

3

4

6

5

7

8

9

10

11

12

13 14

15 16

17

18

Working Draft MEF W102 v0.2

LSO Legato Internet Protocol Service Schemas and Developer Guide

December 2022

This draft represents MEF work in progress and is subject to change.

EXPORT CONTROL: This document contains technical data. The download, export, reexport or disclosure of the technical data contained in this document may be restricted by applicable U.S. or foreign export laws, regulations and rules and/or applicable U.S. or foreign sanctions ("Export Control Laws or Sanctions"). You agree that you are solely responsible for determining whether any Export Control Laws or Sanctions may apply to your download, export, reexport or disclosure of this document, and for obtaining (if available) any required U.S. or foreign export or reexport licenses and/or other required authorizations.

MEF W102 v0.2

- 19 Disclaimer
- 20 © MEF Forum 2022. All Rights Reserved.
- 21 The information in this publication is freely available for reproduction and use by any recipient and is
- believed to be accurate as of its publication date. Such information is subject to change without notice
- and MEF Forum (MEF) is not responsible for any errors. MEF does not assume responsibility to update or
- 24 correct any information in this publication. No representation or warranty, expressed or implied, is made
- 25 by MEF concerning the completeness, accuracy, or applicability of any information contained herein and
- no liability of any kind shall be assumed by MEF as a result of reliance upon such information.
- 27 The information contained herein is intended to be used without modification by the recipient or user of
- this document. MEF is not responsible or liable for any modifications to this document made by any other
- 29 party.

32

33

34

35

36

37

38

39

- The receipt or any use of this document or its contents does not in any way create, by implication or
- 31 otherwise:
 - a) any express or implied license or right to or under any patent, copyright, trademark or trade secret rights held or claimed by any MEF member which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor
 - any warranty or representation that any MEF members will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor
 - c) any form of relationship between any MEF member and the recipient or user of this document.
- 40 Implementation or use of specific MEF standards, specifications, or recommendations will be voluntary,
- and no Member shall be obliged to implement them by virtue of participation in MEF Forum. MEF is a
- 42 non-profit international organization to enable the development and worldwide adoption of agile,
- assured and orchestrated network services. MEF does not, expressly or otherwise, endorse or promote
- any specific products or services.
- 45 EXPORT CONTROL: This document contains technical data. The download, export, reexport or disclosure
- of the technical data contained in this document may be restricted by applicable U.S. or foreign export
- laws, regulations and rules and/or applicable U.S. or foreign sanctions ("Export Control Laws or
- Sanctions"). You agree that you are solely responsible for determining whether any Export Control Laws
- 49 or Sanctions may apply to your download, export, reexport or disclosure of this document, and for
- obtaining (if available) any required U.S. or foreign export or reexport licenses and/or other required
- 51 authorizations.

Table of Contents

53	1	List of Contributing Members	1
54	2	Abstract	2
55	3	Terminology and Abbreviations	3
56	4	Compliance Levels	4
57	5	Numerical Prefixes	5
58	6	Introduction	6
59	7	Overview of LSO Legato	8
60	8	Overview IP Services Model	10
61	9	Overview of Subscriber IP Services	11
62	10	Overview of Operator IP Services	12
63	11	Subscriber and Operator Service Superclasses	13
64	12	Data Model Design Principles and Assumptions	14
65	12.1	1 Mandatory Service-Specific Attributes	15
66	12.2	2 Optional Service-Specific Attributes	15
67	12.3	B Fixed Service-Specific Attributes	16
68	13	Data Models for IP Services	18
69	13.1	Organization and Structure of the Schemas	18
70	13.2	2 Additional Details	19
71	13	3.2.1 Naming Conventions	19
72	14	Relationships Between Entities	20
73	14.1	Subscriber IP Services Relationships Between Entities	20
74	14.2	2 Operator IP Services Relationships Between Entities	23
75	15	Subscriber IP Services Data Model	28
76	15.1	L lpvc	28
77	15.2	2 IpvcEndPoint	31
78	15.3		
79	15.4		
80	15.5		
81	15.6	5 EthernerUniAccessLinkTrunk	39

