Undecidability

Everything is an Integer
Countable and Uncountable Sets
Turing Machines
Recursive and Recursively
Enumerable Languages

Integers, Strings, and Other Things

- □ Data types have become very important as a programming tool.
- But at another level, there is only one type, which you may think of as integers or strings.
- Key point: Strings that are programs are just another way to think about the same one data type.

Example: Text

- □ Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.
- Binary strings can be thought of as integers.
- It makes sense to talk about "the i-th string."

Binary Strings to Integers

- There's a small glitch:
 - ☐ If you think simply of binary integers, then strings like 101, 0101, 00101,... all appear to be "the fifth string."
- ☐ Fix by prepending a "1" to the string before converting to an integer.
 - □ Thus, 101, 0101, and 00101 are the 13th, 21st, and 37th strings, respectively.

Example: Images

- Represent an image in (say) GIF.
- □ The GIF file is an ASCII string.
- Convert string to binary.
- Convert binary string to integer.
- Now we have a notion of "the i-th image."

Example: Proofs

- A formal proof is a sequence of logical expressions, each of which follows from the ones before it.
- Encode mathematical expressions of any kind in Unicode.
- Convert expression to a binary string and then an integer.

Proofs - (2)

- But a proof is a sequence of expressions, so we need a way to separate them.
- Also, we need to indicate which expressions are given.

Proofs -(3)

- Quick-and-dirty way to introduce new symbols into binary strings:
 - 1. Given a binary string, precede each bit by 0.
 - ☐ Example: 101 becomes 010001.
 - Use strings of two or more 1's as the special symbols.
 - Example: 111 = "the following expression is given"; 11 = "end of expression."

Example: Encoding Proofs

Example: Programs

- Programs are just another kind of data.
- □ Represent a program in ASCII.
- Convert to a binary string, then to an integer.
- Thus, it makes sense to talk about "the i-th program."
- Hmm...There aren't all that many programs.

Finite Sets

- □ Intuitively, a *finite set* is a set for which there is a particular integer that is the count of the number of members.
- □ Example: {a, b, c} is a finite set; its cardinality is 3.) からいかいりりょ Set
- It is impossible to find a 1-1 mapping between a finite set and a proper subset of itself.

Infinite Sets

- □ Formally, an *infinite set* is a set for which there is a 1-1 correspondence between itself and a proper subset of itself.
- □ Example: the positive integers {1, 2, 3,...} is an infinite set.
 - □ There is a 1-1 correspondence 1<->2, 2<->4, 3<->6,... between this set and a proper subset (the set of even integers).

Countable Sets

- ☐ A *countable set* is a set with a 1-1 correspondence with the positive integers.
 - □ Hence, all countable sets are infinite.
- □ Example: All integers.
 □ 0<->1; |-i <-> 2i; |+i <-> 2i+1.
 - ☐ Thus, order is 0, -1, 1, -2, 2, -3, 3,...
- Examples: set of binary strings, set of Java programs.

Example: Pairs of Integers

- Order the pairs of positive integers first by sum, then by first component:
- [1,1], [2,1], [1,2], [3,1], [2,2], [1,3], [4,1], [3,2],..., [1,4], [5,1],...
- Interesting exercise: figure out the function f(i,j) such that the pair [i,j] corresponds to the integer f(i,j) in this order.

Enumerations

- □ An enumeration of a set is a 1-1 correspondence between the set and the positive integers.
- □ Thus, we have seen enumerations for strings, programs, proofs, and pairs of integers.

How Many Languages?

- □ Are the languages over {0,1}* countable?
- No; here's a proof.
- □ Suppose we could enumerate all languages over {0,1}* and talk about "the i-th language."
- □ Consider the language L = { w | w is the i-th binary string and w is not in the i-th language}.

Proof – Continued

- □ Clearly, L is a language over {0,1}*.
- ☐ Thus, it is the j-th language for some particular j.

 Recall: L = { w | w is the
- ☐ Let x be the j-th string.
- ☐ Is x in L?
 - ☐ If so, x is not in L by definition of L.
 - ☐ If not, then x is in L by definition of L.

i-th binary string and w is

not in the i-th language).

Diagonalization Picture

	Strings						
	J	1	2	3	4	5 .	
Languages	1	1	0	1	1	0	
	2		1				
	3			0			
	4				0		
	5					1	

Diagonalization Picture

Can't be a row – it disagrees in an entry of each row.

mornivala

Proof – Concluded

- We have a contradiction: x is neither in L nor not in L, so our sole assumption (that there was an enumeration of the languages) is wrong.
- Comment: This is really bad; there are more languages than programs.
- □ E.g., there are languages with no membership algorithm.

