Studies of ERM Models with Correlated Disorder

by Tom Folgmann

Bachelor Thesis Presentation, 2024

What is ERM?

What is ERM?

Imagine a system of $N \in \mathbb{N}$ particles.

Imagine a system of $N \in \mathbb{N}$ particles.

→ How would you describe their relations?

Imagine a system of $N \in \mathbb{N}$ particles.

→ How would you describe their relations?

Imagine a system of $N \in \mathbb{N}$ particles.

→ How would you describe their relations?

A system with $N \in \mathbb{N}$ (related) particles can be described by a mathematical Graph.

$$L(G) := D(G) - W(G).$$

$$L(G) \coloneqq D(G) - W(G).$$

- D(G) gives the degree of each node: Number of connected edges.
- W(G) encodes the *strength* (and direction) of the connections.

$$L(G) := D(G) - W(G).$$

- D(G) gives the degree of each node: Number of connected edges.
- W(G) encodes the *strength* (and direction) of the connections.

$$\begin{split} D(G) \coloneqq \operatorname{diag}(d), & \qquad d_i \coloneqq \#\{e \in E : v_i \in e\}, \\ W(G) \coloneqq \left(w_{ij}\right)_{(i,j) \in [N]^2}, & \qquad w : [N]^2 \to \mathbb{R}. \end{split}$$

$$L(G) \coloneqq D(G) - W(G).$$

- D(G) gives the degree of each node: Number of connected edges.
- W(G) encodes the *strength* (and direction) of the connections.

$$\begin{split} D(G) &\coloneqq \operatorname{diag}(d), & d_i &\coloneqq \#\{e \in E : v_i \in e\}, \\ W(G) &\coloneqq \left(w_{ij}\right)_{(i,j) \in [N]^2}, & w : [N]^2 \to \mathbb{R}. \end{split}$$

.. special case is the Adjacency Matrix A, where $w_{i,j} \in \{0, -1, 1\}$.

Definition of the ERM Laplacian Matrix

In the ERM model the Laplacian matrix is defined as

$$\tilde{U}(f,r) \coloneqq \begin{pmatrix} \Sigma(f,1) & -f_{12} & \dots & -f_{1N} \\ -f_{21} & \Sigma(f,2) & \dots & -f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -f_{N1} & -f_{N2} & \dots & \Sigma(f,N) \end{pmatrix},$$

Definition of the ERM Laplacian Matrix

In the ERM model the Laplacian matrix is defined as

$$\tilde{U}(f,r) \coloneqq \begin{pmatrix} \Sigma(f,1) & -f_{12} & \dots & -f_{1N} \\ -f_{21} & \Sigma(f,2) & \dots & -f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -f_{N1} & -f_{N2} & \dots & \Sigma(f,N) \end{pmatrix},$$

• Interaction strength given by $f_{ij} \stackrel{\text{m}}{=} f(r_i - r_j)$

Definition of the ERM Laplacian Matrix

In the ERM model the Laplacian matrix is defined as

$$\tilde{U}(f,r) \coloneqq \begin{pmatrix} \Sigma(f,1) & -f_{12} & \dots & -f_{1N} \\ -f_{21} & \Sigma(f,2) & \dots & -f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -f_{N1} & -f_{N2} & \dots & \Sigma(f,N) \end{pmatrix},$$

- Interaction strength given by $f_{ij} \stackrel{\text{m}}{=} f(r_i r_j)$ Self-interaction given by $\Sigma(f, i) \stackrel{\text{m}}{=} \sum_{j \in [N] \setminus \{i\}} f_{ij}$

Let $\Lambda:[p]\to \sigma_P\big(\tilde{U}(f,r)\big)$ map bijectively into the point spectrum of the ERM Laplacian.

... results in an (unnormalized) density function

$$E \mapsto \sum_{i \in [p]} \delta_{\Lambda_i}(E) \qquad \in \{0,p\}$$

The Resolvent Eigenvalue Approximation

.. by an example point Λ_i at $i \in [p]$.

The Resolvent Eigenvalue Approximation

.. by an example point Λ_i at $i \in [p]$.

The Resolvent Eigenvalue Approximation

.. by an example point Λ_i at $i \in [p]$.

 \hookrightarrow Usecase is the resolvent with a singularity at Λ_i .

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

.. using our Laplacian ERM Matrix and Newtonian dynamics:

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

.. using our Laplacian ERM Matrix and Newtonian dynamics:

$$\left(\frac{d}{dt}\right)^2 x_i(t) = -\tilde{U}(f, i \mapsto x_i(t))_{i,j} \cdot x_j(t), \qquad i, j \in [N].$$

$$[N] \ni i \to (x_i : \mathbb{R}_{>0} \to \mathbb{R}^d)$$
 map of a particle's position

.. using our Laplacian ERM Matrix and Newtonian dynamics:

$$\left(\frac{d}{dt}\right)^2 x_i(t) = -\tilde{U}(f,i\mapsto x_i(t))_{i,j}\cdot x_j(t), \qquad i,j\in[N].$$

.. looking at the behaviour with regard to the initial conditions:

$$\left(\frac{d}{dt}\right)^2\langle x_i(t),x_i(0)\rangle = -\tilde{U}(f,i\mapsto x_i(t))_{i,j}\cdot\langle x_j(t),x_i(0)\rangle.$$

Implementation of two initial configurations:

Implementation of two initial configurations:

 $\bullet \ \langle x_i(t), x_j(0) \rangle = \delta_{ij}$

Implementation of two initial configurations:

- $\begin{array}{ll} \bullet & \langle x_i(t), x_j(0) \rangle = \delta_{ij} \\ \bullet & \left(\frac{d}{dt}\right) \langle x_i(t), x_j(0) \rangle = 0 \end{array}$

Implementation of two initial configurations:

- $\begin{array}{ll} \bullet & \langle x_i(t), x_j(0) \rangle = \delta_{ij} \\ \bullet & \left(\frac{d}{dt}\right) \langle x_i(t), x_j(0) \rangle = 0 \end{array}$
- .. leads to the Resolvent representation (Green's

function): of the ERM Laplacian:⁵

Implementation of two initial configurations:

$$\bullet \quad \langle x_i(t), x_j(0) \rangle = \delta_{ij}$$

$$\begin{array}{ll} \bullet & \langle x_i(t), x_j(0) \rangle = \delta_{ij} \\ \bullet & \left(\frac{d}{dt}\right) \langle x_i(t), x_j(0) \rangle = 0 \end{array}$$

.. leads to the Resolvent representation (Green's

function): of the ERM Laplacian:⁶

$$\left(\mathcal{L}F_{j,i}\right)(s) = \pm \frac{1}{\tilde{U}(f,x^*(t))_{i,j} - \delta_{ij} \cdot \lambda_i^2}.$$

$$^6 ext{With }x^*(t)=\left(i\mapsto x_{i(t)}
ight) ext{ and } F_{j,i}(t)\coloneqq\langle x_j(t),x_i(0)
angle.$$

Where does *Randomness* come into play?

Where does *Randomness* come into play?

.. by a slight modification of functions!

Where does *Randomness* come into play?

.. by a slight modification of functions!

 $\Omega \ni \omega \mapsto R(\omega)$, equivalent to x from before.

Where does *Randomness* come into play?

.. by a slight modification of functions!

 $\Omega \ni \omega \mapsto R(\omega)$, equivalent to x from before.

Ev. step	Meaning
R	Random variable, abstract
$R(\omega)$	Vector of time dep. pos.
$\boxed{ R(\omega)_i}$	<i>i</i> -th particle position, time dep. path
$\boxed{R(\omega)_i(t)}$	Position of i -th particle at time t

The measurement of Eigenvalues

Eigenvalue measurement can be done via the resolvent. Gaussian representation gives us:

The measurement of Eigenvalues

Eigenvalue measurement can be done via the resolvent. Gaussian representation gives us:

$$\left(\tilde{U}(f,r)-z\right)_{ij}^{-1} = \int_{\mathbb{R}^d} \varphi_i \cdot \varphi_j \underbrace{\left(\underbrace{e^{-\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r)-z\right) \cdot \varphi,\varphi\right\rangle}_{\text{Boltzmann density}} \cdot \lambda\right)}_{\text{Boltzmann density}} (d\varphi).$$

The measurement of Eigenvalues

Eigenvalue measurement can be done via the resolvent. Gaussian representation gives us:

$$\left(\tilde{U}(f,r)-z\right)_{ij}^{-1} = \int_{\mathbb{R}^d} \varphi_i \cdot \varphi_j \underbrace{\left(\underbrace{e^{-\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r)-z\right) \cdot \varphi,\varphi\right\rangle}_{\text{Boltzmann density}} \cdot \lambda\right)}_{\text{Boltzmann density}} (d\varphi).$$

This is already a good starting point to understand our *Correlated Disorder* modification!

What is ERM?

.. missing key elements:

⁷Expansion to a functional can be argued, see thesis p. 19.

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

 \hookrightarrow see the Boltzmann density exponent for implicit def.:⁹

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

 \hookrightarrow see the Boltzmann density exponent for implicit def.:¹⁰

$$-\frac{\beta}{2} \cdot S_{z,R_{\omega}}(\varphi) \coloneqq -\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r) - z \right) \cdot \varphi, \varphi \right\rangle$$

 $^{^{10}}$ Expansion to a functional can be argued, see thesis p. 19.

- .. missing key elements:
- The action (functional) $S_{z,R_{\omega}}$ at a test point $z \in \mathbb{C}$ and a particle position vector R_{ω} .

 \hookrightarrow see the Boltzmann density exponent for implicit def.:¹¹

$$-\frac{\beta}{2} \cdot S_{z,R_{\omega}}(\varphi) \coloneqq -\frac{\beta}{2} \cdot \left\langle \left(\tilde{U}(f,r) - z \right) \cdot \varphi, \varphi \right\rangle$$

• The moment generating function $Z_{z,R_{\omega}}[J]$. It requires the force field J.

¹¹Expansion to a functional can be argued, see thesis p. 19.

Definition 2.22. External Field Shift.

For $R: \Omega \to V_{d,N}$ and $\Phi \in \mathbb{F}_{d,N}$ we define

$$J \mapsto -\frac{1}{2} \cdot S_{z,R_{\omega}}^{(0)}(\Phi) + \int_{\mathbb{R}^d} J(x) \cdot \Phi(-x) + J(-x) \cdot \Phi(x) \; \lambda(dx)$$

the field shifted action $S_{z,R_{\omega}}^{(0)}$ by an external field $J \in \mathcal{S}(\mathbb{R}^d)$.

Definition 2.22. External Field Shift.

For $R: \Omega \to V_{d,N}$ and $\Phi \in \mathbb{F}_{d,N}$ we define

$$J \mapsto -\frac{1}{2} \cdot S_{z,R_{\omega}}^{(0)}(\Phi) + \int_{\mathbb{R}^d} J(x) \cdot \Phi(-x) + J(-x) \cdot \Phi(x) \; \lambda(dx)$$

the field shifted action $S_{z,R_{\omega}}^{(0)}$ by an external field $J \in \mathcal{S}(\mathbb{R}^d)$.

$$\hookrightarrow \frac{\delta}{\delta J(x)} S_{z,R_{\omega}}^{(0)}[\Phi] = i \cdot \Phi(-x).$$

The Generative Operator

Using these tools, an Operator generating $Z_{z,R_{\omega}}$ can be deduced:

The Generative Operator

Using these tools, an Operator generating $Z_{z,R_{\omega}}$ can be deduced:

$$Z_{z,R_{\omega}}[J] = \int_{\mathbb{F}_{d,N}} e^{\left(S_{z,R_{\omega}}^{(0)}\Phi + S_{z,R_{\omega}}^{(int)}\Phi\right)[J]} d\Phi = \underbrace{\left[\operatorname{Ex}_{\mathcal{L}_f}\left[\int_{\mathbb{F}_{d,N}} e^{\left(S_{z,R_{\omega}}^{(0)}\Phi\right)[\cdot]} d\Phi\right]\right]}_{\text{Generative Part}}[J].$$

 \rightarrow Looking at different Taylor expansion terms yields different integrals.

Feynman Diagrammatics - Edges

.. conveniently using symmetry in Fourierspace:

Feynman Diagrammatics - Edges

.. conveniently using symmetry in Fourierspace:

$$\begin{array}{ll} & \longrightarrow & \coloneqq \frac{G_0(\boldsymbol{p},z)}{\rho_*} \\ & & \gamma \\ & \coloneqq \frac{\mathbb{E}((\mathcal{F}\delta_{\!\rho_R})(\boldsymbol{q})\cdot(\mathcal{F}\delta_{\!\rho_R})(-\boldsymbol{q}))}{\rho_*} \end{array}$$

Feynman Diagrammatics - Edges

.. conveniently using symmetry in Fourierspace:

$$\begin{array}{c} \longrightarrow := \frac{G_0(\boldsymbol{p},z)}{\rho_*} \\ \\ \gamma := \frac{\mathbb{E}((\mathcal{F}\delta\rho_R)(\boldsymbol{q})\cdot(\mathcal{F}\delta\rho_R)(-\boldsymbol{q}))}{\rho_*} \end{array}$$

.. possible connections of these edges are given by *vertices*:

Feynman Diagrammatics - Vertices

Feynman Diagrammatics - Vertices

Feynman Diagrammatics - Vertices

.. which completes the set of Feynman rules.

How can we use diagrammatics?

.. displaying summands in operator expansion.

How can we use diagrammatics?

.. displaying summands in operator expansion.

Observe **one** loop diagrams:

How can we use diagrammatics?

.. displaying summands in operator expansion.

Observe **one** loop diagrams:

.. represented diagrams are irreducible: $Z_{z,R_{\omega}}[J] = \exp(\sum_{C \in \mathcal{C}} C)$.

Integral representations¹²

¹²Attention! The terms have been simplified. For more details see Thesis sec. 2.4.2.

Integral representations¹³

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \boldsymbol{p} \\ \boldsymbol{q} \end{array} \end{array} = \frac{G_0(\boldsymbol{p},z)^2}{\rho_*} \cdot \int_{\mathbb{R}^d} G_0(\boldsymbol{q}-\boldsymbol{p},z) \cdot \mu_z(\boldsymbol{p},-\boldsymbol{q})^2 \, d\boldsymbol{q}, \\ \\ \begin{array}{c} \boldsymbol{p} \\ \boldsymbol{q} \end{array} \end{array} = -\frac{2 \cdot G_0(\boldsymbol{p},z)}{\rho_*} \cdot \int_{\mathbb{R}^d} G_0(\boldsymbol{p}-\boldsymbol{q},z) \cdot \mu_{z(\boldsymbol{p},-\boldsymbol{q})} \, d\boldsymbol{q}, \\ \\ \begin{array}{c} \boldsymbol{q} \end{array} \end{array} = \frac{1}{\rho_*} \cdot \int_{\mathbb{R}^d} G_0(\boldsymbol{p}-\boldsymbol{q},z) \, d\boldsymbol{q}. \end{array}$$

¹³Attention! The terms have been simplified. For more details see Thesis sec. 2.4.2.

What is Correlated Disorder?

.. previously we used an a priori probability density $R \to \frac{1}{|V_{d,N}|}$

.. previously we used an a priori probability density $R \to \frac{1}{|V_{d,N}|}$

 \hookrightarrow This did not account for the *structure* of our system.

.. previously we used an a priori probability density $R \to \frac{1}{|V_{d,N}|}$

 \hookrightarrow This did not account for the *structure* of our system.

Main question to solve:

.. previously we used an a priori probability density $R \to \frac{1}{|V_{d,N}|}$

 \hookrightarrow This did not account for the *structure* of our system.

Main question to solve:

How can we include *structure* in our probability density?

The (radial) Particle Distribution Density

The (radial) Particle Distribution Density

To calculate possibility of finding particles near a given reference r_0 we used the radial distribution function

$$g_{r_0}(r) = \int_{\mathbb{R}^d} \rho_N^{(2)}(r_0 + r, r) \; dr,$$

while $\rho_N^{(2)}$ reflects integration of $\exp(-\beta \cdot H(r,\cdot))$ for remaining particles.

How can we use this now?

How can we use this now?

There is a particular connection between g and the static structure factor $S_*!$

How can we use this now?

