Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

1/35

NUCLEIC ACID SEQUENCE

GTCGACCCACGCGTCCGGCCCTGGAGAAAGGAAACTTATAATAAATG **GGAAATTATAAATCTAGACCAACCCAAACTTGTACTGATGAATGGAAGAA** AAAAGTCAGTGAATCATATGTTATCACAATAGAAAGATTAGAAGATGACC TGCAGATCAAGGAAAAAGAACTGACAGAACTAAGGAATATATTTGGCTCT GATGAAGCCTTCAGTAAAGTCAATTTAAATTACCGCACTGAAAATGGGCT GTCTCTACTTCATTTATGTTGCATTTGTGGAGGCAAGAAATCACATATTC GAACTCTTATGTTGAAAGGGCTCCGCCCATCTCGACTGACAAGAAATGGA TTTACAGCCTTGCATTTAGCAGTTTACAAGGATAATGCAGAATTGATCAC TTCTCTGCTTCACAGTGGAGCTGATATACAGCAGGTTGGATACGGTGGCC TCACTGCCCTCCATATTGCTACAATAGCTGGCCACCTAGAGGCTGCTGAT GTGCTGTTGCAACATGGAGCTAATGTCAATATTCAAGATGCAGTTTTTTT CACTCCATTGCATATTGCAGCGTACTATGGACATGAACAGGTAACTCGCC TTCTTTTGAAATTTGGTGCTGATGTAAATGTAAGTGGTGAAGTTGGAGAT AGACCCCTCCACCTAGCATCTGCAAAAGGATTCTTGAATATTGCAAAACT CTTGATGGAAGAAGCAGCAAAGCAGATGTGAATGCTCAAGATAATGAAG ACCATGTCCCACTCCATTTCTGTTCTCGATTTGGACACCATGATATAGTT AAGTATCTGCTGCAAAGTGATTTGGAAGTTCAACCTCATGTTGTTAATAT CTATGGAGATACCCCCTTACACCTGGCATGCTACAATGGCAAATTTGAAG TTGCCAAGGAAATCATCCAAATATCAGGAACAGAAAGTCTGACTAAGGAA **AACATCTTCAGTGAAACAGCTTTTCATAGTGCTTGTACCTATGGCAAGAG** CATTGACCTAGTCAAATTTCTTCTTGATCAGAATGTCATAAACATCAACC CACATTCGCCTGGTTCAGTTCTTACTGGATAATGGAGCTGATATGAATCT AGTGGCTTGTGATCCCAGCAGGTCTAGTGGTGAAAAAGATGAGCAGACAT GTTTGATGTGGGCTTATGAAAAAGGGCATGATGCCATTGTCACACTCCTG AAGCATTATAAGAGACCACAAGATGAATTGCCCTGTAATGAATATTCTCA GCCTGGAGGAGATGGCTCCTATGTGTCTGTTCCATCACCCTTGGGGAAGA TTAAAAGCATGACAAAAGAGAAGGCAGATATTCTCCTCCTAAGAGCTGGA TTGCCTTCACATTTCCATCTTCAGCTCTCAGAAATTGAGTTCCATGAGAT **TATTGGCTCAGGTTCTTTTGGGAAAGTATATAAAGGACGATGCAGAAATA AAATAGTGGCTATAAAACGTTATCGAGCCAATACCTACTGCTCCAAGTCA** GATGTGGATATGTTTTGCCGAGAGGTGTCCATTCTCTGCCAGCTCAATCA AGATGTTGCCAAAGGCATGGAGTACCTTCACAACCTGACACAGCCAATTA TACATCGTGACTTGAACAGTCACAATATTCTTCTCTATGAGGATGGGCAT GCTGTGGTGGCAGATTTTGGAGAATCAAGATTTCTACAGTCTCTGGATGA AGACAACATGACAAAACAACCTGGGAACCTCCGTTGGATGGCTCCTGAGG TGTTCACGCAGTGCACTCGGTACACCATCAAAGCAGATGTCTTCAGCTAT GCTCTGTGTCTGTGGGAAATTCTCACTGGCGAAATTCCATTCGCTCATCT CAAGCCAGCGGCTGCGGCAGCAGACATGGCTTACCACCACATCAGACCTC CCATTGGCTATTCCATTCCCAAGCCCATATCATCTCTGCTGATACGAGGG TGGAACGCATGTCCTGAAGGAAGACCCGAATTTTCTGAAGTTGTCATGAA **GTTAGAAGAGTGTCTCTGCAACATTGAGCTGATGTCTCCTGCATCAAGTA** ACAGCAGTGGGTCTCTCACCTTCTTCTTCTTCTGATTGCCTGGTGAAC CGGGGAGGACCTGGCCGGAGTCATGTGGCAGCATTAAGAAGTCGTTTCGA ATTGGAATATGCTCTAAATGCAAGGTCCTATGCTGCTTTGTCCCAAAGTG CTGGACAATATTCCTCTCAAGGTCTGTCTTTGGAGGAGATGAAAAGAAGT CTTCAATACACACCCATTGACAAATATGGCTATGTATCCGATCCCATGAG CTCAATGCATTTCATTCTTGCCGAAATAGTAGCAGCTTTGAGGACAGCA GCTGACAGCATTCGGCGTATACCTAAGGAGAGTTTTTTCCCCGAACTGAC AGCAACGATTCCAACCACGGCAAGCTGGCTTCCAACTATAACATTTTACT CTCAAAGGTCTCCTTAAATTGGGCTTGTTTTTACTTGTCCTATTTAATTC

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

2/35

AMINO ACID SEQUENCE

MGNYKSRPTQTCTDEWKKKVSESYVITIERLEDDLQIKEKELTELRNIFGSDEAFSKVNL
NYRTENGLSLLHLCCICGGKKSHIRTLMLKGLRPSRLTRNGFTALHLAVYKDNAELITSL
LHSGADIQQVGYGGLTALHIATIAGHLEAADVLLQHGANVNIQDAVFFTPLHIAAYYGHE
QVTRLLLKFGADVNVSGEVGDRPLHLASAKGFLNIAKLLMEEGSKADVNAQDVEDHVPLH
FCSRFGHHDIVKYLLQSDLEVQPHVVNIYGDTPLHLACYNGKFEVAKEIIQISGTESLTK
ENIFSETAFHSACTYGKSIDLVKFLLDQNVININHQGRDGHTGLHSACYHGHIRLVQFLL
DNGADMNLVACDPSRSSGEKDEQTCLMWAYEKGHDAIVTLLKHYKRPQDELPCNEYSQPG
GDGSYVSVPSPLGKIKSMTKEKADILLLRAGLPSHFHLQLSEIEFHEIIGSGSFGKVYKG
RCRNKIVAIKRYRANTYCSKSDVDMFCREVSILCQLNHPCVIQFVGACLNDPSQFAIVTQ
YISGGSLFSLLHEQKRILDLQSKLIIAVDVAKGMEYLHNLTQPIIHRDLNSHNILLYEDG
HAVVADFGESRFLQSLDEDNMTKQPGNLRWMAPEVFTQCTRYTIKADVFSYALCLWEILT
GEIPFAHLKPAAAAADMAYHHIRPPIGYSIPKPISSLLIRGWNACPEGRPEFSEVVMKLE
ECLCNIELMSPASSNSSGSLSPSSSSDCLVNRGGPGRSHVAALRSRFELEYALNARSYAA
LSQSAGQYSSQGLSLEEMKRSLQYTPIDKYGYVSDPMSSMHFHSCRNSSSFEDS

Fig. 1B

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Attorney Docket No.: MPI98-105P1RCP2DV1M

Applicants: Jeyaseelan Raju

Atty/Agent: Jean M. Silveri

Serial No.: N/A

Fig. 2

Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

	EEI EW-KT-S Major:	ity
	10 20 30	
1 1 1 1 1 1 1 1 1 1	SG	/prot liana kinase2 liana3 dopsis thaliana gans kinase coideum (A35670) coideum (U01064) iens (Z48615) sapiens (Z48615) raf1(W13107) Raflkinase(R98215) an kinase(M67449)
	L Major:	itừ
	40 50 60	1
6 19 23 1 16 27 27 16 16	EDDLQIKEKELTELRN CARP2,	liana kinase2 liana3 dopsis thaliana gans kinase coideum (A35670) coideum (U01064) iens (Z48615) sapiens (Z48615) raf1(W13107) Raflkinase(R98215) an kinase(M67449)
	70 80 90	ıty
8 12 39 53 1 28 51 26 26	F G S D E A F S K V N L N Y R T E N G L S L L H L C C I C CARP2.	/prot liana kinase2 liana3 dopsis thaliana gans kinase coideum (A35670) coideum (U01064) iens (Z48615) sapiens (Z48615) raf1(W13107) Raflkinase(R98215) an kinase(M67449)

Fig. 3A

Applicants: Jeyaseelan Raju
Serial No.: N/A
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

	_	- 5	3 -	A	_			L	0		. L	P	N I	L F	P	_	_	_	_	- I	, -	·E	_		Majority
	_				_		1	LÓ	<u>~</u>)						1	110	0							120	
14 47 76 1 38	- G - P P P P	- S H S - I G I T I	L - D - N P P V V V V V V V V V V V V V V V V V	R-S-DAAQQ	S Q	KI PE SV PA	T P K - A G G	L L A L L	- E - Q - K Q Q Q Q	- P S		K-P-D-EPPQQ	G I N I N I Q I Q I R - R -	L F - L F - L F - R - R - R	P C K PPPAA	- N - E - KFFSS	- P - S - I H H D D	S P E E D D	- S I	 S K T L S - Q L K L		S - N - S - P E E D D	R - R - S - L I I P P	LT QS IG SK	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raflkinase(R98215) Soybean kinase(M67449)
	_			_			_	_	_	- F	≀ G	Α	R ?	r I	v	ĸ	ĸ	R	F :	A A	_		י מ	n s	Majority
							1	3()		_				1	4(<u>-:</u>)	•						150	
99 8 40 47 106 106 54 54 70	- A I	N (;	T T GGII	A] G () K V K V R V	LHQFLHVYFVF	L - SI - RRLL	A - TA - AAPP	V V I L L	Y	DGEAG GGKK	NNAYD EEQO	AH NY EDV REV REV REV	E LTTMT I MT I A A A A A A A A A A A A A A A A A A	IKETL IVVVV	TEKSK-NKKNN	SKKTA-RVV	LIII RIII LIII CII RII	LIFFUI III III III III III III III III II	H S - S A A A A A A A A A A A A A A A A A	- KK		A I Q I Q I D I D I H I H I		CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raflkinase(R98215) Soybean kinase(M67449)
	_		<u>-</u>	_	<u>-</u> -	- L	_	<u>-</u>	L		_	_		· G	-	-	_	_			-	-		- G 180	Majority
128 19 57	Q (Q	GD - FG - TAA	Y K - A R F V V	G () I I I Q I H I T I T I	G L O L - S A A O I A E 	TKM-P-LQQ-	ASI-A-KVV-	LL-L-LCC-	H I E S - H - F Q E 	A E A D A A	T - N - A - H R R	I	1 G T - G G G G G G G G G G G G G G G G G	H D A A	L S L L	E Q Q	A I - · · · · · · · · · · · · · · · · · · ·	A 1	D V	L - L - IIL L	L - L - A A K K	Q I	I G 	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raflkinase(R98215) Soybean kinase(M67449)

