Домашнее задание 1

Общие требования

- Обеспечьте воспроизводимость и должное качество оформления вашей работы, по которым ее можно однозначно оценить:
 - Все теоретические задачи должны быть размещены в ноутбуке в виде фотографии или оформлены на языке разметки markdown.
 - Все случайные сиды ('seeds') зафиксированы, и повторный запуск ноутбука даёт те же результаты оценки.
 - Ноутбук должен запускаться сверху вниз без ошибок.
 - Время работы всех ячеек, связанных с построением модели, инференсом и оценкой, должно быть замерено с использованием %time.
 - Все необходимые метрики должны быть отображены как результат работы ячейки ноутбука.
- Четко и аккуратно опишите ваш подход, проделенные эксперименты, полученные результаты и выводы. Подчеркните нужные выводы визуализацией.
- Пожалуйста, не списывайте и не делитесь кодом с однокурсниками.
- Срок сдачи: 2 октября 23:59

1 Задача 1 (15 баллов + 5 бонусных баллов)

Теоретическое задание

Рассмотрим задачу персонализированных top-n рекомендаций, сформулированную как выбор top-n наиболее релевантных айтемов для пользователя u:

$$toprec(u, n) = \arg \max_{i} r_{ui},$$

где r_{ui} — релевантность (не обязательно рейтинг), назначаемая моделью айтему i для пользователя u.

Покажите, что следующие модели не отвечают задаче **персонализированных** top-n рекомендаций, а именно - выбор релевантных айтемов не зависит от параметров / признаков пользователя:

1. Baseline predictors:

$$r_{ui} \approx g_u + f_i + \mu,$$

где векторы g_u и f_i — соответствующие предикторы пользователя и айтема.

2. Регрессионная модель, обученная в форме:

$$r_{ui} \approx \theta x_{ui} + \epsilon$$
,

где вектор x_{ui} кодирует некоторые признаки и пользователя u, и айтема i (например, в виде конкатенации признаков пользователя и айтема), а θ — обучаемые веса регрессионной модели.

Бонус (5 баллов): Предложите другие алгоритмы или методы предобработки признаков, которые могут обеспечить более высокий уровень персонализации, чем регрессионные модели, описанные выше. Опишите алгоритм, на вход которому подается признаковое описание x_{ui} (пользователя u и айтема i), а выходом является вещественное значение — релевантность айтема для пользователя.

2 Задача 2 (20 баллов)

Датасет

Вы будете использовать данные MovieLens-1M (ML-1m) для экспериментов.

Разбиение данных и метрики

Пожалуйста, используйте метрики, приведенные в конце лекции по content-based фильтрации, а именно: близость по релевантности. Например, выберите две пары айтемов с высоким и низким рейтингами, выставленными пользователем и исключите их из тренировочной выборки. После обучения, предскажите релевантность оставшихся фильмов и оцените как часто предсказанная релевантность ближе к айтему с высоким рейтингом, чем к айтему с низким рейтингом. Усредните значение по всем пользователям.

Анализ baseline predictors

Используя baseline predictors из семинара, визуализируйте распределения смещений айтемов \mathbf{f} для фильмов ужасов и драм. Опишите различия в этих распределениях. Сделайте хотя бы одну гипотезу, почему наблюдаются эти различия.

Baseline predictors с регуляризацией

Ваша задача — реализовать модель baseline predictors с регуляризацией. Необходимо решить следующую задачу оптимизации, введённую на лекции:

$$\arg\min_{\mathbf{f},\mathbf{g}} \left[\sum_{(i,j)\in\mathcal{O}} (r_{ij} - g_i - f_j - \mu)^2 + \sum_i \gamma_i g_i^2 + \sum_j \lambda_j f_j^2 \right],$$

где

- ullet $\mathcal{O}-$ множество всех известных записей (наблюдаемые данные),
- r_{ij} рейтинг, поставленный пользователем i айтему j,
- g_i и f_j параметры смещения для пользователя i и айтема j, соответственно,
- μ глобальное среднее значение рейтинга во всех взаимодействиях,
- γ_i, λ_j гиперпараметры регуляризации.

Сравните модели в различных сценариях, когда

- 1. $\gamma_i = \gamma, \lambda_j = \lambda$, не отличаются для пользователей и айтемов,
- 2. $\lambda_j = \frac{\lambda}{p_j}, \gamma_i = \frac{\gamma}{q_i}$, где p_j популярность айтема j, а q_i активность пользователя i (число взаимодействий).

Попробуйте как минимум 3 различных значения для каждого типа регуляризации. Опишите наблюдаемые различия.