There is a particular connection between g and the $static\ structure\ factor\ S_*!$

.. namely given by

$$S_*(\boldsymbol{q}) = 1 + \int_{\mathbb{R}^d} (g_0(\boldsymbol{r}) - 1) \cdot e^{\boldsymbol{\hat{i}} \cdot \boldsymbol{q} \cdot \boldsymbol{r}} \, d\boldsymbol{r}.$$

What does g_0 look like?¹⁴

¹⁴Looking at a soft sphere model, see later.

What does g_0 look like?¹⁵

 $^{^{15}{\}rm Looking}$ at a soft sphere model, see later.

Resulting in the Static Structure Factor

Resulting in the Static Structure Factor

Where did we implement this, what did it change?

Where did we implement this, what did it change?

Analytical Aspects

We have established a new expectancy for $\delta \rho_R(\mathbf{q}) \cdot \delta \rho_R(-\mathbf{q})$:

We have established a new expectancy for $\delta \rho_R(\boldsymbol{q}) \cdot \delta \rho_R(-\boldsymbol{q})$:

$$\langle \delta \rho_R(\boldsymbol{q}), \delta \rho_R(-\boldsymbol{q}) \rangle = \frac{1}{\rho_*} \cdot S_*(\boldsymbol{q}).$$

We have established a new expectancy for $\delta \rho_R(\boldsymbol{q}) \cdot \delta \rho_R(-\boldsymbol{q})$:

$$\langle \delta \rho_R(\boldsymbol{q}), \delta \rho_R(-\boldsymbol{q}) \rangle = \frac{1}{\rho_*} \cdot S_*(\boldsymbol{q}).$$

This results in a slight change in Feynman edges:

We have established a new expectancy for $\delta \rho_R(\boldsymbol{q}) \cdot \delta \rho_R(-\boldsymbol{q})$:

$$\langle \delta \rho_R(\boldsymbol{q}), \delta \rho_R(-\boldsymbol{q}) \rangle = \frac{1}{\rho_*} \cdot S_*(\boldsymbol{q}).$$

This results in a slight change in Feynman edges:

$$\gamma := \frac{S_*(\boldsymbol{q})}{\rho_*}$$

Where did we implement this, what did it change?

Analytical Aspects

From this the Integrands of the irreducible diagrams gain a factor:

From this the Integrands of the irreducible diagrams gain a factor:

$$\begin{array}{c} \begin{array}{c} \boldsymbol{p} \end{array} \\ \begin{array}{c} \boldsymbol{p} \end{array} \\ \boldsymbol{q} \end{array} \begin{array}{c} \boldsymbol{p} \end{array} \\ = \frac{G_0(\boldsymbol{p},z)^2}{\rho_*} \cdot \int_{\mathbb{R}^d} G_0(\boldsymbol{q}-\boldsymbol{p},z) \cdot \mu_z(\boldsymbol{p},-\boldsymbol{q})^2 \cdot S_*(\boldsymbol{q}) \ d\boldsymbol{q}, \end{array}$$

From this the Integrands of the irreducible diagrams gain a factor:

This also affects the Self-Energy:

From this the Integrands of the irreducible diagrams gain a factor:

This also affects the Self-Energy:

$$\Sigma_{S_*}^{(1)}(\boldsymbol{p},z) = \frac{1}{\rho_*} \cdot \int_{^{\mathbb{D}} ^d} S_*(\boldsymbol{q}) \cdot G_0(\boldsymbol{p}-\boldsymbol{q},z) \cdot S_*(\boldsymbol{q}) \; d\boldsymbol{q}.$$

Can we in any way compare our results?

