Материал курса Коммутативная алгебра, 2025

Содержание

1.	Кольца и идеалы	2
	1.1. Основные понятия	2
	1.2. Нильрадикал и радикал Джекобсона	4
	1.3. Операции над идеалами	
	1.4. Аннуляторы	
	1.5. Расширение и сужение	
2.	Модули	11
	2.1. Основные понятия	
	2.2. Подмодули и фактормодули	11
	2.3. Операции с подмодулями	12
	2.4. Прямая сумма и прямое произведение	13
	2.5. Конечно порождённые модули	
	2.6. Точные последовательности	15
	2.7. Тензорное произведение модулей	17
	2.8. Точность тензорного произведения	

1. Кольца и идеалы

1.1. Основные понятия

Определение 1.1.1. (коммутативное кольцо): Кортеж $(A, +, \cdot, 0, 1)$ называется коммутативным кольцом, (или просто кольцом) если

$$+, \cdot : A \times A \to A, \quad 0, 1 : \{\emptyset\} \to A \quad (0, 1 \in A),$$

а также выполняются следующие свойства:

- (1) (A, +, 0) абелева группа;
 - (то есть операция сложения + коммутативна и ассоциативна, 0 есть её нейтральный элемент, а также каждый элемент $x \in A$ имеет единственный противоположный $-x \in A$)
- (2) $(A,\cdot,1)$ коммутативная полугруппа;

(то есть умножение · коммутативно и ассоциативно, 1 есть её нейтральный элемент)

(3) $\forall x, y, z \in A$: x(y+z) = xy + xz

(свойство дистрибутивности)

Категорию всех коммутативных колец мы будем обозначать Ring.

Замечание 1.1.2. Может статься, что 0=1 в кольце A. Тогда имеем $x=x\cdot 1=x\cdot 0=0$ и $A=\{0\}=:0$.

<u>Определение 1.1.3.</u> (гомоморфизм колец): Отображение $f:A\to B$ между кольцами A и B называется *гомоморфизмом*, если оно является гоморфизмом абелевых групп по сложению и полугрупп по умножению, то есть

- (1) $f(x +_A y) = f(x) +_B f(y), f(x \cdot_A y) = f(x) \cdot_B f(y);$
- (2) $f(0_A) = 0_B$, $f(1_A) = 1_B$.

Определение 1.1.4. (подкольца и идеалы):

- (1) Подмножество $S \subset A$ называется *подкольцом*, если $(S, +, \cdot, 0, 1)$ есть кольцо.
- (2) Подмножество $\mathfrak{a}\subset A$ называется идеалом, если $\mathfrak{a}\leqslant A$, а также $A\mathfrak{a}\subset \mathfrak{a};$
- (3) Для любого $x \in A$, множество $xA = \{xy \mid y \in A\}$ образует идеал, который обозначается (x). Идеалы вида (x) называются главными.

Определение 1.1.5. (факторкольцо): Пусть $\mathfrak{a} \leqslant A$. Тогда имеем $(A/\mathfrak{a},+,\cdot,0+\mathfrak{a},1+\mathfrak{a}) \in \mathrm{Ring}$, где

$$(x+\mathfrak{a}) +_{\mathfrak{a}} (y+\mathfrak{a}) = (x+y) + \mathfrak{a}, \quad (x+\mathfrak{a}) \cdot (y+\mathfrak{a}) = xy + \mathfrak{a}.$$

(Пусть $\mathfrak a$ — идеал в кольце A. Тогда абелева группа $A/\mathfrak a$ однозначно снабжается умножением, индуцированным с умножения в кольце A, что превращает её в кольцо, называемое ϕ акторкольцом $A/\mathfrak a$)

Отображение $\varphi:A o A/\mathfrak{a},\ \varphi(x)=x+\mathfrak{a},$ называется канонической проекцией.

Утверждение 1.1.6. Существует биекция

$$\tilde{\varphi}: \{\mathfrak{b} \leqslant A \,|\, \mathfrak{a} \subset \mathfrak{b}\} \leftrightarrow \{\overline{\mathfrak{b}} \leqslant A/\mathfrak{a}\},$$

сохраняющая включение.

Доказательство: Упражнение.

Определение 1.1.7. (делители нуля, нильпотенты, единицы):

- (1) Пусть $x \in A$. Если найдётся $y \neq 0$, что xy = 0, то x называется делителем нуля. $(x \mid 0)$
- (2) Кольцо $A \neq 0$, не имеющее ненулевых делителей нуля, называется областью целостности.
- (3) Элемент $x \in A$ называется *нильпотентом*, если $x^n = 0$ для некоторого $n \geqslant 1$. Всякий нильпотент является делителем нуля, но не всегда наоборот.
- (4) Пусть $x \in A$. Если для некоторого $y \in A$ выполняется xy = 1, то x называется *обратимым* $(x \mid 1)$. Обратимые элементы кольца A образуют абелеву группу по умножению.
- (5) Ненулевое кольцо A, в котором каждый ненулевой элемент обратим, называется *полем*.

Упражнение 1.1.8. Докажите следующие простые свойства кольца:

- (1) $x \cdot 0 = 0$;
- (2) $f: A \to B, g: B \to C \text{ homo} \Longrightarrow (f \circ g): A \to C \text{ homo};$

(композиция гомоморфизмов – гомоморфизм)

- (3) $f: A \to B$ инъекция \iff ker f = 0;
- (4) $x \mid 0 \Longrightarrow x \nmid 1$.

(всякий делитель нуля необратим)

Утверждение 1.1.9. Пусть A — ненулевое кольцо. Следующие условия равносильны:

- (1) $A no\pi e$;
- (2) $\mathfrak{a} \leqslant A \Longrightarrow \mathfrak{a} = 0 = \{0\} \lor \mathfrak{a} = (1) = A;$

 $(B\ A\$ нет идеалов, кроме $0=\{0\}\ u\ (1))$

(3) $\forall B \neq 0, \forall f : A \rightarrow B : f - uh$.

(всякий гомоморфизм из A в ненулевое кольцо инъективен)

Доказательство:

- $(1)\Longrightarrow (2)$: Если $\mathfrak{a}\leqslant A$ и $\mathfrak{a}\neq 0$, то \mathfrak{a} содержит некий обратимый элемент $x\in A$. Тогда $1=xy\in A$ для некоторого y, а значит $\forall z\in A:\ z=z\cdot 1\in \mathfrak{a},$ и $\mathfrak{a}=(1).$
- $(2)\Longrightarrow (3)$: Если $B\neq 0$, то для гомоморфизма $f:A\to B$ имеем f(1)=1, а значит $\ker f\neq A$. Следовательно, $\ker f=0$, и f инъективно.
- $(3)\Longrightarrow (1)$: Пусть $x\in A, x\neq 0$. Рассмотрим каноническую проекцию $\varphi:A\to A/(x)$. Так как $\varphi(0)=\varphi(x)=(x)$, мы заключаем, что φ не инъективно. Тогда A/(x)=0, а значит (x)=A, и 1=xy для некоторого $y\in A$.

Определение 1.1.10. (простые и максимальные идеалы):

- (1) Идеал $\mathfrak{p} \subset A$ называется *простым*, если $\mathfrak{p} \neq A$ и включение $xy \in \mathfrak{p}$ влечёт $x \in \mathfrak{a}$ либо $y \in \mathfrak{p}$.
- (2) Идеал $\mathfrak{m}\subset A$ называется максимальным, если $\mathfrak{m}\neq A$ и не существует идеала \mathfrak{b} , такого что $\mathfrak{m}\subsetneq\mathfrak{b}\subsetneq A$.

Утверждение 1.1.11. Пусть $A - \kappa$ ольцо.

- (1) Идеал $\mathfrak{p} \subset A$ простой $\iff A/\mathfrak{p}$ область целостности;
- (2) Идеал $\mathfrak{m} \subset A$ максимальный $\iff A/\mathfrak{m} n$ оле.

Доказательство: Упражнение.

Следствие 1.1.12. Всякий максимальный идеал прост.

Теорема 1.1.13. В каждом кольце $A \neq 0$ есть максимальный идеал.

Доказательство: Для доказательства сформулируем лемму Цорна:

<u>Предложение 1.1.14.</u> (Лемма Цорна): Пусть (P, \leqslant) — непустое частично упорядоченное множество. Тогда если каждое линейно упорядоченное подмножество в P имеет мажоранту, то в P существует по крайней мере один максимальный элемент.

