UPAAA 2025

Polynomials

Mathematics

Lecture - 05

By - Ritik Sir

ODICS to be covered

Most Important Questions

Recap

of B=C

E C

panet batc

1hx2+3hx-10h

W 22+3x-10]

non-36 20 Constant

$$P=3c$$
 $k=5c$
 $P=3x$
 $P=3x$
 $k=5x$
 $k=5x$

=
$$h[x^2-(Sx+(P))]$$

= $h[x^2-7x+10)$
 $(x^2-7x+10)$

#Q. The number of polynomial having zeroes as -2 and 5 is

[NCERT Exemplar]

1

B 2

C 3

More than 3

#Q. Find a quadratic polynomial where zeroes are $5 - 3\sqrt{2}$ and $5 + 3\sqrt{2}$.

[CBSE SQP, 2020 -21]

= $h[x^2-Sx+P]$

polynomial whose zeroes are 3α and 3β .

$$= h[x^2-5x+9]$$
= $h[x^2-5x+9]$

[Board Term 2, 2015]
(301, 313)
POly=(

polynomial whose zeroes are $2\alpha + 1$ and $2\beta + 1$.

$$= K[x_5-2x+b]$$

$$= (1-1)$$

#Q. If α and β are residue of the quadratic equation $x^2 - 7x + 10$. Find the

quadratic whose whose are α^2 and β^2 .

Polynomial. Zeroes

S=29, P=100 h[x2-Sx+P] (h=1)

2²-29x+100/

a polynomial whose zeroes are $2\alpha + 3\beta$ and $3\alpha + 2\beta$.

$$S = S(\alpha + \beta)$$

$$= 6 \left[\frac{25 - 4}{25 - 4} + \frac{91}{2} \right]$$

$$= 36 \left[\frac{25 - 28}{25 - 28} \right] + \frac{91}{2}$$

$$= 3 \left[-3 \right] + \frac{91}{2}$$

$$= -\frac{9}{2} + \frac{91}{2}$$

=(5x2-52x+85)

$$(\alpha + 1)(\beta + 1) = 0$$
 then c =

A 1
$$(0(41)(\beta+1)=6$$

$$C$$
 -1 $\alpha\beta\alpha+\beta+1=0$

$$\alpha + \beta = -b \qquad \alpha \beta = c \qquad \alpha \beta = c \qquad \alpha \beta = -p - c$$

Assertion and Reason

Direction: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.

#Q. Find a quadratic polynomial whose zeroes are reciprocals of the zero of the

polynomial $f(x) = ax^2 + bx + c$, $a \ne 0$, $c \ne 0$.

$$b = \frac{\alpha \beta}{7 \alpha}$$

$$b = \frac{\alpha}{7} \frac{\alpha}{3}$$

$$ax^2+bx+c$$

=
$$h[x_5 + \beta x + \beta]$$

= $h[x_5 - (-\beta)x + \beta]$
= $h[x_5 - (-\beta)x + \beta]$

#Q. If the zeroes of the polynomial $x^2 + px + q$ are double in values to the zeroes of $2x^2 - 5x - 3$, find the value of p and q. [2012]

of $2x^2 - 5x - 3$, find the value of p and q. poodud

#Q. If α and β are the zeroes of the polynomial $x^2 + 4x + 3$, form the polynomial

whose zeroes are
$$1 + \frac{\beta}{\alpha}$$
 and $1 + \frac{\alpha}{\beta}$.

If you always do what you've always done, you'll always get what you've always got.

Homework

