Problem 1a. Prove that if $a \equiv 1 \pmod{n}$ or $a \equiv -1 \pmod{n}$, then $a^2 \equiv 1 \pmod{n}$.

Solution: Given $a \equiv 1 \pmod{n}$, then there exists an integer k, a = kn + 1. Then $a^2 = kn + 1$. $k^2n + 2kn + 1 = (k^2 + 2k)n + 1$, thus $a^2 \equiv 1 \pmod{n}$.

Similarly $a \equiv -1 \pmod{n}$, then a = kn - 1. Thus $a^2 = k^2n - 2kn + 1 = (k^2 - 2k)n + 1$ and $a^2 \equiv 1 \pmod{n}$.

Problem 1b. Give an example to show that the converse of the statement from part a. is not always true.

Solution: $2^2 \equiv 1 \pmod{3}$ but $2 \not\equiv 1 \pmod{3}$.

Problem 2a. Prove that if $2x \equiv 2y \pmod{5}$, then $x \equiv y \pmod{5}$.

Solution: Assume $x \not\equiv y \pmod{5}$. Then x = 5n + a and y = 5m + b, where $a, b, n, m \in \mathbb{Z}$, $a \neq b$, and 0 < a, b < 5.

$$2x = (2)5n + 2a$$
 and $2y = (2)5m + 2b$

We saw in class that $2[x]_5 \neq 2[y]_5$ because $\gcd(2,5) = 1$. Thus $2x \not\equiv 2y \pmod{5}$.

Problem 2b. Give an example of integers x, y such that $2x \equiv 2y \pmod{26}$, but $x \not\equiv y$ $\pmod{2}6$.

Solution: $x = 13, y = 0, 2(13) \equiv 2(0) \pmod{26}$, but $13 \not\equiv 0 \pmod{26}$.

Problem 3. Which of the following classes have a multiplicative inverse? If the multiplicative inverse exists, find it. If it does not exist, explain why it does not exist.

1. $[2]_5$ Solution: $2^{-1} \equiv 3 \pmod{5}$.

$$3(5k+2) \equiv (3)5k+6 \equiv (3)5k+5+1 \equiv 5(3k+1)+1 \pmod{5}$$

2. $[4]_6$ Solution: Assume there was a multiplicative inverse, x. $4x \equiv 1 \pmod{6}$. However $4x \pmod{6}$ is always even, thus there does not exist a multiplicative inverse. We can also check by exhaustion.

- $0(4) = 0 \pmod{6}$
- $2(4) = 2 \pmod{6}$
- $4(4) = 4 \pmod{6}$

- $1(4) = 4 \pmod{6}$
- $3(4) = 0 \pmod{6}$ $5(4) = 2 \pmod{6}$

3. $[7]_{11}$ Solution: $7^{-1} \equiv 8 \pmod{11}$.

$$8(11k+7) \equiv 8(11k) + 56 \equiv 11(8k+5) + 1 \pmod{11}$$