### МГТУ им. Баумана

Лабораторная работа №3

По курсу: "Анализ алгоритмов"

## Алгоритмы сортировок

Работу выполнил: Левушкин Илья, ИУ7-52Б

Преподаватели: Волкова Л.Л., Строганов Ю.В.

## Оглавление

| Bı | веде                   | ние                                   | 3  |  |  |  |  |
|----|------------------------|---------------------------------------|----|--|--|--|--|
| 1  | Ана                    | алитический раздел                    | 4  |  |  |  |  |
|    | 1.1                    | Описание алгоритмов                   | 4  |  |  |  |  |
|    | 1.2                    | Сортировка Шелла                      | 4  |  |  |  |  |
|    | 1.3                    | Гномья сортировка                     | 5  |  |  |  |  |
|    | 1.4                    | Сортировка расческой                  | 5  |  |  |  |  |
|    | 1.5                    | Выводы по аналитической части         | 6  |  |  |  |  |
| 2  | Конструкторский раздел |                                       |    |  |  |  |  |
|    | 2.1                    | Схемы алгоритмов                      | 7  |  |  |  |  |
|    | 2.2                    | Расчет сложности алгоритмов           |    |  |  |  |  |
|    |                        | 2.2.1 Модель вычислений               | 11 |  |  |  |  |
|    |                        | 2.2.2 Сортировка Шелла [1]            |    |  |  |  |  |
|    |                        | 2.2.3 Гномья сортировка               |    |  |  |  |  |
|    |                        | 2.2.4 Сортировка расческой [1]        | 11 |  |  |  |  |
|    | 2.3                    | Вывод из конструкторской части        | 11 |  |  |  |  |
| 3  | Tex                    | нологический раздел                   | 12 |  |  |  |  |
|    | 3.1                    | Требования к программному обеспечению | 12 |  |  |  |  |
|    | 3.2                    | Средства реализации                   |    |  |  |  |  |
|    | 3.3                    | Листинг кода                          |    |  |  |  |  |
|    | 3.4                    | Выводы по технологической части       | 15 |  |  |  |  |
| 4  | Экс                    | спериментальный раздел                | 16 |  |  |  |  |
|    | 4.1                    | Сравнительное исследование            | 16 |  |  |  |  |
|    | 4.2                    | Выводы по экспериментальному разделу  | 20 |  |  |  |  |

Литература 23

## Введение

Алгоритмы сортировки находят широкое применение во многих сферах, поэтому сортировки являются одной из наиболее обширных и проработанных областей информатики.

В данной работе требуется реализовать и оценить трудоемкость трех алгоритмов сортировок:

- сортировка Шелла;
- гномья сортировка;
- сортировка расческой.

# Цель работы: изучение алгоритмов сортировки. Задачи работы:

- разработка и реализация алгоритмов;
- исследование временных затрат алгоритмов;
- описание и обоснование полученных результатов.

# 1 | Аналитический раздел

В данном разделе будут описаны алгоритмы сортировки Шелла, гномьей сортировки и сортировки расческой.

#### 1.1 Описание алгоритмов

Задача сортировки формулируется следующим образом: дана последовательность элементов

$$a_1, a_2, \cdots, a_n \tag{1.1}$$

Требуется упорядочить элементы по не убыванию или по не возрастанию - найти перестановку  $(i_1, i_2, \cdots, i_n)$  ключей 1.1, либо по неубыванию:

$$a(i_1) \le a(i_2) \le \dots \le a(i_n) \tag{1.2}$$

либо по не возрастанию:

$$a(i_1) \ge a(i_2) \ge \dots \ge a(i_n) \tag{1.3}$$

### 1.2 Сортировка Шелла

Сортировка Шелла — это алгоритм сортировки, являющийся усовершенствованным вариантом сортировки вставками. Идея метода Шелла состоит в сравнении элементов, стоящих не только рядом, но и на определённом расстоянии друг от друга. При сортировке Шелла сначала сравниваются и сортируются между собой значения, стоящие один от другого на некотором расстоянии d. После этого процедура повторяется для некоторых меньших значений d, а завершается сортировка Шелла упорядочивающем элементов при d=1, то есть обычной сортировкой вставками.

