LAPORAN PROYEK MATA KULIAH 10S3001 - KECERDASAN BUATAN

Analisis Hasil Produksi Pangan di Indonesia Dengan Menggunakan Time Series Forecasting With Recurrent Neural Network (RNN)

Disusun Oleh:

12S20035 Nemnem Sihombing

12S20040 Esphi Aphelina Hutabarat

12S20042 Mastawila Febryanti

Simanjuntak

PROGRAM STUDI SARJANA SISTEM INFORMASI FAKULTAS INFORMATIKA DAN TEKNIK ELEKTRO

INSTITUT TEKNOLOGI DEL DECEMBER 2022

Nama Dokumen: LP-PBDSI-22-GG Tanggal : 5 December 2022 Jumlah Halaman : 22

IT Del	LP-CERTAN-22-GG	Halaman 2 dari 22

DAFTAR ISI

DAI	FTAR ISI	2
1.	Pendahuluan	3
1.1	Latar Belakang	4
1.2	Tujuan	5
1.3	Manfaat	3
1.4	Ruang Lingkup	
1	.4.1 Data & Bahasa	4
1.5	Istilah dan Singkatan	
1.	.5.1 Istilah dan Definisi	4
1.	.5.2 Singkatan dan Definisi	4
2.	Studi Literatur	Error! Bookmark not defined.
3.	Metode	Error! Bookmark not defined.
4.	Hasil Pengujian	Error! Bookmark not defined.
5.	Analisis Hasil Pengujian	Error! Bookmark not defined.
6.	Implementasi	8
7.	Saran	8
8.	Kesimpulan	8
LAN	MPIRAN	Error! Bookmark not defined.

IT Del	LP-CERTAN-22-GG	Halaman 3 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del		

1. Pendahuluan

1.1 Latar Belakang

Indonesia adalah negara agraris dengan luas tanah sebesar 7,46 juta hektare dan memiliki masyarakat dengan mata pencaharian sebagai petani yang hampir mencapai 9.74 juta . Dengan luas wilayah dan jumlah masyarakat tersebut, Indonesia dapat menghasilkan pertanian mencapai 31 juta ton beras setiap tahunnya. Dengan jumlah tersebut, bukan tidak mungkin Indonesia akan kembali menjadi negara dengan swasembada pangan yang dapat mencukupi kebutuhan pangan dalam negeri. Swasembada pangan pernah terjadi di Indonesia pada tahun 1984 - 1988 pada pemerintahan Soeharto. Indonesia dapat menjadi negara yang kuat dengan sumber pangan yang baik dan mencukupi kebutuhan pangannya sendiri. Kebutuhan pangan dan persedian pangan yang baik menjadikan Indonesia tidak akan takut dalam menghadapi bencana yang akan datang. Ketahanan pangan yang baik terjadi karena hasil panen yang baik dan sukses. Hasil panen yang baik didapatkan dengan menjaga, merawat dan memberikan perhatian khusus kepada setiap komoditas hasil panen. Di samping itu, memprediksi hasil panen juga harus dilakukan sebelum proses penanaman dilakukan. Para petani harus mampu melakukan prediksi terhadap hasil panen yang akan datang berdasarkan hasil panen sebelumnya. Prediksi hasil panen adalah memperhitungkan sedari awal hasil yang akan diterima dari awal proses dilakukan. Para petani biasanya akan memprediksi melalui aspek cuaca, bibit dan dan kualitas tanah. Memprediksi dilakukan secara manual tanpa menggunakan data dan metode khusus sebagai acuannya.

Oleh karena itu, dibutuhkan sebuah penelitian menggunakan data yang lengkap dan metode yang dapat digunakan sebagai perhitungan dan hasil yang dijadikan sebagai informasi bagi para petani. Metode yang digunakan dalam penelitian ini adalah menggunakan time series forecasting. Metode time series forecasting terbagi menjadi dua metode yakni Recurrent Neural Network dan Convolutional Neural Network. Forecasting adalah kegiatan memprediksi yang terjadi pada masa yang akan datang berdasarkan data yang relevan pada masa lalu dan menempatkannya ke masa yang akan datang dalam bentuk model matematis.Data time series merupakan data yang dikumpulkan, dicatat atau diobservasi sepanjang waktu secara berurutan. Model time series akan memprediksi masa depan

IT Del	LP-CERTAN-22-GG	Halaman 4 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

menggunakan data secara kuantitatif. Data secara kuantitatif adalah data hasil panen dari tahun lampau. Data yang digunakan pada penelitian ini adalah data dari tahun 1993 - 2014 akan dijadikan sebagai data yang akan diolah menjadi data prediksi di tahun 2015. Recurrent Neural Network (RNN) adalah metode yang digunakan apabila menggunakan data sequential. Data sequential adalah data yang dapat berubah berdasarkan waktu dan faktor faktor tertentu

1.2 Tujuan

- 1. Untuk melihat prediksi hasil pangan pada setiap komoditas.
- 2. Mengetahui perbandingan performa dari model yang satu dengan model lain.
- 3. Memperkirakan progres dan kesuksesan hasil pangan di Indonesia.

1.3 Manfaat

- 1. Membantu meningkatkan peluang keberhasilan pangan pada masa yang akan datang
- 2. Mengantisipasi terjadinya perubahan baik peningkatan maupun penurunan hasil pangan
- 3. Melihat perbandingan hasil pangan dari tahun sebelumnya.

1.4 Ruang Lingkup

1.4.1 Data & Bahasa

Data yang digunakan pada penelitian ini adalah data hasil produksi pangan di Indonesia dari tahun 1993 - 2014. Data yang digunakan terdiri dari 5 komoditas yakni padi, kedelai, kacang tanah, ubi kayu dan ubi jalar. Dengan hasil yang didapatkan dari berbagai provinsi di Indonesia. Data tersebut akan dijadikan data untuk melakukan prediksi pada tahun 2015 menggunakan metode time series forecasting with recurrent neural network .

Pada bahasa yang digunakan pada isi laporan proyek ini menggunakan Bahasa Indonesia. Untuk beberapa istilah yang terdapat di dalam laporan ini menggunakan Bahasa Inggris.

1.5 Istilah dan Singkatan

1.5.1 Istilah dan Definisi

Istilah	Definisi
Forecasting	Metode yang digunakan untuk memperkirakan informasi yang bersifat prediktif dalam menentukan sesuatu di masa depan dengan menggunakan data sebagai acuan.
Data Time Series	Data yang dikumpulkan menurut urutan waktu dalam suatu rentang waktu tertentu
Model Time Series	Metode peramalan dengan menggunakan analisa pola hubungan antara variabel yang akan diperkirakan dengan variabel waktu
Data Sequential	Data yang disimpan dan dibaca secara berurutan
Time series Forecasting	Analisis data yang sekuensial terhadap waktu untuk memprediksi data data yang akan datang berdasarkan data sebelumnya.
Multilayer Perceptron	model dalam teknologi jaringan saraf tiruan (JST) yang memiliki neuron atau saraf yang saling terhubung dengan neuron lainnya.
Data set	Sekumpulan data yang berfungsi untuk menyimpan informasi dalam satu catatan (record).
Set latih	Bagian dalam set yang digunakan sebagai latih dalam membuat prediksi atau menjalankan sebuah fungsi.
Set uji	Bagian dalam dataset yang di tes untuk melihat keakuratannya dan performanya.
Actual Value	Nilai sebenarnya
Predict Value	Nilai yang diprediksi
Diff	Fungsi diff dalam php digunakan untuk menghitung jarak atau rentang waktu di antara 2 waktu. Bisa digunakan untuk menghitung umur, perhitungan pajak.

