ČESKÁ TECHNICKÁ NORMA

ICS 97.100.30

Leden 2014

Krby s otevřeným a uzavíratelným ohništěm

ČSN 73 4230

Hearthstones with open and closable fireplace

Nahrazení předchozích norem

Touto normou se nahrazuje ČSN 73 4230 z dubna 2004.

Obsah

Strana Předmluva 3 1 Předmět normy 2 Citované dokumenty 3 Termíny a definice 4 5 Obecné požadavky 6 Krb s otevřeným ohništěm 6.1 Navrhování krbu 9 6.2Materiály krbu. 7 Krb s uzavíratelným ohništěm (s krbovou vložkou) 10 7.1 7.2 Přívod vzduchu pro spalování 7.3 7.4 7.5 Krb s krbovou vložkou a s kapalinovým výměníkem 14 8

Předmluva

Změny proti předchozí normě

Oproti předchozímu vydání je tato norma rozšířena o návrh a provádění krbů s uzavřenou sálavou obestavbou (hypokaust) a dále v příloze rozšířena o výpočty výměny vzduchu v místnosti a velikosti přívodního potrubí.

Souvisící ČSN

ČSN 06 1201 Lokální spotřebiče na tuhá paliva – Základní ustanovení

ČSN EN 998-1 ed. 2 (72 2401) Specifikace malt pro zdivo – Část 1: Malty pro vnitřní a vnější omítky

ČSN EN 998-2 ed. 2 (72 2401) Specifikace malt pro zdivo – Část 2: Malty pro zdění

ČSN 72 2600 Cihlářské výrobky – Společná ustanovení

ČSN EN 1990 ed. 2 (73 0002) Eurokód – Zásady navrhování konstrukcí

ČSN EN 1991-1-1 (73 0035) Eurokód 1: Zatížení konstrukcí – Část 1-1: Obecná zatížení – Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb

ČSN 73 0540-1 (73 0540) Tepelná ochrana budov – Část 1: Terminologie

ČSN 73 0540-2 (73 0540) Tepelná ochrana budov – Část 2: Požadavky

ČSN 73 0540-3 (73 0540) Tepelná ochrana budov – Část 3: Návrhové hodnoty veličin

ČSN 73 0540-4 (73 0540) Tepelná ochrana budov – Část 4: Výpočtové metody

ČSN 73 0802 Požární bezpečnost staveb – Nevýrobní objekty

ČSN 73 0804 Požární bezpečnost staveb – Výrobní objekty

ČSN 73 0810 Požární bezpečnost staveb – Společná ustanovení

ČSN 73 0831 Požární bezpečnost staveb – Shromažďovací prostory

ČSN 73 0833 Požární bezpečnost staveb – Budovy pro bydlení a ubytování

ČSN EN 13501-2+A1 (73 0860) Požární klasifikace stavebních výrobků a konstrukcí staveb – Část 2: Klasifikace podle výsledků zkoušek požární odolnosti kromě vzduchotechnických zařízení

ČSN 73 0863 Požárně technické vlastnosti hmot – Šíření plamene po povrchu stavebních hmot

ČSN EN 1996-1-1 (73 1101) Eurokód 6: Navrhování zděných konstrukcí – Část 1-1: Obecná pravidla pro vyztužené a nevyztužené zděné konstrukce

ČSN P ENV 13670-1 (73 2400) Provádění betonových konstrukcí – Část 1: Společná ustanovení

ČSN 73 3150 Tesařské spoje dřevěných konstrukcí – Terminologie

ČSN 73 3610 Navrhování klempířských konstrukcí

ČSN EN 1457 (73 4202) Komíny – Pálené/Keramické komínové vložky – Požadavky a zkušební metody

ČSN EN 1806 (73 4203) Komíny – Pálené/Keramické tvárnice pro jednovrstvé komíny – Požadavky a zkušební metody

ČSN EN 1859 (73 4204) Komíny – Kovové komíny – Zkušební metody

ČSN EN 13502 (73 4205) Komíny – Pálené/keramické komínové nástavce – Požadavky a zkušební metody

EN 13384-2+A2 (73 4206) Komíny – Tepelně technické a hydraulické výpočtové metody – Část 2: Společné komíny

ČSN EN 12446 ed. 2 (73 4207) Komíny – Konstrukční díly – Prvky komínového pláště z betonu

ČSN EN 1857 + A1 (73 4208) Komíny – Konstrukční díly – Betonové komínové vložky

ČSN EN 1858 (73 4209) Komíny – Konstrukční díly – Betonové komínové tvárnice

ČSN EN 13069 (73 4212) Komíny – Pálené/keramické pláště pro systémové komíny – Požadavky a zkušební metody

ČSN EN 13063-1+A1 (73 4213) Komíny – Systémové komíny s pálenými keramickými vložkami – Část 1: Požadavky a zkušební metody pro stanovení odolnosti při vyhoření sazí

ČSN EN 13063-2+A1 (73 4213) Komíny – Systémové komíny s pálenými/keramickými vložkami – Část 2: Požadavky a zkušební metody při mokrém provozu

ČSN 73 4231 Kamna – Individuálně stavěná kamna

ČSN 73 4232 Sporáky – Individuálně stavěné sporáky

ČSN EN 1856-1 (73 4240) Komíny – Požadavky na kovové komíny – Část 1: Systémové komíny

ČSN EN 1856-2 (73 4240) Komíny – Požadavky na kovové komíny – Část 2: Kovové vložky a kouřovody

ČSN EN 15287-1 (73 4241) Komíny – Navrhování, provádění a přejímka komínů – Část 1: Komíny pro otevřené spotřebiče paliv

ČSN 73 4301 Obytné budovy

ČSN EN 15665 (12 7021) Větrání budov – Stanovení výkonových kriterii pro větrací systémy obytných budov

Souvisící právní předpisy

Zákon č. 22/1997 Sb., o technických požadavcích na výrobky a o změně a doplnění některých zákonů, ve znění pozdějších předpisů

Nařízení vlády č. 163/2002 Sb., a nařízení vlády č. 312/2005 Sb., kterými se stanoví technické požadavky na vybrané stavební výrobky, ve znění pozdějších předpisů

Nařízení vlády č. 190/2002 Sb., kterým se stanoví technické požadavky na stavební výrobky označované CE, ve znění pozdějších předpisů

Nařízení vlády č. 91/2010 Sb., o podmínkách požární bezpečnosti při provozu komínů, kouřovodů a spotřebičů paliv

Vyhláška č. 499/2006 Sb., o dokumentaci staveb, ve znění pozdějších předpisů

Vyhláška č. 23/2008 Sb., o technických podmínkách požární ochrany staveb, ve znění vyhlášky č. 268/2011 Sb.

Vyhláška č. 205/2009 Sb., o zjišťování emisí ze stacionárních zdrojů a o provedení některých dalších ustanovení zákona o ochraně ovzduší

Vyhláška č. 268/2009 Sb., o technických požadavcích na stavby

Vypracování normy

Zpracovatel: CTN-TZÚS Praha IČ 00015679 ve spolupráci s Cechem kamnářů a Komínservisem, Ing. Františkem Jiříkem

Technická normalizační komise: TNK 105 Komíny

Pracovník Úřadu pro technickou normalizaci, metrologii a státní zkušebnictví: Ing. Dana Bedřichová

1 Předmět normy

Tato norma platí pro navrhování a provádění krbů s otevřeným a uzavíratelným ohništěm na dřevo a dřevní materiál, které jsou situované v prostoru budovy (vnitřní krby) nebo jsou k budově přistavené (venkovní krby). Není určena pro navrhování a provádění volně stojících zahradních krbů, nebo venkovních otevřených krbů prefabrikovaných. Neplatí pro krby na jiná paliva, např. na plynná paliva.

2 Citované dokumenty

V tomto dokumentu jsou normativní odkazy na následující citované dokumenty (celé nebo jejich části), které jsou nezbytné pro jeho použití. U datovaných citovaných dokumentů se používají pouze datované citované dokumenty. U nedatovaných citovaných dokumentů se používá pouze nejnovější vydání citovaného dokumentu (včetně všech změn).

