空間情報を用いた社会・経済分析(第3回)

統計数理研究所 村上大輔

dmuraka@ism.ac.jp

担当回(前半)

内容

- 第2回(4/21 月):空間データの処理・地図化
- 第3回(4/28 月):探索的空間データ解析
- 第4回(5/8, 木) : 空間計量経済モデルと応用

 \uparrow

各回で統計ソフトウェアRを用いた実

スライド・Rコード(slide_lec3.ppt, code_lec3.R) https://github.com/dmuraka/HIAS class

質問等は村上(dmuraka@ism.ac.jp)までご連絡ください

先週に作成した 住宅地公示地価データ

列名	説明					
price	住宅地公示地価(円/m²)					
rice, agri,, out	1km ² メッシュ内の土地 利用面積(m ²)					
st_dist	最寄駅距離(m)					
tk_dist	東京駅までの距離(m)					

> price[1:10,]

Simple feature collection with 2129 features and 18 fields

Geometry type: POINT Dimension: XY

Bounding box: xmin: 139.1364 ymin: 27.0949 xmax: 142.2034 ymax: 35.83208

Geodetic CRS: JGD2011

First 10 features:

	prio	e		statu	S	mesh	rice	agri	forest	wild	building	, roa	d rail	
1	396000	00		住宅	53394	4529	0	0	209134	0	575119	62740	0	
2	253000	00		住宅	53394	4519	0	0	94120	0	564720	188240	0	
3	483000	00		住宅	53394	4528	0	0	31370	0	784257	125481	20914	
4	197000	00		住宅	53394	4539	0	0	62734	0	690072	62734	52278	
5	368000	00		住宅	53394	4539	0	0	62734	0	690072	62734	52278	
6	227000	00		住宅	53394	4519	0	0	94120	0	564720	188240	0	
7	374000	00		住宅	53394	4529	0	0	209134	0	575119	62740	0	
11	379000	00 住宅	,店舗,導	豚所 5	533946	31	0	0	0	0	763251 1	35922	125466	
12	320000	00 住宅	,店舗,導	豚所 5	533946	41	0	0	0	0	773627 1	88180	62727	
13	158000	00	住宅,	事務所	533946	641	0	0	0	0	773627	188180	62727	
	other	river	beach	n ocea	n golf	out				geom	etry st	_dist	tk_a	dist
1	62740	135937	' (9	0 0	0	POINT	(13	9.7448	35.69	014) 599.	62116	2331.644	[m]
2	83662	115036	. (9	0 0	0	POIN	T (1	39.7375	35.6	812) 333.	27568	2762.764	[m]
3	62741	20914	. (9	0 0	0	POINT	(13	9.7329	35.68	814) 348.	31769	3277.265	[m]
4	73189	104556	. (9	0 0	0	POINT	(13	9.7465	35.69	863) 303.	54010	2761.092	[m]
5	73189	104556	. (9	0 0	0	POINT	(13	9.7462	35.69	608) 453.	15420	2589.836	[m]
6	83662	115036	. (9	0 0	0	POINT	(13	9.7408	35.68	065) 285.	30953	2468.656	[m]
7	62740	135937	' (9	0 0	0	POINT	(13	9.7408	35.68	827) 332.	41378	2594.560	[m]
11	0	20911	. 6	9	0 0	0	POINT	(13	9.7749	35.69	587) 42.	66372	1752.159	[m]
12	10454	10454	. (9	0 0	0	POIN	T (1	39.771	35.70	278) 72.	51797	2424.979	[m]
13	10454	10454	. (9	0 0	0	POIN	T (1	39.769	35.70	212) 260.	74456	2339.240	[m]

線形回帰モデル(さわりだけ)

<u>説明変数($x_1, ..., x_K$)が被説明変数(y; 住宅地価)に及ぼす影響の強さを推定</u>

$$y = \beta_0 + \sum_{k=1}^K x_k \beta_k + \varepsilon$$

説明変数: x_k (例: 最寄駅距離、東京駅までの距離)

回帰係数: β_k (k番目の説明変数からの影響の強さを表す)

