

Toward Automated Knowledge Graph Representation Learning

Dr. 姚权铭

第四范式 - 高级科学家

机器学习研究组创建者&负责人

E-mail: yaoquanming@4paradigm.com

2020.11.15

Outline

- 1. What is Knowledge Graph (KG)?
 - Importance & Core issues
- 2. What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
- 4. Summary

Knowledge Graph (KG)

A collection of interlinked descriptions of entities – objects, events or concepts

Connect human understandings with computer computation power

FROM SYSTEM 1 DEEP LEARNING TO SYSTEM 2 DEEP LEARNING

YOSHUA BENGIO

2018 Turing Award

NeurIPS'2019 Posner Lecture December 11th, 2019, Vancouver BC

Academia: Cognitive Computing

de Montréal

ADVANCED

RECHERCHES

2021

2022

2023

Industry Market

- Exceed 30 billion RMB in 2023
- Annual growth rate of 30.8%

Government Support

1.3 认知计算基础理论与方法研究

研究内容:聚焦开放、动态、真实环境下推理与决策重大问题,开展常识学习、直觉推理、自主演化、因果分析等理论和方法研究,重点突破刻画环境自适应、不完全推理、自主学习、对抗学习、智能体协同优化等特点的认知计算理论和算法,在跨媒体智能、自主智能、群体智能、人机混合或混合增强智能等智能形态方面实现应用验证。

KG – Application examples

Person of Interest

Find contact

Recommendation

Track preference

Bank Credits

Money chain

KG – Learning tasks

Person of Interest

Find contact

Track preference

Bank Credits

Money chain

KG – Core issues

Knowledge Graph = Knowledge + Graph

Semantics: Symmetric, inverse, asymmetric, composition...

- (A, isBrotherOf, B) \land (B, isFatherOf, C) \Rightarrow (A, isUncle ϕ f, C)
- $(A, spouse, B) \Leftrightarrow (B, spouse, A)$
- $(A, older, B) \Leftrightarrow (B, younger, A)$
- (A, location, USA)

Topology: A directed multi-relational graph

A graph-structured representation

Whole graph/subgraph as input

How to exploit semantic and topological information?

Outline

- 1. What is Knowledge Graph (KG)?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
- 4. Summary

What is Machine Learning (ML)?

Design a **hypothesis** (function) f to perform the learning task

Not everything can be learnt

PAC-Learning (Definition 2.3 in [1]): What kind of problems can be solved in polynomial time **No Free Lunch Theorem** (Appendix B [2]): No single algorithm can be good on all problems

^{[1].} M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of machine learning. 2018

^{[2].} O. Bousquet, et.al. Introduction to Statistical Learning Theory. 2016

What is Automated ML (AutoML)?

AutoML – Research example

Architecture of networks are critical to deep learning's performance but hard to fine-tune

- number of filters
- filter height
- filter width

- stride height
- stride width
- · skip connections

Much better than hand-designed ones

Neural Architecture Search (NAS) tries to design data-specific architectures

AutoML – Combinatorial generalization

Parameterized the prior knowledge of learning methods, e.g.,

AutoML – Successor of ML's trend

- Core Issue in Machine Learning: Improving learning performance (with higher efficiency)
- AutoML: an evolving way to improve learning performance

Rule-based

Association rules mining 1970s

Statistics-based

Support vector machine 1990s

Deep Learning-based

Convolutional neural networks 2010s

AutoML-based

Neural architecture search 2017

Continue the trends

- Larger hypothesis (more complex models) are being used
- Optimization is getting complex (even mixed up with generalization)
- The prior knowledge is imposed on more abstract level

Better performance

Low-level human prior knowledge is replaced by computation power

Outline

- 1. What is Knowledge Graph (KG)?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
 - Overview of Ideas
 - ICDE 2020: Search to Capture Semantics
 - NeurIPS 2020: Search to Exploit Graph Topology
 - Future Works
- 4. Summary

KG Representation Learning

Encode entities and relations in KG into low-dimensional vector spaces, while capturing nodes' and edges' connection & semantic properties.

Advantages:

- Inject into downstream ML pipelines.
- Provide efficient similarity search.
- Discover latent properties in missing links.

Scoring functions (SFs) $f(\mathbf{h}, \mathbf{r}, \mathbf{t})$:

• measure the plausibility of triplets $\{(h, r, t)\}$ in KG.

