Topologia Geral - P1

Nome completo:	

Escolha 5 dentre as 6 questões a seguir

- 1. Mostre que se Y é um subespaço de X e Z é um subespaço de Y, então a topologia de Z como subespaço de Y coincide com a topologia de Z como subespaço de X.
 - Mostre que o conjunto dos números reais com a topologia de Sorgenfrey não possui base enumerável. Dica: construa uma função injetiva de ℝ em uma tal base.
- 2. Seja S um subespaço de um espaço topológico X. Prove que a topologia de S coincide com a topologia fraca definida pela aplicação inclusão $i: S \to X$.
 - Se $f: X \to Y$ é contínua, mostre que X é homeomorfo ao subespaço $G(f) \doteq \{(x, f(x)) : x \in X\} \subset X \times Y$.
- 3. Mostre que, com a topologia usual de \mathbb{R} , se f e g são aplicações contínuas de X em \mathbb{R} , então $\{x \in X : f(x) \leq g(x)\}$ é fechado em X.
 - Seja $\{X_i, i \in I\}$ uma família de espaços topológicos, e $X \doteq \Pi_{i \in I} X_i$ com a topologia das caixas. Mostre que cada X_i é homeomorfo a um subespaço de X. Isso também ocorre na topologia produto?
- 4. Se $(x_{\lambda})_{{\lambda} \in {\Lambda}}$ é uma rede que converge a x, prove que qualquer subrede sua também converge a x.
 - Se cada subrede de $(x_{\lambda})_{\lambda \in \Lambda}$ admite uma subrede que converge a x, prove que a rede $(x_{\lambda})_{\lambda \in \Lambda}$ também converge a x. Dica: Contrapositiva.
- 5. Seja X = [0, 1] com a topologia induzida por \mathbb{R} . Seja $Y = \{0, 1\}$, e seja $\pi : X \to Y$ a função característica do intervalo [1/2, 1].
 - Prove que a topologia quociente τ_{π} é dada por $\{\emptyset, \{0\}, Y\}$.
 - Mostre que π não é aberta nem fechada.
- 6. Seja $\{X_i, i \in I\}$ uma família de espaços topológicos, e $X \doteq \Pi_{i \in I} X_i$ com a topologia das caixas. Mostre que cada $\pi_i : X \to X_i$ é uma aplicação aberta.
 - Seja A o subconjunto de $\Pi_{i\in\mathbb{N}}X_i$, onde $X_i=\mathbb{R}$, consistindo dos elementos (x_1,x_2,\ldots) em que $x_i\neq 0$ apenas para uma quantidade finita de índices. Determine \bar{A} na topologia produto.