chapter 5 Performance Analysis

2021/6/27

Regret Analysis

- A player chooses an action $\theta^{(t)} \in K$ every t period, where K is a feasible set of actions.
- ullet The cost function $f^{(t)}$ determines the cost $f^{(t)}(\theta^{(t)})$ for action $\theta^{(t)}$.
- The player decides his action based on the strategy.

Regret Analysis

- How does the player choose an action which minimizes a total cost $\sum f^{(t)}(\theta^{(t)})$?
- Can the cost function be minimized even if it is not unknown?
- We introduce a regret about the strategy.

definition (Regret)

The difference between the total cost of an action based on a strategy A and the total cost of the optimal strategy θ^* is defined as the regret Regret(A) of strategy A.

$$Regret(A) = \sum_{t=1}^T f^{(t)}(\theta^{(t)}) - \sum_{t=1}^T f^{(t)}(\theta^*)$$

Regret Analysis

Regret analysis in online learning

- Let action be the parameter of the online learner $\pmb{\theta}^{(t)} \in \mathbb{R}^m$ given the training data $(\pmb{x}^{(t)}, y^{(t)})$.
- Let the cost function be a loss function $f^{(t)} = (\boldsymbol{x}^{(t)}, y^{(t)}, \boldsymbol{\theta})$.
- In this case, the optimal strategy is the strategy that chooses the action that minimizes the cost function for all training data.

Follow the Leader

 At first, We consider strategy for choosing action that minimizes the total cost to date.

$$\boldsymbol{\theta}^{(t)} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in K} \sum_{i=1}^{t-1} f^{(t)}(\boldsymbol{\theta})$$

• This strategy is called Follow the Leader (FTL).

Follow the Leader

- However, there are cases where FTL doesn't work.
- \bullet Consider action $\theta \in [-1,1]$ and cost function $f^{(t)}(\theta) = (1/2)(-1)^t \theta.$
- In this case, the action goes back and forth between -1 and 1 except for the first, as $\theta^{(1)}=0, \theta^{(2)}=-1, \theta^{(2)}=1,....$
- The cost function is 1/2 except for the first, as $f^{(1)}(\theta^{(1)})=0, f^{(2)}(\theta^{(2)})=1/2, f^{(3)}(\theta^{(3)})=1/2,....$

Follow the Leader

- On the other hand, The optimal strategy is $\theta=0$ and the total cost of it is 0.
- Therefore, FTL regret in this case doesn't approach 0.
- We have to expand FTL.

• Regularized Follow the Leader (RFTL)

$$\boldsymbol{\theta}^{(t)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} \eta \sum_{i=1}^{t-1} f^{(t)}(\boldsymbol{\theta}) + R(\boldsymbol{\theta})$$

- Let $R(\theta)$ be convex regularization function. Let $\eta \geq 0$ be parameter that determines the degree of regularization.
- When choosing the first action, the cost function is not presented, so action is determined only by the regularization term.

$$\boldsymbol{\theta}^{(1)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} R(\boldsymbol{\theta})$$

• We introduce lemma and definitions to derive RFTL regret.

lemma

For any vector $\mathbf{u} \in K$, the following holds.

$$\sum_{t=1}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq \sum_{t=1}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}) + \frac{1}{\eta} \left\{ R(\boldsymbol{u}) - R(\boldsymbol{\theta}^{(1)}) \right\} \tag{1}$$

chapter 5 Performance Analysis

Proof.

For simplicity, let us assume that ${\pmb f}^{(0)}=\frac{1}{\eta}R({\pmb \theta})$ and the algorithm starts at t=0.

$$\sum_{t=0}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}) + \frac{1}{\eta} R(\boldsymbol{\theta})$$

In this time, the lemma can be expressed as following.

$$\sum_{t=0}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq \sum_{t=0}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)})$$

Proof.

At t=0, by definition, $\boldsymbol{\theta}^{(1)}=\arg\min_{\boldsymbol{\theta}}R(\boldsymbol{\theta})$ and $\boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(1)})\leq \boldsymbol{f}^{(0)}(\boldsymbol{u})$ holds. therefore,

$$\boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(0)}) - \boldsymbol{f}^{(0)}(\boldsymbol{u}) \leq \boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(0)}) - \boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(1)})$$

Proof.

At t>0, assume that lemma holds for t=T. In this time,

$$\boldsymbol{\theta}^{(T+2)} = \arg\min_{\boldsymbol{\theta}} \sum_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta})$$
 (2)

$$\boldsymbol{\theta}^{(T+1)} = \arg\min_{\boldsymbol{\theta}} \sum_{t=0}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta})$$
 (3)

Proof.

