CS310 ASSIGNMENT 2 SEMESTER 1, 2025

Adrian Obadiah	S11198024
Akash Mishra	S11219345
Ravinesh Narayan	S11197324
Shamal Prasad	S11219545
Isaiah Narayan	S11175115

Table of Contents

Topology Design	1
Subnet Calculation using VSLM	2
Router Configuration	9
DHCP Pool Configuration	11
Routing Protocol (RIP) Configuration	12
Access Control List (ACL) Configuration	13
Checklist Part 1 & 2	14
Checklist Part 3	21
Additional Configurations	25
POS Users Email Configuration	25
CCTV Monitoring System Configuration	28
Internet/Web Configuration	30
Appendix	32
Running-config for Suva Router	32
Running-config for Savusavu Router	35
Mark Allocation	39

<u>Topology Design</u>

Subnet Calculation Using VSLM

Step1:

172.16.20.0/23

172 – First octet is between 128 – 191, thus the address is class B

/23 – 255.255.254.0 (decimal)

/23 – 11111111.11111111.1111110.00000000 (binary)

Step 2:

Default subnet mask for class B is 255.255.0.0

Default subnet mask for class B in binary is: 11111111.1111111.00000000.00000000

Step 3:

Identify the largest network and sort in descending order.

Site	Total Hosts
Customer WIFI	250
CCTV Services	15
Point of Sales Machines	10

To accommodate for 250 IP Address, we use the formula

Usable address = $2^{H} - 2$

$$2^{H} - 2 \ge 250$$

$$H = 8$$
, since $2^8 - 2 = 254$

We require 250 addresses and 254 is supplied

Step 4:

Identify the new subnet mask

Default subnet mask: 11111111.11111111.00000000.00000000

Reserve 8 bits from right and turn the remaining bits into 1s

New subnet in decimal: 255.255.250.0

New subnet mask in CIDR: /24.

Step 5:

Calculate the network address

256 – last octet of change

256 - 255 = 1

Step 6:

Network listing

Network Address	Subnet Mask	Usable IP Address	Broadcast IP Address
172.16.20.0/24	255.255.255.0	172.16.20.1 – 172.16.20.254	172.16.20.255
172.16.21.0/24	255.255.255.0	172.16.21.0 – 172.16.21.254	172.16.21.255
172.16.22.0/24	255.255.255.0	172.16.22.0 – 172.16.22.254	172.16.22.255

Step 7:

Thus, the first network 172.16.20.0/24 can be allocated to Customer Wi-Fi.

Step 8:

Consider the 2nd largest network.

The 2nd largest network is CCTV Services with 15 IP address.

172.16.21.0/24

Step 9:

Default subnet 255.255.255.0

Default subnet mask in binary is: 11111111.1111111.1111111.00000000

Step 10:

To accommodate for 15 IP Address, we use the formula

Usable address = $2^{H} - 2$

$$2^{H} - 2 \ge 15$$

H = 5, since $2^5 - 2 = 30$

We require 15 addresses and 30 is supplied

Step 11:

Identify the new subnet mask

Default subnet mask: 11111111.11111111.11111111.00000000

Reserve 5 bits from right and turn the remaining bits into 1s

New subnet Mask is: 111111111.11111111.11111111.11100000

New subnet in decimal: 255.255.255.224

New subnet mask in CIDR: /27.

Step 12:

Calculate the network address

256 – last octet of change

256 – 224 = 32

Step 13:

Network listing

Network Address	Subnet Mask	Usable IP Address	Broadcast IP Address
172.16.21.0/27	255.255.255.224	172.16.21.1 – 172.16.21.30	172.16.21.31
172.16.21.32/27	255.255.255.224	172.16.21.33 – 172.16.21.62	172.16.21.63
172.16.21.64/27	255.255.255.224	172.16.21.65 – 172.16.21.94	172.16.21.95

Step 14:

Thus, the first network 172.16.21.0/27 can be allocated to CCTV Services.

Step 15:

Consider the 3rd largest network.

The 3rd largest network is Point of Sales Machines with 10 IP address.

