PATENT ABSTRACTS OF JAPAN

(11)Publication number :

04-301055

(43)Date of publication of application: 23.10.1992

(51)Int.Cl. C22F 1/047 C22C 21/06

(21)Application number : 03-087413 (71)Applicant : SUMITOMO LIGHT METAL IND LTD

(22)Date of filing: 28.03.1991 (72)Inventor: HIRANO SEIICHI YOSHIDA HIDEO

(54) PRODUCTION OF ALUMINUM ALLOY SHEET FOR FORMING EXCELLENT IN DEEP DARWABILITY (57)Abstract:

PURPOSE: To obtain the alloy sheet suitable for use in the production of automobile body sheet material and transport equipment member by applying hot rolling to an AI alloy material with a specific composition and then subjecting the resulting plate to cold working, rolling, and final heat treatment under respectively pecified conditions.

CONSTITUTION: An alloy which has a composition consisting of, by weight, 3.5–6.5% Mg, 0.05–0.6% Cu, 0.01–<0.15% Si, 0.01–<0.20% Fe, and the balance AI and containing, if necessary, one or more kinds among 0.01–<0.05% Nm, 0.01<0.76.20, 0.01<0.20, and 0.01–<0.10% Zr is semicontinuously cast. The resulting ingot is hot-rolled, and the resulting plate is cold-rolled at ≥50% draft, process=annealed at 280–<440° C or 30min–<12hr, and further cold-rolled at 10–<50% draft. The resulting sheet is subjected, as final heat treatment, to heating up to 450–<500° C at ≥100° C/min temp, rise rate and to holding in the above temp, range for 10–<300sec to undergo solution treatment, followed by cooling down to ≥150° C at ≥100° c 200 Nm. By this method, the sheet having ≥28% slongstion and ≥0.70 T~value can be obtained.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-301055

(43)公開日 平成4年(1992)10月23日

(51) Int.Cl.⁴ 識別記号 庁内整理番号 Ρī 技術表示箇所 C22F 1/047 9157-4K C 2 2 C 21/06 8928-4K

審査請求 未請求 請求項の数2(全 7 頁)

(21)出願番号	特順平3-87413	(71) 出職人	000002277
			住友軽金属工業株式会社
(22) 出顧日	平成3年(1991)3月28日		東京都港区新橋5丁目11番3号
		(72)発明者	平野 清一
		,	愛知県名古屋市港区千年三丁目 1 番12号
			住友縣金属工業株式会社技術研究所内
		(72)発明者	
		(10),10,112	同所
		(74)代理人	
		(14)16-27	NAT OF SER OF SER

(54) 【発明の名称】 探紋り性に優れた成形加工用アルミニウム合金板材の製造法

(57) 【要約】

[目的] 本発明は、自動車のボディシート材をはじめ とする輸送機器部材の製造に適したプレス加工時の探紋 り成形性に優れた成形加工用アルミニウム合金板材を製 造する方法に関するものである。

【構成】 Mg:3,5~6.5%、Cu:0.05~ 0.6%、Si:0.01~0.15%未満、Fe: 0. 01~0. 20%未満を含み、あるいはさらにM n:0,01~0,50%未満、Cr:0,01~0, 20%未満、V:0.01~0.20%未満、Zr: 0.01~0.10%未満、残A1よりなる材料を50 %以上の冷延、280~440℃未満で30分以上12 時間未満の中間焼鈍、10~50%未満の冷延、最終熱 処理を100℃/分以上の昇温速度で450~560℃ 未満に加熱し、10~300秒未満保持の溶体化処理、 150℃以下まで100℃/分以上の速度で冷却する。 【効果】 仲び28%以上、r値が0.70以上の深絞 り成形性に優れた材料が得られる。

【特許請求の顧用】

【請求項1】 重量%で、Mg: 3.5%以上6.5% 以下、CuO、05%以上O、6%以下、Si:O、0 1%以上0、15%未満Fe: 0.01%以上0、20 %未満を含有し、残部はA1からなる合金を半連続鋳造 し、得られた鋳塊を熱間圧延後、加工度50%以上の冷 間圧延を施した後、280℃以上440℃未満で30分 以上12時間未満の中間焼錬を施し、さらに10%以上 50%未満の加工度の冷間圧延を施し、最終熱処理とし て100℃/分以上の昇温速度で450℃以上560℃ 10 未満に加熱し、この温度範囲で10秒以上300秒未満 の保持の溶体化処理後、150℃以下まで100℃/分 以上の速度で冷却することを特徴とする深絞り性に優れ た成形加工用アルミニウム合金板材の製造法。

