RS: Explore data

20.07.23

컴퓨터과학전공 1715237 이혜승

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

• Columns:

item_id		아이템의 primary key.
txt_vec	Item의 text feature	아이템의 정보를 모델에 의해 만들어진 real-
img_vec	Item의 image feature	valued vector로 표현함.
user_id		사용자의 primary key.
time	클릭 이벤트가 발생한 timestamp	0~1값. 순서 정보를 알 수 있음.
user_age_level		1 ~ 8의 categorical value
user_gender		F/M
user_city_level		1 ~ 6의 categorical value

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

Training시에 활용하는 csv파일 3개 존재.(T=0일 때만 고려)

- Underexpose_item_feat.csv: 아이템 정보 데이터
 - item_id: col 0
 - txt_vec: col 1 ~ 128
 - img_vec: col 129 ~ 257

벡터 정보는 추후 분석 때, word2vec을 활용하는듯?

underexpose_item_feat.csv

columns: item_id(아이템 번호: PK 역할), txt_vec(아이템의 text feature, 128차원), img_vec(아이템의 image feature, 128차원)

• 0번째 column: item_id

• 1 ~ 128번째 column: txt_vec

• 129 ~ 257번째: img_vec

In [23]:	<pre>item_feat = pd.read_csv('./kdd_data/underexpose_item_feat.csv', header = None)</pre>								
In [159]:	item_feat								
Out [159]:		0	1	2	3	4	5	6	
	0	42844	[4.514945030212402	-2.383720	0.500414	0.407068	-1.995229	0.109078	-0.69
	1	67898	[-2.0029051303863525	-0.929881	0.790017	-1.380895	-0.510463	-1.810096	1.36
	2	66446	[4.221673011779785	-1.497139	1.133570	-2.745607	-4.197045	-0.542392	-1.39
	3	63651	[2.6579699516296387	-0.941863	1.121529	-5.109496	-0.279041	-0.351968	-1.08
	4	46824	[3.192194938659668	-1.936676	1.199909	-2.562152	-2.573456	0.575841	-2.35
	108911	79253	[2.1436519622802734	-1.591184	-0.283598	-2.186552	-1.505779	0.876601	1.30
	108912	109138	[0.8901849985122681	0.042669	2.842594	-4.322702	-1.107593	-0.033230	2.83
	108913	62184	[1.4589283466339111	-0.638677	-0.957509	-2.936515	-0.897658	-0.992379	0.57
	108914	42748	[3.3835203647613525	-1.669863	1.264212	-2.128029	-2.129893	2.562061	-1.77
	108915	61098	[2.4478535652160645	-0.469942	1.873896	-4.149315	-3.618531	-0.558433	0.16

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

Training시에 활용하는 csv파일 3개 존재.(T=0일 때만 고려)

- Underexpose_user_feat.csv: 사용자 정보 데이터
 - user_id
 - user_age_level: 1~8 범주형
 - User_gender: F / M
 - user_city_level: 1~6 범주형

null값 존재 → 전처리 필요

underexpose_user_feat.csv

columns: user_id(사용자 번호: PK 역할), user_age_level, user_gender, user_city_level

Out[59]:

	user_id	user_age_level	user_gender	user_city_level
0	17	8.0	M	4.0
1	26	7.0	M	2.0
2	35	6.0	F	4.0
3	40	6.0	M	1.0
4	49	6.0	M	1.0
6784	35320	1.0	F	2.0
6785	35334	7.0	F	6.0
6786	35340	7.0	F	3.0
6787	35392	5.0	М	NaN
6788	35432	1.0	F	5.0

6789 rows × 4 columns

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

Training시에 활용하는 csv파일 3개 존재.(T=0일 때만 고려)

- Underexpose_train_click-0.csv
 - user_id
 - item_id: 해당 row의 사용자가 클릭하여 조회한 item.
 - time: 사용자별로 그룹핑을 해서 확인하면, 해당 사용자가 어떤 순서로 click을 했는지 확인

fairness of exposure 문제와 가장 관련 있는 데이터.

사용자의 행동을 click으로 판단 및 예측

time column에 대한 생각

- 1. 순서 0 → 해당 사용자 클릭 행동 순서 정의 가능. (click_order 파생 변수)
- 2. 순서로 인해, 다음 클릭을 확인하여 해당 사용자의 history와 next_item 확인 가능.
- 3. 순서대로 정렬했을 때, 다음 클릭까지의 time term을 통해 얼마나 머물렀는지 확인 가능.
- 4. Q: 같은 time값을 갖는 item_id가 여러 개 → 그만큼 짧게 머무른 건가? (ex.클릭 후 바로1이빨) × 7 columns
- 5. 사용자가 데이터 수집 기간 중. 몇번의 click을 했는지 정의.(click 파생변수)

underexpose_train_click-0.csv

user id item id

columns: user_id(사용자 번호: PK 역할), item_id, time(클릭 이벤트가 발생한 timestamp, 순서정보 존재)

time click click order exposure cnt item exposure cnt

fariness of exposure문제를 위한 가장 중요한 데이터로 여겨짐

In [132]:	train_click = pd.read_csv('./kdd_data/underexpose_test_click-0.csv', header = None , n	а
	←	·
In [163]:	train_click	

Out[163]:

	0	1133	221	0.983812	39	31	2	2
확임	1	17864	253	0.983783	15	10	1	1
	인 /je	- 6941	309	0.983785	7	5	1	1
	3	34089	358	0.983781	10	7	1	1
	4	21659	536	0.983793	22	20	2	2
	21211	836	116073	0.983791	36	22	17	17
	21212	9218	116073	0.983790	52	48	17	17
	21213	26433	116073	0.983794	13	8	17	17
	21214	21131	116276	0.983783	8	7	1	1
	21215	8415	116373	0.983794	38	25	2	2
ıc	J.							

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

Training시에 활용하는 csv파일 3개 존재.(T=0일 때만 고려)

- Underexpose_train_click-0.csv
 - user_id
 - item_id: 해당 row의 사용자가 클릭하여 조회한 item.
 - time: 사용자별로 그룹핑을 해서 확인하면, 해당 사용자가 어떤 순서로 click을 했는지 확

fariness of exposure 문제와 가장 관련 있는 데이터.

사용자의 행동을 click으로 판단 및 예측

노출 빈도 분포 탐색

Item_id가 얼마나 click되었는지 카운트하여, 각 아이템들의 노출 빈도를 확인해 봄.

Item 전체 개수: 108,916개

사용자가 클릭한 item 개수: 15,670개(클릭 수가 1번인 것이 15,670개로 아이템 전체의 11%)

사용자의 클릭 수가 0번: 93,246개. (아예 노출 되지 않음. 아이템 전체의 85%)

In [154]:	<pre>train_click['item_exposure_cnt'] = train_click.groupby(['item_id'])['time'].transform(' item_exposure = train_click[['item_id','item_exposure_cnt']] item_exposure = item_exposure.drop_duplicates("item_id", keep="first") item_exposure</pre>
	←

Out[154]:

15670 rows × 2 columns

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

Training시에 활용하는 csv파일 3개 존재.(T=0일 때만 고려)

- Underexpose_item_feat.csv: 아이템 정보 데이터
 - item_id: col 0
 - txt_vec: col 1 ~ 128
 - img_vec: col 129 ~ 257 # 벡터 정보는 추후 분석 때, word2vec을 활용하는듯?
- Underexpose_user_feat.csv: 사용자 정보 데이터
 - user_id
 - user_age_level
 - user_gender
 - user_city_level
- Underexpose_train_click-0.csv
 - user_id
 - item_id: 해당 row의 사용자가 클릭하여 조회한 item.
 - time: 사용자별로 그룹핑을 해서 확인하면, 해당 사용자가 어떤 순서로 click을 했는지 확인 가능.

item_id	
txt_vec	Item의 text feature
img_vec	Item의 image feature
user_id	
time	클릭 이벤트가 발생한 timestamp
user_age_level	
user_gender	
user_city_level	

모바일 타오바오 추천 시스템의 클릭 데이터

• 목표: user의 과거 클릭 행동으로 다음 항목을 예측!

