5. Повторные независимые испытания

Повторные испытания. Формула Бернулли. Производящие функции. Локальная и интегральная теоремы Муавра-Лапласа. Формула Пуассона. Отклонение частоты от вероятности.

5.1. Повторные независимые испытания. Формула Бернулли

Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Обозначим P(A) = p, $P(\overline{A}) = 1 - p = q$ и определим $P_n(m)$ — вероятность того, что событие A произойдет m раз в n испытаниях.

Для вычисления $P_n(m)$ используется формула Бернулли:

$$P_n(m) = C_n^m p^m q^{n-m}. (5.1)$$

Для вычисления вероятности по формуле Бернулли (5.1), в пакет Maxima встроена функция pdf_binomial(m,n,p).

Пример 5.1. Инструкция к устройству состоит из 10 страниц. Вероятность опечатки на каждой странице равна 0,05. Найти вероятность того, что на двух страницах инструкции будут опечатки.

ightharpoonup Здесь $n=10,\,p=0.05,\,q=1-p=0.95,\,m=2.$ По формуле Бернулли (5.1)

$$P_{10}(2) = C_{10}^2 \cdot p^2 \cdot q^8 = \frac{10!}{2!8!} \cdot 0.05^2 \cdot 0.95^8 \approx 0.075.$$

Ответ: $P_{10}(2) \approx 0.075$.

Пример 5.2. Вероятность выпуска стандартного изделия на автоматической линии равна 0,9. Определить вероятности того, что из пяти наудачу взятых изделий m = 0, 1, 2, 3, 4, 5 окажутся стандартными.

 \blacktriangleleft По формуле (5.1) при $n=5,\ m=0,\ p=0,9,\ q=0,1$ найдем вероятность того, что среди пяти взятых изделий не окажется стандартных

$$P_5(0) = C_5^0 \cdot (0.9)^0 \cdot (0.1)^5 = 10^{-5}.$$

Как видим, это событие оказалось маловероятным. При других m будем иметь:

$$P_5(1) = C_5^1 \cdot (0.9)^1 \cdot (0.1)^4 = \frac{5!}{1!4!} \cdot 0.9 \cdot 10^{-4} = 0.00045,$$

$$P_5(2) = C_5^2 \cdot (0.9)^2 \cdot (0.1)^3 = \frac{5!}{2!3!} \cdot 0.81 \cdot 10^{-3} = 0.0081,$$

$$P_5(3) = C_5^3 \cdot (0.9)^3 \cdot (0.1)^2 = \frac{5!}{3!2!} \cdot 0.729 \cdot 10^{-2} = 0.0729,$$

$$P_5(4) = C_5^4 \cdot (0.9)^4 \cdot (0.1)^1 = \frac{5!}{4!1!} \cdot 0.6561 \cdot 0.1 = 0.32805,$$

$$P_5(5) = C_5^5 \cdot (0.9)^5 \cdot (0.1)^0 = 0.59049.$$

Отметим, что сумма всех вероятностей равна 1.

$$\sum_{m=0}^{5} P_5(m) = 1.$$

Так как вероятность $p_5(5) \approx 0.591$ довольно высокая, то наиболее вероятным оказался выпуск пяти стандартных изделий.

Решение данного примера является достаточно трудоемкой задачей, поэтому проще воспользоваться компьютерным пакетом. Напишем простейшую и понятную без комментариев Maxima-программу, которая, кроме вычислений вероятностей, ещё иллюстрирует полученные значения вероятностей.

(%i1) load(distrib)\$ fpprintprec:5\$

(%i3) $P:makelist(pdf_binomial(k, 5, 0.9), k, 0, 5);$

(%03) [1.0 10⁻⁵, 4.5 10⁻⁴, 0.0081, 0.0729, 0.3281, 0.5905]

(%i4) wxplot2d(['discrete, P],[style,points])\$

Во второй строке программы создаётся список, в который записываются вероятности вычисленные по формуле Бернулли при $k=0,1,\cdots,5$: $P_5(0),\cdots$, $P_5(5)$. Функция wxplot2d графически отображает значения полученных вероятностей, рис. 14.

Ответ:
$$P \approx \{10^{-5}, 0,00005, 0,0081, 0,0729, 0,3281, 0,5905\}$$
.

Пример 5.3. 3D-принтер печатает детали сложной формы, которые поступают на склад. Вероятность выхода нестандартной детали равна 0,07. Найти вероятность того, что среди наудачу выбранных шести деталей:

- а) не окажется ни одной бракованной детали;
- б) не более двух деталей будут бракованными;
- в) более двух деталей будут бракованными.

$$\blacksquare$$
 Здесь $n = 6$, $p = 0.07$, $q = 0.93$.

