РЕШЕНИЯ

К ГЛАВЕ 1

- 17. Т. к. $1 < \frac{\pi}{4}$, $tg 1 < tg \frac{\pi}{4} = 1$, поэтому $\sin 1 < \cos 1$.
- **23.** f(-2)=10; один из корней $x_1=-2$; делим $2x^3-5x^2-23x-10$ на x+2, получаем $2x^2-9x-5=0$; $x_2=-1/2,\ x_3=5$.
- **25.** а) Корни уравнения $x=\frac{x+8}{x-1}$ $x_1=-2, x_2=4$ принадлежат [-5,5]; б) пусть $\frac{x+8}{x-1}=u$; $x^2-12x+3=u^2-12u+3$; (x-u)(x+u)=12(x-u); корни уравнения x=u $x_1=-2, x_2=4$, корни $x+\frac{x+8}{x-1}=12$ $x_3=2, x_4=10$.
- **27.** Равенство верно тогда и только тогда, когда f(x) и $\varphi(x)$ одного знака. $x\leqslant -1;\ x\geqslant 2.$
- **29.** $f(x+1)-f(x)\equiv -2a\sin(bx+0.5b+c)\sin(0.5b)\equiv \sin x$. Т. к. наименьший период функции $\sin(kx+n)$ равен $|2\pi/k|$, $b=\pm 1$; пусть b=1; при $x=0\sin(bx+0.5b+c)=\sin(0.5+c)=0$, поэтому $c=-0.5+\pi n$, $n\in {\bf Z}$; $a\sin(x+\pi n)=(-1)^n\sin x$, поэтому $2(-1)^{n+1}a\sin x\sin 0.5\equiv \sin x$, значит $a=\frac{(-1)^{n+1}}{2\sin 0.5}$, b=1, $c=-0.5+\pi n$; т. к. $\cos(-bx-c)=\cos(bx+c)$, получаем еще один ответ: $a=\frac{(-1)^{n+1}}{2\sin 0.5}$, b=-1, $c=0.5+\pi n$.
 - **35.5.** $y = 5^z, z = u^2, u = 3x + 1.$
- **37.** Пусть (x_A, y_A) координаты точки $A. y_B = y_A = \varphi(x); \ x_B = y_B, \ \text{т. к. } B$ лежит на прямой y = x, поэтому $y_D = y_C = f(x_B) = f(\varphi(x)).$
- 44. Пусть r радиус сечения; для усеченного конуса r линейная функция от x, r(0)=2R, r(R)=R, поэтому r=2R-x, $S=\pi r^2=\pi (2R-x)^2=\pi (4R^2+x^2-4Rx)$; для цилиндра $S=\pi r^2=\pi R^2$; для полусферы $S=\pi r^2=\pi (\sqrt{R^2-(x-3R)^2})^2=\pi (6Rx-x^2-8R^2)$.

Otbet:
$$S(x) = \begin{cases} \pi(2R-x)^2, & x \in [0,R] \\ \pi R^2, & x \in [R,3R] \\ \pi(-x^2+6Rx-8R^2), & x \in [3R,4R] \end{cases}$$

47.19. $|x| - x > 0 \Leftrightarrow |x| > x \Leftrightarrow x < 0$.

48.8.
$$\begin{cases} \sin x \geqslant 0 \\ 16 - x^2 \geqslant 0 \end{cases} \Leftrightarrow \begin{cases} 2\pi n \leqslant x \leqslant \pi + 2\pi n, n \in \mathbf{Z} \\ -4 \leqslant x \leqslant 4 \end{cases} \Leftrightarrow x \in [-4, -\pi] \cup [0, \pi].$$

- **51.2.** $y^4-2xy^2+x^2-x=0;\ y^2=t;\ t^2-2xt+x^2-x=0;\ t_{1,2}=x\pm\sqrt{x},\ x\geqslant 0;\ t_1=x+\sqrt{x}\geqslant 0$ для $\forall x\geqslant 0;\ t_2=x-\sqrt{x}\geqslant 0$ для $\forall x\geqslant 1;\ y_{1,2}=\pm\sqrt{x+\sqrt{x}},\ x\geqslant 0,\ y_{3,4}=\pm\sqrt{x-\sqrt{x}},\ x\geqslant 1.$ Две ветви определены при $x\geqslant 0,$ четыре при $x\geqslant 1.$
- **54.15.** $f(-x) = -x \cdot \frac{a^{-x}-1}{a^{-x}+1} = x \cdot \frac{1-1/a^x}{1/a^x+1} = x \cdot \frac{a^x-1}{a^x+1} = f(x)$, следовательно, функция четная.
- **66.** 1) $p = \rho gh$. Подставляя $h = 0.253\,\mathrm{m}$, $p = 1.84 \cdot 10^3\,\Pi a$, $g = 9.8\,\mathrm{m/c^2}$, получаем $\rho = 742\,\mathrm{kr/m^3}$. Значит, p = 7271.6h. 2) При $h = 14.5\,\mathrm{cm}$ $p = 1.1 \cdot 10^3\,\Pi a$. 3) При $p = 2.65 \cdot 10^3\,\Pi a$ $h = 36.4\,\mathrm{cm}$.
- **75.** $y(x_1) = \frac{a-b-a}{a^2-b^2} = -\frac{b}{a^2-b^2}; \ \Delta y = y(x_2) y(x_1) \Rightarrow y(x_2) = y(x_1) + \Delta y = -\frac{b}{a^2-b^2} + \frac{1}{a-b} = \frac{a+b-b}{a^2-b^2} = \frac{a}{a^2-b^2} = \frac{a}{a^2-b^2} \Rightarrow a = x_2 a \Rightarrow x_2 = 2a.$
- 82. При x < -3 f(x) = 0; при $-3 \le x \le 3$ $f(x) = ax^2 + c$; $f(0) = 5 \Rightarrow c = 5$; $f(-3) = 0 \Rightarrow a(-3)^2 + 5 = 0$, $a = -\frac{5}{9} \Rightarrow f(x) = -\frac{5}{9}x^2 + 5$; при $3 \le x \le 6$ f(x) = kx + b; $\begin{cases} k \cdot 3 + b = 0 \\ k \cdot 6 + b = 2 \end{cases} \Rightarrow k = \frac{2}{3}$, b = -2. Ответ: $f(x) = \begin{cases} 0, & x < -3 \\ -\frac{5}{9}x^2 + 5, -3 \le x \le 3 \\ \frac{2}{3}x 2, & 3 < x \le 6 \end{cases}$
- **91.** Пусть L образующая конуса, R радиус основания, H высота цилиндра, P периметр осевого сечения, S боковая поверхность. Т. к. угол при вершине 60° , L=2R; $P=2L+2H+2R=6R+2H=100 \Rightarrow H=50-3R \Rightarrow$

- $S=\pi RL+\pi RH=\pi R(2R+H)=\pi R(50-R);$ S(R)— квадратичная функция с корнями R=0 и R=50 и отрицательным старшим коэффициентом, поэтому максимум достигается в вершине, абсцисса которой находится посередине между корнями. $R_{max}=\frac{0+50}{2}=25\,\mathrm{cm}.$
- **95.** Пусть дуга сектора AB, центральный угол x рад, S- площадь сектора. $P=2R+AB=2R+Rx\Rightarrow x=\frac{P-2R}{R},$ $S=\frac{R^2x}{2}=\frac{R^2(P-2R)}{2R}=\frac{R(P-2R)}{2}.$ Аналогично **91**, $R_{max}=\frac{P/2}{2}=\frac{P}{4}.$
- **102.** Расстояние от точки (x_0,y_0) до прямой Ax+By+C=0 равно $\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$. Пусть точка (x_0,y_0) лежит на прямой y=x+2, тогда $y_0=x_0+2$ и искомая сумма расстояний равна $\left(\frac{|3x_0-4(x_0+2)+8|}{\sqrt{9+16}}\right)^2+\left(\frac{|3x_0-(x_0+2)-1|}{\sqrt{9+1}}\right)^2=\frac{x_0^2}{25}+\frac{(2x_0-3)^2}{10}=\frac{22x_0^2-60x_0+45}{50}=\frac{11}{25}x_0^2-\frac{6}{5}x_0+\frac{9}{10}$. Минимум достигается при $x_0=\frac{6}{5}:(2\cdot\frac{11}{25})=\frac{15}{11}$.
- **107.** $f(x+1) = f((x+2)-1) = 2(x+2)^2 3(x+2) + 1 = 2x^2 + 5x + 3.$
- **112.** Пусть m количество вещества, I сила тока, p проводимость, C концентрация, V объем. Тогда $m=k_1I$, $I=k_2p, p=k_3C, C=k_4\frac{1}{V}\Rightarrow m=k_1k_2k_3k_4\frac{1}{V}\sim \frac{1}{V}$.
- 117.13. $y=\frac{10^x-10^{-x}}{10^x+10^{-x}}+1=\frac{2\cdot 10^x}{10^x+10^{-x}}=\frac{2\cdot 10^{2x}}{10^{2x}+1};\ 2\cdot 10^{2x}==y\cdot 10^{2x}+y;\ 10^{2x}=\frac{y}{2-y};\ x=\frac{1}{2}\lg\frac{y}{2-y}=\frac{\lg y-\lg(2-y)}{2};$ переобозначив аргументы, получаем $y=\frac{\lg x-\lg(2-x)}{2}$.
- **127.2.** Пусть H искомая высота, R радиус шара, ρ плотность дерева, ρ_B плотность воды, V объем шара, V_1 объем сегмента, погруженного в воду. По закону Архимеда $\rho V = \rho_B V_1; \ 4/3\pi R^3 \rho = \pi H^2 (R-H/3)\rho_B; \ 4/3\cdot 1000\cdot 0,8 = H^2 (10-H/3)\cdot 1; \ 3200/(30-H) = H^2.$ Уравнение решить графически. $x\approx 14.26$ см.

131. $y = k \cdot a^x = a^{\ln k} \cdot a^x = a^{\ln k + x}$. График этой функции получается из графика $y = a^x$ сдвигом на $\ln k$ влево.

137.1 ch²
$$x - \text{sh}^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x} - (e^{2x} - 2 + e^{-2x})) = 1.$$

- **141.** $y(-x)=\log_a(-x+\sqrt{(-x)^2+1})=\log_a(\sqrt{x^2+1}-x)=$ $=\log_a\frac{x^2+1-x^2}{\sqrt{x^2+1}+x}=\log_a\frac{1}{\sqrt{x^2+1}+x}=-\log_a(x+\sqrt{x^2+1})=-y(x).$ Функция нечетная, ее график симметричен относительно начала координат. $y=\log_a(x+\sqrt{x^2+1}); \ x+\sqrt{x^2+1}==a^y; \ \sqrt{x^2+1}=a^y-x; \ x^2+1=a^{2y}-2xa^y+x^2; \ x=\frac{a^{2y}-1}{2a^y}==\frac{a^y-a^{-y}}{2}=\mathrm{sh}\,y.$ Обратная функция $y=\mathrm{sh}\,x.$
- **146.** $S = 1/2ab\sin x = 1/2 \cdot 1 \cdot 2 = \sin x$. $D_S = (0, \pi)$. $x_{max} = \pi/2$.
- **152.1.** Пусть T_f основной период функции f; $T_{\sin 3x} = 2\pi/3$, $T_{\sin 2x} = 2\pi/2 = \pi$; наименьшее общее кратное этих чисел $T_f = 2\pi$.
- **159.** Пусть B нижний край картины, C ее верхний край, A глаз наблюдателя. Введем систему координат с началом в точке B, ось Oy совпадает с линией стены. Тогда $B = (0,0), \ A = (l,-b), \ C = (a\sin\varphi,a\cos\varphi), \ \overrightarrow{AB} = \{-l,b\}, \ \overrightarrow{AC} = \{a\sin\varphi-l,a\cos\varphi+b\}, \ \overrightarrow{AC} \cdot \overrightarrow{AB} = -al\sin\varphi+l^2+ab\cos\varphi+b^2, \ \gamma = \arccos\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|} = \arccos\frac{b^2+l^2+a(b\cos\varphi-l\sin\varphi)}{\sqrt{l^2+b^2}\sqrt{a^2+b^2+l^2+2a(b\cos\varphi-l\sin\varphi)}}.$
- **161.3.** $\sqrt{1-x^2} \geqslant 0 \Rightarrow \arccos\sqrt{1-x^2} \in [0,\pi/2] \Rightarrow \arcsin x \geqslant 0 \Rightarrow x \in [0,1]; \ \forall x \in [0,1] \cos(\arcsin x) = \sqrt{1-\sin^2(\arcsin x)} = \sqrt{1-x^2}$, из чего следует тождество на [0,1].

К ГЛАВЕ 2

- 177. $\lim_{\substack{n\to\infty\\n>1/\sqrt{\varepsilon}}}u_n=0$; пусть $\varepsilon>0$; $|u_n-0|<\varepsilon\Leftrightarrow 1/n^2<\varepsilon\Leftrightarrow n>1/\sqrt{\varepsilon}$.
- **180.** $\lim_{n\to\infty}u_n=\lim_{n\to\infty}(1\pm 1/2^n)=1; \quad |u_n-1|=|\pm 1/2^n|=1/2^n;$ $1/2^n<\varepsilon\Leftrightarrow 2^n>1/\varepsilon\Leftrightarrow n>-\log_2\varepsilon.$ При $\varepsilon=10^{-4}$ $n\geqslant 14.$
 - **183.** При n > m $v_n = 0 \Rightarrow \lim_{n \to \infty} v_n = 0$.

185.
$$u_n = \frac{2^n + (-2)^n}{2^n} = 1 + (-1)^n = \begin{cases} 2, n = 2k \\ 0, n = 2k - 1 \end{cases};$$

$$\lim_{n \to \infty} v_n = \lim_{n \to \infty} \frac{2^n + (-2)^n}{3^n} = \lim_{n \to \infty} \left(\left(\frac{2}{3} \right)^n + \left(-\frac{2}{3} \right)^n \right) = 0.$$

 $\widetilde{\mathbf{188.}} \ orall arepsilon > \widetilde{0} \ \exists N_arepsilon: \ n > \overset{n \to \infty}{N_arepsilon} \Rightarrow |u_n - a| < arepsilon;$ найдем K : $k>K\Rightarrow n_k>N_{arepsilon}$, тогда $k>K\Rightarrow |u_{n_k}-a|<arepsilon.$

191. Решим неравенство $\left| \frac{x^2 - 1}{x^2 + 1} - \frac{3}{5} \right| < 0,1 \Leftrightarrow \frac{2|x^2 - 4|}{5(x^2 + 1)}$ $<\frac{1}{10}\Leftrightarrow 4|x^2-4|< x^2+1(*);$ пусть $x\geqslant 2$, тогда $|x^2-4|=x^2-4;(*)\Leftrightarrow 4x^2-16< x^2+1\Leftrightarrow |x|<\sqrt{17/3}\Leftrightarrow$ $0 \leqslant x-2 < \sqrt{17/3}-2 \approx 0.38$; при $x < 2 |x^2-4| =$ $=4-x^{2};(*) \Leftrightarrow 4(4-x^{2}) < x^{2}+1 \Leftrightarrow |x| > \sqrt{3} \Leftrightarrow 2-x >$ $> \sqrt{3} + 2 \quad \lor \quad 2 - x \quad < \quad 2 - \sqrt{3} \quad \approx \quad 0.27; \quad |x - 2| \quad <$ $< \min(2 - \sqrt{3}, \sqrt{17/3} - 2) = 2 - \sqrt{3} \Rightarrow \left| \frac{x^2 - 1}{x^2 + 1} - \frac{3}{5} \right| < 0, 1.$

193. $|\sin x - 1| = |\sin x - \sin \pi/2| = 2 \left| \sin \frac{x - \pi/2}{2} \right| \left| \cos \frac{x + \pi/2}{2} \right| \le$ $\leqslant 2\left|rac{x-\pi/2}{2}
ight|\cdot 1=|x-\pi/2|$; возьмем $\delta=arepsilon$, тогда $|x-\pi/2|{<}\delta$ $|\sin x - 1| \leqslant |x - \pi/2| < \varepsilon$; при $\varepsilon = 0.01$ достаточно взять $\delta = 0.01$; точное решение неравенства $1 - \sin x < 0.01$ дает $\delta = \pi/2 - \arcsin 0.99 \approx 0.133.$

195. Пусть $\varepsilon > 0$; $|y-1| < \varepsilon \Leftrightarrow \left| \frac{x^2-1}{x^2+3} - 1 \right| < \varepsilon \Leftrightarrow \frac{4}{x^2+3} < \varepsilon \Leftrightarrow$ $x^2>4/\varepsilon-3$; при $\varepsilon\leqslant 4/3$ $|x|>\sqrt{4/\varepsilon-3}$; при $\varepsilon>4/3$ x любое.

198.
$$\left| \frac{1+2x}{x} \right| > 10^4 \Leftrightarrow \left| 2 + \frac{1}{x} \right| > 10^4 \Leftrightarrow \begin{bmatrix} 2+1/x > 10^4 \\ 2+1/x < -10^4 \end{bmatrix} \Leftrightarrow$$

 $(-1/2): 1+x < \varepsilon \Rightarrow y > \frac{1}{20\varepsilon}$; последнее выражение может быть сделано сколь угодно большим. Функция ограничена на $(0,+\infty)$; очевидно, y > 0; при $x \geqslant 1 \ 1 + x^5 > x^5, \frac{x^2}{1+x^5} < \infty$ $<\frac{1}{x^3}\leqslant 1$; при 0< x< 1 $1+x^5>1, \frac{x^2}{1+x^5}< x^2< 1\Rightarrow 0<$ < y < 1.

210.1. $f(x)=0\Leftrightarrow\cos\frac{1}{x}=0\Leftrightarrow\frac{1}{x}=\frac{\pi}{2}+\pi n\Leftrightarrow x==\frac{2}{\pi+2\pi n}, n\in\mathbf{Z};$ т. к. функция имеет корни, сколь угодно близкие к нулю, она не является бесконечно большой.

217. u_n , очевидно, возрастает; $u_n < \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^n} < 1$.

218. Поскольку разность между функциями f(x) и g(x) бесконечно мала при $x \to a$, для $\forall \varepsilon > 0$ $\exists \delta > 0$: $0 < |x-a| < \delta \Rightarrow |f(x) - g(x)| < \varepsilon$; $g(x) - \varepsilon < f(x) < g(x) + \varepsilon < g(a - \delta) + \varepsilon$, т. к. g(x) убывает; f(x) возрастает и ограничена сверху, значит существует $\lim_{x \to a} f(x)$; аналогично доказывается существование предела g(x); равенство этих пределов следует из теоремы о предельном переходе в равенстве.

- **220.** Докажем по индукции, что $u_n < 3$. $u_1 = \sqrt{6} < \sqrt{9} = 3$; пусть $u_{n-1} < 3 \Rightarrow u_n = \sqrt{u_{n-1} + 6} < \sqrt{3 + 6} = 3$; докажем, что $u_{n-1} < u_n$; $u_{n-1} < \sqrt{6 + u_{n-1}} \Leftrightarrow u_{n-1}^2 u_{n-1} 6 < 0 \Leftrightarrow -2 < u_{n-1} < 3$. u_n возрастает и ограничена сверху, поэтому существует $\lim_{n \to \infty} u_n = a$. Переходя к пределу в равенстве $u_n = \sqrt{u_{n-1} + 6}$, получаем $a^2 = a 6$, $a_1 = -2$, $a_2 = 3$; т. к. a > 0, получаем a = 3.
- **224.** $\lim_{x \to -\pi/2 0} f(x) = 2;$ $\lim_{x \to -\pi/2 + 0} f(x) = B A.$ Функция непрерывна, поэтому B A = 2; $\lim_{x \to \pi/2 0} f(x) = A + B;$ $\lim_{x \to \pi/2 + 0} f(x) = 0 \Rightarrow A + B = 0 \Rightarrow A = -1, B = 1.$
- **229.** Функция не определена при $x=0, x=\pm 1;$ $\lim_{x\to 0} f(x)=0,$ значит x=0 точка устранимого разрыва; $\lim_{x\to \pm 1} f(x)=\infty,$ значит $x=\pm 1$ точки разрыва второго рода.

233.
$$t = 1/x$$
; $\lim_{x \to -0} f(x) = \frac{1}{1 + \lim_{x \to -0} 2^{1/x}} = \frac{1}{1 + \lim_{t \to -\infty} 2^t} = \frac{1}{1 + \lim_{t \to -\infty} 2^t} = \frac{1}{1 + 0} = 1$; $\lim_{x \to +0} f(x) = \frac{1}{1 + \lim_{x \to +0} 2^{1/x}} = \frac{1}{1 + \lim_{t \to +\infty} 2^t} = 0$.

236.
$$f(x) = \begin{cases} x+1, & x < 0 \\ 0, & x=0 \\ (x+1)2^{-\frac{1}{2x}}, & x > 0 \end{cases}$$

f(x) возрастает от -1 до 1 при $x \in [-2,0)$ и от 0 до 3/2 при

 $x \in [0,2]$. $\lim_{x \to -0} f(x) = 1$, $\lim_{x \to +0} f(x) = 0 \Rightarrow x = 0$ — точка разрыва первого рода.

243. Пусть $f(x) = x - a \sin x - b$; f(0) = -b < 0, $f(a+b) = a - a\sin(a+b) = a(1-\sin(a+b)) \ge 0$; T.K. f(x)непрерывна, $\exists x \in (0, a+b]: f(x) = 0.$

247.
$$\lim_{n \to \infty} \frac{(n+1)^3 - (n-1)^3}{(n+1)^2 + (n-1)^2} =$$

$$= \lim_{n \to \infty} \frac{\frac{(n+1-n+1)\left((n+1)^2 + (n+1)(n-1) + (n-1)^2\right)}{(n+1)^2 + (n-1)^2}}{\frac{(n+1)^2 + (n-1)^2}{(n+1)^2 + (n-1)^2}} = \lim_{n \to \infty} \frac{2(3n^2 + 1)}{2n^2 + 2} =$$

$$= \lim_{n \to \infty} \frac{3+1/n^2}{1+1/n^2} = \frac{3}{1} = 3.$$

256.
$$\lim_{n \to \infty} \frac{\sqrt[4]{n^5 + 2} - \sqrt[3]{n^2 + 1}}{\sqrt[5]{n^4 + 2} - \sqrt{n^3 + 1}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^2}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^2}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^2}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^2}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^3}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^3}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{2/3} \sqrt[3]{1 + 1/n^3}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}{n^{4/5} \sqrt[5]{1 + 2/n^4} - n^{3/2} \sqrt{1 + 1/n^3}}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}{n^{4/5} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}{n^{4/5} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}{n^{4/5} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}{n^{4/5} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}} = \lim_{n \to \infty} \frac{n^{5/4} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt{1 + 1/n^3}}{n^{4/5} \sqrt[4]{1 + 2/n^5} - n^{3/2} \sqrt[4]{1 + 2/n^5}}$$

$$= \lim_{n \to \infty} \frac{n \to \infty}{n^{-1/4}} \frac{\sqrt[4]{1+2/n^5 - n^{-5/6}} \sqrt[3]{1+1/n^2}}{n^{-7/10}} = \frac{0+0}{0-1} = 0.$$

257.
$$\lim_{n \to \infty} \frac{n!}{(n+1)! - n!} = \lim_{n \to \infty} \frac{n!}{n!(n+1-1)!} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

262.
$$\lim_{n \to \infty} \left(\frac{1+2+...+n}{n+2} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(\frac{n(n+1)}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left(-\frac{n}{2(n+2)} - \frac{n}{2} \right) = \lim_{n \to \infty} \left($$

$$= \lim_{n \to \infty} \left(-\frac{n}{2n+4} \right) = -\frac{1}{2}.$$

271.
$$\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^4 + x^2 + 1} = \frac{0}{13} = 0.$$

273.
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6} = \lim_{x \to -2} \frac{x(x+1)(x+2)}{(x-3)(x+2)} = \lim_{x \to -2} \frac{x(x+1)}{x-3} = -\frac{2}{5}.$$

280.
$$\lim_{x \to 1} \frac{x^m - 1}{x^n - 1} = \frac{(x - 1)(x^{m+1} + x^{m-2} + \dots + 1)}{(x - 1)(x^{n-1} + x^{n-2} + \dots + 1)} = \frac{m \cdot 1}{n \cdot 1} = \frac{m}{n}.$$

285.
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 + 1} - x \right) = \lim_{x \to \infty} \left(\frac{-x}{x^2 + 1} \right) = 0.$$

291.
$$\lim_{x \to \infty} \frac{\sqrt[5]{x^7 + 3} + \sqrt[4]{2x^3 - 1}}{\sqrt[6]{x^8 + x^7 + 1} - x} = \lim_{x \to \infty} \frac{x^{7/5} \sqrt[5]{1 + 3/x^7} + x^{3/4} \sqrt[4]{2 - 1/x^3}}{x^{4/3} \sqrt[6]{1 + 1/x + 1/x^8 - x}} = \lim_{x \to \infty} \frac{x^{1/15} \sqrt[5]{1 + 3/x^7} + x^{-7/12} \sqrt[4]{2 - 1/x^3}}{\sqrt[6]{1 + 1/x + 1/x^8 - x^{-1/3}}} = \lim_{x \to \infty} \frac{x^{1/15} + 0}{1 - 0} = \infty.$$

$$= \lim_{x \to \infty} \frac{x^{1/15} \sqrt[5]{1+3/x^7 + x^{-7/12}} \sqrt[4]{2-1/x^3}}{\sqrt[6]{1+1/x+1/x^8 - x^{-1/3}}} = \lim_{x \to \infty} \frac{x^{1/15} + 0}{1 - 0} = \infty.$$

$$= \lim_{x \to 0} \frac{x^2(\sqrt{x^2 + 16 + 4})}{x^2(\sqrt{x^2 + 1 + 1})} = \frac{4 + 4}{1 + 1} = 4.$$

305. При
$$b > 0$$
 $\lim_{a \to 0} x_1 = \lim_{a \to 0} \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \lim_{a \to 0} \frac{-b - b}{2a} = \infty;$

$$\lim_{a \to 0} x_2 = \lim_{a \to 0} \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \lim_{a \to 0} \frac{4ac}{2a(-b - \sqrt{b^2 - 4ac})} = -\frac{c}{b};$$

$$\lim_{a \to 0} x_2 = \lim_{a \to 0} \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \lim_{a \to 0} \frac{4ac}{2a(-b - \sqrt{b^2 - 4ac})} = -\frac{c}{b};$$

при
$$b < 0$$
 $\lim_{a \to 0} x_1 = \frac{c}{b}$, $\lim_{a \to 0} x_2 = \infty$.

309.
$$\lim_{x \to \pm \infty} x(\sqrt{x^2 + 1} - x) = \lim_{x \to \pm \infty} x \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x} =$$

$$= \lim_{x \to \pm \infty} \frac{x}{\sqrt{x^2 + 1} + x} = \lim_{x \to \pm \infty} \frac{1}{1 + \left| \frac{1}{|x|} \sqrt{1 + 1/x^2} \right|} = \lim_{x \to \pm \infty} \frac{1}{1 \pm \sqrt{1 + 1/x^2}} = \frac{1}{1 \pm \sqrt{1 + 1$$

385.
$$\lim_{x \to \infty} \frac{x + \sin x}{x + \cos x} = \lim_{x \to \infty} \frac{1 + \sin x/x}{1 + \cos x/x} = 1.$$
387.
$$\lim_{h \to 0} \frac{\sin(a+3h) - 3\sin(a+2h) + 3\sin(a+h) - \sin a}{h^3} =$$

$$= \lim_{h \to 0} \frac{2(\sin 3h/2\cos(a+3h/2) - \sin h/2\cos(a+3h/2))}{h^3} =$$

$$= \lim_{h \to 0} \frac{2\cos(a+3h/2)(\sin 3h/2 - 3\sin h/2)}{h^3} =$$

$$= \lim_{h \to 0} \frac{2\cos(a+3h/2)(3\sin h/2 - 4\sin^3 h/2 - 3\sin h/2)}{h^3} =$$

$$= \lim_{h \to 0} \frac{2\cos(a+3h/2)(-4\sin^3 h/2)}{h^3} = 2\cos a(-4) \cdot 1/8 = -\cos a.$$
389.
$$\lim_{h \to 0} \frac{1 - \cos(1 - \cos x)}{x^4} = \lim_{x \to 0} \frac{2\sin^2((1 - \cos x)/2)}{x^4} =$$

$$= \lim_{x \to 0} \frac{2\sin^2((1 - \cos x)/2)}{(1 - \cos x)^2/4} \cdot \frac{(1 - \cos x)^2/4}{x^4} = \lim_{x \to 0} 2\frac{4\sin^4 x/2}{4x^4} =$$

$$= \lim_{x \to 0} \frac{2\sin^4 x/2}{16(x/2)^4} = \frac{1}{8}.$$
392.
$$\lim_{x \to \infty} (\cos \sqrt{x+1} - \cos \sqrt{x}) = \lim_{x \to \infty} -2\sin \frac{\sqrt{x+1} - \sqrt{x}}{2} \sin \frac{\sqrt{x+1} + \sqrt{x}}{2}$$

$$= \lim_{x \to \infty} -2\sin \frac{1}{\sqrt{x+1} + \sqrt{x}} \sin \frac{\sqrt{x+1} + \sqrt{x}}{2} = 0, \text{ т. к. первая дробь}$$

стремится к 0, а вторая ограничена. **400.** $\lim_{x\to 0} (\cos x + \sin x)^{1/x} = \lim_{\substack{x\to 0 \ x\to 1+\sin x}} (1 + \cos x - 1 + \sin x)^{1/x} =$

 $= \lim_{x \to 0} (1 + \cos x - 1 + \sin x)^{\frac{\cos x - 1 + \sin x}{x} - \frac{1}{\cos x + 1 + \sin x}} =$

 $= \lim_{x \to 0} e^{\frac{\cos x - 1 + \sin x}{x}} = e^1 = e.$

404. $\lim_{n\to\infty}\frac{u_n}{v_n}=\lim_{n\to\infty}\frac{(n-1)n^2}{(2n+1)n^2}=\frac{1}{2}.$

408. $\lim_{x\to 0} \frac{\sqrt{a+x^3}-\sqrt{a}}{x^3} = \lim_{x\to 0} \frac{x^3}{(\sqrt{a+x^3}+\sqrt{a})x^3} = \frac{1}{2\sqrt{a}} \neq 0$, значит бесконечно малая имеет третий порядок.

410.
$$\Delta u = a\sqrt{x + \Delta x} - a\sqrt{x} = \frac{a\Delta x}{\sqrt{x + \Delta x} + \sqrt{x}};$$
 $\Delta v = b(x + \Delta x)^2 - bx^2 = b(2x\Delta x + \Delta^2 x); \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta v} = \frac{a\Delta x}{(\sqrt{x + \Delta x} + \sqrt{x})b(2x\Delta x + \Delta^2 x)} = \lim_{\Delta x \to 0} \frac{a}{(\sqrt{x + \Delta x} + \sqrt{x})b(2x\Delta x + \Delta^2 x)} = \frac{a}{4bx\sqrt{x}} \neq 0; \ u \ u \ v \$ эквивалентны, если $\frac{a}{4bx\sqrt{x}} = 1 \Leftrightarrow \sqrt{x^3} = \frac{a}{4b} \Leftrightarrow x = \sqrt[3]{\frac{a^2}{16b^2}}.$

415. Площадь правильного треугольника со стороной a равна $\frac{a^2\sqrt{3}}{4}$, высота $-\frac{a\sqrt{3}}{2}$; $S_{o6uq} = \lim_{n\to\infty} \left(\frac{a^2\sqrt{3}}{4} + \frac{a^2\sqrt{3}}{4} \cdot \frac{3}{4} + \dots + \frac{a^2\sqrt{3}}{4} \cdot \left(\frac{3}{4}\right)^{n-1} + \dots\right) = \frac{a^2\sqrt{3}}{4} \cdot \lim_{n\to\infty} \frac{1-(3/4)^n}{1-3/4} = a^2\sqrt{3}.$

419. Пусть l- длина звена ломаной, L_n- длина всей ломаной; $l=\frac{a}{2(n+1)\cos\frac{\pi}{2n}};\; L_n=\frac{a}{\cos\frac{\pi}{2n}};\; \lim_{n\to\infty}L_n=\frac{a}{\cos0}=a.$

423. Пусть $\angle OPT = x$, OA = r, тогда $PT = r\operatorname{ctg} x$. $PN = PT\cos x = r\cos x\operatorname{ctg} x$, $\angle O = \pi/2 - x$. $ON = r\cos(\pi/2 - x) = r\sin x$, $AN = OA - ON = r(1 - \sin x)$. $AP = PN - AN = r(\operatorname{ctg} x\cos x - 1 + \sin x) = r\frac{\cos^2 x - \sin x + \sin^2 x}{\sin x} = r\frac{1 - \sin x}{\sin x}$; при $P \to A x \to \pi/2$. $\lim_{x \to \pi/2} \frac{AN}{AP} = \lim_{x \to \pi/2} \sin x = 1$. значит бесконечно малые AN и AP эквивалентны.

К ГЛАВЕ 3

431.
$$\Delta s = s(5+\Delta t)-s(5) = g\frac{(5+\Delta t)^2}{2}-\frac{25g}{2} = \frac{g(10\Delta t + \Delta^2 t)}{2}$$
; $v_{cp} = \frac{\Delta s}{\Delta t} = \frac{g(10\Delta t + \Delta^2 t)}{2\Delta t} = \frac{g(10+\Delta t)}{2}$; при $\Delta t = 1$ с $v_{cp} = 53.9\,\mathrm{m/c}$; при $\Delta t = 0.1$ с $v_{cp} = 49.49\,\mathrm{m/c}$; при $\Delta t = 0.05$ с $v_{cp} = 49.25\,\mathrm{m/c}$; при $\Delta t = 0.001$ с $v_{cp} = 49.005\,\mathrm{m/c}$; $v_t = s'(t) = gt = 9.8t\,\mathrm{m/c}$; $v_t = 49.005\,\mathrm{m/c}$; $v_t = s'(t) = gt = 9.8t\,\mathrm{m/c}$; $v_t = 49.00\,\mathrm{m/c}$; $v_t = s'(t) = gt = 9.8t\,\mathrm{m/c}$; $v_t = 49.00\,\mathrm{m/c}$; $v_t = s'(t) = gt = 9.8t\,\mathrm{m/c}$; $v_t = 49.00\,\mathrm{m/c}$; $v_t = s'(t) = gt = 9.8t\,\mathrm{m/c}$; $v_t = s'(t) = s'($

458. Пусть $f(x)=x^2,\ g(x)=3x-2;$ решая уравнение $x^2=3x-2,$ получаем $x_1=1,\ x_2=2;$ A(1,1) и B(2,4) — точки пересечения; $f'(x){=}2x,\ f'(1){=}2,\ f'(2){=}4,\ g'(x){=}3;$ в точке $A\ \alpha= \arctan\frac{3-2}{1+3\cdot 2}=\arctan\frac{1}{7};$ в точке $B\ \alpha_2=\arctan\frac{4-3}{1+4\cdot 3}=\arctan\frac{1}{13}.$

461. $f(x) = x^3$, $f'(x) = 3x^2$, f(2) = 8, f'(2) = 12; $y = 8 + 12(x-2) \Leftrightarrow y = 12x - 16$ — уравнение касательной;

$$y=8-1/12(x-2)\Leftrightarrow y=-1/12x+49/6$$
 — уравнение нормали; $8/12=2/3$ — подкасательная; $8\cdot 12=96$ — поднормаль. 464. $f(x)=ax^2$, $f'(x)=2ax$, $f(x)/f'(x)=x/2$. 466.5. $(2\sqrt{x}-\frac{1}{x}+\sqrt[4]{3})'=(2x^{1/2}-x^{-1})'+0=x^{-1/2}+x^{-2}=\frac{1}{\sqrt{x}}+\frac{1}{x^2}$. 477. $z'=\frac{(x^2+1)'3(x^2-1)-(x^2+1)3(x^2-1)'}{(3(x^2-1))^2}+(x^2-1)'(1-x)+(x^2-1)(1-x)'=\frac{2x(3x^2-3)-(x^2+1)6x}{9(x^2-1)^2}+2x-2x^2+1-x^2=-\frac{4x}{3(x^2-1)^2}+2x+1-3x^2$. 502. $(\frac{1-(2x)^{1/3}}{1+(2x)^{1/3}})'=\frac{-2/3(2x)^{-2/3}(1+(2x)^{1/3})^2}{(1+(2x)^{1/3})^2}=\frac{-2/3(2x)^{-2/3}(1+(2x)^{1/3})^2}{(1+(2x)^{1/3})^2}=\frac{513.\ y'=-1/3\cdot 2(2x-1)^{-4/3}+5(-3/4)(x^2+2)^{-7/4}=\frac{15x}{3\sqrt[3]{(2x-1)^4}}$ 529. $y'=1/3\cdot 3tg^2x\cdot 1/\cos^2x-1/\cos^2x+1=tg^2x(tg^2x+1)-tg^2x-1+1=tg^4x$. 547.1. $y'=n\sin^{n-1}x\cos x\cdot \cos nx+\sin^nx(-n\sin nx)=n\sin^{n-1}x(\cos x\cos nx-\sin x\sin nx)=n\sin^{n-1}x\cos(n+1)x$. 551. $y'=\arcsin x+x\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{$

$$\begin{array}{l} \mathbf{647.}\ y' = \frac{1}{2 \operatorname{ch}^2 x} + \frac{\sqrt{2}}{8} \cdot \frac{1 - \sqrt{2} \operatorname{th} x}{1 + \sqrt{2} \operatorname{th} x} \times \\ \times \frac{\sqrt{2} \frac{1}{\operatorname{ch}^2 x} (1 - \sqrt{2} \operatorname{th} x) + \sqrt{2} \frac{1}{\operatorname{ch}^2 x} (1 + \sqrt{2} \operatorname{th} x)}{(1 - \sqrt{2} \operatorname{th} x)^2} = \frac{1}{2 \operatorname{ch}^2 x} + \frac{\sqrt{2}}{8} \cdot \frac{2\sqrt{2}}{\operatorname{ch}^2 x (1 - 2 \operatorname{th}^2 x)} = \frac{1 - 2\operatorname{th}^2 x + 1}{2\operatorname{ch}^2 x (1 - 2\operatorname{th}^2 x)} = \frac{1}{1 - \operatorname{sh}^4 x} = \frac{1}{1 - \operatorname{sh}^4 x} \cdot \frac{2\sqrt{2}}{\operatorname{ch}^2 x (1 - \operatorname{sh}^2 x)} = \frac{1}{(1 + \operatorname{sh}^2 x) (1 - \operatorname{sh}^2 x)} = \frac{1}{1 - \operatorname{sh}^4 x} \cdot \frac{1}{2} \cdot \frac{1}{1 - \operatorname{sh}^4 x} \cdot \frac{2}{x} \cdot \frac{1}{x} \cdot \frac{2}{x} \cdot \frac{1}{x} \cdot \frac{2}{x} \cdot \frac{2}{$$

$$732. \ y' = \frac{1}{x + \sqrt{x^2 - 1}} \cdot \left(1 + \frac{2x}{2\sqrt{x^2 - 1}}\right) - \frac{\sqrt{x^2 - 1} - x}{x^2 - 1} = \frac{1}{\sqrt{x^2 - 1}} \left(1 + \frac{2x}{2\sqrt{x^2 - 1}}\right) - \frac{2x}{x^2 - 1} = \frac{1}{\sqrt{x^2 - 1}} + \frac{1}{\sqrt{(x^2 - 1)^3}} = \frac{x^2}{\sqrt{(x^2 - 1)^3}} = \frac{1}{\sqrt{(x^2 - 1)^3}} = \frac{x^2}{\sqrt{(x^2 - 1)^3}}$$

$$\begin{split} &-\frac{1}{\sqrt{1+x}+\sqrt{1-x}}\left(\frac{1}{2\sqrt{1+x}}-\frac{1}{2\sqrt{1-x}}\right)+2\frac{1}{1+\frac{x^2}{1+x}}\frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{-(1+x)-(1-x)}{(1+x)^2}=\\ &=\frac{1}{\sqrt{1+x}-\sqrt{1-x}}\frac{\sqrt{1-x}+\sqrt{1-x}}{2\sqrt{1-x^2}}-\frac{1}{\sqrt{1+x}+\sqrt{1-x}}\frac{\sqrt{1-x}-\sqrt{1-x}}{2\sqrt{1-x^2}}+\\ &+\frac{1+x}{2}\sqrt{\frac{1+x}{1+x}}\frac{-2}{2\sqrt{1-x^2}}\frac{-(\sqrt{1-x}+\sqrt{1+x})^2+(\sqrt{1-x}-\sqrt{1+x})^2}{2\sqrt{1-x^2}}+\frac{1}{\sqrt{1-x^2}}=\\ &=\frac{1}{x\sqrt{1-x^2}}\frac{1+x}{\sqrt{1-x^2}}=\frac{1-x}{x\sqrt{1-x^2}}=\frac{1}{x}\sqrt{\frac{1-x}{1-x}}.\\ &-\frac{1}{x\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}\frac{1+x}{x\sqrt{1-x^2}}=\frac{1}{x}\sqrt{\frac{1-x}{1-x}}.\\ &-\frac{1}{x\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}\frac{1+x}{x\sqrt{1-x^2}}=\frac{1}{x}\sqrt{\frac{1-x}{1-x}}.\\ &-\frac{1}{x\sqrt{1-x^2}}-\frac{1}{x\sqrt{1-x^2}}\frac{1+x}{x\sqrt{1-x^2}}\frac{1+x}{\sqrt{1-x}}\frac{1+x}{\sqrt{1-x}}\frac{2}{\sqrt{1-x^2}}+\frac{1}{x\sqrt{1-x^2}}\frac{2}{\sqrt{3}}=\\ &=\frac{1}{x\sqrt{1-x^2}}\frac{x^2-x+1}{x^2+x+1}\frac{1}{4}\sqrt{\frac{x^2-x+1}{x^2+x+1}}}+\frac{1}{2\sqrt{3}}\left(\frac{1}{1+\frac{(2x+1)^2}{x^2+x+1}}\frac{2}{\sqrt{3}}+\frac{1}{1+\frac{(2x+1)^2}{2\sqrt{3}}}\frac{2}{\sqrt{3}}\right)=\\ &=\frac{1}{4}\frac{x^2-x+1}{x^2+x+1}\frac{2x(x^2-x+1-x^2-x-1)+(x^2-x+1+x^2+x+1)}}{(x^2-x+1)^2}+\frac{1}{x^2+x+1}\frac{2}{x^2+x+1}+\frac{3}{4x^2-x+1}}+\frac{2}{x^2+x+1}\frac{2}{x^2+x+1}+\frac{3}{x^2+x+1}+\frac{2}{x$$

800. $\cos(xy) \cdot (y + xy') - \sin(xy) \cdot (y + xy') = \frac{1+y'}{\cos^2(x+y)} \Rightarrow y'(x\cos(xy) - x\sin(xy) - \frac{1}{\cos^2(x+y)}) = -y\cos(xy) + y\sin(xy) + \frac{1}{\cos^2(x+y)} \Rightarrow y' = -\frac{y\cos^2(x+y)(\cos(xy) - \sin(xy)) - 1}{x\cos^2(x+y)(\cos(xy) - \sin(xy)) - 1}.$

804. $x^y = y^x \Rightarrow y \ln x = x \ln y \Rightarrow y' \ln x + \frac{y}{x} = \ln y + x \frac{y'}{y} \Rightarrow y' (\ln x - \frac{x}{y}) = \ln y - \frac{y}{x} \Rightarrow y' = \frac{y(x \ln y - y)}{x(y \ln x + x)}.$

810.
$$\frac{y'}{2\cos^2 \frac{y}{2}} = \sqrt{\frac{1-k}{1+k}} \frac{1}{2\cos^2 \frac{x}{2}} \Rightarrow \frac{y'}{2} \left(\operatorname{tg}^2 \frac{y}{2} + 1 \right) =$$

$$= \sqrt{\frac{1-k}{1+k}} \frac{1}{2\cos^2 \frac{x}{2}} \Rightarrow \frac{y'}{2} \left(\frac{1-k}{1+k} \operatorname{tg}^2 \frac{x}{2} + 1 \right) = \sqrt{\frac{1-k}{1+k}} \frac{1}{2\cos^2 \frac{x}{2}} \Rightarrow$$

$$y' = \sqrt{\frac{1-k}{1+k}} \frac{1+k}{\cos^2 \frac{x}{2} \left((1-k) \operatorname{tg}^2 \frac{x}{2} + 1 + k \right)} = \frac{\sqrt{1-k^2}}{(1-k)\sin^2 \frac{x}{2} + (1+k)\cos^2 \frac{x}{2}} =$$

$$= \frac{\sqrt{1-k^2}}{1+k(\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2})} = \frac{\sqrt{1-k^2}}{1+k\cos x}.$$

813. $xy - \ln y = 1 \Rightarrow y + xy' - \frac{y'}{y} = 0 \Rightarrow y'(x - \frac{1}{y}) = -y \Rightarrow y' = \frac{-y^2}{xy - 1} \Rightarrow y^2 + (xy - 1)y' = y^2 - y^2 = 0.$

- **815.** Уравнение параболы $y^2 = 2px \Rightarrow 2yy' = 2p$. y' = p/y: F(p/2,0) фокус, прямая x = p/2 пересекает параболу в точках A(p/2,p) и B(p/2,-p); $y'_A = 1$. $y'_B = -1 \Rightarrow y'_A y'_B = -1$.
- **818.** Пусть $A(x_0,y_0)$ точка на гиперболе, BC касательная, проходящая через A, B(b,0) и C(0,c) точки ее пересечения с осями, S площадь треугольника. $y=\frac{a}{x}$, $y'=-\frac{a}{x^2}$, $y=\frac{a}{x_0}-\frac{a}{x_0^2}(x-x_0)=\frac{2a}{x_0}-\frac{ax}{x_0^2}$ уравнение BC. $b=2x_0$, $c=\frac{2a}{x_0}=2y_0$. $S=2x_0y_0=2a=(\sqrt{2a})^2$.
- **820.** v = s' = 1 + 2t, v(5) = 11 cm/c = 0.11 m/c: $E = \frac{3 \cdot 0.11^2}{2} = 0.01815 \mathcal{J} \mathcal{J} \mathcal{K}$.
- **825.** $y' = 2x(x-2)^2 + 2x^2(x-2) = 4x(x-2)(x-1)$: y' = 0 в точках A(0,0), B(1,1), C(2,0).
- **829.** $2x-6y+1=0 \Leftrightarrow y=\frac{x}{3}+\frac{1}{6} \Rightarrow k=\frac{1}{3} \Rightarrow k_1=-3$: $f'(x)=3x^2+6x=-3 \Rightarrow x_0=-1, \ f(x_0)=-3, \ y=-3-3(x+1)=-3x-6; \ 3x+y+6=0$ уравнение касательной.
- 832. $f'(x) = -\frac{16a^3x}{(4a^2+x^2)^2}$, $f'(x_0) = -\frac{32a^4}{64a^4} = -\frac{1}{2}$. $f(x_0) = \frac{8a^3}{8a^2} = a$; $y = a \frac{1}{2}(x-2a) = -\frac{1}{2}x + 2a \Leftrightarrow x + 2y = 4a$ касательная; $y = a + 2(x-2a) = 2x 3a \Leftrightarrow 2x y = 3a$ нормаль.
- **835.2.** $y=\pm\sqrt{x^3},\ y'=\pm\frac{3}{2}\sqrt{x};$ подкасательная $\frac{y}{y'}=\frac{2}{3}x;$ поднормаль $yy'=-\frac{3}{2}x^2.$

- **837.** $f(x_1)=4$, $f(x_2)=8$; уравнение хорды $\frac{y-4}{x-1}=\frac{8-4}{3-1}\Leftrightarrow y=2x+2\Rightarrow k=2$; $f'(x)=2x-2,2x-2=2\Rightarrow x_0=2, f(x_0)=5, f'(x_0)=2, y=5+2(x-2)\Leftrightarrow y=2x+1$ уравнение касательной.
- **840.** Координаты вершины параболы A(3;-3), уравнение прямой OA $y=-x\Rightarrow k=-1\Rightarrow -\frac{1}{y'}=1\Rightarrow y'=-1;$ $f'(x)=2x-6,\ 2x-6=-1\Rightarrow x_0=2.5,\ f(x_0)=-2.75,$ $y=-2.75+(x-2.5)\Leftrightarrow y=x-5.25\Leftrightarrow 4x-4y-21=0$ уравнение нормали.
- **842.** Точки пересечения A(4,5) и B(1,2); y'=2x-4. $y'_A=4,$ $y'_B=-2;$ $y-5=-0.25(x-4)\Leftrightarrow y=-0.25x++6$ нормаль в точке A; $y-2=0.5(x-1)\Leftrightarrow y=0.5x++1.5$ нормаль в точке B; C(6;4.5) точка пересечения; $S_{ABC}=\frac{1}{2}(33\cdot 5-3\cdot 2.5)=3.75.$
- **844.** Пусть (x_0,y_0) точка касания; $y'=-\frac{4}{(x+5)^2},\ y=\frac{x_0+9}{x_0+5}-\frac{4}{(x_0+5)^2}(x-x_0)$ уравнение касательной; y(0)=0 $\Rightarrow \frac{x_0+9}{x_0+5}+\frac{4x_0}{(x_0+5)^2}=0,\ x_{01}=-15,\ x_{02}=-3;$ в точке $(-15;\frac{3}{5})$ касательная $y=\frac{3}{5}-\frac{1}{25}(x+15)$ $\Leftrightarrow y=-\frac{x}{25};$ в точке (-3;3) касательная y=3-(x+3) $\Leftrightarrow y=-x$.
- **846.** $2x(x+y)+x^2(1+y')=a^2(1-y')\Rightarrow 2x^2+2xy+a^2==-(a^2+x^2)y'\Rightarrow y'=\frac{a^2-2x^2-2xy}{a^2+x^2}\Rightarrow y'(0,0)=1;\ y=x-$ касательная.
- **849.** $y'=2e^{2x}+2x,\ y'(0)=2,\ y(0)=1;\ y=1-\frac{1}{2}x\Leftrightarrow x+2y=2\Leftrightarrow \frac{x}{\sqrt{5}}+\frac{2}{\sqrt{5}}y=\frac{2}{\sqrt{5}}$ каноническое уравнение нормали, значит $\frac{2}{\sqrt{5}}$ искомое расстояние.
 - **852.** $y' = \ln(cx) + 1 = \frac{y}{x} + 1 = \frac{y+x}{x} \Rightarrow \frac{S_n}{y} = \frac{y+x}{x}$.
- **854.** $\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0 \Rightarrow y' = -\frac{b^2x}{a^2y}; \ y = y_0 \frac{b^2x_0}{a^2y_0}(x x_0) \Leftrightarrow \frac{yy_0}{b^2} = \frac{y_0^2}{b^2} \frac{xx_0}{a^2} + \frac{x_0^2}{a^2} \Leftrightarrow \frac{xx_0}{a^2} + \frac{yy_0}{b^2} = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1.$
- **858.4** y=f(x) уравнение кривой, тогда искомое уравнение $y=f'(x)x; f'(x)=\frac{1}{\sqrt{a^2-x^2}}-a\ln(a+\sqrt{a^2-x^2})+a\ln x)'=-\frac{x}{\sqrt{a^2-x^2}}-a\frac{1}{a+\sqrt{a^2-x^2}}+\frac{a}{x}=\frac{ax-ax-x\sqrt{a^2-x^2}}{\sqrt{a^2-x^2}(a+\sqrt{a^2-x^2})}+\frac{a}{x}=-\frac{x}{a+\sqrt{a^2-x^2}}+\frac{a}{x}=\frac{a^2-x^2+a\sqrt{a^2-x^2}}{x(a+\sqrt{a^2-x^2})}=\frac{\sqrt{a^2-x^2}}{x}\Rightarrow y=\sqrt{a^2-x^2}$ полуокружность.
- **862.** $x^2 + \frac{x^3}{2a-x} = 8ax$, $10ax^2 = 16a^2x \Rightarrow x_1 = 0$, $x_2 = \frac{8}{5}a$; кривые пересекаются в трех точках: O(0,0), $A(\frac{8}{5}a,\frac{16}{5}a)$, $B(\frac{8}{5}a,-\frac{16}{5}a)$;

т. к. кривые симметричны, углы между ними в точках A и B равны. Обозначим верхнюю полуокружность f(x), верхнюю ветвь циссоиды g(x); найдем $f'(x)\colon 2x+2yy'=8a$, $f'=\frac{4a-x}{y}$; $g'(x)\colon 2yy'=\frac{3x^2(2a-x)+x^3}{(2a-x)^2}=\frac{2x^2(3a-x)}{(2a-x)^2},\ g'=\frac{x^2(3a-x)}{y(2a-x)^2}$; $f(0)=0\Rightarrow \lim_{x\to 0}f'(x)=\lim_{x\to 0}\frac{4a-x}{y}=\infty,\ \lim_{x\to 0}g'(x)=\lim_{x\to 0}\frac{x^2(3a-x)}{y(2a-x)^2}=\lim_{x\to 0}\frac{x^2(3a-x)\sqrt{2a-x}}{x\sqrt{x}(2a-x)^2}=0$, следовательно, в точке O $\alpha_1=90^\circ$; $f'(\frac{8}{5}a)=\frac{3}{4},\ g'(\frac{8}{5}a)=7\Rightarrow \operatorname{tg}\alpha_2=\frac{7-3/4}{1+7\cdot3/4}=1\Rightarrow \alpha_2=45^\circ$.

863. $x^2=\frac{32a^4}{x^2+4a^2}, \ x^4+4a^2x^2-32a^4=0, \ x_1^2=4a^2, \ x_2^2=-8a^2, x=\pm 2a$ — абсцисы точек пересечения кривых $f(x)=\frac{x^2}{4a}$ и $g(x)=\frac{8a^3}{x^2+4a^2}; \ f'(x)=\frac{x}{2a}, \ f'(2a)=1; \ g'(x)=\frac{16a^3x}{(x^2+4a^2)^2}, \ g'(2a)=-\frac{1}{2}, \ \mathrm{tg}\,\alpha=\frac{1+1/2}{1-1/2}=3\Rightarrow\alpha=\mathrm{arctg}\,3.$

866. $\frac{1}{2\sqrt{x}}+\frac{y'}{2\sqrt{y}}=0,\,y'=-\frac{\sqrt{y}}{\sqrt{x}}.$ Пусть OA и OB- отрезки осей Ox и $Oy;\ OA=x-\frac{y}{y'}=x+\sqrt{xy},OB=y-xy'=y+\sqrt{xy},OA+OB=x+2\sqrt{xy}+y=(\sqrt{x}+\sqrt{y})^2=a.$

868. $y=\frac{a}{2}(\ln(a+\sqrt{a^2-x^2})-\ln(a-\sqrt{a^2-x^2})-\sqrt{a^2-x^2};$ $y'=\frac{a}{2}\left(\frac{-x}{(a+\sqrt{a^2-x^2})\sqrt{a^2-x^2}}+\frac{-x}{(a-\sqrt{a^2-x^2})\sqrt{a^2-x^2}}\right)+\frac{x}{\sqrt{a^2-x^2}}=$ $=\frac{-ax}{2\sqrt{a^2-x^2}}\frac{a-\sqrt{a^2-x^2}+a+\sqrt{a^2-x^2}}{a^2-a^2+x^2}+\frac{x}{\sqrt{a^2-x^2}}=\frac{a^2}{x\sqrt{a^2-x^2}}+$ $+\frac{x}{\sqrt{a^2-x^2}}=-\frac{\sqrt{a^2-x^2}}{x};\;BM,\;\text{где}\;M(x;y),$ $B(0;y-xy'=y+\sqrt{a^2-x^2})$ — искомый отрезок, $|BM|=\sqrt{x^2+a^2-x^2}=a.$

- **870.** Пусть A точка пересечения касательной с осью абсцисс. $\frac{a}{x^2}+\frac{b}{y^2}=1\Rightarrow y^2=\frac{bx^2}{x^2-a}, \frac{-2a}{x^3}-\frac{2by'}{y^3}=0,$ $y'=-\frac{ay^3}{bx^3}; x_A=x-\frac{y}{y'}=x+\frac{bx^3}{abx^2}(x^2-a)=x+\frac{x}{a}(x^2-a)=\frac{x^3}{a}.$
- 872. Уравнение касательной к эллипсу $\frac{x \cdot x_0}{a^2} + \frac{yy_0}{b^2} = 1$ (854); при y = 0 $x = \frac{a^2}{x_0}$ независимо от b. Постройте окружность с центром в центре эллипса радиуса a, проведите касательную к ней в точке с абсциссой x_0 и соедините точку пересечения этой касательной с осью Ox и точку эллипса (x_0, y_0) .
- **874.** $MP = \sqrt{a^2 \operatorname{ch}^2 \frac{x}{a} a^2} = a \operatorname{sh} \frac{x}{a} \Rightarrow \operatorname{ctg} \angle PMN = \operatorname{sh} \frac{x}{a} = y' = k_{\kappa ac}.$

877. $\Delta x=(x+\Delta x)^2-x^2=2x\Delta x+\Delta x^2,\ dy=2x\Delta x;$ при $x=1,\ \Delta x=0.1\ \Delta y=0.21,\ dy=0.2,\ \Delta y-dy=0.01,$ $\delta=\frac{\Delta y-dy}{\Delta y}=4.8\%.$

882. $df = 2x\Delta x \Rightarrow x = \frac{df}{2\Delta x} = \frac{-0.8}{0.4} = -2.$

887.1 $\Delta s = (8 + \Delta x)^2 - 8^2 = 16\Delta x + \Delta x^2$. $ds = 16\Delta x$; $\Delta x = 1$, $\Delta s = 17$, ds = 16, $\delta = \frac{17 + 16}{17} = 5,88\%$.

889.18. $dy = \frac{1}{\operatorname{tg}(\pi/2 - x/4)} \frac{1}{\cos^2(\pi/2 - x/4)} \frac{-1}{4} dx = -\frac{dx}{2\sin(\pi - x/2)} = -\frac{dx}{2\sin(x/2)}.$

892. $\Delta y \approx dy = \frac{dx}{\cos^2 x}$; $x = 45^\circ$, dx = 10', $dy = \frac{10'}{1/2} = 20' = \frac{\pi}{540} \approx 0.00582$.

897. $dy = \frac{1/x(x-x\ln x)-(1+\ln x)(1-\ln x-1)}{(x-x\ln x)^2}dx = \frac{1+\ln^2 x}{x^2(1-\ln x)^2}dx$; $2x^2dy = 2\frac{1+\ln^2 x}{1-\ln x}dx$; $(x^2y^2+1)dx = \left(\frac{(1+\ln x)^2}{(1-\ln x)^2}+1\right)dx = \frac{1+2\ln x+\ln^2 x+1-2\ln x+\ln^2 x}{(1-\ln x)^2}dx$.

900. $\arctan(x + \Delta x) \approx \arctan x + d(\arctan x) = \arctan x + \frac{dx}{1+x^2}$: $\arctan 1,02 \approx \arctan 1 + \frac{0.02}{1+1} = \frac{\pi}{4} + 0.01 \approx 0.795$: $\arctan 0.97 \approx \frac{\pi}{4} - \frac{0.03}{2} \approx 0.770$.

903. $2s = 2l\left(1 + \frac{2f^2}{3l^2}\right)$, $d(2s) = 2l\frac{4fdf}{3l^2} = \frac{8fdf}{3l}$, $df = \frac{3lds}{4f}$.

 $906.6. dy = \frac{1}{2 \operatorname{tg} \frac{u}{2} \cos^{2} \frac{u}{2}} du = \frac{du}{\sin u} = \frac{d(\arcsin v)}{\sin \arcsin v} = \frac{dv}{v\sqrt{1-v^{2}}} = \frac{d(\cos 2x)}{\cos 2x\sqrt{1-\cos^{2} 2x}} = \frac{-2\sin 2x dx}{\cos 2x \sin 2x} = -\frac{2dx}{\cos 2x}.$

907. $f'_{+}(0) = \lim_{\Delta x \to +0} \frac{|\Delta x|}{\Delta x} = 1$, $f'_{-}(0) = \lim_{\Delta x \to -0} \frac{|\Delta x|}{\Delta x} = -1$; $f'_{+}(0) \neq f'_{-}(0)$, значит, функция не дифференцируема при x = 0.

912. $f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \Delta x \sin \frac{1}{\Delta x} = 0$, т. к. $\left|\sin \frac{1}{\Delta x}\right| \le 1$.

915. $\lim_{x\to 0} f(x) = \lim_{x\to 0} x \arctan \frac{1}{x} = 0 = f(0) \left(\left| \arctan \frac{1}{x} \right| < \frac{\pi}{2} \right)$, значит, функция непрерывна; $f'_+(0) = \lim_{\Delta x \to +0} \arctan \frac{1}{\Delta x} = \frac{\pi}{2}$, $f'_-(0) = \lim_{\Delta x \to -0} \arctan \frac{1}{\Delta x} = -\frac{\pi}{2}$; $f'_+(0) \neq f'_-(0)$, значит, функция не дифференцируема при x = 0.

916. $\lim_{x\to +0}\left(1+e^{1/x}\right)=+\infty, \ \lim_{x\to -0}\left(1+e^{1/x}\right)=1\Rightarrow \lim_{x\to 0}\frac{x}{1+e^{1/x}}=0=f(0),$ значит, функция непрерывна; $f'_+(0)=\lim_{\Delta x\to +0}\frac{x}{1+e^{1/x}}=0, \ f'_-(0)=\lim_{\Delta x\to -0}\frac{x}{1+e^{1/x}}=1; \ f'_+(0)\neq f'_-(0),$ значит, функция не дифференцируема при x=0.

919. $x = \rho \cos \varphi = 2r \cos^2 \varphi = r(1 + \cos 2\varphi); \quad y = \rho \sin \varphi = r(1 + \cos 2\varphi)$ $=2r\cos\varphi\sin\varphi=r\sin2\varphi; \frac{dx}{dt}=-2r\sin2\varphi\frac{d\varphi}{dt}=-2r\omega\sin2\varphi; \frac{dy}{dt}=$ $=2r\cos 2\varphi \frac{d\varphi}{dt}=2r\omega\cos 2\varphi.$

921. $p = p_0 e^{ch}$: $\ln \frac{1}{2} = 5540c \Rightarrow c = -\frac{\ln 2}{5540}$; $\frac{dp}{dh} = cp_0 e^{ch} =$ $= -\frac{\ln 2}{5540}p \approx -0.000125p.$

924. $16x^2 + 9y^2 = 400 \Rightarrow 32x + 18yy' = 0 \Rightarrow y' = -\frac{16x}{9x}$; $|y'_t| =$ $= |x'_t| \Rightarrow |y_x| = 1 \Rightarrow 16x = 9y \Rightarrow 16x^2 + \frac{256}{9}x^2 = 400 \Rightarrow x = \pm 3,$ $y=\pm \frac{16}{3}$, точки $(3,\frac{16}{3})$ и $(-3,-\frac{16}{3})$.

927. $V' = \left(\frac{4}{3}\pi R^3\right)' = 4\pi R^2 R' = 4\pi R^2 v$; $S' = (4\pi R^2)' =$ $=8\pi RR'=8\pi Rv.$

930. $\frac{(\sin x_1)'}{(\sin x_2)'} = \frac{\cos x_1}{\cos x_2} = n \Rightarrow \frac{(\operatorname{tg} x_1)'}{(\operatorname{tg} x_2)'} = \frac{\cos^2 x_2}{\cos^2 x_1} = \frac{1}{n^2}.$

935.1.
$$\begin{cases} 3(2\cos t - \cos 2t) = -9 \\ 3(2\sin t - \sin 2t) = 0 \end{cases} \Leftrightarrow \begin{cases} \cos^2 x_1 & n^2 \\ \cos t = -1 \\ \cos 2t = -1 \Leftrightarrow \\ t = \pi n \end{cases}$$

 $t = \pi(2n+1), n \in \mathbb{Z}.$

937. $y'_{\varphi} = 3b\sin^2\varphi\cos\varphi$, $x'_{\varphi} = -3a\cos^2\varphi\sin\varphi$. $y'_{x} = \frac{y'_{\varphi}}{x'_{\varphi}} = -\frac{b}{a}\operatorname{tg}\varphi$.

 $\begin{array}{lll} \textbf{941.} \ \ y_t' = 1 - \frac{1}{1+t^2} = \frac{t^2}{1+t^2}, \ x_t' = \frac{2t}{1+t^2}, \ y_x' = \frac{t}{2}. \\ \textbf{945.} \ \ y_t' = \frac{6at(1+t^3) - 3t^2 \cdot 3at^2}{(1+t^3)^2} = \frac{6at - 3at^4}{(1+t^3)^2} = \frac{3at(2-t^3)}{(1+t^3)^2}, \\ x_t' = \frac{3a(1+t^3) - 3t^2 \cdot 3at}{(1+t^3)^2} = \frac{3a - 6at^3}{(1+t^3)^2} = \frac{3a(1-2t^3)}{(1+t^3)^2}, \ y_x' = \frac{t(2-t^3)}{1-2t^3}. \end{array}$

950.2. $y'_t = 3a\sin^2 t \cos t$, $x'_t = -3a\cos^2 t \sin t$, $y'_t = -\operatorname{tg} t = -\operatorname{tg} t$ $= \operatorname{tg}(\pi - t); \ y'_x = \operatorname{tg}\alpha \Rightarrow t = \pi - \alpha.$

952. $y'_t = -\frac{3}{t^3} - \frac{2}{t^2} = -\frac{2t+3}{t^3}$, $x'_t = \frac{t^3 - 3t^2 - 3t^3}{t^6} = -\frac{2t+3}{t^4}$, $y'_x = t \Rightarrow xy'^3 = \frac{1+t}{t^3}t^3 = 1+t = 1+y'$.

