In the following <u>time complexities[6]</u> O(f) is an asymptotic upper bound and $\Theta(f)$ is an asymptotically tight bound (see <u>Big O notation</u>). Function names assume a min-heap.

Operation	Binary[6]	Binomial[6]	Fibonacci[6][7]	Pairing[8]	<u>Brodal[</u> 9][b]	Rank- pairing[11]	Strict Fibonacci[1 2]
find-min	$\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
delete-min	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)[c]$	<i>O</i> (log <i>n</i>) [c]	$O(\log n)$	$O(\log n)[c]$	$O(\log n)$
insert	$O(\log n)$	$\Theta(1)$ [c]	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
decrease-key	$\Theta(\log n)$	$\Theta(\log n)$	Θ(1)[c]	o(log n) [c][d]	$\Theta(1)$	Θ(1)[c]	$\Theta(1)$
merge	$\Theta(n)$	$O(\log n)[e]$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$