新概念力学习题答案

第一章

1-1 位移
$$\Delta x = x(t) - x(0) = 3\sin\frac{p}{6}t$$
,

速度
$$v = \frac{dx}{dt} = \frac{p}{2}\cos\frac{p}{6}t$$
,

加速度
$$a = \frac{dv}{dt} = -\frac{p^2}{12}\sin\frac{p}{6}t$$
.

1-2 (1) $\mathbf{Q}x = R\cos wt$, $y = R\sin wt$; $\mathbf{Q}x^2 + y^2 = R^2$, 质点轨迹是圆心在圆点的圆.

(2)
$$\mathbf{v} = \frac{d^{\mathbf{r}}}{dt} = wR(-\sin wti + \cos wtj)$$

$$\mathbf{r}$$

$$a = \frac{d^{\mathbf{r}}}{dt} = -wR(\cos wti + \sin wtj) = -w^{2}\mathbf{r}$$

$$\hat{f}$$

1-3 (1)
$$x = 4t^2$$
, $y = 2t + 3$, $x = (y - 3)^2$ 故 $x \ge 0$, $y \ge 3$, 质点轨迹为抛物线的一段。

(2)
$$\Delta_r^{\mathbf{r}} = r(1) - r(0) = \underline{4i + 2j}$$
;大小为 $|\Delta_r^{\mathbf{r}}| = \sqrt{4^2 + 2^2} = 2\sqrt{5}m$,与 x 轴夹角 $q = tg^{-1}\frac{2}{4} = 26.6^{\circ}$

(3)
$$\overset{\mathbf{r}}{v} = \frac{d\overset{\mathbf{r}}{r}}{dt} = 8t\overset{\mathbf{r}}{i} + 2\overset{\mathbf{r}}{j}, \overset{\mathbf{r}}{a} = \frac{d\overset{\mathbf{r}}{v}}{dt} = \frac{\mathbf{r}}{8i}.$$

1-4
$$\Delta t_n = t_n - t_{n-1} = (\sqrt{n} - \sqrt{n-1})\Delta t_1 = 4 \times (\sqrt{7} - \sqrt{6}) = 0.785s$$

$$1-5 \quad v_0 = \frac{h}{t} = \sqrt{gh}$$

$$1-6 y = \frac{v_0^2}{2g} - \frac{1}{8}gt_0^2$$

1-7 由 7, 由
$$\Delta s = v_0 \Delta t_1 + \frac{1}{2} a \Delta t_1^2$$
, 及 $2\Delta s = v_0 (\Delta t_1 + \Delta t_2) + \frac{1}{2} a (\Delta t_1 + \Delta t_2)^2$ 即可证.

1-8
$$v_2 = \frac{h_1}{h_1 - h_2} v_1$$
, $a_2 = \frac{dx_2}{dt} = 0$.

1-9 由
$$y_m = \frac{v_0^2 \sin^2 b}{2g}$$
, $x_m = \frac{v_0^2 2 \sin b \cos b}{g}$; 及 $tga = \frac{y_m}{x_m/2}$ 即可证。

1-10
$$\overline{AB} = \frac{9.8^2}{2 \times 9.8} \cdot \frac{\sqrt{3}}{2} \cdot \frac{2}{3} = 2.83m$$

1-11 (1)
$$s = 100 \times \sqrt{\frac{2 \times 9.8}{9.8}} = \underline{200\sqrt{5}} = \underline{447.2m}$$

$$tga = \frac{s}{h}, a = tg^{-1}(100 \times \sqrt{\frac{2}{98 \times 9.8}}) = 77.64^{\circ} = 77^{\circ}38'24''$$

(2)
$$a_t = g \cos q = g \cdot \frac{v_y}{v} = 0.96 m/s;$$
 $a_n = g \sin q = g \cdot \frac{v_x}{v} = 9.75 m/s^2$

1-12
$$r = \frac{v^3}{gv_x} = \frac{1}{v_0 g \cos q} (v_0^2 - 2gy)^{\frac{3}{2}}$$

1-13
$$AB = \frac{2v_0^2}{g} = 4h = 4 \times 0.20 = 0.80m$$

1-14
$$t = \sqrt{\frac{R}{a_t}} = \sqrt{\frac{300}{3.00}} = 10s$$

1-15
$$v_{4/1} = v_0 - gt = 49 - 9.8t$$
, $v_{30/4/1} = v_{4/1} - v = 29.4 - 9.8t$

第二章

2-1
$$P_B = \sqrt{\overrightarrow{P_e^2} + \overrightarrow{P_v^2}} = 10.65 \times 10^{-16} g \cdot cm/s$$
. $q = 30^{\circ}$.

2-2 (1) 木块的速率
$$v = \frac{m}{M+m} v_0$$
 和动量 $p_{\pm} = \frac{Mm}{M+m} v_0$; 子弹的动量 $p_{\mp} = \frac{m^2}{M+m} v_0$.

(2) 子弹施予木块的动量
$$I_{\pm} = \frac{Mm}{M+m} v_0$$
.

2-3
$$I = \sqrt{m(T_0 - mg)l} = 0.86kg \cdot m/s$$

2-4
$$v_1 = \frac{ft_1}{m_1 + m_2}$$
, $v_2 = \frac{ft_1}{m_1 + m_2} + \frac{ft_2}{m_2}$.

2-5
$$S_{\text{船}} = 1.4m$$
. (对岸), $S_{\text{人}} = -S_{\text{船}} + S_{\text{人对船}} = 2.6m$.(对岸).

2-6
$$m_{Z} = \frac{v_0 + v_{Z}}{v_0 - v_{Z}} m_{\mathfrak{R}} = 300 kg$$
.

2-7
$$v_{\text{HI}} = v + \frac{m}{M+m}u$$
, $v_{\text{H}} = v$, $v_{\text{FI}} = v - \frac{m}{M+m}u$

2-8 (1)
$$\overrightarrow{v_{\pm}} = -\frac{Nm}{M + Nm} \overrightarrow{u}$$

(2)
$$\overrightarrow{v_{\#N}} = -m\left[\frac{1}{M+Nm} + \frac{1}{M+(N-1)m} + \mathbf{L} + \frac{1}{M+2m} + \frac{1}{M+m}\right]\overrightarrow{u}$$

(3) 比较(1)和(2),显然有
$$\left|\overrightarrow{v}_{\pm N}\right| > \left|\overrightarrow{v}_{\pm}\right|$$
.

2-9
$$v_2 = \sqrt{v_1^2 + 4v_0^2 \cos^2 q_0}$$
, $a = tg^{-1} \frac{v_1}{2v_0 \cos q_0} = \sin^{-1} \frac{v_1}{v_2} = \cos^{-1} \frac{2v_0 \cos q_0}{v_2}$.

2-10
$$\overline{F}_t = \frac{240mv}{t} = \frac{240 \times 10 \times 10^{-3} \times 900}{60} = 36N$$

2-11 (1)
$$a_0 = \frac{v_0}{M_0} \mathbf{m} - g$$
; (2) $\mathbf{m} = \frac{M_0}{v_0} (a_0 + g) = 735 kg / s$.

2-12 (1)
$$v_1 = c \ln \frac{m_0}{m} = 2500 \ln 3$$
; $v_2 = 5000 \ln 3$; $v_3 = 7500 \ln 3 = 8239.6 m/s$.

(2)
$$v = 2500 \ln \frac{60}{60 - 48} = 2500 \ln 5 = 4023.6 m/s$$
.

2-13
$$F = (v + u) \frac{dm}{dt}$$
 为向前的推力, 此式的 $v \cdot u$ 为绝对值.