а) Вероятность P_1 того, что не окажется ни одной бракованной детали, найдем по формуле Бернулли при m=0:

$$P_1 = P_6(0) = C_6^0 \cdot (0.07)^0 \cdot (0.93)^6 \approx 0.647.$$

б) найдем сначала вероятности $P_6(1)$ и $P_6(2)$:

$$P_6(1) = C_6^1 \cdot (0.07)^1 \cdot (0.93)^5 \approx 0.292,$$

$$P_6(2) = C_6^2 \cdot (0.07)^2 \cdot (0.93)^4 \approx 0.055.$$

Тогда вероятность P_2 того, что не более двух деталей будут бракованными, определится как сумма

$$P_2 = P_6(0) + P_6(1) + P_6(2) \approx 0.994.$$

в) Так как

$$\sum_{m=0}^{6} P_6(m) = 1,$$

то искомая вероятность P_3 того, что более двух деталей будут бракованными, определяется как сумма вероятностей:

$$P_3 = \sum_{m=3}^{6} P_6(m) = \sum_{m=0}^{6} P_6(m) - \sum_{m=0}^{2} P_6(m) \approx 1 - 0.994 = 0.006.$$

Ответ: $P_1 \approx 0.647 \ P_2 \approx 0.994 \ P_3 \approx 0.006.$

Пример 5.4. Автомат производит с вероятностью 0.92 годное изделие, с вероятностью 0.06 — изделие с устранимым браком и с вероятностью

0.02-c неустранимым браком. Произведено 50 изделий. Определить вероятность того, что среди них будет три изделия с устранимым браком и одно с неустранимым браком.

Замечание 5.1. Формула Бернулли обобщается на тот случай, когда в результате каждого опыта возможны не два исхода A и A, а несколько. Пусть производится п независимых опытов в одинаковых условиях, в каждом из которых может произойти только одно из событий A_1,A_2,\ldots,A_m c вероятностями $p_1, p_2, \ldots, p_m,$ причём

$$\sum_{i=1}^{m} p_i = 1.$$

Tогда вероятность того, что в k_1 опытах появится событие A_1 , а в k_m опыmax — $coбытие <math>A_m$ $\Big(\sum_{j=1}^m k_j = n\Big)$, определяется формулой полиномиального распределения

$$P_n(k_1, k_2, \dots, k_m) = \frac{n!}{k_1! k_2! \dots k_m!} \cdot p_1^{k_1} \cdot p_2^{k_2} \dots p_m^{k_m}.$$
 (5.2)

Применим для решения данной задачи формулу (5.2) полиномиального распределения. Здесь $n=50, \quad p_1=0.92, \quad p_2=0.06, \quad p_3=0.02,$ $k_2 = 3$, $k_3 = 1$, $k_1 = n - k_2 - k_3 = 46$.

Тогда

$$P_{50}(46,3,1) = \frac{50!}{46!3!1!} \cdot 0.92^{46} \cdot 0.06^{3} \cdot 0.02^{1} =$$

$$= \frac{47 \cdot 48 \cdot 49 \cdot 50}{6} \cdot 0.02162 \cdot 0.000216 \cdot 0.02 \approx 0.086.$$

Otbet: ≈ 0.086 .

5.2. Наивероятнейшее число появления события

Часто необходимо знать значение m, при котором вероятность $P_n(m)$ максимальна; это значение m называется наивероятнейшим числом m^* наступления события A в n испытаниях.

Можно показать, что

$$(n+1)p - 1 \le m^* \le (n+1)p.$$
 (5.3)

Эту формулу можно записать в виде

$$np - q \leqslant m^* \leqslant np + p. \tag{5.4}$$

Возможны случаи когда неравенству (5.3) удовлетворяют два целых значения m^* , тогда имеются два наивероятнейших числа m_1^* и $m_2^* = m_1^* + 1$.

