Лабораторная работа 4.5.2 Интерференция лазерного излучения Выполнил Жданов Елисей Б01-205

1 Цель работы:

Исследование видности интерференционной картины излучения гелий-неонового лазера и определение длины когерентности излучения.

2 Оборудование:

Не-Nе лазер

Интерферометр Майкельсона с подвижным зеркалом

Фотодиод с усилителем

Осциллограф

Поляроид

Линейка

3 Теоретическая справка

Гелий-неоновый лазер Лазер представляет собой интерферометр Фабри-Перо – газовую трубку с двумя параллельными зеркалами по обе стороны. Пусть ΔF – половина диапазона генерации лазера, а $\Delta \nu$ – межмодовое расстояние. Тогда межмодовое расстояние выражается как

$$\Delta \nu = \frac{c}{2L}$$

При этом число мод можно оценить как

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu}$$
.

Видимость Видимость интерфереционной картины – параметр, определяемый формулой

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},$$

где I_{max} , I_{min} – максимальная и минимальная интенсивности света интерфереционной картины вблизи выбранной точки. Разобьём его на произведение функций параметров установки

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$

Здесь у1

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},$$

где $\delta = \frac{B_m^2}{A_m^2}$, A_m^2 и B_m^2 – интенсивности волн. Параметр δ выражает отношение интенсивностей интерферирующих волн.

Величина γ_2 зависит от геометрической разности хода интерферирующих волн,

$$\gamma_2 = \frac{\sum\limits_n A_n^2 \cos \frac{2\pi \Delta \nu n l}{c}}{\sum\limits_n A_n^2},$$

где l – разность хода, $\Delta \nu$ – спектральный состав излучения, A_n^2 – интенсивности мод.

Рис. 1: Зависимость $\gamma_2(l)$.

Приблизим γ_2 вблизи максимума

$$\gamma_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2}$$

Таким образом, ма имеем гауссову зависимость видности от разности хода $\gamma_2(l)$ с полушириной

$$l_{1/2} = \frac{c}{\pi \Delta F} \sqrt{\ln 2} \approx \frac{0.26c}{\Delta F}.$$

Величина γ_3 соответсвует тому факту, что при интерференции поляризованных волн интерфирируют лишь компоненты, поляризованные одинкаово. ПУсть α – угол между плоскостями поляризаций волн, тогдв

$$\gamma_3 = |\cos \alpha|$$
.

4 Экспериментальная установка

В работе используется интерферометр Майкельсона, схема работы которого представлена на рис. 2. При этом для регистрации фоновой засветки, интенсивности света пучков, максимумов и минимумов интерференционной картины используется осциллограф, на котором наблюдается осциллограма, представленная на рис. 3.

5 Измерения, Обработка

- 1-6) Настройку системы опущу, скажу только, что была проверена юстировка системы "на выходе".
- 7-8) Установим углы поляроида, под которыми интерференционная картина на экране обладает максимальной четкостью. Это 85°. Минимумы, соответственно, расположены на 90° на обе стороны.
- 9-10) Произведем зависимость величин $h_1 h_4$ от угла. Результаты занесем в таблицу ниже

 $\nu(\phi)$

φ , °	h_1	h_2	h_3	h_4	ν
85	0,0	7,0	7,0	7,0	-
90	0,0	7,0	7,0	8,0	_
95	0,0	7.0	6,8	8,8	-
100	0,0	7,2	6,5	9,5	_
105	0,1	7,5	6,2	10,0	_
110	0,8	7,2	6,0	10,8	(0.47 ± 0.04)
115	1,0	7,1	5,5	10,8	$(0,49 \pm 0,04)$
120	1,1	7,2	5,0	11,4	(0.57 ± 0.04)
125	1,4	7,2	4,8	12,4	(0.59 ± 0.03)
130	1,3	7,2	4,4	12,8	$(0,67 \pm 0,03)$
135	1,7	7,2	4,0	13,5	$(0,69 \pm 0,03)$
140	1,8	7,4	3,8	14,2	(0.72 ± 0.03)
145	1,4	7,3	3,8	13,8	$(0,77 \pm 0.03)$
150	2,0	7,5	3,2	15,8	(0.81 ± 0.03)
155	2,2	7,8	2,8	17,0	(0.86 ± 0.02)
160	2,6	7,6	2,5	17,8	(0.86 ± 0.02)
165	2,6	7,3	2,0	18,5	(0.91 ± 0.02)
170	2,3	7,2	2,0	17,8	(0.93 ± 0.02)
175	3,0	7,1	1,6	18,5	(0.92 ± 0.02)
180	2,9	7,0	1,6	18,5	(0.92 ± 0.02)

Построим соответствующий график

Как видим, зависимость линейная, то есть лазерный луч действительно поляризован случайно.

11-12) Построим график зависимости видности от разности хода между пучками. Данные можно найти в приложенной электронной таблице

На графике даже видны промежуточные горбы графика видности.

Максимумы графика $x_1 = 10 \pm 1$ см и $x_2 = 75 \pm 1$ см.

Тогда
$$L = \frac{x_2 - x_1}{2} = 33 \pm 1$$
 см.

И межмодовое расстояние $\nu_m = (4.3 \pm 0.2) \cdot 10^8$ Гц.

Оценим полуширину кривой. $l_{1/2} = 9$ см (первая кривая).

Полуширина диапазона частот $\Delta F = 1.2 \cdot \frac{c_0}{l_{1/2}} \approx 2 \cdot 10^9$ Гц.

А число мод $n=1+1.2\frac{L}{l_{1/2}}=5\pm1$

6 Вывод

В работе была успешно исследована видность интерференционной картины излучения гелий-неонового лазера, была определена его поляризация. Полученные зависимости согласуются с теоретическими.

7 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф