

FCC PART 15 TEST REPORT No. I17Z60313-SRD04

for

HMD Global Oy

Smart Phone

TA-1039

With

FCC ID: 2AJOTTA-1039

Hardware Version: 3

Software Version: 000C_3_110

Issued Date: 2017-04-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P.R.China 100191

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504

Email: cttl_terminals@catr.cn. website:www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I17Z60313-SRD04	Rev.0	1st edition	2017-04-17

CONTENTS

CONT	ENTS	3
1.	TEST LATORATORY	8
1.1.	TESTING LOCATION	8
1.2.	TESTING ENVIRONMENT	8
1.3.	PROJECT DATA	8
1.4.	SIGNATURE	8
2.	CLIENT INFORMATION	9
2.1.	APPLICANT INFORMATION	9
2.2.	MANUFACTURER INFORMATION	9
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT(AE)	10
3.1.	ABOUT EUT	10
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	10
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
3.4.	GENERAL DESCRIPTION	11
3.5.	INTERPRETATION OF THE TEST ENVIRONMENT	11
4.	REFERENCE DOCUMENTS	12
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	12
4.2.	REFERENCE DOCUMENTS FOR TESTING	12
5.	LABORATORY ENVIRONMENT	12
6.	SUMMARY OF TEST RESULTS	13
6.1.	SUMMARY OF TEST RESULTS	13
6.2.	STATEMENTS	13
6.3.	TEST CONDITIONS	13
7.	TEST EQUIPMENTS UTILIZED	14
8.	MEASUREMENT UNCERTAINTY	15
8.1.	TRANSMITTER OUTPUT POWER	15
8.2.	PEAK POWER SPECTRAL DENSITY	15
8.3.	OCCUPIED CHANNEL BANDWIDTH	15
8.4.	BAND EDGES COMPLIANCE	15
8.5.	SPURIOUS EMISSIONS	15
ANNE	X A: MEASUREMENT RESULTS	16
Λ 1 1	Meachdement Method	16

A.2. MAXI	MUM OUTPUT POWER	17
A.3. PEAK	POWER SPECTRAL DENSITY (CONDUCTED)	19
A.4. OCCU	PIED 26DB BANDWIDTH(CONDUCTED)	20
Fig. 1	OCCUPIED 26DB BANDWIDTH (802.11A, 5180MHz)	21
Fig. 2	OCCUPIED 26DB BANDWIDTH (802.11A, 5200MHz)	21
FIG. 3	OCCUPIED 26DB BANDWIDTH (802.11A, 5240MHz)	22
Fig. 4	OCCUPIED 26DB BANDWIDTH (802.11A, 5260MHz)	22
Fig. 5	OCCUPIED 26DB BANDWIDTH (802.11A, 5280MHz)	23
Fig. 6	OCCUPIED 26DB BANDWIDTH (802.11A, 5320MHz)	23
Fig. 7	OCCUPIED 26DB BANDWIDTH (802.11A, 5500MHz)	24
FIG. 8	OCCUPIED 26DB BANDWIDTH (802.11A, 5580MHz)	24
Fig. 9	OCCUPIED 26DB BANDWIDTH (802.11A, 5700MHz)	25
Fig. 10	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5180MHz)	25
Fig. 11	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5200MHz)	26
FIG. 12	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5240MHz)	26
FIG. 13	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5260MHz)	27
Fig. 14	OCCUPIED 26DB BANDWIDTH (802.11N-HT20, 5280MHz)	27
FIG. 15	OCCUPIED 26DB BANDWIDTH (802.11n-HT20, 5320MHz)	28
Fig. 16	OCCUPIED 26DB BANDWIDTH (802. 11n-HT20, 5500MHz)	28
Fig. 17	OCCUPIED 26DB BANDWIDTH (802. 11n-HT20, 5580MHz)	29
FIG. 18	OCCUPIED 26DB BANDWIDTH (802. 11n-HT20, 5700MHz)	29
Fig. 19	OCCUPIED 26DB BANDWIDTH (802.11N-HT40, 5190MHz)	30
FIG. 20	OCCUPIED 26DB BANDWIDTH (802.11n-HT40, 5230MHz)	30
FIG. 21	OCCUPIED 26DB BANDWIDTH (802.11N-HT40, 5270MHz)	31
FIG. 22	OCCUPIED 26DB BANDWIDTH (802.11n-HT40, 5310MHz)	31
FIG. 23	OCCUPIED 26DB BANDWIDTH (802. 11n-HT40, 5510MHz)	32
FIG. 24	OCCUPIED 26DB BANDWIDTH (802. 11n-HT40, 5550MHz)	32
FIG. 25	OCCUPIED 26DB BANDWIDTH (802. 11n-HT40, 5670MHz)	33
A.5. BAND	EDGES COMPLIANCE	34
A5.1 BANI	D EDGES - RADIATED	34
FIG. 26	BAND EDGES (802.11A, 5180MHz)	35
FIG. 27	BAND EDGES (802.11A, 5320MHz)	35
FIG. 28	BAND EDGES (802.11A, 5500MHz)	36
FIG. 29	BAND EDGES (802.11n-HT20, 5180MHz)	36
FIG. 30	BAND EDGES (802.11N-HT20, 5320MHz)	37
FIG. 31	BAND EDGES (802.11N-HT20, 5500MHz)	37
FIG. 32	BAND EDGES (802.11n-HT40, 5190MHz)	38
FIG. 33	BAND EDGES (802.11N-HT40, 5310MHz)	38
FIG. 34	BAND EDGES (802.11n-HT40, 5510MHz)	39
A.6. TRAN	SMITTER SPURIOUS EMISSION	40
FIG. 35	RADIATED SPURIOUS EMISSION (802.11A, CH36, 1 GHz-3 GHz)	57
FIG. 36	RADIATED SPURIOUS EMISSION (802.11A, CH36, 3 GHz-6 GHz)	58
FIG. 37	RADIATED SPURIOUS EMISSION (802.11A, CH36, 6 GHz-18 GHz)	58
Fig. 38	RADIATED SPURIOUS EMISSION (802.11A, CH40, 30 MHz-1 GHz)	58

