- Trends in Data Warehouse
 - Data Warehouse Key Challenges
 - Data Lakes
 - Data Swamp
 - Complex Data
 - Complex Data Modeling
 - Complex Data Models
 - Anchor Model
 - Data Vault Model
 - Cloud Data Warehousing
 - Reasons for Migrating to the Cloud
 - Challenges of Cloud Data Warehouses
 - Building a Successful Cloud Data Warehouse
 - · Real-Time Data Warehousing
 - Overview
 - Real-Time Data Warehouse (RTDW)
 - Cloud Data Warehouses (CDWs) and RTDW
 - Approaches to Real-Time Data
 - Real-Time Data Warehouse Architecture
 - Alternative Architecture (Obali's Team)
 - Real-Time Data Warehouse Architecture Tradeoffs
 - Data Warehousing and Hadoop
 - What is Hadoop?
 - Hadoop Architecture
 - Conceptual Architecture of Hadoop Data Warehouse
 - Advantages of Hadoop Data Warehouse
 - Challenges of Hadoop Data Warehouse
 - Data Warehouse Automation
 - Overview
 - DWA Maturity
 - DWA Tools
 - Advantages of DWA
 - Check Your Progress-1
 - Check Your Progrss-2
 - Check Your Progrss-3
 - · Check Your Progrss-4
 - Check Your Progrss-5

Trends in Data Warehouse

Data Warehouse – Key Challenges

Size and Complexity:

- Databases range from hundreds of gigabytes to terabytes, sometimes petabytes.
- · Complexity in analytical queries, data mining, and heterogeneous data.
- · Significant technological challenges.

· Research Areas:

- Conceptual modeling and logical data models.
- Data warehouse loading (data-refreshing).
- Execution efficacy of OLAP queries and data mining algorithms.
- · Materialized views and data analysis techniques.
- · Metadata management and evolution management.
- Stream-based, real-time, and active data warehouses.
- Complex data warehousing (spatial, XML, object, multimedia).

Key Research and Technological Challenges:

- Amalgamation of heterogeneous data sources (ETL, cleaning, source characterization, data integration).
- Data source discovery, metadata management, and standardization.
- Handling data source evolution and data flow (ETL) performance optimization.
- Big data management due to data-explosion from diversity and velocity of data-generation.

• Impact on Architecture:

- · Exponential data growth impacts architectural elements.
- New functionalities needed to be integrated seamlessly.
- Solutions should optimize total cost of ownership (TCO) and return on investment (ROI).

• Emerging Technological Trends:

- Cloud data warehouses (CDWs).
- Parallel and In-memory computational techniques.

Design Considerations:

- Minimizing latencies for cubes.
- Improving update and refresh times for data warehouses.

Quality:

- Query complexity affects underlying cubes.
- Modeling techniques and architecture quality play a significant role.
- · Good governance and best practices are essential.

Size and Operability:

- Fact tables expand exponentially over huge datasets.
- Seamless integration with external data sources and interoperability.

• In-memory Representation:

- Efficacy of memory-based representation.
- SAP HANA as an example of in-memory database implementation.

• User-Centric Interface:

- Interface should reduce complexity exposure to users.
- Autonomous databases and automation of processes.

· Pioneering Infrastructure Foundation:

- Deployment of Converged, Hyper-converged, and Dynamic Infrastructures.
- Utilization of advanced computing infrastructure components (GPUs, AI, ML processors).

Complexity:

Building OLAP cubes over large datasets increases complexity.

Optimization and Innovations in Query Language:

- Improvement in query languages to handle large data from diverse sources.
- Performance and capabilities enhancements needed.

• Data Visualization:

- Efficient management to produce viable reports.
- Real-time analysis for dynamic systems like healthcare and climate change prediction.
- Innovative algorithms and multi-parameter based optimizations.

Data Lakes

• Definition:

- Central location holding large amounts of data in its native, raw format.
- Flat architecture and object storage.

Advantages/Need:

- · Avoids lock-in to proprietary systems.
- · Highly durable and low cost.
- Supports advanced analytics and machine learning on unstructured data.

• Comparison with Data Warehouse:

Attribute	Data Warehouse	Data Lake
Type of Data	Structured data from sources like transactional systems and operational databases.	Raw data from varied sources like websites, mobile apps, IoT devices, social media channels, etc.
Schema	Schema-on-write	Schema-on-read
Intended Users	Primarily business analysts	Data scientists, developers, and business analysts
Price/Performance	Fastest query results using higher cost storage	Query results getting faster using low-cost storage
Data Quality	Highly curated data that serves as the central version of the truth	Any data that may or may not be curated (i.e., raw data)
Type of Analytics	Business intelligence, visualization, and batch reporting	Machine learning, predictive analytics, profiling, and data discovery
Agility	Fixed configuration, less agile	Highly agile, can be configured and reconfigured as per requirements
Security	More secure storage	Higher accessibility makes ensuring security a challenge

Data Lake Maturity:

- o Bill Inmon's Model: Raw data pond, analog, application, textual data ponds, archival data pond.
- Alex Gorelik's Model:
 - Data Puddle: A data mart built using big data technology for a sole purpose or a single project. Data is loaded for consumption by a single project or team. It reduces cost and improves performance.
 - Data Pond: A collection of data puddles in the form of collocated data marts or similar to a poorly designed data warehouse. Restricts data usage solely to the projects that necessitate it.

- Data Lake: A storage system catering to business users in two significant aspects. Self-support service allowing business users to utilize data.
- Data Ocean: Facilitates enterprise-wide availability of self-service data and data-driven decision making. Data is available irrespective of its location or existence within the data lake.

• Data Lake Architecture:

- Ingestion Layer: Brings data into the data lake, metadata extractor for configuration.
- Storage Layer: Metadata repository and raw data repositories, supports various storage systems.
- Transformation Layer: Cleansing, format transformations, etc.
- Interaction Layer: Visualization, annotation, filtering, basic analytical methods.

Data Swamp

• Definition:

- Data pond expanded to a data lake without self-service and governance.
- · Used like a data pond or left unused.

Issues:

- Data often unclear, undocumented, and unusable.
- Technologically proficient users may create small data puddles for their teams.
- Governance regulations may restrict access to sensitive data.

Complex Data

Pervasiveness of Big Data

- · Generated from emails, files, IoT, logs, etc.
- Does not conform to standard data types like dates, currency, alphabets, numbers.

Importance

- Essential for raw data processing, data-insights, and big data analytics.
- Used by pattern matching algorithms in Machine Learning models.

· Influence on Enterprises

• Affects data-driven technologies and enterprises.

Complex Data Modeling

Standard Practice

- Data streams traverse many hubs and technologies.
- Travels through data processing tools, ETLs, ERP software, data lakes, etc.

Intrinsic Traits

- Own syntax, schema, technology, terminology, and type.
- Complicates the work of data modelers.

Models

- o Statistical, polyglot, no payload, multi-level, etc.
- Standard models: Anchor models, Data Vault Models.
 - Advantages: Scalability, Temporal data handling, Resilience to structural and content-based changes.

Complex Data Models

Anchor Model

Elements

- · Anchors: Model entities and events.
- · Attributes: Model properties of anchors.
- Ties: Model relationships between anchors.
- Knots: Model shared properties like states.

Versioning (Historization)

Attributes and ties can be versioned to retain changes.

· Graphical Symbols

- Similar to entity-relationship modeling with a few extensions.
- Outline on a tie or attribute depicts versioning of changes.

Data Vault Model

Purpose

- · Long-term storage of historical data from multiple operational systems.
- Addresses issues like auditing, data traceability, data loading performance, and resilience to change.

Components

Hubs

- Distinct business keys with low affinity to change.
- Contains metadata designating the source of the business key.
- Attributes: Surrogate key, Business key, Record source, Optional metadata.

Links

- Models providing relations between business keys.
- Many-to-many join tables with some metadata.
- Contains surrogate keys for linked hubs.

Satellites

- Store temporal and descriptive attributes.
- Contain metadata connecting to parent link or hub.
- Attributes include time-series with start and end dates.

Cloud Data Warehousing

· Transformation of Raw Data

- Challenge made worse by accelerated pace of environmental dynamics.
- Enterprises need to leverage data for a data-driven transformation.

Enterprise Challenges

- · Space and location demands for storing and utilizing voluminous data.
- Regulatory and compliance mandates, data velocity, new data sources, performance, scalability, QoS.

Trend

- Migration of extant data warehouses to the cloud.
- New data warehouses adopting cloud as the implementation platform.

Reasons for Migrating to the Cloud

· On-premises vs. Cloud

- On-premises implementations reducing.
- Vendors: Google BigQuery, AWS Redshift, Snowflake, Azure Synapse Analytics.

Advantages

- · Near-instantaneous installations.
- · Increased performance and scalability.
- · Pay for use benefits.

Challenges of Cloud Data Warehouses

• Significant Challenges

- · Data extraction, transformation, and loading.
- · Context and user-based data access.

- · Management of heterogeneous data velocity.
- · Ensuring instant availability of new data sources.
- · Ensuring data quality.
- Management of sensitive data and compliance.
- · Interoperability with external tools and infrastructure.
- Communication with legacy systems.
- · Data governance and obfuscation.
- Automation for sophisticated analytics and ML.

Building a Successful Cloud Data Warehouse

Stages

- Stage 1: Data Curation and Integration
 - Considerations: Enterprise changes, readiness for new technologies, future objectives, expectations.
 - Due Diligence: Transformation involves technological and other levels, necessitates change management professionals.
 - Flexible architecture for future-proofing.

Stage 2: Leveraging Data Integration Platform

- Develop faster decision-making capabilities.
- Reduce latencies at different levels: extraction, storage, organization, access control, transformation, loading.
- Fully optimized data integration platform enhances data visualization and decision-making.
- Stage 3: Ensuring High Data Quality
 - Scrupulous evaluation of tools to meet business requirements.
 - Cloud-aware ETL tools for reliable and accessible data.
 - Implementing right tools reduces operational latencies and expedites analytics.