956.1. Пусть $f(x) = x^2$, g(x) задается как $y = \frac{5}{4}\sin t$. $x = \frac{5}{3}\cos t$; $f(x) = g(x) \Rightarrow \frac{5}{4}\sin t = \frac{25}{9}\cos^2 t \Rightarrow \frac{1}{4}\sin t = \frac{5}{9} - \frac{5}{9}\sin^2 t \Rightarrow \sin t_0 = \frac{4}{5}$, $\cot g t_0 = \pm \frac{3}{4}$, $y_0 = \frac{5}{4}\sin t_0 = 1$, $x_0 = \pm 1$: $f'(x_0) = 2x_0 = \pm 2$, $g'(x_0) = \frac{5/4\cos t_0}{-5/3\sin t_0} = -\frac{3}{4}\cot g t_0 = \mp \frac{9}{16}$, $\tan x = \frac{9}{16}$ $= \operatorname{tg} \alpha_2 = \left| \frac{2+9/16}{1-9/8} \right| = \frac{41}{2}$. Кривые пересекаются в двух точках под углами $\alpha_1 = \alpha_2 = \operatorname{arctg} \frac{41}{2} \approx 87^{\circ}12'$.

957. Высшая и низшая точки производящего круга — A(at,0) и B(at,2a); $y_t'=a\sin t$, $x_t'=a(1-\cos t)$, $y_x'=\frac{\sin t}{1-\cos t}$; $y=a\sin t$ $=a(1-\cos t)+\frac{\sin t}{1-\cos t}(x-a(t-\sin t))$ — уравнение касательной; $y(at) = a(1 - \cos t) + \frac{\sin t}{1 - \cos t}(at - at + a\sin t) = a(1 - \cos t) + a\frac{\sin^2 t}{1 - \cos t} = a\frac{\cos^2 t}{1 - \cos^2 t} = a\frac{\cos^2$ $=a rac{1-2\cos t+\cos^2 t+\sin^2 t}{1-\cos t}=2a;\; y=a(1-\cos t)-rac{1-\cos t}{\sin t}(x-at+a\sin t)-$ уравнение нормали; $y(at)=a(1-\cos t)-rac{1-\cos t}{\sin t}a\sin t=0.$

959. $x_t' = 3a\sin^2 t \cot t$, $y_t' = -3a\cos^2 t \sin t$, $y_x' = -\cot t$; $\left|\frac{y}{y'}\right| \sqrt{1 + {y'}^2} = \left|\frac{y}{\cot t}\right| \sqrt{1 + \cot^2 t} = \left|\frac{y}{\cot t}\right| -$ касательная; $|y|\sqrt{1 + {y'}^2} = |y|\sqrt{1 + \cot^2 t} = \left|\frac{y}{\sin t}\right| -$ нормаль; $\left|\frac{y}{y'}\right| = \left|\frac{y}{\cot t}\right| = |y \cot t| -$ подкасательная; $|yy'| = |y \cot t| -$ поднормаль.

960. Касательная к окружности: $y'_t = a \cos t, \ x'_t = -a \sin t,$ $y'_x = -\operatorname{ctg} t, \ y = a \sin t - \operatorname{ctg} t (x - a \cos t) = -x \operatorname{ctg} t + \frac{a}{\sin t}$: нормаль к эвольвенте: $y'_t = a (\cos t + t \sin t - \cos t) = a t \sin t,$ $x'_t = a (-\sin t + \sin t + t \cos t) = a t \cos t, \ y'_x = \operatorname{tg} t, \ y = a (\sin t - t \cos t) - \operatorname{ctg} t (x - a \cos t - a t \sin t) = -x \operatorname{ctg} t + a \sin t - a t \cos t + a \frac{\cos^2 t}{\sin t} + a t \cos t = -x \operatorname{ctg} t + \frac{a}{\sin t}.$

962. $y_t' = 3a\cos^2t\sin t$, $x_t' = 2a\cos t + a\cos^3t - 2a\sin^2t\cos t = 3a\cos^3t$, $y_x' = \operatorname{tg}t$, $y = -\cos^3t - \operatorname{ctg}t(x - 2a\sin t - a\sin t\cos^2t)$ — уравнение нормали, A и B — точки пересечения нормали с осями Ox и Oy; $x_B = 0$ $y_B = -a\cos^3t + 2a\cos t + a\cos^3t = 2a\cos t$; $B(0, 2a\cos t)$; $y_A = 0$, $x_A = 2a\sin t + a\sin t\cos^2t - a\sin t\cos^2t = 2a\sin t$; $A(2a\sin t, 0)$; $|AB| = 2a\sqrt{\sin^2t + \cos^2t} = 2a$.

966.1. $x'_t = \frac{3a(1-t^2)}{(1+t^2)^2}, \ y'_t = \frac{6at}{(1+t^2)^2}, \ y'_x = \frac{2t}{1-t^2}, \ t_0 = 2, \ x_0 = \frac{6}{5}a, \ y_0 = \frac{12}{5}a, \ y'_0 = -\frac{4}{3}; \ y = \frac{12}{5}a - \frac{4}{3}(x - \frac{6}{5}a) = -\frac{4}{3}x + 4a \Leftrightarrow 4x + 3y - 12a = 0$ — касательная; $y = \frac{12}{5}a + \frac{3}{4}(x - \frac{6}{5}a) = \frac{3}{4}x + \frac{3}{2}a \Leftrightarrow 3x - 4y + 6a = 0$ — нормаль. **968.** $y'_x = -\operatorname{ctg} t(\mathbf{959}), \ y = a\cos^3 t - \operatorname{ctg} t(x - a\sin^3 t) \Leftrightarrow$

968. $y'_x = -\operatorname{ctg} t(959), \ y = a\cos^3 t - \operatorname{ctg} t(x - a\sin^3 t) \Leftrightarrow y = -x\operatorname{ctg} t + a\cos t \Leftrightarrow x\cos t + y\sin t = a\sin t\cos t - \text{нормаль-}$ ное уравнение касательной $\Rightarrow OT = a|\sin t\cos t| = \frac{1}{2}a|\sin 2t|$: $y = a\cos^3 t + x\operatorname{tg} t - a\frac{\sin^4 t}{\cos t} \Leftrightarrow y = x\operatorname{tg} t + a\frac{\cos^4 t - \sin^4 t}{\cos t} \Leftrightarrow y\cos t - x\sin t = a\cos 2t - \text{нормальное уравнение нормали} \Rightarrow ON = a|\cos 2t| \Rightarrow 4OT^2 + ON^2 = a^2\sin^2 2t + a^2\cos^2 2t = a^2.$

 $= a|\cos 2t| \Rightarrow 4OT^2 + ON^2 = a^2 \sin^2 2t + a^2 \cos^2 2t = a^2.$ $\mathbf{970.} \ \operatorname{tg} \theta = \frac{\rho}{\rho'} = \frac{2r \sin \varphi}{2r \cos \varphi} = \operatorname{tg} \varphi; \ \theta = \varphi.$ $\mathbf{972.} \ \rho' = a \sin^2 \frac{\varphi}{3} \cos \frac{\varphi}{3}; \ \operatorname{tg} \theta = \frac{a \sin^3 \frac{\varphi}{3}}{a \sin^2 \frac{\varphi}{3} \cos \frac{\varphi}{3}} = \operatorname{tg} \frac{\varphi}{3} \Rightarrow \theta = \frac{\varphi}{3} \Rightarrow \alpha = \theta + \varphi = \frac{4}{3}\varphi = 4\theta.$

976. $\rho'_1 = -a\sin\varphi$, $\rho'_2 = a\sin\varphi \Rightarrow tg\theta_1 = \frac{a(1+\cos\varphi)}{-a\sin\varphi} = -ctg\frac{\varphi}{2}$, $tg\theta_2 = \frac{a(1-\cos\varphi)}{a\sin\varphi} = tg\frac{\varphi}{2} \Rightarrow tg\theta_1 tg\theta_2 = -1$.

 $tg\theta_{2} = \frac{a(1-\cos\varphi)}{a\sin\varphi} = tg\frac{\varphi}{2} \Rightarrow tg\theta_{1}tg\theta_{2} = -1.$ **977.** $\rho'_{\varphi} = \frac{\rho'_{t}}{\varphi'_{t}} = \frac{f'_{1}(t)}{f'_{2}(t)} \Rightarrow tg\theta = \frac{f_{1}(t)f'_{2}(t)}{f'_{1}(t)}.$

980. Пусть B — точка касания, A и C — точки пересечения полярной касательной и нормали с перпендикуляром к полярному радиусу, тогда $OA = OB|\lg\theta| = \left|\frac{\rho^2}{\rho'}\right|, \ OC = OB|\lg(\pi/2 - \theta)| = |\rho'|.$

981.
$$\rho' = -\frac{a}{\varphi^2} \Rightarrow \left| \frac{\rho^2}{\rho'} \right| = a$$
.

984.
$$\rho' = a^{\varphi} \ln a = \rho \ln a$$
.

987.
$$\frac{2x}{a^2} \frac{dx}{dy} + \frac{2y}{b^2} = 0$$
. $\frac{dx}{dy} = -\frac{a^2y}{b^2x}$. $\frac{ds}{dy} = \sqrt{1 + \frac{a^4y^2}{b^4x^2}} = \frac{\sqrt{b^4x^2 + a^4y^2}}{b^2x}$.

990.
$$ds = \sqrt{1 + \cos^2 x} \, dx$$

993.
$$\frac{dx}{dt} = a(1 - \cos t), \ \frac{dy}{dt} = a \sin t.$$

$$\frac{ds}{dt} = a\sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} = a\sqrt{4\sin^2 \frac{t}{2}} = 2a\sin \frac{t}{2}.$$

996.
$$\frac{dx}{dt} = a(-2\sin t + 2\sin 2t), \quad \frac{dy}{dt} = a(2\cos t - 2\cos 2t), \quad ds = 2a\sqrt{\sin^2 t - 2\sin t \sin 2t + \sin^2 t + \cos^2 t - 2\cos t \cos 2t + \cos^2 t} dt = 2a\sqrt{2 - 2\cos(2t - t)}dt = 2a\sqrt{4\sin^2 \frac{t}{2}}dt = 4a\sin \frac{t}{2}dt.$$

998. $\frac{dx}{dt} = a(-\sin t + \sin t + t\cos t) = at\cos t$

 $\frac{dy}{dt} = a(\cos t - \cos t + t\sin t) = at\sin t,$

 $\frac{ds}{dt} = at\sqrt{\sin^2 t + \cos^2 t} = at.$

1000. $y = \sqrt{100 - x^2}$, $\frac{dy}{dt} = -\frac{x}{\sqrt{100 - x^2}} \frac{dx}{dt}$; x = 6, $\frac{dx}{dt} = 2 \Rightarrow \frac{dy}{dt} = -\frac{6}{\sqrt{100 - 36}} \cdot 2 = -1.5$ м/мин; скорость направлена вертикально вниз.

1003. Пусть O — центр окружности, A — точка касания забора, C — текущее положение лошади, B — точка пересечения забора с лучом AC, R — радиус окружности; $\angle AOB = \alpha = 45^\circ$, $AB = x = P \lg \alpha$, дуга $AC = s = R\alpha$, $v = \frac{ds}{dt} = R\frac{d\alpha}{dt}$, $\frac{dx}{dt} = \frac{R}{\cos^2\alpha}\frac{d\alpha}{dt} = \frac{v}{\cos^2\alpha}$; v = 20 км/ч, $\cos\alpha = \frac{\sqrt{2}}{2} \Rightarrow \frac{dx}{dt} = 40$ км/ч.

1009. $f'(x) = 6x^5 - 12x^2$. $f''(x) = 30x^4 - 24x$, $f'''(x) = 120x^3 - 24$, $f^{IV}(x) = 360x^2$. $f^{IV}(1) = 360$.

1011. $y' = -2\cos x \sin x = -\sin 2x$, $y'' = -2\cos 2x$. $y''' = 4\sin 2x$.

1015. $y' = 3x^2 \ln x + x^2$. $y'' = 6x \ln x + 5x$.

 $y''' = 6 \ln x + 11$. $y^{1V} = \frac{6}{r}$.

1018. $y' = \frac{-1-x-1+x}{(1+x)^2} = -\frac{2}{(1+x)^2}, \ y'' = \frac{2\cdot 2}{(1+x)^3}.$ $y''' = -\frac{2\cdot 2\cdot 3}{(1+x)^4}, \dots \ y^{(n)} = \frac{2(-1)^n n!}{(1+x)^{n+1}}, \ n \geqslant 1.$

1021. $y' = 2x \arctan x + 1$, $y'' = 2 \arctan x + \frac{2x}{1+x^2}$.

1025.
$$y' = \frac{e^{\sqrt{x}}}{2\sqrt{x}}, \ y'' = \frac{\frac{e^{\sqrt{x}}}{2\sqrt{x}}2\sqrt{x} - \frac{e^{\sqrt{x}}}{\sqrt{x}}}{4x} = \frac{e^{\sqrt{x}}(\sqrt{x}-1)}{4x\sqrt{x}}.$$

$$(e^t(\sin t + \cos t)) = \frac{-2e^{-t}}{(\sin t + \cos t)^3};$$

$$y''(x + y)^2 = \frac{-2e^{-t}}{(\sin t + \cos t)^3}e^{2t}(\sin t + \cos t)^2 = \frac{-2e^t}{\sin t + \cos t},$$

$$2(xy' - y) = 2\left(e^t \sin t \frac{\cos t - \sin t}{\cos t + \sin t} - e^t \cos t\right) =$$

$$= 2e^t \frac{\sin t \cos t - \sin^2 t - \cos^2 t - \sin t \cos t}{\cosh t \sin t} = \frac{-2e^t}{\sin t + \cos t}.$$

$$1079. dx = (f'(t) \cos t - f(t) \sin t - f'(t) \cos t - f''(t) \sin t)dt =$$

$$= -(f(t) + f''(t)) \sin t dt, dy = (f'(t) \sin t + f(t) \cos t - f''(t) \sin t - f''(t) \sin t)dt = (f(t) + f''(t)) \cos t dt, ds^2 = dx^2 + dy^2 =$$

$$= (f(t) + f''(t))^2(\sin^2 t + \cos^2 t)dt^2 = (f(t) + f''(t))^2dt^2.$$

$$1083. v = s' = \frac{1}{2\sqrt{t}}, a = v' = -\frac{1}{4t\sqrt{t}} = -2v^3.$$

$$1085. \text{ Пусть } l - \text{ Длина троса}, x - \text{ расстояние по горизонтали; } \frac{dt}{dt} = 2. x = \sqrt{l^2 - 16}, \frac{dt}{dt} = \frac{1}{\sqrt{l^2 - 16}} \frac{2l}{dt} = \frac{2l}{\sqrt{l^2 - 16}}, \Rightarrow$$

$$a = \frac{d^2x}{dt^2} = 2\frac{\sqrt{l^2 - 16}}{l^2 - 16} \frac{dt}{dt} = \frac{-64}{(\sqrt{l^2 - 16})^3}: \text{ при } x = \sqrt{l^2 - 16} = 8$$

$$a = -\frac{64}{8^3} = -\frac{1}{8} = -0,125 \text{ M/c}^2.$$

$$1087. F = \frac{n}{v} \Rightarrow a = \frac{F}{m} = \frac{k}{v} \Rightarrow \frac{dv}{dt} = \frac{k}{v} \Rightarrow v dv = k dt \Rightarrow$$

$$\frac{v^2}{2} = kt + C \Rightarrow E = \frac{mv^2}{2} = kmt + C.$$

$$1088.1. ((x^2 + 1)\sin x)^{(20)} = (x^2 + 1)\sin(x + 20\frac{\pi}{2}) + 20\cdot 2x\sin(x + 19\frac{\pi}{2}) + 20\cdot 192\sin(x + 18\frac{\pi}{2}) =$$

$$= (x^2 + 1)\sin x - 40x\cos x.$$

$$1090. (1 - x^2)y'' - xy' - \alpha^2y = 0;$$

$$((1 - x^2)y'')^{(n)} = (1 - x^2)y'^{(n+2)} - 2nxy'^{(n+1)} - n(n-1)y'^{(n)},$$

$$(xy')^{(n)} = xy^{(n+1)} + ny^{(n)} \Rightarrow (1 - x^2)y^{(n+2)} - 2nxy'^{(n+1)} - n(n-1)y^{(n)},$$

$$(xy')^{(n)} = xy^{(n+1)} + ny^{(n)} \Rightarrow (1 - x^2)y^{(n+2)} - 2nxy^{(n+1)} - n(n-1)y^{(n)},$$

$$(xy')^{(n)} = xy^{(n+1)} - n^2(n-2)y^{(n)} = 0.$$

$$1091. (e^{ax}\cos bx)^t = e^{ax}(a\cos bx - b\sin bx) = re^{ax}(a\cos bx - \frac{b}{r}\sin bx) = re^{ax}\cos (bx + \varphi), (e^{ax}\cos bx)^{(n)} = r^n e^{ax}\cos (bx$$

1092. Докажем по индукции; при n=1 $(e^{\frac{1}{x}})'=-\frac{1}{x^2}e^{\frac{1}{x}};$ n=2 $(xe^{\frac{1}{x}})''=(e^{\frac{1}{x}}-\frac{1}{x}e^{\frac{1}{x}})'=-\frac{1}{x^2}e^{\frac{1}{x}}+\frac{1}{x^2}e^{\frac{1}{x}}+\frac{1}{x^3}e^{\frac{1}{x}}=$

$$\begin{array}{lll} &=\frac{1}{x^3}e^{\frac{1}{x}}; \ \operatorname{пусть} \ (x^{n-1}e^{\frac{1}{x}})^{(n)} = (-1)^n \frac{1}{x^{n+1}}e^{\frac{1}{x}}. \ (x^{n-2}e^{\frac{1}{x}})^{(n-1)} = \\ &= (-1)^{n-1} \frac{1}{x^n} \quad \Rightarrow \ (x^n e^{\frac{1}{x}})^{(n+1)} = (nx^{n-1}e^{\frac{1}{x}}-x^{n-2}e^{\frac{1}{x}})^{(n)} = \\ &= n(x^{n-1}e^{\frac{1}{x}})^{(n)} - (x^{n-2}e^{\frac{1}{x}})^{(n)} = n(-1)^n \frac{e^{\frac{1}{x}}}{x^{n+1}} - ((-1)^{n-1}\frac{e^{\frac{1}{x}}}{x^n})' = \\ &= n(-1)^n \frac{e^{\frac{1}{x}}}{x^{n+1}} + ((-1)^n \frac{-x^{n-2}e^{\frac{1}{x}}-nx^{n-1}e^{\frac{1}{x}}}{x^{2n}} = (-1)^{n+1}\frac{e^{\frac{1}{x}}}{x^{n+2}}. \\ &\mathbf{1095}. \ y' = 2 \arcsin x \frac{1}{\sqrt{1-x^2}}, \\ y'' = \frac{2}{1-x^2} + 2 \arcsin x \frac{x}{(\sqrt{1-x^2})^3} \Rightarrow (1-x^2)y'' = 2 + xy' \Rightarrow \\ ((1-x^2)y'')^{(n-1)} = (2+xy')^{(n-1)} \Rightarrow \\ (1-x^2)y^{(n+1)} - 2(n-1)xy^{(n)} - (n-1)(n-2)y^{(n-1)} = \\ &= xy^{(n)} + (n-1)y^{(n-1)} \Rightarrow (1-x^2)y^{(n+1)} - (2n-1)xy^{(n)} - \\ -(n-1)^2y^{(n-1)} = 0, \ n \geqslant 2; \ \text{при} \ x = 0 \ \text{имеем} \\ y^{(n+1)}(0) = (n-1)^2y^{(n-1)}(0); \ y'(0) = 0, y''(0) = 2 \Rightarrow \\ y'''(0) = y^V(0) = \dots = y^{2k-1}(0) = 0; \\ y^{IV}(0) = 4 \cdot 2 = 8, \ y^{(6)}(0) = 8 \cdot 4^2 = 128, \dots \\ y^{(2k)}(0) = (2k-2)^2(2k-4)^2 \dots 4^2 \cdot 2^2 \cdot 2 = 2((2k-2)!!)^2. \\ \mathbf{1100}. \ dy = \frac{1}{1+\frac{b^2}{a^2}} \frac{1}{t^2} \frac{b}{a\cos^2 x} dx = \frac{ab}{a^2\cos^2 x + b^2\sin^2 x} dx, \\ d^2y = \frac{ab(a^2-b^2)\sin 2x}{(a^2\cos^2 x + \sin^2 x)^2} dx^2. \\ \mathbf{1103}. \ \rho^2\cos^3\varphi - a^2\sin^3\varphi = 0 \Rightarrow \rho = \pm atg^{3/2}\varphi, \\ d\rho = \pm \frac{3}{2}atg^{1/2}\varphi\sec^2\varphi d\varphi = \pm \frac{3}{2}a(tg^{5/2}\varphi + tg^{1/2}\varphi)d\varphi, \\ d^2\rho = \pm \frac{3}{2}a(\frac{5}{2}tg^{3/2} + \frac{1}{2}tg^{-1/2}\varphi)\sec^2\varphi d\varphi^2 = \\ = \pm \frac{3a\sec^2\varphi(5tg^2\varphi + 1)}{4\sqrt{tg}\varphi} d\varphi^2. \end{array}$$

1106. $dy = \cos z \, dz = a^x \ln a \cos a^x \, dx = 3t^2 \ln a \, a^{t^3} \cos a^{t^3} \, dt;$

1. $d^2y = -\sin z \, dz^2 + \cos z \, d^2z$;

2. $d^2y = (a^x \ln^2 a \cos a^x - a^{2x} \ln^2 a \sin a^x) dx^2 + a^x \ln a \cos a^x d^2x;$ 3. $d^2y = 3\ln a (2ta^{t^3} \cos a^{t^3} + 3t^4 \ln a a^{t^3} \cos a^{t^3} -3t^4 \ln a \, a^{2t^3} \sin a^{t^3}) dt^2$

1108. Пусть x_0 — фиксированная точка, тогда $\Delta x = x - x_0$, $\Delta y = x^3 - 3x + 2 - (x_0^3 - 3x_0 + 2) = (x - x_0)(x^2 + xx_0 + x_0^2) -3(x-x_0) = \Delta x(x^2+xx_0+x_0^2-3) = \Delta xu(x);$ при $x_0 = 2,$ x близко к x_0 $u(x)=x^2+2x+1>0$ \Rightarrow $\frac{\Delta y}{\Delta x}>0,$ функция возрастает; при $x_0 = 0$, x близко к $x_0^{-1}u(x) = 0$ $= x^2 - 3 < 0 \Rightarrow \frac{\Delta y}{\Delta x} < 0$, функция убывает; при $x_0 = -1$, x близко к x_0 $u(x) = x^2 - x - 2 = (x+1)(x-2) \Rightarrow \Delta y =$ $=\Delta x^2(x-2) < 0$, — максимум; $x_0 = 1$, x близко к x_0 u(x) = 1 $= x^2 + x - 2 = (x - 1)(x + 2) \Rightarrow \Delta y = \Delta x^2(x + 2) > 0, -1$ минимум.

К ГЛАВЕ 4

1113. $\Delta y = x - x_0 - (\ln x - \ln x_0) = \Delta x - \ln \frac{x}{x_0} = \Delta x - \ln(1 + \frac{\Delta x}{x_0}) \Rightarrow \frac{\Delta y}{\Delta x} = 1 - \frac{\ln(1 + \frac{\Delta x}{x_0})}{\Delta x}; \lim_{\Delta x \to 0} \frac{\ln(1 + \frac{\Delta x}{x_0})}{\Delta x} = \frac{1}{x_0} \Rightarrow$ при $x_0 > 1$ $\frac{\Delta y}{\Delta x} > 0$, функция возрастает; при $x_0 < 1$ функция убывает; при $x_0 = 1$ минимум.

1118. $y(0) = y(\pi) = 1$, $y' = 4^{\sin x} \ln 4 \cos x$, $y'(\frac{\pi}{2}) = 0$.

1120. $y'=\frac{-2x^5-4x^3(2-x^2)}{x^8}=\frac{2x^2-8}{x^5};\ y'=0\Leftrightarrow x=\pm 2\Rightarrow y'\neq 0$ при $x\in[-1,1];$ теорема Ролля не выполнена, т. к. при x=0 функция имеет разрыв.

1125. f(x)=0 при $x_1=1,\ x_2=2,\ x_3=3,\ x_4=4;$ по теореме Ролля f'(x) имеет корни $c_1{\in}(1,2),\ c_2{\in}(2,3),\ c_3{\in}(3.4);$ т. к. f'(x) — многочлен третьей степени, других корней нет.

1130. $f'(x) = nx^{n-1}$; $\frac{a^n - 0}{a - 0} = f'(\xi)$; $a^{n-1} = n\xi^{n-1} \Rightarrow \xi = \frac{a}{n - \sqrt[n]{n}}$.

1136. $f(1.1) \approx f(1) + f'(1.05) \cdot 0.1 = \frac{\pi}{4} + \frac{1}{1+1.5^2} \cdot 0.1 = 0.833.$

1148. $y' = \frac{\cos(x+a)\sin(x+b)-\cos(x+b)\sin(x+a)}{\sin^2(x+b)} = \frac{\sin(b-a)}{\sin^2(x+b)}$; если $\sin(x+b) \neq 0$, производная не меняет знака.

1152. $y' = 5(x-2)^4(2x+1)^4 + 8(x-2)^5(2x+1)^3 = (x-2)^4(2x+1)^3(18x-11);$ функция возрастает на $(-\infty,-\frac{1}{2}]$. $\left[\frac{11}{18},\infty\right)$, убывает на $\left[-\frac{1}{2},\frac{11}{18}\right]$.

1160. $y'=1-2\cos x;\;y'\geqslant 0\Leftrightarrow\cos x\leqslant \frac{1}{2}\Leftrightarrow \frac{\pi}{3}\leqslant x\leqslant \frac{5\pi}{3};$ функция возрастает на $[\frac{\pi}{3},\frac{5\pi}{2}],$ убывает на $[0,\frac{\pi}{3}],\;[\frac{5\pi}{3},2\pi].$

1164. $D_f=[0,a];\;y'=\sqrt{ax-x^2}+\frac{ax-2x^2}{2\sqrt{ax-x^2}}=\frac{x(3a-4x)}{2\sqrt{ax-x^2}};$ функция возрастает на $[0,\frac{3a}{4}],$ убывает на $[\frac{3a}{4},a].$

1170. $y'=-2x\sqrt{x^2+2}-x^2\frac{x}{\sqrt{x^2+2}}=-\frac{x(3x^2+4)}{\sqrt{x^2+2}};\ y'=0\Leftrightarrow x=0;\ y'>0$ при $x<0,\ y'<0$ при $x>0\Rightarrow y_{\rm MAKC}=0$ при x=0.

1175. $D_f=(-1,\infty);\ y'=1-\frac{1}{1+x}=\frac{x}{1+x};\ y'=0\Leftrightarrow x=0;\ y'<0$ при $x<0,\ y'>0$ при $x>0\Rightarrow y_{\rm MHH}=0$ при x=0.

1180. $D_f = [-1,1]; \ y' = x \arcsin x + \frac{x^2-1/2}{2\sqrt{1-x^2}} + \frac{1}{4}\sqrt{1-x^2} - \frac{1}{4}\frac{x^2}{\sqrt{1-x^2}} - \frac{\pi}{6}x = x \arcsin x - \frac{\pi}{6} + \frac{2x^2-1+1-x^2-x^2}{4\sqrt{1-x^2}} = x(\arcsin x - \frac{\pi}{6}); \ y' = 0 \Leftrightarrow x_1 = 0, \ x_2 = \frac{1}{2}; \ y' < 0 \ \text{при } 0 < x < \frac{1}{2}, \ y' > 0$ при $x < 0, \ x > \frac{1}{2} \Rightarrow y_{\text{мин}} = \frac{3\sqrt{3}-2\pi}{48}$ при $x = \frac{1}{2}, \ y_{\text{макс}} = 0$ при x = 0.

1184. $y' = ape^{px} - bpe^{-px} = p\frac{ae^{2px} - b}{e^{px}}; \ y' = 0 \Leftrightarrow e^{2px} = \frac{b}{a};$ если $ab \leqslant 0, \ y' \neq 0$, экстремумов нет; если $ab > 0, \ x_0 = \frac{1}{2p}\ln\frac{b}{a}$ — стационарная точка; если $a > 0, \ b > 0, \ y' < 0$ при $x < x_0, \ y' > 0$ при $x > x_0, \ y_{\text{мин}} = f(x_0) = 2\sqrt{ab};$ если $a < 0, \ b < 0, \ y' > 0$ при $x < x_0, \ y' < 0$ при $x > x_0, \ y_{\text{макс}} = f(x_0) = \frac{1}{2\sqrt{ab}}$.

1187. $y'=5x^4-20x^3+15x^2=5x^2(x^2-4x+3);\ y'=0$ при $x=0,\ x=2,\ x=3,\ 3\notin[-1,2];\ f(-1)=-10,\ f(0)=1,$ $f(1)=2,\ f(2)=-7;\ y_{\text{мин}}=-10,\ y_{\text{макс}}=2.$

1194. $y'=\frac{2}{\cos^2 x}-\frac{2 \operatorname{tg} x}{\cos^2 x}=\frac{2(1-\operatorname{tg} x)}{\cos^2 x}; \ y'=0 \Leftrightarrow \operatorname{tg} x=1 \Leftrightarrow x=\frac{\pi}{4}; \ y'>0$ при $x<\frac{\pi}{4}, \ y'<0$ при $x>\frac{\pi}{4}\Rightarrow y_{\operatorname{Marc}}=1$ при $x=\frac{\pi}{4}; \ \lim_{x\to\frac{\pi}{2}}y=-\infty \Rightarrow \varphi$ ункция не имеет наименьшего значения.

1198. $2\sqrt{x} > 3 - \frac{1}{x} \Leftrightarrow f(x) = 2\sqrt{x} - 3 + \frac{1}{x} > 0; \ f(1) = 0,$ $f'(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2} > 0$ при $x > 1 \Rightarrow f(x) > f(1) = 0.$

1203. $1+x\ln(x+\sqrt{1+x^2})\geqslant \sqrt{1+x^2}\Leftrightarrow f(x)=1+x\ln(x+\sqrt{1+x^2})-\sqrt{1+x^2}\geqslant 0; \ f(0)=0; \ f'(x)=\ln(x+\sqrt{1+x^2}); \ f'(x)<0$ при $x<0, \ f'(x)>0$ при $x>0, \ y_{\rm MHH}=f(0)=0\Rightarrow f(x)>0$ при $x\neq 0.$

1210. Пусть x — первый множитель, $\frac{36}{x}$ — второй множитель, $f(x) = x^2 + (\frac{36}{x})^2 \to \max$, x > 0; $f'(x) = 2x - \frac{2(36)^2}{x^3}$, $f'(x) = 0 \Leftrightarrow 2x^4 = 2(36)^2 \Leftrightarrow x = 6$; f'(x) < 0 при x < 6, f'(x) > 0 при $x > 6 \Rightarrow x = 6$ — точка минимума, множители равны 6 и 6.

1214. Пусть x — сторона основания, h — высота; v = $\frac{x^2\sqrt{3}}{4}n \Rightarrow h = \frac{4v}{x^2\sqrt{3}}, \ f(x) = S_{\text{полн}} = 2\frac{x^2\sqrt{3}}{4} + 3xh = \frac{x^2\sqrt{3}}{2} + \frac{4\sqrt{3}v}{x} \rightarrow \min, \ x > 0; \ f'(x) = x\sqrt{3} - \frac{4\sqrt{3}v}{x^2}; \ f'(x) = 0 \Leftrightarrow x^3 = 4v \Leftrightarrow x = \sqrt[3]{4v}; \ f'(x) < 0 \ \text{при} \ x < \sqrt[3]{4v}, \ f'(x) > 0 \ \text{при} \ x > \sqrt[3]{4v} \Rightarrow \text{при} \ x = \sqrt[3]{4v} \ \text{полная поверхность минимальна.}$

1218. Пусть l — образующая, r — радиус основания, h — высота конуса, $0 \leqslant \alpha \leqslant 2\pi$; $S_{\text{сектора}} = S_{\text{бок.п.конуса}} \Rightarrow \pi r l =$

$$= \frac{l^2\alpha}{2} \Rightarrow r = \frac{l\alpha}{2\pi}, \ h = \sqrt{l^2 - \frac{l^2\alpha^2}{4\pi^2}} = \frac{l}{2\pi}\sqrt{4\pi^2 - \alpha^2},$$

$$V = \frac{\pi}{3}\frac{l^2\alpha^2}{4\pi^2}\frac{l}{2\pi}\sqrt{4\pi^2 - \alpha^2} = \frac{l^3\alpha^2}{24\pi^2}\sqrt{4\pi^2 - \alpha^2}, \ \frac{dV}{d\alpha} = \frac{l^3}{24\pi^2}(2\alpha\sqrt{4\pi^2 - \alpha^2} - \frac{\alpha^3}{\sqrt{4\pi^2 - \alpha^2}}) = \frac{l^3\alpha(2\pi^2 - 3\alpha^2)}{3\pi^2\sqrt{4\pi^2 - \alpha^2}} = 0 \ \Rightarrow \alpha = \alpha_0 = 2\pi\sqrt{\frac{2}{3}} \approx 293^\circ 56'; \ V(0) = V(2\pi) = 0 \Rightarrow \text{при } \alpha = \alpha_0$$
 объем наибольший.

- **1222.** Пусть r радиус основания, h высота конуса; $0 \le h \le 2R$; $r = \sqrt{R^2 (h R)^2} = \sqrt{2Rh h^2}$. $V = \frac{\pi}{3}(2Rh h^2) = \frac{\pi}{3}(2Rh^2 h^3)$; $\frac{dV}{dh} = \frac{\pi}{3}(4Rh 3h^2) = 0 \Rightarrow h = \frac{4}{3}R$; $V(0) = V(2R) = 0 \Rightarrow$ при $h = \frac{4}{3}R$ объем наибольший.
- **1226.** Пусть A_t и B_t положение, соответственно, автомобиля и поезда в момент времени t. $A_tB=200-80t,$ $BB_t=50t;$ по теореме косинусов $f(t)=A_tB_t^2=(200-80t)^2+2500t^2-2(200-80t)50t\frac{1}{2}=12900t^2-42000t+40000,$ f'(t)=25800t-42000=0, $t=\frac{42000}{25800}=1\frac{27}{43}$ ч ≈ 1 ч 38 мин.
- 1232. Пусть α угол при вершине конуса, R радиус шара, r радиус основания конуса, h высота, l образующая. Из подобия треугольников следует $\frac{R}{r} = \frac{h-R}{l} = \frac{\sqrt{l^2-r^2}-R}{l}$, $lR = r\sqrt{l^2-r^2}-Rr$, $R(l+r) = r\sqrt{l^2-r^2}$, $R^2(l^2+2lr+r^2) = r^2R^2-r^4$, $(R^2-r^2)l^2+2R^2rl+r^2(r^2+R^2)=0$, $l_1=-r<0$, $l_2=r\frac{r^2+R^2}{r^2-R^2}$, $S=\pi rl=\pi\frac{r^4+R^2r^2}{r^2-R^2}$; $S_r'=\pi\frac{(4r^3+2R^2r)(r^2-R^2)-2r(r^4+R^2r^2)}{(r^2-R^2)^2}=\frac{2r(r^4-2R^2r^2-R^4)}{(r^2-R^2)^2}=0$, $r^2=R^2\pm\sqrt{2R^4}$, $r_1^2=R^2(1-\sqrt{2})<0$, $r_2^2=R^2(1+\sqrt{2})$, $r=R\sqrt{1+\sqrt{2}}$ точка минимума; $l=r\frac{r^2+R^2}{r^2-R^2}=R\sqrt{1+\sqrt{2}}$ $R\sqrt{1+\sqrt{2}}$ $R(\sqrt{2}+1)^{3/2}$, $\sin\frac{\alpha}{2}=\frac{l}{r}=\frac{1}{\sqrt{2}+1}=1$ $R(\sqrt{2}-1)$, $R(\sqrt{2}-1)$ $R(\sqrt{2}-1)$ $R(\sqrt{2}-1)$ $R(\sqrt{2}-1)$ $R(\sqrt{2}-1)$
- **1237.** Пусть a и b отрезки, отсекаемые прямой на осях Ox и Oy, тогда уравнение прямой $\frac{x}{a} + \frac{y}{b} = 1 \Leftrightarrow bx + ay = ab; \ x = 1, \ y = 4 \Rightarrow b + 4a = ab, \ b = \frac{4a}{a-1}, \ f(a) = a + b = \frac{a^2 + 3a}{a-1}; \ f'(a) = \frac{a^2 2a 3}{(a-1)^2} = 0 \ a_1 = -1 < 0, \ a_2 = 3$ точка минимума, $b = 6, \frac{x}{3} + \frac{y}{6} = 1$ искомое уравнение.
- **1243.** Пусть α центральный угол, R радиус дуги, $0\leqslant \alpha\leqslant 2\pi;\ a=R\alpha,\ S_{\text{сегмента}}=\frac{R^2\alpha}{2}-\frac{R^2\sin\alpha}{2}=\frac{a^2}{2\alpha^2}(\alpha-\sin\alpha);\ S'=\frac{a^2}{2}\frac{2\sin\alpha-\alpha\cos\alpha-\alpha}{\alpha^3};\ S'(\pi)=0,\ S'(\alpha)>0$ при $\alpha<\pi,S'(\alpha)<0$ при $\alpha>\pi$ \Rightarrow при $\alpha=\pi$ объем наибольший.

1246. Пусть x — расстояние от лагеря до точки высадки, t — время, тогда $t=\frac{x}{5}+\frac{\sqrt{(15-x)^2+81}}{4},$ $t'=\frac{1}{5}-\frac{15-x}{4\sqrt{(15-x)^2+81}}=0,$ $5(15-x)=4\sqrt{(15-x)^2+81},$ $25(15-x)^2=16(15-x)^2+16\cdot81,$ $(15-x)^2=16\cdot9,$ 15-x=12, x=3 — точка минимума.

1252. Пусть x — ширина текста, y — высота текста, xy = S, $f(x) = (x+2a)(y+2b) = xy+2ay+2bx+4ab = S+ +2bx+\frac{2aS}{x}+4ab$, $f'(x)=2b-\frac{2aS}{x^2}=0$, $x^2=\frac{aS}{b}$, $x=\sqrt{\frac{aS}{b}}$ — точка минимума, следовательно ширина страницы $2a+\sqrt{\frac{aS}{b}}$, высота страницы $2b+\sqrt{\frac{bS}{a}}$.

1258. $x = a\cos t$, $y = b\sin t$; пусть b > a; $x_t' = -a\sin t$, $y_t' = b\cos t$, $y_x' = -\frac{b}{a}\operatorname{ctg} t$; $y = b\sin t + \frac{a}{b}\operatorname{tg} t(x - a\cos t)$ уравнение нормали в точке $(a\cos t, b\sin t); \ y = b\sin t + \frac{a}{b}x \log t -\frac{a^2}{b}\sin t = \frac{b^2-a^2}{\sin t}t + \frac{a}{b}x \log t; \quad ax \log t - by + (b^2 - a^2)\sin t =$ $= 0; \ ax\sin t - by\cos t + \frac{b^2 - a^2}{2}\sin 2t = 0; \ \frac{a\sin t}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}x - \frac{a\sin t}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}$ $=0; \ ax \sin t - by \cos t + \frac{1}{2} - \sin 2t = 0; \ \overline{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}} - \frac{b \cos t}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}} y + \frac{(b^2 - a^2) \sin 2t}{2\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}} = 0 - \text{ нормальный вид уравнения нормали; расстояние от начала координат до нормали } d = \frac{(b^2 - a^2) \sin 2t}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}};$ $d' = \frac{b^2 - a^2}{2} \frac{2 \cos 2t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} - \frac{\sin 2t}{2\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}} (a^2 - b^2) \sin 2t}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}} = \frac{b^2 - a^2}{2} \frac{4 \cos 2t (a^2 \sin^2 t + b^2 \cos^2 t) - (a^2 - b^2) \sin^2 t}{(\sqrt{a^2 \sin^2 t + b^2 \cos^2 t})^3} = \frac{a^2 - b^2}{2} \frac{2 \cos 2t (a^2 + b^2 + (b^2 - a^2) \cos 2t) + (b^2 - a^2) \sin^2 2t}{(\sqrt{a^2 \sin^2 t + b^2 \cos^2 t})^3} = \frac{a^2 - b^2}{2} \frac{2 \cos^2 2t (b^2 - a^2) + 2(a^2 + b^2) \cos 2t + (b^2 - a^2) \sin^2 2t}{(\sqrt{a^2 \sin^2 t + b^2 \cos^2 t})^3} = \frac{a^2 - b^2}{2} \frac{(b^2 - a^2) \cos^2 2t + 2(a^2 + b^2) \cos 2t + (b^2 - a^2)}{(\sqrt{a^2 \sin^2 t + b^2 \cos^2 t})^3} = 0,$ $\cos 2t = \frac{(a \pm b)^2}{a^2 - b^2}, \ \frac{a + b}{a - b} < -1, \ \cos 2t = \frac{a - b}{a + b} \text{ соответствует максимальному расстоянию;}$ мальному расстоянию; $\sin 2t = \sqrt{1 - \frac{(a-b)^2}{(a+b)^2}} = \frac{2\sqrt{ab}}{a+b}$ $\sqrt{a^2 \sin^2 t + b^2 \cos^2 t} = \sqrt{\frac{a^2 + b^2 + (b^2 - a^2)\cos 2t}{2}} =$ $= \frac{1}{\sqrt{2}} \sqrt{a^2 + b^2 + \frac{(b^2 - a^2)(a - b)}{a + b}} = \sqrt{ab},$

 $d_{\text{Makc}} = \frac{b^2 - a^2}{2} \frac{2\sqrt{ab}}{(a+b)\sqrt{ab}} = b - a.$

1264.
$$y' = \frac{2}{1+x^2} + \frac{1}{\sqrt{1 - \frac{4x^2}{(1+x^2)^2}}} 2 \frac{1+x^2-2x^2}{(1+x^2)^2} = \frac{2}{1+x^2} + \frac{2(1-x^2)}{|1-x^2|(1+x^2)} = \frac{2}{1+x^2} - \frac{2}{1+x^2} = 0 \ (|1-x^2| = x^2-1 \ \text{при} \ x \geqslant 1) \Rightarrow y = \text{const}, \ y = y(1) = 2\frac{\pi}{4} + \frac{\pi}{2} = \pi.$$

1269. $y'=1-\frac{a^2}{x^2},\ y'=0$ при $x=\pm a;\ y''=\frac{2a^2}{x^3},\ y''(a)==\frac{2}{a}>0\Rightarrow y_{\text{мин}}=2a$ при $x=a,\ y''(a)=-\frac{2}{a}<0\Rightarrow y_{\text{макс}}==-2a$ при x=-a.

1275. $y=x^{\frac{1}{x}},\ \ln y=\frac{\ln x}{x},\ y'=x^{\frac{1}{x}}\frac{1-\ln x}{x^2}=0$ при x=e; $y''=x^{\frac{1}{x}}\frac{(1-\ln x)^2+x(2\ln x-3)}{x^4},\ y''(e)=-e^{\frac{1}{e}}\frac{1}{e^3}<0\Rightarrow y_{\text{макс}}=e^{\frac{1}{e}}$ при x=e.

1280. $y'=2x\ln x+x=x(2\ln x+1),\ y''=2\ln x+1+2=$ = $2\ln x+3,\ y''(1)=3>0\Rightarrow$ функция выпукла вниз; $y''(\frac{1}{e^2})=$ = $-1<0\Rightarrow$ функция выпукла вверх.

1284. $P(x) = a_0 x^{2n} + a_1 x^{2n-2} + \dots + a_{n-1} x^2 + a_n, \quad y = P(x) + ax + b = a_0 x^{2n} + a_1 x^{2n-2} + \dots + a_{n-1} x^2 + ax + b + a_n, \quad y' = 2na_0 x^{2n-1} + (2n-2)a_1 x^{2n-3} + \dots + 2a_{n-1} x + a, \quad y'' = 2n(2n-1)a_0 x^{2n-2} + (2n-2)(2n-3)a_1 x^{2n-4} + \dots + 2a_{n-1} > 0 \Rightarrow функция выпукла вниз.$

1291. $y'=15x^4-20x^3+3$, $y''=60x^3-60x^2=60x^2(x-1)$; y''>0 при x>1,y''<0 при $x<1\Rightarrow (1,-1)$ — точка перегиба, на $(-\infty,1)$ функция выпукла вверх, на $(1,\infty)$ — вниз.

1301. $y' = \frac{1-2x-x^2}{(x^2+1)^2},$ $y'' = \frac{(-2-2x)(x^2+1)^2-4x(x^2+1)(1-2x-x^2)}{(x^2+1)^4} = \frac{2x^3+6x^2-6x-2}{(x^2+1)^3} = \frac{2(x-1)(x^2+4x+1)}{(x^2+1)^3}; \ y'' = 0 \ \text{при} \ x_{1,2} = -2\mp\sqrt{3}, x_3 = 1; \ y_1 = y(x_1) = \frac{-2-\sqrt{3}+1}{(-2-\sqrt{3})^2+1} = -\frac{1+\sqrt{3}}{4(2+\sqrt{3})} = -\frac{(1+\sqrt{3})(2-\sqrt{3})}{4} = \frac{1-\sqrt{3}}{4}, \ y_2 = \frac{-2+\sqrt{3}+1}{(-2+\sqrt{3})^2+1} = \frac{\sqrt{3}-1}{4(2-\sqrt{3})} = \frac{\sqrt{3}+1}{4}, \ y_3 = 1; \ \frac{y_2-y_1}{x_2-x_1} = \frac{2\sqrt{3}}{4\cdot2\sqrt{3}} = \frac{1}{4}, \ \frac{y_3-y_2}{x_3-x_2} = \frac{1-\frac{1+\sqrt{3}}{4}}{1-\sqrt{3}+2} = \frac{3-\sqrt{3}}{4(3-\sqrt{3})} = \frac{1}{4}.$ 1306. $y = -\frac{\alpha x}{x^2+\beta}, \ y' = -\frac{\alpha(x^2+\beta)-2\alpha x^2}{(x^2+\beta)^2} = \alpha \frac{x^2-\beta}{(x^2+\beta)^2},$ $y'' = \alpha \frac{2x(x^2+\beta)^2-4x(x^2+\beta)(x^2-\beta)}{(x^2+\beta)^4} = \alpha \frac{2x(3\beta-x^2)}{(x^2+\beta)^3}; \ y''(2) = \frac{4(3\beta-4)}{(x^2+\beta)^2} = 0 \Rightarrow \beta = \frac{4}{3}; \ y(2) = 2.5 \Rightarrow \alpha = -\frac{y}{x}(x^2+\beta) = -\frac{5}{4}(4+\frac{4}{3}) = -\frac{20}{3}; \ y''(x) = 0 \ \text{при} \ x_1 = 0, \ x_{2,3} = \pm\sqrt{3\beta} = \pm 2; \ \text{точки перегиба также} \ (0,0) \ \text{и} \ (-2,-2,5).$

1315.
$$\frac{dy}{dx} = \frac{\psi'}{\varphi'}, \ \frac{d^2y}{dx^2} = \frac{d^2y}{dxdt} : \frac{dx}{dt} = \frac{\psi''\varphi' - \varphi''\psi'}{\varphi'^3} = \frac{\psi''\varphi' - \varphi''\psi'}{\varphi'} \frac{1}{\varphi'^2} \Rightarrow \frac{\psi''\varphi' - \varphi''\psi'}{\varphi'}$$
 меняет знак при тех же t , что и y''_{xx} .

1320.
$$f(1) = 1$$
, $f(2) = 8$, $\varphi(1) = 2$, $\varphi(2) = 5$, $f'(x) = 3x^2$, $\varphi'(x) = 2x$, $\frac{f'(x)}{\varphi'(x)} = \frac{3}{2}x$, $\frac{f(2)-f(1)}{\varphi(2)-\varphi(1)} = \frac{7}{3}$; $\frac{3}{2}x = \frac{7}{3} \Rightarrow x = \frac{14}{9} \in (1.2)$.

1323.
$$f'(x) = \frac{2x}{1+x^2}$$
, $\varphi'(x) = \frac{1}{1+x^2}$. $\frac{f'}{\varphi'} = 2x < 1$ на $[x, \frac{1}{2}]$, $\frac{f'}{\varphi'} > 1$ на $[\frac{1}{2}, x] \Rightarrow \frac{\Delta f}{\Delta \varphi} = \frac{f'(\xi)}{\varphi'(\xi)} < 1$ на $[x, \frac{1}{2}]$, $\frac{\Delta f}{\Delta \varphi} > 1$ на $[\frac{1}{2}, x]$; на $[\frac{1}{2}, 1]$ $\Delta f = \ln 2 - \ln(1+x^2) > \Delta \varphi = \frac{\pi}{4} - \operatorname{arctg} x \Rightarrow \operatorname{arctg} x - -\ln x > \frac{\pi}{4} - \ln 2$.

1330.
$$\lim_{x \to 0} \frac{x - \sin x}{x - \lg x} = \lim_{x \to 0} \frac{1 - \cos x}{1 - \sec^2 x} = \lim_{x \to 0} \frac{\cos^2 x (1 - \cos x)}{\cos^2 x - 1} = \lim_{x \to 0} \frac{-\cos^2 x}{1 + \cos x} = -\frac{1}{2}.$$

1337.
$$\lim_{x \to a} \frac{\cos x \ln(x-a)}{\ln(e^x - e^a)} = \cos a \lim_{x \to a} \frac{\frac{1}{x-a}}{\frac{e^x}{e^x - e^a}} = \cos a \lim_{x \to a} \frac{e^x - e^a}{e^x(x-a)} = \frac{\cos a}{e^a} \lim_{x \to a} \frac{e^x}{1} = \cos a.$$

1345.
$$\lim_{x \to 1} \frac{\ln(1-x) + \lg \frac{\pi x}{2}}{\operatorname{ctg} \pi x} = \lim_{x \to 1} \frac{-\frac{1}{1-x} + \frac{\pi}{2\cos^2 \frac{\pi x}{2}}}{-\frac{\pi}{\sin^2 \pi x}} = \frac{1}{\pi} \lim_{x \to 1} \left(\frac{\sin^2 \pi x}{1-x} - \frac{\pi \sin^2 \pi x}{2\cos^2 \frac{\pi x}{2}} \right) = \frac{1}{\pi} \lim_{x \to 1} \left(\frac{\sin^2 \pi x}{1-x} - 2\pi \sin^2 \frac{\pi x}{2} \right) = \frac{1}{\pi} \lim_{x \to 1} \frac{\sin^2 \pi x}{1-x} - 2 = \frac{1}{\pi} \lim_{x \to 1} \frac{2\pi \sin \pi x \cos \pi x}{-1} - 2 = 0 - 2 = -2.$$

1352.
$$\lim_{x \to 0} (\operatorname{ctg} x - \frac{1}{x}) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x} = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2} = \lim_{x \to 0} \frac{-x \sin x}{2x} = \lim_{x \to 0} (\frac{-\sin x}{2}) = 0.$$

1358.
$$y = x^{\sin x} \implies \ln y = \sin x \ln x; \quad \lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln x}{\sin x} = \lim_{x \to 0} \frac{1}{\sin x}$$

$$= \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{\cos x}{\sin^2 x}} = -\lim_{x \to 0} \frac{\sin^2 x}{x \cos x} = -\lim_{x \to 0} \frac{x^2}{x \cos x} = 0 \implies \lim_{x \to 0} y = 1.$$

1362.
$$y = (2 - \frac{x}{a})^{\lg \frac{\pi x}{2a}} \implies \ln y = \lg \frac{\pi x}{2a} \ln(2 - \frac{x}{a}); \quad \lim_{x \to a} \ln y =$$

$$= \lim_{x \to a} \frac{\ln(2 - \frac{x}{a})}{\cot g \frac{\pi x}{2a}} = \lim_{x \to a} \frac{\frac{1}{2 - \frac{x}{a}}(-\frac{1}{a})}{-\frac{1}{\sin^2 \frac{x}{2a}} \frac{\pi}{2a}} = \lim_{x \to a} \frac{2a\sin^2 \frac{\pi x}{2a}}{(2a - x)\pi} = \frac{2}{\pi} \implies \lim_{x \to a} y = e^{\frac{2}{\pi}}.$$

1369.
$$\lim_{x \to 0} \frac{\ln(1+x) - e \ln \ln(e+x)}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x} - \frac{e}{(e+x)\ln(e+x)}}{2x} = -\frac{1}{1+x} + \frac{e(1+\ln(e+x))}{2x} = -\frac{1}{1+x} + \frac{e(1+\ln(e+x))}{2x} = -\frac{1}{1+x} + \frac{e}{1+x} + \frac{e}{1+x} = -\frac{1}{1+x} = -\frac{$$

$$=\lim_{x\to 0} \frac{-\frac{1}{(1+x)^2} + \frac{e(1+\ln(c+x))}{(c+x)^2\ln^2(c+x)}}{2} = \frac{-1+\frac{2}{c}}{2} = \frac{2-c}{2e} \neq 0 \Rightarrow$$
 бесконечно малая имеет второй порядок.

 $= \frac{1374. f(x) - \varphi(x)}{\sqrt{x^6 + 2x^4 + 7x^2 + 1 - x^6 - 2x^4 - x^2}} = \frac{\sqrt{x^6 + 2x^4 + 7x^2 + 1} - (x^3 + x)}{\sqrt{x^6 + 2x^4 + 7x^2 + 1 + x^3 + x}} = \frac{6x^2 + 1}{\sqrt{x^6 + 2x^4 + 7x^2 + 1 + x^3 + x}} \sim \frac{3}{x};$

 $f(115) \approx 1520990$, $f(120) \approx 1728120$; $|f(100) - \varphi(100)| \approx \frac{3}{100} = 0.03$.

1379. $y = \frac{x^3}{2(x+1)^2}$; $\lim_{x \to -1} y = \infty \Rightarrow x = -1$ — вертикальная асимптота; $\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x^2}{2(x+1)^2} = \frac{1}{2}$, $\lim_{x \to \infty} (y - \frac{1}{2}x) = \lim_{x \to \infty} \left(\frac{x^3}{2(x+1)^2} - \frac{x}{2}\right) = \lim_{x \to \infty} \frac{-2x^2 - x}{2(x+1)^2} = -1 \Rightarrow y = \frac{x}{2} - 1$ — наклонная асимптота.

1386. D_y : $e+\frac{1}{x}>0 \Leftrightarrow x>0$. $x<-\frac{1}{e}$; $\lim_{x\to -\frac{1}{e}}y=-\infty \Rightarrow x=-\frac{1}{e}$ — вертикальная асимптота; $\lim_{x\to 0}y=\lim_{x\to 0}\frac{\ln(e+\frac{1}{x})}{\frac{1}{x}}=\lim_{x\to 0}\frac{\frac{1}{e+\frac{1}{x}}(-\frac{1}{x^2})}{\frac{1}{x^2}}=\lim_{x\to 0}\frac{x}{xe+1}=0 \Rightarrow x=0$ не является асимптотой; $\lim_{x\to \infty}\frac{y}{x}=\lim_{x\to \infty}\ln(e+\frac{1}{x})=1$, $\lim_{x\to \infty}(x\ln(e+\frac{1}{x})-x)=\lim_{x\to \infty}\frac{\ln(e+\frac{1}{x})-1}{\frac{1}{x}}=\lim_{x\to \infty}\frac{\frac{1}{e+\frac{1}{x}}(-\frac{1}{x^2})}{\frac{1}{x^2}}=\frac{1}{e} \Rightarrow y=x+\frac{1}{e}$ — наклонная асимптота.

1393. $\lim_{t\to 0} \frac{1}{t} = \infty$, $\lim_{t\to 0} \frac{t}{t+1} = 0 \Rightarrow y = 0$ — горизонтальная асимптота; $\lim_{t\to -1} \frac{t}{t+1} = \infty$, $\lim_{t\to -1} \frac{1}{t} = -1 \Rightarrow x = -1$ — вертикальная асимптота.

1397. $\lim_{t \to \pm 2} \frac{t-8}{t^2-4} = \lim_{t \to \pm 2} \frac{3}{t(t^2-4)} = \infty, \quad a_1 = \lim_{t \to 2} \frac{y}{x} = \\ = \lim_{t \to 2} \frac{3}{t(t-8)} = -\frac{1}{4}, \quad b_1 = \lim_{t \to 2} \left(\frac{3}{t(t^2-4)} + \frac{t-8}{4(t^2-4)}\right) = \\ = \lim_{t \to 2} \frac{12+t^2-8t}{4t(t^2-4)} = \lim_{t \to 2} \frac{t-6}{4t(t+2)} = -\frac{1}{8} \Rightarrow y = -\frac{1}{4}x - \\ -\frac{1}{8} - \text{ наклонная асимптота; } a_2 = \lim_{t \to -2} \frac{y}{x} = \lim_{t \to -2} \frac{3}{t(t-8)} = \\ = \frac{3}{20}, \quad b_2 = \lim_{t \to -2} \left(\frac{3}{t(t^2-4)} - \frac{3(t-8)}{20(t^2-4)}\right) = \lim_{t \to -2} \frac{60-3t^2+24t}{20t(t^2-4)} = \\ = \lim_{t \to -2} \frac{-3(t-10)}{20t(t+2)} = \frac{9}{40} \Rightarrow y = \frac{3}{20}x + \frac{9}{40} - \text{ наклонная асимптота; } \lim_{t \to 0} \frac{3}{t(t^2-4)} = \infty, \quad \lim_{t \to 0} \frac{t-8}{t^2-4} = 2 \Rightarrow x = 2 - \text{ вертикальная асимптота.}$

1402. $y=\frac{x^2}{x^2-1}$; $x^2-1\neq 0\Rightarrow$ функция не определена при $x=\pm 1$; $y(-x)=y(x)\Rightarrow$ график симметричен относительно оси ординат; $\lim_{x\to\pm 1}y=\infty\Rightarrow x=-1,\ x=1$ — вертикальные асимптоты; $\lim_{x\to\infty}y=1\Rightarrow y=1$ — горизонтальная асимптота; $y'=\frac{2x(x^2-1)-2x^3}{(x^2-1)^2}=-\frac{2x}{(x^2-1)^2},\ y'>0$ на $(-\infty,-1)$. $(-1,0)\Rightarrow$ функция возрастает, y'<0 на $(0,1),\ (1,\infty)\Rightarrow$ функция убывает; $y_{\text{макс}}=0$ при x=0; $y''=-2\frac{(x^2-1)^2-4x^2(x^2-1)}{(x^2-1)^4}=$

 $=2\frac{3x^2+1}{(x^2-1)^3},\ y''>0$ на $(-\infty,-1),\ (1,\infty)\Rightarrow$ функция выпукла вниз, y''<0 на $(-1,1)\Rightarrow$ функция выпукла вверх. Перегибов нет.

1409. $y=\frac{x^3}{2(x+1)^2}$; $x+1\neq 0\Rightarrow$ функция не определена при x=-1; $\lim_{x\to -1}y=\infty\Rightarrow x=-1$ — вертикальная асимптота; $\lim_{x\to \infty}\frac{y}{x}=\lim_{x\to \infty}\frac{x^2}{2(x+1)^2}=\frac{1}{2},\ \lim_{x\to \infty}(y-\frac{1}{2}x)=\lim_{x\to \infty}\left(\frac{x^3}{2(x+1)^2}-\frac{x}{2}\right)=\lim_{x\to \infty}\frac{-2x^2-x}{2(x+1)^2}=-1\Rightarrow y=\frac{x}{2}-1$ — наклонная асимптота; $y'=\frac{3x^2(x+1)^2-2(x+1)x^3}{2(x+1)^4}=\frac{x^2(x+3)}{2(x+1)^3},$ y'>0 на $(-\infty,-3),\ (-1,0),\ (0,\infty)\Rightarrow$ функция возрастает на $(-\infty,-3),\ (-1,\infty);\ y'<0$ на $(-3,-1)\Rightarrow$ функция убывает на этом множестве; $y_{\text{макс}}=-\frac{27}{8}$ при x=-3: $y''=\frac{(2x(x+3)+x^2)(x+1)^3-3(x+1)^2x^2(x+3)}{2(x+1)^6}=\frac{3x}{(x+1)^1},\ y''>0$ на $(0,\infty)\Rightarrow$ функция выпукла вниз, y''<0 на $(-\infty,-4),\ (-4,0)\Rightarrow$ функция выпукла вверх. x=0— точка перегиба. **1417.** $y=x^2e^{-x}=\lim_{x\to +\infty}\frac{x^2}{e^x}=0\Rightarrow y=0$ — горизонтальная асимптота: $\lim_{x\to +\infty}\frac{x^2}{e^x}=0\Rightarrow y=0$ — горизонтальная асимптота: $\lim_{x\to +\infty}\frac{x^2}{e^x}=0\Rightarrow y=0$ — горизонтальная асимптота: $\lim_{x\to +\infty}\frac{x^2}{e^x}=0$

 $\lim_{x\to +\infty} x^2 e^{-x} = \lim_{x\to +\infty} \frac{x^2}{e^x} = 0 \Rightarrow y = 0 - \text{горизонталь-}$ ная асимптота; $\lim_{x\to -\infty} y = +\infty; \ y' = 2xe^{-x} - x^2e^{-x} =$ $= e^{-x}(2-x)x, y' > 0 \text{ на } (0,2) \Rightarrow \text{ функция возрастает на }$ $(0,2); \ y' < 0 \text{ на } (-\infty,0), \ (2,\infty) \Rightarrow \text{ функция убывает на }$ этих множествах; $y_{\text{макс}} = \frac{4}{e^2} \text{ при } x = 2; \ y_{\text{мин}} = 0 \text{ при }$ $x = 0; \ y'' = e^{-x}(x^2 - 4x + 2), \ y'' = 0 \text{ при } x = 2 \pm \sqrt{2}, \ y'' > 0$ на $(-\infty,2-\sqrt{2}), \ (2+\sqrt{2},\infty) \Rightarrow \text{ функция выпукла вниз, }$ y'' < 0 на $(2-\sqrt{2},2+\sqrt{2}) \Rightarrow \text{ функция выпукла вверх, }$ $x = 2 \pm \sqrt{2}$ — точки перегиба.

1425. $y=x+\frac{\ln x}{x}$; функция определена при x>0; $\lim_{x\to 0}=-\infty \Rightarrow x=0$ — вертикальная асимптота; $\lim_{x\to +\infty}\frac{y}{x}=\lim_{x\to +\infty}\left(1+\frac{\ln x}{x^2}\right)=1$, $\lim_{x\to +\infty}(y-x)=\lim_{x\to +\infty}\frac{\ln x}{x}=0\Rightarrow y=\lim_{x\to +\infty}\frac{\ln x}{x}=0\Rightarrow y=\lim_{x\to +\infty}\frac{\ln x}{x^2}=\frac{x^2+1-\ln x}{x^2}$; пусть $f(x)=x^2+1-\ln x$, докажем, что f(x)>0; $f'(x)=2x-\frac{1}{x}=\frac{2x^2-1}{x}$, f'(x)=0 при $x=\frac{1}{\sqrt{2}}$, это точка минимума, $f\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{2}+1+\frac{\ln 2}{2}>0\Rightarrow f(x)>0\Rightarrow y'>0$, функция возрастает всюду; $y''=\frac{2\ln x-3}{x^3}$, y''=0 при $x=e^{\frac{3}{2}}$, y''>0 на $(e^{\frac{3}{2}},\infty)$ \Rightarrow функция выпукла вниз, y''<0 на $(0,e^{\frac{3}{2}})$ \Rightarrow функция выпукла вверх, $x=e^{\frac{3}{2}}$ — точка перегиба.

1430. $y=\cos x-\ln\cos x$; функция определена при $\cos x>>0$, т. е. при $x\in \left(-\frac{\pi}{2}+2\pi n,\frac{\pi}{2}+2\pi n\right),\ n\in {\bf Z};$ $\lim_{x\to\pm\frac{\pi}{2}+2\pi n}=\infty \Rightarrow x=\pm\frac{\pi}{2}+2\pi n$ — вертикальные асимптоты; $y'=\cos x+\log x=\frac{\sin x(1-\cos x)}{\cos x}.$ f'(x)=0 при $x=2\pi n$, это точки минимума, $y''=\frac{1}{\cos^2 x}-\cos x=\frac{1-\cos^3 x}{\cos^2 x}\geqslant 0\Rightarrow$ функция выпукла вниз на каждом интервале области определения.