ČSN 06 0310 Ústřední vytápění – Projektování a montáž

ČSN 06 0830 Tepelné soustavy v budovách – zabezpečovací zařízení

ČSN 06 1008 Požární bezpečnost tepelných zařízení

ČSN EN 12809 (06 1203) Teplovodní kotle pro domácnost na pevná paliva – jmenovitý výkon nejvýše 50 kW – Požadavky a zkušební metody

ČSN EN 303-5 (07 5303) Kotle pro ústřední vytápění na pevná paliva s ruční nebo samočinnou dodávkou o jmenovitém výkonu nejvýše 500 kW – Terminologie, požadavky, zkoušení a značení

ČSN EN 13229 (06 1205) Vestavné spotřebiče k vytápění a krbové vložky na pevná paliva – Požadavky a zkušební metody

ČSN EN 13240 (06 1206) Spotřebiče na pevná paliva k vytápění obytných prostor – Požadavky a zkušební metody

ČSN EN 1443 (73 4200) Komínové konstrukce – Všeobecné požadavky

ČSN 73 4201:2010 Komíny a kouřovody – Navrhování, provádění a připojování spotřebičů paliv

ČSN EN 13384-1+A2 (73 4206) Komíny – Tepelně technické a hydraulické výpočtové metody – Část 1: Samostatné komíny

ČSN EN 13501-1+A1 (73 0860) Požární klasifikace stavebních výrobků a konstrukcí staveb – Část 1: Klasifikace podle výsledků zkoušek na oheň

3 Terminy a definice

Pro účely této normy jsou použity termíny podle ČSN EN 13229, ČSN EN 1443, ČSN 73 4201, ČSN EN 13384-1+A2 a dále tyto termíny a definice:

3.1 Spotřebiče (topidla)

3.1.1

krb

topidlo, určené převážně pro využití estetické funkce ohně v prostoru. Vytápění je funkce druhotná

3.1.2

krb s otevřeným ohništěm (otevřený krb)

krb, kde část ohniště pro spalování paliva není ohrazena nehořlavými materiály; je obvykle navrhovaný i prováděný individuálně

3.1.3

krb s uzavíratelným ohništěm (uzavíratelný krb)

krb, kde je ohniště ohrazeno nehořlavými materiály, z nichž část tvoří zpravidla průhledná dvířka

3.1.4

vytápěný prostor

prostor, ve kterém je umístěné topidlo a/nebo do kterého je teplo z topidla předáváno

3.2 společné konstrukční a funkční části krbů

3.2.1

ohniště (spalovací komora, topeniště)

část prostoru topidla z nehořlavého materiálu, ve kterém probíhá spalování paliva

3.2.2

sálavá plocha krbu

část ohniště, kterou je vyzařováno teplo přímo do vytápěného prostoru

3.2.3

krbová obestavba (opláštění)

pohledové plochy krbu

3.2.4

vzduchová klapka

funkční část, určená k regulaci přívodu vzduchu do ohniště

3.2.5

externí přívod vzduchu (EPV)

způsob přivedení vzduchu do ohniště z prostoru mimo místnosti s krbem (obrázek 2)

3.3 Konstrukční části krbu s otevřeným ohništěm

3.3.1

krbová římsa

vodorovný prvek krbu půdorysně vystupující z obestavby (obrázek 1)

3.3.2

sokl krbu

základová část krbu (obrázek 1)

3.3.3

kouřová clona; kouřový nos

funkční část uzavírající horní část otvoru ohniště pod krbovou římsou (obrázek 1)

3.3.4

boční stěny ohniště

svislé, rovné nebo tvarované stěny, které ohraničují ohniště a určují jeho šířku (obrázek 1)

3.3.5

zadní stěna ohniště; zrcadlo

zadní stěna ohniště, zpravidla z části šikmá, která ohraničuje hloubku ohniště a odráží teplo směrem do místnosti (obrázek 1)

3.3.6

kouřová komora

prostor nad kouřovou uzavírací klapkou, kterým se napojuje krb s otevřeným ohništěm do průduchu kouřovodu (obrázek 1)

3.3.7

kouřová římsa; Rummfordovo sedlo

vytvarované, prohloubené dno kouřové komory, které u ohniště otevřeného krbu usměrňuje odvod spalin tak, aby při nepříznivých povětrnostních podmínkách nepronikaly spaliny zpět do prostoru ohniště (obrázek 1)

3.3.8

kouřová uzavírací klapka

zařízení k uzavření spalinového hrdla krbu s otevřeným ohništěm, pokud je krb mimo provoz (obrázek 1)

3.3.9

kozlíkový rošt

rošt na zvýšených nožičkách, volně položený v ohništi otevřeného krbu

3.3.10

tubus

vnější opláštění otevřeného krbu, které zakrývá kouřovou komoru a kouřovod, případně rozvody teplého vzduchu (obrázek 1)

3.3.11

lapač jisker vnitřní

předsazená stěna (drátěná, skleněná apod.), postavená v bezprostřední blízkosti před krbovým otvorem a zabraňující pronikání jisker do prostoru s krbem

3.4 Konstrukční části uzavíratelných krbů

3.4.1

krbová vložka

průmyslově vyráběné uzavíratelné ohniště

3.4.2

teplovzdušná komora

prostor mezi ohništěm a krbovou obestavbou (obrázek 2)

3.4.3

izolační komora

funkční část obestavby sloužící k odizolování přiléhajících stavebních konstrukcí (obrázek 2)

3.4.4

spalinový výměník

zařízení využívající tepla spalin ke zvýšení celkové účinnosti topidla

3.4.5

kapalinový výměník; kapalinová topná vložka

zařízení určené pro převod tepelné energie uvolňované spalováním paliva nebo její části do teplé vody nebo do teplonosné látky pro tepelnou soustavu

3.4.6

kouřovod

konstrukční díl nebo díly určené pro spojení mezi spalinovým hrdlem spotřebiče paliv (ohništěm nebo spalinovým výměníkem) a sopouchem (obrázek 2)

3.4.7

teplovzdušný rozvod

funkční část určená pro rozvod teplého vzduchu do vytápěných prostor (obrázek 2)

3.4.8

Komínová klapka; regulační klapka

zařízení k částečnému nebo k úplnému uzavření spalinové cesty nebo její části

3.4.9

automatická regulace

zařízení, které reguluje proces hoření nezávisle na obsluze

3.4.10

tepelná izolace

funkční část krbu sloužící ke snížení přenosu tepla

3.4.11

hypokaust

způsob přenosu tepelné energie v rámci konstrukce topidla ze zdroje na teplosměnnou plochu pomocí uzavřené teplovzdušné konvekce

3.4.12

deflektor

šikmý nebo vodorovný konstrukční prvek ohniště umístěný v jeho vrchní části, který optimalizuje spalovací proces

4 Třídění

4.1 Krby podle napojení ohniště na spalinovou cestu:

- a) krby s napojením přímým;
- b) krby s napojením přes spalinový výměník

4.2 Krby podle umístění:

- a) krby vnitřní, které jsou umístěné uvnitř budovy;
- b) krby venkovní, které jsou umístěné vně budovy a jsou s ní pevně spojené.

4.3 Krby podle způsobu předávání tepla do vytápěného prostoru:

- a) krby s otevřenou konvekcí (prouděním tepla vzduchem);
- b) krby sálavé (hypokaustní);
- c) krby s předáváním energie do kapalné, teplonosné látky;
- d) krby kombinované (s více způsoby předávání tepla)

4.4 Třídění stavebních výrobků a konstrukcí podle reakce na oheň:

- a) nehořlavé materiály které z požárního hlediska bezpečně vyhoví třídě reakce na oheň A1 nebo A2 podle ČSN EN 13501-1+A1;
- b) hořlavé materiály reakce třídy na oheň B, C, D, E a F podle ČSN EN 13501-1+A1.

5 Obecné požadavky

- 5.1 Funkční část krbu a jeho rozměry musí být navrženy tak, aby krb:
- splňoval funkci, pro kterou byl určen;
- zajistil bezpečný odvod spalin komínem a kouřovodem, popř. svislým kouřovodem s funkcí komína, do volného ovzduší;
- neohrožoval zdraví a život uživatele.

Provedení krbu musí odpovídat konstrukčním a technickým limitům stanoveným touto normou. Základní parametry pro navrhování a výpočet jednotlivých konstrukčních prvků krbů s otevřeným ohništěm jsou uvedeny v tabulkách A.1 až A.8.

