

PCV 522

VARAN-Manager PCI-Einsteckmodul

Herausgeber: SIGMATEK GmbH & Co KG A-5112 Lamprechtshausen Tel.: 06274/4321 Fax: 06274/4321-18 Email: office@sigmatek.at WWW.SIGMATEK-AUTOMATION.COM

> Copyright © 2014 SIGMATEK GmbH & Co KG

Originalsprache

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne ausdrückliche Genehmigung reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Inhaltliche Änderungen behalten wir uns ohne Ankündigung vor. Die SIGMATEK GmbH & Co KG haftet nicht für technische oder drucktechnische Fehler in diesem Handbuch und übernimmt keine Haftung für Schäden, die auf die Nutzung dieses Handbuches zurückzuführen sind.

VARAN-Manager PCI-Einsteckmodul

PCV 522

Versatile Automation Random Access Network

Das PCI-Einsteckmodul PCV 522 kann in jedem Standard-PC verwendet werden. Es stellt am PC einen VARAN-Manager zur Verfügung und dient damit als Schnittstelle zwischen PC und VARAN-Bus. Mit dem PCV 522 können somit VARAN-Module direkt vom PC aus angesteuert werden.

Zusätzlich verfügt das PCV 522 über ein batteriegepuffertes SRAM sowie eine Status-LED.

Inhaltsverzeichnis

1	Technische Daten			
	1.1	Leistungsdaten	3	
	1.2	Elektrische Anforderungen	3	
	1.3	Sonstiges	3	
	1.4	Umgebungsbedingungen	4	
2	Mech	anische Abmessungen	5	
3	Ansc	hlussbelegung	6	
	3.1	Status LED	7	
	3.2	Stecker	7	
	3.3	Zu verwendende Steckverbinder	7	
4	Puffe	rbatterie	8	
	4.1	Vorgangsweise Batterietausch	9	
5	Schir	mungsempfehlung VARAN	10	
	5.1	Leitungsführung vom Schaltschrank zu einer externen VARAN-Komponente	11	
	5.2	Leitungsführung außerhalb eines Schaltschrankes	12	
	5.3	Schirmung bei einer Leitungsführung innerhalb des Schaltschrankes	13	
	5.4	Anschluss von störungsbehafteten Komponenten	14	
	5.5	Schirmung zwischen zwei Schaltschränken	15	

1 Technische Daten

1.1 Leistungsdaten

PCI-Bus	32-Bit PCI-Bus-Karte / 33 MHz
	Vendor-ID: 5112
	Device-ID: 2200
VARAN-Bus	2x VARAN-Out (Manager) (maximale Leitungslänge: 100 m)
	VARAN Device-ID: 1221
Statusanzeige	grün: RUN
Interner remanenter Daten- speicher	1024 kByte SRAM (batteriegepuffert)

1.2 Elektrische Anforderungen

Versorgungsspannung	+5 V DC (vom PCI-Bus)	
Stromaufnahme am PCI-Bus (+5 V-Versorgung)	typisch 25 mA	maximal 30 mA
Versorgungsspannung	+3,3 V DC (vo	m PCI-Bus)
Stromaufnahme am PCI-Bus (+3,3 V-Versorgung)	typisch 250 mA	maximal 300 mA

1.3 Sonstiges

Artikelnummer	01-320-522
Hardwareversion	1.x
Normung	nach UL designed

1.4 Umgebungsbedingungen

ī-			
Lagertemperatur	-20 +85 °C		
Betriebstemperatur	0 +60 °C		
Luftfeuchtigkeit	0 – 95 %, nicht kondensierend		
EMV-Störfestigkeit	nach EN 61000-6-2 (Industriebereich)		
EMV-Störaussendung	nach EN 61000-6-4 (Industriebereich)		
Schwingungsfestigkeit	EN 60068-2-6	3,5 mm von 5 Hz - 8,4 Hz	
		1 g von 8,4 Hz - 150 Hz	
Schockfestigkeit	EN 60068-2-27	15 g	
Schutzart	EN 60529	IP20	

Seite 4 05.12.2016

2 Mechanische Abmessungen

3 Anschlussbelegung

Seite 6 05.12.2016

3.1 Status LED

LED RUN	LED-Status	Bedeutung
grün	EIN	Applikation läuft
	AUS	Beim Booten und im CLI

3.2 Stecker

X1, X2: VARAN-Out (RJ45)

Pin	Funktion
1	TX/RX+
2	TX/RX-
3	RX/TX+
4 – 5	n.c.
6	RX/TX-
7 – 8	n.c.

