Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Домашняя работа $\Re 2$ по дисциплине "Моделирование"

Вариант: 23/5

Выполнил: Чебыкин И. Б.

Группа: Р3301

Проверяющий: Муравьева-Витковская Л. А.

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

Содержание

	n											
2	Задание											
	2.1	Этапь	ı задания									
3	Выполнение											
	3.1	Парам	иетры									
		3.1.1	Параметры структурной и функциональной организации систем									
		3.1.2	Параметры нагрузки									
	3.2	ма										
		3.2.1	Перечень состояний									
		3.2.2	Матрица интенсивностей									
		3.2.3	Стационарные вероятности состояний									
		3.2.4	Характеристики системы									
		3.2.5	Графики варьирования									
			3.2.5.1 По интенсивности потоков заявок									
			3.2.5.2 По средней интенсивности обслуживания									

1 Цель работы

Изучение метода Марковских случайных процессов и его применение для исследования приоритетных моделей – систем массового обслуживания (СМО) с неоднородным потоком заявок.

2 Задание

Разработка Марковских моделей одно- и двухканальных СМО с неоднородным потоком заявок и приоритетным обслуживанием и исследование характеристик их функционирования. Выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности.

2.1 Этапы задания

- 1. Построение и описание исследуемой системы массового обслуживания.
- 2. Разработка Марковской модели исследуемой системы.
- 3. Проведение расчетов разработанной модели и получение результатов.
- 4. Анализ полученных результатов.
- 5. Детальный анализ зависимостей характеристик системы при изменении нагрузки.

3 Выполнение

3.1 Параметры

3.1.1 Параметры структурной и функциональной организации систем

Op	Организация СИСТЕМЫ в соответствии с п. 6										
K	П	EH	ВЗП	ДО	ПНП	ДБ	ДП				
3	1	1/1/1	_	СП1	1-2-3	(B)	(a)				

Дисциплина обслуживания

Заявки 1-го класса имеют относительный приоритет по отношению к заявкам 2-го класса, по отношению к 3-ему классу заявки 1-го и 2-го имеют абсолютный приоритет.

Дисциплина буферизации

в) поступающая заявка любого класса при отсутствии свободного места в накопителе данного класса теряется;

Дисциплина прерывания

а) прерванная заявка теряется;

3.1.2 Параметры нагрузки

Инт	енсин	вность потока, c^{-1}	Cp.	длит	. обслуживания, $\it c$
λ_1	λ_2	λ_3	b_1	b_2	b_3
0,2	0,1	0,1	2,0	2,0	5,0

3.2 Система

3.2.1 Перечень состояний

Состояние	Код (Н1,Н2,Н3/П)
E0	0,0,0/0
E1	0,0,0/1
E2	$0,\!0,\!0/2$
E3	0,0,0/3
E4	0,0,1/1
E5	0,1,0/1
E6	0,1,1/1
E7	1,0,0/1
E8	1,0,1/1
E9	1,1,0/1
E10	1,1,1/1
E11	0,0,1/2
E12	0,1,0/2
E13	0,1,1/2
E14	1,0,0/2
E15	1,0,1/2
E16	1,1,0/2
E17	1,1,1/2
E18	0,0,1/3
E10	0,0,1/3

3.2.2 Матрица интенсивностей

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	1	la2	la3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	mu1	-0.9	0	0	la3	la2	0	la1	0	0	0	0	0	0	0	0	0	0	0
2	mu2	0	-0.9	0	0	0	0	0	0	0	0	la3	la2	0	la1	0	0	0	0
3	mu3	la1	la2	-0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	la3
4	0	0	0	mu1	-0.8	0	la2	0	la1	0	0	0	0	0	0	0	0	0	0
5	0	0	mu1	0	0	-0.8	la3	0	0	la1	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	-0.7	0	0	0	la1	mu1	0	0	0	0	0	0	0
7	0	mu1	0	0	0	0	0	-0.7	la3	la2	0	0	0	0	0	0	0	0	0
8	0	0	0	0	mu1	0	0	0	-0.6	0	la2	0	0	0	0	0	0	0	0
9	0	0	0	0	0	mu1	0	0	0	-0.6	la3	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	mu1	0	0	0	-0.5	0	0	0	0	0	0	0	0
11	0	0	0	mu2	0	0	0	0	0	0	0	-0.8	0	la2	0	la1	0	0	0
12	0	0	mu2	0	0	0	0	0	0	0	0	0	-0.8	la3	0	0	la1	0	0
13	0	0	0	0	0	0	0	0	0	0	0	mu2	0	-0.7	0	0	0	la1	0
14	0	mu2	0	0	0	0	0	0	0	0	0	0	0	0	-0.7	la3	la2	0	0
15	0	0	0	0	mu2	0	0	0	0	0	0	0	0	0	0	-0.6	0	la2	0
16	0	0	0	0	0	mu2	0	0	0	0	0	0	0	0	0	0	-0.6	la3	0
17	0	0	0	0	0	0	mu2	0	0	0	0	0	0	0	0	0	0	-0.5	0
18	0	0	0	mu3	la1	0	0	0	0	0	0	la2	0	0	0	0	0	0	-0.5

