Refine Search

Search Results -

Terms	Documents
L15 and L16	11

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database JPO Abstracts Database

Derwent World Patents Index

IBM Technical Disclosure Bulletins

Database:

Search:	L17	<u>a</u>	Refine Search
		<u> </u>	
	Recall Text 🗨	Clear	Interrupt

Search History

DATE: Wednesday, June 30, 2004 Printable Copy Create Case

Set Name side by side	Query	Hit Count	Set Name result set
DB=PGP	B, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR =	YES; OP=OR	
<u>L17</u>	115 and L16	11	<u>L17</u>
<u>L16</u>	ground\$	1425413	<u>L16</u>
<u>L15</u>	113 and L14	45	<u>L15</u>
<u>L14</u>	friction	798249	<u>L14</u>
<u>L13</u>	111 and L12	58	<u>L13</u>
<u>L12</u>	coefficient	605119	<u>L12</u>
<u>L11</u>	19 and L10	71	<u>L11</u>
<u>L10</u>	wheel adj slip	7498	<u>L10</u>
<u>L9</u>	L3 and 17	1207	<u>L9</u>
<u>L8</u>	16 and L7	0	<u>L8</u>
<u>L7</u>	yaw and roll and longitudinal and lateral	2411	<u>L7</u>
<u>L6</u>	13 and L5	140	<u>L6</u>
<u>L5</u>	wheel adj slip adj signal	155	<u>L5</u>
<u>L4</u>	12 and L3	10	<u>L4</u>

<u>L3</u>	vehicle	1748563	<u>L3</u>
<u>L2</u>	wheel adj lift adj signal	10	<u>L2</u>
<u>L1</u>	6593849.pn.	2	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
L2 and L3	10

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database

Database:

JPO Abstracts Database

Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

L4	E	
	Refine S	earch

Recall Text =

Interrupt

Search History

Printable Copy Create Case DATE: Wednesday, June 30, 2004

Set Name side by side	Query	Hit Count	Set Name result set
DB=PGPB, U	SPT,USOC,EPAB,JPAB,DWPI,TDE	BD; PLUR=YES; OP=OR	
<u>L4</u>	l2 and L3	10	<u>L4</u>
<u>L3</u>	vehicle	1748563	<u>L3</u>
<u>L2</u>	wheel adj lift adj signal	10	<u>L2</u>
<u>L1</u>	6593849.pn.	2	<u>L1</u>

END OF SEARCH HISTORY

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 10 of 10 returned.

☐ 1. Document ID: US 20040117085 A1

L4: Entry 1 of 10

File: PGPB

Jun 17, 2004

PGPUB-DOCUMENT-NUMBER: 20040117085

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040117085 A1

TITLE: Enhanced system for yaw stability control system to include roll stability

control function

PUBLICATION-DATE: June 17, 2004

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47 Lu, Jianbo Livonia ΜI US Brown, Todd Allen Dearborn MΙ US Meyers, Joseph Carr Farmington Hills MI US

APPL-NO: 10/ 705513 [PALM]
DATE FILED: November 10, 2003

RELATED-US-APPL-DATA:

Application 10/705513 is a continuation-of US application 10/174926, filed June 19, 2002, US Patent No. 6654674

Application is a non-provisional-of-provisional application 60/332063, filed November 21, 2001,

INT-CL: [07] $\underline{G06}$ \underline{F} $\underline{19/00}$

US-CL-PUBLISHED: 701/036; 701/070, 340/440 US-CL-CURRENT: 701/36; 340/440, 701/70

REPRESENTATIVE-FIGURES: 2

ABSTRACT:

A yaw stability control system (18) is enhanced to include roll stability control function for an automotive <u>vehicle</u> and includes a plurality of sensors (28-39) sensing the dynamic conditions of the <u>vehicle</u>. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a

longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the <u>vehicle</u> from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.

RELATED APPLICATIONS

[0001] The present invention claims priority to provisional application no. 60/332,063 filed on Nov. 21, 2001, and is a continuation of non-provisional application no. 10/174,926 filed Jun. 19, 2002.

