Rekursive Programmierung

Prof. Dr. Christian Becker

Universität Stuttgart, Institut für Parallele und Verteilte Systeme

15. Mai 2025

Inhalt dieser Vorlesung

Einführung in Rekursive Programmierung

Thinking Recursively: Invarianten, Preconditions, Postconditions

Ausblick und Zusammenfassung

Literatur

Eric S. Roberts and Julie Zelenski Programming Abstractions in C++ 2014, Pearson, ISBN 978-0133454840

Eric S. Roberts Thinking Recursively 1986, J. Wiley, ISBN 978-0-471-81652-2

Inhalt dieser Vorlesung

Einführung in Rekursive Programmierung

Thinking Recursively: Invarianten, Preconditions, Postconditions

Ausblick und Zusammenfassung

Einführendes Beispiel

Guess a Number (2 Spieler):

- 1. Spieler 1 wählt eine zufällige Zahl n zwischen 1 und 100
- 2. Spieler 2 rät eine Zahl k
 - k < n: Spieler 1 antwortet mit "zu klein"</p>
 - k > n: Spieler 1 antwortet mit "zu groß"
- 3. Wiederhole Schritt 2 bis die die gewählte Zahl gefunden wurde

Was ist die optimale Spielstrategie für Spieler 2?

Einführendes Beispiel

Einführendes Beispiel

Wie viele Schritte werden maximal benötigt?

- ▶ *N* ∈ {1}: 1 Schritt
- ▶ $N \in \{1, 2, 3\}$: 2 Schritte
- ▶ $N \in \{1, ..., 7\}$: 3 Schritte
- **.** . . .
- ▶ $N \in \{1, ..., 127\}$: 7 Schritte
- ▶ Allgemein: $\lceil log_2(N+1) \rceil$ Schritte

Rekursion

Definition (Rekursion)

Rekursion nutzt die Lösung von mehreren kleineren Probleminstanzen, um das gesamte Problem zu lösen.

Rekursion erlaubt oftmals eine elegante und kompakte Darstellung!

Beispiel: Fibonacci Reihe

- Anfangswerte:
 - ightharpoonup *Fib*(0) = 0
 - ightharpoonup *Fib*(1) = 1
- ► Für *N* > 1:
 - Fib(N) = Fib(N-2) + Fib(N-1)

Common Pitfalls...

Abbruchbedingungen

Falsch (Endlose Rekursion)

Richtig (Abbruchbedingung $n \in \{0, 1\}$)

```
int fib(int n) {
   return fib(n-1) + fib(n-2);
}

Java
```

```
int fib(int n) {
   if (n == 0 || n == 1) {
    return n;
   } else {
    return fib(n-1) + fib(n-2);
   }
}

Java
```

Jede rekursive Funktion benötigt eine oder mehrere Abbruchbedingungen!

Rekursionsschritt

Frage: Terminiert die folgende Funktion für alle Eingaben *n*?

```
int collatz(int n) {
   if (n == 1) {
     return true;
   } else if (n % 2 == 0) {
     return collatz(n/2);
   } else {
     return collatz(3*n+1);
   }
}
```

Rekursionsschritt

Frage: Terminiert die folgende Funktion für alle Eingaben *n*?

```
int collatz(int n) {
   if (n == 1) {
     return true;
   } else if (n % 2 == 0) {
     return collatz(n/2);
   } else {
     return collatz(3*n+1);
   }
}
```

Jeder rekursive Funktionsaufruf sollte eine "einfachere" Probleminstanz lösen!

 $^{^*}$ Tatsächlich ist bekannt dass die Reihe bis zu Werten von 2.95 imes 10 20 konvergiert.

Randnotiz: Tail Recursion

```
int collatz(int n) {
   if (n == 1) {
     return true;
   } else if (n % 2 == 0) {
     return collatz(n/2);
   } else {
     return collatz(3*n+1);
   }
}
```


Quizfrage

- 1. Werden bei dem rekursiven Funktionsaufruf für n=124 noch die vorherigen Werte benötigt $(41,82,27,\ldots)$?
- 2. Was wäre eine Alternative die weniger Platz auf dem Stack benötigt?

Inhalt dieser Vorlesung

Einführung in Rekursive Programmierung

Thinking Recursively: Invarianten, Preconditions, Postconditions

Ausblick und Zusammenfassung

Towers of Hanoi

Start: *N* gelochte Scheiben sind an dem linken Stab der Größe nach angeordnet.

Towers of Hanoi

Ziel: Die Scheiben werden alle auf den rechten Stab bewegt.

Towers of Hanoi

Einschränkung: Größere Scheiben dürfen nicht auf kleinere Scheiben gelegt werden!

