Variants of Ahlfors' lemma and properties of the logarithmic potentials

Tanran Zhang

Abstract

As a special class of conformal metrics with negative curvatures, SK-metrics play a crucial role in metric spaces. This paper concerns the variants of Ahlfors' lemma in an SK-metric space and gives a higher order derivative formula for the logarithmic potential function, which can be applied for the estimates near the singularity of a conformal metric with negative curvatures.

1 Introduction

Let $\mathbb C$ be the complex plane, $\mathbb D$ be the open unit disk in $\mathbb C$ and $\mathbb D^* := \mathbb D \setminus \{0\}$ be the punctured unit disk. Let $\mathcal S$ denote a Riemann surface. Let A be the basic family consisting of homeomorphisms σ defined on the plane domains of $\mathbb C$ into $\mathcal S$ which defines the conformal structure of $\mathcal S$. In our discussion we take the linear notation for a conformal metric $ds = \lambda(z)|dz|$ and set the density function $\lambda(z)$ to be positive on $\mathcal S$. However, in Heins' paper [4], he let the function $\lambda(z)$ be non-negative for a conformal metric $\lambda(z)|dz|$ on $\mathcal S$, and then defined the SK-metrics.

Let \mathbb{P} denote the Riemann sphere $\mathbb{C} \cup \{\infty\}$ with its canonical complex structure and a subdomain $\widetilde{\Omega} \subset \mathbb{P}$. For a point $p \in \widetilde{\Omega}$, let z be the local coordinates such that z(p) = 0. We say that a conformal metric $\lambda(z)|dz|$ on the punctured domain $\Omega := \widetilde{\Omega} \setminus \{p\}$ has a singularity of order $\alpha \leq 1$ at the point p, if, in local coordinates z,

$$\log \lambda(z) = \begin{cases} -\alpha \log |z| + O(1) & \text{if } \alpha < 1\\ -\log |z| - \log \log(1/|z|) + O(1) & \text{if } \alpha = 1 \end{cases}$$
 (1.1)

as $z \to 0$, with O being the Landau symbol throughout our study. Let $M_u(r) := \sup_{|z|=r} u(z)$ for a real-valued function u(z) defined in a punctured neighborhood of z=0 and call

$$\alpha(u) := \lim_{r \to 0^+} \frac{M_u(r)}{\log(1/r)} \tag{1.2}$$

the order of u(z) if this limit exists. For $u(z) := \log \lambda(z)$, $\alpha(u)$ in (1.1) and (1.2) are equivalent. We call the point p a conical singularity or corner of order α if $\alpha < 1$ and a cusp if $\alpha = 1$. The generalized Gaussian curvature $\kappa_{\lambda}(z)$ of the density function $\lambda(z)$ is defined by

$$\kappa_{\lambda}(z) = -\frac{1}{\lambda(z)^2} \liminf_{r \to 0} \frac{4}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} \log \lambda(z + re^{it}) dt - \log \lambda(z)\right). \tag{1.3}$$

^{*}Keywords. Gaussian curvatures, SK-metrics, logarithmic potentials.

We say a conformal metric $\lambda(z)|dz|$ on a domain $\Omega \subseteq \mathbb{C}$ is regular, if its density $\lambda(z)$ is of class C^2 in Ω . We will show that, if $\lambda(z)|dz|$ is a regular conformal metric, then (1.3) is equivalent to

$$\kappa_{\lambda}(z) = -\frac{\Delta \log \lambda(z)}{\lambda(z)^2},\tag{1.4}$$

where Δ denotes the Laplace operator. We will discuss details in Lemma 2.3. It is well known that, if $a < \kappa_{\lambda}(z) < b < 0$, the metric $\lambda(z)|dz|$ only has corners or cusps at isolated singularities, see [8]. If $\kappa_{\lambda}(z) \geq 0$ and the energy is finite, then only corners occur, see [5, 10], also [7].

We have a fact that the Gaussian curvature is a conformal invariant. Let $\lambda(z)|dz|$ be a conformal metric on a plane domain D and $f:W\to D$ be a holomorphic mapping of a Riemann surface W into D. Then the metric $ds=f^*\lambda(w)|dw|$ on W induced by f from the original metric $\lambda(z)|dz|$ is called the *pullback of* $\lambda(z)|dz|$ and defined by

$$ds = f^* \lambda(w) |dw| := \lambda(f(w)) |f'(w)| |dw|.$$
 (1.5)

It is evident that $f^*\lambda(w)|dw|$ is a conformal metric on $W\setminus\{\text{critical points of }f\}$ with Gaussian curvature

$$\kappa_{f^*\lambda}(w) = \kappa_{\lambda}(f(w)).$$

Using this conformal invariance, we can only consider one Riemann surface with the conformal metric all over its conformal equivalence class.

The paper is divided into two parts. Section 2 is devoted to a class of conformal metrics, SK-metrics. We begin with the definition and then discuss the maximum principle for these metrics. Section 3 is about the potential theory, which is a main tool we use to study the local term of a conformal metric near the singularity.

