

1 Fila do SUS

Os pacientes que chegam à fila do *Sistema Único de Saúde* (SUS) passam por uma "triagem" e, imediatamente, vão para a fila de atendimento ¹.

Na triagem a enfermeira anota o horário de entrada do paciente e quantos minutos ele tem até que sua condição de saúde se torne crítica, sendo que ela nunca erra em suas previsões².

Sabe-se que os pacientes são atendidos de 30 em 30 minutos, ou seja, sempre nas horas "cheias" ou em "meias-horas", quando estão na fila de atendimento. O início da triagem e do atendimento se dá, pontualmente, às 07h da manhã de cada dia.

Se não há nenhum paciente sendo atendido e a fila está vazia³, o primeiro paciente é atendido no instante que chega à triagem. O médico sempre atende até o último paciente na fila⁴.

A preocupação é se algum paciente atingiu a sua *condição crítica* enquanto está na fila de atendimento, ou seja, ainda não tenha sido iniciado seu atendimento⁵.

Diante deste cenário, você foi convidado a implementar um programa de computador, em \mathbb{C} , que seja capaz de verificar na fila quantos pacientes atingem a sua condição crítica.

Entrada

A primeira linha da entrada contém um número inteiro $n \in \mathbb{N}^*$, $0 < n \le 50$, o número de pacientes que chegaram à triagem.

As n linhas seguintes possuem uma tríade de valores inteiros $h, m, c \in \mathbb{N}^*$ e 7 < h < 19, $0 \le m < 60$ e $0 \le c \le 720$. Os valores de h e m correspondem, respectivamente, à hora e ao minuto em que o paciente chega à triagem. O paciente da linha i sempre chega antes de, e no máximo junto com, o paciente da linha

¹Lembre-se: Isto é apenas um exercício de programação e, portanto, não há nenhuma fidedignidade com os acontecimentos reais no SUS do Brasil.

²Sim, ela é uma enfermeira que, nas horas vagas, opera uma "bola de cristal" dos contos infantis e que, por isso, consegue predizer, de maneira inequívoca, em quanto tempo o paciente atingirá o estado crítico.

³Isto ocorre? Eu não acredito!

⁴Tá de brincadeira!

⁵Tá de brincadeira, de novo!

(i+1). O valor c é o tempo, expresso em minutos, antes daquele paciente atingir a condição crítica em seu estado de saúde.

Saída

O programa deverá imprimir o número de pacientes que atingiram a condição crítica ainda na fila de atendimento.

Exemplos

Entrada	Saída
4	1
7 0 20	
7 0 30	
7 30 20	
8 15 30	

Entrada		Saída	
5	0		
10 20 50			
10 30 30			
11 10 20			
12 0 0			
12 10 30			

Entrada	Saída
24	0
7 0 0	
7 0 30	
7 0 60	
7 0 90	
7 0 120	
7 0 150	
7 0 180	
7 0 210	
7 0 240	
7 0 270	
7 0 300	
7 0 330	
7 0 360	
7 0 390	
7 0 420	
7 0 450	
7 0 480	
7 0 510	
7 0 540	
7 0 570	
7 0 600	
7 0 630	
7 0 660	
7 0 690	

Entrada		Saída	
15	8		
7 0 0			
7 0 20			
7 30 50			
7 50 30			
8 0 120			
8 1 75			
8 30 90			
9 59 30			
11 0 240			
11 15 0			
11 30 300			
14 0 0			
14 40 5			
15 15 5			
17 50 5			