

SEQUENCE LISTING

<110> PARANHOS-BACCALA, Glauzia
KOMURIAN-PRADEL, Florence
BEDIN, Frederic
SODOYER, Mireille
OTT, Catherine
MALLET, Francois
PERRON, Herve
MANDRAND, Bernard

<120> RETROVIRAL NUCLEIC MATERIAL AND NUCLEOTIDE FRAGMENTS, IN PARTICULAR ASSOCIATED WITH MULTIPLE SCLEROSIS AND/OR RHEUMATOID ARTHRITIS, FOR DIAGNOSTIC, PROPHYLACTIC AND THERAPEUTIC USES

<130> 103514

<140> US/09/319,156
<141> 1999-11-02

<150> PCT/FR98/01460
<151> 1998-07-07

<150> FR/97/08816
<151> 1997-07-07

<160> 45

<170> PatentIn version 3.2

<210> 1
<211> 34
<212> DNA
<213> MSRV

<400> 1
gactcgctgc agatcgattt tttttttttt tttt 34

<210> 2
<211> 30
<212> DNA
<213> MSRV

<400> 2
gccatcaaggc cacccaaagaa ctcttaactt 30

<210> 3
<211> 30
<212> DNA
<213> MSRV

<400> 3
ccaatagcca gaccattata tacactaatt 30

<210> 4
<211> 310
<212> DNA
<213> MSRV

<400> 4
gcttatagaa ggaccccttag tatgggtaa tcccctctgg gaaaccaagc cccagtactc 60
agcaggaaaa atagaatagg aaacacctaca aggacatact ttccctcccc ccagatggct 120

agccactgag gaaggaaaaa tactttcacc tgtagctaac caacagaaaat tacttaaaac 180
ccttcaccaa accttccact taggcattga tagcacccat cagatggcca aattattatt 240
tactggacca ggcctttca aaactatcaa gaagatagtc aggggctgtg aagtgtgc 300
aagaaaataat 310

<210> 5
<211> 103
<212> PRT
<213> MSRV

<220>
<221> misc_feature
<222> (26)..(26)
<223> Xaa = any amino acid

<400> 5

Leu Ile Glu Gly Pro Leu Val Trp Gly Asn Pro Leu Trp Glu Thr Lys
1 5 10 15

Pro Gln Tyr Ser Ala Gly Lys Ile Glu Xaa Glu Thr Ser Gln Gly His
20 25 30

Thr Phe Leu Pro Ser Arg Trp Leu Ala Thr Glu Glu Gly Lys Ile Leu
35 40 45

Ser Pro Ala Ala Asn Gln Gln Lys Leu Leu Lys Thr Leu His Gln Thr
50 55 60

Phe His Leu Gly Ile Asp Ser Thr His Gln Met Ala Lys Leu Leu Phe
65 70 75 80

Thr Gly Pro Gly Leu Phe Lys Thr Ile Lys Lys Ile Val Arg Gly Cys
85 90 95

Glu Val Cys Gln Arg Asn Asn
100

<210> 6
<211> 635
<212> DNA
<213> MSRV

<400> 6
ccctgtatct ttaacctcct tgttaagttt gtctcttcca gaatcaaaaac tgtaaaaacta 60
caaattgttc ttcaaatgga gcaccagatg gagtccatga ctaagatcca ccgtggaccc 120
ctggaccggc ctgctagccc atgctccatgtt gttatgaca ttgaaggcac ccctccccgag 180
gaaatctcaa ctgcacaacc cctactatgc cccaaattcag cggttggcag tttagagcggt 240
catcagccaa cctcccccaac agcacttggg tttccctgtt gagagggggg actgagagac 300

aggactagct ggatttccta ggccaaacgaa gaatccctaa gcctagctgg gaaggtgact 360
gcatccacct ctaaacatgg ggcttgcaac ttagctcaca cccgaccaat cagagagctc 420
actaaaatgc taattaggca aaaataggag gtaaaagaaat agccaatcat ctattgcctg 480
agagcacagc gggagggaca aggatcgga tataaaccga ggcattcgag ccggcaacgg 540
caacccctt tgggtcccct ccctttgtat gggcgctctg ttttcaactct atttcactct 600
attnaatctt gcaactgaaa aaaaaaaaaa aaaaa 635

<210> 7
<211> 77
<212> PRT
<213> MSRV

<400> 7

Pro Cys Ile Phe Asn Leu Leu Val Lys Phe Val Ser Ser Arg Ile Lys
1 5 10 15

Thr Val Lys Leu Gln Ile Val Leu Gln Met Glu His Gln Met Glu Ser
20 25 30

Met Thr Lys Ile His Arg Gly Pro Leu Asp Arg Pro Ala Ser Pro Cys
35 40 45

Ser Asp Val Asn Asp Ile Glu Gly Thr Pro Pro Glu Glu Ile Ser Thr
50 55 60

Ala Gln Pro Leu Leu Cys Pro Asn Ser Ala Gly Ser Ser
65 70 75

<210> 8
<211> 32
<212> DNA
<213> MSRV

<400> 8
tggggttcca ttgttaagac catctgttagc tt 32

<210> 9
<211> 1481
<212> DNA
<213> MSRV

<400> 9
atggccctcc cttatcatac ttttctcttt actgttctct taccccttt cgctctcact 60
gcacccctc catgctgctg tacaaccagt agctcccctt accaagagtt tctatgaaga 120
acgcggcttc ctggaaatat tgatgccccca tcataatagga gtttatctaa gggaaactcc 180
accttcactg cccacaccca tatgccccgc aactgctata actctgccac tctttgcatt 240
catgcaaata ctcattattg gacagggaaa atgattaatc ctatgttcc tggaggactt 300

ggagccactg	tctgttggac	ttacttcacc	cataccagta	tgtctgatgg	gggtggaatt	360
caaggtcagg	caagagaaaa	acaagtaaag	gaagcaatct	cccaactgac	ccggggacat	420
agcacccta	gcccctacaa	aggactagtt	ctctcaaaac	tacatgaaac	cctccgtacc	480
catactcgcc	tggtaggcct	athtaatacc	accctcactc	ggctccatga	ggctcagcc	540
caaaaacccta	ctaactgttg	gatgtgcctc	cccctgcact	tcaggccata	catttcaatc	600
cctgttcctg	aacaatggaa	caacttcagc	acagaataaa	acaccacttc	cgttttagta	660
ggacctcttg	tttccaatct	gaaataacc	catacctaa	acctcacctg	tgtaaaattt	720
agcaatacta	tagacacaac	cagctccaa	tgcacatcagg	ggtaaacacc	tccccacacga	780
atagtctgcc	taccctcagg	aatatttttt	gtctgtggta	cctcagccta	tcattgtttg	840
aatggctctt	cagaatctat	gtgcttcctc	tcattcttag	tgccccctat	gaccatctac	900
actgaacaag	atttatacaa	tcatgtcgta	cctaagcccc	acaacaaaag	agtacccatt	960
cttccttttg	ttatcagagc	aggagtgcta	ggcagactag	gtactggcat	tggcagttatc	1020
acaacacctta	ctcagttcta	ctacaaacta	tctcaagaaa	taaatggtga	catggAACAG	1080
gtcactgact	ccctggtcac	cttgcacat	caacttaact	ccctagcagc	agttagtcctt	1140
caaaaatcgaa	gagctttaga	cttgctaacc	gccaaaagag	ggggAACCTG	tttattttta	1200
ggagaagaac	gctgttatta	tgttaatcaa	tccagaattt	tcactgagaa	agttaaagaa	1260
attcgagatc	gaatacataatg	tagacagag	gagcttcaaa	acaccgaacg	ctggggcctc	1320
ctcagccaaat	ggatgccctg	ggttctcccc	ttcttaggac	ctctagcagc	tctaataattt	1380
ttactcctct	ttggaccctg	tatcttaac	ctccttgtt	agtttgtctc	ttccagaattt	1440
gaagctgtaa	agctacagat	ggtcttacaa	atgaaacccc	a		1481

<210> 10
 <211> 493
 <212> PRT
 <213> MSRV

<220>
 <221> misc_feature
 <222> (39)..(39)
 <223> Xaa = any amino acid

<400> 10

Met	Ala	Leu	Pro	Tyr	His	Thr	Phe	Leu	Phe	Thr	Val	Leu	Leu	Pro	Pro
1								5			10			15	

Phe	Ala	Leu	Thr	Ala	Pro	Pro	Pro	Cys	Cys	Cys	Thr	Thr	Ser	Ser	Ser
								20			25		30		

Pro	Tyr	Gln	Glu	Phe	Leu	Xaa	Arg	Thr	Arg	Leu	Pro	Gly	Asn	Ile	Asp
											35		40		45

Ala Pro Ser Tyr Arg Ser Leu Ser Lys Gly Asn Ser Thr Phe Thr Ala
50 55 60

His Thr His Met Pro Arg Asn Cys Tyr Asn Ser Ala Thr Leu Cys Met
65 70 75 80

His Ala Asn Thr His Tyr Trp Thr Gly Lys Met Ile Asn Pro Ser Cys
85 90 95

Pro Gly Gly Leu Gly Ala Thr Val Cys Trp Thr Tyr Phe Thr His Thr
100 105 110

Ser Met Ser Asp Gly Gly Ile Gln Gly Gln Ala Arg Glu Lys Gln
115 120 125

Val Lys Glu Ala Ile Ser Gln Leu Thr Arg Gly His Ser Thr Pro Ser
130 135 140

Pro Tyr Lys Gly Leu Val Leu Ser Lys Leu His Glu Thr Leu Arg Thr
145 150 155 160

His Thr Arg Leu Val Ser Leu Phe Asn Thr Thr Leu Thr Arg Leu His
165 170 175

Glu Val Ser Ala Gln Asn Pro Thr Asn Cys Trp Met Cys Leu Pro Leu
180 185 190

His Phe Arg Pro Tyr Ile Ser Ile Pro Val Pro Glu Gln Trp Asn Asn
195 200 205

Phe Ser Thr Glu Ile Asn Thr Thr Ser Val Leu Val Gly Pro Leu Val
210 215 220

Ser Asn Leu Glu Ile Thr His Thr Ser Asn Leu Thr Cys Val Lys Phe
225 230 235 240

Ser Asn Thr Ile Asp Thr Thr Ser Ser Gln Cys Ile Arg Trp Val Thr
245 250 255

Pro Pro Thr Arg Ile Val Cys Leu Pro Ser Gly Ile Phe Phe Val Cys
260 265 270

Gly Thr Ser Ala Tyr His Cys Leu Asn Gly Ser Ser Glu Ser Met Cys
275 280 285

Phe Leu Ser Phe Leu Val Pro Pro Met Thr Ile Tyr Thr Glu Gln Asp
290 295 300

Leu Tyr Asn His Val Val Pro Lys Pro His Asn Lys Arg Val Pro Ile
305 310 315 320

Leu Pro Phe Val Ile Arg Ala Gly Val Leu Gly Arg Leu Gly Thr Gly
 325 330 335

Ile Gly Ser Ile Thr Thr Ser Thr Gln Phe Tyr Tyr Lys Leu Ser Gln
 340 345 350

Glu Ile Asn Gly Asp Met Glu Gln Val Thr Asp Ser Leu Val Thr Leu
 355 360 365

Gln Asp Gln Leu Asn Ser Leu Ala Ala Val Val Leu Gln Asn Arg Arg
 370 375 380

Ala Leu Asp Leu Leu Thr Ala Lys Arg Gly Gly Thr Cys Leu Phe Leu
 385 390 395 400

Gly Glu Glu Arg Cys Tyr Tyr Val Asn Gln Ser Arg Ile Val Thr Glu
 405 410 415

Lys Val Lys Glu Ile Arg Asp Arg Ile Gln Cys Arg Ala Glu Glu Leu
 420 425 430

Gln Asn Thr Glu Arg Trp Gly Leu Leu Ser Gln Trp Met Pro Trp Val
 435 440 445

Leu Pro Phe Leu Gly Pro Leu Ala Ala Leu Ile Leu Leu Leu Leu Phe
 450 455 460

Gly Pro Cys Ile Phe Asn Leu Leu Val Lys Phe Val Ser Ser Arg Ile
 465 470 475 480

Glu Ala Val Lys Leu Gln Met Val Leu Gln Met Glu Pro
 485 490

<210> 11 :
 <211> 32
 <212> DNA
 <213> MSRV

<400> 11
 tcaaaaatcga agagctttag acttgctaac cg 32

<210> 12
 <211> 1329
 <212> DNA
 <213> MSRV

<220>
 <221> misc_feature
 <222> (594)..(594)
 <223> n = a, g, c or t/u

```

<220>
<221> misc_feature
<222> (602)..(602)
<223> n = a, g, c or t/u

<220>
<221> misc_feature
<222> (1232)..(1232)
<223> n = a, g, c or t/u

<400> 12
tcaaaaatcg aagagctttag acttgctaac cgccaaaaga gggggAACCT gtttattttt 60
agggaaagaa tgctgttagt atgttaatca atctggaatc attactgaga aagttaaaga 120
aatttgagat cgaatataat gtagagcaga ggaccttcaa aacactgcac cctggggcct 180
cctcagccaa tggatgccct ggactctccc cttcttagga cctctagcag ctataatatt 240
tttactcctc tttggaccct gtatcttcaa cttccttgtt aagtttgtct cttccagaat 300
tgaagctgta aagctacaaa tagttctca aatggAACCC cagatgcagt ccatgactaa 360
aatctaccgt ggacccctgg accggcctgc tagactatgc tctgatgtt atgacattga 420
agtcacccct cccgagggaaa tctcaactgc acaaccccta ctacactcca attcagtagg 480
aagcagttag agcagttgtc agccaaccc cccaaacagta cttgggttt cctgttgaga 540
gggtggactg agagacagga ctagctggat ttccttaggt gactaagaat cccnaagcct 600
anctggaaag gtgaccgcattt ccattttaa acatggggct tgcaacttag ctcacacccg 660
accaatcaga gagctcacta aaatgctaatt caggcaaaaa caggaggtaa agcaatagcc 720
aatcatctat tgcctgagag cacagcggga aggacaagga ttgggatata aactcaggca 780
ttcaagccag caacagcaac cccctttggg tccccccca ttgtatggg gctctgttt 840
cactctattt cactctatta aatcatgaa ctgcactttt ctggccgtg tttttatgg 900
ctcaagctga gctttgttc gccatccacc actgctgtt gcccacgtca cagacccgct 960
gctgacttcc atccctttgg atccagcaga gtgtccactg tgctcctgat ccagcgaggt 1020
acccattgcc actcccgatc aggctaaagg cttgccattt ttcctgcatg gctaagtgcc 1080
tgggtttgtc ctaatagaac tgaacactgg tcactgggtt ccatgggtct cttccatgac 1140
ccacggcttc taatagagct ataacactca ccgcattggcc caagattcca ttccttggt 1200
tctgtgaggc caagaacccc aggtcagaga angtgaggct tgccaccatt tggaaagtgg 1260
cccactgcca ttttggtagc ggcccaccac catcttggtt gctgtgggag caaggatccc 1320
