Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 1921320



# 256K (32K x 8) Static RAM

#### **Features**

- Temperature Ranges
  - Commercial: 0°C to 70°C
  - Industrial: –40°C to 85°C
  - Automotive-A: -40°C to 85°C
  - Automotive-E: -40°C to 125°C
- · High speed: 55 ns
- Voltage range: 4.5V-5.5V operation
- · Low active power
  - 275 mW (max.)
- Low standby power (LL version)
  - 82.5 μW (max.)
- Easy memory expansion with  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$  features
- · TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- Available in pb-free and non Pb-free 28-lead (600-mil) PDIP, 28-lead (300-mil) narrow SOIC, 28-lead TSOP-l and 28-lead Reverse TSOP-l packages

# Functional Description[1]

The CY62256N is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and tri-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected.

An active LOW write enable signal ( $\overline{WE}$ ) controls the writing/reading operation of the memory. When  $\overline{CE}$  and  $\overline{WE}$  inputs are both LOW, data on the eight data input/output pins ( $I/O_0$  through  $I/O_7$ ) is written into the memory location addressed by the address present on the address pins ( $A_0$  through  $A_{14}$ ). Reading the device is accomplished by selecting the device and enabling the outputs,  $\overline{CE}$  and  $\overline{OE}$  active LOW, while  $\overline{WE}$  remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable  $(\overline{WE})$  is HIGH.

#### **Logic Block Diagram**



Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



#### **Product Portfolio**

|            |               |      |                         |            |       |                            | Power Dis                   | sipation            |                           |
|------------|---------------|------|-------------------------|------------|-------|----------------------------|-----------------------------|---------------------|---------------------------|
|            |               |      | V <sub>CC</sub> Range ( | <b>/</b> ) | Speed | Operat<br>(m               | ing, I <sub>CC</sub><br>nA) | Standb<br>(μ        | y, I <sub>SB2</sub><br>\) |
| Product    |               | Min. | Тур. <sup>[2]</sup>     | Max.       | (ns)  | <b>Typ.</b> <sup>[2]</sup> | Max.                        | Typ. <sup>[2]</sup> | Max.                      |
| CY62256NL  | Com'l / Ind'l | 4.5  | 5.0                     | 5.5        | 70    | 25                         | 50                          | 2                   | 50                        |
| CY62256NLL | Commercial    |      |                         |            | 70    | 25                         | 50                          | 0.1                 | 5                         |
| CY62256NLL | Industrial    |      |                         |            | 55/70 | 25                         | 50                          | 0.1                 | 10                        |
| CY62256NLL | Automotive-A  |      |                         |            | 55/70 | 25                         | 50                          | 0.1                 | 10                        |
| CY62256NLL | Automotive-E  |      |                         |            | 55    | 25                         | 50                          | 0.1                 | 15                        |

#### **Pin Configurations**



#### **Pin Definitions**

| Pin Number      | Туре          | Description                                                                                                                                                                            |  |
|-----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1–10, 21, 23–26 | Input         | A <sub>0</sub> -A <sub>14</sub> . Address Inputs                                                                                                                                       |  |
| 11–13, 15–19,   | Input/Output  | I/O <sub>0</sub> -I/O <sub>7</sub> . Data lines. Used as input or output lines depending on operation                                                                                  |  |
| 27              | Input/Control | ${f WE}.$ When selected LOW, a WRITE is conducted. When selected HIGH, a READ conducted                                                                                                |  |
| 20              | Input/Control | CE. When LOW, selects the chip. When HIGH, deselects the chip                                                                                                                          |  |
| 22              | Input/Control | <b>OE</b> . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated, and act as input data pins |  |
| 14              | Ground        | GND. Ground for the device                                                                                                                                                             |  |
| 28              | Power Supply  | V <sub>CC</sub> . Power supply for the device                                                                                                                                          |  |

#### Note:

Document #: 001-06511 Rev. \*A

Page 2 of 13

<sup>2.</sup> Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25°C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.



#### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature .....-65°C to +150°C Ambient Temperature with Power Applied .....-55°C to +125°C Supply Voltage to Ground Potential (Pin 28 to Pin 14) ......-0.5V to +7.0V DC Voltage Applied to Outputs in High-Z State  $^{[3]}$  ......–0.5V to  $\rm V_{CC}$  + 0.5V DC Input Voltage<sup>[3]</sup>.....-0.5V to  $V_{CC}$  + 0.5V

| Output Current into Outputs (LOW)                      | 20 mA    |
|--------------------------------------------------------|----------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V  |
| Latch-up Current                                       | > 200 mA |

#### **Operating Range**

| Range        | Ambient Temperature (T <sub>A</sub> ) <sup>[7]</sup> | V <sub>CC</sub> |
|--------------|------------------------------------------------------|-----------------|
| Commercial   | 0°C to +70°C                                         | 5V ± 10%        |
| Industrial   | -40°C to +85°C                                       | 5V ± 10%        |
| Automotive-A | -40°C to +85°C                                       | 5V ± 10%        |
| Automotive-E | -40°C to +125°C                                      | 5V ± 10%        |

#### **Electrical Characteristics** Over the Operating Range

|                  |                                             |                                                                      |                    |      | -55                        |                          |      | -70                        |                          |      |
|------------------|---------------------------------------------|----------------------------------------------------------------------|--------------------|------|----------------------------|--------------------------|------|----------------------------|--------------------------|------|
| Parameter        | Description                                 | Test Conditions                                                      |                    |      | <b>Typ.</b> <sup>[2]</sup> | Max.                     | Min. | <b>Typ.</b> <sup>[2]</sup> | Max.                     | Unit |
| V <sub>OH</sub>  | Output HIGH Voltage                         | $V_{CC} = Min., I_{OH} = -1.0$                                       | ) mA               | 2.4  |                            |                          | 2.4  |                            |                          | V    |
| V <sub>OL</sub>  | Output LOW Voltage                          | V <sub>CC</sub> = Min., I <sub>OL</sub> = 2.1 ı                      | mA                 |      |                            | 0.4                      |      |                            | 0.4                      | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                          |                                                                      |                    | 2.2  |                            | V <sub>CC</sub><br>+0.5V | 2.2  |                            | V <sub>CC</sub><br>+0.5V | V    |
| V <sub>IL</sub>  | Input LOW Voltage                           |                                                                      |                    | -0.5 |                            | 0.8                      | -0.5 |                            | 0.8                      | V    |
| I <sub>IX</sub>  | Input Leakage Current                       | $GND \le V_1 \le V_{CC}$                                             |                    | -0.5 |                            | +0.5                     | -0.5 |                            | +0.5                     | μΑ   |
| I <sub>OZ</sub>  | Output Leakage Current                      | $GND \le V_O \le V_{CC}$ , Outp                                      | ut Disabled        | -0.5 |                            | +0.5                     | -0.5 |                            | +0.5                     | μΑ   |
| Icc              | V <sub>CC</sub> Operating Supply<br>Current | $V_{CC} = Max.,$<br>$I_{OUT} = 0 \text{ mA},$                        | L-Comm'l/<br>Ind'l |      |                            |                          |      | 25                         | 50                       | mA   |
|                  |                                             | $f = f_{MAX} = 1/t_{RC}$                                             | LL-Comm'l          |      |                            |                          |      | 25                         | 50                       | mA   |
|                  |                                             |                                                                      | LL - Ind'l         |      | 25                         | 50                       |      | 25                         | 50                       | mA   |
|                  |                                             |                                                                      | LL - Auto-A        |      | 25                         | 50                       |      | 25                         | 50                       | mA   |
|                  |                                             |                                                                      | LL - Auto-E        |      | 25                         | 50                       |      |                            |                          | mA   |
| I <sub>SB1</sub> | Automatic CE                                | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,                         | L                  |      |                            |                          |      | 0.4                        | 0.6                      | mA   |
|                  | Power-down Current—<br>TTL Inputs           | $V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$<br>$f = f_{MAX}$  | LL-Comm'l          |      |                            |                          |      | 0.3                        | 0.5                      | mA   |
|                  | p a.c                                       | - IVIAX                                                              | LL - Ind'l         |      | 0.3                        | 0.5                      |      | 0.3                        | 0.5                      | mA   |
|                  |                                             |                                                                      | LL - Auto-A        |      | 0.3                        | 0.5                      |      | 0.3                        | 0.5                      | mA   |
|                  |                                             |                                                                      | LL - Auto-E        |      | 0.3                        | 0.5                      |      |                            |                          | mA   |
| I <sub>SB2</sub> | Automatic CE                                | Max. V <sub>CC</sub> ,                                               | L                  |      |                            |                          |      | 2                          | 50                       | μΑ   |
|                  | Power-down Current—<br>CMOS Inputs          | $\overline{CE} \ge V_{CC} - 0.3V$<br>$V_{IN} \ge V_{CC} - 0.3V$ , or | LL-Comm'l          |      |                            |                          |      | 0.1                        | 5                        | μΑ   |
|                  | ooopa.a                                     | $V_{IN} \le V_{CC} - 0.3V$ , or $V_{IN} \le 0.3V$ , $f = 0$          | LL - Ind'l         |      | 0.1                        | 10                       |      | 0.1                        | 10                       | μΑ   |
|                  |                                             |                                                                      | LL - Auto-A        |      | 0.1                        | 10                       |      | 0.1                        | 10                       | μА   |
|                  |                                             |                                                                      | LL - Auto-E        | _    | 0.1                        | 15                       | _    |                            |                          | μΑ   |

