# Binary Variables (1)

Coin flipping: heads=1, tails=0

$$p(x=1|\mu) = \mu$$

#### Bernoulli Distribution

$$\operatorname{Bern}(x|\mu) = \mu^{x} (1-\mu)^{1-x}$$

$$\mathbb{E}[x] = \mu$$

$$\operatorname{var}[x] = \mu(1-\mu)$$

# Binary Variables (2)

#### N coin flips:

$$p(m \text{ heads}|N,\mu)$$

#### **Binomial Distribution**

$$\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$
 
$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$
 
$$\operatorname{var}[m] \equiv \sum_{m=0}^{N} (m-\mathbb{E}[m])^2 \operatorname{Bin}(m|N,\mu) = N\mu (1-\mu)$$

### **Binomial Distribution**



# Parameter Estimation (1)

#### ML for Bernoulli

Given:  $\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads } (1), N-m \text{ tails } (0)$ 

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\}$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}$$

# Parameter Estimation (2)

**Example:** 
$$\mathcal{D} = \{1, 1, 1\} \rightarrow \mu_{\text{ML}} = \frac{3}{3} = 1$$

Prediction: all future tosses will land heads up

Overfitting to D

#### **Beta Distribution**

Distribution over  $\mu \in [0, 1]$ .

Beta
$$(\mu|a,b)$$
 =  $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$   
 $\mathbb{E}[\mu]$  =  $\frac{a}{a+b}$   
 $\operatorname{var}[\mu]$  =  $\frac{ab}{(a+b)^2(a+b+1)}$ 

#### Multinomial Variables

1-of-K coding scheme:  $\mathbf{x} = (0, 0, 1, 0, 0, 0)^{T}$ 

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

$$\forall k: \mu_k \geqslant 0 \quad \text{and} \quad \sum_{k=1}^K \mu_k = 1$$

$$\mathbb{E}[\mathbf{x}|\boldsymbol{\mu}] = \sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu})\mathbf{x} = (\mu_1, \dots, \mu_K)^{\mathrm{T}} = \boldsymbol{\mu}$$

$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = \sum_{k=1}^{K} \mu_k = 1$$

#### **ML** Parameter estimation

Given:  $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ 

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}$$

Ensure  $\sum_k \mu_k = 1$ , use a Lagrange multiplier,  $\Box$ .

$$\sum_{k=1}^{K} m_k \ln \mu_k + \lambda \left( \sum_{k=1}^{K} \mu_k - 1 \right)$$

$$\mu_k = -m_k/\lambda \qquad \mu_k^{\rm ML} = \frac{m_k}{N}$$

#### The Multinomial Distribution

$$\operatorname{Mult}(m_1, m_2, \dots, m_K | \boldsymbol{\mu}, N) = \begin{pmatrix} N \\ m_1 m_2 \dots m_K \end{pmatrix} \prod_{k=1}^K \mu_k^{m_k}$$

$$\mathbb{E}[m_k] = N \mu_k$$

$$\operatorname{var}[m_k] = N \mu_k (1 - \mu_k)$$

$$\operatorname{cov}[m_j m_k] = -N \mu_j \mu_k$$

#### The Gaussian Distribution



$$x_1$$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

#### Central Limit Theorem

The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.

Example: N uniform [0,1] random variables.



# Geometry of the Multivariate Gaussian

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$

$$\Delta^2 = \sum_{i=1}^D \frac{y_i^2}{\lambda_i}$$

$$y_i = \mathbf{u}_i^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu})$$



### Moments of the Multivariate Gaussian (1)

$$\mathbb{E}[\mathbf{x}] = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \int \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\} \mathbf{x} \, d\mathbf{x}$$
$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \int \exp\left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{z}\right\} (\mathbf{z} + \boldsymbol{\mu}) \, d\mathbf{z}$$

thanks to anti-symmetry of Z

$$\mathbb{E}[\mathbf{x}] = oldsymbol{\mu}$$

### Moments of the Multivariate Gaussian (2)

$$\mathbb{E}[\mathbf{x}\mathbf{x}^{\mathrm{T}}] = \boldsymbol{\mu}\boldsymbol{\mu}^{\mathrm{T}} + \boldsymbol{\Sigma}$$
  $\operatorname{cov}[\mathbf{x}] = \mathbb{E}\left[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right] = \boldsymbol{\Sigma}$ 



