OPTIMIZATION AND GRADIENT DESCENT BASICS

Optimization

Unconstrained optimization problem

Ex:
$$\min f(x, y) = 3x - y^2$$

Constrained optimization problem

Ex:
$$\min f(x, y)$$
 subject to $x^2 + y^2 = 1$

- It is easier to solve unconstrained optimization problem
- Some constrained optimization problems can be converted into unconstrained optimization problems

Optimization

- Finding optimal solution
 - Closed form
 - Iterative method (eg. gradient descent)
 - Randomized method (eg. genetic algorithm)

- Closed form approach for one variable
- $\hfill\Box$ It is known that if a_0 is a local minimal/maximal, then $f'(a_0)=0$
- □ We can find a_0 by solving f'(x) = 0 with additional verification steps
- □ The concept can be extended to multiple variables:

If (a_0,b_0) is a local minimal/maximal, then

$$\frac{\partial}{\partial x} f(x, y)|_{x=a_0} = 0 \text{ and } \frac{\partial}{\partial y} f(x, y)|_{y=b_0} = 0$$

□ A multivariable function $f(x_1, ..., x_n)$ can also be written as $f(\mathbf{x})$ where $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$

$$\square \text{ We use } \nabla = \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{bmatrix} \text{ as the differential operator }$$

(also called Laplace operator or Laplacian)

- \square If \mathbf{x}_0 is a vector of local minimal/maximal values, then $\nabla f(\mathbf{x}_0) = \mathbf{0}$
- lacksquare The term abla f is called gradient of f
- □ Again, we can find local extreme values by solving for $\nabla f(\mathbf{x}) = \mathbf{0}$ with additional verification steps

- □ Want to maximize f(x, y) subject to g(x, y) = 0
- □ Figure from https://en.wikipedia.org/wiki/Lagrange_multiplier

- It is observed that the red line tangentially touches a blue contour is the maximum of f(x,y) (note: the cotour of f is an uphill and $d_1 > d_2$)
- Thus, the gradient of f and g are parallel to each other
- □ Therefore, $\nabla f = \lambda \nabla g$ for some λ (λ is called Lagrange multiplier)
- Recall that maximal (minimal) point, $abla f = \mathbf{0}$. Thus, $\lambda \nabla g = \mathbf{0}$ too

The Lagrange multipliers method incorporate this fact in the auxiliary equation:

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

and solve the following

$$\frac{\partial}{\partial x}\mathcal{L}=0$$
, $\frac{\partial}{\partial y}\mathcal{L}=0$, $\frac{\partial}{\partial \lambda}\mathcal{L}=0$

 \square Note: $\frac{\partial}{\partial \lambda} \mathcal{L} = 0$ is the original constraint

- Example from wiki
- □ Maximize f(x,y) = x + y subject to $x^2 + y^2 = 1$
- $\square \mathcal{L}(x, y, \lambda) = x + y + \lambda(x^2 + y^2 1)$
- $\frac{\partial}{\partial x}\mathcal{L} = 1 + 2\lambda x = 0$
- $\frac{\partial}{\partial y}\mathcal{L} = 1 + 2\lambda y = 0$

□ Finally, we have the following stationary points in the form of (x, y, λ)

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$$
 and $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$

The first point is the max point

- Extension of Lagrange multipliers method to include inequality
- □ Optimize f(x) subject to $g_i(x) \le 0$ and $h_j(x) = 0$ (i = 1...m, j = 1...n)
- Karush–Kuhn–Tucker (KKT) conditions are first-order necessary conditions for a solution to above problem
- □ Use a method similar to Lagrange multipliers, $g_i(x) \le 0$ constraints removed

- KKT conditions can be extended to handle multivariable functions
- Usually solved by iterative methods
- Existing tools available for finding solutions for this type of problems
- Support vector machine (SVM) is based on KKT conditions

□ Consider simple unconstrained optimization problem: $f(x) = x^2 + 1$

- \square Let Δ be a small number
- \Box At point a_0 , $f'(a_0)>0$, if we want $f(a_0+\Delta)< f(a_0)$, we know $\Delta <0$
- □ At point a_1 , $f'(a_1) < 0$, if we want $f(a_1 + \Delta) < f(a_1)$, we know $\Delta > 0$
- \Box To find minimal value for function f, at $x=a_k$ we need to proceed with $\Delta=-\eta f'(a_k)$ where η is a small positive number

Extend this idea, we have

$$\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k)$$

where k is iteration index

- This approach is called gradient descent method (or gradient search)
- $\ \square \ \eta$ is a small positive value
- \square How to find a "good" η for higher convergence is called "line search"

