// origin

// x-axis

// y-axis

// y-axis

world.Z[3] = (50.0;)

```
Spring 2023

...

78     //define the x-y-z world coordinate

79     world.X[0] = 0.0; world.Y[0] = 0.0; world.Z[0] = 0.0;

80     world.X[1]     50.0; world.Y[1] = 0.0; world.Z[1] = 0.0;

81     world.X[2] = 0.0; world.Y[2] = 0.0; world.Z[2] = 0.0;
```

world.Y[3] = 0.0;

//define projection plans

world.X[3] = 0.0;

```
Font Design
```

82

83

For sind, cost, sind, cost in the matrix of the transformation pipeling.

```
//sin and cosine computation for world-to-viewer
float sPheta = Ye / sqrt(pow(Xe,2) + pow(Ye,2));
float cPheta = Xe / sqrt(pow(Xe,2) + pow(Ye,2));
float sPhi = sqrt(pow(Xe,2) + pow(Ye,2)) / Rho;
float cPhi = Ze / Rho;

164
```

Note: Define Ps (Xs, Ys, Zs)

```
world.X[45] = -200.0; world.Y[45] = 50.0; world.Z[45] = 200.0; // Ps (point source)

world.X[46] = 0; world.Y[46] = 0; world.Z[46] = 0; // arbitrary vector A on x-y plane

world.X[47] = 0; world.Y[47] = 0; world.Z[47] = 1; // normal vector for x-y plane
```

Define a , n for n. (J-a) =0

```
//----lambda for Intersection pt on xw-yw plane
171
          float temp = (world.X[47]*(world.X[46]-world.X[45]))
172
                      +(world.Y[47]*(world.Y[46]-world.Y[45]))
173
                      +(world.Z[47]*(world.Z[46]-world.Z[45]));
174
175
          float lambda = temp / ((world.X[47]*(world.X[45]-world.X[7]))
176
                                 +(world.Y[47]*(world.Y[45]-world.Y[7]))
                                 +(world.Z[47]*(world.Z[45]-world.Z[7])));
177
          float lambda_2 = temp / ((world.X[47]*(world.X[45]-world.X[6]))
178
179
                                   +(world.Y[47]*(world.Y[45]-world.Y[6]))
                                   +(world.Z[47]*(world.Z[45]-world.Z[6])));
180
```

Find the intersection points.

```
182
         //----* equation to find intersection pts----*
         world.X[48] = world.X[45] + lambda*(world.X[45] - world.X[7]); // In
183
         world.Y[48] = world.Y[45] + lambda*(world.Y[45] - world.Y[7]); // In
184
         world.Z[48] = 0.0;
185
```

Aprilo (monday).

Note: Project in 3D is Due in 2 weeks.

See the previous Annun coment

CANVAS POSTING By the end of the Day Today),

QEA. Spherical Surface

Zw 12= 500

Define in Cremme make smaller d = 5°

R Rodmed By Predefined Troportion. Make at least 10 laners for Better Visnalization

Nov.21,22

From Ref In Summay, we'll create a Collection of Points (Pi(Xi,y; Zi) ; i=0,1, "N-1) Example: Previous Project (Ray Equ. & Normal Vector) 2018F-115-lab-DiffuseReflection-Ru. 2018F-116-11diffuse20181114.cpp Digital Differential Algorithm 2018F-117-12dda.cpp 4= 6x+ 6 Note: In Normal Vector of the Surface 2018F-118-13diffuseInterpolation20... 1. Definition. Ray Equation from the light Source Ps (xs, ys, Zs) Wirectians. to the point of Interests From PP. 48 是是(表表) distance Z. Intersity of the Diffuse Reflection The Intensity of Note: Ray Equations: I(x,y)=(rfay),gky),b(xy)) riti .. Ps, Pit depends on the incaming angle of the Ray Equation Vin Ps, Pirs From the Ray Equation.