IT Del	LP-CERTAN-22-GG	Halaman 6 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

1.5.2 Singkatan dan Definisi

Akronim	kepanjangan	Definisi
RNN	Recurrent Neural Network	Algoritma deep learning yang menerapkan pendekatan berurutan atau sequential.
CNN	Convolutional Neural Network	Jenis neural network yang digunakan pada data image. CNN bisa digunakan untuk mendeteksi object pada sebuah image.
RMSE	Root Mean Square Error	Metode dalam mengevaluasi model regresi linear dengan mengukur tingkat akurasi hasil perkiraan sebuah model.
FFNN	Feedforward neural network	Jaringan syaraf tiruan yang koneksi antar node nya tidak membentuk siklus. Dimana sinyal melakukan perjalanan melalui satu jalur saja. yakni proses input ke output.
GPU	Graphic Processing Units	Jenis processor yang menangani dan mempercepat proses rendering grafis. Rendering grafis merupakan proses menampilkan gambar pada layar komputer.
LSTM	Long Short Term Memory	Long short term memory network (LSTM) adalah salah satu modifikasi dari recurrent neural network atau RNN. LSTM dapat memproses, memprediksi, dan mengklasifikasikan informasi berdasarkan data deret waktu

IT Del	LP-CERTAN-22-GG	Halaman 7 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

2. Studi Literatur

Memprediksi hasil produksi pangan menggunakan beberapa metode yang menjadi tolak ukur yang cukup efisien yang menghasilkan perbandingan untuk dijadikan sebagai titik fokus dalam memprediksi hasil produksi pangan di Indonesia. Metode yang digunakan sebagai perbandingan dalam memprediksi produksi pangan di Indonesia adalah Metode Time Series Forecasting menggunakan dua cara yakni menggunakan Recurrent Neural Network (RNN) dan Convolutional Neural Network (CNN). Metode Time Series Forecasting merupakan suatu area yang terdapat dalam machine learning yang berfokus pada analisis terhadap atribut waktu .Time Series Forecasting ini menggunakan analisis pemahaman yang terhadap dataset yang telah ada. Dengan adanya dataset maka prediksi yang akan dilakukan akan menggambarkan kejadian kejadian yang akan terjadi pada masa yang akan datang. [1]

Metode Recurrent Neural Network (RNN) merupakan suatu metode yang menjelaskan perancangan data yang bersambung ataupun berurutan yang berhubungan dengan time series yang dapat memprediksi kejadian kejadian yang akan terjadi di masa mendatang seperti prediksi terkait hasil produksi pangan di Indonesia. Recurrent Neural Network (RNN) juga merupakan metode yang digunakan ketika menggunakan data sequential. Data sequential adalah data yang dapat berubah berdasarkan faktor.[2] Faktor yang mempengaruhi adalah cuaca, waktu dan juga mampu mengingat hal-hal penting tentang masukan yang diterima, yang memungkinkan akan sangat tepat dalam memprediksi apa yang akan terjadi selanjutnya

Kelebihan dari Recurrent Neural Network (RNN):

- Algoritma RNN dimodelkan untuk menyimpan setiap informasi secara berurutan yang sangat membantu pada tugas prediksi time series.
- RNN juga dapat digunakan pada lapisan konvolusi (convolutional) dimana dapat memperluas piksel tetangga saat melakukan proses pengenalan gambar.
- RNN dapat memproses input dengan panjang berapa pun. Bahkan jika ukuran input lebih besar, ukuran model RNN tidak bertambah.

IT Del	LP-CERTAN-22-GG	Halaman 8 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

 RNN dapat menggunakan memori internal untuk memproses rangkaian input yang berubah-ubah yang tidak terjadi pada jaringan syaraf tiruan berstruktur feedforward (feedforward neural network).

