Графики основных функций и их построение

0. Сначала строим *прямоугольную (декартову) систему координат*, во многих случаях подойдёт масштаб 1 ed. = 2 клеточки либо 1 ed. = 1 клеточка:

Предполагаемые размеры чертежа лучше оценить ДО построения чертежа. Так, если в задании требуется поставить точку A(-7;-15), то лучше выбрать более мелкий масштаб. И на всякий пожарный: 1-я координата — это «иксовая» координата (по *оси абсцисс ОХ*), а 2-я координата — это «игрековая» координата (по *оси ординат ОY*).

1. Функция y = kx + b задаёт *прямую*, для построения которой достаточно знать 2 точки. Так, для прямой y = 2x + 1 удобно выбрать значение x = 0 и вычислить $y = 2 \cdot 0 + 1 = 1$ и, например, для x = 1 вычислить $y = 2 \cdot 1 + 1 = 3$:

- **1.1.** Прямая вида y = kx проходит через начало координат и для её построения нужно найти одну точку; так для прямой $y = -\frac{x}{2}$ удобно выбрать $x = 2 \implies y = -1$
- **1.2.** Прямая вида y = b параллельна оси OX и проходит через точку (0;b), в частности функция y = 0 задаёт ось OX
- **1.3.** Прямая вида x = a параллельна оси OY и проходит через точку (a; 0), в частности уравнение x = 0 задаёт ось OY

Уравнение прямой часто встречается в *общем виде*: Ax + By + C = 0, из которого легко получить функцию y = kx + b, если $B \neq 0$:

$$By = -Ax - C \implies y = -\frac{A}{B}x - \frac{C}{B}$$

2. *Парабола* задаётся функцией $y = ax^2 + bx + c$ ($a \ne 0$). Если a > 0, то ветви параболы направлены вверх, если a < 0, то вниз. Простейший случай $y = x^2$:

2.1. Как быстро построить любую параболу? Например, $y = -2x^2 + 4x + 1$.

Сначала находим вершину, для этого <u>берём</u> производную и приравниваем её к нулю: $y' = (-2x^2 + 4x + 1)' = -4x + 4 = 0$ — найдём корень уравнения: x = 1 — тут и вершина, её «игрек»: $y = -2 \cdot 1^2 + 4 \cdot 1 + 1 = -2 + 4 + 1 = 3$

Найдём опорные точки (обычно хватает четырёх), при этом используем симметрию параболы и принцип «влево-вправо»: $x = 0 \implies y = -0 + 0 + 1 = 1$

$$x = 2 \implies y = -2 \cdot 2^2 + 4 \cdot 2 + 1 = -8 + 8 + 1 = 1$$

Внимание! Для проверки рассчитываем и то, и то значение, они должны совпасть! $x = -1 \Rightarrow y = -2(-1)^2 + 4(-1) + 1 = -2 - 4 + 1 = -5$ $x = 3 \Rightarrow y = -2 \cdot 3^2 + 4 \cdot 3 + 1 = -18 + 12 + 1 = -5$

Перечисленные действия обычно выполняются устно или на черновике, а результаты заносятся в табличку:

х	1	0	2	-1	3
y	3	1	1	-5	-5

Осталось отметить найденные точки на чертеже и АККУРАТНО соединить их линией.

3. График функции $y = \sqrt{x}$ представляет собой *ветвь параболы*, которая «лежит на боку»:

Данная функция определена лишь на промежутке $x \in [0; +\infty)$, т.к. из отрицательных чисел нельзя извлекать квадратный корень.

4. График функции $y = x^3$ называется *кубической параболой* и выглядит так:

5. График функции $y = \frac{a}{x}$ ($a \neq 0$) представляет собой *гиперболу*. Если a > 0, то ветви гиперболы лежат в 1-й и 3-й координатных четвертях, если a < 0, то во 2-й и 4-й. Данная функция не определена в точке x = 0, а координатные оси являются <u>асимптотами</u> графика — **«залезать на них» нельзя!**

5.1. Как быстро построить график? (и не только гиперболы)

Во многих случаях удобно поточечное построение, построим, например, правую ветвь гиперболы $y = \frac{6}{r-1}$.