172.16.21.32/27

Step 16:

Default subnet 255.255.255.224

Default subnet mask in binary is: 11111111.1111111.1111111.11100000

Step 17:

To accommodate for 10 IP Address, we use the formula

Usable address = $2^{H} - 2$

$$2^{H} - 2 \ge 10$$

$$H = 4$$
, since $2^4 - 2 = 14$

We require 10 addresses and 14 is supplied

Step 18:

Identify the new subnet mask

Default subnet mask: 11111111.1111111.1111111.11100000

Reserve 4 bits from right and turn the remaining bits into 1s

New subnet Mask is: 11111111.11111111.11111111.11110000

New subnet in decimal: 255.255.255.240

New subnet mask in CIDR: /28.

Step 19:

Calculate the network address

256 – last octet of change

256 – 240 = 16

Step 20:

Table 1 - Network listing

Network Address	Subnet Mask	Usable IP Address	Broadcast IP Address
172.16.21.32/28	255.255.255.240	172.16.21.32 – 172.16.21.46	172.16.21.47
172.16.21.48/28	255.255.255.240	172.16.21.49 – 172.16.21.62	172.16.21.63
172.16.21.64/28	255.255.255.240	172.16.21.65 – 172.16.21.78	172.16.21.79

Step 21:

Thus, the first network 172.16.21.32/28 can be allocated to Point of Sales Machines.

Table 2 – Subnet Allocation using VLSM

	Network	Usable IP Range	Subnet Mask	Broadcast IP Address
Customer WIFI	172.16.20.0/24	172.16.20.1 – 172.16.20.254	255.255.255.0	172.16.20.255
CCTV Services	172.16.21.0/27	172.16.21.1 – 172.16.21.30	255.255.255.224	172.16.21.31
Point of Sales Machines	172.16.21.32/28	172.16.21.33 – 172.16.21.46	255.255.255.240	172.16.21.47

Table 3 - IP Address Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
Email Server	Fa0/0	172.16.200.100	255.255.255.0	172.16.200.254
POS Server	Fa0/0	172.16.200.105	255.255.255.0	172.16.200.254
CCTV Server	Fa0/0	172.16.200.101	255.255.255.0	172.16.200.254
Web Server	Fa0/0	172.16.200.102	255.255.255.0	172.16.200.254
Suva Router	G0/0	172.16.200.254	255.255.255.0	
	S0/0/0	172.16.240.1	255.255.255.252	
Savusavu Router	G0/0	172.16.21.46	255.255.255.240	
	G0/1	172.16.20.0	255.255.255.0	
	G0/2	172.16.21.30	255.255.255.224	
	S0/0/0	172.16.240.2	255.255.255.252	
POS PC1	NIC	172.16.21.33	255.255.255.240	172.16.21.46
POS PC2	NIC	172.16.21.34	255.255.255.240	172.16.21.46
POS PC3	NIC	172.16.21.35	255.255.255.240	172.16.21.46
Customer Smartphone1	Wireless	DHCP	255.255.255.0	172.16.20.254
Customer Smartphone2	Wireless	DHCP	255.255.255.0	172.16.20.254
Customer Tablet1	Wireless	DHCP	255.255.255.0	172.16.20.254
Customer Tablet2	Wireless	DHCP	255.255.255.0	172.16.20.254
CCTV_Laptop	NIC	172.16.21.1	255.255.255.224	172.16.21.30
Camera	NIC	172.16.21.2	255.255.255.224	172.16.21.30
Motion Detector	NIC	172.16.21.4	255.255.255.224	172.16.21.30
Siren Alarm	NIC	172.16.21.3	255.255.255.224	172.16.21.30

Part 1: Router Configuration

Suva

Router>enable

Router#configure terminal

Router(config)#hostname Suva_Router

Suva_Router(config)#no ip domain-lookup

Suva_Router(config-router)#enable secret PASSWORD

Suva_Router(config-router)#banner motd "Authorized Personnel Only"

Suva_Router(config-router)#service password-encryption

Suva_Router(config-router)#line console 0

Suva_Router(config-line)#password PASSWORD

Suva_Router(config-line)#login

Suva_Router(config-line)#logging synchronous

Suva_Router(config-line)#exec-timeout 0 0

Suva_Router(config-line)#exit

Suva_Router(config)#do write

Suva_Router(config)#interface g0/1

Suva_Router(config-if)#description TO SERVER

Suva_Router(config-if)#ip address 172.16.200.254 255.255.255.0

Suva_Router(config-if)#no shutdown

Suva_Router(config)#exit

Suva_Router(config)#interface s0/0/0

Suva_Router(config-if)#description TO SAVUSAVU ROUTER

Suva_Router(config-if)#ip address 172.16.240.1 255.255.255.252

Suva_Router(config-if)#no shutdown

Suva_Router(config)#exit

Suva_Router(config)#do write

Savusavu

Router>enable

Router#configure terminal

Router(config)#hostname Savusavu_Router

Savusavu_Router (config)#no ip domain-lookup

Savusavu_Router (config-router)#enable secret PASSWORD

Savusavu_Router (config-router)#banner motd "Authorized Personnel Only"