Kekurangan dari Recurrent Neural Network (RNN):

- Karena sifatnya yang berulang, yang mengakibatkan proses komputasi menjadi lambat. Melatih model RNN bisa jadi tugas yang sulit.
- Tidak dapat memproses urutan yang sangat panjang jika menggunakan tanah atau relu sebagai fungsi aktivasi. [3]

Metode yang lain yang dapat digunakan dalam memprediksi sesuatu dan menggunakan acuan waktu sebagai bentuk keakuratannya. Berdasarkan hasil penelitian yang telah dilakukan dengan metode CNN dalam hal ini menghasilkan tingkat akurasi untuk trainingnya adalah sebesar 90% dengan waktu training menggunakan GPU sebesar 409.25 detik lamanya. [4]Dimana metode ini merupakan metode yang baik untuk dikembangkan menjadi sebuah sistem yang dapat memprediksi sesuatu di masa yang akan datang . Selain itu berdasarkan penelitian yang dilakukan Convolutional Neural Network merupakan suatu metode machine learning yang pengembangannya menerapkan fungsi Multi Layer Perceptron yang merupakan pengolahan data dua dimensi. Dengan pemanfaatan dari metode CNN ini juga memerlukan beberapa pertimbangan yang dilakukan dengan melihat kelebihan yang terdapat dalam CNN dimana menggunakan dimensi > 1 akan sangat mempengaruhi keseluruhan dari skala dalam suatu objek. Dimana skala dan objek merupakan suatu komponen yang sangat penting juga dimana diperlukan dalam mengamankan informasi yang akan diklasifikasikan yang akan menambah keakuratan dan optimasi algoritma CNN.

IT Del	LP-CERTAN-22-GG	Halaman 9 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

3. Metode

Berdasarkan hasil penelitian yang telah dilakukan, peneliti menggambarkan proses menjadi sebuah flowchart dimana penelitian ini memerlukan atribut serta banyak baris data. Proses diimulai dari dengan mengumpulkan data produksi yang dibutuhkan untuk analisis terhadap hasil produksi pangan di Indonesia. Pada penelitian hasil produksi ini menggunakan beberapa atribut seperti komoditas dan atribut tahun dalam memprediksi hasil produksi pangan kedepannya. Untuk selanjutnya melakukan pra-pemrosesan data seperti data cleaning dimana menghapus setiap data data yang tidak sesuai dengan yang diinginkan pada barisan data maupun atribut yang tersedia. Berikutnya pembagian setiap data set yang ada yaitu set latih dan set uji. Pada bagian set latih akan melakukan perulangan setiap repetisi

IT Del	LP-CERTAN-22-GG	Halaman 10 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

yang akan dijalankan yang dilakukan secara berulang ulang. Pada bagian set uji akan melakukan pengujian terhadap data yang akan dijadikan sebagai prediksi hasil produksi pangan. Akan dilakukan pengembangan model data dengan menggunakan metode Time Series Forecasting yang merupakan suatu area yang dijadikan sebagai tolak ukur yang berfokus pada atribut waktu. Setelah proses pengujian telah dilakukan maka selanjutnya akan melakukan tahapan evaluasi terhadap data yang menggunakan model R Squared dan RMSE yang mempunyai model prediksi yang berbeda beda. RMSE merupakan suatu matriks yang dijadikan sebagai tolak ukur seberapa jauh jarak yang dibutuhkan dalam memprediksi kumpulan data yang tersedia sedangkan R Squared ini menjelaskan gambaran mengenai proporsi dari setiap variabel

4. Hasil Pengujian

Dari hasil penelitian dan pengerjaan yang dilakukan dan telah melakukan analisis dengan menggunakan metode Time Series Forecasting with RNN maka diperoleh hasil terkait produksi pangan sebagai berikut :

1. Time series Forecasting model plot Padi

2. Time series Forecasting model plot Jagung

IT Del	LP-CERTAN-22-GG	Halaman 12 dari 22
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan		
Buatan di Institut Teknologi Del.		

3. Time series Forecasting model plot Kedelai

4. Time series Forecasting model plot Kacang tanah

IT Del	LP-CERTAN-22-GG	Halaman 13 dari 22	
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan			
Buatan di Institut Teknologi Del.			