ccagtaaca 1329

<210> 13
<211> 162
<212> PRT
<213> MSRV

<220>
<221> misc_feature

```

```

<222> (26)..(26)
<223> Xaa = any amino acid

<220>
<221> misc_feature
<222> (42)..(42)
<223> Xaa = any amino acid

<220>
<221> misc_feature
<222> (46)..(46)
<223> Xaa = any amino acid

<400> 13

Gln Asn Arg Arg Ala Leu Asp Leu Leu Thr Ala Lys Arg Gly Gly Thr
1           5          10          15

Cys Leu Phe Leu Gly Glu Glu Cys Cys Xaa Tyr Val Asn Gln Ser Gly
20          25          30

Ile Ile Thr Glu Lys Val Lys Glu Ile Xaa Asp Arg Ile Xaa Cys Arg
35          40          45

Ala Glu Asp Leu Gln Asn Thr Ala Pro Trp Gly Leu Leu Ser Gln Trp
50          55          60

Met Pro Trp Thr Leu Pro Phe Leu Gly Pro Leu Ala Ala Ile Ile Phe
65          70          75          80

Leu Leu Leu Phe Gly Pro Cys Ile Phe Asn Phe Leu Val Lys Phe Val
85          90          95

Ser Ser Arg Ile Glu Ala Val Lys Leu Gln Ile Val Leu Gln Met Glu
100         105         110

Pro Gln Met Gln Ser Met Thr Lys Ile Tyr Arg Gly Pro Leu Asp Arg
115         120         125

Pro Ala Arg Leu Cys Ser Asp Val Asn Asp Ile Glu Val Thr Pro Pro
130         135         140

Glu Glu Ile Ser Thr Ala Gln Pro Leu Leu His Ser Asn Ser Val Gly
145         150         155         160

Ser Ser

<210> 14
<211> 21
<212> DNA
<213> MSRV

<400> 14
ggcattgata gcaccatca g

```

<210> 15		
<211> 21		
<212> DNA		
<213> MSRV		
<400> 15		
catgtcacca gggtggaaata g		21
<210> 16		
<211> 758		
<212> DNA		
<213> MSRV		
<400> 16		
ggcattgata gcacccatca gatggccaaa tcattattta ctggaccagg cctttcaaa	60	
actatcaagc agatagggcc cgtgaagcat gccaaagaaa taatcccctg ccttatcgcc	120	
atgttccttc aggagaacaa agaacaggcc attaccagg ggaagactgg caactagatt	180	
ttacccacat ggc当地atgt cagggatttc agcatctact agtctggca gatactttca	240	
ctgggtgggt ggagtcttct cctttagga cagaaaagac ccaagaggta ataaaggcac	300	
taatgaaata attccagat ttggacttcc cccaggatta cagggtgaca atggccccgc	360	
tttcaaggct gcagtaaccc agggagtatc ccaggtgtta ggcatacaat atcacttaca	420	
ctgtgcctgg aggccacaat cctccagaaa agtcaagaaa atgaatgaaa cactcaaaga	480	
tctaaaaaaag ctaacccaag aaacccacat tgc当地gacct gttctgtgc ctataacctt	540	
actaagaatc cataactatc cccaaaaag cagggacttag cccatacgag atgctatatg	600	
gatggccttt cctaaccaat gaccttgc ttgactgaga aatggccaac ttagttgcag	660	
acatcacctc ctttagccaaa tatcaacaag ttcttaaaac atcacaggaa acctgtcccc	720	
gagaggaggg aaaggaacta ttccaccctg gtgacatg	758	
<210> 17		
<211> 25		
<212> DNA		
<213> MSRV		
<400> 17		
cggacatcca aagtgatggg aaacg		25
<210> 18		
<211> 26		
<212> DNA		
<213> MSRV		
<400> 18		
ggacaggaaa gtaagactga gaaggc		26
<210> 19		
<211> 26		
<212> DNA		
<213> MSRV		

<400> 19		
cctagaacgt attctggaga attggg		26
<210> 20		
<211> 26		
<212> DNA		
<213> MSRV		
<400> 20		
tggctctcaa tggtaaaaca tacccg		26
<210> 21		
<211> 1511		
<212> DNA		
<213> MSRV		
<400> 21		
cctagaacgt attctggaga attgggacca atgtgacact cagacgctaa gaaagaaaacg	60	
atttatattc ttctgcagta ccgcctggcc acaatatcct cttcaaggga gagaaacctg	120	
gcttcctgag ggaagtataa attataacat catttacag cttagacctt tctgtagaaa	180	
ggagggcaaa tggagtgaag tgccatatgt gcaaacttgc tttcattaa gagacaactc	240	
acaattatgt aaaaagtgtg gtttatgcc tacaggaagc cctcagagtc cacccctca	300	
ccccagcgtc ccctccccga ctcccttc aactaataag gacccccc tttaacccaa	360	
ggtccaaaag gagatagaca aagggtaaa caatgaacca aagagtgc aatattcccc	420	
attatgccccc ctccaaggcag tgagaggagg agaattcggc ccagccagag tgccctgtacc	480	
ttttctctc tcagacttaa agcaattaa aatagaccta ggtaaattct cagataaccc	540	
tgacggctat attgatgttt tacaagggtt aggacaatcc tttgatctga catggagaga	600	
tataatgtta ctactaaatc agacactaac cccaaatgag agaagtgc cgctgtactgc	660	
agcccgagag tttggcgatc tttggtatct cagtcaggcc aacaatagga tgacaacaga	720	
ggaaagaaca actcccacag gccagcaggc agttccca gtagaccctc attgggacac	780	
agaatcagaa catggagatt ggtgccacaa acatttgcta acttgcgtgc tagaaggact	840	
gaggaaaact aggaagaagc ctatgaatta ctcaatgatg tccactataa cacagggaaa	900	
ggaagaaaat cttactgctt ttctggacag actaaggag gcattgagga agcatacc	960	
cctgtcaccc gactctattt aaggccaaact aatcttaaag gataagttt tcaactcgtc	1020	
agctgcagac attaaaaaaa acttcaaaag tctgccttag gcccggagca gaacttagaa	1080	
accctattta acttggcatc ctcagtttt tataatagag atcaggagga gcaggcgaaa	1140	
cgggacaaac gggataaaaaa aaaaaggggg ggtccactac ttttagtcatg gccctcaggc	1200	
aagcagactt tggaggctct gcaaaaggaa aaagctggc aaatcaaatg cctaataagg	1260	
ctggcttcca gtgcggtcta caaggacact ttaaaaaaga ttatccaagt agaaataagc	1320	
cgccccccttg tccatgcccc ttacgtcaag ggaatcactg gaaggcccac tgccccaggg	1380	

gatgaagata	ctctgagtca	gaagccatta	accagatgtat	ccagcagcag	gactgagggt	1440										
gccccggggcg	agcgccagcc	catgccatca	ccctcacaga	gccccgggta	tgtttgacca	1500										
ttgagagcca	a					1511										
<210>	22															
<211>	352															
<212>	PRT															
<213>	MSRV															
<400>	22															
Leu	Glu	Arg	Ile	Leu	Glu	Asn	Trp	Asp	Gln	Cys	Asp	Thr	Gln	Thr	Leu	
1				5				10						15		
Arg	Lys	Lys	Arg	Phe	Ile	Phe	Phe	Cys	Ser	Thr	Ala	Trp	Pro	Gln	Tyr	
				20				25						30		
Pro	Leu	Gln	Gly	Arg	Glu	Thr	Trp	Leu	Pro	Glu	Gly	Ser	Ile	Asn	Tyr	
				35				40						45		
Asn	Ile	Ile	Leu	Gln	Leu	Asp	Leu	Phe	Cys	Arg	Lys	Glu	Gly	Lys	Trp	
				50				55						60		
Ser	Glu	Val	Pro	Tyr	Val	Gln	Thr	Phe	Phe	Ser	Leu	Arg	Asp	Asn	Ser	
				65				70						80		
Gln	Leu	Cys	Lys	Lys	Cys	Gly	Leu	Cys	Pro	Thr	Gly	Ser	Pro	Gln	Ser	
				85				90						95		
Pro	Pro	Pro	Tyr	Pro	Ser	Val	Pro	Ser	Pro	Thr	Pro	Ser	Ser	Thr	Asn	
				100				105						110		
Lys	Asp	Pro	Pro	Leu	Thr	Gln	Thr	Val	Gln	Lys	Glu	Ile	Asp	Lys	Gly	
				115				120						125		
Val	Asn	Asn	Glu	Pro	Lys	Ser	Ala	Asn	Ile	Pro	Arg	Leu	Cys	Pro	Leu	
				130				135						140		
Gln	Ala	Val	Arg	Gly	Gly	Glu	Phe	Gly	Pro	Ala	Arg	Val	Pro	Val	Pro	
				145				150						155		160
Phe	Ser	Leu	Ser	Asp	Leu	Lys	Gln	Ile	Lys	Ile	Asp	Leu	Gly	Lys	Phe	
				165				170						175		
Ser	Asp	Asn	Pro	Asp	Gly	Tyr	Ile	Asp	Val	Leu	Gln	Gly	Leu	Gly	Gln	
				180				185						190		
Ser	Phe	Asp	Leu	Thr	Trp	Arg	Asp	Ile	Met	Leu	Leu	Leu	Asn	Gln	Thr	
				195				200						205		

Leu Thr Pro Asn Glu Arg Ser Ala Ala Val Thr Ala Ala Arg Glu Phe
210 215 220

Gly Asp Leu Trp Tyr Leu Ser Gln Ala Asn Asn Arg Met Thr Thr Glu
225 230 235 240

Glu Arg Thr Thr Pro Thr Gly Gln Gln Ala Val Pro Ser Val Asp Pro
245 250 255

His Trp Asp Thr Glu Ser Glu His Gly Asp Trp Cys His Lys His Leu
260 265 270

Leu Thr Cys Val Leu Glu Gly Leu Arg Lys Thr Arg Lys Lys Pro Met
275 280 285

Asn Tyr Ser Met Met Ser Thr Ile Thr Gln Gly Lys Glu Glu Asn Leu
290 295 300

Thr Ala Phe Leu Asp Arg Leu Arg Glu Ala Leu Arg Lys His Thr Ser
305 310 315 320

Leu Ser Pro Asp Ser Ile Glu Gly Gln Leu Ile Leu Lys Asp Lys Phe
325 330 335

Ile Thr Gln Ser Ala Ala Asp Ile Arg Lys Asn Phe Lys Ser Leu Pro
340 345 350

<210> 23
<211> 30
<212> DNA
<213> MSRV

<400> 23
tgctggattt cgggatccta gaacgtattc 30

<210> 24
<211> 30
<212> DNA
<213> MSRV

<400> 24
agttctgctc cgaagcttag gcagactttt 30

<210> 25
<211> 398
<212> PRT
<213> MSRV

<400> 25

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro
1 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg
20 25 30

Ile Leu Glu Arg Ile Leu Glu Asn Trp Asp Gln Cys Asp Thr Gln Thr
35 40 45

Leu Arg Lys Lys Arg Phe Ile Phe Phe Cys Ser Thr Ala Trp Pro Gln
50 55 60

Tyr Pro Leu Gln Gly Arg Glu Thr Trp Leu Pro Glu Gly Ser Ile Asn
65 70 75 80

Tyr Asn Ile Ile Leu Gln Leu Asp Leu Phe Cys Arg Lys Glu Gly Lys
85 90 95

Trp Ser Glu Val Pro Tyr Val Gln Thr Phe Phe Ser Leu Arg Asp Asn
100 105 110

Ser Gln Leu Cys Lys Lys Cys Gly Leu Cys Pro Thr Gly Ser Pro Gln
115 120 125

Ser Pro Pro Pro Tyr Pro Ser Val Pro Ser Pro Thr Pro Ser Ser Thr
130 135 140

Asn Lys Asp Pro Pro Leu Thr Gln Thr Val Gln Lys Glu Ile Asp Lys
145 150 155 160

Gly Val Asn Asn Glu Pro Lys Ser Ala Asn Ile Pro Arg Leu Cys Pro
165 170 175

Leu Gln Ala Val Arg Gly Glu Phe Gly Pro Ala Arg Val Pro Val
180 185 190

Pro Phe Ser Leu Ser Asp Leu Lys Gln Ile Lys Ile Asp Leu Gly Lys
195 200 205

Phe Ser Asp Asn Pro Asp Gly Tyr Ile Asp Val Leu Gln Gly Leu Gly
210 215 220

Gln Ser Phe Asp Leu Thr Trp Arg Asp Ile Met Leu Leu Leu Asn Gln
225 230 235 240

Thr Leu Thr Pro Asn Glu Arg Ser Ala Ala Val Thr Ala Ala Arg Glu
245 250 255

Phe Gly Asp Leu Trp Tyr Leu Ser Gln Ala Asn Asn Arg Met Thr Thr
260 265 270

Glu Glu Arg Thr Thr Pro Thr Gly Gln Gln Ala Val Pro Ser Val Asp
275 280 285

Pro His Trp Asp Thr Glu Ser Glu His Gly Asp Trp Cys His Lys His
290 295 300

Leu Leu Thr Cys Val Leu Glu Gly Leu Arg Lys Thr Arg Lys Lys Pro
305 310 315 320

Met Asn Tyr Ser Met Met Ser Thr Ile Thr Gln Gly Lys Glu Glu Asn
325 330 335

Leu Thr Ala Phe Leu Asp Arg Leu Arg Glu Ala Leu Arg Lys His Thr
340 345 350

Ser Leu Ser Pro Asp Ser Ile Glu Gly Gln Leu Ile Leu Lys Asp Lys
355 360 365

Phe Ile Thr Gln Ser Ala Ala Asp Ile Arg Lys Asn Phe Lys Ser Leu
370 375 380

Pro Lys Leu Ala Ala Ala Leu Glu His His His His His His His
385 390 395

<210> 26
<211> 378
<212> PRT
<213> MSRV

<400> 26

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Ile Leu Glu Arg
1 5 10 15

Ile Leu Glu Asn Trp Asp Gln Cys Asp Thr Gln Thr Leu Arg Lys Lys
20 25 30

Arg Phe Ile Phe Phe Cys Ser Thr Ala Trp Pro Gln Tyr Pro Leu Gln
35 40 45

Gly Arg Glu Thr Trp Leu Pro Glu Gly Ser Ile Asn Tyr Asn Ile Ile
50 55 60

Leu Gln Leu Asp Leu Phe Cys Arg Lys Glu Gly Lys Trp Ser Glu Val
65 70 75 80

Pro Tyr Val Gln Thr Phe Phe Ser Leu Arg Asp Asn Ser Gln Leu Cys
85 90 95

Lys Lys Cys Gly Leu Cys Pro Thr Gly Ser Pro Gln Ser Pro Pro Pro
100 105 110

Tyr Pro Ser Val Pro Ser Pro Thr Pro Ser Ser Thr Asn Lys Asp Pro
115 120 125

Pro Leu Thr Gln Thr Val Gln Lys Glu Ile Asp Lys Gly Val Asn Asn
130 135 140

Glu Pro Lys Ser Ala Asn Ile Pro Arg Leu Cys Pro Leu Gln Ala Val
145 150 155 160

Arg Gly Gly Glu Phe Gly Pro Ala Arg Val Pro Val Pro Phe Ser Leu
165 170 175

Ser Asp Leu Lys Gln Ile Lys Ile Asp Leu Gly Lys Phe Ser Asp Asn
180 185 190

Pro Asp Gly Tyr Ile Asp Val Leu Gln Gly Leu Gly Gln Ser Phe Asp
195 200 205

Leu Thr Trp Arg Asp Ile Met Leu Leu Leu Asn Gln Thr Leu Thr Pro
210 215 220

Asn Glu Arg Ser Ala Ala Val Thr Ala Ala Arg Glu Phe Gly Asp Leu
225 230 235 240

Trp Tyr Leu Ser Gln Ala Asn Asn Arg Met Thr Thr Glu Glu Arg Thr
245 250 255

Thr Pro Thr Gly Gln Gln Ala Val Pro Ser Val Asp Pro His Trp Asp
260 265 270

Thr Glu Ser Glu His Gly Asp Trp Cys His Lys His Leu Leu Thr Cys
275 280 285

Val Leu Glu Gly Leu Arg Lys Thr Arg Lys Lys Pro Met Asn Tyr Ser
290 295 300

Met Met Ser Thr Ile Thr Gln Gly Lys Glu Glu Asn Leu Thr Ala Phe
305 310 315 320

Leu Asp Arg Leu Arg Glu Ala Leu Arg Lys His Thr Ser Leu Ser Pro
325 330 335

Asp Ser Ile Glu Gly Gln Leu Ile Leu Lys Asp Lys Phe Ile Thr Gln
340 345 350

Ser Ala Ala Asp Ile Arg Lys Asn Phe Lys Ser Leu Pro Lys Leu Ala
355 360 365

Ala Ala Leu Glu His His His His His
370 375

<210> 27		
<211> 25		
<212> DNA		
<213> MSRV		
<400> 27		
cttggagggt gcataaccag ggaat		25
<210> 28		
<211> 20		
<212> DNA		
<213> MSRV		
<400> 28		
tgtccgctgt gctcctgatc		20
<210> 29		
<211> 25		
<212> DNA		
<213> MSRV		
<400> 29		
ctatgtcctt ttggactgtt tgggt		25
<210> 30		
<211> 764		
<212> DNA		
<213> MSRV		
<400> 30		
tgtccgctgt gctcctgatc cagcacaggc gcccattgcc tctcccattt gggctaaagg		60
cttgccatttgcataaggcaca gctaagtgccttggtttcatttgcataatcgatc tgaacacttag		120
tcaactgggtt ccacggtttcttccatgac ccatggcttc taatagagct ataacactca		180
ctgcattggc caagattcca ttccattggaa tccgtgagac caagaacccc aggtcagaga		240
acacaaggct tgccaccatg ttggaaaggcag cccaccacca ttttggaaagc agccccccac		300
tatcttggaa gctctggag caaggacccc aggttacaat ttgggtgacca cgaaggggacc		360
tgaatccgca accatgaagg gatctccaaa gcaattggaa atgttcctcc caaggcaaaa		420
atgcccctaa gatgtatttgc ggagaattgg gaccaatttg accctcagac agtaagaaaa		480
aaatgactta tattttctg cagtaccgcc ctggccacga tatcctcttc aagggggaga		540
aacctggcct cctgaggaa gtataaattttaa taacaccatc ttacagctag acctgttttgc		600
tagaaaaagga ggcaaatttgcgttgccttgc atatttacaa actttctttt cattaaaaga		660
caactcgcaa ttatgttaac agtgtgattt gtgttcctac acggaagccc tcagattcta		720
ctccccaccc ccggcatctc ccctgaatcc ctcccccaact tatt		764
<210> 31		
<211> 800		
<212> DNA		
<213> MSRV		

