# $11a_{51} (K11a_{51})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle -5u^{14} + 23u^{13} + \dots + 4b - 28, \\ &2u^{14} - 7u^{13} + 9u^{12} + 6u^{11} - 33u^{10} + 42u^9 - 6u^8 - 42u^7 + 53u^6 - 19u^5 - 7u^4 + 6u^3 + 11u^2 + 4a - 10u + 2, \\ &u^{15} - 5u^{14} + 10u^{13} - 5u^{12} - 18u^{11} + 44u^{10} - 40u^9 - 3u^8 + 49u^7 - 55u^6 + 26u^5 - u^4 + 2u^3 - 12u^2 + 12u - I_2^u \\ &= \langle 2u^{22}a + 8u^{22} + \dots - 4a - 16, \ -2u^{21}a + 7u^{22} + \dots + 6a - 11, \ u^{23} + 2u^{22} + \dots - 5u - 2 \rangle \end{split}$$

$$I_1 = \langle a, b - v + 1, v + 1 \rangle$$
  
 $I_2^v = \langle a, b - v, v^2 - v + 1 \rangle$ 

\* 4 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 65 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -5u^{14} + 23u^{13} + \dots + 4b - 28, \ 2u^{14} - 7u^{13} + \dots + 4a + 2, \ u^{15} - 5u^{14} + \dots + 12u - 4 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{14} + \frac{7}{4}u^{13} + \dots + \frac{5}{2}u - \frac{1}{2} \\ \frac{5}{4}u^{14} - \frac{23}{4}u^{13} + \dots - \frac{27}{2}u + 7 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{14} + u^{13} + \dots + \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{4}u^{14} + \frac{3}{4}u^{13} + \dots - u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{3}{4}u^{14} - 4u^{13} + \dots - 9u + \frac{9}{2} \\ \frac{7}{4}u^{14} - \frac{29}{4}u^{13} + \dots - \frac{25}{2}u + 5 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{5}{4}u^{14} + \frac{9}{4}u^{13} + \dots + 6u - \frac{5}{2} \\ -\frac{1}{4}u^{14} - \frac{1}{4}u^{13} + \dots - \frac{9}{2}u + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{14} + \frac{7}{4}u^{13} + \dots + 2u + \frac{1}{2} \\ -\frac{1}{4}u^{14} + \frac{3}{4}u^{13} + \dots - 2u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{7}{4}u^{14} - \frac{15}{2}u^{13} + \dots - 16u + \frac{15}{2} \\ \frac{3}{4}u^{14} - \frac{11}{4}u^{13} + \dots - \frac{11}{2}u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{7}{4}u^{14} - \frac{15}{2}u^{13} + \dots - 16u + \frac{15}{2} \\ \frac{3}{4}u^{14} - \frac{11}{4}u^{13} + \dots - \frac{11}{2}u + 2 \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes = 
$$13u^{14} - 58u^{13} + 91u^{12} + 9u^{11} - 253u^{10} + 402u^9 - 196u^8 - 247u^7 + 488u^6 - 328u^5 + 45u^4 + 37u^3 + 59u^2 - 114u + 58$$

| Crossings                | u-Polynomials at each crossing         |
|--------------------------|----------------------------------------|
| $c_1, c_4, c_6$ $c_{10}$ | $u^{15} + u^{14} + \dots + 2u - 1$     |
| $c_2, c_5, c_9$ $c_{11}$ | $u^{15} + 5u^{14} + \dots + 18u^2 - 1$ |
| $c_3, c_7$               | $u^{15} - 5u^{14} + \dots + 12u - 4$   |
| $c_8$                    | $u^{15} - 5u^{14} + \dots + 48u - 16$  |

| Crossings                | Riley Polynomials at each crossing       |
|--------------------------|------------------------------------------|
| $c_1, c_4, c_6$ $c_{10}$ | $y^{15} + 5y^{14} + \dots + 18y^2 - 1$   |
| $c_2, c_5, c_9$ $c_{11}$ | $y^{15} + 13y^{14} + \dots + 36y - 1$    |
| $c_3, c_7$               | $y^{15} - 5y^{14} + \dots + 48y - 16$    |
| $c_8$                    | $y^{15} + 3y^{14} + \dots - 1024y - 256$ |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.297110 + 1.013620I  |                                       |                     |
| a = -0.987350 - 0.311397I | 3.26489 + 2.24335I                    | 7.04256 - 3.44027I  |
| b = -0.738671 + 0.490241I |                                       |                     |
| u = 0.297110 - 1.013620I  |                                       |                     |
| a = -0.987350 + 0.311397I | 3.26489 - 2.24335I                    | 7.04256 + 3.44027I  |
| b = -0.738671 - 0.490241I |                                       |                     |
| u = 0.843039 + 0.715120I  |                                       |                     |
| a = 0.718904 - 0.735528I  | -6.27477 + 2.71677I                   | -5.40032 - 3.41816I |
| b = -0.47287 - 1.47924I   |                                       |                     |
| u = 0.843039 - 0.715120I  |                                       |                     |
| a = 0.718904 + 0.735528I  | -6.27477 - 2.71677I                   | -5.40032 + 3.41816I |
| b = -0.47287 + 1.47924I   |                                       |                     |
| u = 0.528547 + 1.045590I  |                                       |                     |
| a = 1.235390 + 0.154632I  | 1.75577 - 8.71874I                    | 3.93323 + 7.24615I  |
| b = 0.915557 - 0.882680I  |                                       |                     |
| u = 0.528547 - 1.045590I  |                                       |                     |
| a = 1.235390 - 0.154632I  | 1.75577 + 8.71874I                    | 3.93323 - 7.24615I  |
| b = 0.915557 + 0.882680I  |                                       |                     |
| u = -0.548950 + 0.445559I |                                       |                     |
| a = -0.294279 - 0.663565I | -1.34006 - 1.53790I                   | -1.51731 + 5.00908I |
| b = -0.232624 - 0.217433I |                                       |                     |
| u = -0.548950 - 0.445559I |                                       |                     |
| a = -0.294279 + 0.663565I | -1.34006 + 1.53790I                   | -1.51731 - 5.00908I |
| b = -0.232624 + 0.217433I |                                       |                     |
| u = 0.700518              |                                       |                     |
| a = -0.240121             | 0.940705                              | 11.2760             |
| b = 0.561665              |                                       |                     |
| u = 1.194600 + 0.597734I  |                                       |                     |
| a = 0.209836 + 0.830578I  | 6.11311 + 3.45523I                    | 8.74146 - 0.79948I  |
| b = 1.56955 + 0.92220I    |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.194600 - 0.597734I  |                                       |                     |
| a = 0.209836 - 0.830578I  | 6.11311 - 3.45523I                    | 8.74146 + 0.79948I  |
| b = 1.56955 - 0.92220I    |                                       |                     |
| u = -1.338190 + 0.093539I |                                       |                     |
| a = -0.043731 - 1.064360I | 9.46149 - 5.98215I                    | 9.71265 + 5.53392I  |
| b = -0.043240 - 0.609135I |                                       |                     |
| u = -1.338190 - 0.093539I |                                       |                     |
| a = -0.043731 + 1.064360I | 9.46149 + 5.98215I                    | 9.71265 - 5.53392I  |
| b = -0.043240 + 0.609135I |                                       |                     |
| u = 1.173580 + 0.723559I  |                                       |                     |
| a = -0.218707 - 1.141120I | 3.8210 + 15.1159I                     | 4.84980 - 10.19781I |
| b = -1.77854 - 1.21305I   |                                       |                     |
| u = 1.173580 - 0.723559I  |                                       |                     |
| a = -0.218707 + 1.141120I | 3.8210 - 15.1159I                     | 4.84980 + 10.19781I |
| b = -1.77854 + 1.21305I   |                                       |                     |

II. 
$$I_2^u = \langle 2u^{22}a + 8u^{22} + \dots - 4a - 16, -2u^{21}a + 7u^{22} + \dots + 6a - 11, u^{23} + 2u^{22} + \dots - 5u - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{22}a - 4u^{22} + \dots + 2a + 8 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{22}a + \frac{3}{2}u^{22} + \dots - 6u - \frac{7}{2} \\ -\frac{7}{2}u^{22}a - \frac{5}{2}u^{22} + \dots + 8a + 8 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{22}a - 4u^{22} + \dots + a + 8 \\ -\frac{1}{2}u^{22} - \frac{1}{2}u^{21} + \dots + au + \frac{3}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{19} + 2u^{17} + \dots + a - 1 \\ -u^{22}a - \frac{7}{2}u^{22} + \dots + 2a + 7 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3u^{22} + \frac{5}{2}u^{21} + \dots + 10u - \frac{9}{2} \\ \frac{7}{2}u^{22}a + \frac{5}{2}u^{22} + \dots + a + 8 \\ -\frac{1}{2}u^{22} - \frac{1}{2}u^{21} + \dots + au + \frac{3}{2}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{22}a - 4u^{22} + \dots + a + 8 \\ -\frac{1}{2}u^{22} - \frac{1}{2}u^{21} + \dots + au + \frac{3}{2}u \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -3u^{22} - 6u^{21} + 13u^{20} + 32u^{19} - 22u^{18} - 86u^{17} + 9u^{16} + 146u^{15} + 52u^{14} - 172u^{13} - 134u^{12} + 142u^{11} + 194u^{10} - 86u^9 - 185u^8 + 26u^7 + 133u^6 + 16u^5 - 53u^4 - 28u^3 + 4u^2 + 14u + 15u^2 + 14u^2 + 15u^2 + 1$$

| Crossings                | u-Polynomials at each crossing           |
|--------------------------|------------------------------------------|
| $c_1, c_4, c_6$ $c_{10}$ | $u^{46} + 2u^{45} + \dots + 3u + 1$      |
| $c_2, c_5, c_9$ $c_{11}$ | $u^{46} + 16u^{45} + \dots - 7u + 1$     |
| $c_3, c_7$               | $(u^{23} + 2u^{22} + \dots - 5u - 2)^2$  |
| $c_8$                    | $(u^{23} - 10u^{22} + \dots + 9u - 4)^2$ |

