LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57061\pm0.00024$$
 MeV (S = 1.6) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.0254 \pm 0.0017$$

 $F_A = 0.0119 \pm 0.0001$
 F_V slope parameter $a = 0.10 \pm 0.06$
 $R = 0.059^{+0.009}_{-0.008}$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES	I	Fraction (Γ	$i_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
${\mu^+ u_{\mu}}$	[b]	(99.9877	0 ± 0.0000	04) %	30
$\mu^{\dot{+}} u_{\mu}\gamma$	[c]	(2.00	±0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[b]	(1.230	± 0.004	$) \times 10^{-4}$	70
$e^+ u_{ m e}\gamma$	[c]	(7.39	±0.05	$) \times 10^{-7}$	70
$e^+ u_e \pi^0$		(1.036	± 0.006	$) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$		(3.2	± 0.5	$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$		< 5		$\times 10^{-6} 90\%$	70

Lepton Family number (LF) or Lepton number (L) violating modes

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9770\pm0.0005$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.52\pm0.18)\times10^{-17}$ s (S $=1.2$) $c\tau=25.5$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ_i)	Scale factor/ Confidence level	•
2γ	(98.823±0.	034) % S=1.5	67
$e^+e^-\gamma$	$(1.174\pm0.$	035) % S=1.5	67
γ positronium	($1.82 \pm 0.$	29) \times 10 ⁻⁹	67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0 .	16) \times 10 ⁻⁵	67
e^+e^-	($6.46 \pm 0.$	33) \times 10 ⁻⁸	67
4 γ	< 2	$\times 10^{-8}$ CL=90%	67
$ u \overline{ u}$	[e] < 2.7	$\times 10^{-7}$ CL=90%	67
$ u_{\mathbf{e}}\overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$ CL=90%	67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$ CL=90%	67
$ u_{ au} \overline{ u}_{ au}$	< 2.1	$\times10^{-6}$ CL=90%	67
$\gamma u \overline{ u}$	< 6	$\times10^{-4}$ CL=90%	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times 10^{-8}$ CL=90%	67
μ^+e^-	LF	< 3.8	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.4	$\times 10^{-9}$ CL=90%	26
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 3.6	$\times10^{-10}$ CL=90%	26

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m = 547.862 \pm 0.017$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12})\times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11})\times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09\pm0.09)\times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9\pm0.4)\times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02\pm0.07 \; \; (\text{S}=1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

Dalitz plot parameter

$$\pi^0 \pi^0 \pi^0$$
 $\alpha = -0.0288 \pm 0.0012$ (S = 1.1)
Parameter Λ in $\eta \to \ell^+ \ell^- \gamma$ decay = 0.716 \pm 0.011 GeV/ c^2

η DECAY MODES		Fraction (Γ_i/Γ)		Scale factor/ fidence level	
	Neur	tral modes			
neutral modes	IICu	(72.12±0.34) %	S=1.2	_
2γ		(39.41±0.20	•	S=1.1	274
$3\pi^0$		(32.68±0.23	•	S=1.1	179
$\pi^0 2\gamma$		(2.56±0.22			257
$2\pi^0 \overset{,}{2}\gamma$		< 1.2	$\times 10^{-3}$	CL=90%	238
4 γ		< 2.8	$\times 10^{-4}$	CL=90%	274
invisible		< 1.0	$\times 10^{-4}$	CL=90%	_
	Char	ged modes			
charged modes		$(28.10\pm0.34$) %	S=1.2	_
$\pi^{+}\pi^{-}\pi^{0}$		$(22.92 \pm 0.28$) %	S=1.2	174
$\pi^+\pi^-\gamma$		$(4.22\pm0.08$) %	S=1.1	236
$e^+e^-\gamma$		(6.9 ± 0.4	•	S=1.3	274
$\mu^+\mu^-\gamma$		(3.1 ± 0.4	•		253
e^+e^-		< 7		CL=90%	274
$\mu^+\mu^-$		(5.8 ± 0.8	,		253
$2e^{+}2e^{-}$		(2.40 ± 0.22)	,		274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$		$(2.68\pm0.11$			235
$e^{+}e^{-}\mu^{+}\mu^{-}$		< 1.6	$\times 10^{-4}$	CL=90%	253
$2\mu^{+}2\mu^{-}$		< 3.6	\times 10 ⁻⁴	CL=90%	161
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$		< 3.6	$\times 10^{-4}$	CL=90%	113
$\pi^+e^-\overline{\nu}_e+$ c.c.		< 1.7	\times 10 ⁻⁴	CL=90%	256
$\pi^+\pi^-2\gamma$		< 2.1	\times 10 ⁻³		236
$\pi^+\pi^-\pi^0\gamma$		< 5	\times 10 ⁻⁴	CL=90%	174
$\pi^0 \mu^+ \mu^- \gamma$		< 3	× 10 ⁻⁶	CL=90%	210
		ation (C) , Paris	,		
		tion \times Parity (-	1	
		ber (<i>LF</i>) viola			
$\pi^0\gamma$	С	< 9	$\times 10^{-5}$	CL=90%	257
$\pi^{+}\pi^{-}$	P,CP	< 1.3	\times 10 ⁻⁵		236
$2\pi^{0}$	P,CP	< 3.5	\times 10 ⁻⁴		238
$2\pi^0\gamma$	С	< 5	\times 10 ⁻⁴		238
$3\pi^0\gamma$	С	< 6	\times 10 ⁻⁵		179
3γ	С	< 1.6	\times 10 ⁻⁵		274
$4\pi^{0}$	P,CP	< 6.9	\times 10 ⁻⁷		40
$\pi^{0} e^{+} e^{-}$	-	f] < 8	\times 10 ⁻⁶		257
$\pi^{0}\mu^{+}\mu^{-}$	_	f] < 5	\times 10 ⁻⁶		210
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 6	× 10 ⁻⁶	CL=90%	264

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass (T-Matrix Pole \sqrt{s}) = (400–550)-i(200–350) MeV Mass (Breit-Wigner) = (400–550) MeV Full width (Breit-Wigner) = (400–700) MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	seen	_
$\gamma\gamma$	seen	_

ρ (770) [h]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=775.26\pm0.25$ MeV Full width $\Gamma=149.1\pm0.8$ MeV $\Gamma_{ee}=7.04\pm0.06$ keV

ho(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	~ 100	%		363
	$ ho$ (770) $^{\pm}$ dec	ays		
$\pi^{\pm}\gamma$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$	CL=84%	152
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	254
	$ ho$ (770) 0 deca	ays		
$\pi^+\pi^-\gamma$	(9.9 ± 1.6	$) \times 10^{-3}$		362
$\pi^0 \gamma$	(4.7 ± 0.6	,		376
$\eta\gamma$	$(3.00\pm0.21$	$) \times 10^{-4}$		194
$\pi^0\pi^0\gamma$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[i] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	[i] (4.72 ± 0.05)	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}\pm$	$0.34) \times 10^{-4}$		323
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	$) \times 10^{-5}$		257
$\pi^0 e^+ e^-$	< 1.2	$\times 10^{-5}$	CL=90%	376

ω (782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.65\pm0.12$ MeV (S = 1.9) Full width $\Gamma=8.49\pm0.08$ MeV $\Gamma_{ee}=0.60\pm0.02$ keV

HTTP://PDG.LBL.GOV

Page 4

(792) DECAY MODES	Franking (F /F)	Scale factor/	-
ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(iviev/c)
$\pi^+\pi^-\pi^0$	(89.3 ± 0.6) %		327
$\pi^{0}\gamma$	(8.40±0.22) %	S=1.8	380
$\pi^+\pi^-$	(1.53±0.06) %		366
neutrals (excluding $\pi^0\gamma$)	(7 +7)×	10^{-3} S=1.1	_
$\eta\gamma$	(4.5 \pm 0.4) $ imes$	10^{-4} S=1.1	200
$\pi^{0}e^{+}e^{-}$	(7.7 \pm 0.6) $ imes$	10^{-4}	380
$\pi^{0}\mu^{+}\mu^{-}$	(1.34 ± 0.18) $ imes$	10^{-4} S=1.5	349
e^+e^-	(7.36 ± 0.15) $ imes$	10^{-5} S=1.5	391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	< 2 ×	10^{-4} CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6 ×	10^{-3} CL=95%	366
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 ×	10^{-3} CL=90%	256
$\pi^{0}\pi^{0}\gamma$	(6.7 ± 1.1) $ imes$	10^{-5}	367
$\eta\pi^{0}\gamma$	< 3.3 ×	10^{-5} CL=90%	162
$\mu^+\mu^-$	(7.4 ± 1.8) $ imes$	10^{-5}	377
3γ	< 1.9 ×	10 ⁻⁴ CL=95%	391
Charge conjugati	on (C) violating r	nodes	
$\eta \pi^0$	< 2.2 ×	10^{-4} CL=90%	162
0	< 2.2 ×	10^{-4} CL=90%	367
$3\pi^0$		10^{-4} CL=90%	330
invisible	< 7 ×	10^{-5} CL=90%	_

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.196\pm0.009~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	(42.6 ± 0.7) %		232
$ ho^0 \gamma$ (including non-resonant $\pi^+ \pi^- \gamma$)	(28.9 \pm 0.5) %		165
$\pi^0\pi^0\eta$	(22.8 \pm 0.8) %		239
$\omega\gamma$	$(2.62\pm0.13)\%$		159
$\omega e^+ e^-$	($2.0~\pm0.4$) \times 1	10^{-4}	159
$\gamma\gamma_{_{\perp}}$	$(2.22\pm0.08)\%$		479
$3\pi^0$	$(2.54\pm0.18)\times1$	_{L0} -3	430
$\mu^+\mu^-\gamma$	$(1.09\pm0.27)\times1$	10^{-4}	467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	< 2.9 × 1	10^{-5} 90%	401
$\pi^+\pi^-\pi^0$	$(3.61\pm0.17)\times1$	10	428
$(\pi^+\pi^-\pi^0)$ S-wave	(3.8 ± 0.5) \times 1	10-3	428

HTTP://PDG.LBL.GOV

Page 5

$\pi^{\mp} \rho^{\pm}$	(7.4 ±2.3	10-4		106
$\frac{\pi}{\pi}$ $\frac{\rho}{\rho}$ 0	`	,	000/	106
<i>P</i> .	< 4	_	90%	111
$2(\pi^{+}\pi^{-})$	(8.4 ± 0.9)	$9) \times 10^{-5}$		372
$\pi^{+}\pi^{-}2\pi^{0}$	(1.8 ± 0.4	↓) × 10 ⁻⁴		376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.8	$\times10^{-3}$	90%	298
$2(\pi^{+}\pi^{-})2\pi^{0}$	< 1	%	95%	197
$3(\pi^{+}\pi^{-})$	< 3.1	$\times 10^{-5}$	90%	189
$\mathcal{K}^{\pm}\pi^{\mp}$	< 4	$\times10^{-5}$	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	$(2.4 \begin{array}{c} +1.3 \\ -1.0 \end{array})$	3×10^{-3}		458
$\pi^{+}e^{-}\nu_{e}+$ c.c.	< 2.1	$\times 10^{-4}$	90%	469
$\gamma e^+ e^-$	$(4.73\pm0.3$	$(80) \times 10^{-4}$		479
$\pi^0 \gamma \gamma$	(3.20 ± 0.2)	$(24) \times 10^{-3}$		469
$\pi^0 \gamma \gamma$ (non resonant)	(6.2 ± 0.9)	$9) \times 10^{-4}$		_
$4\pi^0$	< 3.2	\times 10 ⁻⁴	90%	380
e^+e^-	< 5.6	\times 10 ⁻⁹	90%	479
invisible	< 5	$\times 10^{-4}$	90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.8	$\times 10^{-5}$	90%	458
$\pi^{0}\pi^{0}$	P,CP	<	4	\times 10 ⁻⁴	90%	459
$\pi^0 e^+ e^-$	C	[f]	1.4	$\times 10^{-3}$	90%	469
$\eta e^+ e^-$	С	[f]	2.4	\times 10 ⁻³	90%	322
3γ	C	<	1.1	\times 10 ⁻⁴	90%	479
$\mu^{+}\mu^{-}\pi^{0}$	С	[f]	6.0	\times 10 ⁻⁵	90%	445
$\mu^+\mu^-\eta$	C	[f]	1.5	\times 10 ⁻⁵	90%	273
$e\mu$	LF	<	4.7	× 10 ⁻⁴	90%	473

f₀(980) ^[j]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=990\pm20$ MeV Full width $\Gamma=10$ to 100 MeV

<u>f₀(980) DECAY MODES</u>	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	seen	476
$K\overline{K}$	seen	36
$\gamma\gamma$	seen	495

a₀(980) ^[j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=980\pm20~{\rm MeV}$ Full width $\Gamma=50~{\rm to}~100~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 6

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	seen	319
$K\overline{K}$	seen	†
$ ho\pi$	not seen	137
$\gamma \gamma$	seen	490

 ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1019.461\pm0.016$ MeV Full width $\Gamma=4.249\pm0.013$ MeV (S = 1.1)

((1000) 576.04.0576		Scale factor/	-
ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
K^+K^-	(49.2 ± 0.5)) % S=1.3	127
$K_I^0 K_S^0$	(34.0 ± 0.4)) % S=1.3	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.24 ± 0.33)) % S=1.2	_
$\eta\gamma$	(1.303 ± 0.025)		363
$\pi^{0}\gamma$	(1.30 ± 0.05)	$) \times 10^{-3}$	501
$\ell^+\ell^-$			510
e^+e^-	(2.973 ± 0.034)	$) \times 10^{-4}$ S=1.3	510
$\mu^+\mu^-$	(2.86 ± 0.19)	$) \times 10^{-4}$	499
$\eta e^+ e^-$	(1.08 ± 0.04)		363
$\pi^+\pi^-$	(7.3 ± 1.3)		490
$\omega\pi^{0}$	(4.7 ± 0.5)	$) \times 10^{-5}$	171
$\omega \gamma$	< 5	% CL=84%	209
$ ho\gamma$	< 1.2		215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3)		490
$f_0(980)\gamma$	(3.22 ± 0.19)		29
$\pi^0\pi^0\gamma$	(1.12 ± 0.06)	$) \times 10^{-4}$	492
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(3.9 \begin{array}{c} +2.8 \\ -2.2 \end{array})$	$) \times 10^{-6}$	410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 4.6	$\times10^{-6}~\text{CL}{=}90\%$	342
$\pi^0e^+e^-$	$(1.33 \begin{array}{c} +0.07 \\ -0.10 \end{array})$	$) \times 10^{-5}$	501
$\pi^{0}\eta\gamma$	(7.27 ± 0.30)	$) \times 10^{-5}$ S=1.5	346
$a_0(980)\gamma$	(7.6 ± 0.6)	$) \times 10^{-5}$	39
$K^0\overline{K}^0\gamma$	< 1.9	$\times 10^{-8}$ CL=90%	110
$\eta'(958)\gamma$	(6.22 ± 0.21)	$) \times 10^{-5}$	60
$\eta \pi^0 \pi^0 \gamma$	< 2	$\times10^{-5}$ CL=90%	293
$\mu^+\mu^-\gamma$	(1.4 ± 0.5)	$) \times 10^{-5}$	499
$ ho \gamma \gamma$	< 1.2	$\times 10^{-4}$ CL=90%	215
$\eta \pi^+ \pi^-$	< 1.8	$\times 10^{-5}$ CL=90%	288

$$\eta \mu^+ \mu^-$$
 < 9.4 × 10⁻⁶ CL=90% 321
 $\eta U \rightarrow \eta e^+ e^-$ < 1 × 10⁻⁶ CL=90% - invisible < 1.7 × 10⁻⁴ CL=90% -

Lepton Family number (LF) violating modes

 $e^{\pm}\mu^{\mp}$ LF < 2 \times 10⁻⁶ CL=90% 504

$h_1(1170)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1170\pm 20~{
m MeV}$ Full width $\Gamma=360\pm 40~{
m MeV}$

h₁(1170) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

308

 $ho\pi$ seen

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

b₁(1235) DECAY MODES Fraction (Γ_i/Γ) Confidence level (MeV/c)348 $\omega \pi$ seen $[D/S \text{ amplitude ratio} = 0.277 \pm 0.027]$ $(1.6\pm0.4)\times10^{-3}$ 607 seen † $\dot{\pi}^{+}\pi^{+}\pi^{-}\pi^{0}$ 84% 535 < 50 $K^*(892)^{\pm} K^{\mp}$ † seen $(K\overline{K})^{\pm}\pi^{0}$ < 8 90% 248 < 6 90% 235 % 2 90% 235 < 1.5 84% 147

$a_1(1260)^{[k]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Mass $m=1230\pm40$ MeV ^[/] Full width $\Gamma=250$ to 600 MeV

a ₁ (1260) DECAY MODES	Fraction (Γ_i)	p (MeV/c)
3π	seen	577
$(ho\pi)_{S-wave},\; ho o\;\pi\pi$	seen	353
$(ho\pi)_{D-wave},\ ho o\ \pi\pi$	seen	353
HTTP://PDG.LBL.GOV	Page 8	Created: 5/22/2019 10:04

$(ho(1450)\pi)_{S-wave},\ ho ightarrow \ \pi\pi$	seen	†
$(ho(1450)\pi)_{D-wave},\;\; ho o\;\pi\pi$	seen	†
$f_0(500)\pi$, $f_0 ightarrow \pi\pi$	seen	_
$f_0(980)\pi$, $f_0 ightarrow \pi\pi$	not seen	179
$f_0(1370)\pi$, $f_0 \rightarrow \pi\pi$	seen	†
$f_2(1270)\pi, f_2 \to \pi\pi$	seen	†
$\pi^+\pi^-\pi^0$	seen	576
$\pi^{0}\pi^{0}\pi^{0}$	not seen	577
$KK\pi$	seen	250
K*(892) K	seen	†
$\pi\gamma$	seen	608

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1275.5\pm0.8~{
m MeV}$ Full width $\Gamma=186.7^{+2.2}_{-2.5}~{
m MeV}~{
m (S}=1.4)$

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$\pi\pi$	$(84.2 \begin{array}{c} +2.9 \\ -0.9 \end{array}) \%$	S=1.1	623
$\pi^{+}\pi^{-}2\pi^{0}$	$(7.7 \ ^{+1.1}_{-3.2})\%$	S=1.2	563
$K\overline{K}$	$(4.6 \ ^{+0.5}_{-0.4})\%$	S=2.7	404
$2\pi^{+}2\pi^{-}$	(2.8 ± 0.4) %	S=1.2	560
$\eta\eta_{_}$	(4.0 \pm 0.8) \times	10^{-3} S=2.1	326
$4\pi^0$	(3.0 ± 1.0) $ imes$	10^{-3}	565
$\gamma\gamma$	(1.42 ± 0.24) $ imes$	10^{-5} S=1.4	638
$\eta\pi\pi$	< 8 ×	10^{-3} CL=95%	478
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4 ×	10^{-3} CL=95%	293
e^+e^-	< 6 ×	10^{-10} CL=90%	638

f₁(1285)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=22.7\pm1.1$ MeV (S =1.5)

<u>f</u> 1(1285) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
4π	$(33.5^{+}_{-}\ \stackrel{2.0}{1.8})\ \%$	S=1.3	568
$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	$(22.3 + 1.3 \atop -1.2) \%$	S=1.3	566
$2\pi^{+}2\pi^{-}$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3	563

HTTP://PDG.LBL.GOV

Page 9

$ ho^{0}\pi^{+}\pi^{-}$	$(11.2^{+}_{-}\ \stackrel{0.7}{0.6})\ \%$	S=1.3	336
$\rho^{0} \rho^{0}$	seen		†
$4\pi^0$	$< 7 \times 10^{-4}$	CL=90%	568
$\eta \pi^+ \pi^-$	(35 \pm 15)%		479
$\eta\pi\pi$	$(52.0 {+} {1.8 \atop -} 2.1) \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow K$ \overline{K}]	(38 ± 4) %		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(14 \pm 4)\%$		482
$K\overline{K}\pi$	(9.1 \pm 0.4) %	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^{+}\pi^{-}\pi^{0}$	$(3.0\pm\ 0.9)\times10^{-3}$		603
$ ho^{\pm}\pi^{\mp}$	$< 3.1 \times 10^{-3}$	CL=95%	390
$\gamma ho^{f 0}$	$(5.3\pm\ 1.2)\%$	S=2.9	406
$\phi\gamma$	$(7.5\pm\ 2.7)\times10^{-4}$		236

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=1294\pm 4$ MeV (S = 1.6) Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \pi^+ \pi^-$	seen	487
$a_0(980)\pi$	seen	248
$\eta\pi^0\pi^0$	seen	490
$\eta(\pi\pi)_S$ -wave	seen	_

π (1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1300\pm 100$ MeV ^[/] Full width $\Gamma=200$ to 600 MeV

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	404
$\pi(\pi\pi)_{S ext{-wave}}$	seen	_

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Mass $m=1316.9\pm0.9$ MeV (S = 1.9) Full width $\Gamma=107\pm5$ MeV $^{\text{[/]}}$

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 10

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(70.1 \pm 2.7) %	S=1.2	623
$\eta\pi$	(14.5 \pm 1.2) %		535
$\omega \pi \pi$	(10.6 \pm 3.2) %	S=1.3	364
$K\overline{K}$	(4.9 \pm 0.8) %		436
$\eta'(958)\pi$	(5.5 \pm 0.9) \times 3	10^{-3}	287
$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times10^{-2}$	10^{-3}	651
$\gamma\gamma$	(9.4 \pm 0.7) \times 3	10^{-6}	658
e^+e^-	< 5 × 1	10^{-9} CL=90%	658

f₀(1370) ^[j]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m=1200 to 1500 MeV Full width $\Gamma=200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^{+}2\pi^{-}$	seen	612
$\pi^{+}\pi^{-}2\pi^{0}$	seen	615
ho ho	seen	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_
$\pi(1300)\pi$	seen	†
$a_1(1260)\pi$	seen	35
$\eta \eta_{_}$	seen	411
$K\overline{K}$	seen	475
$K\overline{K}n\pi$	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†
$\gamma \dot{\gamma}$	seen	685
e^+e^-	not seen	685

$\pi_1(1400)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-})$$

Created: 5/22/2019 10:04

Mass $m=1354\pm25$ MeV (S =1.8) Full width $\Gamma=330\pm35$ MeV

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556
$ ho$ (770) π	not seen	442

η(1405) ^[o]

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=1408.8\pm2.0$ MeV $^{[I]}$ (S =2.2) Full width $\Gamma=50.1\pm2.6$ MeV $^{[I]}$ (S =1.7)

η (1405) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K\overline{K}\pi}$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)_{\mathcal{S}}$ -wave	seen		_
$f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$	not seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
$\rho \rho$	<58 %	99.85%	†
$ ho^{oldsymbol{ ho} ho}_{\gamma}$	seen		491
$K^*(892)K$	seen		123

$h_1(1415)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1416\pm 8$ MeV (S =1.5) Full width $\Gamma=90\pm 15$ MeV

f₁(1420) ^[p]

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 5/22/2019 10:04

Mass $m=1426.3\pm0.9~{\rm MeV}~{\rm (S}=1.1)$ Full width $\Gamma=54.5\pm2.6~{\rm MeV}$

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	438
$K\overline{K}^{*}(892)+ \text{ c.c.}$	seen	163
$\eta\pi\pi$	possibly seen	573
$\phi\gamma$	seen	349

 ω (1420) [q]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass m (1400–1450) MeV Full width Γ (180–250) MeV

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	486
$\omega\pi\pi$	seen	444
$b_1(1235)\pi \ e^+e^-$	seen	125
e^+e^-	seen	710

a₀(1450) [j]

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=1474\pm19~{\rm MeV}$ Full width $\Gamma=265\pm13~{\rm MeV}$

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	$0.093\!\pm\!0.020$	627
$\pi \eta'(958)$ $K \overline{K}$	$0.033\!\pm\!0.017$	410
$K\overline{K}$	0.082 ± 0.028	547
$\omega \pi \pi$	DEFINED AS 1	484
$a_0(980)\pi\pi$	seen	342
$\gamma\gamma$	seen	737

ρ(1450) [r]

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 5/22/2019 10:04

Mass $m=1465\pm25$ MeV ^[/] Full width $\Gamma=400\pm60$ MeV ^[/]

ho(1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
$\pi^+\pi^-$	seen	719
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	58
$K\overline{K}$	seen	541
K^+K^-	seen	541
$K\overline{K}^{*}(892) + \text{c.c.}$	possibly seen	229
$\eta\gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398

Page 13

$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

η (1475)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=1475\pm 4$ MeV (S = 1.4) Full width $\Gamma=90\pm 9$ MeV (S = 1.6)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	477
$K\overline{K}^*(892)+$ c.c.	seen	244
$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738
$K_{\mathcal{S}}^{0}K_{\mathcal{S}}^{0}\eta$	possibly seen	†
$\gamma \phi$ (1020)	possibly seen	385

$f_0(1500)^{[n]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1506\pm 6$ MeV (S =1.4) Full width $\Gamma=112\pm 9$ MeV

f ₀ (1500) DECAY MODES	Exaction (F /F)	Scala factor	p (Ma)//a)
10(1300) DECAT MODES	Fraction (Γ_i/Γ)	Scale factor	(Iviev/c)
$\pi\pi$	$(34.5\pm2.2)\%$	1.2	741
$\pi^+\pi^-$	seen		740
$2\pi^0$	seen		741
4π	$(48.9\pm3.3)\%$	1.2	692
$4\pi^0$	seen		692
$2\pi^+2\pi^-$	seen		687
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
$\pi(1300)\pi$	seen		145
$a_1(1260)\pi$	seen		219
$\eta\eta$	$(6.0\pm0.9)\%$	1.1	517
$\eta \eta'$ (958)	$(2.2\pm0.8)\%$	1.4	20
$K\overline{K}$	$(8.5\pm1.0)\%$	1.1	569
$\gamma\gamma$	not seen		753

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1525\pm 5$ MeV $^{[I]}$ Full width $\Gamma=73^{+6}_{-5}$ MeV $^{[I]}$

HTTP://PDG.LBL.GOV

Page 14

f' ₂ (1525) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	(88.7 ±2.2)%	581
$\eta\eta$	(10.4 \pm 2.2) %	530
$\pi\pi$	$(8.2 \pm 1.5) \times 10^{-3}$	750
$\gamma\gamma$	$(1.10\pm0.14)\times10^{-6}$	763

$\pi_1(1600)^{[n]}$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

Mass $m=1660^{+15}_{-11}$ MeV (S =1.2) Full width $\Gamma=257\pm60$ MeV (S =1.9)

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	802
$ ho^{0}\pi^{-}$	seen	640
$f_2(1270)\pi^-$	not seen	316
$b_1(1235)\pi$	seen	355
η^{\prime} (958) π^{-}	seen	542
$f_1(1285)\pi$	seen	312

a₁(1640)

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Mass $m=1655\pm16$ MeV (S = 1.2) Full width $\Gamma=254\pm40$ MeV (S = 1.8)

a ₁ (1640) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	800
$f_2(1270)\pi$	seen	314
$\sigma\pi$	seen	_
$ ho\pi_{S-wave}$	seen	638
$ ho\pi_{D-wave}$	seen	638
$\omega\pi\pi$	seen	607
$f_1(1285)\pi$	seen	309
$a_1(1260)\eta$	not seen	†

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-+})$$

Created: 5/22/2019 10:04

Mass $m=1617\pm 5~{
m MeV}$ Full width $\Gamma=181\pm 11~{
m MeV}$

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	243
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω(1650) [s]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1670\pm30~{\rm MeV}$ Full width $\Gamma=315\pm35~{\rm MeV}$

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	647
$\omega\pi\pi$	seen	617
$\omega \eta$	seen	500
$\begin{array}{c} \omega\eta \\ e^+e^- \end{array}$	seen	835
$\pi^{0}\gamma$	not seen	830

ω_3 (1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{
m MeV}$ Full width $\Gamma=168\pm 10~{
m MeV}$ [/]

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	645
$\omega \pi \pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Mass $m=1670.6^{+2.9}_{-1.2}~{
m MeV}^{\ [I]}~~(S=1.3)$ Full width $\Gamma=258^{+8}_{-9}~{
m MeV}^{\ [I]}~~(S=1.2)$

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(95.8±1.4) %		808
$f_2(1270)\pi$	$(56.3\pm3.2)~\%$		327
$ ho\pi$	$(31 \pm 4)\%$		647
$\sigma\pi$	(10 ± 4)%		_

HTTP://PDG.LBL.GOV

Page 16

$\pi(\pi\pi)_{S ext{-}wave}$	(8.7±3.	4) %		_
$\pi^{\pm}\pi^{+}\pi^{-}$	(53 ± 4)) %		806
$K\overline{K}^*(892)+$ c.c.	(4.2±1.	4) %		453
ωho	$(2.7\pm1.$	1) %		302
$\frac{\omega ho}{\pi^{\pm} \gamma}$	(7.0 ± 1.5)	$2) \times 10^{-4}$		829
$\gamma\gamma$	< 2.8	\times 10 ⁻⁷	90%	835
$\eta\pi$	< 5	%		739
$\pi^\pm 2\pi^+ 2\pi^-$	< 5	%		735
$ ho$ (1450) π	< 3.6	$\times10^{-3}$	97.7%	145
$b_1(1235)\pi$	< 1.9	$\times 10^{-3}$	97.7%	364
$f_1(1285)\pi$	possibly	seen		322
$a_2(1320)\pi$	not seen			292

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm20$ MeV ^[/] Full width $\Gamma=150\pm50$ MeV ^[/]

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}^*(892)$ + c.c.	seen	462
$K_{S}^{0}K\pi$ $K\overline{K}$	seen	621
	seen	680
e^+e^-	seen	840
$\omega\pi\pi$	not seen	623
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-$	seen	544
$\eta\phi$	seen	290
$\eta\gamma$	seen	751

$\rho_{3}(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1688.8\pm 2.1$ MeV $^{\mbox{[/]}}$ Full width $\Gamma=161\pm 10$ MeV $^{\mbox{[/]}}$ (S =1.5)

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
4π	$(71.1 \pm 1.9)\%$	790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$	787
$\omega \pi$	$(16\pm6)\%$	655
$\pi\pi$	(23.6 \pm 1.3) %	834
$K\overline{K}\pi$	(3.8 ± 1.2) %	629
$K\overline{K}$	$(~1.58\pm~0.26)~\%$	1.2 685
$\eta \pi^+ \pi^-$	seen	727
$ ho$ (770) η	seen	520

HTTP://PDG.LBL.GOV

Page 17

$\pi\pi ho$	seen	633
$a_2(1320)\pi$	seen	308
ho ho	seen	335

$\rho(1700)^{[r]}$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=1720\pm20$ MeV ^[/] $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV ^[/] $(\eta\,\rho^0$ and $\pi^+\pi^-$ modes)

ρ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	seen	803
$ ho\pi\pi$	seen	653
$ ho^{0}\pi^{+}\pi^{-}$	seen	651
$ ho^{\pm}\pi^{\mp}\pi^{0}$	seen	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
π (1300) π	seen	349
ho ho	seen	372
$\pi^+\pi^-$	seen	849
$\pi \pi$	seen	849
$K\overline{K}^{*}(892)+$ c.c.	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	335
$K\overline{K}$	seen	704
e^+e^-	seen	860
$\pi^0\omega$	seen	674
$\pi^{0}\gamma$	not seen	855

a₂(1700)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

Created: 5/22/2019 10:04

Mass $m=1705\pm40~{
m MeV}$ Full width $\Gamma=258\pm40~{
m MeV}$

a ₂ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	$(3.7 \pm 1.0)\%$	758
$\gamma\gamma$	$(1.16\pm0.27)\times10^{-6}$	852
$ ho\pi$	seen	668
$f_2(1270)\pi$	seen	356
$K\overline{K}$	(1.9 ± 1.2)%	695
$\omega\pi^-\pi^{f 0}$	seen	638
ωho	seen	346

$$f_0(1710)^{[t]}$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1704\pm12~{\rm MeV}$ Full width $\Gamma=123\pm18~{\rm MeV}$

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	694
$\eta\eta$	seen	652
$\pi\pi$	seen	841
$\gamma \gamma$	seen	852
$\omega \omega$	seen	337

$\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

Mass $m=1810^{+~9}_{-11}~{
m MeV}~{
m (S}=2.2)$ Full width $\Gamma=215^{+7}_{-8}~{
m MeV}$

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	878
$f_0(500)\pi^-$	seen	-
$f_0(980)\pi^-$	seen	624
$f_0(1370)\pi^-$	seen	366
$f_0(1500)\pi^-$	not seen	247
$ ho\pi^-$	not seen	731
$\eta\eta\pi^-$	seen	660
$a_0(980)\eta$	seen	471
$a_2(1320)\eta$	not seen	†
$f_2(1270)\pi$	not seen	441
$f_0(1370)\pi^-$	not seen	366
$f_0(1500)\pi^-$	seen	247
$\eta\eta^\prime$ (958) π^-	seen	373
$K_0^*(1430)K^-$	seen	†
$K^*(892)K^-$	not seen	568

$\phi_3(1850)$

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Created: 5/22/2019 10:04

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~{
m (S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
\overline{K}	seen	785
$K\overline{K}^{*}(892) + \text{c.c.}$	seen	602

$$\eta_2(1870)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{-+})$$

Mass $m=1842\pm 8~{
m MeV}$ Full width $\Gamma=225\pm 14~{
m MeV}$

η_2 (1870) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma\gamma$	seen	921

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Mass $m=1874^{+26}_{-5}~{
m MeV}~{
m (S}=1.6)$ Full width $\Gamma=237^{+33}_{-30}~{
m MeV}~{
m (S}=1.2)$

$f_2(1950)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1936\pm12$ MeV (S =1.3) Full width $\Gamma=464\pm24$ MeV

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)		
$K^*(892)\overline{K}^*(892)$	seen	377		
$\pi^+\pi^-$	seen	958		
$\pi^{0}\pi^{0}$	seen	959		
4π	seen	921		
$\eta \eta_{_}$	seen	798		
$K\overline{K}$	seen	833		
$\gamma\gamma$	seen	968		
<i>p</i> p	seen	238		

a₄(1970)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

Created: 5/22/2019 10:04

Mass $m=1967\pm16$ MeV (S = 2.1) Full width $\Gamma=324^{+15}_{-18}$ MeV

a ₄ (1970) DECAY MODES	Fraction (Γ_i/Γ)	$p \; (MeV/c)$	
KK	seen	851	
$\pi^+\pi^-\pi^0$	seen	959	
$ ho\pi$	seen	825	
$f_2(1270)\pi$	seen	559	
$\omega \pi^{-1} \pi^{0}$	seen	801	
ωho	seen	601	
$\eta\pi$	seen	902	
$\eta'(958)\pi$	seen	743	

$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}$ MeV Full width $\Gamma=202\pm60$ MeV

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\overline{\phi\phi}$	seen	†	
$K\overline{K}$	seen	876	

f₄(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Mass $m=2018\pm11$ MeV (S = 2.1) Full width $\Gamma=237\pm18$ MeV (S = 1.9)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$\omega\omega$	seen	637	
$\pi\pi$	(17.0±1.5) %	1000	
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880	
$\eta\eta_{_{-}}$	$(2.1\pm0.8)\times10^{-3}$	848	
$\eta \eta \over 4\pi^0$	< 1.2 %	964	
$a_2(1320)\pi$	seen	568	

$\phi(2170)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
e ⁺ e ⁻	seen	1094	
$\phi f_0(980)$	seen	433	

HTTP://PDG.LBL.GOV

Page 21

$$K^{+}K^{-}f_{0}(980) \rightarrow$$
 seen $K^{+}K^{-}\pi^{+}\pi^{-}$
 $K^{+}K^{-}f_{0}(980) \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}$ seen $K^{*0}K^{\pm}\pi^{\mp}$ not seen 779
 $K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$ not seen 634

$f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28$ MeV Full width $\Gamma=149\pm40$ MeV

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\phi \phi$	seen	529	
$K\overline{K}$	seen	1037	
$\gamma \gamma$	seen	1149	

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 2345^{+50}_{-40} \text{ MeV}$ Full width $\Gamma = 322^{+70}_{-60} \text{ MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/ <i>c</i>)	
$\phi\phi$	seen	580	
$\eta\eta$	seen	1037	

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 5/22/2019 10:04

Mass $m=493.677\pm0.016$ MeV $^{[u]}$ (S =2.8) Mean life $au=(1.2380\pm0.0020)\times10^{-8}$ s (S =1.8) c au=3.711 m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \rightarrow \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[v]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_\mu$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$
 $K^+ \to \mu^+ \nu_\mu \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$
 $K^+ \to \pi^0 \mu^+ \nu_\mu$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $g^{[x]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} g = -0.21134 \pm 0.00017$$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} g = 0.626 \pm 0.007$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$

K^{\pm} decay form factors [a,y]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e 3}^{+}) = (2.959 \pm 0.025) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.76 \pm 0.25) \times 10^{-2} \quad (S = 2.7)$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.956 \pm 0.025) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu3}^{+}) = (3.09 \pm 0.25) \times 10^{-2} \quad (S = 1.5)$
 $\lambda_{0}(K_{\mu3}^{+}) = (1.73 \pm 0.27) \times 10^{-2} \quad (S = 2.6)$

 K_{e3} form factor quadratic fit

$$\lambda'_+$$
 (K_{e3}^{\pm}) linear coeff. = $(2.59 \pm 0.04) \times 10^{-2}$ λ''_+ (K_{e3}^{\pm}) quadratic coeff. = $(0.186 \pm 0.021) \times 10^{-2}$

$$\lambda'_{+}$$
 (LINEAR $K_{\mu 3}^{\pm}$ FORM FACTOR FROM QUADRATIC FIT)
= $(24 \pm 4) \times 10^{-3}$

$$\lambda''_+$$
 (QUADRATIC $K_{\mu3}^\pm$ FORM FACTOR) $= (1.8 \pm 1.5) imes 10^{-3}$

$$M_V$$
 (VECTOR POLE MASS FOR K_{e3}^\pm DECAY) $= 890.3 \pm 2.8$ MeV

$$M_V$$
 (VECTOR POLE MASS FOR $K_{\mu 3}^\pm$ DECAY) $= 878 \pm 12$ MeV

$$M_S$$
 (SCALAR POLE MASS FOR $K_{\mu 3}^\pm$ DECAY) $= 1215 \pm 50$ MeV

$$\Lambda_+$$
 (DISPERSIVE VECTOR FORM FACTOR IN K_{e3}^\pm DECAY) = $(2.460 \pm 0.017) \times 10^{-2}$

$$\Lambda_+$$
 (DISPERSIVE VECTOR FORM FACTOR IN $K_{\mu 3}^\pm$ DECAY) $= (25.4 \pm 0.9) imes 10^{-3}$

In(C) (DISPERSIVE SCALAR FORM FACTOR in
$$K^{\pm}_{\mu 3}$$
 decays) = $(182\pm16) imes 10^{-3}$

$$K_{e3}^+$$
 $\left| f_S/f_+ \right| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2}$

$$K_{e3}^{+} \quad \left| f_T / f_+ \right| = (-1.2^{+1.3}_{-1.1}) \times 10^{-2}$$

$$K_{\mu 3}^{+} \quad \left| f_{S}/f_{+} \right| = (0.2 \pm 0.6) \times 10^{-2}$$

$$K_{\mu 3}^{+} \quad \left| f_{T}/f_{+} \right| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad |F_{A} + F_{V}| = 0.133 \pm 0.008 \quad (S = 1.3)$$
 $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad |F_{A} + F_{V}| = 0.165 \pm 0.013$
 $K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad |F_{A} - F_{V}| < 0.49, \text{ CL} = 90\%$
 $K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad |F_{A} - F_{V}| = -0.21 \pm 0.06$

$$K^+ \rightarrow \mu^+ \nu_\mu \gamma |F_A + F_V| = 0.165 \pm 0.013$$

$$K^+ \rightarrow e^+ \nu_e \gamma |F_A - F_V| < 0.49$$
, CL = 90%

$$K^+ \rightarrow \mu^+ \nu_\mu \gamma |F_A - F_V| = -0.21 \pm 0.06$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry

$$\begin{array}{l} {\sf A}_{FB}({\sf K}_{\pi\,\mu\,\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{\,{\sf K}\,\mu})>0) - \Gamma(\cos(\theta_{\,{\sf K}\,\mu})<0)}{\Gamma(\cos(\theta_{\,{\sf K}\,\mu})>0) + \Gamma(\cos(\theta_{\,{\sf K}\,\mu})<0)} < 2.3\times10^{-2}, \; {\sf CL} \\ = 90\% \end{array}$$

 K^- modes are charge conjugates of the modes below.

Scale factor/ K⁺ DECAY MODES Confidence level (MeV/c) Fraction (Γ_i/Γ) Leptonic and semileptonic modes

	Ecptonic and sen	incptoine modes		
$e^+ \nu_e$	($1.582 \pm 0.007) \times 10^{-5}$		247
$\mu^+ \nu_{\mu}$	(63.56 ± 0.11)%	S=1.2	236
$\pi^0 e^+ \nu_e$	(5.07 \pm 0.04)%	S=2.1	228
Called K_{e3}^+ .				
$\pi^0 \mu^+ \nu_\mu$	($3.352 \pm 0.033) \%$	S=1.9	215
Called K_{u3}^+ .				
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	($2.55 \ \pm 0.04 \) \times 10^{-5}$	S=1.1	206
$\pi^{+}\pi^{-}e^{+}\nu_{e}$	($4.247\pm0.024)\times10^{-5}$		203

HTTP://PDG.LBL.GOV

Page 24

$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$ $\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	(1.4 ±0.9 3.5	,	CL=90%	151 135
Ç					
$\pi^+\pi^0$	Hadronic		0 \ 0/	0 1 0	
$\pi^+\pi^0$ $\pi^+\pi^0\pi^0$	(,	S=1.2	205
$\pi^+\pi^+\pi^ \pi^+\pi^+\pi^-$	(1.760 ± 0.0	,	S=1.1	133
$\pi \cdot \pi \cdot \pi$	(5.583 ± 0.0	24) %		125
Leptonic and	semilepton	ic modes w	ith photons	S	
$\mu^+ \nu_\mu \gamma$	[z,aa] (6.2 ± 0.8	$) \times 10^{-3}$		236
$\mu^+ \dot{\nu_\mu} \gamma (SD^+)$	[a,bb] (1.33 ± 0.2	$2) \times 10^{-5}$		_
•	[a,bb] <	2.7	$\times 10^{-5}$	CL=90%	_
$\mu^+ \nu_{\mu} \gamma (SD^- + SD^- INT)$				CL=90%	_
$e^+ \nu_e \gamma$		9.4 ±0.4			247
$\pi^0 e^+ \nu_e \gamma$		2.56 ± 0.1			228
$\pi^0 e^+ \nu_e \gamma(SD)$	[a,bb] <	5.3	× 10 ⁻⁵	CL=90%	228
$\pi^0 \mu^+ \frac{e^{\gamma} (1)}{\nu_\mu \gamma}$		1.25 ±0.2			215
$\pi^0\pi^0e^{\mu\nu}_{e}\gamma$		5		CL=90%	206
.			_		
Hadronic m					
$\pi^+\pi^0\gamma(INT)$		-4.2 ± 0.9	_		_
$\pi^+\pi^0\gamma(DE)$	'	6.0 ± 0.4	•		205
$\pi^{+}\pi^{0}e^{+}e^{-}$	(4.24 ± 0.1	4) \times 10 ⁻⁰		205
$\pi^+\pi^0\pi^0\gamma$	[z,aa] ($7.6 \begin{array}{c} +6.0 \\ -3.0 \end{array}$	$) \times 10^{-6}$		133
$\pi^+\pi^+\pi^-\gamma$	[z,aa] ($1.04\ \pm0.3$	$1) \times 10^{-4}$		125
$\pi^+ \gamma \gamma$	[z] ($1.01\ \pm0.0$	6) \times 10 ⁻⁶		227
π^+ 3 γ		1.0		CL=90%	227
$\pi^+\mathrm{e}^+\mathrm{e}^-\gamma$	($1.19\ \pm0.1$	$3) \times 10^{-8}$		227
Lepto	onic modes	s with $\ell \overline{\ell}$ pa	airs		
$e^+ u_e u_{\overline{ u}}$		6		CL=90%	247
$\mu^+ \overline{ u_\mu} \overline{ u} \overline{ u}$	<	2.4	_	CL=90%	236
$e^+ \nu_e e^+ e^-$	(2.48 ± 0.2	0) $\times 10^{-8}$		247
$\mu^{+} \nu_{\mu}^{-} e^{+} e^{-}$	•	7.06 ± 0.3			236
$e^{+} \nu_{e} \mu^{+} \mu^{-}$	(1.7 ±0.5) × 10 ⁻⁸		223
$\mu^{+} \nu_{\mu} \mu^{+} \mu^{-}$	<	4.1	$\times 10^{-7}$	CL=90%	185
Lepton family number (LF). Lepto	on number	(L). $\Delta S =$	Δ <i>Q</i> (<i>SQ</i>)	
violating modes, or Δ			` '		
$\pi^+\pi^+e^-\overline{\nu}_e$ SQ			× 10 ⁻⁸	CL=90%	203
$\pi^{+}\pi^{+}\mu^{-}\overline{\nu}_{\mu}$ SQ			_	CL=95%	151
$\pi^+ \circ^+ \circ^-$,	2.00 0.0	0.)10=7	2_ 30,0	207

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{\nu}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+e^+e^-$	<i>S</i> 1	(3.00 ±0.0	$09) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	(9.4 ± 0.6	$5) \times 10^{-8}$	S=2.6	172
$\pi^+ \nu \overline{\nu}$	<i>S</i> 1	(1.7 ± 1.1	$(1) \times 10^{-10}$		227
$\pi^+\pi^0 u\overline{ u}$	<i>S</i> 1	<	4.3	$\times10^{-5}$	CL=90%	205

HTTP://PDG.LBL.GOV Page 25 Created: 5/22/2019 10:04

$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	2.1	$\times 10^{-8}$	CL=90%	236
$\mu^+ \nu_e$	LF	[d]	4	\times 10 ⁻³	CL=90%	236
$\pi^+\mu^+e^-$	LF	<	1.3	imes 10 ⁻¹¹	CL=90%	214
$\pi^+\mu^-e^+$	LF	<	5.2		CL=90%	214
$\pi^-\mu^+e^+$	L	<	5.0	$\times10^{-10}$	CL=90%	214
$\pi^{-}e^{+}e^{+}$	L	<	6.4		CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	[d]	8.6	\times 10 ⁻¹¹	CL=90%	172
$\mu^+ \overline{\nu}_e$	L	[d]	3.3	$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	<	3	$\times 10^{-3}$	CL=90%	228
$\pi^+ \gamma$		[dd] <	2.3	× 10 ⁻⁹	CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=497.611\pm0.013~{
m MeV}~{
m (S}=1.2)$$
 $m_{K^0}-m_{K^\pm}=3.934\pm0.020~{
m MeV}~{
m (S}=1.6)$

Mean square charge radius

$$\langle r^2 \rangle = -0.077 \pm 0.010 \text{ fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [y]

Asymmetry
$$A_T$$
 in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$$Re(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$$

CPT-violation parameters [y]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [ee] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

Re(x₊),
$$K_{e3}$$
 parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K₅⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life
$$au = (0.8954 \pm 0.0004) \times 10^{-10}$$
 s $\,$ (S $= 1.1$) Assuming $\it CPT$

Mean life
$$au = (0.89564 \pm 0.00033) imes 10^{-10}$$
 s Not assuming $extit{CPT}$

$$c\tau = 2.6844$$
 cm Assuming CPT

CP-violation parameters [ff]

$$\begin{array}{ll} \text{Im}(\eta_{+-0}) &= -0.002 \pm 0.009 \\ \text{Im}(\eta_{000}) &= -0.001 \pm 0.016 \\ \left|\eta_{000}\right| = \left|A(\mathcal{K}_S^0 \to \ 3\pi^0)/A(\mathcal{K}_L^0 \to \ 3\pi^0)\right| &< 0.0088, \text{ CL} = 90\% \end{array}$$

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

KS DECAY M	ODES
------------	------

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

	Hadronic modes	
$\pi^0\pi^0$	$(30.69\pm0.05)~\%$	209
$\pi^+\pi^-$	$(69.20\pm0.05)~\%$	206
$\pi^+\pi^-\pi^0$	$(3.5 \ ^{+1.1}_{-0.9}) imes 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [hh] $(7.04 \pm 0.08) \times 10^{-4}$ 229

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

$3\pi^0$	CP	< 2.6	$\times 10^{-8}$	CL=90%	139
$\mu^+\mu^-$	<i>S</i> 1	< 8	$\times 10^{-10}$	CL=90%	225
e^+e^-	S1	< 9	$\times 10^{-9}$	CL=90%	249
$\pi^0 e^+ e^-$	<i>S</i> 1	$[gg]$ (3.0 $^{+1.5}_{-1.2}$	$) \times 10^{-9}$		230
$\pi^{0} \mu^{+} \mu^{-}$	<i>S</i> 1	(2.9 $^{+1.5}_{-1.2}$	$) \times 10^{-9}$		177

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} m_{{\cal K}_L} - m_{{\cal K}_S} \\ = (0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ {\rm s}^{-1} \quad ({\rm S} = 1.3) \quad {\rm Assuming} \ {\it CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \ {\rm MeV} \quad {\rm Assuming} \ {\it CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \ \hbar \ {\rm s}^{-1} \quad {\rm Not} \ {\rm assuming} \ {\it CPT} \\ {\rm Mean} \ {\rm life} \ \tau = (5.116 \pm 0.021) \times 10^{-8} \ {\rm s} \quad ({\rm S} = 1.1) \\ c\tau = 15.34 \ {\rm m} \end{array}$$

Slope parameters [x]

(See Particle Listings for other linear and quadratic coefficients)

$$\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$: $h = 0.076 \pm 0.006$
 $\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$: $k = 0.0099 \pm 0.0015$
 $\mathcal{K}_{L}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [y]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e 3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$
 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming μ -e universality

$$\lambda'_{+}(K^{0}_{\mu 3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$
 $\lambda''_{+}(K^{0}_{\mu 3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$
 $\lambda_{0}(K^{0}_{\mu 3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (0.251 \pm 0.006) \times 10^{-1} \quad (S = 1.5)$$

$$\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0)$$

$$K_{e3}^{0} \quad |f_{S}/f_{+}| = (1.5_{-1.6}^{+1.4}) \times 10^{-2}$$

$$K_{e3}^{0} \quad |f_{T}/f_{+}| = (5_{-5}^{+4}) \times 10^{-2}$$

$$K_{\mu 3}^{0} \quad |f_{T}/f_{+}| = (12 \pm 12) \times 10^{-2}$$

$$K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{K^{*}} = -0.205 \pm 0.022 \quad (S = 1.8)$$

$$K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{DIP} = -1.69 \pm 0.08 \quad (S = 1.7)$$

$$K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}: a_{1}/a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2}$$

$$K_{L} \rightarrow \pi^{0}2\gamma: \qquad a_{V} = -0.43 \pm 0.06 \quad (S = 1.5)$$

CP-violation parameters [ff]

$$A_L = (0.332 \pm 0.006)\%$$

 $\left|\eta_{00}\right| = (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $\left|\eta_{+-}\right| = (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$

$$\begin{split} |\epsilon| &= (2.228 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\eta_{00}/\eta_{+-}| &= 0.9950 \pm 0.0007^{\,[ii]} \quad (S = 1.6) \\ \text{Re}(\epsilon'/\epsilon) &= (1.66 \pm 0.23) \times 10^{-3}^{\,[ii]} \quad (S = 1.6) \\ \text{Assuming CPT} \\ \phi_{+-} &= (43.51 \pm 0.05)^\circ \quad (S = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^\circ \quad (S = 1.3) \\ \phi_{\epsilon} &= \phi_{\text{SW}} = (43.52 \pm 0.05)^\circ \quad (S = 1.2) \\ \text{Im}(\epsilon'/\epsilon) &= -(\phi_{00} - \phi_{+-})/3 = (-0.002 \pm 0.005)^\circ \quad (S = 1.7) \\ \text{Not assuming CPT} \\ \phi_{+-} &= (43.4 \pm 0.5)^\circ \quad (S = 1.2) \\ \phi_{00} &= (43.7 \pm 0.6)^\circ \quad (S = 1.2) \\ \phi_{\epsilon} &= (43.5 \pm 0.5)^\circ \quad (S = 1.3) \\ CP \text{ asymmetry A in $K_L^0 \to \pi^+\pi^-e^+e^- = (13.7 \pm 1.5)\%$} \\ \beta_{CP} \text{ from $K_L^0 \to e^+e^-e^+e^- = -0.19 \pm 0.07$} \\ \gamma_{CP} \text{ from $K_L^0 \to e^+e^-e^+e^- = 0.01 \pm 0.11$} \quad (S = 1.6) \\ j \text{ for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008} \end{split}$$

$$f$$
 for $K_L^0 \to \pi^+ \pi^- \pi^0 = 0.004 \pm 0.006$ $\left| \eta_{+-\gamma} \right| = (2.35 \pm 0.07) \times 10^{-3}$ $\phi_{+-\gamma} = (44 \pm 4)^\circ$ $\left| \epsilon'_{+-\gamma} \right| / \epsilon < 0.3$, CL = 90%

$$|{
m g}_{E1}|$$
 for ${
m K}_{L}^{0}
ightarrow \pi^{+}\pi^{-}\gamma<~$ 0.21, CL $=90\%$

T-violation parameters

$${
m Im}(\xi)$$
 in $K_{\mu 3}^0 = -0.007 \pm 0.026$

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta \mathcal{S} = -\Delta \mathcal{Q}$ in $\mathcal{K}_{m{\ell}3}^{m{0}}$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

K ⁰ _L DECAY MODES	l	Fraction (Γ_i/Γ)		Scale factor/ nfidence level(-
	Semiler	otonic modes			
$\pi^{\pm}e^{\mp} u_{ m e}$ Called K_{-2}^0 .	[<i>hh</i>]) %	S=1.7	229
Called K_{e3}^0 . $\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called $K_{\mu 3}^0$.	[<i>hh</i>]	(27.04 ±0.07) %	S=1.1	216
$(\pi\mu$ atom $) u$		(1.05 ± 0.11)	$) \times 10^{-7}$		188
$\pi^0\pi^{\pm}e^{\mp\nu}$	[<i>hh</i>]	(5.20 ± 0.11)	,		207
$\pi^{\pm}\mathrm{e}^{\mp} u\mathrm{e}^{+}\mathrm{e}^{-}$	[hh]	(1.26 ± 0.04)	$) \times 10^{-5}$		229
Hadronic modes, including	g Charge co	onjugation×Pa	arity Viola	ting (CPV)	modes
$3\pi^0$		(19.52 ± 0.12)) %	S=1.6	139
$\pi^+\pi^-\pi^0$		(12.54 ± 0.05)) %		133
$\pi^+\pi^-$	CPV [jj]	$(1.967\pm0.01$	$0) \times 10^{-3}$	S=1.5	206
$\pi^0\pi^0$	CPV	(8.64 ± 0.06)	$) \times 10^{-4}$	S=1.8	209
Ser	nileptonic ı	modes with ph	otons		
$\pi^{\pm} \mathrm{e}^{\mp} \nu_{\mathrm{e}} \gamma$	-	(3.79 ± 0.06)			229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$	1 / / 1	(5.65 ±0.23	,		216
Hadron	ic modes v	vith photons o	or $\ell \overline{\ell}$ pairs		
$\pi^{0}\pi^{0}\gamma$		< 2.43	_	CL=90%	209
$\pi^+\pi^-\gamma$	[aa,kk]	(4.15 ± 0.15)	$) \times 10^{-5}$	S=2.8	206
$\pi^+\pi^-\gamma(DE)$		(2.84 ± 0.11	$) \times 10^{-5}$	S=2.0	206
$\pi^0 2\gamma$	[kk]	(1.273 ± 0.03	$3) \times 10^{-6}$		230
$\pi^0 \gamma e^+ e^-$		(1.62 ± 0.17)			230
Other	modes wi	th photons or	$\ell \overline{\ell}$ pairs		
2γ		(5.47 ± 0.04)	$) \times 10^{-4}$	S=1.1	249
3γ		< 7.4	$\times 10^{-8}$	CL=90%	249
$e^+e^-\gamma$		(9.4 \pm 0.4		S=2.0	249
$\mu^+_{\cdot}\mu^-\gamma$		(3.59 ± 0.11)		S=1.3	225
$e^+e^-\gamma\gamma$		(5.95 ± 0.33)	•		249
$\mu^+\mu^-\gamma\gamma$	[kk]	$(1.0 \begin{array}{c} +0.8 \\ -0.6 \end{array}$) × 10 ⁻⁸		225
Charge conjugation	× Parity (CP) or Lepton	n Family r	number (<i>LF</i>)	
violating modes,	or $\Delta S = 1$	weak neutral	current (S	61) modes	
$\mu^+\mu^-$	<i>S</i> 1	(6.84 ± 0.11	$) \times 10^{-9}$		225
e^+e^-	<i>S</i> 1	$(9 \begin{array}{cc} +6 \\ -4 \end{array}$	$) \times 10^{-12}$!	249
$\pi^{+}\pi^{-}e^{+}e^{-}$	S1 [kk]	(3.11 ± 0.19)	$) \times 10^{-7}$		206
$\pi^0 \pi^0 e^+ e^-$	<i>S</i> 1	< 6.6		CL=90%	209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S</i> 1	< 9.2		CL=90%	57
$\mu^{+}\mu^{-}\mathrm{e}^{+}\mathrm{e}^{-}$	S1	(2.69 ± 0.27)) × 10 ⁻⁹		225
HTTP://PDG.LBL.GOV	Pa	age 30	Created:	5/22/2019	10:04

$e^{+}e^{-}e^{+}e^{-}$	<i>S</i> 1 (3.56 ± 0.21)	$\times 10^{-8}$		249
$\pi^{0}\mu^{+}\mu^{-}$	CP,S1 [II] <	3.8	$\times 10^{-10}$	CL=90%	177
$\pi^{0} e^{+} e^{-}$	CP,S1 [II] <	2.8	$\times 10^{-10}$	CL=90%	230
$\pi^0 u \overline{ u}$	CP, $S1[nn]$ $<$	3.0	$\times 10^{-9}$	CL=90%	230
$\pi^0\pi^0 u\overline{\nu}$	<i>S</i> 1 <	8.1	$\times 10^{-7}$	CL=90%	209
$e^{\pm}\mu^{\mp}$	LF $[hh]$ $<$	4.7	$\times 10^{-12}$	CL=90%	238
$e^\pme^\pm\mu^\mp\mu^\mp$	LF $[hh]$ $<$	4.12	$\times 10^{-11}$	CL=90%	225
$\pi^0 \mu^\pm e^\mp$	LF $[hh]$ $<$	7.6	$\times 10^{-11}$	CL=90%	217
$\pi^0\pi^0\mu^\pm e^\mp$	LF <	1.7	\times 10 ⁻¹⁰	CL=90%	159

$K_0^*(700)$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass (T-Matrix Pole \sqrt{s}) = (630–730) -i (260–340) MeV Mass (Breit-Wigner) = 824 \pm 30 MeV Full width (Breit-Wigner) = 478 \pm 50 MeV

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

 $K^*(892)^{\pm}$ hadroproduced mass $m=891.66\pm0.26$ MeV $K^*(892)^{\pm}$ in au decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S=1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma=50.8\pm0.9$ MeV $K^*(892)^{\pm}$ in au decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.3\pm0.5$ MeV (S=1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$K\pi$	~ 100	%	289
$K^0\gamma$	(2.46 ± 0.21)	$\times 10^{-3}$	307
$\mathcal{K}^{\pm}\gamma$	(9.9 \pm 0.9)	\times 10 ⁻⁴	309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1272\pm7~{\rm MeV}^{[I]}$ Full width $\Gamma=90\pm20~{\rm MeV}^{[I]}$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6)%	46
$K_0^*(1430)\pi$	$(28 \pm 4)\%$	†
$K^{*}(892)\pi$	(16 ± 5)%	302

HTTP://PDG.LBL.GOV

Page 31

$K\omega$	$(11.0\pm2.0)~\%$	†
$K f_0(1370)$	(3.0±2.0) %	†
γK^0	seen	539

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7$ MeV Full width $\Gamma=174\pm13$ MeV $(\mathsf{S}=1.6)$

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0±3.0) %	293
$K f_0(1370)$	(2.0 ± 2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
$K_0^*(1430)\pi \\ \gamma K^0$	not seen	†
γK^0	seen	613

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1414\pm15$ MeV (S =1.3) Full width $\Gamma=232\pm21$ MeV (S =1.1)

K*(1410) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6±	1.3) %		612
$K \rho \gamma K^0$	< 7	%	95%	305
γK^0	< 2.3	× 10	90%	619

K*(1430) [00]

$$I(J^P) = \frac{1}{2}(0^+)$$

Created: 5/22/2019 10:04

Mass $m=1425\pm 50~{
m MeV}$ Full width $\Gamma=270\pm 80~{
m MeV}$

K *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93 ±10)%	619
$K\eta$	$(8.6^{+}_{-}~\overset{2.7}{3.4})\%$	486
$K\eta'(958)$	seen	†

K*(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

 $K_2^*(1430)^\pm$ mass $m=1425.6\pm1.5$ MeV (S = 1.1) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K ₂ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(49.9±1.2) %		619
$K^*(892)\pi$	$(24.7 \pm 1.5) \%$		419
$K^*(892)\pi\pi$	$(13.4 \pm 2.2) \%$		372
$K \rho$	$(8.7\pm0.8)\%$	S=1.2	318
$K\omega$	$(2.9\pm0.8)\%$		311
$K^+ \gamma$	($2.4\pm0.5)$ $ imes$	10^{-3} S=1.1	627
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times$	10^{-3} S=1.3	486
$K\omega\pi$	< 7.2 ×	10^{-4} CL=95%	100
$K^0\gamma$	< 9 ×	10^{-4} CL=90%	626

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18$ MeV Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K* (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K\rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})$ %	618
$K\phi$	seen	387

K₂(1770) [pp]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{\rm MeV}$ Full width $\Gamma=186\pm 14~{\rm MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		794
$K_2^*(1430)\pi$	seen	288
$K^*(892)\pi$	seen	654

HTTP://PDG.LBL.GOV

Page 33

$K f_2(1270)$	seen	53
$K\phi$	seen	441
$K \omega$	seen	607

K*(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

 $\begin{array}{ll} \text{Mass } m=1776\pm7 \text{ MeV} \quad \text{(S}=1.1) \\ \text{Full width } \Gamma=159\pm21 \text{ MeV} \quad \text{(S}=1.3) \end{array}$

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		613
$\mathcal{K}^*(892)\pi$	$(20 \pm 5)\%$		656
$K\pi$	$(18.8 \pm 1.0) \%$		813
$K\eta$	(30 ± 13)%		719
$K_2^*(1430)\pi$	< 16 %	95%	291

K₂(1820) [qq]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

K₂(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	329
$K^*(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S = 1.1) Full width $\Gamma=198\pm 30$ MeV

K ₄ *(2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(9.9±1.2) %	958
$K^*(892)\pi\pi$	$(9$ ± 5 $)$ %	802
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	768
$ ho$ K π	$(5.7 \pm 3.2) \%$	741
ω K π	(5.0±3.0) %	738

HTTP://PDG.LBL.GOV

Page 34

 $\phi K \pi$ (2.8±1.4) % 594 $\phi K^*(892)$ (1.4±0.7) % 363

CHARMED MESONS $(C = \pm 1)$

 $D^+ = c\overline{d}$, $D^0 = c\overline{u}$, $\overline{D}{}^0 = \overline{c}u$, $D^- = \overline{c}d$, similarly for D^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.65\pm0.05$ MeV Mean life $\tau=(1040\pm7)\times10^{-15}$ s $c\tau=311.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \rightarrow \ell^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything}) = 0.096 \pm 0.004 \frac{[rr]}{\Gamma(c \rightarrow D^{*}(2010)^{+} \text{ anything})/\Gamma(c \rightarrow \text{ anything})} = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

 $A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$ $A_{CP}(K_I^0 e^{\pm} \nu) = (-0.6 \pm 1.6)\%$ $A_{CP}(K_S^0\pi^{\pm}) = (-0.41 \pm 0.09)\%$ $A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$ $A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$ $A_{CP}(K_S^0 \pi^{\pm} \pi^0) = (-0.1 \pm 0.7)\%$ $A_{CP}(K_S^0 \pi^{\pm} \pi^{+} \pi^{-}) = (0.0 \pm 1.2)\%$ $A_{CP}(\pi^{\pm}\pi^{0}) = (2.4 \pm 1.2)\%$ $A_{CP}(\pi^{\pm}\eta) = (1.0 \pm 1.5)\%$ (S = 1.4) $A_{CP}(\pi^{\pm}\eta'(958)) = (-0.6 \pm 0.7)\%$ $A_{CP}(\overline{K}^0/K^0K^{\pm}) = (0.11 \pm 0.17)\%$ $A_{CP}(K_S^0K^{\pm}) = (-0.11 \pm 0.25)\%$ $A_{CP}(K^{+}K^{-}\pi^{\pm}) = (0.37 \pm 0.29)\%$ $A_{CP}(K^{\pm}K^{*0}) = (-0.3 \pm 0.4)\%$ $A_{CP}(\phi \pi^{\pm}) = (0.09 \pm 0.19)\%$ (S = 1.2) $A_{CP}(K^{\pm}K_0^*(1430)^0) = (8^{+7}_{-6})\%$ $A_{CP}(K^{\pm}K_{2}^{*}(1430)^{0}) = (43^{+20}_{-26})\%$ $A_{CP}(K^{\pm}K_{0}^{*}(700)) = (-12^{+18}_{-13})\%$ $A_{CP}(a_0(1450)^0\pi^{\pm}) = (-19^{+14}_{-16})\%$ $A_{CP}(\phi(1680)\pi^{\pm}) = (-9 \pm 26)\%$ $A_{CP}(\pi^+\pi^-\pi^\pm) = (-2 \pm 4)\%$ $A_{CP}(K_S^0 K^{\pm} \pi^+ \pi^-) = (-4 \pm 7)\%$ $A_{CP}(K^{\pm}\pi^{0}) = (-4 \pm 11)\%$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3}$$
 [ss]

D^+ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K^0} \ell^+ \nu_\ell = 0.719 \pm 0.011 \quad (\mathsf{S} = 1.6) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -2.13 \pm 0.14 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -3 \pm 12 \quad (\mathsf{S} = 1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \ell^+ \nu_\ell = 0.1407 \pm 0.0025 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -2.00 \pm 0.13 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \, e^+ \nu_e = (8.3 \pm 0.5) \times 10^{-2} \\ r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow \eta \, e^+ \nu_e = -5.3 \pm 2.7 \quad (\mathsf{S} = 1.9) \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \nu_e = 1.06 \pm 0.16 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho \, e^+ \nu_e = 1.48 \pm 0.16 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 1.49 \pm 0.05 \quad (\mathsf{S} = 2.1) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 0.802 \pm 0.021 \\ r_3 \equiv A_3(0)/A_1(0) \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 1.13 \pm 0.08 \\ \Gamma_+/\Gamma_- \text{ in } \overline{K^*}(892)^0 \ell^+ \nu_\ell = 0.22 \pm 0.06 \quad (\mathsf{S} = 1.6) \\ \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

Scale factor/ p **D+ DECAY MODES** Fraction (Γ_i/Γ) Confidence level (MeV/c)

Inclusive modes e^+ semileptonic $(16.07 \pm 0.30)\%$ μ^+ anything $(17.6 \pm 3.2)\%$ K^- anything $(25.7 \pm 1.4)\%$ \overline{K}^0 anything + K^0 anything \pm 5) % K^+ anything $(5.9 \pm 0.8)\%$ $K^*(892)^-$ anything (6 \pm 5)% \overline{K}^* (892) anything \pm 5 (23) % $K^*(892)^0$ anything < 6.6 % CL=90%

HTTP://PDG.LBL.GOV

Page 36

```
\eta anything ( 6.3 \pm 0.7 ) % - \eta' anything ( 1.04 \pm 0.18 ) % - \phi anything ( 1.03 \pm 0.12 ) %
```

Leptonic and semileptonic modes

	semileptonic modes	
$e^+ u_e$	$< 8.8 \times 10^{-6} \text{CL} = 90\%$	935
$\gamma \mathrm{e^+} \nu_\mathrm{e}$	$< 3.0 \times 10^{-5} CL = 90\%$	935
$\mu^+ u_{\mu}$	$(3.74 \pm 0.17) \times 10^{-4}$	932
$ au^+ u_ au$	$< 1.2 \times 10^{-3} \text{CL} = 90\%$	90
$\overline{K}^0 e^+ \nu_e$	(8.73 ± 0.10) %	869
$\overline{K}{}^0\mu^+ u_\mu$	(8.76 ± 0.19) %	865
$K^-\pi^+e^+ u_e$	(4.02 ± 0.18) % S=3.2	864
$\overline{\mathit{K}}^{*}(892)^{0}e^{+} u_{e}$, $\overline{\mathit{K}}^{*}(892)^{0} ightarrow$	(3.77 ± 0.17) %	722
$K^-\pi^+$		
$(K^-\pi^+)_{[0.8-1.0]\text{GeV}}e^+\nu_e$	(3.39 ± 0.09) %	864
$(K^-\pi^+)_{S-wave} e^+ \nu_e$	$(2.28 \pm 0.11) \times 10^{-3}$	_
$\overline{K}^*(1410)^0 e^+ \nu_e$,	$< 6 \times 10^{-3} CL = 90\%$	-
$\overline{K}^*(1410)^0 \rightarrow K^-\pi^+$	4	
$\overline{K}_{2}^{*}(1430)^{0} e^{+} \nu_{e}$,	$< 5 \times 10^{-4} CL = 90\%$	_
$\overline{K}_2^*(1430)^0 \rightarrow K^-\pi^+$		
$K^-\pi^+e^+\nu_e$ nonresonant	$< 7 \times 10^{-3} \text{CL} = 90\%$	864
$\overline{K}^*(892)^0 e^+ \nu_e$	(5.40 \pm 0.10) % S=1.1	722
$K^-\pi^+\mu^+ u_\mu$	(3.65 ± 0.34) %	851
$\overline{\mathit{K}}^*$ (892) $^{0}\mu^+ u_{\mu}$,	(3.52 ± 0.10) %	717
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$		
${\cal K}^-\pi^+\mu^+ u_\mu$ nonresonant	$(1.9 \pm 0.5) \times 10^{-3}$	851
$\overline{K}^*(892)^0 \mu^+ \dot{\nu_{\mu}}$	($5.27~\pm~0.15$) %	717
$K^-\pi^+\pi^0\mu^+\nu_{\mu}$	$< 1.5 \times 10^{-3} \text{CL} = 90\%$	825
$\overline{K}_{0}^{*}(1430)^{0}\mu^{+}\bar{\nu}_{\mu}$	$< 2.3 \times 10^{-4} \text{CL} = 90\%$	380
$\overline{K}^{6}(1680)^{0}\mu^{+}\nu_{\mu}$	$< 1.5 \times 10^{-3} \text{CL} = 90\%$	105
$\pi^0 e^+ \nu_e$	$(3.72 \pm 0.17) \times 10^{-3}$ S=2.0	930
$\pi^0 \mu^+ \nu_\mu$	$(3.50 \pm 0.15) \times 10^{-3}$	927
$\eta e^+ \nu_e$	$(1.11 \pm 0.07) \times 10^{-3}$	855
$\rho^{0} e^{+} \nu_{e}$	($2.18 \ ^{+}_{-} \ 0.17 \) \times 10^{-3}$	774
$\rho^0 \mu^+ \nu_\mu$	$(2.4 \pm 0.4) \times 10^{-3}$	770
$\omega e^+ \nu_e$	$(1.69 \pm 0.11) \times 10^{-3}$	771
$\eta'(958)e^+\nu_e$	$(2.0 \pm 0.4) \times 10^{-4}$	690
$a(980)^0e^+ u_e$, $a(980)^0 ightarrow\eta\pi^0$	$(1.7 + 0.8 - 0.7) \times 10^{-4}$	_
$\phi e^+ \nu_e$	$< 1.3 \times 10^{-5} \text{CL} = 90\%$	657
$D^0 e^+ \nu_e$	$< 1.0 \times 10^{-4} CL = 90\%$	5

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$ $(1.562 \pm 0.031)\%$ S = 1.7863 (1.46 ± 0.05) % 863 $K^{-}2\pi^{+}$ [tt] $(9.38 \pm 0.16)\%$ S = 1.6846 $\frac{(K^-\pi^+)_{S-\text{wave}}\pi^+}{K_0^*(1430)^0\pi^+}$, $(7.52 \pm 0.17)\%$ 846 [uu] (1.25 \pm 0.06) % 382 $\frac{\ddot{\kappa}}{K_0^*}(1430)^0 \to K^-\pi^+$ $\overline{K}^*(892)^0 \pi^+,$ $\overline{K}^*(892)^0 \to K^- \pi^+,$ $\overline{K}^*(1410)^0 \pi^+, \overline{K}^{*0} \to$ (1.04 ± 0.12) % 714 381 not seen $\frac{K^-\pi^+}{K_2^*(1430)^0\pi^+}$, [uu] (2.3 \pm 0.7) \times 10⁻⁴ 371 $\frac{2}{K_2^*}(1430)^0 \to K^-\pi^+$ $\overline{K}^*(1680)^0\pi^+, \ \overline{K}^*(1680)^0 \to K^-\pi^+$ [uu] (2.2 \pm 1.1) \times 10⁻⁴ 58 $K^{-}(2\pi^{+})_{I=2}$ $(1.45 \pm 0.26)\%$ $K_{S}^{0}\pi^{+}\pi^{0}$ [tt] $(7.36 \pm 0.21)\%$ 845 $(6.14 + 0.60 \\ - 0.35)\%$ $K_s^0 \rho^+$ 677 $(1.5 + 1.2 \ -1.4) \times 10^{-3}$ $K_S^0 \rho(1450)^+$, $\rho^+ \to \pi^+ \pi^0$ $\overline{K}^*(892)^0 \pi^+,$ $\overline{K}^*(892)^0 \to K_S^0 \pi^0$ $\overline{K}^*_0(1430)^0 \pi^+, \overline{K}^*_0^0 \to K_S^0 \pi^0$ $(2.64 \pm 0.32) \times 10^{-3}$ 714 $(2.7 \pm 0.9) \times 10^{-3}$ $(10 \quad {}^{+}_{-10}^{7} \quad) \times 10^{-4}$ $\overline{\kappa}^0\pi^+$, $\overline{\kappa}^0 \to K_S^0\pi^0$ $(6 \quad \begin{array}{cc} + 5 \\ - 4 \end{array}) \times 10^{-3}$ $K_S^0\pi^+\pi^0$ nonresonant $(3 \pm 4) \times 10^{-3}$ 845 $(1.37 \ ^{+} \ 0.21 \) \%$ $K_S^0 \pi^+ \pi^0$ nonresonant and (1.27 $^+$ 0.27) % $(K_S^0 \pi^0)_{S-wave} \pi^+$ 845 $K_S^0 \pi^+ \eta'(958)$ $(1.90 \pm 0.21) \times 10^{-3}$ 481 $K^{-}2\pi^{+}\pi^{0}$ [vv] (6.25 \pm 0.18) % 816 $K_{S}^{0} 2\pi^{+}\pi^{-}$ [vv] (3.10 \pm 0.09) % 814 $K^{-}3\pi^{+}\pi^{-}$ [tt] $(5.7 \pm 0.5) \times 10^{-3}$ S=1.1 772 $\overline{K}^*(892)^0 2\pi^+\pi^ (1.2 \pm 0.4) \times 10^{-3}$ 645 $\overline{K}^*(892)^0 \rightarrow K^-\pi^+$ $\overline{K}^*(892)^0 \rho^0 \pi^+$ $(2.3 \pm 0.4) \times 10^{-3}$ 239 $\overline{K}^*(892)^0 \rightarrow K^-\pi^+$ $\overline{K}^*(892)^0$ $a_1(1260)^+$ [xx] $(9.3 \pm 1.9) \times 10^{-3}$ †

_		
$\mathcal{K}^- ho^02\pi^+$	$(1.72 \pm 0.28) \times 10^{-3}$	524
$K^-3\pi^+\pi^-$ nonresonant	$(4.0 \pm 2.9) \times 10^{-4}$	772
$K^+2K_S^0$	$(2.54 \pm 0.13) \times 10^{-3}$	545
$K^{+}K^{-}K^{0}_{S}\pi^{+}$	$(2.4 \pm 0.5) \times 10^{-4}$	436
3	Diania madas	
$\pi^+\pi^0$	Pionic modes $(1.247\pm 0.033) \times 10^{-3}$	925
$2\pi^+\pi^-$	$(3.27 \pm 0.033) \times 10^{-3}$	909
$\rho^0 \pi^+$	$(8.3 \pm 1.5) \times 10^{-4}$	767
$\pi^+(\pi^+\pi^-)_{S-wave}$	$(0.3 \pm 1.3) \times 10$ $(1.83 \pm 0.16) \times 10^{-3}$	909
$\sigma\pi^+$, $\sigma\to\pi^+\pi^-$	$(1.33 \pm 0.10) \times 10$ $(1.38 \pm 0.12) \times 10^{-3}$	909
$f_0(980)\pi^+$,	$(1.56 \pm 0.12) \times 10^{-4}$	-
$f_0(980) \rightarrow \pi^+ \pi^-$	$(1.50 \pm 0.33) \times 10$	669
$f_0(980) \rightarrow \pi + \pi$ $f_0(1370)\pi^+$	(0	
,	$(8 \pm 4) \times 10^{-5}$	_
$f_0(1370) ightarrow \ \pi^+ \pi^- \ f_2(1270) \pi^+$,	(5 0	405
	$(5.0 \pm 0.9) \times 10^{-4}$	485
$f_2(1270) ightarrow \ \pi^+ \pi^- \ ho(1450)^0 \pi^+ ,$	$< 8 \times 10^{-5} CL = 95\%$	220
$ ho$ (1450) 0 π^{+} , $ ho$ (1450) 0 $ ightarrow$ π^{+} π^{-}	$< 8 \times 10^{-5} CL = 95\%$	338
	(11 + 04) 10-4	
$f_0(1500)\pi^+$,	$(1.1 \pm 0.4) \times 10^{-4}$	_
$f_0(1500) \rightarrow \pi^+\pi^-$	10-501 050/	
$f_0(1710)\pi^+$,	$< 5 \times 10^{-5} CL = 95\%$	_
$f_0(1710) \rightarrow \pi^+\pi^-$	10-501 050/	
$f_0(1790)\pi^+$,	$< 7 \times 10^{-5} CL = 95\%$	_
$f_0(1790) \to \pi^+\pi^-$	10-461 050/	000
$(\pi^{+}\pi^{+})_{S-\text{wave}}\pi^{-}$	$< 1.2 \times 10^{-4} \text{CL} = 95\%$	
$2\pi^+\pi^-$ nonresonant $\pi^+2\pi^0$	$< 1.1 \times 10^{-4} \text{CL} = 95\%$	
$\frac{\pi^{+} 2\pi^{0}}{2\pi^{+} \pi^{-} \pi^{0}}$	$(4.7 \pm 0.4) \times 10^{-3}$	910
$3\pi^{+}2\pi^{-}$	$(1.16 \pm 0.08)\%$	883
$\eta \pi^+$	$(1.66 \pm 0.16) \times 10^{-3}$ S=1.1	
$\frac{\eta \pi}{\eta \pi^+ \pi^0}$	$(3.77 \pm 0.09) \times 10^{-3}$	848
$\eta \pi^+ \pi^ \omega \pi^+$	$(1.38 \pm 0.35) \times 10^{-3}$	831
	$(2.8 \pm 0.6) \times 10^{-4}$	764
$\eta'(958)\pi^+$	$(4.97 \pm 0.19) \times 10^{-3}$	681
$\eta'(958)\pi^+\pi^0$	$(1.6 \pm 0.5) \times 10^{-3}$	654
Hadronic I	modes with a $K\overline{K}$ pair	
$K^+K^0_S$	$(3.04 \pm 0.09) \times 10^{-3}$ S=2.2	793
$K^+K^-\pi^+$	[tt] (9.93 \pm 0.24) \times 10 ⁻³	744
$\phi\pi^+$, $\phi o K^+K^-$	$(2.76 + 0.08 \atop -0.09) \times 10^{-3}$	647
$\varphi \pi$, $\varphi \to R$ R	$(2.70 - 0.09) \times 10^{-3}$	047
$K^+\overline{K}^*(892)^0$,	$(2.55 \begin{array}{c} + 0.09 \\ - 0.14 \end{array}) \times 10^{-3}$	613
$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$	0.17	
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$,	$(1.9 \pm 0.4) \times 10^{-3}$	_
$\overline{K}_0^0(1430)^0 \to K^-\pi^+$	•	
0(/		

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

Doubly Cabibbo-suppressed modes								
$K^+\pi^0$	$(2.08 \pm 0.21) \times 10^{-4}$	S=1.4	864					
$K^+ \eta$	$(1.25 \pm 0.16) \times 10^{-4}$	S=1.1	776					
$K^+ \eta'(958)$	(1.85 \pm 0.20) \times 10 ⁻⁴		571					
$K^+\pi^+\pi^-$	$(5.42 \pm 0.22) \times 10^{-4}$		846					
$\mathcal{K}^+ ho^0$	$(2.1 \pm 0.5) \times 10^{-4}$		679					
$K^*(892)^0\pi^+$, $K^*(892)^0$ $ ightarrow$	$(2.5 \pm 0.4) \times 10^{-4}$		714					
$K^+\pi^-$	_							
$K^+ f_0(980)$, $f_0(980) ightarrow$	$(4.8 \pm 2.9) \times 10^{-5}$		_					
$\kappa_2^+\pi^- \ K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0 ightarrow$	$(4.3 \pm 2.9) \times 10^{-5}$		_					
$K^+\pi^-$								
$K^+\pi^+\pi^-$ nonresonant	not seen		846					
$2K^{+}K^{-}$	$(8.9 \pm 2.1) \times 10^{-5}$		550					

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

	•			` '	
$\pi^{+} e^{+} e^{-}$	C1	< 1.1		$\times 10^{-6}$ CL=90%	930
$\pi^{+}\pi^{0}e^{+}e^{-}$		< 1.4		\times 10 ⁻⁵ CL=90%	925
$\pi^+\phi$, ϕo e^+e^-		[yy] (1.7	$^{+}$ 1.4 $^{-}$ 0.9	$) \times 10^{-6}$	_
$\pi^+\mu^+\mu^-$	C1	< 7.3		\times 10 ⁻⁸ CL=90%	918
$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		[yy] (1.8	\pm 0.8	$) \times 10^{-6}$	_
$\rho^+\mu^+\mu^-$	C1	< 5.6		$\times 10^{-4}$ CL=90%	757
$K^+e^+e^-$		[zz] < 1.0		$\times 10^{-6}$ CL=90%	870
$K^+\pi^0e^+e^-$		< 1.5		$\times 10^{-5}$ CL=90%	864

HTTP://PDG.LBL.GOV

Page 40

$K_{S}^{0}\pi^{+}e^{+}e^{-}$	<	2.6	$\times 10^{-5}$ CL=90%	_
$K_{S}^{0}K^{+}e^{+}e^{-}$	<	1.1	\times 10 ⁻⁵ CL=90%	_
$\kappa^+\mu^+\mu^-$	[zz] <	4.3	\times 10 ⁻⁶ CL=90%	856
$\pi^+e^+\mu^-$	<	2.9	$\times 10^{-6}$ CL=90%	927
$\pi^+ e^- \mu^+$	<	3.6	$\times 10^{-6}$ CL=90%	927
$K^+ e^+ \mu^-$	<	1.2	$\times 10^{-6}$ CL=90%	866
$K^+e^-\mu^+$	<	2.8	$\times 10^{-6}$ CL=90%	866
$\pi^- 2e^+$	<	1.1	$\times 10^{-6}$ CL=90%	930
$\pi^- 2\mu^+$	<	2.2	$\times 10^{-8}$ CL=90%	918
$\pi^- e^+ \mu^+$	<	2.0	$\times 10^{-6}$ CL=90%	927
$\rho^- 2\mu^+$	<	5.6	$\times 10^{-4}$ CL=90%	757
K^-2e^+	<	9	\times 10 ⁻⁷ CL=90%	870
$K^-2\mu^+$	<	1.0	\times 10 ⁻⁵ CL=90%	856
$K^-e^+\mu^+$	<	1.9	$\times 10^{-6}$ CL=90%	866
$K^*(892)^- 2\mu^+$	<	8.5	\times 10 ⁻⁴ CL=90%	703

D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1864.83\pm0.05$$
 MeV $m_{D^\pm}-m_{D^0}=4.822\pm0.015$ MeV Mean life $\tau=(410.1\pm1.5)\times10^{-15}$ s $c\tau=122.9~\mu{\rm m}$

Mixing and related parameters

$$\begin{split} &|m_{D_1^0} - m_{D_2^0}| = (0.95^{+0.41}_{-0.44}) \times 10^{10} \ \hbar \ \text{s}^{-1} \\ &(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma = 2y = (1.29^{+0.14}_{-0.18}) \times 10^{-2} \\ &|q/p| = 0.92^{+0.12}_{-0.09} \\ &A_{\Gamma} = (-0.125 \pm 0.526) \times 10^{-3} \\ &K^+\pi^- \ \text{relative strong phase: } \cos \delta = 0.97 \pm 0.11 \\ &K^-\pi^+\pi^0 \ \text{coherence factor } R_{K\pi\pi^0} = 0.82 \pm 0.06 \\ &K^-\pi^+\pi^0 \ \text{average relative strong phase } \delta^{K\pi\pi^0} = (199 \pm 14)^\circ \\ &K^-\pi^-2\pi^+ \ \text{coherence factor } R_{K3\pi} = 0.53^{+0.18}_{-0.21} \\ &K^-\pi^-2\pi^+ \ \text{average relative strong phase } \delta^{K3\pi} = (125^{+22}_{-14})^\circ \\ &D^0 \to K^-\pi^-2\pi^+, R_{K3\pi} \ (y \cos \delta^{K3\pi} - x \sin \delta^{K3\pi}) = (-3.0 \pm 0.7) \times 10^{-3} \ \text{TeV}^{-1} \\ &K_S^0 K^+\pi^- \ \text{coherence factor } R_{K_S^0 K\pi}^0 = 0.70 \pm 0.08 \\ &K_S^0 K^+\pi^- \ \text{average relative strong phase } \delta^{K_S^0 K\pi} = (0 \pm 16)^\circ \\ &K^* K \ \text{coherence factor } R_{K^*K}^0 = 0.94 \pm 0.12 \\ &K^* K \ \text{average relative strong phase } \delta^{K^*K} = (-17 \pm 18)^\circ \end{split}$$

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$\begin{split} &A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\% \\ &A_{CP}(2K_S^0) = (0.4 \pm 1.4)\% \\ &A_{CP}(\pi^+\pi^-) = (0.13 \pm 0.14)\% \\ &A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\% \\ &A_{CP}(\rho\gamma) = (6 \pm 15) \times 10^{-2} \\ &A_{CP}(\overline{K}^*(892)^0\gamma) = (-0.3 \pm 2.0) \times 10^{-2} \\ &A_{CP}(\rho(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2 \pm 0.9)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (-2.0 \pm 4.0)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-2.0 \pm 4.0)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-2.0 \pm 4.0)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1370)\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-5 \pm 1.4)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(f_0(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ aa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 23)\% \begin{bmatrix} aaa \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-13 \pm 27)\% \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-15 \pm 19)\% \\ A_{CP}(\pi(1300)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-28 \pm 24)\% \\ A_{CP}(K^+(\pi^0)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-26 \pm 6)\% \\ A_{CP}(K^+(\pi^0)^0\pi^0\pi$$

```
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\% [aaa]
A_{CP}(a_0(980)^0\pi^0 \rightarrow K^+K^-\pi^0) = (-5 \pm 16)\%^{[aaa]}
A_{CP}(f_2'(1525)\pi^0 \to K^+K^-\pi^0) = (0 \pm 160)\%^{[aaa]}
A_{CP}(K^*(892)^-K^+ \rightarrow K^+K^-\pi^0) = (-5 \pm 4)\%^{[aaa]}
A_{CP}(K^*(1410)^-K^+ \rightarrow K^+K^-\pi^0) = (-17 \pm 29)\%^{[aaa]}
A_{CP}((K^-\pi^0)_{S-wave}K^+ \rightarrow K^+K^-\pi^0) = (-10 \pm 40)\% [aaa]
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_S^0\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_{S}^{0}\eta') = (1.0 \pm 0.7)\%
A_{CP}(K_S^0\phi) = (-3 \pm 9)\%
A_{CP}(K^-\pi^+) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-) = (-0.9 \pm 1.4)\%
A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp} \pi^{\pm}) = (12.7 \pm 1.5)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^{*}(892)^{-}\pi^{+} \rightarrow K^{0}_{S}\pi^{+}\pi^{-}) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
A_{CP}(\overline{K}^{0}\rho^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-0.1 \pm 0.5)\%
A_{CP}(\overline{K}^{0}\omega \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-13 \pm 7)\%
A_{CP}(\overline{K}^0 f_0(980) \xrightarrow{\smile} K_S^0 \pi^+ \pi^-) = (-0.4 \pm 2.7)\%
A_{CP}(\overline{K}^0 f_2(1270) \rightarrow \overline{K}_S^0 \pi^+ \pi^-) = (-4 \pm 5)\%
A_{CP}(\overline{K}^0 f_0(1370) \to K_S^0 \pi^+ \pi^-) = (-1 \pm 9)\%
A_{CP}(\overline{K}^0 \rho^0(1450) \to \widetilde{K}_S^0 \pi^+ \pi^-) = (-4 \pm 10)\%
A_{CP}(\overline{K}^0 f_0(600) \rightarrow K_S^0 \pi^+ \pi^-) = (-3 \pm 5)\%
A_{CP}(K^*(1410)^-\pi^+ \to K_S^0\pi^+\pi^-) = (-2 \pm 9)\%
A_{CP}(K_0^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (4 \pm 4)\%
A_{CP}(K_0^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%

A_{CP}(K_2^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (3 \pm 6)\%
A_{CP}(K_2^*(1430)^+\pi^- \to K_5^0\pi^+\pi^-) = (-10 \pm 32)\%
A_{CP}(K^-\pi^+\pi^+\pi^-) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^+\pi^-) = (-2 \pm 4)\%
A_{CP}(K^+K^-\pi^+\pi^-) = (1.3 \pm 1.7)\%
A_{CP}(K_1^*(1270)^+K^- \rightarrow K^+K^-\pi^+\pi^-) = (25 \pm 16)\%
A_{CP}(K_1^*(1270)^+K^- \to K^{*0}\pi^+K^-) = (-1 \pm 10)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow \overline{K}^{*0}\pi^-K^+) = (-10 \pm 32)\%
A_{CP}(K_1^{*}(1270)^{-}K^{+} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}) = (-50 \pm 20)\%
A_{CP}(K_1^*(1270)^+K^- \rightarrow \rho^0K^+K^-) = (-7 \pm 17)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow \rho^0K^-K^+) = (10 \pm 13)\%
A_{CP}(K_1^*(1400)^+K^- \rightarrow K^+K^-\pi^+\pi^-) = (9 \pm 25)\%
A_{CP}(K^*(1410)^+K^- \to K^{*0}\pi^+K^-) = (-20 \pm 17)\%
A_{CP}(K^*(1410)^-K^+ \rightarrow \overline{K}^{*0}\pi^-K^+) = (-1 \pm 14)\%
```

$$A_{CP}(K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-17 \pm 29)\%$$

 $A_{CP}(K^{*0} \overline{K}^{*0})$ in D^0 , $\overline{D}^0 \to K^{*0} \overline{K}^{*0} = (-5 \pm 14)\%$
 $A_{CP}(K^{*0} \overline{K}^{*0} S$ -wave) = $(10 \pm 14)\%$
 $A_{CP}(\phi \rho^0)$ in D^0 , $\overline{D}^0 \to \phi \rho^0 = (1 \pm 9)\%$
 $A_{CP}(\phi \rho^0 S$ -wave) = $(-3 \pm 5)\%$
 $A_{CP}(\phi \rho^0 D$ -wave) = $(-37 \pm 19)\%$
 $A_{CP}(\phi (\pi^+ \pi^-)_{S-wave}) = (0 \pm 50)\%$
 $A_{CP}(K^*(892)^0 (K^- \pi^+)_{S-wave}) = (-10 \pm 40)\%$
 $A_{CP}(K^+ K^- \pi^+ \pi^- \text{ non-resonant}) = (8 \pm 20)\%$
 $A_{CP}(K^+ K^- \pi^+)_{P-wave} (K^+ \pi^-)_{S-wave}) = (3 \pm 11)\%$
 $A_{CP}(K^+ K^- \mu^+ \mu^-)$ in D^0 , $\overline{D}^0 \to K^+ K^- \mu^+ \mu^- = (0 \pm 11)\%$
 $A_{CP}(\pi^+ \pi^- \mu^+ \mu^-)$ in D^0 , $\overline{D}^0 \to \pi^+ \pi^- \mu^+ \mu^- = (5 \pm 4)\%$

CP-even fractions (labeled by the D^0 decay)

CP-even fraction in
$$D^0 \to \pi^+\pi^-\pi^0$$
 decays = $(97.3 \pm 1.7)\%$ CP-even fraction in $D^0 \to K^+K^-\pi^0$ decays = $(73 \pm 6)\%$ CP-even fraction in $D^0 \to \pi^+\pi^-\pi^+\pi^-$ decays = $(76.9 \pm 2.3)\%$ CP-even fraction in $D^0 \to K_S^0\pi^+\pi^-\pi^0$ decays = $(23.8 \pm 1.7)\%$ CP-even fraction in $D^0 \to K^+K^-\pi^+\pi^-$ decays = $(75 \pm 4)\%$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.161 \pm 0.029)\%$$

χ^2 tests of *CP*-violation (*CPV*) p-values

Local
$$CPV$$
 in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^0 = 4.9\%$
Local CPV in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^+\pi^- = (0.6 \pm 0.2)\%$
Local CPV in D^0 , $\overline{D}{}^0 \rightarrow K_S^0\pi^+\pi^- = 96\%$
Local CPV in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^0 = 16.6\%$
Local CPV in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (1.7 \pm 2.7) \times 10^{-3} \text{ [ss]}$$

 $A_{\text{Tviol}}(K_S\pi^+\pi^-\pi^0) \text{ in } D^0, \overline{D}^0 \to K_S\pi^+\pi^-\pi^0 = (-0.3^{+1.4}_{-1.6}) \times 10^{-3}$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

$$\begin{array}{l} {\rm r}_{V} \ \equiv \ {\rm V(0)/A_{1}(0)} \ {\rm in} \ D^{0} \rightarrow \ K^{*}(892)^{-} \ell^{+} \nu_{\ell} = 1.7 \pm 0.8 \\ {\rm r}_{2} \ \equiv \ {\rm A}_{2}(0)/{\rm A}_{1}(0) \ {\rm in} \ D^{0} \rightarrow \ K^{*}(892)^{-} \ell^{+} \nu_{\ell} = 0.9 \pm 0.4 \\ f_{+}(0) \ {\rm in} \ D^{0} \rightarrow \ K^{-} \ell^{+} \nu_{\ell} = 0.736 \pm 0.004 \\ f_{+}(0) \big| V_{cs} \big| \ {\rm in} \ D^{0} \rightarrow \ K^{-} \ell^{+} \nu_{\ell} = 0.7166 \pm 0.0030 \\ r_{1} \ \equiv \ a_{1}/a_{0} \ {\rm in} \ D^{0} \rightarrow \ K^{-} \ell^{+} \nu_{\ell} = -2.40 \pm 0.16 \\ \end{array}$$

$$\begin{array}{l} r_2 \equiv a_2/a_0 \text{ in } D^0 \to K^-\ell^+\nu_\ell = 5 \pm 4 \\ f_+(0) \text{ in } D^0 \to \pi^-\ell^+\nu_\ell = 0.637 \pm 0.009 \\ f_+(0) \big| V_{cd} \big| \text{ in } D^0 \to \pi^-\ell^+\nu_\ell = 0.1436 \pm 0.0026 \quad (S=1.5) \\ r_1 \equiv a_1/a_0 \text{ in } D^0 \to \pi^-\ell^+\nu_\ell = -1.97 \pm 0.28 \quad (S=1.4) \\ r_2 \equiv a_1/a_0 \text{ in } D^0 \to \pi^-\ell^+\nu_\ell = -0.2 \pm 2.2 \quad (S=1.7) \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES	Fraction (Γ_i/Γ)					cale factor/ idence leve(N				
D DECAT MODES	<u>'</u>	raction	Com	idelice leve(it	16 V/C)					
Topological modes										
0-prongs	[bbb]	(15	± 6) %			_			
2-prongs		(71	± 6) %			_			
4-prongs	[ccc]	(14.6	± 0	.5) %			_			
6-prongs	[ddd]	(6.5	± 1	.3)×	10^{-4}		_			
	Inclusi	ive mod	les							
e^+ anything		(6.49		.11) %			_			
μ^+ anything		(6.8	± 0	.6) %			_			
K^- anything		(54.7	± 2	.8) %		S=1.3	_			
\overline{K}^0 anything $+ K^0$ anything		(47	± 4) %			_			
K^+ anything		(3.4	± 0	.4) %			_			
$K^*(892)^-$ anything		(15	± 9) %			_			
$\overline{K}^*(892)^0$ anything		(9	± 4) %			_			
$K^*(892)^+$ anything		< 3.6		%		CL=90%	_			
$K^*(892)^0$ anything		(2.8	\pm 1	.3) %			_			
η anything		(9.5	± 0	.9)%			_			
η' anything		(2.48	± 0	.27) %			_			
ϕ anything		(1.05	\pm 0	.11) %			_			
invisibles		< 9.4		×	10^{-5}	CL=90%	_			
	Semilept	tonic m	odes							
$K^-e^+\nu_e$	•			.035) %		S=1.3	867			
$\mathcal{K}^-\mu^+ u_\mu$		•		.04) %			864			
$K^*(892)^{-}e^{+}\nu_{e}$		`		.16) %			719			
$K^*(892)^- \mu^+ \nu_{\mu}$		`		.24) %			714			
$K^-\pi^0e^+\nu_{\mathbf{A}}$		`		.3)%			861			
e			·				001			
$\overline{K}{}^0\pi^-e^+\nu_e$			U	.9 .7)%			860			
$K^-\pi^+\pi^-e^+\nu_e$		(2.8	+ 1 - 1	.4 .1)×	10-4		843			

$K_{1}(1270)^{-}e^{+}\nu_{e}$ $K^{-}\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$ $(\overline{K}^{*}(892)\pi)^{-}\mu^{+}\nu_{\mu}$ $\pi^{-}e^{+}\nu_{e}$ $\pi^{-}\mu^{+}\nu_{\mu}$ $\rho^{-}e^{+}\nu_{e}$ $a(980)^{-}e^{+}\nu_{e}$, $a^{-}\rightarrow\eta\pi^{-}$	$(7.6 \ ^{+} \ ^{4.0} \ ^{-} \ ^{1.3}) \times 10^{-4}$ $< 1.3 \ \times 10^{-3} \ CL = 90\%$ $< 1.5 \ \times 10^{-3} \ CL = 90\%$ $(2.91 \pm 0.04) \times 10^{-3}$ $(2.67 \pm 0.12) \times 10^{-3}$ $(1.77 \pm 0.16) \times 10^{-3}$ $(1.33 \ ^{+} \ ^{0.34} \ ^{-} \ ^{0.30}) \times 10^{-4}$	21 92 27
Hadronic m	odes with one \overline{K}	
$K^{-}\pi^{+}$ $K_{S}^{0}\pi^{0}$ $K_{L}^{0}\pi^{0}$ $K_{S}^{0}\pi^{+}\pi^{-}$ [tt]	$(3.950 \pm 0.031) \%$ S=1.2 86 $(1.240 \pm 0.022) \%$ 86 $(10.0 \pm 0.7) \times 10^{-3}$ 86 $(2.80 \pm 0.18) \%$ S=1.1 84	50 50
$K_S^0 \rho^0$ $K_S^0 \omega, \ \omega \rightarrow \pi^+ \pi^ K_S^0 (\pi^+ \pi^-)_{S-wave}$	$(3.3 \pm 0.8) \times 10^{-3}$	70 42
$\mathcal{K}_{S}^{0} f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}$ $\mathcal{K}_{S}^{0} f_{0}(1370), f_{0} \rightarrow \pi^{+} \pi^{-}$	$(1.20 + 0.40 \atop -0.23) \times 10^{-3}$ $(2.8 + 0.9 \atop -1.3) \times 10^{-3}$	19 †
$K_S^0 f_2(1270), f_2 \to \pi^+ \pi^-$	$(9 {}^{+10}_{-6}) \times 10^{-5}$	52
$K^*(892)^-\pi^+, K^{*-} \rightarrow K^0_S\pi^-$	(1.64 + 0.14 - 0.17)%	11
$K_0^*(1430)^-\pi^+, K_0^{*-} \to K_S^0\pi^-$	$(2.67 + 0.40 \\ -0.33) \times 10^{-3}$	78
$K_2^*(1430)^-\pi^+,~K_2^{*-} ightarrow K_S^0\pi^-$	$(3.4 + 1.9 \atop -1.0) \times 10^{-4}$	57
$K_{\mathcal{S}}^0\pi^-$	$(4.4 \pm 3.5) \times 10^{-4}$	46
$K_S^0\pi^+$	$(1.13 + 0.60 \atop -0.34) \times 10^{-4}$	11
$K_0^*(1430)^+\pi^-, K_0^{*+} o [fff]$ $K_0^5\pi^+$	$< 1.4 \times 10^{-5} \text{ CL}=95\%$	-
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow [fff]$ $K_S^0\pi^+$	$< 3.4 \times 10^{-5} CL=95\%$	_
$ \begin{array}{ccc} K^- \pi^+ \pi^0 & [tt] \\ K^- \rho^+ & \end{array} $	$(2.5 + 6.0 - 1.6) \times 10^{-4}$ $(14.4 \pm 0.5) \%$ $(11.3 \pm 0.7) \%$ $(8.2 \pm 1.8) \times 10^{-3}$ 82	

	$K^*(892)^-\pi^+, K^*(892)^- \to$		(2.31	+	0.40 0.20) %		711
	$\overline{K}^{-}\pi^{0}$ $\overline{K}^{*}(892)^{0}\pi^{0}$, $\overline{K}^{*}(892)^{0} \rightarrow$		(1.95	±	0.24) %		711
	$K^-\pi^+ \atop K_0^*(1430)^-\pi^+, K_0^{*-} \rightarrow K^-\pi^0$		(4.8	±	2.2) × 10 ⁻³		378
	$\overline{K}_0^*(1430)^0\pi^0$, \overline{K}_0^{*0} \rightarrow		(5.9	+	5.0 1.6	$)\times10^{-3}$		379
	$K^-\pi^+ K^*(1680)^-\pi^+, K^{*-} \rightarrow K^-\pi^0$		(1.9	±	0.7	$) \times 10^{-3}$		46
	$\mathcal{K}^-\pi^+\pi^0$ nonresonant		(1.15	+	0.60) %		844
Κ	$^{0}_{5} 2\pi^{0}$						$) \times 10^{-3}$	S=2.2	843
							$) \times 10^{-3}$		_
	$ \frac{K_S^0(2\pi^0)_{S-wave}}{\overline{K}^*(892)^0\pi^0}, \overline{K}^{*0} \to K_S^0\pi^0 $						$) \times 10^{-3}$		711
	$\overline{K}^*(1430)^0\pi^0$, $\overline{K}^{*0} \rightarrow$						$) \times 10^{-5}$		_
	$rac{\mathcal{K}_{\mathcal{S}}^{0}\pi^{0}}{\overline{\mathcal{K}}^{*}(1680)^{0}\pi^{0}},\;\;\overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}_{\mathcal{S}}^{0}\pi^{0}$		(1.0	±	0.4) × 10 ⁻³		_
	$K_S^0 f_2(1270), f_2 \rightarrow 2\pi^0$		(2.3	\pm	1.1) × 10 ⁻⁴		_
	$2K_S^0$, one $K_S^0 \rightarrow 2\pi^0$) × 10 ⁻⁴		_
Κ	$-2\pi^{+}\pi^{-}$	[tt]		8.23				S=1.1	813
	$K^-\pi^+ ho^0$ total		(6.87	\pm	0.31) %		609
	$K^-\pi^+ ho^0$ 3-body		•				$) \times 10^{-3}$		609
	$(K^{-}\pi^{+})_{S-wave}\rho^{0}$		(7.7	\pm	1.1	$) \times 10^{-4}$		609
	$\overline{K}^*(892)^0 \rho^0, \ \overline{K}^{*0} \rightarrow$		(1.01	\pm	0.05) %		416
	$K^{-}\pi^{+}$ $K^{*}(892)^{0}(\pi^{+}\pi^{-})_{S-wave}$, $K^{*}(892)^{0} \to K^{-}\pi^{+}$		(1.9	±	0.4	$) \times 10^{-3}$		_
	$(\overline{K}^*(892)^0 \rho^0)_{S-wave}$,		(6.0	±	0.4	$)\times10^{-3}$		-
	$\overline{K}^*(892)^0 ightarrow K^-\pi^+ \ (\overline{K}^*(892)^0 ho^0)_{P-wave},$		(4.96	±	0.25) × 10 ⁻³		_
	$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$		`				,		
	$(\overline{K}^*(892)^0 \rho^0)_{D-wave}$		(6.8	±	0.4	$) \times 10^{-3}$		-
	$\overline{\mathcal{K}}^*(892)^0 ightarrow \mathcal{K}^-\pi^+ \ \overline{\mathcal{K}}^*(892)^0 ho^0$ transverse,		(1.2	+	0.4) %		417
	$\overline{K}^{*0} \rightarrow K^- \pi^+$		(1.2	_	0.1) /0		
	$(\overline{K}^*(892)^0 \rho (1450)^0)$ $\overline{K}^*(892)^0 \rho (1450)^0$		(5.0	±	1.8	$) \times 10^{-4}$		_
	s_{-wave} , $\overline{K}^*(892)^0 ightarrow K^-\pi^+$, $ ho(1450)^0 ightarrow$								
	$\pi^+\pi^-$								
	$\Lambda = \Lambda$								

$$\begin{array}{c} (\overline{K}^*(892)^0 \rho (1450)^0) & (1.63 \pm 0.28) \times 10^{-3} \\ \rho_{-wave}, \ \overline{K}^*(892)^0 \rightarrow \\ K^-\pi^+, \ \rho (1450)^0 \rightarrow \\ \pi^+\pi^- \\ (\overline{K}^*(892)^0 \rho (1450)^0) & (3.8 \pm 1.3) \times 10^{-4} \\ \rho_{-wave}, \ \overline{K}^*(892)^0 \rightarrow \\ K^-\pi^+, \ \rho (1450)^0 \rightarrow \\ \pi^+\pi^- \\ K^-a_1 (1260)^+, \ a_1^+ \rightarrow \\ \rho^0\pi^+ \\ K^-a_1 (1260)^+, \ a_1^+ \rightarrow \\ \rho^0\pi^+ \\ K^-a_1 (1260)^+, \ a_1^+ \rightarrow \\ \rho^0\pi^+ \\ K^-a_1 (1260)^+, \ a_1 (1260)^+, \ a_1 (1260)^+ \rightarrow \\ (\rho^0\pi^+)_{D-wave} \\ K^-a_1 (1260)^+ \rightarrow \\ (\rho^0\pi^+)_{D-wave} \\ K_1 (1270)^-\pi^+, \ K_1^- \rightarrow \\ K_1 (1270)^-\pi^+, \ K_1 (1270)^- \rightarrow \\ (K^*0\pi^-)_{D-wave}, \ K^*(892)^0 \rightarrow K^-\pi^+ \\ K_1 (1270)^-\pi^+, \ K_1 (1270)$$

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.

Hadronic modes with three K's

$$K_S^0 K^+ K^-$$
 (4.42 ± 0.32) × 10⁻³ 544
 $K_S^0 a_0 (980)^0$, $a_0^0 \to K^+ K^-$ (2.9 ± 0.4) × 10⁻³ — $K^- a_0 (980)^+$, $a_0^+ \to$ (5.9 ± 1.8) × 10⁻⁴ — $K^+ K_S^0$

$K^{+}a_{0}(980)^{-}$, $a_{0}^{-} ightarrow$	< 1.1	$\times10^{-4}$	CL=95%	_
$K^-K^0_S$				
$K_S^0 f_0(980), \ f_0 ightarrow \ K^+ K^-$	< 9	$\times10^{-5}$	CL=95%	_
$K_{\mathcal{S}}^{ar{0}}\phi$, $\phi ightarrow~K^{+}K^{-}$	($2.03 \pm$	$0.15) \times 10^{-3}$		520
$K_S^0 f_0(1370), f_0 \to K^+ K^-$	(1.7 \pm	1.1) \times 10 ⁻⁴		_
$3K_S^0$	$(7.5 \pm)$	$0.7) \times 10^{-4}$	S=1.4	539
$K^{+}2K^{-}\pi^{+}$	(2.25 ± 0	$0.32) \times 10^{-4}$		434
$K^+K^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \rightarrow$	$(4.5 \pm)$	1.8) \times 10 ⁻⁵		†
$K^-\pi^+$		>5		
$K^\pi^+\phi$, $\phi o K^+K^-$	$(4.1 \pm)$	$1.7) \times 10^{-5}$		422
$\phi \overline{K}_{\underline{}}^{*}(892)^{0}, \ \phi \rightarrow K^{+}K^{-},$	(1.08 ± 0	$0.21) \times 10^{-4}$		†
$K^{*0} \rightarrow K^{-}\pi^{+}$		_		
$K^+2K^-\pi^+$ nonresonant	$(3.4 \pm)$	1.5) \times 10 ⁻⁵		434
$2K_S^0K^{\pm}\pi^{\mp}$	$(5.9 \pm)$	1.3) \times 10 ⁻⁴		427

Pionic modes

	i lottic filoacs		
$\pi^+\pi^-$	$(1.455\pm\ 0.024)\times10^{-3}$	S=1.3	922
$2\pi^0$	$(8.26 \pm 0.25) \times 10^{-4}$		923
$\pi^+\pi^-\pi^0$	(1.49 ± 0.06) %	S=2.1	907
$ ho^+\pi^-$	(1.01 ± 0.04) %		764
$\rho^0 \pi^0$	$(3.86 \pm 0.23) \times 10^{-3}$		764
$ ho^-\pi^+$	$(5.15 \pm 0.25) \times 10^{-3}$		764
$ ho(1450)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	(1.6 ± 2.1) $ imes 10^{-5}$		_
$\rho(1450)^0\pi^0$, $\rho^0\to \pi^+\pi^-$	(4.5 \pm 2.0) $ imes$ 10 ⁻⁵		_
$\rho(1450)^-\pi^+, \ \rho^- \to \ \pi^-\pi^0$	$(2.7 \pm 0.4) \times 10^{-4}$		_
$\rho(1700)^{+}\pi^{-}, \ \rho^{+} \rightarrow \pi^{+}\pi^{0}$	$(6.1 \pm 1.5) \times 10^{-4}$		_
$\rho(1700)^0 \pi^0$, $\rho^0 \to \pi^+ \pi^-$	$(7.4 \pm 1.8) \times 10^{-4}$		_
$\rho(1700)^-\pi^+, \ \rho^- \to \ \pi^-\pi^0$	$(4.8 \pm 1.1) \times 10^{-4}$		_
$f_0(980)\pi^0$, $f_0 \to \pi^+\pi^-$	$(3.7 \pm 0.9) \times 10^{-5}$		_
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$	(1.22 ± 0.22) \times 10^{-4}		_
$f_0(1370)\pi^0$, $f_0 \to \pi^+\pi^-$	$(5.5 \pm 2.1) \times 10^{-5}$		_
$f_0(1500)\pi^0$, $f_0 \to \pi^+\pi^-$	$(5.8 \pm 1.6) \times 10^{-5}$		_
$f_0(1710)\pi^0$, $f_0 \to \pi^+\pi^-$	$(4.6 \pm 1.6) \times 10^{-5}$		_
$f_2(1270)\pi^0$, $f_2 \to \pi^+\pi^-$	$(1.97 \pm 0.21) \times 10^{-4}$		_
$\pi^+\pi^-\pi^0$ nonresonant	$(1.3 \pm 0.4) \times 10^{-4}$		907
$3\pi^0$	$(2.0 \pm 0.5) \times 10^{-4}$		908
$2\pi^{+}2\pi^{-}$	$(7.56 \pm 0.20) \times 10^{-3}$		880
$a_1(1260)^+\pi^-$, $a_1^+ o$	(4.54 \pm 0.31) \times 10 ⁻³		_
$2\pi^+\pi^-$ total			
$a_1(1260)^+\pi^-$, $a_1^+ o$	$(3.14 \pm 0.21) \times 10^{-3}$		_
$ ho^0\pi^+$ <i>S</i> -wave			
$a_1(1260)^+\pi^-, a_1^+ \rightarrow$	(1.9 \pm 0.5) $ imes$ 10^{-4}		_
$\rho^0\pi^+$ <i>D</i> -wave	•		
r			

- (1260)++		(0.7	10-4		
$a_1(1260)^+\pi^-$, $a_1^+ o$		(6.4	土	0.7	$) \times 10^{-4}$		_
$a_1(1260)^-\pi^+, \ a_1^- ightarrow$		())		0.0) × 10 ⁻⁴		
		(2.3	工	0.9) × 10		_
$\rho^0 \pi^- S$ -wave		(6 1			\ 40-5		
$a_1(1260)^-\pi^+, a_1^- \to \sigma\pi^-$					$) \times 10^{-5}$		_
$\pi(1300)^{+}\pi^{-}, \ \pi(1300)^{+} \rightarrow$		(5.1	±	2.7	$) \times 10^{-4}$		_
$\sigma\pi^+ \pi (1300)^-\pi^+, \ \pi (1300)^- \rightarrow$		(23	+	22) × 10 ⁻⁴		_
$\sigma\pi^-$		(2.5		۷.۷) \ 10		
$a_1(1640)^+\pi^-$, $a_1^+\to$		(3.2	\pm	1.6	$) \times 10^{-4}$		_
$\rho^0\pi^+$ <i>D</i> -wave							
$a_1(1640)^+\pi^-$, $a_1^+ \to \sigma\pi^+$		(1.8	\pm	1.4	$) \times 10^{-4}$		_
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \to$) × 10 ⁻⁴		_
$f_2(1270)^0 \pi^+, f_2^0 \rightarrow$		(=			, = .		
$\pi^{+}\pi^{-}$							
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \rightarrow \ \sigma \pi^+$		(2.6	+	1.0	$) \times 10^{-4}$		_
$2\rho^0$ total					$) \times 10^{-3}$		518
$2 ho^0$, parallel helicities					$) \times 10^{-5}$		J10 —
$2\rho^0$, perpendicular helici-					$) \times 10^{-4}$		_
ties		(1.0	_	0.0) / 10		
$2\rho^0$, longitudinal helicities		(1.27	\pm	0.10	$) \times 10^{-3}$		_
$2\rho(770)^{0}$, <i>S</i> -wave					$) \times 10^{-4}$		_
$2\rho(770)^{0}$, <i>P</i> -wave					$) \times 10^{-4}$		_
$2\rho(770)^{0}$, <i>D</i> -wave					$) \times 10^{-4}$		_
Resonant $(\pi^+\pi^-)\pi^+\pi^-$		(1.51	\pm	0.12	$) \times 10^{-3}$		_
3-body total							
$\sigma \pi^+ \pi^-$		(6.2	\pm	0.9	$) \times 10^{-4}$		_
$\sigma \rho (770)^0$					$) \times 10^{-4}$		_
$f_0(980)\pi^+\pi^-$, $f_0 \to$		(1.8	\pm	0.5	$) \times 10^{-4}$		-
$\pi^{+}\pi^{-}$		(2 7		0.6	\10 - 4		
$f_2(1270)\pi^+\pi^-, f_2 \rightarrow \pi^+\pi^-$		(3.7	土	0.6	$) \times 10^{-4}$		_
$2f_{2}(1270), f_{2} \rightarrow \pi^{+}\pi^{-}$		(1.6	\pm	1.8	$) \times 10^{-4}$		_
$f_{\alpha}(1370)\sigma f_{\alpha} \rightarrow$		•			$) \times 10^{-3}$		_
$\pi^{+}\pi^{-}2\pi^{0}$		•			,		
$\pi^{+}\pi^{-}2\pi^{0}$		(1.02					882
$\eta\pi$					$) \times 10^{-4}$	S=1.1	846
$\omega \pi^0$	[hhh]	•			$) \times 10^{-4}$		761
$\omega\eta$					$) \times 10^{-3}$	S=1.1	648
$2\pi^{+}2\pi^{-}\pi^{0}$		•			$) \times 10^{-3}$		844
· .	[hhh]				$) \times 10^{-3}$		827
	[hhh]				$) \times 10^{-3}$		738
$\eta 2\pi^{0}$					$) \times 10^{-4}$		829
$3\pi^{+}3\pi^{-}$					$) \times 10^{-4}$		795
$\eta'(958)\pi^{0}$		(9.2	土	1.0	$) \times 10^{-4}$		678

$\eta'(958)\pi^{+}\pi^{-}$	(4.5	\pm	1.7	$) \times 10^{-4}$		650
2η				$) \times 10^{-3}$	S=2.2	754
$2\eta\pi^0$	•			$) \times 10^{-4}$		699
, .	< 1.3			\times 10 ⁻⁴	CL=90%	421
$\eta \eta'(958)$	(1.0	$1 \pm$	0.19	$) \times 10^{-3}$		537
Hadronic mode	s with	ı a l	ΚK	pair		
K^+K^-				$) \times 10^{-3}$	S=1.6	791
$2K_S^0$	•			$) \times 10^{-4}$	S=1.1	789
$K_{S}^{0}K^{-}\pi^{+}$	(3.3	\pm	0.5	$) \times 10^{-3}$	S=1.1	739
$\overline{K}^*(892)^0 K_S^0, \overline{K}^{*0} \rightarrow$				$) \times 10^{-5}$		608
$\kappa^-\pi^+$						
$K^*(892)^+K^-, K^{*+} \rightarrow$	(1.8	9 ±	0.30	$) \times 10^{-3}$		_
$K_S^0 \pi^+$				4		
$\overline{K}^*(1410)^0 K_S^0, \overline{K}^{*0} \rightarrow$	(1.3	±	1.9	$) \times 10^{-4}$		_
$K^-\pi^+ \ K^*(1410)^+K^-$, $K^{*+} ightarrow$	(0 0			\ 10-4		
$\mathcal{K}_{\mathbf{S}}^{(1410)} \mathcal{K}_{\mathbf{S}}^{(1410)} \mathcal{K}_{\mathbf$	(3.2	土	1.9	$) \times 10^{-4}$		_
$(K^-\pi^+)_{S-wave}K_S^0$	(60		2.0) × 10 ⁻⁴		739
$(K_S^0\pi^+)_{S-wave}K_S^-$				$) \times 10^{-4}$		739
$a_0(980)^-\pi^+, a_0^- \to K_S^0K^-$						139
				$) \times 10^{-4}$ $) \times 10^{-5}$		
$a_0(1450)^-\pi^+, \ a_0^- \rightarrow $	(2.5	工	2.0) × 10 °		_
$K_S^0 K^-$	<i>(</i> -		_) 10 - 6		
$a_2(1320)^-\pi^+, \ a_2^- \to $	(5	土	5	$) \times 10^{-6}$		_
$K_S^0 K^-$	(1.6		0.5	\ 10-5		
$\rho(1450)^-\pi^+, \ \rho^- \to K_S^0K^-$				$) \times 10^{-5}$	C 11	-
$K_S^0 K^+ \pi^-$				$) \times 10^{-3}$	S=1.1	739
$K^*(892)^0 K_S^0, K^{*0} \rightarrow$	(1.1	2 ±	0.21	$) \times 10^{-4}$		608
$K^{+}\pi^{-}$ $K^{*}(892)^{-}K^{+}, K^{*-} \rightarrow$	(62	+	1 0	$) \times 10^{-4}$		_
$\kappa_{\rm S}^{02}\pi^{-}$	(0.2		1.0) ^ 10		
$K^*(1410)^0 K_S^0, K^{*0} \rightarrow$	(5	±	8	$) \times 10^{-5}$		_
$\kappa^+\pi^+$	(-			,		
$K^*(1410)^- K^+, K^{*-} \rightarrow$	(2.6	\pm	2.0	$) \times 10^{-4}$		_
$K^0_S\pi^-$						
$(K^{+}\pi^{-})_{S-wave}K^{0}_{S} \ (K^{0}_{S}\pi^{-})_{S-wave}K^{+}$	(3.7	\pm	1.9	$) \times 10^{-4}$		739
$(K^0_{S}\pi^-)_{S-wave}K^+$	(1.4	\pm	0.6	$) \times 10^{-4}$		739
$a_0(980)^+\pi^-$, $a_0^+ o K_S^0K^+$	(6	\pm	4	$) \times 10^{-4}$		_
$a_0(1450)^+\pi^-$, $a_0^+ ightarrow$	(3.2	\pm	2.5	$) \times 10^{-5}$		_
$K_S^0K^+$						
$ ho(1700)^{+}\pi^{-}, \ \rho^{+} ightarrow \ K_{S}^{0}K^{+}$	(1.1	\pm	0.6	$) \times 10^{-5}$		_
$K^+K^-\pi^0$				$) \times 10^{-3}$		743

$K^*(892)^+K^-, K^*(892)^+ \rightarrow$	(1.52	± (0.07) × 10 ⁻³		_
$K^{+}\pi^{0}$ $K^{*}(892)^{-}K^{+}, K^{*}(892)^{-} \rightarrow$	(5.4	± (0.4	$) \times 10^{-4}$		-
$(K^{-}\pi^{0})_{S-wave}K^{-}$) × 10 ⁻³		743
$(K^-\pi^0)_{S-wave}K^+$				$) \times 10^{-4}$		743
$f_0(980)\pi^0$, $f_0 ightarrow K^+K^-$ $\phi\pi^0$, $\phi ightarrow K^+K^-$	(3.0	± '	0.0	$) \times 10^{-4}$ $) \times 10^{-4}$		_
$2K_{S}^{0}\pi^{0}$				$\times 10^{-4}$		- 740
$K^{+}K^{-}\pi^{+}\pi^{-}$				$\times 10^{-3}$		
$\phi(\pi^+\pi^-)_{S-wave}, \ \phi \rightarrow$				$) \times 10^{-5}$		677 614
K^+K^-	(10	т.	5) × 10		014
$(\phi \rho^0)_{S-wave}, \ \phi ightarrow K^+K^-$	(6.9	± (0.6	$) \times 10^{-4}$		250
$(\phi ho^0)_{P-wave}$, $\phi ightarrow~K^+K^-$				$) \times 10^{-5}$		_
$(\phi ho^0)_{D-wave}$, $\phi ightarrow~K^+K^-$				$) \times 10^{-5}$		_
$(K^*(892)^0\overline{K}^*(892)^0)_{S-wave}$				$) \times 10^{-4}$		_
$K^{*0} ightarrow K^{\pm} \pi^{\mp}$						
$(K^*(892)^0 \overline{K}^*(892)^0)_{P-wave}$	(9	± ·	4	$) \times 10^{-5}$		_
$(K^* \to \underline{K}^{\pm} \pi^{\mp} (K^* (892)^0)_{D-wave},$						
$(K^*(892)^{\circ}K^*(892)^{\circ})_{D-wave},$	(9.9	± :	2.3	$) \times 10^{-5}$		_
$K^* \xrightarrow{K} K^{\pm} \pi^{\mp}$ $K^*(892)^0 (K^- \pi^+)_{S-wave}$	(1 4		0.6) v 10 ⁻⁴		
3-body, $K^{*0} \rightarrow K^+\pi^-$	(1.4	Τ '	0.0	$) \times 10^{-4}$		_
$K_1(1270)^+K^-$, $K_1^+ \rightarrow K^+\pi$	(11		0.0) × 10 ⁻⁴		
$K^{*0}\pi^+$	(1.4	Τ,	0.9) × 10		
$K_1(1270)^+K^-, K_1^+ \rightarrow$	(1.5	+ (0.5	$) \times 10^{-4}$		_
$K^*(1430)^0 \pi^+, K^{*0} \rightarrow$	(2.0		0.0) // - 0		
$K^+\pi^-$						
$K_1(1270)^+ K^-, K_1^+ \rightarrow$	(2.2	± (0.6	$) \times 10^{-4}$		_
$\rho^0 K^+$	•			,		
$K_1(1270)^+ K^-, K_1^+ \rightarrow$	(1.5	± 1	1.2	$) \times 10^{-5}$		_
ω (782) K^+ , $\omega \rightarrow \pi^+\pi^-$	•			,		
$K_1(1270)^- K^+, K_1^- \rightarrow$	(1.3	± (0.4	$) \times 10^{-4}$		_
$\rho^0 K^-$	•			,		
$K_1(1400)^+ K^-, K_1^+ \rightarrow$	(3.1	± :	1.7	$) \times 10^{-4}$		_
$K^*(892)^0\pi^+, K^{*0} \rightarrow$	(-			,		
$K^+\pi^-$						
$K_1(1680)^+ K^-, K_1^+ \rightarrow$	(8.9	± :	3.2	$) \times 10^{-5}$		_
$K^{*0}\pi^+$, $K^{*0} \rightarrow K^+\pi^-$						
$K^+K^-\pi^+\pi^-$ non-resonant	(2.7	± (0.6	$) \times 10^{-4}$		_
$2K_S^0\pi^+\pi^-$	(1.22	± (0.23	$) \times 10^{-3}$		673
$K_S^0 K^- 2\pi^+ \pi^-$	< 1.4			\times 10 ⁻⁴	CL=90%	595
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.1	± :	2.0	$) \times 10^{-3}$		600

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

Radiative modes

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

$$(K^*(892)^0 \rho (1450)^0) \qquad (2.0 \pm 0.5) \times 10^{-5} \qquad - \\ s_{-wave} \text{ via DCS}, \\ K^*(892)^0 \rightarrow \\ K^+\pi^-, \\ \rho (1450)^0 \rightarrow \\ \pi^+\pi^- \qquad (K_1(1270)^+\pi^-) \qquad (4.5 \pm 0.6) \times 10^{-5} \qquad - \\ s_{-wave} \text{ via DCS}, \\ K_1(1270)^+ \rightarrow \\ K^+\pi^-\pi^+ \text{ total} \\ (K_1(1400)^+\pi^-) \qquad (6.6 \pm 0.7) \times 10^{-5} \qquad - \\ s_{-wave} \text{ via DCS}, \\ K_1(1400)^+ \rightarrow \\ (K^*(892)^0\pi^+) \qquad (K^*(892)^0 \rightarrow \\ K^+\pi^- \qquad K^+\pi^- \qquad (5.2 \pm 0.5) \times 10^{-5} \qquad - \\ \text{via DCS} \\ \mu^- \text{ anything via } \overline{D}^0 \qquad <4 \qquad \times 10^{-4} \quad \text{CL} = 90\%$$

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

	-	, ,	_		
$\gamma \gamma$	C1	< 8.5	\times 10 ⁻⁷	CL=90%	932
$e^+ e^-$	C1	< 7.9	$\times 10^{-8}$	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	\times 10 ⁻⁹	CL=90%	926
$\pi^{0} e^{+} e^{-}$	C1	< 4	\times 10 ⁻⁶	CL=90%	928
$\pi^0 \mu^+ \mu^-$	C1	< 1.8	\times 10 ⁻⁴	CL=90%	915
$\eta { m e}^+ { m e}^-$	C1	< 3	\times 10 ⁻⁶	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	\times 10 ⁻⁴	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 7	\times 10 ⁻⁶	CL=90%	922
$ ho^0e^+e^-$	C1	< 1.0	$\times 10^{-4}$	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	(9.6 ±	$= 1.2) \times 10^{-7}$		894
$\pi^+\pi^-\mu^+\mu^-$ (non-res)		< 5.5	\times 10 ⁻⁷	CL=90%	_
$ ho^0 \mu^+ \mu^-$	C1	< 2.2	$\times10^{-5}$	CL=90%	754
$\omega e^+ e^-$	C1	< 6	\times 10 ⁻⁶	CL=90%	768
$\omega \mu^+ \mu^-$	C1	< 8.3	\times 10 ⁻⁴	CL=90%	751
$K^- K^+ e^+ e^-$	C1	< 1.1	$\times10^{-5}$	CL=90%	791
ϕe^+e^-	C1	< 5.2	$\times10^{-5}$	CL=90%	654
$K^-K^+\mu^+\mu^-$	C1	(1.54 ±	$= 0.32) \times 10^{-7}$		710
$K^-K^+\mu^+\mu^-$ (non-res)		< 3.3	$\times10^{-5}$	CL=90%	_
$\phi \mu^+ \mu^-$	C1	< 3.1	$\times10^{-5}$	CL=90%	631
$\overline{K}{}^0e^+e^-$		[zz] < 2.4	$\times10^{-5}$	CL=90%	866
$\overline{K}{}^0\mu^+\mu^-$		[zz] < 2.6	$\times10^{-4}$	CL=90%	852

$\mathcal{K}^-\pi^+e^+e^-$	C1	<	4.1		$\times10^{-5}$	CL=90%	861
$\overline{K}^*(892)^0 e^+ e^-$		[zz] <	4.7		$\times10^{-5}$	CL=90%	719
$K^{-}\pi^{+}\mu^{+}\mu^{-}$	<i>C</i> 1	<	3.59		$\times 10^{-4}$	CL=90%	829
$\mathit{K^-\pi^+\mu^+\mu^-}$, 675 $<$		(4.2	± 0.4	$) \times 10^{-6}$		_
$m_{\mu\mu}~<$ 875 MeV							
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[zz] <	2.4		$\times10^{-5}$	CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	<	8.1		$\times 10^{-4}$	CL=90%	863
$\mu^{\pm}e^{\mp}$	LF	[hh] <	1.3		$\times 10^{-8}$	CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[hh] <	8.6		$\times 10^{-5}$	CL=90%	924
$\etae^{\pm}\mu^{\mp}$	LF	[hh] <	1.0		$\times 10^{-4}$	CL=90%	848
$\pi^+\pi^-e^\pm\mu^\mp$	LF	[hh] <	1.5		$\times 10^{-5}$	CL=90%	911
$ ho^{0}\mathrm{e}^{\pm}\mu^{\mp}$	LF	[hh] <	4.9		$\times 10^{-5}$	CL=90%	767
$\omegae^\pm\mu^\mp$	LF	[hh] <	1.2		$\times 10^{-4}$	CL=90%	764
${\it K^-K^+e^\pm\mu^\mp}$	LF	[hh] <	1.8		$\times 10^{-4}$	CL=90%	754
$\phie^\pm\mu^\mp$	LF	[hh] <	3.4		$\times 10^{-5}$	CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[hh] <	1.0		$\times 10^{-4}$	CL=90%	863
$\mathit{K}^-\pi^+e^\pm\mu^\mp$	LF	[hh] <	5.53		$\times10^{-4}$	CL=90%	848
$\overline{\mathit{K}}^*$ (892) $^0e^\pm\mu^\mp$	LF	[hh] <	8.3		$\times 10^{-5}$	CL=90%	714
$2\pi^{-}2e^{+}$ + c.c.	L	<	1.12		$\times 10^{-4}$	CL=90%	922
$2\pi^{-}2\mu^{+}$ + c.c.	L	<	2.9		$\times 10^{-5}$	CL=90%	894
$K^-\pi^-2e^+ + \text{c.c.}$	L	<	2.06		$\times 10^{-4}$	CL=90%	861
$K^-\pi^-2\mu^+ + \text{c.c.}$	L	<	3.9		$\times 10^{-4}$	CL=90%	829
$2K^{-}2e^{+}$ + c.c.	L	<	1.52		$\times 10^{-4}$	CL=90%	791
$2K^{-}2\mu^{+}$ + c.c.	L	<	9.4		$\times 10^{-5}$	CL=90%	710
$\pi^-\pi^-e^+\mu^++$ c.c.	L	<	7.9		$\times 10^{-5}$	CL=90%	911
$K^-\pi^-e^+\mu^++$ c.c.	L	<	2.18		$\times 10^{-4}$	CL=90%	848
$2K^{-}e^{+}\mu^{+}$ + c.c.	L	<	5.7		$\times 10^{-5}$	CL=90%	754
pe ⁻	L,B	[iii] <	1.0		$\times 10^{-5}$	CL=90%	696
$\overline{p}e^+$	L,B	[jjj]	1.1		$\times 10^{-5}$	CL=90%	696

$D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Created: 5/22/2019 10:04

Mass
$$m=2006.85\pm0.05$$
 MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.014\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{\it D}^*(2007)^0$ modes are charge conjugates of modes below.