Fig. 39	RADIATED SPURIOUS EMISSION (802.11A, CH40, 1 GHz-3 GHz)	59
Fig. 40	RADIATED SPURIOUS EMISSION (802.11A, CH40, 3 GHz-6 GHz)	59
Fig. 41	RADIATED SPURIOUS EMISSION (802.11A, CH40, 6 GHz-18 GHz)	60
FIG. 42	RADIATED SPURIOUS EMISSION (802.11A, CH40, 18 GHz-26.5 GHz)	60
FIG. 43	RADIATED SPURIOUS EMISSION (802.11A, CH40, 26.5 GHz-40 GHz)	61
FIG. 44	RADIATED SPURIOUS EMISSION (802.11A, CH48, 1 GHz-3 GHz)	62
Fig. 45	RADIATED SPURIOUS EMISSION (802.11A, CH48, 3 GHz-6 GHz)	62
Fig. 46	RADIATED SPURIOUS EMISSION (802.11A, CH48, 6 GHz-18 GHz)	62
Fig. 47	RADIATED SPURIOUS EMISSION (802.11A, CH52, 1 GHz-3 GHz)	63
Fig. 48	RADIATED SPURIOUS EMISSION (802.11A, CH52, 3 GHz-6 GHz)	63
Fig. 49	RADIATED SPURIOUS EMISSION (802.11A, CH52, 6 GHz-18 GHz)	64
Fig. 50	RADIATED SPURIOUS EMISSION (802.11A, CH56, 30 MHz-1 GHz)	64
Fig. 51	RADIATED SPURIOUS EMISSION (802.11A, CH56, 1 GHz-3 GHz)	65
FIG. 52	RADIATED SPURIOUS EMISSION (802.11A, CH56, 3 GHz-6 GHz)	65
FIG. 53	RADIATED SPURIOUS EMISSION (802.11A, CH56, 6 GHz-18 GHz)	66
Fig. 54	RADIATED SPURIOUS EMISSION (802.11A, CH56, 18 GHz-26.5 GHz)	66
Fig. 55	RADIATED SPURIOUS EMISSION (802.11A, CH56, 26.5 GHz-40 GHz)	67
FIG. 56	RADIATED SPURIOUS EMISSION (802.11A, CH64, 1 GHz-3 GHz)	67
Fig. 57	RADIATED SPURIOUS EMISSION (802.11A, CH64, 3 GHz-6 GHz)	68
FIG. 58	RADIATED SPURIOUS EMISSION (802.11A, CH64, 6 GHz-18 GHz)	69
Fig. 59	RADIATED SPURIOUS EMISSION (802.11A, CH100, 1 GHz-3 GHz)	69
Fig. 60	RADIATED SPURIOUS EMISSION (802.11A, CH100, 3 GHz-6 GHz)	69
Fig. 61	RADIATED SPURIOUS EMISSION (802.11A, CH100, 6 GHz-18 GHz)	70
Fig. 62	RADIATED SPURIOUS EMISSION (802.11A, CH116, 30 MHz-1 GHz)	71
FIG. 63	RADIATED SPURIOUS EMISSION (802.11A, CH116, 1GHz-3 GHz)	71
Fig. 64	RADIATED SPURIOUS EMISSION (802.11A, CH116,3G Hz-6 GHz)	72
Fig. 65	RADIATED SPURIOUS EMISSION (802.11A, CH116, 6 GHz-18 GHz)	72
Fig. 66	RADIATED SPURIOUS EMISSION (802.11A, CH116, 18 GHz-26.5 GHz)	72
Fig. 67	RADIATED SPURIOUS EMISSION (802.11A, CH116, 26.5 GHz-40 GHz)	73
Fig. 68	RADIATED SPURIOUS EMISSION (802.11A, CH140, 1 GHz-3 GHz)	74
Fig. 69	RADIATED SPURIOUS EMISSION (802.11A, CH140, 3 GHz-6 GHz)	74
Fig. 70	RADIATED SPURIOUS EMISSION (802.11A, CH140, 6 GHz-18 GHz)	74
Fig. 71	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH36, 1 GHz-3 GHz)	75
Fig. 72	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH36, 3 GHz-6 GHz)	75
Fig. 73	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH36, 6 GHz-18 GHz)	76
Fig. 74	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 30 MHz-1 GHz)	76
Fig. 75	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 1 GHz-3 GHz)	77
Fig. 76	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 3 GHz-6 GHz)	77
Fig. 77	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 6 GHz-18 GHz)	78
Fig. 78	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 18 GHz-26.5 GHz)	78
Fig. 79	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH40, 26.5 GHz-40 GHz)	79
Fig. 80	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH48, 1 GHz-3 GHz)	80
Fig. 81	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH48, 3 GHz-6 GHz)	80
FIG. 82	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH48, 6 GHz-18 GHz)	80

Fig. 83	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH52, 1 GHz-3 GHz)	81
Fig. 84	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH52, 3 GHz-6 GHz)	81
FIG. 85	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH52, 6 GHz-18 GHz)	82
Fig. 86	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH56, 30 MHz-1 GHz)	82
Fig. 87	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH56, 1 GHz-3 GHz)	83
FIG. 88	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH56, 3 GHz-6 GHz)	83
Fig. 89	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH56, 6 GHz-18 GHz)	84
Fig. 90	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH56, 18 GHz-26.5 GHz)	84
Fig. 91	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH56, 26.5 GHz-40 GHz)	85
Fig. 92	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH64, 1 GHz-3 GHz)	86
Fig. 93	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH64, 3 GHz-6 GHz)	86
Fig. 94	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH64, 6 GHz-18 GHz)	87
Fig. 95	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH100, 1 GHz-3 GHz)	87
Fig. 96	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH100, 3 GHz-6 GHz)	87
Fig. 97	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH100, 6 GHz-18 GHz)	88
Fig. 98	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH116, 30 MHz-1 GHz)	88
Fig. 99	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH116, 1 GHz-3 GHz)	89
Fig. 100	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH116, 3 GHz-6 GHz)	89
Fig. 101	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH116, 6 GHz-18 GHz)	90
Fig. 102	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH116, 18 GHz-26.5 GHz)	90
Fig. 103	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH116, 26.5 GHz-40 GHz)	91
Fig. 104	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH140, 1 GHz-3 GHz)	92
Fig. 105	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH140, 3 GHz-6 GHz)	92
Fig. 106	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH140, 6 GHz-18 GHz)	92
Fig. 107	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH38, 30 MHz-1 GHz)	93
Fig. 108	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 1 GHz-3 GHz)	94
Fig. 109	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 3 GHz-6 GHz)	94
Fig. 110	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 6 GHz-18 GHz)	94
Fig. 111	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 18 GHz-26.5 GHz)	95
Fig. 112	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH38, 26.5 GHz-40 GHz)	95
Fig. 113	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH46, 1 GHz-3 GHz)	96
Fig. 114	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH46, 3 GHz-6 GHz)	96
Fig. 115	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH46, 6 GHz-18 GHz)	97
Fig. 116	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH54, 30 MHz-1 GHz)	97
Fig. 117	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH54, 1 GHz-3 GHz)	98
Fig. 118	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH54, 3 GHz-6 GHz)	98
Fig. 119	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH54, 6 GHz-18 GHz)	99
Fig. 120	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH54, 18 GHz-26.5 GHz)	99
Fig. 121	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH54, 26.5 GHz-40 GHz)	100
Fig. 122	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH62, 1 GHz-3 GHz)	101
Fig. 123	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH62, 3 GHz-6 GHz)	101
Fig. 124	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH62, 6 GHz-18 GHz)	102
Fig. 125	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH102, 1 GHz-3 GHz)	102
Fig. 126	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH102, 3 GHz-6 GHz)	103

No. I17Z60313-SRD04 Page7 of 113

Fig. 127	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH102, 6 GHz-18 GHz)	103
Fig. 128	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH134, 1 GHz-3 GHz)	104
Fig. 129	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH134, 3 GHz-6 GHz)	104
Fig. 130	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH134, 6 GHz-18 GHz)	104
A.7. CONI	DUCTED EMISSION (150kHz- 30MHz)	105
Fig. 131	CONDUCTED EMISSION(802.11A, CH40, TX)	106
Fig. 132	CONDUCTED EMISSION(802.11A, IDLE)	107
A.9. 99%	OCCUPIED BANDWIDTH	108
Fig. 133	99% OCCUPIED BANDWIDTH (802.11A, 5180MHz)	109
Fig. 134	99% OCCUPIED BANDWIDTH (802.11A, 5200MHz)	109
Fig. 135	99% OCCUPIED BANDWIDTH (802.11A, 5240MHz)	110
Fig. 136	99% OCCUPIED BANDWIDTH (802.11n-HT20, 5180MHz)	110
Fig. 137	99% OCCUPIED BANDWIDTH (802.11n-HT20, 5200MHz)	111
Fig. 138	99% OCCUPIED BANDWIDTH (802.11n-HT20, 5240MHz)	111
Fig. 139	99% OCCUPIED BANDWIDTH (802.11n-HT40, 5190MHz)	
Fig. 140	99% OCCUPIED BANDWIDTH (802.11n-HT40, 5230MHz)	112
A.10. FRE	QUENCY STABILITY	113
A.11. Pov	VER CONTROL	113

1. TEST LATORATORY

1.1. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(BDA)

Address: No. 18 Jia Kangding Street, BDA District, Beijing, P. R.

China 100191

1.2. <u>Testing Environment</u>

Normal Temperature: 15-35°C Extreme Temperature: -10/+55°C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2017-02-20 Testing End Date: 2017-04-14

1.4. Signature

Jiang Xue

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Lv Songdong

(Approved this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: HMD Global Oy

Address: Karaportti 2, 02610 Espoo, Finland

City: Espoo Postal Code: 201203 Country: Finland

Contact Mikko Kahlos
Telephone: +358-408036126

Fax:

2.2. Manufacturer Information

Company Name: HMD Global Oy

Address: Karaportti 2, 02610 Espoo, Finland

City: Espoo Postal Code: 201203 Country: Finland

Contact Mikko Kahlos
Telephone: +358-408036126

Fax: /

3. <u>EQUIPMENT UNDER TEST (EUT) AND ANCILLARY</u> <u>EQUIPMENT(AE)</u>

3.1. About EUT

Description Smart Phone Model name TA-1039

FCC ID 2AJOTTA-1039

IC ID

WLAN Frequency Range ISM Bands:

-5150MHz~5350MHz -5470MHz~5725MHz -5725MHz~5850MHz

Type of modulation OFDM

Antenna Integral Antenna Voltage 3.84 V DC by Battery

Note: Photographs of EUT are shown in ANNEX C of this test report. Components list, please refer to documents of the manufacturer.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	/	3	000C_3_110
EUT2	/	3	000C 3 050

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	Battery	INBUILT
AE2	Battery	INBUILT
AE3	Travel charger	/
AE4	Travel charger	/
AE5	USB cable	/
AE6	Headset	/

