TD 7-Variables aléatoires discrètes (révisions)

Exercice 1

Un lot contient 10 pièces dont 3 défectueuses. On tire simultanément et au hasard 2 pièces de ce lot. Soit X la variable aléatoire comptant le nombre de pièces défectueuses parmi les pièces tirées. Déterminer la loi de X, son espérance et sa variance.

Exercice 2

Une urne contient a boules blanches et b boules noires. On effectue une infinité de tirages avec remise. Soit X_1 la variable aléatoire égale au rang de tirage de la première boule blanche.

- 1. Soit X_1 la variable aléatoire égale au rang de tirage de la première boule blanche.
 - (a) Reconnaître la loi de X_1 .
 - (b) En déduire $E(X_1)$ et $V(X_1)$.
- 2. Soit X_2 la variable aléatoire égale au rang de tirage de la deuxième boule blanche.
 - (a) Déterminer la loi de X₂.
 - (b) Calculer $E(X_2)$.

Exercice 3

Un joueur lance n fois un dé équilibré à 6 faces. Il gagne 1 euro s'il tombe sur un nombre pair et rien sinon. On note X la variable aléatoire qui compte les gains du joueur. Reconnaître la loi de X. En déduire E(X) et V(X).

Exercice 4

Soit X → $\mathcal{G}(p)$, $p \in]0,1[$.

- 1. Montrer que $\forall k \in \mathbb{N}^*$, $P(X > k) = (1 p)^k$.
- 2. En déduire que $\forall (k,l) \in (\mathbb{N}^*)^2$, $P_{[X>l]}(X>k+l) = P(X>k)$.

Exercice 5

Dans chaque cas, justifier que Y possède une espérance et calculer E(Y).

- 1. Y = n X où $X \hookrightarrow \mathcal{B}(n, p)$,
- 2. $Y = 2^X$ où $X \hookrightarrow \mathcal{B}(n, p)$,
- 3. $Y = \frac{1}{X+1}$ où $X \hookrightarrow \mathcal{P}(\lambda)$

Exercice 6 (Ecricome 2013)

Soient n et b deux entiers avec $n \ge 1$ et $b \ge 2$. On considère une urne contenant n boules noires et b boules blanches, toutes indiscernables.

Un joueur A effectue des tirages successifs d'une boule **sans remise** dans l'urne jusqu'à obtenir une boule blanche. Il laisse alors la place au joueur B qui effectue des tirages successifs d'une boule **avec remise** dans l'urne jusqu'à obtenir une boule blanche.

On note X la variable aléatoire réelle égale au nombre de boules noires tirées par A avant de tirer une boule blanche et on appelle Y la variable aléatoire réelle égale au nombre de boules noires tirées par B avant de tirer une boule blanche (s'il ne reste plus de boule noire, on a donc Y = 0).

Par exemple, si n = 3 et b = 7 et que les tirages successifs ont donné une boule : « noire, blanche, noire, noire, noire, noire, blanche » alors :

- A a effectué deux tirages, il a retiré une boule noire puis une boule blanche de l'urne;
- l'urne contient maintenant 8 boules dont deux noires et six blanches;
- B a effectué ensuite cinq tirages dans cette urne, il a pioché 4 boules noires qu'il a reposé dans l'urne après chaque tirage puis il a pioché une boule blanche;
- *X* vaut 1 et *Y* vaut 4.
- 1. Dans cette question, on suppose que b = n = 2. On suppose donc ici que l'urne contient initialement 2 boules blanches et 2 boules noires.
 - (a) Donner les probabilités des évènements : [X = 0], [X = 1], [X = 2].
 - (b) En déduire l'espérance et la variance de X.
 - (c) Montrer que la probabilité de l'évènement [Y=0] est donnée par : $P\left([Y=0]\right)=\frac{1}{2}$
 - (d) Pour tout entier i naturel non nul, déterminer les probabilités suivantes :

$$P([X = 0] \cap [Y = i])$$
, $P([X = 1] \cap [Y = i])$, $P([X = 2] \cap [Y = i])$.

