Robust Optimization as a Convex Variance Regularization

Hongseok Namkoong (Joint work with John Duchi and Peter Glynn)

Stanford University

September 2016

Stochastic optimization problems

$$\label{eq:minimize} \text{minimize } \mathbb{E}_{P_0}[\ell(\theta;X)] = \int \ell(\theta;X) dP_0(X)$$
 subject to $\theta \in \Theta.$

Stochastic optimization problems

$$\label{eq:minimize} \text{minimize } \mathbb{E}_{P_0}[\ell(\theta;X)] = \int \ell(\theta;X) dP_0(X)$$
 subject to $\theta \in \Theta.$

- Data/randomness is X
- ightharpoonup Parameter space Θ is a nonempty closed set

Applications

Machine learning all sorts of loss minimization problems, e.g. classification:

$$X = (x, y) \in \mathbb{R}^d \times \{-1, 1\},\$$

goal is to find θ such that $\operatorname{sign}(\theta^T x) = y$ usually.

$$\ell(\theta; X) = \ell(\theta; (x, y)) = (1 - y\theta^T x)_+$$

Goal of This Talk

How do we optimize?

$$\mathop{\mathrm{minimize}}_{\theta \in \Theta} R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Expensive to compute \mathbb{E}_{P_0} (simulation optimization) and P_0 often unknown (statistics, machine learning)

Goal: Given i.i.d. samples $X_1, \ldots, X_n \overset{\text{iid}}{\sim} P_0$, how can we say with **confidence** that our algorithm has learned something **useful**?

Empirical Risk Minimization / Sample Average Approximation

Standard approach: Solve

Empirical Risk Minimization / Sample Average Approximation

Standard approach: Solve

$$\widehat{\theta}^{\text{erm}} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; X_i) \approx R(\theta).$$

Empirical Risk Minimization / Sample Average Approximation

Standard approach: Solve

$$\underset{\theta \in \Theta}{\operatorname{argmin}} \, \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; X_i) \underset{\text{\bowtie Hopefully!}}{\underset{\text{\bowtie Hopefully!}}{\underbrace{\otimes}}} \, .$$

A few asides

Why do we like convex optimization problems?

- We can solve them (algorithms)
- We can certify they are solved (duality)

We want to do the same thing for stochastic problems!

► Any learning algorithm has *bias* (approximation error) and *variance* (estimation error)

- ► Any learning algorithm has *bias* (approximation error) and *variance* (estimation error)
- From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) \le \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2\text{Var}_{\widehat{P}_n}\left(\ell(\theta;X)\right)}{n}}}_{\text{variance}} + \frac{C\log\frac{1}{\delta}}{n}$$

- Any learning algorithm has bias (approximation error) and variance (estimation error)
- lacktriangle From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) \le \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2\text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}}_{\text{variance}} + \frac{C\log\frac{1}{\delta}}{n}$$

▶ Can be made uniform in $\theta \in \Theta$ [Maurer & Pontil 09]

- ► Any learning algorithm has *bias* (approximation error) and *variance* (estimation error)
- ightharpoonup From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) \le \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2\text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}}_{\text{variance}} + \frac{C\log\frac{1}{\delta}}{n}$$

▶ Can be made uniform in $\theta \in \Theta$ [Maurer & Pontil 09]

Goal: Trade between these automatically and optimally by solving

$$\widehat{\theta}^{\text{var}} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ \widehat{R}_n(\theta) + \sqrt{\frac{2\operatorname{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} \right\}.$$

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Minor issue: variance is wildly non-convex

Figure: Variance of $|\theta - X|$

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \quad \sum_{i=1}^{n} \frac{1}{n} \ell(\theta; X_i)$$

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \quad \sum_{i=1}^{n} \frac{1}{n} \ell(\theta; X_i)$$

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Instead, solve distributionally robust optimization (RO) problem

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ \underset{p \in \mathcal{P}_{n,\rho}}{\sup} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

where $\mathcal{P}_{n,\rho}$ is some appropriately chosen set of vectors

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Instead, solve distributionally robust optimization (RO) problem

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ \underset{\boldsymbol{p} \in \mathcal{P}_{n,\rho}}{\sup} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

where $\mathcal{P}_{n,\rho}$ is some appropriately chosen set of vectors

Today: Give a principled statistical approach to choosing $\mathcal{P}_{n,\rho}$ and give stochastic optimality certificates for RO.

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

lacktriangle The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1)=0. (w.l.o.g. can take f'(1)=0 too)

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

lacktriangle The f-divergence between distributions P and Q is

$$D_f(P||Q) := \int f\left(\frac{dP}{dQ}\right) dQ$$

where f is some convex function with f(1)=0. (w.l.o.g. can take f'(1)=0 too)

▶ Measures of closeness we use: $f(t) = \frac{1}{2}(t-1)^2$

$$D_{\chi^2}\left(P\|Q\right) = \frac{1}{2}\sum_x \frac{(p(x)-q(x))^2}{q(x)}$$
 Chi-square

(Owen (1990): original empirical likelihood $f(t) = -\log t$)

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} \left(p \| 1/n \right) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} (p | 1/n) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} (p | 1/n) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} (p | 1/n) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} (p | 1/n) \le \frac{\rho}{n} \right\}$$

then independently of distribution on $Z \in \mathbb{R}^k$

$$\mathbb{P}(\mathbb{E}[Z] \in E_n(\rho)) \to \mathbb{P}(\chi_k^2 \le \rho).$$

Idea: Leverage this in robust and stochastic optimization

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

$$\mathcal{P}_{n,\rho} := \left\{ \text{Distributions } P \text{ such that } D_{\chi^2} \left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n} \right\}$$

for some $\rho > 0$.

Robust Optimization

Idea: Optimize over uncertainty set of possible distributions,

$$\mathcal{P}_{n,\rho} := \left\{ \text{Distributions } P \text{ such that } D_{\chi^2} \left(P \| \widehat{P}_n \right) \leq \frac{\rho}{n} \right\}$$

 $\text{ for some } \rho>0.$

Define (and optimize) empirical likelihood upper confidence bound

$$R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P: D_{\chi^2}\left(P \| \widehat{P}_n\right) \le \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] = \max_{p: D_{\chi^2}\left(P \| \widehat{P}_n\right) \le \frac{\rho}{n}} \sum_{i=1}^n p_i \ell(\theta; X_i)$$

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 16]

Visualization of worst-case

Robust Optimization

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P: D_{\chi^2}(P \| \widehat{P}_n) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Robust Optimization

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \underset{P: D_{\chi^2}(P \| \widehat{P}_n) \leq \frac{\rho}{n}}{\max} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Nice properties:

- Convex optimization problem.
- Solve dual reformulation using interior point methods [Ben-Tal et al. 13]
- ► For large n and d, efficient solution methods as fast as SGD [N. & Duchi, 16]

Robust Optimization \approx Variance Regularization

Theorem (Duchi & N. 2016)

Assume that $\ell(\theta; X) \leq M$. Let $\sigma^2(\theta) := \text{Var}(\ell(\theta; X))$.

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}(\ell(\theta; X))}{n} + \operatorname{Rem}_n(\theta)}.$$

- $ightharpoonup Rem_n(\theta) \leq \frac{\sqrt{12}\rho M}{n}$
- $Rem_n(\theta) = 0$ with probability at least $1 \exp(-\frac{n\sigma^2(\theta)}{36M^2})$ proof

Theorem (Duchi & N. 2016)

Assume that $\ell(\theta;X) \leq M$. Let $\sigma^2(\theta) := \operatorname{Var}(\ell(\theta;X))$.

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}} + \operatorname{\textit{Rem}}_n(\theta).$$

- $ightharpoonup Rem_n(\theta) \leq \frac{\sqrt{12}\rho M}{n}$
- ► $Rem_n(\theta) = 0$ with probability at least $1 \exp(-\frac{n\sigma^2(\theta)}{36M^2})$ proof
- Let $N(\mathcal{F}, \tau, \|\cdot\|_{L^{\infty}})$ be the τ -covering number with respect to the supremum norm.

$$\begin{split} \mathbb{P}\left(\textit{Rem}_n(\theta) = 0 \text{ for all } \theta \in \Theta \text{ s.t. } \sigma^2(\theta) \geq \tau^2\right) \\ \geq 1 - cN(\mathcal{F}, \tau, \|\cdot\|_{L^\infty}) \exp(-\frac{n\tau^2}{M^2}). \end{split}$$

Theorem (Duchi, Glynn & N. 2016)

For general f-divergences,

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}(\ell(\theta; X))}{n}} + \operatorname{Rem}_n(\theta).$$

- If $\sigma^2(\theta) < \infty$, then $\sqrt{n} \operatorname{Rem}_n(\theta) \stackrel{P^*}{\to} 0$
- ▶ If $\{\ell(\theta;\cdot): \theta \in \Theta\}$ is P_0 -Donsker, then $\sqrt{n} \sup_{\theta \in \Theta} Rem_n(\theta) \stackrel{P^*}{\to} 0$

Theorem (Duchi, Glynn & N. 2016)

For general f-divergences,

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \operatorname{Var}_{\widehat{P}_n}(\ell(\theta; X))}{n}} + \operatorname{Rem}_n(\theta).$$

- If $\sigma^2(\theta) < \infty$, then $\sqrt{n} \operatorname{Rem}_n(\theta) \stackrel{P^*}{\to} 0$
- ▶ If $\{\ell(\theta;\cdot):\theta\in\Theta\}$ is P_0 -Donsker, then $\sqrt{n}\sup_{\theta\in\Theta}\mathsf{Rem}_n(\theta)\overset{P^*}{\to}0$
- ▶ [Lam 13] showed non-statistical, pointwise version for KL-divergence
- ► [Gotoh et al. 15] showed similar pointwise results with the objective penalty version

$$\underbrace{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n} \left(\ell(\theta; X)\right)}{n}}}_{\text{VarReg}}$$

With high probability,

$$\underbrace{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n} \left(\ell(\theta; X)\right)}{n}}}_{\text{VarReg}}$$

► Robust is empirical likelihood UCB and VarReg is normal UCB

$$\underbrace{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n} \left(\ell(\theta; X)\right)}{n}}}_{\text{VarReg}}$$

- Robust is empirical likelihood UCB and VarReg is normal UCB
- ► Robust is convex, VarReg is non-convex

$$\underbrace{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n} \left(\ell(\theta; X)\right)}{n}}}_{\text{VarReg}}$$

- ► Robust is empirical likelihood UCB and VarReg is normal UCB
- ► Robust is convex, VarReg is non-convex
- ▶ Robust **only** penalizes upward (bad) deviations in the loss whereas VarReg penalizes downward (good) deviations along with the upward (bad) deviations

$$\underbrace{R_n(\theta; \mathcal{P}_{n,\rho})}_{\text{Robust}} = \underbrace{\widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n} \left(\ell(\theta; X)\right)}{n}}}_{\text{VarReg}}$$

- ► Robust is empirical likelihood UCB and VarReg is normal UCB
- ► Robust is convex, VarReg is non-convex
- ▶ Robust **only** penalizes upward (bad) deviations in the loss whereas VarReg penalizes downward (good) deviations along with the upward (bad) deviations
- ▶ Robust is a coherent risk measure (i.e. it is a sensible negative utility)

Empirical likehood for stochastic optimization

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \underset{P: D_{\chi^2}(P \| \widehat{P}_n) \leq \frac{\rho}{n}}{\operatorname{max}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Empirical likehood for stochastic optimization

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n, \rho}) := \underset{P: D_{\sqrt{2}}(P \| \widehat{P}_n) \leq \frac{\rho}{n}}{\operatorname{max}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Assume that $\{\ell(\theta;\cdot):\theta\in\Theta\}$ is P_0 -Donsker

e.g.
$$\Theta \subset \mathbb{R}^d$$
 compact and $\ell(\cdot;X)$ is $M(X)$ -Lipschitz with $\mathbb{E} M(X)^2 < \infty$.

Empirical likehood for stochastic optimization

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \underset{P: D_{\chi^2}(P \| \widehat{P}_n) \leq \frac{\rho}{n}}{\operatorname{max}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Assume that $\{\ell(\theta;\cdot):\theta\in\Theta\}$ is $P_0 ext{-Donsker}$

e.g.
$$\Theta\subset\mathbb{R}^d$$
 compact and $\ell(\cdot;X)$ is $M(X)$ -Lipschitz with $\mathbb{E}M(X)^2<\infty.$

Theorem (Duchi, Glynn & N. 16 ①)

If $\theta^\star := \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ is unique, then

$$\lim_{n\to\infty} \mathbb{P}\left(\inf_{\theta\in\Theta} R(\theta) \le R_n(\widehat{\theta}^{\mathrm{rob}}, \mathcal{P}_{n,\rho})\right) = \mathbb{P}\left(N(0,1) \ge -\sqrt{2\rho}\right).$$

Optimal bias variance tradeoff

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \underset{P: D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n}}{\operatorname{max}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Optimal bias variance tradeoff

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \underset{P: D_{\sqrt{2}}(P \| \widehat{P}_n) \leq \frac{\rho}{n}}{\operatorname{max}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Let $\ell(\cdot;X)$ is $M ext{-Lipschitz}$ and $\operatorname{diam}(\Theta)=r$

Optimal bias variance tradeoff

Solve

$$\widehat{\theta}^{\text{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \left\{ R_n(\theta, \mathcal{P}_{n,\rho}) := \underset{P: D_{\sqrt{2}}(P \| \widehat{P}_n) \leq \frac{\rho}{n}}{\operatorname{max}} \mathbb{E}_P[\ell(\theta; X)] \right\}.$$

Let $\ell(\cdot; X)$ is M-Lipschitz and $\operatorname{diam}(\Theta) = r$

Theorem (Duchi & N. 2016)

Let $\rho = \log \frac{1}{\delta} + d \log n$. Then with probability at least $1 - \delta$,

$$R(\widehat{\theta}^{\text{rob}}) \leq \underbrace{R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho})}_{\text{optimality certificate}} + \frac{crM}{n}\rho$$

$$\leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{crM}{n}\rho$$

for some universal constant $0 < c \le 30$.

Fast rates from optimal tradeoff

Theorem (Duchi & N. 2016)

Let $\rho = \log \frac{1}{\delta} + d \log n$. Then with probability at least $1 - \delta$,

$$R(\widehat{\theta}^{\mathrm{rob}}) \leq \min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \mathrm{Var}(\ell(\theta, \xi))}{n}} \right\} + \frac{cMR}{n}\rho$$

for some $0 < c \le 30$.

Fast rates from optimal tradeoff

Theorem (Duchi & N. 2016)

Let $\rho = \log \frac{1}{\delta} + d \log n$. Then with probability at least $1 - \delta$,

$$R(\widehat{\theta}^{\mathrm{rob}}) \leq \min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \mathrm{Var}(\ell(\theta,\xi))}{n}} \right\} + \frac{cMR}{n}\rho$$

for some $0 < c \le 30$.

Compare with the ERM: If $Var(\ell(\theta;X)) \leq R(\theta)$ (e.g. $\ell(\theta;X) \in [0,1]$), then with probability $1-\delta$,

$$R(\widehat{\theta}^{\text{erm}}) \le R(\theta^{\star}) + \sqrt{\frac{2\rho R(\theta^{\star})}{n}} + \frac{cMR}{n}\rho$$

where $R(\theta^*) = \inf_{\theta \in \Theta} R(\theta)$. [Vapnik & Chervonenkis 71, 74, Mammen & Tsybakov 99, Bartlett et al. 06]

Theorem (Duchi, Glynn & N. 2016) Let $S := \operatorname{argmin}_{\theta \in \Theta} R(\theta)$.

Theorem (Duchi, Glynn & N. 2016)

Let $S := \operatorname{argmin}_{\theta \in \Theta} R(\theta)$.

▶ Consistency: Under essentially same conditions as ERM, $\operatorname{dist}(\widehat{\theta}^{\operatorname{rob}},S) \overset{P^*}{\to} 0$

Theorem (Duchi, Glynn & N. 2016)

Let $S := \operatorname{argmin}_{\theta \in \Theta} R(\theta)$.

- ► Consistency: Under essentially same conditions as ERM, $\operatorname{dist}(\widehat{\theta}^{\operatorname{rob}}, S) \overset{P^*}{\to} 0$
- ▶ Fast rates under growth conditions: Assume $\ell(\cdot; X)$ is convex, M(X)-Lipschitz with $\mathbb{E}\exp\left(\frac{M^2(X)}{M^2}\right) \leq \exp(1)$.

If $R(\theta) \ge \inf_{\theta^* \in \Theta} R(\theta^*) + \operatorname{dist}(\theta, S)^{\gamma}$ and $\rho = \log \frac{1}{\delta} + d \log n$, then with probability at least $1 - \delta$,

$$R(\widehat{\theta}^{\text{rob}}) \leq \inf_{\theta^* \in \Theta} R(\theta^*) + c \left(\frac{\rho M^2}{\lambda^{\frac{2}{\gamma}} n}\right)^{\frac{1}{2(\gamma-1)}}.$$

Theorem (Duchi & N. 2016)

• Efficiency loss: Define $\theta^* = \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ and let

$$\begin{split} b(\theta^\star) &:= \nabla \sqrt{\mathrm{Var}(\ell(\theta^\star;X))} \quad \text{and} \\ \Sigma(\theta^\star) &= \left(\nabla^2 R(\theta^\star)\right)^{-1} \mathrm{Cov}(\nabla \ell(\theta^\star,\xi)) \left(\nabla^2 R(\theta^\star)\right)^{-1}. \end{split}$$

If
$$\nabla^2 R(\theta^\star) \succ 0$$
, then
$$\sqrt{n}(\widehat{\theta}^{\mathrm{rob}} - \theta^\star) \overset{d}{\leadsto} N(-\sqrt{2\rho}b(\theta^\star), \Sigma(\theta^\star)).$$

Problem: Amino acid strings are given, and we wish to predict whether HIV-1 will cleave in central position

▶ Data: pairs $x \in \mathbb{R}^d$ represents amino acid, $y \in \{-1,1\}$ is 1 if HIV-1 cleaves

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents amino acid, $y \in \{-1,1\}$ is 1 if HIV-1 cleaves
- ▶ Use logistic loss as a convex surrogate for 0-1 error $\ell(\theta,(x,y)) = \log(1 + e^{-yx^{\top}\theta})$.

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents amino acid, $y \in \{-1,1\}$ is 1 if HIV-1 cleaves
- ▶ Use logistic loss as a convex surrogate for 0-1 error $\ell(\theta, (x, y)) = \log(1 + e^{-yx^{\top}\theta})$.
- ▶ $d = 50,960, n = 6590 (y = +1: 1360 \lor y = -1:5230)$

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents amino acid, $y \in \{-1,1\}$ is 1 if HIV-1 cleaves
- ▶ Use logistic loss as a convex surrogate for 0-1 error $\ell(\theta, (x, y)) = \log(1 + e^{-yx^{\top}\theta})$.
- ▶ $d = 50,960, n = 6590 (y = +1: 1360 \lor y = -1:5230)$
- Subsample 9/10 of data for training and evaluate on 1/10, repeating 50 times for validation.

