Assignment 4:

Calculation of CPU Scheduling Algorithms

Duc M. Le

Thompson Rivers University

COMP 3411 – Operating System

Kevin O'Neil

October 1, 2021

Question 1

First Come First Serve

Process	Completion Time	Turnaround Time	Waiting Time
P1	16	16	0
P2	26	26	16
Р3	31	28	23
P4	39	34	26
P5	51	43	31

Priority Non-Preemptive

Process	Completion Time	Turnaround Time	Waiting Time
			10
P1	34	34	18
P2	10	10	0
Р3	39	36	29
P4	18	13	5
P5	51	43	31

Priority Preemptive

Process	Completion Time	Turnaround Time	Waiting Time
P1	34	34	18
P2	10	10	0
Р3	39	36	29
P4	18	13	5
P5	51	43	31

Round Robin

Process	Completion Time	Turnaround Time	Waiting Time
P1	51	51	35
P2	35	35	25
P3	15	12	7
P4	38	33	25
P5	50	42	30

Question 2

First Come First Serve

Process	Completion Time	Turnaround Time	Waiting Time
P1	8	8	0
P2	12	12	8
P3	13	9	8

Priority Non-Preemptive

Process	Completion Time	Turnaround Time	Waiting Time
P1	12	12	4
72			0
P2	4	4	0
P3	13	9	8

Priority Preemptive

Process	Completion Time	Turnaround Time	Waiting Time
P1	12	12	4
P2	4	4	0
D2	10		
P3	13	9	8

Round Robin

Process	Completion Time	Turnaround Time	Waiting Time
P1	13	13	5
P2	9	9	5
D2	10		5
P3	10	6	3

Question 3

Shortest Remaining Time

Process	Completion Time	Turnaround Time	Waiting Time
P1	19	19	11
P2	4	4	0
Р3	5	1	0
P4	12	6	0

Question 4

The priority scheduling algorithm suffers from starvation (aka infinite blocking) as it can leave some low-priority processes waiting indefinitely. In a heavily loaded computer system, a steady stream of higher-priority processes can prevent a low-priority process from ever getting the CPU.

A solution to the problem of indefinite blockage of low-priority processes is aging, which involves gradually increasing the priority of processes that wait in the system for a long time.