TD 1 : Calcul vectoriel dans \mathbb{R}^2

Exercice 1 (Mesure algébrique)

- 1. Rappeler la définition de la mesure algébrique d'un bipoint (A, B).
- 2. Soit A, B, et C 3 points d'un axe Δ . Montrer que
 - (a) $\overline{AB} + \overline{BC} + \overline{CA} = 0$.
 - (b) $\overline{BC} = \overline{AC} \overline{AB}$.
- 3. On se donne un axe Δ et un point A de Δ . Construire les points B et C tels que $\overline{AB} = -5$ et $\overline{BC} = \frac{3}{2}$ (l'unité de longueur est le centimètre). Calculer \overline{AC} puis d(A, C).
- 4. Soient A, B et C trois points d'un axe Δ tels que $\overline{AB} = -\frac{7}{2}$ et $\overline{BC} = 2$.
 - (a) Pour tout M de Δ , montrer que

$$\overline{MA} + \overline{MB} - 2\overline{MC} = -\frac{1}{2}.$$

(b) Calculer de même $\overline{MA} - 3\overline{MB} + 2\overline{MC}$.

Exercice 2 (Repère d'une droite)

On appelle repère d'une droite \mathcal{D} tout couple de points distincts de \mathcal{D} . Etant donné un point M de \mathcal{D} , on définit l'abscisse de M dans le repère (A, B) (A et B sont deux points distincts de \mathcal{D}) par le réel x tel que

$$x = \frac{\overline{AM}}{\overline{AB}}.$$

- 1. Quelles sont les abscisses des points A et B dans le repère (A, B)?
- 2. On se donne 3 points A, B, C sur un axe Δ tels que $\overline{AB} = -3$ et $\overline{BC} = 7$. Quelle est l'abscisse de C dans le repère (A, B)? Celle de A dans le repère (B, C)? Celle de B dans le repère (A, C)?
- 3. Sur une droite \mathcal{D} de repère (O, E), on considère deux points A et B. On note I le milieu du bipoint (A, B).
 - (a) Montrer que $\overline{IA} + \overline{IB} = 0$.
 - (b) Montrer que

$$\overline{OI} = \frac{1}{2}(\overline{OA} + \overline{OB}).$$

(c) Etant donné un point M de \mathcal{D} , on note x_M son abscisse dans le repère (O, E). Déduire de la question précédente que

$$x_I = \frac{1}{2}(x_A + x_B).$$

Exercice 3

Sur une droite \mathcal{D} de repère (A, B), on donne les points A' et B' d'abscisses respectives -1 et $\frac{1}{2}$. Soit M un point quelconque de \mathcal{D} , d'abscisse x dans (A, B) et x' dans (A', B').

- 1. Déterminer les réels a et b tels que x' = ax + b.
- 2. Montrer qu'il existe un unique point de \mathcal{D} ayant même abscisse dans les repères (A, B) et (A', B').

Exercice 4

- 1. Donner la définition d'un vecteur.
- 2. Soient A, B et C 3 points du plan, représenter les vecteurs $\overrightarrow{AB}, \overrightarrow{CA}, \overrightarrow{AB} + \overrightarrow{AC}, \overrightarrow{CB} + \overrightarrow{BA}$.

Exercice 5

Soit M et N les milieux des bipoints (A, B) et (A, C). Montrer que $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{BC}$.

Exercice 6

Soit A, A', D, D' quatre points du plan, I et J les milieux respectifs de (A, A') et (D, D').

- 1. Montrer que
 - (a) $\overrightarrow{AD'} + \overrightarrow{A'D} = \overrightarrow{AD} + \overrightarrow{A'D'}$.
 - (b) $\overrightarrow{AD} + \overrightarrow{A'D'} = 2\overrightarrow{IJ}$.
- 2. A quelle condition a-t-on I = J?
- 3. Montrer que, si ABCD et A'B'C'D' sont des parallélogrammes quelconques, les milieux respectifs I, J, K, L des bipoints (A, A'), (B, B'), (C, C'), (D, D') sont les sommets d'un parallélogramme IJKL.

Exercice 7

Soit A, B, C, D 4 points du plan. On considère les points M et M' tels que

$$\overrightarrow{MA} = k\overrightarrow{MB}, \quad \overrightarrow{M'C} = k\overrightarrow{M'D}$$

où k est un réel différent de 1.

- 1. Etablir que $\overrightarrow{MA} \overrightarrow{M'C} = \overrightarrow{MM'} \overrightarrow{AC}$.
- 2. En déduire que $\overrightarrow{AC} k\overrightarrow{BD} = (1 k)\overrightarrow{MM'}$.

