either x or y is a unit in \mathbb{R}_{p_i} i.e. either x or y is not in \mathbb{R} a contradiction.

Let(x,y) = d, and so x = x,d, y = y,d where (x,y,y,) = 1 and by the previous argument, x, and y, cannot both belong to P, . Let x, be such that x, \(\beta \), then x,d \(\epsilon \), d \(\epsilon \), and tepesting the above argument we factor of x, d belongs at most to P, P, P, ..., P, . Further let yet Q, and repeating the above argument we get d, = (d,y,) where d, is a non unit factor of x which can belong at most to P, P, ..., P, and it needs a finite number of set per to reach the conclusion that x has a non unit factor of sey, which is contained in P, and is contained in no other minimal prime ideal.

Now as $q \in P_1$ and belongs to no other minimal prime ideal, q^n is also in no minimal prime ideal other than P_1 , because if we suppose on the contration, prime other than P_1 then $q \in P$ a contradiction.

integrally closed, there exists a positive integer n such that h^n/q . But R being an HCF domain h^n and q have a highest common factor d say, then $h^n = rd$, q = q'd where (r,q') = 1. Since h^n/q , r is not a unit, and if we assume that q'

is also a non unit then either r or q' is not in P, a contradiction and hence q' is a unit. In other words, for every non unit factor h of q there exists an n such that $q|h^n$ i.e. q is a quantum and so by Lemma 8, q is a prime quantum.

Now the prime ideal Q_q associated to q is obviously contained in P, but P being minimal $Q_q=P$ (cf (2) of Prop. 5) Finally we know that for every minimal prime P of R,

x c P implies that x is in a finite number of minimal primes