Applicants: Jeyaseelan Raju Serial No.: N/A Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

		_			_	_		_			_	_	_			_	_	_	_		- F	\ -		Majority
•							19	0							20	0							21	0
30 69 80 166	A N A C A C	- - - - - - - - - - -			D н н С С -	F L C C	 V H C L C L A V	- - - - - - - - - -	T 1		- H H - - H H	- E C - V V E E -	I 1 1 A !		L	- SG - RRHH-	- A Q - - G G K K -	A E - G G G	A I N I A I A I K I	D ()		L	LA LA DW	A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raflkinase(R98215) Soybean kinase(M67449)
-		-		-	-	-		_			_	_	_		<u>-</u>	_	-	_		- I	<u>, -</u>	-		Majority 0
_							22	0							23	0							24	0
95 188 188 115 115 104	KFSAGRRNT	G S R R D D -	A I A N I V I A A A A A A A A A A A A A A A A A A	V	N N H L L -	V - L · · · · · · · · · · · · · · · · · ·	S G G G G E G E	E A E E -	L	G D - D N D - N N N 	R - KR - WW	P - T P - A A	L]	H I I I I I I I I I I I I I I I I I I I	A - VA A A	S - R A - R R	A - L A - G G Q Q -	K - I K - M M V V -	G 1 D I G 1 N 1 D I D I	F I H I Y I I F I I	N S - H D D	HII	A K S G T K K D A K	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raflkinase(R98215) Soybean kinase(M67449)
-		-	L -	-	_	_		_			L	-	-		-	_	-	- :	K I	. 7		_	 270	Majority
210					_		25	U				_		•	260	U 							270	0
69 112 226	P V - V - V	P P P	L I E I L I L I	LFHHTT	- E - S R R H H	S I D I	A - A - G L K L A F A	- K - I S S R R	A I - A I L I I K I	P - S I I I F F	- L - L L L L L L	- L N I -	AI NI LI	O D O O O O O O O O O O O O O O O	E	- G - VEE	- N - E N -	N Q R H H H H H H	G (A I E I N I N I K I		- L I Y	- C A C C	 A K D -	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raflkinase(R98215) Soybean kinase(M67449)

Serial No.: N/A Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

```
300
245 FGHHDIVKYLLQSDLEVQPHVV--NIYG-- CARP2/prot
38 ---------
                                     A.thaliana kinase2
69 ----- A.thaliana3
119 --- MVLEFL------- Arabidopsis thaliana
251 SGSLVILNMLIKQVRGTNDRICARNLYG - - c.elegans kinase
1 ----- D.discoideum (A35670)
119 ---- D.Discoideum (U01064)
                                     D.Discoideum (U01064)
241 DTVLKITDFGLAREWHKTTKMSAAGTYAWM H.sapiens (Z48615)
241 DTVLKITDFGLAREWHKTTKMSAAGTYAWM Homo sapiens (Z48615)
154 ---- ICQKFLLNGFR----- CQTCGYKFH Human raf1(W13107)
154 ---- ICQKFLLNGFR------ CQTCGYKFH Human Raf1kinase(R98215)
125 ----- Soybean kinase (M67449)
  310 320 330 Majority
271 - DTPLHLACYNGKFEVAKEIIQISGTESLT CARP2/prot
125 GDSLLRLIRYNQ--------- Arabidopsis thaliana
279 - DTALHLSCYSGRLDIVKSILDSSPTNIVN c.elegans kinase
    ------
                                     D.discoideum (A35670)
119 ----- KKERFNEITEFLRGKK-- D.Discoideum (U01064)
271 APEVIRLSLFSKSSDVWS--FGVLLWELLT H.sapiens (Z48615)
271 APEVIRLSLFSKSSDVWS - - FGVLLWELLT Homo sapiens (Z48615)
174 EHCSTKVP---TMCVDWSNIRQLLL---- Human raf1(W13107)
174 EHCSTKVP---TMCVDWSNIRQLLL---- Human Raf1kinase(R98215)
125 - - - - - - - - KDSAWTKLLDNGGGKITA Soybean kinase(M67449)
                               ---- Majority
                        350
                                   360
300 KENIFSETAFHSACTYGKSIDLVKFLLDQN CARP2/prot
48 PKA----- A.thaliana kinase2
73 KGE----- A.thaliana3
137 - - - YKGLKLN - - - - - KVREICRCIL - - Arabidopsis thaliana
308 MENVFSETPLHAACTGGKSIELVSFLMKYP c.elegans kinase
  ----- D.discoideum (A35670)
135 - - - - - - - - - - -
                                     D.Discoideum (U01064)
299 GEVPYREID - ALAVAYG - - VAMNKLTLPIP H.sapiens (Z48615)
299 GEVPYREID-ALAVAYG--VAMNKLTLPIP Homo sapiens (Z48615)
196 - - - FPNSTI - - - GDSGVPALPSLTMR - - Human raf1(W13107)
196 - - - FPNSTI - - - GDSGVPALPSLTMR - - Human Raf1kinase(R98215)
143 V E T - - - - - - - - - - - - - - - Soybean kinase (M67449)
```

Applicants: Jeyaseelan Raju Serial No.: N/A Filed: Herewith Title: Novel Cark 'rotein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

			Majority
	370	380 390	Majoricy
76 154 338 1 135 326 326 216 216	VININHQGRDGHTG TG GVDPNYQGQDGHTA	LHSACYHGHIRL LHSACYHGHIRL LHSACYHGHLRI LHSACYHGHLRI LLEECWDPDPHGRPDF LLEECWDPDPHGRPDF LLEECWDPDPHGRPDF	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raf1kinase(R98215) Soybean kinase(M67449)
	L	E	Majority
	400	410 420	
76 157 364 1 135 351 218 218	V Q F L L D N G A D M N	LASRAFEG-GALRQQRPFGG	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raf1kinase(R98215) Soybean kinase(M67449)
	430	440 450	Majority
54 79 162 390 6 135 381 381 248	C D P S R S S S	GEK	CARP2/prot A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana c.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107) Human Raf1kinase(R98215) Soybean kinase(M67449)

Fig. 3E

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

	MELD Majority											
	460 470 480 Majority											
413 6 135 409 271 271 149	CARP2/production of the control of t											
	Majority											
L Majority 490 500 510												
397 I V T L L K H Y K R P Q D E L P C N E Y S Q P G CARP2/prot 58												
	520 530 540 Majority											
	520 530 540											
38 214 466 21 138 468 468 310 310	SSYTPLPSPMGRLTSLTRDKADLLQLRS c.elegansPPPPPPPQLP	na kinase2 na3 sis thaliana										

Fig. 3F

Serial No.: N/A Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

```
--D------ Majority
451 GLPSHF--HLQLSEIEFHEIIGSGSFGKVY
                                     CARP2/prot
58 ------LAKLETSNVIARGTYGTVY
                                     A.thaliana kinase2
83 -----LSQLFIGNKFASGAHSRIY
                                     A.thaliana3
Arabidopsis thaliana
496 ALPAPF - - HLCLAEIEFQESIGSGSFGKVY
                                     c.elegans kinase
81 - VRSEY - - EIDFNELEFGQTIGKGFFGEVK
                                     D.discoideum (A35670)
D.Discoideum (U01064)
496 GSDGAS - - PPASPSIIPRLRAIRLTPVDCG
                                     H.sapiens (Z48615)
496 GSDGAS--PPASPSIIPRLRAIRLTPVDCG
                                     Homo sapiens (Z48615)
335 QRDSSYYWEIEASEVMLSTRIGSGSFGTVY
                                     Human raf1(W13107)
335 QRDSSYYWEIEASEVMLSTRIGSGSFGTVY
                                     Human Raf1kinase (R98215)
Soybean kinase (M67449)
   KGIYRG-DVAVKILKRGDP--E----K-E Majority
            580
                                   600
479 KGRCRNKIVAIKR-YRAN----TYCSKSD
                                     CARP2/prot
77 KGIYDGQDVAVKVLDWEDDGNETTAKTATN
                                     A.thaliana kinase2
102 RGIYKQRAVAVKMVRIPTHKEETR--AKLE
                                     A.thaliana3
                                     Arabidopsis thaliana
524 KGTYRGKLVAVKR-YRAM----AFGCKSE
                                     c.elegans kinase
58 RGYWRETDVAIKIIYRDQ-----FKTKSS
                                     D.discoideum (A35670)
157 LGIWNGYKVAIKILKNESISNDEK-----
                                     D.Discoideum (U01064)
524 GSSSGSSSGGSGTWSRGGPPKKEELVGGKK
                                     H.sapiens (Z48615)
524 GSSSGSSSGGSGTWSRGGPPKKEELVGGKK
                                     Homo sapiens (Z48615)
365 KGKWHG-DVAVKILKVVDPTPE-----Q
                                     Human raf1(W13107)
365 KGKWHG-DVAVKILKVVDPTPE-----Q
                                     Human Raf1kinase(R98215)
172 HGVYKDEAVAVKIIMVPEDDGNGALASRLE
                                     Soybean kinase (M67449)
   KQ-FRNEVSVLSKLRHPNVVQFVGA-L---
                                     Majority
503 VDMFCREVSILCQLNHPCVIQFVGACL-N-
                                     CARP2/prot
107 RALFRQEVTVWHKLNHPNVTKFVGASMGTT
                                     A.thaliana kinase2
130 QQ-FKSEVALLSRLFHPNIVQFIAACK---
                                     A.thaliana3
Arabidopsis thaliana
548 TDMLCREVSILSRLAHPNVVAFVGTSL-D-
                                     c.elegans kinase
82 LVMFQNEVGILSKLRHPNVVQFLGACTAG-
                                     D.discoideum (A35670)
181 --- FIKEVSSLIKSHHPNVVTFMGA----
                                     D.Discoideum (U01064)
554 KGRTWGPSSTLQKERVGGEERLKG--LGEG
                                     H.sapiens (Z48615)
8554 KGRTWGPSSTLQKERVGGEERLKG--LGEG
                                     Homo sapiens (Z48615)
387 FQAFRNEVAVLRKTRHVNILLFMGY----
                                     Human raf1(W13107)
387 FQAFRNEVAVLRKTRHVNILLFMGY-----
                                     Human Raf1kinase(R98215)
202; KQ-FIREVTLLSRLHHQNVIKFSAACR---
                                     Soybean kinase (M67449)
```

