STM4PSD - Workshop 5 Solutions

- 1. (a) From the graph, we can see that $f(x) \ge 0$ for all values of x, and the area under the graph is $\frac{1}{2} \times 1 \times 2 = 1$. So f(x) satisfies both required conditions to be a probability density function.
 - (b) We have f(1.2) = 0.8 and f(1.6) = 1.6, so $X \approx 1.6$ is more likely as f(1.6) > f(1.2).
 - (c) i. The region for $X \leq 1.4$ is shaded below.

The area of the triangle is $\frac{1}{2} \times 0.4 \times 1.6 = 0.32$, so $P(X \leq 1.4) = 0.32$.

ii. The region for $X \geqslant 1.7$ is shaded below.

The area of the triangle is $\frac{1}{2} \times 0.3 \times 1.2 = 0.18$, so $P(X \ge 1.7) = 0.18$.

iii. The region for $1.4 \leqslant X \leqslant 1.6$ is shaded below.

There are several ways to calculate this area. Here we use the fact that the shaded is composed of a rectangle with width 0.2 and height 1.6, plus a triangle with width 0.2 and height 0.4. The total area is then $0.2 \times 1.6 + \frac{1}{2} \times 0.2 \times 0.4 = 0.36$, and so $P(1.5 \leqslant X \leqslant 1.6) = 0.36$.

iv. The region for $X \leq 1.6$ is shaded below.

Using the fact that the total area under the graph is 1, the area of the shaded region is equal to $1 - \frac{1}{2} \times 0.4 \times 1.6 = 1 - 0.32 = 0.68$, so $P(X \le 1.6) = 0.68$.

- (d) If $1 \le x \le 1.5$, then the appropriate region is a triangle with base length (x-1) and height (4x-4), so in that case we would have $P(X \le x) = \frac{1}{2}(x-1)(4x-4) = (x-1)(2x-2) = 2(x-1)^2$.
- (e) If $1.5 \leqslant x \leqslant 2$, then, using reasoning similar to that in (c)(iv), the complementary region is a triangle with base 2-x and height 8-4x, so the area of the required region is $1-\frac{1}{2}(2-x)(8-4x)=1-(2-x)(4-2x)=1-2(2-x)^2$; hence in this case, $P(X \leqslant x)=1-2(2-x)^2$.

(f) Let F(x) denote the cumulative distribution function for X. Then,

$$F(x) = \begin{cases} 0 & \text{if } x < 1, \\ 2(x-1)^2 & \text{if } 1 \leqslant x \leqslant 1.5, \\ 1 - 2(2-x)^2 & \text{if } 1.5 < x \leqslant 2, \\ 1 & \text{otherwise} \end{cases}$$

2. (a) Since $Z \sim U(0,2)$, and we have $\frac{1}{2-(0)} = \frac{1}{2}$, the formula for $f_Z(x)$ is

$$f_Z(x) = \begin{cases} \frac{1}{2} & \text{if } 0 \leqslant x \leqslant 2\\ 0 & \text{otherwise} \end{cases}$$

The graph of $f_Z(x)$ is shown below.

- (b) $P(Z \ge 1.5) = 1 P(Z \le 1.5) = 1 \frac{1.5 0}{2 0} = 1 \frac{1.5}{2} = 0.25.$
- (c) Let R denote the number of generated values which are greater than 1. Note that $P(Z\geqslant 1)=0.5$, so $R\sim \mathrm{Bin}(6,0.5)$.
 - i. The probability that at least one number is greater than 1 is then

$$P(R \ge 1) = 1 - P(R = 0) = 1 - {6 \choose 0} 0.5^{0} (1 - 0.5)^{6} = 0.984375.$$

ii. The probability that all six are greater than 1 is

$$P(R=6) = {6 \choose 6} 0.5^6 (1 - 0.5)^0 = 0.015625$$

3. (a) and (b)

Note that because of the scale, it may be hard to recognise that the shaded area is between the x-values 1 and 3.

(c) We use the probability distribution function to calculate probabilities of the form $P(X \le x)$, so:

i.
$$P(X \le 1) = 1 - e^{-2 \times 1} = 1 - e^{-2}$$

ii.
$$P(X \le 3) = 1 - e^{-2 \times 3} = 1 - e^{-6}$$

iii.
$$P(1\leqslant X\leqslant 3)=P(X\leqslant 3)-P(X<1)$$

$$=P(X\leqslant 3)-P(X\leqslant 1) \qquad \text{(because X is continuous)}$$

$$=1-e^{-6}-(1-e^{-2})$$

$$=e^{-2}-e^{-6}$$

(d) Mean:
$$E(X) = \frac{1}{2} = 0.5$$
.

Median:
$$\frac{\ln(2)}{2} \approx 0.35$$

The points are indicated on the graph above.

