Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 03/12/2016	Dr. David Israel Flores Granados	Se llevó a cabo una reestructuración completa al separarse los temas de TDA en una nueva asignatura.

Relación con otras asignaturas

Anteriores	Posteriores
Algoritmos y Estructura de datos.	
	Programación Orientada a Objetos
a) Estructuras de datos estáticas.b) Estructuras de control.	a) Tipos de datos abstractos.

Nombre de la asignatura	Departamento o Licenciatura		

Técnicas algorítmicas Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
2 - 2	IT0107	8	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio				
	HT	HP	TH	HI	
Seminario	48	16	64	64	

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

b) Búsqueda binaria

Unidad II. ALGORITMOS VORACES

Utilizar algo	oritmos voraces	para la	solución	de p	oroblemas	computables.

- 1) Definición
- 2) Algoritmos para grafos
 - a) Algoritmo de Kruskal
 - b) Algoritmo de Prim
 - c) Algoritmo de Dijkstra

Unidad III. DIVIDE Y VENCERÁS

Utilizar la técnica de divide y vencerás para la solución de problemas computables.

- 1) Precedentes históricos
- 2) Recursividad y divide y vencerás
- 3) Algunos problemas utilizando divide y vencerás

Unidad IV. PROGRAMACIÓN DINÁMICA

Utilizar la técnica de programación dinámica para la solución de problemas computables.

- 1) Elementos de la programación dinámica
- 2) Aplicaciones
 - a) Problema LCS (Longest Common Subsequence)
 - b) Problema de Calendarización de tareas.

Actividades que promueven el aprendizaje

ıdiante
Į

Promover el trabajo individual en la definición de propuestas de solución a problemas

determinados. Realizar tareas asignadas.

Coordinar la discusión de casos prácticos. Participar en el trabajo individual y en equipo.

Realizar demostraciones de algoritmos. Resolver casos prácticos.

Aplicar prácticas para la definición de algoritmos. Discutir temas en el aula.

Definir estrategias para identificar las principales técnicas algorítmicas para resolver problemas computables.

Participar en actividades extraescolares.

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal (señalar las actividades que realizarán):

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Tareas	30
Evidencias individuales	20
Evidencias grupales	20
Total	100

Fuentes de referencia básica

Bibliográficas

Cormen. (2009) Introduction to Algorithms. (3a Edición). EUA: MIT Press

Donald E. Knuth. (2011) The Art of Computer Programming. (1era Edición). EUA: Addison Wesley

Gilles Brassard. (1999) Fundamentos de Algoritmia. (2da Edición) EUA: Prentice Hall

Steven Skiena. (2002) Programming Challenges. (2da Edición) EUA: Springer Verlag

Weiss. (2000) Data Structures and Problem Solving Using Java. (2da Edición) EUA: Addison Wesley

Web gráficas

http://domino.research.ibm.com/comm/research.nsf/pages/r.algorithms.html 28 de Junio de 2010

Fuentes de referencia complementaria

Bibliográficas

Robert Sedgewick. (2005) Algorithms in C++ part 5. Graph Algorithms. (1era Edición) EUA: Addison Wesley

Vazirani. (2007) Approximation Algorithms. (2da Edición). EUA: Springer.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Maestría en Ciencias de la computación, Maestría en Ingeniería en Sistemas.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en desarrollo de sistemas.