1437. $y=\sqrt[3]{(x+1)^2}-\sqrt[3]{x^2}+1$; функция определена всюду; $\lim_{x\to\infty}\sqrt[3]{(x+1)^2}-\sqrt[3]{x^2}+1=\lim_{x\to\infty}\frac{(x+1)^2-x^2}{\sqrt[3]{(x+1)^4}+\sqrt[3]{(x+1)^2x^2}+\sqrt[3]{x^4}}+1=\lim_{x\to\infty}\frac{2x+1}{\sqrt[3]{(x+1)^4}+\sqrt[3]{(x+1)^2x^2}+\sqrt[3]{x^4}}+1=1\Rightarrow y=1-\text{горизонтальная асимптота; }y'=\frac{2}{3\sqrt[3]{x+1}}-\frac{2}{3\sqrt[3]{x^2}}=\frac{2(\sqrt[3]{x}-\sqrt[3]{x+1})}{3\sqrt[3]{x(x+1)}}\neq 0,\ y'>0$ на $(-1,0)\Rightarrow$ функция возрастает на $(-1,0);\ y'<0$ на $(-\infty,-1),(0,\infty)\Rightarrow$ функция убывает на этих множествах; $y_{\text{макс}}=2$ при $x=0;\ y_{\text{мин}}=0$ при x=-1, минимум и максимум "острые"; $y''=\frac{4}{9\sqrt[3]{(x+1)^4}}+\frac{4}{9\sqrt[3]{x^4}}=\frac{4(\sqrt[3]{x^4}-\sqrt[3]{(x+1)^4})}{9\sqrt[3]{x^4(x+1)^4}},\ y''=0$ при $x=-\frac{1}{2},y''>0$ на $(0,\infty),\ (-\frac{1}{2},0)\Rightarrow$ функция выпукла вниз, y''<0 на $(-\infty,-1),\ (-1,-\frac{1}{2})\Rightarrow$ функция выпукла вверх, $x=-\frac{1}{2}$ — точка перегиба.

1443. $y^2=x^3-x, \ y=\pm\sqrt{x^3-x}\Rightarrow$ функция двузначна, график симметричен относительно оси абсцисс; $x^3-x\geqslant 0\Rightarrow$ функция определена на $[-1,0]\cup[1,\infty)$; пусть y>0; $\lim_{x\to\infty}\frac{y}{x}=\infty\Rightarrow$ асимптот нет; $y'=\frac{3x^2-1}{2\sqrt{x^3-x}},\ y'=0$ при $x=\pm\frac{1}{\sqrt{3}},\ x=\pm\frac{1}{\sqrt{3}},\ x=\pm\frac{1}{\sqrt{3}},\ y'>0$ на $(-1,-\frac{1}{\sqrt{3}}),\ (1,\infty)\Rightarrow$ положительная ветвь функции возрастает на этих промежутках; y'<0 на $(-\frac{1}{\sqrt{3}},0)\Rightarrow$ функция убывает на этом множестве; $|y|_{\text{макс}}=\pm\frac{\sqrt{12}}{3}$ при $x=-\frac{\sqrt{3}}{3}$; $y''=\frac{3x^4-6x^2-1}{4\sqrt{(x^3-x)^3}}, y''=0$ при $x=-\frac{\sqrt{3}+\sqrt{12}}{3}$, это абсцисса точек перегиба.

1448. $y^2=x^2\frac{a+x}{a-x},\ y=\pm x\sqrt{\frac{a+x}{a-x}}\Rightarrow$ функция двузначна, график симметричен относительно оси абсцисс; начало координат — точка самопересечения; $\frac{a+x}{a-x}\geqslant 0\Rightarrow$ функция определена на $[-a,a)\Rightarrow$ наклонных асимптот нет; $\lim_{x\to a}y=\infty\Rightarrow x=a$ — вертикальная асимптота; исследуем ветвь, соответствующую знаку '+'; $y'=\sqrt{\frac{a-x}{a+x}}+\frac{x}{2}\sqrt{\frac{a-x}{a+x}}\frac{a-x+a+x}{(a-x)^2}=$

 $= rac{a^2 + ax - x^2}{\sqrt{a^2 - x^2}(a - x)}, \ y' = 0$ при $x = a rac{1 \pm \sqrt{5}}{2}, \ x = a rac{1 + \sqrt{5}}{2}
otin D_f, \ y' > 0$ на $(a rac{1 - \sqrt{5}}{2}, a) \Rightarrow$ эта ветвь функции возрастает на этом промежутке; y' < 0 на $(-a, a rac{1 - \sqrt{5}}{2}) \Rightarrow$ функция убывает на этом промежутке; $|y|_{ ext{макс}} = a \sqrt{rac{5\sqrt{5} - 11}{2}}$ при $x = a rac{1 - \sqrt{5}}{2}; \ y'' > 0 \Rightarrow$ перегибов нет.

1453. $y^2(2a-x)=x^3,\ y=\pm\sqrt{\frac{x^3}{2a-x}}\Rightarrow$ функция двузначна, график симметричен относительно оси абсцисс; $\frac{x^3}{2a-x}\geqslant 0\Rightarrow$ функция определена на $[0,2a)\Rightarrow$ наклонных асимптот нет; $\lim_{x\to 2a}y=\infty\Rightarrow x=2a$ — вертикальная асимптота; исследуем ветвь, соответствующую знаку '+'; $y'=\sqrt{\frac{2a-x}{x^3}}\frac{3x^2(2a-x)+x^3}{(2a-x)^2}=\frac{\sqrt{x}(3a-x)}{\sqrt{(2a-x)^3}};\ y'>0$ на $D_f\Rightarrow$ эта ветвь функции возрастает; экстремумов нет; $y'(0)=0\Rightarrow$ начало координат — точка возврата; $y''>0\Rightarrow$ перегибов нет.

1459. $y^2 = 2exe^{-2x}, \ y = \pm \sqrt{2ex}e^{-x} \Rightarrow$ функция двузначна, график симметричен относительно оси абсцисс; $2ex \geqslant 0 \Rightarrow$ функция определена на $[0,\infty)$; $\lim_{x\to +\infty} y = 0 \Rightarrow y = 0$ — горизонтальная асимптота; исследуем ветвь, соответствующую знаку '+'; $y' = \sqrt{2e}\left(\frac{e^{-x}}{2\sqrt{x}} - \sqrt{x}e^{-x}\right) = \frac{\sqrt{2e}e^{-x}(1-2x)}{2\sqrt{x}}, \ y' = 0$ при $x = \frac{1}{2}, \ y' > 0$ на $[0,\frac{1}{2}) \Rightarrow$ эта ветвь функции возрастает на этом промежутке; y' < 0 на $(\frac{1}{2},\infty) \Rightarrow$ функция убывает на этом промежутке; $|y|_{\text{макс}} = 1$ при $x = \frac{1}{2}$; $y'' = \frac{\sqrt{2e}}{2}\frac{e^{-x}(2x-3)\sqrt{x} - \frac{1}{2\sqrt{x}}e^{-x}(1-2x)}{x} = \frac{\sqrt{2c}e^{-x}(4x^2-4x-1)}{2x\sqrt{x}} = 0$ при $x = \frac{1+\sqrt{2}}{2}$, это абсцисса точек перегиба.

1463. $y=\begin{cases} 1-xe^{-\frac{1}{|x|}-\frac{1}{x}}, x\neq 0 \\ 1,x=0\end{cases} =\begin{cases} 1-xe^{-\frac{2}{x}}, x>0 \\ 1-x,x\leqslant 0\end{cases};$ функция определена всюду; при x<0 график совпадает с прямой y=1-x; (0,1) — угловая точка; $\lim_{x\to+\infty}\frac{y}{x}=\lim_{x\to+\infty}\left(\frac{1}{x}-e^{-\frac{2}{x}}\right)=-1, \ \lim_{x\to+\infty}\left(1-xe^{-\frac{2}{x}}+x\right)=1-\lim_{x\to+\infty}x\left(e^{-\frac{2}{x}}-1\right)=3\Rightarrow y=-x+3$ — наклонная асимптота; при x>0 $y'=-e^{-\frac{2}{x}}-xe^{-\frac{2}{x}}\frac{2}{x^2}=-e^{-\frac{2}{x}}\frac{2+x}{x}, \ y'<0$ на $(0,\infty)$ \Rightarrow функция убывает на этом промежутке; $y''=-\frac{4e^{-\frac{2}{x}}}{x^3}<0$ при x>0 \Rightarrow график выпуклый вверх.

1468. $x=te^t,\ y=te^{-t};\ x(-t)=-y(t),\ y(-t)=-x(t)$ \Rightarrow график симметричен относительно прямой $y=-x;\ x_t'=e^t(t+1), x_t'=0$ при $t=-1,\ x_{\mathrm{мин}}=-\frac{1}{e}$ при $t=-1;\ y_t'=e^{-t}(1-t),\ y_t'=0$ при $t=1,\ y_{\mathrm{макс}}=\frac{1}{e}$ при $t=1;\ y_x'=e^{-2t}\frac{1-t}{1+t};\ \lim_{t\to -\infty}x=0,\ \lim_{t\to -\infty}y=-\infty\Rightarrow x=0$ — вертикальная асимптота; $\lim_{t\to +\infty}y=0,\ \lim_{t\to +\infty}x=+\infty\Rightarrow y=0$ — горизонтальная асимптота; при t>1 $x(t)\uparrow,\ e< x<<+\infty,\ y(t)\downarrow,\ 0< y<\frac{1}{2};\$ при -1< t<1 $x(t)\uparrow,\ -\frac{1}{e}<< x<0,\ y(t)\uparrow,\ -e< y<\frac{1}{e};$ умакс $=\frac{1}{e}$ при x=e; при $-\infty< t<-1$ $x(t)\downarrow,\ -\frac{1}{c}< x<0,\ y(t)\uparrow,-\infty< y<-e,$ хмин $x=-\frac{1}{e}$ при x=e0 однозначна; $x=-\frac{1}{e}$ 1 при x=e1 при x=e2 однозначна; $x=-\frac{1}{e}$ 2 при x=e3 однозначна; $x=-\frac{1}{e}$ 3 график имеет две точки перегиба.

1471. $\rho = a \operatorname{tg} \varphi$; $\operatorname{tg} \varphi \geqslant 0 \Rightarrow$ функция определена на $[0,\frac{\pi}{2}) \cup [\pi,\frac{3\pi}{2})$; $x = \rho \cos \varphi = a \sin \varphi$, $y = \rho \sin \varphi = a \operatorname{tg} \varphi \sin \varphi$; $\lim_{\varphi \to \frac{\pi}{2}} x = a$, $\lim_{\varphi \to \frac{\pi}{2}} y = \infty \Rightarrow x = a$ — вертикальная асимптота; $\rho(\varphi + \pi) = a \operatorname{tg}(\varphi + \pi) = a \operatorname{tg} \varphi \Rightarrow$ график симметричен относительно начала координат, x = -a — также вертикальная асимптота; $\rho'_{\varphi} = \frac{a}{\cos^2 \varphi} > 0 \Rightarrow$ радиус возрастает на $[0,\frac{\pi}{2})$, $[\pi,\frac{3\pi}{2})$.

1475. $\rho = \sqrt{\frac{\pi}{\varphi}}$; функция определена при $\varphi > 0$; $\lim_{\varphi \to 0} = \infty \Rightarrow y = 0$ — горизонтальная асимптота; $\rho'_{\varphi} = -\frac{\sqrt{\pi}}{2\varphi\sqrt{\varphi}} < 0 \Rightarrow$ радиус убывает; $x = \frac{\sqrt{\pi}\cos\varphi}{\sqrt{\varphi}}$, $y = \frac{\sqrt{\pi}\sin\varphi}{\sqrt{\varphi}}$, $x'_{\varphi} = -\sqrt{\pi}\frac{2\varphi\sin\varphi+\cos\varphi}{2\varphi\sqrt{\varphi}}$, $y'_{\varphi} = \sqrt{\pi}\frac{2\varphi\cos\varphi-\sin\varphi}{2\varphi\sqrt{\varphi}}$, $y'_{x} = \frac{\sin\varphi-2\varphi\cos\varphi}{\cos\varphi+2\varphi\sin\varphi}$, $y''_{x\varphi} = \frac{4\varphi^2-1}{(\cos\varphi+2\varphi\sin\varphi)^2} = 0$ при $\varphi = \frac{1}{2}$, $\rho(\frac{1}{2}) = \sqrt{2\pi} \Rightarrow (\sqrt{2\pi}, \frac{1}{2})$ — точка перегиба.

1481. $(x^2+y^2)(x^2-y^2)^2=4x^2y^2; \ x=\rho\cos\varphi, \ y=\rho\sin\varphi\Rightarrow x^2+y^2=\rho^2, \ x^2-y^2=\rho^2\cos2\varphi, \ 4x^2y^2=\rho^2\sin^22\varphi; \ \rho^2(\rho^2\cos2\varphi)^2=\rho^2\sin^22\varphi\Leftrightarrow \rho^4\cos^22\varphi=\sin^22\varphi\Leftrightarrow \rho=\sin^22\varphi\Leftrightarrow \rho=\sqrt{\lg^22\varphi}=\sqrt{\lg 2\varphi}; \$ функция определена при $\varphi\neq\pm\frac{\pi}{4},\pm\frac{3\pi}{4}; \ \rho(\varphi+\frac{\pi}{4})=\rho(\varphi)\Rightarrow$ функция периодична с периодом $T=\frac{\pi}{4},$ поэтому ее график симметричен относительно осей координат и биссектрис координатных углов; $x=\sqrt{\lg 2\varphi}\cos\varphi, \ y=\sqrt{\lg 2\varphi}\sin\varphi; \ \lim_{\varphi\to\pi}x=\frac{1}{2}$

$$=\lim_{\varphi\to\frac{\pi}{4}}y=\infty, \lim_{\varphi\to\frac{\pi}{4}}\frac{y}{x}=\lim_{\varphi\to\frac{\pi}{4}}\mathrm{tg}\,\varphi=1, \ \lim_{\varphi\to\frac{\pi}{4}}(y-x)=\\=\lim_{\varphi\to\frac{\pi}{4}}\sqrt{|\lg 2\varphi|}(\sin\varphi-\cos\varphi)=\lim_{\varphi\to\frac{\pi}{4}}\frac{2\mathrm{tg}^2\varphi}{1-\mathrm{tg}^2\varphi}(\mathrm{tg}\,\varphi-1)\cos\varphi=\\=-\frac{1}{\sqrt{2}}\Rightarrow$$
 прямая $y=x-\frac{1}{\sqrt{2}}$ — наклонная асимптота; из соображений симметрии линия имеет четыре наклонные асимптоты $(x\pm y)^2=\frac{1}{2}$; линия состоит из четырех ветвей, соответствующих $\frac{\pi n}{4}<\varphi<\frac{\pi}{4}+\frac{\pi n}{4},\ n=0,1,2,3$; начало координат—четырехкратная точка самопересечения.

1488. $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty \Rightarrow \forall a \in \mathbf{R}$ $\exists x: f(x) = a; \ f'(x) > 0 \Rightarrow$ такой x единствен. $f(x) = x^3 + 3x - 1$, f(0,31) = -0,007, $f(0,32) = 0,048 \Rightarrow 0,31 < x < 0,32$.

1494. $x = \varepsilon \sin x + a \Leftrightarrow a = x - \varepsilon \sin x$; пусть $f(x) = x - \varepsilon \sin x$, $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty$, $f'(x) = 1 - \varepsilon \cos x > 0 \Rightarrow f(x) \uparrow$, $\forall a \exists ! x : f(x) = a$; при $\varepsilon = 0.538$, a = 1, 1.537 < x < 1.538.

1500. $f(x) = x^{10} - 3x^5 + 1$, f(1) = -1; $f'(x) = 10x^9 - 15x^4$, f'(1) = -5; $f''(x) = 90x^8 - 60x^3$, f''(1) = 30, $\frac{f''(1)}{2} = 15$,..., $\frac{f'''(1)}{3!} = 90$, $\frac{f^{(1)}(1)}{4!} = 195$, $\frac{f^{(2)}(1)}{5!} = 249$, $\frac{f^{(6)}(1)}{6!} = 210$, $\frac{f^{(7)}(1)}{7!} = 120$, $\frac{f^{(8)}(1)}{8!} = 45$, $\frac{f^{(9)}(1)}{9!} = 10$, $\frac{f^{(10)}(1)}{10!} = 1$; $f(x) = (x-1)^{10} + 10(x-1)^9 + 45(x-1)^8 + 120(x-1)^7 + 210(x-1)^6 + 249(x-1)^5 + 195(x-1)^4 + 90(x-1)^3 + 15(x-1)^2 - 5(x-1) - 1$.

1507. $f(x) = x^3 \ln x$, f(1) = 0; $f'(x) = 3x^2 \ln x + x^2$, f'(1) = 1; $f''(x) = 6x \ln x + 5x$, f''(1) = 5; $f'''(x) = 6 \ln x + 11$, f'''(1) = 11, $f^{IV}(x) = \frac{6}{x}$, $f^{IV}(1) = 6$; при $n \ge 4$ $f^{(n)}(x) = \frac{6(-1)^n(n-4)!}{x^{n-3}}$, $f^{(n)}(1) = 6(-1)^n(n-4)! \Rightarrow f(x) = (x-1) + \frac{5(x-1)^2}{2} + \frac{11(x-1)^3}{6} + 6\sum_{k=4}^n \frac{(-1)^k(x-1)^k}{k(k-1)(k-2)(k-3)} + \frac{6(-1)^{n+1}(x-1)^{n+1}}{(n+1)n(n-1)(n-2)(1+\theta(x-1))^{n-2}}$, $0 < \theta < 1$.

1516. $y=2\cos x+x^2=2(1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^5))+x^2=2+\frac{x^4}{12}+o(x^5);$ f'(0)=f''(0)=f'''(0)=0, $f^{\rm IV}(0)>0\Rightarrow(0,2)$ — точка минимума.

1520. $f(x) = x^{10} - 3x^6 + x^2 + 2$, f(1) = 1; $f'(x) = 10x^9 - 18x^5 + 2x$, f'(1) = -6; $f''(x) = 90x^8 - 90x^4 + 2$, f''(1) = 2;

$$\begin{split} f(x) &\approx 1 - 6(x - 1) + (x - 1)^2, \ f(1,03) \approx 1 - 6 \cdot 0,03 + 0,03^2 = \\ &= 0,8209 \approx 0,820, \\ &= 0,78125, \delta < \frac{1}{\sqrt{e}} = e^{-\frac{1}{4}} \approx 1 - \frac{1}{4} + \frac{1}{32} - \frac{1}{384} \Rightarrow e^{-\frac{1}{4}} \approx \frac{25}{32} = \\ &= 0,78125, \delta < \frac{1}{384} < 0,003; \ e^{-\frac{1}{4}} = 0,78 \pm 0,003. \\ &= 1530. \ x = a \cos t, \ y = b \sin t, \ x'_t = -a \sin t, \ x''_{tt} = \\ &= -a \cos t, \ y'_t = b \cos t, \ y''_{tt} = -b \sin t; \ k = \frac{x'_1y'_{11} - x'_1y'_{12}}{(x'_1^2 + y'_1^2)^{3/2}} = \\ &= \frac{a \sin^2(1 + ab \cos^2t)}{(a^2 \sin^2(1 + b^2 \cos^2t)^{3/2})} = \frac{ab}{(a^2 \sin^2(1 + b^2 \cos^2t)^{3/2})}, \ \text{Inpite} \ t = 0, \ \pi \ k_1 = \\ &= \frac{a}{2}, \ \text{npit} \ t = \frac{\pi}{2}, \frac{3\pi}{2} \ k_2 = \frac{b}{a^2}. \\ &= \frac{3y - x^2}{y^2 - ax}, \ y'(\frac{3}{2}a, \frac{3}{2}a) = -1; \ y'' = \frac{(ay' - 2x)(y' - ax) - (2yy' - a)(ay - x^2)}{(y'^2 - ax)^2}, \\ &y''(\frac{3}{2}a, \frac{3}{2}a) = \frac{(-4a)(\frac{3}{4}a^2) - (-4a)(-\frac{3}{4}a^2)}{\frac{3}{16}a} = -\frac{32}{3a}; \ k = \frac{32}{3a\sqrt{2}^3} = \frac{8\sqrt{2}}{3a}. \\ &= \frac{1541. \frac{x^m}{a^m} + \frac{y^m}{b^m} = 1 \Leftrightarrow b^m x^m + a^m y^m = (ab)^m; \\ &\frac{mx^{m-1}}{a^m} + \frac{my^{m-1}y'}{b^m} = 0, \ y' = -\frac{b^m x^{m-1}}{a^m y^{m-1}}, \\ &y'' = -\left(\frac{b}{a}\right)^m \frac{(m-1)x^{m-2}y^{m-1} - (m-1)x^{m-1}y^{m-2}y'}{a^2 m^2} = \\ &= -\frac{(m-1)b^m x^{m-2}(a^m y^m + b^m x^m)}{a^2 m y^2 m^{-2}} = -\frac{(m-1)b^m x^{m-2}(ab)^m}{a^2 m y^2 m^{-1}} = \\ &= \frac{[(m-1)(ab)^{2m}(xy)^{m-2}]}{(a^{2m}y^{2m-2})^{3/2}}. \\ &1546. \ x'_t = -2a \sin t + 2a \sin 2t = 2a(\sin 2t - \sin t), \\ &x''_{tt} = 2a(2\cos 2t - \cos t), \ y'_t = 2a(\cos t - \cos 2t), \\ &y''_{tt} = 2a(2\sin 2t - \sin t); \\ &k = \frac{4a^2((\sin 2t - \sin t)(2\sin 2t - \sin t) + (\cos 2t - \cos t)(2\cos 2t - \cos t))}{(a^{2}(2^{-2}2\cos 3)^{3/2}} = \frac{6\sin^2\frac{x}{2}}{16a|\sin\frac{x}{2}|} = \\ &= \frac{|\phi^2 + 2y^2 - \rho \rho^{\prime\prime}|}{(\rho^2 + \rho^2)^{3/2}} = \frac{a^2|\phi^2 + 2x^2 + 2x^2 + 2xyy' - 4ayy' = 0, \\ &y' = \frac{3x^2 + y^2}{2(a^2 - x)}, \ R = \frac{(a^2(\cos 2\varphi + \frac{\sin^2 2\varphi}{\cos 2\varphi}) + \frac{1 + \cos^2 2\varphi}{\cos 2\varphi}}{a^2(\cos 2\varphi + \frac{\sin^2 2\varphi}{\cos 2\varphi})} = \frac{a}{3\sqrt{\cos 2\varphi}} = \\ &= \frac{a^2}{3\rho}. \\ &1558. \ (x^2 + y^2)x - 2ay = 0, \ x^2 + y^2 + 2x^2 + 2xyy' - 4ayy' = 0, \\ &y' = \frac{3x^2 + y^2}{2(a^2 - a^2)}, \ y'(a, a) = 2; \end{aligned}$$

$$y''=\frac{(6x+2yy')(4ay-2xy)-(4ay'-2y-2xy')(3x^2+y^2)}{(4ay-2xy)^2}, \quad y''(a,a)==\frac{10a\cdot 2a^2-2a\cdot 4a}{4a^4}=\frac{3}{a}; \quad \xi=a-\frac{2\cdot 5}{3/a}=-\frac{7}{3}a, \quad \eta=a+\frac{5}{3/a}==\frac{8}{3}a, \quad R=\frac{5^{3/2}}{3/a}=\frac{a\sqrt{125}}{3}; \quad (x+\frac{7}{3}a)^2+(y-\frac{8}{3}a)^2=\frac{125a^2}{9}$$
 - уравнение окружности кривизны.

1566. $f(1-0) = f(1+0) \Rightarrow a+b+c = 1$, $f'(1-0) = f'(1+0) \Rightarrow 2a+b = 3$, $f''(1-0) = f''(1+0) \Rightarrow 2a = 6$; a = 3, b = -3, c = 1.

1572. x = 3t, $y = t^2 - 6$; $x'_t = 3$, $x''_{tt} = 0$, $y'_t = 2t$, $y''_{tt} = 2$; $\xi = 3t - \frac{4t^2 + 9}{6}2t = -\frac{4t^3}{3}$, $\eta = t^2 - 6 + \frac{4t^2 + 9}{6}3 = 3t^2 - \frac{3}{2}$: $t = -\sqrt[3]{\frac{3\xi}{4}}$, $\eta = 3\sqrt[3]{\frac{9x^2}{16}} - \frac{3}{2}$, $(\eta + \frac{3}{2})^3 = \frac{243}{16}\xi^2$.

1580. $R=\frac{(a^2\sin^2t+b^2\cos^2t)^{3/2}}{ab}$ (**1530**), $R(0)=\frac{b^2}{a}$, $R(\frac{\pi}{2})=\frac{a^2}{b}$; т. к. длина эволюты L равна приращению радиуса кривизны, $\frac{L}{4}=\frac{a^2}{b}-\frac{b^2}{a}=\frac{a^3-b^3}{ab}$, $L=\frac{4(a^3-b^3)}{ab}$.

К ГЛАВЕ 5

1593. Точки деления $x_i=4+\frac{2i}{n}, 0\leqslant i\leqslant n$, тогда площадь входящей лестницы $L_n=\sum\limits_{i=0}^{n-1}2x_i(x_{i+1}-x_i)=\sum\limits_{i=0}^{n-1}2\left(4+\frac{2i}{n}\right)\frac{2}{n}=\frac{4}{n^2}\sum\limits_{i=0}^{n-1}(4n+2i)=\frac{4}{n^2}(4n^2+n(n-1))=\sum\limits_{i=0}^{n-1}20-\frac{4}{n}$, площадь выходящей лестницы $R_n=\sum\limits_{i=0}^{n-1}2x_{i+1}(x_{i+1}-x_i)=\sum\limits_{i=0}^{n-1}2\left(4+\frac{2(i+1)}{n}\right)\frac{2}{n}=\frac{4}{n^2}\sum\limits_{i=0}^{n-1}(4n+2i)+2(i+1)=\frac{4}{n^2}(4n^2+n(n+1))=20+\frac{4}{n},\lim_{n\to\infty}L_n=\lim_{n\to\infty}R_n=20,\ \alpha=\frac{4}{n},\ \sigma=\frac{\alpha}{20}=\frac{1}{5n}.$

1600. Найдем точки пересечения кривых: $x^2-6x+10=6x-x^2\Rightarrow x_1=1,\ x_2=5;\ S=\int_1^5(6x-x^2-(x^2-6x+10))dx=\int_1^5(12x-2x^2-10)dx=(6x^2-\frac{2x^3}{3}-10x)|_1^5=150-6-\frac{250}{3}+\frac{2}{3}-50+10=\frac{64}{3}.$

1605. $F = kx, dA = kx dx \Rightarrow A(x) = \int_0^x kx dx = \frac{kx^2}{2};$ $A(0,04) = 10, 10 = \frac{k}{2} \cdot 0,0016 \Rightarrow k = 12500 \Rightarrow A(0,1) = 625 \ \mathcal{J}\pi.$

1612. $dA = \frac{E^2}{R}dt$, $E = E_0 - at$, $a = \frac{1.5}{60} = 0.025 \,\mathrm{B/c} \Rightarrow A = \int_0^{300} \frac{(120 - 0.025t)^2}{60} dt = \int_0^{300} (240 - 0.1t + \frac{1}{40^2 \cdot 60}t^2) dt = (240t - 0.1\frac{t^2}{2} + \frac{1}{1600 \cdot 180}t^3)|_0^{300} \approx 67600 \,\mathrm{Jmc}$.

1617. Пусть
$$t=\sqrt[n]{b/a}$$
, тогда $x_0=a,x_1=at,\dots,x_n=at^n=b$ — точки деления отрезка. $I_n=\sum_{i=0}^{n-1}x_i^k(x_{i+1}-x_i)=a^k(at-a)+(at)^k(at^2-at)+\dots+(at^{n-1})^k(at^n-at^{n-1})=a^{k+1}(t-1)(1+t^{k+1}+\dots+t^{(n-1)(k+1)})=a^{k+1}(t-1)\times \times \frac{1-t^{n(k+1)}}{1-t^{k+1}}=a^{k+1}(t-1)\frac{1-(b/a)^{k+1}}{1-t^{k+1}}=(t-1)\frac{b^{k+1}-a^{k+1}}{t^{k+1}-1};$ т. к. $\lim_{n\to\infty}t=\lim_{n\to\infty}\sqrt[n]{b/a}=1,\ I=\lim_{t\to 1}(b^{k+1}-a^{k+1})\frac{t-1}{t^{k+1}-1}=\frac{b^{k+1}-a^{k+1}}{k+1}$ (например, по правилу Лопиталя).

1621.
$$I_n = \sum_{i=0}^{n-1} \frac{1}{x_i} (x_{i+1} - x_i) = \left(\frac{1}{1} + \frac{1}{1 + \frac{1}{n}} + \frac{1}{1 + \frac{2}{n}} + \dots + \frac{1}{1 + \frac{n}{n}} \right) \frac{1}{n} = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}; \lim_{n \to \infty} I_n = \int_1^2 \frac{dx}{x} = \ln 2.$$

1628. Найдем максимум функции $f(x)=\frac{x}{x^3+16}$ на [0,10]; $f'(x)=\frac{16-2x^3}{(x^3+16)^2}, f'(x)=0$ при $x=2,y_{\text{макс}}=\frac{1}{12}\Rightarrow I\leqslant \frac{1}{12}\cdot 10=\frac{5}{6}.$

1633. $f'(x) = \frac{1-x^2}{(1+x^2)^2}$, f'(x) = 0 при x = 1, $y_{\text{макс}} = f(1) = \frac{1}{2}$, $f(\frac{1}{2}) = \frac{2}{5}$, $f(\frac{5}{2}) = \frac{10}{29}$ $\Rightarrow y_{\text{мин}} = \frac{10}{29}$ $\Rightarrow 2 \cdot \frac{10}{29} < I < 2\frac{1}{2}$ $\Rightarrow \frac{20}{29} < I < 1$.

1638. $\int_0^1 \sqrt{1+x^3} dx < \sqrt{\int_0^1 (1+x^3) dx} \sqrt{\int_0^1 dx} = \sqrt{(x+\frac{x^4}{4})|_0^1} \cdot 1 = = \frac{\sqrt{5}}{2} \approx 1,18;$ по общему правилу $I < \int_0^1 \sqrt{2} dx = \sqrt{2} \approx 1,41.$

1641. 1) $1\leqslant \sqrt{1+x^4}\leqslant \sqrt{2}\,(x\in[0,1])\Rightarrow 1< I<\sqrt{2}\approx 1,414;$ 2) график функции $f(x)=\sqrt{1+x^4}$ выпуклый вниз $\Rightarrow 1< I<\frac{1+\sqrt{2}}{2}\approx 1,207;$ 3) $1< I<\sqrt{\int_0^1(1+x^4)dx}=\sqrt{\frac{6}{5}}\approx 1,095.$

1648. $E(t) = 100 + \frac{t}{3}, \ 0 \le t \le 60, \ I(t) = \frac{E(t)}{R} = 10 + \frac{t}{30}, \ I_{\rm cp} = \frac{1}{60} \int_0^{60} (10 + \frac{t}{30}) dt = \frac{1}{60} (10t + \frac{t^2}{60}) |_0^{60} = 11 A.$

1653.
$$E(t) = E_1 + \frac{E_2 - E_1}{t_2 - t_1} (t - t_1), \quad I(t) = \frac{E(t)}{R}, \quad dA = E(t)I(t)dt = \frac{E^2(t)}{R}, \quad A = \int_0^t \frac{1}{R} (E_1 + \frac{E_2 - E_1}{t_2 - t_1} (t - t_1))^2 dt = \frac{1}{R} \int_0^t \left(\frac{(E_2 - E_1)t + E_1t_2 - E_2t_1}{t_2 - t_1} \right)^2 dt = \frac{1}{R} \int_0^t (\alpha t + \beta)^2 dt = \frac{1}{R} \left(\frac{\alpha^2 t^3}{3} + \alpha \beta t^2 + \beta^2 t \right), \quad \alpha = \frac{E_2 - E_1}{t_2 - t_1}, \quad \beta = \frac{E_1t_2 - E_2t_1}{t_2 - t_1}.$$
1662. $\int_0^{2\pi} \frac{\sin x}{t} dx = E(2\pi)$, then $E(\pi) = \int_0^{\pi} \frac{\sin x}{t} dx \Rightarrow \alpha' = \frac{\pi^2 t}{t_2 - t_1}$

1662.
$$\int_0^{2x} \frac{\sin x}{x} dx = F(2x)$$
, rate $F(x) = \int_0^x \frac{\sin x}{x} dx \Rightarrow y' = 2F'(2x) = 2\frac{\sin 2x}{2x} = \frac{\sin 2x}{x}$.

1666.2. $x'_t = 2t \cdot t^2 \ln t^2 = 4t^3 \ln t, y'_t = -2t \cdot t^4 \ln t^2 = 4t^3 \ln t$

1666.2.
$$x'_t = 2t \cdot t^2 \ln t^2 = 4t^3 \ln t, y'_t = -2t \cdot t^4 \ln t^2 = -4t^5 \ln t \Rightarrow y'_x = -t^2.$$

1675.
$$\int_a^b f''(x) dx = f'(x)|_a^b = \operatorname{tg} \frac{\pi}{4} - \operatorname{tg} \frac{\pi}{3} = 1 - \sqrt{3};$$
 $\int_a^b f'(x) f''(x) dx = \int_a^b f'(x) d(f'(x)) = \frac{f'^2(x)}{2}|_a^b = \frac{1-3}{2} = -1.$

К ГЛАВЕ 6

1680.
$$\int a^x e^x dx = \int e^{x(1+\ln a)} \frac{1}{1+\ln a} d(x(1+\ln a)) = \frac{(ae)^x}{1+\ln a} + C.$$

1686.
$$\int \frac{\sqrt{x} - x^3 e^x + x^2}{x^3} dx = \int (x^{-5/2} - e^x + x^{-1}) dx = -\frac{2}{3x^{3/2}} - e^x + \ln|x| + C.$$

1696.
$$\int \text{tg}^2 x dx = \int \frac{\sin^2 x}{\cos^2 x} dx = \int \frac{1-\cos^2 x}{\cos^2 x} dx = \int \left(\frac{1}{\cos^2 x} - 1\right) dx =$$

= $\text{tg}x - x + C$.

1700.
$$\int \frac{(1+x)^2 dx}{x(1+x^2)} = \int \frac{(1+x^2+2x)dx}{x(1+x^2)} = \int \left(\frac{1}{x} + 2\frac{1}{1+x^2}\right) dx = \ln|x| + 2\arctan x + C.$$

1708.
$$\int \frac{dx}{(a+bx)^c} = \int \frac{1}{b} \frac{d(a+bx)}{(a+bx)^c} = \frac{1}{b(1-c)(a+bx)^{c-1}} + C.$$

1715.
$$\int \frac{x \, dx}{\sqrt{x^2+1}} = \int \frac{d(x^2+1)}{2\sqrt{x^2+1}} = \sqrt{x^2+1} + C.$$

1722.
$$\int \cos^3 x \sin 2x \, dx = \int_z^2 2 \cos^4 x \sin x \, dx =$$

$$= -2 \int \cos^4 x d(\cos x) = -\frac{2\cos^5 x}{5} + C.$$

1734.
$$\int e^x \sin(e^x) dx = \int \sin(e^x) d(e^x) = -\cos(e^x) + C$$
.

1741.
$$\int \frac{x^2 dx}{x^3 + 1} = \int \frac{d(x^3 + 1)}{3(x^3 + 1)} = \frac{1}{3} \ln|x^3 + 1| + C.$$

1746.
$$\int \operatorname{tg} 3x \, dx = \int \frac{\sin 3x \, dx}{\cos 3x} = -\int \frac{d(\cos 3x)}{3\cos 3x} = -\frac{\ln|\cos 3x|}{3} + C.$$

1757.
$$\int e^{-x^3} x^2 dx = -\frac{1}{3} \int e^{-x^3} d(-x^3) = -\frac{1}{3} e^{-x^3} + C$$

1762.
$$\int \frac{dx}{2x^2+9} = \frac{1}{2} \int \frac{dx}{x^2+\frac{9}{2}} = \frac{\sqrt{2}}{6} \operatorname{arctg} \frac{x\sqrt{2}}{3} + C$$
.

1769.
$$\int \frac{2^x dx}{\sqrt{1-4^x}} = \int \frac{d(2^x)}{\ln 2\sqrt{1-4^x}} = \frac{\arcsin 2^x}{\ln 2} + C.$$

1775.
$$\int \sqrt{\frac{1-x}{1+x}} dx = \int \frac{1-x}{\sqrt{1-x^2}} dx = \int \frac{dx}{\sqrt{1-x^2}} + \int \frac{d(1-x^2)}{2\sqrt{1-x^2}} =$$

$$= \arcsin x + \sqrt{1 - x^2} + C.$$

1782.
$$\int \frac{x}{2x+1} dx = \int \left(\frac{1}{2} - \frac{1}{2(2x+1)}\right) dx = \frac{x}{2} - \frac{1}{4} \ln|2x+1| + C.$$

1789.
$$\int \frac{x^4}{1-x} dx = \int \frac{x^4 - 1 + 1}{1-x} = \int \left(-x^3 - x^2 - x - 1 + \frac{1}{1-x} \right) dx =$$
$$= -\frac{x^4}{4} - \frac{x^3}{3} - \frac{x^2}{2} - x - \ln|1 - x| + C.$$

1794.
$$\int \frac{dx}{(a-x)(b-x)} = \frac{1}{a-b} \int \frac{(a-x)-(b-x)}{(a-x)(b-x)} = \frac{1}{a-b} \int \left(\frac{1}{b-x} - \frac{1}{a-x}\right) dx =$$
$$= \frac{1}{a-b} (\ln|a-x|-\ln|b-x|) + C = \frac{1}{a-b} \ln\left|\frac{a-x}{b-x}\right| + C.$$

1802.
$$\int \frac{dx}{x-x^2-2.5} = -\int \frac{dx}{(x-0.5)^2+1.5^2} = -\frac{2}{3} \arctan \frac{2x-1}{3} + C.$$

1807.
$$\int \frac{dx}{\sqrt{2-6x-9x^2}} = \int \frac{dx}{\sqrt{3-(3x+1)^2}} = \frac{1}{3}\arcsin\frac{3x+1}{\sqrt{3}} + C.$$

1812.
$$\int \frac{1-\cos x}{1+\cos x} dx = \int \lg^2 \frac{x}{2} dx = \int \left(\frac{1}{\cos^2 \frac{x}{2}} - 1\right) dx = 2\lg \frac{x}{2} - x + C.$$

1819. $\int \cos x \cos 2x \cos 3x \, dx = \frac{1}{2} \int \cos 2x (\cos 4x + \cos 2x) dx = \frac{1}{4} \int (\cos 6x + \cos 2x + 1 + \cos 4x) dx = \frac{x}{4} + \frac{1}{8} \sin 2x + \frac{1}{16} \sin 4x + \frac{1}{24} \sin 6x + C.$

1824.
$$\int \frac{\sin^3 \alpha}{\sqrt{\cos \alpha}} d\alpha = -\int \frac{1 - \cos^2 \alpha}{\sqrt{\cos \alpha}} d(\cos \alpha) =$$

$$= \int (\cos^{\frac{3}{2}} \alpha - \cos^{-\frac{1}{2}} \alpha) d(\cos \alpha) = \frac{2}{5} \cos^{\frac{5}{2}} \alpha - 2 \cos^{\frac{1}{2}} \alpha + C =$$

$$= 2\sqrt{\cos \alpha} \left(\frac{\cos^2 \alpha}{5} - 1\right) + C.$$

1829. $\int \sin^4 x \, dx = \frac{1}{4} \int (1 - \cos 2x)^2 dx = \frac{1}{4} \int (1 - 2\cos 2x + \frac{1 + \cos 4x}{2}) dx = \frac{3}{8} x - \frac{1}{4} \sin 2x + \frac{1}{32} \sin 4x + C.$

1835.
$$\int x \cdot 3^x dx = \frac{1}{\ln 3} \int x d(3^x) = \frac{x3^x}{\ln 3} - \frac{1}{\ln 3} \int 3^x dx = \frac{3^x (x \ln 3 - 1)}{\ln^2 3} + C.$$

1840. $\int \frac{\arcsin x}{\sqrt{x+1}} dx = 2 \int \arcsin x d(\sqrt{x+1}) = 2\sqrt{x+1} \arcsin x - 2 \int \frac{\sqrt{x+1}}{\sqrt{1-x^2}} dx = 2\sqrt{x+1} \arcsin x - 2 \int \frac{dx}{\sqrt{1-x}} = 2\sqrt{x+1} \arcsin x + 4\sqrt{1-x} + C.$

1846. $\int \ln(x^2+1)dx = x\ln(x^2+1) - \int \frac{2x^2}{x^2+1}dx = x\ln(x^2+1) - \int 2dx + 2\int \frac{dx}{x^2+1} = x\ln(x^2+1) - 2x + 2\arctan x + C.$

1852.
$$\int x^2 a^x dx = \frac{1}{\ln a} \int x^2 d(a^x) = \frac{x^2 a^x}{\ln a} - \int \frac{2x a^x}{\ln a} dx = \frac{x^2 a^x}{\ln a} - \frac{1}{\ln^2 a} \int x d(a^x) = \frac{x^2 a^x}{\ln a} - \frac{2x a^x}{\ln^2 a} + \frac{2a^x}{\ln^3 a} + C = \frac{a^x}{\ln^3 a} ((x \ln a)^2 - 2x \ln a + 2) + C.$$

$$\begin{aligned} & \mathbf{1863.} \int \sinh x \, dx = x \sinh \ln x - \int x \cosh \frac{1}{x} \, dx = x \sinh \ln x - x \cosh x - \int \sinh x \, dx \Rightarrow \int \sinh x \, dx = \frac{x (\sinh x - \cosh x)}{2} + C. \\ & \mathbf{1869.} \int \frac{dx}{1 + \sqrt{x + 1}} = \left[x + 1 = z^2, \, dx = 2z \, dz \right] = \int \frac{2z \, dz}{1 + z} = \\ & = 2 \int \left(1 - \frac{1}{1 + z} \right) \, dz = 2z - 2 \ln |1 + z| + C = 2\sqrt{x + 1} - 2 \ln (1 + \sqrt{x + 1}) + C. \\ & \mathbf{1879.} \int \frac{\sqrt{x}}{\sqrt{x} \cdot \sqrt[3]{x}} \, dx = \left[x = z^6, \, dx = 6z^5 \, dz \right] = \\ & = \int \frac{z^3}{z^3 - z^2} 6z^5 \, dz = 6 \int \frac{z^6}{z - 1} \, dz = 6 \int \left(z^5 + z^4 + z^3 + z^2 + z + 1 + \frac{1}{z - 1} \right) \, dz = z^6 + \frac{6z^5}{5} + \frac{3z^4}{2} + 2z^3 + 3z^2 + 6z + 6 \ln |z - 1| + C = \\ & = x + \frac{6\sqrt[6]{x^5}}{5} + \frac{3\sqrt[3]{x^2}}{2} + 2\sqrt{x} + 3\sqrt[3]{x} + 6\sqrt[3]{x} + 6 \ln |\sqrt[3]{x} - 1| + C. \\ & \mathbf{1884.} \int \frac{dx}{\sqrt{1 + c^2}} = \left[1 + e^x = z^2, e^x \, dx = 2z \, dz \, . \, dx = \frac{2z \, dz}{z^2 - 1} \right] = \\ & = \int \frac{2z \, dz}{2(z^2 - 1)} = \ln \left| \frac{z - 1}{z + 1} \right| + C = \ln \frac{\sqrt{1 + c^2} - 1}{\sqrt{1 + c^2} + 1} + C. \\ & \mathbf{1890.} \int \frac{dx}{x^2 \sqrt{x^2 + a^2}} = \left[x = \frac{1}{z}, \, dx = -\frac{dz}{z^2} \right] = -\int \frac{dz}{\sqrt{\frac{1}{x^2 + a^2}}} = \\ & = -\int \frac{z \, dz}{\sqrt{a^2 z^2 + 1}} = -\sqrt{a^2 z^2 + 1} + C = -\sqrt{x^2 + a^2} + C. \\ & \mathbf{1896.} \int \frac{\sqrt{y - x^2}}{\sqrt{y - x^2}} \, dx = \left[x = 3 \sin t, \, dx = 3 \cos t \, dt \right] = \\ & = \int \frac{27 \cos^3 t}{729 \sin^3 t} \, 3\cos t \, dt = \frac{1}{9} \int \frac{\cos^4 t}{\sin^5 t} \, dt = -\frac{1}{9} \int \cot^4 t \, d(\cot t) = \\ & = -\frac{1}{45} \cot 5^6 t + C = -\frac{1}{45} \frac{\cos^5 \arcsin \frac{\pi}{3}}{\sin^5 \arcsin \frac{\pi}{3}} + C = -\frac{1}{45} \int \frac{\sqrt{1 - \frac{x^2}{2}}}{\left(\frac{\pi}{3}\right)^5} + C = \\ & = -\frac{\sqrt{(9 - x^2)^3}}{45x^5} + C. \\ & \mathbf{1901.} \int \frac{dx}{(x^2 + 4)\sqrt{4x^2 + 1}} = \left[x = \frac{t \, t}{2}, \, dx = \frac{dt}{2\cos^2 t} \right] = \\ & = \frac{2}{15} \int \frac{d(\sin t)}{(x^2 + 4)\sqrt{4x^2 + 1}} = \int \frac{2dt}{\cos t (\log^2 t + 16)} = \int \frac{2\cos t \, dt}{\sin^2 t + 16\cos^2 t} = \\ & = \frac{1}{4\sqrt{15}} \ln \left| \frac{\sqrt{15}}{x\sqrt{15} - 2\sqrt{4x^2 + 1}} \right| + C. \\ & \mathbf{1906.} \int \sin \sqrt{x} \, dx = \left[x = z^3, \, dx = 3z^2 \, dz \right] = \\ & = 3 \int z^2 \sin z \, dz = -3z^2 \cos z + 6z \sin z - 6z \sin z + 6\cos z + \\ & + 6z \sin z - 6 \int \sin z \, dz = -3z^2 \cos z + 6z \sin z + 6\cos \sqrt{x} + C \\ & = 3((2 - \sqrt[3]{x^2}) \cos \sqrt[3]{x} + 2\sqrt[3]{x} \sin \sqrt[3]{x} + C. \end{aligned}$$

1913.
$$\int \frac{\sin x \, dx}{e^{\cos x}} = \int e^{-\cos x} d(-\cos x) = e^{-\cos x} + C.$$

1921.
$$\int \frac{2x+3}{\sqrt{1+x^2}} dx = \int \frac{d(1+x^2)}{\sqrt{1+x^2}} + 3 \int \frac{dx}{\sqrt{1+x^2}} = 2\sqrt{1+x^2} + 3 \ln(x+\sqrt{1+x^2}) + C.$$

1929.
$$\int \frac{\cos 2x}{\cos^2 x} dx = \int \frac{2\cos^2 x - 1}{\cos^2 x} dx = \int \left(2 - \frac{1}{\cos^2 x}\right) dx = 2x - - \operatorname{tg} x + C.$$

1935.
$$\int \frac{x \, dx}{\sqrt{2+4x}} = \int \frac{x+\frac{1}{2}}{\sqrt{2+4x}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{2+4x}} = \frac{1}{4} \int \sqrt{2+4x} dx - \frac{1}{24} \sqrt{2+4x} = \frac{1}{4} \int \sqrt{2+4x} dx - \frac{1}{4} \sqrt{2+4x} = \frac{1}{4} \int \sqrt{2+4x} dx - \frac{1}{4} \int \sqrt$$

1943.
$$\int \frac{8x-11}{\sqrt{5+2x-x^2}} dx = \int \frac{8x-8}{\sqrt{5+2x-x^2}} dx - 3 \int \frac{dx}{\sqrt{5+2x-x^2}} = -4 \int \frac{d(5+2x-x^2)}{\sqrt{5+2x-x^2}} - 3 \int \frac{dx}{\sqrt{6-(x-1)^2}} = -8\sqrt{5+2x-x^2} - 3 \arcsin \frac{x-1}{\sqrt{6}} + C.$$

1951.
$$\int \frac{(4-3x)dx}{5x^2+6x+18} = \int \frac{-3x-\frac{9}{5}-\frac{29}{5}}{5x^2+6x+18}dx = -\frac{3}{10}\int \frac{10x+6}{5x^2+6x+18}dx + \frac{29}{5}\int \frac{dx}{5(x+\frac{3}{5})^2+\frac{81}{25}} = -\frac{3}{10}\ln(5x^2+6x+18) + \frac{29}{45}\arctan\frac{5x+3}{9} + C.$$

1955.
$$\int \sqrt{\frac{a-x}{x-b}} dx = \left[t^2 = \frac{a-x}{x-b}, \ x = \frac{a+bt^2}{1+t^2}, \ dx = \frac{2(b-a)t}{(1+t^2)^2} dt \right] =$$

$$= 2(b-a) \int \frac{t^2 dt}{(1+t^2)^2} = 2(b-a)(-\frac{1}{2}) \int t \, d(\frac{1}{1+t^2}) = (a-b) \times \left(\frac{t}{1+t^2} - \int \frac{dt}{1+t^2} \right) = (a-b)(\frac{t}{1+t^2} - \operatorname{arctg} t) + C = (a-b) \times \left(\sqrt{\frac{a-x}{x-b}} \frac{x-b}{a-b} - \operatorname{arctg} \sqrt{\frac{a-x}{x-b}} \right) + C = \sqrt{(a-x)(x-b)} - (a-b) \times \operatorname{arctg} \sqrt{\frac{a-x}{x-b}} + C.$$

1960. $\int \frac{\ln \cos x}{\cos^2 x} dx = \int \ln \cos x \, d(\operatorname{tg} x) = \operatorname{tg} x \ln \cos x + \int \operatorname{tg}^2 x \, dx = \operatorname{tg} x \ln \cos x + \int \left(\frac{1}{\cos^2 x} - 1\right) dx = \operatorname{tg} x (\ln \cos x + 1) - x + C.$

1966. $\int \frac{dx}{e^x + 1} = [e^x + 1 = t, \ x = \ln(t - 1), \ dx = \frac{dt}{t - 1}] = \int \frac{dt}{t(t - 1)} = \int \frac{dt}{t - 1} - \int \frac{dt}{t} = \ln|t - 1| - \ln|t| + C = x - \ln(e^x + 1) + C.$

1971. $\int \frac{x \arcsin x}{\sqrt{1-x^2}} dx = -\int \arcsin x \, d(\sqrt{1-x^2}) = -\sqrt{1-x^2} \times \arcsin x + \int \frac{\sqrt{1-x^2} dx}{\sqrt{1-x^2}} = x - \sqrt{1-x^2} \arcsin x + C.$

 $\begin{array}{lll} \textbf{1977.} \int \frac{\sin x \, dx}{1 + \sin x} &=& \left[t &=& \operatorname{tg} \frac{x}{2}, & \sin x &=& \frac{2t}{1 + t^2}, & dx &= \\ &=& \frac{2dt}{1 + t^2} \right] &=& 4 \int \frac{t \, dt}{(1 + t^2)(1 + t)^2} &=& 2 \int \frac{1 + 2t + t^2 - (1 + t^2)}{(1 + t^2)(1 + t)^2} \, dt &=& 2 \int \frac{dt}{1 + t^2} - \\ &-& 2 \int \frac{dt}{(1 + t)^2} &=& 2 \operatorname{arctg} t + \frac{2}{1 + t} + C &=& x + \frac{2}{1 + \operatorname{tg} \frac{x}{2}} + C. \end{array}$

2019. $I = \int \frac{x \, dx}{x^4 - 3x^2 + 2} = \left[u = x^2, \ du = 2x \, dx \right] = \frac{1}{2} \int \frac{du}{u^2 - 3u + 2} = \frac{1}{2} \int \frac{du}{(u - 1)(u - 2)}; \ \frac{1}{(u - 1)(u - 2)} = \frac{A}{u - 1} + \frac{B}{u - 2}, \ A(u - 2) + B(u - 1) = 1, \ \text{при } u = 2 : B = 1, \ \text{при } u = 1 : A = -1; \ I = \frac{1}{2} \int \frac{du}{u - 2} + \frac{1}{2} \int \frac{du}{u - 1} = \frac{1}{2} \ln \left| \frac{u - 2}{u - 1} \right| + C = \frac{1}{2} \ln \left| \frac{x^2 - 2}{x^2 - 1} \right| + C.$

2025. $I=\int \frac{x^3+1}{x^3-x^2}dx=\int \frac{x^3-x^2+x^2+1}{x^3-x^2}dx=x+\int \frac{x^2+1}{x^2(x-1)}dx; \frac{x^2+1}{x^2(x-1)}=\frac{A}{x}+\frac{B}{x^2}+\frac{C}{x-1},\ x^2+1=Ax(x-1)++B(x-1)+Cx^2,\ \text{при }x=0:1=-B,\ \text{при }x=1:2=C,$ коэффициент при $x^2:1=A+C\Rightarrow A=-1,\ B=-1,\ C=2:\ I=x+2\int \frac{dx}{x-1}-\int \frac{dx}{x}-\int \frac{dx}{x^2}=x+\ln\frac{(x-1)^2}{|x|}+\frac{1}{x}+C.$

2031. $I = \int \frac{x^5 dx}{(x-1)^2(x^2-1)} = \int \frac{x^5-x^3}{(x-1)^2(x^2-1)} dx + \int \frac{x^3}{(x-1)^2(x^2-1)} dx = \int \frac{x^3}{(x-1)^2(x^2-1)} dx = I_1 + I_2;$ разделив с остатком x^3 на $(x-1)^2$, получаем $x^3 = (x-1)^2(x+2) + 3x + 2;$ $I_1 = \int \left(x+2+\frac{3x-2}{(x-1)^2}\right) dx = \frac{x^2}{2} + 2x + \int \frac{3x-3+1}{(x-1)^2} dx = \frac{x^2}{2} + 2x + 3\ln|x-1| - \frac{1}{x-1} + C;$ $\frac{x^3}{(x-1)^2(x^2-1)} = \frac{x^3}{(x-1)^3(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \frac{D}{x+1} \Rightarrow x^3 = A(x-1)^2(x+1) + B(x-1)(x+1) + C(x+1) + D(x-1)^3, \quad x = 1 : 1 = 2C.$ $x = -1 : -1 = -8D, \quad x = 0 : 0 = A - B + C - D, \quad x^3 : 1 = A + D;$ $A = \frac{7}{8}, B = \frac{5}{4}, \quad C = \frac{1}{2}, \quad D = \frac{1}{8}, \quad I_2 = \frac{7}{8} \int \frac{dx}{x-1} + \frac{5}{4} \int \frac{dx}{(x-1)^2} + \frac{1}{2} \in \frac{dx}{(x-1)^3} + \frac{1}{8} \int \frac{dx}{x+1} = \frac{7}{8} \ln|x-1| - \frac{5}{4(x-1)} - \frac{1}{4(x-1)^2} + \frac{1}{8} \ln|x+1| + C;$ $I = \frac{31}{8} \ln|x-1| + \frac{1}{8} \ln|x+1| + C$ $+ 1 - \frac{9}{4(x-1)} - \frac{1}{4(x-1)^2} + \frac{x^2}{2} + 2x + C.$

2043. $I = \int \frac{dx}{(x+1)^2(x^2+1)}; \quad \frac{1}{(x+1)^2(x^2+1)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1} \Rightarrow 1 = A(x+1)(x^2+1) + B(x^2+1) + (Cx+D)(x+1)^2; x = -1 : 1 = 2B, x = 0 : 1 = A+B+D, x^3 : 0 = A+C, x = 1 : 1 = 4A+2B+4C+4D \Rightarrow A = \frac{1}{2}, B = \frac{1}{2},$

$$C = -\frac{1}{2}, \ D = 0; \ I = \frac{1}{2} \int \frac{dx}{x+1} + \frac{1}{2} \int \frac{dx}{(x+1)^2} - \frac{1}{2} \int \frac{x}{x^2+1} = \frac{1}{2} \ln |x + 1| - \frac{1}{2(x+1)} - \frac{1}{4} \ln (x^2+1) + C = \frac{1}{4} \ln \frac{(x+1)^2}{x^2+1} - \frac{1}{2(x+1)} + C.$$

$$2048. \ I = \int \frac{x^2+x-1}{(x^2+2)^2} dx = \int \frac{x^3+2x}{(x^2+2)^2} dx - \int \frac{x^4+1}{(x^2+2)^2} dx = \int \frac{x}{x^2+2} - \int \frac{x^4x}{(x^2+2)^2} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)^2} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)^2} dx = \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)^2} dx = \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)^2} - \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)} - \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)} - \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)} + \frac{1}{4} \int \frac{dx}{x^2+2} = \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)} + \frac{1}{4} \int \frac{dx}{x^2+2} = \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{x^4x}{(x^2+2)} + \frac{1}{4} \int \frac{dx}{x^2+2} = \frac{1}{2} \ln (x^2+2) + \frac{1}{2(x^2+2)} - \frac{1}{2} \int \frac{dx}{(1+x^2)^3} + \frac{1}{4} \int \frac{dx}{(1+x^2)^3} + \frac{1}{6} \int \frac{dx}{(1+x^2)^3} dx = \frac{x}{6(1+x^2)^3} + \frac{1}{24} \int \frac{dx}{(1+x^2)^3} dx = \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} dx = \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} + \frac{x}{6(1+x^2)^3} dx =$$

$$= \int \frac{-3t \, dt}{1 - t^3}; \quad \frac{-3t}{1 - t^3} = \frac{A}{1 - t} + \frac{Bt + C}{1 + t + t^2}, \quad A(1 + t + t^2) + (Bt + C)(1 - t) = -3t \Rightarrow A = -1, B = -1, C = 1; \quad I = \int \frac{dt}{t - 1} - \int \frac{t - 1}{t^2 + t + 1} dt = \ln|t - 1| - \int \frac{t + \frac{1}{2} - \frac{3}{2}}{t^2 + t + 1} dt = \ln|t - 1| - \frac{1}{2} \ln(t^2 + t + t + 1) + \frac{3}{2} \int \frac{dt}{(t + \frac{1}{2})^2 + \frac{3}{4}} = \ln \frac{|t - 1|}{\sqrt{t^2 + t + 1}} + \sqrt{3} \operatorname{arctg} \frac{2t + 1}{\sqrt{3}} + C = \ln \frac{|z^2 - 1|}{\sqrt{z^2 + z^2 + 1}} + \sqrt{3} \operatorname{arctg} \frac{2z^2 + 1}{\sqrt{3}} + C, z = \sqrt[3]{\frac{1 - x}{1 + x}}.$$

 $\begin{aligned} & \textbf{2077.} \ I = \int x^{-1} (1+x^{\frac{1}{3}})^{-3} dx \, (m=-1,n=\frac{1}{3},p=-3\in \mathbf{Z}) \\ [u = x^{\frac{1}{3}},x = u^3.dx = 3u^2du]; \ I = \int u^{-3} (1+u)^{-3} 3u^2 du = \\ & = 3\int \frac{du}{u(1+u)^3}; \ \frac{1}{u(1+u)^3} = \frac{A}{u} + \frac{B}{1+u} + \frac{C}{(1+u)^2} + \frac{D}{(1+u)^3} \Rightarrow 1 = \\ & = A(1+u)^3 + Bu(1+u)^2 + Cu(1+u) + Du \Rightarrow A = 1, \ B = \\ & = C = D = -1; \ I = 3\left(\int \frac{du}{u} - \int \frac{du}{1+u} - \int \frac{du}{(1+u)^2} - \int \frac{du}{(1+u)^3}\right) = \\ & = 3\left(\ln\left|\frac{u}{1+u}\right| + \frac{1}{1+u} + \frac{1}{2(1+u)^2}\right) + C = 3\left(\ln\left|\frac{\sqrt[3]{x}}{1+\sqrt[3]{x}}\right| + \frac{2\sqrt[3]{x}+3}{2(1+\sqrt[3]{x})^2}\right) + C. \end{aligned}$

2083. $I = \int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx \ (m = -\frac{1}{2}, n = \frac{1}{4}, p = \frac{1}{3}, \frac{m+1}{n} = 2 \in \mathbb{Z}) [1 + \sqrt[4]{x} = z^3, \ x = (z^3 - 1)^4, \ dx = 12z^2(z^3 - 1)^3 dz];$ $I = \int \frac{z^1 2z^2(z^3 - 1)^3}{(z^3 - 1)^2} dz = 12 \int (z^6 - z^3) dz = 12(\frac{z^7}{7} - \frac{z^4}{4}) + C = \frac{3}{7}z^4(4z^3 - 7) + C = \frac{3}{7}\sqrt[3]{1 + \sqrt[4]{x}}(4\sqrt{x} + \sqrt[4]{x} - 3) + C.$

2095. $\int \frac{dx}{\sin^4 x \cos^4 x} = \int \frac{dx}{\operatorname{tg}^4 x \cos^8 x} = \int \frac{(\operatorname{tg}^2 x + 1)^3}{\operatorname{tg}^4 x} \frac{dx}{\cos^2 x} = \\ = \left[u = \operatorname{tg} x, \ du = \frac{dx}{\cos^2 x} \right] = \int \frac{(u^2 + 1)^3 du}{u^4} = \int \left(u^2 + 3 + \frac{3}{u^2} + \frac{1}{u^4} \right) du = \\ = \frac{u^3}{3} + 3u - \frac{3}{u} - \frac{1}{3u^3} + C = \frac{\operatorname{tg}^3 x}{3} + 3\operatorname{tg} x - 3\operatorname{ctg} x - \frac{\operatorname{ctg}^3 x}{3} + C.$

 $\begin{aligned} & \textbf{2102.} \ I = \int \frac{dx}{\sin^3 x} = \int \frac{\sin x \, dx}{\sin^4 x} = \left[t = \cos x, dt = -\sin x \, dx\right] = \\ & = -\int \frac{dt}{(1-t^2)^2}; -\frac{1}{(1-t^2)^2} = -\frac{1}{(1-t)^2(1+t)^2} = \frac{A}{1+t} + \frac{B}{(1+t)^2} + \frac{C}{1-t} + \\ & + \frac{D}{(1+t)^2}, \ A = B = C = D = -\frac{1}{4} \Rightarrow I = -\frac{1}{4} \left(\int \frac{dt}{1-t} + \int \frac{dt}{(1-t)^2} + \int \frac{dt}{1+t} + \int \frac{dt}{(1+t)^2}\right) = \frac{1}{4} \ln \left|\frac{1-t}{1+t}\right| + \frac{1}{4} \left(\frac{1}{t-1} + \frac{1}{t+1}\right) + C = \\ & = \frac{1}{4} \ln \left|\frac{1-\cos x}{1+\cos x}\right| + \frac{\cos x}{2(1-\cos^2 x)} + C = \frac{1}{4} \ln \left| tg \frac{x}{2} \right| - \frac{\cos x}{2\sin^2 x} + C. \end{aligned}$

2110.
$$\int \frac{dx}{5-3\cos x} = \begin{bmatrix} t = tg\frac{x}{2}, \cos x = \frac{1-t^2}{1+t^2}, dx = \frac{2dt}{1+t^2} \end{bmatrix} = \int \frac{dt}{(1+t^2)\left(5-3\frac{1-t^2}{1+t^2}\right)} = \int \frac{dt}{4t^2+1} = \frac{1}{4} \cdot 2\operatorname{arctg} 2t + C = \frac{1}{2}\operatorname{arctg} (2tg\frac{x}{2}) + C.$$

2118.
$$\int \frac{dx}{1+\sin^2 x} = \int \frac{dx}{2\sin^2 x + \cos^2 x} = \int \frac{1}{2 \operatorname{tg}^2 x + 1} \frac{dx}{\cos^2 x} = [t = tgx, dt = \frac{dx}{\cos^2 x}] = \int \frac{dt}{2(t^2 + \frac{1}{2})} = \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2}t) + C = \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2} \operatorname{tg} x) + C.$$

2124.
$$\int \frac{\sqrt{\lg x} dx}{\sin x \cos x} = \int \frac{\sqrt{\lg x}}{\lg x} \frac{dx}{\cos^2 x} = \int \frac{d(\lg x)}{\sqrt{\lg x}} = 2\sqrt{\lg x} + C.$$

2131.
$$I = \int \sqrt{\operatorname{tg} x} dx = \left[t = \sqrt{\operatorname{tg} x}, \ x = \operatorname{arctg} t^2, \ dx = \frac{2t dt}{1 + t^4} \right] = \int \frac{2t^2 dt}{1 + t^4} = \int \frac{2t^2 dt}{(1 + \sqrt{2}t + t^2)(1 - \sqrt{2}t + t^2)}; \ \frac{2t^2}{1 + t^4} = \frac{At + B}{1 - \sqrt{2}t + t^2} + \frac{Ct + D}{1 + \sqrt{2} + t^2} \Rightarrow A = -\frac{\sqrt{2}}{2}, \ C = \frac{\sqrt{2}}{2}, \ B = D = 0; \ I = \frac{\sqrt{2}}{2} \int \frac{t dt}{t^2 - \sqrt{2}t + 1} - \frac{\sqrt{2}}{2} \int \frac{t dt}{t^2 + \sqrt{2}t + 1} = \frac{\sqrt{2}}{2} \int \frac{(t - \frac{\sqrt{2}}{2})dt}{t^2 - \sqrt{2}t + 1} + \frac{1}{2} \int \frac{dt}{t^2 - \sqrt{2}t + 1} + \frac{1}{2} \int \frac{dt}{t^2 + \sqrt{2}t + 1} = \frac{\sqrt{2}}{4} \ln \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} + \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2}t - 1) + \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2}t + 1) + C = \frac{\sqrt{2}}{4} \ln \frac{\operatorname{tg} x - \sqrt{2}\operatorname{tg} x + 1}{\operatorname{tg} x + \sqrt{2}\operatorname{tg} x + 1} + \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2}\operatorname{tg} x - 1) + \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2}\operatorname{tg} x - 1) + C.$$

