Final Report On

Compresspro

Prepared by

Md. NASIM MOLLA MUH2025024M Year-03, Term-01

E-mail: nasim2515@student.nstu.edu.bd

Supervised by

Md. Eusha Kadir
Lecturer
Institute of Information Technology
Noakhali Science and Technology University

Submission Date: 09.07.23

07-09-2023

Contents

3
3
3
3
4
4
4
5
6
6

Compresspro

1.Abstract

The "Compresspro" project is a Java-based compression and decompression tool that allows users to choose between two algorithms: Huffman Coding and LZW Compression. This report outlines the project's design, implementation, usage instructions, testing, and results.

2. Introduction

Data compression is essential in various fields to reduce storage requirements and improve data transmission efficiency. The "Compresspro" project aims to provide an easy-to-use compression and decompression tool with support for two popular compression algorithms: Huffman Coding and LZW Compression.

3. Objectives

- 1) The main objectives of the project are as follows: Implement the Huffman Coding algorithm for data compression and decompression.
- 2) Implement the LZW Compression algorithm for data compression and decompression.
- 3) Develop a user-friendly command-line interface for compression and decompression operations.
- 4) Evaluate the performance and effectiveness of both compression algorithms.

4. Project Scope

The scope of the project includes the implementation of two compression and decompression algorithms and the development of a command-line interface for users to interact with the tool. The project does not cover graphical user interfaces or additional features beyond compression and decompression

5. Project Design

Architecture Overview

IIT, NSTU, SE 2112 Software Project Lab 1, Session 2019-2020, Year 2023, Final Report

The project follows a modular design, separating the core compression and decompression algorithms from the user interface. The architecture consists of the following components:

There are five class in my project. They are as follows: -

Main.java: This module interacts with users. User can use this class for file compressing and decompressing.

HuffmanNode.java: This class define node needed for Huffman coding algorithm.

HuffmanTree.java: This class construct tree for compression and also contain method for decoding.

LzwEncoding: This class compress the given file and return a encoded code.

LzwDecoding: This class decompress the code into original file and return the original file.

6. Implementation

Language and Tools: -

Programming Language: Java with OOP Development Environment: NetBeans

Data Structures

- Hash Map: Stores key-value pairs for substring substitution.
- Array List: Stores encoded and decoded data dynamically.
- StringBuilder: Uses for mutable string array.
- Priority Queue: Stores data based on priority.

7. Usage Instructions

Explain how users can compress data using both Huffman and LZW algorithms. Explain how users can decompress compressed data using both Huffman and LZW algorithms.

8. Testing

Test Cases

IIT, NSTU, SE 2112 Software Project Lab 1, Session 2019-2020, Year 2023, Final Report

Describe the test cases used to evaluate the correctness of the compression and decompression processes.

Performance Evaluation

Algorithm Type:

<u>Huffman Coding:</u> Huffman is a variable-length prefix coding algorithm. It assigns shorter codes to more frequent symbols in the input data.

<u>LZW Algorithm:</u> LZW is a dictionary-based compression algorithm that replaces repeating sequences of characters with shorter codes. Compression Efficiency:

Compression Efficiency:

<u>Huffman Coding:</u> Huffman is efficient for compressing data with varying symbol frequencies. It works well when some symbols are more frequent than others.

<u>LZW Algorithm:</u> LZW is effective for compressing data with repeating patterns, such as text data or certain types of binary data. Dictionary Usage:

Adaptability:

Huffman Coding: Huffman is not adaptive; the tree structure is fixed based on input statistics.

<u>LZW Algorithm:</u> LZW is adaptive; it dynamically updates its dictionary as it encounters new patterns in the input data.

9. Results/Work flow

```
Choose algorithm
Press '1' for Huffman Coding
Press '2' for LZW

2
Press '1' for encode
Press '2' for decode

1
Compressed: [109, 100, 32, 110, 97, 115, 105, 109, 32, 109, 111, 108, 108, 97]
Choose algorithm
Press '1' for Huffman Coding
Press '2' for LZW

2
Press '1' for encode
Press '2' for decode

2
Decompressed: md nasim molla
```

10. Future Improvements

I will develop a user-friendly interface for "Compresspro" tool. Further I will learn another algorithm like, Lz77 and Gzip algorithm and include into my software tool.

11. Conclusion

I have successfully learned and implement Huffman coding and Lzw compression and decompression algorithm. I faced challenges during working with this project such as time management and learn those algorithms.