15-213 Introduction to Computer Systems

Final Exam

May 10, 2007

Name:	Model Solution
Andrew User ID:	fp
Recitation Section:	

- This is an open-book exam.
- Notes and calculators are permitted, but not computers.
- Write your answer legibly in the space provided.
- You have 180 minutes for this exam.

Assignment Project Exam Help

https://edu	ıassis	tpro	ore .gith	nub.io/
Assembly Wygurge	nat² ec	du_a	ssis	t_pro
Optimization	3	20	20	•
Cache Memory	4	20	20	
Signals	5	20	20	
Garbage Collection	6	20	20	
Threads	7	20	20	
Synchronization	8	20	20	
	Total	150+10	160	

1. Floating Point (20 points)

In this problem we consider properties of floating point operations. For each property state whether it is true or false. If false, give a counterexample as a (possibly negative) power of 2 within the range of precision for the variables. We assume that the variables on an x86_64 architecture are declared as follows

```
float x,y,z;
double d,e;
```

and initialized to some unknown value **different from NaN**, $+\infty$, and $-\infty$. We have given the first answer as an example.

(x + y) + z == x + (y + z)	false	$x = 1, y = 2^{127}, z = -2^{127}$
If $x > 0$ then $x / 2 > 0$	false	$x = 2^{-149}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	false t Exa	$x = 2^{127}, y = -2^{127}, z = 2^{127}$ Help
If x > y then (https://eduass	istpro	github.io/ $d = 2^{129}, e = 2^{128}$
×Add *WeChat 6	edu_a	ssist <u>*</u> pro

2. Assembly Language (20 points)

ret

In this problem we consider an illustrative program for multiplication of two unsigned int's, returning an unsigned long int holding the product.

```
unsigned long mult (unsigned i, unsigned k) {
  unsigned long p = 0;
  unsigned long q = k;
  while (i != 0) {
    if (i & 1)
        p = p + q;
        q = q << 1;
        i = i >> 1;
    }
  return p;
}
```

The following is the resulting machine code when compiled on an x86_64 machine with gcc -02, omitting two instructions.

```
ssignment Project Exam Help
mult:
      xorl
             %ecx, %e
      mov
                     eduassistpro.github.io/
      jmp
.L10:
                ld WeChat edu_assist_pro
      leaq
                              # missing conditional move
      addq
             %rdx, %rdx
             %edi
      shrl
.L8:
      jne
             .L10
                              # missing move
```

1. (5 pts) For each register, give the value it holds during the iteration, expressed in terms of the C program.

Register	C expression		
%rcx	р		
%rdx	q		
%rax	p+q		
%edi	i		
%dil	(char)i		

2. (5 pts) Fill in the missing two instructions in the code.

```
cmovne %rax, %rcx and movq %rcx, %rax
```

3. (4 pts) Rewrite the loop to use a conditional jump instead of a conditional move.

Assignment Project Exam Help See one solution below; there are many others.

https://eduassistpro.github.io/
jne .L9
movq %rax, Add WeChat edu_assist_pro

4. (3 pts) Explain briefly why the compiler preferred to use a conditional move instruction.

Because the branch misprediction penalty would make the loop slower, especially since the outcome of test will be difficult to accurately predict.

5. (3 pts) Assume we declared and initialized

```
int i,k;
long m;
and called

m = (long)mult((unsigned)i, (unsigned)k);
```

using the above definition of mult. Will m hold the correct value of the signed product of i and k? Circle the correct answer.

yes no **no**

Briefly explain your answer.

For example, when multiplying 1 times -1, the negative 1 will actually be interpreted as 2^{32} n hand the representations, signe : hey operate in the ricase). https://eduassistpro.github.lo/

Add WeChat edu_assist_pro

3. Optimization (20 points)

Consider the following code for calculating the dot product of two vectors of double precision floating point numbers.

```
double dot_prod(double A[], double B[], int n) {
  int i;
  double r = 0;
  for (i = 0; i < n; i++)
    r = r + A[i] * B[i];
  return r;
}</pre>
```

Assume that multiplication has a latency of 12 cycles and addition a latency of 7 cycles and load 4 cycles. Also assume that there are an unlimited number of functional units. [Hint: Under this assumption, theoretically optimal performance is dominated by the critical data dependency path.]

- 1. (5 points) What is the theoretically optimal CPE for this loop?

 ASSIGNMENT Project Exam Help
 7 CPE, since the addition constitutes the critical path.
- 2. (10 points) Shorttps://eduassistpro.github.io/ y and commutati are insignificant.

```
double dot_prod2(double A[], double B[], int n) {
  int i;
  double r = 0;
  for (i = 0; i < n-1; i+=2)
    r = r + (A[i] * B[i] + A[i+1] * B[i+1]);

  for (; i < n; i++)
    r = r + A[i] * B[i];

  return r;
}</pre>
```

3. (5 points) What is the theoretically optimal CPE for this loop?

7/2 = 3.5 CPE, since the critical path is still addition, but now two elements will be added in each iteration.

4. Cache Memory (20 points)

In this problem we explore the operation of a basic TLB as a cache. Assume the following

- Virtual addresses are 32 bits.
- The virtual page number (VPN) is 24 bits.
- The physical page number (PPN) is 32 bits.
- The TLB is 2-way set associative containing a total of 512 lines.
- 1. (6 points) Please fill in the following blanks by giving a bit range, such as "0–15".
 - (a) The VPO of a virtual address consists of bits _____ of the VA.
 - (b) The VPN of a virtual address consists of bits <u>8–31</u> of the VA.
 - (c) The PPO of a physical address consists of bits _____ of the PA.
 - (d) The PPN of a physical address consists of bits <u>8–39</u> of the PA.
 - (e) The TLB index (TLBI) consists of bits ct 0-TLX of the VPI elp
 (f) The TLB teg (TLBT) consists of bits 8-23 of the VPN.

We show a part of t https://eduassistpro.github.io/

V C	ld M	/eCl	natee(du assi
	3E	0	0xF3	
		1	0x083F	0xAB18ED24
	3F	1	0x409A	0x0913ABDE
		1	0x083F	0xAB18ED24
	40	0	0x083E	0x0913ABDE
		1	0x3E40	0xAB18ED24

2. (7 points) Assume the virtual address is 0x083F3E9A. Fill in the following table in hexadecimal notation. Write **U** for any value that is unknown, that is, not determined from the parameters and the table above.

Parameter	Value
VPN	0x083F3E
VPO	0x9A
TLBI	0x3E
TLBT	0x083F
Cache Hit? (Y/N/U)	Y
PPN	0xAB18ED24
PA	0xAB18ED249A

3. (7 points) Assign the retard address is cot 3E40 xB2 Fithin the following table in hexadecimal retation. Write U for any value that is unknown, that is, not determined from the p

https://eduassistpro.github.io/

Δ	weCha WeCha	tુ <mark>edu_assist</mark>	<u> </u>
	TLBI	0x40	
	TLBT	0x083E	
	Cache Hit? (Y/N/U)	N	
	PPN	U	
	PA	U	

5. Signals (20 points)

Consider the following program.

```
int counter = 0;
void handler (int sig) {
 counter++;
int main() {
 signal(SIGUSR1, handler);
 signal(SIGUSR2, handler);
 int parent = getpid();
 int child = fork();
 if (child == 0) {
   /* insert code here */
   Assignment Project Exam Help
 }
 sleep(1); https://eduassistpro.github.io/
 printf("Received %d USR{1,2} signals\n", coun
 return 0;
             Add WeChat edu_assist_pro
}
```

For each of the following four versions of the above code, list the possible outputs of this program, assuming that all function and system calls succeed and exit without error. You may also assume no externally issued signals are sent to either process.

1. (5 pts)

```
kill(parent, SIGUSR1);
kill(parent, SIGUSR1);
```

1,2: If the second SIGUSR1 is sent before the first one is received it will be dropped.

2. (5 pts)

```
kill(parent, SIGUSR1);
kill(parent, SIGUSR1);
kill(parent, SIGUSR1);
```

1,2,3: The second and third SIGUSR1 may be sent before the first one is received.

3. (5 pts)

```
kill(parent, SIGUSR1);
kill(parent, SIGUSR2);
```

1,2: Because of a race condition when SIGUSR2 is received while SIGUSR1 is handled, one increment may be dropped.

handled, one increment may be dropped.

Assignment Project Exam Help

4. (5 pts)

```
kill (paren https://eduassistpro.github.io/kill (paren kill (parent, SIGUSR1); kill (parent Adds WeChat edu_assist_pro
```

1,2,3,4: Two consecutive occurrences as in the answer to the previous question can lead to answers 1+1, 1+2, 2+1 or 2+2. And the race condition from the previous question can lead to the answer 1 if the first three signals are sent before any are received.

6. Garbage Collection (20 points)

In this problem we consider a tiny list processing machine in which each memory word consists of two bytes: the first byte is a pointer to the tail of the list and the second byte is a data element. The end of a list is marked by a pointer of 0×00 . We assume that the data element is never a pointer.

We start with the memory state on the left, where the range $0 \times 10 - 0 \times 1F$ is the from-space and the range $0 \times 20 - 0 \times 2F$ is the to-space. All addresses and values in the diagram are in hexadecimal.

Write in the state of memory after a copying collector is called with root pointers 0×10 and 0×12 , in this order. You may leave cells that remain unchanged blank.

Please be sure to use the proper breadth-first traversal algorithm covered in lecture.

В	efore G	\mathbb{C}				Afte	r GC		
Addr	Ptr	Data		Addr	Ptr	Data	Addr	Ptr	Data
10	14	A2		10	20		20	24	A2
12	A 145	offm	er	nt Pro	ni ë c	t Exa	1 $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$ \frac	ełh	1F
14	1E	02		14	24		24	28	02
16	1E						0:46	2A	ВС
18	00	nup	5./	/eau	ass	Stpr	o.gith	ւսք.	IO _F
1A	18	ВС	•	1A	26	_		00	33
1C	12	Aclo	l V	veer	iat e	:du_	assis	t_p	ro
1E	10	8F		1E	28		2E		

After garbage collection, free space starts at address <u>2C</u>

7. Threads (20 points)

Consider three concurrently executing threads in the same process using two semaphores s1 and s2. Assume s1 has been initialized to 1, while s2 has been initialized to 0.

What are the possible values of the global variable x, initialized to 0, after all three threads have terminated?

```
/* thread A */
P(&s2);
P(&s1);
x = x*2;
V(&s1);

/* thread B */
P(&s1);
x = x*x;
V(&s1);

/* thread C */
P(&s1);
Assignment Project Exam Help
V(&s2);
V(&s1);
```

https://eduassistpro.github.io/

The possible sequences are B,C,A (x = 6) or C,A,B (x = 36)

Add WeChat edu_assist_pro

8. Synchronization (20 points)

We explore the so-called *barbershop problem*. A barbershop consists of a n waiting chairs and the barber chair. If there are no customers, the barber waits. If a customer enters, and all the waiting chairs are occupied, then the customer leaves the shop. If the barber is busy, but waiting chairs are available, then the customer sits in one of the free chairs.

Here is the skeleton of the code, without synchronization.

```
/* initialized elsewhere to value > 0 */
extern int N;
int customers = 0;
void* customer() {
 if (customers > N) {
   return NULL;
      Assignment Project Exam Help
 getHairCut(); https://eduassistpro.github.io/
 customers -= 1Add WeChat edu_assist_pro
 return NULL;
void* barber() {
 while(1) {
  cutHair();
 }
```

For the solution, we use three binary semaphores:

- mutex to control access to the global variable customers.
- customer to signal a customer is in the shop.
- barber to signal the barber is busy.
- 1. (5 points) Indicate the initial values for the three semaphores.
 - mutex
 - customer
 - barber
- 2. (15 points) Complete the code above filling in as many copies of the following commands as you need, but no other code.

```
P(&mutex);
V(&mutex);
P(&catssing:nment Project Exam Help
V(&customer);
P(&barber)
V(&barber)
https://eduassistpro.github.io/
Add WeChat edu_assist_pro
```

Solution: There are a number of solutions; below is one. Be careful to release the mutex before leaving. For this solution, initial values are mutex = 1 (variable customers may be accessed), customer = 0 (no customers) and barber = 0 (barber is not busy).

```
void* customer() {
 P(&mutex);
 if (customers > N) {
   V(&mutex);
   return NULL;
 customers += 1;
 V(&mutex);
 V(&customer);
 P(&barber);
 getHairCut();
 P(&mutex);
 custome Assignment Project Exam Help
 return NULL;
             https://eduassistpro.github.io/
}
void* barber() {
 while(1) {
  While (1) {
P (&customer); Add WeChat edu_assist_pro
  cutHair();
 }
}
```