mbmath.sty – Ein mathematisches LATEX-Package

Manfred Brill

15. Juli 2024

1 Makros

Grundsätzlich wird für das Setzen mathematischer Ausdrücke AMS-IATEX eingesetzt. AMS-IATEX enthält eine Menge von zusätzlichen Symbolen und Umgebungen, beispielsweise die align Umgebung als Alternative zu eqnarray. Matrizen werden mit der Umgebung pmatrix gesetzt, Determinanten mit der Umgebung vmatrix.

Beispiele:

 $\begin{vmatrix} a \\ -b \end{vmatrix}$

erhält man durch

\begin{vmatrix} a & b \\ -b & a \end{vmatrix}.

Darüberhinaus werden eine Reihe von Symbolen und Umgebungen definiert, die im Folgenden erläutert werden.

2 Intervall-Boxen für Grafiken

Für die Verwendung in Grafiken werden verschiedene LATEX-Boxen definiert, die mit \usebox{box-name} aufgerufen werden können. Die Längenangaben beziehen sich alle auf die Grundlänge 1 cm. Insgesamt sind definiert:

- ein abgeschlossenes Invervall: \usebox{closedint},
- ein abgeschlossenes Interval der halben Höhe: \usebox{smallclosedint},
- ein rechts offenes und links geschlossenes Intervall: \usebox{halfopenrint},
- ein rechts geschlossenes und links offenes Intervall: \usebox{halfopenlint},
- ein offenes Intervall: \usebox{openint}.

Die Abbildung 1 zeigt eine Abbildung aus [2] Die Positionierung des abgeschlossenen Intervalls erfolgt in der Grafik mit

\put(1.5,0){\usebox{\closedint}}

Abbildung 1: Die Intervalle [1, 5; 2, 5], [3.5; 4.5) und (5, 5; 6.5)

Tabelle 1: Die zusätzlichen mathematischen Symbole

Symbol	Erklärung	ET _E X
N	Die natürlichen Zahlen	\$\N\$
\mathbb{Z}	Die ganzen Zahlen	\$\Z\$
Q	Die rationalen Zahlen	\$\Q\$
\mathbb{R}	Die reellen Zahlen	\$\R\$
\mathbb{C}	Die komplexen Zahlen	\$\C\$
\mathbb{B}	Symbol für Boolsche Algebra	\$\B\$
A	Symbol für σ -Algebren	\$\A\$
$\mathbb{P}(\)$	Potenzmenge einer Menge	\$\Potenz(\N)\$
1	Absolutbetrag einer Zahl	\$\abs{x}\$
ggT	Größter gemeinsame Teiler	\$\ggT{a}{b}\$
kgV	Kleinstes gemeinsames	\$\kgV{a}{b}\$
 0 '	Vielfaches	, (g. (a) (a) 1
1	Shefferstrich in der Logik	<pre>\$\sheffer a\$</pre>
ld	Logarithmus zur Basis 2	\$\ld(x)\$
arccot	Arcus Kotangens	\$\arccot{x}\$
arsinh	Area Sinus Hyperbolicus	<pre>\$\areasinh{x}\$</pre>
arcosh	Area Kosinus Hyperbolicus	<pre>\$\areacosh{x}\$</pre>
artanh	Area Tangens Hyperbolicus	<pre>\$\areatanh{x}\$</pre>
arcoth	Area Kotanges Hyperbolicus	<pre>\$\areacoth{x}\$</pre>
$f: X \to Y$	Abbildung	\$\arrow{f}{\R^3}{\R^3}\$
dist(,)	Metrik	\$\dist{x}{y}\$
\mathbf{x}	Vektor	\$\vtr{x}\$
0	Nullvektor	\$\nullv\$
$\begin{pmatrix} x \\ y \end{pmatrix}$	Spaltenvektor im \mathbb{R}^2	\$\vtrs{1}{2}\$
$(x,y)^T$	Spaltenvektor im \mathbb{R}^2 ,	\$\vtrz{1}{2}\$
$\langle x \rangle$	transponiert geschrieben.	
$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$	Spaltenvektor im \mathbb{R}^3	\$\vtrst\${1}{2}{3}\$
$(x,y,z)^T$	Spaltenvektor im \mathbb{R}^3 ,	\$\vtrzt{1}{2}{3}\$
(ω, g, z)	transponiert geschrieben.	Y (V C 1 2 C (1) (2) (3) Y
	Norm eines Vektors	<pre>\$\norm{\vtr{x}}\$</pre>
\langle , \rangle	Skalarprodukt	<pre>\$\inner{\vtr{x}}{\vtr{y}}\$</pre>
Rang	Rang einer Matrix	\$\rang{A}\$
Def	Defekt einer Matrix	\$\defekt{A}\$
201	Detert chief Mattix	7 (40101011) 7

3 Die Package-Datei

3.1 Die Kenndaten

Zunächst identifizieren wir das Paket und dessen aktuelle Version:

```
1 \NeedsTeXFormat{LaTeX2e}\relax
2 \ProvidesPackage{mbmath}[2024/07/15, (MB)]
3 \typeout{Enhanced math macros, V2.0, (c) Manfred Brill}
4 \ProcessOptions
```

3.2 Der Initialisierungsteil

Wir laden die folgenden Pakete:

```
5 \RequirePackage{amsmath}
6 \RequirePackage{amsfonts}
7 \RequirePackage{amssymb}
8 \RequirePackage{epic}
9 \RequirePackage{eepic}
```

4 Mathematiksymbole und Umgebungen mit AMS-LATEX

AMS-LATEX bietet bereits eine Menge von speziellen Makros und Umgebungen für das Setzen von mathematischen Inhalten. [1] ist eine gute Einführung zu diesem Thema. Insbesondere wird empfohlen, die align Umgebung zu nutzen, die der in LATEX enthaltenen eqnarray Umgebung deutlich überlegen ist.

4.1 Zahlenmengen

Es werden Symbole für natürliche, ganze, rationale, reelle und komplexe Zahlen eingeführt.

```
\label{lem:newcommand} $$11 \rightarrow {\mathbb{A}} $$11 \rightarrow {\mathbb{N}} $$12 \rightarrow {\mathbb{Z}} {\operatorname{hwathbb}\{N} $$12 \rightarrow {\mathbb{Z}} $$13 \rightarrow {\mathbb{Q}} {\operatorname{hwathbb}\{Q} $$14 \rightarrow {\mathbb{R}} $$15 \rightarrow {\mathbb{C}} $$16 \rightarrow {\mathbb{B}} $$\{\ B\} $$\ \ B} $$\{\ B\} $$\ \ B} $$\ \ B} $$\ \ B} $$\ \ B} $$
```

\Potenz Für die Potenzmenge wird das Makro \Potenz eingeführt.

```
17 \end{\{\potenz\} {\newcommand{\{\potenz\}} }}
```

