Predviđanje visine godišnjih prihoda na temelju popisnih podataka

V. I. Banić

P. Bratulić

L. Bundalo

Opis problema

- Demografske i ekonomske karakteristike
- Age: dob ispitanika, numerička varijabla
- Workclass: radni sektor, kategorijska varijabla (8 kategorija)
- fnlwgt: final weight, koristi se u anketama, ispitanici sa sličnim fnlwgt-om imaju slična demografska svojstva
- Education: najviši postignuti stupanj obrazovanja ispitanika, kategorijska varijabla (16 kategorija)
- Education-num: brojčana oznaka najvišeg postignutog stupnja obrazovanja ispitanika, numerička varijabla
- Marital-status: bračno stanje ispitanika, kategorijska varijabla (7 kategorija)
- Occupation: zanimanje ispitanika, kategorijska varijabla (14 kategorija)
- Relationship: položaj u obitelji ispitanika, kategorijska varijabla (6 kategorija)

- ▶ 14 atributa
- ▶ 48 842 instance
- Race: rasa ispitanika, kategorijska varijabla (5 kategorija)
- Sex: spol ispitanika, kategorijska varijabla (2 kategorije)
- Capital-gain: prihod proizašao od investicija, numerička varijabla
- Capital-loss: gubitak proizašao od investicija, numerička varijabla
- Hours-per-week: broj radnih sati tjedno, numerička varijabla
- Native-country: država rođenja, kategorijska varijabla (41 kategorija)
 - Income: podatak koji predviđamo (Target), zarađuje li ispitanik više ili manje od 50 000 američkih dolara tjedno, kategorijska varijabla (2 kategorije)

Distribucija podataka

	Age	fnlwgt	Education-num	Capital-gain	Capital-loss	Hours-per-week
count	48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000	48842.000000
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314	40.422382
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552	12.391444
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000

Većina vrijednosti Capital-gain i Capital-loss iznosi 0.0

Opis rješavanja problema

- Algoritmi:
 - Logistička regresija
 - Random Forest
 - SVM
 - KNN algoritam
 - Naive Bayes
 - Neuronske mreže
- Mjera uspješnosti:
 - Točnost
 - Roc-auc-score

- Label encoding
- OneHot Encoding
- PCA
- StandardScaler
- RobustScaler
- MinMaxScaler
- Train-test-split

- ► Kategoričke vrijednosti → numeričke vrijednosti
- Nedostajuće vrijednosti → nova kategorija
- Izbacujemo Education
- ► Capital-gain i Capital-loss → kategorijske
- Smanjivanje dimenzionalnosti podataka

	Atribut	Occurance
0	Workclass	2799
1	Education	0
2	Marital-status	0
3	Occupation	2809
4	Relationship	0
5	Race	0
6	Sex	0
7	Native-country	857
8	Income	0

Logistička regresija

- ► Faktor regularizacije c
- Algoritam optimizacije
 - Liblinear
 - Newton-cg
- Točnost: 0.81
- Roc-auc-score: 0.83

Naive Bayes

- Točnost: 0.789
- ► Roc-auc-score: 0.806

Random forest

Točnost: 0.844

► Roc-auc-score: 0.892

KNN

Točnost: 0.734

► Roc-auc-score: 0.635

OneHot encoding

Logistička regresija

Točnost: 0.855

Roc-auc-score: 0.907

Smanjena dimenzionalnost: 80 svojstava

Točnost: 0.846

► Roc-auc-score: 0.899

Random forest

Točnost: 0.839

Roc-auc-score: 0.885

Smanjena dimenzionalnost: 80 svojstava

Točnost: 0.84

Roc-auc-score: 0.886

Uklanjanje nedostajućih vrijednosti

- Logistička regresija
 - ▶ Bez poboljšanja
- Random forest
 - ► Lošiji rezultati

- Neuronske mreže
- 3 skrivena sloja, 13 neurona u sloju

Točnost: 0.728

Roc-auc-score: 0.887

Micanje nedostajućih vrijednosti

- ► Kategoričke vrijednosti → numeričke vrijednosti
- Izbacujemo Education
- Capital-gain i Capital-loss → kategorijske
- Skaliranje podataka (StandardScaler)
- Kategorijska svojstva koja nisu ordinalna \rightarrow dummy-varijable (OneHot encoding)

PCA

 Odabrane glavne komponente daju 0.95 objašnjene varijance

Logistička regresija

Solver: newton-cg

c = 0.8

Točnost: 0.85

Roc-auc-score: 0.91

Random forest

Bez PCA

Točnost: 0.856

► Roc-auc-score: 0.906

PCA:

Točnost: 0.842

Roc-auc-score: 0.896

SVM

- PCA
- ▶ linear kernel, c=0.3
 - Točnost: 0.85
 - roc-auc-score: 0.905
- kernel rbf, c=2.0
 - Točnost: 0.85
 - roc-auc score: 0.91

