# **SSD1619A**

# **Product Preview**

400 Source x 300 Gate Red/Black/White Active Matrix EPD Display Driver with Controller

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.



# Appendix: IC Revision history of SSD1619A Specification

| Version | Change Items            | Effective Date |
|---------|-------------------------|----------------|
| 0.10    | 1 <sup>st</sup> Release | 29-Dec-16      |

 SSD1619A
 Rev 0.10
 P 2/48
 Dec 2016
 Solomon Systech

# **CONTENTS**

| 1        | G            | ENERAL DESCRIPTION                                   | 5       |
|----------|--------------|------------------------------------------------------|---------|
| 2        | FI           | EATURES                                              | <u></u> |
| 3        | 0            | RDERING INFORMATION                                  | £       |
| 4        |              | LOCK DIAGRAM                                         |         |
| 5        |              | IN DESCRIPTION                                       |         |
|          |              |                                                      |         |
| 6        |              | UNCTIONAL BLOCK DESCRIPTION                          |         |
|          | 6.1<br>6.1.1 | MCU INTERFACE                                        |         |
|          | 6.1.2        |                                                      |         |
|          | 6.1.3        | ,                                                    |         |
|          | 6.2          | RAM                                                  |         |
|          | 6.3          | OSCILLATOR                                           |         |
|          | 6.4          | BOOSTER & REGULATOR                                  |         |
|          | 6.5          | VCOM SENSING                                         |         |
|          | 6.6<br>6.7   | GATE WAVEFORM, PROGRAMMABLE SOURCE AND VCOM WAVEFORM |         |
|          | 6.8          | OTP                                                  |         |
|          | 6.8.1        |                                                      |         |
|          | 6.8.2        | 2 THE OTP CONTENT AND ADDRESS MAPPING                | 16      |
|          | 6.9          | TEMPERATURE SEARCHING MECHANISM                      |         |
|          | 6.10         |                                                      |         |
|          | 6.11         |                                                      |         |
|          | 6.12<br>6.13 |                                                      |         |
| 7        |              | OMMAND TABLE                                         |         |
|          |              |                                                      |         |
| 8        | C            | OMMAND DESCRIPTION                                   |         |
|          | 8.1          | DRIVER OUTPUT CONTROL (01H)                          | 35      |
|          | 8.2          | GATE SCAN START POSITION (0FH)                       |         |
|          | 8.3          | DATA ENTRY MODE SETTING (11H)                        |         |
|          | 8.4          | SET RAM X - ADDRESS START / END POSITION (44H)       |         |
|          | 8.5<br>8.6   | SET RAM Y - ADDRESS START / END POSITION (45H)       |         |
|          |              | YPICAL OPERATING SEQUENCE                            |         |
|          |              |                                                      |         |
|          | 9.1<br>9.2   | NORMAL DISPLAYVCOM OTP PROGRAM                       |         |
|          | 9.2          | WS OTP PROGRAM                                       |         |
| 1(       |              | ABSOLUTE MAXIMUM RATING                              |         |
| '`<br>1′ |              | ELECTRICAL CHARACTERISTICS                           |         |
|          |              |                                                      |         |
| 12       | 2            | AC CHARACTERISTICS                                   | 45      |
|          | 12.1         |                                                      |         |
| _        | 12.2         |                                                      |         |
| 13       | 3            | APPLICATION CIRCUIT                                  | 46      |
| 14       | 4            | PACKAGE INFORMATION                                  | 47      |

| TABLES         TABLE 3-1: ORDERING INFORMATION       6         TABLE 5-1: MCU INTERFACE SELECTION       8         TABLE 6-1: INTERFACE PINS ASSIGNMENT UNDER DIFFERENT MCU INTERFACE       10         TABLE 6-2: CONTROL PINS STATUS OF 4-WIRE SPI       10         TABLE 6-3: CONTROL PINS STATUS OF 3-WIRE SPI       11         TABLE 6-4: LUT MAPPING TO RAM CONTENT FOR MONO BLACK WHITE AND MONO RED       12         TABLE 6-5: RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION       12         TABLE 6-6: VS [NX-LUTN] VALUE MAPPING TABLE       14         TABLE 7-1: COMMAND TABLE       19         TABLE 10-1: MAXIMUM RATINGS       43         TABLE 11-1: DC CHARACTERISTICS       43         TABLE 11-2: REGULATORS CHARACTERISTICS       43         TABLE 12-1: OSCILLATOR FREQUENCY       45         TABLE 12-2: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS       45         TABLE 13-1: COMPONENT LIST FOR SSD1619A APPLICATION CIRCUIT       46         FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE       10         FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI MODE       11         FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE       11         FIGURE 6-5: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION       14         FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN LUT       15                |                                                         |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----|
| TABLE 5-1 : MCU INTERFACE SELECTION       8         TABLE 6-1 : INTERFACE PINS ASSIGNMENT UNDER DIFFERENT MCU INTERFACE       10         TABLE 6-2 : CONTROL PINS STATUS OF 4-WIRE SPI       10         TABLE 6-3 : CONTROL PINS STATUS OF 3-WIRE SPI       11         TABLE 6-4 : LUT MAPPING TO RAM CONTENT FOR MONO BLACK WHITE AND MONO RED       12         TABLE 6-5 : RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION       12         TABLE 6-6 : VS [NX-LUTN] VALUE MAPPING TABLE       14         TABLE 7-1 : COMMAND TABLE       14         TABLE 10-1 : MAXIMUM RATINGS       43         TABLE 10-1 : MAXIMUM RATINGS       43         TABLE 11-1 : DC CHARACTERISTICS       43         TABLE 11-2 : REGULATORS CHARACTERISTICS       44         TABLE 12-1 : OSCILLATOR FREQUENCY       45         TABLE 12-2 : SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS       45         TABLE 13-1 : COMPONENT LIST FOR SSD1619A APPLICATION CIRCUIT       46         FIGURE 6-1 : WRITE PROCEDURE IN 4-WIRE SPI MODE       10         FIGURE 6-3 : WRITE PROCEDURE IN 3-WIRE SPI MODE       11         FIGURE 6-4 : READ PROCEDURE IN 3-WIRE SPI MODE       11         FIGURE 6-5 : GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION       14         FIGURE 6-6 : VS[NX-LUT] AND TP[N] MAPPING IN CUT       15         FIGU |                                                         |    |
| TABLE 6-1: INTERFACE PINS ASSIGNMENT UNDER DIFFERENT MCU INTERFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |    |
| TABLE 6-2 : CONTROL PINS STATUS OF 4-WIRE SPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |    |
| TABLE 6-3 : CONTROL PINS STATUS OF 3-WIRE SPI       11         TABLE 6-4 : LUT MAPPING TO RAM CONTENT FOR MONO BLACK WHITE AND MONO RED       12         TABLE 6-5 : RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION       12         TABLE 6-6 : VS [NX-LUTN] VALUE MAPPING TABLE       14         TABLE 7-1: COMMAND TABLE       19         TABLE 10-1 : MAXIMUM RATINGS       43         TABLE 10-1 : MAXIMUM RATINGS       43         TABLE 11-1: DC CHARACTERISTICS       43         TABLE 11-2: REGULATORS CHARACTERISTICS       44         TABLE 12-1: OSCILLATOR FREQUENCY       45         TABLE 12-2: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS       45         TABLE 13-1: COMPONENT LIST FOR SSD1619A APPLICATION CIRCUIT       46         FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE       10         FIGURE 6-2: READ PROCEDURE IN 4-WIRE SPI MODE       11         FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI MODE       11         FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE       12         FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN LUT       15         FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE                                                                                                                                                                       |                                                         |    |
| TABLE 6-4 : LUT MAPPING TO RAM CONTENT FOR MONO BLACK WHITE AND MONO RED       12         TABLE 6-5 : RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION       12         TABLE 6-6 : VS [NX-LUTN] VALUE MAPPING TABLE       14         TABLE 7-1: COMMAND TABLE       19         TABLE 10-1 : MAXIMUM RATINGS       43         TABLE 11-1: DC CHARACTERISTICS       43         TABLE 11-2: REGULATORS CHARACTERISTICS       44         TABLE 12-1: OSCILLATOR FREQUENCY       45         TABLE 12-2 : SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS       45         TABLE 13-1: COMPONENT LIST FOR SSD1619A APPLICATION CIRCUIT       46         FIGURES         FIGURE 6-1 : WRITE PROCEDURE IN 4-WIRE SPI MODE       10         FIGURE 6-2 : READ PROCEDURE IN 4-WIRE SPI MODE       11         FIGURE 6-3 : WRITE PROCEDURE IN 3-WIRE SPI       11         FIGURE 6-4 : READ PROCEDURE IN 3-WIRE SPI MODE       12         FIGURE 6-5 : GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION       14         FIGURE 6-6 : VS[NX-LUT] AND TP[N] MAPPING IN LUT       15         FIGURE 6-7 : THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE       15                                                                                                                                                      |                                                         |    |
| TABLE 6-5: RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION.       12         TABLE 6-6: VS [NX-LUTN] VALUE MAPPING TABLE       14         TABLE 7-1: COMMAND TABLE       19         TABLE 10-1: MAXIMUM RATINGS       43         TABLE 11-1: DC CHARACTERISTICS       43         TABLE 11-2: REGULATORS CHARACTERISTICS       44         TABLE 12-1: OSCILLATOR FREQUENCY       45         TABLE 12-2: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS       45         TABLE 13-1: COMPONENT LIST FOR SSD 1619A APPLICATION CIRCUIT       46         FIGURES         FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE       10         FIGURE 6-2: READ PROCEDURE IN 4-WIRE SPI MODE       11         FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI MODE       11         FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE       12         FIGURE 6-5: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION       14         FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN LUT       15         FIGURE 6-7: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE       15                                                                                                                                                                                                                                                    |                                                         |    |
| TABLE 6-6: VS [NX-LUTN] VALUE MAPPING TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |    |
| TABLE 7-1: COMMAND TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABLE 6-5: RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION | 12 |
| TABLE 7-1: COMMAND TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABLE 6-6: VS [NX-LUTN] VALUE MAPPING TABLE             | 14 |
| TABLE 11-1: DC CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |    |
| TABLE 11-2: REGULATORS CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 10-1: Maximum Ratings                             | 43 |
| TABLE 11-2: REGULATORS CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 11-1: DC Characteristics                          | 43 |
| TABLE 12-1: OSCILLATOR FREQUENCY TABLE 12-2: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS 45 TABLE 13-1: COMPONENT LIST FOR SSD1619A APPLICATION CIRCUIT 46  FIGURES FIGURE 4-1: SSD1619A BLOCK DIAGRAM 56 FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE 51 FIGURE 6-2: READ PROCEDURE IN 4-WIRE SPI MODE 51 FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI MODE 51 FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE 51 FIGURE 6-5: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION 51 FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN LUT 51 FIGURE 6-7: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |    |
| TABLE 12-2 : SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |    |
| FIGURES FIGURE 4-1: SSD1619A BLOCK DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |    |
| FIGURES FIGURE 4-1: SSD1619A BLOCK DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |    |
| FIGURE 4-1: SSD1619A BLOCK DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |    |
| FIGURE 4-1: SSD1619A BLOCK DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |    |
| FIGURE 4-1: SSD1619A BLOCK DIAGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIGURES                                                 |    |
| FIGURE 6-2: READ PROCEDURE IN 4-WIRE SPI MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIGURE 4-1: SSD1619A BLOCK DIAGRAM                      |    |
| FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE          | 10 |
| FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIGURE 6-2: READ PROCEDURE IN 4-WIRE SPI MODE           | 11 |
| FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI               | 11 |
| FIGURE 6-5 : GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION  14 FIGURE 6-6 : VS[NX-LUT] AND TP[N] MAPPING IN LUT  FIGURE 6-7 : THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |    |
| FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN LUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |    |
| FIGURE 6-6: VS[NX-LUT] AND TP[N] MAPPING IN LUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |    |
| FIGURE 6-7: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FIGURE 6-6 · VS[NX-I UT] AND TP[N] MAPPING IN LUT       | 15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |    |

SSD1619A Rev 0.10 P 4/48 Dec 2016 Solomon Systech

#### 1 General Description

The SSD1619A is an Active Matrix EPD Display Driver with Controller which can support Red/Black/White. It consists of 400 source outputs, 300 gate outputs, 1 VCOM and 1 VBD for border that can support a maximum display resolution 400x300. In addition, the SSD1619A has a cascade mode that can support higher display resolution.

The SSD1619A embeds booster, regulators and oscillator. Data/Commands are sent from general MCU through the hardware selectable Serial peripheral.

#### 2 Features

- · Design for dot matrix type active matrix EPD display
- Support Red/Black/White mono color
- Resolution: 400 source outputs; 300 gate outputs; 1 VCOM; 1VBD for border.
- Power supply:
  - VCI: 2.2 to 3.7VVDDIO: Connect to VCI
  - VDD: 1.8V, regulate from VCI supply
- On chip display RAM
  - Mono B/W: 400x300 bits
  - Mono Red: 400x300 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage.
- Gate driving output voltage:
  - 2 levels output (VGH, VGL).
  - Max 40Vp-p.
  - VGH: 10V to 20V; VGL: -VGH.
  - Voltage adjustment step: 500mV.
- Source / VBD driving output voltage:
  - 4 levels output (VSH1, VSS, VSL, and VSH2).
    - VSH1/VSH2: 2.4V to 17V (Voltage step: 100mV for 2.4V to 8.8V, 200mV for 8.8V to 17V.)
    - VSL: -9V to -17V (Voltage step: 500mV)
- VCOM output voltage

| DCVCOM                             | ACVCOM                                                   |
|------------------------------------|----------------------------------------------------------|
| • -3V to -0.2V in 100mV resolution | ● 3 levels output  > VSH1+DCVCOM  > DCVCOM  > VSL+DCVCOM |

- · Built in VCOM sensing
- Support internal generation of OTP programming voltage
- On-chip oscillator.
- Programmable output waveform for different types of EPD display:
  - 28 phases (4 phases/group, 7 groups with repeat function)
  - 1 to 256 times for repeat count
  - Max. 255 frame/phase
- On-chip OTP can store Waveform Setting (max. 25 sets) including (LUT, gate/source voltage, frame rate and Temperature Range), VCOM value and waveform version ID
- Reserve 10-byte OTP space for module identification
- Adjustable frame rate from 15Hz to 200Hz (Remark: For Gate setting as 300 MUX)
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Read OTP function
- Built-in CRC checking method for waveform setting and temperature range in OTP.
- Support display partial update
- Auto write RAM command for regular pattern
- I2C Single Master Interface to read external temperature sensor reading.
- Internal Temperature Sensor
- Cascade mode to support higher display resolution.
- MCU interface: Serial peripheral.
- Maximum SPI write speed 20MHz
- Available in COG package

**SSD1619A** | Rev 0.10 | P 5/48 | Dec 2016 | **Solomon Systech** 

# 3 ORDERING INFORMATION

Table 3-1: Ordering Information

| Ordering Part Number | Package Form  | Remark                                                             |
|----------------------|---------------|--------------------------------------------------------------------|
| SSD1619AZ            | Gold Bump Die | Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um |

# 4 Block Diagram



Figure 4-1: SSD1619A Block Diagram

 SSD1619A
 Rev 0.10
 P 6/48
 Dec 2016
 Solomon Systech

#### **PIN DESCRIPTION** 5

I = Input, O =Output, IO = Bi-directional (input/output), P = Power pin, C = Capacitor Pin NC = Not Connected, Pull L =connect to  $V_{SS}$ , Pull H = connect to  $V_{DDIO}$ Key:

| Pin name    |     |              |                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                              | When not in use |
|-------------|-----|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Input pow   | er  | L            |                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1               |
| VCI         | Р   | Power Supply | Power Supply                   | Power input pin for the chip.                                                                                                                                                                                                                                                                                                                                                                                                            | -               |
| VCIA        | Р   | Power Supply | Power Supply                   | Power input pin for the chip.  - Connect to VCI in the application circuit.                                                                                                                                                                                                                                                                                                                                                              | -               |
| VDDIO       | P   |              | Power for interface logic pins | Power input pin for the Interface.  - Connect to VCI in the application circuit.                                                                                                                                                                                                                                                                                                                                                         | -               |
| VDD         | Р   |              | Regulator<br>output            | Core logic power pin VDD can be regulated internally from VCI.  - For the single chip application, a capacitor should be connected between VDD and VSS under all circumstances.  - For the cascade mode application, a capacitor should be connected between VDD and VSS in the master chip under all circumstances. For the slave chip, the capacitor is not necessary as VDD will be supplied from the cascade master chip externally. | -               |
| EXTVDD      | I   |              | Regulator<br>bypass            | This pin is VDD regulator bypass pin. For the single chip application, EXTVDD should be connected to VSS in the application circuit For the cascade mode application, EXTVDD of the master chip should be connected to VSS while EXTVDD of the slave chip should be connected to VDDIO in the application circuit.                                                                                                                       | -               |
| VSS         | Р   | VSS          | GND                            | Ground (Digital).                                                                                                                                                                                                                                                                                                                                                                                                                        | -               |
| VSSA        | Р   | VSS          | GND                            | Ground (Analog) - Connect to VSS in the application circuit.                                                                                                                                                                                                                                                                                                                                                                             | -               |
| VSSBG       | Р   | VSS          | GND                            | Ground (Reference) pin.  - Connect to VSS in the application circuit.                                                                                                                                                                                                                                                                                                                                                                    | -               |
| VSSGS       | Р   | VSS          | GND                            | Ground (Output) pin.  - Connect to VSS in the application circuit.                                                                                                                                                                                                                                                                                                                                                                       |                 |
| VPP         | Р   | Power Supply | OTP power                      | Power Supply for OTP Programming.                                                                                                                                                                                                                                                                                                                                                                                                        | Open            |
| Digital I/O | l   | l            | <u> </u>                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| SCL         | I   | MPU          | Data Bus                       | Serial clock pin for interface:<br>Refer to Session 6.1 - MCU Interface.                                                                                                                                                                                                                                                                                                                                                                 | -               |
| SDA         | I/O | MPU          | Data Bus                       | Serial data pin for interface:<br>Refer to Session 6.1 - MCU Interface.                                                                                                                                                                                                                                                                                                                                                                  |                 |
| CS#         | I   | MPU          |                                | This pin is the chip select input connecting to the MCU.  Refer to Session 6.1 - MCU Interface.                                                                                                                                                                                                                                                                                                                                          |                 |
| D/C#        | I   | MPU          |                                | This pin is Data/Command control pin connecting to the MCU. Refer to Session 6.1- MCU Interface.                                                                                                                                                                                                                                                                                                                                         | VDDIO or<br>VSS |
| RES#        | I   |              | System<br>Reset                | This pin is reset signal input.<br>Active Low.                                                                                                                                                                                                                                                                                                                                                                                           | -               |

