KAMAN AEROSPACE CORP BLOOMFIELD CONN
DESIGN, FABRICATION AND LABORATORY TESTING OF A HELICOPTER COMP--ETC(U)
AUG 78 R J MAYERJAK
DAAJ02-75-C-0013 AD-A060 313 USARTL-TR-78-16 NL UNCLASSIFIED 1 OF 3 ADA 060313 ш USARTL-IR-78-16

DESIGN, FABRICATION AND LABORATORY TESTING OF A HELICOPTER COMPOSITE MAIN ROTOR HUB

Robert J. Mayerjak Kaman Aerospace Corporation Old Windsor Road Bloomfield, Conn. 06002

O August 1978
We Final Report

Approved for public release; distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM) Fort Eustis, Va. 23604

the second with the second

78 10 19 049

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report was prepared by the Kaman Aerospace Corporation under the terms of Contract DAAJ02-75-C-0013. The objective of this effort was to demonstrate the feasibility of a helicopter composite main rotor hub by analysis and laboratory testing. This was achieved using the CH-54B as a baseline by the design, fabrication, measurement of radar detectability on a radar range, component testing, and 1/2-scale assembly testing of a hub consisting primarily of three graphite-epoxy plates. The hub was subjected to both static limit and fatigue design loads. The resultant hub design offers a weight savings of 24% and a cost savings of 52% with no credit for lower weight or 78% if weight savings are considered; demonstrates damage tolerance; and offers a reduction in radar cross section of 38% by shaping alone or 93% if a spray-on magnetic absorber is used.

This report has been reviewed by this Laboratory and is considered to be technically sound. The technical manager for this program was Mr. George T. Singley, III, Structures Technical Area, Aeronautical Technology Division.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

READ INSTRUCTIONS BEFORE COMPLETING FORM
O. 3. RECIPIENT'S CATALOG NUMBER
TYPE OF RECORD A REPLOD COVERED
(9) FINAL REPORT
6 PERFORMING ORG. REPORT, NUMBER
BER MER BER
CONTRACT OR GRANT NUMBER(s)
DAAJ02-75-C-0013 W
The same of the sa
10. PROGRAM PAENT PROJECT TASK
10. PROGRAM TEMENT, PROJECT, TASK
62209A HF262209AH76
00 036 EK
REPORT DATE
August 1978
N. HUMBER OF BAGES I
M 210 15. SECURITY CLASS. (of this report)
Unclassified
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
trom Report)
[M] 867301 2008
1 40/03 (88) (278)
1 443 ml (2) 2/6 116/30/158/4
1 40/03 (88) (278)
1 443 ml (2) 2/6 116/30/158/4
1 443 ml (2) 2/6 116/30/158/4
1 15:30 58 1 15:30 58 221 23 1-22.
1 15:30 58 1 15:30 58 221 23 1-22.
1 15:30 58 1 15:30 58 221 23 1-22.

78 10 19 049 xet

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered

20. Abstract (continued)

Laboratory testing of the model and three component specimens demonstrated that the composite hub possessed good fatigue strength, static strength, tolerance to damage, and stiffness characteristics. Low radar detectability was also established by range testing. The component specimens were destructively tested to establish failure strengths. The strength tests upon the 1/2-scale assembly model were performance demonstration tests in which the model was first subjected to 1,000,000 cycles of the fatigue design load and then to a subsequent static test to limit loads. The model survived the tests without failure of its composite components or composite joints. However, midway through the fatigue test, a titanium fitting cracked and then several attachment bolts severed. The incident provided a demonstration of crack arrest by the composite material and of the damage tolerance of the hub assembly. It is concluded that the cracking of the titanium fittings can be prevented by local detail improvements at the bolt holes with negligible affect upon the weight and cost advantages of the new composite hub.

This report describes: the rationale for the configuration, the features of the design, the fabrication of the model, the results of the tests, and the advantages of the design. It is believed that helicopters of all weight classes can benefit from plate hubs of appropriate configurations.

PREFACE

This investigation of an improved composite rotor hub was performed under Contract DAAJ02-75-C-0013, from the Applied Technology Laboratory, U. S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia. George Singley, III, of the Applied Technology Laboratory, provided technical direction for the program.

The design work and structural testing were performed at the Kaman Aerospace Corporation facilities in Bloomfield, Connecticut. Robert Mayerjak of Kaman Aerospace Corporation was the principal engineer. The radar detection analyses and tests were performed by John Carver at the Tulsa, Oklahoma, Division of the Rockwell International Corporation.

The author gratefully acknowledges the foresight of Arthur Gustafson of AVRADCOM, who recognized early the potential advantages of composite rotor hubs and initiated the program; the contributions to the design, fabrication, and testing made by Frank Clark, Richard Hollrock, Howard Krauss, and Hector Pelletier, all of the Kaman Aerospace Corporation; and the work of Robert Gilchrist, who prepared the reliability and maintainability analyses presented as Appendices A and B.

TABLE OF CONTENTS

	PAGE
PREFACE	. 3
LIST OF ILLUSTRATIONS	. 7
LIST OF TABLES	. 11
INTRODUCTION	. 12
DESCRIPTION AND MECHANICS OF BEHAVIOR	16
Configuration and Load Paths	
Materials	. 19
Metal Laminae Reinforced Joints	20
CHARACTERISTICS AND PERFORMANCE	23
Weight	23
Cost	24
Producibility	
Damage Tolerance	
Reliability and Maintainability (R&M)	29
Radar Detectability	31
TESTS OF ELEMENT SPECIMENS	32
Rationale and Objectives	32
Specimen Description	
Apparatus and Instrumentation	
Ultimate Strength	30
Fatigue	38
TESTS OF ASSEMBLY SPECIMEN	45
Rationale and Objectives	45
Loading Conditions	
Apparatus	
Instrumentation	
Fatigue	
Static Limit	54
Dynamic Compatibility	
Strains	
Effect of Test Results Upon Performance Estimates	60
OTHER APPLICATIONS	60

TABLE OF CONTENTS (continued)

						PAGE
FUTURE PLANS						60
CONCLUSIONS.						62
REFERENCES .			•			63
APPENDIX A	RELIABILITY REPORT					65
	INTRODUCTION					65
	INTRODUCTION		•	•		65
			•	•	 •	63
	FAILURE MODES AND EFFECTS CRITICALIT	Y				66
	ANALYSIS (FMECA)		•	•	 •	00
	ANALYSIS (FMECA) INHERENT FAILURE RATE PREDICTIONS.		•	•	 •	73
APPENDIX B	MAINTAINABILITY REPORT				 •	74
	TNITTO ODLIGITA ON					74
	INTRODUCTION					
	MAINTAINABILITY REQUIREMENTS					
	MAINTAINABILITY DESIGN FEATURES					
	MAINTAINABILITY PREDICTION					
	REPAIRABILITY CONSIDERATIONS			•	 •	82
APPENDIX C	STRUCTURAL ANALYSIS		•	•		83
	SUMMARY					83
	INTRODUCTION.		1 6	•		84
	MATERIAL PROPERTIES					85
						95
	DESIGN CONDITIONS					97
	BLADE LOADS					11/10/2019
	BEARING LOADS					
	JOINT LOADS		•	•	 •	105
	ELEMENT SPECIMEN					
	TYPICAL JOINT					
	UPPER PLATE					
	LOWER PLATE					
	PAN PLATE					194
	ROTOR SHAFT AND ATTACHMENTS					197
	DYNAMIC COMPATIBILITY					

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Existing titanium hub for CH-54B	14
2	Composite plate hub, cross section	17
3	Composite plate hub, assembly	17
4	Composite plate hub, exploded view	18
5	Model ready for testing	19
6	Typical ultimate strength for graphite-epoxy, 0/+ 60	20
7	In-plane finite-element model for a joint	21
8	Cross-sectional finite-element model for a joint	22
9	Components for lower plate	26
10	Construction of pan plate	27
11	Pan plate, after final cure	28
12	Element specimen	32
13	Element specimen during static test	33
14	Element specimen during fatigue test	34
15	Alignment clevis for element tests	35
16	Procedure for aligning clevis on element specimen	36
17	Element specimen after static test	37
18	Load versus deflection during static test	39
19	Element specimen after fatigue test	40
20	Relationship of fatigue test to S-N curve for	
	titanium hub	41
21	Position of specimen while under compressive load after failure of rod in loading cylinder	43
22	Damage caused by impact of clevises	44
23	Test S-N for titanium hub	46
24	Schematic of test rig	47
25	Principle of test rig linkages	48
26	Location of strain gages	49
27	Location of deflection gages	49
28	Plan view of pan plate with crack	50

LIST OF ILLUSTRATIONS (continued)

FIGURE		PAGE
29	Closeup view of crack	. 51
30	Severed bolts	. 52
31	Alternating strains at gages closest to crack	
32	Deflections during limit load test	. 56
33	Free-body diagram of lugs at lead-lag pin	. 57
34	Strain (µin./in.) versus time for twelve gages shown in Figure 26 during one cycle of fatigue test	. 58
35	An alternate composite plate hub configuration	61
C-1	Typical ultimate strength for graphite epoxy, $0/\pm60$, with τ_{xy} as ordinate	. 89
C-2	Comparison of constant stress contours and constant stress-ratio contours	90
C-3	Presentation of margin of safety on strength plot	91
C-4	Typical finite-element used in joint analysis to determine bond stresses	92
C-5	Free-body diagram of rotor assembly	95
C-6	Geometry for blade loads	. 98
C-7	Damper inclination	. 99
C-8	Radial and vertical forces applied to hub during condition TW7F1	100
C-9	Radial and vertical forces applied to hub during condition TW7F2	. 100
C-10	Radial and vertical forces applied to hub during fatigue condition	. 101
C-11	Free-body diagram of lead-lag pin	102
C-12	Free-body diagram of hub plates at lead-lag pin for flight conditions	105
C-13	Free-body diagram of hub plates at lead-lag pin for static droop condition	. 105
C-14	Finite-element model for element specimen	109
C-15	Local geometry at lug	127
C-16	Tangential stress at inner edge of hole for element specimen	127

LIST OF ILLUSTRATIONS (continued)

FIGURE		PAGE
C-17	Relationship of axes for material properties to the local finite-element axes at point of calculation of stresses at outer edge of lug	129
C-18	Relationship of axes for material properties to the local finite-element axes for the composite elements around the edge of the largest steel lamina	130
C-19	Radial forces at perimeter of reinforced area for element specimen	131
C-20	Composite stresses during static ultimate test of the element specimen	132
C-21	Bond stresses and steel stresses for axial load of 4.24 kips/inch on prototype-sized joint	137
C-22	Finite-element model for calculation of bond-line stresses at a typical joint	139
C-23	Load pattern for upper plate, condition TW7F1 ultimate	160
C-24	Finite-element model for lead-lag joints in upper plate .	161
C-25	Tangential stress at inner edge of hole for upper plate, condition TW7F1 ultimate	186
C-26	Finite-element model for center hole in upper plate	188
C-27	Deflections and stresses for uniform radial load at center hole of upper plate	189
C-28	Stresses and force intensities at center hole of upper plate for fatigue design loads	189
C-29	Finite-element model of upper plate for prediction of strains during fatigue test of model hub	190
C-30	Finite-element model for analysis of lower plate	191
C-31	Allowable alternating stress versus mean stress for steel laminae	192
C-32	Lug geometry at scalloped flanges	193
C-33	Lug at lead-lag pin of pan plate	194
C-34	Membrane forces in conical shell loaded at its vertex	196
C-35	Attachment lug on rotor shaft	199
C-36	Cone at top of rotor shaft	201
C-37	Deformations of titanium hub from head moment	202

LIST OF ILLUSTRATIONS (continued)

FIGURE						PAGE
C-38	Approximate sections for present titanium	hub				203
C-39	Approximate I_{x} and I_{y} for arm of titanium	hub				205
C-40	Deformations of titanium hub from torque.					
C-41	Torque in rotor shaft for titanium hub					208

LIST OF TABLES

TABLE		PAGE
1	Weight and Cost of Rotor Hubs for Large Helicopters	12
2	Weights, Existing Hub and New Composite Hub	23
3	Summary of Estimated Production Costs in 1976	24
4	Fatigue Performance of HT Graphite	29
5	Design and Test Loads	46
6	Summary of Hub Stiffnesses	55
A-1	Reliability Design Features	67
A-2	Failure Modes and Effects Criticality Analysis	69
B-1	Maintainability Design Features	76
B-2	Maintainability Prediction	78
C-1	Minimum Margins of Safety	83
C-2	Laminate Analysis for Graphite-Epoxy with 0 ± 60 Orientation	88
C-3	Design Loads	95
C-4	Vertical Forces on Hub from Thrust and Head Moment	98
C-5	Summary of Bearing Loads	104
C-6	Summary of Joint Loads	106
C-7	Finite-Element Analysis of Element Specimen	111
C-8	Stresses in Composite Around the Edge of the Largest Steel Lamina	130
C-9	Stresses and Margins of Safety in Composite at Locations of High Stress at the Ultimate Load in the Static Test of the Element Specimen	133
C-10	Finite-Element Analysis of Typical Joint	141
C-11	Finite-Element Analysis of Lead-Lag Joint in Upper Plate	
	for Ultimate Loads of Condition TW7F1	163
C-12	Margins of Safety for Rotor Shaft, Fatigue	199

INTRODUCTION

The Army's efforts to reduce helicopter costs and to exploit the benefits of structures made from composite materials have lead to the search for an improved composite rotor hub. Composite rotor hubs appear to offer improvements in the following characteristics in comparison to conventional metal rotor hubs: cost, weight, damage tolerance, radar detectability, and maintainability.

The high costs and weights of large helicopter rotor hubs, shown in Table 1, were the impetus for the R&D effort reported herein. The trend in metal rotor-hub materials has been toward titanium alloys, which provide high strength-to-weight ratios and good corrosion resistances. Although lighter than their steel counterparts, titanium-alloy hubs are more costly. Conventional metal hubs are machined from large forgings, and they are plagued by high machining waste. For example, the CH-47C hub was machined in 77 operations from a 790-1b 4340-steel forging with over 80 percent machining waste. Composite materials offer the opportunity to avoid such losses.

TABLE 1.	WEIGHT	AND	COST	OF	ROTOR	HUBS	FOR	LARGE	HELICOPTERS

	CH-46F	CH-47C	CH-54B	HLH
Number of Main Rotors	2	2	1	2
Hub Material	Stee1	Steel	Titanium	Titanium
Design Gross Weight, 1bs	21519	33000	47000	118000
Empty Weight, 1bs	13435	20085	19685	64878
Hub Weight, Housing, 1bs	100	225	345	1847
Hub Weight, Assembly, 1bs	1002	1496	1799	7034
Hub Cost, Housing, \$1000s	8.4	20.2	34.0	112.1
Hub Cost, Assembly, \$1000s	109.9	102.4	144.6	511.2

NOTES:

- 1. Costs for the CH-46F, CH-47C and CH-54B were developed from the prices last paid for the items adjusted to the value of 1976 dollars. The HLH costs are estimates based upon HLH prototype aircraft experience adjusted to 1976 dollars. The CH-46F, CH-47C, and the CH-54B costs are for the 600th hub; the HLH costs, for the 250th hub.
- Weights are measured values taken from weight and balance reports for each aircraft.
- 3. Weights and costs for the tandem rotor helicopters are totals for both rotors.
- The rotor hub housing is defined as the finish-machined hub forgings alone.
- The rotor hub assembly includes all rotor head components between the root-end fittings of the rotor blades and the rotor shaft, except for blade folding hardware.

Although it is believed that helicopters of all weight classes can benefit from composite rotor hubs, the need is greatest for large helicopters, where the size of a conventional hub approaches the limits of forging feasibility. Accordingly, the CH-54B rotor hub was selected as the baseline. The CH-54B is a heavy-lift helicopter that has a single main rotor with six articulated rotor blades. Its titanium-alloy main rotor hub is 5 feet wide and 1 foot high. The following partial list of design loads provides a measure of its strength:

Centrifugal force 82 tons (ultimate) from each of six blades

Thrust 64 tons (ultimate)

Torque 142 foot-tons (ultimate)

Head moment 94 foot-tons (ultimate)

Head moment + 33 foot-tons (fatigue) for millions of cycles

The existing production hub has two structural elements, an upper hub and a lower plate, as shown in Figure 1. The upper hub consists of six cantilevered beams that radiate from a hollow central cylinder. The lower plate is similarly star-shaped but much thinner. The upper hub and the lower plate share the support of centrifugal force and the transmission of torque. The beams of the upper hub alone support shears from lift and control moments. The hub is connected to the drive shaft by splines for torque transfer, cone seats for moment, and a threaded nut for axial force. This configuration is efficient in metal. It provides compact load paths that are appropriate for a dense material that exhibits high strength in any direction of loading. However, these conventional load paths are not well-suited for composite materials, which have low interlaminar tensile and shear strengths.

Pioneering efforts to apply composites to the CH-54B hub began in 1971 (References 1 and 2). These designs investigated the conventional load path, which can be called the center-beam concept. The design featured many narrow, continuous loops of composite material, each of which connected two opposite blades. The loops passed by the sides of a hollow central cylinder. When stacked together and enclosed by shear webs, these loops formed radial beams similar to those of the production hub. This concept is attractive in principle but difficult to implement efficiently. After detailed study, the investigators concluded that such a composite

Levenetz, B., COMPOSITE-MATERIAL HELICOPTER ROTOR HUBS, Whittaker Corporation; USAAMRDL Technical Report 73-14, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, July 1973, AD 771973.

Faiz, R. L., A DESIGN ANALYSIS OF A CH-54B MAIN ROTOR HUB FABRICATED FROM COMPOSITE MATERIALS, Sikorsky Aircraft Division, United Aircraft Corporation; USAAMRDL Technical Report 73-49, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, October 1973, AD 771966.

Figure 1. Existing titanium hub for CH-54B.

upper hub would weigh 270 lbs more than its titanium counterpart; 122 percent heavier. It is believed that the high weight is attributable in unknown proportions to at least three factors: the inherently low capacity of the concept to transfer shear forces, the parasitic weight introduced by the spacers required to accommodate the geometrical interferences of the loops, which must overlap each other at the central cylinder, and the design requirement that the hub should mate to existing hardware. These problems stimulated efforts to find an alternative concept for a composite hub.

DESCRIPTION AND MECHANICS OF BEHAVIOR

Configuration and Load Paths

Figures 2 and 3 show the new composite hub, which has been designed to match or exceed the static and fatigue strengths of the present CH-54B titanium hub. Figures 4 and 5 show a 1/2-scale structural model of this hub. The hub is called the composite plate hub (CPH) because it consists of three composite plates: an upper plate, a pan plate, and a lower plate. Both the upper and lower plates are flat except in areas of local reinforcement. The pan plate is cone-shaped, with a circular flange at its center and six lugs projecting from its perimeter. The upper plate and the pan plate are joined semipermanently by six bearing housing and nut assemblies. Each lead-lag pin is held into a bearing housing by the taperedroller upper bearings and by the retaining nut at the top end of the leadlag pin. The straight-roller lower bearings are free to float axially on the lead-lag pins. The lower plate is supported at its center by the bolts that connect the pan plate and the lower plate to the main rotor shaft. The dampers are supported by six bolts between the pan and the lower plates. In order to present the maximum information in a single view, the cross section shown in Figure 2 shows the center bolts as being coplanar with the damper bolts. Each center bolt is actually displaced 15° from the respective damper bolt.

Major loads are transmitted primarily by direct stresses and shears in the planes of the plates that lie along efficient load paths. Centrifugal forces are bridged by the lead-lag pins to the planes of the upper and lower plates. There, the loads are introduced into the composite plies by interleaved metal shims, which provide durable surfaces for contact with the housing and large areas of bond surface for the composite. Once in the plates, the loads spread out, following highly redundant paths. Load diffusion is fostered by the pattern of reinforcement, which provides equal-stiffness load paths for centrifugal forces in both a hexagonal ring direction from pin to adjacent pin and in a radial direction from pin to opposite pin.

The hub provides a new direct load path for torque without using the splines and the central cylinder of the conventional hub. Torque is transferred from a scalloped flange on the drive shaft to metal fittings in the pan and the lower plates by twelve bolts, which are loaded in double shear. Balanced-stiffness scarf joints transfer the torque from the fittings to the composite plates. The upper plate does not participate in the torque path.

Vertical shears are produced at the lead-lag pins by blade flapping and coning. The upper and the pan plates support the vertical shears by the truss action of the in-plane forces in each plate. Vertical shears also produce local interlaminar shearing stresses in the lugs of the pan plate. The lugs are thick to control these stresses. At the center of the hub,

Figure 2. Composite plate hub, cross section.

Figure 3. Composite plate hub, assembly.

Figure 4. Composite plate hub, exploded view.

Figure 5. Model ready for testing.

three-quarters of the hub moment is transferred from the upper and the pan plates to the rotor shaft by radial forces at the cones; the remainder is transferred by vertical shears to the flange. The cones are preloaded as the bolts are tightened during assembly.

Materials

A constant-thickness construction with fibers in the 0 and \pm 60° directions (0/ \pm 60) is used throughout because it provides multiaxial strength and economical fabrication. The orientation is appropriate for a six-bladed rotor because it produces a symmetrical pattern of reinforcement that coincides with the hexagonal-ring and center load paths. Four fiber materials were considered: S-glass, Kevlar, a blend of Kevlar and alumina, and all graphite.

Initially, S-glass was favored because of its low cost, low radar detectability, and high impact strength. However, glass was eliminated because of its low modulus, low fatigue strength in the quasi-isotropic state, and high density. Stress analysis showed that significant compressions (11 ksi, ultimate) would be developed in the plates under maneuver conditions; thus, buckling became a design consideration, and the low modulus of glass, a liability. It is believed that a composite hub using glass could be designed to weigh less than the existing titanium hub; however, a glass hub would be heavier than one made from advanced materials.

Of the advanced materials, graphite is most attractive. In the quasiisotropic layup, it provides the highest absolute strength, specific strength, and specific stiffness. Figure 6 shows a calculated interaction diagram for typical ultimate strengths of a graphite-epoxy laminate. The ultimate strength was defined as the stress that causes the failure of the most critical ply. A limiting-strain theory of failure was used.

Figure 6. Typical ultimate strength for graphite-epoxy, 0/+60.

The metallic components of the new hub were selected with consideration to performance, weight, and cost. Titanium 6A14V is used for the larger elements: the retaining ring at the top of the rotor shaft, the disc fittings, the housings, and the large retaining nuts at the upper housing. The cones are aluminum-bronze in order to minimize fretting of the drive shaft. The reinforcement laminae are steel, 17-7 PH. The fasteners and bushings are high-strength, low-alloy steel.

Glass cloth and adhesive doublers are used at each surface of the steel laminae. These doublers inhibit corrosion by isolating the steel from direct contact with the graphite, reduce local micro-kinks in the graphite fibers at the edges of the doublers by providing smoother, draped edges, and lower the edge peaks in the shear stresses by providing low modulus transitions.

Metal Laminae Reinforced Joints

Nineteen of the holes in the new hub are reinforced with multiple metal laminae. The metal laminae provide local multiaxial strength that allows the use of simple, low-cost layups for the plates and narrow edge distances at the holes. The metal laminae also provide wear resistance to local chafing, both in the holes and on the contacting faces adjacent to the holes. In addition, at the center hole of the top plate, the metal plates provide resistance to creep, which assures the retention of an initial pre-load. The integrity of these joints was a prime concern, and the program

included both analytical and experimental evaluations of these joints. Six modes of failure were considered. They were static and fatigue failures of:

- 1. The composite adjacent to the doublers
- 2. The composite at the edge of each hole
- 3. The metal at the edge of each hole
- 4. The bond of the composite to the metal
- 5. The tapered tip of the metal
- 6. The bearing surface within each hole (interlaminar splitting).

The first three modes of failure were analyzed using linear-elastic, two-dimensional, finite-element models lying in the plane of the plate. Figure 7 shows a portion of the finite-element model for the upper plate in the vicinity of the outer joint. The fourth and fifth modes of failure were analyzed using a linear-elastic, two-dimensional, finite-element model of a unit-width cross section through the thickness, as shown in Figure 8. The sixth mode, interlaminar splitting, is not amenable to direct analysis. However, the design inhibits splitting by subjecting the interlaminar surfaces to compressive preloads produced by initial clamp-up through the thickness at each joint.

Figure 7. In-plane finite-element model for a joint.

Figure 8. Cross-sectional finite-element model for a joint.

The finite-element analyses provided knowledge of the biaxial states of stress for both the static and the fatigue design conditions. Corresponding data to predict the strength of the materials when subjected to such stresses were not considered reliable, and the program included static and fatigue testing to determine failure strengths and working allowables under similar states of stress.

CHARACTERISTICS AND PERFORMANCE

Weight

Table 2 compares the estimated weight of the new composite hub and the actual weight of the existing CH-54B titanium hub. The weights for the new design were calculated from detail drawings. The new composite hub and its attachments are 99.30 lbs or 24 percent lighter than their existing production counterparts. The new rotor shaft is also lighter by 22.19 lbs. The total weight saving for the hub and rotor shaft is 121.49 lbs or 24 percent.

EXISTING TITANIUM HUB	
Upper hub assembly	221.80 lbs
Lower plate assembly Other (brackets, fasteners, rings, cones, etc.	70.50) <u>111.90</u>
TOTAL, HUB PROPER	404.20 lbs
Rotor shaft segment (calculated)	97.03
TOTAL, HUB AND ROTOR SHAFT	501.23 lbs
NEW COMPOSITE HUB	
Upper plate	63.23 lbs
Pan plate	98.36
Lower plate Other (housings, fasteners, rings, cones, etc.	56.79) 86.52
TOTAL, HUB PROPER	304.90 lbs
Rotor shaft segment	74.84
TOTAL, HUB AND ROTOR SHAFT	379.74 lbs

The calculated weights of the composite plates were confirmed by weighing the plates for the 1/2-scale model. It was found that the sum of the weights for the three plates was only 6 percent higher than the corresponding weight scaled from the calculated weight in Table 2. This difference is primarily due to excess resin in the model that would not be present in production. The individual weights of the upper, pan, and lower plates were 8.25, 13.20, and 7.45 lbs, respectively. The weight for the pan plate includes a calculated adjustment of 1.07 lbs to account for

differences between the model and the prototype. The model used glass-epoxy, rather than graphite-epoxy, for the filler blocks at the lugs and also 12 spacer rings that would not be needed in production.

Cost

Detailed estimates were prepared for the average price in a total production run of 1000 assemblies. Table 3 summarizes the results. It shows that the initial acquisition price is \$17,144 per assembly with no credit for lower weight. If weight savings were valued at only \$50 per pound, the adjusted price would be \$11,070 per assembly. These prices are based upon a 1976 quotation of \$35/1b for graphite-epoxy prepregs. If the cost were \$20/1b (a projected future cost stated in 1976 dollars), the weight-adjusted price would be \$7,712.

Component	Material	Cost	See Note
Doublers	CRES	\$ 171	1
Center Fittings	Titanium	1,088	
Plates	Graphite-Epoxy	5,140	2
Other	Miscellaneous	1,208	
TOTAL Material and	Purchased Components	\$ 7,607	1.
Material Burden Fa		x 1.524	3
Through Price for	Materials	\$11,593	4
Production Labor,		5,551	5
TOTAL Production P	rice	\$17,144	6

NOTES:

- 1. All costs are average costs for a production run of 1000 hubs.
- 2. Using 1976 prices, \$35/1b for 5209 T-300 system.
- 3. Typical for a competitive company.
- 4. Price to customer, including all burdens and 12% profit.
- 5. Hours based upon an 87% learning curve.
 - Rate = \$22.50/hr, typical for a competitive company.
- 6. Price to customer, including all materials and labor, fully burdened with a 12% profit.

The price for the corresponding titanium hub is estimated to be \$36,000. (This price includes \$34,000 for the hub housing, as shown in Table 1, plus \$2,000 for 59 lbs of fasteners and supports.) Based upon this price, the composite hub provides the following savings in initial acquisition costs alone:

- 52 percent, with no credit for weight savings
- 69 percent, if weight savings were valued at \$50/1b
- 78 percent, if weight savings were valued at \$50/lb, and if graphite were available at \$20/lb in the acquisition time period.

Producibility

The composite hub is designed for uncomplicated and efficient production using hand layups of preimpregnated materials. The layups are exceptionally simple, permitting placement with a minimum of handling. Each plate is basically uniform in thickness; thus, a large steel-rule die can be used to cut the pattern, including the holes, in one operation. The plies and local reinforcements can then be stacked in sequence to achieve the desired interleaving. The bonding tool can have a standing plug at each hole to assist placement.

Such procedures were used to make the model for this program. They worked well on the first try, and no plates had to be remade. One fabrication technique that helped was the use of what can be called midplane tooling. Very simple tooling was used because each plate was made in two steps. First, one half was layed up and partially cured against a flat surface for the top and bottom plates and against a circular cone for the pan plate. Then, the other half was layed up upon the partially cured first half. This procedure also assured good alignment of fibers at the edges of the doublers and may be a significant contributor to the strength of the plates.

Figure 9 shows the components for the layup of the first half of the lower plate (the doublers for only one lug are shown). The graphite plies appear to be white in this figure because the protective handling surfaces are still in place. It can be seen that large steel-rule dies were used to cut the entire pattern. These patterns were handled and placed with ease.

Figure 10 shows the steps in the fabrication of the pan plate. Photograph A shows the bare midplane tool. The center titanium fitting was bolted to it, and a premade fiberglass block was placed at each corner. Photograph B shows a typical corner block. Photograph C shows the plate after the layup of the first graphite plies. It can be seen that the steel-rule die pattern covered only one-third of the total surface. This smaller pattern was used to insure the ease of handling during layup. The joints between the patterns were staggered. Photograph D is a closeup view of a corner showing a typical fiberglass-adhesive doubler and a steel lamina. Photograph E shows the start of the second layup using the partially cured first half as the mold. Figure 11 shows the completed pan plate.

Figure 9. Components for lower plate.

Damage Tolerance

The new composite hub provides damage tolerance, in full accordance with Reference 3, which requires that no failure of a single structural element cause catastrophic failure or preclude safe, continuous flight to a normal destination.

The plate hub concept has inherent redundancy. Each plate can be envisioned as many closely spaced elements that provide multiple and alternative load paths. Such plates can survive arbitrarily located hallistically-induced holes. Olster and Roy performed tests to determine the ballistic survivability of graphite composites and observed that failure will not occur upon impact if the stress at the time of impact is below a characteristic threshold strength and that failure will not occur upon subsequent loadings of the damaged plate if the stresses are below a characteristic residual strength (Reference 4). Their conclusions included the following:

- 3. STRUCTURAL DESIGN REQUIREMENTS (HELICOPTERS), AR-56, Naval Air Systems Command, Department of the Navy, Washington, D. C., 1970.
- 4. Olster, E. F., and Roy, P. A., TOLERANCE OF ADVANCED COMPOSITES TO BALLISTICS DAMAGE, presented at the Third Conference on Composite Materials: Testing and Design; ASTM STP 546, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1973.

Figure 10. Construction of pan plate.

Figure 11. Pan plate, after final cure.

- "1. The threshold strength and residual strength of the laminates were found to be approximately 55 and 62 percent, respectively, of the ultimate tensile strength, implying that ply orientation is the most significant factor.
- For the two velocities considered, the residual strength was independent of both the preload and the projectile velocity.
- Both the residual strength and threshold strength show a correspondence with the fracture toughness of the laminates.
- 4. Based upon very limited results, it appears that .50-caliber AP projectiles have only a slightly more detrimental effect than .30-caliber projectiles."

Stress analyses show that, in the fatigue design condition, the peak stresses in the upper and pan plates are less than 11 ksi and, in the lower plate, less than 13 ksi. These values are well below the threshold strength of 30.1 ksi and the residual strength of 34.6 ksi reported for $0/\pm$ 60 laminates of graphite following .30-caliber projectile hits. A residual

strength of 29.4 ksi was reported following a .50-caliber hit. Thus, it is concluded that the plates will be ballistics tolerant even to multiple hits.

In addition, it is believed that there exists a significant survival probability following a 23-mm HE attack, but no convincing analysis is possible. Experimental verification would be necessary to establish 23-mm survivability.

It is also expected that significant fatigue performance will still be available following .30- or .50-caliber attack. Freeman and Kuebeler have shown that graphite structures exhibit fatigue strengths that are exceptionally large fractions of their static strengths, even in the presence of sharp notches (Reference 5). For example, high tensile strength (HT) graphite, with various fiber orientations, exhibits the fatigue performance shown in Table 4.

Fiber Orientation	Static Ultimate Stress ksi	Maximum Stress, R = 0.1 Notched K _t = 3	
		10 ⁴ cycles	10 ⁷ cycles
0	165	70	60
0, 90	110	63	60
0, 90, + 45	58	32	30

*HT = High tensile strength, high elongation, intermediate modulus, intermediate cost, graphite fiber.

The expectation of good damage tolerance has been supported by experiences that are reported herein in sections describing the tests of the element specimens and the assembly specimen.

Reliability and Maintainability (R&M)

The composite plates are rugged and simple and have highly redundant load paths and low notch sensitivity. They are inherently reliable and maintainable. Therefore, the design efforts concentrated upon the joint details, where R&M had a great influence upon the final configuration. The simplicity, low parts count, and producibility of the composite design

^{5.} Freeman, W. T., and Kuebeler, G. C., MECHANICAL AND PHYSICAL PROPERTIES OF ADVANCED COMPOSITES, presented at the Third Conference on Composite Materials: Testing and Design; ASTM STP 546, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1973.

joints are, in large measure, the results of repeated design changes to improve reliability and maintainability. A desirable consequence was a corresponding lowering of cost.

The maintainability requirements were stated as the following qualitative goals and objectives:

- Minimize the maintenance manhours per flight-hour for both scheduled maintenance and unscheduled corrective maintenance
- Minimize the probability of maintenance being required above field level
- 3. Ensure the simplicity of installation and removal
- 4. Ensure that there are positive removal procedures, even in the presence of extensive corrosion or fretting
- Ensure that the installation and removal of the hub assembly requires no disassembly of hub components
- 6. Ensure the ease of inspection of critical parts
- 7. Provide maximum accessibility to mounting hardware
- Ensure that all components subject to corrosion, fretting, or wear can be refurbished or replaced
- Ensure that the maintenance manpower requirements will be compatible with the maintenance program for the CH-54B
- 10. Ensure that the skill levels required for field repairs are compatible with the training of the Army personnel.

The hub is installed and removed as a complete unit, with no buildup or disassembly at the Direct Support level. For installation, first the damper bolts are loosened two turns, then the hub is lowered over the drive shaft until the bottom plate approaches the flange on the drive shaft. The hub is turned to align the scallops, lowered to rest on the cone seats, and turned again to align the bolt holes, and then, the lower bolts are inserted. The ring at the top of the shaft is positioned, and the upper bolts are inserted. All bolts are then torqued to standard levels. As the bolts tighten, they draw the aluminum-bronze cones down to positive stops and induce a tight preload.

The removal of the hub is also easy. The upper and lower cone seats are cut at an angle of 14 degrees, which will normally allow self-release. In the event of abnormal seizing due to corrosion or fretting, positive removal is still assured by provisions for forcing the separation by applying hydraulic pressure to the upper cone and a mechanical jack to the lower cone. Assembly and removal require only common hand tools. The mounting bolts are all easily accessible.

More detailed information about the maintainability and reliability of the composite plate hub is presented in Appendices A and B.

Radar Detectability

Radar cross section (RCS) measurements were made using 1/2-scale models of the present production hub and several versions of the new plate hub. These versions included hubs constructed from bare, nonconducting fiberglass composites; from nonconducting composites selectively coated with a magnetic absorber; and from a conducting composite. The latter was simulated by covering the fiberglass model with aluminum foil. The magnetic absorber material is a special paint.

The new plate hub provides reduced radar detectability to the following extents:

- A 38-percent reduction in RCS was achieved by shape alone, comparing the current hub and the plate hub covered with aluminum.
- 2. A 76-percent reduction in RCS was achieved through the combination of shape and the use of nonconducting composites.
- 3. A 93-percent reduction in RCS was achieved through the combination of shape, nonconducting composite materials, and the application of the magnetic absorber.
- 4. The use of conductive (graphite) composites will change the RCS treatments required. It will be necessary to cover larger areas with the magnetic absorber.

TESTS OF ELEMENT SPECIMENS

Rationale and Objectives

Three element specimens were tested to destruction to verify the strength of a typical joint reinforced by metal laminae. The objectives were to determine:

- 1. Ultimate static strength
- 2. Static failure modes and characteristics
- 3. Failure and survivable static ultimate stresses
- 4. Fatigue strength and variability
- 5. Fatigue failure modes and characteristics
- 6. Failure and survivable fatigue stresses
- 7. Adequacy of the joint for the loads of the hub.

Specimen Description

The element specimens were large flat plates, 20.4 inches long and 15 inches wide. Both ends of the specimens were test areas that contained a duplication (in 1/2 scale of the prototype for the CH-54B) of the lag-pin joint in the top plate. The planform of a specimen is shown in Figure 12, superimposed over the top plate of the composite hub. Finite-element analyses showed that the stresses in the vicinity of the joints of the element specimen are generally similar in pattern and magnitude to those in the hub for scaled loads.

Figure 12. Element specimen.

Apparatus and Instrumentation

The static test to failure was performed in a universal testing machine. Figure 13 shows the setup. The rate of loading was held constant by the automatic platen motion system of the machine. The loads and platen motions were recorded using the automatic plotting system. A contact microphone was attached to the loading clevis, and acoustic emissions were amplified and recorded.

Figure 13. Element specimen during static test.

A custom test rig was used for the fatigue tests. The rig was a frame that coaxially supported the specimen, a load cell, and a hydraulic cylinder. The load cell was a strain-gaged, calibrated load link. The loads were controlled by a hydraulic system, which employed a Moog servo valve. The rig was efficient because it was stiff and had low moving masses. Testing rates of 12 Hz were achieved. The loads were monitored and recorded periodically on an oscillograph. Figure 14 shows a fatigue specimen in the rig. Interestingly, in this figure, the specimen appears to be wrinkling under load.

Figure 14. Element specimen during fatigue test.

This is an illusion. The apparent wrinkling is the result of lighting conditions which exaggerated surface waves that were produced during fabrication by puckering of the bleeder plies while heat and pressure were being applied in the autoclave. In subsequent components, a reinforced silicone rubber pad and a thin fiberglass caul plate were used to provide a more attractive surface. The wrinkling was a cosmetic detraction and had no effect upon the test results.

Considerable care was taken to align the load with the local midplane of the plate at each end of the specimen and thus assure that bending was negligible at the test joints. A double-pinned clevis, shown in Figure 15, was used at each end to achieve alignment.

Figure 15. Alignment clevis for element tests.

The double-pinned clevis was shimmed into proper position on an individual basis for each specimen. The following procedure was used. The clevises were clamped to the specimen with trial shims. Then, the alignment was checked by supporting the plate on three balls on a flat stone table and measuring the height of the pin from the table. The specimen was turned over and remeasured. The process was repeated with appropriate adjustment to the shims until the measurements were the same. Figure 16 shows a schematic of the setup.

Figure 16. Procedure for aligning clevis on element specimen.

Ultimate Strength

The first element specimen was tested statically to its ultimate rupture. Both the strength and mode of failure were as planned and were satisfactory. The test indicated that the ultimate strength of a full-sized joint would be 4 x 44 = 176 kips, which is 1.95 times the required ultimate strength for the most critical loading. The high margin of safety (+.95) on static strength is a consequence of providing sufficient reinforcement to provide the required fatigue strength.

The test was uneventful up to a load of 41.8 kips. During this initial period, an engineer with experience in listening to composites under test monitored sounds from the microphone and expressed qualitative judgments that the specimen was unusually quiet with only occasional pings. He interpreted the sounds as indicating that the specimen was well fabricated and had few defects, such as resin pockets or misaligned fibers, which could fail and emit sounds. No increase in sound level was discernable as the loads increased. Our experience in previous tests of composite structures has been that the level of sounds increased significantly as the failure load was approached, and thus, acoustic monitoring could provide a forewarning of composite failure. The element specimen provided little in the form of low-level sounds, but suddenly at 41.8 kips, the specimen gave out a report so loud and sharp that it was, at first, thought to be total failure of the specimen. However, the specimen continued to support steadily increasing loads for an additional .65 minutes of testing. Three additional

reports were heard before final failure. In all, reports were heard at 93, 95, 97, 99, and 100 percent of the failure load. It is believed that these sounds correspond to the failure of individual steel lamina or groups of composite laminae. The fact that the specimen repeatedly survived the failure shock, arrested the failure, and supported increased loads is a demonstration of a significant tolerance to damage.

Figure 17 shows that the bonds transferred the load from the steel laminae to the composite and that the composite supported the load with no signs of distress. The failure was in the lug itself. This was the desirable mode of failure since the basic concept is to use only the minimum weight of steel laminae that will provide the required strength.

Figure 17 also shows that the mode of failure was complex. There were broken laminae at point A, which is close to the minimum cross section of the lug, and at point B, which is at the inner edge of the hole transverse to the direction of loading. These results are consistent with the stress analysis of the specimen, which is presented in Appendix C. It indicates that the lug was balanced in strength. Both the steel and the composite at points A and B were near, or at, their corresponding failure stresses.

Figure 17. Element specimen after static test.

In such a case, it is difficult to say with confidence what triggered the failure. However, it is believed that the origin was at point A because the other end of the specimen had slightly larger dimensions (and thus, lower stresses) at the corresponding section, and it did not fail.

The following stresses were calculated using the elastic finite-element model and the final failure load:

Composite adjacent to doublers	35.9	ksi,	σ _{xx}
	.6	ksi,	OVV
	17.2	ksi,	TXV
Composite at inner edge of hole	58.9		,
Metal at inner edge of hole	229.0	ksi	
Bond of composite to metal	2.0	ksi	
Tapered tip of metal	61.5	ksi	
Metal at failure origin, A	194.0	ksi	
Composite at failure origin, A	10.3	ksi,	σxx
		ksi,	
	- 20.2	ksi,	τxy

The 229-ksi stress in the steel is regarded as the failure stress. The others are examples of survivable static stresses.

The acoustic experiences also are consistent with the results. It is believed that the reason no increase in low-level sounds was heard was because the major portion of the composite was not near its failure load. The highly stressed composite areas were small volumes interleaved with the steel laminae near positions A and B. Their sonic output was masked by general background noise.

Figure 18 shows the loads and deflections (platen motion) recorded during the test. The specimen behaved essentially linearly up to failure. The initial deviations from a straight line are attributed to the fact that platen motion includes seating of pins and joints in the load path.

Fatigue

Fatigue tests to failure showed that the joint fatigue strength was consistent and appropriate for use on the CH-54B.

The fatigue tests were conducted using R = .1, where R is the ratio of minimum load to maximum load. The first specimen was subjected to the following loads, where P_{ilt} is the static failure load:

Figure 18. Load versus deflection during static test.

- 1.00 million cycles, maximum load = .250 Pult
- 1.00 million cycles, maximum load = .307 Pult
- .26 million cycles, maximum load = .386 Pult

The second specimen was subjected to:

1.85 million cycles, maximum load = .300 P_{ult}

The stresses corresponding to these loads are directly proportional to the stresses shown for the static test. For example, the stresses during the second fatigue test were:

Composite adjacent to doublers	5.92 <u>+</u>	4.85	ksi,	σ _{xx}
		.08		
	2.84 ±			
Composite at inner edge of hole	9.72 <u>+</u>	7.95	ksi	
Metal at inner edge of hole	37.79 <u>+</u>	30.91	ksi	(Failure)
Bond of composite to metal	.33 <u>+</u>	.27	ksi	
Tapered tip of metal	10.15 ±	8.30	ksi	
Metal at point A (Figure 17)	32.01 ±	26.19	ksi	
Composite at point A (Figure 17)	1.70 <u>+</u>	1.39	ksi,	σ _{xx}
	6.53 <u>+</u>			
	- 3.33 <u>+</u>	2.73	ksi,	TXV

The stresses in the metal at the edge of the hole $(37.79 \pm 30.91 \text{ ksi})$ produced failure in 1.85 million cycles. The other stresses are examples of a survivable fatigue condition.

Figure 19 shows a typical specimen after fatigue testing. Again, as in static failure test, the bonds and the steel laminae successfully

Figure 19. Element specimen after fatigue test.

transferred the fatigue loads into the composite. The composite supported the loads with no signs of distress. The mode of failure was a fatigue failure of the steel laminae at the inner edge of the hole at position B in Figure 19, which is approximately transverse to the direction of loading. This was the preferred mode of failure.

The following comparisons show that the fatigue strength of the composite joints exceeded that required to match the fatigue strength of the existing titanium hub by 7 percent for the first specimen and 14 percent for the second. The actual margin of safety may be somewhat greater than shown, however, because these comparisons are based on calculated loads and tests of the model hub assembly indicated that the actual loads were lower than calculated. Figure 20, taken in part from Reference 2, summarizes the comparisons; it shows:

- Two test points and the estimated mean S-N curve for the existing titanium hub (solid line curve, spline mode)
- Test conditions (3 steps) for the first composite element fatigue test and the S-N curve for the composite hub (dashed lines) derived from this test
- 3. Test point for the second composite element specimen (∇) .

Figure 20. Relationship of fatigue test to S-N curve for titanium hub.

Using the test data and the S-N curve for the composite hub, Miner's Rule provides the following summation:

For failure:

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} = 1$$
 (Miner's Rule)

For first fatigue specimen:

$$\frac{1}{9} + \frac{1}{2} + \frac{.26}{.67} = 1.00$$

Thus, the dashed S-N curve is in agreement with Miner's rule and the three load steps of the first fatigue test. The curve lies about 7 percent higher than the S-N curve for the existing titanium hub.

The failure point for the second composite fatigue specimen lies about 14 percent above the S-N curve for the existing titanium hub. The strength of the second specimen is consistent with that of the first. The fatigue strength shows a very desirable low scatter.

Using the curve for the existing titanium hub, shown in Figure 20, the mean endurance limit (mean strength for infinite life) can be projected as .7/.95 = .737 times the fatigue strength at 1.85 million cycles. Applying this factor to the calculated stress during the second fatigue test, the mean endurance limit for the steel laminae at the critical section, position B in Figure 19, is estimated to be $.737 \times +30.91 = +22.78 \text{ ksi.}$ Since the first fatigue specimen was about 7 percent weaker than the second, the best estimate for the mean endurance limit is $.965 \times +22.78 = +22.0 \text{ ksi.}$ This endurance limit is based upon only two specimens (4 joints) and tenuous projections; however, it best represents the available data and is believed to be a reasonable starting point for proportioning a new design.

During the course of the first fatigue test, an incident occurred that abused and damaged the specimen. After 1,630,000 cycles were applied, the rod in the loading cylinder broke. This caused a compressive load of over 3000 lbs to be applied to the specimen. In response to this load, the loading clevises pivoted and impacted upon the specimen, crushing the specimen locally at its edge. In addition, the specimen buckled elastically and found an equilibrium position with a lateral displacement at its center that was estimated to be 3 to 4 inches relative to a line connecting its ends. When the load was removed, the specimen appeared normal (except for nicks left by the clevis) and testing was continued. The specimen tolerated this unplanned impact test remarkably well. Figure 21 shows the position of the specimen under compressive load. Figure 22 shows the damage caused by the incident.

Figure 21. Position of specimen while under compressive load after failure of rod in loading cylinder.

Figure 22. Damage caused by impact of clevises.

TESTS OF ASSEMBLY SPECIMEN

Rationale and Objectives

The tests were planned cautiously, recognizing that only a single specimen existed. The plan was to demonstrate high levels of structural integrity, but yet to avoid destruction of the specimen, which would have precluded further testing. Since the greatest need was to demonstrate fatigue strength or to find areas of fatigue weakness, the test program subjected the model first to the fatigue design loads and then to static limit loads. The specific test objectives were:

- 1. To demonstrate fatigue strength sufficient to survive 1 million cycles of the fatigue design loads.
- To demonstrate a residual strength after fatigue testing sufficient to support the most critical flight loads.
- 3. To demonstrate adequate stiffness for dynamic compatibility with the rotor controls and drive train.
- 4. To verify partially the calculations of internal loads.
- To determine the importance of secondary bending in the plates.

These objectives were accomplished and, as it turned out, a sixth objective was also achieved:

6. To demonstrate damage tolerance.

Loading Conditions

Table 5 shows the design loads for the CH-54B prototype, the actual test loads for the 1/2-scale model, and the test loads as a percentage of the scaled loads. In general, the model used scaled loads with only two exceptions, for which the loads were approximately 4 percent higher than true scale. The use of these slightly higher loads allowed a single alignment of loading apparatus to be used for both the static and fatigue tests.

The fatigue design loads are described in Reference 2, which shows that the fatigue design head moment is higher than 95.5 percent of the head moments specified in the mission spectrum for the CH-54B. It is also 14 percent higher than the mean endurance limit for the present titanium hub. Figure 23 shows the relationship of the composite hub fatigue demonstration to the S-N curve for the present titanium hub. Survival of the fatigue test demonstrated that the composite hub had at least 74 percent of the strength of the present hub.

The static limit loads were taken from References 2 and 3. The loads correspond to flight condition TW7F1, which is a symmetrical dive and pullout with power on. This condition is critical because it includes both high torque and high head moment.

CONDITION	LOADING	CH-54B PROTOTYPE	MODEL TEST	$\frac{\text{TEST}}{\text{SCALED}} \times 100\%$	
FATIGUE	Head Moment, inkip	<u>+</u> 800.	<u>+</u> 100.	100.0	
DESIGN	C.F. , kip	83.	21.64	104.3	
LOADS	Torque , inkip	2075.	259.4	100.0	
	Thrust , kip	38.	9.5	100.0	
STATIC	Head Moment, inkip	1314.	164.25	100.0	
LIMIT	C.F. , kip	99.	24.75	100.0	
	Torque , inkip	2272.	296.60	104.4	
TW7F1	Thrust , kip	85.8	21.45	100.0	

Figure 23. Test S-N for titanium hub.

Apparatus

Figure 24 shows a line schematic of the composite hub in the loading rig. The specimen was mounted upon a cantilevered shaft, and the loads were applied to the six lead-lag pins, A through F. The steady loads of centrifugal force and torque were produced by the hydraulic cylinders, H, and measured by strain-gaged links in the bars, L. The loading bars were oriented to provide components of force appropriate for the loading condition at each lead-lag pin. The linkages and pivots of the rig were designed to apply the centrifugal force and torque without inhibiting the deflections of the hub and its mounting shaft that occur in response to alternating head moment, thus permitting a valid test of the hub, the attachments of the hub to the shaft, and the shaft. Figure 25 shows, in exaggeration, how the loading linkage rocks to accommodate the deflections of the hub and its mounting shaft.

Figure 24. Schematic of test rig.

Figure 25. Principle of test rig linkages.

The steady thrust was produced by four vertically mounted cylinders, two of which are shown in Figure 24. The other two cylinders, which were connected directly to lead-lag pins, C and F, are not shown in order to indicate more clearly the position of the whiffletrees. The whiffletrees in the vertical plane distributed the vertical load in cylinders, V, equally to lead-lag pins A, B, D, and E. The resultant vertical load at each lead-lag pin was the sum of the load from the vertical cylinders and a component of downward vertical load produced by the orientation of the links, L, that applied the centrifugal force and torque. It was desirable to introduce this downward component because it enabled the cylinders, V, to operate in tension only when they were used to apply the alternating head moment. The alternating head moment was produced by using servocontrols that cycled the loads in cylinders, V, out of phase with each other. This arrangement provided simultaneous testing of the joints A, B, D, and E.

Instrumentation

The specimen carried 12 strain gages oriented to measure radial strains, as shown in Figure 26. The gages were mounted in pairs to permit the calculation of extensional strain and bending strain at two radial positions on each plate.

Deflections were measured by four dial gages mounted as shown in Figure 27. Gages 1 and 2 were aligned tangentially for torsional stiffness calculations. The deflections were relative to a supporting bracket that was attached to the rotor shaft below the rotor hub, corresponding to WL249.

Figure 26. Location of strain gages.

Figure 27. Location of deflection gages.

Fatigue

The fatigue design loads were applied, and permanent records of loads and strains were made hourly. The load control system was stable and the test ran well. A test rate of 2 Hz was used for 258,000 cycles. Then, a larger pump and motor were installed, and a test rate of 3.5 Hz was used for the remaining 742,000 cycles. The test frequency was similar to the CH-54B rotor speed of 3.1 rps. These test rates produced no noticeable heating of the specimen. Similarly, the element specimens showed no noticeable temperature rise when tested at 12 Hz.

The first incident noted on the log sheets was a single pop heard after 376,000 cycles. The operator did not know whether it came from the specimen or the rig. The load monitors showed no change, and a visual inspection showed nothing unusual, so testing continued. The second incident occurred at 601,800 cycles. The operator heard clicking noises. The load monitors showed no change; however, visual inspection, while the test was running, showed that a crack was present in the titanium ring at the center of the pan plate. With every cycle, light was seen between the flange of the pan plate and the flange of the rotor shaft indicating that bolts had broken. Testing was interrupted, and the specimen was disassembled.

Figures 28 and 29 show the crack in the titanium ring of the pan plate. Figure 30 shows four bolts that had severed. The positions of the broken

Figure 28. Plan view of pan plate with crack.

Figure 29. Closeup view of crack.

Figure 30. Severed bolts.

bolts are indicated in Figure 28. Since initially there were only 12 bolts, the pan plate was operating at the time of interruption with no attachment over an arc of 120°. Figures 28 and 29 also show that strain gages 5 and 6 were in good position to record the growth of the crack. This was a fortunate placement of gages because the crack had equal likelihood of starting at three other symmetrically located sites that had no gages. The strains at gages 5 and 6 are shown versus cycles in Figure 31. The following is believed to be the sequence of events:

- A crack ran from the bolt hole to the center hole. Probably this was the pop heard at 376,000 cycles.
- The crack grew gradually outward until it was arrested by the composite.
- 3. The crack changed the support of loading, causing the bolts to be loaded by horizontal shears at the joint between the pan plate and the hub.
- 4. The bolts were overloaded by these shears and eventually broke. The fracture surface of one bolt shows evidence of a fatigue origin. The others are characteristic of a relatively low-cycle, static failure. Probably, the first bolt broke at 572,000 cycles, 3.1 hours before the tests were suspended, corresponding to the abrupt change in the shape of the straincycle curves for gages 5 and 6, as seen in Figure 31.

Figure 31. Alternating strains at gages closest to crack.

In hindsight, there were several easily avoidable factors that contributed to the cracking. The simple local improvements noted below should be effective in preventing future cracking:

- 1. The test bolts were inadequately tightened. For reasons of cost, the lower and pan plates were assembled to the rotor shaft using 190 ksi, commercial-grade bolts. These bolts had a black-exide coating, which has greater friction than usual aircraft coatings. The bolts were tightened only to 300 in.-lb; a normal value for cadmium-plated aircraft bolts. Later, it was noted that the manufacturer recommended 500 in.-lb for black-exide bolts. The significance of tight bolts is discussed in the next paragraph.
- The test bolts had a coating that aggravated fretting. A Sermetel-W coating is planned for use in service.
- 3. The holes in the test titanium fitting had no preparation to improve their fatigue performance. It is now planned that the edges of the holes will be provided with a radius and the hole will be shotpeened.

The specimen was reassembled with no repairs using available NAS bolts. They were of lower strength, 160 ksi. This time, the bolts were fully tightened to a torque of 500 in.-lb, which simulated the preload that will be available when high-strength bolts are used. The plan was to transfer horizontal shear from the flange of the pan plate to the flange on the hub by friction. This load path became a substitute for the load path originally provided by the cracked center fitting, which acted as a large lug transferring horizontal shear to the cone seat. Thus, tightening the bolts allowed them to revert to their primary job, namely, the transmission of drive torque and lift.

When the specimen was reinstalled into the rig, it was rotated 60° . This meant that of the originally highly loaded lugs A, B, D, and E, only lugs A and D continued to be highly loaded. The previously lightly loaded lugs C and F moved into the highly loaded position (see Figure 24). The testing was resumed, and an additional 398,200 cycles were applied to complete the originally planned demonstration of 1,000,000 cycles with no additional cracking or bolt fractures.

In retrospect, while the fitting cracks and bolt fractures were unwelcome when they occurred, they did provide new insight into component criticality, load paths, and fail safety that would have remained undiscovered if the specimen had survived without incident. In addition, the damage tolerance demonstrated encourages the belief that missions can be completed after battle damage to the hub.

The good fatigue performance of the hub, even in a cracked state, after the bolts were tightened implies that just tightening the bolts would be adequate to avoid cracking. However, it is recommended that the holes be strengthened as described in order to provide an additional margin of safety.

Static Limit

The specimen supported the limit loads in Table 5 without incident or damage. The hub was also silent. The audible creaking usually associated with composite assemblies was absent in all testing in this program. The loads were applied in three stages:

STAGE 1. The cylinders, H, in Figure 24 were energized in progressive steps to apply the limit centrifugal force and torque to the specimen. Concurrently, a downward thrust was also applied as a consequence of the orientations of the load links. This downward load enabled the vertical cylinders, V, to operate in tension when the head moment was added in Stage 3.

STAGE 2. The cylinders, V, and two other vertical cylinders (not shown in Figure 24) added limit thrust.

STAGE 3. The cylinders, V, were adjusted to add the limit head moment.

Figure 32 shows the deflections measured during the limit load tests. These deflections indicate that the specimen remained elastic. Upon release of the load, gages 2 and 3 returned to their original position within .002 inch. Gages 1 and 4 showed a residual displacement of about .015 inch. Figure 27 shows that dial gage 1 measured tangential motions of the pan plate, and dial gage 4, vertical motions. These dial gages were closest to the crack in the center ring of the pan plate. It is believed that under load, the crack opened a little, thus permitting slight shifts in the position that the pan plate was clamped to the flange of the rotor shaft. These shifts of position were recorded by dial gages 1 and 4.

Dynamic Compatibility

There were two concerns for dynamic compatibility:

- 1. The moment stiffness and thrust stiffness should be great enough so that deflections of the hub do not have a significant effect upon the control inputs to the pitch arm.
- The torque stiffness should be great enough to avoid torsional resonances in the drive train.

Table 6 shows that the composite hub is from 28 to 183 percent stiffer than the present titanium hub, and thus it is concluded that the composite hub is compatible and would have no adverse effects upon the behavior or controllability of the rotor system.

TABLE 6. SUMMARY OF HUB STIFFNESSES			
Type of Stiffness	TI-Hub	СРН	CPH TI-Hub
Moment, inkips/degree	4218	5416	1.28
Thrust, kips/in.	1010	2228	2.21
Torque, inkips/degree	9279	27227	2.93

Theoretically, the higher stiffnesses of the CPH are beneficial because they reduce interaction of the hub deflection with control inputs and raise the torsional natural frequencies of the drive train further above the operating speed. However, the hub stiffnesses under consideration are so high that dynamic compatibility is insensitive to changes in stiffness. For example, if a new hub were only one-half as stiff as the present titanium hub, the maximum vertical deflection of the full-scale hub at the leadlag pin would increase by only .20 inch at the limit load, and the increase in torsional windup would be equivalent to that produced by only a 13-inch increase in the length of the rotor shaft.

al ten	Moment	Moment C. F. Torque		Thrust
Stage	Inkip	Kip	Inkip	Kip
3	164.25	24.75	296.60	21.45
2	0	24.75	296.60	21.45
1	0	24.75	296.60	-11.87

Figure 32. Deflections during limit load test.

The stiffnesses shown in Table 6 for the present titanium hub are theoretical stiffnesses calculated using approximate dimensions scaled from the manufacturer's assembly drawings. The stiffnesses for the CPH are the measured stiffnesses of the model during the limit load test scaled up to full size. The stiffnesses for the titanium hub were calculated relative to the shaft just below the hub at WL249. This position corresponds to the measuring technique used to determine the experimental stiffnesses of the model of the CPH, and thus stiffnesses are on a common basis and can be compared directly.

Strains

The design of the plates was based upon loads found using the statically determinate free-body diagram shown in Figure 33. In effect, simple truss action was assumed with the support for the blade loads being supplied solely by axial forces lying along the midplane of each plate. Bending and transverse shears were considered secondary events, which were a consequence of deflections of the primary load path provided by axial forces.

Strain gages were positioned to find out how closely the actual behavior resembled that assumed and to discover the magnitude of the bending strains. It would have been desirable also to place strain gages at critical sites where failures would originate. However, in the composite hub, these sites are at the inside edges of loaded holes or at interlaminar bond lines, which are unsuitable for gage application.

Figure 33. Free-body diagram of lugs at lead-lag pin.

Figure 34 shows the strains during a typical cycle of loading in the fatigue test. The values indicated at the peaks are the averages of nine readings taken during the first 260,000 cycles. The strains showed little variation from reading to reading. For any set of nine readings, the typical difference between the highest and lowest alternating strains was 36 μ in./in.

Figure 34. Strain (μ in./in.) versus time for twelve gages shown in Figure 26 during one cycle of fatigue test.

which could be attributed, in part, to data collection and reduction, as well as a variation in specimen response. Several observations can be made from the strain gage data:

- 1. The strains are consistent with the assumed truss action indicated in the free-body diagram of Figure 33. At the peak loads, the line of action of the axial forces was quite close to the midplane; for the upper and pan plates, the line of action of the axial forces was within 6 percent of the thickness of being directly on the midplane. The lower plate is a special case and is discussed in observation 5.
- 2. The bending strains, represented by one-half the difference between the strains for the gages at a station, were typically appreciable fractions of the axial strain; however, in absolute value, the bending strains were small and had no significance to the strength of the hub. The critical strains were at the inner boundaries of the holes. These strains were analyzed using finite-element models described in Appendix C.
- 3. The strains measured in the composite were low, indicating high tolerance to damage in the large open areas of the hub, away from the joints. For example, the highest strain measured was 1166 μ in./in. (about 8.7 ksi); the highest alternating strain was + 835 μ in./in. (about + 6.3 ksi).
- 4. The strains measured on the titanium fittings (gages 5, 6, 9, and 10) were also low. The highest strain measured at gage 5 was 848 μ in./in. (about 13.7 ksi); the highest alternating strain was + 441 μ in./in. (about + 7.1 ksi).
- 5. The strains measured by gages 9 and 10 on the lower plate reveal a special feature of detail design. The primary loads on the lower plate are equal radial forces at the six lead-lag pins. The plate is redundant and can support these loads by internal hoop forces from adjacent pin to adjacent pin and/or by radial forces from pin to opposing pin. The hoop path is preferred for normal levels of load because it relieves the scalloped lugs on the center fitting and the bolts from the task of transferring the radial load. The bolt holes were positioned and sized to allow the hoop path to operate without restraint. Thus, the analysis indicated an axial strain of only 2 pin./in. The finite-element analysis of the lower plate indicates that the tangential stress at the location of gages 9 and 10 would be 15 ksi.
- 6. The strains measured in the upper plate were lower than expected. At least two factors may have contributed to this difference. First, it was assumed that centrifugal force was supported by the upper and lower plates alone. Actually, the pan plate can assist the upper plate, and thus reduce the

loads upon the upper plate. Secondly, it was assumed that the upper plate did not contribute to the support of torque. Actually, friction at the center hole may have allowed the upper plate to share in the support of torque. If it did, it could lower the strains at the points measured.

Effect of Test Results Upon Performance Estimates

The expected strengths and stiffnesses were verified by the testing program with only one exception, that of the holes in the titanium fitting in the pan plate. Changes to increase the strength of the titanium fitting added no weight and only \$30 (or 0.17 percent) to the price of a hub assembly. The damage tolerance shown during the fatigue test and subsequent static limit load testing exceeded expectations.

OTHER APPLICATIONS

In the design for the CH-54B, the pan plate, which provides the load path for transverse shear, is located in the intermediate position. This is not the only possible configuration. The pan plate could also be located either above or below the flat plates. Figure 35 shows a sketch of an alternate design (for a four-bladed rotor) in which the pan plate (2) is on top. In addition, the plates (1 and 3) are also shown with a shallow cone, corresponding to the steady 1-g cone angle of the blade. The load paths in this design are similar to those described earlier except for the transmission of torque, which, in this design, is shared by plates 1 and 3.

The principal advantage of this configuration is the clear envelope it provides inboard of the bearings. The entire annular space between plates 1 and 3 is open. Figure 35 shows an elastomeric articulation in this space. A spherical bearing (4) provides for the lead-lag and flapping motions; a chevron-stack thrust bearing (5) allows feathering motions. The outboard end of the spherical bearing receives attachment bolts that hold it to the hub. The rotor blade shank (6) extends inboard for contact with flapping stops and the attachment of a damper.

FUTURE PLANS

The present program has been completed and a new program to develop the concept further is in progress. The Applied Technology Laboratory of the U. S. Army Research and Technology Laboratories is supporting a program to investigate the feasibility of applying the composite plate hub concept to medium utility helicopters using the UH-60A as a baseline. The decision to shift future development from the CH-54B to the UH-60A was based upon cost-benefit analyses. A dominant factor in the analyses was the fact that the helicopters of the UH-60A weight class will be procured in large numbers, and thus this weight class offers the greatest opportunity to realize large total cost, weight, and performance benefits from the successful application of a composite plate hub.

Key

- 1 Nearly flat plate
- 2 Pan plate
- 3 Nearly flat plate
- 4 Spherical bearing 5 Chevron-stack thrust bearing
- 6 Rotor blade shank

Figure 35. An alternate composite plate hub configuration.

CONCLUSIONS

- The composite plate hub is structurally efficient and readily producible.
- 2. The composite hub designed for the CH-54B has the following characteristics:
 - a. The composite hub weighs 99.30 lbs or 24 percent less than the present titanium hub.
 - b. The composite hub and rotor shaft assembly weighs 121.49 lbs or 24 percent less than the corresponding titanium hub and rotorshaft assembly.
 - c. The initial acquisition price of the composite design is \$17,144 per assembly with no credit for lower weight. If weight savings were valued at \$50/pound and if graphite were \$20/pound, the adjusted initial price would be \$7,712 per assembly. These costs would allow savings of 52 and 78 percent, respectively, of the price of the existing titanium hub.
 - d. The composite design provides tolerance to damage.
 - e. The composite design is maintainable, with particularly simple procedures for installation and removal, which require no special tools.
 - f. The composite design provides a 38-percent reduction in radar cross section by shape alone. Using limited applications of a spray-on magnetic absorber, a 93-percent reduction is feasible.
- The composite plate hub met the test objectives for fatigue strength, static strength, and stiffness. It also demonstrated good tolerance to damage.
- 4. All composite components and composite joints survived the tests without failure.
- 5. The titanium fitting at the center of the pan plate cracked at one of the holes for the attachment bolts because the bolts were inadequately tightened. Continued testing of the cracked hub showed that cracking did not occur when the bolts were properly tightened. Additional margins of safety against cracking can be introduced with minor cost and no weight increase by providing radii at the edges of the holes and by shotpeening the holes. These operations are included in the cost estimate.

REFERENCES

- Levenetz, B., COMPOSITE-MATERIAL HELICOPTER ROTOR HUBS, Whittaker Corporation; USAAMRDL Technical Report 73-14, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, July 1973, AD 771973.
- Faiz, R. L., A DESIGN ANALYSIS OF A CH-54B MAIN ROTOR HUB FABRICATED FROM COMPOSITE MATERIALS, Sikorsky Aircraft Division, United Aircraft Corporation; USAAMRDL Technical Report 73-49, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, October 1973, AD 771966.
- STRUCTURAL DESIGN REQUIREMENTS (HELICOPTERS), AR-56, Naval Air Systems Command, Department of the Navy, Washington, D. C., 1970.
- 4. Olster, E. F., and Roy, P. A., TOLERANCE OF ADVANCED COMPOSITES TO BALLISTICS DAMAGE, presented at the Third Conference on Composite Materials: Testing and Design; ASTM STP 546, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1973.
- Freeman, W. T., and Kuebeler, G. C., MECHANICAL AND PHYSICAL PROPER-TES OF ADVANCED COMPOSITES, presented at the Third Conference on Composite Materials: Testing and Design; ASTM STP 546, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1973.
- 6. AVIATION UNIT AND INTERMEDIATE MAINTENANCE MANUAL: ARMY MODEL CH-54B HELICOPTER, TM 55-1520-217-23-2-1, -2, -3, Department of the Army, Washington D. C., 1977.
- Cook, T. N., Young, R. L., and Starses, F. E., MAINTAINABILITY ANALY-SIS OF MAJOR HELICOPTER COMPONENTS, Kaman Aerospace Corporation; USAAMRDL Technical Report 73-43, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, August 1973, AD 769941.
- 8. MILITARY STANDARDIZATION HANDBOOK, METALLIC MATERIALS AND ELEMENTS FOR AEROSPACE VEHICLE STRUCTURES, MIL-HDBK-5B, U. S. Government Printing Office, Washington, D. C., 1 September 1971.
- AEROSPACE STRUCTURAL METALS HANDBOOK, Mechanical Properties Data Center, Traverse City, Michigan; AFML Technical Report 65-115, Volume 2, U. S. Air Force Materials Laboratory, Wright-Patterson AFB, Ohio, 1975.
- 10. Greszczuk, L. B., and Chao, H., INVESTIGATION OF BRITTLE FRACTURES IN GRAPHITE-EPOXY COMPOSITES SUBJECTED TO IMPACT, McDonnell-Douglas Astronautics Company; USAAMRDL Technical Report 75-15, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, May 1975, AD 12269.
- 11. NARMCO RIGIDITE 5209 CARBON FIBER PREPREG SYSTEMS, Narmco Materials, Inc., Celanese Corporation, Costa Mesa, California, undated.

- 12. Ashton, J. E., Halpin, J. C., and Petit, P. H., PRIMER ON COMPOSITE MATERIALS: ANALYSIS, Stamford, Connecticut, Technomic Publishing Co., Inc., 1969.
- PLASTICS FOR AEROSPACE VEHICLES, PART 1, REINFORCED PLASTICS, MIL-HDBK-17A, U. S. Government Printing Office, Washington, D. C., January 1971.
- 14. Pipes, R. B., INTERLAMINAR SHEAR FATIGUE CHARACTERISTICS OF FIBER-REINFORCED COMPOSITE MATERIALS, presented at the Third Conference on Composite Materials: Testing and Design; ASTM STP 546, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1973.
- 15. Nagle, R., PERSONAL LETTER To Mr. Mark White, B. F. Goodrich General Products Company, Akron, Ohio, 30 January 1973.
- 16. SUMMARY WEIGHT STATEMENT, ACTUAL, SER-64316, Sikorsky Aircraft Division, United Aircraft Corporation, Stratford, Connecticut, 1970.
- 17. Mayerjak, R. J., FATIGUE STRENGTH OF LUGS CONTAINING LINERS, VOLUME II COMPUTER PROGRAM USED FOR ANALYSIS, USAAVLABS Technical Report 70-49B, U. S. Army Aviation Materiel Laboratories, Fort Fuscis, Virginia, November 1970, AD 880290.
- 18. Melcon, M. A., and Hoblit, F. M., DEVELOPMENTS IN THE ANALYSIS OF LUGS AND SHEAR PINS, Product Engineering, June 1953.
- 19. Flugge, W., STRESSES IN SHELLS, Berlin, Springer-Verlag, 1960.
- Newmark, N. M., NUMERICAL PROCEDURE FOR COMPUTING DEFLECTIONS, MOMENTS AND BUCKLING LOADS, <u>Transactions</u> of the American Society of Civil Engineers, New York, 1943.
- Drawings Number 65100-11000, Sheet 4, and 65103-11000, Sheet 5, Sikorsky Aircraft Division, United Aircraft Corporation, Stratford, Connecticut, 1963.

APPENDIX A

RELIABILITY REPORT

INTRODUCTION

The composite plate hub (CPH) was designed with careful monitoring of the design effort from a reliability standpoint. Since the CPH concept intrinsically embodies basic reliability advantages, such as diffuse and redundant load paths, high ballistic damage tolerance, and large areas of primary bonding, the reliability goals focused on maintaining high reliability at the shaft-to-hub and hub-to-hinge interfaces. The design simplicity, low parts count, producibility, and ease of inspection are the results of those efforts. Reliability criteria clearly influenced the design effort in these areas, but for the most part, the basic design requirements of a rotor hub, such as long fatigue life, ballistics tolerance, and fail safety, ensure the very qualities which reliability demands. Reliability goals did not impose fundamentally new or unique requirements on this design, but rather, tended to complement other design objectives.

The results of the reliability analyses are presented primarily in two tables. The first summarizes the reliability design features by which tolerance to damage or prevention of damage from typical inherent or induced failures is achieved. The second table presents a failure modes and effects criticality analysis, which examines the consequences of failures. The inherent failure rates are also discussed and a prediction of a retirement life is made.

RELIABILITY DESIGN FEATURES

The tests of the composite plate hub assembly and elements have demonstrated a greater tolerance to damage than that of a conventional metal hub. The same features that provided the damage tolerance also work to improve reliability. The improvements arise from a complementary combination of favorable configuration and material. The plate configuration provides reliability by maximizing primary bond areas, diffusing the load paths, and ensuring redundant or "standby" load-carrying capability. The use of advanced composite materials permits the plates to achieve strength, stiffness, and resistance to buckling with lower weight than possible using metal construction. In addition, and perhaps most important to reliability and cost, the CPH is highly producible, even in very large sizes.

The following maintenance characteristics also contribute to reliability by reducing the probability of induced failures because of improper maintenance:

 The hub can be installed and removed without disassembly of hub components.

- 2. The hub is attached to the rotor shaft with standard fasteners using standard tightening procedures.
- 3. Assembly and maintenance can be performed with standard tools.

Table A-1 identifies the methods of achieving tolerance to, or prevention of, damages resulting from both inherent or induced failures.

FAILURE MODES AND EFFECTS CRITICALITY ANALYSIS (FMECA)

The FMECA is a systematic analysis of each major component of the hub to determine the possible modes and sources of failure, and the effect and criticality of each mode. The results of the analysis are used to identify failure modes of potential safety concern, and to assess the effect of each failure mode on mission reliability and maintenance. The FMECA is also used to:

- 1. Identify the need for more reliable materials
- Identify requirements for redundancy, alternative load paths, or other forms of fail-safe design
- 3. Indicate areas wherein manufacturing processes and quality control may require special attention
- Ensure that future test procedures encompass all of the critical failure modes.

The Reliability Group worked closely with the Stress Group in developing the FMECA since the failure modes of a structural element such as the hub can only be identified by an in-depth understanding of material properties and stress analysis. Where failure modes posed a potential hazard to safety, the System Safety Group was asked to participate in the analysis.

Table A-2 presents the FMECA for the composite plate hub considering inherent and induced failure modes. For every component, possible failure modes are identified. For each failure mode, the FMECA states the effect, the most likely time of occurrence, and the criticality rating. The criticality rating provides a qualitative measure of significance for the potential effect of each identified failure mode according to the following criteria:

Minor - Condition such that failure effect will not result in a threat to equipment or personnel, but will normally precipitate a maintenance action.

Major - Condition such that failure effect may result in degraded performance, but can be counteracted or controlled without major system damage or injury to personnel.

Critical - Condition such that failure effect will degrade or precipitate degraded performance, damage equipment, or result in condition requiring immediate corrective action for personnel or equipment survival.

TABLE A-1. RELIABILITY DESIGN FEATURES

TYPE OF DAMAGE/METHOD OF ACHIEVING DAMAGE TOLERANCE OR PREVENTION

FATIGUE CRACKS AND DELAMINATION

- a. Plate configurations are inherently multidirectional, providing highly redundant and diffuse load paths.
- b. The basic material, graphite-epoxy, provides exceptionally high fatigue strength and low notch sensitivity.
- c. Generous sizing provides conservative levels of stress below the endurance limits.
- d. The + 60/0°/- 60° orientation of the graphite aligns the reinforcement efficiently with basic radial and perimeter load paths, and also provides good shear strength.
- e. Loads are introduced into the composite material via many interleaved metal laminae, which can tolerate high bearing loads and can diffuse these loads into the composite over large bond areas.
- f. All bonds are high-integrity, primary bonds, co-cured at initial fabrication.
- g. Glass fabric used over the metal laminae reduces local stresses in the graphite at the edges of the metal laminae.
- h. High-interference fits are used at the cone seat joints to increase fatigue life.
- Steel liner is used to allow interference assembly of the cone seat into the composite upper plates without damage to edges of laminae.
- j. Long-term retention of interference fits at cone seats is assured by the creep resistance provided by the metal laminae and metal fittings.
- k. The major vibratory load, the hub moment, is transferred from the hub to the rotor mast through interference-fitted cone seats, which minimize vibratory stress ranges.
- Micro-buckling and interlaminar splitting at composite bearing surfaces are inhibited by transverse clamp-up pressures and mechanical entrapment provided at every joint.
- m. Steel bushings at damper bolt locations provide several benefits, including interference fits for improved fatigue performances, increased bearing areas, machinable surfaces for final fabrication of close-tolerance fits, machinable and replaceable components for refurbishing the assembly.

TABLE A-1. RELIABILITY DESIGN FEATURES (continued)

TYPE OF DAMAGE/METHOD OF ACHIEVING DAMAGE TOLERANCE OR PREVENTION

FATIGUE CRACKS AND DELAMINATION (continued)

n. Lug geometry at attachment of hub to mast provides flexibility that promotes uniform sharing of the mast torque to each bolt.

CORROSION

- a. Corrosion-resistant materials are used for metal fittings and bearing housings.
- Sermetel-W coating is used on all metal components, except laminae.

FRETTING AND WEAR

- Sermetel-W coating is used on all metal components, except laminae.
- b. Dissimilar metal cone seats provide low fretting and wear against the steel mast. The relative softness of the seat in comparison to the cone will tend to limit fretting and wear to the seat rather than the cone. The seat is more easily refurbished.
- c. Components subject to fretting and wear are replaceable.

FOREIGN OBJECT OR BATTLE DAMAGE

- a. Diffuse load paths provide tolerance to random damage locations.
- b. Low notch-sensitive materials provide either crack arrest or slow crack propagation.
- c. Conservative sizing provides residual strength after damage that is sufficient for normal flight.
- d. Thick composite plates provide inherent ruggedness.
- Sacrificial glass fabric outer lamination provides scuffing and snagging protection.
- f. Upper and lower plates provide a measure of protection to the center pan plate.

COMPONENT/FAILURE MODE	EFFECT	TIME OF FAILURE	CRITICALITY
a. Cracks or delamination around center hole. b. Cracks or delamination around hinge bearing retention hole. c. Cracks at doubler edges, d. Buckling. e. Fracture. f. Ballistic damage.	a,b,c. Increased stress in surrounding plate areas may eventually precipitate secondary failure. d,e,f. Increased loads in pan plate. Partial loss of reaction to vibratory hub moment may result in diminished control of blade pitch with corresponding changes of lift and increased vibration. f. May cause notch effect on adjacent laminate material causing reduction of fatigue performance.	a,b,c,e,f. All. d. Autorotative flareout or high-g maneuver.	a,b,c,d. Minor e. Major or Critical f. Minor, Major or Critical
a. Fretting. b. Corrosion. c. Crack or fracture. d. Ballistic damage.	a,b. Negligible. c,d. May precipitate secondary failure by increased fretting of steel liner with eventual failure of liner and plate material. Change in preload; increase in vibratory stress of upper plate.	a,b,c,d. All.	a,b,c,d. Minor
UPPER PLATE RETAINING RING			
a. Corrosion.b. Loosening of bolts.c. Crack or fracture.d. Ballistic damage.	 a. Negligible. b,c,d. May allow vertical motion of cone seat resulting in change of radial stress on upper plate. 	a,b,c,d. All.	a. Minor b,c,d. Minor or Major
PAN PLATE a. Cracks around attachment bolt holes. b. Cracks around damper bolt. c. Cracks or delamination around hinge bearing retention holes.	 a,b,c,d. Increased stress in surrounding plate areas. May eventually precipitate secondary failures of bolts and plate. e,f. Increased loads on upper and lower plate. Partial loss of reaction to vibratory 	a,b,c,d,e,f. All.	a,b,c,d. Minor e. Major or Critical f. Minor, Major or Critical
d. Cracks at doubler edges.e. Fracture.f. Ballistic damage.	hub moment may result in dimin ished control of blade pitch with corresponding changes of lift and increased vibration. f. May cause notch effect on adjacent laminate material causing reduction in fatigue		
PAN PLATE CONE SEAT	performance.		
a. Fretting.	a,b. Negligible.	a,b,c,d. All.	a,b. Minor

COMPONENT/FAILURE MODE	EFFECT	TIME OF FAILURE	CRITICALITY
PAN PLATE CONE SEAT (continued)		
b. Corrosion.c. Cracks or fracture.d. Ballistic damage.	c,d. May precipitate secondary failure by increased fretting or eventual fracture of the titanium center fitting in pan plate. Change in plate preload causing increase of vibratory stress of pan plate.		e,d. Minor or Major
LOWER PLATE			
 Cracks or delamination around attachment bolt holes. 	a,b,c,d. Increased stress in surrounding plate areas may eventually precipitate secon- dary failures.	a,b,c,d. All. e. Startup, shut- down or taxiing.	a,b,c,d. Minor e. Major or Critical
b. Cracks or delamination around damper bolt holes.	e. If buckling results in loss of blade support over large plate area, will result in	f,g. All.	f. Major or Critical
c. Cracks or delamination around hinge bearing retention holes.	uncontrolled blade droop and loss of blade.		g. Minor, Major or Critical
d. Cr. cks at doubler edges.	f,g. Increased loads on pan and upper plates. If outer plate section separated, could lead		
e. Buckling.	to loss of blade.		
f. Fracture. g. Ballistic damage.	g. May cause notch effect on adjacent laminate material causing reduction of fatigue performance.		
STEEL LINER AT UPPER AND PAN F	PLATE CENTER HOLE		1000 100 100
a. Corrosion.	a,b. Negligible. May precipitate secondary failures.	a,b,c,d. All.	a,b. Minor
b. Fretting.c. Fracture.d. Ballistic damage.	c,d. May cause notch effect on adjacent laminate material. Reduction of fatigue perfor- mance.	e segment	e,d. Minor or Major
BUSHING AT DAMPER BOLT LOWER F	TATE		
a. Corrosion.	a,b. Negligible. May make	a,b,c,d. All.	a,b. Minor
b. Fretting.	bolt removal difficult. May precipitate secondary failure.		e,d. Minor or Major
c. Fracture.	c,d. May cause notch effect on adjacent laminate material.		
d. Ballistic damage.	Reduction of fatigue perfor- mance.		
LOWER WEDGE BLOCK FOR DAMPER I	OOLT		
a. Corrosion.	a,b. Negligible.	a,b,c,d. All.	a,b. Minor
b. Fretting.	c,d. May allow bushing to move with respect to pan plate	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	c,d. Minor
c. Fracture.	causing wear at hole. May		
d. Ballistic damage.	failure.		

COMPONENT/FAILURE MODE	EFFECT	TIME OF FAILURE	CRITICALITY
UPPER WEDGE BLOCK FOR DAMPER	BOLT		
a. Corrosion.	a,b. Negligible.	a,b,c,d,e. All.	a,b,e. Minor
b. Fretting.	c,d. May cause notch effect in pan plate reducing fatigue		c,d. Minor or Major
c. Fracture.	strength.		
d. Ballistic damage.e. Loosening.	c,d,e. May prevent damper bolt removal unless hub is removed from aircraft.	61 61 - 146	
e. Loosening.	removed from afficiant.		
DAMPER BOLT NUT RETAINER	1.00		102.002.005
a. Corrosion.	a. Negligible.	a,b,c,d. All.	a,b,c,d. Minor
b. Fracture.	<pre>b,c,d. May prevent proper tightening or loosening of</pre>		
c. Loosening.	damper bolt. May require removal of hub from aircraft.		
d. Ballistic damage.			
ATTACHMENT BOLT NUT RETAINER			
a. Corrosion.	a. Negligible.	a,b,c,d. All.	a,b,c,d. Minor
b. Fracture.	b,c,d. May prevent proper tightening or loosening of	200	100 Sept. 100 Se
c. Loosening.	attachment bolts. May require disassembly of upper plate to achieve hub removal.		10000
d. Ballistic damage.	plate to achieve hub removal.		Williams a
BUSHING FOR DAMPER BOLT PAN	PLATE		
a. Corrosion.	a,b. Negligible.	a,b,c,d. All.	a,b,c,d. Minor
b. Fretting.	c,d. May permit upper wedge block to separate and become	Al sea	Assessment of the second
c. Fracture.	loose part which impedes re- moval and prevents reinstal-		
d. Ballistic damage.	lation of damper bolt. May require removal of hub.		As Total Co.
COLLAR FOR BEARING HOUSING I	N LOWER PLATE		1.431.131.51.14
a. Corrosion.	a,b. Negligible.	a,b,c,d. All	a,b. Minor
b. Fretting.	e,d. Elimination of clampup of lower plate may increase		c,d. Minor or Major
c. Fracture.	potential for interlaminar splitting or micro-buckling.		
d. Ballistic damage.			
BEARING HOUSING LOWER PLATE			
a. Corrosion.	a,b. Negligible.	a,b,c,d. All.	a. Minor
b. Fretting.	 May precipitate eventual fracture. 		b. Minor or Major
c. Fracture.	c.d. Possible loss of lubrica-		c.d. Major or
d. Ballistic damage.	tion or contamination of lub- rication may precipitate bearing failure. May cause increased stresses at lower		Critical

COMPONENT/FAILURE MODE	EFFECT	TIME OF FAILURE	CRITICALITY
COLLAR FOR BEARING HOUSING	IN UPPER PLATE		
a. Corrosion.	a,b. Negligible.	a,b,c,d. All.	a,b. Minor
b. Fretting.	c,d. Elimination of clampup of upper and pan plates may		c,d. Minor or
c. Fracture.	increase potential for inter- laminar splitting or micro-		, and ot
d. Ballistic damage.	buckling.		
BEARING HOUSING AT UPPER PI	ATE		
a. Corrosion.	a. Negligible.	a.b. All.	a. Minor
b. Fretting.	b. May precipitate eventual fracture.	c,d. All.	b. Minor or Major
c. Fracture.	c.d. Possible loss of lubrica-		e,d. Major or
d. Ballistic damage.	tion or contamination of lub- rication may precipitate bearing failure. May cause	50.00	Critical
	increased stresses at upper hinge retention hole.		
ATTACHMENT BOLT AT HUB			
a. Corrosion.	a,b. Negligible.	a,b,c,d,e. All.	a,b. Minor
b. Fretting.	c,d,e. May lead to cracking of fitting in pan plate and bolt		c,d,e. Major of
c. Loosening.	fractures.	des and	
d. Fracture.	Salata Salat		
e. Pallistic damage.	The second second second second		
ATTACHMENT BOLT AT DAMPER			
a. Corrosion.	a,b. Negligible.	a,b,c,d. All.	a,b,c,d. Minor
b. Fretting.	c,d. Reduction of margin of safety against ground reson-		a transfer a
c. Fracture.	ance. After swing of approx- imately 6°, the loose end of	on the books of	a statistical and a
d. Ballistic damage.	damper will be restrained by the adjacent damper and bot-		Stance Lite

INHERENT FAILURE RATE PREDICTIONS

Inherent modes of failure for a rotor hub are basically of two types:

- Stress- or fatigue-generated failures, such as cracks and bond separations.
- 2. Environment-generated failure, such as corrosion.

Stress- or fatigue-generated failures would be critical and deadly events in a conventional metal rotor hub. In practice, they are effectively precluded from occurrence by the establishment of a retirement life. The retirement life is determined by probability of occurrence calculations which use as input laboratory-determined S-N curves, measured flight loads, and assumed usages (mission profiles and times). A typical theoretical failure rate allowed at the retirement life is .0005. The actual failure rate is generally even lower because conservative approximations are used in the theoretical calculations. The retirement life for the present titanium hub is an adequate 21,675 hours (Reference 6). The composite plate rotor hub was designed to provide strengths equal to or greater than the present hub. Thus, for the same service usage, the retirement life for the CPH is greater than 21,675 hours.

The traditional basis for predicting rate of inherent failure for environment-generated failures is the statistical experience of other helicopters of similar design used under similar conditions. No such data are available for the composite plate hub because it is quite unlike existing hubs in materials and configuration. However, it is anticipated that failure rates from corrosion will be of minor importance because of the provisions that have been made to protect the metallic components and the inherent noncorrodibility of the composite materials.

^{6.} AVIATION UNIT AND INTERMEDIATE MAINTENANCE MANUAL: ARMY MODEL CH-54B HELICOPTER, TM 55-1520-217-23-2-1, -2, -3, Department of the Army, Washington, D. C., 1977.

APPENDIX B

MAINTAINABILITY REPORT

INTRODUCTION

Maintainability was a major consideration throughout the design cycle. Maintainability goals were established that provided persistent pressure upon the design. Their effect is evident in the overall simplicity of the design and particularly in the simplicity of the procedures for installation and removal. The final design achieved all major maintainability objectives.

This report presents an analysis of the composite plate hub for the CH-54B helicopter to assess the maintainability characteristics of the design, and to make initial estimates of maintenance requirements. In addition, the details of the maintenance plan, installation/removal procedures, and maintainability features are also provided.

MAINTAINABILITY REQUIREMENTS

The maintainability requirements were stated as the following qualitative goals:

- Minimize maintenance manhours per flight-hour for both scheduled maintenance and unscheduled corrective maintenance
- Minimize the probability for maintenance being required above field level
- 3. Ensure simplicity of installation and removal
- Ensure positive removal procedures even in the presence of extensive corrosion and/or fretting
- Ensure installation and removal requires no disassembly of hub components
- 6. Ensure ease of inspection of critical parts
- 7. Provide maximum accessibility to mounting hardware
- 8. Ensure that all components subject to corrosion, fretting, or wear can be refurbished or replaced
- Ensure that maintenance manpower requirements will be compatible with the maintenance program for the CH-54B
- 10. Ensure skill levels required for field repairs are compatible with the training of Army personnel
- 11. Estimate requirements for special tools.

MAINTAINABILITY DESIGN FEATURES

A summary of the maintainability features of the pan plate hub is given in Table B-1.

MAINTAINABILITY PREDICTION

The data in Table B-2 are organized by major components of the hub and by type of failure or damage necessitating maintenance or repair. The maintainability prediction identifies possible maintenance actions and estimated manhours for corrective action. Each action requires an initial decision either to scrap or to repair the hub on or off the aircraft. Technical manuals would provide guidelines and procedures to assess the reliability, safety, and economics of the contemplated repair.

For each damage or failure event scheduled for repair, a brief statement of the repair task is entered in the column headed Maintenance Action. The appropriate maintenance level is assigned and the decision is made to effect the repair on the aircraft or to remove the hub for repair.

The next step in the analysis assigns a repair time to each task. The repair-time allocation reflects the initial engineering estimate of the elapsed time required for the typical Army mechanic to perform specified types of repairs on the hub. It encompasses the time required to isolate and correct the fault, including any adhesive cure time, and to replace the aircraft in an operational readiness status. It attempts to reflect expected performance under field maintenance conditions and the resources available to the field mechanic. It is an estimate of productive maintenance time, and does not account for supply delays, administrative time, etc.

Hub replacement time of 26.7 hours was estimated based on the differences in installation between the composite plate hub and the present CH-54B titanium hub. Reference 7 lists the Main Rotor Head Assembly replacement time as 28.7 hours, apportioned by task element as follows: Fault Isolate, 1.1; Remove/Install Other Components, 19.6; Remove/Install Component, 4.7; Drain/Lube Service, .8; Adjust/Align, etc., 1.0; Inspect/Test, 1.5. The simplification of pan hub-to-shaft attachment and the elimination of complicated iterative torquing procedures reduced the remove and install component time from 4.7 to 2.7 hours. Since the pan hub design will not significantly affect any of the other task elements, the total replacement time is, therefore, reduced by 2 hours from 28.7 to 26.7 hours.

^{7.} Cook, T. N., Young, R. L., and Starses, F. E., MAINTAINABILITY ANALY-SIS OF MAJOR HELICOPTER COMPONENTS, Kaman Aerospace Corporation; USAAMRDL Technical Report 73-43, Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, August 1973, AD 769941.

TABLE B-1. MAINTAINABILITY DESIGN FEATURES

MAINTENANCE ACTION/METHOD OF ACHIEVING GOOD MAINTAINABILITY

DAILY, INTERMEDIATE, AND PERIODIC INSPECTION (PMD, PMI, PMP)

- Extensive use of composite materials reduces corrosion inspection efforts.
- b. Slow crack propagation rate and diffuse load paths reduce consequences of undiscovered cracks in incipient stages.
- Large plate surfaces provide ease of inspection for cracks, dents, nicks, and security.
- d. Simplified hub-to-shaft attachment increases inspectability of critical parts.

BLEND NICKS AND SCRATCHES IN METAL COMPONENTS

 Exposed metal parts have high fracture toughness and low notch sensitivity.

BLEND NICKS AND SCRATCHES IN COMPOSITE COMPONENTS

- a. All exterior surfaces are covered by woven ply of E-glass providing protective layer that becomes sacrificial material in blending process.
- b. Superficial nicks and scratches can be ignored since outer glass layer is sacrificial.
- c. Repair of most nicks and scratches can be performed on the aircraft.

REFURBISH FRETTING-CORROSION

- a. Use of composite material reduces overall corrosion potential.
- b. Sermetel-W coating on metal components, except laminae.
- c. All components susceptible to corrosion are replaceable at DS, GS, or depot level.
- d. The geometry of the pan plate provides openings at its perimeter. Any moisture accumulation in the interior of the hub will be expelled by centrifugal force through these openings. The openings also permit inspection of the interior of the hub without disassembly.

TABLE B-1. MAINTAINABILITY DESIGN FEATURES (continued)

MAINTENANCE ACTION/METHOD OF ACHIEVING GOOD MAINTAINABILITY

TIGHTEN ATTACHMENT HARDWARE

- a. Self-locking upper cone seat retention bolts.
- b. Lock nuts and nut retainers on hub attachment bolts and damper bolts.
- c. Self-locking nuts on rotating scissors attachment lug bolts.

HUB REPLACEMENT

- a. Upper and lower cone seats are cut at angles that normally will allow self-release and ease of removal. In the event of abnormal seizing due to corrosion or fretting, positive and sure removal is assured by provisions to apply hydraulic pressure and mechanical jacking to force separation.
- b. All mounting bolts are easily accessible.
- c. Removal and replacement requires only common hand tools.
- d. Simplified hub attachment requires only 24 standard fasteners; 12 to secure the upper cone seat retaining ring and 12 to secure hub to mast flange.
- e. Hub is replaceable as complete assembly and does not require any buildup or disassembly at direct support level.
- f. Nut retainers on hub attachment bolts and damper bolts assist bolt extraction.
- g. Potential for shaft damage is reduced by eliminating external threads on shaft.
- h. Hub replacement procedure does not require torque stabilization procedures.

HUB PLATE REPAIR/REPLACEMENT

- a. Anticipated high level of repairability of ballistic damage.
- b. Hub plates are individually replaceable.

REMOVAL/REPLACEMENT OF LEAD-LAG HINGE ASSEMBLY

- a. Simplified hub removal procedures.
- b. Disassembly of lower plate requires no special tools or procedures.

T	ABI	E B	-2. MAINTAINAB	ILI	TY	PRE	DIC	TIC	N			_
			lengue don per		MAIN				M	NHOURS		
HUB ELEMENT/ DAMAGE DESCRIPTION	INHERENT	MAINTENANCE ACTION		ORG.	D.S. 6 G.S.	DEPOT	ON AIRCRAFT	OFF AIRCRAFT	REMOVE AND INSTALL HUB ASSEMBLY	REPAIR	TOTAL	NUMBER OF MEN
UPPER PLATE	_											-
a. Cracks or Delamination	×		Replace Hub Replace Plate		×	×	×	×	26.7	30.0	56.7	2
b. Buckling or Fracture	×		Replace Hub Replace Plate		×	×	×	×	26.7	30.0	56.7	2
c. Ballistic Damage (Critical)		×	Replace Hub Replace Plate		x	×	×		26.7	30.0	56.7	2
d. Ballistic Damage (Marginal)		×	Replace Hub Repair Plate		x		×		26.7	3.0	29.7	2
e. Ballistic Damage (Noncritical)		×	Replace Hub Repair Plate		x		×		26.7	1.0	27.7	2
UPPER PLATE CONE SEAT												
a. Fretting			Polish Cone Surface	×				×	Note 1	.3	.3	1
b. Corrosion	×		Treat/Refinish	x				×	Note 1	.5	.5	1
c. Crack or Fracture	×		Replace Hub Replace Come		*	×	×	×	26.7	2.5	29.2	1
d. Ballistic Damage		×	Replace Hub Replace Come		×		×		26.7	2.5	29.2	1
UPPEP PLATE RETAINING												
a. Corrosion	×		Treat/Refinish	×						.6	.6	1
b. Loosening of Bolts	×		Tighten or Replace Bolts	×			×			.4	.4	1
c. Crack or Fracture	×		Replace Ring		×		×			.4	.4	1
d. Ballistic Damage		x	Replace Ring		*		×			.4	.4	1
PAN PLATE												
a. Cracks or Delaminations	×		Replace Hub Replace Plate		×	×	×	*	26.7	30.0	56.7	2
b. Fracture	×		Replace Hub Replace Plate		×	×	×	*	26.7	30.0	56.7	2
c. Battle Damage (Critical)		×	Replace Hub Replace Plate		*	×	×	×	26.7	30.0	56.7	1
d. Battle Damage (Marginal)		×	Replace Hub Repair Plate		×	×	×	×	26.7	30.0	56.7	1
e. Battle Damage (Noncritical)		×	Replace Hub Repair Plate		×		×	×	26.7	1.0	27.7	1
PAN PLATE CONE SEAT												
A. Fretting	x		Polish Cone Surface	×				×	Note 1	.3	.3	1
b. Corrosion	*		Treat/Refinish	×			1		Note 1	.5	.5	1
c. Crack or Fracture	×		Replace Hub Replace Cone		*	×		*	26.7	32.0	58.7	1
d. Ballistic Damage		×	Replace Hub Replace Cone		×	×		×	26.7	32.0	58.7	1

					MAIN LEVE				м	ANHOURS		
HUB ELEMENT/ DAMAGE DESCRIPTION	INHERENT	INDUCED	MAINTENANCE ACTION		D.S. & G.S.	DEPOT	ON AIRCRAFT	OFF AIRCRAFT	REMOVE AND INSTALL HUB ASSEMBLY	REPAIR	TOTAL	NUMBER OF YOU
LOWER PLATE									26.7			T.
a. Crack or Delamination	×		Replace Hub Replace Plate		×	×	×	×	20.7	5.0	31.7	1
b. Buckling or Fracture	×		Replace Hub Replace Plate		x	×	×	x	26.7	5.0	31.7	
c. Ballistic Damage (Critical)		×	Replace Hub Replace Plate		×	×	×	×	26.7	5.0	31.7	
d. Ballistic Damage (Marginal)		x	Replace Hub Repair Plate		×		×	×	26.7	3.0	29.7	1
e. Ballistic Damage (Noncritical		x	Repair Plate		×		x			1.0	1.0	
STEEL LINER												
a. All Damage	x	x	Replace Liner	1929		×		×	Note 2	.3	.3	
BUSHING												
a. Corrosion	x		Treat/Refinish	x				x	Note 1	.3	.3	
b. Fretting	×		Polish	x				x	Note 1	.5	.5	
c. Fracture	×		Replace Bushing			x		×	Note 1	5.5	5.5	
d. Ballistic Damage		x	Replace Bushing			×		x	Note 4	2.0	2.0	
LOWER WEDGE BLOCK												
a. Corresion	×		Treat/Refinish	x			×			.3	.3	
b. Fretting	×		Replace Wedge Block			x		x	Note 3	Note 3		
c. Fracture	x		Replace Hub Replace Wedge Block		×	x	×	×	26.7	5.5	32.2	
d. Ballistic Damage		×	Replace Hub Replace Wedge Block		×	×	×	2	26.7	5.5	32.2	8
UPPER WEDGE BLOCK										Application of		
a. Corrosion	×		Treat/Refinish	×				×	Note 1	.3	.3	
b. Fretting	x		Replace Wedge Block			x			Note 3			
c. Fracture	×		Replace Hub Replace Wedge Block		×	×	×		26.7	5.5	32.2	
d. Ballistic Damage		×	Replace Hub Replace Wedge Block			×		×	Note 4	2.0		
e. Loosening	×		Replace Hub Replace Securing Bushing		×				26.7	5.5	32.2	
DAMPER BOLT NUT		1										
a. Corresion	x		Replace Retainer		×			x	Note 1	.3		
b. Fracture	×		Replace Hub		×		x		26.7	.3	30.0	
c. Loosening	×		Replace Retainer Replace Hub		×		×	*	26.7	.3	30.0	
d. Ballistic Damage			Replace Retainer Replace Retainer	108	×	100.00			Note 4	.3	.3	

					MAIN LEVE				MANHOURS				
HUB ELEMENT/ DAMAGE DESCRIPTION		INDUCED	MAINTENANCE ACTION		D.S. & G.S.	DEPOT	ON AIRCRAFT	OFF AIRCRAFT	REMOVE AND INSTALL HUB ASSEMBLY	REPAIR	TOTAL	NUMBER OF NEW	
ATTACHMENT BOLT NUT RETAINER								T					
a. Corrosion	x		Replace Retainer	×				×	Note 1	.3	.3		
b. Fracture	x		Replace Hub Replace Retainer		×		×		27.7	.3	28.0		
c. Loosening	x		Replace Hub Replace Retainer		x		×		26.7	.3	27.0		
d. Ballistic Damage		×	Replace Hub Replace Retainer		x	7 -5	×	×	Note 4	.3	.3		
BUSHING FOR DAMPER BOLT PAN PLATE													
a. Corrosion	x	119	Treat/Refinish	×		1 - 9		x	Note 1	.3	.3		
b. Fretting	x		Polish	×				x	Note 1	.5	.5		
c. Fracture	x		Replace Bushing			×		x	Note 1	5.5	5.5		
d. Ballistic Damage		×	Replace Bushing			×		×	Note 4	2.0	2.0		
COLLAR FOR BEARING HOUSING, LOWER PLATE													
a. Corrosion	x		Treat/Refinish	×		x				.5	.5	1	
b. Fretting	x		Polish	×		×			Note 2	.5	.5		
c. Fracture	×		Replace Hub Replace Collar		x				26.7	5.2	31.9		
d. Ballistic Damage		×	Replace Hub Replace Collar		*	×			26.7	5.2	31.9		
BEARING HOUSING, LOWER PLATE													
a. Corresion	x		Treat/Refinish	×			×			.6	Marie P.		
b. Fretting	x		Replace Housing		14			×	Note 3				
c. Practure	×		Replace Hub Replace Housing		×		×	×	26.7	7.0	33.7		
d. Ballistic Damage		×	Replace Hub Replace Housing		×		=		26.7	7.0	33.7		
COLLAR FOR BEARING HOUSING, UPPER PLATE													
a. Corresion	×		Treat/Refinish				×			.3	.3		
b. Fretting	×		Polish	×					Note 2				
c. Fracture	x		Replace Collar		×		×			.5	.5		
d. Ballistic Damage		*	Replace Collar		×		×			.5	.5		
EARING HOUSING UPPER					1					100			
a. Corrosion	×		Treat/Refinish	×			×						
b. Fretting	×		Replace Housing										

					MAIN				MANHOURS				
HUB ELEMENT/ DAMAGE DESCRIPTION	INHERENT		MAINTENANCE ACTION		D.S. & G.S.	DEPOT	ON AIRCRAFT	OFF AIRCRAFT	REMOVE AND INSTALL HUB ASSEMBLY	REPAIR	TOTAL	The sound of	
BEARING HOUSING UPPER PLATE (continued)													
c. Fracture	×		Replace Hub Replace Housing		×	×	x	×	26.7	7.5	34.2		
d. Ballistic Damage		×	Replace Hub Replace Housing		x	×	×	×	26.7	7.5	34.2		
ATTACHMENT BOLT, HUB			588 936 200							11.0			
a. Corrosion	x		Replace Bolt		x		x			.5	.5		
b. Fretting	=		Replace Bolt		x		x		Note 3				
c. Fracture	×		Replace Bolt (Extraction Req'd)		×		×			2.0	2.0		
d. Ballistic Damage		x	Replace Bolt (Extraction Req'd)		×		x			2.0	2.0		
DAMPER BOLT			8.978 Table										
a. Corrosion	=		Replace Bolt				x		1 616	.3	.3		
b. Fretting	×	107	Replace Bolt		x		x		Note 3				
c. Fracture	×		Replace Bolt (Extraction Req'd)		x		x			2.0	2.0		
d. Bellistic Damage		x	Replace Bolt (Extraction Req'd)		x		x		Lucia I	2.0	2.0		

NOTE 1 Discovered when hub has been removed for other reasons.

NOTE 2 Discovered only after hub removal and plate/parts disassembly.

NOTE 3 Discovered only after parts disassembly. Parts are normally replaced after disassembly. No isolated maintenance time.

NOTE 4 Location of part precludes isolated ballistic damage. Maintenance time, therefore, does not include time to disassemble hub plates.

REPAIRABILITY CONSIDERATIONS

The repairability of minor handling damage and ballistic damage to the composite plate hub was evaluated as part of the maintainability analysis. The evaluation process considered the results of the structural analysis performed on the plates, the anticipated stress concentration factors resulting from ballistic penetration, and damage potential of various areas of each plate, along with Kaman's experience in repair techniques and composite structures. Opinions regarding the anticipated repairability are listed below. Additional structural testing of the composite hub with the proposed repairs would be required to demonstrate their adequacy.

- Minor blending of surface nicks and scratches can be performed on the aircraft.
- The surface of each plate can be divided into noncritical, marginal, and critical areas. Identification of such areas on the hub will be provided as a maintenance aid in determining repair disposition or in making repair/scrap decisions.
- Once damage has been isolated to marginal or noncritical areas, measurement criteria (depth of gouge, hole diameter, hole shape, etc.) would determine repairability and repair technique.
- 4. Small ballistic holes in noncritical areas can be repaired by a simple plug with upper and lower covering patches. This repair technique would be considered nonstructural. It is anticipated that this repair could be performed at DS or GS levels.
- Larger damaged areas can be repaired by a double- or singlescarf patching process using low-temperature curing materials. This structural repair would be considered a depot-level activity.
- 6. Hub manufacturing techniques and tolerance control will allow individual replacement of plates at the depot level. It is anticipated that the lower plate will be replaceable as an assembly, including the lower cartridge housings.
- 7. All metal parts, including bushings, wedge blocks, cone seats, liners, and housings, will be replaceable in each plate.
- Skill levels required for all repairs will be consistent with existing maintenance structure.

APPENDIX C

STRUCTURAL ANALYSIS

SUMMARY

The structural analysis is summarized by Table C-1, which presents minimum margins of safety for the components of the composite hub.

TABLE C-1. MINIMUM MARGINS OF	SAFETY	
Location/Type of Failure	M.S. Fatigue,	Ultimate
UPPER PLATE		
Steel Laminae at Lead-Lag Pin	+ .10 ,	+ .95
Steel Laminae at Center Hole	+ .10 , + .81 ,	+ 1.07
Buckling	N/A ,	+ .24
LOWER PLATE		
Steel Laminae at Lead-Lag Pin	+ 4.50 .	+ .39
Titanium Lugs on Center Fitting	High ,	+ .31
Buckling	+ 4.50 , High , N/A ,	+ .14
PAN PLATE		
Steel Laminae at Lead-Lag Pin	+ .67 ,	+ .14
Composite Interlaminar at Lead-Lag Pin	+ .67 , + 1.69 , + .07 ,	+ 1.44
Adhesive Interlaminar at Lead-Lag Pin	+ .07 ,	+ .22
Adhesive at Scarf Joint	+ 1.01 ,	+ 1.12
ROTOR SHAFT AND ATTACHMENTS		
Shaft, Bending	+ .12 ,	+ 2.58
Main Attachment Bolts	High ,	+ .91
Lug, Torque	High ,	+ 2.11
Lug, Bending	+ 3.06 ,	High
Bolts at Top of Shaft	High ,	+ .54

INTRODUCTION

This appendix presents:

- 1. Material properties and allowable stresses
- 2. Design conditions
- 3. Blade loads for design conditions
- 4. Internal loads in the form of free-body diagrams of the lead-lag pins, which indicate the loads upon the bearings and the plates (upper, pan, and lower).
- 5. Stress analyses for the element specimen
- 6. Stress analyses for a typical joint
- 7. Stress analyses for each plate using loads from 4, above
- 8. Stress analyses for the rotor shaft
- 9. Stiffness analyses to show dynamic compatibility.

Throughout this appendix, the units of length and force are inches and kips, respectively.

MATERIAL PROPERTIES

This section lists the material properties used in the structural analyses. The following notation is used:

Symbols:

 ε = normal strain

Y = shear strain

 μ = Poisson's ratio, isotropic material

v = Poisson's ratio, anisotropic material

 σ = normal stress

 τ = shear stress

E = modulus of elasticity

F = strength

G = shear modulus

Subscripts and Superscripts:

cu = compression, ultimate

e = endurance limit, fatigue

o = denotation for strains at the middle surface of laminate

se = shear, endurance

su = shear, ultimate

tu = tension, ultimate

x, y = reference axes for laminate

1, 2 = reference axes for individual lamina

Double subscripts used with moduli, Poisson's ratios, stresses, and strains correspond to conventional engineering usage.

The following material properties were used in the structural analyses:

Ti-6A1-4V, Bars and Forgings, Annealed (Reference 8)

 $E = 16200 \text{ ksi} \quad \mu = .31$

G = 6200 ksi

 $F_{tu} = 130 \text{ ksi}$

^{8.} MILITARY STANDARDIZATION HANDBOOK, METALLIC MATERIALS AND ELEMENTS FOR AEROSPACE VEHICLE STRUCTURES, MIL-HDBK-5B, U. S. Government Printing Office, Washington, D. C., 1 September 1971.

2. 4340 Steel, All Wrought Forms, Quenched and Tempered (Reference 8)

E = 2900 ksi

 $\mu = .32$

G = 1100 ksi

 $F_{ti} = 150 \text{ ksi}$

 $F_{\rho} = \pm 25 \text{ ksi*}$

*A fatigue allowable working stress permitted at Kaman for a shot-peened component of simple geometry.

3. 17-7 PH CRES, Sheet, Condition RH950 (Reference 9)

E = 2900 ksi

 $\mu = .32$

G = 1100 ksi

 $F_{til} = 210 \text{ ksi}$

 $F_e = \pm 25 \text{ ksi*}$

*A fatigue allowable working stress at the inside edge of a hole in a steel-lamina-reinforced joint for use with the fatigue design loads. Figure 23 shows the fatigue design load to be 14 percent higher than the endurance limit of the present titanium hub. Tests of element specimens established \pm 22.0 ksi as the mean endurance limit for the laminae. Therefore, an allowable working stress of 1.14 x 22.0 = \pm 25.0 ksi provides a strength that matches the present titanium hub.

4. Thornel 300/Narmco 5209, Carbon Fiber Prepreg System, Inplane Properties

 $E_{11} = 19400 \text{ ksi}$

 $v_{12} = .25$

 $E_{22} = 1380 \text{ ksi}$

 $G_{12} = 750 \text{ ksi}$

 $F_{11}^{tu} = 196 \text{ ksi}$ $\varepsilon_{11}^{tu} = .01010$

 $F_{11}^{cu} = -200 \text{ ksi}$ $\varepsilon_{11}^{cu} = -.01031$

 $F_{22}^{tu} = 9.0 \text{ ksi}$ $\varepsilon_{22}^{tu} = .00652$

 $F_{22}^{cu} = -34.0 \text{ ksi}$ $\varepsilon_{22}^{cu} = -.02464$

 $F_{12}^{su} = \pm 16.4 \text{ ksi} \quad \gamma_{12}^{su} = \pm .02187$

9. AEROSPACE STRUCTURAL METALS HANDBOOK, Mechanical Properties Data Center, Traverse City, Michigan; AFML Technical Report 65-115, Volume 2, U. S. Air Force Materials Laboratory, Wright-Patterson AFB, Ohio, 1975.

The above properties are representative of those presented in the literature for the 5208 or 5209 systems. The stiffness and strength properties of the Thornel 300/Narmco 5208 and Thornel 300/Narmco 5209 are similar at ordinary temperatures. The two resin systems differ at high temperatures where the 5208 system has better retention of its strength and stiffness. The data shown here were taken from References 10 and 11. They correspond to laminate specimens which had the following physical characteristics:

Fiber volume 58.5 percent
Void content .85 percent
Density .0557 lb/inch
Thickness/ply .00578 inch

In the composite hub, the carbon was used in a symmetrical laminate with equal amounts of reinforcement in the $0/\pm$ 60 degree orientations. A typical plate had 30 plies of carbon, two plies of style 120 glass cloth, and one layer of .006-inch adhesive. In the bottom plate, which had the best resin control, this combination averaged .1858 inch in total thickness. Thus, the as-made carbon thickness was $(.1858-2 \times .004-.006)/30 = .00573 \text{ inch/ply.}$

The properties for the $0/\pm$ 60 laminate were calculated using plane stress, orthotropic material, lamination theory, and the maximum strain failure criteria. The calculations followed the composite theory presented in References 12 and 13. The Kaman computer program CMAB (Composite Materials Analysis Version B) was used to make the calculations. Table C-2 shows

^{10.} Greszczuk, L. B., and Chao, H., INVESTIGATION OF BRITTLE FRACTURES IN GRAPHITE-EPOXY COMPOSITES SUBJECTED TO IMPACT, McDonnell-Douglas Astronautics Company; USAAMRDL Technical Report 75-15, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, May 1975, AD A012269.

^{11.} NARMCO RIGIDITE 5209 CARBON FIBER PREPREG SYSTEMS, Narmco Materials, Inc., Celanese Corporation, Costa Mesa, California, undated.

Ashton, J. E., Halpin, J. C., and Petit, P. H., PRIMER ON COMPOSITE MATERIALS: ANALYSIS, Stamford, Connecticut, Technomic Publishing Co., Inc., 1969.

PLASTICS FOR AEROSPACE VEHICLES, PART 1, REINFORCED PLASTICS, MIL-HDBK-17A, U. S. Government Printing Office, Washington, D. C., January 1971.

																						0.0		13.63	99.00	13.03
G NU12				and a second of the second of					00 00		33E-05	536-03		+1 E-03		44E-03	21E-01.			70 361		.O KKY		00-66	6.62	1
						15.4-51	0.3	-20		1	7.7					9.4	-	010	02			KY= 0.		0.001499	0.0	-C+100.00-
MODULI 400-			-			0.0	-1. 2845	-			0.0	1.104E-	-1.213E-	0.0	1.10	0.0						0.0		0.000895	-0.000399	0.00000
12						0.0					0.0	3-1 706-04	5.4136-03	0.0		0.0	1 5705-01	2.037E 02	8.455E 01	•			STRAINS	0.000032	0.001327	0.000000
12 -16.40							03	-20			0	844E-04	17 CE-04	0		0	5.2F-04			9	1	. 1		1:1	0.0	-
XIAL 22 9.00						-		-4-		-							1	'	-		7630	1				
1655, UNIA 22 22 -34.0	6	\$2	133-0-3333	360.		-2.494E 03	0.0	0.0			-2.808E-05	0.0	0.0	1. 253E-03		-3.992E-05	1.327E-04	0.0	1.5216-01	Ä	7497	N		GB:	1	
DWASLE STR 11 196.0		25 25	.3333-0.33	.09		1			0.2					83E-05			-				STRAINED	R-NX=10.				-
ALL 11 11 15 -200.0			ICKNESS-0	GLE	80	8.2	0.0	0.0	0.0			2.0	0.0				0.0	0.0	0.0	MINATE PR	K.S UNRE	HAV I DR-FO		-		-
	DWASLE STRESS, UNIAXIAL 12 12 12 12 HDDULI 11 22 22 12 12 11 196.0 -34.0 -34.0 -16.40 -16.40 -19400	STRESS, UNIAXIAL 22 22 12 12 E11 E22 0 34.0 9.00 - 16.40 16.40 19400. 1380.7	STRESS, UNIAXIAL 22 22 12 12 12 E11 0 34.0 9.00-16.40 16.40 19400. 1380.7	STRESS, UNIAXIAL 22	X1AL MODULI E22 22 12 E11 E22 9.00 16.40 19.00 1380.7	X141 22 12 12 E11 9.00 - 16.40 - 15.40 - 19400 1380.	X141 22 12 12 12 12 13 9.00 -16.40 -16.40 -194001380.	X141 22 12 12 12 12 1380- 16.40 16.40 19400. 1380- 138	X141 22 12 12 12 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	22 12 12 E11 MDULI E22 9.00 — 16.40 — 19400. — 1380. —	ALLDMANLE STRESS, UNIAXIAL 1	ALLOMASLE STRESS, UNIAXIAL ALLOMASLE STRESS, UNIAXIAL 5 -200.0 196.0 34.0 9.00 16.40 15.40 19400. 1380. MINA 1 2 3 TERIAL 25 25 25 ICKNESS-0.3333-0.3333-0.3333 GLE 60. 060. 0.0 0.0 0.0 0.0 0.0 B 2.89E 03 0.0 0.0 0.0 0.0 0.0 0.0 C. 494E 03 8.288E 03 0.0 0.0 0.0 0.0 0.0 C. 494E 03 8.288E 03 0.0 0.0 0.0 0.0 0.0 C. 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C. 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C. 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ALLDWASLE STRESS, UNIAXIAL 1 1 2 12 12 12 E11 E12 5 -200.0 196.0 34.0 9.00 - 16.40 16.40 19400. 1380. MINA 1 2 3 TERIAL 25 25 25 ICKNESS-0.3333-0.3333-0.3333 GLE 60. 060. B 288E-03 -2.494E 03 0.0 0.0 0.0 0.0 -1.2 C.5994E 03 8.288E 03 0.0 0.0 0.0 0.0 0.0 B 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.5994E 03 0.0 0.0 0.0 0.0 0.0 0.0 C.5994E 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T.534E-04 -2.808E-05 0.0 0.0 0.0 0.0 0.0 0.0 T.534E-04 -2.808E-05 0.0 0.0 0.0 0.0 0.0 0.0 T.575E 02 -1.284E 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T.575E 02 -1.284E 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 T.575E 02 -1.284E 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ALLDWASLE STRESS, UNIAXIAL 1 1 2 2 2 12 12 E11 E12 E12 E1	ALLDMASLE STRESS, UNIAXIAL 1	ALLDMASLE STRESS, UNIAXIAL 11	ALLDMASLE STRESS, UNIAXIAL 1 1	ALICHABLE STRESS, UNIAXIAL 1	ALLDWASLE STRESS, UNIAXIAL 1	ALLDWASLE STRESS, UNIAXIAL 11 11 12 22 22 12 12 11 11 12 13 10-40-16.40-16.40-19.001380	ALIDWASLE STRESS, UNIAXIAL 1	ALIDMANE STRESS, UNIAXIAL 1 1 2 2 22 12 5 -200.0 196.0 -34.0 9.00 -16.40 16.40 19400. 1380.	TERIAL 25 22 12 12 12 11 100ULI 22 G NULLZ 5 -200.0 196.0 -34.0 9.00 -16.40 16.40 19.00 1380.7 750.0 0.250 MINA 1 2 3 3 -6.333 -6.66	ALL DMASLE STRESS, UNIAXIAL 1. 11. 11. 11. 12. 2. 12. 12. 12. 12. 12	ALIDMANE STRESS, UNIXIAL 1	ALLDMANE STRESS, UNIXIAL 1

a typical first page of output which includes the laminate constitutive equations as defined in Reference 13. Since these calculations were carried out for a laminate with a thickness of 1 inch, the matrix [A] that relates the force resultants to the mid-plane strains is also the stress-strain relationship for the laminate and is a required input to the finite-element analyses presented herein.

$$\begin{bmatrix} \sigma_{\mathbf{x}\mathbf{x}} \\ \sigma_{\mathbf{y}\mathbf{y}} \\ \tau_{\mathbf{x}\mathbf{y}} \end{bmatrix} = \begin{bmatrix} 8288. & 2494. & 0. \\ 2494. & 8288. & 0. \\ 0. & 0. & 2897. \end{bmatrix} \begin{bmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \sigma_{\mathbf{x}\mathbf{y}} \end{bmatrix}$$

The program CMAB calculates margins of safety for each ply for specific loadings. It also includes a provision for systematically varying the loading so that plots showing limiting strength can be developed. Figures 6 and C-1 are such plots for the ultimate strength of graphite-epoxy with 0 + 60 orientations.

Figure C-1. Typical ultimate strength for graphite-epoxy, $0/\pm$ 60, with τ_{xy} as ordinate.

The form of presentation in Figures 6 and C-l is unusual and perhaps original. The following general comments provide a geometrical interpretation of what is being done when the strength contours are plotted as they are herein.

Strength is a function of three stresses, and thus, requires special procedures for its graphical presentation in two dimensions. It is commonly presented as a set of contours that correspond to the intersection of parallel planes with the strength surface. In this report, the contours correspond to the intersection of a cone of constant stress ratio with the limiting strength surface. Figure C-2 compares the two methods.

Figure C-2. Comparison of constant stress contours and constant stress-ratio contours.

With a plot of constant stress-ratio contours, it is easy to indicate the margin of safety directly for a given state of stress with radial line segments. In a conventional plot, it requires an iteration to find the end points for the segments and thus, is less convenient. Figure C-3 shows the principle involved.

Figure C-3. Presentation of margin of safety on strength plot.

Point B corresponds to the state of stress in the three-dimensional space of $\sigma_{\rm XX}$, $\sigma_{\rm yy}$, and $\tau_{\rm XY}$. If the loads were proportionally increased to produce failure at point A, the path of stresses would follow the ray OB out to point A. The margin of safety graphically is $({\rm OA/OB})$ – 1. It is also $({\rm OA'/OB'})$ – 1 in the projection onto the two-dimensional plane containing the $\sigma_{\rm XX}$ and $\sigma_{\rm yy}$ axes. By plotting such line segments onto the two-dimensional plot for several near-critical points in the structure under consideration, it is possible to provide a picture and an aid to understanding of the state of criticality and the regions of the strength surface that were involved.

5. Thornel 300/Narmco 5209, Carbon Fiber Prepreg System, Transverse Properties

The finite-element analysis of a typical joint required as input the stress-strain relationship for an element with the axes and fiber orientations shown in Figure C-4.

Figure C-4. Typical finite element used in joint analysis to determine bond stresses.

 E_{x} = 1600 ksi (estimated as 1.16 x E_{22} for uniaxial material)

 $E_v = 7540$ ksi (from CMAB analysis, Table C-2)

 $G_{xy} = 670 \text{ ksi (estimated)}$

 $v_{xy} = .25$ (estimated)

 $v_{xy} = v_{yx} E_x/E_y = .053$

The elements of the [C] matrix are:

$$C_{11} = E_{x}/(1 - v_{xy} v_{yx})$$

$$C_{22} = E_{y}/(1 - v_{xy} v_{yx})$$

$$C_{12} = v_{xy} E_{x}/(1 - v_{xy} v_{yx})$$

$$C_{33} = G_{xy}$$

$$C_{13} = C_{23} = 0$$

Thus, the required stress-strain relationship is:

$$\begin{bmatrix} \sigma_{\mathbf{x}\mathbf{x}} \\ \sigma_{\mathbf{y}\mathbf{y}} \\ \tau_{\mathbf{x}\mathbf{y}} \end{bmatrix} = \begin{bmatrix} 1620. & 86. & 0. \\ 86. & 7641. & 0. \\ 0. & 0. & 670. \end{bmatrix} \begin{bmatrix} \varepsilon_{\mathbf{x}}^{\ o} \\ \varepsilon_{\mathbf{y}}^{\ o} \\ \gamma_{\mathbf{x}\mathbf{y}}^{\ o} \end{bmatrix}$$

6. Composite Materials, Interlaminar Shear Strength

The following data were established by reading and extrapolating curves presented in Figures 3, 13, 15, and 16 of Reference 14:

	BORON- EPOXY	GRAPHITE- EPOXY	S-GLASS EPOXY
F _{su} , ksi	11.5	11.21	10.26
k	x .51	x .49	x .60
peak stress, ksi	5.717	5.635	6.156
Fse	3.14 ± 2.57	3.10 ± 2.53	3.39 <u>+</u> 2.77

where

$$k = \frac{\text{peak stress to cause failure in } 10^8 \text{ cycles with } R = .1}{\text{static ultimate stress}}$$

From these data, it is concluded that the fatigue strength at 10^8 cycles for interlaminar shear is approximately the same for boron-epoxy, graphite-epoxy, or S-glass-epoxy. Calculations of margins of safety herein are based upon the following allowables:

$$F_{su} = 10.0 \text{ ksi}$$

 $F_{se} = 3.0 \pm 2.5 \text{ ksi}$

7. PL 717 B, Adhesive

G = 16.9 ksi (Reference 15) $\mu = .35 \text{ (Assumed)}$

E = 45.6 ksi (calculated from G and μ)

 $F_{su} = 5.0 \text{ ksi*}$

 $F_{se} = \pm 1.0 \text{ ksi*}$

*An ultimate average shear stress and a fatigue allowable working stress permitted at Kaman for short overlaps, about 1/2 inch. The appropriate allowables for use in finite-element analyses should be higher, but how much higher is a controversial and open question at this time that depends upon the detail of the finite-element model used for the stress analysis.

^{14.} Pipes, R. B., INTERLAMINR SHEAR FATIGUE CHARACTERISTICS OF FIBER-REINFORCED COMPOSITE MATERIALS, presented at the Third Conference on Composite Materials: Testing and Design; ASTM STP 546, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1973.

Nagle, R., PERSONAL LETTER To Mr. Mark White, B. F. Goodrich General Products Company, Akron, Ohio, 30 January 1973.

F_{su, scarf} = 4.0 ksi* F_{se, scarf} = + .8 ksi*

*Allowables for average shear stress in a balanced-stiffness scarf joint.

DESIGN CONDITIONS

References 1 and 2 define three static limit load conditions and one fatigue condition. For the pan hub, a fifth condition was added which corresponds to a symmetrical static droop. The conditions are summarized in Table C-3.

		Static Limit Conditions								
	TW7F1	TW7F2	Load Burst	Static Droop	Fatigue Design					
	Symmetrical Dive-Pullout Power-On	Symmetrical Dive-Pullout Autorotation	Engine Restart	Worst Bounce While Towing	Prorated Design Loads					
Head Moment, inkip	1314.	1500.	0.	0.	800.					
C.F., kip	99.	110.	0.	0.	83.					
Shaft Torque, inkip	2272.	0.	2480.	0.	2075.					
Thrust (Mast), inkip	85.8	85.8	0.	- 9.39 ⁽³⁾	38.0(1					
Damper Force, kip	± 3.82 ⁽²⁾	± 3.82 ⁽²⁾	0.	0.	+ 3.82					
Flapping Moment, inkip	0.	0.	0.	245.4(3)	0.					

NOTES FOR TABLE C-3

1. The thrust loading for the fatigue design condition was not stated in References 1 or 2. It was calculated using the equation derived in Figure C-5.

.. Thrust (mast) = N_Z (W_{Gross} - W_{Rotor head total})

Figure C-5. Free-body diagram of rotor assembly.

Reference 16 provides the following weights:

Blade Assembly	2.1713 kips
Hinge and Retention	1.3447 kips
Hub	.4539 kip
Rotor Head Total	3.9699 kips

For the fatigue design condition, gross weight = 42.0 kips, from Reference 2; $N_z = 1.0$. Thus:

Thrust (Mast) = 1.0 (42.0 - 4.0) = 38.0 kips

 The damper moments are stated in References 1 and 2 as ± 36 in.kips, limit. The damper arm is 9.412 inches. Thus,

Damper Force = $\pm 36/9.412 = \pm 3.825$ kips

3. Static droop produces a moment about the flapping axis and compression load in the lower plate. The loads and moments were computed using:

Vertical load factor = 2.67 limit

Blade c.g. at 5/8 radius = 270.0 inches

Retention c.g. = 36.9 inches

Then:

ITEM	WEIGHT x	ARM	-	MOMENT
Blade	.3619 x	(270 - 24)	=	89.03
Hinge and Retention	.2241 x	(36.9 - 24)	=	2.89
1-g static	.5860			91.92
x 2.67 = LIMIT	1.5650			245.4 inkips

Thrust (Mast) = $-1.5650 \times 6 = -9.39 \text{ kips (LIMIT)}$

^{16.} SUMMARY WEIGHT STATEMENT, ACTUAL, SER-64316, Sikorsky Aircraft Division, United Aircraft Corporation, Stratford, Connecticut, 1970.

BLADE LOADS

Introduction

Each arm of the present titanium hub acts independently as a cantilevered beam, and thus, only peak loads were considered in its analysis. The composite plate hub, however, is structurally redundant with multiple load paths, and its analysis requires consideration of the total pattern of loads that act simultaneously. Such patterns of loads are developed here for the design conditions. First, out-of-plane loads (those parallel to the axis of the rotor shaft) applied by the blades to the lead-lag pins are found. Then damper forces and centrifugal forces are added. The following symbols and approximations are used:

 ψ = azimuth angle

 β = flap angle of the root of the blade. Use: $\beta = \beta_0 + \beta_1 \cos \psi$, where β_0 and β_1 are constants to be determined for each design condition.

e = offset distance to flapping pin

P = total force at the root of a blade, including inertial and aerodynamic components. The magnitude of P is approximately equal to the centrifugal force of the blade in its unflapped position. The direction of P is approximately along the blade root, at flapping angle β .

T = rotor thrust

M = rotor head moment

Out-of-Plane Loads (Vertical Loads)

Consider a six-bladed rotor with blade No. 1 aligned with ψ = 0, as shown in Figure C-6.

In this position, the thrust and head moments (about Y axis) are:

$$T = [\sin (\beta_0 + \beta_1) + 2 \sin (\beta_0 + .5 \beta_1) + 2 \sin (\beta_0 - .5 \beta_1) + \sin (\beta_0 - \beta_1)]P$$

$$M = [\sin (\beta_0 + \beta_1) + \sin (\beta_0 + .5 \beta_1) - \sin (\beta_0 - .5 \beta_1) - \sin (\beta_0 - \beta_1)]Pe$$

These equations were solved for β_0 and β_1 , using e = 24 inches, and the values for P, T, and M corresponding to each design condition. The vertical force at each blade (i) was then calculated, using:

$$P_{zi} = P \sin (\beta_0 + \beta_1 \cos \psi_i)$$

The results are summarized in Table C-4.

Figure C-6. Geometry for blade loads.

	De	grees	Vertical Force at Blade Root, kips						
Condition	β ₀	β ₁	P _{Z1}	P _{Z2}	P _{Z3}	P _{Z4}	P _{Z5}	P _{Z6}	
TW7F1 (LIMIT)	8.375	10.719	32.38	23.51	5.21	- 4.05	5.21	23.5	
TW7F2 (LIMIT)	7.540	11.000	34.98	24.82	3.92	- 6.64	3.92	24.8	
FATIGUE	4.392	7.710	17.40	11.91	.78	- 4.80	.78	11.9	

Patterns of Load for Head Moment + Thrust + C.F. + Damper Loads

In the preceding section, the vertical components of load produced by thrust and head moment were calculated at each lead-lag pin. Here, the load pattern is completed for vertical and radial loads by adding the components from centrifugal force and damper loads. In this summation:

- 1. The centrifugal force is assumed to be radial and unreduced by flapping
- The damper is inclined 9.13° to the plane of the hub as shown in Figure C-7.

Figure C-7. Damper Inclination.

Thus,

 P_7 damper, peak = $\pm 3.82 \sin 9.13^{\circ} = \pm .61 \text{ kip (LIMIT)}$

 P_{R} damper, peak = \pm 3.82 cos 9.13° = \pm 3.77 kips (LIMIT)

3. F_{Zi} = Vertical force at lead-lag pin, i.

 $F_{Zi} = P_{Zi}$ (from thrust and head moment) + P_{Z} damper.

4. F_{Ri} = Radial force at lead-lag pin, i.

 $F_{Ri} = C.F. + P_{R}$ damper.

Figures C-8, C-9, and C-10 show the resulting patterns of forces acting upon the hub. The views correspond to looking downward upon the hub. The individual components that make up each summation are shown to clarify the origin of the final loads. The signs on the damper loads correspond to the lead-lag motions of the blade.

Forward

$$\begin{aligned} \mathbf{F}_{\mathbf{R}3} &= (99 - .5 \times 3.77)(1.5) = 145.67 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{Z}3} &= (23.51 - .5 \times .61)(1.5) = 34.81 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{R}4} &= (99 - 3.77)(1.5) = 142.85 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{Z}4} &= (32.38 - .61)(1.5) = 47.66 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{Z}5} &= 34.81 \text{ (Ult)} \end{aligned} \qquad \begin{aligned} \mathbf{F}_{\mathbf{R}2} &= (99 + .5 \times 3.77)(1.5) = 151.33 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{Z}2} &= (5.21 + .5 \times .61)(1.5) = 8.27 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{R}1} &= (99 + 3.77)(1.5) = 154.16 \text{ (Ult)} \\ \mathbf{F}_{\mathbf{Z}1} &= (-4.05 + .61)(1.5) = -5.16 \text{ (Ult)} \end{aligned}$$

Figure C-8. Radial and vertical forces in kips applied to hub during condition TW7F1.

Forward

$$\begin{aligned} \mathbf{F}_{R3} &= (110 - .5 \times 3.77)(1.5) = 162.17 \text{ (Ult)} \\ \mathbf{F}_{Z3} &= (24.82 - .5 \times .61)(1.5) = 36.77 \text{ (Ult)} \\ \mathbf{F}_{R4} &= (110 - 3.77)(1.5) = 159.35 \text{ (Ult)} \\ \mathbf{F}_{Z4} &= (34.98 - .61)(1.5) = 51.56 \text{ (Ult)} \end{aligned}$$

Figure C-9. Radial and vertical forces in kips applied to hub during condition TW7F2.

$$F_{R3} = 83 - .5 \times 3.77 = 81.11$$

$$F_{Z3} = .78 - .5 \times .61 = .48$$

$$F_{Z3} = .78 - .5 \times .61 = .48$$

$$F_{Z4} = .83 - 3.77 = .79.23$$

$$F_{R4} = .83 - 3.77 = .79.23$$

$$F_{R4} = .4.80 - .61 = .5.41$$

$$F_{R5} = .81.11$$

$$F_{R5} = .48$$

$$F_{R5} = .48$$

$$F_{R6} = .4.88$$

Figure C-10. Radial and vertical forces in kips applied to hub during fatigue condition.

BEARING LOADS

The loads on the bearings were calculated using statics and the free-body diagram (FBD) of Figure C-11. The lead-lag pin is statically determinate. It was considered to be simply supported at the lower plate and at point 0, which is the intersection of the plane of the upper plate and the local "plane" of the pan plate. Point 0 is akin to the vertex of a truss being stiffly supported against translational deflections by membrane forces in the upper and cone plates. Little resistance to rotational deflections exists at either support because the plates are thin with relatively low bending stiffness.

Figure C-11. Free-body diagram of lead-lag pin.

Using FBD A,

$$\Sigma M_0 = 0$$
 $-6.85 F_R + 12.05 P_5 = 0$ $P_5 = .5685 F_R$
 $\Sigma F_X = 0$ $F_{X0} = F_R - P_5$ $F_{X0} = .4315 F_R$
 $\Sigma F_Z = 0$ $F_{Z0} = F_Z$

The force at point 0 is the resultant of bearing forces P_1 , P_2 , P_3 , and P_4 . Only zero and (+) values are acceptable for the bearing forces because the bearings are only lightly preloaded. Free-body diagram B shows the geometrical relationships for the forces acting upon the upper end of the leadagpin. It is shown herein that for the design conditions, only P_1 , P_3 and P_4 act. P_2 is zero. Using FBD B and P_2 = 0,

$$\begin{split} \Sigma M_{B} &= 0, \quad -2.97 \; (\cos 14^{\circ}) \; P_{1} + 2.60 \\ &\times .4315 \; F_{R} = 0 \end{split} \qquad P_{1} = .3893 \; F_{R} \\ \Sigma F_{X} &= 0, \quad -(\cos 18^{\circ}) \; P_{3} + (\cos 18^{\circ}) \; P_{4} \\ &-(\cos 14^{\circ}) \; P_{1} + .4315 \; F_{R} = 0 \end{split}$$

$$-P_{3} + P_{4} = -.0565 \; F_{R}$$

$$\Sigma F_{Z} &= 0, \quad -(\sin 18^{\circ}) \; P_{3} - (\sin 18^{\circ}) \; P_{4} \\ &+(\sin 14^{\circ}) \; P_{1} + F_{Z} = 0 \end{split}$$

$$P_{3} + P_{4} = .3048 \; F_{R} + 3.2361 \; F_{Z}$$

$$P_3 = .1806 F_R + 1.6181 F_Z$$

 $P_4 = .1242 F_R + 1.6181 F_Z$

These equations for the bearing loads $(P_1, P_2, P_3, and P_4)$ were used with the radial and vertical forces (F_R, F_Z) presented in Figures C-8, C-9, and C-10 to prepare the summary of bearing loads presented in Table C-5. This table shows that throughout the rotation of the rotor the bearing loads are moderate and appropriate for the applied blade loadings being supported. There is no evidence of high induced or secondary loads that could pose a threat to the life or performance of the bearings. The bearings are consistently loaded and do not go through zero load. They should perform well and conventionally.

TABLE C-5. SUMMARY OF BEARING LOADS												
Condition	Position	Forces	Bearing Loads, kips									
	ψ, deg	FR	Fz	P ₁	P ₂	P ₃	P ₄	P ₅				
TW7F1 (Ultimate)	0	154.16	- 5.16	60.01	0	19.49	10.80	87.64				
	<u>+</u> 60	151.33	8.27	58.91	0	40.71	32.18	86.03				
	<u>+</u> 120	145.67	34.81	56.71	0	82.63	74.42	82.81				
	180	142.85	47.66	55.61	0	102.92	94.86	81.21				
TW7F2 (Ultimate)	0	170.66	- 9.05	66.44	0	16.18	6.55	97.02				
	<u>+</u> 60	167.83	6.34	65.34	0	40.57	31.10	95.41				
	<u>+</u> 120	162.17	36.77	63.13	0	88.79	79.64	92.20				
	180	159.35	51.56	62.03	0	112.21	103.22	90.59				
FATIGUE	0	86.77	18.01	33.78	0	44.81	39.92	49.33				
	<u>+</u> 60	84.88	12.22	33.04	0	35.10	30.31	48.25				
	<u>+</u> 120	81.11	.48	31.58	0	15.43	10.85	46.11				
	180	79.23	- 5.41	30.84	0	5.56	1.09	45.04				

JOINT LOADS

The joint loads were calculated using the FBD and equations shown in Figures C-12 and C-13. The results are summarized in Table C-6. These loads were used for the structural analyses of the hub plates in following sections.

U = force upon upper plate lug

P = force upon pan plate lug

L = force upon lower plate lug

$$P = F_Z/\sin 29^\circ$$
,
 $U = .4315 F_R - F_Z/\tan 29^\circ$,

$$P = 2.063 F_Z$$

 $U = .4315 R_F - 1.804 F_Z$

Figure C-12. Free-body diagram of hub plates at lead-lag pin for flight conditions.

$$\Sigma M_0 = 0$$
, $L = -368.1/12.05 = -30.55$ (ult) $\Sigma F_X = 0$, $U + P$ (cos 29°) + $L = 0$, $U = 4.85$ (cos 29°) + $30.55 = 34.79$ (ult)

Figure C-13. Free-body diagram of hub plates at lead-lag for static droop condition.

	TABLE	C-6. SUMM	IARY OF JOI	INT LOADS		
	Position	Forces	, kips	Joi	nt Loads, l	cips
Condition	ψ, deg	FR	Fz	P	U	L
TW7F1	0	154.16	- 5.16	- 10.65	75.83	87.64
(Ultimate)	<u>+</u> 60	151.33	8.27	17.06	50.38	86.03
	+ 120	145.67	34.81	71.81	.06	82.81
	180	142.85	47.66	98.32	- 24.34	81.21
TW7F2	0	170.66	- 9.05	- 18.67	89.97	97.02
(Ultimate)	+ 60	167.83	6.34	13.08	60.98	95.41
	+ 120	162.17	36.77	75.86	3.65	92.20
	180	159.35	51.56	106.36	- 24.25	90.59
FATIGUE	0	86.77	18.01	37.15	4.95	49.33
	+ 60	84.88	12.22	25.21	14.58	48.25
	+ 120	81.11	.48	.99	34.13	46.11
	180	79.23	- 5.41	- 11.16	43.95	45.04
STATIC DROOP (Ultimate)	ALL	0	- 2.35	- 4.85	34.79	- 30.55

ELEMENT SPECIMEN

The element specimen was analyzed using the two-dimensional plane-stress, finite-element model shown in Figure C-14. Since the specimen was doubly symmetric, only one-quarter was analyzed. The model contains 181 nodes and 239 elements. The elements performed the following roles:

- Elements 1 13 represented the pin through which loads were applied to the specimen. In the analysis, 10 kips were applied at node 1, corresponding to 20 kips at each end of the whole specimen.
- 2. Elements 14 39 represented a liner between the pin and the hole in the specimen. In the final design, liners were not used, and elements 14 39 were stiffly attached to the pin and became, in effect, part of the pin. In an early stage of the design, the use of a press-fitted interference liner was considered. It was concluded from analyses that, for the geometry considered, which had relatively thin liners, the reduction of vibratory stress was small and not worth the cost and complexity that liners would add. This judgment was based upon analyses using the finite-element model and did not include the beneficial effects in fatigue that might result from less relative motion at the hole because of the liners. Such benefits (which can be established only by testing) may make the use of liners advantageous in other applications.
- 3. Elements 40 53 radially connected the pin to the liner. These elements were made stiff and thus, the liner became an extension of the pin.
- 4. Elements 54 67 radially connected the liner to the specimen. Elements 61 67 were assigned very low modulus to permit the natural gap to occur at the unloaded side of the hole. The use of radial connections assumed a frictionless contact between the pin liner and the hole.
- 5. Elements 68 151 and 217 239 represented the composite material of the specimen.
- 6. Elements 152 216 represented the steel laminae that reinforced the hole. These laminae overlayed the composite elements. Each steel element had a thickness that was the sum of the thicknesses of the laminae that existed at that position.

^{17.} Mayerjak, R. J., FATIGUE STRENGTH OF LUGS CONTAINING LINERS, VOLUME II - COMPUTER PROGRAM USED FOR ANALYSIS, USAAVLABS Technical Report 70-49B, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, November 1970, AD 880290.

The analyses were performed using the Kaman finite-element program MA2C. This program is very similar to MA2B, which is documented in Reference 17. MA2C differs only by the addition of element types 4 and 5, which are composite triangles and quadrilaterals. The elastic properties for composite elements are defined in the input by a matrix [C], which relates stress to strain:

 $[\sigma] = [C][\varepsilon]$

The matrix [C] can be found from the matrix [A] of conventional lamination theory as described in Reference 12:

[C] = [A]/thickness

The calculation of matrix [A] is presented in this appendix in the section on materials. In general, the [C] matrix corresponds to local element coordinates (defined in Reference 17, and explained further herein) and thus, potentially, could represent a calculation chore if arbitrary fiber orientations were used for each element. Fortunately, in the composite plate hub, only one [C] matrix is required. The quasi-isotropic 0 ± 60 degree laminate is used throughout. For such a laminate, the [C] matrix is the same for any orientation of local axes.

Table C-7 presents the computer analysis. The finite-element structure has dimensions that correspond to the prototype and thus are exactly double those of the test specimen. The analysis is performed for a load of 10 kips per quarter, corresponding to 20 kips at each end of a prototype-sized structure. In the hand calculations that follow, the stresses are scaled to the test load that was applied to the element specimen.

The computer output includes the state of stress at the center of each element in the local coordinates of the element. These local coordinates are established by the order used to define the element. The local y coordinate lies along a line containing the first two node points stated for the element. In general, the elements have been identified so that the STRESS XX corresponds to a radial direction and STRESS YY corresponds to a tangential direction relative to the hole. The stresses taken from the computer output were extrapolated by hand to the edge of the boundaries of the hole and the perimeter of the lug to determine the conditions at the failure origins observed during the tests. The metal laminae stresses so determined are interpretable directly. The composite stresses are given an additional rotation to transform them to the natural axes of the laminate with x oriented along the 0-degree fiber direction.

The bond-line stresses and the stresses in the tips of the laminae are found using a finite-element analysis of a typical joint

Figure C-14. Finite-element model for element specimen.

x COOX 0										
7:	COOR DINATES AND	AND SUPPORTS								
-=	1		3		2	•	1	80	6	10
	0.0	0.0	0.8310	1.5800	2-1750	2.3950	2.5560	2.6550	2.6880	2.6550
	2.5560	2.1750	1.5800	0.8310	S 0.0	0.0	0.8310	1.5800	2.1750	
7:	00000	0669.7	2.0880	2.6550	2.5560	2.1750	1.5800	0.8310	0.0	0.0
; ;	1.6480	0 848	0007.7	006400	0000	069/ • 7	2.8040	2.7690	2.6670	2.2680
	20000	20000			0.3050	1.7180		2.6020	2.7770	2.8840
	2. 4770	2.6720	2 4537	20630	3 2000	0706.0	2 0.0	5 0.0	0.9270	1.7630
;;	2000	2000	0020	00000	0000	0.000	05682	2.4270	1.7630	0.9273
		2.5400	0016.0	0020		0961.7	0496.7	3.1010	3-1400	3.1010
	3 2630	3 3790	2 4 200	2 2700	2 26.30	2000	0750-1	2.0100		
	3.5230	20000	200	3.3780	3.6230	7.1610	7.0100	1.0560	0.0	0.0
101	1.5700	00000	3.5100	0000-4	00/104	4. 2000	4.1200	3.9600	. 1000	2.9900
	00000	0061.	6055-4	00250	4.0730	3.2930		1.1700	0.0	4.7300
171	0065.4	4.9100	4.4200	3.5700		1.3700	0.0	5.2400	5.3500	5.3100
131	4. 7800	3.8600	2.6800	1.3800	0.0	6.1400	6.1000	2.4900	4.4400	3.0900
14:	1.5900	0.0	8. 7800	8.1633	7.4733	6.0800	4.2300	2.1800	0.0	11.9300
151	11.5000	10.7300		6.1000	3.1500	0.0	13.2700	12.7500	11.9730	9.8100
161	6.8000	3.5300	0.0	13.2700	15.0000	15.0000	15.0000	15.0000	15.0000	13.2700
171		13.2700	13.2700	11.9700	11.9703	11.9700	9.8100	9.6100	6.8000	3.5300
181	0.0									
Y COOR DINATE	S AND	SUPPORTS				ALIBERT APROXIMATION				
		7	2	4	2000	9.	0.00	200		10
-:	0.0	2.6880	2.5560	2.1750	1.5800	1.2200	0.8310	0.4500	0.0	-0.4200
::	0169.0	-1.5800	067 1-2-	0966-7-	0989.7-	00000	0966.7	2001130	1.5800	1.2200
11	2 4670	2075	2000	2230	0.6910	0000	001100	0067-0-	25.000	0.000
17	2 3400	200707	1.0460	3 6 30 6	0.00.0	0645	0.0	2350	0,000	0850-1-
;;	0007.7-	0100.7	04000	0076.7	20110	0.282.0	00100	0000	02060	0.65.0
7.7	1.7430	1.3420	0.9920	0077	0795-7-	0111.5-	002600	3.0000	2 4330	0024-7
17	-3.0000	3-1430	2.986.3	2.5430	1.8440	1-4256	0.5230	0104	200	00000
	-0.9700	-1.8460	-2-5400	-2.0860	2070-	3.4230	3.2530	2.747.0	00.0	0144
	1.0570	0.5350	0-0	-0.5350	-1-0570	-2-0100	-2.7670	-3.2530	-3 4200	4 4000
101	4.2000	3.5900	3.0400	2.0200	1.2600	0-6500	0040	-0.4500	1 2400	-2 2100
	-2.9000	2.6600	1.3600	-0.0700	-1-4000	-2-4700	-3.2500	-3-7000	-3.8503	2 3400
121	1.4000	-0.1400	-1-5800	-2.7500	-3-5800	0000-4-	-4.2500	2.0500	1.4400	0016
131	-1-7730	-3.0300	-3-9400	-4-4800	-4-6500	1.5200	-0-3500	-2-1400	-3.5900	4.6300
141	-5.2600	-5.4700	0.0	-1.5400	-3.2900	-5.1900	-6.6300	-7.4800	-7.7600	-1-8600
151	-3.4800	-5.1700	-7.8200	-9.8900	-11.1200	-11.5300	-2.5500	-4-1300	-5.8500	-8.7700
191	-11.0800	-12.4400		0000-1	-3.5500	-5.8500	-8-7700	-11.0800	-16.0000 \$	-5.8500
	7100	-11.0800	-16.0000 \$	-8.7700	-11-0800	-16.0000 s	-11-0800	-16.0000 S	-16.0000 8	-16.0000
181	-16.0003 \$									
ŝ	CA SE									
* >	10.00	00								
		3								

TEN S																																												
TEN 4																																												
TEN 3																																												
TEN 2																																												
TEN 1		•	•	•	•						•	•	•	•	•	•	•	•	•	•		•	•	•	•	• •	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
AL P HA	0950000000	0.0000050	000000000000000000000000000000000000000	09000000	0900000	0.00000560	0.0000560	000000000000000000000000000000000000000	0.00000560	0.00000560	0.00000000	0.00000000	0.300000000	0.00000000	0.00000000	0.00000000	0.0000000	0.0000000	09000000	0.0000000000000000000000000000000000000	0.30000560	0.00000000	0950000000	0.000000	0.0000000	0.00000560	0,00000000	0.00000000	0,00000000	0.00000000	090000000	090000000	0.00000560	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000560	0.00000000	0.00000000	0.00000000	0.0000000000000000000000000000000000000	00000000
THICK-AREA	0.5000	0.5000	0.000	0.000	0000	0.5000		0.5000		0 2000		0.5000	0.5000	0. 5000	0.5000		00000	00000	0.000	2000	0.5000	0.5000	0.5000	0.5000	0000	0.5000	0.5000	0.5000	0.5000	0.5000	0.000	2000	0.5000	0.5000	0.5000	0.2300	0.4600	0.4600	0.3450	0.2300	0.2300	0.2300	0.2300	006300
84	0.3180	0.3180	0.3180	23.80	00150	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0816-0	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3183	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.5180	0.3180	2010
w	29 000	29000	20000	20000	20000	29030-	2000	29000-	29 000	29 000	29 000 .	29000.	29000.	29 000	29 000	20000	20000	50000	2000	20000	29000	29000.	29 000	29000	29.000	29000	29 000.	29 000	29 99 9.	29 300	20000	29000	29000-	29 000	29 000	29000-	29000.	25000	29 000.	29033	29000.	29000.	29000	-
TYPE	7	2	,,		,,			. ~		2	2	2	3	9		•	٠.	•	•	٠.		3	3		•		3		9		•	, ,		3	3	_	-	_	٠,	_,	٠.	٦.		
	•	0	0		,	•				0	•	0	31	35	33	*	20	000	200	9 0	0	7	75	7:	4	-	8 4	64	20	3	22	2	25	96	57	0	•	•	0	0	0	> 0	•	
œ	-	-	٠.	٠.					-	-	-	-	30	31	32	60		22	3.0	3.8	36	40	7	45	: :	. 9	4.1	48	64	20	22	23	2	55	96	0	0	0	0	0	0	> <	•	
0	•	•	•	0 1			:	2:	::	13	*	15	16	11	8 :	2	2:	17	75	3,5	32	92	27	88	2 =	35	33	34	35	36	2 0	3 6	9	11	45	30	31	35	33	*	32	200		
۵	7	•	•	•			, 0	. 0	::	12	13	*	11	-	5	07	;;	77	27	2 2	26	23	28	52		3 2	34	32	36	3	9 %		7	45	;	~	•	*	· ·	0 1	- •		10	
ELEM	-			• •					10	=	12	13	*	57	9:	::		25	:	32	73	54	52	92	38	2 62	30	31	35	33	3.5	36	37	38	39	0,	+	45	+3	::	•	: :		

~ 0		50	TYPE	29000.	PR 0-3180	THICK-AREA	AL PHA 0-00000560	TEN 1	TEM 2	TEN 3	TEN 4	TEN S
				29000.	0.3180	0.4600	0.0000000					
		0	-	29000	0,3180	0.4600	0.00000560	•	••			
			٠.	26000	0.3180	0.2300	095000000	•	•			
				29000-	0.3180	•	0.00000560	• •				
				29 000.	0.3180	0.3450	0-3000000	•				
0		0		29000	0.3180	0.2300	0.00000000	•	.0			
•		•	-	29000-	0.3180	0.2300	095000000	0	0.			
0		0	1	29000.	0.3180	0.2300	0.0000050	•	.0			
0		0	-	:	0.3180	0.2300	0.00000560	•	.0			
0			-	1.	0.3180	0.2300	0-00000560	•				
				-	0.3180	0.345.0	0.0000540					
•				:.	00100	0000	0000000	•	•			
			•	:	0.3180	0.400	0.0000000					
•		0	_	:	0.3180	0.4600	0.00000000	•				
•		0	_	:	0.3180		0.00000000	•				
•		•	-		0.3180	0.2300	0-00000000	0	.0			
		13		.0	0.0	0.3420	0.0	0	•			
		14		0	0-0	0.3420	0-0					
		36				•						
				:		25.50		•	•			
:		0:		•		0. 3450	2.0	•	•			
				:	200	0.2450		•	:			
-			•	•	0.0	07 96 0	0.0	•				
82		2	•	•	0.0	0.3420	0.0	•	•			
61		80	•	•	0.0	0.3420	0.0	•				
80		81	2	•	0.0	0.3420	0.0	•	•			
81		82	0	•	0.0	0.3420	0.0	•	.0			
82		63	2	•	0.0	0.3420	0.0	•	.0			
83		84	2	.0	0.0	0.3420	0.0	•	•			
84		85	5	0	0-0	0-3420	0-0		0			
8		87				0 34 20						
200					200	0.5450		•	•			
-		88	•	•	0.0	0.3420	0.0	•	•			
88		68	~	•	0.0	0.3420	0.0	•				
89		06	~		0.0	0.3420	0.0	0				
06		16	5	.0	0.0	0-3420	0.0	0	0.			
5		00				34.20						
00		03				3430		•				
7		2		:		0.3460		•				
43		*	•		0.0	0.3420	0.0	•	•			
36		66	5	•	0.0	0.3420	0.0	•				
36		96	~	•	0.0	0.3420	0.0	0	.0			
95		16	2	0	0-0	0-3420	0.0	0	0-			
						0 34.20						
		2				23.5.0		•	•			
				•	0.0	0.3420	0.0		•			
8		5	•		0.0	0.3420	0.0	•	•			
1 10		05	~	•	0.0	0.3420	0.0	•	••			
02 1		03	2		0.0	0.3420	0-0	•	•			
03 1		70	5	0	0.0	0.3420	0-0	0	0.			
100		90				0.34.20						
5 8		3		•		02450		•	•			
3		3	•	•	000	00000	200	•	:			
	ı		•	•				•				

TEN S																																																		
TEH 4																																																		
TEN 3																																																		
TEN 2																																																		
TEN 1	•	•	•	•	•	•	.0	.0	.0	6	0	.0	0.				•	:		•	•	•	0	•	•	•	•	•	•	•		•	•	•	•	•	•0	•		•	0		•	0				6		•
ALPHA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0	0-0	0-0		0.0	0.0	0.0	0.0
K-AREA		3420	3420	3450	3420	3420		3420	3420	3420	3420	3420	3420		3420	24.20	2420	000	2450	34.20	3450	3450	3420	3420	0.3420	3420	3420	3420		3420	34.20	3420	3420	3420	34.20	3420	3420	3420		0.3420	34.20	3420	3420		3420	34.20	3420	34.20		34.20
~		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
w	•				•	•		•		•			.0						•	3	•	•		•	•		•	•	•	•	•	•	•	•		•	•		•	•	•		•	•	•					6
TYPE	•	2	•	•					•				,	,						•	2	•	•	~	2	•	2	•	2	•	•	•	•	•	2	2	•	2	•	2	•	•								
~	1 08	100	110	=	0	0	•	•	•	0	0	0	0	0	116	1 : 1				177	122	123	124	125	126	121	129	130	131	135	133	134	135	•	137	138	139	140	1+1	142	143	144	146	147	148	149	1 50	151	153	1 64
																																																	152	
•	66	*	25	9	41	103	113	104	105	114	106	101	114	108	109	-	::			711	113	114	115	116	1117	118	120	121	122	123	124	125	126	128	129	130	131	132	133	134	137	138	138	139	140	141	144	145	145	144
																																																	-	
LEM	101	201	103	*01	105	106	101	108	105	110	111	112	113	*	115	1		::	211	611	120	121	122	123	124	125	126	127	123	159	130	131	132	133	134	135	136	137	139	139	240	141	142	143	144	145	146	147	148	07.

TEM S																																														
TEN 4																																														
TEM 3																																														
TEN 2																																														
TEM 1	•	•			•	•	•	•	•	•	•	•		•						•	•	0	•	•	• •		•	.0	•	•	•	•	•	•	•						•	.0		•	•	
AL PHA	0.0	0.00000.0	0.00003560	0.00000560	0.00000000	0.00000000	0.000000.0	0.00000000	0.00000000	0.00000000	0.0000000	0.0000000	09500000	04400000	0950000000	0.00000560	0.00000560	0-00000 560	0.00000560	0.00000560	0.00000000	0.00000000	0.00000000	0.000,0000	0.00000560	0.00000560	0.0000000	0.0000050	0.000000000	0.00000000	0,00000560	0.30000560	00000000	095000000	00000000	0000000	0.0000560	0.00000560	0.00000560	0.00000560	0.00000560	0.00000000	0.00000000	0.00000000	0.00000000	
THICK-AREA	0.3420	0.2960	0.2960	0.2560	0.2960	0.2960	0.2960	0962 0	0.2960	0. 29 60	0967-0	0.2960	0.2940	2000	0-2960	0.2960	0.2960	0.2960	0.2960	0.2960	0.2960	0, 2960	0.2960	0.2960	0,2960	0-2960	0.2960	0.2960	0.2960	0.2960	0.2960	0.2960	0.2960	0967-0	0 3070	00.55	0.2320	0.2320	0.2320	0.2320	0.2320	0.2320	0.2320	0.2320	0.2320	
a d	0.0	0.3180	0.3180	0.3180	0.3180	0.3180	0.3190	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	200	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.5180	0.3180	00150	0010	0.1180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	
w	•	29000	29000	29 030	29 000	29 000 0	29010.	29000	25030.	29 000.	-000 67	2000	29000	20000	29000	29.000	29000	29000	29 000	29 000.	29000.	290000	29 000	29000	29030	29 000	29 000	29033.	29 000 •	29 000.	29 000	20000	20000	20,000	20000	2000	29000	29000	29000	29000	29000.	29000-	29000.	29 000 -	29000	
TYPE	2	~ ~			3		~	2	~	~	•	٠.	. "							•	2			~ .																			~		•	
S	156	2 %	75	76	11	18	19	80	81	82	3 3		87		8	06	91	92	93	3	66	96	97	96																			0			
~	155	22	14	75	10	11	18	19	80	18	200	200	8	87	88	89	90	16	92	93	16	95	96	16	100	-							- 17		-	2 5		2012	4000	0.00			108	=	1115	1
•	1 148	5		19	9 62	6 63	49 5	69	99	19			22	72	142	3 75															m .								-	-	-		5 114	9 1	_	
•	149			62	5	-	63	*	6.	= :			13	7,	75						18 1							06 1								•	•-		-	-	-	-	=	-	-	
ELEN	151		154	155	156	151	158	1 59	9	3	01	01	2	14	167	168	165	1 70	171	172	173	174	175		176	179	180	181	182	18	13	2	100		1 8 6			15	19	194	19	196	197	19	19	

	TEN S																																							
	TEN 4																																							
	TEN 3																																							
	TEM 2																																							
	TEM 1	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	0	•	•	.0	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	
		0.0000000	0.00000560	0.00000.0	0.00000 560	0.00000560	0.30000560	0.00000560	0.00000000	0.0000000	0.00000000	0.00000000	0.000000.0	0.00000560	0.00000000	0.00000000	0.00000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	THICK-AREA	0.2320	0.2320	0.1320	0.1320	0.1320	0.1320	0.1320	0.1320	0.1320	0.0320	0.0320	0.0320	0.0320	0.0320	0.0320	0.0320	0.3420	0.3420	0.3420	0.3420	0.3420	0.3420	0.3420	0.3420	0.3420	0-3420	0.3420	0.3420	0-3450	0.3420	0.3420	0-3420	0.3420	0.3420	0.3420	0.3420	0.3420	0-3420	
	86	0.3180	0.3180	0.3180	0.3180	0.3183	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	w.	58000	29 0000	29 000.	29030.	29000.	29000.	29000.	29000	29 000	29000.	29 000.	29030.	29000.	29000.	29000-	29000.			•	•		•			•	•	.0	•	.0	.0	•	.0	•	.0	•	.0	.0	.0	•
	TVPE	•	•	•	•	3	3	3	•	3	•	3		~	3	•		•	•	~	~	~	~	4	2		•	~	•	2		•	2	~	8	~	0	~	•	
8																																			172					
																										•									168					
				-	-		-		-	_		_	-			-	-	-	_	_	-	-	-			_	-		_	-		_	-		3 169			-		
																																	232 17		11 113					

COMPOSITE ELFR	MATERIAL ALPHA 1	PROPERTIE ALPHA 2	S ALPHA 12	113	612	613	60	623	
89		0.0	0	8288.0	2494.0		8288.0	0.0	2897.0
59	0.0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	897.
10	0.0	000	0.0	8288.0	0.4647		8288.0	0.0	.168
11	0.0	000	0.0	8288.0	2494.0	0.0	8288.0	0.0	897.
7.5	0.0	0.0	0.0	8238.0	2494.0		8288.0	0.0	897.
73	0.0	000	0.0	8288.0	2494.0	0.0	œ	0.0	2897.
14	0.0	0.0	0.0	8288.0	2494.0	0.0	8 8	0.0	2897.
15	0.0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
91	0.0	0.0	0.0	8288.0	2494.0	0.0	6288.0	0.0	2897.
11	0.0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
84	0.0	0.0	0.0	8288.0	2494.0		8288.0	0.0	2897.
51	0.0	0.0	0.0	8288.0	2494.0	0.0	00	0.0	
80	0.0	0.0	0.0	8288.0	2494.0	0.0	88	0.0	897.
81	0.0	0.0	0.0	8288.0	2494.0		8288.0	0.0	897.
82	0.0	0.0	0.0	8288.0	2494.0		8288.0	0.0	897.
83	0.0	0.0	0.0	8288.0	2494.0		28	0.0	2897
**	0.0	0.0	0.0	8288.0	2494.0	0.0	828A-0	0.0	897
3.5	0.0	0-0	0.0	8288.0	2494.0	0	2000		100
94	0.0		0.0	9288	2404 0		0.0000		
				0.000	0.1010		0.0000		
				0.0000	2000		0.0070	200	
				00000	2404.0		0 0		2007
				0.0000	24.04.0		0.0070		2007
				00000	2000		0.0020		2007
11				0.8978	0.4647		0.8828	0.0	600
, ,				00000	2000		0.0070		2007
				0.8828	0.4647	200	0.8828		2891
20				0.0000	0.4647		0.8828	0.0	2891
		3		0.0000	0.4647		0.8828		. 160
200		3		0.8878	0.4647		9	0.0	7 687
			0.0	8588.0	2494.0	0.0	8588-0	0.0	68
96	0.0	3	0.0	8588.0	2464.0	0.0	00	0.0	68
	0.0	0:0	0.0	8588.0	2494.0		8	0.0	2897.
00	0.0	0	0.0	8288.0	2494.0		8588.0	0.0	2897.
10	0.0	0.0	0.0	8588.0	2494.0		4288.3	0.0	897.
20	0.0	0.0	0	8288.0	2494.0		8288.0	0.0	2897.0
03	0.0	000	0.0	8288.0	2494.0		8288.0	0.0	
*0	0.0	0.0	0.0	8288.0	2484.0	0.0	8588.0	0.0	2897.0
92	0.0	0.0	0.0	8288.0	2494.0		8588.0	0.0	
90	0.0	0.0	0.0	8288.0	2494.0		30	0.0	
20	0.0	0.0	0.0	8288.0	2494.0		9288.0	0.0	2897.
90	0.0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
50	0.0	0.0	0.0	8288.0	2494.0		8288.0	0.0	2897.
01	0.0	0.0	0.0	8288.0	2494.0		8288.0	0.0	897.
11	0.0	0.0	0.0	8288.0	2494.0		8288.0	0.0	
12		0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	897.
13		0.0	0.0	8288.0	2494.0	0.0	8288-3	0.0	897
14	100	0.0	0.0	8288.0	2494.0		8288.0	0.0	897.
1115	0.0	0.0	0.0	8288.0	2494.0	0.0	8	0.0	2897.0
91	-								-
		0.0	0.0	8288.0	2484.0		8588.0	0.0	2897.

-	-		CTCTTUTU	10		Si Ectrem (6	Courtinged	
MATERIAL ALPHA 1		s 4	=		613		623	633
0.0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
000	000		8288-0	0.464.0	0	0.8828		2897.0
	0.0	0.0	8288.0	2494.0	0.0	88	0.0	2897.
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
	0.0	0.0	8288,0	2494.0	0.0	8288.0	0.0	2897.
	000	0.0	8288.0	2494.0		8	0.0	897.
	0.0	0.0	8288,0	2494.0	0.0	8288.0	0.0	897.
	000	0.0	997	0.4652	0.0	20	0.0	991
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	897.
	000	0.0	8288.0	2494.0	0.0	88	0.0	. 168
	0.0	0.0	8588.0	2494.0	0.0	m	0.0	897.
0	0.0	0.0	8288.0	2494.0	0.0	85 38.0	0.0	897.
0	0.0	0.0	8288.0	2494.0	0.0	88	0.0	897.
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	897.
0	0.0	0.0	8288.0	2494.0	0.0	8	0.0	2897.0
	0.0	0.0	8288.0	2494.0	0.0	9	0.0	897.
	0.0	0.0	8288.0	2494.0	0.0	9288.0	0.0	2897.0
		0.0	0.8828	0.4647		0.8828		
			0.8828	2494.0		0.0000		2007
	000	200	0.0000	2494-0		0.0000		400
. 0	0.0	0.0	8288.0	2494-0	0.0	8288	0.0	897
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	897.
	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
0	0.0	0.0	8288.0	2494.0	•	8588.0	0.0	2897.
0	0:0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
0 0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897
	0	0.0	8288.0	0.4642	0.0	6.8828	0.0	2897.0
	0.0	0.0	8588.0	0.4647	0.0	9588.0	0.0	891.
			8588.0	24440	•	0.8828		2007
			0.0020	2404.0		0.0000		2697
	0.0	0.0	8288.0	2494-0		H 2 A A	0.0	807
	0.0	0.0	8288.0	2494.0	0.0	8288.0	0-0	2897
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
0	0.0	0.0	8288.0	2494.0	0.0	æ		2897.
0	0.0	0.0	8288.0	2494.0	0.0	8	0.0	2897.
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897
0	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.
0		0.0	8588.0	2404.0	0.0	8288.0	0.0	2897
0.0	0.0	0.0	8288.0	2494.0	000	8588.0	0.0	2897.0
					•			

	TABLE C-	E C-7.	FINITE-ELEMENT	LEMENT	ANALYSIS	IS OF	ELEMENT :	SPECIMEN	(continued	(pai
COMPOSIT	E MATERIAL	PROPERTIE	S							
ELEN	ALPHA 1	ALPHA		12	113	C12	C13	225	523	
233	0.0	0.0			8288.0	2494.0	0.0	8288.0	0.0	
234	0.0	0.0			8288.0	2494.0		8288.0	0.0	
235	0.0	0.0			8288.0	2494.0		8288.0	0.0	
236	0.0	0.0	0.0		8288.0	2494.0	0.0	8288.0	0.0	2897.0
237	0.0	0.0			8288.0	2494.0		8288.0	0.0	
238	0.0	0			8288.0	2494.0		8588	0.0	
239	0.0	0.0			8288.0	2494.0		8288.0	0.0	

10 -1.274E-04 -2.563E-04 -1.055E-04 -1.079E-04 -1.079E-04 -2.251E-04 0.0 -3.329E-04 -1.374E-04 -1.376E-04 -1.376E-04 -1.376E-04 -1.376E-04 -1.376E-04 -1.376E-04 -1.376E-04 10.125E-02 10.123E-02 10.123E-02 10.139E-02 10.139E-03 10.139E-03 10.12E-03 9 -1.179E-04 -2.462E-05 -9.466E-05 -2.359E-04 -2.359E-04 -1.146E-05 -1.146E-05 -4.31E-04 -5.946E-04 -5.946E-04 -5.946E-04 -1.399E-03 -1.399E-03 1.1216-02 1.1716-02 1.1736-02 1.1736-02 1.1736-02 1.1736-03 1.176-02 1.176-02 5.4366-03 6.4366-03 6.5146-03 6.5146-03 5.1346-03 5.1346-03 (continued) 8 -1.3376-04 -5.8406-05 -9.5216-05 -9.5216-05 -3.6406-04 3.1376-04 1.1666-03 -3.3086-04 3.656-05 -3.3086-04 1.2276-04 -1.0426-03 -1.0426-03 8 1.18 E-02 1.17 E-02 1.17 E-02 1.17 E-02 1.18 E-02 1.11 8 E-02 1.18 E-03 5.96 8 E-03 7.70 9 E-03 5.96 E-03 5.06 E-03 5.06 E-03 5.15 E-03 1.10 E-03 9.11 0 E-03 -1.517E-04 -8.393E-05 -1.17E-04 -2.384E-05 -0.0 -3.165E-04 6.624E-04 7.355E-04 -1.44E-04 -1.765E-05 -1.765E-05 -1.765E-05 SPECIMEN 1.15E-0 1.156E-0 1.1164E-0 ELEMENT -1.485E-04
-1.036E-04
-1.780E-04
-1.535E-04
-1.847E-04
9.270E-04
-3.210E-04
-3.210E-04
-3.210E-04
-3.210E-04
-3.210E-04
-3.210E-04
-3.210E-04
-3.210E-04
-3.210E-04 OF ANALYSIS 5 -1.238E-04 -9.587E-05 -2.344E-04 -1.472E-05 -1.00E-03 -3.823E-04 -3.823E-04 -4.877E-04 -4.877E-04 -4.877E-04 -4.877E-04 -7.422E-04 -7.422E-04 1.1136-02 1.11486-02 1.11486-02 1.11326-02 1.1236-02 1.1236-02 1.1236-03 1.0136-03 1.0 ELEMENT -5.3146-05 -9.8536-05 -2.5716-04 -10.05 -10. 1.118 E-02 1.169 E-02 1.128 E-02 1.128 E-02 1.154 E-02 1.154 E-02 1.017 E-02 1.017 E-02 1.017 E-02 1.017 E-02 1.017 E-03 FINITE-1.137E-05 -1.213E-04 -1.213E-04 -2.428E-04 -0.00 3.1.1316-02 11.1546-02 11.1546-02 11.1736-02 11.1736-02 11.1466-02 8.3206-03 8.3206-03 7.1536-03 8.2776-03 8.2776-03 8.2776-03 8.2776-03 8.2776-03 8.2776-03 8.2776-03 C-7 TABLE 2 0.0 1.9136-04 -1.7766-04 -1.6036-04 -6.1546-05 9.3726-05 9.3726-04 0.0 1.6126-03 1.5356-04 1.6126-03 1.5356-04 -1.0156-04 2 1.1256-02 1.1356-02 1.1356-02 1.1226-02 1.1706-02 1.1706-02 1.1706-03 1.1126-03 1.1126-03 1.4956-03 1.5956-03 1.4956-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 1.496-03 -CASE CASE -1.5066-04 -1.5066-04 -7.9626-04 -1.0056-04 -1.1536-04 -1.1536-04 -2.4096-04 -2.4096-04 -2.4096-04 -1.2776-04 -1.2776-04 -1.2776-04 -1.2776-04 -1.2776-04 -1.2776-04 1.20¢e-02 1.130e-02 1.131e-02 1.123e-02 1.16¢e-02 5.31e-02 6.607e-03 6.607e-03 6.607e-03 6.607e-03 6.612e-03 1.942e-03 1.942e-03 1.942e-03 1.942e-03 1.942e-03 1.942e-03 1.942e-03 DEFLECTION. ECTION. ×

CASE			٠.	•-				-			-	-	-	7	-			• -			7	-	-	-					-	-		-			-	-	٦.			-	-	-			-
10000001		-67-	-121	-218.	-305-	-371.	-363.	-283.	-216.	-147-	-84.	-45.	-13.	:	*		• -	-01-	-16.		.:	·	2.	4	:	-7-	1.	::	-2-	-10.	•91-	•	ģ		3	:									
STRAIN . 1 00 0000	- 9	-14-	-22	-28.	17	-57.	-16.	-85.	-104-	-119.	-130-	-136.	-138.	-46-	-83.	-82.	• 10	-73	-83-	-87.	-83.	-44-	-11.	-75.	-14.	-42-	-85.	-86-	-84.	-78.	-63-		-71-	-13.	-14.	-14.									
CMECH.	77	-203	-266	-224.	-183	-130-	-72.	-21.	18.	61.	98.	118.	127.	27.	24.	• 67	• 77	22.	24.	25.	24.	23.	22.	23.	27.	25.	28.	29.	29.	26.	-17	22.	23.	24.	25.	25.	-228.	-234	-254.	-256.	-212-	-103.	: ,:		•
.0000001		-53	-121-	-218.	-305-	-371.	-363.	-283.	-216.	-147.	-84.	-45.	-13.	:	;		: -	-10-	-16.		:	•	. 5	: .	:;		7.	::	-2-	-10.	•		0-	3	ô	:									
STA IN1 +1000000	- 0	-14-	-22	-28.	-41.	-57.	-16.	-95.	-104-	-119.	-130-	-136.	-138.	- 46-	-83.	-82.		-73.	-83-	-87.	-83.	-78.	-77-	-75.	***	-16-	-85	-86.	-84.	-78.	-63.	- 640	-71.	-13.	-14.	-14.									
TAL	306	-203	-265	-224.	-183.	-130	-72.	-21.	18.	61.	98.	118.	127.	27.	24.	• 67	21.	22.	24.	25.	24.	23.	22.	.83	• 77	25.	28.	29.	29.	56.	•17	22.	23.	24.	25.	25.	-228.	-234	-254.	-256.	-212-	-103.	: .		
CASE							1	-	7	-	1	-	-		٠.						1			٦.	٦.				-				-	-		٠.	٠.	•		-	-	٠.			
9	4 : 132	3.9934	3.7689	3.6519	3.7670	3.8831	3.5785	2.8510	2.3878	2.1670	2.2021	2.3163	2.3866	1.2779	1.1328	0 0724	0.9362	1.0034	1.1382	1.1804	1.1225	1.0594	1.0424	1.0220	1.1612	1.0394	1.1625	1.1843	1.1551	1.0733	0.8301	0.8835	0.9744	966.0	1.0209	1.0 208									
200	-4-4437	-4.3462	-4-0625	-3.5749	-3.1783	-2.6574	-2.3965	-1.6009	-1.2176	-0.8148	-0-4467	-0.2466	-0-1596	-0.9472	-0-8352	7000	-0-6766	-0.7293	-0.8293	-0.8671	-0.8332	-0.7795	1191-0-	-0-7431	-0-8155	-0-7127	-0.7978	-0-8069	-0.7808	-0-7295	-0.5822	2	-0.6837	-0.6867	-0-1001	0669-0-									
3	-0.2044	-0.5827	-1.3279	-2.3982	-3.3551	-4.0833	-3.9888	-3.1101	-2.3731	-1.5217	-0.9197	-0.4578	-0.1439	0.0135	0.0420	07400	-0-0137	-0.1130	-0-1785	0.0935	1010.0	-0.00%1	0.0554	1600.0	-0-0191	0-0341	0.0801	0.0000	-0.0251	-0-1150	0.0013	0.0042	-0.0010	0.0498	0.0056	0.0137									
3	-1.4212	-3.4511	-3.4168	-3.2018	-3.2013	-3.1808	-3.1845	-3-1744	-3.1713	-3.2012	-3.1757	-3.1614	-3.1556	-2. 7537	-2.4360	-2.0747	-1. 9990	-2.1421	-2.4253	-2.5325	-2.4199	-2.2772	-2.23.05	-2.1882	-2.4575	-2.1319	-2.4390	-2.4814	-2.4136	-2.2412	-1.7637	-1.8459	-2.0617	-2.0946	-2.1442	-2.1423									
;	300			-7.5230				-1.6283			1.8355	2.4215	2.6768	-0.0880	-0.0697	-0.0772	-0-0339	-0.0460	-0.0626	-0.0689	-0.0798	-0.0613	6190.0-	7150-0-	0.0110	0.0439	0.0455	0.000	0.0711	0.0527	-0-0028	0.0551	0.0105	0.0345	0.0422	0.0453	24.0.0	~6.7760	-7.3789	-7.4332	-6.1367	-2.9833	0.2156	7001	
STRESS	,	. ~		*	•	•	1		•	10	=	12	2:	*	2:		18	15	20	21	22	53	52	25	27	28	52	30	31	32	36	35	36	37	38	39	2.3	4.5	. 23	**	45	* 7	78	54	

							:		1	,	,
	;	3	3	ě	8	CASE	LTOTAL	(TOTAL STRAIN) *1000000.	1000000	CMECH.	0001+ (N
0	2007			5	3		7.			7.	**
0	1940						7.				
0	1660.0					-	3.			3.	
9-	-6. 8254					-	-235.			-235.	
•	\$859.9-						-231.			-231.	
1 1	0 100 00					٠.	-240			-240	
-	7 431 0						• 707-			-707-	
•	-6.3560					•	-219.			-219	
-3	-3-1844						-110-			-110	
o	0.0007						672.			672-	
0	0.0030					-	3028.			3028	
0	0.0066					-	6592.			6592.	
0	0.0156					1	15599.			15599.	
0	0.0251					1	25075.			25075.	
0	.0321					-	32148			32148	
0	0.0348					1	34766			34766	
-2	-2.1449	4. 8819	8700-0-	0.9123	2.9403		-479.	733.	-3.	-479-	7333-
-2-	.1838	4.6600	-0-0298	0.8254	2.8544	1	-476.	705	-10-	-476-	70510-
	-2.2840	4. 7906	0.1148	0.4355	2.9405		- 707-	727.	707	-404-	
-2	-2.5077	6.5389	0.0976	0.6771	2.9174		-514	103	34	-614	
-	-2.2791	4. 9241	1020-0	7 18 8 17	3,000		• • • • • • • • • • • • • • • • • • • •	744	24.	- 450	744
17	-1.5432	5.5901	2177	1 2680	30000	• •	-439		75	-636	
.0-	1111	6.2669	0.1782	1.9713	3.0384		-203	663		-203	
0	0-1568	6.2934	-0-1143	2.1501	2.9320		-230	820	-30	-230	
0	0.1239	5.9435	0.0063	2.0225	2.7731		-221.	784.		-221	
0	0.0984	4.3608	-0.1509	1.4864	2.0366		-161-	575	-52.	-161-	57552.
0	0.0549	2.4124	-0.2930	0.8224	1-1496		-89-	318.	-101-	-89-	318101.
0	-0.0227	0.4157	-0.2213	0.1310	0.2707		-50-	56.	- 76.	-20-	5676-
0-	-0.0516	-0. 7152	-0.0800	-0-2556	0.3322	-	22.	- 93.	-26.	22.	
-	-1-7203	4.9315	-0.0548	1.0704	2.8195	1	-425.	723.	-19.	-425.	72319.
7	-1.6943	4-6682	-0.0219	0.9913	2.6904	1	-411.	687.	-8-	-411.	
-	-1.8638	4. 1443	0.0257	0.9602	2.7820	-	-437.	104.	.6	-437.	
-2	-2.0328	3.9607	9960.0	0.6 526	204.792	-	-474-	605.	33.	-454-	
-	-1-7555	4.6226	0.3257	0.9557	2.7032	1	-417.	683.	112.	-417.	
-	-1.0748	5.0374	0.3523	1.3209	2.6799	-	-344.	711.	122.	-344.	
0	-0.0936	5.1059	0.2093	1.6708	2.4353	-	-216.	681.	72.	.9.	681. 72.
0	9154-0	5.1084	-0.1466	1.8533	2.3122	-	-144.	660.	-51.	******	
0	0.3965	4.6942	-0.2396	1.6969	2.1345	-	-135.	.109	-83.	-0.7	
0	0.3192	3. 71.82	-0-41+2	1.3458	1.7266	-	-106.	481.	-104.	-90	
0	0-1807	2.1197	-0.6218	0.7668	1.0855	-	-61.	274.	-215.	-61.	
0	0.0726	0.5598	-0.4797	0.2108	0.4639	-	-13.	711.	-166.	-13.	
0	0.0134	-0.2582	-0-1653	-0.0905	0-1797	-	.6	-34.	-57.		
0	-0.6261	5.2535	-0.0584	1.5425	2.6369	-	-293.	722.	-50.	-563-	
-	-0. 1062	2.2321	-0.2300	1.5086	2.6553	-	-303.	722.	-14.	-303.	
0	-0.3981	4.4714	-0.3635	1.3578	2.2275	-	-187-	-609	-125.	-231.	•
0	-0.8905	3.4325	-0.1551	0.8473	1.8681	-	-555-	491.	-54.	-555-	
0	-0.5695	3.5101	-0.0521	0.9802	1.8045	-	-516.	488.	-18.	-516.	48818.
,	*****	3.5310	0.0012	1.125	1.7035	-	-162.	475.	23.	-162.	
•							-			07.50	

RESS						CASE	CTOTAL	STRAIN) + 1000000.	1000000	(MECH.		STRAIN #1000000.	CASE
	××	**	××	NO	00		XX	**	XX	××		XX	
10	C. 6492	3.3774	-0.4476	1.3422	1.5083	-	-64-	422.	-155.	-64-	422.	-155.	-
05	0.7241	3-1245	-0.5520	1.2828	1.4094	-	-53.	386.	-161-	-53.	386.	-191-	-
63	0.5289	2.1259	-0.8692	1.0849	1.3772		- 39.	341.	-300-	-39.	341.	-300-	-
•	0.2063	1.6939	-0-7884	0.6334	6166-0		•04-	216.	-272-	• • •	216.	-272.	٦.
	0.1400	3.5846	-1.1228	0.5218	1.8037	• •	- 23	.81	-143			-143.	
200	9616	1.7574	-0.7446	0.4812	1.0056		-112	246	-266-	-25.	244	-388.	•
	6010	2 4003	0000	7104.0	1 1010		-115	233	.167-	-117.	.047	-167-	٠.
	0.0002	2 1972	2000	0000	10101		• 16.	202	-101-	-14-	361.	-104	٠.
5.	1111	2000	2011.0	• •	10000						.607	. 1 . 7 -	•
2:	0155	2 2050	-0.2302	•	1 0205		• 17	100	-103.		. 200	-183-	
:::	1200	2 0705	15.00	0.000	1 2752		• • • •	24.7			27.7		•••
*:	1000	6333	20.00	•	201201				.341.	• • • • • • • • • • • • • • • • • • • •		-146-	•
	7544.1	1.0076	2016-0	1000	1.0320	٠.		***	-314.	137.	144.	-314.	
	1 0333	1 5340	0000	0.0012	17171	• •		.007	••••		. 28.	-117-	
***	1.052	1. 3643	6667-1-	0.6724	10101		•	101	• 14-	•	.101	. 414-	
	0.000	1001.1	16000	2702	10042	••	•00	•177	-24%	• • •	171	-344	
	1763	24.31	10.00	•	221.00		• • • • • • • • • • • • • • • • • • • •	• • • •	• • • • •	• • • • • • • • • • • • • • • • • • • •	900	-+87-	•
9 7	2047	1,5031	75.00	10110	0.000			.87	• * * * * * * * * * * * * * * * * * * *		-82	-06-	٠.
	0 37.11	1.0034	000100	0 1	2000			•107	-107-	-13.	107	-107-	
22	3703	2000	0000	2010		••	?	100	-667-	•	100.	-235.	٠.
;;	1 6636	1 0632	1 61 77	00000	1 3003		• • • • • • • • • • • • • • • • • • • •			* 24.	• • • • • • • • • • • • • • • • • • • •	-387	٠.
23	1.2660	0.8871	-1.4702	7100	1 3005		130		-507	130		-524	
54	0.5552	0.8228	-1.1067	· v	0.9980		96	71.	-382	96	71.	-382	•-
25	0.5650	0.5753	-0-4417	0.3801	0.440		52.	54.	-1 52.	52.	2,45	-152	
126	0.7048	1.1607	-0.9267	0.6218	0.8947		47.	126.	-320	47.	126.	-320	• -
27	1.3449	1.2506	-1.2115	0.8652	1.1637	-	129.	112.	-418.	129.	112.	-418.	~
28	2.2579	1.1082	-1.7982	1.1220	1.7336	-	255.	57.	-621.	255.	57.	-621.	-
58	5.6005	1.0110	-2.3012	1.2038	2.1624	-	305.	30.	-164.	305.	30.	-194.	-
30	2.4171	9. 9056	-2.3178	1.1076	2 • 1 39 1	-	285.	24.	-800-	285.	24.	-800	-
31	1. 7025	0, 9653	-1.7585	0.8893	1.5961	_	187.	•09	-607.	187.	•09	-607.	-
35	1.5523	0. 7603	-0.5898	0.1709	0.7960		176.	39.	-504-	176.	39.	-504.	7
	177.0	0.9059	-0.8583	62450	4208-0		•09	.16	-957-	•09	91.	-596.	-
	1. 238	1797	1745-1-	0.8338	1.2004		100.	• 00	-463.	166.	. 99	-463.	
34	3.16.82	A 0776	-2 5333	1 2010	2 454.2		100	• •	-0110	301.	• • •	- 10-	٠.
3.2	3.1338	0 8340	-2 5172	1 3220	20000		303		. 070	100	•	•	•
36	2.1757	0.6476	-1.8616	1.1411	1.9277		362	-25	-663	342	-25	-663	• -
39	2.5693	0.5607	-0.6846	1.0433	1.2366	-	318.	-28.	-236	318.	-28-	-236-	• -
00	0.1436	1.7179	0.3167	0.6205	0.8 201	-	- 50.	222.	109.	-50	2220	109.	-
+1	0.3311	2.1524	1.0601	0.8279	1.2825	-	-45.	272.	366.	-45.	272.	366.	-
45	2.3670	0. 6250	-1.6983	0.9973	1.7105	-	289.	-12.	-586-	289.	-12.	-586.	-
43	2. 7654	0.3342	-1.7251	1.0332	1.8716	-	354.	-99-	-565-	354.	-99-	-565-	-
**	2.904.2	0.0912	-1.3122	0.9985	1.7219		382.	-104.	-453.	382.	-104-	-453.	-
	8596.7	6160.0-	-0.4804	0.9280	1.4134	٠.	391.	-131.	-166	397.	-131.	-166.	-
147	0.1981	1.1145	2773	0.4376	0.4764		- 18	• • • • • • • • • • • • • • • • • • • •		. 87-	.001		
84	1.4351	0.3277	-0.9957	0.5876	1.0188		177.	-14-	-346-	177.	-14:	-366.	•
64	2.0562	0.0433	-1.2362	0.6598	1.3026	-	271.	-14-	-427	333	-3,	-4.33	
	-		-								•		•

STRESS						CASE	(TOTAL	STRA IN) . 1000000	10000000	(MECH.	STRAIN1+1000000	.000000	CASE
	××	**	XX	NO	SO		××	**	××	××	**	××	
	2.8676	-0.6863	-0.3663	0.7271	1.5680	-	408.	-506-	-126.	408.	-506-	-126.	
	-1.9463	18.7394	-0.0294	3.5977	11.1875	-	-419.	733.	-3.	-419.	733.	-3.	200
	-8.1121	17.8780	-0-1132	3.2553	10.8576	-	-416.	105.	-10.	-476.	105.	-10-	
	1064.8-	18.3761	0.4364	3.2952	11.2187	-	- 464-	127.	.07	-464-	727.	*0*	
	1518191	17.3855	0.3713	2.6699	11.0913		-514.	102.	34.	-514.	102.	34.	
	6 704 -8 -	1868.87	1007-0	3.4.00	11.4373			***	. 4.7	. 66.		. 47	
	1400.00	** > > > > > > > > > > > > > > > > > >	1178-0	1025.0	1000		. 025-	603.		-878-	803.		
	1078-0-	81418	0.6775	7411.1	11.2960		-230	.740	. 70	-230	. 749	• 79	
	10000	1116.47	-0.4339	00110	1107011		- 520	.670	. 23.	-230.	. 670	-34.	
	651630	23.0145	0.0243	1916.	10.6403		- 177-		• • • • • • • • • • • • • • • • • • • •	-177-	. 184.	• • • • • • • • • • • • • • • • • • • •	
	3888	7000 001	-0.5751	3 3434	95189		101-	210	- 25.	101-		-25-	
	10.0566	1.6073	0.84.05	0 5150	1 0325	• -	- 50		-174	-23	256	-176	
	-0 2512	-2 7773	30.00	10001	1 2743			-03		33	-03	- 20	
16.	-6.2986	18.9626	-0.2080	4.2213	10.7275		-475	723.	-10-	-425-	723.	-10	
	-6 2169	17 9454	-0.550	3 0005	10 2445		-611	687		-611			
	-6.9674	13 2273	0.0075	3 7866	10 5 89 3		-447	100	• 0	-437	100	• 0	
	-7.4623	15.1845	0.3680	2.5741	9.4277		-424-	605		-424.	605	33	
	-6.4568	17.7645	1.2373	3-7692	10.2909		-417	683.	112.	-417.	683	112.	
	-3.7917	19.4198	1.3378	5.2094	10.2253		-346-	711.	122.	-344	711.	122.	
	0.0110	19, 7567	0.7949	6.5852	9.3334		-216.	681.	72.	-216.	681.	72.	
	2.1217	15.8360	-0.5564	7.3092	8.8905		-144.	660.	-51.	-144.	.099	-51.	
	1.9781	14.1985	6606-0-	6.6922	8.2059		-135.	607.	-83.	-135.	607.	-83.	
	1.5072	14.4155	-1.8008	5.3076	6.6346	1	-106.	481.	-164.	-106.	481.	-164.	
	0.8545	8.2181	-2.3614	3.0242	4.1626	-	-61.	274.	-215.	-61.	274.	-215.	
	0.3217	2.1723	-1.8217	0.8313	1.7688		-13.	.1.	-166.	-13.	::	-166.	
	20100	-1.0003	9/79-0-	1/66-0-	0.6858			- 34.	-5%	.600	-34.	-57.	
	25.0372	20.2881	1177-0-	258000	10.0809		-683-	.777	-50-	-667-	. 777	-07-	
	-1.2141	17. 27.00	1 3804	7.75.6	2141.01		-303.	.77	-136	-503.	• 77	-136	
	11057	13 22 20	-0 5800	3 3417	7 1 227		-255	. 607	-123.	-1631	. 600	-163.	
	-1.9475	13.5450	7161-0-	3.8458	A. 8921		-216	488	118	-216-	7 8 B	- 1	
	-0.3431	13.6583	0.2564	4.4384	6.5243		-162.	475.	23.	-162.	475.	23.	
	1.2438	13.2651	0.0125	4.8363	5.9817	-	-103.	****	1.	-103.	****	-	
	2.1598	13,1205	-1.7001	5.2934	5.8161	-	-64-	422.	-155.	-65-	422.	-155.	
	3.0313	12.1468	-5.0964	5.0594	5.4385	1	-53.	386.	-191-	-53.	386.	-191-	
	5.2464	10.5301	-3.3010	4.2788	5.2935	-	- 36.	341.	-300	-39.	341.	-300	-ar/
	0.9225	6.5716	-2 .9942	2.4580	3.7968		- 40.	216.	-272-	-40.	216.	-272.	
	0.5908	7.4592	-1.5974	1.0167	1.6732	-		78.	-145.	-1-	78.	-145.	
	67760	13.9250	65 97 5	5.6160	6.9328	٠.	-55.	***	-388.	-55.	. 8 4 4	-388.	
	1000-1-	6,173	0170.7-	1.0370	1011.		-711-	222	-157	-7115	.047	-167-	
193	1.0011	8-5210	-2-7197	3-1740	4-4038		- 59	283.	-247	-56-	283.	-247	
	2.8944	6.6671	-2.0135	3.1872	3.1866		27.	198.	-183	27.	198.	-183	
	1.4489	8, 9075	-0.8552	3.4521	3.9646	-	- 48 -	291.	-78.	-48.	291.	-18.	
	2.9426	8.1020	-4.3701	3.6815	4.8934	-	13.	247.	-397.	13.	247.	-397.	
	5.9114	96 50 . 9	-3.4582	3.9903	3.9922	-	137.	144.	-314.	137.	144.	-314.	
	2.7633	7.7810	-2.3571	3.5148	3.7519	-	10.	238.	-214.	10.	238.	-214.	
	2010	5.9779	69000	3.3616	4.4808	-	10.	101.	-414-	.01	161.	-414-	

