COMP2610 – Information Theory

Lecture 11: Entropy and Coding

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

August 26th, 2014

Brief Overview of Course (Next 6 Weeks)

- How can we quantify information? [Aditya]
 - Basic Definitions and Key Concepts
 - Probability, Entropy & Information
- How can we make good guesses? [Aditya]
 - ► Probabilistic Inference
 - Bayes Theorem
- How much redundancy can we safely remove? [Mark]
 - Compression
 - Source Coding Theorem, Kraft Inequality
 - ▶ Block, Huffman, and Lempel-Ziv Coding
- How much noise can we correct and how? [Mark]
 - Noisy-Channel Coding
 - Repetition Codes, Hamming Codes
- What is randomness? [Marcus]
 - ► Kolmogorov Complexity
 - ► Algorithmic Information Theory

Brief Overview of Course (Next 6 Weeks)

- How can we quantify information? [Aditya]
 - ▶ Basic Definitions and Key Concepts
 - ▶ Probability, Entropy & Information
- How can we make good guesses? [Aditya]
 - ► Probabilistic Inference
 - ▶ Bayes Theorem
- How much redundancy can we safely remove? [Mark]
 - Compression
 - ▶ Source Coding Theorem, Kraft Inequality
 - ▶ Block, Huffman, and Lempel-Ziv Coding
- How much noise can we correct and how? [Mark]
 - Noisy-Channel Coding
 - ► Repetition Codes, Hamming Codes
- What is randomness? [Marcus]
 - ► Kolmogorov Complexity
 - ► Algorithmic Information Theory

- Introduction
 - Overview
 - What is Compression?
 - A Communication Game
 - What's the best we can do?
- Pormalising Compression
 - Entropy and Information: A Quick Review
 - Defining Codes
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

What is Compression?

Cn y rd ths mssg wtht ny vwls?

What is Compression?

Cn y rd ths mssg wtht ny vwls?

It is not too difficult to read as there is redundancy in English text. (Estimates of 1-1.5 bits per character, compared to $\log_2 26 \approx 4.7$)

- If you see a "q", it is very likely to be followed with a "u"
- The letter "e" is much more common than "j"
- Compression exploits differences in relative probability of symbols or blocks of symbols

A General Communication Game

Data compression is the process of replacing a message with a smaller message which can be reliably converted back to the original.

- Sender & Receiver agree on code for each outcome ahead of time (e.g., 0 for Heads; 1 for Tails)
- Sender observes outcomes then codes and sends message
- Receiver decodes message and recovers outcome sequence
- Want small messages on average when outcomes are from a fixed, known, but uncertain source (e.g., coin flips with known bias)

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 1 bits/outcome

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails (*Why?*).

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails (*Why?*). But there are only $176 < 2^8$ sequences with 3 or fewer tails (*Why?*).

- Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome
- Smallest bits/outcome needed for 10,000 outcome sequences?

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails (*Why?*). But there are only $176 < 2^8$ sequences with 3 or fewer tails (*Why?*).

- Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome
- Smallest bits/outcome needed for 10,000 outcome sequences?

Source Coding Theorem (Informal Statement)

If you want to uniformly code large sequences of outcomes with any degree of reliability from a random source then the average number of bits per outcome you will **need** is roughly equal to the entropy of that source.

Consider a coin with P(Heads) = 0.9. If we want perfect transmission:

- Coding single outcomes requires 1 bit/outcome
- Coding 10 outcomes at a time needs 1 bits/outcome

However, if we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails (*Why?*). But there are only $176 < 2^8$ sequences with 3 or fewer tails (*Why?*).

- Coding 10 outcomes with 2% failure doable with 0.8 bits/outcome
- Smallest bits/outcome needed for 10,000 outcome sequences?

Source Coding Theorem (Informal Statement)

If you want to uniformly code large sequences of outcomes with any degree of reliability from a random source then the average number of bits per outcome you will **need** is roughly equal to the entropy of that source.

