Partial Order and Lattices

Lecture 7
Discrete Mathematical
Structures

Partial Order and Lattices

- Part I: Partial Order
 - □ Order relations and Hasse Diagrams
 - □ Extremal elements in partially ordered sets
- Part II: Lattices
 - ☐ Lattices as a mathematical structure
 - ☐ Isomorphic lattices
 - ☐ Properties of lattices

Partial Order

- Reflexive, anti-symmetric and transitive
 - ☐ Generalization of "less than or equal to"
- Denotation: ≤

- Example 1: set containment
 - Note: not any two of sets are "comparable"
- \blacksquare Example 2: divisibility on Z^+

v

Partially Ordered Set

- A partially ordered set (poset) is a set with a partial order defined on it.
- Denotation: (A, \leq)
- Examples
 - \square (Z, \leq) or (Z, \geq)
 - $\square(Z^+, |)$
 - $\square(2^A,\subseteq)$

Product Partial Order

- Given two posets, (A, \leq_A) and (B, \leq_B) , we can define a new partial order \leq on $A \times B$: $(a,b) \leq (a',b')$ iff. $a \leq_A a'$ in A and $b \leq_B b'$ in B
- It is easy to prove that $(A \times B, \leq)$ is a poset
 - □ Reflexive
 - □ anti-symmetric
 - □ transitive

Lexicographic Order

- Lexicographic order, as simplified:
 - □ Given a partial order on a alphabet a, then \leq is a simplified "dictionary" order:

```
(a,b) \le (a',b') iff. \underline{a \le a'} and \underline{a \ne a'} or \underline{a = a'} and \underline{b \le b'}
Denoted as \underline{a \le a'}
```

Hasse Diagrams

- Partial order can be represented by common relation diagram
- The special properties of partial order can be used to simplifying the diagram
 - □ Reflexivity: ring everywhere, so no need
 - ☐ Antisymmetric: no cycle, location dependent
 - ☐ Transitivity: there is a path, there is a edge

Divisability on {1,2,3,...12}

Containment on $\rho(\{a,b,c\})$

Isomophism

■ Let (A, \leq) and (A', \leq') be posets and let $f:A \rightarrow A'$ be a one-to-one correspondence between A and A'. The function f is called an isomorphism from (A, \leq) to (A', \leq') if for any a and b in A,

$$a \leq b \text{ iff. } f(a) \leq f(b).$$

The two posets are called isomophic posets.

- Example: Z⁺ and the set of positive even number are isomorphic under "≤"
- Principle of Correspondence.

M

Maximal and Minimal Elements

■ An element $a \in A$ is called a **maximal element** of A if there is no element c in A such that $a \prec c$.

■ An element $b \in A$ is called a **minimal element** of A if there is no element c in A such that $c \prec b$.

Existence of Maximal/Minimal Elements

■ Given a poset (A, \preceq) , if A is finite, then there is at least one maximal element and at least one minimal element.

■ Proof:

- \square Let *a* be any element of *A*.
- \square If a is not maximal, there must be some a_1 such that $a \prec a_1$.
- \square If a_1 is not maximal either, there must be some a_2 , such that $a_1 \prec a_2 \ldots$
- \square Since A is finite, we can't continue this procedure indefinitely, and find some a_k , which is maximal.
- □ Same for the minimal element.

Examples of Maximal/Minimal Elements

- Divisibility on {2,3,4,5,6,8,12,18}
 - \square Maximal elements: 5, 8, 12, 18
 - \square Minimal elements: 2, 3, 5

- Maximal
- Minimal

Note: 5 is maximal and minimal

M

Greatest and Least Elements

■ An element $a \in A$ is called a **greatest element** of a if $x \le a$ for all $x \in A$.

■ An element $a \in A$ is called a **least element** of a if $a \le x$ for all $x \in A$.

1

Examples of Greatest and Least Elements

- Containment on $\rho(\{a,b,c\})$
 - ☐ Greatest element: {a,b,c}
 - □ Least element: •
- Divisibility on {2,3,4, 6,12}
 - ☐ Greatest element: 12
 - □ Least element: none (Note: there are two minimal elements: 2 and 3)

Uniqueness of Largest Element

- A poset has at most one greatest element.
- Proof

Suppose that a,b are greatest elements. By the definition of the greatest elements, we have $a \le b$, and $b \le a$. So, a = b, by the antisymmetry property

■ It is same for the least element.

Bounds of Subsets of Poset

- Given a poset A and its subset B, an element $a \in A$ is called an **upper bound** of B if $b \leq a$ for all $b \in B$.
- For a given subset *B*, upper bound may not exist. On the other hand, there may be more than one upper bound. The least element(if existing) of the poset consisting of all upper bounds of *B* is called the least upper bound(LUB)
- Lower Bound and Greatest Lower Bound can be defined similarily.

Example of Bounds

Linear Ordering and Well-Ordering

- \blacksquare (A, \preccurlyeq) is a poset.
 - \Box Linear-ordering any two element of A are comparable.
 - \square Well-ordering every nonempty subset of A has a least element
- Well-ordering is also Linear-ordering
 - \square If every nonempty subset of A has a least element, then any two elements of A are comparable.
- But Linear-ordering may not be Well-ordering
 - \square If any two elements of A are comparable, can it be implied that every nonempty subset of A has a least element? No, for infinite A.

Chain and Anti-chain

■ Given a POSet (A, \leq)

 \square A subset B of A is said to be a chain, iff for any two elements x, y in B, either $x \le y$ or $y \le x$

 \square A subset C of A is said to be an antichain, iff for any two elements x, y in C, neither $x \le y$ nor $y \le x$

Chain and Anti-chain (Dilworth)

Order in Disorder

■ In any permutation of natural numbers 1,2,3,...,n²+1, there must be a strictly increasing or decreasing sequence with length not less than n+1.

■ Proof:

- \square Given a permutation, labeling each number using a pair (p, q), where p is the length of the largest increasing sequence ending at the number, and q is the length of the largest decreasing sequence ending at the number.
- □ Note, each number has a unique label (Why?). If p and q are both not larger than n, there are only n^2 possible label value.

Order in Disorder: PO Model

- In any permutation of natural numbers $1,2,3,...,n^2+1$, there must be a strictly increasing or decreasing sequence with length not less than n+1.
- The model of partial order:
 - □ Set: A={ $\langle i, v_i \rangle | i=1,2,...,n^2+1$, each v_i has an unique value in 1,2,..., n^2+1 }
 - ☐ Two partial orderings
 - $\blacksquare R_1: \langle i, v_i \rangle R_1 \langle j, v_j \rangle$ iff. $i \langle j \text{ and } v_i \langle v_j \text{ or } i ==j \text{ and } v_i ==v_j$
 - R_2 : $\langle i, v_i \rangle R_2 \langle j, v_j \rangle$ iff. $i \langle j$ and $v_i \rangle v_j$ or i == j and $v_i == v_j$
- Problem: Prove that there must a subset of A with no less than n+1 elements, which is a chain of R_1 or R_2 .
 - \square Note: a chain of R_1 is an anti-chain of R_2 , and vice versa.

м

Lattices

- Definition: (L, \leq) is called a lattice if
 - $\square(L, \leq)$ is a poset
 - □ For any $x,y \in L$, $\{x,y\}$ has a LUB, which is denoted as $x \lor y$ (join)
 - □ For any $x,y \in L$, $\{x,y\}$ has a GLB, which is denoted as $x \land y$ (meet)

Examples of Lattice

- \blacksquare (Z, \leq)
 - \square $x \land y = min\{x,y\}, x \lor y = max\{x,y\}$
- \blacksquare ({1,2,3,4,6,8,12,16,24,48},|)
 - \square x \land y=gcd(x,y), x \lor y=lcm(x,y)
- {(true, false), {(false, true)}}
 - $\square \land$, V are boolean operations **and**, **or** respectively.
- \blacksquare ($\rho(B),\subseteq$)
 - \square $x \land y = x \cap y, x \lor y = x \cup y$

Lattice and Hasse Diagram

The posets represented by the two hasse diagram on the right are not lattices.

r,e

Basic Formula about Lattices

- By the definitions of LUB and GLB, it is easy to prove that:
 - □a≼aVb, b≼aVb
 - \square If a \leq c, b \leq c, then aVb \leq c
 - □a∧b≼a, a∧b≼b
 - \square If c \leq a, c \leq b, then c \leq a \land b

Algebraic Properties of Lattice

- Idempotent properties
 - $\square a \lor a = a \land a = a$
- Commutative properties
 - $\square a \lor b = b \lor a; a \land b = b \land a$
- Associative properties
 - $\square a \lor (b \lor c) = (a \lor b) \lor c; a \land (b \land c) = (a \land b) \land c$
- Absorption properties
 - $\square a \lor (a \land b) = a; a \land (a \lor b) = a$

