Title: A simulation exercise

Author: eyangs

Overview:

Exponential distribution is simulated in R (lambda = 0.2), and then the distribution of averages of 40 exponentials is investigated with comparison of the Central Limit Theorem

Simulations:

```
#using rexp function to simulate (n=40, lambda=0.2)
#using a function getmeans to obtain averages of 40 exponentials
#calculate cumsum of averages divide (1:n)
#ggplot draw figure to show the asymptopia
library(ggplot2)
n<-1000
getmeans<-function(n){
  mns = 0
  for(i in 1:n) mns=c(mns, mean(rexp(40,.2)))
}
getvars<-function(n, means){</pre>
  vars = NULL
  for(i in 1:n) vars=c(vars, var(means[1:i]))
  vars
}
temp<- getmeans(n)
means<- cumsum(temp)/(1:n)
vars<- getvars(n,temp)
g1<-ggplot(data.frame(X=1:1000, Y=means), aes(x=X, y=Y))
g1<- g1 + geom_line(size=2) + labs(x="Number of means", y="Cumulative mean")
g1<- g1 + geom_hline(aes(yintercept=mean(temp))) + geom_hline(aes(yintercept=1/0.2,colour =
"red"))
g1
g2<-ggplot(data.frame(X=1:1000, Y=vars), aes(x=X, y=Y))
g2<- g2 + geom_line(size=2) + labs(x="Number of vars", y="Cumulative vars")
                                           geom_hline(aes(yintercept=var(temp)))
geom_hline(aes(yintercept=((1/0.2)^2)/40,colour = "red"))
g2
```

Sample Mean versus Theoretical Mean:

Sample mean: 4.953934 theoretical mean: 1/lambda=5

When n>500, the sample mean become close to 4.953934, the theoretical mean is 5 which is highlighted in red.

Sample Variance versus Theoretical Variance:

Sample variance: 0.6259166 theoretical variance: ((1/lambda)^2)/40=25/40=0.625

When n>750, the sample variance become close to 0.6259166, the theoretical variance is 0.625 which is highlighted in red. These two lines are Overlapping

Distribution:

#draw histogram with parameter of rexp (1000)
#using for-loop to obtain 1000 averages of 40 exponentials
#draw histogram of the 1000 averages
hist(rexp(1000), main="1000 exponentials histogram",xlab="")
mns = NULL
for (i in 1 : 1000) mns = c(mns, mean(rexp(40,0.2)))
hist(mns, freq=F, main="40 averages of exponentials")
lines(density(mns))

1000 exponentials histogram

Histogram of mns

As the figure above shown, This distribution of averages of 40 exponentials looks far more Gaussian than the original exponentials distribution!