

Statistical Methods for Quantitative MS-Based Proteomics:

1. Identification & False discovery rate

Lieven Clement

Statistics and Genomics Seminar, UCBerkeley, California

Challenges in Label Free MS-based Quantitative Proteomics

Quantification Identification

Challenges in Label Free MS-based Quantitative Proteomics

Identification

	Called Bad	Called Correct	
Bad hit	TN	FP	m_0
Correct hit	FN	TP	m_1
Total	NR	R	т

- TN: number of true negatives
- FP: number of false positives
- FN: number of false negatives
- TP: number of true positives
- NR: number of non-rejections, R: number of rejections

	Called Bad	Called Correct	
Bad hit	TN	FP	m_0
Correct hit	FN	TP	m_1
Total	NR	R	m

Random Variables

		Called Bad	Called Correct	
	Bad hit	TN	FP	m_0
Unobservable	Correct hit	FN	TP	m_1
Observable	Total	NR	R	т

		Called Bad	Called Correct	
	Bad hit	TN	FP	m_0
Unobservable	Correct hit	FN	TP	m_1
Observable	Total	NR	R	т

 $FDP = \frac{FP}{FP+TP}$. But is unknown! (FDP: false discovery proportion)

		Called Bad	Called Correct	
	Bad hit	TN	FP	m_0
Unobservable	Correct hit	FN	TP	m_1
Observable	Total	NR	R	т

$$FDR = E\left[\frac{FP}{FP+TP}\right]$$
. (FDR: false discovery rate) What does it mean?

$$f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$$

$$f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$$

$$FDR(t) = E\left[\frac{FP}{FP+TP}\right]$$

Score threshold t? $f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$ $\mathsf{FDR}(t) = E\left[\frac{FP}{FP + TP}\right]$ $\mathsf{FDR}(t) = \frac{mPr[FP]Pr[x > t|FP]}{mPr[x > t]}$

$$f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$$

$$FDR(t) = E\left[\frac{FP}{FP+TP}\right]$$

$$FDR(t) = \frac{mPr[FP]Pr[x>t|FP]}{mPr[x>t]}$$

$$FDR(t) = \frac{\pi_0 Pr[x>t|FP]}{Pr[x>t]}$$

$$FDR(t) = Pr[FP|x > t]$$

$$f(x) = \pi_0 f_0(x) + (1 - \pi_0) f_1(x)$$

$$FDR(t) = E\left[\frac{FP}{FP+TP}\right]$$

$$FDR(t) = \frac{mPr[FP]Pr[x>t|FP]}{mPr[x>t]}$$

$$FDR(t) = \frac{\pi_0 Pr[x>t|FP]}{Pr[x>t]}$$

$$FDR(t) = Pr[FP|x > t]$$

$$FDR(t) = \frac{\pi_0[1 - F_0(t)]}{1 - F(t)}$$
 with $F.(t) = \int_{-\infty}^{t} f.(x) dx$

$$FDR(t) = \frac{\pi_0 [1 - F_0(t)]}{1 - F(t)} = \frac{\pi_0 Pr[x > t | FP]}{Pr[x > t]}$$

$$FDR(t) = \frac{\pi_0 [1 - F_0(t)]}{1 - F(t)} = \frac{\pi_0 Pr[x > t | FP]}{Pr[x > t]}$$

$$FDR(t) = \frac{\pi_0 [1 - F_0(t)]}{1 - \frac{\#x \le t}{m}} = \frac{\pi_0 Pr[x > t | FP]}{\frac{\#x > t}{m}}$$

• F(t) using the Empirical cumulative distribution function (ECDF)

• F(t) using the Empirical cumulative distribution function (ECDF)

• How to characterize $F_0(t)$ and π_0 in proteomics?

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice
- Concatenated search

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice
- Concatenated search
- Assumption that bad hits have an equal probability to map on forward (target) and reverse database (decoy)

$$\hat{\pi}_0 = \frac{\# decoys}{\# targets}$$

- Searching against decoy databases to generate representative bad hits
- Reversed databases are a popular choice
- Concatenated search
- Assumption that bad hits have an equal probability to map on forward (target) and reverse database (decoy)

$$\hat{\pi}_0 = \frac{\# \textit{decoys}}{\# \textit{targets}}$$

Score cuttoff?

$$FDR(x) = E\left[\frac{FP}{FP + TP}\right]$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x}$$

Score cuttoff?

$$FDR(x) = E\left[\frac{FP}{FP + TP}\right]$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x}$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}}{\#\mathsf{targets}} \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{decoys}} \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x} \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}}$$

$$\widehat{\mathsf{FDR}}(x) = \hat{\pi}_0 \frac{1 - \bar{F}_0(x)}{1 - \bar{F}(x)}$$

Score cuttoff?

$$FDR(x) = E\left[\frac{FP}{FP + TP}\right]$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x}$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}}{\#\mathsf{targets}} \frac{\#\mathsf{decoys} | X \ge x}{\#\mathsf{decoys}} \frac{\#\mathsf{decoys} | X \ge x}{\#\mathsf{targets}} | X \ge x}{\#\mathsf{targets}}$$

$$\widehat{\mathsf{FDR}}(x) = \hat{\pi}_0 \frac{1 - \bar{F}_0(x)}{1 - \bar{F}(x)}$$

Score cuttoff?

$$FDR(x) = E\left[\frac{FP}{FP + TP}\right]$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}|X \ge x}{\#\mathsf{targets}|X \ge x}$$

$$\widehat{\mathsf{FDR}}(x) = \frac{\#\mathsf{decoys}}{\#\mathsf{targets}} \frac{\#\mathsf{decoys} | X \ge x}{\#\mathsf{decoys}} \frac{\#\mathsf{decoys} | X \ge x}{\#\mathsf{decoys}} \frac{\#\mathsf{decoys} | X \ge x}{\#\mathsf{targets}}$$

$$\widehat{\mathsf{FDR}}(x) = \hat{\pi}_0 \frac{1 - \bar{F}_0(x)}{1 - \bar{F}(x)}$$

We have to evaluate that

- The decoys are good simulations of the targets: compare $\bar{F}_0(x)$ with $\bar{F}(x)$
- $\hat{\pi}_0 = \frac{\#decoys}{\#targets}$ is a good estimator for π_0 .
- We will use Probability-Probability-plots for this purpose.
- They plot the ECDFs from two samples in function of each other.

What about $\hat{\pi}_0$?

