_			_		-
r	١. ١	11.		aalko	
	വ	บบทา	$a \mapsto a$	ากบรด	\sim 1
			1 115	าสาหน	,, ,,

Gravitatsiooni mõju kera soojusmahtuvusele

Uurimistöö

Kaarel Kivisalu

11. a

Juhendajad: prof Jaan Kalda

õp Toomas Reimann

Sisukord

Sis	sejuha	tus	3
1	Teore	etiline osa	4
	1.1	Tavapärane lahendus	4
	1.2	Tavapärane lahendus ja selle termodünaamika II seaduse rikkumine	4
	1.3	Statistiline mehaanika	5
	1.4	Energiatasemed ja soojusmahtuvus	6
	1.5	Kvaasi-klassikaline lähendus	6
	1.6	Ajast sõltumatu häiritusteooria	7
2	Prakt	iline osa	9
	2.1	Tükiti lineaarne potentsiaal	9
	2.2	Tükiti paraboolne potentsiaal	10
	2.3	Häiritusega harmooniline ostsillaator	10
Ko	kkuvõ	te	11
Ka	sutatu	d materjalid	12
Ki	nnitusl	leht	13

Sissejuhatus

I rahvusvahelisel füüsikaolümpiaadil 1967. aastal oli järgnev probleem Problems of the... 1967:

Kaks homogeenset ühesugust kera on sama algtemperatuuriga. Üks kera on liikumatult horisontaalse tasandil, teine ripub niidi küljes. Mõlemale kerale antakse võrdne soojushulk. Kas kerade lõpptemperatuur on sama või mitte. Soojuskadudega mitte arvestada.

Käesolevas töös uuritakse konkreetsete potentsiaalide korral konstantse gravitatsioonvälja mõju kera soojusmahtuvusele. Konstantse gravitatsioonivälja potentsiaal on lineaarne. Vaadatakse soojusmahtuvuse erinevust juhtudel, kui on ainult kera potentsiaal ja kera potentsiaalile on lisatud lineaarne gravitatsioonivälja potentsiaal.

Töös on analüüsitud kuuppolünoompotentsiaali häirituse meetodil ja kahest lineaarsest funktsioonist koosnevat potentsiaali kvaasi-klassikaliselt. Samuti on näidatud, et osade potentsiaalide korral ei mõjuta gravitatsioon soojusmahtuvust.

Varem on uuritud gravitatsiooni mõju metallkera soojusmahtuvusele üldjuhul. Leiti üldine seos soojusmahtuvuse, temperatuuri, gravitatsioonivälja tugevuse ja lineaarse soojuspaisumisteguri vahel. Saadud tulemust on eksperimentaalselt väga raske kinnitada, kuna gravitatsiooni mõju on väga väike. Konkreetsete potentsiaalide läbivaatamine tõstaks ka varem leitud mudeli usaldusväärsust.

Uurimistöö hüpotees on, et sõltuvalt potentsiaalist võib gravitatsioon nii tõsta kui ka langetada keha soojusmahtuvust.

1 Teoreetiline osa

1.1 Tavapärane lahendus

Tavapärane lahendus põhineb soojuspaisumisega seotud erinevustel. Kerale A soojust andes see paisub ja selle massikese tõuseb. Järelikult peab osa kerale A antavast soojushulgast kuluma kera massikeskme gravitatsioonilise potentsiaalse energia tõstmiseks ja lõpptemperatuur on madalam algsest. Vastupidiselt, kera B massikese langeb soojuspaisumise tõttu ja energiat saadakse juurde, järelikult on kera B lõpptemperatuur kõrgem.

