Inferring Traffic Cascading Patterns

Yuxuan Liang^{1,2}, Zhongyuan Jiang¹, Yu Zheng^{2,1,3}

- ¹ Xidian University
- ² Microsoft Research, Beijing, China
- ³ Chinese Academy of Scienses

Microsoft Research

Released Codes & Paper

Introduction

(b) Observed Cascades

(c) Cascading Pattern

Knowing the traffic cascading pattern can help

- predict future traffic conditions
- > identify bottlenecks of road networks

Challenges

- > Implicit interaction
- ➤ Multiple sources
- ➤ Geospatial correlation

Contribution

- ➤ Modeling three-fold influence
- > Cascading pattern inference
- > Real evaluation

Insight

Three-fold influences

- > Direct influence
- > Indirect influence

 $f(t_i|t_j;a_{j,i},\lambda) \propto e^{-a_{j,i}(\Delta_{j,i}+\lambda*d_{i,j})}$

> Environmental influence

Overview

Methodology

Cascading Pattern Construction

- > Given a propagation tree T, the likelihood of a cascade c:
- > Given a network G considering all possible trees, the likelihood of a cascade c:
- > Conditional independence assumption

$$f(c|T) = \prod_{(j,i)\in E_T} f(t_i|t_j;\alpha,\lambda),$$

$$f(c|G) = \sum_{T \in \mathcal{T}_c(G)} f(c|T)P(T|G),$$

$$f(C|G) = \prod_{c \in G} f(c|G).$$

Network Inference

Approximate Algorithm

Evaluation

Methods	CBD	NPA	ESA	Overall
NetInf	0.270	0.119	0.116	0.168
stNetInf	0.308	0.201	0.394	0.301
MultiTree	0.311	0.140	0.141	0.197
FBM	0.287	0.193	0.171	0.217
STC-DBN	0.307	0.198	0.225	0.243
CasInf-gd	0.359	0.258	0.488	0.368
CasInf-td	0.336	0.199	0.203	0.246
CasInf-ne	0.363	0.298	0.515	0.392
CasInf-ni	0.197	0.129	0.215	0.180
CasInf	0.384	0.317	0.545	0.415

Case Study

(d) Selected area

(f) Cascading pattern in (e)