# Linguaggi di Programmazione Docente: Cataldo Musto

Capitolo 3 – Linguaggi liberi da contesto e linguaggi dipendenti da contesto

- Definizione: Gerarchia di Chomsky (1956-1959)
  - □ Sia G = (X, V, S, P) una grammatica. Dalla definizione di grammatica, si ha:

$$P = \left\{ v \to w \mid v \in (X \cup V)^+ \text{ e } v \text{ contiene almeno un } NT, \ w \in (X \cup V)^* \right\}$$

A seconda delle restrizioni imposte sulle regole di produzione, si distinguono le varie classi di grammatiche.

Chomsky definisce quattro classi di linguaggi



- Definizione: Gerarchia di Chomsky (1956-1959)
  - □ I linguaggi studiati finora sono tutti linguaggi di tipo '2' (anche detti liberi da contesto)





#### Definizione di grammatica libera da contesto

■ Una grammatica G = (X, V, S, P) è *libera da contesto* (o *context-free* - C.F.) se, per ogni produzione,  $v \rightarrow w$  v è un nonterminale.

$$G$$
 è libera da contesto  $\Leftrightarrow \forall v \rightarrow w \in P : v \in V$ 



# Definizione di grammatica libera da contesto

Una grammatica G = (X, V, S, P) è libera da contesto (o context-free - C.F.) se, per ogni produzione, v→ w v è un nonterminale.

$$G$$
 è libera da contesto  $\Leftrightarrow \forall v \rightarrow w \in P : v \in V$ 

Esempi di grammatiche libere da contesto

$$S \to A \mid B, \quad A \to aA \mid a, \quad B \to bB \mid b$$
  $S \to +I \mid -I$   $I \to D \mid ID$ 

$$X = \{a,b\}, \qquad V = \{S\}, \qquad P = \left\{S \xrightarrow{(1)} aSb, S \xrightarrow{(2)} ab\right\} \qquad D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$$S \to +I | -I$$
  
 $I \to D | ID$   
 $D \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$ 

# 100

# Definizione di linguaggio libero da contesto

Un linguaggio L su un alfabeto X è libero da contesto se può essere generato da una grammatica libera da contesto.

def

L libero da contesto  $\Leftrightarrow \exists G$  libera da contesto tale che L(G) = L.

- Il termine C.F. nasce dal fatto che la sostituzione di un NT non è condizionata dal contesto - ossia dai caratteri adiacenti - in cui compare.
- Un NTA in una forma di frase può sempre essere sostituito usando una produzione del tipo  $A \rightarrow \beta$ . La sostituzione è sempre valida.



- Se si ha una grammatica C.F. che genera L, non è detto che non esista un'altra grammatica che generi lo stesso linguaggio.
  - Un linguaggio può essere generato da più grammatiche
- Esempio: linguaggio delle parentesi ben formate

■ 
$$G_1$$
  
 $S \rightarrow ()$   
 $S \rightarrow (S)$   
 $S \rightarrow SS$ 



#### Linguaggi liberi da contesto

- Un linguaggio può essere generato da più grammatiche dunque
- Se L = L(G) e G non è C.F., non possiamo affermare che L non è C.F. perché non possiamo escludere che esista una grammatica C.F. G' per cui L=L(G').

# 100

# Esempi di linguaggi C.F.

- Il linguaggio delle parentesi ben formate
- Il linguaggio dei numeri interi relativi
- II linguaggio  $L = \{a^n b^n \mid n > 0\}$
- Il linguaggio delle stringhe con ugual numero di 0 e di 1.
- II linguaggio  $L = \{a^n b^{2n} \mid n > 0\}$

# y٥

# Esempi di linguaggi C.F.

- Il linguaggio delle parentesi ben formate
- Il linguaggio dei numeri interi relativi
- II linguaggio  $L = \{a^n b^n \mid n > 0\}$
- Il linguaggio delle stringhe con ugual numero di 0 e di 1.
- II linguaggio  $L = \{a^n b^{2n} \mid n > 0\}$
- La maggior parte dei linguaggi di programmazione ricade nella classe dei linguaggi C.F.
  - http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
  - https://docs.python.org/3/reference/grammar.html

- Definizione: Gerarchia di Chomsky (1956-1959)
  - □ La classe dei linguaggi di tipo 2 è inclusa nei c.d. linguaggi di tipo '1' (linguaggi dipendenti da contesto)





#### Definizione di grammatica dipendente da contesto

- Una grammatica G = (X, V, S, P) è dipendente da contesto (o context-sensitive - C.S.) se ogni produzione è in una delle seguenti forme:
  - □ (1)  $yAz \rightarrow ywz \text{ con} A \in V$ ,  $y,z \in (X \cup V)^*$ ,  $w \in (X \cup V)^+$  che si legge: "A può essere sostituita con w nel contesto y-z" (contesto sinistro y e contesto destro z).
  - $\square$  (2)  $S \rightarrow \lambda$  purché S non compaia nella parte destra di alcuna produzione.