住宅地価の場合

最寄駅までの距離 (st_dist): x₁

東京駅までの距離 (tk_dist): x_2

残差(説明されない要因): ε

駅距離が1単位増えたら 地価はいくつ増えるか

- $\beta_1 > 0$:駅距離が増えるほど高騰
- β₁ < 0:駅距離が増えるほど低下

住宅地価 (price):y

被説明変数と説明変数の関係の確認

- 片対数: yだけ対数

- 両対数: yもxも対数

→st_distとtk_distに関しては、 今回は両対数が良さそう

線形回帰モデルの推定結果

東京駅距離 最寄駅距離 住宅地価 1km²メッシュ内の各土地利用の面積(m²) データ名 (対数) (対数) (対数) > mod <- Im(log(price) ~ log(st_dist) + log(tk_dist) + rice + agri + forest + wild + building + road + rail + river, data = dprice3) > summary(mod) 回帰係数 Estimate Std. Error t value Pr(>|t|) 有意性(効果の有無) (Intercept) 2.282e+01 2.131e-01 107.100 < 2e-16 *** *** : 0.1%水準で有意 log(st_dist) -2.863e-01 1.282e-02 -22.332 < 2e-16 *** :1%水準で有意 log(tk_dist) -8.208e-01 1.601e-02 -51.258 < 2e-16 *** : 5%水準で有意 -1.542e-06 1.173e-06 -1.315 0.18874 rice : 0.1%水準で有意 -1.303e-06 2.328e-07 -5.600 2.43e-08 *** agri -1.046e-06 1.771e-07 -5.907 4.06e-09 *** forest

-0.014

-2.700

0.695

0.98879

0.48716

-6.562 6.65e-11 ***

0.00699 **

wild

road

rail

river

building

0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1 Signif. codes:

-3.198e-06 2.045e-06 -1.564 0.11803

-1.903e-09 1.355e-07

2.186e-07 3.145e-07

-1.113e-06 1.696e-07

-7.711e-07 2.856e-07

Residual standard error: 0.4045 on 2100 degrees of freedom Multiple R-squared: 0.7956, Adjusted R-squared: 0.7946 F-statistic: 817.2 on 10 and 2100 DF, p-value: < 2.2e-16

自由度調整済み 決定係数

地価の変動の 79.46%が説明された

実際の住宅地価と予測値の比較

<- predict(mod) > log_pred > plot(log(dprice3\$price), log_pred) > abline(0,1,col="red") 予測值(対数值) 12 13 14 15 住宅地価(対数値)

地価の予測

> log_pred0 <- predict(mod,newdata=dland2) # 土地利用3次メッシュ毎の住宅地価(対数値)の予測値

> dland2\$pred <- exp(log_pred0) # 住宅地価(実数値)の予測値

> mapview(dland2[,"pred"]) # プロット

カラーパレットの作成 (RColorBrewerパッケージ)

```
カラーパレットの生成
> breaks <-c(0,100000,200000,300000,400000,
            500000,600000,800000,1200000,
                                           #色の区切り位置
            2000000, max(dland2$pred))
        <- brewer.pal(length(breaks)-1, "RdYlGn")#パレット生成
> pal0
                                           #色を逆順に(赤=大きい)
> pal
        <- rev( pal0 )
                                    RdYlGn(Red-Yelow-Greenの略)→ RdYlGn
RdYlGn
RdYlBu
RdGy
```

カラーパレットの確認

> display.brewer.all()

plot関数を用いた地図化

- レポートなどの地図作成に便利

```
plot(dland2[,"pred"], # 住宅地価をプロット
 axes = TRUE, # XY座標値を表示
 cex.axis = 0.8, # XY座標値のフォントサイズ
          #カラーパレット
 pal = pal,
 breaks = breaks, #色の区切り位置
          # シンボル(例:20は円、15は四角)
 pch = 20,
 cex = 0.8, # シンボルのサイズ(デフォルトは1)
 key.pos = 4, #凡例の位置(4は図の右)
 key.length = 0.8, # 判例の長さ(1=図の幅)
 xlim = c(139.2, 139.9), ylim = c(35.5, 35.85), # 表示範囲
 border=NA,
           #メッシュの枠線を消す
 main = "Land price (JPY/m2)") #タイトル
```


