Analysis of Cooperative Games with Matlab and Mathematica

Holger I. MEINHARDT *†

April 4, 2023

Contents

Forewo	ord	1
Prefac	e e	iii
Conter	nts	\mathbf{v}
List of	Figures	xiii
List of	Tables	$\mathbf{x}\mathbf{v}$
List of	Theorems	cvii
List of	Algorithms	ΧV
List of	Definitions and Examples xx	vii
I A	First Course in Cooperative Game Theory, MATLAB, and MATHEMATICA	1
1 A F 1.1 1.2	1.2.6 Consistency of the Core and the Pre-Kernel 1.2.7 Stable Sets 1.2.8 The Bargaining Set $\mathcal{M}(N, v)$ 1.2.9 Computing the Nucleolus for Three Person Games	17 21
1.4	· · ·	22
2 Bas 2.1 2.2	Some Fundamentals of MATLAB Some Fundamentals of MATLAB 2.1.1 Variable Assignment, Names and Types 2.1.2 Operators and Expressions Vectors, Matrices and Multidimensional Arrays 2.2.1 Initializing Arrays	

vi Contents

3

	2.2.2	Vector and Matrix Operations
	2.2.3	Subscripted and Linear Indexing
	2.2.4	Basic Linear Algebra
	2.2.5	Multidimensional Arrays
	2.2.6	Subarrays
2.3	Data	Types: Cell and Structure Arrays
	2.3.1	Cell Arrays
	2.3.2	Structures
2.4	Essen	tials of MATLAB Graphics
	2.4.1	Two Dimensional Graphics
	2.4.2	Three Dimensional Graphics
	2.4.3	Saving and Printing Figures
2.5	Funda	mentals of Program Design
	2.5.1	Top-Down Design Process
	2.5.2	Modular Program
	2.5.3	Types of Errors
2.6	User-o	lefined Functions
	2.6.1	Structure of a M-Function
	2.6.2	Variable Scope
	2.6.3	Variable Passing
	2.6.4	Option Passing
	2.6.5	Local Functions
	2.6.6	Function Handles and Anonymous Functions
	2.6.7	Function Functions
	2.6.8	Command-Function Duality
2.7	Flow	of Control
	2.7.1	Branching Statement: if Construct
	2.7.2	Branching Statement: switch Construct
	2.7.3	Exception Handling: try/catch Construct
	2.7.4	Counted Loop: for Construct
	2.7.5	Vectorization of Code
	2.7.6	Conditional Loop: while Construct
	2.7.7	Recursion
2.8	Study	ing TU Games with MATLAB: Some Essential Insights
	2.8.1	Defining a TU Game
	2.8.2	Standard Solution
	2.8.3	Shapley Value
	2.8.4	Nucleolus for Three Person Games
2.9	Apper	ndix: PreKernel
	_	rations of Mathematica 185
3.1		Survival Rules
	3.1.1	Be Careful with Products
	3.1.2	Be Careful with Compound Symbols
	3.1.3	How to use Brackets correctly
	3.1.4	How to use the Operators Set, SetDelayed, and Equal correctly
	3.1.5	How to use the operators Rule and ReplaceAll correctly
	3.1.6	Be Careful in Defining Equations
	3.1.7	Distinguish Functions and Value Variables

	••
Contents	V11
Contents	V 11

	3.2	The N	fature of Expressions
		3.2.1	Internal Form of Expressions
		3.2.2	Every Input is an Expression
		3.2.3	Changing the Head of an Expression
		3.2.4	A First Look on the Evaluation of Expressions
		3.2.5	Non-Atomic Expressions
		3.2.6	Atomic Expression
		3.2.7	Compound Expression
		3.2.8	The Global Rule Base
		3.2.9	How Expressions are evaluated
		3.2.10	Controlling the Evaluation
		3.2.11	Pattern and Matching
	3.3	Rewrit	te Rules
		3.3.1	Built-in and User-defined Functions
		3.3.2	Creating Rewrite Rules
		3.3.3	Transformation Rules
	3.4	Flow o	of Control
		3.4.1	Branching Functions: The If command
		3.4.2	Branching Functions: The Which command
		3.4.3	Branching Functions: The Switch command
		3.4.4	Iteration by Do and While Loop
		3.4.5	Recursion
		3.4.6	Comparison of Computation Time: While Loop versus Recursion
		3.4.7	Pure Functions
	3.5	Studyi	ing TU Games with Mathematica: Some Essential Insights
		3.5.1	Weighted Majority Games
		3.5.2	Bankruptcy Problems
		3.5.3	The Greedy Bankruptcy Game: Some Code
		3.5.4	Generalized Contested Garment Principle
		3.5.5	Defining a TU Game
		3.5.6	Standard Solution
		3.5.7	Nucleolus for Three Person Games
		3.5.8	Shapley Value
	3.6		ization
	3.0	3.6.1	Reconsidering Optimization Theory
		3.6.2	Implementing Equality-Constrained Optimization Problems
		3.6.3	Implementing Inequality-Constrained Optimization Problems
	3.7		uting the Nash Equilibrium
II	Co	opera	tive Game Theory with MATLAB 295
4	TU	Games	with a trivial Coalition Structure 297
	4.1	Introd	uction
	4.2	Some	Preliminaries
	4.3	Defini	ng a Game
		4.3.1	Two basic Examples
		4.3.2	A more comprehensive Example
		4.3.3	Market and totally balanced Games

viii Contents

		4.3.4	Convex Games
		4.3.5	Almost-Convex Games
		4.3.6	Average-Convex Games
		4.3.7	Assignment Games
		4.3.8	Permutation Games
		4.3.9	Flow Games
		4.3.10	Weighted Graph Games
		4.3.11	Minimum Cost Spanning Tree Games
	4.4	Some	Solution Concepts
		4.4.1	The Shapley Value
		4.4.2	The Tau Value
		4.4.3	The Kernel and Pre-Kernel
		4.4.4	The Nucleolus and Pre-Nucleolus
		4.4.5	The weighted (Pre-)Kernel and (Pre-)Nucleolus
		4.4.6	The Anti-Pre-Kernel and Anti-Pre-Nucleolus
		4.4.7	The Least Square (Pre-)Nucleolus
	4.5	Third	Party Solvers
	4.6		Game Properties and Convex Solution Sets
		4.6.1	The Core of a TU Game and related Subjects
		4.6.2	Investigation of Game Properties
		4.6.3	The Core of a TU Game Reconsidered
		4.6.4	The Anti-Core
5	TU		with non-trivial Coalition Structures 445
	5.1	Introd	luction
	5.2	Solution	ons for a Coalition Structure $\dots \dots \dots$
		5.2.1	The Core and Super-Additive Cover
		5.2.2	The Kernel and Pre-Kernel
		5.2.3	The Nucleolus and Pre-Nucleolus
	5.3	Fairne	ess and Related Values for a Coalition Structure
		5.3.1	The Solidarity and related Values
		5.3.2	The Owen and related Values
		5.3.3	The Myerson and related Values
		5.3.4	The Position Value
	5.4	Replic	eation of some Game Solutions
		5.4.1	Replication of the Nucleolus by Characterization Sets
		5.4.2	Replication of a Pre-Kernel Element
		5.4.3	Replication of the Shapley Value
6	Gra		Extension, and Real World Applications 521
	6.1		luction
	6.2		nal Libraries and Graphical Features
		6.2.1	Plotting the Core
		6.2.2	Plotting the Core-Cover
		6.2.3	Plotting the Weber Set
		6.2.4	Plotting a strong ϵ -Core
		6.2.5	The Geometric Property of the (Pre-)Kernel
	6.3	6.2.5	

Contents ix

	6.4.1	The UN Security Council	35
	6.4.2	Minimum Homogeneous Representation and Center Solution	643
	6.4.3	Star-Shapedness of the (Pre-)Kernel	
	6.4.4	Florentine Marriage and Business Relations	
		ing Numerical Errors When Seeking for a Pre-Kernel Point	
	0.0 110110	and it amortous desired the section of the section	.01
7	Axiomatiz	ation of Selected Solutions 6	11
	7.1 Gene	al Discussion of Some Solution Properties	311
	7.2 Chec	ing Some Basic Properties	515
	7.3 Redu	ed Game Properties	319
	7.4 Conv	erse Reduced Game Properties	326
	7.5 Reco	firmation Property	329
	7.6 ISRC	Property	31
8		The state of the s	35
		tion and Computation of the Modiclus	
	8.2 Wedg	e Games via the Modiclus	38
		ssion of its Axiomatization	
		native Axiomatization of the Modiclus: A first Approach	
	8.5 The	Oerived Game Property	697
	8.6 Mark	et Side, Power Index, and Corners	01
	8.7 The	anti-Derived Game Property	07
	8.8 Coin	idence of Modiclus and Anti-Pre-Nucleolus: Some Game Examples	10
	8.9 Chec	ing an Extended Kohlberg Criterion	30
	8.10 Com	uting the Anti-Modiclus	30
0	The Avier	satisation of the Proper Medified and Medified Pro Kernel	99
9			33
9	9.1 Defin	tion of the Modified and Proper Modified Pre-Kernel	34
9	9.1 Defin 9.2 Axio	tion of the Modified and Proper Modified Pre-Kernel	'34 '43
9	9.1 Defin9.2 Axio9.3 Alter	tion of the Modified and Proper Modified Pre-Kernel	'34 '43 '47
9	9.1 Defin9.2 Axio9.3 Alter	tion of the Modified and Proper Modified Pre-Kernel	'34 '43 '47
	9.1 Defin9.2 Axio9.3 Alter9.4 Indir	tion of the Modified and Proper Modified Pre-Kernel	'34 '43 '47
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir	tion of the Modified and Proper Modified Pre-Kernel	734 743 747 752
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using	tion of the Modified and Proper Modified Pre-Kernel	'34 '43 '47 '52 ' 55
	9.1 Defin 9.2 Axio: 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver	tion of the Modified and Proper Modified Pre-Kernel	734 743 747 752 7 55 758
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli	tion of the Modified and Proper Modified Pre-Kernel	'34 '43 '47 '52 '55 '55 '58 '61
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli	tion of the Modified and Proper Modified Pre-Kernel	734 743 747 752 755 755 761 762
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir O Parallel at 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig	tion of the Modified and Proper Modified Pre-Kernel	734 743 747 752 755 755 761 762 763
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I	tion of the Modified and Proper Modified Pre-Kernel	734 743 747 752 755 761 762 763 767
	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I	tion of the Modified and Proper Modified Pre-Kernel	734 743 747 752 755 761 762 763 767
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How	tion of the Modified and Proper Modified Pre-Kernel 7 natization of the Modified Pre-Kernel 7 native Axiomatization of the Modified Pre-Kernel 7 ot Method to compute the Modiclus 7 d GPU Computing 7 the Parallel Computing Toolbox 7 nage-) Convexity and Consistency Reconsidered 7 nation of a Pre-Kernel Element Reconsidered 7 nation of the Shapley Value Reconsidered 7 nation of the Shapley Value Reconsidered 7 nated Majority Games: Game Solutions Reconsidered 7 nop versus Parfor-Loop 7 nany MATLAB Workers are Optimal? 7 oct TuGame 7	734 743 747 752 755 755 762 762 767 769
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How	tion of the Modified and Proper Modified Pre-Kernel 7 natization of the Modified Pre-Kernel 7 native Axiomatization of the Modified Pre-Kernel 7 ct Method to compute the Modiclus 7 d GPU Computing 7 the Parallel Computing Toolbox 7 nge-) Convexity and Consistency Reconsidered 7 nation of a Pre-Kernel Element Reconsidered 7 nation of the Shapley Value Reconsidered 7 netd Majority Games: Game Solutions Reconsidered 7 nop versus Parfor-Loop 7 nany MATLAB Workers are Optimal? 7 ct TuGame 7 Object TuProp 7	734 743 747 752 755 755 761 762 767 769
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How	tion of the Modified and Proper Modified Pre-Kernel 7 natization of the Modified Pre-Kernel 7 native Axiomatization of the Modified Pre-Kernel 7 ot Method to compute the Modiclus 7 d GPU Computing 7 the Parallel Computing Toolbox 7 nage-) Convexity and Consistency Reconsidered 7 nation of a Pre-Kernel Element Reconsidered 7 nation of the Shapley Value Reconsidered 7 nation of the Shapley Value Reconsidered 7 nated Majority Games: Game Solutions Reconsidered 7 nop versus Parfor-Loop 7 nany MATLAB Workers are Optimal? 7 oct TuGame 7	734 743 747 752 755 755 761 762 767 769
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 0 Parallel at 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How Class Objectives	tion of the Modified and Proper Modified Pre-Kernel 7 natization of the Modified Pre-Kernel 7 native Axiomatization of the Modified Pre-Kernel 7 ct Method to compute the Modiclus 7 d GPU Computing 7 the Parallel Computing Toolbox 7 nge-) Convexity and Consistency Reconsidered 7 nation of a Pre-Kernel Element Reconsidered 7 nation of the Shapley Value Reconsidered 7 netd Majority Games: Game Solutions Reconsidered 7 nop versus Parfor-Loop 7 nany MATLAB Workers are Optimal? 7 ct TuGame 7 Object TuProp 7	734 743 747 752 555 758 761 762 763 767 775
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 0 Parallel at 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How Class Objectives 11.1 Class 11.2 Class 11.3 Class	tion of the Modified and Proper Modified Pre-Kernel natization of the Modified Pre-Kernel native Axiomatization of the Modified Pre-Kernel ot Method to compute the Modiclus d GPU Computing the Parallel Computing Toolbox nge-) Convexity and Consistency Reconsidered ration of a Pre-Kernel Element Reconsidered ration of the Shapley Value Reconsidered op versus Parfor-Loop nany MATLAB Workers are Optimal? object TuProp Objects TuSol and p_TuSol 7 7 7 7 7 7 7 7 7 7 7 7 7	734 743 747 752 755 758 762 767 769 775 776
10	9.1 Defin 9.2 Axio: 9.3 Alter 9.4 Indir 0 Parallel at 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How Class Object 11.1 Class 11.2 Class 11.3 Class 11.4 Class	tion of the Modified and Proper Modified Pre-Kernel natization of the Modified Pre-Kernel native Axiomatization of the Axiomatical of the Axio	'344 '443 '447 '52 '555 '558 '61 '62 '63 '67 '76 '776 '776
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 0 Parallel at 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How Class Object 11.1 Class 11.2 Class 11.3 Class 11.4 Class 11.5 Class	tion of the Modified and Proper Modified Pre-Kernel 7 natization of the Modified Pre-Kernel 7 native Axiomatization of the Modified Pre-Kernel 7 ct Method to compute the Modiclus 7 d GPU Computing 7 the Parallel Computing Toolbox 7 age-) Convexity and Consistency Reconsidered 7 eation of a Pre-Kernel Element Reconsidered 7 eation of the Shapley Value Reconsidered 7 ated Majority Games: Game Solutions Reconsidered 7 opp versus Parfor-Loop 7 nany MATLAB Workers are Optimal? 7 ct TuGame 7 Object TuProp 7 Objects TuSol and p_TuSol 7 Objects TuVal and p_TuVal 7 Object TuCore 7	7344 743747 752 755 758 761 762 763 767 769 771 775 776 778 792
10	9.1 Defin 9.2 Axio 9.3 Alter 9.4 Indir 0 Parallel at 10.1 Using 10.2 (Aver 10.3 Repli 10.4 Repli 10.5 Weig 10.6 For-I 10.7 How Class Object 11.1 Class 11.2 Class 11.3 Class 11.4 Class 11.5 Class 11.6 Class	tion of the Modified and Proper Modified Pre-Kernel 7 natization of the Modified Pre-Kernel 7 native Axiomatization of the Modified Pre-Kernel 7 ct Method to compute the Modiclus 7 d GPU Computing 7 the Parallel Computing Toolbox 7 age-) Convexity and Consistency Reconsidered 7 eation of a Pre-Kernel Element Reconsidered 7 eation of the Shapley Value Reconsidered 7 ted Majority Games: Game Solutions Reconsidered 7 top versus Parfor-Loop 7 nany MATLAB Workers are Optimal? 7 ct TuGame 7 Object TuProp 7 Objects TuSol and p_TuSol 7 Objects TuVal and p_TuVal 7 Object TuCore 7 Object TuVert 7	7344 747 752 755 758 761 762 763 767 776 782 792 799

x Contents

Ш	Со	operative Game Theory with Mathematica	8	19
12	The	Mathematica Package TuGames	8	21
	12.1	Introduction	8	21
		Getting Started with TuGames		
		How to define Games?		
		Checking Game Properties		
	12.5	Computing Game Solutions	8	25
	12.6	Graphical Features		
		12.6.1 The Core for Three Person Games		
		12.6.2 The Core for Four Person Games	8	28
		12.6.3 Animate Geometric Property of the Kernel/Nucleolus	8	30
	12.7	Defining more complex Games	8	32
		12.7.1 Getting Started		
		12.7.2 Weighted Majority	8	33
		12.7.3 Modest Bankruptcy	8	34
		12.7.4 Greedy Bankruptcy	8	34
	12.8	Nonlinear Method to Compute the (Pre-)Nucleolus	8	35
		12.8.1 Some Definitions and Results	8	35
		12.8.2 Extending the Results to the Pre-Nucleolus	8	39
		12.8.3 Calculating the (Pre-)Nucleolus	8	39
	12.9	Fenchel Transform Method to Compute the Pre-Nucleolus	8	45
13	Anal	lysis of Industrial Cooperation by TuOligopoly	8	47
	13.1	Cournot Cooperative Oligopoly Games	8	48
		13.1.1 Quantity Competition under a homogeneous Good	8	49
		13.1.2 Quantity Competition under Product Differentiation	8	50
		13.1.3 Monopoly in Cournot Models	8	52
		13.1.4 Pre-Merger Equilibrium in Cournot Models	8	53
		13.1.5 Characteristic Function Forms	8	55
		13.1.6 Supermodularity of linear Cooperative Oligopoly Games	8	57
		13.1.7 Partition Function Approach	8	66
		13.1.8 Post-Merger Equilibrium in Cournot Models	8	67
		13.1.9 Cournot Model: Two Firms	8	67
		13.1.10 Cournot Model: Four Firms	8	68
		13.1.11 Aggregation across Firms: A Fallacy	8	73
	13.2	Bertrand Cooperative Oligopoly Games	8	88
		13.2.1 Price Competition under Product Differentiation	8	88
		13.2.2 Monopoly in Bertrand Models	8	90
		13.2.3 Pre-Merger Equilibrium in Bertrand Models	8	91
		13.2.4 Post-Merger Equilibrium in Bertrand Models		
		13.2.5 Bertrand Model: Two Firms		
		13.2.6 Bertrand Model: Four Firms		
14	Para	allel Computing with the Mathematica Package TuGames	8	97
		Parallel Computing: An Overview		
		Parallel Computing: A more Advanced Approach		
15	Calli	ing TuGames from MATLAB	9	01

Contents	VI
Contents	Al

	15.1 Starting the MathKernel from Matlab	2
	15.4 Computing Game Solutions and Analyzing its Properties	
16	Calling the MATLAB Toolbox MatTuGames from Mathematica91316.1 Getting Started	3
	16.3 Computing Game Solutions under Matlab	
17	Limitations 917	7
IV	Appendices 919)
A	PreKernel Computation Timing Tables 921	L
В	Propositional Logic 923	3
	B.1 Conditional Statements and Truth Tables	3
	B.2 Various Proof Techniques	}
	B.2.1 The direct Proof	}
	B.2.2 The contrapositive Proof	}
	B.2.3 The indirect Proof	}
	B.2.4 The Deduction Theorem	1
	B.2.5 Incorrect Application of the indirect Proof	j
C	Computational Errors 929)
	C.1 Kinds of Numerical Errors)
D	A Quick Overview to Group Theory 931	Ĺ
E	A Quick Overview to Representation Theory 933	3
F	Installing the MATLAB Toolbox MatTuGames 935	5
	F.1 Installation	5
	F.1.1 Requirements	ó
	F.1.2 General Instruction	3
	T10 0 11 0 1 11 15 T 0	3
	F.1.3 Quick Start with MatTuGames	,
	F.1.3 Quick Start with MatTuGames	
G		3
G	F.1.4 More Sophisticated Instruction	3
G	F.1.4 More Sophisticated Instruction	3 1 1
G	F.1.4 More Sophisticated Instruction	3 1 1
G	F.1.4 More Sophisticated Instruction .938 Installing the MATHEMATICA Package TuGames .941 G.1 Installation .941 G.1.1 Custom Installation .941	8 1 1 1 2
G	F.1.4 More Sophisticated Instruction 938 Installing the MATHEMATICA Package TuGames 941 G.1 Installation 941 G.1.1 Custom Installation 941 G.1.2 Requirements 942	3 1 1 1 2 2
G	F.1.4 More Sophisticated Instruction 938 Installing the MATHEMATICA Package TuGames 941 G.1 Installation 941 G.1.1 Custom Installation 942 G.1.2 Requirements 942 G.1.3 First Steps with TuGames 942	3 1 1 1 2 2
G	F.1.4 More Sophisticated Instruction 938 Installing the MATHEMATICA Package TuGames 941 G.1 Installation 941 G.1.1 Custom Installation 941 G.1.2 Requirements 942 G.1.3 First Steps with TuGames 942 G.1.4 Running the Package in Parallel 944	3 1 1 1 2 2 4
G	F.1.4 More Sophisticated Instruction 938 Installing the MATHEMATICA Package TuGames 941 G.1 Installation 941 G.1.1 Custom Installation 941 G.1.2 Requirements 942 G.1.3 First Steps with TuGames 942 G.1.4 Running the Package in Parallel 944 G.1.5 MATLink and MatTuGames 945 G.1.6 The Cddmathlink-Library 945 G.1.7 Running the cddmathlink libraries in Parallel 948	8 1 1 1 2 4 5 8
G	F.1.4 More Sophisticated Instruction 938 Installing the MATHEMATICA Package TuGames 941 G.1 Installation 941 G.1.1 Custom Installation 941 G.1.2 Requirements 942 G.1.3 First Steps with TuGames 942 G.1.4 Running the Package in Parallel 944 G.1.5 MATLink and MatTuGames 945 G.1.6 The Cddmathlink-Library 945	8 1 1 1 2 4 5 8

