1.

We are going to approximate $cos(\pi/4)$ without a calculator or computer

Instead of true input $x = \pi/4$, we use $\hat{x} = 3/4$

Instead of true function $f(x) = \cos(x)$, we use truncated Taylor series such as $\hat{f}(x) = 1 - x^2/2$ We obtain approximate result $\hat{f}(\hat{x}) = 23/32$

To four digits, true result is $y = cos(\pi/4) \approx 0.7071$ Computational error:

$$\hat{f}(\hat{x}) - f(\hat{x}) = 23/32 - \cos(3/4) \approx -0.0129$$

Propagated data error:

$$f(\hat{x}) - f(x) = \cos(3/4) - \cos(\pi/4) \approx -0.0246$$

Total error:

$$\hat{f}(\hat{x}) - f(x) = -0.0129 - 0.0246 = -0.0375$$

2.

$$f(x) = x^3 \implies f'(x) = 3x^2$$

$$cond \approx \left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x(3x^2)}{x^3} \right| = 3$$

3.

IEEE DP (
$$\beta$$
 = 2, p = 53, L = -1022, U = 1023) $2(\beta-1)\beta^{p-1}(U-L+1)+1=2\times 1\times 2^{52}\times (1023+1022+1)+1=2^{53}\times 2046+1$

4. (a)
$$\beta^{U+1}(1-\beta^{-p}) = 2^2(1-2^{-3}) = \frac{7}{2}$$

(b)
$$\beta^{L} = \frac{1}{2}$$