2 SK-metrics

For a topological space X, a function $u: X \to [-\infty, \infty)$ is called *upper semi-continuous* if the set $\{z \in X : u(z) < \alpha\}$ is open in X for each real number α . If φ is a *uniformizer* of \mathcal{S} , i.e. φ is a univalent conformal map of a plane domain into \mathcal{S} , then the conformal density function λ on \mathcal{S} can be extended to $\mathcal{S} \cup \{\varphi\}$ such that the extension is a conformal metric relative to $\mathcal{S} \cup \{\varphi\}$. We denote the image of φ with respect to this extension by λ_{φ} and call it the φ -scale of λ . For two uniformizers φ and ψ of \mathcal{S} , $\varphi(a) = p$, $\psi(b) = p$, $a,b \in \mathcal{S}$, $p \in \mathbb{C}$, if λ_{φ} and λ_{ψ} are upper semi-continuous at a and b respectively, we say λ is upper semi-continuous at p. If λ is upper semi-continuous at every point of \mathcal{S} , we say λ is upper semi-continuous on \mathcal{S} .

Now we give the definition for SK-metrics. The concept of SK-metrics was given by Heins in [4], but its initial idea came from Ahlfors in [1] and [2]. Heins defined the SK-metrics by means of the Gaussian curvature and proved a more general maximum principle as a variant of Ahlfors' lemma. According to Heins, the terminology of "SK-metric" is partly because its (Gaussian) "curvature is subordinate to -4", see [4, p.3]. We call an upper semi-continuous metric $\lambda(z)|dz|$ on \mathcal{S} an SK-metric if its Gaussian curvature is bounded above by -4 at those points z in \mathcal{S} where z satisfies $\lambda(z) > 0$. A complete

metric with the negative constant Gaussian curvature is called the hyperbolic metric. The hyperbolic metric on the unit disk \mathbb{D} is defined by

$$d\sigma = \lambda_{\mathbb{D}}(z)|dz| = \frac{|dz|}{1 - |z|^2}$$
(2.1)

with the constant Gaussian curvature -4 and it is an extremal SK-metric. For SK-metrics, there is a generalization of the maximum principle mentioned by Ahlfors [2, Theorem A] and Heins [4, Theorem 2.1], which claims that the hyperbolic metric is the unique maximal SK-metric on \mathbb{D} .

Theorem 2.1 [2] (Ahlfors' lemma) Let $d\sigma$ be the hyperbolic metric on \mathbb{D} given in (2.1) and ds be the metrics on \mathbb{D} induce by an SK-metric on some Riemann surface W. If the function f(z) is analytic in \mathbb{D} , then the inequality

$$ds < d\sigma$$

will hold throughout the circle.

The following result stated on the corresponding Riemann surface. It is a variant of Theorem 2.1.

Theorem 2.2 [4] Suppose that W is a relatively compact domain of S and that $\lambda(w)$ is an SK-metric on W, $\mu(w)$ is a pullback on W of $\lambda_{\mathbb{D}}(z)$ defined in (2.1). If for all $p \in \partial W$,

$$\limsup_{w \to p} \frac{\lambda(w)}{\mu(w)} \le 1,$$

then throughout the boundary ∂W , it holds that

$$\lambda(w) \leq \mu(w)$$
.

Heins used condition (1.3) to define SK-metrics and he mentioned the equivalence between (1.3) and (1.4) for SK-metrics in one word, see [4, (1.4)]. Here we present it in detail.

Lemma 2.3 Suppose $\Omega \in \mathbb{C}$ is a domain. If a function u is of class $C^2(\Omega)$, then for $z \in \Omega$, we have

$$\lim_{r \to 0} \frac{4}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt - u(z) \right) = \Delta u(z).$$

Proof. Since u is of C^2 , using Taylor's expansion of u(z) at $z_0 \in \Omega$,

$$u(z_0 + z) = u(z_0) + u_x(z_0) \cdot x + u_y(z_0) \cdot y + \frac{1}{2} u_{xx}(z_0) \cdot x^2 + \frac{1}{2} u_{yy}(z_0) \cdot y^2 + u_{xy}(z_0) \cdot xy + \varepsilon(z),$$

where $\varepsilon(z) \to 0$ as $z \to 0$ and $z = x + yi$, we have

$$\frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt - u(z_0) = \frac{r^2}{4} \left(u_{xx}(z_0) + u_{yy}(z_0) \right) + \frac{1}{2\pi} \int_0^{2\pi} \varepsilon(z) dt.$$

As
$$r = |z| \to 0$$
,

$$\frac{1}{r^2} \int_0^{2\pi} \varepsilon(z) dt = \int_0^{2\pi} \frac{\varepsilon(z)}{r^2} dt = 0,$$

then

$$\lim_{r \to 0} \frac{4}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt - u(z) \right) = u_{xx}(z_0) + u_{yy}(z_0) = \Delta u(z_0)$$

as required. \Box

The following theorem offers us a simple way to construct a new SK-metric on a plane domain by means of the maximum principle. This is called the "gluing lemma".

