

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : H01L 21/28	A1	(11) International Publication Number: WO 98/12738
		(43) International Publication Date: 26 March 1998 (26.03.98)

(21) International Application Number: **PCT/US97/17141**(22) International Filing Date: **22 September 1997 (22.09.97)**(30) Priority Data:
08/717,601 20 September 1996 (20.09.96) US(71)(72) Applicant and Inventor: **TRABUCCO, Robert, T. [US/US]; 1300 Ranchita Drive, Los Antos, CA 94024 (US).**(74) Agents: **BROWN, Glenn, C. et al.; Marger, Johnson, McCollom & Stolowitz, P.C., Suite 650, 1030 S.W. Morrison Street, Portland, OR 97205 (US).**

(81) Designated States: DE, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

*With international search report.**Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.*(54) Title: **FLUXLESS SOLDER BALL ATTACHMENT PROCESS**

(57) Abstract

A fluxless method for fusing preformed solder balls (24) to contact pads on a semiconductor package substrate (10) wherein a masking plate (18) having one or more vertical holes (23) corresponding to the contact pads is placed over the package substrate, oxide-free solder balls are placed in holes, the assembly is preheated to a temperature less than the melting point of the solder, and an energetic beam (32) is directed onto the preformed solder balls to melt them and fuse them to the contact pads.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CI	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

5

FLUXLESS SOLDER BALL ATTACHMENT PROCESSBackground of the Invention

This invention relates to IC manufacture and assembly, and more particularly, to a method for mounting solder balls on a semiconductor substrate package.

10

Many different constructions and package lead counts are used by the semiconductor industry to protect and connect IC devices. One of the most current package formats is called a Ball Grid Array (BGA). This package consists of a ceramic or laminated PC board substrate onto which have been printed, plated or deposited a pattern of electrically conductive traces. A semiconductor die is mounted on one side of the substrate and electrically connected to these conductive traces. The conductive traces then branch out into an array pattern on the substrate surface. The array pattern can be on the same side of the substrate where the semiconductor die is mounted, or on

5

the opposite side. Solder balls, which can be any one of a number of low temperature, conductive alloys, are then reflow soldered to the end of the conductive traces or "pads" in the array pattern. The solder balls provide the means for electrically connecting the conductive traces to the system in which it functions.

10

Several methods are currently used to mount the solder balls onto the BGA package substrate. In one such method, soldering flux is applied to the package pads, after which a fixturing device or pickup and placement head is used to place the preformed solder balls, individually or en masse, onto the pads. The package is then heated to the melting point of the solder alloy, which then wets and bonds to the package pads.

15

An alternate method uses a printing or dispensing fixture or process to apply measured quantities of solder paste, a mixture of fine solder particles in a paste flux vehicle, onto the package contact pads. The paste can be melted by itself to form the ball

20

contacts, or, by placing preformed solder balls into the solder paste, used to attach the preformed solder balls to the package pads.

These soldering methods, and others, require a 5 "flux" to remove contamination and oxides from the surfaces of the package pads and the solder balls or paste particles, to achieve a satisfactory wetting of the surface by the molten solder. However, this flux remains on the package after the solder is melted, 10 necessitating a subsequent cleaning step. This additional step adds cost and manufacturing time to the construction of this type of semiconductor package. Currently, there are "no clean" fluxes available which become inert after soldering, but even those leave an 15 undesirable residue on the surface.

An inert gas atmosphere such as nitrogen (N₂) could be used to surround the soldering process if the package substrate pads and the solder ball preforms were perfectly clean and oxide free. This would 20 eliminate the need for flux and the resultant flux residue problem, but nitrogen will not remove

5

contaminants, just inhibit them from forming at elevated temperatures. The flux, which is tacky, performs another very useful function, namely holding the solder ball preforms in position on the substrate pads prior to the soldering operation.

The present invention addresses an improved method of installing and soldering the solder balls onto the package substrate which eliminates the need for soldering flux and the attendant disadvantages.

10

SUMMARY OF THE INVENTION

15

The invention provides a method of positioning and fusing preformed solder ball onto the contact pads of a BGA semiconductor package substrate without using soldering flux. In one embodiment of the invention, the semiconductor package substrate is placed into or on a holding fixture which is supported on a transport belt, walking beam, or indexing table. The package substrate is moved to a first station where a masking plate of an inert and unsolderable material such as ceramic, tungsten or graphite is placed atop the package substrate. The masking plate includes a

20

plurality of holes corresponding to the contact pattern on the underlying package substrate.

The assembly is then moved to a second station where a preformed solder ball is placed into each hole of the masking plate. The solder balls have preferably 5 been pretreated by a process to remove all surface oxides. In one embodiment, the solder balls are pretreated by being exposed to an RF generated plasma containing fluorine compounds. The assembled substrate 10 and masking plate, including the preformed solder balls, are then preheated to about 150°C in an inert gas, and allowed to thermally stabilize.

The preformed solder balls are then melted to fuse them to the contact pads by scanning a beam of high 15 energy Xenon light across the masking plate hole pattern. The beam causes the preheated solder balls to melt and fuse to the metalized contact pads of the package substrate. The whole fixture assembly is then cooled. The process is accomplished without using any 20 soldering flux as is required in the prior art. Eliminating soldering flux from the process provides

economy in the manufacturing process by eliminating a flux cleaning step, which also generates an additional waste product which must also be further processed for disposal.

5 The invention will now be described in greater detail by reference to the drawing.

BRIEF DESCRIPTION OF THE FIGURES

10 FIG. 1 is a schematic diagram of the method of the present invention.

DETAILED DESCRIPTION

Turning now to Figure 1, the invention is embodied in a method wherein a BGA package substrate 10 is placed into a holding fixture 12 made of a suitable inert material. In the embodiment shown, the package substrate is received in a precisely shaped and positioned recess 13 in the holding fixture 12. Other means of locating and retaining the package substrate 10, such as locating pins for example, could also be employed. The holding fixture 12 is supported on a driven transport belt 14. Alternatively, the transport

mechanism supporting the holding fixture 12 could be a walking beam or an indexing table without deviating from scope of the invention. After being placed into the holding fixture 12, the package substrate 10 is 5 moved to a first station 16 where a masking plate 18 is placed onto the package substrate and package holding fixture. The masking plate 18 is precisely located atop the package substrate 10 by indexing pins 20 which are received in corresponding indexing holes 22 in the 10 masking plate. Masking plate 18 is preferably made of an inert and unsolderable material, such as ceramic, tungsten or graphite for example, although the invention is not limited thereto. Masking plate 18 includes a plurality of holes 23 in a pattern 15 corresponding to the desired contact pattern on the package substrate 10.

The package substrate 10 is then moved to a second station where a preformed solder ball 24 is placed into each of holes 23 in masking plate 18. Any of several 20 known methods of sorting and placing the preformed solder balls can be used. In one known method, the

solder balls are retrieved from a reservoir (not shown) using a vacuum pickup head 26, and are then released into the holes 23 of the masking plate 18. In one such embodiment, vacuum pickup head 26 includes multiple individual vacuum fixtures 28 arranged in a pattern which corresponds to the desired contact pattern on the package substrate 10. Alternatively, a hopper-shaped reservoir (not shown) of preformed solder balls can be moved over a pattern plate (not shown), and the preformed solder balls are dropped into holes 23 in the masking plate. Other methods are available and could be also used.

The preformed solder balls 24 are preferably pretreated to remove essentially all oxides from the surface of the preformed solder balls. Oxides inhibit the wetting of the surface by the solder, and are therefore an undesirable contaminant when present. One method of pretreating the solder balls to remove oxides is by a plasma conversion process known as "PADS", which is an acronym for "Plasma-Assisted Dry Soldering", which was developed by Integrated

Electronic Innovations, Inc.. In the PADS process, the preformed solder balls are exposed to an RF generated plasma generated from a gas such as CF₄, or SF₆, which converts any oxides on the surface of the solder balls into fluorine compounds. Unlike oxides, the fluorine compounds do not inhibit the wetting of the contact pad by the melted solder.

After insertion of the preformed solder balls, the assembly is ready for the final processing steps. The assembly, which now includes the package substrate 10, the masking plate 18, and the oxide-free, preformed solder balls, is moved into a low-temperature oven 30. Inside oven 30, the assembly is shrouded in an essentially oxygen-free gas, and preheated. The shrouding gas is preferably nitrogen, owing to its low toxicity, ready availability and low-cost. In the preferred embodiment, the assembly is preheated to about 150° C, and then allowed to thermally stabilize for several minutes. The precise preheat temperature is not critical, so long as it is lower than the melting temperature of the solder.

5

Once stabilized at the preheat temperature, the preformed solder balls 24 are further heated to melt and fuse them to their underlying contact pads on the package substrate 10. In prior art processes, the preformed solder balls are melted and fused to the contact pads by heating the package substrate, the masking plate, and the preformed solder balls in a conveyor furnace to at least the melting point of the preformed solder balls.

10

15

In the present invention, and contrary to known processes, the preformed solder balls are melted and fused to the contact pads by exposing the preformed solder balls to an energetic beam 32 for a predetermined time, which provides the additional energy required to melt the preformed solder balls and fuse them to the contact pads. The primary advantage of this method is that a portion of the energy required to melt the preformed solder balls is provided quickly and selectively without heating the entire assembly.

20

In the preferred embodiment of the invention, the final heating and melting of the solder balls is

accomplished by scanning a beam of high-energy Xenon light 32 over the hole pattern in masking plate 18. Equipment used to supply the high-energy Xenon light beam is a "soft beam" fiber optic light system manufactured by Panasonic Factory Automation Company, a Division of Matsushita Electric Corporation of America. In that system, the light beam 32 is generated by a Xenon light source within housing 34. An assembly of lens elements (not shown) focus the light beam into the end of a fiber optical light guide (not shown), the opposite end of which is attached to a converging lens assembly (not shown), which focuses the light beam into either a single high intensity spot or a line of energy. This line or spot is scanned across the hole pattern in the masking plate 18, causing the preformed solder balls 24 to melt and fuse to the contact pads of the package substrate. As an alternative, a laser beam could be used, but suffers the disadvantage of being much more difficult to control, and being more likely to thermally shock the contact pad. After the preformed solder balls have been melted and fused to

5

the contact pads of the package substrate 10, the assembly is cooled, preferably by a stream of lower temperature nitrogen. After cooling, the assembly is moved to the final station 36 where the masking plate 18 is removed from the holding fixture by any suitable grasping apparatus 38. Owing to the absence of soldering flux, the package substrate 10 may be further processed without the need for a flux removal and cleaning step required in prior art methods.

10

15

20

The method of this invention offers a number of advantages. All of the process steps can be accomplished under relatively simple mechanical control. The masking plate restricts the flow of molten solder and minimizes the likelihood of shorting between adjacent contact pads. The contamination and oxides are removed from the preformed solder balls prior to their insertion into the masking plate. Since no flux is needed, there is no need for a cleaning process to remove flux residue from the vicinity of the contact pads. The entire process takes less time than current soldering processes using conveyor furnaces. It also

completely eliminates the requirement of cleaning the package substrate after attachment of the preformed solder balls. Finally, the faster heating and cooling of the preformed solder balls results in a much finer solder grain structure, and a stronger bonding of the solder to the contact pad.

Those skilled in the art will appreciate that the foregoing examples are illustrative only, and that the invention can be practiced with variations to the foregoing examples without departing from the scope of the following claims.

15

Claims:

1. A method of attaching solder balls to a substrate comprising the steps of:

5 a. providing a semiconductor package substrate having at least one contact point;

b. placing an inert masking plate onto the package substrate, the masking plate including surfaces defining a plurality of holes corresponding to the at least one contact point on the package substrate;

10 c. placing unmelted solder into the plurality of holes in the masking plate;

d. preheating the masking plate and unmelted solder; and

15 e. melting at least a portion of the solder by exposing it to an energetic beam.

2. The method of claim 1 further comprising the step of placing the package substrate into a holding fixture.

3. The method of claim 1 which is performed
essentially in the absence of soldering flux.

4. The method of claim 1 wherein the unmelted solder
5 comprises generally rounded pieces of solder.

5. The method of claim 4 wherein the generally rounded
pieces of solder comprise solder balls.

10 6. The method of claim 1 wherein the unmelted solder
ball is substantially oxide-free.

7. The method of claim 5 which further includes the
step of producing substantially oxide-free solder
15 balls.

8. The method of claim 6 wherein the step of producing
substantially oxide-free solder balls comprises the
steps of:

20 providing solder balls having an oxide-containing
outer portion; and

converting the oxide-containing outer portion to a substantially oxide-free outer portion.

5 9. The method of claim 8 wherein the step of converting the oxide-containing outer portion to a substantially oxide-free outer portion includes the step of exposing the solder ball to a fluorine-containing compound.