Эта функция не определена в точке x = 1, и поэтому *вертикальная* асимптома будет именно здесь.

Найдём несколько опорных точек (подбирая удобные значения «икс»):

\boldsymbol{x}	2	3	4	7
y	6	3	2	1

отмечаем эти точки на графике и аккуратно соединяем их линией.

- **5.2. Если нет уверенности в форме графика (вообще любого), то лучше начертить его небольшой кусок** (если это позволяет задание). А зачастую, кстати, и нужен-то всего лишь кусок.
- **6.** *График показательной функции* $y = a^x$ рассмотрим на примере экспоненты $y = e^x$, вспоминаем приближенное значение этой константы: $e \approx 2,718$.

Экспоненциальная функция выглядит так:

Для построения её графика удобно найти несколько опорных точек:

х	-2	-1	0	1
y	$e^{-2} \approx 0.14$	$e^{-1} \approx 0.37$	1	<i>e</i> ≈ 2,72

при этом ось OX является горизонтальной асимптотой.

Принципиально так же выглядят графики других показательных функций $y = a^x$ с основанием a > 1, например, $y = 2^x$, $y = 3^x$ и др.

6.1. График функции $y = e^{-x}$ симметричен графику $y = e^{x}$ относительно оси OY. И принципиально так же выглядит график любой показательной функции $y = a^{x}$ с основанием 0 < a < 1.

7. *График логарифмической функции* рассмотрим на примере *натурального логарифма* $y = \ln x$. Это обратная к $y = e^x$ функция, которая определена на интервале $(0; +\infty)$ и имеет *вертикальную асимптоту* x = 0 (ось *OY*):

х	e^{-2}	e^{-1}	1	е
y	-2	-1	0	1

Принципиально так же выглядит график любого логарифма $y = \log_a x$ с основанием a > 1.

Если же 0 < a < 1, то графики логарифмов оказываются «развёрнутыми наоборот» относительно оси OX, но такие логарифмы в вышмате практически не встречаются.

7.1. График произвольного логарифма, например, $y = -\ln(1-2x)$ удобно строить по следующей схеме. Сначала из уравнения 1-2x=0 находим вертикальную асимптоту $x=\frac{1}{2}$ и затем несколько опорных точек:

х	-3	-2	-1	0	0,25
y	- ln 7 ≈ -1,95	-ln5≈-1,61	$-\ln 3 \approx -1,10$	0	$y = -\ln 0.5 \approx 0.69$

которые аккуратно соединяем линией.

8. Графики тригонометрических функций.

8.1. График синуса $y = \sin x$ называется *синусоидой*, вспоминаем, что $\pi \approx 3.14$:

При построении можно найти дополнительные точки (например, с помощью *Приложения Тригонометрические таблицы*), и, конечно, пользоваться симметрией графика.

8.2. График косинуса $y = \cos x$ представляет собой синусоиду, сдвинутую на $\frac{\pi}{2}$ влево:

8.3. График тангенса y = tgx:

Данная функция не определена в точках

 $x = \frac{\pi}{2} + \pi k$ (k – любое целое число) и имеет

там вертикальные асимптоты.

8.4. График котангенса y = ctgx:

Данная функция не определена в точках $x = \pi k$ (k – любое целое число) и имеет там вертикальные асимптоты.

9. Графики обратных тригонометрических функций.

9.1. Арксинус $y = \arcsin x$ определён на отрезке $x \in [-1; 1]$ и может принимать

значения от
$$-\frac{\pi}{2}$$
 до $\frac{\pi}{2}$:

9.2. Арккосинус $y = \arccos x$ определён там же, но принимает значения от 0 до π :

9.3. График арктангенса $y = \arctan x$ ограничен асимптотами $y = -\frac{\pi}{2}$ и $y = \frac{\pi}{2}$:

9.4. График арккотангенса $y = \operatorname{arcctg} x$ ограничен асимптотами $y = \pi$ и y = 0:

