ENGG 5202: Assignment #2

Due on Thursday, March 10, 2015

Kai Chen

Problem 1

1.1

$$\begin{split} l(\theta_1) &= \log p(D_1 | \omega_1, \theta_1) \\ &= \log p(x_{11} | \omega_1, \theta_1) + \log p(x_{12} | \omega_1, \theta_1) \\ &= 2 \log \theta_1 - \theta_1(x_{11} + x_{12}) \end{split}$$

Let

$$\nabla l(\theta_1) = 0$$

We get

$$\hat{\theta_1} = \frac{2}{x_{11} + x_{12}} = \frac{1}{3}$$

Similarly,

$$\hat{\theta_2} = \frac{2}{x_{21} + x_{22}} = \frac{1}{6}$$

1.2

Given $\theta_1 = \frac{1}{3}$ and $\theta_2 = \frac{1}{6}$, we have

$$p(x|\omega_1) = \begin{cases} 0 & x < 0\\ \frac{1}{3}e^{-\frac{x}{3}} & x \ge 0 \end{cases}$$

$$p(x|\omega_2) = \begin{cases} 0 & x < 0\\ \frac{1}{6}e^{-\frac{x}{6}} & x \ge 0 \end{cases}$$

$$g(x) = p(\omega_1|x) - p(\omega_2|x)$$
$$= \ln \frac{p(x|\omega_1)}{p(x|\omega_2)} - \ln \frac{p(\omega_1)}{p(\omega_2)}$$

Let

$$q(x) = 0$$

We have

$$x^* = \frac{\ln \theta_1 - \ln \theta_2}{\theta_1 - \theta_2}$$
$$= 6 \ln 2 \approx 4.16$$

1.3

The classification rule is when $x > x^*$, class label is 2, when $0 < x < x^*$, class label is 1. So the expected classification error

$$Error = \int_0^{x^*} p(x|\omega_2)p(\omega_2)dx + \int_{x^*}^{\infty} p(x|\omega_1)p(\omega_1)dx$$
$$= \frac{1}{2} \int_0^{6\ln 2} e^{-\frac{x}{6}} dx + \frac{1}{2} \int_{6\ln 2}^{\infty} \frac{1}{3} e^{-\frac{x}{3}} dx$$
$$= \frac{3}{8}$$

Problem 2

 a_{12} is updated in the M step and

$$\hat{a}_{12} = \frac{\sum_{t=2}^{T} \xi_{t-1}(\omega_1, \omega_2)}{\sum_{t=2}^{T} \sum_{j'=1}^{c} \xi_{t-1}(\omega_1, \omega_{j'})}$$

$$= \frac{\sum_{t=2}^{T} P(Z_{t-1} = \omega_1, Z_t = \omega_2 | X, \theta^{old})}{\sum_{t=2}^{T} \sum_{j'=1}^{c} \xi_{t-1}(\omega_1, \omega_{j'})}$$

Because a_{12} is initialized as 0, therefore for any t > 1, we have

$$P(Z_{t-1} = \omega_1, Z_t = \omega_2 | X, \theta^{old}) = 0$$

So in all subsequence updates of the EM algorithm $\hat{a}_{12} = 0$.

Problem 3

3.1

The sample size for the "same density" in \mathbb{R}^d is n_1^d . If $n_1 = 100$, the sample size needed is 100^{20} .

3.2

$$p = \frac{k/n}{V}$$
$$= k/n$$
$$= nl_d^d(p)$$

So

$$l_d(p) = p^{\frac{1}{d}}$$

We can calculate

$$l_5(0.01) = 0.398$$

 $l_5(0.1) = 0.63$
 $l_{20}(0.1) = 0.89$

3.3

If the dimension is high, the edge length of Parzen window will be greater and approximate to 1, leading to larger errors and a "flat" and "uniform" estimated density.

Problem 4

4.1

If it is Gaussian distribution and the class covariances are identical, then the dicision boundary found by two methods will be the same.

4.2

The results are shown in table 1 and figure 1.

I observe that LR is more robust than FLD when dealing with outliners and noises. The two algorithms have similar testing error rates when trained using **train1**, but FLD has significantly larger error rate when trained using **train1_2**, because the label of FLD can be infinite while the sigmoid function in LR turns it to (-1, 1), which can handle such outliners.

Table 1: Dataset 1 results				
Train set	Test set	Algorithm	Error rate	
train1	test1	FLD	0.07	
train1	test1	LR	0.067	
$train1_2$	test1	FLD	0.151	
$train1_2$	test1	LR	0.067	

Figure 1: Train data and decision boundaries (left: train1, right: train1_2)

4.3

The error rates are shown in Table 2. The Gaussian assumption is not reasonable for the representation of digit images. The values of x are discrete and binary, so it is not Gaussian. FLD and LR are sensitive to the Gaussian assumption, because the derivation of these methods are based on Gaussian.

Table 2: Dataset 2 results					
Train set	Test set	Algorithm	Error rate		
train2	test2	FLD	0.23		
train2	test2	LR	0.1425		