5. Time series Forecasting model Ubi kayu

6. Time series Forecasting model Ubi Jalar

IT Del	LP-CERTAN-22-GG	Halaman 14 dari 22	
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan			
Buatan di Institut Teknologi Del.			

5. Analisis Hasil Pengujian

Berdasarkan metode time series forecasting yang menggunakan data hasil pangan di Indonesia pada tahun 1993-2014 dengan beberapa komoditas yakni Padi, Jagung, Kedelai, Kacang tanah, Ubi kayu dan Ubi jalar.

Analisis dilakukan untuk melihat apakah prediksi akan sama atau hampir mencapai actual value yang dihasilkan. Pada warna merah akan memberikan gambaran *predict value* dan pada warna biru akan memberikan gambaran *actual value*. Dilakukan pengujian sebanyak dua kali untuk melihat nilai uji keduanya.

Berikut ini adalah pengujian yang dilakukan pertama kali. Pada grafik di bawah ini dapat dilihat bahwa *predict value* selalu berada lebih tinggi dibanding dengan *actual value*. Namun grafik warna merah maupun warna biru selalu berdekatan, dimana grafik biru terlihat berdekatan dengan grafik merah. Dapat diketahui bahwa *actual value* selalu berada berdekatan pada grafik *predict value*. Sehingga nilai yang diprediksi sebelumnya hampir sama dengan nilai yang sebenarnya.

Setelah melihat grafik, *actual* dan *predict* value juga dapat dihitung berdasarkan nilai *diff*. Nilai diff tersebut berisi nilai atau hasil yang didapat dari melihat kedua nilai tersebut. Diff digunakan untuk menghitung jarak atau rentang 2 nilai berdasarkan waktu. Berikut ini adalah actual value, predict value dan diff pada data yang telah dimasukkan.

IT Del	LP-CERTAN-22-GG	Halaman 15 dari 22	
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan			
Buatan di Institut Teknologi Del.			

	Actual	Prediction	Diff	17	3228.0	7724.585449	139.299425
0	7572.0	6310.297852	-16.662733	18	5170.0	6622.858887	28.101719
1	7328.0	6990.115234	-4.610873	19	5501.0	9809.236328	78.317330
2	8156.0	9566.208008	17.290437	20	5319.0	8795.014648	65.350905
3	7965.0	7872.886719	-1.156476	21	5532.0	8636.873047	56.125688
4	3510.0	7060.623047	101.157352	22	5611.0	10085.086914	79.737781
5	5478.0	4987.320312	-8.957278	23	5047.0	10332.560547	104.726779
6	6392.0	4346.066895	-32.007714	24	3786.0	8521.807617	125.087364
7	7691.0	7473.877441	-2.823073	25	4585.0	6667.254883	45.414501
-				26	5557.0	9674.590820	74.097369
8	7570.0	4904.395020	-35.212747	27	5267.0	9483.236328	80.050054
9	7282.0	9343.055664	28.303429	28	4128.0	9043.376953	119.074054
10	7109.0	7488.616699	5.339945	29	3623.0	9544.210938	163.433920
11	6639.0	6544.663086	-1.420951	30	1749.0	9138.868164	422.519621
12	5875.0	4455.323242	-24.164711	31	1787.0	8568.396484	379.484974
13	7534.0	8642.204102	14.709372	32	920.0	6625.708496	620.185706
14	7461.0	6378.115723	-14.513929	33	1013.0	9593.843750	847.072433
15	7509.0	7290.207031	-2.913743	34	441.0	7210.309570	1534.990832
16	5424.0	9306.385742	71.577908				

Berikut ini adalah pengujian kedua. Pada grafik di bawah ini dapat dilihat grafik merah dan grafik biru yang memberikan gambaran pada *actual value* dan *predict value*. Berbeda dengan pengujian pada tahap pertama, pada pengujian ini grafik yang dihasilkan sangat berbeda. Grafik merah maupun biru sangat berjauhan. Grafik biru yang merupakan *actual value* sangat jauh dengan grafik merah yang merupakan *predict value*. Hal itu disebabkan karena perbedaan predict value yang dimasukkan. Sehingga nilai yang telah diprediksi tidak sama bahkan hampir berjauhan dengan nilai yang sebenarnya.