2-14 (1) 水平总推力为
$$F = v \frac{dm}{dt}$$
(向前)

(2) 以上问题的答案不改变

2-15 质点受力
$$\vec{f} = m\vec{a} = -m\vec{w}^2\vec{r}$$
, 恒指向原点.

2-16
$$F > m(m_A + m_B)g$$

2-17

$$\begin{cases} a_{1x} = -\frac{m_2 g \sin q \cos q}{m_2 + m_1 \sin^2 q} = -\frac{m_2 g}{(m_1 + m_2) t g q + m_2 c t g q} \\ a_{1y} = -\frac{(m_1 + m_2) g}{m_2 + m_1 \sin^2 q} \sin^2 q = -\frac{(m_1 + m_2) g t g q}{(m_1 + m_2) t g q + m_2 c t g q} \end{cases}$$

$$\begin{cases} a_{2x} = \frac{m_1 g \sin q \cos q}{m_2 + m_1 \sin^2 q} = \frac{m_1 g}{(m_1 + m_2) t g q + m_2 c t g q} \\ a_{2y} = 0 \end{cases}$$

2-18
$$F > (\mathbf{m}_1 + \mathbf{m}_2)(m_1 + m_2)g$$

2-19 (1)
$$t = \left[\frac{2d}{g\cos q(\sin q - m\cos q)}\right]^{\frac{1}{2}}$$

(2)
$$m = \frac{\cos 60^{\circ} \sin 60^{\circ} - \cos 45^{\circ} \sin 45^{\circ}}{\cos^2 60^{\circ} - \cos^2 45^{\circ}} = 2 - \sqrt{3} = 0.268$$

2-20
$$a_1 = \frac{m_1(m_2 + m_3) - 4m_2m_3}{m_1(m_2 + m_3) + 4m_2m_3} g = \frac{1}{17} g = 0.58m/s^2$$

2-21
$$tgq > \frac{3m_1 + m_2}{m_1 - m_2} m$$
.

2-22
$$F = \frac{m_3}{m_2}(m_1 + m_2 + m_3)g$$

2-23 (1)
$$\begin{cases} T = m(g \sin q + a \cos q) \\ N = m(g \cos q - a \sin q) \end{cases}$$

(2)
$$a = gctg\mathbf{q}$$

$$2-24 \quad v_{\min} = \sqrt{\frac{\sin q - m \cos q}{\cos q + m \sin q} kg} = \sqrt{\frac{tgq - m}{1 + mtgq} kg}, \quad v_{\max} = \sqrt{\frac{\sin q + m \cos q}{\cos q - m \sin q} kg} = \sqrt{\frac{tgq + m}{1 - mtgq} kg}$$

2-25
$$f = \frac{Mm}{M+m}(2g-a')$$

2-26 从机内看: a = 3/4g

从地面上的人看:
$$\begin{cases} a_{Ax} = 3/4g \\ a_{By} = 1/2g \end{cases}$$
 ; $\begin{cases} a_{Bx} = 0 \\ a_{By} = -1/4g \end{cases}$.

2-27 (1)
$$v = \sqrt{gl}$$

(2)
$$\begin{cases} N_t = mg = 4.9N \\ N_n = m\frac{v^2}{l} = 0.16N \end{cases}$$

2-28 由 dr 这一段,所需向心力 $dT = dmw^2r = \frac{m}{r}w^2rdr$ 易证。

2-29
$$W = \sqrt{\frac{kg}{kl_0 \cos q + mg}}, \qquad \Delta l = \frac{mg}{k \cos q + mg}$$

2-30 (1)
$$w = \sqrt{2ag}$$
; (2) 相对弯管静止的角速度为 $w = \sqrt{\frac{g}{R-y}}$, 即没有唯一的角速度。

2-31
$$f = mM(2a - a')$$

2-31
$$f = mM(2a - a')$$

2-34 $f_c = 2mv \times w'; \quad f_c = 2mw \sin 30^\circ = 91N$,压向东边。

第三章

- 3-1 最后一节车厢与列车后端相距 $\Delta s = s' + s = Ms/(M-m)$
- 3-2 h = R/3
- $3-3 \quad h \ge 5R/2$
- 3-4 $h = (v_0^2 + v_1^2)/4g$

3-5
$$v_B = \left[\frac{2(m_B - m_A)gh}{m_A + m_B}\right]^{\frac{1}{2}}$$

3-6
$$q_{\min} = \cos^{-1}(\frac{1}{3} + \frac{1}{3}\sqrt{1 - \frac{3M}{2M}})$$

3-7
$$v_m = \frac{m_2}{m_1} g \sqrt{\frac{m_1}{k}} = \frac{m_2}{m_1} \frac{g}{w_1}, \quad w_1 = \sqrt{\frac{k}{m_1}}$$

3-8 (1)
$$v_B = \sqrt{\frac{k}{m_A + m_B}} x_0;$$
 (2) $x_{A \text{max}} = x_0 + x_0' = (1 + \sqrt{\frac{m_A}{m_A + m_B}}) x_0$

3-9 (1)
$$a_{c \max} = F_{\text{sh}} / m = kx_0 / (m_A + m_B)$$
; (2) $v_{c \max} = \frac{\sum u_i v_i}{m} = \frac{m_B}{m_A + m_B} \sqrt{\frac{k}{m_B}} x_0$.

3-10 (1) $F = (m_2 + m_2)g$

(2) 当 F 刚撤除时, $a_{c \max} = g$ (方向向上);当 $l_0 - x = l_1$ 时, $F_{++} = 0, a_c = 0$;当 $l_0 - x = -l_1$, $F_{sh} = -(m_1 + m_2)g, a_s = -g$,是 m_2 刚要离地时的质心力加速度,方向向下。

3-11 证明的关键是作用力和反作用力在任何参考系中都相等,即 N=N' 。

3-12 两物体的速度为
$$V = \frac{m}{M+m} \sqrt{2gh}$$
; 上升的最大高度为 $H = \frac{m^2}{M^2 - m^2} h$.

3-13 (a) $A = \frac{1}{2} \frac{k_1 k_2}{k_1 + k_2} l^2$; (b) 如非常缓慢地拉长,则 A 被分配到两弹簧上,此时 A 如上最小;

若非常急速地拉, k_1 及 m 都来不及变化和运动,故 $A_{\max} = \frac{1}{2}k_2l^2$ 。一般地有:

$$\frac{1}{2} \frac{k_1 k_2}{k_1 + k_2} l^2 \le A \le \frac{1}{2} k_2 l^2 \ .$$

3-14
$$V = \frac{m}{M+m} v_0 = 16m/s$$
. (1) $A_{\pm \pm \to \mp \pm \pm} = \frac{1}{2} m V^2 - \frac{1}{2} m V_0 = -6397.44 J$; (2)

 $A_{\text{子弹}\to \pi \downarrow p} = \frac{1}{2}MV^2 = 125.44J$; (3) 耗散掉的机能: $\Delta E = -A_{\pi \downarrow p \to T \not p} - A_{\text{子弹}\to \pi \downarrow p} = 6272J$.

3-15
$$x_{\text{max}} = \sqrt{\frac{m_2}{(m+m_1)(m+m_1+m_2)}} \cdot mv_0$$

3-16 A 球第一次碰撞后返回的高度是
$$h_A = \frac{1}{4}(1-e)^2 h_1$$
.

3-17
$$m_B > 3m_A$$
.

3-18
$$\begin{cases} v_m = \frac{m-M}{m+M} v_0 = \frac{r-1}{r+1} v_0 \\ v_M = \frac{2m}{m+M} v_0 = \frac{2r}{r+1} v_0 \end{cases}$$
, 式中 $r = m/M$.