# 10

#### Definizione di grammatica dipendente da contesto

- Una grammatica G = (X, V, S, P) è dipendente da contesto (o context-sensitive - C.S.) se ogni produzione è in una delle seguenti forme:
  - □ (1)  $yAz \rightarrow ywz \text{ con} A \in V$ ,  $y,z \in (X \cup V)^*$ ,  $w \in (X \cup V)^+$  che si legge: "A può essere sostituita con w nel contesto y-z" (contesto sinistro y e contesto destro z).
  - $\square$  (2)  $S \rightarrow \lambda$  purché S non compaia nella parte destra di alcuna produzione.
  - □ Esempi di produzioni dipendenti da contesto
    - abAa → abca
    - aAb → accb
    - aA -> aBc



#### Definizione di linguaggio dipendente da contesto

Un linguaggio L è dipendente da contesto se può essere generato da una grammatica dipendente da contesto.

# Relazione tra linguaggi C.F. e C.S.



- Tale relazione sussiste perché le regole di produzione C.S. sono una generalizzazione di quelle C.F.
- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S. **Verifichiamolo.**

$$v \to w \in P : v \in V$$

C.F. 16/47



#### Relazione tra linguaggi C.F. e C.S.



- Tale relazione sussiste perché le regole di produzione C.S. sono una generalizzazione di quelle C.F.
- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S. **Verifichiamolo.**

$$v \to w \in P : v \in V$$

$$yAz \rightarrow ywz$$

C.F. C.S. 17/47

# 100

#### Relazione tra linguaggi C.F. e C.S.



- Tale relazione sussiste perché le regole di produzione C.S. sono una generalizzazione di quelle C.F.
- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando:

$$y = z = \lambda$$
 contesto destro e sinistro equivalenti alla parola vuota (c'è una eccezione).



- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando contesto destro e sinistro sono equivalenti alla parola vuota.
  - Osserviamo però con attenzione la definizione di grammatica C.F.

$$G$$
 è libera da contesto  $\Leftrightarrow \forall v \rightarrow w \in P : v \in V$ 

$$w \in (X \cup V)^*$$



- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando contesto destro e sinistro sono equivalenti alla parola vuota.
  - Osserviamo però con attenzione la definizione di grammatica C.F.

$$G$$
 è libera da contesto  $\Leftrightarrow \forall v \rightarrow w \in P : v \in V$ 

$$w \in (X \cup V)^*$$

Osserviamo ora la definizione di grammatica C.S. Cosa notiamo?

$$yAz \rightarrow ywz \quad A \in V, \ y, z \in (X \cup V)^*, \ w \in (X \cup V)^+$$



- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando contesto destro e sinistro sono equivalenti alla parola vuota.
  - Osserviamo però con attenzione la definizione di grammatica C.F.

$$G$$
 è libera da contesto  $\Leftrightarrow \forall v \to w \in P : v \in V$ 

$$w \in (X \cup V)^*$$

Osserviamo ora la definizione di grammatica C.S. Cosa notiamo?

$$yAz \rightarrow ywz \quad A \in V, \ y, z \in (X \cup V)^*, \ w \in (X \cup V)^+$$



- Le produzioni C.F. sono un caso particolare delle produzioni di tipo (1) delle grammatiche C.S., che si verifica quando contesto destro e sinistro sono equivalenti alla parola vuota.
  - □ Osservando con attenzione la definizione di grammatica C.F. si nota che,  $w \in (X \cup V)^*$  mentre nella definizione di grammatica C.S.  $w \in (X \cup V)^+$ .
  - □ Dunque le grammatiche C.F. ammettono produzioni del tipo,  $A \rightarrow \lambda$  con A che può anche non essere il simbolo iniziale, mentre le grammatiche C.S. non ammettono tali produzioni.
  - □ Chiameremo tutte le produzioni del tipo  $\lambda$ -produzioni o  $\lambda$ -regole.



