Can view $G_{m}^{an}/Q>$ as quotient of $G_{m}^{an} \in P^{1}$ by action of $P:=\langle \binom{q}{2} \rvert > \leq PGL_{2}(\frac{m}{4})$. The action of P has two fixed pts.

These are "limit pts." $\lim_{n\to\infty} y^{n}\cdot l = \lim_{n\to\infty} q^{n} = 0$, $\lim_{n\to\infty} y^{-n} = \lim_{n\to\infty} q^{-n} = \infty$. (limits in metric topology)

Since k may not be alg. closed, we have distinction between P^1 = analytification of alg. curve P^1 over k and $P^1(K) = \{x \in P^1 : K_x = K\} = \{\text{lines in } K^2\}$. $P^1(K) \subseteq P^1$. K locally compact $\Rightarrow P^1(K)$ compact.

Fix $\Gamma \leq PGL_2(K)$.

Def: Given $w \in P^1(k)$, $z \in P^1(k)$ is limit pt. of (P, w) if \exists seq. $\delta_1, \delta_2, ... \in \Gamma$ paicuise distinct s.t.

z = lim 8nw. The set of all such z is Lp(w). La := U Lp(w). Lap := P'\Lp "ordinary pts.".

N > 00

(ICp contains at least one k-pt.)

(automatic for k locally compact)

Def: Γ is discontinuous if $L_{\Gamma} \subseteq \mathcal{P}'(\mathcal{K})$ and $w \in \mathcal{P}'(\mathcal{K}) \Rightarrow$ closure $\Gamma \cdot w$ is compact.

Def: PEPGLz(k) is Schottky gcp. if it is fin.gen., tossion-feee, discontinuous.

We want to make PIDD a cigid space la Mumford weve). From now on we will assume P is Schottky.

Def: I Suppose $y \in GL_2(k)$ has eigenvals. $\lambda_1, \lambda_2 \in k^{al}$. $|\lambda_1| = |\lambda_2| \implies y \text{ elliptic}$ $|\lambda_1| = |\lambda_2| \implies y \text{ perabolic}$

These Jessend to PGL2(K).

Given hyperbolic $\gamma \in GL_2(K)$, order eigenvals so that $|\lambda_1| < |\lambda_2|$. It follows min. poly. of γ is split: Hence, $\lambda_1, \lambda_2 \in K$ and γ is $GL_2(K)$ -conjugate to $\lambda_1 = (2\gamma_1) = (2\gamma_1)$

Hence, g has two limit pts. (the fixed pts.) a^{+} , $a^{-} \in P'(k)$ ordered so that $\lim_{N\to\infty} f^{N} \cdot w = a^{+}$ $\lim_{N\to\infty} g^{-N} \cdot w = a^{-}$ $\lim_{N\to\infty} f^{N} \cdot w = a^{-}$

Prop: P Schottky grp. => 8 EP M 8 + 1 is hyperbolic. Lp is closed in P'(K) and Lp = Lp(W) for any

we sup n P'(k).

Genus 0 : trivial gcp.

Genus 1: just done - all examples are like what we saw

Thm (I hara): I' is free on g ? 0 generators.

(a; e k, r; e |kx|)

Fix rational disks $B_1^0 = \{z \in P' : |z-a_1| < r, \}$ $B_{2g}^0 = \{z \in P' : |z-a_{2g}| < r_{2g}\}$ B, = {zep: 12-a,1 ≤ 5, }

B2g = {zep1: |z-a2g1 = 12g }

s.t. $\infty \notin B_i$ and $B_i \cap B_j = \emptyset \ \forall \ i \neq j$. For each $1 \leq i \leq g$ change $\gamma_i \in PGL_2(k)$ s.t. $\gamma_i (P' \mid B_i) = B_{g+i}^o$.

Fact: P= < r1, ..., og> is \$ Schottky of gens g.

Thm: Up to conjugacy, every Schottky grp. arises from above description. Consider the affinois $F := P' - U B_2^\circ$.

The ordinary pts. are Np = U y(F) and F is a fundamental domain for P:

(1) FAY(F) = & for all but finitely many yer.

NB: There aren't many translate intersections and they all occur on the boundary."

(2) F° := P' - 2 B; satisfies Fny(F°) = \$\forall \forall \cong \text{F} \mathcal{P} \mathcal{P} \text{F} \mathcal{P} \forall \equiv \equiv \equiv \forall \equiv \e

This is highly non-obvious! We give IPp the rigid standard obtained by gluing the rigid standards on each f(F) = F.

So, UEDUP is admissible open iff UNY(F) EY(F) is admissible open YJEP. (some for adm. covers).

let pe: Nop -> MNp.

Prop: Fadm. cov. F= Un; s.t. pr/u; ni -> P/Dp idutifies u; y its image Vi=pr(Ni).

So, Xp = pc(F) and bij. pr: U; ~ V; makes each V; a cigid space. Glving gives cigid structure on Xp s.t. pr: # Dup -> Xp is morphism of rigid spaces (loc. an isom., so "étale").

Thm (Mumbod): Xp is analytification of smooth geom. cons. proj. genus g curve/K.

ff: We sketch the key steps.

(NB: Same people as for Tate curve. Twist the divisor to assume it is effective and then industrively

(1) Check properness directly from the construction.

& work one pt. at a time.)

