

Computer Vision

Lecture 09: Weakly-/Self-supervised Learning

- Self-supervision: Learning without tagged data.
- The method could be applied to any inputs.
 - Speech, image, video, text and etc.


```
Input = [CLS] the man went to [MASK] store [SEP]
         he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
         penguin [MASK] are flight ##less birds [SEP]
Label = NotNext
```

Transformer architecture is trained by 1) Masked language model, 2) Next sentence prediction

Include a gap between patches

Randomly jitter each patch location

Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015

Context Prediction: Predict relative positions of patches

- You have to understand the object to solve this problem!
- Be aware of trivial solution! CNN is especially good at it

Unsupervised Visual Representation Learning by Context Prediction. ICCV 2015

Sample image

Extract 9 patches

Permutate 9 patches

Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV 2016.

Solving the Jigsaw

- Use stronger supervision, solve the real jigsaw problem
- Harder problem, better ability for networks

Predicting the rotations

Predict the 4 types of rotation angles.

Method	Conv1	Conv2	Conv3	Conv4	Conv5
ImageNet labels	19.3	36.3	44.2	48.3	50.5
Random Random rescaled Krähenbühl et al. (2015)	11.6 17.5	17.1 23.0	16.9 24.5	16.3 23.2	14.1 20.6
Context (Doersch et al., 2015) Context Encoders (Pathak et al., 2016b) Colorization (Zhang et al., 2016a) Jigsaw Puzzles (Noroozi & Favaro, 2016) BIGAN (Donahue et al., 2016) Split-Brain (Zhang et al., 2016b) Counting (Noroozi et al., 2017)	16.2 14.1 12.5 18.2 17.7 17.7 18.0	23.3 20.7 24.5 28.8 24.5 29.3 30.6	30.2 21.0 30.4 34.0 31.0 35.4 34.3	31.7 19.8 31.5 33.9 29.9 35.2 32.5	29.6 15.5 30.3 27.1 28.0 32.8 25.7
(Ours) RotNet	18.8	31.7	38.7	38.2	36.5

ImageNet classification top-1 accuracy

Unsupervised representation learning by predicting image rotations. In ICLR 2018.

Self-supervision for video

Find corresponding pairs using visual tracking

Wang, X., & Gupta, A. (2015). Unsupervised learning of visual representations using videos. In *ICCV2015*

Self-supervision for video

Is the temporal order of a video correct?

Encode the cause and effect of action

Misra, I., Zitnick, C. L., & Hebert, M. Shuffle and learn: unsupervised learning using temporal order verification. In *ECCV 2016*.

Self-supervision for video

Is the temporal order of a video correct?

Find the odd sequence

Fernando, B., Bilen, H., Gavves, E., & Gould, S. Self-Supervised Video Representation Learning With Odd-One-Out Networks. *In CVPR2017*.

Unsupervised Learning of Object Landmarks through Conditional Image Generation, NeurIPS'18.

Unsupervised geometry-aware representation learning

Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation, ECCV'18.

Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation, ECCV'18.

Contrastive learning

Contrastive learning

Contrastive learning

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation:												
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Weakly-supervised learning

Weakly-supervised learning

- Weak supervision: Incomplete supervision
- Training data with only coarse-grained labels.

Bounding box

DOG, DOG, CAT

Image-level label

Semantic segmentation

Weakly-supervised learning

Weakly-supervised object detection

Weakly Supervised Deep Detection Networks, CVPR'16

Weakly-supervised object detection

$$[\sigma_{\text{class}}(\mathbf{x}^c)]_{ij} = \frac{e^{x_{ij}^c}}{\sum_{k=1}^C e^{x_{kj}^c}}$$

$$[\sigma_{\text{det}}(\mathbf{x}^d)]_{ij} = \frac{e^{x_{ij}^d}}{\sum_{k=1}^{|\mathcal{R}|} e^{x_{ik}^d}}$$

Weakly-supervised object detection

Original image

Predicted patch weights

Ground-truth patches

Attention-based Deep Multiple Instance Learning, ICML'18

Predicted patch weights

aK

Class Activation Map (CAM)

Learning Deep Features for Discriminative Localization, CVPR'16

Class Activation Map (CAM)

$$M_c(x,y) = \sum_k w_k^c f_k(x,y)$$

CAM to Mask

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NIPS'12

CAM to Mask

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(x_{i}) + \sum_{i < j} \psi_{p}(x_{i}, x_{j})$$

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \underbrace{\sum_{m=1}^K w^{(m)} k^{(m)} (\mathbf{f}_i, \mathbf{f}_j)}_{k(\mathbf{f}_i, \mathbf{f}_j)}$$

$$\mu(x_i, x_j) = [x_i \neq x_j]$$

$$k(\mathbf{f}_{i}, \mathbf{f}_{j}) = w^{(1)} \underbrace{\exp\left(-\frac{|p_{i} - p_{j}|^{2}}{2\theta_{\alpha}^{2}} - \frac{|I_{i} - I_{j}|^{2}}{2\theta_{\beta}^{2}}\right)}_{\text{appearance kernel}} + w^{(2)} \underbrace{\exp\left(-\frac{|p_{i} - p_{j}|^{2}}{2\theta_{\gamma}^{2}}\right)}_{\text{smoothness kernel}}$$

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, NIPS'12

Limitation of CAM

CAM covers only the most discriminative part of the object, not the entire object.

Attention-based Dropout Layer for Weakly Supervised Object Localization, CVPR'19

Limitation of CAM

Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR'21

$$\mathcal{F}^k = [\mathbf{F}_1^k, \mathbf{F}_2^k, ..., \mathbf{F}_B^k] \in \mathbb{R}^{B \times C \times H \times W}$$

$$\hat{\mathcal{F}}^k \in \mathbb{R}^{1 \times (B \times H \times W) \times d}$$

$$[\mathbf{A}_1^k, \mathbf{A}_2^k, ..., \mathbf{A}_B^k] = SelfAttention(\hat{\mathcal{F}}^k)$$

$$\mathcal{L}_{cls} = \frac{1}{B \times K} \sum_{n=1}^{B} \sum_{k=1}^{K} \mathcal{L}_{BCE}(Linear(GAP(\boldsymbol{A}_{n}^{k})), \boldsymbol{l}_{n}^{k})$$

Summary

- Supervised learning requires us to collect large-scale data for our own applications.
- Weakly-supervised, Self-supervised learning methods provide a way to prevent collecting data.

