2013-2014 学年第二学期高等数学期中测试及数学竞赛试卷(2013 级)

(参加竞赛的同学全做,其他同学只做一、二大题)

一、填空题 (8×5分)

1. 设
$$\bar{a} = (2,1,-2)$$
, $\bar{b} = (1,-1,-1)$, 则 $(\bar{a} - \bar{b}) \cdot (\bar{a} + \bar{b}) = \underline{b}$, $(3\bar{a} - 5\bar{b}) \times (5\bar{a} - 8\bar{b}) = \underline{(-3,0,-3)}$.

2. 过三点
$$A(0,4,-5)$$
, $B(-1,-2,2)$, $C(4,2,1)$ 的平面方程为 $II X - I Y - I 3 3 + 3 = 0$ 。

3. 直线
$$L: \begin{cases} x-y-1=0 \\ y+z-1=0 \end{cases}$$
 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 L_0 的方程为 $\frac{\begin{cases} x-3y-2y+1=0 \\ x-y+2y-1=0 \end{cases}}{\end{cases}$ 。

4.
$$\lim_{\substack{x \to \infty \\ y \to a}} \left(1 + \frac{1}{xy}\right)^{\frac{x^2}{x+y}} \left(a \neq 0\right) = \underline{\qquad \qquad }^{\frac{1}{6c}}$$

5. 设
$$z = (1 + xy)^y$$
,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} = \frac{1}{2}$ $\frac{\partial z}{\partial y}\Big|_{(1,1)} = \frac{2(\sqrt{1+1})^y}{2}$

6. 曲面
$$z = x^2 + y^2$$
 与平面 $2x + 4y - z = 0$ 平行的切平面方程是 $2x + 4y - 3 - 5 = 0$ 。

7. 己知
$$f(x,y)$$
可微,且 $f(1,2)=2$, $f_x'(1,2)=3$, $f_y'(1,2)=4$,记 $\varphi(x)=f(x,f(x,2x))$, $\varphi'(1)=\underline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$

8. 由
$$xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$$
 所确定的函数 $z = z(x, y)$,则 $dz|_{(1,0,-1)} = \frac{dx - \sqrt{2} dy}{}$.

二、计算题 (4×15分)

1. 设直线通过点
$$P(-3,5,-9)$$
,且和两直线 $L_1: \begin{cases} y=3x+5 \\ z=2x-3 \end{cases}$, $L_2: \begin{cases} y=4x-7 \\ z=5x+10 \end{cases}$ 相交,求此直线方程。
 L_1 过点 $M_1(0,5,-3)$, $\widehat{S}_1 = \begin{bmatrix} \overrightarrow{1} & \overrightarrow{1} & \overrightarrow{1} \\ 3 & -1 & 0 \\ 2 & 0 & -1 \end{bmatrix} = (1,3,2)$, L_2 过点 $M_2(0,-7,10)$, $\widehat{S}_2 = \begin{bmatrix} \overrightarrow{1} & \overrightarrow{1} & \overrightarrow{1} \\ 4 & -1 & 0 \\ 5 & 0 & -1 \end{bmatrix} = (1,4,5)$

由引×式·MinL+O可知LISLs异面、易名PELI,PEL,

1. 70 PB = - \$ (1,22,2) . .. [[] T [] X+3 = 4-5 = 22 = 29

注=: 设所求直线为
$$X = -3+m+t$$
 , $A(-3+m+t)$, $y = 5+n+t$, $y = 5+n+t$, $y = 5+n+t$, $y = 5+n+t$, $y = 6+n+t$, y

B(-3+mt., 5+nt., -9+pt.). + AELI, BELZ.

$$\sqrt{913}$$
: $5+nt_1=3(-3+mt_1)+5$ 0 13 $5+nt_1=4(-3+mt_1)-7$ 2 $-9+pt_1=2(-3+mt_1)-3$ $-9+pt_2=5(-3+mt_1)+10$

又P=2m,:N=22m.从而所求直线方向同量为(1,22,2).

163程为 X+3= 4-5 22 = 3+9

法三: 设过PBU的中面分析,过PBU的中面分形。 罗见何术直线为用与西彻交线。

设TI, 2x-3-3+m(3x-y+5)=0, 对印(-3,5,-9)代入, m=0.

: TI: 2x-3-3=0.