アーデナがらった) …(1)

n. r=|1711|17 | (150 ... /2)

Idit (x, y) Or Id (x, y) 37)

$$I_{a}(x,y,z) \stackrel{\sim}{=} Co \stackrel{\sim}{>} 0 = \frac{\overrightarrow{n} \cdot \overrightarrow{r}}{||\overrightarrow{n}||||\overrightarrow{r}||}$$

Next, Consider the distance (Squared)

11 / 1/2) = (X5-Xi)+(Y5-Yi)+(35-2i)2

then, update Egnly),

 $T_{d}(x,y;z) \cong \frac{1}{\|\vec{Y}\|_{7}^{2}} \frac{\vec{N} \cdot \vec{Y}}{\|\vec{Y}\| \|\vec{Y}\|} \dots (s)$

Now, Let's Consider Reflectivity

(Apolate Egn(5) with Reflectivity. with Simplification, for Each Primitive rala)

April 12 (Wed)

Notel. Project Assignment is posted on CANUAS. 2. 5% Bonus for Using/Impate Real 30 CAD Data.

https://www.freecad.org :

FreeCAD: Your own 3D parametric modeler

FreeCAD is an open-source parametric 3D modeler made primarily to design real-life obje of any size. Parametric modeling allows you to easily modify your ...

Download - Installing on Linux - Your own 3D parametric modeler - User hub

Join 11,840,000

String 2023

define Let's a Linear Mapping typiction

then,

$$= |50 + 0|^2 + |40|^2$$
Hence,
$$\frac{1}{|1|} \ll 5$$

$$|1| \times |1|$$
Which makes $I_1(x,y) \ll 8$

$$\frac{3z-31}{2} = \frac{3-31}{2} ... (3)$$

$$3 = 6 \times + 2 \qquad ... (4)$$

Therefire, Suppose 8 bits per pixal

Now, Suppose we want to display diffuse Reflection for a pixel Rocation (xi, yi)

Stepl. Use Egn (7), pp 30, to find Idiff (xi, yi)

Stepz. Substitute

Idiff(xi, yi) into this Egy (4)

Where Ioff=Zo.

7=px+c

(Idmin, IDA) is a point ON

(Idmax, 255) is the other point

= b.I%: 4(xi, y:) +C


```
Note: 1. Define Reflectivity, Spring-2023
                                                                                              42
191
192
         pt_diffuse diffuse;
                               //diffuse.r[3]
193
194
         //----reflectivity coefficient-
                                  for IZed color.
195
         #define
                     Kdr
196
         #define
                     Kdg
                             0.0
197
         #define
                     Kdb
100
  Notez. Distinue. To Speed up the
         Computation, No. Sort Needed.
202
203
         float distance[UpperBD];
         for (int i=48; i<=49; i++) {
204
205
         distance[i] = sqrt(pow((world.X[i]-world.X[45]),2)+
206
                             pow((world.Y[i]-world.Y[45]),2)+
207
                             pow((world.X[i]-world.X[45]),2) );
         //std::cout << "distance[i] " << distance[i] << std::
208
   Note 3. Compute Cost for Diffrace
                     Repudion.
  229
           tmp_dotProd[i] = world.Z[i]-world.Z[45];
           std::cout << " tmp_dotProd[i] " << tmp_dotProd[i] << std::endl;
  230
  231
  232
           tmp_mag_dotProd[i] = sqrt(pow((world.X[i]-world.X[45]),2)+
                               pow((world.Y[i]-world.Y[45]),2)+
  233
  234
                               pow((world.Z[i]-world.Z[45]),2) );
           std::cout << " tmp_mag_dotProd[i] 1 " << tmp_mag_dotProd[i] << std
  235
  236
  237
           angle[i] = tmp_dotProd[i]/ tmp_mag_dotProd[i];
  238
           std::cout << "angle[i] " << angle[i] << std::endl;
  239
    Note 4. Theoretal Part of the Diffuse
Perfection. The Result's Very Small
   _ --
   241
             diffuse.r[i] = Kdr * angle[i] / pow(distance[i],2)
            diffuse.g[i] = Kdg * angle[i] / ow(distance[i],2);
   242
            diffuse.b[i] = Kdb * angle[i] / pow(distance[i],2) ;
   243
   244
                     Very Big Distance
```

Spring 2023

Sample code for the post Tho lessing.

Add Offset=20 Map the diffree reflection [nffset, 255]

CMPE240-Adv-Microprocessors / 2018F / 2022S-101-notes2-

cmpe240-2022-04-18.pdf.pdf.20.pdf

float r, g, b; r = display_scaling*diffuse.r[i]+display_shifting; //r = display_scaling*diffuse.r[i]; g = diffuse.g[i]; b = diffuse.b[i]; alColor3f(r a h):

Example: Bi-Linear Interpolation of Diffuse Reflection.