••	
X11	Contents
AII	Contention

H.1 Maple Code to Compute the Nucleolus for Three Person Games	951 . 951
Bibliography	953
Subject Index	963

Bibliography

- H. Aarts and T. Driessen. The irreducible core of a minimum cost spanning tree game. ZOR Methods and Models of Operations Research, 38:163–174, 1993. doi: 10.1007/BF01414212. URL https://doi.org/10.1007/BF01414212.
- E. Algaba, J. M. Bilbao, P. Borm, and J. J. López. The Position Value for Union Stable Systems. *Mathematical Methods of Operations Research*, 52:221–236, 2000.
- E. Algaba, J. M. Bilbao, P. Borm, and J. J. López. The Myerson Value for Union Stable Structures. *Mathematical Methods of Operations Research*, 54:359–371, 2001.
- E. Algaba, J. M. Bilbao, and J. J. López. The Position Value in Communication Structures. *Mathematical Methods of Operations Research*, 59:465–477, 2004.
- E. Algaba, V. Fragnelli, and J. Sánchez-Soriano, editors. Series in Operations Research. Chapman and Hall/CRC, New York, 1 edition, 2020. doi: 10.1201/9781351241410. URL https://doi.org/10.1201/9781351241410.
- J. M. Alonso-Meijide, F. Ferreira, M. Álvarez Mozos, and A. A. Pinto. Two new power indices based on winning coalitions. *Journal of Difference Equations and Applications*, 17(7):1095–1100, 2011. doi: 10.1080/10236190903200677. URL https://doi.org/10.1080/10236190903200677.
- J.M. Alonso-Meijide, F. Carreras, M.G. Fiestras-Janeiro, and G. Owen. A comparative axiomatic characterization of the banzhaf-owen coalitional value. *Decision Support Systems*, 43(3):701-712, 2007. ISSN 0167-9236. doi: https://doi.org/10.1016/j.dss.2006.11.008. URL https://www.sciencedirect.com/science/article/pii/S0167923606002028. Integrated Decision Support.
- Y. Altman. Accelerating MATLAB Performance. CRC Press, Boca Raton, FL. (USA), 1 edition, 2015.
- E.D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method for conic quadratic optimization. *Mathematical Programming*, 95(2):249 277, 2002. doi: 10.1007/s10107-002-0349-3. URL https://doi.org/10.1007/s10107-002-0349-3.
- J. Arin and V. Feltkamp. The nucleolus and kernel of veto-rich transferable utility games. *International Journal of Game Theory*, 26: 61–73, 1997. URL https://doi.org/10.1007/BF01262513.
- J. Arin and E. Iñarra. A Characterization of the Nucleolus for Convex Games. Games and Economic Behaviour, 23:12–24, 1998.
- J. Arin and I. Katsev. The Coincidence of the Kernel and Nucleolus of a Convex Game: An Alternative Proof. Technical report, University of Basque Country, 2013.
- St. Attaway. MATLAB: A Practical Introduction to Programming and Problem Solving. Butterworth-Heinemann/Elsevier, Oxford, UK., 5 edition, 2019.
- R. J. Aumann. Acceptable Points in General Cooperative n-Person Games. In Tucker and Luce, editors, Contributions to the theory of games IV, Annals of Mathematics Studies Vol. 40, pages 287–324, 1959.
- R. J. Aumann. A Survey on Cooperative Games without Side Payments. In M. Shubik, editor, Essays in Mathematical Economics in Honor of Oskar Morgenstern, pages 3–27, Princeton, 1961. Princeton University Press.
- R. J. Aumann and J. H. Drèze. Cooperative Games with Coalition Structures. International Journal of Game Theory, 3:217-237, 1974.
- R. J. Aumann and M. Maschler. Game Theoretic Analysis of a Bankruptcy Problem from the Talmud. *Journal of Economic Theory*, 36: 195–213, 1985.
- J. F. Banzhaf. Weighted voting doesn't work. Rutgers Law Review, 19:221-236, 1965.
- R.J. Barro and X. Sala-I-Martin. "Economic Growth". McGraw-Hill, New York, 1 edition, 1995.
- E.N. Barron. "Game Theory: An Introduction". John Wiley & Sons, Hoboken, 2 edition, 2013.
- B. Barry. Is it Better to Be Powerful or Lucky?: Part I. *Political Studies*, 28(2):183–194, 1980a. doi: 10.1111/j.1467-9248.1980.tb01244.x. URL https://doi.org/10.1111/j.1467-9248.1980.tb01244.x.
- B. Barry. Is it Better to Be Powerful or Lucky? Part II. *Political Studies*, 28(3):338–352, 1980b. doi: 10.1111/j.1467-9248.1980.tb00473.x. URL https://doi.org/10.1111/j.1467-9248.1980.tb00473.x.
- S. Béal, E. Rémila, and Ph. Solal. A Decomposition of the Space of TU-games Using Addition and Transfer Invariance. Technical Report 2013-08, Université de Franche-Comté,, 2013.
- G. Bergantiños and J. Vidal-Puga. A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems. SERIEs, 12:73–100, 2021.

- C. G. Bird. On cost allocation for a spanning tree: A game theoretic approach. Networks, 6(4):335-350, 1976. doi: https://doi.org/10.1002/net.3230060404. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230060404.
- O.J. Blanchard and S. Fischer. "Lectures on Macroeconomics". MIT-Press, Cambridge, Massachusetts, 1 edition, 1989.
- O. N. Bondareva. Some Applications of Linear Programming Methods to the Theory of Cooperative Games. *Problemy Kibernet*, 10: 119–139, 1963. in Russian.
- P. Borm, G. Owen, and SH. Tijs. On the Position Value for Communication Situations. SIAM Journal of Discrete Mathematics, 5: 305–320, 1992.
- St. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, eigth reprint edition, 2010.
- E. Bozzo, M. Franceschet, and F. Rinaldi. Vulnerability and power on networks. Network Science, 3(2):196–226, 2015. doi: 10.1017/nws.2015.8.
- Ronald L Breiger and Philippa E Pattison. Cumulated social roles: The duality of persons and their algebras. Social Networks, 8(3):215 256, 1986. ISSN 0378-8733. doi: https://doi.org/10.1016/0378-8733(86)90006-7. URL http://www.sciencedirect.com/science/article/pii/0378873386900067.
- E. Calvo and E. Gutiérrez. A Value for Cooperative Games with a Coalition Structure. Technical report, University of Valencia, Spain, 2012.
- E. Calvo and E. Gutiérrez. The Shapley-Solidarity Value for Games with a Coalition Structure. *International Game Theory Review*, 15 (1):1350002–1–1350002–24, 2013.
- M. Carter. Cooperative Games, pages 167-191. In Varian (1993), 1993.
- Ch. Chang and T. S. H. Driessen. (Pre)Kernel Catchers for Cooperative Games. OR Spectrum, 17(1):pp 23-26, 1995.
- Ch. Chang and Ch. Y. Kan. The Bound of the Kernel. Mathematical Social Sciences, 25:87–93, 1992.
- Ch. Chang and Ch.-H. Lian. Some Results on (Pre)Kernel Catchers and the Coincidence of the Kernel with Prekernel. *International Game Theory Review*, 4(3):201–211, 2002.
- Chih Chang and Ying-Chih Tseng. On the coincidence property. Games and Economic Behavior, 71(2):304 314, 2011. ISSN 0899-8256. doi: https://doi.org/10.1016/j.geb.2010.04.010. URL http://www.sciencedirect.com/science/article/pii/S0899825610000710.
- St. J. Chapman. MATLAB Programming for Engineers. Brooks/Cole, Pacific Grove, CA. (USA), 2 edition, 2002.
- A. C. Chiang. Fundamental Methods of Mathematical Economics. McGraw-Hill, Singapore, third. edition, 1984.
- A. Claus and D. J. Kleitman. Cost allocation for a spanning tree. Networks, 3(4):289–304, 1973. doi: https://doi.org/10.1002/net.3230030402. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230030402.
- R. H. Coase. The marginal cost controversy. Economica, 13(51):169–182, 1946. ISSN 00130427, 14680335. URL http://www.jstor.org/stable/2549764.
- J. S. Coleman. Control of Collectivities and the Power of a Collectivity to Act. Gordon and Breach, New York, 1 edition, 1971.
- I. Curiel. Cooperative game theory and applications, volume 16 of Theory and Decision Library: Series C. Kluwer Acad. Publ., Boston, 1997.
- M. Davis and M. Maschler. The Kernel of a Cooperative Game. Naval Research Logistic Quarterly, 12:223-259, 1965.
- R. de Roover. The Rise and Decline of the Medici Bank 1397-1494. The Norton Library, New York, USA, 1966.
- J. Deegan and E.W. Packel. A new index of power for simplen-person games. *International Journal of Game Theory*, 7:113–123, 1978. doi: 10.1007/BF01753239. URL https://doi.org/10.1007/BF01753239.
- P. Dehez. On harsanyi dividends and asymmetric values. *International Game Theory Review*, 19(03):1750012–1–36, 2017. doi: 10.1142/S0219198917500128. URL https://doi.org/10.1142/S0219198917500128.
- X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts. *Mathematics of Operations Research*, 19:257–266, 1994.
- J. Derks and J. Kuipers. On the core and the nucleolus of routing games. Discussion Paper Report M92-07, Department of Mathematics, University of Maastricht, 1992.
- J. J. M. Derks and H. Haller. Weighted Nucleoli. International Journal of Game Theory, 28:173-187, 1999.
- B. Dietzenbacher and P. Sudhölter. Hart-Mas-Colell Consistency and the Core in Convex Games. International Journal of Game Theory, pages 1-17, 2021. ISSN 0254-5330. doi: 10.1007/s00182-021-00798-6. URL https://doi.org/10.1007/s00182-021-00798-6.
- A. Dixit. A Model of Duopoly suggesting a Theory of Entry Barriers. Bell Journal of Economics, 10:20-32, 1979.
- A. K. Dixit. Optimization in Economic Theory. Oxford University Press, Oxford, 2 edition, 1990.

- T. Driessen. Contributions to the Theory of Cooperative Games: The τ -Value and k-Convex Games. Ph.d thesis, University of Nijmegen, Nijmegen, 1985.
- T. Driessen. Cooperative Games, Solutions and Applications. Kluwer Academic Publishers, Dordrecht, 1988.
- T. Driessen. The Greedy Bankruptcy Game: An Alternative Game Theoretic Analysis of a Bankruptcy Problem. In L.A. Petrosjan and V.V. Mazalov, editors, *Game Theory and Applications*, volume IV, pages 45–61, Commack, New York, 1998. Nova Science Publishers Inc.
- T. Driessen and H. Meinhardt. (Average-) Convexity of Common Pool and Oligopoly TU-games. *International Game Theory Review*, 3: 141–158, 2001.
- T. Driessen and H. Meinhardt. Convexity of Oligopoly Games without Transferable Technologies. *Mathematical Social Sciences*, 50(1): 102–126, 2005.
- T. S. H. Driessen and H. I. Meinhardt. On the Supermodularity of Homogeneous Oligopoly Games. *International Game Theory Review* (IGTR), 12(04):309–337, 2010. doi: 10.1142/S0219198910002702. URL https://doi.org/10.1142/S0219198910002702.
- P. Dubey and L. S. Shapley. Mathematical properties of the banzhaf power index. *Mathematics of Operations Research*, 4(2):99–131, 1979. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/3689345.
- H. Dym. Linear Algebra in Action, volume 78. American Mathematical Society, Providence, Rhode Island, Graduate Studies in Mathematics edition, 2007.
- H-D. Ebbinghaus, J. Flum, and W Thomas. *Einführung in die mathematische Logik*. Spektrum Akademischer Verlag, Berlin/Heidelberg, 5 edition, 2007.
- L. Elden, L. Wittmeyer-Koch, and Nielsen H. B. Introduction to Numerical Computation. Studentlitteratur AB, Lund, Sweden, 2004.
- A. Estévez-Fernández, M.G. Fiestras-Janeiro, M.A. Mosquera, and E. Sánchez-Rodríguez. A Bankruptcy Approach to the Core Cover. Technical Report TI 2012-012/1, VU University Amsterdam, 2012.
- U. Faigle and M. Grabisch. Linear Transforms, Values and Least Square Approximation for Cooperation Systems. Technical report, Panthéon-Sorbonne, Université Paris 1, 2014.
- D.S. Felsenthal. A well-behaved index of a priori p-power for simple n-person games. Homo Oeconomicus, 33:367–381, 2016. doi: 10.1007/s41412-016-0031-2. URL https://doi.org/10.1007/s41412-016-0031-2.
- V. Feltkamp. Alternative axiomatic characterizations of the Shapley and Banzhaf values. *International Journal of Game Theory*, 24: 179–186, 1995. doi: 10.1007/BF01240041. URL https://doi.org/10.1007/BF01240041.
- L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, 1962.
- A. Fronzetti Colladon and M. Naldi. Distinctiveness centrality in social networks. *PLoS ONE*, 15(5), 2020. URL https://doi.org/10.1371/journal.pone.0233276.
- Y. Funaki. Upper and Lower Bounds of the Kernel and Nucleolus. International Journal of Game Theory, 15:121-129, 1986.
- Y. Funaki and H. I. Meinhardt. A Note on the Pre-Kernel and Pre-Nucleolus for Bankruptcy Games. The Waseda Journal of Political Science and Economics, 363:126–136, 2006.
- R. J. Gaylord, S. N. Kamin, and P. R. Wellin. An Introduction to Programming with Mathematica. Telos/Springer, Santa Clara, CA, sec. edition, 1996.
- J. Getán, J. Izquierdo, J. Montes, and C. Rafels. The Bargaining Set and the Kernel of Almost-Convex Games. Technical report, University of Barcelona, Spain, 2012.
- H.-G. Gräbe and M. Kofler. *Mathematica 6: Einführung, Grundlagen und Beispiele*. Scientific Tools. Pearson Studium, München, 5 edition, 2007.
- D. Granot and G. Huberman. Minimum cost spanning tree games. *Mathematical Programming*, 21:1–18, 1981. URL https://doi.org/10.1007/BF01584227.
- D. Granot and G. Huberman. On the core and nucleolus of minimum cost spanning tree games. *Mathematical Programming*, 29:323–347, 1984. URL https://doi.org/10.1007/BF02592000.
- D. Granot, F. Granot, and W. R. Zhu. Circular Network Games. Discussion paper, Faculty of Economics and Business Admistration, UBC Vancouver, 1994.
- D. Granot, F. Granot, and W. R. Zhu, Characterization sets for the nucleolus. International Journal of Game Theory, 27:359–374, 1998.
- Daniel Granot and Gur Huberman. The relationship between convex games and minimum cost spanning tree games: A case for permutationally convex games. SIAM Journal on Algebraic Discrete Methods, 3(3):288–292, 1982. doi: 10.1137/0603029. URL https://doi.org/10.1137/0603029.
- Z. Gu, E. Rothberg, and R. Bixby. Gurobi Software documentation. Technical report, Gurobi Optimization, Inc., Houston, Texas, 2017a. Gurobi Optimizer Reference Manual Version 7.0.

- Zonghao Gu, Edward Rothberg, and Robert Bixby. Gurobi Software program. Technical report, Gurobi Optimization, Inc., Houston, Texas, 2017b. Gurobi Optimizer Version 7.0.
- B. D. Hahn and D. T. Valentine. Essential MATLAB for Engineers and Scientists. Academic Press, Cambridge, MA. (USA), 7 edition, 2019.
- S. Hart and M. Kurz. Endogenous Formation of Coalitions. Econometrica, 51(4):1047-1064, 1983.
- S. Hart and A. Mas-Colell. Potential, Value and Consistency. Econometrica, 57:589-614, 1989.
- D.A. Harville. Matrix Algebra From A Statistican's Perspective. Springer Publisher, New York, Heidelberg, 1997.
- M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-Parametric Toolbox 3.0. In *Proc. of the European Control Conference*, pages 502-510, Zurich, Switzerland, July 17-19 2013. European Control Conference. http://control.ee.ethz.ch/~mpt.
- L. Hernández-Lamoneda, R. Juárez, and F. Sánchez-Sánchez. Dissection of solutions in cooperative game theory using representation techniques. *International Journal of Game Theory*, 35(3):395–426, Feb 2007. ISSN 1432-1270. doi: 10.1007/s00182-006-0036-3. URL https://doi.org/10.1007/s00182-006-0036-3.
- Ch. Hibbert. The Rise and Fall of the House of Medici. Harper Perennial, New York, USA, reprint 2003 edition, 1974.
- D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA. (USA), 1 edition, 2000.
- M. J. Holler. Forming Coalitions and Measuring Voting Power. Political Studies, 30:262-271, 1982.
- M. J. Holler. The Public Good Index: A Brief Introduction. Finnish-German Yearbook of Political Economy, 1:31–39, 2018.
- M. J. Holler and E. W. Packel. Power, Luck and the Right Index. Journal of Economics, 43:21–29, 1983.
- M. J. Holler and F. Rupp. Power in Networks: The Medici. Technical report, CCR-Munich, Munich, Germany, 2020. Forthcoming in HOMO OECONOMICUS.
- Harold Hotelling. The general welfare in relation to problems of taxation and of railway and utility rates. *Econometrica*, 6(3):242–269, 1938. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1907054.
- J. Hougaard, B. Peleg, and L. Thorlund-Petersen. On the set of lorenz-maximal imputations in the core of a balanced game. IJGT, 30: 147–165, 2001. ISSN 0167-6687. doi: https://doi.org/10.1007/s001820100070. URL https://link.springer.com/article/10.1007% 2Fs001820100070.
- Jens Leth Hougaard and Aleksandrs Smilgins. Risk capital allocation with autonomous subunits: The lorenz set. *Insurance: Mathematics and Economics*, 67:151–157, 2016. ISSN 0167-6687. doi: https://doi.org/10.1016/j.insmatheco.2015.12.002. URL https://www.sciencedirect.com/science/article/pii/S0167668715301712.
- Cl. J. Huang and Ph. S. Crooke. Mathematics and Mathematica for Economists. Blackwell, Malden, Massachusetts, 1 edition, 1997.
- G. Huberman. The nucleolus and essential coalitions, volume 28 of Lecture Notes in Control and Information Sciences. Elsevier, Amsterdam, 1980.
- Y.-A. Hwang and P. Sudhölter. Axiomatizations of the core on the universal domain and other natural domains. *International Journal of Game Theory*, 29:597–623, 2001.
- T. Ichiishi. Super-modularity: Applications to convex games and to the greedy algorithm for lp. Journal of Economic Theory, 25(2): 283-286, 1981. ISSN 0022-0531. doi: https://doi.org/10.1016/0022-0531(81)90007-7. URL https://www.sciencedirect.com/science/article/pii/0022053181900077.
- T. Ichiishi. Microeconomic Theory. Cambridge, MA., 1997.
- Publisher IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.
- E. Iñarra and J.M. Usategui. The Shapley value and average convex games. International Journal of Game Theory, 22:13–29, 1993.
- A. Isbell. A Class of Majority Games. Quarterly Journal of Mathematics, 7:183-187, 1956.
- A. Isbell. On the Enumeration of Majority Games. Mathematical Tables and other Aids to Computation, 13:21–28, 1959.
- Vocabulary ISO/IEC/IEEE. ISO/IEC/IEEE International Standard Systems and software engineering-Vocabulary. ISO/IEC/IEEE 24765:2017(E), pages 1–541, Aug 2017. doi: 10.1109/IEEESTD.2017.8016712.
- G. Jentzsch. Some Thoughts on the Theory of Cooperative Games. In M. Dreshler, L.S. Shapley, and A.W. Tucker, editors, Advances in Game Theory, Annals of Mathematical Studies, number 52, pages 407–442. Princeton University Press, Princeton, 1964.
- M. Jerison. Russell on gorman's engel curves: A correction. *Economics Letters*, 43(2):171 175, 1993. ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(93)90032-8. URL http://www.sciencedirect.com/science/article/pii/0165176593900328.
- M. Justman. Iterative Processes with 'Nucleolar' Restrictions. International Journal of Game Theory,, 6:189-212, 1977.

- Ehud Kalai and Eitan Zemel. Generalized network problems yielding totally balanced games. *Operations Research*, 30(5):998–1008, 1982a. doi: 10.1287/opre.30.5.998. URL https://doi.org/10.1287/opre.30.5.998.
- Ehud Kalai and Eitan Zemel. Totally balanced games and games of flow. Mathematics of Operations Research, 7(3):476–478, 1982b. doi: 10.1287/moor.7.3.476. URL https://doi.org/10.1287/moor.7.3.476.
- Anirban Kar, Manipushpak Mitra, and Suresh Mutuswami. On the coincidence of the prenucleolus and the shapley value. *Mathematical Social Sciences*, 57(1):16 25, 2009. ISSN 0165-4896. doi: https://doi.org/10.1016/j.mathsocsci.2008.08.004. URL http://www.sciencedirect.com/science/article/pii/S0165489608000851.
- K. Kido. A nonlinear Approximation of the Nucleolus. In W. Takahashi and T. Tanaka, editors, *Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis*, pages 307–317, Tokyo, 2004. Yokohama Publishers, Yokohama, Japan.
- K. Kido. Convergence Theorems for l_p -Norm Minimizers with respect to p. Journal of Optimization Theory and Applications, 125: 577–589, 2005.
- K. Kido. A Modified Kohlberg Criterion and a Nonlinear Method to compute the Nucleolus of a Cooperative Game. *Taiwanese Journal of Mathematics*, 12:1581–1590, 2008.
- N. L. Kleinberg and J. W. Weiss. Equivalent N-Person Games and the Null Space of the Shapley Value. *Mathematics of Operations Research*, 10(2):233–243, May 1985.
- J. Kleppe, H. Reijnierse, and P. Sudhölter. Axiomatizations of Symmetrically Weighted Solutions. Technical Report No. 2013-007, Tilburg University, February 2013.
- E. Kohlberg. On the Nucleolus of a Characteristic Function Game. SIAM Journal of Applied Mathematics, 20:62-66, 1971.
- E. Kohlberg. The Nucleolus as a Solution of a Minimization Problem. SIAM, Journal of Applied Mathematics, 23:34-39, 1972.
- A Kopelowitz. Computation of the Kernels of Simple Games and the Nucleolus of N-Person Games. Technical report, RM 31, Research Program in Game Theory and Mathematical Economics, The Hebrew University of Jerusalem, 1967. mimeo.
- R. W. Krause and A. Caimo. Missing Data Augmentation for Bayesian Exponential Random Multi-Graph Models. volume 221, pages 63–72. International Workshop on Complex Networks, 2019. URL doi:10.21427/PME8-MT48.
- Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical Society*, 7(1):48-50, 1956. ISSN 00029939, 10886826. URL http://www.jstor.org/stable/2033241.
- J-J. Laffont and J. Tirole, editors. A Theory of Incentives in Procurement and Regulation. The MIT Press, Cambridge, MA, 1993.
- A. Lardon. The γ -core in Cournot oligopoly TU-games with capacity constraints. Theory and Decision, 72(3):387–411, 2012. ISSN 0040-5833. doi: 10.1007/s11238-011-9256-5. URL http://dx.doi.org/10.1007/s11238-011-9256-5.
- P. V. Lekeas. Coalitional beliefs in cournot oligopoly tu games. International Game Theory Review, pages 1–21, 2013. doi: 10.1142/S0219198913500047. URL http://dx.doi.org/10.1142/S0219198913500047.
- Mingming Leng and Mahmut Parlar. Analytic solution for the nucleolus of a three-player cooperative game. Naval Research Logistics (NRL), 57(7):667-672, 2010. doi: 10.1002/nav.20429. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.20429.
- N. Lindfield and J. Penny. Numerical Methods Using MATLAB. Prentice Hall, Upper Saddle River, NJ. (USA), 2 edition, 2000.
- S. Littlechild. A Simple Expression for the Nucleolus in a Simple Case. International Journal of Game Theory, 3:21-29, 1974a.
- S. C. Littlechild. A simple expression for the nucleolus in a special case. *International Journal of Game Theory*, 3:21–29, 1974b. URL https://doi.org/10.1007/BF01766216.
- S. C. Littlechild and G. Owen. A simple expression for the shapely value in a special case. *Management Science*, 20(3):370–372, 1973. ISSN 00251909, 15265501. URL http://www.jstor.org/stable/2629727.
- S. C. Littlechild and G. Owen. A further note on the nucleolus of the airport game. *International Journal of Game Theory*, 5(2):91–95, 1976. URL https://doi.org/10.1007/BF01753311.
- S. C. Littlechild and G. F. Thompson. Aircraft landing fees: A game theory approach. The Bell Journal of Economics, 8(1):186–204, 1977. ISSN 0361915X. URL http://www.jstor.org/stable/3003493.
- S. Lorenzo-Freire. New characterizations of the owen and banzhaf-owen values using the intracoalitional balanced contributions property. TOP, 25(3):579-600, 2017. doi: 10.1007/s11750-017-0446-3. URL https://doi.org/10.1007/s11750-017-0446-3.
- S. Lorenzo-Freire, J.M. Alonso-Meijide, B. Casas-Méndez, and M.G. Fiestras-Janeiro. Characterizations of the deegan-packel and johnston power indices. *European Journal of Operational Research*, 177(1):431 444, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2005.08.025. URL http://www.sciencedirect.com/science/article/pii/S0377221705009057.
- W. F. Lucas. A Game with no Solution. Bull. Amer. Math. Soc., 74:237–239, 1968.
- W. F. Lucas. A Proof that a Game may have not a Solution. Bull. Amer. Math. Soc., 137:219-229, 1969.

- W. F. Lucas and M. Rabie. Games with no solutions and empty cores. *Mathematics of Operations Research*, 7(4):491-500, 1982. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/3689474.
- D. Léonard and N. Van Long. Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, Cambridge, second reprint edition, 1994.
- R. Maeder. Programming in Mathematica. Addison Wesley, Reading Massachusetts, 3 edition, 1996.
- R. Maeder. Computer Science with Mathematica. Cambridge University Press, Cambridge, UK, 1 edition, 2000.
- N. G. Mankiw. "Macroeconomics". Worth, New York, 1 edition, 1992.
- J-E. Martinez-Legaz. Dual Representation of Cooperative Games based on Fenchel-Moreau Conjugation. Optimization, 36:291–319, 1996.
- A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Analysis. Oxford University Press, Oxford, 1 edition, 1995.
- M. Maschler. The Bargaining Set, Kernel and Nucleolus. In R. J. Aumann and S. Hart, editors, *Handbook of Game Theory*, volume 1, chapter 18, pages 591–668. Elsevier Science Publishers, Amsterdam, 1992.
- M. Maschler and B. Peleg. A Characterization, Existence Proof and Dimension Bounds for the Kernel of a Game . *Pacific Journal of Mathematics*, 18(2):289–328, 1966.
- M. Maschler, B. Peleg, and L.S. Shapley. The Kernel and Bargaining Set for Convex Games. *International Journal of Game Theory*, 1: 73–93, 1972.
- M. Maschler, B. Peleg, and L. S. Shapley. Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts. *Mathematics of Operations Research*, 4:303–338, 1979.
- M. Maschler, E. Solan, and Zamir Sh. Game Theory. Cambridge University Press, Cambridge, 1 edition, 2013.
- MathWorks. Second-Order Cone Programming Algorithm MATLAB & Simulink. MathWorks Inc., Natick, Massachusetts, 2021.
- MATLAB. version 9.13.0 (R2022b). The MathWorks Inc., Natick, Massachusetts, 2022.
- R. Meessen. Communication Games. Master's thesis, University of Nijmegen, the Netherlands, 1988. in Dutch.
- H. Meinhardt. Common Pool Games are Convex Games. Journal of Public Economic Theory, 2:247–270, 1999a.
- H. Meinhardt. An LP Approach to Compute the Pre-Kernel for Cooperative Games. Computers and Operations Research, 33/2:pp 535–557, 2006.
- H. I. Meinhardt. Convexity and k-Convexity in Cooperative Common Pool Games. Discussion Paper 11, Institute for Statistics and Economic Theory, University Karlsruhe, Karlsruhe, 1999b.
- H. I. Meinhardt. Cooperative Decision Making in Common Pool Situations, volume 517 of Lecture Notes in Economics and Mathematical Systems. Springer, Heidelberg, 2002.
- H. I. Meinhardt. The Pre-Kernel as a Tractable Solution for Cooperative Games: An Exercise in Algorithmic Game Theory, volume 45 of Theory and Decision Library: Series C. Springer Publisher, Heidelberg/Berlin, 2013. ISBN 978-3-642-39548-2. doi: 10.1007/978-3-642-39549-9. URL https://doi.org/10.1007/978-3-642-39549-9.
- H. I. Meinhardt. A Note on the Computation of the Pre-Kernel for Permutation Games. Technical Report MPRA-59365, Karlsruhe Institute of Technology (KIT), May 2014. URL http://mpra.ub.uni-muenchen.de/59365/.
- H. I. Meinhardt. The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself. ArXiv e-prints, abs/1509.05883, 2015. URL http://arxiv.org/abs/1509.05883.
- H. I. Meinhardt. Finding the nucleoli of large cooperative games: A disproof with counter-example. CoRR, abs/1603.00226, 2016a. URL http://arxiv.org/abs/1603.00226.
- H. I. Meinhardt. The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself. MPRA, 75876, 2016b. URL https://mpra.ub.uni-muenchen.de/75876/. Revised Version.
- H. I. Meinhardt. Simplifying the Kohlberg Criterion on the Nucleolus: A Disproof by Oneself. Technical Report MPRA-77143, Karlsruhe Institute of Technology (KIT), March 2017a. URL http://mpra.ub.uni-muenchen.de/77143/.
- H. I. Meinhardt. Simplifying the Kohlberg Criterion on the Nucleolus: A Correct Approach. ArXiv e-prints, 2017b. URL http://arxiv.org/abs/1706.08076.
- H. I. Meinhardt. MatRep: A Matlab Toolbox for Representation Theory (Symmetric Groups), 2017c. URL https://de.mathworks.com/matlabcentral/fileexchange/62142-matrep--a-matlab-representation-theory-toolbox--symmetric-groups-?s_tid=prof_contriblnk.
- H. I. Meinhardt. A Manual of the Matlab Representation Theory Toolbox MatRep Version 0.1: A Quick Reference. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2017d. URL https://www.researchgate.net/publication/315661547_A_Manual_of_the_Matlab_Representation_Theory_Toolbox_MatRep_Version_01_A_Quick_Reference. Version 0.1.

- H. I. Meinhardt. The Pre-Kernel as a Fair Division Rule for Some Cooperative Game Models, pages 235–266. Springer International Publishing, Cham, 2018a. ISBN 978-3-319-61603-2. doi: 10.1007/978-3-319-61603-2_11. URL https://doi.org/10.1007/978-3-319-61603-2_11.
- H. I. Meinhardt. The Modiclus Reconsidered. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2018b. URL http://dx.doi.org/10.13140/RG.2.2.32651.75043.
- H. I. Meinhardt. Reconsidering Related Solutions of the Modiclus. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2018c. URL http://dx.doi.org/10.13140/RG.2.2.27739.82729.
- H. I. Meinhardt. On the Replication of the Pre-Kernel and Related Solutions. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2018d. URL http://dx.doi.org/10.13140/RG.2.2.21053.10725.
- H. I. Meinhardt. Deduction Theorem: The Problematic Nature of Common Practice in Game Theory. arXiv e-prints, art. arXiv:1908.00409, Aug 2021a. URL https://arxiv.org/abs/1908.00409v2.
- H. I. Meinhardt. Disentangle the Florentine Families Network by the Pre-Kernel. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2021b.
- H. I. Meinhardt. TuGames: A Mathematica Package for Cooperative Game Theory, 2022a. URL https://github.com/himeinhardt/ TuGames.
- H. I. Meinhardt. MatTuGames: A Matlab Toolbox for Cooperative Game Theory, 2022b. URL http://www.mathworks.com/matlabcentral/fileexchange/74092-mattugames.
- A. Meseguer-Artola. Using the Indirect Function to characterize the Kernel of a TU-Game. Technical report, Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, Nov. 1997. mimeo.
- MOSEK. The MOSEK optimization toolbox for MATLAB manual. Version 8.0. Technical report, MOSEK ApS, Fruebjergvej 3, Boks 16, 2100 Copenhagen O, 2017. URL http://docs.mosek.com/8.0/toolbox/index.html.
- H. Moulin. Deterrence and cooperation: A classification of two person games. European Economic Review, 15:179-193, 1981.
- H. Moulin. Game Theory for the Social Sciences. New York University Press, New York, 2 edition, 1986.
- H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Monographs No. 15. Cambridge University Press, Cambridge, 1988.
- H. Moulin. Fair Division and Collective Welfare. MIT Press, Cambridge, Massachusetts, 2003.
- D. Mueller. Investitionsrechnung und Investitionscontrolling. Springer-Lehrbuch. Springer Publisher, Heidelberg, 2 edition, 2018.
- D. Mueller. Investitionscontrolling: Entscheidungsfindung bei Investitionen II. Springer-Lehrbuch. Springer Publisher, Heidelberg, 3 edition, 2022.
- R. B. Myerson. Graphs and Cooperation in Games. Mathematics of Operations Research, 2(3):225–229, August 1977.
- R. B. Myerson. Conference Structures and Fair Allocation Rules. International Journal of Game Theory, 9(3):169-182, 1980.
- R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, Massachusetts, London, England, 1991.
- J. F. Nash. Noncooperative Games. Annals of Mathematics, 54:289–295, 1951.
- H. Norde, K. H. Pham Do, and S. Tijs. Oligopoly Games with and without Transferable Technologies. Mathematical Social Sciences, 43:187–207, 2002.
- A. S. Nowak and T. Radzik. A Solidarity Value for n-Person Transferable Utility Games. International Journal of Game Theory, 23: 43–48, 1994.
- B. O'Neill. A Problem of Rights Arbitration from the Talmud. Mathematical Social Sciences, 2:345–371, 1982.
- G. Orshan. The Prenucleolus and the Reduced Game Property: Equal Treatment Replaces Anonymity. International Journal of Game Theory, 22:241–248, 1993.
- G. Orshan and P. Sudhölter. Reconfirming the Prenucleolus. Mathematics of Operations Research, 28:283-293, 2003.
- A. Ostmann. Classifying Three-Person Games. Technical Report 140, University of Bielefeld, 1984.
- A. Ostmann. On the Minimal Representation of Homogeneous Games. International Journal of Game Theory, 16(1):69-81, 1987.
- A. Ostmann. Limits of Rational Behavior in Cooperatively Played Normalform Games. In R. Tietz, W. Albers, and R. Selten, editors, Bounded Rational Behavior in Experimental Games and Markets, Lecture Notes in Economics and Mathematical Systems 314, pages 317–332, Berlin, 1988. Springer-Verlag.
- A. Ostmann. A Note on Cooperation in Symmetric Common Dilemmas. mimeo, 1994.

- A. Ostmann and H. I. Meinhardt. Non-Binding Agreements and Fairness in Commons Dilemma Games. Central European Journal of Operations Research, 15(1):63-96, 2007.
- A. Ostmann and H. I. Meinhardt. Toward an Analysis of Cooperation and Fairness That Includes Concepts of Cooperative Game Theory. In A. Biel, D. Eek, T. Garling, and M. Gustafson, editors, *New Issues and Paradigms in Research on Social Dilemmas*, pages 230–251. Springer-Verlag, 2008.
- J. Antonio Rivero Ostoic. Compositional equivalence with actor attributes: Positional analysis of the the florentine families network. CoRR, abs/1804.09427, 2018. URL http://arxiv.org/abs/1804.09427.
- G. Owen. A note on the nucleolus. International Journal of Game Theory, 3(2):101-103, 1974. URL https://doi.org/10.1007/BF01766395.
- G. Owen. Values of Games with a priori Unions. In R. Henn and O. Moeschlin, editors, Essays in Mathematical Economics and Game Theory, pages 76–88. Springer-Verlag, New York, 1977.
- G. Owen. Game Theory. Academic Press, San Diego, 3 edition, 1995.
- J.F. Padgett and C.K. Ansell. Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98:1259-1319, 1993.
- John F Padgett. Open elite? social mobility, marriage, and family in florence, 1282–1494. Renaissance Quarterly, 63(2):357–411, 2010. ISSN 00344338, 19350236. URL http://www.jstor.org/stable/10.1086/655230.
- B. Peleg. On the kernel of constant-sum simple games with homogeneous weights. *Illinois J. Math.*, 10(1):39–48, 03 1966. doi: 10.1215/ijm/1256055199. URL https://doi.org/10.1215/ijm/1256055199.
- B. Peleg. On the reduced Game Property and its converse. International Journal of Game Theory, 15:187–200, 1986.
- B. Peleg. On the reduced Game Property and its converse. A correction. International Journal of Game Theory, 16:290, 1987.
- B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games, volume 34 of Theory and Decision Library: Series C. Springer-Verlag, Heidelberg, 2 edition, 2007.
- B. Peleg, J. Rosenmüller, and P. Sudhölter. The kernel of homogeneous games with steps. In N. Megiddo, editor, Essays in Game Theory in Honor of Michael Maschler, pages 163–192, Heidelberg, 1994. Springer Publisher.
- Bezalel Peleg and Joachim Rosenmüller. The least core, nucleolus, and kernel of homogeneous weighted majority games. Games and Economic Behavior, 4(4):588-605, 1992. ISSN 0899-8256. doi: https://doi.org/10.1016/0899-8256(92)90039-U. URL https://www.sciencedirect.com/science/article/pii/089982569290039U.
- H. Peters. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Heidelberg, 1 edition, 2008.
- H. Peters. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Heidelberg, 2 edition, 2015.
- N. Ploskas and N. Samaras. GPU Programming in MATLAB. Morgan Kaufmann/Elsevier, Cambridge, MA. (USA), 1 edition, 2016.
- N. Ploskas and N. Samaras. Linear Programming Using MATLAB, volume 127 of Springer Optimization and its Applications. Springer, Heidelberg, Germany, 1 edition, 2018.
- J. A. M. Potters, H. Reijnierse, and M. Ansing. Computing the Nucleolus by Solving a Prolonged Simplex Algorithm. Mathematics of Operations Research, 21(3):757–768, 1996.
- R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.1538-7305.1957.tb01515.x.
- T.E.S. Raghavan and Sudhölter. The Modiclus and Core Stability. *International Journal of Game Theory*, 33:467–478, 2005. URL https://doi.org/10.1007/s00182-005-0207-7.
- H. Reijnierse and J. Potters. The *S*-Nucleolus of TU-Games. Games and Economic Behaviour, 24:77–96, 1998.
- M. Richardson. On finite projective games. *Proceedings of the American Mathematical Society*, 7(3):458–465, 1956. doi: 10.1090/S0002-9939-1956-0079543-2. URL https://doi.org/10.1090/S0002-9939-1956-0079543-2.
- R. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.
- J. Rosenmüller. The Theory of Games and Markets. North-Holland, Amsterdam, 1981.
- J. Rosenmüller. Weighted majority games and the matrix of homogeneity. Zeitschrift für Operations Research, 28(5):123 141, 1984. doi: 10.1007/BF01920914. URL https://doi.org/10.1007/BF01920914.
- J. Rosenmüller. Homogeneous games: Recursive structure and computation. *Mathematics of Operations Research*, 12(2):309–330, 1987. URL https://www.jstor.org/stable/3689693.
- J. Rosenmüller and P. Sudhölter. Cartels via the modiclus. Discrete Applied Mathematics, 134(1):263 302, 2004. ISSN 0166-218X. doi: https://doi.org/10.1016/S0166-218X(03)00227-0. URL http://www.sciencedirect.com/science/article/pii/S0166218X03002270.

