

1 CCCCCCCCAGCACATCTACGGTTCAGATTAAATGTTGCCCTAAGCTGTAAGAACAGACACCCCTCAGACTGATGAAATGGCTCAGAAATTACTTAGACAA
 97 AGGGATATTTGCCACTCTCTTCCCCCTTCTGTGTTTGCTAGTGAGAGACCTCAAGAAGAAAGTAGGGAGAACATAATGAGAACAAATAG
 193 GAACTCTCTTCATTGCTAGTCAGTGCCTGGACTTGGGACTTAGGAGGGCAATGAGCCGCTTAGTGCCTACATCTGACTTGGACTGAAATATA
 289 CGTGAGAGACAGAGATTGTCTCATATCCGGGAATCATACCTATGACTAGGACGGAAAGAGAACACTGCCTTACTTCAGTGGAAATCTGGC
 385 CTCAGCCCTGCAGGCCAGTGTTCACAGTGAGAAAAGCAAGAGAATAGCTAAACTCTGTCTGAAACAGGCAGGGCTCTTGGTAAAGCTACT
 481 CCTTGATCGATCCTTGACACGGATTGTCAGAGCCCCAGGGAGAAGTCGGAGCAGAACATACCAACCAAGCAGTCCAGAGGCCAGAA
 577 GCAAACCTGGAGGTGAGACCCAAAGAAAGCTGGAACCATGTCAGCTTGTACACTGTGAGGACACAGAGTCGTCTGGAAAGGCCAGTGTCAAC
 L E V R P K E S W N H A D F V H C E D T E S V P G K P S V N 30
 673 CCACATGAGGAAGTGGAGGTCCCAAATCTGCCGTGTATGTCGGCAAGGCCACTGGCTATCATTCAATGTCATGACATGTGAAGGATGCAAG
 A D E E V G G P Q I C R V C G D K A T G Y E F K V K T C Z G C K 62
 769 GGCCTTTTCAGGAGGGCCATGAAACGCCAGGCCGGCTGAGGTGCCCTTCCGGAAAGGGCCCTGCGAGATCACCCGGAAAGACCCGGGACAGTGC
 G F P R K A M K R N A R L R C P T R K G A C E I T R K T R R Q C 94
 865 CAGGCCCTCCGGCTGGCAAGTGCCTGGAGAGCGGCATGAAGAGGGAGATGATCATGTCGGACGGAGGGCTGGAGGAGAGGCCGGCTTGATCAAG
 Q X C R L R K C L E S G K K K E H I M S D E A V E E R R A L I K 126
 961 CGGAGGAAACTGAACGGACAGGGACTCGCCACTTGGCACTGCCAGGGCTGACAGAGGACCCGGATGATGATGAGGGAGCTGATGGAGGCTCG
 R K K S E R T G T Q P L G V Q G L T E E Q R M H I R E L M D A Q 158
 1057 ATGAAACCTTGTACACTACCTCTCCCATTTCAAGAAATTCCGGCTGCCAGGGCTGCTTACGACTGGCTGCCAGGTTGGCACACCCCTCTGGAGGGC
 H K T F D T T F S H F K N F R L P G V L S S G C E L P E P L Q A 190
 1153 CCATCGAGGGAGAGAGCTGCCAAGTGGAGCCAGGTCGGGAAGATCTGTGTCCTTGAGGTCTCTGCAAGCTGGGGGGGGAGGATGCCAGTGT
 P S R E E A A K W S Q V R K D L C S L K V S L Q A A G G G W Q C 222
 1249 CTGGAACTACAAACGCCAGGGACAGTGGGGAAAGAGATCTTCTCTGCTGCCACATGGTGACATGTCACCTACATGTTCAAGGCCATC
 L E L Q T P S R Q W R K E I F S L L P H M A D M S T Y M F K G I 254
 1345 ATCAGCTTGGCCAAGTCATCTCTACTTCAGGGACTTGGCCATGGAGGACCATCTCCCTGCTGAGGGGGGGCTTTCGAGCTGTGTCAGTGC
 I S P A K V I S Y F R D L P I E D Q I S L L K G A A F E L C Q L 286
 1441 AGATTCAACACAGTGTTCAGCCGGAGAGCTGGAACCTGGAGTGTGGCCGGCTGCTTACTGCTTGGAAAGACACTGAGGGCTTCCAGCACTT
 R F N T V F N A E T G T W E C G R L S Y C L E D T A G G F Q Q L 318
 1537 CTACTGGAGCCCATGCTGAATTCCACTACATGCTGAAGAACCTGCAGCTGCATGAGGGAGGAGTATGTCGTGATGCCAGGCCATCTCCCTCTCC
 L L E P H L K F H Y H L K K L Q L H E E E Y V L M Q A I S L F S 350
 1633 CCAGACCGCCAGGTCTCTGCAGGCCAGGGCTGGAGGACAGTGCAGGAGCAATGCCATTACTCTGAAAGTCTACATTGAATGCCATCGGGCC
 P D R P G V L Q H R V V D Q L Q E Q F A I T L K S Y I E C N R P 382
 1729 CAGGCTGCTCATAGGTCTGTCTCTGAGAGATCATGGCTATGTCAGGGAGCTCCGCAGGATCAATGTCAGGACACCCAGGGCTGCTGCCATC
 Q P A H R F L F L K I M A K L T E L R S I N A Q H T Q R L L R I 414
 1825 CAGGACATACACCCCTTGTACGGCCCTCATGGAGGAGTTGTTGGCATCACAGGAGCTGAGGGCTGCCCTGGGTGACACCTTCGAGAGGGAG
 Q D I H P F A T P L M Q E L F G I T G S * 434
 1921 CCAGACCCAGAGCCCTCTGAGGGCAGTCCGGCAAGACAGATGGACACTGCCAAGACCCGACAATGCCCTGCTGGCTGCTCCCTAGGGAA
 117 TTTCTGCTATGACAGCTGGCTAGCATCTCTGAGGAAGGACATGGGTGCCCC 2068

