Elektromehanički sustavi

1. Domaća Zadaća

Slika 1. Nadomjesna električna shema istosmjernog stroja s nezavisnom uzbudom

Induktivitet armaturnog	$L_a = 0.03 \text{ H}$
namota	
Moment inercije	$J = 0.6 \text{ kgm}^2$
Koeficijent viskoznog trenja	B = 0.1 Nm/rad/s
Koeficijent inducirane	$k_e = 1,85 \text{ V/rad/s}$
protuelektromotorne sile	
Koeficijent elektromagn.	$k_{\rm m} = 1.85 \text{ Nm/A}$
momenta	
Otpor aramaturnog namota	$R_a = 0.6 \Omega$
Nominalni napon	$U_a = 240 \text{ V}$
Nominalni moment	$M_n = 30 \text{ Nm}$

Tablica 1. Osnovni podaci istosmjernog stroja potrebni za njegovo modeliranje

$$M_m = c_m \cdot I_a \rightarrow I_{an} = \frac{M_n}{c_m} = \frac{30}{1,85} = 16,22 \text{ A}$$
 $\omega_n = \frac{U_n - I_{an} \cdot R_a}{c_e} = \frac{240 - 16,22 \cdot 0,6}{1,85} = 124,47 \text{ rad/s}$

$$n_n = \frac{30 \cdot \omega_n}{\pi} = 1188,6 \text{ r} \cdot \text{min}^{-1}$$

$$R_a \cdot i_a + L_a \cdot \frac{di_a}{dt} + e = u$$

$$M_m - M_t - M_{tr} = J \frac{d\omega}{dt}$$

$$e = c_e \cdot \omega \qquad M_{tr} = B \cdot \omega$$

b)

Slika 2. Simulink shema matematičkog modela istosmjernog stroja s nezavisnom uzbudom

Slika 3. Odziv struje armature na skokovitu promjenu napona sa 0 na nazivni napon

Prijelazna pojava traje približno 0,7 sekundi.

Slika 4. Odziv kutne brzine vrtnje na skokovitu promjenu napona sa 0 na nazivni napon

Prijelazna pojava traje 0,6 sekundi.

c) Moment tereta je uključen u šemu kao konstantna veličina, a moment trenja (koeficijent viskoznog trenja B) je uključen u isti blok kao i moment ubrzanja (moment tromosti J) zbog jednostavnosti šeme tako da se ne crta dodatna povratna veza.

d)

Brzina vrtnje asinkronog motora direktno je proporcionalna frekvenciji: n=60f_s(1-s)/p, ali se u motoru zbog promjene frekvencije događaju i promjene magnetskog toka (indukcije) što utječe na promjene razvijenog momenta: U₁≈E=4,44Nf₅Φ. Promijenimo li frekvenciju ne mijenjajući napon, doći će do promjena indukcije B odnosno mag. toka Φ. Povećanje B nije moguće zbog zasićenja mag. kruga, a smanjenjem Φ (pri povećanju f) smanjuje se moment motora i to opet nije dozvoljeno. Zbog toga se regulira po zakonu: U/f=konst.

Upravljanjem brzinom vrtnje promjenom napona napajanja i promjenom ukupnog otpora rotorskog kruga ima ove karakteristike:

- -neekonomičnost jer se povećanjem otpora u rotorskom krugu i smanjivanjem napona napajanja povećava klizanje i time gubici pa nije primjenjivo kod niskih brzina
- -smanjivanjem napona smanjuje se M_{pr} i time preopteretivost
- -momentna krivulja postaje mekša i brzina jače ovisi o momentu tereta
- -brzina vrtnje se ne može povećavati iznad n_s, nema područja konstantne snage za razliku od skalarne regulacije
- -nešto jeftiniji pretvarač u odnosu na frekv. pretvarač