Economic Order Quantity (EOQ)

Replenishment Model Assumptions

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous vs Periodic
- Number of Locations
 - One vs Multi vs Multi-Echelon
- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One vs Many
- Form of Product
 - Single Stage
 - Multi-Stage

Model Assumptions: EOQ

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous vs Periodic
- Number of Locations
 - One vs Multi vs Multi-Echelon
- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One vs Many
- Form of Product
 - Single Stage
 - Multi-Stage

Notation

```
D = Average Demand (units/time)
c = Variable (Purchase) Cost ($/unit)
c<sub>+</sub> = Fixed Ordering Cost ($/order)
h = Carrying or Holding Charge ($/inventory $/time)
c<sub>e</sub> = ch = Excess Holding Cost ($/unit/time)
Q = Replenishment Order Quantity (units/order)
T = Order Cycle Time (time/order)
N = 1/T = Orders per Time (order/time)
```

TRC(Q) = Total Relevant Cost (\$/time)TC(Q) = Total Cost (\$/time)

Inventory Charts

Model Assumptions (EOQ)

- Demand is uniform and deterministic
- Lead time is instantaneous (0)
- Total amount ordered is received

Lot Sizing: Finding Optimal Policy

What is the total cost?

TC = Purchase + Order + Holding + Shortage

$$\left| TC(Q) = cD + c_t \left(\frac{D}{Q} \right) + c_e \left(\frac{Q}{2} \right) + c_s E \left[Units \ Short \right] \right|$$

Which costs are relevant to the order quantity decision?

$$TRC(Q) = c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2}\right)$$

Building Intuition

$$TRC(Q) = c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{Q}{2}\right)$$

Example:

What is the optimal order quantity for a product with:

- Demand = 2,000 units/year
- Cost of placing an order = 500 \$/order
- Cost of product = 50 \$/unit
- Holding cost = 25% of unit cost per year
- Selling price of product = 75 \$/unit

Lesson: Economic Order Quantity (EOQ)

Solving for EOQ Analytically

Finding Q* - Optimal order quantity

First Order Conditions

$$TRC[Q] = \frac{c_t D}{Q} + \frac{c_e Q}{2}$$

$$\frac{dTRC[Q]}{dQ} = \frac{-c_t D}{Q^2} + \frac{c_e}{2} = 0$$

$$\frac{c_e}{2} = \frac{c_t D}{Q^2}$$

$$Q^2 = \frac{2c_t D}{c_a}$$

$$Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

Second Order Conditions

$$\frac{dTRC[Q]}{dQ} = \frac{-c_t D}{Q^2} + \frac{c_e}{2}$$

$$\frac{d^2 TRC[Q]}{d^2 Q} = \frac{2c_t D}{Q^3}$$

This value is positive for any positive values for c_t , D, or Q. Thus, Q^* is a global minimum

$$Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

Finding T* - Time between replenishments

$$Q^* = \sqrt{\frac{2c_t D}{c_e}} \qquad T^* = \frac{Q^*}{D}$$

Recall that:

Q= units / order

D= units / year

T= years / order

N = 1/T = orders / year

$$T^* = \left(\frac{1}{D}\right) \sqrt{\frac{2c_t D}{c_e}} = \sqrt{\frac{2c_t D}{D^2 c_e}}$$

Be sure to put T* into units that make sense (days, weeks, months, etc.) don't leave it in years!

$$T^* = \sqrt{\frac{2c_t}{Dc_e}}$$

Finding TRC* - Optimal Total Relevant costs

$$TRC[Q] = \frac{c_t D}{Q} + \frac{c_e Q}{2} \qquad Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

$$Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

$$TRC(Q^*) = \frac{c_t D}{\sqrt{\frac{2c_t D}{c_e}}} + \frac{c_e \sqrt{\frac{2c_t D}{c_e}}}{2} = \frac{c_t D\sqrt{c_e}}{\sqrt{2c_t D}} + \frac{c_e \sqrt{2c_t D}}{2\sqrt{c_e}}$$

$$= \frac{c_t D \sqrt{c_e}}{\sqrt{2c_t D}} + \frac{c_e \sqrt{2c_t D}}{2\sqrt{c_e}}$$

$$= \frac{\sqrt{c_t c_e D}}{\sqrt{2}} + \frac{\sqrt{c_t c_e D}}{\sqrt{2}}$$

$$=\frac{2\sqrt{c_t c_e D}}{\sqrt{2}}$$

Remember:

Total relevant cost ≠ Total cost. Need to add purchase cost back in.