SSD1619A Rev 0.10 P 7/48 Dec 2016 Solomon Systech

| Pin name  | Туре | Connect to                        | Function                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|-----------|------|-----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|           |      |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| BUSY      | О    | MPU                               | Device Busy<br>Signal                   | This pin is Busy state output pin When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would put Busy pin High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor  In the cascade mode, the BUSY pin of the slave chip should                                                                                                                                                                                           | Open |
| M/S#      | I    | VDDIO/VSS                         | Cascade<br>Mode<br>Selection            | <ul> <li>be left open.</li> <li>This pin is Master and Slave selection pin.</li> <li>For the single chip application, the M/S# pin should be connected to VDDIO.</li> <li>In the cascade mode:     For Master Chip, the M/S# pin should be connected to VDDIO.     For Slave Chip, the M/S# pin should be connected to VSS. The oscillator and the booster &amp; regulator circuits of the slave chip will be disabled. The corresponding pins including CL, VDD, VDDIO, VGH, VGL, VSH1, VSH2, VSL and VCOM must be connected to the master chip.</li> </ul> | -    |
| CL        | I/O  | NC                                | Clock signal                            | <ul> <li>This is the clock signal pin.</li> <li>For the single chip application, the CL pin should be left open.</li> <li>In the cascade mode, the CL pin of the slave chip should be connected to the CL pin of the master chip.</li> </ul>                                                                                                                                                                                                                                                                                                                 | Open |
| BS1       | I    | VDDIO/VSS                         | MCU<br>Interface<br>Mode<br>Selection   | These pins are for selecting different bus interface.  Table 5-1 : MCU interface selection  BS1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    |
| TSDA      | I/O  | Temperature<br>sensor SDA         | Interface to<br>Digital Temp.<br>Sensor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Open |
| TSCL      | 0    | Temperature<br>sensor SCL         | Interface to<br>Digital Temp.<br>Sensor | This pin is I <sup>2</sup> C Interface to digital temperature sensor Clock pin.  External pull up resistor is required when connecting to I <sup>2</sup> C slave.                                                                                                                                                                                                                                                                                                                                                                                            | Open |
| Analog Pi | n    | 1                                 | l                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |
| GDR       | 0    | POWER<br>MOSFET<br>Driver Control | VGH, VGL<br>Generation                  | N-Channel MOSFET gate drive control pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| RESE      | I    | Booster<br>Control Input          |                                         | Current sense input pin for the control Loop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    |
| VGH       | С    | Stabilizing capacitor             |                                         | Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |
| VGL       | С    | Stabilizing capacitor             |                                         | This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                   | -    |

 SSD1619A
 Rev 0.10
 P 8/48
 Dec 2016
 Solomon Systech

| Pin name                          | Туре | Connect to                         | Function                         | Description                                                                                                                        | When not in use |
|-----------------------------------|------|------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| VSH1                              | С    | Stabilizing capacitor              | VSH1, VSH2,<br>VSL<br>Generation | This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit. | -               |
| VSH2                              | С    | Stabilizing capacitor              |                                  | This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit. |                 |
| VSL                               | С    | Stabilizing capacitor              |                                  | This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.       | -               |
| VCOM                              | С    | Panel/<br>Stabilizing<br>capacitor | VCOM<br>Generation               | These pins are VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.               | -               |
| Panel Driv                        | ing  |                                    |                                  |                                                                                                                                    |                 |
| S [399:0]                         | 0    | Panel                              | Source driving signal            | Source output pin.                                                                                                                 | Open            |
| G [299:0]                         | 0    | Panel                              | Gate driving signal              | Gate output pin.                                                                                                                   | Open            |
| VBD                               | 0    | Panel                              | Border<br>driving signal         | Border output pin.                                                                                                                 | Open            |
| Others                            |      |                                    |                                  |                                                                                                                                    |                 |
| NC                                | NC   | NC                                 | Not<br>Connected                 | Keep open. Don't connect with other NC pins.                                                                                       | Open            |
| RSV                               | NC   | NC                                 | Reserved                         | This is a reserved pin, keep floating                                                                                              | Open            |
| TPA, TPB,<br>TPC, TPD,<br>TPF, FB |      | NC                                 | Reserved for<br>Testing          | Reserved pins.  - Keep open.  - Don't connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPE, TPF and FB.        | Open            |
| GD [3:0]                          | 0    | NC                                 | Not<br>Connected                 | Reserved pins Keep open.                                                                                                           | Open            |
| TIN                               | I    | NC                                 | Reserved for<br>Testing          | Reserved pins Keep open.                                                                                                           | Open            |
| TPE                               | 0    | NC                                 |                                  |                                                                                                                                    | Open            |

 SSD1619A
 Rev 0.10
 P 9/48
 Dec 2016
 Solomon Systech

## 6 Functional Block Description

#### 6.1 MCU Interface

#### 6.1.1 MCU Interface selection

The SSD1619A can support 3-wire/4-wire serial peripheral. In the SSD1619A, the MCU interface is pin selectable by BS1 shown in Table 6-1.

#### Note

- $^{(1)}\,L$  is connected to  $V_{\text{SS}}$
- $^{(2)}$  H is connected to  $V_{\text{DDIO}}$

Table 6-1: Interface pins assignment under different MCU interface

| MCU Interface                                         | Pin Name            |          |          |                |     |     |  |
|-------------------------------------------------------|---------------------|----------|----------|----------------|-----|-----|--|
| MCO Interface                                         | BS1                 | RES#     | CS#      | D/C#           | SCL | SDA |  |
| 4-wire serial peripheral interface (SPI)              | Connect to VSS      | Required | Required | Required       | SCL | SDA |  |
| 3-wire serial peripheral interface (SPI) – 9 bits SPI | Connect to<br>VDDIO | Required | Required | Connect to VSS | SCL | SDA |  |

#### 6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

| Function      | SCL pin | SDA pin     | D/C# pin | CS# pin |
|---------------|---------|-------------|----------|---------|
| Write command | 1       | Command bit | L        | L       |
| Write data    | 1       | Data bit    | Н        | L       |

#### Note:

- (1) L is connected to V<sub>SS</sub> and H is connected to V<sub>DDIO</sub>
- (2) ↑ stands for rising edge of signal
- (3) SDA( Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.



Figure 6-1: Write procedure in 4-wire SPI mode

**SSD1619A** | Rev 0.10 | P 10/48 | Dec 2016 | **Solomon Systech** 



Figure 6-2: Read procedure in 4-wire SPI mode

## 6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or write data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3: Control pins status of 3-wire SPI

| Function      | SCL pin  | SDA pin     | D/C# pin | CS# pin |
|---------------|----------|-------------|----------|---------|
| Write command | 1        | Command bit | Tie LOW  | L       |
| Write data    | <b>↑</b> | Data bit    | Tie LOW  | L       |

#### Note:

- (1) L is connected to  $V_{SS}$  and H is connected to  $V_{DDIO}$
- (2) ↑ stands for rising edge of signal



Figure 6-3: Write procedure in 3-wire SPI

**SSD1619A** | Rev 0.10 | P 11/48 | Dec 2016 | **Solomon Systech** 

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35), SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.



Figure 6-4: Read procedure in 3-wire SPI mode

#### 6.2 RAM

The On chip display RAM is holding the image data.

1 set of RAM is built for Mono B/W. The RAM size is 400x300 bits.

1 set of RAM is built for Mono Red. The RAM size is 400x300 bits.

Table 6-4: LUT mapping to RAM content for Mono Black White and Mono Red

| R | B/W | LUT   |
|---|-----|-------|
| 0 | 0   | LUT 0 |
| 0 | 1   | LUT 1 |
| 1 | 0   | LUT 2 |
| 1 | 1   | LUT 3 |

In order to write the image data into the display RAM, it is necessary to define the Data Entry Mode Setting (Command 0x11h), the Driver Output Control (Command 0x01h) and the Gate Scan Start Position (Command 0x0Fh). The following is an example to show how to set these commands. And, Table 6-5 is the corresponding RAM address mapping of these command settings.

Command "Data Entry Mode Setting" R11h is set to:

| Address Counter update in X direction | AM=0        |
|---------------------------------------|-------------|
| X: Increment                          | ID[1:0] =11 |
| Y: Increment                          |             |

Command "Driver Output Control" R01h is set to:

| 300 Mux                        | MUX = 12Bh |
|--------------------------------|------------|
| Select G0 as 1st gate          | GD = 0     |
| Left and Right gate Interlaced | SM = 0     |
| Scan From G0 to G299           | TB = 0     |

Command "Gate Scan Start Position" R0Fh is set to:

Set the Start Position of Gate = G0 SCN=0

• Then the data byte sequence: DB0, DB1, DB2 ... DB18 ... DB19, DB20 ... DB14999

Table 6-5: RAM address map according to above condition

|      |       | S0          | S1          | S2          | S3          | S4          | S5          | S6          | S7          |             |                   | S392        | S393        | S394        | S395        | S396        | S397        | S398        | S399        |
|------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|      |       |             |             |             | 00          | )h          |             |             |             |             |                   | 31h         |             |             |             |             |             |             |             |
| G0   | 00h   | DB0<br>[7]  | DB0<br>[6]  | DB0<br>[5]  | DB0<br>[4]  | DB0<br>[3]  | DB0<br>[2]  | DB0<br>[1]  | DB0<br>[0]  |             |                   | DB49<br>[7] | DB49<br>[6] | DB49<br>[5] | DB49<br>[4] | DB49<br>[3] | DB49<br>[2] | DB49<br>[1] | DB49<br>[0] |
| G1   | 01h   | DB50<br>[7] | DB50<br>[6] | DB50<br>[5] | DB50<br>[4] | DB50<br>[3] | DB50<br>[2] | DB50<br>[1] | DB50<br>[0] |             |                   | DB99<br>[7] | DB99<br>[6] | DB99<br>[5] | DB99<br>[4] | DB99<br>[3] | DB99<br>[2] | DB99<br>[1] | DB99<br>[0] |
|      |       |             |             |             |             |             |             |             |             |             | $\rightarrow$     |             |             |             |             |             |             |             |             |
|      |       |             |             |             |             |             |             |             |             | <del></del> | $\longrightarrow$ |             |             |             |             |             |             |             |             |
|      |       |             |             |             |             |             |             |             |             | <del></del> |                   |             |             |             |             |             |             |             |             |
| G298 | 12Ah  | DB14900     |             |                   | DB14949     |
| G296 | IZAII | [7]         | [6]         | [5]         | [4]         | [3]         | [2]         | [1]         | [0]         |             |                   | [7]         | [6]         | [5]         | [4]         | [3]         | [2]         | [1]         | [0]         |
| G299 | 12Bh  | DB14950     |             |                   | DB14999     |
| G299 | 14DII | [7]         | [6]         | [5]         | [4]         | [3]         | [2]         | [1]         | [0]         |             |                   | [7]         | [6]         | [5]         | [4]         | [3]         | [2]         | [1]         | [0]         |

SATE

 SSD1619A
 Rev 0.10
 P 12/48
 Dec 2016
 Solomon Systech

X-ADDR

#### 6.3 Oscillator

The oscillator module generates the clock reference for waveform timing and analog operations.

#### 6.4 Booster & Regulator

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.



# 6.5 VCOM Sensing 该功能块提供了选择最佳 VCOM DC 电平的方案。 感测值可以编程到 OTP 中。

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing: VCOM感测流程:

- Active Gate is scanning during the VCOM sense Period. 主动门在 VCOM 检测期间进行扫描。
- Source are VSS. 来源是VSS
- VCOM pin used for sensing. VCOM 引脚用于感测。
- During Sensing period, BUSY is high. 在检测期间, BUSY 为高电平。
- After Sensing, Active Gate return to non-select stage.
   感应后,有源门返回非选择阶段。

**SSD1619A** | Rev 0.10 | P 13/48 | Dec 2016 | **Solomon Systech** 

## 6.6 Gate waveform, Programmable Source and VCOM waveform

共7组,每组4相,共28相,用于不同相长的可编程源波形。

- There are 7 groups, each group contains 4 phases, totally 28 phases for programmable Source waveform with different phase length.
- The phase length of LUT0~LUT4 is defined as TP[nX] LUT0~LUT4的相位长度定义为TP[nX]
  - ▶ The range of TP[nX] is from 0 to 255. TP[nX] 的范围是从 0 到 255。 n 表示从 0 到 6 的组号
  - n represents the Group number from 0 to 6; X represents the sub-group number from A to D.
  - ➤ TP[nX] = 0 indicates phase skipped. TP[nX] = 0 表示跳相。
- The repeat count of group is defined as RP[n], which is used for the count of repeating TP[nA],
   TP[nB], TP[nC] and TP[nD]; 组的重复计数定义为RP[n],用于重复TP[nA]、TP[nB]、TP[nC]和TP[nD]的计数;
  - ➤ The range of RP[n] is from 0 to 255. RP[n] 的范围是从 0 到 255。
  - ▶ n represents the Group number from 0 to 6; n 表示从 0 到 6 的组号; `
  - ➤ RP[n] = 0 indicates run time =1, RP[n] = 0 表示运行时间 =1,
- Source/VCOM Voltage Level: VS [nX-LUT] is constant in each phase. 源/vcom 电压电平: VS [nX-LUT] 在每个相位中
   VS [nX-LUTn] indicates the voltage in phase n for transition LUT.
  - ▶ 00 VSS VS [nX-LUTn]表示过渡LUT的n相电压。
  - ➤ 01 VSH1
  - ➤ 10 VSL
  - 11 VSH2

Table 6-6: VS [nX-LUTn] value mapping table

| LUT0 | В    | 00 - VSS, 01 - VSH1, 10 - VSL, 11-VSH2         |
|------|------|------------------------------------------------|
| LUT1 | W    | 00 - VSS, 01 - VSH1, 10 - VSL, 11-VSH2         |
| LUT2 | R    | 00 - VSS, 01 - VSH1, 10 - VSL, 11-VSH2         |
| LUT3 | R    | Assign as the same as LUT2                     |
| LUT4 | VCOM | 00 -DCVCOM, 01 - VSH1+DCVCOM, 10 - VSL+ DCVCOM |

VS [nX-LUT], TP[nX], RP[n], VSH, VSL are stored in waveform lookup table register [LUT].



Figure 6-5: Gate waveform and Programmable Source and VCOM waveform illustration

**SSD1619A** | Rev 0.10 | P 14/48 | Dec 2016 | **Solomon Systech** 

WAVEFORM SETTING (WS) contains 76bytes, which define the display driving waveform settings. They are arranged in following format figure shown

