Доклад по теме: Сетевые модели

Выполнил студент: Самсонова Мария Ильинична, НФИбд-02-21, 1032216526 Преподаватель Кулябов Дмитрий Сергеевич д.ф.-м.н., профессор кафедры прикладной информатики и теории вероятностей

Содержание

Информация о докладчике	3
Цель	5
Введение	6
Теоретические сведения о сетевой модели	7
Сетевая модель	9
Характеристики сетевой модели	10
Области применения: Анализ данных	12
Основные принципы сетевой модели	13
Структура сетевой модели	15
Преимущества сетевой модели	16
Недостатки сетевой модели	17
Примеры применения сетевой модели	18
Заключение	20
Библиографический обзор	21

Информация о докладчике

- Самсонова Мария Ильинична
- Студент группы НФИбд-02-21
- Студенческий билет 1032216526
- Российский университет дружбы народов

Цель

Цель данного реферата заключается в изучении основных принципов, характеристик и областей применения сетевых моделей в различных сферах человеческой деятельности.

Основной упор делается на понимание структуры сети как связного графа, изучение метрик и рассмотрение практических примеров применения сетевых моделей для решения реальных задач оптимизации и управления.

Введение

Сетевые модели являются одним из основных инструментов в математическом моделировании, широко используемых для анализа сложных систем, включающих взаимодействия между различными элементами. Этот инструмент становится все более востребованным в современном мире, где сложность систем и процессов требует системного подхода к их анализу и управлению.

Сетевые модели являются графическим представлением системы, где узлы — это элементы системы, а ребра - их взаимосвязи. С помощью математических методов и алгоритмов можно анализировать различные характеристики системы, такие как пропускная способность, критические пути, оптимальные решения и др.

Сетевые модели предоставляют удобный и эффективный способ анализа сложных систем, позволяя выявлять ключевые зависимости и взаимосвязи между их элементами. Этот подход позволяет моделировать разнообразные явления, начиная от транспортных и логистических систем, и заканчивая социальными и биологическими сетями.

Теоретические сведения о сетевой
модели

Сеть — это связный граф, с рёбрами которого может быть ассоциирована какая-либо дополнительная информация. Например, информация может представлять собой: - пропускную способность - задержку передачи - стоимость соединения

Эти характеристики помогают оптимизировать работу сети и обеспечить эффективную передачу данных.

Сеть имеет внутреннюю структуру, которая описывается несколькими метриками: *
Степень вершины — количество вершин, с которыми вершина соединена. Например, если вершина А соединена с вершинами В, С и D, то её степень равна 3. Степень вершины играет важную роль в анализе структуры сети, так как позволяет оценить насколько централизовано или децентрализовано соединение вершин.

- Степень сети средняя степень вершин = (2 * Кол-во рёбер) / Кол-во вершин. Эта метрика помогает понять общую структуру сети и обнаружить её тенденции, такие как склонность к централизации или децентрализации соединений.
- Длина пути минимальное количество рёбер, которое необходимо пройти от между двумя вершинами. Длина пути помогает понять степень связности между вершинами в сети и оценить, насколько эффективно сообщения или информация могут распространяться в сети.
- *Связность* сеть является связанной, если из каждой вершины можно добраться до любой другой. Связность является важным свойством сети, так как определяет её

способность к передаче информации и поддержанию коммуникации между узлами.

• Коэффициент кластеризации — процент троек вершин, которые связаны друг с другом. Кластеризация позволяет выявить плотность соединений в конкретных областях сети и понять, насколько вершины группируются в малые сообщества или кластеры. Коэффициент кластеризации может помочь выявить структурные особенности сети и выделить ключевые узлы или сообщества.

Сетевая модель

Сетевая модель (Network model) представляет собой математическую абстракцию, используемую для изучения и анализа сетей.

- Основной целью сетевой модели является описание взаимодействия между узлами (вершинами) и связями (рёбрами) сети.
- Сетевая модель позволяет представить сеть в виде математического объекта, что облегчает проведение анализа её структуры и характеристик.
- *Ее отличительной особенностью является* то, что схема, рассматриваемая как граф, в котором типы объектов являются узлами, а типы отношений дугами, не ограничивается иерархией или решеткой.

Таким образом, нам предоставляется возможность использования различных алгоритмов для решения задач, связанных с сетями.

Характеристики сетевой модели

Важными характеристиками сетевой модели являются граф смежности (adjacency matrix) и граф инцидентности (incidence matrix), которые позволяют описывать структуру сети и определять связи между узлами и связями.

