

Principaux modes ventilatoires: VAC, VSAI

François BELONCLE, Angers Guillaume CARTEAUX, Créteil Nicolas TERZI, Grenoble

Liens d'intérêts

F Beloncle

- Honoraires pour activités de conseil:
 - Löwenstein
- Mise à disposition de matériel pour la réalisation d'études cliniques:
 - Covidien
 - Getinge
 - GE Healthcare

G Carteaux:

- Conférencier:
 - Fisher and Paykel
 - Medtronic
 - Air Liquide Medical Systems
- Honoraires pour activité de conseil:
 - Air Liquide Medical Systems
 - Löwenstein

N terzi

- Support logistique lors de congrès
 - Air Liquide
- Conférencier
 - Pfizer
 - Boëhringer Ingelheim

Objectifs

- ☐ Connaitre les principes de fonctionnement des principaux modes ventilatoires
 - VAC
 - VSAI
- □Connaître les principaux réglages
- □Savoir mesurer la mécanique respiratoire en VAC
- □Connaitre les effet d'une modification de l'assistance en ventilation assistée (VSAI)

Enseignement Innovant de la Ventilation Artificielle par la SimulatION

FORMATION EN LIGNE GRATUITE SANS LIMITE DU NOMBRE D'INSCRIPTIONS

Des vidéos didactiques

Des vidéos de simulation interactives

Une vingtaines d'experts francophones

Des jeux sérieux

https://www.fun-mooc.fr/courses/course-v1:UPEC+169001+session02/about

VOUS PENSEZ SUIVRE LE MOOC EN ENTIER

https://forms.gle/qT8QwoATkrEqBdbK7

VOUS NE PENSEZ PAS SUIVRE LE MOOC CETTE FOIS CI (prochaine session: Novembre 2020)

taiopham@gmail.com

VENTILATION NON INVASIVE

VENTILATION INVASIVE

Pmus = 0**VENTILATEUR Travail respiratoire** Ventilation assistée **MALADE** Pvent = 0VC VS

Ventilation Assistée Contrôlée (VAC) Ventilation Pression Contrôlée (VPC)

Ventilation Spontanée avec Aide Inspiratoire (VSAI)

Débit

Débit

Débit

Ventilation assistée contrôlée

Ventilation Spontanée avec Aide Inspiratoire

Donc... Volume ou Pression?

Variable réglée / variable dépendante

	VC - VAC	PC - PAC
Débit inspiratoire	Invariable - Carré	Variable - Décélérant
Volume courant	Constant	Variable
Pression de pic	Variable	Constante
Alarmes à surveiller	Pressions	Volume

VAC

 $VM = Vt \times FR$

Déclenchement: Temps ou trigger inspiratoire

En pratique...

Le modèle mono-compartimental

Résistance

$$R = \frac{\Delta P}{V'}$$

 $(cm H_2O/L/s)$

Compliance = 1/Elastance

$$C = \frac{\Delta V}{\Delta P}$$

$$Paw_t = P_0$$

Pression résistive

Pression Pression résistive élastique

Pression Pression résistive élastique

$$Paw_t = P_0 + R \times V'_t + \frac{V_t}{C}$$

« Driving pressure »Pression motrice

Compliance =
$$Vt / (P_{plat} - PEP_{totale})$$
Résistances =
$$(P_{pic} - P_{plat}) / Débit$$