This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike License</u>. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.

Copyright 2009, The Johns Hopkins University and John McGready. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Section E

Fisher's Exact Test

Recall: HIV Transmission/AZT Example

Recall 2X2 (contingency) table

	Drug Group			
		AZT	Placebo	7
HIV Transmission	Yes	13	40	53
	No	167	143	310
		180	183	363

Hypothesis Testing Problem: AZT and HIV Transmission

 Testing equality of two population proportions using data from two samples

-
$$H_o$$
: $p_1 = p_2$ H_o : $p_1 - p_2 = 0$
- H_a : $p_1 \neq p_2$ H_A : $p_1 - p_2 \neq 0$

 In the context of the 2x2 table, this is testing whether there is a relationship between the rows (HIV status) and columns (treatment type)

Statistical Test Procedures

- (Pearson's) Chi-Square Test (x²)/Two-sample z-test
 - Both based on central limit theorem "kicking in"
 - Both results are "approximate," but are excellent approximations if sample sizes are large
 - These do not perform so well in smaller samples

Statistical Test Procedures

- Fisher's Exact Test
 - Calculations are difficult
 - Always appropriate to test equality of two proportions
 - Computers are usually used
 - Exact p-value (no approximations)—no minimum sample size requirements

Fisher's Exact Test: HIV Transmission/AZT

Rationale

- Suppose H_o is true—no association between AZT and maternal/ infant HIV transmission
- Imagine putting 53 red balls (the infected) and 310 blue balls (non-infected) in a jar
- Shake it up

Fisher's Exact Test

- Now choose 180 balls (that's AZT group)
 - The remaining balls are the placebo group
- We calculate the probability you get 13 or fewer red balls among the 180
 - That is the one-sided p-value
- The two-sided p-value is just about (but not exactly) twice the one-sided
- p-value
 - It accounts for the probability of getting either extremely few red balls or a lot of red balls in the AZT group
 - The p-value is the probability of obtaining a result as or more extreme (more imbalance) than you did by chance alone

Using Stata: AZT/HIV Example

Results from *csi* command, with *exact* option

. csi 13 40 167 143, exact

	Exposed	Unexposed	Total	
Cases Noncases	13 167	40 143	53 310	
Total	180	183	363	
Risk	.0722222 	.2185792	.1460055	
	Point	estimate	[95% Conf.	<pre>Interval]</pre>
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	.3304167		2171766 .1829884 .4033765	.5966235
	T	1 - 1 - 1 - 1 - 1	ab a m ! a	D 0 0001

1-sided Fisher's exact P = 0.0001 2-sided Fisher's exact P = 0.0001

Small Sample Application

- Sixty-five pregnant women, all who were classified as having a high risk of pregnancy induced hypertension, were recruited to participate in a study of the effects of aspirin on hypertension*
- The women were randomized to receive either 100 mg of aspirin daily, or a placebo during the third trimester of pregnancy

Display Data in a 2x2 Table

Results

		Group		
		Aspirin	Placebo	_
Hypertension	Yes	4	11	15
	No	30	20	50
		34	31	65

Display Data in a 2x2 Table

Sample proportion of subjects with hypertension

$$\hat{p}_{aspirin} = \frac{4}{34} = .12$$

$$\hat{p}_{placebo} = \frac{11}{31} = .35$$

Smaller Sample

In this example . . . (just FYI)

$$n_{aspirin} * \hat{p}_{aspirin} * (1 - \hat{p}_{aspirin}) = 34 * .12 * .88 = 3.6$$

 $n_{placebo} * \hat{p}_{placebo} * (1 - \hat{p}_{placebo}) = 31 * .35 * .65 = 7.1$

Fishers Exact

Results from *csi* command, with *exact* option

. csi 4 11 30 20, exact

	Exposed	Unexposed	Total	
Cases Noncases		11 20	15 50	
Total	34	31	65	
Risk	.1176471	.3548387	.2307692	
	Point	estimate	 [95% Conf.	Interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop			4374335 .1176925 .0659904	.9340096
-	·		sher's exact sher's exact	

14

Chi Square

Results from *csi* command, without *exact* option

. csi 4 11 30 20

	Exposed	Unexposed	Total	
Cases	4 30	11 20	15 50	
Total	34	31	65	
Risk	.1176471	.3548387	.2307692	
	Point	estimate	[95% Conf.	Interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	2371917 .3315508 .6684492 .3496503		4374335 .1176925 .0659904	.9340096
	+C	chi2(1) =	5.14 Pr>chi	2 = 0.0234

Fishers Exact

■ 95% CI: not quite correct in smaller samples, but "good enough"

. csi 4 11 30 20, exact

	Exposed	Unexposed	Total	
Cases Noncases	4 30	11 20	15 50	
Total	34	31	65	
Risk	.1176471	.3548387	.2307692	
	Point	estimate	 [95% Conf.	Interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	2371917 .3315508 .6684492 .3496503		4374335 .1176925 .0659904	.9340096
1-sided Fisher's exact P = 0.0236				

Comparing Proportions between Independent Populations

- To get a p-value for testing:
 - H_0 : $p_1 = p_2$ - H_A : $p_1 = p_2$
- Two sample z-test or chi-squared test (give same p-value): work better in "bigger" samples and will match results of Fishers Exact Test
- Fisher's exact test: always appropriate

Comparing Proportions between Independent Populations

To create a 95% confidence interval for the difference in two proportions:

$$\hat{p}_1 - \hat{p}_2 \pm 2SE(\hat{p}_1 - \hat{p}_2)$$

- Fine for "bigger samples," can be used as a "guideline" in smaller samples
- Not quite correct in "smaller samples" but will give you a good sense of width/range of CI