

PCT

Form PTO-1390 U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE (Rev. 1-98)		Attorney's Docket Number 48498-258443
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. Application No. (if known, see 37 CFR 1.5) 09/856681
International Application No. PCT/EP99/09215	International Filing Date 26 November 1999 (26.11.1999)	Priority Date Claimed 26 November 1998 (26.11.1998)

NAME OF Invention

HUMAN SEMAPHORIN 6A-1 (SEMA6A-A), A GENE INVOLVED IN NEURONAL DEVELOPMENT AND REGENERATION MECHANISMS DURING APOPTOSIS, AND ITS USE AS A POTENTIAL DRUG TARGET

Applicant(s) for DO/EO/US

BEHL, Christian; KLOSTERMANN, Andreas

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
 3. This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
 4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- A copy of the International Application as filed (35 U.S.C. 371(c)(2))
- a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
- A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
- a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
- A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- A translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).
- Items 11. to 16. below concern document(s) or information included:
11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
 13. A FIRST preliminary amendment.
 14. A SECOND or SUBSEQUENT preliminary amendment.
 14. A substitute specification.
 15. A change of power of attorney and/or address letter.
 16. Other items or information: return postcard

Express Mail Label No.EL329505255US

Date: May 22, 2001

Page 1 of 2

U.S. Application No. 09/856681	International Application No. PCT/EP99/09215	Attorney's Docket Number 48498-258443
17. <input checked="" type="checkbox"/> The following fees are submitted:		
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):		
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$970.00		
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$840.00		
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$760.00		
International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$670.00		
International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4) \$96.00		
ENTER APPROPRIATE BASIC FEE AMOUNT = \$840		
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)). \$130		
<input checked="" type="checkbox"/> Claims	Number Filed	Number Extra
Total claims	1 - 20 =	0
Independent Claims	1 - 3 =	0
Multiple Dependent Claims (if applicable)		+ 260.00
TOTAL OF ABOVE CALCULATIONS = \$970		
Reduction of 1/2 for filing by small entity, if applicable. Applicant claims small entity status.		
SUBTOTAL = \$485		
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)). \$		
TOTAL NATIONAL FEE = \$485		
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +		
TOTAL FEES ENCLOSED = \$485		
Amount to be refunded: \$		
charged: \$		
a. <input checked="" type="checkbox"/>	A check in the amount of \$485 to cover the above fees is enclosed.	
b. <input type="checkbox"/>	Please charge my Deposit Account No. 11-0855 in the amount of \$_____ to cover the above fees. A duplicate copy of this sheet is enclosed.	
c. <input checked="" type="checkbox"/>	The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment, to Deposit Account No. 11-0855. A duplicate copy of this sheet is enclosed.	
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.		
SEND ALL CORRESPONDENCE TO: John K. McDonald, Ph.D. Kilpatrick Stockton, LLP 2400 Monarch Tower, 3424 Peachtree Road, N.E. Atlanta, Georgia 30326 Telephone: 404-949-2400		
 John K. McDonald, Ph.D. - Reg. No. 42,860		
FORM PTO-1390 (Rev. 1-98) adapted		

Patents

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
BEHL, CHRISTIAN et al.)
Serial No.: Filed Concurrently Herewith,)
U. S. National Phase of PCT)
EP 99/09215 Filed November 26, 1999)
Filed: May 22, 2001)
For: HUMAN SEMAPHORIN 6A-1)
(SEMA6A-A), A GENE INVOLVED)
IN NEURONAL DEVELOPMENT)
AND REGENERATION)
MECHANISMS DURING APOPTOSIS,)
AND ITS USE AS A POTENTIAL)
DRUG TARGET)

PRELIMINARY AMENDMENT

1013856681-0001

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

Prior to examination of the concurrently filed patent application, please make the following amendments.

In The Specification:

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail No. EL329505255US addressed to: Assistant Commissioner of Patents, Box Patent Application, Washington, DC, 20231, on May 22, 2001.

John K. McDonald, Ph.D. - Reg. No. 42,860

Please amend the specification as follows:

On page 1, after the title "Human Semaphorin 6A-1 (SEMA6A-A), A Gene Involved in Neuronal Development and Regeneration Mechanisms During Apoptosis, and Its Use as a Potential Drug Target", please add the following:

Prior Related Applications

This application is the U. S. National Phase filing of International Application PCT/EP99/09215, with an international filing date of November 26, 1999, which claims priority to European Patent Application No. 98 122 441.3 filed November 26, 1998.

In The Claims:

Prior to examination of the application, please cancel Claims 1-21 and add the following new claim.

22. (New) Nucleic acid coding for human semaphorin 6A-1 comprising:
- (a) the nucleotide sequence shown in SEQ ID NO: 1,
 - (b) a sequence corresponding to the nucleotide sequence shown in SEQ ID NO: 1 within the degeneration of the genetic code,
or
 - (c) a sequence which hybridizes with the sequences of (a)
or/and
 - (b) under stringent conditionswith the proviso that it contains a nucleic acid coding for a binding domain of human semaphorin 6A-1 comprising:
 - (d) the nucleotide sequence shown in SEQ ID NO:3,

- (e) a sequence corresponding to the nucleotide sequence shown in SEQ ID NO:3 within the degeneration of the genetic code, or
- (f) a sequence which hybridizes with the sequences of (d) or/and (e) under stringent conditions.

No additional fees are believed due; however, the Commissioner is hereby authorized to charge any deficiency, or credit any overpayment, to Deposit Account No. 11-0855.

Respectfully submitted,

John K. McDonald, Ph.D.
Reg. No. 42,860

KILPATRICK STOCKTON LLP
2400 Monarch Tower
3424 Peachtree Road
Atlanta, GA 30326
404-949-2400
Attorney Docket No. 48498-258443

HUMAN SEMAPHORIN GA-1 (SEMAGA-A), A GENE INVOLVED IN NEURONAL DEVELOPMENT AND REGENERATION MECHANISMS DURING ADOPTOSIS, AND ITS USE AS A POTENTIAL DRUG TARGET

5

Specification

The present invention relates to human semaphorin 6A-1 (SEMA6A-1), a novel gene involved in neuronal development and regeneration mechanisms during apoptosis.

Actin binding and filament assembly controlling proteins are essential for cellular events that require a drastic remodelling of cytoskeletal elements during development and apoptosis. Proline-rich proteins of the Ena/VASP family play a crucial role in actin and filament dynamics and have only recently been shown to be clustered to cell surface receptors like Dlar, a tyrosine phosphatase essential for motor axon outgrowth (F.B.Gertler et al., 1996, Cell 87, 227-239; Z.Wills et al., 1999, Neuron 22, 301-312). In the last decade the semaphorins were identified as a protein family displaying secreted or transmembrane-based repulsive guidance cues critically involved in neuronal development (J.G.Culotti and A.L.Kolodkin, Curr.Op.Neurobiol., 6, 81-88).

Therefore, it was an object of the present invention to provide a novel
25 human semaphorin variant.

The invention comprises a nucleic acid coding for human semaphorin 6A-1 comprising

- 30 (a) the nucleotide sequence shown in SEQ ID NO:1,
(b) a sequence corresponding to the nucleotide sequence shown in SEQ
ID NO:1 within the degeneracy of the genetic code, or

- 2 -

- (c) a sequence which hybridizes with the sequences of (a) or/and (b) under stringent conditions.

Surprisingly, the transmembranous human semaphorin 6A-1 ((HSA)

5 SEMA6A-1) is capable of a selective binding to members of the Ena/VASP protein family. (HSA)SEMA6A-1 contains a cytoplasmic stretch at its C-terminal end. This domain shares a striking homology to Zyxin, a protein known to bind Ena/VASP (T.Macalma et al., 1996, JBC 271, 31470-31478; S.Hu and L.F.Reichardt, Neuron 22, 419-422). Thus, the human 10 semaphorin sequence was found to comprise a section which matches with other semaphorin sequences, e.g. murine semaphorin sequences as well as a novel domain at its C-terminal end which is capable of binding to elements attached to the cytoskeleton.

15 Therefore, the invention further comprises a nucleic acid coding for a binding domain of human semaphorin 6A-1 comprising: (a) the nucleotide sequence shown in SEQ ID NO:3,(b) a sequence corresponding to the nucleotide sequence shown in SEQ ID NO:3 within the degeneration of the genetic code, or (c) a sequence which hybridizes with the sequences of (a) or/and (b) under stringent conditions.

20
The term "hybridization under stringent conditions" according to the present invention is used as described by Sambrook et al. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (1989), 1.101-1.104). Preferably, a stringent hybridization according to the present invention is given when after washing for an hour with 1 x SSC and 0.1% SDS at 50°C, preferably at 55°C, more preferably at 62°C, and most preferably at 68°C, and more preferably for 1 hour with 0.2 x SSC and 0.1% SDS at 50°C, preferably at 55°C, more preferably at 62°C, and most preferably at 68°C a positive hybridization signal is still observed. A nucleotide sequence which hybridizes under such washing conditions with the nucleotide sequence shown in SEQ ID NO:1 or with a nucleotide

DRAFT PAGES 100-1000

- 3 -

sequence corresponding thereto within the degeneration of the genetic code is a nucleotide sequence according to the invention.

The nucleic acid according to the invention preferably is in operative association with an expression control sequence that is active in eukaryotic cells, preferably in mammal cells.

The nucleotide sequence according to the invention preferably is a DNA. However, it may also be an RNA or a nucleic acid analog, such as a peptidic nucleic acid.

The nucleic acid according to the invention preferably comprises a sequence having a homology of greater than 80%, preferably greater than 90%, and more preferably greater than 95% and, in particular, greater than 97% to the nucleotide sequence according to SEQ ID NO:1. The term homology as used herein can be defined by the equation $H(\%) = [1-V/X] \cdot 100$, wherein H means homology, X is the total number of nucleobases of the nucleotide sequence according to SEQ ID NO:1 and V is the number of different nucleobases of a comparative sequence with regard to the nucleotide sequence according to SEQ ID NO:1.

The invention further comprises a polypeptide encoded by a nucleic acid according to the invention. Such a polypeptide is, in particular, capable of binding to members of the Ena/VASP protein family. The transmembranous SEMA6A-1 is capable of selectively binding to Evl but not Mena, both members of the Ena/VASP protein family.

The nucleic acids according to the invention can be obtained using known techniques, e.g. using short sections of the nucleotide sequence shown in SEQ ID NO:1 as hybridization probe or/and primer. They can, however, also be produced by chemical synthesis.

- 4 -

The invention further comprises a recombinant vector containing at least one copy of the nucleic acid according to the invention. This vector may be a prokaryotic or a eukaryotic vector which contains the nucleic acid according to the invention under the control of an expression signal (promoter, operator, enhancer etc.). Examples of prokaryotic vectors are chromosomal vectors such as bacteriophages and extra-chromosomal vectors such as plasmids, circular plasmid vectors being particularly preferred. Prokaryotic vectors useful according to the present invention are, e.g., described in Sambrook et al., *supra*, chapter 1-4.

More preferably, the vector according to the invention is a eukaryotic vector, in particular a vector for mammal cells. Most preferred are vectors suitable for gene therapy, such as retrovirus, modified adenovirus or adeno-associated virus. Such vectors are known to the man skilled in the art of molecular biology and gene therapy and are also described in Sambrook et al., *supra*, chapter 16.

In addition to the polypeptide encoded by the nucleic acid of SEQ ID NO:1 or SEQ ID NO:3, the invention also relates to polypeptides differing therefrom by substitutions, deletions or/and insertions of single amino acids or short amino acid sections. The polypeptide is obtainable by expression of the nucleic acid sequence in a suitable expression system (cf. Sambrook et al., *supra*).

The polypeptide encoded by SEQ ID NO:1 is (HSA)SEMA6A-1, a new semaphorin variant containing a Zyxin-like domain that binds to the Ena/VASP-like protein (Evl). In particular, the semaphorins are a protein family displaying secreted or transmembrane-based repulsive guidance cues critically involved in neuronal development. The polypeptide encoded by SEQ ID NO:3 is a binding domain. This domain can bind selectively to Evl, a member of the Ena/VASP protein family. It may be particularly favorable to combine this binding domain with other proteins having known

- 5 -

functionality to give a fusion protein. This binding domain can be used advantageously, alone or as part of a fusion protein, as a means for screening and as a diagnostic and therapeutic target.

- 5 The invention further comprises a cell transformed with a nucleic acid or a vector according to the invention. The cell may be a eukaryotic or a prokaryotic cell, eukaryotic cells being preferred.

10 The present invention also comprises the use of the polypeptide or fragments thereof as immunogen for the production of antibodies. Standard protocols for obtaining antibodies may be used.

15 The present invention also comprises a pharmaceutical composition comprising a nucleic acid, modified nucleic acid, vector, cell, polypeptide or antibody as defined herein as active component.