Среднее время работы алгоритма зависит от длин промежутков — d, на которых будут находиться сортируемые элементы исходного массива емкостью N на каждом шаге алгоритма. Первоначально используемая Шеллом последовательность длин промежутков:

$$d_1 = \frac{N}{2}, d_i = \frac{d_{i-1}}{2}, d_k = 1 \tag{1.4}$$

#### 1.3 Гномья сортировка

Гномья сортировка — это алгоритм сортировки, похожий на сортировку вставками, но в отличие от последней перед вставкой на нужное место происходит серия обменов, как в сортировке пузырьком. Алгоритм находит первое место, где два соседних элемента стоят в неправильном порядке и меняет их местами. Он пользуется тем фактом, что обмен может породить новую пару, стоящую в неправильном порядке, только до или после переставленных элементов. Он не допускает, что элементы после текущей позиции отсортированы, таким образом, нужно только проверить позицию до переставленных элементов.

#### 1.4 Сортировка расческой

Сортировка расческой является улучшенной модификацией сортировки пузырьком. В сортировке пузырьком, когда сравниваются два элемента, промежуток между элементами равен единице. Основная идея алгоритма сортировки расческой заключается в том, чтобы первоначально брать достаточно большое расстояние между сравниваемыми элементами и по мере упорядочивания массива сужать это расстояние вплоть до минимального. Первоначальный разрыв между сравниваемыми элементами лучше брать с учётом специальной величины, называемой фактором уменьшения, оптимальное значение которой равно примерно:

$$\frac{1}{1 - e^{\phi}} = 1,247 \cdots, \tag{1.5}$$

Где

е: основание натурального логарифма

 $\phi$  : золотое сечение

Начальное расстояние между элементами равно размеру массива, разделённого на фактор уменьшения. Массив проходится с этим шагом, после чего шаг делится на фактор уменьшения и проход по списку повторяется вновь. Так продолжается до тех пор, пока разность индексов не достигает единицы. После этого массив продолжает упорядочивание обычным пузырьком.

### 1.5 Выводы по аналитической части

В данном разделе были описаны алгоритмы сортировки Шелла, быстрой сортировки и сортировки расческой.

# 2 Конструкторский раздел

В данном разделе в соответствии с описанием алгоритмов, приведенными в аналитической части работы, будут рассмотрены схемы алгоритмов сортировки двух массивов данных, а также будет произведен расчёт сложности алгоритмов.

### 2.1 Схемы алгоритмов

В данном пункте представлены схемы алгоритмов сортировки Шелла (2.1), гномьей сортировки (2.2) и сортировки расческой (2.3)



Рис. 2.1: Алгоритм сортировки Шелла.



Рис. 2.2: Алгоритм гномьей сортировки.



Рис. 2.3: Алгоритм сортировки расческой.

### 2.2 Расчет сложности алгоритмов

#### 2.2.1 Модель вычислений

Для корректного расчёта сложности алгоритмов следует описать модель вычислений. Пусть любые арифметические операции имеют стоимость 1. Стоимость условного перехода if-else возьмем за 0 и будем учитывать лишь стоимость вычисления логического выражения. Цикл начинается с инициализации и проверки, стоимость которых в сумме составляет 2. В каждой итерации цикла происходит проверка условия и увеличение счётчика, каждый из которых имеет стоимость 1, соответственно, каждая итерация цикла имеет добавочную стоимость 2.

#### 2.2.2 Сортировка Шелла [1]

- Лучший случай  $\sim \Theta(n)$
- Худший случай  $\sim \Theta(n \log^2 n)$

#### 2.2.3 Гномья сортировка

- Лучший случай  $2 + (n-1) * 3 = 3n-1 \sim \Theta(n)$

#### 2.2.4 Сортировка расческой [1]

- Лучший случай  $\sim \Theta(n \log n)$
- $\bullet$  Худший случай  $\sim \Theta(n^2)$

#### 2.3 Вывод из конструкторской части

В данном разделе были рассмотрены схемы алгоритмов сортировки Шелла, гномьей сортировки и сортировки расческой, а также был произведен расчёт сложности алгоритмов.

