	Ι	i
Total Site Energy	,	801.15		Ì
Net Site Energy	,	801.15		į
Total Source Energy		2205.14		"
Net Source Energy		2205.14		_

Site and Source Energy

	_		-	
		Total Energy [GJ]	Ι	
Total Site Energ	y	1347.46		HIGHEST
Net Site Energ	y	1347.46		ENERGY CONSUMED
Total Source Energ	y	2264.70		
Net Source Energ	y	2264.70		

Site and Source Energy

	_		
		Total Energy [GJ]	E
Total Site Energ	,	967.33	
Net Site Energ	,	967.33	
Total Source Energy		2976.41	
Net Source Energy	,	2976.41	

OPEN STUDIO RESULTS Different climates influence different aspects of the end use

ALTERNATING TEMPERATURE, ALTERNATING ENERGY NEEDS

Heating Load

Cooling Load Outdoor Temp

MILAN - HVAC LOAD PROFILES

WALL SIMULATION PROFILES

Simulation on different wall types to overcome climatic problems.

TORONTO

Max. temp: 31.2°C Min. temp: -18.8°C

WALL 1: BASE CASE

TOTAL SITE ENERGY: 953.90 GJ R-VALUE: 7.55 FT² * h * R / Btu U-VALUE: 0.749 W / m² * K

WINDOW U-FACTOR: 1.13 Btu / FT² * h * R

WALL 2: Base case + air layer and light concrete

TOTAL SITE ENERGY: 938.61 GJ R-VALUE: 10.05 FT² * h * R / Btu U-VALUE: 0.562 W / m² * K

WINDOW U-FACTOR: 1.13 Btu / FT² * h * R

WALL 3: Base case + air layer and light concrete + second and third insulation layer

TOTAL SITE ENERGY: 923.05 GJ R-VALUE: 17.62 FT² * h * R / Btu U-VALUE: 0.317 W / m² * K

WINDOW U-FACTOR: 1.13 Btu / FT² * h * R

WALL SIMULATION RESULTS - COOLING

WALL 1

WALL 2

COOLING CONSUMPTION DECREASES SLIGHTLY BETWEEN THE THREE WALLS.

WALL 3

WALL SIMULATION RESULTS - HEATING

WALL 1

WALL 2

HEATING CONSUMPTION DECREASES NOTICEABLY BETWEEN THE THREE WALLS.

WALL 3

CONCLUSION

HVAC Load Profiles

Adding air gap and extra insulation contributes to the resistance of the wall. The wall is able to retain more energy, and therefore lessen energy loss.

WALL 3 is an ideal solution for the specific location, however, WALL 2 may be a good economical compromise between the three types of walls.

WALL 3: Base case + air layer and light concrete + second and third insulation layer

TOTAL SITE ENERGY: 923.05 GJ R-VALUE: 17.62 FT² * h * R / Btu U-VALUE: 0.317 W / m² * K