- **5.2** Krb musí být postaven na pevném podloží, nejlépe na betonové nebo jiné pevné desce z nehořlavého materiálu (4.4 a)). Před stavbou krbu musí být ověřena nosnost stropu a podlahy. Bezpečnostní součinitel únosnosti má hodnotu 1,5 násobku dané konstrukce. Stejné podmínky platí při jiném způsobu založení krbu, např. na vetknuté desce do zdiva.
- **5.3** Podlaha pod krbem a ve vzdálenosti nejméně 800 mm ve směru kolmém na otevřenou, popřípadě otevíratelnou stranu ohniště a 400 mm ve směru rovnoběžném s touto stranou musí být z nehořlavého materiálu (4.4 a). Vzdálenosti se měří od bližší hrany otvoru do ohniště.
- **5.4** Povrchová teplota stavebních konstrukcí přiléhajících ke krbu nesmí působením krbu překročit +85 °C. K tomuto účelu je nutné použít tepelnou izolaci o dostatečné tloušťce, případně kombinaci izolace a větrané mezery. Větraná mezera musí být dostatečně široká, aby bylo umožněno její čištění. Otvory k větrané mezeře musí zajišťovat její funkčnost a nesmí být uzavíratelné. Větraná mezera nesmí být funkčně propojena s teplovzdušnou komorou. Ve stěně ani na jejím povrchu nesmí být materiály, které by teplem uvolňovaly škodliviny.
- **5.5** Ve stavebních konstrukcích, ke kterým přiléhá krb, nesmí být umístěno vedení žádných kapalných nebo plynných hořlavých látek.
- **5.6** Pokud je v objektu, v němž je instalován krb, zařízení pro odtah vzduchu (např. digestoř, centrální vysavač, rekuperace, klimatizace, ventilátor na toaletě apod.), nebo jiný spotřebič, který by mohl způsobit zpětné pronikání spalin do prostoru s krbem, musí být zajištěno tlakové vyrovnání, které zajistí dostatečné množství vzduchu potřebného ke spalování paliva v krbu.

POZNÁMKA Ověření dostatečného přívodu vzduchu pro spalování se provede např. 4Pa testem.

- 5.7 Pro stavbu krbu musí být zpracována projektová dokumentace v rozsahu:
- výkresová dokumentace s uvedením potřebných rozměrů, která musí obsahovat nárys a půdorys s kótovaným umístěním krbu v prostoru;
- technická zpráva zahrnující technický, funkční a materiálový popis krbu;
- tepelně technické výpočty podle přílohy B
- 5.8 Předání krbu musí být provedeno protokolárně a musí být předán návod k obsluze krbu
- 5.9 Návod k obsluze krbu musí obsahovat:
- specifikace krbu, u typového krbu katalogový název nebo číslo;
- provozní údaje zejména celkový jmenovitý výkon;
- provozní předpis zejména minimální, doporučená a maximální dávka paliva, způsob roztápění, popis ovládacích prvků, způsob regulace, pokyny k údržbě;
- seznam příslušenství;
- bezpečné vzdálenosti hořlavých předmětů od povrchu krbu
- **5.10** Návod k obsluze krbu s vestavěným kapalinovým výměníkem tepla musí kromě informací uvedených v článku 5.9 obsahovat:
- označení druhu teplonosné látky;
- nejvyšší pracovní přetlak, v Pa u výměníků s kapalnou teplonosnou látkou;
- možné způsoby zajištění proti přetopení

POZNÁMKA Netýká se to případů, kdy jsou uvedené informace a pokyny součástí návodu k montáži a obsluze dodaného výrobcem.

6 Krb s otevřeným ohništěm

6.1 Navrhování krbu

- **6.1.1** Velikost sálavé plochy krbu by měla odpovídat velikosti vytápěného prostoru a velikosti komínu (výška a průměr průduchu). Podklady pro dimenzování sálavých ploch jednotlivých typů krbů jsou uvedené v tabulkách A.1 až A.8 v příloze A.
- 6.1.2 Prostor určený pro vytápění krbem s otevřeným ohništěm by neměl mít menší objem než 30 m³.
- **6.1.3** Od velikosti sálavé plochy krbu s otevřeným ohništěm se odvozuje množství vzduchu nasávaného z prostředí, kde je krb instalován. Množství vzduchu nasávaného krbem je závislé na velikosti sálavé plochy krbu, na velikosti komínového průduchu a účinné výšce komína a na intenzitě hoření paliva v krbu. Obecně platí, že množství vzduchu nasávaného z místnosti na 1 m² sálavé plochy je 720 m³ až 1080 m³, při rychlosti nasávaného vzduchu 0,1 m·s⁻¹ až 0,4 m·s⁻¹. Pokud množství nasávaného vzduchu překročí trojnásobek objemu místnosti, je nutné zajistit přívod vzduchu z venkovního prostředí. Výpočet výměny vzduchu v místnosti a velikost nutného průměru přívodu vzduchu jsou uvedeny v A.1, v příloze A.
- **6.1.4** Přívod vzduchu by měl být zajišťován přednostně z venkovního prostředí pod rošt nebo těsně nad dno ohniště nebo z přilehlé místnosti přímo větrané z venkovního prostoru. Minimální velikost přívodu vzduchu je 1 dm² (např. průměr 120 mm). Větrací otvor musí být chráněný mřížkou. Množství vzduchu lze regulovat vzduchovou klapkou, jejíž ovládání se nedoporučuje umísťovat mimo krb.
- **6.1.5** Pokud je vzduch odebírán z venkovního prostředí, nemá být odběr prováděn v místě, kde může docházet k vytváření podtlaku, např. vlivem větru. Je-li vzduch odebírán z přilehlé větrané místnosti, musí být větrání přilehlé místnosti bezpečně zajištěno (např. světlíkem, nebo oknem).
- **6.1.6** Kouřová uzavírací klapka není určená pro regulaci tahu, ale slouží pouze pro uzavření spalinového hrdla, je-li krb mimo provoz. Klapka musí být snadno přístupná na tělese krbu a musí mít označené polohy uzavřeno/otevřeno. Konstrukce musí zajistit, aby nedošlo k jejímu samovolnému uzavření.

6.2 Materiály krbu

- **6.2.1** Ohniště krbu musí být z nehořlavého materiálu (4.4 a)) se zaručenou teplotní odolností nejméně 1 000 °C Materiál by měl mít dobré akumulační vlastnosti.
- **6.2.2** Pro stavbu soklů krbu a opláštění krbu se používá nehořlavý materiál (4.4 a)). U venkovních krbů musí být materiál navíc ještě mrazuvzdorný.
- **6.2.3** Pokud jsou pro krbovou římsu použity dřevěné trámy, musí být z jakostního dřeva s vlhkostí nejvýše do 15 %. Výhodné jsou trámy lepené, aby nedocházelo k prasklinám. Povolené praskliny u lepeného trámu v průběhu roku jsou maximálně 1 mm až 2 mm (pokud objednatel nepožaduje jinak, např. starý popraskaný trám). Trám musí být chráněn proti požáru a jeho povrchová teplota nesmí překročit +85 °C.

Legenda

- 1 komínový průduch
- 2 kouřová komora (3.3.6)
- 3 kouřová římsa; Rummfordovo sedlo (3.3.7)
- 4 kouřová uzavírací klapka (3.3.8)
- 5 spalinové hrdlo
- 6 odizolovaná dřevěná krbová římsa (3.3.1)
- 7 zadní stěna ohniště; zrcadlo (3.3.5)
- 8 boční stěny ohniště (3.3.4)
- 9 kouřová clona; kouřový nos (3.3.3)
- 10 dno ohniště
- 11 rošt

- 12 externí přívod vzduchu do ohniště (3.2.5)
- 13 popelník
- 14 vzduchová klapka (3.2.4)
- 15 sokl krbu (3.3.2)
- 16 nehořlavá podlaha
- 17 výdechový otvor teplého vzduchu
- 18 teplovzdušný kanál
- 19 tubus krbu (3.3.10)
- 20 účinná výška komína
- 21 otvor pro přívod vzduchu do teplovzdušného kanálu

Obrázek 1 – Schéma krbu s otevřeným ohništěm, svislý řez a pohled přední

7 Krb s uzavíratelným ohništěm (s krbovou vložkou)

7.1 Obecné požadavky

7.1.1 U krbových vložek s uzavíratelným ohništěm, které se montují dodatečně do stávajícího ohniště otevřeného krbu musí být zajištěno, že kouřovod krbové vložky bude možné bezpečně připojit na stávající komín tak, aby spaliny nemohly pronikat do prostoru s krbem. V případě, že není možné čištění kouřovodu provádět z topeniště, musí být v opláštění nad krbem zřízen uzavíratelný otvor, pro přístup k čisticímu otvoru na kouřovodu.

