## Unit-5: Combinational Circuit

Multiplexers-De-multiplexers Decoder-Encoder

# Multiplexer

- Also called data selectors.
- Basic function: Select one of its  $2^n$  data input lines and place the corresponding information onto a single output line.
- *n* input bits needed to specify which input line is to be selected.
  - Place binary code for a desired data input line onto its n select input lines.





## Typical Application of a MUX

• One of the primary applications of multiplexers is to provide for the transmission of information from several sources over a single path. This process is known as multiplexing.



- Q. The two input MUX would have \_\_\_\_\_
- a) 1 select line
- b) 2 select lines
- c) 4 select lines
- d) 3 select lines

Q. 4 to 1 MUX would have \_\_\_\_\_

- a) 2 inputs
- b) 3 inputs
- c) 4 inputs
- d) 5 inputs

# 4:1 Multiplexer



| Selection Lines |    | Output     |
|-----------------|----|------------|
| S1              | So | Y          |
| 0               | 0  | Io         |
| 0               | 1  | <b>I</b> 1 |
| 1               | 0  | I2         |
| 1               | 1  | <b>I</b> 3 |



$$Y = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$$

Q.  $Y(A, B,C) = \sum m(1, 3, 5, 6)$  implement with 4:1 multiplexer

Q.  $Y(A, B,C) = \sum m(1, 2, 4, 5)$  implement with 4:1 multiplexer.

## Expression implementation with Multiplexer

Q.  $Y(A, B,C) = \sum m (1, 3, 5, 6)$  implement with 4:1 multiplexer

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

Any 2 input (AB/BC/AC) select line



Rearrange equation with selection line

$$Y = \underline{0.(\overline{BC})} + \underline{\overline{BC}(\overline{A} + A)} + \underline{ABC} + \overline{\overline{ABC}}$$
10 | 11 | 12 | 13

Q.  $Y(A, B,C) = \sum m(1, 2, 4, 5)$  implement with 4:1 multiplexer

$$Y = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

Any 2 input (AB/BC/AC) select line



Rearrange equation with selection line

$$Y = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}(\overline{C} + C) + AB.0$$

$$| 0 | 11 | 12 | 13$$

The logic function implemented by the circuit below is (ground implies a logic "0")



(A) 
$$F = AND(P, Q)$$

(B) 
$$F = OR(P, Q)$$

(C) 
$$F = XNOR(P, Q)$$

(D) 
$$F = XOR(P, Q)$$

# Logic Gate implementation with 2:1 Multiplexer

Which logic gate represents by the given multiplexer?



- (a)AND
- (b)OR
- (c)XOR
- (d)NAND



- (a) AND
- (b) OR
- (c) XOR
- (d) NAND

## Logic Gate implementation with 2:1 Multiplexer

## AND GATE

| Α | В | OUT | _                     |
|---|---|-----|-----------------------|
| 0 | 0 | 0   | OUT = 0<br>when A = 0 |
| 0 | 1 | 0   | when A = 0            |
| 1 | 0 | 0   | OUT = B<br>when A = 1 |
| 1 | 1 | 1   | when A = 1            |



## **NAND GATE**

| A       | В          | OUT                                    | _                                     |
|---------|------------|----------------------------------------|---------------------------------------|
| 0       | 0          | 1                                      | OUT = 1                               |
| 0       | 1          | 1                                      | when A = 0                            |
| 1       | 0          | 1                                      | OUT = B'                              |
| 1       | 1          | 0                                      | when A = 1                            |
| VDD 0 0 | <u>u</u> r | A ———————————————————————————————————— | о о о о о о о о о о о о о о о о о о о |

#### **OR GATE**

| Α | В | OUT | _                     |
|---|---|-----|-----------------------|
| 0 | 0 | 0   | OUT = B<br>when A = 0 |
| 0 | 1 | 1   | when A = 0            |
| 1 | 0 | 1   | OUT = 1<br>when A = 1 |
| 1 | 1 | 1   | when A = 1            |
|   |   |     |                       |



| Α | В | OUT | _                      |
|---|---|-----|------------------------|
| 0 | 0 | 1   | OUT = B'<br>when A = 0 |
| 0 | 1 | 0   | when A = 0             |
| 1 | 0 | 0   | OUT = 0<br>when A = 1  |
| 1 | 1 | 0   | when A = 1             |







## Logic Gate implementation with 2:1 Multiplexer

## **XOR GATE**

## **XNOR GATE**

| Α | В | OUT | _                      |
|---|---|-----|------------------------|
| 0 | 0 | 0   | OUT = B<br>when A = 0  |
| 0 | 1 | 1   | when A = 0             |
| 1 | 0 | 1   | OUT = B'<br>when A = 1 |
| 1 | 1 | 0   | when A = 1             |

|   |   |     | _                      |
|---|---|-----|------------------------|
| Α | В | OUT | _                      |
| 0 | 0 | 1   | OUT = B'<br>when A = 0 |
| 0 | 1 | 0   | when A = 0             |
| 1 | 0 | 0   | OUT = B                |
| 1 | 1 | 1   | when A = 1             |













#### **NOT GATE**

| A | OUT |
|---|-----|
| 0 | 1   |
| 1 | 0   |







# 4:1 Mux using 2:1 Mux

## 8:1 Mux using 4:1 and 2:1 Mux

| S1 (MSB) | SO(LSB) | Out |
|----------|---------|-----|
| 0        | 0       | 10  |
| 0        | 1       | l1  |
| 1        | 0       | 12  |
| 1        | 1       | 13  |



| Sel                   | Output |       |                       |
|-----------------------|--------|-------|-----------------------|
| <b>S</b> <sub>2</sub> | $S_1$  | $S_0$ | γ                     |
| 0                     | 0      | 0     | $D_0$                 |
| 0                     | 0      | 1     | $D_1$                 |
| 0                     | 1      | 0     | $D_2$                 |
| 0                     | 1      | 1     | $D_3$                 |
| 1                     | 0      | 0     | D <sub>4</sub>        |
| 1                     | 0      | 1     | <b>D</b> <sub>5</sub> |
| 1                     | 1      | 0     | $D_{6}$               |
| 1                     | 1      | 1     | <b>D</b> <sub>7</sub> |



Q. Design 16:1 MUX using 4:1 MUX

# Question:

What will be the expression for the output Z.



