

Код Рида-Маллера

Введение

Кодирование

Свойства код

минимальн расстояние

Параметры

Декодировані

Алгоритм Рида Пример

Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук

Высшая Школа Экономики

14 марта 2022 г.

Авторы

Код Рида-Маллера

Введение

Кодировани

....

Минимальное расстояние

Декодировани

Алгоритм Рида Пример Код описан Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года.

Введение

Код Рида-Маллера

Бведение

Кодировани

Минимальное расстояние

Декодировани

Алгоритм Рида

Обозначается как $\mathrm{RM}(r,m)$, где r — ранг, а 2^m — длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит. Традиционно, считается что коды бинарные и работают над битами, т.е. \mathbb{F}_2 . Соглашение: сложение векторов $u,v\in\mathbb{F}_2^n$ будем обозначать как $u\oplus v=(u_1+v_1,u_2+v_2,...,u_n+v_n)$.

Булевы функции и многочлен Жегалкина

Код Рида-Маллера

Введение

Кодировани

Свойства ко

расстояние Параметры

Декодирование

Алгоритм Рида Пример Всякую булеву функцию можно записать при помощи таблицы истинности:

\boldsymbol{x}	y	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	0

Или при помощи многочлена Жегалкина:

$$f(x,y) = xy + x + y + 1$$

Многочлены Жегалкина

Код Рида-Маллера

Введение

Кодировани

Минимальное расстояние

Параметры

Декодировани

Алгоритм Рида Пример В общем случае, многочлены будут иметь следующий вид:

$$f(x_1,x_2,...,x_m) = \sum_{S\subseteq\{1,...,m\}} c_S \prod_{i\in S} x_i$$

Например, для m=2: $f(x_1,x_2)=c_{12}\cdot x_{\{1\}}x_2+c_{\{2\}}\cdot x_2+c_{\{1\}}\cdot x_1+c_{\varnothing}\cdot 1$ Всего $n=2^m$ коэффициентов для описания каждой функции.

Функции небольшой степени

Код Рида-Маллера

Рассмотрим функции, степень многочленов которых не больше r:

$$\{f(x_1, x_2, ..., x_m) \mid \deg f \le r\}$$

Каждую можно записать следующим образом:

$$f(x_1,x_2,...,x_m) = \sum_{\substack{S \subseteq \{1,\ldots,m\} \\ |S| \le r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше r переменных. Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^1 + C_m^2 + \dots + C_m^r = \sum_{i=0}^r C_m^i$$

Ввеление

Идея кодирования

который и будет кодом.

Код Рида-Маллера

Кодирование

Пусть каждое сообщение (длины k) — коэффициенты многочлена от mпеременных степени не больше r.

Тогда мы можем его представить при помощи 2^m бит, подставив все возможные комбинации значений переменных.

Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение. Зафиксировав в таблице порядок строк, можно выделить вектор значений.

> $\begin{array}{c|cc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \end{array}$ $\begin{array}{c|cccc} 0 & 1 & & 0 & & \Longrightarrow & \mathrm{Eval}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}$

Код Рида-Маллера

Введение

Кодирование

....

Минимальное расстояние Параметры

Декодировани

Алгоритм Рида Пример r=1 (степень многочлена), m=2 (переменных). Это $\mathrm{RM}(1,2)$.

 \blacksquare Тогда наш многочлен: $f(x_1,x_2)=c_{\{2\}}x_2+c_{\{1\}}x_1+c_{\varnothing}.$

lacktriangle Сообщение: 011, тогда $f(x_1,x_2)=0+x_1+1.$

■ Подставим всевозможные комбинации:

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	0

■ Получили код: $\mathrm{Eval}(f) = 1100$.

Декодирование когда потерь нет

Код Рида-Маллера

Введение

Кодирование

Минимальное расстояние

Декодировани

Алгоритм Рида Пример ■ Мы получили код: 1100

■ Представим таблицу истинности.