Legenda

1 _	komínový	průduch

2 – stěna budovy

3 - izolační komora (3.4.3)

4 - strop teplovzdušné komory

5 - regulační klapka (3.4.8)

6 – čistící otvor

7 - kouřovod (3.4.6)

8 - teplovzdušná komora (3.4.2)

9 – vzduchová mezera (odvětraná)

10 - tepelná izolace (3.4.10)

11 - krbová vložka (3.4.1)

12 – teplovzdušný rozvod (3.4.7)

13 - odvětrání izolační komory

14 - výdech teplého vzduchu z komory

15 – stěna teplovzdušné komory

16 – externí přívod vzduchu do ohniště (EPV) (3.2.5)

17 – přívod vzduchu z místnosti do teplovzdušné komory

18 – nehořlavá podlaha před krbem

Obrázek 2 – Schéma teplovzdušného krbu s uzavíratelným ohništěm, svislý řez

- **7.1.2** Před montáží uzavíratelných krbových vložek musí být ověřeno, že komínová konstrukce bude svým provedením, velikostí průduchu a účinnou výškou odpovídat jmenovitému výkonu instalovaného krbu.
- 7.1.3 Návrh, montáž a provedení krbu s uzavíratelným ohništěm včetně spalinové cesty musí odpovídat technologickým předpisům a požadavkům výrobce ohniště.
- 7.1.4 Návrh a provedení spalinové cesty musí odpovídat kapitole 8.

7.2 Přívod vzduchu pro spalování

- 7.2.1 Pro přívod vzduchu pro spalování z interiéru platí 5.6.
- **7.2.2** Externí přívod vzduchu (EPV) nesmí být veden z garáže, nebo z místnosti s hořlavými látkami. Část EPV, která může být provozem topidla tepelně namáhaná musí být zhotovena tak, aby vlivem tepla nedošlo k jejímu poškození.
- 7.2.3 Ústí EPV musí být provedeno tak, aby byla za běžných podmínek zajištěna správná funkce.

POZNÁMKA K dimenzování EPV lze použít tabulku B.1 v příloze B.

7.3 Krby s krbovou vložkou – otevřený teplovzdušný systém

- 7.3.1 Plášť teplovzdušné komory, která je určená k předávání tepla, a izolace přiléhajících konstrukcí musí být zhotoveny výhradně z materiálů, které jsou výrobcem k tomuto účelu přímo určené. Je zakázáno používat nevhodné materiály jako např. pórobeton, pórocement, sádrokarton apod. Vláknité materiály se mohou používat pouze s tuhým pojivem vytvrzené teplotou a tlakem, a povrch těchto materiálů u otevřených teplovzdušných systémů musí být čistitelný a upravený proti otěru (abrazi) proudícím vzduchem.
- 7.3.2 Plášť teplovzdušné komory, která není určena k předávání tepla, musí být provedený z nehořlavého materiálu (4.4 a)).
- **7.3.3** Do teplovzdušné komory určené k předávání tepla musí být zajištěn přívod vzduchu pro konvekci (proudění tepla vzduchem).
- 7.3.4 Z teplovzdušné komory určené k předávání tepla musí být zajištěn výdech vzduchu pro konvekci.
- 7.3.5 Velikost otvorů pro přívod a výdech vzduchu pro konvekci stanovuje výrobce krbové vložky. Jestliže výrobce velikost otvoru pro přívod a výdech vzduchu pro konvekci neuvádí, stanoví se výpočtem.
- 7.3.6 Horní hrana otvorů pro výdech vzduchu pro konvekci musí být nejméně 500 mm pod podhledem stropu.
- 7.3.7 Do teplovzdušné komory musí být zajištěn dostatečný přístup pro její kontrolu a čištění, ale i pro kontrolu a čištění povrchu kouřovodu a krbové vložky. Postup čištění musí být popsán v návodu k obsluze krbu. Pokud je na kouřovodu umístěn čistící otvor, musí být i k němu zajištěn dostatečný přístup k provádění čištění kouřovodu.
- **7.3.8** Kromě přímého předávání tepla konvekcí z teplovzdušné komory, může být teplo rozváděno z teplovzdušné komory nebo z dvouplášťové krbové vložky do sousedních prostorů teplovzdušným rozvodem. Prochází-li teplovzdušný rozvod stropem nebo stěnou do dalších místností, musí být průchod řešen s ohledem na požární bezpečnost budovy.
- **7.3.9** Teplovzdušný rozvod musí být těsný a zhotovený z materiálu odolávajícího provozním teplotám. Vyjma části vedené teplovzdušnou komorou musí být teplovzdušný rozvod po celé délce tepelně izolován tak, aby povrchová teplota přilehlých konstrukcí nebyla vyšší než + 85 °C.
- **7.3.10** Teplovzdušný rozvod včetně jeho výdechů musí být proveden a umístěný tak, aby vlivem tepla nedošlo ke strukturálním změnám okolních konstrukcí (např. dřeva, polystyrenového obložení, některých druhů tapet apod.).

7.4 Krby s krbovou vložkou – uzavřený teplovzdušný systém (hypokaust)

- **7.4.1** Tepelná energie je do vytápěného prostoru předávána sáláním z teplosměnných ploch krbu sálavá obestavba. Uspořádání krbu může být bez mezistěny (obrázek 3), nebo s mezistěnou (obrázek 4).
- 7.4.2 Krbová vložka hypokaustového krbu musí být pro toto provedení a použití deklarována výrobcem.
- **7.4.3** Mezery mezi vložkou, případně teplovzdušným výměníkem a sálavým plechem (obrázek 4), se řídí technickou dokumentací výrobce krbové vložky.
- **7.4.4** Jmenovitý výkon krbové vložky včetně případného tahového systému uvnitř hypokaustu smí být maximálně dvakrát vyšší než celkový výkon předávaný teplosměnnými plochami obestavby.
- 7.4.5 Výpočty potřebné pro dimenzování jednotlivých typů krbů jsou uvedeny v příloze C, v článku C.4.

Legenda

- 1 komínový průduch
- 2 stěna budo∨y
- 3 regulační klapka (3.4.8)
- 4 čistící otvor
- 5 kouřovod (3.4.6)
- 6 teplovzdušná komora (3.4.2)
- 7– vzduchová mezera (odvětraná)

- 8 akumulační obestavba
- 9 tepelná izolace (3.4.10)
- 10 sálavá obestavba
- 11 krbová vložka (3.4.1)
- 12 přívod externího vzduchu do ohniště (EPV) (3.2.5)
- 13 nehořlavá podlaha před krbem

Obrázek 3 – Schéma sálavého krbu bez mezistěny, svislý řez

Legenda

- 1 tepelná izolace (3.4.10)
- 2 teplovzdušná komora (3.4.2)
- 3 teplovzdušná mezera
- 4 sálavá obestavba
- 5 mezistěna
- 6 směrovací přepážka (plech)
- 7 kouřovod (3.4.6)

- 8 čistící otvor
- 9 teplovzdušný výměník
- 10 krbová vložka (3.4.1)
- 11 sálavý plech
- 12 přívod externího vzduchu do ohniště (EPV) (3.2.5)
- 13 nehořlavá podlaha před krbem

Obrázek 4 – Schéma sálavého krbu s mezistěnou, svislý řez

7.5 Krb s krbovou vložkou a s kapalinovým výměníkem

- **7.5.1** Pro krb s krbovou vložkou s kapalinovým výměníkem (kapalinovou topnou vložkou) platí stejné podmínky a požadavky jako při napojování a montáži teplovodních kotlů.
- **7.5.2** Napojení a zabezpečení kapalinového výměníku musí být provedeno podle technické dokumentace výrobce a v souladu s ČSN 06 0810, ČSN 06 0830, ČSN EN 12809 a ČSN EN 303-5.
- **7.5.3** Ke všem ovládacím, bezpečnostním a regulačním prvkům teplovodního vytápění umístěným uvnitř obestavby krbu musí být zajištěn dostatečný přístup.
- **7.5.4** Rozvody a všechny ovládací, bezpečnostní a regulační prvky musí být umístěny nebo tepelně chráněny tak, aby nemohlo dojít k jejich poškození.
- **7.5.5** Při uvádění krbu do provozu (zátopové zkoušce) se doporučuje přítomnost topenáře, který prováděl instalaci topné soustavy.