<400>	31		
tgtccgctgt	gctcctgatc cagcacaggg	gccattgcc tctcccaatt gggctaaagg	60
cttgccattt	ttcctgcaca gctaagtgcc	tgggttcata ctaatcgac tgaacactag	120
tcactgggtt	ccacggttct cttccatgac	ccatggcttc taatagagct ataacactca	180
ctgcatggtc	caagattcca ttccttgaa	tccgtgagac caagaacccc aggtcagaga	240
acacaaggct	tgccaccatg ttgaaagcag	cccaccacca ttttggaaagc ggcccccac	300
tatcttggga	gctctggag caaggacccc	caggtaaaca tttggtgacc acgaagggac	360
ctgaatccgc	aaccatgaag ggatctcaa	agcaatttga aatgttcctc ccaaggcaaa	420
aatgccccta	agatgtattc tggagaattt	ggaccaatct gaccctcaga cagtaagaaa	480
aaaaatgact	tatattcttc tgcaagtaccg	cctggccacg gatatcctct tcaaggggg	540
gaaacctggc	ctcctgaggg aagtataat	tataacacca tcttacagct agacctgtt	600
tgttagaaaag	gaggcaaattt gagtgaagt	ccatatttac aaactttttt ttcattaaaa	660
gacaactcgc	aattatgtaa acagtgttat	tttgttccta caggaagccc tcagatctac	720
ctccctaccc	cggcatctcc ctgactcctt	ccccaaactaa taaggaccca cttcagccca	780
aacagtccaa	aaggacatag		800

<210> 32

<211> 65

<212> PRT

<213> MSRV

<400> 32

Pro	Met	Ala	Ser	Asn	Arg	Ala	Ile	Thr	Leu	Thr	Ala	Trp	Ser	Lys	Ile
1							5		10					15	

Pro	Phe	Leu	Gly	Ile	Arg	Glu	Thr	Lys	Asn	Pro	Arg	Ser	Glu	Asn	Thr
							20		25				30		

Arg	Leu	Ala	Thr	Met	Leu	Glu	Ala	Ala	His	His	His	Phe	Gly	Ser	Ser
							35		40			45			

Pro	Pro	Leu	Ser	Trp	Glu	Leu	Trp	Glu	Gln	Gly	Pro	Gln	Val	Thr	Ile
							50		55			60			

Trp
65

<210> 33

<211> 26

<212> DNA

<213> MSRV

<400> 33

tcatgcaact	gcactttct	ggtccg	26
------------	-----------	--------	----

```

<210> 34
<211> 28
<212> DNA
<213> MSRV

<400> 34
tcttgacta acctccactg tccgttgg                                28

<210> 35
<211> 28
<212> DNA
<213> MSRV

<400> 35
atcccccagt aacaatttgg tgaccacg                                28

<210> 36
<211> 31
<212> DNA
<213> MSRV

<400> 36
tcgggtctaa gagggtactt cctttggtag g                                31

<210> 37
<211> 25
<212> DNA
<213> MSRV

<400> 37
ttacgcaggt ctcagggatg agctt                                25

<210> 38
<211> 33
<212> DNA
<213> MSRV

<400> 38
cgcagtagc agtcttagta tctgaagcag tta                                33

<210> 39
<211> 28
<212> DNA
<213> MSRV

<400> 39
ggtaacggagg gtttcatgta gtttttag                                28

<210> 40
<211> 1247
<212> DNA
<213> MSRV

<220>
<221> misc_feature
<222> (1240)..(1240)
<223> n = a, g, c or t/u

```

```

<220>
<221> misc_feature
<222> (1246)..(1246)
<223> n = a, g, c or t/u

<400> 40
atggcagca gccatcatca tcacatcac agcagcgcc tggcgcccg cgccagccat      60
atggctagca tgactggtg acagcaaatg ggtcgatcc tagaacgtat tctggagaat     120
tgggaccaat gtgacactca gacgctaaga aagaaacgtat ttatattctt ctgcagtacc    180
gcctggccac aatatcctct tcaaggaga gaaacctggc ttccctgaggg aagtataaat    240
tataacatca tcttacagct agacctttc tgttagaaagg agggcaaatg gagtgaagtg    300
ccatatgtgc aaactttctt ttcatattaaga gacaactcac aattatgtaa aaagtgtgg     360
ttatgcccta caggaagccc tcagagtcca cctccctacc ccagcgtccc ctccccgact    420
ccttcctcaa ctaataagga ccccccctta acccaaacgg tccaaaagga gatagacaaa    480
gggttaaaca atgaacccaa gagtgccaat attccccat tatgccccct ccaaggcgtg    540
agaggaggag aattcggccc agccagagtg cctgtacctt tttctctc agacttaaag     600
caaattaaaa tagacctagg taaattctca gataaccctg acggctatat ttagtttt     660
caagggttag gacaatcctt tgatctgaca tggagagata taatgttact actaaatcag    720
acactaaccc caaatgagag aagtggcgct gtaactgcag cccgagagtt tggcgatctt   780
tggtatctca gtcaggccaa caataggatg acaacagagg aaagaacaac tcccacaggg    840
cagcaggcag ttcccaagtgt agaccctcat tggacacag aatcagaaca tggagattgg   900
tgccacaaac atttgctaacttgcgtcta gaaggactga ggaaaacttag gaagaagcct    960
atgaattact caatgatgtc cactataaca cagggaaagg aagaaaatct tactgtttt 1020
ctggacagac taagggaggc attgaggaag catacctccc tgcaccta ctctattgaa 1080
ggccaaactaa tcttaaagga taagtttac actcagtcag ctgcagacat tagaaaaaac 1140
ttcaaaagtc tgcctaagct tgcggccgca ctcgagcacc accaccacca ccactgagat 1200
ccggctgcta acaaagccc aaaggaagct gagttggtn gtggcna                  1247

<210> 41
<211> 1186
<212> DNA
<213> MSRV

<400> 41
atggctagca tgactggtg acagcaaatg ggtcgatcc tagaacgtat tctggagaat     60
tgggaccaat gtgacactca gacgctaaga aagaaacgtat ttatattctt ctgcagtacc    120
gcctggccac aatatcctct tcaaggaga gaaacctggc ttccctgaggg aagtataaat    180
tataacatca tcttacagct agacctttc tgttagaaagg agggcaaatg gagtgaagtg    240
ccatatgtgc aaactttctt ttcatattaaga gacaactcac aattatgtaa aaagtgtgg     300
ttatgcccta caggaagccc tcagagtcca cctccctacc ccagcgtccc ctccccgact    360

```

ccttcctcaa ctaataagga ccccccctta acccaaacgg tccaaaagga gatagacaaa	420
gggttaaaca atgaaccaa gagtgccaat attccccat tatgccccct ccaaggcagt	480
agaggaggag aattcgcccc agccagagtg cctgtacctt tttctctctc agacttaaag	540
caaattaaaa tagacctagg taaattctca gataaccctg acggctatat tgatgtttt	600
caagggttag gacaatcctt tgatctgaca tggagagata taatgttact actaaatcag	660
acactaaccc caaatgagag aagtgccgt gtaactgcag cccgagagtt tggcgatctt	720
tggtatctca gtcaggccaa caataggatg acaacagagg aaagaacaac tcccacaggc	780
cagcaggcag ttcccagtgt agaccctcat tggcacacag aatcagaaca tggagattgg	840
tgccacaaac atttgctaac ttgcgtgcta gaaggactga ggaaaactag gaagaagcct	900
atgaattact caatgatgtc cactataaca cagggaaagg aagaaaatct tactgcttt	960
ctggacagac taagggaggc attgaggaag catacctccc tgtcacctga ctctattgaa	1020
ggccaactaa tcttaagga taagttatc actcagtcag ctgcagacat tagaaaaaac	1080
ttcaaaaagtc tgcctaagct tgcggccgca ctcgagcacc accaccacca ccactgagat	1140
ccggctgcta acaaagcccg aaaggaagct gagttggctg gtggca	1186