■ Подстановками в
$$f(x_1,x_2) = c_2x_2 + c_1x_1 + c_0$$
 получим СЛАУ.

$$\blacksquare \ c_{\{1\}} = 1, c_{\{2\}} = 0, c_{\varnothing} = 1$$
, исходное сообщение: 011.

$$\begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ & & c_0 & = 1 \\ & c_2 & + c_0 & = 1 \\ c_1 & + & c_0 & = 0 \\ c_1 & + c_2 & + c_0 & = 0 \end{vmatrix}$$

Коды 0-го порядка

Код Рида-Маллера

Введени

Кодирование

Минимальное расстояние Параметры

Декодирование

Для случая $\mathrm{RM}(0,m)$ нужна функция от m аргументов, степени не выше 0.

- $f(x_1, x_2, ..., x_m) = 0$

Таблица истинности:

	x_1	x_2		x_m	$f(x_1,, x_m)$	$g(x_1,,x_m)$
	(0	0	•••	0	0	1
\mathfrak{I}^m	0	0		1	0	1
2)		٠.		:	:
	$\lfloor 1$	1		1	0	1

Вывод: это 2^m -кратное повторение символа

- Сообщение 0 даст код 00...0
- Сообщение 1 даст код $\underbrace{11...1}_{2m}$

Коды m-го порядка

Код Рида-Маллера

Бведение

Кодирование

Минимальное расстояние

Декодирование Алгоритм Рида Есть m переменных, и мы рассматриваем многочлены

 $f \in \mathbb{F}_2[x_1,...,x_m] : \deg f \leq m$, т.е. все возможные.

Для $\mathrm{RM}(m,m)$ мы используем все доступные коэффициенты многочлена для кодирования сообщения.

Тогда нет избыточности: $k = \sum_{i=0}^m C_m^i = 2^m = n$ – длина сообщения равна длине кода.

Чем меньше порядок кода r, тем больше избыточность.

Доказательство линейности

Код Рида-Маллера

Введени

Кодировани

Свойства кода Минимальное расстояние

расстояние Параметры

Декодирования Алгоритм Рида Пусть C(x) кодирует сообщение $x \in \mathbb{F}_2^k$ в код $C(x) \in \mathbb{F}_2^m.$

$$C(x) = (p_x(a_i) \mid a_i \in \mathbb{F}_2^m)$$

где $p_x(a_i)$ — соответствующий сообщению x многочлен.

Причём p_x берёт в качестве своих коэффициентов биты из x. Поскольку многочлены степени не выше r образуют линейное пространство, то $p_{(x \oplus y)} = p_x + p_y$.

 $P(x \oplus y) = Px$

Тогда:

$$C(x\oplus y)_i=p_{(x\oplus y)}(a_i)=p_x(a_i)+p_y(a_i)=C(x)_i+C(y)_i$$

т.е.
$$\forall x,y \quad C(x\oplus y)=C(x)+C(y)$$
, ч.т.д.

Последствия линейности

Код Рида-Маллера

Введение

Кодирование

Свойства кода

Минимальное расстояние Параметры

Декодирование

Алгоритм Рида Пример 11 Существует порождающая матрица G.

$$C(x) = x_{1 \times k} G_{k \times n} = c_{1 \times n}$$

Минимальное расстояние будет равно минимальному весу Хемминга среди всех кодов.

$$d = \min_{\substack{c \in C \\ c \neq 0}} w(c)$$

Корректирующая способность:

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

Конструкция Плоткина

Код Рида-Маллера

Введени

Кодировани

Свойства кода

расстояние Параметры

Декодировани

Алгоритм Рида Пример

Теорема

Для всякого кодового слова $c\in \mathrm{RM}(r,m)$ можно найти $u\in \mathrm{RM}(r,m-1)$ и $v\in \mathrm{RM}(r-1,m-1)$, такие что $c=(u\mid u+v)$.

Минимальное расстояние

Код Рида-Маллера

_

Кодировани

Свойства ко

Минимальное расстояние Параметры

Декодирования Алгоритм Рида Хотим найти минимальное расстояние для кода $\mathrm{RM}(r,m)$

$$d = \min_{c \in C, c \neq 0} w(c)$$

Предположим, что $d=2^{m-r}$ и докажем по индукции.

База: $\mathrm{RM}(0,m)$ — единственный бит повторён 2^m раз. Очевидно, $w(\underbrace{11...1})=2^m=2^{m-0}\geq 2^{m-r}.$

Гипотеза: Если $v \in \mathrm{RM}(r-1,m-1)$, то $w(v) \geq 2^{m-r}$.

Шаг: Хотим доказать для $c \in \mathrm{RM}(r,m)$.

$$\begin{split} w(c) &\stackrel{(1)}{=} w((u \mid u \oplus v)) \stackrel{(2)}{=} w(u) + w(u \oplus v) \geq \\ &\stackrel{(3)}{\geq} w(u) + (w(v) - w(u)) = w(v) \stackrel{IH}{\geq} 2^{m-r} \blacksquare \end{split}$$

Kод с весом 2^{m-r}

Код Рида-Маллера

Введение

Кодирование

Минимальное расстояние

Декодировани

Алгоритм Рида Пример Дано: $\mathrm{RM}(r,m)$, $0 \leq r \leq m$

Хотим: такой $c \in \mathrm{RM}(r,m)$, что $w(c) = 2^{m-r}$

Рассмотрим функцию:

$$f(x_1, x_2, ..., x_m) = \prod_{i=1}^r x_i = x_1 x_2 ... x_r$$

В её таблице истинности ровно 2^{m-r} строк, когда f(...)=1:

r = r			m-r					
	x_1	x_2		x_r	x_{r+1}		x_m	f
	1	1		1	*		*	1
	÷	÷	٠.	÷	:	٠.	÷	:
	1	1		1	*		*	1

Свойства и параметры

Код Рида-Маллера

Введение

Кодировани

Свойства кода

расстояни

Параметры

Декодировани

Алгоритм Рида Пример Для бинарного кода RM(r, m):

- $0 \le r \le m$
- Длина кода: 2^m
- Длина сообщения: $k = \sum_{i=0}^{r} C_m^i$
- Минимальное расстояние: $d = 2^{m-r}$
- Корректирующая способность: $t = 2^{m-r-1} 1$
- lacktriangle Существует порождающая матрица G для кодирования
- \blacksquare Проверочная матрица H совпадает с порождающей для $\mathrm{RM}(m-r-1,m)$

Возможные варианты

Код Рида-Маллера

Введение

Кодировани

Свойства код

расстояние

· · upume · pu

декодирование

Алгоритм Рида Пример

r	0	1	2	3	4
1	k = 1 $n = 2$ $t = 0$	k = 2 $n = 2$ $t = 0$	_	_	_
2	k = 1 $n = 4$ $t = 1$	k = 3 $n = 4$ $t = 0$	k = 4 $n = 4$ $t = 0$	_	_
3	k = 1 $n = 8$ $t = 3$	k = 4 $n = 8$ $t = 1$	k = 7 $n = 8$ $t = 0$	k = 8 $n = 8$ $t = 0$	_
4	k = 1 $n = 16$ $t = 7$	k = 5 $n = 16$ $t = 3$	k = 11 $n = 16$ $t = 1$	k = 15 $n = 16$ $t = 0$	k = 16 $n = 16$ $t = 0$

Как линейный код

Код Рида-Маллера

введение

Кодировани

Минимальное расстояние

Лекодирование

Алгоритм Рида Пример Этот код является линейным кодом, к нему применимы все обычные (и неэффективные методы):

- Перебор по всему пространству кодовых слов в поисках ближайшего.
- lacktriangle С использованием синдромов: $s=rH^T$.