【請求項2】 重量%で、Mg:3,5%以上6.5% 以下、Cu:0.05%以上0.6%以下、S1:0. 01%以上0.15%未满、Fe:0.01%以上0. 20%未満を含有し、さらにMn: 0.01%以上0. 50%未満、Cr:0.01%以上0.20%未満、 以上0.10%未満の1種以上を含有し、残部はA1か らなる合金を半連続鋳造し、得られた鋳塊を熱間圧延 後、加工度50%以上の冷間圧延を施した後、280℃ 以上440℃未満で30分以上12時間未満の中間焼鈍 を施し、さらに10%以上50%未満の加工度の冷順圧 延を施し、最終熱処理として100℃/分以上の昇温速 雇で450℃以上560℃未満に加熱し、この温度範囲 で10秒以上300秒未満の保持の溶体化処理後、15 0℃以下まで100℃/分以上の速度で冷却することを 金板材の製造法。

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は、自動車のボディシート 材をはじめとする輸送機器部材の製造に高したプレス加 工時の探絞り成形性に優れた成形加工用アルミニウム合 金板材の製造法に関するものである。

[00002]

【従来の技術】従来より、自動車のポディシート材をは が開発され、使用されている。特に近年の地球御暖化対 策の各種法規制の強化により、多くの部品を鉄鋼材料か らアルミニウム合金に転換して軽量化する動きが活発で ある.

【0003】例えば、自動車ボディシート材としては、 1) 成形性、2) 形状凍結性(プレス加工時に型の形状 が正確に出ること)、3)高強度、4) 耐デント性、 5) 耐食性等の性能が満たされることが必要である。こ のなか、日本では鉄鋼材料ならびにアルミニウム合金を

てきた。したがって、合金としては5000系のA1-Mg-Zn-Cu合金(特開昭53-103914、特 際昭58-171547) 及びA1-Mα-Cu合金 (特開平2-57655) 等が開発され、実用化されて きた。

[0004] これに対して、欧米では成形性は5000 系合金より劣るが、強度の優れた6000系 (A 1-M g-Si系合金) の6009、6111、6016合金 が開発されている。

【0005】以上の成形性を向上するに当り、材料開発 の指標としては、一軸変形である伸びや張り出し特性で あるエリクセン値が多く用いられてきている。しかし、 各種自動車部材、例えば成形の厳しい自動車のボディバ ネルインナー材の成形には、伸びや張り出しばかりでな く、深紋り特性も向上させることが必要であり、深紋り 性の指標としては r 値 (ランクフォード値) がしばしば 用いられる。r値は、その値が大きいほど板厚の変化に 対する板幅方向の変化が大きいことを意味する。つま り、深紋りの要素が大きい材料のプレス成形において、 ▽: 0. 01%以上0. 20%未満、2 r: 0. 01% 20 材料が破断なく流れ込み、成形し易いことを示し、鉄鋼 材料ではr値向上の材料開発が既に多く行われている。 r値の額定方法についてはJISには規定がないが、例 えばASTM E571に示されている。

【0006】自動車ボディシート用として頻発された5 000系合金の既公開文献としては、前述のものの他、 特公昭62-42985、特臘昭62-27544、特 開昭62-207850、特開昭63-69952、特 開平1-198456、特開平1-225738、特開 平2-118049、特開平1-219139、特開平 特徴とする深絞り性に優れた成形加工用アルミニウム合 30 2-118050等がある。しかし、この中のいくつか はLDRで深絞り性を表現しているが、いずれも伸びや エリクセン値の向上に主力をおいた開発であり、ェ値に ついて検討を加えたものはない。

[0007] 自動車ボディバネル用合金の r 値の記述と しては、例えば住友軽金属技報、27(1986)、1 98や神戸製鋼技報、40 (1990)、99などがあ るが、5000系合金では、r値(各方向の平均値)が 0. 6程度の値がほとんどである。又、例えばアルミニ ウム合金板の成形性、軽金属学会研究部会報告書No. じめとする輸送機器用材料として各種アルミニウム合金 40 12(1985.4)で、各種アルミニウム合金の評価 が行われているが、伸びが低い材料では r 値が 1 以上の 高いものもあるが、伸びが28%以上で、r値が0.7 以上の成形性の良好な材料はない。したがって、ェ値が 0.7~0.8以上で、深絞り成形性が良好で、かつ、 他の性質である伸びやエリクセン値も良好な材料の開発 が強く望まれていた。

