

Dr. Han Huang

South China University of Technology

Chapter 3. Relations

Relations and Their Properties

Section 3.1

Contents

1 Introduction

2 Function and Relations on A Set

3 Properties of Relations

4 Combining Relations

Example

- ❖ 在一群学生中间,我们可以说,如果两位学生是同一个班的话,那么这两位学生是有关系的。
- ❖ 在一组计算机程序中,我们可以说,假若两个程序共享一 些数据的话,那么这两个程序是有关系的。
- ❖ 在计算机科学中我们会碰到许多关系,如数据库的数据特性关系,计算机语言的字符关系,一种计算语言与这个语言的一个有效语句之间的关系,计算机程序的输入输出关系,一个程序与它所使用的一个变量之间的关系,等等。

Binary Relations

- **Let** A, B be any sets. A binary relation R from A to B, (i.e., with signature $R:A \times B$) can be identified with a subset of $A \times B$.
 - E.g., < can be seen as {(n,m) | n < m}</p>
- $(a,b) \in R$ means that a is related to b (by R)
- Also written as aRb; also R(a,b)
 - E.g., a<b and < (a,b) both mean (a,b)∈ <</p>
- **A** binary relation R corresponds to a characteristic function $P_R:A\times B\to \{T,F\}$

- Let A be the set of students in your school.
- Let B be the set of courses.
- Let R be the relation that consists of the pairs (a, b) where a is a student enrolled in course b.
- ❖(小白, 离散数学)
- ❖(小黄, 离散数学)
- *(小黄, 算法设计)

Example 2

- **♦ Let A={ 0, 1, 2 } and B={ a, b }.**
- ❖Then { (0,a),(0,b),(1,b),(2,a) } is a relation from A to B.

Inverse Relations

Any binary relation R:A×B has an inverse relation R^{-1} : $B \times A$, defined by $R^{-1} : \equiv \{(b,a) \mid (a,b) \in R\}.$ E.g., $<^{-1} = \{(a,b) \mid a < b\}^{-1} = \{(b,a) \mid b > a\} = >.$ ❖ E.g., if R:People x Foods is defined by $a R b \Leftrightarrow a eats b$, then: $b R^{-1} a \Leftrightarrow b \text{ is eaten by a. (Passive)}$ voice.)

Functionality

- **⋄**A relation R: $A \times B$ is functional iff, for every $a \in A$, there is at most one $b \in B$ such that $(a,b) \in R$.
- Say this in predicate logic

Functionality

- **⋄** A relation R: $A \times B$ is functional iff, for every $a \in A$, there is at most one $b \in B$ such that $(a,b) \in R$. $\forall a \in A$: $\neg \exists b_1, b_2 \in B$ $(b_1 \neq b_2 \land aRb_1 \land aRb_2)$.
- If R is functional, then R can be seen as a function or a partial function R: A→B (hence one can write R(a)=b as well as aRb, R(a,b), and (a,b)∈ R. Each of these means the same.)
- **♦ NB** A functional relation $R: A \times B$ does not have to be total (i.e., there may be $a \in A$ such that $\neg \exists b \in B \ (aRb)$).

Functionality

- **❖** Theorem: A relation R is a (total) function $R:A \rightarrow B$ iff it is functional and total (i.e., iff $\forall a \in A$: $\exists b$: aRb.)
- **❖ Definition:** R is anti-functional iff its inverse relation R⁻¹ is functional.
- ❖ (Exercise: Show that iff R is functional and anti-functional, and both it and its inverse are total, then it is a bijective function.)

Relations on a Set

- **❖**A (binary) relation from a set *A* to itself is called a relation *on* the set *A*.
- ❖ E.g., the "<" relation from earlier was defined as a relation on the set N of natural numbers.
- The next few slides: relations on a set A.

Relations on A Set

- **A** relation on the set *A* is a relation from *A* to *A*.
- **❖Let** *A* be the set { 1, 2, 3, 4 }.
- R = { (a, b) | a divides b }
- $R = \{ (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4) \}$

Example 5

◆R1 = { (a, b) | a ≤ b } $R2 = \{ (a, b) | a > b \}$ $R3 = \{ (a, b) | a = b \text{ or } a = -b \}$ $R4 = \{ (a, b) | a = b \}$ $R5 = \{ (a, b) | a = b + 1 \}$ ◆R6 = { (a, b) | a + b ≤ 3} **♦**(1,1) is in R1, R3, R4 and R6 **♦**(2,1) is in R2, R5 and R6

Reflexive

- ❖A relation R on a set A is called reflexive
 if (a, a) ∈R for every element a ∈A.
- $A = \{ 1, 2, 3 \}$
- $R1 = \{(1,1),(1,2),(2,1),(2,2),(3,1)\}$
- $R2 = \{(1,1),(1,2),(2,1)\}$
- $R3 = \{(1,1),(1,2),(2,1),(2,2),(3,3)\}$
- R3 is reflexive, but others are not.

Reflexive

$$R1 = \{ (a, b) | a \le b \}$$
 $R2 = \{ (a, b) | a > b \}$

$$R3 = \{ (a, b) | a = b \text{ or } a = -b \}$$

$$R4 = \{ (a, b) | a = b \}$$

$$R5 = \{ (a, b) | a = b + 1 \}$$

$$R6 = \{ (a, b) | a + b \le 3 \}$$

*R1,R3 and R4 are reflexive.

Reflexivity and relatives

- A relation R on A is reflexive iff ∀a∈A(aRa).
 E.g., the relation ≥ :≡ {(a,b) | a≥b} is reflexive.
 - "divides" is reflexive since a a holds.
- R is irreflexive iff $\forall a \in A(\neg aRa)$
- Note "irreflexive" does NOT mean "not reflexive", which is just $\neg \forall a \in A(aRa)$.
- E.g., if Adore={(j,m),(b,m),(m,b),(j,j)} then this relation is neither reflexive nor irreflexive

Reflexivity and relatives

- Theorem: A relation R is irreflexive iff its complementary relation R is reflexive.
 - Example: < is irreflexive; ≥ is reflexive.</p>
 - Proof: trivial
- Can you think of
 - Reflexive relations
 - Irreflexive relations

Involving numbers, propositions or sets?

Some examples

Reflexive:

=, 'have same cardinality', ⇔

<=, >=, ⇒, <u></u>, etc.

Irreflexive:

<, >, 'have different cardinality', <

Symmetric

- **A** relation R on a set A is called symmetric if $(b,a) \in R$ whenever $(a,b) \in R$, for all $a,b \in A$.
- **♦** A relation R on a set A such that (a,b) ∈ R and (b,a) ∈ R only if a=b for all a,b ∈ A, is called antisymmetric.

"divides" is antisymmetric, for if positive integers a, b with a|b and b|a, then a=b.

Symmetric

- $R1 = \{ (1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4) \}$ $R2 = \{ (1,1), (1,2), (2,1) \}$ $R3 = \{ (1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,3), (3,4), (4,1), (4,4) \}$
- $R4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
- R2 and R3 are symmetric.

(4,1),(4,4)

R4 is antisymmetric.

Symmetric

- •R1 = { (a, b) | a ≤ b }
- $R2 = \{ (a, b) | a > b \}$
- $R3 = \{ (a, b) | a = b \text{ or } a = -b \}$
- $R4 = \{ (a, b) | a = b \}$
- $R5 = \{ (a, b) | a = b + 1 \}$
- $R6 = \{ (a, b) | a + b \le 3 \}$
- R3, R4 and R6 are symmetric.
- R1, R2, R4 and R5 are antisymmetric.

