CS M148 -

## **Data Science Fundamentals**

Lecture #2: Data Collection & Bias

Baharan Mirzasoleiman UCLA Computer Science

# **Survey Results**

#### Which year you're at? 134 responses





#### Why are you taking this course? 134 responses



I'd like to become a data scientist
 I'm just interested in the materials
 I'm just curious, I may drop the course

How much math are you comfortable with? 133 responses



Very comfortable
 I know some statistics
 I know some linear algebra
 I know some probability
 I don't have a good background in math







#### The Potential of Data Science

#### **Disease Diagnosis**



Detecting malaria from blood smears

#### **Drug Discovery**



Quickly discovering new drugs for COVID

#### **Urban Planning**



Predicting and planning for resource needs

Agriculture



Precision agriculture

#### The Potential of Data Science



Some DS models for evaluating job applications show bias in favor of male candidate





Risk models used in US courts have shown to be biased against non-white defendants

### What?

#### **The Data Science Process**

Ask an interesting question



Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

Creating a well-defined problem statement is the first and critical step in data science.

A brief description of the problem that you are going to solve



Most of the times, these initial set of problems shared with you is vague and ambiguous.



You have to make the problem statement clear, goal-oriented and measurable, by asking the right set of questions.

- Are you satisfied with marketing strategies?
- What are the marketing strategies used by you?

Problem statement: What makes email marketing successful

compared to other techniques?



### Which club will win the EPL?



### What?

#### **The Data Science Process**



#### **Data Collection**

Way of directly measuring variables and gathering information, allow you to gain first-hand knowledge and original insights into your research problem



#### **Data Collection**

- Primary: When you have a unique problem and no related research is done on the subject.
- Secondary: use the data which is readily available or collected by someone else



Surveys, interviews, observations, etc.



### Surveys: collect data by asking people directly

- Ask people to fill out questionnaire themselves
  - More common in quantitative research
  - Include closed questions with multiple-choice answers or rating scales
  - Collect consistent data and analyze the responses statistically
- Conduct interview where you ask questions and record the answers
  - More common in qualitative research
  - Allow participants to answer in their own words
  - You can ask follow up questions and explore ideas in more depth
  - However, it's more time-consuming and usually involves a smaller group of participants

### Observations: collect data unobtrusively

- Quantitative observations: systematically measuring or counting specific events, behaviors, etc.
  - You need to define the categories and criteria of your observation in advanced
- Qualitative observations: taking detailed notes and writing rich description of what is observed
  - You don't need to decide in advanced how to categorize your observations

In theory, observations allow you to collect data on how people really behave (and not what they just say they do)

But being observed may make people behave differently!

#### Data collection methods in other fields:

- Media and communication: a sample of text to be analyzed (e.g. speech, article, social media post)
- Psychology: technologies to measure things like attention or reaction time
- Education: tests or assignments to collect data about knowledge and skills
- Physical science: scientific instruments to measure e.g. weight or blood pressure

### **Secondary Data Collection**



### Secondary Data Collection

Instead of collecting your own data, you can use secondary data that is already collected

- Datasets from government surveys or previous studies
- Can be found on open-source websites such as Kaggle, Gapminder, news articles, government census, magazines, etc.
- Gives you access to much larger data
- However, you don't have any control over which variables to measurement or how to measure them. So, the conclusions you can draw might be limited

Steps you will take to gather data that is consistent, accurate, and unbiased

### Consider these questions:

- How will you define and measure your variables?
- How will you ensure your measurements are reliable and valid?
- How will you select and contact your sample?

Step 1: precisely define your variables and decide exactly how you'll measure them

- Some variables like height or age are easy to measure
- But often you'll deal with more abstract concepts like satisfaction, anxiety, or competence

Step 2 (operationalization): turning these fuzzy ideas into measurable indicators

- If you're using observations, which evens or actions will you count?
- If you're using surveys, which questions will you ask and what range of responses you offer?





