Classificação de Demandas do Fala.BR

Projeto do Bootcamp Machine Learning

Anderson Monteiro -Léo Maranhão de Mello - SUSEP

Descrição do projeto de machine learning

- **1- Descrição do problema ou tarefa:** O problema consiste em classificar as demandas recebidas pela Ouvidoria da SUSEP, por meio do sistema Fala.BR.
- **2- Descrição da solução de IA:** Utilizaremos um processamento de NLP e testaremos modelos de regressão logística e Random Forest para classificação. A solução incluirá uma pipeline que realiza pré-processamento, treinamento e avaliação do modelo.
- **3- Fonte de dados:** A Ouvidoria forneceu um dataset com 1531 textos das demandas e suas classificações, no formato de planilha ODS. A classificação dos textos foi realizada pela própria Ouvidoria.
- **4- Variáveis independentes (preditoras ou "features"):** A variável independente é o texto recebido do Fala.BR.

Descrição do projeto de machine learning

5- Variável dependente (resposta ou "target"): A variável dependente é a classificação do texto em uma das 17 classificações utilizadas pela Ouvidoria:

- Cadastro
- Capitalização
- Consulta Técnica
- DPVAT/SPVAT
- Não identificada
- Previdência Complementar Aberta
- Seguro Compreensivo
- Seguro de Automoveis
- Seguro de Crédito Interno

- Seguro de Danos
- Seguro de Pessoas
- Seguro de Responsabilidade
- Seguro de Transportes
- Seguro Fiança Locatícia
- Seguro Garantia
- Seguro Garantia Estendida
- Seguro Rural

Dados (limitações encontradas)

Propostas de solução

- Classes desbalanceadas + GridSearchCV + SGD/RandomForest/XGBoost + Optuna (f1 macro)
- Classes desbalanceadas + GridSearchCV + SGD/RandomForest/XGBoost + Optuna (balanced accuracy)
- Classes balanceadas com oversampling + GridSearchCV + SGD/RandomForest/XGBoost + Optuna
- 4) Classes balanceadas com SMOTE + GridSearchCV + SGD/RandomForest/XGBoost + Optuna
- 5) Classes balanceadas com ChatGPT + GridSearchCV + SGD/RandomForest/XGBoost + Optuna + Ensemble (Llama -> Alpaca)
- 6) Classes balanceadas com ChatGPT + BERT embeddings + GridSearchCV + SGD/RandomForest/XGBoost + Ensemble
- Classes balanceadas com ChatGPT + BERT

Pré-processamento

Propostas 1, 2, 3 e 4

- A. Agrupamento das classes com menor ocorrência;
- B. Proposta 3, aplicação do RandomOverSampler;
- C. Transformação das classes de texto para número;
- D. Separação em teste e treino;
- E. Transformação do texto em minúscula, remoção de stop words, remoção de números e sinais de pontuação, lematização e aplicação do TfidfVectorizer;
- F. Proposta 4, aplicação do SMOTE.

Proposta 5

- A. Agrupamento das classes com menor ocorrência;
- B. Transformação das classes de texto para número;
- C. Separação em teste e treino;
- Exposição das classes de treino ao
 ChatGPT para a geração de novas linhas;
- E. Transformação do texto em minúscula, remoção de stop words, remoção de números e sinais de pontuação, lematização e aplicação do TfidfVectorizer.

Pré-processamento

Propostas 6 e 7

- A. Agrupamento das classes com menor ocorrência;
- B. Transformação das classes de texto para número;
- C. Separação em teste e treino;
- D. Exposição das classes de treino ao ChatGPT para a geração de novas linhas;

Treinamento

Propostas 1, 2, 3 e 4

Após a transformação dos dados de entrada em TFIDF, utilizamos os algoritmos SGDClassifier, RandomForestClassifier e XGBClassifier, inicialmente com o GridSearchCV e depois com o Optuna, para otimizar os hiperparâmetros.

Proposta 5

Após a transformação dos dados de entrada em TFIDF, utilizamos os algoritmos SGDClassifier, RandomForestClassifier e XGBClassifier, inicialmente com o GridSearchCV e depois com o Optuna, para otimizar os hiperparâmetros. Ao final fizemos o emsemble dos três melhores modelos de cada classificador.

Treinamento

Proposta 6

Utilizamos a BERTimbau Base para obter os embeddings dos dados de entrada. Após, utilizamos os algoritmos SGDClassifier, RandomForestClassifier e XGBClassifier com o GridSearchCV.. Ao final fizemos o ensemble dos três melhores modelos de cada classificador.

Proposta 7

Utilizamos os dados de entrada para retreinar a última camada da BERTimbau Base para as categorias dos nossos dados.

