

Validating statistical index data represented in RDF using SPARQL queries

Jose Emilio Labra Gayo

Jose María Álvarez Rodríguez

WESO Research Group University of Oviedo, Spain

Motivation

The WebIndex Project

Measure impact of the Web in different countries

First publication: 2012, 2 web sites:

http://thewebindex.org

Visualizations

http://data.webfoundation.org
Data portal

WebIndex Workflow

Technical details

Index made from

61 countries (100 planned for 2013)

85 indicators:

51 Primary (questionnaires)

34 Secondary (external sources)

RDF data

Modeled on top of RDF Data Cube

More than 1 million triples

Linked data: DBPedia, Organizations, etc.

WebIndex computation process (1)

Simplified with one indicator, 3 years and 4 countries

Filtered Data (Indicator A)							
Country	2009	2010	2011	4			
Spain	4	5	3	Н			
Finland	4	5	6	\mathbb{H}			
Armenia	1	1	1	Н			
Chile	6	8	10.6	Ц			

Norn	Normalized Data (z-scores)						
				7			
Country	2009	2010	2011				
Spain	-0.57	-0.57	-0.92	0			
Finland	-0.57	-0.57	-0.14	\mathbb{H}			
Chile	1.15	1.15	1.06	Ψ			

More details can be found here: http://thewebindex.org/about/methodology/computation/

WebIndex computation Process (2)

Simplified with one indicator, 3 years and 4 countries

Normalized Data (z-scores)

				ī
Country	2009	2010	2011	H
Spain	-0.57	-0.57	-0.92	H
Finland	-0.57	-0.57	-0.14	H
Chile	1.15	1.15	1.06	Щ

Adjusted data

Country	Α	В	С	D	
Spain	8	7	9.1	7.1	
Finland	7	8	7.1	8	
Chile	8	9	7.6	6	

Group indicators

Country	Readiness	Impact	Web	Composite
Spain	5.7	3.5	5.1	4.5
Finland	5.5	3.9	7.1	4.9
Chile	6.7	4.5	7.6	5.1

Rankings

Country	Readiness	Impact	Web	Composite
Spain	2	3	3	3
Finland	3	2	2	2
Chile	1	1	1	1

More details can be found here: http://thewebindex.org/about/methodology/computation/

Example of data representation in RDF

Example:

```
obs:obsM23 a qb:Observation ;
cex:computation
  [ a cex:Z-Score ;
    cex:observation obs:obsA23 ;
    cex:slice slice:sliceA09 ;
  ];
cex:value -0.57 ;
cex:md5-checksum "2917835203..." ;
cex:indicator indicator:A ;
cex:concept country:ESP ;
qb:dataSet dataset:A-Normalized ;
# ... other declarations omitted for brevity

It declares that the value of this observation was obtained as z-score of obs:obsA23 over slice:sliceA09
c-score of obs:obsA23 over slice:sliceA09
```

Each observation follows the RDF Data Cube vocabulary extented with metadata about how it was obtained

Vocabulary of statistical computations: Computex

Can be seen as a RDF Data Cube specialization

Available at: http://purl.org/weso/computex

Some terms:

cex:Concept

cex:Indicator

cex:Computation

cex:WeightSchema

qb:Observation

. . .

Validation process

Last year (2012)

Shape/template based validation

MD5 checksum of each observation

This year (2013)

SPARQL based validation

3 levels of validation

RDF Data Cube

Shapes of data

Computation process

Ultimate goal: automatically compute the index

Validation approach

We used SPARQL CONSTRUCT queries instead of ASK IF (no error) THEN empty model

ELSE RDF graph with error information

```
CONSTRUCT {
 [ a cex:Error;
 cex:errorParam
        [cex:name "obs"; cex:value ?obs],
        [cex:name "value1"; cex:value ?value1],
        [cex:name "value2"; cex:value ?value2];
  cex:msg "Observation has two different values" . ]
} WHERE {
                             CONSTRUCT queries facilitate debugging
  ?obs a qb:Observation.
  ?obs cex:value ?value1 .
  ?obs cex:value ?value2..
  FILTER (?value1!=?value2)
```


SPARQL queries RDF Data Cube

RDF Data Cube integrity constraints can easily be converted from ASK to CONSTRUCT queries

```
CONSTRUCT {
   [a cex:Error;
   cex:errorParam [cex:name "dim"; cex:value ?dim ];
   cex:msg "Every Dimension must have a declared range" .
   ]
} WHERE {
   ?dim a qb:DimensionProperty .
   FILTER NOT EXISTS { ?dim rdfs:range [] }
}
```


SPARQL expressivity

SPARQL can express complex validation patterns. Example: Mean

```
CONSTRUCT {
    [ a cex:Error ;
      cex:errorParam # ...omitted
      cex:msg "Mean value does not match" ] .
} WHERE {
    ?obs a qb:Observation ;
    cex:computation ?comp ;
    cex:value ?val .
    ?comp a cex:Mean .
    { SELECT (AVG(?value) as ?mean) ?comp WHERE {
          ?comp cex:observation ?obs1 .
          ?obs1 cex:value ?value ;
      } GROUP BY ?comp }
    FILTER( abs(?mean - ?val) > 0.0001) }}
```


Limitations of SPARQL expressivity

Some built-in functions are not standardized

Example: z-score employs standard deviation. It

requires built-in function: sqrt

Available in some SPARQL implementations

Limits of SPARQL expressivity

Ranking of values (2 approaches)

- Using GROUP_CONCAT
- Check a value against all the other values

Limits of SPARQL expressivity

Handling series with RDF Collections

Average growth: $\frac{\frac{v_n}{v_{n-1}} + \dots + \frac{v_2}{v_1}}{n-1}$

Computex Validation tool

```
Available at:
```

http://herokuapp.computex.com

Work in progress

Validates both RDF Data Cube and Computex datasets

Generates error messages and EARL report

Selection of validation profile

Source code available:

http://github.com/weso/computex

Conclusions

WebIndex = use case for RDF Validation RDF Validation using SPARQL queries seems promising

Challenges:

Expressivity limits of SPARQL

Complexity of some queries

Future work

Generic validation and computation (expansion)

RDF Data Cube = Profile

Computex = Profile derived from RDF Data Cube

User defined profiles

Other profiles?