AMENDMENTS TO THE CLAIMS

This Listing of Claims will replace all prior versions and listings of claims in this application.

Listing of Claims:

- 1. (Currently Amended) A method of reforming an interlayer film for heat-insulating laminated glass, wherein a high energy ray comprising an electromagnetic wave having energy of 3.0 eV or more is irradiated to an interlayer film for heat-insulating laminated glass comprising a heat-insulating particle covered with an inert substance, a matrix resin, and a liquid plasticizer, to improve transmittance of visible light having a wavelength of 380 to 780 nm, and also to reduce transmittance of a near-infrared radiation having a wavelength of 780 to 2100 nm, and wherein the inert substance is at least one member selected from the group consisting of an insulating metal oxide having band gap energy of 5.0 eV or more, ammonium phosphomolybdate (hydrate), ammonium phosphotungstate (hydrate), ammonium phosphate (hydrate), a hydroxy apatite, a carbonate apatite, a fluoride apatite, a tricalcium phosphate, an octacalcium phosphate, organosilane compound, an organoaluminium compound, an organoaluminium compound, an organoaluminium compound, an organozirconium-aluminium compound, earbon tetraehloride, a quaternary-ammonium-salt compound, a $Mo(\eta^3-C_3H_3)_4$ complex, a $Cr(\eta^3-C_3H_3)_5$ complex, a $Co_2(CO)_5$ cluster, and a $Ru_3(CO)_{12}$ cluster, and wherein agglomerates of the heat-insulating particle have an average particle size of 10 to 100 nm.
- 2. (Original) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the high energy ray is at least one kind selected from the group consisting of a super UV light, a UV ray, a visible light, a super Xe light, a Xe light, a laser beam, an electron beam, and a microwave.
- 3. (Previously Presented)The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the high energy ray comprises light having a wavelength of 300 to 450 nm.

4. (Previously Presented) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the high energy ray is irradiated so that a yellow index value change (Δ YI) of an interlayer film for heat-insulating laminated glass represented by the following formula (1) is in the range of 0% or less, and a b* value change (Δ b*) in CIE1976 L*a*b* display system represented by the following formula (2) is in the range of 0% or less, before and after irradiation of the high energy ray:

ΔΥΙ=ΥΙ(after irradiation of high energy ray)-ΥΙ(before irradiation of high energy ray)

- (1)
- Δ b*=b*(after irradiation of high energy ray)-b*(before irradiation of high energy ray) (2).
- 5. (Previously Presented) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the inert substance is an insulating metal oxide having band gap energy of 5.0 eV or more.
- 6. (Previously Presented)The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the inert substance is at least one kind selected from the group consisting of ammonium phosphomolybdate (hydrate), ammonium phosphovanadate (hydrate), ammonium phosphotungstate (hydrate), and ammonium phosphate (hydrate).
- 7. (Previously Presented)The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the inert substance is at least one kind selected from the group consisting of a hydroxy apatite, a carbonate apatite, a fluoride apatite, a tricalcium phosphate, and an octacalcium phosphate.
- 8. (Previously Presented)The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the inert substance is at least one kind selected from the group consisting of an organosilane compound, an organotitanium compound, an organoaluminium compound, and an organozirconium-aluminium compound.

9. (Original) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 8, wherein the organosilane compound, the organotitanium compound, the organoaluminium compound, and the organozirconium-aluminium compound, are aromatic compounds.

10. (Cancelled)

- 11. (Currently Amended)The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the inert substance is at least one kind selected from the group consisting of a-earbon tetraehloride; a quaternary-ammonium-salt compound, a Mo(η³-C₃H₅)₄ complex, a Cr (η³-C₃H₅)₃ complex, a Co₂(CO)₈ cluster, and a Ru₃(CO)₁₂ cluster.
- 12. (Previously Presented) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein a surface of the heat-insulating particle is inactivated by protecting the surface of the heat-insulating particle with an amorphous (noncrystalline) metal oxide.
- 13. (Original) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 12, wherein the amorphous metal oxide is at least one kind selected from the group consisting of an amorphous indium oxide, an amorphous tin oxide, an amorphous antimony oxide, an amorphous indium tin oxide, an amorphous antimony oxide-doped tin oxide, an amorphous silicon oxide, an amorphous aluminum oxide, an amorphous zirconium oxide, an amorphous calcium oxide, an amorphous titanium oxide, an amorphous cerium oxide.
- 14. (Currently Amended) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the interlayer film for heat-insulating laminated glass comprises 3.0 parts by weight or less of an indium tin oxide (ITO) particle having an

average particle diameter of 100 nm or less, and being protected in the surface, to 100 parts by weight of the matrix resin.

