Queuing System Project Guidelines

Objective

Students will design and analyze a queuing system inspired by a real-life scenario. The goal is to extend the basic M/M/c queuing model by incorporating additional complexity, such as networks of queues or customer behaviors, and to evaluate system performance under different conditions.

Submission Requirements

Groups must submit:

- Video Presentation (max 6 minutes):
 - Explain the chosen scenario and its relevance.
 - Describe the queuing model (e.g., network structure, arrival rates, service rates).
 - Present the results of the analysis (e.g., metrics, comparisons).
 - Highlight key insights and recommendations.
 - Ensure the video includes human narration (AI-generated videos are not allowed).
- **Python Script**: Submit the Python script used to implement and analyze the queuing system.

Tasks

1. Identify a Relevant Scenario

Choose a real-life scenario for your queuing system, such as:

- University Cafeteria: Queues for ordering food and paying.
- Public Transportation: Ticket counters and boarding.
- **Healthcare**: Patients moving through different stages of a clinic visit.
- Retail Store: Queues for fitting rooms and checkout counters.

2. Extend the M/M/c Model

- a. Design a Network of Queues:
 - Include multiple interconnected queues where customers transition between different stages.
 - Example: At a cafeteria, customers first queue to order and then queue to pay.
- b. Incorporate Customer Behaviors:
 - Consider behaviors such as jockeying (switching lines) or reneging (leaving the queue).
 - Example: Customers leave if the wait time exceeds a threshold.

3. Compare Metrics Under Different Conditions

- Evaluate the system's performance using metrics such as:
 - Average queue length.
 - Average waiting time.
 - Server utilization.
- Analyze the impact of varying:
 - Arrival and service rates.
 - Customer behaviors.

- Number of servers.

4. Develop and Test the System in Python Using SimPy

- Use the SimPy package in Python for simulation.
- Create a workflow to:
 - Define resources (e.g., servers, queues).
 - Simulate customer arrivals and service.
 - Collect metrics for analysis.
- Refer to examples and tutorials available at https://simpy.readthedocs.io/en/latest/examples/index.html for guidance and inspiration.

Example Scenario: Ambulatory Queuing System

Imagine a small ambulatory where patients go through two stages:

• Stage 1: Nurse Assessment

- Patients first queue to be seen by a nurse.
- Service time: Exponentially distributed with an average of 5 minutes.
- Patients will not join this queue with a probability of 20% if there are more than 5 people waiting.

• Stage 2: Doctor Consultation

- After seeing the nurse, patients proceed to queue for a doctor.
- Service time: Exponentially distributed with an average of 10 minutes.

Arrival Process: Patients arrive at the ambulatory following a Poisson process with a mean rate of 12 patients per hour.

Suggested Analyses

Using SimPy, simulate the ambulatory system for an 8-hour workday (480 minutes) and perform the following analyses:

• Queue Size Evolution:

- Plot the size of the nurse and doctor queues over time.
- Highlight periods of congestion or idle times.

• Reneging Statistics:

- Calculate the proportion of patients who leave the system without receiving service.
- Identify times of peak reneging and possible causes.

• Resource Utilization:

- Determine the utilization rates of the nurse and doctor.
- Assess whether additional staff or resources are needed.

• Waiting Times:

- Calculate the average waiting time for patients in the nurse and doctor queues.
- Identify conditions under which waiting times exceed acceptable limits.