To define: "Uniformly code", "large sequences", "degree of reliability", "average number of bits per outcome", "roughly equal"

- Introduction
 - Overview
 - What is Compression?
 - A Communication Game
 - What's the best we can do?
- Pormalising Compression
 - Entropy and Information: A Quick Review
 - Defining Codes
 - Reliability vs. Size
 - Key Result: The Source Coding Theorem

Ensemble

An ensemble X is a triple $(x, \mathcal{A}_X, \mathcal{P}_X)$; x is a random variable taking values in $\mathcal{A}_X = \{a_1, a_2, \dots, a_I\}$ with probabilities $\mathcal{P}_X = \{p_1, p_2, \dots, p_I\}$.

Information

The **information** in the observation that $x = a_i$ (in the ensemble X) is

$$h(a_i) = \log_2 \frac{1}{p_i} = -\log_2 p_i$$

Entropy

The **entropy** of an ensemble X is the average information

$$H(X) = \mathbb{E}[h(x)] = \sum_{i} p_i h(a_i) = \sum_{i} p_i \log_2 \frac{1}{p_i}$$

Example: Bent Coin

Let X be an ensemble with outcomes h for *heads* with probability 0.9 and t for *tails* with probability 0.1.

- ullet The outcome set is $\mathcal{A}_X = \{\mathtt{h},\mathtt{t}\}$
- The probabilities are $\mathcal{P}_X = \{p_h = 0.9, p_t = 0.1\}$

Example: Bent Coin

Let X be an ensemble with outcomes h for heads with probability 0.9 and t for tails with probability 0.1.

- ullet The outcome set is $\mathcal{A}_X = \{\mathtt{h},\mathtt{t}\}$
- The probabilities are $\mathcal{P}_X = \{p_h = 0.9, p_t = 0.1\}$

Information in observing heads
$$h(h) = \log_2 \frac{1}{p_h} = \log_2 \frac{10}{9} \approx 0.15$$

Information in observing tails $h(t) = \log_2 \frac{1}{p_t} = \log_2 10 \approx 3.32$
Entropy $H(X) = p_h h(p_h) + p_t h(p_t) \approx 0.9 \times 0.15 + 0.1 \times 3.32 = 0.47$

Example: Bent Coin

Let X be an ensemble with outcomes h for heads with probability 0.9 and t for tails with probability 0.1.

- The outcome set is $A_X = \{h, t\}$
- The probabilities are $\mathcal{P}_X = \{p_h = 0.9, p_t = 0.1\}$

Information in observing heads
$$h(h) = \log_2 \frac{1}{p_h} = \log_2 \frac{10}{9} \approx 0.15$$

Information in observing tails $h(t) = \log_2 \frac{1}{p_t} = \log_2 10 \approx 3.32$
Entropy $H(X) = p_h h(p_h) + p_t h(p_t) \approx 0.9 \times 0.15 + 0.1 \times 3.32 = 0.47$

One can think of h(x) as the surprise at learning outcome x. The entropy H(X) is the expected amount of surprise for a draw from X.

What is a Code?

A source code is a process for assigning names to outcomes. The names are typically expressed by strings of binary symbols.

We will denote the set of all finite binary strings by

$$\mathcal{B} \stackrel{\text{\tiny def}}{=} \{0,1,00,01,10,\ldots\}$$

Source Code

Given an ensemble X, the function $c: \mathcal{A}_X \to \mathcal{B}$ is a **source code** for X. The number of symbols in c(x) is the **length** I(x) of the codeword for x. The **extension** of c is defined by $c(x_1 \dots x_n) = c(x_1) \dots c(x_n)$

What is a Code?

A source code is a process for assigning names to outcomes. The names are typically expressed by strings of binary symbols.