Using equation (2) and (3),

$$\begin{split} &\sum_{t=0}^{T+1} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \\ &\leq \sum_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \sum_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(T+2)}) \\ &= \sum_{t=0}^{T} (\boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(T+2)})) + \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+1)}) - \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+2)}) \\ &\leq \sum_{t=0}^{T} (\boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(T+1)})) + \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+1)}) - \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+2)}) \\ &- \sum_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t+1)}) \end{split}$$

definition (norm based on positive semi-definite matrix)

We define $\|x\|_A = \sqrt{x^T A x}$ as the norm of vector x based on positive semi-definite matrix A.

We also define $\|x\|_{A^{-1}} = \|x\|_A^*$ as a dual norm.

 In this time, from generalized Cauchy-Schwarz inequality, the following holds.

$$oldsymbol{x}^Toldsymbol{y} \leq \|oldsymbol{x}\|_{oldsymbol{A}}\|oldsymbol{y}\|_{oldsymbol{A}}^*$$

definition (norm of cost function)

A norm of cost function measured by the regularization function is difined as

$$\lambda = \max_{t, \pmb{\theta} \in K} \pmb{f}^{(t)T} \{ \nabla^2 R(\pmb{\theta}) \}^{-1} \pmb{f}^{(t)}$$

definition (diameter of feasible area)

A diameter measured by the regularization function is defined as

$$D = \max_{\pmb{\theta} \in K} R(\pmb{\theta}) - R(\pmb{\theta}^{(1)})$$

theorem (regret of RFTL)

RFTL achives the following regret for any vector $\mathbf{u} \in K$.

$$Regret(A) = \sum_{t=1}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq 2\sqrt{2\lambda DT}$$

Proof.

At first, we define Φ as following.

$$\Phi^{(t)}(\boldsymbol{\theta}) = \eta \sum_{i=1}^{t} f^{(i)}(\boldsymbol{\theta}) + R(\boldsymbol{\theta})$$

By Taylor expansion of $\Phi^{(t)}$ around $\pmb{\theta}^{(t+1)}$ and using intermediate value theorem, we can show following.

$$\begin{split} \boldsymbol{\Phi}^{(t)}(\boldsymbol{\theta}^{(t)}) &= \boldsymbol{\Phi}^{(t)}(\boldsymbol{\theta}^{(t+1)}) + (\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)})^T \nabla \boldsymbol{\Phi}^{(t)}(\boldsymbol{\theta}^{(t+1)}) \\ &+ \frac{1}{2} \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}\|_{\boldsymbol{z}^{(t)}}^2 \\ &\geq \boldsymbol{\Phi}^{(t)}(\boldsymbol{\theta}^{(t+1)}) + \frac{1}{2} \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}\|_{\boldsymbol{z}^{(t)}}^2 \end{split}$$

Proof.

Here, from intermediate value theorem, $\mathbf{z}^{(t)} \in [\mathbf{\theta}^{(t+1)}, \mathbf{\theta}^{(t)}]$ This inequality holds because $\mathbf{\theta}^{(t)}$ achieves the minimum value of $\Phi^{(t)}$. By transforming the equation, we can get following.

$$\begin{split} \| \boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)} \|_{\boldsymbol{z}^{(t)}}^2 &\leq 2(\Phi^{(t)}(\boldsymbol{\theta}^{(t)}) - \Phi^{(t)}(\boldsymbol{\theta}^{(t+1)})) \\ &= 2(\Phi^{(t-1)}(\boldsymbol{\theta}^{(t)}) - \Phi^{(t-1)}(\boldsymbol{\theta}^{(t+1)})) + 2\eta \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}) \\ &\leq 2\eta \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}) \end{split}$$

Proof.

Also, using generalized Cauchy-Schwarz inequality, the following holds.

$$\begin{split} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}) &\leq \|\boldsymbol{f}^{(t)}\|_{\boldsymbol{z}}^* \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}\|_{\boldsymbol{z}} \\ &\leq \|\boldsymbol{f}^{(t)}\|_{\boldsymbol{z}}^* \sqrt{2\eta \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)})} \end{split}$$

furthermore,

$$\boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}) \le 2\eta \|\boldsymbol{f}^{(t)}\|_{\boldsymbol{z}}^{*2} \le 2\eta\lambda \tag{4}$$

Proof.

Using (1) and (4), adding up to T and letting η be $\eta = \sqrt{\frac{D}{2\lambda T}}$ which minimizes this equation, we can get

$$Regret(A) \leq min_{\eta} \left[2\eta \lambda T + \frac{1}{\eta} \{ R(\pmb{u}) - R(\pmb{\theta}^{(t)}) \} \right] \leq 2\sqrt{2D\lambda T}$$

- a player chooses a point (action) from a set in Euclidean space denoted $K \subseteq \mathbb{R}^n$.
- \bullet We assume that the set K is non-empty, bounded, closed and convex.
- ullet We denote the number of iterations by T which is unknown to the player.

