

Departamento de eletrónica, telecomunicações e informática

Curso 8327 – Licenciatura em Engenharia Aeroespacial

Disciplina 41482 – Campo eletromagnético

Ano letivo 2022/2023

Relatório

Trabalho Prático 4

Exploração do campo magnético produzido pelas bobinas de Helmholtz Calibração da sonda de efeito de Hall.

Autores:

Alexandre Silva 107957

Diogo Ribeiro 108217

Magner Gusse 110180

Turma: PL5

Grupo: 2

Data: 24/5/2023

Docente: Manuel Valente

1ª-Parte:

A parte inicial do trabalho consiste em calibrar a sonda e verificar o campo magnético dentro da bobina que se pretende calibrar. Nesse âmbito foi usada a fórmula do campo magnético:

$$B = \mu_0 \frac{N}{L} I$$

Onde: B é o campo magnético em Tesla(T), N/L o número de espiras por unidade de comprimento (1/m), I a corrente que passa na bobina em Ampere(A) e μ_0 a constante de permeabilidade elétrica no vácuo.

I/mA±	Vh/mV ±0.1	B/mT
0.1mA	mV	
111	18.6	0.4836
200	34.1	0.871352
300	51.7	1.307028
404	69.6	1.760131
492	86.4	2.143526
601	105.9	2.618413
719	126.4	3.132511
826	144.6	3.598684
892	155.8	3.886231
967	167.6	4.212988

Como forma de calcular os erros associados ao cálculo do campo magnético foi usada a seguinte fórmula:

$$\Delta B = \mu_0 \times \Delta \frac{N}{L} \times I + \mu_0 \times \frac{N}{L} \times \Delta I$$

Onde o
$$\Delta \frac{N}{L} = 60 m^{-1}$$
 e $\Delta I = 1 mA$

$$\Delta B_{med} = 0.0459 = 4.59\%$$

Com isso, uma vez que o erro associado ao cálculo do campo magnético é inferior a 10% pode-se dizer que os resultados são exatos.

2ª Parte

Foi medida a diferença de potencial para os vários pontos do eixo para cada bobina, para a mesma corrente, e com a ajuda do valor obtido, antes, da relação entre o campo magnético e a diferença de potencial foi calculado o campo magnético para cada ponto.

1^a Bobina

Distancia/cm	Vh/mV ±0.1mV	B/mT
0	3.1	0.0938
1	4.5	0.1285
2	6.4	0.1756
3	8.9	0.2376
4	11.4	0.2996
5	13	0.3393
6	12.5	0.3269
7	10.4	0.2748
8	7.9	0.2128
9	5.5	0.1533
10	3.9	0.1136
11	2.7	0.0839
12	1.9	0.0640
13	1.4	0.0516
14	1	0.0417
15	0.8	0.0367
16	0.6	0.0318
17	0.4	0.0268
18	0.3	0.0243

2^a Bobina

Distancia/cm	Vh/mV ±0.1mV	B/mT
0	0.4	0.0268
1	0.6	0.0318
2	0.9	0.0392
3	1.3	0.0491
4	1.9	0.0640
5	2.7	0.0839
6	4.1	0.1186
7	5.9	0.1632
8	8.2	0.2203
9	10.7	0.2823
10	12.5	0.3269
11	12.3	0.3219
12	10.5	0.2773
13	7.8	0.2103
14	5.5	0.1533
15	3.7	0.1087
16	2.8	0.0863
17	1.7	0.0591
18	1.3	0.0491

Agora ligando as duas bobinas com o mesmo sentido, a uma distância de aproximadamente, 4 cm, o raio o das bobinas, obtivemos:

Distancia/cm	Vh/mV ±0.1mV	B/mT
0	3.8	0.11114
1	5.4	0.15082
2	7.4	0.20042
3	10.3	0.27234
4	13.2	0.34426
5	15.6	0.40378
6	16.4	0.42362
7	16.2	0.41866
8	16	0.4137
9	16.3	0.42114
10	16.3	0.42114
11	15	0.3889
12	12.4	0.32442
13	9.1	0.24258
14	6.6	0.18058
15	4.9	0.13842
16	3.3	0.09874
17	2.3	0.07394
18	1.8	0.06154

Comparando estes valores obtidos com a sonda com a soma dos valores de cada bobina:

Distancia(cm)	Vh/mV ±0.1mV	B/mT
0	3.5	0.1037
1	5.1	0.14338
2	7.3	0.19794
3	10.2	0.26986
4	13.3	0.34674
5	15.7	0.40626
6	16.6	0.42858
7	16.3	0.42114
8	16.1	0.41618
9	16.2	0.41866
10	16.4	0.42362
11	15	0.3889
12	12.4	0.32442
13	9.2	0.24506
14	6.5	0.1781
15	4.5	0.1285
16	3.4	0.10122
17	2.1	0.06898
18	1.6	0.05658

O erro relativo médio obtido foi de 3,07%, como é menor que 10%, podemos dizer que a experiência foi precisa e q os resultados são muito parecidos, e comprovar a teoria da sobreposição.

