ICT303 – Advanced Machine Learning and Artificial Intelligence

Topic 2: Linear Neural Networks

Hamid Laga H.Laga@murdoch.edu.au

Office: 245.1.020

How to Get in Touch with the Teaching Team

- Internal and External Students
 - Email: H.Laga@murdoch.edu.au.
- Important
 - In any communication, please make sure that you
 - Start the subject of your email with ICT303
 - Include your student ID, name, and the lab slot in which you are enrolled.
 - We will do all our best to answer your queries within 24 hrs.

In this Lecture

Linear Neural Networks

- Linear Regression
- Motivating examples
- What is a LNN
- Loss functions
- Training as optimization
 - Closed-form formula
 - Gradient descent algorithm
 - Mini-batch stochastic gradient descent (SGD)
- Summary

Learning objectives

- Understand the basic components of a machine learning model
- Understand Linear regression and formulate it using artificial neurons
- Implement linear regression using Python, NumPy and PyTorch

Additional readings

 Chapter 3 of the textbook, available at: https://d2l.ai/chapter_linearregression/linear-regression.html

Regression Problems

 Regression is the task of predicting a numerical value from an input

Common Examples

- Predicting future (home, stock) prices
- Predicting length of stay of a patient in hospital following an intervention
- Forecasting demand (for a specific product)

Regression model

 A function that has input (parameters) and returns the predicted value based on the observed parameters

- Assumption 1 Factors impacting the prices (Input)
 - No. of bedrooms \rightarrow variable x_1
 - Living area (in sqm) \rightarrow variable x_2
 - Total area (in sqm) \rightarrow variable x_3

Assumption 1 – Factors impacting the prices (Input)

- No. of bedrooms \rightarrow variable x_1
- Living area (in sqm) \rightarrow variable x_2
- Total area (in sqm) \rightarrow variable x_3

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^{\mathsf{T}}$$

- Assumption 1 Factors impacting the prices (Input)
 - No. of bedrooms \rightarrow variable x_1
 - Living area (in sqm) \rightarrow variable x_2
 - Total area (in sqm) \rightarrow variable x_3

This makes 3 variables (x_1, x_2, x_3) , which we can write as a column vector:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^{\mathsf{T}}$$

$$y = w_1x_1 + w_2x_2 + w_3x_3 + b$$
Weights Bias

- Assumption 1 Factors impacting the prices (Input)
 - No. of bedrooms \rightarrow variable x_1
 - Living area (in sqm) \rightarrow variable x_2
 - Total area (in sqm) \rightarrow variable x_3

This makes 3 variables (x_1, x_2, x_3) , which we can write as a column vector:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^{\mathsf{T}}$$

- Assumption 1 Factors impacting the prices (Input)
 - No. of bedrooms \rightarrow variable x_1
 - Living area (in sqm) \rightarrow variable x_2
 - Total area (in sqm) \rightarrow variable x_3

This makes 3 variables (x_1, x_2, x_3) , which we can write as a column vector:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^{\mathsf{T}}$$

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b \Rightarrow y = \begin{bmatrix} w_1 & w_2 & w_3 & b \\ & & & \\ &$$

- Assumption 1 Factors impacting the prices (Input)
 - No. of bedrooms \rightarrow variable x_1
 - Living area (in sqm) \rightarrow variable x_2
 - Total area (in sqm) \rightarrow variable x_3

This makes 3 variables (x_1, x_2, x_3) , which we can write as a column vector:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^\mathsf{T}$$

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b \Rightarrow y = \begin{bmatrix} w_1 & w_2 & w_3 & b \\ & & & & \\ & & & \\ & &$$

- Assumption 1 Factors impacting the prices (Input)
 - No. of bedrooms \rightarrow variable x_1
 - Living area (in sqm) \rightarrow variable x_2
 - Total area (in sqm) \rightarrow variable x_3

This makes 3 variables (x_1, x_2, x_3) , which we can write as a column vector:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^{\mathsf{T}}$$

Linear Regression Model – General Formulation

Given n-dimensional input

$$\mathbf{x} = [x_1, x_2, \dots, x_n]^T$$

 The linear regression model has ndimensional weights and a bias

$$\mathbf{w} = [w_1, w_2, ..., w_n]^T, b$$

Its output is a weighted sum of the inputs

$$y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

Vectorized version

$$y = W^T X = X^T W = \langle W, X \rangle = \langle X, W \rangle$$

Linear Regression Model – General Formulation

Given n-dimensional input

$$\mathbf{x} = [x_1, x_2, \dots, x_n]^T$$

 The linear regression model has ndimensional weights and a bias

$$\mathbf{w} = [w_1, w_2, ..., w_n]^T, b$$

Its output is a weighted sum of the inputs

$$y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

Vectorized version

$$y = W^T X = X^T W = \langle W, X \rangle = \langle X, W \rangle$$

Single layer Neural Network

Input Layer

We can stack multiple layers to get deep neural networks

Neural Networks Derived from Neuroscience

• The real neuron

https://deeplearning.cs.cmu.edu/S22/index.html

Neural Networks Derived from Neuroscience

The real neuron

https://deeplearning.cs.cmu.edu/S22/index.html

The artificial neuron

Neural Networks Derived from Neuroscience

The real neuron

https://deeplearning.cs.cmu.edu/S22/index.html

The artificial neuron

For linear neurons

$$y = f(X; W) = \langle W, X \rangle$$

Problem

- We know the model, which defines the relation between the input and output

$$y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$
$$y = \langle W, X \rangle$$

 We, however, do not know the parameters or weights of the model

$$\mathbf{w} = [w_1, w_2, ..., w_n]^T, \quad b$$

Problem

- We know the model, which defines the relation between the input and output

$$y = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$
$$y = \langle W, X \rangle$$

Training (or learning)

The process of finding the best values for weights w₁, w₂, ..., w_n and bias b from examples of input and their corresponding correct output

- We, however, do not know the parameters or weights of the model

$$\mathbf{w} = [w_1, w_2, \dots, w_n]^T, \quad b$$

• Step 1 – Collect training data, each sample is composed of

	No. Bedrooms x1	Land area	Living area x3	Sale price y
House 1	3	500	110	55000
House 2	2	350	80	45000
House 3	4	650	120	75000
•••				
•••				
House n	3	400	102	52000

Input

$$\mathbf{X}_0 = [3, 500, 110, 1]^T,$$

$$\mathbf{X}_1 = [2, 350, 80, 1]^T,$$

$$\mathbf{X}_2 = [4, 650, 120, 1]^T,$$

...

$$\mathbf{X}_n = [3, 400, 102, 1]^T$$

Desired output

$$y_0 = 55,000$$

$$y_1 = 45,000$$

$$y_2 = 75,000$$

$$y_n = 52,000$$

Step 2 – Training

- Find **W** (which includes the weights and the bias **b**) so that when any of the training samples is fed to the model, it will produce a solution that is as close as possible to the ground-truth (desired) output
- We need a measure of closeness it is called the loss function

We need a measure of closeness

- It is called training loss function, e.g., the difference between the output produced by the model and the desired output
- Examples of loss functions: the L2 loss

We need a measure of closeness

- It is called training loss function, e.g., the difference between the output produced by the model and the desired output
- Examples of loss functions: the L2 loss

$$L(X,y,W) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \langle X_i, W \rangle)^2$$
 Output of the model Desired output

- The optimal weights

$$W^* = \underset{W}{\operatorname{argmin}} \{L(X, y, W)\} = \underset{W}{\operatorname{argmin}} \{\frac{1}{n} \sum_{i=1}^{n} (y_i - \langle X_i, W \rangle)^2\}$$

In the case, of linear regression

Desired output
$$y_0 = 55,000$$

$$y_1 = 45,000$$

$$y_2 = 75,000$$

$$y_n = 52,000$$

- In the case, of linear regression
 - It is the process of estimating W such that

$$X^TW = Y$$

- X is a matrix where each column corresponds to an input sample X_i
- Y is a column vector where the i-th element y_i is the desired (groundtruth) output for X_i
- The solution has a closed-form (see proof in the supplementary slides as well as the textbook)