Это утверждение мы оставим без доказательства, отметив только, что оно эквивалентно *аксиоме выбора.*

Далее, рассмотрим множество Σ всех собственных идеалов в A, частично упорядоченное по включению. Это множество непусто, так как содержит нулевой идеал 0.

Теперь пусть $\left\{\mathfrak{a}_{\alpha}\right\}_{\alpha\in\mathcal{I}}$ — некое линейно упорядоченное подмножество Σ . Рассмотрим объединение

$$\mathfrak{b} = \bigcup_{\alpha \in \mathcal{I}} \mathfrak{a}_{\alpha}.$$

Очевидно, что \mathfrak{b} — идеал (упражнение), и кроме того $1 \notin \mathfrak{b}$, так как $1 \notin \mathfrak{a}_{\alpha}$ при всех $\alpha \in \mathcal{I}$. Следовательно, $\mathfrak{b} \in \Sigma$, а значит \mathfrak{b} является мажорантой множества $\{\mathfrak{a}_{\alpha}\}_{\alpha \in \mathcal{I}}$.

Наконец, по лемме Цорна мы заключаем, что множество Σ имеет максимальный элемент \mathfrak{m} , то есть максимальный идеал в кольце A.

<u>Следствие 1.1.15.</u> Каждый собственный идеал $\mathfrak{a} < A$ содержится в некотором максимальном идеале, и всякий необратимый элемент содержится в некотором максимальном идеале.

| Доказательство: Достаточно рассмотреть кольцо A/\mathfrak{a} и применить предыдущую теорему.

Определение 1.1.16. Кольцо A, имеющее всего один максимальный идеал, называется *покальным.* Если множество максимальных идеалов кольца A конечно, то кольцо A называется *полулокальным.*

Утверждение 1.1.17. Пусть A — некоторое кольцо.

- (1) Если \mathfrak{a} такой собственный идеал, что всякий элемент $x \in A \setminus \mathfrak{a}$ обратим, то кольцо A локально, и \mathfrak{a} его максимальный идеал.
- (2) Если \mathfrak{m} максимальный идеал в A, и всякий элемент $1+x\in 1+\mathfrak{m}$ обратим, то A является локальным.

Доказательство:

- (1) Пусть \mathfrak{m} некий максимальный идеал. Тогда если $x \in \mathfrak{m}$, то x необратим и следовательно $x \in \mathfrak{a}$. Тогда $\mathfrak{m} \subset \mathfrak{a}$, а значит $\mathfrak{m} = \mathfrak{a}$, так как идеал \mathfrak{m} максимальный. Итого, все максимальные идеалы в A совпадают с \mathfrak{a} , ч.т.д.
- (2) Допустим, что $x \in A \setminus \mathfrak{m}$. Так как \mathfrak{m} максимален, идеал, порождённый \mathfrak{m} и x, совпадает со всем кольцом A. Поэтому найдутся такие элементы $y \in A, t \in \mathfrak{m}$, что xy+t=1. Следовательно, $xy=1-t \in 1+m$, а значит xy обратим. Тогда x обратим. Остаётся только воспользоваться утверждением (1).

1.2. Нильрадикал и радикал Джекобсона

<u>Утверждение 1.2.1.</u> Множество $\mathfrak N$ всех нильпотентов кольца A является идеалом. В кольце $A/\mathfrak N$ нет ненулевых нильпотентов.

Доказательство: Очевидно, что если $x \in \mathfrak{N}$, то $ax \in \mathfrak{N}$ для любого $a \in A$. Теперь рассмотрим два элемента $x,y \in \mathfrak{N}$, причём $x^n = 0$ и $y^m = 0$. Тогда выражение $(x+y)^{m+n}$ по теореме Ньютона раскрывается следующим образом:

$$(x+y)^{n+m} = \sum_{i+j=n+m} a_{ij} x^i y^j.$$

При этом для каждой пары (i,j), либо $i\geqslant n$, либо $j\geqslant m$. Следовательно, каждое слагаемое $a_{ij}x^iy^j$ равно нулю, а значит $(x+y)^{n+m}=0$, и $x+y\in\mathfrak{N}$.

Далее, рассмотрим элемент $x+\mathfrak{N}\in A/\mathfrak{N}$ и допустим, что $(x+\mathfrak{N})^n=\mathfrak{N}$. Это означает, что $x^n\in\mathfrak{N}$, и для некоторого $k\in\mathbb{N}$

$$x^{nk} = (x^n)^k = 0 \Longrightarrow x \in \mathfrak{N} \Longrightarrow x + \mathfrak{N} = \mathfrak{N}.$$

Определение 1.2.2. Идеал $\mathfrak N$ называется нильрадикалом кольца A.

Теорема 1.2.3. Нильрадикал кольца A совпадает с пересечением всех его простых идеалов.

Доказательство: Пусть P — пересечение всех простых идеалов кольца A.

Во-первых, очевидно, что всякий нильпотент лежит во всяком простом идеале (упражнение), так что $\mathfrak{N}\subset P$.

Обратно, пусть элемент $f \in A$ не является нильрадикалом. Нам нужно показать, что он не содержится в каком-либо простом идеале. Рассмотрим множество Σ всех идеалов $\mathfrak a$ со свойством

$$\forall n \in \mathbb{N}: f^n \notin \mathfrak{a}.$$

Множество Σ непусто, поскольку $0 \in \Sigma$. Рассуждение из <u>теоремы 1.2.3</u> показывает применимость леммы Цорна ко множеству Σ , в результате чего получаем максимальный элемент $\mathfrak{p} \in \Sigma$. Покажем, что \mathfrak{p} — простой идеал.

Пусть $x,y\notin\mathfrak{p}.$ Тогда идеалы $\mathfrak{p}+(x)$ и $\mathfrak{p}+(y)$ строго содержат $\mathfrak{p},$ и следовательно, не принадлежат $\Sigma.$ Иначе говоря, имеем

$$f^m \in \mathfrak{p} + (x), \qquad f^n \in \mathfrak{p} + (y),$$

для некоторых $m,n\in\mathbb{N}$. отсюда следует, что

$$f^{m+n} \in \mathfrak{p} + (xy) \Longrightarrow p + (xy) \notin \Sigma \Longrightarrow xy \notin \mathfrak{p}.$$

Тем самым, мы построили простой идеал, не содержащий f, и потому $f \notin P$.

<u>Определение 1.2.4.</u> Пересечение $\mathfrak R$ всех максимальных идеалов кольца A называется радикалом Джекобсона.

<u>Лемма 1.2.5.</u> $x \in \Re \iff 1 - xy$ обратим в кольце A для всех $y \in A$.

Доказательство:

 \Longrightarrow : Допустим, что элемент 1-xy необратим. Тогда, по следствию 1.1.15, этот элемент содержится в некотором максимальном идеале \mathfrak{m} . Но $x\in\mathfrak{R}\subset\mathfrak{m}$, а значит $1=(1-xy)+y\cdot x\in\mathfrak{m}$, противоречие.

 \Leftarrow : Предположим, что $x \notin \mathfrak{m}$ для некоторого максимального идеала \mathfrak{m} . Тогда имеем $A = \mathfrak{m} + (x)$, а потому 1 = u + xy для некоторых $u \in \mathfrak{m}$ и $y \in A$. Следовательно, $1 - xy = u \in \mathfrak{m}$, что невозможно, так как 1 - xy обратим.

1.3. Операции над идеалами

Определение 1.3.1.