You should also consider the validity and reliability of your measurements

Reliability: consistently reproducible results

Validity: actually measuring the concept you're interested in

## Reliability + Validity

- Measurement materials should be thoroughly researched and carefully designed
- All steps should be carried out in the same way for each participant

If you're developing a new instrument to measure a specific concept, run a pilot study to check its validity and reliability in advanced



### How will you chose your participants?

### Step 3: Choosing a sample

- How many participants do you need for an adequate sample size?
- What criteria will you use to identify eligible participants?
- How will you contact your sample?

### How will you chose your participants?

Population: the entire group that you want to make conclusion about Sample: smaller group of individuals you'll collect the data from



### **Population**

### Example:

- studying the effectiveness of online teaching in the US
  - Very difficult to get a representative sample!
- 9-th grade students in low-income areas on NY
  - Narrower population, more manageable!



### Sample

Two main approaches to select a sample:

| Non-probability sampling                      |
|-----------------------------------------------|
| Sample is selected in a<br>non-random way     |
| Used in qualitative and quantitative research |
|                                               |

The sampling method affects how confidently you can generalize your results to the population

### **Probability Sampling Methods**

Probability sampling helps ensure that your sample is representative and unbiased

You can use statistics to draw strong conclusions about the whole



### Sampling methods

- 1. Simple random sample
- 2. Systematic sample
- 3. Stratified sample
- 4. Cluster sample

### Sampling methods

Simple random sampling: Select a sample completely at random from the whole population



### Sampling methods

Stratified sampling: divide the population into subgroups, and draw a random sample from each subgroup



### Sampling methods

Cluster sampling: divide the population into clusters (e.g. geographical areas), and randomly select some of these cluster for your sample



### Probability sampling

Probability sampling requires that you have a list of all potential subjects or clusters in the population

 Difficult to achieve in practice, unless you're dealing with a very small and accessible population

Example: 9-th grade students in low-income areas of NY

 Cluster sample: compile a list of all schools in lowincome areas of NY and use a random number generator to select a sample of schools to collect data from



Schools in NY low-income areas

- 1. School Big Apple
- 2. Gotham middle school
- 3. Empire city middle school
- 4. NYC college
- 5. Melting pot middle school
- 6. Metropolis college
- 7. School Neon and Chrome

### Non-probability sampling

Non-probability samples are much easier to achieve, but they have more risk of bias

- If you chose a sample based on the most convenient and accessible member of the population, or
- If you rely on volunteers for your study





### Non-probability sampling

Non-probability samples are much easier to achieve, but they have more risk of bias

- If you chose a sample based on the most convenient and accessible member of the population, or
- If you rely on volunteers for your study

Your sample might differ in systematic ways from the population as a whole

Example: high-academic achievers might be more likely to volunteer to take part in an online teaching study than general students

Results will be biased towards students that have higher grades

#### **Data Collection Bias**

For practical reasons, many studies rely on convenience samples

- It's important to be aware of the limitations and carefully consider potential biases!
- Always make an effort to gather a sample that's as representative as possible of the population

#### **Data Collection Bias**



https://www.youtube.com/watch?v=NJJdObWszAA

#### **Selection Bias**

- Voluntary bias
- Under-coverage bias
- Non-response bias
- Convenience bias
- Response bias
- Over-coverage bias

## Missing bullet holes (WWII)

During WWII, the Navy tried to determine where they needed to armor their aircraft to ensure they came back home. They ran an analysis of where planes had been shot up, and came up with this.

Any issue?



# Longevity Study from Lombard (1825)

| Profession | Average Longevity |
|------------|-------------------|
|            |                   |
|            |                   |
|            |                   |
|            |                   |
|            |                   |

Sources: Lombard (1835), Wainer (1999), Stigler (2002)

"About 10 percent of the 1.6 million inmates in America's prisons are serving life sentences; another 11 percent are serving over 20 years."

source: http://www.nytimes.com/2012/02/26/health/dealing-with-dementia-among-aging-criminals.html? pagewanted=all

# Length-biasing Paradox

How would you measure the average prison sentence?



