

Times: Friday 2019-08-09 at 09:00 to 11:30 Duration: 2 hours 30 minutes (150 minutes)

Exam ID: 4097543

Sections: STAT 331 LEC 001
Instructors: Nathaniel Stevens

Examination Final Spring 2019 STAT 331

Special Materials

Candidates may bring only the listed aids.

- · Calculator Pink Tie
- · Study Notes Double-Sided 8.5x11

Instructions:

- This test consists of 20 pages including this cover page.
- Page 17 contains information relevant to Question 3.
- Page 18 contains tables of quantiles from the $t_{(10)}$, $t_{(45)}$, $F_{(1,45)}$, $F_{(2,45)}$, $F_{(3,45)}$ and $F_{(4,45)}$ distributions.
- Pages 19 and 20 contain additional space for rough work. If you use these pages for work that you would like to have marked, you must clearly indicate this.
- For your convenience you may remove pages 17-20.
- All numeric answers should be rounded to four decimal places (unless the answer is exact to fewer than four decimal places).
- Incorrect answers may receive partial credit if your work is shown. An incorrect answer with no work shown will receive 0 points.

Question	Points
Q1	ZO /20
Q2	25 /25
Q3	32 /32
Q4	5 /5
Q5	/11
Q6	7 17
Total	100 /100

Signature:

• Please identify yourself by signing here:

Please initial:

	N.	
(a)	[1] Sup _l variable	points] pose that you wish to use forward selection to choose among $q = 7$ explanatory is for inclusion in a model. In the worst-case scenario how many separate models you have to fit when applying this algorithm? 28 29 21 22
(b)	[1] The ii.	regression model $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$ is a <i>linear</i> regression. True False
	[1] In th line-of- ii.	the context of a simple linear regression relating y to x , the point (\bar{x}, \bar{y}) lies on the best fit. True False
(d)	[1] A 99	9% prediction interval for y_0 is narrower than the 99% confidence interval for μ_0 . True False
(e)	[1] In the hypothe	the context of a linear regression model relating to y to $x_1, x_2,, x_p$ the null esis corresponding to the test of overall significance in the linear regression is $H_0: \beta_0 = \beta_1 = \cdots = \beta_p = 0$
	i. (ii.)	True False
(f)	varianc	spose that the explanatory variables x_1 , x_2 and x_3 are together in a model. The e inflation factor for x_1 is $VIF_1 = 2$. What percentage of the variation of x_1 is ed by x_2 and x_3 ? 10% 20% 50% 80%
(g)	[1] Sur analysi ii. ii. iii.	opose that you wish to identify observations that have a large influence on your s. Which of the following metrics is best-suited for this purpose? Cook's D-Statistics Leverages Studentized Residuals
(h)	[1] Sup fit and	spose that a model with $p = 77$ explanatory variables and $n = 100$ observations is the resulting R^2 value is 0.9. What is R_{adj}^2 ? Write your answer in the space below.
		0.55
(i)		e addition of an explanatory variable to a linear regression model always decreases or sum of squares. True False
(j)	[1] <i>Lea</i> i. ii. iii.	we-one-out cross validation is equivalent to: 1-fold cross validation n -fold cross validation $(n-1)$ -fold cross validation

(k) [4] Four datasets gave rise to the following histograms and QQ-plots. Match each QQ-plot with the histogram that is most likely based on the same data. To identify your matching, beside each histogram indicate which QQ-plot – either i., ii., iii., or iv. – matches it.

(1) [1] Suppose that we fit the following model: $\ln(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$. Suppose also that the estimate of β_1 is 0.4. By what factor do we expect y to increase if x_1 is increased by 3 units (and x_2 and x_3 are held fixed)? Write your answer in the space below.

e = 3.3201

(m)[1] In every linear regression model, the average residual \bar{e} is zero.

i.) True

The context of questions (n)-(q) is the following model: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \varepsilon_i$

for i = 1, 2, ..., 50.

(n) [1] The null t-distribution associated with a test of H_0 : $\beta_4 = 0$ vs. H_A : $\beta_4 \neq 0$ has how many degrees of freedom? Write your answer in the space below.