<210> 42
 <211> 2030
 <212> DNA
 <213> MSRV

<400> 42	
atggccctcc cttatcatac ttttctctt actgttctct taccccttt cgctctcact	60
gcacccctc catgctgctg tacaaccagt agctccctt accaagagtt tctatgaaga	120
acgcggcttc ctggaaatat tgatgccccca tcata>tagga gtttatctaa ggaaactcc	180
accttcactg cccacaccca tatgccccgc aactgctata actctgccac tctttgcatg	240
catgcaaata ctcattattg gacagggaaa atgattaatc ctagttgtcc tggaggactt	300
ggagccactg tctgttggac ttacttcacc cataccagta tgtctgatgg gggtggaatt	360
caaggtcagg caagagaaaa acaagtaaag gaagcaatct cccaaactgac cccggggacat	420
agcaccccta gcccctacaa aggacttagtt ctctaaaaac tacatgaaac cctccgtacc	480
catactcgcc tggtaggcct atttaatacc accctcactc ggctccatga ggtctcagcc	540
caaaacccta ctaactgttg gatgtgcctc cccctgcact tcaggccata catttcaatc	600
cctgttcctg aacaatggaa caacttcagc acagaaataa acaccacttc cgttttagta	660
ggacctcttg tttccaatct gcaaataacc catacctcaa acctcacctg tgtaaaattt	720
agcaatacta tagacacaac cagctcccaa tgcacatcagg gggtaacacc tcccacacga	780
atagtctgcc taccctcagg aatattttt gtctgtggta cctcagccta tcattgtttt	840
aatggctctt cagaatctat gtgcttcctc tcattcttag tgcccccstat gaccatctac	900

actgaacaag	atttatacaa	tcatgtcgta	cctaagcccc	acaacaaaag	agtaccatt	960
cttcctttg	ttatcagagc	aggagtgcta	ggcagactag	gtactggcat	tggcagtatc	1020
acaacctcta	ctcagttcta	ctacaaacta	tctcaagaaa	taaatggtga	catggaacag	1080
gtcactgact	ccctggcac	cttgcaagat	caacttaact	ccctagcagc	agtagtcctt	1140
caaaatcgaa	gagctttaga	cttgctaacc	gccaaaagag	ggggAACCTG	tttattttta	1200
ggagaagaac	gctgttatta	tgttaatcaa	tccagaattt	tcactgagaa	agttaaagaa	1260
atcgagatc	gaatacataatg	tagagcagag	gagcttcaaa	acaccgaacg	ctggggcctc	1320
ctcagccaat	ggatgcctg	ggttctcccc	ttcttaggac	ctctagcagc	tctaattttt	1380
ttactcctct	ttggaccctg	tatcttaac	ctccttgtt	agtttgtctc	ttccagaatt	1440
gaagctgtaa	agctacagat	ggtcttacaa	atgaaacccc	agatggagtc	catgactaaag	1500
atccaccgtg	gaccctgga	ccggcctgct	agccatgct	ccgatgtta	tgacattgaa	1560
ggcacccctc	ccgaggaaat	ctcaactgca	caacccctac	tatgccccaa	ttcagcggga	1620
agcagttaga	gcggcatca	gccaacctcc	ccaacagcac	ttgggttttc	ctgttgagag	1680
gggggactga	gagacaggac	tagctggatt	tcctaggcca	acgaagaatc	cctaagccta	1740
gctgggaagg	tgactgcac	cacctctaaa	catggggctt	gcaacttagc	tcacacccga	1800
ccaaatcagag	agctcactaa	aatgctaatt	aggaaaaat	aggaggtaaa	gaaatagcca	1860
atcatctatt	gcctgagagc	acagcgggag	ggacaaggat	cggatataa	acccaggcat	1920
tcgagccggc	aacggcaacc	cccttgggt	cccctccctt	tgtatggcg	ctctgtttc	1980
actctatttc	actctattaa	atcttgcaac	tgaaaaaaaaa	aaaaaaaaaa		2030

<210> 43
<211> 2055
<212> DNA
<213> MSRV

<400> 43	cagcaacccc	ctttgggtcc	cctcccattt	tatggagct	ctgtttcac	tctatttac	60
	tctattaaat	catgcaactg	cactcttctg	gtccgtgttt	tttatggctc	aagctgagct	120
	tttggcgcc	atccaccact	gctgttgcc	accgtcacag	acccgctgct	gacttccatc	180
	ccttggatc	cagcagagt	tccgctgtgc	tcctgatcca	gcacaggcgc	ccattgcctc	240
	tcccaattgg	gctaaaggct	tgccattgtt	cctgcacagc	taagtgcctg	ggttcatcct	300
	aatcgagctg	aacactagtc	actgggttcc	acggttctct	tccatgaccc	atggcttcta	360
	atagagctat	aacactcact	gcatggtcca	agattccatt	ccttggaaatc	cgtgagacca	420
	agaaccccaag	gtcagagaac	acaaggctt	ccaccatgtt	ggaagcagcc	caccaccatt	480
	ttggaagcag	cccgccacta	tcttgggagc	tctgggagca	aggaccccaag	gtaacaattt	540
	ggtgaccacg	aagggacctg	aatccgcaac	catgaaggga	tctccaaagc	aatggaaac	600
	gttcccccccg	aggcaaaaat	gcccctagaa	cgtattctgg	agaattggga	ccaatgtgac	660