Pannakse ka kirja tavapärasele lahendusele vastavad valemid. Olgu kerade soojusmahtuvus C_0 gravitatsioonivälja puudumisel. Tavapärase lahenduse korrale, kui kera A soojendatakse, siis selle massikese tõused $dR = \alpha R \, dT$ võrra, kus dT on temperatuuri tõus, α on soojuspaisumistegur ja R on kera raadius. Kera saab potentsiaalse energia $d\Phi = mg \, dR$, kus m on keha mass ja g on raskuskiirendus. Järelikult, kui soojushulk δQ antakse süsteemile, siis saadakse, et

$$\delta Q = C_0 dT + mg dR = C_0 dT + mg\alpha R dT = (C_0 + mg\alpha R) dT.$$
 (1)

See on ekvivalentne väitega, et kera A soojusmahtuvus on:

$$C_A = C_0 + mg\alpha R. (2)$$

Analgoselt saame, et kera B soojusmahtuvus on

$$C_B = C_0 - mg\alpha R. (3)$$

Enamiku materjalide jaoks on $\alpha > 0$, millest tulenevalt $C_A > C_B$. Järelikult on tavapärase lahenduse kohaselt kera A lõpptemperatuur madalam kera B lõpptemperatuurist.

1.2 Tavapärane lahendus ja selle termodünaamika II seaduse rikkumine

Tavapärases lahenduses kaudselt eeldatakse, et keha siseenergia U ja raadius R sõltuvad ainult temperatuurist T, mitte aga raskuskiirendusest g. Vaadeltakse järgnevat tsüklit:

pall asub horisontaalsel külmal tasandil temperatuuriga T_1 ; pall ühendatakse soojema reservaariga, mille temperatuur $T_2 = T_1 + dT > T_1$; pall riputatakse nööri külge ja horisontaalne tasand eemaldatakse; pall ühendatakse külma revervuaariga, mille temperatuur on T_1 . Selle protsessi kasutegur on tehtud töö ja neeldunud soojuse suhe ning avaldub kujul Palma, Sormani 2015

$$\eta = \frac{2mg\alpha R}{C_0 + mg\alpha R}. (4)$$

Kasutegur η ei sõltu dT suurusest. Termodünaamika teist seadus saab sõastada järgnevalt: iga tsükkel, mis töötab ainult temperatuuride T_1 ja T_2 juures ei saa olla effektiivsem Carnot' tsüklist, mis töötab samade temperatuuride juures. Carnot' tsükli efektiivsus on

$$\eta_{Carnot'} = \frac{dT}{T_2} \tag{5}$$

Järelikult, kui dT on piisavalt väike, siis on palliga tsükli kasutegur suurem Carnot' tsükli kasutegurist. Teisisõnu rikub tavapärane lahendus termodünaamika II seadust.

Joonis 1. Probleemi ülesehitus

Allikas: Palma, Sormani 2015

1.3 Statistiline mehaanika

Kasutades statistilise mehaanika meetodeid on võimalik leida kera soojusmahtuvuse sõltuvus gravitatsioonist (*Ibid.*: test):

$$\frac{\partial C(g,T)}{\partial g} = -mTY\left(\alpha^2 + \frac{\partial \alpha}{\partial T}\right),\tag{6}$$

kus C on soojusmahtuvus, g on raskuskiirenuds, m on kera mass, T on kera temperatuur, Y on massikeskme kõrgus, α on lineaarne soojuspaisumistegur.

1.4 Energiatasemed ja soojusmahtuvus

Kanoonilise ansambli jaoks, mis on kvantmehaaniline ja diskreetne, on kanooniline statistiline summa Z defineeritud kui jälg Boltzmanni tegurist Kardar 2007:

$$Z = \operatorname{tr}(e^{-\beta \hat{H}}) = \sum_{n} e^{-\beta E_n}.$$
 (7)

Keskmine energia U avaldub kui Ibid.

$$U = -\frac{\partial \ln Z}{\partial \beta}.$$
 (8)

Soojusmahtuvus on defineeritud kui

$$C = \frac{\partial U}{\partial T}. (9)$$

Eelnevatest võrranditest on lihtne näha, et

$$\frac{\partial C}{\partial g} = -\frac{\partial}{\partial g} \frac{\partial}{\partial T} \frac{\partial}{\partial \beta} \ln \sum_{n} e^{-\beta E_n}.$$
 (10)