MEF W102

82	16 C	Operator IP Services Data Model	41
83	16.1	IpEnni	41
84	16.2	IpEnniLink	42
85	16.3	IpEnniCommon	43
86	17 C	Common Classes and Types	45
87	17.1	AccessLinkBfd	45
88	17.2	Addressing	46
89	17.3	BfdActiveEnd	46
90	17.4	BfdAuthenticationType	47
91	17.5	BfdTransmissionInterval	48
92	17.6	Bgp	49
93	17.7	BgpAuthentication	50
94	17.8	BgpCommunity	51
95	17.9	BgpCommunityListItem	51
96	17.10) BgpExtendedCommunityListItem	52
97	17.11	BwRate	52
98	17.12	2 BurstBehavior	53
99	17.13	3 CloudDataLimit	53
100	17.14	l CloudDns	54
101	17.15	5 CloudType	54
102	17.16	5 ConnectionAddressFamily	55
103	17.17	7 ConnectionType	55
104	17.18	3 ConnectorType	56
105	17.19	O ControlProtocols	56
106	17.20) Damping	56
107	17.21	L DateTime	58
108	17.22	2 DhcpRelay	58
109	17.23	3 DhcpServer	59
110	17.24	1 DnsType	59

111	17.25 Dscp	59
112	17.26 DscpMapping	60
113	17.27 Duration	60
114	17.28 DurationUnits	60
115	17.29 EgressClassOfServiceMap	61
116	17.30 EndPointIdentifierAndCosName	62
117	17.31 Ennilpv4ConnectionAddressing	62
118	17.32 Ennilpv4Subnet	62
119	17.33 Ennilpv6ConnectionAddressing	63
120	17.34 Ennilpv6Subnet	63
121	17.35 EnniList	64
122	17.36 EnniPeeringType	64
123	17.37 EnniRoutingInformation	65
124	17.38 EnniServiceMap	67
125	17.39 EnniServiceMappingContext	67
126	17.40 EnniType	67
127	17.41 EthernetPhysicalLayer	68
128	17.42 EthernetPhysicalLink	70
129	17.43 ExternalInterfaceType	71
130	17.44 ForwardingInformation	72
131	17.45 Gender	72
132	17.46 HeaderFieldTypes	72
133	17.47 Identifier53	73
134	17.48 InformationRate	73
135	17.49 IrUnits	74
136	17.50 IngressClassOfServiceMap	75
137	17.51 IngressClassOfServiceMapEntry	75
138	17.52 IpvcCloud	76
139	17.53 IpvcEndPointRole	77

140	17.54 Ipv4Prefix	77
141	17.55 Ipv4Subnet	78
142	17.56 lpv4lpv6Prefixes	78
143	17.57 Ipv6Prefix	79
144	17.58 Ipv6Subnet	79
145	17.59 LacpVersion	79
146	17.60 L2Technology	80
147	17.61 Ospf	80
148	17.62 OspfAuthenticationType	81
149	17.63 OspfAreaType	82
150	17.64 PacketDelivery	82
151	17.65 Pcp	82
152	17.66 PcpMapping	83
153	17.67 PeeringAddress	83
154	17.68 PortMap	84
155	17.69 RouteDistinguisherFields	84
156	17.70 RoutingProtocols	84
157	17.71 ServiceTopology	85
158	17.72 Static	86
159	17.73 StaticlpEntry	86
160	17.74 StaticRoute	86
161	17.75 SynchronousEthernet	87
162	17.76 TargetRole	87
163	17.77 TimeDuration	88
164	17.78 TimeDurationUnits	88
165	17.79 UniAccessLinkEthernetLinkAggregation	89
166	17.80 UniAccessManagementTrunkType	89
167	17.81 UniAccessLinkIpv4AddressType	90
168	17.82 UniAccessLinkIpv6AddressType	90

169	17.83 Uni	Ipv4ConnectionAddressing	91
170	17.84 Uni	Ilpv6ConnectionAddressing	91
171	17.85 Uni	iManagementType	92
172	17.86 Vla	nld	92
173	17.87 Vri	d	92
174	18 IP Ba	ndwidth Profile and Bandwidth Profile Envelope	94
175	18.1 IP E	Bandwidth Profile and Envelope	94
176	18.1.1	IpBwpFlow	94
177	18.1.2	BurstBehavior	94
178	18.1.3	IpBwpEnvelope	95
179	18.1.4	IpBwpFlow	95
180	18.2 UN	I Ingress Bandwidth Profile Envelope	96
181	18.2.1	IpUniIngressBwpEnvelope	97
182	18.2.2	IpUniIngressBwp	98
183	18.2.3	IpUniIngressBwpIpvcEp	98
184	18.2.4	IpUniIngressBwpIpvcEpCos	98
185	18.2.5	IpUniIngressBwpAccessLink	98
186	18.2.6	IpUniIngressBwpIpvcEpAccessLink	99
187	18.2.7	IpUniIngressBwpIpvcEpCosAccessLink	99
188	18.3 UN	I Egress Bandwidth Profile Envelope	99
189	18.3.1	IpUniEgressBwp	101
190	18.3.2	IpUniEgressBwpIpvcEp	101
191	18.3.3	IpUniEgressBwpIpvcEpCos	101
192	18.3.4	IpUniEgressBwpAccessLink	101
193	18.3.5	IpUniEgressIpvcEpBwpAccessLink	102
194	18.3.6	IpUniEgressBwpIpvcEpCosAccessLink	102
195	18.4 UN	I Access Link Ingress Bandwidth Profile Envelope Model	102
196	18.4.1	IpUniAccessLinkIngressBwpEnvelope	102
197	18.4.2	IpUniAccessLinkIngressBwp	103

198	18.4.3	IpUniAccessLinkIngressBwpIpvcEp	103
199	18.4.4	IpUniAccessLinkIngressBwpIpvcEpCos	103
200	18.5 UN	II Access Link Egress Bandwidth Profile Envelope Model	104
201	18.5.1	IpUniAccessLinkEgressBwpEnvelope	104
202	18.5.2	IpUniAccessLinkEgressBwp	104
203	18.5.3	IpUniAccessLinkEgressBwpIpvcEp	104
204	18.5.4	IpUniAccessLinkEgressBwpIpvcEpCos	105
205	18.6 EN	NI Access Link Ingress Bandwidth Profile Envelope per ENNI Link Model	105
206	18.6.1	IpEnniIngressBwpEnvelopePerEnniLink	105
207	18.6.2	IpEnniIngressBwp	105
208	18.6.3	IpEnniIngressBwpCos	105
209	18.7 EN	NI Access Link Egress Bandwidth Profile Envelope per ENNI Model	106
210	18.7.1	IpEnniEgressBwpEnvelopePerEnniLink	106
211	18.7.2	IpEnniEgressBwp	106
212	18.7.3	IpEnniEgressBwpCos	106
213	18.8 IPV	C End Point Ingress Bandwidth Profile Envelope	107
214	18.8.1	IpvcEpIngressBwpEnvelope	107
215	18.8.2	IpvcEpIngressBwpAll	108
216	18.8.3	IpvcEpIngressBwp	108
217	18.9 IPV	C End Point Egress Bandwidth Profile Envelope	108
218	18.9.1	IpvcEpEgressBwpEnvelope	109
219	18.9.2	IpvcEpEgressBwpAll	109
220	18.9.3	IpvcEpEgressBwp	109
221	19 IP SLS	5	110
222	19.1 lpS	ls	110
223	19.2 lpv	cEndPointIdentifier	111
224	19.3 lpv	cEndPointRef	112
225	19.4 Loc	cation	112
226	19.5 Me	anTimeToRepair	112

227	19.6	OneWayInterPacketDelayVariation	113
228	19.7	OneWayMeanPacketDelay	113
229	19.8	OneWayPacketDelayPercentile	114
230	19.9	OneWayPacketDelayRange	115
231	19.10	OneWayPacketLossRatio	116
232	19.11	ServiceUptime	116
233	19.12	SIsReferencePoint	117
234	19.13	SlsRpPair	117
235	20 R	eferences	118
236	Append	dix A Usage examples (Informative)	119
237	A.1	High-level Flow	119
238	A.2	Integration of Service Specification into the Service Order API	120
239	A.3	Action: Add	122
240	A.3	.1 Use Case 1: Service Order	123
241	A.4	Action: Modify	124
242	A.4	.1 Use Case 2: Service Order: Bandwidth change	124
243	A.4	.2 Use Case 3: Service Order: IPv4 Static IP Address change at the Subscriber IP UNI	124
244	A.5	Action: Delete	124
245	A.5	(-),	ıd
246	Poii	nts 124	
247	A.5	.2 Use Case 5: Move Subscriber IP UNI to a different Location	124
248			

List of Figures

250	Figure 1-LSO Reference Diagram	8
251	Figure 2-LSO Legato API Structure	9
252	Figure 3-IP Service Model Overview	10
253	Figure 4-Subscriber IP Service Model	11
254	Figure 5-Operator IP Service Model	12
255	Figure 6-IpServicesExternalInterfaceLink Model	13
256	Figure 7-IpServicesExternalInterface Model	13
257	Figure 8-Schema Files Organization	18
258	Figure 9-Subscriber IP Service Order API Associations	20
259	Figure 10-Subscriber IP Services Entities and Relationships	23
260	Figure 11-Operator IP Service Order API Associations	24
261	Figure 12-Operator IP Services Entities and Relationships	27
262	Figure 13-lpvc Model	29
263	Figure 14-IpvcEndPoint Model	32
264	Figure 15-IpUni Model	35
265	Figure 16-IpUniAccessLink Model	37
266	Figure 17-IpUniAccessLinkTrunk Model	39
267	Figure 18-IpEnni Model	41
268	Figure 19-IpEnniLink Model	43
269	Figure 20-Bgp Model	49
270	Figure 21-EthernetPhysicalLink Model	71
271	Figure 22-L2Technology Model	80
272	Figure 23-IpBwpFlow Model	94
273	Figure 24-IpUniIngressBwpEnvelope Model	97
274	Figure 25-IpUniEgressBwpEnvelope Model	. 100
275	Figure 26-IpvcEpIngressBwpEnvelope Model	. 107
276	Figure 27-IpvcEpEgressBwpEnvelope Model	. 108
277	Figure 28-IpSIs Model	. 110

278	Figure 29-Legato End-to-End Function Flow	. 119
279	Figure 30-The Extension Pattern: Subscriber IP (1 of 2)	. 120
280	Figure 31-The Extension Pattern: Subscriber IP (2 of 2)	. 121
281	Figure 32-The Extension Pattern: Operator IP (1 of 2)	. 121
282	Figure 33-The Extension Pattern: Operator IP (2 of 2)	. 122
283	Figure 34-Service Order with Subscriber IP Example	. 122
284	Figure 35-UC1: Service Order Request	. 123
285	Figure 36-UC1: Service Order Response	. 123
286	Figure 37-UC1: Service Order Sequence Diagram	. 123
287	Figure 38-UC1: Setup Diagram	. 123
288		

List of Tables Table 2-Numerical Prefix Conventions5 Table 3-Subscriber IP Service Relationship Roles21 Table 8-IpvcEndPoint Service Attributes34 Table 20-CloudDataLimit Attributes54 Table 27-Dscp Attributes60 Table 28-DscpMapping Attributes60

319	Table 29-Duration Attributes	60
320	Table 30-EgressClassOfServiceMap Attributes	61
321	Table 31-EndPointIdentifierAndCosName Attributes	62
322	Table 32-Ennilpv4ConnectionAddressing Attributes	62
323	Table 33-Ennilpv4Subnet Attributes	63
324	Table 34-Ennilpv6ConnectionAddressing Attributes	63
325	Table 35-Ennilpv6Subnet Attributes	64
326	Table 36-EnniList Attributes	64
327	Table 37-EnniRoutingInformation Attributes	66
328	Table 38-EnniServiceMap Attributes	67
329	Table 39-EnniServiceMappingContext Attributes	67
330	Table 40-EthernetPhysicalLink Attributes	71
331	Table 41-ForwardingInformation Attributes	72
332	Table 42-Identifier53 Attributes	73
333	Table 43-InformationRate Attributes	74
334	Table 44-IngressClassOfServiceMap Attributes	75
335	Table 45-IngressClassOfServiceMapEntry Attributes	76
336	Table 46-IpvcCloud Attributes	77
337	Table 47-Ipv4Prefix Attributes	78
338	Table 48-Ipv4Subnet Attributes	78
339	Table 49-lpv4lpv6Prefixes Attributes	78
340	Table 50-lpv6Prefix Attributes	79
341	Table 51-lpv6Subnet Attributes	79
342	Table 52-L2Technology Attributes	80
343	Table 53-Ospf Attributes	81
344	Table 54-Pcp Attributes	83
345	Table 55-PcpMapping Attributes	83
346	Table 56-PeeringAddress Attributes	84
347	Table 57-PortMap Attributes	84

348	Table 58-RouteDistinguisherFields Attributes	84
349	Table 59-RoutingProtocols Attributes	85
350	Table 60-Static Attributes	86
351	Table 61-StaticIpEntry Attributes	86
352	Table 62-StaticRoute Attributes	87
353	Table 63-TimeDuration Attributes	88
354	Table 64-Ipv6ConnectionAddressing Attributes	89
355	Table 65-Unilpv4ConnectionAddressing Attributes	91
356	Table 66-Ipv6ConnectionAddressing Attributes	91
357	Table 67-VlanId Attributes	92
358	Table 68-Vrid Attributes	93
359	Table 69-lpBwpEnvelope	95
360	Table 70-lpBwpFlow	96
361	Table 71-lpUniIngressBwpEnvelope Attributes	98
362	Table 72-lpUniIngressBwpIpvcEp Attributes	98
363	Table 73-lpUniIngressBwpIpvcEpCos Attributes	98
364	Table 74-IpUniIngressBwpAccessLink Attributes	98
365	Table 75-lpUniIngressIpvcEpBwpAccessLink Attributes	99
366	Table 76-IpUniIngressBwpIpvcEpCosAccessLink Attributes	99
367	Table 77-IpUniEgressBwpEnvelope Attributes	100
368	Table 78-lpUniEgressBwplpvcEp Attributes	101
369	Table 79-IpUniEgressBwpIpvcEpCos Attributes	101
370	Table 80-IpUniEgressAccessLink Attributes	101
371	Table 81-lpUniEgressIpvcEpBwpAccessLink Attributes	102
372	Table 82-IpUniEgressBwpIpvcEpCosAccessLink Attributes	102
373	Table 83-IpUniAccessLinkIngressBwpEnvelope Attributes	103
374	Table 84-IpUniAccessLinkIngressBwpIpvcEp Attributes	103
375	Table 85-lpUniAccessLinkIngressBwpIpvcEpCos Attributes	104
376	Table 86-IpUniAccessLinkEgressBwpEnvelope Attributes	104

377	Table 87-IpUniAccessLinkEgressBwpIpvcEp Attributes	104
378	Table 88-IpUniAccessLinkEgressBwpIpvcEpCos Attributes	105
379	Table 89-IpEnniIngressBwpEnvelopePerEnniLink Attributes	105
380	Table 90-IpEnniIngressBwpCos Attributes	106
381	Table 91-IpEnniEgressBwpEnvelopePerEnniLink Attributes	106
382	Table 92-IpEnniEgressBwpCos Attributes	106
383	Table 93-IpvcEpIngressBwpEnvelopeAttributes	107
384	Table 94-IpvcEpIngressBwpAttributes	108
385	Table 95-IpvcEpEgressBwpEnvelope Attributes	109
386	Table 96-IpvcEpEgressBwp Attributes	109
387	Table 97-IpSIs Attributes	111
388	Table 98-IpvcEndPointIdentifier Attributes	111
389	Table 98-IpvcEndPointRef Attributes	112
390	Table 98-Location Attributes	112
391	Table 99-MeanTimeToRepair Attributes	112
392	Table 100-OneWayInterPacketDelayVariation Attributes	113
393	Table 101-OneWayMeanPacketDelay Attributes	114
394	Table 102-OneWayPacketDelayPercentile Attributes	115
395	Table 103-OneWayPacketDelayRange Attributes	115
396	Table 104-OneWayPacketLossRatio Attributes	116
397	Table 105-ServiceUptime Attributes	116
398	Table 106-SIsRpPair Attributes	117

The following members of the MEF participated in the development of this document and have requested to be included in this list. Editor Note 1: This list will be finalized before Letter Ballot. Any member that comments in at least one CfC is eligible to be included by opting in before the Letter Ballot is initiated. Note it is the MEF member that is listed here (typically a company or organization), not their individual representatives.

408 Editor Note 2:

AddressFamily updates need to be discussed.