1	Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Drawi De
				······································		***************************************	*************	***************************************					
	 -	2	n	. II	110.00	040064046							
	Ii	2.	Documei	nt ID:	US 20	040064246	Al						

File: PGPB

Apr 1, 2004

L4: Entry 2 of 10

PGPUB-DOCUMENT-NUMBER: 20040064246 PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040064246 A1

TITLE: Wheel lift identification for an automotive vehicle using passive and active

detection

PUBLICATION-DATE: April 1, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Lu, Jianbo	Livonia	MI	US	
Meyers, Joseph Carr	Farmington Hills	MI	US	
Mattson, Keith Glenn	Livonia	MI	US	
Brown, Todd Allen	Dearborn	MI	US	

APPL-NO: 10/ 609448 [PALM]
DATE FILED: June 27, 2003

RELATED-US-APPL-DATA:

Application 10/609448 is a continuation-in-part-of US application 10/038364, filed January 4, 2002, US Patent No. 6593849

Application 10/038364 is a continuation-in-part-of US application 09/669513, filed September 25, 2000, US Patent No. 6356188

Application is a non-provisional-of-provisional application 60/400375, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400376, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400172, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400156, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400155, filed August

1, 2002,

Application is a non-provisional-of-provisional application 60/400261, filed August 1, 2002.

INT-CL: [07] G06 G 7/48

US-CL-PUBLISHED: 701/124; 701/045 US-CL-CURRENT: 701/124; 701/45

REPRESENTATIVE-FIGURES: 2

ABSTRACT:

A control system (18) and method for an automotive <u>vehicle</u> (10) used for detecting lift of a wheel includes a passive wheel lift detector (58) that generates a passive <u>wheel lift signal</u>, an active wheel lift detector (60) that generates an active <u>wheel lift signal</u>, and an integrated wheel lift detector (62) coupled to the passive wheel lift detector (58) and the active wheel lift detector (60). The integrated wheel lift detector (62) generates a final <u>wheel lift signal</u> in response to the passive <u>wheel lift signal</u> and the active <u>wheel lift signal</u>. The final <u>wheel lift signal</u> may be used to control a safety device such as a rollover prevention system.

RELATED APPLICATIONS

[0001] The present invention claims priority to provisional applications Nos. 60/400,375, 60/400,376, 60/400,172, 60/400,156, 60/400,155, and 60/400,261, all filed on Aug. 1, 2002, and No. 60/401,418 filed on Aug. 5, 2002 and is a continuation-in-part of U.S. application Ser. No. 10/038,364 entitled "Wheel Lift Identification For An Automotive Vehicle" which is a continuation-in-part of U.S. application Ser. No. 09/669,513 entitled "Wheel Lift Identification For An Automotive Vehicle", each of which are hereby incorporated by reference herein. The present invention is also related to U.S. Applications (Attorney Docket No. 202-0762/FGT-1678, Attorney Docket No.202-0433/FGT-1683, and Attorney Docket No. 203-0670/FGT-1846), filed simultaneously herewith.

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KMC	Drawi De
*******************	*******		***************************************		***************************************		******************************					

☐ 3. Document ID: US 20040030473 A1

L4: Entry 3 of 10

File: PGPB

Feb 12, 2004

PGPUB-DOCUMENT-NUMBER: 20040030473

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040030473 A1

TITLE: System for dynamically determining the wheel grounding and wheel lifting conditions and their applications in roll stability control

PUBLICATION-DATE: February 12, 2004

INVENTOR-INFORMATION:

NAME

CITY

STATE COUNTRY RULE-47

Lu, Jianbo	Livonia	MI	US
Meyers, Joseph Carr	Farmington Hills	MI	US
Brewer, Michael Edward	Royal Oak	MI	US
Brown, Todd Allen	Dearborn	MI	US

APPL-NO: 10/ 609447 [PALM]
DATE FILED: June 27, 2003

RELATED-US-APPL-DATA:

Application 10/609447 is a continuation-in-part-of US application 10/038364, filed January 4, 2002, US Patent No. 6593849

Application 10/038364 is a continuation-in-part-of US application 09/669513, filed September 25, 2000, US Patent No. 6356188

Application is a non-provisional-of-provisional application 60/400375, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400264, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400172, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400376, filed August 1. 2002.

Application is a non-provisional-of-provisional application 60/400156, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400155, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/401418, filed August 5, 2002,

INT-CL: [07] G06 F 7/00

US-CL-PUBLISHED: 701/36 US-CL-CURRENT: 701/36

REPRESENTATIVE-FIGURES: 2

ABSTRACT:

A method for controlling an automotive <u>vehicle</u> (10) having a plurality of wheels (12a), (12b), (13a), (13b) includes determining a yaw rate, determining a lateral acceleration, determining a roll rate, determining longitudinal acceleration; and determining a calculated angle relative to the <u>vehicle</u>. The method further includes generating a <u>wheel lift signal</u> or a wheel grounded signal as a function of yaw rate, lateral acceleration, roll rate and longitudinal acceleration, adjusting the calculated angle in response to the wheel lift or wheel grounded signal, and controlling a safety system in response to the calculated vehicle angle.