波TL: ナx-3+10+n(4x-y-7)=0, 1年P(-3,5,-9)1代入, N=士

:. Th: 34x-4-63 +53=0

· 所求政治 > 2x-3-3=0

无分子们高手连续条件,不常今年9 $\frac{1}{2}$, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$ 。

$$\frac{\partial d}{\partial x} = f' \cdot 2 + g' \cdot y + g' \cdot 1 = 2f' + yg' + g'$$

$$\frac{\partial d}{\partial x} = f' \cdot 3 + g' \cdot x + g' \cdot 1 = 3f' + xg' + g'$$

$$\frac{\partial^2 d}{\partial y} = f' \cdot 3 + g' \cdot x + g' \cdot 1 = 3f' + xg' + g'$$

$$\frac{\partial^2 d}{\partial x \partial y} = 2f'' \cdot 3 + g' \cdot 4y \cdot 1 + 2g' \cdot 1 + 2g' \cdot 1 + 2g' \cdot 1 + 2g' \cdot 1$$

$$= 6f'' + g' \cdot 4y \cdot 1 + y \cdot 2g' \cdot 1 + 2g$$

3. 设在 xOy 面上,各点的温度 T 与点的关系为 $T=4x^2+9y^2$,点 $P_0\left(9,4\right)$,求 1) $gradT\big|_{P_0}$; 2) 在点 P_0 处沿极角为 $\frac{7}{6}\pi$ 的方向 \overline{l} 的温度变化率; 3) 在何方向上点 P_0 处的温度变化率取得最大值并求之。

1)
$$gradT|_{P_0} = (8x, 18y)|_{(9,4)} = (72, 72)$$

2)
$$\vec{l} = (cos \frac{1}{6}\pi, sin \frac{1}{6}\pi) = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})$$

 $\frac{\partial \vec{l}}{\partial l}|_{P_0} = gradT|_{P_0} \cdot \vec{l} = -36(\sqrt{3}+1)$

4. 求二元函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值 (需判定极大、极小)。

$$\frac{\partial f}{\partial x} = 2x(2+y^2)$$
, $\frac{\partial f}{\partial y} = 2x^2y + \ln y + 1$

$$A = \frac{\partial^2 f}{\partial x^2} = 2(2+y^2), B = \frac{\partial^2 f}{\partial x \partial y} = 4xy, C = \frac{\partial^2 f}{\partial y^2} = 2x^2 + \frac{1}{y}$$

$$AC - B^2 \Big|_{\{0, \frac{1}{6}\}} = 2e(2+\frac{1}{6^2}) > 0, A_{\{0, \frac{1}{6}\}} = 2(2+\frac{1}{6^2}) > 0$$

三、数学竞赛加题 (5×20 分)

已知函数 $f(x) = \frac{1+x}{\sin x} - \frac{1}{x}$, 记 $a = \lim_{x \to 0} f(x)$, 1) 求 a; 2) 当 $x \to 0$ 时, f(x) - a 与 x^k 是同阶无穷 小, 求常数k。

1)
$$0 = \lim_{x \to 0} \frac{x_r}{x_r + o(x_r)} = \lim_{x \to 0} \frac{x + x_r - (x - \frac{31}{x^3} + o(x_3))}{x + x_r - (x - \frac{31}{x^3} + o(x_3))}$$

2)
$$\times \rightarrow 0$$
 Hd, $f(x) - Q = \frac{1+x}{\sin x} - \frac{1}{x} - 1 = \frac{x+x^2 - \sin x - x \sin x}{x \sin x}$

$$= \frac{\lambda (\lambda - \frac{3i}{x_3} + o(x_3))}{\lambda + \lambda - (\lambda - \frac{3i}{x_3} + o(x_3)) - \lambda (\lambda - \frac{3i}{x_3} + o(x_3))} = \frac{\lambda + o(x_2)}{\frac{3i}{x_3} + o(x_3)} \sim \frac{3i}{x_3}$$

.. k=1

2. 设
$$F(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0 \\ f'(0), & x = 0 \end{cases}$$
, 其中 $f(x)$ 具有连续导数且 $f(0) = 0$, $f''(0)$ 存在, $f''(0)$ 存在, $f''(x)$ 在 $f''(x)$

