Data Mining

Logistic Regression

Notes adapted from Logistic Regression in Python Course

Classification Problem

- Supervised vs. Unsupervised Classification
- Supervised classification
 - Regression: predict the value of a function
 - Classification: put data into classes
 - Logistic regression

MNIST

Image classification

Linear Regression

Regression

- $h(x) = w_0 + w_1x_1 + w_2x_2$, h() is a linear combination of the components of x
 - In vector form : $h(x) = w^Tx$
- The class separating function:
 - In 2-dimensions: a line
 - In 3-dimensions: a plane
 - In >3 dimension: hyperplane

Logistic Regression

10 features

Logistic Regression

Activation Functions

• Tanh()
$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$
$$f'(x) = 1 - f(x)^2$$

• Sigmoid/Logistic
$$f(x) = \frac{1}{1 + e^{(-x)}}$$

$$f'(x) = f(x)[1 - f(x)]$$

$$f(x) = \frac{2}{1 + e^{(-x)}} - 1$$

• Bipolar Sigmoid
$$f'(x) = \frac{1}{2}[1 + f(x)][1 - f(x)]$$

Sigmoid Function for Classification

$$y = \sigma(w^T x)$$

if $\sigma(w^Tx) > 0.5$, predict class 1 else if $\sigma(w^Tx) < 0.5$, predict class 0

Demo logistic1.py

Real Data Application

Features:

- Is_mobile (0/1)
- N_Products_viewed (int >0)
- Visit_duration (real>=0)
- Is_returning_visitor (0/1)
- Time_of_day (1, 2, 3, 4 = 4 24 hour split into 4 categories)
- Class: User_action (bounce/add_to_cart/ begin_checkout)

Demo ecommerce data.csv

Data Preprocessing

- Data pre-processing
- One-hot encoding:

Use Z-score for numeric features:
 n products viewed and visitor duration

Demo process.py

Prediction on Ecommerce Data

Random weights are used. How good is the prediction accuracy?

- Two things to come:
 - How to evaluate the quality of the logistic regression model learned?
 - How to improve the prediction accuracy?

Demo logistic_predict.py

Cross Entropy Error Cost Function

- Logistic Regression Error
 - 0 if correct, >0 if not correct, more wrong ==> bigger cost
- Cross-Entropy Error cost function

$$J = -(t \log(y) + (1 - t) \log(1 - y))$$

t is the target, y is the predicted value

Demo logistic2.py

Multiple Training Examples

$$J = -\sum_{n=1}^{N} t_n log(y_n) + (1 - t_n) log(1 - y_n)$$

To minimizing the cost function over the entire data set

$$\frac{\partial J}{\partial w_i} = 0$$

 Generally, there is no closed form solution for this minimization problem, except for special cases

Gradient Descent

Idea: take small steps in direction of derivative

Step size == learning rate (1 for this example)

Ex:

$$w = -2$$

$$w = -2 - 1*(-1) = -1$$

Now we're closer to the optimal point! (w=0)

Note: slope is 0 at the bottom, so no more changes will occur

Gradient Descent for Logistic Regression

$$J = -\sum_{n=1}^{N} t_n \log(y_n) + (1 - t_n) \log(1 - y_n)$$

Split into 3 derivatives:

$$\frac{\partial J}{\partial w_i} = \sum_{n=1}^{N} \frac{\partial J}{\partial y_n} \frac{\partial y_n}{\partial a_n} \frac{\partial a_n}{\partial w_i}$$
$$a_n = w^T x_n$$

Derivatives

$$J = -\sum_{n=1}^{N} t_n \log(y_n) + (1 - t_n) \log(1 - y_n)$$

$$\frac{\partial J}{\partial y_n} = -t_n \frac{1}{y_n} + (1 - t_n) \frac{1}{1 - y_n} (-1)$$

Derivatives

$$y_n = \sigma(a_n) = \frac{1}{1 + e^{-a_n}}$$

$$\frac{\partial y_n}{\partial a_n} = \frac{-1}{(1+e^{-a_n})^2} (e^{-a_n})(-1)$$

$$\frac{\partial y_n}{\partial a_n} = \frac{e^{-a_n}}{(1+e^{-a_n})^2} = \frac{1}{1+e^{-a_n}} \frac{e^{-a_n}}{1+e^{-a_n}} = y_n (1-y_n)$$

Derivatives

$$a_n = w^T x_n$$

$$a_n = w_0 x_{n0} + w_1 x_{n1} + w_2 x_{n2} + \dots$$

$$\frac{\partial a_n}{\partial w_i} = x_{ni}$$

Putting them all together

$$\frac{\partial J}{\partial w_i} = -\sum_{n=1}^{N} \frac{t_n}{y_n} y_n (1 - y_n) x_{ni} - \frac{1 - t_n}{1 - y_n} y_n (1 - y_n) x_{ni}$$

$$\frac{\partial J}{\partial w_i} = -\sum_{n=1}^{N} t_n (1 - y_n) x_{ni} - (1 - t_n) y_n x_{ni}$$

$$\frac{\partial J}{\partial w_i} = -\sum_{n=1}^{N} [t_n - t_n y_n - y_n + t_n y_n] x_{ni}$$

$$\frac{\partial J}{\partial w_i} = \sum_{n=1}^{N} (y_n - t_n) x_{ni}$$

Weight Updates

Repeat for M epoch:

on each epoch:

$$W_i + = \nabla W,$$

$$\nabla w = \lambda * (y - t) * x_i$$

 λ : Learning Rate \rightarrow step size

t : target class value

y: predicted class value

Demo logistic_train.py