RELATED APPLICATIONS

[0001] The present invention claims priority to U.S. provisional patent applications Nos. 60/400,375, 60/400,261, 60/400,172, 60/400,376, 60/400,156, and 60/400,155, all filed on Aug. 1, 2002, and No. 60/401,418 filed on Aug. 5, 2002, and is a continuation-in-part of U.S. patent application Ser. No. 10/038,364 entitled "Wheel Lift Identification For An Automotive Vehicle", which is a continuation-in-part of U.S. patent application Ser. No. 09/669,513 entitled "Wheel Lift Identification For An Automotive Vehicle", each of which are hereby

incorporated by reference herein, and U.S. patent applications (Attorney Docket Nos. 202-0762/FGT-1678, 202-0634/FGT-1679, and 203-0433/FGT-1683), filed simultaneously herewith.

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Drawt De
								·				

4. Document ID: US 20040019418 A1

L4: Entry 4 of 10

File: PGPB

Jan 29, 2004

PGPUB-DOCUMENT-NUMBER: 20040019418

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040019418 A1

TITLE: Wheel lifted and grounded identification for an automotive <u>vehicle</u>

PUBLICATION-DATE: January 29, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Lu, Jianbo	Livonia	MI	US	
Brewer, Michael Edward	Royal Oak	IM	US	
Brown, Todd Allen	Dearborn	IM	US	
Meyers, Joseph Carr	Farmington Hills	MI	US	

APPL-NO: 10/ 608909 [PALM]
DATE FILED: June 27, 2003

RELATED-US-APPL-DATA:

Application 10/608909 is a continuation-in-part-of US application 10/038364, filed January 4, 2002, US Patent No. 6593849

Application 10/038364 is a continuation-in-part-of US application 09/669513, filed September 25, 2000, US Patent No. 6356188

Application is a non-provisional-of-provisional application 60/400375, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400261, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400172, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400376, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400156, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400155, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/401418, filed August 5, 2002,

INT-CL: [07] $\underline{B60}$ \underline{R} $\underline{21/32}$

US-CL-PUBLISHED: 701/38; 701/36 US-CL-CURRENT: 701/38; 701/36

REPRESENTATIVE-FIGURES: 2A

ABSTRACT:

A control system (18) for an automotive <u>vehicle</u> (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.

RELATED APPLICATIONS

[0001] The present invention claims priority to U.S. provisional patent application Nos. 60/400,375, 60/400,261, 60/400,172, 60/400,376, 60/400,156, and 60/400,155, all filed on Aug. 1, 2002, and No. 60/401,418 filed on Aug. 5, 2002, and is a continuation-in-part of U.S. patent application Ser. No. 10/038,364 entitled "Wheel Lift Identification For An Automotive Vehicle", which is a continuation-in-part of U.S. patent application Ser. No. 09/669,513 entitled "Wheel Lift Identification For An Automotive Vehicle", each of which are hereby incorporated by reference herein, and U.S. patent applications (Attorney Docket Nos. 202-0762/FGT-1678, 202-0634/FGT-1679, and 203-0670/FGT-1846), filed simultaneously herewith.

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KNMC	Drawi De
						······································					····	

☐ 5. Document ID: US 20040010383 A1

L4: Entry 5 of 10

File: PGPB

Jan 15, 2004

PGPUB-DOCUMENT-NUMBER: 20040010383

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20040010383 A1

TITLE: Passive wheel lift identification for an automotive vehicle using operating

input torque to wheel

PUBLICATION-DATE: January 15, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	COUNTRY	RULE-47
Lu, Jianbo	Livonla	MI	US	
Brewer, Michael Edward	Royal Oak	MI	US	
Brown, Todd Allen	Dearborn	MI	US	
Meyers, Joseph Carr	Farmington Hills	MI	US	

APPL-NO: 10/ 608908 [PALM]
DATE FILED: June 27, 2003

RELATED-US-APPL-DATA:

Application 10/608908 is a continuation-in-part-of US application 10/038364, filed January 4, 2002, US Patent No. 6593849

Application 10/038364 is a continuation-in-part-of US application 09/669513, filed September 25, 2000, US Patent No. 6356188

Application is a non-provisional-of-provisional application 60/400375, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400376, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400172, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400156, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400155, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/400261, filed August 1, 2002,

Application is a non-provisional-of-provisional application 60/401418, filed August 5, 2002,

INT-CL: $[07] \underline{G06} \underline{F} \underline{19/00}$

US-CL-PUBLISHED: 702/41 US-CL-CURRENT: 702/41

REPRESENTATIVE-FIGURES: 2A

ABSTRACT:

A control system (18) and method for an automotive <u>vehicle</u> (10) used for detecting lift of a wheel includes a speed sensor (20) coupled to the wheel producing a wheel speed signal and a torque control system (57) coupled to the wheel for generating an operating input torque to the wheel. A controller (26) is coupled to the torque control system (57) and the wheel speed sensor (20). The controller (26) determines a wheel response to the operating input torque and generates a <u>wheel lift signal</u> as a function of the operating input torque, the wheel speed signal and the wheel response.

RELATED APPLICATIONS

[0001] The present invention claims priority to provisional applications Nos. 60/400,375, 60/400,376, 60/400,172, 60/400,156, 60/400,155, and 60/400,261, all filed on Aug. 1, 2002, and No. 60/401,418 filed on Aug. 5, 2002 and is a continuation-in-part of U.S. application Ser. No. 10/038,364 entitled "Wheel Lift Identification For An Automotive Vehicle" which is a continuation-in-part of U.S. application Ser. No. 09/669,513 entitled "Wheel Lift Identification For An Automotive Vehicle", each of which are hereby incorporated by reference herein. The present invention is also related to U.S. Applications (Attorney Docket No. 202-0634/FGT-1679, Attorney Docket No. 202-0433/FGT-1683, and Attorney Docket No. 203-0670/FGT-1846), filed simultaneously herewith.

		·										
Full	Title	Citation	Front	Parcialor	Classification	Dista	Deference	Composos	Attachments	I		
	11112	Citation	1 10111	Mediedo	Classification	Date	Meterettice	Seduelices	Attacriments	Claims	KMAC	Draw, De
												1

☐ 6. Document ID: US 20030100979 A1

L4: Entry 6 of 10

File: PGPB

May 29, 2003

PGPUB-DOCUMENT-NUMBER: 20030100979

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20030100979 A1

TITLE: Enhanced system for yaw stability control system to include roll stability

control function

PUBLICATION-DATE: May 29, 2003

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47

Lu, Jianbo Livonia MI US Brown, Todd Allen Dearborn MI US Meyers, Joseph Carr Farmington Hills MI US

APPL-NO: 10/ 174926 [PALM]
DATE FILED: June 19, 2002

RELATED-US-APPL-DATA:

Application is a non-provisional-of-provisional application 60/332063, filed November 21, 2001,

INT-CL: [07] G06 F 19/00

US-CL-PUBLISHED: 701/36; 701/70, 340/440 US-CL-CURRENT: 701/36; 340/440, 701/70

REPRESENTATIVE-FIGURES: 2

ABSTRACT:

A yaw stability control system (18) is enhanced to include roll stability control function for an automotive <u>vehicle</u> and includes a plurality of sensors (28-39) sensing the dynamic conditions of the <u>vehicle</u>. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the <u>vehicle</u> from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.

RELATED APPLICATIONS

[0001] The present invention claims priority to provisional application No. 60/332,063 filed on Nov. 21, 2001.

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC	Drawi De

☐ 7. Document ID: US 6654674 B2

L4: Entry 7 of 10

File: USPT

Nov 25, 2003

US-PAT-NO: 6654674

DOCUMENT-IDENTIFIER: US 6654674 B2

TITLE: Enhanced system for yaw stability control system to include roll stability control function

DATE-ISSUED: November 25, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Lu; Jianbo Livonia MI Brown; Todd Allen Dearborn MI

Brown; Todd Allen Dearborn MI Meyers; Joseph Carr Farmington Hills MI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Ford Global Technologies, LLC Dearborn MI 02

APPL-NO: 10/ 174926 [PALM]
DATE FILED: June 19, 2002

PARENT-CASE:

RELATED APPLICATIONS The present invention claims priority to provisional application No. 60/332,063 filed on Nov. 21, 2001.

