Kinematics

$$\underline{P} + \underline{Q} = (P_x + Q_x)\underline{i} + (P_y + Q_y)\underline{j} + (P_z + Q_z)\underline{k}$$

$$\underline{P} \cdot \underline{Q} = \underline{Q} \cdot \underline{P} = P_x Q_x + P_y Q_y + P_z Q_z$$

$$\underline{P} \cdot \underline{P} = P^2 = P_x^2 + P_y^2 + P_z^2$$

$$\underline{P} \times \underline{Q} = -\underline{Q} \times \underline{P}$$

$$= (P_y Q_z - P_z Q_y)\underline{i} - (P_x Q_z - P_z Q_x)\underline{j}$$

$$+ (P_x Q_y - P_y Q_x)\underline{k}$$

$$\underline{P} \times \underline{P} = \underline{Q} \times \underline{Q} = 0$$

Kinematic Equations

For rotational acceleration
$$\rightarrow x = \theta$$
, $a = \alpha$

$$x = vt + \frac{1}{2}at^{2}$$

$$v_{f} = v_{i} + at$$

$$v_{f}^{2} = v_{i}^{2} + 2ax$$

Displacement

$$x_{B/A} = x_B - x_A$$

Curvilinear Motion

$$(a_b)_n = \frac{{v_b}^2}{\rho}$$

Velocity

Translation	$V_b = V_a$
Rotation	$V_a = \omega_k \times r_{oa}$
Plane	$V_b = V_a + V_{b/a}$ = $V_a + \omega_k \times r_{b/a}$

Acceleration (Vectors)

$$a_{B} = a_{A} + a_{B/A}$$

$$\underline{a}_{B/A} = -\omega^{2} \underline{r}_{B/A} + \alpha \underline{k} \times \underline{r}_{B/A}$$

ICR Method: Given ICR C, you can find velocity at any point on object.

$$V_a = \omega_{obj} \times r_{a/c}$$

Mass Properties

$$\bar{x} = \frac{\sum x_n \bigtriangleup w_n}{w}$$
, $\bar{y} = \frac{\sum y_n \bigtriangleup w_n}{w}$

Second Moment of Area. *I*_o

From Radius of Gyration

$$I_o = k_o^2 \text{m}$$

Parallel Axis Theorem

$$I_o = I_b + m(r_{b/o})^2$$

FBD, EFD

$$\sum_{x} F_{x} = ma_{x} \qquad \sum_{y} F_{y} = I\alpha$$

Taking moment about non-G pt & equate:

FBD:
$$\sum M_A = F_1 r_{1/A}$$

$$EFD: \sum M_A = I\alpha + ma_x r_A + ma_y r_A$$

Combine multiple bodies, and consider their separate $ma_x, ma_y, I\alpha$

Common sol: express a_x , a_y in terms of α and solve $\sum M_\alpha$ to get α .

General Procedure

 $Kinematics(a, v) \rightarrow Kinetic(FBD, EFD),$ separate and combined bodies.

Rolling

Rolling no sliding*	$F < \mu_s N$
Rolling, sliding imp*^	$F = \mu_s N$
Rotating & Sliding	$F = \mu_k N$

 $*\bar{v} = \omega_k \times r_{G/C} \rightarrow \bar{a} = \alpha_k \times r_{G/C}$

*WEP can be used! ^Max Friction Force

If unknown, assume case 1. Solve for α and a, check if $F \leq \mu_s N$. If yes, use 1. Else, use 3 and recalculate.

$$\frac{\omega}{\omega'} = -\frac{R}{r_{A/C}} \quad \begin{array}{|ll} \omega : motion \ of \ disc \ rolling \\ along \ curved \ path \ is \\ related \ to \ \omega' \ of \ disc \end{array}$$

Along Straight Path: Path Contact Point

$$a_c = \omega^2 \times r_{A/C} \qquad | \qquad v_c = 0$$

Work Energy Power

Kinetic Energy

$$T = \frac{1}{2}mv^2 + \frac{1}{2}I_G\omega^2$$

Rotating body about fixed point A (ICR A)

$$T = \frac{1}{2}I_A\omega^2 = \frac{1}{2}\left[I_G + mr_{A/G}^2\right]\omega^2$$

$$= \frac{1}{2}m|v_2|^2 + \frac{1}{2}I_G\omega^2$$
Spring* GPE Friction
$$\frac{1}{2}k\delta^2 \qquad mgh \qquad \mu_kNd$$

For solving vibration via forces: spring extension in equilibrium. $F = k(x_A + \delta)$ and eliminate x_A by static analysis.

Approximations

$$\sin \theta \approx \theta \qquad | 1 - \cos \theta \approx \theta^2/2$$

Free Vibration without damping

EOM: $\ddot{u} + \omega_n^2 u = 0$ (ω_n is Freq in rad/s)

Spring Mass	$\omega_n = \sqrt{k/m}$
Pendulum	$\omega_n = \sqrt{g/l}$
Free oscillation	() = \[\left[\frac{1}{200 \text{ and } \left[\frac{1}{2} \]
<mark>about O</mark>	$\omega_n = \sqrt{mgd/I_o}$

