Reti di Calcolatori

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Intr	roduzione	2
2	Arc	hitetture di rete	3
	2.1	Reti locali	3
		2.1.1 Organizzazione del Backbone	
3	Mo	dalità di comunicazione	5
	3.1	Reti a commutazione di circuito	5
		3.1.1 Vantaggi	6
		3.1.2 Svantaggi	7
	3.2		7
			8
			8
4	Rita	ardi di trasmissione	9
_	4.1	Ordine di grandezza	10
	4.2	9	10
		4.2.1 Ping	10
		4.2.2 Traceroute	
	4.3		

1 Introduzione

Il problema principale che bisogna affrontare è la comunicazione tra 2 calcolatori, cioè lo scambio di informazioni. Per far comunicare 2 calcolatori c'è bisogno di alcuni requisiti:

- 1. **Protocollo**: È un insieme di regole che sovraintende alla comunicazione, in cui si definiscono:
 - Il formato dei messaggi
 - Le azioni da intraprendere nel gestire i messaggi stessi

Questo perchè per comunicare tutti devono "parlare la stessa lingua".

2. Architettura di rete: Come, fisicamente, trasportare i messaggi

Esempio 1.1. Prendiamo ad esempio la scrittura e la spedizione delle lettere. Ci sono 2 utenti che vogliono scambiare delle lettere.

Per gestire il trasporto della lettera essa viene messa all'interno di una **busta**, che contiene informazioni su dove deve essere spedita. Una volta inbustata, va imbucata in una cassetta delle lettere da cui poi verrà prelevata e mandata alla cassetta delle lettere del secondo utente dalla **rete** di distribuzione degli uffici postali.

L'utente poi preleverà la lettera dalla cassetta delle lettere e dopo aver controllato le informazioni sulla busta, la aprirà e leggerà il contenuto.

Figura 1: Esempio di comunicazione tra 2 utenti

Il **Protocollo** è il linguaggio utilizzato per comunicare tra i 2 utenti, mentre l'**Architettura di rete** è tutta quella infrastruttura che trasporta il messaggio tra i 2 utenti.

La rappresentazione dei sistemi di comunicazione di solito viene fatta nella modalità **top-down**, cioè si parte dal livello applicativo, quello più alto, fino a scendere nei livelli più bassi in cui si trova la vera e propria architettura della rete.

2 Architetture di rete

Di solito si fa riferimento all'architettura più utilizzata, cioè la rete **Internet**. Si possono distinguere i seguenti elementi base:

- Calcolatori (End host)
- Router (Intermediate host)
- Collegamenti

2.1 Reti locali

Le reti locali, o **LAN** (Local Area Network), sono caratterizzate da un **router di bordo** a cui sono collegati gli end host tramite **cavi fisici** o collegamenti wireless.

Figura 2: Rete locale

Per collegare diverse LAN tra loro esiste la **backbone**, cioè è una rete di router collegati tra di loro con una topologia gestita dal gestore della rete. Questi router sono geograficamente distribuiti su tutto il territorio.

Figura 3: Intercollegamento di LAN

Nella maggior parte delle volte le connessioni tra i router all'interno della backbone sono cablate, di solito tramite fibre ottiche, soltanto in rari casi si usano connessioni wireless.

2.1.1 Organizzazione del Backbone

Il backbone è composto da diverse reti che appartengono a diverse organizzazioni permettendo di creare diverse interconnessioni tra le reti. Queste organizzazioni si chiamano **Internet Service Provider** (ISP). Gli ISP hanno diversi livelli:

- 1. Livello 1: Hanno una connessione internazionale e quindi sono in grado di comunicare con tutti gli altri ISP.
- 2. Livello 2: Lavorano a livello nazionale.
- 3. Livello 3: Lavorano a livello locale.

Gli ISP di livello 1 sono collegati tra di loro per permettere la comunicazione tra ISP di livello 1 diversi. Anche gli ISP di livello più basso permettono la comunicazione tra di loro o tra gli ISP di livello superiore, tutto questo grazie ad accordi commerciali tra le varie organizzazioni.

