Alexander J. Turner

B47 Hildebrand Hall, University of California, Berkeley, CA 94720 (303) 810-3162 • alexjturner@berkeley.edu • https://alexjturner.github.io/index.html

EDUCATION

Ph.D., Harvard University 2012 - 2017Atmospheric Chemistry (Advisor: Daniel J. Jacob)

B.S., University of Colorado at Boulder

Mechanical Engineering (Advisor: Daven K. Henze)

Professional Experience

University of California at Berkeley

2017 - Present

2008 - 2012

Miller Postdoctoral Fellow with Inez Fung and Ronald C. Cohen

- Developing a methodology to incorporate meteorological parameters and transport error in GHG flux inversions.
- Estimating methane and CO₂ fluxes at high spatio-temporal resolution (~1 km²) using dense observations.
- Investigating the processes controlling the OH burden on decadal-to-centennial timescales.

Harvard University

2012 - 2017

Graduate Research Assistant with Daniel J. Jacob

- Developed an efficient radial basis function-based method for designing multi-scale state vectors.
- Estimated global and North American methane emissions at high resolution using GOSAT satellite observations.
- Identified a potential increase in US methane emissions over the past decade.
- Demonstrated how changes in the OH burden or methane emissions can explain recent trends in methane.
- Quantified the magnitude of sources that could be detected with different types of satellite observations.

DOE Lawrence Berkeley National Lab/University of California at Berkeley Summer 2014, Spring 2016 Visiting Graduate Student with Ronald C. Cohen

- Quantified the tradeoff between measurement network density and observation error for estimating urban fluxes.
- Compiled an hourly carbon dioxide emission inventory at 1 km resolution for California's Bay Area.
- Developed a WRF-STILT based inverse model for the BEACO₂N carbon dioxide measurement network

University of Colorado at Boulder

2010 - 2012

Undergraduate Research Assistant with Daven K. Henze

- Developed an adjoint-based method for assessing the influence of non-local emissions on a satellite column.
- Demonstrated that the common practice of neglecting atmospheric transport and assuming a local relationship between satellite observations and emissions could lead to considerable biases in the estimation of emissions.

NOAA Geophysical Fluid Dynamics Lab

Summer 2011

Undergraduate Research Assistant with Arlene M. Fiore

- Examined the long-term cyclone frequency and air quality impacts in the Northeastern U.S.
- Found statistically significant decreasing mid-latitude cyclone frequencies in future climate scenarios.
- Demonstrated that the relationship between air quality and cold fronts is weaker than previously thought.

DOE Lawrence Berkeley National Lab

 $Summer\ 2010$

Undergraduate Research Assistant with Marc L. Fischer

- Used WRF-STILT to calculate footprints and improve California's methane emission estimates.
- Found a discrepancy in the WRF PBL heights due to a misrepresentation of irrigation in the model.

TEACHING EXPERIENCE

Harvard University Spring 2014

Teaching Assistant

Spring 2014: Atmospheric Chemistry (21 students)

University of Colorado at Boulder

2010 - 2011

Teaching Assistant

- Fall 2011: Numerical Methods (~100 students) Outstanding Teaching Assistant Award
- Fall 2010: Numerical Methods (∼100 students)
- Spring 2010: First-Year Engineering Projects (25 students)

AWARDS AND FELLOWSHIPS

Miller Fellowship at UC Berkeley	(Postdoctoral Fellowship, 11 Recipients)	2017 - 2020
Department of Energy CSGF Fellowship	(National Fellowship, 10 Recipients)	2013 - 2017
Department of Defense NDSEG Fellowship, declined	(National Fellowship, 200 Recipients)	2013
CU Boulder "Outstanding Graduate for Research"	(College Award, Sole Recipient)	2012
Sigma Xi Undergraduate Research Award	(University Award, 6 Recipients)	2011
Vestas Mechanical Engineering Student of the Year	(National Award, Sole Recipient)	2010
NOAA Ernest F. Hollings Scholar	(National Scholarship, 100 Recipients)	2010 - 2012

