Linear independence and systems of linear equations

Francesco Preta 07/21/2020

The coefficient matrix as a linear operator

Consider the general system of linear equations $A\mathbf{x} = \mathbf{b}$. Finding a solution for the system corresponds to finding a vector $\mathbf{x} \in \mathbb{R}^n$ which is mapped to a given vector $\mathbf{b} \in \mathbb{R}^m$. In this sense, there are three possibilities:

- 1. $\mathbf{b} \in \text{Im}(A)$, $\text{Ker}(A) = \{0\}$, in which case there exists a left inverse A^{-1} granting a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.
- 2. $\mathbf{b} \in \text{Im}(A)$, $\text{Ker}(A) \neq \{0\}$, in which case there are infinitely many solutions.
- 3. **b** $\not\in$ Im(A), in which case there are no solutions.

Linear independence

Definition

Let \mathscr{V} be a vector space and $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ a subset of vectors in \mathscr{V} . We say that $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ are **linearly independent** if, for $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ $\alpha_1\mathbf{v}_1+\alpha_2\mathbf{v}_2+\ldots+\alpha_k\mathbf{v}_k=0 \implies (\alpha_1,\ldots,\alpha_k)=\mathbf{0}$

In other word, $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ are linearly independent if any nonzero linear combination of them is also nonzero.

Consequences of the definition

- No single vector $\mathbf{v}_j \in \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a linear combination of the other k-1 vectors.
- Two vectors are linearly independent if one is not a multiple of the other.
- If $\mathbf{0}$ is in $\{\mathbf{v}_1,\dots,\mathbf{v}_k\}$, then the vectors are not independent, since any linear combination attributing a nonzero weight only to $\mathbf{0}$ would give $\mathbf{0}$ as a result.

How to determine linear independence?

For a given set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ of \mathbb{R}^n , we need to be able to determine whether they're independent or not. This corresponds to asking if we can find $(\alpha_1, \dots, \alpha_k) \neq \mathbf{0}$ such that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = 0$$

This condition corresponds to solving the homogeneous system $V{\bf a}={\bf 0}$ for

$$V = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_k] \quad \mathbf{a} = \begin{bmatrix} \alpha_1 \\ \ddots \\ \alpha_k \end{bmatrix}$$

Example

Determine if the following vectors are linearly independent.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 3\\2\\-2\\0 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 0\\-2\\8\\-3 \end{bmatrix}$$

Example:

Determine if the following vectors are linearly independent.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\2\\-1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 3\\2\\-2\\0 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 0\\-1\\0\\-3 \end{bmatrix}$$

Basis and Dimension

Definition

Let \mathcal{V} be a vector space. A set $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is called a **basis** for \mathcal{V} if

- $\{v_1, \ldots, v_n\}$ is a set of linearly independent vector.
- For every $\mathbf{v} \in \mathcal{V}$ there exists $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n$$

In other words, $\mathcal{V} = \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$

The dimension of \mathcal{V} is the cardinality of its basis.

Example: Canonical basis

For example, for $\mathcal{V} = \mathbb{R}^n$, the canonical basis $\mathbf{e}_1, \dots, \mathbf{e}_n$ constitute a basis. The dimension is n, as expected.

Maximal set of linearly independent vectors Theorem

Let $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a subset of a n-dimensional vector space. Then if k > n, $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is not linearly independent.

In fact, there are at most n linearly independent vectors in a n-dimensional vector space and any group of them constitutes a basis.

Vector subspace

Definition

Let \mathscr{V} be a finite dimensional vector space. A subset $\mathscr{V}' \subset \mathscr{V}$ is called a vector subspace of \mathscr{V} if the following conditions are true:

- $0 \in \mathcal{V}'$.
- For every $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}'$ and $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \in \mathcal{V}'$.

In other words, a vector subspace is a subset of a vector space which is closed under linear combinations.

Subspaces of \mathbb{R}^n

Given a set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subset \mathbb{R}^n$, span $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ is a vector subspace of \mathbb{R}^n . If $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ are linearly independent, then span $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ is a k-dimensional vector subspace of \mathbb{R}^n . Otherwise, span $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ has dimension d < k.

Linear operators

Theorem

Let A be a $m \times n$ matrix. Then Ker(A) is a vector subspace of \mathbb{R}^n and Im(A) is a vector subspace of \mathbb{R}^m spanned by the columns of A.

