Unit 10: D.C. circuits:

Subunit 10.3: Potential dividers:

Topical Question No: 1

37 A potential divider consists of two resistors of resistances R_1 and R_2 connected in series across a source of potential difference (p.d.) V_{in} . The p.d. across R_1 is V_{out} .

Which changes to R_1 and to R_2 will increase the value of V_{out} ?

	R ₁	R ₂
Α	doubled	doubled
В	doubled	halved
С	halved	doubled
D	halved	halved

Topical Question No: 2

36 A potential divider circuit is constructed with one variable resistor X and one fixed resistor Y, as shown.

The potential difference across resistor X is V_X and the potential difference of resistor Y is V_Y .

As the resistance of X is increased, what happens to V_X and to V_Y ?

	V _X	V _Y
Α	falls	rises
В	falls	stays the same
С	rises	falls
D	rises	stays the same

Topical Question No: 3

38 The circuit shown consists of two resistors of resistances $10 \, k\Omega$ and $50 \, k\Omega$ and a component Y.

A 6.0 V supply is provided. The electric potential of the bottom wire is 0 V.

The current in component Y is negligible.

What is the electric potential at junction X?

- **A** 1.0 V
- **B** 1.2 V
- **C** 4.8 V
- **D** 5.0 V

Topical Question No: 4

37 In the circuits shown, the cell has negligible internal resistance.

Which diagram shows a potential divider circuit that can vary the potential difference (p.d.) across the lamp?

37 In the circuit shown, XY is a length L of uniform resistance wire. R_1 and R_2 are unknown resistors. J is a sliding contact that joins the junction of R₁ and R₂ to points on XY through a small signal lamp S.

To determine the ratio $\frac{V_1}{V_2}$ of the potential differences across R_1 and R_2 , a point is found on XY at which the lamp is off. This point is at a distance *x* from X.

What is the value of the ratio $\frac{V_1}{V_2}$?

A $\frac{L}{x}$ B $\frac{x}{L}$ C $\frac{L-x}{x}$ D $\frac{x}{L-x}$

Topical Question No: 6

36 A potential divider circuit is formed by connecting a battery of negligible internal resistance in series with two variable resistors, as shown.

The variable resistors have resistances R_X and R_Y . V_X is the potential difference across resistance R_X .

 R_X and R_Y are both changed at the same time.

Which combination of changes must cause V_X to increase?

	R _X	R_{Y}
Α	larger	larger
В	larger	smaller
С	smaller	larger
D	smaller	smaller

35 A potential divider consists of resistors of resistance R_1 and R_2 connected in series across a source of potential difference V_0 . The potential difference across R_1 is V_{out} .

Which changes to R_1 and R_2 will increase the value of V_{out} ?

	R ₁	R ₂
Α	doubled	doubled
В	doubled	halved
С	halved	doubled
D	halved	halved

Answer Key

- 1. N/A
- 2. N/A
- 3. N/A
- 4. C
- 5. N/A
- 6. N/A
- 7. N/A