[0008]

「発明が解決し、ようとする無關」 本発明は、化学成分及 び加工熱処理工程の詳細な検討により、 r 値が0.70 使用する上で、成形性の良い材料の開発に重点がおかれ 50 以上で伸びが28%以上のプレス加工用の材料を提供す

るものである。熱間加工後に中間焼鈍を加えることは、 例えば特別昭62-146234で示されている。これ は熱間圧延の直後に中間焼鮠を加えるものであるが、本 発明はこれとは全く異なる観点からなされたもので、熱 間加工後の冷間加工→中間焼錬→冷間加工→最終熱処理 の最適な組合せにより上記目的を達成するものである。

[00009]

【課題を解決するための手段】本発明は、重量%でM g:3.5%以上6.5%以下、Cu:0.05%以上 Fe: 0. 01%以上0. 20%未満を含有し、あるい はさらに、Mn:0.01%以上,0.50%未満、C r: 0, 01%以上0, 20%未満、V: 0, 01%以 上0、20%末満、Zr:0、01%以上0.10%未 隣の1種以上を含有し、残部はAlからなる合金を半連 統鋳造し、得られた鋳塊を熱間圧延後、加工度50%以 上の冷間圧延を施した後、280℃以上440℃未満で 30分以上、12時間未満の中間焼錬を施し、さらに1 0%以上50%未満の加工度の冷間圧延を施し、最終熱 560℃未満に加熱し、この温度範囲で10秒以上30 0 秒未満の保持の溶体化処理後、150℃以下まで10 0 ℃/分以上の速度で冷却することを特徴とする深絞り 件に優れた成形加工用アルミニウム合金板材の製造法で ある。

【0010】以上の組成及び処理条件の限定理由は下記 のとおりである。 Mg: 固溶体硬化により合金の強度を 得る上で必要である。3.5%未満では十分な強度が得 られず、6.5%を越えると熱間圧延時に圧延割れを起 こしやすく、現時点では工業的ではない。

【0011】S1、Fe:下限未満では、99.99% ベース高純度地金を大量に使用しなければならず、工業 的でない。又、その上限を越えて含まれると高延性が得 られない。特にこれらの不純物の量の許容額所はSiの 方をFeよりも厳しくしている。Siは理想的にはO. 0 5 %未満である。

【0012】Cu:添加することにより強度を増すとと もに、S相の析出により熱間加工時に均一変形を促進 し、延性に優れた良好な材料を得ることができる。しか な点も多い。下限未満では十分な強度と伸びが得られな い。より好ましくは0、15%以上の添加とする。ま た、上限を越えて添加すると耐食性が良好な材料を得る ことができない。

[0013] Mn、Cr、V、Zr:添加することによ りさらに強度を増し、又、結晶粒を均一化することがで き、成形性が向上する。しかし、その上限以上の添加で は粗大な金属間化合物が増えてくるため成形性が低下 し、又、結晶粒が細かくなりすぎて、ストレッチャスト レインマークが発生し易くなる。

【0014】中間焼鉢前の冷間加工度:50%未満では r値を向上させることができない。望ましくは冷間加工 度65%以上である。

【0015】中間焼鉢: 所定の加工度の冷間加工の間に 行うことにより r 値を向上させることができる。下限未 0. 6%以下、Si:0.01%以上0.15%未満、 10 満の温度もしくは時間では最終熱処理後のェ値が向上し ない。又、上限を越える温度では結晶粒が粗大化し、好 ましくない。さらに、上限を越える長い時間中間焼錬を 施してもそれ以上の効果が期待できず工業的でない。 【0016】中間焼鈍後の冷間加工度:下限より少ない と最終熱処理後に結晶粒が粗大化し、プレス成形時に肌 荒れし好ましくない。又、「値も低くなる。一方、上限 よりも大きいと「値の平均値が小さくなる。

