

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER V [Information Technology]

SUBJECT: (IT 511) Theory of Automata and Formal Language

Examination: First Sessional Seat No. :

Date : 31/07/2017 Day :Monday Time : 11:30 to 12:45 pm Max. Marks : 36

INSTRUCTIONS:				
1.	Figures to the right indicate maximum marks for that question.			
2.	The symbols used carry their usual meanings.			
3.	Assume suitable data, if required & mention them clearly.			
4.	Draw neat sketches wherever necessary.			
5.	"^" and "E" indicates null symbol.			

Q.1 Do as directed.

(a) Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L*? [02]

1) abaabaaabaa 2) baaaaabaaaab

i)only 1 ii) only 2 iii) both 1 and 2 iv) neither 1 or 2

- (b) 1) From following which are describing Transition function of DFA and NFA- ϵ . i) $Q * \Sigma \rightarrow Q$ ii) $Q * Q \rightarrow \Sigma$ iii) $Q * \Sigma \rightarrow 2^Q$ iv) $Q * (\Sigma \cup \{^{\wedge}\}) \rightarrow 2^Q$
 - 2) Which of the following is true?
 - i) Union of two regular languages is regular language
 - ii) Intersection of two regular languages is not a regular language
 - iii) Complement of two regular languages is not a regular language
 - iv) None of above is true
- (c) Give DFA accepting the following language over the alphabet $\{0,1\}$ -

{ w | w has all the "0" symbols precede all the "1" symbols}

i) { w | w contains the symbol "1" at least three times}

(d) Consider the NFA in figure 1, on the alphabet {a, b}.

From following strings which strings are accepted / rejected by the automaton? Justify your answer by clearly indicating the state transitions.

i) aab

ii) baa

Q.2 Attempt Any Two of following questions.

(a) Minimize the Finite Automata given in figure 2.(clearly show the table used)

Figure-2

- (b) Give a recursive definition for Language having more b's then a's. Consider alphabet of language is {a,b}. Also prove the correctness of your definition using mathematical induction.
- (c) Prove that: for every alphabet Σ , every regular language over Σ can be accepted by a finite [06] automaton (Keene's Theorem, Part1)
- Q.3 (a) Consider the NFA-ε given in figure3.

 The start state is 'p' and acceptance state is

technique)

'r'.

i) Give the closure set of all states.ii) Find the corresponding DFA (use subset construction

		ϵ	a	b	c	
-	$\begin{array}{c} \rightarrow p \\ q \\ *r \end{array}$	$ \begin{cases} p \\ \{q\} \end{cases} $	$ \begin{aligned} \{p\} \\ \{q\} \\ \{r\} \end{aligned}$	$\{q\}$ $\{r\}$ \emptyset	$ \begin{cases} r \\ \emptyset \\ \{p\} \end{cases} $	[03] [06]

Figure-3

(b) Give a NFA ε for the language described by regular expression- $(01+10)^*$

[06]

[03]

[06]

[04]

[04]

Q.3 (a) Consider the non-deterministic finite automaton (NFA) over the alphabet $\Sigma = \{0, 1\}$ as shown in figure 4. Give Regular expression for the corresponding language, using state elimination technique.

(b) Find the equivalent DFA of the NFA given in figure 5. Note:- p is the initial state and r is the accepting state.

Figure 4

	ŭ	
state	input 0	input 1
p	$\{p,s\}$	$\{q\}$
q	$\{r,s\}$	$\{q\}$
r	$\{r\}$	$\{s\}$
s	{}	$\{q\}$

Figure 5