REACTIVE SURFACTANT COMPOSITION

Publication number: JP2001226439

Publication date:

2001-08-21

Inventor:

ISHIKAWA YOSHINOBU; SAWADA HIROKI; ISHII

YASUO

Applicant:

KAO CORP

Classification:

- international: B01F17/00; B01F17/52; C08F2/16; C08F2/24;

C08F2/26; C08F4/00; C08F12/04; C08F20/12; C08F216/12; C08F220/04; C08F222/16; B01F17/00;

C08F216/12; C08F220/04; C08F222/16; B01F17/00; B01F17/52; C08F2/12; C08F4/00; C08F12/00;

C08F20/00; C08F216/00; C08F220/00; C08F222/00; (IPC1-7): C08F222/16; B01F17/52; C08F2/24;

C08F12/04; C08F216/12; C08F220/04

- European:

B01F17/00E2; B01F17/00M; B01F17/00R; C08F2/26

Application number: JP20000033804 20000210 Priority number(s): JP20000033804 20000210

Also published as:

EP1129770 (A1) US2001020064 (A EP1129770 (B1) ES2230186T (T3) DE60107885T (T2)

Report a data error he

Abstract of JP2001226439

PROBLEM TO BE SOLVED: To provide a reactive surfactant composition for manufacturing a polymer emulsion excellent in stability without coarsening particle size. SOLUTION: The reactive surfactant composition comprises (a) a reactive surfactant having a reactive group selected from a vinyl group, an allyl or a reactive group expressed by formula (1) and an anionic hydrophilic group, in the molecule and exhibiting critical micelle concentration(CMC) of 0.007-0.4 mol/L and (b) a reactive surfactant having one of the above reactive groups and an anionic hydrophilic group and exhibiting CMC of 1× 10-5-0.007 mol/L, as the essential components in the mole ratio of the component (a)/(b)=5/95-60/40. This invention includes a method of manufacturing a polymer emulsion using the composition. (In the formula (1) R1 ar R2 are each H or -CH2X and are different each other. X is H or a substituent, Y is a carbonyl or methylene, p is 0 or 1.).

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-226439 (P2001-226439A)

(43)公開日 平成13年8月21日(2001.8.21)

(51) Int.Cl.7	識別記号	FΙ		j	f-73-ト*(参考)
C08F 222/16		C08F22	22/16		4 D 0 7 7
B01F 17/52		B01F 1	17/52		4 J O 1 1
C08F 2/24		C08F	2/24	Α	4 J 1 0 0
12/04		1	12/04		
216/12		21	16/12		
	審查請求	有 請求項	質の数2 OL	(全 9 頁)	最終頁に続く
(21)出願番号	特願2000-33804(P2000-33804)	(71)出願人	000000918		
			花王株式会社		
(22)出順日	平成12年2月10日(2000.2.10)		東京都中央区	日本橋茅場町	1丁目14番10号
		(72)発明者	石川 善信		
			和歌山県和歌	山市湊1334	花王株式会社研
			究所内		
		(72)発明者	沢田 広樹		
			和歌山県和歌	山市湊1334	花王株式会社研
			究所内		
		(74)代理人	100063897		
			弁理士 古谷	攀 (外3	名)
					最終頁に続く

(54) 【発明の名称】 反応性界面活性剤組成物

(57)【要約】

【課題】 粒径が粗大化することなく、安定性が良好なボリマーエマルジョンを製造するための反応性界面活性 剤組成物の提供。

【解決手段】 分子中にビニル基、アリル基又は式(1)で表される基から選ばれる反応性基1個とアニオン性親水基1個を持ち、臨界ミセル濃度(CMC)が0.007~0.4mol/Lの反応性界面活性剤(a)と、上記反応性基1個とアニオン性親水基1個を持ち、CMCが1×10°mol/L以上0.007mol/L未満の反応性界面活性剤(b)とを必須成分とし、(a)及び(b)成分のモル比が(a)/(b)=5/95~60/40である反応性界面活性剤組成物、及びとの組成物を用いるポリマーエマルジョンの製造法。

【化1】

$$\begin{array}{ccc}
R^1 & R^2 \\
\downarrow & \downarrow \\
CH=C-(Y)_{n}- & (1)
\end{array}$$

(R¹及びR²はH又は-CH, Xのいずれかで同一ではない。XはH又は置換基、Yはカルボニル基又はメチレ

ン基、pは0又は1である。)