LEDs	Funktion
Gelb	ACTIVE
Grün	LINK

n.c. = nicht verwenden

LED	Farbe	Beschreibung
ACTIVE	Gelb	Leuchtet, wenn Daten über den VARAN-Bus empfangen werden.
LINK	Grün	Leuchtet, wenn die Verbindung zwischen den zwei PHYs hergestellt ist.

Näheres über den VARAN-Bus ist der VARAN-Bus-Spezifikation zu entnehmen!

3.3 Zu verwendende Steckverbinder

Steckverbinder:

X1, X2: RJ45 Stecker (nicht im Lieferumfang enthalten)

4 Pufferbatterie

Die auswechselbare Pufferbatterie sorgt dafür, dass bei ausgeschalteter Versorgungsspannung die SRAM-Daten des PCV 522 erhalten bleiben. Vom Werk aus wird eine Lithiumbatterie eingesetzt.

Nach Auslieferung der PCV 522 und einer Lagerung von einem Jahr wird anschließend eine Batterielebensdauer von mindestens 3 Jahren erreicht.

Wir empfehlen jedoch die Batterie zu Ihrer eigenen Sicherheit alle 2 Jahre zu wechseln.

Bestellnummer für Batterie: 01-690-055

	Firma	Daten
Lithiumbatterie	RENATA	3,0 V / 235 mAh

Verwenden Sie NUR Batterien der Firma RENATA mit der Bezeichnung CR2032! WARNUNG! Bei falscher Verwendung der Batterie besteht Feuer- oder Explosionsgefahr! Batterie nicht wieder aufladen, zerlegen oder in Feuer werfen!

Wenn sich die Batteriespannung zwischen den beiden Schaltschwellen der Überwachungsschaltung befindet, kann es vorkommen, dass die Batterie im Betrieb als gut, nach Aus- und Einschalten des Geräts aber als "Low" erkannt wird. Wenn das der Fall ist, ist es empfehlenswert, die Batterie zu ersetzen.

Seite 8 05.12.2016

4.1 Vorgangsweise Batterietausch

- 1. PC mit eingesteckter PCV 522 mindestens 1 Minute vor Batterietausch eingeschaltet lassen.
- 2. PC herunterfahren und ausschalten. Vom Netz trennen.
- 3. Die Befestigungsschraube mittels Schraubendreher lockern (muss nicht ganz herausgedreht werden).

- 4. Die Abdeckung anheben und zur Seite drehen. Batterie mit Hilfe der Lasche aus dem Batteriehalter entnehmen.
- 5. Neue Batterie binnen **5 Minuten** in richtiger Polung einsetzen (Plus-Pol siehe Beschriftung).

Es ist darauf zu achten, dass beim Batterietausch kein Kurzschluss verursacht wird, da es sonst zu einem Defekt des Gerätes kommen kann!

6. Abdeckung wieder mittels Schraube befestigen und PC mit Strom versorgen.

5 Schirmungsempfehlung VARAN

Das Echtzeit Ethernet Bussystem VARAN weist ein sehr robustes Verhalten im industriellen Umfeld auf. Durch die Verwendung der Standard Ethernetphysik nach IEEE 802.3 erfolgt eine Potentialtrennung zwischen einer Ethernetleitung und den Empfänger- bzw. Senderkomponenten. Nachrichten an einen Busteilnehmer werden im Fehlerfall durch den VARAN Manager sofort wiederholt. Es wird prinzipiell empfohlen die unten angeführten Schirmungsempfehlungen einzuhalten.

