ODE 定性理论笔记

目录

Chapter 1 Ordinary Differential Equations	2
1.1 Basic notions	2
1.2 Existence and uniqueness of solutions	2
1.3 Additional properties	3
1.4 Existence of solutions for continuous fields	4
1.5 Phase portraits	4
Chapter 2 Linear Equations and Conjugacies	6
2.1 Nonautonomous linear equations	6
2.2 Equations with constant coefficients	7
2.4 Equations with periodic coefficients	10
2.5 Conjugacies between linear equations	11
Chapter 3 Stability and Lyapunov Function	13
3.1 Notions of stability	13
3.2 Stability of linear equations	13
3.3 Stability under nonlinear perturbations	14
3.4 Lyapunov functions	15
Chapter 4 Hyperbolicity and Topological Conjugacies	16
4.1 Hyperbolic critical points	16
4.2 The Grobman-Hartman theorem	16
Chapter 6 Index Theory	17
6.1 Index for vector fields in the plane	17
6.2 Applications of the notion of index	18
6.3 Index of an isolated critical point	18
Chapter 7 Poincare-Bendixson Theory	18
7.1 Limit sets	18
7.2 The Poincare-Bendixson theorem	19

Chapter 1 Ordinary Differential Equations

1.1 Basic notions

Prop 1.9

 $f:D\to\mathbb{R}^n$ 连续, $D\subset\mathbb{R}\times\mathbb{R}^n$ 开集,则初值问题 $x'=f(t,x),x(t_0)=x_0$ 与 $x(t)=x_0+\int_{t_0}^tf(s,x(s))\mathrm{d}s$ 等价。

Def 1.11

变换族 $\varphi_t:\mathbb{R}^{\mathbb{n}}\to\mathbb{R}^{\mathbb{n}}, t\in\mathbb{R}^{\mathbb{n}}$ 满足 $\varphi_0=\operatorname{Id}$ 且 $\varphi_{t+s}=\varphi_t\circ\varphi_s$,则称 φ_t 为一个流 **(flow)**。

Def 1.13

 $f:D\to\mathbb{R}^n$ 连续, $D\subset\mathbb{R}^n$ 开集,如果初值问题 $x'=f(x),x(0)=x_0$ 存在唯一解 $x(t,x_0):=\varphi_t(x_0)$ 是一个流。

证明: 只需验证 $\varphi_{t+s}=\varphi_t\circ\varphi_s\Leftrightarrow x(t+s,x_0)=x(t,x(s,x_0))$ 。

1.2 Existence and uniqueness of solutions

1.2.2 Contractions in metric spaces

Prop 1.30

全体连续有界函数 $x:I\subset\mathbb{R}^{\Bbbk}\to\mathbb{R}^n$ 构成的集合 X=C(I) 是完备(柯西列都有收敛子列)度量空间,度量定义为 $d(x,y)=\sup\{\|x(t)-y(t)\|:t\in I\}$ 。

Def 1.33

定义在度量空间 (X,d) 的一个映射 $T:X\to X$ 称为压缩映射,如果存在 $\lambda\in(0,1)$ 使得 $d(T(x),T(y))\leq \lambda d(x,y)$ 。

Thm 1.35

如果 $T:X\to X$ 是完备度量空间 (X,d) 的压缩映射,则 T 有唯一不动点,并且 $T^n(x)$ 收敛到不动点。

1.2.3 Proof of the theorem

关于 Lipschitz 和局部 Lipschitz,参看:什么是利普希茨条件?

Thm 1.18 (Picard-Lindelof theorem)

 $f:D\to\mathbb{R}^{\mathbb{n}}$ 连续、关于 x 局部 Lipschitz, $D\subset\mathbb{R}\times\mathbb{R}^{\mathbb{n}}$ 开集。则对于任意 $(t_0,x_0)\in D$,初值问题 $x'=f(t,x),x(t_0)=x_0$ 的解在一个包含 t_0 的开区间 (a,b) 存在唯一。

证明: 取常数 $\beta>0$ 和 $a_0< t_0< b_0$ 使得 $K=[a_0,b_0]\times \overline{B(x_0,\beta)}\subset D$,则 K 是紧集。设 f在上面有最大值 M 。由于 f 在 D 关于 x 局部 Lipschitz,所以在紧集 $K \subset D$ 关于 x 全局 Lipschitz, 设 Lipschitz 常数为 L 。

取常数 a,b 使得 $a_0 < a < t_0 < b < b_0$ 并且 $b-a < \min\{\beta/M,1/L\}$ 。 令 $X \subset C(a,b)$ 表示 全体连续有界函数 $x:(a,b)\to\mathbb{R}^n$ 满足 $\|x(t)-x_0\|\leq\beta, \forall t\in(a,b)$ 构成的集合,断言 X 在度量 $d(x,y) = \sup\{\|x(t) - y(t)\| : t \in I\}$ 下是完备度量空间。

取 Cauchy 列 $\{x_n(t)\}\subset X$,由 Prop1.30 可知 $x_n(t)$ 收敛于 $x(t)\in C(a,b)$ 。而 $\forall t\in (a,b), \|x(t)-t\|$ $\|x_0\| = \lim_{n \to \infty} \|x_n(t) - x_0\| \le \beta$,说明 $x(t) \in X$, 断言证完。

考虑映射 $T: X \to C(a,b)$, $T(x)(t) = x_0 + \int_{t_0}^t f(s,x(s)) \mathrm{d}s$ 。

- $\begin{array}{l} 1. \ \|T(x)(t)-x_0\| = \|\int_{t_0}^t f(s,x(s))\mathrm{d}s\| \leq (b-a)M \leq \beta \ \text{对任意}\ t \in (a,b) \ 成立,从而 \ T(X) \subset X \ . \\ 2. \ \|T(x)(t)-T(y)(t)\| = \|\int_{t_0}^t [f(s,x(s))-f(s,y(s))]\| \leq (b-a)Ld(x,y) \ < \ d(x,y) \ \text{对任意} \\ t \in (a,b) \ 成立,从而 \ d(T(x),T(y)) < d(x,y) \ . \end{array}$