CASE SPECIMEN (continued) (MECH. 45.7 | 13.0 | 13 7 RAIN 7 Y Y 2 88. 2 88. 100. 100. 110. 111. 111. 111. 110. 1 ELEMENT OF ANALYSIS FINITE-ELEMENT C-7. XX 1. 1. 12.82 1. 1. 12.84 1. 12.84 1. TABLE 2 (0540)
2 (0540)
2 (0540)
2 (0540)
3 (0540)
4 (0540)
4 (0540)
5 (0540)
5 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (0540)
6 (ETTES: 2001 1 20

		TABLE	c-7.	INITE-ELEM	FINITE-ELEMENT ANALYSIS	OF ELEMENT	T SPECIMEN	(continued)	ed)	
X FORCE.	CE. CASE 1									
-	3.884E 00	2.079€ 00	-2.441E-04	,	-4.883E-04	°0.0	-6.1 CAE-05	-3.052E-05	-3.433E-05	10 4.578E-05
==	0.0	4.883E-04	4.883E-04	4.	2-113E 00	1.1308-01	-7.629E-05	-4.578E-04	-4-120E-04	-6.199E-05
31	1.9846-04	-2. 441E-04	1.3736-04	3-662E-04	6-104E-05	1.526F-03	1.099E-03	2.289E-05	5.763E-02	10-960-01
7	-4.359E-04	-1.5526-03	1.187E-01	. 3	1.678 E-04	4.883E-04		0.0	1.526E-05	2-098E-05
25	-1.3356-05		-3.662E-04		-7.782E-04	-3.357E-04		-3.003E-01	-4.578E-05	-6.104E-05
7.2	2.5746-01	-1.571F 00	0-0 0-0	2.851E-06	3.052E-05	4.578E-05		4.578E-05	-1.907E-06	3-147E-05
8	0.0		2.575E-05	-9.537E-07	1.9726-01	-5.187E 00	-3.624E-05	-3.815E-06	8.583E-06	2-670F-05
6	1.1446-05	2-1936-05	1.621E-05	-2.575E-05	-4.578E-05	-4.578F-05		1.240E-05	1.967E-02	-3.548E 00
	4.252E-05	4. 578E-	9.537E-06	1.0496-05	-2.098E-05	0.0		0.0	1.431E-05	4.292E-05
	1.335E-05	-4-196E-	7-629E-06	-4-292F-05	-2.384E-05	-2.003E-05	1. 037E-05	-1.907E-05	-1.986E-01	2.861E-05
	-3.147E-05	-3650-6-	-3.630E-05	-1.907E-36	-1.898E-01	.576E-06	-3.040E-06	1.788E-07	3.755E-06	2.861E-06
	-5.537E-07	-1.01aE-	-2.272E-07	2.384E-07	-4.590E-06		-2. 503E-06	1.907E-06	5.537E-01	-2.384E-07
161	-5.5376-07		-1.371E-06	-2.623E-06	2.384E-36		-2.384E-07	-1.311E-06	0.0	-9.537E-07
121	-2.921E-06	0.0	1-717E-05	-9.537E-07	-5-341 F-04	2.8415-05	8. 5 835-01	1.431E-05	0.0	0.0
181	95 SE						•			10-31660
Y FOR	FORCE, CASE 1									
	_	2	•	•	2	9	1	æ	6	10
-:	1.000€ 01		-4-883E-04	1.	-2.441E-04	3.052E-05	5.341E-04	-1.678E-04	2. 441E-04	2.5945-04
21	-2.899E-04	-1.6786-04	-3.052E-05	٠,	-9.918E-04	-7-172E-04	-7.935E-04	-4.425E-04	-2.441E-04	0.0
31	3 8 3 E		9.308E-04		-7.629E-05	-4.940E-04	-6.104E-05	1-123E-04	5.569E-04	8.779E-04
7	5.418E-04		5.784E-04	-6.104E-05	5.951E-04	8.392E-04	6. 409E-04		2.441E-04	3.052E-05
3	1.629E-05	4. 578E-05	3.35/E-04	-1-526 E-05	-3-051E-04	5.035E-04	2.44IE-04		-6-104F-04	1.831E-04
::	-1.526E-05	1.984E-	3.967E-04		3.023E-04	8.488E-05	6.676E-05	4.482	4.578E-05	4.578E-05
81	1.526E-05	4.272E-	4.120E-04	5.798	3.052E-05	-3.052E-05	3.471E-04		-1.459 5-04	-4.578E-05
161	4.578E-05	-1.526E-	7-6295-05	1.526E-05	6-104E-05	1.068E-04	-2.441E-04	1.524E-05	1.5266-05	1.526E-05
=======================================	8-850E-04	4. 768E-	2.098E-05	7.629	1.221E-04	4.578E-05	7. 629E-05		3.052E-05	1.4316-05
121	2.851E-05		-2.098E-05		4.387E-05	3-1476-05	0.0	-2.480E-05	1.907E-06	3.910E-05
131	3 5 BE-	2.003E-05	2.289E-05	-5.722E-06	5.722E-05	3.815E-06	-9.537E-07	2. 166E-05	3.4335-05	2.384E-US
151	90 TE-	3- 815E-06	9-537E-07	9.537	1.907E-06	9.537E-07	-9.723E-07	2.861E-06	0.0	5.3646-07
191	537E-		2.990E-07		-2.861 E-06	1.907E-06	0.0		-8.101 F-01	0.0
171	2.027E-06	-9.537E-07	-7.056E-02		1-907E-06	-1.095E 30	9. 537E-07	-1.096E 00	-2.886E 00	-2.609E 00
CHECKS.	S. SUM		Y-FORCES		CASE					
		1.3810-04	-1-7710-02	-1.7280-02						
NZE	PARK	2896								
	MEDU	2607								

which is described in a following section of this appendix. The input load to that analysis is a load-per-unit width determined from this element specimen analysis.

Extrapolation Formulas for Boundary Stresses

Figure C-15 shows the local geometry of the modes and the element centers for a section through the lug. The extrapolation formulas determine the stresses at the boundaries from the computer-calculated stresses at nearby elements (1st, 2nd, and 3rd).

Figure C-15. Local geometry at lug.

linear extrapolation to edge of hole: $\sigma_{i-edge} = \sigma_{1st} + (\sigma_{1st} - \sigma_{2nd})/3$ linear extrapolation to outer edge: $\sigma_{0-edge} = \sigma_{3rd} + (\sigma_{3rd} - \sigma_{2nd}) \cdot \frac{.49}{.63}$

Steel Tangential Stress at Inner Edge of Hole

Figure C-16 shows a plot of steel stresses from the data in Table C-7.

Elements	2nd	1st	i-edge	18	20	22	24	26
168, 155	15.184	17.385	18.119	8	1			98
169, 156	17.765	18.893	19.269	1	1	12		18
170, 157	19.420	21.524	22.225			0	1	
171, 158	19.757	24.148	25.612					9
172, 159	19.806	24.371	25.893					ø
173, 160	18.199	23.014	24.619	75716 75		e de la constante de	10	
174, 161	14.416	16.886	17.709	_ل	—	-	1	1
		Us	se Peak o	$=\frac{26}{20}=1.$	30 ks:	i/kip o	f axia	l load

Figure C-16. Tangential stress at inner edge of hole for element specimen.

Scaled load from static test = 4 x 44 = 176 kips

Stress in metal at inner edge of hole = 1.3 x 176 = 229 ksi in static test

Composite Tangential Stress at Inner Edge of Hole

Eleme	ents	2nd	1st	i-edge
86,	73	5.037	5.590	5.774
87,	74	5.106	6.245	6.625
88,	75	5.108	6.293	6.688

Use Peak $\sigma = \frac{6.69}{20} = .3345$ ksi/kip of axial load

Stress in composite at inner edge of hole = .3345 x 176 = 58.9 ksi in static test

In this case, the tangential stress lies along a direction of reinforcement.

Steel Tangential Stress at Outer Edge of Lug (Point A in Figure 17)

Elem-	ents	2nd	3rd	0-edge
165,	178	18.963	20.289	21.320
166.	179	17.945	20.200	21.954

Use Peak $\sigma = \frac{22}{20} = 1.1 \text{ ksi/kip of axial load}$

Stress in metal at outer edge = 1.1 x 176 = 194 ksi in static test

Composite Stress at Outer Edge of Lug (Point A in Figure 17)

Eleme	ents	2nd	3rd	0-edge
81,	94	4.932	5.254	5.504
82,	95	4.668	5.232	5.670

Use Peak $\sigma = \frac{5.67}{20} = .2835$ ksi/kip of axial load

Stress in composite at outer edge = .2835 x 176 = 49.9 ksi in static test

In this case, the tangential stress is skewed at an angle of - 27 degrees relative to the 0-degree direction of reinforcement. In order to interpret this stress in terms of properties already calculated and shown in Figure 6,

it is necessary to transform the stress. Figure C-17 shows the relationship of the material property axes (x, y) to the local element axes (X, Y) used in the output from the finite-element program.

Figure C-17. Relationship of axes for material properties to the local finite-element axes at point of calculation of stresses at outer edge of lug.

The transformation equation is:

$$\begin{bmatrix} \sigma_{\mathbf{x}\mathbf{x}} \\ \sigma_{\mathbf{y}\mathbf{y}} \\ \tau_{\mathbf{x}\mathbf{y}} \end{bmatrix} = \begin{bmatrix} \cos^2\theta & \sin^2\theta & 2\sin\theta\cos\theta \\ \sin^2\theta & \cos^2\theta & -2\sin\theta\cos\theta \\ -\sin\theta\cos\theta & \sin\theta\cos\theta & (\cos^2\theta - \sin^2\theta) \end{bmatrix} \begin{bmatrix} \sigma_{\mathbf{X}\mathbf{X}} \\ \sigma_{\mathbf{Y}\mathbf{Y}} \\ \tau_{\mathbf{X}\mathbf{Y}} \end{bmatrix}$$

For

$$\sigma_{XX} = 0$$
 then, $\sigma_{xx} = 10.3 \text{ ksi}$
 $\sigma_{yy} = 49.9 \text{ ksi}$ $\sigma_{yy} = 39.6 \text{ ksi}$
 $\tau_{XY} = 0$ $\tau_{xy} = -20.2 \text{ ksi}$

Stresses in Composite Around Edge of Largest Steel Lamina

Figure C-18 shows the position of the local axes (X, Y) for the elements and the composite material axes (x, y). Table C-8 shows the stress in each composite element (elements 134-139) around the perimeter in the local axes and in the material axes. The local axes stress were taken directly from the computer output. The corresponding stresses relative to the material axes for the static test load were found by multiplying the output

stresses by the ratio of scaled loads (176/20 = 8.8) and applying the axis transformation equation. The most critical stresses combination occurred in element 137.

Figure C-18. Relationship of axes for material properties to the local finite-element axes for the composite elements around the edge of the largest steel lamina.

		E	Stresse: lement / r P = 20	Axes		Stresses : Material As or P = 176	xes
Element	θ	XX	YY	XY	хх	уу	ху
134	- 7.5	1.54	.96	- 1.34	16.52	5.50	- 10.75
135	- 23.0	2.62	1.14	- 1.96	33.46	39	- 7.33
136	- 38.0	3.17	.98	- 2.53	42.21	- 5.72	3.96
137	- 54.0	3.13	.83	- 2.52	35.95	.55	17.21
138	- 60.0	2.78	.65	- 1.86	24.57	5.56	16.30
139	- 88.5	2.57	.56	68	5.26	22.28	6.48

Adhesive and Steel Tip Stresses

Figure C-19 shows the maximum radial force per inch at the perimeter of the reinforced area.

Element	o _{xx}	2.4	2.6	2.8	3.0	3.2
135	2.615		P	+	. 1	- 1
136	3.168					a
137	3.134					0
138	2.776		1	0	—	1

Use Peak Load Intensity =
$$\frac{\sigma t}{P} = \frac{3.21 \times .342}{20} = .05489$$
 kip/inch per kip of axial load

Figure C-19. Radial forces at perimeter of reinforced area for element specimen.

In the next section, a finite-element analysis of a unit width will establish the following relationships:

maximum bond stress = .20797 x load/inch ksi
maximum stress in tip of steel lamina = 6.369 x load/inch ksi

Using these factors and scaling to the loads of the static test, the stresses become:

maximum bond stress = $.20797 \times .05489 \times 176 = 2.009 \text{ ksi}$ maximum steel stress at tip = $6.369 \times .05489 \times 176 = 61.53 \text{ ksi}$

Interpretation of Criticality of Composite Stresses

Figure C-20 lists and relates the stresses experienced by the composite during the static test to the calculated ultimate strength. The arrows connect the state of stress in the test to the corresponding failure point if the loads were increased proportionately. The ratio of the length of the arrow to that of the ray from the origin to the tail of the arrow corresponds to the margin of safety, as described on page 91. The negative values of k can be plotted as positive quantities in Figure C-20 because Figure C-1 shows that the strength is the same for positive or negative shears. Figure C-20 and Table C-9 show that the observed lack of distress in the composite is consistent with the predicted strength boundaries.

LOCATION	σ _{xx}	σуу	τ _{xy}	k	M.S.
Inner edge of hole	58.9	0.0	0.0	0.0	+ .24
Point A in Figure 17	10.3	39.6	- 20.2	.49	+ .35
Element 134	16.52	5.50	- 10.75	62	+ 1.10
Element 135	33.46	39	- 7.33	22	+ .59
Element 136	42.21	- 5.72	3.96	.09	+ .50
Element 137	35.95	.55	17.21	.48	+ .13
Element 138	24.57	5.56	16.30	.65	+ .40
Element 139	5.26	22.28	6.48	.28	+ 1.38

Figure C-20. Composite stresses during static ultimate test of the element specimen.

Table C-9 presents further information about the nature of the margins of safety by identifying the stresses, strains, and margins of safety for each lamina. These data show that in all cases the minimum margin of safety corresponds to a transverse tensile strain (22-strain). Such a mode of failure provides a conservative estimate of strength because typically it does not correspond to rupture of the laminate, but rather to a slope change in the load-deformation relationship. The margin of safety against rupture of the laminate is better indicated by the margin of safety along

MIN. 00.24 MIN. 0.53 0.53 0.60 0.60 0.60 STRESS 23.51 23.51 23.51 2.14 2.14 1.78 12-48 1-48 1-48 99-00 99-00 SAFETY IN COMPOSITE AT LOCATIONS OF HIGH AT THE ULTIMATE LOAD IN THE STATIC TEST OF THE ELEMENT SPECIMEN 22 11.51 11.51 0.35 0.60 22 0.24 0.24 0.24 0.24 0.24 PROG ... CMAB NU12 0.53 47.12 47.12 17.05 52.26 52.26 0.29 0.29 52.26 52.26 750. 0 12 0.008803 0.008803 0.0 -0.008803 -0.008803 12 -0.003892 -0.003892 -0.005892 -0.005972 0.007866 0.007866 £22 1380. HODUL I 19403. 22 0.005273 0.005273 -0.002351 0.005273 0.005273 22 -0.001969 -0.001969 0.006842 0.006842 0.006669 0.0 0.0 *X 1300/5209 ULTIMATE U/U/U .3333/.3333/.3333 60/0/-60 *X 0.000190 0.000190 0.0001190 0.0001194 0.000190 0.000190 0.006597 0.0059214 0.003214 0.00560 0.00560 STPAIRS ST RA TAIS NXY=-20.200 16.40 0.0 6 1131. 2897. STRESSES AND MARGINS OF NXY= 2900099 2000,500 -16.40 44.00-1-440000 EY 3094. 7539. NY= 39.600 ALCOMABLE STRESS, UNIAKIAL 11 11 22 22 22 25 -200.0 196.0 -34.0 9.00 0.0 11 127.9 127.9 -2.5 -2.5 12.3 11 5.5 5.5 5.5 5.5 5.5 5.5 5.5 THICKNESS 0.3333 0.3333 0.3333 - 60 EX 7497. 7539. 3 52 BEHAVIOR FOR NX= 58,707 × 2000 0000 SEHAVIOR FOR NX= 10.300 ×× -55.2 -55.2 -5.2 -6.11 52 2 LAMINATE PROPERTIES
K.S UNRESTRAINED
K.S = 0 000000 96.4 96.6 96.6 115.8 99.6 STR ESSES X Y STRESSES .00 MATERIAL, 25 C-9. 12.6 151.5 151.5 12.6 12.6 53.9 2.3 2.3 2.3 2.3 2.3 2.3 LAMINA TABLE ANGLE

	1.10 1.10 1.10	HIN. 2.43 2.43 1.27 1.27 0.59 0.59	MIN. 0.50 0.50 0.73 0.73 1.06 0.50	MA M
		12 2.46 2.46 2.46 2.46 2.46 1.64 1.76 4.76 0.06 4.76 0.06		
(continued)	• •	•	12 12 0 2-37 0 2-37 18 15-00 16 1-79 16 1-79	0.0 1.2 3.8.43 3.9.43 1.9.2.69 1.65 1.65
(continu	M.S. 22 11 22 1.69 99.00 1.69 99.40 1.12 91.86 1.12 91.86 1.12 91.86 1.12 1.10	KXY= 0 11 22 .65 2.43 .27 16.76 .27 16.76 .27 16.76	S. 22 0.50 5 0.50 3 9.08 3 9.08 1.06	.5. 22 1 28 28 0.13 28 0.13 13 17.09 69 9.06 69 9.06
	WW44 mm	224	4.5. 9.65 9.65 9.65 9.65 9.65 9.65 6.73	z
 	0.03503 0.03503 0.003503 -0.003711 0.000209 0.005209	12 0.006324 0.006324 0.005530 -0.002530 -0.003794	12 0.006480 0.006480 0.001367 0.001367 -0.007847 0.001367	KY= 0.0 1.2 0.032320 0.032320 0.035320 0.036240 0.036261
ELEMENT				
THE E	22 -0.000110 -0.000110 0.000070 0.003103 0.003103	22 0.001899 0.001899 0.001387 -0.001387 0.004090	25 0.00.04 0.00.000 0.0000 0.0000 0.0000	22 0.015792 0.015792 -0.001362 -0.001362 0.000648
ST OF	0.00152 0.00152 0.00152 0.001972 0.001972 0.001061 0.001972	57.330 KX= STRAINS 11 0.001168 0.00455 0.00455 0.00455	3.960 KX= 11 11 13 10 10 10 10 10 10 10 10 10 10 10 10 10	XX X X X X X X X X X X X X X X X X X X
ATIC TEST				-
STA	6 2.6 6 2.6 8 6 2.8 8 6 2.8 8 6 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ž 444166	N X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	
IN THE	20000WW	11 22 33.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 5.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6	-5. 720 22 22 23. 7 11.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	22 7.2 7.2 7.2 7.2 1.8 1.8
OAD N	11.4 41.1 2.1.4 41.1 3.3.5.5 1.4.6 6	200011	11. -17.3 -17.3 112.7 112.7 112.7 5.3	11 144.9 92.0 53.6 53.6
ULTIMATE LO	119.2 119.2 119.2 119.2 119.3 119.3 119.3	* * * * * * * * * * * * * * * * * * * *	22.21 77.55 77.55 77.55 77.55 77.55 77.55	25.950 21.77 21.77 21.57 25.55 25.55
ULTI	RESSES 2 29.3 2 29.3 5 0.8 5 0.8 1 -13.6 5 5.5	2400000	R FOR VX= STR ESSES 1 -15.8 -1 -15.8 -7 -1.4 -7 -1.4 -8 0.0	FOR NX= -33.4 -33.4 -0.2 -3.5 -3.5 35.3
				BEHAVIOR FOR ES LAM. STR ES LA
BEHAVIO	NO. 80. 80. 80. 80. 80. 80. 80. 80. 80. 80	NCAM NCAM NCAM NCAM NCAM NCAM NCAM NCAM	86H NO. 33.	MAN NO.

THE 3.32 3.32 1.33 2.39 2.39 AT STRESSES AND MARGINS OF SAFETY IN COMPOSITE AT LOCATIONS OF HIGH STRESS ULTIMATE LOAD IN THE STATIC TEST OF THE ELEMENT SPECIMEN (continued) 2.89 2.89 2.89 2.87 2.87 2.87 12 4.97 4.97 8.78 8.78 14.34 0.0 3.32 3.32 3.32 1.38 1.38 56.87 22 0.40 99.00 99.00 99.00 4.55 4.55 2.33 2.35 2.35 2.35 H.S. 11 8.68 8.68 52.83 2.39 2.39 12 0.000027 0.000627 0.0005626 0.0005626 -0.005655 12 -0.003662 -0.003662 0.002237 0.002237 0.001425 0.002237 0.0 0 KY= 22 0.004654 0.007654 -0.000243 -0.000218 -0.000218 22 0.001511 0.001511 0.102746 0.002746 -0.000426 KX= 0.0 NXY= 16.300 KX= 0.0 11 -0.001859 -0.003038 0.003038 0.003013 0.003013 0.001043 0.001043 -0.00192 -0.00192 0.002980 0.002780 ST RA INS STRAINS 6.480 12.7 2001114 NX Y= 00.1 00.1 00.1 3.5.5 NY= 5.560 NY= 22.280 20.8 20.8 -2.8 -2.8 57.9 -34.6 -34.6 59.1 58.5 58.6 BEHAVIOR FOR NX = 24.570 5.260 7.7.1 2.7.2 2.7.2 16.3 24:11.00 × SRESSES X X • 3 - 24 • 5 • 3 - 24 • 5 • 1 0 • 7 • 1 0 • 7 • 40 • 5 • 5 • 6 BEHAVIOR FOR NX-13.6 3.7 44.5 44.5 STRESSES 59.1 59.1 19.3 24.6 C-9. A --- --- A TABLE

the direction of reinforcement (11-direction). Table C-9 shows that for all locations, other than at the inner edge of the hole, the margin of safety for 11-directions is significantly higher than that for the minimum for the 22-direction.

TYPICAL JOINT

The bond line stresses and the stresses in the tapered tips of the metal laminae were determined using the two-dimensional, plane-stress, finite-element model shown in Figure C-22. This model represents a unit width cross section through the thickness at the edge of the reinforced area. Only one-half of the laminate is analyzed because it is symmetric about the midplane. The model contains 271 nodes and 246 elements. Elements 1-47 represented the steel laminae; elements 48-159, the graphite composite; and elements 160-246, the adhesive layer.

Table C-10 presents the computer analysis. The finite-element structure has dimensions that correspond to the prototype and, thus, are double those of the components fabricated in this program. In this model, the Plastilox 17-7B adhesive layer is .010 inch. However, the elastic modulus of the layer has been increased so that its flexibility corresponds to that of a thickness of only .006 inch. Thus, $E = 45.6 \times .010/.006 = 76.0 \text{ ksi.}$

The analysis was performed for an axial load of 4.24 kips/inch of width acting upon the full thickness. This corresponds to an average stress of 13.3 ksi in the graphite. Figure C-21 shows the shear stresses applied to steel laminae and also the tensile stress in the laminae. These values were taken directly from the data shown in Table C-10. It is seen that the shear stresses at the tips of the central lamina and the adjacent laminae are equal, and thus, the design provides a balanced sharing of the load to the central three steel laminae. The following relationships hold:

maximum bond stress = $\frac{.8818}{4.24}$ = .208 ksi/kip of running load maximum steel stress = $\frac{27.01}{4.24}$ = 6.37 ksi/kip of running load

Figure C-21. Bond stresses and steel stresses for axial load of 4.24 kips/inch on prototype-sized joint.

. 14	37		, , ,	7 49		1 7	74		133
124	125	126	127	128	129	130	131	132	224 15
Ž15 ,,	216 ,,	217	27 218 3	219 4	220	221 ₅₂ 95	110 7	111 ,,	112 34
**	••	••	•1	92	*3	**	96 ,,	97 61	98 17 00 203 17
181	182 17	183	184 2	185	184	187 19	188 ,,	75	76
44	49	50	51 70	71	72	. 73 4	74 ,	57	56
		_	52	53	54	1 4 55	167	100	169
160	161 15	167	17 163 8	144	5 163	7 144	3 .	. 4 ,	5 .

Figure C-22. Finite-element model for calculation of bond-line stresses at a typical joint.

									218 234	
							197	213 47 212	43 217 44 233	45
					167	102	153 146	154	155 216 157 222	157
		123	137	150	151 14	152 101	141 195	142	143 215 144 221	145
	110		149	151		140 100	240 194	741 209	242 214 243 220	744
- 7	134 136	148 122	137 136	138 150	139 143 238 14	239 17	32	33	24 25	37
133	135	136 121		134 737	30 16	31 170		700	170	
	100	141	227 228 13		230 163		739 192	233 247	234 220	
*	225 107	226 126	115 13	116	117	118 ,,,	119	120	121	
224 19		114 11								
	113 100		101 13	102	103	104	105	106	107	
112 4		100			208 19			711 204	212 225	
96 12 101 17 11	99 103 204 164 18 103	705 19	20	21	22	23	24	25	*	
191 %	192 102		116 12	143	15	7 177 179		100 302	2000 223	
76	77	78	79	80	81	82	83	84		
	101		114 12.	141	150	177	186	201	85 m	
54	59		113 61	62 140	63 ,,	64 ,7	46 103	66 100	67 ,,,	
149 67	170 %	171	112 17 12		174 15		176 184	177 199	174 220	
	•	7	8 12.	9 130	10 ,	11 14	12 102	13 100	14 210	

						210	234	291	,	15		
	102		197	_	7 212	43 217	44 ,,,,	45 124	46 ,	47		
152	T	153	196	154	211	155	157	157	188	159		
		141	195	142	210	143	144	145	146	147		
140	100	140	194	741	209	242 214	243 220	244 135	245	52 244		
31	179	32		33		4 35	*	37 34	*	40	41	
231	176	232	192	23	207	234	120	235		10 234	=	
118	176	119	191	120	204	121	127	122		123		
104	175	106	190	106	205	107		108		109		
201	174	210	189	211	204	212	226 225	213	;	17		
23	173	24	100	25		*		27		28		
177	172	194	107	199	202 202		224	2(0)		45 202		
82	171	83	186	84	201		7.57	84		67		
64	170	65	105	66	100	67	271	••		49		
174	169	176	184	177	199	178	720	179		180		
11	100	12	183	13	190	14	210	15		16		

TABLE C-10. FINITE-ELEMENT ANALYSIS OF TYPICAL JOINT

x C008	X COOR DINATES AND SUPPORTS	SUPPORTS								
	-	2	•		•	9	1		•	10
-	0.0	0.0100	0.0736	0.0936	0.1572	0.1772	0.5090	0.0	0.0100	0.0736
11	0.0936	0.1572	0.1772	0.5090	0.0	0.0100	0.0736	0.0936	0.1572	0-1772
12	0.5090	0.0	0.0100	0.0418	0.0736	0.0936	0.1572	0.1772	0.5000	0.0
31	0.0100	0.0418	0.0736	0.0936	0.1572	0.1772	0.5090	0.0	0.0100	0.0418
1,	0.0736	0.0936	0.1572	0.1772	0.2090	0.0	0.0062	0.0162	0.0479	0.0797
21	9660.0	0.1631	0.1831	0.2148	0.0	0.0125	0.0225	0.0542	0.0860	0.1059
19	0.1382	0.1694	0.1894	0.2211	s c.0	0.0187	0.0287	0.0604	0.0922	0.1121
11	0.1439	0.1756	0.1956	0.2273	0.0	0.0250	0.0350	0.0668	0.0986	0.1086
18	0.1185	0.1501	0.1817	0.2016	0.2331	0.0	0.0250	0.0350	9,0668	9860-0
16	0.1086	0.1211	0.1310	0.1626	0.1941	0.2140	0.2455	0.0	0.0250	0-0320
101	0.0668	0.0986	0.1086	0.1336	0.1435	0.1751	0.2066	0.2265	0.2432	0.2580
1111	0.0	0.0250	0.0350	8990-0	9860.0	0.1086	1941-0	0.1560	0.1876	0.2191
121	0.2390	0.2547	0.2 705	0.0	0.0250	0.0350	0.0068	0.0986	0.1086	0.1586
131	0.1686	0.2004	0.2322	0.2422	0.2520	0.2678	0.2834	0.0	0.0253	0.0350
141	0.0668	0.0986	0.1086	0.1586	0.1686	0.2004	0.2322	0.2422	0.2547	0.2646
151	0.2804	0.2961	0.0	0.0250	0.0350	0.0668	0.0986	0.1086	0.1586	0.1686
161	0.2004	0.2322	3.2422	0.2672	3.2771	0.2929	0.3086	0.0	0.0250	0.0350
171	0.0668	0.0986	0.1086	0.1586	0.1686	0.2004	0.2322	0.2422	0.2797	0.2896
181	0.3054	0.3211	0.0	0.0250	0.0350	0.0668	0.0986	0.1086	0.1586	0-1686
161	0.2004	0.2322	0.2422	0.2922	0.3022	0.3182	0.3342	0.0	0.0250	0.0350
201	0.0068	0.0986	0.1086	0.1586	0.1686	0.2004	0.2322	0.2422	0.2922	0.3022
211	0.3181	0.3340	0.3448	0.2922	0.3022	0.3181	0.3340	0.3554	0.0	0.0250
122	0.0350	0.0668	9860-0	0.1086	0.1586	0.1686	0.2004	0.2322	0-2422	0.2922
162	0.3022	0,3181	0.3340	0.3660	0.2922	0.3022	0.3181	0.3340	0.3660	0.0
142	0.0250	0.0350	0.0668	9860.0	0.1086	0.1586	0.1686	0. 2004	0.2322	0.2422
152	0.2922	0.3022	0.3181	0.3340	0.3660	0.0	0.0250	0.0350	0.0668	986000
261	0.1086	0.1586	0.1686	0.2004	0.2322	0.2422	0.2922	0.3022	0.3181	0.3340
717	0.3366									

COORDINATES AND SUPPORTS 1 3.1000 3.100 21 2.7000 2.7000 21 2.5500 2.400 31 2.3000 2.300 41 2.2023 2.300 5.300 2.300 6.1 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9078 1.909 61 1.9000 1.600 61 1.5000 1.600 61 1.5000 1.5000 61 1.50000 1.5000 61 1.50000 1.5000 61 1.50000 1.5000 61	TES AND SU									
	000	PPORTS		•			,	a		2
50000000000000000000000000000000000000	-	3.1000	3.1000	3.1000	3.1000	•	3-1000	2.7090	2,7005	2,7000
20000000000000000000000000000000000000	000	2.7000	2.7000	2-7000	2.5500	2.5500	2.5500	2.5500	2.5500	2.5500
	200	2.4000	2.4000	2.3920	2.4000	2.4000	5.4000	5.4000	2.4000	2.3000
226682666	000	2 3000	2.3000	2.3000	2.3000	٠.	2-3000	2.2000	2.2003	2.2013
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	670	27.1008	2.2049	2 1130	2 0000	2.1030	2.1000	2.1006	2.1026	2,1046
9859823	965	2.0098	2.1111	2.0130	1.9000	00000	30000	2.0026	2.0046	2.0058
85.38.23	178	1.9098	1.9111	1.9130	1.8000	1.8000	1.9000	1.9000	1 8000	1 7003
5.96.2	325	1.8064	1.8104	1.8129	1.8188	1.7000	1-7000	1 - 7000	1.7000	1 7000
32.5.	000	1. 7000	1.7012	1.7052	1-7091	1.7116	1.7156	1.6000	1.6000	1.6000
1.5	000	1.6000	1.6000	1.6000	1,6012	1.6052	1.6091	1.6116	1.6059	1.6156
1.51	000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5000	1.5312	1.5052	1.5091
1.4	911	1.5136	1.5156	1.4000	•	1.4000	1.4000	1.4000	1.4000	1.4000
	000	1.4000	1.4000	1.3982	1.4025	1.4044	1 -4065	1.3000	1.3000	1.3000
1.3	0005.	1.3000	1.3000	1.3030	1.3000	1.3000	1.3000	1.3030	1.3900	1.3012
1.3032	3000	1.3052	1.2000	1.2000	1.2000	1.2000	1.2000	1.2000	1.2000	1.2000
1.2000	000	1.000	1.2000	0007-1	7107-1	1.2032	1 -2052	1.1000	1.1000	1.1000
1 1032	132	1 1 052	0000	0000	0000	0001-1	0001-1	1.1000	1.1000	1-1012
1.0000	200	0000	0000	0000	0000	0000	0000	0000	00000	00000-1
0.9000	000	0.9000	0006-0	0006-0	00000	0.000	0000-0	0.000	0000	00000
0.900	000	0.9000	0006-0	0.8000	0.8000	0.8000	0.8000	0-8000	0.7000	0.7000
0.7000	000	0.7000	0.7000	0.7000	0.7000	0.070	0.7000	0.7000	0.7300	0.7000
0.7000	000	0.1000	0.1000	0.001-0	0.5500		0.5500	0.5500	0.5500	0.4000
0.4000	000	0.4000	0004.0	0004.0	0.4000	.4000	0004.	4000	000	8
3.						0.1000 \$	0.1000 \$		7	0-1000 \$
	s 000	0.1000 3	0.1000 5	0.1000 s	0.1000 s		001000		0.1000 s	000
LOADS. CASE	-									
,	• •									
	30									
.,	200									
. ,	24.0									
- ,	*75.0									
.,	2000									
. ,	7									
. >	424									
. *	0.0									
,	0.212									
*	0.0									
	0.212									

TEN S																																																
TEM 4																																																
1																																																
TEM																																																
TEM 2																																																
			•	•	•	•	•						•	•		•				.0									•			•	•		•	•	:						.0		•	•	•	
TEM 1	0	•	0	0 0	•	0	•	•	0	0	•	0	•	0	•	0	•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	00	•	•	•	•	•	0		0	0	0	0	•	0	0	•	
			_					_		_			_		_	_		_	_							_																						
P H A	00560	09500	0,530	00560	00000	00000	0000	09200	00500	09500	00560	00260	00 260	00 260	00560	00560	99500	00560	00560	095000000	00500	00560	00560	09500	09500	2000	00260	00 260	00 260	00560	00560	00000			00 260		00.500	00 560	00 560	00560	00500	09500	09500	00 2 90	00 260	00 260		
ALP	0.000000.0	0.00000000	0000	0.00000560	0.0000000	095000000	0.0000000	0.00000560	0.000000.0	0.00000560	0.00000000	3.0000000	0.00000000	090000000	0.00000000	0.00000000	09500000-0	0.00000.0	0.00000000	000.0	0,00000000	0.00000.0	0.000000.0	0.300005.0	0,00000560	0,00000000	0.00000560	0.0000050	0 -00000 200	0.00000560	0.0000050	095000000		000000000000000000000000000000000000000	095000000000	000000000000000000000000000000000000000	0.00000560	0.00000560	0.00000560	0-00000560	0,00000560	0.000000.0	0950000000	0.000000.0	0 * 000000 * 0	0,00000000	0.0	
EA																																																
THICK-AREA	.0000	1.0000	.0000	0000		0000	- 000	0000	.0000	.0000	. 0000	.033	. 0000	0000	.0000	0000	.0000	0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	00:30	0000	.0000	0000	0000	0000	000	900	200	200	000	0000	0000	0000	.0000	. 0000	.0000	.0000	.0000	.0000	0000	000	
H	-	-	-	•	•		•	-	-	-	7	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	٠.	٠.	٠.	•	• -	•	-	-		-	1	-	-	-	-	-	-		•	
P. R	.3180	.3180	.3180	0.3180	000	180		180		180	180	180	180	180	_	180	180	180	180	180	180	180	180			180	180	180	180	180	٠.	100	001	200	180	180	180	180			.3180	.3180	.3180	0.3180	0.3180	0.3180		
•	0.3	0.3	0.3		200		:	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0	0.3	0.3	0.3	0.0							0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.0		•
w	:		•					•	•	•		•	•		•	•		•	:	•		:	:			:	•	•	•	•	•	•									:				•	•	•	
	18550.	18 56 3.	18 560	18 260	000	10000	1000	18 560.	18 560.	18 560	18 560.	18 56 0.	18 560	18 260	18 560.	18 560	29 000	29 000.	25 000	29 000	29 000.	29 000	29000	29 00 0	23000.	29 000	29 000	29 000	29 000	29 000	50000	2000	20000	2000	20000	29 000	29.000	29 000	29 000	29 000	29 000	29 000	29 000	29 000	29 000	29 000		
YPE																																																
-		9					,	2	6	*		4 3	6		1 3	1 3	0	4 3	2 3	9	4 3	9 3	4 3	6 3	4 3	2	9	2 3	0.		,	• •		,,	,,	,	0	0	0 2	0 2	0 2	18 3	4 3	6	5	•		
œ	-	2	0			•	•	-	-	-	-	~	-	~	~	~		-	-	~	-	-	-	-	~	~	~	~		٠.	٠.	4 "	•									213 21	2	~	~	~		
0	38	99	52																																							212 21						
																																										17 21						
ELEM		~				-	•	-	-	-	-	-	-	~	~	~		-	-	-	-	-	-	-	~	~	~	~ .	٠.	٠.	٠.	• "			""	. ~	, ~	~	"	~	2	43 2	2		~	~		

	TEH S																																													
	TEN 4																										,•																			
	TEN 3																							,																						
	TEM 2																																													
	TEN 1	•				•		•	•	•		•	•	•			. 0			•		•	•	•			•	•	•			•	•		•			.0		•	.0	•	•	•	•	•
	REA ALPHA	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	THICK-AREA	8	0000	000	000	9000	1.0000	1.0000	1.0000	1.0000	000		3 6	0000		0000	0000	1.0000	1.0000	1.0000	1.0000	1.0000	8	38	1.0000	000	000	1.0000	1.0000	000		1.0000	0000	1.0000	1-0000	000	000	000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	1.0000
	ä	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	9.0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	w							•	•	•	•	•							•	•	•	•	•					•	•	•	•	•								•	•	•		•		•
	S TYPE	**	200	5 64	58 5	68 5	78 5	89 5	5 101	411	5 171	2 73	200	86 5	5 01 5	5 22 5	5 63 5	5 652	33 5	41 5	20 5	5 65	70 5	90 5	102 5	115 5	128 5	142 5	5 161	5 71	202 5	202 2	246 5	2 60 5	12 5	19 5	5 12	35 5	43 5	5 5	62 5	•	•	82 5	6 26	6 90
	•																																													
1	0																																													
1	•																								5		27	7	25	::	200	32	; ;	29	=											
1		7 3		54	55	26	21	26		00	3	**	3	6.5	99	67	99	59	20	1	12	2;		::												8	96	16	26	63	46	56	36	6	2	66

	•	S TYPE	34	w	8	THICK-AREA	AL PHA	TEM 1	TEM 2	TEN 3	TEM 4	TEM S
		132 5		•	0.0	1.0000	0.0	•				
-		0.		:	0.0	1.0000	0.0	•				
				:		0000	200	•				
				:		200		•				
						0000		:				
20					0	0000		•				
						0000		:				
,,						0000	200	:				
		22				0000	200	:				
		2				0000	0.0	•				
				: .		0000		:				
-		0		•	0.0	0000-1	0.0	•				
		27		•	0.0	1.0000	0.0	•				
-		200		•	0.0	1.0000	0.0					
~		3 5		•	0.0	1.0000	0.0	.0				
		17 5			0.0	1.0000	0.0	•				
-		2 5		•	0.0	1.0000	0.0	•				
=		2 21		•	0.0	1.0000	0-0	.0				
-		5 21			0.0	1.0000	0-0	0.0				
i		17 5		•	0.0	1.0000	0.0	0				
7		8 5			0.0	1.0000	0.0					
2		5 6		•	0.0	1.0000	0.0					
2		5			0.0	1.0000	0.0					
		*			0.0	1.0000						
-		5			0.0	1.0000	0.0					
		5			0.0	1.3000	0.0					
		17 5			0.0	1.0000	0-0					
		5 5			0.0	1.0000	0.0					
		4			0.0	1.0000						
-		4				0000		:				
				:	200	2000		3				
				:		0000		•				
				•		0000		: .				
•				:		0000		:				
				•		0000	0.0	•				
		2		:		0000		•				
		,		:		0000		: .				
٠.				•		2000	9.0	•				
		,				2000	200					
		900		•		2000		3				
		10				1.000		•				
				:		0000		•				
				3		2000		•				
		0 0		•		0000		•				
		2				0000	0.0	3				
				•		0000	0.0					
		20		3		7.0000	0.0	•				
٧.		60			0.0	1.0000	0.0	•				
		2		•	0.0	1.0000	0.0	•				
-		-		•	0.0	1.0000	0-0	•				

	TEN 5																																												
	TEN 4																																												
	TEN 3																																												
	TEN 2																																												
	TEN 1	•		•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	: •	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		;>
	ALPHA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00003000	0.00000000	00000000	00000000	00000000	0.00003000	0.00000000	0.00003000	0.00003000	0.00000000	0.00000000	0.00000000	0.00000000	0.00003000	000000000000000000000000000000000000000	0.00003000	0.00000000	0.00000000	3.03003000	0.00003000	0.0003000	0.0000000	00000000	0.0000000	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00003000	0.00003000	000000000	0.00000000	0.00000000	00000000	200000
	THICK-AREA	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000-1	0000.	0000	10000	1.0000	1.0000	1-0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000	0000	00000	1.0000	2000
	8 6	200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3 500	0.3500	00000	0.3500	0.3500	0.3500	0-3500	0-3500	0.3500	0.3500	0.3500	0.3500	0.3530		0000	0.3500	0.3500	0.3500	0.3500	0.3500	00.3500	00000	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	2000
	w .	•			•	•	•	•	•	. 9.	.0.			76.	76.	76-	16.	76.	76.	16.	16.	16.	16.	14.	76.	76.	16.	16.	16.	•	1,00	76.	76.	76.	76.	76.	76.	16.	.92		10.	10.	76.	76.	
	TYPE	•		•	•	•	•	•	•		•	•					3	3	3	3			m r	•		3	3	•	~ .	•		, "		3	3	3	~	•		• •	• •				
1	5	207	197	212	217	233	538	524	270	•	0 :	3:	30	4	51	67	11	88	100	113	176	140	155	180	007	221	245	258	7	97	34	,	22	9	70	81	0	6	103	120	177	15.0	13	188	
	~ :	761	182	197	212	217	533	238	457	~	*:	9 6	3 :	3	4	57	67	11	88	100	113	126	140	170	185	200	221	245	*:	::	2,0	3 4	45	51	9	2	8	80	200	50	170	163	158	173	•
	9	154	181	156	211	216	232	237	523	-		25	30	3	4.3	26	66	16	18	55	112	125	139	1 60	184	159	220	241		2 .	36	36	175	20	88	69	81	5	3 5	701	128	16.2	157	172	
	•	201	1 56	211	216	232	7:1	253	597		2:	30		17	56	99	16	67	55	112	125	136	124	184	159	220	241	257	2:	-	32	17	20	55	59	19	75	06	102	120	142	157	172	187	
	FLEM	123	153	154	155	156	151	158	128	9		707	144	. 9	166	167	168	169	170	171	172	173	174	135	177	178	179	180	181	797	187	185	186	187	188	189	190	161	761	101	10	100	197	198	,

TEN 5																																													
TEM 4																																													
TEN 3																																													
TEM 2																																													
TEN 1	•0	•	•	0	0	.0	0							6								•	•	•		•	•	•	•	•	•			•		•		•		•					
AL PHA	0.000000000	0.000000000	0.0000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000	0.00000000	000000000	0.000000.0	0.00000000	0.00000000	0.00000000	0.000000.0	00000000000	0000000000	0.00000000	0.00000000	0.00003000	0.000000000	0.01003000	0.000000000	0.000000000	0.00003000	0.00003030	0.00000000	000000000	00000000	0.0000000	0000000000	0.00003000	0-00003000	0.00003000	0.00000000	0.00003000	0000000000	0.00003000	0.00003000	0.00003000	0.00003000	0.00003000	
THICK-AREA	1.0000						1.0000	1.0300	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0000-1	0000	0000	1.0000	1.0000	1-0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
ă	0.3 500	0.3500	0.3500	0.3 500	0.3500	0.3500	0.3500	0-3500	0.3500	0.3500	0-3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3200	3500	3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500	0.3500		0.3500	0.3500	0.3500	0.3500	-
w	76.	16.	16.	16.	76.	76.	76.	76.	76.	76.	76-	76.	16.	76.	76.	76.	76.	76.	76.	76.	76.	76.	76.	16.	16.	9:	.01	.01			14.	76-	76.	76.	76.	76.	76.	76.	76.	76.	76.	76.	76.	76.	
TYPE	•	3		3	3	3	•	3						3								3	•	3	•	•	•	,	•	•					3	3	3				3	3			
	542	197	63	105	118	131	145	160	175	190	205	226	242	263	13	50	28	36	:	53	63	13	84	96	1 08	171	135	0	0 .	1 7 8	100	2 08	229	250	566	150	165	180	195	210	215	231	236	252	
œ	554	542	8	93	105	118	131	145	160	175	1 90	205	226	247	9	2	20	28	36	*	53	63	13	84	96	108	171		100	1 4 3	178	153	208	523	250	135	150	165	180	195	210	215	231	236	
•	223	544	Ce	25	104	117	130	144	1 59	174	1 69	204	225	246		12	15	27	35	43	52	62	22	83	38	101	27	133		2	111	152	207	228	549	134	149	164	1 79	154	209	214	230	235	
۵	544	260	25	104	117	130	144	357	174	185	204	225	246	262	12	15	27	3	43	52	62	72	63	96	101	120				111	162	207	228	245	265	145	164	175	154	502	214	230	235	251	
EM	201	707	503	504	502	206	201	20 6	209	210	211	212	213	214	216	216	211	218	219	220	221	222	553	\$22	577	226	177	977	330	222	233	233	234	552	236	237	238	523	240	142	242	243	344	245	The second

