Dictionary Analysis

Riccardo Ruta

5/2022

Contents

Γ	HE USE OF THE POPULIST RETHORIC, A DICTIONARY ANALYSIS	1
	Decadri_Boussalis_Grundl	9
	Rooduijn_Pauwels_Italian	ŀ
	Grundl_Italian_adapted	8
	Decadri Boussalis	11

THE USE OF THE POPULIST RETHORIC, A DICTIONARY ANALYSIS

At the level of political parties, which ones make most use of populist rhetoric? At the level of individual politicians, which ones make most use of populist rhetoric? I use 3 dictionary to perform the analysis

- Rooduijn & Pauwels: Rooduijn, M., and T. Pauwels. 2011. "Measuring Populism: Comparing Two Methods of Content Analysis." West European Politics 34 (6): 1272–1283.
- Decadri & Boussalis: Decadri, S., & Boussalis, C. (2020). Populism, party membership, and language complexity in the Italian chamber of deputies. Journal of Elections, Public Opinion and Parties, 30(4), 484-503.
- Grundl: Gründl J. Populist ideas on social media: A dictionary-based measurement of populist communication. New Media & Society. December 2020.
- Decadri & Boussalis + Grundl: this is simply a more extended version of the D&B dictionary, which also contains some terms taken from Grundl.

First step, import the words and create the dictionary

```
# import dictionaries file
dict <- read_excel("data/populism_dictionaries.xlsx")
variable.names(dict)</pre>
```

```
## [1] "Rooduijn_Pauwels_Italian"
## [2] "Grundl_Italian_adapted"
## [3] "Decadri Boussalis"
## [4] "Decadri_Boussalis_Grundl_People"
## [5] "Decadri_Boussalis_Grundl_Common Will"
## [6] "Decadri Boussalis Grundl Elite"
# create the dictionary
Rooduijn_Pauwels_Italian <-
  dictionary(list(populism =
                     (dict$Rooduijn_Pauwels_Italian
                      [!is.na(dict$Rooduijn_Pauwels_Italian)])))
Grundl_Italian_adapted <-</pre>
  dictionary(list(populism =
                    dict$Grundl_Italian_adapted
                   [!is.na(dict$Grundl_Italian_adapted)]))
Decadri Boussalis <-
  dictionary(list(populism =
                    dict$Decadri_Boussalis
                   [!is.na(dict$Decadri_Boussalis)]))
Decadri_Boussalis_Grundl <-</pre>
  dictionary(list(people =
                    dict$Decadri_Boussalis_Grundl_People
                   [!is.na(dict$Decadri_Boussalis_Grundl_People)],
                  common will =
                    dict$`Decadri_Boussalis_Grundl_Common Will`
                  [!is.na(dict$`Decadri_Boussalis_Grundl_Common Will`)],
                  elite =
                    dict$Decadri_Boussalis_Grundl_Elite
                   [!is.na(dict$Decadri_Boussalis_Grundl_Elite)]))
```

Import the DFM prepared in previous steps and apply dictionaries

Decadri Boussalis Grundl

Level of sparsity

```
daily: 12.08\% weekly: 0.55\% monthly: 0\%
```

```
# Daily Dictionary analysis with Decadri_Boussalis_Grundl on the whole dataset
dfm_dict1 <- dfm_lookup(dfm_weight, dictionary = Decadri_Boussalis_Grundl)
# Group by date
dfm_by_date1 <- dfm_group(dfm_dict1, groups= date)
# Group by week
dfm_by_week1 <- dfm_group(dfm_dict1, groups= week)
# dfm_by_week1
# Group by month
dfm_by_month1 <- dfm_group(dfm_dict1, groups= month)</pre>
```

```
## Document-feature matrix of: 28 documents, 3 features (0.00% sparse) and 1 docvar.
##
      features
         people common_will
## docs
                               elite
##
     1 63.08421 6.720617 30.07071
     2 51.95882
                   3.532448 36.73581
##
##
     3 59.69107
                   3.065409 26.04866
##
     4 51.97619 1.975715 38.92381
##
     5 49.45054 1.012790 35.60162
     6 43.57187 1.785750 39.61004
##
## [ reached max_ndoc ... 22 more documents ]
```


Looking at the populist rhetoric for each party divided into the 3 components people-centrism, anti-elitism and common-will, we note that the most frequent components is People-centrism.

