CS345 Theoretical Assignment 4

Ayush Agarwal, 13180 M.Arunothia, 13378

Contents

1	1.1	Counter Example
2	Loc	ating faults in a network
	2.1	Algorithm
	2.2	Pseudo Code
	2.3	Proof of Correctness
3	A n	ax flow application
	3.1	Without Extra Constraint
		3.1.1 Overview
		3.1.2 Notations
		3.1.3 Claim
		3.1.4 Proof - Part 1
		3.1.5 Proof - Part 2
	3.2	With Extra Constraint
		3.2.1 Overview
		3.2.2 Notations
		3.2.3 Claim
		3.2.4 Proof - Part 1
		3.2.5 Proof - Part 2

1 Any Guarantee of our First-Attempt Algorithm

1.1 Counter Example

- 2 Locating faults in a network
- 2.1 Algorithm
- 2.2 Pseudo Code
- 2.3 Proof of Correctness

3 A max flow application

3.1 Without Extra Constraint

3.1.1 Overview

3.1.2 Notations

 p_i denotes the exact number of doctors required on day i

 L_i denotes the list of days where doctor i is available

 L'_i denotes the list of days that doctor i has to work to produce the required match. Note, $L'_i \subseteq L_i$

 $\vec{D} = \sum_{i=1}^{n} p_i$

n =Number of days in total

k =Number of Doctors in total

3.1.3 Claim

Construction of L'_i s is possible if and only if the max-flow in the source-sink graph constructed (in image) is D.

3.1.4 Proof - Part 1

Given L_i 's list for all doctors, show that the max flow of source-sink graph shown above is D

Construct a flow f of the source-sink graph as follows.

f(source, Doctor[i]) is $|L'_i|$ - satisfies capacity constraint as these edges had infinite capacity

f(Doctor[i], Day[j]) is 1 if j lies in L'_i , otherwise is 0 - satisfies capacity constraint

f(Day[j], sink) is p_j - satisfies capacity constraint

Flow Conservation is ensured as it is given to us that L'_i s of such definitions exist.

Hence, the above is a valid flow.

As the cut - capacity between sink and the rest of the graph is D, by min - cut - max - flow theorem, f should be a max flow of the source-sink graph. Hence, proved.

3.1.5 Proof - Part 2

Given the max flow of source-sink graph to be D, show that L_i 's list for all doctors exist

Let f be the integral max-flow of the source-sink graph. (Note: Integral flow exists was proved in class) Construct L'_i as follows.

If f(Doctor[i], Day[j]) is 1 then add j to L'_i otherwise do nothing.

Note: f(Doctor[i], Day[j]) can be only 0 or 1 by integral flow property.

The L'_i s thus constructed are valid as value(f) = D implying every day j has got the exact number of doctors wanted (p_j) . Moreover, $L'_i \subseteq L_i$ is ensured from the construction of the source-sink graph itself. Hence, proved.

3.2 With Extra Constraint

3.2.1 Overview

3.2.2 Notations

```
p_i denotes the exact number of doctors required on day i L_i denotes the list of days where doctor i is available L'_i denotes the list of days that doctor i has to work to produce the required match. K_i = L_i \cap L'_i C_i = L'_i - K_i D = \sum_{i=1}^n p_i n = \text{Number of days in total} k = \text{Number of Doctors in total}
```

3.2.3 Claim

Construction of L'_i s is possible if and only if the max-flow in the source-sink graph constructed (in image) is D.

3.2.4 Proof - Part 1

Given L'_i s list for all doctors, show that the max flow of source-sink graph shown above is D Construct a flow f of the source-sink graph as follows.

```
If i \leq k then f(source, Doctor[i]) is |K_i| - satisfies capacity constraint as these edges had infinite capacity f(Doctor[i], Day[j]) is 1 if j lies in K_i, otherwise is 0 - satisfies capacity constraint If i > k then f(source, Doctor[i]) is |C_i| - satisfies capacity constraint by definition of L_i's existence. f(Doctor[i], Day[j]) is 1 if j lies in C_i, otherwise is 0 - satisfies capacity constraint
```

f(Day[j], sink) is p_i - satisfies capacity constraint

Flow Conservation is ensured as it is given to us that L_i 's of such definitions exist.

Hence, the above is a valid flow.

As the cut - capacity between sink and the rest of the graph is D, by min - cut - max - flow theorem, f should be a max flow of the source-sink graph. Hence, proved.

3.2.5 **Proof - Part 2**

Given the max flow of source-sink graph to be D, show that L_i 's list for all doctors exist

Let f be the integral max-flow of the source-sink graph. (Note: Integral flow exists was proved in class) Construct L'_i as follows.

If f(Doctor[i], Day[j]) or f(Doctor[i+k], Day[j]) is 1 then add j to L'_i otherwise do nothing.

Note: f(Doctor[i], Day[j]) can be only 0 or 1 by integral flow property.

The L'_i s thus constructed are valid as value(f) = D implying every day j has got the exact number of doctors wanted (p_j) . Moreover, both f(Doctor[i], Day[j]) and f(Doctor[i+k], Day[j]) will not be together 1 from the construction of source-sink graph itself. Hence, proved.