AE1

Model HE316

Manufacturer SCUD(FUJIAN) ELECTRONICS CO LTD

Capacitance 3000mAh Nominal voltage 3.82V

Model HE317

Manufacturer SCUD(FUJIAN) ELECTRONICS CO LTD

Capacitance 3000mAh Nominal voltage 3.84V

AE3/AE4

Model FC0102 Manufacturer Salcomp

Length of cable /

AE5

Model CUBB01M-FA010-DH

Manufacturer FOXCONN

Length of cable 99cm

AE6

Model 5CAB5422B-N01-DG

Manufacturer FOXCONN

Length of cable /

3.4. General Description

The Equipment under Test (EUT) is a model of Smart Phone with integrated antenna and inbuilt battery.

It has Bluetooth (EDR) function.

It consists of normal options: travel charger, USB cable and Phone.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

3.5. Interpretation of the Test Environment

For the test methods, the test environment uncertainty figures correspond to an expansion factor k=2.

Measurement Uncertainty

Parameter	Uncertainty
temperature	0.48°C
humidity	2 %
DC voltages	0.003V

^{*}AE ID: is used to identify the test sample in the lab internally.

4. REFERENCE DOCUMENTS

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

ECC Dort15	Title 47 of the Code of Federal Regulations; Chapter I	
FCC Part15	Part 15 - Radio frequency devices	
	Methods of Measurement of Radio-Noise Emissions from	
ANSI C63.10	Low-Voltage Electrical and Electronic Equipment in the	2014
	Range of 9 kHz to 40 GHz	
	Guidelines for Compliance Testing of Unlicensed National	
UNII: KDB 789033	Information Infrastructure (U-NII) Devices - Part 15,	2014-06
Subpart E		

5. LABORATORY ENVIRONMENT

Conducted RF performance testing is performed in shielding room.

EMC performance testing is performed in Semi-anechoic chamber.

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15E	Sub-clause of IC	Verdict
Maximum Output Power	15.407	/	Р
Power Spectral Density	15.407	/	Р
Occupied 26dB Bandwidth	15.403	/	Р
Band edge compliance	15.407	/	Р
Transmitter spurious emissions radiated	15.407	/	Р
Spurious emissions radiated < 30 MHz	15.407	/	Р
Spurious emissions conducted < 30 MHz	15.407	/	Р
Frequency Stability	15.407	/	Р
Transmit Power Control	15.407	/	NA

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.
NM	Not measured, The test was not measured by CTTL
NA	Not Applicable, The test was not applicable
F	Fail, The EUT does not comply with the essential requirements in the
	standard

6.2. Statements

CTTL has evaluated the test cases requested by the client/manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.1.

This report only deals with the WLAN function among the features described in section 3.

This model is a variant product which model name is TA-1025; all the test result has been derived from test report of TA-1025.

6.3. Test Conditions

For this report, all the test cases are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature 26° C Voltage 3.84V Humidity 44%

7. TEST EQUIPMENTS UTILIZED

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Vector Signal	FSQ40	200089	Rohde &	2016-06-07	2017-06-06
	Analyzer	F3Q40	200069	Schwarz	2010-00-07	2017-00-00
2	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

Itaa	ilateu emissioi	i tost system				T
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibratio n Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	1 year	2017-11-30
2	BiLog Antenna	VULB9163	514	Schwarzbeck	3 years	2017-11-24
3	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 years	2017-06-17
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	ETS-Lindgren	3 years	2017-09-21
5	Vector Signal Analyzer	FSV	101047	Rohde & Schwarz	1 year	2017-06-28
6	Test Receiver	ESCI7	100948	Rohde & Schwarz	1 year	2017-07-05
7	AMN	ESH3-Z5	825562/028	Rohde & Schwarz	1 year	2017-07-06

8. Measurement Uncertainty

8.1. <u>Transmitter Output Power</u>

Measurement Uncertainty: 0.339dB,k=1.96

8.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dBm/MHz,k=1.96

8.3. Occupied Channel Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

8.4. Band Edges Compliance

Measurement Uncertainty: 0.62dBm,k=1.96

8.5. Spurious Emissions

Conducted (k=1.96)