2137.
$$\int \sinh^2 x \, dx = \int \frac{\cosh 2x - 1}{2} dx = \frac{\sinh 2x}{4} - \frac{x}{2} + C.$$

2143. $\int \sinh^2 x \cosh^3 x \, dx = \int \sinh^2 x (1 + \sinh^2 x) d(\sinh x) = \int (\sinh^2 x + \sinh^4 x) d(\sinh x) = \frac{\sinh^3 x}{3} + \frac{\sinh^5 x}{5} + C.$

2149.
$$\int \frac{x dx}{\cosh^2 x} = \int x d(\ln x) = x \ln x - \int \ln x dx = x \ln x - \int \frac{d(\ln x)}{\cot x} = x \ln x - \ln \ln x + C.$$

$$+ 5 \int \frac{dx}{\sqrt{5 - (x + 2)^2}} = (x + 2) \sqrt{1 - 4x - x^2} + 5 \arcsin \frac{x + 2}{\sqrt{5}} - \int \sqrt{1 - 4x - x^2} dx \Rightarrow \int \sqrt{1 - 4x - x^2} dx = \frac{x + 2}{2} \sqrt{1 - 4x - x^2} + \frac{5}{2} \arcsin \frac{x + 2}{\sqrt{5}} + C.$$

2166.
$$I = \int \frac{3x^2 - 5x}{\sqrt{3 - 2x - x^2}} dx = (Ax + B)\sqrt{3 - 2x - x^2} + \lambda \int \frac{dx}{\sqrt{3 - 2x - x^2}} \Rightarrow \frac{3x^2 - 5x}{\sqrt{3 - 2x - x^2}} = A\sqrt{3 - 2x - x^2} - \frac{(Ax + B)(1 + x)}{\sqrt{3 - 2x - x^2}} + \frac{\lambda}{\sqrt{3 - 2x - x^2}}, \quad 3x^2 - 5x = A(3 - 2x - x^2) - (Ax + B)(1 + x) + \lambda; x = 0 : 3A - B + \lambda = 0, x = -1 : 8 = 4A + \lambda, x^2 : 3 = -2A \Rightarrow A = -\frac{3}{2}, B = \frac{19}{2}, \lambda = 14; I = \frac{19 - 3x}{2}\sqrt{3 - 2x - x^2} + 14\int \frac{dx}{\sqrt{4 - (x + 1)^2}} = \frac{19 - 3x}{2}\sqrt{3 - 2x - x^2} + 14\arcsin\frac{x + 1}{2} + C.$$

2175.
$$I = \int \frac{x^3 dx}{(x-1)^{12}} = [u = x-1, \ x = u+1, \ dx = du] = \int \frac{(u+1)^3}{u^{12}} du = \int \frac{u^3 + 3u^2 + 3u + 1}{u^{12}} du = \int \frac{du}{u^9} + 3 \int \frac{du}{u^{10}} + 3 \int \frac{du}{u^{11}} + \int \frac{du}{u^{12}} = -\frac{1}{8(x-1)^8} - \frac{3}{10(x-1)^{10}} - \frac{3}{10(x-1)^{10}} - \frac{1}{11(x-1)^{11}} + C.$$

2183.
$$I = \int \frac{\ln(x+1)dx}{\sqrt{x+1}} = \int \ln(x+1)d(2\sqrt{x+1}) =$$

= $2\sqrt{x+1}\ln(x+1) - 2\int \frac{\sqrt{x+1}}{x+1}dx = 2\sqrt{x+1}\ln(x+1) -$
 $-2\int \frac{dx}{\sqrt{x+1}} = 2\sqrt{x+1}(\ln(x+1) - 2) + C.$

2188. $I = \int e^{\sqrt[3]{x}} dx = [u = \sqrt[3]{x}, x = u^3, dx = 3u^2 du] = 3 \int u^2 e^u du = 3 \int u^2 d(e^u) = 3u^2 e^u - 6 \int u e^u du = 3u^2 e^u - 6 \int u d(e^u) = 3u^2 e^u - 6u e^u + 6 \int e^u du = e^u (3u^2 - 6u + 6) + C = 3e^{\sqrt[3]{x}} (\sqrt[3]{x^2} - 2\sqrt[3]{x} + 2) + C.$

2193.
$$I = \int \frac{dx}{x - \sqrt{x^2 - 1}} = \int (x + \sqrt{x^2 - 1}) dx = \frac{x^2}{2} + \int \sqrt{x^2 - 1} dx = \left[x = \operatorname{ch}t, \ t = \ln|x + \sqrt{x^2 - 1}|, \ dx = \operatorname{sh}t dt \right] = \frac{x^2}{2} + \int \sqrt{\operatorname{ch}^2 t} - 1 \operatorname{sh}t dt = \frac{x^2}{2} + \int \operatorname{sh}^2 t dt = \frac{x^2}{2} + \frac{1}{2} \int (\operatorname{ch}2t - 1) dt = \frac{x^2}{2} + \frac{\operatorname{sh}2t}{4} - \frac{t}{2} + C = \frac{x^2}{2} + \frac{\operatorname{sh}t \operatorname{ch}t}{2} - \frac{\ln|x + \sqrt{x^2 - 1}|}{2} + C = \frac{1}{2} \left(x^2 + x\sqrt{x^2 - 1} - \ln|x + \sqrt{x^2 - 1}| \right) + C.$$

2206. Вычислим вспомогательный интеграл $I_1 = \int e^x \cos x dx = \int e^x d(\sin x) = e^x \sin x - \int e^x \sin x dx = e^x \sin x + \int e^x d(\cos x) = e^x (\sin x + \cos x) - \int e^x \cos x dx \Rightarrow I_1 = \frac{1}{2} e^x (\sin x + \cos x);$ аналогично $I_2 = \int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x);$ $I = \int x^2 e^x \cos x dx = \int x^2 d(\frac{1}{2} e^x (\sin x + \cos x)) = \frac{x^2}{2} e^x (\cos x + \sin x) - \int x e^x (\sin x + \cos x) dx = \frac{x^2}{2} e^x (\cos x + \sin x) - \int x d(e^x \sin x) = \frac{x^2}{2} e^x (\cos x + \sin x) - x e^x \sin x + \int e^x \sin x dx = \frac{e^x}{2} \left((x^2 - 1) \cos x + (x - 1)^2 \sin x \right) + C.$

2212.
$$I = \int \sqrt{\lg^2 x + 2} dx = [t = \lg x, x = \arctan t],$$
 $dx = \frac{dt}{1+t^2}] = \int \frac{\sqrt{t^2+2}}{t^2+1} dt = \int \frac{t^2+2}{\sqrt{t^2+2}(t^2+1)} = \int \frac{dt}{\sqrt{t^2+2}} + \int \frac{dt}{(t^2+1)\sqrt{t^2+2}} = \ln(t+\sqrt{t^2+2}) + I_1; I_1 = \int \frac{dt}{(t^2+1)\sqrt{t^2+2}} = \left[t = \sqrt{2} \lg z, dt = \frac{\sqrt{2}dz}{\cos^2 z}\right] = \int \frac{\sqrt{2}dz}{(2\lg^2 z+1)\sqrt{2}\lg^2 z+2\cos^2 z} = \int \frac{dz}{(2\lg^2 z+1)\cos z} = \int \frac{\cos z \, dz}{(2\lg^2 z+1)\cos^2 z} = \arctan t \frac{tg\, z}{\sqrt{1+\lg^2 z}} + C = \arctan t \frac{tg\, z}{\sqrt{1+\lg^2 z}} + C = \arctan t \frac{tg\, z}{\sqrt{tg^2 x+2}} + C.$

2223.
$$I = \int \frac{\operatorname{tg} x dx}{1 + \operatorname{tg} x + \operatorname{tg}^2 x} = \left[t = \operatorname{tg} x, \ x = \operatorname{arctg} t, \ dx = \frac{dt}{1 + t^2} \right] = \int \frac{t dt}{(1 + t + t^2)(1 + t^2)} = \int \frac{1 + t + t^2 - (1 + t^2)}{(1 + t + t^2)(1 + t^2)} dt = \int \frac{dt}{1 + t^2} - \int \frac{dt}{(t + \frac{1}{2})^2 + \frac{3}{4}} = \operatorname{arctg} t + \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{2t + 1}{\sqrt{3}} + C = x + \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{2\operatorname{tg} x + 1}{\sqrt{3}} + C.$$

2228. $I = \int \frac{(x+\sin x)dx}{1+\cos x} = \int \frac{(x+\sin x)dx}{2\cos^2 \frac{x}{2}} = \int (x+\sin x)d(\tan \frac{x}{2}) = (x+\sin x)\tan \frac{x}{2} - \int \tan \frac{x}{2}(1+\cos x)dx = x\tan \frac{x}{2} + 2\sin^2 \frac{x}{2} - \int \sin x dx = x\tan \frac{x}{2} + 2\sin^2 \frac{x}{2} + \cos x + C = x\tan \frac{x}{2} + C.$

К ГЛАВЕ 7

2233.
$$\int_{2}^{-13} \frac{dx}{\sqrt[5]{(3-x)^4}} = \int_{2}^{-13} (3-x)^{-\frac{4}{5}} dx = -5(3-x)^{1/5} \Big|_{2}^{-13} = 5 \cdot \sqrt[5]{3-x} \Big|_{-13}^{2} = 5 \cdot 5 \cdot \sqrt[5]{16}.$$

2239.
$$\int_0^1 \frac{x \, dx}{(x^2+1)^2} = \frac{1}{2} \int_0^1 \frac{d(x^2+1)}{(x^2+1)^2} = -\frac{1}{2(x^2+1)} \Big|_0^1 = \frac{1}{4}.$$

2244.
$$\int_{1}^{e^{2}} \frac{dx}{x\sqrt{1+\ln x}} = \int_{1}^{e^{2}} \frac{d(1+\ln x)}{\sqrt{1+\ln x}} = 2\sqrt{1+\ln x}|_{1}^{e^{2}} = 2(\sqrt{3}-1).$$

2250.
$$\int_{-0.5}^{1} \frac{dx}{\sqrt{8+2x-x^2}} = \int_{-0.5}^{1} \frac{dx}{\sqrt{9-(x-1)^2}} = \arcsin \frac{x-1}{3} \left| \frac{1}{-0.5} = \frac{\pi}{6} \right|.$$

2256.
$$\int_{a}^{\pi/4} \operatorname{ctg}^{4} \varphi \, d\varphi = \int_{a}^{\pi/4} \operatorname{ctg}^{2} \varphi (\frac{1}{\sin^{2} \varphi} - 1) d\varphi =$$

$$= -\int_{a}^{\pi/4} \operatorname{ctg}^{2} \varphi \, d(\operatorname{ctg} \varphi) - \int_{a}^{\pi/4} \frac{1 - \sin^{2} \varphi}{\sin^{2} \varphi} d\varphi = (-\frac{1}{3} \operatorname{ctg}^{3} \varphi + \operatorname{ctg} \varphi +$$

$$+ \varphi)|_{a}^{\pi/4} = \frac{\pi}{4} + \frac{2}{3} + \frac{1}{3} \operatorname{ctg}^{3} a - \operatorname{ctg} a - a.$$

2262. $\int_0^{\pi} x^3 \sin x \, dx = -\int_0^{\pi} x^3 d(\cos x) = -x^3 \cos x |_0^{\pi} + 3 \int_0^{\pi} x^2 \cos x \, dx = \pi^3 + 3 \int_0^{\pi} x^2 d(\sin x) = \pi^3 + 3x^2 \sin x |_0^{\pi} - 6 \int_0^{\pi} x \sin x \, dx = \pi^3 + 6 \int_0^{\pi} x d(\cos x) = \pi^3 + 6x \cos x |_0^{\pi} - 6 \int_0^{\pi} \cos x \, dx = \pi^3 - 6\pi - 6 \sin x |_0^{\pi} = \pi^3 - 6\pi.$

2266. $I = \int_0^a \sqrt{a^2 - x^2} dx = x\sqrt{a^2 - x^2}|_0^a + \int_0^a \frac{x^2 dx}{\sqrt{a^2 - x^2}} = \int_0^a \frac{(x^2 - a^2 + a^2)dx}{\sqrt{a^2 - x^2}} = -\int_0^a \sqrt{a^2 - x^2} dx + a^2 \int_0^a \frac{dx}{\sqrt{a^2 - x^2}} = -I + a^2 \arcsin \frac{x}{a}|_0^a = \frac{\pi}{2}a^2 - I \Rightarrow I = \frac{\pi}{4}a^2.$

2269. $I_n = \int_0^{\pi/2} \cos^n x \, dx = \int_0^{\pi/2} \cos^{n-1} x \, d(\sin x) = \sin x \cos^{n-1} x |_0^{\pi/2} + (n-1) \int_0^{\pi/2} \cos^{n-2} x \sin^2 x \, dx = (n-1) \times \int_0^{\pi/2} (\cos^{n-2} x - \cos^n x) \, dx = (n-2) (I_{n-2} - I_n) \Rightarrow I_n = \frac{n-2}{n-1} I_{n-2}$, т. к. $I_0 = \int_0^{\pi/2} dx = \frac{\pi}{2}$, $I_1 = \int_0^{\pi/2} \cos x \, dx = 1$, получаем $I_n = \frac{(n-2)(n-4)\dots}{(n-1)(n-3)\dots} \cdot C = \frac{(n-2)!!}{(n-1)!!} \cdot C$, $C = \frac{\pi}{2}$ при n четном, 1 при n нечетном.

2271. $I_n = \int_{-1}^0 x^n e^x dx = \int_{-1}^0 x^n d(e^x) = x^n e^x |_{-1}^0 - n \int_{-1}^0 x^{n-1} e^x dx = (-1)^{n+1} e^{-1} - n I_{n-1};$ применяя n раз, получаем $I_n = (-1)^{n+1} e^{-1} - n ((-1)^n e^{-1} - (n-1) I_{n-2}) = (-1)^{n+1} e^{-1} (1+n+n(n-1) I_{n-2}) = (-1)^{n+1} e$

$$\begin{aligned} & \textbf{2277.} \int_{3}^{8} \frac{x \, dx}{\sqrt{1+x}} \left[\sqrt{1+x} = t, \ x = t^2 - 1, \ dx = 2t \, dt, \ t_1 = 2, \\ & t_2 = 3 \right] = \int_{2}^{3} \frac{(t^2-1)2t \, dt}{t^2} = 2 \int_{2}^{3} (t^2-1) dt = \left(\frac{2t^3}{3} - 2t\right) |_{2}^{3} = 10 \frac{2}{3}, \\ & \textbf{2284.} \int_{1}^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x^2} \, dx = -\int_{1}^{\sqrt{3}} \sqrt{1+x^2} \, d\left(\frac{1}{x}\right) = -\frac{\sqrt{1+x^2}}{x^2} |_{1}^{\sqrt{3}} + \int_{1}^{4} \frac{dx}{\sqrt{1+x^2}} = \sqrt{2} - \frac{2}{\sqrt{3}} + \ln(x+\sqrt{1+x^2}) |_{1}^{\sqrt{3}} = \sqrt{2} - \frac{2}{\sqrt{3}} + \ln\frac{2+\sqrt{3}}{1+\sqrt{2}}. \\ & \textbf{2289.} \int_{0}^{1} x^2 \sqrt{1-x^2} \, dx \left[x = \sin t, \ dx = \cot t, \ t_1 = 0, \ t_2 = \pi/2 \right] = \int_{0}^{\pi/2} \sin^2 t \cos^2 t \, dt = \frac{1}{4} \int_{0}^{\pi/2} \sin^2 2t \, dt = \frac{1}{8} \int_{0}^{\pi/2} (1 - \cos 4t) \, dt = \left(\frac{1}{8} - \frac{1}{32} \sin 4t\right) \Big|_{0}^{\pi/2} = \frac{\pi}{16}. \\ & \textbf{2294.} \int_{0}^{1/\sqrt{3}} \frac{dx}{(2x^2+1)\sqrt{x^2+1}} \left[x = tgt, \ dx = \frac{dt}{\cos^2 t}, \ t_1 = 0, \ t_2 = \pi/6 \right] = \int_{0}^{\pi/6} \frac{dx}{(2x^2+1)\sqrt{x^2+1}} \left[x = tgt, \ dx = \frac{dt}{\sin^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \sin^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \sin^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t + \cos^{2} t + \cos^{2} t} + \frac{1}{2} \int_{0}^{\pi/2} \frac{\cot t \, dt}{t$$

2324.
$$I = \int_0^{\pi/2} \sqrt{x \sin x} dx \le \sqrt{\int_0^{\pi/2} x dx} \sqrt{\int_0^{\pi/2} \sin x dx} = \sqrt{\frac{\pi^2}{8}} = \frac{\pi}{2\sqrt{2}} \approx 1{,}1107; \quad \int_0^{\pi/2} \sqrt{x \sin x} dx > \int_0^{\pi/2} \sqrt{x (x - \frac{x^3}{6})} dx = \int_0^{\pi/2} x \sqrt{1 - \frac{x^2}{6}} dx = \frac{1}{\sqrt{6}} \int_0^{\pi/2} x \sqrt{6 - x^2} dx = -\frac{1}{3\sqrt{6}} \sqrt{(6 - x^2)^3} \Big|_0^{\pi/2} = 2 - \frac{1}{3\sqrt{6}} \sqrt{(6 - \frac{\pi^2}{4})^3} \approx 1{,}0965 \Rightarrow 1{,}0965 < I < 1.1107.$$

2327. $y'=(x-1)(x-2)^2,\ y'=0$ при $x=1,\ x=2,\ y'>0$ при $1< x<2,\ x>2,\ y'<0$ при $x<1\Rightarrow x=1$ точка минимума; $y''=(x-2)(3x-4),\ x=2,\ x=\frac43$ точки перегиба.

2334.
$$F(x) = \int_{1/e}^{\lg x} \frac{t \, dt}{1 + t^2}$$
, $G(x) = \int_{1/e}^{\operatorname{ctg} x} \frac{dt}{t(1 + t^2)} \left[z = \frac{1}{t}, \, dz = -\frac{dt}{t^2}, \, z_1 = e, \, z_2 = \lg x \right] = -\int_e^{\lg x} \frac{z \, dz}{1 + z^2}$; $F(x) + G(x) = \int_{1/e}^e \frac{t \, dt}{1 + t^2} = \frac{1}{2} \ln(1 + t^2) \Big|_{1/e}^e = \frac{1}{2} \ln\frac{1 + e^2}{1 + 1/e^2} = \frac{1}{2} \ln e^2 = 1$.

2338.
$$\int_0^{\pi/2} f(\cos x) dx \quad [t = \frac{\pi}{2} - x, dt = -dx, t_1 = \frac{\pi}{2}, t_2 = 0] = -\int_{\pi/2}^0 f(\cos(\frac{\pi}{2} - t)) dt = \int_0^{\pi/2} f(\sin t) dt; I = \int_0^{\pi/2} \cos^2 x dx = \int_0^{\pi/2} (1 - \sin^2 x) dx = x|_0^{\pi/2} - \int_0^{\pi/2} \sin^2 x dx = \frac{\pi}{2} - I \Rightarrow \int_0^{\pi/2} \cos^2 x dx = \int_0^{\pi/2} \sin^2 x dx = \frac{\pi}{4}.$$

2342.
$$\int_{0}^{1} (1-x^{2})^{n} dx = \int_{0}^{1} (C_{n}^{0} - C_{n}^{1}x^{2} + \dots + (-1)^{n} C_{n}^{n}x^{2n}) dx =$$

$$= C_{n}^{0} - \frac{C_{n}^{1}}{3} + \frac{C_{n}^{2}}{5} - \dots + \frac{(-1)^{n} C_{n}^{n}}{2n+1}; \int_{0}^{1} (1-x^{2})^{n} dx \left[x = \sin\varphi, dx = \cos\varphi d\varphi, \varphi_{1} = 0, \varphi_{2} = \pi/2 \right] = \int_{0}^{\pi/2} \cos^{2n+1}\varphi d\varphi =$$

$$= \frac{(2n)!!}{(2n+1)!!} (2269).$$

2349. Возьмем $n=9, x_0=1, x_1=2, ..., x_9=10, x_{1/2}=1,5, ..., x_{17/2}=9,5; <math>I\approx \frac{1}{6}\left(1+0,1+2(\frac{1}{2}+...+\frac{1}{9})+4(\frac{2}{3}+...+\frac{2}{19})\right)=\frac{1}{6}(1,1000+3,6579+9,0660)=2,3040, \ M\approx 0,4340; \ \ln 2=2,3026, \ M=0,4343.$

2366.
$$\int_{1}^{+\infty} \frac{dx}{x^4} = -\frac{1}{3x^3} \Big|_{1}^{+\infty} = \frac{1}{3} - \lim_{x \to +\infty} \frac{1}{3x^3} = \frac{1}{3}.$$

2374.
$$\int_{\sqrt{2}}^{+\infty} \frac{dx}{x\sqrt{x^2-1}} \left[t = \frac{1}{x}, \ dt = -\frac{dx}{x^2}, \ t_1 = \frac{1}{\sqrt{2}}, \ t_2 = 0 \right] = -\int_{1/\sqrt{2}}^{0} \frac{dt}{\sqrt{1-t^2}} = \arcsin t \Big|_{0}^{1/\sqrt{2}} = \frac{\pi}{4}.$$

2379.
$$\int_{0}^{+\infty} e^{-\sqrt{x}} dx \quad [t = \sqrt{x}, \ x = t^{2}, \ dx = 2t dt, \ t_{1} = 0, \ t_{2} = +\infty] = 2 \int_{0}^{+\infty} t e^{-t} dt = -2 \int_{0}^{+\infty} t d(e^{-t}) = -2t e^{-t}|_{0}^{+\infty} + 2 \int_{0}^{+\infty} e^{-t} dt = -2 \lim_{t \to +\infty} \frac{t}{e^{t}} - 2e^{-t}|_{0}^{+\infty} = 2 - 2 \lim_{t \to +\infty} e^{-t} = 2.$$

2384.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2} = \int_{-\infty}^{+\infty} \frac{(1+x^2-x^2)dx}{(x^2+1)^2} = \int_{-\infty}^{+\infty} \frac{dx}{x^2+1} - \int_{-\infty}^{+\infty} \frac{x^2dx}{(x^2+1)^2} = \arctan (x|_{-\infty}^{+\infty} + \frac{1}{2} \int_{-\infty}^{+\infty} x \, d(\frac{1}{x^2+1}) = \lim_{x \to +\infty} \arctan (x + \frac{x}{2(x^2+1)}|_{-\infty}^{+\infty} - \frac{1}{2} \int_{-\infty}^{+\infty} \frac{dx}{x^2+1} = \pi - \frac{\pi}{2} = \frac{\pi}{2}.$$

2391. Сравним с $\int_1^{+\infty} \frac{dx}{\sqrt[3]{x}} : \lim_{x \to +\infty} \frac{x \arctan x}{\sqrt[3]{1+x^4}} \cdot \sqrt[3]{x} = \frac{\pi}{2} \neq 0$, показатель степени $1/3 < 1 \Rightarrow$ оба интеграла расходятся.

2396.
$$\int_{1}^{\sqrt{2}} \frac{x \, dx}{\sqrt{x-1}} \left[t = \sqrt{x-1}, \ x = t^2 + 1, \ dx = 2t \, dt, \ t_1 = 0. \ t_2 = 1 \right] = \int_{0}^{1} 2(t^2 + 1) dt = (2\frac{t^3}{3} + 2t)|_{0}^{1} = \frac{8}{3}.$$

2401.
$$\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}} \left[t = x - \frac{a+b}{2}, dt = dx, t_{1} = \frac{a-b}{2}, t_{2} = \frac{b-a}{2} \right] = \int_{(a-b)/2}^{(b-a)/2} \frac{dt}{\sqrt{(b-a)^{2}/4-t^{2}}} = \arcsin \frac{2t}{b-a} \Big|_{(a-b)/2}^{(b-a)/2} = \pi.$$

2408. $I=\int_{-1}^{1}\frac{x-1}{\sqrt[3]{x^5}}dx=\int_{-1}^{1}x^{2/5}dx-\int_{-1}^{1}\frac{dx}{x^{5/3}}=\frac{10}{7}-\int_{-1}^{0}\frac{dx}{x^{5/3}}-\int_{0}^{1}\frac{dx}{x^{5/3}};$ оба интеграла расходятся в нуле, т. к. $\lim_{x\to 0}\frac{1}{x^{2/3}}=\infty$, поэтому I расходится.

2415. $I=\int_0^1 \frac{\sqrt{x}dx}{e^{\sin x}-1}$ сравним с $\int_0^1 \frac{dx}{\sqrt{x}}: \lim_{x\to 0} \frac{\sqrt{x}}{e^{\sin x}-1}: \frac{1}{\sqrt{x}}=\lim_{x\to 0} \frac{x}{e^{\sin x}-1}: \frac{1}{\sqrt{x}}=\lim_{x\to 0} \frac{x}{e^{\sin x}-1}=\lim_{x\to 0} \frac{x}{\sin x}=1, \ \int_0^1 \frac{dx}{\sqrt{x}}=2\sqrt{x}|_0^1=2\Rightarrow I$ сходится.

2420.1. При $k>1\frac{1}{x^k\ln x}<\frac{1}{x^k}$ \Rightarrow интеграл сходится, при $k<1\frac{1}{x^k\ln x}>\frac{1}{x^{k+\epsilon}}$, где $k+\epsilon<1$, т. к. $\ln x< x^\epsilon$ при $x\to\infty$, \Rightarrow интеграл расходится, при $k=1\int_2^{+\infty}\frac{dx}{x\ln x}=\int_{\ln 2}^{+\infty}\frac{dt}{t}=+\infty$, таким образом интеграл сходится при k>1.

2424. При $x \to 0$ $1-\cos x \sim \frac{x^2}{2} \Rightarrow \int_0^{\pi/2} \frac{1-\cos x}{x^m} dx$ сходится при тех же m, что $\int_0^{\pi/2} \frac{dx}{2x^{m-2}}$, т. е. при m < 3.

$$2431. \ I_{n} = \int_{0}^{+\infty} x^{2n+1} e^{x^{2}} dx = -\frac{1}{2} \int_{0}^{+\infty} x^{2n} d(e^{-x^{2}}) =$$

$$= -\frac{1}{2} x^{2n} e^{-x^{2}} |_{0}^{+\infty} + n \int_{0}^{+\infty} x^{2n-1} e^{-x^{2}} dx = n I_{n-1} = n(n - 1) I_{n-2} = \dots = n! I_{0} = n! \int_{0}^{+\infty} x e^{-x^{2}} dx = -\frac{n!}{2} e^{-x^{2}} |_{0}^{+\infty} = \frac{n!}{2}.$$

$$2435. \ I(\alpha) = \int_{1}^{+\infty} \frac{dx}{(x - \cos \alpha) \sqrt{x^{2} - 1}} \left[t = \frac{1}{x - \cos \alpha}, \ x = \frac{1}{t} + \cos \alpha, \ dx = -\frac{dt}{t^{2}}, \ t_{1} = \frac{1}{1 - \cos \alpha}, \ t_{2} = 0 \right] =$$

$$= \int_{0}^{1/(1 - \cos \alpha)} \frac{dt}{\sqrt{(1 + t \cos \alpha)^{2} - t^{2}}} = \int_{0}^{1/(1 - \cos \alpha)} \frac{dt}{\sqrt{-(t^{2} \sin^{2} \alpha - 2t \cos \alpha - 1)}} =$$

$$= (\alpha \neq \pi) \int_{0}^{1/(1 - \cos \alpha)} \frac{dt}{\sqrt{-(t \sin \alpha - \cot \alpha)^{2} + 1 + \cot \alpha^{2}}} =$$

$$= \int_{0}^{1/(1-\cos\alpha)} \frac{dt}{\sqrt{1/\sin^{2}\alpha - (t\sin\alpha - \cot\alpha)^{2}}} = \frac{1}{\sin\alpha} \arcsin(t\sin^{2}\alpha - \cos\alpha)|_{0}^{1/(1-\cos\alpha)} = \frac{1}{\sin\alpha} (\arcsin(\frac{\sin^{2}\alpha}{1-\cos\alpha} - \cos\alpha) - \arcsin(-\cos\alpha)) = \frac{1}{\sin\alpha} (\arcsin 1 + \arcsin\cos\alpha) = \frac{1}{\sin\alpha} (\frac{\pi}{2} + \frac{\pi}{2} - \alpha) = \frac{\pi-\alpha}{\sin\alpha}; \ I(\pi) = \int_{0}^{1/2} \frac{dt}{\sqrt{1-2t}} = -\sqrt{1-2t}|_{0}^{1/2} = 1.$$

$$2442. \ I_{n} = \int_{0}^{+\infty} x^{2n} e^{x^{2}} dx = -\frac{1}{2} \int_{0}^{+\infty} x^{2n-1} d(e^{-x^{2}}) = -\frac{1}{2} x^{2n-1} e^{-x^{2}}|_{0}^{+\infty} + \frac{2n-1}{2} \int_{0}^{+\infty} x^{2n-2} e^{-x^{2}} dx = \frac{2n-1}{2} I_{n-1} = \frac{(2n-1)!(2n-3)}{4} I_{n-2} = \dots = \frac{(2n-1)!!}{2^{n}} I_{0} = \frac{(2n-1)!!}{2^{n}} \int_{0}^{+\infty} e^{-x^{2}} dx = \frac{(2n-1)!!\sqrt{\pi}}{2^{n+1}}.$$

$$2446. \int_{0}^{+\infty} \frac{\sin^{2}x}{x^{2}} dx = -\int_{0}^{+\infty} \sin^{2}x d(\frac{1}{x}) = -\frac{\sin^{2}x}{x} |_{0}^{+\infty} + \int_{0}^{+\infty} \frac{\sin^{2}x}{x} dx = \lim_{x\to 0} \frac{\sin^{2}x}{x} - \lim_{x\to +\infty} \frac{\sin^{2}x}{x} + \int_{0}^{+\infty} \frac{\sin^{2}x}{2x} d(2x) = 0 - 0 + \frac{\pi}{2} = \frac{\pi}{2}.$$

$$2449. \ \varphi(x) = -\int_{0}^{x} \ln\cos y dy \ [y = \pi/2 - z, \ dz = -dy, \ z_{1} = \pi/2, \ z_{2} = \pi/2 - x] = \int_{\pi/2}^{\pi/2 - x} \ln\sin z dz = \int_{\pi/2}^{\pi/2 - x} \ln(2\sin\frac{\pi}{2}\cos\frac{\pi}{2}) dz = \int_{\pi/2}^{\pi/2 - x} \ln 2 dz + \int_{\pi/2}^{\pi/2 - x} \sin\frac{\pi}{2} dz + \int_{\pi/2}^{\pi/2 - x} \cos\frac{\pi}{2} dz = I_{1} + I_{2} + I_{3}; \quad I_{1} = -x\ln2, \ I_{2} = \int_{\pi/2 - x}^{\pi/2 - x} \sin\frac{\pi}{2} dz \ [t = \pi/2 - z/2, \ dt = -dz/2, \ t_{1} = \pi/4, \ t_{2} = \pi/4 + x/2] = -2 \int_{\pi/4}^{\pi/4 + x/2} \ln\cos t dt = 2(\varphi(\frac{\pi}{4} + \frac{\pi}{2}) - \varphi(\frac{\pi}{4})), \ I_{3} = \int_{\pi/2}^{\pi/2 - x} \ln\cos\frac{\pi}{2} dz \ [t = z/2, \ dt = dz/2, \ t_{1} = \pi/4, \ t_{2} = \pi/4 - x/2] = 2 \int_{\pi/4}^{\pi/4 - x/2} \ln\cos t dt = -2\varphi(\frac{\pi}{4} - \frac{\pi}{2}) + 2\varphi(\frac{\pi}{4}) \Rightarrow \varphi(x) = 2\varphi(\frac{\pi}{4} + \frac{\pi}{2}) - 2\varphi(\frac{\pi}{4} - \frac{\pi}{2}) - x\ln2; \ \varphi(\frac{\pi}{2}) = 2\varphi(\frac{\pi}{2}) - 2\varphi(0) - x\ln2 \Rightarrow \varphi(\frac{\pi}{2}) = \frac{\pi}{2}\ln2.$$

К ГЛАВЕ 8

2456. y'=4-2x: уравнения касательных: в точке (0,-3) y=4x-3, в точке (3,7) y=6-2x, касательные пересекаются в точке $x=1,5\Rightarrow S=\int_0^{1.5}(4x-3+x^2-4x+3)dx+\int_{1.5}^3(6-2x+x^2-4x+3)dx=\int_0^{1.5}x^2dx+\int_{1.5}^3(x^2-6x+9)dx=\frac{x^3}{3}|_0^{1.5}+\frac{x^3}{3}|_{1.5}^3-3x^2|_{1.5}^3+9x|_{1.5}^3=2,25.$

2461. Найдем точки пересечения кривых: $y=\frac{x^2}{2}\Rightarrow x^2=2y,\ y^2+2y-8=0,\ y_1=2,\ y_2=4$ — посторонний корень, $x_{1,\ 2}=\pm 2;$ площадь верхней части $S_1=\int_{-2}^2\left(\sqrt{8-x^2}-\frac{x^2}{2}\right)dx=2\int_0^2\sqrt{8-x^2}dx-\int_0^2x^2dx$

 $[x=2\sqrt{2}\sin t,\ dx=2\sqrt{2}\cos t\,dt,\ t_1=0,\ t_2=\pi/4]=16\int_0^{\pi/4}\cos^2t\,dt-\frac{x^3}{3}|_0^2=8\int_0^{\pi/4}(1+\cos 2t)dt-\frac{8}{3}=(8t+4\sin 2t)|_0^{\pi/4}-\frac{8}{3}=2\pi+\frac{4}{3};$ т. к. площадь круга радиуса $2\sqrt{2}$ равна 8π , площадь нижней части $S_2=8\pi-(2\pi+\frac{4}{3})=6\pi-\frac{4}{3}.$

2467. Найдем точки пересечения кривых: $\frac{1}{1+x^2} = \frac{x^2}{2}$, $x^4 + x^2 - 2 = 0$. $x = \pm 1$; $S = 2 \int_0^1 \left(\frac{1}{1+x^2} - \frac{x^2}{2}\right) dx = (2 \arctan x - \frac{x^3}{3})|_0^1 = \frac{\pi}{2} - \frac{1}{3}$.

2473. $y=\pm\sqrt{x(x-1)^2}=\pm\sqrt{x}|x-1|$; петля расположена на участке $0\leqslant x\leqslant 1\Rightarrow y=\pm\sqrt{x}(1-x).$ $S=2\int_0^1\sqrt{x}(1-x)dx=2\int_0^1(x^{1/2}-x^{3/2})dx=(\frac{4}{3}x^{3/2}-\frac{4}{5}x^{5/2})|_0^1=\frac{8}{15}.$

2477. Кривая определена при $x\geqslant 1,\ y=\pm\frac{2\sqrt{x-1}}{x},$ рассмотрим положительную ветвь, найдем точки перегиба: $y'=\frac{2-x}{x^2\sqrt{x-1}},\ y''=\frac{3x^2-12x+8}{2x^3(x-1)\sqrt{x-1}},\ y''=0$ при $x=2\pm\frac{2}{\sqrt{3}};\ \text{т. к. } 2-\frac{2}{\sqrt{3}}<1,\ x=2+\frac{2}{\sqrt{3}}-$ искомая прямая; $S=2\int_1^{2+2/\sqrt{3}}\frac{2\sqrt{x-1}}{x}dx\ \left[t=\sqrt{x-1},\ x=t^2+1,\ dx=2tdt,\ t_1=0,\ t_2=\sqrt{1+2/\sqrt{3}}\right]=8\int_0^{\sqrt{1+2/\sqrt{3}}}\frac{t^2dt}{t^2+1}=8\int_0^{\sqrt{1+2/\sqrt{3}}}\left(1-\frac{1}{t^2+1}\right)dt=8(t-\mathrm{arctg}t)|_0^{\sqrt{1+2/\sqrt{3}}}=8\left(\sqrt{1+2/\sqrt{3}}-\mathrm{arctg}\sqrt{1+2/\sqrt{3}}\right).$

2484. $\frac{\ln x}{4x} = x \ln x \Rightarrow 4x^2 \ln x - \ln x = 0, \ x_1 = \frac{1}{2}, \ x_2 = 1;$ при $x = \frac{3}{4} \frac{\ln x}{4x} - x \ln x > 0 \Rightarrow \frac{\ln x}{4x} > x \ln x$ на $(\frac{1}{2}, \ 1); \ S = \int_{1/2}^1 \left(\frac{\ln x}{4x} - x \ln x\right) dx = \frac{1}{4} \int_{1/2}^1 \ln x d(\ln x) - \frac{1}{2} \int_{1/2}^1 \ln x d(x^2) = \frac{1}{8} \ln^2 x |_{1/2}^1 - \frac{1}{2} x^2 \ln x |_{1/2}^1 + \frac{1}{4} x^2 |_{1/2}^1 = \frac{1}{16} (3 - 2 \ln 2 - 2 \ln^2 2).$

2490. $S = \int_0^{2\pi a} y \, dx \ [x = a(t - \sin t), \ dx = a(1 - \cos t), \ y = a(1 - \cos t), \ t_1 = 0, \ t_2 = 2\pi] = \int_0^{2\pi} a^2 (1 - \cos t)^2 dt = 2a^2 \int_0^{\pi} (1 - \cos t)^2 dt = 8a^2 \int_0^{\pi} \sin^4 \frac{t}{2} dt \ [z = t/2, \ dz = dt/2, \ z_1 = 0, \ z_2 = \pi/2] = 16a^2 \int_0^{\pi/2} \sin^4 z \, dz = 16a^2 \frac{3!!}{4!!} \frac{\pi}{2} = 3\pi a^2 (2269).$

2494.1 Найдем такие $t_1 \neq t_2$, что $x(t_1) = x(t_2)$, $y(t_1) = y(t_2): 3t_1^2 = 3t_2^2 \Rightarrow t_1 = \pm t_2$, т. к. $t_1 \neq t_2$, $t_1 = -t_2$, $3t_1 - t_1^3 = -3t_1 + t_1^3$, $t_1^3 - 3t_1 = 0 \Leftrightarrow t_1 = 0$, $t_1 = \pm \sqrt{3}$; при $t = \pm \sqrt{3}$ x = 9, $y = 0 \Rightarrow (9, 0)$ — точка самопересечения, при $-\sqrt{3} \leqslant t \leqslant \sqrt{3}$ петля, при этом y(t) > 0 при $0 < t < \sqrt{3}$, y(-t) = -y(t); $S = 2 \int_0^9 y \, dx = 2 \int_0^{\sqrt{3}} (3t - t^3) 6t \, dt = 12 \int_0^{\sqrt{3}} (3t^2 - t^4) dt = 12(t^3 - \frac{t^5}{5})|_0^{\sqrt{3}} = 12(3\sqrt{3} - \frac{9}{5}\sqrt{3}) = \frac{72}{5}\sqrt{3}$.

Решения **548 2498.** $\rho(-\varphi) = \rho(\varphi) \Rightarrow$ кривая симметрична относительно оси Ox, $S=2\int_0^\pi \frac{\rho^2 d\varphi}{2}=4a^2\int_0^\pi (2+\cos\varphi)^2 d\varphi=4a^2\int_0^\pi (4+4\cos\varphi+\cos^2\varphi)d\varphi=4a^2\left(4\pi+4\sin\varphi|_0^\pi+\int_0^\pi \frac{1+\cos2\varphi}{2}\right)=4a^2\left(4\pi+4\sin\varphi|_0^\pi+\int_0^\pi \frac{1+\cos2\varphi}{2}\right)=4a^2\left(4\pi+4\sin\varphi|_0^\pi+\partial_0^$ $=4a^2(4\pi+\frac{\pi}{2}+\frac{1}{4}\sin 2\varphi|_0^{\pi})=18\pi a^2.$ **2504.** $S = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (ae^{m\varphi})^2 d\varphi = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} a^2 e^{2m\varphi} d\varphi = \frac{a^2}{4m} e^{2m\varphi}|_{\varphi_1}^{\varphi_2} =$ $=\frac{a^2}{4m}(e^{2m\varphi_2}-e^{2m\varphi_1})=\frac{a^2}{4m}(\rho_2^2-\rho_1^2).$ **2509.** $(x^2 + y^2)^2 - a^2 x^2 - b^2 y^2 = 0$ $[x = \rho \cos \varphi, y = \rho \sin \varphi, x^2 + y^2 = \rho^2] \Leftrightarrow \rho^4 - a^2 \rho^2 \cos^2 \varphi - b^2 \rho^2 \sin^2 \varphi = \rho^2$ $= 0 \Leftrightarrow a^{2} \cos^{2} \varphi + b^{2} \sin^{2} \varphi = \rho^{2}; S = \frac{1}{2} \int_{0}^{2\pi} \rho^{2} d\varphi = \frac{1}{2} \int_{0}^{2\pi} (a^{2} \cos^{2} \varphi + b^{2} \sin^{2} \varphi) d\varphi = \frac{1}{4} \int_{0}^{2\pi} (a^{2} + b^{2} + (a^{2} - b^{2}) \cos^{2} \varphi) d\varphi = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{2} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \sin^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \cos^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \cos^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \cos^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1}{4} \left((a^{2} + b^{2}) \varphi + \frac{1}{4} (a^{2} - b^{2}) \cos^{2} \varphi \right) \Big|_{0}^{2\pi} = \frac{1$ $=\frac{\pi}{2}(a^2+b^2).$ **2514.** $y=\pm\sqrt{\frac{x^3}{2a-x}},\ 0\leqslant x<2a,\ x=2a$ — асимптота; S=

 $=2\int_0^{2a} x\sqrt{\frac{x}{2a-x}}dx$ $[t=\sqrt{\frac{x}{2a-x}},\ x=\frac{2at^2}{1+t^2},\ dx=\frac{4at\,dt}{(1+t^2)^2},\ t_1=\frac{2at^2}{1+t^2}$ $= 0, t_2 = +\infty] = 16a^2 \int_0^{+\infty} \frac{t^4 dt}{(1+t^2)^3} [t = tg\varphi, dt =$ $=d\varphi/\cos^2\varphi, \ \varphi_1=0, \ \varphi_2=\pi/2]=16a^2\int_0^{\pi/2}\frac{\mathrm{tg}^4\varphi d\varphi}{(1+\mathrm{tg}^2\varphi)^3\cos^2\varphi}=$ $= 16a^2 \int_0^{\pi/2} \sin^4 \varphi \, d\varphi = 16a^2 \cdot \frac{3\pi}{16} = 3\pi a^2.$

2518. Возьмем $\varphi\!\in\![-\pi,\ \pi]$, тогда $\rho\geqslant 0$ при $\varphi\in[rac{3\pi}{4},\ -rac{\pi}{2})$ \cup $[-\frac{\pi}{4}, \frac{\pi}{4}] \cup (\frac{\pi}{2}, \frac{3\pi}{4}], \ \rho(-\varphi) = \rho(\varphi) \Rightarrow$ кривая симметрична относительно Ox, $ho(-\frac{\pi}{4})=
ho(\frac{\pi}{4})=0\Rightarrow$ на участке $\left[-\frac{\pi}{4},\,\frac{\pi}{4}\right]$ петля, ее площадь $S_1 = 2 \cdot \frac{1}{2} \int_0^{\pi/4} \frac{\cos^2 2\varphi}{\cos^2 \varphi} d\varphi = \frac{1}{2} \int_0^{\pi/4} (1 + \cos 4\varphi) d(\operatorname{tg}\varphi) = \frac{1}{2} (1 + \cos 4\varphi) \operatorname{tg}\varphi \Big|_0^{\pi/4} + 2 \int_0^{\pi/4} \operatorname{tg}\varphi \sin 4\varphi d\varphi =$ $= 8 \int_0^{\pi/4} \sin^2 \varphi \cos 2\varphi \, d\varphi = 4 \int_0^{\pi/4} (\cos 2\varphi - \cos^2 2\varphi) \, d\varphi =$ $= 2\sin 2\varphi|_0^{\pi/4} - 2\int_0^{\pi/4} (1+\cos 4\varphi)d\varphi = 2 - \frac{\pi}{2} - \frac{\sin 4\varphi}{2}|_0^{\pi/4} =$ $=2-\frac{\pi}{2}$; поскольку $x=
ho\cos\varphi=\cos2\varphi,\ y=
ho\sin\varphi=$ $=\cos 2\varphi\operatorname{tg}\varphi,\ \lim_{\varphi\to\pi/2+0}x=-1,\ \lim_{\varphi\to\pi/2+0}y=\infty,\ x=-1$ вертикальная асимптота, $S_2 = 2 \int_{-1}^0 y \, dx = 2 \int_{\pi/2}^{3\pi/4} \cos 2\varphi \, \mathrm{tg} \, \varphi \, \times$ $-rac{\sin 4arphi}{2})|_{3\pi/4}^{\pi/2}=-\pi+2+rac{3\pi}{2}=2+rac{\pi}{2}$ (см. вычисление S_1).

2521. $L = \int_{\sqrt{3}}^{\sqrt{8}} \sqrt{1 + \frac{1}{x^2}} dx = \int_{\sqrt{3}}^{\sqrt{8}} \sqrt{\frac{x^2 + 1}{x}} dx$ [t = $=\sqrt{x^2+1}, x = \sqrt{t^2-1}, dx = \frac{t\,dt}{\sqrt{t^2-1}}, t_1 = 2, t_2 = 3$ $= \int_2^3 \frac{t^2 dt}{t^2 - 1} = \int_2^3 \left(1 + \frac{1}{t^2 - 1} \right) dt = t |_2^3 + \frac{1}{2} \left| \frac{t - 1}{t + 1} \right| |_2^3 = 1 + \frac{1}{2} \ln \frac{3}{2}.$

2526. y=0 при x=0, x=3a \Rightarrow петля при $0\leqslant x\leqslant x\leqslant 3a$, $y=\pm\frac{3a-x}{3\sqrt{a}}\sqrt{x}$, $y'=\frac{a-x}{2\sqrt{ax}}$, $y'^2=\frac{(a-x)^2}{4ax}$, $L=2\int_0^{3a}\sqrt{1+\frac{(a-x)^2}{4ax}}dx=2\int_0^{3a}\frac{a+x}{2\sqrt{ax}}dx=\int_0^{3a}\left(\frac{\sqrt{a}}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{a}}\right)dx=2\sqrt{ax}|_0^{3a}+\frac{2x\sqrt{x}}{3\sqrt{a}}|_0^{3a}=4a\sqrt{3}$.

2528. $y' = \frac{x}{2} - \frac{1}{2x}$, y' = 0 при x = 1(x > 0), x = 1 — точка минимума; $\sqrt{1 + {y'}^2} = \frac{x}{2} + \frac{1}{2x}$, $y'' = \frac{1}{2} + \frac{1}{2x^2} = \frac{x^2 + 1}{2x^2}$, $k = \frac{y''}{(1 + {y'}^2)^{3/2}} = \frac{4x}{(x^2 + 1)^2}$, $k' = \frac{4(1 - 3x^2)}{(x^2 + 1)^3}$, k' = 0 при $x = \frac{\sqrt{3}}{3} \Rightarrow L = \int_{\sqrt{3}/3}^1 \left(\frac{x}{2} + \frac{1}{2x}\right) dx = \left(\frac{x^2}{4} + \frac{1}{2}\ln x\right)|_{\sqrt{3}/3}^1 = \frac{1}{6} + \frac{\ln 3}{4}$.

2532. Пусть X — точка $(R\cos^3t, R\sin^3t)$; $x_t' = -3R^2\cos^2t\sin t, \ y_t' = 3R^2\sin^2t\cos t \Rightarrow L_{AX} = \int_0^t \sqrt{9R^4(\cos^4t\sin^2t+\sin^4t\cos^2t)}dt = 3R^2\int_0^t \cos t\sin tdt = \frac{3R^2}{2}\int_0^t \sin 2t dt = -\frac{3R^2}{4}\cos 2t|_0^t = \frac{3}{4}R^2(1-\cos 2t); \ L_{AB} = \frac{3}{4}R^2(1-\cos 2t) \Rightarrow \cos 2t = \frac{1}{2}, \ t = \frac{\pi}{6} \Rightarrow M(R\frac{3\sqrt{3}}{8}, \frac{R}{8})$ — искомая точка.

2537. $x'_t = t^2 \cos t$. $y'_t = t^2 \sin t$, $L = \int_0^{\pi} \sqrt{t^4 \cos^2 t + t^4 \sin^2 t} dt = \int_0^{\pi} t^2 dt = \frac{t^3}{3} \Big|_0^{\pi} = \frac{\pi^3}{3}$.

2546. $\rho' = -a\sin\varphi$, $L = 2\int_0^{\pi} \sqrt{a^2(1+\cos\varphi)^2 + a^2\sin^2\varphi} d\varphi = 2a\int_0^{\pi} \sqrt{2+2\cos\varphi} d\varphi = 4a\int_0^{\pi} \cos\frac{\varphi}{2} d\varphi = 8a\sin\frac{\varphi}{2}\Big|_0^{\pi} = 8a$.

2551. $x_t' = \frac{\cos t}{t}, \ y_t' = \frac{\sin t}{t}, \$ при $t = \frac{\pi}{2} \ x' = 0, \ y' \neq 0 \Rightarrow$ при $t = \frac{\pi}{2}$ вертикальная касательная, $L = \int_1^{\pi/2} \sqrt{\frac{\cos^2 t}{t^2} + \frac{\sin^2 t}{t^2}} dt = \int_1^{\pi/2} \frac{dt}{t} = \ln \frac{\pi}{2}.$

2556.1. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow y^2 = b^2 - \frac{b^2 x^2}{a^2}, \ V = 2\pi \int_0^a y^2 dx = 2\pi \int_0^a \left(b^2 - \frac{b^2 x^2}{a^2}\right) dx = 2\pi b^2 \left(x - \frac{x^3}{3a^2}\right)|_0^a = \frac{4}{3}\pi a b^2.$

2560. $V = \pi \int_a^b \cosh^2 x dx = \frac{\pi}{2} \int_a^b (1 + \cosh 2x) dx = \frac{\pi}{2} (x + \frac{\sinh 2x}{2})|_a^b = \frac{\pi}{4} (2b - 2a + \sinh 2b - \sinh 2a).$

2565. $V = 2\pi \int_0^{\pi} x \sin x dx = -2\pi \int_0^{\pi} x d(\cos x) = -2\pi x \cos x \Big|_0^{\pi} + 2\pi \int_0^{\pi} \cos x dx = 2\pi^2.$

2570. $V = 2\pi \int_0^a y^2 dx \ [y = a\sin^3 t, \ x = a\cos^3 t, \ dx = -3a\cos^2 t \sin t \, dt, \ t_1 = \pi/2, \ t_2 = 0] = -2\pi \int_{\pi/2}^0 a^2 \sin^6 t \times 3a\cos^2 t \sin t \, dt = 6\pi a^3 \int_0^{\pi/2} (\sin^7 t - \sin^9 t) \, dt = 6\pi a^3 (\frac{6!!}{7!!} - \frac{8!!}{9!!}) = \frac{32}{105}\pi a^3.$

2574. 1. $V = 2\pi \int_0^{+\infty} x e^{-x^2} dx = -\pi \int_0^{+\infty} d(e^{-x^2}) = \pi e^{-x^2}|_0^{+\infty} = \pi - \pi \lim_{x \to +\infty} e^{-x^2} = \pi$. 2. $V = 2\pi \int_0^{+\infty} e^{-2x^2} dx$ $[t = x\sqrt{2}, dt = dx\sqrt{2}] = \pi \sqrt{2} \int_0^{+\infty} e^{-t^2} dt = \pi \sqrt{\frac{\pi}{2}}$.

2579. $-c\leqslant z\leqslant c$; пусть $z=z_0$, уравнение сечения $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z_0^2}{c^2}=1\Leftrightarrow \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{c^2-z_0^2}{c^2}\Leftrightarrow \frac{x^2}{a^2(c^2-z_0^2)/c^2}+\frac{y^2}{b^2(c^2-z_0^2)/c^2}=1$ задает эллипс с полуосями $\frac{a\sqrt{c^2-z_0^2}}{c}$ и $\frac{b\sqrt{c^2-z_0^2}}{c}$, его площадь $S(z_0)=\frac{\pi ab(c^2-z_0^2)}{c^2}$, $V=2\pi\frac{ab}{c^2}\int_0^c(c^2-z_0^2)dz=2\pi\frac{ab}{c^2}(c^2z-\frac{z^3}{3})|_0^c=\frac{4}{3}\pi abc$.

2585. Пусть Oy — пересечение секущей плоскости с основанием цилиндра, тогда $0 \leqslant x \leqslant R$, S(x) — площадь прямоугольника, его основание $2\sqrt{R^2-x^2}$, высота h такая, что $\frac{x}{h} = \frac{R}{H} \Rightarrow h = \frac{xH}{R}$, $S(x) = \frac{2H}{R}x\sqrt{R^2-x^2}$, $V = \frac{2H}{R}\int_0^R x\sqrt{R^2-x^2}dx = -\frac{2}{3}\frac{H}{R}\sqrt{(R^2-x^2)^3}|_0^R = \frac{2}{3}R^2H$.

2590. Пусть Oy- указанный диаметр, O- центр круга, тогда $-a\leqslant x\leqslant a,\ 2\sqrt{a^2-x^2}-$ диагональ квадрата, $S(x)==2(a^2-x^2),\ V=2\int_0^a2(a^2-x^2)dx=4(a^2x-\frac{x^3}{3})|_0^a=\frac{8}{3}a^3.$

2595. $S = 2\pi \int_0^a y \sqrt{1 + y'^2} dx = 2\pi \int_0^a \frac{x^3}{3} \sqrt{1 + x^4} dx = \frac{\pi}{9} \sqrt{(1 + x^4)^3} \Big|_0^a = \frac{\pi}{9} \left(\sqrt{(1 + a^4)^3} - 1 \right).$

2601. Повернем дугу и хорду на 45° против часовой стрелки, получится дуга AB с концами $A\left(-a\frac{\sqrt{2}}{2},\,a\frac{\sqrt{2}}{2}\right)$ и $B\left(a\frac{\sqrt{2}}{2},\,a\frac{\sqrt{2}}{2}\right)$, теперь поднимем ось Ox на $a\frac{\sqrt{2}}{2}$, новая ордината $y_1=y-a\frac{\sqrt{2}}{2};\,S=4\pi\int_0^{a\sqrt{2}/2}\left(y-a\frac{\sqrt{2}}{2}\right)\sqrt{1+y'^2}\,dx$ $[y=a\sin t,\,\,x=a\cos t,\,\,y'=-\cot t,\,\,dx=-a\sin t\,dt,\,\,t_1=\pi/2,\,\,t_2=\pi/4]=4\pi\int_{\pi/4}^{\pi/2}\left(a\sin t-a\frac{\sqrt{2}}{2}\right)\sqrt{1+\cot g^2t}\times x$ $x\sin t\,dt=4\pi a^2\int_{\pi/4}^{\pi/2}\left(\sin t-\frac{\sqrt{2}}{2}\right)dt=4\pi a^2(-\cos t-\frac{\sqrt{2}}{2}t)|_{\pi/4}^{\pi/2}=\pi a^2\sqrt{2}(2-\frac{\pi}{2}).$

2605. $S = 2\pi \int_0^{\pi} a(1+\cos\varphi)\sin\varphi \sqrt{a^2(1+\cos\varphi)^2 + a^2\sin^2\varphi} d\varphi =$ = $2\pi a^2 \int_0^{\pi} (1+\cos\varphi)\sin\varphi \cdot 2\cos\frac{\varphi}{2} d\varphi = 16\pi a^2 \int_0^{\pi} \cos^4\frac{\varphi}{2}\sin\frac{\varphi}{2} d\varphi =$ = $-\frac{32}{5}\pi a^2 \cos^5\frac{\varphi}{2} \Big|_0^{\pi} = \frac{32}{5}\pi a^2.$

2611. Пусть катеты треугольника OAB — оси Ox и Oy, тогда уравнение гипотенузы $y=a-x,\ M_x=\frac{1}{2}\int_0^a (a-x)^2 dx=$

 $= -\frac{1}{2} \frac{(a-x)^3}{3}|_0^a = \frac{a^3}{6}; \ M_y = \int_0^a x(a-x) dx = (\frac{ax^2}{2} - \frac{x^3}{3})|_0^a = \frac{a^3}{6}; \ \text{пусть теперь ось } Ox \ \text{совпадает с гипотенузой, } Oy \ \text{проходит через вершину прямого угла, тогда уравнения катетов } y = x + \frac{a}{\sqrt{2}}, \ -\frac{a}{\sqrt{2}} \leqslant x \leqslant 0, \ \text{и } y = \frac{a}{\sqrt{2}} - x, \ 0 \leqslant x \leqslant \leqslant \frac{a}{\sqrt{2}}; \ M_x = \frac{1}{2} \int_{-a/\sqrt{2}}^0 \left(x + \frac{a}{\sqrt{2}}\right)^2 dx + \frac{1}{2} \int_0^{a/\sqrt{2}} \left(\frac{a}{\sqrt{2}} - x\right)^2 dx = \frac{1}{6} (x + \frac{a}{\sqrt{2}})^3 |_{-a/\sqrt{2}}^0 - \frac{1}{6} (\frac{a}{\sqrt{2}} - x)^3 |_0^{a/\sqrt{2}} = \frac{a^3}{6\sqrt{2}}.$

2615. Т. к. полуокружность симметрична относительно оси $Oy,~\xi=0;~y'=-\frac{x}{\sqrt{r^2-x^2}},~ds=\sqrt{1+\frac{x^2}{r^2-x^2}}\,dx=\frac{r\,dx}{\sqrt{r^2-x^2}},~M_x=\int_{-r}^r y\,ds=\int_{-r}^r r\,dx=2r^2,~\eta=\frac{M_x}{L}=\frac{2r^2}{\pi r}=\frac{2}{\pi}r.$

2620. $y = \frac{b}{a}\sqrt{a^2 - x^2}$, $y' = -\frac{bx}{a\sqrt{a^2 - x^2}}$, $ds = \sqrt{1 + \frac{b^2x^2}{a^2(a^2 - x^2)}}dx = \sqrt{\frac{a^4 + (b^2 - a^2)x^2}{a^2(a^2 - x^2)}}dx$, $yds = \frac{b}{a}\sqrt{a^2 - \frac{a^2 - b^2}{a^2}}x^2dx = \frac{b}{a}\sqrt{a^2 - \varepsilon^2x^2}dx$, где $\varepsilon = \frac{\sqrt{a^2 - b^2}}{a^2}$ — эксцентриситет эллипса; $M_x = \int_0^a \frac{b}{a}\sqrt{a^2 - \varepsilon^2x^2}dx = \frac{b}{a}\left(\frac{x}{2}\sqrt{a^2 - \varepsilon^2x^2} + \frac{a^2}{2\varepsilon}\arcsin\frac{\varepsilon x}{a}\right)|_0^a = \frac{b}{a}\left(\frac{a}{2}\sqrt{a^2 - \varepsilon^2a^2} + \frac{a^2}{2\varepsilon}\arcsin\varepsilon\right) = b\left(\frac{b}{2} + \frac{a}{2\varepsilon}\arcsin\varepsilon\right)$, т. к. $a^2 - \varepsilon^2a^2 = b^2$.

2625. $y^2 = x^3(a-x) \Rightarrow 0 \leqslant x \leqslant a, \ y = \pm x\sqrt{ax-x^2},$ кривая симметрична относительно $Ox \Rightarrow \eta = 0; \ S = \int_0^a 2x\sqrt{ax-x^2}dx = \int_0^a 2x\sqrt{a^2/4-(x-a/2)^2}dx \ [x = a/2+a/2\sin t, \ dx = a/2\cos t, \ t_1 = -\pi/2, \ t_2 = \pi/2] = \frac{a^3}{4}\int_{-\pi/2}^{\pi/2}(1+\sin t)\cos^2 t \ dt = \frac{a^3}{4}\int_{-\pi/2}^{\pi/2}\cos^2 t \ dt + \frac{a^3}{4}\int_{-\pi/2}^{\pi/2}\cos^2 t \sin t \ dt = \frac{a^3}{8}\int_{-\pi/2}^{\pi/2}(1+\cos 2t)\ dt - \frac{\cos^3 t}{3}\Big|_{-\pi/2}^{\pi/2} = \frac{\pi a^3}{8}; \ M_y = \int_0^a 2x^2\sqrt{ax-x^2}\ dx \ [x = a/2+a/2\sin t, \ldots] = \frac{a^4}{8}\int_{-\pi/2}^{\pi/2}(1+\sin t)^2\cos^2 t \ dt = \frac{a^4}{8}\int_{-\pi/2}^{\pi/2}(\cos^2 t + 2\cos^2 \sin t + \sin^2 t\cos^2 t)\ dt = \frac{a^4}{16}\int_{-\pi/2}^{\pi/2}(1+\cos 2t)\ dt + \frac{a^4}{24}\cos^3 t\Big|_{-\pi/2}^{\pi/2} + \frac{a^4}{32}\int_{-\pi/2}^{\pi/2}\sin^2 2t \ dt = \frac{\pi a^4}{16}+\frac{\pi a^4}{64}=\frac{5\pi a^4}{64}; \ \xi = \frac{M_y}{S}=\frac{5}{8}a.$ **2631.** $M_x = \frac{1}{2}\int_0^a y^2 dx = -\frac{1}{2}\int_{\pi/2}^0 3a^3\sin^7 t\cos^2 t \ dt = \frac{\pi a^4}{16}\int_{-\pi/2}^{\pi/2} \sin^2 t \ dt = \frac{\pi a^4}{16}\int_{-\pi/2}^{\pi/2} 3a^3\sin^7 t\cos^2 t \ dt = \frac{\pi a^4}{16}\int_{-\pi/2}^{\pi/2} 3a^3\sin^7 t\cos^$

 $= \frac{3}{2}a^{3} \int_{\pi/2}^{0} (\sin^{7}t - \sin^{9}t) dt = \frac{3}{2}a^{3} (\frac{6!!}{7!!} - \frac{8!!}{9!!}) = \frac{8}{105}a^{3}; M_{y} =$ $= \int_{0}^{a} xy dx = -\int_{\pi/2}^{0} 3a^{3} \cos^{5}t \sin^{4}t dt \quad [z = \sin t, dz =$ $= \cos t dt, z_{1} = 0, z_{2} = 1] = 3a^{3} \int_{0}^{1} z^{4} (1 - z^{2})^{2} dz = 3a^{3} \int_{0}^{1} (z^{8} - 2z^{6} + z^{4}) dz = 3a^{3} (\frac{1}{9} - \frac{2}{7} + \frac{1}{5}) = \frac{8}{105}a^{3}; S = \int_{0}^{a} y dx =$

$$= -\int_{\pi/2}^{0} 3a^{2} \sin^{3} t \cos^{2} t \, dt = 3a^{2} \int_{\pi/2}^{0} (\sin^{4} t - \sin^{6} t) dt =$$

$$= \frac{3}{2} \pi a^{2} (\frac{3!!}{4!!} - \frac{5!!}{6!!}) = \frac{3}{32} \pi a^{2}; \; \xi = \frac{M_{y}}{S} = \frac{256}{315\pi} a, \; \eta = \frac{M_{x}}{S} = \frac{256}{315\pi} a.$$

2635. $\rho(-\varphi) = \rho(\varphi) \Rightarrow$ кривая симметрична относительно $Ox \Rightarrow \eta = 0; \ I_1 = \int_0^\pi a^3 (1+\cos\varphi)^3 \cos\varphi d\varphi = 8a^3 \int_0^\pi \cos^6 \frac{\varphi}{2} \cos\varphi d\varphi = [\varphi/2 = t] 16a^3 \int_0^{\pi/2} \cos^6 t (2\cos^2 t - 1) dt = 16a^3 \int_0^{\pi/2} (2\cos^8 t - \cos^6 t) dt = 8\pi a^3 (2\frac{7!!}{8!!} - \frac{5!!}{6!!}) = \frac{15}{8}\pi a^3; \ I_2 = \int_0^\pi a^2 (1+\cos\varphi)^2 d\varphi = 4a^2 \int_0^\pi \cos^4 \frac{\varphi}{2} d\varphi = [\varphi/2 = t] 8a^2 \int_0^{\pi/2} \cos^4 t \, dt = 4\pi a^2 \frac{3!!}{4!!} = \frac{3}{2}\pi a^2; \ \xi = \frac{2}{3}\frac{I_1}{I_2} = \frac{5}{6}a.$

2641. Пусть ось Oz совпадает с осью симметрии полусферы, тогда из соображений симметрии $\xi=\eta=0$; $\zeta=\frac{M_{xy}}{S}$. Введем на основании полусферы полярные координаты и рассмотрим «прямоугольник» $[\rho,\ \rho+d\rho] imes [\varphi,\ \varphi+d\varphi],$ его площадь $dS=\rho d\rho d\varphi+o(d\varphi),$ момент части полусферы над этой областью равен (опуская бесконечно малые более высокого порядка) $z\sqrt{1+{z'_x}^2+{z'_y}^2}\,dS=\sqrt{R^2-x^2-y^2}\sqrt{1+\frac{x^2}{R^2-x^2-y^2}+\frac{y^2}{R^2-x^2-y^2}}\,dS=R\rho d\rho d\varphi;$ момент, соответствующий кольцу $[\rho,\ \rho+d\rho]$ равен $\int_0^{2\pi}R\rho d\rho d\varphi=2\pi R\rho d\rho,$ наконец, момент всей полусферы $M_{xy}=2\pi R\int_0^R\rho d\rho=\pi R^3;$ т. к. $S=2\pi R^2,\ \zeta=\frac{R}{2}.$

2645. $I_x = \int_{-R}^{R} y^2 ds; \ ds = \sqrt{1 + \frac{x^2}{R^2 - x^2}} dx = \frac{R}{\sqrt{R^2 - x^2}} dx \Rightarrow I_x = \int_{-R}^{R} (R^2 - x^2) \frac{R}{\sqrt{R^2 - x^2}} dx = R \int_{-R}^{R} \sqrt{R^2 - x^2} \ [dx = R \sin t] = R \int_{-\pi/2}^{\pi/2} R^2 \cos^2 t \, dt = \frac{\pi R^3}{2}.$

2649.2. Будем считать треугольник прямоугольным (от этого момент не изменится), ось Oy совпадает с катетом, начало координат в вершине острого угла, тогда уравнение его гипотенузы $y=\frac{h}{a}x$, момент инерции прямоугольника с основанием dx равен $\int_{hx/a}^h y^2 dy = \frac{1}{3} \left(h^3 - \frac{h^3}{a^3}x^3\right) dx$, отсюда момент треугольника $I = \frac{1}{3} \int_0^a \left(h^3 - \frac{h^3}{a^3}x^3\right) dx = \frac{1}{3} \left(h^3x - \frac{h^3}{4a^3}x^4\right) \Big|_0^a = \frac{ah^3}{4}$.