Jetzt folgt eine Menge von Funktionen, das Skalarprodukt und der Absolutbetrag.

```
\abs Absolutbetrag:
           18 \newcommand{\abs}[1]{\ensuremath\lvert#1\rvert}
    \norm Norm:
           19 \newcommand{\norm}[1]{\ensuremath \lVert#1 \rVert}
    \dist Metrik:
           20 \newcommand{\dist}[2]{\ensuremath dist\left(#1, #2\right)}
     \ggT Es gibt das Makro \gcd für den größten gemeinsamen Teiler. Da auch das
          kleinste gemeinsame Vielfache als Makro eingeführt wird wird eine deut-
          sche Version definiert:
           21 \DeclareMathOperator{\ggT} {ggT}
     \kgV Das kleinste gemeinsame Vielfache zweier Zahlen:
           22 \DeclareMathOperator{\kgV} {kgV}
\sheffer Der Sheffer-Strich in der Logik:
           23 \newcommand{\sheffer}{\ensuremath\:|\:}
      \ld Der Logarithmus zur Basis 2:
           24 \DeclareMathOperator { \ld} { ld}
  \arccot Der Arcus-Kotangens:
           25 \DeclareMathOperator{\arccot} {arccot}
\areasinh Der Area Sinus Hyperbolicus:
           26 \DeclareMathOperator{\areasinh} {arsinh}
\areacosh Der Area Sinus Hyperbolicus:
           27 \DeclareMathOperator{\areacosh} {arcosh}
\areatanh Der Area Sinus Hyperbolicus:
           28 \DeclareMathOperator{\areatanh} {artanh}
\areacoth Der Area Sinus Hyperbolicus:
           29 \DeclareMathOperator{\areacoth} {arcoth}
   \inner Das Skalarprodukt wird mit spitzen Klammern geschrieben:
           30 \newcommand{\inner}[2]{\ensuremath \left< #1, #2 \right>}
```

```
\rang Der Rang einer Matrix:
           31 \newcommand{\rang} {\ensuremath \operatorname{Rang}}
  \defekt Der Defekt einer Matrix:
           32 \newcommand{\defekt}{\ensuremath \operatorname{Def}}
   \arrow Eine Abkürzung für f: M \to N:
           33 \newcommand{\arrow}[3]{\ensuremath #1:\: #2 \rightarrow #3}
   \nullv Abkürzung für den Nullvektor:
           34 \newcommand{\nullv}{\ensuremath \mathbf{0}}
     \vtr Vektoren werden als fettgesetzte Kleinbuchstaben geschrieben, um sie von
          Skalaren zu unterscheiden:
           35 \newcommand{\vtr}[1]{\ensuremath \mathbf{#1}}
    \vtrs Abkürzung für Spaltenvektoren im \mathbb{R}^2:
           36 \newcommand{\vtrs}[2]%
           37 {\ensuremath \begin{pmatrix} #1 \\ #2 \end{pmatrix}}
   \vtrst Abkürzung für Spaltenvektoren im \mathbb{R}^3:
           38 \newcommand{\vtrst}[3]%
           39 {\ensuremath \begin{pmatrix} #1 \\ #2 \\ #3\end{pmatrix}}
    \forall \forall \exists z \text{ Abk\"{u}} \text{ rzung f\"{u}} \text{ r} Spaltenvektoren im \mathbb{R}^2, geschrieben als transponierte Zei-
          lenvektoren:
           40 \newcommand{\vtrz}[2]{\ensuremath \left( #1, #2 \right)^T}
   lenvektoren:
           41 \newcommand{\vtrzt}[3]{\ensuremath \left(#1, #2, #3 \right)^T}
          4.2 Intervallboxen für Graphiken
              Für die Verwendung in Grafiken werden mit Hilfe von \newsavebox
          verschiedene LATEX-Boxen definiert.
closedint Ein geschlossenes Intervall erhält man durch
           42\setlength{\unitlength}{1cm}
           43 \newsavebox{\closedint}
           44 \savebox{\closedint}{
           45 \begin{picture} (0,0)
           46 \linethickness { 1mm }
```

```
47 \put(0.0, 0) {\line(1,0) {1}}
48 \thicklines
49 \put(0.0, -0.3) {\line(0,1) {0.6}}
50 \put(1.0, -0.3) {\line(0,1) {0.6}}
51 \put(0, -0.3) {\line(1,0) {0.1}}
52 \put(0, 0.3) {\line(1,0) {0.1}}
53 \put(1, -0.3) {\line(-1,0) {0.1}}
54 \put(1, 0.3) {\line(-1,0) {0.1}}
55 \end{picture}
56}
```

smallclosedint Ein geschlossenes Intervall mit der halben Größe im Vergleich zu closedint erhält man durch \usebox{smallclosedint}.

```
57 \newsavebox{\smallclosedint}
58 \savebox{\smallclosedint}{%
59 \setlength{\unitlength}{0.5cm}
60 \begin{picture}(0,0)
61 \linethickness{0.5mm}
62 \put(0.0, 0){\line(1,0){1}}
63 \thicklines
64 \put(0.0, -0.3){\line(0,1){0.6}}
65 \put(1.0, -0.3){\line(1,0){0.1}}
66 \put(0, 0.3){\line(1,0){0.1}}
67 \put(0, 0.3){\line(1,0){0.1}}
68 \put(1, -0.3){\line(-1,0){0.1}}
69 \put(1, 0.3){\line(-1,0){0.1}}
70 \end{picture}
71}
```

halfopenrint Ein links geschlossenes und rechts offenes Intervall erhält man durch \usebox{halfopenrint}.

```
72 \setlength{\unitlength}{1cm}
73 \newsavebox{\halfopenrint}
74 \savebox{\halfopenrint}{%
75 \begin{picture}(0,0)
76 \linethickness{1mm}
77 \put(0.0, 0){\line(1,0){1}}
78 \thicklines
79 \put(0.0, -0.3){\line(0,1){0.6}}
80 \put(1.0, -0.3){\line(0,1){0.6}}
81 \put(0, -0.3){\line(1,0){0.1}}
82 \put(0, 0.3){\line(1,0){0.1}}
83 \put(1, -0.3){\line(1,0){0.1}}
84 \put(1, 0.3){\line(1,0){0.1}}
```

```
85 \end{picture}
                 86 }
halfopenlint Ein rechts geschlossenes und links offenes Intervall erhält man durch
                \usebox{halfopenlint}.
                 87 \newsavebox{\halfopenlint}
                 88 \savebox{\halfopenlint}{%
                 89 \begin{picture}(0,0)
                 90 \linethickness { 1mm }
                 91\put(0.0, 0){\line(1,0){1}}
                 92\thicklines
                 93\put(0.0, -0.3){\line(0,1){0.6}}
                 94\put(1.0, -0.3){\line(0,1){0.6}}
                 95 \cdot put(0, -0.3) \{ \cdot line(-1, 0) \{ 0.1 \} \}
                 96 \text{ } \text{ } \{0, 0.3\} \{ \text{ } \{-1, 0\} \{ 0.1 \} \}
                 97 \cdot (1, -0.3) \cdot (-1, 0) \cdot (0.1)
                 98 \text{ } \text{put } (1, 0.3) { \line(-1,0) } {0.1} }
                 99 \end{picture}
                100 }
      openint Ein offenes Intervall erhält man durch \usebox{openint}.
                101 \newsavebox{\openint}
                102 \savebox{\openint}{%
                103 \begin{picture} (0,0)
                104 \linethickness { 1mm}
                105 \put(0.0, 0) {\line(1,0){1}}
                106 \thicklines
                107 \put (0.0, -0.3) {\line (0,1) {0.6}}
                108 \setminus (1.0, -0.3) \{ \setminus (0,1) \{ 0.6 \} \}
                109 \text{ } (0, -0.3) {\line(-1,0) } 
                110 \setminus put(0, 0.3) \{ \setminus line(-1, 0) \{ 0.1 \} \}
                111 \setminus put(1, -0.3) \{ \setminus line(1, 0) \{ 0.1 \} \}
                112\put(1, 0.3){\line(1,0){0.1}}
                113 \end{picture}
```

Literatur

114 }

- [1] M. Goossens, F. Mittelbach, und A. Samarin: *Der LaTEX Begleiter*, 2000, Addison-Wesley.
- [2] M. Brill: Mathematik für Informatiker, 2001, Hanser.