Our work – Overview

Using AutoML techniques to design data-specific KG learning methods.

- AutoSF (ICDE 2020): Search to capture semantics
- Interstellar(NeurIPS 2020): Search to exploit graph topology

Outline

- 1. What is Knowledge Graph (KG)?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
 - Overview of Ideas
 - ICDE 2020: Search to Capture Semantics
 - NeurIPS 2020: Search to Exploit Graph Topology
 - Future Works
- 4. Summary

Examples of Scoring Function (SF)

Design principles

- Encode entity and relation into some space to measure the plausibility.
- Capture important semantic properties:
 - symmetric, anti-symmetric, inverse, asymmetric...

Examples:

- 1. Translation Distance Models (TDMs)
 - TransE, TransH, RotatE, etc
 - less expressive
- 2. BiLinear Models (BLMs)
 - DistMult, ComplEx, Analogy, SimplE, etc
 - state-of-the-art and fully expressive

Method	Ent. embedding	Rel. emb	edding	Scoring function $f_r(h, t)$	Constraints/Regularizati	ion
TransE [14]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	- h + r	- t _{1/2}	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$	<u> </u>
TransH [15]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r}, \mathbf{w}_r \in \mathbb{R}^d$	$-\ (h-v)\ $	$\mathbf{v}_r^{T} \mathbf{h} \mathbf{w}_r) + \mathbf{r} - (\mathbf{t} - \mathbf{w}_r^{T} \mathbf{t} \mathbf{w}_r) \ _2^2$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1$	
TransR [16]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r \in \mathbb{R}$	$-\ \mathbf{M}_r\mathbf{h}\ $	$+\mathbf{r}-\mathbf{M}_{r}\mathbf{t}\ _{2}^{2}$	$\begin{aligned} & \ \mathbf{w}_r^\top \mathbf{r} / \ \mathbf{r}\ _2 \leq \epsilon, \ \mathbf{w}_r\ _2 = 1 \\ & \ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1 \end{aligned}$	
TransD [50]	$\mathbf{h}, \mathbf{w}_h \in \mathbb{R}^d$ $\mathbf{t}, \mathbf{w}_t \in \mathbb{R}^d$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^k$	$-\ (\mathbf{w}_r\mathbf{w}_r)\ $	$\mathbf{v}_{t}^{T} + \mathbf{I})\mathbf{h} + \mathbf{r} - (\mathbf{w}_{r}\mathbf{w}_{t}^{T} + \mathbf{I})\mathbf{t}\ _{2}^{2}$	$\begin{split} & \ \mathbf{M}_{r}\mathbf{h}\ _{2} \leq 1, \ \mathbf{M}_{r}\mathbf{t}\ _{2} \leq 1 \\ & \ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ & \ (\mathbf{w}_{r}\mathbf{w}_{h}^{\top} + \mathbf{I})\mathbf{h}\ _{2} \leq 1 \\ & \ (\mathbf{w}_{r}\mathbf{w}_{t}^{\top} + \mathbf{I})\mathbf{t}\ _{2} \leq 1 \end{split}$	
TranSparse [51]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r(\theta_r)$ $\mathbf{M}_r^1(\theta_r^1), \mathbf{M}_r^2(\theta_r^2)$		$\ \mathbf{h} + \mathbf{r} - \mathbf{M}_r(\theta_r)\mathbf{t}\ _{1/2}^2$ $\ \mathbf{h} + \mathbf{r} - \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _{1/2}^2$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{r}\ _{2} \le 1$ $\ \mathbf{M}_{r}(\theta_{r})\mathbf{h}\ _{2} \le 1, \ \mathbf{M}_{r}(\theta_{r})\mathbf{t}\ _{2}$ $\ \mathbf{M}_{r}^{1}(\theta_{r}^{1})\mathbf{h}\ _{2} \le 1, \ \mathbf{M}_{r}^{2}(\theta_{r}^{2})\mathbf{t}\ _{2}$	
