# Data Link Layer: Ethernet -- Overview

Kameswari Chebrolu

## **Background**

- Very successful and widely used technology (as of 2010, market of \$16 billion per year)
- Cheap: Only 5\$ (300Rs) for 100Mbps
- Kept up with speed race: 10Mbps to 100Gbps

304 Cars

10,000

- IEEE 802.3 working group
  - Many standards (different speeds, different physical media)

# History

- 1970's: Metcalfe conceived the idea
- Up to early 1990's: Bus topology based on co-axial cable
  - Thicknet (10Base5)
  - Thinnet (10Base2)→ 200 m
- Media Access Control: CSMA/CD







### **Problems with Bus Topology**

• Co-axial cables were expensive



- Break/Fault in co-axial cable affects all nodes
- Adding/removing nodes disrupts the entire network
- Cabling Issues lead to star topology

# **Star Topology**

- Connect via hub or switch
- 10BaseT, 100BaseT (Fast Ethernet), 1000BaseT (Gigabit Ethernet)
  - Based on twisted pair cables
  - Low cost, reliable, easy
    management/troubleshooting



### Hub

- Physical layer repeater: bits from one link sent out on all other links at same rate after boosting up the energy
  - No frame buffering
  - No MAC protocol (CSMA/CD) at hub

### **Interconnecting Hubs**

• Can increases reach

• Cannot connect 10BaseT with 100BaseT



### **Restrictions**

- Can increase distance but many restrictions
  - 10BaseT: terminal to hub 100m; at most 4 repeaters; network diameter 500m
  - 10Base5: terminal to hub 500m; at most 4 mas repeaters; network diameter 2.5km
  - 100BaseT: terminal to hub 200m; at most 2 repeaters; network diameter 200m
  - Maximum number of hosts: 1024

# **Layer-2 Switch**

48 ports

- Also called Ethernet Bridge
- Most used configuration
- Transfers frames from an input to an output link
  - Runs MAC protocol on each interface
  - Buffer packets
  - Break up collision domains
  - Can switch speeds (10Mbps, 100Mbps)

### **Interconnection with Switch**



## Modes of operation

- Shared Mode (Half-duplex)
  - Employs MAC protocol
- Full duplex mode
  - Separate wires for transmission and reception
  - No need for MAC
  - Works only on point-to-point links



### **Ethernet Service**

- Connectionless: No handshaking between sender and receiver
- Unreliable: Does not provide any means for recovering lost frames
  - If application needs reliability, it needs to employ TCP

### **Ethernet Frame Structure**

- Preamble: Sequence of alternating 1's and 0's for synchronization
  - 10BaseT: Manchester encoding
- SFD: 10101011 (start frame delimiter)
- Source and Destination addresses: 48 bit MAC



### **Ethernet Frame Structure**

- Type: Demultiplexing key specifies which higher layer protocol the packet is intended
- Data: IP payload
  - Minimum 46 bytes and up to 1500 bytes
- CRC: Error Detection
- Inter Frame Gap: 96 bits (12 bytes)



#### **Ethernet Address**

- Unique address belonging to the adaptor
  - Each manufacturer allocated different prefix
  - E.g. Intel: C4-85-08 (C4-85-08-30-33-48)
- In normal mode, an adaptor passes up frames if
  - Addressed to it (Unicast)
  - Broadcast address (all 1's)
  - Multicast address (first bit is 1) if it belongs to the group and adaptor appropriately configured

## Summary

- Ethernet underwent significant evolution over the years 100 Aby 5
  - Speed increased by 10,000 times
  - Variety of media (coaxial, twisted pair, fiber optics)
  - Switching circumvented need for MAC 802.31 10BORT, 802.34 FART Ellent
  - Many standards to cater to various versions Cigabit elleret, 802.3x full deplex
  - Only constant: frame format
  - Shared rede | half duply
- Going Forward: CSMA/CD MAC