ELEK	ALPHA 1	PHOPERTIE	S ALPHA 12	113	97	613	C22	623	533
84	0000			1620.0	86.0	0.0	7641.0	0.0	670
54	C. 00000903	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
20	0.0330903	- 1	0.0	1620.0	86.0	2.0	7641.0	0.0	67
15	0.0	00 66 000 0	0.0	1641.0	86.0	0.0	1620.0	0.0	67
75	0000000			1050.0	0.00	000	20110	0.0	010
2,4	00000000	000	0.0	1620.0	0.00		0-1492		670
25	0-000000		0.0	1620-0	86.0			0.0	670.0
56	0.0000000		0.0	1620.0	86.0	0.0		0.0	670
5.7	0.0000000		0.0	1620.0	86.0	0.0		0.0	670
58	0.0000000	-	0.0	1620.0	86.0	0.0	-	0.0	670-
88	0.000000.0		0.0	1620.0	86.0	0.0	-	0.0	670.
09	006000000			1620.0	86.0	0.0	7641.0	0.0	670
61	0. 0000000		0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
29	0.0000000	270	0.0	1620.0	86.0	0.0	-	0.0	.019
63	C. 0000 500		0.0	1620.0	86.0	0.0	7641.0	0.0	670
49	0.000000			1620.0	86.0	0.0	7641.0	0.0	670.0
65	0.0000000		0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
96	0.0000000	2	0.0	1620.0	86.0	0.0		0.0	670
67	0.0000000		0.0	1620.0	86.0	0.0	_	0.0	610
6.8	0.0000000		0.0	1620.0	86.0	0.0	-	0.0	670.
59	0.000000		0.0	1629.0	86.0	0.0	-	0.0	670.
01	0.0000000		0.0	1620.0	86.0	0.0			610.
-	0. 0000000		0.0	1620.0	86.0	0.0	-	0.0	670.
22	0.0000000	3	0.0	1620.0	86.0	0.0	~ .	0.0	670.
	0.0000000		0.0	1050.0	90.08	3.0		0.0	010
	0.000000			1620.0	0.98	0.0		0.0	019
2.2	0000000			1620.0	0.00		-		
11	0000000			1620.0	0.00				010
10	00000000			0.0291	0.08		20110	0.0	010
32	0000000			1620.0	0.40		-		
80	0.00000			1620.0	96.0				477
18	0. 000000	0.0	0.0	1620.0	96.0	0	7641.0		670
82	0.0000000	0.0	0.0	1620.0	86.0	0-0		0-0	670
83	0.0300500	0.0	0.0	1620.0	86.0	0.0	-	0.0	670.
84	0.0000000	0.0	0.0	1620.0	86.0	0.0	-	0.0	670
85	0.0000000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670
98	0.0000000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.
81	0.000000.0		0.0	1620.0	86.0	0.0	7641.0	0.0	670.
88	0.0000000	0.0	0.0	1620.0	86.0	0.0	-	0.0	670
98	0.0000000		•	1620.0	86.0	0.0	7641.0	0.0	670.
06	0.0000000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	.019
16	C0500000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.
26	0.0000000	0.0	0.0	1620.0	86.0	0.0	1641.0	0.0	610.
93	0.0000000	0.0	0.0	1620.0	86.0	0.0	1641.0	0.0	670.
**	0.0000000	0	0.0	1620.0	86.0	0.0	7641.0		670
56	0.00	0.0000000		0.159	86.0	0.0	1620.0	•••	670
10	0000000								

YATER IAL	PROPERTIE AL PHA 2	ALPHA 12	113	612	C13	C22	623	33
0060000		0.	1620.0	86.0	0.0	7641.0	0.0	670.0
000000		0.0	1620.0	86.0	0.0	-	0.0	670.0
0050000		0.0	1620.0	86.0	0.0	-	0.0	670.0
000000	000	0.0	1620.0	0.08	0.0	0-1492	0.0	670.0
200			0.0791	0.00		٠.	0.0	0.000
0060000		0.0	1620.0	0.08	•	0.1100	•	0.00
2000			0.0291	0.00		-	•	0.00
0000000			1070.0	0.00		٠.	0.0	0.070
0650000		0.0	1620.0	0.08	0.0	-	0.0	0.00
0060000		0.0	1620.0	86.0	0.0	104100	0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	-	0.0	670.0
0060000		0.0	1620.0	86.0	0 0	-	0.0	670.0
CC\$0000		0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	-	0.0	670.0
0060000		0.0	1620.0	86.0	0.0	-	0.0	670.0
0000000		0.0	1620.0	86.0	0.0	-	0.0	670.0
0060000			1620.0	86.0	0.0		0.0	670.0
0000000		0	1620.0	86.0	0.0			670
20000			1620.0	96				440
000000			1620.0	0.40				200
0000000			1420	200		7441		7.00
20000	50.5	200	0.000	200		201101		200
2000			0.0291	0.00		0.1101		0.000
200000			0.0201	000		201100		0.00
000000			10201	000		0.1101		2000
000000			1620.0	96.0		1641		200
20000			1620.0	9		7641		470
0000000			1620.0	96.0				200
000000			0.000	200		7441		200
2000			0.0707	0000		0.1.01		0.00
005000			0.0291	80.0		0.1.07	0.0	0.070
20000		0.0	1620.0	86.0	0.0	0.1407	0.0	0.00
0050000		0.0	0.0291	80.0	0.0	0.150	0.0	0.079
005000	0.0	0.0	1620.0	86.0	0.0	1641.0	0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0000000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0050000	0		1620.0	86.0	0.0	1641.0	0.0	670.0
0	C. 000009 00	0	7641.0	86.0	0.0	1620.0	0.0	670.0
0000000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0000000	0.0	0.0	1620.0	86.0	0.0	_	0.0	670.0
0000000	000	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
0060000	000	0.0	1620.0	86.0	0.0		0.0	6
0000000		0.0	1620.0	86.0	0.0		0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
000000	0.0	0.0	1620.0	86.0	0.0	7641.0	0.0	670.0
006000	0.0	0.0	1620.0	86.0	0.0		0.0	670.0
0060000	0.0	0.0	1620.0	86.0	0.0	4411		, 44
				000	2		0.0	0.00

	6.270.0 6.700.0 6.700.0 6.700.0 6.700.0 6.700.0 6.700.0
(continued)	200000000000000000000000000000000000000
JOINT (cor	C22 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0 7641.0
OF TYPICAL JO	00000000000
	212 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0
ANALYSIS	C11 1620.0 1620.0 1620.0 1620.0 1620.0 1620.0 1620.0 1620.0
FINITE-ELEMENT	14 2 ALPHA 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
C-10.	4 2002023333333
TABLE C-	SITE MATERIAL ALPHA L. ALPHA L. ALPHA L. O. 1000900 O. 0000900 O. 000090 O. 000090 O. 000090 O. 000090 O. 000090 O. 000090 O. 0000000 O. 000000 O. 00000 O. 0000 O. 00000 O. 00000 O. 00000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 0000 O. 00000 O. 0000 O. 000
	COMPO 148 149 149 149 150 150 150 150 150 150 150 150 150 150

		TABLE C	E C-10. FIN	ITE- ELEMENT	FINITE-ELEMENT ANALYSIS OF TYPICAL JOINT (continued)	OF TYPICAL	JOINT (cor	tinued)		
X 06F	DEFLECTION, CASE	1 1								
	-	2	3	•	2	•	1		•	01
-	0.0	-1.058E-05	-1-1796-05	-3.549E-05	-4-185E-05	-5.486E-05	-5. 7796-05	0.0	-7.055E-06	-1.333E-05
=	-2.723E-05	-3.325E-05	4.571E-05	-4.863E-05	0.0	-6.780E-06	-1.283E-05	-2.584E-05	-3. 67 E-05	-4.377E-05
21	-4.662E-05	0.0	-5.067E-37	-2.330E-06	-4.978 F-06	-3.975E-06	-8-220E-06	-1.729E-05	-1.998E-05	0.0
31	5.362E-36	5.665E-06	6.141E-06	3.362E-05	3.235E-05	3.536E-05	3.307E-05	0.0	3.062E-05	3-527E-05
7	3.7906-05	7.904E-05	7.992E-05	9.112E-05	8.927E-05	0.0	-2.166E-06	7. 664E-06	8-254E-06	9.029E-06
21	3.3346-05	3.321E-05	3.2785-05	3-174E-05	0.0	-3.395E-06	2. 736E-07	-7.453E-07	-1.805E-06	5.236E-09
6	-2.22E-06	-2.997E-06	-1.506E-05	-1.704E-05	0.0	-4.042E-06	5.939E-06	6.089E-06	4.412E-06	-2.199E-06
=	-4. 522E-06	-6.328E-06	-7.991E-06	-1.087E-05	0.0	-4.987E-06	5.915E-07	1.720E-06	6.209E-06	3.199E-05
8 1	2.061E-05	2.088E-05	2-1136-05	3.261E-05	3-105E-05	0.0	-5.084E-06	5.771E-06	5.771E-06	5.460E-06
16	1.7496-05	1.445E-05	-5.953E-06	-7.988E-06	-8.675E-06	-1.018F-05	-9.452E-06	0.0	-5.416E-06	-6.083E-06
101	-7.4735-06	-8-175E-06	-8.967E-06	-1.296E-05	-3.452E-05	-3.683E-05	-3.816E-05	-5.329E-05	-5.658E-05	-5.354E-05
Ξ	0.0	-5.603E-06	-1-825E-05	-2.152E-05	-2,473E-05	-3.618E-05	-4.164E-05	-6.103E-05	-6.355E-05	-6.619E-05
121	-5.540E-05	-9.637E-05	-9.659E-05	0.0	-5.638E-06	-2.504E-05	-2.930E-05	-3.350E-05	-5.210E-05	-5.886E-05
131	-9.223E-05	-9.688E-05	-9.699E-05	-9.295E-05	-1,210E-04	-1.227E-04	-1.238E-04	0.0	-5.547E-06	-2.486E-05
141	-2.853E-05	-3.282E-05	-4.970E-05	-5.665F-05	-6.203 E-05	-6.421E-05	-6.610E-05	-6.476E-05	-6.695E-05	-8.952E-05
151	-5-191E-05	-9.358E-05	0.0	-5.391E-06	-2,128E-05	-2.464E-05	-2. 175E-05	-4.016E-05	-4.744E-05	-5.010E-05
161	-5-1436-05	-5.256E-05	-5.275E-05	-5.549E-05	-6.694E-05	-6.835E-35	-6.947E-05	0.0	-5.236E-06	-1.842E-05
171	-2.127E-05	-2. 392E-05	-3.416E-05	-4.169E-05	-4.843E-05	-5.035E-05	-5.215E-05	-5.652E-05	-6.01 SE-05	-5.968E-05
191	-5.972E-05	-6. 01 0E-05	0.0	-5.114E-06	-1.737E-05	-2.006E-05	-2.261E-05	-3.283E-05	-4.052E-05	-5.115E-05
161	-5.3665-05	-5.608E-05	-6.547E-05	-6.993E-05	-8.085E-05	-8-167E-35	-8-126E-05	0.0	-4.979E-06	-1.719E-05
201	-1.9865-05	-2.242E-05	-3.315E-05	-4.096 E-05	-5.285E-05	-5.544E-35	-5.751E-05	-6.802E-05	-7.248E-05	-7.583E-05
211	-7.642E-05	-7.683E-05	-7.813E-05	-6.989E-05	-7.614E-05	-7.677E-05	-7.723E-05	-7.871E-05	0.0	-4.799E-06
221	-1.6396-05	-1.393E-05	-2-139E-05	-3.174E-n5	-3.957E-05	-4.982F-05	-5.200E-05	-5.402E-05	-6.202E-05	-6.679E-05
231	-7.4296-05	-7.500E-05	-7.563E-05	-7.763E-05	-5.978E-05	-6.690E-05	-6.756E-05	-6. 81 0E-05	-6.987E-05	0.0
241	-4.622E-06	-1-388E-05	-1-600E-05	-1.804E-05	-2.616E-05	-3.394E-05	-4.048E-05	-4-197E-05	-4.329E-05	-4.761E-05
251	-5.262E-05	-5.567E-05	-5.606 E-05	-5.643E-05	-5.915E-05	0.0	-4.543E-06	-1.253E-05	-1.443E-05	-1.625E-05
192	-2.315E-05	-3.088E-05	-3.576E-05	-3.693E-05	-3.795E-05	-4.054E-05	-4. 566E-05	-4.217E-05	-4.204E-05	-4-197E-05
27.1	-4.226E-05									

		TABLE C-	C-10. FINI	TE-ELEMENT	FINITE-ELEMENT ANALYSIS OF		TYPICAL JOINT (continued)	tinued)		
Y DEF	DEFLECTION, CASE	-								
	-	2	3	•	•	9	1			10
-	3.391E-03	36-	3.386E-03	3.415E-03	3.4196-03	3.435E-03	3. 437E-03	2.679E-03	2.679E-03	2.682E-03
=	2. 722E-03		2.747E-03	2.748E-03	2.4136-03	2.410E-03	2.415E-03	2.462E-03	2.471E-03	2-492E-03
21	2.455E-03		2-137E-03	2.126E-03	2-1456-03	2.201E-03	2.221E-03	2.237E-03	2.248E-03	2.026E-03
31	1.9496-03	1.959E-03	1.966E-03	2.030E-03	2.0546-03	2.066E-03	2.085E-03	1.423E-03	1.756E-03	1.781E-03
7	1.790E-03	1.8796-03	1.884E-03	1.920E-03	1.9196-03	1.295E-33	1.255E-03	1.5876-03	1-610E-03	1-617E-33
15	1.725E-03	1.713E-03	1.771E-03	1.751E-03	1.2046-33	1.204E-03	1.4306-03	1.4516-03	1.459E-03	1.5556-03
61	1.5385-03		1.600F-03	1.592E-03	1-128 6-03	1.1275-33	1. 2 89E - 03	1.302E-03	1.308E-03	1.383E-03
11	1.3906-03		1.435E-03	1.442E-03	1.361 6-33	1.061E-03	1-1606-03	1.162E-03	1-1376-03	8.625E-04
81	1.202E-03		1.2365-03	1.289 E-03	1.2946-03	9.963E-04	9.966E-04	1.0458-03	1.041E-03	1.018E-03
16	7.727E-04	7.685E-04	1.060E-03	1.077E-03	1.076E-03	1.1396-03	1.120E-03	9.289E-04	9.290E-04	9-465E-04
101	5.383E-04	9-151E-04	7.136E-04	7.047E-04	9.302E-04	9.436E-04	9.370E-04	9.831E-04	9.623E-04	9.654E-04
111	8-600E-04	8. 600E - 04	8-567E-04	8.481E-04	8.283E-04	6.640F-04	6.526E-04	8-130E-04	8-161E-04	8-104E-04
121	8.3C7E-04		8.132E-04	7.909E-04	7.909E-04	7.745E-04	7.6735-04	7.520E-04	6-169E-04	6.122E-04
131	6. 994E-04		6.755E-04	40-36C+*	6.534E-04	6.624E-04	6.639E-04	7.227E-04	7.226E-04	6.992E-04
141	€. 936E-04		5.713E-04	5.745E-04	\$C-3650.9	6.064E-04	5.916E-04	3.765E-04	3.781E-04	5.327E-04
151	5.427E-04	5.477E-04	6.559E-04	6.558E-04	6.300E-04	6.253E-04	6. 165E-04	5.268E-04	5.304E-04	5-324E-04
19:	5.292E-34	5.140E-04	3. 366E-04	3.357E-04	4.366E-04	4.425E-04	4. 447E-04	5.907E-04	5.406E-04	5.653E-04
171	5.61 CE-04	5.536E-04	4.819E-04	4.831E-04	4.687E-04	4.627E-04	4. 478E-04	3.0495-04	2.995E-04	3.526E-04
181	3.520E-04	3.519E-04	5.271E-04	5.270E-04	5.0356-34	4.995E-34	4. 931E-04	4.3548-04	4.353E-04	4-106E-04
161	4.0 38E-04	3. 903E-04	2.753E-04	2.706 E-04	2.7226-04	2.653E-04	2. 472E-04	4.648E-04	4-647E-04	4.437E-04
201	40-300+ **		3.874E-04	3.870E-04	3.5676-04	3.505E-04	3.4001-04	2.458E-04	2.455E-04	2.163E-04
211	2-122E-04		2.017E-04	2-171E-04	1.832 6-34	1.798F-04	1.7456-04	1.736E-04	3.441E-04	3.440E-04
122	3.281E-04		3.221E-04	2.902F-04	2.905E-04	2.589E-04	2.5456-04	2.482E-04	1.867E-04	1.880E-04
231	1.5786-04	1.559E-04	1.534E-04	1.541E-04	1-4276-04	1.247E-04	1.246E-04	1.246E-04	1.266E-04	1.698E-04
241	1.6985-04	1.619E-04	1.608E-04	1.594E-04	1.4466-04	1.452F-04	1.2635-04	1.2436-04	1.2196-04	9.464E-05
251	5.601E-05	9. 01 SE-05	9.160E-05	9.476E-05	9.780 E-05	0.0	0.0	0.0	0.0	0.0
261	000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	THE REAL PROPERTY.									

	200				CASE	(TO TAL	STRAINS .1000000.	.0000000	(MECH.	STRA[N) +1000000	.00000
5	***	XX.	NO	20		*	٨.	×	××	*:	× 4
0.0666	16.8759	-0-2336	5.6031	7.9734		-293.	910	-33.	-293	610	-33
13	14.2950	-0.1563	4.8522	6.6791		-231.	766.	-22.	-231.	766.	-22.
86	12,3565	-0-1164	4.1454	5.8070	-	-207.	.499	-17.	-207.	. 499	-17.
20	11.9760	0.0542	4-0154	5.6293		-291.	644.		-201-	. ***	
0.0980	12.5646	0.0621	4.2209	5.9003		-210.	675.	.	-210.	675.	
77	12, 7844	0000	4.2369	0.030		-225	.060	::-	-225	•060	•
20	12.6156	-0.0242	4.1585	5.0804		-226	682	- 7-	-226.	. 1689	
-0.1301	12.3588	-0.0352	4-0763	5.8570		-219-	668	-5-	-216-	668.	
-0-1364	12-0698	-0.0365	3-9878	5.7151		-213.	652.	-5-	-213.	652	-5-
-0.0940	11.7853	-0.0341	3.8971	5.5780		-207	637.	-5-	-207-	637.	-5-
97	11.5217	-0.0318	3.8130	5.4510	1	-205-	6220	-5.	-205-	6220	-5-
-0.0742	11.1802	-0.0261	3.7020	5.2880	-	-196.	.409	.4.	-196.	.409	+
69	10, 7551	-0.0169	3.5594	5.0882	-	-188.	581.	-2.	-188.	581.	-2.
-0.0679	10.4847	-0.0057	3.4723	4.9586	-	-183.	566.	-1-	-183.	566.	-
1.5202	27.0059	-2.0803	9.5087	12.5038	-	-244.	915.	-189.	-544.	915.	-189.
0.2778	17.0923	-1.0108	5.6049	8.1655	-	-197.	592.	-95.	-197.	. 265	-92.
6101.0	14-1933	-0.6456	6491.4	6.6878	-	-152.	488.	-56-	-152.	488.	-59.
-0.1610	12.2670	-0.4036	4.0353	5.8303	-	-140.	425.	-37.	-140	425.	-37.
-0.1508	12.0180	-0.4158	3.9557	5.7113	-	-137.	416.	-38.	-137.	+16.	-38.
-0.0463	12.8327	-0-2879	4.2621	6.0649		-142.	443.	-56.	-142.	443.	-56.
70	13.361	-0-1300	4.4385	6.3106		-148.	.194	-15.	-148	. 194	-12.
30	13 6000	0.0033	4.5051	6014.0	••	•761-	*13*	•	•761-	*13.	•
-0.0755	14.0201	10000	1,6482	6 4274		-156	480.	•	-125	.084	•
-0.0585	14.0410	-0.0930	4.6608	170.0		-156	485	•	-156	* 98	
23	13.9927	-0.0388	4.6492	6.6070		-155.	483	•	-155	483	•
63	19,3552	-1-8022	6.8138	6.0003		-175.	656	-166.	-175.	456	-186
26	11.9612	-1.0097	3.9152	5.7495		-139	415.	-55-	-139.	415.	-92
0.1120	9.7265	-0.6486	3.2795	4.5896		-103.	334.	-59.	-103.	334.	-58-
-0.0606	8,2403	-0.3433	2.7266	3.9090	-	-95.	285.	-31.	-95.	285.	-31.
-0.0616	7. 9038	-0.2638	2.6141	3.7467	-	- 88 -	273.	-54.	-89-	273.	-24.
88	8.2467	-0.3347	2.7618	3.8880	-1	-88-	284.	-30	-88-	284.	-30.
-0.1140	8.5251	-0.1324	2.8037	4.0413	-	-97.	295.	-12.	-41.	295.	-12.
2	4604.8	-0.0505	971179	3.9862		-65-	-162	-2.	-62.	291.	-5-
1970.0	1611.8	0.5250	2.9350	4.1364		-95.	302.	-50.	-95.	302.	-50.
: :	0.000	235.7	2 0000	*007**							
2000	7.00%	1477	0166-7	6667.4	•••	- 001-	311.	.07-	-001-	311.	-07-
-0.0220	9-2736	-0-2550	3.0839	4.3818		-103	320	-23	-100-	320	-23
0.7174	13.2356	-1.1849	6.6510	6.1538		-120	.044	-104.	-120-	440	-108.
-C. 1306	7.9766	-0.5746	2.6153	3.8203		-95.	276.	-55.	-95.	276.	-52.
-0.0317	5.8709	-0.2894	1.9464	2.7851	1	-65.	203.	-56.	-65.	203.	-26.
0.0221	5. 4333	0660.0-	1.8185	2.5574	-	- 66 -	187.	-6-	-59.	187.	-6-
48	5.5958	0.0455	1.7803	2.7002	1	-70-	196.	;	-10-	196.	;
16	9.3215	0-1507	3-1730	3501	1	-95.	319.	14.	-95.	319.	14.
10	13,4358	0.0236	4.4718	6.3385	-	-106.	1760.	35.	-106.	1760.	35.
-0.0032	13.6611	0.0394	4.5526	6.4407	-	-41.	1789.	28	-47.	1789.	.65
215	1000										

CASE		-	-	-				-							-	-	-						-					-	-	-				-		_		-	-	-	-		•-	
1000000	XX	-84.	152.	245.	1131.	865.	533.	384.	-78.	***	-133.	-1705	-201	-173.	-143.	-123.	-100	-94	-21.	-82	662.	429.	254.	-136.	-111.	-604	-603-	-424-	-364.	-291.	-622-	-146-	-89-	-62-	53.	104.	84.	-282.	554.	307.	-65.	185.	1139.	
STRAIN#1000000	**	-10.	1846.	1869.	1689.	1571.	1449	1317	1174.	.0101	.006	745	688	645.	616.	597.	575.	552.	. 238.	1805	1725.	1579.	1498.	1490	1021	886	785.	717.	670.	636.	010	568	546.	534.	1732.	1717.	1704.	1671	1654.	1643.	-53.	1668.	1404	
(MECH.	XX	1879.	-33.	79.	131.	36.	18.	98.	18.	•77-	-13.	-131	-117	-98-	-87.	-84.	-85.	-73.	-63-	-22-	73.	10.	-53.	30.	• • • •	-27	-117-	-127.	-110	-91.	-85.	-14.	-71.	-61.	-47.	-93.		5.	11.	-34.	1678.	-65.	57.	
.000000	XX	-84.	152.	245.	1131.	865.	333.	20%	-78.		-133	-205-	-201-	-173.	-143.	-123.	-100	- 94.	-17-	-82.	662.	429.	254.	-136		-524.	-469	-424.	-364	-291.	-677-	-144.	-88-	-53-	53.	104.		-282	554.	307.	-65.	185	1139.	
STRAINI + 1000000	**	-10.	1846.	1869.	1689.	15/1.	1449.	1311			• 000	745.	688	645.	616.	597.	575.	552.	.866	1805	1725.	1579.	1498.	1490.	1021	886.	785.	717.	.019	636.	010	568.	546.	534.	1732.	1717.	1,04	1671-	1654.	1643.	-53.	1668.	1404	
(TO TAL		1679.	-33.	.61	131.	• • •	- 87		. 19.	• • • • • • • • • • • • • • • • • • • •		-131	-1117.	-88-	-87.	- 84.	-85.	-73.	-63.	52.	73.	10.	-58-	30.	.00	-111-	-117.	-127.	-110.	-91.	- 80	-79.	-11.	-61.	-41.	- 93.	. 63 -	2.	111.	-34.	1678.	-69-	57.	
CASE		-	-					••	•			٠		-	-	-		٠.	••		-	-	-	٠.	••			-	-	٠.			-	-	_					-				
	SO	1557.0	6.6255	6.6694	6660.0	5 1027	7761-6	2000	3 424 5	3030	2 9407	2.7154	2.5059	2.3465	2.2390	2.1667	2.0889	0100-2	2044.7	6.4463	6.1652	5.6569	5.3780	5.3268	3 706 8	3.2091	2.8648	2.6222	5.4469	2.3160	201707	2.0616	1.9798	1.9324	9.2366	1281.9	0757-9	5.9841	5.9277	2.8990	6.0301	5.0785	5.0485	
	40	4.8007	4.7370	4.8588	86250	3 74.34	3.6424	2 0334	3.5000	2 2773	2.0112	1.8438	1.7047	1.6062	1.5379	1.4885	1.4348	1.3/84	4.6.286	4.6776	4.4846	4.0723	3.8425	3.8541	2.6320	2.2406	1.9567	1.7742	1.6638	1.5876	1.4720	1.4170	1,3656	1.3400	4.4055	4.3640	4.3237	4.3053	4.2659	4.2128	4.2926	3000	3.6485	
	XX	-0.0564	0.1022	6191-0	0.7380	0.3671	0.26.18	00000	-0.0431	0000	-0.1187	-0.1371	-0-1345	-0-1157	-0.0951	-0.0822	6990.0-	05.00	1140	-0.0549	0.4433	0.2871	0.1701	-0.0938	-0.4047	-0.3522	-0.3142	-0.2843	-0.2439	8561.0-	-0-1248	-0.0967	-0.0594	-0.0193	8660-0	6666	-0.0302	-0-1893	0.3713	0.2055	0,900-0-	0.2370	0.7630	
	**	0.0477	14.1059	14.2874	15 0000	11 0730	10.0657	0 0 11 3	7.7185	4 8731	6.2153	5.6797	5.2444	4.9215	4. 7020	4.5509	4.3875	2007	13. 7656	13. 7928	13.1870	12.0650	11.4455	11. 3859	7.8514	6. 7607	5.9912	5.4670	5.1122	4. 8541	4.4955	4.3301	4.1644	4.0725	13.2252	13.0120	12.8960	12.7648	12.6375	12.5517	0.0577	12.7508	10.7325	
	XX	14.3545	0.1052	0.2888	0.3579	1611	0.1766	1307	0.0515	6170-0-	-0-1219	-0-1493	-0.1302	-0.1329	-0.0883	-0.0852	-0.0332	5170-0-	1100	0.2399	0.2667	0.1520	0.0820	0.1764	0.0473	-0.0389	-0-1213	-0-1445	-0.1207	6 160 0-	-0.0797	-0.0790	-0.0675	-0.0525	-0.0087	-0.0033	0.0750	0.1511	0.1693	0.0866	12.8.21	0.1519	0.2131	
STRESS	EM						22		200		3 3	62	63	**	65	99			10	12	72	73		75		78	79	90	81	28	84	85	98	87		60	916	35	93	**		2.6	96	

	CASE					-		-			-		1	-	-	-	_	7.	٦.					1	-	-	٦.	٠.				-		٦.			-	-	-	-	٠.					
	*10000001	X X	-306-	-150	-159.	-172-	-186.	-182	-132	-47	113.	-06-	566.	395.	288.	•09	-010-	-603-	-480.	-705-	-282	-173-	-56.	19.	47.	***	-44.	-976-		7.	-252.	326.	+7.	-40.	431.	452.	+0+	201.	125.	-398.	-233.	-182.	-1111	-6-	62.	
	STRAINI	1000	932	749.	650.	585.	537.	. 484.	438.	418.	1592.	1576.	1487.	1320.	1202.	1125.	879.	175.	663.	531	470-	428.	410.	1721.	1691.	1675.	1667.	.7001	1600	1576.	1546.	1513.	1478.	-18.	1495	1207.	.766	.698	119.	545.	328.	246.	226	303.	1444.	
ì	(MECH.	X	-104	-56.	-51.	-10-	-80-	-75.	-58.	-42.	-45.	-11-	;	-40.	-80.	-12.	-31.	-47.	-46.	-00-	-11-	-53.	-37.	-95.	-91.	-87.	-78.	-20.	-24	-79-	-39.	-69-	-65.	147	-84.	-54.	-56.	-54.	-37.	-44.	-38.	-42.		- 8-	-85.	
	*0000001	557	-306-	-150	-159.	-172.	-186.	-182.	-132.	-47.	113.	-06-	566	395.	288.	•09	-010-	-603-	-480.	-405-	-282.	-173	-56.	19.	47.	***	-44.	-350	: 17	7.	-252.	326.	47.	-40.	431.	452.	*04	201.	125.	-358.	-233.	-182.		.0-	62.	
	STRAINI . 1000000.	1006	932.	749.	650.	585.	537.	484.	438.	418.	1592.	1576.	1487.	1320.	1202.	1125.	879.	175.	663.	531	470-	428.	410.	1721.	1691.	1675.	1667.	1006.	1609	1576.	1546.	1513.	1478.	1445	1495.	1207.	• 466	869.	119.	545.	328.	246.	225	303.	1444.	
	(TOTAL	- 81	-108-	- 56.	-51.	-10.	-80	-15.	- 58.	-42.	-45.	-111-	*	-05-	- 80	-12.	-31.	-41.	- 40.	-00-	- 11 -	-53.	-37.	-92.	-16-	-87.	- 78.	- 20-	- 74-	- 29-	-39.	-09-	-65.	14/6	-84-	-54.	- 56.	-54.	-37.	- 44-	-38.	-45.		- 8-	-85.	
	CASE			1	-	-	1	1		-	-	-	-	-	-			٠.						1	1	-	н.		4 -			-	٦.			1	-	-	_	٠.						
	20	3-8 564	3.3804	2.7026	2.3490	2.1200	1.9523	1.7634	1.5903	1.5106	5.7195	5.6489	5.3356	4.7465	4.3369	4.0555	3-1984	2018-7	2	1.0011	1.7131	1.5524	1.4826	0.1960	6.0887	6.0306	5.9984	5 0073	5.7491	5.6709	5.5511	5.4430	5.3144	5.2120	5.3869	4.3487	3.5869	3.1222	2.8050	1.9794	1.1939	0.9029	0.8102	1.0878	5.2009	
	2	2-6985	2.3399	1.8973	1.6464	1.4662	1.3366	1.2048	1.0955	1.0521	4.0756	4.0529	3.8334	3.3776	3.0518	2.8580	5057-7	10000	0190-1	1.2973	1.1692	1.0713	1.0359	4.3808	4.3046	4.2656	4.2490	4.2007	4.1022	4.0141	3.9591	3.8634	3.7688	3.6653	3.8015	3.0781	2.5287	2.2239	1.9862	1.3789	62283	8019-0	0.5421	0.7754	3.6708	
	2	0.3732	-0.2047	-0-1003	-0.1066	-0.1151	-0-1249	-0.1219	-0.0883	-0.0315	0.0757	+09000-	0.3789	0.2644	0.1929	0.0403	6609-0-	-0-4039	175.0-	-0-2351	-0-1891	-0.1159	-0.0376	0.0126	0.0313	0.0296	-0.0295	0.2795	0.0962	0.0044	-0.1690	0.2184	0.0318	0.0357	0.2889	0.3027	0.2704	0.1344	0.0835	-0.2666	9661-0-	1771-0-	-0.0221	-0.0002	0.0416	
	*			5.7175											9.1810	8.5931	6.1143	5 0433	270000	3. 9718	3.5816	3.2625	3.1321	13.1432	12.9152	12.7942	12 4944	12.5586	12.2885	12.0339	11.8070	11.5567	11.2844	11.0360	11.4123	9.2182	7.5918	6.6366	6166 9	4-1512	1106.7	1.6335	1.7201	2.3138	11.0259	
	**	- 6.0397	-0.0947	-0.0256	-0.0268	-0.0625	-0.0836	-0.0144	-0.0556	-0.0317	0.0633	0.1176	0.1342	0.0495	-0.0258	1610.0-	470.0	-0-0102	0.0173	-0.0797	-0.0739	-0.0485	-0.0244	-0.0309	-0.0015	0.0027	0.0103	0.0536	0-0132	0.0083	0.0104	0.0334	6170-0	-0.0400	-0.0079	0.0100	-0.0057	0.0351	0.000	-0.0246	10.0341	-0-0413	-0.0339	0.0124	-0.0135	
	STRESS																						123																	241	143	14.5	991	141	148	

STRESS						CASE	CTOTAL	STRAIN	STRAIN . 1000000.	(MECH.	STRAIN) +1030000	1000000	CASE
ELEM	××	**	XX	NO	So		XX	**	XX	XX	**	XX	
151	-0.0010	7. 85 81	0.0824	2.6170	3.7066	-	- 59.	1029.	123.	-59.	1029.	123.	-
152	0. 31 50	6. 9769	0.0611	2.3306	3.2858	-	- 39.	914.	91.	-39.	914.	91.	-
153	-0.000	6.7110	-0.1348	2.2348	3.1670	-	- 51.	879.	-102-	-51.	879.	-107-	-
124	0.0437	3. 7459	86190-	1.2632	1.8271		1:	*06*	-925.	-	*06*	-925.	-
122	-0.0185	1967-7	-0.3160	0.7593	1.1171		-21.	301.	-472.	-27.	301.	-472.	-
120	10.0304	1.179	00110	60000			-34.	577	-297-	-34.	225	-292-	٠.
121	07.00	2000	0.00	0.44	0.1324		-31.	-002	-130	-37.	200	-130.	
150	0.000	1.0004	8410.0	0.5240	6191.0		.67-	210.	• 77	-53-	210.	22.	
	0.00	6.316.5	6000		00110			.116	25.	•	116	•76	٠.
201	1620.01	0.1234	6 200.0	0.0341	6 500.0	٠.	- 2885-	1758.	. 36	-885-	1758.	.28	
101	10000	0 1633	10.00	60.00	20000		- 3.0		-11.5	-769-	1/85.	-112	٠.
143	0.00	0 1308	110.0	0.0000	0000		243	•0001	0000	-304-	1000	.000	٠.
144	0.2776	0.3000	1550	0.2258	1986		1811	2002	13640	1911	1414	-3019	
16.5	0. 1882	0.2480	200	0.2121	7376		3000	1474	21224	3066	2703.	21334	•
166	0.2353	0.1759	0.7205	0.1370	0.404.0	• •	2285	1231	25.00	2286	1231	25.010	• •
167	0-1346	0.1507	0.5454	0.1151	0.4531		1866	1087	10178	1866	1087	10370	•
168	0.1680	0, 1323	0.3692	0-1001	0.3100		1601	967	13115.	1601	967	13115	
165	0.0983	0.1023	0.2372	0.0669	0.1757		822.	894.	7361.	822.	894	7361.	
170	0.0694	0.0876	0.0950	0.0523	0.0863		509	833.	3375	509	833.	3375.	
171	-0.0336	0.0486	0.0218	0.0000	0.0381	1	-999-	794.	174.	-666.	794.	174.	1
172	-0-1159	0.0169	-0.0267	-0.0330	0.0629	-	-1602.	756.	-947.	-1602.	756.	-447.	_
173	-0.1459	0.0035	-0.0560	-0.0475	0.0833	1	-1936.	718.	-1 990.	-1936.	718.	-1990.	1
174	-0.1318	0. 3056	-0.0699	-0.0421	0.0854	-	-1760.	.089	-2485-	-1760.	.089	-2485-	-
175	-0.1062	0.0122	-0.0724	-0.0313	0.0795	-	-1454.	.059	-2573.	-1454.	.059	-2573.	-
97.	1160.0-	0.0158	-0.0688	-0.0251	0.0733	-	-1272.	627.	-2443.	-1272.	627.	-5443.	-
110	10000	85100	1790-0-	-0.0239	\$890.0		-1223.	610.	-2228.	-1223.	610	-2228.	-
170	-0.0731	0.0175	2750-0-	10.0234	1000	••	-1140	547	•0691-	-0611-	271.	-1820	
180	-0.0579	0.0217	-0.0112	-0.0121	0.00		-842	553	-1199	-1043	563	-1149	
181	-0.0155	0.1273	0.0477	0.0373	0-0749		-7.90	1746.	1694.	-100-	1746	1494	
182	-0.0050	0.1318	0.0008	0.0423	0.0805		-673.	1758.	2161.	-673.	1758.	2161.	
193	0.0276	0.1440	0.0694	0.0572	0.0843	1	-300-	1768.	2466.	-300	1768.	2466.	-
184	0.1146	0-1729	0.0772	0.0558	0.0955	1	712.	1747.	2741.	712.	1747.	2741.	-
500	0.2003	0.1979	0.0957	0.1327	0.1221		1724.	1681.	3398.	1724.	1681.	3398.	-
186	C. 2191	0. 2017	0.1502	0-1402	-	-	1954.	1645.	5337.	1954.	1645.	5337.	-
101	0.1339	10.1.0	0-1525	0-1013	0.1445		978.	1622.	5420	978.	1622.	5420.	-
200	9790-0	7447-0	10000	0.0000	: .	1.	140.	1013	*38*	• • • • • • • • • • • • • • • • • • • •	1613.	*38*	
160	8.7822	3.1587	-0.2692	2080	3 4 3 9 7	٠.	10100	1089	34130		1089	3413.	
161	0.1964	0.1491	-0-7266	0-1152			1898	1057	-25814	1898	1057	-25814	• -
192	0.0758	0.0879	-0.6224	0.0545	, 0		592	807	-22113.	592	807	-22113	• -
193	-0.0297	0.0415	-0.5088	0.0039	0.4164	-	-585-	683.	-18074.	-592	683.	-18074.	-
194	-0-1115	0.0079	6214-0-	-0.0345	0.3456	-	-1503.	617.	-14848-	-1503.	617.	-14848.	-
195	-0-1362	-0.3039	-0.3468	-0.0467	7	1	-1774.	576.	-12319.	-1774.	576.	-12319.	-
961	-0.1101	0.0033	-0.2844	-0.0356		-	-1464.	551.	-10104-	-1464.	551.	-10101-	-
161	-0.0817	0.0124	-0.2284	-0.0231	7	1	-1132.	539.	-8116.	-1132	539.	-8116-	-
361	-0.0724	0.0153	-0-1824	-0.0190	0.1538		-1023	535.	-6480	-1023.	535.	-6480	-
200	10.0146	0.0143	0.1410	1020-0-0	0-1267		-1041-	256	-5244.	-1047	532.	-5244.	-
222		7577							7702	, ,			•

CASE		-	-	-	-	-	-	-	-	-	-	-		٠.		• •	1.		••				-	1	1	-	٠.					-	-			٠,		• -		-	-	1	~
STRAIN .1 0000000.	××	-2351.	-148.	31173.	26371.	19836.	13052.	5715.	1512.	-6550	-1924.	-5719.	-3107.	-5223.	-960.		1016.	333	•673	2989	3264.	2488.	2114.	3374.	3287.	2297.	530.	-3143	-19750	-15995	-12855	-10468.	-7814.	-4477.	-1382.	11981	7705	3063	-1391.	-3170	-3237.	-2458.	-1251-
STRAIN	**	514.	507	1078.	917.	199.	120.	661.	583.	555.	531.	510.	485.	*69*	455	.0711		•0001	1667	1647	1647	1610.	1536.	1467.	1 409.	1330	1380-	-1334	588	489	433.	405.	377.	364.	361.	101	503	514	405	308.	272.	261.	271.
CME CH.	××	-924.	-121-	2308.	1128.	364.	-1068	-1936.	-401-	-410.	-869.	-1126.	-1107-	-0+0-	-116-	-031.	• • • • • • • • • • • • • • • • • • • •		-151-	422	-161-	-161-	403.	597.	-75.	-892.	-1329.	13/61	57.	-228.	-688	-975-	-906-	-616.	-346.		-104-	-169.	-715.	-480	-687.	-731.	-506-
1000000	×	-1321-	-148.	31173.	26371.	19836.	13052.	5715.	1512.	-655.	-1924	-2719.	-3107.	-6223.	-400.		1010	333	615	2989.	3264	2488	2114.	3374.	3287.	2297.	530.	-27717	-19750	-15995	-12855.	-10468.	-7814.	-4477	-1382-	11901	7705.	3043	-1361-	-3170.	-3237.	-2458	-1251-
STRAIN1 . 1000000	*	214.	507.	1018	917.	199.	720.	.199	583.	555.	531.	510.	485.	*60*	1736	1700	1,000	1401	1664	1647	1642	1610.	1536.	1467.	1409.	1330.	1380.	1234		489		405.	377.	364.	361.	703	593	514.	405	308.	272.	261.	271.
(TO TAL	×	- 426-	-121-	2 308 .	1128.	364.	-1068.	-1936.	-101-	-410.	-800	-1126.	-1107-	• • • • • • • • • • • • • • • • • • • •	-2/1-	-160-	-670-	-151	366	422.	-141-	-194.	403.	597.	-15.	-892.	-1369.	13/61	57.5	-228.	-698-	-975.	-906-	-616.	-346.	. 601	412	-169	-715.	-480.	-687.	-731.	- 506-
CASE		_		_		-	-	_	-	-		1.	٠.	•••						٠			-	-							-	-	-	۵,					-	-	-	-	-
	8	0.0643	0.0343	1627.0	0.6087	0.4571	0.3029	0.1485	0.0418	0.0280	0.0555	0.0749	0.0620	0000	0.0324	7690.0	00000	2000	10000	0.0936	0.0950	0.0801	0.0768	0.0982	0.0907	0.0744	2 4 2 8 3	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0-4544	0.3680	0.2967	0.2432	0.1826	0.1056	0.0357	2017	0.1813	0-0723	0.0419	0.0752	0.0784	0.0623	0.0345
	NO	-0.0160	-0.0095	0261-0	0.0797	0.0454	-0.0136	1650.0-	0.3071	0.0033	-0.0132	-0.0240	2520-0-	10.00	0.00	0.0424	0.0453	0040	0.000	0.000	0.0585	0.0552	0.0756	0.0804	0.0520	0.0171	2 8212	2126-0	0.0251	0.0102	-0.0099	-0.0223	-0.0206	-0.0098	0.000	0.000	0.0392	0.0134	-0.0121	-0.0067	-0.0162	-0.0183	-0.0093
	XX	2990-0-	-0.0210	0.8775	0.7423	0.5583	0.3674	0.1609	0.0426	-0.0184	-0.0542	-0.0765	-0.0875	2000	0.0267	2000	0.020	0.00	0.6173	0.0841	6160.0	0.0100	0.0595	0.0950	0.0925	0.0646	10.0	-0-6393	-6-5559	-0.4502	-0.3619	-0.2947	-0.2199	-0.1260	-0.0389	3416	0.2194	0.0857	-0.0392	-0.0892	-0.0911	-6.0692	-0.0352
	*	0.0165	0.0211	0.1034	0.1136	0.0803	0.0300	-0.0015	0.0384	0.0338	0.0197	0.0100	0.0053		0.0219	1306	0.1200	9141	0.1552	0.1555	0.1379	0.1336	0.1452	0.1452	0.1197	0.0882	2 11 03	0.0721	0.0527	0.0354	0.0166	0.3352	0.0052	0.0129	0.0208	0.0577	0.0639	0.0394	0.0134	0.0121	0,0028	0.0005	0.0080
	××	-0.00+	2000	0.6250	0.1255	0.0558	-0.0707	-0-147	-2.01 70	-0.0239	1650-0-	-0.0321	2180.0-	2000	0000	4100	2000	0.034	0.0810	0.0365	0.0376	0.0350	0.0314	0.0962	0.0362	-0.0369	4 3446	0.0416	0-0228	-0.0049	-0.0465	-0.0723	-0.0670	-0.0423	0.0190	0.0123	0.0536	0.0039	-0.0497	-0.0322	-0.0512	-0.0554	-0.0359
STRESS	ELEN	107	707	503	504	502	206	201	802	502	210	117	212	33.5	215	***	217	218	216	220	221	222	223	554	577	922	328	229	230	182	232	233	234	235	230	23.0	239	240	241	242	243	544	542

