

Explaining Time Series via Contrastive and Locally Sparse Perturbations

Zichuan Liu^{1,2} Yingying Zhang² Tianchun Wang³ Zefan Wang^{2,4} Dongsheng Luo⁵ Mengnan Du⁶ Min Wu⁷ Yi Wang⁸ Chunlin Chen¹ Lunting Fan² Qingsong Wen²

> ¹Nanjing University, ²Ailibaba Group, ³Pennsylvania State University, ⁴Tsinghua University, ⁵Florida International University, ⁶New Jersey Institute of Technology, ⁷A*STAR, ⁸The University of Hong Kong

Background

Black-box models with post-hoc explanation techniques: Find salient features!

Visual Explanation
Source: Fong et al.

Graph Explanation Source: Miao et al.

Game Explanation
Source: Liu et al.

Challenges for Explaning Time Series

Dynamask, <u>Crabbe' et al.</u>

$$\Phi(x,m) = m imes x + (1-m) imes u$$

$$\operatorname{arg\,min} \underbrace{\mathcal{L}(f(x), f \circ \Phi(x, m))}_{\text{label consistency}} + \underbrace{\mathcal{R}(m)}_{\text{regular}} + \underbrace{\mathcal{A}(m)}_{\text{smooth}}$$

> Fail to interpret visually

- Dense salient features (unlike the image and text)
- Noisy samples in time series

> Hard find temporal pattenrns

• The time series is smoothed

> Perturbations matter

- Setting a more uninformative values is important
- Give only instance-based explanations

Existing Perturbations are Inadequate

$$\Phi(x,m) = m imes x + (1-m) imes u$$
 where $u = egin{cases} 0 \ rac{1}{w+1} \sum_{t-w}^t x_i \ ext{Gaussian blur} \ ext{NN}(x) \end{cases}$

- Those perturbations may *out of* distribution or label leakage
- Cannot relate temporal patterns across samples

Illustrating different styles of perturbation. Other perturbations could be either not uninformative or not in-domain, while ours is counterfactual that is toward the distribution of negative samples.

ContraLSP Architecture

Perturbation:
$$\Phi(x,m) = m imes x + (1-m) imes arphi_{cntr}(x)$$

How to learn the *sparse mask m* and *uninformative* $\varphi_{cntr}(x)$?

Two Main Contributions

➤ Learning counterfactuals from contrastive loss

- Step1: Find positive and negative samples
- Step2: Optimizing via Manhattan distance

$$\mathcal{L}_{cntr}(\boldsymbol{x}_i) = \max(0, \mathcal{D}_{an} - \mathcal{D}_{ap} - b) + \|\boldsymbol{x}_i^r\|_1,$$

Learning sparse gates with smooth constraint

If not smooth, predictor f may error!

$$\mathcal{R}(\boldsymbol{x}_i, \boldsymbol{m}_i) = \|\boldsymbol{m}_i\|_0 = \sum_{t=1}^T \sum_{d=1}^D \left(\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left(\frac{\boldsymbol{\mu}_i'[t, d]}{\sqrt{2}\delta}\right)\right),$$

Learning counterfactuals

Binary-skewed masks

Synthetic Experiments (with label)

RARE-TIME (DIFFGROUPS)

1. White-box Regression

METHOD

RARE-TIME

Table 1: Performance on Rare-Time and Rare-Observation experiments w/o different groups.

