3. Синтез комбінаційних схем

3.1. Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна

<u>Алгебра Буля (I, АБО, НЕ)</u>

f4_{DDHФ}=(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X73X2X1)

v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)v(X4X3X2X1)

 $f4_{IKH\Phi} = (X4vX3vX2v\overline{X4}) \cdot (\overline{X4}vX3vX2v\overline{X1}) \cdot (\overline{X4}vX3v\overline{X2}v\overline{X1}) \cdot (\overline{X4}v\overline{X3}v\overline{X2}v\overline{X1})$

Алгебра Шеффера {I-HE}

f4 = ((X4/X4)/(X3/X3)/(X2/X2)/X1)/((X4/X4)/(X3/X3)/(X2)/(X1/X1))/
((X4/X4)/(X3/X3)/(X2)/(X1))/((X4/X4)/(X3)/(X2/X2)/(X1))/((X4)/(X3/X3))
/(X2/X2)/(X1/X1))/((X4)/(X3/X3)/(X2/X2)/(X1))/((X4)/(X3/X3)/(X2)/(X1))/((X4)/(X3/X3)/(X2)/(X1))/((X4)/(X3)/(X2)/(X1))/((X4)/(X3)/(X2)/(X1)).
Απεεδρα Πίρςα {ΑΕΟ-ΗΕ}

f4 = ((X4)\ (X3)\ (X2)\ (X1\ X1)\ \ ((X4\ X4)\ (X3)\ (X2)\ (X1\ X1)\ \ ((X4\ X4)\ (X3)\ (X2\ X2)\ (X1\ X1)\ \ ((X4\ X4)\ (X3\ X3)\ (X2\ X2)\ (X1\ X1)\ Απεεδρα Χεεταπκίнα {ΒΝΚΛΙΟΥΗΕ ΑΕΟ, Ι, const 1}

f4 = ((X4Ф1)(X3Ф1)(X2Ф1)(X1))Ф((X4Ф1)(X3Ф1)(X2)(X1Ф1)Ф((X4Ф1) (X3Ф1)(X2)(X1))Ф((X4Ф1)(X3)(X2Ф1)(X1))Ф((X4Ф1)(X3)(X2)(X1))Ф((X4)(X3Ф1) (X2Ф1)(X1Ф1))Ф((X4)(X3)(X2Ф1)(X1))Ф((X4)(X3)(X2)(X1)) = (X3X2X1)Ф(X4X1)Ф(X4X2)Ф(X2X1)Ф(X4)Ф(X2)Ф(X1) 3.2. Визначення належності функції f4 до п'яти передуповних класів

- f(1111) = 1 => функція зберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = 1 => функція не самодвоїста
- f(0011) > f(0100) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

3.3. Мінімізація функції f4

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4)

Зм.	Арк.	№ докум.	Підп.	Дата

```
KO
                K1
                             K2
                                          K3
0001 (1) 00X1 (1)
                         0XX1 (1)
                                       XXX1 (1)
0010 (1) 0X01 (1)
                         X0X1 (1)
                                       XXX1 (1)
                                       XXX1 (1)
0011 (1)
           X001 (1)
                         OXX1 (1)
0101 (1)
           <del>001X (1</del>)
                         XX01 (1)
0111 |1|
            X010 (1)
                         X0X1 (1)
                         XX01 (1)
<del>-1000 (1)</del>
           0X11 (1)
                         X01X (1)
<del>1001 (1)</del>
            X011 (1)
                         X01X (1)
1010 (1) 01X1 (1)
                          XX11 (1)
<del>1011 (1)</del>
            X101 (1)
<del>-1100 (1</del>)
           <del>X111 (1</del>)
                          XX11 [1]
<del>1101 (1</del>)
            <del>100X (1)</del>
                          X1X1 (1)
<del>-1111 (1</del>)
            <del>10X0 (1)</del>
                         X1X1 (1)
                         10XX (1)
            1X00 (1)
             10X1 (1)
                         1X0X (1)
                         10XX (1)
             <del>1X01 (1</del>)
            101X (1)
                         1XOX (1)
             1X11 (1)
                          1XX1 (1)
             <del>-110X-(1)</del>
                         1XX1 (1)
             11X1 (1)
```

Рисунок 4.4 – Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 – Таблиця покриття

	0001(F1)	0010(F1)	0011(F1)	0101(F1)	0111(F1)	1000(F1)	1001(F1)	1010(F1)	1011(F1)	1100(F1)	1101(F1)	1111(F1)
X01X (1)		+						+				
10XX (1)												
1XOX (1)						+				+		
XXX1 (1)	+		+	+	+		+		+		+	+

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {XO1X; 1XOX; XXX1}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MH,||\phi|} = (\overline{X}3X2) \ v \ (X4\overline{X}2) \ v \ (X1)$

					l
Зм.	Арк.	№ докум.	Підп.	Дата	

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

- 1. Рівняння для энаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується відкреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках. 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

Таблиця 4.4 – Метод невизначених коефіцієнтів

_									1	1	1			T	1
<i>X</i> ₄	<i>X</i> ₃	<i>X</i> ₂	<i>X</i> ₁	X_4X_3	X_4X_2	X_4X_1	X_3X_2	X ₃ X ₁	X_2X_1	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	$X_3X_2X_1$	X ₄ X ₃ X ₂ X ₁	f_4
θ	Ә	Ә	Ә	<i>00</i>	<i>00</i>	<i>•00</i>	<i>00</i>	<i>•••</i>	<i>-00</i>	<i>000</i>	<i>-000</i>	<i>-000</i>	<i>-000</i>	<i>-0000</i>	θ
Ә	Ф	Ф	1	00	00	_01	00	01	01	<i>999</i>	901	901	001	0001	1
Ә	Ә	1	Ф	00	01	00	01	<i>00</i>	10	-001	<i>-000</i>	<i>010</i>	010	0010	1
Ә	Ф	1	1	00	01	_01	01	01	11	001	901	011	011	0011	1
Ф	1	Ф	Ф	01	00	00	10	10	00	010	<i>010</i>	<i>-000</i>	-100	<i>0100</i>	Ф
Ә	1	Ф	1	01	00	_01	10	11	ÐI	<i>-010</i>	011	_001	101	0101	1
Э	1	1	Ф	-01	01	00	-1 1	10	10	<i>011</i>	<i>010</i>	<i>010</i>	-110	0110	Ф
Ф	1	1	1	01	01	01	-11	11	11	<i>011</i>	011	011	111	0111	1
1	Ф	Ф	Ф	10	10	10	00	<i>00</i>	00	100	-100	190	<i>-000</i>	1900	1
1	Э	Ф	1	10	10	11	00	01	01	190	101	101	001	1901	1
1	Ф	1	Ф	10	-1 1	10	01	<i>00</i>	-10	101	-100	-110	010	1010	1
1	Ә	1	1	10	_#	11	01	01	11	101	101	111	011	1911	1
1	1	Ф	Ә	-11	10	10	10	-10	00	110	-110	190	-100	1100	1
4	1	Ф	1	-11	10	_#	10	11	_01		111	101	101	1101	1
1	1	1	Ф	-11	1 1	10	-11	10	10	-111	-110	-110	-110	-1110	Ф
1	1	-1	1	1 1	-11	11	-1 1	\mathcal{H}	<i>H</i>	-111	111	111	111	1111	1

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {XO1X; 1XOX; XXX1}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MHJI\Phi} = (\overline{X3}X2) \ v \ (X4\overline{X2}) \ v \ (X1)$

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність зберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^k елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата