Complete 12-bit, 40MSPS Monolithic A/D Converter

AD9224

FEATURES

Monolithic 12-bit, 40MSPS A/D Converter

Low Power Dissipation: 390mW Single +5V Supply

No Missing Codes Guaranteed

Differential Nonlinearity Error: ±0.5 LSB

Complete: On-Chip Sample-and-Hold Amplifier and

Voltage Reference

Signal-to-Noise and Distortion Ratio: 65 dB

Spurious-Free Dynamic Range: 73 dB

Out of Range Indicator Straight Binary Output Data 28 Pin SSOP/28 Pin SOIC 200 MHz Input Bandwidth

PRODUCT DESCRIPTION

The AD9224 is a monolithic, single supply 12-bit, 25MSPS Analog to Digital Converter with an onchip, high performance sample-and-hold amplifier and voltage reference. The AD9224 uses a multi-stage differential pipelined architecture with output error correction logic to provide 12-bit accuracy at 40MSPS data rates and guarantees no missing codes over the full operating temperature range.

The AD9224 combines a low cost high-speed CMOS process and a novel architecture to achieve the resolution and speed of existing hybrid implementations at a fraction of the power consumption and cost.

The input of the AD9224 allows for easy interfacing to both imaging and communications systems. With a truly differential input structure, the user can select a variety of input ranges and offsets. The dynamic performance is excellent.

The sample-and-hold (SHA) amplifier is well suited for both multiplexed systems that switch fullscale voltage levels in successive channels and sampling single-channel inputs at frequencies up to and well beyond the Nyquist rate.

The AD9224's wideband input combined with the power and cost savings over previously available monolithics and hybrids will enable new design applications in communications, imaging and medical applications.

The AD9224 has an on board, programmable reference. An external reference can also be chosen to suit the DC accuracy and temperature drift requirements of the application.

A single clock input is used to control all internal conversion cycles. The digital output data is presented in straight binary output format. An out-ofrange signal indicates an overflow condition which can be used with the most significant bit to determine low or high overflow.

PRODUCT HIGHLIGHTS

The AD9224 is fabricated on a very cost effective CMOS process. High-speed, precision analog circuits are now combined with high density logic circuits.

The AD9224 offers a complete single-chip sampling 12-bit, 40MSPS analog-to-digital conversion function in a 28 pin SSOP package.

Low Power - The AD9224 at 390mW consumes a fraction of the power of presently available hybrids and existing monolithic solutions.

On-Board Sample-and-Hold (SHA) - The versatile SHA input can be configured for either single ended or differential inputs.

OUT OF RANGE (OTR) - The OTR output bit indicates when the input signal is beyond the AD9224's input range.

Single Supply - The AD9224 uses a single +5V power supply simplifying system power supply design. The output drivers can be operated from a separate 3V-5V supply if desired.

Pin Compatible Family.

AD9224 - DC SPECIFICATIONS

(AV_{DD} =+5V, DRV_{DD} =+5V, f_{SAMPLE} =40MSPS, VREF=2.0V, VINB=2.5Vdc unless otherwise indicated)

PARAMETER	AD9224	<u>Units</u>
RESOLUTION MAX CONVERSION RATE	12 40	Bits min MHz min
INPUT REFERRED NOISE VREF=1V VREF=2.0V	TBD TBD	LSB RMS typ LSB RMS typ
ACCURACY Integral Nonlinearity (INL) Differential Nonlinearity (DNL)	±2 ±0.5	LSB typ LSB typ
No Missing Codes Zero Error (@25°C) Gain Error (@25°C) ¹ Gain Error (@25°C) ²	12 TBD TBD TBD	Bits Guaranteed % FSR typ % FSR typ % FSR typ
TEMPERATURE DRIFT Zero Error Gain Error Gain Error ²	TBD TBD TBD	PPM/°C PPM/°C PPM/°C
POWER SUPPLY REJECTION AV_{DD} , DRV_{DD} (+5V±0.25V)	TBD	% FSR typ
ANALOG INPUT Input Span	2 4	Vp-p min Vp-p max
Input (Vina or Vinb) Range	0 AVDD	V min V max
Input Capacitance	10	pF typ
INTERNAL VOLTAGE REFERENCE Output Voltage (1V mode) Output Voltage Tolerance (1V mode) Output Voltage (2.0V mode) Output Voltage Tolerance (2.0V mode) Output Current (available for external loads) (External load should not change during conversion)	1.0 TBD 2.0 TBD 1.0	Volts typ mV max Volts typ mV max mA min
REFERENCE INPUT RESISTANCE POWER SUPPLIES Supply Voltages	5	k Ω typ
\overrightarrow{AV}_{DD} $\overrightarrow{DRV}_{DD}$ Supply Current	5 5	V (±5% AV _{DD} Operating) V (±5% DRV _{DD} Operating)
IAV IDRV DD POWER CONSUMPTION	TBD TBD 390	mA typ mA typ mW typ

NOTES

Includes Internal voltage reference drift
 Excludes internal voltage reference drift
 Specification subject to change without notice.

AD9224 - AC SPECIFICATIONS (AV_{DD}=+5V, DRV_{DD}=+5 V, f_{SAMPLE} = 40MSPS, VREF = 2.0V, Differential Input unless otherwise indicated)

SIGNAL-TO-NOISE AND DISTORTION	AD9224	Units
RATIO (S/N+D) f_{INPUT} =2.5MHz f_{INPUT} =12.5MHz	65 63	dB typ dB typ
SIGNAL-TO-NOISE RATIO (SNR) f_{INPUT} =2.5MHz f_{INPUT} =12.5MHz	66 64	dB typ dB typ
TOTAL HARMONIC DISTORTION (THD) f_{INPUT} =2.5MHz f_{INPUT} =12.5MHz	72 65	dB typ dB typ
SPURIOUS FREE DYNAMIC RANGE f_{INPUT} =2.5MHz f_{input} =12.5MHz	73 65	dB typ dB typ
Full Power Bandwidth Small Signal Bandwidth	250 250	MHz typ MHz typ
Aperture Delay Aperture Jitter	1 4	nS typ pS RMS typ
Acquisition to Full Scale Step Overvoltage Recovery Time	TBD TBD	nS typ nS typ

AD9224 - DIGITAL SPECIFICATIONS

(AVDD=+5V, DRVDD=+5V unless otherwise indicated)

PARAMETERS	Symbol		Units	
LOGIC INPUTS High Level Input Voltage Low Level Input Voltage High Level Input Current (V _{IN} =DV _{DD}) Low Level Input Current (V _{IN} =0V) Input Capacitance	VIH	+3.5	V min	
	VIL	+1.0	V max	
	^I IH	+/-10	µA max	
	^I IL	+/-10	µA max	
	CIN	5	pF typ	
LOGIC OUTPUTS High Level Output Voltage (I _{OH} =50μA) High Level Output Voltage (I _{OH} =0.5mA) Low Level Output Voltage (I _{OL} =1.6mA) Low Level Output Voltage (I _{OL} =50μA) Output Capacitance	VOH	+4.5	V min	
	VOH	+2.4	V min	
	VOL	+0.4	V max	
	VOL	+0.1	V max	
	COUT	5	pF typ	

Specifications subject to change without notice.

SWITCHING SPECIFICATIONS

 $(T_{min} \text{ to } T_{max} \text{ with } AV_{DD} = +5V, DRV_{DD} = +5V, C_L = 20pF)$

PARAMETERS	Symbol	AD9224	Units
Clock Period ¹	tC	25	nS min
CLOCK Pulse Width High	^t CH	12	nS min
CLOCK Pulse Width Low	^t CL	12	nS min
Output Delay	tOD	TBD	nS min(13nS typ)
	OD	TBD	nS max
Pipeline Delay (Latency)		3	Cycles

Figure 1. AD9224 Timing Diagram

NOTE

1 The clock period may be extended to 1 ms without degradation in specified performance @25 C Specifications subject to change without notice.

PIN DESCRIPTION

Name	Description	SSOP, SOIC
		SSOP, SOIC 1 2 3-12 13 14 15,26 16,25 17 18
REFCOM CAPB CAPT CML VINA VINB DRVSS DRVDD	Reference Common Noise Reduction Pin Noise Reduction Pin Common Mode Level (Mid Supply) Analog Input Pin (+) Analog Input Pin (-) Digital Output Driver Ground +3 to +5 V Digital Output Driver Supply	19 20 21 22 23 24 27 28

ABSOLUTE MAXIMUM RATINGS*

Parameter	With Respect to	Min	Max	Units
AVDD	AVSS	03	+6.5	V
DRVDD	DRVSS	-0.3	+6.5	V
AVSS	DRVSS	-0.3	+0.3	V
AVDD	DRVDD	-6.5	+6.5	V
REFCOM	AVSS	-0.3	+0.3	V
CLK	AVSS	-0.3	AVDD + 0.3	V
Digital Outputs	DRVSS	-0.3	DRVDD + 0.3	V
VIŇA,VINB	AVSS	-0.3	AVDD + 0.3	V
VREF	AVSS	-0.3	AVDD + 0.3	V
SENSE	AVSS	-0.3	AVDD + 0.3	V
CAPB, CAPT	AVSS	-0.3	AVDD + 0.3	V
Junction Temperature			+150	°C
Storage Temperature		-65	+150	°C
Lead Temperature (10 Sec)			+300	°C

^{*} Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