Figure: Error on rare class Y=+1

Figure: Error on common class Y=-1

Figure: Error

Figure: Logistic risk and confidence bound

Table: HIV-1 Cleavage Error

	risk		error (%)		Y = +1		Y = -1	
ho	train	test	train	test	train	test	train	test
erm	0.1587	0.1706	5.52	6.39	17.32	18.79	2.45	3.17
10000	0.283	0.3031	2.39	5.67	7.18	14.65	1.15	3.32

Problem: Classify documents as a subset of the 4 categories:

 $\Big\{ {\sf Corporate}, \ {\sf Economics}, \ {\sf Government}, \ {\sf Markets} \Big\}$

Problem: Classify documents as a **subset** of the 4 categories:

 $\Big\{ {\sf Corporate}, \; {\sf Economics}, \; {\sf Government}, \; {\sf Markets} \Big\}$

▶ Data: pairs $x \in \mathbb{R}^d$ represents document, $y \in \{-1,1\}^4$ where $y_j = 1$ indicating x belongs j-th category.

Problem: Classify documents as a **subset** of the 4 categories:

```
\left\{ \mathsf{Corporate}, \; \mathsf{Economics}, \; \mathsf{Government}, \; \mathsf{Markets} \right\}
```

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents document, $y \in \{-1,1\}^4$ where $y_j = 1$ indicating x belongs j-th category.
- Loss $\ell(\theta_j, (x, y)) = \log(1 + e^{-yx^{\top}\theta_j})$ for each $j = 1, \dots, 4$ and $\Theta = \left\{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq 1000\right\}$.

Problem: Classify documents as a **subset** of the 4 categories:

```
\Big\{ {\sf Corporate}, \; {\sf Economics}, \; {\sf Government}, \; {\sf Markets} \Big\}
```

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents document, $y \in \{-1,1\}^4$ where $y_j = 1$ indicating x belongs j-th category.
- Loss $\ell(\theta_j, (x, y)) = \log(1 + e^{-yx^{\top}\theta_j})$ for each $j = 1, \dots, 4$ and $\Theta = \left\{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq 1000\right\}$.
- d = 47,236, n = 804,414. 10-fold cross-validation.

Problem: Classify documents as a **subset** of the 4 categories:

 $\Big\{ \text{Corporate, Economics, Government, Markets} \Big\}$

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents document, $y \in \{-1,1\}^4$ where $y_j = 1$ indicating x belongs j-th category.
- ▶ Loss $\ell(\theta_j, (x, y)) = \log(1 + e^{-yx^{\top}\theta_j})$ for each $j = 1, \dots, 4$ and $\Theta = \left\{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq 1000\right\}$.
- d = 47,236, n = 804,414. 10-fold cross-validation.
- Use precision and recall to evaluate performance

$$\mathsf{Precision} = \frac{\# \; \mathsf{Correct}}{\# \; \mathsf{Guessed} \; \mathsf{Positive}} \qquad \mathsf{Recall} = \frac{\# \; \mathsf{Correct}}{\# \; \mathsf{Actually} \; \mathsf{Positive}}$$

Table: Reuters Number of Examples

Corporate	Economics	Government	Markets
381,327	119,920	239,267	204,820

Figure: Recall on rare category (Economics)

Figure: Recall on common category (Corporate)

Figure: Recall

Figure: Precision

Figure: Average logistic risk and confidence bound

Table: Reuters Corpus (%)

	Precision		Recall		Corporate		Economics	
ho	train	test	train	test	train	test	train	test
erm	92.72	92.7	90.97	90.96	90.2	90.25	67.53	67.56
1E5	94.17	94.16	93.46	93.44	92.65	92.71	76.79	76.78

Solving the robust optimization problem

Solve (when n and d is large)

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \quad \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

where

$$\mathcal{P}_{n,\rho} = \left\{ p \in \mathbb{R}^n_+ \ : \ \mathbb{1}^T p = 1, \ D_f\left(p \| \mathbb{1}/n\right) \leq \frac{\rho}{n} \right\}.$$

Dual reformulation

Lemma ([Ben-Tal et al. 13])

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

If $\ell(\cdot;X)$ is convex, dual problem is jointly convex in (θ,λ,η) .

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

Ideas:

1. Interior point methods for the dual reformulation

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

Ideas:

1. Interior point methods for the dual reformulation

 \Rightarrow Too slow when n large

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

- 1. Interior point methods for the dual reformulation \Rightarrow Too slow when n large
- 2. Stochastic gradient descent on the dual objective

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

- 1. Interior point methods for the dual reformulation \Rightarrow Too slow when n large
- 2. Stochastic gradient descent on the dual objective \Rightarrow Gradient blows up as $\lambda \to 0$

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

- 1. Interior point methods for the dual reformulation \Rightarrow Too slow when n large
- 2. Stochastic gradient descent on the dual objective \Rightarrow Gradient blows up as $\lambda \to 0$
- 3. Gradient descent on primal objective

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

- 1. Interior point methods for the dual reformulation \Rightarrow Too slow when n large
- 2. Stochastic gradient descent on the dual objective \Rightarrow Gradient blows up as $\lambda \to 0$
- Gradient descent on primal objective
 ⇒ Still slow when n very large

$$\inf_{\theta \in \Theta} \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

$$= \inf_{\theta \in \Theta, \lambda \geq 0, \eta \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \lambda f^{*} \left(\frac{\ell(\theta; X_{i}) - \eta}{\lambda} \right) + \frac{\rho}{n} \lambda + \eta.$$

- 1. Interior point methods for the dual reformulation \Rightarrow Too slow when n large
- 2. Stochastic gradient descent on the dual objective \Rightarrow Gradient blows up as $\lambda \to 0$
- 3. Gradient descent on primal objective \Rightarrow Still slow when n very large
- 4. Play a two-player stochastic game

Comparison of Solvers

Figure: Small problem: n=2000, d=500

Comparison of Solvers

Figure: Big problem: n = 720,000, d = 50,000

Ideas:

1. Play a two-player stochastic game

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Ideas:

1. Play a two-player stochastic game (might actually work)

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

- ▶ Player 1: Wants to minimize in $\theta \in \Theta$
- ▶ Player 2: Wants to maximize in p

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

How? Stochastic gradients for each player:

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

How? Stochastic gradients for each player:

▶ Player 1: For fixed $p \in \mathbb{R}^n_+$, choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Then

$$\mathbb{E}[g^{(1)}] = \nabla_{\theta} \left[\sum_{i=1}^{n} p_i \ell(\theta; X_i) \right]$$

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

How? Stochastic gradients for each player:

▶ Player 1: For fixed $p \in \mathbb{R}^n_+$, choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Then

$$\mathbb{E}[g^{(1)}] = \nabla_{\theta} \left[\sum_{i=1}^{n} p_i \ell(\theta; X_i) \right]$$

▶ Player 2: For fixed $\theta \in \Theta$, gradient

$$\nabla_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i}) = [\ell(\theta; X_{1}) \ \ell(\theta; X_{2}) \ \cdots \ \ell(\theta; X_{n})]^{T}.$$

Choose index i with probability p_i , and let

$$g^{(2)} = \frac{1}{p_i} \ell(\theta; X_i) e_i$$
 so $\mathbb{E}[g^{(2)}] = \nabla_p \sum_{i=1}^n p_i \ell(\theta; X_i)$

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Stochastic game: Repeat for t = 1, 2, ...

▶ Player 1: Choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Update

$$\theta \leftarrow \mathsf{Project}(\theta - \eta_1 g^{(1)}, \Theta)$$

▶ Player 2: Choose index i with probability p_i , let $g^{(2)} = \frac{1}{p_i} \ell(\theta; X_i) e_i$, and update

$$p \leftarrow \mathsf{Project}(p + \eta_2 g^{(2)}, \mathcal{P}_{n,\rho}).$$

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Result: After T steps of method, with probability $\geq 1 - \delta$, have near saddle pair $\widehat{\theta}_T$ and \widehat{p}_T such that

$$-\frac{C\sqrt{\log\frac{1}{\delta}}}{\sqrt{T}} + \sup_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^{n} p_{i}\ell(\widehat{\theta}_{T}; X_{i}) \leq \sum_{i=1}^{n} \widehat{p}_{T,i}\ell(\widehat{\theta}_{T}; X_{i})$$

$$\leq \inf_{\theta \in \Theta} \sum_{i=1}^{n} \widehat{p}_{T,i}\ell(\theta; X_{i}) + \frac{C\sqrt{\log\frac{1}{\delta}}}{\sqrt{T}}$$

where C is independent of n and dimension d.

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Stochastic game: Repeat for t = 1, 2, ...

▶ Player 1: Choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Update

$$\theta \leftarrow \mathsf{Project}(\theta - \eta_1 g^{(1)}, \Theta)$$

▶ Player 2: Choose index i with probability p_i , let $g^{(2)} = \frac{1}{p_i} \ell(\theta; X_i) e_i$, and update

$$p \leftarrow \mathsf{Project}(p + \eta_2 g^{(2)}, \mathcal{P}_{n,\rho}).$$

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Stochastic game: Repeat for t = 1, 2, ...