#### Bias in Data & Al



https://www.youtube.com/watch?v=gV0\_raKR2UQ

#### What?

#### **The Data Science Process**

Ask an interesting question

Get the Data

Clean/Explore the Data



Model the Data

Communicate/Visualize the Results

# Clean/explore the Data

#### Which club will win the EPL?



# Sample Data

| Player Name               | Age | Club        | Height | Weight | Foot  | Joined       |              |
|---------------------------|-----|-------------|--------|--------|-------|--------------|--------------|
| Pierre-Emerick Aubameyang | 29  | Arsenal     | 6'2"   | 176lbs | Right | Jan 31, 2018 |              |
| Alexandre Lacazette       | 27  | Arsenal     | 5'9"   | 161lbs | Right | Jul 5, 2017  |              |
| Bernd Leno                |     | Arsenal     | 6'3"   | 183lbs | Right | Jul 1, 2018  |              |
| Henrikh Mkhitaryan        | 29  | Arsenal     | 5'10"  | 165lbs | Right | Jan 22, 2018 | Quantitative |
| Granit Xhaka              | 25  | Arsenal     | 6'1"   | 181lbs | Left  | Jul 1, 2016  | Data         |
| Shkodran Mustafi          | 26  | Arsenal     | 6.0.   | 181ibs | Right | Aug 30, 2016 |              |
| Jack Grealish             | 22  | Aston Villa | 5'9"   | 150lbs | Right | Mar 1, 2012  |              |
| John McGinn               | 23  | Aston Villa | 5'10°  | 150lbs | Left  | Aug 8, 2018  | Qualitative  |
| Anwar El Ghazi            | 23  | Aston Villa | 6'2"   | 550lbs | Right | Jan 31, 2017 | Data         |
| Conor Hourihane           | 27  | Aston Villa | 5'11"  | 137ibs | Left  | Jan 26, 2017 |              |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |              |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |              |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |              |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |              |
| Jonathan Kodjia           | 2   | Aston Villa | 6'2"   | 170lbs | Right | Aug 30, 2016 |              |
| Callum Wilson             | 26  |             | 5'11"  | 146lbs | Right | Jul 4, 2014  |              |

# **Always Sanity Check First**

If you start the analysis without ensuring data quality then you might get unexpected results such as the Crystal Palace club will win the next EPL



## Bad quality data can give misleading information

However, your domain knowledge on EPL says that the result looks inaccurate as Crystal Palace has never even finished in the top 4.



## Importance of Good Quality Data

a professional data scientist spends approximately 60% of his time ensuring that data is of high quality



# Factors Causing Data Quality Issue

Improper data collection

| Company | Employee Name | Age | Time Spent (hours) |
|---------|---------------|-----|--------------------|
| Apple   | John S.       | 23  | 100                |
| Apple   | Evan B.       | 27  | 8                  |
| Apple   | Emily B.      | 31  | 12                 |
| Google  | Ava W.        |     | 7                  |
| Google  | Noah A.       | 34  | 9                  |



# Factors Causing Data Quality Issue

• Improper data integration

| Player Name   | Team    | Weight (lbs.) |
|---------------|---------|---------------|
| P. Bardsley   | Chelsea | 150           |
| D. McNeil     | Chelsea | 198           |
| Adam Legzdins | Chelsea | 170           |
| Dan Agyei     | Chelsea | 168           |
| David Luiz    | Chelsea | 192           |

Source: X (in lbs.)

| Player Name      | Team    | Weight (kgs.) |
|------------------|---------|---------------|
| Jamal Blackman   | Chelsea | 72            |
| Ethan Ampadu     | Chelsea | 68            |
| Billy Gilmour    | Chelsea | 73            |
| lke Ugbo         | Chelsea | 64.5          |
| George McEachran | Chelsea | 75            |

Source: Y (in kgs.)

## **Data Quality Issues**

Some issues are difficult to spot. For example, can you spot what is wrong in this data set? If you follow EPL, then there is no club with the name of Real Madrid in EPL

| Player Name       | Age | Club        | Height | Weight | Foot  | Joined       |
|-------------------|-----|-------------|--------|--------|-------|--------------|
| Eden Hazard       | 27  | Chelsea     | 5'6"   | 159lbs | Right | Jul 16, 2016 |
| N'Golo Kanté      | 28  | Chelsea     | 5'10"  | 168lbs | Right | Aug 24, 2012 |
| César Azpilicueta | 23  | Chelsea     | 6'1"   | 187lbs | Right | Aug 8, 2018  |
| Kepa Arrizabalaga | 29  | Chelsea     | 5'9"   | 172lbs | Right | Aug 28, 2013 |
| Willian           | 31  | Chelsea     | 6'2"   | 190lbs | Right | Aug 31, 2016 |
| David Luiz        | 27  | Chelsea     | 6'2"   | 192lbs | Left  | Aug 31, 2016 |
| Ferland Mendy     | 23  | Real Madrid | 5'9"   | 161lbs | Left  | Jun 8, 1995  |

Requires domain knowledge

# Data Quality Issues (example from last lecture)

Question

Does age affect one's market value?

| name                                        | club       | age | position | market value        |
|---------------------------------------------|------------|-----|----------|---------------------|
| Alexis Sanchez                              | Arsenal    | 28  | LW       | 65                  |
| Mesut Ozil                                  | Arsenal    | 28  | AM       | 50                  |
|                                             |            |     | GK       | 7                   |
| Credible/Tru                                | ustworthy? |     | RW       | 20                  |
| <ul> <li>Possibly submarket valu</li> </ul> |            |     | СВ       | 22                  |
| • Sampled da                                | ita        |     | from w   | ww.transfermarkt.us |

# Data Quality Issues (example from last lecture)

Question

|       | age       | page_views  | fpl_value | fpl_points | market_value |
|-------|-----------|-------------|-----------|------------|--------------|
| count | 461.0000  | This see    | ems abno  | ormally lo | w. Is it     |
| mean  | 26.8047   |             |           | ho is this |              |
| std   | 3.961892  | 931.603737  | 1.340093  | 55,115611  | 25/403       |
| min   | 17.000000 | 3.000000    | 4.000000  | 0.000000   | 0.050000     |
| 25%   | 24.000000 | 220.000000  | 4.500000  | 5.000000   | 3.000000     |
| 50%   | 27.000000 | 460.000000  | 5.000000  | 51.000000  | 7.000000     |
| 75%   | 30.000000 | 896.000000  | 5.500000  | 94.000000  | 15.000000    |
| max   | 38.000000 | 7664.000000 | 12.500000 | 264.000000 | 75.000000    |

Are the values reasonable? DataFrame.describe() ...

## Data Quality Issues (example from last lecture)



Are the values reasonable? DataFrame.describe() ...

#### Inspecting suspicious data

This accounts for both extreme values that we noticed. But, is this data truly accurate? It's worth validating online, elsewhere.

```
import pandas as pd
df = pd.read_csv("epl.csv")
df.iloc[df['market value'].idxmin()]
```

```
Eduardo Carvalho
name
club
                          Chelsea
                                34
age
position
                               T.W
position cat
market value
                             0.05
page views
                              467
fpl value
fpl sel
                            0.10%
fpl points
region
nationality
                         Portugal
new foreign
age cat
club id
big club
new signing
Name: 109, dtype: object
```



from www.transfermarkt.us

## Domain Knowledge

As a data scientist, you should develop a good understanding of the domain, and the problem you are solving.



### Domain Knowledge



"The CPS counts students living in dormitories as living in their parents' home."

- Census Bureau, http://www.census.gov/prod/2013pubs/p20-570.pdf

## **Data Quality Issues**

The common data quality issues that are easy to spot are missing values, duplicate values, and inconsistent data.