- (1) Пусть \mathfrak{a} , \mathfrak{b} идеалы в кольце A. Тогда $\mathfrak{a} + \mathfrak{b}$ идеал, состоящий из сумм x + y, где $x \in \mathfrak{a}$, $y \in \mathfrak{b}$. Это наименьший идеал, содержащий \mathfrak{a} и \mathfrak{b} . Он называется *суммой* \mathfrak{a} и \mathfrak{b} .
- (2) Также, для любого семейсва идеалов $\{\mathfrak{a}_{\alpha}\}_{\alpha\in\mathcal{I}}$, можно определить сумму $\sum_{\alpha\in\mathcal{I}}\mathfrak{a}_{\alpha}$ как идеал всевозможных *конечных* сумм элементов из \mathfrak{a}_{α} ;
- (3) Пересечение любого семейства идеалов является идеалом. Таким образом, идеалы кольца A образуют полную структуру по включению;
- (4) Возникает определение *идеала, порождённого множеством:* если $S \subset A$, то $\langle S \rangle$ определяется как пересечение всех идеалов, содержащих S.
- (5) Произведением двух идеалов \mathfrak{a} и \mathfrak{b} называется идеал, порождённый всевозможными произведениями xy, где $x \in \mathfrak{a}, y \in \mathfrak{b}$:

$$\mathfrak{a}\cdot\mathfrak{b}=\langle\{xy\,|\,x\in\mathfrak{a},y\in\mathfrak{b}\}\rangle=\Bigg\{\sum_{i=1}^nx_iy_i\,\Bigg|\,x_i\in\mathfrak{a},y_i\in\mathfrak{b}\Bigg\}.$$

Замечание 1.3.2. Все три операции коммутативны и ассоциативны (упражнение). Кроме того, справедлив дистрибутивный закон:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Определение 1.3.3. Если $\mathfrak{a} + \mathfrak{b} = (1)$, то идеалы \mathfrak{a} и \mathfrak{b} называются взаимно простыми.

<u>Замечание 1.3.4.</u> В кольце \mathbb{Z} , идеалы (n) и (m) взаимно просты тогда и только тогда, когда числа n и m взаимно просты.

Доказательство: Упражнение.

Упражнение 1.3.5. Правда ли, что всякий простой идеал $\mathfrak p$ взаимно прост с любым другим идеалом $\mathfrak a$, таким, что $\mathfrak a \not\subset \mathfrak p$?

Определение 1.3.6. Пусть $A_1, A_2, ..., A_n$ — некоторые кольца. Их прямым произведением

$$A = \prod_{k=1}^{n} A_k$$

называется множество $A_1 \times A_2 \times ... \times A_n$ с поточечными операциями. Проекции $p_k : A \to A_k$ являются гомоморфизмами колец.

Теорема 1.3.7. Пусть A- кольцо, $\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_n-$ его идеалы. Определим гомоморфизм

$$\varphi:A\to \prod_{k=1}^n (A/\mathfrak{a}_k)$$

формулой $\varphi(x)=(x+\mathfrak{a}_1,x+\mathfrak{a}_2,...,x+\mathfrak{a}_n).$ Тогда:

- (1) Если идеалы \mathfrak{a}_i и \mathfrak{a}_j взаимно просты при $i \neq j$, то $\prod a_k = \bigcap a_k$;
- (2) Гомоморфизм φ сюръективен \Longleftrightarrow $\mathfrak{a}_i, \mathfrak{a}_j$ взаимно просты при $i \neq j;$
- (3) Гомоморфизм φ инъективен $\iff \bigcap \mathfrak{a}_k = (0)$.

Доказательство:

- (1) Первый пункт доказывается индукцией по n:
 - <u>База:</u> n=2. Имеем такие идеалы $\mathfrak{a},\mathfrak{b}\leqslant A$, что $\mathfrak{a}+\mathfrak{b}=(1)$. Очевидно, $\mathfrak{a}\mathfrak{b}\subset\mathfrak{a}\cap\mathfrak{b}$. Обратно, имеем

$$\mathfrak{a} \cap \mathfrak{b} = (1) \cdot (\mathfrak{a} \cap \mathfrak{b}) = (\mathfrak{a} + \mathfrak{b}) \cdot (\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{a}(\mathfrak{a} \cap \mathfrak{b}) + \mathfrak{b}(\mathfrak{a} \cap \mathfrak{b}) \subset \mathfrak{a}\mathfrak{b} + \mathfrak{b}\mathfrak{a} = \mathfrak{a}\mathfrak{b}.$$

• $\underline{\text{Переход:}}\ n-1 \to n$. Пусть $n\geqslant 3$, и для идеалов $\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_{n-1}$ результат верен. Положим

$$\mathfrak{b} = \bigcap_{k=1}^{n-1} \mathfrak{a}_k.$$

Так как $\mathfrak{a}_i+\mathfrak{a}_n=(1)$, имеем $x_k+y_k=1$ для некоторых $x_k\in\mathfrak{a}_k,y_k\in\mathfrak{a}_n.$ Следовательно,

$$\prod_{k=1}^{n-1} x_i = \prod_{k=1}^{n-1} (1-y_k) \in 1 + \mathfrak{a}_n.$$

Тогда $\mathfrak{a}_n+\mathfrak{b}=(1)$, а значит

$$\prod_{k=1}^n \mathfrak{a}_k = \mathfrak{b}a_n = b \cap \mathfrak{a}_n = \bigcap_{k=1}^n \mathfrak{a}_n.$$

(2) \Longrightarrow : Покажем, что \mathfrak{a}_1 и \mathfrak{a}_2 взаимно просты. Поскольку φ сюръективно, найдётся такой элемент $x \in A$, что

$$\varphi(x) = (1 + \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, ..., \mathfrak{a}_n).$$

Тогда имеем $x \in 1 + \mathfrak{a}_1$ и $x \in \mathfrak{a}_2$, откуда $\mathfrak{a}_1 + \mathfrak{a}_2 = (1)$.

 \Leftarrow : Достаточно показать, что для некоторого $x \in A$ выполняется

$$\varphi(x) = (1 + \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, ..., \mathfrak{a}_n).$$

Так как \mathfrak{a}_1 и \mathfrak{a}_k взаимно просты при $k\geqslant 2$, найдутся элементы $u_k\in\mathfrak{a}_1$ и $v_k\in\mathfrak{a}_k$ со свойством $1=u_k+v_k$. Тогда положим $x=\prod v_i$. Имеем

$$x = \prod (1-u_k) \in 1+\mathfrak{a}_1 \quad \text{и} \quad x \in \mathfrak{a}_k \Longrightarrow \varphi(x) = (1+\mathfrak{a}_1,\mathfrak{a}_2,...,\mathfrak{a}_n).$$

(3) Очевидно, поскольку $\bigcap \mathfrak{a}_k = \ker \varphi$,

что и требовалось.

Утверждение 1.3.8.

- (1) Пусть $\mathfrak{p}_1, \mathfrak{p}_2, ..., \mathfrak{p}_n$ простые идеалы, \mathfrak{a} идеал, содержащийся в $\bigcup_{k=1}^n \mathfrak{p}_k$. Тогда $\mathfrak{a} \subset \mathfrak{p}_k$ для некоторого k.
- (2) Пусть $\mathfrak{a}_1, \mathfrak{a}_2, ..., \mathfrak{a}_n$ некоторые идеалы, \mathfrak{p} простой идеал, содержащий $\bigcap_{k=1}^n \mathfrak{a}_k$. Тогда \mathfrak{p} содержит некоторый \mathfrak{a}_k . Если $\mathfrak{p} = \bigcap \mathfrak{a}_k$, то $\mathfrak{p} = \mathfrak{a}_k$ для некоторого k.

Доказательство:

(1) Проведём доказательство индукцией по n в следующей форме:

$$(\forall k: \mathfrak{a} \not\subset \mathfrak{p}_k) \Longrightarrow \mathfrak{a} \not\subset \bigcup_{k=1}^n \mathfrak{p}_k.$$

- <u>База:</u> n = 1. Очевидно.
- <u>Переход:</u> $n-1 \to n$. Тогда для каждого k существует такой элемент $x_k \in \mathfrak{a}$, что $x_k \notin \mathfrak{p}_i$ при каждом $i \neq k$. Если для некоторого k ещё $x_k \notin \mathfrak{p}_k$, то всё доказано. В противном случае рассмотрим элемент

$$y = \sum_{k=1}^{n} x_1 x_2 ... x_{k-1} x_{k+1} ... x_n.$$

Имеем $y \in \mathfrak{a}$. При всех k, так как $x_k \in \mathfrak{p}_k$, имеем $y \notin \mathfrak{p}_k$. Следовательно, $x \notin \bigcup_{k=1}^n \mathfrak{p}_k$.

(2) Предположим, что $\mathfrak{a}_k \not\subset \mathfrak{p}$ при всех k. Тогда найдутся элементы $x_k \in \mathfrak{a}_k$, $x_k \notin \mathfrak{p}$. Заметим, что $\prod x_k \in \prod \mathfrak{a}_k \subset \bigcap \mathfrak{a}_k$. При этом $\prod x_k \notin \mathfrak{p}$ (поскольку \mathfrak{p} прост). Следовательно, имеем $\bigcap \mathfrak{a}_k \not\subset \mathfrak{p}$, противоречие. Наконец, если $\mathfrak{p} = \bigcap \mathfrak{a}_k$, то $\mathfrak{p} \subset \mathfrak{a}_k$, а значит $\mathfrak{p} = \mathfrak{a}_k$ для некоторого k.