Agora ligando as duas bobinas com sentido opostos, a uma distância de aproximadamente, 4 cm, o raio o das bobinas, obtivemos:

Distancia/cm	Vh/mV ±0.1mV	B/mT
0	2.3	0.07394
1	3.6	0.10618
2	5.4	0.15082
3	7.6	0.20538
4	9.6	0.25498
5	10.4	0.27482
6	8.5	0.2277
7	4.4	0.12602
8	-0.2	0.01194
9	-5	-0.1071
10	-8.6	-0.19638
11	-10	-0.2311
12	-8.6	-0.19638
13	-6.3	-0.13934
14	-4.6	-0.09718
15	-2.9	-0.05502
16	-2.2	-0.03766
17	-1.5	-0.0203
18	-1.2	-0.01286

Comparando estes valores obtidos com a sonda com a diferença dos valores das duas bobinas:

Distancia(cm)	Vh/mV ±0.1mV	B/mT
0	2.7	0.08386
1	3.9	0.11362
2	5.5	0.1533
3	7.6	0.20538
4	9.5	0.2525
5	10.3	0.27234
6	8.4	0.22522
7	4.5	0.1285
8	-0.3	0.00946
9	-5.2	-0.11206
10	-8.6	-0.19638
11	-9.6	-0.22118
12	-8.6	-0.19638
13	-6.4	-0.14182
14	-4.5	-0.0947
15	-2.9	-0.05502
16	-2.2	-0.03766
17	-1.3	-0.01534
18	-1	-0.0079

Foi obtido um erro relativo médio de 5,8%, como é menor que 10%, podemos dizer que que a experiência foi precisa e q os resultados são muito parecidos, e comprovar a teoria da sobreposição.

Expressão teórica para as bobinas de Helmholtz

Para um anel centrado em x=7,5:

$$B(x) = \frac{IR^2 \mu_0}{2(R^2 + (x - 0.075)^2)^{\frac{3}{2}}}$$

Para a primeira bobina:

$$B_1(x) = \frac{IR^2 \mu_0 N}{2(R^2 + (x - 0.075 + a/2)^2)^{\frac{3}{2}}}$$

E para a segunda:

$$B_2(x) = \frac{IR^2 \mu_0 N}{2(R^2 + (x - 0.075 - a/2)^2)^{\frac{3}{2}}}$$

Sendo:

a- distância entre as bobinas

R- raio das bobinas

Pelo princípio da sobreposição o campo total das duas bobinas será a soma das duas, considerando que ambas têm o mesmo número de Bobinas.

$$B_{total}(x) = B_1(x) + B_2(x)$$

$$B_{total}(x) = \frac{IR^2 \mu_0 N}{2(R^2 + (x - 0.075 + a/2)^2)^{\frac{3}{2}}} + \frac{IR^2 \mu_0 N}{2(R^2 + (x - 0.075 - a/2)^2)^{\frac{3}{2}}}$$

Substituindo por cada valor, o B total para x=5 temos.

$$B_{total}(5) = N * 2,975 * 10^{-6}$$

$$N = \frac{B(5)experimental}{B_{total}(5)} = 136,57$$

Sendo assim, temos 2*129,40=273,15 espirais entre as duas bobinas.

Calculando para cada bobina:

Para uma bobina centrada em x=5cm

$$B_1(5) = 2,446 * 10^{-6} * N$$

$$N_1 = \frac{B_1 experimental}{B_1(5) calculado} = 138,70$$

Para uma bobina centrada em x=10cm

$$B_2(10) = 2,446 * 10^{-6} * N$$

$$N_2 = \frac{B_2 experimental}{B_2(5) calculado} = 133,63$$

$$N_{total} = N_1 + N_2 = 138,70 + 133,63 = 272,33$$

Erro relativo entre os dois cálculos de espiras

$$e_{r_N} = \frac{|N_{total}(1) - N_{total}(2)|}{N_{total}(2)} \times 100 = \frac{|273,15 - 272,33|}{272,33} \times 100 = 0.3\%$$

Consideramos N_{total} como 258,8, pois é o que parece mais realista.

Sendo assim:

$$\begin{split} B_{total}(x) &= \frac{IR^2 \mu_0 N_1}{2(R^2 + (x - 0.075 + a/2)^2)^{\frac{3}{2}}} + \frac{IR^2 \mu_0 N_2}{2(R^2 + (x - 0.075 - a/2)^2)^{\frac{3}{2}}} \\ B_{total}(x) &= \frac{0.146 \times 0.0375^2 \times 4\pi \times 10^{-7} \times 136.57}{2} (\frac{1}{(0.0375^2 + (x - 0.1)^2)^{\frac{3}{2}}} + \frac{1}{(0.0375^2 + (x - 0.05)^2)^{\frac{3}{2}}}) T \\ B_{total}(x) &= 3.339 \times 10^{-8} (\frac{1}{(0.0375^2 + (x - 0.1)^2)^{\frac{3}{2}}} + \frac{1}{(0.0375^2 + (x - 0.05)^2)^{\frac{3}{2}}}) T \end{split}$$

Fontes de erro

Como forma de reduzir as fontes de erro deveríamos arranjar uma forma melhor de medir a distância visto que a régua não estava alinhada com o eixo, as bobinas também não são exatamente iguais e isso contribui para que não criem campos magnéticos iguais. Outra fonte possível de erro notável é a calibração da sonda usada que pode diferir ligeiramente em medições diferentes.

Conclusões

Analisando o primeiro gráfico, verificamos que existe uma relação proporcional entre a tensão de Hall e a corrente no solenoide. Esse facto permitiu determinar o medidor de campo magnético, ou seja, conseguimos determinar a relação entre a tensão e o campo magnético com recurso a uma de proporcionalidade. Essa constante calculada possuía um erro relativo baixo.

Foi também possível confirmar as fórmulas usadas para o cálculo do campo magnético no exercício anterior e com isso, verificar o Teorema da sobreposição que foi usado no cálculo dos valores teóricos para as bobinas colocadas em serie, tanto no mesmo sentido como no sentido inverso. Com isso conseguimos confirmar as equações de Maxwell.