Contents

1	LN	18		1
	1.1	Where	do rings show up?	1
		1.1.1	Exmple: $(A, +)$ and abelian group	1
		1.1.2	Example: What is we look at $End(\mathbb{Z}, +)$?	1
		1.1.3	Example: $V = \mathbb{C}^n$	2
		1.1.4	Subring	2
		1.1.5	Ring homomorphism	2
	1.2	Ideals		2
		1.2.1	Why do we care about ideals?	2
		1.2.2	How do we define $(r+I)(s+I)$ for $r,s \in \mathbb{R}$?	3

1 LN 18

Groups. M a math structure $\implies Aut(M)$ - auto of M

1.1 Where do rings show up?

The why of rings

1.1.1 Exmple: (A, +) and abelian group

 $End(A) = \{f: F: A \to A\}\ End(A)$ has 2 natural binary operations:

- \bullet + $f,g \in End(A)$ TODO
- * $f,g \in End(A)$ then $f \cdot g := f \circ g$ This is still a homomorphism. $(End(A),\cdot)$ is associative and id_A is the identity.
- Check distributivity! $(End(A), +, \cdot)$ is a ring.

1.1.2 Example: What is we look at $End(\mathbb{Z}, +)$?

All $f: \mathbb{Z} \to \mathbb{Z}$ and determined by where 1 goes. Say f(1) = n and g(1) = m, what is g(f(1))?

So
$$End(\mathbb{Z}, +) = (\mathbb{Z}, +\cdot).$$

1.1.3 Example: $V = \mathbb{C}^n$

V is complex n-space and look $\mathbb{R},$ the set of all linear tranformations $F:V\to V$

- + on \mathbb{R} $f, g: V \to V$ on linear transformations, so is f+g
- · on \mathbb{R} is just composition $f \cdot g = f \circ g$.

Check that $(R, +, \cdot)$ is a ring with $1 - 1 = id_V$. This is $M_n(\mathbb{C}) - n \times n$ complex matrices.

1.1.4 Subring

If R is a ring and $S \subseteq R$, then we say S is a subring of R if S with + and \cdot from R restricted to S is a ring

• Example $(\mathbb{Z}, +, \cdot)$ Then $n\mathbb{Z} = \{nm : m \in \mathbb{Z}\} \subseteq \mathbb{Z}$ is a subring but noice if $n \neq \pm 1$ then $n\mathbb{Z}$ does not have a 1.

If R, S TODO

1.1.5 Ring homomorphism

If $\phi: R \to S$ is a ring homomorphism then $ker(\phi) = \{a \in R : \phi(a) = 0\}$ Fact: ker(R) is closed under + and if $a \in ker(\phi)$, $r \in R$ then $ar, ra \in ker(\phi)$

1.2 Ideals

If R is a ring and $I \subseteq R$ then I is an ideal if (I, +) is an abelian group and $\forall a \in I, r \in R, ar, ra \in I$

Notice TODO

• Example: What are ideals of $(\mathbb{Z}, +, \cdot)$? $\{0\}$, $p\mathbb{Z}$, $n\mathbb{Z} \ \forall n \in \mathbb{Z}$ (this is general ideal in \mathbb{Z})

1.2.1 Why do we care about ideals?

We want to make sense of quotients!

Given $BI \subseteq R$, R some ring and I an ideal. we want to define $\frac{R}{I}$ is a ring.

TODO

1.2.2 How do we define (r+I)(s+I) for $r, s \in R$?

Define (r+I)(s+I) = rs+I. we need to se that this is well-defined. If r+I=r'+I, ie $r-r' \in I$ then $(r-r')s \in I$ because I is an ideal. $\therefore I$ is an ideal, so rs+I=r's+I.

We do something similar for s so multiplication is well-defined.

- Check: $\frac{R}{I}$ is a ring with these operations.
 - Example \mathbb{Z} has $n\mathbb{Z}$ as ideals for $n \in \mathbb{Z}$ What is $\frac{\mathbb{Z}}{n\mathbb{Z}}$ as a ring? This is arithmetic mod n.

1st Isomorphism Theorem: If $\phi: R \to S$ is a ring homomorphism then $\frac{R}{ker(\phi)} \cong Im(\phi) \subseteq S$.

Notice: Every ideal is th kernel of some ring homomorphisms. $\phi:R\to\frac{R}{I}, i\mapsto r+I, \text{ then } ker(\phi)=I.$

TODO: hard to draw the diagram Rings $\rightarrow +, \cdot$, satisfying . . . Rings with identity Rings without identity. Commutative Non-commutative Integral domain Division ring (multi-inverse of non-zero elements (No 0 divisors but not nes. commutative) ie if ab=0 then a=0 or b=0) Fields: division ring and integral domain (every non-zero elements has a multiplicative inverse) Judson, pg 192 quaternions TODO