

Dr. Azadeh Mohammadi

Lecturer in Data Science

Dr. Azadeh Mohammadi

Learning outcome

- Describing the basic principles of classification
- Explaining KNN algorithm

• Explaining decision tree algorithm

Analysing the classification performance and comparing the results

- Classification is a supervised method
 - The training data (observations) are accompanied by **labels** indicating the class of the observations

• It creates a model based on the training data

• Classification model (classifier) predicts categorical class labels for new data (based on the model which is trained on the training set)

- Human can learn through examples
 - It is difficult for a child to differentiate between apple and orange. When you constantly show them pictures and the real fruits, they will be able to identify them correctly.

color	shape	texture	Has core	label
Red	Round	smooth	Yes	Apple
Yellow	Oval	Smooth	No	Banana
Green	Round	smooth	Yes	Apple

Test data

• Classification: Given a collection of records (training set), find a model for class attribute as a function of the values of other attributes (learn a model for discriminating between records of different classes)

• Goal: previously unseen records should be assigned to a class as accurately as possible.

• A test set is used to determine the accuracy of the model.

- We usually split our dataset into two partitions:
 - Training set:
 - Each tuple/sample in training set has a set of features (attributes) and a class label attribute (Records with known class labels)
 - Training set is used for Model construction
 - The model is represented as classification rules, decision trees, mathematical formulas, ...
 - Test set:
 - Test set is used to evaluate the model
 - We apply our model on the test set to predict their class label and compare it with main labels
 - Test set is independent of training set
- The classification model is applied to new records with unknown class labels

Applications

• Credit/loan approval: if a loan application is safe or risky

• Medical diagnosis: if a tumor is cancerous or benign

• Fraud detection: if a transaction is fraudulent

• Web page classification: which topic web page belongs (finance, weather, entertainment, sports, etc)

Classification algorithms

• There are different methods for classification:

- Decision tree
- KNN
- Support Vector Machines
- Neural Networks
- Deep Learning
- •

• The KNN algorithm algorithm assumes that similar things exist in close proximity.

- It is a Lazy classification method
 - Lazy Learning: The model is not learned using training data in advance; instead, the learning process is deferred until a prediction is requested for a new instance

• Nearest neighbors are those data points that have minimum distance in feature space from our new data point (test data)

K is the number of data points we consider for neighborhood

• Therefore, distance metric and K value are two important considerations while using the KNN algorithm

• KNN algorithm:

- Load the training data
- Select the number K of the neighbors
- Predict a class value for new data X:
 - Calculate distance(X, Xi) based on chosen distance metric, where X= new data point, Xi= training data samples, i=1,2,3,...,n.
 - Sort these distances in increasing order.
 - From this sorted list, select the top 'K' rows (K neighbors with least distance)
 - Find the most frequent class from these chosen 'K' rows (major voting). This will be your predicted class

• Choosing K:

- If the problem is a binary classification, we usually make K an odd number to have a tiebreaker
- If we keep the value of k low, we risk ourselves of overfitting (the model can't generalize well), while if we keep the value of k high, we risk ourselves of underfitting
 - Overfitting occurs when a model fits closely to the peculiarities of the training set but is not able to generalize on new data
 - Underfitting occurs when a model is too simple and fails even on the training set

- Advantages of KNN Algorithm:
 - It is simple to implement
 - It is robust to the noisy training data
 - It can be more effective if the training data is large
 - There's no need to build a model, tune several parameters, or make additional assumptions
 - The algorithm is versatile. It can be used for classification, regression, and missing value estimation

- Disadvantages of KNN Algorithm:
 - Always needs to determine the value of K which may be complex some time
 - The computation cost is high because of calculating the distance between the data points for all the training samples
 - The algorithm becomes significantly slower as the number of examples and/or variables increase

• Many Decision tree Algorithms:

- ID3
- C4.5
- CART
- SLIQ
- SPRINT
- •

- Decision tree: Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class or
 - There are no remaining attributes for further partitioning (majority voting is employed for classifying the leaf)

or

• There are no samples left

- Internal node denotes a decision node (splitting attributes)
- Branch shows the values of the attribute
- Leaf nodes represent class labels or class distribution

Splitting Attributes

age	Income	Student	credit_rating	buys_compter
<=30	No	Yes	fair	?

- Important aspects:
 - Determine how to split the records (best split)
 - Determine when to stop splitting
 - How to Classify a leaf node

- How to split datasets?
 - Select an attribute as the <u>decision node</u> and partition dataset based on different values of that node

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

• How to select the decision node?

- How to select the decision node?
 - Choose the attribute that decrease impurity more (information gain)

• Entropy shows the impurity in a dataset. When set of object is pure, entropy is zero. When we have maximum impurity entropy is one.

• How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

- Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

• Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

- p(j | t) is the relative frequency of class j at node t
- Measures homogeneity of a node
 - Minimum (0) when all records belong to one class
 - Maximum ($\log n_c$) when records are equally distributed among all classes implying least information (n_c is the number of class)

C1	2	P(C1) = 2/6	P(C2) = 4/6
C2	4	Entropy = - (2	$1/6$) $\log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

• Information Gain:

- Parent Node, p is split into k partitions;
- n_i is number of records in partition i
- Measures reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)

• ID3 algorithm:

- Figure out the best feature to split by using information gain
- Add this node to the tree
- Partition the dataset using this attribute
- For each partition, grow branches from this node
- Recursively repeat the process for each of these branches using the remaining partition of the dataset

- Stop the recursion and construct a leaf node when:
 - All of the instances in the remaining dataset have the same classification class label
 - Create a leaf node with that classification as its label

or

- The set of features left to check is empty
 - Create a leaf node with the majority class of the dataset as its classification or
- The remaining dataset is empty
 - Create a leaf note one level up (parent node), with the majority class

• Example:

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Which attribute should be selected as root?

- The one with the greatest information gain
- We should calculate the information gain for each case

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Entropy of entire dataset

$$S = [9+, 5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

Entropy of sunny partition

$$S_{Sunny} \leftarrow [2+, 3-$$

$$S_{Sunny} \leftarrow [2+, 3-]$$
 $Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.971$

Entropy of overcast partition

$$S_{overcast} \leftarrow [4+,0-]$$

$$S_{Overcast} \leftarrow [4+,0-]$$

$$Entropy(S_{Overcast}) = -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$$

Entropy of rainy partition

$$Entropy(S_{Rain}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.971$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Outlook:
$$S = [9+,5-]$$
 $Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$

$$S_{Sunny} \leftarrow [2+,3-]$$
 $Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.971$

$$S_{Overcast} \leftarrow [4+,0-]$$
 $Entropy(S_{Overcast}) = -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$

$$S_{Rain} \leftarrow [3+,2-]$$
 $Entropy(S_{Rain}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.971$

$$Gain(S,Outlook) = Entropy(S) - \sum_{v \in \{Sunny,Overcast,Rain\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Outlook)

$$= Entropy(S) - \frac{5}{14}Entropy(S_{Sunny}) - \frac{4}{14}Entropy(S_{Overcast})$$
$$-\frac{5}{14}Entropy(S_{Rain})$$

$$Gain(S, Outlook) = 0.94 - \frac{5}{14}0.971 - \frac{4}{14}0 - \frac{5}{14}0.971 = 0.2464$$

• We calculate the information gain of spitting based on other attributes

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Humidity:

$$S = [9+, 5-] \qquad Entropy(S) = -\frac{9}{14}log_{2}\frac{9}{14} - \frac{5}{14}log_{2}\frac{5}{14} = 0.94$$

$$S_{High} \leftarrow [3+, 4-] \qquad Entropy(S_{High}) = -\frac{3}{7}log_{2}\frac{3}{7} - \frac{4}{7}log_{2}\frac{4}{7} = 0.9852$$

$$S_{Normal} \leftarrow [6+, 1-] \qquad Entropy(S_{Normal}) = -\frac{6}{7}log_{2}\frac{6}{7} - \frac{1}{7}log_{2}\frac{1}{7} = 0.5916$$

$$Gain(S, Humidity) = Entropy(S) - \sum_{v \in (High, Normal)} \frac{|S_{v}|}{|S|} Entropy(S_{v})$$

$$Gain(S, Humidity)$$

$$= Entropy(S) - \frac{7}{14} Entropy(S_{High}) - \frac{7}{14} Entropy(S_{Normal})$$

