Notes on Real Analysis for Math 171

Dieterich Lawson

April 27, 2014

Contents

1	Fou	andations of the Reals	2
	1.1	The Field Axioms	2
	1.2	The Order Axioms	2
	1.3	The Completeness Axiom	2
	1.4	Consequences of Completeness	3
		1.4.1 Completeness does not hold for \mathbf{Q}	3
		1.4.2 The Archimidean Property of the Reals	3
		1.4.3 \mathbf{Q} and \mathbf{I} are dense in \mathbf{R}	3
		1.4.4 Q is countable, R and I are uncountable	3
2	Seq	uences	4
	2.1	Definitions	4
	2.2	Convergence	4
		2.2.1 Any convergent sequence is bounded	4
		2.2.2 A bounded, monotone sequence converges	4
		2.2.3 The Squeeze Theorem	5
	2.3	The Bolzano–Weierstrass Theorem	5
	2.4	Cauchy Sequences	6
		2.4.1 A sequence converges if and only if it is Cauchy	6
${f T}$	odc	o list	
$\mathbf{D}_{\mathbf{v}}$	romo t	he Archimidean property of the Reals	3
		*	3
		hat Q and I are dense in R	
		hat $\mathbf Q$ is countable, $\mathbf R$ and $\mathbf I$ are uncountable	3
		subsequences	4
		lim sup and lim inf	4
		he Squeeze Theorem	5
M	ake ti	he alternate ending of BW more rigorous	6

1 Foundations of the Reals

1.1 The Field Axioms

The field axioms are a set of axioms that we accept as the foundation of the reals.

 $\forall a, b, c \in \mathbf{R}$:

- F1 Commutativity a + b = b + a
- **F2** Associativity a + (b + c) = (a + b) + c
- **F3** Distributive a(b+c) = ab + ac
- **F4 Identity** $\exists 0, 1$ such that $0 + a = a, 1 \cdot a = a$
- **F5** Additive Inverse $\exists -a \text{ such that } a + (-a) = 0$
- **F5** Multiplicative Inverse $\exists 1/a$ such that a(1/a) = 1

1.2 The Order Axioms

O1 Positive Numbers \exists a set $P \subset \mathbf{R}$ such that for all $a \in \mathbf{R}$ either $a \in P$, $-a \in P$, or a = 0.

O2 $a, b \in P$ implies that $a \cdot b$ and a + b are in P

Thus we define a > b as $a - b \in P$ and similarly a < b is defined as $b - a \in P$.

F and O axioms hold for the rationals, \mathbf{Q} , but O does not hold for the complex numbers.

1.3 The Completeness Axiom

Completeness distinguishes the Reals from the Rationals. Intuitively, there are 'holes' in the rationals at irrational numbers like $\sqrt{2}$. To discuss completeness, we need to introduce some definitions.

Consider a set S, such that $S \subset \mathbf{R}$.

- S is bounded above if $\exists a \in \mathbf{R}$ such that $x \leq a \ \forall x \in S$.
- S is bounded below if $\exists a \in \mathbf{R}$ such that $x \geq a \ \forall x \in S$.
- S is bounded if it is bounded above and below.

The Completeness Axiom If $S \subset \mathbf{R}$ is nonempty and bounded above then $\exists \ a \in \mathbf{R}$ that is a least upper bound or supremum. Specifically, (i) $x \leq a \ \forall x \in S$ and (ii) $a \leq \beta \ \forall$ upper bounds, β , of S.

Supremums are unique by (ii) because if a_1, a_2 are upper bounds and $a_1 \le a_2$ and $a_2 \le a_1$ then $a_1 = a_2$. Thus it makes sense to talk about "the" supremum.

There is also an "infimum" or greatest lower bound that follows from repeating these arguments with -S.

Note: It is important to note that the maximum and supremum of a set are not necessarily the same.

The maximum is defined as $a \in S$ such that $x \leq a$ for all $x \in S$. The supremum is defined as a such that $x \leq a$ for all $x \in S$ and (ii)

The supremum does not have to be in S. In fact the max of S exists if and only if the supremum of S is a member of S, in which case the max of S is equal to the supremum of S. Conversely, if $\sup S \notin S$ then the max of S does not exist.

For example take S = (0,1). Then $\sup S = 1$ but $\sup S \notin S$, so $\max S$ does not exist. The sequence 1 - 1/n for $n \in \mathbb{N}$ comes arbitrarily close to the max of S but never reaches it.

However, any *finite*, nonempty set has a maximum.

1.4 Consequences of Completeness

1.4.1 Completeness does not hold for Q

Consider the set $\{x \mid x^2 < 2\}$. The number $\sqrt{2}$ is not a member of \mathbf{Q} so the supremum of this set cannot be a member of the set. Thus \mathbf{Q} is not complete, i.e. there are 'holes' at the irrational numbers.

