Préliminaires

Courbes

Définition 0.1. Une courbe paramétrée fermée simple de classe C^k γ est une application de classe C^k d'un intervalle $[t_0, t_1]$ dans \mathbb{R}^2 telle que la restriction de γ à $]t_0, t_1[$ soit injective et $\gamma(t_0) = \gamma(t_1)$. Une courbe géométrique fermée simple de classe C^k C est l'image d'une courbe paramétrée fermée simple de classe C^k γ , gamma est alors une paramétrisation de C. Une courbe géométrique fermée simple de classe C^0 est appelée courbe de Jordan.

A chaque courbe paramétrée férmée simple γ , une relation d'ordre pour les points de la courbe géométrique associée privée de $\gamma(0)$ est définie par :

$$\gamma(\alpha) \le \gamma(\beta) \Leftrightarrow \alpha \le \beta.$$

Afin de définir l'intérieur et l'extérieur d'une courbe géométrique rappelons le théorème de Jordan.

Théorème 0.2. Dans le plan, le complémentaire d'une courbe de Jordan C est formé d'exactement 2 composantes connexes, une bornée, l'autre non.

On appellera $intérieur\ de\ C$ la composante connexe bornée et $extérieur\ de\ C$ la composante connexe non-bornée.

Discrétisation de Gauss [LT]

Pour tout $z \in \mathbb{R}^2$, $\epsilon \in \mathbb{R}_+$ on note $B_{||.||_{\infty}}(z,\epsilon) := \{x \in \mathbb{R}^2, ||x||_{\infty} \le \epsilon\}$, c'est-à-dire un carré centré en z et de côté de longueur 2ϵ . La discrétisation de Gauss d'un compact K pour le pas h $G_h(K)$ est alors définie par :

$$G_h(K) := \bigcup_{z \in K \cap h\mathbb{Z}^2} B_{||\cdot||_{\infty}}(z, \frac{h}{2}).$$

Autrement dit $G_h(K)$ est la réunion de tous les carrés formés par le réseau $h\mathbb{Z}^2$ de côté de longueur h, dont le centre est dans K. La discrétisation de Gauss d'une courbe de Jordan C $\partial_h(C)$ est la frontière de la discrétisation de Gauss de l'intérieur de C.

ensemble à portée positive et projection [Fed]

Définition 0.3. Soit E un espace euclidien et A un sous-ensemble de E.

— On définit la distance d entre A et un point $x \in E$ par :

$$d(x, A) := \inf_{a \in A} \{ ||x - a||_E \}$$

- Unp(A) est l'ensemble des points $x \in E$ ayant un unique plus proche point $a \in A$.
- La projection $\pi: Unp(A) \to A$ est définie comme étant l'application qui associe à $x \in E$, l'unique plus proche point de A.
- La portée de A en $a \in A$ notée reach(A, a) est définie par :

$$reach(A, a) := sup \{r | B_E(a, r) \subset Unp(A) \}.$$

reach(A,a) peut valoir $+\infty$.

— La portée de A est définie par :

$$reach(A) := inf_{a \in A} reach(A, a)$$

reach(A) peut valoir $+\infty$.

Proposition 0.4. Soit E un espace euclidien et soit A un sous-ensemble fermé non-vide de E. Alors

- La projection π est continue.
- Plus précisément, si $0 < r < q < +\infty$, $x, y \in Unp(A)$ et $d(A, x) \leq r$, $d(A, y) \leq r$, $reach(A, \pi(x)) \geq q$, $reach(A, \pi(y)) \geq q$, alors

$$||\pi(x) - \pi(y)||_E \le \frac{q}{q-r}||x-y||_E.$$

ensembles par-(r) réguliers [398] [LT]

Définition 0.5. [398] Soit E un espace euclidien et A un sous-ensemble de E.

— Une boule oscultante intérieure de rayon r, r > 0, en un point $y \in C$ est une boule fermée euclidienne $\bar{B}_{||.||_E}(x,r)$, telle que

$$\exists x \in \overset{\circ}{A}, \text{ tel que } \partial A \cap \partial B_{||.||_E}(x,r) = \{y\} \text{ et } B_{||.||_E}(x,r) \subset \overset{\circ}{A} \cup \{y\}.$$

— Une boule oscultante extérieure de rayon r, r > 0, en un point $y \in C$ est une boule fermée euclidienne $\bar{B}_{||.||_E}(x,r)$, telle que

$$\exists x \in E \backslash A, \text{ tel que } \partial A \cap \partial B_{||.||_E}(x,r) = \{y\} \text{ et } B_{||.||_E}(x,r) \subset \stackrel{\circ}{E} \mathfrak{A} \cup \{y\}.$$

- A est par(r,-)-régulier, si pour tout $y \in \partial A$, il existe une boule oscultante intérieure de rayon r en y.
- A est par(r,+)-régulier, si pour tout $y \in \partial A$, il existe une boule oscultante extérieure de rayon r en y.
- A est par(r)-régulier si A est par(r, -)-régulier et par(r, +)-régulier.

C est par-(R,-) régulière si pour tout $y \in C$, il existe une boule oscultante intérieure de rayon R en y. De même Une courbe est par-(R,+) régulière si pour tout $y \in C$, il existe une boule oscultante extérieure de rayon R en y. Une courbe par-R régulière est une courbe par-(R,+) régulière et par-(R,-) régulière.

Le lemme suivant permet de relier les notions de portée et de par(r)-régularité.

Lemme 0.6. [LT] Soit A un sous-ensemble compact de \mathbb{R}^d alors

$$reach(\partial A) \ge r \Leftrightarrow \forall r' < r, A \ est \ par(r') \text{-régulier}.$$

Ainsi pour une courbe par(r)-régulière, π est défini pour des points suffisemment proches de la courbe.

Proposition 0.7. [GL] Soit A un sous-ensemble fermé C^2 du plan \mathbb{R}^2 (c'est-à-dire un ensemble dont le bord ∂A est une courbe de Jordan C^2). Alors, il existe r > 0 tel que A soit par(r)-régulier.

La proposition suivante permet de majorer la distance entre un point de la discrétisation de Gauss d'une courbe et sa projetction sur la courbe.

Proposition 0.8. [LT] Soit A un sous-ensemble compacte de \mathbb{R}^2 de portée reach(A) plus grande que r. Alors pour tout pas de discrétisation h, $0 < h < \sqrt{2}r$,

$$\forall y \in \partial_h(C), \exists x \in C, \qquad tel \ que \ ||x - y||_2 \le \frac{\sqrt{2}}{2}h \ et \ y \in n\left(x, \frac{\sqrt{2}}{2}h\right), \tag{1}$$

$$\forall x \in C, \exists y \in \partial_h(C), \qquad tel \ que \ ||x - y||_2 \le \frac{\sqrt{2}}{2}h \ et \ y \in n\left(x, \frac{\sqrt{2}}{2}h\right), \tag{2}$$

où n(x,l) est le segment orienté dans le sens de la normal centré en x et de longueur 2l.

Le point 1 de la proposition montre que π est définie dans un voisinage tubulaire de C, et le point 2 de la proposition montre que π est surjective. Cependant π n'est pas forcément injective (voir configuration de décrochement figure B.6 [LT]). En revanche, nous avons la proposition suivante déduite de la preuve du lemme B.12 de [Lac].

Proposition 0.9. Soit A un ensemble par(r)-régulier, soit h, $0 < h < \frac{\sqrt{10}}{5}r$. Alors pour tout point $x \in \partial A$, $(\pi|_{\partial_h(A)})^{-1}(x)$ est connexe.

La proposition suivante [Lac] (théorème B.14), mesure le "défaut d'injectivité de la projection".

Proposition 0.10. Soit C une courbe de Jordan par(r)-régulière et $0 < h < \frac{\sqrt{10}}{5}$. La partie non-bijective $\pi^{-1}(Mult)$ est en O(h).

Estimateurs semi-locaux

MB16

Pour une suite finie de points $(x_i)_{i=0}^N$, une norme ||.||, on définit

$$M_{\alpha,||.||} := \left(\frac{1}{n} \sum_{i=0}^{N} ||x_i||^{\alpha}\right)^{\frac{1}{\alpha}}$$

pour $\alpha \in \mathbb{R}^*$, ainsi que

$$M_{+\infty,||.||} := \max_{i \in [|0,N|]} ||x_i||.$$

Dans la suite ||.|| sera une norme équivalente à la norme 2, vérifiant alors pour :

$$k_1||.|| \le ||.||_2 \le k_2||.||,$$

avec $k_1, k_2 \in \mathbb{R}_+^*$.

- **Définition 0.11.** Une fonction de motifs \mathcal{A} est une fonction qui à une courbe discrète D et un pas de discrétisation associe une suite de points $(a_i)_{i=0}^N$ croissante pour une certaine paramétrisation de D.
 - Une fonction de α -motifs est une fonction de motifs \mathcal{A} telle que

$$\lim_{h\to 0} h M_{\alpha,||.||}(\mathcal{A}(D,h)_{i+1} - \mathcal{A}(D,h)_i) = 0,$$

en notant $a_{N+1} := a_0$

Proposition 0.12. Soit C une courbe de Jordan rectifiable par(r)-régulière telle que $\partial_h(C)$ soit une courbe de Jordan. Soit $h \in]0, \frac{\sqrt{10}}{5}r[$. Soient γ_C et γ_D des paramétrisations respectivement de C et de $\partial_h(C)$ définies sur [0,1], vérifiant $\pi(\gamma_D(0)) = \gamma_C(0)$. γ_C (respectivement γ_D) définit une relation d'ordre sur C (respectivement sur $\partial_h(C)$). Alors $\pi|_{\partial_h(C)\setminus\gamma_D(0)}$ est monotone pour ces relations d'ordre.

Démonstration. Notons $\phi := \gamma_C^{-1} \circ \pi \circ \gamma_D|_{]0,1[} :]0,1[\to]0,1[$. Soient $t_0,t_1,t_2 \in [0,1]$, tels que $t_0 \leq t_1 \leq t_2$. Supposons par l'absurde que $\phi(t_1)$ ne soit pas entre $\phi(t_0)$ et $\phi(t_2)$. Par le théorème des valeurs intermédiaires, il existe alors $t' \in]0,1[\setminus [t_0,t_2]$ tel que $\phi(t') = \phi(t_1)$, donc $\phi^{-1}(t_1) = (\pi \circ \gamma_D)^{-1}(\gamma_C^{-1}(t_1))$ comporte deux composantes connexes, ce qui contredit la proposition 0.9. Donc ϕ est monotone.

On note $(a_i)_{i=0}^{N_h} := \mathcal{A}(\partial_h(C), h)$, avec \mathcal{A} une fonction de $+\infty$ -motifs telle que $\lim_{h\to 0} hN_h = 0$. Pour tout, $i \in [|0, N_h|], \pi_i := \pi(a_i)$.

Lemme 0.13. Soit C une courbe de Jordan par-R régulière et soit $h \in]0, \sqrt{2}r[$, a_i et a_j deux points de $\partial_h(C)$, π_i et π'_k les projections respectives de ha_k et ha'_k sur C. Alors

$$|h||a_k - a_k'|| - ||\pi_k - \pi_k'||| < \frac{1}{k_1} \sqrt{2}h.$$

 $D\'{e}monstration.$

$$\begin{split} ||\pi_k - \pi_k'|| &\leq ||\pi_k - ha_k|| + ||ha_k - ha_{k'}|| + ||ha_{k'} - \pi_{k'}||, \\ &\leq h||a_k - a_{k'}|| + \frac{1}{k_1} \left(||\pi_k - ha_k|| + ||ha_{k'} - \pi_{k'}|| \right), \\ &< h||a_k - a_{k'}|| + \frac{1}{k_1} \sqrt{2}h. \end{split}$$

De même :

$$h||a_k - a_{k'}|| < ||\pi_k - \pi_{k'}|| + \frac{1}{k_1}\sqrt{2}h.$$

Lemme 0.14. Soit C une courbe C^2 de portée $\operatorname{reach}(C) = r.S$ oit π_i et π_j des points de C, tels que $||\pi_i - \pi_j||_2 < \sqrt{2}R$. En notant $L(\gamma_i)$ la longueur d'arc C entre π_i et π_j (arc inclus dans $B_{||.||_2}(\pi, \sqrt{2}R)$).

Démonstration. Notons $\phi := 2\arcsin(\frac{||\pi_i - \pi_j||_2}{2})$.

Références

- [398] Longin Jan Latecki 1 Christopher Conrad 2 Ari Gross 3: Preserving topology by a digitization process. *Journal of Mathematical Imaging and Vision*, page 131–159, 1998.
- [Fed] Herbert Federer: Curvature measure.
- [GL] Ari Gross et Longin Latecki : Digitizations preserving topological and differential geometric properties.
- [Lac] Jacques-Olivier Lachaud : Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète.
- [LT] Jacques-Olivier Lachaud et Boris Thibert: Properties of gauss digitized shapes and digital surfaces integration. *Journal of Mathematical Imaging and Vision*.
- [MB16] Loïc MAZO et Étienne BAUDRIER: Non-local estimators: A new class of multigrid convergent length estimators. *Theoretical Computer Science*, pages 128–146, 2016.