Proof:

Finding a basis if you know a set of generators Theorem

Let $\mathcal V$ be a vector space, $\{\mathbf v_1,\dots,\mathbf v_k\}\subset \mathcal V$ and $H=\operatorname{span}(v_1,\dots,v_k)$. Then

- If \mathbf{v}_j is a linear combination of the other \mathbf{v}_i 's, then $H = \mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_k)$.
- If \mathbf{v} is a non-trivial linear combination of \mathbf{v}_l with $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$, then $H = \mathrm{span}(\mathbf{v}_1, \dots, \mathbf{v}_{l-1}, \mathbf{v}, \mathbf{v}_{l+1}, \dots, \mathbf{v}_k\}$.
- If $H \neq \{0\}$, a subset of $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for H.

Finding a basis if you know a set of generators

In order to find a basis for a vector space H, we need to remove $\mathbf{0}$ and linear combinations from the vectors that span H.

Example:

Find a basis for Ker(A) and Im(A) for

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 4 & 2 & -1 & 0 \\ 2 & 2 & -1 & 2 \end{bmatrix}$$

Span of pivot columns

Theorem

Im(A) is spanned by the pivot columns of A.

This happens because the pivot columns correspond to non-free variables whose only feasible solution for the homogeneous system $A\mathbf{x} = \mathbf{0}$ is given by $\mathbf{0}$, once the free variables are eliminated.

Rank of matrices

Rank of a matrix

Definition

Let A be a $m \times n$ matrix. Then $\operatorname{rank}(A)$ is the dimension of the linear subspace of \mathbb{R}^m generated by the column vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$.

Equivalent definitions

Theorem

Let A be a $m \times n$ matrix. Then the following are equivalent:

- rank(A) = r.
- The subspace of \mathbb{R}^n generated by the row vectors of A has dimension r.
- There exists a square $r \times r$ submatrix of A with nonzero determinant and every square submatrix of higher dimension has determinant equal to zero.

Example:

	3	0
0	2	-2
2	-2	8
_1	0	-3

Simplifying calculations:

Theorem

Let A be a $n \times m$ matrix and A' be a r-dimensional square submatrix with nonzero determinant. Then $\operatorname{rank}(A) = r$ if for every row I and column j not already in A', the matrix obtained by adding such row and column to A' has zero determinant.

Linear independence and basis through rank

In order to understand whether a few vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ are linearly independent we can do the following:

- 1. Consider the matrix V having \mathbf{v}_i as i-th column.
- 2. Calculate the rank of V through determinants of square submatrices.
- 3. A basis for span($\mathbf{v}_1, \dots, \mathbf{v}_k$) is given by the columns included in the square submatrix of maximum rank.

Rank-kernel Theorem

Let A be a $m \times n$ matrix. Then rank(A) + dim(Ker(A)) = n

Proof

Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$. The general form of its solution in \mathbb{R}^n can be divided into free variables and non-free variables. The number of free variables correspond to the dimension of $\mathrm{Ker}(A)$, while the number of non-free variables correspond to the number of pivot columns. Since this last value is captured by the rank, the theorem is proved.

Previous example:

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 4 & 2 & -1 & 0 \\ 2 & 2 & -1 & 2 \end{bmatrix}$$

Properties of the rank:

- $rank(A) = rank(A^T)$.
- $\operatorname{rank}(A) \leq \min\{m, n\}$.
- If B is obtained by row-reduction operations on A, then rank(B) = rank(A).
- If B is obtained by column-reduction operations on A, then rank(B) = rank(A).
- If m = n then rank(A) = n if and only if A is invertible.

Revisiting last week's results

A square system $A\mathbf{x} = \mathbf{b}$ with nonzero determinant always has a unique solution since $\det(A) \neq 0$ is equivalent to $\operatorname{rank}(A) = n$ and thus, by the Rank-Kernel theorem $\operatorname{Ker}(A) = \{\mathbf{0}\}$. In this way, A is bijective and for any $\mathbf{b} \in \mathbb{R}^n$ there exists a unique linear combination of the columns of A with coefficients x_1, \ldots, x_n such that $\mathbf{b} = x_1 \mathbf{a}_1 + \ldots + x_n \mathbf{a}_n$.