- At iteration t, the player chooses $\boldsymbol{\theta}_t \in K$.
- \bullet After committing to this choice, a convex cost function $f_t:K\mapsto \mathbb{R}$ is revealed.

- Consider a player using an algorithm for online game playing (strategy) A.
- At iteration t, the algorithm takes as input the history of cost function $f_1,...,f_{t-1}$ and produces a feasible point $A(\{f_1,...,f_{t-1}\})$ in the domain K
- \bullet When there is no ambiguity, we simply denote $\pmb{\theta}_t = A(\{f_1,...,f_{t-1}\}).$

ullet The regret of the online player using algorithm A at time T is defined to be the total cost minus the cost of the best single decision, where the best is chosen with the benefit of hindsight.

$$Regret(A, \{f_1, ..., f_T\}) = E\left\{\sum_{t=1}^T f_t(\pmb{\theta}_t)\right\} - \min_{\pmb{\theta} \in K} \sum_{t=1}^T f_t(\pmb{\theta}).$$

 We are usually interested in an upper bound on the worst case guaranteed regret, denoted

$$Regret_T(A) = \sup_{\{f_1,...,f_T\}} \{Regret(A,\{f_1,...,f_T\})\}.$$

definition

We say that the cost functions have gradients upper bounded by a number G if the following holds:

$$\sup_{\pmb{\theta} \in K, t \in \{1, \dots, T\}} \|\nabla f_t(\pmb{\theta})\|_2 \leq G.$$

definition

We say that the Hessian of all cost functions is lower bounded by a number $\alpha > 0$, if the following holds:

$$\forall \boldsymbol{\theta} \in K, t \in \{f_1, ..., f_T\} : \nabla^2 f_t(\boldsymbol{\theta}) \succeq \alpha \boldsymbol{I}_n.$$

 α is a lower bound on eigenvalues of all the Hessians of the constraints at all points in the domain. Such function is called α -strong convex.

algorithm (Online Gradient Descent)

Inputs: convex set $K \subset \mathbb{R}^n$, step sizes $\eta_1, \eta_2, ... \geq 0$, inital $\boldsymbol{\theta}_1 \in K$.

- In iteration 1, use $\boldsymbol{\theta}_1 \in K$.
- In iteration t > 1, use

$$\label{eq:total_total_total} \pmb{\theta}_t = \pi_K(\pmb{\theta}_{t-1} - \eta_{t-1} \nabla f_{t-1}(\pmb{\theta}_{t-1})).$$

Here, π_K denotes the projection onto nearest point in K, $\pi_K(\boldsymbol{y}) = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} \|\boldsymbol{\theta} - \boldsymbol{y}\|_2.$

definition

For a given positive semi-definite matrix A, a generalized projection of $y \in \mathbb{R}^n$ onto the convex set K is defined as

$$\pi_K^{\pmb{A}}(\pmb{y}) = \underset{\pmb{\theta} \in K}{\arg \min} (\pmb{\theta} - \pmb{y})^{\top} \pmb{A} (\pmb{\theta} - \pmb{y}).$$

Thus, the Euclidean projection can be seen to be a generalized projection with ${\pmb A}={\pmb I}_n.$

lemma

Let $K \subseteq \mathbb{R}^n$ be a convex set, $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{z} = \pi_K^{\mathbf{A}}(\mathbf{y})$ be the generalized projection of \mathbf{y} onto K according to positive semi-definite matrix \mathbf{A} . Then for any point $\mathbf{a} \in K$ it holds that

$$(\boldsymbol{y} - \boldsymbol{a})^{\top} \boldsymbol{A} (\boldsymbol{y} - \boldsymbol{a}) \ge (\boldsymbol{z} - \boldsymbol{a})^{\top} \boldsymbol{A} (\boldsymbol{z} - \boldsymbol{a}).$$

Proof.

By definition of generalized projections, the point z minimizes the function $f(\theta) = (\theta - y)^{\top} A(\theta - y)$ over the convex set. It is a well known fact in optimization that for the optimum z the following holds.

$$\forall \boldsymbol{a} \in K : \nabla f(\boldsymbol{z})^{\top} (\boldsymbol{a} - \boldsymbol{z}) \geq 0$$

which implies

$$2(\pmb{z} - \pmb{y})^{\top} \pmb{A} (\pmb{a} - \pmb{z}) \geq 0 \Rightarrow 2 \pmb{a}^{\top} \pmb{A} (\pmb{z}^{\pmb{y}}) \geq 2 \pmb{z}^{\top} \pmb{A} (\pmb{z}^{\pmb{y}}).$$

Proof.