8 Spalinové cesty

- 8.1 Návrh a provedení spalinové cesty musí zajistit bezpečný odvod spalin od připojených krbů s uzavíratelným a otevřeným ohništěm a musí zajistit požární bezpečnost. Pro navrhování, provádění, kontrolu a zkoušení spalinové cesty platí ČSN 73 4201.
- **8.2** Spalinová cesta pro odvod spalin krbů s otevřeným a uzavíratelným ohništěm musí být z materiálů, odolných při vyhoření sazí (třída odolnosti při vyhoření sazí G) podle ČSN EN 1443.
- **8.3** Pro odvod spalin od krbů by měl být přednostně navrhován a realizován vícevrstvý keramický komín. Může to být i komín z jiných materiálů, který je navržen podle ČSN 73 4201 pro odvod spalin od spotřebičů na dřevo. Komín by měl být založen v podlaží, ve kterém je umístěný krb, nebo v technickém podlaží. V půdici komínového průduchu musí být vybírací otvor pro vybírání pevných znečišťujících látek. Komínový průduch musí být kontrolovatelný a čistitelný.
- **8.4** Nejmenší účinná výška komína pro odvod spalin od krbů je 5 m, pokud se výpočtem podle ČSN EN 13384-1+A2 neprokáže, že může být menší. Neúčinná výška průduchu komína je nejméně 1/20 účinné výšky komína.
- 8.5 Návrh a provedení kouřovodu, včetně svislého kouřovodu s funkcí komína, musí odpovídat ČSN 73 4201
- 8.6 Povrchová teplota pláště komína, při nejvyšší provozní teplotě krbu, musí odpovídat ČSN 73 4201
- 8.7 Pro vyústění komína nad střechou budovy platí podmínky podle ČSN 73 4201:2010, článku 6.7.
- 8.8 Velikost spalinové cesty se stanoví podle ČSN EN 13384-1+A2, nebo podle tabulky 3 v příloze A.
- 8.9 Na spalinovou cestu musí být vydána revizní zpráva podle platných právních předpisů¹⁾.

¹⁾ Podle NV č. 91/2010 Sb.

Příloha A (informativní)

Základní údaje pro stanovení velikosti krbů s otevřeným ohništěm

Tabulka A.1 – Základní údaje pro výpočty sálavých ploch jednotlivých typů krbů

Krb s ohništěm otevřeným z jedné strany (tabulka A.2 a tabulka A.4)

$$S_{kr} = A \cdot B$$

POZNÁMKA Velikost sálavé plochy zůstává u tohoto typu krbu stejná, ať je komín nad ohništěm nebo za ohništěm, i když jsou pro tento typ dvoje tabulky.

Krb s ohništěm otevřeným ze dvou stran (přední a boční stěna) (tabulka A.5)

$$S_{kr} = (A + C) \cdot B$$
 nebo $S_{kr} = K \cdot B$

POZNÁMKA H. Dickmann doporučuje také variantu, že místo A + C se počítá s délkou křivky K; S_{kr} = (A + C). B vychází asi o 17 % až 19% vyšší než S_{kr} získané druhým výpočtem s křivkou K.

Krb s ohništěm otevřeným ze dvou stran (protilehlé stěny) (tabulka A.6) $S_{kr} = 2AB$

Krb s ohništěm otevřeným ze tří stran (tabulka A.8)

$$S_{kr} = K \cdot B$$
 nebo $S_{kr} = (A + 2C) \cdot B$

POZNÁMKA První vzorec je podle H. Dickmanna K = délka křivky. Druhý vzorec je podle K. H. Pfestorfa.

Volně stojící krb s dokola otevřeným ohništěm (tabulka 8)

$$S_{kr} = 2\pi RB$$
 nebo $S_{kr} = 4AB$

POZNÁMKA První vzorec je podle H. Dickmanna (počítá křivku = obvod = 2π R). Druhý vzorec je podle K.H. Pfestorfa.

Tabulka A.2 – Krb s ohništěm otevřeným z jedné strany s komínovým průduchem nad ohništěm

Rozměry	místnosti –				Kouřové hrdlo				
Plocha	Objem	Α	В	С	Sálavá plocha A·B	D	Е	F	G
m ²	m ³	cm	cm	cm	cm ²	cm	cm	cm	cm
16-22	40-60	60	50	34	3 000	36	25	20	12
		65	55	35	3 575	40	25	20	12
		70	58	36	4 060	44	25	20	12
22-33	60-90	75	60	37	4 500	49	25	20	12
		80	63	38	5 040	53	28	20	12
		85	66	38	5 610	58	28	20	12
30-40	90-120	90	68	40	6 120	62	28	20	12
		95	71	40	6 745	66	30	20	12
		100	74	42	7 400	70	30	20	12
40-50	120-180	105	76	42	7 980	74	30	20	12
		110	78	45	8 580	78	30	25	12
		115	82	45	9 430	82	32	25	15
50-70	180-250	120	82	48	10 080	85	32	25	15
		125	87	48	10 875	89	32	25	15
70-90	250-350	130	90	51	11 700	93	32	25	15
		135	92	53	12 420	97	32	25	15
		140	95	54	13 300	100	35	25	15
>90	>350	145	97	55	14 065	105	35	25	15
		150	100	58	15 000	109	35	25	15

Obrázek A.1 (k tabulce A.2) – Krb s ohništěm otevřeným z jedné strany

ne k	E	2		177 6	5 6	5,5	2/2/5	1/100	1/14	1/1/20	1/170	1/18.0	1/20 0	120,0	1/180	1/30	1/201	1/200	1/1×5	1200	27,5	1/22/0
v cm² a poměr průduchu k	5 5	c	2 22	5 5	400		-			-	╁	+	╁	-	╁	╁	+	+	+	+	_	-
p³ v cm² a poměi výšce komína (m)	m Z	*//-	V	17 n	2, 6, 5, c	1/100	4/14	1/100	5 5 5	1/120	1/13.0	1/110	1/12.0	1/13.0	1/14.0	1/15.0	1/16.0	1/170	1/120	4/140	2 0	1/10.0
p ³⁾ v cm ²	do 12	c	rm2	AD COA	808	808	400	520	520	520	520	676	676	676	676	676	676	1000	1000	1000	1482	1482
chu	1	1/x		77.2	0 6/1	1/100	1/17	1/7.0	1/8/0	1/9.0	1/10.0	1/7.0	1/8.0	1/8.0	1/9.0	1/10.0	1/10.0	1/10.0	1/9.0	1/9.0	1/9,5	1/10.0
nového průdu Sálavé nioše ⁴⁾	9 op	Q	cm ²	400	400	400	400	676	676	676	676	1000	1000	1000	1000	1000	1000	1482	1482	1482	1482	1482
a Komín	4 m	1×		1/50	1/5.5	1/6.0	1/6.0	1/6.0	1/6.0	1/6.0	1/6,0	1/5,0	1/6,0	1/6,0	1/6,5	1/7,0	1/7.0	1/8.0	1/8.0	1/9.0	1/9.5	1/10,0
Ploch	op o	Ω	cm ²	676	676	676	676	1000	1000	1000	1000	1482	1482	1482	1482	1482	1482	1482	1482	1482	1482	1482
	е Ш 9	I	E	20	20	20	20	20	20	20	20	20	20	20	26	26	26	56	56	28	26	26
	do 16	7	Cm	20	20	20	20	20	20	20	20	20	20	20	20	20	29	20	56	26	26	26
/šce	2 m	I	ES	20	20	20	28	26	26	26	26	26	26	26	26	26	26	38,5	38,5	38,5	38,5	38,5
na při výšce	do 12 m	っ	ш	20	20	20	20	20	20	20	20	26	26	26	26	26	26	26	26	26	38,5	38,5
Průřez komína	8 m	I	ES	20	20	20	20	26	26	26	26	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5
Pž	op	٦	ш	20	20	20	20	26	26	26	26	28	26	26	26	26	26	38,5	38,5	38,5	38,5	38,5
	4 m	I	E5	26	26	26	26	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	. 38,5	38,5
	op	י	шо	26	26	26	5 6	26	2 8	26	26	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5	38,5
Sálavá plocha	krbu ²⁾		cm ²	3000	3580	4060	4500	5040	5610	6120	6750	7400	7980	8580	9430	10080	10880	11700	12420	13300	14070	15000

Poznámky:

1) Výchozí údaje J a H podle publikace F. R. Barrana Der Offene Kamin, Stuttgart 1968

2) Sálavé plochy rozměrem odpovídají údajům v předchozí dimenzovací tabulce 3) Uváděná plocha komínového průduchu P = J·H v cm²

4) Přepočtený rozměr plochy komínového průduchu 1 k sálavé ploše krbu x=1/x

Tabulka A.4 – Krb s ohništěm otevřeným z jedné strany a s komínovým průduchem umístěným za ohništěm nebo vedle ohniště

