

CENG 403 Introduction to Deep Learning

Week 14b

Byte-pair Encoding (BPE) Example from: https://huggingface.co/learn/llm-course/en/chapter6/5

- Represent frequent byte-pairs as tokens
- E.g., given the corpus:

```
Corpus: ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
```

our vocabulary would be:

```
("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)
```

• "ug" and "un" can be recognized to be very frequent. So, combine them:

```
Vocabulary: ["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"]

Corpus: ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5)
```

A Comparison among Embeddings

- Out-of-vocabulary (OOV) words
 - Word embeddings struggle with out-of-vocabulary (OOV) words
 - Char embeddings are better with OOV words as they use chars. However, char embeddings fail at capturing semantically meaningful entities larger than chars
- Vocabulary size
 - Word embeddings have large vocabulary size
 - Char embeddings are better in this regard
 - BPE provides a good balance
- Sub-word (prefix, suffix, root/stem) semantics
 - BPE handles sub-words better
- Language specificity
 - Word embeddings are language specific

of mage Captioning of Previous No. 1985.

Pre-trained CNN (e.g., on imagenet)

Sinan Kalkan Image: Karpathy

of Veural Machine Translation Previously of Veural Machine Translation

Model

Each box is an LSTM or GRU cell.

Sutskever et al. 2014

Newal Machine Translation

Cho: From Sequence Modeling to Translation

Previous 4 on CENGAO

Echo State Networks

Reservoir Computing

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

BLEU: Bilingual Evaluation Understudy

https://cloud.google.com/translate/automl/docs/evaluate#bleu

Attention , it is it is a second of the seco

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal In a new model architecture, we define each conditional probability in Eq. (2) as:

$$p(y_i|y_1,\ldots,y_{i-1},\mathbf{x}) = g(y_{i-1},s_i,c_i),$$
 (4)

where s_i is an RNN hidden state for time i, computed by

$$s_i = f(s_{i-1}, y_{i-1}, c_i).$$

It should be noted that unlike the existing encoder-decoder approach (see Eq. (2)), here the probability is conditioned on a distinct context vector c_i for each target word y_i .

The context vector c_i depends on a sequence of *annotations* (h_1, \cdots, h_{T_x}) to which an encoder maps the input sentence. Each annotation h_i contains information about the whole input sequence with a strong focus on the parts surrounding the i-th word of the input sequence. We explain in detail how the annotations are computed in the next section.

The context vector c_i is, then, computed as a weighted sum of these annotations h_i :

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j. (5$$

The weight α_{ij} of each annotation h_j is computed by

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)},\tag{6}$$

where

$$e_{ij} = a(s_{i-1}, h_j)$$

is an alignment model which scores how well the inputs around position j and the output at position i match. The score is based on the RNN hidden state s_{i-1} (just before emitting y_i , Eq. (4)) and the j-th annotation h_j of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with all the other components of the proposed system. Note that unlike in traditional machine translation,

Figure 1: The graphical illustration of the proposed model trying to generate the t-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Are itous volume Score (s, h)

Name	Alignment score function	Citation
Content- base attention	$score(s_t, \boldsymbol{h}_i) = cosine[s_t, \boldsymbol{h}_i]$	Graves2014
Additive(*)	$score(\mathbf{s}_t, \mathbf{h}_i) = \mathbf{v}_a^{T} \tanh(\mathbf{W}_a[\mathbf{s}_t; \mathbf{h}_i])$	Bahdanau2015
Location- Base	$\alpha_{t,i} = \text{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$score(s_t, h_i) = s_t^{\top} \mathbf{W}_a h_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$score(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{\top} \boldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$score(s_t, h_i) = \frac{s_t^{T} h_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

^(*) Referred to as "concat" in Luong, et al., 2015 and as "additive attention" in Vaswani, et al., 2017.

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

10

^(^) It adds a scaling factor $1/\sqrt{n}$, motivated by the concern when the input is large, the softmax function may have an extremely small gradient, hard for efficient learning.

Today

- Recurrent Neural Networks (RNNs)
 - Image captioning
 - Machine translation
 - Echo State Networks
 - Attention in RNNs

Vanilla Self-attention

$$e_i' = \sum_j \frac{\exp(e_j^T e_i)}{\sum_m \exp(e_m^T e_i)} e_j$$

Attention: Transformer

Vanilla self attention:

$$e_i' = \sum_j \frac{\exp(e_j^T e_i)}{\sum_m \exp(e_m^T e_i)} e_j$$

Scaled-dot product attention:

$$e_i' = \sum_{j} \frac{\exp(k(e_j^T)q(e_i))}{\sum_{m} \exp(k(e_m^T)q(e_i))} v(e_j)$$

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Scaled Dot-Product Attention

Concat Scaled Dot-Product Attention Linear Linear Linear

Multi-Head Attention

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Fig. 17. The full model architecture of the transformer. (Image source: Fig 1 & 2 in Vaswani, et al., 2017.)

Positional Encoding

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

$$i=0$$

$$i=1$$

$$i=2$$

$$i=3$$

$$i=4$$

$$pos = 0$$

Fig from: https://www.youtube.com/watch?v=dichIcUZfOw

Position Embeddings

Positional Encoding

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

Fig from: https://www.youtube.com/watch?v=dichIcUZfOw

Sinan Kalkan

21

Positional Encoding

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d}}}\right)$$

Fig from: https://www.youtube.com/watch?v=dichIcUZfOw

Skip Connections & Normalization

https://jalammar.github.io/illustrated-transformer/

Skip Connections & Normalization

https://jalammar.github.io/illustrated-transformer/

Transformers without Normalization

Jiachen Zhu^{1,2}, Xinlei Chen¹, Kaiming He³, Yann LeCun^{1,2}, Zhuang Liu^{1,4,†}

Normalization layers are ubiquitous in modern neural networks and have long been considered essential. This work demonstrates that Transformers without normalization can achieve the same or better performance using a remarkably simple technique. We introduce Dynamic Tanh (DyT), an element-wise operation $\mathrm{DyT}(x) = \mathrm{tanh}(\alpha x)$, as a drop-in replacement for normalization layers in Transformers. DyT is inspired by the observation that layer normalization in Transformers often produces tanh-like, S-shaped input-output mappings. By incorporating DyT, Transformers without normalization can match or exceed the performance of their normalized counterparts, mostly without hyperparameter tuning. We validate the effectiveness of Transformers with DyT across diverse settings, ranging from recognition to generation, supervised to self-supervised learning, and computer vision to language models. These findings challenge the conventional understanding that normalization layers are indispensable in modern neural networks, and offer new insights into their role in deep networks.

Date: March 14, 2025

Project page and code: jiachenzhu.github.io/DyT

Correspondence: jiachen.zhu@nyu.edu, zhuangl@princeton.edu

¹FAIR, Meta, ²New York University, ³MIT, ⁴Princeton University

[†]Project lead

Decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT

Tutorial on transformers

- https://e2eml.school/transformers.html
- https://jalammar.github.io/illustrated-transformer/

A Significant Issue with Self-Attention: Complexity

$$e'_{i} = \sum_{j} \frac{\exp(k(e_{j}^{T})q(e_{i}))}{\sum_{m} \exp(k(e_{m}^{T})q(e_{i}))} v(e_{j})$$

- If there are *n* tokens/embeddings,
 - Updating a single tokens require O(n) operations.
 - Overall: $O(n^2)$
- What is the complexity of an RNN layer with *n* time steps?