Fig. 3G

Applicants: Jeyaseelan Raju
Serial No.: N/A
Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

```
-----DPDHLCIVTEYLSGGSL Majority
                      650
                                 660
531 ------DPSQFAIVTQYISGGSL CARP2/prot
137 NLNIRSADSKGSLPQQACCVVVEYLPGGTL A.thaliana kinase2
      -----KPPVYCIITEYMSQGNL A.thaliana3
240 ----- Arabidopsis thaliana
576 ----- DPSQFAIITEFVENGSL c.elegans kinase
203 ------RIDPP--CIFTEYLQGGSL D.Discoideum (U01064)
582 SKQWSSSAPNLGKSPKHTPIAPGFASLNEM H.sapiens (Z48615)
582 SKQWSSSAPNLGKSPKHTPIAPGFASLNEM Homo sapiens (Z48615)
REHLH-ED-KFSLLP-----LKIALDI Majority
                      680
                                 690
548 FSLLHEQK---RILD--LQSK--LIIAVDV CARP2/prot
167 KQHLI-RHKSKKLAFKAV----IKLALDL A.thaliana kinase2
173 RMYLN-KKEPYSLSIETV----LRLALDI A.thaliana3
240 ----- Arabidopsis thaliana
593 FRRENGERKNYRVMD - - PAFR - - LRISLDV c.elegans kinase
128 RQFLTDH---FNLLEQNPHIR--LKLALDI D.discoideum (A35670)
220 YDVLH - - IQKIKLNPLMM - - - - YKMIHDL D.Discoideum (U01064)
612 EEFAEAEDGGSSVPPSPYSTPSYLSVPLPA H.sapiens (Z48615)
612 EEFAEAEDGGSSVPPSPYSTPSYLSVPLPA Homo sapiens (Z48615)
430 YKHLHVQETKFQMFQ-----LIDIARQT Human raf1(W13107)
430 YKHLHVQETKFQMFQ-----LIDIARQT Human Raf1kinase(R98215)
245 RAYLH-KLEHQTISLQKL-----IAFALDI Soybean kinase(M67449)
  ARGMEYLH - - - AQPIIHRDLKSHNILLDE - Majority
           700
                      710
                                 720
571 AKGMEYLHN - LTQPIIHRDLNSHNILLY - - CARP2/prot
191 ARGLSYLH - - - SEKIVHRDVKTENMLLDAQ A.thaliana kinase2
197 SRGMEYLH - - - SQGVIHRDLKSNNLLLNDE A.thaliana3
240 ----- Arabidopsis thaliana
619 ARGMRYLHESAAKPVIHRDLNSHNILIH -- c.elegans kinase
153 AKGMNYLHGW-TPPILHRDLSSRNILLDHN D.discoideum (A35670)
243 SLGMEHLH - - - SIQMLHRDLTSKNILLDEF D.Discoideum (U01064)
642 EPSPGARAPWEPTPSAPPARWGHG----AR H.sapiens (Z48615)
642 EPSPGARAPWEPTPSAPPARWGHG----AR Homo sapiens (Z48615)
453 AQGMDYLH - - - AKNIIHRDMKSNNIFLHEG Human raf1(W13107)
453 AQGMDYLH---AKNIIHRDMKSNNIFLHEG Human Raf1kinase(R98215)
269 ARGMEYIH - - - SQGVIHRDLKPENILINED Soybean kinase (M67449)
```

Fig. 3H

Applicants: Jeyaseelan Raju
Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

```
-RVK------Majority
 598 -----EDGHAVVADFGESRFLQS- CARP2/prot
 255 ----- W Arabidopsis thaliana
 647 -----ADGRSVVADFGESRFVCQ - c.elegans kinase
 182 IDPKNPLVSSRQDIKCKISDFGLSR-LKK- D.discoideum (A35670)
 668 RRCDLALLGC-----ATLLGAVGLGAD- H.sapiens (Z48615)
 668 RRCDLALLGC-----ATLLGAVGLGAD- Homo sapiens (Z48615)
 480 LTVK------IGDFGLATVKSRW Human Raf1kinase(R98215)
 296 N H L K - - - - - - - - - I A D F G I A C - E E A - Soybean kinase (M67449)
   LADDQAADGTGTLRWMAPEVFI - - KGGPYS Majority
                                    780
 616 LDEDNMTKQPGNLRWMAPEVFT - - QCTRYT CARP2/prot
 233 LNPKDMTGRTGTLGYMAPEV-I--DGKPYN A.thaliana kinase2
 239 - QCREAKGNMGTYRWMAPEM-I--KEKPYT A.thaliana3
 267 - ADKQFAEEIQTRQYRAPEVILK - - - SGYS Arabidopsis thaliana
 665 REDENLTKQPGNLRWMAPEVFS - - QSGKYD c.elegans kinase
 210 EQASQMTQSVGCIPYMAPEVF - - - KGDSNS D.discoideum (A35670)
 283 LSDDMTLSGITNPRWRSPEL-T--KGLVYN D.Discoideum (U01064)
 690 VAEARAADGEEQRRWLDGLFFP -- RAGRFP H.sapiens (Z48615)
 690 VAEARAADGEEQRRWLDGLFFP -- RAGRFP Homo sapiens (Z48615)
 497 SGSQQVEQPTGSVLWMAPEVIRMQDNNPFS Human raf1(W13107)
 497 SGSQQVEQPTGSVLWMAPEVIRMQDNNPFS Human Raf1kinase(R98215)
 311 - SCDLLADDPGTYRWMAPEM-I--KRKSYG Soybean kinase(M67449)
   RKVDVYSFGLVLWELVTGELPFAHLNP-VQ Majority
             790
                                    810
 644 IKADVFSYALCLWEILTGEIPFAHLKP-AA CARP2/prot
 260 RRCDVYSFGICLWEIYCCDMPYPDLSF-VD A.thaliana kinase2
265 RKVDVYSFGIVLWELTTALLPFQGMTP-VQ A.thaliana3
 293 FSVDMWSFGCTAFELVTGDMLFAPKDGN - - Arabidopsis thaliana
 693 RKVDVFSFALVIWEIHTAELPFSHLKP-AA c.elegans kinase
 237 EKSDVYSYGMVL.FELLTSDEPQQDMKP-MK D.discoideum (A35670)
310 EKVDVYSFGLVVYEIYTGKIPFEGLDG-TA D.Discoideum (U01064)
718 RGLSPPARPHGRREDVGPGLGLAPSATLVS H.sapiens (Z48615)
718 RGLSPPARPHGRREDVGPGLGLAPSATLVS Homo sapiens (Z48615)
527 FQSDVYSYGIVLYELMTGELPYSHINNRDQ Human raf1(W13107)
527 FQSDVYSYGIVLYELMTGELPYSHINNRDQ Human Raf1kinase(R98215)
337 KKVDVYSFGLILWEMLTGTIPYEDMNP-IQ Soybean kinase(M67449)
```

Fig. 31

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

	AAFAVAYGNARPPLPSI	1	Majority
	820	830 840	
289 294 321 722 266 339 748 557 557	A A A D M A Y H H I R P P I G Y S V S S A V V L H N L R P E I P R C A A F A V A E K N E R P P L P A S G Y G E D E D H L A A A A E M T Y K R G R P T L P N Q M A H L A A Y E S Y R P P I P L T S A A K A A F E N Y R P A I P P D L S S V S D C N S T R S L L R S D L S S V S D C N S T R S L L R S D I I F M V G R G Y A S P D L S K L I I F M V G R G Y A S P D L S K L A A F A V V N K N S R P I I P S N	CCPTALAGIM A CCQPALAHLI A CCQPALAHLI A CPTAQFPAHILSLI C TTSSKWKEIL C CCPVSLRKLI C CSDEAAPAAPSPPP H CSDEAAPAAPSPPP H LYKNC-PKAMKRLV H LYKNC-PKAMKRLV H NCPPAMRALI S	A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana C.elegans kinase D.discoideum (A35670) D.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107)
	AQCWAPNPSKRPSFSEI 850	[V L E M	Majority
	850	860 870	
315 320 331 752 292 365 778 778 586 586	IRGWNACPEGRPEFSEV KTCWDGNPQKRPEMKEV KRCWSENPSKRPDFSNI	V W K - L E E C L C N I E C V V K M - L E G V D T S A L V A V - L E K Y D E C A L W M E L A C L I V H - L K E B L I V H - L K E B L I V H - L K E S F K K D P R H L V D L E L E S F K K D P R H L V D L E L E S F K K D P R H L L H L L H	A.thaliana kinase2 A.thaliana3 Arabidopsis thaliana C.elegans kinase O.discoideum (A35670) O.Discoideum (U01064) H.sapiens (Z48615) Homo sapiens (Z48615) Human raf1(W13107)
	P-SVTSSLSL-	TPS M 890 900	Majority
342 347 336 771 315 392 807 604 604	L - M S P A S S N S S G S L S P - K - G G G M I P E	SSSSDCLVNR C	CARP2/prot Lithaliana kinase2 Lithaliana3 Lithaliana3 Lithaliana3 Lithaliana3 Lithaliana

Fig. 3J

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri Attorney Docket No.: MPI98-105P1RCP2DV1M

