Physics 89 - Introduction to Mathematical Physics

deval deliwala

January 31, 2023

Contents

1	Diff	erence between	n Mathematics and Physics	2
2	Taylor Series 2.1 Testing for Convergence			
3	Complex Numbers			
	3.1	Taylor Series .		8
	3.2	Complex Numb	ers	8
		3.2.0.1	Rules of Complex Numbers	9
	3.3	Applications		10
		3.3.0.1	Hydrodynamics	10
		3.3.0.2	The Complex Plane	12
		3.3.0.3	Euler's Identity	13
		3.3.0.4	Trigonometric Functions	13
	3.4	Hyperbolic Fun	ctions	14
		3.4.0.1	Identities	14
		3.4.0.2	Applications to Special Relativity	14
		3.4.0.3	Taylor Series	18
		3.4.0.4	Path Integrals	20
		3.4.0.5	Contour Integrals	21
		3.4.0.6	Analytic Functions	24
		3.4.0.7	Cauchy Riemann Equations	24
		3.4.0.8	Hydrodynamics	25
		3.4.0.9	Contour Integrals	25
		3.4.0.10	Computing Res f at α	27
4	Tensors 27			
	4.1	Vectors first		27
		4.1.0.1	Dot Product	31
		4.1.0.2		32

1 Difference between Mathematics and Physics

Example 1 - Electrostatics

Math Question

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = ?$$

Math Solution

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots = -\log(1-x), \quad for -1 \le x \le 1$$

So,

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots = -\log(2)$$

Example 2 - Diffusion

f(x, y, z, t) = density of diffusing material at time t

Let there exist a cube containing moles

$$\frac{\partial f}{\partial t} = D \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right)$$

where D is the diffusion coefficient, and the diffusion equation describes how f evolves with time

Math Question

Solve

$$\frac{\partial f}{\partial t} = D \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right)$$

given initial condition

f(x, y, z, 0) = concentrated lump at the origin

Math Solution

$$f(x, y, z, t) = \frac{N}{(4\pi Dt)(3/2)} e^{-\frac{x^2 + y^2 + z^2}{4Dt}}$$

where N is the number of moles released

2 Taylor Series

- Techniques for obtaining series
- Estimate error, converge?

Figure 1: Taylor Series Visualization

$$f(x) \approx f(0) + f'(0)x + \dots + \frac{1}{n!}f^{n}(0)x^{n}$$

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}f^k(a)(x-a)^k$$

Question

How good is this approximation?

Big O notation

$$\sum_{k=0}^{n} \frac{1}{k!} f^{k}(0) x^{k} + O(x^{n+1})$$

Formally,

$$F(x) = o(x^{n+1}) \quad \text{as } x \to 0$$

 $|F| \le C|x|^{n+1}$ for some unexpected constant c

$$\lim_{x \to 0} \frac{F}{|x|^{n+1}} = 0$$

Example

$$e \approx 1.9 GeV \approx 3700 mc^2$$

Special Relativity

$$E_k = m_0 c^2 - mc^2 = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} - mc^2$$

$$\approx 0 + \frac{1}{2}mv^2 + \frac{3}{8}m\frac{v^4}{c^2} + \frac{5}{16}m\frac{v^8}{c^4}$$

$$f(v) = \frac{1}{2}mv^2 + \frac{3}{8}m\frac{v^4}{c^2} + \dots$$

$$\frac{1}{\sqrt{1-x}} \to \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}$$

$$(1+x)^P$$
, then set $p = \frac{1}{2}$

$$f(x) = (1+x)^n$$

$$f'(x) = p(1+x)^{p-1}$$

$$f^{k}(x) = p(p-1)\dots(p-k+1)(1+x)^{p-k} \to f^{k}(0)$$

= $p\dots(p-k+1)$

$$(1+x)^n \approx 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p!}{k!(p-k)!}x^k = \binom{p}{k}x^k$$

$$\sum_{k=0}^{n} \binom{p}{k} x^{k}$$
 generalized binomial coefficient

$$(1+x)^P = \sum_{k=0}^n \binom{p}{k} x^k + O(x^{n+1})$$

Question

Given $\frac{1}{\sqrt{1+x}}$ taylor series, how good is this approximation if x = 0.1?

Solution

Actual Answer
$$\rightarrow \frac{1}{\sqrt{1.1}} = 0.9534626$$

 $\text{Taylor Polynomials } x, x^2 \to 1 - \frac{0.1}{2} = 0.95 \quad / \quad 1 - \frac{0.5}{2} + \frac{3(0.5)^2}{8} = 0.95375 \quad \text{good approx}$

More Taylor Series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

$$\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
$$\sinh x = \frac{e^x - e^x}{2} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

2.1 Testing for Convergence

If $\sum_{0}^{\infty} a_n x^n \leq \infty$ converges,

$$\sum_{n=0}^{\infty} a_n (\lambda X)^n \le \infty \qquad |\lambda| \le 1$$

Taylor Series have interval of convergence of the form

$$[-L,L]$$
 $(-L,L)$ $[-L,L)$ $(-L,L]$

Truncated Taylor Series Approximation

$$R_0(x) = f(x) - f(0) = f'(c)x$$

Figure 2: Remainder Visualized

Remainder Theorem

$$R_n(x) = f^{n+1}(c) \frac{x^{n+1}}{(n+1)!}$$
 for some $0 \le c \le x$

$$x = \frac{\pi}{2}$$

$$R = \sin\frac{\pi}{2} - \left(x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880..} + 0\right)$$

$$= f^{10}(c)\frac{x^10}{10!} \quad 0 \le c \le \frac{\pi}{2}$$

$$|f^{11}(c)| = |-\cos c| < 1$$

 $|R_{10}| \le \frac{1}{11!} \left(\frac{\pi}{2}\right)^{11} \approx 3.6 \times 10^{-6}$

Technique for Solving Taylor Series by dividing two polynomials

$$f(x) = a_0 + a_1 x + \dots$$

$$g(x) = b_0 + b_1 x + \dots$$

$$\frac{f(x)}{g(x)} = (c_0 + c_1 x + c_2 x^2 + \dots)$$

$$a_0 + a_1 x + \dots = (b_0 + b_1 x + \dots)(c_0 + c_1 x + \dots)$$

$$a_0 = b_0 c_0$$

3 Complex Numbers

• Definition

• Functions: $\log z, \sqrt{z}, \sin z,$, etc.

• Applications: AC Circuits, Hydrodynamics

• Math Applications: \int_{∞}^{∞}

3.1 Taylor Series

$$f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

The interval of convergence for the taylor series of $\frac{1}{1+x^2}$ is from (-1,1), which is not readily apparent since

$$(x \pm 1, f(x) = \frac{1}{2}$$

$$(x \pm 1, f(x) = \frac{1}$$

Figure 3: taylor series of e^{1/x^2}

3.2 Complex Numbers

Introduced by Cardano in the 1500s with the intent of solving cubic equations.

Quadratic Equations

$$0 = x^2 + bx + c \quad x = -b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Cubic Equations

$$0 = x^{3} + ax + b \qquad \left(\frac{-b}{2} + \sqrt{\frac{b^{2}}{4} - \frac{a^{3}}{27}}\right)^{\frac{1}{3}}$$
$$x^{3} - x = 0 \to x = \frac{1}{\sqrt{3}} \left[\sqrt{-1}^{1/3} + (-\sqrt{-1})^{1/3}\right]$$

- consistency
- \bullet final answer is **real**
- simplifies computations

3.2.0.1 Rules of Complex Numbers

$$z = a + bi$$

$$i^2 = -1$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Example

$$(1+i)^2 = 2i$$
$$i^4 = 1$$

$$\frac{1}{a+bi} = \frac{(a+bi)}{(a-bi)(a+bi)} = \frac{(a-bi)}{a^2+b^2}$$
$$= \left(\frac{a}{a^2+b^2}\right) - \left(\frac{b}{a^2+b^3}\right)i$$

