Result report

毛柏元 Mao po yuan E-mail:zxc596666123@gmail.com

B1 Reconstruct images from CIFAR 10

Denoising Autoencoder

Reference https://codahead.com/blog/a-denoising-autoencoder-for-cifar-datasets

Noise picture (clean picture with random noise)

decode picture

history

result

All reate a predictive encoding Model on CIFAR10 and attack it to verify its robustness

predictive encoding

Reference: (AlexNet · VGG · Inception · ResNet)+Keras Coding

Fast Gradient Sign Method (FGSM)

white box attack

Input: image and Model Output: Perturbation

FGSM

$$x^* \leftarrow x^0 - \varepsilon \Delta x$$

$$\Delta x = \begin{bmatrix} sign(\partial L/\partial x_1) \\ sign(\partial L/\partial x_2) \\ \vdots \\ \vdots \end{bmatrix}$$

 x^* : picture with perturbation

L:loss function

 ε : limit of perturbation

 x^0 : original picture

PGD ATTACK

white box attack

Input: image and Model
Output: Perturbation

Reference: Towards Deep Learning Models Resistant to Adversarial Attacks

https://arxiv.org/pdf/1706.06083.pdf

PGD

$$x^n \leftarrow x^{n-1} - a\Delta x^{n-1}$$

$$\Delta x^{n-1} = \begin{bmatrix} sign(\partial L/\partial x_1) \\ sign(\partial L/\partial x_2) \\ \vdots \\ \vdots \end{bmatrix}$$

$$\varepsilon \ge \Sigma a \Delta x^{n-1}$$

 x^n : picture with all perturbation at epochs n

a : each epochs step perturbation

 ε : limit of perturbation

3	0.1	0.1	
Epochs	10	20	
a(each epochs step perturbation)	0.01	0.001	
Success Robustness	0.0314	0.0149	
Success rate	70.19	70.2%	

Result 100% truck Original image perturbation 3.2e-14% bird Original 99.9% bird 99.9% bird Original 99.9% truck

1.14e-10% truck

ONE pixel attack

black box attack

Input: image

Output: Perturbation

Reference: One pixel attack

https://arxiv.org/abs/1710.08864

Difference from others attack

maximize
$$f_{adv}(\mathbf{x} + e(\mathbf{x}))$$
 maximize $f_{adv}(\mathbf{x} + e(\mathbf{x}))$ subject to $||e(\mathbf{x})|| \le L$ subject to $||e(\mathbf{x})||_0 \le d$,

Other attacks

One pixel attack

Method: Differential Evolution

Parents(x, y, R,G,B)

New Parents(x, y, R,G,B)

Result

Original 81.8% automobile After 34% automobile 37.8% truck

Original 78.8% deer After 6.7% deer 91.6% cat

Original 81.9% cat After 8.5% cat 90.6% frog

ADV GAN

white box attack

Input: image and Model Output: Perturbation

Reference: ADVGAN https://arxiv.org/abs/1801.02610

GAN

history

100% ship 2.68e-11% frog

99.99%dog 6.47e-7% truck

Comparison

Attack method	FGSM	PDG	one pixel attack	Adv gan
Black box or White box	White box	White box	Black box	White box
Success rate	69.37%	70.2%	53%	96.24%
Robustness	0.1019	0.0149		0.0967
advantage	Fast	 Stable success rate Get the less perturbation to mislead the model 	Do not need the model's detail	1.high success rate 2.Easy to use

Thank you for listening