【特許請求の範囲】

【請求項1】 分子中にビニル基、アリル基又は式 (1) 【化1】

$$\begin{array}{ccc}
R^1 & R^2 \\
\downarrow & \downarrow \\
CH = C - (Y)_p - & (1)
\end{array}$$

(式中、R¹及びR¹は水素原子又は-CH, Xのいずれ かでR¹とR¹は同一ではない。Xは水素原子又は置換 基、Yはカルボニル基又はメチレン基、pは0又は1で 10 ある。) で表される基から選ばれる反応性基1個とアニ オン性親水基1個を持ち、臨界ミセル濃度(CMC)が 0.007mo1/L以上0.4mo1/L以下の範囲にある反応性界 面活性剤(a)と、分子中に上記反応性基1個とアニオ ン性親水基1個を持ち、CMCが1×10°mo1/L以上 0.007mo1/L未満の範囲にある反応性界面活性剤(b) とを必須成分とし、(a)成分と(b)成分のモル比が (a)/(b)=5/95~60/40である反応性界面活性 剤組成物。

【請求項2】 請求項1記載の反応性界面活性剤組成物 20 を用いるポリマーエマルジョンの製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は反応性界面活性剤組 成物、及びこの反応性界面活性剤組成物を用いるポリマ ーエマルジョンの製造法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来、 アクリル酸エステル、スチレン等のビニル単量体を乳化 重合する場合に、アルキル硫酸塩、アルキルベンゼンス 30 ルホン酸塩、ポリオキシエチレンアルキル(アリール) エーテル硫酸エステル塩等の陰イオン界面活性剤、ポリ オキシエチレンアルキル(アリール)エーテル、酸化エ チレン/酸化プロビレン共重合体等の非イオン界面活性 剤が乳化剤として用いられてきた。乳化重合において乳 化剤は、ポリマー粒子の生成とその分散安定化に関与す るばかりでなく、ポリマーエマルジョンの機械的安定 性、化学的安定性、凍結安定性、貯蔵安定性に影響し、 さらにポリマーエマルジョンの粒子径、粘度、起泡性等 のエマルジョン物性、さらには、フィルム化した場合に 40 その耐水性、耐湿性、耐熱性、接着性、粘着性等のフィ ルム物性に大きく影響を及ぼす。塗料や粘着剤等の用途 では、ポリマーエマルジョンの乾燥でポリマー塗膜が形 成されるが、ポリマー塗膜中に残る乳化剤は耐水性、接 着性、耐候性、耐熱性等を低下させる原因となることが 指摘されている。また、合成ゴムの製造において、ポリ マーエマルジョンから塩析等でポリマーを取り出す際に 排水中に乳化剤が含まれ、排水処理の負荷が大きくなる という問題が指摘されている。

【0003】このような欠点を解決する手段として反応 50 【0010】式(1)で表される基において、Xで示さ

性界面活性剤の使用に関する数多くの特許が提案されて いる。例えば、特公昭49-46291号、特開昭58 -203960号、特開昭62-104802号、特開 平4-53802号公報等がある。しかし、これらの反 応性界面活性剤を乳化重合用乳化剤として単独で使用す ると重合安定性が不十分となる場合が多い。このため、 耐水性向上等の効果を犠牲にして従来の乳化剤を併用し なければならないという問題を有している。反応性界面 活性剤の使用量を多くすることで重合安定性を改善する こともできるが、この場合も耐水性を低下させることに

【0004】本発明の課題は、上記問題を解決し得る反 応性界面活性剤組成物を提供し、粒径が粗大化すること なく、重合安定性が良好なポリマーエマルジョンの製造 法を提供することにある。

[0005]

【課題を解決するための手段】本発明は、分子中にビニ ル基、アリル基又は式(1)

[0006]

【化2】

$$\begin{array}{ccc}
R^1 & R^2 \\
\downarrow & \downarrow \\
CH = C - (Y)_{n} - & (1)
\end{array}$$