Linear independence in systems of linear equations

Rouché-Capelli Theorem

Consider a system of linear equation having matrix form $A\mathbf{x} = \mathbf{b}$. Then the system admits solutions if and only if the coefficient matrix A and the augmented matrix $A' = [A \mid \mathbf{b}]$ have the same rank. If that is the case, the number of free variables is given by n - rank(A), where n is the total number of variables.

Proof:

Underdetermined systems (m < n)

In case rank(A) = m, adding the column matrix **b** will not have an impact on the system, since

$$m \le \text{rank}([A \mid \mathbf{b}) \le \min\{m, n+1\} = m.$$

By Rouché-Capelli's Theorem, the system will admit solutions. In particular, n-m variables will be free, while the rest will be determined.

Undetermined systems (continued)

In case $\operatorname{rank}(A) = r < m$, then the existence of solution depends on $\operatorname{rank}([A \mid \mathbf{b}])$, which could potentially be larger than r if \mathbf{b} is not a linear combination of the columns of A. In general, if solutions exist, n-r variables will be free, while the rest will be determined.

Example:

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example:

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -1 & 3 & 1 & 0 \\ 0 & 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Square systems (m = n)

In this case, being maximum rank coincides with having nonzero determinant, which is exactly the case we dealt with in the last lecture. Notice that in this case

 $n = \operatorname{rank}([A \mid \mathbf{b}]) \le \min n, n + 1 = n$

so that the condition of Rouché-Capelli's Theorem is respected.

Square systems (continued)

In case $\operatorname{rank}(A) = r < n$, we have two possibilities depending on $\operatorname{rank}([A \mid \mathbf{b}])$. If $\operatorname{rank}([A \mid \mathbf{b}]) = r$, then the system has infinitely many solutions and n - r variables will be free. Otherwise, the system will have no solution.

Example:

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Overdetermined systems (m > n)

In case m > n, the maximum rank of the coefficient matrix is n. Even in the maximum rank case, adding the column \mathbf{b} could lead to an increase in the rank of the augmented matrix. This happens because there are more equations than unknowns. Ideally, every additional equation should be a linear combination of all the previous one, so that we don't add stringent requirements that cannot be satisfied by the unknowns.

Example:

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}$$

Inverses for rectangular matrices

Left and right inverses

Theorem

Let A be a $m \times n$ matrix. Then

- There exists a right inverse Y such that AY = I if and only if the rows of A are linearly independent. This is generally not unique.
- There exists a left inverse X such that XA = I if and only if the columns of A are linearly independent. This is generally not unique.

Left and right inverse (continued)

Notice that for wide matrices (n > m), columns cannot be linearly independent, therefore they only admit right inverses, while in tall matrices (n < m) rows cannot be linearly independent and so they only admit left inverses. In any case, a matrix A admits a (left and/or right) inverse if and only if it has maximum rank.

Applications to under-determined systems

If the system is under-determined (m > n) and A has maximum rank, then A admits a right inverse Y. Since A has maximum rank, by Rouché-Capelli's Theorem, the system admits infinitely many solutions. Then, let $\mathbf{x} = Y\mathbf{b}$, we have $A\mathbf{x} = AY\mathbf{b} = \mathbf{b}$, therefore \mathbf{x} is a solution to the system. Since Y is not unique, we can find other solutions by finding different right inverses.

Applications to overdetermined systems

If the system is over-determined (n > m) and A has maximum rank, there is no guarantee that the system has solutions. However, if it does, it has only one solution. If \mathbf{x} is a solution of the system, then $XA\mathbf{x} = X\mathbf{b}$, meaning that $\mathbf{x} = X\mathbf{b}$ is the unique desired solution. On the other hand, if $AX\mathbf{b} \neq \mathbf{b}$, then there are no solutions.

Pseudo-inverses

Theorem

A admits a left inverse if and only if the square matrix A^TA is invertible. In this case, a left inverse for A is given by $A^{\dagger} = (A^TA)^{-1}A^T$

A admits a right inverse if and only if the square matrix AA^T is invertible. In this case, a right inverse for A is given by $A^\dagger = A^T(AA^T)^{-1}$

The matrices above are called **pseudo-inverses** of A.

Example:

Solve $A\mathbf{x} = \mathbf{b}$ for

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} \text{ or } \mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$