- 15. (Currently Amended) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the heat-insulating particle is at least one kind selected from the group consisting of an indium tin oxide (ITO) particle, an antimony-doped tin oxide (ATO) particle, an aluminum-doped zinc oxide particle, an indium-doped zinc oxide particle, a gallium-doped zinc oxide particle, a lanthanum hexaboride particle, and a cerium hexaboride particle.
- 16. (Previously Presented) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the matrix resin is a polyvinyl acetal resin.
- 17. (Previously Presented)The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the liquid plasticizer is at least one kind selected from the group consisting of a dihexyl adipate, a triethylene glycol di-2-ethylhexanoate, a tetraethylene glycol di-2-ethylbutyrate, a tetraethylene glycol di-2-ethylbutyrate, a tetraethylene glycol di-4-eptylously di-4-eptylo
- 18. (Previously Presented) An interlayer film for heat-insulating laminated glass reformed by the method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, which comprises a heat-insulating particle covered with an inert substance, a matrix resin, and a liquid plasticizer, transmittance of visible light having a wavelength of 380 to 780 nm being 70% or more, transmittance of a solar radiation having the wavelength of 300 to 2100 nm being 85% or less, and a haze value being 1.0% or less.
- 19. (Original) A laminated glass, which is obtained by using the interlayer film for heat-insulating laminated glass according to claim 18.

20. (Cancelled)

21. (Currently Amended) A method of reforming an interlayer film for heat-insulating laminated glass, wherein a high energy ray comprising an electromagnetic wave having energy of 3.0 eV or more is irradiated to an interlayer film for heat-insulating laminated glass comprising a heat-insulating particle covered with an inert substance, a matrix resin, and a liquid plasticizer, to improve transmittance of visible light having a wavelength of 380 to 780 nm, and also to reduce transmittance of a near-infrared radiation having a wavelength of 780 to 2100 nm, and wherein a surface of the heat-insulating particle is inactivated by protecting the surface of the heat-insulating particle with an amorphous (noncrystalline) metal oxide, and wherein agglomerates of the heat-insulating particle have an average particle size of 10 to 100 nm.

- 22. (Previously Presented) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 21, wherein the amorphous metal oxide is at least one kind selected from the group consisting of an amorphous indium oxide, an amorphous tin oxide, an amorphous antimony oxide, an amorphous antimony oxide-doped tin oxide, an amorphous silicon oxide, an amorphous aluminum oxide, an amorphous zirconium oxide, an amorphous calcium oxide, an amorphous titanium oxide, an amorphous zirconium oxide, and amorphous cerium oxide.
- 23. (New) The method of reforming an interlayer film for heat-insulating laminated glass according to claim 1, wherein the heat-insulating particle has an average primary diameter of 5 to 30 nm.
- 24. (New) A method of reforming an interlayer film for heat-insulating laminated glass, wherein a high energy ray comprising an electromagnetic wave having energy of 3.0 eV or more is irradiated to an interlayer film for heat-insulating laminated glass comprising a heat-insulating particle covered with an inert substance, a matrix resin, and a liquid plasticizer, to improve transmittance of visible light having a wavelength of 380 to 780 nm, and also to reduce transmittance of a near-infrared radiation having a wavelength of 780 to 2100 nm, and wherein the inert substance is at least one member selected from the group consisting of an insulating

metal oxide having band gap energy of 5.0 eV or more, ammonium phosphomolybdate (hydrate), ammonium phosphovanadate (hydrate), ammonium phosphotungstate (hydrate), ammonium phosphate (hydrate), a hydroxy apatite, a carbonate apatite, a fluoride apatite, a tricalcium phosphate, an octacalcium phosphate, organosilane compound, an organotitanium compound, an organoaluminium compound, an organozirconium-aluminium compound, a quaternary-ammonium-salt compound, a $Mo(\eta^3-C_3H_5)_4$ complex, a $Cr(\eta^3-C_3H_5)_3$ complex, a $Co_2(CO)_8$ cluster, and a $Ru_3(CO)_{12}$ cluster, and wherein the heat-insulating particle has an average primary diameter of 5 to 30 nm.