## The Future of Parks within the U.S.: Covid-19 Vaccinations vs. Park Visitation

W203: Lab 2 - Summer 2021 Max Hoff, Connor McCormick, Jonathan Whiteley



## Agenda

- Research Question and Theoretical Model
- Data and Variables of Interest
- Statistical Models
- Model Limitations
- Omitted Variables
- Results

## Research Question and Causal Model

Question: How do Covid-19 vaccination rates within a county impact visits to parks within that county?

**Causal Theory:** Counties with high vaccination rates are returning to pre-pandemic activities faster, and are not likely to continue use of public parks as seen during the pandemic.



## Data & Variables of Interest

## **Target Variable:** Percent change in park visits from baseline

- The baseline is the median value, for the corresponding day of the week, during the 5-week period Jan 3-Feb 6, 2020.
  - Google Maps COVID-19 Community Mobility Report

#### X Variable(s):

- Percent of people who are fully vaccinated based on the county where recipient lives
  - As of June 30, 2021
  - CDC Data on Vaccination
- 2. Mask Usage
- 3. Age
- 4. Covid cases
- 5. Covid deaths

#### **Sources:**

- 1. Google: Community Mobility Report
- 2. CDC: Vaccinations by county
- 3. Census.gov: Age by county
- 4. New York Times:
  - a. Sentiment towards mask usage
  - b. Covid cases
  - c. Covid deaths

## EDA

#### **Distributions by Variable:**



#### Change in Park Visits vs. Population Size



#### **Data Errors:**



### Models

#### Model One

Percent Change Park Visits

Percent of Population Fully Vaccinated

#### **Model Two**

Percent Change Park Visits

Percent of Population Fully Vaccinated

Number of Cases \*

#### **Model Three**

Percent Change Park Visits

Percent of Population Fully Vaccinated

Count of Fully Vaccinated Individuals

Number of Cases \*

Percent of Population that Always Wears a Mask

Median Age in Years

<sup>\*</sup> A log transformation has been applied to this variable

## **Model Limitations**

#### IID:



#### **Linear Conditional Expectations:**



#### Homoscedasticity:



## Omitted Variables

Changes in variables from baseline date (Y: Parks\_chg, X: Vax\_pct,):

- Temperature (+, n/a)
- Precipitation ( , n/a)
- Bike & scooter sharing stations proximity ( + , +)
- Parking spot availability (+,+)
- Maintenance of parks, total investment in parks in dollars (+, n/a)
- Square acres dedicated to parks (+, n/a)
- Percent of residents within a 10 minute walk (+, +)

## Results

|                  | Dependent variable:                         |                  |           |
|------------------|---------------------------------------------|------------------|-----------|
| 7                | (1)                                         | parks_chg<br>(2) | (3)       |
| full_vax_pct     | 1.095***                                    | 1.138***         | 1.439***  |
|                  |                                             | (0.175)          | (0.274)   |
| full_vax_count   |                                             |                  | -0.0001   |
|                  |                                             |                  | (0.00003) |
| log10(cases)     |                                             | -11.516          | 10.000    |
|                  |                                             | (7.742)          | (10.047)  |
| mask_percent     |                                             |                  | -0.647    |
|                  |                                             |                  | (0.335)   |
| median_age_years |                                             |                  | -0.136    |
|                  |                                             |                  | (1.224)   |
| Constant         | 17.176*                                     | 83.340           | 1.591     |
|                  | (6.970)                                     | (46.291)         | (86.494)  |
| <br>Observations | 390                                         | 390              | 390       |
| RZ               | 0.073                                       | 0.077            |           |
| Adjusted R2      | 0.070                                       | 0.072            | 0.095     |
|                  | 66.584 (df = 388)<br>0.459*** (df = 1; 388) |                  |           |

- For every + 1% in vaccination percentage →
  - Results in + 1.095% in park visits Model 1
  - Results in + 1.138% in park visits Model 2
  - Results in + 1.439% in park visits Model 3
- For every + 1 vaccinated citizen →
  - Results in 0.0001% in park visits Model 3
- For every + 1 in cases on a log scale →
  - $\circ$  Results in 11.516  $\circ$  in park visits Model 2
  - Results in + 10.00% in park visits Model 3
- For every +1% of diligent mask wearers →
  - Results in 0.647% in park visits Model 3
- For every +1 years in median age →
  - Results in 0.136% in park visits Model 3

## Conclusion

- Mostly a positive sign for park visitation in the future
- We can't be certain about the true effect without a time-series study; the effect could be temporary
  - Uncertainty in controlling for IID
  - Important variables missing
  - Vaccinations might not continue to increase
  - o Park visitation might be a temporary fad
- Future analysis:
  - Time-series study
  - Similar study once the pandemic has ended globally
  - Studies including more detailed data

# Q&A