Commutative Algebra 1

Math 905 Fall 2022

Eloísa Grifo University of Nebraska-Lincoln

October 12, 2022

Warning!

Proceed with caution. These notes are under construction and are 100% guaranteed to contain typos. If you find any typos or errors, I will be most grateful to you for letting me know. If you are looking for a place where to learn commutative algebra, I strongly recommend the following excellent resources:

- Mel Hochster's Lecture notes
- Jack Jeffries' Lecture notes (either his notes from UMich 614, CIMAT, or UNL)
- Atiyah and MacDonald's Commutative Algebra [AM69]
- Matsumura's Commutative Ring Theory [Mat89], or his other less known book Commutative Algebra [Mat80]
- Eisenbud's Commutative Algebra with a view towards algebraic geometry [Eis95]

Acknowledgements

These notes have evolved from the notes I wrote for my commutative algebra class at the University of California, Riverside, in Winter 2021, which were in turn heavily based on Jack Jeffries and Alexandra Seceleanu's notes. I am very thankful to Jack and Alexandra for sharing their notes with me. I am also thankful to all the students who have found typos and asked questions that lead to multiple improvements: Brandon Massaro, Rahul Rajkumar, Adam Richardson, Khoa Ta, Ryan Watson, Noble Williamson, Jordan Barrett, Julie Geraci, Sam Macdonald, and Jorge Gaspar Lara.

Contents

0	Set	ting the stage	1
	0.1	Basic definitions: rings and ideals	1
	0.2	Basic definitions: modules	3
	0.3	Why study commutative algebra?	4
1	Finiteness conditions		
	1.1	Modules	5
	1.2	Algebras	9
	1.3	Algebra-finite versus module-finite	12
	1.4	Integral extensions	15
	1.5	We interrupt this broadcast for a very short introduction to exact sequences 2	20
	1.6	Noetherian rings	22
	1.7	An application to invariant rings	28
2	Graded rings 3		
	2.1	Graded rings	31
	2.2	Finiteness conditions for graded algebras	35
	2.3	Another application to invariant rings	36
3	Primes 3		
	3.1	Prime and maximal ideals	39
	3.2	The spectrum of a ring	11
4	Affine varieties 45		
	4.1	Varieties	15
A	Ma	caulay2	51
	A.1	Getting started	51
			54
			55

Chapter 0

Setting the stage

Here are some elementary definitions and facts we will assume you have already seen before. For more details, see any introductory algebra book, such as [DF04].

0.1 Basic definitions: rings and ideals

Commutative Algebra is the branch of algebra that studies commutative rings and modules over such rings. For a commutative algebraist, every ring is commutative and has a $1 \neq 0$.

Definition 0.1 (Ring). A **ring** is a set R equipped with two binary operations + and \cdot satisfying the following properties:

- 1) R is an abelian group under the addition operation +, with additive identity 0, or 0_R if we need to specify which ring we are talking about. Explicitly, this means that
 - a + (b + c) = (a + b) + c for all $a, b, c \in R$,
 - a+b=b+a for all $a,b\in R$,
 - there is an element $0 \in R$ such that 0 + a = a for all $a \in R$, and
 - for each $a \in R$ there exists an element $-a \in R$ such that a + (-a) = 0.
- 2) R is a commutative monoid under the multiplication operation \cdot , with multiplicative identity 1_R or simply 1. Explicitly, this means that
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$,
 - $a \cdot b = b \cdot a$ for all $a, b \in R$, and
 - there exists an element $1 \in R$ such that $1 \cdot a = a \cdot 1$ for all $a \in R$.

We typically write ab for $a \cdot b$.

3) multiplication is distributive with respect to addition, meaning that for all $a, b, c \in R$ we have

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

4) $1 \neq 0$.

In this class, **all rings are commutative**. In other branches of algebra rings might fail to be commutative, but we will explicitly say *noncommutative ring* if that is the case. There also branches of algebra where rings are allowed to not have a multiplicative identity; we recommend [Poo19] for an excellent read on the topic of *Why rings should have a 1*.

Example 0.2. Here are some examples of the kinds of rings we will be talking about.

- a) The integers \mathbb{Z} , or any quotient of \mathbb{Z} , which we write compactly as \mathbb{Z}/n .
- b) A polynomial ring, by which we typically mean $R = k[x_1, \dots, x_n]$, a polynomial ring in finitely many variables over a field k.
- c) A quotient of a polynomial ring by an ideal I, say $R = k[x_1, \dots, x_n]/I$.
- d) Rings of polynomials in infinitely many variables, $R = k[x_1, x_2, ...]$.
- e) Power series rings $R = k[x_1, \ldots, x_n]$ over a field k. The elements are (formal) power series $\sum_{a_i \ge 0} c_{a_1, \ldots, a_n} x_1^{a_1} \cdots x_n^{a_n}$.
- f) While any field k is a ring, we will see that fields on their own are not very exciting from the perspective of the kinds of things we will be discussing in this class.

Definition 0.3 (ring homomorphism). Given rings R and S, a function $R \xrightarrow{f} S$ is a **ring** homomorphism if f preserves the operations and the multiplicative identity, meaning

- f(a+b) = f(a) + f(b) for all $a, b \in R$,
- f(ab) = f(a)f(b) for all $a, b \in R$, and
- f(1) = 1.

A bijective ring homomorphism is an **isomorphism**. We should think about a ring isomorphism as a relabelling of the elements in our ring.

Definition 0.4. A subset $R \subseteq S$ of a ring S is a **subring** if R is also a ring with the structure induced by S, meaning that the each operation on R is the restrictions of the corresponding operation on S to R, and the 0 and 1 in R are the 0 and 1 in S, respectively.

Often, we care about the ideals in a ring more than we care about individual elements.

Definition 0.5 (ideal). A nonempty subset I of a ring R is an **ideal** if it is closed for the addition and for multiplication by any element in R: for any $a, b \in I$ and $r \in R$, we must have $a + b \in I$ and $ra \in I$. The **ideal generated by** f_1, \ldots, f_n , denoted (f_1, \ldots, f_n) , is the smallest ideal containing f_1, \ldots, f_n , or equivalently,

$$(f_1,\ldots,f_n) = \{r_1f_1 + \cdots + r_nf_n \mid r_i \in R\}.$$

Example 0.6. Every ring has always at least two ideals, the **zero ideal** $(0) = \{0\}$ and the **unit ideal** (1) = R.

We will follow the convention that when we say *ideal* we actually mean an ideal $I \neq R$.

Exercise 1. The ideals in \mathbb{Z} are the sets of multiples of a fixed integer, meaning every ideal has the form (n). In particular, every ideal in \mathbb{Z} can be generated by one element.

This makes \mathbb{Z} the canonical example of a **principal ideal domain**.

Definition 0.7. A **domain** is a ring with no zerodivisors, meaning that rs = 0 implies that r = 0 or s = 0. A **principal ideal** is an ideal generated by one element. A **principal ideal domain** or **PID** is a domain where every ideal is **principal**.

Exercise 2. Given a field k, R = k[x] is a principal ideal domain, so every ideal in R is of the form $(f) = \{fg \mid g \in R\}$.

Exercise 3. While R = k[x, y] is a domain, it is **not** a PID. We will see later that every ideal in R is finitely generated, and yet we can construct ideals in R with arbitrarily many generators!

Example 0.8. The ring $\mathbb{Z}[x]$ is a domain but **not** a PID. For example, (2, x) is not principal.

Theorem 0.9 (CRT). Let R be a ring and I_1, \ldots, I_n be pairwise coprime ideals in R, meaning $I_i + I_j = R$ for all $i \neq j$. Then $I := I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$, and there is an isomorphism of rings

$$R/I \xrightarrow{\cong} R/I_1 \times \cdots \times R/I_n$$
.
 $r+I \longmapsto (r+I_1, \dots, r+I_n)$

0.2 Basic definitions: modules

Just like linear algebra is the study of vector spaces over fields, commutative algebra often focuses on the structure of modules over commutative rings. While in other branches of algebra modules might be left- or right-modules, our modules are usually two sided, and we refer to them simply as modules.

Definition 0.10 (Module). Given a ring R, an R-module (M, +) is an abelian group equipped with an R-action that is compatible with the group structure. More precisely, there is an operation $\cdot : R \times M \longrightarrow M$ such that

- $r \cdot (a+b) = r \cdot a + r \cdot b$ for all $r \in R$ and $a, b \in M$,
- $(r+s) \cdot a = r \cdot a + s \cdot a$ for all $r, s \in R$ and $a \in M$,
- $(rs) \cdot a = r \cdot (s \cdot a)$ for all $r, s \in R$ and $a \in M$, and
- $1 \cdot a = a$ for all $a \in M$.

We typically write ra for $r \cdot a$, and denote the additive identity in M by 0, or 0_M if we need to distinguish it from 0_R .

The definitions of submodule, quotient of modules, and homomorphism of modules are very natural and easy to guess, but here they are.

Definition 0.11. If $N \subseteq M$ are R-modules with compatible structures, we say that N is a **submodule** of M.

A map $M \xrightarrow{f} N$ between R-modules is a **homomorphism of** R-modules if it is a homomorphism of abelian groups that preserves the R-action, meaning f(ra) = rf(a) for all $r \in R$ and all $a \in M$. We sometimes refer to R-module homomorphisms as R-module maps, or maps of R-modules. An isomorphism of R-modules is a bijective homomorphism, which we really should think about as a relabeling of the elements in our module. If two modules M and N are isomorphic, we write $M \cong N$.

Given an R-module M and a submodule $N \subseteq M$, the **quotient module** M/N is an R-module whose elements are the equivalence classes under the relation on M given by $a \sim b \Leftrightarrow a - b \in N$. One can check that this set naturally inherits an R-module structure from the R-module structure on M, and it comes equipped with a natural **canonical map** $M \longrightarrow M/N$ induced by sending 1 to its equivalence class.

Example 0.12. The modules over a field k are precisely all the k-vector spaces. Linear transformations are precisely all the k-module maps.

Example 0.13. The \mathbb{Z} -modules are precisely all the abelian groups.

Example 0.14. When we think of the ring R as a module over itself, the submodules of R are precisely the ideals of R.

Exercise 4. The kernel ker f and image im f of an R-module homomorphism $M \xrightarrow{f} N$ are submodules of M and N, respectively.

Theorem 0.15 (First Isomorphism Theorem). If $M \xrightarrow{f} N$ is a homomorphism of R-modules, then $M/\ker f \cong \operatorname{im} f$.

0.3 Why study commutative algebra?

There are many reasons why one would want to study commutative algebra. For starters, it's fun! Also, modern commutative algebra has connections with many fields of mathematics, including:

- Algebra Geometry
- Algebraic Topology
- Homological Algebra
- Category Theory
- Number Theory
- Arithmetic Geometry

- Combinatorics
- Invariant Theory
- Representation Theory
- Differential Algebra
- Lie Algebras
- Cluster Algebras

Chapter 1

Finiteness conditions

We start our study of commutative algebra by discussing modules and algebras, the most important structures over a given ring. We will discuss module-finite versus algebra-finite ring extensions, the relationship between the two concepts, and how they relate to integral extensions. We will then be ready to discuss noetherian rings; most of the rings we will be interested in are noetherian, as it often happens in commutative algebra.

1.1 Modules

In many ways, commutative algebra is the study of finitely generated modules. While vector spaces make for a great first example of modules, many of the basic facts we are used to from linear algebra are often a little more subtle in commutative algebra. These differences are features, not bugs. The first big noticeable difference between vector spaces and general modules is that while every vector space has a basis, most modules do not.

Definition 1.1. Let M be an R-module and $\Gamma \subseteq M$. The submodule of M generated by Γ , denoted $\sum_{m \in \Gamma} Rm$, is the smallest (with respect to containment) submodule of M containing Γ . We say Γ generates M, or is a set of generators for M, if $\sum_{m \in \Gamma} Rm = M$, meaning that every element in M can be written as a finite linear combination of elements in Γ . A basis for an R-module M is a generating set Γ for M such that $\sum_i a_i \gamma_i = 0$ implies $a_i = 0$ for all i. An R-module is free if it has a basis.

Example 1.2. Every vector space over a field k is a free k-module.

Remark 1.3. Every free R-module is isomorphic to a direct sum of copies of R. To construct such an isomorphism for the free R-module M, take a basis $\Gamma = \{\gamma_i\}_{i \in I}$ for M and let

$$\bigoplus_{i \in I} R \xrightarrow{\pi} M$$
$$(r_i)_{i \in I} \longrightarrow \sum_i r_i \gamma_i.$$

The condition that Γ is a basis for M is equivalent to π being an isomorphism of R-modules.

One of the key things that makes commutative algebra so rich and beautiful is that most modules are in fact *not* free. In general, every R-module has a generating set — for example, M itself. Given some generating set Γ for M, we can always write a **presentation**

$$\bigoplus_{i \in I} R \xrightarrow{\pi} M$$
$$(r_i)_{i \in I} \longrightarrow \sum_i r_i \gamma_i.$$

for M, but in general π will have a nontrivial kernel. A nonzero kernel element $(r_i)_{i\in I} \in \ker \pi$ corresponds to a **relation** between the generators of M.

Remark 1.4. A homomorphism of R-modules $M \longrightarrow N$ is completely determined by the images of the elements on any given set of generators for M.

Lemma 1.5. The following are equivalent:

- 1) Γ generates M as an R-module.
- 2) Every element of M can be written as a finite linear combination of the elements of Γ with coefficients in R.
- 3) The homomorphism $\theta: R^{\oplus Y} \to M$, where $R^{\oplus Y}$ is a free R-module with basis Y in bijection with Γ via $\theta(y_i) = \gamma_i$, is surjective.

Remark 1.6. The equivalence between 1) and 2) in Lemma 1.5 says that the submodule generated by Γ is exactly the set of all finite linear combinations of elements in Γ with coefficients in R, which explains the notation $\sum_{m \in \Gamma} Rm$.

Definition 1.7. We say that a module M is **finitely generated** if we can find a finite generating set for M.

A better name might be *finitely generatable*, since we do not need to know an actual finite set of generators to say that a module is finitely generated. The simplest finitely generated modules are the cyclic modules.

Example 1.8. An R-module is **cyclic** if it can be generated by one element. Equivalently, we can write M as a quotient of R by some ideal I. Indeed, given a generator m for M, the kernel of the map $R \xrightarrow{\pi} M$ induced by $1 \mapsto m$ is some ideal I. Since we assumed that m generates M, π is automatically surjective, and thus induces an isomorphism $R/I \cong M$.

Remark 1.9. More generally, if an R-module has n generators, we can naturally think about it as a quotient of R^n by the submodule of relations among those n generators. More precisely, if M is generated by $m_1, \ldots, m_n \in M$, then the homomorphism of R-modules

$$R^{n} \xrightarrow{\pi} M$$

$$(r_{1}, \dots, r_{n}) \longrightarrow r_{1}m_{1} + \dots + r_{n}m_{n}$$

that sends each of the canonical generators e_i of R^n to m_i is surjective; more precisely, this is a presentation for M. By the First Isomorphism Theorem, $M \cong R^n / \ker \pi$.

Macaulay2. Defining free modules in Macaulay2 is easy:

```
i1 : R = QQ[x,y,z];
i2 : M = R^3
3
o2 = R
```

o2 : R-module, free

Note that from now on and until we reset Macaulay2, whenever you write R it will be read as a ring, not a module; if instead you want to refer to the module R, you can write it as R^1. Alternatively, you can also use the command module and write module R. If you do calculations that require a module and not a ring, it is important to be careful about whether you write R or R^1; this is an easy way to get an error message.

If we want to define a module that happens to be an ideal, but we want to think about it as a module, we can simply use the command module to turn the ideal into a module:

```
i3 : I = ideal"xy,yz"

o3 = ideal (x*y, y*z)

o3 : Ideal of R

i4 : N = module I

o4 = image | xy yz |

o4 : R-module, submodule of R
```

If we forget that this is actually an ideal, and simply think about as a submodule of the module R, we can also view this module as the image of a map, as we described in Remark 1.9: if a submodule of R^m has n generators, we can view it as the the image of the map $R^n \to R^m$ that sends each of the canonical generators of R^n to the generators we chose for our module. In our example, our module is the image of the following map from R^2 to R:

Note that above, when we first defined the module N, Macaulay2 immediately stored that information in this exact way, as the image of the same map we just defined. This is useful to keep in mind when you see the results for a computation: if a module is given to us as the image of a matrix, then we are being told that our module is a submodule of some free module. If the matrix has n rows, then that means our module is a submodule of R^n . Each column corresponds to a generator of our module (as a submodule of R^n).

Of course that the modules M, N, and L we have defined are all the same module: the ideal (xy, yz). It is our job to know that; depending on how you ask the question, Macaulay2 might not be able to identify this. Finally, we can also describe this module by saying that it has two generators, say f and g, and there is a unique relation between them:

$$-zf + yg = 0.$$

This means that our module is the quotient of R^2 by the submodule generated by the relation (-z, y). We can write this as the quotient of R^2 by the image of a map landing in R^2 , meaning it is the cokernel of a map.

When a module is given to us in this format, as the cokernel of some matrix, we are essentially being given a presentation: the number of rows is the number of generators, while each column corresponds to a relation among those generators. If one the vector (r_1, \ldots, r_n) appears in a column of the matrix, that means that the generators m_1, \ldots, m_n satisfy the relation

$$r_1m_1 + \cdots + r_nm_n = 0.$$

Keep in mind that when you do a calculation and the result is a module given to you in this format, Macaulay2 will not necessarily respond with a *minimal* presentation: one of the generators given might actually be a linear combination of the remaining ones, so there might be more generators than necessary, and there might be superfluous relations which follow as linear combinations of the others. You might be able to get rid of some superfluous generators and relations using the command prune. We will discuss this in more detail when we talk about local rings.

1.2 Algebras

Definition 1.10 (Algebra). Given a ring R, an R-algebra is a ring S equipped with a ring homomorphism $\phi: R \to S$. This defines an R-module structure on S given by **restriction** of scalars: for each $r \in R$ and $s \in S$, $rs := \phi(r)s$. This R-module structure on S is compatible with the internal multiplication of S i.e.,

$$r(st) = (rs)t = s(rt)$$
 for all $r \in R, s, t \in S$.

We will call ϕ the **structure homomorphism** of the *R*-algebra *S*.

Example 1.11.

- 1) If A is a ring and x_1, \ldots, x_n are indeterminates, the inclusion map $A \hookrightarrow A[x_1, \ldots, x_n]$ makes the polynomial ring into an A-algebra.
- 2) More generally, any inclusion map $R \subseteq S$ gives S an R-algebra structure. In this case the R-module multiplication coincides with the internal (ring) multiplication on S.
- 3) Any ring comes with a unique structure as a \mathbb{Z} -algebra, since there is a unique ring homomorphism $\mathbb{Z} \to R$: the one given by $n \mapsto n \cdot 1_R$.

Definition 1.12 (algebra generation). Let S be an R-algebra with structure homomorphism φ and let $\Lambda \subseteq S$ be a set. The R-algebra generated by a subset Λ of S, denoted $R[\Lambda]$, is the smallest (with respect to containment) subring of S containing Λ and $\varphi(R)$. A set of elements $\Lambda \subseteq S$ generates S as an R-algebra if $S = R[\Lambda]$.

Note that there are two different meanings for the notation R[S] for a ring R and set S: one calls for a polynomial ring, and the other calls for a subring of something. If S is a subset of elements of some other larger ring which is clear from context, then we are talking about the algebra generated by S; in contrast, if S is just a set of indeterminates, then we are talking about a polynomial ring in those variables.

This can be unpackaged more concretely in a number of equivalent ways:

Lemma 1.13. The following are equivalent:

- 1) Λ generates S as an R-algebra.
- 2) Every element in S admits a polynomial expression in Λ with coefficients in $\phi(R)$, i.e.

$$S = \left\{ \sum_{\text{finite}} \phi(r_{i_1,\dots,i_n}) \lambda_1^{i_1} \cdots \lambda_n^{i_n} \mid r_l \in R, \lambda_j \in \Lambda, i_j \geqslant 0 \right\}.$$

3) If R[X] is a polynomial ring on a set of indeterminates X in bijection with Λ , then the R-algebra homomorphism

$$R[X] \xrightarrow{\pi} S$$
$$x_i \longmapsto \lambda_i$$

is surjective.

Proof. Let $S = \{\sum_{\text{finite}} \phi(a) \lambda_1^{i_1} \cdots \lambda_n^{i_n} \mid a \in A, \lambda_j \in \Lambda, i_j \in \mathbb{N} \}$. For the equivalence between 2) and 3), we note that S is the image of π . In particular, S is a subring of R. It then follows from the definition that 1) implies 2). Conversely, any subring of R containing $\phi(A)$ and Λ certainly must contain S, so 2) implies 1).

Let S be an R-algebra generated by Λ , let π be the surjective map in part 3) of Lemma 1.13, and let $I := \ker \pi$. By the First Isomorphism Theorem, we have a ring isomorphism $S \cong R[X]/I$. The elements of I are the **relations** among the generators in Λ . If we understand the ring R and generators and relations for S over R, we can get a pretty concrete understanding of S.

Note that the homomorphism π need not be injective. If the homomorphism π is injective (and thus an isomorphism) we say that S is a **free algebra**; a free algebra on R is isomorphic to a polynomial ring on R. The ideal $I = \ker(\pi)$ measures how far R is from being a free R-algebra and is called the set of **relations** on Λ .

Example 1.14. You may have seen this used in $\mathbb{Z}[\sqrt{d}]$ for some $d \in \mathbb{Z}$ to describe the ring

$$\{a+b\sqrt{d}\mid a,b\in\mathbb{Z}\}.$$

The \mathbb{Z} -algebra generated by \sqrt{d} in the most natural place, the algebraic closure of \mathbb{Q} , is exactly the set above. The point is that for any power $(\sqrt{d})^n$, we can always write n=2q+r with $r \in \{0,1\}$, so $(\sqrt{d})^n = d^q(\sqrt{d})^r$ is in the algebra generated by \mathbb{Z} and \sqrt{d} .

We can also write the one-generated \mathbb{Z} -algebra $\mathbb{Z}[\sqrt{d}]$ as a quotient of a polynomial ring in one variable: if d is not a perfect square, the map π in part 3) of Lemma 1.13 is

$$\mathbb{Z}[x] \xrightarrow{\pi} \mathbb{Z}[\sqrt{d}]$$
$$x \longmapsto \sqrt{d}$$

and its kernel is generated by $x^2 - d$, so $\mathbb{Z}[\sqrt{d}] \cong \mathbb{Z}[x]/(x^2 - d)$.

Similarly, the ring $\mathbb{Z}[\sqrt[3]{d}]$ can be written as

$$\mathbb{Z}[\sqrt[3]{d}] = \{a + b\sqrt[3]{d} + c\sqrt[3]{d^2} \mid a, b, c \in \mathbb{Z}\},\$$

which is a quotient of $\mathbb{Z}[x,y]$, and the map π in part 3) of Lemma 1.13 is

$$\mathbb{Z}[x] \xrightarrow{\pi} \mathbb{Z}[\sqrt[3]{d}]$$
$$x \longmapsto \sqrt[3]{d}$$
$$y \longmapsto \sqrt[3]{d^2}.$$

Macaulay2. Unfortunately, Macaulay2 does not understand subalgebras directly, only quotient rings. But as we have discussed, any R-algebra can be thought of as a quotient of a polynomial ring over R. For example, the Veronese algebra $V = \mathbb{Q}[x^2, xy, xz, y^2, yz, z^2]$ is a quotient of a polynomial ring over \mathbb{Q} in 6 variables, since it has 6 algebra generators. More precisely, V is the image of the map

$$\mathbb{Q}[w_1, \dots, w_6] \xrightarrow{\pi} R$$

$$(w_1, \dots, w_6) \longmapsto (x^2, xy, xz, y^2, yz, z^2)$$

so by the First Isomorphism Theorem, $V \cong \mathbb{Q}[w_1, \dots, w_6]/\ker \pi$.

o7 : QuotientRing

To do calculations with V, note that w_1 is actually x^2 , w_2 is xy, and so on.

Definition 1.15. We say that $\varphi : R \to S$ is algebra-finite, or S is a finitely generated R-algebra, or S is of finite type over R, if there exists a *finite* set of elements $f_1, \ldots, f_t \in S$ that generates S as an R-algebra.

A better name might be *finitely generatable*, since we do not need to know an actual finite set of generators to say that an algebra is finitely generated. From the discussion above, we conclude that S is a finitely generated R-algebra if and only if S is a quotient of some polynomial ring $R[x_1, \ldots, x_d]$ over R in finitely many variables. If S is generated over R by f_1, \ldots, f_d , we will use the notation $R[f_1, \ldots, f_d]$ to denote S. Of course, for this notation to properly specify a ring, we need to understand how these generators behave under the operations; this is no problem if R and f are understood to be contained in some larger ring.

There are many basic questions about algebra generators that are surprisingly difficult. Let $R = \mathbb{C}[x_1, \ldots, x_n]$ and $f_1, \ldots, f_n \in R$. When do f_1, \ldots, f_n generate R over \mathbb{C} ? It is not too hard to show that the Jacobian determinant

$$\det \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

must be a nonzero constant. It is a big open question whether this is in fact a sufficient condition!

1.3 Algebra-finite versus module-finite

Given an R-algebra S, we can consider the algebra structure of S over R, or its module structure over R. So instead of asking about how S is generated as an algebra over R, we can ask how it is generated as a module over R. We say S is module-finite over R if it is finitely generated as an R-module, and algebra-finite over R if it is finitely generated as an R-algebra. The notion of module-finite is much stronger than algebra-finite, since a linear combination is a very special type of polynomial expression.

Lemma 1.16.

- If M is a finitely generated R-module, then any generating set for M as an R-module contains a finite subset that generates M.
- If the ring S is algebra-finite over R, then any generating set for S as an R-algebra contains a finite subset that also generates S as an R-algebra.

Proof. Let Γ be a generating set for M as an R-module. If M is a finitely generated R-module, then we can find elements $f_1 \ldots, f_r$ that generate M as an R-module. Since Γ generates M, for each i we can find finitely many elements $\gamma_{i,1}, \ldots, \gamma_{i,n_i} \in \Gamma$ and R-coefficients $r_{i,1}, \ldots, r_{i,n_i}$ such

$$f_i = r_{i,1}\gamma_{i,1} + \dots + r_{i,n_i}\gamma_{i,n_i}.$$

The submodule N of M generated by all the $\gamma_{i,j}$ contains the elements f_1, \ldots, f_n , but since $M = Rf_1 + \cdots + f_n$, we conclude that M is generated by those finitely many $\gamma_{i,j}$, and thus by a finite subset of Γ .

The other proof is essentially the same, with the appropriate replacements: whenever we talk about a set that generates M as an R-module, we should instead consider a set that generates S as an R-algebra, and instead of taking linear combinations of elements we should consider polynomials in those elements with R-coefficients.

Remark 1.17. If S is an R-algebra,

- $R \subseteq S$ is algebra-finite if $S = R[f_1, \dots, f_n]$ for some $f_1, \dots, f_n \in S$.
- $R \subseteq S$ is module-finite if $S = Rf_1 + \cdots + Rf_n$ for some $f_1, \ldots, f_n \in S$.

Algebra generating sets can be very different from module generating sets.

Example 1.18. Given $n \ge 2$, the \mathbb{Q} -algebra $S = \mathbb{Q}[x]/(x^n)$ is generated as an algebra by the element x. Note, however, that this is not a free \mathbb{Q} -algebra: x satisfies the algebra relation $x^n = 0$. When we think about it as a \mathbb{Q} -module, x does not generate S, since we are no longer allowed to take products of x by itself. The set $\{1, x, \dots x^n\}$ is a generating set for S as a module; this is of course the same as asking for a basis for the \mathbb{Q} -vector space S.

Lemma 1.19. If S is a module-finite R-algebra, then it is also algebra-finite.

Proof. Let $S = Rf_1 + \cdots + Rf_n$, meaning that f_1, \ldots, f_n is a set of module generators for S over R. Note that every R-linear combination of f_1, \ldots, f_n is also an element of $R[f_1, \ldots, f_n]$, and thus S is a subalgebra of $R[f_1, \ldots, f_n]$. On the other hand, since $f_1, \ldots, f_n \in S$ and S is an R-algebra, every polynomial in f_1, \ldots, f_n with coefficients in R is also in S, and thus $S = R[f_1, \ldots, f_n]$, so that S is algebra-finite over R.

The converse, however, is false: it is *harder* to be module-finite than algebra-finite.

Example 1.20.

- a) The Gaussian integers $\mathbb{Z}[i]$ satisfy the well-known property (or definition, depending on your source) that any element $z \in \mathbb{Z}[i]$ admits a unique expression z = a + bi with $a, b \in \mathbb{Z}$. That is, $\mathbb{Z}[i]$ is generated as a \mathbb{Z} -module by $\{1, i\}$; moreover, $\{1, i\}$ is a free module basis! As a \mathbb{Z} -algebra, $\mathbb{Z}[i]$ is generated by i, but it is not a free \mathbb{Z} -algebra, since $i^2 1 = 0$.
- b) If R is a ring and x an indeterminate, the algebra-finite extension $R \subseteq R[x]$ is not module-finite. Indeed, R[x] is a free R-module on the basis $\{1, x, x^2, x^3, \dots\}$.
- c) Another map that is *not* module-finite is the inclusion $R := k[x] \subseteq k[x, \frac{1}{x}] =: S$. First, note that any element of $k[x, \frac{1}{x}]$ can be written in the form $\frac{f(x)}{x^n}$ for some $f \in k[x]$ and some $n \ge 0$. Now any finitely generated R-submodule of S is of the form

$$M = \sum_{i} R \cdot \frac{f_i(x)}{x^{n_i}} = \sum_{i} k[x] \cdot \frac{f_i(x)}{x^{n_i}}.$$

If $n := \max\{n_i\}_i$, then $M \subseteq \frac{1}{x^n}k[x] \neq k[x, \frac{1}{x}] = S$.

d) Even innocent looking examples can be quite complicated. For example, we claim that the extension $\mathbb{Z} \subseteq \mathbb{Q}$ is neither module-finite nor algebra-finite. To see that, we first claim that the set

$$P = \left\{ \frac{1}{p} \mid p \text{ prime integer} \right\}$$

generates \mathbb{Q} as a \mathbb{Z} -algebra. The key point here is the Fundamental Theorem of Arithmetic: since any positive integer n can be written as a product $n=p_1^{a_1}\cdots p_s^{a_s}$ where the p_i are all prime and the $a_i\geqslant 0$ are nonnegative integers, we see that the rational number $\frac{m}{n}\neq 0$ can be written as

$$\frac{m}{n} = m \left(\frac{1}{p_1}\right)^{a_1} \cdots \left(\frac{1}{p_s}\right)^{a_s} \in \mathbb{Z}\left[\frac{1}{p_1}, \dots, \frac{1}{p_s}\right] \subseteq \mathbb{Z}[P].$$

On the other hand, note that any finite subset of P is contained in

$$\left\{ \frac{1}{p} \mid p \leqslant q \text{ prime integer} \right\}$$

for some fixed prime q, and that

$$\mathbb{Z}\left[\frac{1}{p} \mid p \leqslant q \text{ is prime}\right]$$

contains only rational numbers whose denominator is a product of primes smaller than q. But there are infinitely many primes, and thus this cannot be all of \mathbb{Q} . By Lemma 1.16, we can conclude that \mathbb{Q} is not a algebra-finite over \mathbb{Z} . But then \mathbb{Q} cannot be module-finite over \mathbb{Z} , by Lemma 1.19.

Lemma 1.21. If $R \subseteq S$ is module-finite and N is a finitely generated S-module, then N is a finitely generated R-module by restriction of scalars. In particular, the composition of two module-finite ring maps is module-finite.

Proof. Let $S = Ra_1 + \cdots + Ra_r$ and $N = Sb_1 + \cdots + Sb_s$. Then we claim that

$$N = \sum_{i=1}^{r} \sum_{j=1}^{s} Ra_i b_j.$$

Indeed, given $n = \sum_{j=1}^{s} s_j b_j$, rewrite each $s_j = \sum_{i=1}^{r} r_{ij} a_i$ and substitute to get

$$n = \sum_{i=1}^{r} \sum_{j=1}^{s} r_{ij} a_i b_j$$

as an R-linear combination of the $a_i b_i$.

Remark 1.22. Let $A \subseteq B \subseteq C$ be rings. It follows from the definitions that

$$A\subseteq B \text{ algebra-finite}$$
 and
$$\Longrightarrow A\subseteq C \text{ algebra-finite}$$

$$B\subseteq C \text{ algebra-finite}$$

• $A \subseteq C$ algebra-finite $\Longrightarrow B \subseteq C$ algebra-finite.

However, $A \subseteq C$ algebra-finite $\implies A \subseteq B$ algebra-finite.

Example 1.23. Let k be a field and

$$B = k[x, xy, xy^2, xy^3, \cdots] \subseteq C = k[x, y],$$

where x and y are indeterminates. While B and C are both k-algebras, C is a finitely generated k-algebra, while B is not. To see this, first note by Lemma 1.16 it is sufficient to show that no finite subset of $\{xy^n \mid n \geq 1\}$ generates B over k. Since any such subset is contained in $\{xy^n \mid 1 \leq n \leq m\}$ for some fixed m it is sufficient to show that B is not $k[x, xy, \ldots, xy^m]$ for any m. Now note that every element of $k[x, xy, \ldots, xy^m]$ is a k-linear combination of monomials x^iy^j with $j \leq mi$, so this ring does not contain xy^{m+1} . Therefore, B is not a finitely generated A-algebra.

Remark 1.24. Let $A \subseteq B \subseteq C$ be rings. It follows from the definitions that

$$A \subseteq B \text{ module-finite}$$

$$\qquad \qquad \text{and} \qquad \Longrightarrow \qquad A \subseteq C \text{ module-finite}$$

$$B \subseteq C \text{ module-finite}$$

• $A \subseteq C$ module-finite $\Longrightarrow B \subseteq C$ module-finite.

However, we will see that $A \subseteq C$ module-finite $\implies A \subseteq B$ module-finite. This construction is a bit more involved, so we will leave it for the problem sets.

Remark 1.25. Any surjective ring homomorphism $\varphi: R \to S$ is both algebra-finite and module-finite, since S must then be generated over R by 1. Moreover, we can always factor φ as the surjection $R \longrightarrow R/\ker(\varphi)$ followed by the inclusion $R/\ker(\varphi) \hookrightarrow S$, so to understand algebra-finiteness or module-finiteness it suffices to restrict our attention to injective homomorphisms.

1.4 Integral extensions

In field theory, there is a close relationship between (vector space-)finite field extensions and algebraic equations. The situation for rings is similar, but much more subtle.

Definition 1.26 (Integral element/extension). Let R be an A-algebra. The element $r \in R$ is **integral** over A if there are elements $a_0, \ldots, a_{n-1} \in A$ such that

$$r^{n} + a_{n-1}r^{n-1} + \dots + a_{1}r + a_{0} = 0,$$

we say that r satisfies an equation of integral dependence over A. We say that R is integral over A if every $r \in R$ is integral over A.

Integral automatically implies algebraic, but the condition that there exists an equation of algebraic dependence that is *monic* is stronger in the setting of rings. This is very different to what happens over fields, where algebraic and integral are equivalent conditions.

Example 1.27. Let's see some examples of elements that are integral over \mathbb{Z} , and others that are not. First, consider the \mathbb{Z} -algebra $R = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mod a, b \in \mathbb{Z}\}$. The element $\sqrt{2}$ is integral over \mathbb{Z} , since it satisfies the equation of integral dependence $x^2 - 2 = 0$.

On the other hand, $\frac{1}{2} \in \mathbb{Q}$ is not integral over \mathbb{Z} : if $a_0, \ldots, a_{n-1} \in \mathbb{Z}$ are such that

$$\left(\frac{1}{2}\right)^n + a_{n-1} \left(\frac{1}{2}\right)^{n-1} + \dots + a_0 = 0,$$

then multiplying by 2^n gives

$$1 + 2a_{n-1} + \dots + 2^n a_0 = 0,$$

which is impossible for parity reasons (the left hand-side is odd!). Notice, in contrast, that $\frac{1}{2}$ is algebraic over \mathbb{Z} , since it satisfies 2x - 1 = 0.

Definition 1.28. Consider an an inclusion of rings $A \subseteq R$. The **integral closure** of A in R is the set of elements in R that are integral over A. We say A is **integrally closed** in R if A is its own integral closure in R. The integral closure of a domain R in its field of fractions is usually denoted by \overline{R} . A **normal domain** is a domain R that is integrally closed in its field of fractions, meaning $R = \overline{R}$.

Example 1.29. The ring of integers \mathbb{Z} is a normal domain, meaning its integral closure in its fraction field \mathbb{Q} is \mathbb{Z} itself. The key idea to show this is similar to the argument we used in Example 1.27 to show that $\frac{1}{2}$ is not integral over \mathbb{Z} .

In fact, this is a special case of the fact that every UFD is normal.

Exercise 5. Show that every unique factorization domain is normal.

Remark 1.30. We cannot talk about the integral closure of a ring R without specifying in what extension; the integral closures of R in different extension can be very different. In Example 1.27, we saw that the integral closure of \mathbb{Z} in $\mathbb{Z}[\sqrt{2}]$ contains at least \mathbb{Z} and $\sqrt{2}$, while Example 1.29 says that the integral closure of \mathbb{Z} in \mathbb{Q} is \mathbb{Z} .

When R is a domain, if we ever refer to the integral closure of R, it is understood that we mean the integral closure of R in its field of fractions, \overline{R} .

When we study integral extensions, we can can restrict our focus to inclusion maps $A \subseteq R$, just like we did with module-finite and algebra-finite extensions.

Remark 1.31. An element $r \in R$ is integral over A if and only if r is integral over the subring $\varphi(A) \subseteq R$, so we might as well assume that φ is injective.

Proposition 1.32. Consider a ring extension $A \subseteq R$.

- 1) If $r \in R$ is integral over A, then A[r] is module-finite over A.
- 2) If $r_1, \ldots, r_t \in R$ are integral over A, then $A[r_1, \ldots, r_t]$ is module-finite over A.

 Proof.
- 1) Let r be integral over A, with $r^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0$ for some $a_i \in A$. We claim that $A[r] = A + Ar + \cdots + Ar^{n-1}$. Since A[r] is generated by all the powers r^m of r as an A-module, to show that any polynomial $p(r) \in A[r]$ is in $A + Ar + \cdots + Ar^{n-1}$ it is enough to show that $r^m \in A + Ar + \cdots + Ar^{n-1}$ for all m. Using induction on m, the base cases $1, r, \ldots, r^{n-1} \in A + Ar + \cdots + Ar^{n-1}$ are obvious. For the induction step, we need to show that $r^m \in A + Ar + \cdots + Ar^{n-1}$ for all $m \ge n-1$; we can do this by induction because we can use the equation above to rewrite r^m as

$$r^{m} = -r^{m-n}(a_{n-1}r^{n-1} + \dots + a_{1}r + a_{0})$$

= $-a_{n-1}r^{m-1} - \dots + a_{1}r^{m-n+1} - a_{0}r^{m-n}$,

which is a linear combination of powers of r of degree up to m-1.

2) Write

$$A_0 := A \subseteq A_1 := A[r_1] \subseteq A_2 := A[r_1, r_2] \subseteq \cdots \subseteq A_t := A[r_1, \dots, r_t].$$

Since r_i is integral over A, it is also integral over A_{i-1} , via the same monic equation that r_i satisfies over A. By part 1), we conclude that the each extension $A_{i-1} \subseteq A_i$ is module-finite. Thus the inclusion $A \subseteq A[r_1, \ldots, r_t]$ is a composition of module-finite maps, and thus by Remark 1.24 it is also module-finite.

In what follows, we will need the following elementary linear algebra fact, which is actually very useful in various contexts within commutative algebra. In fact, later in this class we will use this useful fact again, perhaps when you least expect it. This is a nice example of an algebra fact that holds over any ring that we can actually reduce to the case of fields.

Definition 1.33. The classical adjoint of an $n \times n$ matrix $B = [b_{ij}]$ is the matrix $\operatorname{adj}(B)$ with entries $\operatorname{adj}(B)_{ij} = (-1)^{i+j} \operatorname{det}(\widehat{B}_{ji})$, where \widehat{B}_{ji} is the matrix obtained from B by deleting its jth row and ith column.

Lemma 1.34 (Determinantal trick). Let R be a ring, $B \in M_{n \times n}(R)$, $v \in R^n$, and $r \in R$.

- 1) $\operatorname{adj}(B)B = \det(B)I_{n \times n}$.
- 2) If Bv = rv, then $det(rI_{n \times n} B)v = 0$.

Proof.

1) When R is a field, this is a basic linear algebra fact. We will deduce the case of a general ring from the field case. The ring R is a \mathbb{Z} -algebra, so we can write R as a quotient of some polynomial ring $\mathbb{Z}[X]$. Let $\psi : \mathbb{Z}[X] \longrightarrow R$ be a surjection, $a_{ij} \in \mathbb{Z}[X]$ be such that $\psi(a_{ij}) = b_{ij}$, and let $A = [a_{ij}]$. Note that

$$\psi(\operatorname{adj}(A)_{ij}) = \operatorname{adj}(B)_{ij}$$
 and $\psi((\operatorname{adj}(A)A)_{ij}) = (\operatorname{adj}(B)B)_{ij}$,

since ψ is a homomorphism, and the entries are the same polynomial functions of the entries of the matrices A and B, respectively. Thus, it suffices to establish

$$\operatorname{adj}(B)B = \det(B)I_{n \times n}$$

in the case when $R = \mathbb{Z}[X]$, and we can do this entry by entry. Now, $R = \mathbb{Z}[X]$ is an integral domain, hence a subring of a field (its fraction field). Since both sides of the equation

$$(\operatorname{adj}(B)B)_{ij} = (\det(B)I_{n\times n})_{ij}$$

live in R and are equal in the fraction field (by linear algebra) they are equal in R. This holds for all i, j, and thus 1) holds.

2) By assumption, we have $(rI_{n\times n} - B)v = 0$, so by part 1)

$$\det(rI_{n\times n} - B)v = \operatorname{adj}(rI_{n\times n} - B)(rI_{n\times n} - B)v = 0.$$

Theorem 1.35 (Module finite implies integral). Let $A \subseteq R$ be module-finite. Then R is integral over A.

Proof. Given $r \in R$, we want to show that r is integral over A. The idea is to show that multiplication by r, realized as a linear transformation over A, satisfies the characteristic polynomial of that linear transformation.

Suppose that $R = Af_1 + \cdots + Af_n$. We may assume that $f_1 = 1$, perhaps by adding a module generator. Since every element in R is an A-linear combination of f_1, \ldots, f_n , this is in particular true for the elements rf_1, \ldots, rf_n . Thus we can find $a_{ij} \in A$ such that

$$rf_i = \sum_{j=1}^t a_{ij} f_j$$

for each *i*. Consider the matrix $C = [a_{ij}]$ and the column vector $v = (f_1, \ldots, f_n)$. We can now write the equalities above more compactly as rv = Cv. By the determinantal trick, $\det(rI_{n\times n} - C)v = 0$. Since we chose one of the entries of v to be 1, we have in particular that $\det(rI_{n\times n} - C) = 0$. Expanding this determinant as a polynomial in r, this is a monic equation with coefficients in A.

We are now ready to show the following important characterization of module-finite extensions, which tells us exactly what we need besides algebra-finite to force an extension to be module-finite:

Corollary 1.36. An A-algebra R is module-finite over A if and only if R is integral and algebra-finite over A.

Proof. (\Rightarrow): Module-finite implies integral by Theorem 1.35, and algebra-finite by Lemma 1.19. (\Leftarrow): If $R = A[r_1, \ldots, r_t]$ is integral over A, then each r_i is integral over A, and this implies R is module-finite over A by Proposition 1.32,.

Corollary 1.37. If R is generated as an algebra over A by integral elements, then R is integral over A.

Proof. Let $R = A[\Lambda]$, with λ integral over A for all $\lambda \in \Lambda$. Given $r \in R$, there is a finite subset $L \subseteq \Lambda$ such that $r \in A[L]$. This A[L] is now a finitely-generated algebra generated by integral elements, and thus by Corollary 1.36 it must be module-finite over A. By Theorem 1.35, module-finite implies integral, and thus A[L] is an integral extension of A. In particular, $r \in A[L]$ is integral over A.

Corollary 1.38. Given any ring extension $A \subseteq S$, the set of elements of S that are integral over A form a subring of S.

Proof. By Corollary 1.37, the A-subalgebra of R generated by all elements in R that are integral over A is integral over A, so it is contained in the set of all elements that are integral over A: this means that

 $\{\text{integral elements}\}\subseteq A[\{\text{integral elements}\}]\subseteq \{\text{integral elements}\},$

so equality holds throughout, and {integral elements} is a ring.

In other words, the integral closure of A in R is a subring of R containing A.

Example 1.39.

- 1) The ring $\mathbb{Z}[\sqrt{d}]$, where $d \in \mathbb{Z}$ is not a perfect square, is integral over \mathbb{Z} . Indeed, \sqrt{d} satisfies the monic polynomial $x^2 d$, and since the integral closure of \mathbb{Z} is a ring containing \mathbb{Z} and \sqrt{d} , and $\mathbb{Z}[\sqrt{d}]$ is the smallest such ring, we conclude that every element in $\mathbb{Z}[\sqrt{d}]$ is integral over \mathbb{Z} .
- 2) Let $R = \mathbb{C}[x,y] \subseteq S = \mathbb{C}[x,y,z]/(x^2+y^2+z^2)$. Then we claim that S is module-finite over R, though to see this we first need to realize R as a subring of S. To do that, consider the \mathbb{C} -algebra homomorphism

$$R \xrightarrow{\varphi} S$$
$$(x,y) \longmapsto (x,y).$$

The kernel of φ consists of the polynomials in x and y that are multiples of $x^2 + y^2 + z^2$, but any nonzero multiple of $x^2 + y^2 + z^2$ in $\mathbb{C}[x, y, z] = R[z]$ must have z-degree at least 2, which implies it involves z and thus it is not in $\mathbb{C}[x, y]$. We conclude that φ is injective, and thus $R \subseteq S$.

Now S is generated over R as an algebra by one element, z, and z satisfies the monic equation $t^2 + (x^2 + y^2) = 0$, so S is integral over R.

Note, however, that not all integral extensions are module-finite.

Example 1.40. Let k be a field, and consider the k[x]-algebra R given by

$$k[x] \subseteq R = k[x, x^{1/2}, x^{1/3}, x^{1/4}, x^{1/5}, \ldots].$$

Note that $x^{1/n}$ satisfies the monic polynomial $t^n - x$, and thus it is integral over k[x]. Since R is generated by elements that are integral over k[x], by Corollary 1.37 it must be an integral extension of A. However, $k[x] \subseteq R$ is not algebra-finite, and thus it is also not module-finite.

Exercise 6. Given ring extensions $A \subseteq B \subseteq C$, the extensions $A \subseteq B$ and $B \subseteq C$ are integral if and only if $A \subseteq C$ is integral.

Finally, here is a useful fact about integral extensions that we will use multiple times.

Theorem 1.41. If $R \subseteq S$ is an integral extension of domains, then R is a field if and only if S is a field.

Proof. Suppose that R is a field, and let $s \in S$ be a nonzero element, which is necessarily integral over R. The ring R[s] is algebra-finite over R by construction, and integral over R by Corollary 1.37. Since $R \subseteq R[s]$ is integral and algebra-finite, it must also be module-finite by Corollary 1.36. Since R is a field, this means that R[s] is a finite-dimensional vector space over R. Since $R[s] \subseteq S$ is a domain, the map $R[s] \xrightarrow{s} R[s]$ is injective. Notice that this is a map of finite-dimensional R-vector spaces, and thus it must also be surjective. In particular, there exists an element $t \in R[s]$ such that s = 1, and thus s = 1 is invertible. We conclude that s = 1 must be a field.

Now suppose that S is a field, and let $r \in R$. Since $r \in R \subseteq S$, there exists an inverse r^{-1} for r in S, which must be integral over R. Given any equation of integral dependence for r^{-1} over R, say

$$(r^{-1})^n + a_{n-1}(r^{-1})^{n-1} + \dots + a_0 = 0$$

with $a_i \in R$, we can multiply by r^{n-1} to obtain

$$r^{-1} = -a_{n-1} - \dots - a_0 r^{n-1} \in R.$$

Therefore, r is invertible in R, and R is a field.

Before we move on from algebra-finite and module-finite extensions, we should remark on what the situation looks like over fields. First, note that over a field, module-finite just means finite dimensional vector space. While over a general ring the notions of algebra-finite and module-finite are quite different, they are actually equivalent over a field. This is a very deep fact, and we will unfortunately skip its proof — since it is a key ingredient in proving a fundamental result in algebraic geometry, we will leave it for the algebraic geometry class next semester.

Theorem 1.42 (Zariski's Lemma). A field extension $k \subseteq L$ is algebra-finite if and only if it is module-finite.

The following corollary follows immediately from what we proved in this section:

Corollary 1.43. Let k be an algebraically closed field. If the field extension $k \subseteq L$ is algebra-finite, then k = L.

Proof. By Theorem 1.42, $k \subseteq L$ must be module-finite. By Theorem 1.35, any module-finite extension must be integral. When we are over a field, integral is the same as algebraic, but integrally closed fields have no nontrivial algebraic extensions.

We have shown the following about ring extensions:

The remaining implications are all false:

- Given an indeterminate x, the extension $R \subseteq R[x]$ is algebra-finite but not module finite nor integral.
- Example 1.40 is an example of an integral extension that is not module-finite nor algebra-finite.

1.5 We interrupt this broadcast for a very short introduction to exact sequences

Homological techniques play a central role in commutative algebra. Ideally, our study of commutative algebra would start with a semester long course on homological algebra; but we are not assuming any homological algebra background, and thus we need to introduce some elementary homological algebra tools.

Definition 1.44. An exact sequence of R-modules is a sequence

$$\cdots \xrightarrow{f_{n-1}} M_n \xrightarrow{f_n} M_{n+1} \xrightarrow{f_{n+1}} \cdots$$

of R-modules and R-module homomorphisms such that im $f_n = \ker f_{n+1}$ for all n. An exact sequence of the form

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

is called a **short exact sequence**.

Example 1.45. Let $R = k[x]/(x^2)$, where k is any field. The $R \xrightarrow{x} R$ has image and kernel (x), so the following is an exact sequence:

$$\cdots \longrightarrow R \xrightarrow{x} R \xrightarrow{x} R \longrightarrow \cdots$$

Remark 1.46. The sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N$$

is exact if and only if f is injective. Similarly,

$$M \xrightarrow{f} N \longrightarrow 0$$

is exact if and only if f is surjective. As a consequence, we see that

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \longrightarrow 0$$

is exact if and only if f is an isomorphism. Moreover,

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

is a short exact sequence if and only if

- f is injective
- \bullet g is surjective
- im $f = \ker q$.

So when this is indeed a short exact sequence, we can identify A with its image f(A), which makes $A = \ker g$. Moreover, since g is surjective, by the First Isomorphism Theorem we conclude that $C \cong B/A$, so we might abuse notation and identify C with B/A. In particular, note that $C = \operatorname{coker} f$.

In summary, any short exact sequence encodes an inclusion and its cokernel, or equivalently a surjection an its kernel. To give a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

is the same as giving an inclusion of modules $A \subseteq B$ and the corresponding quotient module B/A.

Example 1.47. The following is a short exact sequence of \mathbb{Z} -modules:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

Indeed, multiplication by 2 on \mathbb{Z} is injective, and its cokernel is $\mathbb{Z}/2\mathbb{Z}$. Another way to look at this is to notice that the kernel of the canonical projection map $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is the ideal generated by 2, which is a free \mathbb{Z} -module with 1 generator. The map $\mathbb{Z} \xrightarrow{2} \mathbb{Z}$ corresponds to the inclusion of that module in \mathbb{Z} .

Remark 1.48. Suppose that

$$0 \longrightarrow M \longrightarrow 0$$

is an exact sequence. This means that the image of the zero map to M, which is the zero module, is the same as the kernel of the zero map from M, which is all of M. Thus saying that

$$0 \longrightarrow M \longrightarrow 0$$

is equivalent to saying that M=0.

1.6 Noetherian rings

Most rings that commutative algebraists naturally want to study are noetherian. Noetherian rings are named after Emmy Noether, who is in many ways the mother of modern commutative algebra.

Definition 1.49 (Noetherian ring). A ring R is **noetherian** if every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

eventually stabilizes: there is some N for which $I_n = I_{n+1}$ for all $n \ge N$.

This condition can be restated in various equivalent forms.

Proposition 1.50. Let R be a ring. The following are equivalent:

- 1) R is a noetherian ring.
- 2) Every nonempty family of ideals has a maximal element (under \subseteq).
- 3) Every ascending chain of finitely generated ideals of R stabilizes.
- 4) Given any generating set S for an ideal I, I is generated by a finite subset of S.
- 5) Every ideal of R is finitely generated.

Proof.

- $(1)\Rightarrow(2)$: We prove the contrapositive. Suppose there is a nonempty family of ideals with no maximal element. This means that we can keep inductively choosing larger ideals from this family to obtain an infinite properly ascending chain, so R is not noetherian.
- $(2)\Rightarrow(1)$: An ascending chain of ideals is a family of ideals, and the maximal ideal in the family indicates where our chain stabilizes.
 - $(1)\Rightarrow(3)$: Clear, since (3) is a special case of (1).
- $(3)\Rightarrow (4)$: Let's prove the contrapositive. Suppose that there is an ideal I and a generating set S for I such that no finite subset of S generates I. So for any finite $S'\subseteq S$ we have $(S')\subsetneq (S)=I$, so there is some $s\in S\smallsetminus (S')$. Thus, $(S')\subsetneq (S'\cup \{s\})$. Inductively, we can continue this process to obtain an infinite proper chain of finitely generated ideals, so (3) does not hold.
 - $(4) \Rightarrow (5)$: Clear.
 - $(5) \Rightarrow (1)$: Given an ascending chain of ideals

$$I_1 \subset I_2 \subset I_3 \subset \cdots$$

let $I = \bigcup_{n \in \mathbb{N}} I_n$. In general, the union of two ideals might fail to be an ideal, but the union of a chain of ideals is an ideal (exercise). By assumption, the ideal I is finitely generated, say $I = (a_1, \ldots, a_t)$. Now since each a_i is in I, it must be in some I_{n_i} , by definition. Thus for any $N \geqslant \max n_i$, we have $a_1, \ldots, a_t \in I_N$. But then $I_N = I$, and thus $I_n = I_{n+1}$ for all $n \geqslant N$. Thus the original chain stabilizes, and R is noetherian.

Remark 1.51. When we say that every non-empty family of ideals has a maximal element, that maximal element does not have to be unique in any way. An ideal I is maximal in the family \mathcal{F} if $I \subseteq J$ for some $J \in \mathcal{F}$ implies I = J. However, we might have many incomparable maximal elements in \mathcal{F} . For example, every element in the family of ideals in \mathbb{Z} given by

$$\mathcal{F} = \{(p) \mid p \text{ is a prime integer}\}$$

is maximal.

Remark 1.52. If R is a noetherian ring and S is a non-empty set of ideals in R, not only does S have a maximal element, but every element in S must be contained in a maximal element of S. Given an element $I \in S$, the subset T of S of ideals in S that contain I is nonempty, and must then contain a maximal element I by Proposition 1.50. If $I \subseteq L$ for some $I \in S$, then $I \subseteq L$, so $I \in T$, and thus by maximality of I in I, we must I = I. This proves that I is in fact a maximal element in I, and by construction it contains I.

Example 1.53.

- 1) If R = k is a field, the only ideals in k are (0) and (1) = k, so k is a noetherian ring.
- 2) \mathbb{Z} is a noetherian ring, since all ideals are principal. More generally, if R is a PID, then R is noetherian. Indeed, every ideal is finitely generated!
- 3) As a special case of the previous example, consider the ring of germs of complex analytic functions near 0,

$$\mathbb{C}\{z\} := \{f(z) \in \mathbb{C}[\![z]\!] \mid f \text{ is analytic on a neighborhood of } z = 0\}.$$

This ring is a PID: every ideal is of the form (z^n) , since any $f \in \mathbb{C}\{z\}$ can be written as $z^n g(z)$ for some $g(z) \neq 0$, and any such g(z) is a unit in $\mathbb{C}\{z\}$.

4) A ring that is *not* noetherian is a polynomial ring in infinitely many variables over a field $k, R = k[x_1, x_2, \ldots]$: the ascending chain of ideals

$$(x_1) \subseteq (x_1, x_2) \subseteq (x_1, x_2, x_3) \subseteq \cdots$$

does not stabilize.

5) The ring $R = K[x, x^{1/2}, x^{1/3}, x^{1/4}, x^{1/5}, \dots]$ is also *not* noetherian. A nice ascending chain of ideals is

$$(x) \subseteq (x^{1/2}) \subseteq (x^{1/3}) \subseteq (x^{1/4}) \subseteq \cdots$$

6) The ring of continuous real-valued functions $\mathcal{C}(\mathbb{R},\mathbb{R})$ is not noetherian: the chain of ideals

$$I_n = \{ f(x) \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \mid f|_{[-1/n, 1/n]} \equiv 0 \}$$

is increasing and proper. The same construction shows that the ring of infinitely differentiable real functions $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ is not noetherian: properness of the chain follows from, e.g., Urysohn's lemma (though it's not too hard to find functions distinguishing the ideals in the chain). Note that if we asked for analytic functions instead of infinitely-differentiable functions, every element of the chain would be the zero ideal!

Lemma 1.54. Let R be a ring and I an ideal in R. If R is noetherian, then so is R/I.

Proof. There is an order preserving bijection

$$\{\text{ideals of } R \text{ that contain } I\} \longleftrightarrow \{\text{ideals of } R/I\}$$

that sends the ideal $J \supseteq I$ to J/I; its inverse is the map that sends each ideal in R/I to its preimage. Given this bijection, chains of ideals in R/I come from chains of ideals in R that contain J. This implies that if R is noetherian, then R/I is noetherian as well.

This gives us many more examples of noetherian rings, by simply taking quotients of the examples above. We will soon show that any polynomial ring over a notherian ring is also notherian; as a consequence, we obtain that any quotient of a polynomial ring over a field is noetherian. This is the content of Hilbert's Basis Theorem.

But first, we need to talk about noetherian modules.

Definition 1.55 (Noetherian module). An R-module M is **noetherian** if every ascending chain of submodules of M eventually stabilizes.

There are analogous equivalent definitions for modules as we had above for rings; the proof is analogous, so we leave it as an exercise.

Proposition 1.56 (Equivalence definitions for noetherian module). Let M be an R-module. The following are equivalent:

- 1) M is a noetherian module.
- 2) Every nonempty family of submodules has a maximal element.
- 3) Every ascending chain of finitely generated submodules of M eventually stabilizes.
- 4) Given any generating set S for a submodule N, the submodule N is generated by a finite subset of S.
- 5) Every submodule of M is finitely generated.

In particular, a noetherian module must be finitely generated.

Remark 1.57. The submodules of a ring are its ideals. Thus a ring R is a noetherian ring if and only if R is noetherian as a module over itself. However, a noetherian ring need not be a noetherian module over a subring. For example, consider $\mathbb{Z} \subseteq \mathbb{Q}$. These are both noetherian rings, but \mathbb{Q} is not a noetherian \mathbb{Z} -module; for example, the following is an ascending chain of submodules which does not stabilize:

$$0 \subsetneq \frac{1}{2}\mathbb{Z} \subsetneq \frac{1}{2}\mathbb{Z} + \frac{1}{3}\mathbb{Z} \subsetneq \frac{1}{2}\mathbb{Z} + \frac{1}{3}\mathbb{Z} + \frac{1}{5}\mathbb{Z} \subsetneq \cdots$$

A module B is noetherian if and only if it has a submodule A such that both A and B/A are noetherian.

Lemma 1.58 (Noetherianity in exact sequences). In an exact sequence of modules

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

B is noetherian if and only if A and C are noetherian.

Proof. Assume B is noetherian. Since A is a submodule of B, and its submodules are also submodules of B, A is noetherian. Moreover, any submodule of B/A is of the form D/A for some submodule $D \supseteq A$ of B. Since every submodule of B is finitely generated, every submodule of C is also finitely generated. Therefore, C is noetherian.

Conversely, assume that A and C are noetherian, and let

$$M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$$

be a chain of submodules of B. First, note that

$$M_1 \cap A \subseteq M_2 \cap A \subseteq \cdots$$

is an ascending chain of submodules of A, and thus it stabilizes. Moreover,

$$g(M_1) \subseteq g(M_2) \subseteq g(M_3) \subseteq \cdots$$

is a chain of submodules of C, and thus it also stabilizes. Pick a large enough index n such that both of these chains stabilize. We claim that $M_n = M_{n+1}$, so that the original chain stabilizes as well. To show that, take $x \in M_{n+1}$. Then

$$g(x) \in g(M_{n+1}) = g(M_n)$$

so we can choose some $y \in M_n$ such that g(x) = g(y). Then $x - y \in \ker g = \operatorname{im} f = A$. Now note that $y \in M_n \subseteq M_{n+1}$, so $x - y \in M_{n+1}$, and thus

$$x - y \in M_{n+1} \cap A = M_n \cap A.$$

Then $x - y \in M_n$, and since $y \in M_n$, we must have $x \in M_n$ as well.

Corollary 1.59. If A and B are noetherian R-modules, then $A \oplus B$ is a noetherian R-module.

Proof. Apply the previous lemma to the short exact sequence

$$0 \longrightarrow A \longrightarrow A \oplus B \longrightarrow B \longrightarrow 0$$
.

Corollary 1.60. A module M is noetherian if and only if M^n is noetherian for some n. In particular, if R is a noetherian ring then R^n is a noetherian module.

Proof. We will do induction on n. The case n = 1 is a tautology. For n > 1, consider the short exact sequence

$$0 \longrightarrow M^{n-1} \longrightarrow M^n \longrightarrow M \longrightarrow 0$$

Lemma 1.58 and the inductive hypothesis give the desired conclusion.

Proposition 1.61. Let R be a noetherian ring. Given an R-module M, M is a noetherian R-module if and only if M is finitely generated. Consequently, any submodule of a finitely generated R-module is also finitely generated.

Proof. If M is noetherian, M is finitely generated by the equivalent definitions above, and so are all of its submodules.

Now let R be noetherian and M be a finitely generated R-module. Then M is isomorphic to a quotient of R^n for some n, which is noetherian by Corollary 1.60 and Lemma 1.54. \square

Remark 1.62. The notherianity hypothesis is important: if R is a non-noetherian ring and M is a finitely generated R-module, M might not be noetherian. For a dramatic example, note that R itself is a finitely generated R-module, but not noetherian.

Now we are ready to prove Hilbert's Basis Theorem. David Hilbert was a big influence in the early years of commutative algebra, in many different ways. Emmy Noether's early work in algebra was in part inspired by some of his work, and he later invited her to join the Göttingen Math Department — many of her amazing contributions to algebra happened during her time in Göttingen. Unfortunately, some of the faculty opposed a woman joining the department, and for her first two years in Göttingen, Noether did not have an official position nor was she paid. Hilbert's contributions also include three of the most fundamental results in commutative algebra — Hilbert's Basis Theorem, the Hilbert Syzygy Theorem, and Hilbert's Nullstellensatz.

Theorem 1.63 (Hilbert's Basis Theorem). If R is a noetherian ring, then the polynomial rings $R[x_1, \ldots, x_d]$ and $R[x_1, \ldots, x_d]$ are Noetherian for any $d \ge 1$.

Proof. We will give the proof for polynomial rings, and at the end we will indicate what the difference is in the argument for the power series ring case. First, note that by induction on d, we can reduce to the case d = 1.

Given an ideal $I \subseteq R[x]$, consider the set of leading coefficients of all polynomials in I,

 $J := \{ a \in R \mid \text{ there is some } ax^n + \text{lower order terms (with respect to } x) \in I \}.$

We can check (exercise!) that this is an ideal of R. Since R is noetherian, Proposition 1.50 says that J is finitely generated, so let $J = (a_1, \ldots, a_t)$. Pick $f_1, \ldots, f_t \in R[x]$ such that the leading coefficient of f_i is a_i , and set $N = \max\{\deg f_i\}$.

Let $f \in I$. The leading coefficient of f is an R-linear combination of a_1, \ldots, a_t . If f has degree greater than N, then we can cancel off the leading term of f by subtracting a suitable combination of the f_i . Therefore, any $f \in I$ can be written as f = g + h for some $h \in (f_1, \ldots, f_t)$ and $g \in I$ with degree at most N. In particular, note that $g \in I \cap (R + Rx + \cdots + Rx^N)$. Since $I \cap (R + Rx + \cdots + Rx^N)$ is a submodule of the finitely generated free R-module $R + Rx + \cdots + Rx^N$, it must also be finitely generated as an R-module. Given such a generating set, say $I \cap (R + Rx + \cdots + Rx^N) = (f_{t+1}, \ldots, f_s)$, we can write any element $f \in I$ as an R[x]-linear combination of these generators f_{t+1}, \ldots, f_s and the original f_1, \ldots, f_t . Therefore, $I = (f_1, \ldots, f_t, f_{t+1}, \ldots, f_s)$ is finitely generated as an ideal in R[x], and R[x] is a Noetherian ring.

In the power series case, take J to be the set of coefficients of lowest degree terms. \Box

Remark 1.64. We can rephrase Hilbert's Basis Theorem in a way that can be understood by anyone with a basic high school algebra (as opposed to abstract algebra) knowledge:

Any system of polynomial equations in finitely many variables can be written in terms of finitely many equations.

Finally, note that an easy corollary of the Hilbert Basis Theorem is that finitely generated algebras over Noetherian rings are also Noetherian.

Corollary 1.65. If R is a Noetherian ring, then any finitely generated R-algebra is Noetherian. In particular, any finitely generated algebra over a field is Noetherian.

Proof. Any finitely generated R-algebra is isomorphic to a quotient of a polynomial ring over R in finitely many variables; polynomial rings over Noetherian rings are noetherian, by Hilbert's Basis Theorem, and quotients of noetherian rings are noetherian.

The converse to this statement is false: there are lots of noetherian rings that are not finitely generated algebras over a field. For example, $\mathbb{C}\{z\}$ is not algebra-finite over \mathbb{C} . We will see more examples of these when we talk about local rings.

Finally, we can now prove a technical sounding result that puts together all our finiteness conditions in a useful way.

Theorem 1.66 (Artin-Tate Lemma). Let $A \subseteq B \subseteq C$ be rings. Assume that

- A is noetherian,
- C is module-finite over B, and
- C is algebra-finite over A.

Then, B is algebra-finite over A.

Proof. Let $C = A[f_1, \ldots, f_r]$ and $C = Bg_1 + \cdots + Bg_s$. Then,

$$f_i = \sum_j b_{ij} g_j$$
 and $g_i g_j = \sum_k b_{ijk} g_k$

for some $b_{ij}, b_{ijk} \in B$. Let $B_0 = A[\{b_{ij}, b_{ijk}\}] \subseteq B$. This is a finitely generated A-algebra; by Corollary 1.65, since A is noetherian, so is B_0 .

We claim that $C = B_0 g_1 + \cdots + B_0 g_s$. Given an element $c \in C$, write c as a polynomial expression in f_1, \ldots, f_r . Since the f_i are linear combinations of the g_i with coefficients in the b_{ij} , we have $c \in A[\{b_{ij}\}][g_1, \ldots, g_s]$. Then using the equations for $g_i g_j$ repeatedly, we can rewrite c as a linear combination of the g_i with coefficients in B_0 .

Since B_0 is noetherian and C is a finitely generated B_0 -module, C is a noetherian B_0 -module, by Proposition 1.61. Since $B \subseteq C$, then B is also a finitely generated B_0 -module. In particular, $B_0 \subseteq B$ is algebra-finite. Since $A \subseteq B_0$ is algebra-finite, we conclude that $A \subseteq B$ is algebra-finite, as required.

1.7 An application to invariant rings

Historically, commutative algebra has roots in classical questions of algebraic and geometric flavors, including the following natural question:

Question 1.67. Given a (finite) set of symmetries, consider the collection of polynomial functions that are fixed by all of those symmetries. Can we describe all the fixed polynomials in terms of finitely many of them?

To make this precise, let G be a group acting on a ring R. The main case we have in mind is when $R = k[x_1, \ldots, x_d]$ and k is a field; we let G act trivially on k, and the action respects the sum and product in the ring:

$$g \cdot \left(\sum_{a} c_a x_1^{a_1} \cdots x_d^{a_d} \right) = \sum_{a} c_a (g \cdot x_1)^{a_1} \cdots (g \cdot x_d)^{a_d}.$$

We are interested in the set of elements that are **invariant** under the action,

$$R^G := \{ r \in R \mid g(r) = r \text{ for all } g \in G \}.$$

Note that R^G is a subring of R. Indeed, given $r, s \in R^G$, then

$$r + s = g \cdot r + g \cdot s = g \cdot (r + s)$$
 and $rs = (g \cdot r)(g \cdot s) = g \cdot (rs)$ for all $g \in G$,

since each g is a homomorphism. Note also that if $G = \langle g_1, \ldots, g_t \rangle$, then $r \in \mathbb{R}^G$ if and only if $g_i(r) = r$ for $i = 1, \ldots, t$. The question above can now be rephrased as follows:

Question 1.68. Given a finite group G acting on $R = k[x_1, \ldots, x_d]$, is R^G a finitely generated k-algebra?

Note that R^G is a k-subalgebra of R. Even though R is a finitely generated k-algebra, this does not guarantee a priori that R^G is a finitely generated k-algebra — recall Example 1.23, where we saw a subalgebra of a finitely generated algebra which is nevertheless not finitely generated.

Example 1.69. Consider the group with two elements $G = \{e, g\}$. To define an action of G on R = k[x], we need only to define $g \cdot x$, since e is the identity and g acts linearly. Consider the action of G on R = k[x] given by $g \cdot x = -x$, so $g \cdot f(x) = f(-x)$. Suppose that the characteristic of k is not 2, so $-1 \neq 1$. Write $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$. We have $g \cdot x^i = (-x)^i = (-1)^i x^i$, so

$$g \cdot f = (-1)^n a_n x^n + (-1)^{n-1} a_{n-1} x^{n-1} + \dots + a_0,$$

which differs from f unless for each odd i, $a_i = 0$. That is,

$$R^G = \{ f \in R \mid \text{every term of } f \text{ has even degree} \}.$$

Any such f is a polynomial in x^2 , so we have

$$R^G = k[x^2].$$

In particular, R^G is a finitely generated k-algebra.

Exercise 7. Generalize the last example as follows: let k be a field with a primitive dth root of unity ζ , and let $G = \langle g \rangle \cong C_d$ act on $R = k[x_1, \ldots, x_n]$ via $g \cdot x_i = \zeta x_i$ for all i. Then

 $R^G = \{ f \in R \mid \text{ every term of } f \text{ has degree a multiple of } d \} = k[\{\text{monomials of degree d}\}].$

This what is known as the Veronese subring of R of degree d.

Example 1.70 (Standard representation of the symmetric group). Let S_n be the symmetric group on n letters acting on $R = k[x_1, \ldots, x_n]$ via $\sigma(x_i) = x_{\sigma(i)}$. For example, if n = 3, then $f = x_1^2 + x_2^2 + x_3^2$ is invariant, while $g = x_1^2 + x_1x_2 + x_2^2 + x_3^2$ is not, since swapping 1 with 3 gives a different polynomial.

You may recall the Fundamental Theorem of Symmetric Polynomials says that every element of \mathbb{R}^{S_n} can be written as polynomial expression in the elementary symmetric polynomials

$$e_1 = x_1 + \dots + x_n$$

$$e_2 = \sum x_i x_j$$

$$\vdots$$

$$e_n = x_1 x_2 \dots x_n.$$

More precisely, $R^{S_n} = k[e_1, \ldots, e_n]$. For example, f above is $e_1^2 - 2e_2$. In fact, any symmetric polynomial can be written like so in a *unique* way, so R^{S_n} is a free k-algebra. So even though we have infinitely many invariant polynomials, we can understand them in terms of only finitely many of them, which are *fundamental* invariants.

Proposition 1.71. Let k be a field, R be a finitely-generated k-algebra, and G a finite group of automorphisms of R that fix k. Then $R^G \subseteq R$ is module-finite.

Proof. By Corollary 1.36, integral and algebra-finite implies module-finite, so we will show that R is algebra-finite and integral over R^G .

First, since $k \subseteq R^G$ and R is generated finitely generated k-algebra, it is generated by the same finite set as an R^G -algebra as well. Thus $R^G \subseteq R$ is algebra-finite.

To show that $R^G \subseteq R$ is integral, let us first extend the action of G on R to R[t] trivially, meaning that we will let G fix t. Given $r \in R$, consider the polynomial

$$F_r(t) := \prod_{g \in G} (t - g \cdot r) \in R[t].$$

Now G fixes $F_r(t)$, since for each $h \in G$,

$$h \cdot F_r(t) = h \prod_{g \in G} (t - g \cdot r) = \prod_{g \in G} (h \cdot t - (hg) \cdot r) = F_r(t)$$

Thus, $F_r(t) \in (R[t])^G$. Notice that $(R[t])^G = R^G[t]$, since

$$g(a_n t^n + \dots + a_0) = a_n t^n + \dots + a_0 \implies (g \cdot a_n) t^n + \dots + (g \cdot a_0) = a_n t^n + \dots + a_0.$$

Therefore, $F_r(t) \in R^G[t]$. The leading term (with respect to t) of $F_r(t)$ is $t^{|G|}$, so $F_r(t)$ is monic. On the other hand, one of the factors of $F_r(t)$ is (t-r), so $F_r(r) = 0$. Therefore, r satisfies a monic polynomial with coefficients in R^G , and thus R is integral over R^G .

Theorem 1.72 (Noether's finiteness theorem for invariants of finite groups). Let k be a field, R be a polynomial ring over k, and G be a finite group acting k-linearly on R. Then R^G is a finitely generated k-algebra.

Proof. Observe that $k \subseteq R^G \subseteq R$, that k is Noetherian, $k \subseteq R$ is algebra-finite, and $R^G \subseteq R$ is module-finite. The desired result is now a corollary of the Artin-Tate Lemma.

Chapter summary

- R is a Noetherian ring \iff every ideal I in R is Noetherian
- M is a Noetherian R-module $\underset{R \text{ Noeth}}{\overset{\text{general}}{\rightleftharpoons}} M$ is a finitely generated R-module

 $A \subseteq R$ extension of rings:

- $A \subseteq R$ module-finite \iff $R = Af_1 + \dots + Af_n$ \iff $R \cong A^n/N$ for some $f_i \in R$ \iff $N \subseteq A^n$ submod
- $A \subseteq R$ algebra-finite \iff $R = A[f_1, \dots, f_n]$ \iff $R \cong A[x_1, \dots, x_i]/I$ for some $f_i \in R$ \iff x_i indeterminates
 - $A \subseteq R$ algebra-finite $\iff R = A[f_1, \dots, f_n], f_i \in R$
 - $A \subseteq R$ algebra-finite, A Noetherian $\implies R$ Noetherian ring
 - $\bullet \ A \subseteq R \ \text{module-finite} \iff \left\{ \begin{array}{ll} \text{algebra-finite} & \Longrightarrow \\ \text{and integral} & \Longrightarrow \end{array} \right. \ \text{module-finite}$

Artin-Tate Lemma:
$$\underbrace{ A \subseteq B \subseteq C}_{\text{Noeth} \text{ mod-fin}} \implies A \subseteq B \text{ is algebra-finite}$$

Chapter 2

Graded rings

The main purpose of this chapter is to set up some background and notation we will use throughout the rest of the course.

2.1 Graded rings

When we think of a polynomial ring R, we often think of R with its graded structure, even if we have never formalized what that means. Other rings we have seen also have a graded structure, and this structure is actually very powerful.

Definition 2.1. Let T be a monoid; in many examples we will take $T = \mathbb{N}$, which is a monoid since we follow the convention that 0 is a natural number. A ring R is T-graded if we can write a direct sum decomposition of R as an abelian group indexed by T,

$$R = \bigoplus_{a \geqslant 0} R_a,$$

such that

$$R_a R_b \subseteq R_{a+b}$$
 for every $a, b \in T$.

This means that for all $r \in R_a$ and $s \in R_b$, we have $rs \in R_{a+b}$.

An element in one of the summands R_a is said to be **homogeneous** of **degree** a; we write |r| or deg(r) to denote the degree of a homogeneous element r.

By definition, an element in a graded ring is a *unique* sum of homogeneous elements, which we call its **homogeneous components** or **graded components**. One nice thing about graded rings is that many properties can usually be checked on homogeneous elements, and these are often easier to deal with.

Lemma 2.2. Let R be a T-graded ring.

- a) 1 is homogeneous of degree $0 \in T$ (the identity of T).
- b) R_0 is a subring of R.
- c) Each R_a is an R_0 -module.

Proof.

- a) Write $1 = \sum_a r_a$ with r_a homogeneous of degree a. Then $r_0 = r_0(\sum_a r_a) = \sum_a r_0 r_a$ implies $r_0 r_a = 0$ for $a \neq 0$. Similarly, for any other a we have $r_a = r_a(\sum_b r_b)$, and thus $r_a = r_a r_0$ (here is where we use the cancellative assumption). Thus $r_a = 0$ for $a \neq 0$, so $1 \in R_0$.
- b) We have shown that $1 \in R_0$. Moreover, R_0 is a subgroup under addition, and $r, s \in R_0$ implies $rs \in R_0$.
- c) By assumption, R_a is a subgroup under addition. Given $r \in R_0$ and $s \in R_a$ we must have $rs \in R_a$.

Example 2.3.

- a) Any ring R is trivially an N-graded ring, by setting $R_0 = R$ and $R_n = 0$ for $n \neq 0$.
- b) If k is a field and $R = k[x_1, \ldots, x_n]$ is a polynomial ring, there is an \mathbb{N} -grading on R called the **standard grading** where R_d is the k-vector space with basis given by the monomials of total degree d, meaning those of the form $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ with $\sum_i \alpha_i = d$. For example, $x_1^2 + x_2 x_3$ is homogeneous in the standard grading, while $x_1^2 + x_2$ is not.
- c) If k is a field, and $R = k[x_1, ..., x_n]$ is a polynomial ring, we can give different N-gradings on R by fixing some tuple $(\beta_1, ..., \beta_n) \in \mathbb{N}^n$ and letting x_i be a homogeneous element of degree β_i ; we call this a grading with weights $(\beta_1, ..., \beta_n)$.
 - For example, in $k[x_1, x_2]$, $x_1^2 + x_2^3$ is not homogeneous in the standard grading, but it is homogeneous of degree 6 under the N-grading with weights (3, 2).
- d) A polynomial ring $R = k[x_1, \ldots, x_n]$ also admits a natural \mathbb{N}^n -grading: the grading with $R_{(d_1,\ldots,d_n)} = k \cdot x_1^{d_1} \cdots x_n^{d_n}$. This is called the **fine grading**.
- e) Let $\Gamma \subseteq \mathbb{N}^n$ be a subsemigroup of \mathbb{N}^n . Then

$$\bigoplus_{\gamma \in \Gamma} k \cdot \underline{x}^{\gamma} \subseteq k[\underline{x}] = k[x_1, \dots, x_n]$$

is an \mathbb{N}^n -graded subring of $k[x_1, \ldots, x_n]$ with the fine grading. Moreover, every \mathbb{N}^n -graded subring of $k[x_1, \ldots, x_n]$ is of this form.

Macaulay2. Polynomial rings in Macaulay2 are graded with the standard grading by default. To define a different grading, we give Macaulay2 a list with the grading of each of the variables:

i1 :
$$R = ZZ/101[a,b,c,Degrees=>\{\{1,2\},\{2,1\},\{1,0\}\}];$$

We can check whether an element of R is Homogeneous, and the function degree applied to an element of R returns the least upper bound of the degrees of its monomials:

i2: degree (a+b)

 $02 = \{2, 2\}$

o2 : List

i3 : isHomogeneous(a+b)

o3 = false

Remark 2.4. You may have seen the term *homogeneous polynomial* used to refer to a polynomial $f(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$ that satisfies

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^d f(x_1, \dots, x_n)$$

for all $\lambda \in k$ and some fixed d. This is equivalent to saying that all the terms in f have the same total degree d, or that f is homogeneous with respect to the standard grading.

Similarly, a polynomial is quasi-homogeneous, or weighted homogeneous, if there exist integers w_1, \ldots, w_n such that the sum $d = a_1w_1 + \cdots + a_nw_n$ is the same for all monomials $x_1^{a_1} \cdots x_n^{a_n}$ appearing in f. So f satisfies

$$f(\lambda^{w_1}x_1,\ldots,\lambda^{w_n}x_n) = \lambda^d f(x_1,\ldots,x_n),$$

for all $\lambda \in k$ and $f(x_1^{w_1}, \ldots, x_n^{w_n})$ is homogeneous (in the previous sense, so with respect to the standard grading). This condition is equivalent to asking that f be homogeneous with respect to some weighted grading on $k[x_1, \ldots, x_n]$.

Example 2.5. In k[x, y, z], the element $x^2 + y^3 + z^5$ is not homogeneous in the standard grading, but it is homogeneous (of degree 30) if we set deg(x) = 15, deg(y) = 10, and deg(z) = 6. This tells us that $x^2 + y^3 + z^5$ is quasi-homogeneous; it is homogeneous with respect to the weights (15, 10, 6). Indeed,

$$(\lambda^{15}x)^2 + (\lambda^{10}y)^3 + (\lambda^6z)^5 = \lambda^{30}(x^2 + y^3 + z^5).$$

Definition 2.6. An ideal I in a graded ring R is called **homogeneous** if it can be generated by homogeneous elements.

Lemma 2.7. Let I be an ideal in a graded ring R. The following are equivalent:

- (1) I is homogeneous.
- (2) For any element $f \in R$ we have $f \in I$ if and only if every homogeneous component of f lies in I.
- (3) $I = \bigoplus_{a \in T} I_a$, where $I_a = I \cap R_a$.

Proof. (1) \Rightarrow (2): Let f_1, \ldots, f_n be homogeneous generators for I. If $f \in I$, we can write f as

$$f = r_1 f_1 + \dots + r_n f_n.$$

We can also write each r_i as a sum of its components, say $r_i = [r_i]_{d_{i,1}} + \cdots + [r_i]_{d_{i,m_i}}$. Then, after substituting and collecting,

$$f = \sum_{d} ([r_1]_{d-|f_1|} f_1 + \dots + [r_n]_{d-|f_n|} f_n)$$

expresses f as a sum of homogeneous elements of different degrees, so

$$f_d = [r_1]_{d-|f_1|} f_1 + \dots + [r_n]_{d-|f_n|} f_n \in I.$$

- $(2) \Rightarrow (1)$: Any element of I is a sum of its homogeneous components. Thus, in this case, the set of homogeneous elements in I is a generating set for I.
- $(2) \Rightarrow (3)$: As above, I is generated by the collection of additive subgroups $\{I_a\}$ in this case; the sum is direct as there is no nontrivial \mathbb{Z} -linear combination of elements of different degrees.
- (3) \Rightarrow (2): We can take generators for each abelian group $I \cap R_a$, and the collection of all of them is a generating set for I.

Example 2.8. Given an N-graded ring R, then $R_+ = \bigoplus_{d>0} R_d$ is a homogeneous ideal.

We now observe the following:

Lemma 2.9. Let R be an T-graded ring, and I be a homogeneous ideal. Then R/I has a natural T-graded structure induced by the T-graded structure on R.

Proof. The ideal I decomposes as the direct sum of its graded components, so we can write

$$R/I = \frac{\oplus R_a}{\oplus I_a} \cong \oplus \frac{R_a}{I_a}.$$

It's elementary to check that this direct sum decomposition satisfies the desired properties.

Example 2.10.

- a) The ideal $I = (w^2x + wyz + z^3, x^2 + 3xy + 5xz + 7yz + 11z^2)$ in R = k[w, x, y, z] is homogeneous with respect to the standard grading on R, and thus the ring R/I admits an \mathbb{N} -grading with |w| = |x| = |y| = |z| = 1.
- b) The ring $R = k[x, y, z]/(x^2 + y^3 + z^5)$ does not admit a grading with |x| = |y| = |z| = 1, but by Example 2.5 it does admit a grading with |x| = 15, |y| = 10, |z| = 6.

Definition 2.11. Let R be a T-graded ring and M an R-module. An R-module M is T-graded if there exists a direct sum decomposition of M as an abelian group indexed by T:

$$M = \bigoplus_{a \in T} M_a$$
 such that $R_a M_b \subseteq M_{a+b}$

for all $a, b \in T$.

The notions of homogeneous element of a module and degree of a homogeneous element of a module take the obvious meanings. A notable abuse of notation: we will often talk about \mathbb{Z} -graded modules over \mathbb{N} -graded rings, and likewise.

We can also talk about graded homomorphisms.

Definition 2.12. Let R and S be T-graded rings with the same grading monoid T. A ring homomorphism $\varphi: R \to S$ is **graded** or **degree-preserving** if $\varphi(R_a) \subseteq S_a$ for all $a \in T$.

Note that our definition of ring homomorphism requires $1_R \mapsto 1_S$, and thus it does not make sense to talk about graded ring homomorphisms of degree $d \neq 0$. But we can have graded module homomorphisms of any degree.

Definition 2.13. Let M and N be T-graded modules over the T-graded ring R. A homomorphism of R-modules $\varphi \colon M \to N$ is **graded** of **degree** d if $\varphi(M_a) \subseteq N_{a+d}$ for all $a \in T$. A graded homomorphism of degree 0 is also called **degree-preserving**.

Example 2.14.

a) Consider the ring map $k[x, y, z] \to k[s, t]$ given by $x \mapsto s^2, y \mapsto st, z \mapsto t^2$. If k[s, t] has the fine grading, meaning |s| = (1, 0) and |t| = (0, 1), then the given map is degree preserving if and only if k[x, y, z] is graded by

$$|x| = (2,0), |y| = (1,1), |z| = (0,2).$$

b) Let k be a field, and let $R = k[x_1, \ldots, x_n]$ be a polynomial ring with the standard grading. Given $c \in k = R_0$, the homomorphism of R-modules $R \to R$ given by $f \mapsto cf$ is degree preserving. However, if instead we take $g \in R_d$ for some d > 0, then the map

$$\begin{array}{ccc} R & \longrightarrow R \\ f & \longmapsto gf \end{array}$$

is not degree preserving, although it is a graded map of degree d. We can make this a degree-preserving map if we shift the grading on R by defining R(-d) to be the R-module R but with the \mathbb{Z} -grading given by $R(-d)_t = R_{t-d}$. With this grading, the component of degree d of R(-d) is $R(-d)_d = R_0 = k$. Now the map

$$\begin{array}{ccc} R(-d) & \longrightarrow R \\ f & \longmapsto gf \end{array}$$

is degree preserving.

2.2 Finiteness conditions for graded algebras

We observed earlier an important relationship between algebra-finiteness and noetherianity that followed from the Hilbert basis theorem: if R is noetherian, then any algebra-finite extension of R is also noetherian. There isn't a converse to this in general: there are lots of algebras over fields k that are noetherian but not algebra-finite over k. However, for graded rings, this converse relation holds.

Proposition 2.15. Let R be an \mathbb{N} -graded ring, and let $f_1, \ldots, f_n \in R$ be homogeneous elements of positive degree. Then f_1, \ldots, f_n generate the ideal $R_+ := \bigoplus_{d>0} R_d$ if and only if f_1, \ldots, f_n generate R as an R_0 -algebra.

Proof. Suppose $R = R_0[f_1, \ldots, f_n]$. Any element $r \in R_+$ can be written as a polynomial expression $r = P(f_1, \ldots, f_n)$ for some $P \in R_0[x_1, \ldots, x_n]$ with no constant term. Each monomial of P is a multiple of some x_i , and thus each term in $r = P(f_1, \ldots, f_n)$ is a multiple of f_i . Thus $r \in Rf_1 + \cdots + Rf_n = (f_1, \ldots, f_n)$.

