Introduction to multiple Testing

Boris Hejblum October 15th, 2019

Introduction

Multiple univariate statistical tests

- easy way to explore data: (many) **univariate** tests e.g. between each explanatory variable and the outcome
- can be a (bad) way to select variables for a small(er) multivariate model
 - ⇒ screening method
- when multivariate models do not make sense or are not feasible

One statistical test

Your decision/Reality	H_0 is true	H_0 is false
Do not reject H_0 (test non-significant)	Correct decision	Wrong decision
Reject H_0 (test significant)	Wrong decision	Correct decision

20 statistical tests

If we repeat the procedure 20 times, that is, *if we perform 20 univariate* tests without changing anything: \implies great chance of having false positive detections...

How many tests do we expect will be false positive detection?

m statistical tests

- How do we adapt to the fact that we have many (m) tests?
- Can we **adjust** the level of significance α accordingly?

Russian roulette

Assume that a gun has 20 locations and contains one bullet.

- pull the trigger1 time: gun fires with 5% probability
- pull the trigger 10 times: gun fires with 40% probability
- pull the trigger
 25 times: gun fires with 72% probability

Probability

The probability of no undesirable event (false positive or gun firing) is:

$$(1-\alpha)^m$$

Type-I error for multiple tests

Multiple testing notations

- *m*: total number of tests
- \mathcal{M}_0 : the set of true null hypotheses
- \cdot V: number of false positive (null hypotheses wrongly rejected)
- \cdot R: number of null hypotheses rejected

Null hypotheses	True	False	Total
Non-rejected	U	T	W
Rejected	V	S	R
Total	m_0	$m-m_0$	m

Family Wise Error Rate (FWER)

FWER = $P(V > 0 | \mathcal{M}_0)$

⇒ the probability to get at least one false positive, knowing the true null hypotheses.

- we want to stricly control the number of false positives
- *m* is "not so large"

Often for confirmatory analyses

False Discovery Rate (FDR)

$FDR = E[V/R | \mathcal{M}_0)]$

⇒ the expectated number of false positives on average among rejected null hypotheses, knowing the true null hypotheses.

- *m* is "really large"
- the FWER is too conservative (we do not reject any null hypothesis)

Often for exploratory/hypothesis generating analyses

Multiple testing correction

Correction for multiple tests

When we take into account the number of tests, we can either:

- · Correct p-values (called **adjusted p-values**) and keep the significance level α fixed
- · Keep raw p-values and correct significance level lpha
- ⇒ Both ways are equivalent *but software usually use adjusted p-values*

Correction to control the FWER (1)

Bonferroni correction:

Compare p-values to α/m instead of α \implies adjusted p-values: q = min(1, mp)

- Controls the FWER
 (playing Russian roullette 10 times with a gun with 200 slots is "safer")
- Too conservative as soon as *m* get large

Correction to control the FWER (2)

Holm correction:

- 1. Compare the smallest p-value to α/m . If the associated null hypothesis is not rejected **stop**, otherwise **continue**
- 2. Compare the second smallest p-value to $\alpha l(m-1)$ If the associated null hypothesis is not rejected **stop**, otherwise **continue**
- 3. ...
- 4. Compare the largest p-value to $\alpha/1$ and **conclude**
- \implies also **controls the FWER** but a bit less conservative than Bonferonni (more null hypotheses could be rejected, if m is not too large)

Correction to control the FDR

- 1. Compare the smallest p-value to α / m , the second smallest p-value to $2\alpha / m$, ..., and the largest p-value to α .
- 2. Find the largest p-value that is strictly less than its associated threshold. We note this p-value p^* .
- 3. Reject all null hypotheses associated to p-values smaller than p^* .
- \implies controls the FDR (but not the FWER) Hence, even more flexible than Holm correction and usually used when m is very large

Vizualizing an example

Vizualizing an example – log-scale

Conclusion

Take home message

Multiple testing must be taken into account:

- $\cdot \implies$ p-values must be adjusted!
- choose the correction method according to your scientific objectives
- NEVER play at Russian roulette (seriously)!

Further reading

- Dudoit, S & van der Laan, J. Multiple Testing Procedures with Applications to Genomics. Springer Series in Statistics (2008).
- Foulkes, AS. *Applied statistical genetics with R: for population-based association studies.* Springer Verlag (2009).
- Benjamini, Y & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)* (1995).
- · Holm, S. A simple sequentially rejective multiple test procedure. *Scandinavian journal of statistics.* (1979).
- Phipson B & Smyth GK. Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn.
 Statistical Applications in Genetics and Molecular Biology. 31;9(1):1544–6115 (2010).