| 0         VS[0A-L0]         VS[0B-L0]         VS[0C-L0]         VS[0D-L0]           1         VS[1A-L0]         VS[1B-L0]         VS[1C-L0]         VS[1D-L0]           2         VS[2A-L0]         VS[2B-L0]         VS[2C-L0]         VS[2D-L0]           3         VS[3A-L0]         VS[3B-L0]         VS[3C-L0]         VS[3D-L0]           4         VS[4A-L0]         VS[4B-L0]         VS[4C-L0]         VS[4D-L0]           5         VS[5A-L0]         VS[5B-L0]         VS[5C-L0]         VS[6D-L0]           6         VS[6A-L0]         VS[6B-L0]         VS[6C-L0]         VS[6D-L0]           7         VS[0A-L1]         VS[0B-L1]         VS[0C-L1]         VS[0D-L1]                 31         VS[3A-L4]         VS[3B-L4]         VS[3C-L4]         VS[3D-L0]           32         VS[4A-L4]         VS[3B-L4]         VS[4C-L4]         VS[4D-L0]           33         VS[5A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6C-L4]         VS[6D-L4]         VS[6D-L4]           35         TP[0D]         TP[0D]         TP[0D]         TP[0D]         TP[0D]         TP[0D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | D7 D6     | D5 D4     | D3 D2               | D1 D0     |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|---------------------|-----------|--|--|--|--|--|--|--|--|
| 2 VS[2A-L0] VS[2B-L0] VS[2C-L0] VS[2D-L0] 3 VS[3A-L0] VS[3B-L0] VS[3C-L0] VS[3D-L0] 4 VS[4A-L0] VS[4B-L0] VS[4C-L0] VS[4D-L0] 5 VS[5A-L0] VS[5B-L0] VS[5C-L0] VS[5D-L0] 6 VS[6A-L0] VS[6B-L0] VS[6C-L0] VS[6D-L0] 7 VS[0A-L1] VS[0B-L1] VS[0C-L1] VS[0D-L1] 31 VS[3A-L4] VS[3B-L4] VS[3C-L4] VS[3D-L4] 32 VS[4A-L4] VS[4B-L4] VS[4C-L4] VS[4D-L4] 33 VS[5A-L4] VS[5B-L4] VS[5C-L4] VS[5D-L4] 34 VS[6A-L4] VS[6B-L4] VS[6C-L4] VS[6D-L4] 35 TP[0A] 36 TP[0B] 37 TP[0C] 38 TP[0C] 38 TP[0C] 40 TP[1A] 41 TP[1B] 42 TP[1C] 43 TP[1D] 44 RP[1] 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6C] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0        | VS[0A-L0] | VS[0B-L0] | VS[0C-L0]           |           |  |  |  |  |  |  |  |  |
| 3         VS[3A-L0]         VS[3B-L0]         VS[3C-L0]         VS[3D-L0]           4         VS[4A-L0]         VS[4B-L0]         VS[4C-L0]         VS[4D-L0]           5         VS[5A-L0]         VS[5B-L0]         VS[5C-L0]         VS[5D-L0]           6         VS[6A-L0]         VS[6B-L0]         VS[6C-L0]         VS[6D-L0]           7         VS[0A-L1]         VS[0B-L1]         VS[0C-L1]         VS[0D-L1]                  31         VS[3A-L4]         VS[3B-L4]         VS[3C-L4]         VS[3D-L4]           32         VS[4A-L4]         VS[4B-L4]         VS[4C-L4]         VS[4D-L4]           33         VS[5A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0A]         36         TP[0B]           36         TP[0B]         37         TP[0C]           38         TP[0D]         40         TP[1A]           41         TP[1B]         42         TP[1C]           43         TP[1D]         44         RP[1] </td <td>1</td> <td></td> <td>VS[1B-L0]</td> <td>VS[1C-L0]</td> <td>VS[1D-L0]</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        |           | VS[1B-L0] | VS[1C-L0]           | VS[1D-L0] |  |  |  |  |  |  |  |  |
| 4         VS[4A-L0]         VS[4B-L0]         VS[4C-L0]         VS[4D-L0]           5         VS[5A-L0]         VS[5B-L0]         VS[5C-L0]         VS[5D-L0]           6         VS[6A-L0]         VS[6B-L0]         VS[6C-L0]         VS[6D-L0]           7         VS[0A-L1]         VS[0B-L1]         VS[0C-L1]         VS[0D-L1]                 31         VS[3A-L4]         VS[3B-L4]         VS[3C-L4]         VS[4D-L4]           32         VS[4A-L4]         VS[4B-L4]         VS[4C-L4]         VS[4D-L4]           33         VS[5A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0A]         TP[0B]           37         TP[0B]         TP[0D]           38         TP[0D]         TP[1A]           41         TP[1B]         TP[1D]           42         TP[1D]         TP[1D]           43         TP[1D]         TP[1D]           44         RP[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | VS[2A-L0] | VS[2B-L0] | VS[2C-L0] VS[2D-L0  |           |  |  |  |  |  |  |  |  |
| 5         VS[5A-L0]         VS[5B-L0]         VS[5C-L0]         VS[5D-L0]           6         VS[6A-L0]         VS[6B-L0]         VS[6C-L0]         VS[6D-L0]           7         VS[0A-L1]         VS[0B-L1]         VS[0C-L1]         VS[0D-L1]                  31         VS[3A-L4]         VS[3B-L4]         VS[3C-L4]         VS[4D-L4]           32         VS[4A-L4]         VS[4B-L4]         VS[4C-L4]         VS[4D-L4]           33         VS[5A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6D-L4]         VS[6D-L4]           35         TP[0A]         TP[0A]           36         TP[0B]         TP[0D]           37         TP[0D]         TP[0D]           38         TP[0D]         TP[1A]           41         TP[1B]         TP[1D]           42         TP[1C]         TP[1D]           43         TP[1D]         TP[1D]           44         TP[6A]         TP[6A]           66         TP[6B]         TP[6C]           68         TP[6D]         TP[6B]           70<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3        | VS[3A-L0] |           | VS[3C-L0] VS[3D-L0] |           |  |  |  |  |  |  |  |  |
| 6         VS[6A-L0]         VS[6B-L0]         VS[6C-L0]         VS[6D-L0]           7         VS[0A-L1]         VS[0B-L1]         VS[0C-L1]         VS[0D-L1]                  31         VS[3A-L4]         VS[3B-L4]         VS[3C-L4]         VS[4D-L4]           32         VS[4A-L4]         VS[4B-L4]         VS[4C-L4]         VS[4D-L4]           33         VS[5A-L4]         VS[5B-L4]         VS[5C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0A]         TP[0B]         TP[0B]           37         TP[0B]         TP[0D]           38         TP[0D]         TP[1A]           41         TP[1B]         TP[1A]           41         TP[1B]         TP[1D]           44         RP[1] <t< td=""><td>4</td><td colspan="11"></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 7         VS[0A-L1]         VS[0B-L1]         VS[0C-L1]         VS[0D-L1]                 31         VS[3A-L4]         VS[3B-L4]         VS[4C-L4]         VS[4D-L4]           32         VS[4A-L4]         VS[4B-L4]         VS[5C-L4]         VS[5D-L4]           33         VS[5A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0A]         TP[0B]           37         TP[0D]         TP[0D]           38         TP[0D]         TP[1A]           41         TP[1B]         TP[1D]           44         RP[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        |           |           |                     |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6        |           |           |                     |           |  |  |  |  |  |  |  |  |
| No.   No. | 7        | VS[0A-L1] | VS[0B-L1] | VS[0C-L1]           | VS[0D-L1] |  |  |  |  |  |  |  |  |
| 31         VS[3A-L4]         VS[3B-L4]         VS[3C-L4]         VS[3D-L4]           32         VS[4A-L4]         VS[4B-L4]         VS[4C-L4]         VS[4D-L4]           33         VS[5A-L4]         VS[5B-L4]         VS[5C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0B]         TP[0B]           37         TP[0D]         TP[0D]           38         TP[0D]         TP[1A]           41         TP[1B]         TP[1B]           42         TP[1D]         TP[1D]           44         RP[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 32         VS[4A-L4]         VS[4B-L4]         VS[4C-L4]         VS[4D-L4]           33         VS[5A-L4]         VS[5B-L4]         VS[5C-L4]         VS[6D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0B]           36         TP[0B]           37         TP[0C]           38         TP[0D]           39         RP[0]           40         TP[1A]           41         TP[1B]           42         TP[1C]           43         TP[1D]           44         RP[1]                   65         TP[6A]           66         TP[6B]           67         TP[6C]           68         TP[6D]           69         RP[6]           70         VGH           71         VSH1           72         VSH2           73         VSL           74         Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 33         VS[5A-L4]         VS[5B-L4]         VS[5C-L4]         VS[5D-L4]           34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0A]         TP[0B]           37         TP[0C]         TP[0D]           38         TP[0D]         TP[1A]           40         TP[1A]         TP[1B]           42         TP[1D]         TP[1D]           44         RP[1]                 65         TP[6A]         TP[6B]           67         TP[6D]         TP[6D]           69         RP[6]         TO           70         VGH         VSH1           72         VSH2         VSL           74         Frame 1         Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 34         VS[6A-L4]         VS[6B-L4]         VS[6C-L4]         VS[6D-L4]           35         TP[0A]         TP[0B]         TP[0B]         TP[0C]         TP[0C]         TP[0D]         TP[0D]         TP[1A]         TP[1A]         TP[1A]         TP[1B]         TP[1C]         TP[1D]         TP[1D] </td <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 35       TP[0A]         36       TP[0B]         37       TP[0C]         38       TP[0D]         39       RP[0]         40       TP[1A]         41       TP[1B]         42       TP[1C]         43       TP[1D]         44       RP[1]                 65       TP[6A]         66       TP[6B]         67       TP[6C]         68       TP[6D]         69       RP[6]         70       VGH         71       VSH1         72       VSH2         73       VSL         74       Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 36       TP[0B]         37       TP[0C]         38       TP[0D]         39       RP[0]         40       TP[1A]         41       TP[1B]         42       TP[1C]         43       TP[1D]         44       RP[1]                 65       TP[6A]         66       TP[6B]         67       TP[6C]         68       TP[6D]         69       RP[6]         70       VGH         71       VSH1         72       VSH2         73       VSL         74       Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -        | VS[6A-L4] |           |                     | VS[6D-L4] |  |  |  |  |  |  |  |  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -        | TP[0A]    |           |                     |           |  |  |  |  |  |  |  |  |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 39 RP[0] 40 TP[1A] 41 TP[1B] 42 TP[1C] 43 TP[1D] 44 RP[1] 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 40 TP[1A] 41 TP[1B] 42 TP[1C] 43 TP[1D] 44 RP[1] 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 41 TP[1B] 42 TP[1C] 43 TP[1D] 44 RP[1] 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 42       TP[1C]         43       TP[1D]         44       RP[1]                 65       TP[6A]         66       TP[6B]         67       TP[6C]         68       TP[6D]         69       RP[6]         70       VGH         71       VSH1         72       VSH2         73       VSL         74       Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$ |           |           | -                   |           |  |  |  |  |  |  |  |  |
| 43 TP[1D] 44 RP[1] 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 44 RP[1] 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\vdash$ |           |           |                     |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44       |           | KI        | 2[1]                |           |  |  |  |  |  |  |  |  |
| 65 TP[6A] 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 66 TP[6B] 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           | TD        |                     |           |  |  |  |  |  |  |  |  |
| 67 TP[6C] 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\vdash$ |           |           |                     |           |  |  |  |  |  |  |  |  |
| 68 TP[6D] 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 69 RP[6] 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 70 VGH 71 VSH1 72 VSH2 73 VSL 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 71         VSH1           72         VSH2           73         VSL           74         Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
| 72         VSH2           73         VSL           74         Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |           |                     |           |  |  |  |  |  |  |  |  |
| 73 VSL<br>74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\vdash$ |           |           |                     |           |  |  |  |  |  |  |  |  |
| 74 Frame 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        |           |           |                     |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |           |                     |           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75       |           |           |                     |           |  |  |  |  |  |  |  |  |

Figure 6-6: VS[nX-LUT] and TP[n] mapping in LUT

WS can be accessed by MCU interface or loaded from OTP.

5 registers are involved to set WS from MCU interface

- WS byte 0~69, the content of VS [n-XY], TP [n#], RP[n], are the parameter belonging to Register 0x32
- WS byte 70, the content of gate level, is the parameter belonging to Register 0x03.
- WS byte 71~73, the content of source level, is the parameter belonging to Register 0x04.
- WS byte 74, the content of dummy line, is the parameter belonging to Register 0x3A.
- WS byte 75, the content of gate line width, is the parameter belonging to Register 0x3B.

**SSD1619A** | Rev 0.10 | P 15/48 | Dec 2016 | **Solomon Systech** 

#### **OTP** 6.8

#### 6.8.1 The OTP information OTP 是非易失性存储器,存储以下信息:

The OTP is the non-volatile memory and stored the information of: 25组WAVEFORM SETTING (WS),包括(LUT、栅极/源极电压和帧率)

- 25 set of WAVEFORM SETTING (WS), including (LUT, gate/source voltage and frame rate)
- 25 set of TEMPERATURE RANGE (TR). which consist of 25组温度范围 (TR)。 其中包括
  - O Lower limit (TEMP [m-L]) and Upper limit (TEMP [m-H]) for each set of WS#. 每组 WS# 的下限(TEMP [m-L])和上限
- VCOM value. VCOM 值
- Waveform version ID 波形版本 ID

Remark: WS [m]表示温度组m的波形设置,配置同LUT中的定义。WS[m]对应的低温范围定义为 TEMP [m-L] 和高温范围定义为 TEMP [m-H]

- WS [m] means the waveform setting of temperature set m, the configuration are same as the definition in LUT. The corresponding low temperature range of WS[m] defined as TEMP [m-L] and high range defined as TEMP [m-H] 如果 Temp [m-L] < 温度寄存器 <= Temp [m-H] 从 LUT 的 OTP 加载 WS [m]
- Load WS [m] from OTP for LUT if Temp [m-L] < Temperature Register <= Temp [m-H]</li>

## 6.8.2 The OTP content and address mapping

The mapping table of OTP for waveform setting and temperature range is shown in Figure 6-7: OTP 波形设定与温度范围对应表如图 6-7 所示:

|              | D7    | D6    | D5     | D4    | D3       | D2   | D1      | D0 |      |  |  |  |
|--------------|-------|-------|--------|-------|----------|------|---------|----|------|--|--|--|
| 0            |       |       |        |       |          |      |         |    |      |  |  |  |
|              | WS 0  |       |        |       |          |      |         |    |      |  |  |  |
| 75           |       |       |        |       |          |      |         |    |      |  |  |  |
| 76           |       |       |        |       |          |      |         |    |      |  |  |  |
|              | WS 1  |       |        |       |          |      |         |    |      |  |  |  |
| 151          |       |       |        |       |          |      |         |    |      |  |  |  |
| 152          | WO 0  |       |        |       |          |      |         |    |      |  |  |  |
|              | WS 2  |       |        |       |          |      |         |    |      |  |  |  |
| 227          |       |       |        |       |          |      |         |    |      |  |  |  |
| 228          |       |       |        | 100   |          |      |         |    |      |  |  |  |
|              |       |       |        | VV    | 'S 3     |      |         |    |      |  |  |  |
| 303          |       |       |        |       |          |      |         |    |      |  |  |  |
|              |       |       |        |       |          |      |         |    |      |  |  |  |
|              |       |       |        |       | •••      |      |         |    |      |  |  |  |
| 4740         |       |       |        |       |          |      |         |    |      |  |  |  |
| 1748         |       |       |        | 100   | 0.00     |      |         |    |      |  |  |  |
|              |       |       |        | VV    | S 23     |      |         |    |      |  |  |  |
| 1823         |       |       |        |       |          |      |         |    |      |  |  |  |
| 1824         |       | W0.04 |        |       |          |      |         |    |      |  |  |  |
|              | WS 24 |       |        |       |          |      |         |    |      |  |  |  |
| 1899         |       |       |        |       |          |      |         |    |      |  |  |  |
| 1900         |       |       |        | temp  | L[7:0]   |      |         |    | TD 0 |  |  |  |
| 1901         |       | temp_ | H[3:0] |       | 11[44.4] | temp | L[11:8] |    | TR0  |  |  |  |
| 1902         |       |       |        | temp_ | _H[11:4] |      |         |    |      |  |  |  |
| 1903         |       |       |        | -     | D4       |      |         |    |      |  |  |  |
| 1904         |       |       |        | ı     | R1       |      |         |    |      |  |  |  |
| 1905         |       |       |        |       |          |      |         |    |      |  |  |  |
| 1906         |       |       |        | -     | R2       |      |         |    |      |  |  |  |
| 1907         |       |       |        | 1     | R2       |      |         |    |      |  |  |  |
| 1908<br>1909 |       |       |        |       |          |      |         |    |      |  |  |  |
| 1910         |       |       |        | т.    | R3       |      |         |    |      |  |  |  |
|              |       |       |        | ,     | KO       |      |         |    |      |  |  |  |
| 1911<br>1912 |       |       |        |       |          |      |         |    |      |  |  |  |
|              |       |       |        | т     | R4       |      |         |    |      |  |  |  |
| 1913         |       |       |        |       | 114      |      |         |    |      |  |  |  |
| 1914         |       |       |        |       |          |      |         |    |      |  |  |  |
| <u> </u>     |       |       |        |       |          |      |         |    |      |  |  |  |
| -            |       |       |        |       |          |      |         |    |      |  |  |  |
| 1969         |       |       |        |       |          |      |         |    | }    |  |  |  |
|              |       |       |        | т     | D23      |      |         |    |      |  |  |  |
| 1970         | TR23  |       |        |       |          |      |         |    |      |  |  |  |
| 1971         |       |       |        |       |          |      |         |    |      |  |  |  |
| 1972<br>1973 |       |       |        | -     | R24      |      |         |    |      |  |  |  |
| 1973         |       |       |        | - 11  | N24      |      |         |    |      |  |  |  |
|              |       |       |        |       |          |      |         |    |      |  |  |  |

Figure 6-7: The Waveform setting mapping in OTP for waveform setting and temperature range

SSD1619A Rev 0.10 P 16/48 Dec 2016 Solomon Systech

## 6.9 Temperature Searching Mechanism

Legend:

| WS#                  | Waveform Setting no. #                                                             |  |  |  |  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| TR#                  | Temperature Range no. #                                                            |  |  |  |  |  |  |  |  |
| LUT                  | 60 bit register storing the waveform setting (volatile)                            |  |  |  |  |  |  |  |  |
| Temperature register | 12bit Register storing reading from temperature sensor (volatile)                  |  |  |  |  |  |  |  |  |
| ОТР                  | A non-volatile storing 25 sets of waveform setting and 25 set of temperature range |  |  |  |  |  |  |  |  |
| WS_sel_<br>address   | an address pointer indicating the selected WS#                                     |  |  |  |  |  |  |  |  |

| OTP (non-volatile) |      |
|--------------------|------|
| WS0                | TR0  |
| WS1                | TR1  |
| WS2                | TR2  |
| WS3                | TR3  |
|                    |      |
| WS23               | TR23 |
| WS24               | TR24 |

Figure 6-8: Waveform Setting and Temperature Range # mapping

## IC implementation requirement

- Compare temperature register from TR0 to TR24, in sequence. The last match will be recorded
  - i.e. If the temperature register fall in both TR3 and TR5. WS5 will be selected
- 2 There is no restriction on the sequence of TR0, TR2.... TR24

## **Example Temperature Range assignment**

| Waveform setting | Temperature range                  | Lower Limit [Hex] | Upper Limit[Hex] |
|------------------|------------------------------------|-------------------|------------------|
| WS0              | -128 DegC < Temperature <= 5 DegC  | 800               | 050              |
| WS1              | 5 DegC < Temperature <= 10DegC     | 050               | 0A0              |
| WS2              | 10 DegC < Temperature <= 15DegC    | 0A0               | 0F0              |
| WS3              | 15 DegC < Temperature <= 20DegC    | 0F0               | 140              |
| WS4              | 20 DegC < Temperature <= 25DegC    | 140               | 190              |
| WS5              | 25 DegC < Temperature <= 30DegC    | 190               | 1E0              |
| WS6              | 30 DegC < Temperature <= 35DegC    | 1E0               | 230              |
| WS7              | 35 DegC < Temperature <= 127.9DegC | 230               | 7FF              |
| Others           |                                    | 000               | 000              |

Figure 6-9 : Example Temperature Range

## **User application**

- 1 If temperature is 5 DegC, WS0 is selected
- 2 If temperature is 23 DegC, WS4 is selected
- 3 If temperature > 35 DegC, WS7 is selected

**SSD1619A** | Rev 0.10 | P 17/48 | Dec 2016 | **Solomon Systech** 

#### 6.10 External Temperature Sensor I2C Single Master Interface

The chip provides two I/O lines [TSDA and TSCL] for connecting digital temperature sensor for temperature reading sensing.

TSDA will treat as SDA line and TSCL will treat as SCL line. They are required connecting with external pull-up resistor.

- If the Temperature value MSByte bit D11 = 0, then the temperature is positive and value (DegC) = + (Temperature value) / 16
- 2. If the Temperature value MSByte bit D11 = 1, then

the temperature is negative and value (DegC) = - (2's complement of Temperature value) / 16

|                  | <u> </u>    |         |         |
|------------------|-------------|---------|---------|
| 12-bit binary    | Hexadecimal | Decimal | Value   |
| (2's complement) | Value       | Value   | [DegC]  |
| 0111 1111 0000   | 7F0         | 2032    | 127     |
| 0111 1110 1110   | 7EE         | 2030    | 126.875 |
| 0111 1110 0010   | 7E2         | 2018    | 126.125 |
| 0111 1101 0000   | 7D0         | 2000    | 125     |
| 0001 1001 0000   | 190         | 400     | 25      |
| 0000 0000 0010   | 002         | 2       | 0.125   |
| 0000 0000 0000   | 000         | 0       | 0       |
| 1111 1111 1110   | FFE         | -2      | -0.125  |
| 1110 0111 0000   | E70         | -400    | -25     |
| 1100 1001 0010   | C92         | -878    | -54.875 |
| 1100 1001 0000   | C90         | -880    | -55     |

#### 6.11 Cascade Mode

The SSD1619A has a cascade mode that can cascade 2 chips to achieve the display resolution up to 800 (sources) x 300 (gates). The pin M/S# is used to configure the chip. When M/S# is connected to VDDIO, the chip is configured as a master chip. When M/S# is connected to VSS, the chip is configured as a slave chip.

When the chip is configured as a master chip, it will be the same as a single chip application, ie, all circuit blocks will be worked as usual. When the chip is configured as a slave chip, its oscillator and booster & regulator circuit will be disabled. The oscillator clock and all booster voltages will be come from the master chip. Therefore, the corresponding pins including CL, VDD, VGH, VGL, VSH1, VSH2, VSL, VGL and VCOM must be connected to the master chip.

#### 6.12 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In the SSD1619A, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<Vlow.