Rozměry	místnosti			s	palovací komora		Kouřová komora	Kouřovod			
Plocha	Objem	Α	В	С	Sálavá plocha A·B	A1	В1	C1	D	Е	F
m ²	m ³	cm	cm	cm	cm ²	cm	cm	cm	cm	cm ²	cm
13	34	50	42	30	2 100	35	25	20	25	210	5
16	42	55	47	30	2 585	38	30	20	27	260	5
18	47	60	50	30	3 000	40	30	20	30	300	7
21	55	65	53	35	3 445	45	30	25	32	345	7
23	60	70	55	35	3 850	48	33	25	35	385	7
26	68	75	57	35	4 275	53	33	25	37	430	10
30	78	80	60	40	4 800	58	35	28	40	480	10
34	89	87	65	40	5 655	62	35	28	43	565	10
40	104	92	70	45	6 440	65	40	30	46	645	12
45	135	100	75	45	7 500	70	40	30	50	750	12

Obrázek A.2 (k tabulce A.4) – Krb s ohništěm otevřeným z jedné strany a s komínovým průduchem, který je za ohništěm

Tabulka A.5 – Krb s ohništěm otevřeným ze dvou stran a s komínovým průduchem umístěným vedle ohniště nebo za ohništěm

Rozměry	místnosti				Spalovací komora				Kouřová komora	Kouřovod	
Plocha	Objem	Α	В	С	Sálavá plocha ¹⁾ (A+C)·B	A1	B1	C1	D	E	F
m²	m ³	cm	cm	cm	cm ²	cm	cm	cm	cm	cm ²	cm
23	60	50	44	35	3 740	42	25	25	25	375	5
26	68	55	47	35	4 230	47	30	25	27	425	5
29	76	60	50	35	4 750	50	30	25	30	475	7
34	89	65	53	40	5 565	55	30	30	32	557	7
37	96	70	55	40	6 050	56	33	30	35	605	7
40	120	75	57	40	6 555	63	33	30	37	556	10
45	135	80	60	45	7 500	67	35	33	40	750	10
52	156	87	65	45	8 580	75	35	33	43	858	10
60	180	92	70	50	9 940	80	40	35	46	994	12
68	204	100	75	50	11 250	85	40	35	50	1 125	12

Sálavá plocha se vypočítá podle tabulky A.5, podle vzorce (A + C) × B. Může se zvolit druhý výpočet, kde sálavá plocha se vypočítá z délky křivky K (viz tabulka A.1) podle vzorce K × B. Při použití druhého způsobu výpočtu se velikost sálavé plochy sníží o 17 % až 19 %. Obdobně se sníží i velikost spalinové cesty.

Pohled Svislý řez Půdorysný řez

Obrázek A.3 (k tabulce A.5) – Krb s ohništěm otevřeným ze dvou stran

Tabulka A.6 – Krb s ohništěm na dvou protilehlých stranách s komínovým průduchem vedle ohniště

Rozměry	místností		Spalc	vací k	omora	Kou	řová kon	nora	Kouřovod		
Plocha	Objem	Α	В	С	Sálavá plocha (A·B)·2	C1	D ¹⁾	D1	E ²⁾	EO	
m ²	m ³	cm	cm	cm	cm ²	cm	cm	cm	cm ²	cm	
28	73	55	42	51	4 620	61	34	10	378	22	
34	85	60	47	51	5 640	61	35	10	461	25	
39	102	65	50	51	6 500	61	40	10	531	26	
45	135	70	53	58	7 420	68	43	15	606	28	
50	150	75	55	58	8 250	68	46	15	674	30	
55	165	80	57	58	9 120	68	51	15	745	31	
62	186	85	60	64	10 200	74	54	15	833	33	
72	216	92	65	64	11 960	74	58	20	977	36	
84	252	100	70	64	1 400	74	65	20	1 143	38	
98	294	108	75	64	16 200	74	71	20	1 323	41	

 $^{^{1)}}$ Vypočítáno podle vzorce, který uvádí J. Kószó, kde D $^{\circ}(A-1,14\times EO)\times 1,41$

²⁾ Kouřovod je vypočten podle Bacharacova vzorce, který je podrobně uveden u tabulky A8. I v tomto případě se vychází z úvahy, že komín má účinnou výšku 6 m (to má negativní dopad na velikost průřezu průduchu kouřovodu EO) a součinitel vlivu e = 0,2. Nutný je přepočet podle konkrétní situace

Pohled Svislý řez Půdorys

Obrázek A.4 (k tabulce A.6) – Krb s ohništěm na dvou protilehlých stranách

Tabulka A.7 – Krb s ohništěm otevřeným ze tří stran s komínovým průduchem za ohništěm

Rozměry	místnosti			Sp	palovací komora		Kouřová komora	Kouřovod		
Plocha	Objem	Α	В	С	Sálavá plocha ¹⁾	B1 ²⁾	C1 ³⁾	D ⁴⁾	E	F
m ²	m ³	cm	cm	cm	cm ²	cm	cm	cm	cm ²	cm
28	73	55	42	40	4 637	25	30	27	463	5
32	84	60	47	40	5 274	30	30	30	527	5
35	91	65	50	40	5 805	30	30	32	580	7
42	110	70	53	45	6 996	30	32	35	699	7
45	135	75	55	45	7 359	33	32	37	735	7
47	141	80	57	45	7 735	33	32	40	773	10
54	162	85	60	50	8 970	35	35	42	897	10
63	189	93	65	50	10 400	35	35	46	1 040	10
71	213	100	70	55	11 830	40	37	50	1 183	12
78	234	110	75	55	12 960	40	37	55	1 296	12

Sálavá plocha v této tabulce není součtem stran (A × B) + 2 × (C × B), ale plocha je dána součinem délky křivky K v půdorysu (viz tabulka A.1) a výšky B, takže sálavá plocha se vypočte jako plocha K × B. Tomu je také nutné přizpůsobit plochu kouřovodu E a současně je nutné upravit plochu místností.

Při konstrukci kouřové komory je vhodné použít sklon stěn nejméně 45

Pohled Svislý řez Půdorys

Obrázek A.5 (k tabulce A.7) – Krb s ohništěm otevřeným ze tří stran

²⁾ Svislá výška zadní stěny při sešikmení její horní části.

³⁾ Hloubka horní části spalovací komory při sešikmení zadní stěny

Tabulka A.8 – Volně stojící krb s ohništěm otevřeným ze všech stran pro čtvercový a kruhový Půdorys

Rozměry	místnosti	Spa	alovac	í komora	Kouřová komora			Kouřovod	Přesah desky ohniště
Plocha	Objem	A = d	В	Sálavá plocha	A1=d+2F	С	D		F
m²	m ³	cm	cm	cm2	cm	cm	cm	cm2	cm
46	138	60	40	7 540	80	5	35	616	10
52	156	65	42	8 577	85	5	37	701	10
60	180	70	45	9 896	90	7	42	808	10
67	201	75	47	11 074	95	7	44	904	10
74	222	78	50	12 252	100	7	47	1 000	11
82	246	83	52	13 559	105	8	48	1 107	11
90	270	86	55	14 860	110	8	50	1 214	12
96	294	91	57	16 295	115	10	55	1 331	12
107	321	94	60	17 719	120	10	57	1 447	13
118	356	99	63	19 594	125	10	60	1 600	13

¹⁾ Stejná velikost sálavé plochy platí pro čtvercový i kruhový průřez, pokud A = d.

$$S_{kr} = \frac{S_{ko} \cdot \sqrt{H_{ko}}}{e}$$

kde je

Skr sálavá plocha;

H_{ko} účinná výška komína;

e součinitel vlivu

Při určování plochy kouřovodu v tabulce byl navržen komín s $H_{\rm ko}$ = 6 m a s koeficientem vlivu e = 0,2. V konkrétním případě se pro navržený krb musí provést přepočet podle skutečné výšky komína $H_{\rm ko}$ a součinitele e. Zvyšováním účinné výšky komína $H_{\rm ko}$ se plocha průřezu komínového průduchu E zmenšuje.

Svislý řez Půdorys čtvercového krbu Půdorys kruhového krbu

Obrázek A.6 (k tabulce A.8) – Volně stojící krb s otevřeným ohništěm

Při výpočtu kouřovodu, který je svislý a má funkci komína, se vyšlo z Bacharachova vzorce, který je citovaný H. Dickmannem i k.H. Pfestorfem. Vychází se z následujícího vztahu:

A.1 Výpočet výměny vzduchu v místnosti a velikosti nutného průměru přívodu vzduchu u krbů s otevřeným ohništěm

A.1.1 Výměna vzduchu v místnosti:

$$X = \frac{v m^3 \cdot h^{-1}}{o m}$$

x výměna vzduchu v místnosti;

v m³.h⁻¹ množství nasávaného vzduchu krbem (zjistíme dle rychlosti nasávání vzhledem k sálavé ploše krbu- Skr);

o m objem místnosti, v m³.