2650. $I_x = \int_{-R}^{R} \frac{y^3}{3} dx = \frac{1}{3} \int_{-R}^{R} \sqrt{(R^2 - x^2)^3} \left[dx = R \sin t \right] = \frac{1}{3} \int_{-\pi/2}^{\pi/2} R^4 \cos^4 t \, dt = \frac{2}{3} R^4 \int_{0}^{\pi/2} \cos^4 t \, dt = \frac{2}{3} R^4 \frac{3}{16} \pi = \frac{\pi R^4}{8}.$

2651. Разобьем круг на секторы с центральным углом $d\varphi$; с точностью до бесконечно малых более высокого порядка, чем $d\varphi$, заменим сектор треугольником с основанием $rd\varphi$ и высотой r, его момент инерции равен $\frac{r^4d\varphi}{4}(\mathbf{2649.2}) \Rightarrow I = \int_0^{2\pi} \frac{r^4d\varphi}{4} = \frac{\pi r^4}{2}.$

2655. Разобьем шар на цилиндрические слои высотой dx и радиусом основания $r=\sqrt{R^2-x^2}$; момент инерции цилиндра равен $\frac{\pi r^4 dx}{2}$ (**2651**) $\Rightarrow I=\int_{-R}^R \frac{\pi (R^2-x^2)^2 dx}{2}=\frac{\pi}{2}\int_{-R}^R (R^4-2R^2x^2+x^4)dx=\frac{8}{15}\pi R^5.$

2661. Рассмотрим слой высоты dx на расстоянии x от вершины; его боковая поверхность $ds = \pi \left(\frac{R}{H}x + \frac{R}{H}(x+dx)\right)\frac{L}{H}dx$ (L- образующая конуса) $= 2\pi \frac{RL}{H^2}xdx + o(dx)$, уравнение образующей конуса $y = \frac{R}{H}x \Rightarrow I = \int_0^H y^2ds = 2\pi \frac{R^3L}{H^4}\int_0^H x^3dx = \frac{\pi R^3L}{2} = \frac{MR^2}{2}$ $(M=\pi RL-$ масса боковой поверхности).

2665. Центр масс астроиды — точка (0.0), расстояние от него до прямой x+y=a равно $\frac{a}{\sqrt{2}}$, длина кривой L=6a **(2532)**, площадь $S=\frac{3}{8}\pi a^2$ **(2491)** $\Rightarrow V=2\pi\frac{a}{\sqrt{2}}S=\frac{3\sqrt{2}\pi^2a^3}{8}$, $S_{\text{пов}}=2\pi\frac{a}{\sqrt{2}}L=6\sqrt{2}\pi a^2$.

2670. 1. Пусть dm — масса участка длины dx, находящегося на расстоянии x от точки B, $dm = \frac{M}{l}dx$, $df = k \frac{Mm}{l(a+x)^2} dx$, $f = \int_0^l k \frac{Mm}{l(a+x)^2} dx = -k \frac{Mm}{l(a+x)} \Big|_0^l = k \frac{Mm}{a(a+l)}$. 2. Пусть m_1 — искомая масса, $k \frac{Mm}{a(a+l)} = k \frac{m_1 m}{(a+l)^2} \Rightarrow m_1 = M \frac{a+l}{a}$. 3. $A = -\int_{r_1}^{r_2} k \frac{Mm}{a(a+l)} da = -\frac{kMm}{l} \ln \frac{a}{a+l} \Big|_{r_1}^{r_2} = \frac{kMm}{l} \ln \frac{r_1(r_2+l)}{r_2(r_1+l)}$.

2680. Пусть x — радиус сечения усеченного конуса на расстоянии h от верхнего основания, dh — толщина слоя песка радиуса x, dV и dm — объем и масса этого слоя; $\frac{h}{H} = \frac{x-r}{R-r} \Rightarrow x = r + \frac{h}{H}(R-r), \ dV = \pi x^2 dh, \ dm = d\pi x^2 dh \Rightarrow A = \int_0^H g(H-h) dm = g d\pi \int_0^H x^2 (H-h) dh = \frac{g d\pi}{H^2} \int_0^H (rH + h(R-r))^2 (H-h) dh = \frac{g d\pi H^2}{12} (R^2 + 2Rr + 3r^2).$

2685. Уравнение параболы $y=ax^2$, при x=R y=H $\Rightarrow a=\frac{H}{R^2}$, $y=\frac{H}{R^2}x^2$; рассмотрим слой жидкости на расстоянии x от дна толщиной dx, его радиус $r=\sqrt{\frac{h}{a}}=\sqrt{\frac{h}{H}}R$, объем $dV=\frac{\pi R^2}{H}h\,dh$, работа по его выкачиванию $dA=\frac{\pi R^2}{6}dgh(H-h)dh$ $\Rightarrow A=\frac{\pi R^2}{H}dg\int_0^H(Hh-h^2)dh=\frac{\pi dgH^2R^2}{6}\approx \frac{3.14\cdot 9.8\cdot 800\cdot 4\cdot 16}{6}\approx 2.6\cdot 10^5\, \mbox{Дж}.$

2690. Пусть Ox совпадает с осью вращения; уравнение параболы $y=\pm k\sqrt{x}$, при x=h $y=\frac{a}{2}\Rightarrow k=\frac{a}{2\sqrt{h}},$ $y=\pm\frac{a}{2}\sqrt{\frac{x}{h}};$ $J=2\gamma d\int_0^h\frac{y^3}{3}dx=\frac{\gamma da^3}{12}\int_0^h\sqrt{\frac{x^3}{h^3}}dx=\frac{\gamma da^3h}{30},$ $K=\pm\frac{1}{2}J\omega^2=\frac{\gamma da^3h\omega^2}{60}\approx 0.15\mathcal{A}\varkappa.$

2695. Пусть h — расстояние от поверхности воды, x — ширина плотины на глубине h, тогда $\frac{h}{H} = \frac{x-b}{a-b}, \ x = b + \frac{h}{H}(a-b),$ площадь прямоугольника со сторонами x и dh $dS = \frac{1}{H}(bH + (a-b)h)$, сила давления воды на этот прямоугольник $df = \gamma gh dS = \frac{\gamma g}{H}(bH + (a-b)h)h dh.$ $f = \frac{\gamma g}{H}\int_0^H (bHh + (a-b)h)h dh = \frac{\gamma g}{H}\left(\frac{bH^3}{2} + \frac{(a-b)H^3}{3}\right) = \frac{\gamma gH^2(2a+b)}{6} \approx 2.5 \cdot 10^5 H.$ **2700.** Пусть x — расстояние от центра шара до слоя тол-

2700. Пусть x — расстояние от центра шара до слоя толщиной dx по вертикали (если слой ниже центра, считаем x < 0), тогда объем слоя $dV = \pi(R^2 - x^2)dx$. На перемещение слоя под водой работа не затрачивается, т. к. плотность шара равна плотности воды, работа по перемещению слоя над водой $dA = gdV(R+x) = g\pi(R^2 - x^2)(R+x)dx \Rightarrow A = g\pi\int_{-R}^{R}(R^3 + R^2x - Rx^2 - x^3)dx = \frac{4}{3}g\pi R^4$.

2705. Пусть x — расстояние от верхнего края щели до слоя толщиной dx, площадь слоя dS = bdx, за 1 с из этого слоя вытекает $dV = v dS = \sqrt{2g(H+x)}bdx$ воды. Отсюда $V = b\sqrt{2g}\int_0^h \sqrt{H+x}dx = \frac{2b\sqrt{2g}}{3}((H+h)^{3/2}-H^{3/2})$.

2709. dA = p dV, $p = p_0(\frac{V_0}{V})^{\gamma} \Rightarrow A = -\int_{V_0}^{V_1} p_0(\frac{V_0}{V})^{\gamma} dV = \frac{p_0}{\gamma - 1} \left(\frac{V_0^{\gamma}}{V_{\gamma}^{\gamma - 1}} - V_0\right) \approx 1.6 \cdot 10^4 \, \text{Дж}.$

2711. \hat{T} . к. температура внешней среды равна 0, за время dt температура тела изменяется на $d\theta = -k\theta \, dt \Rightarrow \frac{d\theta}{\theta} = -k \, dt \Rightarrow \int \frac{d\theta}{\theta} = -k \int dt \Rightarrow \ln \theta = -kt + C \Rightarrow \theta = e^C e^{-kt}$, при t = 0 $\theta = \theta_0 \Rightarrow \theta = \theta_0 e^{-kt}$; при $t = t_1$ $\theta = \theta_1$, $\theta_1 = \theta_0 e^{-kt_1} \Rightarrow k = \frac{\ln \theta_0 - \ln \theta_1}{t_1} \approx 0.575$; $\theta_2 = \theta_0 e^{-kt_2} \approx 5.3^\circ$.

2717. Пусть T=10 мин, k=0.004, $\Delta\theta=\theta_2-\theta_1$, тогда $\theta=\theta_1+\Delta\theta\frac{t}{T}$; за промежуток времени dt через проводник проходит $dQ=I\,dt=\frac{U\,dt}{R_0(1+k(\theta_1+\Delta\theta t/T))}\Rightarrow Q=\frac{UT}{R_0}\int_0^T\frac{dt}{T+k(\theta_1T+\Delta\theta t)}=\frac{UT}{k\Delta\theta R_0}\ln(T+k(\theta_1T+\Delta\theta t))|_0^T=\frac{UT}{k\Delta\theta R_0}\ln\frac{1+k\theta_2}{1+k\theta_1}\approx 5110$ Кл.

2723. Пусть I — количество света; $dI = -kIdh \Rightarrow I = I_0e^{-kh}$ (**2711**); при $h = h_1$ $I = \frac{I_0}{2} \Rightarrow k = \frac{\ln 2}{h_1}$, $I = I_0(\frac{1}{2})^{h/h_1}$; $I_2 = I_0(\frac{1}{2})^{h_2/h_1} = I_02^{-10} = \frac{1}{1024}I_0$.

К ГЛАВЕ 9

2728.
$$a_n = \frac{1}{(2n-1)(2n+1)} = \frac{(2n+1)-(2n-1)}{2(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right) \Rightarrow$$

$$S_n = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{n}{2n+1}; S = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}.$$

2733.
$$a_n = \frac{3^n + 2^n}{6^n} = (\frac{1}{2})^n + (\frac{1}{3})^n \Rightarrow S_n = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} = \frac{1}{2} \frac{1 - (1/2)^n}{1 - 1/2} + \frac{1}{3} \frac{1 - (1/3)^n}{1 - 1/3} = \frac{3}{2} - (\frac{1}{2})^n - \frac{1}{2}(\frac{1}{3})^n$$
; $S = \lim_{n \to \infty} S_n = \frac{3}{2}$.

- **2736.** Используя формулу $\operatorname{arctg} x + \operatorname{arctg} y = \operatorname{arctg} \frac{x+y}{1-xy}$, докажем по индукции: $S_n = \arctan \frac{n}{n+1}$; при n = 1 $S_1 = \arctan \frac{1}{2}$, пусть $S_{n-1} = \arctan \frac{n-1}{n}$, тогда $S_n = \arctan \frac{n-1}{n} + \arctan \frac{1}{2n^2} = \arctan \frac{2n^2-2n+1}{2n^2} \cdot \frac{2n^3}{2n^3-n+1} =$ $= \arctan \frac{(2n^2-2n+1)n}{(n+1)(2n^2-2n+1)} = \arctan \frac{n}{n+1}; \ S = \lim_{n\to\infty} S_n = \arctan 1 = \frac{\pi}{4}.$ **2741.** Сравним с расходящимся рядом $\sum_{n=1}^{\infty} \frac{1}{n};$ $\lim_{n\to\infty} \frac{n+1}{(n+2)n} : \frac{1}{n} = 1 \neq 0 \Rightarrow$ ряд расходится.
- рядом $\sum_{n=1}^{\infty} \frac{1}{n^2}$; 2746. Сравним со сходящимся $\lim_{n \to \infty} \frac{1}{n^2 - 4n + 5} : \frac{1}{n^2} = 1 \neq 0 \Rightarrow$ ряд сходится.
- **2752.** $a_n=\frac{\sqrt{n+1}-\sqrt{n-1}}{n}=\frac{2}{n(\sqrt{n+1}+\sqrt{n-1})};$ сравним со сходящимся рядом $\sum_{n=1}^{\infty}\frac{1}{n^{3/2}};$ $\lim_{n\to\infty}\frac{2}{n(\sqrt{n+1}+\sqrt{n-1})}:$ $\frac{1}{n^{3/2}}=1\neq$ $\neq 0 \Rightarrow$ ряд сходится.
 - **2757.** $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{3n+2}{4n-3} = \frac{3}{4} < 1 \Rightarrow$ ряд сходится.
 - **2766.** $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{(\frac{n+1}{n})^n}{3} = \frac{e}{3} < 1 \Rightarrow$ ряд сходится.
- **2768.** $\int_2^\infty \frac{dx}{x \ln x} = \int_2^\infty \frac{d(\ln x)}{\ln x} = \ln \ln x|_2^\infty = \lim_{x \to \infty} \ln \ln x \lim_{x \to \infty} \ln \ln x$ $-\ln \ln 2 = \infty$ ⇒ ряд расходится.
- **2774.** $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)^2}{(n+1)!}:\frac{n^2}{n!}=\lim_{n\to\infty}\frac{n+1}{n^2}=0<1\Rightarrow$ ряд сходится.
- **2780.** $\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{2}{\sqrt[n]{n}} = 2 > 1 \left(\lim_{n\to\infty} \sqrt[n]{n} = 1\right) \Rightarrow$ ряд расходится.
- **2787.** $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)^{n+1}}{((2n+2)!)^2}\cdot\frac{(2n)!}{n^n}=\lim_{n\to\infty}\left(\frac{n+1}{n}\right)^n\times \times \frac{n+1}{(2n+2)^2(2n+1)^2}=e\lim_{n\to\infty}\frac{1}{2(2n+2)(2n+1)^2}=0<1\Rightarrow \text{ряд}$ сходится $\Rightarrow\lim_{n\to\infty}a_n=0.$

2790. $|a_n| = \frac{1}{2n-1}$, сравним с расходящимся рядом $\sum_{n=1}^{\infty} \frac{1}{n}$: $\lim_{n \to \infty} \frac{1}{2n-1} : \frac{1}{n} = 1 \neq 0 \Rightarrow$ ряд $\sum_{n=1}^{\infty} |a_n|$ расходится; $\lim_{n \to \infty} |a_n| = 0$, $|a_n| \downarrow \Rightarrow$ ряд сходится по признаку Лейбница, но не абсолютно.

2794. $|a_n|=\frac{1}{n2^n}, \ \lim_{n\to\infty}\sqrt[n]{|a_n|}=\frac{1}{2}<1\Rightarrow$ ряд абсолютно сходится.

2798. $|a_n| = \frac{1}{n - \ln n}$, сравним с расходящимся рядом $\sum_{n=1}^{\infty} \frac{1}{n}$; $\lim_{n \to \infty} \frac{1}{n - \ln n} : \frac{1}{n} = 1 \neq 0 \Rightarrow$ ряд $\sum_{n=1}^{\infty} |a_n|$ расходится; $\lim_{n \to \infty} |a_n| = 0$, $|a_n| \downarrow \Rightarrow$ ряд сходится по признаку Лейбница, но не абсолютно.

2803. $|a_n|=|\ln^n x|,\ \sqrt[n]{|a_n|}=|\ln x|<1\Rightarrow -1<\ln x<<1\Rightarrow \frac{1}{e}< x< e;$ при $x=\epsilon\ a_n(x)=1,$ при $x=\frac{1}{e}\ a_n(x)==(-1)^n,$ при этих x ряд расходится, поэтому интервал сходимости $(\frac{1}{e},\ e).$

2807. При |x|<1 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{1+x^n}=1\neq 0\Rightarrow$ ряд расходится; при x=1 $a_n(x)=\frac{1}{2},$ $-1\notin D(a_n(x));$ ряд расходится; при |x|>1 $\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\frac{1}{|x|\sqrt[n]{1+1/x^n}}=\frac{1}{|x|}<<1\Rightarrow$ ряд сходится.

2810. При |x| < 1 $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{|x|}{\sqrt[n]{1+x^{2n}}} = |x| < 1 \Rightarrow$ ряд сходится; при x = 1 $a_n(x) = \frac{1}{2}$, при x = -1 $a_n(x) = \frac{(-1)^n}{2}$ ряд расходится; при |x| > 1 $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{|x|}{x^2 \sqrt[n]{1+1/x^{2n}}} = \frac{1}{|x|} < 1 \Rightarrow$ ряд сходится.

2814. При x<0 $\lim_{n\to\infty}\frac{1}{e^{nx}}=\infty$, $\cos nx$ не стремится к $0\Rightarrow\lim_{n\to\infty}a_n(x)=\infty$, ряд расходится; при x=0 $a_n(x)=1$, ряд расходится; при x>0 $|a_n(x)|\leqslant b_n=\frac{1}{e^{nx}},$ $\lim_{n\to\infty}\sqrt[n]{b_n}=\frac{1}{e^x}<1\Rightarrow$ ряд сходится.

2820. $|a_n(x)| \leqslant \frac{1}{n^2}, \sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится $\Rightarrow \sum_{n=1}^{\infty} a_n(x)$ равномерно сходится по признаку Вейерштрасса.

2824. $S_n(x) = x - x^2 + x^2 - x^3 + \ldots + x^n - x^{n+1} = x - x^{n+1}$, $S(x) = \lim_{n \to \infty} S_n = \begin{cases} x, x \in [0, 1) \\ 0, x = 1 \end{cases}$, $\sup_{[0,1]} |S - S_n| = 1 \Rightarrow$ ряд сходится неравномерно.

2829. $S'(x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ $S''(x) = 1 - x + \dots + (-1)^{n-1} x^{n-1} + \dots = \frac{1}{1+x} (x \in (-1, 1)) \Rightarrow S'(x) = \int \frac{dx}{1+x} = \ln(1+x) + C, \ S'(0) = 0 \Rightarrow C = 0; \ S(x) = \int \ln(1+x) dx = x \ln(1+x) - \int \frac{x}{1+x} dx = (x+1) \ln(x+1) - x + C, \ S(0) = 0 \Rightarrow C = 0.$

2835. $S = \int_{2}^{+\infty} \frac{dx}{x^2} + \int_{2}^{+\infty} \frac{dx}{x^3} + \dots + \int_{2}^{+\infty} \frac{dx}{x^{n+1}} + \dots = \int_{2}^{+\infty} \left(\sum_{n=1}^{\infty} \frac{1}{x^{n+1}} \right) dx = \int_{2}^{+\infty} \frac{1/x^2}{1 - 1/x} dx = \int_{2}^{+\infty} \frac{dx}{x^2 - x} = \int_{2}^{+\infty} \left(\frac{1}{x - 1} - \frac{1}{x} \right) = \ln \left| \frac{x - 1}{x} \right| \Big|_{2}^{+\infty} = \lim_{x \to +\infty} \ln \frac{x - 1}{x} - \ln \frac{1}{2} = \ln 2.$

2839. Проинтегрируем частичную сумму ряда: $\int S_m(x) dx = \ln(1+x) + \ln(1+x^2) + \ldots + \ln(1+x^m) = \\ = \ln\left((1+x)(1+x^2)\ldots(1+x^{2^{n-1}}\right) = \ln\frac{(1-x)(1+x)(1+x^2)\ldots(1+x^{2^{n-1}})}{1-x} = \\ = \ln\frac{1-x^{2^n}}{1-x} \Rightarrow \int S(x) dx = \lim_{n\to\infty} \ln\frac{1-x^{2^n}}{1-x} = -\ln(1-x) \; (x\in(-1,1)) \Rightarrow \\ S(x) = \frac{1}{1-x}.$

2844. $y = \sin \frac{\pi(x-2+2)}{4} = \cos \frac{\pi(x-2)}{4} = 1 - \left(\frac{\pi}{4}\right)^2 \frac{(x-2)^2}{2!} + \dots + (-1)^n \left(\frac{\pi}{4}\right)^{2n} \frac{(x-2)^{2n}}{(2n)!} + \dots$

2849. y(0) = 1: $y' = \cos x \operatorname{sh} x - \sin x \operatorname{ch} x$, y'(0) = 0: $y'' = -2\sin x \operatorname{sh} x$, y''(0) = 0: $y''' = -2\cos x \operatorname{sh} x - 2\sin x \operatorname{ch} x$, y'''(0) = 0; $y^{IV} = -4\cos x \operatorname{ch} x = -4y$, $y^{IV}(0) = -4$ $\Rightarrow y^{(4n)} = (-4)^n$, остальные производные равны 0; $y = 1 - \frac{4x^4}{4!} + \dots + (-1)^n \frac{4^n x^{4n}}{(4n)!} + \dots$

2854. $\ln y = x \ln(1+x) = x \left(x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots\right) = x^2 - \frac{x^3}{2} + \dots + (-1)^{n+1} \frac{x^{n+1}}{n} + \dots; y = e^{\ln y} = 1 + \ln y + \frac{\ln^2 y}{2!} + \frac{\ln^3 y}{3!} + \dots = 1 + \left(x^2 - \frac{x^3}{2} + \frac{x^4}{3}\right) + \frac{x^4}{2} \dots = 1 + x^2 - \frac{x^3}{2} + \frac{5x^4}{6} + \dots$

2858. $y = \frac{1}{2x^3} \left((1 + x^3 + \frac{x^6}{2} + \dots + \frac{x^{3n}}{n!} + \dots) - (1 - x^3 + \frac{x^6}{2} + \dots + (-1)^n \frac{x^{3n}}{n!} + \dots) \right) = \frac{1}{x^3} \left(x^3 + \frac{x^9}{3!} + \dots + \frac{x^{3(2n-1)}}{(2n-1)!} + \dots \right) = 1 + \frac{x^6}{3!} + \dots + \frac{x^{6(n-1)}}{(2n-1)!} + \dots$

2863. $y = \ln(10+x) = \ln 10 + \ln(1+\frac{x}{10}) = \ln 10 + \frac{x}{10} - \frac{x^2}{200} + \dots + (-1)^{n-1} \frac{x^n}{n \cdot 10^n} + \dots$

2869. $y = (1+x)(1-x)^{-3}$; по правилу Лейбница $y^{(n)} = (1+x)\left((1-x)^{-3}\right)^{(n)} + n\left((1-x)^{-3}\right)^{(n-1)}$; $\left((1-x)^{-3}\right)^{(n)} = (1+x)\left((1-x)^{-3}\right)^{(n)}$

$$= \frac{(n+2)!}{2} (1-x)^{-(n+3)} \Rightarrow y^{(n)} = \frac{(n+2)!}{2} (1+x) (1-x)^{-(n+3)} + n \frac{(n+1)!}{2} (1-x)^{-(n+2)}, \ y^{(n)}(0) = \frac{(n+2)!}{2} + \frac{n(n+1)!}{2} = (n+1) \times (n+1)! = (n+1)^2 n!; \ y = 1 + 4x + 9x^2 + \dots + (n+1)^2 x^n + \dots; \ S = y(1/2) = 12.$$

2874. $\lim_{x \to \infty} (x - x^2 \ln(1 + \frac{1}{x})) = \lim_{x \to \infty} (x - x^2(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + \dots)) = \lim_{x \to \infty} (\frac{1}{2} - \frac{1}{3x} + \dots) = \frac{1}{2}.$

2880. $R=\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=\lim_{n\to\infty}\frac{(n+1)10^n}{n10^{n-1}}=10;$ при x=10 $a_n=\frac{10}{n}$ ряд расходится, при x=-10 $a_n=(-1)^n\frac{10}{n}$ ряд сходится, интервал сходимости $[-10,\ 10).$

2886. $R=\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=\lim_{n\to\infty}\frac{n^n(n+1)!}{n!(n+1)^{n+1}}=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n==\frac{1}{e};$ при $x=\frac{1}{e}$ $a_n=\frac{n^n}{e^nn!}\sim\frac{1}{\sqrt{2\pi n}},$ ряд $\sum_{n=1}^{\infty}\frac{c}{\sqrt{n}}$ расходится, при $x=-\frac{1}{e}$ ряд сходится по признаку Лейбница, интервал сходимости $\left[-\frac{1}{e},\,\frac{1}{e}\right)$.

2893. $y = e^{-x} + xe^{-x} - e^{x} + xe^{x} = 2x \operatorname{ch} x - 2\operatorname{sh} x = 2x \left(1 + \frac{x^{2}}{2!} + \dots + \frac{x^{2n}}{(2n)!} + \dots\right) - 2\left(x + \frac{x^{3}}{3!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \dots\right) = 4\left(\frac{x^{3}}{3!} + \frac{2x^{5}}{5!} + \dots + \frac{nx^{2n+1}}{(2n+1)!} + \dots\right);$ при x = 1 $\frac{2}{e} = 4S \Rightarrow S = \frac{1}{2e}.$

2897. $e^2=1+2+\frac{2^2}{2}+\ldots+\frac{2^n}{n!}+\ldots$; оценим остаток ряда: $r_n=\sum_{m=n+1}^\infty\frac{2^m}{m!}=\frac{2^n}{n!}\sum_{m=n+1}^\infty\frac{2^{m-n}}{(n+1)\ldots m}<<<\frac{2^n}{n!}\sum_{m=n+1}^\infty\frac{2^{m-n}}{(n+1)^{n-m}}=\frac{2^{n+1}}{n!(n-1)};\ r_n<0,001$ при $n=9\Rightarrow e^2\approx\sum_{n=1}^9\frac{2^n}{n!}\approx7,389.$

2901. $\sin 1^\circ = \sin \frac{\pi}{180} = \frac{\pi}{180} - \frac{\pi^3}{6 \cdot 180^3} + \dots; \ \tau. \ \kappa. \ \frac{\pi^3}{6 \cdot 180^3} < 0.0001, \ \sin 1^\circ \approx \frac{\pi}{180} \approx 0.0175.$

2905. $\sqrt[3]{30} = \sqrt[3]{27+3} = 3\left(1 + \frac{1}{27} + \sum_{n=2}^{\infty} (-1)^{n+1} \frac{2 \cdot 5 \dots (3n-4)}{n! \cdot 3^{3n}}\right) = 3 + \frac{1}{9} - \frac{1}{243} + \frac{5}{3^9} - \dots; \text{ T. K. } \frac{5}{3^9} < 0,001, \ \sqrt[3]{30} \approx 3 + \frac{1}{9} - \frac{1}{243} \approx 3,107.$

2912. $\frac{1+x}{1-x} = 3 \Rightarrow x = \frac{1}{2}; \, \ln \frac{1+x}{1-x} = 2x \left(1 + \frac{x^2}{3} + \ldots + \frac{x^{2n}}{2n+1} + \ldots\right) \Rightarrow \ln 3 = 1 + \frac{1}{12} + \ldots + \frac{1}{2^{2n}(2n+1)} + \ldots; \, r_n = \frac{1}{2^{2n+2}(2n+3)} + \frac{1}{2^{2n+4}(2n+5)} + \ldots < \frac{1}{2n+3} \left(\frac{1}{2^{2n+2}} + \frac{1}{2^{2n+4}} + \ldots\right) = \frac{4}{3(2n+3)4^n}, \, r_n < 0,0001 \, \text{при } n = 5 \Rightarrow \ln 3 \approx \sum_{n=0}^4 \frac{1}{2^{2n}(2n+1)} \approx 1,0986.$

2915. 1 способ. Пусть $y=a_0+a_1x+\ldots+a_nx^n+\ldots\Rightarrow xy=a_0x+\ldots+a_nx^{n+1}+\ldots;$ т. к. $e^x=1+x+\ldots+\frac{x^n}{n!}+\ldots, xy+e^x=1+(a_0+1)x+\ldots+(a_{n-1}+\frac{1}{n!})x^n+\ldots=a_0+\ldots++a_nx^n+\ldots\Rightarrow a_0=1,\ a_1=2,\ldots a_n=2+\frac{1}{2!}+\ldots\frac{1}{n!}.$ 2 способ. $xy+e^x=y,$ при x=0 y=1 \Rightarrow $a_0=1;$ дифференцируя равенство, получаем $y'(1-x)=y+e^x,\ y'(0)=2,\ a_1=\frac{2}{1!}=2,\ y''(1-x)=2y'+x,\ y''(0)=5,\ a_2=\frac{5}{2!}=2\frac{1}{2}\ldots y^{(n)}(1-x)=ny^{(n-1)}+e^x,\ y^{(n)}(0)=2n!+\frac{n!}{2!}+\ldots+1\Rightarrow a_n=2+\frac{1}{2!}+\ldots+\frac{1}{n!}.$

2920. $\frac{\sin x}{x} = \frac{1}{x} \left(x - \frac{x^3}{6} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots \right) = 1 - \frac{x^2}{6} + \dots + (-1)^{n-1} \frac{x^{2n-2}}{(2n-1)!} + \dots \Rightarrow \int \frac{\sin x}{x} dx = C + x - \frac{x^3}{3 \cdot 3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)(2n-1)!} + \dots, \quad -\infty < x < +\infty.$

2926. $\frac{1}{\sqrt{1-x^4}} = (1-x^4)^{-1/2} = 1 + \frac{x^4}{2} + \dots + \frac{(2n-1)!!}{2^n n!} x^{4n} + \dots \Rightarrow \int_0^x \frac{dx}{\sqrt{1-x^4}} = x + \frac{x^5}{10} + \dots + \frac{(2n-1)!!}{2^n n! (4n+1)} x^{4n+1} + \dots, -1 < x < 1.$

2930. $\int \frac{\cos x}{x} dx = \int \left(\frac{1}{x} - \frac{x}{2} + \frac{x^3}{24} - \dots\right) dx = C + \ln|x| - \frac{x^2}{4} + \frac{x^4}{96} - \dots; \int_{\pi/6}^{\pi/4} \frac{\cos x}{x} dx = \ln \frac{3}{2} - \frac{\pi^2}{4} \left(\frac{1}{16} - \frac{1}{36}\right) + \frac{\pi^4}{96} \left(\frac{1}{4^4} - \frac{1}{6^4}\right) \approx 0.3230. \ \Delta < \int_{\pi/6}^{\pi/4} \frac{x^5}{720} dx < 0.0001.$

2935. $\int_{0,1}^{0.2} \frac{e^{-x}}{x^3} dx = \int_{0,1}^{0,2} \frac{1}{x^3} \left(1 - x + \frac{x^2}{2} + \dots + (-1)^n \frac{x^n}{n!} + \dots \right) dx =$ $= \int_{0,1}^{0,2} \left(\frac{1}{x^3} - \frac{1}{x^2} + \frac{1}{2x} - \frac{1}{6} + \frac{x}{24} + \dots \right) dx = \left(-\frac{1}{2x^2} + \frac{1}{x} + \frac{1}{2} \ln x - \frac{x}{6} + \dots + \right. \\ \left. + (-1)^n \frac{x^{n-2}}{(n-2)n!} + \dots \right) |_{0,1}^{0,2}; \quad \Delta \quad < \quad \frac{0 \cdot 2^{n-2} - 0 \cdot 1^{n-2}}{(n-2)n!} \quad < \quad 0.001 \quad \text{при}$ $n = 4 \Rightarrow I \approx \left(-\frac{1}{2x^2} + \frac{1}{x} + \frac{1}{2} \ln x - \frac{x}{6} \right) |_{0,1}^{0,2} \approx 32,830.$

2939. $f(x) = \int_0^x e^{-x^2} dx = \int_0^x \left(1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \dots + (-1)^n \times \frac{x^{2n}}{n!} + \dots\right) dx = x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \dots; \ g(x) = \arctan x - \frac{x^5}{10} = x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{7} + \dots \Rightarrow |f(x) - g(x)| < \frac{5x^7}{42} < 0,0000001.$

2945. $y = \pm \sqrt{1+x^3} \Rightarrow S = 2\int_0^{1/2} \sqrt{1+x^3} dx = 2\int_0^{1/2} \left(1 + \frac{x^3}{2} - \frac{x^6}{8} + \dots\right) dx = 2\left(x + \frac{x^4}{8} - \frac{x^7}{56} + \dots\right)\Big|_0^{1/2} = 1 + \frac{1}{64} - \frac{1}{3584} + \dots \approx 1 + \frac{1}{64} \approx 1.015, \text{ T. K. } \frac{1}{3584} < 0.001.$

2949. $V = \pi \int_0^{1/2} \operatorname{arctg}^2 x \, dx = \pi \int_0^{1/2} \left(x^2 - \frac{2}{3} x^4 + \frac{23}{45} x^6 + \ldots \right) = \pi \left(\frac{x^3}{3} - \frac{2}{15} x^5 + \frac{23}{315} x^7 + \ldots \right) \Big|_0^{1/2} = \pi \left(\frac{1}{24} - \frac{1}{240} + \frac{23}{315 \cdot 2^7} + \ldots \right) \approx 0.119.$

К ГЛАВЕ 10

2958.
$$F(a, \frac{1}{a}) = \frac{\varphi(a)\psi(1/a) - \psi(a)\varphi(1/a)}{\varphi(1)\psi(1)}; \ F(a, \frac{1}{a}) = a - \frac{1}{a}.$$

2964. $F(xy, uv) = \ln xy \ln uv = (\ln x + \ln y)(\ln u + \ln v) =$ $= \ln x \ln u + \ln x \ln v + \ln y \ln u + \ln y \ln v = F(x, u) + F(x, v) +$ +F(y, u)+F(y, v).

2970.
$$u = x^2 + y^2$$
, $v = xy$, $z = \left(\frac{u+v}{u-v}\right)^v + u$.

2976. Линии пересекаются при $x = 0, x = 1; 0 \le x \le 1,$ $x^2 \leqslant y \leqslant \sqrt{x}$.

2981. Пусть H — высота, z — расстояние от центра шара до основания пирамиды; $V=\frac{1}{3}xyH,\ H=R\pm z,\ z=$ $= \sqrt{R^2 - \frac{x^2 + y^2}{4}} \Rightarrow V = \frac{1}{3}xy\left(R \pm \frac{\sqrt{4R^2 - x^2 - y^2}}{2}\right), 0 < x,$ y < 2R. Функция двузначна.

2988. $x \neq 0, \ -1 \leqslant \frac{y-1}{x} \leqslant 1 \Rightarrow$ при $x > 0 \ 1 - x \leqslant y \leqslant 1 +$ +x, при $x < 0 \ 1 + x \leqslant y \leqslant 1 - x$.

2997. $x \sin y \geqslant 0 \Rightarrow$ при $x \geqslant 0$, $\sin y \geqslant 0 \Leftrightarrow 2\pi n \leqslant y \leqslant \pi +$ $+2\pi n$, или x<0 $\sin y\leqslant 0\Leftrightarrow \pi+2\pi n\leqslant y\leqslant 2\pi+2\pi n,\ n\in {f Z}.$

3000.
$$-1 \leqslant 2y(1+x^2) - 1 \leqslant 1 \Rightarrow 0 \leqslant y \leqslant \frac{1}{1+x^2}$$
.

3000.
$$-1 \le 2y(1+x^{-}) - 1 \le 1 \Rightarrow 0 \le y \le \frac{1+x^{2}}{1+x^{2}}$$

$$3004. \lim_{\substack{x, y \to 0 \\ x^{2} = 1 \text{ odd}}} \frac{\sqrt{x^{2}y^{2}+1}-1}{x^{2}+y^{2}} = \lim_{\rho \to 0} \frac{\sqrt{1/4\rho^{4}\sin^{2}2\varphi+1}-1}{\rho^{2}} = \frac{1}{4}\lim_{\rho \to 0} \frac{\rho^{2}\sin^{2}2\varphi}{\sqrt{1/4\sin^{2}2\varphi+1}+1} = 0.$$

3009. Пусть $x \to 0, \ y \to 0$ по прямой y = kx, тогда u = $=\frac{1+k}{1-k}$ принимает любые значения, кроме -1, при $x=0, y\to 0$ $\lim u = -1$; $\lim u = 1$ при y = 0, $x \to 0$; $\lim u = \frac{1+k}{1-k} = 2$ при $k = \frac{1}{3} (x \to 0, y = \frac{x}{3}).$

3015.1. $f(x, y) = \frac{\rho^4 \sin^2 \varphi \cos^2 \varphi}{\rho^2} = \frac{\rho^2 \sin^2 2\varphi}{4} \to 0$ при $\rho \to 0$

независимо от $\varphi\Rightarrow$ функция непрерывна. **3015.6.** $f(x,\ y)=\frac{x^2y^2}{(x^2+y^2)^2-2x^2y^2}=\frac{\rho^4\sin^22\varphi}{4(\rho^4-1/2\rho^4\sin^22\varphi)}=$ $=rac{\sin^22arphi}{4-2\sin^22arphi};$ при arphi=0 $f(x,\ y)=0,$ при $arphi=rac{\pi}{4}$ $f(x,\ y)=0$ $=rac{1}{2}$ $\Rightarrow \lim_{x,\ y\to 0}f(x,\ y)$ не существует, функция разрывна в (0, 0).

3025. Пусть $z=C>0 \Rightarrow y=-x\ln C-C$ — семейство прямых линий уровня.

Вешения
$$\frac{561}{3040}$$
. $\frac{\partial z}{\partial x} = \frac{3x^2(x^2+y^2)-2x(x^3+y^3)}{(x^2+y^2)^2} = \frac{x^4+3x^2y^2-2xy^3}{(x^2+y^2)^2}$; из соображений симметрии $\frac{\partial z}{\partial y} = \frac{y^4+3x^2y^2-2xy^3}{(x^2+y^2)^2}$. $\frac{\partial z}{(x^2+y^2)^2} = \frac{y}{(x^2+y^2)\arctan(z^2\frac{y}{x})} = \frac{y}{(x^2+y^2)\arctan(z^2\frac{y}{x})} = \frac{y}{(x^2+y^2)\arctan(z^2\frac{y}{x})} = \frac{y}{2}$. $\frac{\partial z}{\partial y} = \frac{1}{\arctan(z^2\frac{y}{x}(1+\frac{y^2}{x^2}))} \cdot (\frac{1}{x}) = -\frac{x}{(x^2+y^2)\arctan(z^2\frac{y}{x})} = \frac{y}{(x^2+y^2)\arctan(z^2\frac{y}{x})} \cdot \frac{\partial z}{\partial y} = \frac{1}{\arctan(z^2\frac{y}{x}(1+\frac{y^2}{x^2}))} \cdot (\frac{1}{x}) = -\frac{y}{(x^2+y^2)\arctan(z^2\frac{y}{x})} = \frac{y}{y^2\sin(z^2\frac{y}{x})} \cdot \frac{\partial z}{\partial y} = \frac{1}{\tan(z^2\frac{y}{x}(1+\frac{y^2}{x^2}))} = \frac{y}{y^2\sin(z^2\frac{y}{y})} \cdot \frac{\partial z}{\partial y} = \frac{1}{\tan(z^2\frac{y}{x}(1+\frac{y^2}{x^2}))} = \frac{2x}{y^2\sin(z^2\frac{y}{x})} \cdot \frac{\partial z}{\partial y} = \frac{1}{1+\frac{(y+y)^2}{(y-y)^2}} \times \frac{y-y-(y+y)}{(y-y)^2} = \frac{y}{y^2+w^2}.$

$$\frac{3053}{30} \cdot \frac{\partial u}{\partial v} = \frac{1}{1+\frac{(y+y)^2}{(v-w)^2}} = \frac{y-w-(v+w)}{(v-w)^2} = -\frac{w}{v^2+w^2}, \frac{\partial u}{\partial w} = \frac{1}{1+\frac{(y+w)^2}{(y-w)^2}} \times \frac{y-y-(y+y)}{(y-w)^2} = \frac{y}{v^2+w^2}.$$

$$\frac{3058}{305} \cdot z = x^y = e^{xy}\ln x. \quad \frac{\partial z}{\partial x} = x^y (yx^y-1\ln x + x^{y-1}) = x^y x^y - (y\ln x + 1), \frac{\partial z}{\partial y} = x^y x^y \ln^2 x.$$

$$\frac{3064}{y} \cdot u = e^{x^3+xy^2+xz^2}, \frac{\partial u}{\partial u} = (3x^2+y^2+z^2)e^{x(x^2+y^2+z^2)}, \frac{\partial u}{\partial y} = 2xye^{x(x^2+y^2+z^2)}, \frac{\partial u}{\partial x} = 2xze^{x(x^2+y^2+z^2)}.$$

$$\frac{\partial u}{\partial y} = 2xye^{x(x^2+y^2+z^2)}, \frac{\partial u}{\partial z} = 2xze^{x(x^2+y^2+z^2)}.$$

$$\frac{\partial u}{\partial y} = 2xye^{x(x^2+y^2+z^2)}, \frac{\partial u}{\partial z} = 2xze^{x(x^2+y^2+z^2)}.$$

$$\frac{\partial u}{\partial y} = \frac{1}{x^2+y/2x} \cdot \frac{1}{2x} = \frac{1}{2x^2+y}, \text{ при } x = 1, y = 2\frac{\partial z}{\partial y} = \frac{1}{4}.$$

$$\frac{3075}{2x} = \frac{1}{x^2} \cdot \frac{$$

3095. $d_x z = \frac{x}{\sqrt{x^2 + y^2}} dx$, $d_y z = \frac{y}{\sqrt{x^2 + y^2}} dy$. **3100.** $u_p' = 1 + \frac{qr}{p^2} + \frac{1}{2\sqrt{p+q+r}}, \ u_p'(1, 3, 5) = \frac{97}{6} \Rightarrow d_p u =$ $=\frac{97}{600}$. $\frac{1}{1+(\frac{x+y}{x-x})^2} \frac{(dx+dy)(1-xy)+(x+y)(dx+dy)}{(1-xy)^2}$ $= \frac{dx + dy + x^2 dy + y^2 dx}{1 + x^2 + y^2 + x^2 y^2} = \frac{dx(1 + y^2) + dy(1 + x^2)}{(1 + x^2)(1 + y^2)} = \frac{dx}{1 + x^2} + \frac{dy}{1 + x^2}.$

3110. $dz = dx + dy - \frac{xdx + ydy}{\sqrt{x^2 + y^2}}$, при данных значениях dz = 0.08.

3115. $z = f(x, y) = x^y$, $dz = yx^{y-1}dx + x^y \ln x dy$, при x = 1, y = 2, dx = 0.04, dy = 0.02 dz = 0.08; $f(1.04; 2.02) \approx f(1; 2) + dz = 1.08$.

 $\begin{array}{lll} \mathbf{3119.} & \frac{\partial S}{\partial a} & = & a\frac{\sin B \sin C}{\sin(B+C)} & = & \frac{2S}{a}, & \frac{\partial S}{\partial B} & = \\ & = & \frac{1}{2}a^2\frac{\cos B \sin C \sin(B+C) - \sin B \sin C \cos(B+C)}{\sin^2(B+C)} & = & \frac{1}{2}a^2\frac{\sin^2 C}{\sin^2(B+C)} & = \\ & = & S\frac{\sin C}{\sin B \sin(B+C)}, & \frac{\partial S}{\partial C} & = & S\frac{\sin B}{\sin C \sin(B+C)}, & dS & = & \frac{2S}{a}da + \\ & + & S\frac{\sin C}{\sin B \sin(B+C)}dB + S\frac{\sin B}{\sin C \sin(B+C)}dC \Rightarrow \delta_S & = & \frac{dS}{S} & = & \frac{2}{a}da + \\ & + & \frac{\sin C}{\sin B \sin(B+C)}dB + \frac{\sin B}{\sin C \sin(B+C)}dC & = & 2\delta_a + \frac{B \sin C}{\sin B \sin(B+C)}\delta_B + \\ & + & \frac{C \sin B}{\sin C \sin(B+C)}\delta_C. \end{array}$

3123. $r=\sqrt{r^2-s^2}+p\Rightarrow r=\frac{p^2+s^2}{2p},\; \frac{\partial r}{\partial p}=\frac{p^2-s^2}{2p^2},\; \frac{\partial r}{\partial s}==\frac{s}{p},\; dr=\frac{p^2-s^2}{2p^2}dp+\frac{s}{p}ds,\;$ при $s=97.25\,\mathrm{mm},\; p=36.2\,\mathrm{mm},\; ds=0.25\,\mathrm{mm},\; dp=-0.3\,\mathrm{mm}\; dr\approx 1.6\,\mathrm{mm}.$

3126. $\frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - (x - y)^2}}, \quad \frac{\partial z}{\partial y} = -\frac{1}{\sqrt{1 - (x - y)^2}}, \quad \frac{dx}{dt} = 3, \quad \frac{dy}{dt} = 12t^2, \quad \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} = \frac{3 - 12t^2}{\sqrt{1 - (3t - 4t^3)^2}}.$

3128. $\frac{\partial z}{\partial x} = 2x \ln y$, $\frac{\partial z}{\partial y} = \frac{x^2}{y}$, $\frac{\partial x}{\partial u} = \frac{1}{v}$, $\frac{\partial x}{\partial v} = -\frac{u}{v^2}$, $\frac{\partial y}{\partial u} = 3$, $\frac{\partial y}{\partial v} = -2 \Rightarrow \frac{\partial z}{\partial u} = 2x \ln y \frac{1}{v} + 3\frac{x^2}{y} = \frac{2u}{v^2} \ln(3u - 2v) + \frac{3u^2}{v^2(3u - 2v)}$, $\frac{\partial z}{\partial v} = -2x \ln y \frac{u}{v^2} - 2\frac{x^2}{y} = -\frac{2u^2}{v^3} \ln(3u - 2v) - \frac{2u^2}{v^2(3u - 2v)}$.

3131. $\frac{\partial u}{\partial x} = \frac{1}{z\sqrt{1-\frac{x^2}{z^2}}} = \frac{1}{\sqrt{z^2-x^2}}, \quad \frac{\partial u}{\partial z} = -\frac{x}{z^2\sqrt{1-\frac{x^2}{z^2}}} = \frac{1}{-\frac{x}{z^2\sqrt{1-\frac{x^2}{z^2}}}} = \frac{1}{-\frac{x}{z\sqrt{z^2-x^2}}}, \quad \frac{dz}{dx} = \frac{x}{\sqrt{x^2+1}}; \quad \frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} \frac{dz}{dx} = \frac{1}{\sqrt{z^2-x^2}} - \frac{x}{z\sqrt{z^2-x^2}} \frac{x}{\sqrt{x^2+1}} = 1 - \frac{x^2}{x^2+1} = \frac{1}{x^2+1}.$

3135. $\frac{\partial z}{\partial x} = 2xe^{\frac{x^2+y^2}{xy}} + (x^2+y^2)e^{\frac{x^2+y^2}{xy}} \frac{2x^2y-x^2y-y^3}{x^2y^2} =$ $= e^{\frac{x^2+y^2}{xy}} \frac{x^4+2x^3y-y^4}{x^2y}, \quad \frac{\partial z}{\partial y} = e^{\frac{x^2+y^2}{xy}} \frac{y^4+2xy^3-x^4}{xy^2}, \quad dz =$ $= e^{\frac{x^2+y^2}{xy}} \frac{(x^4-y^4+2x^3y)ydx+(y^4-x^4+2xy^3)xdy}{x^2y^2}.$

3140. $\frac{\partial z}{\partial x} = -\frac{y}{f^2} f' \cdot 2x = -\frac{2xyf'}{f^2}, \ \frac{\partial z}{\partial y} = \frac{f - yf' \cdot (-2y)}{f^2}, \ \frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = -\frac{2yf'}{f^2} + \frac{1}{yf} + \frac{2yf'}{f^2} = \frac{1}{yf} = \frac{z}{y^2}.$

3145. $3x^2y + x^3\frac{dy}{dx} - 3y^2\frac{dy}{dx} - y^3 = 0 \Rightarrow \frac{dy}{dx} = \frac{y^3 - 3x^2y}{x^3 - 3xy^2}$.

3150.
$$\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -(\frac{y}{x})^{1/3} = -\sqrt[3]{\frac{y}{x}}.$$

3155. $y^x = x^y \Leftrightarrow x \ln y = y \ln x; \ln y + x \frac{y'}{y} = y' \ln x + \frac{y}{x}, xy \ln y + x^2y' = xyy' \ln x + y^2, y' = \frac{y}{x} \frac{y - x \ln y}{x - y \ln x} = \frac{y}{x} \frac{y - y \ln x}{x - x \ln y} = \frac{y}{x} \frac{y - y \ln x}{x - x \ln y} = \frac{y}{x} \frac{y - y \ln x}{x - x \ln y} = \frac{y}{x} \frac{y - y \ln x}{x - x \ln y} = \frac{y}{x} \frac{y - y \ln x}{x - x \ln y} = \frac{y}{x} \frac{y - y \ln x}{x - x \ln y} = \frac{y}{x} \frac{y - y \ln x}{x - y \ln x} = \frac{y}{x} \frac{y}{x} \frac{y - y \ln x}{x - y \ln x} = \frac{y}{x} \frac{y - y \ln x}{x - y \ln x} = \frac{y}{x} \frac{y - y \ln x}{x - y \ln x} = \frac{y}{x} \frac{y - y \ln x}{x - y \ln x} = \frac{y}{x} \frac{y - y}{x} \frac{y - y}{x} \frac{y - y \ln x}{x - y \ln x} = \frac{y}{x} \frac{y - y}{x} \frac{y - y}{x} = \frac{y}{x} \frac{y - y}{x} = \frac{y}{x} \frac{y - y}{x} \frac{y}{$

$$=\frac{y^2}{x^2}\frac{\ln x-1}{\ln y-1}.$$

3159.
$$x^2y^2 + x^2 + y^2 - 1 = 0 \Rightarrow x^2y^2 + x^2 + y^2 + 1 = 2 \Rightarrow (x^2 + 1)(y^2 + 1) = 2(*); \ y = \sqrt{\frac{1 - x^2}{1 + x^2}}, \ x = \sqrt{\frac{1 - y^2}{1 + y^2}}, \ \frac{dy}{dx} = x^2y^2 + x^2 + y^2 + 1 = 0$$

$$= \frac{1}{2} \sqrt{\frac{1+x^2}{1-x^2}} \frac{-2x(1+x^2)-2x(1-x^2)}{(1+x^2)^2} = \frac{1}{\sqrt{1-x^4}} \frac{-2x}{1+x^2} \Rightarrow \frac{dx}{\sqrt{1-x^4}} =$$

$$= -\frac{dy(1+x^2)}{2x} = (*) - \frac{dy}{x(y^2+1)} = -\frac{dy}{\sqrt{1-y^2}} \frac{\sqrt{1+y^2}}{1+y^2} = -\frac{dy}{\sqrt{1-y^4}}.$$

3165. Пусть cx-ay=u, cy-bz=v; дифференцируя по x, получаем $\frac{\partial \varphi}{\partial u}(c-a\frac{\partial z}{\partial x})+\frac{\partial \varphi}{\partial v}(-b\frac{\partial z}{\partial x})=0$, $c\frac{\partial \varphi}{\partial u}=\frac{\partial z}{\partial x}(a\frac{\partial \varphi}{\partial u}+b\frac{\partial \varphi}{\partial v})$, $\frac{\partial z}{\partial x}=\frac{c\frac{\partial \varphi}{\partial u}+b\frac{\partial \varphi}{\partial v}}{a\frac{\partial \varphi}{\partial u}+b\frac{\partial \varphi}{\partial v}}$; аналогично $\frac{\partial z}{\partial y}=\frac{c\frac{\partial \varphi}{\partial u}}{a\frac{\partial \varphi}{\partial u}+b\frac{\partial \varphi}{\partial v}}\Rightarrow a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial u}=c$.

3170. $\frac{y}{x} = \operatorname{tg} v \Rightarrow v = \operatorname{arctg} \frac{y}{x}, \ z = k \operatorname{arctg} \frac{y}{x}$

3175. $x^2 = (u-v)^2 \cos^2 u - 2(u-v) \sin u \cos u + \sin^2 u$, $y^2 = (u-v)^2 \sin^2 u + 2(u-v) \sin u \cos u + \cos^2 u$, $x^2 + y^2 = (u-v)^2 + 1 = z + 1 \Rightarrow z = x^2 + y^2 - 1$, dz = 2(xdx + ydy).

3180. Уравнения f(x, y, z) = 0 и F(x, y, z) = 0 задают y и z как функции от x; дифференцируя по x, получаем $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} + \frac{\partial f}{\partial z} \frac{dz}{dx} = 0$, $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{dx} + \frac{\partial F}{\partial z} \frac{dz}{dx} = 0$; решая систему уравнений относительно $\frac{dy}{dx}$ по формулам Крамера, получаем требуемое равенство.

3183. $\frac{\partial z}{\partial x} = e^x(\cos y + x \sin y + \sin y), \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y}(\frac{\partial z}{\partial x}) = e^x(\cos y - \sin y + x \cos y); \quad \frac{\partial z}{\partial y} = e^x(-\sin y + x \cos y), \quad \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x}(\frac{\partial z}{\partial y}) = e^x(\cos y - \sin y + x \cos y).$

$$3186. \frac{\partial z}{\partial x} = \frac{1}{x + \sqrt{x^2 + y^2}} \left(1 + \frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{1}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y} = \frac{y}{(x + \sqrt{x^2 + y^2})\sqrt{x^2 + y^2}}; \quad \frac{\partial^2 z}{\partial x^2} = \frac{x}{\sqrt{(x^2 + y^2)^3}}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{y}{\sqrt{(x^2 + y^2)^3}}, \quad \frac{\partial^2 z}{\partial y^2} = \frac{x^3 + (x^2 - y^2)\sqrt{x^2 + y^2}}{\sqrt{(x^2 + y^2)^3}(x + \sqrt{x^2 + y^2})^2}.$$

3191.
$$z = e^{\ln x \ln y}$$
, $\frac{\partial z}{\partial x} = e^{\ln x \ln y} \frac{\ln y}{x}$, $\frac{\partial z}{\partial y} = e^{\ln x \ln y} \frac{\ln x}{y}$, $\frac{\partial^2 z}{\partial x^2} = e^{\ln x \ln y} \left(\frac{\ln^2 y}{x^2} - \frac{\ln y}{x^2}\right) = e^{\ln x \ln y} \frac{\ln y (\ln y - 1)}{x^2}$, $\frac{\partial^2 z}{\partial x \partial y} = e^{\ln x \ln y} \left(\frac{\ln x \ln y}{xy} + \frac{1}{xy}\right) = e^{\ln x \ln y} \frac{\ln x \ln y + 1}{xy}$, $\frac{\partial^2 z}{\partial y^2} = e^{\ln x \ln y} \frac{\ln x (\ln x - 1)}{y^2}$.

3195.
$$\frac{\partial z}{\partial x} = \frac{2x}{x^2 + y^2}$$
, $\frac{\partial^2 z}{\partial x \partial y} = -\frac{4xy}{(x^2 + y^2)^2}$, $\frac{\partial^3 z}{\partial x \partial y^2} = \frac{4x(3y^2 - x^2)}{(x^2 + y^2)^3}$, 3199. $\frac{\partial z}{\partial z} = \frac{e^z}{e^z + e^y}$. $\frac{\partial z}{\partial y} = \frac{e^z}{e^z + e^y}$. $\frac{\partial^2 z}{\partial y^2} = \frac{e^z + y}{e^z + e^y}$. $\frac{\partial^2 z}{\partial y^2} = \frac{1}{(e^z + e^y)^2}$. $\frac{\partial^2 z}{\partial x^2} = \frac{1}{0}$. 1; $\frac{\partial^2 z}{\partial x^2} = \frac{e^z + y}{e^z + e^y}$. $\frac{\partial^2 z}{\partial y^2} = \frac{e^z + y}{e^z + e^y}$. $\frac{\partial^2 z}{\partial x^2} = \frac{e^z + y}{\partial y^2} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2} = -\frac{\partial^2 z}{(e^z + e^y)^2}$. $\frac{\partial^2 z}{\partial x^2} = \frac{e^z + y}{\partial y^2} = \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2} = -\frac{\partial^2 z}{\partial y^2} = -\frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial y^2} = -\frac{\partial^2 z}{\partial y^2} = -\frac{\partial z}{\partial y^2} =$

3239. $y = \rho \sin \varphi$, $x = \rho \cos \varphi \Rightarrow \frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi$, $\frac{\partial u}{\partial \varphi} = -\frac{\partial u}{\partial x} \rho \sin \varphi + \frac{\partial u}{\partial y} \rho \cos \varphi$; решая систему, получаем $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi$, $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi$, $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial \varphi} (\frac{\partial u}{\partial x}) = \cos \varphi \frac{\partial}{\partial \rho} \left(\frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi \right) - \frac{1}{\rho} \sin \varphi \times \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi \right) = \cos \varphi \left(\frac{\partial^2 u}{\partial \rho^2} \cos \varphi + \frac{1}{\rho^2} \frac{\partial u}{\partial \varphi} \sin \varphi - \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi} \sin \varphi \right) - \frac{1}{\rho} \sin \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \cos \varphi - \frac{\partial u}{\partial \varphi} \sin \varphi - \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi^2} \sin \varphi - \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi^2} \sin \varphi \right) - \frac{1}{\rho} \sin \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \cos \varphi - \frac{\partial u}{\partial \varphi} \sin \varphi - \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi^2} \sin \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi^2} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \times \frac{\partial}{\partial \varphi} \left(\frac{\partial u}{\partial \rho} \sin \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) = \sin \varphi \left(\frac{\partial^2 u}{\partial \rho^2} \sin \varphi - \frac{1}{\rho^2} \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \sin \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi} \cos \varphi - \frac{1}{\rho^2} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \sin \varphi + \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \sin \varphi + \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \sin \varphi + \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \sin \varphi + \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial^2 u}{\partial \varphi} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \cos \varphi \left(\frac{\partial^2 u}{\partial \rho \partial \varphi} \sin \varphi + \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right) + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \right)$

К ГЛАВЕ 11

3245. $f(x+h,y+k,z+l) = f(x,y,z) + f'_x h + f'_y k + f'_z l + \frac{1}{2} (f''_{xx} h^2 + f''_{yy} k^2 + f''_{zz} l^2 + 2 f''_{xy} h k + 2 f''_{xz} h l + 2 f''_{yz} k l) = Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + (2Ax + Dy + Fz)h + (2By + Dx + Ez)k + (2Cz + Ey + Fx)l + Ah^2 + Bk^2 + Cl^2 + Dhk + Ekl + Fhl.$

3248. $f(x+h,y+k) = e^x \sin y + e^x \sin y h + e^x \cos y k + \frac{1}{2}(e^x \sin y h^2 + 2e^x \cos y h k - e^x \sin y k^2) + \frac{1}{6}(e^x \sin y h^3 + 3e^x \cos y h^2 k - 3e^x \sin y h k^2 - e^x \cos y k^3) + r_3(x); z_1 = f(0 + 0.1; 0.5\pi - 0.01\pi) \approx 1 + 0.1 + \frac{1}{2}(0.01 - 0.0001\pi^2) + \frac{1}{6}(0.001 - 3 \cdot 0.1 \cdot 0.0001\pi^2) \approx 1,1042.$

 $3254. \ z = \ln \frac{(1-x)(1-y)}{1-x-y} = \ln(1-x) + \ln(1-y) - \ln(1-x) + \ln(1-y) - \ln(1-x) + \ln(1-y) - \ln(1-x) + \ln(1-y) - \ln(1-y) - \ln(1-y) + \ln(1-y) - \ln(1-y) - \ln(1-y) + \ln(1-y) - \ln(1-y) - \ln(1-y) - \ln(1-y) + \ln(1-y) - \ln(1-y) - \ln(1-y) + \ln(1-y) - \ln(1-y) - \ln(1-y) - \ln(1-y) + \ln(1-y) - \ln(1-y) - \ln(1-y) - \ln(1-y) + \ln(1-y) - \ln(1-y) -$

3260. $\frac{\partial z}{\partial x} = e^{2x}(2x + 2y^2 + 4y + 1) = 0$, $\frac{\partial z}{\partial y} = e^{2x}(2y + 2) = 0 \Rightarrow y = -1$, $x = \frac{1}{2}$.

3265.
$$\begin{cases} \frac{\partial z}{\partial x} = \frac{y}{2\sqrt{1+x}} + \sqrt{1+y} = 0 \\ \frac{\partial z}{\partial y} = \frac{x}{2\sqrt{1+y}} + \sqrt{1+x} = 0 \end{cases} \Leftrightarrow$$

$$\begin{cases} 2\sqrt{1+x}\sqrt{1+y} = -y \\ 2\sqrt{1+y}\sqrt{1+x} = -x \end{cases} \Leftrightarrow \begin{cases} x = y \\ 2(1+x) + x = 0 \end{cases} \Leftrightarrow x = y = -\frac{2}{3}.$$

3270. Дифференцируя уравнение по x и y, получаем $10x+10z\frac{\partial z}{\partial x}-2y-2z-2x\frac{\partial z}{\partial x}-2y\frac{\partial z}{\partial x}=0 \Rightarrow \frac{\partial z}{\partial x}=\frac{z}{5z-x-y}, \ 10y+10z\frac{\partial z}{\partial y}-2x-2x\frac{\partial z}{\partial y}-2z-2y\frac{\partial z}{\partial y}=0 \Rightarrow \frac{\partial z}{\partial y}=\frac{z}{5z-x-y};$ $\begin{cases} x+z-5y=0 \\ y+z-5x=0 \end{cases} \Rightarrow x=y, \ z=4x, \ \text{подставляя} \end{cases}$

в исходное уравнение, имеем $72x^2=72 \Rightarrow x=\pm 1,\ y=\pm 1,\ (1,1).\ (-1,-1)$ — критические точки.

3277. $\frac{\partial z}{\partial x} = x^2y^2(36-4x-3y), \ \frac{\partial z}{\partial y} = x^3y(24-2x-3y);$ $\begin{cases} 4x+3y=36 \\ 2x+3y=24 \end{cases} \Leftrightarrow x=6, \ y=4, \ (6, \ 4) -$ критическая точка; $\frac{\partial^2 z}{\partial x^2} = 2xy^2(36-6x-3y), \ \frac{\partial^2 z}{\partial x\partial y} = x^2y(72-8x-6y), \ \frac{\partial^2 z}{\partial y^2} = x^3(24-2x-6y);$ при $x=6, \ y=4$ $a_{11}=\frac{\partial^2 z}{\partial x^2} = x^2(2x-6y), \ a_{12}=\frac{\partial^2 z}{\partial x\partial y} = 0, \ a_{22}=\frac{\partial^2 z}{\partial y^2} = -2592, \ I=2304$ $a_{13}=\frac{\partial^2 z}{\partial x\partial y} = 0, \ a_{24}=\frac{\partial^2 z}{\partial y^2} = -2592, \ I=2304$ $a_{14}=\frac{\partial^2 z}{\partial x\partial y} = 0, \ a_{25}=\frac{\partial^2 z}{\partial y^2} = -2592, \ I=2304$ $a_{15}=\frac{\partial^2 z}{\partial x\partial y} = 0, \ a_{15}=\frac{\partial^2 z}{\partial y\partial y} = 0, \ a_{15}=\frac{\partial^2 z}{\partial y\partial y} = 0$

3281. $\frac{\partial z}{\partial x} = xy(6-3x) = 0$, $\frac{\partial z}{\partial y} = x^2(4-x-2y) = 0$, (2,1) — критическая точка внутри области, z(2,1)=4; при x=0 z=0; при y=0 z=0; при x+y=6 $z(x)=z=2x^2(6-x)$, $0\leqslant x\leqslant 6$, z'=0 при z=0, z=0 и z=4. z=2; z(0,6)=0, z(4,2)=-64 $z_{\max}(2,1)=z=4$, $z_{\min}(4,2)=-64$.