4. (a)
$$k = 4$$
 and $\theta = 1$.

(b)
$$\Gamma(4) = (4-1)! = 3! = 3 \times 2 \times 1 = 6.$$

$$f_X(x) = \frac{1}{1^4 \times \Gamma(4)} x^{4-1} e^{-x/1} = \frac{x^3 e^{-x}}{6}$$

(d)
$$E(X) = k\theta = 4 \times 1 = 4$$
, and $Var(X) = k\theta^2 = 4 \times 1^2 = 4$.

$$P(N(2) = 0) = \frac{(3 \times 2)^0 e^{-3 \times 2}}{0!} = e^{-6}.$$

(b) The probability that at least 2 cars arrive in the first 3 minutes is

$$\begin{split} P(N(3) \geqslant 2) &= 1 - P(N(3) < 2) \\ &= 1 - P(N(3) = 1) - P(N(3) = 0) \\ &= 1 - \frac{(3 \times 3)^1 e^{-3 \times 3}}{1!} - \frac{(3 \times 3)^0 e^{-3 \times 3}}{0!} \\ &= 1 - 9e^{-9} - e^{-9} = 1 - 10e^{-9} \end{split}$$

(c) Due to the lack-of-memory property, this is the same as the probability in part (a). So the required probability is e^{-6} .

6. (a)
$$\lambda = 3$$
 cars per minute.

(b)
$$\mu = 6$$
 cars per minute.

(c)
$$\rho = \frac{3}{6} = \frac{1}{2}$$
.

(d)
$$L = \frac{\rho}{1-\rho} = \frac{1/2}{1-1/2} = \frac{1/2}{1/2} = 1$$
 car.

(e) This is the total time spent in the queue, W, so we need

$$W = \frac{L}{\lambda} = \frac{1}{3}$$
 minutes = 20 seconds.

(f) This is the waiting time before being served, ${\cal W}_Q$, so we need

$$W_Q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{3}{6(6-3)} = \frac{1}{6} \text{ minutes} = 10 \text{ seconds}.$$

(g) i. If $\lambda \ge 6$, then $\rho \ge 1$, meaning that in the long term, the queue will grow without bound.

ii. In terms of λ , keeping $\mu = 6$, we have

$$W = \frac{1}{\mu - \lambda} = \frac{1}{6 - \lambda}.$$

iii. This amounts to solving W=1 for λ :

$$W = 1 \implies \frac{1}{6 - \lambda} = 1$$
$$\implies 6 - \lambda = 1$$
$$\implies \lambda = 5.$$

Noting that increasing λ will increase the waiting time, this means that the largest permissible arrival rate is $\lambda=5.$

- 7. (a) $\mu = \frac{60}{2.5} = 24$ cars per hour. $\lambda = 19$ cars per hour.
 - (b) $L = \frac{\lambda}{\mu \lambda} = \frac{19}{24 19} = 3.8.$
 - (c) $W_Q=rac{\lambda}{\mu(\mu-\lambda)}=rac{19}{24(24-19)}=rac{19}{120}pprox 0.158$ hours, or 9.5 minutes.
 - (d) $W = W_Q + \frac{1}{\mu} = \frac{19}{120} + \frac{1}{24} = \frac{1}{5}$ hours, or 12 minutes.
 - (e) i. Here we have $\rho=\frac{\lambda}{\mu}\approx 0.792$. Then, $N\sim {\rm Geo}(1-0.792)$ i.e. $N\sim {\rm Geo}(0.208)$. So, the probability that at least 3 cars are in the queue is:

$$P(N \ge 3) = 1 - P(N = 0) - P(N = 1) - P(N = 2)$$

= 1 - (1 - 0.208)⁰ · 0.208 - (1 - 0.208)¹ · 0.208 - (1 - 0.208)² · 0.208
= 0.497

This means that cars will be impeding traffic about 49.7% of the time, so the restaurant should be concerned about being fined.

ii. To have cars impeding traffic about 30% of the time, we would need $P(N \geqslant 3) = 0.3$. So we will find the value of ρ such that $P(N \geqslant 3) = 0.3$ to make a suitable decision.

Since $N \sim \text{Geo}(1-\rho)$, we have

$$P(N \geqslant 3) = 0.3 \implies 1 - \rho^0 (1 - \rho) - \rho^1 (1 - \rho) - \rho^2 (1 - \rho) = 0.3$$
$$\implies 1 - 1 + \rho - \rho + \rho^2 - \rho^2 + \rho^3 = 0.3$$
$$\implies \rho^3 = 0.3$$
$$\implies \rho = \sqrt[3]{0.3}$$

So any value of ρ less than $\sqrt[3]{0.3}$ would be best for the restaurant.

