5. Алгебраїчна проблема власних значень

Нехай задано матрицю $A \in \mathbb{R}^{n imes n}$. Тоді задача на власні значення ставиться так: знайти число λ та вектор x
eq 0, що задовольняють рівнянню

$$Ax - \lambda x$$
. (1)

Означення: λ називається *власним значенням* A, а x — *власним вектором*.

3(1)

$$\det(A - \lambda E) = P_n(\lambda) = (-1)^n \lambda^n + a_n \lambda^{n-1} + \dots + a_0 = 0.$$
 (2)

Тут $P_n(\lambda)$ — характеристичний багаточлен.

Для розв'язання багатьох задач механіки, фізики, хімії потрібне знаходження всіх власних значень λ_i , $i=\overline{1,n}$, а іноді й всіх власних векторів x_i , що відповідають λ_i .

Означення: Цю задачу називають повною проблемою власних значень.

В багатьох випадках потрібно знайти лише максимальне або мінімальне за модулем власне значення матриці. При дослідженні стійкості коливальних процесів іноді потрібно знайти два максимальних за модулем власних значення матриці.

Означення: Останні дві задачі називають частковими проблемами власних значень.

5.1. Степеневий метод

1. Знаходження λ_{\max} : $\lambda_{\max} \equiv |\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \ldots$

Нехай $x^{(0)}$ — заданий вектор, будемо послідовно обчислювати вектори

$$x^{(k+1)} = Ax^{(k)}, \quad k = 0, 1, \dots$$
 (3)

Тоді $x^{(k)} = A^k x^{(0)}$. Нехай $\{e_i\}_{i=1}^n$ — система власних векторів. Представимо $x^{(0)}$ у вигляді:

$$x^{(0)} = \sum_{i=1}^{n} c_i e_i. (4)$$

Оскільки $Ae_i=\lambda_ie_i$, то $x^{(k)}=\sum_{i=1}^nc_i\lambda_i^ke_i$. При великах k: $x^{(k)}pprox c_1\lambda_1^ke_1$. Тому

$$\mu_1^{(k)} = \frac{x_m^{(k+1)}}{x_m^{(k)}} = \lambda_1 + O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right). \tag{5}$$

Значить $\mu_1^{(k)} \xrightarrow[k o \infty]{} \lambda_1.$

Якщо матриця $A=A^\intercal$ симетрична, то існує ортонормована система векторів $\langle e_i,e_j \rangle = \delta_{ij}$. Тому

$$\mu_{1}^{(k)} = \frac{\left\langle x^{(k+1)}, x^{(k)} \right\rangle}{\left\langle x^{(k)}, x^{(k)} \right\rangle} = \frac{\left\langle \sum_{i} c_{i} \lambda_{i}^{k+1} e_{i}, \sum_{j} c_{j} \lambda_{j}^{k} e_{j} \right\rangle}{\left\langle \sum_{i} c_{i} \lambda_{i}^{k} e_{i}, \sum_{j} c_{j} \lambda_{j}^{k} e_{j} \right\rangle} = \frac{\sum_{i} c_{i}^{2} \lambda_{i}^{2k+1}}{\sum_{i} c_{i}^{2} \lambda_{i}^{2k}} =$$

$$= \frac{c_{1}^{2} \lambda_{1}^{2k+1} + c_{2}^{2} \lambda_{2}^{2k+1} + \dots}{c_{1}^{2} \lambda_{1}^{2k} + c_{2}^{2} \lambda_{2}^{2k} + \dots}} = \lambda_{1} + O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2k}\right) \xrightarrow[k \to \infty]{} \lambda_{1}.$$

$$(6)$$

Це означає збіжність до максимального за модулем власного значення з квадратичною швидкістю.

Якщо $|\lambda_1|>1$, то при проведенні ітерацій відбувається зріст компонент вектора $x^{(k)}$, що приводить до «переповнення» (overflow). Якщо ж $|\lambda_1|<1$, то це приводить до зменшення компонент (underflow). Позбутися негативу такого явища можна нормуючи вектори $x^{(k)}$ на кожній ітерації.

Алгоритм степеневого методу знаходження максимального за модулем власного значення з точністю ε виглядає так:

```
e[0] = x[0] / norm(x[0])

k = 0
while True:
    k += 1

    x[k + 1] = A * x[k]
    µ[k][1] = scalar_product(x[k + 1], e[k])
    e[k + 1] = x[k + 1] / norm(x[k + 1])

if abs(µ[k + 1][1] - µ[k][1]) < E:
    break

\[ \lambda[1] = \lambda[k + 1][1] \]</pre>
```

За цим алгоритмом для симетричної матриці $A^{\mathsf{T}}=A$ швидкість прямування $\mu_1^{(k)}$ до λ_{\max} — квадратична.

2. Знаходження λ_2 : $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots$ Нехай λ_1 , e_1 відомі.

Задача 10: Довести, що якщо $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots$ то

$$\mu_2^{(k)} = rac{x_m^{(k+1)} - \lambda_1 x_m^{(k)}}{x_m^{(k)} - \lambda_1 x_m^{(k-1)}} \xrightarrow[k o \infty]{} \lambda_2, \qquad (7)$$

де $x^{(k+1)} = A x^{(k)}$, $x_m^{(k)} - m$ -та компонента $x^{(k)}$.

Задача 11: Побудувати алгоритм обчислення λ_2 , e_2 , використовуючи нормування векторів та скалярні добутки для обчислення $\mu_2^{(k)}$.

3. Знаходження мінімального власного числа $\lambda_{\min}(A) = \min_i |\lambda_i(A)|.$

Припустимо , що $\lambda_i(a)>0$ то відоме λ_{\max} . Розглянемо матрицю $B=\lambda_{\max}E-A$. Маємо

$$\forall i: \quad \lambda_i(B) = \lambda_{\max} - \lambda_i(A).$$
 (8)

Тому $\lambda_{\max}(B)=\lambda_{\max}(A)-\lambda_{\min}(A)$. Звідси $\lambda_{\min}(A)=\lambda_{\max}(A)-\lambda_{\max}(B)$.

Якщо $\exists i: \lambda_i(A) < 0$, то будуємо матрицю $\overline{A} = \sigma E + A$, $\sigma > 0$: $\overline{A} > 0$ і для неї попередній розгляд дає необхідний результат. Замість $\lambda_m ax$ в матриці B можна використовувати $\|A\|$.

Ще один спосіб обчислення мінімального власного значення полягає в використання обернених ітерацій:

$$Ax^{(k+1)} = x^{(k)}, \quad k = 0, 1, \dots$$
 (9)

Але цей метод вимагає більшої кількості арифметичних операцій: складність методу на основі формули (3): $Q=O(n^2)$, а на основі $(9)-Q=O(n^3)$, оскільки треба розв'язувати СЛАР, але збігається метод (9) швидше.

5.2. Ітераційний метод обертання

Це метод розв'язання повної проблеми власних значень для симетричних матриць $A^{\mathsf{T}} = A$. Існує матриця U, що приводить матрицю A до діагонального виду:

$$A = U\Lambda U^{\dagger},\tag{10}$$

де Λ — діагональна матриця, по діагоналі якої стоять власні значення λ_i ; U — унітарна матриця, тобто: $U^{-1}=U^\intercal$.

3 (1) маємо

$$\Lambda = U^{\mathsf{T}} A U. \tag{11}$$

Нехай
$$\exists ilde{U}$$
 — матриця, така що $ilde{\Lambda} = ilde{U}^{\mathsf{T}} A ilde{U}$ і $ilde{\Lambda} = \left(ilde{\lambda}_{ij}
ight)_{i,j=1}^n$, $\left| ilde{\lambda}_{ij}
ight| < \delta \ll 1$, $i
eq j$.

Тоді діагональні елементи мало відрізняються від власних значень

$$|\tilde{\lambda}_{ij} - \lambda_i(A)| < \varepsilon = \varepsilon(\delta).$$
 (12)

Введемо

$$t(A) = \sum_{\substack{i,j=1\\i \neq j}}^{n} a_{ij}^{2}.$$
 (13)

3 малості величини t(A) випливає, що діагональні елементи малі. По $A=A_0$ за допомогою матриць обертання U_k :

$$U_{k} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cos \phi & \cdots & -\sin \phi & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sin \phi & \cdots & \cos \phi & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}. \tag{14}$$

що повертають систему векторів на кут φ , побудуємо послідовність $\{A_k\}$ таку, що $A_k \xrightarrow[k \to \infty]{} \Lambda.$

Задача 12: Показати, що матриця обертання U_k є унітарною: $U_k^{-1} = U_k^\intercal$.

Послідовно будуємо:

$$A_{k+1} = U_K^T A_k U_k, \tag{15}$$

Означення: Процес (15) називається *монотонним*, якщо: $t(A_{k+1}) < t(A_k)$.

Задача 13: Довести, що для матриці (15) виконується:

$$a_{i,j}^{(k+1)} = a_{i,j}^{(k)} \cos(2\varphi) + rac{1}{2} \left(a_{j,j}^{(k)} - a_{i,i}^{(k)}
ight) \sin(2\varphi), \hspace{1cm} (16)$$

Показати, що

$$t(A_{k+1}) = t(A_k) - 2\left(a_{i,j}^{(k)}\right)^2 \tag{17}$$

якщо вибирати arphi з умови $a_{i,j}^{(k+1)}=0.$

Звідси

$$\varphi = \varphi_k = \frac{1}{2} \arctan(p^{(k)}),$$
 (18)

тобто

$$p^{(k)} = \frac{2a_{i,j}^{(k)}}{a_{i,i}^{(k)} - a_{j,j}^{(k)}},\tag{19}$$

де

$$\begin{vmatrix} a_{i,j}^{(k)} \end{vmatrix} = \max_{\substack{m,l \\ m \neq l}} \begin{vmatrix} a_{m,l}^{(k)} \end{vmatrix}. \tag{20}$$

Тоді $t(A_k) \xrightarrow[k o \infty]{} 0$. Чим більше n тим більше ітерацій необхідно для зведення A до Λ .

Якщо матриця несиметрична, то застосовують QR- або QL-методи.