Bei Anwendungsfällen in welchen die Busleitung außerhalb des Schaltschrankes verlegt werden muss, ist stets auf eine korrekte Schirmung zu achten. Insbesondere, wenn die Busleitung aus baulichen Gründen neben starken elektromagnetischen Störquellen verlegt werden muss. Es wird empfohlen, VARAN-Bus-Leitungen nach Möglichkeit nicht parallel mit leistungsführenden Kabeln zu verlegen.

Die Firma SIGMATEK empfiehlt die Verwendung von Industrial Ethernet Busleitungen nach **CAT5e**.

Bei den Schirmungsvarianten wird empfohlen eine **S-FTP Busleitung** zu verwenden. Es handelt sich dabei um ein symmetrisches mehradriges Kabel mit ungeschirmten Paaren. Als Gesamtschirmung wird ein kombinierter Schirm aus Folie und Geflecht verwendet. Es wird empfohlen eine unlackierte Variante zu verwenden.

Das VARAN-Kabel ist im Abstand von 20 cm vom Stecker gegen Vibrationen zu sichern!

Seite 10 05.12.2016

5.1 Leitungsführung vom Schaltschrank zu einer externen VARAN-Komponente

Wenn die Ethernet-Leitung von einer VARAN-Komponente zu einem VARAN-Knoten außerhalb des Schaltschrankes erfolgt, so wird empfohlen die Schirmung am Eintrittspunkt des Schaltschrankgehäuses aufzulegen. Alle Störungen können dadurch vor den Elektronikkomponenten frühzeitig abgeleitet werden.

5.2 Leitungsführung außerhalb eines Schaltschrankes

Wenn eine VARAN-Bus Leitung ausschließlich außerhalb des Schaltschrankes verlegt wird, ist keine zusätzliche Schirmauflage erforderlich. Voraussetzung dafür ist, dass ausschließlich IP67-Module und Steckverbindungen verwendet werden. Diese Komponenten weisen eine sehr robuste und störfeste Bauweise auf. Die Schirmung aller Buchsen von IP67-Modulen wird gemeinsam intern oder über das Gehäuse elektrisch verbunden, wobei die Ableitung von Spannungsspitzen dabei nicht durch die Elektronik erfolgt.

Seite 12 05.12.2016

5.3 Schirmung bei einer Leitungsführung innerhalb des Schaltschrankes

Bei starken elektromagnetischen Störquellen innerhalb des Schaltschrankes (Drives, Transformatoren und dgl.) können Störungen auf eine VARAN-Bus Leitung induziert werden. Die Ableitung der Spannungsspitzen erfolgt über das metallische Gehäuse einer RJ45-Steckverbindung. Störungen werden auf das Schaltschrankgehäuse ohne weitere Maßnahmen über die Platine einer Elektronikkomponente geführt. Um Fehlerquellen bei der Datenübertragung auszuschließen, wird empfohlen die Schirmung vor jeder elektronischen Komponente im Schaltschrank aufzulegen.

5.4 Anschluss von störungsbehafteten Komponenten

Beim Busanschluss von Leistungsteilen, welche starke elektromagnetische Störquellen darstellen, ist ebenfalls auf die Schirmungsausführung zu achten. Vor einem einzelnen Leistungsteil (oder einer Gruppe aus Leistungsteilen) sollte die Schirmung aufgelegt werden.

Seite 14 05.12.2016

5.5 Schirmung zwischen zwei Schaltschränken

Müssen zwei Schaltschränke mit einer VARAN-Bus Leitung verbunden werden, so wird empfohlen, den Schirm an den Eintrittspunkten der Schaltschränke aufzulegen. Störungen können dadurch nicht bis zu den Elektronikkomponenten im Schaltschrank vordringen.

Änderungen der Dokumentation

Änderungs- datum	Betroffene Seite(n)	Kapitel	Vermerk
05.12.2016	8	4 Pufferbatterie	Batterieüberwachung ergänzt