Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3201</u>	К работе допущен
Студенты <u>Ткачук С.А. и Чуб Д.О.</u>	Работа выполнена
Преподаватель Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.05

Температурная зависимость электрического сопротивления металла и полупроводника

1. Цель работы

- 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до $75^{\circ}C$.
- 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

2. Задачи, решаемые при выполнении работы

- 1. Проведение измерений сопротивления при различных температурах
- 2. Построение графиков зависимостей сопротивления от температуры
- 3. Определение температурного коэффициента сопротивления металла и ширины запрещенной зоны полупроводника

3. Объект исследования

Изменение сопротивления материалов при изменении температуры

4. Метод экспериментального исследования

Лабораторный

5. Рабочие формулы и исходные данные

Формулы:

Температурный коэффициент сопротивления для пары значений сопротивления, зависящего от температуры (R_i - сопротивление i-го измерения, t_i - температура i-го измерения)

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j} (1)$$

Среднее значение температурного коэффициента сопротивления α (α_i - i-е значение α , N - количество значений):

$$\bar{\alpha} = \frac{\sum_{i=1}^{N} \alpha_i}{N}$$
 (2)

Погрешность среднего значения α ($t_{x,N}$ - коэффициент Стьюдента для доверительной вероятности x и количества проведенных измерений N, α_i - i-е значение α , $\bar{\alpha}$ - среднее значение α):

$$\Delta \bar{\alpha} = t_{x,N} \cdot \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (\alpha_i - \bar{\alpha})^2}$$
 (3)

Ширина запрещенной зоны полупроводника для пары значений сопротивления, зависящего от температуры (R_i - сопротивление i-го измерения, T_i - температура i-го измерения, k - постоянная Больцмана)

$$E_{g_{ij}} = 2k \frac{\ln R_i - \ln R_j}{\frac{1}{T_i} - \frac{1}{T_j}} = 2k \frac{T_i T_j}{T_j - T_i} \ln \frac{R_i}{R_j}$$
 (4)

Среднее значение ширины запрещенной зоны полупроводника E_g (E_{g_i} - i-е значение E_g , N - количество значений):

$$\overline{E_g} = \frac{\sum_{i=1}^{N} E_{g_i}}{N}$$
 (5)

Погрешность среднего значения E_g ($t_{x,N}$ - коэффициент Стьюдента для доверительной вероятности x и количества проведенных измерений N, E_{g_i} - i-е значение E_g , $\overline{E_g}$ - среднее значение E_g):

$$\Delta \overline{E_g} = t_{x,N} \cdot \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} \left(E_{g_i} - \overline{E_g} \right)^2$$
 (6)

Закон Ома (R — сопротивление, U - напряжение, I - сила тока):

$$R = \frac{U}{I}(7)$$

Исходные данные:

Постоянная Больцмана: $k=1,\!380649\cdot 10^{-23} \frac{\text{Дж}}{\text{K}} \approx 8,\!61733\cdot 10^{-5} \frac{\text{эВ}}{\text{K}}$

6. Измерительные приборы

	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр- вольтметр	Электронный	0-2000 мкА 0-2 В	0.5%
2				
3				

7. Схема установки

Рис. 1: электрическая схема установки

8. Результаты прямых измерений и их обработки

Таблица 1: Полупроводниковый образец

таслица т. полупроводниковый образец							
Nº	T,K	I, мк A	U, B	<i>R</i> , Ом	ln R	$\frac{10^3}{T}$, $\frac{1}{K}$	
1	286	1127	0,285	253	5,53	3,50	
2	293	1182	0,210	178	5,18	3,41	
3	298	1227	0,179	146	4,98	3,36	
4	303	1260	0,158	125	4,83	3,30	
5	308	1297	0,131	101	4,62	3,25	
6	313	1330	0,110	83	4,42	3,19	
7	318	1356	0,094	69	4,24	3,14	
8	323	1379	0,078	57	4,04	3,10	
9	328	1394	0,066	47	3,86	3,05	
10	333	1409	0,057	40	3,70	3,00	
11	338	1423	0,047	33	3,50	2,96	
12	343	1430	0,041	29	3,36	2,92	

Таблица 2: Металлический образец

таолица 2. Металлический образец						
Nº	T, K	I, мк A	U, B	<i>R,</i> кОм	t,°C	
1	343	1051	1,571	1,49	70	
2	338	1063	1,554	1,46	65	
3	333	1074	1,538	1,43	60	
4	328	1088	1,526	1,40	55	
5	323	1099	1,516	1,38	50	
6	318	1110	1,505	1,36	45	
7	313	1121	1,495	1,33	40	
8	308	1134	1,485	1,31	35	
9	303	1145	1,472	1,29	30	
10	298	1158	1,462	1,26	25	

9. Расчет результатов косвенных измерений

Рассчитаем по формуле (7) и запишем в 5 столбец **Таблицы 1** и **Таблицы 2** значения сопротивления объектов R исследования при всех температурах.