| Crossings                | Riley Polynomials at each crossing        |
|--------------------------|-------------------------------------------|
| $c_1, c_4, c_6$ $c_{10}$ | $y^{46} + 16y^{45} + \dots - 7y + 1$      |
| $c_2, c_5, c_9$ $c_{11}$ | $y^{46} + 28y^{45} + \dots - 31y + 1$     |
| $c_3, c_7$               | $(y^{23} - 10y^{22} + \dots + 9y - 4)^2$  |
| $c_8$                    | $(y^{23} + 6y^{22} + \dots + 81y - 16)^2$ |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.639801 + 0.747481I  |                                       |                     |
| a = 0.727893 - 0.688432I  | -2.85626 - 3.41905I                   | -2.17452 + 2.62575I |
| b = 0.26465 - 1.54953I    |                                       |                     |
| u = 0.639801 + 0.747481I  |                                       |                     |
| a = 1.368810 + 0.331230I  | -2.85626 - 3.41905I                   | -2.17452 + 2.62575I |
| b = 0.347272 - 0.897201I  |                                       |                     |
| u = 0.639801 - 0.747481I  |                                       |                     |
| a = 0.727893 + 0.688432I  | -2.85626 + 3.41905I                   | -2.17452 - 2.62575I |
| b = 0.26465 + 1.54953I    |                                       |                     |
| u = 0.639801 - 0.747481I  |                                       |                     |
| a = 1.368810 - 0.331230I  | -2.85626 + 3.41905I                   | -2.17452 - 2.62575I |
| b = 0.347272 + 0.897201I  |                                       |                     |
| u = 0.892339 + 0.406575I  |                                       |                     |
| a = -0.099975 - 1.361930I | 0.68141 + 1.67196I                    | 4.30301 - 3.03015I  |
| b = -0.81309 - 2.02727I   |                                       |                     |
| u = 0.892339 + 0.406575I  |                                       |                     |
| a = 1.245900 + 0.653876I  | 0.68141 + 1.67196I                    | 4.30301 - 3.03015I  |
| b = -0.365826 - 0.883644I |                                       |                     |
| u = 0.892339 - 0.406575I  |                                       |                     |
| a = -0.099975 + 1.361930I | 0.68141 - 1.67196I                    | 4.30301 + 3.03015I  |
| b = -0.81309 + 2.02727I   |                                       |                     |
| u = 0.892339 - 0.406575I  |                                       |                     |
| a = 1.245900 - 0.653876I  | 0.68141 - 1.67196I                    | 4.30301 + 3.03015I  |
| b = -0.365826 + 0.883644I |                                       |                     |
| u = 1.050370 + 0.349306I  |                                       |                     |
| a = 0.291173 + 0.949009I  | 3.69234 + 0.67223I                    | 9.57904 - 0.98278I  |
| b = 1.18138 + 1.14414I    |                                       |                     |
| u = 1.050370 + 0.349306I  |                                       |                     |
| a = -0.472020 - 0.128106I | 3.69234 + 0.67223I                    | 9.57904 - 0.98278I  |
| b = 0.866881 + 0.515908I  |                                       |                     |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = 1.050370 - 0.349306I  |                                       |                    |
| a = 0.291173 - 0.949009I  | 3.69234 - 0.67223I                    | 9.57904 + 0.98278I |
| b = 1.18138 - 1.14414I    |                                       |                    |
| u = 1.050370 - 0.349306I  |                                       |                    |
| a = -0.472020 + 0.128106I | 3.69234 - 0.67223I                    | 9.57904 + 0.98278I |
| b = 0.866881 - 0.515908I  |                                       |                    |
| u = -0.423739 + 1.023080I |                                       |                    |
| a =  0.901532 - 0.308315I | 2.61521 + 3.21096I                    | 5.70075 - 2.17483I |
| b = 0.646872 + 0.688817I  |                                       |                    |
| u = -0.423739 + 1.023080I |                                       |                    |
| a = -1.263400 + 0.094664I | 2.61521 + 3.21096I                    | 5.70075 - 2.17483I |
| b = -0.912235 - 0.683061I |                                       |                    |
| u = -0.423739 - 1.023080I |                                       |                    |
| a = 0.901532 + 0.308315I  | 2.61521 - 3.21096I                    | 5.70075 + 2.17483I |
| b = 0.646872 - 0.688817I  |                                       |                    |
| u = -0.423739 - 1.023080I |                                       |                    |
| a = -1.263400 - 0.094664I | 2.61521 - 3.21096I                    | 5.70075 + 2.17483I |
| b = -0.912235 + 0.683061I |                                       |                    |
| u = -0.649214 + 0.610986I |                                       |                    |
| a = -0.654087 - 0.683089I | -1.56921 - 1.42863I                   | 0.37479 + 3.46803I |
| b = -0.163180 - 1.021730I |                                       |                    |
| u = -0.649214 + 0.610986I |                                       |                    |
| a = 0.540359 - 0.440252I  | -1.56921 - 1.42863I                   | 0.37479 + 3.46803I |
| b = -0.111799 + 0.519787I |                                       |                    |
| u = -0.649214 - 0.610986I |                                       |                    |
| a = -0.654087 + 0.683089I | -1.56921 + 1.42863I                   | 0.37479 - 3.46803I |
| b = -0.163180 + 1.021730I |                                       |                    |
| u = -0.649214 - 0.610986I |                                       |                    |
| a = 0.540359 + 0.440252I  | -1.56921 + 1.42863I                   | 0.37479 - 3.46803I |
| b = -0.111799 - 0.519787I |                                       |                    |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.857444 + 0.223332I |                                       |                    |
| a = -0.434590 + 1.081100I | 1.26940 + 3.50227I                    | 6.61882 - 3.38553I |
| b = -1.15099 + 1.59199I   |                                       |                    |
| u = -0.857444 + 0.223332I |                                       |                    |
| a = -1.20976 + 0.81324I   | 1.26940 + 3.50227I                    | 6.61882 - 3.38553I |
| b = 0.500178 - 0.598051I  |                                       |                    |