1.4. Аннуляторы

Определение 1.4.1. Пусть $\mathfrak{a},\mathfrak{b}$ — идеалы в кольце A. Тогда их *частным* называется множество

$$(\mathfrak{a}:\mathfrak{b}) = \{x \in A \,|\, x\mathfrak{b} \subset \mathfrak{a}\},\$$

которое само является идеалом (упражнение). В частности, частное $(0:\mathfrak{b})$ называется аннулятором идеала \mathfrak{b} и обозначается $\mathrm{Ann}(\mathfrak{b})$. Множество всех делителей нуля в кольце A можно представить как

$$D = \bigcup_{x \neq 0} \operatorname{Ann}((x)).$$

Если $\mathfrak{b}=(x)$ — главный идеал, то мы будем писать $(\mathfrak{a}:x)$ вместо $(\mathfrak{a}:(x))$.

Пример 1.4.2. Пусть $A=\mathbb{Z}$, $\mathfrak{a}=(m)$, $\mathfrak{b}=(n)$. Тогда $(\mathfrak{a}:\mathfrak{b})=(q)$, где $q=m/\gcd(m,n)$, где $\gcd(m,n)$ — наибольший общий делитель m и n.

Доказательство: Пусть

$$n = \prod_i p_i^{\alpha_i}, \quad m = \prod_i p_i^{\beta_i}.$$

Условие $x \in (\mathfrak{a} : \mathfrak{b})$ равносильно $x\mathfrak{b} \subset \mathfrak{a} \Longleftrightarrow xn \in \mathfrak{a} \Longleftrightarrow xn : m$. Если положить

$$x = \prod_{i} p_i^{\chi_i},$$

то последнее условие означает, что $\chi_i+\alpha_i\geqslant \beta_i$. Порождающий элемент $(\mathfrak{a}:\mathfrak{b})$ — это минимальное число x, обладающее этим свойством. Тогда это число x содержит p_i в минимальных степенях $\chi_i=\max(0,\beta_i-\alpha_i)$, то есть

$$x = \prod_i p_i^{\max(0,\beta_i - \alpha_i)} = \prod_i p_i^{\beta_i - \min(\alpha_i,\beta_i)} = m/\gcd(m,n).$$

Упражнение 1.4.3. Покажите, что в кольце A

- (1) $\mathfrak{a} \subset (\mathfrak{a} : \mathfrak{b});$
- (2) $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subset \mathfrak{a}$;
- (3) $((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b});$
- (4) $\left(\mathfrak{a}: \sum_{i} \mathfrak{b}_{i}\right) = \bigcap_{i} (\mathfrak{a}: \mathfrak{b}_{i}).$

Определение 1.4.4. Пусть $\mathfrak{a} \leqslant A$ — произвольный идеал. Его *радикалом* называется множество

$$r(\mathfrak{a}) = \{ x \in A \mid \exists n \in \mathbb{N}, \ x^n \in \mathfrak{a} \}.$$

Имеем $r(\mathfrak{a})=arphi^{-1}ig(\mathfrak{N}_{A/\mathfrak{a}}ig)$, так что $r(\mathfrak{a})$ — идеал в кольце A.

Упражнение 1.4.5. Пусть $\mathfrak{a}, \mathfrak{b}$ — идеалы в кольце A. Тогда

- (1) $r(r(\mathfrak{a})) = r(\mathfrak{a});$
- (2) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b});$
- (3) $r\left(\bigcup_{\alpha}\mathfrak{a}_{\alpha}\right)=\bigcup_{\alpha}r(\mathfrak{a}_{\alpha});$
- (4) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}));$
- (5) $r(\mathfrak{a}) = (1) \iff a = (1);$
- (6) Если $\mathfrak p$ простой, то $r(\mathfrak p^n)=r(\mathfrak p)$

Упражнение 1.4.6. Пусть $f:A\to B$ — сюръективный гомоморфизм колец. Покажите, что идеал $\mathfrak{b}\leqslant B$ прост тогда и только тогда, когда прост $f^{-1}(\mathfrak{b})\leqslant A$.

<u>Утверждение 1.4.7.</u> Пусть A — кольцо, $\mathfrak{a} \leqslant A$. Тогда радикал $r(\mathfrak{a})$ совпадает с пересечением всех простых идеалов, содержащих \mathfrak{a} .

$$r(\mathfrak{a}) = \bigcap \ \{\mathfrak{p} \leqslant A \ | \ \mathfrak{p} \ \textit{npocmoй}, \mathfrak{p} \supset \mathfrak{a} \}.$$

Доказательство: Применим теорему 1.2.3 к A/\mathfrak{a} . Имеем

$$\begin{split} r(a) &= \varphi^{-1} \Big(\mathfrak{N}_{A/\mathfrak{a}} \Big) = \varphi^{-1} \Big(\bigcap \big\{ \mathfrak{p} \leqslant A/\mathfrak{a} \, | \, \mathfrak{p} \, \text{ прост в } A/\mathfrak{a} \big\} \Big) = \bigcap \big\{ \varphi^{-1} (\mathfrak{p}) \, \big| \, \mathfrak{p} \, \text{ прост} \big\} = \\ &= \bigcap \big\{ \mathfrak{p} \leqslant A \, | \, \mathfrak{p} \, \text{ прост и } \mathfrak{p} \subset \mathfrak{a} \big\}, \end{split}$$

что и требовалось.

Утверждение 1.4.8.

$$D=\{x\in A\,|\,\exists y\neq 0,\ xy=0\}=\bigcup_{x\neq 0}r(\mathrm{Ann}\ (x)).$$

Доказательство: Очевидно, что если $x^n \in D$, то $x \in D$, поэтому D = r(D). Тогда мы имеем

$$D = r(D) = r\left(\bigcup_{x \neq 0} \operatorname{Ann}(x)\right) = \bigcup_{x \neq 0} r(\operatorname{Ann}(x)),$$

что и требовалось доказать.

Пример 1.4.9. Пусть $A = \mathbb{Z}$, $\mathfrak{a} = (m)$. Разложим m на простые множители:

$$m = \prod_{i=1}^k p_i^{\alpha_i}.$$

Для каждого i имеем $r((p_i))=(p_i)$ (упражнение). Тогда

$$r(\mathfrak{a}) = r\Bigg(\left(\prod_{i=1}^k p_i^{\alpha_i}\right)\Bigg) = r\Bigg(\prod_{i=1}^k \left(p_i^{\alpha_i}\right)\Bigg) = \bigcap_{i=1}^k r\big((p_i)^{\alpha_i}\big) = \bigcap_{i=1}^k (p_i).$$

<u>Утверждение 1.4.10.</u> Если радикалы $r(\mathfrak{a})$, $r(\mathfrak{b})$ идеалов \mathfrak{a} , \mathfrak{b} в кольце A взаимно просты, то \mathfrak{a} и \mathfrak{b} взаимно просты.

Доказательство: Имеем

$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r(1) = (1) \Longrightarrow \mathfrak{a} + \mathfrak{b} = (1),$$

что и требовалось.

1.5. Расширение и сужение

Определение 1.5.1. Пусть $f: A \to B$ — некий гомоморфизм колец. Если $\mathfrak{a} \leqslant A$ — идеал, то множество $f(\mathfrak{a})$, вообще говоря, не обязано быть идеалом в B (приведите соответствующий пример).

Расширением \mathfrak{a}^e идеала \mathfrak{a} называется идеал $\langle f(a) \rangle = Bf(a) \leqslant B$, порождённый образом $f(\mathfrak{a})$. Допускается представление

$$\mathfrak{a}^e = \left\{ \sum_i y_i f(x_i) \, \middle| \, x_i \in A, y_i \in B \right\}$$

Пусть теперь $\mathfrak{b} \leqslant B$ — некоторый идеал в B. Тогда $f^{-1}(\mathfrak{b})$ — идеал в A, который называется сужением \mathfrak{b} и обозначается \mathfrak{b}^c .

