Table 1 – Recall of the proposed methods for the cases of T=4 and T=100 trees.

	k = 5							k = 10						
	1P		FAST5P		FAST1P		1P		FAST5P		FAST1P			
	T = 4	T = 100	T = 4	T = 100	T = 4	T = 100	T = 4	T = 100	T = 4	T = 100	T = 4	T = 100		
Yeast	0.79340	0.99623	0.46577	0.95997	0.25364	0.27857	0.75175	0.99427	0.43012	0.96840	0.19697	0.23942		
Image	0.92524	0.99971	0.67971	0.99429	0.29943	0.34762	0.92357	0.99976	0.66886	0.99600	0.26086	0.33362		
Waveform	0.47364	0.98912	0.24932	0.57172	0.21424	0.22184	0.43740	0.98610	0.17900	0.62364	0.13042	0.14592		
Musk v2	0.88572	0.99770	0.59000	0.94022	0.32692	0.35274	0.85976	0.99877	0.51747	0.93543	0.25274	0.27983		
Semeion	0.74162	0.96999	0.40126	0.86880	0.23101	0.24959	0.73189	0.97075	0.36503	0.90245	0.16886	0.19824		
Madelon	0.41555	0.90250	0.26427	0.60977	0.20882	0.21295	0.38202	0.90298	0.20625	0.66543	0.11882	0.13025		
QSAR	0.64019	0.88998	0.37084	0.75957	0.22703	0.24303	0.56924	0.86461	0.31571	0.77730	0.15074	0.17599		
Gisette	0.57230	0.98607	0.29360	0.69767	0.20827	0.21267	0.52337	0.98428	0.23357	0.72017	0.11812	0.12578		
Arcene	0.82029	0.99943	0.49114	0.95771	0.29714	0.34429	0.82629	0.99986	0.52614	0.97900	0.29814	0.39543		
Olivetti	$0.90\overline{950}$	1.00000	0.60900	0.97950	0.37600	0.41900	0.87100	1.00000	0.59700	0.98525	0.36700	0.48950		

Table 2 – Average discrepancy ratio of the proposed methods for the cases of T=4 and T=100 trees.

	k = 5							k = 10						
	1P		FAST5P		FAST1P		1P		FAST5P		FAST1P			
	T = 4	T = 100												
Yeast	0.92878	0.99777	0.66711	0.94653	0.44120	0.51508	0.92312	0.99689	0.69955	0.96296	0.50570	0.59117		
Image	0.95793	1.00000	0.71182	0.99565	0.24495	0.32016	0.93585	1.00000	0.73333	0.99716	0.30235	0.40343		
Waveform	0.91191	0.99922	0.76041	0.94635	0.67075	0.72259	0.91353	0.99902	0.77578	0.95982	0.69434	0.75108		
Musk v2	0.95980	0.99978	0.71826	0.98193	0.44027	0.48727	0.95686	0.99984	0.72569	0.98335	0.51705	0.56682		
Semeion	0.96800	0.99992	0.85882	0.98862	0.73021	0.76277	0.96870	0.99993	0.87369	0.99358	0.76562	0.80105		
Madelon	0.97298	0.99812	0.94078	0.98871	0.88068	0.90315	0.97345	0.99815	0.94383	0.99169	0.88513	0.91015		
QSAR	0.94127	0.99375	0.84899	0.97524	0.74881	0.77492	0.94493	0.99296	0.88069	0.98326	0.79110	0.81747		
Gisette	0.98146	0.99980	0.93174	0.99022	0.86645	0.88455	0.97941	0.99972	0.93412	0.99166	0.87488	0.89344		
Arcene	0.97913	0.99999	0.87847	0.99719	0.75068	0.80368	0.98042	0.99998	0.89394	0.99821	0.77780	0.83934		
Olivetti	0.98406	1.00000	0.86220	0.99682	0.75798	0.80035	0.98180	1.00000	0.89975	0.99801	0.83101	0.88374		

Figure 1 – The effect of forest size on recall for k = 5.

Figure 2 – The effect of forest size on recall for k = 10.