计算机组织与体系结构

第九讲

计算机科学与技术学院 舒燕君

Recap

- MIPS指令集
 - ✓ 数据类型(整数、浮点数)
 - ✓ 寻址方式(寄存器寻址、立即数寻址、偏移 寻址)
 - ✓ 指令格式(I类、R类、J类)
 - ✓操作类型(存取、ALU、转移、浮点)
- CPU结构
 - ✓ CU、ALU、寄存器和中断
- 定点运算(移位)

必修实验

必修实验第一次课: 10月16日上午10点 硬件实验中心G709

必修实验QQ群: 771417971

实验资料:

https://hit-coa.gitlab.io/hit-coa-lab/index.html

第5章 CPU设计与实现

- 5.1 CPU 的结构
- 5.2 运算方法与ALU
- 5.3 多级时序系统(X86)
- 5.4 MIPS CPU的简单实现

5.2 运算方法与ALU

5.2.1 定点运算

5.2.2 浮点四则运算

5.2.3 算术逻辑单元

二、加减法运算

- 1. 补码加减运算公式
 - (1) 加法

整数
$$[A]_{\nmid h} + [B]_{\nmid h} = [A+B]_{\nmid h} \pmod{2^{n+1}}$$

小数
$$[A]_{\stackrel{?}{\nmid 1}} + [B]_{\stackrel{?}{\nmid 1}} = [A+B]_{\stackrel{?}{\nmid 1}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

小数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

设机器数字长为 8 位(含 1 位符号位) 且 A = 15, B = 24, 用补码求 A - B

解:
$$A = 15 = 0001111$$

$$B = 24 = 0011000$$

$$[A]_{\nmid k} = 0,0001111$$

$$[B]_{\begin{subarray}{l}
\begin{subarray}{l}
\begin{subarray}{l}$$

$$+ [-B]_{\begin{subarray}{l} + \end{subarray}} = 1,1101000$$

$$[A]_{\not \nmid \mid} + [-B]_{\not \nmid \mid} = 1,1110111 = [A-B]_{\not \nmid \mid}$$

$$A - B = -1001 = -9$$

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$ $x+y=-0.1100=-\frac{12}{16}$ 错

练习 2 设机器数字长为 8 位 (含 1 位符号位) 且 A = -97, B = +41, 用补码求 A - B

$$A - B = +1110110 = +118$$
 错

3. 溢出判断

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 🕀 符号位的进位 = 1 溢出

(2) 两位符号位判溢出

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda h'} + [y]_{\lambda h'} = [x + y]_{\lambda h'} \pmod{4}$$

$$[x-y]_{k} = [x]_{k} + [-y]_{k}$$
 (mod 4)

结果的双符号位 相同

未溢出

 $00, \times \times \times \times \times$

11, ×××××

结果的双符号位 不同

溢出

10, ×××××

01, ×××××

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位 用减法标记 G_S 控制求补逻辑

三、乘法运算

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

 $A \times B = -0.10001111$ 乘积的符号心算求得

$$\times 0.1011$$

1101

1101

0000

1101

0.10001111

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

2. 笔算乘法改进

第八步 右移一位,得结果

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第一步 被乘数 $A + 0$
①
第二步 右移一位,得新的部分积
②
第三步 部分积 + 被乘数
③

(8)

3. 改进后的笔算乘法过程(竖式)

部分积	乘数	说 明
0.0000	1011	初态,部分积 = 0
+0.1101	=	乘数为1,加被乘数
0.1101		
0.0110	1101	→1,形成新的部分积
+0.1101		乘数为1,加被乘数
1.0011	1	
0.1001	1110	→ 1, 形成新的部分积
+ 0.0000	=	乘数为 0, 加 0
0.1001	11	
0.0100	1111	→1,形成新的部分积
+0.1101		乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结

- \rightarrow 乘法 运算可用 加和移位实现 n=4, 加 4 次,移 4 次
- ▶ 由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数→1位 (末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加
 - 硬件 3个寄存器,具有移位功能
 - 1个全加器

4. 原码乘法

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{R}} = x_0. x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0. y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0).(0. x_1 x_2 \cdots x_n)(0. y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0). x^* y^*$$
式中 $x^* = 0. x_1 x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0. y_1 y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*}+z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*}+z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*}+z_{n-1})$$

例6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$

解: 数值部分	的运算乘数	说明
$\begin{array}{c} 0.0000 \\ + 0.1110 \end{array}$	1101	部分积 初态 $z_0 = 0$ $+ x^*$
逻辑右移 0.1110 + 0.0000	0110	→1,得z ₁ +0
逻辑右移 0.0111 + 0.1110	0 1 0 1 <u>1</u>	→1, 得 z ₂
2 1.0001 0.1000 + 0.1110	$\begin{array}{c} 1 \ 0 \\ 1 \ 1 \ 0 \ \underline{1} \end{array}$	→1, 得 z ₃ + x*
逻辑右移 1.0110 0.1011	$egin{array}{c} 110 \\ 0110 \\ \end{array}$	→1,得z ₄