【0017】溶体化処理条件:100℃/分未満の昇温 速度では結晶粒が粗大化し、成形性が劣る。又、加熱温 処理として100℃/分以上の昇温速度で450℃以上 20 度は450℃未満では、Cu系の析出物の图溶が不十分 であり、延件が低く、5 6 0 ℃以上では高温酸化により 製品としての価値が劣る。又、450℃以上の保持時間 は10秒未満では折出物の間溶が不十分であり、300 秒以上保持してもそれ以上性能が上がることはなく、工 業的に意味がないばかりか、表面酸化皮膜が厚くなり、 溶接時に表面のみ接触抵抗が高くなり、健全な溶接がで きなくなる可能性がある。さらに過剰に溶体化処理を行 うと結晶粒が粗大化しプレス成形時に肌荒れを起こす危 険性がある。肌荒れは結晶粒径が100μm (理想的に 30 は50 um) 以下とすることにより防ぐことが可能で、 目に見えない所ではそれほど問題とならないが、例えば 自動車の外板のように目につくところでは製品として間 題となる。さらに、溶体化処理後の150℃までの冷却 速度は100℃/分未満では粒界に金属間化合物や不純 物が析出し、延性が低下するので成形性が劣る。

[0018]

【実施例】表1に示す合金を半連続鋳造後、500℃で 8時間の均質化処理を行った後、室温まで冷却し、鉄肌 部の表面切削を行った。次に500℃まで再加熱し、熱 し、この高延性を得るメカニズムについては、また不明 40 間圧延を開始し、所定の厚さとした。そして、表2に示 す加工度の冷間圧延、中間焼鈍、冷間圧延を経て、厚さ 1mmの板とした。さらに、連続焼鈍炉において最終熱 処理(溶体化処理)を行い、冷却の後レベラー矯正を施 した。

> [0019] 【表1】

(w t %)

HT-Ju	No	Мg	Сц	Si	Fе	Мn	Сr	v	Zr	A1
	1	4.5	0. 15	0.04	0.09	0.10	<0.01	<0.01	<0.01	残
	2	4.8	0.45	0.03	0.07	0.05	<0.01	<0.01	<0.01	残
本	3	3.9	0.15	0.06	0.11	0.35	0.04	0.02	<0.01	残
	4	4,4	0.18	0.03	0.05	<0.01	<0.01	<0.01	0.07	残
発	5	4.6	0.38	0.05	0.07	0.14	0.03	<0.01	<0.01	残
	6	4.6	0.38	0.05	0.07	0.14	0.03	<0.01	<0.01	残
明	7	4.6	0.38	0.05	0.07	0.14	0.03	<0.01	<0.01	残
	8	4.6	0.38	0.05	0.07	0.14	0.03	<0.01	<0.01	残
例	9	5.4	0. 10	0.04	0.07	0.25	0.02	<0.01	<0.01	残
	10	5.4	0, 10	0.04	0. 07	0.25	0.02	<0.01	<0.01	残
	11	5.4	0.10	0.04	0.07	0.25	0.02	<0.01	<0.01	残
	1	3, 2	<0.01	0.04	0.06	<0.01	<0.01	<0.01	<0.01	残
比	2	4.7	0. 65	0.20	0. 28	0.10	<0.01	<0.01	<0.01	残
	3	4.8	0. 25	0.05	0.07	0.10	0.03	<0.01	<0.01	残
較	4	4.8	0. 25	0.05	0.07	0.10	0.03	<0.01	<0.01	残
例	5	4.8	0. 25	0.05	0. 07	0.10	0.08	<0.01	<0.01	飛
	6	4.8	0. 25	0.05	0.07	0.10	0.03	<0.01	<0.01	残

注:上記成分の他に、鋳造組織の敷綱化の目的で、0. [0020] 01%のTi及び高温酸化防止の目的で1ppmのBe 40 [表2] が添加されている。

熱問	中間焼	l .	中間焼	3			
, , , , , , , , , , , , , , , , , , , ,	関加工			昇温速 度	i	最高到 達温度	
	(%)		(%)	°C/nin	保持時間(s)	(°C)	°C/min

