Homework 2

R Crash Course (20 points)

Due Date:Monday Feb 8 at 11:59 pm

Instruction:

- This HW must be done in Rmarkdown!
- Please submit both the .rmd and the Microsoft word files.
- Please do not submit PDF files or image formats! the TAs are going to give you feedback in your word document.
- All the HW assignments are individual work. However, I highly encourage you to discuss it with your group members.
- Late homework assignments will not be accepted under any circumstances.
- The answer key will be uploaded here a couple of days after the due date.

Question 1 Replicate the following vector of numbers using seq() function and call it v1.

Question 2 (I) Replicate the following matrix in R and call it A.

(II) Rename the columns as A,B,C,D, and E.

(III) Extract the following matrix from A and call it B.

(IV) Find the transpose of matrix B.

(V) Find the inverse of Matrix B, and call it B_inverse.

(VI) Multiply B and B_inverse. What is the name of the new matrix?

Question 3 (I) Assign the dataframe *mtcars* from the built-in datasets in R to a new dataframe and call it **df**. Show the first 10 rows of your dataframs:

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

For the following questions, you must call the *dplyr* package first and then use the functions *select*, *filter*, *mutate* and *arrange* when appropriate

(II) Make a new dataframe based on df and call it df1. Show the first 5 rows of df1.

```
cyl hp
                  wt vs am gear
                                   mpg
Datsun 710
             4 93 2.320 1
                                4 22.8
                           1
Merc 240D
             4 62 3.190 1
                                4 24.4
                           0
Merc 230
             4 95 3.150 1
                           0
                                4 22.8
Fiat 128
             4 66 2.200 1 1
                                4 32.4
                                4 30.4
Honda Civic 4 52 1.615 1 1
```

(III) In df1 make a new column called gpm. Show the first 5 rows again.

```
cyl hp wt vs am gear mpg gpm
1 4 93 2.320 1 1 4 22.8 0.044
2 4 62 3.190 1 0 4 24.4 0.041
3 4 95 3.150 1 0 4 22.8 0.044
4 4 66 2.200 1 1 4 32.4 0.031
5 4 52 1.615 1 1 4 30.4 0.033
```

(IV) Show the structure of df1.

```
'data.frame':
               32 obs. of 8 variables:
$ cyl : num
            444444444...
$ hp : num 93 62 95 66 52 65 97 66 91 113 ...
            2.32 3.19 3.15 2.2 1.61 ...
$ wt : num
$ vs : num
            1111111101...
$ am : num
            1001110111...
$ gear: num
            4 4 4 4 4 4 3 4 5 5 ...
            22.8 24.4 22.8 32.4 30.4 33.9 21.5 27.3 26 30.4 ...
$ mpg : num
$ gpm : num   0.044   0.041   0.044   0.031   0.033   0.029   0.047   0.037   0.038   0.033   ...
```

(V) Change the type of the following variables (vs, am, cyl, gear) from num to factor. Show the structure of df1 again.

```
'data.frame': 32 obs. of 8 variables:
$ cyl : Factor w/ 3 levels "4","6","8": 1 1 1 1 1 1 1 1 1 1 1 1 ...
$ hp : num 93 62 95 66 52 65 97 66 91 113 ...
$ wt : num 2.32 3.19 3.15 2.2 1.61 ...
$ vs : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 1 2 ...
$ am : Factor w/ 2 levels "Automatic","Mannual": 2 1 1 2 2 2 1 2 2 2 ...
$ gear: Factor w/ 3 levels "3","4","5": 2 2 2 2 2 2 2 1 2 3 3 ...
$ mpg : num 22.8 24.4 22.8 32.4 30.4 33.9 21.5 27.3 26 30.4 ...
$ gpm : num 0.044 0.041 0.044 0.031 0.033 0.029 0.047 0.037 0.038 0.033 ...
```

Computer Exercises from Wooldridge Textbook Ch1.

- Question 4 The data set in *ALCOHOL* contains information on a sample of men in the United States. Two key variables are self-reported employment status and alcohol abuse (along with many other variables). The variables *employ* and *abuse* are both binary, or indicator, variables: they take on only the values zero and one.
 - Hint 1: To answer this question, you should use table() and prop.table() functions.
 - Hint 2: Unemployment rate is defined as $Unemplomentrate = \frac{unemployed}{unemployed + employed}$.
 - Hint 3; For unemployment rate, you only need to work with the status variable from the dataset. We do not include the "out of workforce" in the denominator..
 - (I) What is percentage of the men in the sample report abusing alcohol?
 - (II) What is the employment rate?
 - (III) Consider the group of men who abuse alcohol. What is the employment rate?
 - (IV) What is the employment rate for the group of men who do not abuse alcohol?
 - (V) Discuss the difference in your answers to parts (III) and (IV). Does this allow you to conclude that alcohol abuse causes unemployment?