- L. M. Ruiz, F. Valenciano, and J. M. Zarzuelo. The Least Square Pre-Nucleolus and the Least Square Nucleolus. Two Values for TU Games based on the Excess Vector. *International Journal of Game Theory*, 25:113–134, 1996.
- T. Russell. On a theorem of gorman. *Economics Letters*, 11(3):223 224, 1983. ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(83)90139-8. URL http://www.sciencedirect.com/science/article/pii/0165176583901398.
- T. Russell. Gorman demand systems and Lie transformation groups: A reply. Economics Letters, 51(2):201 204, 1996. ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(96)00806-3. URL http://www.sciencedirect.com/science/article/pii/0165176596008063.
- T. Russell and F. Farris. The geometric structure of some systems of demand equations. *Journal of Mathematical Economics*, 22(4):309 325, 1993. ISSN 0304-4068. doi: https://doi.org/10.1016/0304-4068(93)90020-L. URL http://www.sciencedirect.com/science/article/pii/030440689390020L.
- T. Russell and F. Farris. Integrability, Gorman systems, and the Lie bracket structure of the real line. *Journal of Mathematical Economics*, 29(2):183 209, 1998. ISSN 0304-4068. doi: https://doi.org/10.1016/S0304-4068(97)00806-9. URL http://www.sciencedirect.com/science/article/pii/S0304406897008069.
- B. E. Sagan. "The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions", volume 203 of Graduate Texts in Mathematics. Springer Publisher, Heidelberg, 2 edition, 2000.
- N. Schlömer. Matlab2Tikz. Technical report, GitHub, 2022. URL https://github.com/matlab2tikz/matlab2tikz. Version 2022.
- D. Schmeidler. The Nucleolus of a Characteristic Function Game. SIAM, Journal of Applied Mathematics, 17:1163–1170, 1969.
- D. Schoch. netrankr: Analyzing Partial Rankings in Networks. Technical report, Manchester, UK, 2020a. URL https://cran.r-project.org/web/packages/netrankr/index.html. Version 0.3.
- D. Schoch. networkdata: Package of Different Network Datasets. Technical report, Manchester, UK, 2020b. URL https://github.com/schochastics/networkdata. Version 0.1.
- R. W. Sebesta. Concepts of Programming Languages. Pearson, 11 edition, 2016.
- L. S. Shapley. A Value of N-Person Games. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games II, volume 28, pages 307–317, Princeton, NJ., 1953. Annals of Mathematical Studies, Princeton University Press.
- L. S. Shapley. On Balanced Sets and Cores. Naval Research Logistics Quarterly, 14:453-460, 1967.
- L. S. Shapley. Cores of Convex Games,. International Journal of Game Theory, 1:11-26, 1971.
- L. S. Shapley and M. Shubik. A method for evaluating the distribution of power in a committee system. *American Political Science Review*, 48:787–792, 1954.
- L. S. Shapley and M. Shubik. Quasi-cores in a monetary economy with nonconvex preferences. *Econometrica*, 34(4):805–827, 1966. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1910101.
- L. S. Shapley and M Shubik. On Market Games. Journal of Economic Theory, 1:9–25, 1969.
- L. S. Shapley and M Shubik. An Assignment Game I: The Core. International Journal of Game Theory, 2:111-130, 1972.
- M. Shubik. "Market structure and behavior". Harvard University Press, Cambridge, 1980.
- A. J. Sobolev. The characterization of optimality principles in cooperative games by functional equations. In N. N. Vorobjev, editor, *Matematicheskie Metody v Sotsial'nykh Naukakh, Proceedings of the Seminar*, pages 94–151, Vilnius, 1975. Institute of Physics and Mathematics, Academy of Sciences of the Lithuanian SSR. (in Russian, English summary).
- T. Solymosi. The kernel is in the least core for permutation games. Central European Journal of Operations Research, pages 1–15, March 2014. ISSN 1435-246X. doi: 10.1007/s10100-014-0342-y. URL http://dx.doi.org/10.1007/s10100-014-0342-y.
- T. Solymosi and TES Raghavan. An algorithm for finding the nucleolus of assignment games. *International Journal of Game Theory*, 6:94–151, 1994.
- T. Solymosi and B. Sziklai. Universal Characterization Sets for the Nucleolus in Balanced Games. Technical Report MT-DP 2015/12, Corvinus University of Budapest, 2015.
- Tamás Solymosi and Balázs Sziklai. Characterization sets for the nucleolus in balanced games. Operations Research Letters, 44(4): 520 524, 2016. ISSN 0167-6377. doi: http://dx.doi.org/10.1016/j.orl.2016.05.014. URL http://www.sciencedirect.com/science/article/pii/S0167637716300414.
- R.E. Stearns. Convergent Transfer Schemes for N-Person Games. Transaction of the American Mathematical Society, 134:449–459, 1968.
- P. Sudhölter. Star-Shapedness of the Kernel of Homogeneous Games. Mathematical Social Sciences, 32:179–214, 1996.
- P. Sudhölter. The modified nucleolus: Properties and axiomatizations. International Journal of Game Theory, 26(2):147–182, Jun 1997a. ISSN 1432-1270. doi: 10.1007/BF01295846. URL https://doi.org/10.1007/BF01295846.

- P. Sudhölter. Nonlinear Self Dual Solutions for TU-Games. In T. Parthasarathy, B. Dutta, J.A.M. Potters, T.E.S. Raghavan, D. Ray, and Sen A., editors, *Game Theoretical Applications to Economics and Operations Research*, volume 18 of *Theory and Decision Library: Series C*, pages 33–50, Boston, MA, 1997b. Springer.
- P. Sudhölter. The Modified Nucleolus of a Cooperative Game. Habilitation thesis, University of Bielefeld, Bielefeld, 1993.
- P. Sudhölter. The modified nucleolus as canonical representation of weighted majority games. *Mathematics of Operations Research*, 21 (3):734-756, 1996. ISSN 0166-218X. URL http://www.jstor.org/stable/3690307.
- J.G. Sánchez Léon. Mathematica beyond Mathematics: The Wolfram Language in the Real World. CRC Press, Boca Raton, US., 2017.
- R. M. Thrall and W. F. Lucas. N-person games in partition function form. Naval Research Logistics, pages 281–298, 1963. doi: 10.1002/nav.3800100126.
- S. H. Tijs. Bounds on the Core and the τ -value. In O. Moeschlin and D. Pallaschke, editors, Game Theory and Mathematical Economics, pages 123–132. North-Holland, Amsterdam, 1981.
- J. Tirole, editor. The Theory of Industrial Organization. The MIT Press, Cambridge, MA, 1988.
- D. M. Topkis. Supermodularity and Complementarity. Frontiers of Economic Research. Princeton University Press, Princeton, New Jersey, 1998.
- E. van Damme. Stability and Perfection of Nash Equilibria. Springer-Verlag, Heidelberg/Berlin, 2 edition, 1991.
- A. van den Nouveland, P. Borm, and SH. Tijs. Allocation Rules for Hypergraph Communication Situations. International Journal of Game Theory, 20:255–268, 1992.
- H. R. Varian. Microeconomic Theory. Norton, New York, 3 edition, 1992.
- H. R. Varian, editor. Economic and Financial Modeling with Mathematica. Telos/Springer, Santa Clara, CA, 1993.
- V.A. Vasil'ev. The Shapley value for cooperative games of bounded polynomial variation. Optimazacija Vyp, 17:5–27, 1975. in Russian.
- V.A. Vasil'ev. On a class of imputations in cooperative games. Soviet Mathematics Dokladi, 23:53-57, 1981. in Russian.
- X. Vives. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge, Massachusetts, 1999.
- J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944.
- Ing. Walter. Die Strozzi: Eine Familie im Florenz der Renaissance. Verlag C.H.Beck, München, Germany, 2011.
- R. J. Weber. Probabilistic Values for Games, pages 101-119. Cambridge University Press, Cambridge, 1988.
- R. Webster. Convexity. Oxford University Press, Oxford, 1994.
- P. Wellin. Programming with Mathematica: An Introduction. Cambridge University Press, Cambridge, UK., 2013.
- P. Wellin. Essentials of Programming in Mathematica. Cambridge University Press, Cambridge, UK., 2016.
- Inc. Wolfram Research. Mathematica Edition: Version 13.1. Technical report, Wolfram Research, Inc., Champaign, Illinois, 2022.
- H. Wolsey. The Nucleolus and Kernel for Simple Games or Special Valid Inequalities for 0-1 Linear Integer Programs. International Journal of Game Theory, 5(4):227–238, 1976.
- D. Xue and Y. Chen. Solving Applied Mathematical Problems with MATLAB. CRC Press, 2010.
- W. Y. Yang, W. Cao, T-S. Chung, and J. Morris. "Applied Numerical Methods Using Matlab". John Wiley & Sons, Inc, 2005.
- K. Yokote, Y. Funaki, and Y. Kamijo. Linear Basis Approach to the Shapley Value. Working Paper 1303, Waseda University, 2013.
- E. Zeidler, W. Hackbusch, and H. R. Schwarz. Teubner-Taschenbuch der Mathematik. Vieweg & Teubner, Stuttgart/Leipzig, 1996.
- J. Zhao. β -Core Existence Result and its Application to Oligopoly Markets. Games and Economic Behavior, 27:153–168, 1999a.
- J. Zhao. A Necessary and Sufficient Condition for the Convexity in Oligopoly Games. Mathematical Social Sciences, 37:189–204, 1999b.
- J. Zhao. The existence of TU α -core in normal form games. International Journal of Game Theory, 28:25–34, 1999c.
- J. Zhao. The relative interior of Base Polyhedron and the Core. Economic Theory, 18:635-648, 2001.
- J. Zhao. Estimating Merging Costs by Merger Preconditions. Theory and Decision, 66:373-399, 2009.
- J. Zhao. Merger Profitability in All Linear Oligopolies with Four Firms. Discussion paper, Department of Economics, University of Saskatchewan, Saskatoon, 2016. mimeo.
- J. Zhao. TU Oligopoly Games and Industrial Cooperation. In Corchon and Marini, editors, Handbook of Game Theory and Industrial Organization, volume I, page 392–422. Edward Elgar Publisher, Cheltenham, 2018.

*!?	AntiReduced_game_propertyQ, 674
	Apply, 200, 201, 282
\Rightarrow , 235	ApproxNuc, 841, 843
#, 191, 248	ApproxPreNuc, 841, 843
&, 191, 248	apu_SolidarityValue, 479, 786
\rightarrow , 194, 233	array, 25
c-set, 488	assignment_game, 345, 773, 917
characterization set, 488	AtomQ, 203
dually essential, 494	Attributes, 208
essential, 494	Flat, 208
l_p -k-nucleolus, 836	HoldAllComplete, 210
l_p -k-pre-nucleolus, 839	Listable, 208
/, 280, 841	NumericFunction, 208
/., 194, 282	
/;, 228	OneIdentiy, 208
;=, 192	Orderless, 208
:>, 235	Protected, 208
=, 192	average_convexQ, 338, 433, 906
	AverageConvexQ, 840
==, 192, 196	axiom
===, 193, 238	Additivity (ADD), 612
[[]], 203	Anonymity (AN), 6, 612
\$ContextPath, 207	Converse Consistency (COCONS), 743
_?EvenQ, 218	Converse Derived Game Property (CDGP), 747
_?OddQ, 218	Converse Reduced Game Property (CRGP), 13, 612
	Covariance under Strategic Equivalence (COV), 6, 612
A	Dual Cover Property (DCP), 653
	Dual Floor Property (DFP), 676
AbsoluteTiming, 261	Dual Replication Property (DRP), 653
achange, 168	Efficiency (EFF), 612
additive_game, 361, 431, 719	
additivity, 7	Equal Treatment Property (ETP), 612
adjoint matrix, 60	Excess Comparability (EC), 653
ADvalue, 475, 766, 785	HM-Reduced Game Property (HMS-RGP), 612
Algame, 518	HM-Reduced Game Property set-valued (HMS-RGP, 612
airport cost allocation problem, 107	HMS-Converse Reduced Game Property (HMS-CRGP),
airport_game, 327	612
Algorithm	HMS-Weak Reduced Game Property (HMS-WRGP), 612
pre-kernel, 387	HMS-Weak Reduced Game Property set-valued (HMS-
pre-kernel for a c.s., 465	WRGP), 612
-	Imput. Saving Reduced Game Property (ISRGP), 613
algorithm	Individual Rationality (IR), 612
exponential time, 506	Large Excess Difference Consistency (LEDCONS), 653,
polynomial time, 506	672
strongly polynomial time, 507	Large Excess Difference Converse Consistency (LEDCO-
AllMarginalContributions, 329, 374	CONS), 743
AlmostAverageConvexQ, 338	Nonemptiness (NE), 6, 612
anti-balanced TU game, 12	Null-Player Property (NP), 612
anti-core, 11, 436	Pareto Optimal (PO), 6, 612
anti-kernel, 369, 414	Primal Replication Property (PRP), 676
anti-nucleolus, 369, 417	
anti-outweighs, 414	Reasonable (RE), 653
anti-pre-kernel, 414	Reasonable from above (REAB), 653
anti-pre-nucleolus, 417	Reasonable from below (REBE), 653
Anti-Property I, 419	Reconfirmation Property (RCP), 13, 612
Anti-Property II, 421	Reduced Game Property (RGP), 6, 612
Anti_balancedCollectionQ, 420, 728	Reverse Excess Comparability (REC), 676
Anti_Kernel, 377	Single-Valuedness (SIVA), 6, 612
Anti_Modiclus, 731	Small Excess Difference Consistency (SEDCONS), 676,
Anti_modiclusQ, 731	695
Anti_Monotonic_Cover, 368	Strong Converse Derived Game Property (SCDGP), 751
Anti_Nucl, 370	Strong Converse Reduced Game Property (SCRGP), 612
Anti_Nucl_llp, 377	Strong Dual Cover Property (SDCP), 665
Anti_PreKernel, 417, 910	Strong Dual Floor Property (SDFP), 692
Anti_PrekernelQ, 418	Symmetry (SYM), 612
Anti PreNucl, 418, 728	Weak Reduced Game Property (WRGP), 612
	· · · · · · · · · · · · · · · · · · ·