【0007】(式中、R1及びR1は水素原子又は-CH , XのいずれかでR¹とR¹は同一ではない。Xは水素原 子又は置換基、Yはカルボニル基又はメチレン基、pは 0又は1である。)で表される基から選ばれる反応性基 1個とアニオン性親水基1個を持ち、臨界ミセル濃度 (CMC)が0.007mo1/L以上0.4mo1/L以下の範囲に ある反応性界面活性剤(a)と、分子中に上記反応性基 1個とアニオン性親水基1個を持ち、CMCが1×10° mo1/L以上0.007mo1/L未満の範囲にある反応性界面 活性剤(b)とを必須成分とし、(a)成分と(b)成 分のモル比が(a)/(b)=5/95~60/40である反 応性界面活性剤組成物、及びとの反応性界面活性剤組成 物を用いるポリマーエマルジョンの製造法を提供する。 【0008】本発明の反応性界面活性剤組成物をポリマ ーエマルジョンの製造に用いると重合安定性は極めて良 好であり、通常の乳化剤を併用しなくても円滑に重合を 進行させることができる。

[0009]

【発明の実施の形態】本発明における反応性界面活性剤 とは、分子中にラジカル重合できる反応性基1個と、ア ニオン性親水基1個、さらには界面活性能を発現させる ための疎水基を有する化合物である。反応性基が2個以 上ある場合には、架橋作用があるため、ポリマーエマル ジョンの樹脂物性への影響が大きいので使用することが できない。本発明に使用できる反応性基はビニル基、ア リル基又は式(1)で表される基である。

れる置換基としては、メチル基、エチル基等の低級アルキル基以外に、-R、-OR、-CO-OR、-CO-NHR(ここでRは後述する疎水基を示す)等の基でも良く、この場合には疎水基Rを含む基が反応性基中にR¹又はR⁴として結合していることになる。

【0011】式(1)で表される反応性基の具体例は、p=1、Yがカルボニル基の場合は、メタクリロイル基($R^1=H$ 、 $R^2=CH_3$)、クロトノイル基($R^1=CH_3$ 、 $R^2=H$)、イタコノイル基($R^1=H$ 、 $R^2=-CH_4$ CO-)、 α -アルキル又はアルケニルアクリロイル基($R^1=H$ 、 $R^2=$ 炭素数4~22のアルキル基又はアルケニル基)等、p=1、Yがメチレン基の場合にはメタリル基($R^1=H$ 、 $R^2=CH_3$)、2-エチルアリル基($R^1=H$ 、 $R^2=CH_3$)、2-エチルアリル基($R^1=H$ 0、 $R^2=CH_3$ 0、 $R^2=H$ 1、 $R^2=CH_3$ 0、 $R^2=H$ 1、 $R^2=CH_3$ 0、 $R^2=H$ 1、 $R^2=CH_3$ 0、 $R^2=H$ 1、 $R^2=CH_3$ 1、 1 R^2

【0012】反応性基としては、特にアリル基、メタリル基、メタクリロイル基、クロトノイル基、イタコノイル基、プロペニル基、イソプロペニル基が重合のしやすさと、化合物の保存安定性において両立しやすいので好ましい。重合速度の速すぎるアクリロイル基(Y=CO、p=1、R¹=R²=H)や、重合速度の遅いフマロイル基、マレオイル基(-CO-CH=CHCO-)は本発明の反応性基には含まれない。

【0013】本発明においてアニオン性親水基の具体例は、-COOM(ことでMは対イオンを表し、ナトリウム、カリウム等のアルカリ金属イオン、アンモニウムイオン、炭素数1~4のアルキル基で置換されたアンモニウムイオン等である。以下同様)、 $-SO_3M$ 、 $-O-SO_3M$ 、-O-PO(OM)-O-、-O-(CH_2CH_2O)。 $-(CH_2)$ 。-COOM(ことでnはエチレンオキサイドの平均付加モル数を示す数、kは1~3の整数、以下同様)、-O-(CH_2CH_2O)。 $-SO_3M$ 、-O-(CH_2CH_2O)。-PO(OM) -O-等が挙げられる。ポリオキシエチレン基と結合したアニオン性親水基を用いる場合、平均付加モル数nは、重合安定性の観点から50以下が好ましく、20以下が特に好ましい。

【0014】本発明の反応性界面活性剤は、アクリル酸塩、メタクリル酸塩、クロトン酸塩、イタコン酸塩等の 40ように反応性基とアニオン性親水基が一体化されている場合もある。

【0015】反応性界面活性剤の最適なアニオン性親水基は、ポリマーエマルジョンの用途、乳化重合の操作や使用するモノマー組成等により、当然ながら異なることになる。例えば、クラムを取り出す合成ゴムの製造の際には、酸析によりポリマーを簡単に水と分離できることから、アニオン性親水基として「COOMをもつ反応性界面活性剤が好ましい。また顔料が配合される塗料用等のエフルジョンを製造する場合には顔料泥和時の安定性