A.1.2 Přívody vzduchu pro hoření:

$$P_k = \frac{v m^3 \cdot h^{-1}}{v m.s}$$

P_k přívodní kanál, v cm²;

V m.s⁻¹ při rychlosti nasávání 0,1 m.s⁻¹ projde přes 1 m² (10 000 cm²) Skr 360 m³/h vzduchu

 0.2 m.s^{-1} $720 \text{ m}^3/\text{h}$ 0.3 m.s^{-1} $1 080 \text{ m}^3/\text{h}$ 0.4 m.s^{-1} $1 440 \text{ m}^3/\text{h}$

Rychlost nasávání volíme podle intenzity topení v krbu. Při malé intenzitě volíme nízkou hodnotu, při větší intenzitě hodnotu vyšší.

Příloha B (informativní)

Tabulka B.1 – Dimenzování velikosti přívodu vzduchu pro spalování

Postup:

1. Celkovou délku a tvar přívodu vzduchu převedeme na jednotky, které sečteme a zvolíme příslušný řádek

1m rovného potrubí – 1

1 jednotka

1 koleno 45°

1 jednotka

1 koleno 90°

2 jednotky

2. Podle hodinové dávky palivy uváděné výrobcem, nebo podle hodinové spotřeby vzduchu, nutného pro spalování, zvolíme příslušný sloupec

Dřevo	kg	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5	10,0	10,5	11,0	11,5	12,0	kg
Vzduch	m ³	38	44	50	56	63	69	75	81	88	94	100	106	113	119	125	131	138	144	150	m³
		10	11	12	13	13	14	15	15	16	16	17	17	18	18	19	19	20	20	21	Øcm
	2	85	99	113	127	141	155	169	183	197	212	226	240	254	268	282	296	310	324	339	cm ²
		10	11	12	13	14	14	15	15	16	17	17	18	18	19	19	20	20	21	21	Øcm
	3	87	101	115	130	144	159	173	187	202	216	231	245	260	274	288	303	317	332	346	cm ²
		11	11	12	13	14	14	15	16	16	17	17	18	18	19	19	20	20	21	21	Øcm
	4	88	103	118	133	147	162	177	192	206	221	236	250	265	280	295	309	324	339	354	cm ²
	°	90	105	120	133	14	15	15	16	16	17	18	18	19	19	20	20	21	21	21	Øcm
	5	90	105	120	135	150	165	180	195	210	226	241	256	271	286	301	316	331	346	361	cm ²
	6	92	107	123	138	14	15	15	16	17	17	18	18	19	19	20	20	21	21	22	Øcm
	_	11	12	13 123	13 138	14 153	15 169	15 184	199	215	230	245	261	276	291	307	322	337	353	368	cm ²
	7	94	109	125	141	156	172	188	203	219 17	17	250 18	266 18	281 19	297 19	313 20	328 20	21	21	22	Øcm
		11	12	13	14	14	15	16	16	17	17	18	19	19	20	20	21	344	22 359	22 375	Øcm cm ²
Ро	8	95	111	127	143	159	175	191	207	223	239	255	271	286	302	318	334	350	366	382	cm ²
čet j		11	12	13	14	14	15	16	16	17	18	18	19	19	20	20	21	21	22	22	Øcm
Počet jednotek	9	97	113	130	146	162	178	194	211	227	243	259	275	291	308	324	340	356	372	389	cm ²
otek		11	12	13	14	14	15	16	17	17	18	18	19	19	20	20	21	21	22	22	Øcm
	10	99	115	132	148	165	181	198	214	231	247	264	280	296	313	329	346	362	379	395	cm ²
	(11	12	13	14	15	15	16	17	17	18	18	19	20	20	21	21	22	22	23	Øcm
	11	100	117	134	151	167	184	201	218	234	251	268	285	301	318	335	352	368	385	402	cm ²
		11	12	13	14	15	15	16	17	17	18	19	19	20	20	21	21	22	22	23	Øcm
	12	102	119	136	153	170	187	204	221	238	255	272	289	306	323	340	357	374	391	408	cm ²
		11	12	13	14	15	16	16	17	18	18	19	19	20	20	21	21	22	22	23	Øcm
	13	104	121	138	155	173	190	207	225	242	259	276	294	311	328	345	363	380	397	415	cm ²
	100	12	13	13	14	15	16	16	17	18	18	19	19	20	21	21	22	22	23	23	Øcm
	14	105	123	140	158	175	193	210	228	245	263	281	298	316	333	351	368	386	403	421	cm ²
	15	107	125 13	142	160 14	178 15	196 16	213 16	231 17	249 18	267 18	285 19	302 20	320 20	21	21	22	22	23	23	Øcm
	4.0	12	13	14	14	15	16	17	17	18	19	19	20	20	338	21 356	374	391	23 409	23 427	Øcm cm ²
	16	108	126	144	162	180	198	217	235	253	271	289	307	325	343	361	379	397	415	433	cm ²

V případě použití potrubí s drsným povrchem se doporučuje zvolit nejbližší vyšší průměr vedení.

Příloha C (informativní)

Základní kamnářský výpočet

Pro správné dimenzování topidla je nutné nejdříve zjistit tzv. tepelnou ztrátu vytápěného prostoru. Pro tento účel můžeme použít běžné stavební či topenářské metody, které jsou sice velmi přesné, ale zato dosti zdlouhavé a komplikované.

Kamnáři používají ve většině případů poněkud jednodušší výpočtovou metodu. Vytápěné prostory a jejich tepelné ztráty se rozdělují do čtyř skupin podle tepelné izolace:

- 1) velmi dobrá:
- 2) dobrá;
- 3) střední:
- 4) špatná.

Pro každou tuto skupinu se může stanovit empiricky odvozená průměrná hodnota tzv. kamnářské konstanty. Viz údaje tepelných ztrát.

Tepelná ztráta se vypočítá podle vzorce: $T_{\text{zvp}} = 0.001 \text{ K} \times \text{Q}$

T_{zvp} tepelná ztráta vytápěné prostory

- K kamnářská konstanta viz tabulka tepelných ztrát
- Q objem vytápěné prostory

Tepelná ztráta se vypočítá v kW/hod

Nyní tedy víme, kolik tepla potřebujeme do vytápěné prostory každou hodinu dodat. Tomuto objemu by se měl rovnat, nebo být vyšší výkon zamýšleného topidla. Proto můžeme tvrdit, že

 $T_{\text{zvp}} \leq \text{výkon topidla}$.

Údaje tepelných ztrát:

1)	Spatná tepelná izolace	.tepelná ztráta	45,0 W.hod ⁻¹ ·m ³
2)	Střední tepelná izolace	tepelná ztráta	32,5 W.hod ⁻¹ ·m ³
3)	Dobrá tepelná izolace	tepelná ztráta	22,5 W.hod ⁻¹ ·m ³

4) Velmi dobrá tepelná izolace.....tepelná ztráta 12,0 W.hod⁻¹ m³

C.1 Postup výpočtu při dimenzování teplovzdušného krbu

- vypočítat objem místnosti, v m³;
- vynásobit výsledek odpovídající hodnotou tepelné ztráty;
- vypočtenou hodnotu převést na kW.hod⁻¹

Příklad výpočtu

Místnost má velikost 6,5 m \times 5,8 m \times 2,8 m, její tepelná izolace odpovídá střední hodnotě.

Výpočet tepelné ztráty

$$T_{\text{zvp}} = 0.001 \times 32.5 \times (6.5 \times 5.8 \times 2.8) = 3.43 \text{ kW} \cdot \text{h}^{-1}$$

Tepelná ztráta místnosti je 3,43 kW·h⁻¹

Krbová vložka, vhodná pro tuto místnost by měla mít výkon 3,5 kW až 4 kW.

