

LINEAR SYSTEM ROW REDUCTIONS

Why

We want to generalize and simplify solving linear equations.

Definition

Let $S = (A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n)$ be a linear system. Let $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$ with $A_{ij} \neq 0$. The row reduction of S at row i and column j (or the ij-row reduction or ij-reduction) is the linear system $\tilde{S} = (\tilde{A}, \tilde{B})$ where

$$\tilde{A}_{st} = \begin{cases} A_{st} & \text{if } s = i \\ A_{st} - (A_{sj}/A_{ij})A_{it} & \text{otherwise.} \end{cases}$$

We say that S is row reducible to \tilde{S} ; or S reduces to \tilde{S} .

Let $a^k, \tilde{a}^k \in \mathbb{R}^n$ denote the kth row of A and \tilde{A} , respectively. Then if $k \neq i$, $\tilde{a}^k = a^k - \alpha_k a^i$ where $\alpha_k = A_{kj}/A_{ij}$. In other words, a row k of the matrix \tilde{A} is obtained by subtracting a multiple of the ith row of matrix A from row k of matrix A. We are "reducing" the rows of A.

Proposition 1. Let $(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n)$ be a linear system which row reduces to (C, d). Then $x \in \mathbb{R}^n$ is a solution of (A, b) if and only if it is a solution of (C, d).

¹Future editions will include an account.

Example

Suppose we want to find $x_1, x_2 \in \mathbf{R}$ to satisfy

$$3x_1 + 2x_2 = 10$$
, and $6x_1 + 5x_2 = 20$.

We seek solutions to the linear system (\tilde{A}, \tilde{b}) where

$$\tilde{A} = \begin{bmatrix} 3 & 2 \\ 6 & 5 \end{bmatrix}$$
 and $\tilde{b} = \begin{bmatrix} 10 \\ 20 \end{bmatrix}$.

The row reduction for (\tilde{A}, \tilde{b}) for row 1 and variable 1 is

$$\tilde{C} = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $\tilde{d} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$.

A solution to the system (\tilde{C}, \tilde{d}) satisfies

$$3x_1 + 2x_2 = 10$$
 and $x_2 = 0$.

We see that for $x \in \mathbb{R}^2$ to be a solution of (\tilde{C}, \tilde{d}) , $x_2 = 0$. Using that and the first equation, we have that $x_1 = \frac{10}{3}$. This process is called *back-substitution*.

So (\tilde{C}, \tilde{d}) has solution set $\{(10/3, 0)\}$. Proposition 1 says that (A, b) has the same solution set.