| Player Name               | Age | Club        | Height | Weight | Foot  | Joined       |
|---------------------------|-----|-------------|--------|--------|-------|--------------|
| Pierre-Emerick Aubameyang | 29  | Arsenal     | 6'2"   | 176lbs | Right | Jan 31, 2018 |
| Alexandre Lacazette       | 27  | Arsenal     | 5'9"   | 161lbs | Right | Jul 5, 2017  |
| Bernd Leno                |     | Arsenal     | 6.3    | 183lbs | Right | Jul 1, 2018  |
| Henrikh Mkhitaryan        | 29  | Arsenal     | 5"10"  | 165lbs | Right | Jan 22, 2018 |
| Granit Xhaka              | 25  | Arsenal     | 6'1"   | 181lbs | Left  | Jul 1, 2016  |
| Shkodran Mustafi          | 26  | Arsenal     | 6.0.   | 181lbs | Right | Aug 30, 2016 |
| Jack Grealish             | 22  | Aston Villa | 5'9"   | 150lbs | Right | Mar 1, 2012  |
| John McGinn               | 23  | Aston Villa | 5'10"  | 150lbs | Left  | Aug 8, 2018  |
| Anwar El Ghazi            | 23  | Aston Villa | 6'2"   | 550lbs | Right | Jan 31, 2017 |
| Conor Hourihane           | 27  | Aston Villa | 5'11"  | 137lbs | Left  | Jan 26, 2017 |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| James Chester             | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| Jonathan Kodjia           | 2   | Aston Villa | 6'2"   | 170lbs | Right | Aug 30, 2016 |
| Callum Wilson             | 26  |             | 5'11"  | 146lbs | Right | Jul 4, 2014  |

## Data Cleaning and exploration



## **Explore and Ensure Data Quality**

- Ensure your data is as expected/valid/appropriate for the task
- Provides insights into a dataset
- Extract/determine important variables/attributes/features
- Detect outliers and anomalies
- Test underlying assumptions
- Make informed decisions in developing models

#### How to Fix Data Quality Issues?

Once you identify the inaccurate and missing data, you can use the alternate source of data, if available.



#### Data quality remediation

A simple approach is to remove the inaccurate data

- Can work well if you have a few inaccurate data points.
- But, if there are many records with data quality problems, then this approach can reduce the data size, resulting in a poor analysis.

| Player Name                | Age | Club        | Height | Weight | Foot  | Joined       |
|----------------------------|-----|-------------|--------|--------|-------|--------------|
| Pierre-Emerick Aubarneyang | 29  | Arsenal     | 6'2"   | 176lbs | Right | Jan 31, 2018 |
| Alexandre Lacazette        | 27  | Arsenal     | 5'9"   | 161lbs | Right | Jul 5, 2017  |
| Bernd Leno                 |     | Arpenal     | 6'3"   | 183lbs | Right | Jul 1, 2018  |
| Henrikh Mkhitaryan         | 29  | Arsenal     | 5'10"  | 165lbs | Right | Jan 22, 2018 |
| Granit Xhaka               | 25  | Arsenal     | 6"1"   | 181lbs | Left  | Jul 1, 2016  |
| Shkodran Mustafi           | 26  | Arsenal     | 6.0.   | 181lbs | Right | Aug 30, 2016 |
| Jack Grealish              | 22  | Aston Villa | 5'9"   | 150lbs | Right | Mar 1, 2012  |
| John McGinn                | 23  | Aston Villa | 5'10"  | 150lbs | Left  | Aug 8, 2018  |
| Anwar El Ghazi             | 23  | Aston Villa | 6'2"   | 550lbs | Right | Jan 31, 2017 |
| Conor Hourihane            | 27  | Aston Villa | 5'11°  | 137lbs | Left  | Jan 26, 2017 |
| James Chester              | 29  | Aston Villa | 5:11"  | 174lbs |       | Aug 12, 2016 |
| James Chester              | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| James Chester              | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| James Chester              | 29  | Aston Villa | 5'11"  | 174lbs |       | Aug 12, 2016 |
| Jonathan Kodjia            | 2   | Aston Wila  | 62"    | 170lbs | Right | Aug 30, 2016 |
| Callum Wilson              | 26  |             | 5 11"  | 146lbs | Right | Jul 4, 2014  |

#### Data quality remediation

A better approach, would be to impute the incorrect or missing values.

• The mean, mode, and the median of attributes, can be used for this.



### Data quality remediation

Another approach, is to estimate the missing weight, based on the player whose height and age is similar to Joe Hart.

