II Università di Roma, Tor Vergata

Dipartimento d'Ingegneria Civile e Ingegneria Informatica LM in Ingegneria dell'Informazione e dell'Automazione Complementi di Probabilità e Statistica - Advanced Statistics

Instructors: Roberto Monte & Massimo Regoli Intermediate Test - 2019-11-22

Problem 1 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ be a probability space and let E, F, G events of Ω such that

- 1. E and G are independent;
- 2. F and G are independent;
- 3. E and F are exclusive;
- 4. $\mathbf{P}(E \cup G) \equiv a$, $\mathbf{P}(F^c \cap G^c) \equiv b$, $\mathbf{P}(E \cup F \cup G) \equiv c$, such that $a b c \neq 0$.

Determine $\mathbf{P}(E)$, $\mathbf{P}(F)$, and $\mathbf{P}(G)$ in terms of a, b, c. Hint: think on a "smart" way to solve the system of equation yielding $\mathbf{P}(E)$, $\mathbf{P}(F)$, and $\mathbf{P}(G)$.

Solution. \Box

Problem 2 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ be a probability space and let $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \mu_L^2) \equiv \mathbb{R}^2$ be the Euclidean real plane endowed with the Borel σ -algebra, $\mathcal{B}(\mathbb{R}^2)$, and the Lebesgue measure, $\mu_L^2 : \mathcal{B}(\mathbb{R}^2) \to \mathbb{R}_+$. Let $f : \mathbb{R}^2 \to \mathbb{R}_+$ given by

$$f\left(x,y\right)\overset{def}{=}kxe^{-\left(x+y\right)}\mathbf{1}_{\mathbb{R}^{2}_{+}}\left(x,y\right),\quad\forall\left(x,y\right)\in\mathbb{R}^{2}$$

where $\mathbb{R}^2_+ \equiv \{(x,y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$. Determine $k \in \mathbb{R}$ such that $f : \mathbb{R}^2 \to \mathbb{R}_+$ is a probability density. Let $Z \equiv (X,Y)$ be the random vector of density $f : \mathbb{R}^2 \to \mathbb{R}_+$.

1. Determine the distribution function $F_Z: \mathbb{R}^2 \to \mathbb{R}_+$ of the vector Z and check that

$$\frac{\partial F^2}{\partial x \partial y}(x,y) = f(x,y), \quad \mu_L^2 \text{-a.e. on } \mathbb{R}^2.$$

- 2. Determine the marginal distribution function $F_X : \mathbb{R} \to \mathbb{R}_+$ and $F_Y : \mathbb{R} \to \mathbb{R}_+$ of the entries X and Y of Z.
- 3. Determine the densities $f_X : \mathbb{R} \to \mathbb{R}_+$ and $f_Y : \mathbb{R} \to \mathbb{R}_+$ of the entries X and Y of Z and check that

$$\frac{dF_X}{dx}(x) = f_X(x) \quad and \quad \frac{dF_Y}{dy}(y) = f_Y(y), \quad \mu_L\text{-a.e. on } \mathbb{R}.$$

- 4. Are X and Y independent random variables?
- 5. Compute $\mathbf{E}[X]$, $\mathbf{E}[Y]$, $\mathbf{D}^{2}[X]$, $\mathbf{D}^{2}[Y]$ and Cov(X, Y).
- 6. Compute $\mathbf{E}[(X,Y)]$ and the covariance matrix of the vector (X,Y).

Solution. \Box

Problem 3 Let X [resp. B] be a standard Gaussian [Bernoulli] random variable on a probability space Ω . In symbols, $X \sim N(0,1)$ and $B \sim Ber(1/2)$. Assume that X and B are independent and define $Y \equiv B \cdot X$. Specifying carefully the properties used, answer the following questions:

- 1. Is the random variable Y Gaussian? Is Y absolutely continuous?
- 2. Are the random variables X and Y uncorrelated? Are X and Y independent?
- 3. Are the random variables B and Y uncorrelated? Are B and Y independent?
- 4. Does the random vector $(X,Y)^{\mathsf{T}}$ have a bivariate Gaussian distribution?
- 5. Can you compute $\mathbf{E}[Y \mid X]$? What about $\mathbf{E}[X \mid Y]$?

Solution.

Problem 4 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ a probability space and let $B \sim Ber(1/2)$ [resp. $R \sim Rad(1/2)$] a standard Bernoulli [resp. Rademacher] random variable on Ω . Assume that B and R are independent and define $X \stackrel{def}{=} B + R$.

- 1. Compute $\mathbf{E}[X \mid B]$, $\mathbf{E}[X \mid R]$, $\mathbf{E}[B \mid X]$, and $\mathbf{E}[R \mid X]$. In addition, specifying carefully the properties used, answer the following questions:
- 2. Are the random variables $\mathbf{E}[X \mid B]$, $\mathbf{E}[X \mid R]$ uncorrelated? Are $\mathbf{E}[X \mid B]$, $\mathbf{E}[X \mid R]$ independent?
- 3. Are the random variables $\mathbf{E}[B \mid X]$ and $\mathbf{E}[R \mid X]$ uncorrelated? Are $\mathbf{E}[B \mid X]$ and $\mathbf{E}[R \mid X]$ independent?
- 4. By using the properties of the conditional expectation, on account that you are dealing with a Bernoulli and a Rademacher random variable, can you compute $\mathbf{E}[BR \mid X]$?

Solution.

Problem 5 Let $X \sim Exp(1)$ an exponential random variable of rate parameter $\lambda = 1$ and let $(Y_n)_{n \geq 1}$ be the sequence of independent real random variables such that

$$Y_n \stackrel{def}{=} \left\{ \begin{array}{ll} n & \text{if } 0 \leq X < \frac{1}{n}, \\ 0 & \text{if } 1/n \leq X. \end{array} \right., \quad \forall n \geq 1$$

- 1. Does $(Y_n)_{n\geq 1}$ converges in distribution?
- 2. Does $(Y_n)_{n\geq 1}$ converges in probability?
- 3. Does $(Y_n)_{n>1}$ converges almost surely?
- 4. Does $(Y_n)_{n>1}$ converges in mean?
- 5. Does $(Y_n)_{n>1}$ converges in quadratic mean?

Solution.