Antisymmetry

- ***** Consider the relation x≤y
- Is it symmetric? No
- ❖Is it asymmetric? No
- Is it reflexive? Yes
- Is it irreflexive? No
- *asymmetric: ≡ not symmetric
 (there exist a,b ∈A such that (a,b) ∈R but
 (b,a) ∉R)

Antisymmetry

- ***** Consider the relation x≤y
 - It is not symmetric. (For instance, 5≤6 but not 6≤5)
 - It is not asymmetric. (For instance, 5 ≤5)
 - The pattern: the only times when (a,b)∈ ≤ and (b,a)∈ ≤ are when a=b
- This is called antisymmetry Can you say this in predicate logic?

Antisymmetry

- **⋄**A binary relation R on A is antisymmetric iff $\forall a,b((a,b)\in R \land (b,a)\in R) \rightarrow a=b).$
- **❖** Examples: ≤, ≥, ⊆

*How would you define transitivity of a relation? What are its 'relatives'?

Transitive

A relation R on a set A is called transitive if whenever (a,b) ∈R and (b,c) ∈R, then (a,c) ∈R, for all a,b,c ∈R.

- $R0 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
- R0 is transitive.

"divides" is transitive since a|b and b|c then a|c.

Transitive

Transitive

- $R1 = { (a, b) | a ≤ b }$
- $R2 = \{ (a, b) | a > b \}$
- $R3 = \{ (a, b) | a = b \text{ or } a = -b \}$
- $R4 = \{ (a, b) | a = b \}$
- $R5 = \{ (a, b) | a = b + 1 \}$
- $R6 = \{ (a, b) | a + b \le 3 \}$
- *R1,R2,R3 and R4 are transitive.

- **⋄**A relation R is *transitive* iff (for all a,b,c) $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.
- A relation is nontransitive iff it is not transitive.
- ❖A relation R is in transitive iff (for all a,b,c) $((a,b) \in R \land (b,c) \in R) \rightarrow \neg (a,c) \in R$.

- What about these examples:
 - "x is an ancestor of y"
 - "x likes y"
 - "x is located within 1 mile of y"
 - "x +1 =y"
 - "x beat y in the tournament"
 - "x is stronger than y"

- What about these examples:
 - "is an ancestor of" is transitive.
 - "likes" is neither trans nor intrans.
 - "is located within 1 mile of" is neither trans nor intrans
 - "x +1 =y" is intransitive
 - "x beat y in the tournament" is neither trans nor intrans
 - "x is stronger than y" is transitive.

❖R={ (a, b) | a比b强 } is transitive

❖前提: (小白,小黄) ∈ R,

(小花,小白) ∈ R

*结论: (小花,小黄) ∈ R

Application

下列关系具有哪些性质?

- (1) S上的关系 $R = \{ \langle x, y \rangle | (x, y \in S) \land (x > y) \}$
- (2) T={1,2,3...,10}上的关系

$$R = \{ \langle x, y \rangle | (x, y \in T) \land (x + y = 10) \}$$

Application

下列关系具有哪些性质?

(1) S上的关系 $R = \{ \langle x, y \rangle | (x, y \in S) \land (x > y) \}$ R是反对称的,反自反的,传递的。

(2) $T=\{1,2,3...,10\}$ 上的关系 $R=\{\langle x,y\rangle|(x,y\in T)\land(x+y=10)\}$

R是对称的。

- **Let** $R:A \times B$, and $S:B \times C$. Then the composite $S \circ R$ of R and S is defined as:
 - $S \circ R = \{(a,c) \mid \exists b : aRb \land bSc\}$
- Does this remind you of something?

- **Let** $R:A \times B$, and $S:B \times C$. Then the composite $S \circ R$ of R and S is defined as: $S \circ R = \{(a,c) \mid \exists b: aRb \land bSc\}$
- Does this remind you of something?
- Function composition ...

Let $R:A \times B$, and $S:B \times C$. Then the *composite* $S \circ R$ of R and S is defined as:

$$S \circ R = \{(a,c) \mid \exists b : aRb \land bSc\}$$

Function composition is a special case of relation composition: Suppose S and R are functional. Then we have (using the definition above, then switching to function notation)

$$S \circ R(a,c)$$
 iff $\exists b: aRb \land bSc$ iff $R(a)=b$ and $S(b)=c$ iff $S(R(a))=c$

Example

- $R = \{(1,1),(1,4),(2,3),(3,1),(3,4)\}$
- $S = \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$
- $S \circ R = \{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$
- $R = \{(1,1),(2,1),(3,2),(4,3)\}$
- $R^2 = R \circ R = \{(1,1),(2,1),(3,1),(4,2)\}$
- $R^3 = R \circ R \circ R = \{(1,1),(2,1),(3,1),(4,1)\}$
- $R^n = R \circ R \circ R = \{(1,1),(2,1),(3,1),(4,1)\}$
- **%**n≥3

- Theorem 1
- **❖** The relation R on a set A is transitive if and only if R^n \subseteq R for n = 1,2,3...
- Proof.
 - $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R^2$ and $(a,c) \in R$.
 - Use mathematical induction

Let's see what happens when we compose R with itself

Exercise: Prove that $R:A\times A$ is transitive iff $R\circ R=R$.

- *The n^{th} power R^n of a relation R on a set A
 - The 1st power of R is R itself
 - The 2^{nd} power of R is $R^2 = R \circ R$
 - The 3^{rd} power of R is $R^3 = R \circ R \circ R$

etc.

❖The nth power Rⁿ of a relation R on a set A can be defined recursively by:

$$R^1 :\equiv R$$
; $R^{n+1} :\equiv R^n \circ R$ for all $n \ge 1$.

 \bullet E.g., $R^2 = R \circ R$; $R^3 = R \circ R \circ R$

$$R^2 = R \circ R = \{(a,c),(b,d),(c,c),(d,d)\}$$

⋄a: c

d: d

b: d

e: -

C: C

Application

设R和S定义在P上的二元关系,P是所有人的集合

$$R = \{ \langle x, y \rangle | (x, y \in P) \land (x \in Y) \};$$

$$S = \{ \langle x, y \rangle | (x, y \in P) \land (x \in Y) \};$$

- (1) $R \circ R$ 表示的是什么关系。
- (2) S⁻¹。R表示的是什么关系。

Application

(1) $R \circ R$ 表示的是什么关系。

$$R \circ R = \{ \langle x, y \rangle | (x, y \in P) \land (x 是 y 的祖父) \};$$

(2)S⁻¹。R 表示的是什么关系。

$$S^{-1} \circ R = \{ \langle x, y \rangle \mid (x, y \in P) \land (x \pi y$$
是夫妻)}

设R,S 是集合A上的关系,试证明或否定以下断言。

- (1) 设R,S是自反的,则 $R \circ S$ 是自反的。
- (2) 若R,S是传递的,则 $R \circ S$ 是传递的。

Application

- **(*(1))** 设R,S是自反的,则 $R \circ S$ 是自反的。
 - 正确。对任意 $x \in A$,因为R,S是自反的,所以 $< x, x > \in R, < x, x > \in S$ 。由关系映射关系则有 $< x, x > \in R \circ S$,所以 $R \circ S$ 是自反的。
 - (2) 若R,S是传递的,则 $R \circ S$ 是传递的。

不一定。如 $R = \{ \langle a,b \rangle, \langle b,c \rangle, \langle a,c \rangle \}$,

 $S = \{ \langle b, b \rangle, \langle c, a \rangle \}$ 都是传递的,但

 $R \circ S = \{ \langle c, b \rangle, \langle b, c \rangle, \langle c, c \rangle \}$ 不是传递的;

若R和S交换, $S\circ R=\{< a,b>,< b,a>,<$

a,a>},也是不传递的。

1. How many transitive relation on the set

A. 2 B. 171 C. 5 D. 13

$${a,b,c} \times {a,b,c} = {(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)}$$

由于(x,x)这种有序对不影响传递关系,因此可以分以下两种方式考虑:

- (1) 不考虑(a,a),(b,b),(c,c),分析 $\{(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)\}$ 对应的传递关 系:
 - (1)空集Ø

②传递关系有一个有序对: $\{(a,b)\}\{(b,a)\}\{(a,c)\}\{(c,a)\}\{(b,c)\}\{(c,b)\}$ 6

③传递关系中有两个有序对:

$$\{(a,b),(a,c)\}\ \{(b,a),(c,a)\}\ \{(b,a),(b,c)\}\ \{(a,b),(c,b)\}\ \{(c,a),(c,b)\}\ \{(a,c),(b,c)\}$$

④传递关系中有三个有序对:

$$\{(a,b),(b,c),(a,c)\}\ \{(a,c),(c,b),(a,b)\}$$

$$\{(b,a),(a,c),(b,c)\}\ \{(b,c),(c,a),(b,a)\}$$

$$\{(c,a),(a,b),(c,b)\}\ \{(c,b),(b,a),(c,a)\}$$

总共1+6+6+6=19种情况,每种情况可加入(a,a)或(b,b)或(c,c),有2*2*2=8种选择,共19*8=152种。

- (2) 考虑必须包含(a,a), (b,b), (c,c)中的两对才能满足传递关系:
 - ①只包含一组对称的有序对,不加入其他有序对:

$$\{(a,b),(b,a),(a,a),(b,b)\}$$

$$\{(a,c),(c,a),(a,a),(c,c)\}$$

$$\{(b,c),(c,b),(b,b),(c,c)\}$$

②包含一组对称的有序对以及其他有序对:

6

 $\{(a,b),(b,a),(a,c),(b,c),(a,a),(b,b)\}$ $\{(a,b),(b,a),(c,a),(c,b),(a,a),(b,b)\}$ $\{(a,c),(c,a),(a,b),(c,b),(a,a),(c,c)\}$ $\{(a,c),(c,a),(b,a),(b,c),(a,a),(c,c)\}$ $\{(b,c),(c,b),(a,b),(a,c),(b,b),(c,c)\}$ $\{(b,c),(c,b),(b,a),(c,a),(b,b),(c,c)\}$

总共3+6=9种情况,每种情况可加入(a,a),(b,b),(c,c)中的一种,有2种选择,共9*2=18种。

(2) 考虑必须包含(a,a), (b,b), (c,c)中的三对才能满足传递关系: $\{(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a),(b,c),(c,b)\}$

所以,总传递关系数为: 152+18+1=171

- 3. The relation R, U = Z-{0}, $(x, y) \in R$ if and only if $xy \ge 1$, so R is (D)
- A) reflexive and anti-symmetric
- B) asymmetric and transitive
- C) reflexive and transitive
- D) reflexive, symmetric and transitive

4. R is "less than or equal to" relation on $Z \times Z$, then $R^{-1} = \ge$

5. How many of the 16 different relations on {0,1} contain the pair (0,1)? (B)

A. 2 B. 8 C. 171 D. 13

 ${0,1} \times {0,1} = {(0,0), (0,1), (1,0), (1,1)}$

当必须包含(0,1)时, (0,0), (1,0), (1,1)各有2种选择: 包含或不包含,因此总组合数为 $2^3=8$ 。

6. A={I, m, n}, B={a, b, c}, C={x, y}, z}. R: A \rightarrow B, S: B \rightarrow C, and $R = {< l, b>, < m, a>, < n, c>}, S = {< a, y>, < b, x>, < c, y>, < c, z>}, SoR=?$

 $\{<|, x>, <m, y>, <n, y>, <n, z>\}.$

7. Let $R = \{\langle x, y \rangle | (x, y \in Z) \land (x > y)\}$ ① irreflexive ② reflexive ③ symmetric ④ antisymmetric ⑤ transitive. R has the properties of ?