Пример 5.5. В цехе восемь одинаковых конвейеров, работающих независимо друг от друга. Вероятность остановки в течении рабочего дня для каждого конвейера равна 0,6. Найти наивероятнейшее число т* остановок конвейеров в день и вероятность вероятность того, что будет т* остановок конвейеров.

$$ightharpoonup 3$$
десь $n=8, \ p=0.6, \ q=0.4.$ Тогда $np-q\leqslant m^*\leqslant np+p.$ или $4,4\leqslant m^*\leqslant 5,4.$

Следовательно, наиболее вероятное число заявок $m^* = 5$. Вероятность пяти заявок из восьми равна

$$P_8(5) = C_8^5 \cdot (0.6)^5 \cdot (0.4)^3 = \frac{8!}{3!5!} \cdot 0.07776 \cdot 0.064 \approx \mathbf{0.279}.$$

Otbet: $m^* = 5, \ P_8(5) \approx 0.279.$

Пример 5.6. Вероятность выпуска приборов высшего качества для некоторого предприятия равна 0,75. На контроль случайным образом выбрали партию из 103 приборов. Какое число приборов высшего качества в выбранной партии наиболее вероятно?

Обозначим
$$p=0.75,\ q=0.25,\ n=103.$$
 Тогда
$$0.75\cdot 104-1\leqslant m^*\leqslant 0.75\cdot 104\quad$$
или $77\leqslant m^*\leqslant 78.$

Так как здесь (n+1)p=78 есть целое число, то существуют два наивероятнейших числа: $m^*=77,\ m^*=78.$

Ответ:
$$m^* = 77$$
 и 78.

На рис. 15, представлено графическое распределение вероятностей $P_{103}(m)$ в диапазоне $65\leqslant m\leqslant 90$ для примера 5.6. Ниже приведена Махіта-программа. kill(all)\$ load ("distrib")\$ fpprintprec:5\$ n:103\$ p:0.75\$

P:makelist(pdf_binomial(k, n, p), k, 1,90)\$ wxplot2d(['discrete, P],[x,65,90],[style,points])\$

$$["P77 = ", P[77], "P78 = ", P[78]];$$

Вывод программы: график и вероятности [P77 = 0.09003, P78 = 0.09003]

5.3. Производящие функции

Если в каждом из независимых испытаниях вероятности наступления событий разные, то вероятности того, что в n опытах событие A наступит m раз, равна коэффициенту при m-й степени многочлена

$$\varphi_n(z) = (q_1 + p_1 z)(q_2 + p_2 z) \cdots (q_n + p_n z). \tag{5.5}$$

 Φ ункция $arphi_n(z)$, называется производящей функцией.

Пример 5.7. Автомобилист движеется по улице на которой расположены 4 светофора. Вероятность проехать светофор без остановки для кажедого светофора различна и равна: $p_1 = 0.3$, $p_2 = 0.8$, $p_3 = 0.5$ и $p_4 = 0.7$. Какова вероятность, что автомобилист остановиться ровно на двух светофорах.

Применяем формулу (5.5) для n=4 и $p_1=0,3,\ p_2=0,8,\ p_3=0,5,$ $p_4=0,7,\ q_1=0,7,\ q_2=0,2,\ q_3=0,5,\ q_4=0,3.$ $\varphi_4(z)=(0,7+0,3z)(0,2+0,8z)(0,5+0,5z)(0,3+0,7z).$

Раскрываем скобки

$$\varphi_4(z) = 0.084z^4 + 0.337z^3 + 0.395z^2 + 0.163z + 0.021.$$

Искомыми вероятностями будут коэффициенты при соответствующих степенях данного многочлена.

$$P_3(0) = 0.021; \ P_3(1) = 0.163; \ P_3(2) = \textbf{0.395}; \ P_3(3) = 0.337; \ P_3(4) = 0.084.$$

Other: $P_3(2) = 0.395.$

5.4. Локальная и интегральная теоремы Лапласа

Рассмотрим задачи с применением локальной и интегральной теорем Лапласа.

Вычисления по формуле Бернулли при больших n громоздки и требуют применение вычислительной техники и правильных алгоритмов нахождения результата. Локальная теорема Лапласа даёт асимптотическую формулу, позволяющую приближённо найти вероятность появления события ровно m раз в n испытаниях, если n достаточно велико.