- □ Ref: http://theory.stanford.edu/~tim/s15/I/I15.pdf
- Another method to explain gradient descent method
- \square Consider a simple linear case ($\mathbf{x} \in \mathbb{R}^p$)

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

Where $\mathbf{w} \in R^p$ and $b \in R$ are constants and denotes inner product, or $\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^T \mathbf{x}$)

lacksquare Want to find vector $oldsymbol{u} \in R^p$ with $\|oldsymbol{u}\| = 1$ such that $f(\mathbf{x} + oldsymbol{u})$ is minimal

- □ We know $f(\mathbf{x} + \mathbf{u}) = \mathbf{w}^T(\mathbf{x} + \mathbf{u}) + b = f(\mathbf{x}) + \mathbf{w}^T\mathbf{u}$
- \square Thus, $f(\mathbf{x}+\mathbf{u})$ is minimal only if $\mathbf{u}=-\frac{w}{\|\mathbf{w}\|}$
- □ In general, a multivariable function is not linear
- lacktriangle However, we can make it almost linear if considering small length of $oldsymbol{u}$

For small $m{u}$ (in length), we have Taylor's expansion for f about $\mathbf{x}=\mathbf{x}_0$ as $f(\mathbf{x}_0+m{u}) pprox f(\mathbf{x}_0)+m{u}^T f(\mathbf{x}_0)'$

- \square As the above equation is also a linear function, when compared with eq in previou slice, we have ${\pmb w} = \nabla f({\bf x}_0)$
- Because we want ${m u}$ to be small, minimal $f({f x}_0+{m u})$ occurs if ${m u}$ is in opposite direction of $\nabla f({f x}_0)$,i.e., ${m u}=-\eta \; \nabla f({f x}_0)$

- \square Algorithm to find minimal $f(\mathbf{x})$
 - Step 1: Find initial point x_0 . Let $k \leftarrow 0$
 - Step 2: While $\|\nabla f(\mathbf{x}_k)\| > \epsilon$ do $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k \eta \nabla f(\mathbf{x}_k)$ $k \leftarrow k+1$
- \square In the algorithm, \in is a small positive number to determine the termination of the algorithm
- $\ \square \ \eta$ is called step size and should be small to prevent problems

- There are lots of methods covering the selection of η . Simple algorithm uses a constant η throughout the iteration
- One way to determine this value is by line search which just means identifying by binary search the value of η that minimizing f over the line $\mathbf{x} \eta \nabla f(\mathbf{x})$. After a few line searches, you should have a decent guess as to a good value of η

Estimate Gradient

 Sometimes it is not easy to compute gradient, we may use the following to estimate gradient

$$\frac{\partial}{\partial x_j} f(\mathbf{x}) \approx \{f(x_1, \dots, x_{j-1}, x_j + \eta, x_{j+1}, \dots, x_p) - f(\mathbf{x})\}/\eta$$

 It is also useful to monitor the differences between true gradient and estimated gradient during iteration

Estimate Gradient

Another (better) way to estimate gradient is through centered difference formula:

$$f'(x) = \frac{f(x+h)-f(x-h)}{2h}$$
 with small h

Gradient Descent for Regression

□ Given a known dataset of $x_{(1)}, ..., x_{(n)} \in R^p$ with corresponding labels $y_{(1)}, ..., y_{(n)} \in R$, we define the error in the linear case as

$$\mathcal{E}_{(k)} = y_{(k)} - \mathbf{w}^T \mathbf{x}_{(k)}, 1 \le k \le n$$

If we want to extend to nonlinear function, we may use $\mathcal{E}_{(k)} = y_{(k)} - f(\mathbf{w}^T \mathbf{x}_{(k)})$

where $f(\cdot)$ is a nonlinear function, such as sigmoid

Gradient Descent for Regression

- □ We can think a 2-class classification as a regression problem with $y_{(i)} \in \{0,1\}$, 0 for one class and 1 for another class
- What if we have multiple classes? A typical method is to use multiple 2-class classifiers
- □ If we have tree classes, we train three classifiers using three different settings for $y_{(i)}$. In class data have $y_{(i)} = 1$, all others are 0
- Alternatively, we may use softmax (covered later)

Gradient Descent for Regression

■ We may define the cost function as

$$J(\mathbf{w}) = \frac{1}{n} \sum_{k=0}^{n} \varepsilon_{(k)}^{2} = \frac{1}{n} \sum_{k=0}^{n} (y_{(k)} - \mathbf{w}^{T} \mathbf{x}_{(k)})^{2}$$