Turing-Machine Theory

- ☐ The purpose of the theory of Turing machines is to prove that certain specific languages have no algorithm.
- Start with a language about Turing machines themselves.
- Reductions are used to prove more common questions undecidable.

Picture of a Turing Machine

Infinite tape with squares containing tape symbols chosen from a finite alphabet

Why Turing Machines?

- Why not deal with C programs or something like that?
- Answer: You can, but it is easier to prove things about TM's, because they are so simple.
 - And yet they are as powerful as any computer.
 - More so, in fact, since they have infinite memory.

Then Why Not Finite-State Machines to Model Computers?

- □ In principle, you could, but it is not instructive.
- Programming models don't build in a limit on memory.
- □ In practice, you can go to Fry's and buy another disk.
- But finite automata vital at the chip level (model-checking).

Turing-Machine Formalism

- A TM is described by:
 - 1. A finite set of *states* (Q, typically).
 - 2. An *input alphabet* (Σ , typically).
 - 3. A *tape alphabet* (Γ , typically; contains Σ).
 - 4. A *transition function* (δ , typically).
 - 5. A *start state* $(q_0, in Q, typically)$.
 - 6. A *blank symbol* (B, in Γ Σ , typically).
 - All tape except for the input is blank initially.
 - 7. A set of *final states* ($F \subseteq Q$, typically).

Conventions

- □ a, b, ... are input symbols.
- □ ..., X, Y, Z are tape symbols.
- ..., w, x, y, z are strings of input symbols.
- $\square \alpha$, β ,... are strings of tape symbols.

The Transition Function

- Takes two arguments:
 - 1. A state, in Q.
 - 2. A tape symbol in Γ.
- δ(q, Z) is either undefined or a triple of the form (p, Y, D). δ(q, Z) : (P Y D)
 - p is a state.
 - Y is the new tape symbol.
 - D is a direction, L or R.

State noy

Actions of the PDA

- If $\delta(q, Z) = (p, Y, D)$ then, in state q, scanning Z under its tape head, the TM:
 - 1. Changes the state to p.
 - 2. Replaces Z by Y on the tape.
 - 3. Moves the head one square in direction D.
 - \square D = L: move left; D = R; move right.

Example: Turing Machine

- □ This TM scans its input right, looking for a 1.
- □ If it finds one, it changes it to a 0, goes to final state f, and halts.
- □ If it reaches a blank, it changes it to a 1 and moves left.

Example: Turing Machine – (2)

□ States = {q (start), f (final)}. □ Input symbols = {0, 1}. □ Tape symbols = {0, 1, B}. □ $\delta(q, 0) = (q, 0, R)$. □ $\delta(q, 1) = (f, 0, R)$. □ $\delta(q, B) = (q, 1, L)$.

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$

 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$
 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

No move is possible. The TM halts and accepts.

Instantaneous Descriptions of a Turing Machine

- Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
- □ The TM is in the start state, and the head is at the leftmost input symbol.

TM ID's - (2)

- \Box An ID is a string αqβ, where αβ is the tape between the leftmost and rightmost nonblanks (inclusive).
- □ The state q is immediately to the left of the tape symbol scanned.
- ☐ If q is at the right end, it is scanning B.
 - \square If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of α .

TM ID's - (3)

- □ As for PDA's we may use symbols + and +* to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.
- □ Example: The moves of the previous TM are q00+0q0+00q+0q01+00q1+000f

Equivalence of Accepting and Halting

- 1. If L = L(M), then there is a TM M' such that L = H(M').
- 2. If L = H(M), then there is a TM M" such that L = L(M'').

- Modify M to become M' as follows:
 - 1. For each accepting state of M, remove any moves, so M' halts in that state.
 - 2. Avoid having M' accidentally halt.
 - Introduce a new state s, which runs to the right forever; that is $\delta(s, X) = (s, X, R)$ for all symbols X.
 - If q is not accepting, and $\delta(q, X)$ is undefined, let $\delta(q, X) = (s, X, R)$.

Proof of 2: Halting -> Acceptance

- Modify M to become M" as follows:
 - 1. Introduce a new state f, the only accepting state of M".
 - 2. f has no moves.
 - 3. If $\delta(q, X)$ is undefined for any state q and symbol X, define it by $\delta(q, X) = (f, X, R)$.