From Egy (5),

$$\frac{\sqrt{3}-\sqrt{3}z}{x-\sqrt{2}} = \frac{\sqrt{3}-\sqrt{3}z}{x-\sqrt{2}}$$

$$y = y_2 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_2)$$

$$y = \frac{y_2 - y_1}{x_2 - x_1} \times -\frac{y_2 - y_1}{x_2 - x_2} \times -\frac{y_2 - y_2}{x_2 - x_2}$$

a y= bx+c , y= b x+ c

 $\frac{b}{\alpha} = \frac{y_2 - y_1}{x_2 - x_1} \qquad \dots (z - b)$

Spring 2023

April 19 (Web)

Final Exam:

Group I Classes

Group I classes are those classes which meet M, W, F, MTW, MWR, MTWF, MWRF, MTWRF, MW, WF, MWF, MF, TW, WR, MT, WS.

Regular Class Start Times	Final Examination Days	Final Examination Tir
7:00 through 8:25 AM	Friday, May 19	7:15-9:30 AM
8:30 through 9:25 AM	Tuesday, May 23	7:15-9:30 AM
9:30 through 10:25 AM	Thursday, May 18	7:15-9:30 AM
10:30 through 11:25 AM	Monday, May 22	9:45 AM-12:00 PM
11:30 AM through 12:25 PM	Wednesday, May 17	9:45 AM-12:00 PM
12:30 through 1:25 PM	Friday, May 19	12:15-2:30 PM
1:30 through 2:25 PM	Tuesday, May 23	12:15-2:30 PM
2:30 through 3:25 PM	Thursday, May 18	12:15-2:30 PM
3:30 through 4:25 PM*	Monday, May 22	2:45-5:00 PM
4:30* through 5:25 PM*	Wednesday, May 17	2:45-5:00 PM

Example: Piti

Detect the orientation

1 Fi, Pin /=1,2, ... No

(Pi-Pi+3) x (Pi+2-Pi+3) ... (1)

 $\frac{\left(\overrightarrow{p_{1}}-\overrightarrow{p_{1}}+3\right)\times\left(\overrightarrow{p_{1}}+2-\overrightarrow{p_{1}}+3\right)}{\left\|\left(\overrightarrow{p_{1}}-\overrightarrow{p_{1}}+3\right)\times\left(\overrightarrow{p_{1}}+2-\overrightarrow{p_{1}}+3\right)\right\|_{2}}$

Consider DDA Algorithm, Digital Pifferential Algorithm

4=6x+c -.. 0)

To plot Equation/Line Segment ON a finite Display Device. HD, 4K etc.

Technical Challenges: 1 1° GAPS" Problem

20. Remaral of multiplication.

Consider Computation of Jk, Yeti: We have

for Xx, from Equal).

1/4 = pxx+c ... (la) for Xxx1=Xx+1, then

YK+1 = bxK+1+C Multiplication.

= p(xx+1) + < = pxx+p+(

Example: (given P; = (1,1), Pi+1=(1,5) Use Egn(1a) or (1b) to plot a

line

58 × A = | 2 2 1 = 2 (205-60

Point you on a pixel Location with a gap To solve this problem, make the > Slop of the given Line is less than \.

Pi+(2,5)

. (Absolute value of

Consider y=bx+c, where

(l) ... / < |d/

y=6x+C

From Egyli),

 $\sqrt{b} = \times + c/p$

$$X = \frac{1}{b}y - \frac{2}{b} \dots (2)$$

Let xx=1, yx=1 (From Egyls))

where $\left(\frac{1}{2}\right) < 1$

From Egn (16)

AH1= AK+P=1+4=2 GHt! which is a problem.

April 24 (monday)

Alc+1 = Ak+ 1 -.. (30)

Example: Continuation on

XK41 = 7 NK41 - 2

Note: When the Slop 161>1

then Egn (1-b), 7945, Will Land the Next

Diffuse Reflection on the interior points.

Gring Back to the Same

Example.

for K=1, yk=1, xk=1.

fur K=Z

2=21+1 (= 2x+1 / 1x=1)=5

X2= X1+ to = 1+ t= 1.25

Pi+2
Pi+3
Pi+3

Fi, Pz Ave Both ON the Boundary Hence, their (1) Pixel Location

ave computed By DDA;
(2) Diffuse Reflection are computed
By Egn (3), (4), and (5) on
PP44,45;

for y3=3,

X3=X2+ = 1.25+0,25

=1.5 ~2

for y=+, X=X3+ = 1.5+0.25

=175~2

Use 2D pattern of Pi(xi,y:) | i=1,2,..., N) to Decorate 3D Surfaces.

From 20 Rotation Matrix

$$R_{X_{10}} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \cos d & -31 & \sin d & 0 \\ 0 & 51 & \cos d & 0 & 0 \end{pmatrix} \dots (7)$$

April 26 (Wod)

Example: Linear Decoration Algorithm.

Surface = plane

Continuation on PP48, Fig. 4a~4b.

51 52 Fig.4a Vw.

Methodology: Observe Discover & F.

The independent variable which

Stays the Constant. X. ->

Rotation on y. - Zw Plane. Step | Step | St. X. X.

Step 1. Given (7; (xi,yi) [i=1,z,i,k)

Spring 2023

50 Redefine (7: (xi, yi) in the (ansider S1: World Gordinate System. Find A parallel plane yw-Zw Indp / V.S. Function V 'ablean yw V.s. Zw. After Before Z; = y; Function Considu Sz Note: Check the Scale of Prilxi, yi, zi) Pavallel plane Zw-Xw to make sure it match the Indep: Zw, U.S. Fundial Xw Size of the Surface (plane) to Be decorated: Before Alter Step Z. Consider Snyfme 3. Indep. Remark: 1º Identify the parallel plane y: Function Jor the swifme; ~ y; Z. Identify the index. Variable ... (3) & Function of the plane. Option Project Topi (Discussion: (Xw.(Inder). HWilvor' Image. V.S. Yw (Function) Before Xi (Indep) C + offset

... (1)

Example: for the arbitrary rotoations

- 1. Pre-processing: 3 steps;
- 2. Rotation w.r.t. Z w axis;
- 3. Post processing: 3 steps;

Tools: translations and rotations

Fig. 3

Ζ

rotation matrix R_z clockwise rotation Find the rotation matrix;

Step 3. Rotation w.r.t y_w axis

Find the rotation matrix R_y

Note: 3 steps together:

Coding in C/C++, we will need 3 lines of code for x, y, and z;

Step 4. Rotation wrt Z-axis per the requirement

Step 5. Undo rotation y

Note just need to change the sign of the rotation angle;

Step 6. Undo rotation wrt to Z

Step 7. Undo the translation

T^(-1)

Pre-processing:

Step 1. Translation

Delta
$$X = -x i$$

$$Delta_y = - y_i$$

Delta_z =
$$-z_i$$
 (1)

Step 2. Rotation w.r.t z-axis

Put all the euqations together

Example:

$T^{-1} R_z^{-1} R_y^{-1} R_z R_y R_z T$

Conditions:

2m1

1. After the transformation pipeline;

offset

Note: to write C/C++ code, we will need to have 3 lines of code, one for x, one for y, and one for z.

For the optional proejct (Bonus), please use the following vector:

Rotation by 5 degree;

2 . Diffuse reflection can be added for further analysis;

3. Note: DDA has to be a part of it.

Analysis:

Step 1. World to Viewer transform (Assuming the sines, cos, and roh have been given)

For x: mul 2; additions: 1; For y: mul: 3; additions: 2; For z: mul: 3; additions: 3 (rho)

Step 2. Perspective Projection:

For x: mul: 2; For y: mul: 2;

Step 3. Virtual to physical

For x: addition: 1; For y: addition: 1;

In summary:

for each vertex:

Mul: 12 addition: 8

	54
Consider the ARM Cortex 3	
1 clock for 1 addition (pipeline is filled) 1 clock for 1 multiplication	
Clock rate of the CPU: 200 Mhz;	
No. of poly per second =	
Clock/(mul+add) = 200/(12+8)	
= 10 Million Poly / Second	

May 8 (Monday)

2023S-101-note-part2b-benchmarking-cmp...

Frame rate: FPS

See the lecture note pp. 25-26

Eqn (1) on pp. 25;

Note:

1. Bring the submitted project with the prototype system to the class for veriication and inspection. Sync_F or f_F

Next, the horizontal sync or horizontal frequency, see eqn(2);

Sync H or f H

2. Review session on the next lecture.

Today: Finish the controller (Display) design and finish the bench marking discussion.

Then, define the timing for each each pixel

Sync D or f D

See egn (3) on pp. 25-26

Example: ref:

Example of using these equantions to perform analysis and evaluation of the engineering design

2022F-101-notes-cmpe240-2022-11-30.pdf

The schematic design is based on the scanning principle of the display device.