Теорема 5.1 (Локальная теорема Муавра-Лапласа). Если вероятность p появления события A в каждом из n независимых испытаний постоянна u отлична от нуля u единицы, то вероятность $P_n(m)$ того, что событие A появиться m раз в n испытаниях, приближённо равна (при $n \to \infty$, $p \not\approx 0, p \not\approx 1$):

$$P_n(m) \approx \frac{1}{\sqrt{npq}} f\left(\frac{m-np}{\sqrt{npq}}\right), \quad e \partial e f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$
 (5.6)

Значение функции f(x) можно найти в таблице приложение 1, или вычислить на калькуляторе. В Excel эта функция встроена и для её вызова надо написать = HOPM.CT.PACП(x;0). На рис. 16 представлен график функции f(x). Из графика видно, что значения функции вне области |x| < 3 практически равны нулю. Например, $f(\pm 3) \approx 0{,}0044$, $f(\pm 4) \approx 0{,}0001$. Функция является чётной, максимальное значение функции равно $\frac{1}{\sqrt{2\pi}} \approx 0{,}399$. Следовательно, максимальное значение вероятности достигается при $m=m^*=np$ и равно $P_n(m^*) = \frac{1}{\sqrt{2\pi npq}}$. Найдём значения m при котором вероятности $P_n(m)$ значимы. Решаем неравенство

$$\left| \frac{m - np}{\sqrt{npq}} \right| < 3 \implies -3\sqrt{npq} < m - np < 3\sqrt{npq} \implies m \in (np - 3\sqrt{npq}; np + 3\sqrt{npq}).$$

Рисунок 17. Φ ункция $\Phi(x)$

Для вычисления суммарной («интегральной») вероятности того, что число появлений события A находится в заданных пределах при больших n также используется асимптотическая формула, позволяющая вычислять эту вероятность приближённо.

Для пользования этой формулой познакомимся с функцией Лапласа.

Определение 5.1. Функцией Лапласа $\Phi(x)$ называется:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt.$$
 (5.7)

График функции Лапласа представлен на рис. 17. Функция является возрастающей, при этом $|\Phi(x)| < 0.5, \ \forall x \in (-\infty; \infty)$.

В Excel для вызова этой функции надо ввести команду: =HOPM.CT.PAC $\Pi(\mathbf{x},1)$ -0,5.

Теорема 5.2 (Интегральная теорема Лапласа). Если вероятность p появления события A в каждом из n независимых испытаний постоянна и
отлична от нуля и единицы, то вероятность $P_n(m_1 \leqslant m \leqslant m_2)$ того,
что событие A появится не менее m_1 , но не более m_2 раз в n испытаниях
приближённо равна ($npu \ n \to \infty$, $p \not\approx 0$, $p \not\approx 1$):

$$P_n(m_1 \leqslant m \leqslant m_2) \approx \Phi\left(\frac{m_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{m_1 - np}{\sqrt{npq}}\right),$$
 (5.8)

$$e\partial e\ \Phi(x)=rac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}e^{-rac{t^{2}}{2}}dt\ -\ \phi y$$
нкция Лапласа.

Пример 5.8. Предприятие за смену выпускает 120 изделий. Вероятность того, что выпущенное изделие будет отнесено к высшему сорту, равна 0,56. Чему равна вероятность того, что среди выпущенных за смену изделий 67 окажется высшего сорта?

 \blacksquare В данной задаче $n=120,\ p=0.56.$

Следовательно, q = 0.44, m = 67, npq = 29,568.

Применим локальную теорему Лапласа (5.6). Найдём аргумент функции $\varphi(x)$

$$x = \frac{m - np}{\sqrt{npq}} = \frac{67 - 120 \cdot 0,56}{\sqrt{29,568}} \approx -0.04.$$

Используя таблицу, приложение 1, или используя калькулятор, находим значение функции $\varphi(x)$ $f(-0.04) = f(0.04) \approx 0.3986$.

Подставляем полученные значения в формулу (5.6)

$$P_{120}(67) = \frac{\varphi(x)}{\sqrt{npq}} \approx \frac{0.3986}{\sqrt{29.568}} \approx 0.073.$$

Нетрудно убедиться в том, что наивероятнейшее число здесь $m^*=67$, однако вероятность появления m^* , как видим, сравнительно мала (≈ 0.07). Это объясняется тем, что значения вероятности распределены от m=0 до m=120.

Махіта-программа:

numer:true\$

 $\begin{array}{l} L_{\rm Lapl}(m,n,p) \! := \! (y \! : \! 1/sqrt(n^*p^*(1-p)), \, y/sqrt(2^*\%pi)^* \exp(-0.5^*((m-n^*p)^*y)^*2)); \\ L_{\rm Lapl}(67,120,0.56); \end{array}$

 $(\%03) \ 0.0733$

Ответ: $P_{120}(67) \approx 0.073$.

Пример 5.9. В цехе работают 150 автоматических станков. Вероятность того, что любой станок в течение смены сломается одинакова для всех станков и равна 0,2. Найти вероятности того, что: а) за смену 35 станков потребуют к себе внимания; б) от 25 до 35 станков потребуют к себе внимания.