409

407

400

410 Editor Note 3: BGP data type needs to be discussed and reviewed.

List of Contributing Members

Page 1

2 Abstract

- This MEF Standard consisting of this Developer Guide and its associated software artifacts (JSON/YAML
- Schemas) defines and describes the service-specific payload for the LSO Legato API for a set of Service
- 414 Functions specifically, Service Order and Service Inventory, for IP Services. The document starts with an
- overview of LSO Legato and IP Subscriber and Operator Services. It then provides a basic information
- model for the MEF IP Service Attributes. The final sections describe the Data Model focused on the
- JSON/YAML Schemas associated with this specification.
- This document can be thought of as a developer's guide for the IP Services Data Model and the schemas
- provided that embody the Data Model. MEF Services are described by a set of Service Attributes. Each
- 420 Service Attribute describes an aspect of the service that is agreed between the provider and the user of
- the service. The document that describes the Service Attributes for Subscriber and Operator IP Services
- 422 is MEF 61.1 [6] and MEF 61.1.1 [7] . The corresponding Information Model representing these resources
- and attributes is MEF 112 [10].
- This Standard normatively incorporates the following files by reference as if they were part of this
- 425 document, from GitHub repository https://github.com/MEF-GIT/MEF-
- 426 LSO/tree/develop ip/schema/serviceSchema/ip.

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions of terms are found in other documents. In these cases, the third column is used to provide the reference that is controlling, in other MEF or external documents. If the reference includes an asterisk (*), the definition has been adapted from the original.

432

427

428

429

430 431

Term	Definition	Reference
Business Applications	The Service Provider functionality supporting Business Management Layer functionality (e.g., product catalog, order management, billing, relationship management, etc.)	MEF 55.1 [9]
BUS	See Business Applications	MEF 55.1 [9]
Information Model	A representation of concepts of interest to an environment in a form that is independent of data repository, data definition language, query language, implementation language, and protocol.	IETF RFC 3444 [3]
Order	One or more Service Order Items formulated into a fulfillment request made by a Client to a Server.	This document (derived from MEF 57.2)
Service Attribute	Specific information that is agreed upon between the provider and the user of the service, that describes some aspect of the service behavior or capability.	MEF 61.1 [6]
Service Provider	In the context of this document, a Service Provider is an Ethernet Service Provider. In this document, we use Service Provider to include Super Operator as specified in MEF 26.2 (also referred to as SP/SO).	This Document

Table 1-Terminology and Abbreviations

434

433

4 Compliance Levels

- The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
- "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
- interpreted as described in BCP 14 (RFC 2119 [2], RFC 8174 [4]) when, and only when, they appear in all
- capitals, as shown here. All key words must be in bold text.
- ltems that are **REQUIRED** (contain the words **MUST** or **MUST NOT**) are labeled as **[Rx]** for required. Items
- that are **RECOMMENDED** (contain the words **SHOULD** or **SHOULD NOT**) are labeled as **[Dx]** for desirable.
- ltems that are **OPTIONAL** (contain the words **MAY** or **OPTIONAL**) are labeled as **[Ox]** for optional.

444

445

446

5 Numerical Prefixes

This document uses the prefix notation to indicate multiplier values as shown in Table 2-Numerical Prefix Conventions.

Decimal		Binary	
Symbol	Value	Symbol	Value
k	10 ³	Ki	2 ¹⁰
М	10 ⁶	Mi	2 ²⁰
G	10 ⁹	Gi	2 ³⁰
Т	1012	Ti	2 ⁴⁰
Р	10 ¹⁵	Pi	2 ⁵⁰
E	10 ¹⁸	Ei	2 ⁶⁰
Z	10 ²¹	Zi	2 ⁷⁰
Υ	10 ²⁴	Yi	2 ⁸⁰

Table 2-Numerical Prefix Conventions

6 Introduction

- LSO Legato provides a programmatic interface for establishing an automated exchange of information
- 450 (i.e., Service Order, Service Inventory) between a Business Application and Service Orchestration Function.
- These APIs are hierarchically structured. The outer-most structure includes information relating to the
- access method (e.g., REST), next is information relating to the function being requested (e.g., Service
- Order or Inventory, etc.) and the inner-most structure contains information relating to the specific service,
- 454 for example IP Service).
- The specific types of IP Services are Subscriber and Operator IP Services. Subscriber IP Services are
- 456 requested between a Customer and a Service Provider or a Service Provider and a Partner. Operator IP
- 457 Services are requested between a Service Provider (SP) and a Partner. The Service Attributes for
- Subscriber and Operator IP Services are defined in MEF 61.1 [6] and MEF 61.1.1 [7]. The corresponding
- Information Model that is used as a reference for JSON/YAML Subscriber and Operator IP Service schemas
- 460 is MEF 112 [10].
- 461 This specification is accompanied by a Data Model for Subscriber and Operator IP Services instantiated as
- a set of JSON/YAML schemas that can be used within the Legato API to perform Service Order and Service
- 463 Inventory requests.