Bo. Dalanced Collection, 402, 404 backslash operation, 561 balanced collection, 10 step, 545	B0 DelancedCollection, 402, 404 backslash operation, 561 balanced collection, 10 step, 545 step, 545 step, 545 balanced collection, 10 care 545 step, 545	В	cfr_PrekernelQ, 492
backslab operation, 561 balanaced contributions property, 7 balanaced contributions property, 7 balanaced TU game, 10 BalanacedCollectionQ, 841 BalanacedCollectionQ, 399, 403, 607 bankruptey game, 21 bankruptey game, 21 bankruptey game, 21 bankruptey game, 303, 756 bankruptey game, 303, 756 bankruptey, game, 303, 758 bankruptey, game, 303, 803 bankruptey, game, 303, 803 bankruptey, game, 303, 803 bankruptey, game, 303, 803 balanced Control, 303 balanced Cont	backslab operation, 561 balanaced contributions property, 7 balanaced contributions property, 7 balanaced contributions property, 7 balanaced CollectionQ, 841 balanaced CollectionQ, 399, 403, 607 bankrupty game, 21 bankrupty game, 21 bankrupty game, 313, 756 bankrupty game, 314, 756 bankrupty game, 314, 756 bankrupty, game, 314, 758 bankrupty, game, 314, 758 bankrupty, game, 314, 758 barylandowalvalue, 579 barylandowalvalue, 579 belong floothery, 454 belief \$\frac{5}{2}, 866 \$\tau_{2}, 866 \$\t		cfr_PreNucl, 492
balanced collection, 10 balanced CTU game, 10 balanced TU game, 10 BalancedCollection(Q, 841 balancedCollection(Q, 841 balancedCollection(Q, 894) bankruptcy game, 303, 756 bankruptcy game, 303, 756 bankruptcy game, 303, 756 bankahf, 533, 538, 765 bankahf, 533, 538, 765 barokahf, 533, 538, 765 barokahf, 533, 538, 765 barokahf, 534, 538, 765 barokahf, 534, 538, 765 barokahf, 534, 538, 765 barokahf, 534, 538, 747 barokahf, 534, 538, 747 barokahf, 536 coalition structure, 447 barokahf, 536 barokahf, 536 barokahf, 536 coalition structure, 447 barokahf, 536 barokahf, 536 barokahf, 537 barokahf, 538, 738, 737 barokahf, 538, 738, 737, 911 barokahf, 538, 738, 738, 739 barokahf, 538, 738 ba	balanced collection, 10 balanced collection (2) balanced TU game, 10 ca. 855 balanced Collection (2), 841 balanced Collection (3), 849, 867 balanced TU game, 10 ca. 855 balanced Collection (3), 894, 805 balanced Collection (3), 894, 805 balanced Collection (3), 894, 805 bankrupty game, 21 bankrupty situation, 21 bankrupty game, 303, 766 bankrupty, game, 303, 766 bankrupty, game, 303, 766 bankalpt, 533, 538, 705 bargaining set, 16 coalition structure, 447 bargarder, 644 bargarder, 644 bargarder, 644 bargarder, 645 bargarder, 646 f. 766 f. 767	B0_balancedCollectionQ, 402, 404	
balanced Contributions property, 7 balanced Collection(2, 841 balanced Collection(2, 841) balanced Collection(2, 841) balanced Collection(2, 842), 403, 607 bankruptcy game, 21 bankruptcy game, 21 bankruptcy game, 21 bankruptcy game, 23 bankruptcy game, 303, 756 bankruptcy game, 303, 756 bankruptcy game, 303, 756 bankandowen/value, 579 bankandowen/value, 579 bankandowen/value, 579 bankandowen/value, 549 banyCenter, 644 Belief 5-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 Preakup, 866 10-10-10-10-10-10-10-10-10-10-10-10-10-1	balanced contributions property, 7 balanced CollectionQ, 891 balancedCollectionQ, 891 balancedCollectionQ, 891 balancedCollectionQ, 891 balancedCollectionQ, 891 balancedCollectionQ, 891 balancedCollectionQ, 890, 403, 607 bankruptcy game, 21 bankruptcy game, 21 bankruptcy game, 303, 756 bankraptcy_game, 303, 756 bankanch, 533, 538, 765 bankanch, 533, 538, 765 bankanch(wenValue, 579 bankanch(wenValue, 579 bankanch(wenValue, 579 bankanch(wenValue, 579 bancaptining set, 16 coalition structure, 447 balgar(menter, 644 balgar(menter) balgar(menter		
balanced TU game, 10 balanced Collection (2), 841 balanced Collection (3), 894, 493, 697 balancry game, 21 bankruptey situation, 21 bankruptey game, 303, 756 banklanf, 533, 538, 765 banklanf, 533, 538, 765 banklanf, 533, 538, 765 banklanf, 533, 538, 765 barklanf, 534, 538, 747 barklanf, 544 coaltion structure, 447 barklanf, 544 barklanf, 545 barklan	balanced TU game, 10 balanced Collection (Q. 381) balanced Collection (Q. 381) balanced Collection (Q. 389, 403, 607) barbarbupty game, 21 bankrupty game, 303, 756 bankrupty game, 303, 756 bankrupty game, 303, 756 bankrupty game, 303, 756 bankankry game, 303, 756 bankankry game, 303, 756 bankankry game, 303, 756 bankankry game, 303, 756 barbard, 534, 338, 765 barbard, 534, 538, 717 barbard, 534, 538, 717 barbard, 534, 538, 717 barbard, 534, 538, 717 barbard, 534, 538, 717, 911 barbard, 534, 534, 534, 534, 534, 534, 534, 534		
BalancedCollectionQ, \$41 balancedCollectionQ, \$450, 403, 607 bankruptey game, 21 bankruptey game, 21 bankruptey game, 21 bankruptey game, 20 bankruptey game, 20 bankruptey game, 303, 756 bankruptey game, 303, 756 bankruptey game, 303, 756 bankraptey game, 304, 759 bankraptey game, 304, 759 bankraptey game, 305, 759 bankraptey, 305 breakup, 806 breakup, 809, 811 p_TukCons, 809 breakup, 806 breakup	BalancedCollectionQ, 399, 403, 607 balancedCollectionQ, 399, 403, 607 balancedCollectionQ, 399, 403, 607 balancetpote game, 21 bankruptcy game, 21 bankruptcy game, 203, 766 banzhaf, 533, 538, 765 BanzhafOwenValne, 579 banzahafOwenValne, 579 banzahafOwenValne, 579 banzapaining set, 16 coalition structure, 447 Belief belief belief belief belief coalition structure, 447 Belief belief belief belief, 7, 866 praking, 866 praking, 866 praking, 866 p. TuKcons, 809, 811 p. TuKcons, 809 p. TuKc		
balancedCollectionQ, 399, 403, 607 bankruptcy situation, 21 bary Server, 866 banzhaf, 533, 538, 765 banzhaf, 533, 538, 765 banzhaf, 533, 538, 765 barzhaf, 534, 765 barzhaf, 533, 538, 765 barzhaf, 533, 538, 765 barzhaf, 534, 765 barzhaf, 533, 538, 765 barzhaf, 533, 538, 765 barzhaf, 534, 765 barzhaf, 533, 538, 765 barzhaf, 534, 538, 749 barzhaf, 544 barzhaf, 534, 538, 747, 941 belong folmutationsequ, 347, 538, 747, 941 belong folmutationsequ, 348, 891 barzhafolor, 792, 796 belong folmutationseque, 348, 891 barzhafolor, 792, 796 belong folmutationseque, 348, 891 barzhafolor, 792, 796 belong folmutationseque, 348, 891 britage, 799, 804 britage, 79	balancedCollectionQ, 399, 403, 607 bankruptcy situation, 21 bankruptcy situation, 36 bankruptcy situation, 36 characteristic vector, 396, 330 characteristic function, 3 characteristic function, 48 charact	9 ,	
bankruptey game, 21 bankruptey game, 303, 756 bankruptey, game, 303, 756 bankraptey, game, 303, 756 bankanda, 533, 538, 756 bankanda, 533, 538, 756 bankandowen/value, 579 bankandowen/value, 579 bankandowen/value, 579 bargaining set, 16 coalition structure, 447 Belief Belief 6-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 7-, 866 8-, 104, 104, 104, 104, 104, 104, 104, 104	bankruptcy game, 21 bankruptcy game, 303, 756 bankruptcy game, 303, 756 bankraptcy game, 303, 756 bankanfowen/kale, 579 bankanfowen/kale, 579 bankanfowen/kale, 579 bankanfowen/kale, 579 bankanfowen/kale, 579 bankanfowen/kale, 579 bargaining set, 16 coalition structure, 447 Bayes et, 16 coalition structure, 447 Belief \$\begin{array}{c} \delta \text{case} & c		_ *
bankruptcy game, 303, 756 banchaf, 533, 538, 765 banchaf, 533, 538, 765 banchaf, 533, 538, 765 banchaf, 533, 538, 765 barchaf, 533, 538, 765 coalition structure, 447 baryCenter, 644 Belief coalition structure, 447 Belief	bankruptey situation, 21 bankruptey, game, 303, 756 bankhaf, 538, 538, 756 barkhaf, 538, 538, 756 barkhaf, 538, 538, 756 barkhaf, 538, 538, 757 bargainig set, 16 coalition structure, 447 care and structure, 447 care and structure, 448 coalition structure, 447 characterization seto, 348 characterizationseto, 348 c		
bankruptcy_game, 303, 756 banzhaft, 533, 538, 765 banzhaft, 533, 538, 765 banzhaft, 533, 538, 765 banzhaft, 533, 538, 765 characteristic function, 3 characteristic function, 3 characteristic function, 3 characteristic function, 8 charact	bankruptcy_game, 303, 756 banzhaft, 553, 558, 765 banzhaftOwenValue, 579 banzhaftOwenValue, 579 banzhaftOwenValue, 579 barzghaing set, 16 coalition structure, 447 Bellef Bellef 6-, 866 7-, 866 breakup, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 867 loyal, 867 loyal, 868 loyal, 869 loyal, 869 loyal, 869 loyal, 869 loyal, 869 loyal, 860 loyal, 861 loyal, 862 loyal, 863 loyal, 864 loyal, 865 loyal, 866 loyal, 86, 867 loyal, 86, 869 loyal, 866 loyal, 866 loyal, 866 loyal, 86, 869 loyal, 866 loyal, 86, 869 loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 86, 869 loyal, 866 loyal, 86, 869 loyal, 866 loyal, 86, 869 loyal, 866 loyal, 866 loyal, 866 loyal, 86, 869 loyal, 866 loyal, 86, 869 loyal, 86, 869 loyal, 86, 86 loyal, 86		
banzhaf, 533, 538, 765 Banzhaftown/alue, 579 bargaining set, 16 coalition structure, 447 BaryCenter, 644 Belief elief elief elief, 5, 866 breakup, 866 breakup, 866 boyal, 162 boyal, 866 boyal, 162 boyal, 866 b	banzhaf, 533, 538, 765 banzhafi (1982) and (1982) barzaning set, 16 coalition structure, 447 baryCenter, 644 BaryCenter, 646 BaryCenter, 646 BaryCenter, 646 BaryCenter, 647 BaryCenter, 648 BaryCenter, 648 BaryCenter, 644 BaryCenter, 648 BaryCenter, 649 B		
BankafOwenValue, 579 bargaining set, 16 coalition structure, 447 Belief Belief \$\delta_{\text{, 5866}}\$ 7-, 856 \$\text{ breakup, 866}\$ loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 866 loyal, 867 Bell_number, 579 belongToCoreQ, 453, 437, 538, 717, 911 belongToCoreQ, 435, 437, 538, 717, 911 belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best reply of a firm, 854, 891 Best response set, 856 Binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 120 multiplication, 120 subtraction, 119 bint AssignmentGame, 345 Blank, 188, 198, 240 Block, 229, 230 Clear, 223 Clear Attributes, 211 closed ball, 275 Clear Attributes, 211 closed ball, 275 Clear Attributes, 251 coalition, 3 closure, 509 cared Cases, 217 Cdd, CSCoreVertices, 448 Cdd, CSCoreVertices, 449 Cdd, CSCoreVertices, 449 Cdd, CSCoreVertices, 449 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 527 CddCoreCoverVertices, 527 CddCoreCoverVertices, 527 CddCorePlot, 525 Complex, 186, 205 Consistency CddWistrongCorePlot, 525 Complex, 186, 205 Consistency CddWistrongCorePlot, 525 Complex, 186, 205 Consistency CddWistrongCorePlot, 525 Complex, 428 CddCoreCoverVertices, 527 Consistency CddStrongCorePlot, 527, 794 CddCoreCoverVertices, 527 Consistency CddStrongC	BanzhaffOwenValue, 579 borgaining st, 16 coalition structure, 447 Belief Belief δ-, 866 γ-, 866 β-reakup, 866 boreakup, 866 boreakup, 867 bell_number, 579 belong ToArre, 238, 437 belong ToArre, 248, 437, 538, 717, 911 belong ToArre, 247, 538, 717, 911 belong ToWeberSetQ, 330 Best reply of a firm, 854, 891 Best response set, 856 biray addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blottom-up design, 104 bs_PreKernel(), 561 C C CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 Carled See coalition, 849 Cases, 217 Codd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 525 Cdd_LotterImpsCSImpsRet, 452 Cdd_CHarlmspSupAddCover, 452 Cdd_LotterImpsCSImpsRet, 452 Cdd_CoreCover Vertices, 448 Cdd_CSCorePlot, 525 Cdd_CoreCover Vertices, 524 CddCoreCover Vertices, 524 CddCoreCover Vertices, 527 CddCor		* - ·
bargaining set, 16 coalition structure, 447 BaryCenter, 644 Belief	bargaining set, 16		•
Caracters, 204 Cass object	coalition structure, 447 Belief		
BaryCenter, 644 Belief δ-, 866 β-, 866 β- breakup, 866 breakup, 866 breakup, 866 breakup, 866 bell_number, 579 belongToAntiCoreQ, 369, 437 belongToAntiCoreQ, 435, 437, 538, 717, 911 belongToToAntiCoreQ, 435, 437, 538, 717, 911 belongToToMerbetQ, 447 belongToToMerbetQ, 343 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 blanks, 214 Block, 229, 230 canonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 484 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_LSCInterImpSupAddCover, 452 Cdd_InterImpSupAddCover, 452 Cdd_LitterImpSupAddCover, 452 ComposeMarkets, 321 Composition, 316 composeMarkets, 321 Composition, 316 composeMarkets, 321 Composition, 316 composeMarkets, 321 Composition, 316 consistents ovaluation, 425 consistency reduced game property, 6, 612 weak reduced game property, 6, 612 weak reduced game property, 6, 612 consistency substitution see Function, 68 constant elasticity of substitution see Function, 68 constant elasticity of substitution see Function, 68	BaryCenter, 644 Belief δ, 866 γ, 866 γ, 866 β-rokup, 976 β-rokup, 866 β-rokup, 976 β-rokup, 866 β-rokup, 976 β-rokup, 976 β-rokup, 976 β-rokup, 976 β-rokup, 976 β-rokup, 976		
Belief δ., 866 γ., 866 γ., 866 breakup, 866 breakup, 866 loyal, 8	Belief		
δ-, 866 p. Tukcons, 809, 814 γ-, 866 p. Tukep, 799 breakup, 866 p. Tuksep, 799 bell_number, 579 p. Tuksol, 776, 781 belongToToAntiCoreQ, 435, 437, 538, 717, 911 TuCore, 792 belongToToPubleArtiCoreQ, 435, 437, 538, 717, 911 TuCore, 792 belongToWeberSetQ, 330 TuCore, 792, 796 belongToWeberSetQ, 330 TuKcons, 809 Best response set, 856 TuKrons, 809 binary addition, 119 TuKrons, 809 arthmetic, 118 TuKrons, 809 division, 120 TuRep, 799, 804 multiplication, 120 TuKrons, 809 subtraction, 119 TuRep, 799, 804 blank, 188, 198, 240 Clear, 223 blank, 188, 198, 244 ClearAttributes, 211 closed neighborhood, 275 CLP, 428 dottom-up design, 104 closed neighborhood, 275 be_Prekernel(), 561 colabilion formation restrictions, 486 Cases, 217 Codd_CSCorePot, 44 Cdd_CSCorePot, 45 Cobb_Duglas cartel see Emclion, 163, 285 cdd_CSCorePot, 524	5-, 866 7-, 866 breakup, 866 br	· ·	
γ-, 866 p_ Turkep, 799 p_ Turkep, 799 loyal, 866 p_ Turkep, 776, 781 p_ Turkep, 776, 781 belong ToAntiCoreQ, 369, 437 p_ Turkep, 782, 792 turkep, 782, 792 belong ToCoreQ, 435, 437, 538, 717, 911 Turkep, 799, 796 belong ToWeberSetQ, 330 Turkep, 799, 809 Best replot a firm, 854, 891 Turkep, 799, 809 Best replot a firm, 854, 891 Turkep, 799, 809 Best replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Bart replot a firm, 854, 891 Turkep, 799, 804 Blanks, 188, 188, 240 Clear, 223 Blanks, 188, 188, 240 Clear, 223 Blanks, 214 Closed beall, 275 Blanks, 214 Closed beall, 275 Blanks, 181, 188, 189, 240	γ, 866 p. TuRep, 799 p. TuShRep, 896 loyal, 866 p. TuSol, 776, 781 belongToAntiCoreQ, 369, 437 p. TuSol, 776, 781 belongToCoreQ, 435, 437, 538, 717, 911 TuCore, 792 belongToBeberSetQ, 330 TuCore, 792, 796 Best response set, 856 TuFrop, 775 binary TuRep, 799, 804 addition, 119 TuShiRep, 804, 808 arthmetic, 118 TuSol, 776, 781 division, 120 TuVer, 796, 799 multiplication, 120 TuVer, 796, 799 subtraction, 119 Clear, 223 bint_AssignmentCame, 345 Clear, 223 blanks, 214 closed ball, 275 Block, 229, 230 Clear, 223 bottom-up design, 104 closed ball, 275 bs_PreKernel(), 561 closed ball, 275 Cartel sec calition, 849 Cases, 217 Codd-CSCorePlot, 454 Cadd_CSCoreVertices, 448 Codd_CSCoreVertices, 448 Cdd_CSInterImpSupAddCover, 452 Codd_InterImpSupAddCover, 452 Cdd_AllationerDSImpSet, 452 ComposeMarkets, 321 CddCoreCoverVertices, 489		
breakup, 866 loyal, 866 loyal, 866 bell_number, 579 belongToCroeQ, 369, 437 belongToCroeQ, 435, 437, 538, 717, 911 belongToCroeQ, 435, 437, 538, 717, 911 belongToImputationSetQ, 447 belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 canonicalOrder, 299 CanonicalOrder, 299 Carel see coalition, 849 Cases, 217 Cdd_CSterImpSupAddCover, 452 Cdd_CSterImpSupAddCover, 452 Cdd_CSterImpSupAddCover, 452 Cdd_CSterImpSupAddCover, 452 Cdd_Action_CoverPict, 525 CddCoreCoverPicts, 524 CddCoreCoverPict, 525 CddCoreVertices, 489 CddCoreOverPict, 525 CddCoreVertices, 489 CddCoreQvertices, 489 CddCoreQvertices, 480 CddCoreQvertices, 487 CddCorePlot, 522, 794 CddCorevertices, 427 CddLeastCore, 528, 794 CddCorevertices, 427 CddLeastCore, 528, 794 CddCorevertices, 427 CddLeastCore, 528, 581 Cf_Kernel, 492 Cf_Kernel, 92 Crel, Function Constant elasticity of substitution see reductions constant elasticity of substitution see reluction of substitution see reluction.	breakup, 866 loyal, 866 bell_number, 579 belongToAntiCoreQ, 369, 437 belongToCoreQ, 435, 437, 538, 717, 911 belongToCoreQ, 435, 437, 538, 717, 911 belongToMetherSetQ, 330 Best reply of a firm, 854, 891 Bust reply of a		
bell_number, 579 bell_number, 579 bellongToAntiCoreQ, 369, 437 belongToCoreQ, 369, 437 belongToCoreQ, 369, 437 belongToCoreQ, 335, 437, 538, 717, 911 belongToToPuptationSetQ, 447 belongToWpuptationSetQ, 430 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 120 multiplication, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 blank, 188, 198, 240 blank, 188, 198, 240 blanks, 214 block, 229, 230 bottom-up design, 104 be_PreKernel(), 561 callion, 849 Carea, 217 Carea Carea Carea Cacea Cacea Cacea Callion, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSInterImpSupAddCover, 452 Cdd_AntiCoreVertices, 489 Cdd_CSInterImpSupAddCover, 452 Cdd_AnticoreVertices, 489 CddCareDoverVertices, 489 CddCoreCoverVertices, 489 CddCorePlot, 525, 794 CddCoreCoverVertices, 544 CddCorePlot, 525, 794 CddCoreCoverVertices, 447 CddLestCore, 528 CddLIstonage, 492 Complex, 188 Cr_Kennel, 492 Crelen, 292 Constant elasticity of substitution see Function, 95 constant elasticity of substitution see Function, 612 consistent solution, 63 constant elasticity of substitution see Function, 95 constant e	bled_number, 579 belongToAntiCoreQ, 389, 437 belongToCoreQ, 435, 437, 538, 717, 911 belongToGoreQ, 435, 437, 538, 717, 911 belongToGoreQ, 435, 437, 538, 717, 911 belongToGoreQ, 435, 437, 538, 717, 911 belongToWeberSetQ, 330 Best response set, 856 Bust		
bell_number, 579 belongToAntiCoreQ, 389, 437 belongToCoreQ, 435, 437, 538, 717, 911 belongToCoreQ, 435, 437, 538, 717, 911 belongToCoreQ, 435, 437, 538, 717, 911 Best reply of a firm, 854, 891 Bust reply of a firm, 854, 890 Bust reply of a firm, 890 Bust reply of a firm, 890 Bust reply of a firm, 890 Bust rep	bell_number, 579 belongToAntiCoreQ, 389, 437 belongToCoreQ, 435, 437, 538, 717, 911 belongToCoreQ, 435, 437, 538, 717, 911 belongToCoreQ, 435, 437, 538, 717, 911 belongToWebrSetQ, 330 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blank, 188, 198, 240 Blank, 189, 194 Block, 229, 230 bettom-up design, 104 be_PreKernel(), 561 canonicalOrder, 299 CanonicalOrder, 299 Cartel see coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCoreProtecs, 448 Cdd_CSImputationVertices, 447 Cdd_CSCorePlot, 525 Cdd_InterImpCSImpSet, 452 CddCdfCreVertices, 369, 437 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverVertices, 447 CddCoreCoverPlot, 525 CddCoreCoverVertices, 447 CddCoreCoverPlot, 525 CddCoreCoverPlot, 527, 794 CddCderenel, 492 Cfnruncl, 493 Constant elasticity of substitution see Function, 285 Constant-sum game, 22	- ·	
belongToAntiCoreQ, 369, 437 belongToCreQ, 435, 437, 538, 717, 911 belongToCreQ, 435, 437, 538, 717, 911 belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Bust reply of a firm, 854, 891 Best reply of a firm, 854, 891 Bust reply of a firm, 891	belongToAntiCoreQ, 338, 437 belongToCreQ, 435, 437, 538, 717, 911 belongToGreQ, 350, 437, 538, 717, 911 belongToGreQ, 435, 437, 538, 437 closed ball, 275 closed heighborhood, 275 closed neighborhood, 275 closed neigh	* '	
belongToCoreQ, 435, 437, 538, 717, 911 belongToMputationSetQ, 447 belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 214 Blanks, 214 Block, 229, 230 Ctarel September of the structure, 478 Cartel See coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSImputationVertices, 447 Cdd_CSImputationVertices, 447 Cdd_CSImputationVertices, 489 CddCfrNucl, 493 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 447 CddCoreCoverVertices, 528 CddCdfrong, 492 CddStrongCorePlot, 527, 794 CddCdester, 492 CddStrongCorePlot, 527, 794 CddCdester, 492 CddStrongCorePlot, 527, 794 CddCdester, 492 CddCfr_cernel, 492 Cfr_kernel, 492 Cfr, kernel, 492 Cfr, kernel, 492 Cfr, kernel, 492 consistent solution, 68 Cfr, kernel, 492 cfr, kernel, 492 consistent solution, 586 constant elasticity of substitution ser Function, 286 constant elasticity of substitution ser Function, 46, 612 consistent solution, 68 constant elasticity of substitution ser Function, 486 constant elasticity of substitution ser Function, 486 constant elasticity of substitution ser Function, 425 consistent solution, 68 constant elasticity of substitution ser Function, 425 consistent solution, 68 constant elasticity of substitution ser Function, 285	belongToCoreQ, 435, 437, 538, 717, 911 belongToMputationSetQ, 447 belongToMeberSetQ, 330 Best reply of a firm, 854, 891 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 124 Block, 229, 230 bottom-up design, 104 be_PreKernel(), 561 C CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePrices, 448 Cdd_CSCorePrices, 448 Cdd_CSCorePrices, 489 CddCfrNucl, 493 CddCfrCoreVertices, 369, 437 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverPrices, 489 CddCoreQ, 784 CddCoreQ, 784 CddCoreQ, 784 CddCoreCoverPrices, 447 CddCoreQ, 784 CddCoreCoverPrices, 447 CddCoreCoverPrices, 448 CddCoreQ, 784 CddCoreCoverPrices, 447 CddCoreCoverPrices, 452 CddCoreCoverPrices, 525 CddCoreCoverPrices, 525 CddCoreCoverPrices, 525 CddCoreCoverPrices, 489 CddCoreCoverPrices, 525 CddCoreCoverPrices, 526 CddCoreCoverPrices, 527 CddCoreCoverPrices, 527 CddCoreCoverPrices, 489 CddCoreCoverPrices, 526 CddCoreCoverPrices, 527 Composition, 316		- · · · · · · · · · · · · · · · · · · ·
belongToImputationSetQ, 447 belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best reply of a firm, 854, 891 TuKcons, 809 TuFrop, 775 TuRep, 799, 804 TuShRep, 804, 808 TuShRep, 804, 808 TuShRep, 804, 808 TuVal, 782, 792 TuVert, 796, 799 Subtraction, 119 subtraction, 119 Subtraction, 119 Subtraction, 119 Sint_AssignmentGame, 345 Blank, 188, 198, 240 Blank, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 See coalition, 3 closure, 509 cartel see coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 Cdd_CSImputationVertices, 447 Cdd_CSIngutationVertices, 499 CddCffNucl, 493 CddCffNucl, 493 CddCffCrevertices, 369, 437 CddCffCrevertices, 369, 437 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertices, 447 CddCoreCoverVertices, 528 CddCoreCoverVertices, 447 CddCoreCoverVertices, 528 CddCoreCoverVertices, 447 CddCoreCoverVertices, 528 CddCoreCoverVertices, 459 CddCoreCoverVertices, 459 CddCoreCoverVertices, 524 Complement, 263 CddCoreCoverVertices, 525 Composition, 316 Congress Turction, 425 Complement, 263 ComputeRoot, 245, 246 ComputeRoot, 24	belongToImputationSetQ, 447 belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 120 multiplication, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 CanonicalOrder, 299 Cartel Cartel Cases, 217 Cald_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_AnticOreVertices, 369, 437 CddCoreCoverPett, 525 CddCoreCoverVertices, 489 CddCoreCoverVertices, 524 CddCoreVertices, 489 CddCoreVertices, 489 CddCoreVertices, 489 CddCoreVertices, 524 CddCoreVertices, 524 CddCoreVertices, 525 CddCoreVertices, 526 CddCoreVertices, 527 CddCoreVertices, 528 CddCoreVertices, 528 CddCoreVertices, 529 CddCoreVertices, 529 CddCoreCoverVertices, 529 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 525 CddCoreCoverVertices, 525 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertices, 529 CddCoreCoverVertices, 529 CddCoreCoverVertices, 529 CddCoreCoverVertices, 529 CddCoreCoverVertices, 520 CddCoreCoverVertices, 525 Composition, 68 concave gameQ(), 328 concave gameQ(), 328 concave gameQ(), 328 concave gameQ(), 328 concavertices, 492 concave game property, 6, 612 weak reduced game property, 6, 612 weak reduced game property, 6, 612 weak reduced game property, 612 constant-sum game, 22 constant-sum game, 22	• , ,	
belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 124 Block, 229, 230 bottom-up design, 104 bot_PerFernel(), 561 C C C C C C C C C C C C C C C C C C	belongToWeberSetQ, 330 Best reply of a firm, 854, 891 Best reply of a firm, 854, 891 Best response set, 856 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 124 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 C CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 CanoticalOrder, 299 Cad_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSInterImpSupAddCover, 452 Cdd_InterImpCSImpSet, 452 Cdd_AntiOreVertices, 369, 437 CddCfrCoreVertices, 369, 437 CddCoreCoverVertices, 459 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddImputationVertices, 447 CddCoreCoverVertices, 525 CddAntionVertices, 447 CddCoreCoverVertices, 529 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertices, 529 CddCoreCoverVertices, 529 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertices, 529 CddCoreCoverVertices, 529 CddCoreCoverVertices, 520 CddCoreCoverVertices, 525 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 Composition, 316 Concave gameQ(), 328 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 ComputeRoot, 245 Concave gameQ(), 328 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 ComputeRoot, 245 Concave gameQ(), 328 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 ComputeRoot, 245 Concave gameQ(), 328 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 Concave gameQ(), 328 Concave gameQ(), 328 Concave game property, 6, 612 weak reduced game property, 6, 612 weak reduced game property, 6, 612 concave gameQ(), 328 Concaver Tugame, 22 Concave		
Best response set, 856 TuProp, 775	Best reply of a firm, \$54, 891 Best response set, \$56 binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 CanonicalOrder, 299 Cartel see coalition, 849 Cartel see coalition, 849 Cald_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSInterImpSupAddCover, 452 Cdd_AnticOreVertices, 369, 437 CddCfrCoreVertices, 489 CddCfrCoreVertices, 489 CddCoreCoverPett, 525 CddCoreCoverPett, 527, 794 CddCoreCoverPett, 527, 794 CddCorecover, 429 CddLester, 355, 851 cfr_ment, 491 Consult-sum of the sum o	♥ I • •	
Best response set, 856 TuProp. 775 binary TuRep, 799, 804 addition, 119 TuRep, 799, 804 TuShRep, 804, 808 TuSol, 776, 781 division, 120 TuShRep, 804, 808 TuSol, 776, 781 TuVal, 782, 792 TuVert, 796, 799 Subtraction, 119 Clear, 223 ClearAttributes, 211 closed ball, 275 ClearAttributes, 211 closed ball, 275 Closed neighborhood, 275 ClearAttributes, 211 closed ball, 275 Closed neighborhood, 275 Cl.P., 428 Cl.P., 425 Cl.P., 428 Cl.P., 428 Cl.P., 428 Cl.P., 428 Cl.P., 428 Cl.P	Best response set, 856 TuProp, 775 binary Tukep, 799, 804 TuRep, 799, 804 TuRep, 799, 804 TuRep, 799, 804 TuRep, 799, 804 TuShRep, 804, 808 TuSol, 776, 781 TuShRep, 804, 808 TuSol, 776, 781 TuVal, 782, 792 TuVetr, 796, 799 TuVetr, 796, 799 TuVetr, 796, 799 TuVetr, 796, 799 TuRep, 799, 804 TuSol, 776, 781 TuVal, 782, 792 TuVetr, 796, 799 TuVetr, 796, 796 TuReptroperation of ture for the following of ture f	•	
binary addition, 119 arithmetic, 118 division, 120 multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 blank, 188, 198, 240 blank, 188, 198, 240 blank, 188, 198, 240 closed ball, 275 clo	binary		*
addition, 119 arithmetic, 118 division, 120 multiplication, 120 multiplication, 120 multiplication, 120 multiplication, 120 subtraction, 119 Clear, 223 bint_AssignmentGame, 345 ClearAttributes, 211 closed ball, 275 Cley, 428 closure, 509 coalition, 3 closure, 509 calition, 3 closure, 509 irreducible saturated, 509 scalition formation restrictions, 486 Cases, 217 Coalition Solidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 CddCfrCoreVertices, 489 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 Composition, 316 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 CddCoreCoverPlot, 525 ComputeRoot, 245, 246 CddCoreCoverVertices, 524 CddCoreCoverVertices, 447 ComputeRoot, 245, 246 CddCoreCoverUertices, 447 ComputeRoot, 245, 246 CddCoreCoverUertices, 447 ConputeRoot, 245 concave_gameQ(), 328 cone program, 425 concave_gameQ(), 328 cone program, 425 concided game property, 6, 612 weak reduced game property, 6, 612 event, 558, 581 cfr_kernel, 492 cfr_kernelQ, 492 consistent solution, 68 constant elasticity of substitution see Function, 285	Addition, 119		
division, 120 multiplication, 120 multiplication, 120 subtraction, 119 Clear, 223 bint_AssignmentGame, 345 bint_AssignmentGame, 345 clearAttributes, 211 closed ball, 275 closed neighborhood, 275 closure, 290 complement, 260 complement, 260 complement, 263 complement,	division, 120 multiplication, 120 multiplication, 120 subtraction, 119 Clear, 223 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blank, 189, 194 Block, 229, 230 CLP, 428 blottom-up design, 104 bs_PreKernel(), 561 CanonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_AnticroeVertices, 369, 437 CddCfrCoreVertices, 369, 437 CddCfrCoreVertices, 369, 437 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 CddCoreCoverVertices, 526 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertices, 447 ComposeMarkets, 321 CddCoreCoverVertices, 528 CddCoreCoverVertices, 528 CddCoreCoverVertices, 447 ComposeMarkets, 321 Composition, 316 ComposeMarkets, 321 Composition, 316 ComposeMarkets, 321 Composition, 316 Composition, 325 CddCoreCoverVertices, 524 CddCoreCoverVertices, 525 Composition, 325 Composition, 425 Composition, 425 Composition, 425 Composition, 425 Concave Tug ame, 372 Concave Tug	Ÿ	TuShRep, 804, 808
multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blanks, 188, 198, 240 Blanks, 124 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 C C C C C C C C C C C C C	multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 CanonicalOrder, 299 CanonicalOrder, 299 Cartel see coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSImputationVertices, 447 Cdd_CSInterImpSUSAdCover, 452 Cdd_AntiCoreVertices, 369, 437 CddCfroveProtices, 369 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 447 CddCSCoreVertices, 528 CddCoreCovePlot, 525 CddCoreCovePlot, 525 CddCoreCovePlot, 525 CddClassin Composition (245) CddCoreCovePlot, 525 Composition, 316 Concave Tug agme, 372	arithmetic, 118	TuSol, 776, 781
multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blanks, 188, 198, 240 Blanks, 124 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 C C C C C C C C C C C C C	multiplication, 120 subtraction, 119 bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 CanonicalOrder, 299 CanonicalOrder, 299 Cartel see coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCorePlot, 454 Cdd_CSImputationVertices, 447 Cdd_CSInterImpSUSAdCover, 452 Cdd_AntiCoreVertices, 369, 437 CddCfroveProtices, 369 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 447 CddCSCoreVertices, 528 CddCoreCovePlot, 525 CddCoreCovePlot, 525 CddCoreCovePlot, 525 CddClassin Composition (245) CddCoreCovePlot, 525 Composition, 316 Concave Tug agme, 372	division, 120	TuVal, 782, 792
bint_AssignmentGame, 345 Blanks, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 C C include a sturated, 509 canonicalOrder, 299 CanonicalOrder, 299 CanonicalOrder, 299 Cartel see coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSInputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_Anti-CoreVertices, 369, 437 CddCoreVertices, 489 CddCfroeVertices, 489 CddCfroeVertices, 489 CddCfroeVertices, 489 CddCfroeVertices, 489 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 528, 794 CddCoreQ, 784 CddCoreQ, 784 CddCoreCovertices, 447 ComputeRootz, 245 CddLesstCore, 528 CddDmptx, 452 CddCoreQ, 784 CddCoreCoverPlot, 525 ComputeRootz, 245 CddCoreQ, 784 CddCoreCovertices, 447 ComputeRootz, 245 CddCoreQ, 784 CddCoreCovertices, 447 Concave Tgame, 372 CddCoreCovertices, 447 Concave Tgame, 372 CddCoreCovertices, 447 Concave Tgame, 372 CddCoreCovertices, 455 ComputeRootz, 245 CddCoreCovertices, 467 Concave Tgame, 372 CddCoreCovertices, 477 CddLeastCore, 528 CDDMEX, 428 CDDMEX, 428 Consistency CddStrongCorePlot, 527, 794 CddCoreCovertices, 526, 57, 794 CddCoreCovertices, 526, 57, 794 CddCoreCovertices, 526 CddWeberSetPlot, 525, 794 Consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution see Function, 285	bint_AssignmentGame, 345 Blank, 188, 198, 240 Blanks, 214 Block, 229, 230 bottom-up design, 104 bs_PreKernel(), 561 coaltion, 3 closure, 509 C C coaltion, 34 coaltion, 3 closure, 438, 445 vital, 496 Cartel see coalition, 849 Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSInterImpSupAddCover, 452 Cdd_AntiCoreVertices, 369, 437 CddCfrCoreVertices, 369, 437 CddCfrCoreVertices, 489 CddCfrNucl, 493 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 527 CddCoreQvices, 447 ComposeMarkets, 321 CddCfroreVertices, 489 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertices, 447 ComposeMarkets, 321 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 527 CddCoreCoverVertices, 447 ComputeRoot, 245, 246 CddCoreQv, 784 Composition, 328 Complex, 182 CompromiseStableQ, 525, 797 CddCoreQvertices, 436, 522, 538, 910 CddCmputationVertices, 447 ComputeRoot, 245 ComputeRoot, 245 ComputeRoot, 245 Concave TU game, 372 Concave TU game, 372 Concave Tugame, 373 Concave Tugame, 372 Concave Tugame, 372 Concave Tugame, 373 Concave Tugame, 372 Concave Tugame, 373 Concave Tugame, 372 Concave Tugame, 372 Concave Tugame, 372 Concave Tugame, 373 Concave Tugame, 372 Conconcave Tugame, 372 Concave Tugame, 372 Concave Tugame, 372 Concav	multiplication, 120	
Blank, 188, 198, 240 closed ball, 275 closed neighborhood, 275 CLP 428 Block, 229, 230 CLP 428 bottom-up design, 104 clToMatlab, 302, 531 coalition, 3 closure, 509 irreducible saturated, 509 saturate	Blank, 188, 198, 240 closed ball, 275 closed neighborhood, 275 collition, 3 closed neighborhood, 275 collition, 3 closed neighborhood, 275 c	subtraction, 119	Clear, 223
Blanks, 214 Closed neighborhood, 275 CLP, 428 CLP, 428 CLP, 428 ClToMatlab, 302, 531 coalition, 3 closure, 509 irreducible saturated, 509 s	Blanks, 214 closed neighborhood, 275 CLP, 428 CLP, 428 ClFoMatlab, 302, 2531 coalition, 3 closure, 509 irreducible saturated, 509 saturated,	bint_AssignmentGame, 345	ClearAttributes, 211
Block, 229, 230	Block, 229, 230	Blank, 188, 198, 240	closed ball, 275
bottom-up design, 104 bs_PreKernel(), 561 coalition, 3 colition, 3 colition, 3 colition, 3 colition, 3 closure, 509 irreducible saturated, 509 saturated, 509 saturated, 509 structure, 438, 445 vital, 496 see coalition, 849 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 CSCorePlot, 454 CSCoreVertices, 448 Cdd_CSImputationVertices, 447 cdd_CSInterImpSupAddCover, 452 Cdd_InterImpCSImpSet, 452 Cdd_AntiCoreVertices, 369, 437 CddCffCoreVertices, 369, 437 CddCffNucl, 493 CddCreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 528, 794 CddCoreOverVertices, 465 CddCoreCoverVertices, 479 CddCoreCoverVertices, 470 CddCoreCoverVertices, 528, 794 CddCoreCoverVertices, 470 CddCoreCoverVertices, 470 CddCoreCoverVertices, 470 CddCoreCoverVertices, 528 ComputeRoot2, 245 ComputeRoot2, 245 ComputeRoot2, 245 ComputeRoot2, 245 CoddCoreCoverVertices, 447 ComputeRoot2, 245 CoddCoreCoverVertices, 447 Concave TU game, 372 CddCoreCoverVertices, 446 CddCoreCoverVertices, 447 Concave Tu game, 372 CddCoreCoverVertices, 436, 522, 538, 910 CddCoreCoverVertices, 447 Concave Tu game, 372 CddCoreCoverVertices, 446 CddCoreCoverVertices, 456 CddMuputationVertices, 447 Concave Tu game, 372 CddCoreCoverVertices, 446 CddCoreCoverVertices, 447 Concave Tu game, 372 Concave Tu game, 372 CddCoreCoverVertices, 446 ComputeRoot2, 245 Concave Tu game, 372 Conca	bottom-up design, 104 bs_PreKernel(), 561 coalition, 3 coalition, 3 colition, 3 colition, 3 coloure, 509 irreducible saturated, 509 saturated, 509 saturated, 509 saturated, 509 structure, 438, 445 vital, 496 cartel see coalition, 849 cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Cdd_InterImpCSImpSet, 452 Cdd_InterImpCSImpSet, 452 Cdd_InterImpCSImpSet, 452 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddCfrOoreVertices, 369, 437 CddCfrCoreVertices, 489 CddCfrOoreVertices, 489 CddCoreCoverPlot, 525 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 527 CddCoreCoverVertices, 528 CddCoreCoverVertice, 447 ComputeRoot, 245, 246 CddCoreQ, 784 CddCoreQ, 784 CddCoreQ, 784 CddCoreCoverPlot, 527, 794 CddCoreCoverPlot, 527, 794 CddLeastCore, 528 CddStrongCorePlot, 527, 794 CddStrongCorePlot, 525, 794 concave gameQ(), 328 CddImputationVertices, 447 cone program, 425 Combiex (28) CddStrongCorePlot, 527, 794 CddWeberSetPlot, 525, 794 concispermy, 612 consistency reduced game property, 6, 612 weak reduced game property, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 cr_huncl, 491 constant-sum game, 22	Blanks, 214	closed neighborhood, 275
bs_PreKernel(), 561 Coalition, 3	bs_PreKernel(), 561 Caltion, 3 closure, 509 irreducible saturated, 509 structure, 438, 445 vital, 496 coalition formation restrictions, 486 Cases, 217 Coalitionsolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 cobb-Douglas Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSImputationSimpset, 452 Cdd_InterImpSupAddCover, 452 Cdd_InterImpCSImpset, 452 Cdd_InterImpCSImpset, 452 Complement, 263 Cdd_InterImpCSImpset, 452 CddAntiCoreVertices, 369, 437 CddCfrCoreVertices, 489 CddCfrNucl, 493 CddCfrNucl, 493 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 ComposeMarkets, 321 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreCoverVertices, 527, 794 CddCoreQ, 784 ComputeRoot, 245, 246 CddCoreQ, 784 Concave_gameQ, 373 CddCoreQvertices, 436, 522, 538, 910 CddImputationVertices, 447 CddLoreCoverPlot, 527, 794 CddLoreCoverPlot, 527, 794 CddLoreCoverPlot, 527, 794 CddStrongCorePlot, 527, 794 CddStrongCorePlot, 525, 794 conic optimization, 425 conic optimization, 425 conic optimization, 425 conic optimization, 425 conic optimization, 68 cfr_Kernel, 492 constant elasticity of substitution efr_Kernel, 492 cfr_nucl, 491 constant-sum game, 22	Block, 229, 230	CLP, 428
C closure, 509 irreducible saturated, 509 saturated	C closure, 509 irreducible saturated, 509 structure, 438, 445 vital, 496 vital, 496 coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas see Function, 163, 285 cdd_CSImputationVertices, 447 computation vertices, 447 complement, 263 complement, 263 Cdd_InterImpSUpAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCfrCoreVertices, 489 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseAdmissibleQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 computeRoot, 245, 246 CddCorePlot, 522, 794 concave Tu game, 372 CddCoreQ, 784 concave Tu game, 372 concave Tu game, 373 CddCoreVertices, 436, 522, 538, 910 concave Tu game, 372 concave Tu game, 373 concave Tu game, 375 CddLeastCore, 528 conic optimization, 425 consistency reduced game property, 6, 612 consistency for Set		clToMatlab, 302, 531
C irreducible saturated, 509 CanonicalOrder, 299 saturated, 509 Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSCoreVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complex, 186, 205 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCorePlot, 522, 794 concave TU game, 372 CddCoreQ, 784 concave _gameQ, 373 CddCoreQ, 784 concave_gameQ, 373 CddCoreQ, 528 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddMeberSetPlot, 527, 794 weak reduced game property, 6, 612 CddSt	C irreducible saturated, 509 CanonicalOrder, 299 saturated, 509 Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSCoreVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrovel, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseAdmissibleQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCorePlot, 522, 794 ComputeRoot, 245, 246 CddCoreQ, 784 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistent solution, 68	bs_PreKernel(), 561	coalition, 3
CanonicalOrder, 299 saturated, 509 Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 Composition, 316 CddCfrCoreVertices, 489 Composition, 316 CddCfrNucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 concave TU game, 372 CddCoreQ, 784 concave TU game, 372 CddCoreVertices, 436, 522, 538, 910 concave _gameQ(), 328 CddImputationVertices, 447 concave _gameQ(), 328 CddImputationVertices, 447 conic optimization, 425 CdDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 weak reduced game property, 6, 612 constant elasticit	CanonicalOrder, 299 saturated, 509 Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSCoreVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complement, 263 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCffCoreVertices, 489 Composition, 316 CddCfrNucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 ComputeRoot, 245, 246 CddCorePlot, 522, 794 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ, 373 CddCoreVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CdDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 weak reduced game property, 612 center, 558,		
CanonicalOrder, 299 structure, 438, 445 Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSImputationVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSImpteImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposMarkets, 321 CddCfrOceVertices, 489 ComposMarkets, 321 CddCfrOucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreVertices, 528, 794 ComputeRoot, 245, 246 CddCorePlot, 522, 794 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 weak reduced game property,	CanonicalOrder, 299 structure, 438, 445 Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSImputationVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 ComposeMarkets, 321 CddCfrCucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreOverVertices, 528, 794 concave_gameQ, 373 CddCoreQ, 784 concave_gameQ, 373 CddCoreQ, 784 concave_gameQ, 373 CddImputationVertices, 447 cone program, 425 CddImputationVertices, 528 conic optimization, 425 CDDMEX, 428 conic optimization, 425 CddStrongCorePlot, 527, 794 weak reduced game property, 6, 612	C	•
Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSImputationVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 ComposeMarkets, 321 CddCfrNucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreVertices, 528, 794 ComputeRoot, 245, 246 CddCorePlot, 522, 794 concave_gameQ, 373 CddCoreQ, 784 concave_gameQ, 373 CddImputationVertices, 447 concave_gameQ(), 328 CddImputationVertices, 447 conc program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 weak reduced game property, 6, 612	Cartel vital, 496 see coalition, 849 coalition formation restrictions, 486 Cases, 217 Coalition Solidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSCoreVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 ComposeMarkets, 321 CddCfrCoreVertices, 525 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 ComputeRoot, 245, 246 CddCoreQ, 784 concave_gameQ, 373 CddCoreQr, 784 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddImputationVertices, 528 conic optimization, 425 CDDMEX, 428 conic optimization, 425 CddStrongCorePlot, 527, 794 weak reduced game property, 6, 612 center, 558, 581 consistent solution,		*
coalition, 849 Cases, 217 ColitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 Cdd_CSImputationVertices, 447 Cdd_CSImputationSolidarity, 478, 767, 786 Cdd_CSImputationVertices, 447 Communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCfrNucl, 493 CddCoreCoverPlot, 525 Composition, 316 CddCoreCoverPottices, 524 ComputeRoot, 245, 246 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCorePlot, 528, 794 Concave TU game, 372 CddCoreQ, 784 CddCoreVertices, 436, 522, 538, 910 CddImputationVertices, 447 Concave_gameQ(), 328 CddImputationVertices, 447 Concave_gameQ(), 328 CddImputationVertices, 428 Concave_game property, 6, 612 CddWeberSetPlot, 527, 794 concave_game property, 6, 612 CddWeberSetPlot, 525, 794 consistency CddStrongCorePlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddStrongCorePlot, 527, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 525, 794 consistency CddWeberSetPlot, 526, 794 consistency C	coalition formation restrictions, 486 Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_CInterImpCSImpSet, 452 Cdd_InterImpCSImpSet, 452 CddAntiCoreVertices, 369, 437 CddCfrCoreVertices, 489 CddCfrCoreVertices, 489 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreVertices, 528, 794 CddCoreQ, 784 CddCoreQ, 784 CddCoreQ, 784 CddCoreQ, 784 CddCoreVertices, 436, 522, 538, 910 CddImputationVertices, 447 CddLeastCore, 528 CddStrongCorePlot, 525, 794 CddCorePlot, 525 Composition, 316 ComputeRoot2, 245 ComputeRoot2, 245 ComputeRoot2, 245 ComputeRoot2, 245 ComputeRoot2, 245 Concave_gameQ, 373 CddCoreQ, 784 Concave_gameQ, 373 CddCoreQ, 784 Concave_gameQ(), 328 CddImputationVertices, 447 Concave_gameQ(), 328 CddImputationVertices, 447 Concave_gameQ(), 328 CddImputationVertices, 528 Consistency reduced game property, 6, 612 weak reduced game property, 6, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 cfr_enelQ, 492 constant elasticity of substitution see Function, 285 cfr_nucl, 491 constant-sum game, 22		
Cases, 217 Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_CImputationSimpSet, 452 Cdd_CImputationSimpSet, 452 Cdd_CoreVertices, 369, 437 CddCfrCoreVertices, 489 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 528, 794 CddCoreCoverVertices, 436, 522, 538, 910 CddCoreCoverVertices, 447 CddCoreCoverVertices, 447 CddCoreCoverVertices, 450 ComputeRoot2, 245 CddCoreQ, 784 Concave gameQ, 373 CddCoreCoverVertices, 447 CddCoreCoverVertices, 450 CddImputationVertices, 447 CddCoreCoverVertices, 447 CddCoreCoverVertices, 458 Concave gameQ, 373 CddCoreVertices, 458 CddImputationVertices, 447 Concave gameQ, 378 CddCoreVertices, 458 Concave gameQ, 378 Concave gameQ, 388 Concave gameQ, 378 Con	Cases, 217 CoalitionSolidarity, 478, 767, 786 Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSCoreVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCfrCoreVertices, 489 composition, 316 CddCoreCoverPlot, 525 compromiseAdmissibleQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreCoverVertices, 528, 794 ComputeRoot, 245 CddCorePlot, 522, 794 concave_gameQ, 373 CddCoreQ, 784 concave_gameQ, 373 CddImputationVertices, 447 concave_gameQ(), 328 CddImputationVertices, 447 conic optimization, 425 CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 6, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 <td></td> <td></td>		
Cdd_CSCorePlot, 454 Cdd_CSCoreVertices, 448 Cdd_CSImputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 CddCfrCoreVertices, 489 ComposeMarkets, 321 CddCfrNucl, 493 Composition, 316 CddCfrNucl, 493 CompromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 Composition, 316 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCorePlot, 522, 794 CddCorePlot, 522, 794 CddCoreQ, 784 CddCoreQ, 784 CddCoreVertices, 436, 522, 538, 910 CddImputationVertices, 436, 522, 538, 910 Concave_gameQ(), 328 CddImputationVertices, 447 Cone program, 425 CddLeastCore, 528 Conic optimization, 425 CDDMEX, 428 CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 6, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285	Cdd_CSCorePlot, 454 Cobb-Douglas Cdd_CSCoreVertices, 448 see Function, 163, 285 Cdd_CSImputationVertices, 447 communication structure, 479 Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCfrNucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreWovic, 528, 794 ComputeRoot, 245, 246 CddCorePlot, 522, 794 concave TU game, 372 CddCoreQ, 784 concave _gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLore, 528 conic optimization, 425 CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 6 fl2 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285 <td></td> <td>•</td>		•
Cdd_CSCoreVertices, 448see Function, 163, 285Cdd_CSImputationVertices, 447communication structure, 479Cdd_CSInterImpSupAddCover, 452Complement, 263Cdd_InterImpCSImpSet, 452Complex, 186, 205CddAntiCoreVertices, 369, 437ComposeMarkets, 321CddCfrCoreVertices, 489Composition, 316CddCfrNucl, 493compromiseAdmissibleQ, 525, 797CddCoreCoverPlot, 525compromiseStableQ, 525, 797CddCoreCoverVertices, 524ComputeRoot, 245, 246CddCoreMovie, 528, 794ComputeRoot, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612Center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	Cdd_CSCoreVertices, 448see Function, 163, 285Cdd_CSImputationVertices, 447communication structure, 479Cdd_CSInterImpSupAddCover, 452Complement, 263Cdd_InterImpCSImpSet, 452Complex, 186, 205CddAntiCoreVertices, 369, 437ComposeMarkets, 321CddCfrCoreVertices, 489Composition, 316CddCfrNucl, 493compromiseAdmissibleQ, 525, 797CddCoreCoverPlot, 525compromiseStableQ, 525, 797CddCoreCoverVertices, 524ComputeRoot, 245, 246CddCoreMovie, 528, 794ComputeRoot2, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428conic optimization, 425CddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 6, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22		
Cdd_CSImputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_InterImpCSImpSet, 452 CddAntiCoreVertices, 369, 437 CddCfrCoreVertices, 489 CddCfrNucl, 493 CddCoreCoverPlot, 525 CddCoreCoverVertices, 524 CddCoreMovie, 528, 794 CddCoreQ, 784 CddCoreVertices, 436, 522, 538, 910 CddImputationVertices, 447 CddLeastCore, 528 CddStrongCorePlot, 527, 794 CddWeberSetPlot, 527, 794 CddCoreMovie, 528, 794 Concave TU game, 372 concave_gameQ(), 328 concave_gameQ(), 328 concave_gameQ(), 328 concion optimization, 425 consistency reduced game property, 6, 612 weak reduced game property, 6, 612 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution see Function, 285	Cdd_CSImputationVertices, 447 Cdd_CSInterImpSupAddCover, 452 Cdd_InterImpCSImpSet, 452 Cdd_InterImpCSImpSet, 452 CddAntiCoreVertices, 369, 437 CddCfrCoreVertices, 369, 437 CddCfrNucl, 493 CddCfrNucl, 493 CddCoreCoverPlot, 525 CddAoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreCoverVertices, 524 CddCoreQ, 784 CddCoreQ, 784 CddCoreQ, 784 CddImputationVertices, 447 CddLeastCore, 528 CddImputationVertices, 447 CddStrongCorePlot, 527, 794 CddS		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cdd_CSInterImpSupAddCover, 452 Complement, 263 Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCfrNucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 ComputeRoot2, 245 CddCorePlot, 522, 794 concave_gameQ, 373 CddCoreQ, 784 concave_gameQ(), 328 CddImputationVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 6, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285 cfr_nucl, 491 constant-sum game, 22	— · · · · · · · · · · · · · · · · · · ·	, ,
Cdd_InterImpCSImpSet, 452 Complex, 186, 205 CddAntiCoreVertices, 369, 437 ComposeMarkets, 321 CddCfrCoreVertices, 489 Composition, 316 CddCfrNucl, 493 compromiseAdmissibleQ, 525, 797 CddCoreCoverPlot, 525 compromiseStableQ, 525, 797 CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 ComputeRoot2, 245 CddCorePlot, 522, 794 concave TU game, 372 CddCoreQ, 784 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·
CddAntiCoreVertices, 369, 437ComposeMarkets, 321CddCfrCoreVertices, 489Composition, 316CddCfrNucl, 493compromiseAdmissibleQ, 525, 797CddCoreCoverPlot, 525compromiseStableQ, 525, 797CddCoreCoverVertices, 524ComputeRoot, 245, 246CddCoreMovie, 528, 794ComputeRoot2, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddAntiCoreVertices, 369, 437ComposeMarkets, 321CddCfrCoreVertices, 489Composition, 316CddCfrNucl, 493compromiseAdmissibleQ, 525, 797CddCoreCoverPlot, 525compromiseStableQ, 525, 797CddCoreCoverVertices, 524ComputeRoot, 245, 246CddCoreMovie, 528, 794ComputeRoot2, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22		- ,
CddCfrCoreVertices, 489Composition, 316CddCfrNucl, 493compromiseAdmissibleQ, 525, 797CddCoreCoverPlot, 525compromiseStableQ, 525, 797CddCoreCoverVertices, 524ComputeRoot, 245, 246CddCoreMovie, 528, 794ComputeRoot2, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddCfrCoreVertices, 489Composition, 316CddCfrNucl, 493compromiseAdmissibleQ, 525, 797CddCoreCoverPlot, 525compromiseStableQ, 525, 797CddCoreCoverVertices, 524ComputeRoot, 245, 246CddCoreMovie, 528, 794ComputeRoot2, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22		- '
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		· ,
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	•	
CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 ComputeRoot2, 245 CddCorePlot, 522, 794 concave TU game, 372 CddCoreQ, 784 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285	CddCoreCoverVertices, 524 ComputeRoot, 245, 246 CddCoreMovie, 528, 794 ComputeRoot2, 245 CddCorePlot, 522, 794 concave TU game, 372 CddCoreQ, 784 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddWeberSetPlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285 cfr_nucl, 491 constant-sum game, 22		• , ,
CddCoreMovie, 528, 794ComputeRoot2, 245CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddCoreMovie, 528, 794 ComputeRoot2, 245 CddCorePlot, 522, 794 concave TU game, 372 CddCoreQ, 784 concave_gameQ, 373 CddCoreVertices, 436, 522, 538, 910 concave_gameQ(), 328 CddImputationVertices, 447 cone program, 425 CddLeastCore, 528 conic optimization, 425 CDDMEX, 428 consistency CddWeberSetPlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285 cfr_nucl, 491 constant-sum game, 22	,	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CddCorePlot, 522, 794concave TU game, 372CddCoreQ, 784concave_gameQ, 373CddCoreVertices, 436, 522, 538, 910concave_gameQ(), 328CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22	·	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		• /
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CddCoreVertices, 436, 522, 538, 910 CddImputationVertices, 447 CddLeastCore, 528 CDDMEX, 428 CddStrongCorePlot, 527, 794 CddWeberSetPlot, 525, 794 center, 558, 581 cfr_Kernel, 492 cfr_kernelQ, 492 cfr_nucl, 491 concave_gameQ(), 328 concave_gameQ(), 328 cone program, 425 conic optimization, 425 conic optimization, 425 consistency reduced game property, 6, 612 weak reduced game property, 612 consistent solution, 68 constant elasticity of substitution see Function, 285 constant-sum game, 22		9 ,
CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddImputationVertices, 447cone program, 425CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22		_0 •/
CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddLeastCore, 528conic optimization, 425CDDMEX, 428consistencyCddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22		
CDDMEX, 428 consistency CddStrongCorePlot, 527, 794 reduced game property, 6, 612 CddWeberSetPlot, 525, 794 weak reduced game property, 612 center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285	CDDMEX, 428 CddStrongCorePlot, 527, 794 CddWeberSetPlot, 525, 794 center, 558, 581 cfr_Kernel, 492 cfr_kernelQ, 492 cfr_nucl, 491 consistent consistent solution, 68 constant elasticity of substitution see Function, 285 constant-sum game, 22	• '	1 0 /
CddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddStrongCorePlot, 527, 794reduced game property, 6, 612CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22		• ,
CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285	CddWeberSetPlot, 525, 794weak reduced game property, 612center, 558, 581consistent solution, 68cfr_Kernel, 492constant elasticity of substitutioncfr_kernelQ, 492see Function, 285cfr_nucl, 491constant-sum game, 22	•	· ·
center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285	center, 558, 581 consistent solution, 68 cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285 cfr_nucl, 491 constant-sum game, 22		0 1 1 0, ,
cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285	cfr_Kernel, 492 constant elasticity of substitution cfr_kernelQ, 492 see Function, 285 cfr_nucl, 491 constant-sum game, 22		0 1 1 07
cfr_kernelQ, 492 see Function, 285	$cfr_{kernel}\dot{Q}$, 492 see Function, 285 cfr_{nucl} , 491 constant-sum game, 22		
	cfr_nucl, 491 constant-sum game, 22		· ·
Constant-sum game, 22			· · · · · · · · · · · · · · · · · · ·
			g ,

Context, 187, 207	DixitGammaGame, 727, 729
Context'Name, 187, 207	DM_Derived_game, 697
converse consistency	DM Reduced game, 619, 642
converse consistency converse reduced game property, 13, 612	, ,
	Do, 238, 241, 242
HMS converse reduced game property, 612	domination-equivalent, 317
converse reduced game property, 13, 612	Dot, 282
Converse_DGP_Q, 750	DRP_propertyQ, 668
Converse_RGP_Q, 626	DTImatrix, 518
convex TU game, 4, 323	dual game, 22
convex_gameQ, 359, 433, 758, 784	dual problem, 73, 278
$convex_gameQ(), 328$	dual_game, 305
ConvexQ, 840	DualBankruptcy, 265
core, 7	DualCover, 646
coalition structure, 447	DualEssentialSet, 495
least-, 9	DuallySgnzSet, 498
strong ϵ -, 9	dummy player, 7
CorePlot, 522, 794	
CoreQ, 840	\mathbf{E}
coreQ, 434, 534, 538	
CoreVertices, 435, 521	EC_propertyQ, 670
cost matrix, 363	ECCoverGame, 651, 721
counter-objection, 16, 447	ECFloorGame, 721
counting_basis, 518	efficiency, 7
COV_propertyQ, 362	Equal, 192
COV_propertyQ(), 618	equal_treatmentQ, 617
cp kernel, 425	Equilibrium
cp prekernel, 425	Bertrand, 891
CPLEX, 428	
cplex_cfr_nucl, 493	Cournot, 854 Nash, 854, 891
cplex kernel, 427	
• - /	post-merger, 866
cplex_prenucl, 607	pre-merger, 854, 891
cplex_weightedPreNucl, 607	Stackelberg, 856
critical point, 277	equilibrium
critical_value1, 527	subgame perfect, 12
critical_value2, 527	error
critical_value_star, 527	catastrophic cancellation, 116
cs_balancedCollectionQ, 472	floating-point exception, 116
cs_Banzhaf, 578	index overflow, 117
cs_belongToCoreQ, 452	index underflow, 117
cs_belongToImputationSetQ, 452	integer overflow, 118
cs_CoreQ, 448	logical, 118
cs_GetNc, 474	magnification, 116
cs_GetPrk, 467	negligible addition, 116
cs_GetPrn, 474	round-off, 116
cs_PreKernel, 467	runtime, 116, 117
cs_PrekernelQ, 467	syntax, 116
cs_PreNucl, 472	truncation, 116
cs_Weak_balancedCollectionQ, 472	underflow, 116
CVX, 428	EssentialQ, 431
cvx kernel, 427	essentialSet, 494
cycle in the decomposition, 496	Euclidean inner product, 60
eyele in the decomposition, 100	Euclidean norm, 60
D	Euclidean scalar product, 60
D	Evaluate, 210
D 107 919 991	
D, 195, 212, 281	exact_game, 702
data type, 25	exact_gameQ, 702
DCP_propertyQ, 669	excess, 4, 383
DecomposeGame, 515, 608, 615	excess code, 53
DecomposeVN, 517	Exp, 242
DecVar, 288	Extract, 252
DeeganPackel, 540, 543	extreme point, 275
DefineTuGame, 267	
Depth, 254	\mathbf{F}
derivative	
directional, 72, 73, 76	Factorial, 186
Derived_game_propertyQ, 700	False, 195
DetMarketSide, 701	FindPreNucl, 355
DirectSumVN, 518	First, 282
Distribute, 261	Flatten, 189
division	flow problem, 348
left, 31	flow_game, 350
right, 31	flow_probMinCut, 354
	- <u>+</u>

