Errata zur 5. Auflage von Computernetze kompakt.

Erschienen 2019 bei Springer Vieweg. ISBN: 978-3-662-59896-2

Seite 6, Tabelle 2.2

Das niederwertigste Bit ist x_0 und nicht x_1 und das höchstwertigste Bit ist im konkreten Beispiel x_7 und nicht x_8 .

	Quotient	Rest
k	k DIV 2	k MODULO 2
164	82	$0 = x_0$
82	41	$0 = x_1$
41	20	$1 = x_2$
20	10	$0 = x_3$
10	5	$0 = x_4$
5	2	$1 = x_5$
2	1	$0 = x_6$
1	0	$1 = x_7$

Seite 8, Tabelle 2.4

Aus mathematischer und didaktischer Sicht ist es sinnvoller "Bytes" und nicht "Bedeutung" als Überschrift der dritten Spalte zu verwenden.

Name	Symbol	Bytes
Kilobyte	kB	$2^{10} = 1.024$
Megabyte	MB	$2^{20} = 1.048.576$
Gigabyte	GB	$2^{30} = 1.073.741.824$
Terabyte	TB	$2^{40} = 1.099.511.627.776$
Petabyte	PB	$2^{50} = 1.125.899.906.842.624$
Exabyte	EB	$2^{60} = 1.152.921.504.606.846.976$
Zettabyte	ZB	$2^{70} = 1.180.591.620.717.411.303.424$
Yottabyte	YB	$2^{80} = 1.208.925.819.614.629.174.706.176$

Seite 30, Abschnitt 3.10, 7. Zeile

Die Zeitangabe ist eine Mikrosekunde $(0,000001\,\mathrm{s}=10^{-6}\,\mathrm{s})$. Der Fehler im Buch ist sehr ärgerlich, weil in den Auflagen zuvor und in der bilingualen Auflage die Darstellung korrekt ist.

Ersetze "1 ts" durch "1 μ s".

Seite 63, 8. Zeile von unten

Ersetze "Diffie-Hellmann-Algorithmus" durch "Diffie-Hellman-Algorithmus"

Seite 73, Abschnitt 5.2.2, 7. Zeile

Ersetze "Kategorien 6A" durch "Kategorie 6A"

Seite 89, Abschnitt 5.6, 1. Zeile

Streiche "bis"

Seite 89, Abschnitt 5.6, 4. Zeile

Ersetze "Bei NRZI, MLT-3, Unipolarem RZ und AMI besteht nur das Problem aufeinanderfolgender Nullen."

durch "Bei NRZI, MLT-3 und Unipolarem RZ besteht nur das Problem aufeinanderfolgender Nullen."

Bei AMI führen Sequenzen aufeinanderfolgender Nullen nicht zu einer Verschiebung des Durchschnitts, da AMI drei Signalpegel verwendet und der Datenwert Null wird immer als mittlerer Signalpegel übertragen.

Seite 99, Abschnitt 6.1.2, 2. Aufzählungspunkt, 12. Zeile von unten

Ersetze "zu Knoten C" durch "zu Knoten B".

Seite 99, Abschnitt 6.1.2, 3. Aufzählungspunkt, 7. Zeile von unten

Ersetze "zu Knoten C" durch "zu Knoten B".

Seite 104, Abschnitt 6.1.3, 5. Zeile unterhalb der Überschrift "Aufbau der Kennung (Bridge-ID)"

Ersetze "... des Bridge-Ports mit der niedrigsten Port-ID (siehe Abb. 6.9)."

durch "... der Bridge (siehe Abb. 6.9)."

Seite 104, Abschnitt 6.1.3, letzte Zeile des ersten Abschnitts unterhalb von "Aufbau der Kennung (Bridge-ID)"

Ersetze "65.536" durch "65.535".

Seite 104, Abbildung 6.10

Falsch

Bridge Priority	MAC-Adresse des Ports mit der niedrigsten ID
16 Bits	48 Bits

Korrekt

Bridge Priority	MAC-Adresse der Bridge
16 Bits	48 Bits

Seite 105, Abbildung 6.11

Seite 109, letzte Zeile von Abschnitt 6.2.1

Ersetze "nicht in andere physische Netze übertragen."

durch "über alle Ports weitergeleitet."

Seite 156, Abbildung 7.8

In der Abbildung ist das erste Byte der MAC-Adresse (hexadezimal: 1c) falsch.

Extended Unique Identifier (64 Bits)

Korrekt

Extended Unique Identifier (64 Bits)

Seite 157, 4. Zeile von Abschnitt 7.2.9

Ersetze "Bytes" durch "Bits".

Seite 159, 6. Zeile von Abschnitt 7.2.10

Ersetze "UCP" durch "UDP".

Seite 161, 2. Zeile

Ersetze

"Beispiele für Link-State-Routing-Protokolle sind das Border Gateway Protocol (BGP) und Open Shortest Path First (OSPF)"

durch

"Ein Beispiel für ein Link-State-Routing-Protokoll ist $Open\ Shortest\ Path\ First\ (OSPF)"$

Das BGP implementiert Pfad-Vektor-Routing und nicht Link-State-Routing.

Seite 161, Abschnitt 7.3, letzte Zeile

Streiche "meist".

Seite 257, Literaturverzeichnis, 5. Eintrag

Ersetze "Grumm H" durch "Gumm H"