We will denote the set of all finite binary strings by

$$\mathcal{B} \stackrel{\text{\tiny def}}{=} \{0,1,00,01,10,\ldots\}$$

Source Code

Given an ensemble X, the function $c: \mathcal{A}_X \to \mathcal{B}$ is a **source code** for X. The number of symbols in c(x) is the **length** l(x) of the codeword for x. The **extension** of c is defined by $c(x_1 \dots x_n) = c(x_1) \dots c(x_n)$

Example:

- The code c names outcomes from $A_X = \{\mathbf{r}, \mathbf{g}, \mathbf{b}\}$ by $c(\mathbf{r}) = 00$, $c(\mathbf{g}) = 10$, $c(\mathbf{b}) = 11$
- The length of the codeword for each outcome is 2.
- The extension of c gives c(rgrb) = 00100011

Types of Codes

Let X be an ensemble and $c: A_X \to \mathcal{B}$ a code for X. We say c is a:

Uniform Code if I(x) is the same for all $x \in A_X$

Variable-Length Code otherwise

Types of Codes

Let X be an ensemble and $c: A_X \to \mathcal{B}$ a code for X. We say c is a:

Uniform Code if I(x) is the same for all $x \in A_X$

Variable-Length Code otherwise

Another important criteria for codes is whether the original symbol x can be unambiguously determined given c(x). We say c is a:

Lossless Code if for all $x_1, x_2 \in A_X$ we have $x_1 \neq x_2$ implies $c(x_1) \neq c(x_2)$ Lossy Code otherwise

Types of Codes

Let X be an ensemble and $c: A_X \to \mathcal{B}$ a code for X. We say c is a:

Uniform Code if I(x) is the same for all $x \in \mathcal{A}_X$

Variable-Length Code otherwise

Another important criteria for codes is whether the original symbol x can be unambiguously determined given c(x). We say c is a:

Lossless Code if for all $x_1, x_2 \in A_X$ we have $x_1 \neq x_2$ implies $c(x_1) \neq c(x_2)$ Lossy Code otherwise

Examples: Let $A_X = \{a, b, c, d\}$

- **1** c(a) = 00, c(b) = 01, c(c) = 10, c(d) = 11 is uniform lossless
- ② c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111 is variable-length lossless
- **3** c(a) = 0, c(b) = 0, c(c) = 110, c(d) = 111 is variable-length lossy
- **4** c(a) = 00, c(b) = 00, c(c) = 10, c(d) = 11 is uniform lossy
- **6** c(a) = -, c(b) = -, c(c) = 10, c(d) = 11 is uniform lossy

Lossless Coding

Example: Colours

Three colour ensemble with $A_X = \{r, g, b\}$ with r twice as likely as b or g

•
$$p_{\rm r} = 0.5$$
 and $p_{\rm g} = p_{\rm b} = 0.25$.

Suppose we use the following uniform lossless code

$$c(\mathbf{r}) = 00$$
; $c(g) = 10$; and $c(b) = 11$

For example $c(\mathbf{rrgbrbr}) = 00001011001100$ will have 14 bits. On average, we will use $l(\mathbf{r})p_{\mathbf{r}} + l(\mathbf{g})p_{\mathbf{g}} + l(\mathbf{b})p_{\mathbf{b}} = 2$ bits per outcome

Lossless Coding

Example: Colours

Three colour ensemble with $A_X = \{r, g, b\}$ with r twice as likely as b or g

•
$$p_{\rm r} = 0.5$$
 and $p_{\rm g} = p_{\rm b} = 0.25$.

Suppose we use the following uniform lossless code

$$c(\mathbf{r}) = 00$$
; $c(g) = 10$; and $c(b) = 11$

For example c(rrgbrbr) = 00001011001100 will have 14 bits.

On average, we will use $l(\mathbf{r})p_{\mathbf{r}} + l(\mathbf{g})p_{\mathbf{g}} + l(\mathbf{b})p_{\mathbf{b}} = 2$ bits per outcome Uniform coding gives a crude measure of information:

the number of bits required to assign equal length codes to each symbol

Raw Bit Content

If X is an ensemble with outcome set \mathcal{A}_X then its **raw bit content** is

$$H_0(X) = \log_2 |\mathcal{A}_X|.$$

Raw Bit Content

Raw Bit Content

If X is an ensemble with outcome set A_X then its **raw bit content** is

$$H_0(X) = \log_2 |\mathcal{A}_X|.$$

X	c(x)
а	000
b	001
С	010
d	011
е	100
f	101
g	110
h	111

Example:

This is a uniform encoding of outcomes in $A_X = \{a, b, c, d, e, f, g, h\}$:

- Each outcome is encoded using $H_0(X) = 3$ bits
- The probabilities of the outcomes are ignored
- Same as assuming a uniform distribution

For the purposes of compression, the exact codes don't matter – just the number of bits used.

