Tarea-Examen de ejercicios para al Evaluación Parcial 01

FECHA DE ENTREGA VIERNES 13-SEPTIEMBRE-2019 De 17:00 a 19:00 HORAS - Salón O-223

Instrucciones: Resolver y entregar cuatro de los cinco ejercicios de solo una opción. De entregar más de cuatro ejercicios se anularán los ejercicios de mayor puntaje.

OPCIÓN A

- 1. Sean $\{P,Q\}\subseteq \mathbb{P}^3$ y π un plano en \mathbb{P}^3 . Demostrar que si $\{P,Q\}\subseteq \pi$ entonces $\overline{PQ}\subset \pi$.
- 2. Sean l una recta y π un plano en \mathbb{P}^3 . Demostrar que si $l \not\subseteq \pi$ y $l \cap \pi \neq \emptyset$ entonces $|l \cap \pi| = 1$.
- 3. Demostrar que existen cuatro puntos coplanaes que por ternas están en posición general.
- 4. Demostrar que si tres triángulos están en perspectiva desde un mismo punto entonces los tres ejes de perspectiva, que determinan los triángulos por pares, son tres rectas concurrentes.
- 5. Demostrar que si dos cuadrángulos completos determinan el mismo conjunto cuadrangular entonces sus triángulos diagonales están en perspectiva.

OPCIÓN B

- 1. Sea π un plano en \mathbb{P}^3 y $\{A,B,C,D,E,F\}\subseteq\pi$ tales que $\{A,B,C\}$ y $\{D,E,F\}$ son puntos en posición general. Demostrar que $\pi_{ABC}=\pi_{DEF}$.
- 2. Demostrar que si en cada recta en \mathbb{P}^3 inciden n puntos distintos entonces en cada punto inciden n rectas distintas.
- 3. Demostrar que existen cuatro rectas coplanares que por ternas están en posición general.
- 4. Demostrar que si tres triángulos están en perspectiva desde una misma recta entonces los tres centros de perspectiva, que determinan los triángulos por pares, son tres puntos colineales.
- 5. Construir un cuadrángulo completo que tenga a un triángulo dado como triángulo diagonal.

Evaluación Parcial 01 Septiembre 2019