Portail René Descartes, Aix-Marseille Université

Analyse 1, Fiche d'exercices 3

Année 2022-23, semestre 2

1 Généralités

Exercice 1.1 (Domaine de définition)

Donner les domaines de définition des fonctions suivantes

$$f(x) = \sqrt{\frac{2x+1}{5x-3}}$$
, $g(x) = \sqrt{x^2 - 2x - 5}$, $h(x) = \ln(x+3) + \sqrt{x-4}$

Exercice 1.2 (Domaine de définition et image directe)

Donner le domaine de définition de chacune des fonctions suivantes, ainsi que l'image directe de ce domaine par la fonction correspondante

$$f(x) = \sqrt{4 - 3x^2}$$
, $g(x) = \frac{1}{1 + x}$, $h(x) = 1 + \cos(x)$, $k(x) = \tan(2x)$.

Exercice 1.3 (Image directe et image réciproque)

- 1. Soit la fonction $f: x \in \mathbb{R} \to f(x) = |x| \in \mathbb{R}_+$.
 - a) Déterminer les images directes suivantes

a)
$$f(\{-1,2\})$$
; b) $f([-3,-1])$; c) $f([-3,-1])$.

b) Déterminer les images réciproques suivantes

a)
$$f^{-1}(\{4\})$$
; b) $f^{-1}(\{-1\})$; c) $f^{-1}([-1,4])$.

- 2. Mêmes questions pour la fonction $f: x \in \mathbb{R} \to f(x) = (x-1)^2 \in \mathbb{R}_+$.
- 3. On considère la fonction $\sin : \mathbb{R} \to \mathbb{R}$.
 - a) Quelle est l'image directe, par sin, de \mathbb{R} ? De $[0, 2\pi]$? de $[0, \pi/2]$?
 - b) Quelle est l'image réciproque, par sin, de [0,1]? de [3,4]? de $[-1/2,0] \cup [1/2,1]$?

Exercice 1.4 (Parité) _

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une application paire. On suppose que la restriction de f à \mathbb{R}_- est croissante. Que dire de la monotonie de la restriction de f à \mathbb{R}_+ ?
- 2. Soient $f, g : \mathbb{R} \to \mathbb{R}$ des application impaires. Que dire de la parité de f + g, fg et $f \circ g$?

2 Calculs de limites

Exercice 2.1 _

Soient $\ell \in \mathbb{R}$, $a \in \mathbb{R}$ et f une application de \mathbb{R} dans \mathbb{R} . Écrire à l'aide des quantificateurs les phrases suivantes :

- 1. f(x) ne tend pas vers ℓ quand x tend vers a.
- 2. f(x) ne tend pas vers ℓ quand x tend vers $+\infty$.

Exercice 2.2

Soit f une fonction définie sur un intervalle ouvert I et soit x_0 un point de I. On suppose que f admet une limite a>0 en x_0 . Démontrer qu'il existe $\eta>0$ tel que si $|x-x_0|<\eta$ alors $|f(x)|\geqslant \frac{a}{2}$.

Exercice 2.3 (Caractérisation de la limite à gauche)

Soient $a \in \mathbb{R}$ et $\ell \in \mathbb{R}$. Soit f une application définie sur $A = \mathbb{R} \setminus \{a\}$ à valeurs dans \mathbb{R} .

1. Montrer que f admet ℓ comme limite à gauche en a si et seulement si f vérifie la condition suivante : Pour toute suite $(x_n)_n$ de points de A,

$$x_n \uparrow a$$
, quand $n \to \infty \implies \lim_{n \to \infty} f(x_n) = \ell$,

où " $x_n \uparrow a$ quand $n \to \infty$ " signifie " $a = \lim_{n \to \infty} x_n$ et $x_{n+1} \ge x_n$ pour tout $n \in \mathbb{N}$ ".