Algorithm

- Collect the input training data (as column vectors) and stack them into a X
 - Each column of X is one input vector. The last element of each column is value 1
- Collect the desired output for each of the input and put them all into a vector Y
- The optimal weights, i.e., the weights that minimize the loss function are given by the following equation:

$$\mathbf{W}^* = \left(\mathbf{X}\mathbf{X}^{\mathrm{T}}\right)^{-1}\mathbf{X}\mathbf{Y}$$

Training in general

Linear regression

The general case

Training in general

Linear regression

The general case

The solution has no analytical form

Training in general

Linear regression

The general case

The solution has no analytical form

In general, Training is an Optimization Process

- You are given a loss function that depends on many parameters (variables)
 - Find the values of the variables for which the function takes the minimal value
- When the function is simple, e.g., linear regression model
 - The solution has a closed-form formula
- Often, we are dealing with complex functions
 - Need to find the optimal solution using a numerical algorithm

Optimization – The Gradient Descent Algorithm

- Iteratively reduce the error by updating the parameters in the direction that lowers the loss function
 - Choose initial values w0 for the weights (e.g., at random)
 - Repeat (for t = 1, 2, ...)
 - Evaluate the Gradient of the loss function at \mathbf{w}_{t-1} with respect to the weights
 - This gives a direction the reduces the value of the loss function
 - Update the weights with a fraction of the computed gradient

- Until the change in the weights is insignificant

 \mathbf{w}_0

Optimization - Gradient Descent Algorithm

Choosing the Learning Rate

Small learning rate

Accurate but can be very slow

Large learning rate

Fast, but can lead to incorrect solution

Optimization – Mini-batch Stochastic Gradient Descent (SGD)

- Computing the gradient over the whole training data is too expensive
 - Takes minutes to hours for Deep Neural Network (DNN) models
- Solution: Use Mini-batch Stochastic Gradient Descent (SGD)
 - Partition the training data set into batches, each batch is of size b
 - For i=1 to max number of epochs
 - For every batch
 - Evaluate the Gradient of the loss function with respect to the weights
 - Update the weights with a fraction of the computed gradient
 - At each epoch, the algorithm goes through all the batches, i.e., every training data point is visited once

Optimization – Mini-batch Stochastic Gradient Descent (SGD)

- Computing the gradient over the whole training data is too expensive
 - Takes minutes to hours for Deep Neural Network (DNN) models
- Solution: Use Mini-batch Stochastic Gradient Descent (SGD)
 - Partition the training data set into batches, each batch is of size b
 - For i=1 to max number of epochs
 - For every batch
 - Evaluate the Gradient of the loss function at with respect to the weights
 - Update the weights with a fraction of the computed gradient
 - At each epoch, the algorithm goes through all the batches, i.e., every training data point is visited once
- Choosing the batch size
 - If too small
 - workload is too small, hard to fully utilize the computation resources
 - If too big
 - Memory issue, waste computation (e.g., when all xi are identical)

Summary – Linear Regression

- Problem
 - Estimate a real value from some observations (e.g., how much)
- Model
 - The relation between the output and the input is linear $y=\langle W,X\rangle$
- Training data
 - Examples of input and their corresponding output
- Loss function
 - A measure of discrepancy between the actual output and the desired output

$$L(X, y, W) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \langle X_i, W \rangle)^2$$

- Learning (optimization) algorithm mini-batch Stochastic Gradient Descent
 - Choose a starting point (initialize the values of the weights w and b
 - Repeat
 - Compute gradient
 - Update the parameters
 - Until convergence (the change is insignificant)

This Week's Lab

Implementation

- Naïve implementation
- Concise implementation as a neuron that requires training ...

Next Week

- Classification problems
 - Answer questions such as "which category ...", e.g.,
 - Should I put this email to the inbox or to the "spam folder"?
 - Does the image depict a "dog", a "horse", a "car",
- Non-linear model and Multilayer Perceptron (MLP)

Questions