 $x = Asin(\omega_n t + \phi)$ $\dot{x} = v = \omega_n Acos(\omega_n (t) + \phi)$ $\tau_n = \frac{2\pi}{\omega_n} \qquad f_n(Hz) = \frac{\omega_n}{2\pi}$ $A = \sqrt{C_1^2 + C_2^2} = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_n}\right)^2}$

$$A = \sqrt{C_1^2 + C_2^2} = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_n}\right)}$$
$$\phi = tan^{-1} \left(\frac{C_1}{C_2}\right) = tan^{-1} \left(\frac{x_0 \omega_n}{v_0}\right)$$

Note that x_0 and v_0 conditions at t=0

Damped vibration

$$m\ddot{x} + c\dot{x} + kx = 0$$

$$m\lambda^{2} + c\lambda + k = 0$$

$$\lambda = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^{2} - \frac{k}{m}}$$

$$F_{c}[N] = c[Ns/m] \times v$$

Over:
$$\left(\frac{c}{2m}\right)^2 - \frac{k}{m} > 0$$

 $x = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t}$

Critical:
$$\left(\frac{c}{2m}\right)^2 - \frac{k}{m} = 0$$

$$x = (A_1 + A_2 t)e^{-\omega_n t}$$

$$c_{cr} = 2\sqrt{mk} = 2m\omega_n$$

$$\underline{\text{Under}}: \left(\frac{c}{2m}\right)^2 - \frac{k}{m} < 0$$

Dashpot Damper: $F = kx + c\dot{x}$

Damping Ratio(c is damping coeff)

$$\zeta = \frac{c}{c_{cr}} = \frac{c}{2\sqrt{km}}$$

$$\frac{\zeta > 1}{\zeta = 1} \quad \text{Over damped}$$

$$\frac{\zeta = 1}{\zeta < 1} \quad \text{Under damped}$$

Stiffness Coeff: $k = m\omega_n^2$

$$\ddot{x} + 2\zeta \omega_n \dot{x} + \omega_n^2 x = 0$$

$$x = Xe^{-\zeta \omega_n t} \sin(\omega_d t + \phi)$$

$$\dot{x} = Xe^{-\zeta \omega_n t} [-\zeta \omega_n \sin(\omega_d t) + \omega_d \cos(\omega_d t)]$$

Initial Conditions

$$X = \sqrt{C_1^2 + C_2^2} = \sqrt{x_o^2 + \left(\frac{v_o + \zeta \omega_n x_o}{\omega_d}\right)^2}$$
$$\phi = tan^{-1} \left(\frac{C_1}{C_2}\right) = tan^{-1} \left(\frac{\omega_d x_o}{v_o + \zeta \omega_n x_o}\right)$$

Exponential Decaying Coefficient

$$\alpha = \frac{c}{2m} = \zeta \omega_n$$

Damped Oscillation Freq

$$\omega_d = \sqrt{\frac{k}{m} - \left(\frac{c}{2m}\right)^2} = \omega_n \sqrt{1 - \zeta^2}$$

<u>Logarithmic Decrement</u>

$$\delta = ln\left(\frac{x_1}{x_2}\right) = \zeta \omega_n \tau_d$$

$$\delta = \frac{1}{N} ln \left(\frac{x_1}{x_{1+N}} \right)$$

$$\delta = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} \quad | \quad \zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}}$$
 Order: $\delta \to \zeta \to \omega_n \to c_{cr} \to c \ OR \ k$

Cos Rule

$$c^2 = a^2 + b^2 - 2ab \cos \theta$$

Shape		X	y	Area		y	
Triangular area			<u>h</u> 3	<u>bh</u> 2	Slender rod	G Z L X	$I_y = I_z = \frac{1}{12} m L^2$ Q1: Why no I_x ?
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$	Thin rectangular plate	c G b	
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$			$I_x = \frac{1}{12} m(b^2 + c^2)$ $I_y = \frac{1}{12} mc^2$
Quarter-elliptical area	C • C b	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$			$I_z = \frac{1}{12} mb^2$
Semielliptical area	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\frac{4b}{3\pi}$	<u>πab</u> 2		Q2	: Why $I_x = I_y + I_z$?
Semiparabolic area	← a →	3 <u>a</u>	3 <i>h</i> 5	2 ah 3		c y	
Parabolic area		0	3 <i>h</i> 5	4 ah 3	Rectangular prism		$I_x = \frac{1}{12} m(b^2 + c^2)$ $I_y = \frac{1}{12} m(c^2 + a^2)$
Parabolic spandrel	$y = kx^2$	3 a 4	3 <i>h</i> 10	<u>ah</u> 3		Z	$I_z = \frac{1}{12} m(a^2 + b^2)$
	0 + 7 + 1					y	
General spandrel	$y = kx^n$ h T	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	<u>ah</u> n + 1	Thin disk	z	$I_x = \frac{1}{2}mr^2$ $I_y = I_z = \frac{1}{4}mr^2$
Circular sector		$\frac{2r\sin\alpha}{3\alpha}$	0	αr ²	Circular cylinder	2 2/x	$l_{x} = \frac{1}{2} ma^{2}$ $l_{y} = l_{z} = \frac{1}{12} m(3a^{2} + L^{2})$
					Circular cone	y n	$I_{x} = \frac{3}{10}ma^{2}$ $I_{y} = I_{z} = \frac{3}{5}m(\frac{1}{4}a^{2} + h^{2})$
					Sphere	y a	$I_x = I_y = I_z = \frac{2}{5} ma^2$
					Semicircular disk	y ₁	$I_x = \frac{1}{2}mr^2$ $I_y = I_z = \frac{1}{4}mr^2$