```
In [1]: import pandas as pd
         df=pd.read_csv("C://Users//ALWAYSRAMESH//Downloads//insurance.csv")
In [41]:
In [42]: df
Out[42]:
                               bmi children smoker
                                                         region
                                                                    charges
                age
                        sex
                     female 27.900
                                          0
             0
                 19
                                                 yes southwest 16884.92400
                 18
                       male 33.770
                                                      southeast
                                                                 1725.55230
                                                  no
             2
                 28
                       male 33.000
                                          3
                                                      southeast
                                                                 4449.46200
             3
                 33
                       male 22.705
                                                      northwest
                                                                21984.47061
                                                  no
             4
                 32
                       male 28.880
                                          0
                                                      northwest
                                                                 3866.85520
          1333
                            30.970
                                                      northwest 10600.54830
                 50
                       male
                                          3
                                                  no
          1334
                 18 female 31.920
                                          0
                                                      northeast
                                                                 2205.98080
                                                  no
          1335
                     female 36.850
                                          0
                                                                 1629.83350
                                                      southeast
          1336
                     female 25.800
                                                      southwest
                                                                 2007.94500
                 21
          1337
                 61 female 29.070
                                          0
                                                      northwest 29141.36030
                                                 yes
         1338 rows × 7 columns
In [43]:
         from sklearn.preprocessing import LabelEncoder
In [50]:
         model=LabelEncoder()
          df['sex']=model.fit_transform(x['sex'])
 In [ ]: x=df[['age','sex','bmi','children','charges']]
In [61]: y=df['smoker']
```

In [62]: y

```
Out[62]: 0
                  yes
          1
                   no
          2
                   no
          3
                   no
                   no
          1333
                   no
          1334
                   no
          1335
                   no
          1336
                   no
          1337
                  yes
          Name: smoker, Length: 1338, dtype: object
```

In [66]: x

_			
\cap	14	66	
\cup	u u	00	

:		age	sex	bmi	children	charges
	0	19	0	27.900	0	16884.92400
	1	18	1	33.770	1	1725.55230
	2	28	1	33.000	3	4449.46200
	3	33	1	22.705	0	21984.47061
	4	32	1	28.880	0	3866.85520
	•••	•••			•••	•••
	1333	50	1	30.970	3	10600.54830
	1334	18	0	31.920	0	2205.98080
	1335	18	0	36.850	0	1629.83350
	1336	21	0	25.800	0	2007.94500
	1337	61	0	29.070	0	29141.36030

1338 rows × 5 columns

```
In [67]: from sklearn.model_selection import train_test_split

In [68]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=4)

In [69]: from sklearn.linear_model import LogisticRegression

In [70]: model=LogisticRegression() model.fit(x_train,y_train)
```

```
Out[72]: array(['no', 'no', 'no', 'no', 'no', 'no', 'no', 'yes', 'yes', 'no',
                'no', 'no', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no',
                'yes', 'no', 'no', 'no', 'no', 'no', 'yes', 'no', 'no', 'no',
                'yes', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'yes', 'no',
                'yes', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no',
                                                                  'no',
                'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'yes', 'no',
                'no', 'no', 'yes', 'no', 'no', 'no', 'yes', 'yes', 'no', 'no',
                'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no',
                'yes', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'yes',
                'yes', 'no', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no',
                'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'yes', 'no', 'yes', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'yes', 'no', 'no',
                'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no',
                'yes', 'no', 'no', 'no', 'no', 'yes', 'yes', 'no', 'no',
                'yes', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no',
                'yes', 'no', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no',
                'no', 'yes', 'yes', 'no', 'no', 'no', 'no', 'no', 'no',
                'yes', 'no', 'no', 'yes', 'no', 'yes', 'no', 'yes', 'no',
                'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'yes',
                'no', 'no', 'yes', 'no', 'yes', 'no', 'yes', 'no', 'no',
                'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no',
                'yes', 'no', 'no', 'yes', 'no', 'no', 'no', 'yes', 'yes', 'yes',
                'yes', 'yes', 'no', 'no', 'no', 'yes', 'no', 'yes', 'yes',
                'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'yes', 'no',
                'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no', 'no',
                'yes', 'yes', 'no', 'no', 'no', 'no', 'no', 'no', 'yes',
                'no', 'no', 'yes', 'no', 'no', 'no', 'no', 'no', 'no', 'yes',
                'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'yes',
                'no', 'no', 'no', 'no', 'no', 'yes', 'no', 'no', 'no', 'no',
                'no', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes', 'no',
                'no', 'no', 'no', 'no', 'no'], dtype=object)
In [74]: from sklearn.metrics import confusion_matrix,classification_report
In [84]: graph=confusion_matrix(y_test,y_pred)
         print(graph)
       [[304 11]
        [ 24 63]]
In [79]: print(classification_report(y_test,y_pred))
```

```
precision
                          recall f1-score
                                               support
                   0.93
                              0.97
                                        0.95
                                                    315
          no
                   0.85
                              0.72
                                        0.78
                                                    87
         yes
    accuracy
                                        0.91
                                                   402
   macro avg
                   0.89
                              0.84
                                        0.86
                                                   402
weighted avg
                   0.91
                              0.91
                                                   402
                                        0.91
```

```
In [91]: import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [92]: sns.heatmap(graph,annot=True)
   plt.title('insurance Data')
   plt.show()
```


In []:

In [107...

```
prediction = model.predict(x_test)
print("Predicted Class:", prediction)
```

Predicted Class: ['no' 'no' 'no' 'no' 'no' 'no' 'yes' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'yes' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'yes' 'no' 'no' 'yes' 'yes' 'no' 'no' 'no' 'yes' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'no' 'yes' 'yes' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'yes' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'yes' 'no' 'no' 'yes' 'no' 'yes' 'no' 'no' 'no' 'yes' 'yes' 'yes' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'yes' 'no' 'no' 'yes' 'yes' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'yes' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'yes' 'no' 'yes' 'no' 'no' 'yes' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'yes' 'no' 'yes' 'no' 'yes' 'no' 'no' 'yes' 'no' 'no' 'yes' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no' 'no' 'yes' 'yes' 'no' 'no' 'no' 'yes' 'yes' 'no' 'yes' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes' 'no']

In []: