TD VII: Fragmentation

- Octobre 2025
- Master I ISIFAR
- Probabilités

Exercice 1

Exercice 2

À l'instant $n \ge 1$, il y a n citoyens membres de partis politiques. Si ces citoyens sont numérotés de 1 à n, les partis politiques qu'ils forment sont modélisés par une partition aléatoire B_n de l'ensemble fini $\{1, \ldots, n\}$ en $|B_n|$ partis politiques.

À l'instant n+1, un nouveau citoyen entreprenant, numéroté n+1, décide soit de rejoindre l'un des $|B_n|$ partis déjà existants avec une probabilité proportionnelle à sa taille, soit, s'il est plus ambitieux qu'opportuniste, de créer un nouveau parti. On modélise par $\theta/(n+\theta)$ la probabilité qu'a le citoyen n+1 de créer un nouveau parti, où θ est un paramètre réel positif fixé et inconnu, qui sera interprété comme un coefficient d'ambition. On suppose pour simplifier qu'une fois son parti politique choisi, le citoyen engagé y reste fidèle.

Dans la culture citoyenne, l'infidélité (politique) est très mal vue et durement sanctionnée par tous.

Ce modèle correspond à un processus à temps discret $(B_n)_{n\geq 1}$ où pour tout $n,\,B_n$ est une partition aléatoire de $\{1,\dots,n\}$ constituée de $|B_n|$ sous-ensembles non vides de $\{1,\dots,n\}$.

On convient que $B_1 = \{1\}.$

Si B est une partition de $\{1, ..., n\}$, la notation $b \in B$ signifie que b est un sous-ensemble non vide de $\{1, ..., n\}$ de cardinal |b| faisant partie de la partition B (b est une des classes de la partition B). On dit que b est un bloc de taille |b| de la partition B.

Le modèle qui décrit $(B_n)_{n\geq 1}$ est sans mémoire dans la mesure où la loi de B_{n+1} sachant B_1,\ldots,B_n ne dépend que de B_n .

Soit B une partition de $\{1, \dots, n\}$ et B' une partition de $\{1, \dots, n+1\}$. On désigne par B_+ la partition de $\{1, \dots, n+1\}$ de taille |B|+1 obtenue à partir de B en l'enrichissant avec le singleton $\{n+1\}$.

Si $b \in B$, on note $B \to_b B'$, lorsque B' s'obtient à partir de B en inscrivant le citoyen n+1 au parti b: on remplace b par $b \cup \{n+1\}$ (on a alors |B'| = |B|).

$$\Pr\left\{B_{n+1} = B' \mid B_n = B\right\} = \begin{cases} \frac{|b|}{\theta + n} & \text{si } B \to_b B' \\ \frac{\theta}{\theta + n} & \text{si } B' = B_+ \\ 0 & \text{sinon.} \end{cases}$$

Remarque 1 (Interprétation du paramètre θ). Lorsque $\theta=0$, la probabilité du cas $B'=B_+$ est nulle, tandis que lorsque $\theta\to\infty$, la probabilité du cas $B\to_b B'$ tend vers 0. Ces probabilités sont de plus monotones en θ . Ainsi, plus θ est grand, plus les citoyens ont tendance à créer de nouveaux partis politiques plutôt que de s'affilier à des partis déjà existants. Pour cette raison, le paramètre θ peut être interprété comme un coefficient d'ambition dans le modèle.

Exercice 3 (Loi de la partition aléatoire)

La première loi des partis politiques correspond à la loi de la partition aléatoire B_n pour tout $n \geq 1$, tandis que la seconde loi des partis politiques correspond à la loi du profil $(C_{n,1}, C_{n,2}, \dots,)$ des tailles des blocs de B_n (un profil pour chaque $n \geq 1$).

Théorème 1 (Première loi).

Pour tout entier $n \ge 1$ et toute partition B de $\{1, \dots, n\}$,

$$\Pr\left\{B_n = B\right\} = \frac{\theta^n}{\theta(\theta+1)\dots(\theta+n-1)} \prod_{b \in B} (|b|-1)! = \frac{\theta^{|B|}\Gamma(\theta)}{\Gamma(\theta+n)} \prod_{b \in B} (|b|-1)!$$

Corollaire 1 (Seconde loi).

