Greta Pataki, 2021.11.10.

- calculate the prediction for the case B=T AND C = F!
- $P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$

calculate the prediction for the case B=T AND C = F!

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

0.5 *

calculate the prediction for the case B=T AND C = F!

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

0.5 * 0.6 *

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

calculate the prediction for the case B=T AND C = F!

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

0.5 * 0.6 * 0.1 = 0.03

calculate the prediction for the case B=T AND C = F!

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

0.5 * 0.6 * 0.1 = 0.03

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$0.5 * 0.6 * 0.1 = 0.03$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$0.5 * 0.6 * 0.1 = 0.03$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$0.5 * 0.6 * 0.1 = 0.03$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$0.5 * 0.2 * 0.1 =$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$0.5 * 0.6 * 0.1 = 0.03$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$0.5 * 0.2 * 0.1 = 0.01$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \mid B \land \neg C) = \frac{P(A \land B \land \neg C)}{P(B \land \neg C)} = \frac{P(A \land B \land \neg C)}{P(A \land B \land \neg C) + P(\neg A \land B \land \neg C)}$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \mid B \land \neg C) = \frac{P(A \land B \land \neg C)}{P(B \land \neg C)} = \frac{P(A \land B \land \neg C)}{P(A \land B \land \neg C) + P(\neg A \land B \land \neg C)})$$

$$P(A \mid B \land \neg C) = \frac{0.03}{0.03 + 0.01} = 0.75$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \mid B \land \neg C) = \frac{P(A \land B \land \neg C)}{P(B \land \neg C)} = \frac{P(A \land B \land \neg C)}{P(A \land B \land \neg C) + P(\neg A \land B \land \neg C)})$$

$$P(A \mid B \land \neg C) = \frac{0.03}{0.03 + 0.01} = 0.75$$

$$P(\neg A \mid B \land \neg C) = \frac{P(\neg A \land B \land \neg C)}{P(B \land \neg C)} = \frac{P(\neg A \land B \land \neg C)}{P(A \land B \land \neg C) + P(\neg A \land B \land \neg C)}$$

$$P(A \land B \land \neg C) = P(A) * P(B|A) * P(\neg C \mid A \land B)$$

$$P(\neg A \land B \land \neg C) = P(\neg A) * P(B|\neg A) * P(\neg C| \neg A \land B)$$

$$P(A \mid B \land \neg C) = \frac{P(A \land B \land \neg C)}{P(B \land \neg C)} = \frac{P(A \land B \land \neg C)}{P(A \land B \land \neg C) + P(\neg A \land B \land \neg C)})$$

$$P(A \mid B \land \neg C) = \frac{0.03}{0.03 + 0.01} = 0.75$$

$$P(\neg A \mid B \land \neg C) = \frac{P(\neg A \land B \land \neg C)}{P(B \land \neg C)} = \frac{P(\neg A \land B \land \neg C)}{P(A \land B \land \neg C) + P(\neg A \land B \land \neg C)}$$

$$P(\neg A \mid B \land \neg C) = \frac{0.01}{0.03 + 0.01} = 0.25$$

Dinner	Sister away	Mom away	Concert
	T	F	?

calculate the prediction for the case:

Dinner	Sister away	Mom away	Concert
	T	F	?

 $P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$

Dinner	Sister away	Mom away	Concert
	T	F	?

```
P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)
0.4 *
```


Dinner	Sister away	Mom away	Concert
	T	F	?

```
P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M | C)
0.4 * 0.4 *
```


Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 =$$

calculate the prediction for the case:

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \ \land \ S \ \land \ \neg \ M) \ = \ P(C) \ * \ P(S|C) \ * \ P(\neg M \mid C)$$

0.4 * 0.4 * 0.4 = 0.064

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M | \neg C)$$

Dinner	Sister away	Mom away	Concert
	Т	F	9

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M | \neg C)$$

$$0.6 *$$

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M | \neg C)$$

$$0.6 * 0.3 *$$

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M | \neg C)$$

0.6 * 0.3 * 0.1 =

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M \mid \neg C)$$

$$0.6 * 0.3 * 0.1 = 0.018$$

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M \mid \neg C)$$

$$0.6 * 0.3 * 0.1 = 0.018$$

$$P(C \mid S \land \neg M) = \frac{0.064}{0.064 + 0.018} = 0.78$$

Dinner	Sister away	Mom away	Concert
	T	F	?

$$P(C \land S \land \neg M) = P(C) * P(S|C) * P(\neg M \mid C)$$

$$0.4 * 0.4 * 0.4 = 0.064$$

$$P(\neg C \land D \land \neg M) = P(\neg C) * P(S|\neg C) * P(\neg M | \neg C)$$

$$0.6 * 0.3 * 0.1 = 0.018$$

$$P(C \mid S \land \neg M) = \frac{0.064}{0.064 + 0.018} = 0.78$$

$$P(\neg C \mid S \land \neg M) = \frac{0.018}{0.064 + 0.018} = 0.22$$

