Cryptosystems and Symmetric Encryption/Decryption)

Need for improved Security

Some attack types on Network

- 1. Disclosure (İfşaat)
- 2. Traffic Analysis(Trafik Analizi)
- 3. Masquerade (Gerçeği gizleme)
- 4. Content Modification (İçerik Değiştirme)
- 5. Sequence Modification (Sıra Değiştirme)
- 6. Timing Modification (Zamanlamayı Değiştirme)
- 7. Repudiation (İnkarcılık)

No.	Source	Destination	Layer	Summary	Error	Size	Interpacket Time	Absolute Time
7 8 9 10 11 12	0020AF247F25 0000E82F772A 0000E82F772A 0020AF247F25	0020AF247F25 0000E82F772A 0020AF247F25 0020AF247F25 0000E82F772A	top top top top top	Port:POP3> 1067 ACK PUSH Port:1067> POP3 ACK Port:1067> POP3 ACK PUSH Port:POP3> 1067 ACK PUSH Port:1067> POP3 ACK Port:1067> POP3 ACK Port:1067> 1067 ACK PUSH Port:POP3> 1067 ACK PUSH		97 64 71 77 64 74	192 ms 326 ms 7 ms 162 ms 326 ms 920 µs	8:58:38 PM 8:58:38 PM 8:58:38 PM 8:58:38 PM 8:58:39 PM 8:58:39 PM 8:58:39 PM
1	10: 00 3B 1	0020AF247F25 08 2F 77 2A 00 40 00 00 6E 04 2B	00 2	Port:1067> POP3 ACK 20 AF 24 7F 25 08 00 45 00 /w* \$. % . 06 BA CC C0 A8 01 64 C0 A8 . ; @ 0D 0D 56 00 BF 06 DF 50 18 . < . n . + V	d	64	172 ms	8:58:39 PM
	30: 22 2B I)3 06 00 00 55 70 74 65	2B 4	4F 4B 20 75 73 65 72 20 61 "++OK use OD 0A ccepted				

- MSG 3,4,5 3 way hanshake
- 6,7 POP3 Mail server msg
- 8 Client's Logon name

No.	Source	Destination	Layer	Summary	Error	Size	Interpacket Time	Absolute Time
	0020AF247F25	0000E82F772A	top	Port:POP3> 1067 ACK PUSH		97		8:58:38 PM
	0000E82F772A 0000E82F772A	0020AF247F25 0020AF247F25		Port:1067> POP3 ACK Port:1067> POP3 ACK PUSH		64 71		8:58:38 PM 8:58:38 PM
			tep	Port:POP3> 1067 ACK PUSH		77		8:58:38 PM
	0000E82F772A		tep	Port:1067> POP3 ACK		64		8:58:39 PM
	0000E82F772A 0020AF247F25		top top	Port:1067> POP3 ACK PUSH Port:POP3> 1067 ACK PUSH		74 91		8:58:39 PM 8:58:39 PM
				Port:1067> POP3 ACK		64		8:58:39 PM
1								<u> </u>
	0: 00 00 E	8 2F 77 2A	00 2		E.			
	10: 00 3B 1C 00 40 00 20 0		20 0	06 BA CC C0 A8 01 64 C0 A8 .;@ OD OD 56 00 BF 06 DF 50 18 .<.n.+V				
		0 66 04 26		JD	– .			
	40: 63 63 6	5 70 74 65	64 0	DD OA ccepted				

- MSG 9 logon name
- 11 POP3 Mail client msg
- 12 response of server

Passive monitoring clear text Clear text protocols

- FTP Authentication is clear text.
- Telnet Authentication is clear text.
- SMTP Contents of mail messages are delivered as clear text.
- HTTP Page content and the contents of fields within forms are sent clear text.
- IMAP Authentication is clear text.
- SNMPv1 Authentication is clear text.

Good authentication required

Session hijacking

- Verifying destination
- C2MYAZZ (server spoofing Attack)
- DNS Poisoning

Encryption Techniques

Many savages at the present day regard their names as vital parts of themselves, and therefore take great pains to conceal their real names, lest these should give to evil-disposed persons a handle by which to injure their owners.

