A07-SOLARPY

Maran Christian

TGM 5BHITM

Inhalt

Aufgabenstellung	2
Zeitaufwandsaufzeichnung	3
Designüberlegung	3
Notwendige Libraries	3
Überlegungen	3
Codedesign	4
GUI-Design	4
V1	4
Splashscreen	5
Duellen	. 6

Aufgabenstellung

Wir wollen nun unser Wissen aus Medientechnik und SEW nützen um eine etwas kreativere Applikation zu erstellen.

Eine wichtige Library zur Erstellung von Games mit 3D-Grafik ist Pygame. Die 3D-Unterstützung wird mittels PyOpenGL erreicht.

Die Kombination ermöglicht eine einfache und schnelle Entwicklung.

Während pygame sich um Fensteraufbau, Kollisionen und Events kümmert, sind grafische Objekte mittel OpenGL möglich.

Die Aufgabenstellung:

Erstellen Sie eine einfache Animation unseres Sonnensystems:

In einem Team (2) sind folgende Anforderungen zu erfüllen.

- o Ein zentraler Stern
- Zumindest 2 Planeten, die sich um die eigene Achse und in elliptischen Bahnen um den Zentralstern drehen
- Ein Planet hat zumindest einen Mond, der sich zusätzlich um seinen Planeten bewegt
- o Kreativität ist gefragt: Weitere Planeten, Asteroiden, Galaxien,...
- Zumindest ein Planet wird mit einer Textur belegt (Erde, Mars,... sind im Netz verfügbar)

Events:

- Mittels Maus kann die Kameraposition angepasst werden: Zumindest eine Überkopf-Sicht und parallel der Planentenbahnen
- Da es sich um eine Animation handelt, kann diese auch gestoppt werden.
 Mittels Tasten kann die Geschwindigkeit gedrosselt und beschleunigt werden.
- Mittels Mausklick kann eine Punktlichtquelle und die Textierung ein- und ausgeschaltet werden.
- o Schatten: Auch Monde und Planeten werfen Schatten.

Hinweise:

- o Ein Objekt kann einfach mittels glutSolidSphere() erstellt werden.
- Die Planten werden mittels Modelkommandos bewegt: glRotate(), glTranslate()
- Die Kameraposition wird mittels gluLookAt() gesetzt
- Bedenken Sie bei der Perspektive, dass entfernte Objekte kleiner nahe entsprechende größer darzustellen sind.

- Wichtig ist dabei auch eine möglichst glaubhafte Darstellung. gluPerspective(), glFrustum()
- Für das Einbetten einer Textur wird die Library Pillow benötigt! Die Community unterstützt Sie bei der Verwendung.

Zeitaufwandsaufzeichnung

Arbeitspakete	Geschätzte Zeit	Tatsächliche Zeit	Status
Libraries-Recherche	00h 30min	00h 35min	done
Anlernen der Libraries	04h 00min	02h 30min	In progress
Backend-Design	02h 00min	00h 45min	In progress
GUI-Design	01h 30min	00h 40min	In progress
3D-Objekte erstellen	02h 00min	00h 15min/Objekt	In progress
Texturen zuweisen	01h 00min		
Lichtquelle erzeugen	02h 00min		
Kameraview erzeugen	02h 00min		
Rotation der Objekte	03h 30min		In progress
Rotation starten	01h 00min		
Lichtquelle an- /ausschalten	01h 00min		
Code dokumentieren	01h 30min		
Sphinx Doku erzeugen(rst-	01h 00min		
File etc)			
Protokoll	02h 00min	01h 00min	In progress
Summe	24h 30min	05h 45min	

Designüberlegung

Notwendige Libraries

- PyQt
- PyGame
- PyOpenGL
- Pillow/Pyglet -> wird sich dann bei der Recherche der beiden Libraries zeigen, welche schlussendlich verwendet wird

Überlegungen

Splashscreen wird mittels Pygame eingebunden.

Der OpenGL-Teil wird mit PyOpenGL implementiert und dann mittels PyGame eingebunden.

Rotationsgeschwindigkeit soll mit den Pfeiltasten verändert werden können \rightarrow weitere Konfiguration womöglich mittels ausklappbaren Optionsinterface

Etwaige GUI-Komponenten mit PyQt umsetzen → Anpassungsmöglichkeit mittels Stylesheet

Codedesign

MVC für die Grundstruktur des Projektes um eine gute Trennung der Komponenten zu gewährleisten. Strategy-Pattern für die Drehung?

GUI-Design

V1

Splashscreen

Aktuell wird an einem Splashscreen mit Animation gearbeitet, welche schon funktionieren würde, allerdings werden bei dieser Version die Lichter nicht vernünftig abgespeichert

Quellen

- [1] thenewboston, Pygame (Python Game Development) Tutorial 1 Introduction, 10.11.2014, https://www.youtube.com/watch?v=K5F-aGDIYaM (zuletzt aufgerufen 23.02.2014)
- [2] Rick Muller, Open a GLUT window and draw a sphere using Python/OpenGL (Python recipe), 27.10.2004, http://code.activestate.com/recipes/325391-open-a-glut-window-and-draw-a-sphere-using-pythono/ (zuletzt aufgerufen 28.02.2014)