Kubernetes & Shared Responsibility

Understanding one's scope of responsibility in a Kubernetes cloud service

Why are we here?

Kubernetes is

- Big
- Complex
- New

Overview

- Shared Responsibility Models
- Kubernetes (aka K8)
- Cloud Delivery Model
- Customer Surface Area
- Threat Matrix
- Hardening
- Q&A

Who Am I?

Ken Netzorg

25 Years across various responsibilities ranging from network administration to DBA to C# development.

I like to solve problems, IT related.

Currently the Director of Technology Operations and Security at DecisivEdge and heavily involved in Azure infrastructure, security, and DevOps.

Certs: CISA/CISSP

Shared Responsibility Models

Microsoft - Azure Amazon - AWS

Kubernetes Architecture

Source: NIST Kubernetes Hardening Guide Aug 2021 V1.0

Kubernetes Architecture - Nodes

Add-Ons

- Network Policies
- DNS
- Service Mesh
- Ingress
- Etc.

Kubernetes In the Cloud

Customer Surface Area

- Application Security
 - Secure Coding
 - Patching
 - o etc
- Access Management
- Transport Security
 - Encrypted
 - Segmented
- Backups/Redundancy
 - Alternate data locations
- Secret Management
- Patching

Kubernetes Threat Matrix (updated)

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Impact
Using Cloud credentials	Exec into container	Backdoor container	Privileged container	Clear container logs	List K8S secrets	Access the K8S API server	Access cloud resources	Images from a private registry	Data Destruction
Compromised images in registry	bash/cmd inside container	Writable hostPath mount	Cluster-admin binding	Delete K8S events	Mount service principal	Access Kubelet API	Container service account		Resource Hijacking
Kubeconfig file	New container	Kubernetes CronJob	hostPath mount	Pod / container name similarity	Access container service account	Network mapping	Cluster internal networking		Denial of service
Application vulnerability	Application exploit (RCE)	Malicious admission controller	Access cloud resources	Connect from Proxy server	Applications credentials in configuration files	Access Kubernetes dashboard	Applications credentials in configuration files		
Exposed Dashboard	SSH server running inside container				Access managed identity credential	Instance Metadata API	Writable volume mounts on the host		
Exposed sensitive interfaces	Sidecar injection				Malicious admission controller		Access Kubernetes dashboard		
							Access tiller endpoint		
= New technique							CoreDNS poisoning		
= Deprecated technique							ARP poisoning and IP spoofing		

Hardening Help

Sources are available, all is not lost

- NIST Kubernetes Hardening Guidance (total platform)
- CIS Total platform and specific provider guides
- Azure "Day 2" Topics
- Amazon EKS Best Practices
- Azure AKS Baseline Cluster (Azure centric/full solution concept)

Links to these documents will be in the final slide

Hardening Help - NIST

Contents

Kubernetes Hardening Guidance	
Executive summary	
Introduction	
Recommendations	
Architectural overview	
Threat model	
Kubernetes Pod security	
"Non-root" containers and "rootless" container engines	
Immutable container file systems	
Building secure container images	
Pod Security Policies	
Protecting Pod service account tokens Hardening container engines	
Network separation and hardening	
· · · · · · · · · · · · · · · · · · ·	
Namespaces Network policies	
Resource policies	
Control plane hardening	
Etcd	1
Kubeconfig Files	
Worker node segmentation	1
Encryption	
Secrets	
Protecting sensitive cloud infrastructure	
Authentication and authorization	
AuthenticationRole-based access control	
Log auditing	
Logging	
Kubernetes native audit logging configuration	
Seccomp: audit mode	2
SYSLOG	2
SIEM platforms	
Alerting	2
Service meshes	
Fault tolerance	3
Tools	
Upgrading and application security practices	3

NIST main TOC

Hardening Help - CIS (Azure)

Table of Contents

Terms of Use	1
Overview	6
Intended Audience	6
Consensus Guidance	6
Typographical Conventions	7
Assessment Status	7
Profile Definitions	8
Acknowledgements	9
Recommendations	10
1 Master (Control Plane) Components	10
2 Master (Control Plane) Configuration	11
2.1 Logging	12
2.1.1 Enable audit Logs (Manual)	12
3 Worker Nodes	15
3.1 Worker Node Configuration Files	16
3.1.1 Ensure that the kubeconfig file permissions are set to 644 or more restrictive (Manual)	17
3.1.2 Ensure that the kubelet kubeconfig file ownership is set to root:root (Manual)	19
3.1.3 Ensure that the kubelet configuration file has permissions set to 644 or more restrictive (Manual)	21
3.1.4 Ensure that the kubelet configuration file ownership is set to root:root (Manual)	23
3.2 Kubelet	25
3.2.1 Ensure that theanonymous-auth argument is set to false (Manual)	25
3.2.2 Ensure that theauthorization-mode argument is not set to AlwaysAllov (Manual)	
3.2.3 Ensure that theclient-ca-file argument is set as appropriate (Manual)	32
3.2.4 Ensure that theread-only-port is secured (Manual)	35
3.2.5 Ensure that thestreaming-connection-idle-timeout argument is not set 0 (Manual)	

3.2.6 Ensure that theprotect-kernel-defaults argument is set to true (Manual)4
3.2.8 Ensure that thehostname-override argument is not set (Manual)	4
3.2.9 Ensure that theeventRecordQPS argument is set to 0 or a level which ensures appropriate event capture (Manual)	4
3.2.10 Ensure that therotate-certificates argument is not set to false (Manua	1)5
icies	5
RBAC and Service Accounts	5
4.1.1 Ensure that the cluster-admin role is only used where required (Manual)	5
4.1.2 Minimize access to secrets (Manual)	6
4.1.3 Minimize wildcard use in Roles and ClusterRoles (Manual)	6
4.1.4 Minimize access to create pods (Manual)	6
4.1.5 Ensure that default service accounts are not actively used. (Manual)	6
Pod Security Policies	7
4.2.1 Minimize the admission of privileged containers (Automated)	7
4.2.3 Minimize the admission of containers wishing to share the host IPC namespace (Automated)	7
4.2.5 Minimize the admission of containers with allowPrivilegeEscalation (Automated)	8
4.2.6 Minimize the admission of root containers (Automated)	8
4.2.7 Minimize the admission of containers with the NET_RAW capability (Automated)	8
	3.2.7 Ensure that the -make-iptables-util-chains argument is set to true (Manual)

CIS partial TOC

Hardening Help - AWS EKS

EKS Best Practices Guides

EKS Best Practices Guides

Guides Introduction

Security

Home

Identity and Access Management

Pod Security

Multi-tenancy

Detective Controls

Network Security

Data Encryption and Secrets Management

Runtime Security

Infrastructure Security

Regulatory Compliance

Incident Response and

Forensics

Image Security

Cluster Autoscaling

Reliability

Windows Containers (beta)

Introduction

Welcome to the EKS Best Practices Guides. The primary goal of this project is to offer a set of best practices for day 2 operations for Amazon EKS. We elected to publish this guidance to GitHub so we could interate quickly, provide timely and effective recommendations for variety of concerns, and easily incorporate suggestions from the broader community.

We currently have published guides for the following topics:

- . Best Practices for Security
- · Best Practices for Reliability
- . Best Practices for Cluster Autoscaling

In the future we will be publishing best practices guidance for performance, cost optimization, and operational excellence.

Contributing

We encourage you to contribute to these guides. If you have implemented a practice that has proven to be effective, please share it with us by opening an issue or a pull request. Similarly, if you discover an error or flaw in the guidance we've already published, please submit a PR to correct it.

Table of contents

Contributing

EKS Best Practices Intro

Conclusion

- Kubernetes is complex
- Leveraging a cloud service provider eases the burden
- Understanding where the provider stops and you start is critical
- Help is readily available if you know where to look

Q & A

Contact

Ken Netzorg
knetzorg@gmail.com
zorg_the_blue (discord)

Copy of the slides will be posted to my github: zorg-the-blue

https://github.com/zorg-the-blue/talks

Document Source Links

NIST - Kubernetes Hardening Guidance (total platform)

https://media.defense.gov/2021/Aug/03/2002820425/-1/-1/1/CTR_KUBERNETES%20HARDENING%20GUIDANCE.PDF

CIS - Total platform and specific provider guides/checklists [Requires registration]

https://www.cisecurity.org/benchmark/kubernetes

Azure - "Day 2" Topics

https://docs.microsoft.com/en-us/azure/architecture/operator-guides/aks/day-2-operations-guide

Amazon - EKS Best Practices

https://aws.github.io/aws-eks-best-practices/

Azure AKS Baseline Cluster (Azure centric/full solution concept)

https://github.com/mspnp/aks-secure-baseline