Security Attack, Services and Mechanism

Introduction:

With the introduction of the computer, the need for automatic tools for protecting files and other information stored on the computer became evident. This is especially the case for a shared system, such as a time-sharing system, and the need is even more acute for systems that can be accessed over a public telephone network, data network, or the Internet. The generic name for the collection of tools designed to protect data and to thwart hackers is computer security. The second major change that affected security is the introduction of distributed systems and the use of networks and communications facilities for carrying data between terminal user and computer and between computer and computer. Network security measures are needed to protect data during their transmission. Internet security, which consists of measures to deter, prevent, detect, and correct security violations that involve the transmission of information.

Consider the following example of security violations: User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is to be protected from disclosure. User C, who is not authorized to read the file, is able to monitor the transmission and capture a copy of the file during its transmission.

1.1 The OSI Security Architecture

To assess effectively the security needs of an organization and to evaluate and choose various security products and policies, the manager responsible for security needs some systematic way of defining the requirements for security and characterizing the approaches to satisfying those requirements. ITU-T Recommendation X.800, Security Architecture for OSI, defines such a systematic approach. The OSI security architecture is useful to managers as a way of organizing the task of providing security.

The OSI security architecture focuses on security attacks, mechanisms, and services. These can be defined briefly as follows:

- **Security attack:** Any action that compromises the security of information owned by an organization.
- Security mechanism: A process (or a device incorporating such a process) that is designed to detect, prevent, or recover from a security attack.
- Security service: A processing or communication service that enhances the security of the data processing systems and the information transfers of an organization. The services are intended to counter security attacks, and they make use of one or more security mechanisms to provide the service.

Threat: A potential for violation of security, which exists when there is a circumstance, capability, action, or event that could breach security and cause harm. That is, a threat is a possible danger that might exploit vulnerability.

Attack: An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade security services and violate the security policy of a system.

1.2 Security Attacks

A useful means of classifying security attacks, is in terms of passive attacks and active attacks. A passive attack attempts to learn or make use of information from the system but does not affect system resources. An active attack attempts to alter system resources or affect their operation.

Passive Attacks:

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal of the opponent is to obtain information that is being transmitted. Two types of passive attacks are release of message contents and traffic analysis.

• The release of message contents is easily understood. A telephone conversation, an electronic mail message, and a transferred file may contain sensitive or confidential information. We would like to prevent an opponent from learning the contents of these transmissions.

• A second type of passive attack, traffic analysis, is subtler. Suppose that we had a way of masking the contents of messages or other information traffic so that opponents, even if they captured the message, could not extract the information from the message.

12

The common technique for masking contents is encryption. If we had encryption protection in place, an opponent might still be able to observe the pattern of these messages. The opponent could determine the location and identity communicating hosts and could observe the frequency and length of messages being exchanged. This information might be useful in guessing the nature of the communication that was taking place. Passive attacks are very difficult to detect because they do not involve alteration the any Typically, the message traffic is sent and received in an apparently normal fashion and neither the sender nor receiver is aware that a third party has read the messages or observed the traffic pattern. However, it is feasible to prevent the success of these attacks, usually by means of encryption. Thus, the emphasis in dealing with passive attacks is on prevention rather than detection.

Active Attacks:

Active attacks involve some modification of the data stream or the creation of a false stream and can be subdivided into four categories:

- 1. masquerade,
- 2. replay,

- 3. modification of messages, and
- 4. denial of service.
- A masquerade takes place when one entity pretends to be a different entity. A masquerade attack usually includes one of the other forms of active attack. For example, authentication sequences can be captured and replayed after a valid authentication sequence has taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by impersonating an entity that has those privileges.

• Replay involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect.

15

14

• Modification of messages simply means that some portion of a legitimate message is altered, or that messages are delayed or reordered, to produce an unauthorized effect.

(c) Modification of messages

• Denial of service prevents or inhibits the normal use or management of communications facilities. This attack may have a specific target; for example, an entity may suppress all messages directed to a particular destination (e.g., the security audit service). Another form of service denial is the disruption of an entire network, either by disabling the network or by overloading it with messages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks are difficult to detect, measures are available to prevent their success. On the other hand, it is quite difficult to prevent active attacks absolutely, because of the wide variety of potential physical, software, and network vulnerabilities. Instead, the goal is to detect active attacks and to recover from any disruption or delays caused by them. If the detection has a deterrent effect, it may also contribute to prevention.

4. SECURITY SERVICES

Table 1.2 Security Services (X.800)

AUTHENTICATION

The assurance that the communicating entity is the one that it claims to be.

Peer Entity Authentication

Used in association with a logical connection to provide confidence in the identity of the entities connected.

Data-Origin Authentication

In a connectionless transfer, provides assurance that the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource (i.e., this service controls who can have access to a resource, under what conditions access can occur, and what those accessing the resource are allowed to do).

18

DATA CONFIDENTIALITY

The protection of data from unauthorized disclosure.

Connection Confidentiality

The protection of all user data on a connection.

Connectionless Confidentiality

The protection of all user data in a single data block

Selective-Field Confidentiality

The confidentiality of selected fields within the user data on a connection or in a single data block.

Traffic-Flow Confidentiality

The protection of the information that might be derived from observation of traffic flows.

19

DATA INTEGRITY

The assurance that data received are exactly as sent by an authorized entity (i.e., contain no modification, insertion, deletion, or replay).

Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification, insertion, deletion, or replay of any data within an entire data sequence, with recovery attempted.

Connection Integrity without Recovery

As above, but provides only detection without recovery.

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block transferred over a connection and takes the form of determination of whether the selected fields have been modified, inserted, deleted, or replayed.

Connectionless Integrity

Provides for the integrity of a single connectionless data block and may take the form of detection of data modification. Additionally, a limited form of replay detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block; takes the form of determination of whether the selected fields have been modified.

NONREPUDIATION

Provides protection against denial by one of the entities involved in a communication of having participated in all or part of the communication.

Nonrepudiation, Origin

Proof that the message was sent by the specified party.

Nonrepudiation, Destination

Proof that the message was received by the specified party.

21

5. SECURITY MECHANISMS

Table 1.3 Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate protocol layer in order to provide some of the OSI security services.

Encipherment

The use of mathematical algorithms to transform data into a form that is not readily intelligible. The transformation and subsequent recovery of the data depend on an algorithm and zero or more encryption keys.

Digital Signature

Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data unit to prove the source and integrity of the data unit and protect against forgery (e.g., by the recipient).

Access Control

A variety of mechanisms that enforce access rights to resources.

Data Integrity

A variety of mechanisms used to assure the integrity of a data unit or stream of data units.

Authentication Exchange

A mechanism intended to ensure the identity of an entity by means of information exchange.

Traffic Padding

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure routes for certain data and allows routing changes, especially when a breach of security is suspected.

Notarization

The use of a trusted third party to assure certain properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular OSI security service or protocol layer.

Trusted Functionality

That which is perceived to be correct with respect to some criteria (e.g., as established by a security policy).

Security Label

The marking bound to a resource (which may be a data unit) that names or designates the security attributes of that resource.

Event Detection

Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a security audit, which is an independent review and examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event handling and management functions, and takes recovery actions.

23

6. A MODEL FOR NETWORK SECURITY

Figure 1.4 Model for Network Security