RINGKASAN AUDIT THERMAL

Berikut i	ini	ringkasan	dari hasil	audit	panas	kiln '	Tonasa	2&3	:

SHC kiln Tonasa 2 terhitung sebesar 883 kcal/kg. Heat loss pada kiln shell sebesar 55 kcal/kg.clk sedangkan heat loss pada
preheater sebesar 62 kcal/kg.clk dikategorikan tinggi. Kalibrasi dan akurasi penimbangan harus diperbaiki. Terdapat kesalahan pada
timbangan coal sebesar -3,4%. Balance error terhadap timbangan pada kiln feed sebesar -8%. Max error yang diijinkan 2%.

- SHC kiln Tonasa 3 terhitung sebesar 924 kcal/kg Heat loss pada kiln shell sebesar 5057 KJ/s setara dengan 58 kcal/kg.clk sedangkan heat loss pada preheater sebesar 5881 KJ/s setara dengan 68 kcal/kg.clk dkategorikan tinggi. Kalibrasi dan akurasi penimbangan harus diperbaiki. Terdapat kesalahan pada timbangan coal sebesar -4,6% Balance error terhadap timbangan pada kiln feed sebesar -9%.
- Memasang/melakukan kalibrasi alat ukur variabel kontrol operasi kiln seperti oksigen di kiln inlet, profil tekanan dan temperatur siklon untuk memastikan angka yang terbaca pada monitor adalah angka yang benar untuk mendapatkan gambaran aktual proses kontrol assumsi
- Tingginya temperatur gas pada siklon teratas preheater (412°C untuk T2 dan 406°C untuk T3) mengindikasikan rendahnya efisiensi siklon preheater atas. Nilai ini di atas temperatur yang diijinkan untuk sistem kiln dengan suspension preheater yaitu sekitar 380°C. Konsumsi panas tinggi juga disumbang oleh kurang efiennya pertukaran panas antara gas-partikel pada tahapan siklon; terutama antara siklon bawah dan tahap siklon berikutnya Hal ini diindikasikan dengan perbedaan temperatur antara siklon kurang dari 60°C. Secara umum potensi false air terindikasi terutama di top preheater pada check hole, expansion joint dan pendulum flap.
- Karena pengendalian mutu kiln feed melalui sistem bin blending Tonasa 2&3 sulit dipastikan untuk mencapai target mutu yang diharapkan maka pengendalian mutu dilakukan pada saat penyiapan raw meal dengan cara:
 - Menurunkan standar deviasi harian LSF raw meal T2 dan T3. Mempersempit toleransi target kualitas produk raw mill sebagai berikut:

Sd LSF maks 1.5% Residu 90 u maks 12 % Residu 200 µ maks 2 % maks 1% H_2O

CoV Residu 90 mikron maks 5%

<u> </u>	Mempertimbangkan modifikasi riser duct. Pengukuran hotmeal secara teratur untuk mengetahui derajat kalsinasi material.
Beriku	t ini disampaikan ringkasan dari hasil audit teknik sistem kiln pabrik Tonasa 4 :
	Dengan basis kiln beroperasi untuk memproduksi klinker sekitar 8.000 tpd, quartenary air hasil pengukuran didapatkan sekitar 13.794 Nm³/h pada temperatur 447°C. Pada kondisi ini panas dari gas buang PH dan quartenary air setelah dimanfaatkan untuk operasi Raw Mill 1, Raw Mill 2 dan Coal Mill baru, tersisa sekitar 37,8% dari total gas buang setara dengan panas yang tersedia untuk menghasilkan fine-coal sebesar 130 tph. Dengan demikian dapat disimpulkan bahwa sisa gas buang tersebut (setelah digunakan untuk 2 buah Raw Mill dan Coal Mill baru) masih sangat cukup dimanfaatkan untuk mengoperasikan Coal Mill lama. Persyaratan yang harus dipenuhi
	adalah sistem quartenary harus disiapkan dan diperbaiki terhadap kemungkinan kebocoran. Untuk produksi 8.000 tpd ke atas, putaran kiln Tonasa 4 sebesar 3,05 rpm terlalu rendah. Hal ini berpotensi menyebabkan material bed terlalu tebal sehingga perpindahan panas di dalam kiln menjadi kurang efektif, berimplikasi buruk tidak saja terhadap kebutuhan energi/panas tetapi reaktivitas dari klinker yang dihasilkan. Putaran kiln yang dianjurkan untuk kiln Tonasa 4 adalah 3,7 sampai 4,2 rpm. Disarankan untuk menambahkan sekitar 25% dari putaran saat ini yaitu sekitar 3,8 rpm dan pada kondisi ini motor eksisting masih sangat cukup.
	Menaikkan putaran kiln menjadi hal yg penting mengingat luasan <i>cross section</i> kiln yang terlalu kecil telah menyebabkan spesifik load dari kiln (395 tpd/m²) sudah melewati standard design sebesar 350 tpd/m²; bisa dikatakan diameter kiln Tonasa 4 terlalu kecil untuk taget produksi 8.000 tpd ke atas, sehingga diperlukan energi lebih besar untuk menjaga temperatur di dalam kiln tetap ideal. Salah satu indikasi kuat bahwa kiln Tonasa 4 boros energi adalah energi yang harus disupply oleh burner sebesar 7,7 MW/m², melebihi standar kiln sejenis sebesar 6 MW/m². Artinya untuk menghasilkan clinker dengan level freelime tertentu, kiln Tonasa 4 memerlukan 1,4 MW/m2 energi lebih besar dibanding kiln-kiln sejenis. Tingginya energi yang diperlukan di kiln tentunya berpengaruh pada usia pemakaian bata tahan api. Penggunaan <i>high momentum burner</i> memang bisa sedikit membantu meskipun saat ini spesifik momentum burner baru sekitar 3,8 N/MW yang dicapai; masih jauh jika dibanding standard kiln minimum 7 N/MW. Kapasitas udara pendinginan di cooler Tonasa 4 cukup, dihitung dari nilai <i>spesific cooling volume</i> sebesar 2,3 Nm³/kg cli, namun efisiensi cooler kurang (terhitung sebesar 65,54% atau kurang dari seharusnya >70%). Optimasi operasi cooler diperlukan melalui pengaturan distribusi aliran pendingin cooler. Distribusi aliran aktual saat ini perlu diatur kembali hingga mendekati distribusi pada kondisi optimum flow.

