Project 1

 ${\rm FYS3150/FYS4150}$ - Hannah Berg, Stian Bilek & Frida Furmyr

September 12, 2017

Abstract

1 Introduction

2 Method

 ${\bf 3}\quad {\bf Code/Implementations}$

Figure 1: Here is the solution to the set of linear equations. $\,$

Time t to complete n iterations

iterations n	Gaussian Elimination t (s)	Special Case t (s)	Armadillo LU t (s)
10^{1}	$2 \cdot 10^{-5}$	$3 \cdot 10^{-6}$	$2 \cdot 10^{-5}$
10^{2}	$2 \cdot 10^{-4}$	$1 \cdot 10^{-5}$	$2 \cdot 10^{-4}$
10^{3}	$2 \cdot 10^{-4}$	$9 \cdot 10^{-5}$	$1 \cdot 10^{-2}$
10^{4}	$2 \cdot 10^{-3}$	$8 \cdot 10^{-4}$	$7 \cdot 10^{-0}$
10^{5}	$1 \cdot 10^{-2}$	$5 \cdot 10^{-3}$	
10^{6}	$2 \cdot 10^{-1}$	$6 \cdot 10^{-2}$	

Maximal relative error ϵ_{max} in n iterations:

iterations n	Maximal relative error ϵ_{max}
10^{1}	2.4
10^{2}	2.04
10^{3}	2.004
10^{7}	2.0000005

4 Analysis/Results

5 Conclusions

6 Referencing