LINEAR ALGEBRA AND MATRIX COMPUTATION

Mohammad Wasiq

Matrix Using R Programming Language

Linear Algebra and Matrix Computation DSM-1002

Table of Contents

1	Linear Algebra and Matrix Computation			
2	Matrix -	– Theory	3	
	2.1 Typ	pes of Matrix	3	
	2.1.1	Row Matrix	3	
	2.1.2	Column Matrix	3	
	2.1.3	Zero Matrix / Null Matrix	3	
	2.1.4	Square Matrix	3	
	2.1.5	Diagonal Matrix	4	
	2.1.6	Trace of Matrix	4	
	2.1.7	Identity Matix / Unit Matrix	4	
	2.1.8	Triangular Matrix	4	
	2.1.9	Symmetric Matrix	5	
	2.1.10	Skew Symmetric Matrix	5	
	2.1.11	Orthogonal Matrix	5	
	2.1.12	Conjugate of a Matrix	5	
	2.1.13	Matrix $A heta$	5	
	2.1.14	Unitary Matrix	5	
	2.1.15	Hermitian Matrix	5	
	2.1.16	Skew Hermitian Matrix	5	
	2.1.17	Idempotent Matrix	6	
	2.1.18	Involutory Matrix	6	
	2.1.19	Nilpotent Matrix	6	
	2.1.20	Periodic Matrix	6	
	2.1.21	Normal Matrix	6	
	2.2 Alg	ebra of Matrix	6	
	2.2.1	Addition of Matrix	6	
	2.2.2	Multiplication of Matrix	6	
	2.3 Tra	anspose of a Matrix	7	
	2.4 Ran	nk of a Matrix	7	
	2.5 Ech	nelon Form Matrix	7	

	2.6	Reduced Row Echelon Form Matrix	7
	2.6.	.1 Pivot Position	8
	2.6	.2 Pivot Column	8
	2.7	Rank of a Matrix by Echelon Form	8
	2.7.	.1 Rank of a Matrix by Normal Form method	8
	2.8	Characteristic Equation , Eigen Value & Eigen Vector	8
	2.9	Cayley-Hamilton (C-H) Theorem	9
3	Sur	nmary of Matrix Operators in R	9
	3.1	Creating Matrix	. 10
	3.2	Extraction of Matrix	. 11
	3.3	Mathematical Operation on Matrix	. 11
	3.4	Transpose of Matix	. 12
	3.5	Kronecker Products of Matrices	. 12
	3.6	Length & Dimension of Matrix	. 13
	3.7	Joining of Matrices	. 13
	3.8	Naming of Matrix	. 14
	3.9	Diagonal & Trace of Matrix	. 15
	3.10	Transepose of Product	. 16
	3.11	Determinant of Matrix	. 16
	3.12	Inverse of Matrix	
	3.13	Eigen Values & Eigen Vector of Matrix	. 17
	3.14	Singular Value Decomposition	. 18
	3.15	Cross-Product of Matrix	. 19
	3.16	Statistics on Matrix	. 19
	3.17	Rank of Matrix	. 20
	3.18	Solving the Linear Equations	. 20

1 Linear Algebra and Matrix Computation

Book :-: Basic of Algebra for Statistics with R Teacher :-: Prof. Ahmed Yusuf Adhami Sir

Department of Statistics and Operation Research , Aligarh Muslim University , Aligarh

Writer :-: Mohammad Wasiq

(MS Data Science , AMU)

2 Matrix – Theory

Matrix: A matrix is a rectangular array (arrangement) of scalars, usually presented in the following form:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & a_{ij} & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & b_{ij} & \cdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

2.1 Types of Matrix

2.1.1 Row Matrix

A matrix with only one row is called a row matrix or row vector.