Foc, 281	see reduced game property (HMS), 612
For, 238, 241	HMS-weak consistency
forest of spanning trees, 363	see weak reduced game property (HMS), 612
formatPowerSet, 301	HMS_ImputSavingReducedGame(), 631
FullForm, 185	HMS_Reduced_game, 619
FullSimplify, 196	Hold, 208, 210 HoldAll, 210, 224
Function α -characteristic, 855	HoldFirst, 221
β -characteristic, 855	HoldForm, 201
δ -characteristic, 866	HoldFrom, 210
γ -characteristic, 866	HoldPattern, 210
s-type-characteristic, 856	holler, 539
CES, 285	Holler-Packel Index, 539
characteristic, 3	homogeneous_representationQ, 536
Cobb-Douglas, 163, 285	HSL, 428
concave, 276 convex, 276	hypergraphQ, 485, 786
cost, 849	I
Lagrange dual function, 278	
Lagrangian, 277	idempotent, 60
payoff, 849	identity matrix, 60 If, 238
profit, 849	In, 206 Im, 206
quadratic, 458	imputation
revenue, 850	coalition structure, 446
C.	imputation set, 3
G	ImputationVertices, 383, 435
Game	ImputSavingReducedGame, 631
Network Weighted Majority, 573	inconsistent solution, 68
game	indexing
see TU game, 3, 266	linear, 65
game_basis, 304	subscripted, 65 indicator function, 10, 396, 730
gameToMama, 304, 327, 346, 917	individual rationality, 3
gameToMatlab, 304, 338, 917	infix notation, 248
generalized inverse matrix, 78	Integer, 186, 197, 205
genUnionStable, 482, 786 genWeightSystem, 404	IntegerDigits, 205
getgame, 305, 905	interior point, 276
getMinimalWinning, 568	interpreted language, 25, 185
GetPartitions, 445	IntersectionEssDualEssSets, 495 IntersectionMaxCoalCorners, 702
${\tt getSymCostMatrix}, 375$	IPOPT, 428
global extremum, 275	IrredAntiCore, 379
global maximizer, 275	IrredCostMatrix, 372
global maximum, 275 global minimizer, 275	irreducible cost matrix, 371
global minimum, 275	irreducible form, 371
Global', 187, 207	$ISRG_propertyQ, 632$
GLPK, 428	J
Good	·
differentiation, 851	Johnston, 543
homogeneous, 850	К
Gorman form, 874	K
gradient, 72, 276 greedy bankruptcy game, 21, 716	k_convexQ, 433
greedy_bankruptcy, 305	Kernel, 391, 425
GreedyBankruptcy, 263	kernel, 4
grMaxFlowGame, 353	coalition structure, 454
GUROBI, 428	kernelQ, 425 KKT condition
gurobi_cfr_nucl, 493	see Optimization, 279
gurobi_kernel, 426	Kruskal's algorithm, 363
gurobi_prenucl, 607	,
н	${f L}$
11	L, 281, 282
hadamard_basis, 518	Lagrange dual
harsanyi_dividends, 305	see Function, 73, 278
Head, 185	Lagrange multiplier
Hessian matrix, 276	see Shadow Price, 73, 278
HMS converse reduced game property, 612	Lagrangian
HMS-consistency	see Function, 277
see reduced game property (HMS), 612 HMS-consistency set-valued	large excess difference, 650 least-core, 9
TITTE COIDIDUCTICY DOU-VALUEU	10450-0010, 0