を良くするために、ポリオキシエチレン基を含むアニオン性親水基が好ましい。

【0016】本発明の反応性界面活性剤の疎水基として は、1価又は2価の炭化水素基のほか、パーフルオロア ルキル基、アルキル基の水素原子の一部がフッ素で置換 されたフルオロアルキル基、3-(トリメチルシリルオ キシジメチルシリル) プロビル基、3-(ビス(トリメ チルシリルオキシ)メチルシリル)プロビル基等のオリ ゴシロキサン構造をもった基が挙げられる。1価の炭化 水素基の具体例は、炭素数が3以上の直鎖又は分岐鎖の アルキル基あるいはアルケニル基、シクロアルキル基、 シクロアルケニル基、アルキル又はアルケニル基で置換 されたシクロアルキル基あるいはシクロアルケニル基、 アリール基、アルキルアリール基等である。2価の炭化 水素基の具体例は、炭素数が3以上のポリメチレン基 (-(CH₁),-、mは3以上の整数)、アルキレン 基、アルキル置換されていても良いシクロアルキレン 基、アルキル置換されていても良いアリーレン基等であ る。反応によりほとんどポリマーに取り込まれるとはい え、排水等からの環境への流出を考慮すると、生分解性 に優れた脂肪族炭化水素基が好ましく、直鎖又は分岐数 が1のアルキル基又はアルケニル基が特に好ましい。1 分子中に2個以上の疎水基を導入してもよい。

【0017】界面活性剤のCMCは主として疎水基と親水基のバランスで決定されるが、親水基よりも疎水基の影響が大きい。直鎖アルキル基を疎水基とする反応性界面活性剤の場合には、-CH、-基が1個増すごとにCMCは約1/2になることが知られており、CMCは界面活性剤の疎水基の構造を変えることで容易に調節する30 ことができる。直鎖アルキル基を疎水基とする場合、

(a) 成分のアルキル基の炭素数が $6\sim10$ 、(b) 成分のアルキル基の炭素数が $12\sim16$ のとき目的のCMCになることが多い。

【0018】上記の反応性基、アニオン性親水基、疎水基を、直接又は結合基を介して化学結合させることで本発明の反応性界面活性剤がつくられる。結合基の具体例としては、一〇一、一NH-、一〇Hュー、一〇CHュー、一〇CHュー、一〇CHュー、一〇CHュー、一〇CHュロー、親水基に直結していないポリオキシエチレン基等の2価の基や【0019】

【化3】

【0020】等の3価の基、及び結合基を2個以上組み合わせた基を挙げることができる。

から、アニオン性親水基として-COOMをもつ反応性 【0021】本発明の反応性界面活性剤の分子量は、よ 界面活性剤が好ましい。また顔料が配合される塗料用等 り高い重合安定性でより粒径の小さいエマルジョンを得 のエマルジョンを製造する場合には顔料混和時の安定性 50 るために、好ましくは2000以下がよく、特に好ましくは

1000以下である。

【0022】本発明の(a)成分は、CMCが0.007mol/L以上0.4mol/L以下、好ましくは0.02~0.2mol/Lの範囲にある反応性界面活性剤であり、単独でも2種以上でもよい。また(b)成分は、CMCが1×10⁵mol/L以上0.007mol/L未満、好ましくは0.0005~0.005mol/Lの範囲にある反応性界面活性剤であり、単独でも2種以上でもよい。なお本発明において、CMCは電気伝導度滴定法によって測定される値である。

【0023】反応性基、アニオン性親水基、疎水基及び 10 必要により結合基にどのような構造を選ぶにせよ、反応性界面活性剤のCMCを調節して、(a)成分、(b)成分のCMC範囲を満たす反応性界面活性剤を選ぶことが、本発明の組成物をつくるための必須条件である。

【0024】本発明の組成物中の(a)成分と(b)成分の比率は、モル比で(a)/(b)が5/95~60/40、好ましくは10/90~40/60であり、特に好ましくは15/85~30/70である。(a)/(b)モル比が5/95未満又は60/40を越える場合には、重合安定性が不十分であり、また60/40を越える場合にはポリマーエマルジ 20ョンの粒径が大きくなる。

