Bayesian Learning

Lecture 1 - Introduction and Bernoulli data: BDA ch. 1, 2.1-2.4

Bertil Wegmann

Department of Computer and Information Science Linköping University

Course overview

All course material on Lisam.

■ Teaching activities:

- Lectures and mathematical exercises (Bertil Wegmann)
- Computer labs (Bertil Wegmann, Amanda Olmin and Amirhossein Ahmadian)

Modules

- Introduction to Bayesian inference: single- and multiparameter models
- ► Regression and Classification models
- Advanced models and Posterior Approximation methods
- ▶ Model evaluation and comparison and Variable Selection

Examination

- Computer exam, 3 hp: distance-based
- ▶ Lab reports, 3 hp: work in pairs, submit through Lisam.

Previous course evaluation and course modifications

- Course evaluation spring 2020 will be published on Lisam.
- Overall evaluation grade: 732A91(4.85)/TDDE07(5)
 Answer rate: 732A91(26 out of 56)/TDDE07(5 out of 35)
- The subject-specific content of the course gave me the opportunity to achieve the learning outcomes of the course. Grade: 4.8
- The various teaching and working methods of the course were relevant to the learning outcomes of the course. Grade: 4.8
- Lab assignments have been considered great, but somewhat heavy with 4 labs. The number of labs is decreased from 4 to 3.

Lecture overview

■ The likelihood function

■ Bayesian inference

■ Bernoulli model

Likelihood function - Bernoulli trials

■ Bernoulli trials:

$$X_1, ..., X_n | \theta \stackrel{iid}{\sim} Bern(\theta).$$

- Likelihood from $s = \sum_{i=1}^{n} x_i$ successes and f = n s failures. $p(x_1, ..., x_n | \theta) = p(x_1 | \theta) \cdots p(x_n | \theta) = \theta^s (1 - \theta)^f$
- **Maximum likelihood estimator** $\hat{\theta}$ maximizes $p(x_1, ..., x_n | \theta)$.
- Given the data $x_1,...,x_n$, plot $p(x_1,...,x_n|\theta)$ as a function of θ .

The likelihood function

Say it out loud:

The likelihood function is the probability of the observed data considered as a function of the parameter.

- The symbol $p(x_1, ..., x_n | \theta)$ plays two different roles:
- Probability distribution for the data.
 - ▶ The data $x = (x_1, ..., x_n)$ are random.
 - \triangleright θ is fixed.
- Likelihood function for the parameter
 - ▶ The data $x = (x_1, ..., x_n)$ are fixed.
 - $ightharpoonup p(x_1,...,x_n|\theta)$ is a function of θ .

Probabilities from the likelihood?

Uncertainty and subjective probability

- $Arr Pr(\theta < 0.6 | data)$ only makes sense if θ is random.
- But θ may be a fixed natural constant?
- **B** Bayesian: doesn't matter if θ is fixed or random.
- **Do You** know the value of θ or not?
- $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- Subjective probability
- lacksquare The statement $\Pr(10 ext{th decimal of }\pi=9)=0.1$ makes sense.

Bayesian learning

- **Bayesian learning** about a model parameter θ :
 - \triangleright state your **prior** knowledge as a probability distribution $p(\theta)$.
 - ightharpoonup collect data x and form the likelihood function $p(x|\theta)$.
 - **combine** prior knowledge $p(\theta)$ with data information $p(x|\theta)$.
- How to combine the two sources of information? Bayes' theorem

Learning from data - Bayes' theorem

- How to update from prior $p(\theta)$ to posterior $p(\theta|Data)$?
- Bayes' theorem for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

lacksquare Bayes' Theorem for a model parameter heta

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

- It is the prior $p(\theta)$ that takes us from $p(Data|\theta)$ to $p(\theta|Data)$.
- A probability distribution for θ is extremely useful. Predictions. Decision making.
- No prior no posterior no useful inferences no fun.

Medical diagnosis

- \blacksquare A = {Very rare disease}, B ={Positive medical test}.
- p(A) = 0.0001. p(B|A) = 0.9. $p(B|A^c) = 0.05$.
- Probability of being sick when test is positive:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)} = \frac{p(B|A)p(A)}{p(B|A)p(A) + p(B|A^c)p(A^c)} \approx 0.0018.$$

- Probably not sick, but 18 times more probable now.
- Morale: If you want p(A|B) then p(B|A) does not tell the whole story. The prior probability p(A) is also very important.

"You can't enjoy the Bayesian omelette without breaking the Bayesian eggs" Leonard Jimmie Savage

The normalizing constant is not important

Bayes theorem

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{p(\textit{Data})} = \frac{p(\textit{Data}|\theta)p(\theta)}{\int_{\theta} p(\textit{Data}|\theta)p(\theta)d\theta}.$$

- lacksquare Integral $p(\mathit{Data}) = \int_{ heta} p(\mathit{Data}| heta) p(heta) d heta$ can be complex.
- p(Data) is just a constant so that $p(\theta|Data)$ integrates to one.
- **Example**: $x \sim N(\mu, \sigma^2)$

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

We may write

$$p(x) \propto \exp \left[-\frac{1}{2\sigma^2} (x - \mu)^2 \right].$$

Bayes' theorem in a nutshell

All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Thomas Bayes (1702-1761): English statistician, philosopher and Presbyterian minister.

Bernoulli trials - Beta prior

Model

$$x_1, ..., x_n | \theta \stackrel{iid}{\sim} Bern(\theta)$$

Prior

$$\theta \sim \text{Beta}(\alpha, \beta)$$

$$\rho(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \quad \text{for } 0 \le \theta \le 1.$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta)p(\theta)$$

$$\propto \theta^{s}(1-\theta)^{f}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

$$= \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}.$$

- Posterior is proportional to the Beta $(\alpha + s, \beta + f)$ density.
- The prior-to-posterior mapping:

$$\theta \sim \text{Beta}(\alpha, \beta) \stackrel{x_1, ..., x_n}{\Longrightarrow} \theta | x_1, ..., x_n \sim \text{Beta}(\alpha + s, \beta + f)$$

Bernoulli example: spam emails

- George has gone through his collection of 4601 e-mails.
- He classified 1813 of them to be spam.
- Let $x_i = 1$ if i.th email is spam.
- Model: $x_i | \theta \stackrel{iid}{\sim} Bern(\theta)$
- Prior $\theta \sim \text{Beta}(\alpha, \beta)$
- Posterior

$$\theta | x \sim \text{Beta}(\alpha + 1813, \beta + 2788)$$

Spam data (n=10) - Prior is influential

Spam data (n=100) - Prior is less influential

Spam data (n=4601) - Prior does not matter

Spam data - posterior convergence

Bayes respects the Likelihood Principle

■ Bernoulli trials with order

$$x_1 = 1, x_2 = 0, ..., x_4 = 1, ..., x_n = 1$$

$$p(\mathbf{x}|\theta) = \theta^{s}(1-\theta)^{f}$$

Bernoulli trials without order. *n* fixed, *s* random.

$$p(s|\theta) = \binom{n}{s} \theta^{s} (1-\theta)^{f}$$

Negative binomial sampling: sample until you get s successes. s fixed, n random.

$$p(n|\theta) = \binom{n-1}{s-1} \theta^{s} (1-\theta)^{f}$$

- The posterior distribution is the same in all three cases.
- Bayesian inference respects the likelihood principle.