Training시에 활용하는 csv파일 3개 존재.(T=0일 때만 고려)

- Underexpose_item_feat.csv: 아이템 정보 데이터
 - item_id: col 0
 - txt_vec: col 1 ~ 128
 - img_vec: col 129 ~ 257 # 벡터 정보는 추후 분석 때, word2vec을 활용하는듯?
- Underexpose_user_feat.csv: 사용자 정보 데이터
 - user_id
 - user_age_level
 - user_gender
 - user_city_level
- Underexpose_train_click-0.csv
 - user_id
 - item_id: 해당 row의 사용자가 클릭하여 조회한 item.
 - time: 사용자별로 그룹핑을 해서 확인하면, 해당 사용자가 어떤 순서로 click을 했는지 확인 가능.

item_id	
txt_vec	Item의 text feature
img_vec	Item의 image feature
user_id	
time	클릭 이벤트가 발생한 timestamp
user_age_level	
user_gender	
user_city_level	

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

• 파일 구성:

		#사용자id @읽은글들 @순서대로
read.tar	본(read) 글의 정보	- 읽은 (클릭한) 글이 순서대로 나열(사용자의 클릭 행동 순서O) - 머문 시간의 정보 or timestamp 존재하지 않기때문에 바로 이탈했는지 여부 알 수 없음.
metadata.json	글의 메타데이터	작가의 글들의 메타데이터 확인
/contents	글의 본문 정보	형태소 분석 결과 등의 본문 정보
users.json	사용자 정보	독자 및 작가의 사용자 정보
magazines.json	매거진 정보	

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

• columns:

• 같은 칼럼명이어도, 각 파일에서 다른 정보들을 담고 있으니, 통일된 칼럼명으로 바꾼 후에 조인하려고 함.

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

Think

• 방법론은 잘 모르겠지만, metadata.json에 나온 '글'들과 read디렉토리 하위 파일들의 '글'과 비교하면, cold-start 문제 / long-tailed한 item(글)을 찾을 수 있지 않을까

- 매거진 → 독자의 interest, 성향 파악
- 구독하는 작가가 다른 작가와 매거진을 함께 한다면 유사하다고 판단 > 추천해줄 수 있을 듯.
- reg_ts: 유닉스 시간(1970.1.1 00:00:00으로 부터 경과한 시간을 초 단위로 나타냄). 새로운 아이템 여부 확인 가능.

2018.10.1 ~ 2019.3.14까지의 브런치 서비스에서 수집된 정보의 일부 데이터.

• 목표: 브런치 사용자를 위한 글 추천

알리바바 데이터와 비교

- 작가가 글을 등록한 시간(reg_ts)이 주어짐.
 - 알리바바: 사용자가 아이템을 클릭/조회한 시간정보가 주어짐.
 - (+) 새로운 글(new item / 노출이 되지않은 글 = cold-starter item)의 정보를 얻어낼 수 있음.
- Read디렉터리 하위의 data.0~6: 사용자의 history알 수 있음

알리바바: train click-0.csv의 time column 역할을 대체.

next item 예측하기에 활용할 수 있을 듯

다른 점: 하나의 글에 한 명의 사용자가 여러 번 접속하기도 함.

브런치에서 실제로 아이템 cold-start문제 해결하는 방법: 신규 item(글)에 대해 feature vec 추출(30분 이내) → 추천에 활용

어떠한 방법으로 해결할 수 있을 지는 더 고민!

reference

- Kakao arena 참여 팀 깃헙 [github: hyeonho1028]: 데이터 loading에 참고
- Kakao Arena 2nd Competition [Arena: Brunch Article Recommedations]
- Kakao arena <u>깃헙</u>[github:kakao arena]: 베이스라인 제공
- About brunch competition [tistory: TEAM EDA]
- <u>브런치 데이터의 탐색과 시각화[brunch: 카카오 정책산업 연구]</u>
- 알리바바 데이터 탐색[참가자 코드]