INT-CL: [07] <u>G06</u> <u>F</u> <u>7/00</u>

US-CL-ISSUED: 701/36; 701/41, 701/37, 701/38, 701/72 US-CL-CURRENT: 701/36; 701/37, 701/38, 701/41, 701/72

FIELD-OF-SEARCH: 701/36, 701/37, 701/38, 701/41, 701/70, 701/1, 701/72, 701/78,

701/83, 180/197, 303/146, 303/166, 303/189

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<u>2917126</u>	December 1959	Phillips	
3608925	September 1971	Murphy	
3948567	April 1976	Kasselmann et al.	
3972543	August 1976	Presley et al.	
4023864	May 1977	Lang et al.	
RE30550	March 1981	Reise	
4480714	November 1984	Yabuta et al.	
4592565	June 1986	Eagle	
4809183	February 1989	Eckert	
4898431	February 1990	Karnopp et al.	
4964679	October 1990	Rath	
4976330	December 1990	Matsumoto	
4998593	March 1991	Karnopp et al.	

5089967	February 1992	Haseda et al.	
5224765	July 1993	Matsuda	
5335176	August 1994	Nakamura	
5408411	April 1995	Nakamura et al.	
<u>5446658</u>	August 1995	Pastor et al.	
5610575	March 1997	Gioutsos	
5634698	June 1997	Cao et al.	
5640324	June 1997	Inagaki	
5671982	September 1997	Wanke	
<u>5707117</u>	January 1998	Hu et al.	
5707120	January 1998	Monzaki et al.	
5732378	March 1998	Eckert et al.	
5732379	March 1998	Eckert et al.	
5737224	· April 1998	Jeenicke et al.	
5742918	April 1998	Ashrafi et al.	
5762406	June 1998	Yasui et al.	
5782543	July 1998	Monzaki et al.	
5809434	September 1998	Ashrafi et al.	
5825284	October 1998	Dunwoody et al.	
<u>5857535</u>	January 1999	Brooks	
5869943	February 1999	Nakashima et al.	·
5890084	March 1999	Halasz et al.	
5893896	April 1999	Imamura et al.	
5931546	August 1999	Nakashima et al.	
6002974	December 1999	Schiffmann	
6002975	December 1999	Schiffmann et al.	
6038495	March 2000	Schiffmann	
6065558	May 2000	Wielenga	
6263261	July 2001	Brown et al.	701/1
6324446	November 2001	Brown et al.	701/1
6332104	December 2001	Brown et al.	701/1
6338012	January 2002	Brown et al.	701/1
6496758	December 2002	Rhode et al.	701/38
2001/0008986	July 2001	Brown et al.	

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
36 16 907	November 1987	DE	
38 15 938	November 1989	DE	
43 21 571	January 1994	DE	
42 27 886	February 1994	DE	
42 28 893	March 1994	DE	
43 35 979	April 1995	DE	
196 02 879	August 1997	DE	
197 51 867	May 1999	DE	

197 51 891	May 1999	DE
197 51 925	May 1999	DE
197 51 935	May 1999	DE
198 02 041	July 1999	DE
199 07 633	October 1999	DE
197 51 839	May 2000	DE
0 721 877	July 1996	EP
0758601	February 1997	EP
0 827 852	March 1998	EP
24 25 342	December 1979	FR
2257403	January 1993	GB
2316455	February 1998	GB
63116918	May 1988	JP
63151539	June 1988	JP
63203456	August 1988	JP
1101238	April 1989	JP
2171373	July 1990	JP
3042360	February 1991	JP
3045452	February 1991	JP
4008837	January 1992	JP
5016699	January 1993	JP
5254406	October 1993	JP
6278586	October 1994	JP
6312612	November 1994	JP
8080825	March 1996	JP
9005352	January 1997	JP
10024819	January 1998	JP
10278762	October 1998	JP
10329682	December 1998	JP
11011272	January 1999	JP
11170992	June 1999	JP
11254992	September 1999	JP
11255093	September 1999	JP
11304663	October 1999	JΡ
11304662	November 1999	JP
816849	March 1981	SU
WO 99/30942	June 1999	WO

OTHER PUBLICATIONS

A Method For Reducing On-Road Rollovers--Anti-Rollover Braking, Thomas J. Wielenga, Dynamotive, L.L.C., International Congress and Exposition, Detroit, Michigan, Mar. 1-4, 1999.

ART-UNIT: 3661

PRIMARY-EXAMINER: Camby; Richard M.

ATTY-AGENT-FIRM: Smith; Gary A. Artz & Artz

ABSTRACT:

A yaw stability control system (18) is enhanced to include roll stability control function for an automotive <u>vehicle</u> and includes a plurality of sensors (28-39) sensing the dynamic conditions of the <u>vehicle</u>. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the <u>vehicle</u> from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.