> mapview(dland2[,"pred"], #住宅地価をプロット

cex=4, #プロットするシンボルのサイズ

lwd=0, #シンボルの枠線の太さ(0は枠線なし)

at = breaks, # 色の区切り位置

alpha.regions=0.8, #透過度(1は透過なし)

ledgend=TRUE, # TRUEの場合、凡例を表示

layer.name="Land price (JPY/m2)") # タイトル

mapviewを 用いた地図化

余談:tidyverseを用いた実装

• 高野啓介先生がtidyverseパッケージを用いてナウい感じに 再実装してくれました

https://github.com/dmuraka/HIAS_class

今後の予定等

内容

- 第2回(4/21月) :空間データの処理・地図化
- 第3回(4/28 月) :探索的空間データ解析
- 第4回(5/8,木) :空間計量経済モデルと応用

 \uparrow

各回で統計ソフトウェアRを用いた実例を紹介

スライド・Rコード置き場(slide_lec3.ppt, code_lec3.R)
https://github.com/dmuraka/HIAS_class

質問等は村上(dmuraka@ism.ac.jp)までご連絡ください

空間相関(spatial autocorrelation/spatial dependence)

近所と強く相関するという

空間データの一般的性質 ≒クラスター(or チェッカーボード) パータンを持つ

R. A. Fisher (1935)

"After choosing the *area* we usually have no guidance beyond the widely verifiable fact that patches in *close proximity* are commonly *more alike*, as judged by the yield of crops, than those which are *far apart*."

空間相関=自分と近隣の相関

なぜ正の空間相関が生じるか

• 潜在的要因

(大気,水,施設立地,...)

例えば地価 の場合

・空間的な相互作用(人々,経済,...)

- 人や物が活発に交流した結果 地域間が強固に結びつく
- 隣接自治体が税率を上げたのを見て、 自分も税率を上げる

なぜ負の空間相関が生じるか

· 空間競争(Spatial competition)

-例:店舗の売り上げ(大型店の近くの中規模店など) 森林の成長

モラン |統計量 ≒自分と近所との相関係数

近隣は

自分は 平均以上? 平均以上?

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (y_{j} - \overline{y}) (y_{i} - \overline{y})}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

 y_i : 地域iの観測値 \bar{y} : 標本平均 n:標本数

 w_{ij} : 地域jの空間重み (例: 近隣1それ以外0)

空間重み (w_{ij}) の与え方:1または0

隣接に基づく方法

<u>ルーク型</u> クイーン型 境界を共有 境界or点を共有 1次 2次

距離に基づく方法

空間重み (w_{ij}) の与え方:距離の減衰関数/カーネル

• ゾーンiからの距離が離れるにつれて空間重みは減衰

モランI統計量の目安(Griffith, 2003)

・おおむね-1~1の間

-正:正の空間相関

-負:負の空間相関

• 目安 (Griffith, 2003)

- $I = 0.90 \sim 1.00$: Marked

- $I = 0.75 \sim 0.90$: Strong

- $I = 0.50 \sim 0.75$: Moderate

 $- I = 0.25 \sim 0.50$: Weak

- $I = 0.00 \sim 0.25$: Slight

都道府県別人口

04

Miyagi

```
: NipponMapパッケージ内のjpn.shpへのパス(通常は不要)
          <- system.file("shapes/jpn.shp", package = "NipponMap")[1]</pre>
> shp
          <- st_read(shp):シェープファイルの読み込み(通常はここから)
> pref0
          <- pref0[pref0$name != "Okinawa",]:沖縄は除外
> pref
> st_crs(pref)<-4326
                        :座標参照系(crs)の指定:世界測地系(WGS84)+地理座標系
> pref
Simple feature collection with 46 features and 5 fields
Geometry type: MULTIPOLYGON
Dimension:
             XΥ
Bounding box: xmin: 129.5697 ymin: 30.9898 xmax: 148.8678 ymax: 45.5331
Geodetic CRS: WGS 84
First 10 features:
   SP_ID jiscode
                    name population
                                     region
                                                                geometry
                Hokkaido
                           5506419 Hokkaido MULTIPOLYGON (((139.7707 42...
             02
                  Aomori
                           1373339 Tohoku MULTIPOLYGON (((140.8727 40...
             03
                   Iwate
                           1330147 Tohoku MULTIPOLYGON (((140.7862 39...
```

2348165

Tohoku MULTIPOLYGON (((140.2802 38...

モランI統計量の評価

> coords <- st_coordinates(st_centroid(pref)):各都道府県の重心点の位置座標
> knn <- knearneigh(coords,4) :最近隣4都道府県の探索(knn形式)
> nb <- knn2nb(knn) :最近隣4ゾーンの一覧(nb形式)
> w <- nb2listw(nb) :空間重み(listw形式):最近隣4ゾーンは1、それ以外は0

> pop <- pref\$population :都道府県別人口 > moran <- moran.test(pop, listw=w) :モランI統計量

> moran

Moran I test under randomisation

data: pop weights: w

Moran I statistic standard deviate = 3.8875, p-value = 5.064e-05

alternative hypothesis: greater

sample estimates:

Moran I statistic 0.320743957 Expectation Variance -0.022222222 0.007783232

帰無仮説の下での 期待値と分散

補足:仮説検定

1: 仮説を決める

- 帰無仮説: *I* = 0 (空間相関なし)

- 対立仮説: $I \neq 0$

2: 帰無仮説の下でのIの分布を求める

- 帰無仮説が正しい場合にIがとりうる値の 範囲を求める $\rightarrow E[I], Var[I]$

3: データからモランI 統計量を求める

- データから得られた*I*が上記範囲の外側
 - → 帰無仮説は棄却 → *I* ≠ 0を採択

都道府県別人口密度の場合

- <- moran.test(pop, listw=w) > moran
- > moran

Moran I test under randomisation

data: pop weights: w

Moran I statistic standard deviate = 3.8875 p-value = 5.064e-05

alternative hypothesis: greater

sample estimates:

Moran I statistic

Expectation

-0.022222222 0.320743957

Variance

0.007783232

帰無仮説(空間相関なし)が正しい場合に今回の推定値を得る確率(p値)は0.00005064

- p値が0.10以下:10%水準で統計的に有意 ←より有意になりやすい
- p値が0.05以下:5%水準で統計的に有意 ←最も標準的
- p値が0.01以下:1%水準で統計的に有意 ←より有意になりにくい

大域と局所の空間相関

- Global indicator of spatial association (GISA)

 - <u>全域についての</u>検定モランI統計量, ギアリーC統計量,...

モランIでは 地域差がみれない。。

- Local indicator of spatial association (LISA)
 - 地域(地点)毎の検定
 - ローカルモランI統計量, ローカルギアリーC統計量,...

モランI統計量の分解

$$I \to \frac{1}{n} \sum_{i=1}^{n} I_i$$

各ゾーン周辺の 空間相関を評価

ローカルモランI統計量

• 自分と周辺の相関を評価

$$I_{i} = \frac{1}{m}(y_{i} - \bar{y}) \sum_{j=1}^{J} w_{ij}(y_{j} - \bar{y}) \qquad m = \frac{1}{n-1} \sum_{i=1, i \neq j}^{I} (y_{i} - \bar{y})^{2} - \bar{y}^{2}$$

ローカルモランI統計量の評価

> lmoran <- localmoran(pop, listw=w)</pre>

> lmoran[1:3,]

 Ii
 E.Ii
 Var.Ii
 Z.Ii
 Pr(z
 != E(Ii))

