Ejercicios Clase 4

Michelle Wachs

- (1) De las siguientes palabras coloreadas, diga cuales son banners. (Las letras con una raya sobre ellas son azules y las otras son rojas.)
 - (a) $884\bar{2}23\bar{3}$
 - (b) $\bar{8}\bar{8}9\bar{2}$
 - (c) $884\bar{2}2$
- (2) Recuerde la biyección que lleva ornamentos a banners. (Las letras con una raya sobre ellas son azules y las otras son rojas.)
 - (a) Encuentre la imagen del ornamento $(2,\bar{2})(\bar{3},7,5,3,\bar{3},7,\bar{1})(2,\bar{2})$
 - (b) Encuentre el ornamento único que mapea al banner $3\bar{3}3\bar{1}5\bar{2}$
- (3) Sea $W_n := \{ w \in \mathbb{P}^n : w_i \neq w_{i+1} \ \forall i \in [n-1] \}$. Expanda $\sum_{w \in W_3} x^w t^{\operatorname{des}(w)}$ en la base de funciones quasisimétricas fundamentales de Gessel.
- (4) Sea $P := P_{5,3} \ y \ G := G_{5,3}$.
 - (a) ¿Es $X_{G_{5,3}}(x,t)$ simétrica?
 - (b) Dé todos los P-tabloides T junto con su $inv_G(T)$ correspondiente.
 - (c) Expanda $X_G(x,t)$ en la base de Schur.
 - (d) Dé 5 términos de la expansion de $X_G(x,t)$ en la base F.
- (5) Muestre que para todo $\sigma \in \mathfrak{S}_n$, $\operatorname{inv}_{<2}(\sigma) = \operatorname{des}(\sigma^{-1})$
- (6) Es un resultado de Rawlings que $A_n^{(r)}(q,q) = [n]_q!$
 - (a) Verifique esto para n = 3 y todo r.
 - (b) Demuestre esto para r=2 y todo n.
- (7) Sea $P = P_{n,r}$ y sea $G = G_{n,r}$. Muestre que existe una biyección ϕ de \mathfrak{S}_n al conjunto de pares (A, B), en donde A es un P-tabloide y B es un tabloide estandar de la misma forma que A, y si $\phi(\sigma) = (A, B)$ entonces $\operatorname{inv}_{< r}(\sigma) = \operatorname{inv}_{< r}(A)$ y $\operatorname{DES}_{\geq r}(\sigma) = \operatorname{DES}(B)$.
- (8) Sea $\rho: Qsym_n \to Qsym_n$ la involución definida en la base de funciones quasisimétricas monomiales por $\rho(M_\alpha) = M_{\alpha^{\text{rev}}}$ para cada composición α . Extienda la involución ρ a $Qsym_n[t]$. Demuestre que

$$\rho(X_G(\mathbf{x},t)) = t^{|E|} X_G(\mathbf{x},t^{-1}).$$

1

- (9) Demuestre que si $X_G(\mathbf{x},t)$ es simétrica (en \mathbf{x}) entonces es palindrómica.
- (10) Demuestre que $X_{G_{n,r}}(\mathbf{x},t)$ es simétrica en \mathbf{x} para todo $r \in [n]$.