$$TRC(Q^*) = \sqrt{2c_t c_e D}$$
$$TC(Q^*) = cD + \sqrt{2c_t c_e D}$$

Step by Step Example: EOQ

Find the optimal order quantity, inventory policy, and total relevant costs for a product with the following characteristics:

Lesson: Economic Order Quantity (EQQ)

- Demand = 2,000 units/year
- Cost of placing an order = 500 \$/order
- Cost of product = 50 \$/unit
- Holding cost = 25% of unit cost per year
- Selling price of product = 75 \$/unit

Lesson: Economic Order Quantity (EOQ)

15

EOQ Sensitivity to Changes

Lesson: Economic Order Quantity (EOQ)

Finding Sensitivity of EOQ

Suppose I use a "wrong" order quantity, Q. How much worse will my total relevant cost be using this "wrong" Q versus Q*?

$$\frac{TRC(Q)}{TRC(Q^*)} = \frac{\frac{c_t D}{Q} + \frac{c_e Q}{2}}{\sqrt{2c_t c_e D}}$$

$$= \frac{c_t D}{Q \sqrt{2c_t c_e D}} + \frac{c_e Q}{2\sqrt{2c_t c_e D}}$$

$$= \frac{\sqrt{c_t D}}{Q\sqrt{2c_e}} + \frac{\sqrt{c_e Q}}{2\sqrt{2c_t D}}$$

$$= \left(\frac{\sqrt{2}}{\sqrt{2}}\right) \frac{\sqrt{c_t D}}{Q\sqrt{2c_e}} + \frac{\sqrt{c_e Q}}{2\sqrt{2c_t D}}$$

$$= \frac{\sqrt{2c_t D}}{2Q\sqrt{c_e}} + \frac{\sqrt{c_e}Q}{2\sqrt{2c_t D}}$$

$$= \left(\frac{1}{2}\right) \left(\frac{\sqrt{2c_t D}}{Q\sqrt{c_e}} + \frac{\sqrt{c_e Q}}{\sqrt{2c_t D}}\right)$$

$$\left| \frac{TRC(Q)}{TRC(Q^*)} = \left(\frac{1}{2} \right) \left(\frac{Q^*}{Q} + \frac{Q}{Q^*} \right) \right|$$

EOQ Sensitivity wrt Order Size

Previous example where:

D= 2000
$$c=50$$
 $c_e = 12.5$ $c_t = 500$

Q	Ordering Costs (c _t D/Q)	Holding Costs (c _e Q/2)	Total Relevant Costs	Q/Q*	TRC/TRC*
800	\$1,250	\$5,000	\$6,250	200%	125%
600	\$1,667	\$3,750	\$5,417	150%	108.3%
Q*=400	\$2,500	\$2,500	\$5,000		
200	\$5,000	\$1,250	\$6,250	50%	125%
20	\$50,000	\$125	\$50,125	5%	1002.5%

Would you rather order Q>Q* or Q<Q*?

CTL.SC1x - Supply Chain and Logistics Fundamentals Lesson: Economic Order Quantity (EOQ)

EOQ Sensitivity wrt Order Size

EOQ Sensitivity wrt Demand

- How sensitive is the TRC to changes in actual demand?
- **Notation:**
 - D_F = Forecasted Demand
 - $Q_F^* = EOQ$ using Forecasted Demand
 - D_{Δ} = Actual Demand (what really occurred)
 - $\mathbf{Q}_{A}^{*} = \mathbf{EOQ}$ calculated with Actual Demand

$$Q_F^* = \sqrt{\frac{2D_F c_t}{c_e}}$$

$$Q_A^* = \sqrt{\frac{2D_A c_t}{c_e}}$$

$$\frac{TRC(Q)}{TRC(Q^*)} = \left(\frac{1}{2}\right)\left(\frac{Q^*}{Q} + \frac{Q}{Q^*}\right) \quad \frac{TRC(Q_F^*)}{TRC(Q_A^*)} = \left(\frac{1}{2}\right)\left(\frac{Q_A^*}{Q_F^*} + \frac{Q_F^*}{Q_A^*}\right)$$

$$\frac{TRC(Q_F^*)}{TRC(Q_A^*)} = \left(\frac{1}{2}\right) \left(\frac{Q_A^*}{Q_F^*} + \frac{Q_F^*}{Q_A^*}\right)$$

$$\frac{\underline{Q_A^*}}{Q_F^*} = \frac{\sqrt{\frac{2D_A c_t}{c_e}}}{\sqrt{\frac{2D_F c_t}{c_e}}} = \sqrt{\frac{D_A}{D_F}}$$

$$\frac{TRC\left(Q_{F}^{*}\right)}{TRC\left(Q_{A}^{*}\right)} = \frac{1}{2} \left(\sqrt{\frac{D_{A}}{D_{F}}} + \sqrt{\frac{D_{F}}{D_{A}}} \right)$$