| u = -0.857444 - 0.223332I |                                       |                    |
| a = -0.434590 - 1.081100I | 1.26940 - 3.50227I                    | 6.61882 + 3.38553I |
| b = -1.15099 - 1.59199I   |                                       |                    |
| u = -0.857444 - 0.223332I |                                       |                    |
| a = -1.20976 - 0.81324I   | 1.26940 - 3.50227I                    | 6.61882 + 3.38553I |
| b = 0.500178 + 0.598051I  |                                       |                    |
| u = -0.975157 + 0.564788I |                                       |                    |
| a = -0.742547 - 0.767125I | -0.57975 - 3.22642I                   | 2.48526 + 3.26705I |
| b = 0.918100 - 1.023970I  |                                       |                    |
| u = -0.975157 + 0.564788I |                                       |                    |
| a = -0.313926 + 0.810399I | -0.57975 - 3.22642I                   | 2.48526 + 3.26705I |
| b = -1.47433 + 1.18838I   |                                       |                    |
| u = -0.975157 - 0.564788I |                                       |                    |
| a = -0.742547 + 0.767125I | -0.57975 + 3.22642I                   | 2.48526 - 3.26705I |
| b = 0.918100 + 1.023970I  |                                       |                    |
| u = -0.975157 - 0.564788I |                                       |                    |
| a = -0.313926 - 0.810399I | -0.57975 + 3.22642I                   | 2.48526 - 3.26705I |
| b = -1.47433 - 1.18838I   |                                       |                    |
| u = -1.058660 + 0.462903I |                                       |                    |
| a = 0.115203 - 1.237340I  | 2.96583 - 6.20103I                    | 7.62650 + 6.52033I |
| b = 0.99587 - 1.50991I    |                                       |                    |
| u = -1.058660 + 0.462903I |                                       |                    |
| a = 0.507084 - 0.155808I  | 2.96583 - 6.20103I                    | 7.62650 + 6.52033I |
| b = -0.806153 + 0.696216I |                                       |                    |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -1.058660 - 0.462903I |                                       |                    |
| a = 0.115203 + 1.237340I  | 2.96583 + 6.20103I                    | 7.62650 - 6.52033I |
| b = 0.99587 + 1.50991I    |                                       |                    |
| u = -1.058660 - 0.462903I |                                       |                    |
| a = 0.507084 + 0.155808I  | 2.96583 + 6.20103I                    | 7.62650 - 6.52033I |
| b = -0.806153 - 0.696216I |                                       |                    |
| u = 1.017600 + 0.636625I  |                                       |                    |
| a = 0.744768 - 0.749497I  | -1.67882 + 8.70149I                   | 0.49306 - 7.84909I |
| b = -1.04484 - 1.24551I   |                                       |                    |
| u = 1.017600 + 0.636625I  |                                       |                    |
| a = -0.217050 - 1.226050I | -1.67882 + 8.70149I                   | 0.49306 - 7.84909I |
| b = -1.50533 - 1.64405I   |                                       |                    |
| u = 1.017600 - 0.636625I  |                                       |                    |
| a = 0.744768 + 0.749497I  | -1.67882 - 8.70149I                   | 0.49306 + 7.84909I |
| b = -1.04484 + 1.24551I   |                                       |                    |
| u = 1.017600 - 0.636625I  |                                       |                    |
| a = -0.217050 + 1.226050I | -1.67882 - 8.70149I                   | 0.49306 + 7.84909I |
| b = -1.50533 + 1.64405I   |                                       |                    |
| u = 1.33812               |                                       |                    |
| a = 0.075989 + 1.040970I  | 9.53870                               | 9.98620            |
| b = 0.300733 + 0.595751I  |                                       |                    |
| u = 1.33812               |                                       |                    |
| a = 0.075989 - 1.040970I  | 9.53870                               | 9.98620            |
| b = 0.300733 - 0.595751I  |                                       |                    |
| u = -1.183710 + 0.666071I |                                       |                    |
| a = 0.195146 - 1.147490I  | 5.02301 - 9.28326I                    | 6.87076 + 5.60434I |
| b = 1.61477 - 1.17057I    |                                       |                    |
| u = -1.183710 + 0.666071I |                                       |                    |
| a = -0.206318 + 0.804811I | 5.02301 - 9.28326I                    | 6.87076 + 5.60434I |
| b = -1.66505 + 0.97289I   |                                       |                    |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -1.183710 - 0.666071I |                                       |                    |
| a = 0.195146 + 1.147490I  | 5.02301 + 9.28326I                    | 6.87076 - 5.60434I |
| b = 1.61477 + 1.17057I    |                                       |                    |
| u = -1.183710 - 0.666071I |                                       |                    |
| a = -0.206318 - 0.804811I | 5.02301 + 9.28326I                    | 6.87076 - 5.60434I |
| b = -1.66505 - 0.97289I   |                                       |                    |
| u = -0.121237 + 0.604443I |                                       |                    |
| a = -1.76798 - 0.31454I   | 0.47190 + 2.34013I                    | 2.62944 - 2.83732I |
| b = -0.373843 - 0.180509I |                                       |                    |
| u = -0.121237 + 0.604443I |                                       |                    |
| a = -0.082205 + 0.174275I | 0.47190 + 2.34013I                    | 2.62944 - 2.83732I |
| b = -0.250037 + 0.826429I |                                       |                    |
| u = -0.121237 - 0.604443I |                                       |                    |
| a = -1.76798 + 0.31454I   | 0.47190 - 2.34013I                    | 2.62944 + 2.83732I |
| b = -0.373843 + 0.180509I |                                       |                    |
| u = -0.121237 - 0.604443I |                                       |                    |
| a = -0.082205 - 0.174275I | 0.47190 - 2.34013I                    | 2.62944 + 2.83732I |
| b = -0.250037 - 0.826429I |                                       |                    |

III. 
$$I_1^v = \langle a, b^2 - b + 1, v + 1 \rangle$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ b - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -b \\ -b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} b \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} b \\ b-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -b \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8b 4

| Crossings                     | u-Polynomials at each crossing |
|-------------------------------|--------------------------------|
| $c_1, c_2, c_5$ $c_6, c_{11}$ | $u^2 + u + 1$                  |
| $c_3, c_7, c_8$               | $u^2$                          |
| $c_4, c_9, c_{10}$            | $u^2 - u + 1$                  |

| Crossings                                        | Riley Polynomials at each crossing |
|--------------------------------------------------|------------------------------------|
| $c_1, c_2, c_4$ $c_5, c_6, c_9$ $c_{10}, c_{11}$ | $y^2 + y + 1$                      |
| $c_3, c_7, c_8$                                  | $y^2$                              |

| Solutions to $I_1^v$     | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape    |
|--------------------------|---------------------------------------|---------------|
| v = -1.00000 $a = 0$     | -4.05977I                             | 0.+6.92820I   |
| b = 0.500000 + 0.866025I | 1,000,111                             | 0. 1 0.020201 |
| v = -1.00000 $a = 0$     | 4.05977I                              | 0 6.92820I    |
| b = 0.500000 - 0.866025I | 1.000111                              | 0. 0.320201   |