2. Reprendre la question 1 avec $\ell = +\infty$ et avec $\ell = -\infty$.

Exercice 2.4 (Périodicité)

Soit f une application de \mathbb{R} dans \mathbb{R} . On suppose qu'il existe T>0 tel que f(x+T)=f(x) pour tout $x \in \mathbb{R}$ (on dit alors que f est périodique de période T). On suppose de plus que f admet une limite finie, notée ℓ , en $+\infty$. Montrer que f est une fonction constante.

Exercice 2.5 (Point fixe d'une application croissante)

Soit I = [0,1] et soit f une application croissante de I dans I. On pose $A = \{x \in I, f(x) \le x\}$. Montrer que:

- 1. $A \neq \emptyset$,
- $2. \ x \in A \Rightarrow f(x) \in A.$
- 3. A possède une borne inférieure $a \in I$.
- 4. f(a) = a.

(Toute application croissante de [0, 1] dans [0, 1] admet donc un point fixe.)

Exercice 2.6 (Limite, limite à droite et limite à gauche)

Soient $a \in \mathbb{R}$ et $\ell \in \mathbb{R}$. Soit f une application définie sur $A = \mathbb{R} \setminus \{a\}$ à valeurs dans \mathbb{R} .

- 1. Montrer que f admet ℓ comme limite en a si et seulement si f admet (en a) ℓ comme limite à droite et comme limite à gauche.
- 2. Reprendre la guestion 1 avec $\ell = +\infty$ et avec $\ell = -\infty$.

Exercice 2.7 (Limites de produit et quotient) ____

Soient $f(x) = \sin(\frac{1}{x})$ et g(x) = x. Les applications fg et f/g ont-elles une limite à droite en 0?

On définit f par $f(x) = \frac{\sin(\sqrt{x^2})}{x}$ pour $x \neq 0$ et f(0) = 1. L'application f a-t-elle une limite en 0? une limite à droite en 0? une limite à gauche en 0?

Exercice 2.9

Pour $x \in \mathbb{R}$, on note $E(x) = \sup\{n \in \mathbb{Z}; n \leq x\}$. On définit f par $f(x) = x - \sqrt{x - E(x)}$ pour tout $x \neq 0$. Soit $n \in \mathbb{Z}$, L'application f a-t-elle une limite en n? une limite à droite en n? une limite à gauche en n?

Exercice 2.10 (Calcul de limites)

- 1. $f(x) = \frac{x^2 1}{x 1}$ pour $x \in]-1,1[$. Quelle est la limite à gauche de f en 1?
- 2. $f(x) = \sqrt{x+5} \sqrt{x-3}$ pour $x \in [3, +\infty[$. Quelle est la limite de f en $+\infty$?
- 3. $f(x) = \sqrt{x^2 + x + 1} (x + 1)$ pour $x \in \mathbb{R}$. Quelle la limite de f en $+\infty$?
- 4. $f(x) = \frac{\sqrt{x^3 3x + 2}}{2x^2 x 1}$ pour $x \in]0, 1[$. Quelle est la limite à gauche de f en 1?

- 5. $f(x) = \frac{\sqrt{x+3} \sqrt{4x+3}}{\sqrt{x+4} \sqrt{2x+4}}$ pour $x \in]0,1[$. Quelle est la limite à droite de f en 0?
- 6. $f(x) = \frac{\ln(2x^2 x + 2)}{\sqrt{x^3 + 1}}$ pour $x \in \mathbb{R}_+$. Quelle est la limite en $+\infty$?
- 7. $f(x) = \frac{\sin^2(x)}{1+\cos(x)}$ pour $x \in]-\pi,\pi[$. Quelle sont les limites (respectivement à droite et à gauche) en $-\pi$ et π ?
- 8. $f(x) = \frac{\tan(x) \sin(x)}{\sin(x) \left(\cos(2x) \cos(x)\right)}$ pour $x \in [-2, 2] \setminus \{0\}$. Quelle est la limite en 0?
- 9. $f(x) = 2x \ln(x + \sqrt{x})$ pour $x \in \mathbb{R}_+^*$. Quelle est la limite (à droite) en 0?
- 10. $f(x) = (x^2 1) \ln(7x^3 + 4x^2 + 3)$ pour $x \in]-1, +\infty[$. Quelle est la limite (à droite) en -1?
- 11. Soit a > 0. On définit f par $f(x) = \frac{(1+x)^a}{x}$ pour $x \in]0,1[$. Quelle est la limite (à droite) de f en 0?
- 12. $f(x) = (1 + \sin x)^{\frac{1}{x}}$ pour $x \in]0,1[$. Quelle est la limite (à droite) de f en 0?

3 Continuité en un point, prolongement par continuité

Exercice 3.1

Soit f une fonction de \mathbb{R} dans \mathbb{R} et $a \in \mathbb{R}$. On suppose que f est continue en a et que $f(a) \neq 0$. Montrer que f est non nulle sur un intervalle ouvert contenant a.

Exercice 3.2

Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{1}{x}$ et soit a > 0. Montrer que pour tous réels $x, y \in [a, +\infty[$, on a $|f(x) - f(y)| \le \frac{|x-y|}{a^2}$. En déduire que f est continue sur $]a, +\infty[$. Que peut-on dire de la continuité de f sur \mathbb{R}_+^* ?

Exercice 3.3 _

Etudier la continuité sur $\mathbb R$ des fonctions suivantes :

- 1. $f(x) = \sin(x)\sin(\frac{1}{x})$ si $x \neq 0$ et f(0) = 0;
- 2. $g(x) = x \frac{1}{\sin(x)}$ si x n'est pas un multiple de π et g(x) = 0 si x l'est ;
- 3. j(x) = xE(x);
- 4. $k(x) = E(x)\sin(\pi x)$.

Exercice 3.4

Soit f la fonction réelle à valeurs réelles définie par :

- f(x) = x si x < 1,
- $f(x) = x^2 \text{ si } 1 \le x \le 4, \text{ et}$
- $f(x) = 8\sqrt{x} \text{ si } x > 4.$
- 1. Tracer le graphe de f.
- 2. f est elle continue?
- 3. Montrer que f est bijective et donner la formule définissant f^{-1} .

Exercice 3.5

Soit $f: \mathbb{R} \setminus \{1/3\} \to \mathbb{R}$ telle que $f(x) = \frac{2x+3}{3x-1}$.

Pour tout $\varepsilon > 0$ déterminer α tel que, $|x| \leqslant \alpha \Rightarrow |f(x) + 3| \leqslant \varepsilon$. Que peut-on en conclure sur f?

Exercice 3.6

Soient $a \in \mathbb{R}$ et $\varepsilon > 0$. Trouver $\eta > 0$ tel que $|x - a| < \eta \Rightarrow |\sin(x) - \sin(a)| < \varepsilon$. Que peut-on en déduire sur la fonction sinus?

Exercice 3.7

Pour $x \in]0,1[$, on pose $f(x) = \frac{x}{\ln(x)}$. Peut on prolonger f par continuité en 0 et en 1?

Exercice 3.8

Soit f l'application de $\mathbb{R} \setminus \{-1, 1\}$ dans \mathbb{R} définie par :

$$f(x) = \frac{x^3 - 2x^2 - x + 2}{1 - |x|}.$$

- 1. La fonction f est-elle continue en 0?
- 2. Calculer $\lim_{x\to -1} f(x)$ et $\lim_{x\to 1} f(x)$.
- 3. Existe-t-il une fonction g définie et continue sur \mathbb{R} et qui est égale à f sur $\mathbb{R} \setminus \{-1,1\}$?

Exercice 3.9

Pour quelle valeur de α la fonction f, définie ci-après, est-elle continue sur \mathbb{R} ?