Now by simple calculation:

$$\begin{split} (\boldsymbol{y} - \boldsymbol{a})^\top \boldsymbol{A} (\boldsymbol{y} - \boldsymbol{a}) - (\boldsymbol{z} - \boldsymbol{a})^\top \boldsymbol{A} (\boldsymbol{z} - \boldsymbol{a}) &= \boldsymbol{y}^\top \boldsymbol{A} \boldsymbol{y} - \boldsymbol{z}^\top \boldsymbol{A} \boldsymbol{z} + 2 \boldsymbol{a}^\top \boldsymbol{A} (\boldsymbol{z} - \boldsymbol{y}) \\ &\geq \boldsymbol{y}^\top \boldsymbol{A} \boldsymbol{y} - \boldsymbol{z}^\top \boldsymbol{A} \boldsymbol{z} + 2 \boldsymbol{z}^\top \boldsymbol{A} (\boldsymbol{z} - \boldsymbol{y}) \\ &= \boldsymbol{y}^\top \boldsymbol{A} \boldsymbol{y} - 2 \boldsymbol{z}^\top \boldsymbol{A} \boldsymbol{y} + \boldsymbol{z}^\top \boldsymbol{A} \boldsymbol{z} \\ &= (\boldsymbol{z} - \boldsymbol{y})^\top \boldsymbol{A} (\boldsymbol{z} - \boldsymbol{y}) \geq 0. \end{split}$$

theorem

Online Gradient Descent with step sizes $\eta_t=\frac{1}{\alpha t}$ achives the following guarantee, for all $T\geq 1$

$$Regret_T(OGD) \le \frac{G^2}{2\alpha}(1 + \log T).$$

Proof.

Let ${\pmb{\theta}}^* = \arg\min \sum_{t=1}^T f_t({\pmb{\theta}})$. Recall the difinition of regret

$$Regret_T(OGD) = \sum_{t=1}^T f_t(\pmb{\theta}_t) - \sum_{t=1}^T f_t(\pmb{\theta}^*).$$

Define $\nabla_t = \nabla f_t(\pmb{\theta}_t)$. By using the Taylor series approximation, we have, for some point ξ_t on the line segment joining $\pmb{\theta}_t$ to $\pmb{\theta}^*$,

$$\begin{split} f_t(\pmb{\theta}^*) &= f_t(\pmb{\theta}_t) + \nabla_t^\top (\pmb{\theta}^* - \pmb{\theta}_t) + \frac{1}{2} (\pmb{\theta}^* - \pmb{\theta}_t)^\top \nabla^2 f_t(\xi_t) (\pmb{\theta}^* - \pmb{\theta}_t) \\ &\geq f_t(\pmb{\theta}_t) + \nabla_t^\top (\pmb{\theta}^* - \pmb{\theta}_t) + \frac{\alpha}{2} \| \pmb{\theta}^* - \pmb{\theta}_t \|^2. \end{split}$$

Proof.

The inequality follows from α -strong convexity. Thus, we have

$$2\{f_t(\boldsymbol{\theta}_t) - f_t(\boldsymbol{\theta}^*)\} \le 2\nabla^{\top}(\boldsymbol{\theta}_t - \boldsymbol{\theta}^*) - \alpha\|\boldsymbol{\theta}^* - \boldsymbol{\theta}_t\|^2.$$
 (5)

Using the update rule for $oldsymbol{ heta}_{t+1}$ and lemma, we get

$$\begin{split} \| \boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}^* \|^2 &= \| \pi (\boldsymbol{\theta}_t - \eta_t \nabla_t) - \boldsymbol{\theta}^* \|^2 \\ &\leq \| \boldsymbol{\theta}_t - \eta_t \nabla_t - \boldsymbol{\theta}^* \|^2. \end{split}$$

Proof.

Hence,

$$\begin{split} &\|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}^*\|^2 \leq \|\boldsymbol{\theta}_t - \boldsymbol{\theta}^*\|^2 + \eta_t^2 \|\nabla_t\|^2 - 2\eta_t \nabla_t^\top (\boldsymbol{\theta}_t - \boldsymbol{\theta}^*), \\ &2\nabla_t^\top (\boldsymbol{\theta}_t - \boldsymbol{\theta}^*) \leq \frac{\|\boldsymbol{\theta}_t - \boldsymbol{\theta}^*\|^2 - \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}^*\|^2}{\eta_t} + \eta_t G^2. \end{split} \tag{6}$$

Proof.

Sum up (6) from t = 1 to T and using (5), we have:

$$\begin{split} 2\sum_{t=1}^T f_t(\pmb{\theta}_t) - f_t(\pmb{\theta}^*) &\leq \sum_{t=1}^T \|\pmb{\theta}_t - \pmb{\theta}^*\|^2 \left(\frac{1}{\eta_{t-1}} + \frac{1}{\eta_t} - \alpha\right) + G^2 \sum_{t=1}^T \eta_t \\ &= G^2 \sum_{t=1}^T \frac{1}{\alpha t} \\ &\leq \frac{G^2}{\alpha} (1 + \log T). \end{split}$$

