Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik

SS 2010 27.–30. April

2. Übungsblatt zur "Mathematik II für Inf, WInf"

Gruppenübung

Aufgabe G5 (Vektorräume)

Kreuze an welche der folgenden Mengen (mit der aus der Mathe I bekannten Addition und skalaren Multiplikation) Vektorräume sind. Gib bei den Mengen, die keine Vektorräume sind, eine Vektorraumeigenschaft an, die verletzt ist.

- □ Die Menge der Polynome mit Grad kleiner gleich drei.
- □ Die Menge der reellen Folgen.
- □ Die Menge der streng monoton wachsenden Funktionen.

Aufgabe G6 (Produkte in \mathbb{R}^3)

Rechne die Formel aus dem Skript (s. 112, ganz unten)

$$\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \cdot \vec{v} - (\vec{u} \cdot \vec{v}) \cdot \vec{w}$$

(mit $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$) nach.

Aufgabe G7 (Lineare Abbildungen)

(a) Welche der folgenden Abbildungen sind linear?

$$f: \mathbb{R}^2 \to \mathbb{R}: (x, y) \mapsto xy$$
$$g: \mathbb{R}^2 \to \mathbb{R}^2: (x, y)^T \mapsto (2y, x + y)^T$$
$$h: C^1(\mathbb{R}) \to C^0(\mathbb{R}): u \mapsto u'$$

Gib bei den *linearen* Abbildungen jeweils den Kern und das Bild an und bei den linearen Abbildungen zwischen *endlichdimensionalen* Vektorräumen die Abbildungsmatrix bezüglich der Standardbasis an.

Kommentar zur Notation: $C^1(\mathbb{R})$ steht für den Vektorraum aller einmal stetig differenzierbaren Funktionen $u: \mathbb{R} \to \mathbb{R}$ und $C^0(\mathbb{R})$ für den Vektorraum aller stetigen Funktionen $u: \mathbb{R} \to \mathbb{R}$. Mit u' wird die erste Ableitung der Funktion u bezeichnet.

(b) Zeige, dass die Umkehrabbildung einer bijektiven linearen Abbildung auch wieder linear ist.

Hausübung

Aufgabe H2 (Basen und Koordinaten)

- (a) Betrachte das gleichseitige Dreieck, dessen Ecken die Koordinaten $\binom{0}{0}$ und $\binom{1}{0}$ (bezüglich der Standardbasis) besitzen und dessen dritte Ecke positive Koordinaten hat. Finde eine Basis bezüglich derer die Ecken ganzzahlige Koordinaten besitzen.
- (b) Betrachte ein gleichseitiges Sechseck mit Seitenlänge 1, dessen Mittelpunkt im Ursprung liegt. Läßt sich eine Basis finden bezüglich derer die Ecken ganzzahlige Koordinaten besitzen?

Aufgabe H3 (Lineare Hülle)

Sei V ein Vektorraum und $S \subset V$. Die lineare Hülle von S wurde in der Vorlesung als der kleinste Vektorraum, der S enthält, definiert, das heißt

$$\mathrm{Sp}(S) := \bigcap_{\substack{U \supset S \\ U \text{ Untervektor raum von } V}} U$$

Zeige, dass die so definierte lineare Hülle von S der Menge aller Linearkombinationen von Elementen aus S entspricht, das heißt

$$\operatorname{Sp}(S) = \left\{ \sum_{i=1}^{m} \lambda_i s_i \mid \lambda_i \in \mathbb{R}, \, s_i \in S \right\}.$$

Tipp: Zeige, dass die Menge aller Linearkombinationen von Elementen aus S ein Untervektorraum von V ist, der S enthält.

Aufgabe H4 (Lineare Abbildungen & Matrizen, Kern & Bild)

Wir betrachten die linearen Abbildungen $\Phi:\mathbb{R}^2\to\mathbb{R}^3$ und $\Psi:\mathbb{R}^3\to\mathbb{R}$ mit

$$\Phi(x_1, x_2) = (x_2, x_1, 3x_1 - x_2), \qquad \Psi(y_1, y_2, y_3) = y_2 + y_3 - y_1.$$

- (a) Bestimme die zu Φ , Ψ und $\Psi \circ \Phi$ gehörigen Abbildungsmatrizen (bezüglich der Standardbasis). (Hierbei gilt $(\Psi \circ \Phi)(x) = \Psi(\Phi(x))$.)
- (b) Gib Basen von $\ker(\Phi)$ und $\operatorname{rng}(\Phi)$ an und verifiziere an diesem Beispiel die Dimensionsformel.

Aufgabe H5 (Vektorraumisomorphismen und Basen)

Seien V und W endlichdimensionale Vektorräume und $f: V \to W$ ein Vektorraumisomorphismus. Zeige, dass f Basen erhält, das heißt wenn b_1, \ldots, b_n eine Basis von V ist, dann ist $f(b_1), \ldots, f(b_n)$ eine Basis von W.