EOQ Sensitivity wrt Demand

Previous example where:

D = 2000

c=50 $c_e = 12.5$ $c_t = 500$

D _{ACTUAL}	D _A /D _F	Q* _A /Q* _F	TRC* _A /TRC* _F
200	0.10	0.32	1.74
1,000	0.50	0.71	1.06
1,500	0.75	0.87	1.01
1,800	0.90	0.95	1.00
2,000	1.00	1.00	1.00
3,000	1.50	1.22	1.02
4,000	2.00	1.41	1.06
20,000	10.00	3.16	1.74

How much will TRC change if I change c_t, c, or c_e?

EOQ – Very Robust Solution

Lesson: Economic Order Quantity (EOQ)

EOQ Sensitivity to Order Cycle Time

EOQ Sensitivity wrt Order Cycle Time

- How sensitive is TRC to T*?
 - Why do we care and why is "time" different?
 - How do I find the "best" T that is also <u>practical</u>?
- Previous Example:
 - $Q^* = 400$ units for TRC* = \$5,000 per year
 - $T^* = 0.2$ years or 73 days or 10.4 weeks
 - What if I order weekly? monthly? Other?
 - TRC(1)/TRC(10.4) = .5(1/10.4 + 10.4/1) = 5.24 or 524% higher costs
 - TRC(4)/TRC(10.4) = 1.49 or 50% higher costs

$$\frac{TRC(T)}{TRC(T^*)} = \frac{1}{2} \left(\frac{T}{T^*} + \frac{T^*}{T} \right)$$

24

EOQ Sensitivity wrt Order Cycle Time

Power of Two Policies

- Order in intervals of powers of two
- Select a realistic base period, T_{Base} (day, week, month)
- Guarantees that TRC will be within 6% of optimal!
- We want to find the smallest k where $2^k \le T^* \le 2^{k+1}$
 - $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, . . .
 - . . . So for T*=10.4 weeks . . . k=3 so we order every 8 weeks

EOQ Sensitivity wrt Order Cycle Time

$$\frac{TRC(T)}{TRC(T^*)} = \frac{1}{2} \left(\frac{T}{T^*} + \frac{T^*}{T} \right) = \frac{1}{2} \left(\frac{2T}{T^*} + \frac{T^*}{2T} \right)$$

To find a practical T:

- 1. Calculate T*
- 2. Pick a base time period (day, week, etc.)
- 3. Find the lowest value of k that satisfies:

$$\frac{T^*}{\sqrt{2}} \le 2^k \le \sqrt{2} \, T^*$$

$$\frac{2T * -T *}{2T} = \frac{2T - T}{T *}$$

$$\frac{T}{2T} = \frac{T}{T *}$$

$$\frac{T}{T} = \sqrt{\frac{1}{2}} \quad and \quad \frac{T}{T} = \sqrt{2}$$

$$\frac{TRC(2^k)}{TRC(T^*)} \le \frac{1}{2} \left(\frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{1}\right) \approx 1.06$$

A Power of Two time interval is guaranteed to be within 6% of the TRC* with the optimal time interval.

Step by Step Example: Power of Two

Find the optimal order quantity, optimal order cycle time, and TRC for a product with the following characteristics:

- Demand = 25,000 units/year
- Cost of placing an order = 750 \$/order
- Cost of product = 25.50 \$/unit
- Holding cost = 15% of unit cost per year

Q* =3,131 units/order T*=0.125 years/order TRC*=\$11,976 \$/year

Assume that we want to order on a power of two weekly schedule, what is my new T and Q and what is my percent error from TRC*?

Step by Step Example: Power of Two

Lesson: Economic Order Quantity (EOQ)

Key Points from Lesson

Lesson: Economic Order Quantity (EOQ)

Key Points – The EOQ model . . .

- has restrictive assumptions, but is still widely used
- trades fixed (order) and variable (holding) costs
- is relatively insensitive to changes in . . .
 - rounding of order quantities (Q)
 - rounding of order cycle time (T)
 - errors in forecasting (D)
 - errors in cost parameters (c, c_t, h, c_e)
- helps focus management on process improvements
 - How do I lower c_t?
 - How do I lower c?
 - How do I lower h?
- is a good starting point, but not always a good end point.

Questions, Comments, Suggestions? Use the Discussion!

