2010 Specialist Maths Trial Exam 2 Solutions

Free download from www.itute.com © Copyright 2010 itute.com

Section 1

1	2	3	4	5	6	7	8	9	10	11
C	C	C	В	В	Α	Α	Е	C	C	C
12	13	14	15	16	17	18	19	20	21	22
D	Е	Е	В	Α	Е	С	Α	D	D	В

Q1
$$z^2 - z + 1 = 0$$
, $z = \frac{-1 \pm \sqrt{(-1)^2 - 4(1)(1)}}{2(1)}$
= $\frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm \sqrt{3}i}{2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$

Q2 z = -cis(1)

$$|z|=1$$
, $Arg(z)=1-\pi$

Q3 The polynomial has three linear factors, not solutions or roots. $\ensuremath{\mathsf{C}}$

Q4 Any complex number on the straight line is equidistant from z = 0 and z = a + ai, i.e. |z - a - ai| = |z|.

$$\therefore |z - a - ai| - |z| = 0$$

Q5 b > 0

b < 0

C

Α

Q6 $4x^2 + px + q^2$ cannot be a perfect square for $y = \frac{2}{4x^2 + px + q^2}$ to have a stationary point, i.e.

 $\Delta = p^2 - 16q^2 \neq 0$. $\therefore p^2 \neq 16q^2$, $p \neq \pm 4q$.

Only choice A (p < -4q) satisfies this requirement.

Q7
$$\sin\left(a + \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = \sin\left(a + \frac{5\pi}{6}\right)$$

= $\sin a \cos\left(\frac{5\pi}{6}\right) + \cos a \sin\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}\sin a + \frac{1}{2}\cos a$ A

Q8
$$f(x) = \sin^{-1}\left(\frac{x}{a} + b\right) + c$$
, where $a, b, c \in (-\infty, 0)$, i.e. $a < 0$, $b < 0$ and $c < 0$.

$$-1 \le \frac{x}{a} + b \le 1, -1 - b \le \frac{x}{a} \le 1 - b, \ a(-1 - b) \ge x \ge a(1 - b),$$

O9
$$\tan^{-1} b = 0.2$$
. $\therefore b = \tan 0.2 > 0$

$$b = \tan 0.2 = \tan 2(0.1) = \frac{2 \tan 0.1}{1 - \tan^2 0.1}$$

$$b(1-\tan^2 0.1)=2\tan 0.1$$

Simplify to: $b \tan^2 0.1 + 2 \tan 0.1 - b = 0$

$$\therefore \tan 0.1 = \frac{\sqrt{1+b^2} - 1}{b} \text{ but not } \frac{-\sqrt{1+b^2} - 1}{b} \text{ because}$$

$$\tan 0.1 > 0.$$

Q10 The range of $\cos^{-1} x$ is $[0, \pi]$.

$$\cos^{-1}(\cos\theta) = \cos^{-1}(\cos(-\theta)) = \cos^{-1}(\cos(2\pi - \theta)) = 2\pi - \theta$$
 C

Q11 $3\tilde{i} - 4\tilde{j}$ cannot be expressed as a linear combination of $-2\tilde{i} + 3\tilde{k}$ and $\tilde{j} - 2\tilde{k}$

Q12
$$\overrightarrow{AO}.\overrightarrow{BO} = \frac{1}{2}$$
, $\therefore \cos \angle AOB = \frac{1}{2}$, $\angle AOB = \frac{\pi}{3}$,

$$\angle APB = \frac{1}{2} \angle AOB = \frac{\pi}{6}, : \cos \angle APB = \frac{\sqrt{3}}{2}.$$

$$\overrightarrow{AP}.\overrightarrow{BP} = \sqrt{3}$$
, $|\overrightarrow{AP}||\overrightarrow{BP}|\cos\angle APB = \sqrt{3}$, $\therefore |\overrightarrow{AP}||\overrightarrow{BP}| = 2$ D

Q13
$$\overrightarrow{OQ} = \frac{3\overrightarrow{OP} + 2\overrightarrow{OR}}{2+3} = \frac{(-3,0,6) + (4,2,-4)}{5} = \frac{(1,2,2)}{5}$$

$$\left| \overrightarrow{OQ} \right| = \frac{1}{5} \sqrt{1^2 + 2^2 + 2^2} = \frac{3}{5}$$