- 1. **Граф смежности (adjacency matrix):** Граф смежности представляет собой квадратную матрицу, где строки и столбцы соответствуют вершинам сети.
- Значение в ячейке матрицы указывает на наличие или отсутствие ребра между соответствующими вершинами.
- Если в ячейке (i, j) значение равно 1, то между вершинами i и j существует ребро. Если значение равно 0, то ребра между этими вершинами нет.
- Для невзвешенных графов, значения в матрице обычно бинарные (0 или 1), но для взвешенных графов значения могут быть числами, представляющими вес ребра.

Пример графа смежности для простого невзвешенного графа с тремя вершинами:

Рис. 1: Пример графа смежности №1

2. **Граф инцидентности (incidence matrix):** Граф инцидентности также представляет собой матрицу, но она имеет размерность "количество вершин × количество рёбер".

- Значение в ячейке матрицы указывает, инцидентен ли данный ребро данной вершине.
- Если в ячейке (i, j) значение равно 1, то вершина і инцидентна ребру j. Если значение равно -1, то вершина і инцидентна ребру j, но направление инцидентности противоположно.
- Обычно для неориентированных графов, значения в матрице будут либо 1 (если вершина инцидентна ребру) либо 0 (если не инцидентна), а для ориентированных графов могут быть значения 1 и -1 для обозначения направления.

Пример графа инцидентности для того же графа с тремя вершинами:

Рис. 2: Пример графа смежности №2

Области применения: Анализ данных

В современном мире базы данных играют важную роль в организации и хранении информации. И как раз одной из моделей, используемых для организации данных, является сетевая модель.

Так, сетевая модель, являясь одной из моделей баз данных, представляет данные в виде сети и состоит из узлов и связей между ними. В этой модели данные организованы в виде графа, где узлы представляют сущности, а связи — отношения между этими сущностями.

В сетевой модели каждая сущность может быть связана с несколькими другими сущностями, образуя сложные структуры. Каждая связь имеет направление и может быть однонаправленной или двунаправленной.

Основная идея сетевой модели заключается в том, что данные могут быть организованы в виде сложных структур, где каждая сущность может иметь несколько связей с другими сущностями. Это позволяет более гибко представлять и обрабатывать данные, особенно в случаях, когда сущности имеют множество связей между собой.

Основные принципы сетевой модели

Сетевая модель баз данных основана на нескольких основных принципах, которые определяют ее структуру и функциональность:

1. Иерархическая структура:

Сетевая модель представляет данные в виде иерархической структуры, где каждая сущность имеет родительскую и дочернюю связь. Это означает, что каждая сущность может быть связана с несколькими другими сущностями, образуя сложные иерархические отношения.

2. Рекурсивные связи:

В сетевой модели допускаются рекурсивные связи, то есть сущность может быть связана с самой собой. Это позволяет представлять и обрабатывать данные, где сущность может иметь подсущности или быть частью другой сущности.

3. Множественные связи:

Сетевая модель позволяет устанавливать множественные связи между сущностями. Это означает, что одна сущность может быть связана с несколькими другими сущностями, а также одна сущность может иметь несколько родительских сущностей.

4. Направленные связи:

Каждая связь в сетевой модели имеет направление, что позволяет определить, какая сущность является родительской, а какая дочерней. Это позволяет более точно определить отношения между сущностями и обеспечить правильную структуру данных.

5. Гибкость и эффективность:

Сетевая модель обладает гибкостью и эффективностью в представлении и обработке данных. Благодаря возможности устанавливать сложные иерархические отношения и множественные связи, она позволяет более точно отображать реальные отношения между данными и обеспечивает эффективность при выполнении запросов и операций с данными.

Структура сетевой модели

Сетевая модель представляет собой иерархическую структуру данных, состоящую из записей и связей между ними. Основными элементами структуры сетевой модели являются:

- Сущности (Entities) Сущности представляют собой основные объекты данных, которые хранятся в базе данных. Каждая сущность имеет уникальный идентификатор (ключ), который позволяет однозначно идентифицировать ее. Сущности могут быть связаны друг с другом через отношения.
- Отношения (Relationships) Отношения определяют связи между сущностями. Они позволяют установить, какая сущность является родительской, а какая дочерней. Отношения могут быть однонаправленными или двунаправленными. Каждое отношение имеет имя и может иметь атрибуты.
- Записи (Records) Записи представляют собой конкретные экземпляры сущностей. Каждая запись содержит данные, соответствующие определенной сущности. Записи могут быть связаны друг с другом через отношения.
- **Cetu (Sets)** Сети представляют собой группы записей, которые имеют общие отношения. Сети позволяют организовать данные в логические группы и упростить их обработку.