1.4.2 The Archimidean Property of the Reals

Prove the Archimidean property of the Reals

1.4.3 Q and I are dense in R

Prove that \mathbf{Q} and \mathbf{I} are dense in \mathbf{R}

1.4.4 Q is countable, R and I are uncountable

Prove that **Q** is countable, **R** and **I** are uncountable

2 Sequences

2.1 Definitions

A sequence is a mapping from $\mathbb{N} \to \mathbb{R}$ and is generally written as $\{a_n\}$.

A sequence is increasing if $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$

A sequence is decreasing if $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$

A sequences is *strictly* increasing or decreasing if equality never holds.

A sequence is *monotone* if it is increasing or decreasing.

Define subsequences

2.2 Convergence

A sequence, $\{a_n\}$ is convergent if $\exists \ \ell \in \mathbf{R}$ such that $\forall \epsilon > 0 \ \exists N$ such that $|a_n - \ell| < \epsilon \ \forall n \geq N$. ℓ is called the limit of $\{a_n\}$.

In words, this means that a sequence is convergent if for any positive number epsilon we can pick a point in the sequence sufficiently far out such that all elements of the sequence after that point are within ϵ of ℓ . ϵ could be any positive number, but the idea is that as ϵ becomes arbitrarily small, we can find points of the sequence that are arbitrarily close to ℓ .

In general, proofs of convergence will follow a challenge-response format where given an ϵ you construct an N such that the criterion holds.

Define \limsup and \liminf

2.2.1 Any convergent sequence is bounded

Theorem: Any convergent sequence is bounded.

Proof: Let $\{a_n\}$ be a convergent sequence with limit L. Then there exists an N such that for $n \geq N$, $|a_n - L| < \epsilon$, which implies $a_n < L + \epsilon$ for $n \geq N$. Because N is finite, we then know that $a_n \leq \max(a_1, a_2, \ldots, a_{N-1}, L + \epsilon)$ for some N and ϵ . Thus $\{a_n\}$ is bounded.

2.2.2 A bounded, monotone sequence converges

Theorem: A bounded, monotone sequence converges

Proof: Assume a sequence, $\{a_n\}$, is increasing (WLOG) and bounded, and let $\ell = \sup S$ where $S = \{a_n \mid n \in \mathbb{N}\}$ (i.e. the set of elements of the sequence). We claim that

 $\lim_{n\to\infty} a_n = \ell$, or equivalently that $\{a_n\}$ converges to the limit ℓ .

Let $\epsilon > 0$. Then it must be that $\ell - \epsilon$ is *not* and upper bound because ℓ is the supremum of S. Thus there exists $a_N \in S$ such that $a_N > \ell - \epsilon$. This implies that for all n > N, $a_n \ge a_N > \ell - \epsilon$.

On the other hand, because all a_n are members of S and ℓ is the supremum, $a_n < \ell + \epsilon$ for all $n \ge N$. Thus for $n \ge N$, $a_n > \ell - \epsilon$ and $a_n < \ell + \epsilon$, which implies that $|a_n - \ell| < \epsilon$. Therefore by the definition of convergence, the $\{a_n\}$ converges.

2.2.3 The Squeeze Theorem

Prove the Squeeze Theorem

2.3 The Bolzano-Weierstrass Theorem

The Bolzano-Weierstrass Theorem is of great importance to analysis and states that any bounded sequence has a convergent subsequence.

This is not immediately obvious because the sequence $a_n = (-1)^n$ is bounded but does not converge. However, if we take the subsequences of $n_i = 2n$ or $n_i = 2n - 1$ for $n \in \mathbb{N}$ then we have only the odd or even terms of $\{a_n\}$. Those subsequences consist of only 1 and -1, respectively, and are thus convergent. We will now make this intuition more formal.

Theorem: Any bounded sequence has a convergent subsequence.

Proof: Let $\{a_n\}$ be a bounded subsequence. Then there exists a $l, u \in \mathbf{R}$ such that $l \leq a_n \leq u$ for all $n \in \mathbf{N}$. Then we know that $a_n \in [l, u]$ for all positive n. Now consider the bisection of this interval into two, giving the intervals:

$$\left[l, \frac{l+u}{2}\right], \left[\frac{l+u}{2}, u\right]$$

Because there are infinitely many terms in $\{a_n\}$, one or both of these intervals must contain infinitely many terms of $\{a_n\}$. Pick one such interval and label it I_1 , with its endpoints labeled l_1 and u_1 .

Now repeat this process for I_1 , bisecting it into two closed intervals, picking one subinterval which contains infinitely many members of $\{a_n\}$, and labelling its endpoints l_2 and u_2 . Because there are infinitely many elements in $\{a_n\}$ it is possible to pick a sequence of closed intervals, I_n such that $I_1 \supset I_2 \supset I_3 \supset \cdots$ where the width of I_n is $\frac{u-l}{2^n}$. Additionally, each of these intervals contains infinitely many elements of $\{a_n\}$.

Now choose a positive integer n_1 such that $a_{n_1} \in I_1$. Because I_2 contains infinitely many elements of $\{a_n\}$, there exists a positive integer n_2 such that $n_2 > n_1$ and $a_{n_2} \in I_2$. Continue picking elements of $\{a_n\}$ in this way to construct a subsequence, $\{a_{n_i}\}$, such that $a_{n_i} \in I_i$ for all n_i . We will show that $\{a_{n_i}\}$ converges.

Ending 1 We know that there must be one element, x in all I_n . Let $\epsilon > 0$ and pick an interval, I_N such that the width of I_N , $\frac{u-l}{2^N}$ is less than epsilon, and pick an element, a_{n_K} such that $a_{n_K} \in I_N$. x must be in this interval, and by construction $a_{n_i} \in I_N$ for all $n_i > n_K$. Thus $|a_{n_i} - x| < \epsilon$ for $n_i > n_K$ and $\{a_{n_i}\}$ converges to x.

Ending 2 Consider the sequence of upper bounds on these intervals $u_1, u_2, ...$, and note that they are bounded and decreasing and therefore converge to some limit, U. Similarly, the lower bounds converge to some limit L. Because the width of interval n is $\frac{u-l}{2^n}$, $\lim_{n\to\infty} u_n - l_n = 0$. Finally we know that $u_i \geq a_{n_i} \geq l_i$ for all i, so by the squeeze theorem $\{a_{n_i}\}$ converges.

Make the alternate ending of BW more rigorous

2.4 Cauchy Sequences

A sequence $\{a_n\}$ is called Cauchy if for all $\epsilon > 0$ there exists a positive integer N such that $|a_n - a_m| < \epsilon$ for all $n, m \ge N$. Intuitively, this says a sequence is Cauchy if it has a tail where the elements are arbitrarily close together. Note that this is not a statement about consecutive elements in $\{a_n\}$, it is a statement about all elements past N.

There are various convergence results related to Cauchy sequences.

2.4.1 A sequence converges if and only if it is Cauchy

Theorem: A sequence converges if and only if it is Cauchy.

Proof: (\Longrightarrow) Assume that $\{a_n\}$ is a convergent series with limit L. Let $\epsilon > 0$ and choose N such that $|a_n - L| < \epsilon/2$ for all $n \ge N$.

Now choose $m, n \ge N$. By the triangle inequality we know that $|a_n - a_m| \le |a_n - L| + |L - a_m| \le \epsilon/2 + \epsilon/2 = \epsilon$. Thus for all $n, m \ge N$, $|a_n - a_m| < \epsilon$, and $\{a_n\}$ must be Cauchy.

(\iff) Assume that $\{a_n\}$ is a Cauchy sequence. We will show that $\{a_n\}$ is convergent in three steps: (1) Show that any Cauchy sequence is bounded. (2) Use Bolzano-Weierstrass to obtain a convergent subsequence. (3) Show that (2) implies that the whole sequence converges.

Take $\epsilon = 1$. Because $\{a_n\}$ is Cauchy we know that there exists an N such that $|a_n - a_m| < 1$ for all $n, m \ge N$. This implies for all $n \ge N$:

$$|a_n - a_N| < 1$$

 $||a_n| - |a_N|| < 1$
 $|a_n| - |a_N| < 1$
 $|a_n| < |a_N| + 1$

Because N is finite, there are finitely many elements of $\{a_n\}$ where n < N, so we know that for all n (not just $n \ge N$), $|a_n| \le \max(|a_1|, |a_2|, \dots, |a_N| + 1)$. Thus $\{a_n\}$ is bounded.

Because $\{a_n\}$ is bounded we know by the Bolzano-Weierstrass theorem that there must exist a convergent subsequence of $\{a_n\}$, $\{a_{n_i}\}$ with limit L.

Take $\epsilon > 0$. Then we know that there exists an N such that $|a_{n_i} - L| < \epsilon/2$ for all $n_i \geq N$. Additionally, because $\{a_n\}$ is Cauchy we know that there exists an N' such that $|a_n - a_m| < \epsilon/2$ for all $n, m \geq N'$. Then, by the triangle inequality we know that $|a_n - L| \leq |a_n - a_{n_i}| + |a_{n_i} - L| < \epsilon/2 + \epsilon/2 = \epsilon$. Thus $\{a_n\}$ must converge, and its limit must be L.