LED, 651	diag, 63
LED_propertyQ, 652	disp, 95
LedcoconsQ, 745	double, 30
Lexicographical minimum, 389	$\begin{array}{c} \text{eig, 86} \\ \text{end, 37} \end{array}$
smallest coalitions, 389	eps, 27
smallest coalitions for a c.s., 466	exp, 27
LexOrder, 300	for, 133, 134, 152
LieBracket, 209	format long, 30
lin_weightedPreKernel, 607	format short, 30
linear system, 68 List, 185, 201, 282	fprintf, 112 if, 133
local extreme point, 276	index, 154
local extremum, 276	Inf, 27
local maximizer, 276	input, 50
local maximum, 276	intmax, 27
local minimizer, 276	intmin, 27
local minimum, 276 London Heathrow, 145, 161	inv, 70, 88 issymmetric, 86
Lorenz maximal, 622	ldivide, 36
Lorenz set, 622	linprog, 339
Lorenz solution, 622	lt, 60
LorenzDom, 623	lu, 84
LorenzMaxCoreQ, 623	M-function, 122
LorenzSol, 623 Loss of Significance, 388	M-script file, 47
LS Nucl, 423	minus, 31, 60 mldivide, 31
LS_Nucl(), 841	mpower, 31
LS_PreNucl, 422	mrdivide, 31
LS_PreNucl(), 841	mtimes, 31
LSNuc, 841	namelengthmax, 29
LSPreNuc, 841	NaN, 27
M	norm, 74 null, 75
141	numel, 158
m.c.s.t. game, 363	ones, 63
m.c.s.t. problem, 363	pi, 27
Map, 204, 233, 242, 262, 280, 841	pinv, 78
map	plot, 95
linear, 61	plot3, 99
mapping linear, 61	plus, 31, 32 pre-allocation, 88
MapThread, 190, 211, 234, 265	qr, 82
marginal contribution, 23	randi, 39
marginal worth vector, 328	rank, 70
restricted, 625	rdivide, 36
Market	realmax, 27
Cournot, 849 direct, 319	realmin, 27 recursive M-function, 168
price, 850	save, 28
price of brand, 851	single, 30
pure exchange economy, 311	size, 44
market_game(), 471	str2func, 150
Market Game Q, 314, 472	string, 45
MatchQ, 214 mathematical programming problem	struct, 94 subplot, 98
see optimization problem, 277	surf, 102
MATLAB	svd, 83
abs, 60	switch, 133, 144
ans, 27	syms, 32
bin2dec, 55, 135	tic/toc, 159
blkdiag, 63	times, 36
cd, 154 cell, 91	title, 98 tril, 64
cell2mat, 93	triu, 64
char, 45	true, 66
class, 30	try/catch, 149
clear, 28	uminus, 31
colon, 34	while, 133, 162
ctranspose, 35 dec2bin, 49, 135	whos, 28 xlabel, 98
det, 80	vlabel, 98

garae 69	setAllValues, 791, 792
zeros, 62 matrix, 60	setAllVertices, 798, 799
adjoint, 60	setAntiPreKernel, 779, 781
generalized inverse, 78	setApuSolidarity, 792
idempotent, 60	setBanzhaf, 779, 781
identity, 60	setCddCoverVertices, 799
invertible, 68	setCddImpVertices, 799
isometric, 81	setCddVertices, 799
Moore-Penrose, 78	setCoalitionSolidarity, 792
non-singular, 68	setCoalitionStructures, 786, 791, 792 setImpVertices, 799
null, 60 orthogonal, 81	set Myerson, 792
projection, 78	setMyersonUS, 792
pseudo-inverse, 78	setOwen, 792
rectangular, 68	setPosition, 792
self-adjoint, 60, 460	setPositionHS, 792
singular, 68	setPreKernel, 778, 781
square, 69	setPreNuc, 779, 781
symmetric, 459	setReplicate_Prk, 800, 804
transpose, 60	setReplicate_Shapley, 806–808 setShapley, 778, 781, 792
matrix factorization Cholesky, 85	setSolidarity, 792
LU, 84	setSolidarityShapley, 792
QR, 81	setStrongCores, 794
singular value, 82	setTauValue, 779, 781
matrix theory, 60	setVertices, 799
MatrixForm, 192, 252	TuCore, 793
Max, 264	TuGame, 773
Maximum surplus, 389	TuProp, 775
maximum surplus, 4	TuRep, 799, 804
Maximum surplus for a c.s., 466	TuShRep, 808 TuSol, 776, 781
maximum value, 275 mcst_game, 366	TuVal, 782, 784, 785, 792
method	TuVert, 797, 799
copy_p_TuRep, 804	Min, 264
copy_p_TuShRep, 808	min_game, 639
copyTuSol, 803, 804, 808	$\min_{\text{homogrep}}(), 548$
p_copyTuCons, 811	minimal tree, 363
p_copyTuKcons, 814	minimal tree solution, 363
p_copyTuSol, 811, 813, 814	minimal_winning, 536
p_setADvalue, 792 p_setAllSolutions, 781	minimization a p-norm, 836 Minimum cost spanning tree, 388
p_setAllValues, 791, 792	minimum cost spanning tree, 500 minimum cost tree solution, 365
p_setAntiPreKernel, 782	minimum no-blocking payoff, 338
p_setApuSolidarity, 792	minimum norm property, 78
p_setBanzhaf, 781	minimum representation, 544
p_setCoalitionSolidarity, 792	minimum value, 275
p_setCoalitionStructures, 789, 791, 792	minNoBlockPayoff, 339
p_setConverse_RGP, 811	Mod, 186 modest bankruptcy game, 716
p_setKConverse_RGP, 814 p_setKReconfirmation_property, 814	modest-bankruptcy game, 710 modest-bankruptcy game, 21
p_setKRecommutation_property, 814 p_setKReducedGameProperty, 814	ModestBankruptcy, 258, 262
p_setKStrConverse_RGP, 814	Modiclus, 637, 640, 728
p setMyerson, 792	modiclusQ, 640, 728
p_setMyersonUS, 792	modified coalition array, 836
p_setOwen, 792	ModPreKernel, 735, 736
p_setPosition, 792	ModPrekernelQ, 736
p_setPositionHS, 792	modular program, 114
p_setPreKernel, 781	Module, 229, 230, 258, 264 monotone_gameQ, 432, 532
p_setPreNuc, 781 p_setReconfirmation_property, 811	monotonic TU game, 3
p_setReduced_game_property, 811	MOSEK, 428
p_setShapley, 781, 792	msk_cfr_nucl, 493
p_setSolidarity, 792	msk_kernel, 425, 427
p_setSolidarityShapley, 792	msk_prekernel, 425
p_setTauValue, 781	MTRCostMatrix, 367
p_TuCons, 809, 811	myaa, 104, 522
p_TuKcons, 814	MyersonValue, 480, 578, 786
p_TuSol, 781	N
p_TuVal, 782, 785, 792 setADvalue, 792	14
setAllSolutions, 779, 781	negative definite, 276
-501111001010101, 110, 101	

negative semi-definite, 276	parity_basis, 518
NetworkDeeganPackel, 576	Part, 202
NetworkJohnston, 576	particular choice, 78
NetworkMajorityGame, 576	Partition function game, 866
NetworkPGI, 575	PartitionGameQ, 565
NetworkShapleyShubik, 577	PartitionSL, 480
Normal form game, 849	path, 363
oligopoly, 849	
· ·	payoff, 3
normalized condition, 78	permutation group, 328
NSolve, 281	PermutationGame, 347, 446
nucl, 394	PGI, 539
nucl_llp, 355	player, 3
nucleolus, 5, 273	Plot, 212, 247
NucleolusThreePerson, 271	PlotCostGraph, 365, 441
null matrix, 60	Plus, 186, 201
null space, 61	PModPreKernel, 735
null-player, 22	PModPrekernelQ, 735
NullPlayer_propertyQ, 616	PositionValue, 484, 786
nullShapley, 516	positive definite, 276
nullShapleyLB, 516	-
number	positive semi-definite, 276
	Potential, 274, 381
fixed-decimal, 56	potential, 23
fixed-point, 56	Power, 186, 215
normalized floating-point, 52	Power Index
	Holler and Packel, 539
0	Shapley-Shubik, 577
	Power index
OASES, 428	Banzhaf-Coleman, 533, 765
· ·	
object-oriented programming, 771	Deegan-Packel, 540, 542, 576
objection, 16, 447	Holler, 575
oddeven_game, 504	Johnston, 543, 576
offset binary, 53	Public Good, 575
ols_weightedPreKernel, 607	Shapley-Shubik, 539
open ball, 275	PowerSet, 260, 300, 308
open neighborhood, 275	pre-bargaining set
Optimization	coalition structure, 447
weak duality, 278	pre-imputation
· ·	
complementary slackness, 278	coalition structure, 446
constraint qualification, 279	pre-imputation set, 3
Karush-Kuhn-Tucker optimality conditions, 279	Pre-kernel, 388
optimal duality gap, 278	algorithm, 387
optimization problem, 277	pre-kernel, 4
regularity condition, 279	coalition structure, 454
strong duality, 278	Pre-kernel for a c.s., 466
Options, 288	pre-nucleolus, 5
orthogonal, 61	Predicate, 218
decomposition, 61	predicate, 203
projection, 61	PreKernel, 390, 533, 543, 756, 759, 764, 768, 769, 907, 917
Orthogonal projection, 387, 465	PreKernelEqualsKernelQ, 841
Outer, 252	PrekernelQ, 387, 392, 533, 543, 605, 757
outer product, 61	PreNucl, 356, 394
outweighs, 4	PreNucl_llp, 355
OwenValue, 477, 579, 766, 785	PrenuclQ, 355
, , , ,	Prim's algorithm, 363
P	primal problem, 73, 278
1	
18.1.5	principal minors, 276
p_ADvalue, 766	Principle of Explosion, 923
p_average_convexQ, 759	PrkEqsModPrkQ, 739
p_banzhaf, 765	production_game_sq, 782
p_CddTotallyBalancedQ, 356	profit_matrix, 344
p_CoalitionSolidarity, 767	projection, 60
p_convex_gameQ, 758	matrix, 78
p_OwenValue, 766	operator, 463
-	· ,
p_PreKernel, 756, 759, 764, 765, 768	orthogonal, 61, 463
p_PrekernelQ, 757	projective game, 564
p_Reduced_game_propertyQ, 760, 761	proper coalition, 9
p_replicate_prk, 761	Property I, 397, 469, 487
p_replicate_Shapley, 762	Property II, 397, 469
p_totallyBalancedQ, 356	Property II modified (IIM), 837
p_union_stableQ, 784	PropModPreKernel, 737
p_weightedOwen, 767	proposal, 4, 414
pairwise equilibrium procedure, 4	PS property, 358

ps_gameQ, 360	Shadow Price
pseudo-inverse matrix, 78	Lagrange multiplier, 73, 278
Pseudo-inverse of matrix, 387	Shapley value, 6, 388
psstar_game, 361	ShapleyQ, 359
Public Good Index	$Shapley Value,\ 359,\ 370,\ 380,\ 533,\ 539,\ 758,\ 760,\ 765,\ 785$
Holler and Packel, 539	ShapleyValueLB, 380
Pure Functions, 247	ShapleyValueM, 380
	shiftGame, 655
Q	ShubikBertGammaGame, 739
ODDD 400	side conditions, 219
QPBB, 428	side-payment, 3
QPC, 428	significand, 52 coefficient, 52
QuadraticForm, 288 QuadRep, 288	fraction, 52
quotas, 382	matissa, 52
Quotient, 186	simple committee game
	simple game, 530
R	simple game, 22
	simple_game, 532, 537
RandomInteger, 234	Simplify, 196
RandomReal, 222	singular matrix, 68
Range, 260	Situation
Rational, 186, 205	bankruptcy, 21
Re, 206	Cournot, 849
Real, 186	direct market, 319
RealDigits, 205	market, 311
reasonable set, 6	mcst, 388
REC_propertyQ, 693	minimum cost spanning tree, 388
RecComputeRoot, 246	oligopoly, 849
Reconfirmation_propertyQ, 629	small excess difference, 674
7	snigSet, 502
Recursion, 168, 246	SOCP
reduced game property, 6, 612	second-order cone program, 425 SolidarityShapleyValue, 478, 786
Hart and Mas-Colell (HMS), 612	Solidarity Value, 475, 786
reduced game property set-valued Hart and Mas-Colell (HMS), 612	Solow growth model, 162
Reduced_game_propertyQ, 620, 622, 643	solow_capital, 164
reference	Solution Solution
pass by, 126	consistent, 389, 466
reflexive condition, 78	linear system of equations, 389, 466
Remove, 223	solution
Replace, 190	consistent, 68
ReplaceAll, 194, 201, 233	inconsistent, 68
ReplacePart, 202, 203	subgame perfect equilibrium, 12
ReplaceRepeated, 237	solution concept, 4
ReplceAll, 255, 282	anti-core, 11, 368, 436
replicate_nc, 503	anti-imputation set, 414, 435
replicate_prk, 511	anti-kernel, 369, 414
replicate_Shapley, 514	anti-nucleolus, 369, 417
representation	anti-pre-kernel, 414
normalized floating-point, 52	anti-pre-nucleolus, 417
reversed normalized condition, 78	bargaining set, 16
Rewrite Rules, 220	bargaining set w.r.t. c.s., 447
root_game, 339	center solution, 545
Rule, 194, 201, 233, 235, 255, 282 RuleDelayed, 233, 235	core, 7
RuieDelayed, 255, 255	core w.r.t. c.s., 447 irreducible anti-core, 372
\mathbf{S}	irreducible core, 372
5	kernel, 4
SameQ, 193, 238, 261, 265	kernel for c.s., 454
satisfaction, 567	least-core, 9
SaveFrames, 528	Lorenz, 622
savings_game, 303	Lorenz set, 622
SED propertyQ, 694	Modiclus, 637
SeedRandom, 221	nucleolus, 5
select_starting_pt, 606	pre-bargaining set w.r.t. c.s., 447
self-adjoint matrix, 60, 460	pre-kernel, 4, 388
semi_convexQ, 433	pre-kernel for a c.s., 466
separating_collectionQ, 332, 568	1 1 0 474
Set, 187, 192, 220	pre-kernel for c.s., 454
	pre-nucleolus, 5
SetDelayed, 187, 192, 224 sgnzSet, 497	

	4	
set, 4	-	ose matrix, 60
Shapley value, 6, 388	tree, 36	
stable sets, 15 standard solution, 7, 268	True, 1 Trust	93
strong ϵ -core, 9		ee coalition, 849
super-additive cover, 449		me, 3, 266
value, 4	_	-, 855
von Neumann-Morgenstern solutions, 15		-, 855
solution scheme		, 866
see solution concept, 4		-, 866
Solve, 189, 243, 281		type, 856
SolveOpt, 281, 283, 290	t-:	shift, 650
Sort, 262	ac	dditive, 3, 429
sortsets, 298, 904, 917	ai	rport cost, 107, 326
space	_	most average-convex, 337
null, 61		most-convex, 334
vector, 60		nti-balanced, 12
spanning tree, 363		nti-derived, 707
SplitSimpleGame(), 555		nti-monotonic cover, 368
square matrix, 69 StandardSolution, 269, 476		nti-reduced, 673 ssignment, 344
star, 558, 581		verage-convex, 335
stationary point, 277		alanced, 10, 313
Strategic-form game		ankruptcy, 21
see normal form game, 849		oncave, 326, 372
StrConverse_DGP_Q(), 751		onstant-sum, 22, 429
strict local maximum, 276		onvex, 4, 323, 429
strict local minimum, 276		ost savings, 326, 388
String, 186		erived, 697
strong ϵ -core, 9		ual, 22, 429
strong converse consistency	_	ual cover, 646
strong converse reduced game property, 612	dı	ual extension, 645
strong converse reduced game property, 612	dι	ual floor, 676
SubGame, 476	es	ssential, 5, 428
subgame perfect equilibrium, 12		ccess comparability cover, 650
Subsets, 252, 258, 261		ccess comparability floor, 674
Subtractive Cancellation, 388		ow, 349
super-additive cover, 449		reedy bankruptcy, 21, 716
super-additive TU game, 3		omogeneous standard, 545
super_additiveQ, 318, 433		nessential, 5, 429
superadditive_cover, 449 superadditiveQ, 449		i.c.s.t., 365
Switch, 238, 240		arket, 312 iinimum, 639
Symbol, 186, 206		nodest bankruptcy, 716
SymbolName, 206		anotonic, 3, 429
symmetricQ, 617		artition, 562
symmetry, 7	-	artition function, 866
		ermutation, 346
T	-	ositive, 325
	pı	rimal extension, 645
Table, 234, 242	P	S, 358
TableForm, 252	re	educed, 641
Talmudic_Rule, 303, 390, 717, 757, 760		oot, 337
TauValue, 382, 534, 543		ooted, 337
Term Rewriting, 208, 237		itellite, 546
Rules, 208		nift, 650
term rewriting, 220		mple, 22
TImatrix, 518		rictly essential, 5, 22
timeit, 159		ibgame, 3, 10
Times, 186, 201		ıbmodular, 326 ıper-additive, 3, 429
top-down design, 104 ToSimplex3d, 96, 99		iper-additive, 3, 429 iper-modular, 429
ToString, 204		otally anti-balanced, 12
totally anti-balanced TU game, 12		otally balanced, 10, 313
totally balanced TU game, 10		runcated, 545
Trace, 194, 202, 209, 234		eakly super-additive, 429
TracePrint, 194		eighed graph, 356
transfer, 3		eighted majority, 22
transformation		ero-normalized, 5
linear, 60		ero-one-normalized, 5
Transformation Rule, 199, 233	tug_Aı	ntiPreKernel, 909
Local Rewrite Rule, 194, 233	tug_Av	vConvexQ, 902, 906

tug_BalancedSelectionQ, 908, 911	local, 125
tug_BelongToCoreQ, 910	scope, 125
tug_CollectionBalancedQ, 904	vclToMatlab, 306, 309, 403
tug_ConvexQ, 901	vector
tug Det UCoord, 905	
9	average marginal contributions, 6
tug_Mnuc, 909	characteristic, 10
tug_Nuc, 909	coefficient, 60
tug_PreKernel, 907, 911	column, 60
tug_PreNuc, 908	marginal contributions, 4
tug_ShapleyValue, 906	null, 60
tug SymGameSizeK, 903	vector space, 60
tug_SymGameType2, 902	veto-player, 22
tug_SymGameType3, 903	veto_players, 534, 537
tug_SymGameType4, 903	veto rich players, 338
- · · · · · · · · · · · · · · · · · · ·	veto_ricii_players, 556
tug_ZeroMonotoneQ, 909	
	\mathbf{W}
U	
	walsh_basis, 518
undirected edge, 363	weak Anti-Property I, 421
undirected graph, 356	weak Anti-Property II, 422
Unevaluated, 210	weak reduced game property, 612
union stable structure, 482	Hart and Mas-Colell (HMS), 612
	. , , , , , , , , , , , , , , , , , , ,
union stable system, 481	Weak_balancedCollectionQ, 401
union_stableQ, 482, 578, 786	weakly_super_additiveQ, 318, 433
UnionStableBasis, 481	weighted graph problem, 356
UtopiaPayoff, 524	weighted majority game, 22
	weighted_majority, 535, 764
V	weighted_truncated, 550
	weightedBalancedCollectionQ, 406
Value	weightedExcess, 407
	weightedGraphGame, 359
Aumann-Drèze, 475, 766	
Banzhaf, 533, 538	weightedKernel, 410
Banzhaf with communication structure, 578	weightedKernelQ, 410
Banzhaf-Coleman, 533	Weighted Majority, 250, 256
Banzhaf-Owen, 579	weightedNucl, 410
Coalition Solidarity, 478, 767	weightedOwen, 767
Deegan-Packel, 540, 542, 576	weightedPreKernel, 410, 606
Holler, 575	weightedPrekernelQ, 410
Johnston, 543, 576	weightedPreNucl, 406
Myerson, 480, 578	weightedShapley, 381
of a coalition, 3	Which, 238, 240, 254
	While, 238, 242, 244
Owen, 477, 579, 766	winning player, 536, 545
Position, 484	
Public Good, 575	winning_coalitions, 531, 537
Shapley, 6, 380, 388, 539, 760, 765	winning_players(), 555
Shapley-Shubik, 533, 576	With, 229
Solidarity, 475	worth
Solidarity Shapley, 478	see value of a coalition, 3
Solidarity w.r.t. à priori unions, 479	WSysKernelQ, 411
Tau, 382, 543	WSysNuclQ, 407
weighted Owen, 767	WSysPreKernellQ, 411
weighted Shapley, 381	WSysPreNuclQ, 407
	The state of the s
value	7
eigen, 463	${f Z}$
pass by, 126	
large	
value_matrix, 348	zero_monotonicQ, 432, 532
variable	zero_monotonicQ, 432, 532 ZeroMonotoneQ, 840
/	