3286. Расстояние от точки (x, y) до прямой x+2y-16=0 равно $\frac{x+2y-16}{\sqrt{5}} \Rightarrow$ сумма трех расстояний $z(x, y)=x^2+y^2+\frac{(x+2y-16)^2}{5} \to \min;$ $\frac{\partial z}{\partial x}=2x+\frac{2(x+2y-16)}{5}=0,$ $\frac{\partial z}{\partial y}=2y+\frac{4(x+2y-16)}{5}=0 \Rightarrow x=1,6,$ y=3,2; (1,6;3,2)-2 единственная критическая точка, по смыслу задачи в этой точке достигается наименьшее значение.

3290. Пусть x, y, z — измерения параллелепипеда, т. к. $x^2+y^2+z^2=4R^2, z=\sqrt{4R^2-x^2-y^2}, V=f(x,y)=xy\sqrt{4R^2-x^2-y^2}$ — $\max; \frac{\partial f}{\partial x}=y\sqrt{4R^2-x^2-y^2}-\frac{x^2y}{\sqrt{4R^2-x^2-y^2}}=0, \frac{\partial f}{\partial y}=\frac{x(4R^2-x^2-2y^2)}{\sqrt{4R^2-x^2-y^2}}=0;$

 $\begin{cases} x^2+2y^2=4R^2\\ 2x^2+y^2=4R^2 \end{cases} \Leftrightarrow x=y=\frac{2R}{\sqrt{3}},\ z=\sqrt{4R^2-x^2-y^2}=\frac{2R}{\sqrt{3}};$ куб с ребром $\frac{2R}{\sqrt{3}}$ имеет наименьший объем.

3295. $F(x, y, z, \lambda) = x + y + z + \lambda(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1), \ \frac{\partial F}{\partial x} = 1 - \frac{\lambda}{x^2} = 0, \ \frac{\partial F}{\partial y} = 1 - \frac{\lambda}{y^2} = 0, \ \frac{\partial F}{\partial z} = 1 - \frac{\lambda}{z^2} = 0, \ \frac{\partial F}{\partial \lambda} = \frac{1}{x} + \frac{1}{y} + \frac{1}{x} - 1 = 0; \ x_{1,2} = y_{1,2} = z_{1,2} = \pm \sqrt{\lambda}, \ \text{если все знаки '+', } \frac{3}{\sqrt{\lambda}} = 1, \lambda = 9, \ x = y = z = 3. \ \text{если два '+', }$ один '-', например, $x > 0, \ y > 0, \ z < 0, \ \frac{1}{\sqrt{\lambda}} = 1, \ x = y = 1, \ z = -1, \ \text{при других комбинациях знаков решения нет, поэтому } (3.3,3), \ (1,1,-1), \ (1,-1,1), \ (-1,1,1) - \text{критические точки, при } x = y = z = 3, \ \lambda = 9 \ F_1(x,y,z) = x + y + z + 9(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1), \ dF_1 = dx + dy + dz - 9(\frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz^2}{z^2}), \ d^2F_1 = 18(\frac{dx^2}{x^3} + \frac{dy^2}{y^3} + \frac{dz^2}{z^3}), \ \text{при } x = y = z = 3 \ d^2F_1 = \frac{2}{3}(dx^2 + dy^2 + dz^2) - \text{положительно определенная квадратичная форма, поэтому } (3,3,3) - \text{точка минимума; при } \lambda = 1 \ F_2(x,y,z) = x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1, \ dF_1 = dx + dy + dy + dz - (\frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2}), \ \text{при } x = y = 1, \ z = -1 \ d^2F_2 = 2(dx^2 + dy^2 - dz^2) - \text{неопределенная квадратичная форма, поэтому экстремума в этих точках нет.}$

$$x = 3z, \ y = 2z, x = \pm \frac{1}{2}. \ y = \pm \frac{1}{3}. \ z = \pm \frac{1}{6}, \ A_3(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}),$$

$$A_4(-\frac{1}{2}, -\frac{1}{3}, -\frac{1}{6}); \ \text{при } \lambda = -\frac{1}{2} \begin{cases} x + y & +z = 0 \\ x + \frac{1}{2}y & +2z = 0 \\ x + 2y & -z = 0 \end{cases}$$

 $x = -3z, y = 2z, x = \mp \frac{1}{2}, y = \pm \frac{1}{3}, z = \pm \frac{1}{6}, A_5(\frac{1}{2}, -\frac{1}{3}, -\frac{1}{6}), A_6(\frac{1}{2}, -\frac{1}{3}, -\frac{1}{6}); u_{\max}(A_{1,2}) = 1, u_{\min}(A_{3,4}) = -\frac{1}{2}, u(A_{5,6}) = \frac{1}{2}.$

3305. $x,\ y,\ z$ — измерения параллелепипеда, $V=xyz\to \infty$ так при $xy+yz+xz=\frac{S}{2},\ F(x,\ y,\ z,\ \lambda)=xyz+\lambda(xy+yz+xz-S/2), \ \frac{\partial F}{\partial x}=yz+\lambda(y+z)=0, \ \frac{\partial F}{\partial y}=xz+\lambda(x+y+z)=0, \ \frac{\partial F}{\partial z}=xy+\lambda(x+y)=0;$ последовательно вычитая

уравнения, получаем $\begin{cases} (z+\lambda)(y-x) = 0 \\ (x+\lambda)(y-z) = 0 \Rightarrow \\ (y+\lambda)(x-z) = 0 \end{cases}$

x = y = z. $3x^2 = \frac{S}{2}$, $x = y = z = \sqrt{\frac{S}{6}}$ — куб.

3310. x,y,z — наружные размеры ящика, тогда $x-2\alpha$, $y-2\alpha,z-\alpha$ — внутренние размеры, $V=(x-2\alpha)(y-2\alpha)\times (z-\alpha)$, расход материала равен $(xy+2(yz+xz))\alpha$, $F(x,y,z,\lambda)=(xy+2(yz+xz))\alpha+\lambda(x-2\alpha)(y-2\alpha)(z-\alpha)$, $\frac{\partial F}{\partial x}=\alpha(y+2z)+\lambda(y-2\alpha)(z-\alpha)=0$, $\frac{\partial F}{\partial y}=\alpha(x+2z)+\lambda(x-2\alpha)(z-\alpha)=0$, $\frac{\partial F}{\partial z}=2\alpha(x+y)+\lambda(x-2\alpha)(y-2\alpha)=0$; вычитая из 1 уравнения 2, из 3 удвоенные 1 и 2, получаем $(\alpha+\lambda(z-\alpha))(x-y)=0$ $(2\alpha+\lambda(x-2\alpha))(y-2z)=0 \Rightarrow x=y, y=2z, (2\alpha+\lambda(y-2\alpha))(x-2z)=0$

 $V = 4(x - \alpha)^3 \Rightarrow z = \sqrt[3]{\frac{V}{4}} + \alpha, \ x = y = \sqrt[3]{2V} + 2\alpha.$

3315. Расстояние от точки (x, y) до прямой 9x-7y+16=0 равно $\frac{9}{\sqrt{130}}x-\frac{7}{\sqrt{130}}y+\frac{16}{\sqrt{130}},\ F(x,y,\lambda)=\frac{9}{\sqrt{130}}x-\frac{7}{\sqrt{130}}y+\frac{16}{\sqrt{130}}+\lambda(2x^2-4xy+2y^2-x-y),\ F_x'=\frac{9}{\sqrt{130}}+4\lambda x-4\lambda y-\lambda=0,\ F_y'=-\frac{7}{\sqrt{130}}-4\lambda x+4\lambda y-\lambda=0;$ складывая уравнения, получаем $\lambda=\frac{1}{\sqrt{130}},\ x-y=-2$, подставляя в уравнение связи, получаем $x=3,\ y=5$.

3321. $\frac{2x}{a^2}+\frac{2yy'}{b^2}=0 \Rightarrow y'=-\frac{xb^2}{ya^2}$, уравнение нормали $y-y_0=\frac{a^2y_0}{b^2x_0}(x-x_0)\Leftrightarrow a^2y_0x-b^2x_0y=(a^2-b^2)x_0y_0$ расстояние от начала координат до нормали

 $\begin{array}{lll} d &= \frac{(a^2-b^2)x_0y_0}{\sqrt{a^4y_0^2+b^4x_0^2}}, \ f(x,\ y) \ = \ d^2 \ = \frac{(a^2-b^2)^2x^2y^2}{a^4y^2+b^4x^2} \ \to \ \min \ \text{при} \\ \text{условии} \ \frac{x^2}{a^2} + \frac{y^2}{b^2} \ = \ 1 \ \Leftrightarrow \ b^2x^2 + a^2y^2 \ = \ a^2b^2; \ F(x,y,\lambda) \ = \\ &= \frac{(a^2-b^2)^2x^2y^2}{a^4y^2+b^4x^2} + \lambda(b^2x^2+a^2y^2), \ F_x' \ = \frac{2(a^2-b^2)a^4x^4}{(a^4y^2+b^4x^2)^2} + 2\lambda b^2x \ = \\ &= 0 \ \Rightarrow \frac{(a^2-b^2)a^4y^4}{(a^4y^2+b^4x^2)^2} + \lambda b^2 = 0(*), \ F_y' \ = \frac{2(a^2-b^2)a^4x^4y}{(a^4y^2+b^4x^2)^2} + 2\lambda a^2y \ = \\ &= 0 \ \Rightarrow \frac{(a^2-b^2)a^4x^4}{(a^4y^2+b^4x^2)^2} + \lambda a^2 \ = 0(**) \ \Rightarrow \ \frac{a^2-b^2}{(a^4y^2+b^4x^2)} + \lambda(a^2+b^2) \ = 0 \ \Rightarrow \ \lambda \ = \frac{b^2-a^2}{(a^2+b^2)(a^4y^2+b^4x^2)}; \ (*) \ \Rightarrow \frac{(a^2-b^2)a^4y^4}{(a^4y^2+b^4x^2)^2} - \\ &- \frac{(a^2-b^2)b^2}{(a^2+b^2)(a^4y^2+b^4x^2)} \ = 0 \ \Leftrightarrow \ \frac{a^4y^4}{a^4y^2+b^4x^2} \ = \frac{b^2}{a^2+b^2}, \ (**) \ \Rightarrow \\ \frac{b^4x^4}{a^4y^2+b^4x^2} \ = \frac{a^2}{a^2+b^2} \ \Rightarrow \ \frac{a^4y^4}{b^4x^4} \ = \frac{b^2}{a^2}, \ y^2 \ = \frac{b^3x^2}{a^3}, \ \frac{x^2}{a^2} + \frac{x^2b}{a^3} \ = \\ &= 1, \ x = \pm a\sqrt{\frac{a}{a+b}}, \ y = \pm b\sqrt{\frac{b}{a+b}}. \end{array}$

3325. $F(x,y) = a^2(x^4+y^4)-x^3y^3-9a^6$, $F'_x = 4a^2x^3-3x^2y^3$, $F'_y = 4a^2y^3-3x^3y^2$, $y' = -\frac{F'_x}{F'_y} = \frac{3x^2y^3-4a^2x^3}{4a^2y^3-3x^3y^2}$, $y'(a,2a) = \frac{24a^5-4a^5}{32a^5-12a^5} = 1$, y-2a = x-a, y=x+a — касательная, $y-2a=-(x-a) \Leftrightarrow y=x+a$ — нормаль.

3330. $F(x,y)=y^2-ax^2-bx^5$. $F'_x=-2a-5bx^4=0$, $F'_y=2y=0 \Rightarrow y=0$, $x_1=0$, $x_2=-\sqrt[3]{\frac{a}{b}}$; точка $(-\sqrt[3]{\frac{a}{b}},0)$ не лежит на кривой, точка (0.0) — особая; $F''_{xx}=-2a-2bx^3$,

 $F_{xx}''(0,0)=-2a,\; F_{xy}''=0,\; F_{yy}''=2,\; I=egin{array}{c} -2a\,0\ 0\ 2 \end{bmatrix}=-4a;$ при $a>0\;I<0$ — двойная точка, при a<0I>0 — изолированная точка, при $a=0,\;b\neq0$ — точка возврата.

3335. $F(x,y)=x^3+y^3+3axy=0$, $F'_x=3x^2+3ay=0$, $F'_y=3y^2+3ax=0 \Rightarrow x=y=0$; $F''_{xx}=6x$, $F''_{xx}(0,0)=0$, $F''_{xy}=3a$, $F''_{yy}=6y$, $F''_{yy}(0,0)=0$, $I=\begin{vmatrix} 0 & 3a \\ 3a & 0 \end{vmatrix}=0$ = $-9a^2<0\Rightarrow(0,0)$ — двойная точка.

3339. $F(x,y)=y^2-3(x-a)^3=0,\ F'_x=-3(x-a)^2=0,\ F'_y=2y=0\Rightarrow x=a,\ y=0;\ F''_{xx}=-6(x-a),\ F''_{xx}(a,\ 0)=0,\ F''_{xy}=0,\ F''_{yy}=2,\ I=\begin{vmatrix}0\ 0\ 0\ 2\end{vmatrix}=0\Rightarrow (a,0)$ — точка возврата.

3345. $F_a'=x^3+2ay=0\Rightarrow a=-\frac{x^2}{2y},$ подставляя в уравнение $ax^2+a^2y=1,$ получаем $y=-\frac{x^4}{4}.$

3351. (a, ba^2) — центр окружности, $\sqrt{a^2+b^2a^4}$ — ее радиyc, $(x-a)^2 + (y-ba^2)^2 = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 \Leftrightarrow x^2 - 2ax + y^2 - 2ba^2y = a^2 + b^2a^4 + b^2a^4$ = 0 — уравнение семейства окружностей; $F'_a = -2x - 4bay = 0$ $=0, \ a=-\frac{x}{2by} \Rightarrow x^2+\frac{x^2}{by}+y^2-\frac{x^2}{2by}=0, \ 2by(x^2+y^2)+x^2=0.$

3355. $\frac{x}{c} + \frac{y}{d} = 1$ — уравнение прямой в отрезках, cd = $=a \Rightarrow d=\frac{a}{c}, \frac{x}{c}+\frac{cy}{a}=1$ — уравнение семейства прямых, $F_c' = -\frac{x}{c^2} + +\frac{y}{a} = 0, \ c = \sqrt{\frac{ax}{y}}, \ \frac{x\sqrt{y}}{\sqrt{ax}} + \frac{\sqrt{axy}}{a\sqrt{y}} = 1 \Leftrightarrow xy = \frac{a}{4}.$

3361.3 $\frac{d}{dt}(\mathbf{r} \times \frac{d\mathbf{r}}{dt}) = \frac{d\mathbf{r}}{dt} \times \frac{d\mathbf{r}}{dt} + \mathbf{r} \times \frac{d^2\mathbf{r}}{dt^2} = \mathbf{r} \frac{d^2\mathbf{r}}{dt^2}$

3368. $\frac{d\mathbf{r}}{dx} = \frac{d\mathbf{r}}{du}\varphi', \quad \frac{d^2\mathbf{r}}{dx^2} = \frac{d}{dx}\left(\frac{d\mathbf{r}}{du}\varphi'\right) = \frac{d^2\mathbf{r}}{du^2}\varphi'^2 + \frac{d\mathbf{r}}{du}\varphi'', \quad \frac{d^3\mathbf{r}}{dx^3} = \frac{d^3\mathbf{r}}{du^3}\varphi'^3 + 2\frac{d^2\mathbf{r}}{du^2}\varphi'\varphi'' + \frac{d^2\mathbf{r}}{du^2}\varphi'\varphi'' + \frac{d\mathbf{r}}{du}\varphi''' = \frac{d^3\mathbf{r}}{du^3}\varphi'^3 + 3\frac{d^2\mathbf{r}}{du^2}\varphi'\varphi'' + \frac{d\mathbf{r}}{du}\varphi'''.$

3371. $\mathbf{v} = \mathbf{r}' \{a \cos t, \ a \sin t, \ 2bt\}$ — винтовая линия, $\mathbf{a} =$ $= \mathbf{r}''\{-a\sin t, a\cos t, 2b\}$ — окружность.

3375. $\frac{d\mathbf{r}}{dt} \{ \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \}; \frac{dx}{dt} = \frac{d\rho}{dt} \sin\theta \cos\varphi + \rho \cos\theta \cos\varphi \frac{d\theta}{dt} + \rho \sin\theta \sin\varphi \frac{d\varphi}{dt}, \frac{dy}{dt} = \frac{d\rho}{dt} \sin\theta \sin\varphi + \rho \cos\theta \sin\varphi \frac{d\theta}{dt} + \rho \sin\theta \cos\varphi \frac{d\varphi}{dt}, \frac{dz}{dt} = \frac{d\rho}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\rho}, \mathbf{e}_{\theta}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\rho}, \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\rho}, \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\rho}, \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \rho \sin\theta \frac{d\theta}{dt}; \mathbf{e}_{\varphi}, \mathbf{e}_{\varphi} - \frac{d\varphi}{dt} \cos\theta - \frac{d\varphi}$ единичные касательные векторы к координатным линипоэтому их координаты находятся дифференцироформул перехода от сферических координат к декартовым по ho, heta, arphi и последующим нормированиem: $\mathbf{f}_{\rho}\{\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\varphi\}, |\mathbf{f}_{\rho}| = 1, \mathbf{e}_{\rho} = \mathbf{f}_{\rho};$ $\mathbf{f}_{\theta}\{\rho\cos\theta\cos\varphi,\ \rho\cos\theta\sin\varphi,\ -\rho\sin\varphi\},\ |\mathbf{f}_{\theta}|=\rho\Rightarrow\mathbf{e}_{\theta}\{\cos\theta\cos\varphi,\ \rho\cos\theta\sin\varphi,\ -\rho\sin\varphi\}\}$ $\cos\theta\sin\varphi$, $-\sin\varphi$; $\mathbf{f}_{\varphi}\{-\rho\sin\theta\sin\varphi$, $\rho\sin\theta\cos\varphi$, 0, $|\mathbf{f}_{\varphi}|$ = $= \rho \sin \theta \Rightarrow \mathbf{e}_{\varphi} \{ -\sin \varphi, \cos \varphi, 0 \}; \frac{d\mathbf{r}}{dt} \cdot \mathbf{e}_{\rho} = \frac{d\rho}{dt}, \frac{d\mathbf{r}}{dt} \cdot \mathbf{e}_{\theta} = \rho \frac{d\theta}{dt}, \frac{d\mathbf{r}}{dt} \cdot \mathbf{e}_{\theta} = \rho \frac{d\varphi}{dt} \sin \theta.$

3379. Точка соответствует значению $t_0 = \frac{\pi}{2}$; x'(t) = 1 $-\cos t$, $x'(t_0) = 1$, $y'(t) = \sin t$, $y'(t_0) = 1$, $z'(t) = 2\cos\frac{t}{2}$, $z'(t_0) = \sqrt{2}$, $\frac{x-\pi/2+1}{1} = \frac{y-1}{1} = \frac{z-2\sqrt{2}}{\sqrt{2}}$ — Kacaтельная, $(x-\frac{\pi}{2}+1)+(y-1)+\sqrt{2}(z-2\sqrt{2})=0 \Leftrightarrow x+y+$ $+\sqrt{2}z-\frac{\pi}{2}-4=0$ — нормальная плоскость.

3385. Пусть y = t, тогда $x = t^2$, $z = t^4$, $\mathbf{r}(t)\{t^2, t, t^4\}$, $\mathbf{r}'(t)\{2t,1,4t^3\},\ \mathbf{r}''(t)\{2,0,12t^2\},$ при t=1 $\mathbf{r}\{1,1,1\},\ \mathbf{r}'\{2,1,4\},$ $\mathbf{r}''\{2,0,12\}; \begin{vmatrix} x-1 y-1 z-1 \\ 2 & 1 & 4 \\ 2 & 0 & 12 \end{vmatrix} = 0 \Leftrightarrow 6x-8y-z+3 = 0 - \text{co-}$

прикасающаяся плоскость, ее нормальный вектор $\beta\{6,-8,-1\}$

параллелен бинормали $\Rightarrow \frac{x-1}{6} = \frac{y-1}{-8} = \frac{z-1}{-1}$ — бинормаль; вектор $\nu = \mathbf{r}' \times \beta$ параллелен главной нормали, $\nu = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 4 \\ 6 & -8 & -1 \end{vmatrix} = 31\mathbf{i} + 26\mathbf{j} - 22\mathbf{k}, \quad \frac{x-1}{31} = \frac{y-1}{26} = \frac{z-1}{-22}$ — главная нормаль.

3390. Линия — окружность $\begin{cases} x^2 + y^2 = 2 \\ z = 1 \end{cases}$ может быть задана уравнениями $x = \sqrt{2}\cos t, \ y = \sqrt{2}\sin t, \ z = 1;$ в данной точке $t_0 = \frac{\pi}{4}; \ \mathbf{r}'(t)\{-\sqrt{2}\sin t, \sqrt{2}\cos t, 0\}, \mathbf{r}'(t_0)\{-1, 1, 0\}, \frac{x-1}{-1} = \frac{y-1}{1} = \frac{z-1}{0} - \text{касательная}; -(x-1) + (y-1) = 0 \Leftrightarrow y-x = 0 - \text{нормальная плоскость}; \mathbf{r}''(t)\{-\sqrt{2}\cos t, -\sqrt{2}\sin t, 0\}, \ \mathbf{r}''(t_0)\{-1, -1, 0\}, \ 2\beta = \mathbf{r}'(t_0) \times \mathbf{r}''(t_0) = 2\mathbf{k} - \text{бинормальный вектор}, \frac{x-1}{0} = \frac{y-1}{0} = \frac{z-1}{1} - \text{бинормаль}; \ z = 1 - \text{соприкасающаяся плоскость}; \ \nu = \mathbf{r}'(t_0) \times \mathbf{r}''(t_0) = \mathbf{r}''(t_0) \times \mathbf{r}''(t_0) = \mathbf{$

3396. $\mathbf{r}'(t)\{-\operatorname{tg} t, \operatorname{ctg} t, \sqrt{2}\}, \mathbf{r}''(t)\{-\frac{1}{\cos^2 t}, -\frac{1}{\sin^2 t}, 0\},$ $\mathbf{r}'''(t)\{-\frac{2\sin t}{\cos^3 t}, \frac{2\cos t}{\sin^3 t}, 0\}, \quad |\mathbf{r}'| = \sqrt{\operatorname{tg}^2 t + \operatorname{ctg}^2 t + 2} =$ $= \frac{2}{\sin 2t}, \quad \mathbf{r}' \times \mathbf{r}'' = \frac{\sqrt{2}}{\sin^2 t} \mathbf{i} - \frac{\sqrt{2}}{\cos^2 t} \mathbf{j} + \frac{4}{\sin 2t} \mathbf{k}, \quad |\mathbf{r}' \times \mathbf{r}''| =$ $= \sqrt{\frac{2}{\sin^4 t} + \frac{2}{\cos^4 t} + \frac{16}{\sin^2 2t}} = \frac{4\sqrt{2}}{\sin^2 2t}, \quad k = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|^3} = \frac{\sin 2t}{\sqrt{2}}, \quad R =$ $= \frac{\sqrt{2}}{\sin 2t}, \quad (\mathbf{r}', \mathbf{r}'', \mathbf{r}''') = \begin{vmatrix} -\operatorname{tg} t & \operatorname{ctg} t & \sqrt{2} \\ -\frac{1}{\cos^2 t} - \frac{1}{\sin^2 t} & 0 \\ -\frac{2\sin t}{\cos^3 t} - \frac{2\cos t}{\sin^3 t} & 0 \end{vmatrix} = \frac{16\sqrt{2}\cos 2t}{\sin^3 2t}, \quad T =$ $= \frac{(\mathbf{r}', \mathbf{r}'', \mathbf{r}''')}{|\mathbf{r}' \times \mathbf{r}''|^2} = \frac{\sin 2t}{\sqrt{2}} = k.$

3401. $\omega \times \tau = k\nu$, $\omega \times \beta = -T\nu \Rightarrow \omega$, β , $\tau \perp \nu \Rightarrow \omega = x\beta + y\tau$; $k\nu = \omega \times \tau = x\beta \times \tau = x\nu \Rightarrow x = k$; $-T\nu = y\tau \times x\beta = -y\nu \Rightarrow y = T$; $\omega \times \nu = (k\beta + T\tau) \times \nu = k\beta \times \nu + T\tau \times x\gamma = -k\tau + T\beta$.

3405. $y = \frac{x^2}{3}$, $z = \frac{2x^3}{27}$, $y' = \frac{2x}{3}$, $z' = \frac{2x^2}{9}$, $L = \int_0^3 \sqrt{1 + \frac{4}{9}x^2 + \frac{4}{81}x^4} dx = \frac{1}{9} \int_0^3 \sqrt{4x^4 + 36x^2 + 81} dx = \frac{1}{9} \int_0^3 (2x^2 + 9) dx = 5$.

3409.
$$y' = \frac{1}{\sqrt{1-x^2/a^2}} = \frac{a}{\sqrt{a^2-x^2}}, \quad z' = \frac{a^2}{2(a^2-x^2)},$$

$$L = \int_0^{a/2} \sqrt{1 + \frac{a^2}{a^2-x^2} + \frac{a^4}{4(a^2-x^2)^2}} \, dx =$$

$$= \int_0^{a/2} \frac{\sqrt{4(a^2 - x^2)^2 + 4a^2(a^2 - x^2) + a^4}}{2(a^2 - x^2)} dx = \int_0^{a/2} \frac{2(a^2 - x^2) + a^2}{2(a^2 - x^2)} dx = \left(x + \frac{a}{4} \ln \left| \frac{a + x}{a - x} \right| \right) \Big|_0^{a/2} = \frac{a}{2} (1 + \frac{\ln 3}{2}).$$

3414. $z_x' = -\frac{y}{x^2+y^2}$, $z_x'(1, 1) = -\frac{1}{2}$, $z_y' = \frac{x}{x^2+y^2}$. $z_y'(1, 1) = \frac{1}{2}$, $z = \frac{\pi}{4} - \frac{1}{2}(x-1) + \frac{1}{2}(y-1) \Leftrightarrow x-y+2z = \frac{\pi}{2}$ — касательная плоскость, $\mathbf{n}\{1, -1, 2\}$ — нормальный вектор, $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z-\pi/4}{2}$ — нормаль.

3420. Продифференцируем уравнение по x и $y: \frac{2x}{a^2}+ + \frac{2zz'_x}{c^2} = 0 \Rightarrow z'_x = -\frac{c^2x}{a^2z}. \frac{2y}{b^2} + \frac{2zz'_y}{c^2} = 0 \Rightarrow z'_y = -\frac{c^2y}{b^2z};$ уравнение касательной плоскости $z-z_0 = -\frac{c^2x_0}{a^2z_0}(x-x_0) - -c^2y_0b^2x_0(y-y_0) \Leftrightarrow -a^2b^2z_0 + a^2b^2z_0z + b^2c^2x_0x + a^2c^2y_0y = a^2b^2z_0^2 + b^2c^2x_0^2 + a^2c^2y_0^2 \Leftrightarrow \frac{x_0x}{a^2} + \frac{y_0y}{b^2} + \frac{z_0z}{c^2} = \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{c^2} = 1.$

3429. Продифференцируем уравнение по x и $y:\frac{1}{2\sqrt{x}}+\frac{z_x'}{2\sqrt{z}}=0 \Rightarrow z_x'=-\sqrt{\frac{z}{x}},\ z_y'=-\sqrt{\frac{z}{y}},\$ уравнение касательной плоскости $z-z_0=-\sqrt{\frac{z_0}{x_0}}(x-x_0)-\sqrt{\frac{z_0}{y_0}}(y-y_0)\Leftrightarrow z\sqrt{x_0y_0}+x_0\sqrt{x_0y_0}+y_0\sqrt{x_0z_0}\Leftrightarrow \frac{z}{\sqrt{z_0}}+x_0\sqrt{x_0y_0}+y_0\sqrt{x_0z_0}\Leftrightarrow \frac{z}{\sqrt{z_0}}+x_0\sqrt{x_0y_0}+y_0\sqrt{x_0z_0}\Leftrightarrow \frac{z}{\sqrt{z_0}}+x_0\sqrt{y_0}+y_0\sqrt{x_0z_0}\Leftrightarrow \frac{z}{\sqrt{z_0}}+x_0\sqrt{y_0}+y_0\sqrt{x_0z_0}\Leftrightarrow \frac{z}{\sqrt{z_0}}+x_0\sqrt{y_0}+y_0\sqrt{x_0z_0}\Leftrightarrow \frac{z}{\sqrt{z_0}}+x_0\sqrt{y_0}+x_0\sqrt{z_0}=x_0\sqrt{x_0}+x_0\sqrt{y_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}=x_0\sqrt{x_0}+x_0\sqrt{x_0}=x_0\sqrt{x_0}$

3435. Продифференцируем уравнение по x и y : $2x+2zz'_x+4z'_x=0\Rightarrow z'_x=-\frac{x}{z+2},\ 2y-6+2zz'_y+4z'_y=0\Rightarrow z'_y=\frac{3-y}{z+2},$ уравнение касательной плоскости α : $(z-z_0)(z_0+2)=-x_0(x-x_0)+(3-y_0)(y-y_0);\ \alpha\parallel xOy$ при $z'_x=z'_y=0\Leftrightarrow x_0=0,\ y_0=3;$ подставив в уравнение поверхности, получим $z^2+4z-21=0,\ z_1=3,\ z_2=-7,\ \alpha\parallel xOy$ в точках (0,3,3) и $(0,3,-7);\ \alpha\parallel yOz$ при $y_0=3,\ z_0=-2,\ x^2=25,\ x_{1,2}=\pm5,\ \alpha\parallel yOz$ в точках (5.3,-2) и (-5,3,-2);

 $\alpha \parallel xOz$ при $x_0 = 0$, $z_0 = -2$, $y^2 - 6y - 16 = 0$, $y_1 = 8$, $y_2 = -2$, $\alpha \parallel xOz$ в точках (0,8,-2) и (0,-2,-2).

3441.2. $z'_x = yx^{y-1}$, $z'_x(2,2) = 4$; $z'_y = x^y \ln x$, $z'_y(2,2) = 4 \ln 2$, $\operatorname{grad} z\{4,4 \ln 2\}$, $\operatorname{tg} \varphi = |\operatorname{grad} z| = 4\sqrt{1 + \ln^2 2} \approx 4.87$, $\varphi \approx 78.4^\circ \approx 78^\circ 24'$.

3448. $u'_x = \frac{2x}{x^2 + y^2 + z^2}$, $u'_y = \frac{2y}{x^2 + y^2 + z^2}$, $u'_z = \frac{2z}{x^2 + y^2 + z^2}$, $(\operatorname{grad} u)^2 = \frac{4}{x^2 + y^2 + z^2}$, $2\ln 2 - \ln(\operatorname{grad} u)^2 = 2\ln 2 - \ln 4 + \ln(x^2 + y^2 + z^2) = \ln(x^2 + y^2 + z^2) = u$.

3452. $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = \frac{1}{x+y}, \ y^2 = 4x \Leftrightarrow y = 2\sqrt{x}$ (при y > 0), $y_x' = \frac{1}{\sqrt{x}}, \ 1\{1,\frac{1}{\sqrt{x}}\}$ — касательный вектор к параболе, $|\mathbf{l}| = \sqrt{1+\frac{1}{x}};$ при $x = 1, \ y = 2 \ \mathrm{grad} z\{\frac{1}{3},\frac{1}{3}\}, \ 1\{1,1\}, \ |\mathbf{l}| = \sqrt{2}, \ \frac{\partial z}{\partial l} = \frac{\mathrm{grad} \ z \cdot \mathbf{l}}{|\mathbf{l}|} = \frac{\sqrt{2}}{3}.$

3457. $\operatorname{grad} u\{-\frac{2x^2}{a^2}, -\frac{2y^2}{b^2}, -\frac{2z^2}{c^2}\}, \overrightarrow{MO}\{-x, -y, -z\}, |\overrightarrow{MO}| = \sqrt{x^2 + y^2 + z^2} = r, \frac{\partial u}{\partial l} = \frac{1}{r}(-\frac{2x^2}{a^2} - \frac{2y^2}{b^2} - \frac{2z^2}{c^2}) = -\frac{2u}{r}.$

К ГЛАВЕ 12

3462. Масса dm прямоугольного участка со сторонами dx и dy равна $\gamma \, dx \, dy$, кинетическая энергия $dE = \frac{dmv^2}{2} = \frac{\gamma \omega^2 y^2 \, dx \, dy}{2} \Rightarrow E = \frac{\omega^2}{2} \iint_D y^2 \gamma(x,y) \, dx \, dy$.

3469. $F(x,y)=x+xy-x^2-y^2, \ F_x'=1+y-2x=0, \ F_y'=x-2y=0\Rightarrow x=\frac{2}{3},\ y=\frac{1}{3},\ F(\frac{2}{3},\frac{1}{3})=\frac{1}{3};\$ при x=0 $F(y)=-y^2,\ 0\leqslant y\leqslant 2,\ F(0,0)=0,\ F(0,2)=-4;\$ при x=1 $F(y)=y-y^2,\ 0\leqslant y\leqslant 2,\ F'(y)=1-2y=0$ при $y=\frac{1}{2},\ F(1,0)=0,\ F(1,\frac{1}{2})=\frac{1}{4},\ F(1,2)=-2;\$ при y=0 $F(x)=x-x^2,\ 0\leqslant x\leqslant 1,\ F'(x)=1-2x=0$ при $x=\frac{1}{2},\ F(\frac{1}{2},0)=\frac{1}{4};\$ при y=2 $F(x)=3x-x^2-4,\ F'(x)=3-2x>0\Rightarrow F_{\max}(\frac{2}{3},\frac{1}{3})=\frac{1}{3},\ F_{\min}(0,2)=-4,\ S(D)=2\Rightarrow -8\leqslant \iint_D(x+xy-x^2-y^2)d\sigma\leqslant \frac{2}{3}.$

3476. $F(x,y,z,\lambda) = x+y-z+10+\lambda(x^2+y^2+z^2-3),$ $F'_x=1+2\lambda x=0, \ F'_y=1+2\lambda y=0, \ F'_z=-1+2\lambda z=0\Rightarrow x=y=-\frac{1}{2\lambda}, \ z=\frac{1}{2\lambda}, \ \frac{3}{4\lambda^2}=3, \ \lambda=\pm\frac{1}{2}; \ \text{при } \lambda=\frac{1}{2} \ x=y=-1, \ z=1, \ f_{\min}=7, \ \text{при } \lambda=\frac{1}{2} \ x=y=1, \ y=-1, \ f_{\max}=13, \ V(\Omega)=4\sqrt{3}\pi \Rightarrow 28\sqrt{3}\pi \leqslant \iiint_{\Omega}(x+y-z+10)dv \leqslant 52\sqrt{3}\pi.$

3480.
$$I = \iint_D \frac{dx \, dy}{(x+y+1)^2} = \int_0^1 dx \int_0^1 \frac{dy}{(x+y+1)^2} = \int_0^1 dx \left(\frac{-1}{x+y+1}\right) \Big|_0^1 = \int_0^1 \left(\frac{1}{x+1} - \frac{1}{x+2}\right) dx = \ln \frac{x+1}{x+2} \Big|_0^1 = \ln \frac{4}{3}.$$

 $\begin{aligned} &\mathbf{3484.} I = \iint_D x^2 y \cos(xy^2) dx dy = \frac{1}{2} \int_0^{\pi/2} x dx \int_0^2 \cos(xy^2) d(xy^2) = \\ &= \frac{1}{2} \int_0^{\pi/2} x dx \sin(xy^2) |_0^2 = \frac{1}{2} \int_0^{\pi/2} x \sin 4x dx = \frac{1}{8} \int_0^{\pi/2} x d(-\cos 4x) = \\ &= -\frac{1}{8} x \cos 4x |_0^{\pi/2} + \frac{1}{8} \int_0^{\pi/2} \cos 4x dx = -\frac{\pi}{16} + \frac{1}{32} \sin 4x |_0^{\pi/2} = -\frac{\pi}{16}. \end{aligned}$

3490. $\frac{x^2}{4} \leqslant 1 \Rightarrow -2 \leqslant x \leqslant 2, \frac{y^2}{9} \leqslant 1 - \frac{x^2}{4} \Rightarrow -\frac{3}{2}\sqrt{4-x^2} \leqslant y \leqslant \frac{3}{2}\sqrt{4-x^2}; I = \int_{-2}^{9} dx \int_{-3\sqrt{4-x^2}/2}^{3\sqrt{4-x^2}/2} f(x, y) dy.$

3497. Точки пересечения $x=\pm 2,\ y=\pm \sqrt{5};$ при $-3\leqslant x\leqslant -2$ и $2\leqslant x\leqslant 3$ выполняется $-\sqrt{9-x^2}\leqslant \leqslant y\leqslant \sqrt{9-x^2},$ при $-2\leqslant x\leqslant 2$ выполняется $-\sqrt{1+x^2}\leqslant \leqslant y\leqslant \sqrt{1+x^2} \Rightarrow I=\int_{-3}^{-2}dx\int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}}f(x,\ y)dy+\int_{-2}^{2}dx\int_{-\sqrt{1+x^2}}^{\sqrt{1+x^2}}f(x,\ y)dy+\int_{2}^{3}dx\int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}}f(x,\ y)dy.$

3500. $y = \sqrt{2rx - x^2} \Rightarrow (x - r)^2 + y^2 = r^2 \Rightarrow x = r \pm \pm \sqrt{r^2 - y^2}$, при $0 \leqslant x \leqslant r \ x = r - \sqrt{r^2 - y^2}$. $0 \leqslant y \leqslant r \Rightarrow I = \int_0^r dy \int_{r - \sqrt{r^2 - y^2}}^y f(x, y) dx$.

3504.2. $y = x^2$, $0 \le x \le 1 \Leftrightarrow x = \sqrt{y}$, $0 \le y \le 1$, $y = \frac{3-x}{2}$, $1 \le x \le 3 \Leftrightarrow x = 3-2y$, $0 \le y \le 1 \Rightarrow I = \int_0^1 dy \int_{\sqrt{y}}^{3-2y} f(x, y) dx$.

3505.4. Левая дуга $(x-1)^2+y^2=1,\ 0\leqslant x\leqslant 1\Leftrightarrow x=1-\sqrt{1-y^2},\ 0\leqslant y\leqslant 1;$ правая дуга $(x-3)^2+y^2=1,\ 3\leqslant x\leqslant 4\Leftrightarrow x=3+\sqrt{1-y^2},\ 0\leqslant y\leqslant 1;$ верхняя дуга $(x-2)^2+(y-1)^2=1,\ 1\leqslant x\leqslant 3,\ y\geqslant 2\Leftrightarrow x=2\pm\sqrt{2y-y^2}\Rightarrow I=\int_0^1dy\int_{1-\sqrt{1-y^2}}^{3+\sqrt{1-y^2}}f(x,\ y)dx+\int_1^2dy\int_{2-\sqrt{2y-y^2}}^{2+\sqrt{2y-y^2}}f(x,\ y)dx.$

3509. $\frac{1}{x} = x$ при x = 1, $D: 1 \leqslant x \leqslant 2$, $\frac{1}{x} \leqslant y \leqslant x$, $I = \int_{1}^{2} dx \int_{1/x}^{x} \frac{x^{2}}{y^{2}} dy = \int_{1}^{2} x^{2} dx (-\frac{1}{y})|_{1/x}^{x} = \int_{1}^{2} (x^{3} - x) dx = (\frac{x^{4}}{4} - \frac{x^{2}}{2})|_{1}^{2} = \frac{9}{4}$.

3516. $D: -R \le x \le R$, $-\sqrt{R^2 - x^2} \le y \le \sqrt{R^2 - x^2}$, $\iint_D \sqrt{R^2 - x^2 - y^2} \, dx \, dy = \int_{-R}^R dx \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \sqrt{R^2 - x^2 - y^2} \, dy = \int_{-R}^R dx \left(\frac{y}{2} \sqrt{R^2 - x^2 - y^2} + \frac{R^2 - x^2}{2} \arcsin \frac{y}{\sqrt{R^2 - x^2}} \right) \Big|_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} = \int_{-R}^R \frac{\pi}{2} (R^2 - x^2) dx = \frac{\pi}{2} (R^2 x - \frac{x^3}{3}) \Big|_{-R}^R = \frac{2}{3} \pi R^3, \quad S(D) = \pi R^2 \Rightarrow M = \frac{2}{3} R.$

3521. $\int_{0}^{e-1} dx \int_{0}^{e-x-1} dy \int_{0}^{x+y+e} \frac{\ln(z-x-y)}{(x-e)(x+y+e)} dz \quad [z_{1} = z - x-y, dz_{1} = dz, z_{1}(e) = e-x-y, z_{1}(x+y+e) = e] = \int_{0}^{e-1} dx \int_{0}^{e-x-1} \frac{dy}{(x-e)(x+y-e)} \int_{c-x-y}^{c} \ln z_{1} dz_{1} = \int_{0}^{e-1} dx \int_{0}^{e-x-1} \frac{dy}{(x-e)(x+y-e)} (z_{1} \ln z_{1} - z_{1})|_{e-x-y}^{e} = \int_{0}^{e-1} dx \int_{0}^{e-x-1} \frac{dy}{(x-e)(x+y-e)} (e-x-y-(e-x-y)\ln(e-x-y)) = \int_{0}^{e-1} dx \int_{0}^{e-x-1} \frac{\ln(c-x-y)-1}{x-e} dy \left[y_{1} = e-x-y, dy_{1} = dy, y_{1}(0) = e-x, y_{1}(e-x-1) = 1 \right] = \int_{0}^{e-1} \frac{dx}{x-e} \int_{1}^{e-x} (\ln y_{1} - 1) dy_{1} = \int_{0}^{e-1} \frac{dx}{x-e} (y_{1} \ln y_{1} - 2y_{1})|_{1}^{e-x} = \int_{0}^{e-1} \frac{dx}{x-e} ((e-x)\ln(e-x) - 2(e-x)+2) = \int_{0}^{e-1} (-\ln(e-x)+2+\frac{2}{e-x}) dx = ((e-x)\ln(e-x)-x) - (e-x)+2x+2\ln(e-x))|_{0}^{e-1} = 2e-5.$

3524. $\Omega: 0 \leqslant x \leqslant \frac{\pi}{2}, 0 \leqslant y \leqslant \sqrt{x}. 0 \leqslant \xi z \leqslant \frac{\pi}{2} - x; I = \int_0^{\pi/2} dx \int_0^{\sqrt{x}} dy \int_0^{\pi/2 - x} y \cos(z + x) dz = \int_0^{\pi/2} dx \int_0^{\sqrt{x}} y dy \sin(z + x) \Big|_0^{\pi/2 - x} = \int_0^{\pi/2} dx \int_0^{\sqrt{x}} y (1 - \sin x) dy = \int_0^{\pi/2} (1 - \sin x) dx \frac{y^2}{2} \Big|_0^{\sqrt{x}} = \frac{1}{2} \int_0^{\pi/2} (x - x \sin x) dx = \frac{x^2}{4} \Big|_0^{\pi/2} + \frac{1}{2} \int_0^{\pi/2} x d(\cos x) = \frac{\pi^2}{16} + x \cos x \Big|_0^{\pi/2} - \frac{1}{2} \int_0^{\pi/2} \cos x dx = \frac{\pi^2}{16} - \frac{1}{2}.$

3530. $x^2+y^2=\rho^2, \ x^2-y^2=\rho^2\cos2\varphi,$ уравнение равносильно $\rho^4=a^2\rho^2\cos2\varphi \Leftrightarrow \rho=a\sqrt{\cos2\varphi}, \ \cos2\varphi\geqslant 0$ при $-\frac{\pi}{4}\leqslant \varphi\leqslant \frac{\pi}{4}$ и $\frac{3\pi}{4}\leqslant \varphi\leqslant \frac{5\pi}{4},$ правая петля при $-\frac{\pi}{4}\leqslant \varphi\leqslant \frac{\pi}{4};\ I=\int_{-\pi/4}^{\pi/4}d\varphi\int_0^{a\sqrt{\cos2\varphi}}f(\rho\cos\varphi,\ \rho\sin\varphi)\rho d\rho.$

3535. $y=Rx\Leftrightarrow \rho\sin\varphi=R\rho\cos\varphi\Leftrightarrow \varphi=\mathrm{arctg}\,R;\ y=\sqrt{R^2-x^2}\Leftrightarrow x^2+y^2=R^2\Leftrightarrow \rho=R;\ D-\mathrm{cek-top}\ c$ центром в начале координат, $\frac{y}{x}=\mathrm{tg}\,\varphi\Rightarrow I=\int_0^{\mathrm{arctg}\,R}f(\mathrm{tg}\,\varphi)d\varphi\int_0^R\rho d\rho=\frac{R^2}{2}\int_0^{\mathrm{arctg}\,R}f(\mathrm{tg}\,\varphi)d\varphi.$

3540. $x^2 + y^2 = 1 \Leftrightarrow \rho = 1$, $x^2 + y^2 = 9 \Leftrightarrow \rho = 3$, $y = \frac{x}{\sqrt{3}} \Leftrightarrow \operatorname{tg}\varphi = \frac{1}{\sqrt{3}} \Leftrightarrow \varphi = \frac{\pi}{6}$, $y = x\sqrt{3} \Leftrightarrow \varphi = \frac{\pi}{3}$, $\operatorname{arctg}\frac{y}{x} = \varphi \Rightarrow I = \int_{\pi/6}^{\pi/3} \varphi d\varphi \int_{1}^{3} \rho d\rho = \int_{\pi/6}^{\pi/3} \varphi d\varphi \frac{\rho^2}{2} \Big|_{1}^{3} = 4\frac{\varphi^2}{2} \Big|_{\pi/6}^{\pi/3} = \frac{\pi^2}{6}$.

3545. $x = a\rho\cos\varphi, \ y = b\rho\sin\varphi, \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow \rho = 1 \Rightarrow I = \int_0^{\pi/2} d\varphi \int_0^1 ab\rho^2 \cos\varphi\sin\varphi ab\rho d\rho = \frac{a^2b^2}{2} \times \int_0^{\pi/2} \sin2\varphi d\varphi \int_0^1 \rho^3 d\rho = \frac{a^2b^2}{8} \int_0^{\pi/2} \sin2\varphi d\varphi = -\frac{a^2b^2}{16} \times \cos2\varphi \Big|_0^{\pi/2} = \frac{a^2b^2}{8}.$

3550. Перейдем к цилиндрическим координатам: $x=\rho\cos\varphi,\ y=\rho\sin\varphi,\ x^2+y^2+z^2\leqslant R^2\Leftrightarrow |z|\leqslant\sqrt{R^2-\rho^2},\ (x^2+y^2)^2=R^2(x^2-y^2)\Leftrightarrow \rho=R\sqrt{\cos2\varphi},$

$$\begin{array}{lllll} \cos 2\varphi & \geqslant & 0, & x & \geqslant & 0 & \Leftrightarrow & -\frac{\pi}{4} & \leqslant & \varphi & \leqslant & \frac{\pi}{4} & \Rightarrow & I & = \\ & = \int_{-\pi/4}^{\pi/4} d\varphi \int_{0}^{R\sqrt{\cos 2\varphi}} \rho d\rho \int_{-\sqrt{R^{2}-\rho^{2}}}^{\sqrt{R^{2}-\rho^{2}}} f(\rho\cos\varphi, \; \rho\sin\varphi, \; z) dz. \end{array}$$

3555. Перейдем к сферическим координатам: $0 \leqslant x \leqslant 1$, $0 \leqslant y \leqslant \sqrt{1-x^2}, \ 0 \leqslant z \leqslant \sqrt{1-x^2-y^2} \Leftrightarrow 0 \leqslant \varphi \leqslant \frac{\pi}{2}, \ 0 \leqslant \theta \leqslant \frac{\pi}{2}, \ 0 \leqslant \rho \leqslant 1 \Rightarrow I = \int_0^{\pi/2} d\varphi \int_0^1 \rho^3 d\rho \int_0^{\pi/2} \sin\theta \, d\theta = \int_0^{\pi/2} d\varphi \int_0^1 \rho^3 d\rho = \frac{1}{4} \int_0^{\pi/2} d\varphi = \frac{\pi}{8}.$

3560. $V = \iint_D \left(\frac{x^2}{2p} + \frac{y^2}{2q}\right) dx dy = \int_0^a dx \int_0^b \left(\frac{x^2}{2p} + \frac{y^2}{2q}\right) dy = \int_0^a \left(\frac{x^2b}{2p} + \frac{b^3}{6q}\right) dx = \frac{ab}{6} \left(\frac{a^2}{p} + \frac{b^2}{q}\right).$

3565. При z=0 область $D\colon 0\leqslant x\leqslant 6,\ \sqrt{x}\leqslant y\leqslant 2\sqrt{x};$ $x+z=6\Leftrightarrow z=6-x\Rightarrow V=\iint_D(6-x)dxdy=\int_0^6dx\int_{\sqrt{x}}^{2\sqrt{x}}(6-x)dy=\int_0^6(6-x)\sqrt{x}dx=(4x^{3/2}-\frac{2}{5}x^{5/2})|_0^6=\frac{48}{5}\sqrt{6}.$

3570. Уравнение цилиндра $x^2+z^2=r^2,\ z\geqslant 0\Rightarrow z=$ = $\sqrt{r^2-x^2},\ D:\ 0\leqslant x\leqslant r,\ 0\leqslant y\leqslant a-\frac{ax}{r}\Rightarrow V=\int_0^r dx\int_0^{a-ax/r}\sqrt{r^2-x^2}dy=a\int_0^r\sqrt{r^2-x^2}(1-\frac{x}{r})\ [x=-r\sin t,\ dx=r\cos t\,dt]=\int_0^{\pi/2}r^2\cos^2t(1-\sin t)dt=$ = $ar^2\int_0^{\pi/2}(\cos^2t-\cos^2t\sin t)dt=ar^2\left(\frac{t}{2}+\frac{\sin 2t}{4}+\frac{\cos^3t}{3}\right)|_0^{\pi/2}=$ = $ar^2(\frac{\pi}{4}-\frac{1}{3}).$

3575. При z=0 $y=\pm x,$ $V=\int_0^3 dx \int_{-x}^x (x^2-y^2) dy=\int_0^3 dx (x^2y-\frac{y^2}{3})|_{-x}^x=\int_0^3 \frac{4}{3}x^3 dx=27.$

3580. При z=0 $y=e^x$, $y=e^{-x}\Rightarrow y>0$, $y^2=e^2\Rightarrow y=e$, $e^x=e$ при x=1, $e^x=e^{-x}$ при x=0, область симметрична относительно $Oy\Rightarrow V=2\int_0^1 dx\int_{e^x}^e(e^2-y^2)dy=2\int_0^1 dx(e^2y-\frac{y^3}{3})|_{e^x}^e=2\int_0^1(\frac{2}{3}e^3-e^{x+2}+\frac{1}{3}e^{3x})dx=(\frac{4}{3}e^3x-2e^{x+2}+\frac{2}{9}e^{3x})|_0^1=2(e^2-\frac{2e^3+1}{9}).$

3585. Найдем линию пересечения конической поверхности и плоскости x+z=2: $\begin{cases} 4y^2=x(2-z)\\ x+z=2 \end{cases} \Leftrightarrow \begin{cases} x=2-z\\ 4y^2=x^2 \end{cases} \Leftrightarrow \begin{cases} z=2-x\\ y=\pm\frac{x}{2} \end{cases}$. Проекция этой линии на плоскость z=0 $y=\pm\frac{x}{2}$, проекция плоскости x+z=2 — прямая x=2, проекция поверхности $4y^2=x(2-z)$ — парабола $y^2=\frac{x}{2}$,

таким образом объем тела разбивается на два: V_1 , ограниченный сверху плоскостью z=2-x, снизу областью D_1 : $0\leqslant x\leqslant 2, -\frac{x}{2}\leqslant y\leqslant \frac{x}{2}$ и V_2 , ограниченный сверху поверхностью $z=2-\frac{4y^2}{x}$, снизу областью D_2 : $0\leqslant x\leqslant 2, \frac{x}{2}\leqslant |y|\leqslant \sqrt{\frac{x}{2}}, \ V_1=2\int_0^2 dx \int_0^{x/2}(2-x)dy=2\int_0^2 dx (2-x)y|_0^{x/2}=\int_0^2 (2x-x^2)dx=(x^2-\frac{x^3}{3})|_0^2=\frac{4}{3}; \ V_2=2\int_0^2 dx \int_{x/2}^{\sqrt{x/2}}(2-4\frac{y^2}{x})dy=2\int_0^2 (2y-\frac{4}{3x}y^3)|_{x/2}^{\sqrt{x/2}}=\int_0^2 (\frac{4\sqrt{2}}{3}\sqrt{x}-2x+\frac{x^3}{3})dx==(\frac{8}{9}\sqrt{2}x^{3/2}-x^2+\frac{x^3}{9})|_0^2=\frac{4}{9}; \ V=V_1+V_2=\frac{16}{9}$

3591. $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $x^2 + y^2 + z^2 = a^2 \Leftrightarrow z^2 = a^2 - \rho^2$, $x^2 + y^2 = ax \Leftrightarrow \rho = a \cos \varphi$, $-\frac{\pi}{2} \leqslant \varphi \leqslant \frac{\pi}{2}$; $D: \rho \leqslant a \cos \varphi$; $V = 2 \iint_D \sqrt{a^2 - \rho^2} d\sigma = 4 \int_0^{\pi/2} d\varphi \int_0^{a \cos \varphi} \sqrt{a^2 - \rho^2} \rho d\rho = 4 \int_0^{\pi/2} d\varphi \left(-\frac{1}{3} \sqrt{(a^2 - \rho^2)^3} \right) \Big|_0^{a \cos \varphi} = \frac{4}{3} a^3 \int_0^{\pi/2} (1 - \sin^3 \varphi) d\varphi = \frac{4}{3} a^3 (\frac{\pi}{2} - \frac{2}{3}).$

3596. $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $x^2 + y^2 = R^2 \Leftrightarrow \rho = R$, $x \ge 0$, $y \ge 0 \Rightarrow 0 \le \varphi \le \frac{\pi}{2}$, $z = h \arctan \frac{y}{x} \Leftrightarrow z = h\varphi$; $V = \int_0^{\pi/2} d\varphi \int_0^R h\varphi \rho d\rho = h \frac{R^2}{2} \int_0^{\pi/2} \varphi d\varphi = \frac{\pi^2 h R^2}{16}$.

3600. $y^2 = \frac{b^2}{a}x \Leftrightarrow x = \frac{ay^2}{b^2}, \ y = \frac{b}{a}x \Leftrightarrow x = \frac{ay}{b}, \ \frac{ay^2}{b^2} = \frac{ay}{b} \Leftrightarrow y = 0$ или $y = b; \ S = \int_0^b dy \int_{ay^2/b^2}^{ay/b} dx = \int_0^b (\frac{ay}{b} - \frac{ay^2}{b^2}) dy = a(\frac{y^2}{2b} - \frac{y^3}{3b^2})|_0^b = \frac{ab}{6}.$

3604. $(x^2+y^2)^2=2a^2(x^2-y^2)\Leftrightarrow \rho=a\sqrt{2\cos2\varphi},$ $-\frac{\pi}{4}\leqslant \varphi\leqslant \frac{\pi}{4},\,\,\frac{3\pi}{4}\leqslant \varphi\leqslant \frac{5\pi}{4}.$ Из соображений симметрии $S=4\int_0^{\pi/4}d\varphi\int_0^{a\sqrt{2\cos2\varphi}}\rho\,d\rho=4a^2\int_0^{\pi/4}\cos2\varphi\,d\varphi=2a^2\sin2\varphi|_0^{\pi/4}=2a^2.$

3610. $V = \int_0^1 dx \int_x^{2x} dy \int_{x^2 + y^2}^{x^2 + 2y^2} dz = \int_0^1 dx \int_x^{2x} y^2 dy = \int_0^1 \frac{7}{3} x^3 dx = \frac{7}{12}.$

3615. $x=\rho\cos\varphi,\ y=\rho\sin\varphi;$ сфера $\rho^2+z^2=4$, параболонд $\rho^2=3z$, линия пересечения $z^2+3z-4=0\Rightarrow z=1$ $(z\geqslant 0),\ \rho^2=3,$ ее проекция на $xOy:\ \rho=\sqrt{3};\ V_1=\int_0^{2\pi}d\varphi\int_0^{\sqrt{3}}\rho d\rho\int_{\rho^2/3}^{\sqrt{4-\rho^2}}dz=\int_0^{2\pi}d\varphi\int_0^{\sqrt{3}}\left(\sqrt{4-\rho^2}\rho-\frac{\rho^3}{3}\right)d\rho=\int_0^{2\pi}d\varphi\left(-\frac{1}{3}\sqrt{(4-\rho^2)^3}-\frac{1}{12}\rho^4\right)|_0^{\sqrt{3}}=\frac{19}{6}\pi;\ V_{\text{шара}}=\frac{4}{3}\pi\cdot 2^3=\frac{32}{3}\pi,\ V_2=V_{\text{шара}}-V_1=\frac{15}{2}\pi.$

3620.
$$x=\rho\cos\varphi\sin\theta,\ y=\rho\sin\varphi\sin\theta,\ z=\rho\cos\theta,\ x^2+y^2+z^2=\rho^2,\ (x^2+y^2+z^2)^2=axyz\Leftrightarrow\rho=\frac{1}{4}a\sin2\varphi\sin2\theta\cos\theta;\ xyz\geqslant0$$
 в 4 из 8 октантов, из соображений симметрии объемы в каждом из октантов равны, следовательно $V=4\int_0^{\pi/2}d\varphi\int_0^{\pi/2}d\theta\int_0^{\pi/4}\sin2\varphi\sin2\theta\cos\theta$ $\rho^2\sin\theta\,d\rho=4\int_0^{\pi/2}d\varphi\int_0^{\pi/2}\sin\theta\,d\theta\frac{g^3}{3}|_0^{a/4\sin2\varphi\sin2\theta\cos\theta}\,\rho^2\sin\theta\,d\rho=4\int_0^{\pi/2}\sin^32\varphi\,d\varphi\int_0^{\pi/2}\sin^32\varphi\,d\varphi\int_0^{\pi/2}\sin^32\theta\sin^4\theta\,d\theta=\frac{a^3}{6}\int_0^{\pi/2}\sin^32\varphi\,d\varphi\int_0^{\pi/2}\sin^7\theta\cos^3\theta\,d\theta=\frac{a^3}{6}\int_0^{\pi/2}\sin^32\varphi\,d\varphi\int_0^{\pi/2}\sin^7\theta\cos^3\theta\,d\theta=\frac{a^3}{6}\int_0^{\pi/2}\sin^32\varphi\,d\varphi\int_0^{\pi/2}(\sin^7\theta-\sin^9\theta)\,d(\sin\theta)=\frac{a^3}{6}\int_0^{\pi/2}\sin^32\varphi\,d\varphi(\frac{\sin^8\theta}{6}-\frac{\sin^{10}\theta}{10})|_0^{\pi/2}=\frac{a^3}{240}\int_0^{\pi/2}\sin^32\varphi\,d\varphi=\frac{a^3}{480}\int_0^{\pi/2}(1-\cos^22\varphi)\,d(-\cos2\varphi)=\frac{a^3}{360}.$

3624. $(x^2+y^2)^2+z^4=a^3z$ $[x=\rho\cos\varphi\sin\theta,\ y=\rho\sin\varphi\sin\theta,\ z=\rho\cos\theta]\Leftrightarrow\rho^4(\sin^4\theta+\cos^4\theta)=a^3\rho\cos\theta\Leftrightarrow\rho^3(1-\frac{1}{2}\sin^22\theta)=a^3\cos\theta\Leftrightarrow\rho=a\sqrt[3]{\frac{2\cos\theta}{2-\sin^22\theta}},\ 0\leqslant\theta\leqslant\frac{\pi}{2},$
 $V=\int_0^{2\pi}d\varphi\int_0^{\pi/2}d\theta\int_0^a\frac{3\sqrt{2\cos\theta/(1+\cos^22\theta)}}{1+\cos^22\theta}\,d\theta=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\sin\frac{1}{3}a^3\frac{2\cos\theta}{1+\cos^22\theta}\,d\theta=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\sin\frac{1}{3}a^3\frac{2\cos\theta}{1+\cos^22\theta}\,d\theta=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\sin\frac{1}{2}a^3\frac{1}{1+\cos^22\theta}\,d\theta=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\sin\frac{1}{2}a^3\frac{1}{1+\cos^22\theta}\,d\theta=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta=t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta+t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta+t\right]=\frac{a^3}{3}\int_0^{2\pi}d\varphi\int_0^{\pi/2}\frac{1}{1+\cos^22\theta}\,d\theta\left[\cos2\theta+t\right]=\frac{a^3}{3}\int_0^{\pi/2}\frac{1}{1+\cos^2\theta}\,d\theta\left[\cos\theta+t\right]=\frac{a^3}{3}\int_0^{\pi/2}\frac{1}{1+\cos^2\theta}\,d\theta\left[\cos\theta+t\right$

3641. Линия пересечения $z^2+2az-3a^2=0\Rightarrow z=a$ $(z\geqslant 0),\ x^2+y^2=2a^2,\ D\colon x^2+y^2\leqslant 2a^2,\ S=S_1+S_2,S_1$ — площадь поверхности параболоида $z=\frac{x^2+y^2}{2a};\ z_x'=\frac{x}{a},\ z_y'=\frac{y}{a},\ S_1=\iint_D\sqrt{1+\frac{x^2}{a^2}+\frac{y^2}{a^2}}\,dx\,dy=[x=\rho\cos\varphi,\ y=\rho\sin\varphi]=$ $=\int_0^{2\pi}d\varphi\int_0^{a\sqrt{2}}\frac{\sqrt{a^2+\rho^2}}{a}\rho\,d\rho=\frac{1}{2a}\int_0^{2\pi}d\varphi\frac{2}{3}\sqrt{(a^2+\rho^2)^3}|_0^{a\sqrt{2}}=$ $=\frac{1}{3a}\int_0^{2\pi}(3\sqrt{3}a^3-a^3)d\varphi=2\pi a^2\frac{3\sqrt{3}-1}{3};\ S_2$ — площадь поверхности сферы $z=\sqrt{3a^2-x^2-y^2},\ z_x'=-\frac{x}{\sqrt{3a^2-x^2-y^2}},$ $z_y'=-\frac{y}{\sqrt{3a^2-x^2-y^2}},\ S_2=\iint_D\sqrt{1+\frac{x^2+y^2}{3a^2-x^2-y^2}}\,dx\,dy=$ $=\int_D\frac{a\sqrt{3}}{\sqrt{3a^2-x^2-y^2}}\,dx\,dy\ [x=\rho\cos\varphi,\ y=\rho\sin\varphi]=$ $=a\sqrt{3}\int_0^{2\pi}d\varphi\int_0^{a\sqrt{2}}\frac{\rho d\rho}{\sqrt{3a^2-\rho^2}}=-a\sqrt{3}\int_0^{2\pi}d\varphi\sqrt{3a^2-\rho^2}|_0^{a\sqrt{2}}=$ $=a\sqrt{3}\int_0^{2\pi}(a\sqrt{3}-a)d\varphi=2\pi a^2(3-\sqrt{3});\ S=S_1+S_2=2\pi a^2(3-\frac{1}{3})=\frac{16}{3}\pi a^2.$

3645. Пусть Ox совпадает с касательной, Oy проходит через центр круга; уравнение окружности $x^2+(y-R)^2=R^2\Leftrightarrow x^2+y^2-2Ry=0\Leftrightarrow \rho=2\sin\varphi,\ 0\leqslant \varphi\leqslant \pi,$ $M_x=\int\!\!\int_D y\,dx\,dy[x=\rho\cos\varphi,\ y=\rho\sin\varphi]=\int_0^\pi d\varphi\int_0^{2R\sin\varphi}\rho^2\sin\varphi\,d\rho=\int_0^\pi \sin\varphi\,d\varphi\frac{\rho^3}{3}\Big|_0^{2R\sin\varphi}=\frac{8}{3}R^3\int_0^\pi \sin^4\varphi\,d\varphi=\frac{16}{3}R^3\int_0^{\pi/2}\sin^4\varphi\,d\varphi=\frac{16}{3}R^3\cdot\frac{3!!}{4!!}\frac{\pi}{2}=\pi R^3.$

3650. Пусть Ox совпадает с биссектрисой угла, Oy проходит через центр круга; из соображений симметрии $\eta=0$; $\xi=\frac{M_y}{S},\ M_y=\iint_D x\,dx\,dy\ [x=\rho\cos\varphi,\ y=\rho\sin\varphi]=\int_{-\alpha/2}^{\alpha/2}d\varphi\int_0^R\rho^2\cos\varphi\,d\rho=\frac{R^3}{3}\int_{-\alpha/2}^{\alpha/2}\cos\varphi\,d\varphi=\frac{2}{3}R^3\sin\frac{\alpha}{2},$ $S_{\text{сект}}=\frac{R^2\alpha}{2}\Rightarrow \xi=\frac{4}{3}R\frac{\sin\frac{\alpha}{2}}{\alpha}.$

3655. $I_x = \iint_D y^2 dx dy \ [x = a\rho\cos\varphi, \ y = b\rho\sin\varphi, \ J = ab\rho] = ab^3 \int_0^{2\pi} \sin^2\varphi d\varphi \int_0^1 \rho^3 d\rho = \frac{ab^3}{4} \int_0^{2\pi} \sin^2\varphi d\varphi = \frac{\pi ab^3}{4}; \ I_y = \iint_D x^2 dx dy \ [x = a\rho\cos\varphi, \ y = b\rho\sin\varphi, \ J = ab\rho] = a^3b \int_0^{2\pi} \cos^2\varphi d\varphi \int_0^1 \rho^3 d\rho = \frac{a^3b}{4} \int_0^{2\pi} \cos^2\varphi d\varphi = \frac{\pi a^3b}{4}; \ I = I_x + I_y = \frac{\pi ab(a^2 + b^2)}{4}.$

3659. Уравнение параболы y=kx, при $x=\frac{a}{2}$ $y=h\Rightarrow h=k\frac{a^2}{4},\ y=\frac{4hx^2}{a^2},\ I_x=\iint_D y^2\,dx\,dy=\frac{16h^2}{a^4}\iint_D x^4\,dx\,dy=\frac{32h^2}{a^4}\int_0^{a/2}x^4\,dx\int_{4hx^2/a^2}^hdy=\frac{32h^2}{a^4}\int_0^{a/2}x^4(h-\frac{4hx^2}{a^2})dx=\frac{32h^3}{a^4}(\frac{x^5}{5}-\frac{4x^7}{7a^2})|_0^{a/2}=\frac{h^3}{a^4}(\frac{a^5}{5}-\frac{a^7}{7})=\frac{2}{35}ah^3,$

 $I_{y} = \iint_{D} x^{2} dx dy = 2 \int_{0}^{a/2} x^{2} dx \int_{4hx^{2}/a^{2}}^{h} dy = 2 \int_{0}^{a/2} x^{2} (h - \frac{4hx^{2}}{a^{2}}) dx = 2h(\frac{x^{3}}{3} - \frac{4x^{5}}{5a^{2}})|_{0}^{a/2} = a^{3}h(\frac{1}{12} - \frac{1}{20}) = \frac{1}{30}a^{3}h, I = \frac{ah}{5}(\frac{2h^{2}}{7} + \frac{a^{2}}{6}).$

 $\begin{array}{lll} {\bf 3665.} \ \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} &= 1 \ \Rightarrow \ z \ = \ c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}; \ M_z \ = \\ &= \ \iint_{\Omega} z \, dx \, dy \, dz \ = \ \iint_{D} dx \, dy \int_{0}^{1 - x^2/a^2 - y^2/b^2} z \, dz \ [x \ = \ a\rho \cos\varphi, \ y \ = \ b\rho \sin\varphi, \ J \ = \ ab\rho] \ = \\ &= \ \int_{0}^{2\pi} d\varphi \int_{0}^{1} ab\rho \, d\rho \int_{0}^{c\sqrt{1-\rho^2}} z \, dz \ = \ \frac{abc^2}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{1} (1 - \rho^2)\rho \, d\rho \ = \\ &= \frac{abc^2}{2} \int_{0}^{2\pi} d\varphi (\frac{\rho^2}{2} - \frac{\rho^4}{4})|_{0}^{1} \stackrel{*}{=} \frac{abc^2}{8} \int_{0}^{2\pi} d\varphi \ = \frac{\pi abc^2}{4}. \end{array}$

3670. Из соображений симметрии $\xi=\eta=0$. Линия пересечения $z^2+2az-3a^2=0\Rightarrow z=a,\ D:x^2+y^2=2a^2\Leftrightarrow\rho=a\sqrt{2};\ V=\iiint_\Omega dxdydz=\iiint_\Omega dxdydz=\iiint_\Omega dxdydz=\iiint_\Omega dxdy\int_{(x^2+y^2)/2a^2}^{\sqrt{3a^2-x^2-y^2}}dz$ $[x=\rho\cos\varphi,\ y=\rho\sin\varphi,\ J=\rho]=\lim_{0\to\infty}\int_0^{2\pi}d\varphi\int_0^{a\sqrt{2}}\rho d\rho\int_{\rho^2/2a}^{\sqrt{3a^2-\rho^2}}dz=\int_0^{2\pi}d\varphi\int_0^{a\sqrt{2}}(\sqrt{3a^2-\rho^2}\rho-\frac{\rho^3}{2a})d\rho=\lim_{0\to\infty}\int_0^{2\pi}d\varphi\left(-\frac{1}{3}\sqrt{(3a^2-\rho^2)^3}-\frac{\rho^4}{8a}\right)|_0^{a\sqrt{2}}=\int_0^{2\pi}(a^3\sqrt{3}-\frac{a^3}{3}-\frac{a^3}{2})d\varphi=\lim_{0\to\infty}\int_0^{2\pi}d\varphi\left(-\frac{1}{3}\sqrt{(3a^2-\rho^2)^3}-\frac{\rho^4}{8a}\right)|_0^{a\sqrt{2}}=\int_0^{2\pi}(a^3\sqrt{3}-\frac{a^3}{3}-\frac{a^3}{2})d\varphi=\lim_{0\to\infty}\int_0^{2\pi}d\varphi\int_0^{3a^2-\rho^2}d\varphi=\lim_{0\to\infty}\int_0^{2\pi}d\varphi\int_0^{3a^2-\rho^2}\varphid\varphi=\lim_{0\to\infty}\int_0^{2\pi}d\varphi\int_0^{a\sqrt{2}}\varphid\varphi=\lim_{0\to\infty}\int_0^{2\pi}\varphi\varphi\int_0^{2\pi}\varphi\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi\varphi\int_0^{2\pi}\varphi\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0\to\infty}\int_0^{2\pi}\varphi(3a^2-\rho^2)=\lim_{0$

3674. Из соображений симметрии $\xi=\eta=0$; линия пересечения $x^2+y^2=2$. $D\colon x^2+y^2\leqslant 2$, $z=\frac{x^2+y^2}{2}$, $z'_x=x$, $z'_y=y$, $S=\int\int_D\sqrt{1+x^2+y^2}\,dx\,dy=\int_0^{2\pi}\!d\varphi\int_0^{\sqrt{2}}\!\sqrt{1+\rho^2}\rho\,d\rho=\frac{1}{3}\int_0^{2\pi}\!d\varphi\sqrt{(1+\rho^2)^3}|_0^{\sqrt{2}}=\frac{1}{3}\int_0^{2\pi}(3\sqrt{3}-1)d\varphi=\frac{2\pi}{3}(3\sqrt{3}-1);$ $M_{xy}=\frac{1}{2}\int\int_D\sqrt{1+x^2+y^2}(x^2+y^2)dx\,dy=\frac{1}{2}\int_0^{2\pi}\!d\varphi\int_0^{\sqrt{2}}\!\sqrt{1+\rho^2}\rho^3d\rho$ $[t=1+\rho^2,\ dt=2\rho\,d\rho,\ t_1=1,\ t_2=3]=\frac{1}{4}\int_0^{2\pi}\!d\varphi\int_1^3\sqrt{t}(t-1)dt=\frac{1}{4}\int_0^{2\pi}\!d\varphi(\frac{2}{5}t^{5/2}-\frac{2}{3}t^{3/2})|_1^3=\frac{\pi}{2}(\frac{18\sqrt{3}}{5}-\frac{2}{5}-2\sqrt{3}+\frac{2}{3})=\frac{12\sqrt{3}+2}{15}\pi;$ $\zeta=\frac{M_{xy}}{S}=\frac{55+9\sqrt{3}}{130}$.

$$= \gamma \frac{R^5 - r^5}{5} \int_0^{2\pi} d\varphi \int_0^{\pi} (1 - \cos^2 \theta) d(-\cos \theta) = \gamma \frac{R^5 - r^5}{5} \int_0^{2\pi} d\varphi (\frac{\cos^3 \theta}{3} - \cos \theta)|_0^{\pi} = \frac{8}{15} \pi \gamma (R^5 - r^5); \ \gamma = \frac{M}{V}, \ V = \frac{4}{3} \pi (R^3 - r^3) \Rightarrow I_z = \frac{2}{5} M \frac{R^5 - r^5}{R^3 - r^3}.$$

3683. Уравнение образующей конуса в плоскости xOz: $z=\frac{H(R-x)}{R-r}$, отсюда уравнение боковой поверхности усеченного конуса: $z=\frac{H(R-\sqrt{x^2+y^2})}{R-r},\ z_x'=-\frac{Hx}{(R-r)\sqrt{x^2+y^2}},\ z_y'=\frac{Hy}{(R-r)\sqrt{x^2+y^2}},\ ds=\sqrt{1+\frac{H^2}{(R-r)^2}}dxdy=\frac{L}{R-r}dxdy,$ где $L=\sqrt{H^2+(R-r)^2}$ — образующая, D: $r\leqslant\rho\leqslant R$; $I_z=\gamma\iint_D(x^2+y^2)ds=\frac{\gamma L}{4(R-r)}\int_0^{2\pi}d\varphi\int_r^R\rho^3d\rho=\frac{\gamma L(R^4-r^4)}{4(R-r)}\int_0^{2\pi}d\varphi=\frac{\pi\gamma L(R^4-r^4)}{2(R-r)};\ \gamma=\frac{M}{\pi(R+r)L}\Rightarrow I_z=\frac{M(R^4-r^4)}{2(R^2-r^2)}=M\frac{R^2+r^2}{2}.$

3688. Oz — ось цилиндра; $\gamma(x, y, z) = x^2 + y^2 + z^2$, $M = \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz [x = \rho \cos \varphi, y = \rho \sin \varphi] =$ = $\iiint_{\Omega} (\rho^2 + z^2) \rho d\rho d\varphi dz = \int_0^{2\pi} d\varphi \int_0^R \rho d\rho \int_0^H (\rho^2 + z^2) dz =$ = $\int_0^{2\pi} d\varphi \int_0^R (\rho^3 H + \rho \frac{H^3}{3}) d\rho = \int_0^{2\pi} (\frac{R^4 H}{4} + \frac{R^2 H^3}{6}) d\varphi =$ = $\pi R^2 H(\frac{R^2}{2} + \frac{H^2}{3})$.

