Определение 1. Множество M на числовой прямой называется всюду плотным (на числовой прямой), если в любом интервале есть хотя бы одна точка из M. Аналогично определяется всюду плотное множество M на окружности (плоскости): любая дуга (круг) содержит хотя бы одну точку из M.

Задача 1. Являются ли следующие множества всюду плотными на прямой: **a)** множество рациональных чисел; **b)** множество двоично-рациональных чисел, то есть дробей, знаменатель которых — степень двойки; **r)** множество конечных десятичных дробей?

Определение 2. Пусть дано множество M на прямой (окружности, плоскости). Скажем, что интервал (дуга, круг) будет кормушкой для M, если в там содержится бесконечно много элементов из M.

Задача 2. Пусть интервал — кормушка для последовательности. Обязательно ли он будет кормушкой для множества элементов этой последовательности?

Задача 3. Докажите, что для всюду плотного множества на прямой (окружности, плоскости) любой интервал (дуга, круг) будет кормушкой.

Задача 4. По окружности длины 1 по часовой стрелке прыгает кузнечик, все прыжки имеют иррациональную длину α . Пусть M — множество точек, куда может попасть кузнечик. Докажите, что а) кузнечик никогда не попадёт дважды в одну и ту же точку; б) любая дуга, содержащая начало, будет кормушкой для M; в) M всюду плотно на окружности; \mathbf{r})* (Лемма Вейля) доля точек, попадающих в данную дугу окружности, равна длине этой дуги (доля определяется как предел число точек, попавших в дугу за первые N шагов

N

при N, стремящемся к бесконечности). д) Что можно сказать про M, если α рационально?

Задача 5. Пусть α иррационально. Рассмотрим множество дробных частей чисел вида $n\alpha$, где $n \in \mathbb{N}$. Докажите, что это множество всюду плотно на отрезке [0;1] (кстати, а что это значит?).

Задача 6. Внутри круга запускается точечный бильярдный шар и отражается от границы по закону «угол падения равен углу отражения». Докажите, что траектория шара либо зацикливается, либо всюду плотно заполняет а) граничную окружность; б)* некоторое кольцо.

Задача 7. Может ли непериодическая траектория шара в круге иметь параллельные звенья?

Задача 8. В круглом бильярде сделана круглая луза, не содержащая центр круга и не касающаяся стены. Докажите, что точечный шар можно так расположить и запустить в круге, что он **a)** никогда не попадёт в лузу; **б)** попадёт в неё не раньше, чем пройдя расстояние больше заданного.

Задача 9. В каждом узле целочисленной сетки на плоскости растёт дерево (круг радиуса ε с центром в узле). Вы стоите не в узле и не смотрите в центр никакого дерева. Пусть тангенс угла наклона направления вашего взгляда к линям сетки равен k. Докажите, что **a)** если k иррационально, то взгляд упрётся в дерево; **б)** если k рационально и деревья достаточно тонкие, вы увидите просвет.

Задача 10. Точечный конь прыгает скачками $(\sqrt{2}, \sqrt{3})$ по плоскости, где в каждой целой точке растет кукуруза (круг с центром в точке). Докажите, что он обязательно сшибет хотя бы один росток (конь сшибает росток только в том случае, если приземляется на него; в прыжках конь ростки не задевает).

Задача 11. Даны положительные числа c_1, c_2, \ldots, c_n . Докажите, что для каждого $\varepsilon > 0$ найдется такое натуральное M, что каждое из чисел c_1M, \ldots, c_nM будет отличаться от ближайшего к нему целого числа не больше, чем на ε . Решите задачу, если **a)** n=1; **б)** n=2; **в)*** n-1 любое натуральное.

Задача 12. В стаде 101 корова. Если увести любую одну корову, то оставшихся можно разделить на две части по 50 коров в каждой так, что суммарный вес коров первой части будет равен суммарному весу коров другой части. Докажите, что все коровы весят одинаково, если веса коров **a)** целые; **б)** рациональные; **в)*** любые действительные числа (подсказка: используйте предыдущую задачу).

Задача 13*. (*Теорема о блохе и кузнечике*) Пусть α и β — иррациональные числа, большие 1.

а) Докажите, что если $\frac{1}{\alpha} + \frac{1}{\beta} = 1$, то среди чисел $[n\alpha]$ и $[m\beta]$, где n и m — всевозможные натуральные, встречается каждое натуральное число, причём ровно один раз. **б)** Докажите обратное утверждение.

1 a	1 6	1 В	1 Г	2	3	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 Д	5	6 a	6 6	7	8 a	8 6	9 a	9 6	10	11 a	11 б	11 B	12 a	12 б	12 B	13 a	13 6