Определения

Код Рида-Маллера

Введени

Кодировани

Минимальное расстояние

расстояние Параметры

декодирование

Алгоритм Рида Пример

\blacksquare Пусть $A\subseteq\{1,...,m\}$ для $m\in\mathbb{N}$

- 2 Подпространство $V_A\subseteq \mathbb{F}_2^m$, которое обнуляет все v_i , если $i\notin A$: $V_A=\{v\in \mathbb{F}_2^m: v_i=0\ \forall i\notin A\}$
- f 3 Аналогично для $V_{ar A}$, где $ar A=\{1,...,m\}\setminus A\colon V_{ar A}=\{v\in \mathbb F_2^m:v_i=0\ \forall i\in A\}$ Пример:
 - \blacksquare Пусть $m=3, A=\{1,2\}$, тогда...
 - \blacksquare $\mathbb{F}_2^m = \{000, 001, 010, 011, 100, 101, 110, 111\}$
 - $V_A = \{000, 010, 100, 110\} \ (v_3 = 0 \ \forall v)$
 - $\bar{A} = \{1, 2, 3\} \setminus A = \{3\}$
 - $V_{\bar{A}} = \{000, 001\} \ (v_1 = v_2 = 0 \ \forall v)$

Смежные классы

Код Рида-Маллера

Введени

Кодировани

Свойства к

расстояние Параметры

Декодировани

Алгоритм Рида Пример Если фиксировано $V_A\subseteq \mathbb{F}_2^m$, то для каждого $b\in \mathbb{F}_2^m$ существует смежный класс V_A+b :

$$(V_A + b) = \{v + b \mid v \in V_A\}$$

Утверждается, что если брать $b \in V_{\bar{A}}$, то полученные смежные классы будут все различны (и это будут все смежные классы).

Алгоритм Рида для кода RM(r,m)

Код Рида-Маллера

Алгоритм Рида

На вход поступает бинарный вектор y длины 2^m . Это вектор значений функции, возможно с ошибками (но их не больше, чем $t = 2^{m-r-1} - 1$).

Алгоритм Рида для кода $\mathrm{RM}(r,m)$

Декодирует сообщение u, если использовался RM(r, m). Для RM(2, 2):

Код Рида-Маллера

Введение

Кодировани

Свойства код

расстояние

Декодировани

Алгоритм Рида Пример

 $y = \operatorname{Eval}\left(\sum_{A \subseteq \{1,\dots,m\}} u_A \prod_{i \in A} x_i
ight)$

Будем восстанавливать сначала коэффициенты u_A при старших степенях, потом поменьше и так пока не восстановим их все. Начинаем с t=r.

Алгоритм Рида для кода $\mathrm{RM}(r,m)$

Код Рида-Маллера

Введение

Кодирование

C ...

Минимальное расстояние Параметры

Декодирования

Алгоритм Рида Пример Декодирует сообщение u, если использовался $\mathrm{RM}(r,m)$. Для $\mathrm{RM}(2,2)$: $f(x_1,x_2)=u_{\{1,2\}}x_1x_2+u_{\{2\}}x_2+u_{\{1\}}x_1+u_{\varnothing}.$

 $\textbf{Data:} \ \text{vector} \ y = (y_z \in \mathbb{F}_2 \mid z \in \mathbb{F}_2^m)$

for $t \leftarrow r$ to 0

$$y = \operatorname{Eval}\left(\sum_{A \subseteq \{1, \dots, m\}} u_A \prod_{i \in A} x_i
ight)$$

Хотим восстановить все коэффициенты при мономах степени t. Для этого перебираем все A, |A| = t и для каждого восстанавливаем коэффициент u_A при $x_{A_1}x_{A_2}...x_{A_t}$.

Алгоритм Рида для кода RM(r,m)

Код Рида-Маллера

Алгоритм Рида

```
Декодирует сообщение u, если использовался RM(r, m). Для RM(2, 2):
f(x_1, x_2) = u_{\{1,2\}} x_1 x_2 + u_{\{2\}} x_2 + u_{\{1\}} x_1 + u_{\emptyset}.
Data: vector y = (y_z \in \mathbb{F}_2 \mid z \in \mathbb{F}_2^m)
for t \leftarrow r to 0
      foreach A \subseteq \{1, ..., m\} with |A| = t
            c = 0
            foreach b \in V_{\bar{A}}
  c \mathrel{+}= \left(\sum_{z \in (V_A + b)} y_z\right) \bmod 2
       u_{\Lambda} \leftarrow \mathbf{1} \left[c > 2^{m-t-1}\right]
    y = \operatorname{Eval}\left(\sum_{A \subseteq \{1,\dots,m\}} u_A \prod_{i \in A} x_i
ight)
```