Savusavu_Router (config-router)#service password-encryption

Savusavu_Router (config-router)#line console 0

Savusavu_Router (config-line)#password PASSWORD

Savusavu_Router (config-line)#login

Savusavu_Router (config-line)#logging synchronous

Savusavu_Router (config-line)#exec-timeout 0 0

Savusavu_Router (config-line)#exit

Savusavu_Router (config)#do write

Savusavu_Router (config)#interface g0/0

Savusavu_Router (config-if)#description To POS_LAN

Savusavu_Router (config-if)#ip address 172.16.21.46 255.255.255.240

Savusavu_Router (config-if)#no shutdown

Savusavu_Router (config)#exit

Savusavu_Router (config)#interface g0/1

Savusavu Router (config-if)#description To Cust WIFI

Savusavu Router (config-if)#ip address 172.16.20.254 255.255.25.0

Savusavu_Router (config-if)#no shutdown

Savusavu_Router (config)#exit

Savusavu_Router (config)#interface g0/2

Savusavu_Router (config-if)#description To CCTV_LAN

Savusavu_Router (config-if)#ip address 172.16.21.30 255.255.255.224

Savusavu_Router (config-if)#no shutdown

Savusavu Router (config)#exit

Savusavu_Router (config)#interface s0/0/0
Savusavu_Router (config-if)#description To SUVA ROUTER
Savusavu_Router (config-if)#ip address 172.16.240.2 255.255.255.252
Savusavu_Router (config-if)#no shutdown
Savusavu_Router (config)#exit
Savusavu_Router (config)#do write

Part 2: DHCP Pool Configuration

Savusavu_Router > enable Savusavu_Router #configure terminal

Savusavu_Router (config)#ip dhcp pool Customer_WiFi Savusavu_Router (dhcp-config)# network 172.16.20.0 255.255.255.0 Savusavu_Router (dhcp-config)# default-router 172.16.20.254 Savusavu_Router (dhcp-config)# dns-server 172.16.200.102 Savusavu_Router (dhcp-config)#exit

Savusavu_Router (config)# ip dhcp excluded-address 172.16.20.250 172.16.20.254 Savusavu_Router (config)# do write

```
ip dhcp excluded-address 172.16.20.250 172.16.20.254
!
ip dhcp pool WiFi
  network 172.16.20.0 255.255.255.0
  default-router 172.16.20.254
  dns-server 172.16.200.102
  domain-name wr
```

Table 4 – DHCP Pool Summary

Department	DHCP Pool Range	Subnet Mask	Default Gateway
Customer WIFI	172.16.20.1 –172.16.20.249	255.255.255.0	172.16.0.254

Part 3: Routing Protocol (RIP) Configuration

Suva_Router > enable

Suva_Router #configure terminal

Suva_Router (config)#router rip

Suva_Router (config-router)# version 2

Suva_Router (config-router)# no auto-summary

Suva_Router (config-router)# network 172.16.200.0

Suva_Router (config-router)# network 172.16.240.0

Suva_Router (config-router)#exit

Suva_Router (config)# do write

Savusavu_Router > enable

Savusavu_Router #configure terminal

Savusavu_Router (config)#router rip

Savusavu_Router (config-router)# version 2

Savusavu_Router (config-router)# no auto-summary

Savusavu_Router (config-router)# network 172.16.20.0

Savusavu_Router (config-router)# network 172.16.21.32

Savusavu_Router (config-router)# network 172.16.21.0

Savusavu_Router (config-router)# network 172.16.240.0

Savusavu_Router (config-router)#exit

Savusavu_Router (config)# do write

Part 4: Access Control List (ACL) Configuration

Savusavu_Router #config terminal
Savusavu_Router (config)#ip access-list extended Customer_WiFi
Savusavu_Router(config-ext-nacl)#deny icmp 172.16.20.0 0.0.0.255 any
Savusavu_Router(config-ext-nacl)#permit udp any any eq 67
Savusavu_Router(config-ext-nacl)#permit tcp any host 172.16.200.102 eq www
Savusavu_Router(config-ext-nacl)#permit ip any any
Savusavu_Router(config-ext-nacl)#exit
Savusavu_Router(config-ext-nacl)#do write

