

Application

Real World Example

- Solve a portfolio optimization problem similar to the types of problems in the industry
- Apply techniques learned throughout the course
 - Specify a portfolio with constraints and objectives
 - Run the optimization with period rebalancing on historical data
 - Analyze the results
 - Refine constraints, objectives, and moment estimates
- Data
 - EDHEC-Risk Alternative Indexes monthly returns
 - Jan 1997 March 2016

Benchmark

```
> data(indexes)
> returns <- indexes[,1:4]</pre>
# Equal weight benchmark
> n <- ncol(returns)</pre>
> equal_weights <- rep(1 / n, n)</pre>
> benchmark_returns <- Return.portfolio(R = returns,</pre>
                weights = equal_weights, rebalance_on = "years")
> colnames(benchmark_returns) <- "benchmark"</pre>
# Benchmark performance
> table.AnnualizedReturns(benchmark_returns)
                            benchmark
Annualized Return
Annualized Std Dev
                               0.1032
Annualized Sharpe (Rf=0%)
                               0.7509
```


Base Portfolio Definition

- Define a portfolio specification to be used as the base case
- The base portfolio specification is meant to be a simple approach with relaxed constraints and basic objectives
 - Do not overcomplicate or over-constrain

Let's practice!

Optimization Backtest

Optimization Backtest: Execution

Run the optimization with periodic rebalancing

Optimization Backtest: Analysis

- > # Chart the optimal weights
- > chart.Weights(opt_base)

Optimization Backtest: Analysis

Optimization Backtest: Refine Constraints

```
> # Make a copy of the portfolio specification
> box_port_spec <- base_port_spec</pre>
> # Update the constraint
> box_port_spec <- add.constraint(portfolio = box_port_spec,</pre>
                                  type = "box", min = 0.05, max = 0.4,
                                  indexnum = 2)
> # Backtest
> opt_box <- optimize.portfolio.rebalancing(R = returns,
                                             optimize_method = "ROI",
                                              portfolio = box_port_spec,
                                              rebalance_on = "quarters",
                                             training_period = 60,
                                              rolling_window = 60)
> # Calculate portfolio returns
> box_returns <- Return.portfolio(returns, extractWeights(opt_box))</pre>
> colnames(box_returns) <- "box"</pre>
```


Optimization Backtest: Analysis Refined Constraints

- > # Chart the optimal weights
- > chart.Weights(opt_box)

Optimization Backtest: Analysis Refined Constraints

Let's practice!

Congratulations!