这说明 $T:X\to X$ 是完备度量空间 X 上的压缩映射,存在唯一不动点 x(t),满足 x(t) = $x_0 + \int_{t_0}^t f(s,x(s)) \mathrm{d}s$ 。由 Prop1.9 可知,这等价于它是初值问题 $x' = f(t,x), x(t_0) = x_0$ 的解。

1.3 Additional properties

1.3.1 Lipschitz dependence on the initial conditions

Prop 1.39 (Gronwall's lemma)

 $u,v:[a,b]
ightarrow \mathbb{R}^{\mathbb{n}}$ 连续,v 非负, $c\in\mathbb{R}$ 。若 $u(t)\leq c+\int^t u(s)v(s)\mathrm{d}s, orall t\in[a,b]$,则 $u(t) \leq c \exp \int^t v(s) \mathrm{d} s, \forall t \in [a,b] \ .$

(c+R(t))v(t) , V'(t)=v(t) 。 由于 $R'(t)-v(t)R(t)\leq cv(t)$, 考虑

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{-V(t)}R(t)) &= \mathrm{e}^{-V(t)}[R'(t) - v(t)R(t)] \\ &\leq \mathrm{e}^{-V(t)}cv(t), \forall t \in [a,b] \end{split}$$

对两边关于 t 在 [a,t] 上积分,则

$$\begin{split} \mathrm{e}^{-V(t)}R(t) & \leq \int_a^t cv(s)\mathrm{e}^{-V(s)}\mathrm{d}s \\ & = -c\int_a^t \mathrm{e}^{-V(s)}\mathrm{d}(-V(s)) \\ & = c(1-\mathrm{e}^{-V(t)}), \forall t \in [a,b] \end{split}$$

从而 $R(t) \le c e^{V(t)} - c$, $\forall t \in [a, b]$, 从而 $u(t) \le c + R(t) \le c e^{V(t)}$, $\forall t \in [a, b]$ 。

Thm 1.40

 $f:D \to \mathbb{R}^n$ 连续、关于 x 局部 Lipschitz, $D \subset \mathbb{R} \times \mathbb{R}^n$ 开集。则对于任意 $(t_0,x_1) \in D$,存在常数 $\beta,C>0$ 和开区间 $t_0 \in I$ 使得只要 $\|x_1-x_2\|<\beta$,相应初值问题的的解就有 $\|x_1(t)-x_2(t)\| \leq C\|x_1-x_2\|$ 对任意的 $t \in I$ 成立。

证明: $\forall t \in I, x_i(t) = x_i + \int_{t_0}^t f(s, x_i(s)) \mathrm{d}s$ 。 令 $y(t) = x_1(t) - x_2(t)$ 。 对于 $\forall t \in I \cap [t_0, +\infty)$,有 $\|y(t)\| \leq \|x_1 - x_2\| + \int_{t_0}^t \|y(t)\| L \mathrm{d}s$ 。 由 Gronwall's Lemma,有 $\|y(t)\| \leq \|x_1 - x_2\| \exp\{L(t - t_0)\}$ 。 反向同理。

解对初值的光滑依赖性略。

1.3.3 Maximal interval of existence

Prop 1.43

 $f:D \to \mathbb{R}^n$ 连续、关于 x 局部 Lipschitz, $D \subset \mathbb{R} \times \mathbb{R}^n$ 开集。则对于任意 $(t_0,x_0) \in D$,初值问题 $x'=f(t,x), x(t_0)=x_0$ 存在唯一的解 $\varphi:(a,b)\to \mathbb{R}^n$ 使得初值问题的其他任意解 $x:I_x\to \mathbb{R}^n$ 都有 $I_x\subset (a,b)$ 并且 $x(t)=\varphi(t), \forall t\in I_x$ 。这样的 (a,b) 称为解的最大存在区间 (maximal interval)。

Prop 1.46

 $f:D \to \mathbb{R}^n$ 连续、关于 x 局部 Lipschitz, $D \subset \mathbb{R} \times \mathbb{R}^n$ 开集。如果 x' = f(t,x) 的解 x(t) 具有最大存在区间 (a,b) ,则对于任意紧集 $K \subset D$,存在 $\varepsilon > 0$ 使得对于任意 $t \in (a,a+\varepsilon) \cup (b-\varepsilon,b)$ 都有 $(t,x(t)) \subset D \backslash K$ 。

1.4 Existence of solutions for continuous fields

Prop 1.48 (Ascoli)

(a,b) 上的函数列 φ_k ,若一致有界且等度连续,则存在一致收敛的子列。

Prop 1.49 (Peano)

 $f:D\to\mathbb{R}^n$ 连续, $D\subset\mathbb{R}\times\mathbb{R}^n$ 开集。则对于任意 $(t_0,x_0)\in D$,初值问题 $x'=f(t,x),x(t_0)=x_0$ 的解在一个开区间 $t_0\in(a,b)$ 存在(不一定唯一)。

1.5 Phase portraits

1.5.1 Orbits

 $f:D\to\mathbb{R}^n$ 连续, $D\subset\mathbb{R}^n$ 开集,考虑驻定方程 x'=f(x) 。则 D 称为相空间 (phase space)。设它的解 x=x(t) 的最大存在区间为 I ,则 $\{x(t):t\in I\}$ 称为轨线 (orbit),它在 D 中的图像称为相图 (phase portrait)。使得 $f(x_0)=0$ 的点 x_0 称为临界点 (critical point)。

Thm 1.54 (Flow box theorem)

 $f: D \to \mathbb{R}^n \in C^1$, $D \subset \mathbb{R}^n$ 开集。给定 $p \in D$, $f(p) \neq 0$,则存在坐标变换 y = g(x) 使得在 p的一个邻域(维数为n-1)内,方程x'=f(x)变换为 $y'=v\in\mathbb{R}^n\setminus\{0\}$ 。

Def 1.55

轨线: 周期的 (periodic)、同宿的 (homoclinic)、异宿的 (heteroclinic)

Def 1.56

一个解 x = x(t) 是全局的 (global) 定义

Prop 1.57

轨线含于一个紧集(欧氏空间实际上就是有界闭集)的解是全局的。从而临界点、周期解、同宿 轨线、异宿轨线都是由全局解得到的。

1.5.2 Phase portraits

考虑平面驻定微分方程组 $\begin{cases} x' = P(x,y) \\ y' = Q(x,y) \end{cases}$, 画的轨线的方法:

- 1. 直接求解; 2. 作商得到 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Q(x,y)}{P(x,y)}$, 解出 y = y(x) 就是轨线; 3. 极坐标变换 $\begin{cases} r' = (\sqrt{x^2 + y^2})' = \frac{xx' + yy'}{r} \\ \theta' = \left(\arctan\frac{y}{x}\right)' = \frac{y'x x'y}{r^2} \end{cases}$;
- 5. 首次积分法。

1.5.3 Conservative equations

Def 1.67

一个非常数的 C^1 的函数 $E:D\to\mathbb{R}$ 如果沿着方程 x'=f(x) 的任意解 x=x(t) 都是常数,即 E(x(t)) 是常数 $\Leftrightarrow \frac{d}{dt}E(x(t)) = 0$,则称为方程的**首次积分 (integral)**。若存在首次积分,则称方程 是**保守的 (conservative)**。 $\forall c \in \mathbb{R}$,E(x) = c 是轨线。这是画相图的另一种方法。

e.g.

设 $E:D\subset\mathbb{R}^2\to\mathbb{R}$ 是 C^1 的,则 E(x,y) 是平面驻定微分方程组 $\begin{cases} x'=E_y & \text{ of } x\in\mathbb{R}, \\ y'=-E_x & \text{ of } x\in\mathbb{R}, \end{cases}$ 因此该方程组是保守的。

e.g.

平面驻定微分方程组
$$\begin{cases} x'=P(x,y)\\ y'=Q(x,y) \end{cases}, \ \ \mbox{其中}\ P,Q\in C^1.\ \ \mbox{如果}\ P_x+Q_y=0\ ,\ \mbox{则}\ E(x,y)=-\int Q(x,y) \mbox{d}x + \int \left[P(x,y)+\int Q_y(x,y) \mbox{d}x\right] \mbox{d}y\ \mbox{是首次积分,因此该方程组是保守的。} \end{cases}$$

注意到
$$\frac{\partial}{\partial x}\left[P(x,y)+\int Q_y(x,y)\mathrm{d}x\right]=P_x+Q_y=0$$
 ,所以 $\varphi(y)=P(x,y)+\int Q_y(x,y)\mathrm{d}x$ 只与 y 有关。因此 $E_y=P$, $-E_x=Q$,于是 E 是首次积分。

e.g.

平面驻定微分方程组
$$\begin{cases} x'=y\\ y'=f(x) \end{cases}$$
 是保守的, $E(x,y)=\frac{1}{2}y^2-\int_0^x f(s)\mathrm{d}s$ 是首次积分。记
$$V(x)=-\int_0^x f(s)\mathrm{d}s \ .$$

将方程改写为 x''=y'=f(x)。将 x 看作是位移,y=x' 看作是速度,f(x)=y' 看作是力(加速度),则 E(x,y) 可看作是动能 $\frac{1}{2}y^2$ 和势能 V(x,y) 的和,即总能量。

Chapter 2 Linear Equations and Conjugacies

2.1 Nonautonomous linear equations

这部分我们回顾齐次线性微分方程组 x' = A(t)x 的一般理论。其中 $A(t) \in \mathbb{R}^{n \times n}$ 连续, $t \in \mathbb{R}$ 。

容易证明 A(t)x 关于 x 局部 Lipschitz,从而初值问题 $x'=A(t)x, x(t_0)=x_0$ 在一个包含 t_0 的开区间内存在唯一。

Prop 2.1

x' = A(t)x 的解都是全局的,即最大存在区间都是 \mathbb{R} 。

Prop 2.4

x'=A(t)x 的全体解构成 n 维线性空间,称为解空间。初值问题 $x'=A(t)x, x(t_0)=e_i$ 的解 $x_i, 1\leq i\leq n$ 是一组基。

Def 2.5

如果 $X(t) \in \mathbb{R}^{n \times n}$ 的列向量是 x' = A(t)x 解空间的一组基, 则称 X(t) 为**基解矩阵 (fundamental solution)**。

- 1. 基解矩阵 X(t) 满足 X'(t) = A(t)X(t);
- 2. 初值问题 $x' = A(t)x, x(t_0) = e_i$ 的解可以表示为 $x(t) = X(t)X(t_0)^{-1}x_0$;
- 3. 若 X(t) 和 Y(t) 都是基解矩阵,则存在可逆阵 C 使得 X(t) = Y(t)C 。

2.2 Equations with constant coefficients

2.2.1 Exponential of a matrix

设 $A\in\mathbb{R}^{n\times n}$,矩阵指数函数定义为 $\exp A=\sum_{k=0}^\infty A^k/k!$ 。容易证明它一定是一致收敛的。 如果 A 有 Jordan 标准型 $S^{-1}AS=J$,则 $\exp A=S\exp(S^{-1}AS)S$ 。