$$Gain(S, Humidity) = 0.94 - \frac{7}{14}0.9852 - \frac{7}{14}0.5916 = 0.1516$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Wind:

$$S = [9+,5-] \qquad Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Strong} \leftarrow [3+,3-] \qquad Entropy(S_{Strong}) = 1.0$$

$$S_{Weak} \leftarrow [6+,2-] \qquad Entropy(S_{Weak}) = -\frac{6}{8}log_2\frac{6}{8} - \frac{2}{8}log_2\frac{2}{8} = 0.8113$$

$$Gain(S,Wind) = Entropy(S) - \sum_{v \in \{Strong,Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S,Wind) = Entropy(S) - \frac{6}{14} Entropy(S_{Strong}) - \frac{8}{14} Entropy(S_{Weak})$$

$$= 0.94 - \frac{6}{14} 1.0 - \frac{8}{14} 0.8113 = 0.0478$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Gain(S, Outlook) = 0.2464 \longrightarrow Max info gain$$

$$Gain(S, Temp) = 0.0289$$

$$Gain(S, Humidity) = 0.1516$$

$$Gain(S, Wind) = 0.0478$$

• Continuing left hand side branch:

Day	Temp	Humidity	Wind	Play Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Temp:

$$S_{Sunny} = [2+,3-] \qquad Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$$

$$S_{Hot} \leftarrow [0+,2-] \qquad Entropy(S_{Hot}) = 0.0$$

$$S_{Mild} \leftarrow [1+,1-] \qquad Entropy(S_{Mild}) = 1.0$$

$$S_{Cool} \leftarrow [1+,0-] \qquad Entropy(S_{Cool}) = 0.0$$

$$Gain(S_{Sunny}, Temp) = Entropy(S) - \sum_{v \in (Hot, Mild, Cool)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Sunny}, Temp)$$

$$= Entropy(S) - \frac{2}{5} Entropy(S_{Hot}) - \frac{2}{5} Entropy(S_{Mild})$$

$$- \frac{1}{5} Entropy(S_{Cool})$$

$$Gain(S_{Sunny}, Temp) = 0.97 - \frac{2}{5}0.0 - \frac{2}{5}1 - \frac{1}{5}0.0 = 0.570$$

• Continuing left hand side branch:

Day	Temp	Humidity	Wind	Play Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Humidity:

$$S_{Sunny} = [2+,3-]$$
 $Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$
 $S_{high} \leftarrow [0+,3-]$ $Entropy(S_{High}) = 0.0$
 $S_{Normal} \leftarrow [2+,0-]$ $Entropy(S_{Normal}) = 0.0$

$$Gain (S_{Sunny}, Humidity) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$
3

$$Gain \left(S_{Sunny}, Humidity\right) = Entropy(S) - \frac{3}{5} Entropy \left(S_{High}\right) - \frac{2}{5} Entropy \left(S_{Normal}\right)$$

Day	Temp	Humidity	Wind	Play Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

$$Gain(S_{sunny}, Temp) = 0.570$$

$$Gain(S_{sunny}, Humidity) = 0.97 \longrightarrow Max info gain$$

$$Gain(S_{sunny}, Wind) = 0.0192$$

• Final decision tree:

- Converting decision tree to rules:
 - Each branch shows a rule


```
R₁: If (Outlook=Sunny) ∧ (Humidity=High) Then PlayTennis=No
```

R₂: If (Outlook=Sunny) ∧ (Humidity=Normal) Then PlayTennis=Yes

R₃: If (Outlook=Overcast) Then PlayTennis=Yes

 R_4 : If (Outlook=Rain) \land (Wind=Strong) Then PlayTennis=No

R₅: If (Outlook=Rain) ∧ (Wind=Weak) Then PlayTennis=Yes

- Information gain measure is biased towards attributes with a large number of values
 - C4.5 (a successor of ID3) uses Gain ratio to overcome the problem (normalization to information gain)

Possible nodes to split on:

- Studentld will result in perfectly pure children.
- · Will have the greatest gain.
- Should have been removed as a predictor variable.