- *18. Sheng, J. X., D. J. Jacob, **A. J. Turner**, J. D. Maasakkers, J. Benmergui, A. A. Bloom, C. Ardnt, R. Gautam, D. Zavala-Araiza, S. P. Hamburg, H. Boesch, R. J. Parker (submitted), 2010–2015 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors, submitted.
- 17. Bloom, A. A., K. Bowman, M. Lee, **A. J. Turner**, R. Schroeder, J. R. Worden, R. J. Weidner, K. McDonald, and D. J. Jacob (2017), A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), *Geosci. Mod. Dev*, 10, 2141–2156, doi:10.5194/gmd-10-2141-2017.
- Buchwitz, M, O. Schneising, M. Reuter, J. Heymenn, S. Krautwurst, H. Bovensmann, J. P. Burrows, H. Boesch, R. J. Parker, P. Somkuti, R. G. Detmers, O. P. Hasekamp, I. Aben, A. Butz, C. Frankenberg, and A. J. Turner (2017), Satellite-derived methane hotspot emission estimates using a fast data-driven method, Atmos. Chem. Phys., 17, 5751–5744, doi:10.5194/acp-17-5751-2017.
- Turner, A. J., C. Frankenberg, P. O. Wennberg, and D. J. Jacob (2017), Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl, *Proc. Natl. Acad. Sci.*, 114, 5367–5372, doi:10.1073/pnas.1616020114.
- Tzompa-Sosa, Z. A., E. V. Fischer, E. Mahieu, B. Franco, C. A. Keller, A. J. Turner, D. Helmig, A. Fried, D. Richter, P. Weibring, J. Walega, T. I. Yacovitch, S. C. Herndon, D. R. Blake, F. Hase, J. Hannigan, S. Conway, K. Strong, and M. Schneider (2017), Revisiting global fossil fuel and biofuel emissions of ethane, J. Geophys. Res., 122, 2493-2512, doi:10.1002/2016JD025767.
- Bader, W., B. Bovy, S. Conway, K. Strong, D. Smale, A. J. Turner, T. Blumenstock, C. Boone, M. C. Coen, A. Coulon, O. Garcia, D. W. T. Griffith, F. Hase, P. Hausmann, N. Jones, P. Krummel, I. Murata, I. Morino, H. Nakajima, S. O'Doherty, C. Paton-Walsh, J. Robinson, R. Sandrin, M. Schneider, C. Servais, R. Sussmann, and E. Mahieu (2017), The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005, Atmos. Chem. Phys., 17, 2255-2277, doi:10.5194/acp-17-2255-2017.
- 12. Maasakkers, J. D., D. J. Jacob, M. Sulprizio, A. J. Turner, M. Weitz, T. Wirth, C. Hight, M. DeFigueiredo, M. Desai, R. Schmeltz, L. Hockstad, A. A. Bloom, K. W. Bowman, S. Jeong, and M. L. Fischer (2016), A gridded national inventory of US methane emissions, *Env. Sci. Technol.*, 50, 13123–13133, doi:10.1021/acs.est.6b02878.
- Jacob, D. J., A. J. Turner, J. D. Maasakkers, J. Sheng, K. Sun, X. Liu, K. Chance, I. Aben, J. McKeever, and C. Frankenberg (2016), Satellite observations of atmospheric methane and their application to constrain emissions, Atmos. Chem. Phys., 16, 14371–14396, doi:10.5194/acp-16-14371-2016.
- Turner, A. J., A. A. Shusterman, B. C. McDonald, V. Teige, R. A. Harley, and R. C. Cohen (2016), Network design for quantifying urban CO₂ emissions: assessing trade-offs between precision and network density, Atmos. Chem. Phys., 16, 13465–13475, doi:10.5194/acp-16-13465-2016.
- Shusterman, A. A., V. Teige, A. J. Turner, C. Newman, J. Kim, and R. C. Cohen (2016), The BErkeley Atmospheric CO₂ Observation Network: Initial Evaluation, Atmos. Chem. Phys., 16, 13449–13463, doi:10.5194/acp-16-13449-2016.
- 8. Tan, Z., Q. Zhuang, D. K. Henze, C. Frankenberg, E. Dlugokencky, C. Sweeney, A. J. Turner, M. Sasakawa, and T. Machida (2016), Inverse modeling of pan-Arctic methane emissions at high spatial resolution: What can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys., 16, 12649–12666, doi:10.5194/acp-16-12649-2016.
- Bousserez, N., D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, and J. R. Worden (2016), Constraints on methane emissions in North America from future geostationary remote sensing measurements, Atmos. Chem. Phys., 16, 6175–6190, doi:10.5194/acp-16-6175-2016.
- Turner, A. J., D. J. Jacob, J. Benmergui, S. C. Wofsy, J. D. Maasakkers, A. Butz, O. Hasekamp, and S. C. Biraud (2016), A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations, *Geophys. Res. Lett.*, 43, doi:10.1002/2016GL067987.
- 5. Worden, J. R., A. J. Turner, A. Bloom, S. S. Kulawik, J. Liu, M. Lee, R. Weidner, K. Bowman, C. Frankenberg, R. J. Parker, and V. H. Payne (2015), Quantifying Lower Tropospheric Methane Concentrations Using Near-IR and Thermal IR Satellite Measurements: Comparison to the GEOS-Chem model, *Atmos. Meas. Tech.*, 8, 3433–3445, doi:10.5194/amt-8-3433-2015.
- 4. Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, E. Lundgren, A. E. Andrews, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, C. Sweeney, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch (2015), Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, *Atmos. Chem. Phys.*, 15, 7049–7069, doi:10.5194/acp-15-7049-2015.

- 3. Turner, A. J. and D. J. Jacob (2015), Balancing aggregation and smoothing errors in inverse models, Atmos. Chem. Phys., 15, 7039–7048, doi:10.5194/acp-15-7039-2015.
- Turner, A. J., A. M. Fiore, L. W. Horowitz, and M. Bauer (2013), Summertime cyclone frequencies over the Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone pollution, Atmos. Chem. Phys., 13, 565–578, doi:10.5194/acp-13-565-2013.
- Turner, A. J., D. K. Henze, R. V. Martin, and A. Hakami (2012), The spatial extent of source influences on modeled column concentrations of short-lived species, *Geophys. Res. Lett.*, 39, L12806, doi:10.1029/2012GL051832.

SELECTED ORAL CONFERENCE PRESENTATIONS

- 2017 Turner, A. J.: Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl, ACCESS XIV Meeting, Brookhaven National Laboratory.
- 2016 **Turner, A. J.**, C. Frankenberg, et al.: Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl, 2016 AGU fall meeting, San Francisco, CA.
- 2015 **Turner, A. J.**, D. J. Jacob, et al.: An increasing trend in US methane emissions inferred from satellite observations, 11th International workshop on greenhouse gas measurements from space, Caltech.
- 2015 **Turner, A. J.**, D. J. Jacob, et al.: Estimating North American methane emissions with high spatial resolution using GOSAT, 7th International GEOS-Chem meeting, Harvard University.
- 2015 **Turner, A. J.**, D. J. Jacob, *et al.*: Estimating North American methane emissions with high spatial resolution using GOSAT, *5th North American carbon program meeting*, Washington, DC.
- 2014 Turner, A. J., R. C. Cohen, et al.: Estimating urban carbon dioxide fluxes at high spatial resolution from in situ observations, 2014 AGU fall meeting, San Francisco, CA.
- 2013 **Turner, A. J.**, D. J. Jacob, *et al.*: Optimal estimation of North American methane emissions using GOSAT data: A contribution to the NASA Carbon Monitoring System, *2013 AGU fall meeting*, San Francisco, CA.
- 2011 Turner, A. J., A. M. Fiore, et al.: Quantifying the impact of a warming world on Northeast air quality via changing cyclone frequency: past, present, and future, 2011 AGU fall meeting, San Francisco, CA.
- 2011 **Turner, A. J.**, D. K. Henze, et al.: Assessing the range of modeled source influences on column concentrations of short-lived species using adjoint sensitivities, 5th International GEOS-Chem meeting, Harvard University.

INVITED SEMINARS

- 2017 Japanese Aerospace Exploration Agency (JAXA)
- 2017 California Institute of Technology (Caltech)
- 2016 Massachusetts Institute of Technology (MIT)
- 2016 NASA Jet Propulsion Laboratory
- 2016 NOAA Earth System Research Laboratory
- 2016 IBM Thomas J. Watson Research Center
- 2014 DOE Lawrence Livermore National Laboratory
- 2014 NOAA Earth System Research Laboratory

TECHNICAL SKILLS

Reviewer for: Nature Geosci., GRL, JGR, ACP, AMT, GMD, and Atmos. Environ.

Graduate Coursework: Inverse Methods, Partial Differential Equations, Stochastic Optimization, Parallel Comput-

ing, Environmental Modeling, Atmospheric Chemistry, Aerosols, Spectroscopy, Physics of Climate, Computing Foundations, Classical Thermo., Stat. Thermo., and Fluid Dynamics.

Programming: Matlab, Python, Julia, R, IDL, Fortran 77/90, Shell Scripting, Mathematica, EES, html. Computing Tools: MPI, CUDA, OpenMP, MapReduce, Unix, Amazon EC2, ANSYS Fluent, SolidWorks, LaTeX.

RESEARCH GRANTS AND COMPUTING ALLOCATIONS

On the utility of satellite observations for constraining fine-scale methane fluxes and super-emitters 400,000 CPU hours, Alexander J. Turner (PI)

- NCAR/CISL Allocation Number: UHAR0006
- \bullet 05/19/2017 05/18/2018

Estimating urban carbon dioxide fluxes at high resolution from in situ observations

- $650,\!000$ CPU hours & $400,\!000$ Storage Units, Alexander J. Turner (PI)
 - NERSC ERCAP Grant 87628
 - \bullet 01/12/2014 01/09/2017