FO		1.00 _{±0.00} 0.13 _±					$47.20_{\pm 0.61}$		$1.00_{\pm 0.0}$	0 0	$0.16_{\pm 0.00}$		$0.53_{\pm 0.01}$		$.89_{\pm 0.70}$		
AFO		1.00	$1.00_{\pm 0.00}$ 0.15_{\pm}				01	$55.60_{\pm 0.85}$		$1.00_{\pm 0.0}$	0 0	$.16_{\pm 0.00}$	0.54	$0.54_{\pm 0.01}$		$.76_{\pm 0.72}$	
IG				$0.13_{\pm 0}$			$47.61_{\pm 0.62}$		0.62	$1.00_{\pm 0.0}$	0 0	$.15_{\pm 0.00}$	0.53	$0.53_{\pm 0.01}$		$.62_{\pm 0.85}$	
SVS		$1.00_{\pm 0.00}$		$0.13_{\pm 0.00}$ 0.4		$0.47_{\pm 0.01}$		$47.20_{\pm 0.61}$		$1.00_{\pm 0.0}$	0 0	$.15_{\pm 0.00}$	$0.52_{\pm 0.02}$		54	$.28_{\pm 0.84}$	
DYNAMASK		$0.99_{\pm 0.01}$		$0.67_{\pm 0.02}$		$8.68_{\pm0.11}$		$37.24_{\pm0.48}$		$0.99_{\pm 0.0}$	0 0	$.51_{\pm 0.00}$		$5.75_{\pm 0.13}$		$.33_{\pm 1.02}$	
EXTRMASK		$1.00_{\pm 0.00}$ $0.88_{\pm 0.00}$		$0.88_{\pm 0}$			$0.13 \underline{13.10}_{\pm 0.75}$		0.78	$1.00_{\pm 0.0}$	00 0	$.83_{\pm 0.03}$	13.3	$13.37_{\pm 0.78}$		$.44_{\pm 3.68}$	
CONTRALSP		1.00 _{±0.00} 0.97 _±							1.00±0.0		.94 _{±0.01}		$18.92_{\pm 0.37}$		40 _{±0.60}		
					RE-OBSERVATION					RARE-OBSERVATION (DIFFG							
METHOD		AUP↑ AUR		AUR 1	\uparrow $I_m/10^4 \uparrow$		¹ ↑	\uparrow $S_m/10^2 \downarrow$		AUP↑	A	UR ↑	$I_{\boldsymbol{m}}/$	$I_{m}/10^{4}\uparrow$		$S_{m}/10^{2} \downarrow$	
FO		1.00 +0.00 0		0.13+0	0.13+0.00 0.		$.46_{\pm 0.00}$		$47.39_{\pm0.16}$		0 0	$.14_{\pm 0.00}$	0.50	+0.01	52	$.13_{\pm 0.96}$	
AFO				$0.16_{\pm 0}$								$.16_{\pm 0.01}$		±0.02	56	$.92_{\pm 1.24}$	
IG				$0.13_{\pm 0}$								0.13 ± 0.00		$0.47_{\pm 0.00}$		$.90_{\pm 0.88}$	
SVS			$1.00_{\pm 0.00}$ 0.13							$1.00_{\pm 0.00}$		$.13_{\pm 0.00}$		±0.01		$.53_{\pm 0.84}$	
DYNAMA	ASK				± 0.00 8.32 ± 0.00					$0.98_{\pm 0.00}$		$.52_{\pm 0.01}$		±0.10		$.88_{\pm 0.70}$	
EXTRMA	SK	1.00	$1.00_{\pm 0.00}$ 0.7		$b_{\pm 0.00}$ $13.25_{\pm 0.00}$		$\frac{9.55}{0.07}$			$\frac{1.00_{\pm 0.00}}{1.00}$		$.70_{\pm 0.04}$	$10.40_{\pm 0.54}$		$32.81_{\pm 0.88}$		
CONTRA	CONTRALSP		±0.00	1.00±				0.32 _{±0}				.99 _{±0.00}		$1_{\pm 0.07}$		57 _{±0.20}	
											_			7			
	FC)	Α	FO		IG		SVS	D	ynamask	Ex	trmask	Contr	aLSP		Label	
														\		_	
Group S ₁														1			
	111111			2 111								-		· \			
																_	
														,		_	
Group S_1 .												_				_	
	200	27.22.12			21.50		71 V		*******			=				_	
																_	
Group S ₂															_		
Group 32											=		_		=		
											=			=	=		
	1 1 2000												\ —	_ /	-		
Group S ₂													\	/			
			100	PACKAGE AND						ARABOTE .	1.0			= /			

2. Black-box Classification

Table 2: Performance on Switch Feature and State data.

