

Equipment

- DC Power Supply
 - Digital Multimeter
 - **■** Components
 - a. $1.1 \text{ k}\Omega \times 2, 2.2 \text{ k}\Omega \times 2, 3.3 \text{ k}\Omega \times 2,$ Variable Resistor $R_T \times 1$
 - b. $1 \text{ k}\Omega \times 2$, $3 \text{ k}\Omega \times 4$, $6 \text{ k}\Omega \times 1$

Learning Objectives

- To learn to use the "proportional measurement method" for input and output resistance measurement
- To learn the experimental measurement for Wheatstone bridge and the analysis and application of Δ -Y Conversion

Input/Output Resistance Measurement

By Definition

Input Resistance Measurement

- Measure the current I_i flow into the circuit, and the voltage V_i across the circuit.
- $\bullet R_{in} = V_i/I_i$

Output Resistance Measurement

- Turn off the voltage source (V_S=0), and leave R_L open
- Measure output current I_X & output voltage V_X .
- $\bullet R_{out} = {^{V_X}}/{_{I_X}}$

Background

Input/Output Resistance Measurement

Proportional Method

Input Resistance Measurement

- Connect a variable resistor (R_{T1}) in series
- Adjust R_{T1} until V_C=½ V_A
- $\bullet \text{ Measure } R_{T1} \Rightarrow R_{in} = \overline{R_{T1}}$

Background

Input/Output Resistance Measurement

Proportional Method

- Output Resistance Measurement
 - With Vs applied, set $R_L = \infty$ (open circuit)
 - ullet measure output voltage Vo and set it to be V_N
 - Connect R_{T1} in series as output load
 - Adjust R_{T1} until $V_0 = \frac{1}{2} V_N$
 - Measure $R_{T1} \Rightarrow R_{out} = R_{T1}$

Background

Wheatstone bridge

- R_1 $3K\Omega$ R_5 $1K\Omega$ R_4 $3K\Omega$ R_2 $3K\Omega$ R_4 $3K\Omega$
- The Wheatstone bridge circuit is often used in a sensor circuit application.
- Once the unbalance is occurred within the bridge, the current, whose amount depends on the amplitude of the unbalance, will flow through the branch that connecting the bridge.

ے Δ-Y Conversion

Experiments

Experiment 6
Input/Output Resistance Measurement & Δ-Y Conversion

- Experiment 6.a Input/Output Resistance Measurement
- Experiment 6.bΔ-Y Conversion

Experiment 6.aInput/Output Resistance Measurement 6.a.1 Input Resistance

- Determine the input resistance R_{in} of the circuit with Proportional Method
- Determine the input resistance R_{in} with direct measurement
- Calculate the input resistance R_{in} of by theorem
- Compare the results with % error

$$\begin{cases} R_1 = & 3.3 \ k\Omega \\ R_2 = & 3.3 \ k\Omega \\ R_3 = & 2.2 \ k\Omega \\ R_4 = & 2.2 \ k\Omega \\ R_5 = & 1.1 \ k\Omega \\ R_6 = & 1.1 \ k\Omega \end{cases}$$

Experiment 6.a Input/Output Resistance Measurement 6.a.2 Output Resistance

- Determine the output resistance R_{out} of the circuit with Proportional Method
- Determine the input resistance R_{out} with direct measurement
- Calculate the input resistance R_{out} of by theorem
- Compare the results with % error

$$\begin{cases} R_1 = & 3.3 \ k\Omega \\ R_2 = & 3.3 \ k\Omega \\ R_3 = & 2.2 \ k\Omega \\ R_4 = & 2.2 \ k\Omega \\ R_5 = & 1.1 \ k\Omega \\ R_6 = & 1.1 \ k\Omega \end{cases}$$

Experiment 6.b \Delta -Y Conversion

I. Based on Direct Measurement

- 1. Use the specified resistors to set up the circuit of Fig. A. V_1 =12 V, $R_1 = R_2 = R_3 = R_4 = 3k\Omega$, $R_5 = 1k\Omega$
- 2. Measure the practical resistance of the resistors:

$$R_1 = R_2 = R_3 = R_4 = R_5 = .$$

3. Measure the equivalent resistance of Rab with DMM

Experiment 6.b \Delta-Y Conversion

II. Based on Theoretical Calculation

- 1. Apply Δ -Y Conversion, convert Fig. A & B, into Fig. C.
- 2. Calculate the resistances of the equivalent circuit in Fig. C:

$$R_{13} = R_{15} = R_{35} = R_{35} = R_{35}$$

- 3. Calculate the equivalent resistance of Rab with different R4
 - a. $R_4 = 1 k\Omega$, $R_{ab} =$
 - b. $R_4 = 3 k\Omega$, $R_{ab} =$
 - c. $R_4 = 6 k\Omega$, $R_{ab} =$

Experiment 6.b \Delta-Y Conversion

III. Based on Current-Voltage Measurement

- 1. Connect an Ammeter in series with node-a of Fig. A to measure the current I_{ab} based on different R₄.
- 2. Based on the definition of $R_{ab} = V_1/I_{ab}$, calculate the resulted R_{ab}

a.
$$R_4 = 1 k\Omega$$
, $I_{ab} = \frac{R_{ab} = V_1/I_{ab}}{R_{ab}} = \frac{V_1/I_{ab}}{R_{ab}} = \frac{V_1/I_{ab}}{R_{$

b.
$$R_4 = 3 k\Omega$$
, $I_{ab} = ; R_{ab} = V_1/I_{ab} = ;$

c.
$$R_4 = 6 k\Omega$$
, $I_{ab} = _____$; $R_{ab} = V_1/I_{ab} = _____$

Experiment 6.b Δ-Y Conversion

IV. Bridge Current Measurement

1. Connect an Ammeter in series with R₅ of Fig. A to measure the bridge current I_{R5} based on different R₄.

```
a. R_4 = 1k\Omega, I_{R5} =
b. R_4 = 3k\Omega, I_{R5} =
c. R_4 = 6k\Omega, I_{R5} =
```

- 2. Apply Thevenin's beyond R₅ and use the equivalent circuit to calculate for I_{R5} with different R₄, and compare the results with Step 1 for % error.
- 3. Discuss your results of I~IV with tabulated data.