(e) En déduire la loi de Y. Uniquement à l'aide de l'expression de $P\left([Y=i]\right)$ en fonction de i, vérifier $+\infty$

que:
$$\sum_{i=0}^{+\infty} P([Y=i]) = 1.$$

(f) Montrer que Y admet une espérance et la calculer.

2. On se place maintenant dans le cas général.

(a) Pour t.out $k \in \{1, ..., n\}$ calculer la probabilité P([X = k]) puis vérifier que : $P([X = k]) = \frac{\binom{n-k+b-1}{b-1}}{\binom{n+b}{b}}.$

(b) Utiliser la question qui précède pour justifier que :

$$\sum_{k=0}^{n} {k+b-1 \choose b-1} = {n+b \choose b}.$$

Par conséquent on vient de démontrer la formule suivante :

$$(\mathcal{S}) \qquad \forall N \in \mathbb{N}, \ \forall a \in \mathbb{N}, \quad \sum_{k=0}^{N} {k+a \choose a} = {N+a+1 \choose a+1}.$$

(c) Soient $k\geqslant 1$, $N\geqslant 1$ et $a\in \mathbb{N}$. Comparer $k\binom{k+a}{a}$ et $(a+1)\binom{k+1}{a+1}$ puis justifier que :

$$\sum_{k=0}^{N} k \binom{k+a}{a} = (a+1) \sum_{k=0}^{N-1} \binom{k+a+1}{a+1}.$$

(d) À l'aide des questions précédentes, montrer que l'espérance de la variable n-X est donnée par :

$$E(n-X) = \frac{nb}{b+1}$$
. En déduire l'espérance $E(X)$ de X .

- (e) Pour tout k de $X(\Omega)$, et pour tout entier i non nul, déterminer la probabilité suivante : $P([X=k] \cap [Y=i])$.
- (f) Pour tout k de $X(\Omega)$, et pour tout entier i, non nul, justifier que la série $\sum_{i\geqslant 1}i\left(\frac{n-k}{n+b-k-1}\right)^{i-1} \text{ est convergente et déterminer sa somme.}$
- (g) Montrer que Y admet une espérance et vérifier que : $E(Y) = \frac{bn}{b^2 1}$.

Exercice 7 (EDHEC 2005)

Un mobile se déplace sur les points à coordonnées entières d'un axe d'origine O. Au départ, le mobile est à l'origine. Le mobile se déplace selon la règle suivante : s'il est sur le point d'abscisse k à l'instant n, alors, à l'instant (n+1)

- il sera sur le point d'abscisse (k+1) avec la probabilité p (0
- il sera sur le point d'abscisse 0 avec la probabilité 1-p.

Pour tout n de \mathbb{N} , on note X_n l'abscisse de ce point à l'instant n et l'on a donc $X_0 = 0$. On admet que, pour tout n de \mathbb{N} X_n est définie sur un espace probabilisé (Ω, \mathcal{A}, P) . Par ailleurs, on note T l'instant auquel le mobile se trouve pour la première fois à l'origine (sans compter son positionnement au départ).

Par exemple, si les abscisses successives du mobile après son départ sont 0, 0, 1, 2, 0, 0, 1, alors on a T = 1. Si les abscisses successives sont : 1, 2, 3, 0, 0, 1, alors on a T = 4.

On admet que T est une variable aléatoire définie sur (Ω, \mathcal{A}, P)