例6.21 结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

A、X、Q均n+1位 移位和加受末位乘数控制

5.2.2 浮点四则运算

一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 求阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \text{ 向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} & \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \text{ 向 } y \text{ 看齐} & \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 求 x + y

解: $[x]_{\stackrel{?}{\nmid 1}} = 00, 01; 00.1101$ $[y]_{\stackrel{?}{\nmid 1}} = 00, 11; 11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\dot{i}_{1}} = [j_{x}]_{\dot{i}_{1}} - [j_{y}]_{\dot{i}_{1}} = 00,01$$

$$+ 11,01$$

$$11,10$$
阶差为负 (-2) $\therefore S_{x} \rightarrow 2$ $j_{x} + 2$
② 对阶 $[x]_{\dot{i}_{1}} = 00,11;00.0011$

2. 尾数求和

$$[S_x]_{\dot{\uparrow}\dot{\uparrow}}$$
 = 00.0011 对阶后的 $[S_x]_{\dot{\uparrow}\dot{\uparrow}}$ + $[S_y]_{\dot{\uparrow}\dot{\uparrow}}$ = 11.0110
 11.1001
 ∴ $[x+y]_{\dot{\uparrow}\dot{\uparrow}}$ = 00, 11; 11. 1001

3. 规格化

(1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \le |S| < 1$$

(2) 规格化数的判断

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{*} = [1.1]00 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$ 不是规格化的数

$$S = -1$$

$$[S]_{*} = [1.0] 0 0 \cdots 0$$

∴ [-1] 是规格化的数

例如 $x = 0.1101 \times 2^{01}$ $y = (-0.1010) \times 2^{11}$ 求 x + y

解: $[x]_{\stackrel{?}{\uparrow}} = 00, 01; 00.1101$ $[y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.0110$

1. 对阶

2. 尾数求和

(3) 左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例 $[x+y]_{\dagger} = 00, 11; 11.1001$

左规后 $[x+y]_{\stackrel{}{\mathbb{A}}}=00,10;11.0010$

$$x + y = (-0.1110) \times 2^{10}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 $01. \times \times \dots \times$ 或 $10. \times \times \dots \times$ 时

尾数右移一位,阶码加1

$$x = 0.1101 \times 2^{10}$$
 $y = 0.1011 \times 2^{01}$

解:
$$[x]_{*+} = 00,010;00.110100$$
 $[y]_{*+} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $\therefore S_y \longrightarrow 1, j_y + 1$

$$\therefore [y]_{\stackrel{?}{\Rightarrow}} = 00,010; 00.010110$$

② 尾数求和

$$[S_x]_{\stackrel{}{\uparrow}} = 00. \ 110100$$
 $+ [S_y]_{\stackrel{}{\uparrow}} = 00. \ 010110$ 对阶后的 $[S_y]_{\stackrel{}{\uparrow}}$ 足数溢出需右规

③ 右规

$$[x+y]_{3} = 00, 010; 01.001010$$

右规后

$$[x+y]_{\nmid k} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

4. 舍入

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

- (1) 0 舍 1 入法
- (2) 恒置"1"法

$$x = (-\frac{5}{8}) \times 2^{-5}$$
 $y = (\frac{7}{8}) \times 2^{-4}$

 \vec{x}_{x-y} (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

$$x = (-0.101000) \times 2^{-101}$$

$$y = (0.111000) \times 2^{-100}$$

$$[x]_{3} = 11,011;11.011000$$

$$[y]_{\nmid k} = 11, 100; 00. 111000$$

① 对阶

$$[\Delta j]_{\uparrow \uparrow} = [j_x]_{\uparrow \uparrow} - [j_y]_{\uparrow \uparrow} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 $\therefore S_x \longrightarrow 1$, j_x+1

$$\therefore$$
 [x]_{\$\frac{1}{2}\$, = 11, 100; 11. 101100}

② 尾数求和

③ 右规

$$[x-y]_{\mbox{\tiny h}}=11,100;10.110100$$
右规后

 $[x-y]_{36} = 11, 101; 11.011010$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

5. 溢出判断

设机器数为补码,尾数为规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该补码 在数轴上的表示为

二、浮点乘除运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 乘法

$$x \cdot y = (S_x \cdot S_y) \times 2^{j_x + j_y}$$

2. 除法

$$\frac{x}{y} = \frac{S_x}{S_y} \times 2^{j_x - j_y}$$

- 3. 步骤
 - (1) 阶码采用 补码定点加(乘法)减(除法)运算
 - (2) 尾数乘除同 定点 运算
 - (3) 规格化
- 4. 浮点运算部件 阶码运算部件, 尾数运算部件

5.2.3 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位 ALU 74181

M=0 算术运算

M=1 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算