Теория вероятностей

Краткие заметки. Автор: Темплин К.Э

Содержание

1	Кла	Классическая вероятность		
	1.1	Услов	ная вероятность	3
		1.1.1	Независимость событий	4
		1.1.2	Формула полной вероятности	4
		1.1.3	Формула Байеса	4

1 Классическая вероятность

При определении классической вероятность важны следующие условия:

- 1. Хотя бы 1 событие произойдёт (исходы образуют полную группу событий)
- 2. Исходы попарно несовместны
- 3. Исходы равновероятны

Пусть тогда $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ - элементарные исходы, по определению:

$$P(\omega_i) = \frac{1}{n}$$

Тогда рассмотрим $A \sqsubseteq \Omega$ - некоторое событие. Те $\omega_i \in A$, называют исходами, благопрятствующими событию A.

Свойства классической вероятности:

- 1. $\Omega := \{\omega_1, \dots, \omega_n\}, \ P(\Omega) = 1$
- 2. $\emptyset : P(\emptyset) = 0$
- 3. Если A, B несовместны, тогда $P(A \sqcup B) = P(A) + P(B)$
- 4. $P(A \sqcup B) = P(A) + P(B) P(A \sqcap B)$, в общем случае аналогично формуле включений-исключений
- 5. $\bar{A} := \Omega$ $A \Rightarrow P(\bar{A}) = 1 - P(A)$
- 6. $P(A_1 \sqcup \cdots \sqcup A_k) < P(A_1) + \cdots + P(A_k)$

1.1 Условная вероятность

Пусть в пространстве элементарных исходов $\Omega = \{\omega_1, \ldots, \omega_n\}$ задано непустое событие $B = \{\omega_{i1}, \ldots, \omega_{ik}\}, k \geq 1$. Пусть также задано событие A. Тогда вероятность P(A|B) события A при условии того, что событие B уже реализовалось, можно определить следующим образом:

$$P(A|B) = \frac{|A \sqcap B|}{|B|} = \frac{|A \sqcap B \cdot \frac{1}{|\Omega|}}{|B| \cdot \frac{1}{|\Omega|}} = \frac{P(A \sqcap B)}{P(B)}$$

$$P(A|B)P(B) = P(A \sqcap B)$$

1.1.1 Независимость событий

Условие того, что событие A не зависит от B выглядит следующим образом:

$$P(A|B) = P(A)$$

то есть знание о том, что B произошло не дает нам никакой новой информации. Более удобная формулировка выходит из формулы умножения:

$$P(A \sqcap B) = P(B)P(A|B) = P(A)P(B)$$
$$P(A \sqcap B) = P(A)P(B)$$

1.1.2 Формула полной вероятности

Пусть некоторое пространство элементарных событий Ω может быть представлено как объединение конечного числа непересекающихся подмножеств B_1, B_2, \ldots, B_k . Тогда для вероятности произвольного события $A \subseteq \Omega$ верна формула полной вероятности:

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i)$$

доказывается посредством применения теоремы умножения.

1.1.3 Формула Байеса

Другая важная с практической точки зрения формула, связанная с формулой полной вероятности, — это формула Байеса. Пусть события B_1, \ldots, B_k попарно не пересекаются и в объединении дают все множество элементарных исходов. Тогда вероятность события A по формуле полной вероятности равна

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i)$$

Часто бывает необходимо найти вероятность $P(B_i|A)$ события B_i при условии, что событие A произошло. Если применить теорему умножения двумя разными способами, получим:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}$$