Food Classification using VGG16

```
In [9]: import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    from tensorflow.keras.applications import VGG16
    from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
    from tensorflow.keras.models import Model
In [10]: train_dir = 'D:\data science\Data scientist\Projects\Project 6 Food class\Fast Food
    validation_dir = 'D:\data science\Data scientist\Projects\Project 6 Food class\Fast
```

Data Augmentation

```
In [11]: train datagen = ImageDataGenerator(
             rescale=1./255,
             rotation_range=20,
             width shift range=0.2,
             height_shift_range=0.2,
             shear_range=0.2,
             zoom_range=0.2,
             horizontal flip=True,
             fill_mode='nearest'
         train_generator = train_datagen.flow_from_directory(
             train_dir,
             target_size=(224, 224),
             batch_size=32,
             class_mode='categorical'
         # Data preprocessing for validation (only rescaling, no augmentation)
         validation_datagen = ImageDataGenerator(rescale=1./255)
         validation_generator = validation_datagen.flow_from_directory(
             validation dir,
             target_size=(224, 224),
             batch_size=32,
             class_mode='categorical'
```

Found 15000 images belonging to 10 classes. Found 3500 images belonging to 10 classes.

Building the model

```
In [12]: base_model = VGG16(weights='imagenet', include_top=False)
# Add new classifier layers
```

```
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# Combine base model and new layers
model = Model(inputs=base_model.input, outputs=predictions)

# Freeze pre-trained layers
for layer in base_model.layers:
    layer.trainable = False
```

Training the model

```
In [24]: from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatri
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import EarlyStopping

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy

early_stopping = EarlyStopping(monitor='val_loss', patience=3, verbose=1, restore_b

history = model.fit(
    train_generator,
    epochs=20,
    validation_data=validation_generator,
    callbacks=[early_stopping]
)
```

```
Epoch 1/20
109/469 [=====>.....] - ETA: 2:11 - loss: 0.8669 - accuracy: 0.71
76
C:\Users\deepchanddc2\.conda\envs\py310\lib\site-packages\PIL\Image.py:981: UserWarn
ing: Palette images with Transparency expressed in bytes should be converted to RGBA
images
  warnings.warn(
```

```
y: 0.7234 - val loss: 1.0489 - val accuracy: 0.6706
Epoch 2/20
y: 0.7307 - val loss: 1.0261 - val accuracy: 0.6846
Epoch 3/20
y: 0.7326 - val_loss: 1.0377 - val_accuracy: 0.6797
y: 0.7325 - val_loss: 1.0549 - val_accuracy: 0.6757
y: 0.7445 - val_loss: 1.0223 - val_accuracy: 0.6826
Epoch 6/20
y: 0.7462 - val loss: 1.0300 - val accuracy: 0.6929
Epoch 7/20
y: 0.7477 - val_loss: 1.0125 - val_accuracy: 0.6903
Epoch 8/20
y: 0.7487 - val_loss: 1.0122 - val_accuracy: 0.6994
Epoch 9/20
y: 0.7575 - val loss: 1.0833 - val accuracy: 0.6823
y: 0.7559 - val_loss: 1.0314 - val_accuracy: 0.6846
Epoch 11/20
y: 0.7650 - val_loss: 0.9975 - val_accuracy: 0.6977
Epoch 12/20
y: 0.7698 - val_loss: 1.0438 - val_accuracy: 0.6906
Epoch 13/20
y: 0.7691 - val_loss: 0.9668 - val_accuracy: 0.7169
Epoch 14/20
y: 0.7745 - val_loss: 1.0318 - val_accuracy: 0.7060
Epoch 15/20
y: 0.7783 - val_loss: 0.9975 - val_accuracy: 0.7006
Restoring model weights from the end of the best epoch: 13.
y: 0.7833 - val loss: 1.0177 - val accuracy: 0.7077
Epoch 16: early stopping
```

Saving the trained model

Model Performance

```
In [31]: plt.figure(figsize=(12, 3))
         # Plot training & validation accuracy values
         plt.subplot(1, 2, 1)
         plt.plot(history.history['accuracy'])
         plt.plot(history.history['val_accuracy'])
         plt.title('Model accuracy')
         plt.xlabel('Epoch')
         plt.ylabel('Accuracy')
         plt.legend(['Train', 'Validation'], loc='upper left')
         # Plot training & validation loss values
         plt.subplot(1, 2, 2)
         plt.plot(history.history['loss'])
         plt.plot(history.history['val_loss'])
         plt.title('Model loss')
         plt.xlabel('Epoch')
         plt.ylabel('Loss')
         plt.legend(['Train', 'Validation'], loc='upper left')
         plt.tight_layout()
         plt.show()
```



```
In [27]: Y_pred = model.predict(validation_generator)
         y_pred = np.argmax(Y_pred, axis=1)
         # Get true labels
         true_labels = validation_generator.classes
         # Plot confusion matrix
         cm = confusion_matrix(true_labels, y_pred)
         plt.figure(figsize=(10, 8))
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=validation_genera
         disp.plot(cmap=plt.cm.Blues, values format='d')
         plt.title('Confusion Matrix')
         plt.xlabel('Predicted Class')
         plt.ylabel('True Class')
         plt.xticks(rotation=45)
         plt.show()
         # Print classification report
         print(classification_report(true_labels, y_pred, target_names=validation_generator.
```


Predicted Class

	precision	recall	f1-score	support
Baked Potato	0.11	0.11	0.11	400
Burger	0.09	0.09	0.09	300
Crispy Chicken	0.13	0.14	0.14	400
Donut	0.11	0.12	0.12	300
Fries	0.10	0.09	0.09	400
Hot Dog	0.10	0.08	0.09	300
Pizza	0.09	0.08	0.09	300
Sandwich	0.12	0.11	0.11	300
Taco	0.12	0.15	0.13	400
Taquito	0.11	0.10	0.11	400
accuracy			0.11	3500
macro avg	0.11	0.11	0.11	3500
weighted avg	0.11	0.11	0.11	3500

Prediction from test set

```
import numpy as np
import matplotlib.pyplot as plt
def preprocess_image(image_path):
    img = image.load_img(image_path, target_size=(224, 224))
    img array = image.img to array(img)
    img_array = np.expand_dims(img_array, axis=0)
    return img_array / 255.0 # Normalize pixel values to [0, 1]
def predict class and display(image path, model):
   # Preprocess the image
   processed image = preprocess image(image path)
   # Predict class probabilities
   probabilities = model.predict(processed image)
   # Get the class label with highest probability
   class_index = np.argmax(probabilities[0])
   # Map class index to class label
   labels = ['Baked potato', 'Burger', 'Crispy Chicken', 'Donut', 'Fries', 'Hot Do
   predicted_class = labels[class_index]
   # Display the image
   img = image.load_img(image_path)
   plt.imshow(img)
   plt.axis('off')
   plt.title('Predicted Class: ' + predicted_class)
   plt.show()
   return predicted_class, probabilities[0]
# Load the saved model
model path = r'D:\data science\Data scientist\Projects\Project 6 Food class\food cl
model = tf.keras.models.load_model(model_path)
# Example usage:
image path = r'D:\data science\Data scientist\Projects\Project 6 Food class\Fast Fo
predicted_class, probabilities = predict_class_and_display(image_path, model)
print("Predicted class:", predicted_class)
print("Probabilities:", probabilities)
```

1/1 [=======] - 0s 118ms/step

Predicted Class: Donut

Predicted class: Donut

Probabilities: [0.01528531 0.14946644 0.1648008 0.32641947 0.05095739 0.05446512

0.04122512 0.0865146 0.08327381 0.0275919]