Un See 1 water

(1)

Construct a Turing Machine that reverses its inputs (Input - 0010111; Output - 1110100)

Turing Machine Components:

Alphabet S = {\(\tilde{L}\), 0,1,*,0',1'\forall \(\tilde{L}\) \(\

Transition function (S):-

- a) Start from the left, from the starting position of the string
- b) Replace the character with symbol *; capture the state
 - e) Proceed from left to right. Replace the Right character with the left one.
- d) Proceed from right to left and replace.
- e) Repeat above steps, till we reach the middle of the string.

 States and other transitions

Start:

 $\begin{array}{c}
(Q_0,0) \to (Y_0,*,+1) \\
(Q_0,1) \to (Y_0,*,+1) \\
(Q_0,L) \to (Q_0,L,-1)
\end{array}$

Left to right movement:

$$(\gamma_{0},0) \rightarrow (\gamma_{0},0,\pm 1)$$
 $(\gamma_{1},0) \rightarrow (\gamma_{1},1,\pm 1)$
 $(\gamma_{0},1) \rightarrow (\gamma_{0},1,\pm 1)$ $(\gamma_{1},0) \rightarrow (\gamma_{1},1,\pm 1)$

Right to left:

- a) Replace the Right character with left
- b) Proceed and Correct the mark it with Right Character.

a) change the direction from Right to left $\begin{array}{c} (\gamma_0, \sqcup) \rightarrow (\ell_0, \sqcup, -1) \\ (\gamma, \sqcup) \rightarrow (\ell_1, \sqcup, -1) \end{array}$ $(l_{0'}, 0) \rightarrow (l_{0}, 0', -1) \quad (l_{1'}, 0) \rightarrow (l_{1}, 1', -1)$ $(l_{0'}, 1) \rightarrow (l_{1}, 0', -1) \quad (l_{1}, 1) \rightarrow (l_{1}, 1', -1)$ $(Y_{0}, 0') \rightarrow (\lambda_{0'}, 0', -1) (Y_{1}, 0') \rightarrow (\lambda_{1'}, 0', -1)$ $(Y_{0}, 0') \rightarrow (\lambda_{0'}, 1', -1) (Y_{1}, 1') \rightarrow (\lambda_{1'}, 1', -1)$ b) Proced from Right to left $(l_0, 0) \rightarrow (l_0, 0, -1)$ $(l_0, 0) \rightarrow (l_0, 0, -1)$ $(l_0, 0) \rightarrow (l_0, 0, -1)$ $(l_0, 0) \rightarrow (l_0, 0, -1)$ c) Replace the marks of with Right character $(10,4) \rightarrow (90,0,+1)$ (P, x) > (Po, 1, +1) d) End of the function (lo1, x) > (9f, 0, +1) (1,1,*) > (ap, 1, +1) (ap, 0') 7 (ap, 0, +1) (qe,11) > (qe,1,+1) (Org, L) > HALT

	Sequence of Configurations
Start	00000 1 1 1 1 1 × 0 1 0 0
L→R	* 0 1 0 1 1 1 1 Replace 1 1 1 0 1 0 0
()	# D TO D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1)	* 0 1 0 1 1 Replace 1 1 1 * 1 0 0
11	* 0 1 0 1 1 END 1 1 0 1 0'
11	TO END I I O I O'
-()	* 0 0 1 END 1 0 0 0,5
14	* 0 1 0 1 1 1 1 1 1 0 1 0 0 1
Interchange	* 0 1 0 1 1 1 HALT
LER	* 0 1 0 1 1 0'
N	* 0 1 0 1 1 0'
<u> </u>	* 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1
U	* 0 1 0 1 1 0
· II	* 0 1 0 1 1 0'
11	* 0 1 0 1 1 0'
Replace	
LAR	1 * 10 0 1 1 0
11	1 * 1 0 1 0
U	1 * 1 0 1 0
11	1 * 1 0 1 1 0 0
1)	1 * 1 0 1 1 0'
Interdonge	1 * 1 0 1 1 0.
LER	1 × 1 0 1 0 0
3 11	1 * 1 0 1 0, 0,
11	1 * 1 0 1 0 0
Ų	1 * 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Replace	
L + R	11* 0'10'0'
U	11 * 0 1 0 0 0 1
1)	
Interchange	1 1 * 0 1 0 0 0
. 4 R	1 1 * 0' 1' 0' 0'