1.5 Kvaasi-klassikaline lähendus

Schrödingeri võrrandi

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi \tag{11}$$

saab ümber kirjutada järgnevalt:

$$\frac{d^2\psi}{dx^2} = -\frac{p^2}{\hbar^2}\psi,\tag{12}$$

kus

$$p(x) \equiv \sqrt{2m[E - V(x)]} \tag{13}$$

on klassikaline valem osakese impulsi jaoks koguenergiaga E ja potentsiaalse energiaga V(x). Piirkonnas, kus E > V(x), on p(x) reaalne. Seda piirkonda kutsutakse "klassikaliseks", kuna klasskikaliselt on osake piiratud selles piirkonnas. Üldiselt on ψ kompleksfunktsioon, mida saab avaldada klassikalises piirkonnas amplituudi A(x) ja faasi $\phi(x)$ kaudu, mis mõlemad on reaalsed (Griffiths 2005: 316):

$$\psi(x) = A(x)e^{i\phi(x)}. (14)$$

Eeldades, et amplituud A muutub aeglaselt¹, avaldub lainefunktsioon klassikalises piirkonnas kujul (Griffiths 2005: 316-318)

$$\psi = \frac{C_1}{\sqrt{p(x)}} e^{\frac{i}{\hbar} \int p(x) \, dx} + \frac{C_2}{\sqrt{p(x)}} e^{-\frac{i}{\hbar} \int p(x) \, dx}, \tag{15}$$

kus C_1 ja C_2 on kompleksarvulised konstandid. Valemi (15) saab ka kirja panna kujul (Shankar 1994: 446)

$$\psi(x) = \frac{A}{\sqrt{p(x)}} \cos\left[\frac{1}{\hbar} \int p(x) \, dx + B\right],\tag{16}$$

kus A ja B on reaalsed parameetrid. Kahjuks ei kehti (16) kui $E \approx V(x)$, kuna $\sqrt{p(x)} \to 0$. Olgu $V(x_1) = V(x_2) = E$, $x_1 < x_2$ ja lõigul (x_1, x_2) on V(x) < E. On siiski võimalik vaadeldes lainefunktsiooni x_1 lähedal näidata, et lõigul (x_1, x_2) on lainefunktsioon järgmine (Landau, Lifshitz 2005: 167-170):

$$\psi(x) = \frac{A}{\sqrt{p(x)}} \cos\left[\frac{1}{\hbar} \int_{x_1}^x p(x) dx - \frac{\pi}{4}\right],\tag{17}$$

kui x_2 lähedal on lainefunktsioon

$$\psi(x) = \frac{A'}{\sqrt{p(x)}} \cos\left[\frac{1}{\hbar} \int_{x_2}^x p(x) dx + \frac{\pi}{4}\right]. \tag{18}$$

Selleks, et need kaks lahendit ühtiksid, peavad A ja A' olema sama magnituudiga ja koosinuste faaside vahe peab olema π kordne (Shankar 1994: 446):

$$\frac{1}{\hbar} \int_{x_1}^x p(x) \, dx - \frac{1}{\hbar} \int_{x_2}^x p(x) \, dx - \frac{\pi}{2} = n\pi \tag{19}$$

või

$$\int_{x_1}^{x_2} p(x) \, dx = \left(n + \frac{1}{2} \right) \pi \hbar. \tag{20}$$

1.6 Ajast sõltumatu häiritusteooria

Schrödingeri võrrandit täpselt lahendada on võimalik ainult lihtsamatel juhtudel, keerulisemate juhtude jaoks on vaja teha lähendusi. Ajast sõltumatu häiritusteooria (edaspidi häiritusteooria) on lähendusmeetod, mida saab rakendada järgnevas olukorras: teades lahendit hamiltoniaani \hat{H}^0 omaväärtusülesandele (ingl eigenvalue problem), tahetakse leida lahendit $\hat{H} = \hat{H}^0 + \hat{H}^1$, kus \hat{H}^1 on suhteliselt väike võrreldes \hat{H}^0 -ga. Eeldatakse, et iga