Gain ratio:

GainRatio(A) = Gain(A)/SplitInfo(A)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

• Example:

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14}) = 1.557$$

gain_ratio(income) = 0.029/1.557 = 0.019

age	income	student	credit_rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

• C4.5 Algorithm:

- is similar to ID3, but use gain ratio instead of information gain for selecting features
 - The attribute with the maximum gain ratio is selected as the splitting attribute

- Gini index:
 - If a data set D contains examples from C classes, gini index, gini(D) is defined as

$$gini(D) = 1 - \sum_{j=1}^{C} p_{j}^{2}$$

- where p_i is the relative frequency of class j in D
- In Gini calculation we perform only binary split
- If a data set D is split on attribute A into $\underline{\mathbf{two}}$ subsets D_1 and D_2 , the gini index $gini_A(D)$ is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

• Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

• The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity, $\Delta gini(A)$) is chosen to split the node

• Example:

age	income	student	credit_rating	buys_computer
<=30	high	n o	fair	n o
<=30	high	n o	excellent	n o
3140	high	n o	fair	yes
> 40	m e d i u m	n o	fair	yes
> 40	low	yes	fair	yes
> 40	low	yes	excellent	n o
3140	low	yes	excellent	yes
<=30	m e d i u m	n o	fair	n o
<=30	low	yes	fair	yes
> 40	m e d i u m	yes	fair	yes
<=30	m e d i u m	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	m e d i u m	n o	excellent	n o

• D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

• Suppose the attribute income partitions D into 10 in D1: {low, medium} and 4 in D2 {high}

$$\begin{split} &gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_2) \\ &= \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) \\ &= 0.443 \\ &= Gini_{income} \in \{high\}(D). \end{split}$$

- $Gini_{\{low, high\}}$ is 0.458; $Gini_{\{medium, high\}}$ is 0.450.
- {low,medium} (and {high}) has the lowest Gini index

• CART Algorithm:

- Use gini index instead of information gain or gain ratio for selecting features
 - The attribute with the minimum gini index is selected as the splitting attribute

- Advantages of Decision tree:
 - Easy to understand, interpret, visualize
 - A decision tree does not require normalization or scaling of data (scale-invariant)
 - Missing values in the data also do not affect the process of building a decision tree to any considerable extent

- Disadvantages of Decision tree:
 - They are unstable (a small change in the data can lead to a large change in the structure of the decision tree)
 - The space and time complexity of decision tree model is relatively high
 - Decision Tree is prone to overfit

- How to evaluate the performance of a model?
- What are the performance measure?
- Methods of performance estimation
 - Holdout
 - Keep part of the data set aside for testing purposes and use the rest to train the classifier (separating training and test dataset)
 - Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
 - Guarantees that each record is used the same number of times for training and testing
 - Bootstrap
 - Sampling with replacement

• Confusion matrix:

- Given m classes, an entry, $CM_{i,j}$ in a **confusion matrix** indicates # of tuples in class I that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Actual class\Predicted class	C ₁	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

• Example:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

• Classifier Evaluation Metrics:

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

• Accuracy: Accuracy is the fraction of predictions our model got right

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

• Error rate:

$$Error - rate = 1 - Accuracy$$

- Problem with accuracy:
 - Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
 - If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

Precision: Precision attempts to answer what proportion of positive identifications was actually correct?

$$Precision = \frac{TP}{TP + FP}$$

Recall: Recall (sensitivity) attempts to answer what proportion of actual positives was identified correctly?

$$Recall = \frac{TP}{TP + FN}$$

• Specificity: Specificity is known as the True Negative Rate. It informs us about the proportion of actual negative cases that have gotten predicted as negative by our model.

$$Specificity = \frac{TN}{TN + FP}$$

• F1-Score: The F1 score is the harmonic mean of precision and recall, taking both metrics into account in the following equation:

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	10	0	
	Class=No	10	980	

	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	1	9	
	Class=No	0	990	

Precision (p) =
$$\frac{10}{10 + 10} = 0.5$$

Recall (r) = $\frac{10}{10 + 0} = 1$
F-measure (F) = $\frac{2 * 1 * 0.5}{1 + 0.5} = 0.66$
Accuracy = $\frac{990}{1000} = 0.99$

Precision (p) =
$$\frac{1}{1+0} = 1$$

Recall (r) = $\frac{1}{1+9} = 0.1$
F-measure (F) = $\frac{2*0.1*1}{1+0.1} = 0.18$
Accuracy = $\frac{991}{1000} = 0.991$