Savusavu_Router (config)#interface GigabitEthernet0/1
Savusavu_Router (config-subif)#ip access-group Customer_WiFi in
Savusavu_Router (config-subif)#exit

```
ip access-list extended Customer_WiFi
deny icmp 172.16.20.0 0.0.0.255 any
permit udp any any eq bootps
permit tcp any host 172.16.200.102 eq www
permit ip any any
```

```
interface GigabitEthernet0/1
  description TO CUST_WIFI
  ip address 172.16.20.254 255.255.255.0
  ip access-group Customer_WiFi in
  duplex auto
  speed auto
```

Check List Part 1 & 2

Suva Router able to ping Email Server and POS Server.

Savusavu Router able to ping Savusavu POS PC

Savusavu WIFI Device able to ping Savusavu router

```
Savusavu_Router#ping 172.16.20.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.20.1, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 17/21/25 ms
Savusavu_Router#ping 172.16.20.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.20.2, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 13/18/24 ms
Savusavu_Router#ping 172.16.20.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.20.3, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 21/23/27 ms
Savusavu_Router#ping 172.16.20.4
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.20.4, timeout is 2 seconds:
Success rate is 100 percent (5/5), round-trip min/avg/max = 19/27/40 ms
Savusavu Router#
```

Fire	Last Status	Source	Destination	Type	Color
•	Successful	Customer_Smartphone1	Savusavu Router	ICMP	
•	Successful	Customer_Smartphone2	Savusavu Router	ICMP	
•	Successful	Customer_Tablet1	Savusavu Router	ICMP	
•	Successful	Customer_Tablet2	Savusavu Router	ICMP	

Savusavu CCTV Laptop able to ping Savusavu Router

Savusavu POS PC able to ping Email Server and POS Server

```
C:\>ping 172.16.200.100
Pinging 172.16.200.100 with 32 bytes of data:
Reply from 172.16.200.100: bytes=32 time=6ms TTL=128
Reply from 172.16.200.100: bytes=32 time=11ms TTL=128
Reply from 172.16.200.100: bytes=32 time<1ms TTL=128
Reply from 172.16.200.100: bytes=32 time=15ms TTL=128
Ping statistics for 172.16.200.100:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 15ms, Average = 8ms
C:\>ping 172.16.200.105
Pinging 172.16.200.105 with 32 bytes of data:
Reply from 172.16.200.105: bytes=32 time<1ms TTL=128
Ping statistics for 172.16.200.105:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
```


Savusavu WIFI Device able to ping Email Server and POS Server

```
C:\>ping 172.16.20.2
Pinging 172.16.20.2 with 32 bytes of data:
Reply from 172.16.20.2: bytes=32 time=5ms TTL=128 Reply from 172.16.20.2: bytes=32 time=19ms TTL=128
Reply from 172.16.20.2: bytes=32 time=6ms TTL=128
Reply from 172.16.20.2: bytes=32 time=6ms TTL=128
Ping statistics for 172.16.20.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 19ms, Average = 7ms
C:\>ping 172.16.20.3
Pinging 172.16.20.3 with 32 bytes of data:
Reply from 172.16.20.3: bytes=32 time=32ms TTL=128 Reply from 172.16.20.3: bytes=32 time=28ms TTL=128 Reply from 172.16.20.3: bytes=32 time=29ms TTL=128 Reply from 172.16.20.3: bytes=32 time=24ms TTL=128
Ping statistics for 172.16.20.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 24ms, Maximum = 32ms, Average = 28ms
C:\>ping 172.16.20.4
Pinging 172.16.20.4 with 32 bytes of data:
Reply from 172.16.20.4: bytes=32 time=59ms TTL=128
Reply from 172.16.20.4: bytes=32 time=34ms TTL=128 Reply from 172.16.20.4: bytes=32 time=34ms TTL=128
Reply from 172.16.20.4: bytes=32 time=22ms TTL=128
Ping statistics for 172.16.20.4:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 22ms, Maximum = 59ms, Average = 38ms
C:\>
```


Savusavu CCTV Laptop able to ping Email Server and POS Server

Tablet and Smart Phone able to ping each other

```
C:\>ping 172.16.20.1
Pinging 172.16.20.1 with 32 bytes of data:
Reply from 172.16.20.1: bytes=32 time=51ms TTL=128
Reply from 172.16.20.1: bytes=32 time=20ms TTL=128
Reply from 172.16.20.1: bytes=32 time=21ms TTL=128
Reply from 172.16.20.1: bytes=32 time=40ms TTL=128
Ping statistics for 172.16.20.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 20ms, Maximum = 51ms, Average = 33ms
C:\>ping 172.16.20.2
Pinging 172.16.20.2 with 32 bytes of data:
Reply from 172.16.20.2: bytes=32 time=38ms TTL=128
Reply from 172.16.20.2: bytes=32 time=26ms TTL=128
Reply from 172.16.20.2: bytes=32 time=21ms TTL=128
Reply from 172.16.20.2: bytes=32 time=37ms TTL=128
Ping statistics for 172.16.20.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 21ms, Maximum = 38ms, Average = 30ms
C:\>ping 172.16.20.3
Pinging 172.16.20.3 with 32 bytes of data:
Reply from 172.16.20.3: bytes=32 time=36ms TTL=128
Reply from 172.16.20.3: bytes=32 time=23ms TTL=128
Reply from 172.16.20.3: bytes=32 time=20ms TTL=128
Reply from 172.16.20.3: bytes=32 time=40ms TTL=128
Ping statistics for 172.16.20.3:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 20ms, Maximum = 40ms, Average = 29ms
C:\>
PDU List Window
Fire
        Last Status
                       Source
                                                      Destination
                                                                            Туре
                                                                                    Color
                                                                                           Tim
           Successful
                              Customer_Smartphone1
                                                          Customer_Tablet1
                                                                              ICMP
           Successful
                              Customer_Smartphone1
                                                          Customer_Tablet2
                                                                              ICMP
           Successful
                              Customer Smartphone2
                                                          Customer Tablet1
                                                                              ICMP
                                                          Customer_Tablet2
           Successful
                              Customer_Smartphone2
                                                                              ICMP
```

> Tablet and Smart Phone able to ping POS PC and CCTV Laptop

```
C:\>ping 172.16.21.33
Pinging 172.16.21.33 with 32 bytes of data:
Reply from 172.16.21.33: bytes=32 time=29ms TTL=127
Reply from 172.16.21.33: bytes=32 time=15ms TTL=127
Reply from 172.16.21.33: bytes=32 time=40ms TTL=127
Reply from 172.16.21.33: bytes=32 time=11ms TTL=127
Ping statistics for 172.16.21.33:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 11ms, Maximum = 40ms, Average = 23ms
C:\>ping 172.16.21.1
Pinging 172.16.21.1 with 32 bytes of data:
Reply from 172.16.21.1: bytes=32 time=20ms TTL=127
Reply from 172.16.21.1: bytes=32 time=23ms TTL=127
Reply from 172.16.21.1: bytes=32 time=16ms TTL=127
Reply from 172.16.21.1: bytes=32 time=24ms TTL=127
Ping statistics for 172.16.21.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 16ms, Maximum = 24ms, Average = 20ms
```

ire	Last Status	Source	Destination	Type	Color	Tim
	Successful	Customer_Smartphone1	POS PC1	ICMP		
•	Successful	Customer_Smartphone1	POS PC2	ICMP		
•	Successful	Customer_Smartphone1	POS PC3	ICMP		
•	Successful	Customer_Smartphone1	CCTV_Laptop	ICMP		
•	Successful	Customer_Smartphone2	POS PC1	ICMP		
•	Successful	Customer_Smartphone2	POS PC2	ICMP		
•	Successful	Customer_Smartphone2	POS PC3	ICMP		
•	Successful	Customer_Smartphone2	CCTV_Laptop	ICMP		
•	Successful	Customer_Tablet1	POS PC1	ICMP		
•	Successful	Customer_Tablet1	POS PC2	ICMP		
•	Successful	Customer_Tablet1	POS PC3	ICMP		
•	Successful	Customer_Tablet1	CCTV_Laptop	ICMP		
•	Successful	Customer_Tablet2	POS PC1	ICMP		
•	Successful	Customer_Tablet2	POS PC2	ICMP		
•	Successful	Customer_Tablet2	POS PC3	ICMP		
	Successful	Customer_Tablet2	CCTV_Laptop	ICMP		

Check List Part 3

Savusavu WIFI not able to ping Email Server and POS Server after ACL was applied.

```
C:\>ping 172.16.200.100
Pinging 172.16.200.100 with 32 bytes of data:
Reply from 172.16.20.254: Destination host unreachable.
Ping statistics for 172.16.200.100:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 172.16.200.105
Pinging 172.16.200.105 with 32 bytes of data:
Reply from 172.16.20.254: Destination host unreachable.
Ping statistics for 172.16.200.105:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>
 PDU List Window
 Fire
         Last Status
                         Source
                                                         Destination
                                                                                                 Time
                                                                                 Туре
                                                                                        Color
              Failed
                                Customer_Smartphone1
                                                               Email Server
                                                                                  ICMP
              Failed
                                Customer_Smartphone1
                                                                POS Server
                                                                                  ICMP
              Failed
                                Customer_Smartphone2
                                                               Email Server
                                                                                  ICMP
              Failed
                                Customer_Smartphone2
                                                               POS Server
                                                                                  ICMP
              Failed
                                  Customer Tablet1
                                                               Email Server
                                                                                  ICMP
              Failed
                                  Customer_Tablet1
                                                               POS Server
                                                                                  ICMP
              Failed
                                  Customer_Tablet2
                                                               Email Server
                                                                                  ICMP
              Failed
                                  Customer_Tablet2
                                                                POS Server
                                                                                  ICMP
```

Tablet and Smart Phone able to ping each other

```
C:\>ping 172.16.20.1
Pinging 172.16.20.1 with 32 bytes of data:
Reply from 172.16.20.1: bytes=32 time=51ms TTL=128
Reply from 172.16.20.1: bytes=32 time=20ms TTL=128
Reply from 172.16.20.1: bytes=32 time=21ms TTL=128
Reply from 172.16.20.1: bytes=32 time=40ms TTL=128
Ping statistics for 172.16.20.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 20ms, Maximum = 51ms, Average = 33ms
C:\>ping 172.16.20.2
Pinging 172.16.20.2 with 32 bytes of data:
Reply from 172.16.20.2: bytes=32 time=38ms TTL=128
Reply from 172.16.20.2: bytes=32 time=26ms TTL=128
Reply from 172.16.20.2: bytes=32 time=21ms TTL=128
Reply from 172.16.20.2: bytes=32 time=37ms TTL=128
Ping statistics for 172.16.20.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 21ms, Maximum = 38ms, Average = 30ms
C:\>ping 172.16.20.3
Pinging 172.16.20.3 with 32 bytes of data:
Reply from 172.16.20.3: bytes=32 time=36ms TTL=128
Reply from 172.16.20.3: bytes=32 time=23ms TTL=128
Reply from 172.16.20.3: bytes=32 time=20ms TTL=128
Reply from 172.16.20.3: bytes=32 time=40ms TTL=128
Ping statistics for 172.16.20.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 20ms, Maximum = 40ms, Average = 29ms
C:\>
PDU List Window
Fire
        Last Status
                                                     Destination
                                                                                           Tim
                       Source
                                                                                   Color
                                                                            Type
                                                          Customer_Tablet1
           Successful
                             Customer_Smartphone1
                                                                              ICMP
           Successful
                             Customer_Smartphone1
                                                          Customer_Tablet2
                                                                              ICMP
                             Customer_Smartphone2
                                                          Customer_Tablet1
           Successful
                                                                              ICMP
           Successful
                             Customer_Smartphone2
                                                          Customer_Tablet2
                                                                              ICMP
```

Tablet and Smart Phone not able to ping POS PC and CCTV Laptop at Savusavu after ACL was applied.

```
C:\>ping 172.16.21.1
Pinging 172.16.21.1 with 32 bytes of data:
Reply from 172.16.20.254: Destination host unreachable.
Ping statistics for 172.16.21.1:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 172.16.21.33
Pinging 172.16.21.33 with 32 bytes of data:
Reply from 172.16.20.254: Destination host unreachable.
Ping statistics for 172.16.21.33:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 172.16.21.34
Pinging 172.16.21.34 with 32 bytes of data:
Reply from 172.16.20.254: Destination host unreachable.
Ping statistics for 172.16.21.34:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>
PDU List Window
Fire
        Last Status
                         Source
                                                        Destination
                                                                                Type
                                                                                        Color
                                                                                                Time
                               Customer Smartphone1
                                                                POS PC1
                                                                                  ICMP
              Failed
   Failed
                               Customer_Smartphone1
                                                                POS PC2
                                                                                  ICMP
              Failed
                               Customer_Smartphone1
                                                                POS PC3
                                                                                  ICMP
              Failed
                               Customer_Smartphone1
                                                              CCTV_Laptop
                                                                                  ICMP
                                                                POS PC1
              Failed
                               Customer Smartphone2
                                                                                  ICMP
              Failed
                               Customer Smartphone2
                                                                POS PC2
                                                                                  ICMP
              Failed
                               Customer_Smartphone2
                                                                POS PC3
                                                                                  ICMP
                               Customer_Smartphone2
                                                              CCTV_Laptop
                                                                                  ICMP
              Failed
              Failed
                                 Customer Tablet1
                                                                POS PC1
                                                                                  ICMP
                                 Customer_Tablet1
                                                                POS PC2
                                                                                  ICMP
              Failed
                                 Customer_Tablet1
              Failed
                                                                POS PC3
                                                                                  ICMP
              Failed
                                 Customer_Tablet1
                                                              CCTV_Laptop
                                                                                  ICMP
              Failed
                                 Customer_Tablet2
                                                               POS PC1
                                                                                  ICMP
                                 Customer Tablet2
                                                                POS PC2
              Failed
                                                                                  ICMP
              Failed
                                 Customer_Tablet2
                                                                POS PC3
                                                                                  ICMP
              Failed
                                 Customer_Tablet2
                                                              CCTV_Laptop
                                                                                  ICMP
```

Savusavu POS PC able to ping Email Server and POS Server

```
C:\>ping 172.16.200.100
Pinging 172.16.200.100 with 32 bytes of data:
Reply from 172.16.200.100: bytes=32 time=6ms TTL=128
Reply from 172.16.200.100: bytes=32 time=11ms TTL=128
Reply from 172.16.200.100: bytes=32 time<1ms TTL=128
Reply from 172.16.200.100: bytes=32 time=15ms TTL=128
Ping statistics for 172.16.200.100:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 15ms, Average = 8ms
C:\>ping 172.16.200.105
Pinging 172.16.200.105 with 32 bytes of data:
Reply from 172.16.200.105: bytes=32 time<1ms TTL=128
Ping statistics for 172.16.200.105:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>
PDU List Window
Fire
        Last Status
                                                                                              Tit
                        Source
                                                       Destination
                                                                                      Color
                                                                              Type
                                                                                ICMP
            Successful
                                    POS PC1
                                                             Email Server
            Successful
                                    POS PC2
                                                             Email Server
                                                                                ICMP
            Successful
                                    POS PC3
                                                             Email Server
                                                                                ICMP
                                    POS PC1
            Successful
                                                              POS Server
                                                                                ICMP
            Successful
                                    POS PC2
                                                              POS Server
                                                                                ICMP
            Successful
                                    POS PC3
                                                             POS Server
                                                                                ICMP
```

Additional Configurations

POS Users Email Configuration

> Setting up email clients on each POS PC

➤ User1 on POS PC1 sends a message to User2 on POS PC2

> POS PC2 opens the mail browser and clicks "Receive" to download email from the POP mail server 172.16.200.100. Message is received and displayed.

User2 on POS PC2 replies to User1 email

User1 on POS PC1, clicks on "Receive" to view the response from POS User2

CCTV Monitoring System Configuration

Launch IoT Monitor of the CCTV Server

Input the IoT Server IP (172.16.200.101) along with the default login credentials to log in.

> Once logged in, all registered IoT devices (CCTV, Motion detector, Alarm) will be displayed.

The system detects and displays 3 active devices as shown below. Initially when all devices are ON, the camera feed shows a blank image. Motion detection and alarm are not triggered indicated by the red status icons.

