GOOD COMPACTIFICATION THEOREM AND THE RING OF CONDITIONS OF $(\mathbb{C}^*)^n$

Conference Representation Theory and Integrable Systems ETH Zurich

Askold Khovanskii

Department of Mathematics, University of Toronto

August 12, 2019

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

I will present a new elementary proof of the good compactification theorem and will discuss two nice geometric descriptions of \mathcal{R}_n .

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

I will present a new elementary proof of the good compactification theorem and will discuss two nice geometric descriptions of \mathcal{R}_n .

Tropical geometry provides the first description.

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

I will present a new elementary proof of the good compactification theorem and will discuss two nice geometric descriptions of \mathcal{R}_n .

Tropical geometry provides the first description.

The second one can be formulated in terms of **volume function** on the cone of convex polyhedra with integral vertices in \mathbb{R}^n .

Two k-dimensional cycles $X_1, X_2 \subset (\mathbb{C}^*)^n$ are equivalent $X_1 \sim X_2$ if for any (n-k)-dimensional cycle $Y \subset (\mathbb{C}^*)^n$ and for almost any $g \in (\mathbb{C}^*)^n$ we have $< X_1, gY > = < X_2, gY >$ (here < A, B > is the intersection index of A and B).

Two k-dimensional cycles $X_1, X_2 \subset (\mathbb{C}^*)^n$ are equivalent $X_1 \sim X_2$ if for any (n-k)-dimensional cycle $Y \subset (\mathbb{C}^*)^n$ and for almost any $g \in (\mathbb{C}^*)^n$ we have $< X_1, gY > = < X_2, gY >$ (here < A, B > is the intersection index of A and B).

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$.

Two k-dimensional cycles $X_1, X_2 \subset (\mathbb{C}^*)^n$ are equivalent $X_1 \sim X_2$ if for any (n-k)-dimensional cycle $Y \subset (\mathbb{C}^*)^n$ and for almost any $g \in (\mathbb{C}^*)^n$ we have $< X_1, gY > = < X_2, gY >$ (here < A, B > is the intersection index of A and B).

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$. If $X_1 = \sum k_i X_1^i$ and $Y_1 = \sum m_k Y_1^k$ where X_1^i and Y_1^k are subvarieties then by $X_1 \cap g_1 Y_1$ we mean the cycle $\sum k_i m_j (X_1^i \cap g_1 Y_2^j)$.

Two k-dimensional cycles $X_1, X_2 \subset (\mathbb{C}^*)^n$ are equivalent $X_1 \sim X_2$ if for any (n-k)-dimensional cycle $Y \subset (\mathbb{C}^*)^n$ and for almost any $g \in (\mathbb{C}^*)^n$ we have $< X_1, gY > = < X_2, gY >$ (here < A, B > is the intersection index of A and B).

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$. If $X_1 = \sum k_i X_1^i$ and $Y_1 = \sum m_k Y_1^k$ where X_1^i and Y_1^k are subvarieties then by $X_1 \cap g_1 Y_1$ we mean the cycle $\sum k_i m_j (X_1^i \cap g_1 Y_2^j)$.

One can defined the product X * Y of equivalence classes X and Y as the equivalence classes of the intersection $X_1 \cap g_1 Y_1$ where X_1 and Y_1 are representatives of X and Y.

Two k-dimensional cycles $X_1, X_2 \subset (\mathbb{C}^*)^n$ are equivalent $X_1 \sim X_2$ if for any (n-k)-dimensional cycle $Y \subset (\mathbb{C}^*)^n$ and for almost any $g \in (\mathbb{C}^*)^n$ we have $< X_1, gY > = < X_2, gY >$ (here < A, B > is the intersection index of A and B).

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$. If $X_1 = \sum k_i X_1^i$ and $Y_1 = \sum m_k Y_1^k$ where X_1^i and Y_1^k are subvarieties then by $X_1 \cap g_1 Y_1$ we mean the cycle $\sum k_i m_i (X_1^i \cap g_1 Y_2^j)$.