Замечание 1.5.2. Если $\mathfrak b$ прост, то $\mathfrak b^c$ тоже прост. Если $\mathfrak a$ прост, то $\mathfrak a^e$ не обязательно прост (например, $f: \mathbb Z \to \mathbb Q$, $\mathfrak a = (2)$).

Утверждение 1.5.3. Пусть $f: A \to B$ — гомоморфизм, $\mathfrak{a} \leqslant A$, $\mathfrak{b} \leqslant B$. Тогда

- (1) $\mathfrak{a} \subset \mathfrak{a}^{ec}, \mathfrak{b} \supset \mathfrak{b}^{ce};$
- (2) $\mathfrak{a}^e = \mathfrak{a}^{ece}, \mathfrak{b}^c = \mathfrak{b}^{cec};$
- (3) Если C множество идеалов в A, которые являются сужениями, а E множество всех идеалов в B, которые являются расширениями, то

$$C = \{ \mathfrak{a} \mid \mathfrak{a}^{ec} = \mathfrak{a} \}, \qquad E = \{ \mathfrak{b} \mid \mathfrak{b}^{ce} = \mathfrak{b} \},$$

 $u \mathfrak{a} \mapsto \mathfrak{a}^e$ — биективное отображение C на E, обратное к которому — $\mathfrak{b} \mapsto \mathfrak{b}^c$.

Доказательство: Пункт (1) тривиален:

$$\mathfrak{a}\subset f^{-1}(f(\mathfrak{a}))\subset f^{-1}(Bf(a))=\mathfrak{a}^{ec},\quad \mathfrak{b}^{ce}=Bf\big(f^{-1}(\mathfrak{b})\big)\subset B\mathfrak{b}=\mathfrak{b}.$$

Пункт (2) остаётся читателю как упражнение.

Если $\mathfrak{a}\in C$, то $\mathfrak{a}=\mathfrak{b}^c=\mathfrak{b}^{cec}=\mathfrak{a}^{ec}$. Наоборот, если $\mathfrak{a}=\mathfrak{a}^{ec}$, то $\mathfrak{a}-$ сужение \mathfrak{a}^e .

Рассуждение относительно E аналогично.

Упражнение 1.5.4. Пусть $f:A\to B, \mathfrak{a},\mathfrak{a}_1,\mathfrak{a}_2\leqslant A,\mathfrak{b},\mathfrak{b}_1,\mathfrak{b}_2\leqslant B.$ Тогда

$$\begin{split} \left(\mathfrak{a}_{1}+\mathfrak{a}_{2}\right)^{e} &= \mathfrak{a}_{1}^{e}+\mathfrak{a}_{2}^{e}, \\ \left(\mathfrak{a}_{1}\cap\mathfrak{a}_{2}\right)^{e} &\subset \mathfrak{a}_{1}^{e}\cap\mathfrak{a}_{2}^{e}, \\ \left(\mathfrak{a}_{1}\mathfrak{a}_{2}\right)^{e} &\subset \mathfrak{a}_{1}^{e}\cap\mathfrak{a}_{2}^{e}, \\ \left(\mathfrak{a}_{1}\mathfrak{a}_{2}\right)^{e} &= \mathfrak{a}_{1}^{e}\mathfrak{a}_{2}^{e}, \\ \left(\mathfrak{a}_{1}:\mathfrak{a}_{2}\right)^{e} &\subset \left(\mathfrak{a}_{1}^{e}:\mathfrak{a}_{2}^{e}\right), \\ r(\mathfrak{a})^{e} &\subset r(\mathfrak{a}^{e}), \end{split} \qquad \begin{aligned} \left(\mathfrak{b}_{1}+\mathfrak{b}_{2}\right)^{c} &\supset \mathfrak{b}_{1}^{c}+\mathfrak{b}_{2}^{c}, \\ \left(\mathfrak{b}_{1}\mathfrak{b}_{2}\right)^{c} &\supset \mathfrak{b}_{1}^{c}\mathfrak{b}_{2}^{c}, \\ \left(\mathfrak{b}_{1}:\mathfrak{b}_{2}\right)^{c} &\subset \left(\mathfrak{b}_{1}^{c}:\mathfrak{b}_{2}^{c}\right), \\ r(\mathfrak{b})^{e} &\subset r(\mathfrak{a}^{e}), \end{aligned}$$

2. Модули

2.1. Основные понятия

Определение 2.1.1. Пусть A — некоторое кольцо. A-модулем называется абелева группа (M, +, 0) вместе с линейным действием A на M,

$$\begin{split} \mu: A \times M &\longrightarrow M, \\ (\alpha, x) &\mapsto \mu(\alpha, x) =: \alpha x, \end{split}$$

причём выполняются следующие аксиомы:

$$\alpha(x+y) = \alpha x + \alpha y,$$
 $(\alpha + \beta)x = \alpha x + \beta x,$ $(\alpha \beta)x = \alpha(\beta x),$ $1x = x.$

Категория всех A-модулей обозначается $A-\operatorname{Mod}$

Замечание 2.1.2. Есть равносильное определение A-модуля: абелева группа M вместе с гомоморфизмом колец $\mu:A\to \operatorname{End}(M)$, где $\operatorname{End}(M)$ — кольцо эндоморфизмов M как абелевой группы (упражнение).

Пример 2.1.3. Понятие модуля обобщает несколько хорошо известных понятий:

- (1) Любой идеал $\mathfrak{a} \leqslant A$ является A-модулем, в частности A есть A-модуль;
- (2) Если A есть поле F, то A-модуль есть векторное пространство над полем F;
- (3) \mathbb{Z} -модули это абелевы группы (nx = x + x + ... + x).

Определение 2.1.4. Пусть M,N- некоторые A-модули. Отображение $f:M\to N$ называется гомоморфизмом A-модулей, если

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

для всех $x, y \in M$ и $\alpha, \beta \in A$.

Множество $\mathrm{Hom}(M,N)$ всех гомоморфизмов A-модулей M в N можно наделить структурой A-модуля, определив

$$(f+g)(x) = f(x) + g(x), \qquad (\alpha f)(x) = \alpha f(x)$$

для всех $x \in M$.

Замечание 2.1.5. Для любого A-модуля M, имеется естественный изоморфизм $\mathrm{Hom}(A,M)\cong M$: каждый гомоморфизм $f:A\to M$ однозначно задаётся элементом f(1), который можно выбрать произвольно.

2.2. Подмодули и фактормодули

Определение 2.2.1. Пусть M — некоторый A-модуль. Подгруппа $M'\leqslant M$ называется nodmodynem, если $AM'\subset M'$. Тогда на факторгруппу M/M' переносится структура A-модуля, если определить умножение формулой

$$\alpha(x + M') = \alpha x + M',$$

а модуль M/M' называется фактормодулем M по M'.

Определение 2.2.2. Пусть $f: M \to N$ — гомоморфизм модулей. Его *ядром* называется под модуль

$$\ker f = \{ x \in M \mid f(x) = 0 \}.$$

Его коядром называется фактормодуль

$$\operatorname{coker} f = N/f(M)$$

<u>Замечание 2.2.3.</u> Пусть M' — подмодуль M, и $M' \leq \ker f$. Тогда можно определить гомоморфизм $\overline{f}: M/M' \longrightarrow N$ следующим образом:

$$\overline{f}(x + M') = f(x).$$

Очевидно, что если x+M'=y+M', то $x-y\in M'$ и f(x)=f(y)+f(x-y)=f(y), так что определение \overline{f} корректно. Полагая, в частности, $M'=\ker f$, получаем первую теорему о гомоморфизме:

$$M/(\ker f) \cong f(M)$$
.

2.3. Операции с подмодулями

Большинство операций над идеалами обобщается на модули.

Определение 2.3.1. Пусть $\left\{M_i\right\}_{i\in\mathcal{I}}$ — семейство подмодулей модуля M.

Тогда пересечение $\bigcap_{i\in\mathcal{I}}M_i$ — подмодуль в M.