- 1. (a) Pour tout k de \mathbb{N}^* , exprimer l'événement (T = k) en fonction d'événements mettant en jeu certaines des variables X_i .
 - (b) Donner la loi de X_1 .
 - (c) En déduire P(T = k) pour tout k de \mathbb{N}^* , puis reconnaître la loi de T.
- 2. (a) Montrer par récurrence que, pour tout entier naturel n, $X_n(\Omega) = [[0, n]]$
 - (b) Pour tout n de \mathbb{N}^* , utiliser le système complet d'événements $(X_{n-1}=k)_{0 \le k \le n-1}$ pour montrer que : $\mathrm{P}(X_n=0)=1-p$
- 3. (a) Établir que : $\forall n \in \mathbb{N}, \ \forall k \in \{1, 2, \dots n+1\}, \ P(X_{n+1} = k) = p P(X_n = k-1)$
 - (b) En déduire que : $\forall n \in \mathbb{N}^*$, $\forall k \in \{0,1,2...,n-1\}$, $P(X_n = k) = p^k (1-p)$. En déduire également la valeur de $P(X_n = n)$. Donner une explication probabiliste de ce dernier résultat.
 - (c) Vérifier que $\sum_{k=0}^{n} P(X_n = k) = 1$.
- 4. (a) Montrer que : $\forall n \geq 2$, $\sum_{k=1}^{n-1} k p^{k-1} = \frac{(n-1) p^n n p^{n-1} + 1}{(1-p)^2}$
 - (b) En déduire que $E(X) = \frac{p(1-p^n)}{1-p}$.
- 5. (a) Montrer que : $\forall n \in \mathbb{N}$, $E\left(X_{n+1}^2\right) = p\left(E\left(X_n^2\right) + 2E\left(X_n\right) + 1\right)$.
 - (b) Pour $n \in \mathbb{N}$, on pose $u_n = E\left(X_n^2\right) + (2n-1)\frac{p^{n+1}}{1-p}$ Montrer que $u_{n+1} = p u_n + \frac{p(1+p)}{1-p}$
 - (c) En déduire l'expression de u_n , puis celle de $E(X_n^2)$ en fonction de p et n.
 - (d) Montrer enfin que : $V(X_n) = \frac{p}{(1-p)^2} (1 (2n+1) p^n (1-p) p^{2n+1})$

Exercice 8 (EML 2009)

Une urne contient des boules blanches et des boules noires. La proportion de boules blanches est *p* et la proportion de boules noires est *q*.

Ainsi, on a : 0 et <math>p + q = 1.

- 1. Dans cette question, on effectue des tirages successifs avec remise et on s'arrête dès que l'on a obtenu une boule noire. On note T la variable aléatoire égale au nombre de tirages effectués et U la variable aléatoire égale au nombre de boules blanches obtenues.
 - (a) Reconnaître la loi de T. Pour tout entier $k \ge 1$, donner P(T = k) et rappeler l'espérance et la variance de T.
 - (b) En déduire que U admet une espérance et une variance. Déterminer E (U) et

- V(U).
- 2. Dans cette question, on effectue des tirages successifs avec remise et on s'arrête dès que l'on a obtenu au moins une boule blanche et au moins une boule noire.On note
 - X la variable aléatoire égale au nombre de tirages effectués.
 - Y la variable aléatoire égale au nombre de boules blanches obtenues.
 - Z la variable aléatoire égale au nombre de boules noires obtenues.

Ainsi, on peut remarquer que la probabilité de l'événement $(Y=1) \cup (Z=1)$ est égale à 1. Pour tout entier naturel non nul i, on note :

- *B_i* l'événement "la i-ème boule tirée est blanche",
- *N_i* l'événement "la i-ème boule tirée est noire".
- (a) i. Montrer, pour tout entier $k \ge 2$: $P(X = k) = q p^{k-1} + p q^{k-1}$.
 - ii. Vérifier : $\sum_{k=2}^{+\infty} P(X = k) = 1$
 - iii. Montrer que la variable aléatoire X admet une espérance et que : $E(X) = \frac{1}{p} + \frac{1}{q} 1$.
- (b) i. Pour tout entier $k \ge 2$, déterminer $P((X = k) \cap (Y = 1))$ (On distinguera les cas k = 2 et $k \ge 3$.)
 - ii. En déduire : P(Y = 1) = q(1 + p).
 - iii. Déterminer la loi de la variable aléatoire Y.

On admet que l'espérance de Y existe et que : $E(Y) = \frac{1}{q}(1 - p + p^2)$.

- (c) Donner la loi de Z et son espérance.
- (d) Montrer que les variables aléatoires Y Z et X 1 sont égales.
- (e) Montrer que le couple (Y, Z) admet une covariance et exprimer cov(Y, Z) à l'aide de E(X), E(Y) et E(Z).