INTRODUCTION TO CREDIT SCORING & DATA PREPARATION

Dr. Aric LaBarr
Institute for Advanced Analytics

INTRODUCTION TO SCORECARDS

What is a Scorecard?

- Common way of displaying the patterns found in a binary response model.
- Typically, people use logistic regression models.
- The main benefit is that a scorecard provides a clear and intuitive way of presenting the regression coefficients.

Scorecard Usage

- Credit Scoring
 - Equifax (http://www.equifax.com/home/en us)
 - Experian (http://www.experian.com)
 - Transunion (http://www.transunion.com)
- Medicine / Healthcare
 - Trauma and Injury Severity Score (http://www.trauma.org/archive/scores/iss.html)
 - Coronary Heart Disease Risk Calculator (http://www.medcalc.com/heartrisk.html)
- Retail, IT and most cases where binary models can be applied.

CREDIT SCORING

Credit Scoring and Scorecards

- "One of the oldest applications of data mining, because it is one of the earliest uses of data to predict consumer behavior."
- David Edelman Credit Director of Royal Bank of Scotland

Credit Scoring and Scorecards

- Credit scoring is a statistical model that assigns a risk value to prospective or existing credit accounts.
- A **credit scorecard** is a statistical risk model that was put into a special format designed for ease of interpretation.
- Scorecards are used to make strategic decisions such as accepting/rejecting applicants and deciding when to raise a credit line, as well as other decisions.

Credit Scoring and Scorecards

- The credit scorecard format is very popular and successful in the consumer credit world for a number of reasons:
 - 1. People at all levels within an organization generally find it easy to understand and use.
 - 2. Regulatory agencies are accustomed to credit risk models presented in this fashion.
 - 3. Credit scorecards are straightforward to implement and monitor over time.

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:
 32
 - Home: OWN
 - Salary: \$30,000

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	<i>x</i> < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:
 32
 - Home: OWN
 - Salary: \$30,000
- Total Points:

$$120 + 225 + 180 = 525$$

ACCEPT FOR CREDIT

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	x < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:
 22
 - Home: OWN
 - Salary: \$8,000

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	x < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:
 22
 - Home: OWN
 - Salary: \$8,000
- Total Points:

$$100 + 225 + 120 = 445$$

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	x < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:
 22
 - Home: OWN
 - Salary: \$8,000
- Total Points:

$$100 + 225 + 120 = 445$$

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	x < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:22
 - Home: OWN
 - Salary: \$8,000
- Total Points:

$$100 + 225 + 120 = 445$$

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	x < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

- Cut-off = 500
- New customer:
 - Months Since Last Miss Payment:
 22
 - Home: OWN
 - Salary: \$8,000
- Total Points:

$$100 + 225 + 120 = 445$$

Variable	Level	Scorecard Points
MISS	<i>x</i> < 24	100
MISS	$24 \le x < 36$	120
MISS	$36 \le x < 48$	185
MISS	$x \ge 48$	200
HOME	OWN	225
HOME	RENT	110
INCOME	<i>x</i> < 10,000	120
INCOME	$10,000 \le x < 25,000$	140
INCOME	$25,000 \le x < 35,000$	180
INCOME	$35,000 \le x < 50,000$	200
INCOME	$x \ge 50,000$	225

Discrete vs. Continuous Time

- Credit scoring typically tries to understand the probability of default on a customer (or business).
- However, default is also dependent on time.
- When will someone default? → JUST AS IMPORTANT!
- Discrete Evaluating binary decisions on predetermined intervals of time.
- Continuous Evaluating probability of default as it changes over continuous points in time (survival analysis).

 Discrete time models evaluate the probability of default within a window of time.

 Typically pick multiple windows (models) to evaluate across.

Continuous Time

Default in 42 Days

- Continuous time models provide a probability of default for every day.
- From this more exact times of default are possible.

Process Flow

Data Collection

- Variable Selection
- Sample Size
- Sample / Performance Window

Data Cleaning

- Eliminate Duplicates
- Examine / Remove Outliers

Variable Grouping and Selection

- Weights of Evidence (WOE)
- Information Value (IV)
- Gini Criterion

Initial Scorecard Creation

- Logistic Regression
- Accuracy
- Threshold
- Assessment

Reject Inference

 Remove bias resulting from exclusion of rejects

Final Scorecard Creation

• Final Model Assessment

DATA DESCRIPTION

ACCEPTS Data Set

- Type of Product: Auto Loans
- Information available on customers with performing or non-performing loans.
- 5,837 cases of individuals who applied for and were granted an automobile loan.
- 22 variables in all.