To show that $R_+ = (f_1, \ldots, f_n)$ implies $R = R_0[f_1, \ldots, f_n]$, it suffices to show that any homogeneous element $r \in R$ can be written as a polynomial expression in f_1, \ldots, f_n with coefficients in R_0 . We will use induction on the degree of r, with degree 0 as a trivial base case. For r homogeneous of positive degree, we must have $r \in R_+$, so by assumption we can write $r = a_1 f_1 + \cdots + a_n f_n$. Moreover, since r and f_1, \ldots, f_n are all homogeneous, we can choose each coefficient a_i to be homogeneous of degree $|r| - |f_i|$. By the induction hypothesis, each a_i is a polynomial expression in f_1, \ldots, f_n , so we are done.

This leads to the following characterization of noetherian N-graded rings:

Corollary 2.16. An \mathbb{N} -graded ring R is noetherian if and only if R_0 is noetherian and R is algebra-finite over R_0 .

Proof. If R_0 is noetherian and R is algebra-finite over R_0 , then R is noetherian by the Hilbert Basis Theorem. On the other hand, if R is noetherian then any quotient of R is also noetherian, by Lemma 1.54, and in particular $R_0 \cong R/R_+$ is noetherian. Moreover, R_+ is generated as an ideal by finitely many homogeneous elements by noetherianity; by Proposition 2.15, we get a finite algebra generating set for R over R_0 .

There are many interesting examples of N-graded algebras with $R_0 = k$; in that case, R_+ is the largest homogeneous ideal in R. In fact, R_0 is the only maximal ideal of R that is also homogeneous, so we can call it the **homogeneous maximal ideal**; it is sometimes also called the **irrelevant maximal ideal** of R. This ideal plays a very important role: in many ways, R and R_+ behave similarly to a local ring R and its unique maximal ideal. We will discuss this further when we learn about local rings.

2.3 Another application to invariant rings

If R is a graded ring, and G is a group acting on R by degree-preserving automorphisms, then R^G is a graded subring of R, meaning R^G is graded with respect to the same grading monoid. In particular, if G acts k-linearly on a polynomial ring over k, the invariant ring is \mathbb{N} -graded.

Using this perspective, we can now give a different proof of the finite generation of invariant rings that works under different hypotheses. The proof we will discuss now is essentially Hilbert's proof. To do that, we need another notion that is very useful in commutative algebra.

Definition 2.17. Let $\varphi: R \to S$ be a ring homomorphism. We say that R is a **direct summand** of S if the map φ **splits** as a map of R-modules, meaning there is an R-module homomorphism

such that $\pi \varphi$ is the identity on R.

First, observe that the condition on π implies that φ must be injective, so we can assume that $R \subseteq S$, perhaps after renaming some elements. The condition on ρ is that $\rho|_R$ is the identity and $\rho(rs) = r\rho(s)$ for all $r \in R$ and $s \in S$. We call the map ρ the **splitting** of the inclusion $R \subseteq S$. Note that given any R-linear map $\rho: S \to R$, if $\rho(1) = 1$ then ρ is a splitting: indeed, $\rho(r) = \rho(r \cdot 1) = r\rho(1) = r$ for all $r \in R$.

Remark 2.18. The subring R of S is a direct summand of S if and only if there exists an R-submodule of S such that $S = R \oplus M$. In the language above, $M = \ker \rho$. Conversely, given a direct sum decomposition $S = R \oplus M$, the quotient map onto the first component is a splitting.

Being a direct summand is a really nice condition, since many good properties of S pass onto its direct summands.

Notation 2.19. Let $\varphi \colon R \to S$ be a ring homomorphism. Given an ideal I in S, we write $I \cap R$ for the **contraction** of R back into R, meaning the preimage of I via φ . In particular, if $R \subseteq S$ is a ring extension, then $I \cap R$ denotes the preimage of I via the inclusion map $R \subseteq S$. Given a ring map $R \to S$, and an ideal I in R, the **expansion** of I in S is the ideal of S generated by the image of I via the given ring map; we naturally denote this by IS.

Lemma 2.20. Let R be a direct summand of S. Then, for any ideal $I \subseteq R$, we have $IS \cap R = I$.

Proof. Let π be the corresponding splitting. Clearly, $I \subseteq IS \cap R$. Conversely, if $r \in IS \cap R$, we can write $r = s_1 f_1 + \cdots + s_t f_t$ for some $f_i \in I$, $s_i \in S$. Applying π , we have

$$r = \pi(r) = \pi\left(\sum_{i=1}^{t} s_i f_i\right) = \sum_{i=1}^{t} \pi(s_i f_i) = \sum_{i=1}^{t} \pi(s_i) f_i \in I.$$

Proposition 2.21. Let R be a direct summand of S. If S is noetherian, then so is R.

Proof. Let

$$I_1 \subset I_2 \subset I_3 \subset \cdots$$

be a chain of ideals in R. The chain of ideals in S

$$I_1S \subseteq I_2S \subseteq I_3S \subseteq \cdots$$

stabilizes, so there exist J, N such that $I_nR = J$ for $n \ge N$. Contracting to R, we get that $I_n = I_nS \cap R = J \cap R$ for $n \ge N$, so the original chain also stabilizes.

Example 2.22. Notice in general a subring of a noetherian ring does not have to be noetherian. For example, if k is a field, S = k[x, y] is noetherian by Hibert's Basis Theorem, but we claim that the subring

$$R = k[xy, xy^2, xy^3, \ldots]$$

of S = k[x, y] is not noetherian. Indeed,

$$(xy) \subseteq (xy, xy^2) \subseteq (xy, xy^2, xy^3) \subseteq \cdots$$

is an ascending chain of ideals of R that does not stabilize. Notice that if we considered the same chain of ideals in R, then it does stabilize, and in fact it is the constant chain (xy).

Proposition 2.23. Let k be a field, and R be a polynomial ring over k. Let G be a finite group acting k-linearly on R. Assume that the characteristic of k does not divide |G|. Then R^G is a direct summand of R.

Remark 2.24. The condition that the characteristic of k does not divide the order of G is trivially satisfied if k has characteristic zero.

Proof. We consider the map $\rho: R \to R^G$ given by

$$\rho(r) = \frac{1}{|G|} \sum_{g \in G} g \cdot r.$$

First, note that the image of this map lies in R^G , since acting by g just permutes the elements in the sum, so the sum itself remains the same. We claim that this map ρ is a splitting for the inclusion $R^G \subseteq R$. To see that, let $s \in R^G$ and $r \in R$. We have

$$\rho(sr) = \frac{1}{|G|} \sum_{g \in G} g \cdot (sr) = \frac{1}{|G|} \sum_{g \in G} (g \cdot s)(g \cdot r) = \frac{1}{|G|} \sum_{g \in G} s(g \cdot r) = s \frac{1}{|G|} \sum_{g \in G} (g \cdot r) = s \rho(r),$$

so ρ is R^G -linear, and for $s \in R^G$,

$$\rho(s) = \frac{1}{|G|} \sum_{g \in G} g \cdot s = s.$$

Theorem 2.25 (Hilbert's finiteness theorem for invariants). Let k be a field, and R be a polynomial ring over k. Let G be a group acting k-linearly on R. Assume that G is finite and that the characteristic of k does not divide |G|, or more generally, that R^G is a direct summand of R. Then R^G is a finitely generated k-algebra.

Proof. Since G acts linearly on R, R^G is an \mathbb{N} -graded subring of R with $R_0 = k$. Since R^G is a direct summand of R, R^G is noetherian by Proposition 2.21. By our characterization of noetherian graded rings in Corollary 2.16, R^G is finitely generated over $R_0 = k$.

One important thing about this proof is that it applies to many infinite groups. In particular, for any linearly reductive group, including $GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$, and $(\mathbb{C}^{\times})^n$, we can construct a splitting map ρ .

Chapter 3

Primes

3.1 Prime and maximal ideals

As we will discover through the rest of the course, prime ideals play a very prominent role in commutative algebra.

Definition 3.1. An ideal $P \neq R$ is **prime** if $ab \in P$ implies $a \in P$ or $b \in P$.

Exercise 8. An ideal P in a ring R is prime if and only if R/P is a domain. In particular, (0) is a prime ideal if and only if R is a domain.

Example 3.2. The prime ideals in \mathbb{Z} are those of the form (p) for p a prime integer, and (0).

Example 3.3. When k is a field, prime ideals in k[x] are easy to describe: k[x] is a principal ideal domain, and $(f) \neq 0$ is prime if and only if f is an irreducible polynomial. Moreover, (0) is also a prime ideal, since k[x] is a domain.

The prime ideals in $k[x_1, \ldots, x_d]$ are, however, not so easy to describe. We will see many examples throughout the course; here are some.

Example 3.4. Let k be a field. The ideal $P = (x^3 - y^2)$ in R = k[x, y] is prime: one can show that $R/P \cong k[t^2, t^3] \subseteq k[t]$, which is a domain.

Example 3.5. The k-algebra $R = k[t^3, t^4, t^5] \subseteq k[t]$ is a domain, so its defining ideal P in k[x, y, z, t] is prime. This is the kernel of the presentation of R sending x, y, z to each of our 3 algebra generators, which we can compute with Macaulay2:

```
i1 : k = QQ
o1 = QQ
o1 : Ring
i2 : f = map(k[t],k[x,y,z],{t^3,t^4,t^5})
3     4     5
```

```
o2 = map (QQ[t], QQ[x..z], \{t, t, t\})
```

o2 : RingMap QQ[t] <--- QQ[x..z]

i3 :
$$P = \ker f$$

2 2 2 3
o3 = ideal (y - x*z, x y - z , x - y*z)

o3 : Ideal of QQ[x..z]

Definition 3.6 (Maximal ideal). An ideal \mathfrak{m} in R is maximal if for any ideal I

$$I \supseteq \mathfrak{m} \implies I = \mathfrak{m} \text{ or } I = R.$$

Exercise 9. An ideal \mathfrak{m} in R is maximal if and only if R/\mathfrak{m} is a field.

Given a maximal ideal \mathfrak{m} in R, the **residue field** of \mathfrak{m} is the field R/\mathfrak{m} . A field k is a residue field of R if $k \cong R/\mathfrak{m}$ for some maximal ideal \mathfrak{m} .

Remark 3.7. A ring may have many different residue fields. For example, the residue fields of \mathbb{Z} are all the finite fields with a prime numbers of elements, $\mathbb{F}_p \cong \mathbb{Z}/p$.

Exercise 10. Every maximal ideal is prime.

However, not every prime ideal is maximal. For example, in \mathbb{Z} , (0) is a prime ideal that is not maximal.

Theorem 3.8. Given a ring R, every proper ideal $I \neq R$ is contained in some maximal ideal.

Fun fact: this is actually equivalent to the Axiom of Choice. We will prove it (but not its equivalence to the Axiom of Choice!) using Zorn's Lemma, another equivalent version of the Axiom of Choice. Zorn's Lemma is a statement about partially ordered sets. Given a partially ordered set S, a chain in S is a totally ordered subset of S.

Theorem 3.9 (Zorn's Lemma). Let S be a nonempty partially ordered set S such that every chain in S has an upper bound in S. Then S contains at least one maximal element.

So let's prove that every ideal is contained in some maximal ideal.

Proof. Fix a ring R and a proper ideal I. Let S be the set of all proper ideals J in R such that $J \supseteq I$, which is partially ordered with the inclusion order \subseteq . We claim that Zorn's Lemma applies to S. First, S is nonempty, since it contains I. Now consider a chain of proper ideals in R, say $\{J_i\}_i$, all of which contain I. Notice that $J := \bigcup_i J_i$ is an ideal as well (exercise!), and moreover $J \neq R$ since $1 \notin J_i$ for all i. Since each $J_i \supseteq I$, we conclude that $J \supseteq I$. Thus we have checked that $J \in S$. Now this ideal $J \in S$ is an upper bound for our chain $\{J_i\}_i$, and thus Zorn's Lemma applies to S. We conclude that S has a maximal element.

¹Note that unions of ideals are not ideals in general, but a union of totally ordered ideals is an ideal.

There is a subtle point missing: we have shown that there is a maximal element M in S containing I, but we have yet to show that this maximal element is a maximal ideal of R. Finally, suppose that L is an ideal in R with $L \supseteq M$. Since M contains J, so does L. If $L \in S$, by the maximality of M we must have L = M. Since L already satisfies $L \supseteq J$, if $L \notin S$ then we must have L = R.

3.2 The spectrum of a ring

Definition 3.10. Let R be a ring. The **prime spectrum** of R, denoted Spec(R), is the set of prime ideals of R.

Definition 3.11. For a ring R and an ideal I, we set

$$V(I) := \{ P \in \operatorname{Spec}(R) \mid P \supseteq I \}.$$

Proposition 3.12. Let R be a ring, and I_{λ} , J be ideals, not necessarily proper.

- (0) $V(R) = \emptyset$ and $V(0) = \operatorname{Spec}(R)$.
- (1) If $I \subseteq J$, then $V(J) \subseteq V(I)$.
- (2) $V(I) \cup V(J) = V(I \cap J) = V(IJ)$.
- (3) $\bigcap_{\lambda} V(I_{\lambda}) = V(\sum_{\lambda} I_{\lambda}).$

Proof. Both (0) and (1) are straightforward, so we just prove (2).

To see $V(I) \cup V(J) \subseteq V(I \cap J)$, just observe that if $P \supseteq I$ or $P \supseteq J$, then $P \supseteq I \cap J$. Since $IJ \subseteq I \cap J$, we have $V(I \cap J) \subseteq V(IJ)$. To show $V(IJ) \subseteq V(I) \cup V(J)$, if P is a prime and $P \notin V(I) \cup V(J)$, then $P \not\supseteq I, P \not\supseteq J$. Thus we can find $f \in I$, and $g \in J$ such that $f, g \notin P$. Since P is prime, $fg \notin P$, while also $fg \in IJ$. Therefore, $P \not\subseteq IJ$.

To show (3), since ideals are closed for sums, if $P \supseteq I_{\lambda}$ for all λ , then $P \supseteq \sum_{\lambda} I_{\lambda}$. Moreover, if $P \supseteq \sum_{\lambda} I_{\lambda}$, then in particular $P \supseteq I_{\lambda}$.

It follows that $\operatorname{Spec}(R)$ obtains a topology by setting the closed sets to be all sets of the form V(I); this is the **Zariski topology** on $\operatorname{Spec}(R)$.

Exercise 11. Note that Spec(R) is also a poset under inclusion. Show that the poset structure of Spec(R) can be recovered from the topology as follows:

$$\mathfrak{p}\subseteq\mathfrak{q}\quad\Leftrightarrow\quad\mathfrak{q}\in\overline{\{\mathfrak{p}\}}.$$

Example 3.13. The spectrum of \mathbb{Z} is, as a poset:

The closed sets are of the form V((n)), which are the whole space when n = 0, the empty set when n = 1, and any finite union of things in the top row. Any closed set that contains (0) must be all of $\text{Spec}(\mathbb{Z})$.

Definition 3.14. The radical of an ideal I in a ring R is the ideal

$$\sqrt{I} := \{ f \in R \mid f^n \in I \text{ for some } n \}.$$

An ideal is a **radical ideal** if $I = \sqrt{I}$.

To see that \sqrt{I} is an ideal, note that if $f^m, g^n \in I$, then

$$(f+g)^{m+n-1} = \sum_{i=0}^{m+n-1} {m+n-1 \choose i} f^i g^{m+n-1-i}$$

$$= f^m \left(f^{n-1} + {m+n-1 \choose 1} f^{n-2} g + \dots + {m+n-1 \choose n-1} g^{n-1} \right)$$

$$+ g^n \left({m+n-1 \choose n} f^{m-1} + {m+n-1 \choose n+1} f^{m-2} g + \dots + g^{m-1} \right) \in I,$$

and $(rf)^m = r^m f^m \in I$.

Definition 3.15. A ring R is **reduced** if it has no nonzero nilpotents.

Remark 3.16. An ideal I in R is radical if and only if R/I is reduced.

Lemma 3.17. Let R be a ring. For any ideal I, $V(I) = V(\sqrt{I})$.

Proof. The containment $I \subseteq \sqrt{I}$ is immediate from the definition of radical, and thus by Proposition 3.12 we have $V(I) \subseteq V(\sqrt{I})$. Now let $P \supseteq I$ be a prime ideal, and let $f \in \sqrt{I}$. By definition, there exists some n such that $f^n \in I \subseteq P$, but since P is prime, we conclude that $f \in P$. Therefore, $V(\sqrt{I}) \subseteq V(I)$, and we are done.

Lemma 3.18. Let $R \xrightarrow{\varphi} S$ be a ring homomorphism and $P \subset S$ be prime a prime. Then $P \cap R$ is also prime.

Proof. Let P be a prime ideal in S. Given elements $f,g \in R$ such that $fg \in P \cap R$, then $\varphi(f)\varphi(g) = \varphi(fg) \in P$, and since P is prime, we conclude that $\varphi(f) \in P$ or $\varphi(g) \in P$. Therefore, $f \in P \cap R$ or $g \in P \cap R$.

Definition 3.19 (Induced map on Spec). Each ring homomorphism $\varphi: R \to S$ induces a map on spectra $\varphi^*: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ given by $\varphi^*(P) = \varphi^{-1}(P) = P \cap R$.

The key point is that the preimage of a prime ideal is also prime, which we showed in Lemma 3.18.

Remark 3.20. We observe that this is not only an order-preserving map, but also it is continuous: if $U \subseteq \operatorname{Spec}(R)$ is open, we have $U = \operatorname{Spec}(R) \setminus V(I)$ for some ideal I; then for a prime \mathfrak{q} of S,

$$\mathfrak{q} \in (\varphi^*)^{-1}(U) \quad \Longleftrightarrow \quad \mathfrak{q} \cap R \not\supseteq I \quad \Longleftrightarrow \quad \mathfrak{q} \not\supseteq IS \quad \Longleftrightarrow \quad \mathfrak{q} \notin V(IS).$$

So $(\varphi^*)^{-1}(U)$ is the complement of V(IS), and thus open.

Definition 3.21. Let I be an ideal in a ring R. A prime P is a **minimal prime** of I if P is minimal in V(I).

Lemma 3.22. Let R be a ring, and I an ideal. Every prime P that contains I contains a minimal prime of I.