Untuk memaksimalkan kapasitas produksi kiln Tonasa 4, thermal burning rate di kiln harus diturunkan dari semula 7,7 menjadi max. 6,3 MW/m², artinya harus ada sebagian bahan bakar yang dibakar di kiln "dipaksa" dipindahkan ke preheater, sehingga ratio fuel di kiln maximum hanya 40% saja. Jika asumsi SLC tidak dilakukan perubahan, ini berarti diperlukan modifikasi dari riser menjadi ruang bakar seperti kalsiner agar bisa menampung sekitar 5 tph coal.
Jika 5 tph coal bisa dibakar di riser duct, dengan jumlah bahan bakar yang sama, total produksi kiln akan meningkat menjadi 8.275 tpd. Heat consumption juga bisa ditekan dari sebelumnya 817 kcal/kg menjadi 786 kcal/kg, sebagai akibat penurunan temperatur di top preheater dari sebelumnya 412°C menjadi 380°C.
Pada kapasitas 8.275 tpd, tanpa ada modifikasi top siklon, pressure di exit PH akan mencapai - 81 mbar. Hal ini terlalu tinggi untuk ID-Fan, yang berarti kenaikan 15% dari daya motor saat ini. Dengan demikian apabila diinginkan dP tetap pada kisaran 70 mmH2O, dianjurkan melakukan modifikasi top siklon agar mencapai efisiensi minimal 94%. total volume gas buang yang ditangani oleh SP-fan hampir sama saat ini atau sekitar 1,2 juta m³/hr. Jika di kemudian hari dilakukan substitusi sebagian batubara dengan AF, tidak menjadi masalah dan masih sangat mampu ditangani oleh kapasitas SP fan saat ini yang sangat besar yaitu sekitar 2,1 juta juta m³/hr.

BERIKUT INI RINGKASAN DARI HASIL AUDIT PANAS KILN TONASA 5

- Tidak ada kendala kiln Tonasa 5 untuk beroperasi pada produksi 8.000 t/d clinker, namun demikian konsumsi panas spesifik kiln Tonasa 5 relatif tinggi (823 kkal/kg cli) dibandingkan desain (760 kcal/kg cli). Beberapa hal yang berkaitan dan kemungkinan penyebab tingginya SHC kiln Tonasa 5 sbb:
 - False air relatif besar dalam sistem preheater Tonasa 5. Hal ini ditunjukkan dari perbedaan persentase O2 di kiln inlet dan keluar PH sekitar 1%, meskipun jumlah bahan bakar yang dibakar di burner kalsiner hampir 65%. Dalam kondisi operasi ini seharusnya tidak ada perbedaan yang signifikan yang ditunjukkan oleh tingkatan kadar O2 di inlet kiln dan keluar PH (jika tidak terjadi kebocoran yang signifikan).
 - Balance energi pada preheater tidak optimal, indikasi terlihat temperatur material lebih tinggi dibandingkan temperatur gas pada CN04, CN05, CN09 dan CN10. Kemungkinan disebabkan oleh kebocoran atau terdapat asesoris pada sistem siklon yang tidak berfungsi normal.
 - Temperatur keluar preheater relatif tinggi (402-417°C) kemungkinan disebabkan karena rendahnya efisiensi siklon paling atas.
 - Pertukaran panas antara gas dan partikel antara tahapan siklon di PH kurang efisien; terutama pada siklon terbawah (CN05 and CN10) dan siklon di atasnya (CN04 and CN09). Hal ini diindikasikan dari perbedaan temperatur antara siklon-sikon tersebut hanya 80°C.

Derajat kalsinasi material masuk kiln diperkirakan >97 %. Hal ini juga merupakan indikasi kuat bahwa terlalu banyak bahan bakar dibakar di kalsiner. Jika sistem tetap dipertahankan beroperasi pada tingkat kalsinasi tersebut, disarankan untuk menjalankan kiln dengan kecepatan lebih tinggi. Kecepatan ideal kiln Tonasa 5 adalah di kisaran 4,2 dan 4,5 rpm. Pada kecepatan kiln sekarang 3,9 rpm, target kalsinasi tidak boleh melebihi 90%.

- Derajat kalsinasi Tonasa 5 hasil perhitungan sekitar 97 %. Nilai kalsinasi ini terlalu tinggi dan berpotensi menyebabkan proses klinkerisasi terjadi terlalu dini sehingga mengubah struktur kristal C3S klinker. Derajat kalsinasi di kalsiner yang disarankan adalah sekitar 90 % dengan temperatur sekitar 890°C.
- Pada kecepatan kiln saat ini sekitar 3,9 rpm, dianjurkan untuk mengubah proporsi bahan bakar dibakar dalam kiln dan calciner dengan target derajat kalsinasi sekitar 90%. Peran TAD untuk mengendalikan pemisahan udara ke burner kiln dan kalsiner umumnya 40% udara pembakaran menuju kiln dan 60% menuju kalsiner. Damper udara tersier mengendalikan pemisahan ini sehingga 2 zona pembakaran dapat dioptimalkan.
- Tingkatkan kecepatan kiln untuk mendapatkan waktu tinggal material yang lebih pendek dan kualitas klinker yang lebih baik. Prasyarat yang harus dipenuhi adalah optimasi burner dan cooler. Dengan waktu retensi lebih pendek di kiln, material akan lebih sedikit, menghasilkan kondisi pembakaran yang lebih baik serta waktu yang lebih pendek untuk pembentukan Belite

Udara pendingin cooler Tonasa 5 terdistribusi di bawah kurva distribusi ideal yang direkomendasikan pada sistem tersebut. Pengaturan yang sesuai diperlukan agar distribusi udara mendekati kurva tersebut agar kondisi pendinginan dapat dioptimalkan. Optimasi cooler untuk meningkatkan efisiensi cooler dengan pengaturan distribusi aliran udara pendingin. Actual flow saat ini perlu diatur kembali mendekati kondisi Optimum flow

Tabel berikut : Menunjukkan ringkasan hasil audit kiln Tonasa 2&3, tindakan yang diperlukan beserta dampak yang ditimbulkan sebagai berikut :

No	Area	Kondisi Saat Ini	Target	Tindakan	Dampak Perubahan	Prioritas
1	Preheater	Heat loss tinggi pada preheater sebesar 5.608 KJ/s setara dengan 62 kcal/kg.clk untuk T2 sedangkan untuk T3 sebesar 5881 KJ/s setara dengan 68 kcal/kg.clk	Efisiensi perpindahan panas meningkat	Menambal kebocoran dengan menambahkan asbes seal pada setiap expantion joint	Potensi penurunan SHC 29,3 kcal/kg cli	Penting
		False air terindikasi di top preheater pada check hole, expansion joint dan pendulum flap. Indikasi sejumlah kebocoran di riser duct	False air di sistem PH berkurang	Kurangi kebocoran di sistem PH Pastikan semua katup flap kotak splash dan <i>tipping</i> valve dalam kondisi baik.	Potensi penurunan SHC 10-15 kcal/kg cli	Penting
		Temperatur (412°C untuk T2 dan 406°C untuk T3) mengindikasikan rendahnya efisiensi siklon preheater atas.	Temperatur top siklon 400°C.	Pengendalian proses Modifikasi riser duct	Potensi penurunan SHC sekitar 16 kcal/kg cli	Penting
		Konsumsi panas tinggi juga disumbang oleh kurang efiennya pertukaran panas antara gas-partikel pada tahapan siklon. Hal ini diindikasikan dengan perbedaan temperatur antara siklon kurang dari 60°C.	Efisiensi perpindahan panas meningkat	Pengukuran hotmeal secara teratur untuk mengetahui derajat kalsinasi material		
2	Riser Duct	Riser duct yang akan diubah menjadi kalsiner sebenarnya terlalu kecil untuk membakar batubara secara sempurna karena hanya memberikan waktu tinggal kurang dari 0,7	Meningkatkan kemampuan sistem kiln Dengan gas hasil pembakaran sebesar 0,97	Modifikasi duct untuk mendapatkan tingkat pembakaran yang lebih tinggi. Karena keterbatasan ruang dan orientasi riser duct, modifikasi sederhana	-	Normal

		detik	Nm3/kg.clk, dibandingkan dengan kapasitas SP fan sebesar 6,500 m³/min setara dengan 2,2 Nm³/kg.clk, maka fuel dapat ditambahkan pada preheater system.	berupa pembesaran akan memungkinkan peningkatan waktu tinggal material hingga 0,9 detik. Modifikasi ini diperkirakan akan menyebabkan SP fan akan membutuhkan energi tambahan untuk menangani gas dan tekanan tambahan dari penambahan produksi. Pada tingkat produksi ini, aliran gas total kemungkinan akan menyebabkan kapasitas fan mencapai tingkat maksimum, di mana tekanan akan meningkat sekitar 15% dari nilai saat ini. Modifikasi top siklon menjadi prioritas selanjutnya setelah modifikasi riser duct.		
3	Peralatan entasi	Peralatan instrumentasi di beberapa titik tidak tersedia dan/atau perlu dikalibrasi	Pengendalian operasi kiln dapat ditingkatkan	Memperbaiki kondisi dan mengkalibrasi ulang peralatan instrumen Untuk mempermudah control fuel, maka gas analyzer direkomendasikan untuk dipasang	Potensi penurunan SHC sekitar 0,34 – 0,38 kcal/kg klinker	Penting
4		Expansion Joint tidak berfungsi Isu safety pada tangga monyet Double Pendulum Flap dalam	Safety ditingkakan	Fungsikan kembali expansion joint Pasang pada tangga monyet Perbaiki Double Pendulum	-	Penting

		keadaan rusak		Flap	
		Kabel tray di area PH tidak terpoteksi		Pastikan semua flap valves splash box dan tipping valve dalam kondisi baik.	
				Inspeksi regular bagian internal	
				Perlu diberikan proteksi isolasi terhadap kabel tray di area PH.	
5	Cooler	Konsumsi panas relatif tinggi kemungkinan juga disebabkan oleh operasi pendinginan klinker yang tidak efisien. Indikasi kebocoran di inlet elbow no 10 Kebersihan dan house keeping perlu diperhatikan		Optimasi cooler untuk meningkatkan efisiensinya Kebersihan dan house keeping perlu ditingkatkan Eliminasi false air Perbaiki kebocoran di Inlet Elbow no 10	Penting
6	Coal Mill	Dengan kualitas batubara khususnya kadar air di raw coal rata-rata 32,45%, keterbatasan kapasitas pengeringan dari dryer mengakibatkan fine coal masih mengandung air di atas 10% (data menunjukkan nilai rata-rata 23,84%) Design coal dryer tidak mampu lagi untuk menurunkan kadar air lebih dari 8% apalagi di musim hujan.	Pemanfaatan energi panas	Meningkatkan kinerja coal mill untuk mencapai kualitas kehalusan, moisture dan nilai kalor fine coal Dengan fine coal MC masih sebesar ~ 23 sd 26 %, maka diperlukan lebih banyak udara panas untuk mengeringkan fine coal menjadi sekitar 16%. Karena hot gas yang berasal dari cooler dan kiln memiliki kandungan oksigen yang	Normal

				besar, disarankan untuk membuat hot gas duct dari outlet SP fan untuk mengalirkan udara padas menuju Coal Dryer atau Coal Mill. Pengoperasian Dryer Coal masih bisa di optimalkan dengan memanfaatkan hotgas dari area outlet		
7	Kualitas	Standar Deviasi LSF berada di atas kisaran yang diharapkan <1,5% (9,55% untuk RM 22 dan 7,25 % untuk RM 3) Kehalusan (residu 90 µm) RM 2 berada di kisaran 0,87 % – 13 % (rata-rata 13,15%) dan RM 3 berada di kisaran 10 % – 17% (rata-rata 13,38 %) cukup besar variasinya Nilai Coefficient of Variation residu 90 µm di atas standar yang diharapkan (13,94 % untuk RM 2 dan 9,59 % untuk RM 3). Data rata-rata harian klinker T2 menunjukkan nilai min FL 0,75; maks 4,85; rata-rata 1,92; adapun klinker T3 menunjukkan nilai min FL 1,07; maks 3,84; rata-rata 1,99;	Meningkatkan homogenitas raw meal	Menurunkan standar deviasi harian LSF raw meal T2 dan T3 maksimal 1,5 % dan standar deviasi harian LSF kiln feed harian T3 maksimal 1,2 %. Peningkatan keseragaman LSF pada umpan kiln akan berpengaruh terhadap penurunan SHC. Menurunkan Nilai Coefficient of Variation (CoV) harian residu 90 µm maksimal 5%	Kualitas produk meningkat Potensi penurunan SHC sekitar 3,58 kcal/kg clinker untuk penurunan 1 % LSF	Penting

8	Perhitungan	Terdapat kesalahan pada timbangan coal sebesar - 3,4% dengan assumsi clinker product sudah dihitung dengan drop test.	Perlu dilakukan drop test untuk kalibrasi ratio kiln feed, dimana rationya 1,65 terhitung berdasarkan chemical composition dan 1,74 berdasarkan flow meter.	Hasil perhitungan mendekati keadaan aktual	Penting
		Balance error terhadap timbangan pada kiln feed sebesar -8%,	Perlu rekalibrasi, Max error 2%.	Hasil perhitungan mendekati keadaan aktual	Penting
		Terdapat kesalahan pada timbangan coal sebesar - 4,6% dengan assumsi produk klinker sudah dihitung dengan drop test.	Perlu rekalibrasi, Max error 2%.	Hasil perhitungan mendekati keadaan aktual	Penting

Tabel berikut menunjukkan ringkasan hasil audit kiln Tonasa 4, tindakan yang disarankan beserta dampak yang ditimbulkan sebagai berikut :

N o	Area	Kondisi Saat Ini	Target	Tindakan yang Disarankan	Dampak Tindakan	Prioritas
1	Preheater	Temperatur top cyclone 412°C	Temperatur top siklon turun sekitar 400°C	Pengendalian operasi	Potensi penurunan SHC sekitar 5-10 kcal/kg klinker	Penting
		Analyzer O2 di string 2 tidak berfungsi Thermocouple harus diganti (headnya terbuka sehingga material masuk) sehingga pengukurannya kurang akurat	Pengendalian operasi kiln dapat ditingkatkan	Memperbaiki kondisi dan mengkalibrasi ulang peralatan instrumen	Potensi penurunan SHC sekitar 0,34 – 0,38 kcal/kg klinker	Penting
		False air di String 1 sekitar 39,9%, String 2 sekitar 44,3% False air terindikasi terutama di top PH pada check hole, expansion joint dan pendulum flap. Berdasarkan balance oksigen diperkirakan terjadi kebocoran udara sebesar 0,047 Nm³/kg clinker Indikasi terlihat pada temperatur material di siklon C3,C4, C8 dan C9 lebih panas dibandingkan	Efisiensi perpindahan panas meningkat	Menambal kebocoran	Potensi penurunan SHC 10-15 kcal/kg klinker	Penting

temperatur gas.				
Entrance meal C3 tidak sama posisi levelnya sehingga raw meal akan selalu keluar di kiln inlet seal pada saat start awal kiln feeding. TAD damper tidak beroperasi sehingga gas kiln terganggu dan banyak material dari C3 yg bypass/drop Indikasi sejumlah kebocoran di riser duct Pendulum flap tidak berfungsi menyebabkan sebagian gas panas akan bypass masuk melalui meal pipe akibatnya lebih sedikit volume gas panas yang tersedia untuk dipindahkan energinya (transfer) ke material di dalam riser duct (antara siklon).	Efisinsi perpindahan panas meningkat	Menambal kebocoran dengan menambahkan asbes seal pada setiap expantion joint Memperbaiki double pendulum flap Mengembalikan entrance meal C3 ke posisi semula. Memperbaiki splash box C3. Untuk temperature kiln inlet posisi harus pindah lebih bawah (Lantai 1) (sekarang posisi di lantai 3) Cover impact flow posisi tengahnya dipotong dapat diganti acrylic untuk melihat jatuhnya material yang dari air slide.	Potensi penurunan SHC 6,9 kcal/kg klinker	Penting

		Efisiensi top cyclone sedikit di	Efisiensi top	Modifikasi top	Potensi penurunan	Normal
		bawah standar; String 1 sekitar 91,1%, String 2 sekitar 91,4%	siklon 94% Temperatur top siklon 380°C	siklon untuk meningkatkan efisiensi siklon	SHC sekitar 30 kcal/kg akibat berkurangnya panas yang terbuang bersama debu di outlet PH.	Noma
					Temperatur top siklon diperkirakan turun hingga sekitar 30°C	
					Pressure Drop diperkirakan turun sekitar 10%	
2	Kalsiner	Proporsi bahan bakar di calciner (52,4%) dan kiln (47,6%) lebih rendah dari proporsi sistem kiln sejenis. Potensi terjadi sulfur cycle	Keseimbangan panas di sistem kiln-PH	Mengubah mode proporsi bahan bakar mendekati angka standar calciner (60 ~ 65%) dan kiln (35 ~ 40%)	Potensi penurunan SHC hingga sekitar 18,22 kcal/kg klinker	Penting
				Bersihkan <i>build-up</i> sekali dalam satu shift		

