Hugo Marquerie 17/03/2025

Convergencia en probabilidad implica en distribución

Proposición 1. Sea $(X_n)_{n\in\mathbb{N}}$ tal que $X_n \xrightarrow{\mathbb{P}} X \implies X_n \xrightarrow{d} X$.

Demostración: Sea $t \in \mathbb{R}$ punto de continuidad de F_X y $\varepsilon > 0$, veamos que

$$F_{X_n}(t) \le F_X(t+\varepsilon) + \mathbb{P}\left(|X_n - X| > \varepsilon\right) \tag{1}$$

$$F_{X_n}(t) \ge F_X(t - \varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon).$$
 (2)

Si aceptamos (1) y (2), entonces

$$F_X(t-\varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon) \le F_{X_n}(t) \le F_X(t+\varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$
.

Como $X_n \xrightarrow{\mathbb{P}} X$, entonces $\mathbb{P}\left(|X_n - X| > \varepsilon\right) \xrightarrow{n \to \infty} 0$

$$\implies F_X(t-\varepsilon) \le \lim_{n\to\infty} F_{X_n}(t) \le F_X(t+\varepsilon).$$

Tomando límites en ε , $\lim_{\varepsilon \to 0} F_X(t - \varepsilon) \le \lim_{n \to \infty} F_{X_n}(t) \le \lim_{\varepsilon \to 0} F_X(t + \varepsilon)$, como F_X es continua en t, entonces concluimos que $\lim_{n \to \infty} F_{X_n}(t) = F_X(t)$, luego $X_n \xrightarrow{d} X$.

Veamos que se cumplen las desigualdades

- (1) Basta ver que $\{X_n \leq t\} \subset \{X \leq t + \varepsilon\} \cup \{|X_n X| > \varepsilon\}$, operamos $\{X_n \leq t\} = \left[\{X_n \leq t\} \cap \{|X_n X| \leq \varepsilon\}\right] \sqcup \left[\{X_n \leq t\} \cap \{|X_n X| > \varepsilon\}\right] \subset \{X \leq t + \varepsilon\} \cup \{|X_n X| > \varepsilon\}.$
- (2) Se hace de forma análoga.