$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & \text{si } x \neq 2\\ \alpha & \text{si } x = 2. \end{cases}$$

4 Vrai ou faux?

Répondre par vrai ou faux aux questions ci-dessous, et justifier votre réponse.

On utilise les notations suivantes, appelées notations de Landau : étant données deux fonctions f, g, et $a \in \mathbb{R}$

— f est dominée par g au voisinage de a, que l'on note f(x) = O(g(x)) quand $x \to a$, si

$$\exists \eta > 0, \exists M \in \mathbb{R}^+, \ \forall x \in]a - \eta, a + \eta[, |f(x)/g(x)| \le M .$$

— f est négligeable devant g, que l'on note f(x) = o(g(x)) quand $x \to a$ si

$$\lim_{x \to a} f(x)/g(x) = 0 .$$

On utilise la même notations au voisinage de $\pm \infty$.

- 1. Soient $a \in \mathbb{R}$ et f une application définie sur un intervalle ouvert contenant a sauf peut-être en a. Si f admet une limite à gauche et une limite à droite en a alors f admet une limite en a.
- 2. Soit f définie sur \mathbb{R} à valeurs dans \mathbb{R} . Si $\lim_{x\to 0} f(x) = 1$ alors $\lim_{x\to 0} x f(x) = 1$.
- 3. Soit f définie sur $\mathbb R$ à valeurs dans $\mathbb R$. Si $\lim_{x\to 0} f(x) = 1$ alors $\lim_{x\to 0} f(x)/x^2 = +\infty$.
- 4. Soit f définie sur \mathbb{R} . Si f n'est pas bornée, alors f tend vers l'infini quand $x \to +\infty$.
- 5. Soit f définie sur \mathbb{R} . Si pour toute suite $(x_n)_n$ convergeant vers $+\infty$, la suite $(f(x_n))_n$ converge vers 1, alors f a pour limite 1 en $+\infty$.
- 6. Soit f définie sur \mathbb{R} , telle que $\lim_{x\to 0}=1$. Alors f est minorée par 0 et majorée par 2 au voisinage de 0.
- 7. Soit f définie sur \mathbb{R} à valeurs dans \mathbb{R} . Si $\lim_{x\to 0} f(x) = +\infty$ alors $\lim_{x\to 0} x f(x) = +\infty$.
- 8. Soit f définie sur \mathbb{R} à valeurs dans \mathbb{R} . Si $\lim_{x\to 0} f(x) = 1$ alors $\lim_{x\to 0} (1-x)f(x) = 0$.
- 9. Soit f définie sur \mathbb{R} à valeurs dans \mathbb{R} . Si $\lim_{x\to 0} f(x) = -\infty$ alors $\lim_{x\to 0} (1-x)f(x) = 1$.
- 10. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$. Si f n'est pas bornée alors $\lim_{x \to \infty} f(x) = +\infty$.
- 11. Soit $f: \mathbb{R} \to \mathbb{R}$. Si pour toute suite $(x_n)_n$ telle que $\lim_{n\to\infty} x_n = +\infty$, la suite $(f(x_n))_n$ converge vers 1, alors $\lim_{x\to+\infty} f(x) = 1$.
- 12. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$. Si la suite $(f(n))_n$ converge vers 0 et la suite $(f(n+1/2))_n$ converge vers 1/2, alors f n'a pas de limite en $+\infty$.
- 13. $(\lim_{x\to 0} f(x) = 0) \iff (\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in [-\eta, 0] \cup [0, \eta], |f(x)| < \varepsilon).$
- 14. $(\lim_{x\to 1} f(x) = 2) \iff (\forall \varepsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \ge 1 + \eta, |f(x) 2| < \varepsilon).$
- 15. $(\lim_{x\to 0} f(x) = 0) \iff (\forall n \in \mathbb{N}^*, \exists \eta > 0 \text{ tel que } \forall x \in [-\eta, 0] \cup [0, \eta], |f(x)| < 1/n).$