Q14
$$\left| \frac{\sqrt{3}}{2} \tilde{i} - \frac{1}{\sqrt{2}} \tilde{j} - \frac{1}{2} \tilde{k} \right| = \sqrt{\frac{3}{4} + \frac{1}{2} + \frac{1}{4}} = \frac{\sqrt{3}}{\sqrt{2}}$$

Angle with the x-axis =
$$\cos^{-1} \left(\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{\sqrt{2}}} \right) = \cos^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$$

Angle with the y-axis =
$$\cos^{-1} \left(\frac{-\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{\sqrt{2}}} \right) = \cos^{-1} \left(-\frac{1}{\sqrt{3}} \right)$$

Angle with the z-axis =
$$\cos^{-1} \left(\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{\sqrt{2}}} \right) = \cos^{-1} \left(-\frac{1}{\sqrt{6}} \right)$$

Q15 $\tilde{v} = \cos^{-1}(t)(2\tilde{i} - 3\tilde{j} + \tilde{k})$. $2\tilde{i} - 3\tilde{j} + \tilde{k}$ is a constant vector, \therefore the particle moves in the same direction, i.e. in a straight line.

В

Ε

C

Q16
$$\frac{dy}{dh} = \sqrt{y(2-y)} \frac{dx}{dh}$$
, $\frac{dy}{dx} = \sqrt{y(2-y)}$, $\frac{dx}{dy} = \frac{1}{\sqrt{y(2-y)}}$
 $\therefore \frac{dx}{dy} = \frac{1}{\sqrt{1-(y-1)^2}}$, $x = \int \frac{1}{\sqrt{1-(y-1)^2}} dy = \sin^{-1}(y-1) + c$
 $\therefore y = \sin(x-c) + 1$

O17 At
$$t = 8$$
, $s = 2$, $x = 2 + 2 = 0$

Q18 The particle starts from rest and travels in the negative direction with increasing speed, then slows down to a stop at t = 7. During $7 < t \le 9$ the particle travels in the positive direction with increasing speed. In the first 7 s the particle has the greatest displacement (area between the curve and the *t*-axis) from its initial position.

Q19
$$\int_{0}^{\frac{\pi}{2}} \cos^{3} x \sqrt{1 - \sin x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} x \sqrt{1 - \sin x} \cos x dx$$

$$= \int_{0}^{\frac{\pi}{2}} (1 - \sin^{2} x) \sqrt{1 - \sin x} \cos x dx$$

$$= \int_{0}^{0} -(1 - (1 - u)^{2}) \sqrt{u} du$$

$$= \int_{0}^{1} (2u - u^{2}) \sqrt{u} du$$

$$= \int_{0}^{1} (2u^{\frac{3}{2}} - u^{\frac{5}{2}}) du$$
Let $u = 1 - \sin x$, $\sin x = 1 - u$, $\frac{du}{dx} = -\cos x$
When $x = 0$, $u = 1$; when $x = \frac{\pi}{2}$, $u = 0$.

Q20

 $N - mg \cos \theta^{\circ} = 0$ $mg \sin \theta^{\circ} - 0.2N = 0$ $\therefore \sin \theta^{\circ} = 0.2 \cos \theta^{\circ}$, $\tan \theta^{\circ} = 0.2$, $\theta^{\circ} = \tan^{-1}(0.2) \approx 11^{\circ}$ D

$$Q21 \quad v = -\sqrt{100 - x}$$

The negative sign indicates that the particle moves in the negative direction.

$$v^2 = 100 - x$$
, $a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -\frac{1}{2}$

The acceleration is constant and it is in the negative direction, i.e. in the same direction as the velocity. \therefore the particle speeds up and maintains the same direction of motion.