TransM [52]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\theta_r \ \mathbf{h} +$	$r - t _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$	(required in [1
ManifoldE [53]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	-(h+r	$-\mathbf{t}\ _{2}^{2}-\theta_{r}^{2})^{2}$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$	1, r ₂ < 1
TransF [54]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$(\mathbf{h} + \mathbf{r})^{T} \mathbf{t}$	$+(\mathbf{t}-\mathbf{r})^{\top}\mathbf{h}$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$	-, 11-112 - 1
TransA [55]	$\mathbf{h},\mathbf{t}\in\mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}$	$-(\mathbf{h} + \mathbf{r})$	$-\mathbf{t})^{T}\mathbf{M}_r(\mathbf{h}+\mathbf{r}-\mathbf{t})$	$\ \mathbf{h}\ _2 \leq 1, \ \mathbf{t}\ _2 \leq 1, \ \mathbf{r}\ _2 \leq 1$	$1, \mathbf{r} _2 \le 1$
KG2E [45]	$\mathbf{h} \sim \mathcal{N}(\boldsymbol{\mu}_h, \boldsymbol{\Sigma}_h)$ $\mathbf{t} \sim \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$	A((×)	$-\operatorname{tr}(\Sigma_r^{-1})$	$(\Sigma_h + \Sigma_t) - \mu^\top \Sigma_r^{-1} \mu - \ln_{\frac{\det(\Sigma_r)}{\det(\Sigma_h + \Sigma_t)}}^{\det(\Sigma_h)} \mu - \ln(\det(\Sigma))$	$\ \mathbf{M}_r\ _F \le 1, [\mathbf{M}_r]_{ij} = [\mathbf{M}_r]_{ji} \ge \ \boldsymbol{\mu}_h\ _2 \le 1, \ \boldsymbol{\mu}_t\ _2 \le 1, \ \boldsymbol{\mu}_r\ _2$	20
	cmd	$\mathbf{r} \sim \mathcal{N}(\boldsymbol{\mu}_r, \boldsymbol{\Sigma}_r)$	od×d		$c_{min}\mathbf{I} \leq \Sigma_h \leq c_{max}\mathbf{I}$	1 < 1
UM [56] SE [57]	$\begin{array}{c} \text{Too } \mathbf{m} \\ \text{h, t} \in \mathbb{R}^d \\ \text{h, t} \in \mathbb{R}^d \end{array}$	$\begin{array}{c} \text{nany} \\ -\\ M_r^1, M_r^2 \in \mathbb{R}^{d \times d} \end{array}$	existin	g ones, h	ard to d	esign
UM [56] SE [57]		nany	existin	g ones, h	ard to d	esign 1, r ₂ ≤ 1 1, r ₂ ≤ 1 1, M ^[j-1] _F ≤ 1
UM [56] SE [57]	Too m $h, t \in \mathbb{R}^d$ $h, t \in \mathbb{R}^d$	$\begin{array}{c} \text{nany} \\ -\\ M_r^1, M_r^2 \in \mathbb{R}^{d \times d} \end{array}$	existin $-\ \mathbf{h} - \mathbf{t}\ $ $-\ \mathbf{h}^{\perp}\mathbf{h} - \mathbf{t}\ $ $\mathbf{r}, \mathbf{b}_r \in \mathbb{R}^k, \underline{\mathbf{M}}_r \in \mathbb{R}^{d \times d \times k}$	g ones, $h_{i}^{\frac{2}{2}}$ $M_{i}^{2}t _{i}$ $r^{T} \tanh(h^{T}\underline{M}_{i}t + M_{r}^{1}h + M_{r}^{2}t)$ $t^{T} \tanh(M_{i}^{1}h + M_{r}^{2}t)$	ard to d $ \mathbf{h} _2 = 1, \mathbf{t} _2 = 1$ $ \mathbf{h} _2 = 1, \mathbf{t} _2 = 1$ $ \mathbf{h} _2 = 1, \mathbf{t} _2 = 1$ $ \mathbf{h}r _2 \le 1$ $ \mathbf{h}r _2 \le 1$	esign 1, r ₂ ≤ 1 1, M ₁ ≤ 1
UM [56] SE [57] NT!	Too m h.t $\in \mathbb{R}^d$ h.t $\in \mathbb{R}^d$ N[19] h	nany $\frac{-}{M_r^1, M_r^2 \in \mathbb{R}^{d \times d}}$	$\begin{array}{c} -\ \mathbf{h}-\mathbf{t}\ \\ -\ \mathbf{h}-\mathbf{t}\ \\ -\ \mathbf{M}_{r}^{t}\mathbf{h} - \\ \mathbf{r}, \mathbf{b}_{r} \in \mathbb{R}^{k}, \mathbf{M}_{r} \in \mathbb{R}^{d \times d \times k} \\ \mathbf{M}_{r}^{t}, \mathbf{M}_{r}^{t} \in \mathbb{R}^{k \times d} \end{array}$	g ones, $h_{i}^{\frac{2}{2}}$ $M_{i}^{2}t _{1}$ $r^{T} \tanh(h^{T}\underline{M}_{i}t + M_{i}^{L}h + M_{i}^{2})$	ard to d	esign 1

Wang et.al. Knowledge graph embedding: A survey of approaches and applications. TKDE 2017

- 3. Neural Network Models (NNMs)
 - MLP, ConvE, RSN, etc
 - complex and difficult to train

ConvE

Contribution – Search to capture semantics

- There is no absolute winner among them since KGs exhibit distinct patterns.
 Even the fully expressive models do not definitely perform the best
- 2. KG is sparse, thus regularization (i.e., prior on semantics) is important
- 3. Designing novel and universal SFs becomes harder

Our solutions:

- Adaptively search to regularize the BLMs for different KG tasks
- Design novel and task-aware scoring functions

AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. ICDE 2020

Revisit Bilinear SFs

The BLMs can be written as $f(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \mathbf{h}^T \mathbf{R} \mathbf{t}$, with different form of \mathbf{R} , a square matrix of \mathbf{r} For unified representation, we evenly split the embedding into 4 parts, e.g. $\mathbf{r} = [\mathbf{r}_1; \mathbf{r}_2; \mathbf{r}_3; \mathbf{r}_4]$ Denote $\mathbf{D}_i^r = \operatorname{diag}(\mathbf{r}_i)$ as the corresponding diagonal matrix

 $\begin{array}{ll} \text{symmetric} & \sqrt{} \\ \text{anti-symmetric} & \times \\ \text{asymmetric} & \times \\ \text{inverse} & \times \end{array}$

ComplEx: $f(h, r, t) = \text{Re}(\langle \mathbf{h}, \mathbf{r}, \text{conj}(\mathbf{t}) \rangle)$

 $\begin{array}{ll} \text{symmetric} & \sqrt{} \\ \text{anti-symmetric} & \sqrt{} \\ \text{asymmetric} & \sqrt{} \\ \text{inverse} & \sqrt{} \end{array}$

Analogy: $f(h, r, t) = \langle \hat{\mathbf{h}}, \hat{\mathbf{r}}, \hat{\mathbf{t}} \rangle + \text{Re}(\langle \check{\mathbf{h}}, \check{\mathbf{r}}, \text{conj}(\check{\mathbf{t}}) \rangle)$

 $\begin{array}{ll} \text{symmetric} & \sqrt{} \\ \text{anti-symmetric} & \sqrt{} \\ \text{asymmetric} & \sqrt{} \\ \text{inverse} & \sqrt{} \end{array}$

SimplE: $f(h, r, t) = \langle \hat{\mathbf{h}}, \hat{\mathbf{r}}, \check{\mathbf{t}} \rangle + \langle \check{\mathbf{h}}, \check{\mathbf{r}}, \hat{\mathbf{t}} \rangle$

 $\begin{array}{ll} \text{symmetric} & \sqrt{} \\ \text{anti-symmetric} & \sqrt{} \\ \text{asymmetric} & \sqrt{} \\ \text{inverse} & \sqrt{} \end{array}$

AutoSF: Search to regularize bilinear SFs

Definition 3 (S2R Problem). Let F(P;g) be a KG embedding model (with indexed embeddings $P = \{h, r, t\}$ and architecture g), M(F, S) measures the performance of a KG embedding model F on a set of triplets S (the higher the better). The problem of S2R is formulated as:

$$g^* \in \arg\max_{g \in \mathcal{G}} M\left(F(\mathbf{P}^*; g), \mathcal{S}_{val}\right)$$
 (4)

$$s.t. \mathbf{P}^* = \arg \max_{\mathbf{P}} M(F(\mathbf{P}; g), \mathcal{S}_{tra}), \tag{5}$$

where G contains all possible choices of g, S_{tra} is the training set, and S_{val} is the validation set.

Search algorithm: How to search efficiently

Definition 2 (Search space). Let $g(\mathbf{r})$ return $a \ 4 \times 4$ block matrix, of which the elements in each block is given by $[g(\mathbf{r})]_{ij} = diag(\mathbf{a}_{ij})$ where $\mathbf{a}_{ij} \in \{\mathbf{0}, \pm \mathbf{r}_1, \pm \mathbf{r}_2, \pm \mathbf{r}_3, \pm \mathbf{r}_4\}$ for $i, j \in \{1, 2, 3, 4\}$. Then, SFs can be represented by $f_{unified}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = \sum_{i,j} \langle \mathbf{h}_i, \mathbf{a}_{ij}, \mathbf{t}_j \rangle = \mathbf{h}^\top g(\mathbf{r}) \mathbf{t}$.

The location of a block matrix \mathbf{D}_{i}^{r} represents a multiplicative term.

AutoSF – Search algorithm

Challenges

- 1. Size of search space is very large: 9¹⁶.
- 2. Cost of training and evaluating a specific model structure is expensive.
- 3. How to capture important properties like symmetric, asymmetric?

Greedy search: progressively evaluate from few blocks to more blocks.

Not all scoring functions / structures need to be trained.

- Filter: remove bad and equivalent SFs.
 - Bad: there are zero/repeated rows/columns.
 - Equivalent: have the same expressive ability after permutation or slipping signs.

Select better SFs based on matrix structure to train and evaluate.

- ➤ Predictor: select promising SFs based on matrix structures.
 - The predictor learns a mapping from structure to performance.

For f^6 , reduces from 2×10^9 to 3×10^4 .

For f^4 , reduces from 9216 to 5.

Experiments – Effectiveness

			WN18			FB15k		V	VN18RI	2	F	B15k23	7	Y	AGO3-1	.0
type	model	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
TDM	TransE [54]	0.500	_	94.1	0.495	_	77.4	0.178	_	45.1	0.256	_	41.9	_	_	_
	TransH [54]	0.521	_	94.5	0.452	_	76.6	0.186	_	45.1	0.233		40.1	_		_
	RotatE [35]	0.949	94.4	95.9	0.797	74.6	88.4	<u>0.476</u>	42.8	57.1	0.338	24.1	53.3	_	_	_
NNM	NTN [46]	0.53	_	66.1	0.25		41.4	_	_	_	_	_	_	_	_	_
	Neural LP [47]	0.94	_	94.5	0.76	_	83.7		_	_	0.24	_	36.2	_		_
	ConvE [6]	0.942	93.5	95.5	0.745	67.0	87.3	0.46	39.	48.	0.316	23.9	49.1	0.52	45.	66.
BLM	TuckER [1]	0.953	94.9	95.8	0.795	74.1	89.2	0.470	44.3	52.6	0.358	26.6	54.4	_	_	
	HolEX [45]	0.938	93.0	94.9	0.800	75.0	88.6		_	_	_	_	_	_	_	_
	QuatE [53]	0.950	94.5	95.9	0.782	71.1	90.0	0.488	43.8	58.2	0.348	24.8	55.0	_		_
	DistMult	0.821	71.7	95.2	0.817	77.7	89.5	0.443	40.4	50.7	0.349	25.7	53.7	0.552	47.6	69.4
	ComplEx	0.951	94.5	95.7	0.831	79.6	<u>90.5</u>	0.471	43.0	55.1	0.347	25.4	54.1	0.566	<u>49.1</u>	70.9
	Analogy	0.950	94.6	95.7	0.829	79.3	<u>90.5</u>	0.472	43.3	55.8	0.348	25.6	<u>54.7</u>	0.565	49.0	<u>71.3</u>
	SimplE/CP	0.950	94.5	<u>95.9</u>	0.830	<u>79.8</u>	90.3	0.468	42.9	55.2	0.350	26.0	54.4	0.565	<u>49.1</u>	71.0
An	yBURL [27]	0.95	94.6	<u>95.9</u>	0.83	80.8	87.6	0.48	44.6	55.5	0.31	23.3	48.6	0.54	47.7	47.3
	AutoSF	0.952	<u>94.7</u>	96.1	0.853	82.1	91.0	0.490	45.1	<u>56.7</u>	0.360	26.7	55.2	0.571	50.1	71.5