Real-Time Data Warehousing

Overview

- · Essential for data-driven enterprises.
- Ensures timely availability of data across the enterprise.
- Data visualization reports need current and trustworthy data.
- Processes of sourcing, transforming, and making data available need to be optimized.

Real-Time Data Warehouse (RTDW)

- Real-time data availability is crucial but often referred to as near-real-time due to practical constraints.
- · Performance thresholds define real-time capabilities.
- RTDWs are synonymous with immediate data updates.

Cloud Data Warehouses (CDWs) and RTDW

- · CDWs are ideal for RTDW due to scalable resources.
- · Real-time processes require specialized handling.

ETL processes need significant alterations for real-time needs.

Approaches to Real-Time Data

- Novel ETL architectures and update methods ensure real-time data.
- Tools like Hadoop and Spark enhance real-time processing capabilities.

Real-Time Data Warehouse Architecture

- · Integration Layer binds Analytics and Decision layers.
- Data production systems with Source Flow Regulator (SFlowR) for data transmission.
- Data Processing Area (DPA) with Data Flow Regulator (DFlowR) for data quality and transformation.
- · ETL workflow for data cleaning and transformation.
- Workflow Regulator (WFlowR) manages data transmission to the warehouse.

Alternative Architecture (Obali's Team)

- Components: Metadata, Web Service (WS) client, WS provider, ETL, Real-time Partition, Real-time data integration, Data warehouse.
- Change Data Capture (CDC) initiates data updates.
- Real-time data integration handles orchestration between data warehouse and real-time partition.

Real-Time Data Warehouse Architecture Tradeoffs

- Use of message queues and transaction log files instead of batch files.
- · Restricted scrutiny of data quality.
- · Publishing facts with dimensions.
- · Precluding data-staging.
- · Real-time partitions for data visualization and transactions.
- · Real-time partition based on periodic snapshots.

Data Warehousing and Hadoop

What is Hadoop?

- · Open-source, Java-oriented framework.
- · Components: HDFS (storage) and MapReduce (processing).
- Modules: HDFS, MapReduce, Hadoop Common, YARN, Hadoop Ozone.

Hadoop Architecture

- NameNode: Master server managing file-system namespace and client access.
- DataNodes: Store user data in files, perform block creation, deletion, and replication.
- File System Namespace: Supports hierarchical file organization, user quotas, access permissions, encryption, and snapshots.
- Data Replication: Ensures fault tolerance through block replication.

Conceptual Architecture of Hadoop Data Warehouse

- · Implemented using Apache Hive or Cloudera Impala.
- Benefits from Hadoop for ETL processes.
- Components:
 - · Data Extraction: Apache Sqoop.
 - Data Transformation: Spark, Cloudera Impala, Apache Hive, Apache Pig, MapReduce.
 - Data Loading: Apache Hive or Cloudera Impala.
 - Data Analysis/Visualization: External DWs, BI tools, Apache Sqoop.

Advantages of Hadoop Data Warehouse

- · Heterogeneous data processing.
- · Improved ETL processing throughput.
- · Near-real-time data warehousing.
- · Efficient workload management.
- · Reduced TCO, increased ROI.

Challenges of Hadoop Data Warehouse

- · Integrating patterns in raw data to DW.
- Data propagation latencies.
- · Costs of importing/exporting historical data.

Data Warehouse Automation

Overview

- Automation accelerates and enhances the DW life-cycle.
- · Reduces repetitive tasks, improves productivity, and quality.

DWA Maturity

- · Use of sophisticated tools and models for planning, design, integration, and implementation.
- Handles large-scale data storage and high-performance integration.
- · Processes diverse and fast-velocity data from various sources.

DWA Tools

- Seamless integration and transition from source to DW.
- Automates ETL scripts, batch-processing, and various functions.
- Components: Source Data Modeler, Dimension Modeler, Connectivity, Robust ELT engine, High Performance ETL engine.

Advantages of DWA

- · End-to-end data pipeline acceleration.
- · Automation of data capture and streaming.
- Automation of data management and integration.
- · Optimization of data propagation paths.
- · Ensures automatic data flows.
- Automatic setup of target-oriented data models.
- · Transforms data lakes into DWs.

Check Your Progress-1

- 1. What are present challenges in data-management?
- 2. Describe in your own words the logical data lake concept?
- 3. What is your interpretation of a successful data lake?

Check Your Progrss-2

1. Explain your understanding of complex data and the need for complex data modeling.

Check Your Progrss-3

1. What are the reasons for migrating to a Cloud Data Warehouse (CDW)?

Check Your Progrss-4

- 1. How is a real-time data warehouse different from a traditional data warehouse?
- 2. Why is CDW a good candidate for real-time data warehousing?

Check Your Progrss-5

1. How would DWA be advantageous in the case of an enterprise like Amazon?