3-19 (1)
$$v = u_1/2$$
, $m_2 = 3m_1$; (2) $v_c = \frac{1}{4}u_1$; (3) $E_k^c = \frac{3}{4} \cdot \frac{1}{2}m_1u_1^2$; (4) $E_{k1} = \frac{1}{4} \cdot \frac{1}{2}m_1u_1^2$.

3-20
$$m_n = \frac{14v_N - v_H}{v_H - v_N} m_H = 1.159 m_H; v_0 = 3.07 \times 10^7 m/s.$$

经误差分析后得: $m_n = (1.159 \pm 0.252) m_H$; $v_0 = (3.07 \pm 0.31) \times 10^7 m/s$.

3-21
$$v_1 = \frac{28}{27}v_0, v_2 = \frac{13}{27}v_0.$$

3-22
$$v = \frac{1}{4}v_0\sqrt{5 - 2\sqrt{2}} = 0.368v_0$$
, $q = tg^{-1}\frac{\sqrt{2}}{4 - \sqrt{2}} = 28.68^{\circ}$

末态动能 $E_k = 0.52 \times \frac{1}{2} m_0 v_0^2 < \frac{1}{2} m_0 v_0^2$ 不守恒!

- 3-23 (1) 由此得 $v_{\rm h} > 120 km/h$, 目击者的判断不可信。
 - (2) 总初始动能的 5/8 由于碰撞而转换成了其他形式的能量。
- 3-24 $m_Z = 300kg$; 总动能减少了。
- 3-25 由 (3.63) 式可以证明: $v \approx (1-e^{-na})v_0$; 且在 an << 1, 和 $an \to \infty$,时有效。
- 3-26 十人一个一个地往后跳跳时,车子获得最大的动能。

$$3-27 y_c = 0, x_c = \frac{R\sin q}{q}$$

3-28
$$x_c = 0, z_c = 0, y_c = \frac{3}{8}R$$
.

- 3-29 (a) 当mg < kR kl/2 时, E_p 有两个稳定平衡点($\mathbf{q}_{\pm} = \cos^{-1} \frac{kl}{2(kR mg)}$),有一个不稳定平衡点($\mathbf{q}_{1} = 0$); (b) 当 $mg \ge kR kl/2$ 时, E_p 只有一个稳定平衡点($\mathbf{q}_{1} = 0$)。
- 3-30 从略。

第四章

- 4-1 (1) $J_A = mvd_1, J_B = mvd_1$, 方向向纸里; $J_C = md_3 \times r = 0$.
 - (2) $M_A = mgd_1$, $M_B = mgd_1$, 方向向纸里; $M_C = d_3 \times mg = 0$.

4-2
$$J = mr \times r = m(xv_y - yv_x)k$$
, $M = r \times f = yfk$.

4-3
$$W = \frac{1}{mr^2} \frac{h}{2p} = 4.13 \times 10^{16} \, md \, / \, s$$

4-4
$$v_2 = \frac{r_1}{r_2} v_1, tg \mathbf{q}_2 = \frac{v_2^3}{g r_1 v_1} \propto v_2^3; 即 v_2 增大,故 \mathbf{q}_2 亦增大, \mathbf{q}_2 > \mathbf{q}_1.$$

4-5
$$w' = \frac{8}{5}w;$$
 $\Delta E_k = \frac{39}{25}E_{k0}$,增加的能量来自汽车的动力。

4-6
$$w = \frac{v}{2R}$$
(这是转台反方向旋转地角速度)。

4-7
$$m_2$$
对质心的角动量更大, $\frac{J_{c2}}{J_{c1}} = \frac{m_1}{m_2}$.

4-8
$$v_c = \mathbf{W}l_2 = \frac{m_1l}{m_1 + m_2}\mathbf{W}$$
 沿切线方向做匀速直线运动; $T = T_1 = \mathbf{m}l\mathbf{W}^2$.

4-9 (1)
$$J_{\hat{\text{m}}} = J_{\hat{\text{m}}}$$
 (角动量守恒); (2) $v' = \frac{r_{10}}{r_5} v_0 = \frac{5}{2.5} \times 6.5 = 13 m/s$;

(3)
$$T' = m \frac{{v'}^2}{r_5} = 4056N$$
; (4) $A = 3802.5J = \Delta E_k$.

4-10 (1)
$$\frac{E_k}{E_{ko}} = \frac{b^2}{l^2} < 1$$
, 其他能量转变为绳子的弹性势能,以后转化为分子内能.

(2) 绳子断后,质点将按速度
$$v = v_0 \frac{b}{l}$$
沿切线方向飞出,做匀速直线运动 质点对 0 点的角动量 $J = mv_0 b =$ 恒量.

4-11 (1)
$$U_{(r)} = \frac{k}{r}$$
, 选 $r = \infty$ 处为 U 的零点; (2) $R = \frac{mv_0^2b^2}{\sqrt{k^2 + m^2v_0^4b^2} - k} = \frac{\sqrt{k^2 + m^2v_0^4b^2} + k}{mv_0^2}$ 。

- 4-12 把k换成-k。
- 4-13 地月之间距离增大了0.28倍

4-14
$$V_C = \frac{4}{7}V_0$$
, $V_1 = -\frac{1}{7}V_0$; $w = \frac{4\sqrt{2}}{7}\frac{V_0}{l}$.

4-15
$$v' = \frac{3m - M}{3m + M}v$$
 ; $w = \frac{6v}{L} \bullet \frac{m}{3m + M}$. 讨论: (1) $M \le 3m$, $v \ge 0$, 小球向前运动; (2) $M = 3m$, $v = 0$, 小球不动; (3) $M \ge 3m$, $v' \le 0$, 小球向后运动。三种情况下,薄板匀绕轴向前转动,此题中系统的动量不守恒,因为轴对薄板有做用力

4-16
$$I = I_B + I_C + I_{BC} = \frac{1}{3}ml^2 \times 2 + \frac{5}{6}ml^2 = \frac{3}{2}ml^2$$

$$4-17 \quad (1).I = 6ml^2 = 3.6 \times 10^{-5} kgm^2; (2)I = 4m(\frac{\sqrt{3}}{2}l)^2 = 1.8 \times 10^{-5} kgm^2; (3)I = 12ml^2 = 7.2 \times 10^{-5} kgm^2.$$

4-18 (1)
$$I = \frac{1}{3}ml^2 + \frac{1}{2}MR^2 + M(l+R)^2$$

(2)
$$r_{c} = \frac{l}{2} + \frac{M}{M+m} (\frac{l}{2} + R) = l + R - \frac{m}{M+m} (\frac{l}{2} + R)$$
$$I_{c} = \frac{1}{12} m l^{2} + \frac{1}{2} M R^{2} + \frac{m M}{M+m} (R + \frac{l}{2})^{2}$$

4-19
$$I_{\hat{\pi}} = \frac{1}{2}MR^2(1 - \frac{r^2}{R^2} - 2\frac{r^4}{R^4})$$

$$4-20 \qquad I = \frac{M_{\cancel{p}}t_1}{W_0} = \frac{100 \times 240}{40p} = 191kgm^2$$

$$4-21 \quad \mathbf{m} = \frac{mRw_0}{2Nt} = 0.098$$

4-22 制动力矩:
$$N' = \frac{mRw_0}{mt} = 2.09N$$
; 制动力: $F = \frac{N'}{1.25} = 0.836$.

4-23 (1)
$$t = \frac{R_A}{R_B} = \frac{W_A}{b_B} = \frac{30}{75} \times \frac{20p}{0.8p} = 10s$$

(2)
$$\boldsymbol{b}_{A} = \frac{\boldsymbol{w}_{A} - \boldsymbol{w}_{A0}}{t'} = -\frac{1}{6} prad / s^{2}; \boldsymbol{b}_{B} = \frac{\boldsymbol{w}_{B} - \boldsymbol{w}_{B0}}{t'} = -\frac{1}{15} prrad / s^{2}.$$

4-24 (1)
$$t = \frac{I_c w}{M} = 0.105 s$$

(2)
$$F_r = T_1 - T_2 = T_1(1 - e^{-mp}) = \frac{M}{2mR} = 83.3N;$$

 $T_1 = \frac{83.3}{1 - e^{-0.3p}} = 136.6N, T_2 = T_1e^{-0.3p} = 53.3N.$

$$\begin{aligned} 4-25 \\ a_1 &= \frac{(m_1R - m_2r)R}{I_c + m_1R^2 + m_2r^2} g, \quad a_2 &= \frac{r}{R} a_1 = \frac{(m_1R - m_2r)r}{I_c + m_1R^2 + m_2r^2} g; \\ T_1 &= \frac{I_c + m_2r(r+R)}{I_c + m_1R^2 + m_2r^2} m_1g, \quad T_2 &= \frac{I_c + m_1r(r+R)}{I_c + m_1R^2 + m_2r^2} m_2g. \end{aligned}$$

4-26 小幅摆动的周期:
$$T = 2p\sqrt{\frac{l_1^2 + l_2^2}{g(l_2 - l_1)}};$$
 等值摆长: $l_0 = \frac{l_1^2 + l_2^2}{l_2 - l_1} > l_1 + l_2$.

4-27
$$I = \frac{T_1^2}{T_2^2 - T_1^2} ml(l - \frac{T_2^2}{4p^2}g) = 1.21 \times 10^3 g \cdot cm^2$$

4-28 (1)
$$\frac{T}{T_0} = \sqrt{\frac{l^2 + 3h^2}{l^2 + 2lh}}; \quad h = 0.5m \text{ By }, \frac{T}{T_0} = \sqrt{\frac{7}{8}}, \quad h = 1m \text{ By }, \frac{T}{T_0} = \sqrt{\frac{4}{3}}.$$
(2) $\stackrel{\text{def}}{=} h = \frac{2}{3} l \text{ By }, \quad \frac{T}{T_0} = 1.$

4-29
$$h = \frac{1}{10}(27R - 17r)$$

4-30
$$a_c = \frac{mr^2}{I_c + mr^2}g$$
; $T = \frac{I_c}{2(I_c + mr^2)}mg$

4-31 (1)
$$a \le 2mg$$
, $\vec{y}_m \ge \frac{a}{2g}$.

(2)
$$a_c = \frac{1}{2}a$$
, $b = \frac{a_c}{R} = \frac{a}{2R}$.

4-32 前后轮对地面的压力: $N_1 = \frac{L - l + mh}{r} mg$, $N_2 = \frac{l - mh}{r} mg$

4-33
$$v_c = v_0 - mgt$$
, $w = w_0 - \frac{3}{2} \frac{mg}{R} t$.

讨论: (1) 当
$$t = t_1 = \frac{2v_0}{3m_p}$$
时, $w = 0$, $v_c = v_0 - \frac{2}{3}v_0$, $v_p = Rw + v_c = \frac{1}{3}v_0$, 球不转,只是滑动;

当 $t < t_1$ 时,w > 0球还是倒转;当 $t > t_1 s$ 时,w < 0,在摩擦力矩作用下,足球按顺时转动。

(2) 当
$$t = t_2 = \frac{4v_0}{5m_R}$$
时, $v_p = v_c + RW = R(W_0 - \frac{3}{2}\frac{m_R}{R}t_2) + (v_0 - m_Rt_2) = 0$,亦即球只滚不

滑,此时, $v_c = v_0 - mgt_2 = \frac{1}{5}v_0, w = -\frac{v_0}{R} = -\frac{1}{5}w_0 < 0$,若不计滚动摩擦,此后 v_c, w 保持不变。

球的反弹速度为 $v_f = ev_o$,还受墙的摩擦冲力有一向上的速度 v_1 ,形成以墙角为原点的抛 体运动;落地后受摩擦及非弹性碰撞的影响,两速度分量减小,形成一个较小轨迹的抛体运 动;如此等等……。球向上的可能最大高度由机械能量守恒确定,为 $h_m = v_0^2/3g$.

4-35
$$v_{\text{\tiny fill}} = \sqrt{\frac{10}{7}g(R-r)}, w_{\text{\tiny fill}} = \frac{1}{r}\sqrt{\frac{10}{7}g(R-r)}, N = \frac{17}{7}mg$$
.

- 4-36 在 $\mathbf{m} \ge \frac{2a}{7g}$ 条件下,用力将平板抽出时,球一边向前运动;若 $\mathbf{m} < \frac{2a}{7g}$,则球只会滑动,没有
- 4-37 (1) $h \ge \frac{R}{5}(2 \frac{7 \, mng}{E}); \quad \mathbf{Q} \, F \, mng, \quad \therefore h \ge \frac{2}{5} \, R.$
 - (2) 台球只有滑动,没有滚动,此时 $a_c = \frac{F mmg}{m}$ 。之后,在摩擦力作用下,球渐渐滚 动起来。
- 12秒钟后,雪球会碰到滑雪者,人不能逃脱。 4-38
- 当 $m > \frac{b}{a}$ 时, $q_1 < q_2$,则q在到达 $q_1 = arctg \frac{b}{a}$ 时发生翻倒; 当 $m < \frac{b}{c}$ 时, $q_1 > q_2$,则q在到达 $q_2 = arctg \frac{b}{c}$ 时发生滑动;

当 $\mathbf{m} = \frac{b}{a}$ 时, $\mathbf{q}_1 = \mathbf{q}_2$,则 \mathbf{q} 在到达 $\mathbf{q}_1 = \mathbf{q}_2 = arctg\mathbf{m} = arctg\frac{b}{a}$ 时滑动和翻倒同时发生。

4-40 细杆平衡条件:
$$\frac{l}{2}\cos^3 q + R\sin q = d(0 < q < \frac{p}{2})$$

- 4-41 $tga \le 2m$ 时, m_1 与 m_2 平衡; $\sin a > \frac{2m_2}{m_1}$ 时,圆拄下滚 $(f \le mV, 只滚不滑)$ 。
- 4-42 $N_A = \frac{l_1}{l} mg = 12544N; N_B = \frac{\sqrt{l_1^2 + l_2^2}}{l} mg = 15680N > N_A.$
- 4-43 铰链落地时, $v_{\text{铰链}} = \sqrt{3gl/2}$ 。
- 4-44 进动角速度为 $\Omega = \frac{M}{I w} = \frac{mgl}{I w}$;

绳子与铅垂线所成的夹角q由下述超越方程给出: $L\sin q + l = \frac{I_c^2 w^2}{m^2 \sigma l^2} tgq$

第五章 连续体力学

5-1 张力 T = Dp/2d.

5-2 (1)
$$\mathbf{Q}V = lab = l_0(1+e) \cdot a_0(1-se) \cdot b_0(1-se) \approx l_0 a_0 b_0(1+e-2se)$$
; \overline{m}
$$l_0 a_0 b_0 = V_0, \ \therefore (V-V_0)/V_0 = e(1-2s).$$

(2) 压缩时
$$(V-V_0)/V_0 = -e(1-2s)$$
.

(3)
$$(V - V_0)/V_0 = -\frac{t}{Y}(1 - 2s) = -\frac{1.37}{19.6 \times 10^{10}}(1 - 0.3) = -4.9 \times 10^{-12}$$

5-3 (1)
$$t_{II} = F/S = 7.8 \times 10^7 \,\text{N/m}^2$$
;

(2)
$$e_{\text{iii}} = t_{II} / G = 9.7 \times 10^{-4}$$
;

(3)
$$\Delta d = e_{\text{til}} d = 4.9 \times 10^{-4} \text{ cm}$$
.

5-4
$$\frac{R_H}{R_h} = \frac{Ybh^3/12M_{hh}}{Yhb^3/12M_{hh}} = (\frac{h}{b})^2 = (\frac{3}{2})^2 = 2.25$$

5-5
$$M = \frac{pGj}{2l}(R_2^4 - R_1^4) = Dj$$
, $\sharp \Leftrightarrow D = \frac{pG}{2l}(R_2^4 - R_1^4)$.

5-6
$$\mathbf{Q} D_{Al} = p \times 2.65 \times 10^{10} \times (0.020^4 - 0.019^4) / (2 \times 10) = 1.25 \times 10^2$$
,

$$D_{Fe} = p \times 8.0 \times 10^{10} \times (0.020^4 - 0.019^4) / (2 \times 10) = 3.77 \times 10^2;$$

$$\therefore q_{AI} = M/D_{AI} = 50/125 = 0.4 = 0.4 \times 180^{\circ}/p = 23^{\circ},$$

$$q_{Fe} = M / D_{Fe} = 50 / 377 = 0.13 = 0.13 \times 180^{\circ} / p = 7.4^{\circ}$$
.

5-7 论证从略.

5-8
$$\mathbf{Q}v_1 = Q/S_1 = 6.7 \,\text{m/s}, \quad v_2 = \sqrt{{v_1}^2 - 2gh} = 2.3 \,\text{m/s}; \quad \therefore S_2 = v_1 S_1/v_2 = 4.35 \,\text{m/s}.$$

5-9
$$p = p_0 - rg(h_1 + h_2) = 0.856 \times 10^5 \text{ Pa}; \quad Q = vS = \sqrt{2gh_2} S = 1.71 \times 10^{-4} \text{ m}^3.$$

5-10
$$v = \sqrt{2g[(r_1/r_2) h_2 + h_2]} = 9.5 \,\text{m/s}$$
.

5-11 一半需时
$$t_1 = (\sqrt{2} - 1) \frac{A}{S} \sqrt{\frac{H}{g}}$$
; 全部需时 $t_2 = \sqrt{2} \frac{A}{S} \sqrt{\frac{H}{g}}$.

5-12
$$t = (\sqrt{2} - 1) \frac{S_1}{S_2} \sqrt{\frac{H}{g}} = 28.1 \,\mathrm{S}$$
.

5-13 由射程公式
$$l = vt = \sqrt{2gh} \cdot \sqrt{2(H-h)/g} = 2\sqrt{h(H=h)}$$
 求极大值可证.

5-14 推导从略.

5-15 在距水面下
$$h = h_1 + h_2 = 75 \,\mathrm{cm}$$
 处相交.

5-16 (1) 压力计的水面与出水口等高; (2) 压力计的水面升高.

5-17
$$v = \sqrt{2(g+a)h} = \sqrt{2(9.8+120) \times 0.30} = 8.8 \,\text{m/s}$$
.

5-18 加速度 a 和液面倾斜角 θ 分别为: a = 2(H - h)/l; $q = \arctan 2(H - h)/l$.

5-19
$$v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 5.1} = 10 \text{ m/s}.$$

5-20 水流速度 $v_0=\sqrt{2gh}$, 水轮机的功率 $P=rS(v_0-v)^2v$; 其 v 中为轮机叶片的速度.

$$dP/dv = 0$$
 ,可得 $P_{\min} = 0$,(对应 $v = 0$) ; $P_{\max} = rS \cdot \left(\frac{4}{3}\sqrt{2gh}\right)^2 \cdot \frac{1}{3}\sqrt{2gh} = 3.4 \times 10^4 \, \mathrm{W}$

(对应 $v = v_0/3$). 水轮机最大功率时的转速为 $n_m = (v_0/3)/2pR = 0.21\,\mathrm{s}^{-1} = 12.4\,\mathrm{m}^{-1}$.

5-21 大小: $F = rvS |\Delta_v^{\mathbf{r}}| = rvS \cdot 2v \sin a / 2 = 55 \,\mathrm{N}$; 方向(与原水流方向夹角): $q = 127.5^\circ$.

5-22 (1)
$$h = \frac{prgR^4}{8Q}$$
; (2) $v_0 = \frac{P_a - P_b}{4hl}R^2 = \frac{2Q}{pR^2}$.

5-23 $v = \frac{p_x}{2h}(d^2 - z^2)$; 其中 $p_x = dP/dx$ 为与坐标无关的压强沿流速方向的梯度, 2d 为两平面间的 距离, z 为坐标原点在两板中间、坐标轴与平板正交的坐标.

5-24
$$h = gd^2(r_1 - r_2)/18v = 0.82 P_a \cdot S$$
.

5-25
$$v_m = \frac{2}{9h} r^2 rg = 1.43 \times 10^{-2} \text{ m/s}.$$

5-26
$$v_{m1} = \frac{2r_1^2(r-r')}{9h}g = 1.2 \times 10^{-4} \text{ m/s}; \quad v_{m1} = \frac{2r_1^2(r-r')}{9h}g = 3.0 \times 10^{-1} \text{ m/s}.$$

5-27 水滴所受的重力为
$$mg = r(\frac{1}{6}pd^3)g = 4.1 \times 10^{-11} \,\text{N};$$

而它受气流向上的曳引力为 $f = 6ph(d/2)v = 6.8 \times 10^{-11} \,\mathrm{N}$.

由于 f > mg , 故水滴不能回落地面 .

5-28 由雷诺数
$$R = \frac{rvl}{h} = \frac{(Q/\frac{pd^2}{4\times 5})(\frac{d}{\sqrt{5}})}{h/r} = \frac{4\sqrt{5}Q}{pd(h/r)} = 6.3\times 10^3 > 2600$$
 ,可断定为湍流 .

第六章 振动和波

6-1 (1)
$$j_0 = 2p - \frac{p}{3} = \frac{5p}{3}$$
 $\vec{\boxtimes} - \frac{p}{3}$.

(2)
$$x_{(0.5)} = 6\sqrt{3}cm$$
; $v_{(0.5)} = -6p \frac{cm}{s}$; $a_{(0.5)} = -6\sqrt{3}p^2 \frac{cm}{s^2}$.

(3) 相当于
$$t = 1s$$
: $v_{(1)} = -6\sqrt{3}p \frac{cm}{s}$: $a_{(1)} = 6p^2 \frac{cm}{s^2}$.

6-2 当
$$a = 0$$
时, $x = \cos pt$; 当 $a = \frac{p}{3}$ 时, $x = \cos(pt + \frac{p}{3}) = \cos pt_1$, $t_1 = t + \frac{1}{3}$; 当 $a = \frac{p}{2}$ 时, $x = \cos pt_2$, $t_2 = t + \frac{1}{2}$; 当 $a = -\frac{p}{3}$ 时, $x = \cos pt_3$ $t_3 = t - \frac{1}{3}$.由上各式可见,各轨迹均为余弦曲线,只不过原点在 t 轴上作相应的平移。

6-3
$$S_{1(t)} = A\cos(\frac{2p}{T}t + a_1); S_{2(t)} = A\cos(\frac{2p}{T}t_1 + a), t_1 = t' - \frac{T}{3};$$

 $S_{3(t)} = A\cos(\frac{2p}{T}t_2 + a), t_2 = t + \frac{T}{3}.$

由上各式可见,各轨迹均为余弦曲线,只不过原点在 t 轴上作相应的平移。

6-4 (1)
$$T = \frac{2p}{w} = \frac{2p}{5} = 1.26s$$
; (2) $f = m \% (0) = 37.5 dyn$; (3) $E = \frac{1}{2} m w^2 A^2 = 112.5 erg$.

6-5 液体的振荡是简谐振动, 周期为
$$T=2p\sqrt{\frac{L_{ar{\&}}}{2g}}=p\sqrt{\frac{2L_{ar{\&}}}{g}}$$

$$6-6 \quad \mathbf{W} = \sqrt{\frac{k_1 + k_2}{m}}$$

6-7 (1)
$$w = \sqrt{\frac{g}{5}} = 14 \frac{rad}{s}$$
, $v = \frac{w}{2p} = 2.23 H_z$; (2) $V_{(x=3cm)} = -w5 \sin(14t + p) = 56 \frac{cm}{s}$;
(3) $m = \frac{1}{3} \Delta m = 100g$; (4) $x_o' = \frac{4mg}{b} = 4x_0 = 20cm$.

6-8 (1)
$$j_0 = \frac{3p}{2}$$
, $q_0 = \frac{v_0}{lw} = \frac{10^{-2}}{\sqrt{1 \times 9.8}} = 3.19 \times 10^{-3} rad$; (2) 若 $F\Delta t$ 向左,则初相位为 $j_0 = \frac{p}{2}$.

6-9 振幅
$$A = \frac{mg}{k} \sqrt{1 + \frac{2kh}{(M+m)g}}$$
, 初相位 $\mathbf{j}_0 = arctg \sqrt{\frac{2hk}{(M+m)g}}$ 。

6-9 :
$$T - mg \cos q = mlq^{\frac{1}{2}}$$
, : $T = mg \cos[q_0 \cos(wt + j_0)] + mlq_0^2 \frac{g}{l} \sin^2(wt + j_0)$;
 $Ewt + j_0 = 2np \pm p/2$: $Ewt + j_0 = mg(1 + q_0^2)$.

6-11
$$T = \frac{2p}{w} = 2p\sqrt{\frac{l}{g\cos a}} = \frac{T_0}{\sqrt{\cos a}} > T_0, \ T_0 = 2p\sqrt{\frac{l}{g}}$$
 ,周期变大

6-12 是简谐运动,周期为
$$T = \frac{2p}{w} = 2p\sqrt{\frac{l}{g}}$$
。

6-13 系统作简谐振动,周期是
$$T = \frac{2p}{w} = 2p\sqrt{\frac{M + 3m/4}{2k}}$$

6-14 (1)木板的运动方程为
$$M$$
 $\mathbf{w} = \mathbf{m}(\frac{l-x}{2l} - \frac{l+x}{2l}) Mg = -\frac{\mathbf{m}}{l} Mgx$,故木板作简谐运动,其固有角频率为 $\mathbf{w} = \sqrt{\frac{\mathbf{m}g}{l}}$;

- (2) 木板不作简谐振动,而是向右(或向左)滑出。
- 6-15 弹簧的运动比较复杂,较严格的分析可参见:
 - (1) 罗蔚茵,《力学简明教程》,广州,中山大学出版社,1985,340~346。
 - (2) 钱伯初,美国研究生考题分析(三)——近似处理,大学物理,1983年第3期,第28页,例1。

6-16
$$w_1 = 0, w_2 = w_3 = \sqrt{\frac{3k}{m}}$$
 o $\forall i : :$

(1) $\mathbf{w}_1 = \mathbf{0} \Rightarrow a_1 = a_2 = a_3$ 体系各质点给圆心作纯转动;

(2)
$$\mathbf{w}_2 = \mathbf{w}_3 = \sqrt{\frac{3k}{m}}$$
,可能形况为: ① $a_1 = 0, a_2 = -a_3 = \pm \frac{1}{\sqrt{2}}a$,② $a_1 = \pm \sqrt{\frac{2}{3}}a$,

$$a_2 = a_3 = -\frac{1}{2}a_1 = \mathbf{m}\frac{1}{2}\sqrt{\frac{2}{3}}a$$
; 其余情况比较复杂, 此处从略。

6-17
$$t = \frac{1}{b} \ln \frac{A}{A_{(t)}} t = \frac{1}{\ln 3/10} \ln \frac{3}{0.3} = 21s$$

6-18
$$Q = \frac{1}{2\Lambda} = \frac{W_0}{2h} = \frac{880p}{2 \times \ln 5/8} = 6.87 \times 10^3$$

6-19
$$k = mw^2 = 5p^2 = 49.3 \frac{N}{m}$$
 (劲度系数), $b = \frac{w_0 l}{\sqrt{l^2 + 4p^2}} = 0.01/s$ (阻尼系数).

6-20 阻力系数
$$g = \frac{F}{A_{\text{max}} w_0} = \frac{1}{200p} \frac{kg}{s}$$
; 阻力的幅度 $F_0 = gv_{\text{max}} = g \frac{F}{2mb} = F = 10^{-3} N$.

6-21
$$A_{\stackrel{\triangle}{=}} = \sqrt{A^2 + (\sqrt{3}A)^2} = 2A$$
, $j_{\stackrel{\triangle}{=}} = \frac{7}{12}p = 105^0$.

6-22 (1) 轨迹为
$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$
 顺时针方向旋转的正椭圆;

(2) 轨迹同上,但为逆时针方向旋转的正椭圆。

6-23
$$T_{\text{Hi}} = \frac{t}{n} = 2s$$
, $\Delta u = 0.5H_z$, $u = u_0 \pm \Delta u = 256 \pm 0.5H_z$.

6-24 从左自右依次为;
$$w_{\text{M}} = 2w$$
, $\frac{3}{2}w$, $\frac{3}{2}w$, $\frac{4}{3}w$, $3w$, $3w$.

6-25 (1) 1)
$$u(x,0) = ASin \frac{2px}{l}$$
, 2) $u(x,\frac{T}{4}) = -ACos \frac{2px}{l}$ 3) $u(x,\frac{T}{2}) = -ASin \frac{2px}{l}$
4) $u(x,\frac{3T}{4}) = ACos \frac{2px}{l}$;

(2) 1)
$$u(0,t) = -ASin\frac{2pt}{T}$$
, 2) $u(\frac{1}{4},t) = ACos\frac{2pt}{T}$, 3) $u(\frac{1}{2},t) = Sin\frac{2pt}{1}$, 4) $u(\frac{3l}{4},t) = -ACos\frac{2pt}{T}$

6-26
$$u(x,t) = 0.001Cos(3300pt + 10px + \frac{p}{2}) = 0.001Sin(3300pt + 10px + p)$$

6-27 A=2.0cm,
$$I=30cm$$
 , $v=100Hz$, $c=vI=3000cm/s$; 当 x=10cm 时,初相位为 $\mathbf{y}_0=-\frac{2p}{3}$ 或 $\frac{4p}{3}$

6-28
$$u(x,t) = ACos[w(t-\frac{x}{c}) + y_0] = ACos[2pv(t-\frac{x}{c}) + y_0].$$

6-29
$$I_1 = \frac{c}{v_1} = 16.5m$$
, $I_2 = \frac{c}{v_2} = 1.65cm$.

6-30 可见光的频率范围为:
$$7.5 \times 10^{14} \sim 3.95 \times 10^{14} Hz$$

6-31 从略。

6-32
$$\mathbf{Q} \ w \frac{d}{c} = \frac{2pd}{l} = \frac{5}{2} p \ , \quad \therefore u(0,t) = A\cos(wt + \mathbf{j}_0) \ .$$

(1) 无半波相位突: (a) O 点左边: $u = -2A\sin(wt + j_0)\sin w \frac{x}{t}$, 是驻波;

(b) O 点右边:
$$u = -2A\sin[w(t - \frac{x}{c}) + j_0]\cos\frac{p}{2} = 0$$
 ,不动。

(2) 半波相位突变: (a) O 点左边: $u2A\cos(wt+j_0)\cos w\frac{x}{c}$, 是驻波;

(b) O 点右边:
$$u = 2A\cos[w(t - \frac{x}{c}) + \boldsymbol{j}_0]$$
,是一振幅加倍的行波。

6-33 反射波(向左)在固定端有 180°的相位跃变。

6-34
$$u_{\mathbb{K}}(x,t) = A\cos[2p(\frac{t}{T} - \frac{x}{l}) + \frac{p}{4}]$$

6-35
$$u = 2A\cos 2p \frac{t}{T}\cos 2p \frac{x}{I}$$
; 波腹: $x = n\frac{1}{2}$, 波节: $x = n\frac{1}{2} - \frac{1}{4}$, $n = 1,2,3,\cdots$

6-36 AB 上不动点即为波节
$$x = n\frac{1}{2}$$
, $n = 0,1,2,3,\cdots$, 20 共 21 个点($\lambda/2 = 1$ m)。

6-37 群速:
$$v_g = \frac{dw}{dk} = \frac{g + 3rk^2/r}{2w}$$
. 当 $v_g = c = \frac{w}{k}$ 时, $k = \sqrt{\frac{rg}{r}}$;此时

$$\frac{dc}{dk} = \frac{1}{2} \frac{1}{\sqrt{g/k + rk/r}} \left(-\frac{g}{k^2} + \frac{r}{r} \right) = 0, \text{ 相速 } c \text{ 有极小值, 也是最小值 } \left(c_{\min} = \sqrt{2} \left(\frac{rg}{r} \right)^{\frac{1}{4}} \right).$$

6-38 (1)
$$I = 24cm$$
, $c = 240cm/s$; (2) B 点比 A 点的相位落后: $\Delta j = \frac{p}{5}$.

6-39 A 听到的拍频为: $\Delta v_A 30.3 Hz$; B 听到的拍频为 $\Delta v_B = 29.4 Hz$.

6-40
$$v = \frac{c^2 - v_s^2}{2cv_s} \Delta v_{\text{fil}} = 204Hz$$

6-41 潜水艇的速率
$$v = \frac{\Delta v_{ii}}{2v + \Delta v_{ii}} c = 6m/s$$

6-42 马赫锥半顶角
$$a = \arcsin \frac{c}{v_s} = \arcsin \frac{c}{1.5c} = 41.8^{\circ}$$
.

第七章 万有引力

7-1
$$M = \frac{4p^2}{GT^2}r^3 = 6.06 \times 10^{24} \,\mathrm{kg}$$
.

7-2
$$K = \frac{r^3}{T^2} = \frac{G}{4p^2}(M+m)$$
.

7-3
$$T' = T\sqrt{\frac{M+m}{M}} = 27.3\sqrt{\frac{81m+m}{81m}} = 27.5 \text{ d}.$$

7-4
$$a_1 = 2.5 \text{ AU}$$
: $T_1 = (a_1/a)^{3/2}T = 3.95 \text{ y}$; $a_2 = 3.0 \text{AU}$: $T_2 = (a_2/a)^{3/2}T = 5.18 \text{ y}$.

7-5
$$\overline{r} \approx \frac{24p}{GT^2q^3} = 1.29 \times 10^3 \text{ kg/m}^3$$
.

7-6 由
$$T^2 = \frac{4p^2}{GM}r^3$$
, $r \approx R$, 及 $M = \overline{r} \cdot \frac{4p}{3}R^3$, 得 $T = \sqrt{\frac{3p}{G\overline{r}}} \propto \frac{1}{\overline{r}}$.

7-7 (1)
$$\frac{r_M}{r_E} = \frac{M_M}{M_E} \cdot \frac{d_E^3}{d_M^3} = 0.74$$
; (2) $g_M = \frac{M_M d_E^2}{M_E d_M^2} g_E = 0.207 g_E = 2.03 \text{ m/s}^2$.

7-8 (1)
$$h = r - R = \sqrt[3]{\frac{GMT^2}{4p^2}} - R = 1.69 \times 10^6 \,\mathrm{m}$$
; (2) $t = \frac{2\arccos(R/r)}{\Delta w} = 2.63 \times 10^2 \,\mathrm{s}$.

7-9 同步卫星圆形轨道的半径
$$r = \sqrt[3]{\frac{GM}{w^2}} = 4.23 \times 10^7 \,\mathrm{m}$$
, 容许的半径误差为

$$|\Delta r| = \frac{2r}{3} \cdot \frac{\Delta w}{w} = \frac{2 \times 4.23 \times 10^7}{3} \cdot \frac{\frac{10}{10} \times 365 \times 24 \times 60 \times 60}{\frac{2p}{24} \times 60 \times 60} = 214 \text{ m}.$$

7-10
$$h = r - R_{\pm} = \sqrt[3]{\frac{GM_{\pm}T}{4p^2}} - R_{\pm} = 8.77 \times 10^7 \,\mathrm{m}$$
.

7-11 (1)
$$T = 2pD\sqrt{\frac{r_{2C}}{GM}} = 2pD\sqrt{\frac{10D}{11GM}}$$
; (2) $\frac{m{v_2}^2/2}{M{v_1}^2/2 + m{v_2}^2/2} = \frac{{v_2}^2}{10{v_1}^2 + {v_2}^2} = \frac{10}{11}$.

7-12 轨道椭圆长轴
$$a=(\frac{GM_sT^2}{4p^2})^{1/3}=2.69\times 10^{14}~\mathrm{m}$$
,远日点 $r_+\approx 2a=5.38\times 10^{14}~\mathrm{m}$.

7-13
$$G = \frac{Dr^2q}{Mml} = 6.61 \times 10^{-11} \,\text{m}^3/\text{kg.s}^2$$
.

7-14 (1)
$$x = GM^2 / k[l_0 + 2(\frac{3M}{4pr})^{1/3}]^2 = 5.90 \times 10^{-6} \,\mathrm{m};$$

(2)
$$W = \sqrt{GM/(R + l_0/2)(2R + l_0)} = 6.23 \times 10^{-4} \text{ rad/s}$$
.

7-15
$$r_{M} = (\frac{5}{2} \times 0.33 R_{E} - r_{c}) M_{E} / \frac{4}{3} p R_{E}^{3} (R_{E}^{2} - r_{c}^{2}) = 4.17 \times 10^{3} \,\text{kg/m}^{3},$$

$$r_c = [M_E - \frac{4}{3}p(R_E^3 - r_c^3)r_M]/\frac{4}{3}pr_c^3 = 12.7 \times 10^3 \text{ kg/m}^3.$$

- 7-16 地幔和地核交界处,重力加速度最大: $g_c = \frac{4}{3} pGr_c r_c = 12.3 \,\text{m/s}^2$.
- 7-17 (a) 逃逸速度 $v_2 = \sqrt{2GM/R}$, 按能量守恒, 可求得离球心的最大距离为 $r = 16\,R/7$;
 - (b) $\mathbf{Q} \frac{3}{4} v_2 = \frac{3}{4} \sqrt{\frac{2GM}{R}} \rangle \sqrt{\frac{GM}{R}} = v_1$, 即此速度大于第一宇宙速度,粒子此情况下已成为卫

星,但可求得其离球心的最大距离为 r = 9R/7.