(o) [1] The rejection region associated with the test in (n) is given by: $\{t|t \ge 2.015 \text{ or } t \le -2.015\}$

If $\hat{\beta}_4 = 1.07$ and $SE[\hat{\beta}_4] = 0.06$, is the hypothesis rejected? In the space below, state YES

YES

(p) [1] The null F-distribution associated with a test of H_0 : $\beta_3 = \beta_4 = \beta_5 = 0$ has how many degrees of freedom? Write your answer in the space below.

3,44

(q) [1] The least squares estimate of σ^2 is $\hat{\sigma}^2 = 5$ and the sample variance of the response observations is 20. What is the value of R^2 ? Write your answer in the space below.

$$R^2 = 1 - \frac{220}{980} = 0.7755$$

Question 2 [25 points]

Consider the following regression equation:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

for i = 1, 2, ..., 13.

(a) [3] This model may be equivalently written in matrix form as

$$y = X\beta + \varepsilon$$

Define each of y, X and β in this case (i.e., when n = 13 and p = 2).

$$\vec{Y} = \begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
\vdots \\
Y_{13}
\end{bmatrix}$$

$$\vec{X} = \begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & 3X_{22} \\
\vdots & \vdots \\
X_{13,1} & 3X_{13,2}
\end{bmatrix}$$

$$\vec{B} = \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix}$$

$$\vec{B}_1 = \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix}$$

(b) [9] Suppose that the following summaries are available:

$$(X^T X)^{-1} = \begin{bmatrix} 2 & -5 & -3 \\ -5 & 1 & -1 \\ -3 & -1 & 5 \end{bmatrix}$$
 and $\hat{\beta} = \begin{bmatrix} 52 \\ 10 \\ 3 \end{bmatrix}$ and $SSE = 30$

i. [1] Write down the equation for the fitted model.

ii. [1] Compute $\hat{\sigma}^2$.

$$\hat{G}^2 = \frac{SSE}{N-p-1} = \frac{30}{13-2-1} = \frac{30}{10} = 3$$

iii. [1] Compute the estimated variance of $\hat{\beta}_1$, $Var[\hat{\beta}_1]$.

iv. [3] Test the following hypothesis at a 5% level of significance. [N.B. State the value of the test statistic and draw your conclusion by referring to the relevant quantiles found on page 18].

$$H_0: \beta_1 = 0 \text{ vs. } H_A: \beta_1 \neq 0$$

$$t = \frac{\beta_1}{SE[\hat{\beta}_1]} = \frac{10}{\sqrt{3}} = 5.7735$$

$$\hat{\beta}_{2} \pm \pm_{(10,0.975)} \times SE[\hat{\beta}_{2}]$$
= 3 ± 2.2281 × $\sqrt{3} \times 5$
= (-5.8343, 11.8343)

- (c) [11] Interest lies in doing inference for the response variable for specific values of x_1 and x_2 .
 - i. [3] Consider the row vector $\mathbf{x_0} = [1 \quad x_{01} \quad x_{02}]$. Given $\widehat{\boldsymbol{\beta}} \sim \text{MVN}(\boldsymbol{\beta}, \sigma^2 (X^T X)^{-1})$, derive the distribution of $\widehat{\mu}_0 = \mathbf{x_0} \widehat{\boldsymbol{\beta}}$. For full points you must name the distribution and derive general expressions for the expected value and variance of $\widehat{\mu}_0 = \mathbf{x_0} \widehat{\boldsymbol{\beta}}$.
 - Distribution name: Normal
 - $E[\hat{A}_0] = E[\vec{\chi}, \hat{\vec{\beta}}] = \vec{\chi}$. $E[\hat{\vec{\beta}}] = \vec{\chi}$. $\vec{\beta}$
 - $Var[\hat{\mu}_0] = Var[\vec{\pi}, \hat{\beta}] = \vec{\chi}. Var[\hat{\beta}] \vec{\chi}.^T$ $= \sigma^2 \vec{\chi}. (\vec{\chi}^T \vec{\chi})^T \vec{\chi}.^T$
 - ii. [2] By substituting the estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}^2)$ and $x_1 = 1$ and $x_2 = 3$ into the equations above, calculate estimates of the $E[\hat{\mu}_0]$ and $Var[\hat{\mu}_0]$ when $x_1 = 1$ and $x_2 = 3$ (i.e., when $x_0 = \begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$).