Theorem 2.4 [7] Let $\lambda(z)|dz|$ be an SK-metric on a domain $G \in \mathbb{C}$ and let $\mu(z)|dz|$ be an SK-metric on a subdomain U of G such that the "gluing condition"

$$\limsup_{U\ni z\to \xi}\mu(z)\le \lambda(\xi)$$

holds for all $\xi \in \partial U \cap G$. Then $\sigma(z)|dz|$ defined by

$$\sigma(z) := \left\{ \begin{array}{ll} \max\{\lambda(z), \mu(z)\} & \text{for } z \in U, \\ \lambda(z) & \text{for } z \in G \setminus U \end{array} \right.$$

is an SK-metric on G.

We end this section with the discussion on SK-metrics in the punctured domain. On the punctured unit disk \mathbb{D}^* , the hyperbolic metric is expressed by

$$\lambda_{\mathbb{D}^*}(z)|dz| = \frac{|dz|}{2|z|\log(1/|z|)}$$
 (2.2)

with the constant curvature -4. From the definition (1.1) of the singularity and its order, we know that the metric (2.2) has order 1 at the origin. In any punctured disk, Kraus, Roth and Sugawa gave the expression of the hyperbolic metric which has a singularity at the origin of order $\alpha < 1$ in [7] without any detailed discussion. Now we give a complete presentation of the proof.

Theorem 2.5 [7] For R > 0, let $D_R^* := \{z : 0 < |z| < R\}$ and

$$\lambda_{\alpha,R}(z) := \begin{cases} \frac{1-\alpha}{2|z|\sinh\left((1-\alpha)\log\frac{R}{|z|}\right)} & \text{if } \alpha < 1, \\ \frac{1}{2|z|\log\frac{R}{|z|}} & \text{if } \alpha = 1 \end{cases}$$

for $z \in D_R^*$, then for an arbitrary SK-metric $\sigma(z)$ on D_R^* which has a singularity at z = 0 of order α , we have $\sigma(z) \leq \lambda_{\alpha,R}(z)$.

Proof. We consider the case $\alpha < 1$. First, choose an arbitrary $0 < R_0 < R$, consider $\lambda_{\beta,R_0}(z)$ on $0 < |z| < R_0$ for $\alpha < \beta < 1$, and let $u(z) := \log \sigma(z)$, $v(z) := \log \lambda_{\beta,R_0}(z)$, $E := \{z : 0 < |z| < R_0, u(z) > v(z)\}$.

Now we have the assertion that $0 \notin \overline{E}$. Since $\sigma(z)|dz|$ and $\lambda_{\beta,R_0}(z)|dz|$ both have a singularity at z=0 with order α , β respectively, then

$$v(z) = -\beta \log |z| + O(1), \ u(z) = -\alpha \log |z| + O(1),$$

so $u - v = (\beta - \alpha) \log |z| + O(1)$. Since $u - v \to -\infty$ as $z \to 0$, then on a sufficiently small neighborhood of z = 0, u - v < 0 holds, thus $0 \notin \overline{E}$.

Similarly, we have $\partial E \cap \{z : 0 < |z| < R_0\} = \emptyset$, because $v \to +\infty$ as $|z| \to R_0$, and u is bounded in $\{z : 0 < |z| < R_0\}$.

Then consider the curve $|z| = R_0$. It is clear that v(z) and u(z) satisfy

$$\lim_{r \to 0} \frac{4}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} v(z + re^{it}) dt - v(z) \right) = e^{2v},$$

and

$$\liminf_{r \to 0} \frac{4}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt - u(z) \right) \ge e^{2u}$$

by Lemma 2.3. Thus

$$\liminf_{r \to 0} \frac{4}{r^2} \left(\frac{1}{2\pi} \int_0^{2\pi} \left(u(z + re^{it}) - v(z + re^{it}) \right) dt - \left(u(z) - v(z) \right) \right) \ge e^{2u} - e^{2v},$$

which is positive on E. By definition of limit inferior, we have for $z \in E$

$$\frac{1}{2\pi} \int_0^{2\pi} \left(u(z + re^{it}) - v(z + re^{it}) \right) dt - (u(z) - v(z)) > 0,$$

therefore,

$$u(z) - v(z) \le \frac{1}{2\pi} \int_0^{2\pi} \left(u(z + re^{it}) - v(z + re^{it}) \right) dt.$$

Now we recall the definition of subharmonic functions. Let Ω be an open subset of \mathbb{C} . A function $u:\Omega\to [-\infty,\infty)$ is called subharmonic if u is upper semi-continuous and satisfies the local sub-mean inequality, i.e. given $z\in\Omega$, there exists $\rho>0$ such that

$$u(z) \le \frac{1}{2\pi} \int_0^{2\pi} u(z + re^{it}) dt$$
 (2.3)

for $0 \le r < \rho$. If we adopt the definition as above, then u-v is subharmonic on E, hence u-v has no maximum in E and u-v approaches its least upper bound on a sequence tending to ∂E . A contradiction. So $E=\emptyset$.