Rooduijn_Pauwels_Italian

dfm_by_month2 <- dfm_group(dfm_dict2, groups= month)</pre>

Level of sparsity

daily: 0.60%

dfm_by_month2

```
weekly: 0.%
monthly: 0%

# Daily Dictionary analysis with Rooduijn_Pauwels_Italian on the whole dataset
dfm_dict2 <- dfm_lookup(dfm_weight, dictionary = Rooduijn_Pauwels_Italian)
# Group by date
dfm_by_date2 <- dfm_group(dfm_dict2, groups= date)
#dfm_by_date2
# Group by week
dfm_by_week2 <- dfm_group(dfm_dict2, groups= week)
#dfm_by_week2
# Group by month</pre>
```

```
## Document-feature matrix of: 28 documents, 1 feature (0.00% sparse) and 1 docvar.
##
       features
## docs populism
      1 28.10591
##
      2 34.76596
      3 24.91863
##
##
      4 37.43421
##
      5 32.79228
      6 37.74417
##
## [ reached max_ndoc ... 22 more documents ]
```

General level of populism in time

Most populist party

```
# Most populist party
dfm_dict2_tstat_party <- textstat_frequency(dfm_dict2, groups = party_id)
kable(dfm_dict2_tstat_party %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
6	populism	303.9474786	1	1919	LEGA
10	populism	149.7512641	1	1671	PD
2	populism	113.7388243	1	1124	FDI
3	populism	98.6906136	1	941	FI
8	populism	87.6625041	1	1119	M5S
9	populism	60.9720255	1	669	MISTO
7	populism	11.7023384	1	175	LEU
1	populism	3.7116701	1	45	CI
5	populism	1.8540424	1	26	IV
11	populism	1.0264294	1	11	REG_LEAGUES
4	populism	0.0833333	1	1	INDIPENDENTE

Most populist politician

```
dict2_tstat_nome <- textstat_frequency(dfm_dict2, groups = nome)
kable(dict2_tstat_nome %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
104		_ ·			0 1
194	populism	42.115152	1	146	FERRERO Roberta
472	populism	15.910436	1	160	SGARBI Vittorio
341	populism	14.112659	1	77	MORANI Alessia
24	populism	13.999694	1	52	BALDELLI Simone
179	populism	13.821584	1	48	FAGGI Antonella
271	populism	13.095709	1	149	LANNUTTI Elio
217	populism	12.884799	1	39	FREGOLENT Sonia
450	populism	12.806346	1	64	RUSPANDINI Massimo
326	populism	12.518396	1	192	MELONI Giorgia
427	populism	12.257891	1	40	RIVOLTA Erica
106	populism	10.788399	1	68	CECCHETTI Fabrizio
283	populism	10.783981	1	108	LOLLOBRIGIDA Francesco
260	populism	10.778644	1	76	IEZZI Igor Giancarlo
230	populism	10.648954	1	155	GARNERO SANTANCHE' Daniela
303	populism	10.133849	1	78	MALAN Lucio
447	populism	9.885108	1	29	RUFA Gianfranco
455	populism	9.561830	1	93	SALVINI Matteo
360	populism	9.110910	1	105	NOBILI Luciano
35	populism	8.689617	1	57	BAZZARO Alex
501	populism	8.495460	1	32	TONELLI Gianni

Grundl_Italian_adapted

Level of sparsity

daily: 0.24%

```
weekly: 0.0%
monthly: 0%

# Daily Dictionary analysis with Grundl_Italian_adapted on the whole dataset
dfm_dict3 <- dfm_lookup(dfm_weight, dictionary = Grundl_Italian_adapted)
# Group by date
dfm_by_date3<- dfm_group(dfm_dict3, groups= date)
##dfm_by_date3</pre>
```

```
#dfm_by_date3
# Group by week
dfm_by_week3 <- dfm_group(dfm_dict3, groups= week)
#dfm_by_week3
# Group by month
dfm_by_month3 <- dfm_group(dfm_dict3, groups= month)

dfm_by_month3

## Document-feature matrix of: 28 documents, 1 feature (0.00% sparse) and 1 docvar.</pre>
```

```
## Document-feature matrix of: 28 documents, 1 feature (0.00% sparse) and 1 docvar.
##
       features
## docs populism
      1 30.09665
##
##
      2 26.23980
      3 22.99661
##
##
      4 32.36833
##
      5 33.50214
      6 21.44168
##
## [ reached max_ndoc ... 22 more documents ]
```

General level of populism in time

Most populist party

```
# Most populist party
dict_3_tstat_party <- textstat_frequency(dfm_dict3, groups = party_id)
kable(dict_3_tstat_party %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
6	populism	225.678708	1	2075	LEGA
10	populism	153.269683	1	2017	PD
8	populism	133.053746	1	1724	M5S
3	populism	131.838292	1	1524	FI
2	populism	99.425177	1	1087	FDI
9	populism	86.092041	1	997	MISTO
7	populism	15.213765	1	231	LEU
1	populism	10.602522	1	157	CI
5	populism	2.559005	1	40	IV
4	populism	1.983671	1	31	INDIPENDENTE
11	populism	1.505044	1	22	REG_LEAGUES

Most populist politician