actcagacgc	taagaaaagaa	acgatttata	ttcttctgca	gtaccgcctg	gccacaat	720
cctcttcaag	ggagagaaaac	ctggcttcct	gaggagaagta	taaattataa	catcatctt	780
cagctagacc	tcttctgttag	aaaggagggc	aatggagtg	aagtgccata	tgtgcaaact	840
ttctttcat	taagagacaa	ctcacaatta	tgtaaaaagt	gtggtttatg	ccctacagga	900
agccctcaga	gtccacctcc	ctaccccagc	gtcccctccc	cgactccttc	ctcaactaat	960
aaggaccccc	ctttaaccca	aacggtccaa	aaggagatag	acaaagggt	aaacaatgaa	1020
ccaaagagtg	ccaatattcc	ccgattatgc	cccctccaag	cagtgagagg	aggagaattc	1080
ggcccagcca	gagtgcctgt	accttttct	ctctcagact	taaagcaaat	taaaatagac	1140
ctaggtaaat	tctcagataa	ccctgacggc	tatattgatg	ttttacaagg	gttaggacaa	1200
tcctttgatc	tgacatggag	agatataatg	ttactactaa	atcagacact	aaccccaaat	1260
gagagaagtg	ccgctgtaac	tgcagcccga	gagtttggcg	atcttggta	tctcagtcag	1320
gccaacaata	ggatgacaac	agaggaaaga	acaactccca	caggccagca	ggcagttccc	1380
agtgtagacc	ctcattggga	cacagaatca	gaacatggag	attgggtCCA	caaacatttg	1440
ctaacttgcg	tgctagaagg	actgaggaaa	actaggaaga	agcctatgaa	ttactcaatg	1500
atgtccacta	taacacaggg	aaaggaagaa	aatcttactg	cttttctgga	cagactaagg	1560
gaggcattga	ggaagcatac	ctccctgtca	cctgactcta	ttgaaggcca	actaatctta	1620
aaggataagt	ttatcactca	gtcagctgca	gacattagaa	aaaaacttca	aaagtccgtc	1680
ttaggctcgg	aacaaaactt	agaaaaccta	ttgaacttgg	caacctcggt	tttttataat	1740
agagatcagg	aggagcaggc	agaatggac	aatggata	aaaaaaaaag	ggccaccgct	1800
ttagtcatgg	ccctcaggca	agcggacttt	ggaggctctg	gaaaaggaa	aagctggca	1860
aataggaagc	ctaatagggc	ttgcttccag	tgccgtctac	aaggacactt	taaaaaagat	1920
tgtccaaata	gaaataagcc	gcccccttgt	ccatgcccct	tacgtcaagg	gaatcactgg	1980
aaggcccact	gccccagggg	atcaagatac	tctgagtcag	aagccattaa	ccagatgatc	2040
cagcagcagg	actga					2055

<210> 44
 <211> 1197
 <212> DNA
 <213> MSRV

<400> 44	ggaccctgtag	tatgggtaa	tcccctccgg	gaaaccaagc	cccagtactc	agaagaagaa	60
	atagaatggg	gaacctcacg	aggacatggt	ttcctccct	caggatggct	agccactgaa	120
	gaaggaaaaaa	tactttgct	ggcagctaac	caatggaaat	tactaaaaac	ccttcagcaa	180
	accttccact	taggcattga	tagcacccat	cagatagcca	aatcattatt	tactggacca	240
	ggcctttca	aaactatcaa	gcagatagtc	agggcctgtg	aagtgtCCA	aagaaataat	300

ccctgcctt atcgccaagc tccttcagga gaacaaagaa caggcaatta cccaagagaa	360
gactggcaac tagatttat ccacatgcc aaatcacagg gatttcagtg tctactagtc	420
tggtagata ct当地actgg ttggcagag gcctccct gt当地acaga aaagttccaa	480
gaggtaataa aggcaactgt tcatgaagta attcccagat tcggacttcc ct当地ggctta	540
cagagtgaca atggctctgc tttcaaggcc acagtaaccc agggagtatc ccaggcgtta	600
ggtagataat atcacttaca ctgcacctag agggcacaat cctcaggaa ggttgagaaa	660
atgaaaacac tcaaaccgaca tctaaacaag ctaaccagg aaacccacct cgcatggct	720
gctctgttgt ctatagcctt actaagaatc caaaactctc cccaaaaggc aggacttagc	780
ccatacagaa tgctgtatgg acggtccttc ctaaccaatg accttctgct tgaccaagag	840
atggccaact tagttgcaga catcacctcc ttagccaaat atcaacaatg tctaaaaca	900
ttacaaggag cctgtccccg agaggagggaa aaagaaatat tccaccctgg tgtcatggta	960
ttagtcaagt cccttcctc taattcccc tccctagaca catcctgggg aggaccctac	1020
ccagtcattt tatctatccc aactgcggtt aaagtggctg gagtggagtc ttggatacat	1080
cacactcgaa tcaaaccctg gatactgccc aagaacccg aaaatccagg ggacaacgct	1140
agctatttct ttgaacctct agaggatctg tgccgtct tcaagcaaca accgtga	1197

<210> 45
 <211> 1718
 <212> DNA
 <213> MSRV

<400> 45	
gagaatagca gcataagttg gctggcagaa gtagggaaag acagcaagaa gtaaagaaaa	60
aaaggagaaa gtcagagaaa gaaaaaaaaga gaggergaaa caaagaagaa cttgaagaga	120
gaaagaagta gtaaagaaaa aacagtatac cctattcctt taaaagccag ggtaaatttc	180
tgtctaccta gccaaggcat attcttctta tgtggacat caacctatat ctgcctcccc	240
actaactgga caggcaccag aaccttagtc tttctaaatgc ccaacattaa cattgcccc	300
ggaaatcaga ccctattggc acctgtcaaa gctaaagtcc gtcagtgccag agccatacaa	360
ctaataatccc tatttatagg gtaggaatg gctactgcta caggaactgg aatagccgg	420
ttatctactt cattatccta ctaccataca ctctcaaaga atttctcaga cagtttgc当地	480
gaaataatga aatctattct tactttacaa tcccaattag actctttggc agcaatgact	540
ctccaaaacc gccgaggccc acacccctc actgctgaga aaggaggact ctgcaccc	600
ttagggaaag agtgggttt tacactaac cagtcaggaa tagtacgaga tgccacctgg	660
catttacagg aaagggttc tgatatcaga caatgcctt caaactctt taccaaccc	720
tggagttggg caacatggct tcttccattt ctaggtccca tggcagccat cttgtgtt	780
ctcaccttg ggccctgtat tttaagctt cttgtcaaatt ttgtttccctc taggatcgaa	840
gccccatcaagc tacagatggc cttacaaatg gaacccaaa tgagttcaac taacaacttc	900

taccaaggac ccctggaacg atccactggc acttccacta gcctagagat tcccctctgg	960
aagacactac aactgcaggg cccttcttt gcccstatcc agcaggaagt agctagagcg	1020
gtcatcggcc aaattccaa cagcagttgg ggtgtcctgt ttagaggggg gattgaagag	1080
tgacagcctg ctggcagcct cacagccctc gttggatctc agtgcctcct cagccttgg	1140
gcccaactctg gccgtgcttg aggagccctt cagcctgcca ctgcactgtg ggagccttctt	1200
tctgggctgg acaaggccgg agccagctcc ctcagcttgc agggaggtat ggagggagag	1260
atgcaggcgg gaaccaggcgc tgcgcatggc gcttgcgggc cagcatgagt tccaggtggg	1320
cgtgggctcg gcgggccccca cactcgggca gtgaggggct tagcacctgg gccagacaga	1380
tgctgtgctc aacttcttcg ctggcctta gctgccttcc ccgtggggca gggctacggg	1440
aacatgcagc ctgccccatgc ttgagcccc cacccggccg tgggttctyng cacagccaa	1500
gcttcccgga caagcaccac cccttatcca cggtgcccag tcccatcaac cacccaagg	1560
ttgaggagtg cgggcacaca ggcgcggatt ggcaggcagt tccacttgcg gccttggtgc	1620
gggatccact gcgtgaagcc agctgggctc ctgagtcctgg tggggacttg gagaatctt	1680
atgtctagct aaggattgt aaatacacca atcagcac	1718