Section 4.4

$$\frac{dx}{dt} = \frac{1}{10^2} + \frac{1}{10^2} + \frac{1}{10^2}$$

Find
$$\frac{dY}{dx}$$
 when $X = 6$ ft., $X = 8$ ft., $X = 9$ ft.:
 $X^2 + Y^2 = 100 \rightarrow AX \frac{dX}{dx} + AY \frac{dY}{dx} = 0 \rightarrow$
 $AY - X \frac{dX}{dx}$

$$\frac{dx}{dx} = \frac{\lambda}{-x} \frac{dx}{dx}$$

a.)
$$\gamma = 8$$
 10 $\frac{d\gamma}{dt} = \frac{-6 \cdot (1)}{8} = \frac{-3}{4}$ ft./sec.

b.)
$$y=6$$
 $= \frac{10}{44} = \frac{-8.(1)}{6} = \frac{-4}{3}$ $= \frac{-4}{3}$ $= \frac{-4}{3}$ $= \frac{-4}{3}$

$$(1-1)^{-1}$$
 $(1-1)^{-1}$ $(1-$

Find
$$\frac{dx}{dt}$$
 when $Y=500$ ft. and $\frac{dy}{dt}=20$ ft./see.;

$$x^{2} + 300^{2} = y^{2} - 2x \frac{dx}{dx} + 0 = 2y \frac{dy}{dx} - \frac{dx}{dx} = \frac{(500)(20)}{x} = 25 \text{ ft./sec.}$$

by similar triangles

$$\frac{20}{X+Y} = \frac{6}{Y} \rightarrow 20Y = 6X + 6Y \rightarrow 7Y = 3X \rightarrow$$

$$Y = \frac{3}{7} \times \rightarrow \frac{dY}{dt} = \frac{3}{7} \cdot \frac{dX}{dt} = \frac{3}{7} \cdot (5) = \frac{15}{7} t^{3} \cdot (sec.)$$

no motter the distance from the lamp.

$$\frac{dV}{dt} = 100 \text{ ft.}^3/\text{min.},$$

$$\text{find } \frac{dr}{dt};$$

$$V = \frac{4}{3}\pi r^3 \rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$$

a.)
$$V = 10 \text{ ft.} \rightarrow 100 = 4\pi (10)^2 \cdot \frac{dr}{dt} \rightarrow \frac{dr}{dt} = \frac{1}{4\pi} \text{ ft./min.}$$

$$\frac{dV}{dt} = 1000 \text{ yd.}^3/h\pi.,$$

$$h = v \text{ and}$$

$$V = \frac{1}{3}\pi v^2 h = \frac{1}{3}\pi h^3,$$

find dh ;

$$V = \frac{1}{3}\pi h^3 \rightarrow \frac{dV}{dt} = \pi h^2 \cdot \frac{dh}{dt}$$

$$\frac{dx}{dx} = 5 \text{ ft./sec.}$$

$$\frac{dy}{dx} = -6 \text{ ft./sec.}$$

$$\rightarrow \frac{dh}{dt} = \frac{-9}{5} \text{ ft./sec.}, so$$

h is decreasing.

196:15

$$\dot{x} = \frac{dx}{dt} = 3$$
(assume x and y
 $y = x^2$
 $\dot{y} = 2x \cdot \dot{x} \rightarrow \dot{y} = 6x$;

$$\ddot{Y} = 6\dot{x} = 6(3) = 18$$
 — $\ddot{Y} = 18$

distance from woman to boot dy = -10 ft. /sec. (Y is decreasing) dx = -5 ft./sec. (x is decreasing), dh when x=50 ft. and Y=0 ft. $=20^2+\left(\sqrt{\chi^2+\Upsilon^2}\right)^2\rightarrow$ $L = \sqrt{400 + \chi^2 + \chi^2}$ $\frac{dL}{dt} = \frac{1}{2} \left(400 + x^2 + y^2 \right)^{\frac{1}{2}} \left[2x \cdot \frac{dx}{dt} + 2y \cdot \frac{dy}{dt} \right]$ $= \frac{1}{2} \left(400 + 2500 + 0 \right)^{1/2} \left[2(50)(-5) + 2(0)(-10) \right]$ $=\frac{-250}{\sqrt{2900}}=\frac{-25}{\sqrt{29}}$ p./sec. (so L is

coso = $\frac{x}{25}$ (assume θ and x are function of t)

Dt - sin θ . $\frac{d\theta}{dx} = \frac{1}{25} \cdot \frac{dx}{dx}$ \rightarrow $\frac{dx}{dx} = -25 \cdot \sin \theta \cdot \frac{d\theta}{dx} \rightarrow \frac{dx}{dx} = -5\pi \sin \theta$;

if $\theta = \frac{\pi}{6}$ then $\frac{dx}{dx} = -5\pi \sin \frac{\pi}{6} = (-5\pi (\frac{1}{4}))$ H/sec.

b.) find $\frac{dx}{dt} = -5\pi \sin \frac{\pi}{6} = (3\pi (\frac{1}{2}) 7) \sin \frac{\pi}{6}$.

dx = -5π sin (=) = (-5π. √3) + (-5π. √3) + (-5π. √3)

c.) Find maximum and minimum 5PEED (absolute value of velocity):

velocity $\frac{dx}{dt} = -5\pi \sin\theta$ so speed is

speed = $\left|\frac{dx}{dt}\right| = 5\pi \left|\sin\theta\right|$, so speed is

maximum when $\theta = \frac{\pi}{2} \left(top\right) = \frac{3\pi}{2} \left(bottom\right)$ and minimum when $\theta = 0$ (3 o'clock) or $\pi \left(9 \text{ o'clock} \right)$.

Review Section

243:33 Find minimum slope of Y= x3-9x2+15x: "slope" equation is Y'= 3x - 18x + 15, to find minimum slope, take deinvative of "slope" equation and make a sign chart: Y'' = 6x - 18 = 0243:54 Y2+102 = x2 and dy = 5 ft./sec., find $\frac{dx}{dx}$ when a.) x = 15 ft. : $x^2 = 100 + Y^2$ $\frac{D_t}{\partial x} = \frac{\partial x}{\partial t} = \frac{\partial y}{\partial t}$ (15) dx = (515)(5) - dx = 2515 = 515 /4/sec.

6.) X=100 P $(100) \frac{dx}{dt} = (3001)(5) \rightarrow$ dx = 150 VII = 3 VII ft. / sec.

Section 3.6

[153:53] Temperature at
$$X$$
 is $T = X^2$ and by crowle at $\frac{dX}{dt} = 2 \text{ cm./min.}$ Find $\frac{dT}{dt}$ when $X = 3 \text{ cm.}$;
$$T = X^2 \rightarrow \frac{dT}{dt} = 2 \cdot X \cdot \frac{dX}{dt} = 2(3) \cdot (2) = 12 \text{ degrees} \text{ min.}$$