10 10. The method of claim 8 wherein the fluorine-containing is selected from the group consisting of CF_4 and SF_4 .

15 11. The method of claim 8 wherein the fluorine-containing compound comprises a plasma.

12. The method of claim 11 which comprises the step of exposing the oxide-containing outer portion to an RF-generated, fluorine-containing plasma.

13. The method of claim 1 wherein the masking plate and solder are preheated to about 150°C.

5 14. The method of claim 1 wherein the masking plate and solder are preheated in a substantially oxygen-free environment.

10 15. The method of claim 14 wherein the substantially oxygen-free environment comprises a substantially oxygen-free gas.

15 16. The method of claim 15 wherein the substantially oxygen-free gas is selected from the group consisting of helium, neon, nitrogen, argon, krypton, xenon and radon.

20 17. The method of claim 1 wherein the energetic beam is selected from a group consisting of a laser and a xenon light beam.

18. The method of claim 1 wherein the step of melting at least a portion of the solder includes the step of scanning the energetic beam over the plurality of holes in the masking plate.

5

19. The method of claim 1 further comprising the step of cooling the substrate and the solder.

10 20. The method of claim 1 wherein the masking plate of an inert and unsolderable material selected from the group consisting of a ceramic, tungsten or graphite.

15 21. A method of attaching solder balls to a substrate comprising the steps of:

providing a semiconductor package substrate having at least one contact point;

providing a moveable holding fixture which is operable to transport the package substrate to a plurality of predetermined processing locations;

20 placing the package substrate on the holding fixture;

moving the holding fixture and substrate package to a first processing location;

covering at least a portion of the package substrate with a masking plate, the masking plate including surfaces defining a plurality of holes corresponding to the at least one contact point on the package substrate;

moving the holding fixture, substrate package and masking plate to a second processing location;

10 placing solder portions into the plurality of holes in the masking plate, the solder portions having surfaces which are essentially oxide-free;

moving the substrate package to a third processing location;

15 preheating the substrate package, masking plate and solder to a temperature not greater than the melting point of the solder;

moving the substrate package to a fourth processing location; and

20 fusing the solder to said at least one contact point by exposing the solder to an energetic beam.

SUBSTITUTE SHEET (RULE 28)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/17141

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : H01L 21/28
US CL : 438/612, 613, 615, 661, 662,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 438/612, 613, 615, 661, 662, 945, FOR 343, FOR 348, FOR 364; 257/737, 738; 29/840, 843

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS, JPOABS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A,P	US 5,663,594 A (KIMURA) 02 September 1997, column 4.	1
A,P	US 5,609,290 A (BOBBIO ET AL) 11 March 1997, columns. 4 and 5	9-12
A,P	US 5,597,469 A (CAREY ET AL) 28 January 1997, column 6, lines 16-65.	20
A	US 5,495,089 A (FREEDMAN ET AL) 27 February 1996, abstract.	17
Y	US 5,492,265 A (WANDKE) 20 February 1996, column 5, line 23-column 6, line 15.	21
A	US 5,451,274 A (GUPTA ET AL) 19 September 1995, abstract.	17

 Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:	
A	document defining the general state of the art which is not considered to be of particular relevance
B	earlier document published on or after the international filing date
L	document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O	document referring to an oral disclosure, use, exhibition or other means
P	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A"	document member of the same patent family

Date of the actual completion of the international search

12 NOVEMBER 1997

Date of mailing of the international search report

21 JAN 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT

Washington, D.C. 20231

Facsimile No. (703) 305-3599

Authorized officer

THOMAS BILODEAU

Telephone No. (703) 308-0661

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/17141

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,000,819 A (PEDDER ET AL) 19 March 1991, column 4.	1-8, 11-20
Y	US 4,921,157 A (DISHON ET AL) 01 May 1990, columns. 4 and 5.	1-12, 14-19
A	US 4,542,439 A (DICK) 17 September 1985, col 4, lines 27-40.	20
Y	US 5,442,852 A (DANNER) 22 August 1995, cols. 4 and 5.	1, 3-8, 11-20
Y	JP 03-138941 A (HITACHI LTD) 13 June 1991, abstract.	21
A	JP 59-218754 A (FUJITSU K.K.) 10 December 1984, abstract.	2, 20
Y	JP 01-243554 A (HITACHI LTD) 28 September 1989, abstract	1-8, 11-20