В целом, структура сетевой модели представляет собой сеть связанных записей, где каждая запись может быть связана с несколькими другими записями через отношения. Это позволяет более гибко и эффективно представлять и обрабатывать данные в базе данных.

Преимущества сетевой модели

- 1. **Гибкость:** Сетевая модель позволяет представлять сложные отношения между данными, такие как многие-ко-многим, что делает ее гибкой для моделирования различных типов данных.
- 2. Эффективность: Сетевая модель обеспечивает быстрый доступ к данным, так как она использует прямые ссылки на связанные записи. Это позволяет эффективно выполнять запросы и обновления данных.
- 3. **Целостность данных:** Сетевая модель обеспечивает целостность данных, так как она требует, чтобы все связанные записи были существовали в базе данных. Это помогает предотвратить появление некорректных или неполных данных.
- 4. **Поддержка сложных структур данных:** Сетевая модель позволяет представлять сложные структуры данных, такие как деревья и графы, что делает ее полезной для моделирования и анализа различных типов данных.

Недостатки сетевой модели

- 1. Сложность: Сетевая модель является более сложной для понимания и использования, по сравнению с другими моделями баз данных, такими как иерархическая или реляционная модель. Это требует от разработчиков и пользователей баз данных дополнительного обучения и опыта.
- 2. **Ограничения на изменение структуры:** В сетевой модели изменение структуры базы данных может быть сложным и затратным процессом. Добавление новых типов записей или изменение связей между записями может потребовать перестройки всей базы данных.
- 3. **Ограниченная поддержка запросов:** Сетевая модель имеет ограниченные возможности для выполнения сложных запросов, особенно в сравнении с реляционной моделью. Это может затруднить анализ и извлечение данных из базы данных.
- 4. Зависимость от физической структуры: Сетевая модель требует, чтобы физическая структура базы данных соответствовала логической структуре. Это означает, что изменение физической структуры может потребовать изменения логической структуры, что может быть сложным и затратным процессом.

Примеры применения сетевой модели

• Банковские системы

Сетевая модель может быть использована для моделирования банковских систем, где каждый клиент может иметь несколько счетов, а каждый счет может быть связан с несколькими операциями. Например, клиент может иметь счета для сбережений, кредитов и инвестиций, и каждый счет может иметь связанные операции, такие как пополнение, снятие наличных и переводы.

• Транспортные системы

Сетевая модель может быть применена для моделирования транспортных систем, где каждый узел представляет город или местоположение, а каждое ребро представляет маршрут или дорогу между городами. Например, можно моделировать систему автомобильных дорог, железных дорог или авиалиний, где каждый город может быть связан с несколькими другими городами через различные маршруты.

• Информационные системы

Сетевая модель может быть использована для моделирования информационных систем, где каждый узел представляет компонент системы, а каждое ребро представляет связь или зависимость между компонентами. Например, можно моделировать систему управления базами данных, где каждый компонент может быть таблицей, а каждая связь может представлять отношение или связь между таблицами.

• Социальные сети

Сетевая модель может быть применена для моделирования социальных сетей, где каждый узел представляет человека или аккаунт, а каждое ребро представляет связь или отношение между людьми. Например, можно моделировать сеть друзей, где каждый человек может быть связан с другими людьми через дружбу или знакомство.

• Сети взаимодействия биологических молекул

В биоинформатике сетевая модель используется для анализа сетей взаимодействий белков, генов, метаболитов и других биологических молекул. Это помогает понять сложные биологические процессы, идентифицировать ключевые гены или белки и выявить связи между различными биологическими элементами.

Это лишь некоторые примеры применения сетевой модели. Она может быть использована в различных областях, где важна структура и связи между данными.

Заключение

В современном мире сетевые модели становятся все более востребованными, поскольку они предоставляют удобный и гибкий инструмент для анализа сложных систем и принятия обоснованных решений. Понимание основных принципов и методов анализа сетевых моделей является важным для специалистов в области математического моделирования и исследований операций, а также для решения реальных задач в различных областях человеческой деятельности.

Таким образом, изучение сетевых моделей представляет собой значимый и перспективный направление в области математического моделирования, которое остается актуальным и востребованным в современном мире.

Библиографический обзор

- Joe Celko. Trees and Hierarchies in SQL for Smarties, 2nd Edition. Morgan Kaufmann,
 2012. 296 p.
- Ling Liu, M. Tamer Ozsu. Encyclopedia of Database Systems. Springer Science, 2009.
 3818 p.
- С. Кузнецов. Базы данных. Вводный курс (3.3. Сетевые системы) (рус.): http://citfor um.ru/database/advanced_intro/6.shtml#2.3.3