Confidence Interval Formulas

All confidence intervals are of the form

Point Estimate $\pm E$ where E = Maximal Margin of Error

Parameter	Point Estimate	E	Assumptions
μ	$\frac{-}{x}$	$Z_c \sigma_{\overline{r}}$	σ known
		- x	\bar{x} 's normal
μ	$\frac{\overline{x}}{x}$, S	σ unknown
		$t_c \cdot \frac{s}{\sqrt{n}}$	\bar{x} 's normal
		$df = n - 1$ $z_c \sqrt{\frac{\hat{p}\hat{q}}{n}}$	
p	$\hat{p} - \frac{r}{r}$	$\hat{p}\hat{q}$	$n\hat{p} > 5$
	p-n	* 75	$\hat{nq} > 5$
$\mu_1 - \mu_2$	$\hat{p} = \frac{r}{n}$ $\overline{x_1 - x_2}$	$z_c \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	σ_1, σ_2 known
		$\int_{c}^{z_{c}} \sqrt{\frac{n_{1}}{n_{1}} + \frac{n_{2}}{n_{2}}}$	$\overline{x_1} - \overline{x_2}$'s normal
		, , ,	IRS
$\mu_1 - \mu_2$	$\overline{x_1} - \overline{x_2}$	$t_c \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	σ_1, σ_2 unknown
		$\int_{c}^{c} \sqrt{\frac{1}{n_1} + \frac{2}{n_2}}$	and assumed
		$df = MIN(n_1 - 1, n_2 - 1)$	unequal
		$(n_1 - 1, n_2 - 1)$	$\overline{x_1} - \overline{x_2}$'s normal
			IRS
$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\int t_c S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	σ_1, σ_2 unknown
		$\sqrt{\frac{n_c}{n_1}} \sqrt{\frac{n_1}{n_2}}$	and assumed equal
		$(n_1-1)s^2+(n_2-1)s^2$	$\overline{x_1} - \overline{x_2}$'s normal
		$S = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	IRS
		$df = n_1 + n_2 - 2$	
μ_d	\overline{d}	S_d	d's normal
		$t_c \cdot \frac{s_d}{\sqrt{n}}$	DRS
		$df = n - 1$ $z_{c} \sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}}$	
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\frac{\hat{p}_1\hat{q}_1 + \hat{p}_2\hat{q}_2}{\hat{p}_1\hat{q}_1 + \hat{q}_2\hat{q}_2}$	$n_1 \hat{p}_1 > 5$
		$\int_{0}^{\infty} \sqrt{n_1} n_2$	$n_1 \hat{q}_1 > 5$
			$n_2 \hat{p}_2 > 5$
			$n_2 \hat{q}_2 > 5$