在x=0处是否连续(要有过程)。

◆无扩(x)在x=0分时成内存在条件。

1)
$$F'(x) = \frac{x_r}{f(x) - x - f(x) \cdot 1} = \frac{x_r}{x_r} \cdot x + 0$$

$$F'_{(0)} = \lim_{x \to 0} \frac{F_{(x)} - F_{(0)}}{x} = \lim_{x \to 0} \frac{\frac{f_{(x)}}{x} - f'_{(0)}}{x} = \lim_{x \to 0} \frac{f_{(x)} - f'_{(0)}x}{x}$$

$$= \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x}$$

$$= \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x} = \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{2x}$$

$$= \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x}$$

$$= \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x}$$

$$= \lim_{x \to 0} \frac{f'_{(x)} - f'_{(0)}x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_{(x)} - f'_{(x)}x}{x} = \frac{1}{2} \lim_{x \to 0} \frac{f'_$$

$$F'(x) = \begin{cases} \frac{xf'(x) - f(x)}{x^2}, & x \neq 0 \\ \frac{1}{2}f''(0), & x \neq 0 \end{cases}$$

2)
$$\lim_{x\to 0} F'(x) = \lim_{x\to 0} \frac{xf'(x)-f(x)}{x^{L}} = \lim_{x\to 0} \frac{x[f'(x)-f'(0)]+xf'(0)-f(x)}{x^{L}}$$

$$= \lim_{x\to 0} \left[\frac{f'(x)-f'(0)}{x-0} + \frac{xf'(0)-f(x)}{x^{L}} \right] = f''(0) - \frac{1}{2}f''(0) = \frac{1}{2}f''(0) = F'(0)$$

$$\therefore F'(x) = \lim_{x\to 0} \frac{xf'(x)-f(x)}{x^{L}} = \lim_{x\to 0} \frac{x[f'(x)-f'(0)]+xf'(0)-f(x)}{x^{L}}$$

$$= \lim_{x\to 0} \frac{f'(x)-f'(0)}{x^{L}} + \frac{xf'(0)-f(x)}{x^{L}} = \lim_{x\to 0} \frac{x[f'(x)-f'(0)]+xf'(0)-f(x)}{x^{L}}$$

$$= \lim_{x\to 0} \frac{f'(x)-f'(0)}{x^{L}} + \frac{xf'(0)-f(x)}{x^{L}} = \lim_{x\to 0} \frac{x[f'(x)-f'(0)]+xf'(0)-f(x)}{x^{L}}$$

3. 1)
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}, \quad \frac{d^2 y}{dx^2};$$
2)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{\int \sin t + t \cos t - \sin t}{\cos t} = t$$

$$= 2 \int_{0}^{1} \int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx, \quad \text{if } f(x)$$

$$= 2 \int_{0}^{1} \int_{0}^{1} \frac{2 \ln (x+1)}{\sqrt{x}} dx$$

$$= 0 - \int_{0}^{1} \int_{0}^{1} \frac{2 \ln (x+1)}{\sqrt{x}} dx$$

$$= 0 - \int_{0}^{1} \int_{0}^{1} \frac{2 \ln (x+1)}{\sqrt{x}} dx$$

$$= 0 - \int_{0}^{1} \int_{0}^{1} \frac{2 \ln (x+1)}{\sqrt{x}} dx$$

$$= - \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

$$= - \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

$$= - \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

$$= - \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{x}} dx + \int_{0}^{1} \frac{1}$$

 $\int_0^1 \frac{f(x)}{\sqrt{x}} dx = \int_0^1 f(x) d(2\sqrt{x})$

=[2/x f(x)] - [2/x f(x) dx

1)
$$\begin{cases} x = \sin t \\ y = t \sin t + \cos t \end{cases}, \quad \frac{d^2 y}{dx^2};$$
2)
$$\text{Higher theorem of the problem of t$$

4. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可微,且 f(0) = f(1) = 0 , $f(\frac{1}{2}) = 1$,求证: 1) 在 $(\frac{1}{2},1)$ 内

至少有一点 ξ , 使得 $f(\xi)=\xi$; 2) 在 $(0,\xi)$ 内至少有一点 η , 使得 $f'(\eta)=f(\eta)-\eta+1$ 。

1) >> Fix) = fix)-x

2) /x Grix) = e-x. (fix)-x), 12. | Grix) + Cto, 3], Grix) = -e-x [fix)-x-fix)+1] GineD(0,分)且G(0)=G(分)=0. 物 Rolle定理, 316(0,分) s.t. G(1)=0 5. 1) 比较 $\int_0^t |\ln t| [\ln (1+t)]^n dt$ 与 $\int_0^t t^n |\ln t| dt (n=1,2,\cdots)$ 的大小,说明理由:

2)
$$i \exists u_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt (n=1,2,\cdots), \quad \Re \lim_{n\to\infty} u_n$$

由夫逼在101, Limun=0