RELACJE PORZĄDKUJĄCE

Relacja porządkująca (częściowo-porządkująca)

Relację $R \subset X \times X$ nazywamy *porządkującą* (częściowo porządkującą) zbiór X jeżeli jest zwrotna, przechodnia i antysymetryczna, czyli jeżeli spełnia następujące warunki:

a)
$$\bigvee_{x \in X} xRx$$

b)
$$\forall (xRy \land yRz \Rightarrow xRz)$$

c)
$$\forall (xRy \land yRx \Rightarrow x = y)$$

Relacja liniowo-porządkująca

Relację dwuczłonową *R* w *X* porządkującą zbiór *X* nazywamy *liniowo-porządkującą*, jeżeli spełnia warunek spójności:

$$\forall_{x,y \in X} (xRy \vee yRx)$$

- 1. Jeżeli relacja $R \subset X \times X$ jest relacją porządkującą zbiór X, to mówimy, że R porządkuje zbiór X i parę uporządkowaną (X, R) nazywamy *zbiorem uporządkowanym*.
- 2. Mając dany zbiór uporządkowany (X, \leq) będziemy mówić, że x poprzedza y (gdzie $x \in X$ i $y \in X$) wtedy i tylko wtedy, gdy $x \leq y$ i $x \neq y$.
- 3. Niech (X, \leq) będzie zbiorem uporządkowanym. Element $x_0 \in X$ nazywamy *maksymalnym*, gdy

$$\neg \exists_{x \in X} (x_0 \prec x) \Leftrightarrow \neg \exists_{x \in X} (x_0 \leq x \land x_0 \neq x)$$

4. Element $x_0 \in X$ zbioru uporządkowanego (X, \leq) nazywamy
 największym, gdy

$$\bigvee_{x \in X} x \le x_0$$

W zbiorze uporządkowanym (X, \leq) istnieje co najwyżej jeden element największy. Element największy jest maksymalny.

5. Element $x_0 \in X$ zbioru uporządkowanego (X, \leq) nazywamy *minimalnym*, gdy

$$\neg \exists_{x \in X} (x \prec x_0) \Leftrightarrow \neg \exists_{x \in X} (x \leq x_0 \land x_0 \neq x)$$

6. Element $x_0 \in X$ zbioru uporządkowanego (X, \leq) nazywamy *najmniejszym*, jeśli

$$\bigvee_{x \in X} x_0 \le x$$

W zbiorze uporządkowanym (X, \leq) może istnieć co najwyżej jeden element najmniejszy. Element najmniejszy jest minimalny.

PODZBIORY ZBIORÓW UPORZĄDKOWANYCH

1. Niech (X, \leq) będzie dowolnym zbiorem uporządkowanym i niech A będzie podzbiorem zbioru X. Niech $\leq |A|$ będzie relacją dwuczłonową w A zdefiniowaną następująco:

$$\bigvee_{x \ v \in A} x \le |Ay \iff x \le y$$

Relację $\leq |A|$ nazywamy *relacją* \leq *zredukowaną do* A.

- 2. Jeżeli (X, \leq) jest zbiorem uporządkowanym i $A \subset X$, to $(A, \leq |A|)$ jest również zbiorem uporządkowanym.
- 3. Podzbiór $A \subset X$ zbioru uporządkowanego (X, \leq) nazywamy *lańcuchem*, jeżeli

$$\bigvee_{x,y\in A} x \leq y \vee y \leq x$$

- 4. Niech $A \subset X$ będzie podzbiorem zbioru uporządkowanego (X, \leq)
 - a) Element $x_0 \in X$ nazywamy ograniczeniem górnym zbioru A, jeżeli

$$\bigvee_{x\in A}x\leq x_0$$

b) Element $x_0 \in X$ nazywamy ograniczeniem dolnym zbioru A, jeżeli

$$\bigvee_{x\in A} x_0 \leq x$$

5.Lemat Kuratowskiego - Zorna

Niech (X, \leq) będzie zbiorem uporządkowanym. Jeżeli w zbiorze X dla każdego łańcucha $A \subset X$ istnieje ograniczenie górne, to w X istnieje element maksymalny.