Data Dictionary

Variable Name	Description
Age_oldest_tr	Age of oldest trade
App_id	Application ID
Bad	Good/Bad Loan
Bankruptcy	Bankruptcy or Not
Bureau_score	Bureau Score
Down_pyt	Amount of down payment on vehicle
Loan_amt	Amount of Loan
Loan_term	How many months vehicle was financed
Ltv	Loan to Value
MSRP	Manufacturer suggested retail price
Purch_price	Purchase price of vehicle

Variable Name	Description
Purpose	Lease or own
Rev_util	Revolving utilization (balance/credit limit)
Tot_derog	Total number of derogatory trades (go DPD)
Tot_income	Applicant's income
Tot_open_tr	Number of open trades
Tot_rev_debt	Total revolving debt
Tot_rev_line	Total revolving line
Tot_rev_tr	Total revolving trades
Tot_tr	Total number of trades
Used_ind	Used car indicator
Weight	Weight variable

REJECTS Data Set

- Type of Product: Auto Loans
- 4,233 cases of individuals who applied for and were NOT granted an automobile loan.
- 21 variables in all BAD variable not part of data set and should be inferred.
- Used for reject inference later in the analysis.

- Reject inference is the process of inferring the status of the rejected applicants based on the accepted applicants model in an attempt to use their information to build a scorecard that is representative of the entire applicant population.
- Reject inference is about solving sample bias so that the development sample is similar to the population to which the scorecard will be applied.

Can we develop a scorecard without rejected applications?

- Can we develop a scorecard without rejected applications? YES!
- Is it **legally permissible** to develop a scorecard without rejected applications?

- Can we develop a scorecard without rejected applications? YES!
- Is it legally permissible to develop a scorecard without rejected applications?
 YES!
- If yes, then how biased would the scorecard model be?

- Can we develop a scorecard without rejected applications? YES!
- Is it legally permissible to develop a scorecard without rejected applications?
 YES!
- If yes, then how biased would the scorecard model be? DEPENDS!
- "My suggestion is to develop the scorecard using what data you have, but start saving rejected applications ASAP."
 - Raymond Anderson, Head of Scoring at Standard Bank Africa, South Africa

DATA COLLECTION AND CLEANING

Process Flow

Data Collection

- Variable Selection
- Sample Size
- Sample / Performance Window

Data Cleaning

- Eliminate Duplicates
- Examine / Remove Outliers

Variable Grouping and Selection

- Weights of Evidence (WOE)
- Information Value (IV)
- Gini Criterion

Initial Scorecard Creation

- Logistic Regression
- Accuracy
- Threshold
- Assessment

Reject Inference

 Remove bias resulting from exclusion of rejects

Final Scorecard Creation

 Final Model Assessment

Defining Our Target

- When does someone actually default?
 - Is it when the loan is charged-off?
 - Probably signs of stopped paying before then
- Need to define target variable
 - 90 days past due (DPD) for everything (old approach)
 - 90-180 DPD based on types of loans, business sector, country regulations, etc. (current approach)
 - For example: US mortgages 180 DPD

Variable Selection

- Criteria for explanatory variables:
 - Expected predictability power
 - Business interpretation
 - Reliability
 - Legal issues
 - Ease in collection
 - Future availability

Feature Engineering

- Variable creation based on business reasoning:
 - Loan to value ratio
 - Number of delinquent accounts
 - Expense to income ratio
 - Credit line utilization
- Omit variables that are highly dependent:
 - Variable clustering!
- Review / remove outlier and abnormal values

Sample Size

• "There are no hard and fast rules, but the sample selected normally includes at least 1,000 good, 1,000 bad, and about 750 rejected applicants." FDIC, Credit Card Activities Manual

https://www.fdic.gov/regulations/examinations/credit_card/index.html

- No exact answer on the correct sample size.
- Sample size depends on the overall size of the portfolio, the number of explanatory variables you are planning to use, and the number of defaults or claims filled.

- The sample must be characteristic of the population to which the scorecard will be applied.
- Example:
 - If the scorecard is to be applied in the subprime lending program, then use a sample that captures the characteristics of the subprime population targeted.

Objective:

- Gather data for accounts opened during a specific time frame.
- Monitor their performance for another specific length of time to determine if they were good or bad.

Problems:

- Accounts opened recently are more similar to accounts that will be opened in the near future.
- Want to minimize the chances of misclassifying performance accounts must be monitored long enough to not underestimate expected bad rates.

- Based on cohort graph: "Bads" level off about 14 months after loan origination.
- If the analysis is to be performed on March 2022, we select our sample from 12-16 months back; this will give an average of 14 months performance window.

- If the analysis is to be performed on March 2022, we select our sample from 12-16 months back; this will give an average of 14 months performance window.

- If the analysis is to be performed on March 2022, we select our sample from 12-16 months back; this will give an average of 14 months performance window.

- If the analysis is to be performed on March 2022, we select our sample from 12-16 months back; this will give an average of 14 months performance window.

- The exact length of the performance window depends on the product.
 - Credit Cards: Typically 1 2 years
 - Mortgages: Typically 3 5 years
- Sample window length can vary based on data availability as well.