 \blacktriangleleft а) В первом случае можно применить локальную теорему Лапласа, так как $n=150,\ m=35,\ p=0.2,\ q=0.8$ величина npq=24. Найдём x по

формуле (5.6)

$$x = \frac{m - np}{\sqrt{npq}} = \frac{35 - 150 \cdot 0.2}{\sqrt{24}} = \frac{5}{\sqrt{24}} \approx 1.02.$$

По таблице приложение 1, найдем f(1,02)=0,2371 и, согласно (5.6), получим:

$$P_{150}(35) \approx 0.2371/\sqrt{24} \approx 0.048$$
.

б) Во втором случае используем интегральную теорему (5.2). Здесь $m_1=25,\ m_2=35,$

$$x_1 = \frac{m_1 - np}{\sqrt{npq}} = \frac{25 - 30}{\sqrt{24}} \approx -1.02, \quad x_2 = \frac{m_2 - np}{\sqrt{npq}} = \frac{35 - 30}{\sqrt{24}} \approx 1.02.$$

Применяя формулу (5.8) и таблицу для функции Лапласа, приложение 2, найдем искомую вероятность

$$P_{150}(25 \le m \le 35) \approx \Phi(1,02) - \Phi(-1,02) = 2\Phi(1,02) \approx 2.0,346 = 0,692.$$

Махіта-программа:

numer:true\$ fpprintprec:4\$ n:150\$ p:0.2\$ m1:25\$ m2:35\$

load(distrib)\$

pdf binomial(35,n,p);

 $(\%07) \ 0.067$

c:1/sqrt(n*p*(1-p)); x1:(m1-n*p)*c; x2:(m2-n*p)*c;

(%09) -1.021

(%010) 1.021

/st Pезультаты по интегральной теореме Лапласа.st/

PL:cdf normal(x2, 0, 1) - cdf normal(x1, 0, 1);

(%o11) 0.693

Результаты по интегральной теореме Лапласа дают несколько заниженные значения.

Ответ:
$$P_{150}(35) \approx 0.048; \ P_{150}(25 \leqslant m \leqslant 35) \approx 0.739.$$

Пример 5.10. Доля изделий продукции завода высшего качества составляет 40%. Найти вероятности того, что из отобранных 300 изделий окажется высшего качества: а) от 110 до 140 изделий, б) не менее 110 изделий, в) не более 109 изделий.

◀ Воспользуемся интегральной теоремой Лапласа.

Здесь n = 300, p = 0.4, q = 0.6, np = 120.

а) Найдем аргументы функции Лапласа при $m_1=110$ и $m_2=140$:

$$x_1 = \frac{m_1 - np}{\sqrt{np \, q}} = \frac{110 - 300 \cdot 0.4}{\sqrt{72}} = -\frac{5}{3\sqrt{2}} \approx -1.18,$$

$$x_2 = \frac{m_2 - np}{\sqrt{np \, q}} = \frac{140 - 300 \cdot 0.4}{\sqrt{72}} = \frac{10}{3\sqrt{2}} \approx 2.36.$$

Тогда

$$P_{300}(110 \le m \le 140) \approx \Phi(2,36) - \Phi(-1,18) \approx 0.491 + 0.381 = 0.872.$$

Эта вероятность оказалась довольно высокой вследствие того, что были просуммированы вероятности вблизи наивероятнейшего числа $m^* = 120$.

б) В этой части задачи нужно положить $m_1 = 110$, а $m_2 = 300$. Значение x_1 было найдено в пункте а, другой параметр

$$x_2 = \frac{300 - 120}{\sqrt{72}} = \frac{180}{6\sqrt{2}} \approx 21,21.$$

Используя нечетность функции Лапласа, находим соответствующую вероятность,

$$P_{300}(110 \le m \le 300) \approx \Phi(21,21) - \Phi(-1,18) \approx 0.5 + 0.381 = 0.881.$$

в) Так как сумма вероятностей

$$P_{300}(0 \leqslant m \leqslant 109)$$
 и $P_{300}(110 \leqslant m \leqslant 300)$

равна 1, то

$$P_{300}(0 \le m \le 109) = 1 - P_{300}(110 \le m \le 300) \approx 1 - 0.881 = 0.119.$$

Ответ:
$$P_{300}(110 \leqslant m \leqslant 140) \approx 0.872; \quad P_{300}(110 \leqslant m \leqslant 300) \approx 0.881; \\ P_{300}(0 \leqslant m \leqslant 109) \approx 0.119.$$

Для случая, когда n велико и p мало (меньше 0,1), выражение (5.8) даёт плохую оценку. В этом случае пользуются асимптотической формулой Пуассона.