Thinking Recursively: Rekursionsbeginn

Start Simple: Für N = 1 kann die Scheibe ohne Einschränkungen bewegt werden.

Thinking Recursively: Rekursionsbeginn

Start Simple: Für N = 1 kann die Scheibe ohne Einschränkungen bewegt werden.

And Expand: Selbes gilt für die rote Scheibe für beliebiges *N*!

Reduktion: Angenommen wir können das Problem für N-1 lösen.

Reduktion: Angenommen wir können das Problem für N-1 lösen.

Dann: $b \rightarrow 2$;

Reduktion: Angenommen wir können das Problem für N-1 lösen.

Dann: $b \rightarrow 2$; $a \rightarrow 3$

Reduktion: Angenommen wir können das Problem für N-1 lösen.

Dann: $b \rightarrow 2$; $a \rightarrow 3$; $b \rightarrow 3$

Towers of Hanoi: Pseudocode

```
void move(int disk, Pole source, Pole target) { ... }
    void hanoi(int disks, Pole source, Pole helper, Pole target) {
      if (disks == 1) {
        move(disks - 1, source, target);
      } else {
        hanoi(disks - 1, source, target, helper);
        move(disks - 1, source, target);
11
12
        hanoi(disks - 1, helper, source, target);
13
15
```

Definiere für jede (rekursive) Methode

Vorbedingungen:

Welche Eigenschaften müssen vor der Ausführung der Methode erfüllt sein?

Invarianten:

Unter der Annahme dass die Vorbedingungen erfüllt sind, welche Eigenschaften gelten innerhalb der Methode (bspw. bei jedem rekursiven Aufruf oder in jeder Schleifeniteration?).

Nachbedingungen:

Unter der Annahme dass die Vorbedingungen erfüllt sind, welche Eigenschaften gelten nach dem Ausführen der Methode?

Quizfrage

Definiere sinnvolle Vorbedingungen, Invarianten und Nachbedingungen für die Methoden *move* und *hanoi* aus dem vorherigen Beispiel.

Quizfrage

Definiere sinnvolle Vorbedingungen, Invarianten und Nachbedingungen für die Methoden *move* und *hanoi* aus dem vorherigen Beispiel.

Hier eine mögliche Formulierung (nicht zwangsweise die einzige Möglichkeit):

Vorbedingungen (move):

- 1. Wohldefinierte Parameter ($0 \le disk < N$ und $source.id, target.id \in \{1, 2, 3\}$)
- 2. disk ist die oberste Scheibe an Pole source

Nachbedingungen (move):

- 1. disk ist die oberste Scheibe an Pole target
- 2. Es wurde keine andere Scheibe bewegt

Quizfrage

Definiere sinnvolle Vorbedingungen, Invarianten und Nachbedingungen für die Methoden *move* und *hanoi* aus dem vorherigen Beispiel.

Vorbedingungen (hanoi):

- 1. Wohldefinierte Parameter ($0 \le disk < N$ und $\{source.id, helper.id, target.id\} = \{1, 2, 3\}$)
- 2. Alle Scheiben $0, \ldots, disks-1$ liegen (der Größe nach sortiert) an Pole source

Nachbedingungen (hanoi):

- 1. Alle Scheiben $0, \ldots, disks-1$ liegen (der Größe nach sortiert) an Pole target
- 2. Die anderen Scheiben disk, ..., N-1 wurden nicht bewegt

Quizfrage

Definiere sinnvolle Vorbedingungen, Invarianten und Nachbedingungen für die Methoden *move* und *hanoi* aus dem vorherigen Beispiel.

Invarianten können benutzt werden um die Nachbedingungen zu zeigen.

Invarianten (hanoi):

- 1. Parameter bleiben wohldefiniert (u.A. relevant für Vorbedingungen von move, womit Nachbedingung 1 gezeigt werden kann)
- 2. Größere Scheiben werden niemals auf kleinere Scheiben gelegt (Spielregeln)
- 3. disk wird ausschließlich verkleinert (relevant für Nachbedingung 2)

Inhalt dieser Vorlesung

Einführung in Rekursive Programmierung

Thinking Recursively: Invarianten, Preconditions, Postconditions

Ausblick und Zusammenfassung

Rekursion

Definition (Rekursion)

Rekursion nutzt die Lösung von mehreren kleineren Probleminstanzen, um das gesamte Problem zu lösen.

Rekursive Programmierung findet viele Anwendungen, beispielsweise für

- das Traversieren von Datenstrukturen (oftmals Baumstrukturen)
- das Sortieren von Listen (bspw. Mergesort, Quicksort, Heapsort)

Es sollte jedoch sorgfältig angewandt werden

- Kann die Terminierung sichergestellt werden?
- Was sind die Vorbedingungen, Invarianten und Nachbedingungen?