		TABLE C	C-10. FINI	TE-ELEMENT	FINITE-ELEMENT ANALYSIS OF TYPICAL JOINT (continued)	F TYPICAL	IOINT (con	tinued)		
X FOR	X FORCE, CASE 1									
	1	2	,	•	•	•	,	•	•	10
-	5.649E-03	5. 96 0E-08	1.2296-07	5.960E-08	-1.267E-01	5.960E-08	- 5. 9 60E-08	4.034E-03	1-1926-07	-1.453E-07
=	1.192E-07	-1.825E-07			-7.210E-04	2.3846-07	-2.049E-07	2.980E-07	-7.823E-08	-5.960E-08
12	-2.980E-07	-5. 889E-03	0.0		-1.192E-07	1.7885-07	-1.155E-07	1-192E-07	0.0	-1.344E-02
31	S. 560E-08	-5. 96 0E-08	-7.451 F-09		-1-714E-07	0.0	-5.960E-08	-3.267E-02	1-192E-07	1-192F-07
;	2.608E-08	1	6-106E-08		5.960E-08	-2.683E-02	-1.267E-06	0.0	5.960E-08	5.588E-08
21	0.0	1.6396-07	-5.960E-08	1-192E-07	-1.771E-02	-3.003E-06	-5.960E-08	- 5. 96 0E-38	7.451E-08	-1-192E-07
61	-4.55 TE-07		80-3096-5 I	1.192E-07	-1.704E-02	-3.494F-06	5.960E-08	-1.783E-07	-6.706 E-08	5.963E-08
2	0.0		0.0	5.960E-08	-8.162E-03	-2.135E-06	-5.960E-08	-5.960E-08	-1.602E-07	4.508E-07
8	-1.152E-07	1.192E-07	7 2.012E-07	0.0	1.788E-07	-9.959E-03	-3.304E-06	0.0	0.0	2.980E-08
6	2.861E-06		-1-192E-07	-5.960E-08	-3.725E-09	0.0	0.0	-3.503E-03	-3.066E-06	0.0
101	5.960E-08		1 2.851E-06	-2.833E-06	0.0	-5.960E-08	-3. 725E-09	-1-192E-07	2.384E-07	-1.192E-07
=	7.0896-03	-5.137E-06	80-3096-5	1-192E-07	-8.941E-08	1.907F-06	-4.369E-06	1-192E-07	-1.788E-07	-3.055E-07
121	-1.1186-08	4.843E-07		1.3036-02	-4.724E-06	0.0	0.0	-1.118E-08	1.907E-06	-4.135E-06
131	\$. 560E-08	1.788E-07	•	3-4695-07	5.215F-08	2.0496-07	0.0	1.389E-02	-3.275E-06	5.360E-08
141	-1.788E-07	9.3136-08	3.815E-06	-4.217E-06	1.192E-07	2.3845-07	-7.823E-08	6.676E-06	-9.889E-06	7.823E-08
151	-1.416E-07	-2.3846-07	1.1816-02	-3.904E-06	1.7886-07	-1.192E-07	-1.7146-07	4.768E-36	-2.891 F-06	1-192E-07
161	0.0	-9.313E-08	0.0	-1.626E-06	8.563E-08	7.078E-08	-5.960E-08	9.822E-03	-3.181E-06	1.1926-07
171	-1.7886-07			-3.852E-06	5.960E-08	1.1926-07	-5. 215£-08	3.815E-06	-5.486E-06	-7.078E-08
181	1.0436-07	-1-192E-07	1 8.954E-03	-4.426E-06	2.384E-07	0.0	-6. 7065 -08	3. 81 SE-06	-3.826E-36	1.192E-07
191	5.560E-08	-1.467E-09		-4.553E-06	-5.960E-08	9.686E-08	9.5376-07	1.3176-02	-2.053E-06	1.1926-07
201	-1.527E-07		3 2.861 E-06	-5.497E-07	7.078E-08	-1.490E-08	-1.173E-07	1.866E-06	-3.020E-06	1.080E-07
211	5.960E-07	1.9796-05		-1-329E-06	1.527E-07	2.3475-07	1.132E-06	-2.980E-07	2.023E-02	-3.554E-06
221	1.41 6E-07	7.0785-08	1 -2.093E-07	4-292E-06	-5.084E-06	2.310E-07	-2.421E-07	-6.799E-08	-1.494E-06	-1.787E-06
231	1-2295-07	3.9496-07	1.311E-06	-2.231E-06	-9.688E-07	3.055E-07	-1.676E-07	3.7555-06	-2-727E-06	1-982F-02
241	-5.62 55-07		1 -9.686E-08	-1.863E-08	2.861E-06	-3.595E-06	2.384E-07	-1.788E-07	-7.451E-08	4-131E-06
251	-1.710E-06	-326	1 1-192E-07	1.907E-06	-1.907E-06	8.6155-03	5. 588E-08	5. 960E-08	0.0	-2-235E-08
261	53 TE-	-1.638E-06	\$ 5.960E-08	-5.960E-08	-6.706E-08	9.537E-07	-1.013E-06	- 5.960E-08	5.960E-08	3-052E-05
271	-3.052E-05									
P A I										

d geo grunde gr gr gr gr gr gr gr gr gr gr gr gr gr	TABLE C	C-10. FINI	TE-ELEMENT	r ANALYSIS	FINITE-ELEMENT ANALYSIS OF TYPICAL JOINT (continued)	JOINT (con	tinued)		
Y FORCE, CASE 1	0-1 R: 4-7; 1976;	•							
1 -1-7885-07	4-2406-01	4-240F-01	4.240F-01	4.2406-01	2 1305-01	2 1 205-01	•	•	10
		-1.907E-06	2.5746-06	-1-192E-07	9-5376-07	1. 431F-06		2.205F-06	-1.9076-04
21 1.356E-06	5. 960E-08	-2.289E-05	1-1446-05	7.853E-06	0.0	6-5196-07	0.0	1-192F-06	-5-960F-08
1	2.861E-	3.498E-06	1.907E-06	9.947E-37	0.0	2.861E-06	-8.941E-07	-1-907 E-06	3-815E-06
41 3.431E-06	9.537E-	7.674E-07	9.537E-07	2.384E-06	0.0	3.248E-05	-9.537E-07	3.815E-06	4.403E-06
	1.2336-06	-9.537E-07	1.967E-06	-2.193E-05	2.604E-05	-4.172E-07	3.278E-06	2.004E-06	-6.914E-06
61 8-593E-06		-9.537E-07	2.861E-06	6.676E-06	1.563E-05	-2.384E-07	1.848E-06	1.352E-06	-7.749E-07
3.576E-		-1.311E-06	2.086E-06	-3.910E-05	6.415E-06	-2.384E-06	1.848E-06	-3.800E-07	-1.814E-06
91 -2-8615-06	3.0356-06	1.471E-06	-8-9416-07	1.0565-06	-1.049F-05	6.5606-06	-1. 788E-07	2.384E-07	-2.719E-07
	-6.0356-07	9-537E-07	3.553E-05	1-371F-06	1-788F-07	1.6395-07	1.1325-06	-1.4076-05	2 3256-04
'	9. 052E - 06	1.7295-06	1.192E-07	2.258E-06	-1.049E-05	-2.816E-06	1.431E-06	2-384 E-07	3-058F-06
	1.3716-06	1-1326-06	-1.243E-05	-1.609E-06	4.768E-37	1.6698-06	1.535E-06	9.537E-07	6.191E-06
		-1.676E-07	-8.307E-07	-9.537E-07	2.980E-07	7.1 53E-07	-8.583E-06	-1.350E-05	5.960E-07
		-1.907E-06	2.831 E-07	-1-132E-06	1-848E-06	1.062F-06	-2.384E-05	1.330E-05	-8.941E-07
	1.1326-06	9.537E-07	-4.284E-07	-5.364E-37	1.311E-06	-5.960E-07	1.907E-06	1.047E-06	-7-153E-07
161 1-192E-06		-2.861 E-06	6.340E-06	-1.431E-06	1.967E-06	5.960E-07	1.907E-06	-3.044E-06	-5.364E-07
•		0.0	2-049E-06	5.960E-08	5.364E-07	-8. 5¢8E-08	-2.861E-06	3.077E-06	-2.027E-06
	1.252E-06	4.768E-06	-3-111E-06	0.0	0.0	1-1186-08	3. 81 5E-06	1.539E-06	-1.192E-07
	-1.229E-07	2-861E-06	-5.849E-07	-1-132E-06	2.980E-07	-1.080E-07	1.907E-96	-1.632E-06	-3.576E-07
		1.907E-06	1.453E-07	0.0	-1.371E-06	4.992E-07	5.186E-06	-2.913E-06	0.0
	-1. /1 /E-05	6.676E-06	4.549E-06	-1.788E-07	-6.557E-07	-1.907E-06	1.31 1E-06	-9.537E-06	-3.092E-06
	4. 168E-01	1.488E-07	-1.907E-36	2-388E-06	0.0	-1.073E-06	2.682E-07	3.5766-07	1.907E-06
•		9.537E-07	3.695E-06	3.047 6-06	-5.960E-08	-2.980E-07	-1.550E-06	3.040E-06	1.2856-06
		-1.343E-07	2.065E-07	-2.205E-06	2.615F-06	4.843E-08	-6.706E-08	2.380E-07	-1.073E-06
	;	-8.605E-07	-9.537E-07	2.205E-36	-1.304F-01	-1.307E-01	-6.497E-02	-1.295 E-01	-6.476E-02
10-3674-5- 197	-30106-	-4.995E-02	-9.988 E-02	-5.017E-02	-1.946E-01	-2.693E-01	-1.790E-02	-4.065E-02	5.190E-01
711 -6-573E-01									
CHECKS. SUM	X-FORCES	Y-FORCES	2-MCMENTS	CASE					
	1.3630-04	-2.4890-04	-1-4670-04	•					
NZE BARK +RHS	4770								
REDU	4356								
			The second name of the second na	The second secon		The second name of the second name of the second	The second secon	The second name of the second na	The second secon

UPPER PLATE

Introduction

Three finite-element models were used to analyze the upper plate. Each model was of moderate size with a fine mesh of elements in a specific region of interest. The first model was used to determine the stresses at the hole for the lead-lag pin; the second, the stresses at the center hole; and the third strains during the fatigue test of the model hub.

Lugs at Lead-Lag Pin

The load pattern for the analysis is shown in Figure C-23. Figure C-24 shows the finite-element model for the analysis of the joint at the lead-lag pin. This model has 269 nodes and 338 elements. Nodes 1 - 149 and elements 1 - 216 are identical to those in the finite-element model for the element specimen. The elements perform the same roles as described for the element specimen. Table C-11 presents the results of the analysis using this model for the calculated ultimate loads of Condition TW7F1, which produces the highest lug load of 89.97 kips, as shown in Table C-6.

Figure C-23. Load pattern for upper plate, condition TW7F1 ultimate.

The following comparisons establish that the critical stresses in the upper plate in the immediate vicinity of the outer holes are similar within a few percent to those in the element specimens. The margins of safety for the upper plate are then found by direct use of the experimental results from the element tests. In general, this is conservative because the strain gage results, shown in Figure 34, indicated that measured loads in the upper plate were lower than the analytical predictions. In addition, the clamp-up of the upper and pan plates by the bearing housing allows a partial transfer of load by friction, which reduces the load transferred by the pins in the lug.

Figure C-24. Finite-element model for lead-lag joints in upper plate.

2.6880 2.1750 2.1750 2.1750 2.1750 2.6670 2.7670 3.1400 2.7670 2. FINITE-ELEMENT ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE FOR ULTIMATE LOADS OF CONDITION TW7F1 2. 6550 1.5800 0.8310 0.8310 2.7600 2.7600 0.0 3.1610 2.4270 3.9600 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 1.0560 2.0560 1.0560 1.0560 1.0560 2.0560 1.0560 1.0560 1.0560 2.0560 1.0560 1.0560 2.0560 2.0560 1.0560 1.0560 2.0560 2.0560 1.0560 1.0560 2.0560 2.0560 1.0560 1.0560 2.0560 2.0560 1.0560 1.0560 2.0560 2.0560 2.0560 2.0560 3.05 2.5560 1.5800 2.8500 2.6500 2.6500 2.6500 4.1200 4.1200 6.10000 6.10000 6.10000 6.10000 6.10000 6.10000 6.10000 6.10000 6 2.5950 2.1175 2.1175 2.7550 2.9650 2.9650 2.9650 2.7960 3.2960 6.080 6.0 2.5560 2.5560 2.5560 2.5560 10.7020 10 2. 68310 2. 6880 2. 6880 2. 777 2. 777 2. 777 2. 8530 3. 4200 3. 4200 3. 4200 5. 7600 5. 7600 5. 7600 5. 7600 5. 7600 5. 7600 5. 7600 5. 7600 7. 7600 FABLE C-11. 2. 6550 2. 6550 2. 6550 1. 6660 2. 8660 2. 8660 3. 3760 4. 9100 4. 9100 10. 7300 11. 1287 11. 1287 11. 1287 12. 9437 5. 3200 2. 5. 1800 CODA DIVATES AND SUPPORTS 2.5560 2.5560 2.5560 2.420 2.400 2.4

9 1.590 2.688 -2.688 -2.680 2.830 -2.4270 -2.4270 -3.4200 -1.4400 FINITE-ELEMENT ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE ULTIMATE LOADS OF CONDITION TW7F1 (continued) 0.1720 2.1720 2.1720 1.25550 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.3750 1.475 2.550 2.550 2.550 2.1750 0.0 1.7160 2.5770 3.2570 2.7770 2.7770 2.7770 2.7770 2.7770 1.5700 1.5700 1.1 1. 220 2. 480 3. 430 2. 430 2. 430 3. 420 1. 2.5800 2.88180 C-11-TABLE 1 0.0 44.985 52.310 30.490 3.161 -1.325 0.0 CODE STEMME SCOO 0.0 0.8310 2.6670 2.26670 0.9 1.0570 1.0 CASE 252233

			TAI	TABLE	c-11.		FINITE-ELEMENT ULTIMATE LOADS		ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE OF CONDITION TW7F1 (continued)	LAG JOINT IN	I IN U	PPER PLATE	FOR	
K313	a	0	~	ST	Yes	u	ad	THICK-AREA	AH P IA	TEM .	C Will	E MAT	TEM 4	TEN S
	2	m .			2	29.000	0.3180	0.5330	0.50500500					
7 6	., .	* 10		00	7 6	29000.	0.3180	0.5000	0.00000000	• •				
*	5	9			2	29000	0.3183	0.5333	0950000000					
5	9	-	-		63	29000	0.3180	0.5000	0,00000000	•0				
• 1	-	a	٠.		2	29 000.	0.3180	0.5330	0.33303560	;				
- a	u a	,	٠,		20	25010	0.3180	0.5000	095000000	•				
	10				, 2	29 230.	0-3130	0.5333	0-00000000	• •				
10		12			2	25 000.	0.3180	0.5330	0.0000000	.0				
:-	12	13	-		2	29 000.	0.3180	0.5000	0.00000560	.;				
12		14	-		2	29 000.	0.3180	0.8000	0,10000560	• 0				
13					2	29 000.	0.3180	0.5300	0,03000560	0.0				
**					m (16263.	0.3180	0.5330	054000000	•				
9:					200	16230	0.3180	0.5000	0550000000					
17						16.200	0 4	0.5000	0.0000000000000000000000000000000000000	•				
15						16200	0.3180	0.5000	0.00000000					
61					m	16203.	0.3180	0.5000	0.00000000					
50					3	16200.	0.3180	0.5330	0.000000000	0				
22				8.8	3	16200.	0.3180	0.5000	0.640000000	•				
22				66	m :	16 200.	0.3180	0.5030	0.00000000					
				٠.	~ ~	16 230.	1 1	0.5000	0.00000000	0.				
4,0						16200	0.3183	0.5000	0.0000000000000000000000000000000000000	•				
25.				7 "		16.200	0.5180	0000	06700000	•				
27				1 10	3	16200	0.3180	0.5000	0640000000					
28			45 4	9	3	16200.	m	0.5330	050000000					
25				1.		16200.	0.3180	0.5000	0.00000000	.0				
33		33		84	2	16200.	0.3183	0.5000	0.00000000					
31		34		5	67	10200.	0.3183	0.500	0.000000000	.0				
76		0		0		16 200.	m.	0005.0	060000000	• 0				
3 :		200				16.200	0.3180	0.5555	0.00000000	•				
3.0				7 15		16200.	0.3180	2000	054000000					
36	20	39		54		16.203.	0.3180	0.5000	0.00000000					
37		65		55	3	16200.	1	0.5000	0650000000	0				
3.8		41		90	2	16233.	0.3180	0.5000	0650000000	0				
6.		45		2.	9	10.230.	0.3180	0.5500	0.000000000	0.				
0,		00	c	0		25030	0.3180	0.2300	0.00000.50	• 0				
;:		-	0	0		25000.	0.3180	0.4630	0.0000000	0				
-		2.5	00	0 0		5.000	0.3180	2,460	0.0000050	•				
77		34		, .		20000	2000	00000	00000000	•				
\$ \$		32	0	0		29 000.	0.3183	0.2300	0.00000560					
57		35	0	0	1	29000	0.3130	9.2333	0.000000					
4.7		37	0	0	1	.:	0.3180	0.2230	0,00000000	.0				
87		38	0	0		.:.	0.3180	0.2230	0.0000000					
* 5		55		00		:-	0.3183	0.3455	0.0000000	•				
	1		,	,		:	201010	2	200,000	•				

	2 12 12 12 12 12 12 12 12 12 12 12 12 12
FOR	16 4 4
	E E E E E E E E E E E E E E E E E E E
IN UPPE	2 2
LEAD-LAG JOINT IN UPPER PLATE I TW7F1 (continued)	######################################
OF LEAD-LA	2
ANALYSIS OF CONDIT	# # # # # # # # # # # # # # # # # # #
FINITE-ELEMENT ULTIMATE LOADS	
	#
. c-11	
TABLE	00000000000000000000000000000000000000
	22.00.00.00.00.00.00.00.00.00.00.00.00.0
	4 まるとのでは多々ならずはなるとはなっているというできなっているというできませるとはならなってなるとは、 はまままままままままままなん まんかん はんしょう こうかい しょうき しょうき しょうき しょう こうしょう こうしょう こうしょう こうしょう しょう こうしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう
	11 11 11 11 11 11 11 11 11 11

	TEN 5																																															
	TEM 4																																															
	TEM 3																																															
(pan	TEM 2																																															
TW7F1 (continued)	TEM 1		•		•	0	0	0	.0	.0	0.0	•	• • •	•	.0	.0	.0	0.		.0	•	•	0.	•	•	•	•	•			0	.0	.0		.0		•	••	•	•	•				.0		•	0.
CONDITION TW7F1	ALPHA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0		0.0	0-0	0.0	0.0	0-0
OF.	A	0.3300																				0.3300		3300	2330					0.3300										2330	0000	3300	3333	3300	2300		3300	3300
ULTIMATE LOADS	e d	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0
ULTI	UI		•	•	•	•				0		0	0.				.0	•	•		•	•	•	•	•	•	:			0			•	•		•	3	•	;		; 6		0	0.	.0	•	0	•
	344	5	2	2	2	,	*	•	+	1	*	,	*	+	*	2	2	2	2	5	5	2	5								2	5	+	5	2	•	^ "	•	•				2	2	2	2	2	2
														0	0	116	117	113	119	121	122	123	154	125	126	120	200		135	133	134	135	0	137	136	36	341		741	77	146	147	143	1 40	1 50	151	1 53	1 54
	œ	101	108	100	110	111	112	104	113	113	901	114	114	108	115																		136									146	141	143	143	144	152	153
																																										139						
	۵	45	3,5	96	23	Se	04	112	90	106	=	10	106	=	50	2	==	35	65	=======================================	114	12	91	1	000		::	23	24	125	126	121	52	33	- :	7 .			77	45	30	40	171	74	151	152	40	147
	ELEM	101	105	103	104	105	106	107	138	109	110	111	112	113	114	115	116	111	116	119	120	121	122	123	126	124	1 22	128	123	130	131	132	133	114	135	0 1	133	133	140	141	14.2	143	144	54:	146	141	148	149

TEM S																																										
TEM 4																																										
TEN 3																																										
TEM 2																																										
TEM 1		•		•	0.	.0		0.	.0	•			0	•0	.0	• •	•				0	• •	•				•	•		• •			0	0	.0	•0	•0	•0	•	•		
AL PHA	0.0	0.60000 560	0.00000560	0.33303569	0.00000.0	0.00000560	3.00300560	0.000000000	0.00000.0	395030000	099000000	03.0000000	0.00000000	0950000000	0.00000000	099000000	095000000	0.0000000000000000000000000000000000000	0.00000.00	0.000000.0	0.000000.0	0.000,00000	0.20000.0	3-00303560	0.00000500	0950000000	0,00000000	0-10100 560	0.000000.0	09000000	0.0000000	0.0000000	0950000000	0.000000.0	0.00000000	0.000000.0	0.000000.0	0950000000	095000000	09600000	0.0000000000000000000000000000000000000	
THICK-AREA	0.3300	2.2960	0.2960	0.2966	0.2960	0.2960	er.	0.2960	0.2960	0 2960	0.000	0.2960	0.2963	0967.0	0.2960	0.2960	0967-0	0.796.0	0962.0	0.2560	0962 0	0.2963	0962-0	0962-0	0.2960	0.2965	0.2960	0.2960	0.2960	2000	0.2960	0.2960	0962.0	0.2960	0.2320	0.2320	0.2320	0.2320	0.2320	0.2320	0.2320	
ě	0.0	0.3183	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.2180	20.00	0.3.80	0.3160	0.3180	0.3180	0.3180	0.3190	0.3180	0.3190	0.3180	0.3180	0.3180	0.3180	23.80	5.3185	9.3180	0.3189	0.3180	0.3180	0.3180	09360	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.3180	0.5180	0-3180	
w	•	29 000	29 000	25000.	25 000.	29000.	54000	29 000.	29 300.	29000	25,000	29333	25 000.	29000	25 000.	25,000	26 3.00	26.900.	25 000.	29000.	29000	29 303	20000	29000	29 000.	25 000.	25 000.	25 000.	25 300	20000	25 000	29305.	25000.	29000.	29030.	29000.	29 000	29 300.	2000	30000	25 300.	
YPE	2	m -		3	3	9		n 1	7 1	0 14		3	3	•	m 1	•	0 "			3		m :	0 "		3	3	m	m 1		. ") m	9		2	2	2	7	2	,	40	2	
2		27	12	16	11	92	62	80	100	33	40	85	87	89	60	2	10	200	56	55	96	6	000	101	701	103	50	501	200	00	60	110	11:	0	0	0	0	0	0	0		
æ	155 1	22	14	15	16	11	19	51	200	100	83	40	98	29	00 0	50	20	92	63	45	56	96	200			102	103	104	501	107	108	139	110	111	11.2	104	113	113	211	11.	108	
0	143	200	60	19	29	63	50	22	0 1	0 0	69	7.5	72	2	51		10	18	19	80	81	78	200	86	87	83	68	05	1,0	03	35	55	96	16	103	113	104	561	134	101	114	
																					85																					
Y	15	25	24	5:	26	21	20	0.0	0 -	, ,	53	164	105	166	191	001	107	1	172	173	114	172	27	18	51	130		76	201	5 6	136	181	138	198	190	101	251	193	101	10	161	

7 X X
16H 4
1
1EM 2
#
ALPHA D. 00000560 D. 000000560 D. 0000000560 D. 0000000000000000000000000000000000
THICK - CO. 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 6 20 20 20 20 20 20 20 20 20 20 20 20 20
* T1122222222222222222222222222222222222
0.18 5.19 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20
#0800888888888888888888888888888888888

	TEM 5																																										
	TEH 4																																										
	TEM 3																																										
(pen)	TEH 2																																										
(concinued)	TEN 1		•		0	•	0	0	•	.0	0.	•	•			•	.0	•0	•0	•	•			• •		•			• 0	•			.0	• 0	•	•	•	• •		.0	.0		•
CONDITION IN/FL	AL PHA	095000000	09 000000	0.30300560	0.00000560	0950000000	0.630000000	0.00000.0	3.90000060	0.01000560	0.00000000	0.00000000	095000000	00000000	0.00000000	0.00000000	0.000000.0	0,000000.0	0.00000000	0.0000000	09500000	000000000000000000000000000000000000000	3.003. 7563	0950000000	0.00000560	0.000000	095 3000000	0.03000000	0.00000000	0.00000560	095000000	0.00000.00	0.00000.6	095 000000 0	0950000000	095000000	095000000	0.0000000000000000000000000000000000000	0.0000000	0.000000.0	0.0	0.0	
5	THICK-APEA	9100		5700	5700	6700	5733		5703	2100	5700		3 5700			0000			0.2000		0.3000	00000	0.3000		0.2000				0.2030					0000		0.2000				3000		0.3300	2200
ULIIMAIE LUADS	ad	0.3180	0.3180	0.3183	0.3180	0.3180	3.3183	0.3180	0.31.60	0.3180	0.3180	0.3180	0.3180	23.18.0	0.3180	0.3180	0.3180	0.3180	0.3180	0.3133	0.3130	0.3180	0.3180	6.3180	0.3180	00100	0.3:30	0.3180	0.31.80	0.3180	0.3180	0-3183	0.31.90	0.3160	0.1180	0.3180	2010	0.3160	0.3180	0.3180	0.0	0.0	
OFITE	a a	4.	29000	29990	25 000.	:	-:	:	29000-	25000.	29000.	-	29000	• • • • • • • • • • • • • • • • • • • •	::	29000.	29000.	.00052	29.000	.cen 67	25,000	29 330.	25,000.	55 One.	25 000.	29.000	25,000	25000	29.000.	25 500	20000	29306.	29000.	29000.	29000.	20 700		29 000	25000.	29000.	.0	•	
	TYPE		~.				-	-	1	-			٠.			3	3	3	e .	~ (7 ~		•	3	m.		. ~	2	•	m .	n r	, ~	3	3	~	•		n m	2		4	٠,	•
	s																-1	-	~1 (v.	20	14	~	-	176				-		40		2	14		40	10	254		2			-
																									173																		
																									174																		
					51	51	23	21	21	22	2	CV	110	1. 0	N		-	-	CUI	V .	U 17		2	-	111		:				V 13	~~	~	W.	12	vr		4 CV	C	N	-	~ .	•
	FLC	25	Cic	25	52	25	25	52	255	500	25	5.5	200	36	36	26	200	36	27	,	11	27	27	777	27.5	27	28	4	20	53	4 0	28	23	25	29	200	33	38	53	53	3	52	14.7

			TABLE		c-11.	FINITE-EI ULTIMATE	FINITE-ELEMENT ULTIMATE LOADS		ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE FOR OF CONDITION TW7F1 (continued)	AG JOINT IN (continued)	r IN UPPEI	R PLATE	FOR	
				-						25				
KE 15					TYPE	w		THICK-LPEA	AL P MA	TEN 1	TEM 2	TEM 3	TEM 4	TEN 5
301					*	.0		0.3300	0.0					
37.				0	•	.0	0.0	0.3300	0.0	.0				
333 1				99	2	0.0	0.0	0.3300	0.0	• 0				
304				19	2		0.0	0.3300	0.0	9.				
305				89	5	0	0.0	0.3300	0.0	0				
306	173 1	165	164 1	172			0.0	0.3200	0.0					
307				73	•	0.0	0.0	0.3330	0.0	0.				
303 1				14	2		0.0	0.3300	0.0					
30.9				98		0	0.0	0.2300	0.0					
310				28		0		0.2333	0.0					
311				a			0.0	0.3300	0.0					
312				0				2222						
212						;		0000		•				
210				2				0.3300		•				
314				10		•	0.0	0.3300	0.0	• 0				
315				90	2	.0	0.0	0.3330	0.0	•				
316				90	2		0.0	0.3300	0.0	.0				
31.7				10	2	•	0.0	0.3300	0.0	.0				
318				80	5	.0	0.0	0.3330	0.0	.0				
319				12	5		0.0	0.3300	0.0	.0				
320				13	2	•	0.0	0.3300	0.0	0.				
321 2				25	2		0.0	0.3300	0.0					
322				26	5		0.0	0.3700	0.0					
323				37	5	0	0.0	0.3300	0.0					
324				3.8	2		0.0	0.3300	0.0					
325				39	5		0.0	0.3300	0.0	9.0				
326				60	9		0.0	0.3300	0.0					
327		822		74	•	0	0.0	0.3300	0.0					
328				45	5		0.0	0.3300	0-0					
325				46	\$	0.	0.0	0.3330	0.0					
330				147	5	0	0.0	00.5	0.0					
331				51	2		0-0	0.2300	0.0					
332				22	•		0.0	3330	0.0					
111				1 7 7 7				2000						
726				1 27				0000						
200						•	2000	00000	0.00	•				
335				0		100	0.3189	0.1303	0.000000000					
				0	-	.00	0.3180	0.1000	0.000000.0	0				
337	214 2	221		0	1	100.	0.3183	0.1000	0,00000000	.0				
		253	•	0	1	-00	0.3180	0.1300	0 300000000	0				
The second secon				-	The same of the sa				The second secon		The second name of the second	The second secon		

FOR FINITE-ELEMENT ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE OF CONDITION TW7F1 (continued) ULTIMATE LOADS IAL C-11. TABLE

		ULTIMAT	ULTIMATE LOADS	OF CONDITI	CONDITION TW7F1 (continued)	TW7F1 (continu	ued)	OFFER FLAIE	FUR
STIE .	44 TER 14L	PROPERTIE	10						
7,	T T	ALPHA 2	.1 (1:5	C12	c13	622	623	533
		0.0		8238.0	2+84.0	0.0	4288.0	0.0	2897.0
			200	6.8828	0.4642	0.0	8288.3	0.0	2857.0
				0.4828	0.5652	0.0	9598.0	0.0	2897.0
				8284.0	2.5442	0.0	9588.0	0.0	2897.0
				6,569.0	0. 56.57	0.0	6.8828	0.0	. 68
				0.0000	0.5657		0.2850	0.0	897.
126			0.0	8288.0	5.5645	0.0	62830	0.0	697.
				0.0000	0.44.7		0.8876		287
				0.0000	0.4647	0.0	25.58.0		971
.28				8288.0	0.4647		9583	0.0	851.
				0.000	0.4647		9558	0.0	0.1687
			0.0	9538.0	0.4447	0.0	0.8826	0.0	.169
				8583.0	0.4547	0.0	0.8828	0.0	897
			0.0	0.8828	0.4642	0.0	6288.0	0.0	897.
		0.0	0.0	8283.0	2484.3	0.0	6208.0	0.0	897.
			0.0	8288.0	2494.0	0.0	8238.0	0.0	2897.0
134 0.	٠.	0.0	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
	0	0.0	0.0	9238.0	2404.0	0.0	8283.0	0.0	2897.3
	0	0.0	0.0	8238.0	2494.0	0.0	3283.0	0.0	2897.0
	0.0	0.0	0.0	8288.0	2,494.0	0.0	8288.0	0.0	2897.0
	0	0.0	0.0	8288.3	2494.3	0.0	8288.3	0.0	2897.0
	0		0.0	8238.0	2494.0	0.0	3288.0	0.0	2897.0
140 0.	0	0.0	0.0	8248.0	2494.0	0.0	4288.0	0.0	2097.0
	0		0.0	8288.0	2494.3	0.0	a	0.0	897
	0		0.0	9288.D	2494.0	0	8283.0	0-0	
	0		0.0	8288.0	2494.0	0.0	4288.3	0.0	897.
	0	0.0	0.0	8288.0	2,94.3	0-0	3288.0	0-0	197.
145 0.	C		0.0	8788.0	2494.0	0.0	6288-0	0.0	897
	0.0	0.0	0.0	8288.0	2494.0		8208	0	407
	0	0.0	0.0	8288.0	2494.0		8288		2407
	0	0.0	0.0	8288.0	2404.0		2000		
	0.0			0.0020	2,000		20020	000	
				00000	2000		00000		
				0.0000	0.4647		0.0020	0.0	
	0 0			0.0000	0.464.7		0.8826	0.0	0.1607
				0.0000	C+447		0	2.0	-
			0.0	8588.0	0.5657	0.0	2588.0	0.0	_
	0.0			0.8828	0.5557	0.0	n	0.0	691.
			0.0	8288.0	2494.3	0.0	9788.0	0	2857.0
			0.0	8288.0	2444.0	0.0	92690	0.0	2897.0
		3	0.0	8288.0	2494.0	0.0	8288.0	0.0	2897.0
536 00	20		0.0	8248.0	2494.3	0.0	8588.0	0.0	897.
	0.0		0.0	8288.0	2464.0	0.0	8288.0	0.0	397.
	0.0		0.0	8288.0	2484.0	0.0	m	0.0	97.
	0.0	0.0	0.0	8288.3	2494.0	0.0	3288.0		897.
	0.0	0.0	0.0	8288.0	2484.0	0.0	3288.0	0.0	2897.0
307	0.0	0.0	0.0	28	2494.0	0.0	28	0.0	2897.0
	0	0.0	0.0	28	5494.0	0.0	8288.0	0.0	2897.0
	0.0		0.0	8288.0	2494.0	0:0	8	0.0	2897.0
310	0	0.0	0.0	0000	0 1010		C		
			200	0.0020	0.+6+7	0.0	3288.3	2.0	201100

FOR FINITE-ELEMENT ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE ULTIMATE LOADS OF CONDITION TW7F1 (continued) 7.75 C11 682998.0 682998.0 682888.0 682888.0 682888.0 682888.0 68288.0 68288.0 68288.0 68288.0 68288.0 68288.0 68288.0 6828 1 . T C-11-0 TABLE

-7.049 3.2926-04 0.0 1.4086-04 2.8386-03 -1.666-03 -2.5926-03 -2.596-03 -2.596-03 -2.596-03 -2.596-03 -2.596-03 -2.596-03 -2.596-03 -2.596-03 -2.676-0 FOR PLATE 8.350E-04
1.876E-03
1.577E-04
0.0
1.071E-03
1.071E-03
1.077E-04
1.077E-03
1.077E-03 UPPER -3,926E-04 5,691E-03 -4,200E-04 0,0 0,0 1,816E-03 3,100E-04 1,000E-04 1,000E-03 1,000E-04 OF LEAD-LAG JOINT IN OF CONDITION TW7F1 (continued) 8.459 F 0 4
0.0
1.00 F 0 4
1.00 F 0 4
1.00 F 0 6
1.00 F ANALYSIS FINITE-ELEMENT ULTIMATE LOADS C-11 2 9,4086 - C4 1,9076 - C4 1,0076 - C4 1,0076 - C4 3,864 - C3 2,358 - C3 6,564 - C3 6,564 - C3 1,488 - C3 1,488 - C3 1,580 - C3 2,285 - C3 TABLE CASE 10.00 11.002 ECT ION.

DEFL

7.078E-02 7.237E-02 7.237E-02 6.718E-02 6.655E-02 6.655E-02 6.718E-02 7.849E-02 7.849E-02 7.849E-02 7.849E-02 7.865E-02 7.865E-03 7.865E 7.060E-02 6.565E-02 6.567E-02 6.57EE-02 6.57EE-02 6.57EE-02 6.337E-02 6.337E-02 6.337E-02 6.337E-02 6.337E-02 6.337E-02 7.126E-02 7.126E-02 7.561E-02 7.561E FOR ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE OF CONDITION TW7F1 (continued) 7.0646-02 6.4046-02 7.1126-02 6.0546-02 7.0726-02 7.0726-02 7.0726-02 6.5326-02 6.5326-02 6.5326-02 6.5336-02 7.076-02 7 7.0316-02 6.5306-02 6.5306-02 6.6546-02 6.6546-02 6.406-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 5.006-02 6.006-0 7.024 6.223602 6.223602 6.725602 6.725602 6.725602 6.725602 6.725602 6.725602 7.72602 7.0256.02 7.3016.02 6.7416.02 7.4116.02 6.74186.02 7.41176.02 5.3756.02 5.3756.02 5.3756.02 7.41376 FINITE-ELEMENT 4.048 E-0.2
6.605 E-0.2
6.804 E-0.2
6.804 E-0.2
6.804 E-0.2
6.804 E-0.2
6.804 E-0.2
6.804 E-0.2
6.904 E-0.2
6.904 E-0.2
6.904 E-0.3
6.904 ULTIMATE LOADS C-11, TABLE CASE 7.45E-02 7.02E-02 6.474F-02 6.474F-02 6.234F-02 6.708F-02 6. ECT ION . DEFL >

	2																																															
	STRAIN #1000000.		-182	-439	-874.	-1280.	-1621.	-1768.	-1362.	-1045.	-714.	-397.	-176.		,,,	31.		20.	28.	460.	-105.	366.	-2177.	1510.	616	510.		• • •	-5-	.6	15.	403.	-76.	363.	-6767	1313	•	.167										
FOR	STRAIN			-128.	-: 47.	-201.	-273.	-357.	-434.	-464-	-565.	-613.	-040-	2000	647	626.	676.	733.	729.	956.	1124.	1191.	317.	165.	190.	11 /4.	675		604.	618.	614.	437.	297.	117.9	0000	506	233	•677										
ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE OF CONDITION TW7F1 (continued)	CMECH.	XX	-1302	-1224	-1005.	-807.	-699-	-401.	-154.	37.	244.	422.	517.	-171	-195.	-188.	-145.	-238.	-216.	-267.	-347.	-204.	-161-	-546.	-162.	-259	-222	-211	-198.	-203-	-219.	-125.	-105.		- 101		•	-1026-	-1010	-1059.	-1188.	-1225.	-1063.	-731.	2628.	47006	112943	*****
r IN UPF	.000000	X X	-187	-439	-674.	-1280.	-1621.	-1768.	-1362.	-1045.	-714.	-397.	-140.	- 60-	27.	31.		20.	28.	460.	-105.	366.	-2117.	1510.		510.	17.		.5.	.6	15.	403.	-76.	•	1370	877		• 107										
AG JOINT (contin	ST34[N] + 1000000		-101-	-128.					-434.	- +6+-	-565.	-618.	•0+0-	560	647	626.	676.	703.	729.	956.	1124.	1191.	317.	165.	• 061	*****	675	610	.004	618.	614.	437.	297.	11.29		204	223	•633										
LEAD-LA	TAL	-1363	-1302	-1224.	-1065.	-897.	-699-	-401.	-154.	37.	244.	422.		-171-	-135	-188.	-195	-238.	-216.	-257.	-347.	-234.	-161-	-543.	-707-	-201	-222	-211	-198.	-203-	-219-	-125.	-135.	-630	-717	-110		-1026-	-1019.	-1059	-1188.	-1225.	-1063.	-731.	2628.	47005	112943	
ALYSIS OF LEAD-LAG JOINT IN CONDITION TW7F1 (continued)	CAS E		•		-	1		-		-	-								1	1	_		- .						•	-	-	-						• -			_	-		-				
	0	19 4047	19.0777	17.2014	16.6536	17.3939	17.7107	17.5088	13.3082	11.4748	13-2146	10.1850	10.0130	4.2624	6.9789	4.7563	5.1258	5.3452	5.5426	7.6097	8.5336	9-1057	11.2394	7.8724	6.5445	5.9004	5.1675	. 751	4.6183	4.7316	4.7307	3.8833	2.3169	12 44.82	13 1962	6.2671	1 1 4 9 1	101107										
FINITE-ELEMENT ULTIMATE LOADS	i	-20 4037	-20.1797	-19.1590	-17.1854	-15.5544	-13.3192	-10.7308	-8.3312	-6.4806	-4.5505	1 6333	-1 4233	37.0404	3.5772	3.4733	3.8094	3.9126	4.0583	5.4593	6-1479	7.8199	1000.1	-0.6655	2 3613	3.7675	3.5914	3.2270	3.2139	3.2879	3.1265	5.4699	1.5150	5 4 8 9 4	5.4707	3.8468	1010	1011.										
C-11. F	3	-0 4708	-2-3033						-14.5825	-11.4439	16.32	-4.3/18	50000	5.0178	0-1565	0.1890	0.0493	0.1711	0.1729	2.8279	-0.6492	2.2463	-13.3737	9.7813	27 40.0	1.050	0.:062	0-1473	-6.0310	0.0547	0.0891	2.4773	0794-0-	-12.4043	67 173	5.3857	1,6052											
TABLE	3	4	: :	6.6	-4	-15.078+	12	r.	-	12	5	-13.6.102	16 6110	9.1083	10.5442	10.2092	11.0693	11.4590	11.3926	15, 7063	18.2634	20.3008	4.6223	155661	13.4233	6.5163	10.8979	6.44.9	6.7449	9.9788	9.8113	7.1555	4. 1449	18 2263	44	10.1072	242.7											
	3	A 402 47-		-40.7538			.3669		.4550					9751-0	57873	5.2137	3.3589	0.2683	0.2825	0.6716	0.1802	3.1589	-1.6219	-3.5451	10000	-9-3139	-0.1236	-0.2582	-0.1030	-0.1150	-0.4316	co.	-0. 2030	-1.1575	-4.7348	-	1,6121	-29.1427	-29.5358	30	-34.4490	-35.5383	-30.9171	-21.2372	97000	0.0471	0.1128	
	STRESS	50.00									2:	::	7.			3.6	17	91	15	50	23	22	23	52	22	27	200	20	30	3.1	32	33	* "		3,2	38	30						4.5	94	1 0	7	20	

	# # # # # # # # # # # # # # # # # # #			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	STRAINS +1 0000000.	-19. -39. 178. 163.	. 557. -50. -336.	-341. -145. -37. -30. 184. 531.	1001-1001-1001-1001-1001-1001-1001-100
FOR	STRAIN)	3137. 3017. 3137. 3067.	3579. 3611. 3623. 2768.	215. 215. 3103. 2949. 3036. 2651. 3016.	3102. 2270. 2270. 2270. 2217. 3123. 3123. 2136. 2140.
ER PLATE	(MECH- 32805- 19377- 19377- 1902- 1002- 1163- 1163- 1195- 11	-2059. -2048. -2160. -2301.	-2059. -1473. -1135.	-251. -132. -132. -1330. -1772. -1910. -1901.	-1084 -703 -703 -703 -144 -1267 -1267 -1312 -1165 -1165 -1165 -1165 -1165 -1165
LEAD-LAG JOINT IN UPPER PLATE FOR TW7F1 (continued)	** × ×	-19. -39. 178. 163.	336. 136.	1337. 145. 145. 130. 130. 521. 521.	507. - 5123. - 6776. -
AG JOIN (conti	STAAIN) * LDDD & COO.	3137. 3017. 3137. 3067.	3579. 3811. 3611. 2768.	215. 215. 3103. 2549. 3036. 3016.	3102- 3102- 2844- 2270- 223- 223- 223- 2136- 2136- 2136- 2023-
	1 TO TAL 8 28 35 5 193 77 - 9144 - 1002 - 1002 - 1002 - 1003 - 1	-2059. -2043. -2160. -2301.	11961.	-251 -132 -132 -1772 -1910 -1906 -1906	-1084- -707- -7033- -703- -149- -1267- -1312- -1045- -1145- -1145- -1145- -1145- -1145- -1145- -1145- -1145- -1145- -1145- -1145-
ANALYSIS OF OF CONDITION	B addededededededed		1 -1 ₅₀ -1 -1 -1 -1 -		PP A PP A A PP A PP A PP A PP A PP A P
	8	12.2316 12.2316 12.7796 12.8513	13.8973 13.8736 13.4537 12.8935 9.7629	5.7185 1.2026 1.9973 12.1104 11.5602 12.0464 12.0435	11.2154 10.05057 10.05057 2.35057 11.05059 11.4501 9.6308 4.1680 8.0530 17.7721
FINITE-ELEMENT ULTIMATE LOADS	N O	3.8764 3.4828 3.5109 2.7512	5.4554 8.4025 10.2861 8.9006 7.3249	4.7303 4.7303 4.5344 4.5264 4.0453 2.6960 2.6960	7.2520 7.65206 7.65206 6.5461 0.8638 0.6638 6.6638 6.6638 6.6638 7.5627 7.7749
-11.	×	-0.0556 -0.1130 0.5156 0.4722 0.3796	0.7451 1.1833 -0.1443 -0.9734 0.2266	0.01447 0.01447 0.02516 0.02516 0.01463 0.03331 0.05331	0.000000000000000000000000000000000000
TABLE C	>	20.8650 19.6576 20.6113 15.6777	24-5505 27-9126 29-2903 27-0986 21-1204	12,3599 1,4564 21,2167 20,0167 20,4035 117,2322 20,2434	
	0.000000000000000000000000000000000000	-9.2356 -9.4491 -10.0785 -11.4242	-3.1342 -2.7052 1.5681 -0.3969	1.8310 -0.5536 -7.293 -7.1366 -7.1366 -6.2565 -6.2771	1.2495 1.2463 1.2369 2.0509 0.1611 0.1611 1.7644 1.1597 1.3673 0.5617
	\$3			10 10 10 10 10 10 10 10 10 10 10 10 10 1	20000000000000000000000000000000000000

OLITMAIE
1
6.0257
5.8318
5.2683
7.62.
6-1179
1.8861
3.5000
3.3436
3.3498
?!
4.5041
4.3305
4.1137
3.3502
1.8696
9.7 559
2.6317
2156.2
3. 7465
4-1214
31130
2.5486
2.3296
3.1487
4.7671
32
5.6737
4. 7233
10000
5 817
5.2807
6.6708
6.9338
6.2463
5.8256
1.8028
3.4318
5.0063
5.7683
5.9866
5.8841
2.0846
.5900
.9295

CASE -12:3. -1482. -728. -1611. -1026. -319. 78. -737. -361. -145. -534. -476. -1225. -863. -282. 13177 13137 13 -219. 3123. 3125. 2633. 2136. 2157. 2023. 1942 1459 1300 1350 1155 1119 FINITE-ELEMENT ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE FOR ULTIMATE LOADS OF CONDITION TW7F1 (continued) (MECH. 2059. -2059. -2169. -22169. -2259. -2059. -1471. -1135. -135. 143. -1830. -1772. -1910. -1906. -1966. -1966. -1966. -1966. -1966. -1966. -1966. -1966. -1966. -1966. -1966. 507. -123. -534. -476. -1225. -863. -562. -562. -584. -1213. -1213. -1482. -1611. -1611. -319. -256. -217. -1689. -1335. -1744. -219. 3123. 3125. 2633. 2136. 2157. 2023. 371. 1673. 1300. 1350. 1350. 1155. 1119. 521. (TDTAL: 4X 1948 -2059 -2160 -2160 -22160 -548 -435 -370 -1267 -1312 -1035 -1014 -1014 -811 143 -1930 -1910 -1910 -1901 -1906 -1908 -1908 05 47.9108 47.9108 47.9108 48.6029 48.8490 55.9357 53.0636 51.6741 49.4200 74.4200 76.2200 76 46.11174 47.01050 47.01050 45.01050 45.01050 47.01050 47.01050 80.01050 80.01050 80.01050 3.8514 43.6639 43.9693 35.8372 31.1333 30.7690 29.7332 27.4456 26.3393 25.2621 23.8614 18.9402 3.2100 29.7409 13.8476 110.8534 21.5553 33.1371 40.5667 35.1029 28.8869 116,6695 110,6884 110,6821 115,7821 115,7821 221,6278 33,6032 34,255 31,65601 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675 11,6,600 23.7640 22.9998 20.7778 7.4393 3.1361 1.9542 1.9543 1.9563 1.7915 1.64404 2.6983 4.5983 0.3596 -8.1077 -3.9680 -1.5920 -0.5552 -0.3303 -13.4771 -9.4949 -0.9947 -3.7500 -5.7905 -1.8331 -6.9953 -13.3430 -16.3096 -17.7239 TABLE C-11. 1.8590 50.0872 79.0872 79.0842 75.3323 82.915 82.915 81.319 76.9414 76.9414 76.9414 76.9414 77.7505 85.9182 88.958 84.5029 84.5029 68.6267 40.9700 40.9700 40.5267 87.7416 87.7416 74.6465 42.0562 38.1455 29.7890 40.5235 57.1655 15.5257 -3.181 -42.781 -42.781 -9.0215 -9.0217 -9.0219 -9.0219 -1.0219 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -2.0217 -3.025 -3