FIG. 1A

hSXR

1 38 104 138 431

mPXR.1

1 37 102 136 386

xBXR

1 24 89 122 427

hVDR

1 11 76 104 348

hCAR α

1 124 189 229 469

hFXR

1 109 173 218 474

mPPAR α

1 91 156 188 440

hLXR α

1 88 153 178 462

hRAR α 1

1 102 169 207 456

hTR β

1 135 200 223 462

hRXR α

1 421 487 507 777

hGR α

FIG. 1B

FIG. 2

FIG. 3

FIG. 4

FIG. 5

DR-3
rCYP3A1
rCYP3A2
rUGT1A6

tagac **AGTTCA** tga **AGTTCA** tctac
taagc **AGTTCA** taa **AGTTCA** tctac
actgt **AGTTCA** taa **AGTTCA** catgg

DR-4
rbCYP2C1
rP450R

caatc **AGTTCA** acag **GGTTCA** ccaat
cac **AGGTGA** gctg **AGGCCA** gcagc **AGGTCG** aaa

DR-5
rCYP2A1
rCYP2A2
rCYP2C6
hCYP2E1

gtgca **GGTTCA** actgg **AGGTCA** acatg
gtgct **GGTTCA** actgg **AGGTCA** gtatg
agtct **AGTTCA** gtggg **GGTTCA** gtctt
gagat **GGTTCA** aggaa **GGGTCA** ttaac

FIG. 6A

CYP3A4
CYP3A5
CYP3A7

tagaata **TGAACT** caaagg **AGGTCA** gtgagtgg
tagaata **TGAACT** caaagg **AGGTAA** gcaaaggg
tagaata **TTAACT** caatgg **AGGC.A** gtgagtgg

FIG. 6B

FIG. 6C

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12