#### 6.13 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In the SSD1619A, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

**SSD1619A** Rev 0.10 P 18/48 Dec 2016 **Solomon Systech** 

# 7 COMMAND TABLE

**Table 7-1: Command Table** 

| Com  | Command Table |     |                       |            |                       |                       |                       |                |                       |                |                       |                                                                                    |                                   |                                                   |                                                              |
|------|---------------|-----|-----------------------|------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|--------------------------------------------------------------|
| R/W# | D/C#          | Hex | D7                    | D6         | D5                    | D4                    | D3                    | D2             | D1                    | D0             | Command               | Descripti                                                                          | on                                |                                                   |                                                              |
| 0    | 0             | 01  | 0                     | 0          | 0                     | 0                     | 0                     | 0              | 0                     | 1              | Driver Output control | Gate setti                                                                         |                                   |                                                   |                                                              |
| 0    | 1             |     | <b>A</b> <sub>7</sub> | <b>A</b> 6 | <b>A</b> <sub>5</sub> | A <sub>4</sub>        | <b>A</b> <sub>3</sub> | A <sub>2</sub> | <b>A</b> <sub>1</sub> | A <sub>0</sub> |                       | A[8:0]= 12                                                                         |                                   |                                                   |                                                              |
| 0    | 1             |     | 0                     | 0          | 0                     | 0                     | 0                     | 0              | 0                     | A <sub>8</sub> |                       | MUX Gate                                                                           | e lines set                       | ting as (A                                        | [8:0] + 1).                                                  |
| 0    | 1             |     | 0                     | 0          | 0                     | 0                     | 0                     | B <sub>2</sub> | B <sub>1</sub>        | B <sub>0</sub> |                       | output sec<br>GD=1,<br>G1 is the<br>output sec<br>B[1]: SM<br>Change s<br>SM=0 [PC | nning sequence is canning of DR], | out Gate output cha G0,G1, G output cha G1, G0, G | nnel, gate<br>i2, G3,<br>nnel, gate<br>i3, G2,<br>te driver. |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | interlaced<br>SM=1,                                                                | 64G29<br>OR], scan                | 8, G1, G3                                         |                                                              |
| 0    | 0             | 03  | 0                     | 0          | 0                     | 0                     | 0                     | 0              | 1                     | 1              | Gate Driving voltage  | Set Gate                                                                           |                                   |                                                   |                                                              |
| 0    | 1             |     | 0                     | 0          | 0                     | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub>        | A <sub>0</sub> | Control               | A[4:0] = 1                                                                         |                                   |                                                   | ,                                                            |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | VGH setti                                                                          |                                   |                                                   |                                                              |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | A[4:0]<br>03h                                                                      | VGH<br>10                         | A[4:0]<br>0Fh                                     | VGH<br>16                                                    |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 04h                                                                                | 10.5                              | 10h                                               | 16.5                                                         |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 05h                                                                                | 11                                | 11h                                               | 17                                                           |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 06h                                                                                | 11.5                              | 12h                                               | 17.5                                                         |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 07h                                                                                | 12                                | 13h                                               | 18                                                           |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 08h                                                                                | 12.5                              | 14h                                               | 18.5                                                         |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 09h                                                                                | 13                                | 15h                                               | 19                                                           |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 0Ah                                                                                | 13.5                              | 16h                                               | 19.5                                                         |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 0An                                                                                | 14                                | 17h                                               | 20                                                           |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 0Ch                                                                                | 14.5                              | Other                                             | NA                                                           |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 0Dh                                                                                | 15                                | Ouici                                             | INC                                                          |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | 0Eh                                                                                | 15.5                              |                                                   |                                                              |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       | LULII                                                                              | 10.0                              |                                                   |                                                              |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       |                                                                                    |                                   |                                                   |                                                              |
|      |               |     |                       |            |                       |                       |                       |                |                       |                |                       |                                                                                    |                                   |                                                   |                                                              |

 SSD1619A
 Rev 0.10
 P 19/48
 Dec 2016
 Solomon Systech

| Com  | Command Table |     |                |                |                |                |                       |                |                |                |                        |                                                                     |
|------|---------------|-----|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|------------------------|---------------------------------------------------------------------|
| R/W# | D/C#          | Hex | D7             | D6             | D5             | D4             | D3                    | D2             | D1             | D0             | Command                | Description                                                         |
| 0    | 0             | 04  | 0              | 0              | 0              | 0              | 0                     | 1              | 0              | 0              | Source Driving voltage | Set Source driving voltage                                          |
| 0    | 1             |     | A <sub>7</sub> | A <sub>6</sub> | $A_5$          | $A_4$          | $A_3$                 | $A_2$          | A <sub>1</sub> | A <sub>0</sub> | Control                | A[7:0] = 41h [POR], VSH1 at 15V                                     |
| 0    | 1             |     | B <sub>7</sub> | B <sub>6</sub> | B <sub>5</sub> | B <sub>4</sub> | Вз                    | B <sub>2</sub> | B <sub>1</sub> | B <sub>0</sub> |                        | B[7:0] = A8h [POR], VSH2 at 5V.<br> C[7:0] = 32h [POR], VSL at -15V |
| 0    | 1             |     | C <sub>7</sub> | C <sub>6</sub> | C <sub>5</sub> | C <sub>4</sub> | <b>C</b> <sub>3</sub> | C <sub>2</sub> | C <sub>1</sub> | C <sub>0</sub> |                        | 5[] 52[. 5], 762 dt 167                                             |

A[7]/B[7] = 1,

VSH1/VSH2 voltage setting from 2.4V to 8.8V

| A/B[7:0] | VSH1/VSH2 | A/B[7:0] | VSH1/VSH2 |
|----------|-----------|----------|-----------|
| 8Eh      | 2.4       | AFh      | 5.7       |
| 8Fh      | 2.5       | B0h      | 5.8       |
| 90h      | 2.6       | B1h      | 5.9       |
| 91h      | 2.7       | B2h      | 6         |
| 92h      | 2.8       | B3h      | 6.1       |
| 93h      | 2.9       | B4h      | 6.2       |
| 94h      | 3         | B5h      | 6.3       |
| 95h      | 3.1       | B6h      | 6.4       |
| 96h      | 3.2       | B7h      | 6.5       |
| 97h      | 3.3       | B8h      | 6.6       |
| 98h      | 3.4       | B9h      | 6.7       |
| 99h      | 3.5       | BAh      | 6.8       |
| 9Ah      | 3.6       | BBh      | 6.9       |
| 9Bh      | 3.7       | BCh      | 7         |
| 9Ch      | 3.8       | BDh      | 7.1       |
| 9Dh      | 3.9       | BEh      | 7.2       |
| 9Eh      | 4         | BFh      | 7.3       |
| 9Fh      | 4.1       | C0h      | 7.4       |
| A0h      | 4.2       | C1h      | 7.5       |
| A1h      | 4.3       | C2h      | 7.6       |
| A2h      | 4.4       | C3h      | 7.7       |
| A3h      | 4.5       | C4h      | 7.8       |
| A4h      | 4.6       | C5h      | 7.9       |
| A5h      | 4.7       | C6h      | 8         |
| A6h      | 4.8       | C7h      | 8.1       |
| A7h      | 4.9       | C8h      | 8.2       |
| A8h      | 5         | C9h      | 8.3       |
| A9h      | 5.1       | CAh      | 8.4       |
| AAh      | 5.2       | CBh      | 8.5       |
| ABh      | 5.3       | CCh      | 8.6       |
| ACh      | 5.4       | CDh      | 8.7       |
| ADh      | 5.5       | CEh      | 8.8       |
| AEh      | 5.6       | Other    | NA        |

A[7]/B[7] = 0,

VSH1/VSH2 voltage setting from 9V to 17V

| A/B[7:0] | VSH1/VSH2 | A/B[7:0] | VSH1/VSH2 |
|----------|-----------|----------|-----------|
| 23h      | 9         | 3Ch      | 14        |
| 24h      | 9.2       | 3Dh      | 14.2      |
| 25h      | 9.4       | 3Eh      | 14.4      |
| 26h      | 9.6       | 3Fh      | 14.6      |
| 27h      | 9.8       | 40h      | 14.8      |
| 28h      | 10        | 41h      | 15        |
| 29h      | 10.2      | 42h      | 15.2      |
| 2Ah      | 10.4      | 43h      | 15.4      |
| 2Bh      | 10.6      | 44h      | 15.6      |
| 2Ch      | 10.8      | 45h      | 15.8      |
| 2Dh      | 11        | 46h      | 16        |
| 2Eh      | 11.2      | 47h      | 16.2      |
| 2Fh      | 11.4      | 48h      | 16.4      |
| 30h      | 11.6      | 49h      | 16.6      |
| 31h      | 11.8      | 4Ah      | 16.8      |
| 32h      | 12        | 4Bh      | 17        |
| 33h      | 12.2      | Other    | NA        |
| 34h      | 12.4      |          |           |
| 35h      | 12.6      |          |           |
| 36h      | 12.8      |          |           |
| 37h      | 13        |          |           |
| 38h      | 13.2      |          |           |
| 39h      | 13.4      |          |           |
| 3Ah      | 13.6      |          |           |
| 3Bh      | 13.8      |          |           |

C[7] = 0,

VSL setting from -9V to -17V

| C[7:0] | VSL   |
|--------|-------|
| 1Ah    | -9    |
| 1Ch    | -9.5  |
| 1Eh    | -10   |
| 20h    | -10.5 |
| 22h    | -11   |
| 24h    | -11.5 |
| 26h    | -12   |
| 28h    | -12.5 |
| 2Ah    | -13   |
| 2Ch    | -13.5 |
| 2Eh    | -14   |
| 30h    | -14.5 |
| 32h    | -15   |
| 34h    | -15.5 |
| 36h    | -16   |
| 38h    | -16.5 |
| 3Ah    | -17   |
| Other  | NA    |

 SSD1619A
 Rev 0.10
 P 20/48
 Dec 2016
 Solomon Systech

| Com  | man  | d Tal | ole |                |                               |                               |                               |                               |                               |                |                    |                                         |
|------|------|-------|-----|----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------|--------------------|-----------------------------------------|
| R/W# | D/C# | Hex   | D7  | D6             | D5                            | D4                            | D3                            | D2                            | D1                            | D0             | Command            | Description                             |
| 0    | 0    | 0C    | 0   | 0              | 0                             | 0                             | 1                             | 1                             | 0                             | 0              | Booster Soft start | Booster Enable with Phase 1, Phase 2    |
| 0    | 1    |       | 1   | A <sub>6</sub> | A <sub>5</sub>                | A <sub>4</sub>                | <b>A</b> <sub>3</sub>         | A <sub>2</sub>                | A <sub>1</sub>                | A <sub>0</sub> | Control            | and Phase 3 for soft start current and  |
| 0    | 1    |       | 1   | B <sub>6</sub> | B <sub>5</sub>                | B <sub>4</sub>                | Вз                            | B <sub>2</sub>                | B <sub>1</sub>                | B <sub>0</sub> |                    | duration setting.                       |
| 0    | 1    |       | 1   | C <sub>6</sub> | C <sub>5</sub>                | C <sub>4</sub>                | C <sub>3</sub>                | $C_2$                         | C <sub>1</sub>                | C <sub>0</sub> |                    | A[7:0] -> Soft start setting for Phase1 |
|      |      |       |     |                |                               |                               |                               |                               |                               |                |                    | = 8Bh [POR]                             |
| 0    | 1 1  |       | 1 0 | C <sub>6</sub> | C <sub>5</sub> D <sub>5</sub> | C <sub>4</sub> D <sub>4</sub> | C <sub>3</sub> D <sub>3</sub> | C <sub>2</sub> D <sub>2</sub> | C <sub>1</sub> D <sub>1</sub> | Co<br>Do       |                    | B[7:0] -> Soft start setting for Phase2 |
|      |      |       |     |                |                               |                               |                               |                               |                               |                |                    | 01 20ms<br>10 30ms                      |
|      |      |       |     |                |                               |                               |                               |                               |                               |                |                    | 11 40ms                                 |
|      |      |       |     |                |                               | <u> </u>                      |                               | <u> </u>                      | <u> </u>                      | <u> </u>       |                    |                                         |

 SSD1619A
 Rev 0.10
 P 21/48
 Dec 2016
 Solomon Systech

| Com                                              | man  | d Tal      | ole            |                |                |          |                       |                |                |                       |                          |                                                                                                  |
|--------------------------------------------------|------|------------|----------------|----------------|----------------|----------|-----------------------|----------------|----------------|-----------------------|--------------------------|--------------------------------------------------------------------------------------------------|
|                                                  | D/C# |            | D7             | D6             | D5             | D4       | D3                    | D2             | D1             | D0                    | Command                  | Description                                                                                      |
| 0                                                | 0    | 0F         | 0              | 0              | 0              | 0        | 1                     | 1              | 1              | 1                     | Gate scan start position | Set the scanning start position of the gate                                                      |
| 0                                                | 1    |            | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub> | $A_4$    | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub>        |                          | driver. The valid range is from 0 to 299.                                                        |
| 0                                                | 1    |            | 0              | 0              | 0              | 0        | 0                     | 0              | 0              | <b>A</b> 8            |                          | A[8:0] = 000h [POR]                                                                              |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | When TB=0:<br>SCN [8:0] = A[8:0]<br>When TB=1:<br>SCN [8:0] = 299 - A[8:0]                       |
| 0                                                | 0    | 10         | 0              | 0              | 0              | 1        | 0                     | 0              | 0              | 0                     | Deep Sleep mode          | Deep Sleep mode Control:                                                                         |
| 0                                                | 1    | 10         | 0              | 0              | 0              | 0        | 0                     | 0              | A <sub>1</sub> | A <sub>0</sub>        | Deep Sieep mode          | A[1:0]: Description                                                                              |
| 0                                                | '    |            | U              | U              | "              | 0        | 0                     | U              | A1             | A0                    |                          | 00 Normal Mode [POR]                                                                             |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 01 Enter Deep Sleep Mode 1                                                                       |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 11 Enter Deep Sleep Mode 2                                                                       |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | After this command initiated, the chip will                                                      |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | enter Deep Sleep Mode, BUSY pad will keep output high 此命令启动后,芯片将进入深度睡眠Remark: 型,BUSY pad 将保持输出高电 |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | keep output high 此命令启动后,心片将进入深度睡眠<br>  模式,BUSY pad 将保持输出高电                                       |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 1 0                                                                                              |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | To Exit Deep Sleep mode, User required to send HWRESET to the driver                             |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 要退出深度睡眠模式,用户需要向驱动程序发送 HWRE\$ET                                                                   |
|                                                  |      |            |                |                |                |          | 1                     |                |                |                       |                          | ZEUMZKIKIXIV / HIV IIII ZI JIE JIE JIE JIE ZE IIII CE I                                          |
| 0                                                | 0    | 11         | 0              | 0              | 0              | 1        | 0                     | 0              | 0              | 1                     | Data Entry mode          | Define data entry sequence                                                                       |
| 0                                                | 1    |            | 0              | 0              | 0              | 0        | 0                     | A <sub>2</sub> | A <sub>1</sub> | <b>A</b> <sub>0</sub> | setting                  | A[2:0] = 011 [POR]                                                                               |
| U                                                | '    |            | U              | U              | "              | "        |                       | /\2            |                | 7.0                   |                          |                                                                                                  |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | A [1:0] = ID[1:0]                                                                                |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | Address automatic increment / decrement                                                          |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | setting The setting of incrementing or                                                           |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | decrementing of the address counter can                                                          |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | be made independently in each upper and                                                          |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | lower bit of the address.                                                                        |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 00 –Y decrement, X decrement,                                                                    |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 01 –Y decrement, X increment,                                                                    |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 10 –Y increment, X decrement,                                                                    |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | 11 –Y increment, X increment [POR]                                                               |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | A[2] = AM                                                                                        |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | Set the direction in which the address                                                           |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | counter is updated automatically after data                                                      |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | are written to the RAM.                                                                          |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | AM= 0, the address counter is updated in                                                         |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | the X direction. [POR]                                                                           |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | AM = 1, the address counter is updated in                                                        |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | the Y direction.                                                                                 |
| <del>                                     </del> |      |            |                |                | <u> </u>       | <u> </u> |                       | <u> </u>       | <u> </u>       | L                     | <u> </u>                 |                                                                                                  |
| 0                                                | 0    | 12         | 0              | 0              | 0              | 1        | 0                     | 0              | 1              | 0                     | SW RESET                 | It resets the commands and parameters to                                                         |
|                                                  |      | · <b>-</b> |                |                |                | •        |                       |                |                |                       |                          | their S/W Reset default values except                                                            |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | R10h-Deep Sleep Mode                                                                             |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | · · ·                                                                                            |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | During operation, BUSY pad will output                                                           |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | high.                                                                                            |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | Note: DAM are unoffected by this                                                                 |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | Note: RAM are unaffected by this command.                                                        |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          | Communic.                                                                                        |
|                                                  |      |            |                |                |                |          |                       |                |                |                       |                          |                                                                                                  |

 SSD1619A
 Rev 0.10
 P 22/48
 Dec 2016
 Solomon Systech

| Com  | man  | d Tak | ole |    |    |    |    |                |                |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|------|-------|-----|----|----|----|----|----------------|----------------|----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R/W# | D/C# | Hex   | D7  | D6 | D5 | D4 | D3 | D2             | D1             | D0 | Command            | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0    | 0    | 14    | 0   | 0  | 0  | 1  | 0  | 1              | 0              | 0  | HV Ready Detection | HV ready detection                                                                                                                                                                                                                                                                                                                                                                                          |
|      |      |       |     |    |    |    |    |                |                |    |                    | The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).                                                                                                                                               |
|      |      |       |     |    |    |    |    |                |                |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0    | 0    | 15    | 0   | 0  | 0  | 1  | 0  | 1              | 0              | 1  | VCI Detection      | VCI Detection                                                                                                                                                                                                                                                                                                                                                                                               |
| 0    | 1    |       | 0   | 0  | 0  | 0  | 0  | A <sub>2</sub> | A <sub>1</sub> | Ao |                    | A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect  A[2:0] VCI level  011 2.2V  100 2.3V  101 2.4V  110 2.5V  111 2.6V  Other NA  The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). |

 SSD1619A
 Rev 0.10
 P 23/48
 Dec 2016
 Solomon Systech

| Com  | man  | d Tal | ble                   |                 |                       |                       |                       |                |                       |                       |                                         |                                                                                 |
|------|------|-------|-----------------------|-----------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------------------------|---------------------------------------------------------------------------------|
| R/W# | D/C# | Hex   | D7                    | D6              | D5                    | D4                    | D3                    | D2             | D1                    | D0                    | Command                                 | Description                                                                     |
| 0    | 0    | 18    | 0                     | 0               | 0                     | 1                     | 1                     | 0              | 0                     | 0                     | Temperature Sensor                      | Temperature Sensor Selection                                                    |
| 0    | 1    |       | A <sub>7</sub>        | A <sub>6</sub>  | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub>        | A <sub>0</sub>        | Control                                 | A[7:0] = 48h [POR], external temperatrure                                       |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | sensor A[7:0] = 80h Internal temperature sensor                                 |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | 内部温度传感器                                                                         |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         |                                                                                 |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         |                                                                                 |
| 0    | 0    | 1A    | 0                     | 0               | 0                     | 1                     | 1                     | 0              | 1                     | 0                     | Temperature Sensor                      | Write to temperature register.                                                  |
| 0    | 1    |       | A <sub>11</sub>       | A <sub>10</sub> | <b>A</b> 9            | A <sub>8</sub>        | <b>A</b> <sub>7</sub> | A <sub>6</sub> | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | Control (Write to temperature register) | A[11:0] = 7FFh [POR]                                                            |
| 0    | 1    |       | <b>A</b> <sub>3</sub> | A <sub>2</sub>  | A <sub>1</sub>        | A <sub>0</sub>        | 0                     | 0              | 0                     | 0                     | temperature register)                   |                                                                                 |
|      |      | 45    |                       |                 | Ι _                   | l _                   |                       |                |                       | _                     | - · · ·                                 | In                                                                              |
| 0    | 0    | 1B    | 0                     | 0               | 0                     | 1                     | 1                     | 0              | 1                     | 1                     | Temperature Sensor Control (Read from   | Read from temperature register.                                                 |
| 1    | 1    |       | A <sub>11</sub>       | A <sub>10</sub> | <b>A</b> 9            | A <sub>8</sub>        | A <sub>7</sub>        | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub>        | temperature register)                   |                                                                                 |
| 1    | 1    |       | <b>A</b> <sub>3</sub> | A <sub>2</sub>  | <b>A</b> <sub>1</sub> | $A_0$                 | 0                     | 0              | 0                     | 0                     |                                         |                                                                                 |
| 0    | 0    | 1C    | 0                     | 0               | 0                     | 1                     | 1                     | 1              | 0                     | 0                     | Temperature Sensor                      | Write Command to External temperature                                           |
| 0    | 1    |       | A <sub>7</sub>        | A <sub>6</sub>  | A <sub>5</sub>        | A <sub>4</sub>        | A <sub>3</sub>        | A <sub>2</sub> | A <sub>1</sub>        | A <sub>0</sub>        | Control (Write                          | sensor.                                                                         |
| 0    | 1    |       | B <sub>7</sub>        | B <sub>6</sub>  | B <sub>5</sub>        | B <sub>4</sub>        | B <sub>3</sub>        | B <sub>2</sub> | B <sub>1</sub>        | B <sub>0</sub>        | Command to External                     | A[7:0] = 00h [POR],                                                             |
| 0    | 1    |       | C <sub>7</sub>        | C <sub>6</sub>  | C <sub>5</sub>        | C <sub>4</sub>        | C <sub>3</sub>        | C <sub>2</sub> | C <sub>1</sub>        | C <sub>0</sub>        | temperature sensor)                     | B[7:0] = 00h [POR],<br>C[7:0] = 00h [POR],                                      |
|      | -    |       | •                     |                 |                       |                       |                       |                |                       |                       |                                         |                                                                                 |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | A[7:6]                                                                          |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | A[7:6] Select no of byte to be sent  00 Address + pointer                       |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | Address + pointer + 1st                                                         |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | parameter                                                                       |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | Address + pointer + 1st                                                         |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | parameter + 2nd pointer  11 Address                                             |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | A[5:0] – Pointer Setting                                                        |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | B[7:0] – 1 <sup>st</sup> parameter                                              |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | C[7:0] – 2 <sup>nd</sup> parameter                                              |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | The command required CLKEN=1. Refer to Register 0x22 for detail.                |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | Troid to register ox22 for detail.                                              |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | After this command initiated, Write                                             |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | Command to external temperature sensor starts. BUSY pad will output high during |
|      |      |       |                       |                 |                       |                       |                       |                |                       |                       |                                         | operation.                                                                      |
|      |      |       | l                     | l               |                       | l                     |                       | l              |                       |                       |                                         |                                                                                 |

 SSD1619A
 Rev 0.10
 P 24/48
 Dec 2016
 Solomon Systech

| Com  | man  | d Tak | ole                   |                       |                       |                |                       |                |                       |                |                   |                                                                                                                                                                |
|------|------|-------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R/W# | D/C# | Hex   | D7                    | D6                    | D5                    | D4             | D3                    | D2             | D1                    | D0             | Command           | Description                                                                                                                                                    |
| 0    | 0    | 20    | 0                     | 0                     | 1                     | 0              | 0                     | 0              | 0                     | 0              | Master Activation | Activate Display Update Sequence 激活显示更新序列                                                                                                                      |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | The Display Update Sequence Option is located at R22h. 显示更新顺序选项位于 R22h。                                                                                        |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images. BUSY 在操作期间将输出高电平。用户不应中断此操作以避免面板图像损坏。 |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   |                                                                                                                                                                |
| 0    | 0    | 21    | 0                     | 0                     | 1                     | 0              | 0                     | 0              | 0                     | 1              | Display Update    | RAM content option for Display Update                                                                                                                          |
| 0    | 1    |       | <b>A</b> <sub>7</sub> | <b>A</b> <sub>6</sub> | <b>A</b> <sub>5</sub> | A <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | <b>A</b> <sub>1</sub> | A <sub>0</sub> | Control 1         | A[7:0] = 00h [POR] 显示更新的 RAM 内容选项                                                                                                                              |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | A[7:4] Red RAM option                                                                                                                                          |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | 0000 Normal                                                                                                                                                    |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | 0100 Bypass RAM content as 0                                                                                                                                   |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | 1000 Inverse RAM content                                                                                                                                       |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | A[3:0] BW RAM option                                                                                                                                           |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | 0000 Normal                                                                                                                                                    |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | 0100 Bypass RAM content as 0                                                                                                                                   |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   | 1000 Inverse RAM content                                                                                                                                       |
|      |      |       |                       |                       |                       |                |                       |                |                       |                |                   |                                                                                                                                                                |

 SSD1619A
 Rev 0.10
 P 25/48
 Dec 2016
 Solomon Systech

|      |      | d Tal |    | <b>-</b> - |    |    |    |    |    |    |                             | Baradati Baradania                                                                                                                                    | m                  |
|------|------|-------|----|------------|----|----|----|----|----|----|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| R/W# | D/C# | Hex   | D7 | D6         | D5 | D4 | D3 | D2 | D1 | D0 | Command                     | Description 显示更新序列选项:启                                                                                                                                | 用主激活阶段             |
| 0    | 0    | 22    | 0  | 0          | 1  | 0  | 0  | 0  | 1  | 0  | Display Update<br>Control 2 | Display Update Sequence Optio<br>Enable the stage for Master Acti<br>A[7:0]= FFh (POR)                                                                |                    |
|      |      |       |    |            |    |    |    |    |    |    |                             |                                                                                                                                                       | Parameter (in Hex) |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC                                         | C7                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC                                         | CF                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal,                                                                                                                                  | 90                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Then Load LUT with DISPLAY Mode 1 Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 1 | В0                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal,<br>Then Load LUT with DISPLAY Mode 2                                                                                             | 98                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2                                   | В8                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal,<br>Then Load LUT with DISPLAY Mode 1 To<br>Disable Clock Signal                                                                  | 91                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 1 To Disable Clock Signal           | B1                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal, Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal                                                                        | 99                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal           | В9                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC                                                                   | 47                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC                                                                   | 4F                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | To Enable Clock Signal                                                                                                                                | 80                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | (CLKEN=1) To Enable Clock Signal, then Enable ANALOG (CLKEN=1, ANALOGEN=1)                                                                            | C0                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable ANALOG Then DISPLAY with DISPLAY Mode 1                                                                                                        | 44                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | Enable ANALOG<br>Then DISPLAY with DISPLAY Mode 2                                                                                                     | 4C                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | To DISPLAY with DISPLAY Mode 1                                                                                                                        | 04                 |
|      |      |       |    |            |    |    |    |    |    |    |                             | To DISPLAY with DISPLAY Mode 2 To Disable ANALOG, then Disable Clock Signal (CLKEN=0, ANALOGEN=0)                                                     | 0C<br>03           |
|      |      |       |    |            |    |    |    |    |    |    |                             | To Disable Clock Signal (CLKEN=0)                                                                                                                     | 01                 |

 SSD1619A
 Rev 0.10
 P 26/48
 Dec 2016
 Solomon Systech

| Com  | nanc | l Tab       | le                  | 1                   |                     |                     |                     |                     |                     |                     |                       |                                                                                                                                                                                                                                                                        |
|------|------|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R/W# | D/C# | Hex         | D7                  | D6                  | D5                  | D4                  | D3                  | D2                  | D1                  | D0                  | Command               | Description                                                                                                                                                                                                                                                            |
| 0    | 0    | 24          | 0                   | 0                   | 1                   | 0                   | 0                   | 1                   | 0                   | 0                   | Write RAM (BW)        | After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly  For Write pixel:  Content of Write RAM(BW) = 1  For Black pixel:  Content of Write RAM(BW) = 0                           |
| 0    | 0    | 26          | 0                   | 0                   | 1                   | 0                   | 0                   | 1                   | 1                   | 0                   | Write RAM (RED)       | After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.  For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0         |
| 0    | 0    | 27          | 0                   | 0                   | 1                   | 0                   | 0                   | 1                   | 1                   | 1                   | Read RAM              | After this command, data read on the                                                                                                                                                                                                                                   |
|      |      |             |                     |                     |                     |                     |                     |                     |                     |                     |                       | MCU bus will fetch data from RAM [According to parameter of Register 41h to select reading RAM(BW) / RAM(RED)], until another command is written. Address pointers will advance accordingly.                                                                           |
|      |      |             |                     |                     |                     |                     |                     |                     |                     |                     |                       | The 1st byte of data read is dummy data.                                                                                                                                                                                                                               |
| 0    | 0    | 28          | 0                   | 0                   | 1                   | 0                   | 1                   | 0                   | 0                   | 0                   | VCOM Sense            | Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation. |
|      |      |             |                     |                     |                     |                     |                     |                     |                     |                     |                       |                                                                                                                                                                                                                                                                        |
| 0    | 1    | 29          | 0<br>A <sub>7</sub> | 0<br>A <sub>6</sub> | 1<br>A <sub>5</sub> | 0<br>A <sub>4</sub> | 1<br>A <sub>3</sub> | 0<br>A <sub>2</sub> | 0<br>A <sub>1</sub> | 1<br>A <sub>0</sub> | VCOIVI Sense Duration | Stabling time between entering VCOM sensing mode and reading acquired.                                                                                                                                                                                                 |
| U    | 1    |             | A7                  | <b>1</b> 6          | <b>A</b> 5          | r14                 | A3                  | A2                  | A1                  | <b>A</b> 0          |                       | A[6]=1, Normal Mode A[6]=0, Reserve  A[3:0] = 09h, duration = 10s. VCOM sense duration = Setting + 1 Seconds                                                                                                                                                           |
| 0    | 0    | 2A          | 0                   | 0                   | 1                   | 0                   | 1                   | 0                   | 1                   | 0                   | Program VCOM OTP      | Program VCOM register into OTP                                                                                                                                                                                                                                         |
|      | •    | <b>4</b> 13 | V                   |                     | •                   |                     | '                   | 3                   | •                   | V                   | . Togram voolvi om    | The command required CLKEN=1. Refer to Register 0x22 for detail.  BUSY pad will output high during operation.                                                                                                                                                          |
|      |      |             |                     |                     |                     |                     |                     |                     |                     |                     |                       |                                                                                                                                                                                                                                                                        |

 SSD1619A
 Rev 0.10
 P 27/48
 Dec 2016
 Solomon Systech

|      | mand |     | IE                    |                |                       |                |                       |                |                |                |                       |             |                             |             |              |
|------|------|-----|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|-----------------------|-------------|-----------------------------|-------------|--------------|
| R/W# | D/C# | Hex | D7                    | D6             | D5                    | D4             | D3                    | D2             | D1             | D0             | Command               | Descrip     | tion                        |             |              |
| 0    | 0    | 2C  | 0                     | 0              | 1                     | 0              | 1                     | 1              | 0              | 0              | Write VCOM register   | Write VC    | COM registe                 | er from M   | ICU interfac |
| 0    | 1    |     | <b>A</b> <sub>7</sub> | A <sub>6</sub> | <b>A</b> <sub>5</sub> | A <sub>4</sub> | <b>A</b> <sub>3</sub> | $A_2$          | A <sub>1</sub> | A <sub>0</sub> |                       |             | 00h [POR]                   | T           |              |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | A[7:0]      | VCOM                        | A[7:0]      | VCOM         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 08h         | -0.2                        | 44h         | -1.7         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 0Ch         | -0.3                        | 48h         | -1.8         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 10h         | -0.4                        | 4Ch         | -1.9         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 14h         | -0.5                        | 50h         | -2           |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 18h         | -0.6                        | 54h         | -2.1         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 1Ch         | -0.7<br>-0.8                | 58h<br>5Ch  | -2.2<br>-2.3 |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 20h<br>24h  | -0.6<br>-0.9                | 60h         | -2.3<br>-2.4 |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 2411<br>28h | -0.9<br>-1                  | 64h         | -2.4         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 2011<br>2Ch | -1.1                        | 68h         | -2.6         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 30h         | -1.1                        | 6Ch         | -2.7         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 34h         | -1.3                        | 70h         | -2.8         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 38h         | -1.4                        | 74h         | -2.9         |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 3Ch         | -1.5                        | 78h         | -3           |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       | 40h         | -1.6                        | Other       | NA           |
|      |      |     |                       |                |                       | ļ.             | 1                     |                | 1              |                |                       | 1311        |                             | 1 1         |              |
| 0    | 0    | 2D  | 0                     | 0              | 1                     | 0              | 1                     | 1              | 0              | 1              | OTP Register Read for | Read R      | Penister sto                | red in OT   | P for Displa |
| 1    | 1    | 20  | A <sub>7</sub>        | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub> | A <sub>3</sub>        | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | Display Option        | Option:     |                             | ica iii O i | i ioi Dispia |
|      |      |     |                       |                | 1                     | 1              | -                     |                | 1              | 1              | -                     |             |                             | TP Sele     | ction (R37,  |
| 1    | 1    |     | B <sub>7</sub>        | B <sub>6</sub> | B <sub>5</sub>        | B <sub>4</sub> | B <sub>3</sub>        | B <sub>2</sub> | B <sub>1</sub> | B <sub>0</sub> | _                     | Byte        |                             |             |              |
| 1    | 1    |     | C <sub>7</sub>        | C <sub>6</sub> | C <sub>5</sub>        | C <sub>4</sub> | Сз                    | C <sub>2</sub> | C <sub>1</sub> | C <sub>0</sub> |                       |             | D]: VCOM F                  |             |              |
| 1    | 1    |     | D <sub>7</sub>        | D <sub>6</sub> | D <sub>5</sub>        | D <sub>4</sub> | D <sub>3</sub>        | D <sub>2</sub> | D <sub>1</sub> | D <sub>0</sub> |                       |             | 0]∼F[7:0]:                  |             |              |
| 1    | 1    |     | E <sub>7</sub>        | E <sub>6</sub> | E <sub>5</sub>        | E <sub>4</sub> | E <sub>3</sub>        | E <sub>2</sub> | E <sub>1</sub> | E <sub>0</sub> |                       |             | 5 Б апо Бую<br>0]~H[7:0]: V |             |              |
| 1    | 1    |     | F <sub>7</sub>        | $F_6$          | F <sub>5</sub>        | F <sub>4</sub> | F <sub>3</sub>        | F <sub>2</sub> | F <sub>1</sub> | F <sub>0</sub> |                       |             |                             |             | 3) [2 bytes] |
| 1    | 1    |     | G <sub>7</sub>        | $G_6$          | G <sub>5</sub>        | G <sub>4</sub> | G <sub>3</sub>        | G <sub>2</sub> | G <sub>1</sub> | G <sub>0</sub> |                       | ,           | •                           | •           | , . , .      |
| 1    | 1    |     | $H_7$                 | H <sub>6</sub> | H <sub>5</sub>        | H <sub>4</sub> | Нз                    | H <sub>2</sub> | H <sub>1</sub> | H <sub>0</sub> |                       |             |                             |             |              |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       |             |                             |             |              |
|      |      |     |                       |                |                       |                | 1                     |                |                |                |                       |             |                             |             |              |
| 0    | 0    | 2E  | 0                     | 0              | 1                     | 0              | 1                     | 1              | 1              | 0              | User ID Read          | Read 10     | 0 Byte Use                  | r ID store  | ed in OTP    |
| 1    | 1    |     | A <sub>7</sub>        | A <sub>6</sub> | A <sub>5</sub>        | A <sub>4</sub> | A <sub>3</sub>        | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | 230. 12 . 1000        |             |                             |             | Byte A and   |
| 1    | 1    |     | B <sub>7</sub>        | B <sub>6</sub> | B <sub>5</sub>        | B <sub>4</sub> | B <sub>3</sub>        | B <sub>2</sub> | B <sub>1</sub> | B <sub>0</sub> |                       |             | J) [10 byte                 |             | •            |
|      |      |     |                       |                |                       |                |                       |                |                |                |                       |             |                             |             |              |
| 1    | 1    |     | C <sub>7</sub>        | C <sub>6</sub> | C <sub>5</sub>        | C <sub>4</sub> | C <sub>3</sub>        | C <sub>2</sub> | C <sub>1</sub> | C <sub>0</sub> |                       |             |                             |             |              |
| 1    | 1    |     | D <sub>7</sub>        | D <sub>6</sub> | D <sub>5</sub>        | D <sub>4</sub> | D <sub>3</sub>        | D <sub>2</sub> | D <sub>1</sub> | D <sub>0</sub> |                       |             |                             |             |              |
| 1    | 1    |     | E <sub>7</sub>        | E <sub>6</sub> | E <sub>5</sub>        | E <sub>4</sub> | Ез                    | E <sub>2</sub> | E <sub>1</sub> | E <sub>0</sub> |                       |             |                             |             |              |
| 1    | 1    |     | F <sub>7</sub>        | F <sub>6</sub> | $F_5$                 | F <sub>4</sub> | F <sub>3</sub>        | $F_2$          | F <sub>1</sub> | F <sub>0</sub> |                       |             |                             |             |              |
| 1    | 1    |     | G <sub>7</sub>        | G <sub>6</sub> | G <sub>5</sub>        | G <sub>4</sub> | G <sub>3</sub>        | $G_2$          | G <sub>1</sub> | $G_0$          |                       |             |                             |             |              |
| 1    | 1    |     | H <sub>7</sub>        | H <sub>6</sub> | H <sub>5</sub>        | H <sub>4</sub> | Нз                    | H <sub>2</sub> | H <sub>1</sub> | Н₀             |                       |             |                             |             |              |
| 1    | 1    |     | <b>I</b> <sub>7</sub> | <b>l</b> 6     | <b>I</b> 5            | <b>I</b> 4     | l <sub>3</sub>        | l <sub>2</sub> | l <sub>1</sub> | I <sub>0</sub> |                       |             |                             |             |              |
| 1    | 1    |     | $J_7$                 | $J_6$          | $J_5$                 | $J_4$          | J <sub>3</sub>        | $J_2$          | $J_1$          | $J_0$          |                       |             |                             |             |              |