3.3 Applications

Figure 4: 2D diagram of Sphere from above

3.3.0.1 Hydrodynamics

$$\vec{v}(x,y) = v_x \hat{i} + v_y \hat{j}$$

Problem

$$V_x, V_y = ?$$

Model

1. Incompressible

(a).
$$0 = \nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

2. Irrotational

$$(b.) \quad 0 = (\nabla \times \vec{v})_z = \frac{\partial v_x}{\partial x} - \frac{\partial v_x}{\partial y}$$

Solving (a) and (b)

Set of **coupled** partial differential equations (PDEs)

- What are the Boundary Conditions?
 - an additional set of equations at the edges

(1.)
$$r = \sqrt{x^2 + y^2} \to \infty \quad \vec{v} \to v_0 \hat{i}$$

$$(2.) \quad \vec{v} \cdot \hat{r} = 0$$

Fact: Complex Numbers

Define z = x + iy, z is **not** the third coordinate

Define $U = v_x \hat{i} - iv_y$ and $U = f(z) \to \text{Equations (a.)}$ and (b.) are automatically satisfied.

Solution

$$U = v_0 \left(1 - \frac{R^2}{z^2} \right)$$

$$\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2}$$

$$\frac{1}{z^2} = \frac{x^2 - y^2 - 2ixy}{(x^2 + y^2)^2}$$

$$v_x = v_0 - \frac{v_0 R^2 (x^2 - y^2)}{(x^2 + y^2)^2}$$

Figure 5: complex plane

Figure 6: quadrant's of complex plane in polar coordinates

3.3.0.2 The Complex Plane

3.3.0.3 Euler's Identity

$$\cos \theta + i \sin \theta = e^{i\theta}$$

$$\begin{split} e^x &= 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3!} + \dots \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ e^{iy} &= 1 + \frac{iy}{1} - \frac{y^2}{2!} - \frac{iy^3}{3!} + \frac{y^4}{4!} + \dots \\ &= \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + \left(\frac{y}{1} - \frac{y^3}{3!} + \dots\right) i = \cos y + i \sin y \end{split}$$

Euler's Identities

$$e^{i\pi} = -1$$

 $1 = e^{2\pi i} = e^{2\pi ni}$ $n = 0, \pm 1, \pm 2, \dots$

$$\log z = ?$$

$$z = re^{i\theta}$$
$$\log z = \log r + i(\theta + 2\pi n)$$

$$\sqrt{z}$$

$$\begin{split} \sqrt{re^{iz}} &= \sqrt{r}e^{i\theta/2} \\ &= \sqrt{r}e^{\frac{i(\theta+2\pi)}{2}} \\ &= -\sqrt{r}e^{i\theta/2} \end{split}$$

3.3.0.4 Trigonometric Functions

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(iy) = \frac{e^{-y} + e^{y}}{2} = \cosh y$$

$$\sin(iy) = i\frac{e^{y} - e^{-y}}{2} = i \sinh y$$

3.4 Hyperbolic Functions

$$\tanh = \frac{\sinh y}{\cosh y}$$

Everything is **Real** from now on.

3.4.0.1 Identities

$$\sinh(\alpha + \beta) = \sinh\alpha \cosh\beta + \cosh\alpha + \sinh\beta$$
$$\cosh(\alpha + \beta) = \cosh\alpha \cosh\beta + \sinh\alpha + \sinh\beta$$
$$\tanh(\alpha + \beta) = \frac{\tanh\alpha + \tanh\beta}{1 + \tanh\alpha \tanh\beta}$$

3.4.0.2 Applications to Special Relativity Relativistic Addition to Velocities

Figure 7: a train moving with a car moving inside of it, what would an observer calculate for the speed of the interior car?