The system is activated when motion is detected. The CCTV feed updated to show a person entering a room, the motion detector turns green and alarm is triggered also indicated by a green status icon.

Internet / Web Configuration

> Click on the Web Brower on any POS PC

Enter the <u>URL:www.CS310.com</u> and click Go to load the webpage.

The browser will attempt to access the webpage (<u>www.CS310.com</u>) from the web server 172.16.200.102. if the DNS and HTTP configuration on the server are correct, the website will load successfully as shown below.

The same URL is entered on a customer smartphone. The page loads successfully.

This simulation indicates that the website is accessible from any device, wired (PC) or wireless (customers smartphone or tablet) on any network whether from Suva or Savusavu.

Appendix

```
Running-config for Suva Router
!
version 15.1
no service timestamps log datetime msec
no service timestamps debug datetime msec
service password-encryption
hostname Suva_Router
!
enable secret 5 $1$mERr$cP1uxB/ASHbnPQTLzT8H10
!
no ip cef
no ipv6 cef
!
license udi pid CISCO2911/K9 sn FTX1524241U-
!
no ip domain-lookup
!
spanning-tree mode pvst
interface GigabitEthernet0/0
no ip address
duplex auto
speed auto
shutdown
```

```
interface GigabitEthernet0/1
description TO SERVERS
ip address 172.16.200.254 255.255.255.0
duplex auto
speed auto
interface GigabitEthernet0/2
no ip address
duplex auto
speed auto
shutdown
interface Serial0/0/0
description TO SAVUSAVU ROUTER
ip address 172.16.240.1 255.255.255.252
clock rate 2000000
interface Serial0/0/1
no ip address
clock rate 2000000
shutdown
!
interface Vlan1
no ip address
shutdown
router rip
```

```
version 2
network 172.16.0.0
no auto-summary
!
ip classless
!
ip flow-export version 9
banner motd "Authorized Personnel Only"
!
line con 0
password 7 08116D7D3A2E2A2536
logging synchronous
login
!
line aux 0
line vty 0 4
login
!
end
```

```
Running-config for Savusavu Router
version 15.1
no service timestamps log datetime msec
no service timestamps debug datetime msec
service password-encryption
hostname Savusavu_Router
!
enable secret 5 $1$mERr$cP1uxB/ASHbnPQTLzT8H10
ip dhcp excluded-address 172.16.20.250 172.16.20.254
!
ip dhcp pool WiFi
network 172.16.20.0 255.255.255.0
default-router 172.16.20.254
dns-server 172.16.200.102
domain-name wr
!
no ip cef
no ipv6 cef
license udi pid CISCO2911/K9 sn FTX15242HHP-
!
no ip domain-lookup
!
```

```
spanning-tree mode pvst
interface GigabitEthernet0/0
description TO POS_LAN
ip address 172.16.21.46 255.255.255.240
duplex auto
speed auto
interface GigabitEthernet0/1
description TO CUST_WIFI
ip address 172.16.20.254 255.255.255.0
ip access-group Customer_WiFi in
duplex auto
speed auto
interface GigabitEthernet0/2
description TO CCTV_LAN
ip address 172.16.21.30 255.255.255.224
duplex auto
speed auto
interface Serial0/0/0
description TO SUVA ROUTER
ip address 172.16.240.2 255.255.255.252
```

```
interface Serial0/0/1
no ip address
clock rate 2000000
!
interface Vlan1
no ip address
!
router rip
version 2
network 172.16.0.0
no auto-summary
ip classless
ip flow-export version 9
ip access-list extended Customer_WiFi
deny icmp 172.16.20.0 0.0.0.255 any
permit udp any any eq bootps
permit tcp any host 172.16.200.102 eq www
permit ip any any
banner motd "Authorize Personnel Only"
!
line con 0
password 7 08116D7D3A2E2A2536
```

logging synchronous login ! line aux 0 ! line vty 0 4 login ! end

Mark Allocation Sheet

Student Name	Contribution	Justification	Signature
Adrian Obadiah	100%	Write-up	Aobadiah
Akash Mishra	100%	Write-up	Amishra
Ravinesh Narayan	100%	Packet Tracer Config	Rnarayan
Shamal Prasad	100%	Packet Tracer Config	Sprasad
Isaiah Narayan	100%	Packet Tracer Config	Inarayan

Group Name: Group 11

Date: 24/05/25