Einführung in die Komplexe Analysis Blatt 9

Jendrik Stelzner

14. Juni 2014

Aufgabe 1 (Stammgebiete und Stammfunktionen)

1.

 $\mathbb C$ ist ein konvexes Gebiet. Daher besitzt, wie auf dem letzten Zettel gezeigt, jede ganze Funktion eine Stammfunktion. Also ist $\mathbb C$ ein Stammgebiet.

 $\mathbb{C} \setminus \{i\}$ ist kein Stammgebiet, denn

$$f: \mathbb{C} \setminus \{i\} \to \mathbb{C}^*, z \mapsto \frac{1}{z-i}$$

ist holomorph auf $\mathbb{C} \setminus \{i\}$, aber da

$$\int_{\partial D_1(i)} f(z) \, dz = \int_{\partial D_1(i)} \frac{1}{z - i} \, dz = \int_{\partial D_1(0)} \frac{1}{z} \, dz = 2\pi i \neq 0$$

besitzt f auf $\mathbb{C} \setminus \{i\}$ keine Stammfunktion.

2

Da S_1 und S_2 offen sind, ist auch $S_1 \cup S_2$ offen. Es sei $f: S_1 \cup S_2 \to \mathbb{C}$ holomorph. Da S_1 ein Stammgebiet ist, besitzt $f_{|S_1}: S_1 \to \mathbb{C}$ eine Stammfunktion $F_1: S_1 \to \mathbb{C}$. Da S_2 ein Stammgebiet ist, besitzt $f_{|S_2}: S_2 \to \mathbb{C}$ eine Stammfunktion $F_2: S_2 \to \mathbb{C}$. Da

$$F'_{1|S_1 \cap S_2} = f_{|S_1 \cap S_2} = F'_{2|S_1 \cap S_2}$$

und $S_1\cap S_2$ zusammenhängend ist, gibt es ein $c\in\mathbb{C}$ mit

$$F_1(z) = F_2(z)$$
 für alle $z \in S_1 \cap S_2$.

Es ist daher

$$F: S_1 \cup S_2 \to \mathbb{C}, z \mapsto \begin{cases} F_1(z) & \text{falls } z \in S_1 \\ F_2(z) + c & \text{falls } z \in S_2 \end{cases}$$

eine Stammfunktion von f auf $S_1 \cup S_2$.

Es besitzt also jede auf $S_1 \cup S_2$ holomorphe Funkion dort auch eine Stammfunktion. Ist zusätzlich $S_1 \cap S_2 \neq \emptyset$, so ist $S_1 \cup S_2$ auch zusammenhängend und daher ein Stammgebiet.

Wir betrachten weiter die Gebiete

$$\begin{split} R^+ &:= \{z \in \mathbb{C} \mid \Re(z) > 0\}, \\ R^- &:= \{z \in \mathbb{C} \mid \Re(z) < 0\}, \\ I^+ &:= \{z \in \mathbb{C} \mid \Im(z) > 0\} \text{ und } \\ I^- &:= \{z \in \mathbb{C} \mid \Im(z) < 0\}. \end{split}$$

Diese sind konvex und somit Stammgebiete. Da

$$R^+ \cap R^- = \{ z \in \mathbb{C} \mid \Re(z) > 0 \text{ oder } \Im(z) > 0 \} \text{ und } I^+ \cap I^- = \{ z \in \mathbb{C} \mid \Re(z) < 0 \text{ oder } \Im(z) < 0 \}$$

nichtleer und zusammenhängend sind, sind $R^+ \cup I^+$ und $R^- \cup I^-$ Stammgebiete. Es ist jedoch

$$(R^+ \cup I^+) \cap (R^- \cap I^-)$$

= $\{z \in \mathbb{C} \mid \Re(z) > 0, \Im(z) < 0 \text{ oder } \Re(z) < 0, \Im(z) > 0\}$

nicht zusammenhängend und das Gebiet

$$(R^+ \cup I^+) \cup (R^- \cup I^-) = \mathbb{C}^*$$

ist kein Stammgebiet. (Denn die Funktion

$$f: \mathbb{C}^* \to \mathbb{C}^*, z \mapsto \frac{1}{z}$$

ist auf \mathbb{C}^* holomorph, besitzt wegen

$$\int_{\partial D_1(0)} f(z) dz = \int_{\partial D_1(0)} \frac{1}{z} dz = 2\pi i$$

keine Stammfunktion auf \mathbb{C}^* .)

Aufgabe 2

Lemma 1. Sei $U\subseteq \mathbb{C}$ offen, $\alpha:[0,1]\to U$ eine stückweise stetig differenzierbare Kurve. Es sei $f_n:|\alpha|\to\mathbb{C}$ eine Folge stetiger Funktionen, die auf $|\alpha|$ lokal gleichmäßig gegen $f:|\alpha|\to\mathbb{C}$ konvergiert. Dann ist

$$\int_{\Omega} f(z) dz = \lim_{n \to \infty} \int_{\Omega} f_n(z) dz.$$

Beweis. Wir betrachten zunächst den Fall, dass α stetig differenzierbar ist und f_n auf $|\alpha|$ gleichmäßig gegen f konvergiert. Da α stetig differenzierbar ist, gibt es wegen der Kompaktheit von [0,1] ein C>0 mit $|\alpha'(t)|< C$ für alle $t\in [0,1]$. Sei $\varepsilon>0$ beliebig aber fest. Da f_n auf $|\alpha|$ gleichmäßig gegen f konvergiert, gibt es $N\in\mathbb{N}$ mit

$$|f(z)-f_n(z)|\leq \frac{\varepsilon}{C} \text{ für alle } n\geq N, z\in |\alpha|.$$

Daher ist

$$|f(\alpha(t))\alpha'(t) - f_n(\alpha(t))\alpha'(t)| \le \varepsilon$$
 für alle $n \ge N, t \in [0, 1]$.

Das zeigt, dass $(f_n \circ \alpha)\alpha'$ auf [0,1] gleichmäßig gegen $(f \circ \alpha)\alpha'$ konvergiert. Daher ist

$$\int_{\alpha} f(z) dz = \int_{0}^{1} f(\alpha(t))\alpha'(t) dt = \int_{0}^{1} \lim_{n \to \infty} f_{n}(\alpha(t))\alpha'(t) dt$$
$$= \lim_{n \to \infty} \int_{0}^{1} f_{n}(\alpha(t))\alpha'(t) dt = \lim_{n \to \infty} \int_{\alpha} f_{n}(z) dz.$$

Wir betrachten nun den Fall, dass α stetig differenzierbar ist, und f_n auf $|\alpha|$ lokal gleichmäßig gegen f konvergiert. Dann gibt es für jeden Punkt $z\in |\alpha|$ eine offene Umgebung $U_z\subseteq U$ von z, so dass f_n auf $U_z\cap |\alpha|$ gleichmäßig gegen f konvergiert. Wegen der Kompaktkeit von $|\alpha|$ hat die offene Überdeckung $\{U_z\mid z\in |\alpha|\}$ von $|\alpha|$ eine endliche Teilüberdeckung. Es gibt also $V_1,\ldots,V_n\in\{U_z\mid z\in |\alpha|\}$, so dass

$$|\alpha| \subseteq V_1 \cup \ldots \cup V_n$$
.

und f_n für alle $k=1,\ldots,n$ auf $V_k\cap |\alpha|$ gleichmäßig gegen f konvergiert. Wegen der Endlichkeit dieser Überdeckung konvergiert f_n auch auf

$$(V_1 \cap |\alpha|) \cup \ldots \cup (V_n \cap |\alpha|) = (V_1 \cup \ldots \cup V_n) \cap |\alpha| = |\alpha|$$

gleichmäßig gegen f. Die Aussage ergibt sich daher aus dem vorherigen Fall.

Zuletzt betrachten wir den Fall, dass α stückweise stetig differenzierbar ist und f_n auf $|\alpha|$ lokal gleichmäßig gegen f konvergiert. Dann gibt es stetig differenzierbare Wege $\beta_1,\ldots,\beta_m:[0,1]\to\mathbb{C}$, so dass $\alpha=\beta_1+\ldots+\beta_m$. Da (f_n) auf $|\alpha|$ lokal gleichmäßig gegen f konvergiert, konvergiert (f_n) für alle $k=1,\ldots,m$ auch auf $|\beta_k|$ lokal gleichmäßig gegen f. Daher ist nach dem vorherigen Fall

$$\int_{\alpha} f(z) dz = \sum_{k=1}^{m} \int_{\beta_k} f(z) dz = \sum_{k=1}^{m} \lim_{n \to \infty} \int_{\beta_k} f_n(z) dz$$
$$= \lim_{n \to \infty} \sum_{k=1}^{m} \int_{\beta_k} f_n(z) dz = \lim_{n \to \infty} \int_{\alpha} f_n(z) dz.$$

Sei $\Delta \subseteq U$ ein abgeschlossenen Dreieck. Da die f_n alle holomorph sind ist nach dem Lemma von Goursat

$$\int_{\partial \Delta} f_n(z) \, \mathrm{d}z = 0 \text{ für alle } n \in \mathbb{N}.$$

Daher ist nach Lemma Aufgabe 2 auch

$$\int_{\partial \Delta} f(z) \, \mathrm{d}z = \lim_{n \to \infty} \int_{\partial \Delta} f(z) \, \mathrm{d}z = 0.$$

Wegen der Beliebigkeit von Δ ist f nach dem Satz von Morera holomorph.