$$\hat{E}[\hat{A}_{0}] = \hat{\lambda}_{0} \hat{\beta} = [1 \ 1 \ 3][52] = 71$$

$$V_{\alpha}[\hat{\mu}_{0}] = \hat{\sigma}^{2}[1 \ 1 \ 3][2 \ -5 \ -3][1]$$

$$= 3[1 \ 1 \ 3][-12]$$

= 3 (14)

= 42

iii. [3] Calculate a 90% confidence interval for the expected response observation when $x_1 = 1$ and $x_2 = 3$. [N.B. It will be useful for you to refer to the relevant quantiles found on page 18].

$$\hat{\mu}_{0} \pm t_{(10,0.9)} \times SE[\hat{\mu}_{0}]$$
= 71 ± 1.8125 × $\sqrt{42}$
= (59.2537, 82.7463)

iv. [3] Calculate a 90% prediction interval for the predicted response observation y_0 when $x_1 = 1$ and $x_2 = 3$. [N.B. It will be useful for you to refer to the relevant quantiles found on page 18].

$$\hat{\gamma}_0 \pm \pm_{(10,0.9)} \times SE[\hat{\gamma}_0]$$
= 71 ± 1.8125 × $\sqrt{3+42}$
 $\hat{\sigma}^2$
= (58.8414, 83.1586)

v. [2] Briefly explain why the widths of these intervals differs.

The prediction interval is wider because it accounts for two types of uncertainty: estimation uncertainty and prediction uncertainty. Whereas the confidence intrval only accounts for estimation uncertainty.

Question 3 [32 points]

There is a great deal of interest in determining the traits of a high school that predict the success of its students. In the US, student success beyond high school is often linked to high SAT (scholastic aptitude test) scores. A recent study aimed to identify attributes of a high school that may be used to predict the SAT scores of its students. In this study the following information was collected for each high school in a sample of n = 50 American high schools:

- SAT: average SAT (scholastic aptitude test) score (y)
- expend: average expenditures per student (in \$1000s) (x_1)
- ratio: average student-teacher ratio (x_2)
- salary: average annual salary of teachers (in \$1000s) (x_3)
- takers: percentage of eligible students that actually took the SAT test (x_4)

The linear regression model that relates SAT to the other variables may be written as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

Partial R output for this model is shown on page 17. You may refer to this in the questions that follow.

- (a) [2] It is usually believed that students thrive in smaller classes.
 - [1] Interpret $\hat{\beta}_2$ in the context of the problem. For a unit increase in the student-teacher rate (and holding all else fixed) we expect the average SAT score at the school to decrease by 3.6242 points.
 - [1] Does the value of $\hat{\beta}_2$ suggest that students perform better when class sizes are smaller? Circle one.

YES

- (b) [6] It is also typically believed that students perform better in schools that pay their teachers higher salaries.
 - [1] Interpret $\hat{\beta}_3$ in the context of the problem

For every additional \$1000 a teacher is paid, (all else equal) we expect the average SAT score at the school to increase by 1.6379 points.

• [1] Does the value of $\hat{\beta}_3$ suggest that students perform better when their teachers are paid more money? Circle one.

YES

NO

• [4] Using an appropriate hypothesis test, at a 5% level of significance, test whether higher salaries are associated with a *significantly higher* expected SAT score. Draw your conclusions in the context of the problem.

[N.B. Clearly state the hypothesis you are testing; state the value of the test statistic; draw your conclusion by referring to the relevant quantiles found on page 18].

secaure

6.8618 7-1.6794

Ho:
$$\beta_3 \le 0$$
 vs. H_0 : $\beta_3 > 0$
 $t = \frac{\beta_3}{5 \in [\beta_3]} = \frac{1.6379}{0.2381} = 6.8612$

Since P(tims, 7, 1.6794) = 0.05 we know that p-value = P(tims, 7, 6.8618) < 0.05. Thus we reject the and conclude that increase in expected SAT scores associated with higher salaries is statistically significant.

(c) [1] What percentage of the variability in SAT scores is *not* explained by expend, ratio, salary and takers?