Finally, letting $R_0 \to R$ and $\beta \to \alpha$ gives the maximality of $\lambda_{\alpha,R}(z)$ for $\alpha < 1$. According to Kraus, Roth and Sugawa, for the case $\alpha = 1$ this expression has to be interpreted in the limit sense $\alpha \nearrow 1$ to obtain $\lambda_{1,R}(z)$, i.e.

$$\lambda_{1,R}(z) = \lim_{\alpha \nearrow 1} \lambda_{\alpha,R}(z) = \frac{1}{2|z| \log \frac{R}{|z|}}$$

Remark. The righthand side of (2.3) is called the circumferential mean of function u. Heins used it to describe the curvature in the definition of SK-metrics in [4] with $\rho = 1$ and z = 0.

3 Potential theory

Generally speaking, the SK-metric is defined by the fact that its Gaussian curvature no greater than some negative constant. So the maximum principle for the SK-metric is common and useful. After a combination with PDEs, the asymptotic behavior of a metric has something in-between with the local properties of the solution to the corresponding PDE. We can consider the curvature equation

$$\Delta u = -\kappa(z)e^{2u},\tag{3.1}$$

where $\kappa(z)$ is known, then the definition of SK-metrics is fruitful in the case that the curvature function $\kappa(z)$ is strictly negative and Hölder continuous in \mathbb{D}^* , see [6], also [9] for details. For an SK-metric $\lambda(z)$ on \mathbb{D}^* , regarding $u := \log \lambda$ as a solution to the equation (3.1), the global properties of u have been well known by means of the study on equation (3.1). However, near the singularity z = 0, the local properties are still not explicit. We can employ a way related to partial differential equations to investigate the asymptotic behavior of u near the origin. Potential theory is a powerful tool in our case. In this section, we present a formula of the higher order derivatives for the logarithmic potential, and give an asymptotic estimate for u near the origin without any proof as an application of potential theory. We only refer to the logarithmic potential.

We identify \mathbb{C} with \mathbb{R}^2 , and write $z = x_1 + ix_2$, $\zeta = y_1 + iy_2$. Set $0 < r \le 1$ and denote $D_R := \{z \in \mathbb{C} : |z| < R\}$, $D_R^* := D_R \setminus \{0\}$ for a positive number R. For a bounded, integrable function f(z) defined on a domain $\Omega \subseteq \mathbb{C}$, the integral

$$\frac{1}{2\pi} \iint_{\Omega} \log|z - \zeta| f(\zeta) d\sigma_{\zeta}$$

is called the logarithmic potential of f, where $d\sigma_{\zeta}$ is the area element. The Hölder spaces $C^{n,\nu}(D_R)$ are defined as the subspaces of $C^n(D_R)$ consisting of functions whose n—th order partial derivatives are locally Hölder continuous with exponent ν in D_R , $0 < \nu \le 1$. Then the following proposition for the first and the second order derivatives of the logarithmic potential is valid.

Proposition 3.1 [3, 6] Let $f: D_r \to \mathbb{R}$ be a locally bounded, integrable function in D_r and ω be the logarithmic potential of f. Then $\omega \in C^1(D_r)$ and for any $z = x_1 + ix_2 \in D_r$,

$$\frac{\partial}{\partial x_{j}}\omega(z) = \frac{1}{2\pi} \iint_{D_{x}} \frac{\partial}{\partial x_{j}} \log|z - \zeta| f(\zeta) d\sigma_{\zeta}$$

for $j \in \{1, 2\}$.

If, in addition, f is locally Hölder continuous with exponent $\nu \leq 1$, then $\omega \in C^2(D_r)$, $\Delta \omega = f$ in D_r and for $z \in D_r$,

$$\frac{\partial^{2}}{\partial x_{l}\partial x_{j}}\omega(z) = \frac{1}{2\pi} \iint_{D_{R}} \frac{\partial^{2}}{\partial x_{l}\partial x_{j}} \log|z - \zeta| \left(f(\zeta) - f(z)\right) d\sigma_{\zeta}$$
$$-\frac{1}{2\pi} f(z) \int_{\partial D_{R}} \frac{\partial}{\partial x_{j}} \log|z - \zeta| N_{l}(\zeta) |d\zeta|,$$

where $N(\zeta) = (N_1(\zeta), N_2(\zeta))$ is the unit outward normal at the point $\zeta \in \partial D_R$, R > r such that the divergence theorem holds on D_R and f is extended to vanish outside of D_r .

There is a similar proposition for higher order derivatives of the logarithmic potential. Define a multi-index $\mathbf{j} = (j_1, j_2), |\mathbf{j}| = j_1 + j_2, j_1, j_2 = 0, 1, 2, \dots$ For $z = x_1 + ix_2$, denote

$$\frac{\partial}{\partial x_1} = \partial_1, \ \frac{\partial}{\partial x_2} = \partial_2, \ \partial^{\mathbf{j}} = \partial_1^{j_1} \partial_2^{j_2} \text{ and } \frac{\partial^j}{\partial \zeta} = \frac{\partial^{j_1}}{\partial y_1} \frac{\partial^{j_2}}{\partial y_2}.$$