Here, a superposition approximation was used:

$$\frac{1}{\left|V_{d,N}\right|} \cdot \exp(-\beta \cdot U(r)) \approx \frac{1}{\left|V_{d,N}\right|} \cdot \exp\left(-\beta \cdot \sum_{i \in [N-1]} u(r_i - r_{i+1})\right)$$

Here, a superposition approximation was used:

$$\frac{1}{|V_{d,N}|} \cdot \exp(-\beta \cdot U(r)) \approx \frac{1}{|V_{d,N}|} \cdot \exp\left(-\beta \cdot \sum_{i \in [N-1]} u(r_i - r_{i+1})\right)$$

This approach only considers direct neighbors in a chain. Compare:

Here, a superposition approximation was used:

$$\frac{1}{\left|V_{d,N}\right|} \cdot \exp(-\beta \cdot U(r)) \approx \frac{1}{\left|V_{d,N}\right|} \cdot \exp\left(-\beta \cdot \sum_{i \in [N-1]} u(r_i - r_{i+1})\right)$$

This approach only considers direct neighbors in a chain. Compare:

$$\exp(-\beta \cdot U(r)) = \exp\left(-\beta \cdot \sum_{(i,j) \in [N]^2} u\big(r_i - r_j\big)\right).$$

An implementation of $r \mapsto \frac{\exp(-\beta \cdot \sum ...)}{|V_{d,N}|}$ is done:

An implementation of $r \mapsto \frac{\exp(-\beta \cdot \sum ...)}{|V_{d,N}|}$ is done:

$$\label{eq:force_equation} \begin{split} \mathscr{f}(r) :&\approx \frac{f(r)}{\left|V_{d,N}\right|} \cdot \exp{\left(-\beta \cdot \sum_{(i,j) \in [N]^2} u \big(r_i - r_j\big)\right)}. \end{split}$$

This has an explicit approximation built into the spring function!

In a consequence, the bare propagator changes:

In a consequence, the bare propagator changes:

$$G_0(\boldsymbol{p},z) = \frac{1}{z - \rho_* \cdot (\boldsymbol{\digamma}(\boldsymbol{0}) - S_*(\boldsymbol{p}))} \neq \underbrace{\frac{1}{z - \rho_* \cdot (\boldsymbol{f}(\boldsymbol{0}) - S_*(\boldsymbol{p}))}}_{\text{Our Approach}}.$$

In a consequence, the bare propagator changes:

$$G_0(\boldsymbol{p},z) = \frac{1}{z - \rho_* \cdot (\boldsymbol{\digamma}(\boldsymbol{0}) - S_*(\boldsymbol{p}))} \neq \underbrace{\frac{1}{z - \rho_* \cdot (\boldsymbol{f}(\boldsymbol{0}) - S_*(\boldsymbol{p}))}}_{\text{Our Approach}}.$$

• We explicitly did not approximate the spring function.

In a consequence, the bare propagator changes:

$$G_0(\boldsymbol{p},z) = \frac{1}{z - \rho_* \cdot (\boldsymbol{\digamma}(\boldsymbol{0}) - S_*(\boldsymbol{p}))} \neq \underbrace{\frac{1}{z - \rho_* \cdot (\boldsymbol{f}(\boldsymbol{0}) - S_*(\boldsymbol{p}))}}_{\text{Our Approach}}.$$

- We explicitly did not approximate the spring function.
- We did not change the zeroth order term in the propagator.

What did a numerical model show?

We chose a *step function* for the spring mapping:

$$\mathbb{R} \ni r \mapsto f_a^{(num)}(r) = \begin{cases} 1 \text{ if } r < a, \\ 0 \text{ else.} \end{cases}$$

We chose a *step function* for the spring mapping:

$$\mathbb{R} \ni r \mapsto f_a^{(num)}(r) = \begin{cases} 1 \text{ if } r < a, \\ 0 \text{ else.} \end{cases}$$

.. resulting in a pair potential

We chose a *step function* for the spring mapping:

$$\mathbb{R} \ni r \mapsto f_a^{(num)}(r) = \begin{cases} 1 \text{ if } r < a, \\ 0 \text{ else.} \end{cases}$$

.. resulting in a pair potential

$$V_{d,N} \ni R \mapsto U_a^{(num)}(R) = \sum_{(i,j) \in [N]^2} \begin{cases} \frac{1}{2} \cdot \left(\left\| R_i - R_j \right\| - a \right)^2 \text{ if } \left\| R_i - R_j \right\| < a, \\ 0 \text{ else.} \end{cases}$$

Results using the Hypernetted Chain

Results using the Hypernetted Chain

Results using the Hypernetted Chain

 \rightarrow Sadly no major differences in the velocity of sound noticeable.