SHOPPING MALL CUSTOMER SEGMENTATION USING CLUSTERING

HARI PRASATH S

225229110

STEP -1:UNDERSTAND DATA

```
In [1]: | import pandas as pd
         import numpy as np
In [2]: df = pd.read_csv('Mall_Customers.csv')
In [3]: # properties
         df.head()
Out[3]:
            CustomerID
                       Genre Age Annual Income (k$) Spending Score (1-100)
         0
                                                                    39
                    1
                         Male
                               19
                                                15
         1
                    2
                               21
                                                15
                                                                    81
                         Male
         2
                    3 Female
                                                                     6
                               20
                                                16
                    4 Female
                               23
                                                16
                                                                    77
                    5 Female
                               31
                                                17
                                                                    40
In [4]: df.shape
Out[4]: (200, 5)
In [5]: df.size
Out[5]: 1000
In [6]: df.columns
Out[6]: Index(['CustomerID', 'Genre', 'Age', 'Annual Income (k$)',
                'Spending Score (1-100)'],
               dtype='object')
```

```
In [8]: | df.CustomerID.value_counts()
Out[8]: 200
                1
         63
                1
         73
                1
         72
                1
         71
                1
         70
                1
         69
                1
         68
                1
         67
                1
         66
                1
         65
                1
         64
                1
         62
                1
         199
                1
         61
                1
         60
                1
         59
                1
         58
                1
         57
                1
         56
                1
         55
                1
         54
                1
                1
         53
                1
         52
         74
                1
                1
         75
         76
                1
         77
                1
         98
                1
         97
                1
               . .
         106
                1
         105
                1
         104
                1
         103
                1
         124
                1
         126
                1
         149
                1
         127
                1
         148
                1
         147
                1
         146
                1
         145
                1
         144
                1
         143
                1
         142
                1
         141
                1
         140
                1
         139
                1
         138
                1
         137
                1
                1
         136
                1
         135
         134
                1
         133
                1
         132
                1
         131
                1
         130
         129
                1
         128
                1
         1
         Name: CustomerID, Length: 200, dtype: int64
```

```
In [9]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
         CustomerID
                                    200 non-null int64
                                    200 non-null object
         Genre
                                    200 non-null int64
         Age
                                    200 non-null int64
         Annual Income (k$)
         Spending Score (1-100)
                                    200 non-null int64
         dtypes: int64(4), object(1)
         memory usage: 7.9+ KB
In [10]: df.dtypes
Out[10]: CustomerID
                                     int64
         Genre
                                    object
         Age
                                     int64
         Annual Income (k$)
                                     int64
         Spending Score (1-100)
                                     int64
         dtype: object
```

STEP - 2:LABEL ENCODE GENDER

STEP - 3:CHECK FOR VARIANCE

In [12]: df.describe()

Out[12]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	0.440000	38.850000	60.560000	50.200000
std	57.879185	0.497633	13.969007	26.264721	25.823522
min	1.000000	0.000000	18.000000	15.000000	1.000000
25%	50.750000	0.000000	28.750000	41.500000	34.750000
50%	100.500000	0.000000	36.000000	61.500000	50.000000
75%	150.250000	1.000000	49.000000	78.000000	73.000000
max	200.000000	1.000000	70.000000	137.000000	99.000000

In [13]: | df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

CustomerID 200 non-null int64
Genre 200 non-null int64
Age 200 non-null int64
Annual Income (k\$) 200 non-null int64
Spending Score (1-100) 200 non-null int64

dtypes: int64(5)
memory usage: 7.9 KB

In [14]: | df.var()

 Out[14]:
 CustomerID
 3350.000000

 Genre
 0.247638

 Age
 195.133166

 Annual Income (k\$)
 689.835578

 Spending Score (1-100)
 666.854271

dtype: float64

In [15]: | df.corr()

Out[15]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835
Genre	0.057400	1.000000	0.060867	0.056410	-0.058109
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	0.056410	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.058109	-0.327227	0.009903	1.000000

STEP 4:CHECK SKEWNESS

In [16]: df.skew()

dtype: float64

In [17]: df.sort_values(by =['Genre','Age','Annual Income (k\$)','Spending Score (1-100)'])