Let $e_{\tau} = (0,1)$ or (1,0) for $\tau = 1,2,\ldots$. Then **j** can be expressed in the form $e_1 + e_2 + \cdots + e_n$. We define two vectors $\theta_{\tau} := e_1 + \cdots + e_{\tau}$, $\phi_{\tau} := e_{\tau+2} + \cdots + e_n$ for $\tau = 1,\ldots, n-1$ where $\phi_{n-1} = (0,0)$, so **j** has a decomposition as $\mathbf{j} = \theta_{\tau} + e_{\tau+1} + \phi_{\tau}$. Write $\zeta = y_1 + iy_2$ and set

$$P_n[f](z,\zeta) := \begin{cases} \sum_{|\iota| \le n} \frac{(\zeta - z)^{\iota} \partial^{\iota}}{\iota!} f(z) & \text{if } n \ge 1\\ f(z) & \text{if } n = 0, \end{cases}$$

where ι is a multi-index, $\iota = (\iota_1, \iota_2)$, $(\zeta - z)^{\iota} = (y_1 - x_1)^{\iota_1} (y_2 - x_2)^{\iota_2}$, $\iota! = \iota_1! \iota_2!$. We have the following recurrent formula for $P_n[f](z,\zeta)$.

Lemma 3.2 For $P_n[f](z,\zeta)$ defined as above, then

$$\frac{\partial^e}{\partial \zeta} P_n[f](z,\zeta) = P_{n-1}[\partial^e f](z,\zeta)$$

holds for e = (0,1) or (1,0).

Proof. We take the case e = (1,0) as an example, when e = (0,1) it is similar. Let $n \ge 1$. Then

$$\frac{\partial}{\partial y_{1}} P_{n}[f](z,\zeta)$$

$$= \frac{\partial}{\partial y_{1}} \sum_{\substack{\iota_{1}+\iota_{2} \leq n \\ 0 \leq \iota_{1} \leq n}} \frac{(y_{1}-x_{1})^{\iota_{1}}(y_{2}-x_{2})^{\iota_{2}}}{\iota_{1}!\iota_{2}!} \partial_{1}^{\iota_{1}} \partial_{2}^{\iota_{2}} f(z)$$

$$= \sum_{\substack{\iota_{1}+\iota_{2} \leq n \\ 1 \leq \iota_{1} \leq n}} \frac{(y_{1}-x_{1})^{\iota_{1}-1}(y_{2}-x_{2})^{\iota_{2}}}{(\iota_{1}-1)!\iota_{2}!} \partial_{1}^{\iota_{1}} \partial_{2}^{\iota_{2}} f(z)$$

$$= \sum_{\substack{\iota_{1}+\iota_{2} \leq n \\ 0 \leq \iota_{1}-1 \leq n}} \frac{(y_{1}-x_{1})^{\iota_{1}-1}(y_{2}-x_{2})^{\iota_{2}}}{(\iota_{1}-1)!\iota_{2}!} \partial_{1}^{\iota_{1}-1} \partial_{2}^{\iota_{2}} \partial_{1} f(z)$$

$$= \sum_{\iota_{1}+\iota_{2} \leq n-1} \frac{(y_{1}-x_{1})^{\iota_{1}}(y_{2}-x_{2})^{\iota_{2}} \partial_{1}^{\iota_{1}} \partial_{2}^{\iota_{2}}}{\iota_{1}!\iota_{2}!} \partial_{1} f(z)$$

$$= \sum_{\iota_{1}+\iota_{2} \leq n-1} \frac{(\zeta-z)^{\iota} \partial^{\iota}}{\iota!} \partial_{1} f(z)$$

$$= P_{n-1}[\partial_{1} f](z,\zeta).$$

Using the multi-index notation, the Taylor expansion of f can be written in short.

7

Theorem 3.3 [cf. 1] If $f(\zeta)$ is analytic in a domain $\Omega \in \mathbb{C}$, containing the point z, it is possible to write

$$f(\zeta) = \sum_{t=0}^{n} \frac{f^{(t)}(z)}{t!} (\zeta - z) + R_{n+1}(z, \zeta),$$

where $R_{n+1}(z,\zeta)$ is the error term and $R_{n+1}(z,\zeta) = f_{n+1}(z)(\zeta-z)^{n+1}$ with $f_{n+1}(z)$ analytic in Ω . This expression is equivalent to

$$f(\zeta) = P_n[z](z,\zeta) + R_{n+1}(z,\zeta), \tag{3.2}$$

with $R_{n+1}(z,\zeta)$ as above.

Remark. If $f \in C^{n,\nu}(\Omega)$ with $0 < \nu \le 1$, $n \ge 1$, and the Hölder continuity is a local property, then the error term $R_{n+1}(z,\zeta)$ satisfies

$$R_{n+1}(z,\zeta) = O(|z-\zeta|^{\nu+n}). \tag{3.3}$$

On the basis of Lemma 3.2, we can present the analogue of Proposition 3.1 as follows.