Index

Unterstrichene Seitenzahlen verweisen auf die Definition, alle anderen auf die Verwendung.

```
A=
                    \subitem *+\A+\d+\dc\\imageit(4n0)*(tobbeProcomsCoptions (31)\(mabiint)e(n24*)+\ProcessOptions+,
                        \subitem *+\aleft= \hdcslubnidæm(1*9+}\{In2Finvi)de$Pàrkage=lex{2\4$\dlocotcen}{2\4$\dlocotcen}{2\4}\12<mark>0</mark>videsPackage
abs=
                              \subitem *+\arcc40,+, \hdclind4x{piit+{main,bii25.tem *+\put+, \hdclindex{71}{code
arccot=
                                    \subitem kineareacoshbitendelihdea(35)kida1phd82,71}{code}{47},49,
areacosh=
areacoth=
                                   areasinh=
                                    \subitem *+\ar64,t65,66, \d7,dclindex{368, \694,i77, {29,}
areatanh=
                              \subitem *+\arro\68,, 69\h\alpha\72\limbdex{49}{ma\90\h}\81\382, 83,
arrow=
                                                                               80, 81, 82, 83,
                                                                                                                                                84, 91, 93, 94,
                   B=
                            \subitem *+\begings, %hdg/liggex {57} {codes, {377, 3108,
begin=
                45, 60, 75, 89, 103
                                                                               105, 107, 108,
                                                                                                                                                                                                      \hdcl::imdlex((70)) ((codle)) ((4
closedint=
                                                                                           lvertoitem\subjectateMannoteralbidithenbert1Nanople \\ (1881 - 1928 (45) \mathred{mannoteralbidithenbert1Nanople \\ (1881 - 1928 (45) \mathred{mannoteralbidithenbert1Nanople \mathred{mannoteralbidithenbert2}
DeclareMathOperator=
                                                                                                                                                           \subitem *+\relax+, \hdclindex{1}{cc
                                                                                                                                relax=
                                                               mathbb=
                                                                                                  \subitem *Requirepackage_bdclipsesitem {cpdeddlleelackage+,
                                                                                                  hdclindex{47}{main}{32/}
                              \subitem *+\defekt+,
defekt=
                                                   *+\dist+\hdclindex{24}{cmathbf=\hdclindex{24}{code}{34},35
dist=
                        \subitem *+\end+, \hdclindex\{57\}\cightarrow\; \, \subitem *+\\rightarrow+, \hdclindex\{11\}\code\\\11\}
                                                                                                                           rVert=
                                                                                                                                                             Nsubitémis++\rughtyert+\naclinaex\\\eedsfextormatf,\\eedsfextormatf,\\edge \langle \la
                                                               NeedsTeXFormat=
                                                                m *+\ensuremath+, \hacentaex
newcommand= \subitem *+\r
ensuremath=
                12, 13, 14, 15,
                                                                               12, 13, 14, 15,
                16, 17, 18, 19,
                                                                                                                                                                  \subitem *+\savebox+, \hdclindex{
                                                                                                                                savebox=
                                                                               16, 17, 18, 19,
                20, 23, 30, 31,
                                                                               20, 23, 30, 31,
                32, 33, 34, 35,
                                                                                                                                setlength=
                                                                                                                                                                     \subitem *+\setlength+, \hdclinde
                                                                               32, 33, 34, 35,
                37, 39, 40,
                                                                               36,
                                                                                          38, 40, 41
                                                                                                                                sheffer=
muiktypewsavebox+, \hdclindex{67}{code}{43}{,5
                         ggT=
                                                                                                                                                                                  \subitem *+\smallclosedint+,
                                            \subitenorm=\halfopebriltient+x+\\rangelindeholdliin\dena(i21)}{{8na}i,n87;19}
halfopenlint=
                                                                                                                              \hdclindex{51}{main}{34}
= \darkappa \subitem, \dclines+, \hdclines+, \hdclines
                                                                                            \subitem *+
halfopenrint=
                                             \subitem *+\halfopenrint+,
                                                                                                   \subitem *+\openint+, \hdcl\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\frac1\fr
inner=
                            \subitem *+\ciperatornandedclindexb48$fmmaindp@batorname+, \hdclindex{46}{code}{33
                                                                                                                                unitlength=
                                                                                                                                                                 \subitem *+\unitlength+, \hdclir
kgV=
                         \subitem *+\kRotenz=\hdcl\isudeixt@rd }*{tn\Piot}@rd2+, \hdclindex{17}{main}{17}
```

```
vtr= \subitem *+\vtvtrst=\hdc\lsim\olietxen53\fmain,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\\maxin,}\maxin,}\\maxin,}\maxin,}\maxin,}\maxin,}\maxin,}\\maxin,}\maxin,}\maxin,}\maxin,}\maxin,}\maxin
```