			Lengkapi lokasi kritis dengan <i>air blasters</i> di mana material <i>build up</i> sering terjadi		
	Volume calciner tidak cukup besar untuk mengakomodir jumlah bahan bakar yang dipakai saat ini. Akibatnya efektifitas pembakaran menjadi tidak optimum, meski suplai oksigen sudah mencukupi.	Meningkatkan kapasitas bakar kalsiner	Modifikasi kalsiner SLC-S dengan memotong duct dan menambahkan volume calciner Modifikasi riser duct, dengan membongkar restrictor gate dan menjadikan area sebut menjadi calciner Modifikasi dengan membuat percabangan pada TA duct eksisting untuk mensuplai udara dari cooler ke riser duct untuk memaksimalkan kapasitas bakar riser duct	Waktu tinggal partikel fine coal lebih lama Kapasitas naik menjadi 8.275 tpd SHC turun menjadi 786 kcal/kg cli Pressure Drop diperkirakan naik sekitar 10%	Penting

	17:1	Lintule man dedeni 0000 to di mesterre	Maniana	Dutana kila wasa	Metaviel beel labile (inte	Danting
3	Kiln	Untuk produksi 8000 tpd, putaran	Menjaga	Putaran kiln yang	Material bed lebih tipis	Penting
		kiln Tonasa 4 sekitar 3,05 rpm	kestabilan	dianjurkan untuk kiln	sehingga perpindahan	
		sebenarnya terlalu rendah.	temperatur di	Tonasa 4 adalah 3,7	panas di dalam kiln	
			dalam kiln	sampai 4,2 rpm.	lebih efektif.	
		Spesifik load kiln 395 tpd/m² sudah				
		melewati standard design 350		Bisa ditambahkan 25% dari		
		tpd/m ² ; bisa dikatakan diameter kiln		putaran saat ini yaitu sekitar		
		terlalu kecil untuk target produksi		3,8 rpm	Standard design	
				3,6 ipiii	mendekati 350 tpd/m ²	
		8000 tpd, sehingga diperlukan				
		panas energi lebih besar untuk				
		menjaga temperatur di dalam kiln				
		tetap ideal			Kualitas klinker lebih	
					baik	
		 Salah satu indikasi kuat bahwa kiln				
		ini boros energi adalah energi yang				
		harus disupply oleh burner yaitu				
		7,7 MW/m ² , melebihi standar kiln				
		sejenis sebesar 6 MW/m².				
		Spesifik momentum burner baru				
		•				
		sekitar 3,8 N/MW yg dicapai; masih				
		jauh jika dibanding standard kiln				
		minimum 7 N/MW.				

4	Cooler	Kapasitas pendinginan cukup,	Efisiensi	cooler	Optimasi cooler dengan	Potensi penurunan	Penting
		namun disribusi cooling air tidak	>70%		pengaturan cooling air	SHC 11,94 - 23,88	
		optimal			mendekati kurva ideal	kcal/kg klinker	
		Efisiensi cooler 65,54%			Bed depth dijaga 800-1000	Potensi penurunan	
					mm	konsumsi listrik 1-6 kWh/t klinker	
						KVVII/L KIIIIKEI	
		Indikasi kebocoran clinker di clinker					
		crusher			Cooler fan 60-80% dari		
					desiged speed atau inlet damper		
					- damper		
		False air sekitar 1,41 %					
					Periksa kondisi Drive Unit		
					Clinker Crusher		
					Omner Ordener		
					Periksa Kelancaran Udara		
					Masuk di Cooling Fan		
					Pasang Pengaman Putaran		
					Poros pada Cooling Fan		
					Periksa Pelumasan pada		

				Bantalan Cooling Fan Periksa kondisi Clinker Crusher Hammer Perbaiki kebocoron Clinker di Clinker Crusher		
				Cooler fans dengan posisi damper <50% disarankan untuk dipasangi inverter untuk menghemat power Kebersihan dan house keeping perlu diperhatikan		
5	Kualitas	Variasi kualitas raw meal cukup lebar #SD LSF 2,6% untuk RM No 1 dan 2,77% untuk RM No 2 # Nilai Coefficient of Variation residu 90 µm 8,74% untuk RM No 1 dan 9,38 % untuk RM No 2	SD LSF raw meal harian turun hingga nilai 1,2 % atau maksimal 1,5% Nilai Coefficient of Variation residu 90 µm	Menjaga level silo CF.	Homogenitas material meningkat	Penting