<i>D</i> *(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7±0.9) %	43
$D^0\gamma$	$(35.3\pm0.9)~\%$	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m = 2010.26 \pm 0.05 \text{ MeV}$

 $m_{D^*(2010)^+} - m_{D^+} = 140.603 \pm 0.015 \; {
m MeV}$

 $m_{D^*(2010)^+} - m_{D^0} = 145.4257 \pm 0.0017 \text{ MeV}$

Full width $\Gamma=83.4\pm1.8~\text{keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)		
$D^0\pi^+$	(67.7±0.5) %	39		
$D^+\pi^0$	(30.7±0.5) %	38		
$D^+\gamma$	$(1.6\pm0.4)\%$	136		

$D_0^*(2300)^0$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=2300\pm19~{\rm MeV}$ Full width $\Gamma=274\pm40~{\rm MeV}$

$D_0^*(2300)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^+\pi^-$	seen	369

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass
$$m=2420.8\pm0.5~{
m MeV}~{
m (S}=1.3)$$
 $m_{D_1^0}-m_{D^{*+}}=410.6\pm0.5~{
m (S}=1.3)$ Full width $\Gamma=31.7\pm2.5~{
m MeV}~{
m (S}=3.5)$

 $\overline{D}_1(2420)^0$ modes are charge conjugates of modes below.

<i>D</i> ₁ (2420) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	353
$D^0\pi^+\pi^-$	seen	425
$D^+\pi^-$	not seen	472
$D^{*0}\pi^{+}\pi^{-}$	not seen	279

$$D_2^*(2460)^0$$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $\overline{J^P=2}^+$ assignment strongly favored.

Mass
$$m=2460.7\pm0.4$$
 MeV (S = 3.1) $m_{D_2^{*0}}-m_{D^+}=591.0\pm0.4$ MeV (S = 2.9) $m_{D_2^{*0}}-m_{D^{*+}}=450.4\pm0.4$ MeV (S = 2.9) Full width $\Gamma=47.5\pm1.1$ MeV (S = 1.8)

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

D*(2460) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)		
$D^+\pi^-$	seen	505		
$D^*(2010)^+\pi^-$	seen	389		
$D^0 \pi^+ \pi^-$	not seen	462		
$D^{*0} \pi^+ \pi^-$	not seen	324		

$D_2^*(2460)^{\pm}$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^{\overline{P}=2^+}$ assignment strongly favored.

Mass
$$m=2465.4\pm1.3~{
m MeV}~{
m (S}=3.1)$$
 $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{
m MeV}$ Full width $\Gamma=46.7\pm1.2~{
m MeV}$

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

$D_2^*(2460)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^{0}\pi^{+}$	seen	513
$D^{*0}\pi^{+}$	seen	396
$D^+\pi^+\pi^-$	not seen	462
$D^{*+}\pi^{+}\pi^{-}$	not seen	326

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_{s}^{\pm}

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.34\pm0.07$$
 MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(504\pm4)\times10^{-15}$ s $~(S=1.2)$ $c au=151.2~\mu{\rm m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (5 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}) = (0.08 \pm 0.26)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(\phi\pi^{\pm}) = (-0.38 \pm 0.27)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}\pi^{0}) = (-2 \pm 6)\%$$

$$A_{CP}(2K_{S}^{0}\pi^{\pm}) = (3 \pm 5)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}\pi^{0}) = (0.0 \pm 3.0)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}\pi^{+}\pi^{-}) = (-6 \pm 5)\%$$

$$A_{CP}(K_{S}^{0}K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.1 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.1 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta') = (-0.9 \pm 0.5)\%$$

$$A_{CP}(\eta^{\pi}\pi^{\pm}\pi^{0}) = (-1 \pm 4)\%$$

$$A_{CP}(\eta'\pi^{\pm}\pi^{0}) = (0 \pm 8)\%$$

$$A_{CP}(K^{0}/K^{0}\pi^{\pm}) = (0.4 \pm 0.5)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}) = (3.1 \pm 2.6)\% \quad (S = 1.7)$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (4 \pm 5)\%$$

$$A_{CP}(K^{\pm}\eta') = (9 \pm 15)\%$$

$$A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [ss]$$

$D_{\bf s}^+ \to \phi \ell^+ \nu_{\ell}$ form factors

$$r_2 = 0.84 \pm 0.11$$
 (S = 2.4)
 $r_v = 1.80 \pm 0.08$
 $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

D ⁺ _s DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
	Inclusive modes		
e^+ semileptonic	[kkk] (6.5 ±0.4)	%	_
π^+ anything	(119.3 ± 1.4)	%	_
π^- anything	(43.2 ± 0.9)	%	_
$\pi^{f 0}$ anything	(123 ± 7)	%	_
K^- anything	(18.7 ± 0.5)	%	_
K_{α}^{+} anything	(28.9 ± 0.7)	%	_
${\mathcal K}^0_{\mathcal S}$ anything	(19.0 ± 1.1)	%	_
η anything	[///] (29.9 \pm 2.8)	%	_
ω anything	(6.1 ± 1.4)	%	_
η' anything	[nnn] (10.3 ± 1.4)	% S=1.1	_
$\mathit{f}_0(980)$ anything, $\mathit{f}_0 ightarrow ~\pi^+\pi^-$	< 1.3	% CL=90%	_
ϕ anything	(15.7 ± 1.0)	%	_
K^+K^- anything	(15.8 ± 0.7)		_
$K^0_{S}K^+$ anything	(5.8 ± 0.5)	%	_
$K_S^0K^-$ anything	(1.9 ± 0.4)	%	_
$2K_S^0$ anything	(1.70 ± 0.32)	%	_
$2K^+$ anything	< 2.6	$\times 10^{-3}$ CL=90%	_
2K ⁻ anything	< 6	$\times 10^{-4}$ CL=90%	_
Leptonic	and semileptonic mod	des	
$e^+ u_e$	< 8.3	$\times 10^{-5}$ CL=90%	984
$\mu^+ u_{\mu}$	(5.50 ± 0.23)	$\times 10^{-3}$	981
$ au^+ u_{ au}$	(5.48 ± 0.23)	%	182
$K^+K^-e^+\nu_e$	_		851
$\phie^+ u_e$	[ooo] (2.39 ± 0.16)	% S=1.3	720
$\phi \mu^+ \nu_{\mu}$	(1.9 ± 0.5)	%	715
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	$[ooo]$ (3.03 ± 0.24)	%	_
$\etae^+ u_e$	$[ooo]$ (2.29 ± 0.19)	%	908
η^{\prime} (958) $e^+ u_e$	$[ooo]$ (7.4 ± 1.4)	$\times 10^{-3}$	751
$\eta \mu^+ u_{\mu}$	(2.4 ± 0.5)	%	905
$\eta'(958)\mu^+ u_{\mu}$	(1.1 ± 0.5)	%	747
$\omega e^+ \nu_e$	[<i>ppp</i>] < 2.0	$\times 10^{-3}$ CL=90%	829
$K^0 e^+ \nu_e$	(3.9 ± 0.9)		921
$K^*(892)^0 e^+ \nu_e$	[000] (1.8 \pm 0.4)	\times 10 ⁻³	782

Hadronic modes with a $K\overline{K}$ pair

	inoues	• W	itii a A A paii		
$K^+K^0_S$		($1.50\pm0.05)~\%$		850
$K^+\overline{K}^{reve{0}}$		($2.95\pm0.14)$ %		850
$K^+K^-\pi^+$	[tt]	($5.45\pm0.17)$ %	S=1.2	805
$\phi\pi^+$ [00	00,qqq]	(4.5 \pm 0.4) %		712
$\phi\pi^+$, $\phi \rightarrow K^+K^-$	[qqq]		2.27±0.08) %		712
$K^+\overline{K}^*(892)^0$, \overline{K}^{*0} $ ightarrow$		(416
$K^-\pi^+$		Ì	•		
$f_0(980)\pi^+$, $f_0 ightarrow K^+K^-$		•	$1.15\pm0.32)$ %		732
$\mathit{f}_{0}(1370)\pi^{+}$, $\mathit{f}_{0} ightarrow \mathit{K}^{+}\mathit{K}^{-}$		(7 ± 5) \times 10 ⁻⁴		_
$f_0(1710)\pi^+$, $f_0 \rightarrow K^+K^-$		(6.7 ± 2.9) $\times 10^{-4}$		198
$\widetilde{K}^+\overline{K}_0^*(1430)^0$, $\overline{K}_0^*\to$		($1.9 \pm 0.4 \times 10^{-3}$		218
$K^{-}\pi^{+}$ $K^{+}K^{0}_{S}\pi^{0}$ $2K^{0}_{S}\pi^{+}$					
$K^+K^0_S\pi^0$			$1.52\pm0.22)$ %		805
$2K_{S}^{0}\pi^{+}$		($7.7 \pm 0.6 \times 10^{-3}$		802
$K^0\overline{K^0}\pi^+$					802
$K^*(892)^+ \overline{K}^0$	[000]	(5.4 ± 1.2) %		683
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^0$		($6.3\ \pm0.6$) %		748
ϕho^+	[000]	(8.4 $^{+1.9}_{-2.3}$) %		401
$K_{S}^{0}K^{-}2\pi^{+}$		($1.68 \pm 0.10) \%$		744
$K^*(892)^+\overline{K}^*(892)^0$	[000]	(7.2 \pm 2.6) %		417
$K^+K^0_S\pi^+\pi^-$		(1.00±0.08) %		744
$K^{+}K^{-}2\pi^{+}\pi^{-}$		($8.7 \pm 1.5) \times 10^{-3}$		673
ϕ 2 $\pi^+\pi^-$	[000]		$1.21\pm0.16)$ %		640
$K^+K^- ho^0\pi^+$ non- ϕ	<	<	2.6×10^{-4}	CL=90%	249
$\phi ho^0\pi^+$, $\phi ightarrow~K^+K^-$		(6.5 ± 1.3) $\times 10^{-3}$		181
$\phi a_1(1260)^+$, $\phi ightarrow$		($7.5 \pm 1.2) \times 10^{-3}$		†
K^+K^- , $a_1^+ o ho^0\pi^+$					
$K^+K^-2\pi^+\pi^-$ nonresonant		(9 ± 7) $\times 10^{-4}$		673
$2K_S^0 2\pi^+\pi^-$		(9 ± 4) $\times 10^{-4}$		669
Hadror	nic mod	es	without <i>K</i> 's		
$\pi^+\pi^0$	<	<	3.5×10^{-4}	CL=90%	975
$2\pi^{+}\pi^{-}$		•	$1.09 \pm 0.05)$ %	S=1.1	959
$ ho^0\pi^+$			$2.0 \pm 1.2 \times 10^{-4}$		825
$\pi^{+}(\pi^{+}\pi^{-})_{S-wave}$	[rrr]		$9.1 \pm 0.4) \times 10^{-3}$		959

Hadronic modes without A 5								
$\pi^+\pi^0$	<	<	3.5	$\times 10^{-4}$	CL=90%	975		
$2\pi^{+}\pi^{-}$		($1.09 \pm 0.05)$	%	S=1.1	959		
$ ho^{0}\pi^{+}$		(2.0 ± 1.2)	$\times 10^{-4}$		825		
$\pi^+(\pi^+\pi^-)_{S-wave}$	[rrr]	(9.1 ± 0.4)	$\times 10^{-3}$		959		
$\mathit{f}_{2}(1270)\pi^{+}$, $\mathit{f}_{2} ightarrow \ \pi^{+}\pi^{-}$		(1.10 ± 0.20	$\times 10^{-3}$		559		
$ ho$ (1450) $^0\pi^+$, $ ho^0 ightarrow~\pi^+\pi^-$		(3.0 ± 2.0)	$\times 10^{-4}$		421		
$\pi^{+}2\pi^{0}$		(6.5 ± 1.3)	$\times 10^{-3}$		961		
$2\pi^{+}\pi^{-}\pi^{0}$			_			935		
$\eta\pi^+$	[000]	(1.70 ± 0.09	%	S=1.1	902		
$\omega \pi^+$	[000]	(2.4 ± 0.6)	$\times 10^{-3}$		822		
$3\pi^{+}2\pi^{-}$		(8.0 ± 0.8)	$\times 10^{-3}$		899		

_				
$2\pi^{+}\pi^{-}2\pi^{0}$				902
$\eta \rho^+$	[000] (8.9 \pm 0.8)%		724
$\eta \pi^+ \pi^0$	(9.2 ± 1.2) %		885
$\omega \pi^+ \pi^0$	[000] ($2.8~\pm0.7$) %		802
$3\pi^{+}2\pi^{-}\pi^{0}$	(4.9 \pm 3.2) %		856
$\omega 2\pi^+\pi^-$	[000] (1.6 \pm 0.5)%		766
	nn,000] ($3.94\pm0.25)~\%$		743
$3\pi^{+}2\pi^{-}2\pi^{0}$		_		803
$\omega \eta \pi^+$	[000] <	2.13 %	CL=90%	654
	nn,000] (5.8 ± 1.5)%		465
$\eta'(958)\pi^{+}\pi^{0}$		5.6 \pm 0.8) %		720
$\eta^\prime(958)\pi^+\pi^0$ nonresonant	<	5.1 %	CL=90%	720
Modes	with one	or three K's		
$K^+\pi^0$	(. 1		917
$K_{S}^{0}\pi^{+}$	(916
$K_S^0 \pi^+ \ K^+ \eta$	[000]	$1.77 \pm 0.35) \times 10^{-3}$		835
$K^+\omega$		2.4×10^{-3}	CL=90%	741
$K^+ \eta'(958)$		$1.8 \pm 0.6) \times 10^{-3}$		646
$K^+\pi^+\pi^-$	(900
$\mathcal{K}^+ ho^0$	($2.5 \pm 0.4 \times 10^{-3}$		745
$K^+ ho$ (1450) 0 , $ ho^0 ightarrow \ \pi^+\pi^-$	($7.0~\pm 2.4~) \times 10^{-4}$		_
$K^*(892)^0\pi^+$, $K^{*0} ightarrow$	($1.42\pm0.24)\times10^{-3}$		775
$K^{+}\pi^{-}$ $K^{*}(1410)^{0}\pi^{+}$, $K^{*0}\to$		2		
$K^*(1410)^0\pi^+$, $K^{*0} o$	($1.24\pm0.29)\times10^{-3}$		_
$K^{+}\pi^{-}$ $K^{*}(1430)^{0}\pi^{+}$, $K^{*0}\to$,	$5.0 \pm 3.5) \times 10^{-4}$		
$K^+\pi^-$	(5.0 ± 5.5) × 10		_
$K^+\pi^+\pi^-$ nonresonant	($1.04\pm0.34)\times10^{-3}$		900
$K^0\pi^+\pi^0$	(1.00±0.18) %		899
$K_{S}^{0} 2\pi^{+}\pi^{-}$	($3.0 \pm 1.1 \times 10^{-3}$		870
$\kappa^+\omega\pi^0$	[000] <	8.2×10^{-3}	CL=90%	684
$K^+\omega\pi^+\pi^-$		_	CL=90%	603
$K^+\omega\eta$	[000] <	7.9×10^{-3}	CL=90%	366
$2K^+K^-$		$2.18\pm0.21)\times10^{-4}$		628
$\phi {\it K}^+$, $\phi ightarrow {\it K}^+ {\it K}^-$	($8.9~\pm 2.0~)\times 10^{-5}$		_
Doubly Cabibbo-suppressed modes				
$2K^+\pi^-$		$1.27 \pm 0.13) \times 10^{-4}$		805
$K^+K^*(892)^0$, $K^{*0} \rightarrow$,	$6.0 \pm 3.4 \times 10^{-5}$		_
$K^+\pi^-$	•	,		
Baryon-antibaryon mode				
,		,		

p∏

 $(1.22\pm0.11)\times10^{-3}$

295

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

	-		_			
$\pi^+e^+e^-$		[zz] <		$\times 10^{-5}$	CL=90%	979
$\pi^+\phi$, ϕo e^+e^-		[<i>yy</i>] ($\begin{array}{cc} +8 \\ -4 \end{array}$	$) \times 10^{-6}$		_
$\pi^+\mu^+\mu^-$		[zz] <	4.1	$\times 10^{-7}$	CL=90%	968
$K^+e^+e^-$	C1	<	3.7	$\times 10^{-6}$	CL=90%	922
$K^+\mu^+\mu^-$	C1	<	2.1	$\times10^{-5}$	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times 10^{-3}$	CL=90%	765
$\pi^+ e^+ \mu^-$	LF	<	1.2	$\times10^{-5}$	CL=90%	976
$\pi^+e^-\mu^+$	LF	<	2.0	$\times 10^{-5}$	CL=90%	976
$\mathit{K}^{+}e^{+}\mu^{-}$	LF	<	1.4	$\times 10^{-5}$	CL=90%	919
$K^+e^-\mu^+$	LF	<	9.7	$\times 10^{-6}$	CL=90%	919
π^-2e^+	L	<	4.1	\times 10 ⁻⁶	CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	1.2	$\times 10^{-7}$	CL=90%	968
$\pi^{-}\mathrm{e}^{+}\mu^{+}$	L	<	8.4	$\times 10^{-6}$	CL=90%	976
K^-2e^+	L	<	5.2	$\times 10^{-6}$	CL=90%	922
$K^-2\mu^+$	L	<	1.3	$\times 10^{-5}$	CL=90%	909
$K^-e^+\mu^+$	L	<	6.1	$\times 10^{-6}$	CL=90%	919
$K^*(892)^- 2\mu^+$	L	<	1.4	$\times 10^{-3}$	CL=90%	765

$$D_s^{*\pm}$$

$$I(J^P) = 0(??)$$

 $_{J}^{-}$ is natural, width and decay modes consistent with 1^{-} .

Mass
$$m=2112.2\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 $D_{\it s}^{*-}$ modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D_s^+ \gamma$	(93.5±0.7) %	139
$D_s^+ \gamma D_s^+ \pi^0$	(5.8 ± 0.7) %	48
$D_s^+ e^+ e^-$	$(6.7\pm1.6)\times10^{-3}$	139

$$D_{s0}^*(2317)^{\pm}$$

$$I(J^P) = 0(0^+)$$
I P need confirmation

2317) $^{\pm}$ $J^{P} \text{ is natural, low mass consistent with } 0^{+}.$

Mass
$$m=2317.8\pm0.5~{
m MeV}$$
 $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}^{\pm}=349.4\pm0.5~{
m MeV}$ Full width $\Gamma~<~3.8~{
m MeV},~{
m CL}=95\%$

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

$D_{s0}^{*}(2317)^{\pm}$ DECAY MODES	Fraction (I	Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D_s^+\pi^0$	(100 ⁺ ₋₂	0 0) %		298
$D_s^+ \gamma$	< 5	%	90%	323
$D_{s}^{*}(2112)^{+}\gamma$	< 6	%	90%	_
$D_s^+ \gamma \gamma$	< 18	%	95%	323
$D_s^*(2112)^+\pi^0$	< 11	%	90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$ $D_{s}^{+}\pi^{0}\pi^{0}$	< 4	$\times 10^{-3}$	90%	194
$D_s^+ \pi^0 \pi^0$	not see	n		205

$D_{s1}(2460)^{\pm}$

$$I(J^P) = 0(1^+)$$

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{\pm}}=491.2\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^-$ modes are charge conjugates of the modes below.

$D_{s1}(2460)^+$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$D_s^{*+}\pi^0$	(48 ±11)%		297
$D_s^+ \gamma D_s^+ \pi^+ \pi^-$	(18 \pm 4) %		442
$D_s^+\pi^+\pi^-$	($4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-})^{5.0}_{2.4})\%$		138

$$D_{s1}(2536)^{\pm}$$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass $m=2535.11\pm0.06$ MeV Full width $\Gamma=0.92\pm0.05$ MeV

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

$D_{s1}(2536)^+$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ± 0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	$0.028\!\pm\!0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_{s}^{*+}\gamma$	possibly seen		388
$D_s^+\pi^+\pi^-$	seen		437

$D_{s2}^*(2573)$

$$I(J^P) = 0(2^+)$$

 J^P is natural, width and decay modes consistent with 2^+ .

Mass
$$m=2569.1\pm0.8~{\rm MeV}~{\rm (S}=2.4)$$
 Full width $\Gamma=16.9\pm0.7~{\rm MeV}$

 $D_{s2}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Created: 5/22/2019 10:04

Mass $m=2708.3^{+4.0}_{-3.4}~{\rm MeV}$ Full width $\Gamma=120\pm11~{\rm MeV}$

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}{}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- ullet B^\pm mass, mean life, CP violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions

- B* mass
- $B_1(5721)^+$ mass
- $B_1(5721)^0$

mass

 \bullet $B_2^*(5747)^+$

mass

• $B_2^*(5747)^0$

mass

• $B_J^*(5970)^+$

mass

• $B_J^*(5970)^0$

mass

 $\bullet B_s^0$

mass, mean life, $B_s^0 - \overline{B}_s^0$ mixing, CP violation, branching fractions

• B_s*

mass

• $B_{s1}(5830)^0$

mass

 \bullet $B_{s2}^*(5840)^0$

mass

 $\bullet B_c^{\pm}$

mass, mean life, branching fractions

At the end of Baryon Listings:

Λ_b

mass, mean life, branching fractions

• $\Lambda_b(5912)^0$

mass, mean life

• $\Lambda_b(5920)^0$

mass, mean life

 $\bullet \Sigma_b$

mass

 $\bullet \Sigma_b^*$

mass

 $\bullet \equiv_b^0, \equiv_b^-$

mass, mean life, branching fractions

• $\Xi_b'(5935)^-$

mass

- $\Xi_b(5945)^0$ mass
- $\Xi_b^*(5955)^-$ mass
- $\bullet \Omega_b^-$

mass, branching fractions

 b-baryon Admixture mean life, branching fractions

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.33\pm0.13$$
 MeV Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3)$$

$$A_{CP}(B^{+} \rightarrow J/\psi\rho^{+}) = -0.11 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \eta_{c} K^{+}) = 0.01 \pm 0.07 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)\pi^{+}) = 0.03 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}(1P)\pi^{+}) = 0.07 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1} K^{+}) = -0.009 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1} K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1} K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = -0.007 \pm 0.007$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1)\pi^{+}) = -0.0080 \pm 0.0026$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1)\pi^{+}) = 0.017 \pm 0.026$$

$$A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+}) = 0.02 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}\pi^{-}]_{D}K^{+}) = 0.10 \pm 0.04$$

$$A_{CP}(B^{+} \rightarrow D^{0}K^{+}) = -0.017 \pm 0.005$$

```
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+}) = -0.31 \pm 0.11
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+) = (-4 \pm 8) \times 10^{-3}
A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21
A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+) = 0.07 \pm 0.30 \quad (S = 1.5)
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+) = 0.30 \pm 0.20
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.05 \pm 0.09
A_{CP}(B^+ \to \overline{D}{}^0 K^*(892)^+) = -0.007 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.75 \pm 0.16
A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.45 \pm 0.25
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09
A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+) = 0.35 \pm 0.16
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+) = -0.03 \pm 0.04
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+) = -0.016 \pm 0.020
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+) = -0.09 \pm 0.27
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}\pi^+) = -0.7 \pm 0.6
A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\pi)}K^+) = 0.8 \pm 0.4
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}K^+) = 0.4 \pm 1.0
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+) = 0.04 \pm 0.09
A_{CP}(B^+ \to [K_S^{0}K^-\pi^+]_D^-K^+) = 0.23 \pm 0.13
A_{CP}(B^+ \to [K_c^0 K^- \pi^+]_D \pi^+) = -0.052 \pm 0.034
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+) = -0.025 \pm 0.026
A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+) = 0.03 \pm 0.11
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+) = 0.34 \pm 0.21
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+) = -0.05 \pm 0.05
A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+) = -0.012 \pm 0.030
A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+) = 0.120 \pm 0.014 \quad (S = 1.4)
A_{ADS}(B^+ \rightarrow DK^+) = -0.40 \pm 0.06
A_{ADS}(B^+ \rightarrow D\pi^+) = 0.100 \pm 0.032
A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+) = -0.33 \pm 0.35
A_{ADS}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+) = -0.01 \pm 0.09
A_{CP}(B^+ \to D_{CP(-1)}K^+) = -0.10 \pm 0.07
A_{CP}(B^+ \rightarrow [K^+ K^-]_D K^+ \pi^- \pi^+) = -0.04 \pm 0.06
A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+) = -0.05 \pm 0.10
A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+) = 0.013 \pm 0.023
A_{CP}(B^+ \to [K^+ K^-]_D \pi^+ \pi^- \pi^+) = -0.019 \pm 0.015
A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+) = -0.013 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+) = -0.002 \pm 0.011
A_{CP}(B^+ \to \overline{D}^{*0}\pi^+) = 0.0010 \pm 0.0028
A_{CP}(B^+ \to (D_{CP(+1)}^*)^0 \pi^+) = 0.016 \pm 0.010 \quad (S = 1.2)
A_{CP}(B^+ \to (D_{CP(-1)}^*)^0 \pi^+) = -0.09 \pm 0.05
```

$$A_{CP}(B^{+} \rightarrow D^{*0}_{CP(+1)}K^{+}) = -0.001 \pm 0.011 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow D^{*0}_{CP(+1)}K^{+}) = -0.11 \pm 0.08 \quad (S = 2.7)$$

$$A_{CP}(B^{+} \rightarrow D^{*0}_{CP(-1)}K^{+}) = 0.07 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+}) = 0.08 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+}) = -0.23 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = 0.0 \pm 0.4$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = (-0.4 \pm 0.7)\%$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = -0.15 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = -0.15 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = 0.016 \pm 0.025$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = 0.016 \pm 0.025$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = 0.017 \pm 0.016$$

$$A_{CP}(B^{+} \rightarrow D^{+}_{s} \not{0}) = 0.037 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{s} y^{-}) = 0.037 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{s} y^{-}) = 0.04 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{s} y^{-}) = 0.04 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{s} y^{-}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{s} y^{-}) = 0.05 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{+}_{s} y^{-}) = 0.02 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.04 \pm 0.09 \quad (S = 2.1)$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-}) = 0.05 \pm 0.03$$

$$A_{CP}(B^{+} \rightarrow K^{*}_{s} y^{-})$$

$$A_{CP}(B^{+} \rightarrow K^{*+}\pi^{+}\pi^{-}) = 0.07 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}) = 0.31 \pm 0.13$$

$$A_{CP}(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)) = -0.15 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow a_{1}^{+} K^{0}) = 0.12 \pm 0.11$$

$$A_{CP}(B^{+} \rightarrow b_{1}^{+} K^{0}) = -0.03 \pm 0.15$$

$$A_{CP}(B^{+} \rightarrow b_{1}^{+} K^{0}) = -0.01 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.46 \pm 0.20$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.21 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.21 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{0} K^{+}) = -0.122 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} \pi^{+}) = -0.122 \pm 0.021$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.033 \pm 0.008$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.033 \pm 0.008$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{-} K^{+}) = -0.04 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{+} K^{+} K^{-}) = 0.11 \pm 0.09$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = -0.01 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.04 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.04 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.01 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.01 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+}) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} (892)^{+} \gamma) = 0.014 \pm 0.018$$

$$A_{CP}(B^{+} \rightarrow K^{*} \gamma) = 0.012 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.012 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.012 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.014 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.057 \pm 0.013$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.014 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.014 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.014 \pm 0.30$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.057 \pm 0.013$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.057 \pm 0.013$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.059 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.014 \pm 0.00$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow K^{+} \gamma) = 0.02 \pm 0.01$$

$$A_{CP}(B$$

$$A_{CP}(B^{+} \rightarrow b_{1}^{0}\pi^{+}) = 0.05 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow p\overline{p}\pi^{+}) = 0.00 \pm 0.04$$

$$A_{CP}(B^{+} \rightarrow p\overline{p}K^{+}) = 0.00 \pm 0.04 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow p\overline{p}K^{*}(892)^{+}) = 0.21 \pm 0.16 \quad (S = 1.4)$$

$$A_{CP}(B^{+} \rightarrow p\overline{\Lambda}\pi^{0}) = 0.17 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow p\overline{\Lambda}\pi^{0}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow K^{+}\ell^{+}\ell^{-}) = -0.02 \pm 0.08$$

$$A_{CP}(B^{+} \rightarrow K^{+}e^{+}e^{-}) = 0.14 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-}) = 0.011 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-}) = -0.11 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow K^{*}\ell^{+}\ell^{-}) = -0.09 \pm 0.14$$

$$A_{CP}(B^{+} \rightarrow K^{*}e^{+}e^{-}) = -0.14 \pm 0.23$$

$$A_{CP}(B^{+} \rightarrow K^{*}\mu^{+}\mu^{-}) = -0.12 \pm 0.24$$

$$\gamma = (71.1^{+4.6}_{-5.3})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{+}) = 0.0993 \pm 0.0046$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (129.6^{+5.0}_{-6.0})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{*+}) = 0.076 \pm 0.020$$

$$\delta_{B}(B^{+} \rightarrow D^{0}K^{*+}) = (98^{+18}_{-37})^{\circ}$$

$$r_{B}(B^{+} \rightarrow D^{0}K^{*+}) = 0.140 \pm 0.019$$

$$\delta_{B}(B^{+} \rightarrow D^{*0}K^{+}) = 0.140 \pm 0.019$$

$$\delta_{B}(B^{+} \rightarrow D^{*0}K^{+}) = (319.2^{+7.7}_{-8.7})^{\circ}$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level(MeV/c)

Semileptonic and leptonic modes

$$\ell^+ \nu_\ell X$$
 [sss] (10.99 \pm 0.28) % - $\ell^+ \nu_e X_c$ (10.8 \pm 0.4) % - $\ell^+ \nu_\ell X$ (9.7 \pm 0.7) %

HTTP://PDG.LBL.GOV

Page 72

5 0 al								
$\overline{D}^0 \ell^+ \nu_{\ell}$	[sss]	•	2.35					2310
$\overline{D}^0 \tau^+ \nu_{\tau}$		`				$) \times 10^{-3}$		1911
$\overline{D}^*(2007)^0 \ell^+ \nu_{\ell}$	[sss]	•	5.66			•		2258
$\overline{D}^*(2007)^0 \tau^+ \nu_{\tau}$,	1.88			· _		1839
$D^-\pi^+\ell^+\nu_\ell$		($) \times 10^{-3}$		2306
$\overline{D}_{0}^{*}(2420)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{0}^{*0} \rightarrow$		(2.5	±	0.5	$) \times 10^{-3}$		_
$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} \rightarrow$		(1.53	±	0.16	$) \times 10^{-3}$		2065
$D^-\pi^+ \ D^{(*)}$ n $\pi\ell^+ u_\ell$ (n ≥ 1)		(1.86	\pm	0.26) %		_
$D^{*-}\pi^+\ell^+ u_\ell$		(6.0	\pm	0.4	$) \times 10^{-3}$		2254
$\overline{D}_1(2420)^{0}\ell^+\nu_{\ell}, \ \overline{D}_1^{0} \rightarrow$		(3.03	\pm	0.20	$) \times 10^{-3}$		2084
$\overline{D}_1^{\prime\prime}(2430)^0\ell^+ u_\ell, \ \overline{D}_1^{\prime\prime} \rightarrow$	•	(2.7	±	0.6) × 10 ⁻³		_
$\overline{D}_{2}^{*-} \frac{D^{*-} \pi^{+}}{(2460)^{0} \ell^{+} \nu_{\ell}},$		(1.01	±	0.24	$) \times 10^{-3}$	S=2.0	2065
$\overline{D}^{*0}_{2} o D^{*-}\pi^{+} \ \overline{D}^{0}\pi^{+}\pi^{-}\ell^{+} u_{\ell}$,				\ 3		
$D^{\circ}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		•				$) \times 10^{-3}$		2301
$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		($) \times 10^{-4}$		2248
$D_s^{(*)-}$ K+ $\ell^+ u_\ell$		(6.1	\pm	1.0	$) \times 10^{-4}$		_
$D_s^- K^+ \ell^+ u_\ell$		(3.0	+	1.4 1.2	$) \times 10^{-4}$		2242
$D_s^{*-} K^+ \ell^+ u_\ell$		(2.9	\pm	1.9	$) \times 10^{-4}$		2185
$\pi^0\ell^+ u_\ell$		(7.80	\pm	0.27	$) \times 10^{-5}$		2638
$\eta \ell^+ u_{\ell}$		(3.9	\pm	0.5	$) \times 10^{-5}$		2611
$\eta'\ell^+ u_\ell$		(2.3	\pm	8.0	$) \times 10^{-5}$		2553
$\omega \ell^+ \nu_{\ell}$	[sss]	(1.19	\pm	0.09	$) \times 10^{-4}$		2582
$ ho^0 \ell^+ u_\ell$	[sss]	(1.58	\pm	0.11	$) \times 10^{-4}$		2583
$ ho \overline{ ho} \ell^+ u_\ell$		(5.8	+	2.6 2.3	$) \times 10^{-6}$		2467
$ ho \overline{ ho} \mu^+ u_{\mu}$		<	8.5			\times 10 ⁻⁶	CL=90%	2446
$ ho \overline{ ho} e^+ u_e$		(8.2	+	4.0 3.3	$) \times 10^{-6}$		2467
$\mathrm{e^+} u_\mathrm{e}$		<	9.8			$\times10^{-7}$	CL=90%	2640
$\mu^+ u_{\mu}$		2.90	× 10 ⁻	-07	to 1	$.07 \times 10^{-0}$	¹⁶ CL=90%	2639
$ au^+ u_ au$		(1.09	\pm	0.24	$) \times 10^{-4}$	S=1.2	2341
$\ell^+ \nu_\ell \gamma$		<	3.0			$\times 10^{-6}$	CL=90%	2640
$e^+ u_e\gamma$		<	4.3			$\times10^{-6}$	CL=90%	2640
$\mu^+ \nu_\mu \gamma$		<	3.4			\times 10 ⁻⁶	CL=90%	2639
.o.,	nclus		mode					
0 ⁰ X		,	8.6			•		_
50 X		•	79			,		-
) ⁺ X		(2.5	\pm	0.5) %		_

$D^0 X$	(8.6	± 0.7) %	_
$\overline{D}{}^{0}X$	(79	\pm 4) %	_
D^+X	(2.5	\pm 0.5) %	_
D^-X	(9.9	\pm 1.2) %	_

	D , D^* , or D_s modes	
$c/\overline{c}X$	$(120 \pm 6) \%$	_
cX	(23.4 + 2.2 - 1.8)%	_
$\overline{c}X$	$(97 \pm 4)\%$	_
$\overline{\Lambda}_c^- X$	(2.8	_
$\Lambda_c^+ X$	(2.1	_
$D_s^- X$	($1.10 \stackrel{+}{-} \stackrel{0.40}{0.32}$) %	_
$D_s^+ X$	$\left(\begin{array}{cc}7.9&+&1.4\\&-&1.3\end{array}\right)\%$	_

	D , D^* , or D_s modes	
$\overline{D}{}^0\pi^+$	$(4.68 \pm 0.13) \times 10^{-3}$	2308
$D_{CP(+1)}\pi^+$	[ttt] (2.05 \pm 0.18) \times 10 ⁻³	_
$D_{CP(-1)}\pi^+$	[ttt] (2.0 \pm 0.4) \times 10 ⁻³	_
$\overline{D}^0 \rho^+$	$(1.34 \pm 0.18)\%$	2237
\overline{D}^0K^+	$(3.63 \pm 0.12) \times 10^{-4}$	2281
$D_{CP(+1)}K^+$	[ttt] (1.80 \pm 0.07) \times 10 ⁻⁴	_
$D_{CP(-1)}K^+$	[ttt] (1.96 \pm 0.18) $ imes$ 10 ⁻⁴	_
$D^0 K^+$	$(3.57 \pm 0.35) \times 10^{-6}$	2281
$[K^-\pi^+]_D K^+$	$[uuu]$ < 2.8 $\times 10^{-7}$ CL=90%	_
$[K^{+}\pi^{-}]_{D}^{-}K^{+}$	$[uuu] < 1.5 \times 10^{-5} CL = 90\%$	_
$[K^-\pi^+\pi^0]_D K^+$	seen	_
$[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$	seen	_
$[{\it K}^-\pi^+\pi^+\pi^-]_D{\it K}^+$	seen	_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$	seen	_
$[K^-\pi^+]_D\pi^+$	[uuu] (6.3 \pm 1.1) \times 10 ⁻⁷	_
$[K^{+}\pi^{-}]_{D}\pi^{+}$	$(1.78 \pm 0.32) \times 10^{-4}$	_
$[K^-\pi^+\pi^0]_D\pi^+$	seen	_
$[K^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}$	seen	_
$[K^-\pi^+\pi^+\pi^-]_D\pi^+$	seen	_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$	seen	_
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$	$(4.6 \pm 0.9) \times 10^{-6}$	_
$[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$	seen	_
$[K_S^0 K^- \pi^+]_D K^+$	seen	_
$[K^*(892)^+K^-]_DK^+$	seen	_
$[K_S^0 K^- \pi^+]_D \pi^+$	seen	_
$[K^*(892)^+K^-]_D\pi^+$	seen	_
$[K_S^0 K^+ \pi^-]_D \pi^+$	seen	_
$[K^*(892)^-K^+]_D\pi^+$	seen	_
$\overline{D}{}^{0}K^{*}(892)^{+}$	$(5.3 \pm 0.4) \times 10^{-4}$	2213
$D_{CP(-1)} {\cal K}^*(892)^+$	[ttt] (2.7 \pm 0.8) \times 10 ⁻⁴	_
$D_{CP(+1)}K^*(892)^+$	[ttt] (6.2 \pm 0.7) \times 10 ⁻⁴	_

D() ((*(000)					. 6		
$D^0 K^*(892)^+$	($) \times 10^{-6}$		2213
$\overline{D}{}^0$ K $^+$ π^+ π^-	(5.2	\pm	2.1	$) \times 10^{-4}$		2237
$\overline{D}{}^0 K^+ \overline{K}{}^0$	(5.5	\pm	1.6	$) \times 10^{-4}$		2189
$\overline{D}{}^0 K^+ \overline{K}{}^* (892)^0$	($) \times 10^{-4}$		2072
$\overline{D}{}^0\pi^+\pi^+\pi^-$	() × 10 ⁻³	S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant	($) \times 10^{-3}$		2289
$\frac{D}{D}$ $\frac{\pi}{\pi}$ $\frac{\pi}{\rho}$ $\frac{\pi}{\rho}$	(4.2			$) \times 10^{-3}$		2208
$\frac{D}{D}^{0} a_{1}(1260)^{+}$	(
	(4			$) \times 10^{-3}$		2123
$\overline{D}{}^0\omega\pi^+$	(4.1			$) \times 10^{-3}$		2206
$D^*(2010)^-\pi^+\pi^+$	($) \times 10^{-3}$		2247
$D^*(2010)^- K^+ \pi^+$	($) \times 10^{-5}$		2206
$\overline{D}_1(2420)^0\pi^+$, \overline{D}_1^0 $ ightarrow$	(5.2	\pm	2.2	$) \times 10^{-4}$		2081
$D^*(2010)^-\pi^+$							
$D^{-}\pi^{+}\pi^{+}$	(1.07	\pm	0.05	$) \times 10^{-3}$		2299
$D^-K^+\pi^+$	($) \times 10^{-5}$		2260
$D_0^*(2300)^0 K^+, D_0^{*0} \rightarrow$	($) \times 10^{-6}$		
	(0.1		۷.٦) / 10		
$D^-\pi^+ \ D_2^*(2460)^0 K^+, \ D_2^{*0} ightarrow$	(2 22	丄	U 33) × 10 ⁻⁵		_
$D_2(2400) R, D_2 \rightarrow$	(2.32		0.23) × 10		
$D_1^+ (2760)^0 K^+$, $D_1^{*0} ightarrow$,	2.6		1 0) , 10-6		
$D_1(2700)$ K, $D_1 \rightarrow$	(3.0	土	1.2	$) \times 10^{-6}$		_
$D^{-}\pi^{+}$					6	0. 0/	
	<				_	CL=90%	2278
$D^{+}K^{+}\pi^{-}$	(5.6			$) \times 10^{-6}$		2260
$D_2^*(2460)^0 K^+,\;\; D_2^{*0} ightarrow$	<	6.3			$\times 10^{-7}$	CL=90%	_
$D^{+}\pi^{-}$					_		
$D^{+} K^{*0}$	<	4.9				CL=90%	2211
$D^+\overline{K}^{*0}$	<	1.4			$\times 10^{-6}$	CL=90%	2211
$\overline{D}^*(2007)^0\pi^+$	(4.90	\pm	0.17	$) \times 10^{-3}$		2256
$\overline{D}_{CP(+1)}^{*0}\pi^+$	[vvv] (2.7	\pm	0.6	$) \times 10^{-3}$		_
$D*0$ π^+	`						
$D_{CP(-1)}^{*0}\pi^{+}$	[vvv] ($) \times 10^{-3}$		_
$\overline{D}^*(2007)^0 \omega \pi^+$	(4.5	\pm	1.2	$) \times 10^{-3}$		2149
$\overline{D}^*(2007)^0 ho^+$	(9.8	\pm	1.7	$) \times 10^{-3}$		2181
$\overline{D}^*(2007)^0 K^+$	(3 07	+	0.31	$) \times 10^{-4}$		2227
,	(_		2221
$D^{*\circ}_{CP(+1)}$ K $^+$	[vvv] (2.60	土	0.33	$) \times 10^{-4}$		_
$\overline{D}^{*0}_{CP(+1)} K^+ \ \overline{D}^{*0}_{CP(-1)} K^+$	[vvv] (2.19	\pm	0.30	$) \times 10^{-4}$		_
$D^*(2007)^0K^+$	(7.8	+	22) × 10 ⁻⁶		2227
$\overline{D}^*(2007)^0 K^*(892)^+$	($) \times 10^{-4}$		2156
$\overline{D}^*(2007)^0 K^+ \overline{K}^0$,			1.4	$\times 10^{-3}$	CL 000/	
$D^*(2007)^0 V + V^*(202)^0$	<	1.06		0.4		CL=90%	2132
$\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0$	($) \times 10^{-3}$		2009
$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$	(0.12	•		2236
$\overline{D}^*(2007)^0 a_1(1260)^+$	(0.5	,		2063
$\overline{D}^*(2007)^0 \pi^- \pi^+ \pi^+ \pi^0$	(1.8	\pm	0.4) %		2219

$\overline{D}^{*0}3\pi^{+}2\pi^{-}$	(5.7	± 1.2) × 10 ⁻³		2196
$D^*(2010)^+\pi^0$	<	3.6		$\times 10^{-6}$		2255
$D^*(2010)^+ K^0$	<	9.0		$\times 10^{-6}$	CL=90%	2225
$D^*(2010)^-\pi^+\pi^+\pi^0$	(1.5	\pm 0.7	· _		2235
$D^*(2010)^-\pi^+\pi^+\pi^+\pi^-$	(2.6	\pm 0.4			2217
	[xxx]	5.7	\pm 1.2	$) \times 10^{-3}$		_
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$	(1.5	\pm 0.6	$) \times 10^{-3}$	S=1.3	2082
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to \overline{D}^0 \pi^+ \pi^-)$	(2.5	$^{+}$ 1.6 $^{-}$ 1.4) × 10 ⁻⁴	S=3.9	2082
\overline{D}_1 (2420) 0 $\pi^+ imes $ B($\overline{D}_1^0 ightarrow$	(2.2	± 1.0) × 10 ⁻⁴		2082
$\overline{D}{}^0\pi^+\pi^-$ (nonresonant))						
$\overline{D}_2^*(2462)^0 \pi^+$	(3.56	± 0.24	$) \times 10^{-4}$		_
$ imes$ B(\overline{D}_2^* (2462) $^0 ightarrow D^- \pi^+$)						
$\overline{D}_2^*(2462)^{\overline{0}}\pi^+ \times B(\overline{D}_2^{*0} \to$	(2.2	± 1.0	$) \times 10^{-4}$		_
$-\overline{D}{}^0\pi^-\pi^+)$						
$\overline{D}_2^*(2462)^{0}\pi^+ \times B(\overline{D}_2^{*0} \to$	<	1.7		$\times 10^{-4}$	CL=90%	_
$\overline{D}{}^0\pi^-\pi^+$ (nonresonant))						
$\overline{D}_2^*(2462)^0\pi^+\times \dot{B}(\overline{D}_2^{*0}\to$	(2.2	\pm 1.1	$) \times 10^{-4}$		_
$D^*(2010)^-\pi^+)$						
$\overline{D}_{0}^{*}(2400)^{0}\pi^{+}$	(6.4	\pm 1.4	$) \times 10^{-4}$		2136
$ imes$ B(\overline{D}_0^* (2400) $^0 ightarrow D^- \pi^+$)						
$\overline{D}_1(242\underline{1})^0\pi^+$	(6.8	\pm 1.5	$) \times 10^{-4}$		_
$\times B(\overline{D}_{1}(2421)^{0} \to D^{*-}\pi^{+})$,					
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}$	(1.8	\pm 0.5) × 10 ⁻⁴		_
$\times B(\overline{D}_2^*(2462)^0 \rightarrow D^{*-}\pi^+)$,					
$\overline{D}'_1(2427)^0\pi^+$	(5.0	\pm 1.2	$) \times 10^{-4}$		_
$\times B(\overline{D}_1'(2427)^0 \to D^{*-}\pi^+)$				6		
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to$	<	6		× 10 ⁻⁶	CL=90%	2082
$\overline{D}^{*0}\pi^{+}\pi^{-}$				2		
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	1.4			CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$	<	1.3		$\times 10^{-3}$	CL=90%	2063
$\overline{D}_2^*(2460)^0 \pi^+ \times B(\overline{D}_2^{*0} \to$	<	2.2		$\times 10^{-5}$	CL=90%	2063
$D^{*0}\pi^{+}\pi^{-}$				_		
$\overline{D}_{1}^{*}(2680)^{0}\pi^{+}, \ \overline{D}_{1}^{*}(2680)^{0} \rightarrow$	(8.4	± 2.1	$) \times 10^{-5}$		_
$\frac{D^-\pi^+}{D_3^*(2760)^0\pi^+}$,	(1.00	± 0.22	$) \times 10^{-5}$		_
$\overline{D}_{3}^{*}(2760)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$						
$\overline{D}_{2}^{*}(3000)^{0}\pi^{+}$,	(2.0	± 1.4	$) \times 10^{-6}$		_
$\overline{D}_2^*(3000)^0 \pi^+ \to D^- \pi^+$						
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$	<	4.7		$\times10^{-3}$	CL=90%	1977
$\overline{D}^{0}D_{s}^{+}$	(9.0	± 0.9	$) \times 10^{-3}$		1815
3	`			-		

$\overline{D}{}^0D_s^{*+}$	(7.6	\pm	1.6	$) \times 10^{-3}$		1734
$\overline{D}^*(2007)^0 D_s^+$	(8.2	\pm	1.7	$) \times 10^{-3}$		1737
$\overline{D}^*(2007)^0 D_s^{*+}$	(1.71	\pm	0.24) %		1651
$D_{-}^{(*)+} \overline{D}^{**0}$	(2.7	\pm	1.2) %		_
$\overline{D}^{s}(2007)^{0} D^{*}(2010)^{+}$	($) \times 10^{-4}$		1713
$\overline{D}^0 D^* (2010)^+ +$	<	1.30	_		%	CL=90%	1792
$\overline{D}^*(2007)^0 D^+$							
$\overline{D}{}^{0} D^{*}(2010)^{+}$	(3.9	\pm	0.5	$) \times 10^{-4}$		1792
$\overline{D}{}^0 D^+$	(3.8			$) \times 10^{-4}$		1866
$\overline{D}{}^0D^+K^0$	(1.55	\pm	0.21	$) \times 10^{-3}$		1571
$D^{+}\overline{D}^{*}(2007)^{0}$	($) \times 10^{-4}$		1791
$\overline{D}^*(2007)^0 D^+ K^0$	(2.1	\pm	0.5	$) \times 10^{-3}$		1475
$\overline{D}{}^0 D^* (2010)^+ K^0$	(3.8	\pm	0.4	$) \times 10^{-3}$		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	(9.2	\pm	1.2	$) \times 10^{-3}$		1362
$\overline{D}{}^0D^0K^+$	(1.45	\pm	0.33	$) \times 10^{-3}$	S=2.6	1577
$\overline{D}^*(2007)^0 D^0 K^+$	(2.26	\pm	0.23	$) \times 10^{-3}$		1481
$\overline{D}{}^{0} D^{*}(2007)^{0} K^{+}$	(6.3	\pm	0.5	$) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(0.13	,		1368
$D^-D^+K^+$	($) \times 10^{-4}$		1571
$D^-D^*(2010)^+K^+$	($) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	($) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+$	($) \times 10^{-3}$		1363
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(0.30	*		_
$D_{s}^{+}\pi^{0}$	(1.6	\pm	0.5	$) \times 10^{-5}$		2270
$D_{s}^{*+}\pi^{0}$	<	2.6			$\times 10^{-4}$	CL=90%	2215
$D_s^+ \eta$	<	4			$\times 10^{-4}$	CL=90%	2235
$D_{s}^{*+} \eta \\ D_{s}^{+} \rho^{0} \\ D_{s}^{*+} \rho^{0}$	<	6			$\times 10^{-4}$	CL=90%	2178
$D_s^+ \rho^0$	<	3.0			$\times 10^{-4}$	CL=90%	2197
$D_{\varepsilon}^{*+}\rho^{0}$	<	4			$\times10^{-4}$	CL=90%	2138
$D_{c}^{+}\omega$	<	4			$\times10^{-4}$	CL=90%	2195
$D_s^+ \omega$ $D_s^{*+} \omega$	<	6			$\times 10^{-4}$	CL=90%	2136
$D_s^+ a_1 (1260)^0$		1.8				CL=90%	2079
D^{*+} 2. (1260)0	<	1.3				CL=90%	2015
$D^+K^+K^-$	(7.2	+	1 1	$) \times 10^{-6}$	32 3370	2149
$D^+\phi$	<	4.2	_	1.1		CL=90%	2141
ν*+ Δ		1.2				CL=90%	2079
$D_s \varphi$ $D + \overline{L}0$	<						
$D_s^* \Lambda^*$	<					CL=90%	2242
$D_s^+ K^\circ$	<					CL=90%	2185
<i>D</i>	<					CL=90%	2172
$D_{s}^{*} a_{1}(1200)$ $D_{r}^{+} K^{+} K^{-}$ $D_{s}^{+} \phi$ $D_{s}^{*+} \phi$ $D_{s}^{*+} \overline{K}^{0}$ $D_{s}^{*+} \overline{K}^{0}$ $D_{s}^{+} \overline{K}^{*} (892)^{0}$ $D_{s}^{+} K^{*0}$ $D_{s}^{*+} \overline{K}^{*} (892)^{0}$	<	3.5				CL=90%	2172
$D_s^{*+}\overline{K}^*(892)^0$	<	3.5			$\times 10^{-4}$	CL=90%	2112

$D_{s}^{-}\pi^{+}K^{+}$	(1.80	$0 \pm 0.22) \times 10^{-4}$		2222
$D_{s}^{*-}\pi^{+}K^{+}$	(1.45	$5 \pm 0.24) \times 10^{-4}$		2164
$D_s^- \pi^+ K^*(892)^+$	<	5	$\times 10^{-3}$	CL=90%	2138
$D_s^{*-}\pi^+K^*(892)^+$	<	7	$\times 10^{-3}$	CL=90%	2076
$D_s^- K^+ K^+$	(9.7	\pm 2.1) \times 10 ⁻⁶		2149
$D_s^{*-} K^+ K^+$	<	1.5	$\times 10^{-5}$	CL=90%	2088
	Charmoniur	n m	odes		
$n K^{+}$			$1 \pm 0.00 \times 10^{-3}$	C_1 1	1751

HTTP://PDG.LBL.GOV

Page 79 Created: 5/22/2019 10:04

$\chi_{c1}(3872)K^+, \chi_{c1} \rightarrow$	<	1.5		× I	_{L0} -6	CL=90%	_
$\chi_{c1}(1P)\pi^{+}\pi^{-}$	_	2.0			uo-4	CL 000/	1100
$X(3915)K^+$		2.8				CL=90%	1103
$X(3915)^0 K^+, X^0 \to \eta_c \eta$	<	4.7				CL=90%	_
$X(3915)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.7				CL=90%	_
$X(4014)^0 K^+, X^0 \to \eta_c \eta$	<	3.9				CL=90%	_
$X(4014)^0 K^+, X^0 \rightarrow \eta_c \pi^0$	<	1.2				CL=90%	_
$Z_c(3900)^0 K^+, Z_c^0 \to \eta_c \pi^+ \pi^-$	<	4.7		× 1	10-3	CL=90%	_
$X(4020)^0 K^+, X^0 \to$	<	1.6		× 1	LO ⁻⁵	CL=90%	_
$ \eta_c \pi^+ \pi^- \chi_{c1}(3872) K^*(892)^+, \chi_{c1} \to $	<	4.8		× 1	_{L0} -6	CL=90%	939
$J/\psi \gamma \ \chi_{c1}(3872) K^*(892)^+, \ \chi_{c1} ightarrow$	<	2.8		× 1	_{L0} -5	CL=90%	939
$\psi(2S)\gamma$,	6 1			ıo-6	CL=90%	
$\chi_{c1}(3872)^{+} K^{0}, \chi_{c1}^{+} \rightarrow [yyy]$ $J/\psi(1S)\pi^{+}\pi^{0}$	<	6.1		×	10 °	CL=90%	_
$\chi_{c1}(3872)K^{0}\pi^{+}, \chi_{c1} \rightarrow J/\psi(1S)\pi^{+}\pi^{-}$	(1.06	± 0.3	1)×1	_{L0} -5		_
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow J/\psi \pi^+$	<	1.5		× I	_{L0} -5	CL=95%	_
$Z_c(4430)^+ K^0, Z_c^+ \to$	<	4.7				CL=95%	_
$\psi(2S)\pi^+$							
$\psi(4260)^0 K^+, \ \psi^0 \to$	<	2.9		\times 1	10^{-5}	CL=95%	_
$J/\psi \pi^+ \pi^-$						5. 5.0 /	
$X(3915)K^+, X \rightarrow J/\psi \gamma$		1.4				CL=90%	_
$X(3930)^0 K^+, X^0 \rightarrow J/\psi \gamma$	<					CL=90%	_
$J/\psi(1S)K^+$	(0.02		_		1684
$J/\psi(1S)K^0\pi^+$	(\pm 0.1				1651
$J/\psi(1S) K^{+} \pi^{+} \pi^{-}$	(\pm 1.3		_	S=2.5	1612
$J/\psi(1S)K^+K^-K^+$	(± 0.29				1252
$X(3915)K^+$, $X o p\overline{p}$	<	7.1		\times 1	L0 ⁻⁸	CL=95%	_
$J/\psi(1S)K^*(892)^+$	(1.43	± 0.0	8)×1	_{L0} -3		1571
$J/\psi(1S) K(1270)^+$	(1.8	± 0.5) × 1	$^{-3}$		1390
$J/\psi(1S)K(1400)^+$	<	5		\times 1	10^{-4}	CL=90%	1308
$J/\psi(1S)\eta \dot{K}^+$	(1.24	± 0.1	4)×1	10^{-4}		1510
$\chi_{c1-odd}(3872)K^{+}$,	<	3.8				CL=90%	_
$\chi_{c1-odd} ightarrow J/\psi \eta$							
ψ (4160) K^+ , $\psi ightarrow J/\psi \eta$	<	7.4		× I	10^{-6}	CL=90%	_
$J/\psi(1S)\eta'K^+$	<	8.8		\times 1	10^{-5}	CL=90%	1273
$J/\psi(1S)\phi K^+$	(± 0.4				1227
$J/\psi(1S) K_1(1650), \;\; K_1 ightarrow$	(6	$^{+10}_{-6}$		10 ⁻⁶		-
ϕK^+							

$\chi_{c0}\pi^+$, $\chi_{c0} \rightarrow \pi^+\pi^-$	<	1	\times 10 ⁻⁷	CL=90%	1531
$\chi_{c0} K^+$	(1.49 +	$_{0.14}^{0.15}$) $\times 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$	<	2.1	× 10 ⁻⁴	CL=90%	1341
$\chi_{c1}(1P)\pi^+$	($0.5) \times 10^{-5}$		1468
$\chi_{c1}(1P)K^+$	($0.23) \times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	($0.6) \times 10^{-4}$	S=1.1	1265
$\chi_{c1}(1P) K^0 \pi^+$	(5.8 ±	$0.4) \times 10^{-4}$		1370
$\chi_{c1}(1P)K^{+}\pi^{0}$	($3.29~\pm$	$0.35) \times 10^{-4}$		1373
$\chi_{c1}(1P)K^{+}\pi^{+}\pi^{-}$	($3.74~\pm$	$0.30) \times 10^{-4}$		1319
$\chi_{c1}(2P)K^+$, $\chi_{c1}(2P) o$	<	1.1	$\times 10^{-5}$	CL=90%	_
$\pi^{+}\pi^{-}\chi_{c1}(1P)$			_		
$\chi_{c2}K^+$			$0.4) \times 10^{-5}$		1379
$\chi_{c2} K^*(892)^+$	<		$\times 10^{-4}$	CL=90%	1228
$\chi_{c2}K^0\pi^+$	($0.25) \times 10^{-4}$		1336
$\chi_{c2}K^{+}\pi^{0}$	< ,		× 10 ⁻⁵	CL=90%	1339
$\chi_{c2} K^{+} \pi^{+} \pi^{-}$	($0.19) \times 10^{-4}$	GL 000/	1284
$\chi_{c2}(3930)\pi^+, \ \chi_{c2} \rightarrow \pi^+\pi^-$	<		$\times 10^{-7}$		1437
$h_c(1P)K^+$	<		$\times 10^{-5}$	CL=90% CL=95%	1401
$h_c(1P)K^+$, $h_c \rightarrow p\overline{p}$	<	6.4	× 10 °	CL=95%	_
K or	K *	modes			
120 ±					
$K^0\pi^+$	($2.37 \pm$	$0.08) \times 10^{-5}$		2614
$\kappa^+\pi^0$	($1.29~\pm$	$0.05) \times 10^{-5}$		2614 2615
	($1.29~\pm$	_		
$\kappa^+\pi^0$	(1.29 ± 7.06 ±	$0.05) \times 10^{-5}$		2615
$K^+\pi^0$ $\eta'K^+$	(1.29 ± 7.06 ± 4.8 +	$0.05) \times 10^{-5}$ $0.25) \times 10^{-5}$		2615 2528
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$	(1.29 ± 7.06 ± 4.8 + 5.2 ±	$0.05) \times 10^{-5}$ $0.25) \times 10^{-5}$ $1.8) \times 10^{-6}$		2615 2528
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$	(1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ±	0.05) $\times 10^{-5}$ 0.25) $\times 10^{-5}$ 1.8) $\times 10^{-6}$ 2.1) $\times 10^{-6}$ 0.5) $\times 10^{-5}$	S=1.7	2615 2528 2472 —
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$	((((((((((((((((((((1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ±	$0.05) \times 10^{-5}$ $0.25) \times 10^{-5}$ $1.8) \times 10^{-6}$ $1.6) \times 10^{-6}$ $2.1) \times 10^{-6}$	S=1.7	2615 2528 2472 — 2346
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+}		1.29 ± 7.06 ± 4.8 ⁺ 5.2 ± 2.8 ± 2.4 ± 1.93 ±	0.05) $\times 10^{-5}$ 0.25) $\times 10^{-5}$ 1.8) $\times 10^{-6}$ 2.1) $\times 10^{-6}$ 0.5) $\times 10^{-5}$ 0.4) $\times 10^{-6}$	S=1.7	2615 2528 2472 — 2346 2588
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ±	0.05) $\times 10^{-5}$ 0.25) $\times 10^{-5}$ 1.8) $\times 10^{-6}$ 2.1) $\times 10^{-6}$ 0.5) $\times 10^{-5}$ 0.4) $\times 10^{-6}$ 0.16) $\times 10^{-5}$	S=1.7	2615 2528 2472 — 2346 2588
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta K_{2}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ± 9.1 ±	0.05) \times 10^{-5} 0.25) \times 10^{-5} 1.8) \times 10^{-6} 2.1) \times 10^{-6} 0.5) \times 10^{-5} 0.4) \times 10^{-5} 0.4) \times 10^{-5} 0.4) \times 10^{-5}	S=1.7	2615 2528 2472 — 2346 2588 2534 —
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta K_{2}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi)$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ± 9.1 ±	0.05) $\times 10^{-5}$ 0.25) $\times 10^{-5}$ 1.8) $\times 10^{-6}$ 2.1) $\times 10^{-6}$ 0.5) $\times 10^{-5}$ 0.4) $\times 10^{-6}$ 0.8) $\times 10^{-6}$	S=1.7 CL=90%	2615 2528 2472 — 2346 2588 2534 — 2414
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta K_{2}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi)$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ± 9.1 ± 2.9 + 1.3	0.05) × 10^{-5} 0.25) × 10^{-5} 1.8) × 10^{-6} 2.1) × 10^{-6} 0.5) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-6} 0.8) × 10^{-6} × 10^{-6}		2615 2528 2472 — 2346 2588 2534 — 2414 2455
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*}K)$ $\eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*}K)$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ± 9.1 ± 2.9 + 1.3 1.2	0.05) × 10^{-5} 0.25) × 10^{-5} 1.8) × 10^{-6} 2.1) × 10^{-6} 0.5) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-6} 0.8) × 10^{-6} × 10^{-6}	CL=90%	2615 2528 2472 — 2346 2588 2534 — 2414 2455
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*}K)$ $\eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*}K)$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ± 9.1 ± 2.9 + 1.3 1.2 1.38 +	0.05) × 10^{-5} 0.25) × 10^{-5} 1.8) × 10^{-6} 2.1) × 10^{-6} 0.5) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-6} 0.8) × 10^{-6} × 10^{-6} × 10^{-6}	CL=90%	2615 2528 2472 — 2346 2588 2534 — 2414 2455 2425
$K^{+}\pi^{0}$ $\eta' K^{+}$ $\eta' K^{*}(892)^{+}$ $\eta' K_{0}^{*}(1430)^{+}$ $\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta (1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi)$ $\eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*}K)$ $\eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*}K)$		1.29 ± 7.06 ± 4.8 + 5.2 ± 2.8 ± 2.4 ± 1.93 ± 1.8 ± 9.1 ± 2.9 + 1.3 1.2	0.05) × 10^{-5} 0.25) × 10^{-6} 1.8) × 10^{-6} 2.1) × 10^{-6} 0.5) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-5} 0.4) × 10^{-6} 0.7) × 10^{-6} × 10^{-6} 0.21) × 10^{-5} × 10^{-6}	CL=90% CL=90%	2615 2528 2472 — 2346 2588 2534 — 2414 2455 2425 2425