Example: Colours

Three colour ensemble with $A_X = \{r, g, b\}$

•
$$p_{\rm r} = 0.5$$
 and $p_{\rm g} = p_{\rm b} = 0.25$.

Using **uniform lossy** code:

•
$$c(\mathbf{r}) = 0$$
; $c(g) = -$; and $c(b) = 1$

Examples:

$$c(rrrrrr) = 0000000; c(rrbbrbr) = 0011010; c(rrgbrbr) = -$$

Example: Colours

Three colour ensemble with $A_X = \{\mathbf{r}, \mathbf{g}, \mathbf{b}\}\$

•
$$p_{\rm r} = 0.5$$
 and $p_{\rm g} = p_{\rm b} = 0.25$.

Using uniform lossy code:

•
$$c(\mathbf{r}) = 0$$
; $c(g) = -$; and $c(b) = 1$

Examples:

c(rrrrrr) = 0000000; c(rrbbrbr) = 0011010; c(rrgbrbr) = - What is probability we can code a sequence of N outcomes?

$$P(x_1...x_N \text{ has no g}) = P(x_1 \neq g)...P(x_N \neq g) = (1 - p_g)^N$$

Example: Colours

Three colour ensemble with $A_X = \{\mathbf{r}, \mathbf{g}, \mathbf{b}\}$

•
$$p_r = 0.5$$
 and $p_g = p_b = 0.25$.

Using uniform lossy code:

•
$$c(\mathbf{r}) = 0$$
; $c(g) = -$; and $c(b) = 1$

Examples:

c(rrrrrr) = 0000000; c(rrbbrbr) = 0011010; c(rrgbrbr) = -What is probability we can code a sequence of *N* outcomes?

$$P(x_1...x_N \text{ has no g}) = P(x_1 \neq g)...P(x_N \neq g) = (1 - p_g)^N$$

Given we can code a sequence of length N, how many bits are expected?

$$\mathbb{E}[I(X_1) + \dots + I(X_N) | X_1 \neq g, \dots, X_N \neq g] = \sum_{n=1} \mathbb{E}[I(X_n) | X_n \neq g]$$

$$= N \left(I(\mathbf{r}) p_{\mathbf{r}} + I(\mathbf{b}) p_{\mathbf{b}} \right) / (1 - p_{\mathbf{g}}) = N$$

since
$$I(p_r) = I(p_b) = 1$$
 and $p_r + p_b = 1 - p_g$.

Example: Colours

Three colour ensemble with $A_X = \{\mathbf{r}, \mathbf{g}, \mathbf{b}\}$

•
$$p_r = 0.5$$
 and $p_g = p_b = 0.25$.

Using uniform lossy code:

•
$$c(\mathbf{r}) = 0$$
; $c(g) = -$; and $c(b) = 1$

Examples:

c(rrrrrr) = 0000000; c(rrbbrbr) = 0011010; c(rrgbrbr) = - What is probability we can code a sequence of N outcomes?

$$P(x_1...x_N \text{ has no g}) = P(x_1 \neq g)...P(x_N \neq g) = (1 - p_g)^N$$

Given we can code a sequence of length N, how many bits are expected?

$$\mathbb{E}[I(X_1) + \dots + I(X_N) | X_1 \neq \mathbf{g}, \dots, X_N \neq \mathbf{g}] = \sum_{n=1} \mathbb{E}[I(X_n) | X_n \neq \mathbf{g}]$$

$$= N\left(I(\mathbf{r})p_{\mathbf{r}} + I(\mathbf{b})p_{\mathbf{b}}\right) / (1 - p_{\mathbf{g}}) = N = N\log_2|\{\mathbf{r}, \mathbf{b}\}|$$
since $I(p_{\mathbf{r}}) = I(p_{\mathbf{b}}) = 1$ and $p_{\mathbf{r}} + p_{\mathbf{b}} = 1 - p_{\sigma}$.