5.5. Формула Пуассона

Если вероятность p появления события A в испытании Бернулли близка к 0 или 1, то теоремы 5.1 и 5.2 неприменимы. В этом случае следует пользоваться приближённой формулой Пуассона для вычисления $P_n(m)$ при больших n.

Теорема 5.3. Если вероятность p появления события A в каждом из n независимых испытаний постоянна и близка κ нулю, а n велико, то вероятность $P_n(m)$ того, что событие A появится m раз в n испытаниях приближённо равна ($npu\ n \to \infty$, $p \to 0$, $np \to a$):

$$P_n(m) \approx \frac{(np)^m}{m!} e^{-np}.$$
 (5.9)

Замечание 5.2. Случай, когда $p \approx 1$, сводится к рассмотренному, если вместо $P_n(m)$ вычислять равную ей вероятность $P_n(n-m)$ появления n-m раз противоположного события \overline{A} , вероятность появления которого в одном испытании $q=1-p\approx 0$.

Пример 5.11. Вероятность того, что взятый наудачу с полки магазина компьютер неисправен, равна 0,003. В магазине находятся 200 компьютеров. Найти вероятности того, что в магазине три компьютера неисправны.

 \blacksquare Поскольку $n=200, m=3, p=0.003 \Rightarrow np=0.6$, поэтому можно применить формулу Пуассона (5.9).

$$P_{200}(3) = \frac{0.6^3 \cdot e^{-0.6}}{3!} \approx 0.019.$$

Ответ: $P_{200}(3) \approx 0.019$.

Пример 5.12. Вероятность остановки автобуса из-за поломки в течение смены равна 0,004. Найти вероятности того, что в течение смены из 1000 машин, вышедших на линии, остановятся: а) две машины, б) пять машин, в) ни одна не остановится; г) менее пяти; д) более пяти.

«В данном случае $n=1000, p=0{,}004, np=4$, поэтому можно применить формулу Пуассона (5.9).

а) Здесь m = 2 и

$$P_{1000}(2) = \frac{4^2 \cdot e^{-4}}{2!} = \frac{8}{e^4} \approx 0.147.$$

б) Так как m = 5, то

$$P_{1000}(5) = \frac{4^5 \cdot e^{-4}}{5!} \approx \frac{128}{15 \cdot 54.6} \approx 0,156.$$

в) При
$$m=0$$

$$P_{1000}(0)=\frac{1}{e^4}\approx\frac{1}{54.6}\approx\textbf{0,018}.$$

г)
$$m < 5$$

$$P_{1000}(m < 5) = P_{1000}(0) + P_{1000}(1) + P_{1000}(2) + P_{1000}(3) + P_{1000}(4) = \frac{1}{e^4} \left(1 + \frac{4}{1} + \frac{4^2}{2} + \frac{4^3}{6} + \frac{4^4}{24} \right) \approx \mathbf{0,629}.$$
д) $m > 5$

$$P_{1000}(m > 5) = 1 - P_{1000}(m < 6) = 1 - (P_{1000}(m < 5) + P_{1000}(5) \approx 0.215.$$

Ответ: $P_{1000}(2) \approx 0.147; \ P_{1000}(5) \approx 0.156; \ P_{1000}(0) \approx 0.018; \ P_{1000}(m < 5) \approx 0.629; \ P_{1000}(m > 5) \approx 0.215.$

Рисунок 18. *К примеру 5.12*

Рисунок 19. *К примеру 5.13*

Представим геометрическое изображение зависимости $P_n(m)$ примера 5.12, рис. 18.

```
kill(all)$ fpprintprec:4$
n:1000$ p:0.004$ L:n*p; array(P,n)$
fillarray(P, makelist(L^k/k!*exp(-L), k, 0 ,12))$
G:makelist([k,P[k]], k, 0, 12);
plot2d([discrete,G], [x,0,12],[style,points],
[gnuplot_postamble, "set grid;"],[title, "n=1000 p=0.004"])$
```

Пример 5.13. Продукция некоторого производства содержит 1% бракованных изделий. Найти вероятность того, что среди 200 изделий окажеется бракованных: а) ровно три, б) менее трёх, в) более трёх, г) хотя бы одно.