$f_1(1420)\mathcal{K}^+ imesB(f_1(1420) o \mathcal{K}^*\mathcal{K})$	<	4.1			× 10 ⁻⁶	CL=90%	2420
$\phi(1680)K^+ \times B(\phi(1680) \to K^*K)$	<	3.4			× 10 ⁻⁶	CL=90%	2344
$f_0(1500)K^+$ ωK^+ $\omega K^*(892)^+$ $\omega (K\pi)_0^{*+}$ $\omega K_0^*(1430)^+$ $\omega K_2^*(1430)^+$ $a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow \eta \pi^+)$	(((((6.5 7.4 2.8 2.4	± ± ±	0.40.40.5	$) \times 10^{-6}$ $) \times 10^{-6}$ $\times 10^{-6}$ $) \times 10^{-5}$ $) \times 10^{-5}$ $\times 10^{-6}$	CL=90% CL=90%	2398 2558 2503 — — 2380
$a_0(980)^0K^+\! imes\!{\sf B}(a_0(980)^0 o \eta\pi^0)$	<	2.5			× 10 ⁻⁶	CL=90%	_
$K^*(892)^0 \pi^+$ $K^*(892)^+ \pi^0$ $K^+ \pi^- \pi^+$	(6.8 5.10	± ±	0.9 0.29	$) \times 10^{-5}$ $) \times 10^{-6}$ $) \times 10^{-5}$		2562 2563 2609
$K^+\pi^-\pi^+$ nonresonant	($) \times 10^{-5}$		2609
$\omega(782){\cal K}^+ \ {\cal K}^+f_0(980) imes{\sf B}(f_0(980) o$	(6 0 1			$) \times 10^{-6}$ $) \times 10^{-6}$		2558 2522
$\pi^{+}\pi^{-})$ $f_{2}(1270)^{0}K^{+}$ $f_{0}(1370)^{0}K^{+} imes$ $B(f_{0}(1370)^{0} o \pi^{+}\pi^{-})$	(<	1.07 1.07	±	0.27) × 10 ⁻⁶ × 10 ⁻⁵		_ _ _
$ ho^0(1450)K^+ imes B(ho^0(1450) o \pi^+ \pi^-) $ $f_2'(1525)K^+ imes B(f_2'(1525) o f_2' + f_2')$	<	1.173.4				CL=90% CL=90%	2392
$egin{aligned} & B(f_2'(1525) o & \pi^+\pi^-) \ & \mathcal{K}^+ ho^0 \ & \mathcal{K}_0^*(1430)^0\pi^+ \end{aligned}$					$) \times 10^{-6}$ $) \times 10^{-5}$	S=1.4	2559 2445
$K_0^*(1430)^+\pi^0$	() × 10 ⁻⁵		_
$K_2^*(1430)^0\pi^+$	() × 10 ⁻⁶		2445
$K^*(1410)^0 \pi^+$ $K^*(1680)^0 \pi^+$ $K^+ \pi^0 \pi^0$ $f_0(980) K^+ \times B(f_0 \to \pi^0 \pi^0)$ $K^- \pi^+ \pi^+$ $K^- \pi^+ \pi^+$ nonresonant $K_1(1270)^0 \pi^+$ $K_1(1400)^0 \pi^+$ $K^0 \pi^+ \pi^0$	<		± ±	0.19	$\begin{array}{c})\times 10^{-5} \\)\times 10^{-6} \\ \times 10^{-8} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \end{array}$	CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	2448 2358 2610 2522 2609 2609 2484 2451 2609

0 1				1.0	-		
$\mathcal{K}^0 ho^+$	(7.3	+	1.0	$) \times 10^{-6}$		2558
$K^*(892)^+\pi^+\pi^-$	(7.5	\pm	1.0	$) \times 10^{-5}$		2557
$\dot{K}^*(892)^+ \rho^0$	($) \times 10^{-6}$		2504
$K^*(892)^+ f_0(980)$	(4.2		0.7	_		2466
$a_1^+ K^0$	(3.5) × 10 ⁻⁵		_
$b_1^+ {\mathcal K}^0 imes {\mathsf B}(b_1^+ o \omega \pi^+)$	(9.6		1.9) × 10 ⁻⁶		_
$K^*(892)^0 \rho^+$	(9.2) × 10 ⁻⁶		2504
$K_1(1400)^+ \rho^0$	<	7.8				CL=90%	2388
$K_2^*(1430)^+\rho^0$	<	1.5				CL=90%	2381
$b_1^{0}K^+ \times B(b_1^0 \rightarrow \omega \pi^0)$	(+	2.0	$) \times 10^{-6}$		_
$b_1^+ K^{*0} \times B(b_1^+ \to \omega \pi^+)$	<	5.9			_	CL=90%	_
$b_0^1 K^{*+} \times B(b_0^0 \to \omega \pi^0)$	<	6.7				CL=90%	_
$K^+\overline{K}^0$	(_	0 17	$) \times 10^{-6}$		2593
$\frac{\kappa}{\kappa^0} \frac{\kappa}{\kappa^+ \pi^0}$	<				× 10 ⁻⁵		2578
$K^+K^0_SK^0_S$	($) \times 10^{-5}$	CL—90/0	2521
$f_0(980)K^+, f_0 \rightarrow K_S^0K_S^0$	($) \times 10^{-5}$		2521
	(,		
$f_0(1710)K^+, f_0 \to K_S^0K_S^0$	(4.8	+	2.6	$) \times 10^{-7}$		_
$K^+K^0_SK^0_S$ nonresonant	(2.0	\pm	0.4	$) \times 10^{-5}$		2521
$K_S^0 K_S^0 \pi^+$	<	5.1			$\times 10^{-7}$	CL=90%	2577
$K + K - \pi^+$	(5.2	\pm	0.4	$) \times 10^{-6}$		2578
${\it K}^+{\it K}^-\pi^+$ nonresonant	<	7.5			_	CL=90%	2578
$K^{+}\overline{K}^{*}(892)^{0}$	<	1.1			$\times 10^{-6}$	CL=90%	2540
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	<	2.2			$\times 10^{-6}$	CL=90%	2421
$K^+K^+\pi^-$	<	1.1			$\times 10^{-8}$	CL=90%	2578
${\it K}^+{\it K}^+\pi^-$ nonresonant	<	8.79			$\times10^{-5}$	CL=90%	2578
$f_2'(1525)K^+$	(1.8	\pm	0.5	$) \times 10^{-6}$	S=1.1	2392
$\bar{K^{*+}}\pi^{+}K^{-}$	<	1.18			$\times10^{-5}$	CL=90%	2524
$K^*(892)^+ K^*(892)^0$	(9.1	\pm	2.9	$) \times 10^{-7}$		2485
$K^{*+}K^+\pi^-$	<				$\times 10^{-6}$	CL=90%	2524
$K^+K^-K^+$	(3.40	\pm	0.14	$) \times 10^{-5}$	S=1.4	2523
$\mathcal{K}^+\phi$	(8.8	+	0.7	$) \times 10^{-6}$	S=1.1	2516
$f_0(980) K^+ \times B(f_0(980) \to$	($) \times 10^{-6}$		2522
$K^{+}K^{-}$	(<i>9.</i> ∓	_	5.2) ^ 10		2322
$a_2(1320) K^+ \times$	<	1.1			$\times 10^{-6}$	CL=90%	2449
$B(a_2(1320)\to K^+K^-)$							
$X_0(1550)K^+\times$	(4.3	\pm	0.7	$) \times 10^{-6}$		_
$B(X_0(1550) \to K^+K^-)$	`				,		
$\phi(1680)K^+ \times B(\phi(1680) \rightarrow$	<	8			$\times 10^{-7}$	CL=90%	2344
K^+K^-)							
$f_0(1710) {\it K}^{+} imes {\it B}(f_0(1710) ightarrow$	(1.1	\pm	0.6	$) \times 10^{-6}$		2336
K^+K^-							

$K^+K^-K^+$ nonresonant	(2.38	+	0.28 0.50) × 10 ⁻⁵		2523
$K^*(892)^+ K^+ K^-$	(3.6	±	0.5	$) \times 10^{-5}$		2466
\hat{K}^* (892)+ ϕ	(10.0		2.0	$) \times 10^{-6}$	S=1.7	2460
$\phi(K\pi)_0^{*+}$	(8.3	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_1(1270)^+$	(6.1	\pm	1.9	$) \times 10^{-6}$		2375
$\phi K_1(1400)^+$	<	3.2				CL=90%	2339
$\phi K^*(1410)^+$	<	4.3			_	CL=90%	_
$\phi K_0^* (1430)^+$	(7.0			$) \times 10^{-6}$		-
$\phi K_2^* (1430)^+$	(8.4	土	2.1	$) \times 10^{-6}$	CL=90%	2333
$\phi K_2^* (1770)^+ \ \phi K_2^* (1820)^+$	<	1.50				CL=90% CL=90%	_
$a_1^+ K^{*0}$	<	1.63				CL=90% CL=90%	_
$K^+ \phi \phi$	< (3.6 5.0	_	1 2	$\times 10^{-6}$	S=2.3	2306
$\eta' \eta' K^+$	<	2.5		1.2	_	3-2.3 CL=90%	2338
$\omega \phi K^+$	<	1.9			_	CL=90%	2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$	<	3.2			_	CL=90%	_
$K^*(892)^+ \gamma$	(3.92	\pm	0.22	$) \times 10^{-5}$	S=1.7	2564
$K_1(1270)^+ \gamma$	(4.4	+	0.7 0.6	$)\times 10^{-5}$		2486
$\eta K^+ \gamma$	(7.9	\pm	0.9	$) \times 10^{-6}$		2588
η' K $^+$ γ	(2.9	+	1.0 0.9	$) \times 10^{-6}$		2528
$\phi K^+ \gamma$	(2.7	\pm	0.4	$) \times 10^{-6}$	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.58	\pm	0.15	$) \times 10^{-5}$	S=1.3	2609
$K^*(892)^0 \pi^+ \gamma$	(2.33			$) \times 10^{-5}$		2562
$\mathcal{K}^+ ho^{f 0} \gamma$	(8.2			$) \times 10^{-6}$		2559
$(K^+\pi^-)_{NR}\pi^+\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6	\pm	0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	(10	+	5 4	$) \times 10^{-6}$		2453
K^* (1410) $^+$ γ	(2.7	+	0.8 0.6	$)\times 10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26 0.32	$) \times 10^{-6}$		2445
$K_2^*(1430)^+ \gamma$	(1.4	\pm	0.4	$) \times 10^{-5}$		2447
$K^*(1680)^+\gamma$	(6.7	+	1.7 1.4	$) \times 10^{-5}$		2360
$K_3^*(1780)^+ \gamma$	<	3.9			$\times10^{-5}$	CL=90%	2341
$K_4^3(2045)^+\gamma$	<	9.9			$\times 10^{-3}$	CL=90%	2244
Light unflav	ored.	meso	n r	node	ec .		
$\rho^+\gamma$	($) \times 10^{-7}$		2583
$\frac{r}{\pi} + \frac{r}{\pi}$ 0					$) \times 10^{-6}$	S=1.2	2636
$\pi^{+} \pi^{+} \pi^{-}$		1.52	\pm	0.14	$) \times 10^{-5}$		2630
$ ho^{f 0}\pi^+$	(8.3	\pm	1.2	$) \times 10^{-6}$		2581

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$
 $h^{+} \pi^{0}$
 $(1.6 \begin{array}{c} + 0.7 \\ - 0.6 \end{array}) \times 10^{-5}$
 2636
 ωh^{+}
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$
 $(1.38 \begin{array}{c} + 0.27 \\ - 0.24 \end{array}) \times 10^{-5}$

Baryon modes

	Dai yo		,				
$ ho \overline{ ho} \pi^+$	(1.62	\pm	0.20	$) \times 10^{-6}$		2439
$ ho \overline{ ho} \pi^+$ nonresonant	<	5.3			$\times 10^{-5}$	CL=90%	2439
$p\overline{p}K^+$	(5.9	\pm	0.5	$) \times 10^{-6}$	S=1.5	2348
$\Theta(1710)^{++}\overline{p},~\Theta^{++} \rightarrow$	[zzz] <	9.1			$\times 10^{-8}$	CL=90%	_
ρK ⁺							
$f_J(2220)K^+$, $f_J o p\overline{p}$	[zzz] <	4.1			$\times 10^{-7}$	CL=90%	2135
p √(1520)	(3.1	\pm	0.6	$) \times 10^{-7}$		2322
$ ho\overline{ ho}K^+$ nonresonant	<	8.9			$\times 10^{-5}$	CL=90%	2348
$p \overline{p} K^*(892)^+$	(3.6	+	0.8	$) \times 10^{-6}$		2215
$f_J(2220)K^{*+}, f_J \rightarrow p\overline{p}$	<	7.7			\times 10 ⁻⁷	CL=90%	2059
p Λ	(2.4	+	1.0 0.9	$) \times 10^{-7}$		2430
$p\overline{\Lambda}\gamma$	(2.4	+	0.5) × 10 ⁻⁶		2430
$p\overline{\Lambda}\pi^0$	(•) × 10 ⁻⁶		2402
•	(_			CI 000/	
$p \overline{\Sigma} (1385)^0$ $\Delta^+ \overline{\Lambda}$	<	4.7			$\times 10^{-7}$		2362
	<	8.2			$\times 10^{-7}$		-
$p \frac{\overline{\Sigma}}{\rho} \gamma p \overline{\Lambda} \pi^+ \pi^-$	<	4.6		0.12	$\times 10^{-6}$	CL=90%	2413
·	($) \times 10^{-5}$		2367
$ ho \Lambda \pi^+ \pi^-$ nonresonant $ ho \overline{\Lambda} ho^0, \; ho^0 ightarrow \; \pi^+ \pi^-$	(5.9			$) \times 10^{-6}$		2367
	($) \times 10^{-6}$		2214
$p \Lambda f_2(1270), f_2 \rightarrow \pi^+ \pi^-$ $p \overline{\Lambda} K^+ K^-$	(2.0			$) \times 10^{-6}$		2026
$p \overline{\Lambda} \phi$	(4.1 8.0	±	0.7	$) \times 10^{-6}$		2132
$\overline{p}\Lambda K^+ K^-$	(3.7			$) \times 10^{-7}$ $) \times 10^{-6}$		2119 2132
$\Lambda \overline{\Lambda} \pi^+$	<	9.4		0.0		CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(_	0.6	$) \times 10^{-6}$	CL—90/0	2251
$\Lambda \overline{\Lambda} K^{*+}$	(2.2		1.2 0.9			2098
$\Lambda(1520)\overline{\Lambda}K^{+}$	(土	0.7	$) \times 10^{-6}$		2126
$\frac{\Lambda \overline{\Lambda}(1520) K^+}{\overline{\Delta}^0 p}$	<	2.08			$\times 10^{-6}$	CI 000/	2126
$\Delta^+ p \Delta^{++} \overline{p}$	<	1.38				CL=90% CL=90%	2403
$D^+ p \overline{p}$	<	1.4				CL=90% CL=90%	2403
$D^*(2010)^+ p \overline{p}$	< <	1.5 1.5				CL=90% CL=90%	1860
$\overline{D}^0 p \overline{p} \pi^+$				0.07		CL=90%	1786
$\overline{D}^{*0} p \overline{p} \pi^+$	($) \times 10^{-4}$		1789
$D^- p \overline{p} \pi^+ \pi^-$	($) \times 10^{-4}$ $) \times 10^{-4}$		1709
$D^* - p \overline{p} \pi^+ \pi^-$	($) \times 10^{-4}$		1705
$p \overline{\Lambda}^0 \overline{D}^0$	($) \times 10^{-5}$		1621
$p\overline{\Lambda}^0\overline{D}^*(2007)^0$	(1.43 5	工	0.32		CL=90%	_
$\frac{\rho \pi}{\Lambda_c^-} p \pi^+$				0.4	$\times 10^{-4}$		- 1980
	(0.4			
$\overline{\Lambda}_c^- \Delta (1232)^{++}$	<	1.9			× 10 3	CL=90%	1928

HTTP://PDG.LBL.GOV

Page 87

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

• ,				•	,	
$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$	CL=90%	2638
$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	($1.76 ~\pm~ 0.23$	$) \times 10^{-8}$		2634
$\pi^+ u \overline{ u}$	B1	<	1.4	\times 10 ⁻⁵	CL=90%	2638
$K^+\ell^+\ell^-$	B1	[sss] ($4.51 ~\pm~ 0.23$	$) \times 10^{-7}$	S=1.1	2617
$K^+e^+e^-$	B1	($5.5 \pm \ 0.7$	$) \times 10^{-7}$		2617
$\mathcal{K}^+ \mu^+ \mu^-$	B1	($4.41 ~\pm~ 0.23$	$) \times 10^{-7}$	S=1.2	2612
${\it K}^+\mu^+\mu^-$ nonreso-	B1	($4.37\ \pm\ 0.27$	$) \times 10^{-7}$		2612
nant						
$K^+ au^+ au^-$	B1	<	2.25	$\times 10^{-3}$	CL=90%	1687
$K^+ \overline{ u} u$	B1	<	1.6	$\times 10^{-5}$	CL=90%	2617
$\rho^+ u \overline{ u}$	B1	<	3.0	$\times 10^{-5}$	CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	В1	[sss] ($1.01 ~\pm~ 0.11$	$) \times 10^{-6}$	S=1.1	2564
$K^*(892)^+ e^+ e^-$	В1	($1.55 \begin{array}{l} + & 0.40 \\ - & 0.31 \end{array}$	$) \times 10^{-6}$		2564
$K^*(892)^+ \mu^+ \mu^-$	B1	($9.6~\pm~1.0$	$) \times 10^{-7}$		2560
$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	$\times 10^{-5}$	CL=90%	2564
$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(4.3 ± 0.4	$) \times 10^{-7}$		2593
$\phi K^+ \mu^+ \mu^-$	В1	($7.9 \begin{array}{c} + & 2.1 \\ - & 1.7 \end{array}$) × 10 ⁻⁸		2490
$\pi^+ e^+ \mu^-$	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^{+} e^{-} \mu^{+}$	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637

				_		
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7		CL=90%	2637
$\pi^+e^+\tau^-$	LF	<	7.4	\times 10 ⁻⁵		2338
$\pi^+e^-\tau^+$	LF	<	2.0		CL=90%	2338
$\pi^+ e^{\pm} \tau^{\mp}$	LF	<	7.5		CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<	6.2		CL=90%	2333
$\pi^+\mu^-\tau^+$	LF	<	4.5		CL=90%	2333
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<	7.2	$\times 10^{-5}$		2333
$K^+e^+\mu^-$	LF	<	9.1		CL=90%	2615
$K^+e^-\mu^+$	LF	<	1.3		CL=90%	2615
$K^+e^\pm\mu^\mp$	LF	<	9.1		CL=90%	2615
$K^+ e^+ au^-$	LF	<	4.3		CL=90%	2312
$K^+e^- au^+$	LF	<	1.5		CL=90%	2312
$K^+e^\pm au^\mp$	LF	<	3.0		CL=90%	2312
$K^+\mu^+\tau^-$	LF	<	4.5		CL=90%	2298
$K^+\mu^- au^+$	LF	<	2.8		CL=90%	2298
$\mathcal{K}^+ \mu^\pm au^\mp$	LF	<	4.8		CL=90%	2298
$K^*(892)^+e^+\mu^-$	LF	<	1.3	\times 10 ⁻⁶	CL=90%	2563
$K^*(892)^+ e^- \mu^+$	LF	<	9.9		CL=90%	2563
$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4	\times 10 ⁻⁶	CL=90%	2563
$\pi^{-} e^{+} e^{+}$	L	<	2.3	$\times 10^{-8}$	CL=90%	2638
$\pi^-\mu^+\mu^+$	L	<	4.0	$\times 10^{-9}$	CL=95%	2634
$\pi^-e^+\mu^+$	L	<	1.5	\times 10 ⁻⁷	CL=90%	2637
$ ho^-e^+e^+$	L	<	1.7		CL=90%	2583
$\rho^-\mu^+\mu^+$	L	<	4.2		CL=90%	2578
$\rho^- e^+ \mu^+$	L	<	4.7		CL=90%	2582
$K^-e^+e^+$	L	<	3.0		CL=90%	2617
$K^-\mu^+\mu^+$	L	<	4.1		CL=90%	2612
$K^-e^+\mu^+$	L	<	1.6		CL=90%	2615
$K^*(892)^-e^+e^+$	L	<	4.0		CL=90%	2564
$K^*(892)^-\mu^+\mu^+$	L	<	5.9	\times 10 ⁻⁷	CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0	\times 10 ⁻⁷	CL=90%	2563
$D^-e^+e^+$	L	<	2.6		CL=90%	2309
$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6}$	CL=90%	2307
$D^{-}\mu^{+}\mu^{+}$ $D^{*-}\mu^{+}\mu^{+}$	L	<	6.9		CL=95%	2303
$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4	$\times 10^{-6}$	CL=95%	2251
$D_{\underline{s}}^{-}\mu^{+}\mu^{+}$	L	<	5.8	$\times 10^{-7}$	CL=95%	2267
$\overline{D}{}^0\pi^-\mu^+\mu^+$	L	<	1.5	$\times 10^{-6}$	CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6	$\times 10^{-8}$	CL=90%	_
$\Lambda^0 e^+$	L,B	<	3.2	$\times 10^{-8}$	CL=90%	_
$\overline{\Lambda}{}^0\mu^+$	L,B	<	6	$\times 10^{-8}$	CL=90%	_
$\sqrt{\Lambda}^{0}e^{+}$	L,B	<	8	$\times 10^{-8}$	CL=90%	_

$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.64\pm0.13~{
m MeV}$$
 $m_{B^0}-m_{B^\pm}=0.31\pm0.06~{
m MeV}$ Mean life $\tau_{B^0}=(1.519\pm0.004)\times10^{-12}~{
m s}$ $c au=455.4~{
m \mu m}$ $au_{B^+}/ au_{B^0}=1.076\pm0.004~{
m (direct\ measurements)}$

$B^0 - \overline{B}{}^0$ mixing parameters

$$\begin{split} \chi_d &= 0.1858 \pm 0.0011 \\ \Delta m_{B^0} &= m_{B^0_H} - m_{B^0_L} = (0.5065 \pm 0.0019) \times 10^{12} \; \hbar \; \text{s}^{-1} \\ &= (3.334 \pm 0.013) \times 10^{-10} \; \text{MeV} \\ \chi_d &= \Delta m_{B^0} / \Gamma_{B^0} = 0.769 \pm 0.004 \\ \text{Re} \big(\lambda_{CP} \; / \; \big| \lambda_{CP} \big| \big) \; \text{Re}(\textbf{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \text{Re}(\textbf{z}) &= -0.007 \pm 0.004 \\ \text{Re}(\textbf{z}) &= (-4 \pm 4) \times 10^{-2} \quad (\textbf{S} = 1.4) \\ \text{Im}(\textbf{z}) &= (-0.8 \pm 0.4) \times 10^{-2} \end{split}$$

CP violation parameters

$$\begin{aligned} &\text{Re}(\epsilon_{B^0})/(1+\big|\epsilon_{B^0}\big|^2) = (-0.5\pm0.4)\times10^{-3} \\ &A_{T/CP}(B^0\leftrightarrow\overline{B}^0) = 0.005\pm0.018 \\ &A_{CP}(B^0\to D^*(2010)^+D^-) = 0.037\pm0.034 \\ &A_{CP}(B^0\to [K^+\pi^-]_DK^*(892)^0) = -0.03\pm0.04 \\ &R_d^+ = \Gamma(B^0\to [\pi^+K^-]_DK^{*0}) \ / \ \Gamma(B^0\to [\pi^-K^+]_DK^{*0}) = \\ &0.06\pm0.032 \\ &R_d^- = \Gamma(\overline{B}^0\to [\pi^-K^+]_DK^{*0}) \ / \ \Gamma(\overline{B}^0\to [\pi^+K^-]_DK^{*0}) = \\ &0.06\pm0.032 \\ &A_{CP}(B^0\to K^+\pi^-) = -0.083\pm0.004 \\ &A_{CP}(B^0\to \eta'K^*(892)^0) = -0.07\pm0.18 \end{aligned}$$

$$A_{CP}(B^0 o \eta \ K \ (692)^4) = -0.07 \pm 0.16$$
 $A_{CP}(B^0 o \eta' K_0^* (1430)^0) = -0.19 \pm 0.17$
 $A_{CP}(B^0 o \eta' K_2^* (1430)^0) = 0.14 \pm 0.18$
 $A_{CP}(B^0 o \eta K^* (892)^0) = 0.19 \pm 0.05$
 $A_{CP}(B^0 o \eta K_0^* (1430)^0) = 0.06 \pm 0.13$
 $A_{CP}(B^0 o \eta K_2^* (1430)^0) = -0.07 \pm 0.19$
 $A_{CP}(B^0 o \eta K_1^* (1430)^0) = -0.07 \pm 0.12$
 $A_{CP}(B^0 o \omega K^{*0}) = 0.45 \pm 0.25$
 $A_{CP}(B^0 o \omega (K\pi)_0^{*0}) = -0.07 \pm 0.09$
 $A_{CP}(B^0 o \omega K_2^* (1430)^0) = -0.37 \pm 0.17$

 $A_{CP}(B^0 \to K^+\pi^-\pi^0) = (0 \pm 6) \times 10^{-2}$

$$A_{CP}(B^0 \to \rho^-K^+) = 0.20 \pm 0.11$$

$$A_{CP}(B^0 \to \rho(1450)^-K^+) = -0.10 \pm 0.33$$

$$A_{CP}(B^0 \to \rho(1700)^-K^+) = -0.4 \pm 0.6$$

$$A_{CP}(B^0 \to K^+\pi^-\pi^0 \text{ nonresonant}) = 0.10 \pm 0.18$$

$$A_{CP}(B^0 \to K^0\pi^+\pi^-) = -0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.27 \pm 0.04$$

$$A_{CP}(B^0 \to K^*(892)^+\pi^-) = -0.29 \pm 0.24$$

$$A_{CP}(B^0 \to K^*(1680)^+\pi^-) = 0.02 \pm 0.04$$

$$A_{CP}(B^0 \to K^*(1680)^+\pi^-) = -0.29 \pm 0.24$$

$$A_{CP}(B^0 \to K^*(1680)^+\pi^-) = -0.07 \pm 0.14$$

$$A_{CP}(B^0 \to K^*(1680)^+\pi^-) = -0.15 \pm 0.11$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.07 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0\pi^+\pi^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^+K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^-K^-) = 0.01 \pm 0.05$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.4$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.1$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.1$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.2 \pm 0.1$$

$$A_{CP}(B^0 \to K^*(892)^0K^-\pi^+) = 0.0$$

$$A$$

$$\begin{array}{lll} C_{+} & (B^{0} \rightarrow D^{*+}D^{*-}) = 0.00 \pm 0.10 & (S = 1.6) \\ \textbf{S_{+}} & (\textbf{B^{0}} \rightarrow D^{*+}D^{*-}) = -0.73 \pm 0.09 \\ C_{-} & (B^{0} \rightarrow D^{*+}D^{*-}) = 0.19 \pm 0.31 \\ S_{-} & (B^{0} \rightarrow D^{*+}D^{*-}) = 0.1 \pm 1.6 & (S = 3.5) \\ C & (B^{0} \rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{0}^{0}) = 0.01 \pm 0.29 \\ S & (B^{0} \rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{0}^{0}) = 0.11 \pm 0.4 \\ C_{D^{+}D^{-}} & (B^{0} \rightarrow D^{+}D^{-}) = -0.22 \pm 0.24 & (S = 2.5) \\ \textbf{S_{D^{+}D^{-}}} & (B^{0} \rightarrow D^{+}D^{-}) = -0.76_{-0.13}^{+0.15} & (S = 1.2) \\ C_{J/\psi(1S)\pi^{0}} & (B^{0} \rightarrow J/\psi(1S)\pi^{0}) = 0.03 \pm 0.17 & (S = 1.5) \\ \textbf{S_{J/\psi(1S)}\pi^{0}} & (B^{0} \rightarrow J/\psi(1S)\pi^{0}) = -0.88 \pm 0.32 & (S = 2.2) \\ C & (B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.66 \pm 0.06 \\ \textbf{S} & (B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.66 \pm 0.12 \\ C_{C^{(0)}D^{+}h^{0}} & (B^{0} \rightarrow D_{C^{(0)}D^{+}h^{0}}) = -0.02 \pm 0.08 \\ \textbf{S_{C^{(0)}D^{+}h^{0}}} & (B^{0} \rightarrow D_{C^{(0)}D^{+}h^{0}}) = -0.66 \pm 0.12 \\ C_{K^{0}\pi^{0}} & (B^{0} \rightarrow K^{0}\pi^{0}) = 0.58 \pm 0.17 \\ C_{\gamma'(958)K_{0}^{0}} & (B^{0} \rightarrow K^{0}\pi^{0}) = 0.58 \pm 0.17 \\ C_{\gamma'(958)K_{0}^{0}} & (B^{0} \rightarrow \gamma'(958)K_{0}^{0}) = -0.04 \pm 0.20 & (S = 2.5) \\ \textbf{S_{\gamma'(958)}}_{K^{0}} & (B^{0} \rightarrow \gamma'K^{0}) = -0.06 \pm 0.04 \\ \textbf{S_{\gamma'(958)}}_{K^{0}} & (B^{0} \rightarrow \gamma'K^{0}) = -0.06 \pm 0.04 \\ \textbf{S_{\gamma'(958)}}_{K^{0}} & (B^{0} \rightarrow \gamma'K^{0}) = 0.63 \pm 0.06 \\ C_{\omega K_{0}^{0}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ C_{\beta^{0}K_{0}^{0}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ C_{\beta^{0}K_{0}^{0}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ C_{\beta^{0}K_{0}^{0}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ C_{\beta^{0}K_{0}^{0}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_{\beta^{0}K_{0}^{0}}} & (B^{0} \rightarrow \kappa^{0}\pi^{0}) = 0.89 \pm 0.27 \\ \textbf{S_$$

$$C_{K_0^S K_0^S}(B^0 \to K_0^S K_0^S) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K_0^S K_0^S}(B^0 \to K_0^S K_0^S) = -0.8 \pm 0.5$$

$$C_{K^+ K^- K_0^S}(B^0 \to K^+ K^- K_0^S \text{ nonresonant}) = 0.06 \pm 0.08$$

$$S_{K^+ K^- K_0^S}(B^0 \to K^+ K^- K_0^S \text{ nonresonant}) = -0.66 \pm 0.11$$

$$C_{K^+ K^- K_0^S}(B^0 \to K^+ K^- K_0^S \text{ inclusive}) = 0.01 \pm 0.09$$

$$S_{K^+ K^- K_0^S}(B^0 \to K^+ K^- K_0^S \text{ inclusive}) = -0.65 \pm 0.12$$

$$C_{\phi K_0^S}(B^0 \to \phi K_0^S) = 0.59 \pm 0.14$$

$$C_{K_0^S K_0^S K_0^S}(B^0 \to K_0^S K_0^S) = 0.59 \pm 0.14$$

$$C_{K_0^S K_0^S K_0^S}(B^0 \to K_0^S K_0^S) = 0.36 \pm 0.33$$

$$S_{K_0^S \pi^0 \gamma}(B^0 \to K_0^S \pi^0 \gamma) = 0.36 \pm 0.33$$

$$S_{K_0^S \pi^0 \gamma}(B^0 \to K_0^S \pi^0 \gamma) = -0.8 \pm 0.6$$

$$C_{K_0^S \pi^+ \pi^- \gamma}(B^0 \to K_0^S \pi^+ \pi^- \gamma) = 0.14 \pm 0.25$$

$$C_{K^0 0 \gamma}(B^0 \to K^* (892)^0 \gamma) = -0.04 \pm 0.16 \quad (S = 1.2)$$

$$S_{K^0 0 \gamma}(B^0 \to K^* (892)^0 \gamma) = -0.15 \pm 0.22$$

$$C_{\eta K^0 \gamma}(B^0 \to K^* (892)^0 \gamma) = -0.15 \pm 0.22$$

$$C_{\eta K^0 \gamma}(B^0 \to K^0 \phi \gamma) = 0.1 \pm 0.4 \quad (S = 1.4)$$

$$S_{\eta K^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.5 \pm 0.5 \quad (S = 1.2)$$

$$C_{K_0^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.5 \pm 0.5$$

$$C_{K_0^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.3 \pm 0.6$$

$$S_{K_0^0 \gamma}(B^0 \to K^0 \phi \gamma) = -0.05 \pm 0.19$$

$$S(B^0 \to K_0^S \rho^0 \gamma) = -0.05 \pm 0.19$$

$$S(B^0 \to K_0^S \rho^0 \gamma) = -0.05 \pm 0.04$$

$$C_{\pi \pi}(B^0 \to \pi^+ \pi^-) = -0.32 \pm 0.04$$

$$S_{\pi \pi}(B^0 \to \pi^+ \pi^-) = -0.32 \pm 0.04$$

$$S_{\pi \pi}(B^0 \to \pi^+ \pi^-) = -0.35 \pm 0.07 \quad (S = 1.2)$$

$$C_{\rho \pi}(B^0 \to \rho^0 \gamma) = 0.4 \pm 0.5$$

$$S_{\rho \pi}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.06$$

$$\Delta S_{\rho \pi}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.06$$

$$\Delta S_{\rho \pi}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.23 \pm 0.34$$

$$C_{\alpha_1 \pi}(B^0 \to \rho^1 \pi^-) = 0.01 \pm 0.08$$

$$C_{\alpha_1 \pi}(B^0 \to \rho^1 \pi^-) = 0.02 \pm 0.4$$

$$S_{\alpha_1 \pi}(B^0 \to \rho^1 \pi^-) = 0.02 \pm 0.4$$

$$S_{\alpha_1 \pi}(B^0 \to \rho^1 \pi^-) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0 \to \rho^0 \pi^0) = 0.27 \pm 0.24$$

$$S_{\rho \theta}(B^0$$

$$\Delta C_{\mathbf{a}_1 \pi} \left(B^0 \to \mathbf{a}_1 (1260)^+ \pi^- \right) = 0.43 \pm 0.14 \quad (S = 1.3)$$

$$\Delta S_{\mathbf{a}_1 \pi} \left(B^0 \to \mathbf{a}_1 (1260)^+ \pi^- \right) = -0.11 \pm 0.12$$

$$C \left(B^0 \to \mathbf{b}_1^- \mathbf{K}^+ \right) = -0.22 \pm 0.24$$

$$\Delta C \left(B^0 \to \mathbf{b}_1^- \mathbf{K}^+ \right) = -1.04 \pm 0.24$$

$$C_{\rho^0 \rho^0} \left(B^0 \to \rho^0 \rho^0 \right) = 0.2 \pm 0.9$$

$$S_{\rho^0 \rho^0} \left(B^0 \to \rho^+ \rho^- \right) = 0.00 \pm 0.09$$

$$S_{\rho\rho} \left(B^0 \to \rho^+ \rho^- \right) = -0.14 \pm 0.13$$

$$|\lambda| \left(B^0 \to J/\psi \, K^* (892)^0 \right) < 0.25, \, \text{CL} = 95\%$$

$$\cos 2\beta \left(B^0 \to J/\psi \, K^* (892)^0 \right) < 0.25, \, \text{CL} = 95\%$$

$$\cos 2\beta \left(B^0 \to J/\psi \, K^* (892)^0 \right) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6)$$

$$\cos 2\beta \left(B^0 \to J/\psi \, K^* (892)^0 \right) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6)$$

$$\cos 2\beta \left(B^0 \to J/\psi \, K^* (892)^0 \right) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6)$$

$$\cos 2\beta \left(B^0 \to J/\psi \, K^* (892)^0 \right) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6)$$

$$\cos 2\beta \left(B^0 \to J/\psi \, K^* (892)^0 \right) = 0.91 \pm 0.25$$

$$\left(S_+ + S_- \right) / 2 \left(B^0 \to D^{-+} \pi^+ \right) = -0.039 \pm 0.011$$

$$\left(S_- - S_+ \right) / 2 \left(B^0 \to D^{-+} \pi^+ \right) = -0.046 \pm 0.023$$

$$\left(S_- - S_+ \right) / 2 \left(B^0 \to D^{--} \pi^+ \right) = -0.022 \pm 0.021$$

$$S_+ \left(B^0 \to D^{--} \pi^+ \right) = 0.038 \pm 0.023$$

$$S_- \left(B^0 \to D^{-+} \pi^- \right) = 0.038 \pm 0.021$$

$$\left(S_+ + S_- \right) / 2 \left(B^0 \to D^{--} \rho^+ \right) = -0.10 \pm 0.06$$

$$C_{\eta_C \, K_0^0} \left(B^0 \to \eta_C \, K_0^0 \right) = 0.93 \pm 0.17$$

$$C_{C_C \, K_0^0} \left(B^0 \to \eta_C \, K_0^0 \right) = 0.93 \pm 0.17$$

$$C_{C_C \, K_0^0} \left(B^0 \to \eta_C \, K_0^0 \right) = 0.93 \pm 0.17$$

$$C_{J/\psi \, (nS) \, K^0} \left(B^0 \to J/\psi \, K^{*0} \right) = 0.05 \pm 2.0 \right) \times 10^{-2}$$

$$S_{J/\psi \, (nS) \, K^0} \left(B^0 \to J/\psi \, K^{*0} \right) = 0.03 \pm 0.10$$

$$S_{J/\psi \, K^{*0}} \left(B^0 \to \chi_{c} \, K_0^0 \right) = 0.03 \pm 0.10$$

$$S_{J/\psi \, K^0} \left(B^0 \to \chi_{c} \, K_0^0 \right) = 0.03 \pm 0.10$$

$$S_{J/\psi \, K^0} \left(B^0 \to \chi_{c} \, K_0^0 \right) = 0.05 \pm 0.07$$

$$S_{\chi_{c} \, K_0^0} \left(B^0 \to \chi_{c} \, K_0^0 \right) = 0.05 \pm 0.07$$

$$S_{\chi_{c} \, K_0^0} \left(B^0 \to \chi_{c} \, K_0^0 \right) = 0.05 \pm 0.07$$

$$S_{\chi_{c} \, K_0^0} \left(B^0 \to \chi_{c} \, K_0^0 \right) = 0.05 \pm 0.01$$

$$\sin(2\beta_{eff}) \left(B^0 \to K^+ \, K^- \, K_0^0 \right) = 0.22 \pm 0.30$$

$$\sin(2\beta_{eff}) \left(B^0 \to K^+ \, K^- \, K_0^0 \right) = 0.22 \pm 0.30$$

$$\sin(2\beta_{eff}) \left(B^0 \to K^+ \, K^- \, K_0^0 \right) = 0.22 \pm 0.$$

$$\begin{array}{l} \left|\lambda\right| \left(B^{0} \rightarrow \left[K_{S}^{0} \pi^{+} \pi^{-}\right]_{D^{(*)}} h^{0}\right) = 1.01 \pm 0.08 \\ \left|\sin(2\beta + \gamma)\right| > 0.40, \ \mathrm{CL} = 90\% \\ 2 \ \beta + \gamma = (83 \pm 60)^{\circ} \\ \alpha = (84.9^{+5.1}_{-4.5})^{\circ} \\ x_{+}(B^{0} \rightarrow D K^{*0}) = 0.04 \pm 0.17 \\ x_{-}(B^{0} \rightarrow D K^{*0}) = -0.16 \pm 0.14 \\ y_{+}(B^{0} \rightarrow D K^{*0}) = -0.68 \pm 0.22 \\ y_{-}(B^{0} \rightarrow D K^{*0}) = 0.20 \pm 0.25 \quad (S = 1.2) \\ r_{B^{0}}(B^{0} \rightarrow D K^{*0}) = 0.220^{+0.041}_{-0.047} \\ \delta_{B^{0}}(B^{0} \rightarrow D K^{*0}) = (194^{+30}_{-22})^{\circ} \end{array}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

			Scale factor/	p
B ⁰ DECAY MODES	l	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
$\ell^+ u_\ell X$	[sss]	(10.33 ± 0.28) 9	6	_
$e^+ \nu_e X_c$		(10.1 ± 0.4)	6	_
$D\ell^+ u_\ell X$		(9.4 ± 0.9)	%	_
$D^-\ell^+ u_\ell$	[sss]	(2.31 ± 0.10)	%	2309
$D^- au^+ u_ au$		(1.08 ± 0.23)	%	1909
$D^*(2010)^-\ell^+ u_\ell$	[sss]	$(5.05\pm\ 0.14)^{\circ}$	%	2257
$D^*(2010)^- au^+ u_ au$		$(1.57\pm 0.10)^{\circ}$	√ ₀ S=1.1	1838
$\overline{D}{}^0\pi^-\ell^+ u_\ell$		(4.1 ± 0.5)	< 10 ⁻³	2308
$D_0^*(2300)^-\ell^+\nu_\ell, \ D_0^{*-} \rightarrow$		(3.0 ± 1.2)	$< 10^{-3}$ S=1.8	_
$\overline{\mathcal{D}}{}^0\pi^-$				
$D_2^*(2460)^- \ell^+ \nu_\ell, \ D_2^{*-} \rightarrow$		(1.21 ± 0.33)	$< 10^{-3}$ S=1.8	2065
$\overline{D}^0\pi^-$				
$\overline{\it D}^{(*)}{\sf n}\pi\ell^{+} u_{\ell}({\sf n}\ \geq\ 1)$		(2.3 ± 0.5)	%	_

$\overline{D}^{*0}\pi^-\ell^+ u_\ell$	($5.8 \pm 0.8) \times 10^{-3}$	S=1.4 2256
$D_1(2420)^-\ell^+ u_\ell$, $D_1^- o$	($2.80 \pm 0.28) \times 10^{-3}$	-
$\overline{D}^{*0}\pi^{-}$ $D_{1}^{\prime}(2430)^{-}\ell^{+}\nu_{\ell}, D_{1}^{\prime-} \rightarrow$	($3.1 \pm 0.9 \times 10^{-3}$	_
$\frac{D_1(2130)}{D^{*0}\pi^-}$	(3.1 ± 0.5) × 10	
$D_2^*(2460)^- \ell^+ \nu_\ell, \ D_2^{*-} \rightarrow$	($6.8~\pm~1.2~)\times10^{-4}$	2065
$\overline{D}^{*0}\pi^-$			
$D^-\pi^+\pi^-\ell^+ u_\ell$	($1.3 \pm 0.5 \times 10^{-3}$	2299
$D^{*-}\pi^+\pi^-\ell^+ u_\ell$	($1.4 \pm 0.5) \times 10^{-3}$	2247
$ ho^-\ell^+ u_\ell$	[<i>sss</i>] ($2.94 \pm 0.21) \times 10^{-4}$	2583
$\pi^-\ell^+ u_\ell$	[sss] ($1.50 \pm 0.06) \times 10^{-4}$	2638
$\pi^- au^+ u_{ au}$	<	2.5×10^{-4}	CL=90% 2339

Inclusive modes

	IIICIUSIVC IIIOUCS		
$K^{\pm}X$	$(78 \pm 8)\%$		_
$D^0 X$	(8.1 ± 1.5) %		_
$\overline{D}{}^0 X$	$(47.4 \pm 2.8)\%$		_
D^+X	< 3.9 %	CL=90%	_
D^-X	(36.9 ± 3.3) %		_
$D_s^+ X$	($10.3 \ ^+ \ 2.1 \)$ %		_
$D_s^- X$	< 2.6 %	CL=90%	_
$D_s^- X$ $\Lambda_c^+ X$	< 3.1 %	CL=90%	_
$\overline{\Lambda}_c^- X$	($5.0 \stackrel{+}{-} \stackrel{2.1}{1.5}$) %		_
<i>ōX</i>	$(95 \pm 5)\%$		_
cX	$(24.6 \pm 3.1)\%$		_
\overline{c}/cX	$(119 \pm 6)\%$		_

D, D^* , or D_s modes

D, D, or D, modes								
$D^-\pi^+$	($2.52\pm~0.13)\times10^{-3}$	S=1.1	2306				
$D^- ho^+$	($7.6 \pm 1.2 \times 10^{-3}$		2235				
$D^-K^0\pi^+$	($4.9 \pm 0.9 \times 10^{-4}$		2259				
$D^-K^*(892)^+$	($4.5 \pm 0.7 \times 10^{-4}$		2211				
$D^-\omega\pi^+$	($2.8 \pm 0.6 \times 10^{-3}$		2204				
D^-K^+	($1.86 \pm 0.20) \times 10^{-4}$		2279				
$D^{-}K^{+}\pi^{+}\pi^{-}$	($3.5 \pm 0.8 \times 10^{-4}$		2236				
		3.1×10^{-4}	CL=90%	2188				
	($8.8 \pm 1.9 \times 10^{-4}$		2070				
$\overline{D}{}^0\pi^+\pi^-$	($8.8 \pm 0.5 \times 10^{-4}$		2301				
$D^*(2010)^-\pi^+$	($2.74 \pm 0.13) \times 10^{-3}$		2255				
$\overline{D}{}^0 K^+ K^-$	($5.9 \pm 0.5 \times 10^{-5}$		2191				
$D^{-}\pi^{+}\pi^{+}\pi^{-}$	($6.0 \pm 0.7 \times 10^{-3}$	S=1.1	2287				
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	($3.9 \pm 1.9 \times 10^{-3}$		2287				
$D^-\pi^+ ho^0$	($1.1 \pm 1.0 \times 10^{-3}$		2206				
$D^- {\it a}_1(1260)^+$	($6.0 \pm 3.3 \times 10^{-3}$		2121				

HTTP://PDG.LBL.GOV

Page 96

$D^*(2010)^-\pi^+\pi^0$			0.5) %		2248
$D^*(2010)^- ho^+$			$0.9) \times 10^{-3}$		2180
$D^*(2010)^- K^+$			$0.15) \times 10^{-4}$		2226
$D^*(2010)^- K^0 \pi^+$	($3.0 \pm$	$0.8) \times 10^{-4}$		2205
$D^*(2010)^- K^*(892)^+$	($3.3~\pm$	$0.6) \times 10^{-4}$		2155
$D^*(2010)^- K^+ \overline{K}^0$	<	4.7	× 10 ⁻⁴	CL=90%	2131
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	($0.29) \times 10^{-3}$		2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0~\pm$	$2.5) \times 10^{-3}$		2235
resonant	,				
$D^*(2010)^-\pi^+\rho^0$			$3.2) \times 10^{-3}$		2150
$D^*(2010)^- a_1(1260)^+$	•		0.27) %		2061
$\overline{D}_1(2420)^0\pi^-\pi^+, \ \overline{D}_1^0 \rightarrow$	($1.47\pm$	$0.35) \times 10^{-4}$		_
$D^{*-}\pi^{+}$,	4.7	0.4.) 10-4		0101
$D^*(2010)^- K^+ \pi^- \pi^+$			$0.4) \times 10^{-4}$		2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$ $D^{*-}3\pi^+2\pi^-$	•		0.27) %		2218
			$0.9) \times 10^{-3}$	C 10	2195
$D^*(2010)^- \omega \pi^+$			$0.18) \times 10^{-3}$	S=1.2	2148
$\overline{D}_1(2430)^0\omega$, $\overline{D}_1^0 ightarrow$	(2.7 +	$0.8 \\ 0.4$) × 10 ⁻⁴		1992
$D^{*-}\pi^+$					
$D^{*-} ho$ (1450) $^+$, $ ho^+ ightarrow~\omega\pi^+$	(1.07 +	$\binom{0.40}{0.34} \times 10^{-3}$		_
$\overline{D}_1(2420)^0\omega, \ \overline{D}_1^0\to$	($2.2) \times 10^{-5}$		1995
_ `	(7.0 ⊥	2.2) × 10		1993
$egin{array}{c} D^{*-}\pi^+ \ \overline{D}_2^*(2460)^0\omega, \ \overline{D}_2^0 ightarrow \end{array}$	(40 +	$1.4) \times 10^{-5}$		1975
$D^{*-}\pi^{+}$	(1) × 10		13.0
$D^{*-}b_1(\overset{n}{1}235)^+, b_1^+ \rightarrow$	<	7	× 10 ⁻⁵	CL=90%	_
	•		· · · · ·		
$\overline{D}^{**-}\frac{\omega \pi^+}{\pi^+}$	[xxx] (1.9 ±	$0.9) \times 10^{-3}$		_
$D_1(2420)^-\pi^+, \ D_1^- \to$			$\frac{2.0}{2.5}$) × 10 ⁻⁵		_
$D^{-}\pi^{+}\pi^{-}$	(9.9 _	2.5 / ^ 10		
$D_1(2420)^-\pi^+, D_1^- \rightarrow$		3 3	$\times 10^{-5}$	CI90%	_
		3.3	× 10	CL=30/0	
$D_2^{*-}\pi^+\pi^-$ $\overline{D}_2^*(2460)^-\pi^+$, $(D_2^*)^- \to$	(2.38±	$0.16) \times 10^{-4}$		2062
$D^0 \pi^-$	(2.00 ±	0.10) × 10		2002
$\overline{D}_0^*(2400)^-\pi^+, (D_0^*)^- \to$	(7.6 +	$0.8) \times 10^{-5}$		2090
$D^0\pi^-$	(, , , , ,		
$D_2^*(2460)^-\pi^+, (D_2^*)^- \rightarrow$	<	2.4	$\times 10^{-5}$	CL=90%	_
2 \					
$\frac{D^{*-}\pi^{+}\pi^{-}}{\overline{D}_{2}^{*}(2460)^{-}\rho^{+}}$	<	4.9	$\times 10^{-3}$	CL=90%	1974
$D^{\overline{0}} \overline{D}{}^{0}$	($1.4~\pm$	$0.7) \times 10^{-5}$		1868
$D^{*0}\overline{D}{}^{0}$	•		× 10 ⁻⁴	CL=90%	1794
D^-D^+			$0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}$ (<i>CP</i> -averaged)	•		$0.6) \times 10^{-4}$		_
$D^-D_s^+$			$0.8^{\circ}) \times 10^{-3}$		1812
5	•		,		

$D^*(2010)^-D_s^+$	(8.0 ±	$1.1) \times 10^{-3}$		1735
$D^{-}D_{s}^{*+}$	(7.4 ±	$1.6\)\times 10^{-3}$		1732
$D^*(2010)^-D_s^{*+}$	($1.77\pm$	0.14) %		1649
$D_{s0}(2317)^{-} K^{+}, \ D_{s0}^{-} \rightarrow$	(4.2 ±	$1.4\)\times 10^{-5}$		2097
$D_{s}^{-}\pi^{0}$					
$D_{s0}(2317)^{-}\pi^{+}, D_{s0}^{-} \rightarrow$	<	2.5	$\times10^{-5}$	CL=90%	2128
$D_s^-\pi^0$					
$D_{sJ}(2457)^{-}K^{+}, \ D_{sJ}^{-} \rightarrow$	<	9.4	$\times 10^{-6}$	CL=90%	_
$D_s^-\pi^0$					
$D_{sJ}(2457)^-\pi^+,\ D_{s.I}^- ightarrow$	<	4.0	$\times 10^{-6}$	CL=90%	_
$D_s^- \pi^0$					
$D_s^- D_s^+$	<	3.6	$\times 10^{-5}$	CL=90%	1759
$D_s^{*-}D_s^{+-}$	<	1.3	$\times10^{-4}$	CL=90%	1674
$D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*-}D_{s}^{*+}$	<	2.4	$\times10^{-4}$	CL=90%	1583
$D_{s0}^{*}(2317)^{+}D^{-}, D_{s0}^{*+} \rightarrow$	($1.05\pm$	$0.16) \times 10^{-3}$	S=1.1	1602
$D_{c}^{+}\pi^{0}$					
$D_{s0}(2317)^+D^-, D_{s0}^+ \rightarrow$	<	9.5	$\times 10^{-4}$	CL=90%	_
$D_s^{*+}\gamma$					
$D_{s0}(2317)^+ D^*(2010)^-$,	(1.5 ±	$0.6) \times 10^{-3}$		1509
$D_{s0}^+ \rightarrow D_{s}^+ \pi^0$	`		,		
$D_{sJ}(2457)^+D^-$	(3.5 ±	$1.1) \times 10^{-3}$		_
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$	(6.5 +	$^{1.7}_{1.4}$) × 10 ⁻⁴		_
$D_s^+ \gamma$	•	_	1.4 /		
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$	<	6.0	$\times 10^{-4}$	CL=90%	_
$D_s^{++}\gamma$					
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$	<	2.0	× 10 ⁻⁴	CL=90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$			/\ 0	0_ 00/0	
$D_{sJ}(2457)^{+}D^{-}, \ D_{sJ}^{+} \rightarrow$	_	3.6	× 10 ⁻⁴	CI =90%	_
$D_s^+ \pi^0$		0.0	/\ 10	CL 3070	
$D^*(2010)^- D_{s,I}(2457)^+$	(93 +	$2.2) \times 10^{-3}$		_
$D_{sJ}(2457)^+D^*(2010), \ D_{sJ}^+ \rightarrow$	`		$\begin{array}{c} 0.9 \\ 0.7 \end{array}) \times 10^{-3}$		_
	(2.3	0.7) × 10		
$D_s^+ \gamma$	(2.0	0.7.)10-4		1 4 4 4
$D^-D_{s1}(2536)^+, D_{s1}^+ \rightarrow D^{*0}K^+ + D^{*+}K^0$	(2.8 ±	$0.7) \times 10^{-4}$		1444
$D^{-}N_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	(1.7 +	$0.6) \times 10^{-4}$		1444
$D^{*0}K^{+}$	(, / . 		
$D^{-}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow$	(2.6 ±	$1.1\)\times 10^{-4}$		1444
$D^{*+}K^0$					

$D^*(2010)^- D_{s1}(2536)^+,$ $D_{s1}^+ \rightarrow D^{*0} K^+ + D^{*+} K^0$	($5.0 \ \pm \ 1.4 \) \times 10^{-4}$		1336
$D^*(2010)^- D_{s1}(2536)^+,$ $D^+_{s1} \rightarrow D^{*0} K^+$	($3.3 \pm 1.1) \times 10^{-4}$		1336
$D^{*-}D_{s1}(2536)^+, D_{s1}^+ \rightarrow D^{*+}K^0$	($5.0 \pm 1.7) \times 10^{-4}$		1336
$D^{-}D_{sJ}^{-}(2573)^{+}, D_{sJ}^{+} \rightarrow D^{0}K^{+}$	($3.4 \pm 1.8) \times 10^{-5}$		1414
$D^*(2010)^- D_{sJ}(2573)^+, \ D^+_{sJ} o D^0 K^+$	<	2 × 10 ⁻⁴	CL=90%	1304
$D^{-}D_{sJ}(2700)^{+}, D_{sJ}^{+} \rightarrow D^{0}K^{+}$	($7.1 \pm 1.2) \times 10^{-4}$		-
$D^{+}\pi^{-}$	($7.4 \pm 1.3 \times 10^{-7}$		2306
$D_{-}^{+}\pi^{-}$	•	$2.16 \pm 0.26) \times 10^{-5}$		2270
$D^{s+}\pi^{-}$		$2.1 \pm 0.4 \times 10^{-5}$	S=1.4	2215
$D^{\stackrel{s}{+}}\rho^{-}$		2.4×10^{-5}		2197
$D_{s}^{+}\pi^{-}$ $D_{s}^{*+}\pi^{-}$ $D_{s}^{*+}\rho^{-}$ $D_{s}^{+}\rho^{-}$ $D_{s}^{+}a_{0}^{-}$ $D_{s}^{*+}D_{s}^{-}$		$4.1 \pm 1.3 \times 10^{-5}$		2138
$D^+a_0^-$		1.9×10^{-5}	CL=90%	_
$D_{s}^{s+a} - 0$		3.6×10^{-5}		_
$D_s^+ a_1 (1260)^-$		2.1×10^{-3}		2080
$D_s^{*+} a_1(1260)^-$		1.7×10^{-3}		2015
$D_{+}^{+}a_{2}^{-}$		1.9 \times 10 ⁻⁴		_
$D_s^{*+}a_2^-$		2.0×10^{-4}		_
$D_s^- K^+$		$2.7 \pm 0.5 \times 10^{-5}$		2242
$D_s^{s-}K^+$		$2.19 \pm 0.30) \times 10^{-5}$	0 2	2185
$D_s^r K^*(892)^+$		$3.5 \pm 1.0 \times 10^{-5}$		2172
3				
$D_s^{*-}K^*(892)^+$		$3.2 + 1.5 \times 10^{-5}$		2112
$D_s^-\pi^+K^0$	($9.7 \pm 1.4 \times 10^{-5}$		2222
$D_{s}^{*-}\pi^{+}K^{0}$	<		CL=90%	2164
$D_s^- K^+ \pi^+ \pi^-$	•	$1.7 \pm 0.5 \times 10^{-4}$		2198
$D_s^- \pi^+ K^* (892)^0$	<	3.0×10^{-3}		2138
$\frac{D_s^{*-}\pi^+K^*(892)^0}{D_s^0K^0}$	<		CL=90%	2076
		$5.2 \pm 0.7) \times 10^{-5}$		2280
$\overline{D}^{0}K^{+}\pi^{-}$		$8.8 \pm 1.7 \times 10^{-5}$		2261
$\overline{D}^0 K^*(892)^0 \ \overline{D}^0 K^*(1410)^0$	($4.5 \pm 0.6 \times 10^{-5}$	CL 000/	2213
$\overline{D}^0 K_0^* (1430)^0$		6.7 $\times 10^{-5}$ 7 \pm 7 $) \times 10^{-6}$	CL=90%	2062
$\overline{D}^0 K_2^* (1430)^0$		$7 \pm 7 \times 10^{-5}$ 2.1 \pm 0.9) \times 10 ⁻⁵		2058 2057
$D_0^*(2300)^- K^+, D_0^{*-} \rightarrow$		$1.9 \pm 0.9 \times 10^{-5}$		2037
$\overline{D}^0\pi^-$	(1.5 1 0.5 / 10		

$D_2^*(2460)^- K^+, \;\; D_2^{*-} ightarrow \ \overline{D}{}^0 \pi^-$	(2.03±	$0.35) \times 10^{-5}$		2029
$D_3^*(2760)^- K^+, \ D_3^{*-} ightarrow \overline{D}{}^0 \pi^-$	<	1.0	$\times 10^{-6}$	CL=90%	_
$\overline{D}{}^0 \overset{D^* \pi}{K^+ \pi^-}$ nonresonant	<	3.7	× 10−5	CL=90%	2261
$\overline{D}^0 \pi^0$	($0.14) \times 10^{-4}$	CL=3070	2308
$\frac{D}{D^0} \stackrel{n}{\rho^0}$	($0.14) \times 10^{-4}$ $0.21) \times 10^{-4}$		2237
$\frac{D}{D^0} f_2$	(0.21) × 10 ⁻⁴		2231
$\frac{D}{D^0} \eta^2$	($0.21) \times 10^{-4}$ $0.32) \times 10^{-4}$	S=2.5	2274
$\frac{D}{D^0} \eta'$	($0.32) \times 10^{-4}$ $0.16) \times 10^{-4}$		2198
$\frac{D}{D^0} \frac{\eta}{\omega}$	($0.16) \times 10^{-4}$ $0.16) \times 10^{-4}$	3=1.3	
$D^0 \phi$	(· · · · · · · · · · · · · · · · · · ·	CL 050/	2235
$D^{0} \varphi$ $D^{0} K^{+} \pi^{-}$	<		$\times 10^{-6}$	CL=95%	2183
	(3.2) \times 10 ⁻⁶		2261
$D^0 K^*(892)^0$	(2.2 +	$^{0.9}_{1.0}$) × 10 ⁻⁶		2213
$\overline{D}^{*0}\gamma$	<	2.5	$\times10^{-5}$	CL=90%	2258
$\overline{D}^*(2007)^0\pi^0$	(2.2 ±	$0.6\)\times 10^{-4}$	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$			$\times 10^{-4}$		2182
$\overline{D}^*(2007)^0\eta$			$0.6\)\times 10^{-4}$		2220
$\overline{D}^*(2007)^0\eta'$	($0.22) \times 10^{-4}$		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($2.2) \times 10^{-4}$		2249
$\overline{D}^*(2007)^0 K^0$	(1.2) \times 10 ⁻⁵		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<		× 10 ⁻⁵	CI90%	2157
$D^*(2007)^0 K^*(892)^0$	<		× 10 × 10 ⁻⁵		2157
$D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-$	($0.5) \times 10^{-3}$	CL=3070	2219
$D^*(2010)^+ D^*(2010)^-$	(0.5×10^{-4} 0.6×10^{-4}		1711
$\overline{D}^*(2007)^0 \omega$	($1.1) \times 10^{-4}$	C_2 1	2180
$D^*(2010)^+D^-$	(1.1×10^{-4} 1.5×10^{-4}		1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	(3=1.0 CL=90%	1790
$D^{-}D^{0}K^{+}$	<			CL=90/0	
$D^-D^*(2007)^0K^+$	($0.11) \times 10^{-3}$ $0.4) \times 10^{-3}$		1574
•	(1478
$D^*(2010)^- D^0 K^+$ $D^*(2010)^- D^*(2007)^0 K^+$	($0.21) \times 10^{-3}$		1479
$D^*(2010)^- D^*(2007)^0 K^+ D^- D^+ K^0$			0.09) %		1366
	($1.7) \times 10^{-4}$		1568
$D^*(2010)^- D^+ K^0 +$	(6.4 ±	$0.5) \times 10^{-3}$		1473
$D^-D^*(2010)^+K^0$,		\		
$D^*(2010)^- D^*(2010)^+ K^0$			$0.7) \times 10^{-3}$		1360
$D^{*-}D_{s1}(2536)^+, D_{s1}^+ \rightarrow D^{*+}K^0$	(8.0 ±	$2.4) \times 10^{-4}$		1336
$\overline{D}^0 D^0 K^0$	(2.7 ±	$1.1) \times 10^{-4}$		1574
$\overline{D}{}^{0}D^{*}(2007)^{0}K^{0}$ +	Ì		$0.5) \times 10^{-3}$		1478
$\overline{D}^*(2007)^0 D^0 K^0$	`		,		
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	(2.4 +	$0.9) \times 10^{-3}$		1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(0.26) %		_
(= , =)(= , =);;	(2.30 1	, /0		

Charmonium modes

0	Charmonium				
$\eta_c K^0$			1.2) \times 10 ⁻⁴		1751
$\eta_c(1S) K^+ \pi^-$			$0.7) \times 10^{-4}$		1722
$\eta_c(1S)K^+\pi^-(NR)$	(1.3) \times 10 ⁻⁵		_
$X(4100)^-K^+,~X^- ightarrow \eta_c\pi^-$	(1.9 ±	$0.9) \times 10^{-5}$		_
$\eta_c(1S)K^*(1410)^0$	(1.8 ±	1.4) \times 10 ⁻⁴		1395
$\eta_c(1S) K_0^*(1430)^0$	($1.6~\pm$	$0.4) \times 10^{-4}$		1388
$\eta_c(1S) K_2^*(1430)^0$	(4.7 +	$^{2.2}_{2.6}$) × 10 ⁻⁵		1387
$\eta_c(1S) K^*(1680)^0$	(3 ±	4) \times 10 ⁻⁵		1166
$\eta_c(1S) K_0^*(1950)^0$	(4.2 +	$^{2.8}_{4.0}$) \times 10 ⁻⁵		_
$\eta_c K^*(892)^0$	(5.2 ±	$0.8\)\times 10^{-4}$	S=1.5	1646
$\eta_{c}(2S) K^{*0}$	<	3.9		CL=90%	1159
$h_c(1P)K^{*0}$		4		CL=90%	1253
$J/\psi(1S)K^0$			$0.32) \times 10^{-4}$		1683
$J/\psi(1S)K^+\pi^-$			$0.05) \times 10^{-3}$		1652
$J/\psi(1S)K^*(892)^0$			$0.05) \times 10^{-3}$		1571
$J/\psi(1S)\eta K_S^0$			$0.9) \times 10^{-5}$		1508
$J/\psi(1S)\eta'K_S^0$			$\times 10^{-5}$	CL=90%	1271
$J/\psi(1S)\phi K_0^0$			1.0) \times 10 ⁻⁵	S=1.3	1224
$J/\psi(1S)\omega K^0$	($0.4) \times 10^{-4}$		1386
$\chi_{c1}(3872)K^0, \ \chi_{c1} \rightarrow J/\psi \omega$	(6.0 ±	$3.2) \times 10^{-6}$		1140
$X(3915), X \rightarrow J/\psi \omega$	(2.1 ±	$0.9\)\times 10^{-5}$		1102
$J/\psi(1S)K(1270)^0$			$0.5) \times 10^{-3}$		1391
$J/\psi(1S)\pi^0$			$0.10) \times 10^{-5}$		1728
$J/\psi(1S)\eta$			$0.23) \times 10^{-5}$	S=1.5	1673
$J/\psi(1S)\pi^+\pi^-$			$0.17) \times 10^{-5}$		1716
$J/\psi(1S)\pi^+\pi^-$ nonresonal			$\times 10^{-5}$	CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \to \pi$			$^{1.1}_{0.9}$) × 10 ⁻⁶		-
$J/\psi(1S) f_2$			$0.5) \times 10^{-6}$	S=1.5	-
$J/\psi(1S) ho^0$	(2.55 +	$_{0.16}^{0.18}) \times 10^{-5}$		1612
$J/\psi(1S) f_0(980), f_0 \rightarrow \pi^+ \pi^-$	<	1.1	× 10 ⁻⁶	CL=90%	_
$J/\psi(1S)\rho(1450)^0, \ \rho^0 \rightarrow \pi \pi$		2.9 +	$^{1.6}_{0.7}$) × 10 ⁻⁶		_
$J/\psi ho(1700)^0$, $ ho^0 o \pi^+ \pi^-$			1.3) \times 10 ⁻⁶		_
$J/\psi(1S)\omega$	(1.8 +	$_{0.5}^{0.7}$) × 10 ⁻⁵		1609
$J/\psi(1S)K^+K^-$			$0.35) \times 10^{-6}$		1533
$J/\psi(1S)$ $a_0(980)$, $a_0 ightarrow K^+ K^-$	(4.7 ±	$3.4) \times 10^{-7}$		_

