NeuGenGo

Kann unser neuronales Netz besser Go spielen als wir?

Lennart Braun, Armin Schaare, Theresa Eimer

Praktikum Parallele Programmierung Fachbereich Informatik Universität Hamburg

03.06.2015

Gliederung (Agenda)

- 1 Ziele
- 2 Go
- 3 Das Netz
- 4 Das Lernen
- 5 Lösungsansatz
- 6 Parallelisierungsschema

Ziele

- Ein gut spielendes Netz als Ergebnis
- Spiele und Netze visualisierbar machen
- Einen guten Vererbungsmechanismus finden

Go - Das Spiel

- Asiatisches Brettspiel
- Wird auf Brettern mit 19x19 Knoten gespielt
- Ziel: gleichzeitig Gebiet einkreisen und gegnerische Steine schlagen
- Spielende: wenn beide Spieler passen

Figure: Beispiel eines Bretts

Go - Die Umsetzung

- Gespielt wird auf kleineren Brettern (bis 9x9)
- Repräsentation des Brettes als eigener Datentyp, der den Spielzustand speichert
- Das Spiel endet, wenn es keine gültigen Züge mehr gibt

Das Netz

Neuronales Netz mit...

- ... n Input-Neuronen für die Knoten auf dem Spielfeld
- ... beliebig vielen hidden layers mit jeweils beliebig vielen Knoten
- ... n Output-Neuronen für die Knoten auf dem Spielfeld (oder n+1 zum Passen)
- Pro Knoten eine Präferenz, auf die höchste wird gesetzt
- Bei ungültigen Zügen wird die nächste Präferenz gezogen und es gibt einen Punktemalus.

Was das Netz kann

- Die Eingangssignale für die nächste Schicht an Neuronen berechnen
- Die Signale zu einer gültigen Ausgabe auswerten
- Den Aufbau des Netzes ausgeben
- Ein Netz als Datei ausgeben
- Mit dem Backpropagation Algorithmus supervised learning betreiben

Figure: Beispielnetz

Quelle:

Lernen mit Backpropagation

- Supervised learning mit Eingabedaten und erwarteten Werten
- Trainiert wird auf regelkonforme Züge
- Ziel: Präferenz für falsche Züge soll 0 sein
- Vergleich von Ausgabe und erwarteten Werten
- Gemäß dem Fehler werden die Kantengewichte von hinten nach vorne angepasst

Der genetische Algorithmus

- Je mehr Spiele ein Netz gewinnt, desto wahrscheinlicher überleben dessen Eigenschaften
- Verschiedene Möglichkeiten die Vererbung zu gestalten:
 - Variable Lebensdauer von Netzen
 - Verschiedene Mutationswahrscheinlichkeiten
 - Crossovers
- Finden der besten Kombination durch Ausprobieren

Lösungsansatz

Sequentieller Algorithmus

- 1: Generiere ein zufällige Menge N_0 an neuronalen Netzwerken
- 2: Trainiere sie mit Backpropagation damit sie regelgerecht spielen
- 3: **for** Runde i = 0 bis ... **do**
- 4: for $n, m \in N_i$ do
- 5: lass die Netze n, m gegeneinander spielen
- 6: und zähle die Anzahl der Siege
- 7: end for
- 8: generiere die Menge N_{i+1} mit Hilfe eines genetischen Algorithmus abhängig von N_i und den Ergebnissen der Spiele
- 9: end for
- 10: Speichere die Netze

I/O und Visualisierung

I/O

- Smart Game Format
 - Speichern und Analyse von Partien
 - Generieren von Trainingsdaten für die Netze
- Go Text Protocol
 - Kommunikation mit anderer Software
- Dumps der neuronalen Netze

Visualisierung

Abspielen von im SGF gespeicherten Partien

Parallelisierungsschema

Hybride Parallelisierung

- verteilter Speicher
 - mehrere Partien auf verschiedenen Knoten
 - Backpropagation auf verschiedenen Knoten
- gemeinsamer Speicher
 - parallele Berechnung der Ausgaben der neuronalen Netze
 - ggf. Parallelisierung innerhalb des Go Moduls