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $\delta \geq 0$ define S_{δ} to be the smallest subset of \mathcal{A}_X such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $\delta \geq 0$ define S_{δ} to be the smallest subset of \mathcal{A}_X such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

X	$P(\mathbf{x})$
a	1/4

• Outcomes ranked (high–low) by
$$P(x = a_i)$$
 removed to make set S_δ with $P(x \in S_\delta) \ge 1 - \delta$

$$\delta = 0 \, : \, S_\delta = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g},\mathtt{h}\}$$

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $\delta \geq 0$ define S_{δ} to be the smallest subset of \mathcal{A}_X such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

X	$P(\mathbf{x})$
a	1/4

• Outcomes ranked (high-low) by $P(x = a_i)$ removed to make set S_δ with $P(x \in S_\delta) \ge 1 - \delta$

$$\delta = 0$$
 : $S_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g},\mathtt{h}\}$

$$\delta=1/64$$
 : $S_\delta=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g}\}$

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $\delta > 0$ define S_{δ} to be the smallest subset of A_X such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

X	$P(\mathbf{x})$
a	1/4
b	1/4
c	1/4

$${\tt d} - 3/16$$

• Outcomes ranked (high-low) by $P(x = a_i)$ removed to make set S_{δ} with $P(x \in S_{\delta}) \geq 1 - \delta$

$$\delta = 0 \, : \, S_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g},\mathtt{h}\}$$

$$\delta = 1/64$$
 : $S_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g}\}$

$$\delta = 1/16$$
 : $S_\delta = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$

There is an inherent trade off between the number of bits required in a uniform lossy code and the probability of being able to code an outcome

Smallest δ -sufficient subset

Let X be an ensemble and for $\delta \geq 0$ define S_{δ} to be the smallest subset of \mathcal{A}_X such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

• Outcomes ranked (high-low) by $P(x = a_i)$ removed to make set S_δ with $P(x \in S_\delta) \ge 1 - \delta$

$$\delta = 0 : S_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g},\mathtt{h}\}$$
 $\delta = 1/64 : S_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g}\}$ $\delta = 1/16 : S_{\delta} = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$ $\delta = 3/4 : S_{\delta} = \{\mathtt{a}\}$

Trade off between a probability of δ of not coding an outcome and size of uniform code is captured by the essential bit content

Essential Bit Content

Let X be an ensemble then for $\delta \geq 0$ the **essential bit content** of X is

$$H_{\delta}(X) \stackrel{\text{def}}{=} \log_2 |S_{\delta}|$$

Trade off between a probability of δ of not coding an outcome and size of uniform code is captured by the essential bit content

Essential Bit Content

Let X be an ensemble then for $\delta \geq 0$ the **essential bit content** of X is

$$H_{\delta}(X) \stackrel{\text{def}}{=} \log_2 |S_{\delta}|$$

X	$P(\mathbf{x})$		
a	1/4	3 \(\{\(a,b,c,d,e,f,g,h \} \)	-
Ъ	1/4	2.5 - \{a,b,c,d,e,f,g}	
С	1/4	$H_{\delta}(X)$ $= \{a,b,c,d,e\}$	
d	3/16	2 - {a,b,c,d}	
е	1/64	1.5	=
f	1/64	1 -	_
g	1/64	0.5	
h	1/64	0	
		0 0.1 0.2 0.3 0.4 0.5	

-- {a,b}

0.7

The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H=H(X) bits. Given $\epsilon>0$ and $0<\delta<1$, there exists a positive integer N_0 such that for all $N>N_0$

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

The Source Coding Theorem for Uniform Codes

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

The Source Coding Theorem for Uniform Codes

Let X be an ensemble with entropy H=H(X) bits. Given $\epsilon>0$ and $0<\delta<1$, there exists a positive integer N_0 such that for all $N>N_0$

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

What?

- The term $\frac{1}{N}H_{\delta}(X^N)$ is the average number of bits required to uniformly code all but a proportion δ of the symbols.
- Given a tiny probability of error δ , the average bits per symbol can be made as close to H as required.
- Even if we allow a large probability of error we cannot compress more than *H* bits ber symbol.