	7								8
	1	4.5	70	320 4	25	900	4 0	540	800
	2	4.5	70	320 4	25	900	4 0	540	800
本	8	3.0	58	310 5	20	900	5 0	550	900
	4	4.9	68	390 3	36	900	5 0	5 5 0	1300
発	5	5.0	7 2	290 10	29	700	4 0	5 4 5	800
	6	4.5	5 9	350 4	46	700	4 0	5 4 5	800
眀	7	4.8	7 0	330 8	31	700	4 0	5 4 5	800
	8	4.0	6 9	390 1	20	700	4 0	545	800
例	9	4.4	5 5	360 3	49	700	4 5	550	800
	10	5.0	73	350 6	25	700	4 5	550	800
	11	7,1	8 0	340 5	30	700	4 5	550	800
	1	5.0	7 0	350 4	33	700	4 0	520	800
比	2	5.0	70	350 4	33	700	40	520	800
ж	3	5.0	0	350 4	80	800	5 0	540	800
較	4	5.0	3 0	390 2	71.	800	5 0	540	800
例	5	4.0	6 5	250 0.1	29	800	50	540	800
	6	5.0	7 8	360 7	8	800	5 0	540	800

【0021】表2に供試材の評価結果を示す。評価はJ IS 5号試験片(標点距離50mm)を用い、ひずみ 速度50%/分での圧延平行方向を引張方向とする引張 試験、エリクセン試験を行った。r値については上記の 40 が発生しなかった材料を合格とした。結晶粒径について 引張試験片を用い、0%及び15%引張変形したところ での測定から求めた。さらに、50mm×100mmの 大きさの試験片を用いた5%塩化ナトリウム水溶液によ る1000時間の塩水噴霧試験を行った。判定は、引張

強さが200MPa以上、伸びが28%以上、エリクセ ン値が10.0mm以上、r値が0.7以上であり、か つ塩水噴霧試験において0.02mm以上の深さの孔食 は板面の観察において100μm以下を合格とした。 [0022]

---277----

[表3]

試料No		引張特性		エリク セン値	r値	結晶 粒径	塩水噴 霧試験	
		σ; (MPa)	σ _{0,2} (MPa)	ð (%)	(mm)	(平均)	μm	結果
	1	270	1 3 0	3 0	10.3	0.82	4 0	0
	2	280	140	31	10.4	0.78	3 5	0
本	3	250	1 3 0	3 0	10.8	0.73	3 0	0
	4	260	120	3 1	10.3	0.81	3 0	0
発	5	270	120	2 9	10.3	0.85	3 5	0
	6	270	120	3 2	10.3	0.72	3 0	0
明	7	270	120	3 1	10.4	0.78	3 0	0
	8	270	120	3 0	10.5	0.84	3 5	0
例	9	270	120	3 3	10.6	0.71	3 0	0
	10	270	120	3 4	10.7	0.85	3 0	0
	11	270	120	3 3	10.6	0. 90	3 0	0
	1	190	8 0	3 3	11.3	0.81	4.5	0
比	2	290	150	2 5	9. 5	0. 77	3 0	孔食発 生
	3	270	130	3 0	10.3	0. 61	30	0
較	4	270	130	3 0	10.3	0. 67	3 0	0
24	5	270	130	3 0	10.3	0. 68	3 0	0
	6	270	130	2 5	10. 4	0.80	110	0

[0023] 本発明例1~11は、いずれも要件が特許 請求の範囲内であり、良好な性能が得られている。比較 例1はMg量が特許請求の範囲の下限より少ないため、 引張強さが低く、構造部材としては適切でない。比較例 2 はFe及びS!量が特許請求の範囲の上限よりも多か ったため、伸び及びエリクセン値が低くなった。又、C u量が特許請求の範囲の上限よりも多かったため、塩水 噴霧試験で孔食が発生した。比較例3及び4は、いずれ も中間焼鈍前の冷間加工度が特許請求の範囲の下限より 50 【0024】

も低く、又、中間焼鈍後の冷間加工度が特許請求の範囲 の上限よりも大きかったため、r値が小さくなった。比 較例5は中間焼鈍の温度及び時間が特許請求の範囲の下 限より小さかったため、 r 値が小さくなった。比較例 6 は中間焼鈍後の冷間加工度が特許請求の範囲の下限より 小さかったため、伸びが低く又結晶粒が粗大化した。以 上により比較例はいずれも本発明例よりも明らかに劣る ものである。

II

値がり、70以上の深絞り特性の優れたプレス加工用ア ルミニウム合金板材を得ることができ、従来プレス成形 できなかった厳しい形状、特に絞り成形性が重要な自動

[発明の効果] 本発明によれば、伸びが28%以上、r 車のボディバネルをはじめ、その応用として各種用途の 部材が成形でき、アルミニウム合金材料の用途を広げる ことが可能になる。