Project Planning Phase

Milestone and Activity List

Date	19 October 2022
Team ID	PNT2022TMID20992
Project Name	Digital Naturalist - AI Enabled tool for Biodiversity Researchers
Maximum Marks	8 Marks

Milestone and Activity List:

S.No	Milestone	Activities	Team Members
1.	Data Collection	Create Train and Test Folders	Sairam HIyer Charan Murthy
2.	Image Preprocessing	Import Image Data Generator Library and Configure	Vignesh KumarVignesh Jothi
3.	Image Preprocessing	Apply Image Data Generator functionality to Train and Test set	Sairam HIyer Charan Murthy
4.	Model Building	Import the required model building libraries	Vignesh KumarVignesh Jothi
5.	Model Building	Initialize the model	Sairam HIyer Charan Murthy
6.	Model Building	Add the convolution layer	Vignesh KumarVignesh Jothi
7.	Model Building	Add the pooling layer	Sairam HIyer Charan Murthy
8.	Model Building	Add the flatten layer	Vignesh KumarVignesh Jothi
9.	Model Building	Adding the dense layers	Sairam HIyer Charan Murthy
10.	Model Building	Compile the model	Vignesh KumarVignesh Jothi
11.	Model Building	Fit and save the model	Sairam HIyer Charan Murthy
12.	Test the model	Import the packages and load the saved model	Vignesh KumarVignesh Jothi

13.	Test the model	Load the test image, pre- process it and predict	Sairam HIyer Charan Murthy
14	Application Building	Build a flask application	Vignesh KumarVignesh Jothi
15.	Application Building	Build the HTML page	Sairam HIyer Charan Murthy
16.	Application Building	Output	Vignesh KumarVignesh Jothi
17.	Train CNN Model on IBM	Register for IBM Cloud	Sairam HIyer Charan Murthy
18.	Train CNN Model on IBM	Train Image Classification Model	Vignesh KumarVignesh Jothi