【0025】本発明の反応性界面活性剤組成物を用いてポリマーエマルジョンを製造する際に用いられる単量体の具体例を挙げれば、スチレン、αーメチルスチレン、クロロスチレン等の芳香族ビニル類、(メタ)アクリル酸メチル、(メタ)アクリル酸フェステルへキシル等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル等のハロゲン化ビニリデン類、体化ビニルが受ビニルエステル類、は化ビニルがではビニルでのビニルエステル類、(メタ)アクリル酸、イタコン酸等のα、βー不飽和カルボン酸類、アクリル酸アミド等のα、βー不飽和カルボン酸類、アクリル酸アミド等のα、βー不飽和カルボン酸類、アクリル類、ブタジエン、クロロプレン、イソプレン等の共役ジエン類、その他エチレン、マレイン酸誘導体、イタコン酸誘導体、重合性基を2個以上持つ架

橋性化合物等である。これらの単量体は1種又は2種以上の混合物として使用される。

【0026】本発明の反応性界面活性剤組成物を用いて、ポリマーエマルジョンを製造する方法には特に制限がなく、モノマー滴下法、モノマー一括仕込み法、プレエマルジョン法等の公知の乳化重合法を用いることができる。

【0027】重合開始剤としては公知のものでよく、例えば、過硫酸カリウム、過硫酸アンモニウム等の無機過酸化物、 t ーブチルペルオキサイド、クメンヒドロペルオキサイド、バラメンタンペルオキサイド等の有機過酸化物、アゾビスジイソブチロニトリル、2、2'ーアゾビス(2-アミジノプロバン)ジハイドロクロライド等のアゾ系開始剤、さらには過酸化化合物に亜硫酸ナトリウム等の還元剤を組み合わせたレドックス開始剤等が挙げられる。

【0028】ポリマーエマルジョンを製造する際の本発明の反応性界面活性剤組成物の使用量は、乳化分散安定性や、耐水性等のポリマー物性の観点から、単量体100重量部に対して0.1~20重量部が好ましく、0.5~5重量部が更に好ましい。また、乳化重合において本発明の反応性界面活性剤組成物の他に、反応性基を持たない通常の界面活性剤、又は高分子活性剤を併用することもできるが、排水処理の負荷低減、ポリマー物性の低下を防止する観点から、その使用量は単量体100重量部に対して2重量部以下、好ましくは1重量部以下であることが望ましい。

[0029]

【実施例】実施例1-1~1-5、比較例1-1~1-30 4

(a) 成分として下記(a-1) と(a-2)、(b) 成分として下記(b-1) ~(b-3)を用い、表1に示す配合割合で本発明の反応性界面活性剤組成物、及び比較の反応性界面活性剤組成物を調製した。

[0030]

【化4】

$$CH_2 = C - COOK$$
 $CH_2 - COO - n - C_6H_{13}$

CMC 0.190mol/L

(a-2):

CMC 0.050mol/L

(b-1):

CMC 0.0031mol/L

(b-2):

$$\begin{array}{c} {\rm CH_2 \!\!\!\! = \!\!\! C - \!\!\!\!\! COOK} \\ {\rm I} \\ {\rm CH_2 \!\!\!\!\! - \!\!\!\!\! COO \!\!\!\!\!\! - \!\!\!\!\! n - \!\!\!\!\!\! C_{14}H_{29}} \end{array}$$

CMC 0.00087mol/L

(b-3):

$$CH_2 = C - n - C_{12}H_{25}$$

 $COOK$

CMC 0.0014mol/L

【0031】とこでCMCは下記の方法により測定し た。

【0032】<CMCの測定方法>100mLの蒸留水をビ ーカーにとり、攪拌しながら電気伝導度を測定した(電 気伝導度計は東亜電波工業(株) CM-20S型、セルC 30 時間重合する。 G-511B)。あらかじめ所定濃度に調整した反応性界面 活性剤溶液を0.2mLずつビーカー内に滴下し、滴下する てとに電気伝導度を読みとった(温度25°C)。滴定液の 反応性活性剤濃度をxmol/L、滴下した滴定液の量を ymlとすると、ビーカー内の溶液中の反応性界面活性剤 濃度Cは、C=x・y/(100+y)となる。電気伝導 度をCに対してプロットしたときの屈曲点がCMCであ

【0033】上記で調製した反応性界面活性剤組成物を 用い、下記に示すモノマー一括添加重合法により乳化重 40 マルジョン粒子の平均粒径(重量平均)を測定した。 合を行い、得られたポリマーエマルジョンを下記の方法 で評価した。結果を表1に示す。