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{bmatrix}_{m \times 1}$$

2.1.2 Column Matrix

A matrix with only one column is called a column matrix or column vector.

$$[a_{11} \ a_{12} \ \cdots \ a_{1n}]_{1\times n}$$

2.1.3 Zero Matrix / Null Matrix

A matrix whose elements are all zero is called a zero matrix and is usually denoted by 0.

$$0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & 0 & \cdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

2.1.4 Square Matrix

A matrix whose rows and columns are same.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{m \times m}$$

2.1.5 Diagonal Matrix

Let $A=[a_{ij}]$ be an n-square mtx. The diagonal of A consists of the elements with the same subscript , that is $a_{11},a_{22},\cdots,a_{ij},\cdots,a_{mn}$; m=n

$$A = \begin{bmatrix} a_{11} & & & \\ & a_{22} & & \\ & & a_{ij} & \\ & & & a_{mn} \end{bmatrix}_{m \times n}$$
; where $i = j/m = n$

2.1.6 Trace of Matrix

The sum of all diagonal elements of a matrix A. It's denoted by $\mathbf{tr}(\mathbf{A})$ $a_{11} + a_{22} + \cdots + a_{ii} + \cdots + a_{mn}$; $i = 1, 2 \dots n = m \sum_{i=j=1}^{n} a_{ij}$; $i = j = 1, 2, \dots, n$

Suppose $A = [a_{ij}]$ and $B = [b_{ij}]$ are n-square matrices and k is a scaler, then

- tr(A + B) = tr(A) + tr(B)
- tr(kA) = ktr(A)
- $tr(A^T) = tr(A)$
- tr(AB) = tr(BA)

2.1.7 Identity Matix / Unit Matrix

A square matrix which contain unit element diagonal matrix and all non-diagonal elements are zero .

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & 1 & \cdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{m \times n}$$

2.1.8 Triangular Matrix

If every element above or below the leading diagonal of a square matrix is zero, then the matrix is called a triangular matrix.

2.1.8.1 Lower Triangular Matrix

$$\begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{3\times 3}$$

2.1.8.2 upper Triangular Matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}_{3\times 3}$$

2.1.9 Symmetric Matrix

A square matrix is called symmetric, if for all values of i and j $a_{ij} = a_{ii} \Rightarrow A^T = A$

2.1.10 Skew Symmetric Matrix

A square matrix is called symmetric, if for all values of *i* and $j a_{ij} = -a_{ji} \Rightarrow A^T = -A$

2.1.11 Orthogonal Matrix

A aquare matrix A is called orthogonal matrix, if

$$AA^T = I$$

2.1.12 Conjugate of a Matrix

Let

$$A = \begin{bmatrix} -1+i & -2-3i & -4 \\ -7+2i & -i & -3-2i \end{bmatrix}_{2\times 3}$$

then Conjugate of Matrix A

$$\bar{A} = \begin{bmatrix} -1+i & -2+3i & -4 \\ -7-2i & -i & -3+2i \end{bmatrix}_{2\times 3}$$

2.1.13 Matrix A^{θ}

Transpose of the Conjugate Matrix A is A^{θ} .

$$A\to \bar A\to (\bar A)^T=A^\theta$$

2.1.14 Unitary Matrix

A square matrix A is said to be unitary if $A^{\theta}A = I$

$$\bar{A} = \begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}_{2\times 2}$$

2.1.15 Hermitian Matrix

A Square matrix $A=a_{ij}$ os said to be Hermitian matrix if every $i-j^{th}$ element of A is equal to conjugate complex of $j-i^{th}$ element of A or in other words $a_{ij}=-a_{ji}$ The necessary condition and sufficient condition for the matrix A to be Hermitian is that $A=A^{\theta}$

2.1.16 Skew Hermitian Matrix

$$A^\theta = -A \Rightarrow (\bar{A})^T = -A$$

2.1.17 Idempotent Matrix

$$A^2 = A$$

2.1.18 Involutory Matrix

$$A^2 = I$$

2.1.19 Nilpotent Matrix

$$A^k = 0$$

2.1.20 Periodic Matrix

$$A^{k+1} = A$$

2.1.21 Normal Matrix

A real matrix is normal if it commutes with its transpose A^T , that is, $AA^T = A^TA$ All symmetric, skew-symmetric and orthogonal matrices are normal matrices.

$$\begin{bmatrix} 6 & -3 \\ 3 & 6 \end{bmatrix}$$

2.2 Algebra of Matrix

2.2.1 Addition of Matrix

Consider matrices A, B, C (with same size) and any scalars k and k', then,

- (A+B) + C = A + (B+C)
- A + 0 = 0 + A = 0
- A + (-A) = (-A) + A = 0
- $\bullet \quad A+B=B=A$
- k(A + B) = kA + kB
- (k + k')A = kA + k'A
- (kk')A = k(k'A) = k'(kA)
- 1.A = A

2.2.2 Multiplication of Matrix

- **(AB)C = A(BC)** {Associative Law}
- **A(B + C) = AB + AC** {Left Distribution}
- **(B + C)A = BA + CA** {Right Distribution}
- k(AB) = (kA)B = A(kB)
- $AB \neq BA$
- $\bullet \qquad 0.A = 0$

2.3 Transpose of a Matrix

The transpose of a Matrix A is the matrix obtained by writing the columns of A in order as row. * **Properties** * $(A + B)^T = A^T + B^T * (A^T)^T = A * (kA)^T = kA^T * (AB)^T = B^T A^T$

2.4 Rank of a Matrix

Let A be any $m \times n$ matrix, It has square sub-matrices of different orders. The determinent of these square sub-matrices are called minors of A.

A mtx. A is said to be of rank \mathbf{r} if,

- It has atleast one non-zero minor of order r.
- All the minors of order or higher than are zero.
- It's denoted by $\rho(A)$ or r(A).

Properties

- If is a null matrix, then $\rho(A) = 0$.
- If A is not a null matrix, then $\rho(A) \ge 1$
- If A is an $m \times n$ matrix, then $\rho(A) \leq min(m, n)$.
- If A is a non-singular matrix, then $\rho(A) = n$.
- Rank of I_n is n.
- $\rho(A) = \rho(A^T)$.

2.5 Echelon Form Matrix

A matrix is in echelon form, if it satisfies the following conditions:

- The first nonzero element in each row, called the leading element, is always strictly to the right of the leading element of the row above it.
- Rows with all zero elements, if any are below the rows having a nonzero element.

2.6 Reduced Row Echelon Form Matrix

A matrix is in echelon form, if it satisfies the following conditions:

- The first nonzero element in each row, called the leading element, is always strictly to the right of the leading element of the row above it.
- Rows with all zero elements, if any are below the rows having a nonzero element
- The leading element in each nonzero row should be 1.

Each leading is the only nonzero element in its column.

2.6.1 Pivot Position

A position of a leading element in an echelon form of a matrix is called pivot position.

2.6.2 Pivot Column

A column that contains a pivot position is called a pivot column.

2.7 Rank of a Matrix by Echelon Form

Once a matrix is transformed into an echelon form by using the *elementary row* operations, rank of the matrix is equal to the number of nonzero rows in its echelon form matrix.

2.7.1 Rank of a Matrix by Normal Form method

In Ais an $m \times n$ matrix and by a series of elementary (row or column or both) transformations, it can be put into one of the following forms (called normal or canonical forms):

$$\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} I_r \\ 0 \end{bmatrix}, [I_r & 0], [I_r]$$

2.8 Characteristic Equation, Eigen Value & Eigen Vector

For every square matrix A of order n , we can form a matrix $A-\lambda I$, where λ is a scalar and I is the unit matrix of order n. The determinant of this matrix equated to zero i.e., $|A-\lambda I|=0$ is called the characteristic equation of . On expanding the determinant we can write this equation as

$$(-1)^{n}[\lambda^{n} + k_{1}\lambda^{n-1} + k_{2}\lambda^{n-2} + \dots + k_{n}] = 0$$

The roots of this equation are called **characteristic roots** or **latent roots** or **eigen values** . Now consider $(A - \lambda I)X = 0$

$$i.e. \quad A = \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \cdots & \cdots & a_{ii} - \lambda & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}_{n \times n} \begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{bmatrix}_{n \times 1}$$

These equations will have a non-trivial solution, only if $\rho(A - \lambda I) < n$ (=no. of unknown), which is possible when $(A - \lambda I)$ is singular, i.e., if $|A - \lambda I| = 0$.

This is the characteristic equation of the matrix A and has roots, which are the eigen values of A . Corresponding to each root, the homogeneous system $(A - \lambda I)X = 0$, has a nonzero solution

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}_{n \times 1}$$

which is called the eigen vector or latent vector.