20 The pharmaceutical composition may comprise pharmaceutically acceptable carriers, vehicles and/or additives and additional active components, if desired. The pharmaceutical composition can be used for diagnostic purposes or for the production of therapeutic agents. Particularly preferred is the use as a therapeutic agent for the modulation of the immune system.

25 Since the human semaphorin 6A-1 gene is involved in neuronal development and regeneration mechanisms during apoptosis, this gene can be used to design drug target structures. Members of the semaphorin gene family act as guidance signals and regulatory molecules during neuronal development. Besides its role in development, semaphorin has essential functions in the immune system. Semaphorin can also be linked to potential cancer, drug resistance and disease genes.

30 On the basis of a phylogenetic approach, the semaphorin gene family is currently distinguished into eight classes containing invertebrate (classes 1,

00256563.1 - DE2001

2) and vertebrate proteins (classes 3-7). Consistent with this nomenclature, the newly identified semaphorin is grouped into class 6 as human semaphorin 6A-1.

5 RNA expression studies have revealed SEMA6A-1 expression in areas consistent with a role of SEMA6A-1 as a guidance and regulatory signal during development and regeneration. Specialized domains in the cytoplasmic tail of the SEMA6A-1 gene product containing cytoskeletal binding elements show that SEMA6A-1 is also involved in differentiation, 10 cytoskeletal stabilization and plasticity.

Finally, the invention is also directed to the use of the herein described pharmaceutical compositions for effecting differentiation, cytoskeletal stabilization and/or plasticity.

15 The invention is further described by the appended figures and examples,
wherein

Figure 1 shows SEQ ID NO:1, the coding nucleotide sequence of the human semaphorin 6A-1 gene.

Figure 2 shows the nucleotide sequence of the human semaphorin 6A-1 gene as well as the derived amino acid sequence thereof;

Figure 3 shows the tissue distribution of (HSA)SEMA6A-1 revealed by Northern blot hybridizations of human embryo brain, lung, liver, kidney and human adult heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas tissue, respectively;

Figure 4 shows the (MMU)Sema6A-1 distribution in mouse adult and embryonic tissues revealed by in-situ hybridizations;

- 7 -

Figure 5 shows expression, protein size and dimerization of (HSA)SEMA6A-1;

5 Figure 6 shows a sequence alignment between SEMA6A-1 and Zyxin, wherein Figure 6a shows SEQ ID NO:3, the coding nucleotide sequence to a binding domain and Figure 6b shows the sequence of Zyxin;

10 Figure 7 shows immunoprecipitation of (HSA)SEMA6A-1 with α -Evl and α -Mena antibodies. A (α -Evl): Vector only (lane 1), pFlagSEMA6A-1 (lane 2), HT22 supplemented with purified SEMA6A-1 protein (lane 3), pFlagSEMA6A-1 precipitation using only protein A beads (lane 4), control detection of pFlagSEMA6A-1 transfected cells (lane 5), SEMA6A-1 purified control (lane 6), untransfected HT22 control (lane 7), Evl control in HT22 (lane 8); B (α -Mena): Vector only (lane 1), pFlagSEMA6A-1 (lane 2), HT22 supplemented with purified SEMA6A-1 protein (lane 3), control detection of pFlagSEMA6A-1 transfected cells (lane 4);

20 Figure 8 gives a graphical overview on the known Ena/VASP interacting proteins like Zyxin, Dlar and (HSA)SEMA6A-1.

Examples

Example 1

Cloning, genomic localization and tissue distribution of (HSA)SEMA6A-1

To identify and isolate repulsive guidance cues that might be involved in neuronal apoptosis a low stringency PCR-approach on cDNA from the human neuroblastoma cell line SK-N-MC was performed and a fragment of (HSA)SEMA6A-1 was amplified. This fragment was used to screen a human

00956581, 00956582

- 8 -

1-ZAP Express cDNA library. Sequencing of 4 isolated clones revealed an ORF of 3093 bp referring to a protein of 1030 amino acids in total length with a predicted size of 135 kDa. (Fig.2: Nucleic acid sequence and deduced amino acid sequence).

5 Database searches identified 43 unordered sequences (Genbank Acc.-No. AC008524) and a mapped genomic survey sequence (Genbank Acc.-No. AB002453) of human chromosome 5 localizing the gene to 5q21-22. Gaps between the genomic sequences were closed by PCR on human genomic DNA and subsequent sequencing.

10 The (hsa)sema6A-1 gene covers 45 kb of genomic sequence and consists of 18 exons including 1 untranslated exon at the 3'-end (see Figure 2).

Example 2

Similarity and domain structure of (HSA)SEMA6A-1

15 Database searches revealed that SEMA6A-1 (1030aa) has a relatively high similarity to its murine ortholog Sema6A-1 (869aa) within the overlapping region consisting of 869aa. The existence of an additional cytoplasmic domain prompted us to name the new protein SEMA6A-1. This unique
20 domain shares a 33% identity (49% similarity) to Zyxin, a proline-rich protein present at focal adhesion points and capable of binding to members of the Ena/VASP family. Binding of Zyxin to Ena/VASP occurs via a peptide stretch displaying the sequence DFPPPP (K.E.Prehoda et al., 1999, Cell 97, 471-480). (HSA)SEMA6A-1 contains two potential binding motifs (aa 858-
25 962 (DNPPP) and aa 1010-1015 (DVPPKP) in its Zyxin homologous domain that are similar to the above-mentioned motif.

Example 3**Tissue distribution of (HSA)SEMA6A-1 revealed by Northern blot and in situ hybridization**

5 Northern blot hybridizations of poly A⁺ RNA of human adult and embryonic tissues detected two transcripts in the molecular range of 4.5 kb and 7 kb. Highest levels of detection were present in embryonic brain and kidney, moderate expression in lung and virtually no expression in liver. Compared to embryonic levels there was observed a clear reduction of expression of
10 (HSA)SEMA6A-1 in adult tissues with the exception of placenta. In situ hybridizations in mouse embryo revealed a distinct expression throughout the whole embryo that is restricted to nervous system areas. These results indicate a general role of this protein in development and are shown in Figures 3 and 4: Figure 3 shows the human Northern blots. Figure 4 displays in situ hybridizations of embryonic (A, B, C, D) and adult (E, F, G) tissues. Notify the dominant expression in embryonic brain stem (A, B, D), optic precursors (A, C), spinal cord (B, D) and limb (B). High expression levels in adult regions are maintained in piriform cortex (E), cerebellar regions (F, G) and olfactory bulb (G).

20

Example 4**Expression of (HSA)SEMA6A-1 in mammalian cell lines**

In order to show that Ena/VASP proteins might be potential intracellular
25 binding partners for (HSA)SEMA6A-1 (see Figure 6, Alignment of (HSA)SEMA6A-1 and Zyxin) and that (HSA)SEMA6A-1 and Ena/VASP-like proteins might be interacting partners a XbaI/Scal fragment of the SEMA6A-1 clone covering the full length protein sequence only lacking the signal sequence was subcloned into the pFLAG-CMV-1 vector. This vector allows
30 rapid detection of the expressed fusion protein through the N-terminal Flag-Taq fused to the protein.

- 10 -

Immunoblotting of the tagged protein (Flag-SEMA6A-1) displayed a protein size of 125 kDa which closely corresponds to the predicted protein size. Expression in a human cell line (HEK293) and in a clonal mouse hippocampal cell line (HT22) followed by immunofluorescent analysis revealed that SEMA6A-1 is targeted to the cell surface and colocalizes with Evl and Mena, indicating a possible interaction between these proteins (see Figure 5, showing a graphical overview on the domain structure of (HSA)SEMA6A-1 and the subcloning strategy. In addition, Western blots displaying the protein size and its dimerization abilities are shown).

Example 5

Immunoprecipitation of (HSA)SEMA6A-1

Using antibodies specific for Mena and Evl Flag-SEMA6A-1 was immunoprecipitated from Triton X-100 extracts of transfected HEK239 and HT22 cells. The precipitate was separated by SDS-PAGE, and subsequent immunoblotting with the monoclonal anti-Flag antibody revealed that Flag-SEMA6A-1 co-immunoprecipitates with Evl but not Mena. To confirm this interaction Flag-SEMA6A-1 was purified from transfected HEK239 cells on an anti-Flag affinity column and the Triton X-100 extract of untransfected HT22 cells was supplemented with the purified protein, followed by immunoprecipitation of the protein complex using the α -Evl antibody. Immunoblotting again revealed that FlagSEMA6A-1 co-precipitates Evl. Figure 7 shows the immunoprecipitation experiments using the α -Evl- and α -Mena antibodies.

- 11 -

SEQUENCE LISTING

<110> Max-Planck-Gesellschaft zur Foerderung der Wissens

<120> Human semaphorin 6A-1 (SEMA6A-1), a novel gene involved
in neuronal development and regeneration mechanisms
during apoptosis, as a potential drug target structure

<130> 19592

<140>

<141>

<150> 98122441.3

<151> 1998-11-26

<160> 7

<170> PatentIn Ver. 2.1

<210> 1

<211> 3093

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(3093)

<400> 1

atg agg tca gaa gcc ttg ctg cta tat ttc aca ctg cta cac ttt gct 48
Met Arg Ser Glu Ala Leu Leu Leu Tyr Phe Thr Leu Leu His Phe Ala
1 5 10 15

ggg gct ggt ttc cca gaa gat tct gag cca atc agt att tcg cat ggc 96
Gly Ala Gly Phe Pro Glu Asp Ser Glu Pro Ile Ser Ile Ser His Gly
20 25 30

aac tat aca aaa cag tat ccg gtg ttt gtg ggc cac aag cca gga cgg 144
Asn Tyr Thr Lys Gln Tyr Pro Val Phe Val Gly His Lys Pro Gly Arg
35 40 45

aac acc aca cag agg cac agg ctg gac atc cag att atg atc atg 192
Asn Thr Thr Gln Arg His Arg Leu Asp Ile Gln Met Ile Met Ile Met
50 55 60

aac gga acc ctc tac att gct gct agg gac cat att tat act gtt gat 240
Asn Gly Thr Leu Tyr Ile Ala Ala Arg Asp His Ile Tyr Thr Val Asp

- 12 -

65	70	75	80
 ata gac aca tca cac acg gaa gaa att tat tgt agc aaa aaa ctg aca 288 Ile Asp Thr Ser His Thr Glu Glu Ile Tyr Cys Ser Lys Lys Leu Thr 85 90 95			
 tgg aaa tct aga cag gcc gat gta gac aca tgc aga atg aag gga aaa 336 Trp Lys Ser Arg Gln Ala Asp Val Asp Thr Cys Arg Met Lys Gly Lys 100 105 110			
 cat aag gat gag tgc cac aac ttt att aaa gtt ctt cta aag aaa aac 384 His Lys Asp Glu Cys His Asn Phe Ile Lys Val Leu Leu Lys Lys Asn 115 120 125			
 gat gat gca ttg ttt gtc tgt gga act aat gcc ttc aac cct tcc tgc 432 Asp Asp Ala Leu Phe Val Cys Gly Thr Asn Ala Phe Asn Pro Ser Cys 130 135 140			
 aga aac tat aag atg gat aca ttg gaa cca ttc ggg gat gaa ttc agc 480 Arg Asn Tyr Lys Met Asp Thr Leu Glu Pro Phe Gly Asp Glu Phe Ser 145 150 155 160			
 gga atg gcc aga tgc cca tat gat gcc aaa cat gcc aac gtt gca ctg 528 Gly Met Ala Arg Cys Pro Tyr Asp Ala Lys His Ala Asn Val Ala Leu 165 170 175			
 ttt gca gat gga aaa cta tac tca gcc aca gtg act gac ttc ctt gcc 576 Phe Ala Asp Gly Lys Leu Tyr Ser Ala Thr Val Thr Asp Phe Leu Ala 180 185 190			
 att gac gca gtc att tac cgg agt ctt gga gaa agc cct acc ctg cgg 624 Ile Asp Ala Val Ile Tyr Arg Ser Leu Gly Ser Pro Thr Leu Arg 195 200 205			
 acc gtc aag cac gat tca aaa tgg ttg aaa gaa cca tac ttt gtt caa 672 Thr Val Lys His Asp Ser Lys Trp Leu Lys Glu Pro Tyr Phe Val Gln 210 215 220			
 gcc gtg gat tac gga gat tat atc tac ttc ttc agg gaa ata gca 720 Ala Val Asp Tyr Gly Asp Tyr Ile Tyr Phe Phe Arg Glu Ile Ala 225 230 235 240			
 gtg gag tat aac acc atg gga aag gta gtt ttc cca aga gtg gct cag 768 Val Glu Tyr Asn Thr Met Gly Lys Val Val Phe Pro Arg Val Ala Gln 245 250 255			
 gtt tgt aag aat gat atg gga gga tct caa aga gtc ctg gag aaa cag 816 Val Cys Lys Asn Asp Met Gly Ser Gin Arg Val Leu Glu Lys Gln			