			harian tuun hingga <5%			
6	Raw Mill	Indikasi kebocoran udara pada beberapa titik di sistem mill. Posisi kebocoran udara ditemukan pada <i>hot gas duct joint</i> . Beberapa peralatan terpapar reject material dan tumpukan debu.	False air perlu diminimalkan target <10%	Tambal kebocoran House keeping dan safety perlu ditingkatkan	Potensi penurunan SHC 2,62 kcal/kg klinker	Normal
7	Pfister	Motor sting (pengaduk hopper) tidak ada tutupnya Vent belt untuk rotor scale tidak	Kondisi pfister baik	Penutup motor sting dikembalikan Perbaiki cover vent belt	-	Normal
		ada covernya Compensator harus ganti (sudah kotor)		untuk rotor scale Ganti compensator sekaligus kalibrasi ulang dan test		
		Indikasi kebocoran pipa fine coal	Safety	Perbaiki kebocoran pipa		Penting

		Indikasi kebocoran pipa air Tangga monyet ke top EP tidak dilengkapi pengaman		Ferbaiki kebocoran pipa air Pemasangan pengaman tangga monyet ke top EP House keeping dan safety perlu ditingkatkan		
8	Perhitungan Neraca Panas	Set print dari CCP tidak sama dengan penunjukan di schenk control seperti CCP : 260 t/h → schenk masih 250 t/h Fluktuasi kiln feed tinggi dapat mencapai 20 t/h	Perhitungan lebih akurat	Kalibrasi Drop test	Hasil perhitungan mendekati aktual	Penting
		Kebutuhan coal perhitungan sebesar 25,53 tph untuk kiln dan 28,79 tph untuk calciner. Terdapat perbedaan cukup besar hasil perhitungan dibanding penunjukan data kebutuhan coal di CCR, yaitu 23,10 tph untuk kiln dan	Perhitungan lebih akurat	Kalibrasi dan akurasi penimbangan terutama pada calciner harus diperbaiki	Hasil perhitungan mendekati aktual	Penting

21 tph untuk calciner.		

Tabel berikut Ringkasan Hasil Audit Kiln Tonasa 5

No	Area	Kondisi Saat Ini	Target	Tindakan	Dampak Perubahan	Prioritas
1	Preheater	Pertukaran panas antara gas dan partikel antara tahapan siklon di PH kurang efisien; terutama pada siklon terbawah (CN05 and CN10) dan siklon di atasnya (CN04 and CN09). Indikasi perbedaan temperatur antara siklonsikon tersebut hanya 80°C. Temperatur material lebih tinggi dibandingakn temperatur gas.	Kebocoran di sistem PH berkurang.	Pastikan semua katup flap kotak splash dan tipping valve dalam kondisi baik.	Potensi penurunan SHC sekitar 10-15 kcal/kg Beda temperatur antara siklon-sikon di PH >100°C.	Penting
		Temperatur gas keluar siklon terbawah (CN05 dan CN10) 867°C lebih tinggi dari temperatur kalsiner (847°C). Indikasi terdapat sedikit porsi bahan bakar yang belum terbakar di kalsiner	Bahan bakar seluruhnya terbakar di kalsiner.	Kontrol pembakaran	Potensi penurunan SHC diperkirakan hingga sebesar 12 kcal/kg cli	Penting
		Temperatur outlet PH cukup tinggi (402°C di CN01 dan 417°C di CN02) serta 417°C di	Mengurangi panas berlebih di kalsiner	Ubah proporsi bahan bakar di kalsiner dan		Penting

		CN06 dan 414°C di CN07) kemungkinan disebabkan karena terlalu banyak bahan bakar yang dibakar di daerah kalsiner.		kiln		
		False air relatif besar pada sistem PH. Indikasi persentase O2 di kiln inlet dan keluar PH sekitar 1,1% (1,9% di inlet kiln dan 3% di outlet PH)	False air di sistem PH berkurang	Kurangi kebocoran di sistem PH dengan memastikan semua katup flap kotak splash dan tipping valve dalam kondisi baik.	Potensi penurunan SHC diperkirakan hingga sebesar 23,3 kcal/kg cli	Penting
		Temperatur udara tersier di inlet kalsiner ILC sekitar 731°C sementara temperatur udara tersier pada duct sekitar 855°C menunjukkan false air cukup tinggi di TAD.	False air di TAD berkurang	Periksa indikasi temperatur pada tahap 4 dengan pengukuran manual. Kurangi kebocoran di TAD	Potensi penurunan SHC diperkirakan hingga sebesar 16 kcal/kg cli	
		CO di outlet PH 0,03% indikasi pencampuran yang bahan bakar dan udara yang tidak memadai, beberapa tahap proses pembakaran terjadi setelah kalsiner	Meningkatkan proses perpindahan panas gas dan material, yang dipengaruhi	Kontrol pembakaran	Penurunan SHC diperkirakan hingga sebesar 3,8 kcal/kg cli	Penting
2	Kalsiner	Thermal input di burner kiln dan kalsiner sebesar 36,9% dan 63,1%. Rasio ini kemungkinan	Mengurangi panas berlebih di kalsiner	Mengubah proporsi bahan bakar dengan memperbanyak bahan bakar dalam kiln dengan target derajat	Penurunan SHC diperkirakan hingga sebesar 16 kcal/kg cli	Penting