▶ Player 1: Choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Update

$$\theta \leftarrow \mathsf{Project}(\theta - \eta_1 g^{(1)}, \Theta)$$

Takes time $O(\mathsf{Time}_{\mathsf{Update}})$

▶ Player 2: Choose index i with probability p_i , let $g^{(2)} = \frac{1}{p_i} \ell(\theta; X_i) e_i$, and update

$$p \leftarrow \mathsf{Project}(p + \eta_2 g^{(2)}, \mathcal{P}_{n,\rho}).$$

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Stochastic game: Repeat for t = 1, 2, ...

▶ Player 1: Choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Update

$$\theta \leftarrow \mathsf{Project}(\theta - \eta_1 g^{(1)}, \Theta)$$

Takes time $O(\mathsf{Time}_{\mathsf{Update}})$

▶ Player 2: Choose index i with probability p_i , let $g^{(2)} = \frac{1}{p_i} \ell(\theta; X_i) e_i$, and update

$$p \leftarrow \mathsf{Project}(p + \eta_2 g^{(2)}, \mathcal{P}_{n,\rho}).$$

For special sets $\mathcal{P}_{n,\rho}$ and careful algorithm, takes time $O(\log n)$

$$\min_{\theta} \max_{p} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

Stochastic game: Repeat for t = 1, 2, ...

▶ Player 1: Choose index i with probability p_i and let $g^{(1)} = \nabla \ell(\theta; X_i)$. Update

$$\theta \leftarrow \mathsf{Project}(\theta - \eta_1 g^{(1)}, \Theta)$$

Takes time $O(\mathsf{Time}_{\mathsf{Update}})$

▶ Player 2: Choose index i with probability p_i , let $g^{(2)} = \frac{1}{p_i} \ell(\theta; X_i) e_i$, and update

$$p \leftarrow \mathsf{Project}(p + \eta_2 g^{(2)}, \mathcal{P}_{n,\rho}).$$

For special sets $\mathcal{P}_{n,\rho}$ and careful algorithm, takes time $O(\log n)$

Total time: For ϵ -solution, takes time

$$\frac{\rho \log n}{\epsilon^2} + \frac{\mathsf{Time_{Update}}}{\epsilon^2}$$

Reuters: Comparison to Gradient Descent

Figure: Log Optimality Ratio (n = 720,000, d = 50,000)

Reuters: Comparison to SGD on ERM

Figure: Logistic Objective (n = 720,000, d = 50,000)

Reuters: Comparison to SGD on ERM

Figure: Classification Error (n = 720,000, d = 50,000)

Adult: Comparison to SGD on ERM

Figure: Hinge Objective (n = 30,000, d = 123)

Adult: Comparison to SGD on ERM

Figure: Classification Error (n = 30,000, d = 123)

Summary

Statistical theory for robust optimization

- 1. Convex procedure for variance regularization
- 2. Guarantees of generalizability and **optimal trading off of bias v variance**
- 3. Comes with statistical optimality certificates
- 4. Efficient solution method as fast as SGD

The empirical likelihood confidence region is

The empirical likelihood confidence region is

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} (p | 1/n) \le \frac{\rho}{n} \right\}.$$

[Owen 90, Baggerly 98, Newey and Smith 01, Imbens 02]

The empirical likelihood confidence region is

$$E_n(\rho) := \left\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} (p | 1/n) \le \frac{\rho}{n} \right\}$$

$$= \left\{ \sum_{i=1}^n p_i Z_i : \frac{1}{n} \sum_{i=1}^n (n p_i - 1)^2 \le \frac{\rho}{n}, p^\top 1 = 1, p \ge 0 \right\}$$

$$= \frac{1}{n} \sum_{i=1}^n Z_i + \left\{ \sum_{i=1}^n u_i Z_i : ||u||_2^2 \le \frac{\rho}{n^2}, u^\top 1 = 0, u \ge -\frac{1}{n} \right\}$$

by letting $u_i = p_i - \frac{1}{n}$.

The empirical likelihood confidence region is

$$\begin{split} E_n(\rho) &:= \bigg\{ \sum_{i=1}^n p_i Z_i : D_{\chi^2} \left(p \| \mathbb{1}/n \right) \leq \frac{\rho}{n} \bigg\} \\ &= \bigg\{ \sum_{i=1}^n p_i Z_i : \frac{1}{n} \sum_{i=1}^n (n p_i - 1)^2 \leq \frac{\rho}{n}, p^\top \mathbb{1} = 1, p \geq 0 \bigg\} \\ &= \frac{1}{n} \sum_{i=1}^n Z_i + \bigg\{ \sum_{i=1}^n u_i Z_i : \|u\|_2^2 \leq \frac{\rho}{n^2}, u^\top \mathbb{1} = 0, u \geq -\frac{1}{n} \bigg\} \end{split}$$
 Ellipse from data

by letting $u_i = p_i - \frac{1}{n}$.

Robust Optimization \approx Variance Regularization \implies

Robust Optimization \approx Variance Regularization \implies

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \max_{p} \left\{ \langle p, z \rangle : D_{\chi^2} \left(p | \mathbb{1}/n \right) \le \frac{\rho}{n} \right\}$$

Robust Optimization \approx Variance Regularization \bigcirc

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \max_{p} \left\{ \langle p, z \rangle : \frac{1}{n} \sum_{i=1}^{n} (np_i - 1)^2 \le \frac{\rho}{n}, p^{\top} \mathbb{1} = 1, p \ge 0 \right\}$$

Robust Optimization \approx Variance Regularization \longrightarrow

$$R_n(\theta; \mathcal{P}_{n,\rho}) = \max_{p} \left\{ \langle p, z \rangle : \frac{1}{n} \sum_{i=1}^{n} (np_i - 1)^2 \le \frac{\rho}{n}, p^{\top} \mathbb{1} = 1, p \ge 0 \right\}$$
$$= \bar{z} + \max_{u} \left\{ \langle u, z - \bar{z} \rangle : ||u||_2^2 \le \frac{\rho}{n^2}, u^{\top} \mathbb{1} = 0, u \ge -\frac{1}{n} \right\}$$

Robust Optimization \approx Variance Regularization

$$\begin{split} R_n(\theta;\mathcal{P}_{n,\rho}) &= \max_p \left\{ \left. \langle p,z \rangle : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \leq \frac{\rho}{n}, p^\top \mathbbm{1} = 1, p \geq 0 \right\} \\ &= \bar{z} + \max_u \left\{ \left. \langle u,z - \bar{z} \rangle : \|u\|_2^2 \leq \frac{\rho}{n^2}, u^\top \mathbbm{1} = 0, u \geq -\frac{\mathbbm{1}}{n} \right\} \\ &\leq \bar{z} + \frac{\sqrt{2\rho}}{n} \left\| z - \bar{z} \right\|_2 = \bar{z} + \sqrt{\frac{2\rho}{n}} s_n^2 \quad \text{by Cauchy-Schwarz} \end{split}$$

Robust Optimization pprox Variance Regularization ightharpoonup

Proof Sketch Let $z_i = \ell(\theta; X_i)$, $u_i = p_i - \frac{1}{n}$, and denote by \bar{z} and s_n^2 the sample mean and variance respectively.

$$\begin{split} R_n(\theta;\mathcal{P}_{n,\rho}) &= \max p \bigg\{ \left\langle p,z \right\rangle : \frac{1}{n} \sum_{i=1}^n (np_i - 1)^2 \leq \frac{\rho}{n}, p^\top \mathbbm{1} = 1, p \geq 0 \bigg\} \\ &= \bar{z} + \max_u \bigg\{ \left\langle u,z - \bar{z} \right\rangle : \|u\|_2^2 \leq \frac{\rho}{n^2}, u^\top \mathbbm{1} = 0, u \geq -\frac{\mathbbm{1}}{n} \bigg\} \\ &\leq \bar{z} + \frac{\sqrt{2\rho}}{n} \left\| z - \bar{z} \right\|_2 = \bar{z} + \sqrt{\frac{2\rho}{n}} s_n^2 \quad \text{by Cauchy-Schwartz} \end{split}$$

Last inequality is tight if for all i

$$u_i = \frac{1}{n} \sqrt{\frac{2\rho}{ns_n^2}} (z_i - \bar{z}) \ge -\frac{1}{n}$$

Extensions and issues main

Issue: What if $\theta^{\star} \in \mathbb{R}^d$ is not unique?

Extensions and issues main

Issue: What if $\theta^* \in \mathbb{R}^d$ is not unique?

Let $S = \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ and

$$\mathbf{r}^{\star} = \min_{\theta^{\star} \in S} \max_{\theta \in S} \|\theta - \theta^{\star}\|_{2}$$

Then [Duchi, Glynn & N. 16]

$$\mathbb{P}\left(\inf_{\theta\in\Theta} R(\theta) \leq R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho})\right) \\
\geq \mathbb{P}\left(N(0,1) + \sqrt{\rho} \geq r^* \sqrt{\rho \text{Var}(\ell(x^*;\xi))(d+1)}\right) + O(n^{-\frac{1}{2}}).$$

Extensions and issues main

Issue: What if $\theta^* \in \mathbb{R}^d$ is not unique?

Let $S = \operatorname{argmin}_{\theta \in \Theta} R(\theta)$ and

$$\mathbf{r}^{\star} = \min_{\theta^{\star} \in S} \max_{\theta \in S} \|\theta - \theta^{\star}\|_{2}$$

Then [Duchi, Glynn & N. 16]

$$\mathbb{P}\left(\inf_{\theta\in\Theta} R(\theta) \leq R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho})\right)$$

$$\geq \mathbb{P}\left(N(0,1) + \sqrt{\rho} \geq r^* \sqrt{\rho \text{Var}(\ell(x^*;\xi))(d+1)}\right) + O(n^{-\frac{1}{2}}).$$

▶ If r^* large, then lose confidence, if r^* small, good shape