Measurements

- Given a triplet (h, r, t);
- Compute the score of $(h', r, t), \forall h' \in \mathcal{E};$
- Get the rank of h among all h'

Metrics
$$\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \frac{1}{\operatorname{rank}_{i}}$$

• Hit@k:
$$\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{I}(\operatorname{rank}_i < 10)$$

- BLMs are better than the other types and rule-based models
- There is no absolute winner among the BLMs
- Compared with human-designed ones, the SFs searched by AutoSF always lead the performance

Experiments – Efficiency

The searched SFs are KG dependent and novel to the literature.

- Gen-Approx: a universal approximator MLP as the search space
- Random: totally random for SF generation
- Bayes: Tree Parzen Estimator (TPE) algorithm
- AutoSF: domain-specific search algorithm

Outline

- 1. What is Knowledge Graph (KG)?
- What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
 - Overview of Ideas
 - ICDE 2020: Search to Capture Semantics
 - NeurIPS 2020: Search to Exploit Graph Topology
 - Future Works
- 4. Summary

Relational Path in KG

Triplets: (s, r, o);

Relational path [1,2]:

short-term information

Neighbor

Neighbor

^{[1].} Guu et.al. Traversing knowledge graphs in vector space. EMNLP, 2015

Contribution – Search to exploit topology

- 1. The relational path contains several mixed information.
- 2. <u>Link prediction task</u> emphasizes on the short-term semantic information, while entity alignment task requires to model the long-term information.
- 3. How to properly encode such prior knowledge into the model design?

Our solutions:

- Search to adaptively learn the mixed information in relational path.
- A novel hybrid-search algorithm for efficient search.

Recurrent Structure – Case study

data	tasks
S1	neighbor ∧ locatedin → locatedin locatedin ∧ locatedin → locatedin
S2	neighbor ∧ locatedin → locatedin
S3	neighbor ∧ locatedin → locatedin

Table 3: Performance on Countries dataset.								
	S1	S2	S 3					
P1	0.998 ± 0.001	0.997 ± 0.002	0.933 ± 0.031					
P2	1.000 ± 0.000	0.999 ± 0.001	0.952 ± 0.023					
P3	0.992 ± 0.001	1.000 ± 0.000	0.961 ± 0.016					
P4	0.977 ± 0.028	0.984 ± 0.010	0.964 ± 0.015					
Interstellar	1.000 ± 0.000	1.000 ± 0.000	0.968 ± 0.007					

Model design should be data-specific. Search to leverage proper prior knowledge.

Interstellar: Searching recurrent strcture

Recurrently process the path by $[\mathbf{v}_t, \mathbf{h}_t] = f(\mathbf{s}_t, \mathbf{r}_t, \mathbf{h}_{t-1}), \quad \forall t = 1 \dots L$

Searching!

macro-level	connections	$\mathbf{h}_{t-1}, O_s, 0, \mathbf{s}_t$
$\hat{\boldsymbol{\alpha}} \in \hat{\mathcal{A}}$	combinators	$+$, \odot , \otimes , gated
micro-level	activation	identity, tanh, sigmoid
$\check{\boldsymbol{\alpha}}\in\check{\mathcal{A}}$	weight matrix	$\left\{ \mathbf{W}_{i} ight\} _{i=1}^{6},\mathbf{I}% _{i}=\mathbf{V}_{i}$

Hybrid search algorithm

Search appropriate $\alpha \in \mathcal{A}$ that maximize the validation performance

$$\boldsymbol{\alpha}^* = \operatorname{arg\,max}_{\boldsymbol{\alpha} \in \mathcal{A}} \mathcal{M}\left(f(\boldsymbol{F^*}; \boldsymbol{\alpha}), \mathcal{G}_{\mathrm{val}}\right), \quad \text{s.t.} \quad \boldsymbol{F}^* = \operatorname{arg\,min}_{\boldsymbol{F}} \mathcal{L}\left(f(\boldsymbol{F}; \boldsymbol{\alpha}), \mathcal{G}_{\mathrm{tra}}\right)$$

Stand-alone approach:

- \mathcal{M} is accurate;
- F^* needs high cost. [Zoph and Le 2017]

One-shot approach:

- F* is shared and efficient;
- \mathcal{M} is not always reliable. [Pham et al. 2018, Liu et al. 2019]

Experiments – Effectiveness

Entity alignment task

	madala		DBP-WD			DBP-YG			EN-FR			EN-DE		
models		H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	
	TransE	18.5	42.1	0.27	9.2	24.8	0.15	16.2	39.0	0.24	20.7	44.7	0.29	
triplet	TransD*	27.7	57.2	0.37	17.3	41.6	0.26	21.1	47.9	0.30	24.4	50.0	0.33	
	BootEA*	32.3	63.1	0.42	31.3	62.5	0.42	31.3	62.9	0.42	44.2	70.1	0.53	
	GCN-Align	17.7	37.8	0.25	19.3	41.5	0.27	15.5	34.5	0.22	25.3	46.4	0.22	
GCN	VR-GCN	19.4	55.5	0.32	20.9	55.7	0.32	16.0	50.8	0.27	24.4	61.2	0.36	
	R-GCN	8.6	31.4	0.16	13.3	42.4	0.23	7.3	31.2	0.15	18.4	44.8	0.27	
	PTransE	16.7	40.2	0.25	7.4	14.7	0.10	7.3	19.7	0.12	27.0	51.8	0.35	
	IPTransE*	23.1	51.7	0.33	22.7	50.0	0.32	25.5	55.7	0.36	31.3	59.2	0.41	
path	Chains	32.2	60.0	0.42	35.3	64.0	0.45	31.4	60.1	0.41	41.3	68.9	0.51	
1	RSN*	38.8	65.7	0.49	40.0	67.5	0.50	34.7	63.1	0.44	48.7	72.0	0.57	
	SRAP	40.7	71.2	0.51	40.2	72.0	0.51	35.5	67.9	0.46	50.1	75.6	0.59	

Link prediction task

models	1	WN18-RI	3	FB15k-237				
	H@1	H@10	MRR	H@1	H@10	MRR		
TransE	12.5	44.5	0.18	17.3	37.9	0.24		
ComplEx	41.4	49.0	0.44	22.7	49.5	0.31		
RotatE	43.6	54.2	0.47	23.3	50.4	0.32		
R-GCN	-	-	-	15.1	41.7	0.24		
PTransE	27.2	46.4	0.34	20.3	45.1	0.29		
RSN	38.0	44.8	0.40	19.2	41.8	0.27		
SRAP	44.0	54.8	0.48	23.3	50.8	0.32		

Experiments – Efficiency

Table 6: Comparison of searching and fine-tuning time (in hours) in Algorithm 1.

procedure		entity al	ignment	link prediction			
	P. 0 3 3 4 4 1		Dense	WN18-RR	FB15k-237		
search	macro-level (line 2-3) micro-level (line 4-5)	9.9 ± 1.5 4.2 ± 0.2	14.9±0.3 7.5±0.6	11.7±1.9 6.3± 0.9	23.2±3.4 5.6±0.4		
f	fine-tune (line 7)	11.6±1.6	16.2±2.1	44.3±2.3	67.6±4.5		

Outline

- 1. What is Knowledge Graph (KG)?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
 - Overview of Ideas
 - ICDE 2020: Search to Capture Semantics
 - NeurIPS 2020: Search to Exploit Graph Topology
 - Future Works
- 4. Summary

Future works

Outline

- 1. What is Knowledge Graph (KG)?
- 2. What is Automated Machine Learning (AutoML)?
- 3. Attacking Core Issues in KG by AutoML
- 4. Summary

Summary

Design data-specific KG learning methods by AutoML

- Better explore semantics and topology
- Adapt to different application needs

Code: https://github.com/AutoML-4Paradigm

Related Publications

- Efficient Relation-aware Scoring Function Search for Knowledge Graph Embedding. ICDE 2021
- Efficient, Simple and Automated Negative Sampling for Knowledge Graph Embedding. VLDBJ 2020.
- 3. Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding. NeurIPS 2020
- Generalizing Tensor Decomposition for N-ary Relational Knowledge Bases. WWW 2020
- AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. ICDE 2020

Joint works with: Yongqi Zhang (*4Paradigm*), Yu Liu (*Tshinghua*), Shimin Di (*HKUST*)

Thanks!

恳请各位批评&指正!