4.3 反函数 (2)

知识点: 反函数的图像

【A组】

- 1. 若函数 y = f(x) 存在反函数 $y = f^{-1}(x)$, 则函数 y = f(x) 和 $y = f^{-1}(x)$ ()
 - A. 不能关于原点对称 B. 单调性不可能相反
- - C. 不可能同时是奇函数 D. 如果图像存在交点,则交点一定在y=x 直线
- 2. y = f(x)有反函数 $y = f^{-1}(x)$, 且(a, f(a))在 y = f(x)图像上,则必在 $y = f^{-1}(x)$ 的图象上的点是(f(\omega), \omega)
- 4. 已知 $f(x) = 1 + \frac{1}{x}$, 若函数 y = f(x) 的反函数为 $y = f^{-1}(x)$, 则方程 $f^{-1}(x) = 2$ 的 $\mathbf{R} x = \mathbf{2}$
- 5. 设函数 f(x) 的图象关于点 (1,2) 对称,且存在反函数 $f^{-1}(x)$, f(4) = 0 ,则 $f^{-1}(4) =$ ______.

【B组】

- 1. 已知点 $\left(2,\frac{1}{4}\right)$ 既在函数 $y=2^{ax+b}$ 的图像上,又在它的反函数的图像上,则实 数 $a = \frac{12}{7}$, $b = \frac{10}{7}$.
- 2. 已知函数 y = f(x) 存在反函数 $y = f^{-1}(x)$, 若函数 y = f(1+x) 的图象经过点 (3,1),则函数 $y = f^{-1}(x)$ 的图象必经过点 (1).
- 3. 设函数 y = f(x) 存在反函数 $y = f^{-1}(x)$, 且函数 y = x f(x) 的图象过点 (1,2). 则函数 $y = f^{-1}(x) - x$ 的图象一定过点(-1,2).
- 4. 函数 $f(x) = a^x \frac{5}{2}a + 6$ 的反函数 $f^{-1}(x)$ 的图像经过点 (5,2),且在区间 $\left(\frac{23}{4},+\infty\right)$ 上恒有 $f^{-1}(x) < 0$,则实数 a =______.

- (C) 是奇函数,在 $(0,+\infty)$ 上是增函数 (D) 是偶函数,在 $(0,+\infty)$ 上是增函数 7. 奇函数 y = f(x) 有反函数 $y = f^{-1}(x)$,则必在 $y = f^{-1}(x)$ 的图象上的点是((x))
- (A) (-f(a),a) (B) (-f(a),-a) (C) $(-a,f^{-1}(a))$ (D) $(a,f^{-1}(-a))$
- (A) $\frac{3-2x}{x}$ (B) $\frac{2-x}{x+1}$ (C) $\frac{1-x}{x+2}$ (D) $\frac{3}{x+2}$
- 9. 下面四个命题:
- ①关于直线 y = x 成轴对称的两个图形一定是互为反函数的一对函数的图像;
- ②函数 y = f(x), $x \in D$ 与函数 $x = f^{-1}(y)$, $y \in f(D)$ 是互为反函数;
- ③函数 y = f(x) 与其反函数 $y = f^{-1}(x)$ 的图像若有交点,则交点一定在直线 y = x 上;

- 11. 设函数 y = f(x) 存在反函数 $y = f^{-1}(x)$, 且函数 y = x f(x) 的图像过点 (1,3),则函数 $y = f^{-1}(x) + 3$ 的图像一定经过定点 (2).

12. 给定实数 $a, \exists a \neq 0, a \neq 1$,设函数 $f(x) = \frac{x-1}{ax-1} (x \in R, \exists x \neq \frac{1}{a})$ 。求证:函数 f(x)的

图象关于
$$y=x$$
对称.

(A) = $f(x) = \frac{x-1}{\alpha x-1}$ ($x \neq \frac{1}{\alpha}$)

(A) = $f(x) = \frac{x-1}{\alpha x-1}$ ($x \neq \frac{1}{\alpha}$)

(A) = $f(x) = \frac{x-1}{\alpha x-1}$ ($f(x) = \frac{1}{\alpha}$)

(B) $f(x) = \frac{1}{\alpha}$ ($f(x) = \frac{1}{\alpha}$)

(A) = $f(x) = \frac{1}{\alpha}$ ($f(x) = \frac{y-1}{\alpha y-1}$)

$$x + f(x) = \frac{x-1}{ax-1} = f(x) (x + \frac{1}{a})$$

即 $f(x)$ 的 反函数 是其自身,

中 $f(x)$ 与 $f(a)$ 关于 $f(x)$ と $f(x)$ 的 图象 关于 $f(x)$ と $f(x)$ 的 图象 关于 $f(x)$ と $f(x)$ 的 图象 关于 $f(x)$ と $f(x)$ の 图象 关于 $f(x)$ の $f(x)$ と $f(x)$ と $f(x)$ の $f(x)$ と $f(x)$ と $f(x)$ の $f(x)$ と $f(x)$ と $f(x)$ の $f(x)$ と $f(x)$ の $f(x)$ と $f(x)$ と $f(x)$ の $f(x)$ と $f(x)$ と $f(x)$ と $f(x)$ の $f(x)$ と $f(x)$ を $f(x)$ と f

