Quantitative Methods in Finance

Tutorial, Part 8: Regression models with dummy explanatory variables.

Example 1: Based on quarterly data on profits and sales of industrial enterprises in the United States in the period 1965q1–1970q4 (data file profit.dta; both variables are expressed in billion USD at constant prices) estimate the following regression function:

$$PROFIT_t = \beta_1 + \beta_2 SALES + u_t$$

and analyze the potential impact of the seasonal component on the link between the (numeric) variables by using dummy explanatory variables.

Computer printout of the results in Stata:

. tsset quarter

time variable: quarter, 1965q1 to 1970q4 delta: 1 quarter

. twoway connected profit quarter

. twoway connected sales quarter

- . gen q=quarter(dofq(quarter))
- . tabulate q, gen(d)

q	Freq.	Percent	Cum.
1	6	25.00	25.00
2	6	25.00	50.00
3	6	25.00	75.00
4	6	25.00	100.00
Total	 24	100.00	

. list quarter profit sales q d1-d4

-	+ quarter 	profit	sales	d 	d1	d2	d3	+ d4
1. 2. 3. 4. 5.	1965q1 1965q2 1965q3 1965q4 1966q1	10.503 12.092 10.834 12.201 12.245	114.862 123.968 121.454 131.917 129.911	1 2 3 4 1	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 1 0
6. 7. 8. 9.	1966q2 1966q3 1966q4 1967q1 1967q2	14.001 12.213 12.82 11.349 12.615	140.976 137.828 145.465 136.989 145.126	2 3 4 1 2	0 0 0 0 1	1 0 0 0	0 1 0 0	0 0 1 0 0
11. 12. 13. 14. 15.	1967q3 1967q4 1968q1 1968q2 1968q3	11.014 12.73 12.539 14.849 13.203	141.536 151.776 148.862 158.913 155.727	3 4 1 2 3	0 0 1 0	0 0 0 1	1 0 0 0	0 1 0 0 0
16. 17. 18. 19. 20.	1968q4 1969q1 1969q2 1969q3 1969q4	14.947 14.151 15.949 14.024 14.315	168.409 162.781 176.057 172.419 183.327	4 1 2 3 4	0 1 0 0	0 0 1 0	0 0 0 1	1 0 0 0 1
21. 22. 23. 24.	1970q1 1970q2 1970q3 1970q4	12.381 13.991 12.174 10.985	170.415 181.313 176.712 180.37	1 2 3 4	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 0 1

. regress profit sales

Source	ss	df		MS		Number of obs F(1, 22)		24 11.70
Model Residual Total	16.4051235 30.8438618 47.2489853	1 22 23	1.40	051235 199372 430371		Prob > F R-squared Adj R-squared Root MSE	= = =	0.0024 0.3472 0.3175 1.1841
profit	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
sales _cons	.0409541 6.597974	.0119	. — –	3.42 3.59	0.002	.0161249 2.781452		0657832 10.4145

. regress profit sales d1-d4

note: d4 omitted because of collinearity

Source	SS	df	MS	Number of obs = 24
	-+			F(4, 19) = 5.26
Model	24.8290561	4	6.20726403	Prob > F = 0.0050
Residual	22.4199291	19	1.17999627	R-squared = 0.5255
	-+			Adj R-squared = 0.4256
Total	47.2489853	23	2.05430371	Root MSE = 1.0863

profit		Std. Err.	t	P> t	[95% Conf.	Interval]
sales	.0382462	.0114809	3.33	0.004	.0142163	.062276
d1	1838562	.6542925	-0.28	0.782	-1.553306	1.185594
d2	1.139036	.6307096	1.81	0.087	1810546	2.459126
d3	4016617	.6361179	-0.63	0.535	-1.733072	.9297484
d4	(omitted)					
_cons	6.872219	1.892072	3.63	0.002	2.912067	10.83237

. regress profit sales d2-d4

Source	SS	df	MS		Number of obs	= 24
	+				F(4, 19)	= 5.26
Model	24.8290561	4 6.2	0726403		Prob > F	= 0.0050
Residual	22.4199291	19 1.1	7999627		R-squared	= 0.5255
	+				Adj R-squared	= 0.4256
Total	47.2489853	23 2.0	5430371		Root MSE	= 1.0863
profit	 Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
profit	 Coef. +	Std. Err.	t	P> t	[95% Conf.	Interval]
profit sales	Coef.	Std. Err. .0114809	t 3.33	P> t 0.004	[95% Conf. 	Interval]
	' +					
sales	.0382462	.0114809	3.33	0.004	.0142163	.062276
sales d2	.0382462 1.322892	.0114809	3.33 2.07	0.004 0.052	.0142163	.062276
sales d2 d3	.0382462 1.322892 2178055	.0114809 .6384745 .6322552	3.33 2.07 -0.34	0.004 0.052 0.734	.0142163 0134505 -1.541131	.062276 2.659234 1.10552

. test d3=d4=0

- (1) d3 d4 = 0(2) d3 = 0

F(2, 19) = 0.20 Prob > F = 0.8197

. regress profit sales d2

Source	SS	df	MS		Number of obs	
Model Residual Total	24.35495 22.8940352 	21 1.090	177475 179215 130371		F(2, 21) Prob > F R-squared Adj R-squared Root MSE	= 0.0005 = 0.5155
profit	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
sales d2 _cons	.0393105 1.331353 6.515581	.010575 .4930214 1.623084	3.72 2.70 4.01	0.001 0.013 0.001	.0173186 .3060584 3.140194	.0613024 2.356647 9.890968

Example 2: Based on the data for 150 industrial enterprises we were estimating the following production function: $\ln Q_i = \beta_1 + \beta_2 \ln L_i + \beta_3 \ln K_i + u_i$.

We divided the enterprises according to their ownership and got the following results:

- state ownership: $\widehat{\ln Q} = 3.63 + 0.53 \ln L + 0.48 \ln K$;
- mixed ownership: $\widehat{\ln Q} = 3.24 + 0.18 \ln L + 0.68 \ln K$;
- private ownership: $\widehat{\ln Q} = 4.73 + 0.23 \ln L + 0.55 \ln K$.

Based on the estimated production functions, write out a single regression model with explicit values of regression coefficients that will allow for a simultaneous estimation of the above three production functions.

Example 3: For 100 four-person households, we gathered data on their expenditures for food (*EXP* in 1,000 monetary units) and disposable income (*INCOME* in 1,000 monetary units). We estimated the following regression functions:

$$\widehat{EXP} = 43.523 + 0.175 INCOME$$
 $R^2 = 0.452$;

$$\widehat{EXP} = 31.251 + 4.317DI + 13.251D2 + 0.163INCOME$$

 $se(b_i): (5.44) (2.15) (4.25) (0.05)$ $R^2 = 0.642.$

We divided the households into three groups: agricultural, mixed, and non-agricultural. We also defined two dummy variables: DI equals 1, if the household is mixed, and D2 equals 1, if the household is non-agricultural.

- a) Interpret the estimated regression coefficients in both regression functions.
- b) Check the assumption that the type of household does not affect the expenditures.
- c) Can we claim that at a given level of income, the average expenditures for food in mixed households are higher than that of agricultural households?
- d) Explain why we used only two dummy variables, although we divided households into three groups.