Proposition 3.4 Let r < 1, $f : D_r \to \mathbb{R}$, $f \in C^{n-2,\nu}(D_r)$ with $0 < \nu \le 1$, $n \ge 3$ and ω be the logarithmic potential of f. Then $\omega(z) \in C^n(D_r)$ and for a multi-index j, $|\mathbf{j}| = n$,

$$\partial^{\mathbf{j}}\omega(z) = \frac{1}{2\pi} \iint_{D_R} \partial^{\mathbf{j}} \log|z - \zeta| \cdot (f(\zeta) - P_{n-2}[f](z, \zeta)) \, d\sigma_{\zeta}$$
$$-\frac{1}{2\pi} \sum_{\tau=1}^{n-1} \int_{\partial D_R} \partial^{\theta_{\tau}} \log|z - \zeta| \cdot P_{\tau-1}[\partial^{\phi_{\tau}} f](z, \zeta) \cdot \langle N(\zeta), e_{\tau+1} \rangle |d\zeta|, \quad (3.4)$$

where $N(\zeta) = (N_1(\zeta), N_2(\zeta))$ is the unit outward normal at the point $\zeta \in \partial D_R$, $\langle \ , \ \rangle$ is the inner product, R > r such that the divergence theorem holds on D_R and the function f is extended to vanish outside of D_r .

We need the following Divergence Theorem for the proof. For a point $z = (x_1, x_2)$, a vector field $\mathbf{w}(z) = (w_1(z), w_2(z))$ and a function u(z), denote

$$\operatorname{div} \mathbf{w} = \frac{\partial w_1}{\partial x_1} + \frac{\partial w_2}{\partial x_2} = \operatorname{divergence of } \mathbf{w},$$

$$Du = (\partial_1 u, \partial_2 u) = \text{gradient of } u,$$

then $\Delta u = \operatorname{div} Du$.

Theorem 3.5 [cf. 3] (Divergence Theorem) Let Ω be a bounded domain with C^1 boundary $\partial\Omega$, for any vector field \mathbf{w} in $C^0(\bar{\Omega}) \cap C^1(\Omega)$, we have

$$\iint_{\Omega} \operatorname{div} \mathbf{w} d\sigma_z = \int_{\partial \Omega} \langle N(z), \mathbf{w} \rangle \, d|z|, \tag{3.5}$$

where \langle , \rangle is the inner product.

In (3.5) we select $\mathbf{w}(z) = v(z) Du(z)$, then

$$\iint_{\Omega} Du \, Dv \, d\sigma_z + \iint_{\Omega} v \, Du \, d\sigma_z = \int_{\partial \Omega} v \, \langle Du, N(z) \rangle \, d|z|. \tag{3.6}$$

Since we only need one ∂_m for m = 1, 2, we can fix the other component x_{3-m} in (3.6) and relabel u, we obtain the following *Green's (first) identity*:

$$\iint_{\Omega} u \,\partial_m v \,d\sigma_z + \iint_{\Omega} v \,\partial_m u \,d\sigma_z = \int_{\partial\Omega} u v \,N_m(z) \,d|z|. \tag{3.7}$$

Proof of Proposition 3.4. Let

$$u_{j}(z) = \frac{1}{2\pi} \iint_{D_{R}} \partial^{\mathbf{j}} \log|z - \zeta| \cdot (f(\zeta) - P_{n-2}[f](z,\zeta)) d\sigma_{\zeta}$$
$$-\frac{1}{2\pi} \sum_{\tau=1}^{n-1} \int_{\partial D_{R}} \partial^{\theta_{\tau}} \log|z - \zeta| \cdot P_{\tau-1}[\partial^{\phi_{\tau}} f](z,\zeta) \cdot \langle N(\zeta), e_{\tau+1} \rangle |d\zeta|. \quad (3.8)$$

Note that

$$\left|\partial^{\mathbf{j}}\log|z-\zeta|\right| \le \frac{n!}{|z-\zeta|^n},\tag{3.9}$$

for n = |j|, and $\log |z - \zeta|$ is harmonic for $\zeta \neq z$, then by the local Hölder continuity of f in D_r , the function $u_j(z)$ is well defined.

Now we can employ induction. Since Proposition 3.4 has been obtained already, and j has the decomposition $j=\theta_{n-1}+e_n$, we may assume that the formula (3.4) is true for θ_{n-1} . Fix a function $\eta(t) \in C^{n-1}(\mathbb{R})$ such that $0 \le \eta \le 1$, $0 \le \eta^{(n-1)} \le 2$, $\eta(t) = 0$ for $t \le 1$, $\eta(t) = 1$ for $t \ge 2$, and set

$$\eta_{\varepsilon} := \eta(\frac{|z - \zeta|}{\varepsilon}), \ L := \frac{1}{2\pi} \log|z - \zeta|.$$

Note that η_{ε} and L are both skew symmetric with respect to x_1 and y_1 , x_2 and y_2 . Then

$$\partial^e L \eta_\varepsilon = -\frac{\partial^e}{\partial \zeta} L \eta_\varepsilon \tag{3.10}$$

for e = (0, 1) or (1, 0).

For $\varepsilon > 0$, define the function

$$v_j(z,\varepsilon) := \iint_D \partial^j L \eta_\varepsilon \cdot f(\zeta) d\sigma_\zeta.$$

We obtain $v_{\theta_{n-1}}(z,\varepsilon) \in C^{n-1}(D_r)$ for a fixed ε by induction.

