

Convolutional Neural Networks Convolutional Laver

Machine Learning

Blockkurs Neuronale Netze und Deep Learning vom 24.9.2019

Mario Stanke Institut für Mathematik und Informatik Universität Greifswald

Convolutional Neura Networks

Convolutional Layer

Problems with Fully Connected Neural Nets (only Dense layers)

Networks
Convolutional Laver

Problems with Fully Connected Neural Nets (only Dense layers)

- high number of parameters
- when images are input:

Networks

Convolutional Layer

Problems with Fully Connected Neural Nets (only Dense layers)

- high number of parameters
- when images are input:
 - no notion of pixel neighborhoods
 - no translation invariance

Cross-correlation (2-dimensional)

Definition 1

Let $A = (a_{ij})_{0 \le i, i \le m}$ be a square $m \times m$ -dimensional matrix and

$$B = (b_{ij}) \underset{0 < j < w}{\underset{0 \leq i \leq h}{0}}$$

be another matrix of shape $h \times w$.

The $h - m + 1 \times w - m + 1$ -dimensional matrix C with entries

$$c_{i,j} := \sum_{i'=0}^{m-1} \sum_{i'=0}^{m-1} a_{i',j'} \cdot b_{i+i',j+j'}$$

is the 2-dimensional cross-correlation of A and B. We write C = A * B.

Example 2

$$m = 2, h = 4, w = 5.$$

$$A = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 & 0 & 2 & -1 \\ 0 & 1 & 4 & 0 & 1 \\ 2 & -2 & 7 & 3 & 0 \\ -1 & 0 & 1 & 0 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & -13 & 6 & 0 \\ 9 & -28 & 9 & 5 \\ 2 & -12 & 6 & -9 \end{pmatrix}$$

Cross-Correlation of an Image

6

9 2

4

က

9 10 11 12

input image B

C = A * B

Convolutional Neural Networks Convolutional Laver

3-dimensional input

- Want to
 - 1 use multiple filters in parallel and
 - 2 stack several (convolutional) layers.
- Also, color images are naturally encoded as 3-dimensional (each pixel has a red, green and blue value).
- Solution: Define convolution for 3-dimensional tensor input as well.

Deep Learning for Computer Vision

$$z_{i,j} = \sum_{i'=0}^{m-1} \sum_{j'=0}^{m-1} \sum_{k=0}^{d-1} x_{i+i',j+j',k} \cdot f_{i',j',k}$$

Deep Learning for Computer Vision

$$z_{i,j,r} = \sum_{i'=0}^{m-1} \sum_{j'=0}^{m-1} \sum_{k=0}^{d-1} x_{i+i',j+j',k} \cdot f_{i',j',k,r} + b_r$$
bias

Deep Learning for Computer Vision

 The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters is computed during BackProp.

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters is computed during BackProp.
- Convolution is a special case of a fully-connected layer, in which certain parameters are shared (*parameter sharing*).

- The input width and height can be conserved in the ouput layer by zero-padding of input (padding = 'same')
- Stride (Schrittweite) s: Skip s-1 positions in each direction when 'sliding' A over $B \Rightarrow$ decreases output layer size up to a factor of s^2 .
- The matrices A are learned, not set manually. The derivative wrt. to the filter matrix parameters is computed during BackProp.
- Convolution is a special case of a fully-connected layer, in which certain parameters are shared (*parameter sharing*).
- Output neurons of convolution can detect lower-level features like ("lower left corner", "pupil") and be combined in deeper layers.

Convolutional Neural Networks

Convolutional Layer

Pooling-Layers

Max-Pooling (tf.keras.layers.MaxPool2D)

- similar to a convolutional layer
- requires a pool_size m like the filter size
- does not have any parameters
- computes output

$$Z_{i,j,r} = \max_{\substack{i' \in [0, m) \\ j' \in [0, m)}} X_{s \cdot i + i', s \cdot j + j', r}$$

- is usually applied with a stride s ≥ 2 and therefore reduces height and width
- intuition:

1.8

Convolutional Neural Networks

Convolutional Laver

Pooling-Layers

Max-Pooling (tf.keras.layers.MaxPool2D)

- similar to a convolutional layer
- requires a pool_size m like the filter size
- does not have any parameters
- computes output

$$Z_{i,j,r} = \max_{\substack{i' \in [0, m) \\ j' \in [0, m)}} X_{s \cdot i + i', s \cdot j + j', r}$$

- is usually applied with a stride s ≥ 2 and therefore reduces height and width
- intuition: checks local presence of at least one feature (e.g. a green stroke) rather than summing up if there are multiple

Pooling-Layers

Max-Pooling (tf.keras.layers.MaxPool2D)

- similar to a convolutional layer
- requires a pool_size m like the filter size
- does not have any parameters
- computes output

$$Z_{i,j,r} = \max_{\substack{i' \in [0, m) \\ j' \in [0, m)}} X_{s \cdot i + i', s \cdot j + j', r}$$

- is usually applied with a stride s ≥ 2 and therefore reduces height and width
- intuition: checks local presence of at least one feature (e.g. a green stroke) rather than summing up if there are multiple

With an analogous definition, average pooling averages over regions of size $m \times m$, but is used more rarely.