# Capacitance<sup>[8]</sup>

| Parameter        | Description        | Test Conditions                    | Max. | Unit |
|------------------|--------------------|------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C$ , $f = 1$ MHz, | 6    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                    | 8    | pF   |

#### Notes:

 <sup>3.</sup> V<sub>IL</sub> (min.) = -2.0V for pulse durations of less than 20 ns.
 4. T<sub>A</sub> is the "Instant-On" case temperature.
 5. Tested initially and after any design or process changes that may affect these parameters.



#### Thermal Resistance<sup>[5]</sup>

| Parameter       | Description Test Conditions              |                                                                           | DIP   | SOIC  | TSOP  | RTSOP | Unit |
|-----------------|------------------------------------------|---------------------------------------------------------------------------|-------|-------|-------|-------|------|
| $\Theta_{JA}$   | Thermal Resistance (Junction to Ambient) | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | 75.61 | 76.56 | 93.89 | 93.89 | °C/W |
| Θ <sub>JC</sub> | Thermal Resistance (Junction to Case)    |                                                                           | 43.12 | 36.07 | 24.64 | 24.64 | °C/W |

#### **AC Test Loads and Waveforms**



#### **Data Retention Characteristics**

| Parameter                       | Description                        |                   | Conditions <sup>[6]</sup>                             | Min.            | Typ. <sup>[2]</sup> | Max. | Unit |
|---------------------------------|------------------------------------|-------------------|-------------------------------------------------------|-----------------|---------------------|------|------|
| $V_{DR}$                        | V <sub>CC</sub> for Data Retention |                   |                                                       | 2.0             |                     |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current             | L                 | $V_{CC} = 2.0V$ , $\overline{CE} \ge V_{CC} - 0.3V$ , |                 | 2                   | 50   | μΑ   |
|                                 |                                    | LL-Comm'l         | $V_{IN} \ge V_{CC} - 0.3V$ , or $V_{IN} \le 0.3V$     |                 | 0.1                 | 5    | μΑ   |
|                                 |                                    | LL - Ind'I/Auto-A |                                                       |                 | 0.1                 | 10   | μΑ   |
|                                 |                                    | LL - Auto-E       |                                                       |                 | 0.1                 | 10   | μΑ   |
| t <sub>CDR</sub> <sup>[8]</sup> | Chip Deselect to Data R            | etention Time     |                                                       | 0               |                     |      | ns   |
| t <sub>R</sub> <sup>[8]</sup>   | Operation Recovery Tim             | е                 |                                                       | t <sub>RC</sub> |                     |      | ns   |