20 Claims, 6 Drawing figures

Full Title Citation Front Review Class	ssification Date Reference Saution 20 241	Claims KMC Draw De
☐ 8. Document ID: US 20040	0030473 A1	
L4: Entry 8 of 10	File: DWPI	Feb 12, 2004

DERWENT-ACC-NO: 2004-168963

DERWENT-WEEK: 200416

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Controlling method for automotive <u>vehicle</u>, involves adjusting calculated <u>vehicle</u> angle based on <u>wheel lift signal</u> or wheel grounded signal, and controlling safety system based on calculated <u>vehicle</u> angle

INVENTOR: BREWER, M E; BROWN, T A; LU, J; MEYERS, J C

PUB-DATE

PATENT-ASSIGNEE: BREWER M E (BREWI), BROWN T A (BROWI), LU J (LUJJI), MEYERS J C (MEYEI)

PRIORITY-DATA: 2003US-0609447 (June 27, 2003), 2000US-0669513 (September 25, 2000), 2002US-0038364 (January 4, 2002), 2002US-400155P (August 1, 2002), 2002US-400156P (August 1, 2002), 2002US-400172P (August 1, 2002), 2002US-400264P (August 1, 2002), 2002US-400375P (August 1, 2002), 2002US-400376P (August 1, 2002), 2002US-401418P (August 5, 2002)

LANGUAGE

PAGES

MAIN-IPC

PATENT-FAMILY:

PUB-NO

US 20040030473 A1	February 12, 2004	037	G06F007/00
APPLICATION-DATA:			
PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
US20040030473A1	September 25, 2000	2000US-0669513	CIP of
US20040030473A1	January 4, 2002	2002US-0038364	CIP of
US20040030473A1	August 1, 2002	2002US-400155P	Provisional
US20040030473A1	August 1, 2002	2002US-400156P	Provisional

US20040030473A1	August 1, 2002	2002US-400172P	Provisional
US20040030473A1	August 1, 2002	2002US-400264P	Provisional
US20040030473A1	August 1, 2002	2002US-400375P	Provisional
US20040030473A1	August 1, 2002	2002US-400376P	Provisional
US20040030473A1	August 5, 2002	2002US-401418P	Provisional
US20040030473A1	June 27, 2003	2003US-0609447	
US20040030473A1		US 6356188	CIP of
US20040030473A1		US 6593849	CIP of

INT-CL (IPC): $\underline{G06} + \frac{7}{00}$

RELATED-ACC-NO: 2002-370591;2002-462939 ;2004-122102 ;2004-135380 ;2004-135381 ;2004-145794 ;2004-158632 ;2004-158633 ;2004-158634 ;2004-167780

ABSTRACTED-PUB-NO: US20040030473A

BASIC-ABSTRACT:

NOVELTY - The method involves generating a <u>wheel lift signal</u> or a wheel grounded signal as a function of yaw rate, lateral acceleration, roll rate and longitudinal acceleration. A calculated <u>vehicle</u> angle is adjusted based on the <u>wheel lift signal</u> or wheel grounded signal. A safety system is controlled based on the calculated vehicle angle.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a control system operating method.

USE - For detecting whether the wheel of an automotive $\underline{\text{vehicle}}$ has lifted from a pavement using passive wheel lift detection.

ADVANTAGE - Improves reliability in predicting the occurrence of wheel lift during operation of automotive <u>vehicle</u>.

DESCRIPTION OF DRAWING(S) - The figure shows the block diagram of control system.

ABSTRACTED-PUB-NO: US20040030473A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.2A/16

DERWENT-CLASS: X22 EPI-CODES: X22-X06;

Full	Title	Citation	Front	Review	Classification	Date	Reference	4. 614 (4.1)	olina ili.	Claims	KOMC	Drawi, De

9. Document ID: US 20040064246 A1, EP 1386806 A1

L4: Entry 9 of 10

File: DWPI

Apr 1, 2004

DERWENT-ACC-NO: 2004-135381

DERWENT-WEEK: 200424

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Control system for automotive vehicle has integrated wheel lift detector

produces final $\underline{\text{wheel lift signal}}$ in response to passive $\underline{\text{wheel lift signal}}$ and active wheel lift signal

INVENTOR: BROWN, T A; LU, J; MATTSON, K G; MEYERS, J C

PATENT-ASSIGNEE: FORD GLOBAL TECHNOLOGIES LLC (FORD), BROWN T A (BROWI), LU J (LUJJI), MATTSON K G (MATTI), MEYERS J C (MEYEI)

PRIORITY-DATA: 2003US-0609448 (June 27, 2003), 2002US-400155P (August 1, 2002), 2002US-400156P (August 1, 2002), 2002US-400172P (August 1, 2002), 2002US-400261P (August 1, 2002), 2002US-400375P (August 1, 2002), 2002US-400376P (August 1, 2002), 2002US-401418P (August 5, 2002), 2000US-0669513 (September 25, 2000), 2002US-0038364 (January 4, 2002)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
US 20040064246 A1	April 1, 2004		000	G06G007/48
EP 1386806 A1	February 4, 2004	E	053	B60T008/00

DESIGNATED-STATES: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LT LU LV MC MK NL PT RO SE SI SK TR

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
US20040064246A1	September 25, 2000	2000US-0669513	CIP of
US20040064246A1	January 4, 2002	2002US-0038364	CIP of
US20040064246A1	August 1, 2002	2002US-400155P	Provisional
US20040064246A1	August 1, 2002	2002US-400156P	Provisional
US20040064246A1	August 1, 2002	2002US-400172P	Provisional
US20040064246A1	August 1, 2002	2002US-400261P	Provisional
US20040064246A1	August 1, 2002	2002US-400375P	Provisional
US20040064246A1	August 1, 2002	2002US-400376P	Provisional
US20040064246A1	June 27, 2003	2003US-0609448	
US20040064246A1		US 6356188	CIP of
US20040064246A1		US 6593849	CIP of
EP 1386806A1	July 31, 2003	2003EP-0254818	

INT-CL (IPC): $\underline{B60}$ \underline{R} $\underline{16/02}$; $\underline{B60}$ \underline{T} $\underline{8/00}$; $\underline{B60}$ \underline{T} $\underline{8/24}$; $\underline{G06}$ \underline{G} $\underline{7/48}$

RELATED-ACC-NO: 2002-370591;2002-462939;2004-122102;2004-135380;2004-145794;2004-145795;2004-158632;2004-158633;2004-158634;2004-167780;2004-168963

ABSTRACTED-PUB-NO: EP 1386806A BASIC-ABSTRACT:

NOVELTY - The control system includes a passive wheel lift detector (58) and an active wheel lift detector (60) which respectively produce a passive wheel lift signal and an active wheel lift signal. An integrated wheel lift detector (62) is connected to the passive and active wheel lift detectors to produce final wheel lift signal in response to the produced passive and active wheel lift signals.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a vehicle

controlling method.

USE - For automotive <u>vehicle</u>. The system may also be used with safety systems including active/semi-active suspension systems, anti-roll bar, or airbags or other safety devices deployed or activated upon sensing predetermined dynamic conditions of the vehicle.

ADVANTAGE - Improves reliability in predicting occurrence of wheel lift of vehicle during vehicle operation by providing a roll-over detection system. Enables determination of roll condition and wheel lifting of vehicle in passive and active procedures using sensors available in vehicle control system. Allows correction of potential roll-over condition by commanding appropriate actuators. Increases accuracy of amount of evasive action e.g. braking and steering due to improved determination of wheel lifting. Allows adjustment of a roll signal for control according to wheel lift-wheel grounded conditions.

DESCRIPTION OF DRAWING(S) - The figure shows the block diagrammatic view of wheel lift detection system.

Wheel lift detection system 52

Passive wheel lift detector 58

Active wheel lift detector 60

Integrated wheel lift detector 62

ABSTRACTED-PUB-NO: EP 1386806A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.2B/16

DERWENT-CLASS: Q17 Q18 X22

EPI-CODES: X22-X06; X22-X06A; X22-X06B; X22-X06H; X22-X06J;

Full	Title	Citation	Front	Review	Classification	Date	Reference	Claims	KWC	Draw, De

□ 10. Document ID: JP 2004131070 A, US 20040019418 A1, EP 1386803 A1

L4: Entry 10 of 10

File: DWPI

Apr 30, 2004

DERWENT-ACC-NO: 2004-122102

DERWENT-WEEK: 200430

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Roll stability control system for automotive <u>vehicle</u>, has controller to generate potential rollover signal in response to <u>wheel lift signal</u> for controlling safety device in response to rollover signal