 SSD1619A
 Rev 0.10
 P 28/48
 Dec 2016
 Solomon Systech

| Comi     | manc     | l Tab | le              |                |                       |                       |                       |                |                |                       |                    |                                                                           |
|----------|----------|-------|-----------------|----------------|-----------------------|-----------------------|-----------------------|----------------|----------------|-----------------------|--------------------|---------------------------------------------------------------------------|
| R/W<br># | D/C<br># | Hex   | D7              | D6             | D5                    | D4                    | D3                    | D2             | D1             | D0                    | Command            | Description                                                               |
| 0        | 0        | 2F    | 0               | 0              | 1                     | 0                     | 1                     | 1              | 1              | 1                     | Status Bit Read    | Read IC status Bit [POR 0x21]                                             |
|          |          |       |                 |                |                       |                       |                       |                |                |                       | _                  | A[5]: HV Ready Detection flag [POR=1] 0: Ready                            |
| 1        | 1        |       | 0               | 0              | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | 0                     | 0              | A <sub>1</sub> | <b>A</b> <sub>0</sub> |                    | 1: Not Ready                                                              |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | A[4]: VCI Detection flag [POR=0] 0: Normal                                |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | 1: VCI lower than the Detect level                                        |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | A[3]: [POR=0]                                                             |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | A[2]: Busy flag [POR=0]<br>0: Normal                                      |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | 1: BUSY                                                                   |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | A[1:0]: Chip ID [POR=01]<br>Remark:                                       |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | A[5] and A[4] status are not valid after                                  |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | RESET, they need to be initiated by                                       |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | command 0x14 and command 0x15 respectively.                               |
|          |          |       |                 |                |                       | <u> </u>              | <u> </u>              | <u> </u>       |                |                       | <u> </u>           | prospectivery.                                                            |
| 0        | 0        | 30    | 0               | 0              | 1                     | 1                     | 0                     | 0              | 0              | 0                     | Program WS OTP     | Program OTP of Waveform Setting                                           |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | The contents should be written into RAM before sending this command.      |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | before sending this command.                                              |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | The command required CLKEN=1.                                             |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | Refer to Register 0x22 for detail.                                        |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | BUSY pad will output high during                                          |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | operation.                                                                |
| 0        | 0        | 31    | 0               | 0              | 1                     | 1                     | 0                     | 0              | 0              | 1                     | Load WS OTP        | Load OTP of Waveform Setting                                              |
|          |          |       |                 |                |                       | -                     |                       |                |                |                       |                    |                                                                           |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | The command required CLKEN=1. Refer to Register 0x22 for detail.          |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | BUSY pad will output high during operation.                               |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    |                                                                           |
| 0        | 0        | 32    | 0               | 0              | 1                     | 1                     | 0                     | 0              | 1              | 0                     | Write LUT register | Write LUT register from MCU interface                                     |
| 0        | 1        |       | A <sub>7</sub>  | A <sub>6</sub> | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub>        |                    | [70 bytes], which contains the content of VS [nX-LUT], TP #[nX], RP#[n]). |
| 0        | 1        |       | B <sub>7</sub>  | B <sub>6</sub> | B <sub>5</sub>        | B <sub>4</sub>        | Вз                    | B <sub>2</sub> | B <sub>1</sub> | B <sub>0</sub>        | _                  | Refer to Session 6.7 Waveform Setting                                     |
| 0        | 1        |       | :               | :              | :                     | :                     | :                     | :              | :              | :                     |                    |                                                                           |
| 0        | 1        |       | ٠               |                | ٠                     |                       |                       |                |                |                       |                    |                                                                           |
| 0        | 0        | 34    | 0               | 0              | 1                     | 1                     | 0                     | 1              | 0              | 0                     | CRC calculation    | CRC calculation command                                                   |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | BUSY pad will output high during                                          |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    | operation.                                                                |
| 0        | 0        | 35    | 0               | 0              | 1                     | 1                     | 0                     | 1              | 0              | 1                     | CRC Status Read    | CRC Status Read                                                           |
|          |          | -     |                 |                |                       |                       |                       |                |                |                       |                    | A[15:0] is the CRC read out value                                         |
| 1        | 1        |       | A <sub>15</sub> |                | A <sub>13</sub>       |                       |                       |                | A <sub>9</sub> | A <sub>8</sub>        |                    |                                                                           |
| 1        | 1        |       | A <sub>7</sub>  | A <sub>6</sub> | $A_5$                 | $A_4$                 | $A_3$                 | $A_2$          | A <sub>1</sub> | <b>A</b> <sub>0</sub> |                    |                                                                           |
|          |          |       |                 |                |                       |                       |                       |                |                |                       |                    |                                                                           |

 SSD1619A
 Rev 0.10
 P 29/48
 Dec 2016
 Solomon Systech

| Com      | ommand Table |     |                 |                       |                |                 |                |                 |                |                       |                       |                                                                                                              |  |
|----------|--------------|-----|-----------------|-----------------------|----------------|-----------------|----------------|-----------------|----------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|--|
| R/W<br># | D/C<br>#     | Hex | D7              | D6                    | D5             | D4              | D3             | D2              | D1             | D0                    | Command               | Description                                                                                                  |  |
| 0        | 0            | 36  | 0               | 0                     | 1              | 1               | 0              | 1               | 1              | 0                     | Program OTP selection | Program OTP Selection according to the OTP Selection Control [R37h and R38h]                                 |  |
|          |              |     |                 |                       |                |                 |                |                 |                |                       |                       | The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. |  |
| 0        | 0            | 37  | 0               | 0                     | 1              | 1               | 0              | 1               | 1              | 1                     | Write OTP selection   | Write the OTP Selection:                                                                                     |  |
| 0        | 1            | 31  | A <sub>7</sub>  | 0                     | 0              | 0               | 0              | 0               | 0              | 0                     | Write OTF Selection   | A[7]=1 spare VCOM OTP selection                                                                              |  |
| 0        | 1            |     | B <sub>7</sub>  | B <sub>6</sub>        | B <sub>5</sub> | B <sub>4</sub>  | Вз             | B <sub>2</sub>  | B <sub>1</sub> | B <sub>0</sub>        | _                     | B[7:0]~E[7:0] reserved                                                                                       |  |
| 0        | 1            |     | C <sub>7</sub>  | C <sub>6</sub>        | C <sub>5</sub> | C <sub>4</sub>  | C <sub>3</sub> | C <sub>2</sub>  | C <sub>1</sub> | C <sub>0</sub>        |                       | F[7:0]~G[7:0] module ID /waveform version.                                                                   |  |
| 0        | 1            |     | D <sub>7</sub>  | D <sub>6</sub>        | D <sub>5</sub> | D <sub>4</sub>  | D <sub>3</sub> | D <sub>2</sub>  | D <sub>1</sub> | <br>D <sub>0</sub>    |                       | version.                                                                                                     |  |
| 0        | 1            |     | E <sub>7</sub>  | <b>E</b> <sub>6</sub> | E <sub>5</sub> | E <sub>4</sub>  | E <sub>3</sub> | E <sub>2</sub>  | E <sub>1</sub> | E <sub>0</sub>        | -                     |                                                                                                              |  |
| 0        | 1            |     | F <sub>7</sub>  | F <sub>6</sub>        | F <sub>5</sub> | F <sub>4</sub>  | F <sub>3</sub> | F <sub>2</sub>  | F <sub>1</sub> | F <sub>0</sub>        |                       |                                                                                                              |  |
| 0        | 1            |     | G <sub>7</sub>  | G <sub>6</sub>        | G <sub>5</sub> | G <sub>4</sub>  | G <sub>3</sub> | G <sub>2</sub>  | G <sub>1</sub> | G <sub>0</sub>        |                       |                                                                                                              |  |
|          |              |     |                 |                       |                |                 |                |                 |                |                       |                       |                                                                                                              |  |
| 1        | 0            | 38  | 0               | 0                     | 1              | 1               | 1              | 0               | 0              | 0                     |                       | Write Register for User ID                                                                                   |  |
| 1        | 1            |     | A <sub>7</sub>  | <b>A</b> <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub>  | A <sub>3</sub> | A <sub>2</sub>  | A <sub>1</sub> | A <sub>0</sub>        | ]ID                   | A[7:0]]~J[7:0]: UserID [10 bytes]                                                                            |  |
| 1        | 1            |     | B <sub>7</sub>  | B <sub>6</sub>        | B <sub>5</sub> | B <sub>4</sub>  | Вз             | B <sub>2</sub>  | B <sub>1</sub> | B <sub>0</sub>        |                       |                                                                                                              |  |
| 1        | 1            |     | C <sub>7</sub>  | C <sub>6</sub>        | C <sub>5</sub> | C <sub>4</sub>  | C <sub>3</sub> | C <sub>2</sub>  | C <sub>1</sub> | <u>C</u> <sub>0</sub> |                       |                                                                                                              |  |
| 1        | 1            |     | D <sub>7</sub>  | D <sub>6</sub>        | D <sub>5</sub> | D <sub>4</sub>  | D <sub>3</sub> | D <sub>2</sub>  | D <sub>1</sub> | D <sub>0</sub>        |                       |                                                                                                              |  |
| 1        | 1            |     | E <sub>7</sub>  | E <sub>6</sub>        | E <sub>5</sub> | E <sub>4</sub>  | E <sub>3</sub> | E <sub>2</sub>  | E <sub>1</sub> | E <sub>0</sub>        |                       |                                                                                                              |  |
| 1        | 1            |     | F <sub>7</sub>  | F <sub>6</sub>        | F <sub>5</sub> | F <sub>4</sub>  | F <sub>3</sub> | F <sub>2</sub>  | F <sub>1</sub> | F <sub>0</sub>        |                       |                                                                                                              |  |
| 1        | 1            |     | G <sub>7</sub>  | G <sub>6</sub>        | G₅<br>H₅       | G₄<br>H₄        | G₃<br>H₃       | G <sub>2</sub>  | G₁<br>H₁       | <br>H₀                |                       |                                                                                                              |  |
| 1        | 1            |     | I <sub>17</sub> | I <sub>6</sub>        | I <sub>5</sub> | I <sub>14</sub> | I <sub>3</sub> | I <sub>12</sub> | I I1           | I <sub>0</sub>        |                       |                                                                                                              |  |
| 1        | 1            |     | J <sub>7</sub>  | J <sub>6</sub>        | J <sub>5</sub> | J <sub>4</sub>  | J <sub>3</sub> | J <sub>2</sub>  | J <sub>1</sub> | J <sub>0</sub>        |                       |                                                                                                              |  |
|          | <u> </u>     |     | 01              | •                     | •              |                 |                | UZ.             | 01             |                       |                       |                                                                                                              |  |
| 0        | 0            | 39  | 0               | 0                     | 1              | 1               | 1              | 0               | 0              | 1                     | OTP program mode      | OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage      |  |
|          |              |     |                 |                       |                |                 |                |                 |                |                       |                       | Remark: User is required to EXACTLY follow the reference code sequences                                      |  |

 SSD1619A
 Rev 0.10
 P 30/48
 Dec 2016
 Solomon Systech

| Com      | man      | d Tak | ole |                |            |                       |                       |                |                |                |                       |                                                                                                                                           |
|----------|----------|-------|-----|----------------|------------|-----------------------|-----------------------|----------------|----------------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| R/W<br># | D/C<br># | Hex   | D7  | D6             | D5         | D4                    | D3                    | D2             | D1             | D0             | Command               | Description                                                                                                                               |
| 0        | 0        | 3A    | 0   | 0              | 1          | 1                     | 1                     | 0              | 1              | 0              | Set dummy line period | Set number of dummy line period                                                                                                           |
| 0        | 1        |       | 0   | A <sub>6</sub> | <b>A</b> 5 | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |                       | A[6:0] = 2Ch [POR]                                                                                                                        |
|          |          |       |     |                |            |                       |                       |                |                |                |                       | Available setting 0 to 127.                                                                                                               |
|          | 1        |       |     |                |            |                       |                       |                |                |                |                       |                                                                                                                                           |
| 0        | 0        | 3B    | 0   | 0              | 1          | 1                     | 1                     | 0              | 1              | 1              | Set Gate line width   | Set Gate line width (TGate)                                                                                                               |
| 0        | 1        |       | 0   | 0              | 0          | 0                     | <b>A</b> <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |                       | A[3:0] = 1010 [POR]                                                                                                                       |
|          |          |       |     |                |            |                       |                       |                |                |                |                       | Remark: Default value will give 50Hz<br>Frame frequency under 44 dummy line<br>pulse setting. <u>备注:在44</u> 虚拟线脉冲设置下,<br>默认值将给出 50Hz 帧频率。 |

Resolution: 400x300

| Frame Frequency [Hz] | Parameter of 0x3A | Parameter of 0x3B |
|----------------------|-------------------|-------------------|
| 15                   | 0x79              | 0x0E              |
| 20                   | 0x10              | 0x0E              |
| 25                   | 0x26              | 0x0D              |
| 30                   | 0x4E              | 0x0C              |
| 35                   | 0x18              | 0x0C              |
| 40                   | 0x43              | 0x0B              |
| 45                   | 0x1A              | 0x0B              |
| 50                   | 0x2C              | 0x0A              |
| 55                   | 0x0D              | 0x0A              |
| 60                   | 0x21              | 0x09              |
| 65                   | 0x07              | 0x09              |
| 70                   | 0x28              | 0x08              |
| 75                   | 0x11              | 0x08              |
| 80                   | 0x2F              | 0x07              |
| 85                   | 0x1A              | 0x07              |
| 90                   | 0x08              | 0x07              |
| 95                   | 0x32              | 0x06              |
| 100                  | 0x21              | 0x06              |
| 105                  | 0x11              | 0x06              |
| 110                  | 0x03              | 0x06              |
| 115                  | 0x22              | 0x05              |
| 120                  | 0x14              | 0x05              |
| 125                  | 0x07              | 0x05              |
| 135                  | 0x24              | 0x04              |
| 140                  | 0x18              | 0x04              |
| 145                  | 0x0D              | 0x04              |
| 150                  | 0x03              | 0x04              |
| 155                  | 0x27              | 0x03              |
| 160                  | 0x1C              | 0x03              |
| 165                  | 0x12              | 0x03              |
| 170                  | 0x09              | 0x03              |
| 175                  | 0x00              | 0x03              |
| 180                  | 0x2F              | 0x02              |
| 185                  | 0x25              | 0x02              |
| 190                  | 0x1C              | 0x02              |
| 195                  | 0x14              | 0x02              |
| 200                  | 0x0C              | 0x02              |

Remark: Frame rate setting depends on resolution. 帧率设置取决于分辨率。

 SSD1619A
 Rev 0.10
 P 31/48
 Dec 2016
 Solomon Systech

| Com | ommand Table |    |                |                |                     |                     |                |                |                     |                       |                            |                                                                            |
|-----|--------------|----|----------------|----------------|---------------------|---------------------|----------------|----------------|---------------------|-----------------------|----------------------------|----------------------------------------------------------------------------|
|     | D/C#         |    | D7             | D6             | D5                  | D4                  | D3             | D2             | D1                  | D0                    | Command                    | Description 选择 VBD 的边界波形                                                   |
| 0   | 0            | 3C | 0              | 0              | 1<br>A <sub>5</sub> | 1<br>A <sub>4</sub> | 1              | 1              | 0<br>A <sub>1</sub> | 0<br>A <sub>0</sub>   | Border Waveform<br>Control | Select border waveform for VBD A[7:0] = C0h [POR], set VBD as HIZ.         |
| 0   | •            |    | A <sub>7</sub> | A <sub>6</sub> | Λ5                  | 7.4                 | O              |                | Α1                  | ٨٥                    | 边界波形控制                     | A [7:6] :Select VBD option  A[7:6] Select VBD as  00 GS Transition,        |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | Defined in A[1:0] 01 Fix Level,                                            |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | Defined in A[5:4]                                                          |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 10 VCOM<br>11[POR] HiZ                                                     |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | A [5:4] Fix Level Setting for VBD                                          |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | A[5:4] VBD level                                                           |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 00[POR] VSS<br>01 VSH1                                                     |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 01 VSH1<br>10 VSL                                                          |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 11 VSH2                                                                    |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | VBD 的 GS 转换设置                                                              |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | A [1:0] GS Transition setting for VBD                                      |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | A[1:0] VBD Transition 00[POR] LUT0                                         |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 01 LUT1                                                                    |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 10 LUT2                                                                    |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 11 LUT3                                                                    |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            |                                                                            |
|     |              |    |                |                |                     |                     |                |                |                     | 1                     |                            |                                                                            |
| 0   | 0            | 41 | 0              | 1              | 0                   | 0                   | 0              | 0              | 0                   | 1                     | Read RAM Option            | Read RAM Option                                                            |
| 0   | 1            |    | 0              | 0              | 0                   | 0                   | 0              | 0              | 0                   | <b>A</b> <sub>0</sub> |                            | A[0]= 0 [POR] 0 : Read RAM corresponding to 24h                            |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | 1 : Read RAM corresponding to 26h                                          |
| 0   | 0            | 44 | 0              | 1              | 0                   | 0                   | 0              | 1              | 0                   | 0                     | Set RAM X - address        | Specify the start/end positions of the                                     |
| 0   | 1            | 77 | 0              | 0              | A <sub>5</sub>      | A <sub>4</sub>      | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub>      | Αn                    | Start / End position       | window address in the X direction by an                                    |
| 0   | 1            |    | 0              | 0              | B <sub>5</sub>      | B <sub>4</sub>      | B <sub>3</sub> | B <sub>2</sub> | B <sub>1</sub>      | B <sub>0</sub>        |                            | address unit for RAM                                                       |
|     |              |    |                |                |                     |                     |                |                |                     |                       |                            | A[5:0]: XSA[5:0], XStart, 00h [POR]<br>B[5:0]: XEA[5:0], XEnd, 31h [POR]   |
| 0   | 0            | 45 | 0              | 1              | 0                   | 0                   | 0              | 1              | 0                   | 1                     | Set Ram Y- address         | Specify the start/end positions of the                                     |
| 0   | 1            | +5 | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>      | A <sub>4</sub>      | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub>      | A <sub>0</sub>        | Start / End position       | window address in the Y direction by an                                    |
| 0   | 1            |    | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub>      | A <sub>4</sub>      | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub>      | A <sub>0</sub>        |                            | address unit for RAM                                                       |
| 0   | 1            |    | B <sub>7</sub> | B <sub>6</sub> | B <sub>5</sub>      | B <sub>4</sub>      | B <sub>3</sub> | B <sub>2</sub> | B <sub>1</sub>      | B <sub>0</sub>        |                            | A[0,0], VCA[0,0], VC44, 0005 [DOD]                                         |
| 0   | 1            |    | 0              | 0              | 0                   | 0                   | 0              | 0              | 0                   | B <sub>8</sub>        |                            | A[8:0]: YSA[8:0], YStart, 000h [POR]<br>B[8:0]: YEA[8:0], YEnd, 12Bh [POR] |
| U   | 1            |    | J              | U              | U                   | U                   | U              | U              | U                   | 8ט                    |                            |                                                                            |

 SSD1619A
 Rev 0.10
 P 32/48
 Dec 2016
 Solomon Systech

| Com  | Command Table |     |                       |                       |            |                       |    |                |                |                       |                     |                                                    |                                         |                                    |                      |
|------|---------------|-----|-----------------------|-----------------------|------------|-----------------------|----|----------------|----------------|-----------------------|---------------------|----------------------------------------------------|-----------------------------------------|------------------------------------|----------------------|
| R/W# | D/C#          | Hex | D7                    | D6                    | D5         | D4                    | D3 | D2             | D1             | D0                    | Command             | Descripti                                          | on                                      |                                    |                      |
| 0    | 0             | 46  | 0                     | 1                     | 0          | 0                     | 0  | 1              | 1              | 0                     | Auto Write RED RAM  | Auto Write                                         | e RED RA                                | M for Reg                          | ular Pattern         |
| 0    | 1             |     | <b>A</b> <sub>7</sub> | <b>A</b> <sub>6</sub> | <b>A</b> 5 | <b>A</b> <sub>4</sub> | 0  | A <sub>2</sub> | A <sub>1</sub> | <b>A</b> <sub>0</sub> | for Regular Pattern | A[7:0] = 0                                         | 0h [POR]                                |                                    |                      |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | A[7]: The<br>A[6:4]: Ste<br>Step of all<br>to Gate | ep Hieght,                              | POR= 00                            |                      |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | A[6:4]                                             | Height                                  | A[6:4]                             | Height               |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 000                                                | 8                                       | 100                                | 128                  |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 001                                                | 16                                      | 101                                | 256                  |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 010                                                | 32                                      | 110                                | 300                  |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 011                                                | 64                                      | 111                                | NA                   |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | to Source A[2:0] 000 001 010 011                   | Width<br>8<br>16<br>32<br>64            | A[2:0] 100 101 110 111             | Width 128 256 400 NA |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | BUSY pacton.                                       |                                         | ut high du                         | ring                 |
| 0    | 0             | 47  | 0                     | 1                     | 0          | 0                     | 0  | 1              | 1              | 1                     | Auto Write B/W RAM  |                                                    |                                         | M for Regi                         | ular Pattern         |
| 0    | 1             |     | A <sub>7</sub>        | <b>A</b> <sub>6</sub> | <b>A</b> 5 | A4                    | 0  | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub>        | for Regular Pattern | to Gate                                            | 1st step va<br>ep Hieght,<br>ter RAM ir | POR= 00<br>Y-direction             | 0<br>on according    |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | A[6:4]                                             | Height                                  | A[6:4]                             | Height               |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 000                                                | 8                                       | 100                                | 128                  |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 001                                                | 16                                      | 101                                | 256                  |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 010                                                | 32                                      | 110                                | 300                  |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | 011                                                | 64                                      | 111                                | NA                   |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | to Source A[2:0] 000 001 010 011  During op        | Width  8  16  32  64                    | A[2:0]<br>100<br>101<br>110<br>111 | Width 128 256 400 NA |
|      |               |     |                       |                       |            |                       |    |                |                |                       |                     | high.                                              | •                                       |                                    |                      |