如果 A 具有特征值 $\lambda_1,\dots,\lambda_n$ 和特征向量 v_1,\dots,v_n , 则 $\exp A$ 具有特征值 $\exp \lambda_1,\dots,\exp \lambda_n$ 和特征向量 v_1,\dots,v_n 。

2.2.2 Solving the equations

Prop 2.19

 $\exp(At)$ 是常系数齐次微分方程组 x'=Ax 的一个基解矩阵。从而初值问题 $x'=Ax, x(t_0)=x_0$ 的解可以表示为 $x(t)=\exp[A(t-t_0)]x_0$ 。

2.2.3 Phase portraits

考虑二维常系数齐次微分方程组 x'=Ax, 其中 A 是二阶方阵。我们来分析临界点 (0,0) 的性质。

若 A 有 Jordan 标准型 $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$,其中 λ_i 为非零实数,则有如下情况。

稳定结点 (stable node): $\lambda_1 \leq \lambda_2 < 0$

稳定结点

稳定奇结点

不稳定结点 (unstable node): $\lambda_1 \geq \lambda_2 > 0$

不稳定结点

不稳定奇结点

鞍点 (saddle point): $\lambda_1 < 0 < \lambda_2$

Figure 1: 鞍点

若 A 有 Jordan 标准型 $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$,其中 λ 为非零实数,则有如下情况。

稳定结点 (stable node): $\lambda < 0$

Figure 2: 稳定退化结点

不稳定结点 (unstable node): $\lambda > 0$

Figure 3: 不稳定退化结点

若 A 的特征值是一对共轭复根 $a\pm ib, b\neq 0$,则有如下情况。

中心 (center): a=0

Figure 4: 中心

稳定焦点 (stable focus): a < 0

Figure 5: 稳定焦点

不稳定焦点 (unstable focus): a > 0

Figure 6: 不稳定焦点

2.4 Equations with periodic coefficients

Thm 2.31 (Floquet)

设 $A(t)\in\mathbb{R}^{\mathbb{n}\times\mathbb{n}}$ 连续、以 T 为周期,则 x'=A(t)x 的任何基解矩阵都可以表示为 $X(t)=P(t)\exp(Bt)$,其中 $P(t)\in\mathbb{C}^{\mathbb{n}\times\mathbb{n}}$ 连续、以 T 为周期, $B\in\mathbb{C}^{\mathbb{n}\times\mathbb{n}}$ 。

证明: 注意到若 X(t) 是基解矩阵,则 X(T+t) 也是基解矩阵,从而存在可逆阵 C 使得 X(t+T)=X(t)C。定义矩阵对数函数可以证明,存在 B 使得 $C=\exp(BT)$ 。取 $P(t)=X(t)\exp(-Bt)$ 即可。

Def 2.32

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续、以 T 为周期,X(t) 是 x' = A(t)x 的基解矩阵:

- 1. 可逆阵 C 使得 X(t+T)=X(t)C 称为单值矩阵 (monodromy matrix);
- 2. 单值矩阵的特征值称为特征乘子 (characteristic multipliers);
- 3. 复数 $\lambda \in \mathbb{C}$ 使得 $e^{\lambda T}$ 是特征乘子称为**特征指数 (characteristic exponent)**。

显然特征指数相差 $2\pi i/T$ 仍是特征指数。例如 Floquet 定理中的 $\exp(BT)$ 就是单值矩阵,它的特征值是特征乘子,从而 B 的特征值就是特征指数。

注意该定义不要求 T 是最小正周期,因此该定义(包括下面的定理与命题)与 T 的选取有关!!!

Prop 2.33

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续、以 T 为周期,X(t), Y(t) 是 x' = A(t)x 的基解矩阵,相应的单值矩阵为 C, D,则 C 与 D 相似。因此特征乘子与基解矩阵的选取无关。

Prop 2.36

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续、以 T 为周期。则 λ 是 x' = A(t)x 的特征指数当且仅当存在非零的 T 周期函数 $p(t): \mathbb{R} \to \mathbb{C}^n$ 使得 $\mathbf{e}^{\lambda t} p(t): \mathbb{R} \to \mathbb{R}^n$ 是方程的解。

由命题可知,若 1 是特征乘子,则 $\lambda = 2\pi i/T$ 是特征指数,则方程有 T 周期解 $e^{\lambda t}p(t)$ 。

Prop 2.39

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续、以 T 为周期,x' = A(t)x 的特征乘子为 $\rho_i = e^{\lambda_i T}$,i = 1, 2, ..., n ,则

$$\begin{split} &1. \ \prod_{i=1}^n \rho_i = \exp \int_0^T \mathrm{tr} A(s) \mathrm{d} s \\ &2. \ \sum_{i=1}^n \lambda_i = \frac{1}{T} \int_0^T \mathrm{tr} A(s) \mathrm{d} s \mod \frac{2\pi i}{T} \end{split}$$

令
$$s = \operatorname{Re} \sum_{i=1}^n \lambda_i$$
 , 则由 Prop2.36 可知

- 1. 若 s > 0 , 则存在某个 $\text{Re}\lambda_i > 0$, 从而方程有解在 \mathbb{R}^+ 无界;
- 2. 若 s < 0 , 则存在某个 $Re\lambda_i < 0$, 从而方程有解在 \mathbb{R}^- 无界。

2.5 Conjugacies between linear equations

2.5.1 Notion of conjugacy

两个不同的常系数线性微分方程组的相图可能是一样的,这是因为相图丢失了时间 t 的信息。我们希望从定性的角度研究它们之间的关系。

Def 2.44

常系数线性微分方程组 x'=Ax 和 y'=By 的解分别为 $x(t)=\mathrm{e}^{At}x(0)$ 和 $y(t)=\mathrm{e}^{Bt}y(0)$ 。 如果存在双射 $h:\mathbb{R}^n\to\mathbb{R}^n$ 使得 $h(\mathrm{e}^{At}x)=\mathrm{e}^{Bt}h(x)$ 对任意的 $t\in\mathbb{R}$ 和 $x\in\mathbb{R}^n$ 成立,并且

