厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§4.5 线性变换

- 1. 设 A 是给定的二阶方阵、 $\varphi: F^{2\times 2} \to F^{2\times 2}, X \mapsto AX XA$, 求证:
- $(1) \varphi$ 是线性变换;
- (2) 求 φ 在基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵.

证明: (1) 对任意的 $X, Y \in F^{2\times 2}$, 有

$$\varphi(X) = AX - XA, \varphi(Y) = AY - YA,$$

$$\varphi(X+Y) = A(X+Y) - (X+Y)A = AX - XA + AY - YA = \varphi(X) + \varphi(Y).$$

对任意 $c \in F$, 有

$$\varphi(cX) = A(cX) - (cX)A = c(AX - XA) = c\varphi(X).$$

$$\varphi(E_{11}) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) - \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = -bE_{12} + cE_{21}.$$

同理可得 $\varphi(E_{12}) = -cE_{11} + (a-d)E_{12} + cE_{22}, \ \varphi(E_{21}) = bE_{11} - (a-d)E_{12} - bE_{22},$ $\varphi(E_{22}) = bE_{12} - cE_{21}$. 所以

$$\varphi(E_{11}, E_{12}, E_{21}, E_{22}) = (E_{11}, E_{12}, E_{21}, E_{22}) \begin{pmatrix} 0 & -c & b & 0 \\ -b & a - d & 0 & b \\ c & 0 & d - a & -c \\ 0 & c & -b & 0 \end{pmatrix}.$$

即 φ 在基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵为

$$\begin{pmatrix}
0 & -c & b & 0 \\
-b & a - d & 0 & b \\
c & 0 & d - a & -c \\
0 & c & -b & 0
\end{pmatrix}.$$

2. 设线性变换 $\varphi: F^3 \to F^3, (a_1, a_2, a_3)^T \mapsto (a_3, 2a_1, a_2 + a_3)^T.$

- (1) 求 φ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵;
- (2) 求 φ 在基 $\varepsilon_3, \varepsilon_1, \varepsilon_2$ 下的矩阵;
- (3) 求 φ 在基 $\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1$ 下的矩阵;
- (4) 记 $\alpha = (1,1,1)^T$, 求 $\varphi(\alpha)$ 在基 $\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1$ 下的坐标;
- (5) 问 φ 是否是可逆的? 若是, 写出 φ^{-1} .

解: $(1) \varphi(\varepsilon_1) = 2\varepsilon_2, \varphi(\varepsilon_2) = \varepsilon_3, \varphi(\varepsilon_3) = \varepsilon_1 + \varepsilon_3,$ 所以 $\varphi(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)A$, 其中 $A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

(2)
$$\varphi(\varepsilon_3, \varepsilon_1, \varepsilon_2) = (\varepsilon_3, \varepsilon_1, \varepsilon_2) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$
.

(3) 因 $(\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)P$, 其中 $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, 从而

 φ 在 $\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1$ 下的矩阵为 $P^{-1}AP$, 即

$$\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)^{-1} \left(\begin{array}{ccc} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

 $(4) (法一) \varphi(\alpha) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) A(1, 2, 2)^T = (\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1) P^{-1} A(1, 2, 2)^T,$ 故 $\varphi(\alpha)$ 在基 $\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1$ 下的坐标为 $P^{-1} A(1, 2, 2)^T$.

(法二) $\varphi(\alpha) = (1,2,2)^T = (\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1)(x,y,z)^T$, 解得 $x = \frac{1}{2}, y = \frac{3}{2}, z = \frac{1}{2}$. $\varphi(\alpha) = (\varepsilon_1 + \varepsilon_2, \varepsilon_2 + \varepsilon_3, \varepsilon_3 + \varepsilon_1)(\frac{1}{2}, \frac{3}{2}, \frac{1}{2})^T$.

(5) 由
$$\varphi$$
 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵 A 的行列式 $\begin{vmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0$, 故 φ 是可逆的. $\varphi^{-1}: F^3 \to F^3, \varphi^{-1}(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)A^{-1}$.

- 3. 设 A 相似于 B, 则对于任意正整数 m 和任意 $c \in F$, 有
- (1) A^m 相似于 B^m ;
- (2) cA 相似于 cB;
- (3) A^T 相似于 B^T ;
- $(4) \det(A) = \det(B);$
- (5) tr(A) = tr(B);

- (6) A 可逆当且仅当 B 可逆,且 A^{-1} 相似于 B^{-1} ;
- (7) $A^2 = A$ 当且仅当 $B^2 = B$.

证明: 因为 A 相似于 B, 则存在可逆矩阵 P, 使得 $B = P^{-1}AP$.

- (1) $B^m = (P^{-1}AP)^m = P^{-1}A^mP$, $\text{th } A^m \text{ Half } B^m$;
- (2) $cB = cP^{-1}AP = P^{-1}(cA)P$, 故 cA 相似于 cB;
- (3) $B^T = (P^{-1}AP)^T = P^TA^T(P^{-1})^T = P^TA^T(P^T)^{-1}$, $\text{th } A^T \text{ find } T = P^TA^T(P^T)^{-1}$
- (4) $\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \det(A);$
- (5) $tr(B) = tr(P^{-1}AP) = tr(APP^{-1}) = tr(A)$;
- (6) 若 A 可逆,且有 $B = P^{-1}AP$ 可得 $\det(B) = \det(P^{-1}AP) \neq 0$,所以 B 可逆.反之若 B 可逆,则 A 可逆.由 $B = P^{-1}AP$ 可知, $B^{-1} = (P^{-1}AP)^{-1} = P^{-1}A^{-1}P$,故 A^{-1} 相似于 B^{-1} ;
- (7) 由 $A^2=A$, $B=P^{-1}AP$, 可得 $A=PBP^{-1}=A^2=(PBP^{-1})^2=PB^2P^{-1}$, 又因 P 可逆,所以 $B^2=B$. 同理可得 $B^2=B$ 时 $A^2=A$.
 - 4. 设 A 相似于 B, C 相似于 D, 证明:

$$\begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$$
相似于 $\begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}$.

证明: 因为 A 相似于 B, C 相似于 D, 则分别存在相应的可逆矩阵 P, Q 使得 $B=P^{-1}AP$, $D=P^{-1}CP$. 构造可逆阵 $\left(egin{array}{c} P & 0 \\ 0 & Q \end{array} \right)$. 则

$$\left(\begin{array}{cc} P & 0 \\ 0 & Q \end{array} \right)^{-1} \left(\begin{array}{cc} A & 0 \\ 0 & C \end{array} \right) \left(\begin{array}{cc} P & 0 \\ 0 & Q \end{array} \right) = \left(\begin{array}{cc} P^{-1}AP & 0 \\ 0 & Q^{-1}CQ \end{array} \right) = \left(\begin{array}{cc} B & 0 \\ 0 & D \end{array} \right).$$

5. 设 φ 是 n 维线性空间 V 的线性变换,满足 $\varphi^2 = \varphi$, 且 dimIm $\varphi = r < n$. 证明存在 V 的一个基 $\xi_1, \xi_2, \dots, \xi_n$, 使得

$$\varphi(\xi_1,\xi_2,\cdots,\xi_n)=(\xi_1,\xi_2,\cdots,\xi_n)\begin{pmatrix} E_r & 0\\ 0 & 0 \end{pmatrix}.$$

证明: 设 $\eta_{r+1}, \dots, \eta_n$ 为 $\operatorname{Ker}\varphi$ 的一个基, 将其扩为 V 的一个基 $\eta_1, \dots, \eta_r, \eta_{r+1}, \dots, \eta_n$,则 $\varphi(\eta_1), \dots, \varphi(\eta_r)$ 线性无关.

令 $\xi_i = \varphi(\eta_i)(i=1,\cdots,r), \xi_j = \eta_j(j=r+1,\cdots,n),$ 可证 $\xi_1,\cdots,\xi_r,\xi_{r+1},\cdots,\xi_n$ 是 V 的一个基. 事实上,设 $a_1\xi_1+\cdots+a_r\xi_r+a_{r+1}\xi_{r+1}+\cdots+a_n\xi_n=0,$ 将线性变

换 φ 作用于上式两边,得 $0 = a_1 \varphi(\xi_1) + \dots + a_r \varphi(\xi_r) = a_1 \varphi^2(\eta_1) + \dots + a_r \varphi^2(\eta_r)$. 因 $\varphi^2 = \varphi$,因此上式化为 $a_1 \varphi(\eta_1) + \dots + a_r \varphi(\eta_r) = 0$. 由 $\varphi(\eta_1), \dots, \varphi(\eta_r)$ 线性 无关,得 $a_1 = \dots = a_r = 0$,从而 $a_{r+1}\xi_{r+1} + \dots + a_n\xi_n = 0$,而 ξ_{r+1}, \dots, ξ_n 即 $\eta_{r+1}, \dots, \eta_n$ 线性无关,因此 $a_{r+1} = \dots = a_n = 0$.

注意到 $\varphi^2 = \varphi$, 因此对 $1 \le i \le r$, $\varphi(\xi_i) = \varphi^2(\eta_i) = \varphi(\eta_i) = \xi_i$; 对 $r+1 \le i \le n$, $\varphi(\xi_i) = \varphi(\eta_i) = 0$, 故 $\varphi(\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) = (\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$.

6. 设 φ 是 n 维线性空间 V 上的线性变换,满足 $\varphi^n=0$, $\varphi^{n-1}\neq 0$. 求证: 存在 V 的一个基,使得 φ 在这个基下的矩阵是

$$\left(\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right).$$

证明: 因 $\varphi^{n-1} \neq 0$, 故存在 $\alpha \in V$, 使得 $\varphi^{n-1}(\alpha) \neq 0$. 只要证明 $\alpha, \varphi(\alpha), \dots, \varphi^{n-1}(\alpha)$ 为 V 的一个基,则

$$\varphi(\varphi^{n-1}(\alpha), \cdots, \varphi(\alpha), \alpha) = (\varphi^{n-1}(\alpha), \cdots, \varphi(\alpha), \alpha) \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

事实上,设

$$a_0\alpha + a_1\varphi(\alpha) + \dots + a_{n-1}\varphi^{n-1}(\alpha) = 0, \tag{1}$$

将 φ^{n-1} 作用于式 (1) 两边,由 $\varphi^n=0$,得 $a_0\varphi^{n-1}(\alpha)=0$. 而 $\varphi^{n-1}(\alpha)\neq 0$,从而 $a_0=0$,将其代入 (1) 式. 再将 φ^{n-2} 作用于 (1) 式两边,同理可得 $a_1=0$,以此类 推,即得 $a_2=\cdots=a_{n-1}=0$. \square

(李小凤解答)