One can defined the product X * Y of equivalence classes X and Y as the equivalence classes of the intersection $X_1 \cap g_1 Y_1$ where X_1 and Y_1 are representatives of X and Y.

The ring of conditions \mathcal{R}_n is the ring of the equivalence classes of algebraic cycles with the multiplication * and with the tautological addition.

A complete toric variety $M \supset (\mathbb{C}^*)^n$ is a good compactification for a k-dimensional algebraic variety $X \subset (\mathbb{C}^*)^n$ if the closure of X in M does not intersect orbits of the action of $(\mathbb{C}^*)^n$ on M whose codimension is bigger than k.

A complete toric variety $M \supset (\mathbb{C}^*)^n$ is a good compactification for a k-dimensional algebraic variety $X \subset (\mathbb{C}^*)^n$ if the closure of X in M does not intersect orbits of the action of $(\mathbb{C}^*)^n$ on M whose codimension is bigger than k.

The following **good compactification theorem** was proved by De Conchini, Procesi and many others.

A complete toric variety $M \supset (\mathbb{C}^*)^n$ is a good compactification for a k-dimensional algebraic variety $X \subset (\mathbb{C}^*)^n$ if the closure of X in M does not intersect orbits of the action of $(\mathbb{C}^*)^n$ on M whose codimension is bigger than k.

The following **good compactification theorem** was proved by De Conchini, Procesi and many others.

Theorem 1

One can find a good compactification for any given algebraic subvariety in $(\mathbb{C}^*)^n$.

A complete toric variety $M \supset (\mathbb{C}^*)^n$ is a good compactification for a k-dimensional algebraic variety $X \subset (\mathbb{C}^*)^n$ if the closure of X in M does not intersect orbits of the action of $(\mathbb{C}^*)^n$ on M whose codimension is bigger than k.

The following **good compactification theorem** was proved by De Conchini, Procesi and many others.

Theorem 1

One can find a good compactification for any given algebraic subvariety in $(\mathbb{C}^*)^n$.

One can proof theorem 1 using the **universal Grobner basis** technic. Let us discuss its elementary proof.

3. BERGMAN SET OF $X \subset (\mathbb{C}^*)^n$

A vector $k \in \mathbb{Z}^n$ is **essential** for X if there is a meromorphic map $f: (\mathbb{C},0) \to X \subset (\mathbb{C}^*)^n$ where $f(t) = ct^k + \ldots$ and $c \in (\mathbb{C}^*)^n$. A ray is **essential** for X if it contains an essential vector.

3. BERGMAN SET OF $X \subset (\mathbb{C}^*)^n$

A vector $k \in \mathbb{Z}^n$ is **essential** for X if there is a meromorphic map $f: (\mathbb{C},0) \to X \subset (\mathbb{C}^*)^n$ where $f(t) = ct^k + \ldots$ and $c \in (\mathbb{C}^*)^n$. A ray is **essential** for X if it contains an essential vector.

Definition 2

A finite union of rational cones $\sigma_i \subset \mathbb{R}^n$ is the **Bergman set** B(X) of X iff its set of essential rays is the set of a rational rays in B(X).

3. BERGMAN SET OF $X \subset (\mathbb{C}^*)^n$

A vector $k \in \mathbb{Z}^n$ is **essential** for X if there is a meromorphic map $f: (\mathbb{C},0) \to X \subset (\mathbb{C}^*)^n$ where $f(t) = ct^k + \ldots$ and $c \in (\mathbb{C}^*)^n$. A ray is **essential** for X if it contains an essential vector.

Definition 2

A finite union of rational cones $\sigma_i \subset \mathbb{R}^n$ is the **Bergman set** B(X) of X iff its set of essential rays is the set of a rational rays in B(X).

Theorem 3

Any variety $X \subset {}^*)^n$ has the (unique) Bergman set B(X). If each irreducible component of X has complex dimension m then B(X) is a finite union of rational cones σ_i with $\dim_{\mathbb{R}} \sigma_i = m$.

Theorem 3 is equivalent to the good compactification theorem.

