Student Name: Student ID:

Just fill in the answers in the spaces provided; no working is required.

For the circuit shown find:	
(a) The DC bias base current lb =	uA
(b) The DC bias collector current Ic =	mA
(c) The DC bias emitter voltage Ve =	V
(d) The DC bias base voltage Vb =	V
(e) The DC bias collector voltage Vc =	V
(f) The BJT emmitter resitor re =	Ohms
(g) The mid-band small signal gain as a ratio =	
(h) The mid-band small signal gain in dB =	dB
(i) The mid-band input resistance Rin =	kOhms
(j) The low -3dB cutoff frequency caused by Ce =	Hz
Marks out of 20	

Transformer turns ratio N1/N2= 15.5/1

For the circuit shown find:	
(a) The Thevin equivalent voltage of Vcc with RB1 and RB2 =	V
(b) The Thevenin equivalent resistance of RB1 and RB2 =	kOhms
(c) The DC bias base current lb =	uA ⁺
(d) The DC bias collector current Ic =	mA
(e) The BJT emitter resistor re =	Ohms
(f) The resonant frequency f0 =	kHz
(g) The total load resistance as seen by the collector RL' =	kOhms
(h) The small signal ac gain =	dB
(i) The loaded Q of the output circuit QL =	
(j) The bandwidth BW =	kHz

Marks of of 20

ENEC 434 Text Medel answers

- Andrews

Q 2/.

4.54 - Igx 8-48x18-0.7-Igx214x2x13=0

(h)
$$\frac{V_{c}(t)}{V_{cc}(t)} = \frac{12 \times 10^{3}}{13.8} = 870$$
 $\left[\begin{array}{c} v_{c}(t) \\ \hline v_{c}(t) \end{array}\right] = \frac{870}{15.5} = -56$