	CAS																						-	-																								
	STRAI NJ +1000000.	-1458.	-478.	-096-	-867	-1620.	-1177-	-2438	-1903-	-1042	-1566	-2524-	-3523.	-3791.	-2965-	-1006-	484	-133.	-755.	-1278.	-1641-	-1814.	-1767.	-1501-	-1054	310.	- 16.00	-112	380.	311.	6	21.	-72.	12.	17.	13.	26.	173.	173.									
FOR	STRAIN	283.	154.	861.	771.	511.	336.	.187	200	500	524	283.	113.	94.	368.	322.	1800.	1693.	1405.	945.	383.	-215.	-119.	-1240.	-1540	104.	103-	- 13	-503-	163.	.9	;	.6	-83.	•6	*	-686	-220.	•09									
UPPER PLATE	(MECH.	237.	48.	-129.	5:0	532.	305	.00	225	• • • • • • • • • • • • • • • • • • • •	352.	1043.	1485.	1485.	947.	850.	-405°	-450.	-432.	-355.	-218.	-50.	135.	315.	4000	-155	-613	-268	114.	-155.	-7-	2.	-01-	22.	-3.	-5.	. + 9	33.	-40.	1282.	1214.		317	-67.	-473-	-190.	-366-	-1065.
IN Ind	·coccoc	1456.	-478.	-096-	- 967.	-1620.	.,,,,,	- 6436	1905	-1062	-1566-	-2624.	-3523.	-3791.	-2965-	-1006-	484.	-138.	-755.	-1278.	-1041-	-1814.	-1767.	-1501.	-1054.	310	- 5.50	-312-	380	311.	0	21.	-72.	12.	17.	13.	26.	173.	173.									
LEAD-LAG JOINT IN TW7F1 (continued)	STA A I VI + 1000000.	283.	154.	861.		511.							113.				1800.	1698.								104.	103-	-813	-503-	163.	• 9	;	.6	-83.	.6	*	-489.	-220.	•09									
LEAD-L	LETOTAL	237.	48.	-159.	-15	532.	275		235		152.	1043.	1485.	1435.	947.	853.	-435.	-450.	-432.	-352.	-518.	-53.			.000	-100.	-613	-29%	114.	-155.	-7-	2.	-10.	22.	-3.	-5-	. 40	33.	- 95-	1232.	1214	- 1707	317	-87.	-473	-740.	-665-	-1065.
ANALYSIS OF 1 OF CONDITION	CAS E	1	1		-							-	1	-	-	-	-	-	-	_			-1 -		4.						-		-	-					-				•				1	1
	3 80	14.1007	4.8449	14.4625	13.0457	17.9152	27. 2366	10 1666	9.0076	11.6239	15.6579	27.9071	37.5456	39.5764	33.1630	15.5545	24.6219	23.0240	50.2969	17.3983	15.7808	15.5748	18.9453	21.5075	23.0270	3.7747	12.3836	12.3865	7.5836	3.9956	0.1421	0.1957	1.1539	1.1338	9.1976	:	6.5543	3.3292	7979-1									
FINITE-ELEMENT ULTIMATE LOADS	NO	7.3734	2.8630	10.3786	11.6390	14.7752	13 0463	13 3760	8.0791	8-0042	12.4179	18.8005	22.6503	22.3764			19.7712	17.6836	13.7438	8.4047	2.3298	-3.7515	19.11.67	-13.1052	-13-555	5 6030	-1 5. 7 733	-15.7573	-5.5112	0.1242	-0.3199	0.0843	-0.8645	-0.8652	0.0845	-0.0214	-6.0351	-2.6474	991.0									
C-11. F	AX.	-16.0381	-5.2636	-10.5625	-9.5354	-17.8228	750.035	1470.07-	-8-4767	-11 -46 73	-17.2344	-28.3062	-38.7561	-41.7124	-32.61 76	-11.0623	5.3545	-1.5233	-8-3053	-14.0561	-18.0503	-19.5554	9055-51-			0000	-4-4743			3.4214	0.10:1	0.2283	-0.7847	5.1297	0.1902	0-1534	0.2823	1.9026	7905-1									
TABLE	*		5.4595			21.5348	7.01.4						18.8823	19.2679	21.5715	15.0515	53.9161	50.1585	40.7973	26.8723		41447			0 101 0	2000	-22.4401	-29.3040	-15.0462	3.6851	0.1108	0.1508	- 0.4312	-2.4597	0.2573	38.00.0	-15-1288	-6-1549	1.4568									
	XX	10.5589	3.1296	4.6695	5.5361	22, 3939	25 4114	10 5472	10.7925	7.2085	16-7428	36.5590	49.3686	48.3613	34.31.02	30. 7178	5.3975	2.9073	0.4341	-1.6583	-3.1134					16.36.36				-3.3125	-0.1704	0.1322	-2.1624	-0-1360	-0.0037	-0.133	5995-7-	-1.1475	-0.801	37.1893	20. 50.00	20 6037	9.1912	-2.5211	-13.7104	-22.9176	-28.8520	-30.8888
	ST2 555	107	202	23	504	205	303	23.5	200	210	211	212	213		215	315	27.7	27.5	512	220	122	222	577	22.4	222	222				231	232	233	234	525	236	237	352	533	057	24.1	242	27.6	245	246		un	542	

	A					
	STRA! NJ *103 0300 **	33. 463. 551.	277. 277. 284.	-1658. -1496. -396.	1897. 1486. 1379. 179. 120. 12.	280. -670. 144. 1110. -1559. -732. 378. 15.
FOR	STRAINS	-1194. -1073. -748. -351.	539. 947. 1256.	355. 123. 851. 2667.	677. 119. 119. 129. 255. 185.	120. 249. 249. 110. 39. 20. -332. -621. 80.
ER PLATE	MECA- 116824- 113624- 11345- -534- -534- -545- 9961- -81- -81- -319- -147- 6221- 6783-	1621.	-372. -853. -1194.	223. 1182. -228. -1181.	-349. 892. 284. -44. -46. -112. -35.	-9. -661. -661. 15. 1673. 1873. 1873. 1873. 1873. 1873.
LEAD-LAG JOINT IN UPPER PLATE FOR TW7F1 (continued)	* C C C C C C C C C C C C C C C C C C C	33. 465. 551.	284. 977.	-1858. -1456. -396. 568.	18897. 1348. 1349. 126. 126. 43.	260. 260. 144. 110. 110. 36. 173. 173. 36.
AG JOINT (contin	STRAIN PIOGOGOS	-1194. -1073. -748. -351.	539. 1256. 1398.	355. 123. 851. 2067.	277 205 419 124 124 255 186	120. 249. 681. -110. 39. 20. -332. -621. -55.
LYSIS OF LEAD-LAG JOINT IN CONDITION TW7F1 (continued)	(TDTAL 116424 813424 813424 -5344 -5344 -5345 -6945 -6961 -616 -319 -319 -319 -319 -319 -319	1621.	-372. -855. -1194.	223. 1182. -228. -1191.	1349 2392 2392 146 1111 135	-9. -35. -661. 55. 15. 1473. 1829. 250. 15.
ANALYSIS OF OF CONDITION	CAS SHEEFING COLORED					******
	89	25.6531 23.3592 17.6302 10.6974 5.5864	9.8308 16.7254 22.1563 24.8378	8.0464 23.2392 17.7196 37.8128	19,6548 18,7067 10,9495 10,9495 2,0576 11,61169 3,6211 3,6211	1.5631 13.4758 13.4721 1.4868 1.1439 0.4201 6.3304 5.6025 8.8659 0.2874
FINITE-ELEMENT ULTIMATE LOADS	S.	5.6920 5.1926 4.2543 3.1566	2.3663 1.3654 0.8793 0.4596	8.2655 18.4934 8.8303 21.0645 21.6052	4.6505 16.9696 2.2501 1.3515 1.6661 2.0195 1.8591 2.1390	1.5780 5.0388 5.0388 0.6425 0.7667 0.2963 5.36039 6.7630 0.3402
-11. FI	*	3.4406 5.0929 6.0036 6.2232	5.2437	20.4406 -:5.4625 -4.3553 6.2452	20.6726 16.3463 -4.12334 -0.2712 -0.2712 0.1764	-6.5148 3.0857 3.0857 1.5820 1.5820 1.2054 6.3956 6.3956 1.6939 1.6939 1.6939
TABLE C	}	-21.8923 -19.4824 -12.7069 -4.6349	13.5712 21.8163 28.2561 31.0503	15.7980 15.0992 25.1198 73.9400 75.3808	19.9939 16.4277 16.4277 7.0314 1.0577 1.0577 5.6474	3.7870 15.2540 0.2540 1.4124 6.5564 4.3871 1.8039 0.6932
	1.1.15.00.00.00.00.00.00.00.00.00.00.00.00.00		-6.4723 -17.7223 -25.6282 -29.7114	10.5589 35.3921 1.3710 -10.7466 -10.5621	31.5149 31.9149 13.4473 13.758 13.1258 13.1258 13.1258 13.1258 13.1258 13.1258 13.1258	0.5470 1.4403 1.4403 1.6734 0.2367 12.4246 14.2288 14.2411 0.3225
	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	232232222

		TABLE	с-11.	FINITE-ELEMENT ULTIMATE LOADS		ANALYSIS OF CONDIT	LYSIS OF LEAD-LAG JOINT IN CONDITION TW7F1 (continued)	AG JOI	ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE FOR OF CONDITION TW7F1 (continued)	R PLATE	FOR		
STRESS					;	CAS E	LTOTAL		STRAIN1 . 10000 33.	(MECH.	STRAI N3 *1 000000	10000001	CASE
EL ES	××	**	XX		So		××	*	××	××	*	×	
301	5.3484	1.2555	-0.2635		2.2935	-	629.	-47.	- 60-	629.	-47.	-60-	-
305	9.5636	2. 7233	1.1078	3 3.1056	2.8526	-	706.	-86	382.	766.	.85	382.	-
303	6-1471	6.4830	0.2784		2.9688	-	557.	615.	96.	557.	.519	.96	-
304	0696.6	5.1261	1.0995		4.1682	-	1118.	282	380.	1118.	282	380.	-
335	17.1311	2.2851	1.8371		7.7413	-	2132.	-381.	634.	21 82.	-381.	634.	-
306	0.7566	3.0427	-0.429		1.3401	-	-21.	373.	-148.	-21.	373.	-148.	-
307	2.6474	5. 6994	-3.6755		3.8505	-	116.	677.	-1269.	116.	677.	-1269.	-
308	3.0412	6.4872	-4.320		4.3573		908	240.	-1491-	909.	240.	-1651-	-
308	10.9906	3.346.	-0. 4694		4.6543		1325.	5.	-300.	1325.	2.	-300.	-
210	13.6780	1.7053	2.8093		6.5415		1773.	-328.	.016	1773.	-328.	.016	-
311	2.2193	5.11.66	5.394		2.8654	-	.00	2000	826.	900	250	826.	-
316	0.2/32	0000	4.3431		***	-	.769	535.	1456	632.	535.	1466	-
313	15225	2.3277	2.3358		4.3634	-	1132.	-00-	906.	1132.	-60-	.908	-
314	9.7384	1.7435	3.4922		5.1028	-	1220.	-151-	1205.	1220.	-151-	1205.	-
3:0	6.4809	3,3603	0.4587		1.5289	-	-69-	456.	158.	-69-	426.	158.	-
316	2.1765	195: - 5	1.9624	2.3545	2.5322	-	. 16	246.	677.	97.	249.	677.	-
31.7	2.7772	4-1073	2.5280		2.6812	-	504.	434.	873.	204.	434.	873.	-
318	4.3943	3.1543	4.4752		4.0055	-	457.	243.	1545.	457.	243.	15+5.	
316	0.2326	2.5223	-0.0617		1.1393		-10.	325.	-21.	-70-	325.	-21.	-
320	0.0592	3.0983	0.7981		1.5868		-116.	*604	275.	-116.	*60*	275.	-
321	-0.4949	4- 2217	0.7732		2.2086	-	-534.	580.	267.	-234.	580.	267.	-
325	-1.2690	3.6427	3.5671	2.61.5	3.5801	-	-314.	534.	1231.	-314.	534.	1231.	-
323	0.0482	3.0949	-0.5620		1.5187	-	-1117.	*60*	-164.	-117.	.605	-161-	-
324	-0.5734	5.1005	-1.0034		1.4372	-	-163.	311.	-346-	-163.	311.	-340.	-
325	-2.1171	2.3301	0.2806		2.3651		-396.	468.	•66	-386.	468.	•66	
326	-5.3992	3.6485	2.7653		4.3488		-862.	700.	455.	-862.	200	955.	
177	CBCC -0-	3. 2340	0.1875		1.0803	٠.	-203.	452.		-203.	452.	. 65.	-
276	2502-2-	7:57.7	6-1113		1.8809		-378.	371.		-378.	371.	569.	
929	- 3.5436	2.8373	7.087		2.1576	_	- 283.	518.		-583.	518.	376.	-
330	6906-8-	3.0160	2.2211	-1.1443	5.5865	-	-1329.	843.		-1329.	843.	767.	-
311	-0-1405	1.9/65	1.3579		1.4808	1	-105.	270.		-105.	270.	472.	-
332	-2.1786	0.6462	3.7436		3.2868	-	-315-	173.	1292.	-315.	173.	1292.	-
233	-7.3023	3.7972	1.5517		4.7771	-	-1120.	195.		-1120.	795.	536.	
234	-10.9931	4.5811	0.8309		6.5704	-	-16+1.	1047.		-1641.	1047.	287.	
335	0.1158					-	1158.			1168.			
336	0.1698					-	1688.			1668.			-
337	0.0086						96.			86.			
338	0.0187					-	137.			187.			-

6.186 — 0.186 3.013E-05 -6.493E-05 -2.783E-05 -2.783E-05 -4.885E-04 -4.885E-05 -1.526E-05 -1.113E-01 -2.136E-05 -1.113E-01 -2.136E-05 -1.113E-05 -FOR OF LEAD-LAG JOINT IN UPPER PLATE 1.3246 1.3366 1.3366 1.3366 1.366 1.3766 1.3736 1.3 -2. 441E -0.4
-2. 441E -0.4
-2. 441E -0.4
-2. 441E -0.4
-3. 957E -0.5
-3. 957E -0.5
-3. 957E -0.5
-3. 957E -0.5
-1. 526E -0.5
-1 OF CONDITION TW7F1 (continued) 2.5726-05 2.4518-06 2.4518-05 3.528-05 3.528-05 3.528-05 1.221 1. ANALYSIS FINITE-ELEMENT ULTIMATE LOADS 2. 9411E-04 2. 9411E-04 2. 9410E-04 2. 9410E-04 2. 9410E-04 2. 9410E-04 2. 9410E-04 3. 9410E-04 3. 9410E-04 3. 9410E-04 3. 9410E-04 3. 9410E-04 3. 9410E-04 4. 9410E-04 6. 0440E-04 6. 04 C-11 1. 2196 01 1. 2196 05 1. 2096 05 1. 2096 05 2. 209 TABLE CASE FC4CE.

	1. 52 6 E - 0 5
: FOR	9 -2. 686 E -03 -9. 308 E -04 -1. 258 E -05 -1. 258 E -05
PER PLATE	2.182E-03 0.06E-03 7.019E-04 9.308E-04 2.441E-03 0.0 1.526E-04 5.046E-04 5.046E-04 5.046E-04 5.046E-04 5.046E-04 1.526E-05 3.052E-05 3.052E-05 3.052E-05 1.526E-
MINT IN UF	7. 3246-04 -1. 9536-04 -5. 2046-04 -5. 2046-04 -2. 2411-04 -2. 2411-04 -1. 4656-04 -1. 4656-04 -1. 5246-04 -2. 1361-04 -1. 5246-04 -2. 1361-04 -1. 5246-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -2. 1361-04 -3. 5761-05 -3. 5761-05 -4. 5761-05 -4. 5761-05 -5. 576
EAD-LAG JO	1.526F-03 1.526F-03 1.526F-03 1.526F-03 1.526F-04 1.526F-04 1.526F-04 1.526F-04 1.526F-05 1.526F
FINITE-ELEMENT ANALYSIS OF LEAD-LAG JOINT IN UPPER PLATE ULTIMATE LOADS OF CONDITION TW7F1 (continued)	2.1978-03 1.2990E-04 2.1978-03 3.1178-03 3.1078-04 4.1838-04 4.1838-04 4.1838-04 4.1838-04 4.8838-05 4.8838-05
FINITE-ELEMENT A	-7. 813 E-05 -1.274 E-03 -2.441 E-04 -2.441 E-04 -3.921 E-04 -3.921 E-04 -3.921 E-04 -4.42 E-04 -4.42 E-04 -5.72 E-05 -1.27 E-04 -1.27 E-04 -1.
	1. 20 E = 0.5
TABLE C-11	7. 4446 G3
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2

Steel Tangential Stress at Inner Edge of Hole

Figure C-25 shows a plot of steel stresses from the data in Table C-11. The maximum stress in the steel is 1.347 ksi/kip of axial load. The corresponding maximum stress is 3.5 percent lower, at 1.300 ksi/kip of axial load, for the element specimen as shown in Figure C-16.

Elements	2nd	1st	i-edge	70	90	110	130
168, 155	66.03	75.33	78.43	1 6	11		
169, 156	77.75	82.92	84.64		8		
170, 157	85.92	94.36	97.17		0		
171, 158	88.96	107.84	114.13			10	
172, 159	90.41	113.49	121.18				7
173, 160	84.50	104.86	111.65			0	
174, 161	68.63	81.81	86.20		1 01		

Use Peak
$$\sigma = \frac{121.2}{89.97} = 1.347$$
 ksi/kip of axial load

Figure C-25. Tangential stress at inner edge of hole for upper plate, Condition TW7F1 Ultimate.

Composite Tangential Stress at Inner Edge of Hole

Eleme	nts	2nd	1st	i-edge
86,	73	22.31	24.53	25.27
87,	74	23.01	27.91	29.54
88,	75	23.32	29.29	31.28
89,	76	21.81	27.10	28.87

Use Peak
$$\sigma = \frac{31.3}{89.97} = .3479 \text{ ksi/kip of axial load}$$

The corresponding maximum stress for the element specimen is 3.9 percent lower.

Steel Tangential Stress at Outer Edge of Lug (Point A in Figure 17)

Elem	ents	2nd	3rd	0-edge
165,	178	81.33	87.74	92.73
166,	179	76.94	87.36	95.46

Use Peak
$$\sigma = \frac{95.7}{89.97} = 1.064 \text{ ksi/kip of axial}$$

The corresponding maximum stress for the element specimen is 3.3 percent higher.

Composite Stress at Outer Edge of Lug (Point A in Figure 17)

Elem-	ents	2nd	lst	0-edge
81,	94	21.15	22.72	23.94
82.	95	20.02	22.63	24.66

Use Peak
$$\sigma = \frac{24.7}{89.97} = .2745$$
 ksi/kip of axial load

The corresponding maximum stress for the element specimen is 3.3 percent higher.

Ultimate Margins of Safety

From Table C-6, the largest load at the lead-lag of the upper plate is 89.97 kips. The scaled failure load from the test of the element test was 176 kips.

Ultimate M.S. =
$$\frac{176}{89.97} - 1 = + \frac{.95}{...}$$

Fatigue Margins of Safety

Figure 20 summarized the results of the fatigue tests of element specimens and related them to the S-N curve for the present titanium hub. The specimens were 7 and 14 percent higher than the mean fatigue strength of the titanium hub.

Fatigue M.S. =
$$(\frac{.07 + .14}{2}) = + \frac{.10}{...}$$

The following calculations relate the test loads to the head moment shown in Figure 20 for the case of head moment = 800 in.-kips. Table C-6 shows that for the fatigue design condition, which has a head moment of 800 in.-kips, the maximum and minimum loads at the lead-lag pin of the upper plate are 43.95 and 4.95 kips, respectively, corresponding to 24.45 ± 19.5 kips. The corresponding test condition was step 1 in which the scaled loads were

.25 x 176 = 44.0 kips maximum, and .025 x 176 = 4.4 kips minimum, or 24.2 ± 19.8 kips, providing a close match. The vibratory loads are similarly matched for steps 2 and 3 shown in Figure 20.

Buckling

Table C-6 shows that a compressive load of 24.34 kips ultimate occurs at maximum flapping upward during condition TW7F1. Considering the central region of the upper plate as a pin-ended column with an effective length = 9 inches and an effective width = 11 inches, its critical buckling load is:

$$P_{cr} = \frac{\pi^2 EI}{L^2} = \frac{\pi^2 Ebt^3}{12 L^2} = \frac{\pi^2 (7540)(11)(.330)^3}{12 (9)^2} = 30.26 \text{ kips}$$

$$Ultimate Buckling M.S. = \frac{30.26}{24.34} - 1 = + .24$$

Center hole

The center hole in the upper plate was preloaded radially when the hub was assembled. Figure 2 shows the final assembled position and makes it apparent how the preload was generated. The cone at the center was designed so that its top sat, initially, .037 inch (full-scale) above the end of the rotor shaft. Then, as the bolts were tightened, the cone was forced down inducing a radial expansion and a tight radial fit into the upper plate. The nominal fits were chosen so that radial compression existed up to a head moment corresponding to 170 percent of the fatigue design moment. These fits and the corresponding stresses were established from analyses using the finite-element model shown in Figure C-26. The results from these analyses are summarized herein.

Figure C-26. Finite-element model for center hole in upper plate.

The first analysis established the radial stiffness of the center hole in the upper plate when subjected to a uniformly distributed radial force. Figure C-27 shows the results.

p = radial force/unit length, kip/inch

 δ = radial expansion of hole, inch

 σ_{t} = tangential stress in steel, ksi

$$\delta/p = .0006662 \text{ in.}^2/\text{kip}$$

$$\sigma_t/p = 5.027 \text{ inch}^{-1}$$

Figure C-27. Deflections and stresses for uniform radial load at center hole of upper plate.

The second analysis established the radial forces that exist for the fatigue design loads (shown in Table C-6) assuming radial continuity at the center hole to the rotor mast. Figure C-28 shows the results.

Figure C-28. Stresses and force intensities at center hole of upper plate for fatigue design loads.

Sufficient preload is applied to maintain radial continuity at the center hole, thus:

Fatigue M.S. =
$$\frac{25.0}{13.8} - 1 = + .81$$

The first analysis established the radial stiffness of the center hole in the upper plate when subjected to a uniformly distributed radial force. Figure C-27 shows the results.

p radial force/unit length, kip/inch

 δ = radial expansion of hole, inch

 σ_{t} = tangential stress in steel, ksi

$$\delta/p = .0006662 \text{ in.}^2/\text{kip}$$

$$\sigma_t/p = 5.027 \text{ inch}^{-1}$$

Figure C-27. Deflections and stresses for uniform radial load at center hole of upper plate.

The second analysis established the radial forces that exist for the fatigue design loads (shown in Table C-6) assuming radial continuity at the center hole to the rotor mast. Figure C-28 shows the results.

Figure C-28. Stresses and force intensities at center hole of upper plate for fatigue design loads.

Sufficient preload is applied to maintain radial continuity at the center hole, thus:

Fatigue M.S. =
$$\frac{25.0}{13.8} - 1 = + \frac{.81}{...}$$

For radial continuity to exist, a radial preload of at least 6.067 kips/inch inch is required. The design provides $1.7 \times 6.067 = 10.31 \text{ kips/inch}$ to provide positive assurance of continuity. The maximum steady stress in the steel corresponding to this preload is:

$$10.31 \times 5.027 = 51.83 \text{ ksi}$$

In the third analysis, the ultimate loads were applied, as shown in Figure C-23, to the finite-element model shown in Figure C-26. In this case, it was assumed that preload was insufficient to maintain radial continuity around the hole and the natural gap was permitted to exist on the unloaded side of the hole. The analysis established that the maximum steel stress in the laminae at the edge of the hole is 101.6 ksi at ultimate load, thus:

Ultimate M.S. =
$$\frac{210}{101.6} - 1 = + \frac{1.07}{...}$$

Strains During Fatigue Test of Model

The analytical predictions of strains in the upper plate shown in Figure 34 were calculated by applying appropriate loads for the fatigue test to the finite-element model shown in Figure C-29.

Figure C-29. Finite-element model of upper plate for prediction of strains during fatigue test of model hub.

LOWER PLATE

Lugs at Lead-Lag Pin

Figure C-30 shows the finite-element model that was used for the analysis of the lower plate. It has 222 nodes and 272 elements. In the vicinity of the hole, this model was very similar to those already described for the element specimen and the upper plate. In the case of the lower plate, Table C-6 shows that the loads are nearly uniform at all azimuth positions. Because of this near symmetry of loading, the plate was analyzed assuming it to be symmetrically loaded, and thus, only one-eighth of the surface was needed in the model.

Figure C-30. Finite-element model for analysis of lower plate.

The analysis showed that the tangential stress in the steel at the edge of the hole was 1.561 ksi/kip of axial load. Thus, for the fatigue condition, the stress varied from a high of 1.561 x 49.33 = 77.00 ksi to a low of 1.561 x 45.04 = 70.31, corresponding to 73.66 ± 3.35 ksi. From Figure C-31, the allowable alternating stress is 18.44 ksi, thus:

Fatigue M.S. =
$$\frac{18.44}{3.35} - 1 = \frac{4.50}{}$$

Figure C-31. Allowable alternating stress versus mean stress for steel laminae.

The highest ultimate load at a lower plate lead-lag pin is 97.02 kips, from Table C-6. The maximum corresponding stress is $97.02 \times 1.561 = 151.45 \text{ ksi}$ in the metal laminae, thus:

Ultimate M.S. =
$$\frac{210}{151.45} - 1 = + \frac{.39}{.39}$$

Buckling

Table C-6 shows a compressive load of 30.55 kips ultimate for the static droop condition at each lead-lag pin. Considering the central region of the lower plate as a pin-ended column with an effective length of 8 inches and an effective width of 10 inches, its critical buckling load is:

$$P_{cr} = \frac{\pi^2 \text{Ebt}^3}{12 \text{ L}^2} = \frac{\pi^2 (7540) (10) (.330)^3}{(12) (8)^2} = 34.82 \text{ kips}$$

$$\text{Ultimate Buckling M.S.} = \frac{34.82}{30.55} - 1 = + .14$$

Scalloped Lug at Inner Hole

The bolt holes were sized and positioned so that the lower plate could deform in response to the centrifugal forces without inducing radial loads at the bolts. Thus, the primary load on the lug was torque. Table C-3 shows the ultimate torque to be $2480 \times 1.5 = 3720$ in.-kips. Assuming that the torque divides equally to the lower and pan plates, the force per bolt = $3720/(12 \times 6.2 \times 2) = 25$ kips. Figure C-32 shows the geometry of the scalloped lugs on the fitting at the center of the lower plate and the scalloped flange on the rotor shaft.

Figure C-32. Lug geometry at scalloped flanges.

Using Reference 18, the ultimate strength for transverse loading, Ptru, is calculated as:

$$P_{tru} = K_{tru}$$
 Dt $F_{tu} = .957 \times .75 \times .35 \times 130 = 32.66 \text{ kips}$

Ultimate lug shear, M.S. = $\frac{32.66}{25.00} - 1 = + .31$

18. Melcon, M. A., and Hoblit, F. M., DEVELOPMENTS IN THE ANALYSIS OF LUGS AND SHEAR PINS, Product Engineering, June 1953.

PAN PLATE

Lugs at Lead-Lag Pin

Figure C-33 shows the loads that are applied to the lugs at the lead-lag pin in the pan plate.

Figure C-33. Lug at lead-lag pin of pan plate.

The margins of safety for the F_{χ} component of load are established by comparison of loads to those of the upper plate. Each lug in the pan plate contains the same number and thickness of steel laminae as the lugs in the upper plate. In addition, the pan plate lugs have many more plies of composite to help support the load. Thus, for F_{χ} components, it is conservative to assume for the pan plate that the steel stresses at the edge of the hole are the same as would be present in the upper plate for the same load. Use, from Figure C-25, the maximum tangential stress at the inner edge of the hole = 1.347 ksi/kips of F_{χ} component of load. From Table C-6, for the fatigue condition, the alternating stress is then:

$$\pm$$
 (cos 29°) (37.15) (1.347)/2 = \pm 21.88 ksi

Fatigue M.S. = $\frac{25.00}{21.88}$ - 1 = \pm .14

NOTE: The - 11.16 kips load in Table C-6 for the fatigue condition produces a positive stress at the critical section, and thus, the greatest range of stress occurs between loads 0 and 37.15 kips.

The stress at ultimate load is similarly found from Table C-6 loads as:

$$(\cos 29^{\circ})(106.36)(1.347) = 125.3 \text{ ksi}$$

Ultimate M.S. =
$$\frac{210}{125.3} - 1 = + \frac{.67}{.00}$$

The force F_z is assumed to produce a transverse shear that causes interlaminar shear. The shear area is considered to be 8.0 x 2.2 = 17.60 in., as shown in Figure C-32. The maximum shear is assumed to be 1.4 times the average shear. For the fatigue condition, Table C-5 shows that F_z varies from - 5.41 to 18.01 kips, corresponding to F_z = 6.3 \pm 11.71 kips. The alternating shear stress is:

$$\pm$$
 1.40 F_z/A = \pm 1.40 x 11.71/17.6 = .93 ksi

Fatigue, composite interlaminar, M.S. = $\frac{2.5}{.93}$ - 1 = \pm $\frac{1.69}{.93}$

Fatigue, adhesive,

M.S. = $\frac{1.0}{.93}$ - 1 = \pm $\frac{.07}{.93}$

At the ultimate load (from Table C-6), the shear stress is:

1.40
$$F_z/A = 1.40 \times \sin 29^\circ \times 106.36/17.6 = 4.10 \text{ ksi}$$

Ultimate, composite interlaminar, M.S. = $\frac{10.0}{4.1} - 1 = + \frac{1.44}{2.10}$

Ultimate, adhesive,

M.S. = $\frac{5.0}{4.1} - 1 = + \frac{.22}{1.10}$

Scarf Joint

The most important load on the scarf joint is the alternating membrane force produced by hub moment. These forces are found using the general solution given in Reference 19 for a conical shell loaded at its vertex. Figure C-34 shows the geometry and equations for the composite plate hub.

For the fatigue design condition:

M = 800 in.-kips from Table C-3

$$N_s = \pm .002487 \times 800 = 1.99 \text{ kip/inch}$$

Shear stress = $\frac{N_s}{A} = \pm \frac{1.99}{5} = \pm .398 \text{ ksi}$
Fatigue M.S. = $\frac{.80}{.398} - 1 = \pm \frac{1.01}{.398}$

19. Flugge, W., STRESSES IN SHELLS, Berlin, Springer-Verlag, 1960.

$$N_s = \frac{P \cos \theta}{\pi r \cos \alpha}$$
, force/unit width

M = Hub moment

$$P = \frac{M}{24 \tan \alpha}$$

$$N_{s} = \frac{M \cos \theta}{24 \pi r \sin \alpha}$$

For:
$$\alpha = 29^{\circ}$$
, $\theta = 0^{\circ}$ and 180° , $r = 11$ inches

Peak $N_s = + .002487$ M, kip/inch at scarf joint of pan plate

$$\theta$$

Figure C-34. Membrane forces in conical shell loaded at its vertex.

For the ultimate TW7F2 condition:

$$M = 1500 \times 1.5 = 2250 \text{ in.-kips (ult) from Table C-3}$$

Thrust =
$$85.8 \times 1.5 = 128.7 \text{ kips (ult)}$$

$$(N_s)_{\text{hub moment}} = .002487 \times 2250 = 5.60 \text{ in.-kips (ult)}$$

$$(N_s)_{\text{thrust}} = \frac{128.7}{2\pi \text{ r sin } 29^\circ} = \frac{128.7}{2\pi \text{ x } 11 \text{ x sin } 29^\circ} = 3.84 \text{ in.-kips (ult)}$$

Shear stress =
$$\frac{N_s}{A} = \frac{5.60 + 3.84}{5} = 1.89 \text{ ksi}$$

Ultimate M.S. =
$$\frac{4.00}{1.89} - 1 = + \frac{1.12}{...}$$

For the ultimate load burst condition:

Shear stress =
$$\frac{\text{Torque}}{\text{Area x r}} = \frac{1860}{2\pi \times 11 \times 5 \times 11} = .49 \text{ ksi}$$

Ultimate M.S. =
$$\frac{4.00}{.49} - 1 = + \frac{7.16}{.00}$$

ROTOR SHAFT AND ATTACHMENTS

Shaft

The fatigue condition produces a horizontal shear of 800/(24 tan 29°) = 60.13 kips at the top of the shaft. Table C-12 presents the margins of safety for bending and shear at increments of 1 inch below the upper plate. The margins of safety were calculated using an allowable stress of 25 ksi in bending and 17.672 ksi in shear. These allowables are compatible; they produce equal octahedral shears, as shown below:

In tension test,
$$\tau_{\rm oct} = \frac{\sigma}{\sqrt{3}} = \frac{25}{\sqrt{3}} = 14.43 \text{ ksi}$$

In pure shear test, $\tau_{\rm oct} = \sqrt{\frac{2}{3}} \tau = \sqrt{\frac{2}{3}} \times 17.672 = 14.43 \text{ ksi}$

The stresses were calculated using elementary beam formulas:

$$\sigma = \frac{Mc}{I} = \frac{10.186 \text{ MD}}{(D^4 - d^4)}$$
 and, $\tau = 1.4 \frac{V}{A} = \frac{1.783 \text{ V}}{(D^2 - d^2)}$

where

D = outer diameter

d = inner diameter

M = moment

V = shear = 60.13 kips for fatigue condition

The ultimate margins of safety can be conservatively calculated using the formula derived below:

$$(M.S.)_{ult} = \frac{(Allow.)_{ult}}{(Actual)_{ult}} \times \frac{(Actual)_{fatigue}}{(Allow.)_{fatigue}} \times \frac{(Allow.)_{fatigue}}{(Actual)_{fatigue}} - 1$$

$$(M.S.)_{ult} = \frac{(Allow.)_{ult}}{(Allow.)_{fatigue}} \times \frac{(Actual)_{fatigue}}{(Actual)_{ult}} \times \frac{(Allow.)_{fatigue}}{(Actual)_{fatigue}} - 1$$

Thus:

$$(M.S.)_{ult} = \frac{150}{25} \times \frac{800}{1500} \times \frac{(Allow.)_{fatigue}}{(Actual)_{fatigue}} - 1$$

$$(M.S.)_{ult} = 3.2 \times (M.S.)_{fatigue} + 2.2$$

x	М	D	d	σ	τ	M.S., o	M.S.,
0	0	6.08	4.18	0	5.50	High	+ 2.21
1	60.13	6.61	4.18	2.53	4.09	High	+ 3.32
2	120.36	7.00	6.41	12.04	13.56	+ 1.08	+ .30
3	180.39	7.40	6.90	18.59	15.00	+ .35	+ .18
4	240.52	7.80	7.25	20.37	12.96	+ .23	+ .36
5	300.65	8.20	7.60	21.20	11.31	+ .18	+ .56
6	360.78	8.60	7.98	22.35	10.43	+ .12	+ .69
7	420.91	9.00	8.30	21.27	8.86	+ .18	+ 1.00
8	481.04	9.40	8.37	15.89	5.86	+ .57	+ 2.02
9	541.17	9.80	8.37	12.52	4.13	+ 1.00	+ 3.28

The lowest ultimate margins of safety are then:

Bending, Ultimate M.S. =
$$3.2 \times .12 + 2.2 = \frac{2.58}{...}$$

Shear, Ultimate M.S. = $3.2 \times .18 + 2.2 = \frac{2.78}{...}$

Main Attachment Bolts

Ultimate torque = $2480 \times 1.5 = 3720 \text{ in.-kips (ult)}$

12 - 3/4-in. diam. bolts on 6.2 in. radius

Force/bolt =
$$\frac{T}{nR} = \frac{3720}{12 \times 6.2} = 50.00 \text{ kips (ult)}$$

Use 180-ksi bolts, double shear strength = 95.4 kips

Ultimate M.S. =
$$\frac{95.4}{50.0} - 1 = + \frac{.91}{...}$$

Lug, Torque

Figure C-32 shows the geometry of the lug. From preceding bolt calculation, the ultimate load per hole is 50 kips. Using Reference 18, the ultimate strength for transverse loading, P_{tru} , is calculated as:

$$A_{1} = .58 \text{ t} \qquad A_{av} = \left(\frac{6}{3/A_{1} + 1/A_{2} + 1/A_{3} + 1/A_{4}}\right) \frac{1}{Dt}$$

$$A_{3} = .33 \text{ t}$$

$$A_{4} = .58 \text{ t} \qquad A_{br} = \left(\frac{6}{3/.58 + 1/.38 + 1/.33 + 1/.58}\right) \frac{1}{.75} = .637$$

$$t = 1.55$$

$$P_{tru} = K_{tru}Dt F_{tu} = .835 x .75 x 1.55 x 160 = 155.31 kips$$

$$Ultimate M.S. = \frac{155.31}{50.0} - 1 = \frac{2.11}{50.0}$$

Lug, Bending

First, the bending stresses are calculated assuming no clamp-up pressure between the pan plate and the lug. It is found, even with this very conservative assumption, that the bending stresses are well below the endurance limit. Then, the bending stress and margins of safety are calculated assuming clamp-up that prevents slipping between the pan plate and the lug. The bolt clamp-up to prevent slipping is shown to be an attainable 33 percent of the ultimate strength of the bolt. Figure C-35 shows the geometry at the lug.

Figure C-35. Attachment lug on rotor shaft.

Using the equation for N_s from Figure C-34, the fatigue condition without bolt clamp-up produces:

Alternating N_s =
$$\frac{\text{M cos }\theta}{24\pi \text{ r sin }\alpha}$$
 = $\frac{\text{4}}{24\pi \text{ x 6.2 x sin 29}^{\circ}}$ = $\frac{\text{4}}{24\pi \text{ sin 3}}$ = $\frac{\text{4}}{24\pi \text{ sin 29}^{\circ}}$

Use,

$$P = 3.53 \times \sin 29 \times \frac{3.2}{2.0} = 2.738 \text{ kips/inch of lug}$$
 width ratio of loaded arc to lug width

onominal = bending stress without stress concentration factor, K

$$\sigma_{\text{nominal}} = \frac{6PL}{\text{th}^2} = \frac{6 \times 2.738 \times .9}{1 \times (1.42)^2} = \pm 7.33 \text{ ksi}$$

 $K_{\text{nominal}} = 2.3 \times 7.33 = \pm 16.86 \text{ ksi at upper fillet, } r = .19$

 $K\sigma_{\text{nominal}} = 1.92 \times 7.33 = \pm 14.07 \text{ ksi at lower fillet, } r = .31$

Assuming bolt clamp-up, the fatigue condition produces:

$$\sigma_{\text{nominal}} = \frac{6P\ell}{\text{th}^2} = \frac{6 \times 2.738 \times .9}{1 \times (2.35)^2} = \pm 2.68 \text{ ksi}$$

 $K\sigma_{\text{nominal}} = 2.3 \times 2.68 = \pm 6.16 \text{ ksi at lower fillet, } r = .31$

Fatigue M.S. =
$$\frac{25}{6.16} - 1 = \frac{3.06}{6.16}$$

The bolt clamp-up that prevents slipping is calculated below:

Shear at interface $\approx 1.5 \frac{P}{A} = \frac{1.5 \times 2.738}{2.35} = 1.75 \text{ ksi/inch of lug width}$

Use friction μ = .15, then clamp-up required is:

1.75/.15 = 11.7 ksi/inch of lug width at interface

Clamp-up force per lug (or bolt) = 2 x 11.7 = 23.4 kips

The ultimate tensile strength of a 3/4-inch bolt at 180 ksi is 71.2 kips. Thus, a clamp-up of 33 percent of the ultimate bolt strength prevents slippage.

Bolts at Top of Shaft

The axial force required to seat the cone provides the design loads for the bolts and the ring at the top of the rotor shaft. The axial force is estimated from the free-body diagram of the cone shown in Figure C-36.

Use friction coefficient, μ = .15, thus, ϕ = tan⁻¹ .15 = 8.53°. The radial force, 10.31 kips/inch, was established on page 190.

Figure C-36. Cone at top of rotor shaft.

The total axial force = $4.271 \times 6.6 \times \pi = 88.56 \text{ kips}$.

Force/bolt = 88.56/12 = 7.38 kips (LIMIT)

Use 180-ksi bolts, 3/8-inch diameter, ultimate tensile strength = 17.1 kips.

Ultimate M.S. =
$$\frac{17.1}{7.38 \times 1.5} - 1 = + \frac{.54}{...}$$

DYNAMIC COMPATIBILITY

Introduction

This section presents the calculations for the stiffnesses shown in Table 6. The stiffnesses for the titanium hub are theoretical stiffnesses. Those for the composite plate hub are experimental stiffnesses calculated from the deflection gage data presented in Figure 12.

Moment Stiffness for Titanium Hub

The flexural deformations of the arms of the upper hub and the rotor shaft above WL 249 are considered. Each arm is idealized as a cantilevered beam with varying EI. Its deflections are calculated using Newmark's Method, Reference 20. Figure C-37 shows a free-body diagram of the structure and the deformations considered.

Figure C-37. Deformations of titanium hub from head moment.

Moment stiffness = $M/\theta = M/(\theta_{arm} + \theta_{shaft})$

^{20.} Newmark, N. M., NUMERICAL PROCEDURE FOR COMPUTING DEFLECTIONS, MOMENTS AND BUCKLING LOADS, <u>Transactions</u> of the American Society of Civil Engineers, New York, 1943.

Figure C-38 shows approximate dimensions for the present hub scaled from Reference 21.

Figure C-38. Approximate sections for present titanium hub.

Station 9.67 Section Properties

<u>Item</u>	<u>A</u>	<u>x</u>	<u>Ax</u>	Ax ²	I _{y elem}	y	Ay	Ay ²	I _{x elem}
1	.750	.750	.562	.422	.141	.250	.187	.047	.016
2	1.275	1.628	2.076	3.379	.007	2.500	3.187	7.969	2.656
3	.826	2.653	2.191	5.814	.222	4.770	3.940	18.794	.015
	2.851 x 2			9.615 x 2	.370 x 2		7.314	26.810 x 2	2.687 x 2
	5.702			19.230	.740			53.620	5.374
	I =	19.230	+ .740	2.565 i = 19.97	0 in. ⁴				
					x (2.565	$)^2 = 21$.479 in	.4	

^{21.} Drawings Number 65100-1100, Sheet 4, and 65103-11000, Sheet 5, Sikorsky Aircraft Division, United Aircraft Corporation, Stratford, Connecticut, 1963.

Station 15.08 Section Properties

<u>Item</u>	<u>A</u>	<u>x</u>	<u>Ax</u>	$\underline{\mathbf{Ax}^2}$	Iy elem	¥	Ay	Ay ²	x elem
1	.615	.750	.461	.346	.115	.205	.126	.026	.008
2	1.020	1.628	1.661	2.703	.005	2.000	2.040	4.080	1.360
3	.743	2.562	1.904	4.877	.161	3.770	2.801	10.560	.013
	2.378 x 2			7.926 x 2	.281 x 2		4.967	14.666 x 2	1.381 x 2
	4.756			15.852	.562			29.332	2.762

$$\overline{y}$$
 = 4.967/2.378 = 2.089 in.
 I_y = 15.852 + .562 = 16.414 in.⁴
 I_x = 29.332 + 2.762 - 4.756 x (2.089)² = 11.339 in.⁴

Station 20.50 Section Properties

<u>Item</u>	<u>A</u>	<u>x</u>	<u>Ax</u>	Ax ²	^I y elem	У	Ay	Ay ²	I _{x elem}
1	.480	.750	.360	.270	.090	.160	.077	.012	.004
2	.765	1.628	1.245	2.028	.004	1.500	1.147	1.721	.574
3	.660	2.472	1.632	4.033	.113	2.770	1.828	5.064	.012
	1.905 x 2			6.331 x 2	.207 x 2		3.052	6.797 x 2	.590 x 2
	3.810			12.662	.414			13.594	1.180

$$\overline{y}$$
 = 3.052/1.905 = 1.602 in.
 I_y = 12.662 + .414 = 13.076 in.⁴
 I_x = 13.594 + 1.180 - 3.810 x (1.602)² = 4.996 in.⁴

Figure C-39 shows curves of approximate moments of inertia for an arm of the present titanium hub.

Figure C-39. Approximate I_{x} and I_{y} for arm of titanium hub. Consider the hub arm as a simple beam cantilevered at station 7.

Vertical stiffness =
$$\frac{P}{\delta} = \frac{12 \text{ E}}{6.46176 \text{ }\lambda^3} = \frac{12 \text{ x } 16500}{6.46176 \text{ }(5.667)^3} = 168.4 \text{ kips/in.}$$

Head Moment =
$$4 P \times 24 \times .866$$
 (see Figure C-37)

$$P = .012028 M$$

$$\theta_{arm} = \frac{\delta_{arm}}{24 \times 8.66}$$

$$\delta_{arm} = \frac{P}{168.4}$$

$$\therefore \theta_{arm} = \frac{.012028 \text{ M}}{168.4 \times 24 \times .866} = .0000034655 \text{ M}$$

Consider the rotor shaft as a hollow steel cylinder with 0.D. = 9.35 in. and I.D. = 7.25 in.:

$$I = \frac{\pi}{64} (d_0^4 - d_1^4) = \frac{\pi}{64} (9.35^4 - 7.25^4) = 239.5$$

Say
$$\theta_{\text{shaft}} \simeq \frac{Ml}{3EI}$$
 (see Figure C-37)

$$\theta_{\text{shaft}} = \frac{14 \text{ M}}{3 \times 29000 \times 239.5} = .000000672 \text{ M}$$

$$\theta = \theta_{arm} + \theta_{shaft} = .000004137 M$$

Moment stiffness =
$$\frac{M}{\theta}$$
 = 241700. in.-kips/rad.

Thrust Stiffness for Titanium Hub

Consider thrust stiffness to be 6×10^{-5} x the vertical stiffness of an individual arm:

Torque Stiffness for Titanium Hub

Torque causes flexural deflections of the arms of the upper hub and the lower plate and, in addition, a twist of the rotor shaft. Both components of deformation are considered in the calculation of the torque stiffness. Figure C-40 shows the deformations. The angle β will be different for the upper hub and the lower plate. The torque stiffness is calculated using the average $\beta.$

Figure C-40. Deformations of titanium hub from torque.

Consider the upper hub as a simple beam cantilevered at station 7.

Consider the total torque, T, to divide equally to the upper hub and the lower plate.

Let:

P = tangential force per arm of either upper hub
 or lower plate

$$P = \frac{T}{2 \times 6 \times 24} = .003472 \text{ T (see Figure C-39)}$$

$$\delta_{\text{upper arm}} = \frac{P}{187.5} = \frac{.003472 \text{ T}}{187.5} = .00001852 \text{ T}$$

$$\delta_{\text{upper arm}} = \frac{\delta}{24} = \frac{.00001852 \text{ T}}{24} = .0000007717 \text{ T}$$

For the upper hub, consider β_{shaft} to correspond to the twist of a shaft of 10-in. length, as shown in Figure C-41.

Figure C-41. Torque in rotor shaft for titanium hub.

$$\beta_{\text{shaft upper arm}} = \frac{7 \text{ T}}{2 \text{JG}} + \frac{3 \text{ T}}{\text{JG}} = \frac{6.5 \text{ T}}{\text{JG}}$$

$$\beta_{\text{shaft upper arm}} = \frac{6.5 \text{ T}}{479 \text{ x } 11000} = .000001234 \text{ T}$$

$$\beta_{upper\ hub}$$
 = .000002005 T

Consider the lower plate to consist of radial beams cantilevered from station 10.0.

Consider the beams to be of constant width = .375 in. and constant depth = 6.0 in. (for tangential loadings):

$$I = \frac{1}{12} \text{ bd}^3 = \frac{1}{12} (.375)(6)^3 = 6.75$$

$$\delta_{\text{lower arm}} = \frac{\text{PL}^3}{3\text{EI}} = \frac{(.003472) \text{ T } (14)^3}{(3)(16500)(6.75)} = .00002851 \text{ T}$$

$$\beta_{\text{lower arm}} = \frac{\delta}{24} = .000001188 \text{ T}$$

For lower plate, consider β_{shaft} to correspond to the twist of a shaft of 3-in. length:

$$\beta_{\text{shaft lower arm}} = \frac{3 \text{ T}}{\text{JG}}$$
 $\beta_{\text{shaft lower arm}} = \frac{3 \text{ T}}{479 \text{ x } 11000} = .0000005694 \text{ T}$
 $\beta_{\text{lower plate}} = \beta_{\text{lower arm}} + \beta_{\text{shaft lower arm}}$
 $\beta_{\text{lower plate}} = .000001757 \text{ T}$
 $\beta_{\text{av}} = .5 (\beta_{\text{upper hub}} + \beta_{\text{lower plate}})$
 $\beta_{\text{av}} = .5 (.000002005 + .000001757) \text{ T}$
 $\beta_{\text{av}} = .000001881 \text{ T}$

torque stiffness = $\frac{T}{\beta_{\text{av}}} = 531632 \text{ in.-kips/rad.}$

Moment Stiffness for Composite Plate Hub

gage 3, .0625 - .0180 = .0445 in.

gage 4, - .023 - .0205 = - .0435 in.

 α = tilt angle = (.0445 - [- .0435]) + 20.78

= .004235 rad.

moment stiffness = M/α = 164.25 + .004235 = 38784 in.-kips/rad. (model)

corresponding

full scale = 38784 x 8 = 310270 in.-kips/rad.

(prototype)

Thrust Stiffness for Composite Plate Hub

gage 3, upper plate .0180 (conservatively adjusted from

raw .011)

gage 4, upper plate .0205

average = .0385 + 2 = .01925 in.

vertical stiffness = Thrust/ δ = 21.45 + .01925 = 1114 kips/in. (model) assembly

corresponding

full scale = 114 x 2 = 2228 kips/in. (prototype)

assembly

Torque Stiffness for Composite Plate Hub

gage 1, pan plate .015

gage 2, lower plate .0215

average = .0365 + 2 = .01825 in.

average twist = θ = .01825 + 12 = .001521 rad.

torsional stiffness = T/θ = 296.6 + .001521 = 195000 in.-kips/r*1.

(model)

corresponding

full scale = T/θ = 195000 x 8 = 1,560,000 in.-kips/rad. (prototype)