Pour tout temps $n\geq 1$ et tout $1\leq k\leq n$, soit $C_{n,k}$ le nombre de partis politiques de taille k au temps n, de sorte que $n=C_{n,1}+2C_{n,2}+\ldots+nC_{n,n}$. Alors pour tout n-uplet d'entiers $0\leq a_1,\ldots,a_n\leq n$ tels que $a_1+2a_2+\ldots+na_n=n$, on a

$$\Pr\left\{C_{n,1}=a_1,\dots,C_{n,n}=a_n\right\}=\frac{n!\Gamma(\theta)}{\Gamma(\theta+n)}\prod_{k=1}^n\frac{\theta^{a_k}}{(k!)^{a_k}a_k!}.$$

Diversité politique, micropartis, et parti unique

On suppose à présent que $\theta > 0$. Au temps $n \ge 1$, le paysage politique citoyen se compose de $|B_n|$ partis politiques différents. Le théorème suivant donne les deux premiers moments de l'entier aléatoire $|B_n|$.

i Théorème 2 (Diversité politique). Pour tout $n \ge 1$, la moyenne et la variance de $|B_n|$ sont données par

$$\mathbb{E}|B_n| = \sum_{k=0}^{n-1} \frac{\theta}{\theta + k}$$

et

$$\operatorname{var}(|B_n|) = \sum_{k=0}^{n-1} \frac{\theta k}{(\theta + k)^2}$$

i Théorème 3 (Loi des micro partis). Pour tout temps $n \ge 1$, le nombre $C_{n,1}$ de partis politiques réduits à leur créateur vérifie

$$\mathbb{E}C_{n,1} = \frac{n\theta}{n-1+\theta}$$

et

$$\mathrm{var}(C_{n,1}) = \frac{n(n+2\theta-2)(n-1)\theta}{(n+\theta-2)(n+\theta-1)^2}.$$

Si ${\cal G}_n$ désigne la fonction génératrice de la loi de ${\cal C}_{n,1},$ on a la relation suivante :

$$G_{n+1}(s) - G_n(s) = \frac{1-s}{n+\theta} \Big(G_n'(s) - \theta G_n(s) \Big)$$

pour $s \in [0, 1]$

L'entier $C_{n,n}$ représente le nombre de partis de taille n, autrement dit le nombre de blocs de taille n dans B_n . Lorsque $C_{n,n}=1$, on a affaire à un parti unique. On a $C_{n,n}=1$ si et seulement si $|B_n|=1$. Le théorème suivant montre que le modèle des partis politiques est asymptotiquement pluraliste.

i Théorème 4 (Parti unique). Pour tout $n \geq 2$, la probabilité que le paysage politique soit réduit à un parti unique vaut

$$\Pr\left\{C_{n,n}=1\right\} = \frac{\Gamma(n)\Gamma(\theta+1)}{\Gamma(n+\theta)}$$

Fluctuations

:::

Théorème 5. La convergence en probabilité suivante a lieu :

$$\lim_{n} \frac{|B_n|}{\log(n)} = \theta \qquad \text{en probabilité}.$$

:::

Le théorème suivant précise les fluctuations autour de la moyenne.

i Théorème 6. La convergence en loi suivante a lieu : Pour une suite $(a_n)_n$ bien choisie

$$\frac{|B_n| - \mathbb{E}|B_n|}{a_n} \rightsquigarrow \mathcal{N}(0,1)$$

Exercice 3 (Approche du théorème 6)

Pour établir le théorème 6, on peut procéder en deux temps : montrer d'abord que lorsque n est grand le nombre de partis tend à être distribué selon une loi de Poisson de même espérance ; puis montrer qu'après recentrage et renormalisation une variable de Poisson de grande espérance est approximativement gaussienne. On quantifie l'approximation de lois à l'aide de deux notions différentes : dans un premier temps la distance en variation, dans un second temps à l'aide de la notion de convergence faible.

Définition (Distance en variation).