H.W Let T(n) be the maximum number of steps Performed by a Twing Machine with En states 1.5 and < n symbols before it terminates, starting with the empty tape. Prove that the function T(n) grows faster than any Computable total function b(n). Lim T(n) = 0broot .-Let Mis a TM, with A states and S-symbols T = function for the number of steps when Q = S = n T = T(n) = maximum number of steps taken by M before HALT b is a computable total function. So, there exists a TM, say, M' such that M1 (n) = b(n) say T' is the number of steps taken by M' using same configuration Q,S. Since Tie the maximum steps for n-symbol, m-state TM, T' < T if T' is greater that T, then such TM, M' will not HALT. Because of this, we can say there exist NEMI, Such that, n >N ifunction t(n) grows much faster than b(n) Example For S= {1, Lig, A= {19 with h= states for a given input no number of maximum steps T(n) = O(n) (wary representation) Say bis a computable function to convert in to binary using some S, A. Then complexity of such TM, M! m'(n) = b(n) = o[logn]An grows higher n >x, O[n] grave faster than o[logn] therfore $\lim_{n\to\infty} \frac{T(n)}{b(n)} = \frac{O(n)}{O(\log n)} \to \infty$

	Additional problem 1.
	Write a TM that takes input as a binary number a castring
	in 0 & 1) and outputs (a-1) (in binary)
	Turing Machine Components:
	Alphabet S= { 11,0,19
	External Alphabet A = {0,1} (ACS)
	States $Q = \{q_0, r_0, r_1, l_0, l_1, l_1^1, q_2\}$
	Transition function (d):-
1.	Charl C III
	Start from the left, traverse the input string to the right-most
2.	Capture the states for 0,1 to the right end. It input
	String is au 0's, Hall.
3.	If Input string is (0's & 1's) Start traversing from left to
	nght
٧.	If we have I as right most, charge to 0 and Hout
5.	If we have a as right most, charge to 2 and proceed left
	till we get 1 to change to 0 and Hall. Along the way,
	change 0 to 1.
	States and their transitions:-
	Start:- traverse left:-
	$(q_{0},0) \rightarrow (q_{0},0,+1)$
	$(20,0) \rightarrow (1,1,1)$ $(20,0) \rightarrow (2,1,1,-1)$
**************************************	$(l_0, l) \rightarrow (l_1, 0, -l)$
	traverse right:
	$ (r_{0},0) \rightarrow (r_{0},0,+1) $ $ (l_{1},1) \rightarrow (q_{p},0,-1) $
	$(x_0) \rightarrow (x_0)$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$(r, 1) \rightarrow (r, 1, +1)$
	(7, L) 7 (10, L) HALT:
	(ro, u) → (ap, 10, -1)
	2010 Jeros 114 65 (A
	b) If we reach second from left
	a) The reach 1 from left of
	a) all me really thousand of
!	Scanned with CamScanner

Ex-1	Sequence of Configurations:
Start LTR U 11 11 12 14 15 17 18 19 19 10 11 11 11 12 13 14 15 16 17 18 18 18 19 19 19 19 19 19 19	
EX-2 Start	0000 (16)
L→R	
U	10000
11	
(I	10000
()	10000
LER	1 0 0 0 0
U	10011
l,	
11	
()	0 1 1 1 1
Stop	0° 1 1 1 (15)
The state of the s	

6

Let $T = \{M \mid M \text{ is a Twing machine}\}$ Find a function $f:T \to NI$ such that if N and M are Twing machines and f(N) = f(M) then N = M (that is, N and M have the Same alphabet, same transition function etc)

For a given TM, M, Transition function is the set of Configurations formed by states, symbols and shift

Statis Q = {90,9,... and external Alphabet A = {a, az ... and} Alphabet S = {s, s, ... snz} blank symbol L

Transition function of is a set of value over $S(q, s_P) = (q', s', \Delta P) \Delta P - Shift in Position.$

In this case our function f: T > NI where

MI withe set of integers

we need to assign Stateget to each value for a, A, S

O, - n, states

A - no external alphabets

S - nº Sampolo

By using the property: - Bry number can be represented by foctors of prime numbers, say, 2,3,5

we can represent each TM as

 $f(M) = 2^{n_1} \cdot 3^{n_2} \cdot 5^{n_3}$

using some notation we can say

Since f(m) = f(N)

we can say Turing machines N:M.