Proof. Fix an ideal I and a prime $P \supseteq I$, and consider the set

$$S = \{ Q \in V(I) \mid P \supseteq Q \},\$$

which is partially ordered with \supseteq . On the one hand, $P \in S$, so S is nonempty. On the other hand, given any chain $\{Q_i\}_i$ in S, $Q := \bigcap_i Q_i$ is a prime ideal in R (exercise!). Moreover, Q contains I, since every Q_i contain I, and Q is contained in P, since every $P_i \subseteq Q$. Therefore, $Q \in S$, and Zorn's Lemma applies to S. By Zorn's lemma, S contains a maximal element for \supset , say Q.

Notice that Q is equivalently a minimal element for \subseteq . Now if Q' is a prime ideal with $I \subseteq Q' \subseteq Q$, then $Q' \subseteq Q \subseteq P$, and thus $Q' \in S$. Therefore, we must have Q' = Q, by maximality of Q with respect to \supseteq . We conclude that Q is a minimal prime of I, and by definition Q is contained in P.

Definition 3.23. A subset $W \subseteq R$ of a ring R is **multiplicatively closed** if $1 \in W$ and $a, b \in W \Rightarrow ab \in W$.

Lemma 3.24. Let R be a ring, I an ideal, and W a multiplicatively closed subset. If $W \cap I = \emptyset$, then there is a prime ideal \mathfrak{p} with $\mathfrak{p} \supseteq I$ and $\mathfrak{p} \cap W = \emptyset$.

Proof. Consider the family of ideals $\mathcal{F} := \{J \mid J \supseteq I, J \cap W = \varnothing\}$ ordered with inclusion. This is nonempty, since it contains I, and any chain $J_1 \subseteq J_2 \subseteq \cdots$ has an upper bound $\cup_i J_i$. Therefore, \mathcal{F} has some maximal element \mathbb{A} by a basic application of Zorn's Lemma. We claim \mathbb{A} is prime. Suppose $f, g \notin \mathbb{A}$. By maximality, $\mathbb{A} + (f)$ and $\mathbb{A} + (g)$ both have nonempty intersection with W, so there exist $r_1 f + a_1, r_2 g + a_2 \in W$, with $a_1, a_2 \in \mathbb{A}$. If $fg \in \mathbb{A}$, then

$$(r_1f + a_1)(r_2g + a_2) = r_1r_2fg + r_1fa_2 + r_2ga_1 + a_1a_2 \in W \cap \mathbb{A},$$

a contradiction. \Box

Theorem 3.25 (Spectrum analogue of strong Nullstellensatz). Let R be a ring, and I be an ideal. For $f \in R$,

$$V(I) \subseteq V(f) \iff f \in \sqrt{I}$$
.

Moreover

$$\sqrt{I} = \bigcap_{P \in V(I)} P = \bigcap_{P \in Min(I)} P.$$

Proof. First to justify the equivalence of the two statements we observe:

$$V(I) \subseteq V(f) \iff f \in P \text{ for all } P \in V(I) \iff f \in \bigcap_{P \in V(I)} P.$$

Now we will show that $\bigcap_{P \in V(I)} P = \sqrt{I}$:

 (\supseteq) : It suffices to show that $P \supseteq I$ implies $P \supseteq \sqrt{I}$, and indeed

$$f \in \sqrt{I} \implies f^n \in I \subseteq P \implies f \in P$$
.

(\subseteq): If $f \notin \sqrt{I}$, consider the multiplicatively closed set $W = \{1, f, f^2, f^3, \ldots\}$. We have $W \cap I = \emptyset$ by hypothesis. By Lemma 3.24, there is a prime P in V(I) that does not intersect W, and hence P does not contain f.

Finally, $Min(I) \subseteq V(I)$, and since by Lemma 3.22 every prime in V(I) contains a minimal prime of I, we conclude that

$$\bigcap_{P \in V(I)} P = \bigcap_{P \in Min(I)} P.$$

Example 3.26. Let k be a field, R = k[x], and $I = (x^2)$. On the one hand, it is immediate form the definition that $x \in \sqrt{I}$, and thus $(x) \subseteq \sqrt{I}$. On the other hand, (x) is a prime ideal that contains I, and thus by Theorem 3.25 we must have $\sqrt{I} = (x)$.

Corollary 3.27. Let R a ring. There is an order-reversing bijection

$$\{closed\ subsets\ of\ \operatorname{Spec}(R)\} \longleftrightarrow \{radical\ ideals\ I\subseteq R\}$$

In particular, for two ideals I and J, we have V(I) = V(J) if and only if $\sqrt{I} = \sqrt{J}$.

Proof. The closed sets of Spec(R) are precisely the sets of the form V(I) for some ideal I. By Lemma 3.17, $V(I) = V(\sqrt{I})$, so the closed sets of Spec(R) are given by V(I) where I ranges over all radical ideals. We showed in Proposition 3.12 that the map

$$V: \{ \text{radical ideals } I \subseteq R \} \longrightarrow \{ \text{closed subsets of } \operatorname{Spec}(R) \}$$

is order-reversing. Finally, suppose that I and J are ideals such that V(I) = V(J). By Theorem 3.25,

$$\sqrt{I} = \bigcap_{P \in V(I)} P = \bigcap_{P \in V(J)} P = \sqrt{J}.$$

Conversely, suppose that $\sqrt{I} = \sqrt{J}$. Given a prime $P \in V(I)$, we also have $P \in V(\sqrt{I})$, by Lemma 3.17, and thus

$$P \supseteq \sqrt{I} = \sqrt{J} \supseteq J$$
,

so $P \in V(I)$. Since the same argument applies to show that $V(J) \supseteq V(I)$, we conclude that V(I) = V(J).

Exercise 12. Let I and J be ideals in a ring R.

- a) Show that $\sqrt{\sqrt{I}} = \sqrt{I}$.
- b) Show that if $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.
- c) Show that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- d) Show that $\sqrt{I^n} = \sqrt{I}$ for all $n \ge 1$.
- e) Show that if P is a prime ideal, then $\sqrt{P^n} = P$ for all $n \ge 1$.

Chapter 4

Affine varieties

Colloquially, we often identify systems of equations with their solution sets. We will make this correspondence more precise for systems of polynomial equations, and develop the beginning of a rich dictionary between algebraic and geometric objects.

Question 4.1. Let k be a field. To what extent is a system of polynomial equations

$$\begin{cases} f_1 = 0 \\ \vdots \\ f_t = 0 \end{cases}$$

with $f_1, \ldots, f_t \in k[x_1, \ldots, x_d]$ determined by its solution set?

Consider one polynomial equation in one variable. Over \mathbb{R} , \mathbb{Q} , or other fields that are not algebraically closed, there are many polynomials with an empty solution set; for example, $z^2 + 1$ has an empty solution set over \mathbb{R} . On the other hand, over \mathbb{C} or any algebraically closed field, if a_1, \ldots, a_d are the solutions to f(z) = 0, then we can write f in the form $f(z) = \alpha(z - a_1)^{n_1} \cdots (z - a_d)^{n_d}$, so f is completely determined up to scalar multiple and repeated factors. If we insist that f have no repeated factors, then (f) is uniquely determined.

More generally, given any system of polynomial equations

$$\begin{cases} f_1 = 0 \\ \vdots \\ f_t = 0 \end{cases}$$

where $f_i \in k[z]$ for some field k, notice that that z = a is a solution to the system if and only if it is a solution for any polynomial $g \in (f_1, \ldots, f_t)$. But since k[z] is a PID, we have $(f_1, \ldots, f_t) = (f)$, where f is a greatest common divisor of f_1, \ldots, f_t . Therefore, z = a is a solution to the system if and only if f(a) = 0.

4.1 Varieties

Definition 4.2. Given a field k, the **affine** d-space over k, denoted \mathbb{A}_k^d , is the set

$$\mathbb{A}_k^d := \{(a_1, \dots, a_d) \mid a_i \in k\}.$$

A variety in \mathbb{A}_k^d is the set of common solutions of some (possibly infinite) collection of polynomial equations.

Definition 4.3. For a subset T of $k[x_1, \ldots, x_d]$, we define $\mathcal{Z}(T) \subseteq \mathbb{A}_k^d$ to be the set of common zeros or the **zero set** of the polynomials (equations) in T:

$$\mathcal{Z}(T) := \{(a_1, \dots, a_d) \in \mathbb{A}_k^d \mid f(a_1, \dots, a_d) = 0 \text{ for all } f \in T\}.$$

A subset of \mathbb{A}_k^d of the form $\mathcal{Z}(T)$ for some subset T is called an **algebraic subset** of \mathbb{A}_k^d , or an **affine algebraic variety**. A variety is **irreducible** if it cannot be written as the union of two proper subvarieties.

Some authors use the word variety to refer only to irreducible algebraic sets. Note also that the definitions given here are only completely standard when k is algebraically closed.

Remark 4.4. Note that if $L \supseteq k$ are both fields, any polynomial $f \in k[x_1, \ldots, x_n]$ is also an element of $L[x_1, \ldots, x_n]$, and we can evaluate it at any point in \mathbb{A}^n_L . Thus, we may write $\mathcal{Z}_k(T)$ or $\mathcal{Z}_L(T)$ to distinguish between the zero sets over different fields.

Example 4.5. Here are some simple examples of algebraic varieties:

1) For $k = \mathbb{R}$ and n = 2, $\mathcal{Z}(y^2 - x^2(x+1))$ is a "nodal curve" in $\mathbb{A}^2_{\mathbb{R}}$, the real plane. Note that we have written x for x_1 and y for x_2 here, which is a common choice.

2) For $k = \mathbb{R}$ and n = 3, $\mathcal{Z}(z - x^2 - y^2)$ is a paraboloid in $\mathbb{A}^3_{\mathbb{R}}$, real three space.

3) For $k = \mathbb{R}$ and n = 3, $\mathcal{Z}(z - x^2 - y^2, 3x - 2y + 7z - 7)$ is a circle in $\mathbb{A}^3_{\mathbb{R}}$.

- 4) For $k = \mathbb{R}$ and n = 3, $\mathcal{Z}(xy, xz)$ is a line and a plane that cross transversely.
- 5) Over an arbitrary field k, a linear subspace of $\mathbb{A}^n_k = k^n$ is a subvariety: such a subset is defined by some linear equations.
- 6) For $k = \mathbb{R}$, $\mathcal{Z}_{\mathbb{R}}(x^2 + y^2 + 1) = \emptyset$. Note that $\mathcal{Z}_{\mathbb{C}}(x^2 + y^2 + 1) \neq \emptyset$, since it contains (i, 0).
- 7) For $k = \mathbb{R}$, $\mathcal{Z}_{\mathbb{R}}(x^2 + y^2) = \{(0,0)\}$. On the other hand, $\mathcal{Z}_{\mathbb{C}}(x^2 + y^2)$ is a union of two lines in \mathbb{C}^2 (or two planes, in the real sense), given by the equations x + iy = 0 and x iy = 0.
- 8) The subset $\mathbb{A}^2_k \setminus \{(0,0)\}$ is not an algebraic subset of \mathbb{A}^2_k if k is infinite. Why?
- 9) The graph of the sine function is not an algebraic subset of $\mathbb{A}^2_{\mathbb{R}}$.
- 10) For $k = \mathbb{R}$ or \mathbb{C} , the set

$$X = \{(t, t^2, t^3) \mid t \in k\}$$

is an algebraic variety, though it is not clear from this description that that is the case. In fact, $X = \mathcal{Z}(y - x^2, z - x^3)$. To see the containment (\subseteq) , for $(t, t^2, t^3) \in X$, we have $t^2 - t^2 = 0$ and $t^3 - t^3 = 0$. For the containment (\supseteq) , let $(a, b, c) \in \mathcal{Z}(y - x^2, z - x^3)$, so $b = a^2$ and $c = a^3$. Setting t = a, we get that $(a, b, c) = (t, t^2, t^3) \in X$. The same argument works over \mathbb{C} .

11) For $k = \mathbb{R}$ or \mathbb{C} , we claim that the set

$$X := \{ (t^3, t^4, t^5) \mid t \in \mathbb{R} \}$$

is an algebraic variety. Consider $Y=\mathcal{Z}(y^3-x^4,z^3-x^5)$. It is easy to see that $X\subseteq Y$. Over \mathbb{R} , for $(a,b,c)\in Y$, take $t=\sqrt[3]{a}$; then $a=t^3$, $b^3=a^4$ means $b=\sqrt[3]{a}^4$, so $b=t^4$, and similarly $c=t^5$, so X=Y. We used uniqueness of cube roots in this argument though, so we need to reconsider over \mathbb{C} . Indeed, if ω is a cube root of unity, then $(1,1,\omega)\in Y\smallsetminus X$, so we need to do better. Let's try $Z=\mathcal{Z}(y^3-x^4,z^3-x^5,z^4-y^5)$. Again, $X\subseteq Z$. Say that $(a,b,c)\in\mathbb{A}^3_{\mathbb{C}}$ are in Z, and let s be a cube root of a. Then $b^3=a^4=(s^4)^3$ implies that $b=\omega s^4$ for some cube root of unity ω' (maybe 1, maybe not). Similarly $c^3=a^4=(s^5)^3$ implies that $c=\omega''s^5$ for some cube root of unity ω'' (maybe 1, maybe ω' , maybe not). So at least $(a,b,c)=(s^3,\omega's^4,\omega''s^5)$. Let $t=\omega's$. Then $(s^3,\omega's^4,\omega''s^5)=(t^3,t^4,\omega s^5)$, where $\omega=(\omega')^2\omega''$ is again some cube root of unity. The equation $b^5=c^4$ shows that $t^20=\omega^5t^20$. If $t\neq 0$, this shows $\omega=1$, so $(a,b,c)=(t^3,t^4,t^5)$; if t=0, then $(a,b,c)=(0,0,0)=(0^3,0^4,0^5)$. Thus, X=Z.

12) For any field k and elements $a_1, \ldots, a_d \in k$, we have

$$\mathcal{Z}(x_1 - a_1, \dots, x_d - a_d) = \{(a_1, \dots, a_d)\}.$$

So, all one element subsets of \mathbb{A}^d_k are algebraic subsets.

13) Here is an example from linear algebra. Fix a field k and consider the set of pairs (A, v) of 2×2 matrices and 2×1 vectors over k. We can again identify this with \mathbb{A}_k^6 ; let's call our variables $x_{11}, x_{12}, x_{21}, x_{22}, y_1, y_2$, where we are thinking of

$$A = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \text{ and } v = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

The set $X := \{(A, v) \mid Av = 0\}$ is a subvariety of \mathbb{A}^6_k :

$$X = \mathcal{Z}(x_{11}y_1 + x_{12}y_2, x_{21}y_1 + x_{22}y_2).$$

14) Let us take another linear algebra example. We can identify the set of 2×3 matrices over a field k with \mathbb{A}^6_k . To make this line up a little more naturally, label our variables as $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}$. We claim that the set X of matrices of rank strictly less than 2 is a subvariety of \mathbb{A}^6_k . To see this, we need to find equations.

For a 2×3 matrix A to have rank strictly less than 2, it is necessary and sufficient that each 2×2 submatrix have rank strictly less than 2, which is equivalent to each of the 2×2 minors (subdeterminants) of the matrix to be zero. Thus, if we use variables

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix},$$

our variety is

$$X = \mathcal{Z}(x_{11}x_{22} - x_{12}x_{21}, x_{11}x_{23} - x_{13}x_{21}, x_{12}x_{23} - x_{13}x_{22}).$$

Proposition 4.6. Let k be a field and $R = k[x_1, \ldots, x_n]$. Let $S, T \subseteq R$ be arbitrary subsets.

- (1) If $S \subseteq T$, then $\mathcal{Z}(S) \supseteq \mathcal{Z}(T)$.
- (2) If I = (S) is the ideal generated by S, then $\mathcal{Z}(S) = \mathcal{Z}(I)$.

Proof. First, note that imposing more equations can only lead to a smaller the solution set, which gives (1). For (2), we have $\mathcal{Z}(I) \subseteq \mathcal{Z}(S)$ by (1). On the other hand, if $f_1, \ldots, f_m \in S$ and $r_1, \ldots, r_m \in R$, and $(a_1, \ldots, a_n) \in \mathcal{Z}(S)$, then $f_i(a_1, \ldots, a_n) = 0$ for all i. Therefore,

$$(\sum_{i} r_i f_i)(a_1, \dots, a_n) = \sum_{i} r_i(a_1, \dots, a_n) f_i(a_1, \dots, a_n) = 0,$$

so
$$(a_1, \ldots, a_n) \in \mathcal{Z}(\sum_i r_i f_i)$$
. Thus, $(a_1, \ldots, a_n) \in \mathcal{Z}(I)$. That is, $\mathcal{Z}(S) \subseteq \mathcal{Z}(I)$.

Given Proposition 4.6, it is sufficient to consider $\mathcal{Z}(I)$ with I varying over all ideals in $R = k[x_1, \ldots, x_n]$. In other words, we will talk about the solution set of an ideal, rather than of an arbitrary set.

Notice that different ideals can determine the same variety.

Example 4.7. Let k be a field and R = k[x]. The varieties $\mathcal{Z}(x)$ and $\mathcal{Z}(x^2)$ are both the singleton given by the origin $\{0\}$ of \mathbb{A}^1_k , even though the ideals (x) and (x^2) are distinct.

Proposition 4.8. Let k be a field and $R = k[x_1, \ldots, x_n]$. Let $I, I_{\lambda}, J \subseteq R$ be ideals in R.

(1)
$$\mathcal{Z}(R) = \mathcal{Z}(1) = \emptyset$$
 and $\mathcal{Z}(0) = \mathbb{A}_k^n$.

(2)
$$\bigcap_{\lambda \in \Lambda} \mathcal{Z}(I_{\lambda}) = \mathcal{Z}(\sum_{\lambda \in \Lambda} I_{\lambda}).$$

(3)
$$\mathcal{Z}(I \cap J) = \mathcal{Z}(IJ) = \mathcal{Z}(I) \cup \mathcal{Z}(J)$$
.

Proof. (1) is clear, since 1 is never equal to zero and 0 is always zero.

Let's now show (2). Given sets $S_{\lambda} \subseteq T$, a point is a solution to all of the equations in each set S_{λ} if and only if it is a solution of each set of equations S_{λ} . Therefore,

$$\mathcal{Z}(\bigcup_{\lambda \in \Lambda} S_{\lambda}) = \bigcap_{\lambda \in \Lambda} \mathcal{Z}(S_{\lambda}).$$

Given ideals I_{λ} , $\sum_{\lambda \in \Lambda} I_{\lambda}$ is the ideal generated by $\bigcup_{\lambda \in \Lambda} I_{\lambda}$, and thus

$$\mathcal{Z}(\sum_{\lambda \in \Lambda} I_{\lambda}) = \mathcal{Z}(\bigcup_{\lambda \in \Lambda} I_{\lambda}) = \bigcap_{\lambda \in \Lambda} \mathcal{Z}(I_{\lambda}).$$

To show (3), first consider subsets $S, T \subseteq R$. We claim that

$$\mathcal{Z}(S) \cup \mathcal{Z}(T) \subseteq \mathcal{Z}(\{fg \mid f \in S, g \in T\}).$$

Indeed, $f(a_1, \ldots, a_n) = 0$ for all $f \in S$ implies $f(a_1, \ldots, a_n)g(a_1, \ldots, a_n) = 0$ for all $f \in S$ and all $g \in T$. On the other hand, if $(a_1, \ldots, a_n) \notin \mathcal{Z}(S) \cup \mathcal{Z}(T)$, then there is some $f \in S$ and some $g \in T$ with $f(a_1, \ldots, a_n) \neq 0$ and $g(a_1, \ldots, a_n) \neq 0$, so $f(a_1, \ldots, a_n)g(a_1, \ldots, a_n) \neq 0$. Therefore,

$$\mathcal{Z}(S) \cup \mathcal{Z}(T) \subseteq \mathcal{Z}(\{fg \mid f \in S, g \in T\}).$$

Now given ideals I and J, since $IJ \subseteq I \cap J \subseteq I$ and $I \cap J \subseteq J$), by (1) we get

$$\mathcal{Z}(I) \cup \mathcal{Z}(J) \subseteq \mathcal{Z}(I \cap J) \subseteq \mathcal{Z}(IJ).$$

On the other hand, by (2) and (4) we get

$$\mathcal{Z}(IJ) \subseteq \mathcal{Z}(\{fg \mid f \in I, g \in J\}) = \mathcal{Z}(I) \cup \mathcal{Z}(J),$$

so the equalities hold throughout.

Proposition 4.8 allows us to define a topology on \mathbb{A}_k^n .

Definition 4.9. Let k be a field. The collection of subvarieties $X \subseteq \mathbb{A}_k^n$ is the collection of closed subsets in a topology on \mathbb{A}_k^n . This is called the **Zariski topology** on \mathbb{A}_k^n . Any subvariety of \mathbb{A}_k^n obtains a **Zariski topology** as the subspace topology from \mathbb{A}_k^n .

This topology is not very similar to the Euclidean topology on a manifold; it is much coarser. In fact, this topology is typically non-Hausdorff.

Example 4.10. Let k be an infinite field. The closed subsets in the Zariski topology on \mathbb{A}^1_k are just the finite subsets, along with the whole space. Note that this topology is not Hausdorff; quite on the contrary, any two nonempty open sets have infinite intersection!

We can also consider the equations that a subset of affine space satisfies.

Definition 4.11. Given any subset X of \mathbb{A}_k^d for a field k, define

$$\mathcal{I}(X) = \{ g(x_1, \dots, x_d) \in k[x_1, \dots, x_d] \mid g(a_1, \dots, a_d) = 0 \text{ for all } (a_1, \dots, a_d) \in X \}.$$

Exercise 13. $\mathcal{I}(X)$ is an ideal in $k[x_1,\ldots,x_d]$ for any $X\subseteq\mathbb{A}^d_k$.

Example 4.12. For any field k, we have $\mathcal{I}((a_1,\ldots,a_d))=(x_1-a_1,\ldots,x_d-a_d)$.

Remark 4.13. For a subset $X \subseteq \mathbb{A}^n_K$ and a subset $S \subseteq K[x_1, \dots, x_n]$, we have

$$X \subseteq \mathcal{Z}(S) \iff \text{each } s \in S \text{ vanishes at each } x \in X \iff S \subseteq \mathcal{I}(X).$$

Theorem 4.14. Let k be a field, and X, X_{λ}, Y be subsets of \mathbb{A}^n_K .

- (1) $\mathcal{I}(\varnothing) = R$ and, if k is infinite, $\mathcal{I}(\mathbb{A}_K^n) = 0$.
- (2) If $X \subseteq Y$, then $\mathcal{I}(X) \supseteq \mathcal{I}(Y)$.
- (3) $\mathcal{I}(X)$ is a radical ideal.

Proof. For (1), it is clear that $\mathcal{I}(\varnothing) = R$. Assume k is infinite. We show by induction on n that a nonzero polynomial in $K[x_1,\ldots,x_n]$ is nonzero at some point in \mathbb{A}^n_k . The case n=1 is standard: a polynomial in k[x] of degree d can have at most d roots. Now, let $f(x_1,\ldots,x_n)\in k[x_1,\ldots,x_n]$ be a nonzero polynomial. If f is a nonzero constant, it is nonzero at any point. Otherwise, we can assume that f nontrivally involves some variable, say x_n . Write

$$f(x_1,\ldots,x_n) = f_d(x_1,\ldots,x_{n-1})x_n^d + \cdots + f_0(x_1,\ldots,x_{n-1}).$$

If f is identically zero, then for every $(a_1, \ldots, a_{n-1}) \in \mathbb{A}_k^{n-1}$,

$$f_d(a_1,\ldots,a_{n-1})x_n^d+\cdots+f_0(a_1,\ldots,a_{n-1})$$

is a polynomial in one variable that is identically zero, so it is the zero polynomial. Thus each $f_i(a_1, \ldots, a_{n-1})$ is identically zero. By the induction hypothesis, these are the zero polynomial, so $f(x_1, \ldots, x_n)$ is the zero polynomial, as required.

(2) is clear from the definition of \mathcal{I} .

For (3), note that $f, g \in \mathcal{I}(X)$ and $r \in R$ implies $X \subseteq \mathcal{Z}(f, g)$ implies $X \subseteq \mathcal{Z}(rf + g)$ implies $rf + g \in \mathcal{I}(X)$, so $\mathcal{I}(X)$ is an ideal. If $f^t \in \mathcal{I}(X)$, then $f(a_1, \ldots, a_n)^t = 0$ for all $(a_1, \ldots, a_n) \in X$, so $f(a_1, \ldots, a_n) = 0$ for all $(a_1, \ldots, a_n) \in X$, and $f \in \mathcal{I}(X)$.

Determining $\mathcal{I}(X)$ can be very difficult; there was already some work involved in settling $\mathcal{I}(\mathbb{A}^n_K)$! We will explore the relationship between the associations \mathcal{Z} and \mathcal{I} more soon.

Appendix A

Macaulay2

There are several computer algebra systems dedicated to algebraic geometry and commutative algebra computations, such as Singular (more popular among algebraic geometers), CoCoA (which is more popular with european commutative algebraists, having originated in Genova, Italy), and Macaulay2. There are many computations you could run on any of these systems (and others), but we will focus on Macaulay2 since it's the most popular computer algebra system among US based commutative algebraists.

Macaulay2, as the name suggests, is a successor of a previous computer algebra system named Macaulay. Macaulay was first developed in 1983 by Dave Bayer and Mike Stillman, and while some still use it today, the system has not been updated since its final release in 2000. In 1993, Daniel Grayson and Mike Stillman released the first version of Macaulay2, and the current stable version if Macaulay2 1.16.

Macaulay2, or M2 for short, is an open-source project, with many contributors writing packages that are then released with the newest Macaulay2 version. Journals like the *Journal of Software for Algebra and Geometry* publish peer-refereed short articles that describe and explain the functionality of new packages, with the package source code being peer reviewed as well.

The National Science Foundation has funded Macaulay2 since 1992. Besides funding the project through direct grants, the NSF has also funded several Macaulay2 workshops — conferences where Macaulay2 package developers gather to work on new packages, and to share updates to the Macaulay2 core code and recent packages.

A.1 Getting started

A Macaulay2 session often starts with defining some ambient ring we will be doing computations over. Common rings such as the rationals and the integers can be defined using the commands QQ and ZZ; one can easily take quotients or build polynomial rings (in finitely many variables) over these. For example,

```
i1 : R = ZZ/101[x,y]
o1 = R
```

```
o1 : PolynomialRing
    and
i1 : k = ZZ/101;
i2 : R = k[x,y];
```

both store the ring $\mathbb{Z}/101$ as R, with the small difference that in the second example Macaulay2 has named the coefficient field k. One quirk that might make a difference later is that if we use the first option and later set k to be the field $\mathbb{Z}/101$, our ring R is not a polynomial ring over k. Also, in the second example we ended each line with a ;, which tells Macaulay2 to run the command but not display the result of the computation — which is in this case was simply an assignment, so the result is not relevant.

We can now do all sorts of computations over our ring R. For example, we can define an ideal in R, as follows:

Above we have set I to be the ideal in R that is generated by x^2, y^2, xy . The notation ideal() requires the usage of $\hat{}$ for powers and * for products; alternatively, we can define the exact same ideal with the notation ideal" ", as follows:

Now we can use this ideal I to either define a quotient ring S = R/I or the R-module M = R/I, as follows:

o5 : QuotientRing

It's important to note that while R is a ring, R^1 is the R-module R — this is a very important difference for Macaulay2, since these two objects have different types. So S defined above is a ring, while M is a module. Notice that Macaulay2 stored the module M as the cokernel of the map

$$R^3 \xrightarrow{\left[x^2 \quad y^2 \quad xy\right]} R .$$

When you make a new definition in Macaulay2, you might want to pay attention to what ring your new object is defined over. For example, now that we defined this ring S, Macaulay2 has automatically taken S to be our current ambient ring, and any calculation or definition we run next will be considered over S and not R. If you want to return to the original ring R, you must first run the command use R.

If you want to work over a finitely generated algebra over one of the basic rings you can define in Macaulay2, and your ring is not a quotient of a polynomial ring, you want to rewrite this algebra as a quotient of a polynomial ring. For example, suppose you want to work over the second Veronese in 2 variables over our field k from before, meaning the algebra $k[x^2, xy, y^2]$. We need 3 algebra generators, which we will call a, b, c, corresponding to x^2 , xy, and y^2 :

o9 : QuotientRing

Our ring T at the end is isomorphic to the 2nd Veronese of R, which is the ring we wanted. Note the syntax order in map: first target, then source, then a list with the images of each algebra generator.

A.2 Asking Macaulay2 for help

As you're learning how to use Macaulay2, you will often find yourself needing some help. Luckily, Macaulay2 can help you directly! For example, suppose you know the name of a command, but do not remember the syntax to use it. You can ask ?command, and Macaulay2 will show you the different usages of the command you want to know about.

i10 : ?primaryDecomposition

primaryDecomposition -- irredundant primary decomposition of an ideal

* Usage:

primaryDecomposition I

- * Inputs:
 - * I, an ideal, in a (quotient of a) polynomial ring R
- * Optional inputs:
 - * MinimalGenerators => a Boolean value, default value true, if false, the components will not be minimalized
 - * Strategy => ..., default value null,
- * Outputs:
 - st a list, containing a minimal list of primary ideals whose intersection is I

Ways to use primaryDecomposition :

- * "primaryDecomposition(Ideal)" -- see "primaryDecomposition" -- irredundant primary decomposition of an ideal
- * "primaryDecomposition(Module)" -- irredundant primary decomposition of a module
- * "primaryDecomposition(Ring)" -- see "primaryDecomposition(Module)" -- irredundant primary decomposition of a module

For the programmer

The object "primaryDecomposition" is a method function with options.

If instead you'd rather read the complete Macaulay2 documentation on the command you are interested in, you can use the viewHelp command, which will open an html page with the documentation you asked for. So running

i11 : viewHelp "primaryDecomposition"

will open an html page dedicate to the method primaryDecomposition, which includes examples and links to related methods.

A.3 Basic commands

Many Macaulay2 commands are easy to guess, and named exactly what you would expect them to be named. Often, googling "Macaulay2" followed by a few descriptive words will easily land you on the documentation for whatever you are trying to do.

Here are some basic commands you will likely use:

- $ideal(f_1, ..., f_n)$ will return the ideal generated by $f_1, ..., f_n$. Here products should be indicated by *, and powers with $\hat{}$. If you'd rather not use $\hat{}$ (this might be nice if you have lots of powers), you can write $ideal(f_1, ..., f_n)$ instead.
- $map(S, R, f_1, ..., f_n)$ gives a ring map $R \to S$ if R and S are rings, and R is a quotient of $k[x_1, ..., x_n]$. The resulting ring map will send $x_i \mapsto f_i$. There are many variations of map for example, you can use it to define R-module homomorphisms but you should carefully input the information in the required format. Try viewHelp map in Macaulay2 for more details
- $\ker(f)$ returns the kernel of the map f.
- I + J and I*J return the sum and product of the ideals I and J, respectively.
- A = matrix $\{\{a_{1,1}, \ldots, a_{1,n}\}, \ldots, \{a_{m,1}, \ldots, a_{m,n}\}\}$ returns the matrix

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ & \ddots & \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

If you are familiar with any other programming language, many of the basics are still the same. For example, some of the commands we will use return lists, and we might often need to do operations on lists. As with many other programming languages, a list is indicated by { } with the elements separated by commas.

As in most programming languages, Macaulay2 follows the convention that the first position in a list is the 0th position.

The method primaryDecomposition returns a list of primary ideals whose intersection is the input ideal, and associatedPrimes returns the list of associated primes of the given ideal or module. Operations on lists are often intuitive. For example, let's say we want to find the primary component of an ideal with a particular radical.

The method select returns a list of all the elements in our list with the required properties. In this case, if we actually want the primary ideal we just selected, as opposed to a list containing it, we need to extract the first component of our list L.

```
i5 : L_0
2
o5 = ideal (y, x )
o5 : Ideal of R
```

Index

$I \cap R$, 37	basis, 5
IS, 37	basis of a module, 5
R -module, 3 $R[\Lambda]$, 9 $R[f_1, \ldots, f_d]$, 11 R^G , 28	classical adjoint, 16 contraction, 37 cyclic module, 6
S_n , 29 T -graded, 31 T -graded module, 34 $V(I)$, 41 $\mathbb{C}\{z\}$, 23 $\deg(r)$, 31 \mathbb{N} -graded, 31 $\mathcal{C}(\mathbb{R}, \mathbb{R})$, 23	degree of a graded module homomorphism, 35 degree of a homogeneous element, 31 degree preserving homomorphism, 34 degree-preserving homomorphism, 35 determinantal trick, 16 direct summand, 36 domain, 3
$\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}), 23$ $\mathcal{Z}(X), 46$ $\mathcal{Z}_k(T), 46$ $\mathrm{adj}(B), 16$	equation of integral dependence, 15 exact sequence of modules, 20 expansion of an ideal, 37
r , 31 $\operatorname{Spec}(R)$, 41 \overline{R} , 15 \sqrt{I} , 42 $\sum_{\gamma \in \Gamma} R\gamma$, 5 \widehat{B}_{ij} , 16	fine grading, 32 finite type, 11 finitely generated algebra, 11 finitely generated module, 6 free algebra, 10 free module, 5
0, 1, 3 1, 1, 3	Gaussian integers, 13 generates, 9 generating set, 5
affine algebraic variety, 46 affine space, 45 algebra, 2 algebra generated by, 9 algebra-finite, 11 algebraic set, 46 algebraic variety, 46	generators for an R -module, 5 graded components, 31 graded homomorphism, 35 graded module, 34 graded ring, 31 graded ring homomorphism, 34 homogeneous components, 31
argenraic variety, 40	nomogeneous components, 51

homogeneous element, 31	quasi-homogeneous polynomial, 33
homogeneous ideal, 33	quotient of modules, 4
homomorphism of R -modules, 4	
	radical ideal, 42
ideal, 2	radical of an ideal, 42
ideal generated by, 2	reduced, 42
integral closure, 15	relation, 6
integral element, 15	relations, 10
integral over A , 15	relations of an algebra, 10
integrally closed, 15	residue field, 40
invariant, 28	restriction of scalars, 9
isomorphism of rings, 2	ring, 1
Jacobian, 11	ring homomorphism, 2
	ring isomorphism, 2
linearly reductive group, 38	<u> </u>
,	set of generators, 5
map of R -modules, 4	short exact sequence, 20
map on Spec, 42	splitting, 37
minimal prime, 43	standard grading, 32
module, 3	structure homomorphism of an algebra, 9
module generated by a subset, 5	submodule, 4
multiplicatively closed subset, 43	subring, 2
noetherian module, 24	unit ideal, 2
Noetherian ring, 22	
PID, 3	variety, 46
presentation, 6	waighta 20
prime ideal, 39	weights, 32
prime spectrum, 41	Zariski topology, 41, 49
principal ideal, 3	zero ideal, 2
	Zorn's Lemma, 40
principal ideal domain, 3	Zorn's Lemma, 40

Bibliography

- [AM69] Michael F. Atiyah and Ian G. Macdonald. *Introduction to commutative algebra*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [DF04] David S. Dummit and Richard M. Foote. Abstract algebra. Wiley, 3rd ed edition, 2004.
- [Eis95] David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- [Mat80] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.
- [Mat89] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.
- [Poo19] Bjorn Poonen. Why all rings should have a 1. *Mathematics Magazine*, 92(1):58–62, 2019.