IT Del	LP-CERTAN-22-GG	Halaman 16 dari 22	
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan			
Buatan di Institut Teknologi Del.			

Setelah melihat grafik, dapat juga dilihat berdasarkan nilai diff nya. Berikut ini adalah nilai actual value, predict value dan diff menggunakan angka.

	Actual	Prediction	Diff
0	2425.0	8512.075195	251.013410
1	3910.0	6720.209473	71.872365
2	2277.0	7705.192383	238.392287
3	2424.0	7943.967285	227.721423
4	5087.0	6031.570801	18.568327
5	3959.0	8913.702148	125.150345
6	5260.0	7935.685059	50.868537
7	5323.0	8438.974609	58.537941
8	5668.0	10312.355469	81.939934
9	5191.0	9117.130859	75.633421
10	4649.0	7425.759766	59.728109
11	6234.0	6024.913086	-3.353977
12	6606.0	9287.386719	40.590171
13	5729.0	7849.512695	37.013662
14	5375.0	7870.563965	46.429097
15	5008.0	10127.592773	102.228290
16	5582.0	8670.230469	55.324802

17	3228.0	7724.585449	139.299425
18	5170.0	6622.858887	28.101719
19	5501.0	9809.236328	78.317330
20	5319.0	8795.014648	65.350905
21	5532.0	8636.873047	56.125688
22	5611.0	10085.086914	79.737781
23	5047.0	10332.560547	104.726779
24	3786.0	8521.807617	125.087364
25	4585.0	6667.254883	45.414501
26	5557.0	9674.590820	74.097369
27	5267.0	9483.236328	80.050054
28	4128.0	9043.376953	119.074054
29	3623.0	9544.210938	163.433920
30	1749.0	9138.868164	422.519621
31	1787.0	8568.396484	379.484974
32	920.0	6625.708496	620.185706
33	1013.0	9593.843750	847.072433
34	441.0	7210.309570	1534.990832

IT Del	LP-CERTAN-22-GG	Halaman 17 dari 22		
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan				
Buatan di Institut Teknologi Del				

6. Implementasi

Implementasi yang digunakan menggunakan code program untuk melihat *actual value* dan *predict value*. Implementasi dilakukan sebanyak dua kali pengujian menggunakan perhitungan *mean* pada data. *Actual value* digambarkan pada grafik berwarna biru dan *predict value* berwarna merah. Code yang digunakan untuk mendapatkan hasil atau result seperti di bawah ini.

```
df_result['Diff'] = 100 * (df_result['Prediction'] - df_result['Actual']) / df_result['Actual']

df_result
```

Berikut ini adalah implementasi pengujian pertama

```
mean = df_result['Actual'].mean()
mae = (df_result['Actual'] - df_result['Prediction']).abs().mean()

print("mean: ", mean)
print("mae:", mae)
print("mae/mean ratio: ", 100*mae/mean,"%")
print("correctness: ", 100 - 100*mae/mean,"%")
```

Sehingga didapatkan hasil sebagai berikut

mean: 6547.175

mae: 1802.6353698730468

mae/mean ratio: 27.533025615980126 % correctness: 72.46697438401988 %

Berikut ini merupakan grafik yang didapatkan apabila code tersebut telah dijalankan.

IT Del	LP-CERTAN-22-GG	Halaman 18 dari 22		
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan				
Buatan di Institut Teknologi Del.				

Berikut ini adalah implementasi pengujian kedua

```
mean = df_result['Actual'].mean()
mae = (df_result['Actual'] - df_result['Prediction']).abs().mean()

print("mean: ", mean)
print("mae:", mae)
print("mae/mean ratio: ", 100*mae/mean,"%")
print("correctness: ", 100 - 100*mae/mean,"%")
```

mean: 4001.15

mae: 4466.262390136719

mae/mean ratio: 111.62446771894876 % correctness: -11.624467718948765 %

Berikut ini merupakan grafik yang didapatkan apabila code tersebut telah dijalankan.