(2) Prove a form of Riemann-Roch. Given a divisor D on $X=X_p$, $\lim_{n\to\infty} H^0(X,\mathcal{Z}(D))=\lim_{n\to\infty} H^1(X,\mathcal{Z}(D))=\lim_{n\to\infty} H^1(X,\mathcal{Z}(D))=\lim_$ for g' := Hm H'(X, OX).

(analogous to Riemann's strategy for showing Riemann surfaces are proj.)

- (3) Use Riemann-Roch to choose D s.t. L(0) is very emple.
- (4) GAGA ⇒ X = Y on for some peg. var. Y whose completed local rings are some as those of X. So, Y is smooth curve. GAGA => Y has some coherent cohom. as X. So, g' = genus of Y. (NB: So fax we have not used any explicit constructions.)
- (5) Use construction of Xp to produce mecomorphic 1-from whose divisor has degree 2g-2. We get a natural 1-form on Y and then can use Riemann-Roch + Secon duality for Y to get gens of Y is g. Hence, g'=g!

Reductions of P

Instead of charsing coords. on P', let V be some 2-dimensional k-vector space and set P' = P'(V). Assume k alg. closed 50 P'= { lines in V3. let MEV be a ko-lattice -i.e., M is force ko-submodule of V of cank 2 s.t. MOK = V. (non zero and quotient K^o is tresion-free) > We get K - vector space $\overline{M} = M \otimes \overline{K}$ and reduction $Red_{\overline{M}}: P' \to P'(\overline{M})$. Given line $L \subseteq V$, can check $L \cap M \subseteq M$ is $K^o - K^o$

direct summand (1 i.e., me get a line in M). Red M(l) := (LNM) & K = M. This is actually the cedestion assoc. to

puce affinoid corec of P!. Choose Ko-basis e,, ez EM. These form K-basis of V hence there is dual basis e,, ez E Hom (V,K)

 $z:=e_2^*/e_1^*$ gives coord. on P'. Now take $P'=\{|z|\leq |3| \cup \{|z|\geq 1\}\}$.

Remark: Everything is invaciant under homothuty - i.e., under replacing M by LM for XEKX. We want to work up to homothety.

Now take two lattices M, N EV. This determines Red X Red N: P' -> P'(M) x P'(N) which is not sucj.

After homothety can assume \exists basis $e_1, e_2 \in \mathbb{N}$, $e_1, \pi e_2 \in \mathbb{M}$ for some $\pi \in \mathbb{K}^{\times}$ by $0 < |\pi| < 1$ (some version of elementary divisor thm). We get pt: $(e_1b) \in \mathbb{P}^1(\overline{\mathcal{M}}) \times \mathbb{P}^1(\overline{\mathcal{M}})$ via

a:= image of πN under $M \rightarrow \overline{M} = \overline{K}$ -span of πe_2 in \overline{M} b:= image of M under $N \rightarrow \overline{N} = \overline{K}$ -span of e_1 in \overline{N}

(union of two P's crossing transversely)

Image of (*) is $Z = (\{a\} \times P'(\overline{N})) \cup (P'(\overline{M}) \times \{b\})$ inside of $P'(\overline{M}) \times P'(\overline{N})$.

Reduction P' → Z is assoc. to some pure offinoid cover of P'. Again let z := e2/ex, a coord. on P'.

 $P'(V) \rightarrow P'(\overline{N}), \{|z|2|\} \cup \{|z| \le |\xi|\},$ Reductions $P'(V) \rightarrow P'(\overline{N}), \{|z|2|\pi|\} \cup \{|z| \le |\pi|\}.$

Common cofinement (P(V) = { |z| \le |\pi| \rightarrow |\frac{1}{2}| \le |\pi| \rightarrow |\pi| \right

P(G) P(V)

Slogan: Three pts. in P' determine a line!

How so? Pick three distinct lines x1,1x2,x3 & P' and generators y1, y2, y3 & V. There is linear relation

 $\lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3 = 0$. Define $M_{(x_1, x_2, x_3)} := k^o$ -span of $\{\lambda_1 y_1, \lambda_2 y_2, \lambda_3 y_3\} \in V$, independent of choice of generalizes

up to homothety.

Fact: $M=M_{\{x_1,x_2,x_3\}}$ is unique lattice s.t. x_1,x_2,x_3 have distinct images under Red $M: \mathbb{P}^1 \to \mathbb{P}^1(\overline{M})$.

distinct let $S \in \mathbb{P}'$ be finite. Every triple $x = (x_1, x_2, x_3) \in S^3$ determines a lattice $M_x \in V$ Y reduction

 $Rud_{X}: P' \to P'(\overline{M_{X}})$. These combine to $R_{S}: P' \to TT P'(\overline{M_{X}})$, which is <u>not</u> surj. Let image be Z_{S} .

Aistinct

For $x,y \in S^3$ the image of $P' \to P'(\overline{M}_X) \times P'(\overline{M}_y)$ is $(\{a_x\} \times P'(\overline{M}_y)) \cup (P'(\overline{M}_X) \times \{b_y\})$. So $x \neq y \Rightarrow$ lattice M_X betermines a pt. of $P'(\overline{M}_y)$.

$$C_{x}^{-p'}(\overline{M}_{x}) \subseteq \mathbb{T} p'(\overline{M}_{y})$$

So,
$$Z_S = U C_X$$
 finite union of P'/s coossing transversely.

NB: Only need to worky about (at worst) ordinary double pots.