(d) [3] Complete the following ANOVA table:

Source	df	SS	MS	F
Regression	4	226215.19	56553.80	52.8891
Error	45	48118,05	1069.29	
Total	49	274333.24		

SPACE LEFT FOR ROUGH WORK:

$$\hat{\sigma}^2 = 32.7^2 = 1069.29 = \frac{SSE}{45} = PSSE = 45 \times 1069.29$$

= 48118.05

$$R^2 = 0.8246 = 1 - \frac{48118.05}{557} = 557 = \frac{48118.05}{0.1754}$$

= 274 333 24

And SST = 42123.90 = 274366 59 = D SSR = 226242.69 = D MSR = 56560.67

STAT 331 Spring 2019 Final © 2019 University of Waterloo

Please initial:

Page 9 of 20

→F=52.8891

(e) [2] The F-ratio from the ANOVA table in part (d) tests the following hypothesis:

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \text{ vs. } H_A: \beta_j \neq 0 \text{ for some } j = 1,2,3,4$$

At a 1% level of significance, do you reject the null hypothesis? State YES or NO and provide a brief justification.

[N.B. Draw your conclusion by referring to the relevant quantiles found on page 18]

(f) [3] To evaluate the extent of multicollinearity, four separate regressions were fit between the explanatory variables. These models and their R^2 values are summarized in the table below. In the space provided, state the value of the variance inflation factor for each explanatory variable.

Response	Explanatory Variables	R^2	VIF
expend	ratio, salary, takers	0.894	9.4340
ratio	expend, salary, takers	0.589	2.4331
salary	expend, ratio, takers	0.892	9, 2593
takers	expend, ratio, salary	0.430	1.7544

Does multicollinearity appear to be a problem for this data? Circle one.

NO

SPACE LEFT FOR ROUGH WORK:

$$VIF_{1} = \frac{1}{1-0.894}$$

$$VIF_{2} = \frac{1}{1-0.589}$$

$$VIF_{3} = \frac{1}{1-0.892}$$

$$VIF_{4} = \frac{1}{1-0.892}$$

- (g) [5] Interest lies in finding a subset of the explanatory variables (and hence a reduced model) that adequately accounts for variation in SAT scores. The information provided in Table 1 on page 17 gives the model summary of all possible regressions, which in this case corresponds to $2^4 = 16$ different models. Note: all models contain an intercept. Using the information in this table, answer the following questions.
 - i. [2] Perform backward elimination using the AIC as a basis for eliminating variables from the model. Specifically, indicate the order in which variables exit the model and

ii. [2] Perform forward selection using the AIC as a basis for adding variables into the model. Specifically, indicate the order in which variables enter the model and state the final model.

Final Model: $\int = \beta + \beta_1 > (1 + \beta_1 + \beta_2) + \xi$ [1] The best overall model among all possible regressions is the one with the smallest AIC. Did either of these stepwise selection techniques choose the best overall model? Circle one.

(h) [4] The optimal model according to all possible regressions and the AIC metric is the reduced model

$$y = \beta_0 + \beta_1 x_1 + \beta_4 x_4 + \varepsilon$$

This model arises if the following null hypothesis is true:

$$H_0: \beta_2 = \beta_3 = 0 \tag{1}$$

i. [1] This null hypothesis may be equivalently stated as

$$H_0: A\boldsymbol{\beta} = \mathbf{0} \tag{2}$$

where $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4)^T$. Define the matrix A that makes hypotheses (1) and (2) equivalent.

[3] Using the additional sum of squares principle, formally test this hypothesis at a 5% level of significance.

[N.B. State the value of the test statistic and draw your conclusion by referring to

the relevant quantiles found on page 18].

$$t = \frac{(SSE_{pol} - SSE_{poll})/l}{SSE_{poll}/(n-p-1)} = \frac{(49520.06 - 48123.90)/2}{48123.90/45}$$

= 0.6528

Since P(F12,45) 73.2043)=0.05 then

p-value = P(F12,4517, 0.6528) 70.05 and

so we do not reject Ho.

(i) [6] The six plots in Figure 1 (on page 17) were constructed using the reduced model from part (h). For each of the questions below answer YES or NO and provide a one-sentence justification. In each case, be sure to indicate which plot(s) you used to make your decision.

Accept "NO" if they're referred to plet (B] and say the residuals ii.

depend on the

fitted values

Alternatively, it

SSE full = 48118,05

was used, then

+=0,6556

Does the independence assumption appear to be met?

YES - the residuals us index (in plot (AJ) show a random scattering of points

Does the constant variance assumption appear to be met?