Exercice 8

Soit un parallélogramme ABCD. Placer les points M, N, P, Q tels que

$$\overrightarrow{AM} = \frac{3}{2}\overrightarrow{AB}, \quad \overrightarrow{BN} = \frac{3}{2}\overrightarrow{BC}, \quad \overrightarrow{CP} = \frac{3}{2}\overrightarrow{CD}, \quad \overrightarrow{DQ} = \frac{3}{2}\overrightarrow{DA}.$$

- 1. Exprimer \overrightarrow{BM} et \overrightarrow{DP} en fonction de \overrightarrow{AB} et \overrightarrow{DC} .
- 2. Montrer que $\overrightarrow{MN} = \overrightarrow{QP}$.

Exercice 9

- 1. Rappeler la définition d'un repère et d'une base.
- 2. Expliquer l'intérêt des ces deux objets.

Dans les exercices suivants, on désigne par \mathcal{R} un repère (O, \vec{i}, \vec{j}) et \mathcal{B} la base formée par les vecteurs (\vec{i}, \vec{j}) .

Exercice 10

Soit A et B deux points de coordonnées (3,2) et (-2,-1) dans \mathcal{R} .

1. Calculer les coordonnées des vecteurs \overrightarrow{AB} et $\frac{2}{5}\overrightarrow{AB}$ dans \mathcal{B} .

2. En déduire les coordonnées dans \mathcal{R} du point M défini par $\overrightarrow{AM} = \frac{2}{5}\overrightarrow{AB}$.

Exercice 11

1. Construire dans le plan les points A, B, C, D tels que

vecteur	Coordonnées dans \mathcal{B}
\overrightarrow{OA}	(2,-1)
\overrightarrow{OB}	(0,-4)
\overrightarrow{OC}	(2,-2)
\overrightarrow{OD}	(1,3)

2. Construire dans le plan le point E tel que

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{OE}$$
.

3. Trouver dans le plan les coordonnées de E dans \mathcal{R} . Vérifier par un calcul direct le résultat obtenu.

Exercice 12

Soit A, B, C trois points du plan de coordonnées dans \mathcal{R} (-1,2), (-3,1), (2,1). On désigne par f l'application de l'ensemble des points du plan dans l'ensemble des vecteurs du plan par

$$\overrightarrow{f(M)} = \overrightarrow{MA} + 2\overrightarrow{MB} - 3\overrightarrow{MC}.$$

- 1. Calculer les coordonnées dans \mathcal{B} de \overrightarrow{MA} , \overrightarrow{MB} et \overrightarrow{MC} en fonction des coordonnées x et y de M dans \mathcal{R} .
- 2. Calculer les coordonnées dans \mathcal{B} de $\overrightarrow{f(M)}$.

Exercice 13

Soit A, B, C trois points du plan de coordonnées dans $\mathcal{R}(2,3), (-1,2), (1,2)$. On désigne par f l'application de l'ensemble des points du plan dans l'ensemble des vecteurs du plan par

$$\overrightarrow{f(M)} = 2\overrightarrow{MA} - 3\overrightarrow{MB} + 5\overrightarrow{MC}.$$

- 1. Calculer les coordonnées dans \mathcal{B} de \overrightarrow{MA} , \overrightarrow{MB} et \overrightarrow{MC} en fonction des coordonnées x et y de M dans \mathcal{R} .
- 2. Calculer les coordonnées dans \mathcal{B} de $\overrightarrow{f(M)}$.
- 3. Quel est le point M tel que $\overrightarrow{f(M)} = \overrightarrow{0}$? On note G ce point.
- 4. Montrer que pour tout point $M: \overrightarrow{f(M)} = 4\overrightarrow{MG}$.

Exercice 14

Soit \vec{u}, \vec{v} et \vec{w} 3 vecteurs définis par

$$\vec{u} = 3\vec{i} - 2\vec{j}, \quad \vec{v} = x\vec{i} + 4\vec{j}, \quad \vec{w} = 5\vec{i} + 3y\vec{j}$$

où x et y sont deux réels.

- 1. Déterminer x et y lorsque \vec{u} et \vec{v} d'une part, \vec{u} et \vec{w} d'autre part, sont colinéaires.
- 2. En déduire le réel k tel que $\vec{v} = k\vec{w}$.

Exercice 15

Soit A, B, C, D, E cinq points du plan de coordonnées dans \mathcal{R} (3,2), (-2,0), (0,5), (0,y), (x,0) où x et y sont deux réels.

- 1. Déterminer y pour que \overrightarrow{AB} et \overrightarrow{BD} soient colinéaires.
- 2. Déterminer x pour que \overrightarrow{AC} et \overrightarrow{CE} soient colinéaires.
- 3. Calculer les coordonnées dans \mathcal{R} des milieux I, J, K de (O, A), (E, D), (B, C).
- 4. Montrer que \overrightarrow{IJ} et \overrightarrow{IK} sont colinéaires.

Exercice 16

Soit \vec{u} un vecteur de coordonnées (-2,3) dans \mathcal{B} .

- 1. Montrer que $(\vec{j},\vec{i}),(-\vec{i},\vec{j}),(\vec{i},-\vec{j})$ et $(-\vec{i},-\vec{j})$ sont des bases.
- 2. Calculer les coordonnées de \vec{u} dans chacune de ces bases.