A Monte Carlo study on methods for handling class imbalance

Mark H. White II | markhwhiteii@gmail.com

Method

Data Generating Process

Two class data were simulated by adapting the caret::twoClassSim R function (Kuhn, 2008):

- Two multivariate normal predictors (A and B) are generated. A and B are correlated at r = .65. These two variables contributed to the log-odds by 4A + 4B + 2AB.
- Another variable, $J \sim U(-1,1)$, was generated. This variable further added to the log-odds by $J^3 + 2 \times \exp(-6 \times (J 0.3)^2)$.
- Two more variables, $K \sim U(0,1)$ and $L \sim U(0,1)$, were generated and contributed to the log-odds by $2 \times \sin(K \times L)$.
- For each data set, a number X was selected, where $X \sim N(50,7)$. Another number, Y, was selected, where $Y \sim N(.15, .033)$. $Z = X (X \times Y)$ variables were generated from a N(0,1) distribution. Each of these Z variables further added to the log-odds in a simple additive fashion, where coefficients were (a) of alternating signs and (b) evenly spaced from 2.50 to 0.25.
- $\frac{Y}{2}$ variables were generated from a N(0,1) distribution and did not contribute to the log-odds.
- The log-odds for each case were converted to probabilities. For each data set, a positive (i.e., minority) class proportion, M, was sampled from N(.03,.007). Probabilities were sorted from lowest to highest. The difference between the probability for the 1-Mth highest probability and M was calculated, and this constant was added to the probability for each case.
- Lastly, the number of cases in each data set were randomly drawn from a distribution N(40000, 5000). 500 data sets were generated, and sixteen combinations of sampling techniques and algorithms were fit to each of these data sets.

Samp	ling	Tec	hni	กบอร
Samu.	שוווו	160		unes

Algorithms

Metrics

Results