See the lecture notes on pp. 25-26;

	111-4
Suppose given a display device: MxN = 160 x 120	Step 1. Inside CPU, with mem interface;
assum full color display, e.g., 24 bit per pixel	·
(pixel depth), BPP;	Step 2. Internal bus systsem to
frame rate: 30 FPS;	connect the peripheral
Suppose we want to plot	device (SPI);
a pixel at (123,25), find the	
total time for this process.	Step 3. Display device,
	Sync_F, Sync_H, Sync_D
Sol:	Find the number of hits nor
1. Analysis the design requirements	Find the number of bits per
I(123,25)	second we can display
the first argument is x for the col.	160 x 120 x 24 x 30
the 2nd one, y, must be for the row.	100 X 120 X 2 1 X 30
	= 127 x 127 x 32 x 32
Time needed to reach to one row	
before row 25	= 2^7 x 2^7 x 2^5 x 2^5
(a) the 1st is row 0;	= 2^14 x 2 ^10
(b) row 24 requires scanning 25 rows	
before reaching to row 25;	$= 2^4 \times 2^2 = 20$
$T_segma_H = 25 * 1/Sync_H (4)$	= 16 Mbps (1)
where	comparing FOOK poly por
WITCHE	comparing 500K poly per
Sync_H = 120 * 30 (= N Sync_F)	second from the previous evaluation, to find out
3y11c_11 = 120	if (1) is adquate to support
Now, at the begining of the right row	500K poly / second.
and the decision of the state o	South poly / Second.
T segma D = $123 \text{ 1/Sync D} + \text{1/Sync D}$	1 poly = 32 bits
(5)	, ,
	then
Since the FPS = 30 Hz;	500K x 32 (bit per second)
then we can solve for the above	
equation.	= 1 Mbps x 1/2 x 2^5
	= 2^19 x 2^5 bps
Note: the schematics (see pp. 25-26)	= 2^4 x 2^20 bps
which is required.	= 16 Mbps
Example: Bench marking the system	•
for GE design to evaluate the CPU and	
the entire system performance	

May 15th (Monday).
Topics Today: J Vis A Session
(Find Review.

Final Review:

1° May 23rd, The, 12.15-2:30 P.M.

You may want to use SJSN ID Cord; please Note the Video Recording is regined by the Deputrental

Final Exam:

Regular Class Start Times 8:30 through 9:25 AM Thursday, May 18 9:30 through 10:25 AM 9:45 AM-12:00 PM 11:30 AM through 12:25 PM Wednesday, May 17 9:45 AM-12:00 PM 12:30 through 1:25 PM Friday, May 19 1:30 through 2:25 PM Tuesday, May 23 3:30 through 4:25 PM* Monday, May 22 4:30" through 5:25 PM" Wednesday, May 17

Z' Bring your Prototype System.

30 material: 90% & Sinke the midterm

4° Projects, Homework, and Optional Project, to preeme to Run/Execute the program(s).

50 About 3~4 Ornestions. About the Same Intensity as the midtern Exam.

a. System Block Diagrams, Schemitics, Photo up the Actual trototype System.

Note: Photo with ID.

b. One page Formula Sheet is

Policy & Protocal.

Permitted. Just Math. Formula, No Code, No Example.

Note: Forshemalic design, Connector Info, CPU Pin Lands, Software info (pointer for the SPRS) etc. Software Definition

C. Design Evaluation. Beach marking & Calculation.

d. Diffuse Reflection.

Cakalatia in Xw-yw-Zw -> Archor

Bounday Lines 4DDA ' LBi-Linear ∼

Interior points.

After Transformation Pipe Line

() AA Session.

Debugging -> Generale A List -> Elimation Approachto trace down

1' Target CPN Datasheet to Connectivity test: & Schematics PCB Board with the Knowledge 11024 of each Tin See github Posting. Zo Dathstreet, LCD. 5° if the issue pensists, Displaymodule. Dig-key. who equipment 1: 050, in Rn 268 Amith = 5 3 - Datasheet Wave form 20-60 mltz Digital, mower, etc. Digital legic Analyzer. See github posting. Cirux Version 30 Create Verify Connectivity for 8 channels - LCD / Description. Sch. Connector a) trutz + GND: One Class Field3 Chingest Payload b) STI: Another Class (MOSI "3+1" -> "2+1" YSCK Reduction a. Sar, Wave MOSI for Not Listening the input from CD. Ь. СКФ ~> t Simpler SCR -> Control Data Pin -> GPIO(CEW) Background Light - Vde or Extra Capability: PST Time Division.