### Maximum Likelihood for the Gaussian (1)

Given i.i.d. data  $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^T$ , the log likelihood function is given by

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

#### Sufficient statistics

$$\sum_{n=1}^{N} \mathbf{x}_n \qquad \qquad \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}}$$

### Maximum Likelihood for the Gaussian (2)

Set the derivative of the log likelihood function to zero,

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) = 0$$

and solve to obtain

$$\mu_{\mathrm{ML}} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n.$$

Similarly

$$\mathbf{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathrm{T}}.$$

### Maximum Likelihood for the Gaussian (3)

#### Under the true distribution

$$egin{array}{lll} \mathbb{E}[oldsymbol{\mu}_{ ext{ML}}] &=& oldsymbol{\mu} \ \mathbb{E}[oldsymbol{\Sigma}_{ ext{ML}}] &=& rac{N-1}{N}oldsymbol{\Sigma}. \end{array}$$

#### Hence define

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathrm{T}}.$$

### Sequential Estimation

### Contribution of the $N^{th}$ data point, $x_N$

$$\mu_{\mathrm{ML}}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$$

$$= \frac{1}{N} \mathbf{x}_{N} + \frac{1}{N} \sum_{n=1}^{N-1} \mathbf{x}_{n}$$

$$= \frac{1}{N} \mathbf{x}_{N} + \frac{N-1}{N} \mu_{\mathrm{ML}}^{(N-1)}$$

$$= \mu_{\mathrm{ML}}^{(N-1)} + \frac{1}{N} (\mathbf{x}_{N} - \mu_{\mathrm{ML}}^{(N-1)})$$

$$\longrightarrow \text{correction given } \mathbf{x}_{\mathrm{N}}$$

$$\longrightarrow \text{correction weight}$$

$$\longrightarrow \text{old estimate}$$

### Mixtures of Gaussians (1)

#### Old Faithful data set





# Mixtures of Gaussians (2)

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$



# Mixtures of Gaussians (3)



# Mixtures of Gaussians (4)

Determining parameters <sup>1</sup>, §, and <sup>1</sup>/<sub>4</sub> using maximum log likelihood

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Log of a sum; no closed form maximum.

Solution: use standard, iterative, numeric optimization methods or the *expectation* maximization algorithm (Chapter 9).

# The Exponential Family (1)

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp \{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\}$$

where 'is the natural parameter and

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} = 1$$

so g(') can be interpreted as a normalization coefficient.

# The Exponential Family (2.1)

#### The Bernoulli Distribution

$$p(x|\mu) = \operatorname{Bern}(x|\mu) = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp \{x \ln \mu + (1 - x) \ln(1 - \mu)\}$$

$$= (1 - \mu) \exp \left\{ \ln \left(\frac{\mu}{1 - \mu}\right) x \right\}$$

#### Comparing with the general form we see that

$$\eta = \ln\left(rac{\mu}{1-\mu}
ight)$$
 and so  $\mu = \sigma(\eta) = rac{1}{1+\exp(-\eta)}$ . Logistic sigmoid

# The Exponential Family (2.2)

# The Bernoulli distribution can hence be written as

$$p(x|\eta) = \sigma(-\eta) \exp(\eta x)$$

#### where

$$u(x) = x$$

$$h(x) = 1$$

$$g(\eta) = 1 - \sigma(\eta) = \sigma(-\eta).$$

# The Exponential Family (3.1)

#### The Multinomial Distribution

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp\left\{\sum_{k=1}^{M} x_k \ln \mu_k\right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right)$$

where, 
$$\mathbf{x} = (x_1, \dots, x_M)^\mathrm{T}$$
,  $\boldsymbol{\eta} = (\eta_1, \dots, \eta_M)^\mathrm{T}$  and

$$\eta_k = \ln \mu_k$$
 $\mathbf{u}(\mathbf{x}) = \mathbf{x}$ 
 $h(\mathbf{x}) = 1$ 
 $g(\boldsymbol{\eta}) = 1$ .