Avaliação

As propostas 1, 2, 3 e 4 obtiveram um resultado muito ruim. Apresentamos os resultados do melhor classificador entre as 4 propostas:

Proposta 4: XGBClassifier(random_state=42, eval_metric='logloss'), hiperparâmetros: {'classifier__learning_rate': 0.1, 'classifier__max_depth': 4, 'classifier__n_estimators': 400}

											- 17 mm 195	445500				
	precision	recall	f1-score	support	0 -	85	1	6	0	1	0	0	1	0	- 80	
0	0.85	0.90	0.88	94	1 -	0	62	6	0	1	0	3	0	0	- 70	
1	0.87	0.86	0.87	72	2 -	10	3	16	9	4	1	0	0	3		
2	0.33	0.35	0.34	46	2]	10	3	10	· ·	7	1	U	U	3	- 60	
					3 -	0	1	5	30	0	0	0	0	0	L 50	
3	0.75	0.83	0.79	36	lec										- 50	
4	0.67	0.75	0.71	16	<u>ro</u> 4 -	1	0	3	0	12	0	0	0	0		
5	0.50	0.15	0.24	13	True label										- 40	
6	0.50	0.27	0.35	11	· 5 -	1	2	7	1	0	2	0	0	0	- 30	
7	0.88	0.64	0.74	11	6 -	3	0	5	0	0	0	3	0	0		
8	0.70	1.00	0.82	7	· ·		Ü	3	Ü			5			- 20	
					7 -	0	2	1	0	0	1	0	7	0		
accuracy			0.73	306										7	10	
macro avg	0.67	0.64	0.64	306	8 -	0	0	0	0	0	0	0	0	/		
weighted avg	0.73	0.73	0.72	306		ó	i	2	3	4	5	6	7	8	U	
	0.70		· · · · ·						Pred	licted l	abel					

Proposta 7:

Relatorio de Classificacao:

	precision	recall	f1-score	support
Cadastro	0.89	0.98	0.93	94
Seguro de Pessoas	0.84	0.94	0.89	72
Não identificada	0.82	0.30	0.44	46
Seguro de Automoveis	0.78	1.00	0.88	36
Previdência Complementar Aberta	0.94	0.94	0.94	16
Seguro de Danos	0.86	0.92	0.89	13
Outros	0.69	0.82	0.75	11
Seguro Garantia	1.00	0.55	0.71	11
DPVAT/SPVAT	0.70	1.00	0.82	7
accuracy			0.85	306
macro avg	0.84	0.83	0.81	306
weighted avg	0.85	0.85	0.82	306

Proposta 6: Ensemble dos melhores modelos ajustados, VotingClassifier, voting='hard':

SGDClassifier(alpha=1e-06, random_state=42), hiperparâmetros: {'clf__loss': 'hinge', 'clf__penalty': 'elasticnet'}

RandomForestClassifier(random_state=42), hiperparâmetros: {'classifier__max_depth': 20, 'classifier__max_features': 'sqrt', 'classifier__min_samples_leaf': 2, 'classifier__min_samples_split': 2, 'classifier__n_estimators': 100}

XGBClassifier(random_state=42, eval_metric='logloss'), hiperparâmetros: {'classifier__learning_rate': 0.1,

Proposta 5: Melhor resultado:

SGDClassifier(alpha=1e-06, random_state=42), hiperparâmetros: {'clf__loss': 'log_loss', 'clf__penalty': 'l2'}

		precision	recall	f1-score	support	0 -	0.91	0	0.074	0	0	0	0	0.011	0	
	0	0.99	0.91	0.95	94									2		
	0	0.96	0.97	0.97	72	1 -	0	0.97	0	0	0.014	0.014	0	0	0	-
	2	0.76	0.89	0.82	46			0.045								
	2	0.94	0.94	0.94	36	2 -	0	0.043	0.89	0.043	3 0	0	0	0	0.022	
	4	0.93	0.88	0.90	16				0.056							
	5	0.92	0.92	0.92	13	3 -	0	0	0.056	0.94	0	0	0	0	0	-
	6	1.00	0.91	0.95	11	True label	0.000	0.000		0	0.00	_	0			
	7	0.91	0.91	0.91	11	<u> </u>	0.062	2 0.062	2 0	0	0.88	0	0	0	0	
	8	0.86	0.86	0.86	7	론 5 -	0	0	0.077	0	0	0.92	0	0	0	-
accur	асу			0.92	306	6 -	0	0	0.091	0	0	0	0.91	0	0	
macro	avg	0.92	0.91	0.91	306	0	U	0	0.031	U	U	U	0.51	Ü		
eighted	avg	0.93	0.92	0.93	306	7 -	0	0	0.091	0	0	0	0	0.91	0	
						8 -	0	0	0.14	0	0	0	0	0	0.86	
						2.5	0	í	2	7	4	5	6	7	8	ш
							U	1	2	Pred	dicted	label	·		0	

Interpretação

As propostas 5 e 6 apresentam resultados semelhantes, sendo a escolha pela classe 5 por conta da matriz de confusão, que apresenta um resultado melhor nas categorias "DPVAT/SPVAT" e "Seguro Garantia".

O melhor modelo da proposta 5 classifica, considerando a média ponderada das classes, 93% das vezes sem gerar falso positivo, e 92% das vezes na categoria correta.

A proposta 5 apresentou 23 classificações incorretas, sendo que 18 envolvem a categoria 2 - "Não Identificadas". Analisando a classificação realizada pela Ouvidoria, parece que critérios variados foram utilizados durante a classificação manual, Tais critérios podem ser melhorados e trariam reflexo em uma classificação mais adequada pela modelagem.

Aspectos interessantes, benefícios dos resultados, insight obtido, próximos passos, onde será publicado.

O aspecto interessante foi o desenvolvimento dos prompts para a geração de dados pelo GhatGPT. Dependendo da categoria usada para a classificação, o nível de RAG precisava ser mais detalhado.

Vimos a importância de uma quantidade maior de dados para o desempenho dos modelos de classificação.

O trabalho realizado ajudará a Ouvidoria da SUSEP, que hoje mantém um grupo de pessoas para a realização da classificação manual, faltando estabelecer o processo de trabalho no qual o algoritmo de ML será incluído.