Out[17]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
114	115	0	18	65	48
111	112	0	19	63	54
115	116	0	19	65	50
2	3	0	20	16	6
39	40	0	20	37	75
31	32	0	21	30	73
35	36	0	21	33	81
84	85	0	21	54	57
105	106	0	21	62	42
5	6	0	22	17	76
87	88	0	22	57	55
3	4	0	23	16	77
7	8	0	23	18	94
29	30	0	23	29	87
78	79	0	23	54	52
100	101	0	23	62	41
124	125	0	23	70	29
13	14	0	24	20	77
45	46	0	24	39	65
132	133	0	25	72	34
47	48	0	27	40	47
58	59	0	27	46	51
97	98	0	27	60	50
155	156	0	27	78	89
142	143	0	28	76	40
48	49	0	29	40	42
135	136	0	29	73	88
161	162	0	29	79	83
183	184	0	29	98	88
9	10	0	30	19	72
•••					
130	131	1	47	71	9
42	43	1	48	39	36
85	86	1	48	54	46
92	93	1	48	60	49
98	99	1	48	61	42
146	147	1	48	77	36
104	105	1	49	62	56
164	165	1	50	85	26
18	19	1	52	23	29
32	33	1	53	33	4
59	60	1	53	46	46
107	108	1	54	63	46

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
80	81	1	57	54	51
176	177	1	58	88	15
53	54	1	59	43	60
74	75	1	59	54	47
128	129	1	59	71	11
178	179	1	59	93	14
30	31	1	60	30	4
64	65	1	63	48	51
8	9	1	64	19	3
110	111	1	65	63	52
109	110	1	66	63	48
10	11	1	67	19	14
82	83	1	67	54	41
102	103	1	67	62	59
108	109	1	68	63	43
57	58	1	69	44	46
60	61	1	70	46	56
70	71	1	70	49	55

200 rows × 5 columns

STEP 5:PAIR PLOT

In [18]: import matplotlib.pyplot as plt
import seaborn as sns

```
In [19]: sns.pairplot(data=df)
```

Out[19]: <seaborn.axisgrid.PairGrid at 0x22d3fb07cf8>

STEP6:BUILD KMEANS

random_state=None, tol=0.0001, verbose=0)

3/15/23, 10:49 AM

```
Lab11_PML
In [25]: | KM.labels_
Out[25]: array([3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3,
                                       3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1,
                                       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 0, 2, 4, 2, 4, 2,
                                       4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 0, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2,
                                       4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2,
                                       4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2,
                                       4, 2])
In [26]: | print(KM.cluster_centers_)
                      [[ 0.41772152 43.08860759 55.29113924 49.56962025]
                        [ 0.39130435 25.52173913 26.30434783 78.56521739]
                         [ 0.46153846 32.69230769 86.53846154 82.12820513]
                         [ \ 0.39130435 \ 45.2173913 \ \ 26.30434783 \ 20.91304348]
                         [ 0.52777778 40.66666667 87.75
                                                                                                                17.58333333]]
                      STEP - 7:SCATTER PLOT
In [29]: import warnings
                      warnings.filterwarnings('ignore')
In [33]: plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'], color='blue')
Out[33]: <matplotlib.collections.PathCollection at 0x22d4152ed68>
                         100
                           80
                           60
                           40
                           20
                                                                                                     100
                                                                                                                                    140
                      STEP8: CLUSTER ANALYSIS
                      kmeans2 = KMeans(n clusters = 5, init='k-means++')
In [34]:
                       kmeans2.fit(df)
                       pred = kmeans2.predict(df)
```

```
In [35]: frame = pd.DataFrame(df)
          frame['cluster'] = pred
In [36]: frame.cluster.value_counts()
Out[36]: 1
              79
              39
              37
         4
         2
              23
         Name: cluster, dtype: int64
```

In [37]: frame

Out[37]:

	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
0	1	19	15	39	2
1	1	21	15	81	0
2	0	20	16	6	2
3	0	23	16	77	0
4	0	31	17	40	2
5	0	22	17	76	0
6	0	35	18	6	2
7	0	23	18	94	0
8	1	64	19	3	2
9	0	30	19	72	0
10	1	67	19	14	2
11	0	35	19	99	0
12	0	58	20	15	2
13	0	24	20	77	0
14	1	37	20	13	2
15	1	22	20	79	0
16	0	35	21	35	2
17	1	20	21	66	0
18	1	52	23	29	2
19	0	35	23	98	0
20	1	35	24	35	2
21	1	25	24	73	0
22	0	46	25	5	2
23	1	31	25	73	0
24	0	54	28	14	2
25	1	29	28	82	0
26	0	45	28	32	2
27	1	35	28	61	0
28	0	40	29	31	2
29	0	23	29	87	0
•••					
170	1	40	87	13	4
171	1	28	87	75	3
172	1	36	87	10	4
173	1	36	87	92	3
174	0	52	88	13	4
175	0	30	88	86	3
176	1	58	88	15	4
177	1	27	88	69	3
178	1	59 35	93	14	4
179	1	35 37	93	90	3
180	0	37	97	32	4
181	0	32	97	86	3