3693. $x^2+y^2+z^2=R^2\Rightarrow z=\sqrt{R^2-x^2-y^2}$ $(z\geqslant 0)$, $x^2+y^2+z^2=2Rz\Leftrightarrow x^2+y^2+(R-z)^2=R^2\Rightarrow z=R-\sqrt{R^2-x^2-y^2}$ $(z\leqslant R)$, шары пересекаются при $z=\frac{R}{2}$, линия пересечения $x^2+y^2=\frac{3R^2}{4}$, $\gamma(x,y,z)=z$, $M_{xy}=\iiint_{\Omega}z^2dxdydz$ $x=\rho\cos\varphi$, $y=\rho\sin\varphi]=\int_0^{2\pi}d\varphi\int_0^{R\sqrt{3}/2}\rho d\rho\int_{R-\sqrt{R^2-\rho^2}}^{\sqrt{R^2-\rho^2}}z^2dz=\frac{1}{3}\int_0^{2\pi}d\varphi\int_0^{R\sqrt{3}/2}\left(\sqrt{(R^2-\rho^2)^3}-(R-\sqrt{R^2-\rho^2})^3\right)\rho d\rho$ $x=\pi^2-\rho^2$, $y=\pi^2-2\rho^2$, $y=\pi^2-$

3697. Рассмотрим элемент объема в цилиндрических координатах $[\rho, \rho + d\rho] \times [\varphi, \ \varphi + d\varphi] \times [\theta, \ \theta + d\theta]$, его объем $dV = \rho d\rho d\varphi d\theta$, $dm = \lambda z^2 \rho d\rho d\varphi d\theta$, расстояние до точечной массы $r = \sqrt{\rho^2 + (2R-z)^2}$, $dF = k \frac{m dm}{r^2} = km\lambda \frac{z^2 \rho d\rho d\varphi d\theta}{\rho^2 + (2R-z)^2}$, составляющая силы вдоль оси $Oz \ dF_z = dF \cos \alpha$, где α — угол между осью Oz и линией,

соединяющей элемент объема и точечную массу, $\cos \alpha = \frac{2R-z}{\sqrt{\rho^2+(2R-z)^2}} \Rightarrow dF_z = km\lambda \frac{z^2(2R-z)\rho\,d\rho\,d\phi\,d\theta}{(\rho^2+(2R-z)^2)^{3/2}},$ F $= \iiint_{\Omega} dF_z \, dx \, dy \, dz \quad [x = \rho \cos \varphi, \quad y = \rho \sin \theta] \\ = km \lambda \int_0^{2\pi} d\varphi \int_{-R}^R z^2 (2R - z) dz \int_0^{\sqrt{R^2 - z^2}} \frac{\rho \, d\rho}{\rho^2 + (2R - z)^2)^{3/2}}$ $= \rho^2 + (2R - z)^2, dt = 2\rho d\rho, t_1 = (2R - z)^2, t_2 = 5R^2$ $-4Rz] = \frac{1}{2}km\lambda \int_0^{2\pi} d\varphi \int_{-R}^R z^2 (2R - z) dz \int_{(2R - z)^2}^{5R^2 - 4Rz} \frac{dt}{t^{3/2}}$ $-km\lambda \int_{0}^{2\pi} d\varphi \int_{-R}^{R} z^{2} (2R-z) dz \frac{1}{\sqrt{t}} \Big|_{(2R-z)^{2}}^{5R^{2}-4Rz} = km\lambda \times$ $\times \int_0^{2\pi} d\varphi \int_{-R}^R \left(z^2 - \frac{z^2(2R-z)}{\sqrt{5R^2 - 4Rz}} \right) dz \quad [u] = \sqrt{5R^2 - 4Rz}, \quad z$ $= \frac{5R^2 - u^2}{4R}, \quad dz = -\frac{u \, du}{2R}, \quad u_1 = 3R, \quad u_2 = R]$ $= km\lambda \int_0^{2\pi} d\varphi \left(\frac{z^3}{3}\Big|_{-R}^R - \int_R^{3R} \frac{(5R^2 - u^2)^2}{16R^2u} \left(2R - \frac{5R^2 - u^2}{4R}\right) \frac{u \, du}{2R}\right)$ $= km\lambda \int_0^{2\pi} d\varphi \left(\frac{2R^3}{3} - \frac{1}{128R^4} \int_R^{3R} (5R^2 - u^2)^2 (3R^3 + u^2) du \right)$ $=km\lambda\int_0^{2\pi}d\varphi\left(\frac{2R^3}{3}-\frac{1}{128R^4}\int_R^{3R}(75R^6-5R^4u^2-7R^2u^4+u^6)du\right)=$ $= 2\pi km\lambda \left(\frac{2R^3}{3} - \frac{1}{128R^4} (75R^6u - \frac{5}{3}R^4u^3 - \frac{7}{5}R^2u^5 + \frac{1}{7}u^7)|_R^{3R}\right)^2$ $= \frac{17}{210}\pi km\lambda R^3; \quad M = \iiint_{\Omega} \lambda z^2 dx dy dz \quad [x = \rho\cos\varphi, \quad y = \rho\sin\varphi] = \lambda \int_0^{2\pi} d\varphi \int_{-R}^R z^2 dz \int_0^{\sqrt{R^2-z^2}} \rho d\rho =$ $=\frac{\lambda}{2}\int_{0}^{2\pi}d\varphi\int_{-R}^{R}z^{2}(R^{2}-z^{2})dz =\frac{\lambda}{2}\int_{0}^{2\pi}d\varphi(\frac{R^{2}z^{3}}{3}-\frac{z^{5}}{5})|_{-R}^{R}=$ $=\frac{4}{15}\pi\lambda R^5 \Rightarrow F = \frac{17}{56}k\frac{Mm}{R^2}$

3700.1 Пусть a — основание треугольника, β — плоскость, совпадающая с поверхностью жидкости, ось Oz совпадает с высотой треугольника и направлена вниз, A — точка на высоте треугольника с аппликатой z; рассмотрим полоску [z,z+dz] длины l, из соображений подобия $\frac{l}{a}=\frac{h-z}{h}\Rightarrow l=\frac{a(h-z)}{h}$, площадь полоски $dS=\frac{a(h-z)dz}{h}$, глубина погружения полоски $z\sin\alpha$, сила давления на полоску $dF=\rho gz\sin\alpha dS=a\rho g\frac{z(h-z)dz}{h}\sin\alpha$, сила давления на полоску $dF=a\rho g\frac{z^2(h-z)dz}{h}\sin^2\alpha$, $M_{\beta}=\frac{a\rho g\sin^2\alpha}{h}\int_0^h (hz^2-z^3)dz=\frac{a\rho gh^3\sin^2\alpha}{h}$; $F=\frac{a\rho g\sin\alpha}{h}\int_0^h (hz-z^2)dz=\frac{a\rho gh^2\sin\alpha}{h}$, $\eta=\frac{M_{\beta}}{F}=\frac{h}{2}\sin\alpha$.

$$= -\frac{1}{2} \int_0^{\pi/2} d\varphi \frac{1}{\rho^2 + a^2} \Big|_0^{+\infty} = \frac{1}{2a^2} \int_0^{\pi/2} d\varphi = \frac{\pi}{4a^2}.$$

$$\mathbf{3710.} \int_0^{+\infty} dx \int_x^{+\infty} e^{-y^2} dy = \int_0^{+\infty} dy \int_0^y e^{-y^2} dx = \int_0^{+\infty} y e^{-y^2} dy = -\frac{1}{2} e^{-y^2} \Big|_0^{+\infty} = \frac{1}{2}.$$

3715. $I=\iint_{D} \frac{\cos(x^2+y^2)}{x^2+y^2} dx \, dy = \int_{0}^{2\pi} d\varphi \int_{0}^{R} \frac{\cos\rho^2}{\rho} \, d\rho;$ $\lim_{\rho \to 0} \cos\rho^2 = 1 \Rightarrow \frac{\cos\rho^2}{\rho} \sim \frac{1}{\rho}, \, \int_{0}^{R} \frac{d\rho}{\rho}$ расходится, значит I расходится.

3720.
$$\iint_{\Omega} \frac{dx dy dz}{\sqrt{(x^2+y^2+z^2)^3 \ln \sqrt[3]{x^2+y^2+z^2}}} \left[x = \rho \cos \varphi \sin \theta, \ y = \rho \sin \varphi \sin \theta, \ z = \rho \cos \theta \right] = \iiint_{\Omega} \frac{\rho^2 \sin \varphi}{\rho^3 \ln \rho^{2/3}} d\rho d\varphi d\theta = \frac{3}{2} \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \int_0^R \frac{d\rho}{\rho \ln \rho} \left[t = \ln \rho, \ dt = \frac{d\rho}{\rho} \right] = \frac{3}{2} \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \int_{-\infty}^{\ln R} \frac{dt}{t} = \frac{3}{2} \int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \ln |t| |_{-\infty}^{\ln R} - \text{расходится.}$$
3725.
$$V = \iint_{\mathbf{R}^2} x^2 y^2 e^{-(x^2+y^2)} dx dy = \frac{1}{8} \int_0^{2\pi} \sin^2 2\varphi d\varphi \int_0^{+\infty} \rho^4 \cos^2 \varphi \sin^2 \varphi e^{-\rho^2} \rho d\rho \left[t = \rho^2, \ dt = 2\rho d\rho \right] = \frac{1}{8} \int_0^{2\pi} \sin^2 2\varphi d\varphi \int_0^{+\infty} t^2 e^{-t} dt; \ I = \int_0^{+\infty} t^2 e^{-t} dt = -\int_0^{+\infty} t^2 d(e^{-t}) = -t^2 e^{-t} |_0^{+\infty} + 2 \int_0^{+\infty} t e^{-t} dt = -2 \int_0^{+\infty} t \, d(e^{-t}) = -2t e^{-t} |_0^{+\infty} + 2 \int_0^{+\infty} e^{-t} dt = -2 e^{-t} |_0^{+\infty} = 2; \ V = \frac{1}{8} \int_0^{2\pi} \sin^2 2\varphi \, d\varphi \cdot 2 = \frac{1}{8} \int_0^{2\pi} (1 - \cos 4\varphi) d\varphi = \frac{\pi}{4}.$$

3728. Пусть начало координат совпадает с вершиной конуса, ось — высота; в сферических координатах уравнение боковой поверхности конуса $\theta = \operatorname{arctg} \frac{R}{H}$, уравнение основания $\rho \cos \theta = H$; рассмотрим элемент объема $[\rho, \rho + d\rho] \times [\varphi, \varphi + d\varphi] \times [\theta, \theta + d\theta]$; $dV = \rho^2 \sin \theta \, d\rho \, d\varphi \, d\theta$, $dm = \gamma \rho^2 \sin \theta \, d\rho \, d\varphi \, d\theta$, $dF = k \frac{m \, dm}{\rho^2} = k m \gamma \sin \theta \, d\rho \, d\varphi \, d\theta$, составляющая силы вдоль оси $Oz \, dF_z = dF \cos \theta = k m \gamma \sin \theta \cos \theta \, d\rho \, d\varphi \, d\theta$, $F = \iiint_{\Omega} dF_z \, dx \, dy \, dz = k m \gamma \int_0^{2\pi} d\varphi \int_0^{\arctan g \, R/H} \sin \theta \cos \theta \, d\theta \int_0^{H/\cos \theta} d\rho = k m \gamma \int_0^{2\pi} d\varphi \int_0^{\arctan g \, R/H} \sin \theta \cos \theta \, d\theta \frac{H}{\cos \theta} = k m \gamma H \int_0^{2\pi} d\varphi \cos \theta \Big|_{\arctan g \, R/H}^0 = 2\pi k \gamma H m (1 - \cos \arctan g \frac{R}{H}) = 2\pi k \gamma H m (1 - \frac{1}{\sqrt{1 + R^2 H^2}}) = 2\pi k \gamma H m (1 - \frac{H}{L})$, где L — образующая конуса.

3733.
$$F(a) = \int_0^b \frac{dx}{a^2 + b^2} = \frac{1}{a} \operatorname{arctg} \frac{b}{a} \Rightarrow F'(a) = -\int_0^b \frac{2a \, dx}{(a^2 + x^2)^2} = \frac{1}{a^2} \operatorname{arctg} \frac{b}{a} + \frac{1}{a} \frac{1}{1 + \frac{b^2}{a^2}} \left(-\frac{b}{a^2} \right) = -\frac{1}{a} \left(\frac{1}{a} \operatorname{arctg} \frac{b}{a} + \frac{b}{a^2 + b^2} \right) \Rightarrow G(a) = \frac{1}{a^2} \left(\frac{1}{a} \operatorname{arctg} \frac{b}{a} + \frac{b}{a^2 + b^2} \right), \quad G'(a) = \int_0^b \frac{-4a \, dx}{(a^2 + x^2)^3} = \frac{1}{2a^2} \left(\frac{1}{a} \operatorname{arctg} \frac{b}{a} + \frac{b}{a^2 + b^2} \right)' = -\frac{3}{2a^4} \operatorname{arctg} \frac{b}{a} - \frac{b}{2a^3(a^2 + b^2)} - \frac{2a^2b + b^3}{a^3(a^2 + b^2)^2} = -\frac{b}{2a^4} \left(\frac{3}{ab} \operatorname{arctg} \frac{b}{a} + \frac{5a^2 + 3b^2}{(a^2 + b^2)^2} \right) \Rightarrow \int_0^b \frac{dx}{(a^2 + x^2)^3} = \frac{b}{8a^4} \left(\frac{3}{ab} \operatorname{arctg} \frac{b}{a} + \frac{5a^2 + 3b^2}{(a^2 + b^2)^2} \right).$$

3738.
$$F(a) = \int_0^{+\infty} \frac{1 - e^{-ax^2}}{xe^{x^2}} dx \Rightarrow F'(a) = \int_0^{+\infty} \frac{x^2 e^{-ax^2}}{xe^{x^2}} dx =$$

$$= \int_0^{+\infty} xe^{-(a+1)x^2} dx = -\frac{1}{2(a+1)}e^{-(a+1)x^2}|_0^{+\infty} = \frac{1}{2(a+1)} - \lim_{x \to +\infty} \frac{1}{2(a+1)}e^{-(a+1)x^2} = \frac{1}{2(a+1)}, \text{ т. к. } a+1 > 0 \Rightarrow F(a) =$$

$$= \int \frac{da}{2(a+1)} = \frac{1}{2}\ln(a+1) + C, \text{ при } a = 0 \ F(a) = 0 \Rightarrow C = 0.$$

3743. $F(a)=\int_0^\pi \frac{\ln(1+a\cos x)}{\cos x}dx\Rightarrow F'(a)=\int_0^\pi \frac{1}{1+a\cos x}\left[t=\frac{t}{2},\cos x=\frac{1-t^2}{1+t^2},\ dx=\frac{2dt}{1+t^2},\ t_1=0,\ t_2=+\infty\right]=\frac{t}{2}\int_0^{+\infty} \frac{2dt}{1+t^2+a-at^2}=\frac{2}{1-a}\int_0^{+\infty} \frac{dt}{t^2+\frac{1+a}{1-a}}=\frac{2}{(1-a)\sqrt{\frac{1+a}{1-a}}}\times \cot \frac{t\sqrt{1-a}}{\sqrt{1+a}}\Big|_0^{+\infty}=\frac{\pi}{\sqrt{1-a^2}};\ F(a)=\int \frac{\pi}{\sqrt{1-a^2}}da=\pi \arcsin a+C,$ при a=0 F(a)=0 $\Rightarrow C=0$.

3748. $F(a,b,c) = \int_0^{+\infty} e^{-ax} \frac{\cos bx - \cos cx}{2} dx$, $\frac{\partial F}{\partial b} = I = -\int_0^{+\infty} e^{-ax} \sin bx dx = \frac{1}{b} \int_0^{+\infty} e^{-ax} d(\cos bx) = \frac{1}{b} e^{-ax} \cos bx \Big|_0^{+\infty} + \frac{a}{b} \int_0^{+\infty} e^{-ax} \cos bx dx = -\frac{1}{b} + \frac{a}{b^2} \int_0^{+\infty} e^{-ax} d(\sin bx) = -\frac{1}{b} + \frac{a}{b^2} e^{-ax} \sin bx \Big|_0^{+\infty} + \frac{a^2}{b^2} \int_0^{+\infty} e^{-ax} \sin bx dx = -\frac{1}{b} - \frac{a^2}{b^2} I \Rightarrow I = -\frac{b}{a^2 + b^2} \Rightarrow F(a,b,c) = -\int \frac{b}{a^2 + b^2} db + \varphi(a,c) = -\frac{1}{2} \ln(a^2 + b^2) + \varphi(a,c)$, при $b = cF(a,b,c) = 0 \Rightarrow \varphi(a,c) = \frac{1}{2} \ln(a^2 + c^2)$, $F(a,b,c) = \frac{1}{2} \ln \frac{a^2 + c^2}{a^2 + b^2}$.

 $3753.1 \quad \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-z^{2}x} dz = \frac{2}{\sqrt{\pi x}} \int_{0}^{+\infty} e^{-(z\sqrt{x})^{2}} d(z\sqrt{x}) = \frac{1}{\sqrt{\pi x}} \frac{\sqrt{\pi}}{2} = \frac{1}{\sqrt{x}}; \quad I = \int_{0}^{+\infty} \frac{\cos x dx}{\sqrt{x}} = \frac{2}{\sqrt{\pi}} \times \int_{0}^{+\infty} \cos x dx \int_{0}^{+\infty} e^{-z^{2}x} dz = \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} dz \int_{0}^{+\infty} e^{-z^{2}x} \cos x dx; \quad I_{1} = \int_{0}^{+\infty} e^{-z^{2}x} \cos x dx = \int_{0}^{+\infty} e^{-z^{2}x} d(\sin x) dx = e^{-z^{2}x} \sin x \Big|_{0}^{+\infty} + z^{2} \int_{0}^{+\infty} e^{-z^{2}x} \sin x dx = -z^{2} \int_{0}^{+\infty} e^{-z^{2}x} d(\cos x) = e^{-z^{2}x} \cos x \Big|_{0}^{+\infty} - z^{4} \int_{0}^{+\infty} e^{-z^{2}x} \cos x dx = z^{2} - z^{4} I_{1} \Rightarrow I_{1} = \frac{z^{2}}{1+z^{4}}, \quad I = \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} \frac{z^{2} dz}{1+z^{4}} \quad [z = \frac{1}{t}, \quad dt = -\frac{dz}{z^{2}}, \quad t_{1} = +\infty, \quad t_{2} = 0 = \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} \frac{dt}{1+t^{4}} = (2047) \quad \frac{2}{\sqrt{\pi}} \left(\frac{1}{4\sqrt{2}} \ln \frac{x^{2} + x\sqrt{2} + 1}{x^{2} - x\sqrt{2} + 1} + \frac{1}{2\sqrt{2}} \arctan(x\sqrt{2} + 1) + \frac{1}{2\sqrt{2}} \arctan(x\sqrt{2} - 1) \right) \Big|_{0}^{+\infty} = \frac{2}{\sqrt{\pi}} \left(0 + \frac{1}{2\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4}\right) + \frac{1}{2\sqrt{2}} \left(\frac{\pi}{2} + \frac{\pi}{4}\right)\right) = \sqrt{\frac{\pi}{2}}.$

3756. $f(x) = e^{-x^n}, f(+\infty) = 0, f(0) = 1;$ $\int_0^{+\infty} \frac{e^{-ax^n} - e^{-bx^n}}{x} dx = \int_0^{+\infty} \frac{f(x\sqrt[n]{a}) - f(x\sqrt[n]{b})}{x} dx = -\ln \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{\ln b - \ln a}{n}.$

3761. $f(x) = \frac{\sin x}{x}$, $\int_A^{+\infty} \frac{\sin x}{x^2} dx$ сходится при любом A > 0, т. к. мажорируется сходящимся интегралом $\int_A^{+\infty} \frac{dx}{x^2} \Rightarrow \int_0^{+\infty} \frac{b \sin ax - a \sin bx}{x^2} dx = ab \int_0^{+\infty} \frac{\sin ax}{ax} - \frac{\sin bx}{bx} dx = ab \int_0^{+\infty} \frac{f(b) - f(a)}{x} dx = ab f(0) \ln \frac{b}{a} = ab \ln \frac{b}{a} \lim_{x \to 0} \frac{\sin x}{x} = ab (\ln b - \ln a)$.

К ГЛАВЕ 13

3772. Координаты точек пересечения (0,0) и (2p,2p), $y^2 = 2px \Leftrightarrow x = \frac{y^2}{2p}, x'_y = \frac{y}{p}, ds = \sqrt{1 + \frac{y^2}{p^2}} dy,$ $\int_{L} y \, ds = \int_{0}^{2p} y \sqrt{1 + \frac{y^{2}}{p^{2}}} dy = \frac{1}{p} \int_{0}^{2p} y \sqrt{p^{2} + y^{2}} dy = \frac{1}{2p} \int_{0}^{2p} \sqrt{p^{2} + y^{2}} dy = \frac{1}{2p} \int_{0}^{2p} \sqrt{p^{2} + y^{2}} d(y^{2} + p^{2}) = \frac{1}{3p} \sqrt{(p^{2} + y^{2})^{3}} |_{0}^{2p} = p^{2} \frac{5\sqrt{5} - 1}{3}.$ **3778.** В полярных координатах $L: (x^2 + y^2)^2 = a^2(x^2 - y^2) \Leftrightarrow \rho = a\sqrt{\cos 2\varphi}, \ \rho' = -a\frac{\sin 2\varphi}{\sqrt{\cos 2\varphi}}, \ ds = \sqrt{\rho^2 + {\rho'}^2} =$ $=\frac{a\,d\varphi}{\sqrt{\cos 2\varphi}}, \int_L x\sqrt{x^2-y^2}\,ds = \int_{-\pi/4}^{\pi/4} \rho^2 \cos\varphi\sqrt{\cos 2\varphi} \frac{a\,d\varphi}{\sqrt{\cos 2\varphi}} =$ $a \int_{-\pi/4}^{\pi/4} \rho^2 \cos \varphi \, d\varphi \qquad = \qquad a^3 \int_{-\pi/4}^{\pi/4} \cos 2\varphi \cos \varphi \, d\varphi$ $= \frac{a^3}{2} \int_{-\pi/4}^{\pi/4} (\cos 3\varphi + \cos \varphi) \, d\varphi = \frac{a^3}{2} \left(\frac{\sqrt{2}}{3} + \sqrt{2} \right) = \frac{2}{3} a^3 \sqrt{2}.$ 3782. $x'_t = \cos t - t \sin t$, $y'_t = \sin t + t \cos t$, $z'_t = 1$, $ds = \sqrt{(\cos t - t \sin t)^2 + (\sin t + t \cos t)^2 + 1} dt = \sqrt{t^2 + 2} dt$ $\int_{L} (2z - x\sqrt{x^2 + y^2}) ds = \int_{0}^{2\pi} t\sqrt{t^2 + 2} dt = \frac{1}{2} \int_{0}^{2\pi} \sqrt{t^2 + 2} d(t^2 + t^2) dt$ $(t^2+2) = \frac{1}{2}\sqrt{(t^2+2)^3}|_0^{2\pi} = \frac{2\sqrt{2}}{2}((2\pi^2+1)^{3/2}-1).$ **3786.** $M = \int_L y \, ds = \int_0^{\pi/2} b \sin t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt = \int_0^{\pi/2} b \sin t \sqrt{a^2 + (b^2 - a^2) \cos^2 t} \, dt \quad (\varepsilon = \frac{a^2 - b^2}{a}) = 0$ $ab \int_0^{\pi/2} \sin t \sqrt{1 - \varepsilon^2 \cos^2 t} \, dt \quad [u = \cos t,$ $= -\sin t \, dt, \quad u_1 = 1, \quad u_2 = 0 = ab \int_0^1 \sqrt{1 - \varepsilon^2 u^2} \, du = ab\varepsilon \int_0^1 \sqrt{\frac{1}{\varepsilon^2} - u^2} \, du = ab\varepsilon \left(\frac{u}{2} \sqrt{\frac{1}{\varepsilon^2} - u^2} + \frac{1}{2\varepsilon^2} \arcsin \varepsilon u \right) \Big|_0^1 = ab\varepsilon \int_0^1 \sqrt{\frac{1}{\varepsilon^2} - u^2} \, du = ab\varepsilon \int_0^1 \sqrt{1 - \varepsilon^2 u^2} \, du = ab\varepsilon$ $=\frac{ab}{2}\left(\sqrt{1-\varepsilon^2}+\frac{1}{\varepsilon}\arcsin\varepsilon\right)=\left(\sqrt{1-\varepsilon^2}=\frac{b}{a}\right)=\frac{b^2}{2}+\frac{ab}{2\varepsilon}\arcsin\varepsilon$

$$3791. ds = \sqrt{a^{2} \sin^{2} t + a^{2} \cos^{2} t + \frac{h^{2}}{4\pi^{2}}} dt = \frac{\sqrt{4\pi^{2} a^{2} + h^{2}}}{2\pi} dt,$$

$$I_{x} = \int_{L} (y^{2} + z^{2}) ds = \int_{0}^{2\pi} \left(a^{2} \sin^{2} t + \frac{h^{2} t^{2}}{4\pi^{2}} \right) \frac{\sqrt{4\pi^{2} a^{2} + h^{2}}}{2\pi} dt =$$

$$= \frac{\sqrt{4\pi^{2} a^{2} + h^{2}}}{2\pi} \int_{0}^{2\pi} \left(a^{2} \frac{1 - \cos 2t}{2} + \frac{h^{2} t^{2}}{4\pi^{2}} \right) dt =$$

$$= \frac{\sqrt{4\pi^{2} a^{2} + h^{2}}}{2\pi} \left(a^{2} \frac{t}{2} - a^{2} \frac{\sin 2t}{4} + \frac{h^{2} t^{3}}{12\pi^{2}} \right) |_{0}^{2\pi} = \sqrt{4\pi^{2} a^{2} + h^{2}} \left(\frac{a^{2}}{2} + \frac{h^{2}}{3} \right);$$

$$I_{y} = \int_{L} (x^{2} + z^{2}) ds = \int_{0}^{2\pi} \left(a^{2} \cos^{2} t + \frac{h^{2} t^{2}}{4\pi^{2}} \right) \frac{\sqrt{4\pi^{2} a^{2} + h^{2}}}{2\pi} dt =$$

$$= \sqrt{4\pi^{2} a^{2} + h^{2}} \left(\frac{a^{2}}{2} + \frac{h^{2}}{3} \right) = I_{x}; \quad I_{z} = \int_{L} (x^{2} + y^{2}) ds =$$

$$= \int_{0}^{2\pi} a^{2} \frac{\sqrt{4\pi^{2} a^{2} + h^{2}}}{2\pi} dt = a^{2} \sqrt{4\pi^{2} a^{2} + h^{2}}.$$

3795. В полярных координатах L: $\rho = R$, $ds = \sqrt{R^2(\sin^2\varphi + \cos^2\varphi)}\,d\varphi = R\,d\varphi$, $\int_L z\,ds = \int_L \frac{xy}{2R} = 4\int_0^{\pi/2} \frac{R^2\cos\varphi\sin\varphi}{2R}\,R\,d\varphi = R^2\int_0^{\pi/2}\sin2\varphi\,d\varphi = R^2$.

3800. Пусть ось Ox совпадает с проводником, ось Oy проходит через точечную массу, тогда ds=dx, $r=\sqrt{x^2+a^2}$, $\sin\alpha=\frac{a}{x^2+a^2}$, $dF=mI\frac{a\,dx}{(x^2+a^2)^{3/2}}$, силы, соответствующие всем элементам dx параллельны между собой, отсюда $F=2mI\int_0^{+\infty}\frac{a\,dx}{(x^2+a^2)^{3/2}}$ $[x=a\,\mathrm{tg}\,t,\,dx=a\frac{dt}{\cos^2t},\,t_1=0,\,t_2=\frac{\pi}{2}]=\frac{2mI}{a}\int_0^{\pi/2}\cos t\,dt=\frac{2mI}{a}$.

3805. Пусть A- точка на контуре, $x=R\cos t,\ y=R\sin t,\ ds=\sqrt{dx^2+dy^2}=Rdt,\ r=\sqrt{R^2+h^2},\ \sin\alpha=1,$ т. к. ток направлен по касательной перпендикулярно прямой AP; из соображений симметрии результирующая сила направлена вдоль оси Oz, поэтому $F=\int_L dF\cos\beta$, где $\beta-$ угол между AP и Oz, $\cos\beta=\frac{R}{\sqrt{R^2+h^2}};\ F=\int_L \frac{mIds}{r^2}\cos\beta=\frac{2\pi mIR^2dt}{(R^2+h^2)^{3/2}}=\frac{2\pi mIR^2dt}{(R^2+h^2)^{3/2}}=\frac{2\pi mIR^2dt}{(R^2+h^2)^{5/2}}=0$ при $h=\frac{R}{\sqrt{2}}$.

3810. Уравнение отрезка $y=2x,~0\leqslant x\leqslant 2\pi\Rightarrow dy=2dx,~\int_{(0,~0)}^{(\pi,~2\pi)}-x\cos y\,dx+y\sin x\,dy=\int_{0}^{\pi}(-x\cos 2x+4x\sin x)dx=\int_{0}^{\pi}x\,d(-\frac{\sin 2x}{2}-4\cos x)=(-x\frac{\sin 2x}{2}-4x\cos x)|_{0}^{\pi}+\int_{0}^{\pi}(\frac{\sin 2x}{2}+4\cos x)dx=4\pi-\frac{\cos 2x}{4}|_{0}^{\pi}+4\sin x|_{0}^{\pi}=4\pi.$

3815.
$$\int_{L} \frac{y^{2}dx - x^{2}dy}{x^{2} + y^{2}} = \int_{0}^{\pi} \frac{-a^{3}\cos^{3}t - a^{3}\sin^{3}t}{a^{2}} dt = -a \int_{0}^{\pi} (\cos^{3}t + \sin^{3}t) dt = a \int_{0}^{\pi} (1 - \cos^{2}t) d(\cos t) - a \int_{0}^{\pi} (1 - \sin^{2}t) d(\sin t) = a \left(\cos t - \frac{\cos^{3}t}{3} - \sin t + \frac{\sin^{3}t}{3}\right) \Big|_{0}^{\pi} = -\frac{4}{3}a.$$

3821. Представим кривую параметрически, выразив x и y через z: $Rx+z^2=R^2\Rightarrow x=R-\frac{z^2}{R},\ y^2=Rx-x^2=Rz-z^2-(R-\frac{z^2}{R})^2=\frac{z^2(R^2-z^2)}{R^2}\Rightarrow y=\pm\frac{z\sqrt{R^2-z^2}}{R},\ dy=\pm\frac{R^2-2z^2}{R\sqrt{R^2-z^2}}$ таким образом, кривая состоит из двух симметричных относительно плоскости y=0 ветвей $L_1(y>0)$ и $L_2(y{<}0)$ противоположной ориентации; $\int_{L_1} y^2 dx = -\int_{L_2} y^2 dx$ \Rightarrow $\int_{L} y^{2} dx = 0; \ \int_{L_{1}} x^{2} dz = -\int_{L_{2}} x^{2} dz \Rightarrow \int_{L} x^{2} dz = 0; \ \int_{L_{1}} z^{2} dy =$ $=\int_{L_{a}}z^{2}dy$, т. к. меняется не только ориентация кривой, но и знак $dy \Rightarrow \int_L z^2 dy = 2 \int_{L_1} z^2 dy = 2 \int_0^R \frac{z^2 R^2 - z^4}{R \sqrt{R^2 + z^2}} dz$ [z = $= R\sin t = 2R^3 \int_0^{\pi/2} (\sin^2 t - 2\sin^4 t) dt = -\frac{\pi R^3}{4}.$ **3825.1.** a) $\int_{L} (xy + x + y) dx + (xy + x - y) dy =$ $= a\cos t, \quad y = b\sin t = \int_0^{2\pi} ((ab\cos t\sin t + a\cos t + b\sin t)(-a\sin t) + (ab\cos t\sin t + a\cos t - b\sin t)b\cos t)dt =$ $= \int_0^{2\pi} (ab^2 \cos^2 t \sin t - a^2 b \sin^2 t \cos t + ab \cos 2t - \frac{a^2 + b^2}{2} \sin^2 2t) dt =$ $= \left(-ab^2 \frac{\cos^3 t}{3} - a^2 b \frac{\sin^3 t}{3} + ab \frac{\sin 2t}{2} + \frac{a^2 + b^2}{4} \cos 2t \right) \Big|_0^{2\pi} = 0.$ 6) $\frac{\partial P}{\partial y} = x+1$, $\frac{\partial Q}{\partial x} = y+1$, $I = \iint_D (y-x) dx dy$ [x = 0] $= a\rho\cos\varphi, \quad y = b\rho\sin\varphi] = ab\int_0^{2\pi}d\varphi\int_0^1(b\rho\sin\varphi - a\rho\cos\varphi)\rho d\rho = \frac{ab}{3}\int_0^{2\pi}(b\rho\sin\varphi - a\rho\cos\varphi)d\varphi = 0.$ **3829.** $\frac{\partial P}{\partial x} = 2x - 1$, $\frac{\partial Q}{\partial x} = 2x$, $I = \iint_D dx dy = S$. **3840.** $\int_{(3.4)}^{(5,12)} \frac{x \, dx + y \, dy}{x^2 + y^2} = \frac{1}{2} \int_{(3.4)}^{(5.12)} \frac{d(x^2 + y^2)}{x^2 + y^2} = \ln \sqrt{x^2 + y^2} \Big|_{(3.4)}^{(5,12)} = \ln \frac{13}{5}.$ **3846.** $du = 4(x^2 - y^2)x dx - 4(x^2 - y^2)y dy$, $u = \int 4(x^2 - y^2)x dx + \varphi(y) = x^4 - 2x^2y^2 + \varphi(y)$; $\frac{\partial u}{\partial y} = -4x^2y + \varphi'(y) = x^4 - 2x^2y^2 + \varphi(y)$ $= -4(x^2 - y^2) \Rightarrow \varphi'(y) = 4y^3, \ \varphi(y) = y^4 + C, \ u = x^4 - y^4 + C$ $-2x^2y^2 + y^4 + C = (x^2 - y^2)^2 + C$ **3850.** $u = \int (2x\cos y - y^2\sin x)dx + \varphi(y) = x^2\cos y + y^2\cos x + \varphi(y);$ $\frac{\partial u}{\partial y} = -x^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin y + 2y\cos x + \varphi'(y) = 2y\cos x - y^2\sin x + \varphi'(y) = 2y\cos x - y^2\sin x + \varphi'(y) = 2y\cos x - y^2\sin x + \varphi'(y) = 2y\cos x + \varphi'(y) =$ $-x^2\sin y \Rightarrow \varphi'(y) = 0, \ \varphi(y) = C, \ u = x^2\cos y + y^2\cos x + C.$ **3857.** $u = \int \frac{yz\,dx}{1+x^2y^2z^2} + \varphi(y,z) = \operatorname{arctg} xyz + \varphi(y,z); \quad \frac{\partial u}{\partial y} = \frac{xz}{1+x^2y^2z^2} + \frac{\partial \varphi}{\partial y} \Rightarrow \frac{\partial \varphi}{\partial y} = 0, \quad \varphi(y,z) = \varphi(z); \quad \frac{\partial u}{\partial z} = \frac{yx}{1+x^2y^2z^2} + \varphi'(z) \Rightarrow \varphi'(z) = 0, \quad \varphi(z) = C, \quad u = \operatorname{arctg} xyz + C.$ **3862.** $S = \frac{1}{2} \int_{L} x \, dy - y \, dx \, \left[x = a \cos^{3} t, \ y = a \sin^{3} t \right] =$ $= \frac{3}{2}a^2 \int_0^{2\pi} (\cos^2 t \sin^4 t + \sin^2 t \cos^4 t) dt = \frac{3}{2}a^2 \int_0^{2\pi} \cos^2 t \sin^2 t dt =$

 $=\frac{3}{9}a^2\int_0^{2\pi}\sin^2 2t\,dt=\frac{3}{9}\pi a^2.$

3868.
$$(\sqrt{x}+\sqrt{y})^{12}=xy$$
 $[y=xt^2]\Leftrightarrow (\sqrt{x}(1+t))^12=x^2t^2\Leftrightarrow x=\frac{\sqrt{t}}{(1+t)^3},\ y=\frac{t^2\sqrt{t}}{(1+t)^3},\ dx=\frac{1-5t}{2\sqrt{t}(1+t)^4}dt,\ dy=\frac{t\sqrt{t}(5-t)}{2(1+t)^4}dt,\ x=y=0$ при $t=0$ и при $t\to+\infty\Rightarrow$ кривая замкнута; $S=\frac{1}{2}\int_L x\,dy-y\,dx=\frac{1}{2}\int_0^{+\infty}\frac{t^2(5-t)-t^2(1-5t)}{2(1+t)^7}dt=\int_0^{+\infty}\frac{t^2+t^3}{(1+t)^5}dt=\int_0^{+\infty}\frac{t^2-1+1}{(1+t)^5}dt=\int_0^{+\infty}\frac{t-1}{(1+t)^5}dt+\int_0^{+\infty}\frac{dt}{(1+t)^5}dt=\int_0^{+\infty}\frac{dt}{(1+t)^5}dt\int_0^{+\infty}\frac{dt}{(1+t)^5}dt+\int_0^{+\infty}\frac{dt}{(1+t)^5}dt\int_0^{+\infty}\frac{$

3873. $|F|=\frac{k}{z}$, проекции силы на оси $F_x=\frac{kz}{z\cos\alpha}=\frac{kx}{z\sqrt{x^2+y^2+z^2}},\ F_y=\frac{ky}{z\sqrt{x^2+y^2+z^2}},\ F_z=\frac{kz}{z\sqrt{x^2+y^2+z^2}},\ \text{урав-}$ нение отрезка $x=at,\ y=bt,\ z=ct.\ 1\leqslant t\leqslant 2\Rightarrow A=\int_L F_x dx + F_y dy + F_z dz=k\int_1^2 \frac{a^2+b^2+c^2}{ct\sqrt{a^2+b^2+c^2}}dt=k\frac{\sqrt{a^2+b^2+c^2}}{c}\int_1^2 \frac{dt}{t}=k\frac{\sqrt{a^2+b^2+c^2}}{c}\ln 2.$

3878. D — проекция S на Oxy, D: $x^2 + y^2 \leqslant R^2$, $x \geqslant 0$, $y \geqslant 0$; $z = \sqrt{R^2 - x^2 - y^2}$, $z_x' = -\frac{x}{\sqrt{R^2 - x^2 - y^2}}$, $z_y' = -\frac{y}{\sqrt{R^2 - x^2 - y^2}}$, $\iint_S x \, dq = \iint_D x \sqrt{1 + \frac{x^2 + y^2}{R^2 - x^2 - y^2}} \, dx \, dy = R \iint_D \frac{x \, dx \, dy}{\sqrt{R^2 - x^2 - y^2}} = R \int_0^R dy \int_0^{\sqrt{R^2 - y^2}} \frac{x \, dx}{\sqrt{R^2 - x^2 - y^2}} = -R \int_0^R dy \sqrt{R^2 - x^2 - y^2} \, dy = -R \int_0^R dy \sqrt{R^2 - x^2 - y^2} \, dy = \left(\frac{Ry}{2}\sqrt{R^2 - y^2} + \frac{R^3}{2}\arcsin\frac{y}{R}\right)|_0^R = \frac{\pi R^3}{4}$.

3884. $D: x^2 + y^2 \leq R^2, z = xy, z'_x = y, z'_y = x,$ $\iint_S \frac{dq}{r} = \iint_D \frac{\sqrt{1 + x^2 + y^2}}{\sqrt{x^2 + y^2}} dx dy = \int_0^{2\pi} d\varphi \int_0^R \sqrt{1 + \rho^2} d\rho =$ $= 2\pi \left(\frac{\rho}{2} \sqrt{1 + \rho^2} + \frac{1}{2} \ln |\rho + \sqrt{1 + \rho^2}| \right) |_0^R = \pi \left(R \sqrt{1 + R^2} + \ln(R + \sqrt{1 + R^2}) \right).$

3889. D — эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $z = \pm c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$; интегралы по верхней и нижней половине эллипсоида равны, т. к. меняют знак интеграл (за счет изменения ориентации) и подынтегральная функция; $\iint_S z \, dx \, dy = 2 \iint_D c\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \, dx \, dy \, \left[x = a\rho\cos\varphi, \ y = b\rho\sin\varphi\right] = 2abc\int_0^{2\pi} d\varphi \int_0^1 \sqrt{1 - \rho^2}\rho \, d\rho = -\frac{2}{3}abc\int_0^{2\pi} d\varphi \sqrt{(1 - \rho^2)^3}|_0^1 = \frac{4}{3}\pi abc.$

К ГЛАВЕ 14

3905. $x\frac{dy}{dx}=y^2-y, \ \frac{dy}{y^2-y}=\frac{dx}{x}, \ y\neq 0, \ y\neq 1,$ проверка показывает, что y=0 и y=1 — решения; $\int \frac{dy}{y^2-y}=\int \frac{dx}{x}, \ \ln\left|\frac{y-1}{y}\right|=\ln|x|+\ln|C|, \ \frac{y-1}{y}=Cx, \ y=Cxy+1, \ y=0 \ (y=1$ получается из общего решения при C=0).

 $3909. \ \frac{dy}{dx}=10^x10^y, \ \int 10^{-y}dy=\int 10^xdx, \ -\frac{10^{-y}}{\ln 10}=\frac{10^x}{\ln 10}+C_1, \ 10^x=-10^{-y}+C,$ где $C=C_1\ln 10;$ в дальнейшем мы будем обозначать все константы буквой C.

3915. $\sin y \cos x \, dy = \cos y \sin x \, dx$, $\int \operatorname{tg} y \, dy = \int \operatorname{tg} x \, dx$, $-\ln|\cos y| = -\ln|\cos x| + C$, $y(0) = \frac{\pi}{4} \Rightarrow -\ln\frac{1}{\sqrt{2}} = -\ln 1 + C$, $C = \ln\sqrt{2}$; $\ln|\cos y| = \ln|\cos x| - \ln\sqrt{2}$, $\cos y = \frac{\cos x}{\sqrt{2}}$.

3926. $K = \frac{mv^2}{2}$, $v_{\rm cp} = \frac{s}{t} \Rightarrow \frac{m}{2} (\frac{ds}{dt})^2 = k \frac{s}{t}$, $\frac{ds}{dt} = \sqrt{\frac{2ks}{mt}}$, $\frac{ds}{\sqrt{s}} = \frac{\sqrt{2k} dt}{\sqrt{mt}}$, $\sqrt{s} = \sqrt{\frac{2kt}{m}} + C$, $s(0) = 0 \Rightarrow C = 0$, $s = \frac{2kt}{m}$, $v = \frac{2k}{m} = const$.

3931. $y' = \cos(x-y)$, [u = x-y, y = x-u, y' = 1-u'] $1-u' = \cos u$, $\int \frac{du}{1-\cos u} = \int dx$, $-\operatorname{ctg} \frac{u}{2} = x+C$, $x+\operatorname{ctg} \frac{x-y}{2} = C$.

3942. $y' = \frac{y}{x} \ln \frac{y}{x} [y = tx, y' = t'x + t] t'x + t = t \ln t, \int \frac{dx}{x} = \int \frac{dt}{t(\ln t - 1)}, \ln |x| + \ln |C| = \ln |\ln t - 1|, Cx = \ln \frac{y}{x} - 1, y = xe^{1+Cx}.$

3947. $y' = \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2}$, $[y = tx, y' = t'x + t] \ t'x + t = \frac{t^2 - 2t - 1}{t^2 + 2t - 1} \ \frac{dt}{dx} x = -\frac{t^3 + t^2 + t + 1}{t^2 + 2t - 1}, \ \frac{dx}{x} = -\int \frac{t^2 + 2t - 1}{(t^2 + 1)(t + 1)}, \ \frac{t^2 + 2t - 1}{(t^2 + 1)(t + 1)} = \frac{2t}{t^2 + 1} - \frac{1}{t + 1} \Rightarrow \ln|x| + \ln|C| = -\ln\frac{t^2 + 1}{|t + 1|}, \ Cx = \frac{t + 1}{t^2 + 1}, \ Cx = \frac{x(x + y)}{x^2 + y^2}, \ x + y = C(x^2 + y^2), \ y(1) = -1 \Rightarrow C = 0, \ y = -x.$

3950. $A(x,\ y)$ — точка касания, $B(0,\ y_B)$ — точка пересечения касательной с $Oy;\ y_B-y=y'(-x)\Rightarrow y_B=y-xy',\ (y-xy')^2=xy,\ y'=\frac{y}{x}\pm\sqrt{\frac{y}{x}},\ [y=tx]\ t'x+t=t\pm\sqrt{t},\ \int\frac{dx}{x}=\pm\int\frac{dt}{\sqrt{t}},\ \ln|x|=\pm2\sqrt{t}+\ln|C|,\ x=Ce^{\pm2\sqrt{y/x}}.$

3955. $y' + 2xy = xe^{-x^2}$, [y = uv, y' = u'v + uv'] $u'v + u(v' + 2vx) = xe^{-x^2}$, v' + 2vx = 0, $\int \frac{dv}{v} = -\int 2x dx$, $v = e^{-x^2}$, $u'e^{-x^2} = xe^{-x^2}$, u' = x, $u = \frac{x^2}{2} + C$, $y = e^{-x^2}(\frac{x^2}{2} + C)$.

3965. $y' - y \operatorname{tg} x = \frac{1}{\cos x}$, $[y = uv] \ u'v + u(v' - v \operatorname{tg} x) = \frac{1}{\cos x}$, $v' - v \operatorname{tg} x = 0$, $\int \frac{dv}{v} = \int \operatorname{tg} x \, dx$, $\ln |v| = -\ln |\cos x|$, $v = \frac{1}{\cos x}$, $\frac{u'}{\cos x} = \frac{1}{\cos x}$, u = x + C, $y = \frac{x}{\cos x} + \frac{C}{\cos x}$, $y(0) = 0 \Rightarrow C = 0$, $y = \frac{x}{\cos x}$.

3970. $I(x) = \int_0^x F(x,z)dz \Rightarrow I'(x) = \int_0^x F_x'(x,z)dz + F(x,x) = \int_0^x ze^{zx-z^2}dz + e^{x^2-x^2} = 1 + \int_0^x (z-\frac{x}{2})e^{zx-z^2}dz + \frac{x}{2}\int_0^x e^{zx-z^2}dz = 1 - \frac{1}{2}\int_0^x e^{zx-z^2}d(zx-z^2) + \frac{x}{2}I(x) = 1 - \frac{1}{2}e^{zx-x^2}\Big|_0^x + \frac{x}{2}I(x) = 1 + \frac{x}{2}I(x) \Rightarrow I(x) - \text{решение уравнения}$ $y' = 1 + \frac{xy}{2}, \ y(0) = 0; \ [y = uv] \ u'v + u(v' - \frac{vx}{2}) = 1, \ v' - \frac{vx}{2} = 0, \ \frac{dv}{v} = \frac{x\,dx}{2}, \ v = e^{\frac{x^2}{4}}, \ u' = e^{-\frac{x^2}{4}}, \ u = \int_0^x e^{-\frac{z^2}{4}}dz + C, \ y = e^{\frac{x^2}{4}}\int_0^x e^{-\frac{z^2}{4}}dz + Ce^{\frac{x^2}{4}}, \ I(0) = 0 \Rightarrow C = 0.$

3975. $F_1=kt^3$, $F_2=k_1vt$, $F_1-F_2=ma\Rightarrow m\frac{dv}{dt}=$ = $-k_1vt+kt^3$ — линейное уравнение относительно v; $v=t^3$ = t^3 , t^3 = t^3 = t^3 , t^3 = t^3 = t

$$= e^{\frac{k_1 y}{2m}} \left(\frac{k}{k_1} y - \frac{2mk}{k_1^2} \right) + C = e^{\frac{k_1 t^2}{2m}} \left(\frac{k}{k_1} t^2 - \frac{2mk}{k_1^2} \right) + C, \quad v =$$

$$= Ce^{-\frac{k_1 t^2}{2m}} + \frac{k}{k_1} t^2 - \frac{2mk}{k_1^2}; \quad v(0) = v_0 \Rightarrow C - \frac{2mk}{k_1^2} = v_0, \quad v =$$

$$= (v_0 + \frac{2mk}{k_1^2}) e^{-\frac{k_1 t^2}{2m}} + \frac{kt^2}{k_1} - \frac{2mk}{k_1^2}.$$

3985. $x^3y' = y(y^2 + x^2)$ $[y = tx] \Leftrightarrow x^3(t'x + t) = tx(t^2x^2 + t^2)$, $t'x + t = t^3 + t$, $\int \frac{dt}{t^3} = \int \frac{dx}{x}$, $-\frac{1}{2t^2} = \ln|x| + \ln|C|$, $Cx = e^{-\frac{x^2}{2y^2}}$.

3996. $[z = y^2, z' = 2yy'] \frac{z'\sin x}{2} = \cos x(\sin x - z), z' = -2z \cot x + 2\cos x, z = uv, u'v + uv' + 2uv \cot x = 2\cos x, u(v' + 2\cot x) = 0, \frac{dv}{v} = -2\cot x, \ln|v| = -2\ln|\sin x|, v = \frac{1}{\sin^2 x}, \frac{u'}{\sin^2 x} = 2\cos x, u = 2\int \sin^2 x \cos x \, dx = \frac{2}{3}\sin^3 x + C, y^2 = \frac{C}{\sin^2 x} + \frac{2}{3}\sin x.$

4000. $[y = uv] \ u'v + uv' - \frac{uv}{1-x^2} = 1 + x, \ u(v' - \frac{v}{1-x^2}) = 0, \ \frac{dv}{v} = \frac{dx}{1-x^2}, \ \ln|v| = \frac{1}{2}\ln\left|\frac{1+x}{1-x}\right|, \ v = \sqrt{\frac{1+x}{1-x}}, \ u' = \sqrt{1-x^2}, \ u = \frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\arcsin x + C, \ y = \frac{x(1+x)}{2} + \frac{1}{2}\sqrt{\frac{1+x}{1-x}}\arcsin x + C\sqrt{\frac{1+x}{1-x}}, \ y(0) = 1 \Rightarrow C = 1, \ y = \frac{1}{2}\sqrt{\frac{1+x}{1-x}}\left(x\sqrt{1-x^2} + \arcsin x + 2\right).$

4006. $(x,\ y)$ — координаты точки касания, yy' — отрезок нормали, тогда $yy'=\frac{x+y}{2},\ y'=\frac{x}{2y}+\frac{1}{2},\ y=tx,\ t'x+t=\frac{1}{2t}+\frac{1}{2},\ \frac{dt}{dx}x=\frac{1+t-2t^2}{2t},\ \frac{dx}{x}=\frac{2t\,dt}{1+t-2t^2},\ \text{раскладывая на простые}$ дроби, получаем $\ln|x|=-\frac{2}{3}\int\frac{dt}{t-1}-\frac{2}{3}\int\frac{dt}{2t+1},\ \ln|x|=-\frac{2}{3}\ln|t-1|$ $-1|-\frac{1}{3}\ln|2t+1|+\ln|C|,\ x^3(t-1)^2(2t+1)=C,\ (y-x)^2(2y+1)=C,\ y(1)=0\Rightarrow C=1,\ (y-x)^2(2y+x)=1.$

4010. $\xi=\frac{M_y}{S}=\frac{\int_0^a xy\,dx}{\int_0^a y\,dx}=\frac{3a}{4}\Rightarrow 4\int_0^a xy\,dx=3a\int_0^a y\,dx,$ дважды дифференцируя по a, получаем $4ay=3\int_0^a y\,dx+3ay,\ ay=3\int_0^a y\,dx,\ y+ay'=3y,\ a\frac{dy}{da}=2y,\ \ln|y|=2\ln|a|+\ln|C|,\ y=Ca^2$ или, заменяя переменную, $y=Cx^2$.

4015. По 2 закону Ньютона, $ma=mg-F_{\rm conp}\Rightarrow m\frac{dv}{dt}=mg-k^*v^2, \ \frac{dv}{dt}=g-kv^2,$ где $k=\frac{k^*}{m},\ dt=\frac{dv}{g-kv^2},\ t=\int \frac{dv}{g-kv^2}=\frac{1}{2\sqrt{kg}}\ln\left|\frac{\sqrt{g/k}+v}{\sqrt{g/k}-v}\right|+C,\ t\to +\infty$ только при $v\to\pm\sqrt{\frac{q}{k}},$ т. к. $v>0,\ v\to\sqrt{\frac{q}{k}}.$

4021. Пусть x — количество первого продукта, y — второго продукта, m — количество исходного вещества; по закону сохранения массы $\frac{dx}{dt} = k_1(m_0 - x)$, $dt = \frac{dx}{k_1(m_0 - x)}$, $t = -\frac{1}{k_1}(\ln(m_0 - x) + \ln C)$, $C(m_0 - x) = e^{-k_1 t}$, $x(0) = 0 \Rightarrow C = \frac{1}{m_0}$, $x = m_0(1 - e^{-k_1 t})$; $\frac{dy}{dt} = k_2(x - y)$, $\frac{dy}{dt} + k_2 y = k_2 m_0(1 - e^{-k_1 t})$ [y = uv] $u'v + u(v' + k_2 v) = k_2 m_0(1 - e^{-k_1 t})$, $\frac{dv}{dt} = -k_2 v$, $v = e^{-k_2 t}$, $u'e^{-k_2 t} = k_2 m_0(1 - e^{-k_1 t})$, $u = \int k_2 m_0 (e^{k_2 t} - e^{(k_1 - k_2)t}) dt = m_0 e^{k_2 t} - m_0 \frac{k_2}{k_2 - k_1} e^{(k_2 - k_1)t} + C$, $y = m_0 - m_0 \frac{k_2}{k_2 - k_1} e^{-k_1 t} + C e^{-k_2 t}$, $y(0) = 0 \Rightarrow C = m_0 \frac{k_1}{k_2 - k_1}$, $y = m_0 + \frac{m_0}{k_1 - k_2} (k_2 e^{-k_1 t} - k_1 e^{-k_2 t})$.

4025. $y' = \frac{2y-x-5}{2x-y+4}$, $\begin{cases} 2y-x-5=0 \\ 2x-y+4=0 \end{cases} \Leftrightarrow x = -1, y = 2;$

перенесем начало координат в точку $(-1,\,2):x_1=x+1,\,y_1=y_1-2$ $\Rightarrow x=x_1-1,\,y=y_1+2,\,y_1'=\frac{2y_1-x_1}{2x_1-y_1},\,[y_1=x_1]$ $=tx_1]$ $t'x_1+t=\frac{2t-1}{2-t},\,\frac{dx_1}{x_1}=\frac{2-t}{t^2-1}dt,\,\ln|x_1|=\frac{1}{2}\int\frac{dt}{t-1}-\frac{3}{2}\int\frac{dt}{t+1},\,\,2\ln|x_1|=\ln|t-1|-3\ln|t+1|+\ln|C|,\,\,x_1^2=2C\frac{t-1}{(t+1)^3},\,\,C\frac{y_1-x_1}{(x_1+y_1)^3}=1,\,\,(x+y-1)^3=C(x+y-3).$

4030. $y' = \frac{y^3}{2(xy^2-x^2)}$, $x' = 2(\frac{x}{y} - \frac{x^2}{y^3})$, $[z = x^{-1}, x' = \frac{z'}{z^2}] - \frac{z'}{z^2} = 2(\frac{1}{zy} - \frac{1}{z^2y^3})$, $z' + \frac{2z}{y} = \frac{2}{y^3}$, $[z = uv] \ u'v + u(v' + \frac{2v}{y}) = \frac{2}{y^3}$, $v' + \frac{2v}{y} = 0$, $v = \frac{1}{y^2}$, $\frac{v'}{y^2} = \frac{2}{y^3}$, $u = 2\int \frac{dy}{y} = 2\ln|y| + C$, $z = \frac{C+2\ln y}{y^2}$, $\frac{1}{x} - \frac{\ln y^2}{y^2} = \frac{C}{y^2}$, $\ln y^2 - \frac{y^2}{y^2} = C$, $y^2e^{-y^2/x} = C$.

4036. x dx + y dy + x(x dy - y dx) = 0, $(x - xy)dx + (x^2 + y)dy = 0$, $x' = \frac{x^2 + y}{x(y - 1)}$, $x' - \frac{x}{y - 1} = \frac{y}{x(y - 1)}$ $[z = x^2, z' = 2xx']$ $\frac{z'}{2x} - \frac{x}{y - 1} = \frac{y}{x(y - 1)}$, $z' - \frac{2z}{y - 1} = \frac{2y}{y - 1}$ [z = uv]

$$\begin{array}{lll} u'v+u(v'-\frac{2v}{y-1})=\frac{2y}{y-1},\ v'=\frac{2v}{y-1},\ v=(y-1)^2,\ u'(y-1)^2=\\ =\frac{2y}{y-1},\ u'=\frac{2y}{(y-1)^3},\ u=\int\left(\frac{2}{(y-1)^2}+\frac{2}{(y-1)^3}\right)dy=-\frac{2}{y-1}-\\ -\frac{1}{(y-1)^2}+C,\ z=-2(y-1)-1+C(y-1)^2,\ x^2+2y-1=\\ =C(y-1)^2,\ x^2+y^2-(y-1)^2=C(y-1)^2,\ x^2+y^2=\\ =C(y-1)^2. \end{array}$$

4010. $y^{n-1}(ay'+y) = x$, $ay'+y = \frac{x}{y^{n-1}}$, $[y = uv] au'v + u(av'+v) = \frac{x}{(uv)^{n-1}}$, av'+v = 0, $v = e^{-\frac{x}{a}}$, $au'e^{-\frac{x}{a}} = \frac{x}{u^{n-1}e^{-(n-1)x/a}}$, $au^{n-1}u' = xe^{nx/a}$, $\frac{a}{n}u^n = \frac{a}{n}\int xd(e^{nx/a}) = \frac{a}{n}\left(xe^{nx/a} - \int e^{nx/a}dx\right) = \frac{a}{n}(xe^{nx/a} - \frac{a}{n}e^{nx/a}) + C$, $u = \sqrt[n]{e^{nx/a}(x-a/n)} + C$ $= e^{x/a}\sqrt[n]{(x-\frac{a}{n}) + Ce^{-nx/a}}$, $y = \sqrt[n]{(x-\frac{a}{n}) + Ce^{-nx/a}}$, $ny^n = nx - a + Ce^{-nx/a}$.

4045. $xy' - 4y - x^2\sqrt{y} = 0$, $y' - 4\frac{y}{x} - x\sqrt{y} = 0$, $[y = uv] u'v + u(v' - 4\frac{v}{x}) = x\sqrt{uv}$, $\frac{dv}{v} = 4\frac{dx}{x}$, $v = x^4$, $u'x^4 = x^3\sqrt{u}$, $\frac{du}{\sqrt{u}} = \frac{dx}{x}$, $2\sqrt{u} = \ln|Cx|$, $u = \frac{\ln^2|Cx|}{4}$, $y = \frac{x^4\ln^2|Cx|}{4}$.

4050. $u=\int (2x^3-xy^2)dx+\varphi(y)=\frac{x^4}{2}-\frac{x^2y^2}{2}+\varphi(y).$ $\frac{\partial u}{\partial x}==-x^2y+\varphi'(y)=2y^3-x^2y$ \Rightarrow $\varphi'(y)=2y^3,$ $\varphi(y)=\frac{y^4}{2},$ решение уравнения $u=C\Leftrightarrow x^4-x^2y^2+y^4=C.$

4055. $u = \int \left(\frac{y}{\cos^2(xy)} + \sin x\right) dx + \varphi(y) = \operatorname{tg}(xy) - \cos x + \varphi(y), \quad \frac{\partial u}{\partial x} = \frac{x}{\cos^2(xy)} + \varphi'(y) = \frac{x}{\cos^2(xy)} + \sin y \Rightarrow \varphi'(y) = \sin y, \quad \varphi(y) = -\cos y, \quad \operatorname{tg}(xy) - \cos x - \cos y = C.$

4060. $\frac{\partial P}{\partial y} = 2y$, $\frac{\partial Q}{\partial x} = 0$, $\frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = 1 = F(x) \Rightarrow$ существует интегрирующий множитель M(x), $\ln M(x) = \int F(x) dx = x$, $M(x) = e^x$; $e^x(x^2 + y^2 + 2x) dx + 2e^x y dy = 0$ — уравнение в полных дифференциалах, $u = \int e^x(x^2 + y^2 + 2x) dx + \varphi(y) = e^x(x^2 + y^2 + 2x) - \int e^x(2x + 2) dx + \varphi(y) = e^x(x^2 + y^2 + 2x - 2x - 2) + 2e^x + \varphi(y) = e^x(x^2 + y^2) + \varphi(y)$, $\frac{\partial u}{\partial y} = 2e^x y + \varphi'(y) = 2e^x y \Rightarrow \varphi'(y) = 0$, $\varphi(y) = C$, $e^x(x^2 + y^2) = C$.

4065. $\frac{\partial (MX)}{\partial y} = \frac{\partial (MY)}{\partial x} \Leftrightarrow M \frac{\partial (MX)}{\partial y} + XF'(x+y) = M \frac{\partial (MY)}{\partial x} + YF'(x+y) \Leftrightarrow F'(x+y) = \frac{1}{Y-X} \left(\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x} \right);$ множитель такого вида существует $\Leftrightarrow \frac{1}{Y-X} \left(\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x} \right) = F_1(x+y).$

4070. $[y = tx] \ t'x + t = \frac{t^2 + t - 1}{t^2}, \ \frac{dx}{x} = \frac{t^2 dt}{t^2 + t - 1 - t^3}, \ \ln|x| + + \ln|C| = -\int \frac{t^2 dt}{(t-1)^2(t+1)} = -\frac{3}{4} \int \frac{dt}{t-1} - \frac{1}{2} \int \frac{dt}{(t-1)^2} - \frac{1}{4} \int \frac{dt}{t+1} = -\frac{3}{4} \ln|t-1| + \frac{1}{2(t-1)} - \frac{1}{4} \ln|t+1|, \ \ln(x^4(t-1)^3(t+1)) = -\frac{1}{4} \ln|C| + \frac{2}{t-1}, \ (y-x)^3 \cdot (x+y) = Ce^{2x/(y-x)}.$

4075. $\frac{\partial X}{\partial y} = 2x + x^2 + y^2$, $\frac{\partial Y}{\partial x} = 2x$, $\frac{1}{Y} \left(\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x} \right) = 1 = F(x) \Rightarrow$ существует интегрирующий множитель M(x), $\ln M(x) = \int F(x) dx = x$, $M(x) = e^x$; $e^x (x^2 y + \frac{y^3}{3} + 2xy) dx + e^x (x^2 + y^2) dy = 0$ — уравнение в полных дифференциалах, $u = \int e^x (x^2 y + \frac{y^3}{3} + 2xy) dx + \varphi(y) = e^x (x^2 y + \frac{y^3}{3} + 2xy) - \int e^x (2xy + 2y) dx + \varphi(y) = e^x (x^2 y + \frac{y^3}{3}) + \varphi(y)$, $\frac{\partial u}{\partial y} = e^x (x^2 + y^2) + \varphi'(y) = e^x (x^2 + y^2) \Rightarrow \varphi'(y) = 0$, $\varphi(y) = C$, $e^x (x^2 y + \frac{y^3}{3}) = C$.

4080. $y' + y \lg x = \frac{1}{\cos x} [y = uv] u'v + u(v' + v \lg x) = \frac{1}{\cos x}, \quad \frac{dv}{v} = -\lg x dx, \quad v = \cos x, \quad u' = \frac{1}{\cos^2 x}, \quad u = \lg x + C, \quad y = \sin x + C \cos x.$

4090. A(x,y) — точка касания, $B(x_1,y_1)$ — точка пересечения касательной с Ox, $C(x_2,\ y_2)$ — точка пересечения с $y=ax+b;\ y_1=0,\ x_1=x-\frac{y}{y'},\ x=\frac{x_1+x_2}{2},\ y=\frac{y_1+y_2}{2}\Rightarrow x_2=x+\frac{y}{y'},\ y_2=2y,\ y_2=ax_2+b\Rightarrow a(x+\frac{y}{y'})+b=2y,\ y'(ax-2y+b)+ay=0,\ x'=-\frac{x}{y}+\frac{2y-b}{ay},\ [x=uv]\ v=\frac{1}{y},\ u'=\frac{2y-b}{a},\ u=\frac{y^2-by}{a}+C,\ x=\frac{y-b}{a}+\frac{C}{y},\ y^2-by-axy=C.$

4097. $y=ax^2,\ y'=2ax\Rightarrow a=\frac{y'}{2x},\ y=\frac{xy'}{2},\ y'=2\frac{y}{x}$ — дифференциальное уравнение семейства парабол, $2\frac{y}{x}=k_1\Leftrightarrow y=kx$ — множество изоклин.

4103. Пусть шаг $h=0.05, \ x_0=0, \ x_i=x_0+ih, \ y_0=0, \ y_{i+1}=y_i+\Delta y_i, \ \Delta y_i=hx_i^2(x_iy_i+1); \ y_1=0, \ y_2=0.0001, \ y_3=0.0006, \ y_4=0.0018, \ y_5=0.0038, \ y_6=0.0069, \ y_7=0.0114, \ y_8=0.0175, \ y_9=0.0256, \ y_{10}=0.0358, \ y_{11}=0.0486, \ y_{12}=0.0641, \ y_{13}=0.0828, \ y_{14}=0.1050, \ y_{15}=0.1313, \ y_{16}=0.1619, \ y_{17}=0.1980, \ y_{18}=0.2402, \ y_{19}=0.2894, \ y(1)=y_{20}=0.3470\approx0.35.$

4107. $y' = y^2 + xy + x^2$, $y(0) = 1 \Leftrightarrow y = 1 + \int_0^x (y^2 + ty + t^2) dt$; $y_0 = 1$, $y_1 = 1 + \int_0^x (y_0^2 + ty_0 + t^2) dt = 1 + \int_0^x (1 + t + t^2) dt = 1 + x + \frac{x^2}{2} + \frac{x^3}{3}$, $y_2 = 1 + \int_0^x (1 + t + \frac{t^2}{2} + \frac{t^3}{3})^2 + t(1 + t + \frac{t^2}{2} + \frac{t^3}{3}) + t^2) dt = 1 + x + \frac{3}{2}x^2 + \frac{4}{3}x^3 + \frac{13}{24}x^4 + \frac{1}{4}x^5 + \frac{1}{18}x^6 + \frac{1}{63}x^7$.

4110. $y(0)=1\Rightarrow y=1+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\dots,\ y'=a_1+2a_2x+3a_3x^2+4a_4x^3+5a_5x^4+\dots,\ y^2=1++2a_1x+(a_1^2+2a_2x)x^2+\dots,\ x^2y^2-1=-1+x^2+2a_1x^3+(a_1^2+2a_2)x^4+\dots;$ сравнивая коэффициенты при одинаковых степенях, имеем $a_1=-1,\ a_2=0,\ a_3=\frac{1}{3},\ a_4=-\frac{1}{2},\ a_5=\frac{1}{5}.$

4115. $y(0) = 0 \Rightarrow y = a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + \dots, \quad y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + 6a_6x^5 + \dots, \quad \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots, \quad \sin y - \sin x = a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + \frac{(a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5)^3}{6} + \frac{(a_1x + a_2x^2)^5}{120} - (x - \frac{x^3}{6} + \frac{x^5}{120}) + \dots = (a_1 - 1)x + a_2x^2 + (a_3 - \frac{a_1^3}{6} + \frac{1}{6})x^3 + (a_4 - \frac{a_1^2a_2}{2})x^4 + (a_5 - \frac{a_1a_2^2}{2} - \frac{a_1^2a_3}{2} + \frac{a_1^5}{120} - \frac{1}{120})x^5 + \dots, \quad y' = \sin y - \sin x \Rightarrow a_1 = 0, \quad a_2 = -\frac{1}{2}, \quad a_3 = -\frac{1}{3}, \quad a_4 = a_5 = 0, \quad a_6 = -\frac{1}{6!}.$

4120. $y=xy'+\sqrt{1+y'^2},\ [y'=p]\ y=xp+\sqrt{1+p^2},\ y'=p$ = $p=xp'+p+\frac{pp'}{\sqrt{1+p^2}},\ p'\left(x+\frac{p}{\sqrt{1+p^2}}\right)=0;\ p'=0,\ p=0$ = $C,\ y=Cx+\sqrt{1+C^2}-$ семейство прямых, общее решение; $x=-\frac{p}{\sqrt{1+p^2}},\ y=-\frac{p^2}{\sqrt{1+p^2}}+\sqrt{1+p^2}=\frac{1}{\sqrt{1+p^2}},\ x^2+y^2=1,\ y>0$ — особый интеграл.

4124. $2yy'=x{y'}^2+4x,\;y=\frac{xy'}{2}+\frac{2x}{y'},\;[p=y']\;y=\frac{xp}{2}+\frac{2x}{p},\;y'=p=\frac{p+xp'}{2}+\frac{2(p-xp')}{p^2},\;(p'x-p)(p^2-4)=0;\;p'x-p=0,\;p=\bar{C}x,\;y=\frac{\bar{C}x^2}{2}+\frac{2}{C},\;[C=\frac{C}{2}]\;y=Cx^2+\frac{1}{C}-$ общее решение; $p^2=4,\;p=\pm 2,\;y=\pm 2x-$ особые решения.

4131. $y=y'+\frac{e^x}{y'},\ [y'=p]\ y=p+\frac{e^x}{p},\ p=p'+\frac{e^xp-e^xp'}{p^2},\ p(p^2-e^x)=p'(p^2-e^x);\ p=p',\ p=Ce^x,\ y=Ce^x+\frac{1}{C}$ — общее решение; $p^2=e^x,\ p=\pm e^{x/2},\ y=2p,\ y^2=4e^x$ — особые решения.

4135. A и B — точки пересечения касательной с Ox и Oy; пусть x>0, y>0, тогда y'<0; $OA=x-\frac{y}{y'}$,

 $OB=y-xy',~S=\frac{1}{2}(x-\frac{y}{y'})(y-xy')=a^2,~(y-xy')^2=z^2-2a^2y',~y=xy'+a\sqrt{-2y'},~[y'=p]~p=p+xp'-y^2-2p',~p'(x-\frac{a}{\sqrt{-2p}})=0,~p'=0,~p=C,~y=Cx+a\sqrt{-2C}-2c$ общее решение, $x-\frac{a}{\sqrt{-2p}}=0,~p=-\frac{a^2}{2x^2},~y=-\frac{a^2}{2x}+a\sqrt{\frac{a^2}{x^2}}=z^2-2xy=a^2$ — кривая в первой четверти, из соображений симметрии $2xy=\pm a^2$.

4145. $\begin{cases} (2a-x)y^2=x^3\\ 2(2a-x)yy'-y^2=3x^2 \end{cases}, \ 2a-x=\frac{x^3}{y^2}, \ \frac{2x^3y'}{y}-y^2=x^3 \end{cases}$ = $3x^2-$ дифф. уравнение семейства циссоид; подставим $-\frac{1}{y'}$ вместо y', получим дифф. уравнение ортогональной траектории: $-\frac{2x^3}{yy'}=3x^2+y^2, \ y'=-\frac{2x^3}{y(3x^2+y^2)}, \ [y=tx]\ t'x+t=x^2+y^2 = -\frac{2}{t(3+t^2)}\frac{dt}{dx}x=-\frac{t^4+3t^2+2}{t(3+t^2)}, \ \frac{dx}{x}=-\frac{t(t^2+3)dt}{(t^2+1)(t^2+2)}, \ \ln|x|=x^2+y^2 = -\frac{1}{2}\int \frac{(u+3)du}{(u+1)(u+2)}=x^2+y^2 = -\frac{1}{2}\int \frac{(u+3)du}{(u+1)(u+2)}=x^2+y^2 = C(2x^2+y^2).$

4149. $y^2=4ax$, $2yy'=4a\Rightarrow y=2y'x$ — дифф. уравнение парабол; $\operatorname{tg}\alpha=\pm 1$, выбирая $\operatorname{tg}\alpha=-1$, подставляем вместо $y'\frac{1+y'}{1-y'}, \quad y=2\frac{1+y'}{1-y'}x, \quad y'=\frac{y-2x}{y+2x}, \quad [y=tx] \quad t'x+t=\frac{t-2}{t+2}, \quad \frac{dx}{x}=\frac{-(t+2)dt}{t^2+t+2}, \quad \ln|x|=-\int \frac{(t+1/2)dt}{t^2+t+2}-\frac{3}{2}\int \frac{dt}{(t+1/2)^2+7/4}=\frac{-\frac{1}{2}\ln(t^2+t+2)-\frac{3}{\sqrt{7}}\operatorname{arctg}\frac{2t+1}{\sqrt{7}}+C, \quad \ln(2x^2+xy+y^2)+\frac{6}{\sqrt{7}}\operatorname{arctg}\frac{x+2y}{x\sqrt{7}}=C.$

4154. Эвольвента — траектория, ортогональная к касательным эволюты. $y'_x = -\frac{1}{t}, \ y - 3t^2 - \frac{1}{t}(x + 2t^3) = 0 \Leftrightarrow$

 $y=t^2-\frac{x}{t}$ — семейство касательных, $t=-\frac{1}{y'},\ y=\frac{1}{y'^2}+xy'$ подставим $-\frac{1}{y'}$ вместо $y',\ y=y'^2-\frac{x}{y'}.\ [y'=p]\ y=p^2-\frac{x}{p},\ y'=p=2pp'-\frac{p-xp'}{p^2},\ p'=\frac{p^3+p}{2p^3+x},\ x'=\frac{x}{p^3+p}+\frac{2p^2}{p^2+1},\ [x=y]=y''-\frac{p}{p^2+1},\ [x=y]=y''-\frac{p}{p^2+1},\ [x=y]=y''-\frac{p}{p^2+1},\ [x=y]=y''-\frac{p}{p^2+1},\ [x=y]=\frac{p}{p^2+1},\ y=\frac{p}{p^2+1},\ y=\frac{p}{p^2+1},\ y=\frac{p}{p^2+1},\ y=p^2-\frac{x}{p}=\frac{p}{p^2-2}-\frac{C}{\sqrt{p^2+1}},\$ подстановкой p=tgt получаем указанный ответ.

4157. $y' = \int \ln x \, dx = x \ln x - x + C_1, \ y = \int (x \ln x - x + C_1) \, dx = \frac{x^2}{2} \ln x - \frac{3}{4} x^2 + C_1 x + C_2.$

4162. $xy'' = y' \ln \frac{y'}{x}$. $[z = y', y'' = z'] xz' = z \ln \frac{z}{x}$, $[z = tx] t'x + t = t \ln t$, $\frac{dx}{x} = \frac{dt}{t(\ln t - 1)}$, $\ln |x| - \ln |C_1| = \int \frac{d(\ln t)}{\ln t - 1} = \ln |\ln t - 1|$, $\frac{x}{C_1} = \ln \frac{z}{x} - 1$, $y' = xe^{x/C_1 + 1}$, $y = C_1 \int x d(e^{x/C_1} + 1) = C_1 xe^{x/C_1 + 1} - C_1 \int e^{x/C_1 + 1} dx = C_1(x - C_1)e^{x/C_1 + 1} + C_2$.

4167. $(y')^2+2yy''=0$ $[y'=p(y),\ y''=p\frac{dp}{dy}]$ $p^2+2py\frac{dp}{dy}=0$ $=0,\ -2\frac{dp}{p}=\frac{dy}{y},\ \frac{1}{p^2}=C_1y,\ p=\frac{C_1}{\sqrt{y}},\ \frac{dy}{dx}=\frac{C_1}{\sqrt{y}},\ \frac{2}{3}y^{3/2}=C_1x+C_2,\ y=(C_1x+C_2)^{2/3}=C_1(x+C_2)^{2/3}$ (в случае необходимости мы переобозначаем произвольные постоянные).

4175. y'' = 2yy' = 0 $[y' = p(y), y'' = p\frac{dp}{dy}]$ $p\frac{dp}{dy} = 2py, p = y^2 + \bar{C}_1, x = \int \frac{dy}{y^2 + C_1}; a)$ $\bar{C}_1 > 0, \bar{C}_1 = C_1^2, x = \int \frac{dy}{y^2 + C_1^2} = \frac{1}{C_1} \arctan \frac{y}{C_1}, y = C_1 \operatorname{tg}(C_1x + C_2), b)$ $\bar{C}_1 < 0, \bar{C}_1 = -C_1^2, x = \int \frac{dy}{y^2 - C_1^2} = \frac{1}{2C_1} \ln \left| \frac{y - C_1}{y + C_1} \right| + C_2, y = -C_1 \operatorname{cth}(C_1x + C_2), c)$ $C_1 = 0, x = \int \frac{dy}{y^2} = -\frac{1}{y} + C, y = -\frac{1}{x + C}.$

4181. $yy'y'' = (y')^3 + (y'')^2$, $[y' = p, y'' = p\frac{dp}{dy}] p^2(y\frac{dp}{dy} - p - (\frac{dp}{dy})^2) = 0$, p = 0, y = C; $p = y\frac{dp}{dy} - (\frac{dp}{dy})^2$, $[t = \frac{dp}{dy}] p = yt - t^2$, $t = \frac{dp}{dy} = t + t'y - 2tt'$, t'(y - 2t) = 0; a) t' = 0, $t = C_1$, $p = \frac{dy}{dx} = C_1y - C_1^2$, $x = \int \frac{dy}{C_1y - C_1^2} = \frac{1}{C_1} \ln|y - C_1| - \ln|C_2|$, $y = C_1 + C_2e^{C_1x}$; b) y = 2t, $p = t^2$, $p = \frac{y^2}{4}$, $\frac{dy}{dx} = \frac{y^2}{4}$, $y = \frac{4}{C_{-x}}$.

4185. $yy'' + (y')^2 = x$, $[yy' = p, yy'' + (y')^2 = p'] p' = x$, $yy' = \frac{x^2}{2} + C_1$, $2y dy = x^2 + C_1$, $y^2 = \frac{x^3}{3} + C_1x + C_2$.

= Cx.

4205. Пусть форма нити задается уравнением y=f(x), рассмотрим участок нити, соответствующий отрезку dx оси Ox, его длина $ds=\sqrt{1+{y'}^2}\,dx\approx dx$ (знак \approx будем понимать как "равенство с точностью до б.м. порядка выше первого"). α_1 и α_2 — углы между касательными, соответственно, в левом и правом концах участка и осью Ox, F_1 и F_2 — силы упругости, действующие на участок слева и справа; т. к. нить нерастяжима, $|F_1|=|F_2|=T$. Рассмотрим проекцию равнодействующей силы на ось Oy. $F_y=|F_2|\sin\alpha_2-|F_1|\sin\alpha_1=T(\sin\alpha_2-\sin\alpha_1)\approx T(\operatorname{tg}\alpha_2-\operatorname{tg}\alpha_1)=T(y'(x_2)-y'(x_1))\approx Ty''$. Нить покоится, поэтому Ty''=Mg, y''=k, $y=\frac{kx^2}{2}+C_1x+C_2$ — парабола.

4211. $x^2y''' = (y'')^2$, [z = y'', z' = y'''] $x^2z' = z^2$, $\frac{dz}{z^2} = \frac{dx}{x^2}$, $\frac{1}{z} = \frac{1}{x} + \bar{C}$, a) $\bar{C} = 0$, z = x, $y = \frac{x^3}{6} + C_1x + C_2$, b) $\bar{C} = \frac{1}{C_1}$, $z = \frac{C_1x}{x+C_1}$, $y' = C_1x - C_1^2 \ln|x + C_1| + \bar{C}_2$, $y = \frac{C_1x^2}{2} - C_1^2(x+C_1) \ln|x + C_1| + C_1^2x + \bar{C}_2x + C_3 = \frac{C_1x^2}{2} + C_2x + C_3 - C_1^2(x+C_1) \ln|x + C_1|$.

4215.
$$yy''' - y'y'' = 0$$
, $\frac{yy''' - y'y''}{y^2} = 0$, $\left(\frac{y''}{y}\right)' = 0$, $y'' = C_1y$, $[y' = p(y)]$ $p\frac{dp}{dy} = C_1y$, $p^2 = C_1y^2 + C_2$, $x = \int \frac{dy}{\sqrt{C_1y^2 + C_2}}$, a) $C_1 > 0$, $C_2 > 0$ $C_1x = \int \frac{dy}{\sqrt{y^2 + C_2^2}} = 0$

=
$$\ln |y + \sqrt{y^2 + C_2^2}| + C_3$$
 = $\operatorname{arsh} \frac{y}{C_2} + C_3$, $y = C_2 \operatorname{sh}(C_1 x + C_3)$; b) $C_1 > 0$, $C_2 < 0$, $y = C_2 \operatorname{ch}(C_1 x + C_3)$; c) $C_1 < 0$, $C_2 > 0$ $C_1 x = \int \frac{dy}{\sqrt{C_2^2 - y^2}} + C_3$, $C_1 x = \arcsin \frac{y}{C_2} + C_3$, $y = C_2 \sin(C_1 x + C_3)$; d) $C_1 = 0$, $y = C_1 x + C_2$.

4220.
$$xyy'' = xy' - y$$
; $y = 1 + a_2(x-1)^2 + \dots + a_5(x-1)^5 + \dots$, $y' = 2a_2(x-1) + 3a_3(x-1)^2 + 4a_4(x-1)^3 + \dots$, $y'' = 2a_2 + 6a_3(x-1) + 12a_4(x-1)^2 + 20a_5(x-1)x^3 + \dots$, $x = 1 + (x-1)$, $xyy'' = 2a_2 + (2a_2 + 6a_3)(x-1) + (12a_4 + 2a_2^2 + 6a_3)(x-1)^2 + (20a_5 + 8a_2a_3 + 12a_4 + 2a_2^2)(x-1)^3 + \dots$, $xy' - y = -1 + 2a_2(x-1) + (3a_3 + a_2)(x-1)^2 + (4a_4 + 2a_3)(x-1)^3 + \dots$, $xyy'' = xy' - y \Rightarrow a_2 = -\frac{1}{2}$, $a_3 = 0$, $a_4 = -\frac{1}{12}$, $a_5 = \frac{1}{120}$, $y = 1 - \frac{(x-1)^2}{2!} - \frac{2(x-1)^4}{4!} + \frac{(x-1)^5}{5!} + \dots$

4227.
$$W = \begin{vmatrix} x^3 & x^4 \\ 3x^2 & 4x^3 \end{vmatrix} = x^6 \neq 0$$
 на любом интервале, не содержащем 0: $\begin{vmatrix} x^3 & x^4 & y \\ 3x^2 & 4x^3 & y' \\ 6x & 12x^2 & y'' \end{vmatrix} = 0 \Leftrightarrow x^6y'' - 6x^5y' + 12x^4 = 0$ = 0 $\Leftrightarrow x^2y'' - 6xy' + 12 = 0$ — искомое уравнение.

4234. $y'' + \frac{2}{x}y' + y = 0$, $y_1 = \frac{\sin x}{x}$, $y_2 = \frac{\sin x}{x} \times \int e^{-2\ln x} \frac{x^2}{\sin^2 x} dx = \frac{\sin x}{x} \int \frac{dx}{\sin^2 x} = -\frac{\cos x}{x}$, $y = \frac{C_1 \sin x + C_2 \cos x}{x}$.

4238. $y'' - \operatorname{tg} x \cdot y' + 2y = 0$, $y_1 = \sin x$ — решение, $y_2 = \sin x \int e^{-\ln|\cos x|} \frac{dx}{\sin^2 x} = \sin x \int \frac{dx}{\sin^2 x \cos x}$ [$t = \sin x$] $= \sin x \int \frac{dt}{t^2(1-t^2)} = \sin x \left(\int \frac{dt}{t^2} + \int \frac{dt}{1-t^2} \right) = \sin x \left(-\frac{1}{\sin x} + \frac{1}{2} \ln \left| \frac{1+\sin x}{1-\sin x} \right| \right) = \sin x \ln |\operatorname{tg}(\frac{x}{2} + \frac{\pi}{4})| - 1$.

4241. $x^3y''' - 3x^2y'' + 6xy' - 6y = 0$, $[y = zx, y' = z'x + +z, y'' = z''x + 2z', y''' = z'''x + 3z'] z'''x^4 = 0$, z''' = 0, $z = C_1x^2 + C_2x + C_3$.

4245. $y''+\frac{2xy'}{1+x^2}-\frac{2y}{1+x^2}=4-\frac{2}{1+x^2}$; решим однородное уравнение $y''+\frac{2xy'}{1+x^2}-\frac{2y}{1+x^2}=0$, $y_1=x$ (подбором) $y_2=x$ $\int e^{-\ln(1+x^2)}\frac{dx}{x^2}=x\int \frac{dx}{x^2(1+x^2)}=x\int \left(\frac{1}{x^2}-\frac{1}{1+x^2}\right)dx=x$ $\int e^{-\ln(1+x^2)}\frac{dx}{x^2}=x\int \frac{dx}{x^2(1+x^2)}=x\int \frac{$

4250. $y'' + xy' = x^2y$, $y_1 = 1 + a_2x^2 + \dots + a_5x^5 + \dots$, $y_1' = 2a_2x + 3a_3x^2 + 4a_4x^3 + \dots$, $y_1'' = 2a_2 + 6a_3x + 12a_4x^2 + 20a_5x^3 + \dots$, $y_1'' + xy_1' = 2a_2 + 6a_3x + (12a_4 + 2a_2)x^2 + (20a_5 + 3a_3)x^3 + \dots$, $x^2y_1 = x^2 + a_2x^4 + \dots \Rightarrow a_2 = a_3 = 0$, $a_4 = \frac{1}{12}$, $a_5 = 0$, $y_1 = 1 + \frac{x^4}{12} + \dots$; $y_2 = x + b_2x^2 + \dots + b_5x^5 + \dots$, $y_2' = 1 + 2b_2x + 3b_3x^2 + 4b_4x^3 + 5b_5x^4 + \dots$, $y_2'' = 2b_2 + 6b_3x + 12b_4x^2 + 20b_5x^3$, $y_2'' + xy_2' = 2b_2 + (6b_3 + 1)x + (12b_4 + 2b_2)x^2 + (20b_5 + 3b_3)x^3 + \dots$, $x^2y_2 = x^3 + \dots \Rightarrow b_2 = 0$, $b_3 = -\frac{1}{6}$, $b_4 = 0$, $b_5 = \frac{3}{40}$, $y = C_1\left(1 + \frac{x^4}{12} + \dots\right) + C_2\left(x - \frac{x^3}{6} + \frac{3x^5}{40} + \dots\right)$.

4255. 3y'' - 2y' - 8y = 0, $3k^2 - 2k - 8 = 0$, $k_1 = 2$, $k_2 = -\frac{4}{3}$, $y = C_1 e^{2x} + C_2 e^{-4x/3}$.

4260. $4k^2 - 20k + 25 = 0$, $k_{1,2} = \frac{5}{2}$, $y = (C_1 + C_2 t)e^{5t/2}$.

4266. $k^2 + 9 = 0$, $k_{1,2} = \pm 3i$, $y = C_1 \cos 3x + C_2 \sin 3x$, $y' = -3C_1 \sin 3x + 3C_2 \cos 3x$, $y(\pi) = -1$, $y'(-\pi) = 1 \Rightarrow C_1 = 1$, $C_2 = -\frac{1}{3}$, $y = \cos 3x - \frac{1}{3} \sin 3x$.

4270. $k^2-7k+6=0$, $k_1=1$, $k_2=6$, $y_0=C_1e^x+C_2e^{6x}$ — общее решение однородного уравнения, i не корень характеристического уравнения, поэтому частное решение $y_1=A\cos x+B\sin x$, $y_1'=-A\sin x+B\cos x$, $y_1''=A\cos x-B\sin x$; подставляя в уравнение и приравнивая, получаем $\begin{cases} 5A-7B=0\\ 5B+7A=1 \end{cases}, A=\frac{7}{74}, B=\frac{5}{74}, y=C_1e^x+C_2e^{6x}+\frac{5\sin x+7\cos x}{74}.$

4275.9. $k^2-3k+2=0$, $k_1=2$, $k_2=1$, $y_0=C_1e^{2x}+C_2e^x$; y_1 — решение $y''-3y'+2y=2e^x$, 1 — корень хар. уравнения $\Rightarrow y_1=Axe^x$, $y_1'=e^x(Ax+A)$, $y_1''=e^x(Ax+2A)$, A=2, $y_1=-2xe^x$; y_2 — решение $y''-3y'+2y=2e^x$, $y_2=-e^{-2x}$

4280. $y'' + y + \operatorname{ctg}^2 x = 0$, $k^2 + 1 = 0$, $y = C_1 \cos x + C_2 \sin x$ — решение однородного уравнения, $y = C_1(x) \cos x + C_2(x) \sin x$ — решение неоднородного уравнения, $\begin{cases} C_1' \cos x + C_2' \sin x = 0 \\ -C_1' \sin x + C_2' \cos x = -\operatorname{ctg}^2 x \end{cases}, \quad C_1' = \frac{\cos^2 x}{\sin x}, \quad C_2' = -\frac{\cos^3 x}{\sin^2 x},$

 $C_{1}(x) = \int \frac{\cos^{2}x \sin x}{\sin^{2}x} dx \quad \{u = \cos x\} = \int \frac{u^{2}}{u^{2}-1} du = u + \frac{1}{2} \left| \frac{u-1}{u+1} \right| + C_{1} = \cos x + \ln|\operatorname{tg}\frac{x}{2}| + C_{1}, \quad C_{2}(x) = -\int \frac{\cos^{3}x}{\sin^{2}x} = -\int \frac{1-\sin^{2}x}{\sin^{2}x} d(\sin x) = \sin x + \frac{1}{\sin x} + C_{2}, \quad y = \cos^{2}x + \cos x \ln|\operatorname{tg}\frac{x}{2}| + C_{1}\cos x + \sin^{2}x + 1 + C_{2}\sin x = \cos x \ln|\operatorname{tg}\frac{x}{2}| + 2 + C_{1}\cos x + C_{2}\sin x.$

4286. $k^2-2k=0$, $k_1=0$, $k_2=2$, $y=C_1e^{2x}+C_2-$ решение однородного уравнения, 1— не корень хар. уравнения $\Rightarrow y=e^x(Ax^2+Bx+C)$, A=-1, B=-1, C=1, $y=C_1e^{2x}+C_2-e^x(x^2+x-1)$, $y'=2C_1e^{2x}-e^x(x^2+x-1)$, $y(0)=y'(0)=2\Rightarrow C_1=1$, $C_2=0$, $y=e^{2x}-e^x(x^2+x-1)$.

4290. $x^2y'' + xy' + y = x \ [x = e^t, \frac{dy}{dt} = \frac{dy}{dx}e^t \Rightarrow y' = e^{-t}\frac{dy}{dt}, \frac{d^2y}{dt^2} = \frac{d}{dt}(y'e^t) = e^t(y' + \frac{d}{dt}(y')) = e^t(y' + e^ty'') \Rightarrow y'' = e^{-2t}(\frac{d^2y}{dt^2} - \frac{dy}{dt})] \ y''_{tt} + y = e^t, \ y_0 = C_1 \cos t + C_2 \sin t, \ y_1 = Ae^t, \ A = \frac{1}{2}, \ y = C_1 \cos t + C_2 \sin t + \frac{1}{2}e^t = C_1 \cosh|x| + C_2 \sin |x| + \frac{x}{2}.$

4296. Пусть x — расстояние от точки до A. x' — производная по времени; $mx''=F-k(a-x),\ ka=f\Rightarrow k=\frac{f}{a},\ x''=\frac{F}{m}+\frac{f}{ma}x-\frac{f}{m},\ x''-A^2x=B,\ A^2=\frac{f}{ma},\ B=\frac{F-f}{m},\ k^2-A^2=0,\ k_{1,2}=\pm A,\ x_0=C_1\ch At+C_2\sh At,\ x_1=P=2\cosh t,\ P=-\frac{B}{A^2}=-\frac{F-f}{f}a,\ x=C_1\ch At+C_2\sh At-\frac{F-f}{f}a,\ x'=AC_1\sh At+AC_2\ch At,\ x(0)=0\Rightarrow C_1=\frac{F-f}{f}a,\ x'(0)=0\Rightarrow C_2=0,\ x=\frac{F-f}{f}a(\ch At-1);\ x(t)=2\cosh At-\frac{F-f}{f}a$

4302. $y^{IV} - 13y'' + 36y = 0$, $k^4 - 13k^2 + 36 = 0$, $k_{1,2} = \pm 2$, $k_{3,4} = \pm 3$, $y = C_1e^{2x} + C_2e^{-2x} + C_3e^{3x} + C_4e^{4x}$.

4308. $y^{(n)} = y^{(n-2)}, k^n - k^{n-2} = 0, k_{1,2} = \pm 1, k_3 = \dots = k_n = 0, y = C_1 e^x + C_2 e^{-x} + C_3 x^{n-3} + \dots + C_{n-1} x + C_n.$

4313. $y^V=y',~k^5-k=0,~k_1=0,~k_{2.3}=\pm 1,~k_{4.5}=\pm i,~y=C_1+C_2e^x+C_3e^{-x}+C_4\cos x+C_5\sin x,$ подставляя н.у., получаем $C_1=-2,~C_2=C_4=1,~C_3=C_5=0,~y=e^x+\cos x-2.$

4317. $y^{IV} + 2a^2y'' + a^4y = \cos ax$, $k^4 + 2a^2k^2 + a^4 = 0$, $(k^2 + a^2)^2 = 0$, $k_{1,2} = ai$, $k_{3,4} = -ai$, $y_0 = (C_1x + a^2)^2 = 0$

 $+C_2)\cos ax+(C_3x+C_4)\sin ax;$ ai — корень х.у. кратности $2\Rightarrow y_1=Ax^2\cos ax+Bx^2\sin ax;$ B=0, $A=-\frac{1}{8a^2},$ $y=(C_1x+C_2)\cos ax+(C_3x+C_4)\sin ax-\frac{x^2}{8a^2}\cos ax.$

4322. $y''' - y' = 3(2 - x^2)$, $k^3 - k = 0$, $k_{1,2} = \pm 1$, $k_3 = 0$, $y_0 = C_1 e^x + C_2 e^{-x} + C_3$, 0 — простой корень х.у. $\Rightarrow y_1 = Ax^3 + Bx^2 + Cx$, A = 1, B = C = 0, $y = C_1 e^x + C_2 e^{-x} + C_3 + x^3$, $y' = C_1 e^x - C_2 e^{-x} + 3x^2$, $y'' = C_1 e^x + C_2 e^{-x} + 6x$, $y(0) = y'(0) = y''(0) = 1 \Rightarrow C_1 + C_2 + C_3 = 1$, $C_1 - C_2 = 1$, $C_1 + C_2 = 1 \Rightarrow C_1 = 1$, $C_2 = C_3 = 0$, $y = e^x + x^3$.

4324.4. Характеристическое уравнение $\begin{vmatrix} 1-\lambda & -1 & 1\\ 1 & 1-\lambda - 1\\ 2 & -1 & -\lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^3 - 2\lambda^2 - \lambda + 2 = 0 \Leftrightarrow (\lambda^2 - 1)(\lambda - 2) = 0, \ \lambda_1 = 1, \ \lambda_2 = -1, \ \lambda_3 = 2 -$ характеристические числа; при $-k_2 + k_3 = 0$ $\lambda = 1 \begin{cases} k_1 & -k_3 = 0 \Rightarrow k_1 = k_2 = k_3 = 1, \ x_1 = e^t, \\ 2k_1 - k_2 & -k_3 = 0 \end{cases}$ $y_1 = e^t, \ z_1 = e^t; \$ при $\lambda = -1$ $k_1 = 1, \ k_2 = -3, \ k_3 = -5, \ x_2 = 0$

 $y_1=e^t,\ z_1=e^t;\ \text{при }\lambda=-1\ k_1=1,\ k_2=-3,\ k_3=-5,\ x_2=-e^{-t},\ y_2=-3e^{-t},\ z_2=-5e^{-t};\ \text{при }\lambda=2\ k_2=0,\ k_1=-k_3=1,\ x_3=e^{2t},\ y_3=0,\ z_3=e^{2t},\ x=C_1e^t+C_2e^{-t}+C_3e^{2t},\ y=C_1e^t-3C_2e^{-t},\ z=C_1e^t-5C_2e^{-t}+C_3e^{2t}.$

+ C_3e^{-i} , $y - C_1e^{-i}$ = 0 = 0 = 0 = 0 = 0 $\Leftrightarrow (2 - \lambda^2)(\lambda^2 - 6\lambda + 10) = 0$, $\lambda_1 = 2$, $\lambda_{2,3} = 3 \pm i$ = 0

характеристические числа; при $\lambda=2$ $k_1=1,$ $k_2=0,$ $k_3=0$ k_1-ik_2 $k_3=0$ k_1-ik_2 $k_3=0$ $k_1=0$

= 1, $k_2 = 1 + i$, $k_3 = 2 - i$, $x_{2.3} = e^{(3+i)t} = e^{3t}(\cos t + i\sin t)$, $y_{2.3} = (1+i)e^{3t}(\cos t + i\sin t) = e^{3t}(\cos t - \sin t + i(\sin t + \cos t))$, $y_2 = e^{3t}(\cos t - \sin t)$, $y_3 = e^{3t}(\cos t + \sin t)$, $z_{2.3} = (2-i)e^{3t}(\cos t + i\sin t) = e^{3t}(2\cos t + \sin t + i(2\sin t - \cos t))$, $z_2 = e^{3t}(2\cos t + \sin t)$, $z_3 = e^{3t}(2\sin t - \cos t)$, $x = C_1e^{2t} + e^{3t}(C_2\cos t + C_3\sin t)$, $y = e^{3t}((C_2 + C_3)\cos t - (C_2 - C_3)\sin t)$, $z = C_1e^{2t} + e^{3t}((2C_2 - C_3)\cos t + (C_2 + 2C_3)\sin t)$.

4326. Характеристическое уравнение $\begin{vmatrix} -5 - \lambda & 2 \\ 1 & -6 - \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 + 11\lambda + 28 = 0, \ \lambda_1 = -4, \ \lambda_2 = -7 - \text{ характеристи-ческие числа; при } \lambda = -4 \ k_1 = 2, \ k_2 = 1, \ x_1 = 2e^{-4t}, \ y_1 = e^{-4t}, \ \text{при } \lambda = -7k_1 = 1, \ k_2 = -1, \ x_2 = e^{-7t}, \ y_2 = e^{-7t}, \ x_0 = 2C_1e^{-4t} + C_2e^{-7t}, \ y_0 = C_1e^{-4t} - C_2e^{-7t} - 06$ общее решение однородной системы, частное решение исходной системы ищем методом неопределенных коэффициентов в виде $X = Ae^t + Be^{-2t}, \ Y = Ce^t + De^{-2t}; \ X' = Ae^t - 2Be^{-2t}, \ Y' = Ce^t - 2De^{-2t} \Rightarrow A = \frac{7}{40}, \ B = \frac{1}{5}, \ C = \frac{1}{40}, \ D = \frac{3}{10}, \ x = 2C_1e^{-4t} + C_2e^{-7t} + \frac{1}{40}e^t + \frac{1}{5}e^{-2t}, \ y = C_1e^{-4t} - C_2e^{-7t} + \frac{1}{40}e^t + \frac{1}{310}e^{-2t}.$

4333. Дважды дифференцируя второе уравнение, получаем $\frac{d^4x}{dt^4}=\frac{d^2y}{dx^2}=x,~x^{IV}=x,~k^4-1=0,~k_{1,2}=\pm 1,~k_{3,4}=\pm i\Rightarrow x=C_1e^t+C_2e^{-t}+C_3\cos t+C_4\sin t,~y=x''=C_1e^t+C_2e^{-t}-C_3\cos t-C_4\sin t.$

4340. Пусть y=f(x) и y=g(x) — уравнения первой и второй линий, f-f'x и g-g'x — ординаты точек пересечения касательных с осью Oy, ff'+x и gg'+x — абсциссы точек пересечения нормалей с осью Ox, получаем систе-

4345.
$$\begin{cases} \frac{dA}{dt} = kAB\\ \frac{dB}{dt} = -k_1A \end{cases}$$

$$\begin{split} & -\frac{1}{k_{1}}\frac{d^{2}B}{dt^{2}} = \frac{dA}{dt} \Rightarrow -\frac{1}{k_{1}}\frac{d^{2}B}{dt^{2}} = -\frac{k}{k_{1}}B\frac{dB}{dt}, \ [B' = \frac{dB}{dt}] \ B'' = \\ & = kBB' \ [B' = p(B)] \ p\frac{dp}{dB} = kBp \ (B \neq C), \ p = \frac{kB^{2}}{2} + C, \\ & t = \int \frac{2dB}{kB^{2} + C} = \frac{2}{k}\int \frac{dB}{B^{2} + C}, \ \frac{dB}{dt} < 0 \Rightarrow C < 0, \ C = \\ & = -\alpha^{2}, \quad k\alpha t = \ln\left|\frac{B - \alpha}{B + \alpha}\right| - \ln\beta, \ B = \alpha\frac{1 - \beta e^{\alpha kt}}{1 + \beta e^{\alpha kt}}, \ \frac{dB}{dt} = \\ & = -\frac{k\alpha^{2}}{2}\left(1 - \left(\frac{1 - \beta e^{\alpha kt}}{1 + \beta e^{\alpha kt}}\right)^{2}\right), \ A = \frac{k\alpha^{2}}{2k_{1}}\left(1 - \left(\frac{1 - \beta e^{\alpha kt}}{1 + \beta e^{\alpha kt}}\right)^{2}\right), \ B(0) = \\ & = B_{0} \Rightarrow \beta = \frac{\alpha - B_{0}}{\alpha + B_{0}}, \ A(0) = A_{0} \Rightarrow \alpha = \sqrt{B_{0}^{2} + \frac{2k_{1}}{k}A_{0}}. \end{split}$$

4355.
$$y = 1 + a_2(x-1)^2 + \dots + a_6(x-1)^6 + \dots, y' = 2a_2(x-1) + 3a_3(x-1)^2 + \dots + 6a_6(x-1)^5 + \dots, y'' = 2a_2 + 6a_3(x-1) + 12a_4(x-1)^2 + 20a_5(x-1)^3 + 30a_6(x-1)^4 + \dots, x = 1 + (x-1), y' - y + x = (2a_2 + 1(x-1) + (3a_3 - a_2)(x-1)^2 + (4a_4 - a_3)(x-1)^3 + (5a_5 - a_4)(x-1)^4 + \dots \Rightarrow a_2 = 0, a_3 = \frac{1}{6}, a_4 = \frac{1}{24}, a_5 = 0, a_6 = -\frac{1}{720}; y = 1 + \frac{(x-1)^3}{6} + \frac{(x-1)^4}{24} - \frac{(x-1)^6}{720} + \dots \approx 1,001624.$$

К ГЛАВЕ 15

4360. $\cos nx = \frac{e^{inx} + e^{-inx}}{2} = \frac{(\cos x + i\sin x)^n + (\cos x - i\sin x)^n}{2} = \cos^n x - C_n^2 \cos^{n-2} x \sin^2 x + C_n^4 \cos^{n-4} x \sin^4 x + \dots;$ т. к. $\sin x$ входит только в четных степенях, $\cos nx = P_n(\cos x)$.

$$\begin{array}{rcl} \textbf{4363.} & S & = & \sin\varphi + \sin2\varphi + \ldots + \sin n\varphi & = \\ & = & \frac{1}{\sin\frac{\varphi}{2}}\left(\sin\frac{\varphi}{2}\sin\varphi + \ldots + \sin\frac{\varphi}{2}\sin n\varphi\right) = & \frac{1}{2\sin\frac{\varphi}{2}}\left(\cos\frac{\varphi}{2} - \cos\frac{3\varphi}{2} + \ldots + \cos\frac{\varphi}{2}\cos\frac{(n-1)\varphi}{2}\right) = & \frac{1}{2\sin\frac{\varphi}{2}}\left(\cos\frac{\varphi}{2} - \cos\frac{\varphi}{2} + \ldots + \cos\frac{(n-1)\varphi}{2}\cos\frac{(n+1)\varphi}{2}\right) = & \frac{1}{2\sin\frac{\varphi}{2}}\left(\cos\frac{\varphi}{2} - \cos\frac{(n+1)\varphi}{2}\right) = & \frac{\sin\frac{n\varphi}{2}\sin\frac{(n+1)\varphi}{2}}{\sin\frac{\varphi}{2}}; \quad S = & 0 \quad \text{при } \varphi = & \frac{2\pi k}{n}, \quad \varphi = \\ & = & \frac{2\pi k}{n+1}, \quad k = & 0, \ldots, \quad n. \end{array}$$

4370. $f(x)\cos nx$ — нечетная функция $\Rightarrow a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos nx \, dx = 0;$ $b_{2k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin 2kx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin 2kx \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x)\sin 2kx \, dx \, [y = x + \pi] = \frac{1}{\pi} \int_{0}^{\pi} f(y - \pi)\sin 2k(y - \pi) \, dx + \frac{1}{\pi} \int_{0}^{\pi} f(x)\sin 2kx \, dx = 0.$

4376.1.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2\pi^2}{3}$$
, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx dx = \frac{1}{\pi n} \int_{-\pi}^{\pi} x^2 d(\sin nx) = \frac{1}{\pi n} x^2 \sin nx \Big|_{-\pi}^{\pi} - \frac{2}{\pi n} \int_{-\pi}^{\pi} x \sin nx dx = \frac{2}{\pi n^2} \int_{-\pi}^{\pi} x d(\cos nx) = \frac{2}{\pi n^2} x \cos nx \Big|_{-\pi}^{\pi} - \frac{2}{\pi n^2} \int_{-\pi}^{\pi} \cos nx dx = \frac{4(-1)^n}{n^2} - \frac{2}{\pi n^3} x \sin nx \Big|_{-\pi}^{\pi} = \frac{4(-1)^n}{n^2}$; $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$; при $x = \pi x^2 - \frac{\pi^2}{3} = 4 \sum_{n=1}^{\infty} \frac{1}{n^2} \Rightarrow s_1 = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$; при $x = 0$ $0 - \frac{\pi^2}{3} = 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \Rightarrow s_2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$; $s_3 = \frac{s_1 + s_2}{2} = \frac{\pi^2}{8}$.

4380. $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2h}{\pi}, \ a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_0^h \cos nx dx = \frac{2 \sin nh}{\pi n}, \ f(x) = \frac{h}{\pi} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin nh \cos nx}{n}.$

$$\begin{array}{lll} \textbf{4386.} \ b_n &=& \frac{2}{\pi} \int_0^{\pi} \sin ax \sin nx \, dx \\ &=& \frac{1}{\pi} \int_0^{\pi} (\cos (a-n)x - \cos (a+n)x) \, dx \\ &=& \frac{1}{\pi(a-n)} \sin (a-n)x \Big|_0^{\pi} - \frac{1}{\pi(a+n)} \sin (a+n)x \Big|_0^{\pi} \\ &=& \frac{(a+n)\sin (\pi a-\pi n) - (a-n)\sin (\pi a+\pi n)}{\pi(a^2-n^2)} = \frac{2(-1)^n \sin n\pi a}{\pi(a^2-n^2)}, \quad \sin ax \\ &=& \frac{2}{\pi} \sin \pi a \sum_{n=1}^{\infty} \frac{(-1)^n n}{a^2-n^2} \sin nx. \\ &=& \frac{2}{\pi} \sin \pi a \sum_{n=1}^{\infty} \frac{(-1)^n n}{a^2-n^2} \sin nx. \\ &=& \frac{2}{\pi} \int_0^{\pi} \cot x \, dx \\ &=& \frac{2}{\pi} \int_0^{\pi} \cot x \cos nx \, dx \\ &=& (-1)^n \sin \pi + n \int_0^{\pi} \sin nx \, d(\cot x) \\ &=& (-1)^n \sin \pi + n \cot x \sin nx \Big|_0^{\pi} - n^2 \int_0^{\pi} \cot x \cos nx \, dx \\ &=& (-1)^n \sin \pi + n \int_0^{\pi} \sin nx \, d(\cot x) \\ &=& (-1)^n \sin \pi + n \cot x \sin nx \Big|_0^{\pi} - n^2 \int_0^{\pi} \cot x \cos nx \, dx \\ &=& (-1)^n \sin \pi - n^2 I \\ &=& \frac{(-1)^n \sin \pi}{n^2+1}, \quad \cot x \\ &=& \frac{\sin \pi}{\pi} \left(1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2+1}\right). \\ &=& 24x; \quad \varphi(-x) \\ &=& \varphi(x) \Rightarrow \quad b_n \\ &=& 0; \quad a_0 \\ &=& \frac{2}{\pi} \int_0^{\pi} (\pi^4 - -2\pi^2 x^2 + x^4) \, dx \\ &=& \frac{16}{\pi} \pi^4, \quad a_n \\ &=& \frac{2}{\pi} \int_0^{\pi} \varphi(x) \cos nx \, dx \\ &=& \frac{2}{\pi n^2} \int_0^{\pi} \varphi(x) \, d(\sin nx) \\ &=& \frac{2}{\pi n^2} \int_0^{\pi} \varphi'(x) \sin nx \, dx \\ &=& -\frac{2}{\pi n^3} \int_0^{\pi} \varphi'(x) \, d(\sin nx) \\ &=& -\frac{2}{\pi n^3} \int_0^{\pi} \varphi'(x) \, d(\sin nx) \\ &=& -\frac{48}{\pi n^4} \int_0^{\pi} x \, d(\cos nx) \\ &=& -\frac{48}{\pi n^4} x \cos nx \, dn \\ &=& \frac{48}{n^4} \int_0^{\pi} x \, d(\cos nx) \\ &=& \frac{8}{15} \pi^4 + 48 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cos nx}{n^4}; \quad \text{при } x \\ &=& 0 \quad \pi^4 \\ &=& \frac{8}{15} \pi^4 + 48 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cos nx}{n^4}; \quad \text{при } x \\ &=& 0 \quad \pi^4 \\ &=& \frac{8}{15} \pi^4 + 48 \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cos nx}{n^4 + 1}; \quad \sin nx \\ &\Rightarrow f(x) =& \frac{(\pi - x)^2}{4} + \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 (n^2 + 1)} \sin nx \\ &=& \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 (n^2 + 1)} \cos nx + C, \quad \text{по условию } f(0) \\ &=& \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 + 1} \Rightarrow \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 (n^2 + 1)} \cos nx + C, \quad \text{по условию } f(0) \\ &=& \sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{n^2 + 1} + \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 (n^2 + 1)} \cos nx \right. \\ &=& \sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{n^2 + 1} + \sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 (n^2 + 1)} + C, \quad C \\ &=& \sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{n^2 + 1} - \frac{n^2 - 1}{n^2 (n^2 + 1)} \right) - \frac{n^2 - 1}{4} = \sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2$$

К ГЛАВЕ 16

4403.
$$\frac{dx}{-\omega y} = \frac{dy}{\omega x} = \frac{dz}{h} \Rightarrow \omega(x\,dx + y\,dy) = 0 \Rightarrow x^2 + y^2 = C_1, \ y = \sqrt{C_1 - x^2}, \ \frac{dx}{-\omega\sqrt{C_1 - x^2}} = \frac{dz}{h} \Rightarrow z = -\frac{h}{\omega}\arcsin\frac{x}{\sqrt{C_1}} + C_2, \ x = \sqrt{C_1}\sin(-\frac{\omega}{h}z + C_2), \ y = \sqrt{C_1}\cos(-\frac{\omega}{h}z + C_2) -$$
винтовая линия.

4407. div
$$A = \frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} = 2xyz \cdot 3 = 6xyz;$$

$$rot A = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix} = (\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z})i - (\frac{\partial A_{z}}{\partial x} - \frac{\partial A_{x}}{\partial z})j + (\frac{\partial A_{x}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z})i - (\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{z}}{\partial z})j + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z})i + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z})i + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial z})i + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial z})i + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial z})i + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial z})i + (\frac{\partial A_{y}}{\partial y} - \frac{\partial A_{y}}{\partial y})i - ($$

$$+(\frac{\partial A_{\mathbf{y}}}{\partial \mathbf{x}}-\frac{\partial A_{\mathbf{x}}}{\partial \mathbf{y}})\mathbf{k}=\mathbf{x}(\mathbf{z}^2-\mathbf{y}^2)\mathbf{i}+\mathbf{y}(\mathbf{x}^2-\mathbf{z}^2)\mathbf{j}+\mathbf{z}(\mathbf{y}^2-\mathbf{x}^2)\mathbf{k}.$$

4413.
$$F = -\frac{kx}{z\sqrt{x^2+y^2+z^2}}i - \frac{ky}{z\sqrt{x^2+y^2+z^2}}j - \frac{k}{\sqrt{x^2+y^2+z^2}}k,$$

$$\operatorname{div} F = -\frac{k}{z}\frac{\sqrt{x^2+y^2+z^2} - \frac{x^2}{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} - \frac{k}{z}\frac{\sqrt{x^2+y^2+z^2} - \frac{y^2}{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} + \frac{kz}{\sqrt{(x^2+y^2+z^2)^3}} = -\frac{k}{z\sqrt{x^2+y^2+z^2}}.$$

4419. Пусть поле пространственное. $A_x = \frac{f(|r|)}{|r|}x$, $|r| = \sqrt{x^2 + y^2 + z^2}$, $|r|_x' = \frac{x}{|r|} \Rightarrow \frac{\partial A_x}{\partial x} = \left(\frac{f(|r|)}{|r|}\right)'x + \frac{f(|r|)}{|r|} = \frac{f'(|r|)\frac{x}{|r|}|r| - \frac{x}{|r|}f(|r|)}{|r|^2}x + \frac{f(|r|)}{|r|} = \frac{x^2(f'(|r|)|r| - f(|r|)) + f(|r|)|r|^2}{|r|^3} \Rightarrow \text{div} A = \frac{(x^2 + y^2 + z^2)(f'(|r|)|r| - f(|r|)) + 3f(|r|)|r|^2}{|r|^3} = \frac{f'(|r|)|r| + 2f(|r|)}{|r|} = f'(|r|) + 2\frac{f(|r|)}{|r|}$; $\text{div} A = 0 \Rightarrow \frac{df}{d|r|} + 2f = 0$, $\frac{df}{f} = 2\frac{d|r|}{|r|}$, $f = \frac{C}{|r|^2}$.

4424. Пусть \boldsymbol{v} — вектор скорости, \boldsymbol{r} — радиус-вектор точки на окружности, α — угол между \boldsymbol{v} и положительным направлением оси абсцисс; $|\boldsymbol{v}| = \omega |\boldsymbol{r}|, \ \boldsymbol{v} \perp \boldsymbol{r} \Rightarrow \boldsymbol{v}_x = -\omega |\boldsymbol{r}| \cos(\frac{\pi}{2} - \alpha) = -\omega |\boldsymbol{r}| \sin \alpha = -\omega y, \ \boldsymbol{v}_y = \omega x, \ \mathrm{div} \boldsymbol{v} = \frac{\partial \boldsymbol{v}_x}{\partial x} + \frac{\partial \boldsymbol{v}_y}{\partial y} = 0, \ \mathrm{rot} \boldsymbol{v} = \left(\frac{\partial \boldsymbol{v}_y}{\partial x} - \frac{\partial \boldsymbol{v}_x}{\partial y}\right) \boldsymbol{k} = 2\omega \boldsymbol{k} \ (\mathrm{ось} \ Oz \ параллельна оси вращения).$

4431. $F = -kr \Rightarrow F_x = -kx$, $F_y = -ky$, $F_z = -kz$, $\frac{\partial F_x}{\partial y} = \frac{\partial F_x}{\partial z} = \dots = \frac{\partial F_z}{\partial y} = 0 \Rightarrow \mathrm{rot}F = 0$, поле потенциально с потенциалом $U, \ U = \int_{(x_0,y_0,z_0)}^{(x,y,z)} -kx\,dx - -ky\,dy - kz\,dz = -\frac{k}{2}(x^2 + y^2 + z^2) + C$.

4434. $F = -k\frac{\bar{r}}{|r|^2}$, где $r\{x, y, 0\} \Rightarrow F_x = -\frac{kx}{|r|^2}$, $F_y = -\frac{ky}{|r|^2}$, $F_z = 0$, $\mathrm{rot} F = \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) k = 0$, поле потенциально с потенциалом U, $U = -k\int_{(x_0, y_0)}^{(x, y)} \frac{x\,dx}{x^2+y^2} + \frac{y\,dy}{x^2+y^2} = -\frac{k}{2}\ln(x^2+y^2) + C$.

- **4440.** Потенциал материальной точки массы m в точке, находящейся от нее на расстоянии r равен $\frac{km}{r}$; рассмотрим участок линии, соответствующий значениям параметра $[t,\ t+dt],\ r=\sqrt{a^2\cos^2t+a^2\sin^2t+b^2t^2}=\sqrt{a^2+b^2t^2},\ dm=\delta dl=\delta\sqrt{{x_t'}^2+{y_t'}^2+{z_t'}^2}dt=\delta\sqrt{a^2+b^2}dt,\ dU=k\frac{dm}{r}=k\delta\frac{\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}t^2}dt\Rightarrow U=\int_0^{2\pi}dU=\frac{k\delta\sqrt{a^2+b^2}}{b}\int_0^{2\pi}\frac{dt}{\sqrt{a^2/b^2+t^2}}=\frac{k\delta\sqrt{a^2+b^2}}{b}\ln\left|t+\sqrt{\frac{a^2}{b^2}+t^2}\right|_0^{2\pi}=\frac{k\delta\sqrt{a^2+b^2}}{b}\ln\frac{2\pi b+\sqrt{a^2+4\pi^2b^2}}{a}.$
- **4445.1.** Рассмотрим элемент объема в цилиндрических координатах: $dv = r dr d\varphi dz$, $dm = \delta dv$, $dU = \frac{k\delta dv}{\sqrt{r^2+z^2}}$, $U = \iiint_{\Omega} \frac{k\delta r dr d\varphi dz}{\sqrt{r^2+z^2}} = k\delta \int_{0}^{2\pi} d\varphi \int_{0}^{H} dz \int_{0}^{R} \frac{r dr}{\sqrt{r^2+z^2}} = k\delta \int_{0}^{2\pi} d\varphi \int_{0}^{H} \left(\sqrt{R^2+z^2}-z\right) dz = k\delta \int_{0}^{2\pi} d\varphi \left(\frac{z}{2}\sqrt{R^2+z^2}+\frac{R^2}{2}\ln|z+\sqrt{z^2+R^2}|-\frac{z^2}{2}\right)\Big|_{0}^{H} = \pi k\delta \left(H\sqrt{R^2+H^2}+R^2\ln\frac{H+\sqrt{H^2+R^2}}{R}-H^2\right).$
- **4453.** Циркуляция: $\oint (x^3-y)dx + (y^3+x)dy$ $[x=R\cos t,y=R\sin t]=\int_0^{2\pi}((R^3\cos^3t-R\sin t)(-R\sin t)+(R^3\sin^3t+R\cos t)R\cos tdt=R^2\int_0^{2\pi}(\sin^2t-R^2\cos^3t\sin t+R^2\sin^3t\cos t+R\cos^2t)dt=R^2\int_0^{2\pi}(1-\frac{R^2}{2}\sin 2t\cos 2t)dt=R^2\int_0^{2\pi}(1-\frac{R^2}{4}\sin 4t)dt=2\pi R^2;$ поток: $\Phi=\oint Andl=\int_0^{2\pi}((x^3-y)\cos t+R^2\sin^2t\cos^2t)dt=R^4\int_0^{2\pi}(\cos^4t+\sin^4t)dt=R^4\int_0^{2\pi}(1-\frac{1}{2}\sin^22t)dt=\frac{3}{2}\pi R^4.$
- **4458.** Уравнение цилиндрической поверхности S в цилиндрических координатах $r=R, \ r\perp S\Rightarrow r\parallel n, \ r\cdot n=|r|==R, \ dS=R d\varphi dz, \ \Phi=\iint_S r\cdot n \, dS=\int_0^{2\pi} d\varphi \int_0^H R^2 dz==2\pi R^2 H.$
- **4463.** $r\{x,y,z\}$, $\int_{AB} r \, dl = \int_{AB} x \, dx + y \, dy + z \, dz$ $[x = a \cos t, y = a \sin t, z = bt] = \int_{0}^{2\pi} (-a^2 \cos t \sin t + a^2 \sin t \cos t + b^2 t) dt = 2\pi^2 b^2$.
- **4465.** Т. к. поле вектора rot A соленоидально, поток этого вектора через замкнутую поверхность равен 0, поэтому поток через поверхность параболоида равен потоку через круг $x^2+y^2\leqslant 1$, последний по формуле Стокса равен $\oint A\,dl=$ $=\oint y\,dx+z\,dy[x=\cos t,\;y=\sin t,\;z=0]=\int_0^{2\pi}-\sin^2t\,dt=$ $=-\pi$.