【0034】<一括添加重合法>250mLガラス瓶にイオ

ン交換水71.5g、反応性界面活性剤組成物を有効分とし て1g、スチレン50g、2%過硫酸カリウム塩水溶液7. 5g を仕込み、窒素ガス置換を行う。これを温度60℃に 制御された回転式重合槽に設置し、回転による攪拌下3

【0035】<重合安定性>ポリマーエマルジョンを20 0メッシュのステンレス製金網で濾過し、重合後の反応 器壁や攪拌羽根等に付着した凝集物も同様に集めて濾過 し、イオン交換水による水洗後、減圧(26.6kPa)下、1 05℃で2時間乾燥させて凝集物量を求めた。使用したモ ノマーの総量に対する凝集物量の重量%で重合安定性を 表した。

【0036】<平均粒径>コールター社製の動的光散乱 法粒径測定装置(N-4SD)を使用して、ポリマーエ [0037]

【表1】

	反応性界面活性剤組成物			重合安定性	平均粒径
	(a)成分	(b)成分	(a) / (b) モル比	(%)	(nm)
実施例1-1	(a-1)	(b-1)	12.9/87.1	0.0056	85.1
実施例1-2	(a-2)	(b-1)	23.1 / 78.9	0.0092	87.6
実施例1-3	(a-2)	(b-1)	34.0/66.0	0.0128	97.8
実施例1-4	(a~2)	(b-2)	46.4/53.6	0.0136	82.8
実施例1-5	(a-2)	(b-3)	19.9/80.1	0.0043	83.3
比較例1-1	なし	(b-1)		0.0274	82.8
比較例1-2	(a-2)	(b1)	82.8/17.2	0.176	127.9
比較例1-3	なし	(b-2)	_	0.0216	76.8
比較例1-4	なし	(Ed)	_	0.0356	81.3

【0038】表1から明らかなように、実施例では重合 安定性が良く粒径も小さいが、比較例では重合安定性に 劣り、比較例1-2の場合粒径が肥大化した。

【0039】実施例2-1~2-6、比較例2-1~2-4

* 成分として下記(b-4)~(b-7)を用い、表2に 示す配合割合で本発明の反応性界面活性剤組成物、及び 比較の反応性界面活性剤組成物を調製した。

【0040】 【化5】

(a) 成分として下記 (a-3)と (a-4)、(b) *20 (a-3):

CH₂=CHCH₂OCH₂CH(OH)CH₂OOC-CH-SO₃Na n-C₈H₁₇OOC-CH₂

CH₂=CHCH₂OCH₂CH(OH)CH₂OOC-CH₂ P-C₈H₁₇OOC-CH--SO₃Na

との混合物(特開昭58-203960号公報記載の方法 で製造したもの)

CMC 0.025mol/L

(a-4):

CMC 0.025mol/L

[0041]

【化6】

11 (b-4):

> CH2=CHCH2OCH2CH(OH)CH2OOC-CH-SO3Na) n-C₁₂H₂₅OOC-CH₂

CH2=CHCH2OCH2CH(OH)CH2OOC-CH2 n-C₁₂H₂₅OOC--CH--SO₃Na

との混合物(特開昭58-208960号公報記載の方法 で製造したもの)

CMC 0.0016mol/L

(b-5):

CMC 0.00087mol/L

(b-6):

$$CH_2 = CHCH_2OCH_2 \\ \stackrel{\vdash}{CHO}(CH_2CH_2O)_{10}SO_3NH_4 \\ i-C_9H_{19} - \stackrel{\longleftarrow}{OCH_2}$$

CMC 0.0017mol/L

(b-7):

CH2=CHCH2OCH2 CHO(CH2CH2O)10SO3NH4 n-C₁₂H₂₅OCH₂

CMC 0.0025mol/L

$$[i-C_9H_{19}- \bigcirc O-$$
はプロピレントリマーとフェノールの反応

により得られるノニルフェノールに由来する基]

【0042】上記で調製した反応性界面活性剤組成物を 用い、下記に示すプレエマルジョン重合により乳化重合 を行い、得られたポリマーエマルジョンを前記の方法で 評価した。結果を表2に示す。