From (3.9) we know that, $\zeta = z$ is a singularity of $\log |z - \zeta|$ when $|j| \geq 3$. To overwhelm the blow-up behavior near the singularity, we need the Taylor expansion (3.2). To prevent a singularity from appearing on the boundary $\partial\Omega$, we have to enlarge the domain D_r of the integral (3.4) into a larger domain D_R where the divergence theorem holds. Thus for sufficiently small ε ,

$$\begin{split} \partial^{e_n} v_j(z,\varepsilon) &= \iint_{D_r} \partial^{e_n} (\partial^{\theta_{n-1}} L \eta_\varepsilon) \cdot f(\zeta) d\sigma_\zeta \\ &= \iint_{D_R} \partial^{e_n} (\partial^{\theta_{n-1}} L \eta_\varepsilon) \cdot (f(\zeta) - P_{n-2}[f]) \, d\sigma_\zeta + \iint_{D_R} \partial^{e_n} (\partial^{\theta_{n-1}} L \eta_\varepsilon) \cdot P_{n-2}[f] d\sigma_\zeta. \end{split}$$

Combining the skew symmetry (3.10), Green's identity (3.7) and Theorem 3.2, for sufficiently small ε , we have

$$\begin{split} & \iint_{D_R} \partial^{e_n} (\partial^{\theta_{n-1}} L \eta_{\varepsilon}) \cdot P_{n-2}[f] d\sigma_{\zeta} \\ = & - \iint_{D_R} \frac{\partial^{e_n}}{\partial \zeta} \partial^{e_n} (\partial^{\theta_{n-1}} L \eta_{\varepsilon}) \cdot P_{n-2}[f] d\sigma_{\zeta} \\ = & - \int_{\partial D_R} \partial^{\theta_{n-1}} L \cdot P_{n-2}[f] \langle N(\zeta), e_n \rangle |d\zeta| + \iint_{D_R} \partial^{\theta_{n-1}} L \eta_{\varepsilon} \cdot P_{n-3}[\partial^{e_n} f] d\sigma_{\zeta} \\ = & \dots \\ = & - \int_{\partial D_R} \partial^{\theta_{n-1}} L \cdot P_{n-2}[f] \langle N(\zeta), e_n \rangle |d\zeta| - \dots - \int_{\partial D_R} \partial^{\theta_2} L \cdot P_1[\partial^{\phi_2} f] \langle N(\zeta), e_3 \rangle |d\zeta| \\ & + \iint_{D_R} \partial^{\theta_2} L \eta_{\varepsilon} \cdot P_0[\partial^{\phi_1} f] d\sigma_{\zeta} \\ = & - \int_{\partial D_R} \partial^{\theta_{n-1}} L \cdot P_{n-2}[f] \langle N(\zeta), e_n \rangle |d\zeta| - \dots - \int_{\partial D_R} \partial^{\theta_2} L \cdot P_1[\partial^{\phi_2} f] \langle N(\zeta), e_3 \rangle |d\zeta| \\ & - \int_{\partial D_R} \partial^{\theta_1} L \cdot P_0[\partial^{\phi_1} f] \langle N(\zeta), e_2 \rangle |d\zeta| \\ = & - \sum_{\tau=1}^{n-1} \int_{\partial D_R} \partial^{\theta_\tau} L \cdot P_{\tau-1}[\partial^{\phi_\tau} f] \langle N(\zeta), e_{\tau+1} \rangle |d\zeta|. \end{split}$$

Therefore

$$\partial^{e_n} v_j(z,\varepsilon) = \iint_{D_R} \partial^{e_n} (\partial^{\theta_{n-1}} L \eta_{\varepsilon}) \cdot (f(\zeta) - P_{n-2}[f]) \, d\sigma_{\zeta}$$
$$- \sum_{\tau=1}^{n-1} \int_{\partial D_R} \partial^{\theta_{\tau}} L \cdot P_{\tau-1}[\partial^{\phi_{\tau}} f] \langle N(\zeta), e_{\tau+1} \rangle | d\zeta|. \tag{3.11}$$

Now we compare (3.8) and (3.11). By the local Hölder continuity of f, Theorem 3.3 and the estimate (3.3), there exist constants M_1 and M_2 such that

$$|u_{j}(z) - \partial^{e_{n}} v_{j}(z, \varepsilon)|$$

$$= \left| \iint_{|\zeta - z| \leq 2\varepsilon} \left(\partial^{j} L - \partial^{j} L \eta_{\varepsilon} \right) R_{n-1}(z, \zeta) d\sigma_{\zeta} \right|$$

$$\leq M_{1} \iint_{|\zeta - z| \leq 2\varepsilon} \left(\frac{n!}{|\zeta - z|^{n}} + \frac{2(n-1)!}{\varepsilon |\zeta - z|^{n-1}} \right) |z - \zeta|^{\nu + n - 2} d\sigma_{\zeta}$$

$$= M_{1} \iint_{|\zeta - z| \leq 2\varepsilon} \left(\frac{n!}{|\zeta - z|^{2}} + \frac{2(n-1)!}{\varepsilon |\zeta - z|} \right) |z - \zeta|^{\nu} d\sigma_{\zeta}$$

$$\leq M_{2} \cdot (2\varepsilon)^{\nu}$$

The last inequality comes from Lemma 4.2 in [3]. Hence $\partial^{e_n} v_j(z,\zeta)$ converges to $u_j(z)$ uniformly on any compact subset of D_r as $\varepsilon \to 0$. It is easy to see $v_j(z,\varepsilon)$ converges uniformly to $\partial^{\theta_{n-1}} \omega$ in the disk D_r , then $\omega \in C^n(D_r)$ and $u_j(z) = \partial^j \omega(z)$. The proof is complete.