$J/\psi(1S)\phi$	_	1.9	× 10 ⁻⁷	CI =90%	1520
$J/\psi(1S) \eta'(958)$		7.6 ± 2.4	_	CL 3070	1546
$J/\psi(1S)K^0\pi^+\pi^-$		4.4 ± 0.4			1611
$J/\psi(1S)K^0K^-\pi^+ + \text{c.c.}$		2.1		CI00%	1467
$J/\psi(1S)K^{0}K^{+}K^{-}$		2.5 ± 0.7		S=1.8	1249
$J/\psi(1S)K^0\rho^0$				3=1.0	
		5.4 ± 3.0	_		1390
$J/\psi(1S) K^*(892)^+\pi^-$	(,			1514
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(,			1670
$J/\psi(1S) f_1(1285)$		8.2 ± 2.1			1385
$J/\psi(1S)K^*(892)^0\pi^+\pi^-$		6.6 ± 2.2			1447
$\chi_{c1}(3872)^{-}K^{+}$	<	5	× 10 ⁻⁴	CL=90%	_
	[yyy] <	4.2	× 10 ⁻⁶	CL=90%	_
$\chi_{c1}(3872)^- \rightarrow$					
$J/\psi(1S)\pi^{-}\pi^{0}$					
$\chi_{c1}(3872) K^0, \;\; \chi_{c1} \to$	(4.3 ± 1.3	$) \times 10^{-6}$		1140
$J/\psi\pi^+\pi^-$					
$\chi_{c1}(3872) K^0$, $\chi_{c1} ightarrow J/\psi \gamma$	<	2.4	$\times 10^{-6}$	CL=90%	1140
$\chi_{c1}(3872) K^*(892)^0, \ \chi_{c1} \rightarrow$	<	2.8	$\times 10^{-6}$	CL=90%	940
$J/\psi \gamma$					
$\chi_{c1}(3872)K^0, \ \chi_{c1} \to \ \psi(2S)\gamma$	<	6.62	$\times 10^{-6}$	CL=90%	1140
$\chi_{c1}(3872) K^*(892)^0, \ \chi_{c1} \rightarrow$	<	4.4		CL=90%	940
$\psi(2S)\gamma$	Ì				
	(1.7 ± 0.8	$\times 10^{-4}$		1140
$\chi_{c1}(3872) K^0, \chi_{c1} \to D^0 \overline{D}^0 \pi^0$	(1.7 ± 0.0	, , 10		1110
$\chi_{c1}(3872)K^0$, $\chi_{c1} \rightarrow \overline{D}^{*0}D^0$	(1.2 ± 0.4	$\times 10^{-4}$		1140
$\chi_{c1}(3872)K^+\pi^-, \chi_{c1} \rightarrow$		7.9 ± 1.4			_
$J/\psi \pi^+ \pi^-$	•	,	•		
$\chi_{c1}(3872) K^*(892)^0, \chi_{c1} \rightarrow$	(4.0 ± 1.5	1×10^{-6}		_
$J/\psi \pi^+ \pi^-$	(1.0 ,	/ X 10		
, ,	,	± 30 ·	5		
$Z_c(4430)^{\pm} K^{\mp}, Z_c^{\pm} \rightarrow$	($6.0 \begin{array}{c} + & 3.0 \\ - & 2.4 \end{array}$) × 10 ⁻³		583
ψ (2S) π^\pm					
$Z_c(4430)^{\pm} K^{\mp}, Z_c^{\pm} \rightarrow$	(5.4 + 4.0	$) \times 10^{-6}$		583
$J/\psi \pi^{\pm}$	•	- 1.2	,		
$Z_c(3900)^{\pm} K^{\mp}, \ Z_c^{\pm} \rightarrow$	<	0	× 10 ⁻⁷		
	<	9	× 10 ·		_
$J/\psi\pi^\pm$					
$Z_c(4200)^{\pm} K^{\mp}, X^{\pm} \rightarrow$	($2.2 + 1.3 \\ - 0.8$	$) \times 10^{-5}$		_
$J/\psi \pi^\pm$		- 0.0			
$J/\psi(1S) p \overline{p}$	<	5.2	$\times 10^{-7}$	CL=90%	862
$J/\psi(1S)\gamma$				CL=90%	1732
$J/\psi(1S)\overline{D}^0$		1.3			877
$\psi(2S)\pi^0$		1.17± 0.19)		, •	1348
$\psi(2S)K^0$		5.8 ± 0.5			1283
$\psi(3770)K^0, \ \psi \rightarrow \overline{D}{}^0D^0$	<	1.23		CI =90%	1217
γ(3.10), γ , Δ Δ		1.20	A 10	SE-30/0	1211

_					
$\psi(3770) K^0$, $\psi \to D^- D^+$	<	1.88	\times 10 ⁻⁴	CL=90%	1217
ψ (2S) $\pi^+\pi^-$	(2.22± 0.35)	$) \times 10^{-5}$		1331
ψ (2S) K $^+\pi^-$	(5.8 ± 0.4	$) \times 10^{-4}$		1239
$\psi(2S) K^*(892)^0$	(5.9 ± 0.4	$) \times 10^{-4}$		1116
$\chi_{c0} K^0$	(1.11^{+}_{-} $\begin{array}{c} 0.24 \\ 0.21 \end{array}$	$) \times 10^{-6}$		1477
$\chi_{c0} K_{c}^{*}(892)^{0}$	(1.7 ± 0.4	$) \times 10^{-4}$		1342
$\chi_{c1}\pi^0$	(1.12± 0.28	$) \times 10^{-5}$		1468
$\chi_{c1} K^0$	(3.93± 0.27	$) \times 10^{-4}$		1411
$\chi_{c1}\pi^-K^+$	(4.97± 0.30)	$) \times 10^{-4}$		1371
$\chi_{c1} K^* (892)^0$	(2.38 ± 0.19	$) \times 10^{-4}$	S=1.2	1265
$X(4051)^{-}_{-}K^{+}, X^{-} \rightarrow$	($3.0 + 4.0 \\ - 1.8$	$) \times 10^{-5}$		_
$\chi_{c1}\pi^{-}$					
$X(4248)^-K^+$, $X^- o$	($4.0 \begin{array}{c} +20.0 \\ -1.0 \end{array}$	$) \times 10^{-5}$		_
$\chi_{c1}\pi^{-}$			4		
$\chi_{c1}\pi^{+}\pi^{-}K^{0}$	•	3.2 ± 0.5	_		1318
$\chi_{c1}\pi^-\pi^0K^+$		3.5 ± 0.6			1321
$\chi_{c2} K^0$	<	1.5	$\times 10^{-5}$	CL=90%	1379
$\chi_{c2} K^* (892)^0$	(4.9 ± 1.2	$) \times 10^{-5}$	S=1.1	1228
$\chi_{c2} \pi^{-} K^{+}$	(7.2 ± 1.0	$) \times 10^{-5}$		1338
$\chi_{c2} \pi^{+} \pi^{-} K^{0}$	<	1.70	$\times 10^{-4}$	CL=90%	1282
$\chi_{c2}\pi^-\pi^0K^+$	<	7.4	$\times 10^{-5}$	CL=90%	1286
$\psi(4660)K^0$, $\psi \rightarrow \Lambda_c^+ \Lambda_c^-$	<	2.3	$\times 10^{-4}$	CL=90%	_

K or K* modes

K or K ⁺ modes									
$K^+\pi^-$	($1.96\pm$	$0.05) \times 10^{-5}$		2615				
$\mathcal{K}^0\pi^0$	(9.9 ±	$0.5) \times 10^{-6}$		2615				
$\eta' K^0$	($6.6~\pm$	$0.4) \times 10^{-5}$	S=1.4	2528				
$\eta' K^* (892)^0$	(2.8 ±	$0.6\)\times 10^{-6}$		2472				
$\eta' K_0^* (1430)^0$	(6.3 ±	$1.6) \times 10^{-6}$		2346				
$\eta' K_2^* (1430)^0$	($1.37\pm$	$0.32) \times 10^{-5}$		2346				
ηK^0	(1.23 +	$^{0.27}_{0.24})\times 10^{-6}$		2587				
$\eta K^*(892)^0$	($1.59\pm$	$0.10) \times 10^{-5}$		2534				
$\eta K_0^* (1430)^0$	($1.10\pm$	$0.22) \times 10^{-5}$		2415				
$\eta K_2^*(1430)^0$	(9.6 ±	$2.1) \times 10^{-6}$		2414				
$\omega K^{ar{0}}$	(4.8 ±	$0.4) \times 10^{-6}$		2557				
$a_0(980)^0K^0$, $a_0^0 o \eta\pi^0$	<	7.8	$\times 10^{-6}$	CL=90%	_				
$b_1^0 {\cal K}^0$, $b_1^0 ightarrow \omega \pi^0$	<	7.8	$\times10^{-6}$	CL=90%	_				
$a_0(980)^{\pm}K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	1.9	$\times10^{-6}$	CL=90%	_				
$b_1^- K^+$, $b_1^- ightarrow \omega \pi^-$	(7.4 ±	$1.4) \times 10^{-6}$		_				
$b_1^{ar{0}} {\mathcal K}^{st 0}$, $b_1^{ar{0}} ightarrow \omega \pi^0$	<	8.0	$\times10^{-6}$	CL=90%	_				
$b_1^- K^{*+}$, $b_1^- ightarrow \omega \pi^-$	<	5.0	$\times10^{-6}$	CL=90%	_				
$a_0(1450)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$	<	3.1	\times 10 ⁻⁶	CL=90%	-				

HTTP://PDG.LBL.GOV Page 103 Created: 5/22/2019 10:04

$K_S^0 X^0$ (Familon)	<	5.3	$\times10^{-5}$	CL=90%	_
$\omega K^*(892)^0$	(2.0 ±	$0.5) \times 10^{-6}$		2503
$\omega(K\pi)_0^{*0}$	($1.84\pm$	$0.25) \times 10^{-5}$		_
$\omega K_0^* (1430)^0$	($1.60\pm$	$0.34) \times 10^{-5}$		2380
$\omega K_2^*(1430)^0$	($0.23) \times 10^{-5}$		2380
$\omega K^{+}\pi^{-}$ nonresonant	($1.0^{\circ}) \times 10^{-6}$		2542
$K^+\pi^-\pi^0$	($0.32) \times 10^{-5}$		2609
$\mathcal{K}^+ ho^-$	($0.9) \times 10^{-6}$		2559
$\mathcal{K}^+ ho$ (1450) $^-$	(2.4 ±	$1.2) \times 10^{-6}$		_
$K^+ \rho (1700)^-$			7) $\times 10^{-7}$		_
$(K^+\pi^-\pi^0)$ nonresonant	($0.6) \times 10^{-6}$		2609
$(K\pi)_0^{*+}\pi^-, (K\pi)_0^{*+} \to K^+_{-0}$	(3.4 ±	$0.5) \times 10^{-5}$		_
$(K\pi)^{*0}_{0}\pi^{0}, \ (K\pi)^{*0}_{0} \to K^{+}\pi^{-}$	(8.6 ±	$1.7) \times 10^{-6}$		-
$\overset{{\cal K}^+\pi^-}{{\cal K}_2^*(1430)^0\pi^0}$	<	4.0	× 10 ⁻⁶	CL=90%	2445
$K^*(1680)^0\pi^0$		7.5		CL=90%	2358
$K_{x}^{*0}\pi^{0}$			1.6) \times 10 ⁻⁶	0_ 00/0	_
$K^0 \pi^+ \pi^-$			$0.18) \times 10^{-5}$		2609
$K^0\pi^+\pi^-$ nonresonant	(1.39 +	$_{0.18}^{0.26}) \times 10^{-5}$	S=1.6	2609
$K^0 ho^0$	(3.4 ±	$1.1) \times 10^{-6}$	S=2.3	2558
$K^*(892)^+\pi^-$	(7.5 ±	$0.4) \times 10^{-6}$		2563
$K_0^*(1430)^+\pi^-$	(3.3 ±	$0.7) \times 10^{-5}$	S=2.0	_
$K_{\times}^{*+}\pi^{-}$	[bbaa] (5.1 ±	$1.6) \times 10^{-6}$		_
$\overset{\frown}{K^{0}}(1410)^{+}\pi^{-}, K^{*+} \rightarrow K^{0}\pi^{+}$	<	3.8	$\times 10^{-6}$	CL=90%	_
$(K\pi)_0^{*+}\pi^-, (K\pi)_0^{*+} \to K^0\pi^+$	(1.62±	$0.13) \times 10^{-5}$		_
$f_0(980)K^0$, $f_0 \to \pi^+\pi^-$	(8.1 ±	$0.8\)\times 10^{-6}$	S=1.3	2522
$K^0 f_0(500)$	(1.6 +	$^{2.5}_{1.6}$) $\times 10^{-7}$		_
$K^0 f_0(1500)$	($1.3~\pm$	$0.8\)\times 10^{-6}$		2397
$f_2(1270) K^0$	(2.7 +	$^{1.3}_{1.2}$) × 10 ⁻⁶		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$	(1.8 ±	$0.7) \times 10^{-6}$		_
$K^*(892)^0\pi^0$	(3.3 ±	$0.6) \times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$	($3.65\pm$	$0.34) \times 10^{-6}$		2445
$K^*(1680)^+\pi^-$			$0.10) \times 10^{-5}$		2358
$K^{+}\pi^{-}\pi^{+}\pi^{-}$			\times 10 ⁻⁴	CL=90%	2600
$ ho^0$ K $^+$ π^-	(2.8 ±	$0.7) \times 10^{-6}$		2543
$f_0(980) K^+ \pi^-, f_0 \to \pi \pi$	(1.4 +	$_{0.6}^{0.5}$) \times 10 ⁻⁶		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<		\times 10 ⁻⁶	CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$	(5.5 ±	$0.5) \times 10^{-5}$		2557

$K^*(892)^0 \rho^0$	($3.9 \ \pm \ 1.3 \) \times 10^{-6}$	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \rightarrow \pi \pi$	($3.9 {}^{+}_{-} {}^{2.1}_{1.8}) \times 10^{-6}$	S=3.9	2466
$K_1(1270)^+\pi^-$	<	3.0×10^{-5}	CL=90%	2484
$K_1(1400)^+\pi^-$	<	2.7×10^{-5}	CL=90%	2451
		$1.6 \pm 0.4 \times 10^{-5}$		2471
$K^*(892)^+ \rho^-$	(2504
$K_0^*(1430)^+\rho^-$	($2.8 \pm 1.2 \times 10^{-5}$		250+
$K_0(1430)^0 \rho^0$		3.0×10^{-3}	CI 000/	2200
$K_1(1400) \rho$ $K_1(1420)0 = 0$	<		CL=90%	2388
$K_0^*(1430)^0 \rho^0$		2.7 ± 0.6) $\times 10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($2.7 \pm 0.9 \times 10^{-6}$		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($8.6 \pm 2.0 \times 10^{-6}$		_
K^+K^-	($7.8 \pm 1.5 \times 10^{-8}$		2593
$K_0^0 \overline{K}^0$	($1.21\pm 0.16) \times 10^{-6}$		2592
$K^0 K^- \pi^+$	($6.2 \pm 0.7 \times 10^{-6}$		2578
$K^*(892)^{\pm} K^{\mp}$	<		CL=90%	2540
$\overline{K}^{*0}K^{0'} + K^{*0}\overline{K}^{0}$	<	9.6×10^{-7}	CL=90%	_
$K^+K^-\pi^0$	($2.2~\pm~0.6~)\times10^{-6}$		2579
$K_S^0 K_S^0 \pi^0$	<		CL=90%	2578
$K_{S}^{0}K_{S}^{0}\eta$	<	1.0×10^{-6}	CL=90%	2515
$K_{S}^{0}K_{S}^{0}\eta'$	<		CL=90%	2453
$K^{0}K^{+}K^{-}$		$2.67 \pm 0.11) \times 10^{-5}$		2522
$K^0\phi$		$7.3 \pm 0.7 \times 10^{-6}$		2516
$f_0(980) K^0$, $f_0 \rightarrow K^+ K^-$	(. 25		_
$f_0(1500) K^0$	($1.3 \ ^{+}_{-} \ ^{0.7}_{0.5} \) \times 10^{-5}$		2397
$f_2'(1525)^0 K^0$	($3 \begin{array}{cc} + 5 \\ - 4 \end{array}) \times 10^{-7}$		_
$f_0(1710) K^0, \;\; f_0 ightarrow \;\; K^+ K^-$	($4.4 \pm 0.9 \times 10^{-6}$		_
$K^{0}K^{+}K^{-}$ nonresonant	($3.3 \pm 1.0 \times 10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$	Ì	6.0 ± 0.5) $\times 10^{-6}$	S=1.1	2521
$f_0(980)K^0$, $f_0 \rightarrow K_5^0K_5^0$		$2.7 \pm 1.8 \times 10^{-6}$		_
5 5				
$f_0(1710)K^0, f_0 \rightarrow K^0_S K^0_S$		$5.0 \begin{array}{c} + & 5.0 \\ - & 2.6 \end{array}) \times 10^{-7}$		_
$f_2(2010)K^0, f_2 \rightarrow K_S^0 K_S^0$	•	$5 \pm 6) \times 10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	($1.33\pm 0.31) \times 10^{-5}$		2521
$K_S^0 K_S^0 K_L^0$	<	1.6×10^{-5}	CL=90%	2521
$K^*(892)^0 K^+ K^-$	($2.75 \pm 0.26) \times 10^{-5}$		2467
$K^*(892)^0 \phi$		$1.00\pm\ 0.05)\times10^{-5}$		2460
$K^+K^-\pi^+\pi^-$ nonresonant	<	7.17×10^{-5}	CL=90%	2559
$K^*(892)^0 K^- \pi^+$		$4.5 \pm 1.3 \times 10^{-6}$		2524
$K^*(892)^0 \overline{K}^*(892)^0$	($8 \pm 5) \times 10^{-7}$	S=2.2	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<		CL=90%	2524
(552)			SE 30/0	2027

$K^*(892)^0 K^*(892)^0$	<	2	\times 10 ⁻⁷	CL=90%	2485
$K^*(892)^+K^*(892)^-$	<	2.0		CL=90%	2485
$K_1(1400)^0 \phi$	<	5.0		CL=90%	2339
$\phi(\kappa\pi)_0^{*0}$	($4.3 \pm$	$0.4) \times 10^{-6}$		_
$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)d$	ldaa] <	1.7	\times 10 ⁻⁶	CL=90%	_
$K_0^*(1430)^{0} K^{-} \pi^{+}$	<	3.18	$\times10^{-5}$	CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3	\times 10 ⁻⁶	CL=90%	2360
$K_0^*(1430)^0 \overline{K}_0^*(1430)^0$	<	8.4	$\times10^{-6}$	CL=90%	2222
$K_0^*(1430)^0 \phi$	(3.9 ±	$0.8) \times 10^{-6}$		2333
$K_0^{\circ}(1430)^0 K^*(892)^0$	<	1.7		CL=90%	2360
$K_0^{(1430)^0}K_0^{*}(1430)^0$	<	4.7		CL=90%	2222
$K^*(1680)^0 \phi$	<	3.5		CL=90%	2238
$K^*(1780)^0 \phi$	<	2.7		CL=90%	
$K^*(2045)^0 \phi$	<	1.53		CL=90%	_
$K_2^*(1430)^0 \rho^0$	<	1.1		CL=90%	2381
$K_2^2(1430)^0 \phi$			$0.9) \times 10^{-6}$		2333
$\kappa^{0}\phi\phi$	($0.9) \times 10^{-6}$		2305
$\eta' \eta' K^0$	<		,	CL=90%	2337
$\eta K^0 \gamma$	($1.8) \times 10^{-6}$		2587
$\eta' K^0 \gamma$	<	6.4	_	CL=90%	2528
$K^0 \phi \gamma$	(2.7 ±	$0.7) \times 10^{-6}$		2516
$K^+\pi^-\gamma$	($1.4) \times 10^{-6}$		2615
$K^*(892)^0 \gamma$	($4.18\pm$	$0.25) \times 10^{-5}$	S=2.1	2565
$K^*(1410)\gamma$	<	1.3	\times 10 ⁻⁴	CL=90%	2451
$K^+\pi^-\gamma$ nonresonant	<	2.6	$\times 10^{-6}$	CL=90%	2615
	eeaa] <	2.26	$\times 10^{-8}$	CL=90%	_
$\mu^+\mu^-$			_		
$K^0\pi^+\pi^-\gamma$	($0.18) \times 10^{-5}$		2609
$K^+\pi^-\pi^0\gamma$	($0.4) \times 10^{-5}$		2609
$K_1(1270)^0 \gamma$	<		$\times 10^{-5}$		2486
$K_1(1400)^0 \gamma$		1.2		CL=90%	2454
$K_2^*(1430)^0 \gamma$			$0.24) \times 10^{-5}$		2447
$K^*(1680)^0 \gamma$			$\times 10^{-3}$		2360
$K_3^*(1780)^0 \gamma$		8.3		CL=90%	2341
$K_4^*(2045)^0 \gamma$	<	4.3	× 10 ⁻³	CL=90%	2244
Light unfl	avored r	neson	modes		
$\rho^0 \gamma$			1.5) \times 10 ⁻⁷		2583
	`		× 10 ⁻⁸	CI =90%	2303
	_			55-30/0	0500
$\omega\gamma$			$\begin{array}{c} 1.8 \\ 1.6 \end{array}) \times 10^{-7}$		2582
$\phi\gamma$			$\times 10^{-7}$	CL=90%	2541
$\pi^{+}\pi^{-}$	($0.19) \times 10^{-6}$		2636
$\pi^0\pi^0$	($1.59\pm$	$0.26) \times 10^{-6}$	S=1.4	2636

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 106

Created: 5/22/2019 10:04

0			. 7		
$\eta\pi^{0}$	($4.1 ~\pm~ 1.7$			2610
$\eta\eta$	<			CL=90%	2582
$\eta' \pi^0$	($1.2\ \pm\ 0.6$	$) \times 10^{-6}$	S=1.7	2551
$\eta' \eta'$	<	1.7	$\times 10^{-6}$	CL=90%	2460
$\eta'\eta$	<	1.2	$\times 10^{-6}$	CL=90%	2523
$\eta' \rho^0$	<	1.3	$\times 10^{-6}$	CL=90%	2492
$\eta' f_0(980), f_0 \to \pi^+ \pi^-$	<	9	$\times 10^{-7}$	CL=90%	2454
$\eta \rho^{0}$	<	1.5	$\times 10^{-6}$	CL=90%	2553
$\eta f_0(980), f_0 \to \pi^+ \pi^-$	<			CL=90%	2516
$\omega \eta$	($9.4 \begin{array}{l} + & 4.0 \\ - & 3.1 \end{array}$) × 10 ⁻⁷		2552
$\omega \eta'$	($1.0 \begin{array}{r} + 0.5 \\ - 0.4 \end{array}$) × 10 ⁻⁶		2491
$\omega \rho^0$	<	1.6	× 10 ⁻⁶	CI =90%	2522
$\omega f_0(980), f_0 \to \pi^+ \pi^-$	<	1.5		CL=90%	2485
	(1.3 ± 0.4		CL—9070	
$\omega \omega \ \phi \pi^0$	`		_	CL 000/	2521
,	<			CL=90%	2540
$\phi \eta$	<	5		CL=90%	2511
$\phi \eta'$	<	5		CL=90%	2448
$\phi \pi^+ \pi^-$	($1.8~\pm~0.5$,		2533
$\phi \rho^0$	<			CL=90%	2480
$\phi f_0(980)$, $f_0 \rightarrow \pi^+\pi^-$	<	3.8		CL=90%	2441
$\phi \omega$	<	7		CL=90%	2479
$\phi\phi$	<	2.8		CL=90%	2435
$a_0(980)^{\pm}\pi^{\mp}, \ a_0^{\pm} \rightarrow \ \eta\pi^{\pm}$	<	3.1	$\times 10^{-6}$	CL=90%	_
$a_0(1450)^\pm\pi^\mp$, $a_0^\pm o \eta\pi^\pm$	<	2.3		CL=90%	_
$\pi^+\pi^-\pi^0$	<	7.2	$\times 10^{-4}$	CL=90%	2631
$ ho^0\pi^0$	($2.0\ \pm\ 0.5$	$) \times 10^{-6}$		2581
$ ho^{\mp}\pi^{\pm}$	[hh] (2.30± 0.23	$) \times 10^{-5}$		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	<	1.12	$\times 10^{-5}$	CL=90%	2621
$ ho^0\pi^+\pi^-$	<		$\times 10^{-6}$	CL=90%	2575
$\rho^0 \rho^0$		$9.6~\pm~1.5$			2523
$f_0(980)\pi^+\pi^-, f_0 \rightarrow$		3.0			_
$ ho^0 f_0(980), f_0 \rightarrow \pi^+ \pi^-$			7		
$\rho^{0} f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}$	`	$7.8~\pm~2.5$,		2486
$f_0(980) f_0(980), f_0 \rightarrow$	<	1.9	\times 10 ⁻⁷	CL=90%	2447
$\pi^+\pi^-$, $f_0 \rightarrow \pi^+\pi^-$			_		
$f_0(980) f_0(980), f_0 \rightarrow \pi^+ \pi^-,$	<	2.3	\times 10 ⁻⁷	CL=90%	2447
$f_0 \rightarrow K^+ K^-$			-		
$a_1(1260)^{\mp}_{-}\pi^{\pm}$		$2.6~\pm~0.5$			2494
$a_2(1320)^{\mp}\pi^{\pm}$	[hh] <	6.3			2473
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$		3.1		CL=90%	2622
$\rho^+ \rho^-$	(2.77 ± 0.19			2523
$a_1(1260)^0 \pi^0$	<	1.1	$\times 10^{-3}$	CL=90%	2495
$\omega \pi^0$	<	5	$\times 10^{-7}$	CL=90%	2580

$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	9.0	$\times 10^{-3}$	CL=90%	2609
$a_1(1260)^+ ho^-$	<	6.1	$\times 10^{-5}$	CL=90%	2433
$a_1(1260)^0 ho^0$	<	2.4	$\times 10^{-3}$	CL=90%	2433
$b_1^{\mp}\pi^{\pm}$, $b_1^{\mp} ightarrow~\omega\pi^{\mp}$	(1.09 ± 0.15	$) \times 10^{-5}$		_
$b_1^0\pi^0$, $b_1^0 ightarrow~\omega\pi^0$	<	1.9	\times 10 ⁻⁶	CL=90%	_
$b_1^- ho^+$, $b_1^- ightarrow \ \omega \pi^-$	<	1.4	$\times 10^{-6}$	CL=90%	_
$b_1^{ar{0}} ho^0$, $b_1^{ar{0}} ightarrow \; \omega \pi^0$	<	3.4	\times 10 ⁻⁶	CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	<	3.0	$\times 10^{-3}$	CL=90%	2592
$a_1(1260)^+a_1(1260)^-$, $a_1^+ ightarrow$	(1.18± 0.31	$) \times 10^{-5}$		2336
$2\pi^+\pi^-$, $a_1^- ightarrow~2\pi^-\pi^+$					
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	<	1.1	%	CL=90%	2572

Baryon modes

	Dai yon in	ioues			
p p	($1.25\pm$	$0.32) \times 10^{-8}$		2467
$p\overline{p}\pi^+\pi^-$			$0.19) \times 10^{-6}$		2406
$p\overline{p}K^{+}\pi^{-}$	($6.3~\pm$	$0.5) \times 10^{-6}$		2306
p p K ⁰	($2.66\pm$	$0.32) \times 10^{-6}$		2347
$\Theta(1540)^+\overline{p}, \ \Theta^+$	$ ightarrow$ pK_S^0 [ffaa] $<$	5	× 10 ⁻⁸	CL=90%	2318
$f_J(2220)K^0$, $f_J \rightarrow$	<i>p</i> p	4.5	$\times 10^{-7}$	CL=90%	2135
$p \overline{p} K^* (892)^0$	(1.24 +	$^{0.28}_{0.25}) \times 10^{-6}$		2216
$f_J(2220)K_0^*,\;\;f_J \rightarrow$	$p\overline{p}$ <	1.5	$\times 10^{-7}$	CL=90%	_
$p\overline{p}K^+K^-$	($1.21\pm$	$0.32) \times 10^{-7}$		2179
p p p p	<	2.0	$\times 10^{-7}$	CL=90%	1735
$p\overline{\Lambda}\pi^-$	($3.14\pm$	$0.29) \times 10^{-6}$		2401
$p\overline{\Lambda}\pi^-\gamma$	<	6.5		CL=90%	2401
$p \overline{\Sigma} (1385)^{-}$	<	2.6	$\times 10^{-7}$	CL=90%	2363
$\Delta^0 \overline{\Lambda}$	<	9.3		CL=90%	2364
$p\overline{\Lambda}K^-$	<	8.2	$\times 10^{-7}$	CL=90%	2308
$p\overline{\Lambda}D^-$	($0.4) \times 10^{-5}$		1765
$p\overline{\Lambda}D^{*-}$	($3.4~\pm$	$0.8) \times 10^{-5}$		1685
$\frac{p}{\Lambda} \overline{\Sigma}{}^0 \pi^-$	<	3.8		CL=90%	2383
$\overline{\Lambda}\Lambda$	<	3.2	$\times 10^{-7}$	CL=90%	2392
$\overline{\Lambda}\Lambda K^0$	(4.8 +	$^{1.0}_{0.9}$) $\times10^{-6}$		2250
$\overline{\Lambda}\Lambda K^{*0}$	(2.5 +	$^{0.9}_{0.8}$) $ imes$ 10 ⁻⁶		2098
$\overline{\Lambda}\Lambda D^0$	(1.00+	$^{0.30}_{0.26})\times 10^{-5}$		1661
$D^0 \Sigma^0 \overline{\varLambda} + ext{c.c.}$	<	3.1	$\times 10^{-5}$	CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$	<	1.5	$\times 10^{-3}$	CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1	\times 10 ⁻⁴	CL=90%	2335
$\overline{D}{}^0 \rho \overline{\rho}$	($1.04\pm$	$0.07) \times 10^{-4}$		1863
$D_s^{-1}\overline{\Lambda}p$	($0.9) \times 10^{-5}$		1710
$\overline{D}^{s}(2007)^{0} p \overline{p}$	(1.1) × 10 ⁻⁵		1788

$D^*(2010)^- \rho \overline{n}$	($1.4 \pm 0.4) \times 10^{-3}$		1785
$D^- p \overline{p} \pi^+$		$3.32 \pm 0.31) \times 10^{-4}$		1786
$D^*(2010)^- p \overline{p} \pi^+$	(1708
$\frac{D}{D^0} p \overline{p} \pi^+ \pi^-$	(3.0 ± 0.5) $\times 10^{-4}$		1708
$\overline{D}^{*0}p\overline{p}\pi^{+}\pi^{-}$	(1623
$\Theta_{c} \overline{p} \pi^{+}, \ \Theta_{c} \rightarrow D^{-} p$	<	9 $\times 10^{-6}$		-
$\Theta_{c} \overline{p} \pi^{+}, \; \Theta_{c} \rightarrow D^{*-} p$	<	1.4×10^{-5}		_
$\sum_{c}^{c} \Delta^{++}$	<	8 × 10 ⁻⁴		1839
$\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{-}$		$1.02 \pm 0.14) \times 10^{-3}$		1934
$\overline{\Lambda}_{c}^{\underline{c}}$ p		$1.54 \pm 0.18) \times 10^{-5}$		2021
$\overline{\Lambda}_{c}^{-} p$ $\overline{\Lambda}_{c}^{-} p \pi^{0}$	($1.55\pm 0.19) \times 10^{-4}$		1982
$\Sigma_c(2455)^- p$	<	2.4×10^{-5}		_
$\overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{-} \pi^{0}$	<	5.07×10^{-3}	CL=90%	1883
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	<	2.74×10^{-3}	CL=90%	1821
$\overline{\Lambda}_c^- p \pi^+ \pi^-$ (nonresonant)	($5.5 \pm 1.0 \times 10^{-4}$	S=1.3	1934
$\overline{\Sigma}_{c}(2520)^{} \rho \pi^{+}$	($1.02\pm\ 0.18)\times10^{-4}$		1860
$\overline{\Sigma}_c(2520)^0 p\pi^-$	<	3.1×10^{-5}	CL=90%	1860
$\overline{\Sigma}_c$ (2455) 0 $p\pi^-$		$1.08\pm\ 0.16)\times10^{-4}$		1895
$\overline{\Sigma}_c(2455)^0 N^0, N^0 \rightarrow$	($6.4 \pm 1.7 \times 10^{-5}$		_
$\overline{\Sigma}_c$ (2455) $^{}$ p π^+				
		$1.83\pm 0.24) \times 10^{-4}$		1895
$\Lambda_{c}^{-} p K^{+} \pi^{-}$	($3.4 \pm 0.7 \times 10^{-5}$		_
$\overline{\Sigma}_c(2455)^{} p K^+, \ \overline{\Sigma}_c^{} \rightarrow$	($8.8 \pm 2.5 \times 10^{-6}$		1754
$\overline{\Lambda}_{c}^{-}\pi^{-}$		E		
$\Lambda_{c}^{-} p K^{*} (892)^{0}$		2.42×10^{-5}		_
$\Lambda_c^- p K^+ K^-$	($2.0 \pm 0.4 \times 10^{-5}$		_
$\Lambda_c^- p \phi$	<	1.0×10^{-5}		_
$\Lambda_c^- p \overline{p} p$	<	2.8×10^{-6}		_
$\overline{\Lambda}_c^- \Lambda K^+$	($4.8 \pm 1.1 \times 10^{-5}$		1767
$\overline{\Lambda}_c^- \Lambda_c^+$	<	1.6×10^{-5}	CL=95%	1319
$\overline{\Lambda}_{c}(2593)^{-} / \overline{\Lambda}_{c}(2625)^{-} p$	<	1.1×10^{-4}	CL=90%	_
$\overline{\Xi}_c^- \Lambda_c^+, \ \overline{\Xi}_c^- \to \overline{\Xi}^+ \pi^- \pi^-$	($1.8 \pm 1.8) \times 10^{-5}$	S=2.2	1147
$\Lambda_c^{+}\Lambda_c^{-}K^0$		$4.0 \pm 0.9 \times 10^{-4}$		_
$ \frac{\overline{\Lambda}_{c}(2593)^{-}}{\overline{\Xi}_{c}^{-}\Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{-} \rightarrow \overline{\Xi}^{+}\pi^{-}\pi^{-}} $ $ \frac{\Lambda_{c}^{+}\Lambda_{c}^{-}, \ \overline{\Xi}_{c}^{-} \rightarrow \overline{\Xi}^{+}\pi^{-}\pi^{-}}{\overline{\Xi}_{c}(2930)^{-}\Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{-} \rightarrow \Lambda_{c}^{-}K^{0}} $		$2.4 \pm 0.6 \times 10^{-4}$		_

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B=1$ weak neutral current (B1) modes

	•			` ,	
$\gamma\gamma$	B1	<	3.2	$\times10^{-7}$ CL=90%	2640
e^+e^-	B1	<	8.3	$\times10^{-8}$ CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	$\times 10^{-7} \text{ CL}=90\%$	2640
$\mu^+\mu^-$	B1	(1.4 +	$^{1.6}_{1.4}$) $\times10^{-10}$ S=1.9	2638
$\mu^+\mu^-\gamma$	B1	<	1.6	$\times 10^{-7} \text{ CL}=90\%$	2638

HTTP://PDG.LBL.GOV

Page 109

$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	<	6.9	\times 10 ⁻¹⁰ CL=95%	2629
SP , $S \rightarrow \mu^+\mu^-$,	B1	[ggaa] <	6.0	\times 10 ⁻¹⁰ CL=95%	_
$P \rightarrow \mu^+ \mu^-$				2	
$ au^+ au^- \\ au^0 \ell^+\ell^-$	B1	<	2.1	$\times 10^{-3}$ CL=95%	1952
$\pi^{0}e^{+}e^{-}$	B1 B1	< <	5.3 8.4	$\times 10^{-8}$ CL=90% $\times 10^{-8}$ CL=90%	2638 2638
$\pi^0\mu^+\mu^-$	В1 В1	<	6.9	$\times 10^{-8} \text{ CL} = 90\%$	2634
$\eta \ell^+ \ell^-$	B1	<	6.4	$\times 10^{-8} \text{ CL}=90\%$	2611
$\eta e^+ e^-$	B1	<	1.08	$\times 10^{-7} \text{ CL} = 90\%$	2611
$\eta \mu^+ \mu^-$	B1	<	1.12	$\times 10^{-7}$ CL=90%	2607
$\pi^0 \frac{n}{\nu} \overline{\nu}$	B1	<	9	$\times10^{-6}$ CL=90%	2638
$K^0\ell^+\ell^-$	В1	[sss] (3.1 +	$^{0.8}_{0.7}$) $ imes$ 10 ⁻⁷	2616
$K^0 e^+ e^-$	В1	(1.6 +	$^{1.0}_{0.8}$) \times 10 ⁻⁷	2616
$\kappa^0 \mu^+ \mu^-$	B1	($3.39\pm$	$0.34) \times 10^{-7}$	2612
$K^0 \nu \overline{\nu}$	B1	<	2.6	$\times 10^{-5}$ CL=90%	2616
$ ho^{f 0} u\overline{ u}$	B1	<	4.0	$\times 10^{-5}$ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	В1	[sss] (9.9 +	$^{1.2}_{1.1}$) $ imes$ 10 ⁻⁷	2565
$K^*(892)^0 e^+ e^-$	B1	(1.03 +	$^{0.19}_{0.17})\times 10^{-6}$	2565
$K^*(892)^0\mu^+\mu^-$	B1	(9.4 ±	$0.5) \times 10^{-7}$	2560
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	($2.1~\pm$	$0.5) \times 10^{-8}$	2626
$K^*(892)^0 \nu \overline{\nu}$	B1	<	1.8	$\times 10^{-5}$ CL=90%	2565
invisible	B1	<	2.4	$\times 10^{-5}$ CL=90%	_
$ u \overline{ u} \gamma$	B1	<	1.7	$\times 10^{-5}$ CL=90%	2640
$\phi u \overline{ u}$	B1	<	1.27	$\times 10^{-4}$ CL=90%	2541
$e^{\pm} \mu^{\mp}$	LF	[hh] <	1.0	$\times 10^{-9}$ CL=90%	2639
$\pi^0 \stackrel{e^\pm}{e^\pm} \mu^\mp \ \mathcal{K}^0 \stackrel{e^\pm}{e^\pm} \mu^\mp$	LF	<	1.4	$\times 10^{-7}$ CL=90% $\times 10^{-7}$ CL=90%	2637
$K^*(892)^0 e^+ \mu^-$	LF LF	< <	2.7 1.6	$\times 10^{-7} \text{ CL}=90\%$ $\times 10^{-7} \text{ CL}=90\%$	2615 2563
$K^*(892)^0 e^- \mu^+$	LF LF		1.0	$\times 10^{-7} \text{ CL} = 90\%$ $\times 10^{-7} \text{ CL} = 90\%$	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$	LF	<	1.8	$\times 10^{-7} \text{ CL}=90\%$	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$ $e^{\pm} \tau^{\mp}$	LF		2.8	$\times 10^{-5} \text{ CL}=90\%$	2341
$\mu^{\pm} \tau^{\mp}$		[hh] <		$\times 10^{-5} \text{ CL}=90\%$	2339
$\Lambda^+\mu^-$	L,B	(1.4	$\times 10^{-6} \text{ CL}=90\%$	2143
$\Lambda_c^+ \mu^ \Lambda_c^+ e^-$	L,B	<	4	$\times 10^{-6} \text{ CL}=90\%$	2145
′ 'c '	L, D	_	7	A 10 CL—30/0	2173

B^{\pm}/B^{0} ADMIXTURE

CP violation

$$\begin{split} &A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.011 \\ &A_{CP}(B \to s\gamma) = 0.015 \pm 0.011 \\ &A_{CP}(B \to (s+d)\gamma) = 0.010 \pm 0.031 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) \left(1.0 < \mathsf{q}^2 < 6.0 \text{ GeV}^2/\mathsf{c}^4\right) = -0.06 \pm 0.22 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) \left(10.1 < \mathsf{q}^2 < 12.9 \text{ or } \mathsf{q}^2 > 14.2 \text{ GeV}^2/\mathsf{c}^4\right) \\ &= 0.19 \pm 0.18 \\ &A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15 \\ &A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13 \\ &A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07 \\ &A_{CP}(B \to \eta \text{ anything}) = -0.13^{+0.04}_{-0.05} \\ &\Delta A_{CP}(X_s \gamma) = A_{CP}(B^\pm \to X_s \gamma) - A_{CP}(B^0 \to X_s \gamma) = \\ &0.041 \pm 0.023 \\ &\overline{A}_{CP}(B \to X_s \gamma) = (A_{CP}(B^+ \to X_s \gamma) + A_{CP}(B^0 \to X_s \gamma))/2 = 0.009 \pm 0.012 \\ &\Delta A_{CP}(B \to K^* \gamma) = A_{CP}(B^+ \to K^* \gamma) - A_{CP}(B^0 \to K^{*0} \gamma) = 0.024 \pm 0.028 \\ &\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to K^{*+} \gamma) + A_{CP}(B^0 \to K^{*0} \gamma))/2 = -0.001 \pm 0.014 \\ \end{split}$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

			- (]/	,				- / - /
Semi	ileptonic	and	leptoi	nic	mod	les		
and the second of the second o	sss,hhaa]		10.86					_
$D^-\ell^+ u_\ell$ anything	[sss]	(2.8	\pm	0.9) %		_
$\overline{D}{}^0 \ell^+ u_\ell$ anything	[sss]	(7.3	\pm	1.5) %		_
$\overline{D}\ell^+ u_\ell$		(2.42	\pm	0.12) %		2310
$D^{*-}\ell^+ u_\ell$ anything	[iiaa]	(6.7	\pm	1.3	$) \times 10^{-3}$		_
$\underline{\mathcal{D}}^*\ell^+ u_\ell$	[jjaa]	(4.95	\pm	0.11) %		2257
	[sss,kkaa]	(0.7	,		_
$\overline{D}_1(2420)\ell^+ u_\ell$ anythir	ng	($) \times 10^{-3}$	S=2.4	_
$D\pi\ell^+ u_\ell$ anything $+$		(2.6	\pm	0.5) %	S=1.5	_
$D^*\pi\ell^+ u_\ell$ anything								
$D\pi\ell^+ u_\ell$ anything		(0.6	•		_
$D^*\pi\ell^+\nu_\ell$ anything		(0.4			_
$\overline{D}_2^*(2460)\ell^+ u_\ell$ anythir		($) \times 10^{-3}$		_
$D^{*-}\pi^+\ell^+ u_\ell$ anything		(0.34			_
$\overline{D}\pi^+\pi^-\ell^+ u_\ell$		($) \times 10^{-3}$		2301
$\overline{D}^*\pi^+\pi^-\ell^+\nu_\ell$		(9.4	\pm	3.2	$) \times 10^{-4}$		2247
$D_s^-\ell^+ u_\ell$ anything	[sss]	<	7			$\times 10^{-3}$	CL=90%	_
$D_s^-\ell^+ u_\ell K^+$ anything	[sss]	<	5			$\times 10^{-3}$	CL=90%	_
$D_s^-\ell^+ u_\ellK^0$ anything	[sss]	<	7			$\times 10^{-3}$	CL=90%	_
$X_c \ell^{+} \nu_{\ell}$		(10.65	\pm	0.16) %		_
$X_{u}\ell^{+}\nu_{\ell}$		(2.13	\pm	0.30	$) \times 10^{-3}$		_
$\mathit{K}^{+}\ell^{+} u_{\ell}$ anything	[sss]	(6.3	\pm	0.6) %		_
$\mathit{K}^-\ell^+ u_\ell$ anything	[sss]	(10	\pm	4	$) \times 10^{-3}$		_
$K^0/\overline{K}{}^0\ell^+ u_\ell$ anything	[sss]	(4.6	\pm	0.5) %		_
$\overline{D}\tau^+\nu_{\tau}$		(9.9	\pm	1.2	$) \times 10^{-3}$		1911
$D^* \tau^+ \nu_{\tau}$		(1.50	\pm	0.08) %		1838
	D, D*	or	D. mo	de				
D^\pm anything	-, -	(23.1) %		_
D^0/\overline{D}^0 anything		(2.9	•	S=1.3	_
$D^*(2010)^{\pm}$ anything		(1.5	•	5-1.5	_
$D^*(2007)^0$ anything		(26.0			•		_
D_s^{\pm} anything	[<i>hh</i>]	(8.3			,		_
$D_s^{*\pm}$ anything	[,,,,]	(6.3		1.0			_
D_s anything $D^* \pm \overline{D}(*)$		(•		
$\frac{D_s^{*\pm}\overline{D}^{(*)}}{\overline{D}} = \frac{D_s^{*\pm}\overline{D}^{(*)}}{\overline{D}}$		(3.4	土	0.6) %		_
$\overline{D}D_{s0}(2317)$			seen					1605
$DD_{sJ}(2457)$			seen					_
$D^{(*)}\overline{D}^{(*)}K^{0} +$	[hh,llaa]	(7.1	+	2.7 1.7) %		_
$D^{(*)} \overline{D}^{(*)} {\mathcal K}^\pm$					-			

```
b \rightarrow c \overline{c} s
                                                        22
                                                                          ) %
D_{\epsilon}^{(*)} \overline{D}^{(*)}
                                                         3.9
                                                               \pm 0.4 ) %
                                      [hh,llaa]
D^* D^* (2010)^{\pm}
                                                                           \times 10^{-3} CL=90%
                                           [hh] <
                                                         5.9
                                                                                                     1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                            \times 10^{-3} CL=90%
                                                         5.5
                                           [hh] <
DD^{\pm}
                                                                           \times 10^{-3} CL=90%
                                           [hh] <
                                                                                                     1866
D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                      [hh,llaa]
                                                                          ) %
D^*(2010)\gamma
                                                                           \times 10^{-3} CL=90%
                                                                                                     2257
                                                         1.1
D_s^+\pi^- , D_s^{*+}\pi^- , D_s^+\rho^- ,
                                                                            \times 10^{-4} CL=90%
                                           [hh] <
     D_s^{*+}\rho^-, D_s^+\pi^0, D_s^{*+}\pi^0,
    \times 10^{-3} CL=90%
D_{s1}(2536)^{+} anything
                                                         9.5
                                                 <
                                        Charmonium modes
J/\psi(1S) anything
                                                         1.094 \pm 0.032) \%
                                                                                          S=1.1
   J/\psi(1S) (direct) anything
                                                         7.8 \pm 0.4 \times 10^{-3}
                                                                                          S=1.1
                                                         3.07 \pm 0.21 \times 10^{-3}
\psi(2S) anything
\chi_{c1}(1P) anything
                                                         3.55 \pm 0.27 \times 10^{-3}
                                                                                          S = 1.3
   \chi_{c1}(1P) (direct) anything
                                                         3.08 \pm 0.19 \times 10^{-3}
\chi_{c2}(1P) anything
                                                        10.0
                                                               \pm 1.7 ) \times 10^{-4}
                                                                                          S=1.6
                                                              \pm 1.1 ) \times 10^{-4}
   \chi_{c2}(1P) (direct) anything
                                                         7.5
\eta_c(1S) anything
                                                         9
                                                                            \times 10^{-3} CL=90%
K\chi_{c1}(3872), \chi_{c1} \rightarrow
                                                               \pm 0.4 ) \times 10<sup>-4</sup>
                                                                                                     1141
     D^0 \overline{D}{}^0 \pi^{\acute{0}}
   K\chi_{c1}(3872), \chi_{c1} \rightarrow
                                                               \pm 2.2 \times 10^{-5}
                                                                                                     1141
        D^{*0}D^{0}
KX(3940), X \rightarrow D^{*0}D^{0}
                                                         6.7
                                                                            \times 10^{-5} CL=90%
                                                                                                     1084
                                                               \pm 3.4 ) \times 10^{-5}
KX(3915), X \rightarrow \omega J/\psi
                                                         7.1
                                                                                                     1103
                                        [nnaa] (
                                          K or K* modes
K^{\pm} anything
                                           [hh]
                                                        78.9
                                                               \pm 2.5
                                                                          ) %
   K^+ anything
                                                                \pm 5
                                                                          ) %
   K^- anything
                                                        13
                                                                          ) %
K^0/\overline{K}^0 anything
                                                        64
                                                                \pm 4
                                                                          ) %
                                           [hh]
K^*(892)^{\pm} anything
                                                        18
                                                                \pm 6
                                                                          ) %
K^*(892)^0 / \overline{K}^*(892)^0 anything [hh]
                                                        14.6 \pm 2.6 ) %
K^*(892)\gamma
                                                               \pm 0.6
                                                                          ) \times 10^{-5}
                                                                                                     2565
\eta K \gamma
                                                                          ) \times 10^{-6}
                                                                                                     2588
K_1(1400)\gamma
                                                                           \times 10^{-4} CL=90%
                                                 <
                                                         1.27
                                                                                                     2454
K_2^*(1430)\gamma
                                                         1.7
                                                                          ) \times 10^{-5}
                                                                                                     2447
                                                  (
K_2(1770)\gamma
                                                                           \times 10^{-3} CL=90%
                                                                                                     2342
                                                 <
                                                         1.2
                                                                            \times 10^{-5} CL=90%
K_3^*(1780)\gamma
                                                         3.7
                                                 <
                                                                                                     2341
```

$K_4^*(2045)\gamma$	<	1.0	\times 10 ⁻³	CL=90%	2244
$K \eta'(958)$	(8.3 ± 1.1	$) \times 10^{-5}$		2528
$K^*(892)\eta'(958)$	(4.1 \pm 1.1	$) \times 10^{-6}$		2472
$K\eta$	<	5.2	\times 10 ⁻⁶	CL=90%	2588
$K^*(892)\eta$	($1.8~\pm~0.5$	$) \times 10^{-5}$		2534
$K\phi\phi$	(2.3 ± 0.9	$) \times 10^{-6}$		2306
$\overline{b} ightarrow \overline{s} \gamma$	($3.49\ \pm\ 0.19$	$) \times 10^{-4}$		_
$\overline{b} ightarrow \overline{d} \gamma$	($9.2 \pm \ 3.0$	$) \times 10^{-6}$		_
$\overline{b} ightarrow \overline{s}$ gluon	<	6.8	%	CL=90%	_
η anything	($\begin{array}{cccc} 2.6 & + & 0.5 \\ - & 0.8 \end{array}$	$) \times 10^{-4}$		_
η' anything	(4.2 ± 0.9	$) \times 10^{-4}$		_
K^+ gluon (charmless)	<	1.87	$\times 10^{-4}$	CL=90%	_
K^0 gluon (charmless)	(1.9 ± 0.7) × 10 ⁻⁴		_

Light unflavored meson modes

$ ho \gamma$		(1.39	± 0.2	$25) \times 10^{-6}$	S=1.2	2583
$ ho/\omega\gamma$		(1.30	± 0.2	$23) \times 10^{-6}$	S=1.2	_
π^\pm anything	[hh,ooaa]	(358	\pm 7) %		_
$\pi^{f 0}$ anything		(235	± 11) %		_
η anything		(17.6	\pm 1.6	5)%		_
$ ho^0$ anything		(21	\pm 5) %		_
ω anything		<	81		%	CL=90%	_
ϕ anything		(3.43	± 0.1	12)%		_
ϕ K*(892)		<	2.2		\times 10 ⁻⁵	CL=90%	2460
π^+ gluon (charmless)		(3.7	± 0.8	$3) \times 10^{-4}$		_

Barvon modes

Daryon modes									
$\Lambda_c^+ / \overline{\Lambda}_c^-$ anything	(3.6 ± 0.4) %		_				
Λ_c^+ anything	<	1.3	%	CL=90%	_				
$\overline{\Lambda}_{c}^{-}$ anything	<	7	%	CL=90%	_				
$\overline{\Lambda}_c^- \ell^+$ anything	<	9	$\times 10^{-4}$	CL=90%	_				
$\overline{\Lambda}_c^- e^+$ anything	<	1.8	$\times 10^{-3}$	CL=90%	_				
$\overline{\Lambda}_c^- \mu^+$ anything	< -	1.4	$\times 10^{-3}$	³ CL=90%	_				
$\overline{\Lambda}_{c}^{-}$ p anything	($2.04 ~\pm~ 0.33$) %		_				
$\overline{\Lambda}_c^- p e^+ \nu_e$	<	8	$\times 10^{-4}$	CL=90%	2021				
$\overline{\Sigma}_c^{}$ anything	(3.3 ± 1.7	$) \times 10^{-3}$		_				
$\overline{\Sigma}_c^-$ anything	<	8	$\times 10^{-3}$	CL=90%	_				
$\frac{\overline{\Sigma}_{c}^{0}}{\overline{\Sigma}_{c}^{0}} \text{ N}(N = p \text{ or } n)$	($3.7 \pm \ 1.7$	$) \times 10^{-3}$		_				
$\overline{\Sigma}_c^0 N(N = p \text{ or } n)$	<	1.2	$\times 10^{-3}$	CL=90%	1938				
Ξ_c^0 anything, $\Xi_c^0 \rightarrow \Xi^- \pi^+$	($1.93 ~\pm~ 0.30$	$) \times 10^{-4}$	S=1.1	_				
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($\begin{array}{cccc} 4.5 & + & 1.3 \\ - & 1.2 \end{array}$	$) \times 10^{-4}$		_				

p/\overline{p} anything	[hh] ($8.0~\pm~0.4~$) %	_
p/\overline{p} (direct) anything	[hh] (5.5 ± 0.5) %	_
$\overline{p}e^+\nu_e$ anything	<	$5.9 \times 10^{-4} \text{ CL} = 90\%$	_
$\Lambda/\overline{\Lambda}$ anything	[hh] ($4.0~\pm~0.5~$) %	_
Λ anything		seen	_
$\overline{\Lambda}$ anything		seen	_
$\overline{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[hh] ($2.7 \pm 0.6) \times 10^{-3}$	_
baryons anything	($6.8~\pm~0.6$) %	_
$p\overline{p}$ anything	($2.47~\pm~0.23$) %	_
$\Lambda \overline{p}/\overline{\Lambda} p$ anything	[hh] (2.5 \pm 0.4) %	_
$\Lambda \overline{\Lambda}$ anything	<	5 $\times 10^{-3} \text{ CL}=90\%$	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

se^+e^-	В1	(6.7	`	7) \times 10 ⁻⁶	S=2.0	_
		(3=2.0	
$s\mu^+\mu^-$	B1	(4.3		0) $\times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[<i>sss</i>] (5.8	\pm 1.3	$3) \times 10^{-6}$	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9		$\times 10^{-8}$	CL=90%	2638
πe^+e^-	B1	<	1.10		$\times 10^{-7}$	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0		$\times 10^{-8}$	CL=90%	2634
$K e^+ e^-$	B1	(4.4	± 0.	6) $\times 10^{-7}$		2617
$K^*(892)e^+e^-$	B1	(1.19	± 0.2	$20) \times 10^{-6}$	S=1.2	2565
$K \mu^+ \mu^-$	B1	(4.4	± 0.	4) $\times 10^{-7}$		2612
$K^*(892)\mu^+\mu^-$	B1	(1.06	± 0.0	$09) \times 10^{-6}$		2560
$K\ell^+\ell^-$	B1	(4.8	± 0.	4) $\times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	(1.05	± 0.	$10) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.6		$\times 10^{-5}$	CL=90%	2617
$K^* u \overline{ u}$	B1	<	2.7		$\times 10^{-5}$	CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8		$\times 10^{-6}$	CL=90%	2638
$ ho u \overline{ u}$	B1	<	2.8		$\times 10^{-5}$	CL=90%	2583
$se^\pm\mu^\mp$	LF	[hh] <	2.2		$\times 10^{-5}$	CL=90%	_
$\pi\mathrm{e}^\pm\mu^\mp$	LF	<	9.2		$\times 10^{-8}$	CL=90%	2637
$ hoe^{\pm}\mu^{\mp}$	LF	<	3.2		$\times 10^{-6}$	CL=90%	2582
K e $^\pm \mu^\mp$	LF	<	3.8		$\times 10^{-8}$	CL=90%	2616
$K^*(892) e^{\pm} \mu^{\mp}$	LF	<	5.1		$\times 10^{-7}$	CL=90%	2563

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life $au=(1.5662\pm0.0029)\times10^{-12}$ s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged *b*-hadron admixture

Mean life $au = (1.58 \pm 0.14) imes 10^{-12}$ s Neutral b-hadron admixture

 $au_{
m charged\ b-hadron}/ au_{
m neutral\ b-hadron}=1.09\pm0.13 \ \left|\Delta au_{\ b}
ight|/ au_{\ b,\overline{b}}=-0.001\pm0.014 \
m Re(\epsilon_b)\ /\ (1+\left|\epsilon_b
ight|^2)=(-1.3\pm0.4) imes10^{-3}$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

b DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Created: 5/22/2019 10:04

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. The production fractions in b-hadronic Z decay or $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to B^+) = \mathsf{B}(\overline{b}\to B^0) \\ \mathsf{B}(\overline{b}\to B^+) + \mathsf{B}(\overline{b}\to B^0) + \mathsf{B}(\overline{b}\to B^0_s) + \mathsf{B}(b\to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b ext{-baryon}) = -0.260$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.136$
 $cor(b ext{-baryon}, B^{\pm} = B^0) = -0.922$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), Br(b \to \overline{B}^0))$. We use our own branching fraction notation here, $B(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	$(40.5 \pm 0.6)\%$
B^0	(40.5 ± 0.6) % -
B_s^0	(10.3 ± 0.5) %
<i>b</i> -baryon	(8.8 ± 1.2) %

DECAY MODES

Semileptonic and leptonic modes

```
\nu anything
                                                               ( 23.1 \pm 1.5 ) %
    \ell^+ \nu_\ell anything
                                                      [sss] (10.69 \pm 0.22)\%
    e^+ \nu_e anything
                                                               (10.86 \pm 0.35)\%
                                                               ( 10.95^{+}_{-} \begin{array}{c} 0.29 \\ 0.25 \end{array}) %
   \mu^+ \nu_\mu anything
D^-\ell^+\nu_\ell anything
                                                      [sss] ( 2.2 \pm 0.4)%
                                                                                                       S = 1.9
    D^-\pi^+\ell^+\nu_\ell anything
                                                               (4.9 \pm 1.9) \times 10^{-3}
    D^-\pi^-\ell^+\nu_\ell anything
                                                               (2.6 \pm 1.6) \times 10^{-3}
\overline{D}^0 \ell^+ \nu_\ell anything
                                                      [sss] (6.79 \pm 0.34)\%
    \overline{D}{}^0\pi^-\ell^+\nu_\ell anything
                                                               (1.07 \pm 0.27)\%
    \overline{D}{}^0\pi^+\ell^+\nu_\ell anything
                                                               (2.3 \pm 1.6) \times 10^{-3}
D^{*-}\ell^+\nu_\ell anything
                                                     [sss] (2.75\pm0.19)\%
    D^{*-}\pi^{-}\ell^{+}\nu_{\ell} anything
                                                               (6 \pm 7) \times 10^{-4}
    D^{*-}\pi^+\ell^+\nu_\ell anything
                                                               (4.8 \pm 1.0) \times 10^{-3}
                                              [sss,ppaa] ( 2.6 \pm 0.9 ) \times 10^{-3}
       \overline{D}_{i}^{0}\ell^{+}\nu_{\ell} anything \times
             B(\overline{D}_i^0 \rightarrow D^{*+}\pi^-)
       D_i^- \ell^+ \nu_\ell anything \times [sss,ppaa] ( 7.0 \pm 2.3 ) \times 10<sup>-3</sup>
             \mathsf{B}(D_i^- \to D^0\pi^-)
       \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell anything
                                                                    1.4 \times 10^{-3} \text{ CL} = 90\%
             \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow
             D^{*-}\pi^{+}
                                                       (4.2 + 1.5 \atop -1.8) \times 10^{-3}
       D_2^*(2460)^- \ell^+ \nu_{\ell} anything
             \times B(D_2^*(2460)^- \rightarrow
             D^{0}\pi^{-})
                                                      (1.6 \pm 0.8) \times 10^{-3}
       \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell anything
             \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow
             D^{-}\pi^{+})
```

```
[sss] (1.7 \pm 0.5) \times 10^{-3}
charmless \ell \overline{\nu}_{\ell}
\tau^+ \nu_{\tau} anything
                                                 (2.41 \pm 0.23)\%
   D^{*-} \tau \nu_{\tau} anything
                                                 (9 \pm 4) \times 10^{-3}
\overline{c} \rightarrow \ell^- \overline{\nu}_{\ell} anything
                                         [sss] (8.02 \pm 0.19)\%
                                                 (1.6 + 0.4)
c \rightarrow \ell^+ \nu anything
                          Charmed meson and baryon modes
\overline{D}^0 anything
                                                (58.7 \pm 2.8)\%
                                         [hh] ( 9.1 ^{+} 4.0 ) %
D^0 D_s^{\pm} anything
                                         [hh] ( 4.0 ^{+} 2.3 ) %
D^{\mp}D_{\epsilon}^{\pm} anything
\overline{D}^0 D^0 anything
                                         [hh] (5.1 + 2.0 )\%
D^0 D^{\pm} anything
                                         [hh] ( 2.7 ^{+} ^{1.8} )%
D^{\pm}D^{\mp} anything
                                                                  \times 10^{-3} CL=90%
                                          [hh] <
D^- anything
                                               (22.7 \pm 1.6)\%
D^*(2010)^+ anything
                                                (17.3 \pm 2.0)\%
D_1(2420)^0 anything
                                                (5.0 \pm 1.5)\%
D^*(2010)^{\mp}D_s^{\pm} anything
                               [hh] (3.3 + 1.6 )\%
D^0 D^* (2010)^{\pm} anything
                                         [hh] ( 3.0 + 1.1 ) \%
D^*(2010)^{\pm}D^{\mp} anything
                                         [hh] (2.5 + 1.2)\%
D^*(2010)^{\pm} D^*(2010)^{\mp} anything [hh] ( 1.2 ± 0.4 )%
\overline{D}D anything
D_2^*(2460)^0 anything
                                                (4.7 \pm 2.7)\%
D_s^- anything
                                                 ( 14.7 \pm 2.1 ) %
D_s^+ anything
                                                 (10.1 \pm 3.1)\%
\Lambda_c^+ anything
                                                 (7.7 \pm 1.1)\%
                                       [ooaa] (116.2 \pm 3.2 ) %
\overline{c}/c anything
                                    Charmonium modes
J/\psi(1S) anything
                                                 (1.16\pm~0.10)\%
\psi(2S) anything
                                                 (2.86\pm 0.28) \times 10^{-3}
                                                 (1.5 \pm 0.6)\%
\chi_{c0}(1P) anything
\chi_{c1}(1P) anything
                                                (1.4 \pm 0.4)\%
                                                (6.2 \pm 2.9) \times 10^{-3}
\chi_{c2}(1P) anything
   \chi_c(2P) anything, \chi_c \rightarrow \phi \phi
                                                                   \times 10^{-7} CL=95%
                                                    2.8
\eta_c(1S) anything
                                               ( 4.5 \pm 1.9)%
\eta_c(2S) anything, \eta_c 
ightarrow \phi \phi
                                              (3.2 \pm 1.7) \times 10^{-6}
   \chi_{c1}(3872) anything, \chi_{c1} \rightarrow
                                                    4.5
                                                         \times 10^{-7} CL=95%
   X(3915) anything, X \rightarrow \phi \phi
                                                                \times 10^{-7} CL=95%
                                                    3.1
```

K or K^* modes

$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{s}\overline{\nu}\nu$	B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^\pm anything		$(74 \pm 6)\%$	_
K_S^0 anything		($29.0~\pm~2.9$) %	_

Pion modes

π^\pm anything		(397	± 21) %		_
π^0 anything	[ooaa]	(278	± 60) %		_
ϕ anything		(2.8	2± 0.2	(3) %		_

Baryon modes

p/\overline{p} anything	(13.1 ± 1.1) %	_
$\Lambda/\overline{\Lambda}$ anything	(5.9 ± 0.6) %	_
b-baryon anything	(10.2 ± 2.8) %	_

Other modes

charged anything	[ooaa]	$(497 \pm 7)\%$	_
${\sf hadron}^+\ {\sf hadron}^-$		$(1.7 \ ^{+}_{-} \ ^{1.0}_{0.7} \) \times 10^{-5}$	_
charmless		$(7 \pm 21) \times 10^{-3}$	_

$\Delta B = 1$ weak neutral current (B1) modes

$$\mu^+\mu^-$$
 anything B1 < 3.2 \times 10⁻⁴ CL=90%

$$I(J^P) = \frac{1}{2}(1^-)$$
 I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*} = 5324.70 \pm 0.22$$
 MeV $m_{B^*} - m_B = 45.22 \pm 0.21$ MeV $m_{B^{*+}} - m_{B^+} = 45.37 \pm 0.21$ MeV

B* DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

(MeV/c)

$$B\gamma$$
 seen 45

$B_1(5721)^+$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Created: 5/22/2019 10:04

Mass
$$m=5725.9^{+2.5}_{-2.7}~{\rm MeV}$$
 $m_{B_1^+}-m_{B^{*0}}=401.2^{+2.4}_{-2.7}~{\rm MeV}$ Full width $\Gamma=31\pm6~{\rm MeV}~{\rm (S}=1.1)$

B_1 (5721)+ DECAY MODESFraction (Γ_i/Γ) p (MeV/c) $B^{*0} \pi^+$ seen363

$B_1(5721)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^0$$
 MASS $= 5726.1 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV (S $= 1.2$) Full width $\Gamma = 27.5 \pm 3.4$ MeV (S $= 1.1$)

*B*₁(5721)⁰ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

seen

363

$B_2^*(5747)^+$

$$I(J^P) = \frac{1}{2}(2^+)$$
 I, J, P need confirmation.