For a complete smooth toric variety $M^n \supset (\mathbb{C}^*)^n$ and for any k -dimensional cycle $X = \sum k_i X_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i \overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i \subset (\mathbb{C}^*)^n$.

.

For a complete smooth toric variety $M^n\supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X=\sum k_iX_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i\overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i\subset (\mathbb{C}^*)^n$.

The cycle \overline{X} defines an element $\rho(\overline{X})$ in $H^{2(n-k)}(M^n, \Lambda)$ whose value on the closure \overline{O}_i of an (n-k)-dimensional orbit O_i in M^n is equal to the intersection index $<\overline{X}, \overline{O}_i>$.

.

For a complete smooth toric variety $M^n\supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X=\sum k_iX_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i\overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i\subset (\mathbb{C}^*)^n$.

The cycle \overline{X} defines an element $\rho(\overline{X})$ in $H^{2(n-k)}(M^n, \Lambda)$ whose value on the closure \overline{O}_i of an (n-k)-dimensional orbit O_i in M^n is equal to the intersection index $<\overline{X}, \overline{O}_i>$.

A compactification $M^n \supset (\mathbb{C}^*)^n$ is good for k -dimensional cycle $X = \sum k_i X^i$ in $(\mathbb{C}^*)^n$ if it is good compactification for each X_i .

.

For a complete smooth toric variety $M^n \supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X = \sum k_i X_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i \overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i \subset (\mathbb{C}^*)^n$.

The cycle \overline{X} defines an element $\rho(\overline{X})$ in $H^{2(n-k)}(M^n, \Lambda)$ whose value on the closure \overline{O}_i of an (n-k)-dimensional orbit O_i in M^n is equal to the intersection index $<\overline{X}, \overline{O}_i>$.

A compactification $M^n \supset (\mathbb{C}^*)^n$ is good for k -dimensional cycle $X = \sum k_i X^i$ in $(\mathbb{C}^*)^n$ if it is good compactification for each X_i .

Theorem 4

If a smooth toric compactification M^n is good for cycles X, Y and Z where Z = X * Y, then the product $\rho(X)\rho(Y)$ in the cohomology ring $H^*(M^n, \Lambda)$ of the elements $\rho(X)$ and $\rho(Y)$ is equal to $\rho(Z)$.

5. VOLUME AND THE RING OF CONDITIONS

5.1. Ring encoded by a polynomial P

To a homogeneous degree n polynomial P on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring encoded by P.

5. VOLUME AND THE RING OF CONDITIONS

5.1. Ring encoded by a polynomial P

To a homogeneous degree n polynomial P on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring encoded by P.

(One can produce similar constructions for homogeneous polynomials on infinite dimensional spaces and for functions on free abelian groups analogues to homogeneous polynomials.)

5. VOLUME AND THE RING OF CONDITIONS 5.1. Ring encoded by a polynomial *P*

To a homogeneous degree n polynomial P on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring encoded by P.

(One can produce similar constructions for homogeneous polynomials on infinite dimensional spaces and for functions on free abelian groups analogues to homogeneous polynomials.)

Let $D(\mathcal{L})$ be the ring of linear differential operators on \mathcal{L} with constant coefficients. This ring is graded by the order of the operators. It is generated by Lie derivatives L_v along constant vector fields $v(x) \equiv v \in \mathcal{L}$ and by operators of multiplication on complex constants.

5. VOLUME AND THE RING OF CONDITIONS

5.1. Ring encoded by a polynomial P

To a homogeneous degree n polynomial P on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring encoded by P.

(One can produce similar constructions for homogeneous polynomials on infinite dimensional spaces and for functions on free abelian groups analogues to homogeneous polynomials.)

Let $D(\mathcal{L})$ be the ring of linear differential operators on \mathcal{L} with constant coefficients. This ring is graded by the order of the operators. It is generated by Lie derivatives L_v along constant vector fields $v(x) \equiv v \in \mathcal{L}$ and by operators of multiplication on complex constants.