 1 -0.4690880 -0.023537521 0.24628916 -0.8977890
 0.3692980

 2 0.2450530 -0.005917060 0.06303149 0.9996390
 0.3174853

 3 0.2505732 -0.006293181 0.06701276 0.9922671
 0.3210673

|i : ローカルモラン|

E.li, Var.li : 帰無仮説の下でのliの期待値と分散

Z.li : z値 =(li - E.li)/sqrt(Var.li)。liを基準化したもの。 Z.li ≥|1.96|の場合に5%水準で有意

Pr(z!=E(Ii)) : p值 = 帰無仮説

モラン散布図

I_i が大きい2ケース

- High-High:自分+周辺が高

- Low-Low : 自分+周辺が低

I_i が小さい2ケース

- High-Low:自分は高, 周辺は低

- Low-High:自分は低, 周辺は高

地域が分類できる

モラン散布図

都道府県名 図形の形(●) > moran.plot(pop, listw=w, labels=pref\$name, pch=20, xlim=c(-1000000,13000000),ylim=c(1000000,8000000)) Chiba 🔷 Low-High (一人負け) ² High-High Kanagawa 🚸 Gunma 🔷 Tokyo 🔷 spatially lagged pop Yamanashi 🔷 5e+06 3e+06 Osaka 🔷 **Low-Low High-Low** (一人勝ち) 1.2e+07 0.0e + 004.0e+06 8.0e+06 pop 30

モラン散布図に基づく分類図

```
> moran_cl<- attr(lmoran,"quadr")$mean :分類結果
> pref$moran_cl<-moran_cl : 分類結果を都道府県別の新たな列(moran_cl)に追加
> levels(moran_cl) : 分類の確認
[1] "Low-Low" "High-Low" "Low-High" "High-High"
> plot(pref[,"moran_cl"],
                         : 位置座標を表示
      axes=TRUE,
     pal = c("light blue",:Low-Low:薄い青
                         : High-Low:黄
             "yellow",
             "dark green",:Low-High:濃い緑
             "red"), : High-High: 赤
                 : 凡例の位置
      key.pos=1,
      key.length=0.5) :凡例の長さ
```

High-High: 関東、兵庫

High-Low:北海道,愛知,大阪,広島,福岡

Low-High: 栃木,群馬,京都,滋賀,三重,和歌山

Low-Low:その他

我が国の 所得格差分析 (1998-2007) への応用

Tamesue, K., Tsutsumi, M., & Yamagata, Y. (2013). Income disparity and correlation in Japan. *Review of Urban & Regional Development Studies*, *25*(1), 2-15.

モランI統計量の変化

- Tamesue et al. (2013)
 - 市区町村別の一人当たり所得
 - 年々減衰。隣接市区町村との相関が弱まる傾向

太平洋ベルト沿い に集積

北海道目梨郡羅臼町 広島県広島市

東北以北、中国・四国・ 九州に分布

沿岸部•県庁所在地

福島県双葉郡 大熊町 双葉町 富岡町 青森県六ケ所村

• 平均との比較に基づくため、局所的な傾向に対する感度が低い

人口密度(兵庫県)

モラン散布図

ギアリーC統計量

自分と近隣の差

$$C = \frac{n-1}{2\sum_{i}\sum_{j}w_{ij}} \frac{\sum_{i}\sum_{j}w_{ij}(\mathbf{y_i} - \mathbf{y_j})^2}{\sum_{i}(y_i - \bar{y})^2}$$

y_i: /番目の標本

 \bar{y} :標本平均

n:標本数

 w_{ij} :空間重み(例: 近隣は1それ以外0)

ローカル・ギアリーC統計量

$$C_i = \sum_j w_{ij} (\mathbf{y_i} - \mathbf{y_j})^2$$

ローカル・ギアリーC統計量に基づく分類図

> lgeary0 <- localC_perm(pop, listw=w):ローカルGeary's C

> pref\$geary_cl<- geary_cl : 分類結果を都道府県別の新たな列(geary_cl)に追加

> geary_cl <-attr(lgeary0,"cluster") : 分類結果

ギアリーCに基づく4分類 High-High : 自分も隣も高い Low-Low : 自分も隣も低い Other positive: 隣接と類似(上記以外) Negative : 隣接と逆の傾向 C>1

ギアリCの方が局所的傾向が捉えられる

※ただし、個人的経験としては解釈しにくい結果が得れる場合もあり、 モランIの方が解釈性に優れる印象

人口密度(兵庫県)

ローカルギアリーCに基づく分類

まとめ

• 空間データの基本的な処理・作図方法を紹介

- spdepによる探索的な空間分析の方法を説明
 - 大域空間統計量
 - モランI,ギアリーC,...
 - 局所空間統計量
 - ローカルモランI, ローカルギアリーC, Getis/Ord G*, LOSH統計量,、...
 - データの特性を把握するために広く用いられている。