Week 1: Basic Calculus Review

1.

Find the (complex) roots of the polynomial

$$p(x) = x^2 + 4x + 13$$

(a)
$$x_1 = -2 - 3i$$
, $x_2 = -2 + 3i$ (100%)

(b)
$$x_1 = -3 + 2i$$
, $x_2 = -3 - 2i$

(c)
$$x_1 = +2 + 3i$$
, $x_2 = +2 - 3i$

(d)
$$x_1 = +3 - 2i$$
, $x_2 = +3 + 2i$

Quadratic formula:

$$x_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 13}}{2} = \frac{-4 \pm \sqrt{-36}}{2} = -2 \pm 3i$$

2.

Let p(x) be a polynomial of degree n with **arbitrary complex coefficients**. Which of the following is true?

- (a) p(x) has exactly n roots (considering multiplicities) (100%)
- (b) If z is a root, then its complex conjugate \overline{z} is also a root
- (c) If $p(x) = c(x \alpha_1)(x \alpha_2)...(x \alpha_n)$ with $\alpha_1, ..., \alpha_n \in \mathbb{R}$, then the roots of p(x) can be real and also imaginary.
- (d) p(x) can have no roots

Consider the Fundamental Theorem of Algebra: "Any polynomial of degree n with complex coefficients is the product of n linear factors." (These factors being the roots.) And roots come in complex conjugate pairs only if the coefficients are real.

3.

Find all the values of the parameter λ for which the equation

$$2x^2 - \lambda x + \lambda = 0$$

has no real solutions.

- (a) $\lambda \in (0,8) (100\%)$
- (b) $\lambda \in (-\infty, 0) \cup (8, \infty)$
- (c) $\lambda \in \{0, 8\}$
- (d) $\lambda \in (-8, 0)$

Check the so-called discriminant: $\Delta = \lambda^2 - 4 \cdot 2 \cdot \lambda = \lambda(\lambda - 8)$

- $\Delta = 0$ for $\lambda = 0$ or $\lambda = 8$ (1 real solution)
- $\Delta > 0$ for $\lambda > 8$ or $\lambda < 0$ (2 real solutions)
- $\Delta < 0$ for $\lambda \in (0,8)$ (pair of complex-conjugate roots)

4.

The number $5.21\overline{37}$ is:

- (a) a rational number (50%)
- (b) a natural number (-50%)
- (c) an integer (-50%)
- (d) a real number (50%)

Let
$$x = 0.3737... \implies 99x = 100x - x = 37.37... - 0.37... = 37 \implies x = \frac{37}{99}$$

Now note that:
 $5.21\overline{37} = 5 + 0.2 + 0.01 + 0.00\overline{37} = 5 + \frac{2}{10} + \frac{1}{100} + \frac{1}{100} \frac{37}{99} = 5\frac{529}{2475}$
which is indeed a fraction.

5.

Assuming that z = a + bi is a complex number, compute real and imaginary part of $\frac{1}{z^2}$

(a)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$$
 (100%)
(b) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{-2ab}{(a^2 + b^2)^2}$
(c) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 - b^2}{(a^2 - b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 - b^2)^2}$
(d) $\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 + b^2)^2}$

(d)
$$\operatorname{Re}\left(\frac{1}{z^2}\right) = \frac{a^2 + b^2}{(a^2 + b^2)^2}, \operatorname{Im}\left(\frac{1}{z^2}\right) = \frac{2ab}{(a^2 + b^2)^2}$$

$$\frac{1}{z^2} = \frac{1}{a^2 + 2abi - b^2} = \frac{a^2 - 2abi - b^2}{(a^2 + 2abi - b^2)(a^2 - 2abi - b^2)} = \frac{a^2 - b^2}{(a^2 + b^2)^2} + i\frac{(-2ab)}{(a^2 + b^2)^2}$$

6.

Let p(x) be a polynomial of degree n with **real** coefficients. Which of the following is true?