Аналогично с идеалами, возникает понятие *подмодуля*, *порождённого множеством*: если $S \subset M$, то

$$\langle S \rangle = \bigcap \{ M' \leqslant M \, | \, S \subset M' \}.$$

 $\mathit{Суммой} \sum_{i \in \mathit{I}} M_i$ называется подмодуль, порождённый всеми M_i :

$$\sum_{i\in\mathcal{I}}M_i=\left\langle\bigcup_{i\in\mathcal{I}}M_i\right\rangle.$$

Теорема 2.3.2. (вторая теорема о гомоморфизме): Пусть $M_1, M_2 \leqslant M$. Тогда

$$\frac{M_1+M_2}{M_1}\cong \frac{M_2}{M_1\cap M_2}.$$

Доказательство: Рассмотрим композицию гомоморфизмов

$$M_2 \to M_1 + M_2 \to \frac{M_1 + M_2}{M_1}.$$

Она сюръективна, так как $f^{-1}(x_1+x_2+M_1)\ni x_2$ (упражнение). Ядро этой композиции — M_1+M_2 , потому что

$$f(x_2) = 0 \Longleftrightarrow x_2 + M_1 = M_1 \Longleftrightarrow x_2 \in M_1.$$

Отсюда по первой теореме о гомоморфизме получаем требуемое.

Теорема 2.3.3. (третья теорема о гомоморфизме): Пусть $L \leqslant N \leqslant M$. Тогда

$$\frac{M/L}{N/L} \cong M/N.$$

Доказательство: Определим отображение $\theta: M/L \longrightarrow M/N$ формулой $\theta(x+L) = x+N$. Это определение корректно (упражнение). Его ядро -N/L. Следовательно, по первой теореме о гомоморфизме получаем требуемое.

<u>Определение 2.3.4.</u> Определить произведение двух подмодулей в общем случае невозможно, но можно умножить A-модуль M на идеал $\mathfrak{a} \leqslant A$:

$$\mathfrak{a}M = \langle \{\alpha_i x_i \mid \alpha_i \in \mathfrak{a}, x_i \in M\} \rangle.$$

Определение 2.3.5. Для двух подмодулей $N, P \leqslant M$, частное (N:P) определяется как

$$(N:P) = \{a \in A \,|\, aP \subset N\}.$$

Частное (N:P) — идеал в A. В частности, (0:P) называется аннулятором P и обозначается $\mathrm{Ann}(P)$. A-модуль M называется $\mathit{строгим}$, если $\mathrm{Ann}(M)=0$.

Упражнение 2.3.6.

- (1) $\operatorname{Ann}(M+N) = \operatorname{Ann}(M) \cap \operatorname{Ann}(N)$;
- (2) (N:P) = Ann((N+P)/N).

Определение 2.3.7. Пусть $x \in M$. Тогда $Ax = \{\alpha x \mid \alpha \in A\}$ — подмодуль M. Если $M = \sum_{i \in \mathcal{I}} Ax_i$, семейство $\{x_i\}_{i \in \mathcal{I}}$ называется системой образующих или порождающим множеством. A-модуль M называется конечно порождённым, если у него существует конечная система образующих.

2.4. Прямая сумма и прямое произведение

Определение 2.4.1. Пусть $\left\{M_i\right\}_{i\in\mathcal{I}}$ — семейство A-модулей. Его nрямой суммой называется множество всех *конечных кортежей* из элементов M_i :

$$\bigoplus_{i\in\mathcal{I}} M_i = \Bigg\{ f: I \to \bigcup_{i\in\mathcal{I}} M_i \, \bigg| \, f(i) \in M_i, \, \, |\operatorname{supp} f| < \infty \Bigg\},$$

где $\mathrm{supp}\, f = \{i \in \mathcal{I} \,|\, f(i) \neq 0\}$ называется носителем функции f.

Если отбросить условие конечного носителя, получится определение *прямого произведения* семейства $\{M_i\}_{i\in\mathcal{I}}$:

$$\prod_{i\in\mathcal{I}}M_i=\Bigg\{f:I\to\bigcup_{i\in\mathcal{I}}M_i\,\Bigg|\,f(i)\in M_i\Bigg\}.$$

2.5. Конечно порождённые модули

 $\underline{\textbf{Определение 2.5.1.}}$ Если A-модуль M изоморфен $\bigoplus_{i\in\mathcal{I}}M_i$, где $M_i\cong A$, то модуль M называется $\mathit{свободным}.$ Иногда используется обозначение $M=A^{\mathcal{I}}.$

Всякий конечно порождённый свободный модуль изоморфен $A \oplus A \oplus ... \oplus A$ и обозначается A^n . A^0 по определению есть нулевой модуль $\{0\}$.

<u>Пемма 2.5.2.</u> A-модуль M конечно порождён тогда и только тогда, когда $M\cong A^n/N$, где n>0 и $N\leqslant A^n$.

Доказательство:

 \Longrightarrow : Пусть $x_1,x_2,...,x_n$ порождают M. Определим $\varphi:A^n\to M$ формулой

$$\varphi(a_1,a_2,...,a_n) = a_1x_1 + a_2x_2 + ... + a_nx_n.$$

Отображение φ сюръективно по определению системы образующих. Следовательно, по первой теореме о гомоморфизме имеем $M\cong A^n/(\ker\varphi)$.

<u>Пемма 2.5.3.</u> Пусть M — конечно порождённый A-модуль, $\mathfrak a$ — некоторый идеал $\mathfrak a$ A, $a \varphi : M \to M$ — такой эндоморфизм, что $\varphi(M) \subset \mathfrak a M$. Тогда найдутся такие элементы $\alpha_1,...,\alpha_n \in \mathfrak a$, что

$$\varphi^n + \beta_1 \varphi^{n-1} + \dots + \beta_{n-1} \varphi + \beta_n = 0 \in \operatorname{End}(n).$$

Доказательство: Пусть $x_1,...,x_n$ — система образующих в M. Тогда $\varphi(x_i)\in\mathfrak{a} M$ для всех i, и

$$\begin{split} \varphi(x_i) &= \sum_{j=1}^n \alpha_{ij} x_j, \qquad \alpha_{ij} \in \mathfrak{a}. \\ &\Longrightarrow \sum_{j=1}^n \bigl(\delta_{ij} \varphi - \alpha_{ij} \bigr) \bigl(x_j \bigr) = \varphi(x_i) - \sum_{j=1}^n \alpha_{ij} x_j = 0, \end{split}$$

где $\delta_{ij}=(i==j)$? 1 : 0. Рассмотрим присоединённую матрицу S к $T=\left(\delta_{ij}\varphi-\alpha_{ij}\right)$. Тогда

$$S \cdot T \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow (\det T)(x_i) = 0 \Longrightarrow \det T = 0 \in \operatorname{End}(M).$$

При этом $\det T$ раскладывается в комбинацию вида

$$\varphi^n + \beta_1 \varphi^{n-1} + \dots + \beta_{n-1} \varphi + \beta_n$$

из чего и следует наше утверждение.

<u>Следствие 2.5.4.</u> Пусть M — конечно порождённый A-модуль, $\mathfrak{a} \leqslant A$ — такой идеал, что $\mathfrak{a} M = M$. Тогда существует элемент $\alpha \equiv 1 \pmod{\mathfrak{a}}$, для которого $\alpha M = 0$.

Доказательство: Рассмотрим эндоморфизм $\varphi: M \to M, \ \varphi(x) = x$. Имеем

$$\psi=\varphi^n+\beta_1\varphi^{n-1}+\ldots+\beta_n=0\in \mathrm{End}(M).$$

Теперь возьмём $\alpha=1+\beta_1+\ldots+\beta_n\equiv 1\ (\mathrm{mod}\ \mathfrak{a})$. Для любого $x\in M$ имеем

$$\alpha x = x + \beta_1 x + \dots + \beta_n x = \psi(x) = 0,$$

что и требовалось.

<u>Следствие 2.5.5.</u> (лемма Накаямы): Пусть M — конечно порождённый A-модуль, $\mathfrak{a} \leqslant A$ — идеал, содержащийся в радикале Джекобсона \mathfrak{R} кольца A. Тогда если $\alpha M = M$, то M = 0.

Доказательство 1: В силу предыдущего следствия, $\alpha M=0$ для некоторого $\alpha\equiv 1\ ({
m mod}\ \Re).$ По <u>лемме 1.2.5,</u> из этого следует, что α обратим в A. Поэтому $M=\alpha^{-1}\alpha M=0.$

Доказательство 2: Допустим, что $M \neq 0$. Пусть $u_1, ..., u_n$ — некоторая минимальная система образующих. Тогда $u_n \in \mathfrak{a}M$, а значит имеет место равенство

$$u_n = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n, \qquad \alpha_j \in \mathfrak{a}.$$

Отсюда получаем

$$(1-\alpha_n)u_n = a_1u_1 + \ldots + a_{n-1}u_{n-1}.$$

Поскольку $\alpha_n \in \mathfrak{R}$, из <u>леммы 1.2.5</u> следует, что $1-\alpha_n$ обратимо в A. Следовательно, u_n выражается через остальные $u_1,...,u_{n-1}$, что противоречит минимальности системы $\{u_i\}$.