7. Kesimpulan

Berdasarkan penerapan metode dan pengujian yang dilakukan, maka dapat diambil kesimpulan sebagai berikut:

Metode Time Series Forecasting merupakan suatu area yang terdapat dalam machine learning yang berfokus pada analisis terhadap atribut waktu

- Metode Recurrent Neural Network (RNN) merupakan suatu metode yang menjelaskan perancangan data yang bersambung ataupun berurutan yang berhubungan dengan time series yang dapat memprediksi kejadian kejadian yang akan terjadi di masa mendatang seperti prediksi terkait hasil produksi pangan di Indonesia
- 2. Recurrent Neural Network (RNN) juga merupakan metode yang digunakan ketika menggunakan data sequential.
- Convolutional Neural Network merupakan suatu metode machine learning yang pengembangannya menerapkan fungsi Multi Layer Perceptron yang merupakan pengolahan data dua dimensi
- 4. Dengan pemanfaatan dari metode CNN ini juga memerlukan beberapa pertimbangan yang dilakukan dengan melihat kelebihan yang terdapat dalam CNN dimana menggunakan dimensi > 1 akan sangat mempengaruhi keseluruhan dari skala dalam suatu objek.

8. Saran

Setelah melakukan pengujian pada hasil pangan menggunakan metode time series forecasting, saran saya ada baiknya apabila melakukan pengujian berikutnya menggunakan metode lain berupa regresi atau single moving average.

Pembagian Kerja Kelompok

NIM	Nama	Tugas	
12S2035	Nemnem Sihombing	1.Membuat latar belakang	
		2.Membuat flowchart metode dan penjelasan	
		metode	
		3. Mencari studi literatur dan referensi	
		4. Mengisi hasil pengujian pada laporan	
12S20040	Esphi Hutabarat	1. Membuat latar belakang	
		2. Mencari data yang dibutuhkan	
		3. Memasukkan data ke dalam python	
		4. Mencari hasil pengujian pada python	
1S20042	Mastawila Simanjuntak	1.Membuat tujuan dan manfaat	
		2. Membuat ruang lingkup (Data & Bahasa)	
		3. Membuat istilah dan singkatan	
		4. Mengisi studi literatur dan referensi	
		4. Membuat analisis hasil pengujian pada laporan	
		5. Membuat Implementasi pada laporan	
		6. Membuat Kesimpulan dan saran	
		7. Push progress ke github	

IT Del	LP-CERTAN-22-GG	Halaman 21 dari 22	
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Proyek Mata Kuliah 10S3001 - Kecerdasan			
Buatan di Institut Teknologi Del.			

Referensi

- [1] R. Adhikari and R. . Agrawal, "An Introductory Study on Time Series Modeling and Forecasting Ratnadip Adhikari R. K. Agrawal," *arXiv Prepr. arXiv1302.6613*, vol. 1302.6613, pp. 1–68, 2013.
- [2] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, "Deep captioning with multimodal recurrent neural networks (m-RNN)," *3rd Int. Conf. Learn. Represent. ICLR* 2015 Conf. Track Proc., vol. 1090, no. 2014, pp. 1–17, 2015.
- [3] Z. Xu and J. Sun, "Model-driven deep-learning," *Natl. Sci. Rev.*, vol. 5, no. 1, pp. 22–24, 2018, doi: 10.1093/nsr/nwx099.
- [4] Y. Harjoseputro, "Convolutional Neural Network (Cnn) Untuk Pengklasifikasian Aksara Jawa," *Buana Inform.*, p. 23, 2018.
- [5] https://algorit.ma/blog/lstm-network-adalah-2022/
- [6] https://info.populix.co/articles/forecasting-adalah/
- [7] https://store.sirclo.com/blog/apa-itu-forecasting/