Properties

- Any mtx. A and it's A^T have the same eigen values.
- The sum of eigen values of a mtx. is equal to the sum of the elements on the principal diagonal of the mtx.
- The product of the eigen values of a mtx. A is equal to the determination of A.
- $\lambda_1, \lambda_2, \dots, \lambda_m$, where λ_i 's are eigen values of A.

$$kA \rightarrow k\lambda_1, k\lambda_2, \dots, k\lambda_m$$

$$A^m \rightarrow \lambda_1^m, \lambda_2^m, \dots, \lambda_1^m$$

$$A^{-1} = \frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_m}$$
 for non-singular matrix.

2.9 Cayley-Hamilton (C-H) Theorem

$$|A - \lambda I| = (-1)^n [\lambda^n + k_1 \lambda^{n-1} + k_2 \lambda^{n-2} + \dots + k_n] = 0$$

then,

$$(-1)^n[A^n + k_1A^{n-1} + k_2A^{n-2} + \dots + k_nI] = 0$$

3 Summary of Matrix Operators in R

The operations given below assume that the orders of the matrices involved allow the operation to be evaluated. More details of these operations will be given in the note later. \mathbf{R} is case sensitive so A and a denote distinct objects.

- To create a vector $\mathbf{x} \Rightarrow x = c(x_1, x_2, ..., x_p)$.
- To access an individual element in a vector x, the i^{th} , $\mathbf{x[i]}$.
- To create a matrix $A \Rightarrow A = matrix(data, nrow = m, ncol = n, byrow = F)$.
- To access an individual element in a matrix A, the $(i,j)^t h \Rightarrow \mathbf{A[i,j]}$.

- To access an individual row in a matrix A, the $i^{th} \Rightarrow A[i]$
- To access an individual column in a matrix A, the $j^{th} \Rightarrow A[,j]$.
- To access a subset of rows in a matrix $A \Rightarrow A[i1 : i2,]$.
- To access a subset of columns in a matrix $A \Rightarrow A[, j1:j2]$.
- To access a sub-matrix of $A \Rightarrow A[i1:i2,j1:j2]$.
- Addition $A+B \Rightarrow A+B$.
- Subtraction $A-B \Rightarrow A-B$.
- Multiplication AB \Rightarrow **A %*% B**
- Hadamard multiplication $A \odot B \Rightarrow A * B$.
- Kronecker multiplication $A \otimes B \Rightarrow A \%x\% B$.
- Transpose $A' \Rightarrow t(A)$
- Matrix cross-product $A'B \Rightarrow crossprod(A, B)$.
- Inversion $A^{-1} \Rightarrow solve(A)$.
- Moore-Penrose generalized inverse $A^+ \Rightarrow ginv(A)$ (in MASS library) [or MPinv(A) (in gnm library)].

Note: ginv(. will work with almost any matrix but it is safer to use solve(.) if you expect the matrix to be non-singular since solve(.) will give an error message if the matrix is singular or non-square but ginv(.) will not.

- Determinant **det(A)** or $|A| \Rightarrow det(A)$.
- Eigenanalysis \Rightarrow eigen(A).
- To extract a diagonal of a matrix A as a vector \Rightarrow diag(A).
- Trace of a matrix $A \Rightarrow sum(diag(A))$.
- To create a diagonal matrix $\Rightarrow diag(c(x_{11}, x_{22}, ..., x_{pp}))$.
- To create a diagonal matrix from another matrix $\Rightarrow diag(diag(A))$.
- To change a dataframe into a matrix \Rightarrow **data.matrix(dataframe)**.
- To change some other object into a matrix \Rightarrow as.matrix(object).
- To join vectors into a matrix as columns \Rightarrow *cbind*($vec_1, vec_2, \dots, vec_n$).
- To join vectors into a matrix as rows $\Rightarrow rbind(vec_1, vec_2, ..., vec_n)$.
- To join matrices A and B together side by side \Rightarrow **cbind(A,B)**.
- To stack A and B together on top of each other \Rightarrow **rbind(A,B)**.
- To find the length of a vector $x \Rightarrow length(x)$.
- To find the dimensions of a matrix $A \Rightarrow dim(A)$

3.1 Creating Matrix

$$matix(c(x_1,x_2,\ldots,x_n)), nrow, ncol, by row$$

```
# Create a Matrix A Column-wise (by default)
A <- matrix(c(1,2,3,4,5,6) , nrow = 2 , ncol = 3); A
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6</pre>
```

```
# Create a Matrix B row-wise
B \leftarrow matrix(c(1,2,3,4,5,6), nrow = 2, ncol = 3, byrow = T); B
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
3.2 Extraction of Matrix
# Extract the full Row
A[2,]
## [1] 2 4 6
# Extract the full Column
A[, 2]
## [1] 3 4
# Extract the element located at row 2 , col 2
A[2, 2]
## [1] 4
3.3 Mathematical Operation on Matrix
# Addition of Matrices
A + B
## [,1] [,2] [,3]
## [1,] 2 5 8
## [2,] 6 9 12
# Subtraction of Matrices
A - B
## [,1] [,2] [,3]
## [1,] 0 1
## [2,] -2 -1
# Multiply the matrix by 2
2 * A
## [,1] [,2] [,3]
## [1,] 2 6 10
## [2,] 4 8 12
A * 2
```

```
## [,1] [,2] [,3]
## [1,] 2 6 10
## [2,] 4 8 12

# Multiplication of Matrices
# A*B gives element-by-element multiplication (the Hadamard or Schur product) which is rarely required
A*B

## [,1] [,2] [,3]
## [1,] 1 6 15
## [2,] 8 20 36
```

3.4 Transpose of Matix

```
Α
## [,1] [,2] [,3]
## [1,]
         1 3
## [2,] 2 4
# Transpose of Matix
t(A)
## [,1] [,2]
## [1,]
         1
## [2,] 3 4
## [3,] 5 6
# Multiplication of t(A) and B by %*%
t(A)%*%B
##
    [,3] [,2] [,3]
## [1,] 9 12 15
## [2,] 19
            26
                33
            40
                51
## [3,] 29
```

3.5 Kronecker Products of Matrices

```
# Kronecker Products of A and B
A%x%B
##
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,]
          1 2 3 3 6
                                           10
                                9
                                     5
## [2,] 4 5 6 12 15
## [3,] 2 4 6 4 8
## [4,] 8 10 12 16 20
          4 5 6 12
                                            25
## [2,]
                             15
                                  18
                                      20
                                                30
                                  12
                                      6
                                           12
                                                18
                                 24
                                           30
                                      24
                                                36
```

```
# Kronecker Products of A and B
B%x%A
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
##
## [1,]
         1
                       2
                           6
                               10
## [2,]
## [3,]
         2
            4
                  6
                          8
                                       12
                               12
                                    6
                                            18
         4
                     5
             12
                 20
                          15
                               25
                                   6
                                       18
                                            30
## [4,] 8 16
                        20 30 12
                 24
                    10
                                       24
                                            36
```

3.6 Length & Dimension of Matrix

```
# No. of Elements in Matrix
length(A)

## [1] 6

# Dimension of Matrix
dim(A)

## [1] 2 3

dim(t(A))

## [1] 3 2

# Class of Matrix
class(A)

## [1] "matrix" "array"
```

3.7 **Joining of Matrices**

rbind() cbind()

```
# Joining Row-wise
rbind(A , B)

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
## [3,] 1 2 3
## [4,] 4 5 6

# Joining Column-wise
cbind(A , B)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 3 5 1 2 3
## [2,] 2 4 6 4 5 6
# Transpose of Joined Matrix
t(rbind(t(A), t(B)))
    [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 3 5 1 2 3
## [2,] 2 4 6 4 5 6
t(cbind(t(A), t(B)))
      [,1] [,2] [,3]
## [1,]
        1
            3
## [2,] 2 4
## [3,] 1 2
                6
                3
## [4,] 4 5
```

3.8 Naming of Matrix

```
dim(A)
## [1] 2 3
# Columns Names
colnames(A) <- c("Joya", "Amoha", "UP")</pre>
# Rows Names
rownames(A) <- c("A" , "B")
Α
## Joya Amoha UP
## A 1 3 5
## B 2 4 6
# Another Method for Naming Matrix
dimnames(A) <- list(c("A" , "B") , c("C" , "D" , "E"))</pre>
Α
## C D E
## A 1 3 5
## B 2 4 6
# Another Method
rn <- c("a" , "b")
cn <-c("c" , "d" , "e")
rownames(A) <- rn
colnames(A) <- cn</pre>
Α
```

```
## c d e
## a 1 3 5
## b 2 4 6
      Diagonal & Trace of Matrix
E \leftarrow matrix(c(1,2,3,4,5,6,7,8,9), 3, 3, byrow = T); E
        [,1] [,2] [,3]
## [1,]
         1 2
               5
## [2,]
                    6
               8
        7
## [3,]
# Diagonal of Matrix
diag(E)
## [1] 1 5 9
# Diagonal of Diagonal Matrix , it show only diagonal matrix
diag(diag(E))
##
        [,1] [,2] [,3]
## [1,]
          1
               0
## [2,] 0 5
## [3,] 0 0
                    0
                    9
# Same as above
diag(c(1, 5, 9))
##
        [,1] [,2] [,3]
## [1,]
          1
               0
               5
## [2,]
          0
                    0
## [3,]
        0
# Trace of Matrix
sum(diag(E))
## [1] 15
# Trace of Product
F <- matrix(1:9 , 3,3)
sum(diag(E %*% F))
## [1] 285
sum(diag(F %*% E))
## [1] 285
```

3.10 Transepose of Product

```
t(E %*% F) # Correct way
        [,1] [,2] [,3]
## [1,]
         14 32
                  50
         32 77 122
## [2,]
       50 122 194
## [3,]
t(E) %*% t(F)
        [,1] [,2] [,3]
## [1,]
         66
              78
              93
## [2,]
         78
                 108
## [3,] 90 108 126
3.11 Determinant of Matrix
G \leftarrow matrix(c(1,-2,2,2,0,1,1,1,-2), 3,3, byrow = T); G
##
        [,1] [,2] [,3]
```

[1,] 1 -2 2 ## [2,] 2 0 1 ## [3,] 1 1 -2

Determinent of Matrix det(G)

[1] -7

3.12 Inverse of Matrix

Make sure that the Matrix should be **Square** and **Non-Singular**

```
A \leftarrow matrix(c(1,-2,2,2,0,1,1,1,-2), nrow = 3, ncol = 3); A
        [,1] [,2] [,3]
##
## [1,]
        1 2 1
## [2,]
          -2
## [3,]
         2
               1
                   - 2
# Inverse of Matrix
solve(A)
##
             [,1]
                        [,2]
                                   [,3]
## [1,] 0.1428571 -0.7142857 -0.2857143
## [2,] 0.2857143 0.5714286 0.4285714
## [3,] 0.2857143 -0.4285714 -0.5714286
# Create a Matrix B row-wise
B \leftarrow matrix(c(4,6,5,-7,6,4,0,9,3), nrow = 3, ncol = 3, byrow = T); B
        [,1] [,2] [,3]
## [1,] 4 6 5
```

```
## [2,] -7 6
## [3,]
# Inverse of Multiplication of Matix
solve(A %*% B)
##
               [,1]
                           [,2]
                                      [,3]
## [1,] -0.013136289 -0.11822660 -0.0771757
## [2,] 0.031198686 -0.05254516 -0.1083744
## [3,] 0.001642036 0.01477833 0.1346470
# Inverse by MASS Libray
library(MASS)
ginv(A %*% B)
##
               [,1]
                           [,2]
                                      [,3]
## [1,] -0.013136289 -0.11822660 -0.0771757
## [2,] 0.031198686 -0.05254516 -0.1083744
## [3,] 0.001642036 0.01477833 0.1346470
```

3.13 Eigen Values & Eigen Vector of Matrix

```
e <- eigen(A); e
## eigen() decomposition
## $values
## [1] -2.509755+0.000000i 0.754878+1.489724i 0.754878-1.489724i
##
## $vectors
##
                                       [,2]
                 [,1]
                                                            [,3]
## [1,] -0.0365345+0i 0.6969814+0.0000000i 0.6969814+0.0000000i
## [2,] -0.3948878+0i -0.2817990+0.5292839i -0.2817990-0.5292839i
## [3,] 0.9180027+0i 0.3927524-0.0202581i 0.3927524+0.0202581i
# Eigen Values of Matrix
round(e$values , 2)
## [1] -2.51+0.00i 0.75+1.49i 0.75-1.49i
# Eigen Vector of Matrix
round(e$vectors , 2)
           [,1]
                      [,2]
## [1,] -0.04+0i 0.70+0.00i 0.70+0.00i
```

```
## [2,] -0.39+0i -0.28+0.53i -0.28-0.53i
## [3,] 0.92+0i 0.39-0.02i 0.39+0.02i

# Eigen of two Matries
e2 <- eigen(A %*% B)
round(e2$values, 2)

## [1] -6.48+13.68i -6.48-13.68i 7.97+ 0.00i

round(e2$vectors , 2)

## [1,] [,2] [,3]
## [1,] -0.88+0.00i -0.88+0.00i -0.03+0i
## [2,] -0.13-0.46i -0.13+0.46i -0.52+0i
## [3,] 0.03+0.03i 0.03-0.03i 0.85+0i</pre>
```

3.14 Singular Value Decomposition

```
X \leftarrow matrix(c(1,2,3,4,5,6,7,8,9),3,3,byrow=T); X
##
        [,1] [,2] [,3]
## [1,]
          1 2
## [2,]
          4
               5
                    6
                    9
## [3,] 7
               8
# Singular Value Decomposition
s \leftarrow svd(X)
# d
round(s$d, 2)
## [1] 16.85 1.07 0.00
# u
round(s$u , 2)
       [,1] [,2] [,3]
## [1,] -0.21 0.89 0.41
## [2,] -0.52 0.25 -0.82
## [3,] -0.83 -0.39 0.41
# v
round(s$v , 2)
        [,1] [,2] [,3]
## [1,] -0.48 -0.78 -0.41
## [2,] -0.57 -0.08 0.82
## [3,] -0.67 0.63 -0.41
```

3.15 Cross-Product of Matrix

It's same as X^TX

```
A <- matrix(c(1,2,3,4,5,6), nrow=2, ncol=3, byrow=T)
B <- matrix(c(1,2,3,4,5,6), nrow=2, ncol=3, byrow=T)
# Cross-Product of single matrix
crossprod(A)
##
        [,1] [,2] [,3]
## [1,]
         17
               22
               29
## [2,]
         22
                    36
          27
               36
                    45
## [3,]
# Cross-Product of two matrices
crossprod(A , B)
        [,1] [,2] [,3]
##
## [1,]
          17
               22
## [2,]
          22
               29
                    36
## [3,] 27
               36
                    45
3.16 Statistics on Matrix
X \leftarrow matrix(c(2,3,5,6,4,2,4,5,4), 3,3)
# Mean of complete matrix
mean(X)
## [1] 3.888889
# Standard Deviation of Matrix
sd(X)
## [1] 1.364225
# Column wise Sum of Matrix
colSums(X)
## [1] 10 12 13
# Column-wise Mean of Matrix
colMeans(X)
## [1] 3.333333 4.000000 4.333333
# Column-wise Summary of Matrix
summary(X)
                          V2
                                      V3
##
          ٧1
## Min. :2.000 Min. :2
                                Min.
                                       :4.000
## 1st Qu.:2.500 1st Qu.:3 1st Qu.:4.000
```

```
## Median :3.000
                  Median :4
                             Median :4.000
## Mean :3.333
                             Mean :4.333
                  Mean :4
## 3rd Qu.:4.000
                  3rd Qu.:5 3rd Qu.:4.500
## Max.
        :5.000 Max. :6
                             Max. :5.000
# Row-wise Sum of Matrix
rowSums(X)
## [1] 12 12 11
# Row-wise Mean
rowMeans(X)
## [1] 4.000000 4.000000 3.666667
```

Other Statistical Functions can be find by using *apply*()

3.17 Rank of Matrix

```
library(Matrix)
a <- matrix(1:9 , 3,3); a
##
       [,1] [,2] [,3]
## [1,]
          1 4
## [2,]
## [3,]
          2
               5
                    8
## [3,]
          3
# Rank of a Matrix
rankMatrix(a)
## [1] 2
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 6.661338e-16
```

3.18 Solving the Linear Equations

Task: Solve the following Equations

$$x + 2y + 3z = 20$$

$$2x + 2y + 3z = 100$$

$$3x + 2y + 8z = 200$$