US 252 Introduction to Computer Engineering, Fail 18 Homework 6

Student Details:

Student Name: Mo Felonda

> Section: 005

Net ID: felonda@wisc.edu

Course Details: Sections 2 and 5

Instructor: Prof. Adil Ibrahim

Primary Contact for this homework: Yutian Tao (ytao37@wisc.edu)

Total points: 32

Problem 1 (6 points)

There are three basic constructs to decompose a task: sequential, conditional, and iterative.

Explain each construct's concept using a flow chart. (2 for each chart)

The following LC-3 program increments each of the numbers stored in memory location A through memory location B. Assume these locations have already been initialized with meaningful numbers. Then the program can always finish execution. The addresses A and B can be found in memory locations x30ff and x3100.

a. Fill in the missing instructions of the code (6: 0.5 for each row)

This is the tribering inear dealers of alle code (c. c.e for edel) tow			
x3000	0010 0000 1111 1110	R0 <- M[x30ff]	
x3001	0010 0010 1111 1110	R1 <- M[x3100]	
x3002	0001 0010 0110 0001	R1 <- R1 + 1	
x3003	1001 0010 0111 1111	R1 <- NOT R1	
x3004	0001 0010 0110 0001	R1 <- R1 + 1	
x3005	0001 0110 0000 0001	R3 <- R0 + R1	
x3006	0000 0100 0000 0101	BRz PC + x005 (i.e. If Z, go to x300c)	
x3007	0110 0100 0000 0000	R2 <- M[R0] (hint: using LDR)	
x3008	0001 0100 1010 0001	R2 <- R2+ 1	
x3009	0111 0100 0000 0000	M[R0] <- R2 (hint: using STR)	
x300a	0001 0000 0010 0001	R0 <- R0+ 1	
x300b	0000 1111 1111 1001	BRnzp PC - x007 (i.e. If N/Z/P, go to	
		x3005)	
x300c	1111 0000 0010 0101	HALT	

Student Details:

Student Name: Mo Felonda

Section: 005

Net ID: felonda@wisc.edu

b. After the above program finishes execution,

(i) what's the value in R3? (1)

R3 = 0

(ii) Will R0 save the value as the address B? (1)

No, the address is saved after B.

c. If the instruction at x3002 is removed, will the program still get correct results? If not, what's wrong? (2)

No, the program will not get correct results, as it does not increment the value in address B.

Problem 3 (4 points)

The tables below show the contents of memory and registers before and after an LC-3 instruction at location x3001 is executed. Identify the instruction located at x3001 and give its comment given the information below.

	Before	After
R0	x2100	x2100
R1	x2279	x2279
R2	x4A41	x4A41
R3	x1532	x1532
R4	xEFFF	xEFFF
R5	x0244	x0D12
R6	x350A	x350A
R7	x533C	x533C
x3500	x5671	x5671
x3501	x0D12	x0D12
x3502	x1743	x1743
x3503	x53A3	x53A3

LC-3 Instruction (2)	Comment (2)
0110 1011 1011 0111	R5 <- M[R6 – 9]

Student Details:

Student Name: Mo Felonda

Section: 005

Net ID: felonda@wisc.edu

Problem 4 (12 points)

Consider an algorithm which takes the absolute value of a 2's complement number stored in memory location 0x4022 and writes the result to the memory location 0x4023. (Note: The example, the absolute value of -5 is 5, and the absolute value of 15 is 15 itself.)

a. We can represent the algorithm as the flowchart below by decomposing it into its basic constructs. Fill in the missing instructions for each block. (5)

b. Convert the above algorithm to an LC-3 program. Write the program in LC-3 binary code with comment. The program should start at memory address x3000. (Hint: use LDI and STI to access memory locations and you can store 0x4022 and 0x4023 in memory 0x3006 and 0x3007 to use) (7)

```
; R2 <- M[M[x3006]]
0x3000
          ; 1010 0100 0000 0101
0x3001
          ; 0000 0110 0000 0010
                                   ; BRzp PC + 2 (if Z,P goto 0x3004)
0x3002
          ; 1001 0100 1011 1111
                                   ; R2 <- NOT R2
          : 0001 0100 1010 0001
                                   ; R2 <- R2 + 1
0x3003
0x3004
          ; 1011 0100 0000 0010
                                   ; M[M[x3007]] <- R2
          ; 1111 0000 0010 0101
0x3005
                                   : HALT
```