Lab 1

1. Описание модели

Краткое описание модели

Одноканальная система массового обслуживания с отказами (М/М/1/0) представляет собой систему, в которой:

- Поступающие заявки распределены экспоненциально с интенсивностью λ.
- Время обслуживания заявок распределено экспоненциально с параметром µ.
- В системе **нет очереди**: если в момент поступления заявка обнаруживает канал занятым, она **теряется**.

Алгоритм работы модели

- 1. **Инициализация** среды моделирования simpy.Environment().
- 2. Запуск генерации заявок с экспоненциально распределенными интервалами (λ).
- 3. Обслуживание заявок, если канал свободен; иначе заявка теряется.
- 4. Сбор статистики: общее количество заявок, число обслуженных и потерянных заявок.
- 5. Вычисление показателей: вероятность отказа, коэффициент загрузки
- 6. Проведение серии экспериментов с разными значениями λ.
- 7. Построение графиков зависимости вероятности отказа от λ.

2. Результаты экспериментов

Таблица с результатами

λ	Поступило заявок	Обслужено	Потеряно	Вероятность отказа	Коэффициент загрузки
1	984	856	128	0.130	0.8699
2	2078	1533	545	0.262	0.737
3	2954	2008	946	0.302	0.679
4	3930	2377	1553	0.395	0.604
5	5108	2696	2412	0.472	0.527

λ	Поступило заявок	Обслужено	Потеряно	Вероятность отказа	Коэффициент загрузки
6	5923	2971	2952	0.498	0.501
7	7011	3231	3780	0.5392	0.4608
8	7984	3461	4523	0.566	0.433
9	8923	3652	5271	0.590	0.409
10	10086	3710	6376	0.632	0.367

Графики

3. Анализ результатов

Сравнение с теоретическими значениями

По формуле Эрланга вероятность отказа рассчитывается как: Ротказ= $\lambda(\lambda+\mu)$ Коэффициент загрузки теоретически определяется как: $\rho=\lambda\setminus\mu$ Сравнение экспериментальных и теоретических значений показывает, что:

- **При малых λ** вероятность отказа не критическая, что подтверждается как симуляцией, так и теоретическими расчетами.
- При λ≈µ вероятность отказа начинает заметно расти, так как канал чаще оказывается занятым.

- При λ>μ вероятность отказа становится больше 50%, это говорит о том, что больше заявок теряются, чем обрабатываются.
- Коэффициент загрузки системы **сильно падает** при больших λ, это означает, что значительная часть заявок теряется.

Выводы

- 1. **Чем больше λ, тем выше вероятность отказа**. Это ожидаемо, так как при перегрузке заявок **нет очереди**.
- 2. Если λ<<μ, система работает эффективно: почти все заявки обслуживаются.
- 3. **Если λ>=μ, система становится перегруженной**, и большая часть заявок теряется.
- 4. Результаты имитационного моделирования хорошо согласуются с теоретическими формулами, что подтверждает корректность модели.