# 3 | Технологический раздел

В данном разделе будут рассмотрены требования к разрабатываемому программному обеспечению, средства, использованные в процессе разработки для реализации поставленных задач, а также представлен листинг кода программы.

#### 3.1 Требования к программному обеспечению

Программное обеспечение должно реализовывать 3 алгоритма сортировки - сортировка Шелла, гномья сортировка и сортировка расческой. Пользователь должен иметь возможность произвести вычисления для массивов, размер которых он вводит, а также иметь возможность сравнить время работы этих алгоритмов.

#### 3.2 Средства реализации

Для реализации поставленной задачи был использован язык программирования C++ [2]. Проет был выполнен в среде QT Creator [3]. Для измерения процессорного времени была использована ассемблерная инструкция rdtsc [4].

### 3.3 Листинг кода

На основе схем алгоритмов, представленных в конструкторском разделе, в соответствии с указанными требованиями к реализации с использова-

нием средств языка C++ было разработано программное обеспечение, содержащее реализации выбранных алгоритмов. В данном пункте приведён листинг этих реализаций: листинги 3.1, 3.2, 3.3.

Листинг 3.1: Алгоритм сортировки Шелла

```
void ShellSort (vector<int>& array)
   {
  int tmp;
  int size = array.size();
   for (int step = size / 2; step > 0; step \neq 2)
   for (int i = step; i < size; i++)
   for (int j = i - step; j >= 0 && array[size t(j)] > array[
      size_t(j + step); j = step
10
   tmp = array[size t(j)];
11
   array[size_t(j)] = array[size_t(j + step)];
   array[size_t(j + step)] = tmp;
13
14
15
16
```

Листинг 3.2: Алгоритм сортировки расческой

```
void comb(vector<int>& sort)
{
   int size = sort.size();
   double fakt = 1.2473309;
   int step = size - 1;

   while (step >= 1)
   {
     step /= fakt;
     for (int i = 0; i < size - step; i++)
     {
        if (sort[i] > sort[i + step]);
      }
     swap(sort[i], sort[i + step]);
   }
}
```

```
16
17
18
  for (int i = 0; i < size - 1; i++)
19
20
   bool swapped = false;
21
   for (int j = 0; j < size - i - 1; j++)
23
   if (sort[j] > sort[j + 1])
24
25
   swap(sort[j], sort[j + 1]);
26
   swapped = true;
  if (!swapped)
30
   break;
31
32
   }
33
```

Листинг 3.3: Алгоритмгномьей сортировки

```
void gnome_sort(vector<int>& sort)
{
    int size = sort.size();
    for (size_t i = 0; i < size - 1; i++)
    {
        if (sort[i] > sort[i + 1]);
        {
            swap(sort[i], sort[i + 1]);
        if (i != 0)
        {
            ii -= 2;
        }
        }
     }
}
```

### 3.4 Выводы по технологической части

В данном разделе были рассмотрены требования к разрабатываемому программному обеспечению, средства, использованные в процессе разработки, а также был представлен листинг реализаций выбранных алгоритмов.

# 4 | Экспериментальный раздел

В данном разделе будет проведено исследование временных затрат разработанного программного обеспечения, вместе с подробным сравнительным анализом реализованных алгоритмов на основе экспериментальных данных.

### 4.1 Сравнительное исследование

Замеры времени выполнялись на массивах размера от 100 до 1000 с шагом 100 для сортировки Шелла (табл. 4.1.1, рис. 4.1.1), гномьей сортировки (табл. 4.1.2, рис. 4.1.2) и сортировки расческой (табл. 4.1.3, рис. 4.1.3). Числа в матрицах генерировались случайным образом.

Таблица 4.1: Сравнение времени работы алгоритма сортировки Шелла в тактах процессора.

| Размер массива | Лучший сл. | Средний сл. | Худший сл. |
|----------------|------------|-------------|------------|
| 100            | 13577      | 59134       | 32601      |
| 200            | 34494      | 139994      | 76995      |
| 300            | 60990      | 215931      | 129692     |
| 400            | 80575      | 311772      | 164619     |
| 500            | 99125      | 361400      | 230048     |
| 600            | 133820     | 445444      | 265233     |
| 700            | 154214     | 514780      | 334282     |
| 800            | 173332     | 642633      | 345377     |
| 900            | 197332     | 765237      | 448265     |
| 1000           | 157747     | 779791      | 457217     |



Таблица 4.2: Сравнение времени работы алгоритма гномьей сортировки в тактах процессора

| Размер массива | Лучший сл. | Средний сл. | Худший сл. |
|----------------|------------|-------------|------------|
| 100            | 2156       | 207040      | 386612     |
| 200            | 4333       | 668476      | 1197562    |
| 300            | 6462       | 1429117     | 2632503    |
| 400            | 7954       | 2280314     | 4648589    |
| 500            | 10781      | 3699399     | 7129986    |
| 600            | 12787      | 5200664     | 10339203   |
| 700            | 15001      | 6985759     | 13717497   |
| 800            | 17273      | 9273739     | 17604188   |
| 900            | 19385      | 11490163    | 23067462   |
| 1000           | 21410      | 13970190    | 27748485   |



Таблица 4.3: Сравнение времени работы алгоритма сортировки расчески в 12 тактах процессора

| Размер массива | Лучший сл. | Средний сл. | Худший сл. |
|----------------|------------|-------------|------------|
| 100            | 32989      | 55036       | 27574      |
| 200            | 78287      | 128151      | 93381      |
| 300            | 125411     | 204941      | 150004     |
| 400            | 174387     | 289040      | 205934     |
| 500            | 230146     | 345098      | 266063     |
| 600            | 274164     | 423519      | 333236     |
| 700            | 312998     | 484999      | 355299     |
| 800            | 355905     | 553373      | 426127     |
| 900            | 431985     | 639390      | 458591     |
| 1000           | 438616     | 746300      | 512719     |



## 4.2 Выводы по экспериментальному разделу

В данном разделе было проведено исследование временных затрат разработанного программного обеспечения, вместе с подробным срав-

нительным анализом реализованных алгоритмов на основе экспериментальных данных.

### Заключение

В ходе выполнения данной лабораторной работы были изучены и реализованы алгоритмы сортировки. Алгоритмы были разработаны и реализацованы, было проведено исследование временных затрат алгоритмов, а также дано описание и обоснование полученных результатов.

В аналитическом разделе было дано описание стандартного алгоритма и алгоритма Винограда. В конструкторском разделе был формализован и описан процесс вычисления пороизвдения двух матриц, разработаны алгоритмы. В технологическом разделе были рассмотрены требования к разрабатываемому программному обеспечению, средства, использованные в процессе разработки для реализации поставленных задач, а также представлен листинг кода программы. В экспериментальном разеде было проведено исследование временных затрат.

## Литература

- [1] Дж. Макконелл. Анализ алгоритмов. Вводный курс. Москва: Техносфера, 2004. ISBN 5-94836-005-9.
- [2] ISO/IEC JTC1 SC22 WG21 N 3690 «Programming Languages C++» [Электронный ресурс]. Режим доступа: https://devdocs.io/cpp/, свободный. (Дата обращения: 29.09.2019 г.)
- [3] QT Creator Manual [Электронный ресурс]. Режим доступа: https://doc.qt.io/qtcreator/index.html, свободный. (Дата обращения: 29.09.2019 г.)
- [4] Microsoft «rdtsc» [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/cpp/intrinsics/rdtsc?view=vs-2019, свободный. (Дата обращения: 29.09.2019 г.)