$$iW = \frac{u+v}{1+\frac{uv}{c^2}} = c\frac{\tanh\alpha - \tanh\beta}{1+\tanh\alpha + \tanh\beta} = c\tanh(\alpha+\beta)$$

Figure 8: rapidity - using hyperbolic tangent establishes the bounds of velocity as c and -c

Jan 26

Functions of Complex Variables

- $\bullet\,$ Cauchy Riemann Eqns
- Taylor Series
- $\int_{-\infty}^{\infty}$
- $\bullet\,$ Singularities, Poles, Residue

The Complex Conjugate

Figure 9: graphing complex numbers

$$\bar{z} = a - bi$$
 $z\bar{z} = a^2 + b^2 = |z|^2$

Functions of z = x + iy

$$ReZ = x$$

$$ImZ = y$$

$$|z| = \sqrt{x^2 + y^2}$$

$$= z = x - iy$$

Analytic Functions

$$\frac{1}{z}$$

$$z^{2}$$

$$e^{z}$$

$$\sin z$$

$$\cos z$$

$$f(z) = u + iv$$

$$u = u(x, y)$$

$$v = v(x, y)$$

Analytic Functions are the functions where you can write

$$f(z + \Delta z) - f(z) = f'(z)\Delta z + O(\Delta z^2) \quad \Delta z \to 0$$

Note

$$f(x + \Delta x, y + \Delta y) - f(x, y) = \left(\frac{\partial f}{\partial x}\right) \Delta x + \left(\frac{\partial f}{\partial y}\right) \Delta y + \dots$$

Check

$$e^{z+\Delta z} = e^z e^{\Delta z} = e^z (1 + \Delta z + \dots)$$

$$e^{z+\Delta z} - e^z = e^z \delta z + \dots = f''(z) \delta z + \dots$$

Therefore, $e^{z+\Delta z}$ is analytic. However,

$$\bar{z} + \Delta \bar{z} - \bar{z} = \bar{\Delta}z$$

$$\Delta z = \Delta x \to \bar{\Delta}z = (1)\Delta z \quad \text{Horizontal}$$

 $\Delta z = i\Delta y \rightarrow \bar{\Delta}z = -i\Delta y = (-1)\Delta z$ Vertical

$$f(z) = u + iv$$

$$\frac{f(x+\Delta x,y)-f(x)}{\Delta x}=f'(z)$$

$$\frac{f(x, y + \Delta y) - f(x, y)}{i\Delta y} = f'(z) = \frac{\partial f}{\partial y} \frac{1}{i}$$

$$\begin{split} &\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y} \\ &\left(\frac{\partial u}{\partial x}\right) + i \left(\frac{\partial v}{\partial x}\right) = \frac{1}{i} \left[\left(\frac{\partial u}{\partial y}\right) + i \left(\frac{\partial v}{\partial y}\right)\right] \\ &= \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \end{split}$$

Cauchy Riemann Equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Example

$$f(z) = x^2 - y^2 + 2ixy$$

$$u = x^2 - y^2$$
$$v = 2xy$$

$$\frac{\partial u}{\partial x} = 2x = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -2y = -\frac{\partial v}{\partial x}$$

Figure 10: a region in the complex plane

3.4.0.3 Taylor Series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 converges if analytic

Given a constant λ

$$0 < \lambda < 1$$

$$f(\lambda z) = \sum_{n=0}^{\infty} a_n (\lambda z)^n$$
 definitely converges
$$|a_n z^n \lambda^n| = |a_n z^n| |\lambda|^n$$

Let
$$\lambda = re^{i\theta}$$
, $0 < r < 1$, $|\lambda| < 1$

Figure 11: disk of convergence of power series

Figure 12: disk of convergence is disk with maximum radius inside R

Example

$$f(x) = \frac{1}{x^2 + 1}$$
$$f(z) = \frac{1}{z^2 + 1}$$

Figure 13: using complex number instead of real numbers to calculate interval of convergence