- **◄** Так как n=200, p=0.01, np=2. Следовательно можно применить формулу Пуассона (5.9)
 - а) Вероятность того, что три (m=3) изделия будут бракованными,

$$P_{200}(3) = \frac{2^3 \cdot e^{-2}}{3!} \approx 0,180.$$

б) Вероятность того, что менее трёх (m < 3) изделий будут бракованными, найдется как сумма

$$P_{200}(m < 3) = P_{200}(0) + P_{200}(1) + P_{200}(2) = \frac{2^{0} \cdot e^{-2}}{0!} + \frac{2^{1} \cdot e^{-2}}{1!} + \frac{2^{2} \cdot e^{-2}}{2!} = e^{-2}(1 + 2 + 2) \approx 0,677.$$

в) Поскольку сумма

$$\sum_{m=0}^{200} P_{200}(m) = 1,$$

то вероятность наличия более трёх (m>3) бракованных изделий

$$P_{200}(m > 3) = 1 - \sum_{m=0}^{3} P_{200}(m) \approx 1 - (0.677 + 0.180) = 0.143.$$

г) События «хотя бы одно изделие бракованное» и «ни одно изделие небракованное» противоположные, поэтому искомая вероятность

$$P = 1 - P_{200}(0) = 1 - e^{-2} \approx 0.865.$$

Представим геометрическое изображение зависимости $P_n(m)$ примера 5.13, рис. 19. \blacktriangleright

Ответ:
$$P_{200}(3) \approx 0.180; \ P_{200}(m < 3) \approx 0.677; \ P_{200}(m > 3) \approx 0.143.$$

Если в условиях применимости интегральной теоремы Лапласа требуется оценить отклонение относительной частоты появления события от соответствующей вероятности, то используют приближённую формулу (5.10).

5.6. Отклонение частоты от вероятности

Пусть проводятся испытания Бернулли с постоянной вероятностью p появления события A в каждом из них; событие A появилось m раз в n испытаниях. Найдем вероятность того, что отклонение относительной частоты $\frac{m}{n}$ от вероятности p по абсолютной величине не превышает заданного числа $\varepsilon.$

$$P\left(\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right)\approx2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right).$$
 (5.10)

Пример 5.14. Вероятность появления события в каждом из 800 независимых испытаний равна 0,6. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не более чем на 0,03.

Здесь $n=800, p=0.6, q=0.4, \varepsilon=0.03$. Нужно найти вероятность $P\left(\left|\frac{m}{800} - 0.6\right| \le 0.03\right).$

По формуле (5.10) эта вероятность равна
$$2\cdot\Phi\left(0,\!03\cdot\sqrt{\frac{800}{0,\!6\cdot0,\!4}}\;\right)\approx 2\cdot\Phi(1,\!73).$$

По таблицам найдем $\Phi(1,73) \approx 0.4582$. Следовательно, искомая вероятность равна $2 \cdot 0.4582 = 0.9164$. \triangleright

Otbet: ≈ 0.916 .

Пример 5.15. Вероятность появления события в каждом испытании равна 0,2. Сколько нужно провести испытаний, чтобы вероятность отклонения относительной частоты от вероятности этого события менее, чем 0.05 по абсолютной величине, была равно 0.95?

◄ Применяем формулу (5.10) $P\left(\left|\frac{m}{n}-p\right| \leqslant \varepsilon\right) \approx 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right)$. Здесь $p=0.2,\ q=1-p=0.8,\ \varepsilon=0.05$. Левую часть уравнения приравниваем к 0,95. Получаем уравнение

$$0.95 = 2\Phi\left(0.05 \cdot \frac{\sqrt{n}}{\sqrt{0.16}}\right).$$

$$\Phi\left(\frac{\sqrt{n}}{8}\right) = 0.475.$$

Из таблицы для функции Лапласа находим значение аргумента, при котором функция равна 0,475. Получаем

$$\frac{\sqrt{n}}{8} = 1.96 \implies n = (8 \cdot 1.96)^2 = 245.86 \implies \mathbf{n} = \mathbf{246}.$$

Ответ: n = 246.

Пример 5.16. В экилом доме имеется 1200 ламп, вероятность включения каждой из них в вечернее время равна 0,25.