	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
182	1	46	98	15	4
183	0	29	98	88	3
184	0	41	99	39	4
185	1	30	99	97	3
186	0	54	101	24	4
187	1	28	101	68	3
188	0	41	103	17	4
189	0	36	103	85	3
190	0	34	103	23	4
191	0	32	103	69	3
192	1	33	113	8	4
193	0	38	113	91	3
194	0	47	120	16	4
195	0	35	120	79	3
196	0	45	126	28	4
197	1	32	126	74	3
198	1	32	137	18	4
199	1	30	137	83	3

200 rows × 5 columns

```
In [38]: C0 = df[df['cluster'] == 0]
    C1 = df[df['cluster'] == 1]
    C2 = df[df['cluster'] == 2]
    C3 = df[df['cluster'] == 3]
    C4 = df[df['cluster'] == 4]
```

```
In [62]: import statistics as ss
print('Average Age : ',C0['Age'].mean())
print('Average Annual Income : ',C0['Annual Income (k$)'].mean())
print('Deviation of the mean for annual Income : ',ss.stdev(C0['Annual Income (k$)']))
print('No. of Customers ie shape :' ,C0.shape)
print('From those Customers We have',C0.Genre.value_counts()[1],'male and',C0.Genre.value_counts()[6]
```

Average Age: 25.2727272727273

Average Annual Income: 25.72727272727

Deviation of the mean for annual Income: 7.566730552584204

No. of Customers ie shape: (22, 5)

From those Customers We have 9 male and 13

```
In [63]: print('Average Age : ',C1['Age'].mean())
    print('Average Annual Income : ',C1['Annual Income (k$)'].mean())
    print('Deviation of the mean for annual Income : ',ss.stdev(C1['Annual Income (k$)']))
    print('No. of Customers ie shape :' ,C1.shape)
    print('From those Customers We have',C1.Genre.value_counts()[1],'male and',C1.Genre.value_counts()[6]
```

Average Age: 43.12658227848101

Average Annual Income: 54.822784810126585

Deviation of the mean for annual Income: 8.576592314850398

No. of Customers ie shape: (79, 5)

From those Customers We have 33 male and 46

```
In [64]: | print('Average Age : ',C2['Age'].mean())
         print('Average Annual Income : ',C2['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C2['Annual Income (k$)']))
         print('No. of Customers ie shape :' ,C2.shape)
         print('From those Customers We have',C2.Genre.value_counts()[1],'male and',C2.Genre.value_counts()[6]
         Average Age : 45.21739130434783
         Average Annual Income : 26.304347826086957
         Deviation of the mean for annual Income: 7.893811054517766
         No. of Customers ie shape: (23, 5)
         From those Customers We have 9 male and 14
In [65]: print('Average Age : ',C3['Age'].mean())
         print('Average Annual Income : ',C3['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C3['Annual Income (k$)']))
         print('No. of Customers ie shape :' ,C3.shape)
         print('From those Customers We have',C3.Genre.value_counts()[1],'male and',C3.Genre.value_counts()[6]
         Average Age : 32.69230769230769
         Average Annual Income: 86.53846153846153
         Deviation of the mean for annual Income : 16.312484972924967
         No. of Customers ie shape: (39, 5)
         From those Customers We have 18 male and 21
In [66]: | print('Average Age : ',C4['Age'].mean())
         print('Average Annual Income : ',C4['Annual Income (k$)'].mean())
         print('Deviation of the mean for annual Income : ',ss.stdev(C4['Annual Income (k$)']))
         print('No. of Customers ie shape :' ,C4.shape)
         print('From those Customers We have',C4.Genre.value_counts()[1],'male and',C4.Genre.value_counts()[6]
         Average Age : 40.32432432432432
         Average Annual Income : 87.43243243243
         Deviation of the mean for annual Income: 16.2729163891359
         No. of Customers ie shape: (37, 5)
         From those Customers We have 19 male and 18
         STEP9:FIND THE BEST NUMBER
```

```
In [50]: SSE = []
for clust in range(1,20):
    KM = KMeans(n_clusters= clust, init='k-means++')
    KM = KM.fit(df)
    SSE.append(KM.inertia_)
```

```
In [51]: plt.plot(np.arange(1,20), SSE,'ro-')
    plt.xlabel('Number of Clusters')
    plt.ylabel('Inertia')
```

Out[51]: Text(0,0.5,'Inertia')

STEP10: REDUCE DIMESNSION USING PCA

```
In [52]: from sklearn.decomposition import PCA
In [53]: pca = PCA(n_components=2)
```

```
In [53]: pca = PCA(n_components=2)
   _PCA = pca.fit_transform(df)
   PCA_Components = pd.DataFrame(_PCA)
```

In [54]: PCA_Components

Out[54]:

	0	1
0	-32,316178	-32.521082
1	-0.028294	-56.879048
2	-57.579285	-12.304252
3	-2.914984	-53.476855
4	-32.584904	-29.908105
5	-2.906245	-52.226341
6	-59.187952	-8.705258
7	11.511166	-61.812993
8	-66.351383	-2.284114
9	-6.316792	-47.223080
10	-58.354348	-8.312635
11	13.754747	-62.335528
12	-55.291653	-9.299255
13	-0.703762	-50.145748
14	-52.917051	-10.929002
15	1.226421	-51.579673
16	-34.825534	-23.254910
17	-7.914313	-43.449544
18	-41.477228	-15.881175
19	15,375106	-58.553349
20	-33.027034	-20.855003
21	-1.605072	-44.475406
22	-57.827891	-1.058005
23	-2.128618	-42.875920
24	-50.524114	-2.852672
25	7.047075	-46.003994
26	-34.834391	
27	-10.415239	-32.931276
28	-34.076885	-13.855021
29	12.660417	-48.928244
170	-13.289127	43.112914
171	37.188580	5.239567
172	-14.874526	44.332790
173	48.917990	-3.628728
174	-14.935511	45.510862
175	45.972722	-0.124435
176	-14.502861	45.143662
177	33.307043	9.412147
178	-12.470090	49.858625
179	51.146692	2.203407
180	8.051848	39.601879
181	50.994770	7.337222

```
0
                                                                             1
                         182
                                     -6.260526
                                                            51.537991
                         183
                                     53.712060
                                                               6.567815
                          184
                                     13.948677
                                                             37.643234
                         185
                                     61.126660
                                                               2.242462
                         186
                                       1.043562
                                                             49.741742
                         187
                                     40.136642
                                                            20.522642
                         188
                                      -0.770128
                                                            53.698087
                         189
                                     53.065570
                                                             13.251648
                         190
                                       5.208546
                                                             49.258224
                         191
                                     41.365449
                                                            22.068893
                         192
                                      -0.279370
                                                            65.887078
                         193
                                     63.355555
                                                             18.006268
                         194
                                       7.521927
                                                             68.673053
                         195
                                     58.777689
                                                             30.215294
                         196
                                     20.830597
                                                            66.190066
                         197
                                     59.046297
                                                            37.535569
                          198
                                     22.078862
                                                             79.096208
                         199
                                     73.018819
                                                            40.803029
                       200 rows × 2 columns
                       KM1 = KMeans(n clusters=5)
In [55]:
                        KM1.fit(PCA_Components)
                        KM1.cluster_centers_
Out[55]: array([[ -4.45895813, -3.07010572],
                                         [ 41.57978581, 1.32960205],
                                         [ 4.33100055, -46.77811361],
                                         [ -9.62766645, 42.51895929],
                                         [-44.51819271, -9.41877946]])
In [56]: KM1.labels
Out[56]: array([4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
                                         4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 0,
                                         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 3, 1, 3, 1,
                                         0, 1, 3, 1, 3, 1, 3, 1, 3, 1, 0, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1,
                                         3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1,
                                         3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1,
                                         3, 1])
```

STEP11: SCATTER PLOT

```
In [67]: plt.scatter(PCA_Components[0], PCA_Components[1], data='KM1.labels_')
```

Out[67]: <matplotlib.collections.PathCollection at 0x22d3fd5a550>

STEP12: MEAN SHIFT CLUSTERING

```
In [69]: from sklearn.cluster import MeanShift, AgglomerativeClustering
```

```
In [70]: MS = MeanShift(bandwidth = 50)
    MS.fit(PCA_Components)
    MS.cluster_centers_
```

Out[70]: array([[0.29174595, -4.11523419]])

```
In [71]: plt.scatter(PCA_Components[0], PCA_Components[1])
```

Out[71]: <matplotlib.collections.PathCollection at 0x22d447075c0>

STEP13: PREDICT HIERARCHICAL CLUSTERS USING AGGLOMERATIVE CLUSTERING

```
In [73]: AC.labels_
Out[73]: array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
                                               4, 3, 4, 3, 4, 0, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 0,
                                               0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1,
                                               0, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1,
                                               2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
                                               2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
                                               2, 1], dtype=int64)
In [74]: | df['Cluster'] = AC.labels_
In [75]: import scipy.cluster.hierarchy as sch
In [76]: from scipy.cluster import hierarchy
In [78]: Z = hierarchy.linkage(df[:30], 'ward')
                            plt.figure(figsize=(10,5))
                            dn = hierarchy.dendrogram(Z)
                               200
                              150
                              100
                                 50
```

STEP14: VISUALIZE SCATTER PLOT WITH HUE AS AGGLOMERATIVECLUSTERING LABELS

```
In [ ]: sns.scatterplot(df['Annual Income (k$)'], df['Spending Score (1-100)'], hue=AC.labels_)
In [ ]:
```