																												•	
	_	_	_	_	_	_	-	H	-			_	_	_			_	-	-	_	-	_	_	_	_	_	_	_	Majority
									9:	į0							9	920	0								9	30	
753	G	G	P	G	R	S	-	H	V.	A 2	\ L	R	S	R	F I	C T.	F	Y	A	T.	N	Α	R	S	v	Δ	Δ	T.	CARP2/prot
356	_	_	_	_	_	_	_	_	_		_	_	_	_			-	-	-	-	-	-	-	_	-	-	-	-	A.thaliana kinase2 A.thaliana3
340	٠_	_	_	v	0	- v	_	v	- ·	- ·		_	_				_	_	-	-	-	-	-	-	-		_	-	A.thaliana3
700		_	_	v	o	U.	ע	ī	r :	נע דע	1 2		ח	т ;		, т	K	K	ī	_	_	-	_	K	Y	W	P	F.	Arabidopsis thaliana
790 331	_	_	_	_	-	D	-	Ų	П,	T. 5	Ų	W	Ľ	Ų,	נ ט	i V	A	_	ħ	P	P	A	S	K	F	P	P	Ι	c.elegans kinase
408	_	-	-	-	-	-	-	-	_		-	-	-	_		-	-	-	-	-	-	-	-	-	-	-	-	-	
																													D.Discoideum (U01064)
837	G	r	7	E	P	A	G	H	G	P (P	K	ת	r i	. I	F	P	R	L	P	D	P	Q.	A	L	F	P	A	H.sapiens (Z48615)
837	G	1	2	E	7	A	G	H	G .	P (P	K	ש	L	. I) F	P	R	L	₽	D	P	Q	A	L	F	P	A	
619	5	Ą	S	E	7	S	Ţ	H	R A	A /	H	T	E	D:	[]	I	-	-	-	-	-	-	-	-	-	-	-	-	Human raf1(W13107)
619	S	A	S	Ľ	P	S	ь	H	R	A A	Н	T	E	D:		1 -	-	_	-	-	-	-	-	-	-	-	-	-	
432																													Soybean kinase(M67449)
	_	_	_	_	_	_	-	_	_		-	-	L	T ·	- I	P	_	K	G	P	-	_	_	_	_	-	_	D	Majority
				•					94	0							9	5()								9	60	
782	S	Q	S	A	G	Q	Y	S	s ·		· Q	G	L	S I	E	E	M	K	R	S	L	0	Y	T	P	-	I	D	CARP2/prot A.thaliana kinase2
350	-	-	-	-	-	-	-	_			-	-	-		- I	Q	S	R	G	C	F	Ĉ	-	_	_	_	_	_	A.thaliana kinase2
ססנ		_	_	_	_	_	_	_			_	_	***	1 1	. г) H	Τ.	K	\boldsymbol{c}	\boldsymbol{c}	٦,	ጥ	C	Т	C.	_	_	C.	A thaliana?
372	D	R	-	_	_	-	_	_			_	_	τ. ΄	T. 1	ſΤ	K	v	K	T.	D	F	λ	T.	Δ.	v	r	7	78	Arabidoneia thaliana
813	L	S	A	L	H	G	I.	A.	A·		Т	G	- '	T T	/ E	E	L	R	0	R	_	_	_	_	_	_	I	D	c.elegans kinase D.discoideum (A35670)
331	-	-	-	-	-	-	-	-			_	_	_			_	-	_	~	_	_	_	_	_	_	_	Ī	D	D.discoideum (A35670)
408	-	-	-	-	-	-	-	-			_	_	_		- T	D	Y	N	N	N	T.	N	Υ:	ו ת	F	E	v	ח	D. Discoideum (IIO1064)
867	R	R	R	Ρ	P	E	F	P	G I	₹ F	Т	T	L	ΤI	A	P	R	P	R	P	Α	Α	S 1	R	P	R	T.	ח	H.sapiens (Z48615)
867	R	R	R	P	Ρ	E	F :	PΙ	GΙ	₹ P	T	Т	L '	Тŀ	ר י	P	R	P	R	P	Α	Α	S 1	R	D	R	T.	ח	Homo sapiens (Z48615)
636	_	_	-	-	_	_	_	_		- A	C	T	T. 4	ጥ ባ	1 9	D	_	_	_	_	_	_			_	_	_	_	Human raf1(W13107)
636	-	_	-	_	-	_	_	_		- A	C	T	T. 1	ףק	9	P	-	_	_	_	_	_	_	_	_	_	_	_	Human Raflkinase(R98215)
432	-	-	-	_	-	-	-	_			_	_	- (C V	ID	H	K	K	G	L	L	H 1	W	Τ (n i	K	T.	G	Soybean kinase (M67449)
																													- ,
	Р	F	_	_	-	-	-	_		· L	_	I	- :	P -	_	_	P	<u>-</u>	-	-	-	_			_	-	-	-	Majority
									97	U							9	80)								9	90	
809	K	Y	-	-	-	-	-	-	- (Y	٧	S	D :	P	S	S	M	H	F	H	S	C 1	R I	N S	S	S	S	F	CARP2/prot
358	-	F	-	-	-	-	-	-	- 7	P	Α	R	G :	5															A.thaliana kinase2
380	P	F	-	-	-	-	-	-	- 5	S	S	S	V :	PV	N	_	-	-	-	-	_	_		<u>.</u> .	_	-	_	-	A.thaliana kinase2 A.thaliana3
391	E	F	~	-	-	- [Ŀ	T :	P]	L	E	F.	A :	PE	: K	R	p	Т	Α	0 (0 (С.			_	_	_ '	T.	Arabidonsis thaliana
834	N :	N	-	-	-	-	-	-	- (żΥ	V	Ι.	N.		_	-	-	~	_	_					_	-	_	-	c.elegans kinase
333	T	G	-	-	-	-		_	- 7	Y	_	_			_	_	-	-	-	_	_				_	_	_	-	D.discoideum (A35670)
422																													D.Discoideum (U01064)
897	P	W	K	L	٧	S	F (G I	R I	L	Т	I	S	P F	S	R	P	D	T	P	E :	S	P (3 1	P 1	P	s '	v	H.sapiens (Z48615)
897	P	W	K	L	V	S	F (G 1	R 1	L	T	I	S	P P	S	R	P	D	T	P	E	S	P (3 1	P 3	P	S	V	Homo sapiens (Z48615)
644	-	-	R	L	P '	V :	F																	_			-		Human raf1(W13107)
644																													Human Raf1kinase(R98215)
448	P	L	-	-	-	_	- · .		- I	0	N	S	G 1	? V	P	K	P	K	F	_						_	_	_	Soybean kinase (M67449)
										_					_		_		_										

Fig. 3K

Applicants: Jeyaseelan Raju Serial No.: N/A Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	_	Majority
									1	0,0	0								1	01	.0							
832	E	-	_	-	-	-	-	-	_	-	-	-	-	-	_	-	_	-	-	-	_	-	_	_	D	S	S	CARP2/prot
364 390	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Α	A.thaliana kinase2 A.thaliana3
	D																											Arabidopsis thaliana
841	-																											c.elegans kinase
337 422	-	-		-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	A	D.discoideum (A35670) D.Discoideum (U01064)
927	Q	P	T	L	L	D	M	D	M	E	G	Q	N	Q	D	S	T	٧	P	L	C	G	A	H	G	S	H	H.sapiens (Z48615)
927	Q	P	T	L	L	D	M	D	M	E	G	Q	N	Q	D	S	T	V	P	L	C	G	A	H	G	S	H	Homo sapiens (Z48615)
648																												Human raf1(W13107)
648																												Human Raf1kinase(R98215)
462	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	T	Sovbean kinase (M67449)

Fig. 3L

```
Atty/Agent: Jean M. Silveri
                Attorney Docket No.: MPI98-105P1RCP2DV1M
                                  16/35
Protein Family / Domain Matches, HMMer version 2
Searching for complete domains
hmmpfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
                             ------
HMM file:
                           /prod/ddm/seqanal/PFAM/pfam3.4/Pfam
Sequence file:
                           /tmp/orfanal.13255.aa
_ _ _ _ _ _ _ _
 Query: sequence13252
Scores for sequence family classification (score includes all domains):
Model
         Description
                                                          Score
                                                                   E-value N
          PF00023 Ank repeat
ank
                                                          207.5
                                                                     2e-58
pkinase PF00069 Eukaryotic protein kinase domain
                                                          201.9
                                                                   9.9e-57
Parsed for domains:
         Domain seq-f seq-t
Model
                                 hmm-f hmm-t
                                                   score E-value
            1/9
                           99 ..
                                                     3.2
                                                               12
ank
                     66
                                          33 []
                          132 ..
ank
            2/9
                    100
                                          33 []
                                                    34.0
                                                          3.4e-06
                          165 ..
ank
            3/9
                    133
                                     1
                                          33 []
                                                    44.5
                                                          2.4e-09
                                          33 []
ank
            4/9
                    168
                          198 ..
                                     1
                                                    34.6
                                                          2.3e-06
            5/9
                    199
                                          33 []
ank
                          233 ..
                                     1
                                                    28.1
                                                          0.00021
                    234
            6/9
                                          33 []
ank
                          268 ...
                                     1
                                                    15.4
                                                             0.28
                          302 ..
            7/9
                    269
                                     1
                                          33 []
 ank
                                                    20.6
                                                            0.037
                          338 ..
 ank
            8/9
                    306
                                     1
                                          33 []
                                                     3.3
                                          33 []
 ank
            9/9
                          371 ...
                                     1
                    339
                                                    35.4
                                                          1.3e-06
                                                   201.9 9.9e-57
            1/1
                    463
                          716 ...
                                     1
                                         273 [.
 pkinase
 Alignments of top-scoring domains:
 ank: domain 1 of 9, from 66 to 99: score 3.2, E = 12
                    *->nGnTPLHlAaryg.nvevvklLLehGAdvnartk<-*
                       nG++ LH1+++ g++ + ++ L+ +G + t+
   sequence13
                 66
                       NGLSLLHLCCICGGKKSHIRTLMLKGLRPSRLTR
 ank: domain 2 of 9, from 100 to 132: score 34.0, E = 3.4e-06
                    *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                       nG+T+LHlA++++n e++ LL GAd+ + +
   sequence13
                100
                       NGFTALHLAVYKDNAELITSLLHSGADIQQVGY
                                                             132
 ank: domain 3 of 9, from 133 to 165: score 44.5, E = 2.4e-09
                    *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                        G+T+LH+A ++g++e +++LL+hGA+vn+++
   sequence13
                133
                       GGLTALHIATIAGHLEAADVLLQHGANVNIQDA
                                                             165
 ank: domain 4 of 9, from 168 to 198: score 34.6, E = 2.3e-06
                    *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                         +TPLH+Aa+yg+ +v +lLL+ GAdvn+
   sequence13
                168
                       --FTPLHIAAYYGHEQVTRLLLKFGADVNVSGE
                                                             198
 ank: domain 5 of 9, from 199 to 233: score 28.1, E = 0.00021
                    *->nGnTPLHlAarygnvevvklLLe..hGAdvnartk<-*
                        G+ PLH1A+ +g ++++klL+e++ Advna+++
   sequence13
                199
                       VGDRPLHLASAKGFLNIAKLLMEegSKADVNAQDN
                                                               233
```