Baseline predictors с негативным семплированием

Трактуя отсутсвующие рейтинги как рейтинги со значением 0, реализуйте модель baseline predictors с использованием негативного семплирования (пример реализации семплирования можно найти в семинаре по content-base filtering). Задача оптимизации выглядит следующим образом:

$$\sum_{(i,j)\in\mathcal{O}} (r_{ij} - t_i - f_j)^2 + \alpha \sum_{(i,j)\notin\mathcal{O}} (0 - t_i - f_j)^2 \to \min,$$

где α – гиперпараметр.

На каждый позитивный пример $(i,j) \in \mathcal{O}$, выбирайте **10** негативных примеров. Исследуйте эффект от выбора параметра α .

Baseline predictors с использованием всей матрицы взаимодействий

Последняя часть задачи — реализовать модель baseline predictors с использованием всей матрицы взаимодействий, дополняя нулями ячейки с неизвестными взаимодействиями.

$$\arg\min_{\mathbf{f},\mathbf{g}} \|\mathbf{R} - \mathbf{g}\mathbf{e}_N^\top - \mathbf{e}_M \mathbf{f}^\top\|_F^2,$$

где

- R матрица рейтингов, с дополненными нулями неизвестных взаимодействий,
- \mathbf{e}_K вектор единиц размера K,
- ullet M и N- количество пользователей и айтемов соответственно.

Следует вывести аналитическое решение, использующее формулу Шермана-Вудбери-Моррисона. Обратите внимание, что работа с плотными матрицами запрещена.

Сравните реализованные модели между собой. Что можно сказать о качестве их рекомендаций?

Задача 3 (15 баллов)

Датасет

Для экспериментов используйте датасет RentTheRunway об аренде одежды людьми в одноименном сервисе.

Описание датасета

• item id: уникальный идентификатор айтема

• weight: вес клиента

• rented for: цель аренды одежды

• body type: тип телосложения клиента

• review text: текст отзыва клиента

• review summary: краткое содержание отзыва

• size: размер вещи

• rating: рейтинг вещи

• age: возраст клиента

• category: категория одежды

• bust size: обхват груди клиента

• height: рост клиента

• fit: подошло или нет по размеру

• user id: уникальный идентификатор клиента

• review date: дата написания отзыва

Разбиение данных и метрики

Для задачи выберите топ-500 пользователей по количеству взаимодействий с айтемами. Пожалуйста, используйте метрики, приведенные в конце лекции по content-based фильтрации. Например, выберите одну пару айтемов с высоким и низким рейтингами от пользователя, постройте профиль пользователя (возьмите топ-5 айтемов с лучшим предсказанным рейтингом и усредните значения признаков), затем сравните расстояние до «положительного» айтема и до «отрицательного» (например с помощью косинусной схожести). Возьмите за метрику количество случаев, когда построенный профиль оказывался ближе к «положительному» товару, чем к «отрицательному».

Контентные модели с персонализацией

В этой задаче вы обучите простую контентную модель для каждого пользователя индивидуально, чтобы достичь некоторого уровня персонализации в задаче предсказания рейтинга пользователя арендованной вещи. Следуйте общим требованиям из начала файла. Старайтесь избегать циклов в вашем коде. Каждый из ваших рекомендательных пайплайнов (предобработка признаков + обучение + предсказание) должна выполняться менее 4 часов для всех тестовых пользователей (засеките время!).

Ансамбль контентных моделей

Используя данные о рейтингах пользователей и информацию об айтемах, постройте контентную модель. Вы можете использовать любые методы предобработки признаков (включая те, что были использованы в семинаре). Опишите вашу модель и методы предобработки, объясните ваш выбор.

Оцените качество полученного ансамбля пользовательских моделей.

Улучшения

Улучшите модель, изменяя:

- способ обработки контентной информации (например, выбор различных признаков и методов предобработки; настройка регуляризации и других важных параметров *регрессионной* модели). Вы также можете использовать исходные тексты для обучения модели.
- способ учета истории пользователя можно использовать случайную подвыборку айтемов фиксированного размера.

Гибридная модель (5 бонусных баллов)

Постройте рекомендательную систему на основе гибридного baseline predictor. Используйте ту же схему для оценки, что и в предыдущей задаче.

Реализация гибридного базового предиктора

$$r_{ij} = \mu + f_j + t_i + (Va_i)^\top W c_j$$

где:

- a_i атрибуты пользователя i,
- c_j характеристики айтема j,
- V, W обучаемые веса.

Сравните полученный результат с регрессионным подходом и сделайте выводы.