NO- the residuals us fitted values (in plot [B]) show a graduatic trend. Does the normality assumption appear to be met?

iii.

YES- aside from one outlier the points on the QQ-plot generally lie on the line of equality (plot [c])

Do there appear to be any outliers in the y-dimension?

YES- Acts [A]-[D] indicate an observation with studentized residual <-3.

Do there appear to be any outliers in the x-dimension?

YES - the plot of the leverages (F) show 3 observations with leurages > 2h.

Do there appear to be any highly influential observations?

NO - the plot of Cook's D values ([E]) shows no observation with a substantially larger influence than the others.

STAT 331 Spring 2019 Final © 2019 University of Waterloo

Page 12 of 20

Question 4 [5 points]

In class we showed that when SD[y] is proportional to μ (where $\mu = E[y]$) that the log-transformation is a variance stabilizing transformation. We also showed that when Var[y] is proportional to μ that the square-root transformation is variance stabilizing. By the same methods, find the transformation $g(\mu)$ that stabilizes the variance when $SD[y] \propto \mu^2$.

Var $[y] = [h(\mu)]^2 \sigma^2$ where here $h(\mu) = \mu^2$. We want to choose $g(\cdot)$ such that $Var [g(y)] \simeq [g'(\mu)]^2 [h(\mu)]^2 \sigma^2$

is constant.

Thus we want to choose g(1) such that

g'(m)= trun = tr

The transformation gos that satisfies this is:

g(m)= -1

the regative reciprical transformation.

* note that the negative sign could be viewed to get absorbed into the proportionality constant so it's okart if they simply state the reciprical transformation.

Question 5 [11 points]

The Gauss-Markov Theorem states that in the linear regression model

$$y = X\beta + \varepsilon$$

the least squares estimator of β is the best linear unbiased estimator (BLUE) because among all possible linear and unbiased estimators of β , $\hat{\beta} = (X^T X)^{-1} X^T y$ has the smallest variance. In this question, you will prove this fact by considering another linear transformation $\hat{\beta}^* = My$ where M is any $(p+1) \times n$ matrix of fixed numbers. The matrix $D = M - (X^T X)^{-1} X^T$ summarizes the difference between the two transformations.

(a) [5] Show that if DX = 0 (where 0 is the $(p+1) \times (p+1)$ matrix of zeros), then $E[\widehat{\beta}^*] = \beta$

$$E[\hat{\beta}^*] = E[M\hat{\gamma}] = ME[\hat{\gamma}]$$

$$= [D + (x^1x)^{-1}x^{-1}] \times \hat{\beta}$$

$$= D \times \hat{\beta} + \hat{\beta}$$

$$= \hat{\beta} \quad \text{if} \quad D \times = 0$$

(b) [5] Show that if $\hat{\beta}^*$ is unbiased, then

$$\operatorname{Var}[\widehat{\boldsymbol{\beta}}^*] = \operatorname{Var}[\widehat{\boldsymbol{\beta}}] + \sigma^2 D D^T$$

(c) [1] Why does the result in part (b) imply that $Var[\widehat{\beta}] \leq Var[\widehat{\beta}^*]$?

Because DDT is a positive semidefinite matrix.

Question 6 [7 points]

- (a) [5] Suppose that we wish to model the relationship between a response variable y and p explanatory variables: $x_1, x_2, ..., x_p$ and we observe the data in two batches: we observe n_1 observations initially, and then another n_2 observations at a later point in time. For time point k = 1, 2, let
 - y_k be the $n_k \times 1$ response vector containing the response observations
 - X_k be the $n_k \times (p+1)$ matrix containing the explanatory variable observations
 - $\hat{\beta}_k = (X_k^T X_k)^{-1} X_k^T y_k$ be the least squares estimate of $\beta = (\beta_0, \beta_1, ..., \beta_p)^T$

Show that the least squares estimate of $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T$ based on all of the data can be written as

$$\widehat{\boldsymbol{\beta}} = (X_1^T X_1 + X_2^T X_2)^{-1} (X_1^T X_1 \widehat{\boldsymbol{\beta}}_1 + X_2^T X_2 \widehat{\boldsymbol{\beta}}_2)$$

Hint: the full X matrix and y vector (based on all $n = n_1 + n_2$ observations) can be obtained by stacking the respective time-specific matrices and vectors on top of each other.