- Esempi di produzioni contestuali
  - $\Box$  bC  $\rightarrow$  bc
  - $\square$  baACbA  $\rightarrow$  baAabA
- Esempio di grammatica contestuale

$$\Box S \to \lambda \mid bC \\
bC \to bc$$

$$S \rightarrow \lambda$$
 è una produzione C.S. ed S non compare a destra di un'altra produzione.

Di che produzione si tratta?

$$\subset CB \to BC$$



- Esempi di produzioni contestuali
  - $\Box$  bC  $\rightarrow$  bc
  - $\square$  baACbA  $\rightarrow$  baAabA
- Esempio di grammatica contestuale

$$\Box S \to \lambda \mid bC \\
bC \to bc$$

 $S \rightarrow \lambda$  è una produzione C.S. ed S non compare a destra di un'altra produzione.

- Di che produzione si tratta?
  - $\Box$   $CB \rightarrow BC$

non è né C.S. né C.F. È una produzione *monotona* perché del tipo  $v \to w \text{ con } |v| \le |w|$ 

# 100

#### Definizione di grammatica monotona

Una grammatica G = (X, V, S, P) è monotona se ogni sua produzione è monotona, cioè se

$$\forall v \rightarrow w \in P : |v| \le |w|$$

Esempi

$$AB \rightarrow CDEF$$
 $CB \rightarrow BC$ 



#### Definizione di linguaggio monotono

■ Un linguaggio *L* è *monotono* se può essere generato da una grammatica monotona.



- Produzioni monotone
  - $\square$   $AB \rightarrow CDEF$
  - $\Box CB \rightarrow BC$
- Una produzione monotona può essere sostituita da una sequenza di produzioni contestuali senza alterare il linguaggio generato.
  - □  $AB \rightarrow CDEF$  può essere sostituita dalle seguenti produzioni contestuali:
    - $AB \rightarrow AG$

B → G con A come contesto sinistro



- Produzioni monotone
  - $\square$   $AB \rightarrow CDEF$
  - $\Box CB \rightarrow BC$
- Una produzione monotona può essere sostituita da una sequenza di produzioni contestuali senza alterare il linguaggio generato.
  - □  $AB \rightarrow CDEF$  può essere sostituita dalle seguenti produzioni contestuali:
    - $AB \rightarrow AG$

B → G con A come contesto sinistro

 $AG \to CG$ 

A → C con G come contesto destro



- Produzioni monotone
  - $\square$   $AB \rightarrow CDEF$
  - $\Box CB \rightarrow BC$
- Una produzione monotona può essere sostituita da una sequenza di produzioni contestuali senza alterare il linguaggio generato.
  - □  $AB \rightarrow CDEF$  può essere sostituita dalle seguenti produzioni contestuali:
    - $\blacksquare AB \rightarrow AG$

B → G con A come contesto sinistro

 $\bullet AG \to CG$ 

A → C con G come contesto destro

 $CG \rightarrow CDEF$ 

G → DEF con C come **contesto sinistro** 



- Produzioni monotone
  - $\Box$   $CB \rightarrow BC$  può essere sostituita dalle seguenti produzioni contestuali:
    - $\blacksquare$   $CB \rightarrow XB$
    - $\blacksquare XB \rightarrow XC$
    - $XC \rightarrow BC$  oppure
    - $CB \rightarrow X_1B$
    - $X_1B \rightarrow X_1X_2$
    - $X_1X_2 \to X_1C$
    - $X_1C \to BC$



#### Produzioni monotone

 $\Box$   $CB \rightarrow BC$  può essere sostituita dalle seguenti produzioni contestuali:

- $\blacksquare$   $CB \rightarrow XB$
- $\blacksquare XB \rightarrow XC$
- $XC \rightarrow BC$  oppure
- $CB \to X_1B$
- $X_1B \rightarrow X_1X_2$
- $X_1X_2 \to X_1C$
- $X_1C \rightarrow BC$

Ad ogni passaggio tengo «bloccato» un contesto e applico la produzione sulla parte restante della stringa.

I passaggi richiedono l'introduzione di nuovi non terminali.