- (a) If z is a root, then its complex conjugate is z^* is also a root (100%)
- (b) p(x) has n distinct real roots

- (c) If p(x) is odd, it can have no roots
- (d) p(x) can have less than n complex roots

As discussed in class.

It can be easily verified that $p(z^*) = (p(z))^*$ if the coefficients are real. Then p(z) = $0 \implies (p(z))^* = 0 \implies p(z^*) = 0,$

7.

Compute
$$\left| \frac{1+i}{2-i} \right|$$
.

(a)
$$\left| \frac{1+i}{2-i} \right| = \sqrt{\frac{2}{5}}$$
 (100%)

(b)
$$\left| \frac{1+i}{2-i} \right| = \sqrt{\frac{2}{3}}$$
(c)
$$\left| \frac{1+i}{2-i} \right| = \frac{2}{5}$$

$$(c) \left| \frac{1+i}{2-i} \right| = \frac{2}{5}$$

$$(d) \left| \frac{1+i}{2-i} \right| = \frac{2}{3}$$

$$\left| \frac{1+i}{2-i} \right|^2 = \frac{(1+i)(1-i)}{(2-i)(2+i)} = \frac{1+1}{4+1} = \frac{2}{5} \Rightarrow \left| \frac{1+i}{2-i} \right| = \sqrt{\frac{2}{5}}$$

8.

Which of the following does not describe the rational numbers \mathbb{Q} ?

(a)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\}$$
 (100%)

(b)
$$\mathbb{Q} = \left\{ \frac{m}{m} \mid n, m \in \mathbb{Z} \text{ and } m \neq 0 \right\}$$

(c)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \in \mathbb{N} \right\} \cup \left\{ \frac{-n}{m} \mid n, m \in \mathbb{N} \right\} \cup \{0\}$$

(d)
$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n \in \mathbb{Z} \text{ and } m \in \mathbb{N} \right\}$$

This set would only describe the positive rational numbers.

9.

Let $g(x) = x^2 + 1$. Determine the domain and range of g(x).

(a)
$$Domain(g) = (-\infty, \infty), Range(g) = [1, \infty)$$
 (100%)

(b)
$$Domain(g) = [0, \infty) Range(g) = (-\infty, \infty)$$

(c)
$$Domain(g) = (-\infty, \infty), Range(g) = [0, \infty)$$

(d)
$$Domain(g) = [0, \infty), Range(g) = (-\infty, \infty)$$

 x^2+1 is well defined for all real numbers. It has a minimum at x=0, with g(0)=1, thus its range is $[1,\infty)$.

10.

MULTI (1.0 point) (0 penalty) (Single) (Shuffle)

Let $f(x) = 2^{-9x+3}$. Determine the domain and range of f(x) and its inverse $f^{-1}(x)$.

- (a) $Dom(f) = (-\infty, \infty), Ran(f) = (0, \infty),$ $Dom(f^{-1}) = (0, \infty), Ran(f^{-1}) = (-\infty, \infty)$ (100%)
- (b) $Dom(f) = (-\infty, \infty), Ran(f) = [0, \infty),$ $Dom(f^{-1}) = [0, \infty), Ran(f^{-1}) = (-\infty, \infty)$
- (c) $Dom(f) = (0, \infty), Range(f) = (-\infty, \infty),$ $Dom(f^{-1}) = (-\infty, \infty), Ran(f^{-1}) = (0, \infty)$
- (d) $Dom(f) = [0, \infty), Ran(f) = [0, \infty),$ $Dom(f^{-1}) = [0, \infty), Ran(f^{-1}) = [0, \infty)$

 2^x is defined for all real values, and $0 < 2^x \le 1$ for $2 \in (-\infty, 0]$, and $1 < 2^x < \infty$ for $x \in (0, \infty)$. Since 2^x is invertible, the domain of f^{-1} is the range of f and the range of f^{-1} is the domain of f.

Total of marks: 10