Secure MAC

Chosen Cipher text Attack

In CCA attack, the adversary has the ability to encrypt any messages of his choice and also to decrypt any cipher texts of his choice.

CCA security actually implies a very important property called non-malleability. A non-malleable encryption scheme offers has the property that if the adversary tries to modify a given cipher text, he either gets an illegal cipher text or the irrelated encryption of plain text message to the original one.

Message Authentication Code(MAC)

The aim of message authentication code is to verify that the message sent by the sender is not modified in between. Both the parties will share the secret key cryptography; therefore this notion of Message Authentication Code belongs to the world of Private Key Cryptography. The MAC tuple consists of probabilistic polynomial time algorithms (Gen, Mac, Vrfy).

Gen: The Algorithm Gen outputs the uniformly distributed random key of length n{0,1}.

Mac: The Algorithm Mac on input key 'k' of length n and a message 'm' of arbitrary length, outputs a tag t of arbitrary length. The value t is called Mac tag.

Vrfy: The Algorithm Vrfy on input key 'k' of length n, a message 'm' of arbitrary length, a tag t of arbitrary length outputs a bit b {0,1}. If the message is not modified, then the value of b is 1, otherwise 0.

A message authentication code (Gen,MAC,Vrfy) is secure if for all probabilistic polynomial-time adversaries **A**:

 $Pr[Mac-Game(n) = 1] \le negl(n)$

Construction of MAC using PRF:

Gen: Takes the input of 1ⁿ and outputs a key of length n.

MAC: Takes the key k and message m as input and output $F_k(m)$ as output where F is a Pseudo Random Function.

Vrfy: Takes the message m, key k and tag t as input and outputs ACCEPT if $F_k(m) == t$

The above scheme is used for fixed length MAC.

In order to construct variable length MAC which is secure, the message length is prepended to the message.