<u>Следствие 2.5.6.</u> Пусть M — конечно порождённый A-модуль, N — некоторый подмодуль M, и $\mathfrak{a} \subset \mathfrak{R}$ — идеал. Тогда

$$M = \mathfrak{a}M + N \Longrightarrow M = N.$$

Доказательство: Если $M=\mathfrak{a}M+N$, то тогда $M/N=\mathfrak{a}(M/N)$:

$$M/N = \{x + N \mid x \in M\} = \{(\alpha x' + n) + N \mid \alpha \in \mathfrak{a}, x' \in M, n \in N\} =$$
$$= \{\alpha x' + N \mid \alpha \in \mathfrak{a}, x' \in M\} = \mathfrak{a}(M/N).$$

Тогда можно применить лемму Накаямы и получить M/N=0, из чего следует M=N.

2.6. Точные последовательности

Определение 2.6.1. Рассмотрим некорорую последовательность A-модулей и гомоморфизмов:

$$\sigma: \dots \longrightarrow M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \longrightarrow \dots$$
 (1)

Последовательность σ называется $\mathit{movhoй}$ в члене M_i , если im $f_i = \ker f_{i+1}$. Она называется $\mathit{movhoй}$, если она точна во всех членах.

Замечание 2.6.2. Рассмотрим следующие частные случаи:

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \text{ точна} \Longleftrightarrow f \text{ инъективен}; \tag{2}$$

$$N \stackrel{g}{\longrightarrow} L \longrightarrow 0$$
 точна $\iff g$ сюръективен; (3)

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} L \longrightarrow 0 \text{ точна} \Longleftrightarrow f \text{ ин., } g \text{ сюр., } N/f(M) \stackrel{g}{\cong} L. \tag{4}$$

Всё это дело остаётся как упражнение для читателя.

<u>Определение 2.6.3.</u> В последнем случае (2), последовательность называется короткой точной последовательностью. Любую длинную точную последовательность (1) можно разбить на короткие следующим образом: положим $N_i = \operatorname{im} f_i = \ker f_{i+1}$. Тогда для всех i имеем короткую точную последовательность

$$0 \longrightarrow N_i \stackrel{f_i}{\longrightarrow} M_i \stackrel{f_{i+1}}{\longrightarrow} N_{i+1} \longrightarrow 0.$$

Утверждение 2.6.4.

(1) Пусть

$$M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0 \tag{5}$$

- последовательность A-модулей и гомоморфизмов. Она точна тогда и только тогда, когда для всех A-модулей K точна последовательность

$$0 \longrightarrow \operatorname{Hom}(L, K) \xrightarrow{\overline{g}} \operatorname{Hom}(N, K) \xrightarrow{\overline{f}} \operatorname{Hom}(M, K). \tag{6}$$

(2) Последовательность

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} N' \stackrel{g}{\longrightarrow} L' \tag{7}$$

точна тогда и только тогда, когда для всех A-модулей K' точна последовательность

$$\operatorname{Hom}(K', M') \xrightarrow{\overline{f}} \operatorname{Hom}(K', N') \xrightarrow{\overline{g}} \operatorname{Hom}(K', L') \longrightarrow 0. \tag{8}$$

| Доказательство:

(1) Отображения $\overline{f}, \overline{g}$ определяются формулами

$$\overline{f}(\varphi) = f \circ \varphi, \qquad \overline{g}(\psi) = g \circ \psi.$$

Допустим, что (5) точна. Сначала покажем, что $\ker \overline{g}=0$. Действительно, по точности (5), g- сюръекция. Тогда если $\overline{g}(\varphi)=g\circ\varphi=0$, то для всех $l\in L$ $\varphi(l)=\varphi(g(n))=0$, откуда $\varphi=0$. Далее, мы покажем, что $\ker \overline{f}=\operatorname{im} \overline{g}$. Рассмотрим гомоморфизм

$$\varphi \in \ker \overline{f}, \qquad \varphi : N \to K.$$

Нужно построить такой гомоморфизм $\psi:L\to K$, что $\varphi=g\circ\psi.$

Пусть $l \in L$. Тогда так как g — сюръекция, найдётся элемент $n \in N$ со свойством l = g(n). Определим $\psi(l) = \varphi(g^{-1}(l))$. Чтобы показать, что это определение корректно, допустим, что $g(n_1) = l = g(n_2)$. Тогда $n_1 - n_2 \in \ker g = \operatorname{im} f$. Следовательно,

$$\varphi(n_1-n_2)=\varphi(f(m))=0\Longrightarrow \varphi(n_1)=\varphi(n_2).$$

Наконец, имеем $\psi(g(n))=\varphi(g^{-1}(g(n)))=\varphi(n)$, что доказывает $\varphi\in \operatorname{im}\overline{g}$. Обратно, пусть $\varphi\in \operatorname{im}\overline{g}$. Тогда существует такой гомоморфизм $\psi:L\to K$, что $\varphi=g\circ\psi$. Следовательно,

$$\overline{f}(\varphi) = f \circ \varphi = f \circ (g \circ \psi) = (f \circ g) \circ \psi = 0 \circ \psi = 0,$$

и тогда $\varphi \in \ker \overline{f}$.

Обратная стрелка и пункт (2) доказываются аналогично (упражнение).

Определение 2.6.5. Пусть C — некоторый класс A-модулей, а $\lambda:C\longrightarrow \mathbb{Z}$ — некоторая функция. Тогда функция λ называется $a\partial \partial umu$ вной, если для любой короткой точной последовательности

$$0 \longrightarrow M \longrightarrow N \longrightarrow L \longrightarrow 0$$
,

где $0, M, N, L \in C$, имеем

$$\lambda(M) - \lambda(N) + \lambda(L) = 0.$$

Упражнение 2.6.6. Докажите, что $\lambda(0) = 0$ для всех аддитивных функций λ .

Пример 2.6.7. Пусть A — поле F, а C — класс всех конечномерных F-векторных пространств V. Тогда соответствие $V \mapsto \dim V$ — аддитивная функция на C.

Доказательство: Рассмотрим короткую точную последовательность

$$0 \longrightarrow V_1 \stackrel{f}{\longrightarrow} V_2 \stackrel{g}{\longrightarrow} V_3 \longrightarrow 0,$$

где $V_i = F^{n_i} \ (i=1,2,3)$. Тогда имеем $V_2/f(V_1) \cong V_3$, откуда $n_2-n_1=n_3$, и функция \dim аддитивна.

Утверждение 2.6.8. Пусть C — некоторый класс A-модулей, λ — аддитивная функция на C.

$$0 \longrightarrow M_0 \longrightarrow M_1 \longrightarrow \ldots \longrightarrow M_n \longrightarrow 0$$

- точная последовательность A-модулей, в которой все модули и ядра всех гомоморфизмов принадлежат C. Тогда справедливо равенство

$$\sum_{i=0}^{n} (-1)^i \lambda(M_i) = 0.$$

Доказательство: Разобьём нашу последовательность на короткие отрезки

$$0 \longrightarrow N_i \longrightarrow M_i \longrightarrow N_{i+1} \longrightarrow 0$$
 $(N_0 = N_{n+1} = 0)$

Тогда $\lambda(M_i) = \lambda(N_i) + \lambda(N_{i+1})$. Теперь построим альтернативную сумму:

$$\begin{split} \sum_{i=0}^{n} {(-1)^i \lambda(M_i)} &= \sum_{i=0}^{n} {(-1)^i \big(\lambda(N_i) + \lambda(N_{i+1})\big)} = \sum_{i=0}^{n} {(-1)^i \lambda(N_i)} - \sum_{i=1}^{n+1} {(-1)^i \lambda(N_i)} = \\ &= \lambda(N_0) \pm \lambda(N_{n+1}) = 0, \end{split}$$

что и требовалось.

2.7. Тензорное произведение модулей

Определение 2.7.1. Пусть M, N, P — три A-модуля. Отображение $f: M \times N \to P$ называется билинейным, если отображения

$$f_m: n \mapsto f(m,n)$$
 u $f_n: m \mapsto f(m,n)$

линейны для всех $m \in M, n \in N$.