【0043】<プレエマルジョン重合>500mLのビーカ ーにアクリル酸2.5g、アクリル酸ブチル123.75g、メ タクリル酸メチル123.75gを仕込み、モノマー混合物を 調製した。イオン交換水107.1g に反応性界面活性剤組 40 室温まで冷却し、ポリマーエマルジョンを得た。 成物5.0g、過硫酸カリウム0.50gを溶解し、これを上 記のモノマー混合物に添加して混合し、ホモミキサーで 5000rpm/min、10分間攪拌し、均一なモノマー乳化物を

得た。

【0044】1 L-セパラブルフラスコにイオン交換水 137.9g及び上記モノマー乳化物36.2gを仕込み、窒素 気流中で30分攪拌した。次にフラスコを80℃で水浴に入 れ昇温した。30分間初期重合させ、残りのモノマー乳化 物を3時間かけて滴下した。この間フラスコ内の温度を 80±2℃に保った。滴下終了後1時間保ち熟成した後、

[0045]

【表2】

	反応性界面活性剤組成物			重合安定性	平均粒径
!	(a) 成分	(b)成分	(a) / (b) モル比	(%)	(nm)
実施例2一1	(a-3)	(b-4)	11.1/88.0	0.187	108
実施例2-2	(a-3)	(b5)	30.9/69.1	0.078	127
実施例2-3	(a-3)	(b-6)	32.7/67.3	0.051	118
実施例2-4	(a-4)	(b-4)	29.5/70.5	0.035	117
実施例2-5	(a-4)	(b-5)	9.9/90.1	0.160	110
実施例2一6	(a-3)	(b-7)	19.9/80.1	0.094	118
比較例2-1	なし	(b-4)	_	0.227	123
比較例2-2	なし	(b-5)		0.259	132
比較例2-3	(a-3)	(b-5)	87.7/12.3	2.980	237
比較例2-4	なし	(b6)		0.273	135

-3

- (a)成分として下記 (a-5)と上記 (a-4)、
- (b)成分として下記(b-8)、上記(b-5)、
- (b-6)を用い、表3に示す配合割合で本発明の反応 性界面活性剤組成物、及び比較の反応性界面活性剤組成 物を調製した。

【0046】実施例3-1~3-4、比較例3-1~3 * 【0047】この乳化重合では、使用モノマーの内容を アクリル酸ブチルの単独使用に変更する他は実施例2-

> 1~2-6に記載のプレエマルジョン重合と全く同一の 20 操作で行い、その評価結果を表3に示した。

> > [0048]

【化7】

(a-5):

CMC 0.040mol/L

(b-8):

CMC 0.004mol/L

[0049]

※ ※【表3】

	反応性界面活性剂組成物			重合安定性	平均粒径
	(a)成分	(b)成分	(a)/(b) モル比	(%)	(nm)
実施例31	(a-4)	(b-8)	5.3/94.7	0.207	109
実施例3一2	(a-5)	(b-8)	23.7/76.3	0.174	107
実施例3一3	(a-5)	(b-6)	40.1/59.9	0.134	105
実施例3-4	(a-5)	(b-5)	38.1 / 61.9	0.157	106
比較例3-1	なし	(b-5)	_	0.265	104
比較例3-2	なし	(b-6)		0.259	108
比較例3-3	なし	(b-8)	_	0,280	107

エマルジョンを得ることができる。 重合用の乳化剤として用いた場合、通常の乳化剤を併用 しなくても粒径を粗大化することなく重合安定性良好な

フロントページの続き

(51)Int.Cl.⁷

識別記号

FΙ C 0 8 F 220/04 テーマコート (参考)

(72)発明者 石井 保夫

C 0 8 F 220/04

和歌山県和歌山市湊1334 花王株式会社研 究所内

Fターム(参考) 4D077 AB03 AB15 AB20 BA01 BA03

BA07 BA13 DC02Y DC04Y

DC14Z DC26Y DC32Y DC63Y

DC64Y DC67Y DD04Y DD32Y

DE02Y DE04Y DE08Y DE09Y

DE29Y DE32Y

4J011 KA14 KB14 KB29

4J100 AA02 AB02R AB03R AB07Q

ABO8R ACO3R ACO4R AC12R

AE18P AE18Q AG02R AG04R

AJ02R AJ08R AK07Q AL03R

ALO4R AL44P AL44Q AMO2R

AMIL5R ASO2R ASO3 ASO7R BA02P BA02Q BA03P BA03Q

BA04Q BA08P BA08Q BA15P

BA15Q BA20P BA20Q BA56P

BA56Q BA64P BA64Q BC43P

BC43Q CA05 EA07 FA20