 $if(z) = \log(z)$

Example

Figure 14: graph of complex log to determine convergence

3.4.0.4 Path Integrals

$$\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right) dx = \pi$$

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} = \arctan x \Big|_{-\infty}^{\infty} = \pi$$

Figure 15: path P

Technique

Parametrize P from $0 < t < \pi$ as z(t)

Figure 16: example of parameterizing z(t)

$$\begin{split} \int_P f(z)dz &= \int_a^b f(z(t)) \left(\frac{dz}{dt}\right) dt \\ f(z) &= z^3 \\ \frac{dz}{dt} &= iRe^{it} \\ f(z(t)) &= \left(Re^{it}\right)^3 = R^3e^{3it} \end{split}$$

Collect

$$\begin{split} \int_0^\pi f(z(t) \left(\frac{dz}{dt}\right) dt &= \int_0^\pi R^3 e^{3it} (iRe^{it}) dt \\ &= iR^4 \int_0^\pi e^{4it} = \frac{iR^4}{4i} e^{4it} \Big|_0^\pi = 0 \\ e^{4\pi i} &= 1 \end{split}$$

Figure 17: contour integral path

3.4.0.5 Contour Integrals Contour Integrals = 0 for any analytic function that is analytic for the entire region C

$$\oint_C f(z)dz = 0$$

$$= \int_0^{2\pi} R^n e^{nit} \frac{dz}{dt} dt$$

$$= \int_0^{2\pi} R^n e^{nit} i R e^{it} dt$$

$$= i R^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt$$

$$= \frac{i R^{n+1}}{i(n+1)} e^{i(n+1)t} \Big|_0^{2\pi} = 0$$

Effect of Singularities

Let n = -1

$$f(z) = \frac{1}{z}$$

$$\oint_C \frac{dz}{z} = iR^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt$$

$$= i \int_0^{2\pi} dt = 2\pi i \neq 0$$

Figure 18: Fundamental Theorem of Contour Integrals

$$\int_{a}^{b} f(z)dz = F(b) - F(a)$$

Example

$$f(z) = \frac{1}{z^2 + 1} \qquad \alpha = i$$
$$= \frac{1}{(z - i)(z + i)} = \frac{1}{z - i} \left(\frac{1}{z + i}\right)$$

$$f(z) = \frac{g(z)}{z - \alpha}$$

$$f(z) = \frac{1}{z - \alpha} [g(\alpha) + (z - \alpha)g'(\alpha) + \dots]$$
$$= \frac{g(\alpha)}{z - \alpha} + g'(\alpha) + \dots$$

$$\oint_C f(z)dz = \oint_C' f(z)dz = \oint_D f(z)dz = \oint \frac{g(\alpha)}{z - \alpha}dz$$

Jan 31

Main Topic

• Tensors (Vectors First)

3.4.0.6 Analytic Functions

$$f(z) = x + iy = \sum_{n=0}^{\infty} a_n (z - \alpha)^n$$

Taylor series around α – Disk of Convergence

3.4.0.7 Cauchy Riemann Equations

$$f(z) = u + iv$$

$$u = Ref$$
$$v = Imf$$

Cauchy Riemann Equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Figure 19: velocity field of a fluid obeying Cauchy-Riemann Equations

3.4.0.8 Hydrodynamics If v(z) is analytic

- Incompressible: $\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0$
- Irrotational: $\frac{\partial v_x}{\partial y} \frac{\partial v_y}{\partial x} = 0$

3.4.0.9 Contour Integrals

Figure 20: Equation for contour integrals with a singularity: $2\pi i \sum_n Res_{z\to\alpha} f$

Figure 21: it's called a singularity / simple pole because the magnitude of the function approaches infinity at α

Figure 22: Examples of integrals that are easier with Contour Integration

Theorem

 $\sum_{n=0}^{\infty} a_n (z-\alpha)^n$ converges with nonzero radius of convergence for every $\alpha \in R$

f(z) is a analytic function in region R.

