QCM $N^{\circ}5$

mardi 29 septembre 2020

Question 11

Soient A et B les assertions définies pour $x \in \mathbb{R}$ par : A(x) : " $x \ge 3$ " et B(x) : "x > 5" Alors :

- a. Pour tout réel x, A(x) est une condition suffisante pour B(x)
- b. Pour tout réel x, A(x) est une condition nécessaire pour B(x)
- c. rien de ce qui précède

Question 12

On considère l'ensemble $A=\{a,b,c\}$ et on note $\mathscr{P}(A)$ l'ensemble des parties de A et $A^2=A\times A$. Alors :

- a. Le nombre d'éléments dans $\mathscr{P}(A)$ est 9.
- b. Le nombre d'éléments dans A^2 est 8.
- $c. (a,a) \in A^2$
- d. $\{a, a\} \in \mathscr{P}(A)$
- e. Rien de ce qui précède

Question 13

Soit f de $E = \{1, 2, 3, 4, 5, 6\}$ dans E définie par :

$$\forall n \in E \text{ si } n \text{ est pair, } f(n) = \frac{n}{2} \text{ sinon } f(n) = n$$

Alors:

- a. $f(E) = \{1, 2, 3\}$
- b. $f(\{1,3\}) = \{1,3\}$
 - c. $f^{-1}(\{1,3\}) = \{1,3\}$
- $\boxed{d.} \ f^{-1}(\{4\}) = \emptyset \ .$
 - e. rien de ce qui précède

Question 14

Soit f la fonction $\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R}^+ \\ x & \longmapsto x^2 \end{cases}$ Alors:

a.
$$f([0,2]) = \{0,4\}$$
.

$$b. f([-2,2]) = [0,4].$$

c.
$$f^{-1}([0,4]) = [0,2]$$
.

d.
$$f^{-1}(\{-4,4\}) = [-2,2]$$
.

e. rien de ce qui précède.

Question 15

Soient E et F deux sous-ensembles de $\mathbb R$ et f une fonction de $E \longrightarrow F$ définie pour tout x de E par :

$$f(x) = \sqrt{x+1}$$

Alors, on peut prendre:

$$a$$
. $E = \mathbb{R}^+$ et $F = \mathbb{R}$

b.
$$E = [-1, +\infty]$$
 et $F = [2, +\infty]$

$$c. E = [2, +\infty] \text{ et } F = [-1, +\infty]$$

$$d. E = \mathbb{R}^+ \text{ et } F = [1, +\infty[$$

e. rien de ce qui précède

Question 16

Soit f la fonction $\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R}^+ \\ x & \longmapsto x^2 \end{cases}$ Alors:

a. f est injective.

b. f est surjective.

c. rien de ce qui précède.

Question 17

Soient I et J deux intervalles de $\mathbb R$ et f la fonction : $\left\{ \begin{array}{ccc} I & \longrightarrow & J \\ x & \longmapsto & \sin(x) \end{array} \right. .$

a. Si $I = [0, \pi]$ et J = [-1, 1], f est injective.

b. Si $I = [0, \pi]$ et J = [-1, 1], f est surjective.

c. Si $I = \left[0, \frac{\pi}{2}\right]$ et J = [-1, 1], f est surjective.

 $\boxed{d.}$ Si $I = \left[0, \frac{\pi}{2}\right]$ et J = [-1, 1], f est injective.

e. rien de ce qui précède

Question 18

Soient E un ensemble et \mathcal{R} une relation définie sur E. Cochez la(es) définition(s) correcte(s).

- a. \mathcal{R} est symétrique si : $\forall x \in E, x \mathcal{R} x$.
- b. \mathcal{R} est antisymétrique si : $\forall x \in E, \neg(x \mathcal{R} x)$.
- c. \mathcal{R} est symétrique si : $\forall (x,y) \in E^2, \ x \mathcal{R} y \text{ et } y \mathcal{R} x.$
- d. \mathcal{R} est réflexive si : $\forall x \in E, x \mathcal{R} x$.
- $extbox{$\overline{e}$.} \quad \mathcal{R} \text{ est transitive si : } \quad \forall (x,y,z) \in E^3, \ (x \,\mathcal{R}\, y \text{ et } y \,\mathcal{R}\, z) \Longrightarrow x \,\mathcal{R}\, z.$

Question 19

Soient E un ensemble non vide et $\mathscr{P}(E)$ l'ensemble des parties de E. La relation d'inclusion, notée \subset , définie sur $\mathscr{P}(E)$ vérifie :

- a. \subset est symétrique.
- $b. \subset \text{est antisymétrique}.$
- c. \subset est réflexive.
- d. \subset est transitive.

Question 20

Soient C l'ensemble des élèves d'une classe et $\mathcal R$ une relation définie sur C par :

 $\forall \, (e,e') \in C^2, \quad e \, \mathcal{R} \, e' \Longleftrightarrow \, \textit{``e a la même moyenne générale que } e' \, \textit{``s}$

La relation \mathcal{R} vérifie :

- a. \mathcal{R} est symétrique.
- b. \mathcal{R} est antisymétrique.
- \overline{c} . \mathcal{R} est réflexive.
- $|d.| \mathcal{R}$ est transitive.