

Fachbereich Mathematik

Seminar zu Lie-Algebren

Wurzelsysteme: einfache Wurzeln, Weyl-Gruppe und Irreduzibilität

Fabian Gabel

29.05.2016

Betreuer: Prof. Dr. rer. nat. Jan-Hendrik Bruinier, M.Sc. Markus Schwagenscheidt

Version vom 13. Mai 2016

Inhaltsverzeichnis

Einleitung		3
1	Grundlagen zu Wurzelsystemen	3
2	Einfache Wurzeln	4
3	Die Weylgruppe	5
4	Irreduzible Wurzelsysteme	5
Li	Literaturverzeichnis	

Einleitung

1 Grundlagen zu Wurzelsystemen

Dieser Abschnitt beinhaltet die für diese Arbeit benötigten Grundlagen zu Wurzelsystemen.

Im Folgenden bezeichne E stets einen euklidischen Vektorraum, also einen \mathbb{R} -Vektorraum mit Skalarprodukt (\cdot,\cdot) . Unter einer $Spiegelung\ \sigma$ versteht man eine orthogonale Abbildung, welche eine Hyperebene, also einen Unterraum der Kodimension 1, punktweise fixiert und jeden Vektor des orthogonalen Komplements der Hyperebene auf sein Negatives abbildet. Jeder Vektor $\alpha \in E \setminus \{0\}$ induziert eine $Spiegelung\ \sigma_{\alpha}$ an der Hyperebene

$$P_{\alpha} := \operatorname{span}(\{\alpha\})^{\perp} = \{\beta \in E \mid (\beta, \alpha) = 0\}.$$

Definiert man nun $\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\beta, \alpha)}$, so gilt

$$\sigma_{\alpha}(\beta) = \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha = \beta - \langle \beta, \alpha \rangle \alpha,$$

denn $\sigma_{\alpha}(\alpha) = -\alpha$ und $\sigma_{\alpha}(\beta) = \beta$ für alle $\beta \in P_{\alpha}$. Man beachte, dass im Gegensatz zum Skalarprodukt, der Ausdruck $\langle \alpha, \beta \rangle$ nur linear in der ersten Variablen ist. Es gilt jedoch $\operatorname{sign}\langle \alpha, \beta \rangle = \operatorname{sign}(\alpha, \beta)$ für alle $\alpha, \beta \in E$.

Definition 1.1. Eine Teilmenge Φ des euklidischen Vektorraums E heißt Wurzelsystem, falls folgende Bedingungen erfüllt sind:

- (R1) Die Menge Φ ist endlich, sie spannt E auf und sie enthält nicht die 0.
- (R2) Falls $\alpha \in \Phi$, so sind $\pm \alpha$ die einzigen Vielfachen von α in Φ .
- (R3) Falls $\alpha \in \Phi$, so lässt die Spiegelung σ_{α} die Menge Φ invariant, also $\sigma_{\alpha}(\Phi) = \Phi$.
- (R4) Falls $\alpha, \beta \in \Phi$, dann ist $\langle \beta, \alpha \rangle \in \mathbb{Z}$.

Wir betrachten nun einen Spezialfall von Spiegelungsgruppen:

Definition 1.2. Sei Φ ein Wurzelsystem in E. Dann bezeichnet \mathcal{W} die von den Spiegelungen σ_{α} , $\alpha \in \Phi$, erzeugte Untergruppe der allgemeinen linearen Gruppe $\mathrm{GL}(E)$. Man nennt \mathcal{W} die Weyl-Gruppe von Φ .

2 Einfache Wurzeln

In diesem Abschnitt sollen einige Eigenschaften einfacher Wurzeln bewiesen werden. Im Folgenden bezeichne Δ eine fest gewählte Basis des Wurzelsystems Φ .

Lemma 2.1. *Ist* $\alpha \in \Phi$ *eine positive aber nicht einfache Wurzel, so ist für alle* $\beta \in \Delta$ *die Differenz* $\alpha - \beta$ *eine notwendig positive Wurzel.*

Korollar 2.2. Jedes $\beta \in \Phi^+$ lässt sich als Linearkombination $\alpha_1 + \cdots + \alpha_k$ mit $\alpha_i \in \Delta$ so schreiben, dass jede Partialsumme $\alpha_1 + \cdots + \alpha_i$, $i \in \{1, \dots, k\}$, eine Wurzel ist.

Lemma 2.3. Sei $\alpha \in \Delta$. Dann permutiert die Spiegelung σ_{α} alle von α verschiedenen Wurzeln, also

$$\sigma_{\alpha}(\Phi^+ \setminus \{\alpha\}) = \Phi^+ \setminus \{\alpha\}.$$

Korollar 2.4. Sei $\delta := \frac{1}{2} \sum_{\beta \succ 0} \beta$. Dann gilt $\sigma_{\alpha}(\delta) = \delta - \alpha$ für alle $\alpha \in \Delta$.

- 3 Die Weylgruppe
- 4 Irreduzible Wurzelsysteme

Literatur