The ring $D(\mathcal{L})$ is graded by the order of the operators:

$$D(\mathcal{L}) = D_0 \oplus D_1 \oplus \dots$$

5.2. Ring encoded by P, continuation

Let $I_P \subset D(\mathcal{L})$ be a set defined by the following condition: $L \in I_P \Leftrightarrow L(P) \equiv 0$. It is easy to see that I_P is a homogeneous ideal.

5.2. Ring encoded by P, continuation

Let $I_P \subset D(\mathcal{L})$ be a set defined by the following condition: $L \in I_P \Leftrightarrow L(P) \equiv 0$. It is easy to see that I_P is a homogeneous ideal.

Definition 5

The ring encoded by P on \mathcal{L} is the factor ring $A(\mathcal{L}, P) = D(\mathcal{L})/I_P$.

5.2. Ring encoded by P, continuation

Let $I_P \subset D(\mathcal{L})$ be a set defined by the following condition: $L \in I_P \Leftrightarrow L(P) \equiv 0$. It is easy to see that I_P is a homogeneous ideal.

Definition 5

The ring encoded by P on \mathcal{L} is the factor ring $A(\mathcal{L}, P) = D(\mathcal{L})/I_P$.

One can to see that:

- (1) $A(\mathcal{L}, P)$ is a graded ring with homogeneous components A_k where $0 \le k \le n = \deg P$;
- (2) $A_0 = \mathbb{C}$;
- 3) there is a non-degenerate pairing between A_k and A_{n-k} with values in A_0 , thus $A_k = A_{(n-k)}^*$ and $A_n \sim \mathbb{C}$.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n!V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n! V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Theorem 6

The intersection ring of M^n is isomorphic (up to a change of grading) to the ring $A(L_n, V)$.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n!V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Theorem 6

The intersection ring of M^n is isomorphic (up to a change of grading) to the ring $A(L_n, V)$.

Let \mathcal{L}_n be the (infinite dimensional) space of virtual convex polyhedra Δ with rational dual fans Δ^{\perp} . One can extend to the space \mathcal{L}_n the degree n homogeneous polynomial V.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n! V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Theorem 6

The intersection ring of M^n is isomorphic (up to a change of grading) to the ring $A(L_n, V)$.

Let \mathcal{L}_n be the (infinite dimensional) space of virtual convex polyhedra Δ with rational dual fans Δ^{\perp} . One can extend to the space \mathcal{L}_n the degree n homogeneous polynomial V.

Theorem 7

The ring \mathcal{R}_n is isomorphic to the ring $A(\mathcal{L}_n, n! V)$.

6. TROPICALIZATION OF $\mathcal{R}_n(\Lambda)$

6.1. Λ-enriched fans

An **enriched** k-fan is a fan $\mathcal{F} \subset \mathbb{R}^n$ of some toric variety equipped with a **weight function** $c: \mathcal{F}_k \to \Lambda$ defined on the set \mathcal{F}_k of all k-dimensional cones in \mathcal{F} . The **support** $|\mathcal{F}|$ of \mathcal{F} is the union of all cones $|\sigma_i| \subset \mathbb{R}^n$ such that $\sigma_i \in \mathcal{F}_k$ and $c(\sigma_i) \neq 0$.

6. TROPICALIZATION OF $\mathcal{R}_n(\Lambda)$

6.1. Λ-enriched fans

An **enriched** k-fan is a fan $\mathcal{F} \subset \mathbb{R}^n$ of some toric variety equipped with a **weight function** $c: \mathcal{F}_k \to \Lambda$ defined on the set \mathcal{F}_k of all k-dimensional cones in \mathcal{F} . The **support** $|\mathcal{F}|$ of \mathcal{F} is the union of all cones $|\sigma_i| \subset \mathbb{R}^n$ such that $\sigma_i \in \mathcal{F}_k$ and $c(\sigma_i) \neq 0$.

Two enriched k-fans \mathcal{F}_1 and \mathcal{F}_2 are **equivalent** if:

- 1) their supports $|\mathcal{F}_1|$ and $|\mathcal{F}_2|$ are equal
- 2) their weight functions c_1 and c_2 induce the same weight function on every common subdivision of the fans \mathcal{F}_1 and \mathcal{F}_2 .

6. TROPICALIZATION OF $\mathcal{R}_n(\Lambda)$

6.1. Λ-enriched fans

An **enriched** k-fan is a fan $\mathcal{F} \subset \mathbb{R}^n$ of some toric variety equipped with a **weight function** $c: \mathcal{F}_k \to \Lambda$ defined on the set \mathcal{F}_k of all k-dimensional cones in \mathcal{F} . The **support** $|\mathcal{F}|$ of \mathcal{F} is the union of all cones $|\sigma_i| \subset \mathbb{R}^n$ such that $\sigma_i \in \mathcal{F}_k$ and $c(\sigma_i) \neq 0$.

Two enriched k-fans \mathcal{F}_1 and \mathcal{F}_2 are **equivalent** if:

- 1) their supports $|\mathcal{F}_1|$ and $|\mathcal{F}_2|$ are equal
- 2) their weight functions c_1 and c_2 induce the same weight function on every common subdivision of the fans \mathcal{F}_1 and \mathcal{F}_2 .

Thus an equivalence class of enriched k-fans can be considered as a linear combination of k-dimensional rational cones with nonzero coefficients in Λ defined up to subdivisions of cones.

6.2: Balance condition for Λ-enriched fans

Let \mathcal{F} be an enriched k-fan. For a cone $\sigma_i \in \mathcal{F}_k$ let $L_i^{\perp} \subset (\mathbb{R}^n)^*$ be the (n-k)-dimensional space dual to the span L_i of $\sigma_i \subset \mathbb{R}^n$. Let O be an orientation of σ_i . Denote by $e_i^{\perp}(O) \in \Lambda^{n-k}L_i^{\perp}$ the (n-k)-vector, such that:

6.2: Balance condition for Λ-enriched fans

Let \mathcal{F} be an enriched k-fan. For a cone $\sigma_i \in \mathcal{F}_k$ let $L_i^{\perp} \subset (\mathbb{R}^n)^*$ be the (n-k)-dimensional space dual to the span L_i of $\sigma_i \subset \mathbb{R}^n$. Let O be an orientation of σ_i . Denote by $e_i^{\perp}(O) \in \Lambda^{n-k}L_i^{\perp}$ the (n-k)-vector, such that:

- 1) the integral volume of $|e_i^{\perp}(O)|$ in L_i^{\perp} is equal to one;
- 2) the orientation of $e_i^{\perp}(O)$ is induced from the orientation O of σ_i and from the standard orientation of \mathbb{R}^n .

6.2: Balance condition for Λ-enriched fans

Let \mathcal{F} be an enriched k-fan. For a cone $\sigma_i \in \mathcal{F}_k$ let $L_i^{\perp} \subset (\mathbb{R}^n)^*$ be the (n-k)-dimensional space dual to the span L_i of $\sigma_i \subset \mathbb{R}^n$. Let O be an orientation of σ_i . Denote by $e_i^{\perp}(O) \in \Lambda^{n-k}L_i^{\perp}$ the (n-k)-vector, such that:

- 1) the integral volume of $|e_i^{\perp}(O)|$ in L_i^{\perp} is equal to one;
- 2) the orientation of $e_i^{\perp}(O)$ is induced from the orientation O of σ_i and from the standard orientation of \mathbb{R}^n .

An enriched k-fan \mathcal{F} satisfies **the balance condition** if for any orientation of any (k-1)-dimensional cone $\rho \in \mathcal{F}_{k-1}$ the relation

$$\sum e_i^{\perp}(O(\rho))c(\sigma_i)=0$$

holds, where c is the weight function and summation is taken over all $\sigma_i \in \mathcal{F}_k$ such that $\rho \subset \partial \sigma_i$ and $O(\rho)$ is such orientation of σ_i that the orientation of $\partial \sigma_i$ agrees with the orientation of ρ .

6.3: Intersection number of complementary fans

Let \mathcal{F}_1 and a \mathcal{F}_2 be balanced k-fan and (n-k)-fan. Cones $\sigma_i^1 \in \mathcal{F}_1$, $\sigma_j^2 \in \mathcal{F}_2$ with $\dim \sigma_i^1 = k$, $\dim \sigma_j^2 = n-k$ are a-admissible for a vector $a \in \mathbb{R}^n$ if $\sigma_i^1 \cap (\sigma_j^2 + a) \neq \emptyset$. Let $C_{i,j}$ be the index of $\Lambda_i \bigoplus \Lambda_j$ in \mathbb{Z}^n where $\Lambda_i = L_i^1 \cap \mathbb{Z}^n$, $\Lambda_j = L_j^2 \cap \mathbb{Z}^n$ and L_i^1 , L_i^2 are linear spaces spanned by σ_i^1 , σ_i^2 .

6.3: Intersection number of complementary fans

Let \mathcal{F}_1 and a \mathcal{F}_2 be balanced k-fan and (n-k)-fan. Cones $\sigma_i^1 \in \mathcal{F}_1$, $\sigma_j^2 \in \mathcal{F}_2$ with $\dim \sigma_i^1 = k$, $\dim \sigma_j^2 = n-k$ are a-admissible for a vector $a \in \mathbb{R}^n$ if $\sigma_i^1 \cap (\sigma_j^2 + a) \neq \emptyset$. Let $C_{i,j}$ be the index of $\Lambda_i \bigoplus \Lambda_j$ in \mathbb{Z}^n where $\Lambda_i = L_i^1 \cap \mathbb{Z}^n$, $\Lambda_j = L_j^2 \cap \mathbb{Z}^n$ and L_i^1 , L_j^2 are linear spaces spanned by σ_i^1 , σ_j^2 .

Definition 8

The intersection number c(0) of \mathcal{F}_1 and \mathcal{F}_2 is equal to $\sum C_{i,j}c_1(\sigma_i^1)c_2(\sigma_j^2)$, where $a \in \mathbb{R}^n$ is a generic vector and the sum is taken over all a-admissible couples σ_i^1, σ_j^2 .

6.3: Intersection number of complementary fans

Let \mathcal{F}_1 and a \mathcal{F}_2 be balanced k-fan and (n-k)-fan. Cones $\sigma_i^1 \in \mathcal{F}_1$, $\sigma_j^2 \in \mathcal{F}_2$ with $\dim \sigma_i^1 = k$, $\dim \sigma_j^2 = n-k$ are a-admissible for a vector $a \in \mathbb{R}^n$ if $\sigma_i^1 \cap (\sigma_j^2 + a) \neq \emptyset$. Let $C_{i,j}$ be the index of $\Lambda_i \bigoplus \Lambda_j$ in \mathbb{Z}^n where $\Lambda_i = L_i^1 \cap \mathbb{Z}^n$, $\Lambda_j = L_j^2 \cap \mathbb{Z}^n$ and L_i^1 , L_j^2 are linear spaces spanned by σ_i^1 , σ_j^2 .

Definition 8

The intersection number c(0) of \mathcal{F}_1 and \mathcal{F}_2 is equal to $\sum C_{i,j}c_1(\sigma_i^1)c_2(\sigma_j^2)$, where $a \in \mathbb{R}^n$ is a generic vector and the sum is taken over all a-admissible couples σ_i^1, σ_i^2 .

Definition 9

The **tropical product** $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ is a 0-fan $\mathcal{F} = \{0\}$ with the weight c(0) equal to the intersection number of the fans.

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n-(k+m). If d<0 then $\mathcal{F}_1\times\mathcal{F}_2=0$. If d=0 the fan $\mathcal{F}_1\times\mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ for d>0.

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n-(k+m). If d<0 then $\mathcal{F}_1\times\mathcal{F}_2=0$. If d=0 the fan $\mathcal{F}_1\times\mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ for d>0.

Assume that \mathcal{F}_1 and and \mathcal{F}_2 are subfans of a complete fan \mathcal{G} . Then $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ also is a subfan of \mathcal{G} . The weight $c(\delta)$ of a con δ with dim $\delta=d$ in \mathcal{G} is defined below.

