5.8. Practice on Itô integrals. Consider the two processes

$$X_t = \int_0^t (1-s) dB_s, \qquad Y_t = \int_0^t (1+s) dB_s.$$

- (a) Find the mean and the covariance of the process $(X_t, t \ge 0)$. What is its distri-
- (b) Find the mean and the covariance of the process $(Y_t, t \ge 0)$. What is its distri-
- (c) For which time t, if any, do we have that X_t and Y_t are uncorrelated? Are X_t
- and Y_t independent at these times?

Cov(Xt, Xs) =
$$E(X \in Xs) = \int_{0}^{min(s+t)} (-u)^{2} du = min(s+t) - min^{2}(s+t) + \frac{1}{3} min^{2}(s+t)$$

Xt 73 Caussian distribution, Xt ~ $N(0, t+t^{2}+\frac{1}{3}t^{3})$

(c)
$$C_{\text{ov}}(x_{\epsilon}, \tau_{\epsilon}) = E(x_{\epsilon}|t) = \int_{t}^{t} (1-t)(1+t)dt = t - \frac{1}{3}t^{3} = t(1-\frac{1}{3}t^{2})$$

 $t > 0$, $C_{\text{ov}}(x_{\epsilon}, \tau_{\epsilon}) = 0$ when $t = 0$ or $t = \sqrt{3}$,

Xt. It are four Common distribution. So uncorrected independent 5.11. Practice on Itô integrals. Let
$$(B_t, t \ge 0)$$
 be a Brownian motion defined on $(\Omega, \mathcal{F}, \mathbf{P})$. We define for $t \ge 0$ the process

$$X_t = \int_0^t \operatorname{sgn}(B_s) dB_s,$$
 where $\operatorname{sgn}(x) = -1$ if $x < 0$ and $\operatorname{sgn}(x) = +1$ if $x \ge 0$.

The integral is well-defined even though $s \mapsto \operatorname{sgn}(B_s)$ is not continuous.

(a) Compute the mean and the covariance of the process $(X_t, t \ge 0)$.

(b) Show that X_t and B_t are uncorrelated for all $t \ge 0$.

$$(\alpha) E(Xt) = \int_0^t E[sgn(Bs)dBs] = 0$$

$$Cov(Xt, Xs) = E(XtXs) = E(\int_0^t win(s,t) sgn(Bu) dBu) = min(s,t)$$

(b) (ov(x+, R+) = E(x+B+) = E((+ squ(Bs)ds) = 0. Ht>0 (c) Show that X_t and B_t are not independent. (Use $B_t^2 = 2 \int_0^t B_s dB_s + t$.) It turns out that $(X_t, t \ge 0)$ is a standard Brownian motion. See Theorem 7.26.

Bt = 2 10 Bs dls +t, if Xt and Bt are independent E(XEBE) = ZE[(Sqn(B)) dBs (BudBu) + tE(Xt)

=
$$2\int_{0}^{t} E(|B_{3}|) ds = 2\int_{0}^{t} \sqrt{\frac{25}{\pi}} ds = \frac{4}{3}\sqrt{\frac{2}{\pi}} t^{\frac{2}{2}} \pm 0$$

> Xt and Be one not independent