EXAMPLE 5.2.6:

Classify the fixed point $\mathbf{x}^* = \mathbf{0}$ for the system $\dot{\mathbf{x}} = A\mathbf{x}$, where $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Solution: The matrix has $\Delta = -2$; hence the fixed point is a saddle point.

EXAMPLE 5.2.7:

Redo Example 5.2.6 for
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
.

Solution: Now $\Delta = 5$ and $\tau = 6$. Since $\Delta > 0$ and $\tau^2 - 4\Delta = 16 > 0$, the fixed point is a node. It is unstable, since $\tau > 0$.

5.3 Love Affairs

To arouse your interest in the classification of linear systems, we now discuss a simple model for the dynamics of love affairs (Strogatz 1988). The following story illustrates the idea.

Romeo is in love with Juliet, but in our version of this story, Juliet is a fickle lover. The more Romeo loves her, the more Juliet wants to run away and hide. But when Romeo gets discouraged and backs off, Juliet begins to find him strangely attractive. Romeo, on the other hand, tends to echo her: he warms up when she loves him, and grows cold when she hates him.

Let

R(t) = Romeo's love/hate for Juliet at time t

J(t) = Juliet's love/hate for Romeo at time t.

Positive values of R, J signify love, negative values signify hate. Then a model for their star-crossed romance is

$$\dot{R} = aJ$$

$$\dot{J} = -bR$$

where the parameters a and b are positive, to be consistent with the story.

The sad outcome of their affair is, of course, a neverending cycle of love and hate; the governing system has a center at (R, J) = (0, 0). At least they manage to achieve simultaneous love one-quarter of the time (Figure 5.3.1).

Figure 5.3.1

Now consider the forecast for lovers governed by the general linear system

$$\dot{R} = aR + bJ$$

$$\dot{J} = cR + dJ$$

where the parameters a, b, c, d may have either sign. A choice of signs specifies the romantic styles. As named by one of my students, the choice a > 0, b > 0 means that Romeo is an "eager beaver"—he gets excited by Juliet's love for him, and is further spurred on by his own affectionate feelings for her. It's entertaining to name the other three romantic styles, and to predict the outcomes for the various pairings. For example, can a "cautious lover" (a < 0, b > 0) find true love with an eager beaver? These and other pressing questions will be considered in the exercises.

EXAMPLE 5.3.1:

What happens when two identically cautious lovers get together?

Solution: The system is

$$\dot{R} = aR + bJ$$

$$\dot{J} = bR + aJ$$

with a < 0, b > 0. Here a is a measure of cautiousness (they each try to avoid throwing themselves at the other) and b is a measure of responsiveness (they both get excited by the other's advances). We might suspect that the outcome depends on the relative size of a and b. Let's see what happens.

The corresponding matrix is

$$A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

which has

$$\tau = 2a < 0$$
, $\Delta = a^2 - b^2$, $\tau^2 - 4\Delta = 4b^2 > 0$.

Hence the fixed point (R, J) = (0, 0) is a saddle point if $a^2 < b^2$ and a stable node if $a^2 > b^2$. The eigenvalues and corresponding eigenvectors are

$$\lambda_1 = a + b$$
, $\mathbf{v}_1 = (1,1)$, $\lambda_2 = a - b$, $\mathbf{v}_2 = (1,-1)$.

Since a+b>a-b, the eigenvector (1,1) spans the unstable manifold when the origin is a saddle point, and it spans the slow eigendirection when the origin is a stable node. Figure 5.3.2 shows the phase portrait for the two cases.

Figure 5.3.2

If $a^2 > b^2$, the relationship always fizzles out to mutual indifference. The lesson seems to be that excessive caution can lead to apathy.

If $a^2 < b^2$, the lovers are more daring, or perhaps more sensitive to each other. Now the relationship is explosive. Depending on their feelings initially, their relationship either becomes a love fest or a war. In either case, all trajectories approach the line R = J, so their feelings are eventually mutual.

EXERCISES FOR CHAPTER 5

5.1 Definitions and Examples

- **5.1.1** (Ellipses and energy conservation for the harmonic oscillator) Consider the harmonic oscillator $\dot{x} = v$, $\dot{v} = -\omega^2 x$.
- a) Show that the orbits are given by ellipses $\omega^2 x^2 + v^2 = C$, where C is any nonnegative constant. (Hint: Divide the \dot{x} equation by the \dot{v} equation, separate the v's from the x's, and integrate the resulting separable equation.)
- b) Show that this condition is equivalent to conservation of energy.

random; what's the probability that the origin will be, say, an unstable spiral? To

be more specific, consider the system $\dot{\mathbf{x}} = A\mathbf{x}$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Suppose we pick the entries a,b,c,d independently and at random from a uniform distribution on the interval [-1,1]. Find the probabilities of all the different kinds of fixed points.

To check your answers (or if you hit an analytical roadblock), try the *Monte Carlo method*. Generate millions of random matrices on the computer and have the machine count the relative frequency of saddles, unstable spirals, etc.

Are the answers the same if you use a normal distribution instead of a uniform distribution?

5.3 Love Affairs

- **5.3.1** (Name-calling) Suggest names for the four romantic styles, determined by the signs of a and b in $\dot{R} = aR + bJ$.
- **5.3.2** Consider the affair described by $\dot{R} = J$, $\dot{J} = -R + J$.
- a) Characterize the romantic styles of Romeo and Juliet.
- b) Classify the fixed point at the origin. What does this imply for the affair?
- c) Sketch R(t) and J(t) as functions of t, assuming R(0) = 1, J(0) = 0.

In each of the following problems, predict the course of the love affair, depending on the signs and relative sizes of a and b.

- **5.3.3** (Out of touch with their own feelings) Suppose Romeo and Juliet react to each other, but not to themselves: $\dot{R} = aJ$, $\dot{J} = bR$. What happens?
- **5.3.4** (Fire and water) Do opposites attract? Analyze $\dot{R} = aR + bJ$, $\dot{J} = -bR aJ$.
- **5.3.5** (Peas in a pod) If Romeo and Juliet are romantic clones ($\dot{R} = aR + bJ$, $\dot{J} = bR + aJ$), should they expect boredom or bliss?
- **5.3.6** (Romeo the robot) Nothing could ever change the way Romeo feels about Juliet: $\dot{R} = 0$, $\dot{J} = aR + bJ$. Does Juliet end up loving him or hating him?