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Applicants: Jeyaseelan Raju

Serial No.: N/A

Fig. 4A

ank: domain 6 of 9, from 234 to 268: score 15.4, E = 0.28 *->nGnTPLH1AarygnvevvklLLe..hGAdvnartk<-* + PLH ++r g+ ++vk+LL+++ sequence13 234 EDHVPLHFCSRFGHHDIVKYLLQsdLEVQPHVVNI 268 ank: domain 7 of 9, from 269 to 302: score 20.6, E = 0.037 *->nGnTPLHlAarygnvevvklLLe.hGAdvnartk<-* G+TPLH1A+++g+ ev+k ++ G+ sequence13 269 YGDTPLHLACYNGKFEVAKEIIQiSGTESLTKEN 302 ank: domain 8 of 9, from 306 to 338: score 3.3, E = 11 *->nGnTPLHlAaryg.nvevvklLLe.hGAdvnartk<-** T+ H A+ yg+++++vk+LL+++ ++n + + --ETAFHSACTYGKSIDLVKFLLDqNVININHQGR sequence13 306 338 ank: domain 9 of 9, from 339 to 371: score 35.4, E = 1.3e-06 *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-* +G+T LH A+++g++++v++LL++GAd n + sequence13 339 DGHTGLHSACYHGHIRLVQFLLDNGADMNLVAC 371 pkinase: domain 1 of 1, from 463 to 716: score 201.9, E = 9.9e-57 *->yelleklGeGsfGkVykakhktgkivAvKilk.....kesls..lr +e++e++G+GsfGkVyk++ + +kivA+K + ++ +k++++ sequence13 463 IEFHEIIGSGSFGKVYKGRCR-NKIVAIKRYRantycsKSDVDmfCR 508 EiqilkrlsHpNIvrllgvfedtddhlylvmEymegGdLfdylrrng.pl E++il +l+Hp ++++ g++ ++++ + +v++y gG+Lf++l+++++ 1 sequence13 509 EVSILCQLNHPCVIQFVGAVLNDPSQFAIVTQYISGGSLFSLLHEQKrIL 558 sekeakkialQilrGleYLHsng..ivHRDLKpeNILldengtvKiaDFG + + + ia ++++G+eYLH+ ++i+HRDL + NILl e+g+ +aDFG sequence13 559 DLQSKLIIAVDVAKGMEYLHNLTqpIIHRDLNSHNILLYEDGHAVVADFG 608 LArll....eklttfvGTpwYmmAPEvileg.rgysskvDvWSlGviLy +r+1++ ++ ++t G +++m APEv + + y+ k+Dv S+sequence13 609 ESRFLqsldeDNMTKQPGNLRWM-APEV-FTQcTRYTIKADVFSYALCLW 656 ElltggplfpgadlpaftggdevdqliifvlklPfsdelpktridpleel E+ltg ++Pf + 657 EILTG-----LKPAAAA 674 sequence13 frikkr..rlplpsncSeelkdLlkkcLnkDPskRpGsatakeil<-* ++ +++ r+p+ ++++++ +Ll + +n P+ Rp sequence13 675 ADMAYHhiRPPIGYSIPKPISSLLIRGWNACPEGRP---EFSEVV 716

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

17/35

Attorney Docket No.: MPI98-105P1RCP2DV1M

Applicants: Jeyaseelan Raju

Atty/Agent: Jean M. Silveri

Serial No.: N/A

Fig. 4B

Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

gtc	gacc	cac	gcgt	ccgg	tg a	aggg	cagc	a gc	acag	gaga	aaa	gcaa	aga (cttc	tttaaa	60
atg Met 1	ggg Gly	aat Asn	tac Tyr	aaa Lys 5	tcc Ser	aga Arg	cca Pro	aca Thr	cag Gln 10	act Thr	tgt Cys	tct Ser	gat Asp	gaa Glu 15	tgg Trp	108
aag Lys	aag Lys	aaa Lys	gtt Val 20	agt Ser	gaa Glu	tct Ser	tac Tyr	gct Ala 25	att Ile	atc Ile	ata Ile	gaa Glu	agg Arg 30	ctg Leu	gag Glu	156
gat Asp	aac Asn	ctg Leu 35	cag Gln	atc Ile	aaa Lys	gaa Glu	aat Asn 40	gaa Glu	ttt Phe	caa Gln	gaa Glu	cta Leu 45	agg Arg	cac His	atc Ile	204
ttt Phe	ggc Gly 50	tct Ser	gat Asp	gaa Glu	gcc Ala	ttc Phe 55	agt Ser	gaa Glu	gtc Val	agt Ser	tta Leu 60	aat Asn	tac Tyr	cgc Arg	aca Thr	252
gag Glu 65	cgt Arg	ggc Gly	ctg Leu	tcc Ser	ctg Leu 70	cta Leu	cac His	ctc Leu	tgc Cys	tgt Cys 75	gtc Val	tgt Cys	ggc Gly	ggc Gly	aac Asn 80	300
aag Lys	tca Ser	cat His	atc Ile	cgt Arg 85	gcc Ala	ctt Leu	atg Met	tta Leu	aaa Lys 90	Gly	ctc Leu	cgt Arg	cca Pro	tcc Ser 95	aga Arg	348
Leu	Thr	Arg	Asn 100	Gly	Phe	Pro	Ala	Leu 105	His	ctg Leu	Ala	Val	Tyr 110	Lys	Asp	396
agc Ser	ccg Pro	gaa Glu 115	ctt Leu	atc Ile	act Thr	tca Ser	ctg Leu 120	ttg Leu	cac His	agc Ser	gga Gly	gca Ala 125	gat Asp	gtt Val	cag Gln	444
caa Gln	gtg Val 130	gga Gly	tac Tyr	ggt Gly	ggc Gly	ctc Leu 135	aca Thr	gcc Ala	ctc Leu	cac His	ata Ile 140	gct Ala	gca Ala	ata Ile	gct Ala	492
Gly 145	His	Pro	Glu	Ala	Ala 150	Glu	Val	Leu	Leu	caa Gln 155	His	Gly	Ala	Asn	Val 160	540
aat Asn	gtt Val	caa Gln	gat Asp	gcc Ala 165	gtc Val	ttc Phe	ttc Phe	acc Thr	cca Pro 170	ctg Leu	cac His	att Ile	gca Ala	gcc Ala 175	tac Tyr	588
tat Tyr	Gly	cac His	gag Glu 180	cag Gln	gta Val	acc Thr	agt Ser	gtc Val 185	ctt Leu	ttg Leu	aag Lys	ttt Phe	ggt Gly 190	gct Ala	gat Aspp	636
gtc Val	aat Asn	gta Val 195	agc Ser	ggt Gly	gaa Glu	gtt Val	ggg Gly 200	gac Asp	agg Arg	cct Pro	ctg Leu	cac His 205	ctg Leu	gcc Ala	tct Ser	684

Applicants: Jeyaseelan Raju Serial No.: N/A Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

19/35

Ser Glu Thr Ala Phe His Ser Ala Cys Thr Tyr Gly Lys Asn Ile Asp 320 ctg gtc aaa ttt ctt ctt gat cag aat ggt gtg aac att aac cac cga loss and loss and loss are loss and loss are loss are loss and loss are loss									9/35								
Lys Ala Asp Val Asn Ala Gln Asp Asn Glu Asp His Val Pro Leu His 230 225	gca Ala	Lys	ggc Gly	ttc Phe	ttc Phe	aac Asn	Ile	gtg Val	aaa Lys	ctc Leu	ctg Leu	Val	gaa Glu	gaa Glu	ggg Gly	agc Ser	732
## Cys Ser Arg Phe Gly His His Asn Ile Val Ser Tyr Leu Leu Gln 255 agt gac tta gag gtc cag cct cac act gt att asc atc tat ggt gac act 260 Val Gln Pro His Val Ile Asn Ile Tyr Gly Asp Thr 270 cct ttg cac ctg gca tgc tac aat gga aat ttt gaa gtt gcc aag gaa gaa gac y 275 Elu Ala Cys Tyr Asn Gly Asn Phe Glu Val Ala Lys Glu 275 att gtc cag gta aca gga act gaa agt ctg act aag gaa aac atc ttc 270 Val Gln Val Thr Gly Thr Glu Ser Leu Thr Lys Glu Asn Ile Phe 290 agc gag aca gct ttt cac agt gct tgt acc at ggc aag act gag aac atc ges and acc act gga gag act gag	Lys	gca Ala	gat Asp	gtg Val	aac Asn	Ala	cag Gln	gac Asp	aat Asn	gaa Glu	Asp	cac His	gtc Val	cct Pro	ctg Leu	His	780
Ser Asp Leu Glu Val Gln Pro His Val IIe Asn IIe Tyr Gly Asp Thr 260 Cct ttg Cac ctg gca tgc tac aat gga aat ttt gaa gtt gcc aag gaa gat gcc atg Cyr Asn Gly Asn Phe Glu Val Ala Lys Glu 275 Leu His Leu Ala Cys Tyr Asn Gly Asn Phe Glu Val Ala Lys Glu 285 Leu His Leu Ala Cys Tyr Asn Gly Asn Phe Glu Val Ala Lys Glu 286 Leu Cys Glu Val Ala Lys Glu 286 Leu Cys Glu Val Ala Lys Glu 286 Leu Cys Glu Asn IIe Phe 290 Asg gag aca gct ttt cac agt gct tgt acc tat ggc aag aac atc ttc 290 agc gag aca gct ttt cac agt gct tgt acc tat ggc aag aac att gac Ser Glu Thr Ala Phe His Ser Ala Cys Thr Tyr Gly Lys Asn IIe Asp 320 agc gdc gdc aag acc att gac Cys Thr Tyr Gly Lys Asn IIe Asp 320 agc gdc aag acc act gac leu Val Lys Phe Leu Leu Asp Gln Asn Ala Val Asn IIe Asn His Asr 333 agc gdc acc acc acc acc acc gdc leu Val Lys Phe Leu Leu Asp Gln Asn Ala Val Asn IIe Asn His Asr 335 agc gdc acc acc acc acc gdc leu Val Asg Asp Gly His Thr Gly Leu His Ser Ala Cys Tyr His Gly His 345 acc tct gct tgc tac cac ggc cat leu Asg Asg Asp Gly Ala Asg Asg Asg Gly Ala Asg Asg Met Asn Leu 365 acc gcc gct gdc acc acc acc acc gdc acc acc gdc acc acc gcc cys Leu Val Gln Phe Leu Leu Asp Asg Asg Gly Glu Lys Asg Asg Glu Gln Thr 370 acc acc acc acc acc acc gdg gag acc acc acc acc acc acc acc acc ac	ttc Phe	tgt Cys	tct Ser	cga Arg	Phe	gga Gly	cac His	cac His	aat Asn	Ile	gtg Val	agc Ser	tac Tyr	ctg Leu	Leu	cag Gln	828
Pro Leu His Leu Ala Cys Tyr Asn Gly Asn Phe Glu Val Ala Lys Glu	agt Ser	gac Asp	tta Leu	Glu	gtc Val	cag Gln	cct Pro	cac His	Val	att Ile	aac Asn	atc Ile	tat Tyr	Gly	gac Asp	act Thr	876
Age gag aca get ttt cac agt get tgt acc tat ggc aag aca att aac cac gga leu Asp lie Asp 320 ctg gtc aaa ttt ctt ctt gat asp 320 sign aga gat ggg cac aca aca gga ttg cag att gct tgt asp 330 sign aga gat ggg cac aca aca gga ttg cag att gct tgc tgc tgc tgc tgc tgc aca att acc cga lie Asp 320 sign aga aga gat ggg cac aca aca gga ttg cac tct gct tgc tac cac ggc cat lie Asp 330 sign aga gat ggg cac aca aca gga ttg cac tct gct tgc tac cac ggc cat lie Arg leu Asp 340 sign aga sign aga ggc cac aca gga ttg sign aca att acc cac ggc cat lie Arg asp aga ggc cac aca gga ttg cac tct gct tgc tac cac ggc cat lie Arg leu Arg asp sign aga aca att acc cac gga lie Arg asp sign aga gat ggc cat aca ggc cat lie Arg asp aga ggc cac aca gga ttg cac tct ggc tgc tgc tgc tac cac ggc cat lie Arg leu Arg asp sign aga aca act ctt lie Arg leu Arg asp sign aga aca ggc cac aca ggc cat lie Arg leu Arg asp sign aga gat atg acc ctc leu Asp asp asp sign aga gat acc cac ggc cac acc acc ggc leu Arg arg sign aga gat ggc cac acc acc acc ggc cac acc acc ggc leu Arg arg sign aga acc acc leu acc cac ggc cac acc acc acc acc acc acc	cct Pro	ttg Leu	His	ctg Leu	gca Ala	tgc Cys	tac Tyr	Asn	gga Gly	aat Asn	ttt Phe	gaa Glu	Val	gcc Ala	aag Lys	gaa Glu	924
Ser Glu Thr Ala Phe His 310 Ser Ala Cys Thr Tyr Gly Lys Asn Ile Asp 320 ctg gtc aaa ttt ctt ctt gat cag aat gct gtg aac att aac cac cga 1068 Leu Val Lys Phe Leu Leu Asp Gln Asn Ala Val Asn Ile Asn His Arg 335 gga aga gat ggg cac aca aca gga ttg cac tct gct tgc tac cac ggc cat 340 Ser Ala Cys Tyr His Gly His 350 atc cgc ctg gtt cag ttc cta cta gat aat ggt gca gat atg aat ctt leu Asp 360 Asn Gly Ala Asp Met Asn Leu 365 gtc gct gct gtg gat ccc agc agg ttc agg ggt gaa aaa ggt gag cag aca leu Lys Asp Asp Glu Gln Thr 370 tgt ttg atg tgg gct tac gag aaa gga ctg ggt gat atg gcc att gtt aca ctc ctg ttg ttg atg cys Asp Pro Ser Arg Ser Ser Gly Glu Lys Asp Asp Glu Gln Thr 380 ctg aag cac tac aag aga ccc cag gag gag aaa gga ctg ctg cca tgt aca ctc leu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 415 tcc cag cct gga gga gat ggc tcc tat gtg tct gtt ctt tcc ccc ttg lase leu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 415 tcc cag cct gga gga gat ggc tcc tat gtg tct gtt cct tcc ccc ttg lase leu Lys His Tyr Lys Arg Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 430 ctg cag cct gga gga gat ggc tcc tat gtg tct gtt cct tcc ccc ttg lase leu Lys His Tyr Lys Arg Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 430	att Ile	Val	cag Gln	gta Val	aca Thr	gga Gly	Thr	gaa Glu	agt Ser	ctg Leu	act Thr	Lys	gaa Glu	aac Asn	atc Ile	ttc Phe	972
Gly Arg Asp Gly His Thr Gly Leu Asp Gln Asn Ala Val Asn Ile Asn His Arg 335 Arg gga aga gat ggg cac aca gga ttg cac tct gct tgc tac cac ggc cat 1116 atc cgc ctg gtt cag ttc cta ctt gat ast ggg gc agat atg ast Ctt Ileu Asp 360 Asp Asn Gly Ala Asp Met Asn Leu 1164 gtc gct tgt gat ccc agc agg tct asg ggt gga gat asg ggt gaa aaa ggt ggg gaa aaa gat gag cag aca 1212 gtc gct tgt atg tgg gct ccc agg agg tct agg ggt gaa aaa gga ggt gga gat atg gag cag aca 1212 tgt ttg atg tgg gct tac gag aga aaa gga cat agg agg gag aga alu Lys Asp Ala Ile Val Thr Leu 400 ctg aag cac tac aag aga ccc cag agg gag gat ggc ctc tat gtg gag ctg cca tgt aac gaa tat atg agg cag agg ccg agg ctg cag aca laca Ileu Lys His Tyr Lys Asp Arg Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 430 tcc cag cct gga gga gat ggc tcc tat gtg tct gtt cct tcc ccc ttg 1356 ser Gln Pro Gly Gly Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 430	Ser	gag Glu	aca Thr	gct Ala	ttt Phe	His	agt Ser	gct Ala	tgt Cys	acc Thr	Tyr	ggc Gly	aag Lys	aac Asn	att Ile	Asp	1020
Gly Arg Asp Gly His Thr Gly Leu His Ser Ala Cys Tyr His Gly His 345 at cgc ctg gtt cag ttc cta ctt gat aat ggt gca gat atg aat ctt lle Arg Leu Val Gln Phe Leu Leu Asp Asn Gly Ala Asp Met Asn Leu 365 Met Asn Leu Met Tyr Ala Tyr Glu Lys Gly Glu Lys Asp Glu Gln Thr 370 Cys Leu Met Tyr Ala Tyr Glu Lys Gly His Asp Ala 11e Val Thr Leu 385 Met Asn Glu Tyr 405 Met Asn Glu Tyr 415 Met Glu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 415 Met Glu Tyr 405 Met Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 420 Met 425 Met Asn Ser Val Pro Ser Pro Leu 430 Met Asn Leu 1356	ctg Leu	gtc Val	aaa Lys	ttt Phe	Leu	ctt Leu	gat Asp	cag Gln	aat Asn	Ala	gtg Val	aac Asn	att Ile	aac Asn	His	cga Arg	1068
The Arg Leu Val Gln Phe Leu Leu Asp Asn Gly Ala Asp Met Asn Leu 355 Val Gln Phe Leu Leu Asp 360 Val Ala Asp Met Asn Leu 355 Val Glt Gln Gln Glu Lys Asp Glu Gln Thr 370 Val Ala Cys Asp Pro Ser Arg Ser Ser Gly Glu Lys Asp Glu Gln Thr 370 Val Ala Cys Asp Pro Ser Arg Ser Ser Gly Glu Lys Asp Glu Gln Thr 380 Val Cys Leu Met Trp Ala Tyr Glu Lys Gly His Asp Ala Ile Val Thr Leu 400 Val Glu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 405 Val Cys Val Cys Val Cys Val Cys Asn Glu Tyr 415 Val Cys Gly Gly Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 430 Val Cys Val Cy	gga Gly	aga Arg	gat Asp	Gly	cac His	aca Thr	gga Gly	ttg Leu	His	tct Ser	gct Ala	tgc Cys	tac Tyr	His	ggc Gly	cat His	1116
Val Ala Cys Asp Pro Ser Arg Ser Ser Gly Glu Lys Asp Glu Gln Thr 370 tgt ttg atg tgg gct tac gag aaa gga cat gat gcc att gtt aca ctc Cys Leu Met Trp Ala Tyr Glu Lys Gly His Asp Ala Ile Val Thr Leu 390 ctg aag cac tac aag aga ccc cag gag gag ctg cca tgt aac gaa tat Leu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 415 tcc cag cct gga gga gat ggc tcc tat gtg tct gtt cct tcc ccc ttg Ser Gln Pro Gly Gly Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 430	atc Ile	cgc Arg	Leu	gtt Val	cag Gln	ttc Phe	cta Leu	Leu	gat Asp	aat Asn	ggt Gly	gca Ala	Asp	atg Met	aat Asn	ctt Leu	1164
Cys Leu Met Trp Ala Tyr Glu Lys Gly His Asp Ala Ile Val Thr Leu 395 ctg aag cac tac aag aga ccc cag gag gag ctg cca tgt aac gaa tat Leu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 415 tcc cag cct gga gga gat ggc tcc tat gtg tct gtt cct tcc ccc ttg Ser Gln Pro Gly Gly Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 420	gtc Val	Ala	tgt Cys	gat Asp	ccc Pro	agc Ser	Arg	tct Ser	agt Ser	ggt Gly	gaa Glu	Lys	gat Asp	gag Glu	cag Gln	aca Thr	1212
Leu Lys His Tyr Lys Arg Pro Gln Glu Glu Leu Pro Cys Asn Glu Tyr 405 410 415 tcc cag cct gga gga gat ggc tcc tat gtg tct gtt cct tcc ccc ttg Ser Gln Pro Gly Gly Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 420 425 430	Cys	ttg Leu	atg Met	Trp	gct Ala	Tyr	gag Glu	aaa Lys	gga Gly	cat His	Asp	gcc Ala	att Ile	gtt Val	aca Thr	Leu	1260
Ser Gln Pro Gly Gly Asp Gly Ser Tyr Val Ser Val Pro Ser Pro Leu 420 425 430	ctg Leu	aag Lys	cac His	tac Tyr	Lys	aga Arg	ccc Pro	cag Gln	gag Glu	Glu	ctg Leu	cca Pro	tgt Cys	aac Asn	Glu	tat Tyr	1308
Fig. ED	tcc Ser	cag Gln	cct Pro	Gly	gga Gly	gat Asp	ggc Gly	Ser	Tyr 425	Val	tct Ser	gtt Val	cct Pro	Ser	ccc Pro	ttg Leu	1356

