1

Line Assignment

Sinkona Chinthamalla - FWC22054

I. QUESTION

Class 11, Exercise 10.1, Q(1): Draw a quadrilateral in the Cartesian plane, whose vertices are (-4,5), (0,7), (5,-5), (-4,-2). Also, find its area.

Figure 1: Quadrilateral ABCD

II. SOLUTION

We can divide the quadrilateral into two triangles, one with sides AB, BC, and AC, and the other with sides AC, CD, and AD.

Figure 2: Quadrilateral ABCD with diagonal AC

Consider $\triangle ABC$,

$$Ar(\triangle ABC) = \frac{1}{2} |(B-A) \times (B-C)|$$

$$= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} \\ 4 & 2 \\ -5 & 12 \end{vmatrix}$$
$$= \frac{48\hat{k} + 10\hat{k}}{2}$$
$$= 29\hat{k}$$

Area of $\triangle ABC$ is given by

$$d1 = ||(B - A)(B - C)||$$

$$= 29$$
(1)

$$Ar(\triangle ABC) = 29$$
 sq.units

Now consider $\triangle ACD$,

$$Ar(\triangle ACD) = \frac{1}{2}|(D - A) \times (D - C)|$$

$$= \frac{1}{2}\begin{vmatrix} \hat{i} & \hat{j} \\ 0 & -7 \\ -9 & 3 \end{vmatrix}$$

$$= \frac{63\hat{k}}{2}$$

$$= 31.5\hat{k}$$

Area of $\triangle ACD$ is given by

$$d1 = ||(D - A)(D - C)||$$
= 31.5

 $Ar(\triangle ACD) = 31.5$ sq.units **Area of Quadrilateral ABCD** $= Ar(\triangle ABC) + Ar(\triangle ACD)$ = 29 + 31.5 = 60.5 sq.units

CONSTRUCTION

Symbol	Value	Description
A	(-4,5)	Vertex A
В	(0,7)	Vertex B
С	(5,-5)	Vertex C
D	(-4,-2)	Vertex D

Get the python code of the figures from

https://github.com/SinkonaChinthamalla/fwc/blob/main/matrix/line/codes