IV. 
$$I_2^v = \langle a, b-v, v^2-v+1 \rangle$$

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -v \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ v \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ v - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3

| Crossings                      | u-Polynomials at each crossing |
|--------------------------------|--------------------------------|
| $c_1, c_2, c_5 \\ c_6, c_{11}$ | $u^2 + u + 1$                  |
| $c_3, c_7, c_8$                | $u^2$                          |
| $c_4, c_9, c_{10}$             | $u^2 - u + 1$                  |

| Crossings                                        | Riley Polynomials at each crossing |
|--------------------------------------------------|------------------------------------|
| $c_1, c_2, c_4$ $c_5, c_6, c_9$ $c_{10}, c_{11}$ | $y^2 + y + 1$                      |
| $c_3, c_7, c_8$                                  | $y^2$                              |

|     | Solutions to $I_2^v$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|-----|----------------------|---------------------------------------|------------|
| v = | 0.500000 + 0.866025I |                                       |            |
| a = | 0                    | 0                                     | 3.00000    |
| b = | 0.500000 + 0.866025I |                                       |            |
| v = | 0.500000 - 0.866025I |                                       |            |
| a = | 0                    | 0                                     | 3.00000    |
| b = | 0.500000 - 0.866025I |                                       |            |

#### V. u-Polynomials

| Crossings          | u-Polynomials at each crossing                                                                      |
|--------------------|-----------------------------------------------------------------------------------------------------|
| $c_1, c_6$         | $((u^{2} + u + 1)^{2})(u^{15} + u^{14} + \dots + 2u - 1)(u^{46} + 2u^{45} + \dots + 3u + 1)$        |
| $c_2, c_5, c_{11}$ | $((u^{2} + u + 1)^{2})(u^{15} + 5u^{14} + \dots + 18u^{2} - 1)(u^{46} + 16u^{45} + \dots - 7u + 1)$ |
| $c_3, c_7$         | $u^{4}(u^{15} - 5u^{14} + \dots + 12u - 4)(u^{23} + 2u^{22} + \dots - 5u - 2)^{2}$                  |
| $c_4, c_{10}$      | $((u^{2} - u + 1)^{2})(u^{15} + u^{14} + \dots + 2u - 1)(u^{46} + 2u^{45} + \dots + 3u + 1)$        |
| c <sub>8</sub>     | $u^{4}(u^{15} - 5u^{14} + \dots + 48u - 16)(u^{23} - 10u^{22} + \dots + 9u - 4)^{2}$                |
| $c_9$              | $((u^{2}-u+1)^{2})(u^{15}+5u^{14}+\cdots+18u^{2}-1)(u^{46}+16u^{45}+\cdots-7u+1)$                   |

VI. Riley Polynomials

| Crossings                | Riley Polynomials at each crossing                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------|
| $c_1, c_4, c_6$ $c_{10}$ | $((y^2 + y + 1)^2)(y^{15} + 5y^{14} + \dots + 18y^2 - 1)(y^{46} + 16y^{45} + \dots - 7y + 1)$              |
| $c_2, c_5, c_9$ $c_{11}$ | $((y^{2} + y + 1)^{2})(y^{15} + 13y^{14} + \dots + 36y - 1)$ $\cdot (y^{46} + 28y^{45} + \dots - 31y + 1)$ |
| $c_{3}, c_{7}$           | $y^4(y^{15} - 5y^{14} + \dots + 48y - 16)(y^{23} - 10y^{22} + \dots + 9y - 4)^2$                           |
| $c_8$                    | $y^4(y^{15} + 3y^{14} + \dots - 1024y - 256)(y^{23} + 6y^{22} + \dots + 81y - 16)^2$                       |