- 1) Найти вероятность того, что число одновременно включенных ламп будет между 275 и 350.
- 2) Найти вероятность того, что относительная частота включенных лампочек будет отклоняться от вероятности менее чем на 0,01.
- 3) Найти наивероятнейшее число включенных лампочек m^* и значение вероятности $P_{1200}(m^*)$.
 - ◀ 1) Воспользуемся интегральной теоремой Лапласа (5.8)

$$P_n(m_1 \leqslant m \leqslant m_2) \approx \Phi\left(\frac{m_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{m_1 - np}{\sqrt{npq}}\right).$$

Здесь $n = 1200, \ m1 = 275, \ m2 = 350, \ p = 0.25, \ q = 0.75. \Rightarrow np = 300, \ \sqrt{npq} = \sqrt{1200 \cdot \frac{1}{4} \cdot \frac{3}{4}} = \sqrt{225} = 15.$

Получаем

$$P_{1200}(275 \le m \le 350) \approx \Phi\left(\frac{50}{15}\right) - \Phi\left(\frac{-25}{15}\right) =$$

= $\Phi(3,33) + \Phi(1,67) \approx 0.49 + 0.4525 = \mathbf{0.9425}$.

2) Применяем формулу (5.10)
$$P\left(\left|\frac{m}{n}-p\right|\leqslant \varepsilon\right)\approx 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right).$$

$$P\left(\left|\frac{m}{1200} - 0.25\right| \leqslant 0.01\right) \approx 2\Phi\left(0.01 \cdot \sqrt{\frac{1200}{0.75 \cdot 0.25}}\right) = 2\Phi\left(0.01 \cdot 80\right) = 2\Phi(0.8) = 2 \cdot 0.2881 = \mathbf{0.576}.$$

3) Применяем формулу для наивероятнейшего числа (5.3)

$$(n+1)p - 1 \leqslant m^* \leqslant (n+1)p.$$

Эту формулу можно записать в виде $np-q\leqslant m^*\leqslant np+p.$

Получаем, $299,25 \leqslant m^* \leqslant 300,25 \implies m^* = 300.$

Применим локальную теорему Муавра-Лапласа. Находим искомую вероятность по формуле (5.6):

$$P_n(m) pprox rac{1}{\sqrt{npq}} f\left(rac{m-np}{\sqrt{npq}}
ight),$$
 где $f(x) = rac{1}{\sqrt{2\pi}} e^{-rac{x^2}{2}}.$

Получаем

$$P_{1200}(300) \approx \frac{1}{15} f(0) = \frac{0,3989}{15} \approx 0,027.$$

Otbet: 1) $\approx 0,9425;$ 2) $\approx 0,576;$ 3) $\approx 0,027.$

Задания для самостоятельной работы

- **5.1.** Определить вероятность того, что в семье, имеющей пять детей, будет два мальчика. Вероятность рождения мальчика принять равной 0,52, девочки -0,48.
- **5.2.** Вероятность изготовления бракованного изделия равна 0,01. Из большой партии изделий отбирается 10 штук и проверяется их качество. Если среди них окажется два или более бракованных, то вся партия не принимается. Определить вероятность того, что вся партия будет отвергнута.
- **5.3.** Брак выпускаемых цехом деталей составляет 6%. Определить наиболее вероятное число m^* годных деталей в партии из 500 штук и найти вероятность того, что в этой партии будет m^* бракованных деталей.
- **5.4.** Предприятие выпускает 10% изделий второго сорта. Найти вероятность того, что из 200 выбранных случайным образом изделий, будет 15 изделий второго сорта.
- **5.5.** Вероятность того, что деталь не прошла проверку, равна 0,2. Найти вероятность того, что среди 400 случайно отобранных деталей непроверенными окажутся от 70 до 90.
- **5.6.** Вероятность, что изделие фабрики будет отличного качества, равна 0,75. Найти вероятность того, что из 100 изделий фабрики отличного качества будет: а) не менее 71 и не более 80 изделий, б) не менее 71 изделий, в) не более 70 изделий.
- **5.7.** Вероятность брака при производстве деталей равна 0,001. Найти вероятности того, что в партии из 5000 деталей окажется: а) две бракованные детали, б) не менее двух бракованных деталей.
- **5.8.** В институте 2500 студентов. Вероятность того, что один студент заболеет в течение недели, равна 0,002. Найти вероятность того, что в течение недели заболеет менее четырёх студентов.
- **5.9.** Отдел технического контроля проверяет 625 изделий на брак. Вероятность того, что изделие бракованное, равна 0,02. Найти с вероятностью 0,95 границы, в которых будет заключено число m бракованных изделий среди проверенных.
- **5.10.** Вероятность появления события в каждом испытании равна 0,7. Сколько нужно провести испытаний, чтобы наивероятнейшее число появлений события равнялось 10?