<u>Лемма 2.7.2.</u> Пусть M, N — некоторые A-модули. Тогда существует пара (T, g), состоящая из A-модуля T и билинейного отображения $g: M \times N \to T$, со следующим свойством:

для любого A-модуля P и билинейного отображения $f: M \times N \to P$ существует единственное линейное отображение $f': T \to P$, такое, что $f = g \circ f'$.

Если (T,g) и (T',g') — две пары, удовлетворяющие этому универсальному свойству, то существует единственный изоморфизм $j:T\to T'$, для которого $g\circ j=g'$.

Доказательство:

- (1) Единственность. Заменив (P,f) на (T',g'), мы получим единственное отображение $j:T\to T'$, для которого $g'=g\circ j$. Поменяв местами T и T', получим отображение $j':T'\to T$ со свойством $g=g'\circ j'$. Тогда имеем $g=g\circ (j\circ j')$ и $g'=g'\circ (j'\circ j)$, откуда по универсальному свойству $j\circ j'=\mathrm{id}$ и $j'\circ j=\mathrm{id}$.
- (2) Cуществование. Через C обозначим свободный модуль, порождённый элементами $M \times N$, $C = A^{M \times N}$. Элементы этого модуля формальные линейные комбинации вида

$$\sum_{i=1}^n \alpha_i(x_i,y_i), \quad \text{где} \quad \alpha_i \in A, \ x_i \in M, \ y_i \in N.$$

Заметим, что эти линейные комбинации **не** упрощаются до элементов модуля $M \times N$. Теперь пусть D — подмодуль C, порождённый всеми элементами вида

$$(x + x', y) - (x, y) - (x', y),$$

 $(x, y + y') - (x, y) - (x, y'),$
 $(\alpha x, y) - \alpha \cdot (x, y),$
 $(x, \alpha y) - \alpha \cdot (x, y).$

Положим T=C/D. Для каждого базисного элемента (x,y) из C обозначим через $x\otimes y$ его образ $\pi((x,y))$. Модуль T порождён элементами вида $x\otimes y$, так как $\pi:C\to C/D$ сюръективно. Кроме того, ясно, что

$$(x + x') \otimes y = x \otimes y + x' \otimes y, \qquad x \otimes (y + y') = x \otimes y + x \otimes y',$$

 $(\alpha x) \otimes y = x \otimes (\alpha y) = \alpha(x \otimes y).$

Иными словами, отображение $g=(\otimes): M \times N \to T$ билинейно.

Теперь, любое отображение $f: M \times N \to P$ продолжается по линейности до гомоморфизма $\overline{f}: C \to P$. Если отображение f билинейно, то оно обращается в нуль на образующих D, так что $\ker f \subset D$. Следовательно, определение

$$f': T \to P, \qquad f'(x \otimes y) = f(x, y)$$

не зависит от выбора представителя $x \otimes y$, и мы имеем $f = g \circ f'$.

Этим доказательство завершено.

<u>Определение 2.7.3.</u> Построенный выше модуль T называется *тензорным произведением* модулей M и N, и обозначается $M \otimes_A N$ или просто $M \otimes N$.

Замечание 2.7.4.

- (1) Если заданы системы образующих $\left\{x_i\right\}_{i\in\mathcal{I}}$ и $\left\{y_j\right\}_{j\in\mathcal{J}}$ модулей M и N, то элементы $x_i\otimes y_j$ порождают $M\otimes N$ (упражнение). В частности, если M и N конечно порождены, то то же верно и для $M\otimes N$.
- (2) Натура элемента $x \otimes y$ зависит от контекста тензорного произведения, элементом которого он является. Если $x \in M' \leqslant M$ и $y \in N' \leqslant N$, может случиться, что $x \otimes y \in M \otimes N$ равен нулю, а $x \otimes y \in M' \otimes N'$ отличен от нуля.

В качестве примера возьмём $A=\mathbb{Z},\,M=\mathbb{Z},\,N=\mathbb{Z}/2\mathbb{Z},\,$ и пусть $M'=2\mathbb{Z}\leqslant\mathbb{Z},\,N'=N.$ Рассмотрим ненулевой элемент $1\in N$ и произведение $2\otimes 1.$ Оно равно нулю в $M\otimes N,$ так как $2\otimes x=1\otimes 2=1\otimes 0=0.$ Но в $M'\otimes N'$ оно не равно нулю.

Однако верен следующий результат:

<u>Следствие 2.7.5.</u> Пусть $x_i \in M$, $y_i \in N$ — такие элементы, что $\sum x_i \otimes y_i = 0$ в $M \otimes N$. Тогда существуют такие конечно порождённые подмодули $M_0 \leqslant M$ и $N_0 \leqslant N$, что

$$\sum (x_i \otimes y_i) = 0 \in M_0 \otimes N_0.$$

Доказательство: Допустим, что $\sum (x_i \otimes y_i) = 0 \in M \otimes N$. В обозначениях доказательства <u>леммы 2.7.2,</u> имеем $\sum (x_i, y_i) \in D$, так что $\sum (x_i, y_i)$ есть конечная линейная комбинация некоторых образующих подмодуля $D \leqslant C$. Через $\left\{x_j\right\}$ и $\left\{y_j\right\}$ обозначим все первые и вторые координаты элементов из $M \times N$, участвующих в упомянутых образующих. Наконец, определим

$$M_0 = \langle \{x_i\} \cup \{x_i\} \rangle, \qquad N_0 = \langle \{y_i\} \cup \{y_i\} \rangle.$$

 $M_0 = \big\langle$ Тогда $\sum (x_i \otimes y_i) = 0 \in M_0 \otimes N_0.$

Замечание 2.7.6. Конструкция тензорного произведения не является необходимой для понимания его смысла. Достаточно иметь в виду универсальное свойство.

<u>Лемма 2.7.7.</u> Пусть M, N, P — некоторые A-модули. Тогда существуют однозначно определённые изоморфизмы

- (1) $M \otimes N \longleftrightarrow N \otimes M$;
- (2) $(M \otimes N) \otimes P \longleftrightarrow M \otimes (N \otimes P) \longleftrightarrow M \otimes N \otimes P$;
- (3) $(M \oplus N) \otimes P \longleftrightarrow (M \otimes P) \oplus (N \otimes P)$;
- (4) $A \otimes M \longleftrightarrow M$.

Доказательство: Проведём построение первого гомоморфизма, а остальные оставим в качестве упражнения читателю.

Рассмотрим естественные изоморфизмы $\varphi: M \times N \longleftrightarrow N \times M: \varphi^{-1}$. Пусть

$$g_1: M\times N\longrightarrow M\otimes N, \qquad g_2: N\times M\longrightarrow N\otimes M.$$

Тогда по универсальному свойству тензорного произведения имеем такие гомоморфизмы

$$f: M \otimes N \longrightarrow N \otimes M, \qquad h: N \otimes M \longrightarrow M \otimes N.$$

 $f:M\otimes N\longrightarrow N\otimes M, \qquad h:N\otimes M\longrightarrow M\otimes N,$ что $g_1\circ f=\varphi\circ g_2$ и $g_2\circ h=\varphi^{-1}\circ g_1.$ Следовательно, имеем

$$g_1\circ f\circ h=\varphi\circ g_2\circ h=\varphi\circ \varphi^{-1}\circ g_1=g_1,$$

и, аналогично, $g_2 \circ h \circ f = g_2$. По универсальному свойству, из этого следуют равенства $f \circ h = \mathrm{id}$ и $h \circ f = \mathrm{id}$.

2.8. Точность тензорного произведения

Замечание 2.8.1. Пусть $f: M \times N \longrightarrow P$ билинейно. Тогда f индуцирует линейное отображение $M \longrightarrow \operatorname{Hom}(N,P)$. Наоборот, всякое отображение $\varphi: M \longrightarrow \operatorname{Hom}(N,P)$ задаёт билинейное отображение: $(x,y)\mapsto \varphi(x)(y)$. Поэтому множество S всех билинейных отображений $M\times N\to P$ находится в естественном соответствии с $\operatorname{Hom}(M,\operatorname{Hom}(N,P))$. По универсальному свойству тензорного произведения, имеем

$$\operatorname{Hom}(M \otimes N, P) \cong \operatorname{Hom}(M, \operatorname{Hom}(N, P)).$$

При надобности, нетрудно проверить, что это естественное соответствие линейно.