Frequency Range	Uncertainty(dBm)
30MHz ≤ f ≤ 2GHz	1.22
2GHz ≤ f ≤3.6GHz	1.22
3.6GHz ≤ f ≤8GHz	1.22
8GHz ≤ f ≤12.75GHz	1.51
12.75GHz ≤ f ≤26GHz	1.51
26GHz ≤ f ≤40GHz	1.59

Radiated (k=2)

Frequency Range	Uncertainty(dBm)
9kHz-30MHz	
30MHz ≤ f ≤ 1GHz	4.86
1GHz ≤ f ≤18GHz	5.26
18GHz ≤ f ≤40GHz	5.28

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

The measurement is made according to KDB 789033

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

A.2. Maximum output Power

Measurement Limit and Method:

Standard	Frequency (MHz)	Limit (dBm)
FCC CRF Part 15.407(a)	5150MHz~5250MHz	24dBm
	5250MHz~5350MHz	24dBm or 11+10logB
	5470MHz~5725MHz	24dBm or 11+10logB

Limit use the less value, and B is the 26dB bandwidth.

The measurement method SA-1 is made according to KDB 789033

Measurement Results:

802.11a mode

				Т	est Resu	lt (dBm)			
Mode	Channel	Data Rate (Mbps)							
		6	9	12	18	24	36	48	54
	5180MHz (Ch36)	12.63	12.36	12.14	11.61	11.13	10.6	10.06	9.85
	5200MHz (Ch40)	12.39	/	/	/	/	/	/	/
	5240MHz(Ch48)	12.59	/	/	/	/	/	/	/
	5260MHz(Ch52)	12.62	/	/	/	/	/	/	/
802.11a	5280MHz(Ch56)	12.63	/	/	/	/	/	/	/
	5320MHz(Ch64)	12.87	/	/	/	/	/	/	/
	5500MHz(Ch100)	12.81	/	/	/	/	/	/	/
	5580MHz(Ch116)	12.80	/	/	/	/	/	/	/
	5700MHz(Ch140)	12.04	/	/	/	/	/	/	/

The data rate 6Mbps is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

802.11	802.11n-H120 mode								
Test Result (dBm))			
Mode	Channel	Data Rate							
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	5180MHz (Ch36)	11.47	11.07	10.73	10.15	9.6	9.15	9	8.73
	5200MHz (Ch40)	11.40	/	/	/	/	/	/	/
	5240MHz(Ch48)	11.53	/	/	/	/	/	/	/
000 44 =	5260MHz(Ch52)	11.75	/	/	/	/	/	/	/
802.11n	5280MHz(Ch56)	11.49	/	/	/	/	/	/	/
(HT20)	5320MHz(Ch64)	11.98	/	/	/	/	/	/	/
	5500MHz(Ch100)	11.56	/	/	/	/	/	/	/
	5580MHz(Ch116)	11.62	/	/	/	/	/	/	/
	5700MHz(Ch140)	11.14	/	/	/	/	/	/	/

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

					Test Res	ult (dBm)		
Mode	Channel				Data	Rate			
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
	5190MHz (Ch38)	11.07	10.27	9.7	9.02	8.32	7.84	7.62	7.39
	5230MHz(Ch46)	11.05	/	/	/	/	/	/	/
000 44 =	5270MHz(Ch54)	11.35	/	/	/	/	/	/	/
802.11n (HT40)	5310MHz(Ch62)	11.34	/	/	/	/	/	/	/
(1140)	5510MHz(Ch102)	11.44	/	/	/	/	/	/	/
	5550MHz(Ch110)	11.58	/	/	/	/	/	/	/
	5670MHz(Ch134)	11.12	/	/	/	/	/	/	/

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

A.3. Peak Power Spectral Density (conducted)

Measurement Limit:

Standard	Frequency (MHz)	Limit (dBm/MHz)
FCC CRF Part 15.407(a)	5150MHz~5250MHz	11
	5250MHz~5350MHz	11
	5470MHz~5725MHz	11

The output power measurement method SA-1 is made according to KDB 789033

Measurement Results:

Mode	Channel	Power Spectral Density (dBm/MHz)	Conclusion
	5180 MHz	9.08	Р
	5200 MHz	9.10	Р
	5240 MHz	9.44	Р
	5260 MHz	8.96	Р
802.11a	5280 MHz	9.96	Р
	5320 MHz	9.41	Р
	5500 MHz	9.76	Р
	5580 MHz	8.88	Р
	5700 MHz	8.43	Р
	5180 MHz	8.36	Р
	5200 MHz	9.09	Р
	5240 MHz	8.39	Р
802.11n	5260 MHz	8.41	Р
HT20	5280 MHz	9.65	Р
П120	5320 MHz	9.60	Р
	5500 MHz	9.18	Р
	5580 MHz	8.52	Р
	5700 MHz	8.55	Р
	5190 MHz	5.01	Р
	5230 MHz	5.31	Р
802.11n	5270 MHz	6.01	Р
HT40	5310 MHz	5.48	Р
П140	5510 MHz	6.03	Р
	5550 MHz	4.80	Р
	5670 MHz	4.96	Р

Conclusion: PASS

A.4. Occupied 26dB Bandwidth(conducted)

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.403 (i)	/

The measurement is made according to KDB 789033

Measurement Uncertainty:

Measurement Uncertainty	60.80Hz
-------------------------	---------

Measurement Result:

Mode	Channel	Occupied 26dB Bandwidth (kHz)		conclusion
802.11a	5180 MHz	Fig.1	23.00	Р
	5200 MHz	Fig.2	23.00	Р
	5240 MHz	Fig.3	23.45	Р
	5260 MHz	Fig.4	22.80	Р
	5280 MHz	Fig.5	23.00	Р
	5320 MHz	Fig.6	22.80	Р
	5500 MHz	Fig.7	22.70	Р
	5580 MHz	Fig.8	22.70	Р
	5700 MHz	Fig.9	22.85	Р
802.11n HT20	5180 MHz	Fig.10	23.15	Р
	5200 MHz	Fig.11	22.90	Р
	5240 MHz	Fig.12	23.30	Р
	5260 MHz	Fig.13	22.60	Р
	5280 MHz	Fig.14	22.90	Р
	5320 MHz	Fig.15	22.80	Р
	5500 MHz	Fig.16	22.75	Р
	5580 MHz	Fig.17	22.75	Р
	5700 MHz	Fig.18	22.95	Р
802.11n HT40	5190 MHz	Fig.19	44.32	Р
	5230 MHz	Fig.20	43.76	Р
	5270 MHz	Fig.21	43.84	Р
	5310 MHz	Fig.22	43.76	Р
	5510 MHz	Fig.23	42.48	Р
	5550 MHz	Fig.24	43.36	Р
	5670 MHz	Fig.25	42.88	Р

Conclusion: PASS
Test graphs as below:

Fig. 1 Occupied 26dB Bandwidth (802.11a, 5180MHz)

Fig. 2 Occupied 26dB Bandwidth (802.11a, 5200MHz)

Fig. 3 Occupied 26dB Bandwidth (802.11a, 5240MHz)

Fig. 4 Occupied 26dB Bandwidth (802.11a, 5260MHz)

Fig. 5 Occupied 26dB Bandwidth (802.11a, 5280MHz)

Fig. 6 Occupied 26dB Bandwidth (802.11a, 5320MHz)

Fig. 7 Occupied 26dB Bandwidth (802.11a, 5500MHz)

Fig. 8 Occupied 26dB Bandwidth (802.11a, 5580MHz)

Fig. 9 Occupied 26dB Bandwidth (802.11a, 5700MHz)

Fig. 10 Occupied 26dB Bandwidth (802.11n-HT20, 5180MHz)

Fig. 11 Occupied 26dB Bandwidth (802.11n-HT20, 5200MHz)

Fig. 12 Occupied 26dB Bandwidth (802.11n-HT20, 5240MHz)

Fig. 13 Occupied 26dB Bandwidth (802.11n-HT20, 5260MHz)

Fig. 14 Occupied 26dB Bandwidth (802.11n-HT20, 5280MHz)

Fig. 15 Occupied 26dB Bandwidth (802.11n-HT20, 5320MHz)

Fig. 16 Occupied 26dB Bandwidth (802. 11n-HT20, 5500MHz)

Fig. 17 Occupied 26dB Bandwidth (802. 11n-HT20, 5580MHz)

Fig. 18 Occupied 26dB Bandwidth (802. 11n-HT20, 5700MHz)

Fig. 19 Occupied 26dB Bandwidth (802.11n-HT40, 5190MHz)

Fig. 20 Occupied 26dB Bandwidth (802.11n-HT40, 5230MHz)