Experimental Physik II Kapitel 20

author email

$\mathrm{July}\ 2,\ 2016$

Contents

2 0	Wel	len	
	20.1	Wellen	nausbreitung in 2 und 3 Dimensionen
		20.1.1	Definition Wellenfront
		20.1.2	Huygen'sches Prinzip
		20.1.3	Definition Strahl
		20.1.4	Reflexion von Wellen
		20.1.5	Interferenz

20 Wellen

20.1 Wellenausbreitung in 2 und 3 Dimensionen

20.1.1 Definition Wellenfront

: Punkte gleicher Phase, die zur gleichen Zeit durch Welle angeregt werden.

20.1.2 Huygen'sches Prinzip

 \Rightarrow Jeder Punkt einer Wellenfront ist Erreger einer Kugelförmigen Elementarwelle. Die Einhüllende aller dieser Elementarwellen bildet die Wellenfront zu einem späteren Zeitpunkt als Superposition alle Elementarwellen unter Berücksichtigung ihrer Phase.

BILD fehlt hier noch

BILD fehlt hier noch

Resultat: "Beugung" von Wellen

Bewegung ist typisches Wellenphänomen, das die Ausbreitung in Bereiche beschreibt, die bei gradliniger Ausbreitung nicht erreicht werden Können ("geometrischer Schattenbereich")

BILD fehlt hier noch

Wenn $\lambda \ll d$ (d: typ. geometrische Dimension der Hindernisse), dann ist Beugung vernachlässigbar und Ausbreitung durch "Strahlen" zu beschreiben

20.1.3 Definition Strahl

: Normale auf der Wellenfront, immer in Ausbreitungsrichtung zeigend. In dem Fall Komplette Beschreibung durch: "Geometrische Optik" Ist $\lambda \approx d$, so müssen dominant typische Wellenphänomene berücksichtigt werden.

20.1.4 Reflexion von Wellen

BILD fehlt hier noch

Wellenfront erreicht Hindernis; Aussenden neuer Elementarwellen; Durch Einhüllende ist die neue Wellenfront

Geometrie: Einfallswinkel α = Ausfallwinkel α'

(Aussage nur über Richtung, nicht über Amplitude (Intensität))

Brechung: Wellenfront von Medium 1 und $v_{Ph}=c_1$ in Medium 2 mit $v_{Ph}=c_2$

BILD fehlt hier noch

In der Zeit τ :

$$\lambda = c_1 \cdot \tau$$
 Medium 1
 $\lambda' = c_2 \cdot \tau$ Medium 2

$$\frac{\lambda}{d} = \sin \alpha \; ; \; \frac{\lambda'}{d} = \sin \beta$$

$$\frac{\lambda}{\sin \alpha} = \frac{\lambda'}{\sin \beta}$$

$$\Rightarrow \frac{c_1 \cdot \tau}{\sin \alpha} = \frac{c_2 \cdot \tau}{\sin \beta} \Leftrightarrow \boxed{\frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2}}$$
Brechungsgesetz

 \Rightarrow In "dichten" Medium nimm
t λ ab, Brechung im "dichteren" Medium zum Lot hin.

⇒ Frequenz ändert sich beim Übergang nicht!

$$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{\lambda_1}{\lambda_2} = \frac{c_1}{c_2}$$

$$\underbrace{c_1}_{\text{dünneres Medium}} > \underbrace{c_2}_{\text{dichteres Medium}}$$

20.1.5 Interferenz

(Experiment: Interferenz Kohärenter Wasserwellen)

Kohärenz: Zwei Wellensysteme sind dann kohärent, wenn sich ihre Phasenbeziehung als Funktion der Zeit nicht ändert, d.h. die Phasendifferenz $\Delta \varphi$ ist an jedem Raumpunkt zeitlich Konstant und ergibt sich direkt aus dem Laufzeitunterschied.

Ergebnis des Experiments: Quasi-stationäre Intensitätsverteilung durch Überlagerung!

Kohärenz:

1. Beispiel: Starre Kopplung

BILD fehlt hier noch

$$\Delta\varphi = \frac{2\pi}{\lambda}(S_2 - S_1)$$

2. Beispiel: Teilung einer Welle

BILD fehlt hier noch

$$S_1 = S_{11} + S_{12}$$
 $\Delta \varphi = \frac{2\pi}{\lambda} (S_2 - S_1)$