Soient P et Q deux lois sur (Ω, \mathcal{F}) . On appelle distance en variation entre P et Q:

$$\mathrm{d_{TV}}(P,Q) = \sup_{A \in \mathcal{F}} P(A) - Q(A) \,.$$

1 Théorème : Loi des événements rares (version facile) Soit un entier $n \geq 1$ et $S_n = \xi_1 + \ldots + \xi_n$ la somme de n variables aléatoires indépendantes ξ_1, \ldots, ξ_n de lois de Bernoulli de paramètres respectifs p_1, \ldots, p_n dans]0,1]. On note μ_n la loi de S_n et ν_n la loi de Poisson d'espérance $p_1 + \ldots + p_n$.

$$d_{\mathrm{TV}}(\mu_n, \nu_n) \le \sum_{i=1}^n p_i^2.$$

1 Théorème : Loi des événements rares (version fine) Soit un entier $n \geq 1$ et $S_n = \xi_1 + \ldots + \xi_n$ la somme de n variables aléatoires $indépendantes \, \xi_1, \ldots, \xi_n$ de lois de Bernoulli de paramètres respectifs p_1, \ldots, p_n dans]0,1]. On note μ_n la loi de S_n et ν_n la loi de Poisson d'espérance $p_1 + \ldots + p_n$.

$$\mathrm{d}_{\mathrm{TV}}(\mu_n,\nu_n) \leq \frac{\sum_{i=1}^n p_i^2}{\sum_{i=1}^n p_i}\,.$$

Questions

Si on butte sur une question où il est demandé de démontrer un énoncé, on a le droit d'utiliser cet énoncé pour répondre aux questions suivantes.

- 1. Établir les deux formules du théorème 2.
- 2. Montrer le théorème 4 (probabilité d'obtenir un parti unique)
- 3. Montrer que la suite $\mathbb{I}_{C_{n.n}=1}$ tend presque sûrement vers 0.
- 4. Calculer $\mathbb{E}[C_{n+1,1} \mid \sigma(C_{n,1})]$.

- 5. Calculer $\mathbb{E}[C_{n,1}]$ pour $n \geq 1$. (Prouver première formule du Théorème 3).
- 6. Calculer var $(C_{n+1,1} \mid \sigma(C_{n,1}))$
- 7. Calculer var $(C_{n,1})$ pour $n \geq 1$. (Prouver deuxième formule du Théorème 3).
- 8. Établir l'équation qui relie G_{n+1} G_n et G_n' . (Prouver troisième formule du Théorème 3).
- 9. Calculer la fonction génératrice G_n de la loi de $C_{n,1}$ lorsque $\theta=1$
- 10. Établir une relation entre $\mathbb{E}[C_{n+1,2}]$ et $\mathbb{E}[C_{n,2}]$ $\mathbb{E}[C_{n,1}].$
- 11. Montrer que $\lim_{n\to\infty} \mathbb{E}C_{n,2} = \frac{\theta}{2}$.
- 12. Établir le théorème 5.
- 13. Montrer que d_{TV} définit une distance sur l'ensemble des lois de probabilités sur (Ω, \mathcal{F}) .
- 14. Soient μ et ν deux lois de probabilité sur $\mathbb N$. Montrer que la distance en variation entre μ et ν satisfait

$$\mathrm{d}_{\mathrm{TV}}(\mu,\nu) = \frac{1}{2} \sum_{x \in \mathbb{N}} |\mu(x) - \nu(x)|.$$

15. Montrer que si P est la loi d'une variable de Bernoulli de paramètre $p \in [0,1]$ et Q est une loi de Poisson de paramètre p alors

$$\mathrm{d_{TV}}(P,Q) \leq p^2 \,.$$

16. Montrer que

$$\mathrm{d_{TV}}(P,Q) \leq \mathbb{P}\{X \neq Y\!\}$$

si \mathbb{P} est une loi telle que $P = \mathbb{P} \circ X^{-1}$ et $Q = \mathbb{P} \circ Y^{-1}$ (un *couplage* des lois P et Q).

- 17. Montrer la version facile de la loi des événements rares.
- 18. En utilisant la version fine de la loi des événements rares, majorer la distance en variation entre la loi de $|B_n|$ et la loi de Poisson de même espérance
- 19. Si P_X et P_Y sont à distance en variation d, quelle est la distance en variation entre les lois de $\sigma X + \mu$ et de $\sigma Y + \mu$? 1.Montrer que si $X_n \sim \text{Poisson}(n)$ alors $(X_n n)/\sqrt{n} \rightsquigarrow \mathcal{N}(0, 1)$
- 20. Montrer le théorème 6 (en utilisant la version fine de la loi des événements rares).