- 1. 若 h 是同胚 (即 h, h^{-1} 都连续),则称这两个动力系统**拓扑共轭 (topologically conjugate)**;
- 2. 若 h 是微分同胚 (即 h, h^{-1} 都可微),则称这两个动力系统**微分共轭 (differentially conjugate)**;
- 3. 若 h 是线性函数 (即 $h(x) = Cx, x \in \mathbb{R}^{n \times n}$),则称这两个动力系统线性共轭 (linearly conjugate)。

这两个动力系统定义了两个流 $\varphi_t(x)=\mathrm{e}^{At}x$ 和 $\psi_t(x)=\mathrm{e}^{Bt}x$,从而 $h(\mathrm{e}^{At}x)=\mathrm{e}^{Bt}h(x)$ 实际上是在说下面的图是交换的,即 $h\circ\varphi_t=\psi_t\circ h$ 。

$$\mathbb{R}^n \xrightarrow{\varphi_t} \mathbb{R}^n$$

$$\downarrow h \qquad \downarrow h \qquad \downarrow$$

$$\mathbb{R}^n \xrightarrow{\psi_t} \mathbb{R}^n$$

Figure 7: 拓扑共轭交换图

2.5.2 Linear conjugacies

Prop 2.45

常系数线性微分方程组 x' = Ax 和 y' = By 微分共轭当且仅当线性共轭。

Prop 2.47

常系数线性微分方程组 x' = Ax 和 y' = By 线性共轭当且仅当矩阵 A, B 相似。

2.5.3 Topological conjugacies

Def 2.48

如果 $A \in \mathbb{R}^{n \times n}$ 的特征值的实部都非零,则称 A 是**双曲的 (hyperbolic)**。

Def 2.49

设 $A \in \mathbb{R}^{n \times n}$, 则 m(A) 表示 A 的具有正实部的特征值个数 (计算重数)。

Thm 2.50

设 $A,B\in\mathbb{R}^{\mathbb{n}\times\mathbb{n}}$ 是双曲的,若 m(A)=m(B) ,则常系数线性微分方程组 x'=Ax 和 y'=By 拓扑共轭。

双曲的条件不能去掉,反例: $\begin{cases} x'=-ay \\ y'=ax \end{cases} \qquad \text{和} \begin{cases} x'=-by \\ y'=bx \end{cases} \qquad \text{不拓扑共轭,其中 } 0 < a < b \ (它 n)$ 们实际上是两个角速度不一样的中心)。

证明: 在极坐标下它们的解分别是
$$\begin{cases} r=r_0 \\ \theta=at+\theta_0 \end{cases} \qquad \text{at} \begin{cases} r=r_0 \\ \theta=bt+\theta_0 \end{cases} .$$

若两系统拓扑共轭,则 $h(r_0,at+\theta_0)=(h_1(r_0),bt+h_2(\theta_0))$ 。它的第二个分量 h_2 满足 $h_2(at+\theta_0)=bt+h_2(\theta_0)$ 。 从而 h_2 将区间 $(\theta_0,2\pi a/b+\theta_0)$ 映成 $(h_2(\theta_0),2\pi+h_2(\theta_0))$ 。 从而 h_2 将圆弧映成圆周,这与 h 是双射矛盾。

Chapter 3 Stability and Lyapunov Function

3.1 Notions of stability

设 $f:D\to\mathbb{R}^{\mathbb{n}}$ 连续, $D\subset\mathbb{R}\times\mathbb{R}^{\mathbb{n}}$ 开集,初值问题 $x'=f(t,x),x(t_0)=x_0$ 的解记作 $x(t,t_0,x_0)$

Def 3.1

称 $x(t,t_0,x_0)$ 稳定 (stable),如果 $\forall \varepsilon > 0$,存在 $\delta > 0$ 使得只要 $\|x_0' - x_0\| < \delta$,则

- 1. $x(t,t_0,x_0')$ 和 $x(t,t_0,x_0)$ 对于任意 $t > t_0$ 有定义;
- 2. $||x(t,t_0,x_0')-x(t,t_0,x_0)|| < \varepsilon$ 对于任意 $t > t_0$ 成立。

Def 3.4

称 $x(t,t_0,x_0)$ 渐近稳定 (asymptotic), 如果

- 1. $x(t,t_0,x_0)$ 稳定;
- 2. 存在 $\alpha > 0$ 使得只要 $\|x_0' x_0\| < \alpha$,则 $\|x(t, t_0, x_0') x(t, t_0, x_0)\| \to 0$ 当 $t \to +\infty$ 。

一般来说,以上的定义与初始时间 t_0 有关,但容易证明对于驻定方程,解的(渐近)稳定性与初始时间无关。

3.2 Stability of linear equations

3.2.1 Nonautonomous linear equations: general case

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续。

Prop 3.7

- 1. x' = A(t)x 的零解的(渐近)稳定性与初始时间 t_0 无关;
- 2. x' = A(t)x 的零解(渐近)稳定当且仅当 x' = A(t)x 的任意解都(渐近)稳定。

Def 3.8

如果零解是(渐近)稳定的,则称方程 x' = A(t)x 是(渐近)稳定的。

Thm 3.9

设 X(t) 是 x' = A(t)x 的任意一个基解矩阵,则

- 1. x' = A(t)x 稳定当且仅当 X(t) 对 t 一致有界;
- 2. x' = A(t)x 渐近稳定当且仅当任意范数 $\|X(t)\| \to 0$, $t \to +\infty$ 。

3.2.2 Constant coefficients and periodic coefficients

Thm 3.10

设 $A \in \mathbb{R}^{n \times n}$,则

- 1. x' = Ax 稳定当且仅当 A 的特征值的实部都非正,并且实部为零的特征值相应的 Jordan 块是对角阵;
- 2. x' = Ax 渐近稳定当且仅当 A 的特征值的实部都小于零;
- 3. x' = Ax 不稳定当且仅当 A 的特征值至少有一个实部大于零,或者实部为零的特征值相应的 Jordan 块不是对角阵:

Thm 3.11

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续,以 T 为周期,则由 Floquet 定理,其任意基解矩阵形如 $X(t) = P(t) \exp(Bt)$ 并且 B 的特征值就是方程的特征指数(模 $2\pi i/T$),则

- 1. x' = A(t)x 稳定当且仅当特征指数的实部都非正,并且实部为零的特征指数在 B 中相应的 Jordan 块是对角阵:
- 2. x' = A(t)x 渐近稳定当且仅当特征指数的实部都小于零;
- 3. x' = A(t)x 不稳定当且仅当特征指数至少有一个实部大于零,或者实部为零的特征指数在 B 中相应的 Jordan 块不是对角阵。

3.3 Stability under nonlinear perturbations

Thm 3.12

设 $A \in \mathbb{R}^{\mathbb{n} \times \mathbb{n}}$ 的特征值的实部都是负数, $g: \mathbb{R} \times \mathbb{R}^{\mathbb{n}}$ 连续、关于 x 局部 Lipschitz 。若 g(t,0) = 0 (为了保证下面相应的非齐次方程有零解),且 $\lim_{x \to 0} \sup_{t \in \mathbb{R}} \frac{\|g(t,x)\|}{\|x\|} = 0$ (即 g 是高阶项),则

- 1. 非齐次方程 x' = Ax + g(t, x) 的零解渐近稳定;
- 2. 存在常数 $C, \lambda, \delta > 0$,使得对于任意 $t_0 \in \mathbb{R}$ 和解 x(t) ,只要 $\|x(t_0)\| < \delta$,则 $\|x(t)\| \le C\mathrm{e}^{-\lambda(t-t_0)}\|x(t_0)\|$ 对任意 $t > t_0$ 成立。

Thm 3.13

设 $f:\mathbb{R}^n\to\mathbb{R}^n$ 是 C^1 的, x_0 是 x'=f(x) 的临界点,并且 f 在 x_0 处的 Jacobi 矩阵 $d_{x_0}f$ 特征 值的实部都是负数,则

- 1. 对于任意 $t_0 \in \mathbb{R}$, 初值问题 $x' = f(x), x(t_0) = x_0$ 的解渐近稳定;
- 2. 存在常数 $C, \lambda, \delta > 0$,使得对于任意 $t_0 \in \mathbb{R}$,只要 $\|\tilde{x}_0 x_0\| < \delta$,则初值问题 $x' = f(x), x(t_0) = \tilde{x}_0$ 的解 x(t) 满足 $\|x(t) x_0\| \le C \mathrm{e}^{-\lambda(t-t_0)} \|\tilde{x}_0 x_0\|$ 对任意 $t > t_0$ 成立。

Rmk

Thm4.9 将这个定理推广到了 $d_{x_0}f$ 是双曲(Def2.48,即特征值的实部都非零)的情况

Thm 3.14

设 $A(t) \in \mathbb{R}^{n \times n}$ 连续。若 x' = A(t)x 的基解矩阵 X(t) 满足 $\|X(t)X(s)^{-1}\| \le c\mathrm{e}^{-\mu(t-s)}$ 对任意 $t \ge s$ 成立,其中 $c, \mu > 0$,则非齐次方程 x' = A(t)x + g(t,x) 的零解渐近稳定。

3.4 Lyapunov functions

3.4.1 Basic notions

设 $f:D\subset\mathbb{R}^{\mathbb{n}}\to\mathbb{R}^{\mathbb{n}}$ 满足局部 Lipschitz 条件, $V:D\to\mathbb{R}$ 可微。定义一个新的函数 $\dot{V}(x)=\nabla V\cdot f(x)=\sum_{i=1}^n\frac{\partial V}{\partial x_i}f_i$,称为 V 通过 f 的全导数。

设初值问题 x'=f(x), x(0)=x 的解为 $\varphi_t(x)=x(t,x)$,则 $\dot{V}(x)=\frac{\mathrm{d}}{\mathrm{d}t}V(\varphi_t(x))|_{t=0}$ 。

Def 3.16

给定临界点 $x_0 \in D$, 即 $f(x_0) = 0$, 若一个可微函数 $V: D \to \mathbb{R}$

- 1. 存在 x_0 的开邻域 $U \subset D$ 使得 V 定正并且 \dot{V} 常负,则称 V 为 x_0 处的 Lyapunov 函数;
- 2. 存在 x_0 的开邻域 $U \subset D$ 使得 V 定正并且 \dot{V} 定负,则称 V 为 x_0 处的严格 Lyapunov 函数。

Rmk

- 1. f 在 $U \ni x_0$ 定正是指 $f(x) \ge 0, x \in U$ 并且 $f(x) = 0 \Leftrightarrow x = x_0$;
- 2. $f \in U \ni x_0$ 常正是指 $f(x) \ge 0, x \in U$ 。

3.4.2 Stability criterion

Thm 3.18

设 $f:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 满足局部 Lipschitz 条件, $x_0\in D$ 是方程 x'=f(x) 的一个临界点,则

- 1. 若存在一个 x_0 处的 Lyapunov 函数,则 x_0 稳定;
- 2. 若存在一个 x_0 处的严格 Lyapunov 函数,则 x_0 渐近稳定。

3.4.3 Instability criterion

Thm 3.23

设 $f:D\subset\mathbb{R}^{\mathbb{n}}\to\mathbb{R}^{\mathbb{n}}$ 满足 Lipschitz 条件, $x_0\in D$ 是方程 x'=f(x) 的一个临界点。若存在满足 C^1 的函数 $V:U\to\mathbb{R}$ 定义在 x_0 的一个邻域 $U\subset D$ 使得

- 1. $V(x_0) = 0 \perp \dot{V}(x) > 0, \forall x \in U \setminus \{x_0\}$;
- 2. V 在 x_0 的任意邻域都能取到正值,

则 x_0 不稳定。

Chapter 4 Hyperbolicity and Topological Conjugacies

4.1 Hyperbolic critical points

Def 4.1

方程 x'=f(x) 的临界点 x_0 (即 $f(x_0)=0$)称是**双曲临界点 (hyperbolic critical point)** 如果 Jacobi 矩阵 $d_{x_0}f$ 是双曲的(Def2.48,即特征值的实部都非零)。

Def 4.2

设 x_0 是 x' = f(x) 的双曲临界点,则

$$E^s = \{ x \in \mathbb{R}^{\mathbb{n}} : \mathbf{e}^{At} x \to 0, t \to +\infty \}$$

和

$$E^u = \{x \in \mathbb{R}^{\mathbb{n}} : \mathrm{e}^{At}x \to 0, t \to -\infty\}$$

分别称为 x_0 的稳定空间 (stable spaces) 和不稳定空间 (unstable spaces) 。

Prop 4.3

设 x_0 是 x' = f(x) 的双曲临界点,则

- 1. 作为线性空间, E^s 和 E^s 是 \mathbb{R}^n 的子空间, 并且 $E^s \oplus E^u = \mathbb{R}^n$ (子空间的直和);
- 2. 若 $x \in E^s, y \in E^u$,则对于任意 $t \in \mathbb{R}$, $\mathrm{e}^{At}x \in E^s, \mathrm{e}^{At}y \in E^u$ 。

4.2 The Grobman-Hartman theorem

Thm 4.7 (Grobman-Hartman theorem)

设 $f:\mathbb{R}^{\mathbb{n}}\to\mathbb{R}^{\mathbb{n}}$ 是 C^1 的, x_0 是 x'=f(x) 的双曲临界点,则方程 x'=f(x) 和 $y'=(d_{x_0}f)y$ 的解分别在 x_0 和 0 的邻域拓扑共轭。具体来说,设 $\varphi_t(z)$ 和 $\psi_t(z)$ 分别是初值问题 x'=f(x), x(0)=z 和 $y'=(d_{x_0}f)y, y(0)=z$ 定义的流,则存在 x_0 0 的开邻域 U,V 和同胚 $h:U\to V$ 使得 $h(x_0)=0$,并且只要 z 和 $\varphi_t(z)\in U$,则有 $h(\varphi_t(z))=\psi_t(h(z))$

下面的是 Thm3.13 的推广,解决了部分非齐次方程的临界点的稳定性判定问题。

Thm 4.9

设 $f: \mathbb{R}^n \to \mathbb{R}^n$ 是 C^1 的, x_0 是 x' = f(x) 的双曲临界点,则

- 1. 若矩阵 $d_{x_0}f$ 的特征值的实部都是负数,则 x_0 渐近稳定;
- 2. 若矩阵 $d_{x_0}f$ 的特征值的实部存在正数,则 x_0 不稳定。

Chapter 6 Index Theory

6.1 Index for vector fields in the plane

若连续函数 $\gamma=(\gamma_1,\gamma_2):I=[0,1]\to\mathbb{R}^2$ 满足 $\gamma(0)=\gamma(1)$ 且 $\gamma|_{(0,1)}$ 是单射,则称 γ 为一个闭道路。

设 $f=(f_1,f_2):\mathbb{R}^2 \to \mathbb{R}^2$ 是 C^1 的向量场,则有第二类曲线积分

$$\int_{\gamma} f = \int_0^1 f(\gamma(t)) \gamma'(t) \mathrm{d}t = \int_0^1 f_1(\gamma(t)) \gamma_1'(t) \mathrm{d}t + f_2(\gamma(t)) \gamma_2'(t) \mathrm{d}t$$

Def 6.3

给定一个闭道路 γ 使得 f 在 γ 上不取零,则

$$\operatorname{Ind}_f(\gamma) = \frac{1}{2\pi} \int_{\gamma} \frac{f_1 \nabla f_2 - f_2 \nabla f_1}{f_1^2 + f_2^2}$$

称为 γ 关于 f 的**指标 (index)**。显然 $\operatorname{Ind}_f(-\gamma) = -\operatorname{Ind}_f(\gamma)$ 。

Prop 6.4

设 $f(x) \neq 0$, 则函数

$$\theta(x) = \begin{cases} \arctan(f_2(x)/f_1(x)) & f_1(x) > 0 \\ \pi/2 & f_1(x) = 0 \ \& \ f_2(x) > 0 \\ \arctan(f_2(x)/f_1(x)) + \pi & f_1(x) < 0 \\ -\pi/2 & f_1(x) = 0 \ \& \ f_2(x) < 0 \end{cases}$$

表示在 x 处,向量场 f(x) 的辐角。注意到 $\theta(x)$ 的梯度

$$\nabla\theta = \frac{f_1\nabla f_2 - f_2\nabla f_1}{f_1^2 + f_2^2}$$

在 $\{x: f(x) \neq 0\}$ 有定义。则容易证明

$$\operatorname{Ind}_f(\gamma) = \frac{1}{2\pi} \int_{\gamma} \nabla \theta = \frac{1}{2\pi} \int_{0}^{1} \frac{\mathrm{d}}{\mathrm{d}t} \theta(\gamma(t)) \mathrm{d}t$$

由于 $\gamma(0)=\gamma(1)$, $\operatorname{Ind}_f(\gamma)$ 是整数。其几何意义是沿着 γ 绕一圈,向量场 f 转的圈数。

Prop 6.6

设 $f:\mathbb{R}^2\to\mathbb{R}^2$ 是 C^1 的向量场,若 $f(x_0)\neq 0$,则在 x_0 的一个充分小的邻域内的任意闭道路 γ 的指标 $\mathrm{Ind}_f(\gamma)=0$ 。

Prop 6.8, 6.9

- 1. 若 γ_0,γ_1 同伦、每一个切片都是闭道路,并且 f 在每一个切片上都不为零,则 $\mathrm{Ind}_f(\gamma_0)=\mathrm{Ind}_f(\gamma_1)$.
- 2. 若 f_0,f_1 同伦、每一个切片都是 C^1 的,并且每一个切片 f_s 在 γ 上都不为零,则 $\mathrm{Ind}_{f_0}(\gamma)=\mathrm{Ind}_{f_1}(\gamma)$ 。

6.2 Applications of the notion of index

Prop 6.13

设 $f: \mathbb{R}^2 \to \mathbb{R}^2$ 是 C^1 的向量场, $\gamma: I \to \mathbb{R}^2$ 是闭道路, 则

- 1. 若 γ 所围的内部没有方程 x' = f(x) 的临界点,则 $\operatorname{Ind}_f(\gamma) = 0$;
- 2. 若 $\operatorname{Ind}_f(\gamma) \neq 0$,则 γ 所围的内部至少有一个方程 x' = f(x) 的临界点。

Prop 6.14

- 1. 设 $f:\mathbb{R}^2\to\mathbb{R}^2$ 是 C^1 的向量场, $\gamma:I\to\mathbb{R}^2$ 是闭道路,若 $\gamma([0,1])$ 是 x'=f(x) 的一个周期轨道,则 $\mathrm{Ind}_f(\gamma)=\pm 1$;
- 2. x' = f(x) 的任意周期轨道所围的内部至少含有一个临界点。

6.3 Index of an isolated critical point

Def 6.19

设 $f:\mathbb{R}^2\to\mathbb{R}^2$ 是 C^1 的向量场, x_0 是 x'=f(x) 的孤立临界点,若 γ (取正方向)包围的内部只含有 x_0 ,则 $\mathrm{Ind}_f(\gamma)$ 称为 x_0 的指标,记作 $\mathrm{Ind}_f(x_0)$ 。

Prop 6.20

鞍点的指标是 -1, 其余孤立临界点的指标是 1。

Prop 6.21

设 $f:\mathbb{R}^2\to\mathbb{R}^2$ 是 C^1 的向量场, γ (取正方向)包围的内部含有有限个孤立临界点 x_1,x_2,\dots,x_n ,则

$$\operatorname{Ind}_f(\gamma) = \sum_{i=1}^n \operatorname{Ind}_f(x_i)$$

Chapter 7 Poincare-Bendixson Theory

7.1 Limit sets

设 $f:\mathbb{R}^n\to\mathbb{R}^n$ 连续、满足 Lipschitz 条件,初值问题 $x'=f(x), x(0)=x_0$ 的解记作 $\varphi_t(x_0)$,最大存在区间记作 I_{x_0} 。

Def 7.1

若集合 $A \subset \mathbb{R}^n$ 满足 $\forall x \in A, t \in I_x$ 都有 $\varphi_t(x) \in A$,则称 A 是**不变的 (invariant)**。

Def 7.3

给定 $x \in \mathbb{R}^n$

- 1. $\gamma(x) = \{\varphi_t(x) : t \in I_x\}$ 是轨线 (orbit);
- 2. $\gamma^+(x) = \{\varphi_t(x) : t \in I_x \cap \mathbb{R}^+\}$ 是正半轨线 (positive semiorbit);
- 3. $\gamma^-(x) = \{\varphi_t(x) : t \in I_x \cap \mathbb{R}^-\}$ 是负半轨线 (negative semiorbit)。

Def 7.4

给定 $x \in \mathbb{R}^n$

- 1. $\alpha(x) = \bigcap_{y \in \gamma(x)} \overline{\gamma^-(y)}$ 称为 α -极限集
- 2. $\omega(x) = \bigcap_{y \in \gamma(x)}^{y \in \gamma(x)} \overline{\gamma^+(y)}$ 称为 ω -极限集

Prop 7.8

若 $\gamma^+(x)$ 有界,则

- 1. $\omega(x)$ 紧致、连通、非空;
- 2. $y \in \omega(x)$ 当且仅当存在数列 $t_k \to +\infty$ 使得 $\varphi_{t_k}(x) \to y$;
- 3. 对任意 t>0 和 $y\in\omega(x)$ 都有 $\varphi_t(y)\in\omega(x)$;
- 4. 距离 $d(\varphi_t(x), \omega(x)) \to 0$, $t \to +\infty$ 。

若 $\gamma^{-}(x)$ 有界,则

- 1. $\alpha(x)$ 紧致、连通、非空;
- 2. $y \in \alpha(x)$ 当且仅当存在数列 $t_k \to -\infty$ 使得 $\varphi_{t_k}(x) \to y$;
- 3. 对任意 t < 0 和 $y \in \alpha(x)$ 都有 $\varphi_t(y) \in \alpha(x)$;
- 4. 距离 $d(\varphi_t(x), \alpha(x)) \to 0$, $t \to -\infty$ 。

7.2 The Poincare-Bendixson theorem

Thm 7.11 (Poincare — Bendixson)

设 $f: \mathbb{R}^2 \to \mathbb{R}^2$ 是 C^1 的,对于方程 x' = f(x)

- 1. 若 $\gamma^+(x)$ 有界,且极限集 $\omega(x)$ 不含有临界点,则 $\omega(x)$ 是一个周期轨线;
- 2. 若 $\gamma^{-}(x)$ 有界,且极限集 $\alpha(x)$ 不含有临界点,则 $\alpha(x)$ 是一个周期轨线。