CS234: Reinforcement Learning – Problem Session #1

Winter 2022-2023

Problem 1

Consider an infinite-horizon, discounted MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma \rangle$. As usual, for any policy $\pi : \mathcal{S} \to \Delta(\mathcal{A})$, the value function induced by π is defined as

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathcal{R}(s_{t}, a_{t}) \mid s_{0} = s, \pi\right].$$

1. For an arbitrary $Z \in \mathbb{N}$, consider learning with Z+1 distinct discount factors $\gamma_0, \gamma_1, \ldots, \gamma_Z$ where the final discount factor matches that of the MDP \mathcal{M} , $\gamma_Z = \gamma$. Letting $[Z] \triangleq \{1, 2, \ldots, Z\}$ denote the index set, we define the following functions for any policy π :

$$V_{\gamma_z}^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma_z^t \mathcal{R}(s_t, a_t) \mid s_0 = s, \pi\right] \qquad W_z^{\pi} = V_{\gamma_z}^{\pi} - V_{\gamma_{z-1}}^{\pi}, \qquad \forall z \in [Z]$$

where $W_0 = V_{\gamma_0}^{\pi}$.

(a) For any $z \in [Z]$; any policy $\pi : \mathcal{S} \to \Delta(\mathcal{A})$; and any $s \in \mathcal{S}$, write an expression for $V^{\pi}_{\gamma_z}(s)$ exclusively in terms of $\{W^{\pi}_0, W^{\pi}_1, \dots, W^{\pi}_Z\}$.

(b) Show that W_z^{π} obeys the following Bellman equation for any $z \in [Z]$ and $s \in \mathcal{S}$:

$$W_z^{\pi}(s) = \mathbb{E}_{\substack{a \sim \pi(\cdot|s) \\ s' \sim \mathcal{T}(\cdot|s,a)}} \left[(\gamma_z - \gamma_{z-1}) V_{\gamma_{z-1}}^{\pi}(s') + \gamma_z W_z(s') \right]$$

2. Let $\gamma, \beta \in [0,1)$ be two discount factors such that $\beta \leq \gamma$. Let $\pi : \mathcal{S} \to \Delta(\mathcal{A})$ be an arbitrary policy that induces value functions V_{γ}^{π} and V_{β}^{π} under the two discount factors, respectively. Similarly, define the Bellman operators

$$\mathcal{B}_{\gamma}^{\pi}V(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[\mathcal{R}(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(\cdot|s, a)} \left[V(s') \right] \right]$$

$$\mathcal{B}_{\beta}^{\pi}V(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[\mathcal{R}(s, a) + \beta \mathbb{E}_{s' \sim \mathcal{T}(\cdot|s, a)} \left[V(s') \right] \right].$$

With the reward upper bound $R_{\text{MAX}} = \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \mathcal{R}(s,a)$, prove that

$$||V_{\gamma}^{\pi} - V_{\beta}^{\pi}||_{\infty} \le \frac{(\gamma - \beta)R_{\text{MAX}}}{(1 - \gamma)(1 - \beta)}.$$

3. Let $\alpha, \gamma \in [0, 1)$ be two discount factors such that $\gamma \leq \alpha$. Consider a new MDP $\mathcal{M}' = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}', \mathcal{R}, \alpha \rangle$ with a different transition function $\mathcal{T}' : \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ defined for $\lambda \in [0, 1]$ as

$$\mathcal{T}'(s'\mid s,a) = (1-\lambda)\mathcal{T}(s'\mid s,a) + \lambda\mathbb{1}(s=s'), \qquad \forall (s,a,s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}.$$

In words, the new transition function \mathcal{T}' follows the transitions of the original MDP \mathcal{T} with probability $(1 - \lambda)$ and takes a self-looping transition with probability λ . We will use subscripts to distinguish between value functions of \mathcal{M} versus those of \mathcal{M}' .

Assuming that both \mathcal{M} and \mathcal{M}' are tabular, recall the matrix form of the Bellman equations for any policy π :

$$V_{\mathcal{M}}^{\pi} = (I - \gamma \mathcal{T}^{\pi})^{-1} \mathcal{R}^{\pi} \qquad V_{\mathcal{M}'}^{\pi} = (I - \alpha \mathcal{T}'^{\pi})^{-1} \mathcal{R}^{\pi},$$

where

$$\mathcal{R}^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\mathcal{R}(s, a) \right] \qquad \mathcal{T}^{\pi}(s' \mid s) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\mathcal{T}(s' \mid s, a) \right] \qquad \mathcal{T}'^{\pi}(s' \mid s) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\mathcal{T}'(s' \mid s, a) \right]$$

(a) Give a value of λ such that, for any policy π ,

$$V_{\mathcal{M}'}^{\pi} = \frac{1 - \gamma}{1 - \alpha} \cdot V_{\mathcal{M}}^{\pi}.$$

(b) If π^* is the optimal policy of MDP \mathcal{M} , prove that π^* is also optimal in \mathcal{M}' .