3.4.0.10 Computing Res f at α

$$f(z) = \frac{g(z)}{h(z)} \approx \frac{g(\alpha)}{(z-\alpha)h'(\alpha)} = \frac{g(\alpha)/h'(\alpha)}{z-\alpha} = \frac{R}{z-\alpha}$$

4 Tensors

4.1 Vectors first

Goal

Geometric notion of a vector — Algebraic notion of a vector

Figure 23: matrix vector visualization

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

The Rotation Matrix

$$A_j' = \sum_{i=1}^2 R_{ji} A_i$$

Example

$$A_2' = \sum_{i=1}^{2} R_{2i} A_i = R_{21} A_1 + R_{22} A_2$$
$$= -\sin \theta A_1 + \cos \theta A_2$$

Figure 24: Changing Coordinates - Rotation Matrices

Tensors

Made up of components $\frac{\partial v_i}{\partial x_j}$.

Each derivative component of the tensor has different values from different coordinate systems.

Simple Tensors

Two Vectors

 \vec{A}, \vec{B}

Then

 $T_{ij} = A_i B_j$

Figure 25: Prime vs. Unprimed coordinate axes

$$T'_{ij} = A'_{i}B'_{j} = \left(\sum_{k=1}^{2} R_{jk}A_{k}\right) \left(\sum_{l=1}^{2} R_{jl}B_{l}\right)$$
$$= \sum_{k=1}^{2} \sum_{l=1}^{2} R_{ik}R_{jl}A_{k}B_{l}$$

Tensor Transformation Law

$$T'_{ij} = \sum_{k=1}^{2} 2 \sum_{l=1}^{2} R_{ik} R_{jl} T_{kl}$$

 ${\it Example}$: Theory of Elasticity

Figure 26: Parallel forces on surfaces perpendicular to their axis

$$\vec{S}_1 = \lim_{\Delta y \Delta z \to 0} \frac{\vec{F}_x}{\Delta y \Delta z}$$

$$\vec{S}_2 = \lim \frac{\vec{F}_y}{\Delta x \Delta z}$$

$$\vec{S}_3 = \lim \frac{\vec{F}_z}{\Delta x \Delta y}$$

$$S_{ij} = (\vec{S}_i)_j$$
 $i, j = 1, 2, 3, \dots$ Stress Tensor

Using the stress tensor:

Figure 27: to calculate the force on the triangle, you can sum the forces on the edges a, b, c of the triangle

The forces S_{11}, S_{22}, S_{33} are "pushing forces" The forces $S_{12}, S_{23}, S_{13}, \ldots$ are "shear forces"

4.1.0.1 Dot Product

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \phi$$

In components,

$$\vec{A} \cdot \vec{B} = \sum_{i=1}^{3} A_i B_i = \sum_{i=1}^{3} \sum_{j=1}^{3} C_{ij} A_i B_j$$

$$\delta_{ij} = C_{ij} = 1$$
 $i = j$
 $\delta_{ij} = C_{ij} = 0$ $i \neq j$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Kronecker Delta Symbol Tensor

Checking Tensor Transformation Law:

$$\delta'_{ij} = \sum_{k=1}^{2} \sum_{l=1}^{2} R_{ik} R_{jl} \delta_{kl}$$

is correct for any rotation in any dimension

4.1.0.2 Cross Product

$$ec{A} imes ec{B} = egin{array}{cccc} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ \end{array}$$

$$(\vec{A} \times \vec{B})_i = \sum_{j=1}^{3} \sum_{k=1}^{3} C_{ijk} A_j B_k$$

$$\begin{split} C_{ijk} &= 1 \quad ijk = (123), (231), (312) \\ C_{ijk} &= -1 \quad ijk = (132), (321), (213) \\ C_{ijk} &= 0 \quad i = j, i = k, j = k \end{split}$$

The Levi - Civita Tensor