		doc_1		doc_2	decision	id
cases		Implicit Neural Representations with Periodic Activation Functions	authors	 Julien N. P. Martel Gordon Wetzstein Alexander W. Bergman Vincent Sitzmann David B. Lindell 		
	authors		title	Implicit Neural Representations with Periodic Activation Functions		
			publication_date	blication_date 2020-06-17 00:00:00		
			source	SupportedSources.PAPERS_WITH_CODE	il, and fail differential ntation	
	title		journal			
			volume			
	publication_dat	e 2020-06-17 00:00:00	doi			
	source	SupportedSources.OPENALEX	urls	• https://arxiv.org/pdf/2006.09661v1.pdf		S 261
	journal	arXiv (Cornell University)		https://github.com/lucidrains/deep-daze		
	volume			• http://proceedings.neurips.cc/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf		
	doi	None		id4980269627728633306		
	urls	https://openalex.org/W3036234074	III	Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits		
	id	id-3355899089163200199	abstract	over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail		
	abstract	Id-3333899089103200199		to represent a signal's spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential		
	versions			equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives. We analyze Siren activation statistics to propose a principled initialization		
	ver sions			scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how Sirens can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine Sirens with hypernetworks to learn priors over the space of Siren functions.		
ı			versions			