Figura 4: Livelli di ISP

Internet è la Rete delle reti, cioè è la rete che collega tutti gli ISP tra di loro ed è un organizzazione gerarchica, cioè è sufficiente creare collegamenti con un sottoinsieme di ISP operanti sul territorio per permettere il collegamento a tutta la rete.

Di conseguenza, per raggiungere un utente, in genere, si segue un percorso gerarchico. Un esempio è la rete stradale, dove per raggiungere una città si seguono le strade principali e poi si scende in quelle secondarie.

La scelta del percorso segue criteri basati su distanza e tempo.

3 Modalità di comunicazione

La gestione del trasporto dei messaggi è gestita dalla rete, però con che modalità trasferisco l'informazione tra 2 utenti?

3.1 Reti a commutazione di circuito

È la modalità di commutazione che è stata utilizzata per la prima volta. In questa modalità le risorse (capacità del canale di trasmissione) vengono riservate **end-to-end** per la comunicazione, cioè viene letteralmente riservato un circuito che viene utilizzato dai 2 utenti.

Figura 5: Commutazione di circuito

Ogni canale è completamente dedicato alla comunicazione tra i 2 utenti, quindi se più utenti vogliono comunicare tra di loro, bisogna riservare altre risorse.

3.1.1 Vantaggi

- Risorse dedicate
- Ritardo deterministico

Figura 6: Ritardo

- Ritardo di trasmissione: Tempo necessario per trasmettere il messaggio
- Ritardo di propagazione: Tempo necessario per trasmettere il messaggio da un nodo all'altro

Se il messaggio è grande $L\,bit$ e il canale riservato è di $B\,bit/s$, allora il tempo di trasmissione sarà:

$$T = \frac{L}{B}$$

Il ritardo di trasmissione e di propagazione è deterministico, perchè dato il circuito di trasmissione, il tempo di trasmissione è noto.

3.1.2 Svantaggi

Nel corso di utilizzo sporadico si ha uno spreco di risorse, perchè il circuito viene riservato per tutta la durata della comunicazione, anche se i 2 utenti non stanno comunicando.

Figura 7: Spreco di risorse

3.2 Reti a commutazione di pacchetto

È la modalità di commutazione più utilizzata al giorno d'oggi. L'informazione (messaggio) viene suddivisa in **pacchetti** e ad ogni pacchetto viene aggiunto un **header** per permettere:

- La consegna del pacchetto stesso
- La ricostruzione del messaggio

Il messaggio è l'informazione da trasferire, mentre il pacchetto è una porzione del messaggio stesso.

Il messaggio prima della trasmissione viene separato in unità più piccole e a queste unità viene aggiunta un'intestazione che serve a rendere le unità indipendenti per poterle trasmettere in modo indipendente. L'intestazione permette la consegna del pacchetto perchè contiene la destinazione del pacchetto e la ricostruzione del messaggio perchè contiene il numero di sequenza del pacchetto.

Figura 8: Messaggio e pacchetti

I pacchetti vengono salvati all'interno di un **buffer**, cioè una memoria temporanea, in attesa di essere trasmessi. Man mano che i pacchetti vengono inviati vengono accumulati nel buffer dei router e questo avviene per qualsiasi collegamento.

Figura 9: Rappresentazione del buffer

I pacchetti possono arrivare in ordine diverso rispetto a quello di trasmissione, però grazie all'header è possibile ricostruire il messaggio originale.

3.2.1 Vantaggi

- Utilizza le risprse solo quando ci sono pacchetti da trasmettere e questo viene chiamato
- Multiplazione statistica, cioè utilizzo lo stesso canale per trasmettere più pacchetti di utenti diversi.

3.2.2 Svantaggi

• Potenziale perdita dei pacchetti: La memoria dei buffer ha una capacità finita, quindi se il tasso di ricezione dei pacchetti è superiore al tasso di smaltimento del buffer, esso inizia a riempirsi. Le perdite aumentano la complessità di gestione della rete.

