Howard Math 274, HW# 2,

Spring 2022; Instructor: Sam Hopkins; Due: Friday, March 25th

1. Let $\lambda = (\lambda_1, \lambda_2, ...), \mu = (\mu_1, \mu_2, ...) \vdash n$ be partitions of n. Recall that the *lexicographic order* \prec on partitions of n is given by $\mu \prec \lambda$ iff there is some j such that $\mu_i = \lambda_i$ for all i < j and $\mu_j < \lambda_j$. It is a total order: we either have $\mu \prec \lambda$ or $\lambda \prec \mu$ or $\lambda = \mu$.

A different order on partitions of n is the dominance order. The dominance order \leq is defined by $\mu \leq \lambda$ iff $\mu_1 + \mu_2 + \cdots + \mu_j \leq \lambda_1 + \lambda_2 + \cdots + \lambda_j$ for all j. The dominance order is only partial order: we might have neither $\mu \leq \lambda$ nor $\lambda \leq \mu$.

- (a) Show that the lexicographic order *extends* the dominance order in the sense that if we have partitions $\mu, \nu \vdash n$ with $\mu \leq \lambda$ and $\mu \neq \lambda$ then necessarily $\mu \prec \lambda$.
- (b) Give an example of partitions $\mu, \nu \vdash n$ with $\mu \prec \lambda$ but $\mu \not\leq \lambda$.
- 2. Show that we could've used dominance order instead of lexicographic order in our arguments about the triangularity of the transition matrices from p_{λ} or e_{λ} to m_{μ} . That is, show that

$$p_{\lambda} = \sum_{\lambda \leq \mu} \alpha_{\mu} m_{\mu} \qquad \text{and} \qquad e_{\lambda} = \sum_{\mu \leq \lambda^{t}} \beta_{\mu} m_{\mu} \quad \text{for coefficients } \alpha_{\mu}, \beta_{\mu} \in \mathbb{C}$$

for any $\lambda \vdash n$, where \leq is dominance order and λ^t is the transpose (a.k.a. conjugate) of λ .

- 3. Let $\lambda \vdash n$ and define f^{λ} to be the coefficient of $x_1x_2\cdots x_n$ in the Schur function $s_{\lambda}(x_1, x_2, \ldots)$. Explain why $f^{\lambda} = f^{\lambda^t}$. Give an example showing that this is not true for other coefficients of Schur functions, i.e., that $s_{\lambda} \neq s_{\lambda^t}$ in general.
- 4. The Cauchy-Binet formula says that if $A = (A_{i,j})$ is an $m \times n$ matrix and $B = (B_{i,j})$ is an $n \times m$ matrix, then the determinant of the $m \times m$ matrix AB can be computed by

$$\det(AB) = \sum_{I \subseteq [n], \#I=m} \det(A \mid_{\text{cols}=I}) \det(B \mid_{\text{rows}=I}).$$

Here, as always, $[n] := \{1, 2, ..., n\}$, and $A \mid_{\text{cols}=I} (\text{resp.}, B \mid_{\text{rows}=I}) \text{ means the } m \times m \text{ matrix}$ we get by restricting A to the columns in I (resp., by restricting B to the rows in I).

Deduce the Cauchy-Binet formula from the Lindström-Gessel-Viennot formula.

Hint: Consider the network with source vertices s_1, \ldots, s_m , target vertices t_1, \ldots, t_m , and internal vertices k_1, \ldots, k_n , and edges $s_i \to k_j$ with weight $A_{i,j}$ and $k_i \to t_j$ with weight $B_{i,j}$.

5. Let $\lambda = (\lambda_1, \lambda_2, ...)$ be a partition and k a positive integer. Give a formula for $m_{\lambda}(1, 1, ..., 1)$. **Hint**: Your formula can use the *length* $\ell(\lambda) := \max\{i : \lambda_i > 0\}$ of the partition, as well as the *multiplicities* $m_i(\lambda) := \{j : \lambda_j = i\}$ for $i \geq 1$.