inference for a mean

Dr. Mine Çetinkaya-Rundel Duke University

PLAYING A COMPUTER GAME DURING LUNCH AFFECTS FULLNESS, MEMORY FOR LUNCH, AND LATER SNACK INTAKE

distraction and recall of food consumed and snacking

sample: 44 patients: 22 men and 22 women

study design:

- randomized into two groups:
- (1) play solitaire while eating "win as many games as possible"
- (2) eat lunch without distractions
- both groups provided same amount of lunch
- offered biscuits to snack on after lunch

biscuit intake	\bar{x}	s	n
solitaire	52.1 g	45.1 g	22
no distraction	27.1 g	26.4 g	22

estimating the mean

point estimate ± margin of error

$$ar{x} \pm t_{df}^{\star} S E_{ar{x}}$$
 $ar{x} \pm t_{df}^{\star} \frac{s}{\sqrt{n}}$
 $ar{x} \pm t_{n-1}^{\star} \frac{s}{\sqrt{n}}$

Degrees of freedom for t statistic for inference on one sample mean

$$df = n - 1$$

finding the critical t score

using the table

I. determine df

$$df = 22 - 1 = 21$$

2. find corresponding tail area for desired confidence level

one tail	0.100	0.050	0.025	0.010	0.005
two tails	0.200	0.100	0.050	0.020	0.010
df 1	3.08	6.31	12.71	31.82	63.66
2	1.89	2.92	4.30	6.96	9.92
3	1.64	2.35	3.18	4.54	5.84
4	1.53	2.13	2.78	3.75	4.60
5	1.48	2.02	2.57	3.36	4.03
6	1.44	1.94	2.45	3.14	3.71
7	1.41	1.89	2.36	3.00	3.50
8	1.40	1.86	2.31	2.90	3.36
9	1.38	1.83	2.26	2.82	3.25
10	1.37	1.81	2.23	2.76	3.17
11	1.36	1.80	2.20	2.72	3.11
12	1.36	1.78	2.18	2.68	3.05
13	1.35	1.77	2.16	2.65	3.01
14	1.35	1.76	2.14	2.62	2.98
15	1.34	1.75	2.13	2.60	2.95
16	1.34	1.75	2.12	2.58	2.92
17	1.33	1.74	2.11	2.57	2.90
18	1.33	1.73	2.10	2.55	2.88
19	1.33	1.73	2.09	2.54	2.86
20	1.33	1.72	2.09	2.53	2.85
21	1.32	1.72	2.08	2.52	2.83
22	1.32	1.72	2.07	2.51	2.82
23	1.32	1.71	2.07	2.50	2.81
24	1.32	1.71	2.06	2.49	2.80
25	1.32	1.71	2.06	2.49	2.79
26	1.31	1.71	2.06	2.48	2.78
27	1.31	1.70	2.05	2.47	2.77

finding the critical t score using R

```
R
> qt(0.025, df = 21)
[1] -2.079614
```


Estimate the average after-lunch snack consumption (in grams) of people who eat lunch **distracted** using a 95% confidence interval.

$$\bar{x} = 52.1 \ g$$
 $s = 45.1 \ g$
 $n = 22$
 $t_{21}^{\star} = 2.08$
 $x \pm t \# SE = 52.1 \pm 2.08 \times \frac{45.1}{\sqrt{22}}$
 $= 52.1 \pm 2.08 \times 9.62$
 $= 52.1 \pm 20 = (32.1, 72.1)$

We are 95% confident that distracted eaters consume between 32.1 to 72.1 grams of snacks post-meal.

Suppose the suggested serving size of these biscuits is 30 g. Do these data provide convincing evidence that the amount of snacks consumed by distracted eaters post-lunch is different than the suggested serving size?

$$\bar{x} = 52.1 \ g$$
 $\mathcal{H}_{o}: \mu = 30$
 $s = 45.1 \ g$ $\mathcal{H}_{A}: \mu \neq 30$
 $n = 22$
 $SE = 9.62$ $\mathcal{T} = \frac{52.1 - 30}{9.62} = 2.3$
 $\mathcal{H}_{o}: \mu = 30$
 $\mathcal{H}_{o}: \mu = 30$


```
R
> pt(2.3, df = 21)
[1] 0.984
> 2 * pt(2.3, df = 21, lower.tail = FALSE)
[1] 0.03180228
```

finding the p-value using the table

I. determine df

$$df = 21$$

- 2. locate the calculated T score in the df row
- 3. grab the one or two tail p-value from the top row

one tail	0.100	0.050	0.025	0.010	0.005
two tails	0.200	0.100	0.050	0.020	0.010
df 1	3.08	6.31	12.71	31.82	63.66
2	1.89	2.92	4.30	6.96	9.92
3	1.64	2.35	3.18	4.54	5.84
4	1.53	2.13	2.78	3.75	4.60
5	1.48	2.02	2.57	3.36	4.03
6	1.44	1.94	2.45	3.14	3.71
7	1.41	1.89	2.36	3.00	3.50
8	1.40	1.86	2.31	2.90	3.36
9	1.38	1.83	2.26	2.82	3.25
10	1.37	1.81	2.23	2.76	3.17
11	1.36	1.80	2.20	2.72	3.11
12	1.36	1.78	2.18	2.68	3.05
13	1.35	1.77	2.16	2.65	3.01
14	1.35	1.76	2.14	2.62	2.98
15	1.34	1.75	2.13	2.60	2.95
16	1.34	1.75	2.12	2.58	2.92
17	1.33	1.74	2.11	2.57	2.90
18	1.33	1.73	2.10	2.55	2.88
19	1.33	1.73	2.09	2.54	2.86
20	1.33	1.72	2.09	2.53	2.85
21	1.32	1.72	2.08	2.52	2.83
22	1.32	1.72	2.07	2.51	2.82
23	1.32	1.71	2.07	2.50	2.81
24	1.32	1.71	2.06	2.49	2.80
25	1.32	1.71	2.06	2.49	2.79
26	1.31	1.71	2.06	2.48	2.78
27	1.31	1.70	2.05	2.47	2.77

recap

$$\bar{x} = 52.1 g$$

$$s = 45.1 \ g$$

$$n = 22$$

95% confidence interval: (32.1 g, 72.1 g)

$$H_0: \mu = 30$$

$$H_A: \mu \neq 30$$

p-value ≈ 0.0318

conditions

- independent observations
 - random assignment
 - ▶ 22 < 10% of all distracted eaters
- sample size / skew

$$\bar{x} = 52.1 g$$

$$s = 45.1 g$$

$$n = 22$$

$$0$$

$$50$$