	menyebabkan kelebihan panas di kalsiner dan berpotensi menimbulkan siklus sulfur.		kalsinasi sekitar 90%. Bersihkan build-up sekali dalam satu shift Lengkapi lokasi kritis dengan air blasters di mana material build up sering terjadi		
			Optimalkan damper udara tersier. Ukur derajat kalsinasi dan volatil pada hot meal secara regular	Fleksibilitas untuk mengontrol dan menambah beban termal kiln serta meningkatkan kualitas klinker	
	Derajat kalsinasi material masuk kiln diperkirakan >97 %	Menetapkan target derajat kalsinasi 90%	Kontrol temperatur kalsinasi sekitar 890°C	Temperatur outlet top siklon PH dapat dikurangi sekitar 20 - 25°C SHC diperkirakan sekitar 780°C	Penting

			Meningkatkan pencampuran udara- bahan bakar	Pisahkan injeksi bahan bakar di beberapa titik yang berbeda di dalam kalsiner.	Kapasitas kalsiner dapat sedikit ditingkatkan	Normal
3	Kiln	Kiln dijalankan pada kecepatan 3,9 rpm.	Jika sistem tetap dipertahankan beroperasi pada tingkat kalsinasi tersebut, disarankan untuk menjalankan kiln dengan kecepatan lebih tinggi.	Tingkatkan kecepatan kiln sekitar 15% di kisaran 4,2 dan 4,5 rpm. Prasyarat yang harus dipenuhi adalah optimasi burner dan cooler.	Untuk mendapatkan waktu tinggal material yang lebih pendek dan kualitas klinker yang lebih baik. Dengan waktu retensi lebih pendek di kiln, material akan lebih sedikit, menghasilkan kondisi pembakaran yang lebih baik serta waktu yang lebih pendek untuk pembentukan Belite	Penting
5	Cooler	Efisiensi operasi pendinginan di cooler kurang (66,6%). Indikasi dari temperatur gas keluar cooler terlalu tinggi untuk desain preheater 4 tahap.	Menurunkan konsumsi panas spesifik sistem (SHC)	Aplikasi water spray pada fan cooler ditiadakan Pengaturan distribusi cooling air fan untuk menurunkan kehilangan panas di cooler.	SHC diperkirakan turun menjadi sebesar 805,2 kcal/kg clinker	Penting
		Indikasi kebocoran pada expansion joint saluran udara dari cooler ke inlet GCT raw	Menurunkan konsumsi	Perbaiki sumber kebocoran	Potensi penurunan SHC	Penting

		mill.	panas spesifik (SHC)		sekitar 2,6 kcal/kg clinker	
6	Kualitas	Variasi LSF raw meal cukup tinggi (std deviasi harian 3,3%)	Meningkatkan homogenitas raw meal	Menurunkan Standar Deviasi LSF raw meal harian hingga nilai 1,2 % atau maksimal 1,5% Menurunkan Standar Deviasi SM dan AM raw meal dan KF harian hingga nilai maksimum 0,03% Menjaga level CF silo	Rualitas produk meningkat Potensi penurunan SHC sekitar 3,58 kcal/kg clinker untuk penurunan 1 % LSF	Penting
7	Perhitungan anas	Rasio KF terhadap klinker berdasarkan analisis komposisi bahan sebesar 1,615 (terhitung), berbeda dengan indikasi pada flow meter dan counter klinker sebesar 1,588 (terukur).	Faktor klinker aktual dan efisiensi top siklon diketahui	Lakukan <i>drop test</i> klinker	Hasil perhitungan mendekati keadaan aktual	Penting
		Basis umpan kiln 570 tph dengan efisiensi top siklon sekitar 94%, maka <i>dust return</i> terhitung sebesar 9,5 kg/s atau 820,8 t/hari	Menentukan jumlah return dust aktual	Lakukan drop test dust pada storage atau dust bin, atau dengan metode lainnya melalui pengambilan sampel dust return dan kiln feed kemudian melakukan	Hasil perhitungan mendekati keadaan aktual	Penting

and an parametric (100).					pengukuran distribusi ukuran partikel (PSD).		
--------------------------	--	--	--	--	---	--	--