Fig. 5B

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

							20									
ggc Gly	aag Lys	att Ile 435	aaa Lys	agc Ser	atg Met	aca Thr	aaa Lys 440	gag Glu	aag Lys	gca Ala	gat Asp	gtt Val 445	ctc Leu	ctc Leu	ctg Leu	1404
							ttc Phe									1452
ttc Phe 465	cac His	gag Glu	att Ile	atc Ile	ggc Gly 470	tcg Ser	ggt Gly	tcc Ser	ttt Phe	ggg Gly 475	aaa Lys	gtc Val	tat Tyr	aaa Lys	ggg Gly 480	1500
							gcg Ala									1548
							gat Asp									1596
							tgc Cys 520									1644
							gcc Ala									1692
							cat His									1740
							gta Val									1788
							atc Ile									1836
							ggc Gly 600									1884
gaa Glu	tca Ser 610	aga Arg	ttt Phe	ctg Leu	cag Gln	tcc Ser 615	ctg Leu	gat Asp	gaa Glu	gac Asp	aac Asn 620	atg Met	aca Thr	aag Lys	cag Gln	1932
							gcc Ala									1980
							gtc Val									2028

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

21/35

							_	1700								
gag Glu	ctc Leu	ctc Leu	act Thr 660	gga Gly	gaa Glu	att Ile	cca Pro	ttc Phe 665	gct Ala	cat His	ctc Leu	aag Lys	cca Pro 670	gcc Ala	gct Ala	2076
gca Ala	gca Ala	gca Ala 675	gat Asp	atg Met	gcg Ala	tat Tyr	cac His 680	cac His	atc Ile	aga Arg	ccg Pro	ccc Pro 685	atc Ile	ggc Gly	tat Tyr	2124
tcc Ser	atc Ile 690	ccc Pro	aag Lys	ccc Pro	atc Ile	tca Ser 695	tcc Ser	ctg Leu	ctg Leu	ata Ile	cgg Arg 700	ggc Gly	tgg Trp	aat Asn	gca Ala	2172
tgt Cys 705	cct Pro	gaa Glu	gga Gly	cga Arg	cca Pro 710	gag Glu	ttc Phe	tct Ser	gaa Glu	gtc Val 715	gtt Val	agc Ser	aaa Lys	ctg Leu	gag Glu 720	2220
gag Glu	tgc Cys	cta Leu	tgc Cys	aat Asn 725	gtg Val	gag Glu	ctc Leu	atg Met	tct Ser 730	cca Pro	gca Ala	tca Ser	agt Ser	aac Asn 735	agc Ser	2268
agt Ser	ggc Gly	tct Ser	ctg Leu 740	tca Ser	cct Pro	tcc Ser	tct Ser	tct Ser 745	tcc Ser	gat Asp	tgc Cys	ctg Leu	ctg Leu 750	agc Ser	cgg Arg	2316
gga Gly	ggg Gly	cct Pro 755	ggc Gly	cgg Arg	agc Ser	cac His	gtg Val 760	gca Ala	gcc Ala	tta Leu	cgg Arg	agc Ser 765	cgt Arg	ttt Phe	gag Glu	2364
ttg Leu	gag Glu 770	tat Tyr	gcc Ala	cta Leu	aat Asn	gca Ala 775	agg Arg	tcc Ser	tat Tyr	gct Ala	ggg Gly 780	tgg Trp	tcc Ser	caa Gln	agt Ser	2412
gtt Val 785	gga Gly	aca Thr	cac His	tct Ser	aat Asn 790	ccg Pro	ggc Gly	ctg Leu	tct Ser	ttg Leu 795	gag Glu	gag Glu	atg Met	aat Asn	agg Arg 800	2460
agc Ser	acc Thr	cag Gln	tat Tyr	tca Ser 805	act Thr	gtt Val	gac Asp	aaa Lys	tac Tyr 810	ggc Gly	tat Tyr	gtg Val	tct Ser	gat Asp 815	ccc Pro	2508
atg Met	agc Ser	ctg Leu	acg Thr 820	cac His	ctt Leu	cac His	tcc Ser	cgc Arg 825	caa Gln	gac Asp	gac Asp	agc Ser	aac Asn 830	ttt Phe	gag Glu	2556
gac Asp	agc Ser	aac Asn 835	tgac	aggt	ct g	gcat	acad	c ta	ıaggg	gcgt	cto	ccca	itca			2605
ggct	gaca	.gc a	ataa	tttt	a do	cato	ימכאר	r act	tact	tcc	aa++	ataa		act-	ccctc	2665
tgag	attt	ct +	caaa	tcat	c tt	actt	atta	, yct · tas	aget	iatt	+==+	taaa	itt a		ggaca	4000 2725
ggct	ttaa	ct d	atac	caao	ra at	gaan	rtato	. cae	gaaa	ana:	tace	maa+	ot o	caca	ggaca	2123 2795
ttgt	tctt	ag t	ttga	tatt	t aa	agco	ctta	att	gcct	aga	geta	gaat 'yaat	to a	laato	tgtgt	2845
agat	agct	gg g	rttga	ccct	t at	gtat	ttgt	aga	ccaa	act	gtat	daac	tt	rtatt	tgagg	2905
gtct	cctg	tt g	ggtt	tctt	a aa	aaca	agct	ggc	tgat	tta	tctc	ctgt	tg c	cttt	gttgt	2965
tact	tctg	tg a	ttaa	agto	t ct	tcgg	rtgat	cta	gaaa	ıaaa	aaaa	aaaa	iaa a	gggc	ggccg	3025
C		-							~ [3026
								- I /	7 /	~ I I						

Fig. 5D

```
Atty/Agent: Jean M. Silveri
                  Attorney Docket No.: MPI98-105P1RCP2DV1M
                                      22/35
Searching for complete domains in PFAM
hmmpfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
------
HMM file:
                        /prod/ddm/seqanal/PFAM/pfam4.4/Pfam
/prod/ddm/wspace/orfanal/oa-script.11086.seq
Sequence file:
- - - - - - - - -
 Query: ratCARKpro
Scores for sequence family classification (score includes all domains):
Model Description
                                                                Score
                                                                          E-value N
ank
           Ank repeat
                                                                 212.7
                                                                           5.5e-60 9
pkinase
           Eukaryotic protein kinase domain
                                                                 206.4
                                                                           4.3e-58 1
Parsed for domains:
Model Domain seq-f seq-t hmm-f hmm-t
                                                       score E-value
          1/9
                            99 .. 1 33 []
ank
                     66
                                                        1.2

      132
      1
      33 []

      165
      1
      33 []

      198
      1
      33 []

      233
      1
      33 []

      264
      1
      33 []

      302
      1
      33 []

      338
      1
      33 []

      371
      1
      33 []

      716
      1
      273. [.

                                                                     48
ank
           2/9
                     100
                                                         28.6 0.00014
ank
           3/9
                     133
                                                        49.2
                                                                9.1e-11
                                                         31.9 1.4e-05
ank
           4/9
                     168
ank
           5/9
                     199
                                                        28.4 0.00017
ank
            6/9
                     234
                                                        12.6
                                                                    2.4
ank
            7/9
                     269
                                                        23.1
                                                                 0.0064
ank
            8/9
                     306
                                                         11.2
                                                                   3.5
ank
            9/9
                     339
                                                         36.4 6.5e-07
pkinase
            1/1
                     463
                            716 ..
                                        1
                                             273.[.
                                                        206.4 4.3e-58
Alignments of top-scoring domains:
ank: domain 1 of 9, from 66 to 99: score 1.2, E = 48
                      *->nGnTPLHlAaryg.nvevvklLLehGAdvnartk<-*
                         +G++ LHl++ g+n + +++L+ +G + t+
  ratCARKpro
                  66
                        RGLSLLHLCCVCGgNKSHIRALMLKGLRPSRLTR
                                                                    99
ank: domain 2 of 9, from 100 to 132: score 28.6, E = 0.00014
                      *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                         nG+ +LH1A+++++ e++ LL GAdv + +
  ratCARKpro
                 100
                        NGFPALHLAVYKDSPELITSLLHSGADVOOVGY
ank: domain 3 of 9, from 133 to 165: score 49.2, E = 9.1e-11
                     *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                          G+T+LH+Aa++g+e++LL+hGA+vn+++
  ratCARKpro
                 133
                        GGLTALHIAAIAGHPEAAEVLLQHGANVNVQDA
                                                                   165
ank: domain 4 of 9, from 168 to 198: score 31.9, E = 1.4e-05
                     *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                           +TPLH+Aa+yg+ +v +LL+ GAdvn+ +
  ratCARKpro
                 168
                        --FTPLHIAAYYGHEQVTSVLLKFGADVNVSGE
ank: domain 5 of 9, from 199 to 233: score 28.4, E = 0.00017
                     *->nGnTPLHlAarygnvevvklLLe..hGAdvnartk<-*
                         G+ PLH1A+ +g ++vklL+e++ Advna+++
  ratCARKpro
               199
                        VGDRPLHLASAKGFFNIVKLLVEegSKADVNAQDN
                                                                     233
```

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Applicants: Jeyaseelan Raju

Serial No.: N/A

Fig. 6A

```
23/35
ank: domain 6 of 9, from 234 to 264: score 12.6, E = 2.4
                   *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                       + PLH ++r g+ ++v +LL+ +d ++
 ratCARKpro
                     EDHVPLHFCSRFGHHNIVSYLLQ--SDLEVQPH
               234
ank: domain 7 of 9, from 269 to 302: score 23.1, E = 0.0064
                   *->nGnTPLHlAarygnvevvklLLe.hGAdvnartk<-*
                       G+TPLHlA+++gn ev+k ++ G+
 ratCARKpro
               269
                     YGDTPLHLACYNGNFEVAKEIVQvTGTESLTKEN
                                                           302
ank: domain 8 of 9, from 306 to 338: score 11.2, E = 3.5
                   *->nGnTPLHlAatyg.nvevvklLLe.hGAdvnartk<-*
                         T+ H A+ yg+n+++vk+LL+++ ++n r +
  ratCARKpro
               306
                     --ETAFHSACTYGKNIDLVKFLLDqNAVNINHRGR
                                                             338
ank: domain 9 of 9, from 339 to 371: score 36.4, E = 6.5e-07
                   *->nGnTPLHlAarygnvevvklLLehGAdvnartk<-*
                      +G+T LH A+++g++++v++LL++GAd n +
  ratCARKpro
               339
                     DGHTGLHSACYHGHIRLVQFLLDNGADMNLVAC
                                                           371
pkinase: domain 1 of 1, from 463 to 716: score 206.4, E = 4.3e-58
                   *->yelleklGeGsfGkVykakhktgkivAvKilk.....kesls..lr
                      +e++e++G+GsfGkVyk++ + +kivA+K + ++ +k++++
  ratCARKpro
               463
                      IEFHEIIGSGSFGKVYKGRCR-NKIVAIKRYRantycsKSDVDmfCR 508
                   EiqilkrlsHpNIvrllgvfedtddhlylvmEymegGdLfdylrrng.pl
                   E++il +l+Hp +v++ g++ d+++ + +v++y gG+lf++l+++++ l
  ratCARKpro
               509 EVSILCQLNHPCVVQFVGACLDDPSQFAIVTQYISGGSLFSLLHEQHrIL 558
                   sekeakkialQilrGleYLHsng..ivHRDLKpeNILldengtvKiaDFG
                   + + + ia ++++G+eYLHs ++i+HRDL + NILl e+g+ +aDFG
  ratCARKpro
               559 DLQSKLIIAVDVAKGMEYLHSLTQDIIHRDLNSHNILLYEDGHAVVADFG 608
                   LArll.....eklttfvGTpwYmmAPEvileg.rgysskvDvWSlGviLy
                                                + + y+ k+Dv S+
                    +r+l++ ++ ++t
                                    G +++m APEv
               609 ESRFLqsldeDNMTKQPGNLRWM-APEV-FTQcTRYTIKADVFSYSLCLW 656
  ratCARKpro
                   ElltggplfpgadlpaftggdevdqliifvlklPfsdelpktridpleel
                   Elltg
                                                  ++Pf +
  ratCARKpro
              -657 ELLTG----
                                -----LKPAAAA 674
                   frikkr..rlplpsncSeelkdLlkkcLnkDPskRpGsatakeil<-*
                    ++ +++ r+p+ ++++++ +Ll + +n P+ Rp
  ratCARKpro
              675 ADMAYHhirPPIGYSIPKPISSLLIRGWNACPEGRP---EFSEVV
                                                                    716
```

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Attorney Docket No.: MPI98-105P1RCP2DV1M

Applicants: Jeyaseelan Raju

Atty/Agent: Jean M. Silveri

Serial No.: N/A

Fig. 6B

Attorney Docket No.: MPI98-105P1RCP2DV1M 24/35 GAP of: AAAa006_n check: 4956 from: 1 to: 3025 cark (analysis only) - Import - complete to: BAAa006_n check: 6389 from: 1 to: 3026 Rat CARK cDNA (analysis only) - Import - complete Symbol comparison table: /ddm_local/gcg/gcg 9.1/gcgcore/data/rundata/ nwsgapdna.cmp CompCheck: 8760 Gap Weight: 12 Average Match: 10.000 Length Weight: 4 Average Mismatch: 0.000 Quality: 24376 Length: 3045 Ratio: 8.058 Gaps: 14 Percent Similarity: 82.169 Percent Identity: 82.169 Match display thresholds for the alignment(s): = IDENTITY 5 1 AAAa006_n x BAAa006_n 1 gtcgacccacgcgtccg.. ..gccctggagaaaggaagaaa 37 11111111111111111 1 GTCGACCCACGCGTCCGGTGAAGGCCAGCAGCACAGGAGAAAAGCAAAGA 50 38 cttataataaatgggaaattataaatctagaccaacccaaacttgtactg 87 51 CTTCTTTAAAATGGGGAATTACAAATCCAGACCAACAGACTTGTTCTG 100 88 atgaatggaagaaaaagtcagtgaatcatatgttatcacaatagaaaga 137 101 ATGAATGGAAGAAGAAGTTAGTGAATCTTACGCTATTATCATAGAAAGG 150 138 ttagaagatgacctgcagatcaaggaaaaagaactgacagaactaaggaa 187 151 CTGGAGGATAACCTGCAGATCAAAGAAAATGAATTTCAAGAACTAAGGCA 200 188 tatatttggctctgatgaagccttcagtaaagtcaatttaaattaccgca 237 201 CATCTTTGGCTCTGATGAAGCCTTCAGTGAAGTCAGTTTAAATTACCGCA 250 238 ctgaaaatgggctgtctctacttcatttatgttgcatttgtggaggcaag 287 251 CAGAGCGTGGCCTGTCCCTGCTACACCTCTGCTGTGTCTGTGGCGGCAAC 300

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Applicants: Jeyaseelan Raju

Atty/Agent: Jean M. Silveri

Serial No.: N/A

Fig. 7A

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Applicants: Jeyaseelan Raju Serial No.: N/A Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

1538	ctgctccaagtcagatgtggatatgttttgccgagaggtgtccattctct	1587
1551	CTGCTCCAAGTCAGACGTGGATATGTTTTGCCGAGAGGTGTCCATTCTCT	1600
1588	gccagctcaatcatccctgcgtaattcagtttgtgggtgcttgct	1637
1601	GCCAGCTCAACCACCCCTGCGTGGTTCAGTTTGTGGGTGCCTGCC	1650
1638	gatcccagccagtttgccattgtcactcaatacatatcagggggttctct	1687
1651		1700
1688	gttctccttcatgagcagaagaggattcttgatttgcagtctaaat	1737
1701	GTTCTCCCTGCTTCATGAACAGAAGAGAATTCTTGACTTGCAGTCTAAAT	1750
1738	taattattgcagtagatgttgccaaaggcatggagtaccttcacaacctg	1787
1751	TAATCATTGCGGTAGACGTTGCCAAGGGCATGGAGTACCTGCACAGCTTG	1800
1788	acacagccaattatacatcgtgacttgaacagtcacaatattcttctcta	1837
1801	ACCCAGCCAATCATACACCGCGACCTGAACAGCCACAATATTCTGCTCTA	1850
1838	tgaggatgggcatgctgtggtggcagattttggagaatcaagatttctac	1887
1851	TGAGGATGGCCATGCTGTGGTGGCAGATTTTGGAGAATCAAGATTTCTGC	1900
1888	agtctctggatgaagacaacatgacaaaacaacctgggaacctccgttgg	1937
1901	AGTCCCTGGATGAAGACAACATGACAAAGCAGCCAGGGAACCTGCGCTGG	1950
1938	atggctcctgaggtgttcacgcagtgcactcggtacaccatcaaagcaga	1987
1951	ATGGCCCCTGAGGTGTTCACACAGTGCACGAGATACACCATCAAGGCTGA	2000
1988	tgtcttcagctatgctctgtgtctgtgggaaattctcactggcgaaattc	2037
2001	TGTCTTCAGTTACTCCCTGTGTCTGTGGGAGCTCCTCACTGGAGAAATTC	2050
2038	cattcgctcatctcaagccagcggctgcggcagcagacatggcttaccac	2087
2051	CATTCGCTCATCTCAAGCCAGCCGCTGCAGCAGCAGATATGGCGTATCAC	2100
2088	cacatcagacctcccattggctattccattcccaagcccatatcatctct	2137
2101	CACATCAGACCGCCCATCGGCTATTCCATCCCCAAGCCCATCTCATCCCT	2150
2138	gctgatacgaggtggaacgcatgtcctgaaggaagacccgaattttctg	2187
2151	GCTGATACGGGGCTGGAATGCATGTCCTGAAGGACGACCAGAGTTCTCTG	2200

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Fig. 7E

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Fig. 7F

```
Atty/Agent: Jean M. Silveri
        Attorney Docket No.: MPI98-105P1RCP2DV1M
                      30/35
GAP of: IAAa006_n check: 1490 from: 1 to: 836
ratCARKpro (analysis only) - Import - complete
to: JAAa006_n check: 4709 from: 1 to: 835
carkprot (analysis only) - Import - complete
Symbol comparison table: /prod/ddm/seqanal/B:AST/matrix/aa/BLOSUM62
CompCheck: 1102
 Matrix made by matblas from blosum62.iij
      Gap Weight:
                    12
                          Average Match: 2.778
    Length Weight:
                        Average Mismatch: -2.248
         Quality:
                  4079
                                Length:
                                         836
           Ratio: 4.885
                                  Gaps:
Percent Similarity: 93.174
                        Percent Identity: 91.377
      Match display thresholds for the alignment(s):
                 = IDENTITY
                    2
ІААаооб п ж ЈААа006 п
 1 MGNYKSRPTQTCSDEWKKKVSESYAIIIERLEDNLQIKENEFQELRHIFG 50
                                                   rat
   1 MGNYKSRPTQTCTDEWKKKVSESYVITIERLEDDLQIKEKELTELRNIFG 50
                                                   human
51 SDEAFSEVSLNYRTERGLSLLHLCCVCGGNKSHIRALMLKGLRPSRLTRN 100
   51 SDEAFSKVNLNYRTENGLSLLHLCCICGGKKSHIRTLMLKGLRPSRLTRN 100
101 GFPALHLAVYKDSPELITSLLHSGADVQQVGYGGLTALHIAAIAGHPEAA 150
     101 GFTALHLAVYKDNAELITSLLHSGADIQQVGYGGLTALHIATIAGHLEAA 150
151 EVLLQHGANVNVQDAVFFTPLHIAAYYGHEQVTSVLLKFGADVNVSGEVG 200
   151 DVLLQHGANVNIQDAVFFTPLHIAAYYGHEQVTRLLLKFGADVNVSGEVG 200
201 DRPLHLASAKGFFNIVKLLVEEGSKADVNAQDNEDHVPLHFCSRFGHHNI 250
   201 DRPLHLASAKGFLNIAKLLMEEGSKADVNAQDNEDHVPLHFCSRFGHHDI 250
251 VSYLLQSDLEVQPHVINIYGDTPLHLACYNGNFEVAKEIVQVTGTESLTK 300
```

Filed: Herewith

Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Applicants: Jeyaseelan Raju

Serial No.: N/A

Therefor

Fig. 8A

251 VKYLLQSDLEVQPHVVNIYGDTPLHLACYNGKFEVAKEIIQISGTESLTK 300

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Fig. 8B

Atty/Agent: Jean M. Silveri Attorney Docket No.: MPI98-105P1RCP2DV1M 32/35

Applicants: Jeyaseelan Raju Serial No.: N/A Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Filed: Herewith

Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Fig. 10

Filed: Herewith Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Fig. 11

Serial No.: N/A Filed: Herewith
Title: Novel Cark Protein and Nucleic Acid Molecules and Uses

Therefor

Atty/Agent: Jean M. Silveri

Attorney Docket No.: MPI98-105P1RCP2DV1M

Fig. 12