- 13 -

260

265

270

tgg acg tcg ttc ctg aag gcg cgc ttg aac tgc tca gtt cct gga gac 864
 Trp Thr Ser Phe Leu Lys Ala Arg Leu Asn Cys Ser Val Pro Gly Asp
 275 280 285

tct cat ttt tat ttc aac att ctc cag gca gtt aca gat gtg att cogt 912
 Ser His Phe Tyr Phe Asn Ile Leu Gln Ala Val Thr Asp Val Ile Arg
 290 295 300

atc aac ggg cgt gat gtt gtc ctg gca acg ttt tct aca cct tat aac 960
 Ile Asn Gly Arg Asp Val Val Leu Ala Thr Phe Ser Thr Pro Tyr Asn
 305 310 315 320

agc atc cct ggg tct gca gtc tgt gcc tat gac atg ctt gac att gcc 1008
 Ser Ile Pro Gly Ser Ala Val Cys Ala Tyr Asp Met Leu Asp Ile Ala
 325 330 335

agt gtt ttt act ggg aga ttc aag gaa cag aag tct cct gat tcc acc 1056
 Ser Val Phe Thr Gly Arg Phe Lys Glu Gln Lys Ser Pro Asp Ser Thr
 340 345 350

tgg aca cca gtt cct gat gaa cga gtt cct aag ccc agg cca ggt tgc 1104
 Trp Thr Pro Val Pro Asp Glu Arg Val Pro Lys Pro Arg Pro Gly Cys
 355 360 365

tgt gct ggc tca tcc tcc tta gaa aga tat gca acc tcc aat gag ttc 1152
 Cys Ala Gly Ser Ser Leu Glu Arg Tyr Ala Thr Ser Asn Glu Phe
 370 375 380

cct gat gat acc ctg aac ttc atc aag acg cac ccg ctc atg gat gag 1200
 Pro Asp Asp Thr Leu Asn Phe Ile Lys Thr His Pro Leu Met Asp Glu
 385 390 395 400

gca gtg ccc tcc atc ttc aac agg cca tgg ttc ctg aga aca atg gtc 1248
 Ala Val Pro Ser Ile Phe Asn Arg Pro Trp Phe Leu Arg Thr Met Val
 405 410 415

aga tac cgc ctt acc aaa att gca gtg gac aca gct gct ggg cca tat 1296
 Arg Tyr Arg Leu Thr Lys Ile Ala Val Asp Thr Ala Ala Gly Pro Tyr
 420 425 430

cag aat cac act gtg gtt ttt ctg gga tca gag aag gga atc atc ttg 1344
 Gln Asn His Thr Val Val Phe Leu Gly Ser Glu Lys Gly Ile Ile Leu
 435 440 445

aag ttt ttg gcc aga ata gga aat agt ggt ttt cta aat gac agc ctt 1392
 Lys Phe Leu Ala Arg Ile Gly Asn Ser Gly Phe Leu Asn Asp Ser Leu

- 14 -

450	455	460	
ttc ctg gag gag atg agt gtt tac aac tct gaa aaa tgc agc tat gat 1440			
Phe	Leu	Glu	Glu
Met	Ser	Val	Tyr
Asn	Ser	Glu	Lys
Cys	Ser	Tyr	Asp
465	470	475	480
gga gtc gaa gac aaa agg atc atg ggc atg cag ctg gac aga gca agc 1488			
Gly	Val	Glu	Asp
Lys	Arg	Ile	Met
Gly	Met	Gln	Leu
485	490	495	
agc tct ctg tat gtt gcg ttc tct acc tgt gtg ata aag gtt ccc ctt 1536			
Ser	Ser	Leu	Tyr
Val	Ala	Phe	Ser
Thr	Cys	Val	Ile
Lys	Val	Pro	Leu
500	505	510	
ggc cggttgt gaa cga cat ggg aag tgt aaa aaa acc tgt att gcc tcc 1584			
Gly	Arg	Cys	Glu
Arg	Cys	Gly	Lys
His	Gly	Cys	Lys
515	520	525	
aga gac cca tat tgt gga tgg ata aag gaa ggt ggt gcc tgc agc cat 1632			
Arg	Asp	Pro	Tyr
Cys	Gly	Trp	Ile
Lys	Glu	Gly	Gly
530	535	540	
tta tca ccc aac agc aga ctg act ttt gag cag gac ata gag cgt ggc 1680			
Leu	Ser	Pro	Asn
Ser	Arg	Leu	Thr
Phe	Glu	Gln	Asp
545	550	555	560
aat aca gat ggt ctg ggg gac tgt cac aat tcc ttt gtg gca ctg aat 1728			
Asn	Thr	Asp	Gly
Gly	Leu	Gly	Asp
Cys	His	Asn	Ser
565	570	575	
ggc cat tcc agt tcc ctc ttg ccc agc aca acc aca tca gat tcg acg 1776			
Gly	His	Ser	Ser
Ser	Leu	Leu	Pro
Pro	Ser	Thr	Thr
580	585	590	
gct caa gag ggg tat gag tct agg gga gga atg ctg gac tgg aag cat 1824			
Ala	Gln	Glu	Gly
Tyr	Glu	Ser	Arg
Gly	Gly	Gly	Met
595	600	605	
ctg ctt gac tca cct gac agc aca gac cct ttg ggg gca gtg tct tcc 1872			
Leu	Leu	Asp	Ser
Pro	Asp	Ser	Thr
Asp	Pro	Leu	Gly
610	615	620	
cat aat cac caa gac aag aag gga gtg att cgg gaa agt tac ctc aaa 1920			
His	Asn	His	Gln
Gln	Asp	Lys	Lys
Tyr	Val	Ile	Arg
625	630	635	640
ggc cac gac cag ctg gtt ccc gtc acc ctc ttg gcc att gca gtc atc 1968			
Gly	His	Asp	Gln
Gln	Leu	Val	Pro
Val	Thr	Leu	Leu
Ala	Ile	Ala	Val
			Ile

- 15 -

645

650

655

ctg gct ttc gtc atg ggg gcc gtc ttc tcg ggc atc acc gtc tac tgc 2016
 Leu Ala Phe Val Met Gly Ala Val Phe Ser Gly Ile Thr Val Tyr Cys
 660 665 670

gtc tgt gat cat cgg cgc aaa gac gtg gct gtg cag cgc aag gag 2064
 Val Cys Asp His Arg Arg Lys Asp Val Ala Val Val Gln Arg Lys Glu
 675 680 685

aag gag ctc acc cac tcg cgc cgg ggc tcc atg agc agc gtc acc aag 2112
 Lys Glu Leu Thr His Ser Arg Arg Gly Ser Met Ser Ser Val Thr Lys
 690 695 700

ctc agc ggc ctc ttt ggg gac act caa tcc aaa gac cca aag ccc gag 2160
 Leu Ser Gly Leu Phe Gly Asp Thr Gln Ser Lys Asp Pro Lys Pro Glu
 705 710 715 720

gcc atc ctc acg cca ctc atg cac aac ggc aag ctc gcc act ccc ggc 2208
 Ala Ile Leu Thr Pro Leu Met His Asn Gly Lys Leu Ala Thr Pro Gly
 725 730 735

aac acg gcc aag atg ctc att aaa gca gac cag cac ctg gac ctg 2256
 Asn Thr Ala Lys Met Leu Ile Lys Ala Asp Gln His His Leu Asp Leu
 740 745 750

acg gcc ctc ccc acc cca gag tca acc cca acg ctg cag cag aag cgg 2304
 Thr Ala Leu Pro Thr Pro Glu Ser Thr Pro Thr Leu Gln Gln Lys Arg
 755 760 765

aag ccc agc cgc ggc agc cgc gag tgg gag agg aac cag aac ctc atc 2352
 Lys Pro Ser Arg Gly Ser Arg Glu Trp Glu Arg Asn Gln Asn Leu Ile
 770 775 780

aat gcc tgc aca aag gac atg ccc ccc atg ggc tcc cct gtg att ccc 2400
 Asn Ala Cys Thr Lys Asp Met Pro Pro Met Gly Ser Pro Val Ile Pro
 785 790 795 800

acg gac ctg ccc ctg cgg gcc tcc ccc agc cac atc ccc agc gtg gtg 2448
 Thr Asp Leu Pro Leu Arg Ala Ser Pro Ser His Ile Pro Ser Val Val
 805 810 815

gtc ctg ccc atc acg cag cag ggc tac cag cat gag tac gtg gac cag 2496
 Val Leu Pro Ile Thr Gln Gln Gly Tyr Gln His Glu Tyr Val Asp Gln
 820 825 830

ccc aaa atg agc gag gtg gcc cag atg gcg ctg gag gac cag gcc gcc 2544
 Pro Lys Met Ser Glu Val Ala Gln Met Ala Leu Glu Asp Gln Ala Ala

09856691 · 010304

- 16 -

835	840	845	
aca ctg gag tat aag acc atc aag gaa cat ctc agc agc aag agt ccc 2592			
Thr	Leu	Glu	Tyr Lys Thr Ile Lys Glu His Leu Ser Ser Lys Ser Pro
850	855	860	
aac cat ggg gtg aac ctt gtg gag aac ctg gac agc ctg ccc ccc aaa 2640			
Asn	His	Gly	Val Asn Leu Val Glu Asn Leu Asp Ser Leu Pro Pro Lys
865	870	875	880
gtt cca cag cgg gag gcc tcc ctg ggt ccc ccg gga gcc tcc ctg tct 2688			
Val	Pro	Gln	Arg Glu Ala Ser Leu Gly Pro Pro Gly Ala Ser Leu Ser
885	890	895	
cag acc ggt cta agc aag cgg ctg gaa atg cac cac tcc tct tcc tac 2736			
Gln	Thr	Gly	Leu Ser Lys Arg Leu Glu Met His His Ser Ser Tyr
900	905	910	
ggg gtt gac tat aag agg agc tac ccc acg aac tcg ctc acg aga agc 2784			
Gly	Val	Asp	Tyr Lys Arg Ser Tyr Pro Thr Asn Ser Leu Thr Arg Ser
915	920	925	
cac cag gcc acc act ctc aaa aga aac aac act aac tcc tcc aat tcc 2832			
His	Gln	Ala	Thr Thr Leu Lys Arg Asn Asn Thr Asn Ser Ser Asn Ser
930	935	940	
tct cac ctc tcc aga aac cag agc ttt ggc agg gga qac aac ccg ccg 2880			
Ser	His	Leu	Ser Arg Asn Gln Ser Phe Gly Arg Gly Asp Asn Pro Pro
945	950	955	960
ccc gcc ccg cag agg gtg gac tcc atc cag gtg cac agc tcc cag cca 2928			
Pro	Ala	Pro	Gln Arg Val Asp Ser Ile Gln Val His Ser Ser Gln Pro
965	970	975	
tct ggc cag gcc gtg act gtc tcg agg cag ccc agc ctc aac gcc tac 2976			
Ser	Gly	Gln	Ala Val Thr Val Ser Arg Gln Pro Ser Leu Asn Ala Tyr
980	985	990	
aac tca ctg aca agg tcg ggg ctg aag cgt acg ccc tcg cta aag ccg 3024			
Asn	Ser	Leu	Thr Arg Ser Gly Leu Lys Arg Thr Pro Ser Leu Lys Pro
995	1000	1005	
gac gta ccc ccc aaa cca tcc ttt gct ccc ctt tcc aca tcc atg aag 3072			
Asp	Val	Pro	Pro Lys Pro Ser Phe Ala Pro Leu Ser Thr Ser Met Lys
1010	1015	1020	
ccc aat gat gcg tgt aca taa 3093			
Pro	Asn	Asp	Ala Cys Thr

- 17 -

1025 1030

<210> 2
<211> 1030
<212> PRT
<213> Homo sapiens

<400> 2
Met Arg Ser Glu Ala Leu Leu Leu Tyr Phe Thr Leu Leu His Phe Ala
1 5 10 15