Q22

В

$$10g - R = 10 \times 1$$
, $98 - R = 10$
∴ $R = 88$ N

Section 2

Q1a
$$\tan 75^\circ = \tan(45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ}$$

$$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = 2 + \sqrt{3}$$

$$\therefore y = \pm (2 + \sqrt{3})x$$

Q1b
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

When $x = 0$, $y = \pm b = \pm (\sqrt{3} + 1)$. $\therefore b = \sqrt{3} + 1$

Gradient of asymptote $=\frac{b}{a} = \frac{\sqrt{3}+1}{\sqrt{3}-1}$. $\therefore a = \sqrt{3}-1$

$$\therefore \frac{x^2}{(\sqrt{3}-1)^2} - \frac{y^2}{(\sqrt{3}+1)^2} = -1$$

Q1c

Α

Q1di On the positive-gradient asymptote: x = a, $y = a \tan 75^\circ = \left(2 + \sqrt{3}\right)a$ $\therefore \overrightarrow{OA} = a\widetilde{i} + \left(2 + \sqrt{3}\right)a\widetilde{j}$ On the negative-gradient asymptote: x = b, $y = -b \tan 75^\circ = -\left(2 + \sqrt{3}\right)b$ $\therefore \overrightarrow{OB} = b\widetilde{i} - \left(2 + \sqrt{3}\right)b\widetilde{j}$

Q1dii
$$\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} \right) = \left(\frac{a+b}{2} \right) \widetilde{i} + \left(2 + \sqrt{3} \right) \left(\frac{a-b}{2} \right) \widetilde{j}$$

Q1diii
$$\overrightarrow{BA} = \overrightarrow{OA} - \overrightarrow{OB} = (a-b)\widetilde{i} + (2+\sqrt{3})(a+b)\widetilde{j}$$

$$\therefore |\overrightarrow{BA}|^2 = (a-b)^2 + (2+\sqrt{3})^2(a+b)^2 = 4$$

Q1div
$$\overrightarrow{OM} = \left(\frac{a+b}{2}\right)\widetilde{i} + \left(2 + \sqrt{3}\right)\left(\frac{a-b}{2}\right)\widetilde{j}$$

Coordinates of point *M* are $x = \frac{a+b}{2}$ and $y = \left(2 + \sqrt{3}\right)\left(\frac{a-b}{2}\right)$.

$$\therefore a+b=2x \text{ and } a-b=\frac{2y}{2+\sqrt{3}}$$

Substitute into $(a-b)^2 + (2+\sqrt{3})^2 (a+b)^2 = 4$

$$\left(\frac{2y}{2+\sqrt{3}}\right)^2 + \left(2+\sqrt{3}\right)^2 (2x)^2 = 4$$

Simplify: $\frac{x^2}{(2-\sqrt{3})^2} + \frac{y^2}{(2+\sqrt{3})^2} = 1$, an ellipse.

Q1dv

Q1dvi
$$(a-b)^2 + (2+\sqrt{3})^2 (a+b)^2 = 4$$

When $a = 0.5$, $b = -0.886$ or 0.020 by calculator.
A: When $x = a = 0.5$, $y = (2+\sqrt{3})0.5$

B: When
$$x = b \approx -0.886$$
, $y = -(2 + \sqrt{3})(-0.886) \approx 3.307$

Q2ai
$$f(z) = z^3 - 6iz^2 - 12z + 7i$$

 $= (z - a)^3 + b = z^3 - 3az^2 + 3a^2z - a^3 + b$
 $\therefore 3a = 6i \text{ and } -a^3 + b = 7i$
 $\therefore a = 2i \text{ and } b = -i$
Hence $f(z) = (z - 2i)^3 - i$

Q2aii, iii

Q2aiv
$$f(z) = 0$$
, $(z - 2i)^3 - i = 0$, $(z - 2i)^3 = i$

$$\therefore (z - 2i)^3 = cis\left(\frac{\pi}{2} + 2n\pi\right), \ z - 2i = cis\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right)$$

$$n = 0, \ z - 2i = \frac{\sqrt{3}}{2} + \frac{1}{2}i, \ \therefore z = \frac{\sqrt{3}}{2} + \frac{5}{2}i$$

$$n = -1, \ z - 2i = -i, \ \therefore z = i$$

$$n = 1, \ z - 2i = -\frac{\sqrt{3}}{2} + \frac{1}{2}i, \ \therefore z = -\frac{\sqrt{3}}{2} + \frac{5}{2}i$$

Q2b
$$-iz^3 - 6z^2 + 12iz + 7 = 0$$

 $-iz^3 - 6z^2 + 12iz + 7 = 0$
 $-i(z^3 - 6iz^2 - 12z + 7i) = 0$
 $\therefore z^3 - 6iz^2 - 12z + 7i = 0$
 $\therefore z = \pm \frac{\sqrt{3}}{2} + \frac{5}{2}i \text{ or } z = i$

Q2c
$$g(z) = f(z) - 7i = (z - 2i)^3 - 8i = 0$$

$$\therefore (z - 2i)^3 = 8i = 8cis\left(\frac{\pi}{2} + 2n\pi\right)$$

$$\therefore z - 2i = 2cis\left(\frac{\pi}{6} + \frac{2n\pi}{3}\right)$$

.. the roots of g(z) = 0 are on a circle of centre (0,2) and radius of 2 units. For f(z) = 0 the roots are on a circle of the same centre (0,2) and radius of 1 unit.

Q3a
$$-1 \le \frac{x}{2} \le 1$$
 and $\frac{x+2}{2} > 0$
 $\therefore -2 \le x \le 2$ and $x > -2$
 $\therefore x \in (-2,2]$

Q3bii When x = 1.5, $y \approx 1.5$

Q3c
$$\frac{dy}{dx} = \sin^{-1}\left(\frac{x}{2}\right) + \log_e\left(\frac{x+2}{2}\right)$$

 $x = 1$, $y = 1$, $\frac{dy}{dx} = 0.92906$
 $x = 1.25$, $y = 1 + 0.25 \times 0.92906 = 1.23227$, $\frac{dy}{dx} = 1.16064$
 $x = 1.5$, $y = 1.23227 + 0.25 \times 1.16064 \approx 1.52$

Q3di
$$\int_{1}^{1.5} \left(\sin^{-1} \left(\frac{x}{2} \right) + \log_{e} \left(\frac{x+2}{2} \right) \right) dx$$

Q3dii By calculator
$$\int_{1}^{1.5} \left(\sin^{-1} \left(\frac{x}{2} \right) + \log_e \left(\frac{x+2}{2} \right) \right) dx \approx 0.58$$

$$\therefore y \approx 1 + 0.58 = 1.58$$

Q4a
$$f(x) = \frac{x}{\sqrt{p^2 - x^2}} + q$$

Asymptotes: $p^2 - x^2 = 0$, $x = \pm p$
y-intercept: $x = 0$, $y = q$
 x -intercept: $y = 0$, $\frac{x}{\sqrt{p^2 - x^2}} + q = 0$, $x = -q\sqrt{p^2 - x^2}$
 $x^2 = q^2(p^2 - x^2)$, $x^2 = q^2p^2 - q^2x^2$, $x^2(1 + q^2) = q^2p^2$

$$x = \pm \frac{qp}{\sqrt{1 + q^2}}$$

Q4b
$$p = \sqrt{3}$$
, $q = \sqrt{3}$, $x = -\frac{qp}{\sqrt{1+q^2}} = -\frac{3}{2}$
Area $= \int_{-\frac{3}{2}}^{\frac{3}{2}} \left(\frac{x}{\sqrt{3-x^2}} + \sqrt{3} \right) dx = \int_{-\frac{3}{2}}^{\frac{3}{2}} \frac{x}{\sqrt{3-x^2}} dx + \int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{3} dx$
 $= \int_{\frac{3}{4}}^{\frac{3}{4}} \left(-\frac{1}{2\sqrt{u}} \right) du + \left[\sqrt{3}x \right]_{\frac{3}{2}}^{\frac{3}{2}}$ (where $u = 3 - x^2$)
 $= 0 + 3\sqrt{3} = 3\sqrt{3}$

Q4ci
$$V = \int_{\frac{3}{2}}^{\frac{3}{2}} \pi \left(\frac{x}{\sqrt{3 - x^2}} + \sqrt{3} \right)^2 dx$$