—The Golden Bough, Sir James George Frazer

- For Encryped communication;
 - Encryption Algorithm(E)
 - Decryiption Algorithm (D)
 - -Key(K),

Some Basic Terminology

- plaintext original message
- ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- **decipher (decrypt)** recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

```
c = E_{\kappa}(m) one to one function m = D_{\kappa}(c) decryption function
```

- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- characterize cryptographic system by:
 - type of encryption operations used
 - substitution / transposition / product
 - number of keys used
 - single-key or private / two-key or public
 - way in which plaintext is processed
 - block / stream

Cryptosystem

Cryptosystem

- Alphabet A
- Plain text space P
- Ciphertext space C
- Key space K
- Encryption Func. E
- Decryption Func. D
- A Cryptosystem is formed as (P,C,K,E,D)
- $for \forall k \in K$, $D_k \in D$ there is an $E_k \in E$ functions, such as;
- $\forall E_k : P \to C$ and $\forall D_k : C \to P$ and $D_k (E_k(x)) = x$ for $\forall x \in P$

Cryptosystem

- is classified according to;
- Types of operations used for transforming from plaintext to ciphertext
 - Substitution, transposition
- Number of used keys
 - Symmetric, asymmetric
- Processing method of plaintext
 - Block cipher, stream cipher

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are privatekey
- was only type prior to invention of public-key in 1970's
- and by far most widely used

Symmetric Cipher Model

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack

Cryptanalytic Attacks

ciphertext only

 only know algorithm & ciphertext, is statistical, know or can identify plaintext

known plaintext

– know/suspect plaintext & ciphertext

chosen plaintext

select plaintext and obtain ciphertext

chosen ciphertext

select ciphertext and obtain plaintext

chosen text

select plaintext or ciphertext to en/decrypt

More Definitions

unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

 given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size

assume either know / recognise plaintext

			
Key length(bit)	Number of keys	Required time in speed	Required time in
		of 1 analysis/µs	speed of
			10 ⁶ analsis/μs
24	$2^{24} = 1.6 \times 10^7$	$2^{23} \mu s = 8.4 \text{ sec}$	8.4 μsec.
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \min$	2.15 milisec.
48	$2^{48} = 2.8 \times 10^{14}$	$2^{47} \mu s = 4.46 \text{ years}$	2.35 min.
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4x 10 ¹⁸ yearsl
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 x 10^{36} years$	5.9x 10 ³⁰ years
26 character permutation	$26! = 4 \times 10^{26}$	$2x10^{26} \mu s = 6.4x \ 10^{12} y$	6.4x 10 ⁶ years

History of Cryptography

- Used 4000 years ago
- Egypts used pictures for cipher

Unright phic encipherments of proper names and titles, with cipher hieroglyphs at lift, plain equivalents as right

History of Cryptography

- Hebrews used encrypted words in holy books
- Julius Caesar used a basic substitution cipher nearly 2000 years ago
- Roger Bacon presenteed some methods in 1200.
- Geoffrey Chaucer used cipher in his works
- Leon Alberti used a cipher wheel in 1460
- Blaise de Vigenère published a book on cryptography in 1855. (multiple alphabet exchanges)
- Cyrptography is used for mostly military and diplomacy

Machine Ciphers

Jefferson cylinder was developed in 1790

Wheatstone disc is designed by Wadsworth

in1817

Enigma Rotor machine is used in world war II

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on Alphabet
- example:

```
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
```

Caesar Cipher

can define transformation as:

mathematically give each letter a number

```
abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

then have Caesar cipher as:

$$c = E(p) = (p + k) \mod (26)$$

$$p = D(c) = (c - k) \mod (26)$$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

Plain: abcdefghijklmnopgrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of 26! = 4 x 1026 keys
- with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th Ird s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach for improving security was to encrypt multiple letters
- the Playfair Cipher is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

M	0	N	A	R
С	Н	Υ	В	D
E	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	X	Z

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end, ar encrypted as RM)
 - 3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom, mu encrypted as CM)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair (hs becomes BP)

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
 - eg. by US & British military in WW1,2
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher effectively multiple(26) caesar ciphers key is multiple letters long $K = k_1 k_2 ... k_d$ ith letter specifies ith alphabet to use use each alphabet in turn repeat from start after d letters in message decryption simply works in reverse $C_i = (P_i + K_{imodm}) \mod 26$ first m letter in plaintext
- $P_i = (C_i K_{imodm}) \mod 26$

Example of Vigenère Cipher

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive

```
key: deceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ
```

Aids

- simple aids can assist with en/decryption
- a Saint-Cyr Slide is a simple manual aid
 - a slide with repeated alphabet
 - line up plaintext 'A' with key letter, eg 'C'
 - then read off any mapping for key letter
- can bend round into a cipher disk
- or expand into a Vigenère Tableau

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 - see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- eg repeated "VTW" in previous example
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- ideally want a key as long as the message
- Vigenère proposed the autokey cipher
- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- but still have frequency characteristics to attack
- eg. given key deceptive

```
key: deceptivewearediscoveredsav plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA
```

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure; $C_i = P_i \oplus K_i$: $P_i = C_i \oplus K_i$
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as: meet me after the toga party

```
m e m a t r h t g p r y e t e f e t e o a a t
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks
 - high overhead to hide relatively few info bits