 SSD1619A
 Rev 0.10
 P 33/48
 Dec 2016
 Solomon Systech

| Con  | Command Table |     |    |    |                       |                       |                       |                       |                |                |                   |                                                                                                                                                                |  |
|------|---------------|-----|----|----|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| R/W# | D/C#          | Hex | D7 | D6 | D5                    | D4                    | D3                    | D2                    | D1             | D0             | Command           | Description                                                                                                                                                    |  |
| 0    | 0             | 4E  | 0  | 1  | 0                     | 0                     | 1                     | 1                     | 1              | 0              | Set RAM X address | Make initial settings for the RAM X                                                                                                                            |  |
| 0    | 1             |     | 0  | 0  | <b>A</b> <sub>5</sub> | <b>A</b> <sub>4</sub> | <b>A</b> <sub>3</sub> | <b>A</b> <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | counter           | address in the address counter (AC) A[5:0]: 00h [POR].                                                                                                         |  |
|      |               | 4-  |    |    | Ι                     |                       | l ,                   |                       | l ,            | l ,            | lo ( DANA) ( ) (  | Table 1 111 111 111 111 111 111 111 111 111                                                                                                                    |  |
| 0    | 0             | 4F  | 0  | 1  | 0                     | 0                     | 1                     | 1                     | 1              | 1              | Set RAM Y address | Make initial settings for the RAM Y                                                                                                                            |  |
| 0    | 1             |     | A7 | A6 | A5                    | A4                    | A3                    | A2                    | A1             | A0             | counter           | address in the address counter (AC) A[8:0]: 000h [POR].                                                                                                        |  |
| 0    | 1             |     | 0  | 0  | 0                     | 0                     | 0                     | 0                     | 0              | A8             |                   | A[o.u]. UUUII [FOR].                                                                                                                                           |  |
|      |               |     |    |    | ,                     |                       |                       |                       |                |                |                   | _                                                                                                                                                              |  |
| 0    | 1             | 74  | 0  | 1  | 1                     | 1                     | 0                     | 1                     | 0              | 0              | Set Analog Block  | A[7:0]: 54h                                                                                                                                                    |  |
| 0    | 1             |     | A7 | A6 | A5                    | A4                    | А3                    | A2                    | A1             | A0             | Control 设置模拟块控制   |                                                                                                                                                                |  |
|      |               |     |    |    | •                     |                       |                       |                       |                |                |                   |                                                                                                                                                                |  |
| 0    | 1             | 7E  | 0  | 1  | 1                     | 1                     | 1                     | 1                     | 1              | 0              | Set Digital Block | A[7:0]: 3Bh                                                                                                                                                    |  |
| 0    | 1             |     | A7 | A6 | A5                    | A4                    | А3                    | A2                    | A1             | A0             | Control 设置数字块控制   |                                                                                                                                                                |  |
|      |               |     |    | ı  |                       | ı                     | ı                     |                       | ı              | ı              |                   | -                                                                                                                                                              |  |
| 0    | 1             | 7F  | 0  | 1  | 1                     | 1                     | 1                     | 1                     | 1              | 1              | NOP               | This command is an empty command; it does not have any effect on the display module.  However it can be used to terminate Frame Memory Write or Read Commands. |  |

 SSD1619A
 Rev 0.10
 P 34/48
 Dec 2016
 Solomon Systech

#### 8 COMMAND DESCRIPTION

#### 8.1 Driver Output Control (01h)

此三字节命令有多种配置,每个位设置描述如下:

This triple byte command has multiple configurations and each bit setting is described as follows:

| R/W | DC | IB7  | IB6  | IB5  | IB4  | IB3  | IB2  | IB1  | IB0  |
|-----|----|------|------|------|------|------|------|------|------|
| W   | 1  | MUX7 | MUX6 | MUX5 | MUX4 | MUX3 | MUX2 | MUX1 | MUX0 |
| PC  | )R | 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1    |
| W   | 1  |      |      |      |      |      |      |      | MUX8 |
| PC  | )R |      |      |      |      |      |      |      | 1    |
| W   | 1  |      |      |      |      |      | GD   | SM   | TB   |
| PC  | )R |      |      |      |      |      | 0    | 0    | 0    |

指定驱动器的线数: MUX[8:0] + 1。复用比(MUX ratio)从 16 MUX 到 300MUX。

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 300MUX.

GD: Selects the 1st output Gate 选择第一个输出门 该位与面板上的 GATE 布局连接相匹配。 它定义了第一条扫描线。 This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver. 更改栅极驱动器的扫描顺序。

When SM is set to 0, left and right interlaced is performed. 当 SM 设置为 0 时,执行左右隔行扫描。 When SM is set to 1, no splitting odd / even of the GATE signal is performed, 当 SM 设置为 1 时,不执行 GATE 信号的奇/偶分 Output pin assignment sequence is shown as below (for 300 MUX ratio):

输出引脚分配顺序如下所示(对于 300 MUX 比率):

|        | SM=0   | SM=0   | SM=1   | SM=1   |
|--------|--------|--------|--------|--------|
| Driver | GD=0   | GD=1   | GD=0   | GD=1   |
| G0     | ROW0   | ROW1   | ROW0   | ROW150 |
| G1     | ROW1   | ROW0   | ROW150 | ROW0   |
| G2     | ROW2   | ROW3   | ROW1   | ROW151 |
| G3     | ROW3   | ROW2   | ROW151 | ROW1   |
| :      | :      | :      | :      | :      |
| G148   | ROW148 | ROW149 | ROW74  | ROW224 |
| G149   | ROW149 | ROW148 | ROW224 | ROW74  |
| G150   | ROW150 | ROW151 | ROW75  | ROW225 |
| G151   | ROW151 | ROW150 | ROW225 | ROW75  |
| :      | :      | :      | •      | :      |
| G296   | ROW296 | ROW297 | ROW148 | ROW298 |
| G297   | ROW297 | ROW296 | ROW298 | ROW148 |
| G298   | ROW298 | ROW299 | ROW149 | ROW299 |
| G299   | ROW299 | ROW298 | ROW299 | ROW149 |

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver. 改变栅极驱动器的扫描方向。

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

该位定义门的扫描方向,以便灵活地在模块中从上到下(TB=0)或从下到上(TB=1)布局信号。

**SSD1619A** | Rev 0.10 | P 35/48 | Dec 2016 | **Solomon Systech** 



Figure 8-1: Output pin assignment on different Scan Mode Setting

 SSD1619A
 Rev 0.10
 P 36/48
 Dec 2016
 Solomon Systech

## 8.2 Gate Scan Start Position (0Fh)

| R/W | DC | IB7  | IB6  | IB5  | IB4  | IB3  | IB2  | IB1  | IB0  |
|-----|----|------|------|------|------|------|------|------|------|
| W   | 1  | SCN7 | SCN6 | SCN5 | SCN4 | SCN3 | SCN2 | SCN1 | SCN0 |
| P   | OR | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | SCN8 |
| P   | OR | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

此命令用于设置 Gate Start Position,通过选择 0 到 299 之间的值来确定显示 RAM 的起始门。

This command is to set Gate Start Position for determining the starting gate of display RAM by selecting a value from 0 to 299. Figure 8-2 shows an example using this command of this command when MUX ratio= 300 and MUX ratio= 150 "ROW" means the graphic display data RAM row.

图 8-2 显示了在 MUX ratio=300 和 MUX ratio=150 时使用该命令的示例 " ROW" 表示图形显示数据 RAM 行。

Figure 8-2: Example of Set Display Start Line with no Remapping

|                    | MUX ratio (01h) = 12Bh    | MUX ratio (01h) = 095h    | MUX ratio (01h) = 095h    |
|--------------------|---------------------------|---------------------------|---------------------------|
| GATE Pin           | Gate Start Position (0Fh) | Gate Start Position (0Fh) | Gate Start Position (0Fh) |
|                    | = 000h                    | = 000h                    | = 04Bh                    |
| G0                 | ROW0                      | ROW0                      | -                         |
| G1                 | ROW1                      | ROW1                      | -                         |
| G2                 | ROW2                      | ROW2                      | -                         |
| G3                 | ROW3                      | ROW3                      | -                         |
| :                  | :                         | :                         | :                         |
| :                  | :                         | :                         | :                         |
| G73                | :                         | :                         | -                         |
| G74                | :                         | :                         | -                         |
| G75                | :                         | :                         | ROW75                     |
| G76                | :                         | :                         | ROW76                     |
| :                  | :                         | :                         | :                         |
| :                  | <u> </u>                  | :                         | · ·                       |
| G148               | ROW148                    | ROW148                    | :                         |
| G149               | ROW149                    | ROW149                    | :                         |
| G150               | ROW150                    | -                         | :                         |
| G151               | ROW151                    | -                         | :                         |
| :                  | :                         | :                         | ÷ :                       |
|                    | :                         | :                         | ÷ :                       |
| G223               | :                         | :                         | ROW223                    |
| G224               | :                         | :                         | ROW224                    |
| G225               | :                         | :                         | -                         |
| G226               | :                         | :                         | -                         |
|                    | :                         | :                         | :                         |
| :                  | :                         | :                         | :                         |
| G296               | ROW296                    | -                         | -                         |
| G297               | ROW297                    | -                         | -                         |
| G298               | ROW298                    | -                         | -                         |
| G299               | ROW299                    | -                         | -                         |
| Display<br>Example | SOLOMON                   |                           | SOLOMON                   |

**SSD1619A** | Rev 0.10 | P 37/48 | Dec 2016 | **Solomon Systech** 

#### 8.3 Data Entry Mode Setting (11h) 数据输入模式设置

This command has multiple configurations and each bit setting is described as follows: 该命令有多种配置,每个位设置说明如下:

| R/W | DC | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 |
|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| W   | 1  |     |     |     |     |     | AM  | ID1 | ID0 |
| PC  | )R | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1   |

当 ID[1:0] = " 01" 时,数据写入 RAM 后,地址计数器自动加 1。 当 ID[1:0] = " 00" 时,地址计数器会在数据写入 RAM 后自动减 1。

**ID[1:0]:** The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

地址计数器的递增或递减的设置可以在地址的每个高位和低位独立进行。 数据写入 RAM 时的地址方向由 AM 位设置。



The pixel sequence is defined by the ID [0].



**SSD1619A** Rev 0.10 P 38/48 Dec 2016 **Solomon Systech** 

#### 8.4 Set RAM X - Address Start / End Position (44h)

| R/W | DC | IB7 | IB6 | IB5  | IB4  | IB3  | IB2  | IB1  | IB0  |
|-----|----|-----|-----|------|------|------|------|------|------|
| W   | 1  |     |     | XSA5 | XSA4 | XSA3 | XSA2 | XSA1 | XSA0 |
| PC  | )R | 0   | 0   | 0    | 0    | 0    | 0    | 0    | 0    |
| W   | 1  |     |     | XEA5 | XEA4 | XEA3 | XEA2 | XEA1 | XEA0 |
| PC  | )R | 0   | 0   | 1    | 1    | 0    | 0    | 0    | 1    |

以 8 倍地址单位指定窗口地址在 X 方向的开始/结束位置。数据写入由 XSA [5:0] 和 XEA [5:0] 指定的地址确定的区域内的 RAM

XSA[5:0]/XEA[5:0]: Specify the start/end positions of the window address in the X direction by 8 times address unit. Data is written to the RAM within the area determined by the addresses specified by XSA [5:0] and XEA [5:0]. These addresses must be set before the RAM write. 这些地址必须在 RAM 写入之前设置。

It allows on XEA [5:0]  $\leq$  XSA [5:0]. The settings follow the condition on 00h  $\leq$  XSA [5:0], XEA [5:0]  $\leq$  31h. The windows is followed by the control setting of Data Entry Setting (R11h)

它允许 XEA [5:0] XSA [5:0]。 设置遵循 00h XSA [5:0]、 XEA [5:0] 31h 的条件。 窗口后面是数据输入设置(R11h)的控制设置

#### 8.5 Set RAM Y - Address Start / End Position (45h)

| R/W | DC | IB7  | IB6  | IB5  | IB4  | IB3  | IB2  | IB1  | IB0  |
|-----|----|------|------|------|------|------|------|------|------|
| W   | 1  | YSA7 | YSA6 | YSA5 | YSA4 | YSA3 | YSA2 | YSA1 | YSA0 |
| PC  | )R | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | YSA8 |
| PC  | )R | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| W   | 1  | YEA7 | YEA6 | YEA5 | YEA4 | YEA3 | YEA2 | YEA1 | YEA0 |
| PC  | )R | 0    | 0    | 1    | 0    | 1    | 0    | 1    | 1    |
| W   | 1  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | YEA8 |
| PC  | )R | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    |

以地址单位指定窗口地址在 Y 方向的开始/结束位置。数据写入由 YSA [8:0] 和 YEA [8:0] 指定的地址确定的区域内的 RAM。这些地址必须在 RAM 写入 之前设置**YSA[8:0]/YEA[8:0]:** Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0]  $\leq$  YSA [8:0]. The settings follow the condition on 00h  $\leq$  YSA [8:0], YEA [8:0]  $\leq$  12Bh. The windows is followed by the control setting of Data Entry Setting (R11h)

它允许 YEA [8:0] YSA [8:0]。 设置遵循 00h YSA [8:0], YEÁ [8:0] 12Bh 的条件。 窗口后面是数据输入设置 (R11h) 的控制设置

#### 8.6 Set RAM Address Counter (4Eh-4Fh)

| Reg# | R/W | DC | IB7  | IB6  | IB5  | IB4  | IB3  | IB2  | IB1  | IB0  |
|------|-----|----|------|------|------|------|------|------|------|------|
| 4Eh  | W   | 1  |      |      | XAD5 | XAD4 | XAD3 | XAD2 | XAD1 | XAD0 |
|      | PC  | )R | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|      | W   | 1  | YAD7 | YAD6 | YAD5 | YAD4 | YAD3 | YAD2 | YAD1 | YAD0 |
|      | POR |    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 4Fh  | W   | 1  |      |      |      |      |      |      |      | YAD8 |
|      | PC  | )R |      |      |      |      |      |      |      | 0    |

**XAD[5:0]:** Make initial settings for the RAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]}; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart / Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

**SSD1619A** | Rev 0.10 | P 39/48 | Dec 2016 | **Solomon Systech** 

# 9 Typical Operating Sequence

# 9.1 Normal Display

| Sequence | Action by | Command | Action Description                                                                                | Remark        |
|----------|-----------|---------|---------------------------------------------------------------------------------------------------|---------------|
| 1        | User      | -       | Power on (VCI supply);                                                                            |               |
| 2        | User      | -       | HW Reset                                                                                          |               |
|          | IC        |         | After HW reset, the IC will be ready for command input                                            |               |
|          | User      | C 12    | Command: SW Reset                                                                                 |               |
|          | IC        |         | After SW reset, the IC will have                                                                  |               |
|          |           |         | Registers load with POR value                                                                     | 511014        |
|          |           |         | VCOM register loaded with OTP value<br>IC enter idle mode                                         | BUSY = H      |
|          | User      |         | Wait until BUSY = L                                                                               |               |
| .3       | USCI      | _       | Send initial code to driver including setting of                                                  |               |
| .5       | User      | C 74    | Command: Set Analog Block Control                                                                 |               |
|          |           | D 54    | Command. Set Analog Block Control                                                                 |               |
|          | User      | C 7E    | Command: Set Digital Block Control                                                                |               |
|          |           | D 3B    |                                                                                                   |               |
|          | User      | C 01    | Command: Driver Output Control                                                                    |               |
|          |           |         | (MUX, Source gate scanning direction)                                                             |               |
|          |           | C 3A    | Command: Set dummy line period                                                                    |               |
|          | User      | C 3B    | Command: Set Gate line width                                                                      |               |
|          | User      | C 3C    | Command: Border waveform control                                                                  |               |
| 1        |           | -       | Data operations for Black White                                                                   |               |
|          | User      | C 11    | Command: Data Entry mode setting                                                                  |               |
|          | User      | C 44    | Command: RAM X address start /end position                                                        |               |
|          | User      | C 45    | Command: RAM Y address start /end position                                                        |               |
|          | User      | C 4E    | Command: RAM X address counter                                                                    |               |
|          | User      | C 4F    | Command: RAM Y address counter                                                                    |               |
|          | User      | C 24    | Command: write BW RAM                                                                             |               |
|          |           |         | Ram Content for Display                                                                           |               |
| 5        |           | -       | Data operations for RED                                                                           |               |
|          | User      | C 11    | Command: Data Entry mode setting                                                                  |               |
|          | User      | C 44    | Command: RAM X address start /end position                                                        |               |
|          | User      | C 45    | Command: RAM Y address start /end position                                                        |               |
|          | User      | C 4E    | Command: RAM X address counter                                                                    |               |
|          | User      | C 4F    | Command: RAM Y address counter                                                                    |               |
|          | User      | C 26    | Command: write RED RAM                                                                            |               |
|          |           |         | Ram Content for Display                                                                           |               |
| 6        | User      | C 22    | Command: Display Update Control 2                                                                 |               |
|          | User      | C 20    | Command: Master Activation                                                                        |               |
|          | IC        | -       | Booster and regulators turn on 升压器和稳压器打开                                                          |               |
|          | IC        | -       | Load LUT register with corresponding waveform setting stored in OTP) 使用存储在 OTP 中的相应波形设置加载 LUT 寄存器 | BUSY = H      |
|          | IC        | _       | Send output waveform according RAM content and LUT 根据                                             | RAM 内容和 LUT 发 |
|          | IC        | _       | Booster and Regulators turn off 增压器和调节器关闭                                                         | 皮形。           |
|          | IC        | _       | Back to idle mode                                                                                 |               |
|          | User      | -       | Wait until BUSY = L                                                                               |               |
| 7        | User      | _       | IC power off;                                                                                     |               |

 SSD1619A
 Rev 0.10
 P 40/48
 Dec 2016
 Solomon Systech

# 9.2 VCOM OTP Program

| Sequenc | e Action by | Command | Action Description                                                 | Remark                 |
|---------|-------------|---------|--------------------------------------------------------------------|------------------------|
| 1       | User        | -       | Power on (VCI and VPP supply)                                      |                        |
| 2       | User        | -       | HW Reset                                                           |                        |
|         | User        | C 12    | Command: SW Reset                                                  | BUSY = H               |
|         | User        | _       | Wait until BUSY = L                                                |                        |
| 3       | User        | C 74    | Command: Set Analog Block Control                                  |                        |
|         |             | D 54    |                                                                    |                        |
|         | User        | C 7E    | Command: Set Digital Block Control                                 |                        |
|         |             | D 3B    |                                                                    |                        |
|         | User        | C 22    | Command: Master Activation                                         |                        |
|         |             | D 80    | (assigned by R22h) (Enable clock signal)                           | BUSY = H               |
|         |             | C 20    |                                                                    |                        |
|         | User        | -       | Wait until BUSY = L                                                |                        |
|         | User        | C 37    | Proceed OTP sequence.                                              | OTP selection          |
|         |             |         | Command: OTP selection Control                                     | register               |
|         |             | 0.00    | (default or spare)                                                 | D110) ( 11             |
| j       | User        | C 36    | Command: Program OTP selection                                     | BUSY = H               |
|         | User        | -       | Wait until BUSY = L                                                |                        |
|         | User        | -       | Power OFF (VPP supply)                                             |                        |
| 6       |             | -       | Send initial code to driver including setting of (or leave as POR) |                        |
|         | User        | C 01    | Command: Driver Output Control                                     |                        |
|         |             |         | (MUX, Source gate scanning direction)                              | -                      |
|         | User        | C 03    | Command: Gate Driving voltage Control                              | VCOM 感应在应用期间           |
|         | User        | C 04    | Command: Source Driving voltage Control                            | 有相同的设置<br>VCOM sensing |
|         | User        | C 3A    | Command: Set dummy line period                                     | should have            |
|         | User        | C 3B    | Command: Set Gate line width                                       | same setting           |
|         | User        | C 32    | Command: Write LUT register                                        | during                 |
|         |             |         | VCOM sense required full set of LUT for operation, USER            | application            |
|         |             |         | required writing LUT in register 32h                               |                        |
|         |             | _       | LUT parameter                                                      |                        |
|         | User        | C 22    | Command: Master Activation                                         |                        |
|         |             | D 40    | (assigned by R22h) [Enable Analog blocks ]                         | BUSY = H               |
|         |             | C 20    |                                                                    |                        |
|         | User        | _       | Wait until BUSY = L                                                |                        |
| 7       | User        | C 29    | Command: VCOM Sense Duration for 10 seconds                        |                        |
|         |             | D 49    | VCOM 感应持续时间 10 秒                                                   |                        |
| 3       | User        | C 28    | Command: VCOM sense                                                |                        |
|         | IC          | -       | VCOM pin in sensing mode                                           |                        |
|         | IC          | -       | All Source cell have VSS output                                    |                        |
|         |             |         | All Gate scanning continuously                                     | DUCY - II              |
|         | IC          | -       | According to R29h                                                  | BUSY = H               |
|         | IC          | _       | Detect VCOM voltage and store in register                          |                        |
|         | IC          | _       | All Gate Stop Scanning.                                            |                        |
|         | User        | -       | Wait until BUSY = L                                                |                        |
| )       | User        | C 22    | Command: Master Activation                                         |                        |
|         |             | D 02    | (assigned by R22h) [Disable Analog blocks ]                        | BUSY = H               |
|         |             | C 20    |                                                                    |                        |
|         | User        | _       | Wait until BUSY = L                                                |                        |
|         | User        | _       | Power On (VPP supply)                                              |                        |
| 0       | User        | C 2A    | , , , , ,                                                          | BUSY = H               |
|         | User        | -       | Wait until BUSY = L                                                |                        |
| l1      | User        | C 22    | Command: Display Update Control 2 and                              |                        |
|         |             | D 01    |                                                                    | BUSY = H               |
|         |             | C 20    | (Disable clock signal)                                             |                        |
|         | User        | -       | Wait until BUSY = L                                                |                        |
| 12      | User        | _       | IC power off (VCI and VPP Supply)                                  |                        |

 SSD1619A
 Rev 0.10
 P 41/48
 Dec 2016
 Solomon Systech

# 9.3 WS OTP Program

| Sequence | Action by | Command                              | Action Description                                                                                                                               | Remark   |
|----------|-----------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1        | User      | -                                    | Power on (VCI supply)                                                                                                                            |          |
| 2        | User      | -                                    | Power on (VPP supply)                                                                                                                            |          |
| 3        | User      | -                                    | HW Reset                                                                                                                                         |          |
|          | User      | C 12                                 | Command: SW Reset                                                                                                                                | BUSY = H |
|          | User      | -                                    | Wait until BUSY = L                                                                                                                              |          |
| 4        | User      | C 74<br>D 54                         | Command: Set Analog Block Control                                                                                                                |          |
|          | User      | C 7E<br>D 3B                         | Command: Set Digital Block Control                                                                                                               |          |
|          | User      | C 22<br>D 80<br>C 20                 | Command: Master Activation (assigned by R22h) (Enable clock signal)                                                                              | BUSY = H |
|          | User      | -                                    | Wait BUSY = L                                                                                                                                    |          |
| 5        | User      | C 11<br>D 03                         | Command: Data Entry mode setting Set Address automatic increment setting = X increment and Y increment Set Address counter update in X direction |          |
| 6        | User      | C 44<br>D 00<br>D 31                 | Command: RAM X address start /end position Set RAM X address start /end from S0 to S399                                                          |          |
| 7        | User      | C 45<br>D 00<br>D 00<br>D 2B<br>D 01 | Command: RAM Y address start /end position<br>Set RAM Y address start /end from G0 to G299                                                       |          |
| 8        | User      | C 4E<br>D 00                         | Command: RAM X address counter<br>Set RAM X address counter as 0                                                                                 |          |
| 9        | User      | C 4F<br>D 00<br>D 00                 | Command: RAM Y address counter<br>Set RAM Y address counter as 0                                                                                 |          |
| 12       | User      | C 24                                 | Write corresponding data into RAM 将相应数据写入RAM                                                                                                     |          |
|          |           |                                      | Following specific format 遵循特定格式 Write into RAM                                                                                                  |          |
|          |           |                                      | Full LUT                                                                                                                                         |          |
| 13       | User      | C 4E<br>D 00<br>C 4F<br>D 00<br>D 00 | Command: RAM address start /end position (Initial Ram address counter)                                                                           |          |
| 14       | User      | C 30                                 | Command: Program WS OTP Waveform Setting OTP programming                                                                                         | BUSY = H |
|          | User      | -                                    | Wait BUSY = L                                                                                                                                    |          |
| 15       | User      | C 22<br>D 01<br>C 20                 | Command: Master Activation (assigned by R22h) [Disable clock signal]                                                                             | BUSY = H |
|          | User      | -                                    | Wait BUSY = L                                                                                                                                    |          |
| 16       | User      | -                                    | Power off VPP and VCI                                                                                                                            |          |

 SSD1619A
 Rev 0.10
 P 42/48
 Dec 2016
 Solomon Systech

### 10 Absolute Maximum Rating

Table 10-1: Maximum Ratings

| Symbol           | Parameter                   | Rating                         | Unit |
|------------------|-----------------------------|--------------------------------|------|
| Vcı              | Logic supply voltage        | -0.5 to +4.0                   | V    |
| Vin              | Logic Input voltage         | -0.5 to V <sub>DDIO</sub> +0.5 | V    |
| Vout             | Logic Output voltage        | -0.5 to V <sub>DDIO</sub> +0.5 | V    |
| Topr             | Operation temperature range | -40 to +85                     | °C   |
| T <sub>STG</sub> | Storage temperature range   | -65 to +150                    | °C   |

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that  $V_{CI}$  be constrained to the range  $V_{SS} < V_{CI}$ . Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DDIO}$ ). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

#### 11 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T<sub>OPR</sub>=25°C.

**Table 11-1: DC Characteristics** 

| Symbol               | Parameter                        | Applicable pin                | Test Condition    | Min.                                  | Тур.                | Max.                                      | Unit |
|----------------------|----------------------------------|-------------------------------|-------------------|---------------------------------------|---------------------|-------------------------------------------|------|
| Vcı                  | VCI operation voltage            | VCI                           |                   | 2.2                                   | 3.0                 | 3.7                                       | V    |
| $V_{DD}$             | VDD operation voltage            | VDD                           |                   | 1.7                                   | 1.8                 | 1.9                                       | V    |
| V <sub>СОМ_DС</sub>  | VCOM_DC output voltage           | VCOM                          |                   | -3.0                                  |                     | -0.2                                      | V    |
| dV <sub>COM_DC</sub> | VCOM_DC output voltage deviation | VCOM                          |                   | -200                                  |                     | 200                                       | mV   |
| Vсом_ас              | VCOM_AC output voltage           | VCOM                          |                   | V <sub>SL</sub> + V <sub>COM_DC</sub> | V <sub>СОМ_DС</sub> | V <sub>SH1</sub> +<br>V <sub>COM_DC</sub> | V    |
| V <sub>GATE</sub>    | Gate output voltage              | G0~G299                       |                   | -20                                   |                     | +20                                       | V    |
| VGATE(p-p)           | Gate output peak to peak voltage | G0~G299                       |                   |                                       |                     | 40                                        | V    |
| V <sub>SH1</sub>     | Positive Source output voltage   | VSH1                          |                   | +2.4                                  | +15                 | +17                                       | V    |
| dV <sub>SH1</sub>    | VSH1 output voltage              | VSH1                          | From 2.4V to 8.8V | -100                                  |                     | 100                                       | mV   |
|                      | deviation                        |                               | From 9.0V to 17V  | -200                                  |                     | 200                                       | mV   |
| V <sub>SH2</sub>     | Positive Source output voltage   | VSH2                          |                   | +2.4                                  | +5                  | +17                                       | V    |
| dV <sub>SH2</sub>    | VSH2 output voltage              | VSH2                          | From 2.4V to 8.8V | -100                                  |                     | 100                                       | mV   |
|                      | deviation                        |                               | From 9.0V to 17V  | -200                                  |                     | 200                                       | mV   |
| VsL                  | Negative Source output voltage   | VSL                           |                   | -17                                   | -15                 | -9                                        | V    |
| dV <sub>SL</sub>     | VSL output voltage deviation     | VSL                           |                   | -200                                  |                     | 200                                       | mV   |
| ViH                  | High level input voltage         | SDA, SCL, CS#,<br>D/C#, RES#, |                   | 0.8V <sub>DDIO</sub>                  |                     |                                           | V    |
| VIL                  | Low level input voltage          | BS[2:1], M/S#,<br>EXTVDD, CL  |                   |                                       |                     | 0.2V <sub>DDIO</sub>                      | V    |
| Vон                  | High level output voltage        | SDA, BUSY, CL                 | IOH = -100uA      | 0.9V <sub>DDIO</sub>                  |                     |                                           | V    |
| Vol                  | Low level output voltage         |                               | IOL = 100uA       |                                       |                     | 0.1V <sub>DDIO</sub>                      | V    |
| $V_{PP}$             | OTP Program voltage              | VPP                           |                   | 7.25                                  | 7.5                 | 7.75                                      | V    |

**SSD1619A** | Rev 0.10 | P 43/48 | Dec 2016 | **Solomon Systech** 

| Symbol           | Parameter                     | Applicable pin | Test Condition                                                                                       | Min.  | Тур. | Max.  | Unit |
|------------------|-------------------------------|----------------|------------------------------------------------------------------------------------------------------|-------|------|-------|------|
| Islp_VCI         | Sleep mode current            | VCI            | DC/DC OFF No clock No output load MCU interface access Ram data retain                               |       | 20   | 35    | uA   |
|                  | Current of deep sleep mode 1  | VCI            | DC/DC OFF No clock No output load No MCU interface access Retain Ram data but cannot access the RAM. |       | 1    | 5     | uA   |
| Idslp_VCI2       | Current of deep sleep mode 2  | VCI            | DC/DC OFF No clock No output load No MCU interface access Cannot retain RAM data.                    |       | 0.7  | 3     | uA   |
| lopr_VCI         | Operating Mode current        | VCI            | VCI=3.0V                                                                                             |       | 1000 |       | uA   |
| V <sub>GH</sub>  | Operating Mode Output Voltage | VGH            | Enable Clock and<br>Analog by Master                                                                 | 19.5  | 20   | 20.5  | V    |
| V <sub>SH1</sub> |                               | VSH1           | Activation Command VGH=20V VGL=-VGH                                                                  | 14.8  | 15   | 15.2  | V    |
| V <sub>SH2</sub> |                               | VSH2           | VSH1=15V<br>VSH2=5V                                                                                  | 4.9   | 5    | 5.1   | V    |
| VsL              |                               | VSL            | VSL=-15V<br>VCOM = -2V                                                                               | -15.2 | -15  | -14.8 | V    |
| Vсом             |                               | VCOM           | No waveform transitions. No loading. No RAM read/write No OTP read /write                            | -2.2  | -2   | -1.8  | V    |

### **Table 11-2: Regulators Characteristics**

| Symbol | Parameter    | Test Condition | Applicable pin | Min. | Тур. | Max. | Unit |
|--------|--------------|----------------|----------------|------|------|------|------|
| IVGH   | VGH current  | VGH = 20V      | VGH            |      |      | 200  | uA   |
| IVGL   | VGL current  | VGL = -VGH     | VGL            |      |      | 300  | uA   |
| IVSH1  | VSH1 current | VSH1 = +15V    | VSH1           |      |      | 800  | uA   |
| IVSH2  | VSH2 current | VSH2 = +5V     | VSH2           |      |      | 800  | uA   |
| IVSL   | VSL current  | VSL = -15V     | VSL            |      |      | 800  | uA   |
| IVCOM  | VCOM current | VCOM = -2V     | VCOM           |      |      | 100  | uA   |

 SSD1619A
 Rev 0.10
 P 44/48
 Dec 2016
 Solomon Systech

#### 12 AC Characteristics

### 12.1 Oscillator frequency

The following specifications apply for: VSS=0V, VDD=1.8V, T<sub>OPR</sub>=25°C.

**Table 12-1: Oscillator Frequency** 

| Symbol | Parameter                     | Test Condition  | Applicable pin | Min. | Тур. | Max. | Unit |
|--------|-------------------------------|-----------------|----------------|------|------|------|------|
|        | Internal Oscillator frequency | VCI=2.2 to 3.7V | CL             | 0.95 | 1    | 1.05 | MHz  |

## 12.2 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, Topk = 25°C, CL=20pF

**Table 12-2: Serial Peripheral Interface Timing Characteristics** 

#### Write mode

| Symbol              | Parameter                                                                    | Min | Тур | Max | Unit |
|---------------------|------------------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>SCL</sub>    | SCL frequency (Write Mode)                                                   |     |     | 20  | MHz  |
| tcssu               | Time CS# has to be low before the first rising edge of SCLK                  | 20  |     |     | ns   |
| tcshld              | Time CS# has to remain low after the last falling edge of SCLK               | 20  |     |     | ns   |
| <b>t</b> csнigh     | Time CS# has to remain high between two transfers                            | 100 |     |     | ns   |
| <b>t</b> sclhigh    | Part of the clock period where SCL has to remain high                        | 25  |     |     | ns   |
| t <sub>SCLLOW</sub> | Part of the clock period where SCL has to remain low                         | 25  |     |     | ns   |
| t <sub>sısu</sub>   | Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL | 10  |     |     | ns   |
| <b>t</b> sihld      | Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL   | 40  |     |     | ns   |

#### Read mode

| Symbol             | Parameter                                                                | Min | Тур | Max | Unit |
|--------------------|--------------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>SCL</sub>   | SCL frequency (Read Mode)                                                |     |     | 2.5 | MHz  |
| tcssu              | Time CS# has to be low before the first rising edge of SCLK              | 100 |     |     | ns   |
| tcshld             | Time CS# has to remain low after the last falling edge of SCLK           | 50  |     |     | ns   |
| <b>t</b> csнigh    | Time CS# has to remain high between two transfers                        | 250 |     |     | ns   |
| <b>t</b> sclhigh   | Part of the clock period where SCL has to remain high                    | 180 |     |     | ns   |
| tscllow            | Part of the clock period where SCL has to remain low                     | 180 |     |     | ns   |
| tsosu              | Time SO(SDA Read Mode) will be stable before the next rising edge of SCL |     | 50  |     | ns   |
| t <sub>SOHLD</sub> | Time SO (SDA Read Mode) will remain stable after the falling edge of SCL |     | 0   |     | ns   |

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 12-1: SPI timing diagram



**SSD1619A** | Rev 0.10 | P 45/48 | Dec 2016 | **Solomon Systech** 

# 13 Application Circuit

ı | | C2 GDR GDR VSH2 VSH2 TSCL BS1 CONNECTION TSCL BUSY TSDA EXTERNAL TEMP SENSOR RES# 10 11 D/C# CS# SCL BS1 BUSY 13 14 15 16 17 SDA CONNECTION MCU RES# VDDIO D/C# VCI CS# VSS SCL 18 19 VDD VPP 20 VSH1 21 22 23 VGH VSS VCI VSS VDD C0 VGL VCOM VPP VSH1 C1 C5 VGH VSL VGL C7 VCOM

Figure 13-1: Schematic of SSD1619A application circuit

Table 13-1: Component list for SSD1619A application circuit

C8

| Part Name | Value / Type     | Reference Part              |
|-----------|------------------|-----------------------------|
| C0-C1     | 1uF [Max 10V]    | TDK: C1005X5R1A105K         |
| C2-C7     | 1uF [Max 25V]    | TDK: C1608X5R1E105K         |
| C8        | 0.47uF [Max 25V] | TDK: C1608X5R1E474K         |
| D1-D3     | Diode            | OnSemi: MBR0530             |
| L1        | 47uH             | Sumida: CDRH2D18/LDNP-470NC |
| Q1        | NMOS             | Vishay: Si1304BDL           |
| R1        | 2.2 Ohm          | Vishay: CRCW08052R20FKEA    |
| U1        | 0.5mm ZIF socket | Hirose: FH34S-24S-0.5SH(50) |

 SSD1619A
 Rev 0.10
 P 46/48
 Dec 2016
 Solomon Systech

## 14 PACKAGE INFORMATION

Figure 14-1 : SSD1619AZ die tray information







SECTION A-A

| Symbol | Spec(mm) (mil)     |
|--------|--------------------|
| W1     | 101.60±0.10(4000)  |
| W2     | 91.55±0.10(3604)   |
| W3     | 91.85±0.10(3616)   |
| Н      | 4.55±0.10 (179)    |
| Dx     | 13.55±0.10 (533)   |
| TPx    | 74.50±0.10(2933)   |
| Dy     | 7.40±0.10 (291)    |
| TPy    | 86.80±0.10(3417)   |
| Px     | 14.90±0.05 (587)   |
| Ру     | 2.80±0.05 (110)    |
| X      | 13.26±0.05 (522)   |
| Υ      | 1.15±0.05 (45)     |
| Z      | 0.40±0.05 (16)     |
| Ν      | 192(pocket number) |

 SSD1619A
 Rev 0.10
 P 47/48
 Dec 2016
 Solomon Systech

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

**SSD1619A** Rev 0.10 P 48/48 Dec 2016 **Solomon Systech**