Чтобы восстановить коэффициент, нужно перебрать все смежные классы вида $(V_A + b)$: $V_{\Lambda} = \{v \in \mathbb{F}_2^m \mid v \in \mathbb{F}_2$ $: v_i = 0 \ \forall i \notin A$ $b \in \{v \in \mathbb{F}_2^m\}$ $: v_i = 0 \ \forall i \in A$

Алгоритм Рида для кода $\mathrm{RM}(r,m)$

Код Рида-Маллера

Алгоритм Рида

```
Декодирует сообщение u, если использовался RM(r, m). Для RM(2, 2):
f(x_1, x_2) = u_{\{1,2\}} x_1 x_2 + u_{\{2\}} x_2 + u_{\{1\}} x_1 + u_{\varnothing}.
Data: vector y = (y_z \in \mathbb{F}_2 \mid z \in \mathbb{F}_2^m)
for t \leftarrow r to 0
      foreach A \subseteq \{1, ..., m\} with |A| = t
           c = 0
            foreach b \in V_{\bar{A}}
  c \mathrel{+=} \left(\sum_{z \in (V_A + b)} y_z\right) mod 2
       u \land \leftarrow 1 \left[c > 2^{m-t-1}\right]
    y = \operatorname{Eval}\left(\sum_{A \subseteq \{1,\ldots,m\}} u_A \prod_{i \in A} x_i
ight)
```

Считаем количество (c)смежных классов, в которых $\sum y_z = 1 \pmod{2}$. $z \in (V_A + b)$ Пороговое значение (2^{m-t-1}) здесь — половина от числа смежных классов. Таким образом, если большинство сумм дало 1, то $u_A=1$, иначе $u_{A}=0.$

Алгоритм Рида для кода $\mathrm{RM}(r,m)$

Код Рида-Маллера

Введение

Кодирование

Свойства код

Минимальное расстояние Параметры

Декодировани

Алгоритм Рида Пример Декодирует сообщение u, если использовался $\mathrm{RM}(r,m)$. Для $\mathrm{RM}(2,2)$: $f(x_1,x_2)=u_{\{1,2\}}x_1x_2+u_{\{2\}}x_2+u_{\{1\}}x_1+u_{\varnothing}.$

Data: vector $y = (y_z \in \mathbb{F}_2 \mid z \in \mathbb{F}_2^m)$

for $t \leftarrow r$ to 0

$$y = \operatorname{Eval}\left(\sum_{\substack{A \subseteq \{1,...,m\} \ |A|=t}} u_A \prod_{i \in A} x_i
ight)$$

Затем мы вычитаем из *у* (вектор значений функции) всё найденное на этой итерации, после чего переходим к мономам меньшей степени. Повторять до восстановления всех коэффициентов.

Код Рида-Маллера

Ранее: 011 кодируется как 1100 при помощи ${
m RM}(1,2)$

Введение

Кодирование

Свойства кол

Минимально расстояние Параметры

Декодирование

Алгоритм Рида Пример

Код Рида-Маллера

Введение

Кодирование

Свойства кода
Минимальное
расстояние

Декодирование Алгоритм Рида

Пример

Ранее: 011 кодируется как 1100 при помощи $\mathrm{RM}(1,2)$ Положим $y_{00}=1,y_{01}=1,y_{10}=0,y_{11}=0$ Здесь m=2, значит $A\subseteq\{1,2\}$. Причём r=1, т.е. $|A|\le 1$.