Gly Ala Gly Phe Pro Glu Asp Ser Glu Pro Ile Ser Ile Ser His Gly
20 25 30

Asn Tyr Thr Lys Gln Tyr Pro Val Phe Val Gly His Lys Pro Gly Arg
35 40 45

Asn Thr Thr Gln Arg His Arg Leu Asp Ile Gln Met Ile Met Ile Met
50 55 60

Asn Gly Thr Leu Tyr Ile Ala Ala Arg Asp His Ile Tyr Thr Val Asp
65 70 75 80

Ile Asp Thr Ser His Thr Glu Glu Ile Tyr Cys Ser Lys Lys Leu Thr
85 90 95

Trp Lys Ser Arg Gln Ala Asp Val Asp Thr Cys Arg Met Lys Gly Lys
100 105 110

His Lys Asp Glu Cys His Asn Phe Ile Lys Val Leu Leu Lys Lys Asn
115 120 125

Asp Asp Ala Leu Phe Val Cys Gly Thr Asn Ala Phe Asn Pro Ser Cys
130 135 140

Arg Asn Tyr Lys Met Asp Thr Leu Glu Pro Phe Gly Asp Glu Phe Ser
145 150 155 160

Gly Met Ala Arg Cys Pro Tyr Asp Ala Lys His Ala Asn Val Ala Leu
165 170 175

Phe Ala Asp Gly Lys Leu Tyr Ser Ala Thr Val Thr Asp Phe Leu Ala
180 185 190

Ile Asp Ala Val Ile Tyr Arg Ser Leu Gly Glu Ser Pro Thr Leu Arg
195 200 205

- 18 -

Thr Val Lys His Asp Ser Lys Trp Leu Lys Glu Pro Tyr Phe Val Gln
 210 215 220

Ala Val Asp Tyr Gly Asp Tyr Ile Tyr Phe Phe Arg Glu Ile Ala
 225 230 235 240

Val Glu Tyr Asn Thr Met Gly Lys Val Val Phe Pro Arg Val Ala Gln
 245 250 255

Val Cys Lys Asn Asp Met Gly Gly Ser Gln Arg Val Leu Glu Lys Gln
 260 265 270

Trp Thr Ser Phe Leu Lys Ala Arg Leu Asn Cys Ser Val Pro Gly Asp
 275 280 285

Ser His Phe Tyr Phe Asn Ile Leu Gln Ala Val Thr Asp Val Ile Arg
 290 295 300

Ile Asn Gly Arg Asp Val Val Leu Ala Thr Phe Ser Thr Pro Tyr Asn
 305 310 315 320

Ser Ile Pro Gly Ser Ala Val Cys Ala Tyr Asp Met Leu Asp Ile Ala
 325 330 335

Ser Val Phe Thr Gly Arg Phe Lys Glu Gln Lys Ser Pro Asp Ser Thr
 340 345 350

Trp Thr Pro Val Pro Asp Glu Arg Val Pro Lys Pro Arg Pro Gly Cys
 355 360 365

Cys Ala Gly Ser Ser Ser Leu Glu Arg Tyr Ala Thr Ser Asn Glu Phe
 370 375 380

Pro Asp Asp Thr Leu Asn Phe Ile Lys Thr His Pro Leu Met Asp Glu
 385 390 395 400

Ala Val Pro Ser Ile Phe Asn Arg Pro Trp Phe Leu Arg Thr Met Val
 405 410 415

Arg Tyr Arg Leu Thr Lys Ile Ala Val Asp Thr Ala Ala Gly Pro Tyr
 420 425 430

Gln Asn His Thr Val Val Phe Leu Gly Ser Glu Lys Gly Ile Ile Leu
 435 440 445

Lys Phe Leu Ala Arg Ile Gly Asn Ser Gly Phe Leu Asn Asp Ser Leu
 450 455 460

- 19 -

Phe Leu Glu Glu Met Ser Val Tyr Asn Ser	Glu Lys Cys Ser Tyr Asp		
465	470	475	480

Gly Val Glu Asp Lys Arg Ile Met Gly Met Gln Leu Asp Arg Ala Ser		
485	490	495

Ser Ser Leu Tyr Val Ala Phe Ser Thr Cys Val Ile Lys Val Pro Leu		
500	505	510

Gly Arg Cys Glu Arg His Gly Lys Cys Lys Lys Thr Cys Ile Ala Ser		
515	520	525

Arg Asp Pro Tyr Cys Gly Trp Ile Lys Glu Gly Ala Cys Ser His		
530	535	540

Leu Ser Pro Asn Ser Arg Leu Thr Phe Glu Gln Asp Ile Glu Arg Gly			
545	550	555	560

Asn Thr Asp Gly Leu Gly Asp Cys His Asn Ser Phe Val Ala Leu Asn		
565	570	575

Gly His Ser Ser Ser Leu Leu Pro Ser Thr Thr Thr Ser Asp Ser Thr		
580	585	590

Ala Gln Glu Gly Tyr Glu Ser Arg Gly Gly Met Leu Asp Trp Lys His		
595	600	605

Leu Leu Asp Ser Pro Asp Ser Thr Asp Pro Leu Gly Ala Val Ser Ser		
610	615	620

His Asn His Gln Asp Lys Lys Gly Val Ile Arg Glu Ser Tyr Leu Lys			
625	630	635	640

Gly His Asp Gln Leu Val Pro Val Thr Leu Leu Ala Ile Ala Val Ile		
645	650	655

Leu Ala Phe Val Met Gly Ala Val Phe Ser Gly Ile Thr Val Tyr Cys		
660	665	670

Val Cys Asp His Arg Arg Lys Asp Val Ala Val Val Gln Arg Lys Glu		
675	680	685

Lys Glu Leu Thr His Ser Arg Arg Gly Ser Met Ser Ser Val Thr Lys		
690	695	700

Leu Ser Gly Leu Phe Gly Asp Thr Gln Ser Lys Asp Pro Lys Pro Glu			
705	710	715	720

- 20 -

Ala Ile Leu Thr Pro Leu Met His Asn Gly Lys Leu Ala Thr Pro Gly
725 730 735

Asn Thr Ala Lys Met Leu Ile Lys Ala Asp Gln His His Leu Asp Leu
740 745 750

Thr Ala Leu Pro Thr Pro Glu Ser Thr Pro Thr Leu Gln Gln Lys Arg
755 760 765

Lys Pro Ser Arg Gly Ser Arg Glu Trp Glu Arg Asn Gln Asn Leu Ile
770 775 780

Asn Ala Cys Thr Lys Asp Met Pro Pro Met Gly Ser Pro Val Ile Pro
785 790 795 800

Thr Asp Leu Pro Leu Arg Ala Ser Pro Ser His Ile Pro Ser Val Val
805 810 815

Val Leu Pro Ile Thr Gln Gln Gly Tyr Gln His Glu Tyr Val Asp Gln
820 825 830

Pro Lys Met Ser Glu Val Ala Gln Met Ala Leu Glu Asp Gln Ala Ala
835 840 845

Thr Leu Glu Tyr Lys Thr Ile Lys Glu His Leu Ser Ser Lys Ser Pro
850 855 860

Asn His Gly Val Asn Leu Val Glu Asn Leu Asp Ser Leu Pro Pro Lys
865 870 875 880

Val Pro Gln Arg Glu Ala Ser Leu Gly Pro Pro Gly Ala Ser Leu Ser
885 890 895

Gln Thr Gly Leu Ser Lys Arg Leu Glu Met His His Ser Ser Ser Tyr
900 905 910

Gly Val Asp Tyr Lys Arg Ser Tyr Pro Thr Asn Ser Leu Thr Arg Ser
915 920 925

His Gln Ala Thr Thr Leu Lys Arg Asn Asn Thr Asn Ser Ser Asn Ser
930 935 940

Ser His Leu Ser Arg Asn Gln Ser Phe Gly Arg Gly Asp Asn Pro Pro
945 950 955 960

Pro Ala Pro Gln Arg Val Asp Ser Ile Gln Val His Ser Ser Gln Pro
965 970 975

- 21 -

Ser Gly Gln Ala Val Thr Val Ser Arg Gln Pro Ser Leu Asn Ala Tyr
 980 985 990

Asn Ser Leu Thr Arg Ser Gly Leu Lys Arg Thr Pro Ser Leu Lys Pro
 995 1000 1005

Asp Val Pro Pro Lys Pro Ser Phe Ala Pro Leu Ser Thr Ser Met Lys
 1010 1015 1020

Pro Asn Asp Ala Cys Thr
 025 1030

<210> 3

<211> 216

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1) ..(216)

<400> 3

ccg	ccg	ccc	gcc	ccg	cag	agg	gtg	gac	tcc	atc	cag	gtg	cac	agc	tcc		48
Pro	Pro	Pro	Ala	Pro	Gln	Arg	Val	Asp	Ser	Ile	Gln	Val	His	Ser	Ser		
1				5					10						15		

cag	cca	tct	ggc	cag	gcc	gtg	act	gtc	tcg	agg	cag	ccc	agc	ctc	aac	96	
Gln	Pro	Ser	Gly	Gln	Ala	Val	Thr	Val	Ser	Arg	Gln	Pro	Ser	Leu	Asn		
20					25									30			

gcc	tac	aac	tca	ctg	aca	agg	tcg	ggg	ctg	aag	cgt	acg	ccc	tcc	cta	144	
Ala	Tyr	Asn	Ser	Leu	Thr	Arg	Ser	Gly	Leu	Lys	Arg	Thr	Pro	Ser	Leu		
35					40								45				

aag	ccg	gac	gta	ccc	ccc	aaa	cca	tcc	ttt	gtc	ccc	ctt	tcc	aca	tcc	192	
Lys	Pro	Asp	Val	Pro	Pro	Lys	Pro	Ser	Phe	Ala	Pro	Leu	Ser	Thr	Ser		
50				55						60							

atg	aag	ccc	aat	gat	gcg	tgt	aca									216
Met	Lys	Pro	Asn	Asp	Ala	Cys	Thr									
65				70												

<210> 4
 <211> 72
 <212> PRT

- 22 -

<213> Homo sapiens

<400> 4

Pro Pro Pro Ala Pro Gln Arg Val Asp Ser Ile Gln Val His Ser Ser
1 5 10 15

Gln Pro Ser Gly Gln Ala Val Thr Val Ser Arg Gln Pro Ser Leu Asn
20 25 30

Ala Tyr Asn Ser Leu Thr Arg Ser Gly Leu Lys Arg Thr Pro Ser Leu
35 40 45

Lys Pro Asp Val Pro Pro Lys Pro Ser Phe Ala Pro Leu Ser Thr Ser
50 55 60

Met Lys Pro Asn Asp Ala Cys Thr
65 70

<210> 5

<211> 65

<212> PRT

<213> Homo sapiens

<400> 5

Pro Pro Pro Gln Pro Gln Arg Lys Pro Gln Val Gln Leu His Val Gln
1 5 10 15

Pro Gln Ala Lys Pro His Val Gln Pro Gln Pro Val Ser Ser Ala Asn
20 25 30

Thr Gln Pro Arg Gly Pro Leu Ser Gln Ala Pro Thr Pro Ala Pro Lys
35 40 45

Phe Ala Pro Val Ala Pro Lys Phe Thr Pro Val Val Ser Lys Phe Ser
50 55 60

Pro

65

<210> 6

<211> 3862

<212> DNA

<213> Homo sapiens

- 23 -

<220>

<221> CDS

<222> (658)..(3750)

<400> 6
 ggcacgaggc tgcagccaa c tccgc tcccc ggcactcg ctgcccaggc gctcggaacc 60
 cagcagcggc gctctccgc ggtgccggc gccccgatg cccgcttagc agcgtgttagc 120
 agcggccagc atcaccacac ccggccgacc ggcgtccgg ccgcagagcc gggccagagc 180
 cttgcccccc tccccccagcc cccaccccgcc cccccccctt gaaatgactt gttaatccgc 240
 gcagacacca ccaaggggac tcaccgaatg ggaatccaag tgaaatttgg atttggagaa 300
 gagtttcttg aacatttacc ctcttccttg ttggtttctt ttttctttt cttttttttt 360
 tttttggctt cttttttctt ctcccccttctt ccgctcgatca ttggagatga acacatcgat 420
 ttgcatccc agaaaatgtt cgccgcgact attttccca aagagacaag cacatgttta 480
 ggaatgacaa aggcttgcga aggagagagc ccgcagccgcg gcccggagag atcccccttca 540
 taatggatta ctaatggga tacacgtgtt accagttccgc tccgagcccc ggccgcctgt 600
 ccgtcgatgc accgaaaagg gtgaagttaga gaaataaaatg ctccccctgt aactact 657
 atg agg tca gaa gcc ttg ctg cta tat ttc aca ctg cta cac ttt gct 705
 Met Arg Ser Glu Ala Leu Leu Tyr Phe Thr Leu Leu His Phe Ala
 1 5 10 15

ggg gct ggt ttc cca gaa gat tct gag cca atc agt att tcg cat ggc 753
 Gly Ala Gly Phe Pro Glu Asp Ser Glu Pro Ile Ser Ile Ser His Gly
 20 25 30

aac tat aca aaa cag tat ccg gtg ttt gtg ggc cac aag cca gga cgg 801
 Asn Tyr Thr Lys Gln Tyr Pro Val Phe Val Gly His Lys Pro Gly Arg
 35 40 45

aac acc aca cag agg cac agg ctg gac atc cag atg att atg atc atg 849
 Asn Thr Thr Gln Arg His Arg Leu Asp Ile Gln Met Ile Met Ile Met
 50 55 60

aac gga acc ctc tac att gct gct agg gac cat att tat act gtt gat 897
 Asn Gly Thr Leu Tyr Ile Ala Ala Arg Asp His Ile Tyr Thr Val Asp
 65 70 75 80

ata gac aca tca cac acg gaa gaa att tat tgt agc aaa aaa ctg aca 945

- 24 -

Ile	Asp	Thr	Ser	His	Thr	Glu	Glu	Ile	Tyr	Cys	Ser	Lys	Lys	Leu	Thr
85								90						95	

tgg	aaa	tct	aga	cag	gcc	gat	gta	gac	aca	tgc	aga	atg	aag	gga	aaa	993
Trp	Lys	Ser	Arg	Gln	Ala	Asp	Val	Asp	Thr	Cys	Arg	Met	Lys	Gly	Lys	
100								105					110			

cat	aag	gat	gag	tgc	cac	aac	ttt	att	aaa	gtt	ctt	cta	aag	aaa	aac	1041
His	Lys	Asp	Glu	Cys	His	Asn	Phe	Ile	Lys	Val	Leu	Leu	Lys	Lys	Asn	
115								120					125			

gat	gat	gca	ttg	ttt	gtc	tgt	gga	act	aat	gcc	ttc	aac	cct	ttc	tgc	1089
Asp	Asp	Ala	Leu	Phe	Val	Cys	Gly	Thr	Asn	Ala	Phe	Asn	Pro	Ser	Cys	
130							135					140				

aga	aac	tat	aag	atg	gat	aca	ttg	gaa	cca	ttc	ggg	gat	gaa	ttc	agc	1137
Arg	Asn	Tyr	Lys	Met	Asp	Thr	Leu	Glu	Pro	Phe	Gly	Asp	Glu	Phe	Ser	
145							150				155		160			

gga	atg	gcc	aga	tgc	cca	tat	gat	gcc	aaa	cat	gcc	aac	gtt	gca	ctg	1185
Gly	Met	Ala	Arg	Cys	Pro	Tyr	Asp	Ala	Lys	His	Ala	Asn	Val	Ala	Leu	
165							170					175				

ttt	gca	gat	gga	aaa	cta	tac	tca	gcc	aca	gtg	act	gac	ttc	ctt	gcc	1233
Phe	Ala	Asp	Gly	Lys	Leu	Tyr	Ser	Ala	Thr	Val	Thr	Asp	Phe	Leu	Ala	
180							185				190					

att	gac	gca	gtc	att	tac	cgg	agt	ctt	gga	gaa	agc	cct	acc	ctg	cgg	1281
Ile	Asp	Ala	Ile	Tyr	Arg	Ser	Leu	Gly	Glu	Ser	Pro	Thr	Leu	Arg		
195							200				205					

acc	gtc	aag	cac	gat	tca	aaa	tgg	ttg	aaa	gaa	cca	tac	ttt	gtt	caa	1329
Thr	Val	Lys	His	Asp	Ser	Lys	Trp	Leu	Lys	Glu	Pro	Tyr	Phe	Val	Gln	
210							215				220					

gcc	gtg	gat	tac	gga	gat	tat	atc	tac	ttc	ttc	ttc	agg	gaa	ata	gca	1377
Ala	Val	Asp	Tyr	Gly	Asp	Tyr	Ile	Tyr	Phe	Phe	Phe	Arg	Glu	Ile	Ala	
225							230				235		240			

gtg	gag	tat	aac	acc	atg	gga	aag	gta	gtt	ttc	cca	aga	gtg	gtc	cag	1425
Val	Glu	Tyr	Asn	Thr	Met	Gly	Lys	Val	Val	Phe	Pro	Arg	Val	Ala	Gln	
245							250					255				

gtt	tgt	aag	aat	gat	atg	gga	gga	tct	caa	aga	gtc	ctg	gag	aaa	cag	1473
Val	Cys	Lys	Asn	Asp	Met	Gly	Gly	Ser	Gln	Arg	Val	Leu	Glu	Lys	Gln	
260							265				270					

tgg	acg	tcg	tcc	ctg	aag	gcg	cgc	ttg	aac	tgc	tca	gtt	cct	gga	gac	1521
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

0098565834 - 080301

- 25 -

Trp Thr Ser Phe Leu Lys Ala Arg Leu Asn Cys Ser Val Pro Gly Asp
 275 280 285

tct cat ttt tat ttc aac att ctc cag gca gtt aca gat gtg att cgt 1569
 Ser His Phe Tyr Phe Asn Ile Leu Gln Ala Val Thr Asp Val Ile Arg
 290 295 300

atc aac ggg cgt gat gtt gtc ctg gca acg ttt tct aca cct tat aac 1617
 Ile Asn Gly Arg Asp Val Val Leu Ala Thr Phe Ser Thr Pro Tyr Asn
 305 310 315 320

agc atc cct ggg tct gca gtc tgt gcc tat gac atg ctt gac att gcc 1665
 Ser Ile Pro Gly Ser Ala Val Cys Ala Tyr Asp Met Leu Asp Ile Ala
 325 330 335

agt gtt ttt act ggg aga ttc aag gaa cag aag tct cct gat tcc acc 1713
 Ser Val Phe Thr Gly Arg Phe Lys Glu Gln Lys Ser Pro Asp Ser Thr
 340 345 350

tgg aca cca gtt cct gat gaa cga gtt cct aag ccc agg cca ggt tgc 1761
 Trp Thr Pro Val Pro Asp Glu Arg Val Pro Lys Pro Arg Pro Gly Cys
 355 360 365

tgt gct ggc tca tcc tcc tta gaa aga tat gca acc tcc aat gag ttc 1809
 Cys Ala Gly Ser Ser Leu Glu Arg Tyr Ala Thr Ser Asn Glu Phe
 370 375 380

cct gat gat acc ctg aac ttc atc aag acg cac ccg ctc atg gat gag 1857
 Pro Asp Asp Thr Leu Asn Phe Ile Lys Thr His Pro Leu Met Asp Glu
 385 390 395 400

gca gtg ccc tcc atc ttc aac agg cca tgg ttc ctg aga aca atg gtc 1905
 Ala Val Pro Ser Ile Phe Asn Arg Pro Trp Phe Leu Arg Thr Met Val
 405 410 415

aga tac cgc ctt acc aaa att gca gtg gac aca gct gct ggg cca tat 1953
 Arg Tyr Arg Leu Thr Lys Ile Ala Val Asp Thr Ala Ala Gly Pro Tyr
 420 425 430

cag aat cac act gtg gtt ttt ctg gga tca gag aag gga atc atc ttg 2001
 Gln Asn His Thr Val Val Phe Leu Gly Ser Glu Lys Gly Ile Ile Leu
 435 440 445

aag ttt ttg gcc aga ata gga aat agt ggt ttt cta aat gac agc ctt 2049
 Lys Phe Leu Ala Arg Ile Gly Asn Ser Gly Phe Leu Asn Asp Ser Leu
 450 455 460

ttc ctg gag gag atg agt gtt tac aac tct gaa aaa tgc agc tat gat 2097

TRECSEQD.PATENT58860

- 26 -

Phe	Leu	Glu	Glu	Met	Ser	Val	Tyr	Asn	Ser	Glu	Lys	Cys	Ser	Tyr	Asp	
465				470					475					480		
gga gtc gaa gac aaa agg atc atg ggc atg cag ctg gac aga gca agc															2145	
Gly	Val	Glu	Asp	Lys	Arg	Ile	Met	Gly	Met	Gln	Leu	Asp	Arg	Ala	Ser	
				485				490					495			
agc tct ctg tat gtt qcg ttc tct acc tgt gtg ata aag gtt ccc ctt															2193	
Ser	Ser	Leu	Tyr	Val	Ala	Phe	Ser	Thr	Cys	Val	Ile	Lys	Val	Pro	Leu	
				500			505				510					
ggc cgg tgt gaa cga cat ggg aag tgt aaa aaa acc tgt att gcc tcc															2241	
Gly	Arg	Cys	Glu	Arg	His	Gly	Lys	Cys	Lys	Lys	Thr	Cys	Ile	Ala	Ser	
				515			520				525					
aga gac cca tat tgt gga tgg ata aag gaa ggt ggc tgc agc cat															2289	
Arg	Asp	Pro	Tyr	Cys	Gly	Trp	Ile	Lys	Glu	Gly	Gly	Ala	Cys	Ser	His	
				530			535			540						
tta tca ccc aac agc aga ctg act ttt gag cag gac ata gag cgt ggc															2337	
Leu	Ser	Pro	Asn	Ser	Arg	Leu	Thr	Phe	Glu	Gln	Asp	Ile	Glu	Arg	Gly	
				545			550			555			560			
aat aca gat ggt ctg ggg gac tgt cac aat tcc ttt gtg gca ctg aat															2385	
Asn	Thr	Asp	Gly	Leu	Gly	Asp	Cys	His	Asn	Ser	Phe	Val	Ala	Leu	Asn	
				565			570				575					
ggg cat tcc agt tcc ctc ttg ccc agc aca acc aca tca gat tgg acg															2433	
Gly	His	Ser	Ser	Leu	Leu	Pro	Ser	Thr	Thr	Thr	Ser	Asp	Ser	Thr		
				580			585				590					
gtc caa gag ggg tat gag tct agg gga gga atg ctg gac tgg aag cat															2481	
Ala	Gln	Glu	Gly	Tyr	Glu	Ser	Arg	Gly	Gly	Met	Ile	Leu	Asp	Trp	Lys	His
				595			600				605					
ctg ctt gac tca cct gac agc aca gac cct ttg ggg gca gtg tct tcc															2529	
Leu	Leu	Asp	Ser	Pro	Asp	Ser	Thr	Asp	Pro	Leu	Gly	Ala	Val	Ser	Ser	
				610			615			620						
cat aat cac caa gac aag aag gga gtg att cgg gaa agt tac ctc aaa															2577	
His	Asn	His	Gln	Asp	Lys	Lys	Gly	Val	Ile	Arg	Glu	Ser	Tyr	Leu	Lys	
				625			630			635			640			
ggc cac gac cag ctg gtt ccc gtc acc ctc ttg gcc att gca gtc atc															2625	
Gly	His	Asp	Gln	Leu	Val	Pro	Val	Thr	Leu	Leu	Ala	Ile	Ala	Val	Ile	
				645			650				655					
ctg gct ttc gtc atg ggg gcc gtc ttc tcg ggc atc acc gtc tac tgc															2673	

Leu Ala Phe Val Met Gly Ala Val Phe Ser Gly Ile Thr Val Tyr Cys
 660 665 670

gtc tgt gat cat cgg cgc aaa gac gtg gct gtg gtg cag cgc aag gag 2721
 Val Cys Asp His Arg Arg Lys Asp Val Ala Val Val Gln Arg Lys Glu
 675 680 685

aag gag ctc acc cac tcg cgc cgg ggc tcc atg agc agc gtc acc aag 2769
 Lys Glu Leu Thr His Ser Arg Arg Gly Ser Met Ser Ser Val Thr Lys
 690 695 700

ctc agc ggc ctc ttt ggg gac actcaa tcc aaa gac cca aag ccg gag 2817
 Leu Ser Gly Leu Phe Gly Asp Thr Gln Ser Lys Asp Pro Lys Pro Glu
 705 710 715 720

gcc atc ctc acg cca ctc atg cac aac ggc aag ctc gcc act ccc ggc 2865
 Ala Ile Leu Thr Pro Leu Met His Asn Gly Lys Leu Ala Thr Pro Gly
 725 730 735

aac acg gcc aag atg ctc att aaa gca gac cag cac cac ctg gac ctg 2913
 Asn Thr Ala Lys Met Leu Ile Lys Ala Asp Gln His His Leu Asp Leu
 740 745 750

acg gcc ctc ccc acc cca gag tca acc cca acg ctg cag cag aag ccg 2961
 Thr Ala Leu Pro Thr Pro Glu Ser Thr Pro Thr Leu Gln Gln Lys Arg
 755 760 765

aag ccc acg cgc ggc agc cgc gag tgg gag agg aac cag aac ctc atc 3009
 Lys Pro Ser Arg Gly Ser Arg Glu Trp Glu Arg Asn Gln Asn Leu Ile
 770 775 780

aat gcc tgc aca aag gac atg ccc atg ggc tcc cct gtg att ccc 3057
 Asn Ala Cys Thr Lys Asp Met Pro Pro Met Gly Ser Pro Val Ile Pro
 785 790 795 800

acg gac ctg ccc ctg cgg gcc tcc ccc agc cac atc ccc agc gtg gtg 3105
 Thr Asp Leu Pro Leu Arg Ala Ser Pro Ser His Ile Pro Ser Val Val
 805 810 815

gtc ctg ccc atc acg cag cag ggc tac cag cat gag tac gtg gac cag 3153
 Val Leu Pro Ile Thr Gln Gln Gly Tyr Gln His Glu Tyr Val Asp Gln
 820 825 830

ccc aaa atg agc gag gtg gcc cag atg gcg ctg gag gac cag gcc gcc 3201
 Pro Lys Met Ser Glu Val Ala Gln Met Ala Leu Glu Asp Gln Ala Ala
 835 840 845

aca ctg gag tat aag acc atc aag gaa cat ctc agc agc aag agt ccc 3249

00855681-00-0301

- 28 -

Thr Leu Glu Tyr Lys Thr Ile Lys Glu His Leu Ser Ser Lys Ser Pro			
850	855	860	
aac cat ggg gtg aac ctt gtg gag aac ctg gac agc ctg ccc ccc aaa			3297
Asn His Gly Val Asn Leu Val Glu Asn Leu Asp Ser Leu Pro Pro Lys			
865	870	875	880
gtt cca cag cgg gag gcc tcc ctg ggt ccc ccg gga gcc tcc ctg tct			3345
Val Pro Gln Arg Glu Ala Ser Leu Gly Pro Pro Gly Ala Ser Leu Ser			
885	890	895	
cag acc ggt cta agc aag cgg ctg gaa atg cac cac tcc tct tcc tac			3393
Gln Thr Gly Leu Ser Lys Arg Leu Glu Met His His Ser Ser Tyr			
900	905	910	
ggg gtt gac tat aag agg agc tac ccc acg aac tcc acg ctc acg aga agc			3441
Gly Val Asp Tyr Lys Arg Ser Tyr Pro Thr Asn Ser Leu Thr Arg Ser			
915	920	925	
cac cag gcc acc act ctc aaa aga aac aac act aac tcc tcc aat tcc			3489
His Gln Ala Thr Thr Leu Lys Arg Asn Asn Thr Asn Ser Ser Asn Ser			
930	935	940	
tct cac ctc tcc aga aac cag agc ttt ggc agg gga gac aac ccg ccg			3537
Ser His Leu Ser Arg Asn Gln Ser Phe Gly Arg Gly Asp Asn Pro Pro			
945	950	955	960
ccc gcc ccg cag agg gtg gac tcc atc cag gtg cac agc tcc cag cca			3585
Pro Ala Pro Gln Arg Val Asp Ser Ile Gln Val His Ser Ser Gln Pro			
965	970	975	
tct ggc cag gcc gtg act gtc tcg agg cag ccc agc ctc aac gcc tac			3633
Ser Gly Gln Ala Val Thr Val Ser Arg Gln Pro Ser Leu Asn Ala Tyr			
980	985	990	
aac tca ctg aca agg tcg ggg ctg aag cgt acg ccc tcg cta aag ccg			3681
Asn Ser Leu Thr Arg Ser Gly Leu Lys Arg Thr Pro Ser Leu Lys Pro			
995	1000	1005	
gac gta ccc ccc aaa cca tcc ttt gct ccc ctt tcc aca tcc atg aag			3729
Asp Val Pro Pro Lys Pro Ser Phe Ala Pro Leu Ser Thr Ser Met Lys			
1010	1015	1020	
ccc aat gat gcg tgt aca taa tccccggggg agggggtagtgcgtcgacc			3780
Pro Asn Asp Ala Cys Thr			
1025	1030		
agcaggcaag gcgagggtgcc cgctcagctc agcaaggttc tcaactgcct cgagtaccca			3840

1098556591 - 0808031

- 29 -

ccagaccaag aaggcctgcg gc

3862

<210> 7

<211> 1030

<212> PRT

<213> Homo sapiens

<400> 7

Met	Arg	Ser	Glu	Ala	Leu	Leu	Tyr	Phe	Thr	Leu	Leu	His	Phe	Ala
1				5				10				15		

Gly	Ala	Gly	Phe	Pro	Glu	Asp	Ser	Glu	Pro	Ile	Ser	Ile	Ser	His	Gly
				20				25				30			

Asn	Tyr	Thr	Lys	Gln	Tyr	Pro	Val	Phe	Val	Gly	His	Lys	Pro	Gly	Arg
				35			40				45				

Asn	Thr	Thr	Gln	Arg	His	Arg	Leu	Asp	Ile	Gln	Met	Ile	Met	Ile	Met
				50			55				60				

Asn	Gly	Thr	Leu	Tyr	Ile	Ala	Ala	Arg	Asp	His	Ile	Tyr	Thr	Val	Asp
	65				70			75			80				

Ile	Asp	Thr	Ser	His	Thr	Glu	Glu	Ile	Tyr	Cys	Ser	Lys	Lys	Leu	Thr
				85			90				95				

Trp	Lys	Ser	Arg	Gln	Ala	Asp	Val	Asp	Thr	Cys	Arg	Met	Lys	Gly	Lys
				100			105				110				

His	Lys	Asp	Glu	Cys	His	Asn	Phe	Ile	Lys	Val	Leu	Leu	Lys	Lys	Asn
					115		120				125				

Asp	Asp	Ala	Leu	Phe	Val	Cys	Gly	Thr	Asn	Ala	Phe	Asn	Pro	Ser	Cys
				130			135				140				

Arg	Asn	Tyr	Lys	Met	Asp	Thr	Leu	Glu	Pro	Phe	Gly	Asp	Glu	Phe	Ser
				145			150			155			160		

Gly	Met	Ala	Arg	Cys	Pro	Tyr	Asp	Ala	Lys	His	Ala	Asn	Val	Ala	Leu
					165			170			175				

Phe	Ala	Asp	Gly	Lys	Leu	Tyr	Ser	Ala	Thr	Val	Thr	Asp	Phe	Leu	Ala
					180			185			190				

Ile	Asp	Ala	Val	Ile	Tyr	Arg	Ser	Leu	Gly	Glu	Ser	Pro	Thr	Leu	Arg
				195			200			205					

09856531 - DECODE

- 30 -

Thr Val Lys His Asp Ser Lys Trp Leu Lys Glu Pro Tyr Phe Val Gln
210 215 220

Ala Val Asp Tyr Gly Asp Tyr Ile Tyr Phe Phe Phe Arg Glu Ile Ala
225 230 235 240

Val Glu Tyr Asn Thr Met Gly Lys Val Val Phe Pro Arg Val Ala Gln
245 250 255

Val Cys Lys Asn Asp Met Gly Gly Ser Gln Arg Val Leu Glu Lys Gln
260 265 270

Trp Thr Ser Phe Leu Lys Ala Arg Leu Asn Cys Ser Val Pro Gly Asp
275 280 285

Ser His Phe Tyr Phe Asn Ile Leu Gln Ala Val Thr Asp Val Ile Arg
290 295 300

Ile Asn Gly Arg Asp Val Val Leu Ala Thr Phe Ser Thr Pro Tyr Asn
 305 310 315 320

Ser Ile Pro Gly Ser Ala Val Cys Ala Tyr Asp Met Leu Asp Ile Ala
325 330 335

Ser Val Phe Thr Gly Arg Phe Lys Glu Gln Lys Ser Pro Asp Ser Thr
340 345 350

Trp Thr Pro Val Pro Asp Glu Arg Val Pro Lys Pro Arg Pro Gly Cys
355 360 365

Cys Ala Gly Ser Ser Ser Leu Glu Arg Tyr Ala Thr Ser Asn Glu Phe
370 375 380

Pro Asp Asp Thr Leu Asn Phe Ile Lys Thr His Pro Leu Met Asp Glu
385 390 395 400

Ala Val Pro Ser Ile Phe Asn Arg Pro Trp Phe Leu Arg Thr Met Val
105 110

Arg Tyr Arg Leu Thr Lys Ile Ala Val Asp Thr Ala Ala Gly Pro Tyr
100 110

Gln Asn His Thr Val Val Phe Leu Gly Ser Glu Lys Gly Ile Ile Leu
125 130

Lys Phe Leu Ala Arg Ile Gly Asn Ser Gly Phe Leu Asn Asp Ser Leu
150 155 160

- 31 -

Phe Leu Glu Glu Met Ser Val Tyr Asn Ser Glu Lys Cys Ser Tyr Asp
 465 470 475 480

Gly Val Glu Asp Lys Arg Ile Met Gly Met Gln Leu Asp Arg Ala Ser
 485 490 495

Ser Ser Leu Tyr Val Ala Phe Ser Thr Cys Val Ile Lys Val Pro Leu
 500 505 510

Gly Arg Cys Glu Arg His Gly Lys Cys Lys Lys Thr Cys Ile Ala Ser
 515 520 525

Arg Asp Pro Tyr Cys Gly Trp Ile Lys Glu Gly Gly Ala Cys Ser His
 530 535 540

Leu Ser Pro Asn Ser Arg Leu Thr Phe Glu Gln Asp Ile Glu Arg Gly
 545 550 555 560

Asn Thr Asp Gly Leu Gly Asp Cys His Asn Ser Phe Val Ala Leu Asn
 565 570 575

Gly His Ser Ser Ser Leu Leu Pro Ser Thr Thr Thr Ser Asp Ser Thr
 580 585 590

Ala Gln Glu Gly Tyr Glu Ser Arg Gly Gly Met Leu Asp Trp Lys His
 595 600 605

Leu Leu Asp Ser Pro Asp Ser Thr Asp Pro Leu Gly Ala Val Ser Ser
 610 615 620

His Asn His Gln Asp Lys Lys Gly Val Ile Arg Glu Ser Tyr Leu Lys
 625 630 635 640

Gly His Asp Gln Leu Val Pro Val Thr Leu Leu Ala Ile Ala Val Ile
 645 650 655

Leu Ala Phe Val Met Gly Ala Val Phe Ser Gly Ile Thr Val Tyr Cys
 660 665 670

Val Cys Asp His Arg Arg Lys Asp Val Ala Val Val Gln Arg Lys Glu
 675 680 685

Lys Glu Leu Thr His Ser Arg Arg Gly Ser Met Ser Ser Val Thr Lys
 690 695 700

Leu Ser Gly Leu Phe Gly Asp Thr Gln Ser Lys Asp Pro Lys Pro Glu
 705 710 715 720

00959556310595959595

- 32 -

Ala Ile Leu Thr Pro Leu Met His Asn Gly Lys Leu Ala Thr Pro Gly
725 730 735

Asn Thr Ala Lys Met Leu Ile Lys Ala Asp Gln His His Leu Asp Leu
740 745 750

Thr Ala Leu Pro Thr Pro Glu Ser Thr Pro Thr Leu Gln Gln Lys Arg
755 760 765

Lys Pro Ser Arg Gly Ser Arg Glu Trp Glu Arg Asn Gln Asn Leu Ile
770 775 780

Asn	Ala	Cys	Thr	Lys	Asp	Met	Pro	Pro	Met	Gly	Ser	Pro	Val	Ile	Pro
785						790				795					800

Thr Asp Leu Pro Leu Arg Ala Ser Pro Ser His Ile Pro Ser Val Val
805 810 815

Val Leu Pro Ile Thr Gln Gln Gly Tyr Gln His Glu Tyr Val Asp Gln
820 825 830

Pro Lys Met Ser Glu Val Ala Gln Met Ala Leu Glu Asp Gln Ala Ala
835 840 845

Thr Leu Glu Tyr Lys Thr Ile Lys Glu His Leu Ser Ser Lys Ser Pro
850 855 860

Asn His Gly Val Asn Leu Val Glu Asn Leu Asp Ser Leu Pro Pro Lys
865 870 875 880

Vál Pro Gln Arg Glu Ala Ser Leu Gly Pro Pro Gly Ala Ser Leu Ser
885 890 895

Gln Thr Gly Leu Ser Lys Arg Leu Glu Met His His Ser Ser Ser Tyr
900 905 910

Gly Val Asp Tyr Lys Arg Ser Tyr Pro Thr Asn Ser Leu Thr Arg Ser
915 920 925

His Gln Ala Thr Thr Leu Lys Arg Asn Asn Thr Asn Ser Ser Ser Asn Ser
930 935 940

Ser His Leu Ser Arg Asn Gln Ser Phe Gly Arg Gly Asp Asn Pro Pro
245 250 255

Pro Ala Pro Gln Arg Val Asp Ser Ile Gln Val His Ser Ser Gln Pro
665 670

- 33 -

Ser Gly Gln Ala Val Thr Val Ser Arg Gln Pro Ser Leu Asn Ala Tyr
980 985 990

Asn	Ser	Leu	Thr	Arg	Ser	Gly	Leu	Lys	Arg	Thr	Pro	Ser	Leu	Lys	Pro
995							1000						1005		

Asp Val Pro Pro Lys Pro Ser Phe Ala Pro Leu Ser Thr Ser Met Lys
1010 1015 1020

Pro Asn Asp Ala Cys Thr
025 1030

Claims

1. Nucleic acid coding for human semaphorin 6A-1 comprising:
- 5 (a) the nucleotide sequence shown in SEQ ID NO:1,
(b) a sequence corresponding to the nucleotide sequence shown
in SEQ ID NO:1 within the degeneration of the genetic code,
or
(c) a sequence which hybridizes with the sequences of (a) or/and
10 (b) under stringent conditions.
2. Nucleic acid coding for a binding domain of human semaphorin 6A-1
comprising:
- 15 (a) the nucleotide sequence shown in SEQ ID NO:3,
(b) a sequence corresponding to the nucleotide sequence shown
in SEQ ID NO:3 within the degeneration of the genetic code,
or
(c) a sequence which hybridizes with the sequences of (a) or/and
20 (b) under stringent conditions.
3. Nucleic acid according to claim 1 or 2,
characterized in that it has a homology greater than 80% to the
nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3.
- 25 4. Modified nucleic acid or nucleic acid analog having a nucleotide
sequence according to claims 1-3, or a section having at least 12
bases therefrom.
5. A nucleic acid which encodes a protein having a semaphorin domain
30 and which hybridizes under stringent conditions to a nucleic acid
comprising the nucleotide sequence shown in SEQ ID NO:1.

D030801-08255861

- 35 -

6. Nucleic acid according to any of the preceding claims, which encodes
a protein inhibiting neurite outgrowth.

5 7. Nucleic acid according to claim 6, which encodes a protein inhibiting
neurite outgrowth of CNS-neuron.

8. Recombinant vector,
characterized in that it contains at least one copy of a nucleic acid
according to claims 1-7, or a section therefrom.

10 9. Vector according to claim 8,
characterized in that it is a eukaryotic vector.

15 10. Cell,
characterized in that it is transformed with a nucleic acid according
to any of claims 1-7 or with a vector according to claim 8 or 9.

11. Polypeptide encoded by a nucleic acid according to claims 1-7.

20 12. Polypeptide according to claim 11 being a fusion protein comprising
a polypeptide encoded by a nucleic acid according to claims 1-7 and
at least one further polypeptide.

15 25 13. Use of the polypeptide according to claim 11 or 12 or of fragments
of said polypeptide as immunogen for the production of antibodies.

14. Antibodies against a polypeptide according to claim 11 or 12.

15. Pharmaceutical composition comprising:

- 30 (a) a nucleic acid according to any of claims 1-7,
(b) a recombinant vector according to claim 8 or 9,
(c) a cell according to claim 10,

RECEIVED - CDS/WEF - 20000525 09:56:51

- 36 -

- (d) a polypeptide according to claim 11 or 12, or/and
(e) an antibody according to claim 14.
- 5 16. Use of a peptide according to claim 11 or 12 for the preparation of
a pharmaceutical composition.
- 10 17. Use of a composition according to claim 15 as diagnostic agent.
- 15 18. Use of a composition according to claim 15 for the production of a
therapeutic agent.
- 20 19. Use according to claim 18 for the modulation of the immune system.
- 25 20. Use according to any of claims 17-19 in gene therapy.
- 30 21. Use according to any of claims 17-20 for effecting differentiation,
cytoskeletal stabilization and/or plasticity.

DISSEMINATION

15

1/11

Fig. 1

5`-ATGAGGTCAGAAGCCTGCTGCTATTTACACTGCTACACTTGCTGG	50
GGCTGGTTCCAGAACGATTCTGAGCCAATCAGTATTCGCATGGCAACT	100
ATACAAACAGTATCCGGTGTGGGCCAACAGCCAGGACCGAACACC	150
ACACAGAGGCACAGGCTGGACATCCAGATGATTATGATCATGAACGGAAC	200
CCTCTACATTGCTGCTAGGGACCATATTATACGTGATATAGACACAT	250
CACACAGGAAGAAATTATTGTAGCAAAAAACTGACATGGAAATCTAGA	300
CAGGCCATGTAGACACATGCAGAATGAAGGGAAACATAAGGATGAGTG	350
CCACAACTTATTAAAGTTCTCTAAAGAAAACGATGATGCATTGTTG	400
TCTGTGAACTAATGCCCTAACCCCTCTGCAGAAACTATAAGATGGAT	450
ACATTGGAACCATTCCGGGATGAATTCAAGCGGAATGGCAGATGCCATA	500
TGATGCCAACATGCCAACGTTGACTGTGTTGAGATGGAAACTATACT	550
CAGCCACAGTGAACCTCCATTGACGAGTCATTACCGGAGT	600
CTTGGAGAAAGCCCTACCCCTGCGGACCGTCAAGCACGATTCAAATGGTT	650
GAAAGAACCATACTTTGTTCAAGCGTGGATTACGGAGATTATATCTACT	700
TCTTCTCAGGGAAATAGCAGTGGAGTATAACACCATGGGAAAGGTAGTT	750
TTCCCAAGAGTGGCTCAGGTTGTAAGAATGATATGGGAGGATCTCAAAG	800
AGTCCTGGAGAAACAGTGGACGTGCTGGCTGAAGGCGCCTGAACTGCT	850
CAGTTCTGGAGACTCTATTCAACATTCTCCAGGCAAGTACA	900
GATGTGATTGTATCACGGCGTGTGTTGCTGGCACAGTTCTAC	950
ACCTTATAACAGCATCCCTGGGTCTGCAGTCAGTGCCTATGACATGCTG	1000
ACATTGCCAGTGTGTTTACTGGGAGATTCAAGAACAGAACAGTCTCCTGAT	1050
TCCACCTGGACACCAGTCTCTGATGAACGAGTCTCTAACGCCAGGCCAGG	1100
TTGCTGTGCTGGCTCATCTCTTAGAAAGATATGCAACCTCCAATGAGT	1150
TCCCTGATGATACCTGAACTTCATCAAGACGCAACCGCTCATGGATGAG	1200
GCAGTGCCTCCATCTCAACAGGCCATGGCTCTGAGAACATGGTCAG	1250
ATACGCCCTAACAAAATTGCAAGTGGACACAGCTGCTGGCCATATCAGA	1300
ATCACACTGTGGTTTCTGGGATCAGAGAAGGGATCATCTGAAAGTT	1350
TTGGCCAGAATAGGAAATAGTGGTTCTAAATGACAGCCTTCTGGGA	1400
GGAGATGAGTGTACAACCTCTGAAAAATGCAAGCTATGATGGAGTCGAAG	1450
ACAAAAGGATCATGGCATGCAGCTGGACAGAGCAAGCAGCTCTGTAT	1500
GTTGCGTTCTCACCTGTGTGATAAAAGGTTCCCTGGCGGTGTGAACG	1550
ACATGGGAAAGTGTAAAAAACCTGTATTGCCTCCAGAGACCCATATTGTG	1600
GATGGATAAGGAAGGTGGTGCCTGCAGCCATTATCACCCAACAGCAGA	1650

09/856681-026304

2/11

Fig. 1 (cont.)

CTGACTTTGAGCAGGGACATAGAGCGTGGCAATAACAGATGGCTGGGGGA	1700
CTGTACAACATCCCTTGCGACTGAATGGGCATTCCAGTCCCTTGC	1750
CCAGCACAAACACATCAGATTCGAGGGCTCAAGAGGGGTATGAGTCTAGG	1800
GGAGGAATGCTGGACTGGAAGCATCTGCTGACTCACCTGACAGCACAGA	1850
CCCTTGGGGCAGTGTCTCCCATATAATCACCAAGACAAGAAGGGAGTGA	1900
TTCGGAAAGTTACCTCAAAGGCCACGACCAGCTGGTCCCGTACCCCTC	1950
TTGGCATTGCACTGCATCCTGGCTTCGTCATGGGGCGTCTCTCGGG	2000
CATCACCGTCACTGCGCTGTGATCATCGGCGAAAGACGTGGCTGTGG	2050
TGCAGCGCAAGGAGAAGGGAGCTACCCACTCGGCCGGGCTCATGAGC	2100
AGCGTCACCAAGCTCAGCGGCCCTTGGGACACTCAATCCAAAGACCC	2150
AAAGCCGGAGGCCATCCTCACGCCACTCATGCACAAAGCGCAAGCTCGCA	2200
CTCCCCGCAACACGGCAAGATGTCATTAAAGCAGACCAGCACCCACTG	2250
GACCTGACGGCCCTCCCCACCCAGAGTCACCCCAACGCTGCAGCAGAA	2300
GCGGAAGCCCAGCCCGGCAGCGCGAGTGGGAGAGGAACCAGAACCTCA	2350
TCAATGCCCTGCACAAAGGACATGCCCTCATGGGCTCCCTGTGATTCCC	2400
ACGGACCTGCCCTCGGGCCTCCCCCAGCCACATCCCCAGCGTGGTGGT	2450
CCTGCCCATCACCGCAGGGTACCGAGCATGAGTAGCTGGACAGCCCA	2500
AAATGAGCGAGGTGGCCAGATGGCGCTGGAGGACCAGGCCGCCACACTG	2550
GAGTATAAGACCATCAAGGAACATCTCAGCAGCAAGAGTCCAACCATGG	2600
GGTGAACCTTGTGGAAACCTGGACAGCGCTGCCCTAAAGTCCACAGC	2650
GGGAGGCCTCCCTGGTCCCCGGGAGCCTCCCTGTCTCAGACCGGTCTA	2700
AGCAAGCGCTGGAAATGCACCACTCCTCTTCTACGGGGTGTACTATAA	2750
GAGGGAGCTACCCACGAACCTCGCTCACAGAGAAGGCCACAGGCCACACTC	2800
TCAAAAAGAACACACTAACCTCCCAATTCTCTCACCTCTCAGAACAC	2850
CAGAGCTTGGCAGGGAGACAACCCGCCGCCGCCGCCAGAGGGTGG	2900
CTCCATCCAGGTGCACAGCTCCAGCCATCTGGCAGGGCGTGTACTGTCT	2950
CGAGGCAGCCCAGCCTCAACGCTACAACTCACTGACAAGGTGGGGCTG	3000
AAGCGTACGCCCTCGCTAAAGCGGAGCTACCCCCAAACCATCCTTGC	3050
TCCCCCTTCCACATCCATGAAGCCCAATGATGCGTGTACATAA-3	3093

09856681 - 0909304

Fig. 2

ggacgaggctgcagccaaactccgtccccggcactcggtgcggccaggcgtcgga
 acccagcggccgtctcccgccgtgcggccgtatcccgttacgcgtgt
 agcagcggccaggcatcccccccccccccccccccccccccccccccccccc
 agcgttgcggccggccggccggccggccggccggccggccggccggccggcc
 ggcgcagacaccaccaccaccaccaccaccaccaccaccaccaccacc
 gaagagttt
 ttt
 gcttgcgtatccccagaaaatgtcgccgcataatttttttttttttt
 gtaggaatgacaacaaaggcttcgcaaggagagagagccgcagccgcgg
 ctagataatggattactaatggatcacccgcgtaccaggctgcgcgg
 ctgcgtatccccggccggccggccggccggccggccggccggcc
 gtgcgtatccccggccggccggccggccggccggccggccggcc
 ATGAGGTCTAGAAGCCTGCTGTATATTACACTGCTACACTTGC
 TGGGCTGGTTTC
 M R S E A L L Y F T L L H F A G A G F
 CCAAGAATTCGAGCCAACTCAGTATTCGATGGCAACTATA
 CAAAACAGTATCCGGTG
 P E D S E P I S I S H G N Y T K Q Y P V
 TTTGTGGGACAAGCCAGGAACACACAGAGGCACAGGC
 ATGGACATCCAGATG
 F V G H K P G R N T T Q R H R L D I Q M
 ATTATGATCATGAA
 CGAACCTCTACATTGTCGCTAGGGACCATTTAT
 ACTGTTGAT
 I M I M N G T L Y I A A R D H I Y T V D
 ATAGACACATCACACAGGAAGAAATT
 ATTGTAGCAA
 AACATGACATGGAA
 ATCTAGA
 I D T S H T E E I Y C S K K L T W K S R
 CAGGCCGATGAGACATCGACAGAATGAAGGGAAA
 CATAAGGATGTC
 GACACACTTT
 Q A D V D T C R M K G K H K D E C H N F
 ATTAAGGTTCTCTAAAGAAAAACGATGATG
 CATTGTTGTC
 CTGGAACTTAATGCCTTC
 I K V L L K K N D D A L F V C G T N A F
 AACCCCTCTGCAGAAACTATAAGGATGATCATTGG
 AACCATTCGGGATAGA
 ATTCTCAGC
 N P S C R N Y K M D T L E P F G D E F S
 GGAATGGCCAGATGCCCATATG
 GCACCGTGC
 ACTGTTGCA
 G M A R C P Y D A K H N V A L F A D G
 AACTATAC
 TCTAGCCACAGTGACTGACT
 TCTCTG
 CCATTGAGC
 GACTCATTACGGGAGT
 K L Y S A T V T D F L A I D A V I Y R S
 CTGGAGAAAGCCT
 ACCTGGGAGCG
 CAAAGCAGATT
 GGTGAA
 ACCA
 L G E S P T L R T V K H K D S K W L K E P
 TACTTTGTTCAAGCCG
 GTGGATTACGGAGATT
 ATATCTACT
 TTCTCTCAGGGAA
 ATAGCG
 Y F V Q A V D Y G D Y I Y F F F R E I A
 GTGGAGTATAAC
 ACCATGGGAAAGGTAG
 GTTTCC
 CAAGAGTGGCTCAGGTT
 GTAA
 V E Y N T M G K V V F P R V A Q V C K N
 GATATGGGAGGATCT
 CAAAGAGTCTGGAGAACAGTGG
 ACCTGGTCTTCTG
 CAAGGGCGCC
 D M G G S Q R V L E K Q W T S F L K A R
 TTGAAC
 AGTCTGCTCAGT
 CCTGGAGACTCT
 CATTTTAT
 TCAACATT
 CCTGGACGGCAGT
 TACA
 L N C S V P G D S H F Y F N I L Q A V T
 GATGTGATT
 CGTATCAACGGG
 CTGATGTTG
 CTC
 GGCAACAGT
 TTTCT
 CAACCTTATAAC
 D V I R I N G R D V V L A T F S T P Y N
 AGCATCCC
 TGGGCTGCA
 GCTGTG
 CCTGACATG
 GCTTGC
 AGTCTG
 GATGTT
 TTTTACT
 S I P G S A V C A Y D M L D I A S V E T
 57
 117
 177
 237
 297
 357
 417
 477
 537
 597
 657
 717
 777
 837
 897
 957
 1017
 1077
 1137
 1197
 1237
 1297
 1357
 1417
 1477
 1537
 1597
 1657

4/11

Fig. 2 (cont.)

GGGAGATTCAAGGAACAGAACAGTCTCCTGATTCCACCTGGACACCAGTTCTGATGAACGA 1717
 G R F K E Q K S P D S T W T P V P D E R
 GTTCTCTAAGCCCAGGCCAGGTTCCTGCTGCTGCCTCATCTCTAGAAAGATATGCAACCC 1777
 V P K P R P G C C A G G S S S L E R Y A T
 TCCAATGAGTTCCCTGATGATAACCCCTGAACCTCATCAAGAGCACCAGCTCATGGATGAG 1837
 S N E F P D D T L N F I K T H P L M D E
 GCAGTCCTCCATCTTCAACAGGCCATGGTCCCTGAGAACATGGTCAGATACCGCCTT 1897
 A V P S I F N R P W F L R T M V R Y R L
 ACCAAAATTGCACTGGACACAGCTGCTGGGCCATATCAGAACATCACAGTGGTTTTCTG 1957
 T K I A V D T A A G P Y Q N H T V V F L
 GGATCAGAGAAGGGAATCATCTTGAGTTTTGGCCAGAAATAGGAATAGTGGTTTTCTA 2017
 G S E K G I I F L A R I G N S G F L
 AATGACAGCCTTTCTGGAGGAGATGAGTCTTCAAACCTGAAAAATCAGCTATGAT 2077
 N D S L F L E E M S V Y N S E K C S Y D
 GGAGTCGAAGACAAAAGGATCATGGGCATGAGCTGGAGAGCAAGCAGCTCTGTAT 2137
 G V E D K R I M G M Q L D R A S S L Y
 GTTGCCTCTACTCTGTGATAAAAGGTTCCCTGGCCGGTGTGAAACGACATGGGAAG 2197
 V A F S T C V I K V P L G R C E R H G K
 TGTAACACCTGTATTGCTCCAGAGACCCATTGTTGGATGGATAAAGGAAGGGTGGT 2257
 C K K T C I A S R D P Y C G W I K E G G
 GCCTGCAGCCATTATCACCCAAACAGCAGACTGACTTTGAGCAGGACATAGAGCGTGGC 2317
 A C S H L S P N S R L T F E Q D I E R G
 AATACAGATGGCTGGGAGACTGTCACAATTCTTGCGACTGAATGGCATTCCACT 2377
 N T D G L G D C H N S F V A L N G H S S
 TCCCTTGGCCAGCACACACATCAGATTGCAAGGGCTCAAGAGGGTATGAGTCTAGG 2437
 S L L P S T T T D S T A Q E G Y E S R
 GGAGGAATGCTGGACTGGAGCATCTGCTGACTCACCTGACAGCACAGACCCCTTGGGG 2497
 G G M L D W K H L L D S P D S T D P L G
 GCAGTGCTTCCCATAATCACCAAGAACAGAACAGAGGGAGTGAATGGGATACCTCAA 2557
 A V S S H N H Q D K K G V I R E S Y L K
 GGCCACGACCAGCTGGCTTCCCGTCACCTCTGGCCATCTGAGTCATCTGGCTTCTGTC 2617
 G H D Q L V P V T L L A I A V I L A F V
 ATGGGGGGCTCTCTGGGATCACCGTCACTGCGTCTGTGATCATGGCGAACAGAC 2677
 M G A V F S G I T V Y C V C D H R R K D
 GTGGCTGGGTGCGAGCGAACAGGAGACTCACCCACTCGGCCGGGCTCCATGAGC 2737
 V A V V Q R K E K E L T H S R R G S M S
 AGCGTCACCAAGCTCAGGGCTCTTGGGACACTCAATCCAAAGACCCAAAGCCGGAG 2797
 S V T K L S G L F G D T Q S K D P K P E
 GCCATCTCACGCGACTCACGACAAGGCAAGCTGCCACTCCGGCACACCGCCAAAG 2857
 A I L T P L M H N G K L A T P G N T A K
 ATGCTCATAAAGCAGACAGCACCACTGGACCTGACGGCCCTCCCCACCCAGAGTC 2917
 M L I K A D Q H H L D L T A L P T P E S
 ACCCGAACGCTGAGCAAGGCGAACGCCAGGCCGGCAGCCGAGTGGAGAGGAAC 2977
 T P T L Q Q K R K P S R G S R E W E R N
 CAGACCTCATCAATGCCATGACAAAGGACATGCCCTGGCTCCCTGTGATTCCCC 3037
 Q N L I N A C T K D M P P M G S P V I P

09856681 - 000303

5/11

Fig. 2 (cont.)

ACGGACCTGCCCTGCGGGCTCCCCAGCCACATCCCCAGCGTGGTGGTCTGCCATC 3097
 T D P L R A S P S H I P S V V V L P I
 ACCCAGCAGGGCTACCACCATGAGTACCTGGACCAGCCAAAATGAGCGAGGTGGCCAG 3157
 T Q Q G Y Q H E Y V D Q P K M S E V A Q
 ATGGCGCTGGAGGACCAGGCCAACACTGGAGTATAAGACCATCAAGGAACATCTCAGC 3217
 M A L E D Q A A T L E Y K T I K E H L S
 AGCAAGAAGTCCCACCATGGGTGAACCTTGAGAACCTGGACAGCCTGCCAAAAA 3277
 S K S P N H G V N L V E N L D S L P P K
 GTTCCACAGCGGGAGGCCTCCCTGGTCCTCCCGGGAGCCCTCCCTGTCTCAGACCGCTCA 3337
 V P Q R E A S L G P P G A S L S Q T G L
 AGCAAGCGGCTGGAAATGACCAACTCCTCTTACCGGGTTGACTATAAGAGGAAGCTAC 3397
 S K R L E M H H S S S Y G V D Y K R S Y
 CCCACGAACCGCTCACGAGAACGCCACCAAGGCCACACTCTCAAAGAACACACTAAC 3457
 P T N S L T R S H Q A T T L K R N N T N
 TCCCTCCAATTCTCTCACCTCTCAGAAACCAACAGAGCTTGGCAGGGAGACAACCGCCG 3517
 S S N S S H L S R N Q S F G R G D N P P
 CCCGCCCGCAGAGGGTGGACTCCATCCAGGTGACAGCTCCAGCCATCTGGCCAGGGC 3577
 P A P Q R V D S I Q V H S S Q P O S G Q A
 GTGACTGTCTCGAGGCAGCCCAGCCTCAACGCCCTACAACACTCACTGACAAGGTCGGGCTG 3637
 V T V S R Q P S L N A Y N S L T R S G L
 AAGCGTACGCCCTCGCTAAAGCCGGACGTACCCCCAAACCATCTTGCCTCCCTTCC 3697
 K R T P S L K P D V P P K P S F A P L S
 ACATCCATGAAGCCAAATGATGCGTGTACATAAtcccaggggggagggggtcagggtgtcga 3757
 T S M K P N D A C T *
 accagcaggaaggcgagggtgcccgtcagctcagcaaggttctcaactgcctcgagtac 3817
 ccaccagaccaagaaggcctgcggc

009215 PCT/EP 1999-09215

6/11

Fig. 3

TUE, 09:00 17.3.99 13:56 02

7/11

(MMU)Sema6A-1 Distribution in Mouse Adult and Embryonic Tissues

Fig. 4

8/11

(HSA)SEMA6A-1: Expression, Protein-Size and Dimerization

Fig. 5

9/11

Fig. 6

Sequence-Alignment: SEMA6A-1 / Zyxin

SEMA6A-1 (6a)
PPPAPQRVDSIQVHSSQPSGQQAVTVSRQPSLNAYNSLRTSGLKRTPSLKPD-VPPKPSFAPLSTS MKPNDACT
* * *** +* * ** + * ** +++ ** * * + *+ * * * * + *
PPPQPQRKPQVQLH-VQPQAKP-HVQPQP-VSSANTQPRGPLSQAPTPAPKFAPVAPKFTPVVS KFSP
zyxin (6b)

Identity: 33%**Similarity: 49%**

003023595840 - 003023595840

10/11

A.**B.**

Fig. 7

11/11

Fig. 8

From Membrane to Cytoskeleton: Enabling a Connection
(Hu and Reichardt, Neuron, Vol. 22; March 1999)

R
se
tha
ind
p
WC

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
BEHL, CHRISTIAN et al.)
Serial No.: 09/856,681)
U. S. National Phase of PCT)
EP 99/09215 Filed November 26, 1999)
Filed: May 22, 2001)
For: HUMAN SEMAPHORIN 6A-1 (SEMA6A-A),)
A GENE INVOLVED IN NEURONAL)
DEVELOPMENT AND REGENERATION)
MECHANISMS DURING APOPTOSIS, AND)
ITS USE AS A POTENTIAL DRUG TARGET)

NOTICE OF CHANGE OF ADDRESS

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

Please address all future correspondence in this matter to:

KILPATRICK STOCKTON LLP
Attn: John K. McDonald, Ph.D.
Suite 2800
1100 Peachtree Street
Atlanta, Georgia 30309-4530
Telephone: 404-815-6500
Facsimile: 404-815-6555

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail No. EL602997982US in an envelope addressed to: Commissioner of Patents and Trademarks, Box PCT, Washington, DC, 20231, on August 3, 2001.

John K. McDonald - Reg. No. 42,860

Serial No. 09/856,681
NOTICE OF CHANGE OF ADDRESS
Docket: 48498-258443
Page 2 of 2

Respectfully submitted,

By: John K. McDonald, Ph.D.

KILPATRICK STOCKTON, LLP
Suite 2800
1100 Peachtree Street
Atlanta, Georgia 30309-4530
Docket: 48498-258443

ATLIB02 49769 1

#3

DECLARATION AND POWER OF ATTORNEY

Attorney's Docket No. 48498-258443

In re Application of: BEHL, Christian, et al.

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: **HUMAN SEMAPHORIN 6A-1 (SEMA6A-A), A GENE INVOLVED IN NEURONAL DEVELOPMENT AND REGENERATION MECHANISMS DURING APOPTOSIS, AND ITS USE AS A POTENTIAL DRUG TARGET**, the specification of which:

 is attached hereto. was filed on May 22, 2001, as Application No. 09/856,681

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I do not know and do not believe that the same was ever known or used by others in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to the date of this application. I further state that the invention was not in public use or on sale in the United States of America more than one year prior to the date of this application. *I understand that I have a duty of candor and good faith toward the Patent and Trademark Office*, and I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 (a)-(d) of the foreign application(s) for patent or inventor's certificate listed below, and have also identified below any foreign application for patent or inventor's certificate disclosing subject matter in common with the above-identified specification and having a filing date before that of the application on which priority is claimed:

Application No.	Country	Filing Date	Priority Claimed Under 35 USC §119
98 122 441.3	EP	November 26, 1998	Yes <input checked="" type="checkbox"/> No _____
PCT/EP99/09215	PCT	November 26, 1999	Yes <input checked="" type="checkbox"/> No _____

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patents issuing thereon.

POWER OF ATTORNEY: The following attorneys are hereby appointed to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: Customer Number 23594

Direct all correspondence to: Customer Number 23594

AFFIX BAR
CODE LABEL →
HERE

Direct telephone calls at 404-949-3999, to John K. McDonald, Ph.D.

Full name of sole or first inventor:	Christian Behl	Citizenship:	Germany
Inventor's signature		Date:	X 21.06.01
Residence and Post Office Address: Mettenstraße 62, 80638 München, DE DEX			

Full name of second inventor, if any:	Andreas Klostermann	Citizenship:	Germany
Inventor's signature		Date:	X 20/6/01
Residence and Post Office Address: Parsbergerstraße 3, 81249 München, DE DEX			

United States Patent & Trademark Office
Office of Initial Patent Examination -- Scanning Division

卷之三

Application deficiencies found during scanning:

Page(s) _____ of _____ were not present
for scanning. (Document title)

Page(s) _____ of _____ were not present
for scanning. (Document title)

Scanned copy is best available.

Drawings Fig. 3, Fig. 4
are very dark.