Not all values can be estimated from the values of other attributes.

| Player Name    | Age | Club    | Height | Weight |
|----------------|-----|---------|--------|--------|
| Joe Hart       | 30  | Burnley | 5'9"   | 171lbs |
| Steven Defour  | 26  | Burnley | 6'2"   | 203lbs |
| Chris Wood     | 28  | Burnley | 6'1"   | 185lbs |
| Ashley Barnes  | 29  | Burnley | 5'11"  | 172lbs |
| Matthew Lowton | 30  | Burnley | 5'9"   | 171lbs |
| Robert Brady   | 24  | Burnley | 6'1"   | 154lbs |
| Charlie Taylor | 26  | Burnley | 6'0"   | 185lbs |

 the remediation approach depends, on the type of data, and the domain understanding of the data.

- Explore **global** properties: use histograms, scatter plots, and aggregation functions to summarize the data
- Explore group properties: group like-items together to compare subsets of the data (are the comparison results reasonable/expected?)
- This approach can be done at any time and any stage of the data science process

| name              | club    | age | position | market value |
|-------------------|---------|-----|----------|--------------|
| Alexis Sanchez    | Arsenal | 28  | LW       | 65           |
| Mesut Ozil        | Arsenal | 28  | AM       | 50           |
| Petr Cech         | Arsenal | 35  | GK       | 7            |
| Theo Walcott      | Arsenal | 28  | RW       | 20           |
| Laurent Koscielny | Arsenal | 31  | СВ       | 22           |

Are the values reasonable? DataFrame.describe() ...

|       | age        | page_views  | fpl_value  | fpl_points | market_value |
|-------|------------|-------------|------------|------------|--------------|
| count | 461.000000 | 461.000000  | 461.000000 | 461.000000 | 461.000000   |
| mean  | 26.804772  | 763.776573  | 5.447939   | 57.314534  | 11.012039    |
| std   | 3.961892   | 931.805757  | 1.346695   | 53.113811  | 12.257403    |
| min   | 17.000000  | 3.000000    | 4.000000   | 0.000000   | 0.050000     |
| 25%   | 24.000000  | 220.000000  | 4.500000   | 5.000000   | 3.000000     |
| 50%   | 27.000000  | 460.000000  | 5.000000   | 51.000000  | 7.000000     |
| 75%   | 30.000000  | 896.000000  | 5.500000   | 94.000000  | 15.000000    |
| max   | 38.000000  | 7664.000000 | 12.500000  | 264.000000 | 75.000000    |

Are the values reasonable? DataFrame.describe() ...



|       | age        | page_views  | fpl_value  | fpl_points | market_value |
|-------|------------|-------------|------------|------------|--------------|
| count | 461.000000 | 461.000000  | 461.000000 | 461.000000 | 461.000000   |
| mean  | 26.804772  | 763.776573  | 5.447939   | 57.314534  | 11.012039    |
| std   | 3.961892   | 931.805757  | 1.346695   | 53.113811  | 12.257403    |
| min   | 17.000000  | 3.000000    | 4.000000   | 0.000000   | 0.050000     |
| 25%   | 24.000000  | 220.000000  | 4.500000   | 5.000000   | 3.000000     |
| 50%   | 27.000000  | 460.000000  | 5.000000   | 51.000000  | 7.000000     |
| 75%   | 30.000000  | 896.000000  | 5.500000   | 94.000000  | 15.000000    |
| max   | 38.000000  | 7664.000000 | 12.500000  | 264.000000 | 75.000000    |

Summary statistics can only reveal so much

#### **Visualization**

#### Anscombe's Quartet

Each dataset has the same summary statistics (mean, standard deviation, correlation), and the datasets are clearly different, and visually distinct.



Same stats do not imply same graphs

#### W Unstructured Quartet

Each dataset here also has the same summary statistics, However, they are not clearly different or visually distinct.



Same graphs do not imply same stats

#### Visualization

Visualization is incredibly important, both for EDA and for communicating your results to others.

Visualization packages will be used throughout the semester.









Club 84

# Ready to Model the Data!

#### The Data Science Process

Ask an interesting question

Get the Data

Clean/Explore the Data

Model the Data

Communicate/Visualize the Results