Шаг 1/3: $t = 1, A = \{1\}$

- lacktriangle Здесь $V_A = \{ 00, 10 \}$, $V_{ar{A}} = \{ 00, 01 \}$. Нужно рассмотреть два смежных класса.
- ullet $(V_A + 00) = \{00, 10\}$, cymma: $y_{00} + y_{10} = 1 + 0 = 1$
- $\bullet \ (V_A + \mathtt{01}) = \{\mathtt{01}, \mathtt{11}\} \text{, cymma: } y_{\mathtt{01}} + y_{\mathtt{11}} = 1 + 0 = 1$
- Итого: $u_A = u_{\{1\}} = 1$

Код Рида-Маллера

Введение

Кодирование

Свойства кода

Минимальное расстояние

Декодирование Алгоритм Рида

Пример

Ранее: 011 кодируется как 1100 при помощи $\mathrm{RM}(1,2)$ Положим $y_{00}=1,y_{01}=1,y_{10}=0,y_{11}=0$ Здесь m=2, значит $A\subseteq\{1,2\}$. Причём r=1, т.е. $|A|\le 1$.

Шаг 2/3: $t = 1, A = \{2\}$

- lacktriangle Здесь $V_A=\{{\tt 00,01}\}$, $V_{ar A}=\{{\tt 00,10}\}.$ Нужно рассмотреть два смежных класса
- ullet $(V_A + {\tt 00}) = \{{\tt 00,01}\}$, cymma: $y_{\tt 00} + y_{\tt 01} = 1 + 1 = 0$
- $\blacksquare \ (V_A + \mathbf{10}) = \{\mathbf{10}, \mathbf{11}\}$, сумма: $y_{\mathbf{10}} + y_{\mathbf{11}} = 0 + 0 = 0$
- Итого: $u_A = u_{\{2\}} = 0$

Код Рида-Маллера

Введение

Кодировани

Минимальное расстояние

Декодирование
Алгоритм Рида
Пример

Ранее: 011 кодируется как 1100 при помощи ${
m RM}(1,2)$

Положим $y_{00}=1, y_{01}=1, y_{10}=0, y_{11}=0$

Здесь m=2, значит $A\subseteq\{1,2\}$. Причём r=1, т.е. $|A|\leq 1$.

Перед переходом к t=0, нужно вычесть из y вектор значений следующей функции:

$$g(x_1,x_2) = u_{\{2\}}x_2 + u_{\{1\}}x_1 = 0x_2 + 1x_1 = x_1$$

Вычислим
$$\mathrm{Eval}(g)$$
: $\begin{array}{c|ccc} x_1 & x_2 & g(x_1,x_2) \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$

Тогда $y \leftarrow y - \text{Eval}(q) = 1100 \oplus 0011 = 1111.$

Продолжение примера: t = 0

Код Рида-Маллера

Теперь
$$y_{\mathtt{00}} = 1, y_{\mathtt{01}} = 1, y_{\mathtt{10}} = 1, y_{\mathtt{11}} = 1$$

Пример

Шаг 3/3: $t = 0, A = \emptyset$

- lacktriangle Здесь $V_A = \{00\}$, но $V_{\bar{A}} = \{00, 01, 10, 11\}$. Нужно рассмотреть четыре смежных класса.
- $(V_A + 00) = \{00\}, \text{ cymma: } y_{00} = 1$
- $(V_A + 01) = \{01\}, \text{ cymma: } y_{01} = 1$
- $(V_A + 10) = \{10\}, \text{ cymma: } y_{10} = 1$
- $(V_A + 11) = \{11\}, \text{ cymma: } y_{11} = 1$
- Итого: $u_{A} = u_{\varnothing} = 1$

Продолжение примера: t = 0

Код Рида-Маллера

Пример

Теперь $y_{00} = 1, y_{01} = 1, y_{10} = 1, y_{11} = 1$

Получили $u_{\{2\}} = 0, u_{\{1\}} = 1, u_{\emptyset} = 1.$

Это значит, что исходный многочлен был таков:

$$f(x_1,x_2)=u_{\{2\}}x_2+u_{\{1\}}x_1+u_{\varnothing}={\color{black}0}+x_1+{\color{black}1},$$

а исходное сообщение: 011, как и ожидалось.

Время работы

Утверждается, что время работы алгоритма — $O(n \log^r n)$, где $n = 2^m$ длина кода.

Код Рида-Маллера

Fin