INVENTOR: BREWER, M E; BROWN, T A; LU, J; MEYERS, J C

PATENT-ASSIGNEE: FORD GLOBAL TECHNOLOGIES LLC (FORD), FORD GLOBAL TECHNOLOGIES INC (FORD), BREWER M E (BREWI), BROWN T A (BROWI), LU J (LUJJI), MEYERS J C (MEYEI)

PRIORITY-DATA: 2003US-0608909 (June 27, 2003), 2000US-0669513 (September 25, 2000), 2002US-0038364 (January 4, 2002), 2002US-400155P (August 1, 2002), 2002US-400156P (August 1, 2002), 2002US-400172P (August 1, 2002), 2002US-400261P (August 1, 2002), 2002US-400375P (August 1, 2002), 2002US-400376P (August 1, 2002), 2002US-401418P (August 5, 2002)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
JP 2004131070 A	April 30, 2004		144	B60R016/02
US 20040019418 A1	January 29, 2004		042	B60R021/32
EP 1386803 A1	February 4, 2004	E	000	B60T008/00

DESIGNATED-STATES: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LT LU LV MC MK NL PT RO SE SI SK TR

APPLICATION-DATA:

DIID NO	ADDI DAMB	ARRI NO	2222222
PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
JP2004131070A	July 31, 2003	2003JP-0311982	
US20040019418A1	September 25, 2000	2000US-0669513	CIP of
US20040019418A1	January 4, 2002	2002US-0038364	CIP of
US20040019418A1	August 1, 2002	2002US-400155P	Provisional
US20040019418A1	August 1, 2002	2002US-400156P	Provisional
US20040019418A1	August 1, 2002	2002US-400172P	Provisional
US20040019418A1	August 1, 2002	2002US-400261P	Provisional
US20040019418A1	August 1, 2002	2002US-400375P	Provisional
US20040019418A1	August 1, 2002	2002US-400376P	Provisional
US20040019418A1	August 5, 2002	2002US-401418P	Provisional
US20040019418A1	June 27, 2003	2003US-0608909	
US20040019418A1		US 6356188	CIP of
US20040019418A1		US 6593849	CIP of
EP 1386803A1	July 31, 2003	2003EP-0254814	

INT-CL (IPC): $\underline{B60}$ \underline{G} $\underline{17/015}$; $\underline{B60}$ \underline{R} $\underline{16/02}$; $\underline{B60}$ \underline{R} $\underline{21/01}$; $\underline{B60}$ \underline{R} $\underline{21/13}$; $\underline{B60}$ \underline{R} $\underline{21/32}$; $\underline{B60}$ \underline{T} $\underline{8/00}$; $\underline{B60}$ \underline{T} $\underline{8/58}$; $\underline{B62}$ \underline{D} $\underline{6/00}$

RELATED-ACC-NO: 2002-370591;2002-462939 ;2004-135380 ;2004-135381 ;2004-145794 ;2004-158632 ;2004-158633 ;2004-158634 ;2004-167780 ;2004-168963

ABSTRACTED-PUB-NO: US20040019418A

BASIC-ABSTRACT:

NOVELTY - The system has a wheel three roll condition detectors for generating respective roll condition signals. A controller (26) determines a wheel lift in response to the roll conditions. The controller generates a passive wheel lift status signal, a potential rollover signal in response to the wheel lift signal and controls a safety device in response to the rollover signal.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a method of controlling an automotive vehicle.

USE - Used for an automotive vehicle.

ADVANTAGE - The system provides improved determination of wheel lifting and increases the accuracy of the roll angle calculation, thereby resulting in a more appropriate braking or steering evasive action.

 $\begin{tabular}{ll} DESCRIPTION OF DRAWING(S) - The drawing shows a block diagram of a roll stability \\ system. \\ \end{tabular}$

Roll stability control system 18

Speed sensor 20

Controller 26

Yaw rate sensor 28

Suspension load sensor 40

ABSTRACTED-PUB-NO: US20040019418A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.2A/16

DERWENT-CLASS: Q12 Q17 Q18 Q22 X22

EPI-CODES: X22-J11;

Full	Title	Citation	Front	Review	Classification	Date	Reference			Claims	KMC	Drawt D
disk on the same and the same an		· · · · · · · · · · · · · · · · · · ·			***************************************		W					
Clear		Gener	ate Col	lection	Print	F	wd Refs	Bkwd	Refs	Gener	ate OA	cs
	Ter	ms	,			D	ocuments	}		7.0		
	L2	and L3								<u> </u>	10	

Display Format: FRO Change Format

<u>Previous Page</u> <u>Next Page</u> <u>Go to Doc#</u>