# Analyse — CM: 3

### Par Lorenzo

# 19 septembre 2024

# 0.1 Propriété d'Archimède

L'ensemble  $\mathbb{R}$  est dit archimédien, i.e.  $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, \ x < n$ 

#### Proposition 0.1.

Il existe un unique entier dans  $\mathbb{Z}$ , appelé la partie entière E, tel que  $E(x) \leq E(x) + 1$ 

#### Démonstration 0.1.

**Existence:** Supposons que  $x \ge 0$ . Comme  $\mathbb{R}$  est archimédien il existe un entier  $n \in \mathbb{N}$  tel que x < n.

Ainsi on peut trouver un autre entier  $m \in \mathbb{N}$  tel que  $n \le x$  et m < n. Il suffit de choisir m comme le plus grand entier inférieur ou égal à x et tel que  $m \le x < m+1$ 

**Unicité:** Supposons qu'il existe 2 entiers tel que  $k \le x < k+1$  et  $l \le x < l+1$ Par transitivité, il vient  $k \le x < l+1$  et k < l+1, de  $m \hat{e} m e$ ,  $l \le x < k+1$  et  $l < k+1 \implies l-1 < k$ 

Finalement l-1 < k < l+1 et comme entre les entiers l'entier l-1 et l+1 il n'y a que l, alors k=l

#### Example 0.1.

$$x = 3.14, E(x) = 3.$$
  
 $x = -12.2, E(x) = -13.$ 

#### Remarques 0.1.

On note parfois  $E(x) = [x] = \lfloor x \rfloor$ On note  $\{x\}$ , la partie fractionnaire (e.g.  $\{3.14\} = 0.14$ )



# 0.2 La valeur absolue

**Définition 0.1.** Soit x un nombre réel. La valeur absolue de x est le nombre réel positif défini par

$$|x| = \begin{cases} x, & si \ x \ge 0 \\ -x, & si \ x < 0 \end{cases} \tag{1}$$



Soient  $a, b, c \in \mathbb{R}$ 

## Propriétés

1. 
$$|a| \ge 0$$
,  $a \le |a|$ ,  $-|a| \le a$ ,  $|-a| = |a|$ 

$$2. \ \sqrt{a^2} = |a|$$

3. 
$$|ab| = |a||b|$$

4. 
$$\forall n \in \mathbb{Z}, |a^n| = |a|^n$$

5. si 
$$a \neq 0, |\frac{1}{a}| = \frac{1}{|a|}$$
 et  $|\frac{b}{a}| = \frac{|b|}{|a|}$ 

6. Pour  $b \geq 0$ ,

|a| = b, si et seulement si a = b ou a = -b

 $|a| \le b$  si et seulement si  $-b \le a \le b$  (beaucoup utilisé pour passer de a à |a|)

 $|a| \ge b$  si et seulement si  $a \le -b$  ou  $a \ge b$ 

7.  $|a+b| \le |a| + |b|$  (l'inégalité triangulaire)

8.  $||a| - |b|| \le |a - b|$  (l'inégalité triangulaire inversée)

Les propriétés 1 à 6 sont démontrés par la définition de la valeur absolue Démontrons la proprétée 7.

#### Démonstration 0.2.

$$\begin{array}{ll} D'apr\`es~(1) & -|a| \leq a \leq |a|~et~-|b| \leq b \leq |b| \\ En~additionnant,~on~obtient~-|a|-|b| \leq a+b \leq |a|+|b| \\ -(|a|+|b|) \leq a+b \leq |a|+|b|~avec~(6)~on~arrive~\grave{a} \\ |a+b| \leq |a|+|b| \end{array}$$

Démontrons la propriétée 8.

Démonstration 0.3.

$$a = a - b + b$$
 et  $|a| = |a - b + b| \le |a - b| + |b|$  (propriétée 7)  
 $|a| \le |a - b| + |b| \Longrightarrow |a| - |b| \le |a - b|$ 

de même.

$$\begin{array}{ll} b=b-a+a & et \quad |b|=|b-a+a| \leq |b-a|+|a| \\ |b| \leq |b-a|+|a| \implies |b|-|a| \leq |b-a| \end{array}$$

$$|b-a| = |-(a-b)| = |a-b|$$
 et

$$|a| - |b| \le |a - b|$$
 et  $|b| - |a| = -(|a| - |b|) \le |a - b|$ 

Finalement par définition

$$||a| - |b|| = \begin{cases} |a| - |b|, & si |a| - |b| \ge 0 \\ -(|a| - |b|), & si |a| - |b| < 0 \end{cases}$$

 $Ainsi ||a| - |b|| \le |a - b|$ 

Corollaire: Soit r<br/> un réel positif  $\forall x, a \in \mathbb{R},$  on a  $|x-a| < r \implies -r < x-a < r \implies a-r < x < a+r$ 

Remarques 0.2. La valeur absolue |b-a| représent la distance entre a et b



# 1 Densité de $\mathbb{Q}$ dans $\mathbb{R}$

# 1.1 Intervalles de $\mathbb{R}$

**Définition 1.1.** On appelle intervalle de  $\mathbb{R}$ , tout sous-ensemble I de  $\mathbb{R}$  vérifiant  $\forall a, b \in I, a \leq b$  et  $x \in \mathbb{R}, a \leq x \leq b \implies x \in I$ 

**Remarques 1.1.** Un sous-ensemble ou partie I de  $\mathbb{R}$ , se note  $I \subset \mathbb{R}$ 

**Définition 1.2.** Soient  $a, b \in \mathbb{R}, a \leq b$ 

On appelle intervalle fermé et borné (ou segment) de  $\mathbb{R}$  tout l'ensemble de la forme  $[a,b]=\{x\in\mathbb{R}|\ a\leq x\leq b\}$ 

On appelle intervalle ouvert de  $\mathbb{R}$  tout l'ensemble de la forme  $]a,b[=\{x\in\mathbb{R}|\ a< x< b\}\ ou\ ]a,+\infty[=\{x\in\mathbb{R}|\ a< x\}\ ou\ ]-\infty,b[=\{x\in\mathbb{R}|\ x< b\}$ 

Remarques 1.2. L'ensemble qui contient aucun élément est l'ensemble vide, noté  $\emptyset$ 

Remarques 1.3. L'ensemble qui contient un seul élément est le singleton, noté  $\{a\} = [a, a]$ 

**Remarques 1.4.**  $x \in [a, b] \equiv \exists t \in [0, 1], x = (1 - t)a + tb$ 

**Définition 1.3.** On dit que V est un voisinage de a si  $\exists \epsilon > 0$ ,  $[a - \epsilon, a + \epsilon] \subset V$ 

### 1.2 Densité

**Théorème 1.1.**  $\mathbb{Q}$  est dense dans  $\mathbb{R}$ , tout intervalle ouvert, non vide de  $\mathbb{R}$  contient une infinité de nombres rationnels

**Théorème 1.2.**  $\mathbb{R}\setminus\mathbb{Q}$  est dense dans  $\mathbb{R}$ , tout intervalle ouvert, non vide de  $\mathbb{R}$  contient une infinité de nombres irrationnels

#### Démonstration 1.1.

$$\begin{array}{l} \textit{On cherche} \ \frac{p}{q} \in \mathbb{Q}, p \in \mathbb{Z}, q \in \mathbb{N}^* \ \textit{tel que } a < \frac{p}{q} < b \implies aq < p < bq \\ \textit{comme} \ \mathbb{R} \ \textit{est archimédien, il existe un entier } q \ \textit{tel que } q > \frac{1}{b-a} \implies \frac{1}{q} < b-a \\ \textit{Prenons } p = E(aq) + 1 \\ p = E(aq) + 1 \implies p-1 = E(aq) \leq aq < E(aq) + 1 = p \\ \textit{On divise par } q \ \textit{l'inégalité } p-1 \geq aq < p+1 \\ \implies \frac{p-1}{a} = \frac{p}{a} - \frac{1}{a} \leq a < \frac{p}{a} \end{array}$$

$$Ainsi \ \frac{p}{q} - \frac{1}{q} \le a \implies \frac{p}{q} \le a + \frac{1}{q} < a + (b - a) = b$$

 $Finalement \ a < \frac{p}{q} < b$ 

Il existe un nombre rationnels  $\frac{p}{q}$  compris entre a et b.

On divise l'intervalle [a, b[ en N sous-intervalles disjoints 2 à 2

$$]a,b[=]a,a+\frac{b-a}{N}[\cup]\frac{b-a}{N},a+2\frac{b-a}{N}[$$



$$a + 4(b - a)/N$$

Donc pour chaque intervalle on peut trouver un rationnels, on peut ensuite faire tendre N vers l'infini pour trouver un infinité de rationnels

# Démonstration 1.2.

D'apres notre démonstration précédente il existe un infinité de rationnels pour  $a - \sqrt{2} < \frac{p}{a} < b - \sqrt{2} \implies a < \frac{p}{a} + \sqrt{2} < b$ 

On en arrive avec la même logique que la démonstration précédente qu'il existe une infinité d'irrationnels entre deux réels.

#### 2 Bornes sur $\mathbb{R}$

#### 2.1Maximum et minimum

**Définition 2.1.** Soit A une partie non vide de  $\mathbb{R}$ . Un réel M est le plus grand (resp. le plus petit) élément de A si  $M \in A$  et  $\forall x \in A, x \leq M$  (resp.  $\forall x \in A, x \geq m$ ).

Si il existe, le plus grand élément est unique et on le note max A.

Si il existe, le plus petit élément est unique et on le note min A.