 Want to minimize the cost function by using gradient descent

Batch Gradient Descent

□ It is easy to know

$$\nabla J(\mathbf{w}) = \frac{2}{n} \sum_{k=0}^{n} (y_{(k)} - \mathbf{w}^T \mathbf{x}_{(k)}) \mathbf{x}_{(k)} = \frac{2}{n} \sum_{k=0}^{n} \varepsilon_{(k)} \mathbf{x}_{(k)}$$

- Note: average errors are used to determine gradient. Thus, it is called batch gradient descent
- Batch mode updates weights infrequently (low efficiency)
- \Box If we have a nonlinear function $f(\cdot)$, we still can compute gradient by using chain rule

Stochastic Gradient Descent

lacktriangle Another possible method to compute gradient for each instance $oldsymbol{x_{(k)}}$ as

$$\nabla J(\mathbf{w}) = \varepsilon_{(k)} \mathbf{x}_{(k)}$$

- In stochastic gradient descent, weights updates for every instance
- In a typical situation, we nee to present the dataset to gradient descent many times
- Algorithm "learn" all data samples in training set one time is called one epoch

Stochastic Gradient Descent

- In stochastic gradient descent, step size must keep small. A large step size may fail to converge
- The adaptive signal processing version of stochastic gradient descent is called LMS (least mean squares) algorithm

Mini-batch Gradient Descent

- Recall
 - Batch gradient descent uses average error over entire dataset for one iteration (one gradient updating)
 - Stochastic gradient descent uses error on one instance for one iteration to update gradient
- We can do somewhere in between: Use average error of, say 128, instances for one weights update (called mini-batch gradient descent)

Sigmoid Function

- A linear function has limitations
- We can use nonlinear function to increase flexibility
- For example, a sigmoid function (also called logistic function) is

$$f(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

□ If we want, we can also add "bias" to equation, i.e., we use $(\mathbf{w}^T\mathbf{x} + w_0)$ in place of $\mathbf{w}^T\mathbf{x}$

Sigmoid Function

 A nice property of sigmoid function is simplicity on derivatives

$$\nabla f(\mathbf{x}) = \begin{bmatrix} f(x_1)(1 - f(x_1)) \\ \vdots \\ f(x_p)(1 - f(x_p)) \end{bmatrix}$$

where
$$f(x_j) = \frac{1}{1 + \exp(-x_j)}$$

□ Note:
$$0 < f(x_j)(1 - f(x_j)) \le \frac{1}{4}$$

Other Nonlinear Function

 Another widely used nonlinear function is ReLU (Rectified Linear Unit)

$$f(x) = \max(0, x)$$

 ReLU does not suffer from "vanish of gradient" problem, a problem seen in sigmoid function

Regularization

- Recall we can avoid overfitting by using regularization
- We can do it in gradient descent with a modified cost function

$$J(\mathbf{w}) = \frac{1}{n} \sum_{k=0}^{n} \varepsilon_{(k)}^{2} + \lambda g(\mathbf{w})$$

In the case of L-2 regularization, we have

$$g(\mathbf{w}) = \sum_{j=1}^p w_j^2$$

Regularization

- We may also apply L-2 regularization to stochastic gradient descent (with slight modification)
- Exercise: How about mini-batch?
- □ Note: If "bias" term, i.e., w_0 in $(\mathbf{w}^T\mathbf{x} + w_0)$, is used, we will not penalize w_0
- Other than L-2 regularization, we may also try L-1 regularization (Lasso)
- Additional ref: https://arxiv.org/pdf/1609.04747.pdf

Momentum

- SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another, which are common around local optima
- Momentum is a method that helps accelerate SGD in the relevant direction and dampens oscillations

Momentum

Weights updating with momentum

$$\Delta \mathbf{w}_{k+1} \leftarrow \eta \nabla f(\mathbf{x}_k) + \alpha \Delta \mathbf{w}_k$$
$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k - \Delta \mathbf{w}_k$$

- □ Usually, $\alpha \approx 0.9$ is used
- \square In signal processing context, momentum is like a first-order IIR low-pass filter. Thus, Δw_k is smoothed
- More sophisticated methods such as Adam are available (suggested method for deep learning)

Further Reading

- As I mentioned previously, the textbook is way too dry (and difficult to appreciate for beginners)
- An excellent, easy to read reference material for (convolutional) neural networks is from Stanford university CS 231n at http://cs231n.stanford.edu/
- You may want to read the entire notes
- I will cover essential parts of that notes in our class