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n-(k+m). If d<0 then $\mathcal{F}_1\times\mathcal{F}_2=0$. If d=0 the fan $\mathcal{F}_1\times\mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ for d>0.

Assume that \mathcal{F}_1 and and \mathcal{F}_2 are subfans of a complete fan \mathcal{G} . Then $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ also is a subfan of \mathcal{G} . The weight $c(\delta)$ of a con δ with dim $\delta=d$ in \mathcal{G} is defined below.

Let L be a space spanned by the cone δ and let $(\mathcal{F}_1)_{\delta}$ and $(\mathcal{F}_2)_{\delta}$ be the enriched subfans of \mathcal{F}_1 and of \mathcal{F}_2 consisting of all cones from these fans containing the cone δ .

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n-(k+m). If d<0 then $\mathcal{F}_1\times\mathcal{F}_2=0$. If d=0 the fan $\mathcal{F}_1\times\mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ for d>0.

Assume that \mathcal{F}_1 and and \mathcal{F}_2 are subfans of a complete fan \mathcal{G} . Then $\mathcal{F}=\mathcal{F}_1\times\mathcal{F}_2$ also is a subfan of \mathcal{G} . The weight $c(\delta)$ of a con δ with dim $\delta=d$ in \mathcal{G} is defined below.

Let L be a space spanned by the cone δ and let $(\mathcal{F}_1)_{\delta}$ and $(\mathcal{F}_2)_{\delta}$ be the enriched subfans of \mathcal{F}_1 and of \mathcal{F}_2 consisting of all cones from these fans containing the cone δ .

Definition 10

The weight $c(\delta)$ of the cone δ in $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ is equal to the intersection number of the images under the factorization of $(\mathcal{F}_1)_{\delta}$ and $(\mathcal{F}_2)_{\delta}$ in the factor space \mathbb{R}^n/L .

6.5. Ring $\mathcal{R}_n(\Lambda)$ and homology of toric varieties

Let Δ^{\perp} be the fan of a smooth complete projective toric variety M^n . Let $T\mathcal{R}_n(\Lambda, \Delta)$ be the ring of balanced Λ -enriched fans equal to Λ -linear combination of cones from the fan Δ^{\perp} .

6.5. Ring $\mathcal{R}_n(\Lambda)$ and homology of toric varieties

Let Δ^{\perp} be the fan of a smooth complete projective toric variety M^n . Let $T\mathcal{R}_n(\Lambda, \Delta)$ be the ring of balanced Λ -enriched fans equal to Λ -linear combination of cones from the fan Δ^{\perp} .

Theorem 11

The ring $T\mathcal{R}_n(\Lambda, \Delta)$ is isomorphic to the intersection ring $H_*(M_\Delta, \Lambda)$. The component of $T\mathcal{R}_n(\Lambda, \Delta)$ consisting of k-fans under this isomorphism corresponds to the component $H_{2k}(M_\Delta, \Lambda)$.

6.5. Ring $\mathcal{R}_n(\Lambda)$ and homology of toric varieties

Let Δ^{\perp} be the fan of a smooth complete projective toric variety M^n . Let $T\mathcal{R}_n(\Lambda, \Delta)$ be the ring of balanced Λ -enriched fans equal to Λ -linear combination of cones from the fan Δ^{\perp} .

Theorem 11

The ring $T\mathcal{R}_n(\Lambda, \Delta)$ is isomorphic to the intersection ring $H_*(M_{\Delta}, \Lambda)$. The component of $T\mathcal{R}_n(\Lambda, \Delta)$ consisting of k-fans under this isomorphism corresponds to the component $H_{2k}(M_{\Delta}, \Lambda)$.

Theorem 12

The ring of conditions $\mathcal{R}_n(\Lambda)$ is isomorphic to the tropical ring $T\mathcal{R}_n(\Lambda)$ be the ring of balanced Λ -enriched fans.

CONGRATULATIONS TO SASHA AND VITALY!