(1)(4)(5)

9. Let R be the relation R={(a, b)| a divides b} on the set of positive integers. R^{-1} =?

{ (b, a) | b is divided by a}

11. Determine whether the relation R, where $(x,y) \in R$ if and only if x=y+1 or x=y-1, on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive.

not reflexive, symmetric, not antisymmetric, not transitive

- 12. For the relation {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)} on the set {1, 2, 3, 4}, decide whether it is (D)
- A. Reflexive
- B. symmetric
- C. transitive
- D. None of these properties above

13. For the relation {(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)} on the set {1,2,3,4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

Reflexive. Symmetric, not antisymmetric, transitive

\$4. Determine whether the relation R on the set of all integers is transitive, where if and only if (B)

- A) $x \neq y$
- B) $xy \ge 1$
- C) x = y + 1 or x = y 1
- $\mathsf{D}) \quad x = y^2$

15. List the ordered pairs in the relation R from $A = \{1, 2, 3, 4\}$ to $B = \{1, 2, 3\}$, where $(a, b) \in R$ if and only if $a \mid b$.

 $\{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)\}$

- 16. Supposed relation R= {(1, 2), (2, 3), (3, 4)} on the set {1, 2, 3, 4}, R is (A)
 - A) antisymmetric
 - B) symmetric
 - C) reflexive
 - D) transitive

- 17. The relation R on the set of all integers. $(x,y) \in R$ if and only if $x \equiv y \pmod{7}$, so R is (D) (tip: $x \equiv y \pmod{7} \Leftrightarrow (x-y) \pmod{7} = 0$)
- A) reflexive and anti-symmetric
- B) anti-symmetric and transitive
- C) irreflexive and transitive
- D) reflexive, symmetric and transitive

13. Let R be the relation {(a,b),({a},b),({∅},{∅}),(∅,{∅})}, what are R^(-1)∘R^(-1)?

 $R^{(-1)} \circ R^{(-1)} = \{(\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, \emptyset)\}$

19. Suppose that R and S are two relations

on
$$A = \{1,2,3,4\}$$
, where $R = \{<1,1>,<2,2>,<2,3>,<4,4>\}$
and $S = \{<1,1>,<2,2>,<2,3>,<3,2>,<4,4>\}$, $(R \circ S)^{-1} =$

20. Please use the propositional logic to present the transitive relation: A relation *R* is **transitive** iff (for all *a*,*b*,*c*)

$$((a,b)\in R \land (b,c)\in R) \rightarrow (a,c)\in R$$

21. Set A={1, 2, 3, 4}, suppose *R*={(1, 2), (2, 2), (3, 1), (3, 2), (4, 4)} and *S*={(1, 3), (2, 3), (3, 2), (3, 3)} are relations on A, *R* ∘ *S*=____

- ♦22. Which one is not true? (D)
- A. $f(n) = n^3$ is onto from R to R.
- B. $p \leftrightarrow q$ is logically equivalent with $(p \land q) \lor (\neg p \land \neg q)$.
- C. The "divides" relation on the set of all integers is antisymmetric.
- D. $R_3 = \{(1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$ is transitive.

23. For the relation $R = \{(a, a), (a, b), (b, b), (b, a), (b, c), (b, d), (b, c), (b, d), (b, d),$

(c,b),(d,d),(d,b) on the $S = \{a,b,c,d\}$, it is (reflexive /symmetric/transitive).

23. For the relation $R = \{(a,a),(a,b),(b,b),(b,a),(b,c),(b,d),(c,b),(d,d),(d,b)\}$ on the $S = \{a,b,c,d\}$, it is symmetric (reflexive /symmetric/transitive).

24. Let
$$R = \{ < 1,2 >, < 1,3 >, < 2,2 >, < 2,3 >, < 3,3 > \}, S = \{ < 1,0 >, < 1,3 >, < 2,0 >, < 2,3 >, < 3,3 > \}$$
 find $R^{\circ}S =$ _____.

24. Let
$$R = \{ < 1,2 >, < 1,3 >, < 2,2 >, < 2,3 >, < 3,3 > \}, S = \{ < 1,0 >, < 1,3 >, < 2,0 >, < 2,3 >, < 3,3 > \}$$
 find $R^{\circ}S = \{ < 1,3 >, < 2,3 >, < 3,3 > \}$.

End of Section 3.1