FROM LAST TIME...

Limitations and Remedies

- · Fundamental Design Trade-offs
- Limitations
- Remedies

$$Y_D(s) = S(s)[D_o(s) + G(s)D_i(s)]$$

$$Y_N(s) = -T(s)N(s)$$

$$U(s) = S_u(s)[\bar{R}(s) - D_o(s) - N(s)]$$

James A. Mynderse

EME 5323 - Architectural Issues

WHAT DIFFERENCES DO YOU SEE?

James A. Mynderse

EME 5323 - Architectural Issues

_

ARCHITECTURAL ISSUES

Topics

- Internal Model Principle
- Feedforward
- Cascade Control

At the end of this section, students should be able to:

- Determine a disturbance generating polynomial.
- Use the Internal Model Principle in controller design.
- Determine a feedforward controller using inversion.
- Apply cascade control to a system with multiple measurable outputs.

James A. Mynderse

EME 5323 - Architectural Issues

WE WILL CONSIDER THESE STRUCTURAL CHANGES...

- 1. Modification of controller denominator by IMP
- 2. Addition of prefilter (two DOF controller)
- 3. High-gain inner control loop

There are other variations that we will not cover in class

James A. Mynderse

EME 5323 - Architectural Issues

ARCHITECTURAL ISSUES

INTERNAL MODEL PRINCIPLE

James A. Mynderse

EME 5323 - Architectural Issues

7

HOW DO WE MODEL A DISTURBANCE (OR REFERENCE)?

	d(t)	Free response of an LTI system given by:	$G_{dis}(s)$ (assuming $U(s) = 0$)
Step	A_{d0}	$\dot{d}(t) = 0$	$\frac{1}{s}$
Sinusoidal	$A_d\sin(\omega_d t + \psi_d)$	$\ddot{d}(t) + \omega_d d(t) = 0$	$\frac{1}{s^2 + \omega_d^2}$
Step + Sinusoidal	$A_{d0} + A_d \sin(\omega_d t + \psi_d)$		

James A. Mynderse

EME 5323 - Architectural Issues

WHAT ABOUT A GENERAL BOUNDED DISTURBANCE (OR REFERENCE)?

Free response of an LTI system given by:

$$d^{(q)}(t) + \gamma_{q-1}d^{(q-1)}(t) + \dots + \gamma_0d(t) = 0$$

$$G_{dis}(s) = \frac{1}{s^q + \gamma_{q-1}s^{q-1} + \dots + \gamma_0}, \quad U(s) = 0$$

$$D(s) = \frac{N_{dis}(s)}{\Gamma_{dis}(s)}$$

where $\Gamma_{dis}(s)$ is the disturbance generating polynomial

James A. Mynderse

EME 5323 - Architectural Issues

9

WHAT IS THE DISTURBANCE GENERATING POLYNOMIAL FOR A DISTURBANCE WITH COMPONENT FREQUENCIES AT $\omega_{d1},...,\omega_{dm}$?

James A. Mynderse

EME 5323 – Architectural Issues

CONSIDER A CLOSED-LOOP SYSTEM WITH DISTURBANCE

$$Y(s) = S(s)G_{2}(s)D(s) = \frac{D_{G1}(s)D_{G2}(s)D_{C}(s)}{D_{CL}(s)} \cdot \frac{N_{G2}(s)}{D_{G2}(s)} \cdot \frac{N_{dis}(s)}{\Gamma_{dis}(s)}$$

Condition for Zero Steady-State Output due to Disturbance:

James A. Mynderse

EME 5323 - Architectural Issues

11

STEADY-STATE DISTURBANCE COMPENSATION REQUIRES THAT GENERATING POLYNOMIAL OF DISTURBANCES BE INCLUDED AS PART OF THE CONTROLLER DENOMINATOR.

Internal Model Principle

Note that the roots of the generating polynomial, in particular the ones on the imaginary axis, impose the same performance trade-offs on the closed-loop as if those poles were part of the plant!

James A. Mynderse

EME 5323 - Architectural Issues

INTERNAL MODEL PRINCIPLE APPLIES TO REFERENCE TRACKING TOO!

$$Y(s) = T(s)H(s)R(s)$$

$$E(s) = \bar{R}(s) - Y(s) = S(s)H(s)R(s) = \frac{D_G(s)D_C(s)}{D_{CL}(s)} \cdot \frac{N_H(s)}{D_H(s)} \cdot \frac{N_R(s)}{\Gamma_R(s)}$$

Condition for Zero Steady-State Error due to Reference

James A. Mynderse

EME 5323 - Architectural Issues

13

TO ELIMINATE TRACKING ERRORS, THE DENOMINATOR OF L(s) MUST CONTAIN AN INTERNAL MODEL OF R OR D.

Design C(s) in two parts:

$$C(s) = C_1(s)C_2(s)$$

- C_1 is based on steady-state performance
- ullet \mathcal{C}_2 is based on transients and stability

James A. Mynderse

EME 5323 – Architectural Issues

PID CONTROL OF DC MOTOR POSITION

- Assume that $D_o(s)$ is a sinusoidal at 5 rad/s
- Assume that $\bar{R}(s)$ is a step input
- Design $\mathcal{C}(s)$ for zero steady-state error and good transient performance

James A. Mynderse

EME 5323 - Architectural Issues

15

AUGMENT THE PLANT, THEN DO POLE PLACEMENT

$$\bar{G}(s) = G_o(s) \left(\frac{1}{s^2 + 5^2} \right) \left(\frac{1}{s} \right)$$

$$D_{\bar{G}}(s)\Gamma_d(s)\Gamma_r(s)D_C(s) + N_{\bar{G}}(s)N_C(s) = D_{CL}(s)$$

 $n = order \ of \ D_{\bar{G}}$ $q = order \ of \ \Gamma_d \Gamma_r$ $n_C = order \ of \ D_C$ $n_{CL} = 2n - 1 + q$

$$C(s) = \frac{25.822(s^2 + 29.87s + 262.5)(s^2 + 17.56s + 485)}{(s + 196.5)s(s^2 + 25)}$$

James A. Mynderse

EME 5323 - Architectural Issues

ARCHITECTURAL ISSUES

FEEDFORWARD CONTROL

James A. Mynderse

EME 5323 - Architectural Issues

FEEDFORWARD CAN IMPROVE REFERENCE TRACKING!

Closed-loop system output due to reference input

$$Y(s) = T(s)H(s)R(s)$$

Ideally, perfect tracking can be achieved even during the transient if one can choose feedforward transfer function H(s) such that

James A. Mynderse

EME 5323 - Architectural Issues

19

IS IDEAL FEEDFORWARD FOR REFERENCE TRACKING FEASIBLE?

- 1. The CLTF T(s) has unstable CL zeros
- 2. The inversion 1/To(s) may not be proper and future reference input trajectory is not known, which means that

$$\bar{R}(s) = \frac{1}{T_o(s)} R(s)$$

is not calculable or implementable.

James A. Mynderse

EME 5323 – Architectural Issues

IF IDEAL INVERSION DOES NOT WORK, CAN WE FIND AN ACCEPTABLE APPROXIMATION?

$$H(s) = \frac{1}{T_o(s)} \cdot \frac{1}{(\tau_h s + 1)^k}, \qquad \tau_h \ll 1$$

Insert fast poles to make the TF proper!

James A. Mynderse

EME 5323 - Architectural Issues

21

PID CONTROL OF DC MOTOR POSITION

• A proper PID controller has been previously synthesized to place CL poles at $p_{1,2d}^c = -20 \pm j20$ $p_{3,4d}^c = -40,-40$

$$C(s) = \frac{8.33s^2 + 205s + 2054}{s(s+117)}$$

$$T_o(s) = \frac{623(8.33s^2 + 205s + 2054)}{((s+20)^2 + 20^2)(s+40)^2} = \frac{623(8.33)(s^2 + 24.6s + 246)}{D_{CL}(s)}$$

James A. Mynderse

EME 5323 – Architectural Issues

DESIGN H(s) TO CANCEL THE STABLE ZEROS OF $T_o(s)$

$$T_o(s) = \frac{623(8.33)(s^2 + 24.6s + 246)}{D_{CL}(s)}$$

$$\hat{\mathbb{U}}$$

$$H(s) = \frac{246}{s^2 + 24.6s + 246}$$

$$Y(s) = H(s)T(s)R(s) = \frac{623(8.33)}{D_{CL}(s)}R(s)$$

James A. Mynderse

EME 5323 - Architectural Issues

Output due to Disturbance

$$Y_D(s) = S(s)G_2(s)[1 + G_1(s)G_{DF}(s)]D(s)$$

Ideal Disturbance Feedforward TF ($Y_D(s) = 0$)

$$G_{DF}(s) = \frac{-1}{G_1(s)}$$

James A. Mynderse

EME 5323 - Architectural Issues

27

ARCHITECTURAL ISSUES

CASCADE CONTROL

James A. Mynderse

EME 5323 – Architectural Issues

UNTIL NOW, WE'VE USED ONLY OUTPUT FEEDBACK. IS THERE ADDITIONAL INFORMATION WE COULD USE?

Conflicting design requirements:

- High open-loop gain for small sensitivity values for good disturbance rejection capability
- Low open-loop gain for small complementary values for good noise attenuation capability and robust stability in the presence of modeling errors

James A. Mynderse

EME 5323 - Architectural Issues

COMING UP...

Midterm Exam!

Intro to State-Space Models

- Review of State Space
- Transfer Functions and State Space
- Canonical Forms

James A. Mynderse

EME 5323 - Architectural Issues