Q4cii By calculator $V \approx 33.2$

$$\begin{aligned} & \text{Q4d} \quad V = \int_{\frac{3}{2}}^{h} \pi \left(\frac{x}{\sqrt{3 - x^2}} + \sqrt{3} \right)^2 dx \\ &= \pi \int_{\frac{3}{2}}^{h} \left(\frac{x^2}{3 - x^2} + \frac{2\sqrt{3}x}{\sqrt{3 - x^2}} + 3 \right) dx \\ &= \pi \int_{\frac{3}{2}}^{h} \left(\frac{3}{3 - x^2} - 1 + \frac{2\sqrt{3}x}{\sqrt{3 - x^2}} + 3 \right) dx \\ &= \pi \int_{\frac{3}{2}}^{h} \left(\frac{3}{\sqrt{3}} \right)^2 - x^2 + 2 + \frac{2\sqrt{3}x}{\sqrt{3 - x^2}} \right) dx \\ &= \pi \int_{\frac{3}{2}}^{h} \left(\frac{3}{\sqrt{3}} \right)^2 - x^2 + 2 + \frac{2\sqrt{3}x}{\sqrt{3 - x^2}} \right) dx \\ &= \frac{\pi \sqrt{3}}{2} \int_{\frac{3}{2}}^{h} \left(\frac{1}{\sqrt{3} + x} + \frac{1}{\sqrt{3} - x} \right) dx + 2\pi \int_{\frac{3}{2}}^{h} dx + 2\sqrt{3}\pi \int_{\frac{3}{2}}^{h} \frac{x}{\sqrt{3 - x^2}} dx \\ &= \frac{\pi \sqrt{3}}{2} \int_{\frac{3}{2}}^{h} \left(\frac{1}{\sqrt{3} + x} + \frac{1}{\sqrt{3} - x} \right) dx + 2\pi \int_{\frac{3}{2}}^{h} dx - \pi \sqrt{3} \int_{\frac{3}{2}}^{h} \frac{1}{\sqrt{u}} du \\ &= \frac{\pi \sqrt{3}}{2} \left[\log_e \frac{\sqrt{3} + x}{\sqrt{3} - x} \right]_{\frac{3}{2}}^{h} + \pi \left[2x \right]_{\frac{3}{2}}^{h} - \pi \sqrt{3} \left[2\sqrt{u} \right]_{\frac{3}{4}}^{3 - h^2} \\ &= \pi \left(\frac{\sqrt{3}}{2} \log_e \frac{\left(\sqrt{3} + \frac{3}{2}\right) \left(\sqrt{3} + h\right)}{\left(\sqrt{3} - \frac{3}{2}\right) \left(\sqrt{3} - h\right)} + 2h - 2\sqrt{3}\sqrt{3 - h^2} + 6 \right) \end{aligned}$$

Q4e
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$

$$0.5 = \pi \left(\frac{h}{\sqrt{3 - h^2}} + \sqrt{3}\right)^2 \frac{dh}{dt}$$

$$\therefore \frac{dh}{dt} = \frac{1}{2\pi \left(\frac{h}{\sqrt{3 - h^2}} + \sqrt{3}\right)^2}$$

When h = 0, $\frac{dh}{dt} = \frac{1}{6\pi}$ cm per second.

Q5a
$$v = \frac{1}{2} \tan^{-1} (5t + 2.5) + \frac{\pi}{2}$$
, $a = \frac{dv}{dt} = \frac{5}{2(1 + (5t + 2.5)^2)}$
At $t = 0$, $v = 2.166 \text{ ms}^{-1}$, $a = 0.345 \text{ ms}^{-2}$.

Q5b Resultant force $R = ma = 85 \times 0.345 \approx 29 \text{ N}$

Q5c Cyclist: Momentum $p = mv = 85 \times 2.166 \approx 184.11 \text{ kg ms}^{-1}$ Car: Momentum $p = mv = 1200 \times 20 = 24000 \text{ kg ms}^{-1}$ Difference = $24000 - 184.11 \approx 23816 \text{ kg ms}^{-1}$

Cyclist:
$$v = \frac{1}{2} \tan^{-1} (5t + 2.5) + \frac{\pi}{2}$$

As
$$t \to \infty$$
, $\tan^{-1}(5t + 2.5) \to \frac{\pi}{2}$, $\therefore v \to \frac{3\pi}{4}$.

Asymptote is
$$v = \frac{3\pi}{4}$$

Car: As
$$t \to \infty$$
, $v = \frac{20}{1 + 0.5(t - 2)^4} \to 0$.

Asymptote is v = 0

Q5e At t = 10 s, distance by car = area under graph (0 to 10 s) = $20 \times 2 + 26.39 = 66.39$ m; distance by cyclist = 23.26 m. \therefore car is ahead by $66.39 - 23.26 \approx 43$ m

Q5f At t = 10 s, car speed ≈ 0 and cyclist speed $\approx \frac{3\pi}{4} \approx 2.356$.

Let *T* be the time when the car and the cyclist are next to each other.

$$(T-10) \times 2.356 \approx 43$$
, $T \approx 28$ s

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors