Mějme pro zadané n následující automat pro jazyk s jedním symbolem a:

	Stav	a						
	0	n-1						
	1	0						
	2	1						
	$\begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$	2						
	4	3						
	:							
	n-1	n-2						
Stav O je přijímající								

(Stav 0 je přijímající)

Ekvivalence tohoto automatu budou vypadat následovně:

Stav	a	\sim_0	a	\sim_1	a	\sim_2		\sim_{n-3}	a	$\sim_{n-2}=\sim$
0	n-1	\mathbf{A}	В	A	В	A		A	В	A
1	0	\mathbf{B}	Α	\mathbf{B}_1	A	\mathbf{B}_1		\mathbf{B}_1	A	\mathbf{B}_1
2	1	\mathbf{B}	В	В	B_1	\mathbf{B}_2		\mathbf{B}_2	B_1	\mathbf{B}_2
3	2	\mathbf{B}	В	В	В	В		\mathbf{B}_3	B_2	\mathbf{B}_3
4	3	\mathbf{B}	В	В	В	В		\mathbf{B}_4	B_3	$oxed{\mathbf{B}_4}$
n-3	n-4	В	В	В	В	B		\mathbf{B}_{n-3}	B_{n-4}	$\mid \mathbf{B}_{n-3} \mid$
n-2	n-3	В	В	В	В	В		\mathbf{B}^{n}	\mathbf{B}_{n-3}	
n-1	n-2	В	В	В	В	В		В	В	В

Vidíme, že v i-tém kroku algoritmu jsou stavy od 0 do i-1 každý ve vlastní skupině a stavy od i do n-1 všechny ve skupině B, přičemž z nich pouze i-tý stav nevede do stavu skupiny B, tím pádem se právě i-tý stav v (i+1). kroku oddělí do samostatného stavu. Algoritmus se zastaví ve chvíli, kdy se od sebe oddělí poslední dva stavy, což nastane až během ekvivalence n-2. Tento počet iterací je tedy obecně nutný.

Pokud by měl jazyk automatu více symbolů, konstrukci upravíme tak, že všechny symboly kromě jednoho budou na všech stavech vytvářet smyčky.