# 8:1 Multiplexer



Out=\$2'\$1'\$0'I0 + \$2'\$1'\$0I1+ \$2'\$1\$0'I2+ \$2'\$1\$0I3 \$2\$1'\$0'I4+ \$2\$1'\$0I5+ \$2\$1\$0'I6+ \$2\$1\$0I7



## **De-multiplexer**

- Switch one common input line to one of several output line based on select input.
- It is data distributor.

 $s_1$ 

 $s_0$ 

- Size of demux  $1:2^n$
- Example 1:4, 1:8, 1:16..... Demultiplexer



|            | ction | Outputs    |            |            |    |
|------------|-------|------------|------------|------------|----|
| <b>S</b> 1 | So    | <b>Y</b> 3 | <b>Y</b> 2 | <b>Y</b> 1 | Yo |
| 0          | 0     | 0          | 0          | 0          | ı  |
| 0          | 1     | 0          | 0          | I          | 0  |
| 1          | 0     | 0          | I          | 0          | 0  |
| 1          | 1     | I          | 0          | 0          | 0  |

 $Y_2$ 

 $Y_1$ 

 $Y_0$ 

# Application



## 1:8 De-Multiplexer using lower order De-Mux



#### **Decoder**

- A combinational circuit that has 'n' input lines and maximum of 2<sup>n</sup> output lines.
- One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled.

The outputs of the decoder are **min terms** of 'n' input variables lines when it is **enabled**.

Size of Decoder are 2:4, 3:8, 4:16....



| <b>A</b> 1 | <b>A</b> o | <b>Y</b> 3 | <b>Y</b> 2 | <b>Y</b> 1 | <b>Y</b> 0 |
|------------|------------|------------|------------|------------|------------|
| 0          | 0          | 0          | 0          | 0          | 1          |
| 0          | 1          | 0          | 0          | 1          | 0          |
| 1          | 0          | 0          | 1          | 0          | 0          |
| 1          | 1          | 1          | 0          | 0          | 0          |



Which one of the following represents the decoder ?

- (a) 4:1
- (b) 1:4
- (c) 3:8
- (d) 8:3

How many inputs and outputs for four variable function in a decoder.

- (a) 4,1
- (b) 4,16
- (c) 3,8
- (d) 16, 1

## Full Adder using 3:8 Decoder

S = A'B'C + A'BC' + AB'C' + ABC = 
$$\Sigma(1,2,4,7)$$
  
CY = A'BC + ABC' + ABC' + ABC =  $\Sigma(3,5,6,7)$ 



#### Full Subtractor using 3:8 Decoder

Difference (D) = A'B'C + A'BC' + AB'C' + ABC =  $\Sigma(1,2,4,7)$ Borrow(Bout) = A'B'C + A'BC' + A'BC+ABC=  $\Sigma(1,2,3,7)$ 



# Q. Implement 4:16 decoder using 3:8 decoder.



Q. Implement 4:16 decoder using 2:4 decoder

| А3 | A2 | A1 | Α0 | HIGH OUTPUT |
|----|----|----|----|-------------|
| 0  | 0  | 0  | 0  | YO          |
| 0  | 0  | 0  | 1  | Y1          |
| 0  | 0  | 1  | 0  | Y2          |
| 0  | 0  | 1  | 1  | Y3          |
| 0  | 1  | 0  | 0  | Y4          |
| 0  | 1  | 0  | 1  | Y5          |
| 0  | 1  | 1  | 0  | Y6          |
| 0  | 1  | 1  | 1  | Y7          |
| 1  | 0  | 0  | 0  | Y8          |
| 1  | 0  | 0  | 1  | Y9          |
| 1  | 0  | 1  | 0  | Y10         |
| 1  | 0  | 1  | 1  | Y11         |
| 1  | 1  | 0  | 0  | Y12         |
| 1  | 1  | 0  | 1  | Y13         |
| 1  | 1  | 1  | 0  | Y14         |
| 1  | 1  | 1  | 1  | Y15         |



## **Encoder**

- Reverse operation of a Decoder.
- It has a maximum of 2<sup>n</sup> input lines and 'n' output lines.
- It encodes the information from 2<sup>n</sup> inputs into an n-bit code.
- It will produce a binary code equivalent to the input, which is active High.



|       | Inp   | Outputs |       |       |       |
|-------|-------|---------|-------|-------|-------|
| $D_3$ | $D_2$ | $D_1$   | $D_0$ | $Q_1$ | $Q_0$ |
| 0     | 0     | 0       | 1     | 0     | 0     |
| 0     | 0     | 1       | 0     | 0     | 1     |
| 0     | 1     | 0       | 0     | 1     | 0     |
| - 1   | 0     | 0       | 0     | 1     | 1     |
| 0     | 0     | 0       | 0     | Х     | Χ     |
|       |       |         |       |       |       |



#### Which of the following is not valid encoder?

(A)

8 X 3

(B)

5 X 32

(C)

2 X 1

(D)

All are valid