#### Proposizione

- Cosa possiamo intuire da questa relazione?
  - □ La classe dei linguaggi contestuali coincide con la classe dei linguaggi monotoni.
- Tale proposizione deriva immediatamente dal teorema che segue
  - □ Dimostrabile con la 'doppia inclusione'



#### **Teorema**

- Sia G una grammatica monotona, cioè tale che ogni produzione di G è della forma  $v \to w$  con  $|v| \le |w|$  eccetto che ci può essere un'unica  $\lambda$ -produzione  $S \to \lambda$  se S non appare alla destra di una produzione.
- Esiste allora una grammatica C.S. G' equivalente a G, cioè tale che L(G)=L(G').
- Il teorema precedente può essere enunciato anche nella seguente forma:



# Teorema (seconda formulazione)

■ Un linguaggio L è dipendente da contesto se e solo se esiste una grammatica G tale che L = L(G) ed ogni produzione di G nella forma  $u \to v$  ha la proprietà che:  $0 < |u| \le |v|$ , con una sola eccezione: se  $\lambda \in L(G)$  allora  $S \to \lambda$  è una produzione di G ed in tal caso S non può comparire nella parte destra di altre produzioni.

Dimostrazione (doppia inclusione)

- ⇒ Ogni linguaggio contestuale è monotono
- ← Ogni linguaggio monotono è contestuale



#### Dimostrazione

■ ⇒) Ogni linguaggio contestuale è monotono. Banale.

Se L è dipendente da contesto allora, per definizione, esiste G dipendente da contesto tale che L = L(G).

$$L 
in C.S. \Leftrightarrow \exists G \quad C.S. : L = L(G).$$

Allora ogni produzione di G è in una delle due forme:

- $\square$  (1)  $yAz \rightarrow ywz \text{ con } A \in V, \ y,z \in (X \cup V)^*, \ w \in (X \cup V)^+$
- $\square$  (2)  $S \rightarrow \lambda$  con S che non compare nella parte destra di alcuna produzione.

# w

#### Dimostrazione

■ ⇒) Ogni linguaggio contestuale è monotono. Banale.

Se L è dipendente da contesto allora, per definizione, esiste G dipendente da contesto tale che L = L(G).

$$L 
in C.S. \Leftrightarrow \exists G \quad C.S. : L = L(G).$$

Allora ogni produzione di G è in una delle due forme:

- $\square$  (1)  $yAz \rightarrow ywz \text{ con } A \in V, \ y,z \in (X \cup V)^*, \ w \in (X \cup V)^+$
- $\square$  (2)  $S \rightarrow \lambda$  con S che non compare nella parte destra di alcuna produzione.

Dunque, ogni produzione di G verifica la condizione  $u \to v$ , con  $0 < |u| \le |v|$ , se è del tipo (1), mentre se è del tipo (2) con S che non compare a destra di alcuna produzione, ricade nell'eccezione. Pertanto G è la grammatica cercata.



#### Dimostrazione

■  $\Leftarrow$ ) Ogni linguaggio monotono è contestuale Sia G una grammatica in cui ogni produzione è nella forma  $u \to v$ , con  $0 < |u| \le |v|$ . Senza ledere la generalità della dimostrazione, possiamo supporre che una generica produzione di G abbia il formato:

$$A_1 A_2 ... A_m \to B_1 B_2 ... B_n \quad m \le n \qquad A_i \in V, \quad i = 1, 2, ..., m$$

Denotiamo con  $C_1$ ,  $C_2$ , ...,  $C_m$  m simboli nonterminali non presenti in G.

# M

#### Dimostrazione

■ Utilizziamo le  $C_k$ , k = 1, 2, ..., m per costruire nuove regole contestuali che riscrivono la stringa  $A_1A_2...A_m$  con  $B_1B_2...B_n$ .

$$A_{1}A_{2}...A_{m} \to C_{1}A_{2}...A_{m}$$

$$C_{1}A_{2}...A_{m} \to C_{1}C_{2}A_{3}...A_{m}$$
...
$$C_{1}C_{2}...C_{m-1}A_{m} \to C_{1}C_{2}...C_{m-1}C_{m}B_{m+1}...B_{n}$$

$$C_{1}C_{2}...C_{m-1}C_{m}B_{m+1}...B_{n} \to C_{1}...C_{m-1}B_{m}B_{m+1}...B_{n}$$
produzioni
...
$$C_{1}B_{2}...B_{n} \to B_{1}B_{2}...B_{n}$$

La nuova grammatica che incorpora queste produzioni è contestuale e si può dimostrare che L(G)=L(G').

Lasciamo per esercizio tale dimostrazione. c.v.d.



$$\underbrace{ABC}_{m=3} \to \underbrace{DEFGH}_{n=5}$$

6 produzioni contestuali

$$ABC \to C_1BC$$

$$C_1BC \to C_1C_2C$$

$$C_1C_2C \to C_1C_2C_3GH$$

$$C_1C_2C_3GH \to C_1C_2FGH$$

$$C_1C_2FGH \to C_1EFGH$$

$$C_1EFGH \to DEFGH$$



Consideriamo il linguaggio:

$$L = \{a^n b^n c^n \mid n > 0\}$$

Determiniamo una grammatica che genera tale linguaggio.



#### Esempio 3.3

Consideriamo il linguaggio:

$$L = \{a^n b^n c^n \mid n > 0\}$$

Determiniamo una grammatica che genera tale linguaggio.

Il linguaggio somiglia ad un linguaggio già visto,  $\{a^nb^n\mid n>0\}$ , generato dalla grammatica  $S\to aSb\mid ab$ .

Dunque le produzioni saranno del tipo:

$$S \rightarrow aSBC \mid aBC$$
 il NT B per generare le b  
il NT C per generare le c



Se applichiamo una volta la (1) e poi la (2), abbiamo però:

$$S \Longrightarrow aSBC \Longrightarrow aaBCBC$$

che non è nella forma desiderata in quanto le b e le c risulterebbero alternate.

Generalizzando, se applichiamo n-1 volte la (1) e poi la (2), si ha:

$$S \underset{(1)}{\Longrightarrow} a^{n-1} S \underbrace{BCBC...BC}_{n-1} \underset{(2)}{\Longrightarrow} a^{n} \underbrace{BCBC...BC}_{n} = a^{n} (BC)^{n}$$

Abbiamo dunque bisogno di una produzione che riporti le *B* e le *C* in posizione corretta:

$$CB \xrightarrow{(3)} BC$$

con cui:

$$S \Longrightarrow aSBC \Longrightarrow aaBCBC \Longrightarrow aaBBCC = a^2B^2C^2$$

e

$$S \underset{(1)}{\overset{n-1}{\Longrightarrow}} a^{n-1}S(BC)^{n-1} \underset{(2)}{\Longrightarrow} a^{n} \underbrace{BCBC...BC}_{n} \underset{(3)}{\Longrightarrow} a^{n}BBCC \underbrace{BC...BC}_{n-2} \underset{(3)}{\Longrightarrow} a^{n}BBCCC \underbrace{BC...BC}_{(3)} \underset{(3)}{\Longrightarrow} a^{n}B^{n}C^{n}$$

•



Ora abbiamo bisogno delle produzioni che generano i terminali  $b \in c$ .

Consideriamo la produzione  $B \to b$ . Non va bene. Perché? Perché altrimenti potremmo applicarla all'inizio di una derivazione, ottenendo stringhe del tipo:

$$a^nbCbC...bC$$

che impediscono di applicare la (3) (ed hanno bisogno di ulteriori produzioni per scambiare le b con le C) e quindi di trasformare le b in b solo dopo che le b hanno raggiunto la posizione corretta.



Ora abbiamo bisogno delle produzioni che generano i terminali b e c.

Consideriamo la produzione  $B \rightarrow b$ . Non va bene. Perché? Perché altrimenti potremmo applicarla all'inizio di una derivazione, ottenendo stringhe del tipo:

$$a^nbCbC...bC$$

che impediscono di applicare la (3) (ed hanno bisogno di ulteriori produzioni per scambiare le b con le C) e quindi di trasformare le b in b solo dopo che le b hanno raggiunto la posizione corretta.

Dunque dobbiamo considerare produzioni contestuali che trasformino le B in b solo dopo che hanno raggiunto la posizione corretta:

$$aB \xrightarrow{(4)} ab$$
 per la prima occorrenza delle  $B$ 

$$bB \xrightarrow{(s)} bb$$
 per le restanti occorrenze delle B

Analogamente per le *C*:

$$bC \xrightarrow{(6)} bc$$
 per la prima occorrenza delle  $C$ 

$$cC \xrightarrow{(7)} cc$$
 per le restanti occorrenze delle  $C$ 

Quindi, la grammatica G che genera  $L = \{a^n b^n c^n \mid n > 0\}$  è:

$$S \rightarrow aSBC \mid aBC$$

$$CB \xrightarrow{(3)} BC$$

$$aB \xrightarrow{(4)} ab$$

$$bB \xrightarrow{(5)} bb$$

$$bC \xrightarrow{(6)} bc$$

$$cC \xrightarrow{(7)} cc$$

La grammatica è monotona, ma è facilmente determinabile una grammatica C.S. equivalente.

$$CB \xrightarrow{(3)} BC$$
  $CB \xrightarrow{(3.a)} XB$   $XB \xrightarrow{(3.b)} XC$   $XC \xrightarrow{(3.c)} BC$ 

#### Domande?

