Experiment 6

Study of Root Locus Plot in Matlab

Aim: To study following:

• Stabilty analysis of linear process by gain variation method and by root locus method of the given TF.

Fig 1: Given Transfer Function

• Stability analysis of linear process by gain variation on kit.

Fig 2: Controller box

Software: MATLAB 2018a

Apparatus:

- Stability analysis kit(VPCS-04)
- Digital Storage Oscilloscope
- Connecting probes

Theory:

Root Locus: The root locus of a feedback system is the graphical representation in the complex s-plane of the possible locations of its closed-loop poles for varying values of a certain system parameter. The root locus is a graphical representation in s-domain and it is symmetrical about the real axis. Because the open loop poles and zeros exist in the s-domain having the values either as real or as complex conjugate pairs. On a root-locus graph, all the poles move towards a zero. Only one pole may move towards one zero, and this means that there must be the same number of poles as zeros.

Let the Transfer Function of a system be G(s) with unity feedback

Characteristic equation is $l + P(s) = l + G(s) \times H(s) = 0$

Pole Zero form: The characteristic equation in pole zero form can be written as

1 + G(s) × H(s) = 1 +
$$\frac{k * \prod_{i=1}^{m} (s+z_i)}{\prod_{i=1}^{n} (s+p_i)}$$
 = **0** (m < n)

Angle Criterion is given by

$$\sum_{i=1}^{m} \angle(s+z_i) - \sum_{j=1}^{n} \angle(s+p_j) \; = \; \pm (2q+1)\pi$$

Where q is an integer.

Magnitude Criterion is given by

$$\left| \frac{\mathbf{k} \times \prod_{i=1}^{m} (\mathbf{s} + \mathbf{z}_i)}{\prod_{j=1}^{n} (\mathbf{s} + \mathbf{p}_j)} \right| = 1$$

Points satisfying angle criterion forms the root locus. The value of gain corresponding to root can be determined by the magnitude criterion.

Rules:

- The root locus is symmetrical about the real axis(σ -axis).
- When k increases from zero to infinity, each branch of root locus originates from open-loop pole with k = 0 and terminates either on an open-loop zero or on infinity with $k = \infty$. The number of branches terminating on infinity equals the number of open-loop poles minus zeros(n-m).
- A point on the real axis lies on the locus if the number of open-loop poles plus zeros on the real axis to the right of this point is odd.
- Angles of (n-m) asymptotes are given by

$$\phi_A = \frac{(2q+1)\pi}{n-m}$$
; q = 0,1,..,(n-m-1)

• The asymptotes cross the real axis at a point called centroid. Its abscissa is given by

$$\sigma = \frac{\Sigma real \ parts \ of \ poles - \Sigma real \ parts \ of \ zeros}{no. \ of \ poles(n) - no. \ of \ zeros(m)}$$

- The breakaway points(points at which multiple roots of the characteristic equation occurs) of the root locus are the solutions of dk/ds = 0. The angle criterion of the breakaway point must be satisfied. The root locus branches must approach or leave the breakaway point on the real axis at an angle of $\pm \pi/r$ where r is the number of branches approaching or leaving the point.
- The angle of departure from an open-loop pole is given by

$$\phi_n = \pm \pi (2 + 1) + \phi$$
; q = 0,1,2,...

Where φ is the net angle contribution, at this pole, of all other open-loop poles and zeros.

• The **angle of arrival** at an open-loop zero is given by

$$\phi_n = \pm \pi (2 + 1) - \phi$$
; q = 0,1,2,...

Where φ is the net angle contribution, at this zero, of all other open-loop poles and zeros.

$$\phi = \Sigma \theta_p - \Sigma \theta_z$$

• The intersection of root locus branches with the imaginary axis can be determined using the Routh criterion.

rlocus:

Syntax: rlocus (sys)

Description: rlocus computes the root locus of a SISO open-loop model. The root locus gives the closed-loop pole trajectories as a function of the feedback gain *k* (assuming negative feedback). Root loci are used to study the effects of varying feedback gains on closed-loop pole locations. In turn, these locations provide indirect information on time and frequency responses.

Controller Box: A proportional—integral—derivative controller (PID controller, or three-term controller) is a control loop mechanism employing feedback that is widely used in industrial control systems and a variety of other applications requiring continuously modulated control. A PID controller continuously calculates an *error value* e(t) as the difference between the desired setpoint (SP) and a measured process variable (PV) and applies a correction based on proportional, integral, and derivative terms (denoted *P*, *I*, and *D* respectively)

Matlab Code:

```
clc; clear all; close all;
s = tf('s');
g1 = 0.5;
g2 = 4/(s+3);
g3 = -2/(-s+1);
h = 1/(s+10);
Y = series(feedback(series(g1,g2),1),g3);
rlocus(Y*h);
```

Results:

Fig 3: Root Locus

Control System Lab (EEP310) For K = 105 10000 9010 10000 100

Fig 4: For k not in root locus

Fig 5: For K in root locus

Fig 6: Stable Response

Fig 7: Unstable Stable Response

Fig 8 Marginally Stable Response

Conclusion:

For Root Locus

- After locating k on the Root Locus, the system stabilizes, and stable response is obtained
- On a root-locus graph, all the poles move towards a zero. Only one pole may move towards one zero, and this means that there must be the same number of poles as zeros.
- Range of k for stability = $(13 \le gain \le 135)$

For Controller Box

- On increasing k, the systems tends to get unstable.
- Response of such a system shows increasing amplitude.

Assignment 6a

Aim: To Study Root Locus of a system with PID controller in MATLAB.

Fig – 1 Given System with Disturbance

Software: Matlab 2018a

Theory: In control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) control system. Stability can be characterized by considering a sign of real parts of the roots of the characteristic polynomial of a linear system. If all entries in the routh array are positive, implies a stable system, negative entry implies instability, 0 implies threshold condition.

Matlab Code:

```
close all;
clear; clc;
k = [10, 20, 50, 100];
process = tf(1, [1, 1, 0]);
for i = 1:4
    controller = tf([11, k(i)], 1);
    system = feedback(series(controller, process), 1);
    title(sprintf('Without disturbance k = %d', k(i)));
    subplot(4, 3, 1 + 3*(i-1))
    rlocus(system);
    stepinfo(system)
    controller = tf([11, k(i)], 1);
    D system = feedback(process, controller);
    title(sprintf('Only disturbance k = %d', k(i)));
    subplot(4,3, 2 + 3*(i-1))
    rlocus(D system);
    stepinfo(D system)
    controller = tf([11, k(i)], 1);
    D system = feedback(process, controller);
    system = feedback(series(controller, process), 1);
    title(sprintf('With disturbance k = %d', k(i)));
    subplot(4,3, 3 + 3*(i-1))
    rlocus(system + D system);
    stepinfo(system + D system)
end
```

Results:

Fig 2 - PI and PID Controller Response on SIMULINK

Fig-3: Root Locus of system with and without Disturbance

Conclusion:

- After locating k on the Root Locus, the system stabilizes, and stable response is obtained.
- Step response was studies for different values of disturbances.