$$X = \begin{bmatrix} x_1 \\ \overline{x_2} \end{bmatrix} \quad \vec{y} = \begin{bmatrix} \vec{y}_1 \\ \overline{y}_2 \end{bmatrix}$$

(b) [2] Now suppose that you've collected data in K > 2 batches, and with each batch you estimate $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T$ by $\widehat{\boldsymbol{\beta}}_k = (X_k^T X_k)^{-1} X_k^T \boldsymbol{y}_k$, k = 1, 2, ..., K. Write an expression for the least squares estimate of $\boldsymbol{\beta}$ based on all $n = n_1 + n_2 + \cdots + n_K$ observations and in terms of $\widehat{\boldsymbol{\beta}}_1$, $\widehat{\boldsymbol{\beta}}_2$,..., $\widehat{\boldsymbol{\beta}}_K$.

This page is left blank.

STAT 331 Spring 2019 Final © 2019 University of Waterloo

Please initial:

Page 16 of 20

Coefficients:

Estimate	Std. Error	t value	Pr(> t)
1045.9715	52.8698	?????	?????
4.4626	10.5465	?????	?????
-3.6242	3.2154	?????	?????
1.6379	0.2387	33333	?????
-2.9045	0.2313	?????	?????
	1045.9715 4.4626 -3.6242 1.6379	1045.9715 52.8698 4.4626 10.5465 -3.6242 3.2154 1.6379 0.2387	4.462610.5465?????-3.62423.2154?????1.63790.2387?????

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 32.7 on ?? degrees of freedom Multiple R-squared: 0.8246, Adjusted R-squared: 0.809 F-statistic: ????? on ?? and ?? DF, p-value: ?????

Partial R Output for the full model in Question 3

Variables in Model	AIC	SSE
None (intercept only)	576.39	274307.68
x_1	570.57	234585.62
x_2	578.06	272496.65
x_3	567.64	221229.86
x ₄	501.07	58433.15
x_1 x_2	572.33	233442.95
$x_1 x_3$	569.64	221225.01
$x_1 x_4$	494.80	49520.06
$x_2 x_3$	569.23	219441.23
$x_2 x_4$	500.14	55096.98
$\underline{}$ x_3 x_4	498.51	53338.38
x_1 x_2 x_3	570.63	216811.94
x_1 x_2 x_4	495.89	48627.32
x_1 x_3 x_4	496.76	49482.54
$- x_2 x_3 x_4$	495.57	48315.37
$x_1 x_2 x_3 x_4$	497.37	48123.90 <

Table 1: AIC and SSE for various models in Question 3(g)

Figure 1: Diagnostic plots for the reduced model in Question 3(h)

For the indicated value of p, the following tables provide x^* where $P(X \ge x^*) = p$

<i>X</i> ~ <i>t</i> ₍₁₀₎		
р	<i>x</i> *	
0.005	3.1693	
0.01	2.7638	
0.025	2.2281	
0.05	1.8125	
0.1	1.3722	

<i>X∼t</i> ₍₄₅₎		
р	* x*	
0.005	2.6896	
0.01	2.4121	
0.025	2.0141	
0.05	1.6794	
0.1	1.3006	

<i>X∼F</i> _(1,45)		
p	<i>x</i> *	
0.005	8.7148	
0.01	7.2339	
0.025	5.3773	
0.05	4.0566	
0.1	2.8205	

<i>X∼F</i> _(2,45)		
p	<i>x</i> *	
0.005	5.9741	
0.01	5.1103	
0.025	4.0085	
0.05	3.2043	
0.1	2.4245	

<i>X∼F</i> _(3,45)		
p	<i>x</i> *	
0.005	4.8918	
0.01	4.2492	
0.025	3.4224	
0.05	2.8115	
0.1	2.2097	

<i>X∼F</i> _(4,45)		
<i>p x</i> *		
0.005	4.2941	
0.01	3.7674	
0.025	3.0860	
0.05	2.5787	
0.1	2.0742	

LEFT BLANK FOR ROUGH WORK

STAT 331 Spring 2019 Final © 2019 University of Waterloo

Please initial:

LEFT BLANK FOR ROUGH WORK

STAT 331 Spring 2019 Final © 2019 University of Waterloo

Please initial:

Page 20 of 20