- 7-18 由角动量守恒和能量守恒定律可证.
- 7-19 (1) $v_1^2 = v_2^2 = v_0^2 + (v_0/2)^2 = 5v_0^2/4$; $E_1 = E_2 = \frac{1}{2} \cdot \frac{m}{2} v_1^2 G \frac{Mm/2}{r} = -\frac{3}{16} G \frac{mM}{r}$; $L_1 = L_2 = (m/2)v_0 r = (m/2)\sqrt{GMr}$.
 - (2) 两碎块均为以圆心为焦点的镜象对称椭圆; 其长半轴为 $a=-\frac{GM(m/2)}{2E_1}=\frac{4}{3}r$,

偏心率为
$$e = \sqrt{1 - \frac{2|E_1|L_1^2}{G^2M^2(m/2)^3}} = \frac{1}{2}$$
, 短半轴为 $b = \sqrt{a^2(1 - e^2)} = \frac{2}{3}\sqrt{3}r$.

7-20 圆轨道上行星的速度为 $v_0 = \sqrt{\frac{GM}{r}}$; 彗星在近日点的速度接近逃逸速度,即

$$v_{\text{iff}} \approx v_{\text{ilit}} = \sqrt{\frac{2GM}{r}}$$
 ; the v_{iff} : $v_0 = \sqrt{2}$.

- 7-21 按洛希公式, $r_C=2.45539R(r/r')^{1/3}=2.45539R_{\pm}$;即撕裂发生在木星上空高 $h=r_C-R_{\pm}=(2.45539-1)\times 7.154\times 10^7=1.041\times 10^8~\mathrm{m}=1.041\times 10^5~\mathrm{km}~$ 处 .
- 7-22 相对速度近似等于木星的逃逸速度,即

$$V \approx v_{\pm : !!!} = \sqrt{\frac{2GM_{\pm}}{R_{\pm}}} \approx \sqrt{\frac{2G(320M_{\pm})}{(11R_{\pm})}} = v_{\pm : !!!} \sqrt{\frac{320}{11}} = 11.2 \times 5.4 \approx 60 \, \mathrm{km/s} \; .$$

8-1
$$\Delta t = \frac{\Delta t}{\sqrt{1 - v^2/c^2}} = 14 \times 10^{-6} \,\text{s}$$
, $\Delta l = v \Delta t = 4200 \,\text{m}$.

8-2
$$\Delta t = g\Delta t = 2.5 \times 10^{-5} \text{ s}$$
, $l = 7.5 \times 10^{3} \text{ m}$.

8-3
$$v = \sqrt{1 - (\frac{\Delta t}{\Delta t})^2} \cdot c = \frac{\sqrt{5}}{3} \cdot c$$
, $l = v\Delta t = \sqrt{5}c$.

8-4
$$v = \sqrt{1 - (\frac{\Delta x}{\Delta x'})^2} \cdot c = \frac{\sqrt{8}}{3} \cdot c$$
, $\Delta t' = -0.94 \times 10^{-8} \text{ s.}$

8-5 质点的轨迹为一椭圆:
$$\frac{x'^2}{(1-v^2/c^2)a^2} + \frac{y'^2}{a^2} = 1.$$

8-6
$$q = \arctan(\frac{\tan q}{\sqrt{1 - v^2/c^2}})$$
.

8-7
$$v_x = \frac{v'\cos q' + V}{1 + Vv'\cos q'/c^2}$$
, $v_y = \frac{v'\sin q'\sqrt{1 - V^2/c^2}}{1 - Vv'\cos q'/c^2}$; $q = \arctan \frac{v'\sin q'\sqrt{1 - V^2/c^2}}{V + v'\cos q'}$.

8-8
$$v_g = -c$$
, $v_e = 0.924c$.

8-9
$$v' = (v - V)/[1 - vV/c^2] = 0.976c$$
.

8-10 (1) 对 K 系,小包的速度为
$$v_x = -c/2$$
, $v_y = \sqrt{v^2 - {v_x}^2} = \sqrt{5}c/4$;

对 a 船, 小包的速度为
$$v_r' = (v_r - V)/(1 - v_r V/c^2) = -4c/5$$
,

$$v_y' = v_y \sqrt{1 - V^2 / c^2} / (1 - v_x V) = \sqrt{15}c / 10$$
,

故 a 船的瞄准角为 $a' = \arctan v_x'/v_y' = 154.2^\circ$.

(2)
$$v' = \sqrt{v_x'^2 + v_y'^2} = \sqrt{(-4/5)^2 + (\sqrt{15}/10)^2} c = 0.888c$$
.

(3)
$$v_x'' = (v_x + V)/(1 + v_x V/c^2) = 0$$
, $v_y'' = v_y \sqrt{1 - V^2/c^2}/(1 + v_x V/c^2) = \sqrt{15}c/6$;
 \mathbb{R}^{3} $a'' = 0$, $v'' = v_y'' = (\sqrt{15}/6)c$.

8-11
$$A_1 = (m_{0.1c} - m_0)c^2 = 0.005m_0c^2 = 0.14 \times 10^{-15} \text{ J},$$

$$A_2 = (m_{0.9c} - m_{0.8c})c^2 = 0.085m_0c^2 = 6.97 \times 10^{-15} \text{ J} = 17A_1.$$

8-12 由
$$mv = m_0 v / \sqrt{1 - v^2 / c^2} = 2m_0 v$$
,解得 $v = \frac{\sqrt{3}}{2}c$.

8-13
$$\Delta m = \Delta E / c^2 \approx \frac{1}{2} m_0 v^2 / c^2 = 6.7 \times 10^{-10} m_0 = 6.7 \times 10^{-5} \text{kg}.$$

8-14
$$\Delta E = mC\Delta T = 2000 \text{ kC} = 8.4 \text{ J}$$
, $\Delta m = \Delta E/c^2 = 9.3 \text{ kg}$.

8-15
$$E = 2m_0c^2 = 1.64 \times 10^{-13} \text{ J}.$$

8-16 (1)
$$\Delta E = \Delta mc^2 = 1.8 \times 10^{14} \,\text{J}$$
; (2) $\overline{P} = \Delta E / \Delta t = 1.8 \times 10^{20} \,\text{J/s}$.

8-17
$$\Delta E = (4m_H - m_H)c^2 = 4.26 \times 10^{-12} \text{ J}$$
.

8-18
$$v_c = \frac{pc^2}{E} = \frac{E_g \cdot c}{E_g + m_0 c^2}$$

$$8\text{-}19 \ E_{\mathrm{m}} = \frac{(m_{p}^{\ 2} + m_{\mathrm{m}}^{\ 2})c^{2}}{2m_{p}} \ , \ E_{\mathrm{n}} = \frac{(m_{p}^{\ 2} - m_{\mathrm{m}}^{\ 2})c^{2}}{2m_{p}} \, .$$

8-20
$$p_2 = \frac{m_{10}v_1}{\sqrt{1-v_1^2/c^2}} = 1.13 \times 10^{-18} \,\text{N.s}$$
, $E_2 = m_2 c^2 = m_0 c^2 - m_1 c^2 = 1.76 \times 10^{-9} \,\text{J}$,

8-21
$$v = (\sqrt{3})c/2$$
.

8-22 (1)
$$E_{g \, \text{min}} = \frac{(m_K + m_\Lambda)^2 - m_p^2}{2m_p} c = 917 \, \text{Mev} \,.$$

8-23
$$T = \frac{2pDl}{c\Delta l} = 1.526 \times 10^6 \text{ s} = 17.66 \text{ }$$
.

8-24
$$\mathbf{Q} n' = \sqrt{1-b^2}/(1-b\cos q) \approx n/(1+v\cos q/c)$$
, $\therefore n_{\text{H}} = n'-n \approx (-v\cos q/c)n$.

8-25
$$v = \frac{\Delta I}{I}c = \frac{0.10}{6.00 \times 10^3} \times 3.0 \times 10^8 = 5.0 \times 10^3 \text{ km/s}.$$