More Properties of Lattices

- Let *L* be a lattice, $\forall a,b,c,d \in L$, If $a \leq b$, $c \leq d$, then $a \land c \leq b \land d$, $a \lor c \leq b \lor d$
 - $\Box :: a \land c \leq a \leq b, \ a \land c \leq c \leq d, \text{ then a} \land c \text{ is one lower bound of } \{b,d\}, \ \therefore a \land c \leq b \land d;$
 - $\Box :: a \leq b \leq b \vee d, c \leq d \leq b \vee d$, so, $b \vee d$ is one of the upper bound of $\{a,c\}$, $\therefore a \vee c \leq b \vee d$

More Properties of Lattice

■ Distributive Inequality $\forall a,b,c \in L, a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$

- Proof:
 - \square Since $a \leq a$ and $b \land c \leq b$, we have $a \lor (b \land c) \leq (a \lor b)$;
 - \square Since $a \leq a$ and $b \land c \leq c$, we have $a \lor (b \land c) \leq (a \lor c)$;
 - $\square a \lor (b \land c)$ is a lower bound of $\{(a \lor b), (a \lor c)\}$
 - $\square : a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$

Similarily, it is easy to prove that:

 $(a \land b) \lor (a \land c) \leq a \land (b \lor c)$

Sublattice

- Let (L,Λ,V) is a lattice, S is a nonempty subset of L. If S is close under the operations Λ and V, then S is a sublattice of L.
- Example:
 - \Box Let $S_1 = \{a,b,d,h\}; S_2 = \{a,b,d,f\}$
 - □ Then S_2 is a sublattice, but S_1 is not $(b \land d \notin S_1)$

Several Special Lattice

- **■** (1) Chain
- (2) Diamond lattice
 - □ Note: $bV(c \land a) = (bVc) \land a = a$
- (3) Pentagon lattice
 - □ Note: $cV(b \land d) = cVe = c \neq (cVb) \land d = a \land d = d$

Distributive Lattice

- Definition: L is a lattice, if for all $a,b,c \in L$, $a \land (b \lor c) = (a \land b) \lor (a \land c)$, then L is called a distributive lattice.
 - □ Note: $a\Lambda(bVc)=(a\Lambda b)V(a\Lambda c)$ iff. $aV(b\Lambda c)=(aVb)\Lambda(aVc)$
 - □ Because (aVb)Λ(aVc) = ((aVb)Λa)V((aVb)Λc)= aV(bΛa)V(aΛc)V(bΛc) = aV(bΛc)
- Diamond(2) and pentagon(3) are not distributive lattices.
 - In (2), $b \land (c \lor d) = b$, but $(b \land c) \lor (b \land d) = e$
 - In (3), $dV(b \land c) = d$, but $(dVb) \land (dVc) = c$

M

Characteristics of Distributive Lattices

■ Lattice *L* is a distributive lattice if and only if it does not contain sublattice isomorphic to diamond lattice or pentagon lattice.

Bounded Lattice

- A lattice L is bounded if L has both a greatest element I and a least element θ .
- Finite lattice is bounded lattice
 - $\square I$ is $a_1 \lor a_2 \lor ... \lor a_n$
 - $\square \theta$ is $a_1 \wedge a_2 \wedge ... \wedge a_n \circ$
- If L is a bounded lattice, then for all x in L
 - $\Box I \land x = x; I \lor x = I$
 - $\square 0 \land x = 0; 0 \lor x = x$

Complement

Let L is a bounded lattice. For any given element a in L, if there exists some b in L, such that aVb=1 and a \land b=0, then b is called the complement of a.

Note: 0 and 1 are complement of each other.

Uniqueness of Complement

- Let *L* be a bounded distributive lattice. If a complement exists, it is unique.
- Proof
 - □ Suppose that b and c are both complements of a, i.e. aVb=1, $a\Lambda b=0$; aVc=1, $a\Lambda c=0$, then:
 - $\Box b = b \lor 0 = b \lor (a \land c) = (b \lor a) \land (b \lor c) = (b \lor c)$
 - \square Also, $c=c \lor 0=c \lor (a \land b)=(c \lor a) \land (c \lor b)=(b \lor c)$
 - \square So, b=c

10

Home Assignments

- To be checked
 - □ Ex. 6.1: 10, 13, 14, 16, 18, 26-28, 29, 30, 34-36, 38, 40
 - □ Ex. 6.2: 6, 8, 12, 14, 17-19, 20, 22, 23-26, 32, 33, 35-38
 - □ Ex. 6.3: 1-6, 13-15, 18-20, 22, 24-26, 27, 29, 34, 37-40