${\bf Emergent~Dimensions~in~Background~Independent~Quantum}$ ${\bf Gravity}$

Kassahun Betre $^{\dagger},$ Patrick Wells † $^{\dagger}Pepperdine$ University, 24255 Pacific Coast Hwy, Malibu, CA 90263, USA

ABSTRACT

Abstract goes here.

I. INTRODUCTION

Background-independent models of spacetime geometry are increasingly common in the search for a quantum theory of gravity. If General Relativity is only an effective theory,

Introduction [?], [?], [?].

II. SECTION 1

A. Evolution of the Model

Given an undirected, loopless graph G with vertices $V(G) = \{1...N\}$ and edges E(G), a Hamiltonian H can be defined on the graph as follows:

$$H = J \sum_{i,j \in V(G), i \neq j} (d_i - d_j)^2 + K \sum_{v \in V(G)} d_v$$
 (1)

Where J and K are weighting constants, and d_i simply represents the degree (number of connected edges) of a given node. The first of the sum forces the graph to be regular in the low-temperature limit, while the second sum pushes the graph to be more or less connected depending on the value of K. As K goes to infinity, the expectation value of the average node degree drops to zero. Conversely, as K tends towards negative infinity, the expectation value of the average node degree should go to N-1.

III. SECTION 2

IV. CONCLUSION

- T. Konopka, F. Markopoulou and S. Severini, Phys. Rev. D 77, 104029 (2008)
 doi:10.1103/PhysRevD.77.104029 [arXiv:0801.0861 [hep-th]].
- [2] S. Chen and S. S. Plotkin, Phys. Rev. D 87, no. 8, 084011 (2013) doi:10.1103/PhysRevD.87.084011 [arXiv:1210.3372 [gr-qc]].
- [3] T. Konopka, Phys. Rev. D **78**, 044032 (2008) doi:10.1103/PhysRevD.78.044032 [arXiv:0805.2283 [hep-th]].
- [4] F. Conrady, J. Statist. Phys. 142, 898 (2011) doi:10.1007/s10955-011-0135-9[arXiv:1009.3195 [gr-qc]].