13. 函数 f(x) 在 R 上是减函数, 且它的反函数为 $f^{-1}(x)$, 如果 A(-2,1), B(2,-3) 是

$$y = f(x)$$
图像上的两点,求不等式 $\left| f^{-1} \left(\frac{x-1}{x} \right) \right| < 2$ 的解集. **4**(-2) = 1 , **f**(2) = -3

解:
$$f(2)=1$$
, $f(2)=-3$
 $P(f(1)=-2)$, $f(-1)=2$
 $|f'(\frac{x-1}{x})|<2 \Rightarrow -2 < f''(\frac{x-1}{x}) < 2$
 $P(f(1)) < f''(\frac{x-1}{x}) < f(-\frac{x-1}{x}) < f(-\frac{x-1}{x})$
 $f(x)$ $f(x)$

14. 已知函数
$$f(x) = \left(\frac{x-1}{x+1}\right)^2 (x>1)$$
.

(1) 求函数 f(x) 的反函数 $f^{-1}(x)$; (2) 如果不等式 $(1-\sqrt{x})\cdot f^{-1}(x) > m(m-\sqrt{x})$ 对

$$\left[\frac{1}{4},\frac{1}{2}\right]$$
上的每一个 x 都成立,求 m 的范围; (3) 设函数 $g(x) = \frac{1}{f^{-1}(x)} + \sqrt{x} + 2$,求

函数 g(x) 的最小值及相应的 x 的值.

$$11)$$
 $\forall x \in [t, t]$,

 $+ \pi > m(m - \pi)$ 并立

 $p(1+m) \pi + 1 - m^2 > 0$
 $\Rightarrow t = \pi$, $Pl \in [t, t]$
 $\Rightarrow h(t) = (l+m)t + 1 - m^2$
 $\Rightarrow (\pi h(t)) > 0$
 $\Rightarrow (l+m) \Rightarrow (l+m) \Rightarrow (m) \Rightarrow (m)$

 $-1 < m < \frac{3}{5}$

- 15. 已知函数 $y = f(x), x \in D$ 是严格递增函数,其反函数是 $y = f^{-1}(x)$.
 - (1) 若 $y = x^2 1(x > \frac{1}{2})$, 求 $y = f^{-1}(x)$, 并写出定义域M;
 - (2) 对于 (1) 的 $y = f^{-1}(x)$ 和 M , 设任意 $x_1 \in M$, $x_2 \in M$, $x_1 \neq x_2$, 求证:

$$|f^{-1}(x_1) - f^{-1}(x_2)| < |x_1 - x_2|.$$

解:(1)
$$8 = \sqrt{y+1}$$
, $M = (-\frac{2}{4}, +\infty)$

$$\Rightarrow \left| \frac{|y_1 - y_2|}{\sqrt{x_1 + 1} + \sqrt{x_2 + 1}} < |x_1 - x_2| \right|$$

$$\Rightarrow \left| f^{-1}(x_1) - f^{-1}(x_2) \right| < |x_1 - x_2|$$

$$| \sqrt{3_1+1} - \sqrt{3_2+1} | = \frac{|3_1-3_2|}{\sqrt{3_1+1} + \sqrt{3_2+1}}$$
 $|3_1>-\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|$
 $|3_1>-\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|>\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|<\frac{1}{4}$
 $|3_1+1|+\sqrt{3_2+1}|<\frac{1}{4$

- - (1) 若点 $P(\sqrt{3},-1)$ 在反函数 $f^{-1}(x)$ 的图像上,求 a 的值;
 - (2) 求证: 函数 f(x) 的图像与 y = x 的图像有且仅有一个公共点;
 - (3) 如果点(m,n) $(m \neq n)$ 是函数 $f(x) = \sqrt{ax + 2}$ (a < 0) 与其反函数 $f^{-1}(x)$ 图 像上的公共点, 求 a 的取值范围.

解:(1) (f-1(豆)=-1 (f-1)=豆
(f-1)=
$$\sqrt{-a+2}=豆 (a=-1)$$

由①、
$$m^2 = \alpha(-\alpha - m) + \gamma$$

· $m^2 + \alpha m + \alpha^2 - \gamma = 0$

由②,
$$n^2 = a(-a-n)+2$$

 $n^2 + an + a^2 - 2 = 0$
即 $m, n \neq 3$ 程 $3^2 + ax + a^2 - 2 = 0$ 不同的两根
且 $m, n \in [0, -\frac{1}{4}]$

$$\begin{cases}
f(m) = n \\
f(n) = m
\end{cases} \qquad \begin{cases}
am+2 = n^2 @ m \neq n \\
an+2 = m^2 @ m \neq n
\end{cases}$$

$$(n^2 - m^2 = am+2 - an-2)$$

$$(n+m)(n-m) = a(m-n)$$

$$\begin{cases} \Delta > 0 \\ \text{m·n} = \Delta^2 - 2 \ge 0 \end{cases}$$

$$\therefore \Delta \in \left(-\frac{2\sqrt{6}}{3}, -\sqrt{6}\right)$$