Component-based system for management of multilevel virtualization of networking resources

System komponentowy wspomagający wielopoziomową wirtualizecję zasobów sieciowych

Robert Boczek Dawid Ciepliński

prof. dr hab. inż Krzysztof Zieliński

29.03.2011

Multilevel network virtualization

- 2. Context
 - 2.1 QoS-aware networking
 - 2.2 Resource virtualization approaches
 - 2.3 Multilevel network virtualization
 - 2.3.1 Virtual network resources
 - 2.3.2 Fine-grained QoS control
 - 2.3.3 Virtual appliances
 - 2.3.4 "Network in a box" concept
 - 2.4 Applications and benefits of virtual infrastructures
 - 2.4.1 Testing and simulations
 - 2.4.2 Improving server-side infrastructure scalability
 - 2.4.3 Infrastructure as a service
 - 2.4.4 The role of resource virtualization in the SOA stack

- 1. Introduction
- 2. Context
 - 2.1 QoS-aware networking
 - 2.2 Resource virtualization approaches
 - 2.3 Multilevel network virtualization
 - 2.3.1 Virtual network resources
 - 2.3.2 Fine-grained QoS control
 - 2.3.3 Virtual appliances
 - 2.3.4 "Network in a box" concept
 - 2.4 Applications and benefits of virtual infrastructures
 - 2.4.1 Testing and simulations
 - 2.4.2 Improving server-side infrastructure scalability
 - 2.4.3 Infrastructure as a service
 - 2.4.4 The role of resource virtualization in the SOA stack

- 1. Introduction
- 2 Context
 - 2.1 QoS-aware networking
 - 2.2 Resource virtualization approaches

- 1. Introduction
- 2. Context
 - 2.1 QoS-aware networking
 - 2.2 Resource virtualization approaches
 - 2.3 Multilevel network virtualization
 - 2.3.1 Virtual network resources
 - 2.3.2 Fine-grained QoS control
 - 2.3.3 Virtual appliances
 - 2.3.4 "Network in a box" concept
 - 2.4 Applications and benefits of virtual infrastructures
 - 2.4.1 Testing and simulations
 - 2.4.2 Improving server-side infrastructure scalability
 - 2.4.3 Infrastructure as a service
 - 2.4.4 The role of resource virtualization in the SOA stac

- 1. Introduction
- 2. Context
 - 2.1 QoS-aware networking
 - 2.2 Resource virtualization approaches
 - 2.3 Multilevel network virtualization
 - 2.3.1 Virtual network resources
 - 2.3.2 Fine-grained QoS control
 - 2.3.3 Virtual appliances
 - 2.3.4 "Network in a box" concept
 - 2.4 Applications and benefits of virtual infrastructures
 - 2.4.1 Testing and simulations
 - 2.4.2 Improving server-side infrastructure scalability
 - 2.4.3 Infrastructure as a service
 - 2.4.4 The role of resource virtualization in the SOA stack

- 3. Requirements analysis
 - 3.1 Functional requirements
 - 3.1.1 Instantiation
 - 3.1.2 Discovery
 - 3.1.3 Accounting
 - 3.2 Non-functional requirements
 - 3.3 Underlying environment characteristics
 - 3.4 General approach and problems it imposes
 - 3.4.1 Load balancing / Deploymen
 - 3.4.2 Infrastructure isolation
 - 3.4.3 Broadcast domain preservation
 - 3 4 4 Constraints

- 3. Requirements analysis
 - 3.1 Functional requirements
 - 3.1.1 Instantiation
 - 3.1.2 Discovery
 - 3.1.3 Accounting
 - 3.2 Non-functional requirements
 - 3.3 Underlying environment characteristics
 - 3.4 General approach and problems it imposes
 - 3.4.1 Load balancing / Deployment
 - 3.4.2 Infrastructure isolation
 - 3.4.3 Broadcast domain preservation
 - 3 4 4 Constraints

