

影像強化處理

目標任務

· 對此次課程提供的影像使用直方圖等化(Histogram Equalization, HE)和限制對比度自適應直方圖等化(Contrast Limited Adaptive Histogram Equalization, CLAHE)進行影像增強(Image Enhancement)

- ・ 使用函數:
 - cv2.equalizeHist
 - cv2.createCLAHE
- · 使用以下參數對影像做CLAHE操作:
 - clipLimit: 2.0
 - tileGridSize: 8

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist

Parameters	Description
images	Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F, and the same size. Each of them can have an arbitrary number of channels.
channels	List of the dims channels used to compute the histogram. The first array channels are numerated from 0 to images[0].channels()-1, the second array channels are counted from images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
mask	Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
histSize	Array of histogram sizes in each dimension.
ranges	Array of the dims arrays of the histogram bin boundaries in each dimension. (see more)
hist	Output histogram, which is a dense or sparse dims -dimensional array.
accumulate	Accumulation flag. If it is set, the histogram is not cleared in the beginning when it is allocated. This feature enables you to compute a single histogram from several sets of arrays, or to update the histogram in time.


```
def calc_histogram(image, use_bgr=False):
    c = 3 if use_bgr else 1
    hist = [cv2.calcHist([image], [i], None, [256], [0, 255]) for i in range(c)]
    return hist
```

```
def plot_pic(hist, use_bgr=False):
    color = ['b','g','r'] if use_bgr else ['gray']
    for i, col in enumerate(color):
        plt.plot(hist[i], color=col)
        plt.xlim([0, 255])
    plt.show()
```



```
image = cv2.imread('./pout.bmp')
grayimage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

bgr_hist = calc_histogram(image, use_bgr=True)
plot_pic(bgr_hist, use_bgr=True)
gray_hist = calc_histogram(grayimage, use_bgr=False)
plot_pic(gray_hist, use_bgr=False)
```


MIT Lab.

Multimedia
Intelligent Technical
Laboratory

最佳曝光:畫素在整個色調曲

線範圍內平均分佈。

曝光過度: 畫素聚集在色階分

佈圖的右側。

曝光不足: 畫素聚集在色階分

佈圖的左側。

富士相機Fujifilm Taiwan

直方圖等化

cv2.equalizeHist(src[, dst]) -> dst

Parameters	Description
src	Source 8-bit single channel image.
dst	Destination image of the same size and type as src .

直方圖等化

直方圖等化

MIT Lab.

Multimedia
Intelligent Technical
Laboratory

限制對比度自適應直方圖等化

cv2.createCLAHE([, clipLimit[, tileGridSize]]) -> retval

Parameters	Description
clipLimit	Threshold for contrast limiting.
tileGridSize	Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.

限制對比度自適應直方圖等化

超級比一比

CLAHE

MIT Lab.

Multimedia
Intelligent Technical
Laboratory

S. Jenifer, S. Parasuraman, and A. Kadirvelu, "Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm," *Applied Soft Computing*, vol. 42, pp. 167-177, 2016.

HΕ

主程式


```
image = cv2.imread('./pout.bmp')
grayimage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
he_image = HE(grayimage)
clahe_image = CLAHE(grayimage)
images = [grayimage, he_image, clahe_image]
titles = ['GRAY', 'HE', 'CLAHE']
plt.figure()
for i in range(3):
    plt.subplot(1, 3, i+1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()
```

實作結果

原圖 HE CLAHE

Thanks for listening