C.02.01.A2 – Combustão e Equilíbrio Químico Aplicação em FTAF - Finite Time Air-Fuel Otto Engine Model

Prof. C. Naaktgeboren, PhD

C.02.01.A2 - Combustão e Equilíbrio Químico

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Ar Modelo de Vapor de Combustível

C.02.01.A2 - Combustão e Equilíbrio Químico

Modelo de Combustível

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

• $\varepsilon/(1+\psi)$ é a razão combustível-ar estequiométrica.

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas

Modelo de Ar

Modelo de Vapor de Combustível

Modelo de Ar

- Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;
- \bullet Todos os demais gases inertes são modelados como sendo N_2 ;
- Valor típico para ψ é de $79/21 \approx 3,76$.

C.02.01.A2 - Combustão e Equilíbrio Químico

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Ar

Modelo de Vapor de Combustível

Razão de Equivalência:

• Seja ϕ a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)}, \qquad \text{assim},$$

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e
- $\bullet \phi = 1$ modela misturas combustível-ar estequiométricas.

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Ar Modelo de Vapor de Combustível

Mistura Ar-Combustível:

- Quantidades químicas reais de ar e combustível são n_{air} e n_f ...
- \bullet ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$

$$n_{\rm air} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{1 + \psi}{1 + \psi + \phi \varepsilon}.$$

Prof. C. Naaktgeboren, PhD C.02.01.A2 - Combustão e Equilíbrio Químico

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Equilíbrio Químico

C.02.01.A2 - Combustão e Equilíbrio Químico

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:

$$K(T) = \frac{n_{\text{H}_2\text{O}}n_{\text{CO}}}{n_{\text{CO}_2}n_{\text{H}_2}} = K(1740 \text{ K}) = 3,5.$$

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Equilíbrio Químico

Reação de Combustão Básica:

A reação de combustão básica é:

$$n_{\rm f}$$
 C $n_{\rm C}$ H $n_{\rm H}$ O $n_{\rm O}$ N $n_{\rm N}$ + $n_{\rm air}$ $\left(\frac{1}{1+\psi}$ O₂ + $\frac{\psi}{1+\psi}$ N₂ $\right)$ \longrightarrow $n_{\rm CO_2}$ CO₂ + $n_{\rm H_2O}$ H₂O + $n_{\rm CO}$ CO + $n_{\rm H_2}$ H₂ + $n_{\rm O_2}$ O₂ + $n_{\rm N_2}$ N₂.

- Hipótese: oxidação mais completa possível:
- ($\phi \le 1$): sem produção de CO e H₂ $\longrightarrow n_{CO} = n_{H_2} = 0$ kmol, e o sistema fecha;
- $(\phi > 1)$: todo O_2 é utilizado $\longrightarrow n_{O_2} = 0$ kmol, e requer-se mais equações!

Prof. C. Naaktgeboren, PhD

C.02.01.A2 - Combustão e Equilíbrio Químico

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Equilíbrio Químico

Equilíbrio Químico: Solução em n_{CO} :

• Obtém-se uma equação quadrática em n_{CO} , cuja solução é:

$$rac{n_{
m CO}}{n_{
m f}} = -eta \pm \sqrt{eta^2 - \gamma}, \qquad {
m com}$$

$$\gamma = \frac{2n_{\rm C}(\phi - 1)}{\phi \varepsilon (K - 1)} \qquad e$$

$$\beta = \frac{\phi \varepsilon [(2 - K)n_{\rm C} - n_{\rm O}] + 2[K(\phi - 1) + 1]}{2(K - 1)\phi \varepsilon}.$$

	Modelos de Misturas Reagentes	
Modeloe	da Panañas Ouímians a Misturas	

Modelo de Combustão Modelo de Equilíbrio Químico

Solução da Combustão:

n_k	rico em ar, $\varphi\leqslant 1$	pobre em ar, $\phi > 1$
n_{CO_2}	$n_{\rm C}n_{\rm f} = n_{\rm C}\frac{\Phi \epsilon}{1+\Psi}n_{\rm air}$	$n_{\rm C}n_{\rm f} - n_{\rm CO} = n_{\rm C} \frac{\Phi \epsilon}{1 + \psi} n_{\rm air} - n_{\rm CO}$
$n_{ m H_2O}$	$\frac{n_{\rm H}}{2}n_{\rm f} = \frac{n_{\rm H}}{2} \frac{\phi \varepsilon}{1+\psi} n_{\rm air}$	$(n_{\rm O} - 2n_{\rm C})n_{\rm f} + \frac{2}{1 + \psi}n_{\rm air} + n_{\rm CO}$
$n_{\rm CO}$	0	n_{CO}
$n_{ m H_2}$	0	$\frac{2(\phi-1)}{\phi\varepsilon}n_{\rm f}-n_{\rm CO} = \frac{2(\phi-1)}{1+\psi}n_{\rm air}-n_{\rm CO}$
n_{O_2}	$(1 - \phi) \frac{n_{\rm air}}{1 + \psi} \; = \; (1 - \phi) \frac{n_{\rm f}}{\phi \epsilon}$	0
$n_{ m N_2}$	$\frac{\Psi}{1+\Psi}n_{\rm air}+\frac{n_{\rm N}}{2}n_{\rm f}$	$\frac{\Psi}{1+\Psi}n_{\rm air} + \frac{n_{\rm N}}{2}n_{\rm f}$

Prof. C. Naaktgeboren, PhD C.02.01.A2 – Combustão e Equilíbrio Químico

_ _

Modelos de Misturas Reagentes Modelos de Reações Químicas e Misturas Modelo de Combustão Modelo de Equilíbrio Químico Misturas do Modelo Ar-Combustível

Razão de Equivalência:

• Seja φ a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim

- \bullet ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\bullet \phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e
- $\phi = 1$ modela misturas combustível-ar estequiométricas.

of C Naaktgeboren PhD

C.02.01.A2 - Combustão e Equilíbrio Químico