```
dict_3_tstat_nome <- textstat_frequency(dfm_dict3, groups = nome)
kable(dict_3_tstat_nome %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
287	populism	23.033031	1	240	LANNUTTI Elio
210	populism	19.501980	1	110	FERRERO Roberta
562	populism	19.042283	1	131	VITO Elio
275	populism	16.483870	1	120	IEZZI Igor Giancarlo
494	populism	15.974269	1	184	SGARBI Vittorio
341	populism	11.063928	1	159	MELONI Giorgia
15	populism	10.731212	1	120	ANZALDI Michele
298	populism	10.659433	1	98	LOLLOBRIGIDA Francesco
74	populism	10.645964	1	97	BORGHI Claudio
476	populism	9.238862	1	122	SALVINI Matteo
248	populism	9.004085	1	139	GARNERO SANTANCHE' Daniela
96	populism	8.438949	1	103	CANGINI Andrea
546	populism	8.339166	1	106	URSO Adolfo
224	populism	8.162373	1	101	FONTANA Lorenzo
472	populism	7.850014	1	68	RUSPANDINI Massimo
44	populism	7.832168	1	120	BERGESIO Giorgio Maria
165	populism	7.565932	1	92	DE MARTINI Guido
141	populism	7.036558	1	43	CROSETTO Guido
446	populism	7.000320	1	47	RIVOLTA Erica
359	populism	6.861311	1	73	MORELLI Alessandro

Decadri Boussalis

6 82.69573

[reached max_ndoc ... 22 more documents]

##

Level of sparsity

```
daily: 0%
weekly: 0.0\%
monthly: 0%
# Daily Dictionary analysis with Decadri_Boussalis on the whole dataset
dfm_dict4 <- dfm_lookup(dfm_weight, dictionary = Decadri_Boussalis)</pre>
# Group by date
dfm_by_date4<- dfm_group(dfm_dict4, groups= date)</pre>
#dfm_by_date4
# Group by week
dfm_by_week4 <- dfm_group(dfm_dict4, groups= week)</pre>
#dfm_by_week4
# Group by month
dfm_by_month4 <- dfm_group(dfm_dict4, groups= month)</pre>
dfm_by_month4
## Document-feature matrix of: 28 documents, 1 feature (0.00% sparse) and 1 docvar.
##
       features
## docs populism
      1 93.79618
##
      2 88.79620
      3 85.17899
##
##
      4 90.99191
      5 83.84470
##
```

General level of populism in time

Most populist party

```
# Most populist party
dict_4_tstat_party <- textstat_frequency(dfm_dict4, groups = party_id)
kable(dict_4_tstat_party %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
6	populism	651.348390	1	5672	LEGA
10	populism	493.532735	1	6417	PD
8	populism	376.966170	1	5178	M5S
3	populism	376.609606	1	4532	FI
2	populism	270.814483	1	2960	FDI
9	populism	202.466904	1	2463	MISTO
7	populism	44.919508	1	659	LEU
1	populism	35.105322	1	506	CI
5	populism	14.132863	1	197	IV
4	populism	10.615825	1	153	INDIPENDENTE
11	populism	6.122696	1	93	REG_LEAGUES

Most populist politician

```
dict_4_tstat_nome <- textstat_frequency(dfm_dict4, groups = nome)
kable(dict_4_tstat_nome %>% slice_max(frequency, n = 20))
```

	feature	frequency	rank	docfreq	group
		- *		-	group
236	populism	62.66405	1	282	FERRERO Roberta
560	populism	41.70723	1	443	SGARBI Vittorio
329	populism	34.85565	1	397	LANNUTTI Elio
391	populism	33.15912	1	496	MELONI Giorgia
344	populism	32.36912	1	358	LOLLOBRIGIDA Francesco
540	populism	29.61242	1	368	SALVINI Matteo
27	populism	27.44810	1	135	BALDELLI Simone
280	populism	26.74696	1	372	GARNERO SANTANCHE' Daniela
530	populism	24.85093	1	184	ROTONDI Gianfranco
68	populism	24.50676	1	252	BONACCINI Stefano
220	populism	24.35617	1	122	FAGGI Antonella
317	populism	24.31241	1	207	IEZZI Igor Giancarlo
128	populism	23.82148	1	195	CECCHETTI Fabrizio
585	populism	23.63509	1	327	TAJANI Antonio
80	populism	22.82617	1	240	BORGHI Claudio
161	populism	21.54784	1	158	CROSETTO Guido
39	populism	21.35229	1	202	BAZZARO Alex
47	populism	21.29380	1	318	BERGESIO Giorgio Maria
535	populism	20.92822	1	140	RUSPANDINI Massimo
365	populism	20.38171	1	185	MALAN Lucio