По данным **Таблицы 1** рассчитаем значения натурального логарифма сопротивления полупроводника $\ln R$ и величину обратной абсолютной температуры $\frac{10^3}{T}$, занесем в 6 и 7 столбец **Таблицы 1** соответственно. По результатам расчетов построим график соответствующей зависимости $ln(R) = ln(R)\left(\frac{1}{T}\right)$ (**Рис. 2**). График близок к линейному.

По данным **Таблицы 2** построим график зависимости сопротивления металла R от температуры t в шкале Цельсия $R_M = R_M(t)$ (**Рис. 3**). График близок к линейному.

Рис. 3. График зависимости $R_{M} = R_{M}(t)$

Для определения величины температурного коэффициента сопротивления металла разделим все точки в **Таблице 2** на пары, в которых значения отстоят друг от друга на примерно одинаковое максимальное расстояние (1 и 6, 2 и 7 и т.д., т.к. у нас 10 измерений).

По формуле (1) посчитаем значение α_{ij} для всех пар:

	, ,	,			ι,	
i	j	R_i , Ом	R_j , Ом	t _i ,°C	t_j , °C	$\alpha_{ij}, \frac{1}{K}$
1	6	1,49	1,36	70	45	0,0050
2	7	1,46	1,33	65	40	0,0045
3	8	1,43	1,31	60	35	0,0043
4	9	1,40	1,29	55	30	0,0041
5	10	1,38	1,26	50	25	0,0041

По формуле (2) посчитаем среднее значение α :

$$\bar{\alpha} = 0,0044 \frac{1}{K}$$

Аналогичные действия проведем при вычислении ширины запрещенной зоны полупроводника. Разделим все точки в Таблице 1 на пары, в которых значения отстоят друг от друга на примерно одинаковое максимальное расстояние (1 и 7, 2 и 8 и т.д., т.к. у нас 12 измерений)

По формуле (4) посчитаем значение $E_{g_{ii}}$ для всех пар:

i	j	R_i , Ом	R_j , Ом	T _i , °C	T_j , °C	$E_{g_{ij}}$, Дж	$E_{g_{ij}}$, эВ
1	7	253	69	286	318	$1,02 \cdot 10^{-19}$	0,64
2	8	178	57	293	323	$9,92 \cdot 10^{-20}$	0,62
3	9	146	47	298	328	$1,02 \cdot 10^{-19}$	0,64
4	10	125	40	303	333	$1,06 \cdot 10^{-19}$	0,66
5	11	101	33	308	338	$1,07 \cdot 10^{-19}$	0,67
6	12	83	29	313	343	$1,04 \cdot 10^{-19}$	0,65

По формуле (5) посчитаем среднее значение E_g :

$$\overline{E_g} = 1.03 \cdot 10^{-19} \,$$
Дж $= 0.65 \,$ эВ

По значению температурного коэффициента сопротивления металла и ширине запрещенной зоны полупроводника с помощью литературных данных идентифицируем их:

$$lpha = 0{,}0044~rac{1}{{\it K}}$$
 - Константан $E_q = 0{,}65~{
m 3B}$ - Германий

10. Расчет погрешностей измерений

Рассчитаем погрешность $\Delta \bar{\alpha}$ по формуле (3):

$$\Delta \bar{\alpha} = 0,00018 \, \frac{1}{K}$$

Рассчитаем погрешность $\varDelta\overline{E_g}$ по формуле (6): $\varDelta\overline{E_g}=1{,}24\cdot10^{-21}~\rm Дж=~0{,}0075~\rm 3B$

$$\Delta \overline{E_g} = 1,24 \cdot 10^{-21} \,\mathrm{Дж} = 0,0075 \,\mathrm{эB}$$

11. Окончательные результаты
$$\alpha = (0.00440 \, \pm 0.00018) \, \frac{1}{\mathit{K}} \qquad \qquad \varepsilon_a = 4\%$$

$$E_g = (1.03 \cdot 10^{-19} \pm \, 1.24 \cdot 10^{-21}) \, \mathrm{Дж} = (0.6500 \, \pm \, 0.0075) \, \mathrm{эB}$$

$$\varepsilon_{E_g} = 1.1\%$$

12. Вывод и анализ результатов работы

Была доказана зависимость электрического сопротивления металлического и полупроводникового образцов от температуры и посчитаны температурный коэффициент сопротивления металла и ширина запрещенной зоны полупроводника. С помощью литературных материалов были установлены элементы, из которых состоит металл и полупроводник