### **Data Retention Waveform**



#### Note:

6. No input may exceed  $V_{CC}$  + 0.5V.



# Switching Characteristics Over the Operating Range<sup>[7]</sup>

|                             |                                     | CY622 | 256N-55 | CY622 | 256N-70 |      |
|-----------------------------|-------------------------------------|-------|---------|-------|---------|------|
| Parameter                   | Description                         | Min.  | Max.    | Min.  | Max.    | Unit |
| Read Cycle                  |                                     |       |         | •     | •       | •    |
| t <sub>RC</sub>             | Read Cycle Time                     | 55    |         | 70    |         | ns   |
| t <sub>AA</sub>             | Address to Data Valid               |       | 55      |       | 70      | ns   |
| t <sub>OHA</sub>            | Data Hold from Address Change       | 5     |         | 5     |         | ns   |
| t <sub>ACE</sub>            | CE LOW to Data Valid                |       | 55      |       | 70      | ns   |
| t <sub>DOE</sub>            | OE LOW to Data Valid                |       | 25      |       | 35      | ns   |
| t <sub>LZOE</sub>           | OE LOW to Low-Z <sup>[8]</sup>      | 5     |         | 5     |         | ns   |
| t <sub>HZOE</sub>           | OE HIGH to High-Z <sup>[8, 9]</sup> |       | 20      |       | 25      | ns   |
| t <sub>LZCE</sub>           | CE LOW to Low-Z <sup>[8]</sup>      | 5     |         | 5     |         | ns   |
| t <sub>HZCE</sub>           | CE HIGH to High-Z <sup>[8, 9]</sup> |       | 20      |       | 25      | ns   |
| t <sub>PU</sub>             | CE LOW to Power-up                  | 0     |         | 0     |         | ns   |
| t <sub>PD</sub>             | CE HIGH to Power-down               |       | 55      |       | 70      | ns   |
| Write Cycle <sup>[10,</sup> | , 11]                               |       |         |       |         | •    |
| t <sub>WC</sub>             | Write Cycle Time                    | 55    |         | 70    |         | ns   |
| t <sub>SCE</sub>            | CE LOW to Write End                 | 45    |         | 60    |         | ns   |
| t <sub>AW</sub>             | Address Set-up to Write End         | 45    |         | 60    |         | ns   |
| t <sub>HA</sub>             | Address Hold from Write End         | 0     |         | 0     |         | ns   |
| t <sub>SA</sub>             | Address Set-up to Write Start       | 0     |         | 0     |         | ns   |
| t <sub>PWE</sub>            | WE Pulse Width                      | 40    |         | 50    |         | ns   |
| t <sub>SD</sub>             | Data Set-up to Write End            | 25    |         | 30    |         | ns   |
| t <sub>HD</sub>             | Data Hold from Write End            | 0     |         | 0     |         | ns   |
| t <sub>HZWE</sub>           | WE LOW to High-Z <sup>[8, 9]</sup>  |       | 20      |       | 25      | ns   |
| t <sub>LZWE</sub>           | WE HIGH to Low-Z <sup>[8]</sup>     | 5     |         | 5     |         | ns   |

# **Switching Waveforms**

Read Cycle No. 1<sup>[12, 13]</sup>



#### Notes:

- Notes:

  7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $l_{OL}/l_{OH}$  and 100-pF load capacitance.

  8. At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE}$ ,  $t_{HZOE}$  is less than  $t_{LZOE}$ , and  $t_{HZWE}$  is less than  $t_{LZWE}$  for any given device.

  9.  $t_{HZOE}$ ,  $t_{HZCE}$ , and  $t_{HZWE}$  are specified with  $C_L = 5$  pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

  10. The internal Write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the Write.

  11. The minimum Write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of  $t_{HZWE}$  and  $t_{SD}$ .

  12. Device is continuously selected. OE,  $\overline{CE} = V_{IL}$ .



## Switching Waveforms (continued)

Read Cycle No.  $2^{[13, 14]}$ 



Write Cycle No. 1 (WE Controlled)[10, 15, 16]



# Write Cycle No. 2 ( $\overline{\text{CE}}$ Controlled)[10, 15, 16]



- 14. Address valid prior to or coincident with  $\overline{\text{CE}}$  transition LOW.
- 15. Data I/O is high impedance if  $\overline{OE} = V_{IH}$ .

  16. If  $\overline{CE}$  goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

  17. During this period, the I/Os are in output state and input signals should not be applied.



# Switching Waveforms (continued)

Write Cycle No. 3 ( $\overline{\text{WE}}$  Controlled,  $\overline{\text{OE}}$  LOW)[11, 16]





# Typical DC and AC Characteristics





# Typical DC and AC Characteristics (continued)







#### **Truth Table**

| CE | WE | OE | Inputs/Outputs | Inputs/Outputs Mode |                            |
|----|----|----|----------------|---------------------|----------------------------|
| Н  | Х  | Х  | High-Z         | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out       | Read                | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In        | Write               | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High-Z         | Output Disabled     | Active (I <sub>CC</sub> )  |



# **Ordering Information**

| Speed (ns) | Ordering Code     | Package<br>Diagram | Package Type                            | Operating<br>Range |
|------------|-------------------|--------------------|-----------------------------------------|--------------------|
| 55         | CY62256NLL-55SNI  | 51-85092           | 28-lead (300-Mil) Narrow SOIC           | Industrial         |
|            | CY62256NLL-55SNXI |                    | 28-lead (300-Mil) Narrow SOIC (Pb-Free) |                    |
|            | CY62256NLL-55ZI   | 51-85071           | 28-lead TSOP I                          |                    |
|            | CY62256NLL-55ZXI  | 1                  | 28-lead TSOP I (Pb-Free)                |                    |
|            | CY62256NLL-55ZXA  | 51-85071           | 28-lead TSOP I (Pb-Free)                | Automotive-A       |
|            | CY62256NLL-55SNXE | 51-85092           | 28-lead (300-Mil) Narrow SOIC (Pb-Free) | Automotive-E       |
|            | CY62256NLL-55ZXE  | 51-85071           | 28-lead TSOP I (Pb-Free)                |                    |
|            | CY62256NLL-55ZRXE | 51-85074           | 28-lead Reverse TSOP I (Pb-Free)        |                    |
| 70         | CY62256NL-70PC    | 51-85017           | 28-lead (600-Mil) Molded DIP            | Commercial         |
|            | CY62256NL-70PXC   |                    | 28-lead (600-Mil) Molded DIP (Pb-Free)  |                    |
|            | CY62256NLL-70PC   |                    | 28-lead (600-Mil) Molded DIP            |                    |
|            | CY62256NLL-70PXC  |                    | 28-lead (600-Mil) Molded DIP (Pb-Free)  |                    |
|            | CY62256NL-70SNC   | 51-85092           | 28-lead (300-Mil) Narrow SOIC           |                    |
|            | CY62256NL-70SNXC  |                    | 28-lead (300-Mil) Narrow SOIC (Pb-Free) |                    |
|            | CY62256NLL-70SNC  |                    | 28-lead (300-Mil) Narrow SOIC           |                    |
|            | CY62256NLL-70SNXC |                    | 28-lead (300-Mil) Narrow SOIC (Pb-Free) |                    |
|            | CY62256NLL-70ZC   | 51-85071           | 28-lead TSOP I                          |                    |
|            | CY62256NLL-70ZXC  |                    | 28-lead TSOP I (Pb-Free)                |                    |
|            | CY62256NL-70SNI   | 51-85092           | 28-lead (300-Mil) Narrow SOIC           | Industrial         |
|            | CY62256NL-70SNXI  |                    | 28-lead (300-Mil) Narrow SOIC (Pb-Free) |                    |
|            | CY62256NLL-70SNI  |                    | 28-lead (300-Mil) Narrow SOIC           |                    |
|            | CY62256NLL-70SNXI |                    | 28-lead (300-Mil) Narrow SOIC (Pb-Free) |                    |
|            | CY62256NLL-70ZI   | 51-85071           | 28-lead TSOP I                          |                    |
|            | CY62256NLL-70ZXI  |                    | 28-lead TSOP I (Pb-Free)                |                    |
|            | CY62256NLL-70ZRI  | 51-85074           | 28-lead Reverse TSOP I                  |                    |
|            | CY62256NLL-70ZRXI |                    | 28-lead Reverse TSOP I (Pb-Free)        |                    |
|            | CY62256NLL-70SNXA | 51-85092           | 28-lead (300-Mil) Narrow SOIC (Pb-Free) | Automotive-A       |

Please contact your local Cypress sales representative for availability of these parts



## **Package Diagrams**



#### 28-lead (300-mil) SNC (Narrow Body) (51-85092)





#### Package Diagrams (continued)

#### 28-lead TSOP I (8 x 13.4 mm) (51-85071)

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2



#### 28-Lead RTSOP I (8 x 13.4 mm) (51-85074)

NOTE: ORIENTATION LD MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2



All product and company names mentioned in this document are the trademarks of their respective holders.

#### Document #: 001-06511 Rev. \*A

Page 12 of 13



# **Document History Page**

|      | Document Title: CY62256N 256K (32K x 8) Static RAM Document Number: 001- 06511 |               |                 |                                                             |  |  |  |  |
|------|--------------------------------------------------------------------------------|---------------|-----------------|-------------------------------------------------------------|--|--|--|--|
| REV. | ECN NO.                                                                        | Issue<br>Date | Orig. of Change | Description of Change                                       |  |  |  |  |
| **   | 426504                                                                         | See ECN       | NXR             | New Data Sheet                                              |  |  |  |  |
| *A   | 488954                                                                         | See ECN       | NXR             | Added Automotive product Updated ordering Information table |  |  |  |  |