LOAN DEFAULT PREDICTION

Sprint 1

Presented by: **David Clarke**

OCTOBER 2023

AGENDA

- 1 Project Overview
- 2 The Big Idea
- 3 The Impact
- 4 Preliminary EDA
- 5 Next Steps

PROJECT OVERVIEW

Subject Area:

Finance and Banking Services

Problem Statement:

Inability to accurately predict loan defaults:

- inancial loss for lending institutions
- reduced trust in financial systems
- decreased credit availability
- inancial crises

Opportunity Identified:

Leverage data and ML to predict loan defaults

increase accuracy

THE BIG IDEA

Objective:

Build a predictive model that can forecast loan defaults based on certain demographic data and financial information.

11.6 3.20 77.6 3.9.0 10 50 70 80 3.00 70 20 00 20 20 00 39 22 17 Logistic Regression

Data Science Application:

- Use historical loan data to train ML models
- Use advanced algorithms that can capture intricate patterns and relationships in the data
- Continuously refine and improve

THE IMPACT

A very simplistic approach to quantifying impact:

- Approx. 2.4% of all consumer loans at commercial banks in the US were reported as delinquent. (Statista 2023)
- Approx. \$17 trillion in total consumer debt in US (The Fed 2023)
- Approx. \$400 billion loss (2.4% * 17T assuming all delinquent -> defaulted)
- A mere 1% improvement in prediction accuracy could result in approx. \$4B in savings
- The project's aim, even by a modest margin, could translate to billions of dollars in savings, given the vast sums involved in lending.

PRELIMINARY EDA

PRELIMINARY EDA

PRELIMINARY EDA

NEXT STEPS

Data preprocessing techniques:

- One-hot Encoding as categorical features like Education, EmploymentType and MaritalStatus need to be converted to numeric values which would be suitable for machine learning.
- Feature Scaling in order to normalize certain features to bring them to a similar scale. Features like Income, LoanAmount, and CreditScorehave different scales.

Feature engineering opportunities:

- Binning Continuous Variables
 - Age -> "Young", "Middle-aged", "Senior".
 - o Income levels -> "Low", "Medium", "High".
 - CreditScore -> "Poor", "Good", "Excellent".
- Creating new features based on interactions between existing features within the dataset

Thank you