		SWITCH	I-FEATURE		STATE				
Метнор	AUP↑	AUR ↑	$I_{m}/10^{4}\uparrow$	$S_{m}/10^{3} \downarrow$	AUP↑	AUR ↑	$I_{m}/10^{4}\uparrow$	$S_{m}/10^{3} \downarrow$	
FO	$0.89_{\pm 0.03}$	$0.37_{\pm 0.02}$	$1.86_{\pm0.14}$	$15.60_{\pm0.28}$	$0.90_{\pm 0.05}$	$0.30_{\pm 0.01}$	$2.73_{\pm 0.15}$	$28.07_{\pm 0.54}$	
AFO	$0.82_{\pm 0.06}$	$0.41_{\pm 0.02}$	$2.00_{\pm 0.14}$	$17.32_{\pm 0.29}$	$0.84_{\pm 0.08}$	$0.36_{\pm 0.03}$	$3.16_{\pm 0.27}$	$34.03_{\pm 1.10}$	
IG	$0.91_{\pm 0.02}$	$0.44_{\pm 0.03}$	$2.21_{\pm 0.17}$	$16.87_{\pm 0.52}$	$0.93_{\pm 0.02}$	$0.34_{\pm 0.03}$	$3.17_{\pm 0.28}$	$30.19_{\pm 1.22}$	
GRADSHAP	$0.88_{\pm 0.02}$	$0.38_{\pm 0.02}$	$1.92_{\pm 0.13}$	$15.85_{\pm0.40}$	$0.88_{\pm 0.06}$	$0.30_{\pm 0.02}$	$2.76_{\pm 0.20}$	$28.18_{\pm 0.96}$	
DEEPLIFT	$0.91_{\pm 0.02}$	$0.44_{\pm 0.02}$	$2.23_{\pm 0.16}$	$16.86_{\pm0.52}$	$0.93_{\pm 0.02}$	$0.35_{\pm 0.03}$	$3.20_{\pm 0.27}$	$30.21_{\pm 1.19}$	
LIME	$0.94_{\pm 0.02}$	$0.40_{\pm 0.02}$	$2.01_{\pm 0.13}$	$16.09_{\pm 0.58}$	$0.95_{\pm 0.02}$	$0.32_{\pm 0.03}$	$2.94_{\pm 0.26}$	$28.55_{\pm 1.53}$	
FIT	$0.48_{\pm 0.03}$	$0.43_{\pm 0.02}$	$1.99_{\pm 0.11}$	$17.16_{\pm 0.50}$	$0.45_{\pm 0.02}$	$0.59_{\pm 0.02}$	$7.92_{\pm 0.40}$	$33.59_{\pm0.17}$	
RETAIN	$0.93_{\pm 0.01}$	$0.33_{\pm 0.04}$	$1.54_{\pm 0.20}$	$15.08_{\pm 1.13}$	$0.52_{\pm 0.16}$	$0.21_{\pm 0.02}$	$1.56_{\pm 0.24}$	$25.01_{\pm 0.57}$	
DYNAMASK	$0.35_{\pm 0.00}$	$0.77_{\pm 0.02}$	$5.22_{\pm 0.26}$	$12.85_{\pm 0.53}$	$0.36_{\pm 0.01}$	$0.79_{\pm 0.01}$	$10.59_{\pm0.20}$	$25.11_{\pm 0.40}$	
EXTRMASK	$0.97_{\pm 0.01}$	$0.65_{\pm 0.05}$	$8.45_{\pm 0.51}$	$6.90_{\pm 1.44}$	$0.87_{\pm 0.01}$	$0.77_{\pm 0.01}$	$\underline{29.71}_{\pm 1.39}$	$\frac{7.54}{\pm 0.46}$	
CONTRALSP	0.98 ±0.00	$0.80_{\pm 0.03}$	$24.23_{\pm 1.27}$	$0.91_{\pm 0.26}$	$0.90_{\pm 0.03}$	$0.81_{\pm 0.01}$	$50.09_{\pm 0.78}$	0.50 _{±0.05}	

Synthetic Experiments (with label)

> Counterfactual information

Distribution analysis of perturbations

Table 12: Difference between the distribution of different perturbations and the original distribution.

	RAI	RE-TIME	RARE-OBSERVATION			
PERTURBATION TYPE	KDE-score ↑	KL-divergence \downarrow	KDE-score ↑	KL-divergence \downarrow		
ZERO PERTURBATION	-25.242	0.0523	-23.377	0.0421		
MEAN PERTURBATION	-30.805	0.0731	-26.421	0.0589		
EXTRMASK PERTURBATION	-22.532	0.0219	-19.102	0.0104		
CONTRALSP PERTURBATION	-23.290	0.0393	-22.732	0.0386		

Real-world Experiments (without label)

3. MIMIC-III Mortality Data

Closing Remarks

- ➤ We propose ContraLSP as a time series explainer, which incorporates counterfactual samples to build uninformative in-domain perturbation.
- ➤ We incorporate sample-specific sparse gates to generate more binaryskewed and smooth masks.
- The code is available at https://github.com/zichuan-liu/ContraLSP.

Thanks for your listening!