K-Means — Random Maze Solver

Parallel Programming - Final Presentation

Angelo Caponnetto

June 21 2024

► K-Means 2D

Intoduction
Data structure

The Algorithms (OpenMP)

Results

► Random Maze Solver

Introduction

Data Structure

The Algorithm (CUDA)
Results

K-Means - Introduction

1 K-Means 2D

K-Means is an unsupervised learning method that allows you to find subgroups in a dataset. In this work K-Means 2D is studied.

Starting from k random true centroids, the algorithm generates N random points with deviation σ .

The goal is to find true centroids.

Data Structure

1 K-Means 2D

Generic points and centroids are organized in structures of arrays.

```
typedef struct {
   double x[N];
   double y[N];
} PointsVec;

typedef struct {
   double x[k];
   double y[k];
   int n_points[k];
} CentroidsVec;
```

- x and y are the arrays of the Cartesian coordinates
- n points is the array in which the algorithm saves the number of points that belong to a centroid.

The Algorithms

1 K-Means 2D

Algorithm 1 K-means FV(points, centroids, n_thr)

```
    # pragma omp parallel num threads(n thr)

 2: # pragma omp master
       centroidsVec master_centr[n_thr]
       while stop condition in False do
           for each active thread do
           # pragma omp task
6:
              int id
 7.
              centroidsVec priv centr \leftarrow 0
              Divide points in n_thr-blocks
10:
              for each point in block do
                  for each centroid do
                     Find min distance
                  end for
13:
                  Update priv_centr[closer centr]
              end for
15.
              Update master_centr[id] with
16:
                                 priv_centr data
           end for
18:
10.
           # pragma omp taskwait
20:
           Evaluate new centroids
21.
           centroids \leftarrow new centroids
22:
23:
       end while
```

Algorithm 2 K-means SV(points, centroids, n_thr)

```
1: double x[k], y[k]
 2: int n_points[k]
 3: # pragma omp parallel num_threads(n_thr)
 4: while stop condition is False do
       x[k] \leftarrow 0, y[k] \leftarrow 0, n\_points[k] \leftarrow 0
       # pragma omp for reduction on x, y, n_points
       for all points do
           for all centroids do
              Find the min distance
 g.
10.
          end for
          Update x, v, n_points of the closer centr
11:
       end for
12:
       # pragma omp barrier
13:
14:
       # pragma omp single
15:
       Evaluate new centroids
16:
       centroids ← new centroids
18: end while
```


Results (Algorithm 1)

1 K-Means 2D

Results (Algorithm 2)

1 K-Means 2D

RMS - Introduction

2 Random Maze Solver

The program generates a maze in the form:

- Dot represents corridor
- Plus symbol represents wall
- X represents the starting position

In order to find the exit, the algorithm generates N particles (initialized on the starting position) and for each of them, at each step, it randomly chooses an adjacent tile among the allowed ones (the ones with dot inside).

Data Structure

2 Random Maze Solver

The data structure the algorithm uses is an array organized in this way:

- If a tile does not have four adjacent corridors, the excess positions in the array will be filled with zeroes
- Tiles in data structure are sorted by rows ((0,0), (1,0), (2,0) ...)

The Algorithm

2 Random Maze Solver

```
Algorithm 2 __global_RandSolver(x_{array}, y_{array},
(x_{ext}, y_{ext}), flag, N, d_lin _maze)
 1: int idx \leftarrow thread id
2: if idx < N then
        short x \leftarrow x_{array}[idx], y \leftarrow y_{array}[idx]
        short n\_rand
        short firstNeiaPos \leftarrow first initialization
        int n\_steps \leftarrow 0
7:
8:
        while flag \neq 1 and n\_steps < max\_steps do
            n\_rand \leftarrow n \in [0, n_{adjac} - 1]
10:
            x \leftarrow d \lim_{maze} [firstNeiaPos + 2n\_rand]
11:
            y \leftarrow d\_lin\_maze[firstNeigPos +
12:
                                              2n rand + 1
13:
            Update firstNeigPos
14:
            n\_steps + = 1
15:
16:
            if (x, y) = (x_{exit}, y_{exit}) then flag = 1
17:
            end if
18:
        end while
        x_{array}[idx] \leftarrow x, \quad y_{array}[idx] \leftarrow y
20: end if
```


Results

2 Random Maze Solver

Speed-Up curves are evaluated using times for a single upload for each particle (maze 300×300).

Results

2 Random Maze Solver

Results are collected with:
$$BlockDim = 256$$
 $d_{Man}(P_{start}, P_{exit}) = 1.5L$.

