모델 검증

- 임계값에 따른 평가지표 확인
- 1.1.1 이진 분류의 평가지표

1.1.2 임계값과 평가지표

- 1.1.3 평가지표 ROC 커브, AUC
- 1.1.4 다중 분류의 평가지표

학습 내용

- 예측을 0,1로 하는 것이 아니라 확률로 하기.
- 임계값을 조정하는 것에 따라 정밀도와 민감도가 변하는 것을 확인해 본다.

목차

01. 데이터 준비 및 라이브러리 임포트 02. 모델(SVC) 예측 후, 평가 지표 확인

이진 분류 예측 - 예측을 0,1로 하는 것이 아니라 확률로 해보기

- 400개(음성), 50개(양성) 으로 이루어진 불균형 데이터
- 사용 함수: decision_function(), predict_proba()
 - decision_function을 0으로, predict_proba를 0.5의 임계값으로 사용

01. 데이터 준비 및 라이브러리 임포트

목차로 이동하기

In [1]:

```
import warnings
warnings.filterwarnings(action='ignore')
```

In [2]:

```
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import mglearn
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
import numpy as np
```

```
In [10]:
```

```
from mglearn.datasets import make blobs
### 데이터 만들기
X, y = make\_blobs(n\_samples=(400, 50),
                 centers=2,
                                              # 클러스터의 표준 편차
                 cluster std=[7.0, 2],
                 random state=42)
print(X.shape, y.shape)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
(450, 2) (450,)
```

In [11]:

```
X_train[0:10], y_train[0:10]
```

Out[11]:

```
(array([[-0.18299954, 3.77488037],
        [-2.73847051, 5.21031273],
        [ 4.14376924, 4.97596054],
                     2.642083261,
        [ 5.21160962,
        [ 1.78996928, 14.3168401 ],
        [ 1.09604925, 12.61078778],
        [-2.16954623, 3.19763531],
       [-8.04251881, 12.31456463],
        [-0.48077362, 23.54209172],
        [-8.287678 , 6.76458524]]),
array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0]))
```

데이터 시각화

- 400개의 음성 클래스
- 50개의 양성 클래스

In [12]:

Out[12]:

<matplotlib.collections.PathCollection at 0x7fa72ba8daf0>

임계값에 따른 값을 확인

In [13]:

mglearn.plots.plot_decision_threshold()

- 중앙 웟부분에 있는 검은 원은 decision_function이 정확히 0일 때의 임계점을 나타낸다.
- 원안의 포인트는 양성 클래스로 분류, 바깥쪽 포인트는 음성 클래스로 분류

재현율(recall) 조정해보기

- svc.predict()함수로 예측 시. 재현율을 조정하기 어려운 조건.
- decision function()함수로 예측하여 임계값이 조정이 가능.

02. 모델(SVC) 예측 후, 평가 지표 확인

목차로 이동하기

- 모델: SVC
- 정밀도, 민감도, f1-score 확인

In [14]:

```
svc = SVC(gamma=.05).fit(X_train, y_train)
pred = svc.predict(X_test)
print(classification_report(y_test, pred))
```

	precision	recall	f1-score	support
0	0.99	0.93	0.96	107
1	0.42	0.83	0.56	6
accuracy			0.93	113
macro avg	0.70	0.88	0.76	113
weighted avg	0.96	0.93	0.94	113

- 클래스 1에 대해 상당한 작은 정밀도(0.35)를 얻었음. 재현율은 절반(0.67)
- 클래스 0의 샘플이 매우 많으므로 분류기는 소수인 클래스 (양성)1보다 클래스 (음성)0에 초점.

모델의 임계값을 활용하여 0,1 개수 조정

- 임계값을 0에서 -0.8로 낮추기
- 임계값을 0에서 -0.8로 조정시 양성 클래스(1)의 개수가 늘어난다.

In [15]:

```
pred = svc.decision_function(X_test)
print(pred[0:10])
np.min(pred), np.max(pred)
```

Out[15]:

(-1.509707253620952, 1.6245457437087478)

```
In [16]:
```

```
decision_0 = svc.decision_function(X_test) > 0 # 임계값을 0으로 decision_m08 = svc.decision_function(X_test) > -.8 # 임계값을 -0.8로 # TP - 잘 맞추는 것을 늘린다. print("임계값 0 일때 : 1(양성) 개수 :", decision_0.sum() ) print("임계값 -0.8 일때 : 1(양성) 개수 :", decision_m08.sum() )
```

임계값 0 일때 : 1(양성) 개수 : 12 임계값 -0.8 일때 : 1(양성) 개수 : 18

• 임계값을 변경하여 역으로 1의 개수가 늘고 0의 개수가 줄어든다.

In [17]:

```
print("임계값 0 일때 : 0(음성) 개수 :", len(decision_0) - decision_0.sum())
print("임계값 -0.8 일때 : 0(음성) 개수 :", len(decision_m08) - decision_m08.sum())
임계값 0 일때 : 0(음성) 개수 : 101
임계값 -0.8 일때 : 0(음성) 개수 : 95
In [18]:
```

```
y_pred_0 = svc.decision_function(X_test) > 0
y_pred_08 = svc.decision_function(X_test) > -.8
```

In [19]:

```
# 임계값 0
print(classification_report(y_test, y_pred_0))
```

	precision	recall	f1-score	support
0	0.99	0.93	0.96	107
1	0.42	0.83	0.56	6
accuracy			0.93	113
macro avg weighted avg	0.70 0.96	0.88 0.93	0.76 0.94	113 113

In [20]:

print(classification_report(y_test, y_pred_08))

	precision	recall	f1-score	support
0	1.00	0.89	0.94	107
1	0.33	1.00	0.50	6
accuracy			0.89	113
macro avg	0.67	0.94	0.72	113
weighted avg	0.96	0.89	0.92	113

임계값을 낮추는 것은

- 정밀도(precision) 0.42에서 0.33로 낮아지고
- 재현율(recall)-sensitivity(민감도)는 0.83에서 1로 올라감.
- 결론적으로 1(양성)의 수가 늘어나기 때문에 TP(진짜 양성)의 개수가 늘어난다.

Review

- 정밀도(precision)
 - TP/(TP + NP) : **예측 양성 전체 중**에 정확하게 잘 맞추었을까?
- 재현율(recall):
 - TP/(TP + FN) : 실제 양성 데이터의 얼마나 잘 맞추었을까?
 - 다른 말로 **민감도(sensitivity), 적중률(hit rate), 진짜 양성 비율(TPR)**이라고 합니다.
- F1-score

실습

- 임계값을 0보다 큰 값으로 조정해 보고 재현율(recall)를 확인해 보기
- 임계값을 0으로 하고 재현율(recall)과 기타 평가지표를 확인해 보기

기타 방법

- predict proba()메서드는 출력이 0에서 1 사이로 고정
 - 보통은 0.5를 임계값-이는 양성과 음성이 50%분류이다.
 - 임계값을 높이는 것은 양성이 분류될 확률이 많이 나올 때, 수행

교육용으로 작성된 것으로 배포 및 복제시에 사전 허가가 필요합니다.

Copyright 2022 LIM Co. all rights reserved.