3.2.3 Стационарные вероятности состояний

Код состояния	Вероятность
E0	0.326416
E1	0.134897
E2	0.073543
E3	0.131733
E4	0.046789
E5	0.031555
E6	0.030392
E7	0.038542
E8	0.022020
E9	0.016942
E10	0.019949
E11	0.035469
E12	0.009193
E13	0.006380
E14	0.021012
E15	0.015325
E16	0.006566
E17	0.006930
E18	0.026347

3.2.4 Характеристики системы

Характеристика	Прибор	Расчетная формула	Значение
	П1	$y_1 = \frac{\lambda_1}{\mu_1}$	0.400000
Нагрузка	П2	$y_2 = \frac{\lambda_2}{\mu_2}$	0.200000
тагрузка	ПЗ	$y_3 = \frac{\overline{\lambda_3}}{u_2}$	0.500000
	Сумма		1.100000
	П1		0.341085
Загрузка	П2	$\rho_2 = p_2 + p_{11} + p_{12} + p_{13} + p_{14} + p_{15} + p_{16} + p_{17}$	0.174419
Загрузка	ПЗ	$\rho_3 = p_3 + p_{18}$	0.158080
	Сумма	$\rho = \rho_1 + \rho_2 + \rho_3$	0.673584
	П1	$l_1 = p_7 + p_8 + p_9 + p_{10} + p_{14} + p_{15} + p_{16} + p_{17}$	0.147287
Длина очереди	П2	$l_2 = p_5 + p_6 + p_9 + p_{10} + p_{12} + p_{13} + p_{16} + p_{17}$	0.127907
длина очереди		$l_3 = p_4 + p_6 + p_8 + p_{10} + p_{11} + p_{13} + p_{15} + p_{17} + p_{18}$	0.209601
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.484795
			0.488372
Число заявок		$m_2 = l_2 + \rho_2$	0.302326
тисло зальок			0.367681
		$m = l + \rho$	1.158378
		$\pi_1 = p_7 + p_8 + p_9 + p_{10} + p_{14} + p_{15} + p_{16} + p_{17}$	0.147287
Вероятность потери			0.127907
Вероліноств потери	П3	$\pi_3 = p_4 + p_6 + p_8 + p_{10} + p_{11} + p_{13} + p_{15} + p_{17} + p_{18}$	0.209601
	Сумма	$\pi = \frac{(\lambda_1 \cdot \pi_1 + \lambda_2 \cdot \pi_2 + \lambda_3 \cdot \pi_3)}{(\lambda_1 + \lambda_2 + \lambda_3)}$	0.158020
	П1	$\lambda_1' = \lambda_1 \cdot (1 - \pi_1)$	0.170543
Протородительность	П2		0.087209
Производительность	ПЗ		0.079040
	Сумма	$\lambda' = \lambda_1' + \lambda_2' + \lambda_3'$	0.336792
	П1		0.863636
Время ожидания	П2		1.466666
Бреми отпіданти	ПЗ		2.651834
	Сумма	$\omega = \frac{r^3}{V}$	1.439448
	_	$u_1 = \frac{\alpha_1}{\lambda'_{\cdot}}$	2.863636
Время пребывания	П2	$u_2 = \frac{\frac{\alpha_1}{m_2}}{\lambda'_c}$	3.466666
	ПЗ	$u_3 = \frac{n_3}{\lambda_c^2}$	4.651834
	Сумма	$u = \frac{m}{\lambda'}$	3.439449

3.2.5 Графики варьирования

3.2.5.1 По интенсивности потоков заявок

3.2.5.2 По средней интенсивности обслуживания

4 Вывод

Исходя из полученных данных можно проследить зависимость между средней интенсивностью потока заявок или обслуживанию и всеми остальными параметрами: для интенсивности потока заявок данная зависимость прямо пропорциональная, и обратно пропорциональная для интенсивности обслуживания.