Naive Bayes

- PCA
 - ► Točnost: 0.792
 - roc-auc-score: 0.834

Neuronske mreže

- ▶ 3 sloja po 13 neurona
- Solver: sgd
- Točnost: 0.856
- roc-auc-score: 0.913

KNN

- Bez PCA
 - Točnost: 0.836
 - roc-auc-score: 0.867
- PCA
 - Točnost: 0.834
 - roc-auc-score: 0.864

RobustScaler

- Rezultati slični već dobivenim
- KNN bez PCA
 - Točnost: 0.854
 - roc-auc-score: 0.89
- Naive Bayes s PCA
 - Točnost: 0.791
 - roc-auc-score: 0.887

Promjene u skupu podataka

- Normalizacija numeričkih svojstva (StandardScaler)
- ► Kategorijska svojstva koja nisu ordinalna → dummy-varijable (OneHot encoding)
- ► Značajna korelacija svojstva 'Relationship' sa svojstvom 'Marital-status' → izbacujemo svojstvo 'Relationship'
- ▶ 90% instanci ima vrijednost svojstva 'Native-country' USA → izbacujemo svojstvo 'Native-country'
- Izbacujemo spol
- Diskretizacija normalnih vrijednosti

Usporedba rezultata

Naši najbolji rezultati

- Neuronske mreže (roc-auc-score 0.9127, točnost 0.8556)
- Logistička regresija (roc-auc-score 0.9071, točnost 0.8552)
- Random Forest (roc-auc-score 0.9079, točnost 0.8571)
- SVM (roc-auc-score 0.9047, točnost 0.8583)

Predicting earning potential on Adult Dataset

- KNN (roc-auc-score 0.889, točnost 0.8533)
- NBTree (roc-auc-score 0.908, točnost 0.8593)

Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid"

- ► NBTree (točnost oko 0.8590)
- Ostali algoritmi (točnost oko 0.84 ili 0.83)

Zaključak

- StandardScaler i SVM \rightarrow najbolja točnost (0.8583)
- StandardScaler i neuronske mreže \rightarrow najbolji roc-auc-score (0.9127)
- ightharpoonup PCA ightharpoonup uglavnom bez poboljšanja
- Scaler → bolji rezultati

ROC_AUC

	Log. Reg.	Log. Reg (PCA)	Random Forest	Random Forest (PCA)	SVM	SVM (PCA)	KNN	KNN (PCA)	Naive Bayes	Naive Bayes (PCA)	Neuronske mreže
No Scaling	0.9039	-	0.8909	-	-	- 0.6	6353	-	0.8055	-	0.8690
StandardScaler	0.9071	0.9026	0.8959	0.9054	0.9047	0.9005 0.8	8669	0.8642	0.8344	0.8586	0.9127
RobustScaler	0.9071	0.7921	0.8541	-	-	- 0.8	8542	0.8055	0.7906	0.7856	0.9121
MinMaxScaler	0.9071	0.8777	0.9079	0.8630	0.9043	0.8606 0.8	8505	0.8329	0.8568	0.8170	0.9102

Accuracy

	Log. Reg.	Log. Reg (PCA)	Random Forest	Random Forest (PCA)	SVM	SVM (PCA)	KNN	KNN (PCA)	Naive Bayes	Naive Bayes (PCA)	Neuronske mreže
No Scaling	0.8552	-	0.8379	-	-	-	0.7337	-	0.7889	-	0.7946
StandardScaler	0.8508	0.8465	0.8571	0.8450	0.8583	0.8472	0.8303	0.8342	0.6235	0.7921	0.8556
RobustScaler	0.8509	0.7921	0.8565	0.8279	-	-	0.8542	0.8055	0.7906	0.7856	0.8544
MinMaxScaler	0.8504	0.8256	0.8542	0.8194	0.8486	0.8252	0.8261	0.8169	0.6062	0.74363	0.8525

Literatura

- ▶ [1] UCI Machine Learning Repository http://archive.ics.uci.edu/ml/datasets/adult
- [2] http://robotics.stanford.edu/~ronnyk/nbtree.pdf
- ► [3] https://storage.googleapis.com/kaggle-forum-message-attachments/160002/5905/Paper%20on%20Machine%20Learning%20for%20Kaggle.pdf
- ▶ [4] http://robotics.stanford.edu/~ronnyk/nbtree.pdf Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996
- ► [5] https://towardsdatascience.com/normalization-vs-standardization-quantitative-analysis-a91e8a79cebf
- [6] https://scikit-learn.org/stable/index.html
- ▶ [7] http://www.dataminingmasters.com/uploads/studentProjects/Earning_potential_report.pdf
- ▶ [8] https://github.com/pmf-strojnoucenje/Vjezbe
- [9] https://scikit-learn.org/stable/modules/svm.html
- [10] https://scikit-learn.org/stable/modules/neighbors.html
- ▶ [11] https://scikit-learn.org/stable/modules/naive_bayes.html