Mass
$$m=5737.2\pm0.7~{
m MeV}$$
 $m_{B_2^{*+}}-m_{B^0}=457.5\pm0.7~{
m MeV}$ Full width $\Gamma=20\pm5~{
m MeV}~({
m S}=2.2)$

B **(5747) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	seen	418
$B^{st 0} \pi^+$	seen	374

$B_2^*(5747)^0$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^0$$
 MASS $= 5739.5 \pm 0.7$ MeV (S $= 1.4$) $m_{B_2^{*0}} - m_{B_1^0} = 13.4 \pm 1.4$ MeV (S $= 1.3$) $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV (S $= 1.4$) Full width $\Gamma = 24.2 \pm 1.7$ MeV

B * ₂ (5747) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	seen	421
$B^{*+}\pi^-$	seen	376

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5964\pm5$$
 MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm5$ MeV Full width $\Gamma=62\pm20$ MeV

HTTP://PDG.LBL.GOV

Page 120

B _J (5970) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^0\pi^+$	possibly seen	632
$B^{*0}\pi^+$	seen	591

$B_J(5970)^0$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

Mass
$$m=5971\pm5$$
 MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm5$ MeV Full width $\Gamma=81\pm12$ MeV

B _J (5970) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^+\pi^-$	possibly seen	638
$B^{*+}\pi^-$	seen	596

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

B_s^0

$$I(J^P) = 0(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0} = 5366.88 \pm 0.17 \; {
m MeV}$$
 $m_{B_s^0} - m_B = 87.40 \pm 0.18 \; {
m MeV}$ Mean life $\tau = (1.510 \pm 0.004) \times 10^{-12} \; {
m s}$ $c \tau = 452.7 \; \mu {
m m}$ $\Delta \Gamma_{B_s^0} = \Gamma_{B_{sL}^0} - \Gamma_{B_{sH}^0} = (0.090 \pm 0.005) \times 10^{12} \; {
m s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.757 \pm 0.021) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (1.1688 \pm 0.0014) \times 10^{-8} \ \text{MeV}$$
 $x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.81 \pm 0.08$
 $\chi_s = 0.499308 \pm 0.000004$

CP violation parameters in B_s^0

$$\begin{array}{l} \operatorname{Re}(\epsilon_{B_s^0}) \ / \ (1 + \left| \epsilon_{B_s^0} \right|^2) = (-0.15 \pm 0.70) \times 10^{-3} \\ C_{KK}(B_s^0 \to K^+ K^-) = 0.14 \pm 0.11 \\ S_{KK}(B_s^0 \to K^+ K^-) = 0.30 \pm 0.13 \\ r_B(B_s^0 \to D_s^\mp K^\pm) = 0.37_{-0.09}^{+0.10} \\ \delta_B(B_s^0 \to D_s^\pm K^\mp) = (358 \pm 14)^\circ \\ CP \operatorname{Violation phase} \ \beta_s = (1.1 \pm 1.6) \times 10^{-2} \operatorname{rad} \\ \left| \lambda \right| \ (B_s^0 \to J/\psi(1S)\phi) = 0.964 \pm 0.020 \\ \left| \lambda \right| = 1.002 \pm 0.017 \\ A, \ CP \ \operatorname{violation parameter} = -0.75 \pm 0.12 \\ C, \ CP \ \operatorname{violation parameter} = 0.19 \pm 0.06 \\ S, \ CP \ \operatorname{violation parameter} = 0.17 \pm 0.06 \\ A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.06 \\ A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10 \\ A_{CP}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10 \\ A_{CP}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.04 \pm 0.07 \\ A_{CP}(B_s^0 \to [\pi^+ K^-]_D \overline{K}^*(892)^0) = -0.04 \pm 0.07 \\ A_{CP}(B_s^0 \to [\pi^+ K^-]_D K^*(892)^0) = -0.01 \pm 0.04 \\ A_{CP}(B_s^0 \to [\pi^+ K^-]_D K^*(892)^0) = 0.06 \pm 0.13 \\ A_{C}^\Delta(B_s \to \phi\gamma) = -1.0 \pm 0.5 \\ \Delta_{a_{\perp}} < 1.2 \times 10^{-12} \operatorname{GeV}, \ CL = 95\% \\ \Delta_{a_{\parallel}} = (-0.9 \pm 1.5) \times 10^{-14} \operatorname{GeV} \\ \Delta_{a_{Y}} = (-3.8 \pm 2.2) \times 10^{-14} \operatorname{GeV} \\ A_{CP}(E_s^0 \to -0.022 \pm 0.033 \\ \operatorname{Im}(\mathcal{E}) = 0.004 \pm 0.011 \\ \end{array}$$

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on " B^0 - \overline{B}^0 Mixing"

For inclusive branching fractions, e.g., $B\to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B _s ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\overline{D_s^-}$ anything	(93 ±25) %		_
$\ell \nu_\ell X$	$(9.6 \pm 0.8)\%$)	_
$e^+ \nu X^-$	$(9.1 \pm 0.8)\%$)	_
$\mu^+ \nu X^-$	(10.2 \pm 1.0) %))	_
$D_{s}^{-}\ell^{+} u_{\ell}$ anything	[qqaa] (8.1 ± 1.3) %)	_
$D_s^{*-}\ell^+ u_\ell$ anything	$(5.4 \pm 1.1)\%$))	_
$D_{s1}(2536)^- \mu^+ \nu_{\mu}, \ D_{s1}^- \to D^{*-} K_s^0$	($2.6~\pm~0.7$) $ imes$	10^{-3}	-
$D_{s1}(2536)^{-} X \mu^{+} \nu, D_{s1}^{-} \rightarrow \overline{D}^{0} K^{+}$	(4.4 \pm 1.3) \times	10 ⁻³	-
$D_{s2}(2573)^{-} X \mu^{+} \nu, D_{s2}^{-} \rightarrow \overline{D}^{0} K^{+}$	(2.7 ± 1.0) \times	10 ⁻³	-
$D_s^-\pi^+$	($3.00\pm~0.23)$ $ imes$	10-3	2320
$D_s^- \rho^+$	(6.9 \pm 1.4) $ imes$	10^{-3}	2249
$D_{s}^{-}\pi^{+}\pi^{+}\pi^{-}$	(6.1 \pm 1.0) $ imes$	10^{-3}	2301
$D_{s1}(2536)^-\pi^+, \ D_{s1}^- \to D_{s1}^-\pi^+\pi^-$	($2.5~\pm~0.8$) $ imes$		_
$D_s^-\pi^+\pi^ D_s^+K^\pm$	(2.27± 0.19) ×	10-4	2293
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	$(3.2 \pm 0.6) \times$		2249
$D_s^+D_s^-$	$(4.4 \pm 0.5) \times$	_	1824
$D_s^-D_s^+$	$(2.8 \pm 0.5) \times$		1875
$D^{\stackrel{s}{+}}D^{-}$	$(2.2 \pm 0.6) \times$		1925
$D^0 \overline{D}{}^0$	(1.9 ± 0.5)×		1930
$D_{s}^{*-}\pi^{+}$	(2.0 ± 0.5) \times		2265
$D_s^{*\mp}K^\pm$	(1.33± 0.35) ×	_	_
$D_{s}^{*-}\rho^{+}$	(9.6 \pm 2.1) $ imes$	10 ⁻³	2191
$D_{s}^{*+}D_{s}^{-}+D_{s}^{*-}D_{s}^{+}$	$(1.37\pm~0.16)\%$		1742
$D_{s}^{*+}D_{s}^{*-}$	(1.44 ± 0.20) %	S=1.1	1655
$D_{s}^{*+}D_{s}^{*-}$ $D_{s}^{(*)+}D_{s}^{(*)-}$ $\overline{D}^{*0}\overline{K}^{0}$	$(4.5 \pm 1.4)\%$		_
$\overline{D}_{0}^{s} \overline{K}^{0}$	(2.8 ± 1.1)×	_	2278
$\overline{D}{}^0\overline{K}{}^0$	(4.3 ± 0.9)×	_	2330
$\overline{D}{}^0{\it K}^-\pi^+$	(1.04± 0.13) ×	10^{-3}	2312
$\overline{D}{}^{0}\overline{K}^{*}(892)^{0}$	(4.4 \pm 0.6) \times	10^{-4}	2264
$\overline{D}_{0}^{0}\overline{K}^{*}(1410)$	(3.9 ± 3.5) $ imes$	_	2117
$\overline{D}{}^{0}\overline{K}_{0}^{*}(1430)$	(3.0 \pm 0.7) \times		2113
$\overline{D}^0 \overline{K}_2^* (1430)$	(1.1 ± 0.4) $ imes$		2113
$\overline{D}^0 \overline{K}^*$ (1680)	< 7.8 ×		1997
$\overline{D}{}^0\overline{K}_0^*(1950)$	< 1.1 ×		1890
HTTP://PDG.LBL.GOV	Page 123 Cre	eated: 5/22/2019	10:04

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{\underline{D}}{}^{0}\overline{K}_{3}^{*}(1780)$		× 10 ⁻⁵		1971
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{D}^0 \overline{K}_4^* (2045)$			CL=90%	1837
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				2312
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(2.6 ± 0	$0.4) \times 10^{-4}$		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{s1}^{*}(2700)^{-}\pi^{+}, \ D_{s1}^{*} \rightarrow$	(1.6 ± 0	$0.8 \) \times 10^{-5}$		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{s1}^{*}(2860)^{-}\pi^{+}, D_{s1}^{*} \rightarrow$	(5 ± 4	$\times 10^{-5}$		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D_{s3}^*(2860)^-\pi^+, \ D_{s3}^* \to$	(2.2 ± 0	0.6) \times 10 ⁻⁵		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D_0 \kappa + \kappa -$	(\ \ \ \ \ \ \ 10 ⁻ 5		2242
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CI -00%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				CL=90/0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{D}{D} \phi$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	CI -90%	2170
$\begin{array}{llllllllllllllllllllllllllllllllllll$			_	CL=3070	1663
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* *	`			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					764
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$J/\psi(1S)\pi^0$	< 1.2	× 10 ⁻³	CL=90%	1787
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1733
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_		1743
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		_		1637
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,		1612
$J/\psi(1S) f_0(500), \ f_0 \rightarrow \qquad < 4 \qquad \times 10^{-6} \ \text{CL} = 90\% \qquad - \pi^+ \pi^- \qquad < 4 \qquad \times 10^{-6} \ \text{CL} = 90\% \qquad - J/\psi(1S) f_0(980), \ f_0 \rightarrow \qquad (1.28 \pm 0.18) \times 10^{-4} \ \text{S} = 1.7 \qquad - \pi^+ \pi^- \qquad J/\psi(1S) f_2(1270), \ f_2 \rightarrow \qquad (1.1 \pm 0.4) \times 10^{-6} \qquad - \pi^+ \pi^- \qquad J/\psi(1S) f_2(1270)_{\parallel}, \ f_2 \rightarrow \qquad (1.09 \pm 0.34) \times 10^{-6} \qquad - \pi^+ \pi^- \qquad J/\psi(1S) f_2(1270)_{\perp}, \ f_2 \rightarrow \qquad (1.3 \pm 0.8) \times 10^{-6} \qquad - \pi^+ \pi^- \qquad J/\psi(1S) f_0(1370), \ f_0 \rightarrow \qquad (4.5 \pm 0.7) \times 10^{-5} \qquad - \pi^+ \pi^- \qquad J/\psi(1S) f_0(1500), \ f_0 \rightarrow \qquad (2.11 \pm 0.40) \times 10^{-5} \qquad - \pi^+ \pi^- \qquad - J/\psi(1S) f_0(1500), \ f_0 \rightarrow \qquad (2.11 \pm 0.40) \times 10^{-5} \qquad - \pi^+ \pi^- \qquad - J/\psi(1S) f_2(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6} \qquad - J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times $	7 7 7 7 7			S=1.3	1775
$J/\psi(1S) ho, ho ightarrow \pi^+\pi^ < 4 imes 10^{-6} ext{ CL} = 90\%$ -5 $J/\psi(1S) f_0(980), ho ho ightarrow \pi^+\pi^ < 4 imes 10^{-6} ext{ CL} = 90\%$ -5 -5 -5 -5 -5 -5 -5 -5	$J/\psi(1S) f_0(500), f_0 \to$				_
$J/\psi(1S)f_0(980), f_0 \rightarrow (1.28 \pm 0.18) \times 10^{-4} $ S=1.7 $\pi^+\pi^ J/\psi(1S)f_2(1270), f_2 \rightarrow (1.1 \pm 0.4) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S)f_2(1270)_0, f_2 \rightarrow (7.5 \pm 1.8) \times 10^{-7}$ $\pi^+\pi^ J/\psi(1S)f_2(1270)_{\parallel}, f_2 \rightarrow (1.09 \pm 0.34) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S)f_2(1270)_{\perp}, f_2 \rightarrow (1.3 \pm 0.8) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S)f_0(1370), f_0 \rightarrow (4.5 + 0.7 + 0.40) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S)f_0(1500), f_0 \rightarrow (2.11 + 0.40) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S)f_2(1525)_0, f_2' \rightarrow (1.07 \pm 0.24) \times 10^{-6}$		< 4	× 10 ⁻⁶	CL=90%	_
$J/\psi(1S) f_2(1270), f_2 \rightarrow (1.1 \pm 0.4) \times 10^{-6}$ $J/\psi(1S) f_2(1270)_0, f_2 \rightarrow (7.5 \pm 1.8) \times 10^{-7}$ $J/\psi(1S) f_2(1270)_{\parallel}, f_2 \rightarrow (1.09 \pm 0.34) \times 10^{-6}$ $J/\psi(1S) f_2(1270)_{\parallel}, f_2 \rightarrow (1.3 \pm 0.8) \times 10^{-6}$ $J/\psi(1S) f_2(1270)_{\perp}, f_2 \rightarrow (1.3 \pm 0.8) \times 10^{-6}$ $J/\psi(1S) f_0(1370), f_0 \rightarrow (4.5 + 0.7) \times 10^{-5}$ $J/\psi(1S) f_0(1500), f_0 \rightarrow (2.11 + 0.40) \times 10^{-5}$ $J/\psi(1S) f_2'(1525)_0, f_2' \rightarrow (1.07 \pm 0.24) \times 10^{-6}$, , , , , ,				_
$J/\psi(1S) f_2(1270)_0, \ f_2 \rightarrow \qquad (7.5 \pm 1.8) \times 10^{-7}$ $\pi^+\pi^ J/\psi(1S) f_2(1270)_{\parallel}, \ f_2 \rightarrow \qquad (1.09 \pm 0.34) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S) f_2(1270)_{\perp}, \ f_2 \rightarrow \qquad (1.3 \pm 0.8) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S) f_0(1370), \ f_0 \rightarrow \qquad (4.5 + 0.7 - 4.0) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S) f_0(1500), \ f_0 \rightarrow \qquad (2.11 + 0.40 - 0.29) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S) f_2'(1525)_0, \ f_2' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6}$	$\pi^+\pi^-$			U 2	_
$\pi^{+}\pi^{-}$ $J/\psi(1S) f_{2}(1270)_{\parallel}, f_{2} \rightarrow \qquad (1.09 \pm 0.34) \times 10^{-6}$ $\pi^{+}\pi^{-}$ $J/\psi(1S) f_{2}(1270)_{\perp}, f_{2} \rightarrow \qquad (1.3 \pm 0.8) \times 10^{-6}$ $\pi^{+}\pi^{-}$ $J/\psi(1S) f_{0}(1370), f_{0} \rightarrow \qquad (4.5 + 0.7 - 0.24) \times 10^{-5}$ $\pi^{+}\pi^{-}$ $J/\psi(1S) f_{0}(1500), f_{0} \rightarrow \qquad (2.11 + 0.40 - 0.24) \times 10^{-6}$ $J/\psi(1S) f_{2}'(1525)_{0}, f_{2}' \rightarrow \qquad (1.07 \pm 0.24) \times 10^{-6}$	$\pi^+\pi^-$		_		
$J/\psi(1S) f_2(1270)_{\perp}, f_2 \rightarrow (1.3 \pm 0.8) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S) f_0(1370), f_0 \rightarrow (4.5 + 0.7 - 0.29) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S) f_0(1500), f_0 \rightarrow (2.11 + 0.40 - 0.29) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S) f_2'(1525)_0, f_2' \rightarrow (1.07 \pm 0.24) \times 10^{-6}$	$\pi^+\pi^-$	$(7.5 \pm 1$	1.8) × 10 ⁻⁷		_
$J/\psi(1S) f_2(1270)_{\perp}, f_2 \rightarrow (1.3 \pm 0.8) \times 10^{-6}$ $\pi^+\pi^ J/\psi(1S) f_0(1370), f_0 \rightarrow (4.5 + 0.7 - 0.29) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S) f_0(1500), f_0 \rightarrow (2.11 + 0.40 - 0.29) \times 10^{-5}$ $\pi^+\pi^ J/\psi(1S) f_2'(1525)_0, f_2' \rightarrow (1.07 \pm 0.24) \times 10^{-6}$		(1.09± 0	$0.34) \times 10^{-6}$		_
$J/\psi(1S) f_0(1370), f_0 \rightarrow (4.5 + 0.7 \atop \pi^+\pi^-) \times 10^{-5}$ $J/\psi(1S) f_0(1500), f_0 \rightarrow (2.11 + 0.40 \atop -0.29) \times 10^{-5}$ $J/\psi(1S) f_2'(1525)_0, f_2' \rightarrow (1.07 \pm 0.24) \times 10^{-6}$	$J/\psi(1S)f_2(1270)_{\perp}$, $f_2 ightarrow$	(1.3 \pm 0	$0.8 \) \times 10^{-6}$		-
$J/\psi(1S) f_0(1500), f_0 \rightarrow (2.11^{+}_{-}0.40) \times 10^{-5}$ $-\frac{\pi^{+}\pi^{-}}{J/\psi(1S) f'_2(1525)_0, f'_2 \rightarrow (1.07\pm0.24) \times 10^{-6}$	$J/\psi(1S) f_0(1370), f_0 \to$	(4.5 + 0.5 + 0.5)	$0.7_{1.0}$) × 10 ⁻⁵		-
	$J/\psi(1S) f_0(1500), f_0 \to$	(2.11^{+}_{-})	$(0.40)(0.29) \times 10^{-5}$		_
		(1.07± C	$0.24) \times 10^{-6}$		-

$J/\psi(1S)f_2'(1525)_{\parallel}, \ f_2' \to$	(1.3 $^+$ 2.7) \times 10 ⁻⁷		_
$J/\psi(1S)f_2'(1525)_{\perp},\ f_2' ightarrow \pi^+\pi^-$	$(5 \pm 4) \times 10^{-7}$		_
$J/\psi(1S) f_0(1790), \ \ f_0 \rightarrow \pi^+\pi^-$	$(5.0 \ ^{+11.0}_{-1.1}) \times 10^{-6}$		_
$J/\psi(1S)\pi^+\pi^-$ (nonresonant)	$(1.8 \ ^{+}_{-} \ ^{1.1}_{0.4}) \times 10^{-5}$		1775
$J/\psi(1S)\overline{K}{}^0\pi^+\pi^-$	$< 4.4 \times 10^{-5}$	CL=90%	1675
$J/\psi(1S)K^+K^-$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$J/\psi(1S) K^0 K^- \pi^+ + \text{c.c.}$	$(9.3 \pm 1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}{}^0K^+K^-$	$< 1.2 \times 10^{-5}$	CL=90%	1333
$J/\psi(1S) f_2'(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1304
$J/\psi(1S) p\overline{p}$	$< 4.8 \times 10^{-6}$	CL=90%	982
$J/\psi(1S)\gamma$	$< 7.3 \times 10^{-6}$	CL=90%	1790
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(7.8 \pm 1.0) \times 10^{-5}$		1731
$J/\psi(1S) f_1(1285)$	$(7.0 \pm 1.4) \times 10^{-5}$		1460
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\eta'$	$(1.29\pm\ 0.35)\times10^{-4}$		1158
$\psi(2S)\pi^+\pi^-$	$(7.1 \pm 1.3) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.4 \pm 0.6) \times 10^{-4}$		1120
$\psi(2S)K^-\pi^+$	$(3.1 \pm 0.4) \times 10^{-5}$		1310
$\psi(2S)\overline{K}^{*}(892)^{0}$	$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\chi_{c1}\phi$	$(2.04\pm\ 0.30)\times10^{-4}$		1274
$\pi^+\pi^-$	$(6.8 \pm 0.8) \times 10^{-7}$		2680
$\pi^{0} \pi^{0}$	$< 2.1 \times 10^{-4}$	CL=90%	2680
$\eta \pi^0$	$< 1.0 \times 10^{-3}$	CL=90%	2654
$\eta \eta$	$< 1.5 \times 10^{-3}$	CL=90%	2627
$\rho_{.}^{0}\rho_{.}^{0}$	$< 3.20 \times 10^{-4}$	CL=90%	2569
$\eta'\eta'$	$(3.3 \pm 0.7) \times 10^{-5}$		2507
$\eta'\phi$	$< 8.2 \times 10^{-7}$	CL=90%	2495
$\phi f_0(980), f_0(980) \rightarrow \pi^+ \pi^-$	$(1.12\pm 0.21) \times 10^{-6}$		_
$\phi f_2(1270), f_2(1270) \rightarrow \pi^+ \pi^-$	$(6.1 \ ^{+}_{-} \ ^{1.8}_{1.5}) \times 10^{-7}$		_
$\phi \rho^0$	$(2.7 \pm 0.8) \times 10^{-7}$		2526
$\phi \pi^+ \pi^-$	$(3.5 \pm 0.5) \times 10^{-6}$		2579
$\phi \phi$	$(1.87\pm 0.15) \times 10^{-5}$		2482
$\phi \phi \phi$	$(2.2 \pm 0.7) \times 10^{-6}$		2165
π^+K^-	$(5.6 \pm 0.6) \times 10^{-6}$		2659
K^+K^-	$(2.54 \pm 0.17) \times 10^{-5}$		2638
$K^0\overline{K}^0$	$(2.0 \pm 0.6) \times 10^{-5}$		2637
$\kappa^0\pi^+\pi^-$	$(9.4 \pm 2.1) \times 10^{-6}$		2653
$K^0K^{\pm}\pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$		2622
$K^*(892)^-\pi^+$	$(2.9 \pm 1.1) \times 10^{-6}$		2607

K^* (892) $^\pm K^\mp$	$(1.12\pm\ 0.22)\times10^{-5}$		2585
$K_S^0 \overline{K}^* (892)^0 + \text{c.c.}$	$(1.6 \pm 0.4) \times 10^{-5}$		2585
$K^{0}K^{+}K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$		2568
$\overline{K}^*(892)^0 \rho^0$	$< 7.67 \times 10^{-4}$	CL=90%	2550
$\overline{K}^*(892)^0 K^*(892)^0$	$(1.11\pm 0.27) \times 10^{-5}$		2531
$\phi K^* (892)^0$	$(1.14\pm 0.30) \times 10^{-6}$		2507
$p\overline{p}$	$< 1.5 \times 10^{-8}$	CL=90%	2514
$p\overline{p}K^+K^-$	(4.5 \pm 0.5) $ imes$ 10 $^{-6}$		2231
$ ho \overline{ ho} K^+ \pi^-$	$(1.39\pm\ 0.26)\times10^{-6}$		2355
$ \rho \overline{\rho} \pi^+ \pi^- $	$(4.3 \pm 2.0) \times 10^{-7}$		2454
$p\overline{\Lambda}K^-$ + c.c.	$(5.5 \pm 1.0) \times 10^{-6}$		2358
$\Lambda_c^- \Lambda \pi^+$	$(3.6 \pm 1.6) \times 10^{-4}$		_
$\Lambda_c^- \Lambda_c^+$	$< 8.0 \times 10^{-5}$	CL=95%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

$$I(J^P) = 0(1^-)$$

Created: 5/22/2019 10:04

 $I,\ J,\ P$ need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m=5415.4^{+1.8}_{-1.5}~{
m MeV}~{
m (S}=2.9)$$
 $m_{B_s^*}-m_{B_s}=48.6^{+1.8}_{-1.5}~{
m MeV}~{
m (S}=2.9)$

 B_s^* DECAY MODESFraction (Γ_i/Γ) p (MeV/c) $B_s \gamma$ seen48

$$B_{s1}(5830)^0$$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.70\pm0.20~{
m MeV}$$
 $m_{B_{s1}^0}-m_{B^{*+}}=504.00\pm0.17~{
m MeV}$ Full width $\Gamma=0.5\pm0.4~{
m MeV}$

$B_{s1}(5830)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
B*+ K-	seen	97

$B_{s2}^*(5840)^0$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.85\pm0.12~{
m MeV}$$
 $m_{B_{s2}^{*0}}-m_{B^+}=560.53\pm0.14~{
m MeV}$ Full width $\Gamma=1.49\pm0.27~{
m MeV}$

B_{s2}^* (5840) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
B^+K^-	DEFINED AS 1	252
$B^{*+}K^{-}$	$0.093\!\pm\!0.018$	141
$B^0 K_S^0 $ $B^{*0} K_S^0$	0.43 ± 0.11	245
$B^{*0} \tilde{K}_S^0$	0.04 ± 0.04	_

BOTTOM, CHARMED MESONS $(B=C=\pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass
$$m=6274.9\pm0.8$$
 MeV
Mean life $au=(0.510\pm0.009)\times10^{-12}$ s

 B_c^- modes are charge conjugates of the modes below.

 B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$) Fraction (Γ_i/Γ)

Confidence level (MeV/c)

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c)$.

$I_{i}/I \wedge D(D \rightarrow D_{C}).$				
$J/\psi(1S)\ell^+ u_\ell$ anything	(8.1 ± 1.2)	$) \times 10^{-5}$		_
$J/\psi(1S)\pi^+$	seen			2371
$J/\psi(1S)K^+$	seen			2341
$J/\psi(1S)\pi^+\pi^+\pi^-$	seen			2350
$J/\psi(1\mathcal{S})a_1(1260)$	< 1.2	$\times 10^{-3}$	90%	2169
$J/\psi(1S)K^+K^-\pi^+$	seen			2203
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen			2309
$\psi(2S)\pi^+$	seen			2052
$J/\psi(1S)D^0K^+$	seen			1539
$J/\psi(1S) D^*(2007)^0 K^+$	seen			1412
$J/\psi(1S)D^*(2010)^+K^{*0}$	seen			920
$J/\psi(1S)D^+K^{*0}$	seen			1123
$J/\psi(1S)D_s^+$	seen			1822
$J/\psi(1S)D_s^{*+}$	seen			1728
$J/\psi(1S) ho \overline{ ho} \pi^+$	seen			1792
$\chi_c^0\pi^+$	$(2.4 \begin{array}{c} +0.9 \\ -0.8 \end{array}$	$) \times 10^{-5}$		2205
$ ho \overline{ ho} \pi^+$	not seen			2970
$D^0 K^+$	$(3.8 \begin{array}{c} +1.2 \\ -1.0 \end{array}$	$) \times 10^{-7}$		2837
$D^0\pi^+$	< 1.6	$\times 10^{-7}$	95%	2858
$D^{st 0}\pi^+$	< 4	\times 10 ⁻⁷	95%	2815
$D^{*0}K^{+}$	< 4	\times 10 ⁻⁷	95%	2793
$D_s^+ \overline{D}{}^0$	< 1.4	\times 10 ⁻⁷	90%	2484

HTTP://PDG.LBL.GOV

Page 128

$D_{s}^{+} D_{0}^{0}$	< 6	× 10 ⁻⁸	90%	2484
$D^{+}\overline{D}^{0}$	< 3.0	$\times 10^{-6}$	90%	2521
$D^{+}D^{0}$	< 1.9	$\times 10^{-6}$	90%	2521
$D^*(2010)^+ \overline{D}{}^0$	< 6.2	$\times 10^{-3}$	90%	2467
$D_s^{*+} \overline{D}^* (2007)^0$	< 1.7	$\times 10^{-6}$	90%	2366
$D_s^{*+}D^*(2007)^0$	< 3.1	\times 10 ⁻⁶	90%	2366
$D^*(2010)^+ \overline{D}^*(2007)^0$	< 1.0	$\times 10^{-4}$	90%	2410
$D^*(2010)^+ D^*(2007)^0$	< 2.0	$\times 10^{-5}$	90%	2410
$D^{+}K^{*0}$	< 0.20	\times 10 ⁻⁶	90%	2783
$D^+\overline{K}^{*0}$	< 0.16	$\times 10^{-6}$	90%	2783
$D_s^+ K^{*0}$	< 0.28	$\times 10^{-6}$	90%	2751
$D_s^+ K^{*0}$ $D_s^+ \overline{K}^{*0}$ $D_s^+ \phi$	< 0.4	\times 10 ⁻⁶	90%	2751
$D_s^+\phi$	< 0.32	$\times 10^{-6}$	90%	2727
$K + K_0$	< 4.6	\times 10 ⁻⁷	90%	3098
$B_s^0\pi^+/\ B(\overline{b} o \ B_s)$	$(2.37 + 0.37 \\ -0.35$	$() \times 10^{-3}$		_

$c\overline{c}$ MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_c(15)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=2983.9\pm0.5~{\rm MeV}~{\rm (S}=1.3)$ Full width $\Gamma=31.9\pm0.7~{\rm MeV}$

 $\eta_{\mathcal{C}}(1S)$ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Decays involving hadronic resonances

(4.1 ± 1.7) %		1323
(1.8 ± 0.5) %		1275
(2.0 ± 0.7)) %		1278
(7.1 ± 1.3	$) \times 10^{-3}$		1196
($1.1~\pm0.5$) %		1073
(2.9 ± 1.4	$\times 10^{-3}$		1104
$(1.79\pm0.2$	$(0) \times 10^{-3}$		1089
< 4	$\times 10^{-3}$	90%	1251
< 2	%	90%	1327
< 2	%	90%	1197
< 1.28	%	90%	1310
< 1.1	%	90%	1145
< 3.1	\times 10 ⁻³	90%	1270
	$\begin{array}{c} (\ 1.8\ \pm 0.5\\ (\ 2.0\ \pm 0.7\\ (\ 7.1\ \pm 1.3\\ (\ 1.1\ \pm 0.5\\ (\ 2.9\ \pm 1.4\\ (\ 1.79\pm 0.2\\ <\ 4\\ <\ 2\\ <\ 2\\ <\ 1.28\\ <\ 1.1 \end{array}$	< 2 % < 2 % < 1.28 % < 1.1 %	$(1.8 \pm 0.5)\%$ $(2.0 \pm 0.7)\%$ $(7.1 \pm 1.3) \times 10^{-3}$ $(1.1 \pm 0.5)\%$ $(2.9 \pm 1.4) \times 10^{-3}$ $(1.79 \pm 0.20) \times 10^{-3}$ $< 4 \times 10^{-3} 90\%$ $< 2 \% 90\%$ $< 1.28 \% 90\%$ $< 1.1 \% 90\%$

HTTP://PDG.LBL.GOV

Page 129

$\omega\phi$	$< 2.5 \times 10^{-}$	90% 1185
$f_2(1270) f_2(1270)$	(9.8 ± 2.5) $ imes$ 10 $^-$	-3 774
$f_2(1270) f_2'(1525)$	($9.8~\pm 3.2~) imes 10^{-}$	-3 513
$f_0(980)\eta$	seen	1264
$f_0(1500)\eta$	seen	1025
$f_0(2200)\eta$	seen	498
$a_0(980)\pi$	seen	1327
$a_0(1320)\pi$	seen	_
$a_0(1450)\pi$	seen	1123
$a_0(1950)\pi_{_}$	seen	860
$K_0^*(1430)\overline{K}$	seen	_
$K_2^*(1430)\overline{K}$	seen	_
$K_0^*(1950)\overline{K}$	seen	-
	Decays into stable hadrons	

Decays into stable nadrons

	Decays into stable flations		
$K\overline{K}\pi$	(7.3 \pm 0.5) %		1381
$K\overline{K}\eta$	$(1.36\pm0.16)\%$		1265
$\eta \pi^+ \pi^-$	($1.7~\pm0.5$) %		1428
$\eta 2(\pi^+ \pi^-)$	(4.4 ± 1.3) %		1386
$K^+K^-\pi^+\pi^-$	$(6.9 \pm 1.1) \times 10^{-3}$		1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	($3.5~\pm0.6$) %		1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.6 ± 1.5) %		_
$K^+ K^- 2(\pi^+ \pi^-)$	$(7.5 \pm 2.4) \times 10^{-3}$		1254
$2(K^+K^-)$	$(1.47\pm0.31)\times10^{-3}$		1055
$\pi^+\pi^-\pi^0$	$<$ 5 \times 10 ⁻⁴	90%	1476
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.7 ± 1.0) %		1460
$2(\pi^{+}\pi^{-})$	$(9.7 \pm 1.2) \times 10^{-3}$		1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(17.4 ± 3.3) %		1409
$3(\pi^+\pi^-)$	($1.8~\pm0.4$) %		1407
p p	$(1.51\pm0.16)\times10^{-3}$		1160
$p\overline{p}\pi^0$	$(3.6 \pm 1.3) \times 10^{-3}$		1101
$\Lambda \overline{\Lambda}$	$(1.09\pm0.24)\times10^{-3}$		991
$K^+ \overline{p} \Lambda + \text{c.c.}$	$(2.5 \pm 0.4) \times 10^{-3}$		772
$\overline{\Lambda}(1520)\Lambda+\text{c.c.}$	$(3.1 \pm 1.3) \times 10^{-3}$		693
$\Sigma^{+} \overline{\Sigma}^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$		901
<u>=-</u> =+	$(9.0 \pm 2.6) \times 10^{-4}$		692
$\pi^+\pi^-p\overline{p}$	$(5.3 \pm 1.8) \times 10^{-3}$		1027

Radiative decays

$$\gamma\gamma$$
 (1.57 ± 0.12) \times 10^{-4} 1492

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP < 1.1	$\times 10^{-4}$	90%	1485
$\pi^0\pi^0$	P,CP < 4	$\times 10^{-5}$	90%	1486

$$K^+K^-$$

 $K^0_SK^0_S$

$$\times$$
 10 4 \times 10 $^{-4}$

90% 90%

1408 1407

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.9\pm2.8$ keV (S = 1.1) $\Gamma_{e\,e}=5.53\pm0.10$ keV Γ_{ee} < 5.4 eV, CL = 90%

$J/\psi(1S)$ DECAY MODES	F	raction ((Γ_i/Γ)	Co	Scale factor/ onfidence level(
hadrons		(87.7	± 0.5) %		
$virtual \gamma \to \ hadrons$		•	± 0.30	•		_
ggg		(64.1	\pm 1.0) %		_
$\gamma g g$		(8.8	\pm 1.1) %		_
e^+e^-		`	± 0.032	,	_	1548
$e^+e^-\gamma$	[rraa]		\pm 1.4		3	1548
$\mu^+\mu^-$		(5.961	± 0.033) %		1545
Decays in	volving	hadron	ic reson	ances		
$ ho\pi$		(1.69	± 0.15) %	S=2.4	1448
$ ho^0\pi^0$		(5.6	\pm 0.7	$) \times 10^{-3}$	3	1448
$ ho$ (770) $^{\mp}$ K $^{\pm}$ K 0_S		(1.9	\pm 0.4	$) \times 10^{-3}$	3	_
$\rho(1450)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$			± 0.7			_
$\rho(1450)^{\pm}\pi^{\mp} \to K_S^0 K^{\pm}\pi^{\mp}$	F	(3.5	\pm 0.6) × 10 ⁻²	1	_
$\rho(1450)^0 \pi^0 \to K^+ K^- \pi^0$			\pm 0.5			_
$ ho$ (1450) η' (958) $ ightarrow$		(3.3	\pm 0.7	$) \times 10^{-6}$	5	_
$\pi^{+}\pi^{-}\eta'(958)$						
$\rho(1700)\pi \to \pi^{+}\pi^{-}\pi^{0}$			\pm 1.1			-
$\rho(2150)\pi \to \pi^+\pi^-\pi^0$			± 40		0	_
$a_2(1320) \rho$		•	± 0.22	,		1124
$\omega \pi^{+} \pi^{+} \pi^{-} \pi^{-}$			± 3.4			1392
$\omega \pi^{+} \pi^{-} \pi^{0}$			± 0.7			1418
$\omega \pi^+ \pi^-$			± 1.0			1435
$\omega f_2(1270)$ $K^*(892)^0 \overline{K}^*(892)^0$		(4.3	± 0.6) × 10 ⁻⁴	4	1142
, , , ,			± 0.6			1266
$K^*(892)^{\pm} K^*(892)^{\mp}$		(1.00	+ 0.22 - 0.40) × 10	0	1266
$K^*(892)^{\pm} K^*(700)^{\mp}$		(1.1	$^{+}$ 1.0 $^{-}$ 0.6) × 10 ⁻³	3	_
$K_S^0 \pi^- K^* (892)^+ + \text{c.c.}$		(2.0	± 0.5	$) \times 10^{-3}$	3	1342
$K_S^0 \pi^- K^* (892)^+ + \text{c.c.} \rightarrow K_S^0 K_S^0 \pi^+ \pi^-$		(6.7	± 2.2) × 10 ⁻⁴	1	_
$K_S^0 K^* (892)^0 \to \gamma K_S^0 K_S^0$		(6.3	+ 0.6 - 0.5) × 10 ⁻⁶	5	_

HTTP://PDG.LBL.GOV

Page 131

$\eta K^*(892)^0 \overline{K}^*(892)^0$		(1.15	\pm	0.26) × 10 ⁻³	1003
$\eta' K^{*\pm} K^{\mp}$					$) \times 10^{-3}$	_
$\eta' K^{*0} \overline{K}{}^0 + \text{c.c.}$					$) \times 10^{-3}$	1000
$\eta' h_1(1415) ightarrow \; \eta' K^* \overline{K} + ext{c.c.}$		(2.16	\pm	0.31	$) \times 10^{-4}$	_
$\eta^\prime h_1(1415) ightarrow \; \eta^\prime K^{*\pm} K^{\mp}$		(1.51	\pm	0.23	$) \times 10^{-4}$	_
$K^*(1410)\overline{K}+{\sf c.c} ightarrow$					$) \times 10^{-5}$	_
$\kappa^{\pm} \kappa^{\mp} \pi^0$					F	
$K^*(1410)K + \text{c.c.} \rightarrow$		8)	\pm	6	$) \times 10^{-5}$	-
$K_{\mathcal{S}}^{0}K_{\underline{}\pi}^{\pm}$					_	
$K_2^*(1430)\overline{K} + \text{c.c.} \rightarrow$		(7.5	\pm	3.5	$) \times 10^{-5}$	_
$K^{\pm}K^{\mp}\pi^{0}$					4	
$K_2^*(1430)K + \text{c.c.} \rightarrow$		(4.0	\pm	1.0	$) \times 10^{-4}$	_
$K^0_{\mathcal{S}}K^\pm\pi^\mp$						
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$		(4.66	\pm	0.31	$) \times 10^{-3}$	1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.}$		(3.4	\pm	2.9	$) \times 10^{-3}$	1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.} \rightarrow$					$) \times 10^{-4}$	_
$K^*(892)^+ K_S^0 \pi^- + \text{c.c.}$		•			,	
$K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow$		(6.9	+	0.9) × 10 ⁻⁴	_
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$		(0.5	_	0.5) \ 10	
$\omega K^*(892)\overline{K} + \text{c.c.}$		(61	+	0.9	$) \times 10^{-3}$	1097
$\overline{K}K^*(892)+\text{c.c.} \rightarrow$					$) \times 10^{-3}$	1057
$K_0^0 K^{\pm} \pi^{\mp}$		(3.0		0.5) ~ 10	
$K^+K^*(892)^- + \text{c.c.}$		(5.0	\pm	0.4) × 10 ⁻³	1373
$K^+K^*(892)^- + \text{c.c.} \rightarrow$) × 10 ⁻³	_
$\mathcal{K}^+\mathcal{K}^-\pi^0$		(, , , ,	
$K^+ K_*^* (892)^- + \text{c.c.} \rightarrow$		(3.0	\pm	0.4	$) \times 10^{-3}$	_
$K^{0}K^{\pm}\pi^{\mp}+ \text{c.c.}$						
$K^0 \overline{K}^* (892)^0 + \text{c.c.}$					$) \times 10^{-3}$	1373
$K^0\overline{K}^*(892)^0+\text{ c.c.} \rightarrow$		(3.2	\pm	0.4	$) \times 10^{-3}$	_
$K^{0}K^{\pm}\pi^{\mp} + \text{c.c.}$,			3	
$K_1(1400)^{\pm}K^{\mp}$		(3.8	士	1.4	$) \times 10^{-3}$	1170
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$		(7.7	±	1.6	$) \times 10^{-3}$	1343
$K^*(892)^{\pm}K^{\mp}\pi^0$					$) \times 10^{-3}$	1344
$K^*(892)^0 K_S^0 \pi^0$					$) \times 10^{-4}$	1343
$\omega \pi^0 \pi^0$		(3.4	\pm	8.0	$) \times 10^{-3}$	1436
$\omega \pi^0 \eta$					$) \times 10^{-4}$	1363
$b_1(1235)^{\pm}\pi^{\mp}$					$) \times 10^{-3}$	1300
\mathcal{J}	[<i>hh</i>]				$) \times 10^{-3}$	1210
$b_1(1235)^0\pi^0$		(2.3	\pm	0.6	$) \times 10^{-3}$	1300
	[hh]				$) \times 10^{-3}$	1278
$\phi K^*(892)\overline{K} + \text{c.c.}$					$) \times 10^{-3}$	969
$\omega K \overline{K}$					$) \times 10^{-3}$	1268
$\omega f_0(1710) \rightarrow \omega K \overline{K}$					$) \times 10^{-4}$	878
$\phi 2(\pi^+\pi^-)$		(1.60	\pm	0.32	$) \times 10^{-3}$	1318

Δ (1232) ⁺⁺ $\overline{p}\pi^-$		$(1.6 \pm 0.5) \times 10^{-3}$	0
$\omega\eta$		$(1.74 \pm 0.20) \times 10^{-3}$ S=1.6 139	4
$\phi K \overline{K}$		$(1.77 \pm 0.16) \times 10^{-3}$ S=1.3 1179	9
$\phi K_S^0 K_S^0$		$(5.9 \pm 1.5) \times 10^{-4}$	6
$\phi f_0(1710) \rightarrow \phi K \overline{K}$		$(3.6 \pm 0.6) \times 10^{-4}$	5
$\phi K^+ K^-$		$(8.3 \pm 1.2) \times 10^{-4}$	9
$\phi f_2(1270)$		$(3.2 \pm 0.6) \times 10^{-4}$	6
$\Delta(1232)^{++}\overline{\Delta}(1232)^{}$		$(1.10 \pm 0.29) \times 10^{-3}$	8
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$ (or c.c.)	[hh]	$(1.16 \pm 0.05) \times 10^{-3}$	7
$\Sigma(1385)^{0} \overline{\Sigma}(1385)^{0}$		$(1.07 \pm 0.08) \times 10^{-3}$	7
$K^{+}K^{-}f_{2}'(1525)$		$(1.04 \pm 0.35) \times 10^{-3}$	2
$\phi f_2'(1525)$		$(8 \pm 4) \times 10^{-4}$ S=2.7 87	1
$\phi \pi^+ \pi^-$		$(9.4 \pm 1.5) \times 10^{-4}$ S=1.7 136	5
$\phi \pi^0 \pi^0$		$(5.0 \pm 1.0) \times 10^{-4}$	
$\phi K^{\pm} K^{0}_{S} \pi^{\mp}$	[<i>hh</i>]	$(7.2 \pm 0.8) \times 10^{-4}$ 111	
$\omega f_1(1420)$	[]	$(6.8 \pm 2.4) \times 10^{-4}$ 106	
_ ` ,		$(7.4 \pm 0.8) \times 10^{-4}$ S=1.5 132	
$ \begin{array}{c} \phi \eta \\ = 0 \overline{=} 0 \end{array} $		$(1.17 \pm 0.04) \times 10^{-3}$	
$\Xi(1530)^{-}\overline{\Xi}^{+}$		$(5.9 \pm 1.5) \times 10^{-4}$	
$pK^{-}\overline{\Sigma}(1385)^{0}$		$(5.1 \pm 3.2) \times 10^{-4}$	
$\omega \pi^0$		$(4.5 \pm 0.5) \times 10^{-4}$ S=1.4 144	
$\omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0$		$(1.7 \pm 0.8) \times 10^{-5}$	_
$\phi \eta'(958)$		$(4.6 \pm 0.5) \times 10^{-4}$ S=2.2 119	2
$\phi f_0(980)$		$(3.2 \pm 0.9) \times 10^{-4}$ S=1.9 1176	
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$		$(2.59 \pm 0.34) \times 10^{-4}$	_
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$		$(1.8 \pm 0.5) \times 10^{-4}$	_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^-$		$(4.5 \pm 1.0) \times 10^{-6}$	_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 p^0 \pi^0$		$(1.7 \pm 0.6) \times 10^{-6}$	5
$\eta \phi f_0(980) \rightarrow \eta \phi \pi^+ \pi^-$		$(3.2 \pm 1.0) \times 10^{-4}$	_
$\phi a_0(980)^{\circ} \rightarrow \phi \eta \pi^0$		$(4.4 \pm 1.4) \times 10^{-6}$	_
$\Xi(1530)^{0}\overline{\Xi}^{0}$		$(3.2 \pm 1.4) \times 10^{-4}$	8
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	[<i>hh</i>]	$(3.1 \pm 0.5) \times 10^{-4}$	5
$\phi \hat{f}_1(1285)$		$(2.6 \pm 0.5) \times 10^{-4}$	2
$\phi f_1(1285) \rightarrow$		$(9.4 \pm 2.8) \times 10^{-7}$	2
$\phi \pi^0 f_0(980) \rightarrow$,	
$\phi \pi^0 \pi^+ \pi^-$			
$\phi f_1(1285) ightarrow$		$(2.1 \pm 2.2) \times 10^{-7}$ 95	5
$\phi\pi^0 f_0(980) ightarrow$			
$\phi\pi^0\pi^0\pi^0$			
$\eta \pi^+ \pi^-$		$(4.2 \pm 0.8) \times 10^{-4}$ 148	7
ηho		$(1.93 \pm 0.23) \times 10^{-4}$	6
$\omega \eta'(958)$		$(1.89 \pm 0.18) \times 10^{-4}$	9
$\omega f_0(980)$		$(1.4 \pm 0.5) \times 10^{-4}$	7
$\rho \eta'(958)$		$(8.1 \pm 0.8) \times 10^{-5}$ S=1.6 128	1

2 (1220)± - ∓	[44] < 4.2	× 10 ⁻³	CL 000/	1064
$a_2(1320)^{\pm}\pi^{\mp}$	[hh] < 4.3		CL=90%	1264
$K\overline{K}_{2}^{*}(1430) + \text{c.c.}$	< 4.0	$\times 10^{-3}$	CL=90%	1159
$K_1(1270)^{\pm} K^{\mp}$	< 3.0	$\times 10^{-3}$	CL=90%	1231
$K_1(1270)K_S^0 \to \gamma K_S^0 K_S^0$		$(.5) \times 10^{-7}$		
$K_S^0 \pi^- K_2^* (1430)^+ + \text{c.c.}$.8) \times 10 ⁻³		1117
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	< 2.9	× 10 ⁻³	CL=90%	604
$\phi\pi^0$	$3 imes 10^{-6}$ or 1			1377
$\phi \eta(1405) \rightarrow \phi \eta \pi^+ \pi^-$		$.0) \times 10^{-5}$		946
$\omega f_2'(1525)$	< 2.2	$\times 10^{-4}$	CL=90%	1003
$\omega X(1835) \rightarrow \omega p \overline{p}$	< 3.9	\times 10 ⁻⁶	CL=95%	-
$\phi X(1835) \rightarrow \phi p \overline{p}$	< 2.1	× 10 ⁻⁷	CL=90%	-
$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$	< 2.8	× 10 ⁻⁴	CL=90%	578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$	< 6.13	× 10 ⁻⁵	CL=90%	-
$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$	(1.2 ± 0	$(.4) \times 10^{-4}$		628
$\eta \phi \pi^+ \pi^-$		4		
$\eta \phi(2170) \rightarrow$	< 2.52	× 10 ⁻⁴	CL=90%	_
$\eta K^*(892)^0 \overline{K}^*(892)^0$		6		
$\Sigma(1385)^{0}\overline{\Lambda}$ + c.c.	< 8.2	$\times 10^{-6}$	CL=90%	912
$\Delta(1232)^+\overline{p}$	< 1	$\times 10^{-4}$	CL=90%	1100
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$	< 4.1	$\times 10^{-6}$	CL=90%	-
$\overline{\Lambda}(1520)\Lambda + \text{c.c.}$	< 1.80	$\times 10^{-3}$	CL=90%	806
$\Theta(1540)\overline{\Theta}(1540) \rightarrow$	< 1.1	$\times 10^{-5}$	CL=90%	-
$K_S^0 p K^- \overline{n} + \text{c.c.}$		-		
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	< 2.1	$\times 10^{-5}$	CL=90%	-
$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^0 \overline{p} K^+ n$	< 1.6	\times 10 ⁻⁵	CL=90%	-
$\overline{\Theta}(1540)K^+ n \rightarrow K_S^0 \overline{p}K^+ n$	< 5.6	$\times 10^{-5}$	CL=90%	_
$\overline{\Theta}(1540)K_S^0 p \rightarrow K_S^{\overline{0}} p K^{-} \overline{n}$	< 1.1	\times 10 ⁻⁵	CL=90%	_
Deca	ys into stable had	rons		
$2(\pi^{+}\pi^{-})\pi^{0}$	(3.37 ± 0			1496
$3(\pi^{+}\pi^{-})\pi^{0}$	(2.9 ± 0			1433
$\pi^+\pi^-\pi^0$	$\stackrel{\backprime}{(}$ 2.10 \pm 0	,	S=1.6	1533
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	(2.71 ± 0)	,		1497
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	(1.41 ± 0)	.22) %		1421
$\rho^+ \rho^- \pi^0$	(6.0 ± 1)	$.1) \times 10^{-3}$		1298
$\pi^{+}\pi^{-}\pi^{0}\mathit{K}^{+}\mathit{K}^{-}$	(1.20 ± 0	.30) %		1368
$4(\pi^+\pi^-)\pi^0$	(9.0 ± 3)	$0.0) \times 10^{-3}$		1345
$\pi^+\pi^-K^+K^-$	(6.84 ± 0	$.32) \times 10^{-3}$		1407
$\pi^+\pi^-K^0_SK^0_L$	(3.8 ± 0)	$(.6) \times 10^{-3}$		1406
$\pi^{+}\pi^{-}K_{S}^{0}K_{L}^{0}$ $\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$ $\pi^{\pm}\pi^{0}K^{\mp}K_{S}^{0}$	(1.68 ± 0	$1.19) \times 10^{-3}$		1406
$\pi^{\pm}\pi^{0}K^{ ilde{+}}K^{ ilde{0}}_{S}$	(5.7 \pm 0	$(.5) \times 10^{-3}$		1408
$K^+K^-K^0_S \breve{K}^0_S$		$(.8) \times 10^{-4}$		1127
$\pi^{+}\pi^{-}K^{+}K^{-}\eta$		$(.7) \times 10^{-3}$		1221
$\pi^{0}\pi^{0}K^{+}K^{-}$		$(.23) \times 10^{-3}$		1410
	`	,		

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 134 Created: 5/22/2019 10:04

0 0 1/0 1/0							_		
$\pi^0 \underline{\pi}^0 K_S^0 K_L^0$) × 10			1408
$K\overline{K}\pi$) × 10			1442
$K^{+}K^{-}\pi^{0}$) × 10	_		1442
$K_S^0K^\pm\pi^\mp$						$) \times 10^{-1}$			1440
$K_S^0 K_L^0 \pi^0$		(2.06	\pm	0.27) × 10	-3		1440
$K^* \overline{(892)^0} \overline{K^0} + \text{c.c.} ightarrow K_S^0 K_L^0 \pi^0$		(1.21	±	0.18) × 10	-3		-
$K_2^*(1430)^{\overline{0}}\overline{K}{}^0+ ext{c.c.} ightarrow$		(4.3	±	1.3) × 10	-4		_
$K_S^0 K_L^0 \pi^0$							2		
$K_S^0 K_L^0 \eta$						$) \times 10^{-1}$			1328
$2(\pi^{+}\pi^{-})$) × 10			1517
$3(\pi^{+}\pi^{-})$		•) × 10	-3		1466
$2(\pi^{+}\pi^{-}\pi^{0})$		•			0.21	•	_		1468
$2(\pi^{+}\pi^{-})\eta$) × 10			1446
$3(\pi^{+}\pi^{-})\eta$) × 10			1379
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$						$) \times 10^{-1}$			1448
$ ho^{\pm}\pi^{\mp}\pi^{0}\eta$		(1.9	\pm	8.0) × 10	-3		1326
p p		(2.121	±.	0.029	$9) \times 10^{-1}$	-3		1232
$ ho \overline{ ho} \pi^0$		(1.19	\pm	0.08) × 10	-3	S=1.1	1176
$p \overline{p} \pi^+ \pi^-$		(6.0	\pm	0.5) × 10	-3	S=1.3	1107
$p\overline{p}\pi^+\pi^-\pi^0$	[ssaa]	(2.3	\pm	0.9) × 10	-3	S=1.9	1033
$p\overline{p}\eta$		(2.00	\pm	0.12) × 10	-3		948
$p\overline{p}\rho$		<	3.1			\times 10	-4	CL=90%	774
$p\overline{p}\omega$		(9.8	\pm	1.0) × 10	-4	S=1.3	768
$p\overline{p}\eta'(958)$		(1.29	\pm	0.14) × 10	-4	S=2.0	596
$\frac{1}{2}$ (000) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$					1 0		-5		
$ppa_0(900) \rightarrow pp\pi^*\eta$		(6.8	\pm	1.8	$) \times 10^{-1}$			_
$ \rho \overline{p} a_0(980) \rightarrow \rho \overline{p} \pi^0 \eta $ $ \rho \overline{p} \phi $						$) \times 10^{-1}$			- 527
$p \overline{p} a_0(900) \rightarrow p p \pi^* \eta$ $p \overline{p} \phi$ $n \overline{n}$		(5.19	\pm	0.33) × 10	-5		527 1231
$p\overline{p}\phi$		(5.19 2.09	$_{\pm}$	0.33 0.16) × 10 ⁻¹) × 10 ⁻¹	-5 -3		
$ p \overline{p} \phi $ $ n \overline{n} $ $ n \overline{n} \pi^{+} \pi^{-} $ $ \Sigma^{+} \overline{\Sigma}^{-} $		()	5.19 2.09 4	± ± ±	0.33 0.16 4) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3		1231
$ abla \overline{p} \phi $ $ abla \overline{n} $		()	5.19 2.09 4 1.50	± ± ±	0.33 0.16 4 0.24) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3	S=1.4	1231 1106
$ \begin{array}{l} p \overline{p} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \end{array} $			5.19 2.09 4 1.50 1.172	± ± ± ±	0.33 0.16 4 0.24 0.032) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹ 2) × 10 ⁻¹	-5 -3 -3 -3	S=1.4	1231 1106 992
$ \begin{array}{l} p\overline{p}\phi\\ n\overline{n}\\ n\overline{n}\pi^{+}\pi^{-}\\ \Sigma^{+}\overline{\Sigma}^{-}\\ \Sigma^{0}\overline{\Sigma}^{0}\\ 2(\pi^{+}\pi^{-})K^{+}K^{-} \end{array} $			5.19 2.09 4 1.50 1.172 3.1	± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹ 2) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3	S=1.4	1231 1106 992 988
$ \begin{array}{l} \rho \overline{\rho} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ \rho \overline{n} \pi^{-} \end{array} $			5.19 2.09 4 1.50 1.172 3.1	± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹ 2) × 10 ⁻¹	-5 -3 -3 -3 -3	S=1.4	1231 1106 992 988 1320
$ \begin{array}{l} p \overline{p} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ p \overline{n} \pi^{-} \\ n N(1440) \end{array} $		((((((((((((((((((((5.19 2.09 4 1.50 1.172 3.1 2.12	± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹ 2) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3	S=1.4	1231 1106 992 988 1320 1174 978
$ \begin{array}{l} p\overline{p}\phi\\ n\overline{n}\\ n\overline{n}\pi^{+}\pi^{-}\\ \Sigma^{+}\overline{\Sigma}^{-}\\ \Sigma^{0}\overline{\Sigma}^{0}\\ 2(\pi^{+}\pi^{-})K^{+}K^{-}\\ p\overline{n}\pi^{-}\\ nN(1440)\\ nN(1520)\end{array} $		(((((se	5.19 2.09 4 1.50 1.172 3.1 2.12 een	± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹) × 10 ⁻¹ 2) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3	S=1.4	1231 1106 992 988 1320 1174 978 928
$ \begin{array}{l} \rho \overline{\rho} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ \rho \overline{n} \pi^{-} \\ n N(1520) \\ n N(1535) \end{array} $		((((((Se Se	5.19 2.09 4 1.50 1.172 3.1 2.12 een een	± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3 0.09) × 10 ⁻) × 10	-5 -3 -3 -3 -3 -3 -3		1231 1106 992 988 1320 1174 978 928 917
$ \begin{array}{l} \rho \overline{\rho} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ \rho \overline{n} \pi^{-} \\ n N(1520) \\ n N(1535) \end{array} $			5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7	± ± ± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3 0.09) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3	S=1.4	1231 1106 992 988 1320 1174 978 928 917 807
$ \begin{array}{l} \rho \overline{\rho} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ \rho \overline{n} \pi^{-} \\ n N(1440) \\ n N(1520) \\ n N(1535) \\ \overline{\Xi}^{-} \overline{\Xi}^{+} \\ \Lambda \overline{\Lambda} \end{array} $	[<i>hh</i>]		5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7 1.89	± ± ± ± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3 0.09) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3 -4 -4	S=1.4 S=2.8	1231 1106 992 988 1320 1174 978 928 917 807 1074
$ \begin{array}{l} \rho \overline{\rho} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ \rho \overline{n} \pi^{-} \\ n N(1440) \\ n N(1520) \\ n N(1535) \\ \overline{\Xi}^{-} \overline{\Xi}^{+} \\ \Lambda \overline{\Lambda} \\ \Lambda \overline{\Sigma}^{-} \pi^{+} \text{ (or c.c.)} \end{array} $	[<i>hh</i>]		5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7 1.89 8.3	± ± ± ± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3 0.09 0.8 0.09 0.7) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3 -4 -4 -4	S=1.4	1231 1106 992 988 1320 1174 978 928 917 807 1074 950
$ \frac{p\overline{p}\phi}{n\overline{n}} $ $ n\overline{n}\pi^{+}\pi^{-} $ $ \Sigma^{+}\overline{\Sigma}^{-} $ $ \Sigma^{0}\overline{\Sigma}^{0} $ $ 2(\pi^{+}\pi^{-})K^{+}K^{-} $ $ p\overline{n}\pi^{-} $ $ nN(1440) $ $ nN(1520) $ $ nN(1535) $ $ \underline{z}^{-}\overline{\underline{z}}^{+} $ $ \Lambda\overline{\Lambda} $ $ \Lambda\overline{\Sigma}^{-}\pi^{+}(\text{or c.c.}) $ $ pK^{-}\overline{\Lambda}+\text{c.c.} $	[<i>hh</i>]		5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7 1.89 8.3 8.7	± ± ± ± ± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3 0.09 0.8 0.09 0.7 1.1) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3 -4 -4 -4	S=1.4 S=2.8	1231 1106 992 988 1320 1174 978 928 917 807 1074 950 876
$ \frac{p\overline{p}\phi}{n\overline{n}} $ $ n\overline{n}\pi^{+}\pi^{-} $ $ \Sigma^{+}\overline{\Sigma}^{-} $ $ \Sigma^{0}\overline{\Sigma}^{0} $ $ 2(\pi^{+}\pi^{-})K^{+}K^{-} $ $ p\overline{n}\pi^{-} $ $ nN(1440) $ $ nN(1520) $ $ nN(1535) $ $ \underline{E^{-}}\overline{E}^{+} $ $ \Lambda\overline{\Lambda} $ $ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} $ $ pK^{-}\overline{\Lambda}+\text{c.c.} $ $ 2(K^{+}K^{-}) $	[<i>hh</i>]		5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7 1.89 8.3 8.7 7.2	±±±±±±± ±±±±±	0.33 0.16 4 0.24 0.032 1.3 0.09 0.8 0.09 0.7 1.1 0.8) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4	S=1.4 S=2.8	1231 1106 992 988 1320 1174 978 928 917 807 1074 950 876 1131
$ \begin{array}{l} \rho \overline{\rho} \phi \\ n \overline{n} \\ n \overline{n} \pi^{+} \pi^{-} \\ \Sigma^{+} \overline{\Sigma}^{-} \\ \Sigma^{0} \overline{\Sigma}^{0} \\ 2(\pi^{+} \pi^{-}) K^{+} K^{-} \\ \rho \overline{n} \pi^{-} \\ n N(1440) \\ n N(1520) \\ n N(1535) \\ \overline{\Xi}^{-} \overline{\Xi}^{+} \\ \Lambda \overline{\Lambda} \\ \Lambda \overline{\Sigma}^{-} \pi^{+} \text{ (or c.c.)} \\ \rho K^{-} \overline{\Lambda} + \text{c.c.} \\ 2(K^{+} K^{-}) \\ \rho K^{-} \overline{\Sigma}^{0} \end{array} $	[<i>hh</i>]	(((((((((((((((((((5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7 1.89 8.3 8.7 7.2	± ± ± ± ± ± ± ± ± ± ± ±	0.33 0.16 4 0.24 0.032 1.3 0.09 0.8 0.09 0.7 1.1 0.8 0.8) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4	S=1.4 S=2.8	1231 1106 992 988 1320 1174 978 928 917 807 1074 950 876 1131 819
$ \frac{p\overline{p}\phi}{n\overline{n}} $ $ n\overline{n}\pi^{+}\pi^{-} $ $ \Sigma^{+}\overline{\Sigma}^{-} $ $ \Sigma^{0}\overline{\Sigma}^{0} $ $ 2(\pi^{+}\pi^{-})K^{+}K^{-} $ $ p\overline{n}\pi^{-} $ $ nN(1440) $ $ nN(1520) $ $ nN(1535) $ $ \underline{E^{-}}\overline{E}^{+} $ $ \Lambda\overline{\Lambda} $ $ \Lambda\overline{\Sigma}^{-}\pi^{+} \text{ (or c.c.)} $ $ pK^{-}\overline{\Lambda}+\text{c.c.} $ $ 2(K^{+}K^{-}) $	[<i>hh</i>]		5.19 2.09 4 1.50 1.172 3.1 2.12 een een 9.7 1.89 8.3 8.7 7.2 2.9 2.86	±±±±±±±	0.33 0.16 4 0.24 0.032 1.3 0.09 0.8 0.09 0.7 1.1 0.8 0.8 0.21) × 10 ⁻¹) × 10 ⁻¹	-5 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4	S=1.4 S=2.8	1231 1106 992 988 1320 1174 978 928 917 807 1074 950 876 1131

$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(13	+	1 0) × 10 ⁻³		903
$\Lambda \overline{\Lambda} \eta$					$) \times 10^{-4}$		672
$\Lambda \overline{\Lambda} \pi^0$					$) \times 10^{-5}$		998
$\frac{\pi}{\Lambda}nK_S^0$ + c.c.					$) \times 10$ $) \times 10^{-4}$		872
$\pi^+\pi^-$							
	•				$) \times 10^{-4}$		1542
$\Lambda \overline{\Sigma} + \text{c.c.}$			土	0.23	$) \times 10^{-5}$	CI 050/	1034
$K_S^0 K_S^0$	<	1.4			× 10 ⁻⁸	CL=95%	1466
Ra	adiativ	e dec	ay	5			
3γ			•		$) \times 10^{-5}$		1548
4γ	<				× 10 ⁻⁶	CL=90%	1548
5γ		1.5			$\times10^{-5}$	CL=90%	1548
$\gamma \pi^0 \pi^0$			\pm	0.05	$) \times 10^{-3}$		1543
$\gamma \eta \pi^0$					$) \times 10^{-5}$		1497
$\gamma a_0(980)^0 \rightarrow \gamma \eta \pi^0$		2.5			× 10 ⁻⁶	CL=95%	_
$\gamma a_2(1320)^0 \rightarrow \gamma \eta \pi^0$		6.6			× 10 ⁻⁶	CL=95%	_
$\gamma K_S^0 K_S^0$			+	0.4	$) \times 10^{-4}$	CL 3070	1466
$\gamma \eta_c(1S)$		1.7				S=1.5	111
	,				•		111
$\gamma \eta_{c}(1S) \rightarrow 3\gamma$	(3.8	_	1.3 1.0	$) \times 10^{-6}$	S=1.1	_
$\gamma \pi^+ \pi^- 2\pi^0$	(8.3	\pm	3.1	$) \times 10^{-3}$		1518
$\gamma \eta \pi \pi$	(6.1	\pm	1.0	$) \times 10^{-3}$		1487
$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$	(6.2	\pm	2.4	$) \times 10^{-4}$		_
$\gamma \eta (1405/1475) ightarrow \gamma K \overline{K} \pi$	[o] (2.8	\pm	0.6	$) \times 10^{-3}$	S=1.6	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0$	(7.8	\pm	2.0	$) \times 10^{-5}$	S=1.8	1223
$\gamma\eta(1405/1475) \rightarrow \gamma\eta\pi^{+}\pi^{-}$	(3.0	\pm	0.5	$) \times 10^{-4}$		_
$\gamma\eta$ (1405/1475) $ ightarrow \ \gamma\gamma\phi$	<	8.2			$\times 10^{-5}$	CL=95%	_
$\gamma\eta$ (1405) $ ightarrow \gamma\gamma\gamma$	<	2.63			$\times 10^{-6}$	CL=90%	_
$\gamma \eta (1475) \rightarrow \gamma \gamma \gamma$	<	1.86			$\times10^{-6}$	CL=90%	_
$\gamma \rho \rho$	(4.5	\pm	8.0	$) \times 10^{-3}$		1340
$\gamma ho \omega$	<	5.4			$\times 10^{-4}$	CL=90%	1338
$\gamma ho\phi$	<	8.8			$\times 10^{-5}$	CL=90%	1258
$\gamma \eta'(958)$	(5.21	\pm	0.17	$) \times 10^{-3}$	S=1.4	1400
$\gamma 2\pi^+ 2\pi^-$					$) \times 10^{-3}$	S=1.9	1517
$\gamma f_2(1270) f_2(1270)$					$) \times 10^{-4}$		878
$\gamma f_2(1270) f_2(1270)$ (non reso-					$) \times 10^{-4}$		_
nant)							
$\gamma K^+ K^- \pi^+ \pi^-$	(2.1	\pm	0.6	$) \times 10^{-3}$		1407
$\gamma f_4(2050)$					$) \times 10^{-3}$		891
γωω					$) \times 10^{-3}$		1336
$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$					$) \times 10^{-3}$	S=1.3	1223
$\gamma f_2(1270)$					$) \times 10^{-3}$	S=1.3	1286
$\gamma f_2(1270) \rightarrow \gamma K_S^0 K_S^0$) × 10 ⁻⁵		_
				0.22			
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$	(4.2	±	1.5	$) \times 10^{-4}$		_

$\gamma f_0(1370) \rightarrow \gamma K_S^0 K_S^0$	(1.1	±	0.4	$) \times 10^{-5}$		_
$\gamma f_0(1500) \rightarrow \gamma K_S^0 K_S^0$	(1.59	+	0.24 0.60	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(9.5	+	1.0 0.5	$) \times 10^{-4}$	S=1.5	1075
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$					$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$					$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	(2.4	+	1.2 0.7	$) \times 10^{-4}$		_
$\gamma \eta$					$7) \times 10^{-3}$		1500
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$					$) \times 10^{-4}$		1220
$\gamma f_1(1285)$					$) \times 10^{-4}$		1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	($) \times 10^{-4}$		_
$\gamma f_2'(1525)$	(5.7	+	0.8 0.5	$) \times 10^{-4}$	S=1.5	1173
$\gamma f_2'(1525) \rightarrow \gamma K_S^0 K_S^0$	(8.0	+	0.7 0.5	$) \times 10^{-5}$		-
$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$	(3.4	\pm	1.4	$) \times 10^{-5}$		_
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$					$) \times 10^{-4}$		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$					$) \times 10^{-4}$		_
$\gamma f_0(1750) \rightarrow \gamma K_S^0 K_S^0$	(1.11	+	0.20 0.33	$) \times 10^{-5}$		_
$\gamma f_0(1800) \rightarrow \gamma \omega \phi$	(2.5	\pm	0.6	$) \times 10^{-4}$		_
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	(5.4	+	3.5 2.4	$) \times 10^{-5}$		-
$\gamma f_2(1950) \rightarrow K^*(902)$	(7.0	\pm	2.2	$)\times10^{-4}$		_
$\gamma K^*(892) K^*(892)$ $\gamma K^*(892) \overline{K}^*(892)$	(4.0	_	1 2	$) \times 10^{-3}$		1266
$\gamma \phi \phi$					$) \times 10^{-4}$	S=2.1	1166
$\gamma p \overline{p}$					$) \times 10^{-4}$	5 1 .1	1232
$\gamma \eta$ (2225)	•) × 10 ⁻⁴		752
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$					$) \times 10^{-4}$		1048
$\gamma \eta(1760) \rightarrow \gamma \omega \omega$	•) × 10 ⁻³		_
$\gamma \eta (1760) \rightarrow \gamma \gamma \gamma$						CL=90%	_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	(2.77	+	0.34 0.40	$) \times 10^{-4}$	S=1.1	1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(7.7	+	1.5 0.9	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3	+	2.0 1.3	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma \gamma \gamma$	<	3.56			\times 10 ⁻⁶	CL=90%	_
$\gamma X(1840) \rightarrow \gamma 3(\pi^+\pi^-)$					$) \times 10^{-5}$		_
$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	(7	\pm	4	$) \times 10^{-4}$	S=2.1	1442
$\gamma \pi^0$	•				$) \times 10^{-5}$		1546
$\gamma p \overline{p} \pi^+ \pi^-$	<	7.9			$\times 10^{-4}$	CL=90%	1107
$\gamma \Lambda \overline{\Lambda}$	<	1.3			\times 10 ⁻⁴	CL=90%	1074

$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	(1.13 +	0.60	$) \times 10^{-4}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(6.2 ±	1.0	\times 10 ⁻⁴		_
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$				$\times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0$,		,) × 10 ⁻⁴		_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$		3.9		\times 10 ⁻⁵	CL=90%	_
$\gamma f_I(2220) \rightarrow \gamma K \overline{K}$				× 10 ⁻⁵	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$				$\times 10^{-5}$		_
$\gamma f_0(2330) \rightarrow \gamma K_S^0 K_S^0$				\times 10 ⁻⁵		_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	(5.6 ⁺	2.4 2.2	$) \times 10^{-5}$		_
$\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0$	(5.5 +	4.0 1.5	$) \times 10^{-5}$		_
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	(1.09 ±	0.24	\times 10 ⁻⁴		1183
$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	(1.7 +	0.6	$) \times 10^{-5}$		_
$\gamma A \rightarrow \gamma$ invisible	[ttaa] <	6.3		\times 10 ⁻⁶	CL=90%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[uuaa] <			$\times 10^{-6}$	CL=90%	_
	D-1'-					
0 1		decays		7		
$\pi^0 e^+ e^-$,			$\times 10^{-7}$		1546
$\eta e^+ e^-$				$\times 10^{-5}$		1500
$\eta'(958)e^+e^-$	•			$\times 10^{-5}$		1400
$\eta U \rightarrow \eta e^+ e^-$	<	9.11		\times 10 ⁻⁷	CL=90%	_
$\eta'(958) U \to \eta'(958) e^+ e^-$	<	2.0		$\times 10^{-7}$	CL=90%	_
	Weak	decays				
$D^{-}e^{+}\nu_{e}^{-}$ c.c.		1.2		$\times 10^{-5}$	CL=90%	984
$\overline{D}^0 e^+ e^- + \text{c.c.}$		8.5		$\times 10^{-8}$	CL=90%	987
$D_{s}^{-}e^{+}\nu_{e}+\text{c.c.}$		1.3		× 10 ⁻⁶	CL=90%	923
$D_s^{*-}e^+\nu_e^+$ c.c.		1.8		× 10 ⁻⁶	CL=90%	828
$D^{-}\pi^{+}$ + c.c.		7.5		× 10 ⁻⁵	CL=90%	977
$\frac{D}{D^0}\frac{\pi}{K^0}$ + c.c.		1.7		× 10 × 10 ⁻⁴	CL=90% CL=90%	898
$\overline{D}^0 \overline{K}^{*0} + \text{c.c.}$		2.5		× 10 ⁻⁶	CL=90%	670
$D_s^-\pi^+$ + c.c.		1.3		× 10 ⁻⁴		915
$D_s^- \rho^+ + \text{c.c.}$		1.3		× 10 ⁻⁵	CL=90%	663
$D_s \rho$ + c.c.		1.5		× 10	CL—9070	003
Charge of	onjugatio	n (<i>C</i>),	Parity	(<i>P</i>),		
Lepton Fami	ly numbei	r (<i>LF</i>) v	violatir	_		
$\gamma\gamma$ C	<	2.7		\times 10 ⁻⁷	CL=90%	1548
	<	1.4		$\times 10^{-6}$	CL=90%	1381
$\begin{array}{ccc} \gamma \phi & \mathcal{C} \\ e^{\pm} \mu^{\mp} & \mathcal{L} \mathcal{F} \end{array}$	<	1.6		$\times 10^{-7}$	CL=90%	1547
$e^{\pm} au^{\mp}$ LF	<	8.3		$\times 10^{-6}$	CL=90%	1039
$\mu^{\pm} au^{\mp}$ LF	<	2.0		$\times 10^{-6}$	CL=90%	1035

Other decays

invisible $< 7 \times 10^{-4} \text{ CL}=90\%$

 $\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.71\pm0.30$ MeV Full width $\Gamma=10.8\pm0.6$ MeV

	.O IVIC V	C C /	
$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
Hadro	onic decays		
$2(\pi^{+}\pi^{-})$	$(2.34\pm0.18)\%$		1679
$\rho^0 \pi^+ \pi^-$	$(9.1 \pm 2.9) \times 1$	0-3	1607
$f_0(980)f_0(980)$	$(6.6 \pm 2.1) \times 1$	0^{-4}	1391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(3.3 \pm 0.4) %		1680
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	(2.9 \pm 0.4) %		1607
$4\pi^{0}$	$(3.3~\pm 0.4~)\times 1$	0-3	1681
$\pi^+\pi^-$ K ⁺ K ⁻	$(1.81\pm0.14)~\%$		1580
${\kappa_0^*(1430)^0} \overline{\kappa}_0^*(1430)^0 ightarrow \pi^+\pi^-\kappa^+\kappa^-$	$(9.8 \ ^{+4.0}_{-2.8}) \times 1$	0^{-4}	-
$K_0^*(1430)^0\overline{K}_2^*(1430)^0+ ext{ c.c.} ightarrow \pi^+\pi^-K^+K^-$	$(8.0 \ ^{+2.0}_{-2.4}) \times 1$	0-4	_
$K_1(1270)^+K^- + \text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	$(6.3 \pm 1.9) \times 1$	0-3	_
$K_1(1400)^+K^- + \text{c.c.} \rightarrow \pi^+\pi^-K^+K^-$	< 2.7 × 1	0^{-3} CL=90%	_
$f_0(980) f_0(980)$	$(1.6 \ ^{+1.0}_{-0.9}\) imes 1$	0^{-4}	1391
$f_0(980) f_0(2200)$	$(7.9 \ ^{+2.0}_{-2.5}\) imes 1$	0^{-4}	586
$f_0(1370) f_0(1370)$	< 2.7 × 1	0^{-4} CL=90%	1019
$f_0(1370) f_0(1500)$	< 1.7 × 1	0^{-4} CL=90%	920
$f_0(1370) f_0(1710)$	$(6.7 \ ^{+3.5}_{-2.3}\) imes 1$	0^{-4}	740
$f_0(1500) f_0(1370)$	< 1.3 × 1		920
$f_0(1500) f_0(1500)$	< 5 × 1		804
$f_0(1500) f_0(1710)$	< 7 × 1		581
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(8.6 ± 0.9) $ imes 1$	_	1545
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(4.2 \pm 0.4) \times 1$		1543
$K^{+}K^{-}\pi^{0}\pi^{0}$	(5.6 ± 0.9) $ imes 1$	$^{0-3}$	1582
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0} + \text{c.c.}$	(2.49 ± 0.33) %		1581
$\rho^{+}K^{-}K^{0} + \text{c.c.}$	(1.21 ± 0.21) %	2	1458
$K^*(892)^- K^+ \pi^0 \to K^+ \pi^- \overline{K}^0 \pi^0 + \text{c.c.}$	$(4.6 \pm 1.2) \times 1$	0-3	_
$K_S^0 K_S^0 \pi^+ \pi^-$	(5.7 ± 1.1) \times 1	0-3	1579

$\mathit{K}^{+}\mathit{K}^{-}\eta\pi^{0}$	$(3.0 \pm 0.7) \times 10^{-3}$		1468
$3(\pi^+\pi^-)$	$(1.20\pm0.18)\%$		1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+$ c.c.	$(7.5 \pm 1.6) \times 10^{-3}$		1523
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-3}$		1456
$\pi\pi$	$(8.51\pm0.33)\times10^{-3}$		1702
$\pi^0 \eta$	$< 1.8 \times 10^{-4}$		1661
$\pi^0 \dot{\eta'}$	$< 1.1 \times 10^{-3}$		1570
$\pi^0 \stackrel{r}{\eta_c}$	$< 1.6 \times 10^{-3}$	CL=90%	383
$\eta \eta$	$(3.01\pm0.19)\times10^{-3}$		1617
$\eta \eta'$	$(9.1 \pm 1.1) \times 10^{-5}$		1521
$\eta'\eta'$	$(2.17\pm0.12)\times10^{-3}$		1413
$\omega\omega$	$(9.7 \pm 1.1) \times 10^{-4}$		1517
$\omega\phi$	$(1.41\pm0.13)\times10^{-4}$		1447
$\omega K^+ K^-$	$(1.94\pm0.21)\times10^{-3}$		1457
K^+K^-	$(6.05\pm0.31)\times10^{-3}$		1634
$K_S^0 K_S^0$	$(3.16\pm0.17)\times10^{-3}$		1633
$\pi^+\pi^-\eta$	$< 2.0 \times 10^{-4}$	CL=90%	1651
$\pi^+\pi^-\eta'$	$\begin{array}{ccc} < 2.0 & \times 10 \\ < 4 & \times 10^{-4} \end{array}$	CL=90%	1560
$\frac{\pi}{K^0} K^+ \pi^- + \text{c.c.}$	$< 9 \qquad \times 10^{-5}$	CL=90%	1610
$K^+K^-\pi^0$	$< 6 \times 10^{-5}$	CL=90% CL=90%	1611
$K^+K^-\eta$	< 0	CL=90% CL=90%	1512
$K^+K^-K^0_SK^0_S$	$(1.4 \pm 0.5) \times 10^{-3}$	CL—9070	1331
$K^+K^-K^+K^-$			
	$(2.82\pm0.29)\times10^{-3}$		1333
$K^+K^-\phi$	$(9.7 \pm 2.5) \times 10^{-4}$		1381
$\overline{K}^{0}K^{+}\pi^{-}\phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^{+}K^{-}\pi^{0}\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^+ \pi^- \pi^0$	$(1.18\pm0.15)\times10^{-3}$		1525
$\phi \underline{\phi}$	$(8.0 \pm 0.7) \times 10^{-4}$		1370
$P\overline{P}$	$(2.21\pm0.08)\times10^{-4}$		1426
$p\overline{p}\pi^0$	$(7.0 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$ p \overline{p} \eta$	$(3.5 \pm 0.4) \times 10^{-4}$		1187
$p \overline{\underline{p}} \omega$	$(5.2 \pm 0.6) \times 10^{-4}$		1043
$p\overline{p}\phi$	$(6.0 \pm 1.4) \times 10^{-5}$		876
$p\overline{p}\pi^+\pi^-$	$(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	1320
$p \overline{p} \pi^0 \pi^0$	$(1.04\pm0.28)\times10^{-3}$		1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.22\pm0.26)\times10^{-4}$		890
$p\overline{p}K_S^0K_S^0$	$< 8.8 \times 10^{-4}$	CL=90%	884
$p\overline{n}\pi^-$	$(1.27\pm0.11)\times10^{-3}$		1376
$\overline{p}n\pi^+$	$(1.37\pm0.12)\times10^{-3}$		1376
$p\overline{n}\pi^-\pi^0$	$(2.34\pm0.21)\times10^{-3}$		1321
$\overline{p}\underline{n}\pi^+\pi^0$	$(2.21\pm0.18)\times10^{-3}$		1321
$\Lambda \overline{\Lambda}$	$(3.27\pm0.24)\times10^{-4}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.18\pm0.13)\times10^{-3}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$< 5 \times 10^{-4}$	CL=90%	1153

$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c.	< 5	$\times10^{-4}$	CL=90%	1083
$\Sigma(1385)^-\overline{\Lambda}\pi^++$ c.c.	< 5	$\times 10^{-4}$	CL=90%	1083
$K^+ \overline{\rho} \Lambda + \text{c.c.}$	$(1.25\pm0.12$	$) \times 10^{-3}$	S=1.3	1132
$K^+\overline{ ho}$ $\Lambda(1520)+$ c.c.	(2.9 ± 0.7)	$) \times 10^{-4}$		858
$\Lambda(1520)\overline{\Lambda}(1520)$	(3.1 ± 1.2)	$) \times 10^{-4}$		779
$\Sigma^0 \overline{\Sigma}{}^0$	(4.68 ± 0.32)	$) \times 10^{-4}$		1222
$\Sigma + \overline{\Sigma} -$	(4.6 ± 0.8)	$) \times 10^{-4}$	S=2.6	1225
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(1.6 ± 0.6)	$) \times 10^{-4}$		1001
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	(2.3 ± 0.7)	$) \times 10^{-4}$		1001
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.94 \pm 0.35$	$) \times 10^{-4}$		873
<u>=</u> 0 <u>=</u> 0	(3.1 ± 0.8)	$) \times 10^{-4}$		1089
<u>=</u> − = +	(4.8 ± 0.7)	$) \times 10^{-4}$		1081
$\eta_c \pi^+ \pi^-$	< 7	\times 10 ⁻⁴	CL=90%	307
	Radiative decays			
- 1/-/·(1C)	(1.40 0.05) O/		202

$\gamma J/\psi(1S)$	$(1.40 \pm 0$.05) %		303
γho^{0}	< 9	\times 10 ⁻⁶	CL=90%	1619
$\gamma \omega$	< 8	$\times 10^{-6}$	CL=90%	1618
$\gamma \phi$	< 6	$\times 10^{-6}$	CL=90%	1555
$\gamma \gamma$	$(2.04\pm0$	$(.09) \times 10^{-4}$		1707
$e^+e^-J/\psi(1S)$	$(1.54 \pm 0$	$(0.33) \times 10^{-4}$		303

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3510.67\pm0.05$ MeV (S =1.2) Full width $\Gamma=0.84\pm0.04$ MeV

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

	Hadronic decays		
$3(\pi^{+}\pi^{-})$	$(5.8 \pm 1.4) \times 10^{-3}$	S=1.2	1683
$2(\pi^{+}\pi^{-})$	$(7.6 \pm 2.6) \times 10^{-3}$		1728
$\pi^+\pi^-\pi^0\pi^0$	$(1.19\pm0.15)\%$		1729
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	$(1.45\pm0.24)\%$		1658
$ ho^0\pi^+\pi^-$	$(3.9 \pm 3.5) \times 10^{-3}$		1657
$4\pi^0$	(5.4 ± 0.8) $ imes 10^{-4}$		1729
$\pi^+\pi^-$ K $^+$ K $^-$	(4.5 ± 1.0) $ imes 10^{-3}$		1632
$\mathit{K}^{+}\mathit{K}^{-}\pi^{0}\pi^{0}$	$(1.12\pm0.27)\times10^{-3}$		1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	($1.15\pm0.13)$ %		1598
$K^0_S K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(7.5 \pm 0.8) \times 10^{-3}$		1596
$K^+\pi^-\overline{K}^0\pi^0+$ c.c.	$(8.6 \pm 1.4) \times 10^{-3}$		1632
$ ho^-$ K $^+$ $\overline{\mathrm{K}}{}^0$ $+$ c.c.	$(5.0 \pm 1.2) \times 10^{-3}$		1514
$K^*(892)^0\overline{K}^0\pi^0 \rightarrow$	$(2.3 \pm 0.6) \times 10^{-3}$		_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	,		

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 141

$K^{+}K^{-}\eta\pi^{0}$ $\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$ $K^{+}K^{-}\eta$ $\overline{K}^{0}K^{+}\pi^{-} + \text{c.c.}$ $K^{*}(892)^{0}\overline{K}^{0} + \text{c.c.}$ $K^{*}(892)^{+}K^{-} + \text{c.c.}$ $K_{J}^{0}(1430)^{0}\overline{K}^{0} + \text{c.c.} \rightarrow$ $K_{S}^{0}K^{+}\pi^{-} + \text{c.c.}$	$(1.12\pm0.34) \times 10^{-3}$ $(6.9 \pm 2.9) \times 10^{-4}$ $(3.2 \pm 1.0) \times 10^{-4}$ $(7.0 \pm 0.6) \times 10^{-3}$ $(10 \pm 4) \times 10^{-4}$ $(1.4 \pm 0.6) \times 10^{-3}$ $< 8 \times 10^{-4}$	CL=90%	1523 1630 1566 1661 1602 1602
$K_J^*(1430)^+ K^- + \text{c.c.} \rightarrow$	$< 2.1 \times 10^{-3}$	CL=90%	_
$K_{S}^{0}K^{+}\pi^{-} + \text{c.c.}$ $K^{+}K^{-}\pi^{0}$ $\eta\pi^{+}\pi^{-}$ $a_{0}(980)^{+}\pi^{-} + \text{c.c.} \rightarrow \eta\pi^{+}\pi^{-}$ $a_{2}(1320)^{+}\pi^{-} + \text{c.c.} \rightarrow \eta\pi^{+}\pi^{-}$ $a_{2}(1700)^{+}\pi^{-} + \text{c.c.} \rightarrow \eta\pi^{+}\pi^{-}$ $f_{2}(1270)\eta \rightarrow \eta\pi^{+}\pi^{-}$ $f_{4}(2050)\eta \rightarrow \eta\pi^{+}\pi^{-}$ $\pi_{1}(1400)^{+}\pi^{-} + \text{c.c.} \rightarrow$	$(1.81\pm0.24) \times 10^{-3}$ $(4.62\pm0.23) \times 10^{-3}$ $(3.2\pm0.4) \times 10^{-3}$ $(1.76\pm0.24) \times 10^{-4}$ $(4.6\pm0.7) \times 10^{-5}$ $(3.5\pm0.6) \times 10^{-4}$ $(2.5\pm0.9) \times 10^{-5}$ $< 5 \times 10^{-5}$	S=2.2 CL=90%	1662 1701 — — — —
$\eta\pi^+\pi^- \ \pi_1(1600)^+\pi^- + ext{c.c.} ightarrow$	$< 1.5 \times 10^{-5}$	CL=90%	_
$\eta \pi^{+} \pi^{-}$ $\pi_{1}(2015)^{+} \pi^{-} + \text{c.c.} \rightarrow$ $\eta \pi^{+} \pi^{-}$	< 8 × 10 ⁻⁶	CL=90%	_
$f_2(1270)\eta$	(6.7 ± 1.1) $\times 10^{-4}$		1467
$\pi^+\pi^-\eta'$	$(2.2 \pm 0.4) \times 10^{-3}$		1612
$K^+ K^- \eta'(958)$	$(8.8 \pm 0.9) \times 10^{-4}$		1461
$K_0^*(1430)^+ K^- + \text{c.c.}$	$(6.4 \begin{array}{c} +2.2 \\ -2.8 \end{array}) \times 10^{-4}$		-
$f_0(980)\eta'(958)$	$(1.6 \ ^{+1.4}_{-0.7}) imes 10^{-4}$		1460
$f_0(1710)\eta'(958)$	$(7 ^{+7}_{-5}) \times 10^{-5}$		1118
$f_2'(1525)\eta'(958)$	$(9 \pm 6) \times 10^{-5}$		1225
$\pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$	(3.5 ± 0.9) $\times 10^{-7}$		_
$K^{+} \overline{K}^{*} (892)^{0} \pi^{-} + \text{c.c.}$	$(3.2 \pm 2.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.4 \pm 0.4) \times 10^{-3}$		1512
$K^{+}K^{-}K^{0}_{S}K^{0}_{S}$ $K^{+}K^{-}K^{+}K^{-}$	< 4 × 10 ⁻⁴	CL=90%	1390
$K^+K^-\phi$	$(5.4 \pm 1.1) \times 10^{-4}$ $(4.1 \pm 1.5) \times 10^{-4}$		1393
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1440 1387
$K^+K^-\pi^0\phi$	$(1.62\pm0.30)\times10^{-3}$		1390
$\phi \pi^{+} \pi^{-} \pi^{0'}$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega\omega$	$(5.7 \pm 0.7) \times 10^{-4}$		1571
$\omega K^+ K^-$	$(7.8 \pm 0.9) \times 10^{-4}$		1513
$\omega \phi$	$(2.7 \pm 0.4) \times 10^{-5}$		1503

$\phi\phi$	$(4.2 \pm 0.5) \times 10^{-4}$		1429
p p	$(7.60\pm0.34)\times10^{-5}$		1484
$p\overline{p}\pi^0$	$(1.55\pm0.18)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.45\pm0.25)\times10^{-4}$		1254
$p \overline{p} \omega$	$(2.12\pm0.31)\times10^{-4}$		1117
$p\overline{p}\phi$	$< 1.7 \times 10^{-5}$	CL=90%	962
$p\overline{p}\pi^+\pi^-$	$(5.0 \pm 1.9) \times 10^{-4}$		1381
$\rho \overline{\rho} \pi^0 \pi^0$	$< 5 \times 10^{-4}$	CL=90%	1385
$p\overline{p}K^+K^-$ (non-resonant)	$(1.27\pm0.22)\times10^{-4}$		974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^-$	$(3.8 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$p\overline{n}\pi^-\pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383
$\overline{p}n\pi^+\pi^0$	$(1.01\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.14\pm0.11)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(2.9 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^+ \overline{p} \Lambda + \text{c.c.}$	$(4.2 \pm 0.4) \times 10^{-4}$	S=1.2	1203
$K^+ \overline{p} \Lambda(1520) + \text{c.c.}$	$(1.7 \pm 0.4) \times 10^{-4}$		950
$\Lambda(1520)\overline{\Lambda}(1520)$	$< 9 \times 10^{-5}$	CL=90%	879
$\Sigma^0 \overline{\Sigma}^0$	(4.2 ± 0.6) $ imes 10^{-5}$		1288
$\Sigma^{+}\overline{\Sigma}^{-}$	(3.6 ± 0.7) $\times 10^{-5}$		1291
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 9 \times 10^{-5}$	CL=90%	1081
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$< 5 \times 10^{-5}$	CL=90%	1081
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.35\pm0.24)\times10^{-4}$		963
$\equiv^0 \overline{\equiv}^0$	$< 6 \times 10^{-5}$	CL=90%	1163
<u>=</u> − = +	(8.0 ± 2.1) $\times 10^{-5}$		1155
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		_
$K_S^0 K_S^0$	$< 6 \times 10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	$< 3.2 \times 10^{-3}$	CL=90%	413
	Dadiativa dagaya		
	Radiative decays		200
$\gamma J/\psi(1S)$	$(34.3 \pm 1.0)\%$		389
$\gamma \rho^0$	$(2.16\pm0.17)\times10^{-4}$		1670
$\gamma \omega$	$(6.8 \pm 0.8) \times 10^{-5}$		1668
$\gamma \phi$	$(2.4 \pm 0.5) \times 10^{-5}$	CL 000/	1607
$\stackrel{\gamma}{e^+}\stackrel{q}{e^-}J/\psi(1S)$	$< 6.3 \times 10^{-6}$	CL=90%	1755
$e \cdot e J/\psi(13)$	$(3.65\pm0.25)\times10^{-3}$		389

$$h_c(1P)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

 $\mathsf{Mass}\ m = 3525.38 \pm 0.11\ \mathsf{MeV}$ Full width $\Gamma=0.7\pm0.4~\text{MeV}$

$h_c(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi\pi$	not seen		312
$J/\psi(1S)\pi^+\pi^-$	< 2.3 × 1		305
p p	< 1.5 × 1	10^{-4} 90%	1492
$\pi^+\pi^-\pi^0$	< 2.2 × 1	₁₀ -3	1749
$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})\%$		1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9 %		1661
	Radiative decays		
$\gamma\eta$	$(4.7\pm2.1)\times1$	10^{-4}	1720
$\gamma \eta'$ (958)	$(1.5\pm0.4)\times1$	_{L0} -3	1633
$\gamma \eta_c(1S)$	$(51 \pm 6)\%$		500

$\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 3556.17 \pm 0.07 \text{ MeV}$ Full width $\Gamma=1.97\pm0.09~\text{MeV}$

Y-2	1 <i>P</i>)	DECAY	MODES
へつい	-· ,		1110000

Fraction (Γ_j/Γ) Confidence level (MeV/c)

<u> </u>		(1/)	(/ /
Hadronic decays			
$2(\pi^{+}\pi^{-})$		(1.02±0.09) %	1751
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$		$(1.83\pm0.23)\%$	1752
$\rho^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}$ + c.c.		$(2.19\pm0.34)\%$	1682
$4\pi^0$		$(1.11\pm0.15)\times10^{-3}$	1752
$\mathit{K}^{+}\mathit{K}^{-}\pi^{0}\pi^{0}$		$(2.1 \pm 0.4) \times 10^{-3}$	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.		$(1.38\pm0.20)\%$	1657
$ ho^- K^+ \overline{K}{}^0 +$ c.c.		$(4.1 \pm 1.2) \times 10^{-3}$	1540
$K^*(892)^0 K^- \pi^+ \rightarrow$		$(2.9 \pm 0.8) \times 10^{-3}$	_
$K^{-}\pi^{+}K^{0}\pi^{0}$ + c.c.		,	
$K^*(892)^0\overline{K}{}^0\pi^0 ightarrow$		$(3.8 \pm 0.9) \times 10^{-3}$	_
$K^+\pi^-\overline{K}^0\pi^0$ + c.c.			
$K^*(892)^- \frac{K^+ \pi^0}{2} \rightarrow$		$(3.7 \pm 0.8) \times 10^{-3}$	_
$K^+\pi^-\overline{K}{}^0\pi^0$ + c.c.		•	
$K^*(892)^+\overline{K}^0\pi^- \rightarrow$		$(2.9 \pm 0.8) \times 10^{-3}$	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$		2	
$K^+K^-\eta\pi^0$		$(1.3 \pm 0.4) \times 10^{-3}$	1549
$K^+K^-\pi^+\pi^-$		$(8.4 \pm 0.9) \times 10^{-3}$	1656
HTTD //DDC LDL COV	D	144	F /00 /0010 10 04

HTTP://PDG.LBL.GOV

Page 144

$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.17±0.13) %		1623
$K_{S}^{0} K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(7.3 \pm 0.8) \times 10^{-3}$		1621
$K + \overline{K}^* (892)^0 \pi^- + \text{c.c.}$	$(2.1 \pm 1.1) \times 10^{-3}$		1602
$K^*(892)^0 \overline{K}^*(892)^0$	$(2.3 \pm 0.4) \times 10^{-3}$		1538
$3(\pi^+\pi^-)$	$(8.6 \pm 1.8) \times 10^{-3}$		1707
$\phi\phi$	$(1.06\pm0.09)\times10^{-3}$		1457
$\omega\omega$	$(8.4 \pm 1.0) \times 10^{-4}$		1597
$\omega K^+ K^-$	$(7.3 \pm 0.9) \times 10^{-4}$		1540
$\omega\phi$	$(9.6 \pm 2.7) \times 10^{-6}$		1529
$\pi\pi$	$(2.23\pm0.09)\times10^{-3}$		1773
$\rho^0 \pi^+ \pi^-$	$(3.7 \pm 1.6) \times 10^{-3}$		1682
$\pi^+\pi^-\pi^0$ (non-resonant)	$(2.0 \pm 0.4) \times 10^{-5}$		1765
$\rho(770)^{\pm}\pi^{\mp}$	$(6 \pm 4) \times 10^{-6}$		_
$\pi^+\pi^-\eta$	$(4.8 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.0 \pm 1.8) \times 10^{-4}$		1636
$\eta \eta$	$(5.4 \pm 0.4) \times 10^{-4}$		1692
K^+K^-	$(1.01\pm0.06)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.2 \pm 0.4) \times 10^{-4}$		1707
$K^*(892)^{\pm}K^{\mp}$	$(1.44\pm0.21)\times10^{-4}$		1627
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.27)\times10^{-4}$		1627
$K_2^*(1430)^{\pm}K^{\mp}$	$(1.48\pm0.12)\times10^{-3}$		_
$K_{2}^{*}(1430)^{0}\overline{K}^{0}+\text{c.c.}$	$(1.24\pm0.17)\times10^{-3}$		1444
$K_3^{-}(1780)^{\pm}K^{\mp}$	(5.2 ± 0.8) $\times 10^{-4}$		_
$K_3^*(1780)^0\overline{K}^0 + \text{c.c.}$	$(5.6 \pm 2.1) \times 10^{-4}$		1276
$a_2(1320)^0\pi^0$	$(1.29\pm0.34)\times10^{-3}$		_
$a_2(1320)^{\pm}\pi^{\mp}$	$(1.8 \pm 0.6) \times 10^{-3}$		1531
$K^{0}K^{+}\pi^{-}+ \text{c.c.}$	$(1.28\pm0.18)\times10^{-3}$		1685
$K^+K^-\pi^0$	$(3.0 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$< 3.2 \times 10^{-4}$	90%	1592
$K^{+}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta\eta'$	$(2.2 \pm 0.5) \times 10^{-5}$		1600
$\dot{\eta'}\dot{\eta'}$	$(4.6 \pm 0.6) \times 10^{-5}$		1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.2 \pm 0.5) \times 10^{-3}$		1655
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$< 4 \times 10^{-4}$	90%	1418
K + K - K + K -	$(1.65\pm0.20)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.42\pm0.29)\times10^{-3}$		1468
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi \pi^+ \pi^- \pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
$p\overline{p}$	$(7.33\pm0.33)\times10^{-5}$		1510
$p \overline{p} \pi^0$	$(4.7 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.74\pm0.25)\times10^{-4}$		1285
$p\overline{p}\omega$	$(3.6 \pm 0.4) \times 10^{-4}$		1152
1.1 *	()		

$oldsymbol{p} \overline{oldsymbol{p}} \phi$	(2.8 ± 0.9)	$\times10^{-5}$		1002		
$p\overline{p}\pi^+\pi^-$	(1.32 ± 0.34)			1410		
$p\overline{p}\pi^0\pi^0$	(7.8 ± 2.3)	\times 10 ⁻⁴		1414		
$p\overline{p}K^+K^-$ (non-resonant)	(1.91 ± 0.32)			1013		
$p\overline{p}K_S^0K_S^0$	< 7.9	$\times10^{-4}$	90%	1007		
$p\overline{n}\pi^{-}$	(8.5 ± 0.9)	$\times10^{-4}$		1463		
$\frac{1}{p}n\pi^+$	(8.9 ±0.8)			1463		
$p\overline{n}\pi^-\pi^0$	(2.17±0.18)			1411		
$\overline{p}n\pi^+\pi^0$	(2.11±0.18)			1411		
$\Lambda \overline{\Lambda}$	(1.84 ± 0.15)			1384		
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(1.25 ± 0.15)			1255		
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	(6.6 ± 1.5)	$\times10^{-4}$		1255		
$\Sigma(1385)^+\overline{\Lambda}\pi^-+$ c.c.	< 4	$\times10^{-4}$	90%	1192		
$\Sigma(1385)^-\overline{\Lambda}\pi^++$ c.c.	< 6	$\times10^{-4}$	90%	1192		
$K^{+}\overline{p}\Lambda$ + c.c.	(7.8 ± 0.5)	$\times10^{-4}$		1236		
$K^+ \overline{p} \Lambda(1520) + \text{c.c.}$	(2.8 ± 0.7)	$\times10^{-4}$		992		
$\Lambda(1520)\overline{\Lambda}(1520)$	(4.6 ± 1.5)	$\times10^{-4}$		923		
$\sum_{i=0}^{\infty} \overline{\sum}_{i=0}^{\infty}$	(3.7 ± 0.6)			1319		
$\Sigma + \overline{\Sigma} -$	(3.4 ± 0.7)	$\times 10^{-5}$		1322		
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	$\times10^{-4}$	90%	1118		
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	< 8	$\times 10^{-5}$	90%	1118		
$K^{-}\Lambda \overline{\Xi}^{+} + \text{c.c.}$	(1.76 ± 0.32)	$\times10^{-4}$		1004		
<u>=</u> 0 <u>=</u> 0	< 1.0	$\times10^{-4}$	90%	1197		
<u>=</u> - = +	(1.42 ± 0.32)	$\times 10^{-4}$		1189		
$J/\psi(1S)\pi^+\pi^-\pi^0 \ \pi^0\eta_c$	< 1.5	%	90%	185		
$\pi^{0}\eta_{c}$	< 3.2	\times 10 ⁻³	90%	511		
$\eta_{c}(1S)\pi^{+}\pi^{-}$	< 5.4	\times 10 ⁻³	90%	459		
Radiative decays						
$\gamma J/\psi(1S)$	(19.0 ± 0.5)	%		430		
$\gamma \rho^0$	< 1.9	$\times10^{-5}$	90%	1694		
$\gamma\omega$	< 6	$\times10^{-6}$	90%	1692		
$\gamma \phi$	< 7	$\times 10^{-6}$	90%	1632		

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Quantum numbers are quark model predictions.

Mass
$$m=3637.5\pm1.1~{\rm MeV}~{\rm (S}=1.2)$$
 Full width $\Gamma=11.3^{+3.2}_{-2.9}~{\rm MeV}$

$\eta_c(2S)$ DECAY MODES	Fraction $(\Gamma_i /$	Γ)	Confidence leve	<i>p</i> el (MeV/	'c)
hadrons	not seen				_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$				
$K\overline{K}\eta$	(5 ± 4)	× 10 ⁻	-3	163	37
$2\pi^{+}2\pi^{-}$	not seen			179	92
$ ho^0 ho^0$	not seen			164	45
$3\pi^{+}3\pi^{-}$	not seen			174	49
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen			170)0
$K^{*0}\overline{K}^{*0}$	not seen			158	35
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.4 ± 1.0)	%		166	<u> 5</u> 7
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen			162	27
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	seen			166	<u> </u> 66
$2K^{+}2K^{-}$	not seen			147	70
$\phi\phi$	not seen			150	ე6
$p\overline{p}$	seen			155	58
$\gamma\gamma$	(1.9 ± 1.3)	\times 10 ⁻	-4	181	19
$\gamma J/\psi(1S)$	< 1.4	%	90%	6 50	00
$\pi^+\pi^-\eta$	not seen			176	56
$\pi^+\pi^-\eta'$	not seen			168	30
$\pi^+\pi^-\eta_c(1S)$	< 25	%	90%	6 53	37

 $\psi(2S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=3686.097\pm0.025$$
 MeV (S = 2.6) Full width $\Gamma=294\pm8$ keV $\Gamma_{e\,e}=2.33\pm0.04$ keV

		Scale factor/	р
$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
hadrons	(97.85 ± 0.13)) %	_
virtual $\gamma ightarrow $ hadrons	(1.73 ± 0.14) % S=1.5	_
ggg	(10.6 ± 1.6)) %	_
$\gamma g g$	(1.03 ± 0.29) %	_
light hadrons	(15.4 ± 1.5)) %	_
e^+e^-	(7.93 ± 0.17	$) \times 10^{-3}$	1843
$\mu^+\mu^-$	(8.0 ± 0.6	$) \times 10^{-3}$	1840
$ au^+ au^-$	(3.1 ± 0.4	$) \times 10^{-3}$	489
Decays into J_{j}	$\psi(1S)$ and anyt	thing	
$J/\psi(1S)$ anything	(61.4 ± 0.6)) %	_
$J/\psi(1S)$ neutrals	(25.38 ± 0.32)) %	_
$J/\psi(1S)\pi^+\pi^-$	(34.68 ± 0.30)) %	477

$J/\psi(1S)\pi^0\pi^0$	(10.04	±0.21) 0/		481
$J/\psi(1S)\eta$	•	± 0.31) % ± 0.05) %		199
$J/\psi(1S)\eta$ $J/\psi(1S)\pi^0$	•	± 0.03) 76 3 ± 0.032) $\times 10^{-3}$		528
$J/\psi(1J)\pi$	(1.200	3±0.032) × 10		520
Hadron	ic decay	ys		
$\pi^0 h_c(1P)$		± 1.3) $\times 10^{-4}$		85
$3(\pi^{+}\pi^{-})\pi^{0}$		± 1.6) $\times 10^{-3}$		1746
$2(\pi^{+}\pi^{-})\pi^{0}$	•	± 1.0) $\times 10^{-3}$		1799
$\rho a_2(1320)$		± 0.9) $\times 10^{-4}$		1501
$\pi + \pi^{-1} \pi^{0} \pi^{0'} \pi^{0}$	•	± 0.9) $\times 10^{-3}$		1800
•	< 2.7		CL=90%	1737
$p\overline{p}$		± 0.08) × 10^{-4}		1586
$n\overline{n}$ $\Delta^{++}\overline{\Delta}^{}$	•	± 0.15) $\times 10^{-4}$		1586
. . 0	`	± 0.35) $\times 10^{-4}$		1371
	< 2.9		CL=90%	1412
$\Lambda \overline{\Lambda} \eta$		± 0.4) $\times 10^{-5}$		1197
$\Lambda \overline{p} K^+ $ $\Lambda \overline{p} K^+ \pi^+ \pi^-$	•	± 0.14) $\times 10^{-4}$		1327
$\frac{\Lambda \rho \kappa}{\Lambda \Lambda \pi^+ \pi^-}$		± 0.4) $\times 10^{-4}$		1167
$A\overline{A}$		± 0.6) $\times 10^{-4}$ ± 0.13) $\times 10^{-4}$		1346 1467
$\Lambda \Sigma + \pi^- + \text{c.c.}$		± 0.13) × 10 ± 0.13) × 10 ⁻⁴		1376
$\Lambda \Sigma = \pi + \text{c.c.}$ $\Lambda \overline{\Sigma} = \pi^+ + \text{c.c.}$		± 0.13) $\times 10^{-4}$		1379
$\Lambda \overline{\Sigma}^0$	•	± 0.14) $\times 10^{-5}$		1437
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$		± 0.18) × 10 ⁻⁵		1291
$\sum + \frac{\overline{\Sigma}}{\overline{\Sigma}} -$		± 0.12) × 10^{-4}		1408
$\sum_{0}^{\infty} 0 = \sum_{0}^{\infty} 0$	•	± 0.09) × 10 ⁻⁴		1405
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$		± 0.7) $\times 10^{-5}$		1218
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$		± 0.8) $\times 10^{-5}$		1218
$\Sigma (1385)^0 \overline{\Sigma} (1385)^0$		± 0.7) $\times 10^{-5}$		1218
<u>=</u> -=+		± 0.11) $\times 10^{-4}$		1284
$\underline{\underline{=}}^0 \underline{\underline{=}}^0$		± 0.4) $\times 10^{-4}$		1291
$\Xi(1530)^0\overline{\Xi}(1530)^0$	(5.2	$^{+3.2}_{-1.2}$) \times 10 ⁻⁵		1025
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	(3.9	± 0.4) $\times 10^{-5}$		1114
$\overline{\Xi}(1690)^{-}\overline{\overline{\Xi}}{}^{+} \rightarrow K^{-}\Lambda\overline{\overline{\Xi}}{}^{+}+$	(5.2	± 1.6) × 10 ⁻⁶		_
Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow \mathcal{K}^{-}\Lambda\overline{\Xi}^{+}+$	(1.20	± 0.32) $\times 10^{-5}$		_
$K^{-}\Sigma^{\overset{C.C.}{\underline{c}}} + c.c.$	(2 7	± 0.4) $\times 10^{-5}$		1060
$\Omega = \frac{1}{\Omega} + c.c.$		± 0.4) $\times 10^{-5}$		
$\pi^0 p \overline{p}$		$\pm 0.4^{\circ}$) $\times 10^{-4}$ ± 0.07) $\times 10^{-4}$		774 1543
				1343
$N(940)\overline{p} + \text{c.c.} \rightarrow \pi^0 p\overline{p}$		$^{+1.8}_{-1.3}$) × 10 ⁻⁵		_
$N(1440)\overline{p}+ ext{ c.c.} ightarrow \pi^0 p \overline{p}$	(7.3	$^{+1.7}_{-1.5}$) × 10 ⁻⁵	S=2.5	_
$N(1520)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(6.4	$^{+2.3}_{-1.8}$) \times 10 ⁻⁶		_

$N(1535)\overline{p}+ \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(2.5	± 1.0	$) \times 10^{-5}$		_
$N(1650)\overline{p}+ ext{c.c.} ightarrow \pi^0 p\overline{p}$				$) \times 10^{-5}$		_
$N(1720)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	() × 10 ⁻⁵		_
<u>.</u>						
$N(2300)\overline{p}+\text{c.c.} \rightarrow \pi^0 p\overline{p}$	(2.6	$+1.2 \\ -0.7$	$) \times 10^{-5}$		_
$N(2570)\overline{p}+ \mathrm{c.c.} \rightarrow \pi^0 p \overline{p}$	(2.13	$^{+0.40}_{-0.31}$	$) \times 10^{-5}$		_
$\pi^0 f_0(2100) \rightarrow \pi^0 p \overline{p}$	(1.1		$) \times 10^{-5}$		_
$\eta p \overline{p}$	(6.0		$) \times 10^{-5}$		1373
$\eta f_0(2100) \rightarrow \eta p \overline{p}$	`			$) \times 10^{-5}$		_
$N(1535)\overline{p} \rightarrow \eta p \overline{p}$				$) \times 10^{-5}$		_
$\omega p \overline{p}$	`			$) \times 10^{-5}$		1247
$\eta' \rho \overline{\rho}$	(1.10	±0.13	$) \times 10^{-5}$		1141
$\phi p \overline{p}$	<				CL=90%	1109
$\pi^+\pi^-\rho\overline{\rho}$	(6.0	± 0.4	$) \times 10^{-4}$		1491
$p\overline{n}\pi^-$ or c.c.	(2.48	±0.17	$) \times 10^{-4}$		_
$\rho \overline{n} \pi^- \pi^0$	(3.2	±0.7	$) \times 10^{-4}$		1492
$2(\pi^{+}\pi^{-}\pi^{0})$	(4.8	± 1.5	$) \times 10^{-3}$		1776
$\eta \pi^+ \pi^-$	<	1.6			CL=90%	1791
$\eta \pi^+ \pi^- \pi^0$	(9.5	± 1.7	$) \times 10^{-4}$		1778
$2(\pi^{+}\pi^{-})\eta$	(1.2	± 0.6	$) \times 10^{-3}$		1758
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$	<	4		$\times 10^{-4}$	CL=90%	1760
$\eta'\pi^+\pi^-\pi^0$	(4.5	±2.1	$) \times 10^{-4}$		1692
$\omega \pi^+ \pi^-$	(7.3	± 1.2	$) \times 10^{-4}$	S=2.1	1748
$b_1^\pm \pi^\mp$	(4.0	± 0.6	$) \times 10^{-4}$	S=1.1	1635
$b_1^{ar{0}}\pi^0$	(2.4	± 0.6	$) \times 10^{-4}$		_
$\omega f_2(1270)$	`	2.2	± 0.4	$) \times 10^{-4}$		1515
$\omega \pi^0 \pi^0$	(1.11	± 0.35	$) \times 10^{-3}$		1749
$\pi^0 \pi^0 K^+ K^-$	(2.6		$) \times 10^{-4}$		1728
$\pi^{+}\pi^{-}K^{+}K^{-}$		7.3		$) \times 10^{-4}$		1726
$\pi^0 \pi^0 K_S^0 K_L^0$	(1.3	± 0.6	$) \times 10^{-3}$		1726
$ ho^0$ K $^+$ K $^-$	(2.2	± 0.4	$) \times 10^{-4}$		1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$	(1.9	± 0.5	$) \times 10^{-4}$		1418
$K^{+}K^{-}\pi^{+}\pi^{-}\eta$				$) \times 10^{-3}$		1574
$K^+K^-2(\pi^+\pi^-)\pi^0$				$) \times 10^{-3}$		1611
$K^+K^-2(\pi^+\pi^-)$				$) \times 10^{-3}$		1654
$K_1(1270)^{\pm} K^{\mp}$	(1.00	± 0.28	$) \times 10^{-3}$		1581
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$				$) \times 10^{-4}$		1724
$\rho^0 p \overline{p}$	(5.0	± 2.2	$) \times 10^{-5}$		1252
$\rho^{0} p \overline{p}$ $K^{+} \overline{K}^{*} (892)^{0} \pi^{-} + \text{c.c.}$				$) \times 10^{-4}$		1674
$2(\pi^{+}\pi^{-})$				$) \times 10^{-4}$	S=2.2	1817
$\rho^0 \pi^+ \pi^-$				$) \times 10^{-4}$	S=1.4	1750
$K^+K^-\pi^+\pi^-\pi^0$	(1.26	± 0.09	$) \times 10^{-3}$		1694

			-		
$\omega f_0(1710) \rightarrow \omega K^+ K^-$			$) \times 10^{-5}$		_
$K^*(892)^0K^-\pi^+\pi^0+$ c.c.	(8.6	± 2.2	$) \times 10^{-4}$		_
$K^*(892)^+ K^- \pi^+ \pi^- + \text{ c.c.}$	(9.6	± 2.8	$) \times 10^{-4}$		_
$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	`) × 10 ⁻⁴		_
$K^*(892)^0 K^- \rho^+ + \text{c.c.}$) × 10 ⁻⁴		_
$\eta K^+ K^-$, no $\eta \phi$			$) \times 10^{-5}$		1664
$\omega K^+ K^-$	•		,	C 1 1	
			$) \times 10^{-4}$	S=1.1	1614
$\omega K^*(892)^+ K^- + \text{c.c.}$			$) \times 10^{-4}$		1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$			$) \times 10^{-5}$		1253
$\omega \overline{K}^*(892)^0 K^0$	(1.68	± 0.30	$) \times 10^{-4}$		1481
$\omega K_2^* (1430)^0 K^0$			$) \times 10^{-5}$		1251
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	(1.6) × 10 ⁻⁵		_
c.c.	(1.0	±0	, 10		
$\omega X(1440) \rightarrow \omega K^+ K^- \pi^0$	(1.09	+0.26	$) \times 10^{-5}$		_
$\omega f_1(1285) \rightarrow \omega K_S^0 K^- \pi^+ +$			$) \times 10^{-6}$		_
S	(3.0	⊥1.0) ^ 10		
$\omega f_1(1285) ightarrow \omega K^+ K^- \pi^0$	(12	+07) × 10 ⁻⁶		_
				C 0.0	1774
$3(\pi^+\pi^-)$ $p\overline{p}\pi^+\pi^-\pi^0$			$) \times 10^{-4}$	S=2.8	1774
	•		$) \times 10^{-4}$		1435
K ⁺ K ⁻	•		$) \times 10^{-5}$		1776
$K_S^0 K_L^0$			$) \times 10^{-5}$		1775
$\pi^+\pi^-\pi^0$	(2.01	±0.17	$) \times 10^{-4}$	S=1.7	1830
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$	(1.9	+1.2	$) \times 10^{-4}$		_
		-			
$\rho(770)\pi \to \pi^+\pi^-\pi^0$			$) \times 10^{-5}$	S=1.8	_
$\pi^+\pi^-$	`		$) \times 10^{-6}$		1838
$K_1(1400)^\pmK^\mp$	< 3.1		$\times 10^{-4}$	CL=90%	1532
$K_2^*(1430)^{\pm} K^{\mp}$	(7.1	$+1.3 \\ -0.9$	$) \times 10^{-5}$		_
$K^+K^-\pi^0$	(4.07	+0.31	$) \times 10^{-5}$		1754
$K_S^0 K_I^0 \pi^0$	< 3.0		× 10 ⁻⁴	CI =90%	1753
$K_S^0 K_L^0 \eta$				CL-3070	
			$) \times 10^{-3}$		1661
$K^+ K^* (892)^- + \text{c.c.}$	•		$) \times 10^{-5}$	S=1.2	1698
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	(1.09	± 0.20	$) \times 10^{-4}$		1697
$\phi \pi^+ \pi^-$	(1.18	± 0.26	$) \times 10^{-4}$	S=1.5	1690
$\phi f_0(980) \rightarrow \pi^+ \pi^-$	(7.5	± 3.3	$) \times 10^{-5}$	S=1.6	_
$2(K^{+}K^{-})$			$) \times 10^{-5}$		1499
$\phi K^+ K^-$			$) \times 10^{-5}$		1546
$2(K^{+}K^{-})\pi^{0}$	`) × 10 ⁻⁴		1440
$\phi \eta$			$) \times 10^{-5}$		1654
$\eta \phi(2170), \ \phi(2170) \rightarrow$	< 2.2		× 10 ⁻⁶	CI _000/	1034
	< 2.2		× 10 °	CL-90/0	_
$\phi f_0(980), f_0 \to \pi^+ \pi^-$	(2 1	116) v 10-5		1555
$\phi\eta'$			$) \times 10^{-5}$		1555
$\omega\eta'$	(3.2	+2.5 -2.1	$) \times 10^{-5}$		1623

Citation. W. Tanabasin et al. (Farticle Data Group), Filys. Nev. D 36, 030001 (2010) and 2019 update					
$\omega\pi^{0}$	(2.1	±0.6)	× 10 ⁻⁵		1757
$ ho\eta'$	(1.9	$^{+1.7}_{-1.2}$):	× 10 ⁻⁵		1625
$ ho\eta$	(2.2	±0.6)	× 10 ⁻⁵	S=1.1	1717
$\omega\eta$	< 1.1		× 10 ⁻⁵	CL=90%	1715
$\phi\pi^{f 0}$	< 4			CL=90%	1699
$\eta_c \pi^+ \pi^- \pi^0$	< 1.0		× 10 ⁻³	CL=90%	512
$p\overline{p}K^+K^-$	(2.7	\pm 0.7)	× 10 ⁻⁵		1118
$\overline{\Lambda}nK_S^0$ + c.c.	(8.1	± 1.8):	× 10 ⁻⁵		1324
$\phi f_2'(1525)$	(4.4	±1.6)	$\times 10^{-5}$		1321
$\Theta(\overline{1}540)\overline{\Theta}(1540) o$	< 8.8		× 10 ⁻⁶	CL=90%	_
$K_S^0 \rho K^- \overline{n} + \text{c.c.}$					
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	< 1.0		× 10 ⁻⁵	CL=90%	_
$\Theta(1540)K^0_{S}\overline{p} ightarrow K^{0}_{S}\overline{p}K^+n$	< 7.0		× 10 ⁻⁶	CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	< 2.6		× 10 ⁻⁵	CL=90%	_
$\overline{\Theta}(1540)K_S^0 p \rightarrow K_S^0 p K^{-} \overline{n}$	< 6.0	;	× 10 ⁻⁶	CL=90%	_
$K_S^0 K_S^0$	< 4.6		× 10 ⁻⁶		1775
$\Lambda_c^+ \overline{p} e^+ e^- + \text{c.c.}$	< 1.7		× 10 ⁻⁶	CL=90%	830
Radiative decays					
$\gamma \chi_{c0}(1P)$	•	±0.20) 9	%		261
$\gamma \chi_{c1}(1P)$	•	± 0.24) $^{\circ}$			171
$\gamma \chi_{c2}(1P)$	•	± 0.20) 9			128
$\gamma \eta_c(1S)$	`	±0.5)		S=1.3	635

(1.0)	(0.70 0.00) 0/	0.61
$\gamma \chi_{c0}(1P)$	(9.79 \pm 0.20)%	261
$\gamma \chi_{c1}(1P)$	(9.75 \pm 0.24)%	171
$\gamma \chi_{c2}(1P)$	(9.52 ± 0.20) %	128
$\gamma \eta_c(1S)$	$(3.4 \pm 0.5) \times 10^{-3}$ S=1.	3 635
$\gamma \eta_{c}(2S)$	$(7 \pm 5) \times 10^{-4}$	48
$\gamma \pi^0$	$(1.04 \pm 0.22) \times 10^{-6}$ S=1.	4 1841
$\gamma \eta'(958)$	(1.24 ± 0.04) $\times 10^{-4}$	1719
$\gamma f_2(1270)$	$(2.73 \begin{array}{c} +0.29 \\ -0.25 \end{array}) \times 10^{-4} S=1.$	8 1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$	$(3.1 \pm 1.7) \times 10^{-5}$	1588
$\gamma f_0(1500)$	(9.3 ± 1.9) $ imes 10^{-5}$	1535
$\gamma f_2'(1525)$	$(3.3 \pm 0.8) \times 10^{-5}$	1528
$\stackrel{-}{\gamma} f_0(1710) \rightarrow \gamma \pi \pi$	$(3.5 \pm 0.6) \times 10^{-5}$	_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	$(6.6 \pm 0.7) \times 10^{-5}$	_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	$(4.8 \pm 1.0) \times 10^{-6}$	1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	$(3.2 \pm 1.0) \times 10^{-6}$	1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	$< 5.8 \times 10^{-6} \text{ CL} = 90\%$	6 1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	$< 9.5 \times 10^{-6} \text{ CL}=90\%$	6 1168
$\gamma\gamma$	$< 1.5 \times 10^{-4} \text{ CL}=90\%$	6 1843
$\gamma\eta$	$(9.2 \pm 1.8) \times 10^{-7}$	1802
$\gamma \eta \pi^+ \pi^-$	$(8.7 \pm 2.1) \times 10^{-4}$	1791
$\gamma \eta(1405) ightarrow \gamma K \overline{K} \pi$	$< 9 \times 10^{-5} \text{ CL} = 90\%$	6 1569
$\gamma \eta (1405) ightarrow \eta \pi^+ \pi^-$	$(3.6 \pm 2.5) \times 10^{-5}$	_
$\gamma \eta(1405) ightarrow \gamma \mathit{f}_{0}(980) \pi^{0} ightarrow$	$< 5.0 \times 10^{-7} CL = 90\%$	6 –
$\gamma \pi^+ \pi^- \pi^0$		

$\gamma \eta$ (1475) $ ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	< 1.4	× 10 ⁻⁴	CL=90%	_
$\gamma \eta (1475) \rightarrow \eta \pi^+ \pi^-$	< 8.8			_
$\gamma 2(\pi^+\pi^-)$		$6) \times 10^{-4}$	02 3070	1817
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$	· ·	9) $\times 10^{-4}$		1674
$\gamma K^{*0} \overline{K}^{*0}$	•	$(7) \times 10^{-4}$		1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$		$(5) \times 10^{-4}$		1753
$\gamma K^+ K^- \pi^+ \pi^-$	$(1.9 \pm 0.$	$5) \times 10^{-4}$		1726
$\gamma p \overline{p}$	(3.9 ±0.	$5) \times 10^{-5}$	S=2.0	1586
$\gamma f_2(1950) \rightarrow \gamma p \overline{p}$	($1.20 \pm 0.$	$22) \times 10^{-5}$		_
$\gamma f_2(2150) \rightarrow \gamma p \overline{p}$	(7.2 ± 1.0)	8) $\times 10^{-6}$		_
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(4.6 + 1.6 + 1.6)	$_{0}^{8}$) × 10 ⁻⁶		_
$\gamma X \rightarrow \gamma p \overline{p}$	[<i>vvaa</i>] < 2	\times 10 ⁻⁶	CL=90%	_
$\gamma \pi^+ \pi^- p \overline{p}$	(2.8 ± 1.6)	4) $\times 10^{-5}$		1491
γ 2($\pi^+\pi^-$) K $^+$ K $^-$	< 2.2	$\times 10^{-4}$	CL=90%	1654
$\gamma 3(\pi^+\pi^-)$	< 1.7			1774
γ K ⁺ K ⁻ K ⁺ K ⁻	< 4	$\times 10^{-5}$	CL=90%	1499
$\gamma \gamma J/\psi$	(3.1 + 1.1)	$_{2}^{0}$) × 10 ⁻⁴		542
$e^+e^-\eta'$	($1.90 \pm 0.$	$26) \times 10^{-6}$		1719
$e^{+}e^{-}\chi_{c0}(1P)$	($1.06 \pm 0.$	$24) \times 10^{-3}$		261
$e^{+}e^{-}\chi_{c1}(1P)$	(8.5 ± 0.0	6) $\times 10^{-4}$		171
$e^{+}e^{-}\chi_{c2}(1P)$	(7.0 ± 0.0)	8) $\times 10^{-4}$		128
	Weak decays			
$D^0 e^+ e^- + \text{c.c.}$	< 1.4	\times 10 ⁻⁷	CL=90%	1371
	Other decays			
invisible	< 1.6	%	CL=90%	

ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=3773.13\pm0.35$$
 MeV (S = 1.1) Full width $\Gamma=27.2\pm1.0$ MeV $\Gamma_{ee}=0.262\pm0.018$ keV (S = 1.4)

In addition to the dominant decay mode to $D\overline{D}$, $\psi(3770)$ was found to decay into the final states containing the J/ψ (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to $\phi\eta$ only (ADAMS 06).

ψ (3770) DECAY MODES	Fraction (Γ	·/୮)	Scale factor/ Confidence level	•
$D\overline{D}$	(93 +8	3) %	S=2.0	286
$D^0 \overline{D}{}^0$	$(52 \begin{array}{cc} +2 \\ -5 \end{array}$) %	S=2.0	286
HTTP://PDG.LBL.GOV	Page 152	Cre	ated: 5/22/2019	0 10:04

D^+D^-	`) %	S=2.0	252
$J/\psi \pi^+ \pi^-$	(1.93 ± 0.28)	_		560
$J/\psi \pi^0 \pi^0$	(8.0 ± 3.0	,		564
$J/\psi \eta$		$) \times 10^{-4}$		360
$J/\psi \pi^0$	< 2.8	$\times 10^{-4}$	CL=90%	603
e^+e^-	(9.6 ± 0.7) × 10 ⁻⁶	S=1.3	1887
	Decays to light hadron	S		
$b_1(1235)\pi$	< 1.4	$\times 10^{-5}$	CL=90%	1683
$\phi \eta'$	< 7	$\times 10^{-4}$	CL=90%	1607
$\omega \eta'$	< 4	\times 10 ⁻⁴	CL=90%	1672
$ ho^{0} \eta'$	< 6	$\times 10^{-4}$	CL=90%	1674
$\phi\eta$	(3.1 ± 0.7			1703
$\omega \eta$	< 1.4	\times 10 ⁻⁵	CL=90%	1762
$\rho^0 \eta$	< 5	$\times 10^{-4}$	CL=90%	1764
$\phi \pi^0$	< 3	\times 10 ⁻⁵	CL=90%	1746
$\omega \pi^0$	< 6	\times 10 ⁻⁴	CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5	\times 10 ⁻⁶	CL=90%	1874
$\rho\pi$	< 5	$\times 10^{-6}$	CL=90%	1804
$K^*(892)^+K^- + \text{c.c.}$	< 1.4	$\times 10^{-5}$	CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	\times 10 ⁻³	CL=90%	1744
$K_S^0 K_L^0$	< 1.2	\times 10 ⁻⁵	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12	\times 10 ⁻³	CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	\times 10 ⁻³	CL=90%	1843
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0	$\times 10^{-4}$	CL=90%	1794
$3(\pi^{+}\pi^{-})$	< 9.1	\times 10 ⁻³	CL=90%	1819
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%	CL=90%	1792
$3(\pi^+\pi^-)2\pi^0$	< 11.74	%	CL=90%	1760
$\eta \pi^{+} \pi^{-}$	< 1.24	$\times 10^{-3}$		1836
$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9	$\times 10^{-3}$	CL=90%	1862
$\rho^0 \pi^+ \pi^-$	< 6.9	\times 10 ⁻³	CL=90%	1796
$\eta 3\pi$	< 1.34	× 10 ⁻³	CL=90%	1824
$\eta 2(\pi^+\pi^-)$	< 2.43	%	CL=90%	1804
$\eta \rho^0 \pi^+ \pi^-$	< 1.45	% 10-3	CL=90%	1708
$\eta' 3\pi$ $K^+ K^- \pi^+ \pi^-$	< 2.44	$\times 10^{-3}$	CL=90%	1740
$\phi \pi^+ \pi^-$	< 9.0	$\begin{array}{l} \times10^{-4} \\ \times10^{-4} \end{array}$	CL=90%	1772
$K^{+}K^{-}2\pi^{0}$	< 4.1	\times 10 \times 10 ⁻³	CL=90% CL=90%	1737
$4(\pi^{+}\pi^{-})$	< 4.2 < 1.67	× 10 °	CL=90% CL=90%	1774
$4(\pi^{+}\pi^{-})\pi^{0}$		%		1757
$\phi f_0(980)$	< 3.06 < 4.5	^{7₀} × 10 ^{−4}	CL=90% CL=90%	1720 1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	< 2.36		CL=90% CL=90%	
$K^{+}K^{-}\rho^{0}\pi^{0}$	< 2.30		CL=90% CL=90%	1741 1624
$K^+K^-\rho^+\pi^-$	< 1.46	× 10 %	CL=90% CL=90%	1622
HTTP://PDG.LBL.GOV	Page 153	Created:	5/22/2019	10:04

ω K ⁺ K ⁻	<	3.4	\times 10 ⁻⁴	CL=90%	1664
$\phi \pi^+ \pi^- \pi^0$	<	3.8	$\times 10^{-3}$	CL=90%	1722
$K^{*0}K^{-}\pi^{+}\pi^{0}+$ c.c.	<	1.62	%	CL=90%	1693
$K^{*+}K^{-}\pi^{+}\pi^{-}$ + c.c.	<	3.23	%	CL=90%	1692
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%	1705
$K^+ K^- 2(\pi^+ \pi^-)$	<	1.03	%	CL=90%	1702
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	<	3.60	%	CL=90%	1660
$\eta K^+ K^-$	<	4.1	$\times 10^{-4}$	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	<	1.24	%	CL=90%	1624
$ ho^0$ K $^+$ K $^-$	<	5.0	$\times 10^{-3}$	CL=90%	1665
$2(K^+K^-)$	<	6.0	$\times 10^{-4}$	CL=90%	1552
$\phi K^+ K^-$	<	7.5	\times 10 ⁻⁴	CL=90%	1598
$2(K^+K^-)\pi^0$	<	2.9	\times 10 ⁻⁴	CL=90%	1493
$2(K^+K^-)\pi^+\pi^-$	<	3.2	$\times 10^{-3}$	CL=90%	1425
$K_S^0 K^- \pi^+$	<	3.2	\times 10 ⁻³	CL=90%	1799
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	<	1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	<	6.6	$\times 10^{-3}$	CL=90%	1664
$\kappa_{S}^{0} \kappa^{-2}\pi^{+}\pi^{-}$	<	8.7	$\times 10^{-3}$	CL=90%	1739
$K_{S}^{0}K^{-}\pi^{+}\rho^{0}$	<	1.6	%	CL=90%	1621
$K_{S}^{0}K^{-}\pi^{+}\eta$	<	1.3	%	CL=90%	1669
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$	<	4.18	%	CL=90%	1703
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\eta$	<	4.8	%	CL=90%	1570
$K_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$	<	1.22	%	CL=90%	1658
$K_{S}^{0}K^{-}\pi^{+}2\pi^{0}$	<	2.65	%	CL=90%	1742
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}$	<	4.9	\times 10 ⁻³	CL=90%	1490
$K_S^0 K^- K^+ K^- \pi^+ \pi^0$	<	3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$	<	2.2	%	CL=90%	1214
$K^{*0}K^{-}\pi^{+}$ + c.c.	<	9.7	\times 10 ⁻³	CL=90%	1722
$ ho \overline{ ho} \pi^0$	<	4	$\times 10^{-5}$	CL=90%	1595
$ ho \overline{ ho} \pi^+ \pi^-$	<	5.8	$\times 10^{-4}$	CL=90%	1544
$\Lambda \overline{\Lambda}$	<	1.2	$\times 10^{-4}$	CL=90%	1521
$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	<	1.85	$\times 10^{-3}$	CL=90%	1490
ω <u>ρ</u> ρ ΛΛπ ⁰	<	2.9	$\times 10^{-4}$	CL=90%	1309
$\Lambda \overline{\Lambda} \pi^0$	<	7	$\times 10^{-5}$	CL=90%	1468
$ ho \overline{ ho} 2 (\pi^+ \pi^-)$	<	2.6	$\times 10^{-3}$	CL=90%	1425
$\eta p \overline{p}$	<	5.4	$\times 10^{-4}$	CL=90%	1430
$\eta \rho \overline{p} \pi^+ \pi^-$	<	3.3	$\times 10^{-3}$	CL=90%	1284
$ ho^{f 0}$ p $\overline{f p}$	<	1.7	$\times 10^{-3}$	CL=90%	1313
p p K+K-	<	3.2	\times 10 ⁻⁴	CL=90%	1185
$\eta p \overline{p} K^+ K^-$	<	6.9	\times 10 ⁻³	CL=90%	736
$\pi^0 p \overline{p} K^+ K^-$	<	1.2	\times 10 ⁻³	CL=90%	1093
$\phi p \overline{p}$	<	1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	<	2.5	\times 10 ⁻⁴	CL=90%	1404

$\Lambda \overline{ ho} K^+$	< 2.8	$\times 10^{-4}$	CL=90%	1387
$\Lambda \overline{ ho} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda \overline{\Lambda} \eta$	< 1.9	$\times 10^{-4}$	CL=90%	1262
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.0	$\times 10^{-4}$	CL=90%	1464
$\Sigma^0 \overline{\Sigma}{}^0$	< 4	$\times 10^{-5}$	CL=90%	1462
<u>=+=</u> -	< 1.5	$\times 10^{-4}$	CL=90%	1346
$\underline{\underline{=}}^0 \underline{\underline{=}}^0$	< 1.4	$\times 10^{-4}$	CL=90%	1353
	Radiative decays			
$\gamma \chi_{c2}$	< 6.4	$\times 10^{-4}$	CL=90%	211
$\gamma \chi_{c1}$	(2.49 ± 0.23)	$3) \times 10^{-3}$		253
$\gamma \chi_{c0}$	(6.9 ± 0.6	$) \times 10^{-3}$		341
$\gamma\eta_{m{c}}$	< 7	$\times 10^{-4}$	CL=90%	707

< 1.8

< 1.5

< 2

ψ_2 (3823)

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

 $\times 10^{-4}$

 $\times\,10^{-4}$

 $\times\,10^{-4}$

CL=90%

CL=90%

CL=90%

CL=90%

Created: 5/22/2019 10:04

133

1765

1847

1884

Mass $m=3822.2\pm1.2$ MeV Full width Γ < 16 MeV, CL = 90%

ψ_2 (3823) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\chi_{c1}\gamma$	seen	299
$\chi_{c2}\gamma$	not seen	257

$\chi_{c1}(3872)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3871.69\pm0.17$ MeV $m_{\chi_{c1}(3872)}-m_{J/\psi}=775\pm4$ MeV Full width $\Gamma<1.2$ MeV, CL =90%

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-J/\psi(1S)$	> 3.2 %	650
$\omega J/\psi(1S)$	> 2.3 %	†
$D^0 \overline{D}{}^0 \pi^0$	>40 %	117
$\overline{D}^{*0} D^0$	>30 %	4
$\gamma J/\psi$	$> 7 \times 10^{-3}$	697
$\gamma \psi$ (2S)	> 4 %	181
$\pi^+\pi^-\eta_c(1S)$	not seen	746

$\pi^+\pi^-\chi_{c1}$	not seen	218
р <u></u>	not seen	1693

Z_c(3900)

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=3887.2\pm2.3$ MeV (S = 1.6) Full width $\Gamma=28.2\pm2.6$ MeV

<i>Z_c</i> (3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\pi \ h_{\scriptscriptstyle C}\pi^\pm$	seen	699
$h_c \pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^-$	not seen	759
$(D\overline{D}^*)^{\pm}$	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	153
$D^{-}D^{*0}$ + c.c.	seen	144
$\omega \pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	510
$D^{+}D^{*-}$ + c.c	seen	_
$D^0 \overline{D}^{*0} + \text{c.c}$	seen	_

X(3915)

$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{+})$$

Mass $m=3918.4\pm1.9~{\rm MeV}$ Full width $\Gamma=20\pm5~{\rm MeV}~({\rm S}=1.1)$

X(3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega J/\psi$	seen	222
$\omega J/\psi \ \pi^+\pi^-\eta_c(1S)$	not seen	785
$\eta_c \eta_{\perp}$	not seen	665
$ \eta_c \eta \\ \eta_c \pi^0 \\ K \overline{K} $	not seen	814
$K\overline{K}$	not seen	1896
$\gamma\gamma$	seen	1959

$\chi_{c2}(3930)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3927.2\pm2.6$ MeV Full width $\Gamma=24\pm6$ MeV

χ_{c2} (3930) DECAY MODES	Fraction (Γ	p (MeV/c)
$\gamma \gamma$	seen	1964
$D\overline{D}$	seen	615
HTTP://PDG.LBL.GOV	Page 156	Created: 5/22/2019 10:04

D^+D^-	seen	600
$D^0 \overline{D}{}^0$	seen	615
$\pi^+\pi^-\eta_c(1S)$	not seen	792
$K\overline{K}$	not seen	1901

X(4020)

$$I^{G}(J^{PC}) = 1^{+}(?^{?-})$$

 $\label{eq:mass_m} \begin{array}{l} \text{Mass } m = 4024.1 \pm 1.9 \text{ MeV} \\ \text{Full width } \Gamma = 13 \pm 5 \text{ MeV} \quad \text{(S} = 1.7) \end{array}$

X(4020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$	seen	450
$D^* \overline{D}^*$	seen	85
$D\overline{D}^*+$ c.c.	not seen	542
$\eta_c \pi^+ \pi^-$	not seen	872
$J/\psi(1S)\pi^\pm$	not seen	811

ψ (4040) [xxaa]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4039\pm1~{\rm MeV}$ Full width $\Gamma=80\pm10~{\rm MeV}$ $\Gamma_{ee}=0.86\pm0.07~{\rm keV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/ c)
$e^{+}e^{-}$	$(1.07\pm0.16)\times1$	0-5	2019
$D\overline{D}$	seen		775
$D^0 \overline{D}{}^0$	seen		775
D^+D^-	seen		763
$D^*\overline{D}$ + c.c.	seen		569
$D^*(2007)^0\overline{D}{}^0+$ c.c.	seen		575
$D^*(2010)^+ D^- + \text{c.c.}$	seen		561
$D^* \overline{D}^*$	seen		193
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		226
$D^*(2010)^+ D^*(2010)^-$	seen		193
$D^0D^-\pi^++ ext{c.c.}$ (excl. $D^*(2007)^0\overline{D}{}^0+ ext{c.c.}, \ D^*(2010)^+D^-+ ext{c.c.})$	not seen		_

HTTP://PDG.LBL.GOV

Page 157

$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seer	1		_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+ D_s^-$	seen			452
$J/\psi \pi^+ \pi^-$	< 4	$\times10^{-3}$	90%	794
$J/\psi \pi^0 \pi^0$	< 2	$\times10^{-3}$	90%	797
$J/\psi\eta$	(5.2 ± 0)	$.7) \times 10^{-3}$		675
$J/\psi \pi^0$	< 2.8	\times 10 ⁻⁴	90%	823
$J/\psi \pi^+\pi^-\pi^0$	< 2	$\times10^{-3}$	90%	746
$\chi_{c1}\gamma$	< 3.4	$\times10^{-3}$	90%	494
$\chi_{c2}\gamma$	< 5	$\times 10^{-3}$	90%	454
$\chi_{c1}\pi^{+}\pi^{-}\pi^{0}$	< 1.1	%	90%	306
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 3.2	%	90%	233
$h_c(1P)\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	403
$\phi\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	\times 10 ⁻⁴	90%	1578
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times10^{-5}$	90%	1636
$A\overline{A}\eta$	< 3.0	\times 10 ⁻⁴	90%	1452
$\Sigma + \overline{\Sigma} -$	< 1.3	\times 10 ⁻⁴	90%	1632
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}} 0$	< 7	\times 10 ⁻⁵	90%	1630
<u>=+=</u> -	< 1.6	\times 10 ⁻⁴	90%	1527
$\equiv^0 \overline{\equiv}^0$	< 1.8	\times 10 ⁻⁴	90%	1533

$\chi_{c1}(4140)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=4146.8\pm2.4$ MeV (S = 1.1) Full width $\Gamma=22^{+8}_{-7}$ MeV (S = 1.3)

χ_{c1} (4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	217
$\gamma\gamma$	not seen	2073

ψ (4160) $^{[xxaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/22/2019 10:04

Mass $m=4191\pm 5~{
m MeV}$ Full width $\Gamma=70\pm 10~{
m MeV}$ $\Gamma_{ee}=0.48\pm 0.22~{
m keV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more

(less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

$\mu^+\mu^-$ seen 2 $D\overline{D}$ seen $D^0\overline{D}^0$ seen D^+D^- seen	096 093 956 956 947 798
$\mu^+\mu^-$ seen 2 $D\overline{D}$ seen $D^0\overline{D}^0$ seen D^+D^- seen	956 956 947 798
$D\overline{D}$ seen $D^0\overline{D}^0$ seen D^+D^- seen	956 947 798
D^+D^- seen	947 798
D. 1	798
$D^*\overline{D} + cc$	
2 2 1 0.0.	
$D^*(2007)^0\overline{D}{}^0+$ c.c. seen	802
$D^*(2010)^+D^- + \text{c.c.}$ seen	792
$D^*\overline{D^*}$ seen	592
$D^*(2007)^0 \overline{D}^*(2007)^0$ seen	604
$D^*(2010)^+ D^*(2010)^-$ seen	592
$D^0D^-\pi^+$ +c.c. (excl. not seen	_
$D^*(2007)^0 \overline{D}^{0} + c.c.,$	
$D^*(2010)^+D^- + c.c.)$	
$D\overline{D}^*\pi + \text{c.c.} (\text{excl. } D^*\overline{D}^*)$ seen	_
$D^0D^{*-}\pi^++$ c.c. (excl. not seen	_
$D^*(2010)^+ D^*(2010)^-)$	
	719
- * -	385
	919
0 0	922
	407
2	822
	944
	457
	879
(0.0)	396
2	625
$\chi_{c2} \gamma$ < 1.3 % 90%	587
$v_{c1}\pi^{+}\pi^{-}\pi^{0}$ < 2 × 10 ⁻³ 90%	496
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$ < 8 × 10 ⁻³ 90%	445
	556
	560
	348
	600
	961
$\gamma \chi_{c1}(3872) \rightarrow \gamma J/\psi \pi^{+} \pi^{-}$ < 6.8 × 10 ⁻⁵ 90%	_
$\gamma X(3915) \rightarrow \gamma J/\psi \pi^{+} \pi^{-}$ < 1.36 × 10 ⁻⁴ 90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^{+} \pi^{-} < 1.18 \times 10^{-4}$ 90%	_

ψ (4260)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 4230 \pm 8 \text{ MeV}$ (S = 2.9) Full width $\Gamma=55\pm19$ MeV (S = 4.4)

ψ (4260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi^+ \pi^-$	seen	950
$J/\psi f_0(980), \;\; f_0(980) ightarrow \; \pi^+ \pi^-$	seen	_
$Z_c(3900)^\pm\pi^\mp$, $Z_c^\pm o J/\psi\pi^\pm$	seen	_
$J/\psi \pi^0 \pi^0$	seen	952
J/\psiK^+K^-	seen	477
$J/\psiK^0_SK^0_S$	not seen	465
$J/\psi\eta$	not seen	857
$J/\psi \pi^0$	not seen	974
$J/\psi\eta'$	not seen	520
$J/\psi \pi^{+}\pi^{-}\pi^{0}$	not seen	912
$J/\psi \eta \pi^0$	not seen	780
$J/\psi \eta \eta$	not seen	247
$\psi(2S)\pi^+\pi^-$	not seen	437
$\psi(2S)\eta$	not seen	†
$\chi_{c0}\omega$	not seen	205
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	not seen	537
$\chi_{c2} \pi^+ \pi^- \pi^0$	not seen	489
$h_c(1P)\pi^+\pi^-$	not seen	593
$\phi\pi^+\pi^- \ \phi f_0(980) o \phi\pi^+\pi^- \ D\overline{D}$	not seen	1982
$\frac{\varphi r_0(980) \rightarrow \varphi \pi + \pi}{\rho D}$	not seen	_
$D^0 \overline{D}{}^0$	not seen	998
D+ D-	not seen	998
$D^*\overline{D}$ +c.c.	not seen	989
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen not seen	887
$D^*(2010)^+D^-+c.c.$	not seen	_
$D^*\overline{D}^*$	not seen	657
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	668
$D^*(2010)^+ D^*(2010)^-$	not seen	657

$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$		
$D^*(2010)^+ D^- + c.c.)$		
$D\overline{D}^*\pi+\text{c.c.}$ (excl. $D^*\overline{D}^*$)	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+ D^*(2010)^-)$		
$D^0 D^*(2010)^- \pi^+ + \text{c.c.}$	not seen	716
$D^*\overline{D}^*\pi$	not seen	395
$D_s^+ D_s^-$	not seen	774
$D_{s}^{*+}D_{s}^{-}+c.c.$	not seen	615
$D_s^{*+}D_s^{-}+c.c.$ $D_s^{*+}D_s^{*-}$	not seen	109
$p\overline{p}$	not seen	1896
$ ho \overline{p} \pi^0$	not seen	1860
$K_S^0 K^{\pm} \pi^{\mp}$	not seen	2037
$K^+K^-\pi^0$	not seen	2038
Rad	liative decays	
$\eta_c(1S)\gamma$	possibly seen	1063
$\chi_{c1}\gamma$	not seen	658
$\chi_{c2}\gamma$	not seen	620
$\chi_{c1}(3872)\gamma$	seen	343

$\chi_{c1}(4274)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

Mass $m=4274^{+8}_{-6}~{
m MeV}$ Full width $\Gamma=49\pm12~{
m MeV}$

χ_{c1} (4274) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	503

ψ (4360)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/22/2019 10:04

 $\psi(\text{4360})~\text{MASS} = \text{4368} \pm \text{13 MeV} \quad (\text{S} = 3.7) \\ \psi(\text{4360})~\text{WIDTH} = \text{96} \pm \text{7 MeV}$

ψ (4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	573
$\psi_2(3823)\pi^+\pi^-$	possibly seen	440

$$\psi$$
(4415) $^{[xxaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4421\pm4$ MeV Full width $\Gamma=62\pm20$ MeV $\Gamma_{ee}=0.58\pm0.07$ keV

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
$D_{-}^{+}D^{-}$	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		1067
$D^*(2010)^+D^- + \text{c.c.}$	seen		1059
$D^*\overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}^*(2007)^0 + \text{c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + c.c.$	seen		919
$D^0 D^- \pi^+ (\text{excl. } D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
$+$ c.c., $D^*(2010)^+D^-+$ c.c.			
$D\overline{D}_{2}^{*}(2460) \rightarrow D^{0}D^{-}\pi^{+}+c.c.$	(10 ± 4)%		_
$D^{0}D^{*-}\pi^{+}$ +c.c.	< 11 %	90%	926
$D_s^+ D_s^-$	not seen		1006
$\omega\chi_{c2}$	possibly seen		330
$D_{s}^{*+}D_{s}^{-}+c.c.$	seen		_
$D_{s}^{*+}D_{s}^{*-}$	not seen		652
$\psi_2(3823)\pi^+\pi^-$	possibly seen		494
$J/\psi \eta$	< 6 × 10	-3 90%	1022
$\chi_{c1}\gamma$	< 8 × 10	-4 90%	817
$\chi_{c2}\gamma$	< 4 × 10	-3 90%	780
e^+e^-	$(9.4\pm3.2)\times10^{-1}$	-6	2210

$Z_c(4430)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

G, C need confirmation.

Created: 5/22/2019 10:04

Quantum numbers not established.

Mass $m=4478^{+15}_{-18}~{\rm MeV}$ Full width $\Gamma=181\pm31~{\rm MeV}$

Z_c (4430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

$$\psi$$
(4660)

$$I^G(J^{PC}) = 0^-(1^{--})$$
I needs confirmation.

$$\psi(\text{4660})~\text{MASS} = \text{4643} \pm 9~\text{MeV}~~(\text{S} = 1.2)$$
 $\psi(\text{4660})~\text{WIDTH} = 72 \pm 11~\text{MeV}$

ψ (4660) DECAY MODES	Fraction (Γ_i/Γ)	<i>р</i> (MeV/ <i>c</i>)
$\psi(2S)\pi^+\pi^-$	seen	820

$b\overline{b}$ MESONS (including possibly non- $q\overline{q}$ states)

$\eta_b(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass
$$m=9398.7\pm2.0~{\rm MeV}~{\rm (S}=1.5)$$
 Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4672
$2h^{+}2h^{-}$	not seen		4689
$4h^{+}4h^{-}$	not seen		4648
$\gamma\gamma$	not seen		4699
$ \begin{array}{c} \gamma\gamma\\\mu^+\mu^-\\ \tau^+\tau^- \end{array} $	$< 9 \times 10^{-3}$	90%	4698
$ au^+ au^-$	<8 %	90%	4350

T(1*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=9460.30\pm0.26$$
 MeV (S = 3.3) Full width $\Gamma=54.02\pm1.25$ keV $\Gamma_{ee}=1.340\pm0.018$ keV

T(1S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$ au^+ au^-$	(2.60 ± 0.10)) %	4384
e^+e^-	(2.38 ± 0.11) %	4730
$\mu^+\mu^-$	(2.48 ± 0.05) %	4729
Hadr	onic decays		
ggg	(81.7 ± 0.7)) %	_
$\gamma g g$	(2.2 ± 0.6) %	_
$\eta'(958)$ anything	(2.94 ± 0.24)	,	_
$J/\psi(1S)$ anything		$) \times 10^{-4}$ S=1.4	4223
$J/\psi(1S)\eta_c$	< 2.2		3623
$J/\psi(1S)\chi_{c0}$		$\times 10^{-6}$ CL=90%	3429
$J/\psi(1S)\chi_{c1}$	(3.9 ± 1.2)		3382
$J/\psi(1S)\chi_{c2}$	< 1.4		3359
$J/\psi(1S)\eta_c(2S)$	< 2.2	$\times 10^{-6}$ CL=90%	3317
$J/\psi(1S)X(3940)$	< 5.4	$\times 10^{-6}$ CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4	$\times 10^{-6}$ CL=90%	3018
$X(4350)$ anything, $X \rightarrow$	< 8.1	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\phi$		E	
$Z_c(3900)^{\pm}$ anything, $Z_c \rightarrow$	< 1.3	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^{\pm}$		Е	
$Z_c(4200)^{\pm}$ anything, $Z_c \rightarrow$	< 6.0	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^{\pm}$		E	
$Z_c(4430)^{\pm}$ anything, $Z_c \rightarrow$	< 4.9	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^{\pm}$		6	
X_{cs}^{\pm} anything, $X ightarrow$	< 5.7	$\times 10^{-6}$ CL=90%	_
J/\psiK^\pm			
$\chi_{c1}(3872)$ anything, $\chi_{c1} ightarrow$	< 9.5	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\pi^+\pi^-$		-	
ψ (4260) anything, ψ $ o$	< 3.8	$\times 10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^+\pi^-$			
ψ (4260) anything, ψ $ o$	< 7.5	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)K^+K^-$			
$\chi_{c1}(4140)$ anything, $\chi_{c1} \rightarrow$	< 5.2	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\phi$		2	
χ_{c0} anything	< 4	$\times 10^{-3}$ CL=90%	_
χ_{c1} anything	(1.90 ± 0.35		_
$\chi_{c1}(1P)X_{tetra}$		$\times 10^{-5}$ CL=90%	_
χ_{c2} anything	(2.8 ± 0.8)	,	_
$\psi(2S)$ anything	(1.23 ± 0.20)	,	-
$\psi(2S)\eta_c$		$\times 10^{-6}$ CL=90%	3345
$\psi(2S)\chi_{c0}$	< 6.5	$\times 10^{-6}$ CL=90%	3124
$\psi(2S)\chi_{c1}$	< 4.5	$\times 10^{-6}$ CL=90%	3070

$\psi(2S)\chi_{c2}$		2.1		~	10-6	CL=90%	3043
$\psi(2S)\chi_{C2}$ $\psi(2S)\eta_c(2S)$		3.2				CL=90%	2994
$\psi(2S)X(3940)$		2.9				CL=90%	2797
$\psi(2S)X(4160)$		2.9				CL=90%	2642
ψ (4260) anything, $\psi \rightarrow$		7.9				CL=90%	_
$\psi(2S)\pi^+\pi^-$		1.5		,	10	GE 3070	
ψ (4360) anything, $\psi ightarrow$	<	5.2		×	10-5	CL=90%	_
$\psi(2S)\pi^+\pi^-$							
ψ (4660) anything, $\psi ightarrow$	<	2.2		×	10-5	CL=90%	_
$\psi(2S)\pi^{+}\pi^{-}$							
$X(4050)^{ extstyle \pm}$ anything, $X o$	<	8.8		×	10-5	CL=90%	_
$\psi(2S)\pi^{\pm}$							
$Z_c(4430)^\pm$ anything, $Z_c o$	<	6.7		×	10-5	CL=90%	_
$\psi(2S)\pi^\pm$							
$Z_c(4200)^+ Z_c(4200)^-$	<	2.23		×	10 ⁻⁵	CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	<	8.1		×	10^{-6}	CL=90%	_
$Z_c(3900)^+ Z_c(3900)^-$	<	1.8				CL=90%	_
$X(4050)^{+}X(4050)^{-}$	<	1.58				CL=90%	_
$X(4250)^{+}X(4250)^{-}$	<	2.66				CL=90%	_
$X(4050)^{\pm}X(4250)^{\mp}$		4.42				CL=90%	_
$Z_c(4430)^+ Z_c(4430)^-$		2.03				CL=90%	_
$X(4055)^{\pm}X(4055)^{\mp}$		2.33				CL=90%	_
$X(4055)^{\pm}Z_{c}(4430)^{\mp}$		4.55				CL=90%	_
$\rho\pi$		3.68				CL=90%	4697
$\omega \pi^0$		3.90				CL=90%	4697
$\pi^+\pi^-$	<					CL=90%	4728
K^+K^-	<					CL=90%	4704
p p	<					CL=90%	4636
$\pi^{+}\pi^{-}\pi^{0}$		2.1	± 0.8		10-6		4725
$\phi K^+ K^-$	`		± 0.5		10-6		4622
$\omega \pi^+ \pi^-$	`		± 1.0		10-6		4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$			±0.8				4667
$\phi f_2'(1525)$	•	1.63				CL=90%	4549
$\omega f_2(1270)$						CL=90%	4611
$\rho(770) a_2(1320)$						CL=90%	4605
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$			± 0.8			32 3370	4579
$K_1(1270)^{\pm} K^{\mp}$						CL=90%	4631
$K_1(1400)^{\pm} K^{\mp}$			± 0.4			CL-3070	4613
$h_1(1235)^{\pm}\pi^{\mp}$	•			,		CL=90%	4649
$b_1(1235)^{\pm} \pi^{\mp} \\ \pi^{+} \pi^{-} \pi^{0} \pi^{0}$			±0.30			CL-9070	4720
$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$			± 0.30 ± 0.4				4696
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$			± 0.4 ± 0.9				4675
$K^*(892)^-K^+ + c.c.$	•					CL=90%	4675
$f_1(1285)$ anything			± 3.1			CL=90%	4075
11(1203) anything	(4.0	±3.1	JΧ	10 2		_

$D^*(2010)^\pm$ anything	($2.52\ \pm0.20$) %	_
$\underline{f_1}(1285)X_{tetra}$	$< 6.24 \times 10^{-5} \text{ CL}=90\%$	_
$\overline{^2H}$ anything	$(2.85 \pm 0.25) \times 10^{-5}$	_
Sum of 100 exclusive modes	(1.200±0.017) %	_

Radiative decays

	Radiative decays		
$\gamma \pi^+ \pi^-$	(6.3	± 1.8) $\times 10^{-5}$	4728
$\gamma \pi^0 \pi^0$		± 0.7) $\times 10^{-5}$	4728
$\gamma\pi\pi(S ext{-wave})$	(4.6	± 0.7) × 10 ⁻⁵	4728
$\gamma \pi^{0} \eta$	< 2.4	$\times 10^{-6}$ CL=90%	4713
γ K $^+$ K $^-$	[<i>yyaa</i>] (1.14 :		4704
$\gamma p \overline{p}$	[<i>zzaa</i>] < 6	$\times 10^{-6}$ CL=90%	4636
$\gamma 2h^+ 2h^-$	(7.0	± 1.5) × 10 ⁻⁴	4720
$\gamma 3h^+ 3h^-$	(5.4	± 2.0) × 10 ⁻⁴	4703
γ 4 h ⁺ 4 h ⁻	,	± 3.5) × 10 ⁻⁴	4679
$\gamma \pi^+ \pi^- K^+ K^-$	(2.9	± 0.9) $\times 10^{-4}$	4686
$\gamma 2\pi^+ 2\pi^-$	(2.5	± 0.9) × 10 ⁻⁴	4720
$\gamma 3\pi^+ 3\pi^-$	(2.5	± 1.2) × 10 ⁻⁴	4703
$\gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-}$,	± 1.2) × 10 ⁻⁴	4658
$\gamma \pi^+ \pi^- p \overline{p}$	(1.5	± 0.6) × 10 ⁻⁴	4604
$\gamma 2\pi^+ 2\pi^- p\overline{p}$	`	± 6) × 10 ⁻⁵	4563
$\gamma 2K^+2K^-$	(2.0	± 2.0) × 10 ⁻⁵	4601
$\gamma \eta'$ (958)	< 1.9	$\times 10^{-6}$ CL=90%	4682
$\gamma\eta$	< 1.0	$\times 10^{-6}$ CL=90%	4714
$\gamma f_0(980)$	< 3	$\times 10^{-5}$ CL=90%	4678
$\gamma f_2'(1525)$	(2.9	± 0.6) $\times 10^{-5}$	4607
$\gamma f_2(1270)$	(1.01 =	± 0.06) $ imes 10^{-4}$	4644
$\gamma\eta$ (1405)	< 8.2	$\times 10^{-5} \text{ CL} = 90\%$	4625
$\gamma f_0(1500)$	< 1.5	$\times 10^{-5} \text{ CL} = 90\%$	4610
$\gamma f_0(1500) \rightarrow \gamma K^+ K^-$	(1.0	± 0.4) $\times 10^{-5}$	_
$\gamma f_0(1710)$	< 2.6	$\times 10^{-4} \text{ CL} = 90\%$	4577
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	(1.01 =	$\pm 0.32\) imes 10^{-5}$	_
$\gamma f_0(1710) \rightarrow \gamma \pi^+ \pi^-$	(5.3 =	± 2.0) × 10 ⁻⁶	_
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	< 1.4	$\times 10^{-6} \text{ CL}=90\%$	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	< 1.8	$\times 10^{-6} \text{ CL} = 90\%$	_
$\gamma f_4(2050)$	< 5.3	$\times 10^{-5} \text{ CL} = 90\%$	4515
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	< 2	$\times 10^{-4} \text{ CL} = 90\%$	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	< 8	$\times 10^{-7} \text{ CL}=90\%$	4469
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	< 6	$\times 10^{-7} \text{ CL}=90\%$	_
$\gamma f_J(2220) \rightarrow \gamma \rho \overline{\rho}$	< 1.1	$\times 10^{-6} \text{ CL} = 90\%$	_
$\gamma \eta$ (2225) $ ightarrow \ \gamma \phi \phi$	< 3	$\times 10^{-3} \text{ CL} = 90\%$	4469
$\gamma \eta_c(1S)$	< 5.7	$\times 10^{-5} \text{ CL} = 90\%$	4260
$\gamma \chi_{c0}$	< 6.5	$\times 10^{-4} \text{ CL}=90\%$	4114
$\gamma \chi_{c1}$	< 2.3	$\times 10^{-5}$ CL=90%	4079

Lepton Family number (LF) violating modes

$$\mu^{\pm} \, au^{\mp}$$
 LF < 6.0 $imes 10^{-6}$ CL=95% 4563

Other decays

invisible $< 3.0 \times 10^{-4} \text{ CL} = 90\%$

$$\chi_{b0}(1P)^{[ggbb]}$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31$ MeV

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ_i	/Γ) Con	fidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{1}{\gamma \Upsilon(1S)}$	(1.94±0	.27) %		391
D^0X	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.6	$\times 10^{-4}$	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	$\times 10^{-5}$	90%	4875
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 5	$\times10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-4}$	90%	4905
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	($1.1~\pm0$	$.6) \times 10^{-4}$		4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4828
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	4827
$3\pi^{+}3\pi^{-}$	< 8	$\times 10^{-5}$	90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4881
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.4 ± 1	$.2) \times 10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%	4808
$4\pi^+4\pi^-$	< 8	$\times 10^{-5}$	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-3}$	90%	4850
$J/\psiJ/\psi$	< 7	$\times 10^{-5}$	90%	3836
$J/\psi\psi(2S)$	< 1.2	× 10 ⁻⁴	90%	3571

HTTP://PDG.LBL.GOV

Page 167

$$\psi(2S)\psi(2S)$$
 < 3.1 \times 10⁻⁵ 90% 3273
 $J/\psi(1S)$ anything < 2.3 \times 10⁻³ 90% -

$$\chi_{b1}(1P)$$
 [ggbb]
$$I^G(J^{PC}) = 0^+(1^{++})$$
 J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ_i)	Confidence	level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	(35.2 ± 2.0)) %		423
$D^0 X$	(12.6 ± 2.2)) %		_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	(2.0 ± 0.6)	$) \times 10^{-4}$		4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	(1.3 ± 0.5	$) \times 10^{-4}$		4892
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	(8.0 ± 2.5	$) \times 10^{-4}$		4921
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(1.5 ± 0.5	$) \times 10^{-4}$		4878
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	(3.5 ± 1.2	$) \times 10^{-4}$		4863
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	(8.6 ± 3.2	$) \times 10^{-4}$		4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	(9.3 ± 3.3	$) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}$	($1.9~\pm0.6$	$) \times 10^{-4}$		4921
$3\pi^{+}3\pi^{-}2\pi^{0}$	($1.7~\pm0.5$			4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	($2.6~\pm0.8$	$) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(7.5 ± 2.6	$) \times 10^{-4}$		4825
$4\pi^{+}4\pi^{-}$	(2.6 ± 0.9	$) \times 10^{-4}$		4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.4 ± 0.6	$) \times 10^{-3}$		4867
ω anything	(4.9 ± 1.4	•		_
ωX_{tetra}	< 4.44	\times 10 ⁻⁴	90%	_
$J/\psiJ/\psi$	< 2.7		90%	3857
$J/\psi \psi(2S)$	< 1.7	$\times 10^{-5}$	90%	3594
$\psi(2S)\psi(2S)$	< 6		90%	3298
$J/\psi(1S)$ anything	< 1.1	\times 10 ⁻³	90%	_
$J/\psi(1S)X_{tetra}$	< 2.27	× 10 ⁻⁴	90%	_

$h_b(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Created: 5/22/2019 10:04

Mass $m = 9899.3 \pm 0.8 \text{ MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta_b(1S)\gamma$	(52 ⁺⁶ ₋₅) %	488

$$\chi_{b2}(1P)^{[ggbb]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\frac{\gamma}{\gamma} \gamma (1S)$	(18.0±1.0) %		442
$D^0 X$	< 7.9 %	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	$(8 \pm 5) \times 10$	_	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}$	< 1.0 × 10		4901
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10$)-4	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10$)-4	4931
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.1\pm0.4)\times10$		4888
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.1\pm0.9)\times10$		4872
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(3.9\pm1.8)\times10$	$^{-4}$	4855
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 5 × 10	90%	4854
$3\pi^{+}3\pi^{-}$	$(7.0\pm3.1)\times10$	₎ –5	4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10$)-3	4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8 × 10	90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.6\pm1.5)\times10$		4835
$4\pi^{+}4\pi^{-}$	$(8 \pm 4) \times 10$		4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10$		4877
$J/\psi J/\psi$	< 4 × 10		3869
$J/\psi \psi(2S)$	< 5 × 10	_	3608
$\psi(2S)\psi(2S)$	< 1.6 × 10		3313
$J/\psi(1S)$ anything	$(1.5\pm0.4)\times10$	₎ —3	_

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10023.26\pm0.31$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=31.98\pm2.63$ keV $\Gamma_{ee}=0.612\pm0.011$ keV

T(2S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Upsilon(1S)\pi^+\pi^-$	$(17.85 \pm 0.26) \%$		475
$\varUpsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4) %		480
$ au^+ au^-$	$(2.00\pm~0.21)~\%$		4686
$\mu^+\mu^-$	($1.93\pm~0.17)~\%$	S=2.2	5011
e^+e^-	($1.91\pm~0.16$) %		5012
$\Upsilon(1S)\pi^0$	< 4 ×	10^{-5} CL=90%	531
$\Upsilon(1S)\eta$	(2.9 \pm 0.4) \times	10^{-4} S=2.0	126

HTTP://PDG.LBL.GOV

Page 169

$J/\psi(1\mathcal{S})$ anything	< 6	$\times10^{-3}$	CL=90%	4533
$J/\psi(1S)\eta_c$	< 5.4	× 10 ⁻⁶	CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4	× 10 ⁻⁶		3808
$J/\psi(1S)\chi_{c1}$	< 1.2	× 10 ⁻⁶	CL=90%	3765
$J/\psi(1S)\chi_{c2}$	< 2.0	× 10 ⁻⁶	CL=90%	3744
$J/\psi(1S)\eta_c(2S)$	< 2.5	× 10 ⁻⁶	CL=90%	3707
$J/\psi(1S)X(3940)$	< 2.0	× 10 ⁻⁶	CL=90%	3555
$J/\psi(1S)X(4160)$	< 2.0	× 10 ⁻⁶	CL=90%	3440
χ_{c1} anything	(2.2 ± 0.9)			_
$\chi_{c1}(1P)^0 X_{tetra}$	< 3.67	× 10 ⁻⁵	CL=90%	_
χ_{c2} anything	(2.3 ± 0.3)			_
$\psi(2S)\eta_c$	< 5.1	× 10 ⁻⁶	CL=90%	3732
$\psi(2S)\chi_{c0}$	< 4.7	$\times10^{-6}$	CL=90%	3536
$\psi(2S)\chi_{c1}$	< 2.5	$\times10^{-6}$	CL=90%	3488
$\psi(2S)\chi_{c2}$	< 1.9	$\times10^{-6}$	CL=90%	3464
$\psi(2S)\eta_c(2S)$	< 3.3	$\times 10^{-6}$	CL=90%	3422
$\psi(2S)X(3940)$	< 3.9	$\times 10^{-6}$	CL=90%	3250
$\psi(2S)X(4160)$	< 3.9	$\times 10^{-6}$	CL=90%	3118
$Z_c(3900)^+ Z_c(3900)^-$	< 1.0	\times 10 ⁻⁶	CL=90%	_
$Z_c(4200)^+ Z_c(4200)^-$	< 1.67	× 10 ⁻⁵	CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 7.3	× 10 ⁻⁶	CL=90%	_
$X(4050)^{+}X(4050)^{-}$	< 1.35	× 10 ⁻⁵	CL=90%	_
$X(4250)^+ X(4250)^-$	< 2.67	× 10 ⁻⁵	CL=90%	_
$X(4050)^{\pm}X(4250)^{\mp}$	< 2.72	× 10 ⁻⁵	CL=90%	_
$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	× 10 ⁻⁵	CL=90%	_
$X(4055)^{\pm}X(4055)^{\mp}$	< 1.11	× 10 ⁻⁵	CL=90%	_
$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 2.11	× 10 ⁻⁵		_
2H anything		$^{30}_{26}) \times 10^{-5}$	S=1.2	_
hadrons	`) %		_
ggg	(58.8 ± 1.3)			_
γgg	(1.87± 0.3	· _		_
$\phi K^+_{\perp} K^{\perp}$	(1.6 ± 0.4)	,		4910
$\omega \pi^+ \pi^-$	< 2.58	$\times 10^{-6}$	CL=90%	4977
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.3 ± 0.7)	· _		4952
$\phi f_2'(1525)$	< 1.33	\times 10 ⁻⁶	CL=90%	4841
$\omega f_2(1270)$	< 5.7		CL=90%	4899
$\rho(770) a_2(1320)$	< 8.8		CL=90%	4894
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	(1.5 ± 0.0			4869
$K_1(1270)^{\pm}K^{\mp}$	< 3.22	\times 10 ⁻⁶	CL=90%	4918
$K_1(1400)^{\pm} K^{\mp}$	< 8.3		CL=90%	4901
$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0		CL=90%	4935
$\rho\pi$	< 1.16		CL=90%	4981
$\pi^+\pi^-\pi^0$	< 8.0	\times 10 ⁻⁷	CL=90%	5007

$\omega \pi^0$	< 1.63	$\times 10^{-6}$	CL=90%	4980
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	($1.30\pm~0$	$.28) \times 10^{-5}$		5002
$K_S^0 K^+ \pi^- + \text{c.c.}$	($1.14\pm~0$	$.33) \times 10^{-6}$		4979
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 4.22	$\times 10^{-6}$	CL=90%	4959
$K^*(892)^- K^+ + \text{c.c.}$	< 1.45	\times 10 ⁻⁶	CL=90%	4960
$f_1(1285)$ anything	•	$.6) \times 10^{-3}$		_
$f_1(1285)X_{tetra}$	< 6.47	\times 10 ⁻⁵	CL=90%	_
Sum of 100 exclusive modes	($2.90\pm~0$	$.30) \times 10^{-3}$		_

Radiative decays

$\gamma \chi_{b1}(1P)$	($6.9~\pm$	0.4)	%		130
$\gamma \chi_{b2}(1P)$	($7.15\pm$	0.35)	%		110
$\gamma \chi_{b0}(1P)$	($3.8~\pm$	0.4)	%		162
$\gamma f_0(1710)$	<	5.9		\times 10 ⁻⁴	CL=90%	4867
$\gamma f_2'(1525)$	<	5.3		\times 10 ⁻⁴	CL=90%	4896
$\gamma f_2(1270)$	<	2.41		\times 10 ⁻⁴	CL=90%	4930
$\gamma \eta_c(1S)$	<	2.7		$\times 10^{-5}$	CL=90%	4567
$\gamma \chi_{c0}$	<	1.0		\times 10 ⁻⁴	CL=90%	4430
$\gamma \chi_{c1}$	<	3.6		\times 10 ⁻⁶	CL=90%	4397
$\gamma \chi_{c2}$	<	1.5		\times 10 ⁻⁵	CL=90%	4381
$\gamma \chi_{c1}(3872) \rightarrow \pi^+ \pi^- J/\psi$	<	8		\times 10 ⁻⁷	CL=90%	_
$\gamma \chi_{c1}(3872) \rightarrow \pi^+ \pi^- \pi^0 J/\psi$	<	2.4		\times 10 ⁻⁶	CL=90%	_
$\gamma X(3915) \rightarrow \omega J/\psi$	<	2.8		\times 10 ⁻⁶	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$	<	1.2		\times 10 ⁻⁶	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	<	1.3		\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	(5.5 +	$^{1.1}_{0.9}$)	\times 10 ⁻⁴	S=1.2	605
$\gamma \eta_b(1S) ightarrow \gamma$ Sum of 26 exclu-	<	3.7		\times 10 ⁻⁶	CL=90%	_
sive modes						
$\gamma X_{b\overline{b}} \rightarrow \gamma Sum \text{ of 26 exclusive}$	<	4.9		\times 10 ⁻⁶	CL=90%	_
modes				1	GL 0=0/	
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$ [hhbb]				_	CL=95%	_
$\gamma A_0^0 \rightarrow \gamma$ hadrons	<			_	CL=90%	_
$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	<	8.3		× 10 ⁻⁶	CL=90%	_
Lepton Family number (LF) violating modes						

$e^{\pm} au^{\mp}$	LF	< 3.2	$\times 10^{-6}$	CL=90%	4854
$\mu^{\pm} au^{\mp}$	LF	< 3.3	$\times 10^{-6}$	CL=90%	4854

$\Upsilon_2(1D)$

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

 $\mathsf{Mass}\ m = 10163.7 \pm 1.4\ \mathsf{MeV}\quad (\mathsf{S} = 1.7)$

$ au_2(1D)$ DECAY MODES	Fraction (Γ _i ,	$P \left(MeV/c \right)$
$\gamma\gamma \ \varUpsilon(1S)$	seen	679
HTTP://PDG.LBL.GOV	Page 171	Created: 5/22/2019 10:04

$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \varUpsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$$\chi_{b0}(2P)^{[ggbb]}$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 10232.5 \pm 0.4 \pm 0.5 \text{ MeV}$

$\chi_{b0}(2P)$ DECAY MODES	Fraction (I	$\Gamma_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (2S)$	(1.38±0	0.30) %		207
$\gamma \ \varUpsilon(1S)$	(3.8 ± 1)	7) × 10 ⁻¹	-3	743
$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 3.4	\times 10 ⁻	-5 90%	5064
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 $^{-}$	-5 90%	5063
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 2.2	× 10 ⁻	90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10 ⁻	-4 90%	5092
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	< 1.5	\times 10 ⁻	-4 90%	5050
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	< 2.2	\times 10 $^{-}$	-4 90%	5035
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	\times 10 $^{-}$	-3 90%	5019
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 7	× 10 ⁻	-4 90%	5018
$3\pi^{+}3\pi^{-}$	< 7	\times 10 ⁻	-5 90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	\times 10 $^{-}$	-3 90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 $^{-}$	-4 90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10 ⁻	-4 90%	4999
$4\pi^+4\pi^-$	< 1.7	\times 10 $^{-}$	-4 90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	× 10 ⁻	-4 90%	5039

$\chi_{b1}(2P)^{[ggbb]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m=10255.46\pm0.22\pm0.50$ MeV $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0$ MeV

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \Upsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$	135
$\gamma \ \varUpsilon(2S)$	(18.1 ± 1.9) %	230
$\gamma \Upsilon(1S)$	($9.9~\pm1.0$) %	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$	238
$D^0 X$	(8.8 ± 1.7) %	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075

HTTP://PDG.LBL.GOV

Page 172

$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$ $2\pi^{+}2\pi^{-}2\pi^{0}$ $2\pi^{+}2\pi^{-}K^{+}K^{-}$	$(7.7 \pm 3.2) \times 10^{-4}$ $(5.9 \pm 2.0) \times 10^{-4}$ $(10 \pm 4) \times 10^{-5}$	5047 5104 5062
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$	5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$	5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$	5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$	5011
$4\pi^{+}4\pi^{-}$	$(1.7 \pm 0.6) \times 10^{-4}$	5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$	5051

$\chi_{b2}(2P)^{[ggbb]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

$\chi_{b2}(2P)$ DECAY MODES	Fraction (Γ	· _i /Γ)	Confidence level	p (MeV/ c)
$\omega \Upsilon(1S)$	(1.10^{+0}_{-0})	·34 ·30) %		194
$\gamma \ \varUpsilon(2S)$	(8.9 ± 1)	.2)%		242
$\gamma \ \Upsilon(1S)$	(6.6 ± 0)	.8)%		777
$\pi\pi\chi_{b2}(1P)$	(5.1 ± 0)	.9) × 10	-3	229
$D^0 X$	< 2.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 1.1	\times 10	-4 90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	\times 10	-5 90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	\times 10	-4 90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1)	.6) × 10	-4	5110
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	(9 ± 4)) × 10	-5	5068
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	(2.4 ± 1)	.1) × 10	-4	5054
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	(4.7 ± 2)	.3) × 10	-4	5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4	× 10	-4 90%	5036
$3\pi^+3\pi^-$	(9 ± 4)) × 10	-5	5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 ± 0)	.4) × 10	-3	5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 ± 0)	$.7) \times 10^{\circ}$	-4	5036
$3\pi^{+}3\pi^{-}$ K^{+} K^{-} π^{0}	(4.2 ± 1)	$.7) \times 10^{\circ}$	-4	5017
$4\pi^+4\pi^-$	(9 ±5) × 10	-5	5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 ±0	.5) × 10	-3	5058

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.2\pm0.5~{\rm MeV}$ $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13~{\rm MeV}$ Full width $\Gamma=20.32\pm1.85~{\rm keV}$ $\Gamma_{ee}=0.443\pm0.008~{\rm keV}$

au(3S) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ dence level	
$\gamma(2S)$ anything	(10.6 ± 0.8) %	6		296
\varUpsilon (2S) $\pi^+\pi^-$	$(2.82\pm\ 0.18)\%$	6	S=1.6	177
$\varUpsilon(2S)\pi^0\pi^0$	$(1.85\pm\ 0.14)\%$	6		190
Υ (2S) $\gamma\gamma$	(5.0 \pm 0.7) $\%$	6		327
$\Upsilon(2S)\pi^0$	< 5.1 >	10^{-4}	CL=90%	298
$\Upsilon(1S)\pi^+\pi^-$	$(4.37\pm~0.08)\%$	6		813
$\Upsilon(1S)\pi^0\pi^0$	$(2.20\pm\ 0.13)\%$	6		816
$\Upsilon(1S)\eta$	< 1	< 10 ⁻⁴	CL=90%	677
$\Upsilon(1S)\pi^0$			CL=90%	846
$h_b(1P)\pi^0$	< 1.2		CL=90%	426
$h_b(1P)\pi^0 \rightarrow \gamma \eta_b(1S)\pi^0$	(4.3 \pm 1.4) \times			_
$h_b(1P)\pi^+\pi^-$	< 1.2	∢10 ^{−4}	CL=90%	353
$\tau^+\tau^-$	$(2.29\pm\ 0.30)\%$			4863
$\mu_{\perp}^{+}\mu_{-}^{-}$	$(2.18\pm\ 0.21)\%$		S=2.1	5177
e^+e^-	$(2.18\pm\ 0.20)\%$			5178
hadrons	(93 ± 12) 9			_
ggg	(35.7 ± 2.6) %	_		_
$\frac{\gamma g}{2}g$	(9.7 \pm 1.8) \times			_
2H anything	(2.33± 0.33) ×	< 10 ^{−5}		_
	Radiative decays			
$\gamma \chi_{b2}(2P)$	(13.1 \pm 1.6) $\%$	6	S=3.4	86
$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) $\%$	6	S=2.4	99
$\gamma \chi_{b0}(2P)$	(5.9 \pm 0.6) $\%$		S=1.4	122
$\gamma \chi_{b2}(1P)$	(10.0 \pm 1.0) $ imes$	⟨10 ⁻³	S=1.7	434
$\gamma \chi_{b1}(1P)$	$(9 \pm 5) \times$	_	S=1.8	452
$\gamma \chi_{b0}(1P)$	$(2.7 \pm 0.4) \times$			484
$\gamma \eta_b(2S)$		∢10 ^{−4}	CL=90%	350
$\gamma \eta_b(1S)$	(5.1 ± 0.7) \times	_		912
$\gamma A^0 ightarrow \gamma$ hadrons		10^{-5}		_
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$		10^{-4}		_
$\gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}$	< 5.5 >	× 10 ⁻⁶	CL=90%	_
U + -		1		

 $[jjbb] < 1.6 \times 10^{-4} CL=90\%$

Lepton Family number (LF) violating modes

$$\chi_{b1}(3P)$$
 $I^{G}(J^{PC}) = 0^{+}(1^{+})$

Mass $m=10513.4\pm0.7~\mathrm{MeV}$

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma(1S)\gamma$	seen	1000
$\Upsilon(2S)\gamma$	seen	479
Υ (3 S) γ	seen	157

$$\chi_{b2}(3P)$$
 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

Mass $m = 10524.0 \pm 0.8 \; \text{MeV}$

$\chi_{b2}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(3S)\gamma$	seen	167

7(45)
$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10579.4\pm1.2$ MeV Full width $\Gamma=20.5\pm2.5$ MeV $\Gamma_{ee}=0.272\pm0.029$ keV (S=1.5)

T(4S) DECAY MODES	Fraction (Γ_i/Γ_i)	·) Cor	nfidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	(51.4 ± 0.6)) %		331
D_s^+ anything $+$ c.c.	(17.8 ± 2.6)) %		_
$B^0\overline{\overline{B}{}^0}$	(48.6 ± 0.6)) %		326
$J/\psi K_S^0 + (J/\psi, \eta_c) K_S^0$	< 4	\times 10 ⁻⁷	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	$(1.57\pm0.08$	$(8) \times 10^{-5}$		5290
$ ho^+ ho^-$	< 5.7	$\times 10^{-6}$	90%	5233
$K^*(892)^0 \overline{K}{}^0$	< 2.0	\times 10 ⁻⁶	90%	5240
$J/\psi(1S)$ anything	< 1.9	\times 10 ⁻⁴	95%	_
D^{st+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0.6) %		5240

$\phi \eta$	< 1.	8×10^{-6}	90%	5226
$\phi \eta'$	< 4.	3×10^{-6}	90%	5196
$ ho\eta$	< 1.	3×10^{-6}	90%	5247
$ ho\eta'$	< 2.	5×10^{-6}	90%	5217
$\varUpsilon(1S)$ anything	< 4	$\times 10^{-3}$	90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	(8.	$2 \pm 0.4 \times 10^{-5}$		1026
\varUpsilon (1 ${\cal S}$) η	(1.	$81\pm0.18)\times10^{-4}$		924
$\Upsilon(1S)\eta'$	(3.	$4 \pm 0.9 \times 10^{-5}$		_
Υ (2S) $\pi^+\pi^-$	(8.	$2 \pm 0.8 \times 10^{-5}$		468
$h_b(1P)\pi^+\pi^-$	not	seen		600
$h_b(1P)\eta$	(2.	$18\pm0.21)\times10^{-3}$		390
$\overline{^2H}$ anything	< 1.	3×10^{-5}	90%	_

Double Radiative Decays

 $\gamma \gamma \Upsilon(\mathsf{D}) \rightarrow \gamma \gamma \eta \Upsilon(1S)$ < 2.3 × 10⁻⁵ 90%

$Z_b(10610)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=10607.2\pm2.0~{\rm MeV}$ Full width $\Gamma=18.4\pm2.4~{\rm MeV}$

<i>Z_b</i> (10610) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\varUpsilon(1S)\pi^+$	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
$\Upsilon(1S)\pi^0$	not seen	1077
Υ (2S) π^+	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(2S)\pi^0$	seen	552
Υ (3 S) π^+	$(2.1^{+0.8}_{-0.6})\%$	207
$\Upsilon(3S)\pi^0$	seen	210
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^+\overline{B}{}^0$	not seen	505
$B^+ \overline{B}^{*0} + B^{*+} \overline{B}^{0}$	$(85.6^{+2.1}_{-2.9})\%$	-
$B^{*+}\overline{B}^{*0}$	not seen	†

$Z_b(10650)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

I, G, C need confirmation.

Mass $m=10652.2\pm1.5~{
m MeV}$ Full width $\Gamma=11.5\pm2.2~{
m MeV}$

HTTP://PDG.LBL.GOV

Page 176

 $Z_b(10650)^-$ decay modes are charge conjugates of the modes below.

<i>Z_b</i> (10650) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)
$\varUpsilon(1S)\pi^+$	$(1.7^{+0.8}_{-0.6}) \times 10^{-3}$	1117
\varUpsilon (2S) π^+	$(1.4^{+0.6}_{-0.4})\%$	595
$\Upsilon(3S)\pi^+$	$(1.6^{+0.7}_{-0.5})\%$	259
$h_b(1P)\pi^+$	(8.4 ^{+2.9} _{-2.4}) %	714
$h_b(2P)\pi^+ B^0$	(15 ± 4)%	360
2 2	not seen	703
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^0$	not seen	_
$B^{*+}\overline{B}^{*0}$	$(74 \begin{array}{cc} +4 \\ -6 \end{array}) \%$	122

T(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 10889.9^{+3.2}_{-2.6} \text{ MeV}$ Full width $\Gamma = 51^{+6}_{-7} \text{ MeV}$ $\Gamma_{ee} = 0.31 \pm 0.07 \text{ keV} \quad (S = 1.3)$

r(10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})\%$)	_
$B\overline{B}$	(5.5 ± 1.0) %		1331
$B\overline{B}^*$ + c.c.	(13.7 ± 1.6) %		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %		1138
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	1027
$B\overline{B}\pi$	(0.0 ± 1.2) %		1027
$B^* \overline{B} \pi + B \overline{B}^* \pi$	(7.3 ± 2.3) %		_
$B^*\overline{B}^*\pi$	(1.0 ± 1.4) %		756
$B\overline{B}\pi\pi$	< 8.9 %	90%	574
$B_s^{(*)} \overline{B}_s^{(*)} B_s \overline{B}_s$	(20.1 ± 3.1) %	ı	919
$B_s \overline{B}_s$	$(5 \pm 5) \times$	10^{-3}	919
$B_s \overline{B}_s^* + \text{ c.c.}$	$(1.35\pm0.32)\%$		_
$B_s^* \overline{\overline{B}}_s^*$	(17.6 ± 2.7) %		566
no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array})\%$)	_
e^+e^-	(6.1 ± 1.6) $ imes$	10^{-6}	5445
$K^*(892)^0 \overline{K}{}^0$	< 1.0 ×	10^{-5} 90%	5397
$\Upsilon(1S)\pi^+\pi^-$	(5.3 ± 0.6) \times	10^{-3}	1310
$\Upsilon(2S)\pi^+\pi^-$	(7.8 ± 1.3) \times	10 ⁻³	788

Υ (3 S) $\pi^+\pi^-$	($4.8 \begin{array}{c} +1. \\ -1. \end{array}$	$_{7}^{9}) \times 10^{-3}$		445
$\Upsilon(1S) {\mathcal K}^+ {\mathcal K}^-$	(6.1 ±1.	$8) \times 10^{-4}$		965
$\eta \Upsilon_J(1D)$			$1) \times 10^{-3}$		_
$h_b(1P)\pi^+\pi^-$	($3.5 \begin{array}{c} +1. \\ -1. \end{array}$	03×10^{-3}		907
$h_b(2P)\pi^+\pi^-$	($5.7 \begin{array}{c} +1. \\ -2. \end{array}$	$_{1}^{7}) \times 10^{-3}$		548
$\chi_{bJ}(1P)\pi^{+}\pi^{-}\pi^{0}$	($2.5 \pm 2.$	$3) \times 10^{-3}$		899
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	<	6.3	$\times 10^{-3}$	90%	899
$\chi_{b0}(1P)\omega$	<	3.9	$\times 10^{-3}$	90%	638
$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	<	4.8	$\times 10^{-3}$	90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	($1.85 \pm 0.$	$33) \times 10^{-3}$		865
$\chi_{b1}(1P)\omega$	($1.57 \pm 0.$	$30) \times 10^{-3}$		589
$\chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	($5.2 \pm 1.$	9) $\times 10^{-4}$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	($1.17 \pm 0.$	$30) \times 10^{-3}$		846
$\chi_{b2}(1P)\omega$	(6.0 ±2.	7) \times 10 ⁻⁴		559
$\chi_{b2}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	(6 ± 4	$) \times 10^{-4}$		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	<	3.8	$\times 10^{-5}$	90%	_

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

ϕ anything	$(13.8 \begin{array}{c} +2.4 \\ -1.7 \end{array})\%$	_
D^0 anything $+$ c.c.	(108 ± 8) %	_
D_s anything $+$ c.c.	$(46 \pm 6)\%$	_
J/ψ anything	$(2.06\pm0.21)\%$	_
B^0 anything $+$ c.c.	(77 ±8) %	_
B^+ anything $+$ c.c.	(72 ±6) %	_

γ(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/22/2019 10:04

Mass $m=10992.9^{+10.0}_{-3.1}$ MeV Full width $\Gamma=49^{+9}_{-15}$ MeV $\Gamma_{ee}=0.130\pm0.030$ keV

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(2.7^{+1.0}_{-0.8})\times 10^{-6}$	5496
$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	$(9 \begin{array}{c} +9 \\ -8 \end{array}) \times 10^{-3}$	1001
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	968
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	949

NOTES

- [a] See the "Note on $\pi^{\pm} \to \ell^{\pm} \nu \gamma$ and $K^{\pm} \to \ell^{\pm} \nu \gamma$ Form Factors" in the π^{\pm} Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^{\pm} Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] C parity forbids this to occur as a single-photon process.
- [g] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [h] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [i] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [j] See the "Note on scalar mesons" in the $f_0(500)$ Particle Listings .
- [k] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [/] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [o] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
- [p] See the "Note on the $f_1(1420)$ " in the $\eta(1405)$ Particle Listings.
- [q] See also the $\omega(1650)$ Particle Listings.
- [r] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings in 2004 edition of *Review of Particle Physics*.

Created: 5/22/2019 10:04

[u] See the note in the K^\pm Particle Listings.

- [v] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [x] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [y] For more details and definitions of parameters see the Particle Listings.
- [z] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [aa] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [bb] Structure-dependent part.
- [cc] Direct-emission branching fraction.
- [dd] Violates angular-momentum conservation.
- [ee] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [ff] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon'$$

$$\eta_{00} = \left|\eta_{00}
ight| \mathrm{e}^{i\phi_{00}} = rac{A(K_L^0 o \ \pi^0\pi^0)}{A(K_S^0 o \ \pi^0\pi^0)} = \epsilon - 2\epsilon'$$

$$\delta = \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} ,$$

$${
m Im}(\eta_{+-0})^2 = rac{\Gamma(K_S^0 o \pi^+ \pi^- \pi^0)^{CP \ {
m viol.}}}{\Gamma(K_I^0 o \pi^+ \pi^- \pi^0)} \ ,$$

$$\operatorname{Im}(\eta_{000})^2 = \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \ .$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [gg] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [hh] The value is for the sum of the charge states or particle/antiparticle states indicated.

- [ii] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [jj] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [kk] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [//] Allowed by higher-order electroweak interactions.
- [nn] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [oo] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [pp] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** S1 (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [qq] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [rr] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [ss] See the Particle Listings for the (complicated) definition of this quantity.
- [tt] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [uu] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [vv] Submodes of the $D^+ \to K^- 2\pi^+ \pi^0$ and $K^0_S 2\pi^+ \pi^-$ modes were studied by ANJOS 92C and COFFMAN 92B, but with at most 142 events for the first mode and 229 for the second not enough for precise results. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [xx] The unseen decay modes of the resonances are included.
- [yy] This is *not* a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [zz] This mode is not a useful test for a ΔC =1 weak neutral current because both quarks must change flavor in this decay.
- [aaa] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.

- [bbb] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [ccc] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-$, and $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [ddd] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [eee] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.17 \pm 0.17 %.
- [fff] This is a doubly Cabibbo-suppressed mode.
- [ggg] Submodes of the $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [hhh] This branching fraction includes all the decay modes of the resonance in the final state.
 - [iii] This limit is for either D^0 or $\overline{D}{}^0$ to pe^- .
 - [jjj] This limit is for either D^0 or \overline{D}^0 to $\overline{p}e^+$.
- [kkk] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an $\eta,~\eta',~\phi,~K^0$, or K^{*0} is 5.99 \pm 0.31 %.
 - [///] This fraction includes η from η' decays.
- [nnn] The sum of our exclusive η' fractions $\eta' e^+ \nu_e$, $\eta' \mu^+ \nu_\mu$, $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ is $11.8 \pm 1.6\%$.
- [000] This branching fraction includes all the decay modes of the final-state resonance.
- [ppp] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [qqq] We decouple the $D_s^+ \to \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ \to \phi \pi^+$, $\phi \to K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ \to K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi \to K^+ K^-$ branching fraction 0.491.
 - [rrr] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [sss] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [ttt] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the D^0 $\overline{D}{}^0$ system.

- [uuu] D denotes D^0 or \overline{D}^0 .
- [vvv] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [xxx] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [yyy] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- [zzz] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [aaaa] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [bbaa] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [ccaa] ${\cal B}^0$ and ${\cal B}^0_s$ contributions not separated. Limit is on weighted average of the two decay rates.
- [ddaa] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [eeaa] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- [ffaa] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [ggaa] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [hhaa] These values are model dependent.
- [iiaa] Here "anything" means at least one particle observed.
- [jjaa] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [kkaa] D^{**} stands for the sum of the $D(1\,{}^1\!P_1)$, $D(1\,{}^3\!P_0)$, $D(1\,{}^3\!P_1)$, $D(1\,{}^3\!P_2)$, $D(2\,{}^1\!S_0)$, and $D(2\,{}^1\!S_1)$ resonances.
- [IIaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [nnaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [ooaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [ppaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [qqaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [rraa] For $E_{\gamma} > 100$ MeV.
- [ssaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [ttaa] For a narrow state A with mass less than 960 MeV.
- [uuaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [vvaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.

[xxaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

[yyaa]
$$2m_{\tau} < M(\tau^{+}\tau^{-}) < 9.2 \text{ GeV}$$

[zzaa] 2 GeV
$$< m_{K^+K^-} <$$
 3 GeV

[aabb]
$$X = \text{scalar with } m < 8.0 \text{ GeV}$$

[bbbb]
$$X\overline{X} = \text{vectors with } m < 3.1 \text{ GeV}$$

[ccbb] X and
$$\overline{X} = \text{zero spin with } m < 4.5 \text{ GeV}$$

[ddbb] 1.5 GeV
$$< m_X < 5.0$$
 GeV

[eebb] 201 MeV
$$<$$
 M($\mu^+\mu^-$) $<$ 3565 MeV

- [ffbb] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.
- [ggbb] Spectroscopic labeling for these states is theoretical, pending experimental information.

$$[hhbb] 1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$$

[iibb] 1.5 GeV
$$< m_X < 5.0$$
 GeV

[jjbb] For $m_{\tau^+\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.