• Ritardi aumentati

I router prima di trasmettere i pacchetti, deve aspettare di ricevere tutti i pacchetti. Questo si chiama **store & forward**. Di conseguenza più aumentano i router, più aumenta il ritardo di trasmissione.

Figura 10: Ritardo di trasmissione dei pacchetti

4 Ritardi di trasmissione

Figura 11: Struttura di un router

Su un singolo router le componenti principali del ritardo sono:

- Ritardo di elaborazione al nodo: Tempo necessario per elaborare il pacchetto.
- Ritardo di accodamento: È il tempo speso nel buffer prima che il pacchetto venga trasmesso ed è la componente principale tra tutti i ritardi. $(\frac{L}{B})$
- Ritardo di trasmissione: Tempo necessario per trasmettere il pacchet-
- Ritardo di propagazione: Tempo necessario per trasmettere il pacchetto da un nodo all'altro.

4.1 Ordine di grandezza

Dipende dalla distanza e dalla velocità di trasmissione del collegamento. La distanza si distingue in:

• Locale: < 10ms

Internazionale: 20 - 40ms
 Intercontinentale: > 100ms

4.2 Strumenti per calcolare il ritardo end-to-end

4.2.1 Ping

Dati 2 utenti in 2 LAN diverse, il ping manda un pacchetto all'utente di destinazione e l'utente che lo ha mandato prima o poi riceverà un messaggio di risposta (**echo reply**). Il tempo che passa tra l'invio del pacchetto e la ricezione del messaggio di risposta è il ritardo end-to-end.

Non si può sapere se il ritardo è asimmetrico o no, cioè se il ritardo di andata è uguale al ritardo di ritorno, ma si può soltanto calcolare il ritardo totale.

Figura 12: Ping

Se si esegue il comando ping da un terminale si riceve il seguente output:

```
ping www.google.com

PING www.google.com:(142.251.209.4)<sub>2</sub> 56(84) bytes of data.

64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=1 ttl=115 time=15.2 ms:

64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=2 ttl=115 time=15.4 ms

64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=3 ttl=115 time=15.4 ms

64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=4 ttl=115 time=15.0 ms

^C
--- www.google.com ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3006ms

rtt min/avg/max/mdev = 14.964/15.221/15.393/0.171 ms
```

Figura 13: Output di ping

- 1. Viene rieseguito il ping facendo riferimento al server fisico
- 2. Tra parentesi viene rappresentato l'indirizzo che identifica il server, chiamato **indirizzo IP**
- 3. Alla fine c'è il tempo di risposta del server

4.2.2 Traceroute

Vengono mandati 3 messaggi al primo router e si calcolano i tempi di risposta tra il primo utente e il primo router, poi viene fatta la stessa cosa con i seguenti router fino ad arrivare all'utente di destinazione.

Figura 14: Traceroute

Se si esegue il comando traceroute da un terminale si riceve il seguente output:

Figura 15: Output di traceroute

- 1. Indica il numero di router attraversati
- 2. Stampa i valori di ritardo dei 3 pacchetti trasmessi
- 3. È il nome logico del router che si sta attraversando, da questo nome si può dedurre la posizione geografica del router e l'ISP a cui appartiene
- 4. Gli asterischi indicano che il router è stato configurato in modo da ignorare i pacchetti e non mandare alcuna risposta, questo perchè serve soltanto a inoltrare i pacchetti ad un altro router.

4.3 Quantità di dati trasferiti

La quantità di informazioni che si riesce a trasmettere si misura in $\frac{bit}{s}$ e questa informazione dipende dalla capacità di tutti i canali di trasmissione attraversati. Ogni canale avrà una dimensione diversa e si può determinare la banda totale a disposizione (**Throughput**) dal **collo di bottiglia**, cioè dalla minore capacità di trasmissione tra tutti i canali attraversati.

Figura 16: Throughput