We list two results on a class of conformal metrics with negative curvatures as an application of potential theory. No proof is involved here. For more details, see [6, 7], also [11].

Theorem 3.6 [6] Let $\kappa : \mathbb{D} \to \mathbb{R}$ be a locally Hölder continuous function with $\kappa(0) < 0$. If $u : \mathbb{D}^* \to \mathbb{R}$ is a C^2 -solution to $\Delta u = -\kappa(z)e^{2u}$ in \mathbb{D}^* , then u has the order $\alpha \in (-\infty, 1]$ and

$$u(z) = -\alpha \log |z| + v(z),$$
 if $\alpha < 1$,

$$u(z) = -\log |z| - \log \log(1/|z|) + w(z),$$
 if $\alpha = 1$,

where the remainder functions v(z) and w(z) are continuous in \mathbb{D} . Moreover, the second partial derivatives satisfy the following,

$$v_{zz}(z), v_{z\bar{z}}(z) \text{ and } v_{\bar{z}\bar{z}}(z) \text{ are continuous at } z = 0$$
 if $\alpha \leq 0$;
 $v_{zz}(z), v_{z\bar{z}}(z), v_{\bar{z}\bar{z}}(z) = O(|z|^{-2\alpha})$ if $0 < \alpha < 1$,
 $w_{zz}(z), w_{\bar{z}\bar{z}}(z), w_{z\bar{z}}(z) = O(|z|^{-2}\log^{-2}(1/|z|))$ if $\alpha = 1$,

when z tends to z = 0.

Theorem 3.7 [11] Let $\kappa : \mathbb{D} \to \mathbb{R}$ satisfy $\kappa(0) < 0$, $\kappa(z) \in C^{n-2,\nu}(\mathbb{D}^*)$ for an integer $n \geq 3$, $0 < \nu \leq 1$ and let $u : \mathbb{D}^* \to \mathbb{R}$ be a $C^{n,\nu}$ -solution to $\Delta u = -\kappa(z)e^{2u}$ in \mathbb{D}^* . Then u(z) has a singularity at the origin of the order $0 < \alpha \leq 1$, and for $n_1, n_2 \geq 1, n_1 + n_2 = n$, near the origin, v(z), w(z) as in Theorem 3.6 satisfy

$$\partial^{n} v(z), \ \bar{\partial}^{n} v(z), \ \bar{\partial}^{n_{1}} \partial^{n_{2}} v(z) = O(|z|^{2-2\alpha-n}),$$
$$\bar{\partial}^{n} w(z), \ \partial^{n} w(z) = O(|z|^{-n} \log^{-2}(1/|z|)),$$
$$\bar{\partial}^{n_{1}} \partial^{n_{2}} w(z) = O(|z|^{-n} \log^{-3}(1/|z|)),$$

 $\partial^n = \frac{\partial^n}{\partial z^n}, \ \bar{\partial}^n = \frac{\partial^n}{\partial \bar{z}^n}$

where

for a positive natural number n.

Acknowledgement. The author would like to thank Prof. Toshiyoki Sugawa and Prof. Le Hung Son for their helpful comments, suggestion and encouragement.

References

- [1] L. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 42 (1938), 359–364.
- [2] ______, Complex analysis, McGraw, 1973.
- [3] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer, Berlin–New York, 1997.
- [4] M. Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60.
- [5] D. Kraus and O. Roth, On the isolated singularities of the solutions of the Gaussian curvature equation for nonnegative curvature, J. Math. Anal. Appl. **345** (2008), no. 2, 628–631.

- [6] ______, The behaviour of solutions of the Gaussian curvature equation near an isolated boundary point, Math. Proc. Cambridge Phil. Soc. 145 (2008), 643–667.
- [7] D. Kraus, O. Roth and T. Sugawa, Metrics with conical singularities on the sphere and sharp extensions of the theorems of Landau and Schottky, Math. Z. **267** (2011), 851–868.
- [8] R. C. McOwen, Point singularities and conformal metrics on riemann surfaces, Proc. Amer. Math. Soc. 103 (1988), no. 1, 222–224.
- [9] J. Nitsche, Über die isolierten Singularitäten der Lösungen von $\Delta u = e^u$, Math. Z. **68** (1957), 316–324.
- [10] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. **324** (1990), no. 2, 793–821.
- [11] T. Zhang, A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities, (in preparation).