C.2 Postup výpočtu při dimenzování teplovzdušného krbu který topí sálavě do obytné místnosti a teplovzdušně do chodby

- vypočítat objem místností v m³;
- vynásobit výsledek odpovídající hodnotou tepelné ztráty;
- vypočtenou hodnotu převést na kW.hod⁻¹

Příklad výpočtu

Obytná místnost má rozměry 6,5 m \times 5 m \times 2,5 m, její tepelná izolace je střední. Chodba má rozměry 5,5 m \times 2,5 m \times 2,8 m, tepelná izolace špatná. Krb má topit sálavě do obytné místnosti a teplovzdušně do chodby.

a) Výpočet tepelných ztrát

Obytná místnost: $T_{zvp} = 0.001 \times 32.5 \times (6.5 \times 5 \times 2.5) = 2.6 \text{ kW} \cdot \text{h}^{-1}$

Chodba: $T_{zvp} = 0.001 \times 32.5 \times (6.5 \times 2.5 \times 2.5) = 1.8 \text{ kW} \cdot \text{h}^{-1}$

Celková tepelná ztráta místností je 4,4 kW·h⁻¹

Krbová vložka, vhodná pro tyto místnosti by měla mít výkon 4,5 kW až 5 kW.

b) Výpočet teplosměnné plochy krbu

Údaje výrobce vložky:

nominální výkon vložky 5 kW

optimální dávka paliva 3,2 kg (účinnost 80%)

doba spalování 120 minut

rozložení výkonu 40 % / 20 % / 40 %

teplota teplosměnné plochy 110 °C (výkon 1,3 kW·m⁻²)

Výpočet: potřebný výkon

40% sklo 2,0 kW 20% obestavba*) 1,0 kW

Celkem do místnosti 3,0 kW 2,6 kW

40% teplovzduch 2,0 kW

Celkem do chodby 2,0 kW 1,8 kW

Pro předání výkonu teplosměnné plochy potřebujeme: 1 / 1,3 = 0,77m² otopné plochy

C.3 Postup výpočtu při dimenzování sálavého krbu do dvou místností

- vypočítat objem místností v m³;
- vynásobit výsledek odpovídající hodnotou tepelné ztráty;
- vypočtenou hodnotu převést na kW.h⁻¹.

Příklad výpočtu

Obytná místnost má rozměry 6,5 m \times 5 m \times 2,5 m, její tepelná izolace je střední. Chodba má rozměry 5,5 m \times 2,5 m \times 2,8 m, tepelná izolace špatná. Krb má topit sálavě do obytné místnosti a teplovzdušně do chodby.

a) Výpočet tepelných ztrát

Obytná místnost: $T_{zvp} = 0,001 \times 32,5 \times (6,5 \times 5 \times 2,5) = 2,6 \text{ kW} \cdot \text{h}^{-1}$

Chodba: $T_{zvp} = 0.001 \times 32.5 \times (6.5 \times 2.5 \times 2.5) = 1.8 \text{ kW} \cdot \text{h}^{-1}$

Celková tepelná ztráta místností je 4,4 kW·h⁻¹

Krbová vložka, vhodná pro tyto místnosti by měla mít výkon 4,5 kW až 5 kW.

^{*} Teplosměnná plocha bude z kachlů na lehko (výkon 1,3 kW.m⁻²)

b) Výpočet teplosměnné plochy krbu

Údaje výrobce vložky:

nominální výkon vložky 5kW

optimální dávka paliva 3,2 kg (účinnost 80%)

doba spalování 120 minut

rozložení výkonu 30 / 70% (vyjádřeno v kW: 1,5 / 3,5)

teplota teplosměnné plochy 80 °C (výkon 0,9kW/m²)

Výpočet: potřebný výkon

30% sklo 1,5 kW obestavba*) 1,4 kW

Celkem do mistnosti 2,9 kW 2,6 kW

sálavá plocha 2,1 kW

Celkem do chodby 2,1 kW 1,8 kW

Pro předání výkonu teplosměnné plochy potřebujeme:

Obytná místnost 1,6 / 0,9 = 1,78 m² otopné plochy

Chodba 2,1 / 0,9 = 2,33 m² otopné plochy

C.4 Postup výpočtu při dimenzování akumulačního sálavého krbu do jedné místnosti

- vypočítat objem místnosti v m³;
- vynásobit výsledek odpovídající hodnotou tepelné ztráty;
- vypočtenou hodnotu převést na kW.hod⁻¹

Příklad výpočtu

Místnost má velikost 8 m × 6 m × 2,6 m, její tepelná izolace odpovídá střední hodnotě.

a) Výpočet tepelné ztráty

$$T_{\text{zvp}} = 0.001 \times 32.5 \times (8 \times 6 \times 2.6) = 4.06 \text{ kW} \cdot \text{h}^{-1}$$

Tepelná ztráta místnosti je 4,1 kW·h⁻¹

b) Výpočet potřebné velikosti teplosměnné plochy

TP = TZVP / K

TP – teplosměnná plocha

TZVP – tepelná ztráta vytápěného prostoru

K – koeficient výkonu

Koeficient	Vyzářený tepelný výkon	Povrchová teplota
K	1,3 kW⋅m ⁻²	90 °C až 120 °C
K	0,93 kW·m ⁻²	50 °C až 80 °C
K	0,68 kW·m ⁻²	40 °C až 50 °C

Příklad výpočtu

$$TP = 4,1 /0,93 = 4,4 \text{ m}^2$$

^{*)} Obestavba a sálavá plocha bude z kachlů na lehko (výkon 0,9 kW.m⁻²).

c) Stanovení výkonu vložky

Výkon akumulačního krbu musí pokrýt tepelnou ztrátu po dobu 7,5 hodiny. Spalování probíhá v režimu 1-1-0,5, tedy přikládá se dvakrát po hodině plnou dávkou na jedno přiložení (MPP) a poté po další hodině polovinou MPP.

Výpočet výkonu vložky:

 $Qv = (7.5 \times TZVP) / 2.5$

po úpravě tedy:

 $Qv = 3 \times TZVP$

Qv – jmenovitý výkon vložky

TZVP – tepelná ztráta vytápěného prostoru

Příklad výpočtu

Tepelná ztráta vytápěného prostoru = 4,1 kW

 $Qv = 3 \times 4.1 = 12.3 \text{ kW}$

Optimální jmenovitý výkon vložky je 12,5 kW

Doporučený podíl sálavého tepla, prostupujícího sklem, dle tepelné ztráty objektu

Nízkoenergetický dům 10 %; Dobrá izolace 20 %; Střední izolace 30 %; Špatná izolace 40 %.

d) Výpočet množství paliva na jednu akumulační periodu

Optimální množství paliva pro zajištění jmenovitého výkonu (MPP) udává výrobce v technické dokumentaci krbové vložky.

 $MP = 2.5 \times MPP$

MP - množství paliva na periodu

MPP – množství paliva na jedno přiložení

Příklad výpočtu

Výrobce udává -Qv - 12,5 kW-MPP - 3,7 kg/h.

 $MP = 2.5 \times 3.7 = 9.25 \text{ kg}$

Množství paliva na jednu akumulační periodu = 9,25 kg.

Pokud výrobce neuvádí množství paliva na jedno přiložení, lze je vypočítat pokud známe účinnost spalování a jmenovitý výkon vložky.

Výpočet množství energie při účinnosti X

 $Q1kg = 4 / 100 \times X$

Q1kg - uvolněná energie z jednoho kg dřeva

X – účinnost udávaná výrobcem vložky

Příklad výpočtu

Výrobce udává účinnost vložky 80%

 $Q1kg = 4 / 100 \times 80 = 3.2 \text{ kW}$

Uvolněná energie při účinnosti 80% z jednoho kg dřeva je 3,2 kW.

Výpočet množství paliva na jednu akumulační periodu přes účinnost spalování

 $MP = 2.5 \times Qj / (4 / 100 \times X)$

MPP – množství paliva na jedno přiložení

Qj – jmenovitý výkon vložky

Q1kg - uvolněná energie z jednoho kg dřeva

X – účinnost udávaná výrobcem vložky

Příklad výpočtu

Výrobce udává účinnost vložky 80% a jmenovitý výkon 12,5kW

MP = $2.5 \times 12.5 / (4 / 100 \times 80) = 9.75 \text{ kg} / \text{periodu}$

Množství paliva na jednu akumulační periodu při 80% účinnosti = 9,75 kg.

e) Výpočet akumulační hmotnosti krbu

 $M_{AK} = 70 \times MP$

M_{AK} – akumulační hmotnost krbu (součet všech hmotností konstrukce krbu: vložka, opláštění, příp. tahy)

70 - konstanta

MP - množství paliva na periodu

Příklad výpočtu

 $M_{AK} = 70 \times 9,75 = 682,5 \text{ kg}$

Potřebná celková akumulační hmotnost krbu je 682,5 kg

Bibliografie

TPK 01-01 Kontrola spalinových cest; SKČR 25.11.2010

TPK 03-01 Čištění spalinových cest; SKČR 25.11.2010

U p o z o r n ě n í : Změny a doplňky, jakož i zprávy o nově vydaných normách jsou uveřejňovány ve Věstníku Úřadu pro technickou normalizaci, metrologii a státní zkušebnictví.

Vaše názory, podněty a připomínky týkající se technických norem a zájem o možnou účast v procesech technické normalizace lze zaslat na e-mailovou adresu <u>info@unmz.cz</u>.

ČSN 73 4230

Vydal Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha Rok vydání 2014, 32 stran

94473 Cenová skupina 413