- 3. Requirements analysis
 - 3.1 Functional requirements
 - 3.1.1 Instantiation
 - 3.1.2 Discovery
 - 3.1.3 Accounting
 - 3.2 Non-functional requirements
 - 3.3 Underlying environment characteristics
 - 3.4 General approach and problems it imposes
 - 3.4.1 Load balancing / Deployment
 - 3.4.2 Infrastructure isolation
 - 3.4.3 Broadcast domain preservation
 - 3 4 4 Constraints

- 3. Requirements analysis
 - 3.1 Functional requirements
 - 3.1.1 Instantiation
 - 3.1.2 Discovery
 - 3.1.3 Accounting
 - 3.2 Non-functional requirements
 - 3.3 Underlying environment characteristics
 - 3.4 General approach and problems it imposes
 - 3.4.1 Load balancing / Deployment
 - 3.4.2 Infrastructure isolation
 - 3.4.3 Broadcast domain preservation
 - 3 4 4 Constraints

- 4. Solaris OS as a resource virtualization environment
 - 4.1 General information
 - 4.2 Lightweight OS-level virtualization with Solaris Containers
 - 4.3 Crossbow network virtualization technology
 - 4.4 Resource access control

- 4. Solaris OS as a resource virtualization environment
 - 4.1 General information
 - 4.2 Lightweight OS-level virtualization with Solaris Containers
 - 4.3 Crossbow network virtualization technology
 - 4.4 Resource access control

- 4. Solaris OS as a resource virtualization environment
 - 4.1 General information
 - 4.2 Lightweight OS-level virtualization with Solaris Containers
 - 4.3 Crossbow network virtualization technology
 - 4.4 Resource access control

- 4. Solaris OS as a resource virtualization environment
 - 4.1 General information
 - 4.2 Lightweight OS-level virtualization with Solaris Containers
 - 4.3 Crossbow network virtualization technology
 - 4.4 Resource access control

5. The system architecture

- 5.1 High-level design
- 5.2 System components and their responsibilities
 - 5.2.1 Assigner
 - 5.2.2 Superviso
 - 523 Worker
- 5.3 Crossbow resources instrumentation
- 5.4 Domain model and data flows

- 5. The system architecture
 - 5.1 High-level design
 - 5.2 System components and their responsibilities
 - 5.2.1 Assigner
 - 5.2.2 Supervisor
 - 5.2.3 Worker
 - 5.3 Crossbow resources instrumentation
 - 5.4 Domain model and data flows

- 5. The system architecture
 - 5.1 High-level design
 - 5.2 System components and their responsibilities
 - 5.2.1 Assigner
 - 5.2.2 Supervisor
 - 5.2.3 Worker
 - 5.3 Crossbow resources instrumentation
 - 5.4 Domain model and data flows

- 5. The system architecture
 - 5.1 High-level design
 - 5.2 System components and their responsibilities
 - 5.2.1 Assigner
 - 5.2.2 Supervisor
 - 5.2.3 Worker
 - 5.3 Crossbow resources instrumentation
 - 5.4 Domain model and data flows

Gui console

6. Implementation

- 6.1 Implementation environment
- 6.2 Domain model transformation details
- 6.3 Low-level functions access
- 6.4 Building and running the platform

- 6. Implementation
 - 6.1 Implementation environment
 - 6.2 Domain model transformation details
 - 6.3 Low-level functions access
 - 6.4 Building and running the platform

- 6. Implementation
 - 6.1 Implementation environment
 - 6.2 Domain model transformation details
 - 6.3 Low-level functions access
 - 6.4 Building and running the platform

- 6. Implementation
 - 6.1 Implementation environment
 - 6.2 Domain model transformation details
 - 6.3 Low-level functions access
 - 6.4 Building and running the platform

Proposals of Case Studies

- 7. Case Study
 - 7.1 Clustered GlassFish
 - 7.2 Multimedia server

Proposals of Case Studies

- 7. Case Study
 - 7.1 Clustered GlassFish
 - 7.2 Multimedia server

Summary

- 8. Summary
 - 8.1 Conclusions
 - 8.2 Achieved goals
 - 8.3 Further work

Summary

- 8. Summary
 - 8.1 Conclusions
 - 8.2 Achieved goals
 - 8.3 Further work

Summary

- 8. Summary
 - 8.1 Conclusions
 - 8.2 Achieved goals
 - 8.3 Further work