¹Täpsemalt eeldatakse, et $A''/A \ll (\phi')^2$ ja $A''/A \ll p^2/\hbar^2$

 \hat{H}^0 kidumata omaketi (ingl eigenket) $|n^0\rangle$ omaväärtusega E_n^0 jaoks leidub \hat{H} kidumata omaket $|n\rangle$ omaväärtusega E_n . Siis eeldades, et H omaketid ja omaväärtused võib kirja panna häiritusseerias (Shankar 1994: 451):

$$|n\rangle = |n^0\rangle + |n^1\rangle + |n^2\rangle + \dots \tag{21}$$

$$E_n = E_n^0 + E_n^1 + E_n^2 + \dots (22)$$

Iga liikme ülaindeks k näitab millise \hat{H}^1 astmega eeldatakse, et iga liige on võrdeline. Selleks, et leida liikmeid $|n\rangle$ ja E_n arenduses, alustatakse omaväärtusvõrrandiga (*Ibid*.: 451):

$$\hat{H}|n\rangle = E_n|n\rangle \tag{23}$$

või

$$(\hat{H}^{0} + \hat{H}^{1})(|n^{0}\rangle + |n^{1}\rangle + ...) = (E_{n}^{0} + E_{n}^{1} + ...)(|n^{0}\rangle + |n^{1}\rangle + ...).$$
 (24)

Vaadates võrrandis (24) nullindat järku liikmeid saadakse võrrand

$$\hat{H}^0 | n^0 \rangle = E_n^0 | n^0 \rangle. \tag{25}$$

Eelduse järgi on see võrrand lahendatud ja omaket $|n^0\rangle$ ja omaväärtused E_n^0 on teada. Vaadates võrrandis (24) esimest järku liikmeid saadakse võrrand

$$\hat{H}^{0}|n^{1}\rangle + \hat{H}^{1}|n^{0}\rangle = E_{n}^{0}|n^{1}\rangle + E_{n}^{1}|n^{0}\rangle \tag{26}$$

2 Praktiline osa

Käesolevas osas leitakse konkreetsetele võimalikele kera potentsiaalidele vastavad soojusmahtuvuse sõltuvused gravitatsioonist, kus gravitatsiooni potentsiaal on võetud lineaarseks sõltuvalt ühest koordinaadist. Kuigi tegelik kera potentsiaal on keeruline võib anda konkreetne potentsiaal küllaltki täpse lahendi.

2.1 Tükiti lineaarne potentsiaal

Vaadeltakse potentsiaali kujuga

$$V(x) = \begin{cases} (-a + mg)x, & x < 0, \\ (b + mg)x, & x \ge 0, \end{cases}$$

$$(27)$$

kus a ja b on positiivsed reaalarvulised konstandid ning -a + mg < 0 ja b + mg > 0. Kvaasi-klassikalises lähenduses saame leida vastava energiatasemed:

$$\left(n + \frac{1}{2}\right)\pi\hbar = \int_{x_1}^{0} \sqrt{2m[E_n - (-a + mg)x]} \, dx + \int_{0}^{x_2} \sqrt{2m[E_n - (b + mg)x]} \, dx, \quad (28)$$

kus $n \in \{0, 1, 2, ...\}, x_1 = \frac{E_n}{-a + mg}$ ja $x_2 = \frac{E_n}{b + mg}$. Integreerides saadakse, et

$$\left(n + \frac{1}{2}\right) \pi \hbar = \sqrt{2m} \left[-\frac{2(E_n - (-a - mg)x)^{\frac{2}{3}}}{3(-a + mg)} \right] \Big|_{x_1}^{0} + \sqrt{2m} \left[-\frac{2(E_n - (b - mg)x)^{\frac{2}{3}}}{3(b + mg)} \right] \Big|_{x_2}^{0} \\
= -\frac{2\sqrt{2m}E_n^{\frac{3}{2}}}{3(-a + mg)} + \frac{2\sqrt{2m}E_n^{\frac{3}{2}}}{3(b + mg)}.$$
(29)

 E_n avaldades saadakse, et

$$E_n = \left[\frac{3\pi}{2\sqrt{2}} \frac{\hbar}{\sqrt{m}} \frac{(-a+mg)(b+mg)}{a+b} \right]^{\frac{2}{3}} \left(n + \frac{1}{2} \right)^{\frac{2}{3}}.$$
 (30)

Asendades võrrandisse (30) $c = \left[\frac{3\pi}{2\sqrt{2}} \frac{\hbar}{\sqrt{m}} \frac{(-a+mg)(b+mg)}{a+b}\right]^{\frac{2}{3}}$ avaldub statistiline summa järgnevalt:

$$Z = \sum_{n=0}^{\infty} e^{-\beta c(n + \frac{1}{2})^{\frac{2}{3}}}.$$
 (31)

Kui $\beta c \ll 1,$ siis saab summa asendada integraaliga ja $n + \frac{1}{2} \approx n$:

$$Z = \sum_{n=0}^{\infty} e^{-\beta c(n+\frac{1}{2})^{\frac{2}{3}}} \approx \int_{0}^{\infty} e^{-\beta cn^{\frac{2}{3}}} dn = \left[\frac{3\sqrt{\pi} \operatorname{erf}\left(n^{\frac{1}{3}}\sqrt{\beta c}\right)}{4(\beta c)^{\frac{3}{2}}} - \frac{3n^{\frac{1}{3}}e^{-\beta cn^{\frac{2}{3}}}}{2\beta c} \right]_{0}^{\infty} = \frac{3\sqrt{\pi}}{4(\beta c)^{\frac{3}{2}}}.$$
(32)

2.2 Tükiti paraboolne potentsiaal

$$\frac{\sqrt{m}\left(\sqrt{2}g^{2}m^{2} + 2^{\frac{5}{2}}E_{n}a\right)\arcsin\left(\frac{\sqrt{g^{2}m^{2} + 4E_{n}a}\sqrt{g^{2}m^{4} + 4E_{n}am^{2}}}{g^{2}m^{3} + 4E_{n}am}\right)}{4a^{\frac{3}{2}}} = \pi\left(n + \frac{1}{2}\right)\hbar \qquad (33)$$

2.3 Häiritusega harmooniline ostsillaator

Vaadeldakse järgnevat hamiltooninit

$$\hat{H} = \hat{H}^0 + \hat{H}^1, \tag{34}$$

kus

$$\hat{H}^0 = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} \tag{35}$$

ja

$$\hat{H}^1 = mg\hat{x} \tag{36}$$

<++> Lahendid saame leida häirituse meetodiga. On lihtne potentsiaali

$$V(x) = \frac{m\omega^2 x^2}{2} + mgx \tag{37}$$

omaväärtused, kui teha asendus $y = x + \frac{g}{\omega^2}$. Saadakse, et

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{1}{2}\frac{mg^2}{\omega^2}.$$
 (38)

Kokkuvõte

Kasutatud materjalid

Griffiths, D. J. (2005) Introduction to quantum mechanics. Upple Saddle River: Prentice Hall

Kardar, M. (2007) Statistical Physics of Particles. New York: Cambridge University Press

Landau, L. D., Lifshitz, E. M. (2005) Quantum Mechaincs (Non-relativistic Theory). Oxford: Butterworth-Heinemann

Palma, G. D., Sormani, M. C. (2015) "Counterintuitive effect of gravity on the heat capacity of a metal sphere: re-examination of a well-known problem". American Journal of Physics, nr 83 (723)

Problems of the 1st International Physics Olympiad (1967). Loetud: http://ipho.org/problems-and-solutions/1967/1st_IPhO_1967.pdf, 18.11.2018

Shankar, R. (1994) Principles of quantum mechanics. New York: Plenum Press

Kinnitusleht

Kinnitan, et
• koostasin uurimistöö iseseisvalt. Kõigile töös kasutatud teiste autorite töödele ja andmeallikatele on viidatud;
• olen teadlik, et uurimistööd ei edastata teistele tulu teenimise eesmärgil ega jagata teadlikult plagieerimiseks.
kuupäev / nimi / allkiri
Tunnistan uurimistöö kaitsmisvalmiks.
Juhendajad
kuupäev / nimi / allkiri
kuupäev / nimi / allkiri