NOTE: The  ${}^{\prime}{}_k$  parameters are not independent since the corresponding  ${}^{1}{}_k$  must satisfy  ${}^{M}$ 

$$\sum_{k=1}^{M} \mu_k = 1.$$

# The Exponential Family (3.2)

Let 
$$\mu_M = 1 - \sum_{k=1}^{M-1} \mu_k$$
. This leads to

$$\eta_k = \ln\left(rac{\mu_k}{1-\sum_{j=1}^{M-1}\mu_j}
ight) ext{ and } \mu_k = rac{\exp(\eta_k)}{1+\sum_{j=1}^{M-1}\exp(\eta_j)}.$$

Here the ' k parameters are independent.

Note that

$$0 \leqslant \mu_k \leqslant 1$$
 and  $\sum_{k=1}^{M-1} \mu_k \leqslant 1$ .

# The Exponential Family (3.3)

# The Multinomial distribution can then be written as

$$p(\mathbf{x}|\boldsymbol{\mu}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right)$$

where

$$oldsymbol{\eta} = (\eta_1, \dots, \eta_{M-1}, 0)^{\mathrm{T}}$$
 $\mathbf{u}(\mathbf{x}) = \mathbf{x}$ 
 $h(\mathbf{x}) = 1$ 
 $g(oldsymbol{\eta}) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k)\right)^{-1}$ .

# The Exponential Family (4)

#### The Gaussian Distribution

$$p(x|\mu, \sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$

$$= \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}x^{2} + \frac{\mu}{\sigma^{2}}x - \frac{1}{2\sigma^{2}}\mu^{2}\right\}$$

$$= h(x)g(\eta) \exp\left\{\eta^{T}\mathbf{u}(x)\right\}$$

#### where

$$\boldsymbol{\eta} = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix} \qquad h(\mathbf{x}) = (2\pi)^{-1/2}$$
$$\mathbf{u}(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix} \qquad g(\boldsymbol{\eta}) = (-2\eta_2)^{1/2} \exp\left(\frac{\eta_1^2}{4\eta_2}\right).$$

# ML for the Exponential Family (1)

### From the definition of g(') we get

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$1/g(\boldsymbol{\eta})$$

$$\mathbb{E}[\mathbf{u}(\mathbf{x})]$$

Thus

$$-\nabla \ln g(\boldsymbol{\eta}) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

# ML for the Exponential Family (2)

Give a data set,  $X = \{x_1, ..., x_N\}$ , the likelihood function is given by

$$p(\mathbf{X}|\boldsymbol{\eta}) = \left(\prod_{n=1}^{N} h(\mathbf{x}_n)\right) g(\boldsymbol{\eta})^N \exp\left\{\boldsymbol{\eta}^T \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)\right\}.$$

Thus we have

$$-\nabla \ln g(\boldsymbol{\eta}_{\mathrm{ML}}) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)$$

Sufficient statistic

# Nonparametric Methods (2)

Histogram methods partition the data space into distinct bins with widths  $\phi_i$  and count the number of observations,  $n_i$ , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- •Often, the same width is used for all bins,  $\phi_i = \phi$ .
- ¢ acts as a smoothing parameter.



•In a D-dimensional space, using M bins in each dimension will require M<sup>D</sup> bins!

Figure 1.19 Scatter plot of the oil flow data for input variables  $x_6$  and  $x_7$ , in which red denotes the 'homogenous' class, green denotes the 'annular' class, and blue denotes the 'laminar' class. Our goal is to classify the new test point denoted by '×'.



Figure 1.20 Illustration of a simple approach to the solution of a classification problem in which the input space is divided into cells and any new test point is assigned to the class that has a majority number of representatives in the same cell as the test point. As we shall see shortly, this simplistic approach has some severe shortcomings.



#### curse of dimensionality

Figure 1.21 Illustration of the curse of dimensionality, showing how the number of regions of a regular grid grows exponentially with the dimensionality D of the space. For clarity, only a subset of the cubical regions are shown for D=3.



### K-Nearest-Neighbours for Classification (2)



### K-Nearest-Neighbours for Classification (3)



- K acts as a smother
- For  $N \to \infty$ , the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

# Nonparametric Methods (7)

Nonparametric models (not histograms) requires storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient in terms of storage and computation.