469

470

471

472

473

474

475

477

478

479

- The Data Model for Subscriber IP Services includes resource representations for:
- IPVC: An IP Service is formed of an IP Virtual Connection (IPVC) that links together IPVC End Points at Els.
- IPVC End Point: A logical entity at an External Interface (EI), to which a subset of packets that traverse the EI is mapped.
 - IP UNI: A User Network Interface (UNI) is a demarcation point between the responsibility of the SP and the responsibility of the Subscriber. Note that a given UNI always relates to a single SP and a single Subscriber.
 - IP UNI Access Link: An individual connection between the Subscriber and the SP that forms part
 of a UNI.
 - IP UNI Access Link Trunk: A UNI Access Link Trunk is a construct that encapsulates the details of Layer 1 and Layer 2 configuration shared by one or more UNI Access Links.
- The Data Model for Operator IP Services includes resource representations for:
 - IP ENNI: An External Network Network Interface (ENNI) is the demarcation point between the responsibility of one Operator and another - other words, it is the interface where the two Operators interconnect.

IP ENNI Common: ENNI Common Attributes that apply to each agreed between two LLOs (Lowest 480 Level Operators). 481 IP ENNI Link: An ENNI can comprise one more distinct IP Links, each of which is a single IP hop. 482 These links are known as ENNI Links, and typically each corresponds to a distinct IP subnet (which 483 can have both IPv4 and IPv6 addressing). ENNI Links are assumed to be point-to-point. 484 The document contains the following sections: 485 An overview of LSO Legato (Section 7) 486 An overview of IP Services Model (Section 8) 487 An overview of Subscriber IP Services (Section 9) 488 An overview of Operator IP Services (Section 10) 489 Subscriber and Operator Service Superclasses (Section 11) 490 Data Model Design Principles and Assumptions (Section 12) 491 Data Models for IP Services (Section 13) 492 493 Relationship between the Entities (Section 14) Subscriber IP Service Data Model (Section 15) 494 Operator IP Service Data Model (Section 16) 495 Common Classes and Types (Section 17) 496 IP Bandwidth Profile and Bandwidth Profile Envelope (Section 18) 497 IP SLS (Section 19) 498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

7 Overview of LSO Legato

MEF 55.1 [9] describes the Reference Architecture for Lifecycle Service Orchestration (LSO) of MEF-defined connectivity services. MEF 55.1 [9] defines seven LSO Reference Points that are abstract interconnection points between different domains - either within the service provider domain (intradomain) or between service provider and other business entities (inter-domain). One of these LSO Reference Points is LSO Legato which defines the abstract boundary point between a Service Provider's or Partner's Business Application (BA) and Service Orchestration Functionality (SOF) for providing connectivity services provisioning.

Figure 1-LSO Reference Diagram

The access to automated service provisioning functionality is provided using the Service Provisioning API at LSO Legato. LSO Legato provides a suite of APIs for provisioning, inventory, performance management which are standardized by MEF as LSO Legato APIs, and which are made available by MEF in a series of releases of the LSO Legato SDK.

The LSO Legato APIs comprise two parts: one is the service-independent functionality, or Basic API Structure, and the second is the service-specific payload, or Information Payload, as shown in Figure 2.

Function Specific (e.g., Order, Inventory) Service Agnostic

Service Specific (e.g., Subscriber IP Services, Operator IP Services)

Focus of this document

515

516

517

518

519

520

Figure 2-LSO Legato API Structure

This document defines the service-specific payload, shown as JSON Data Model in Figure 2, specifically for a MEF 3.0 Subscriber and Operator services as defined in MEF 61.1 [6], MEF 61.1.1 [7] and MEF 112 [10]. The envelope resources of the API and association to specific payload resources will be discussed in detail later in this document.

522

523

524

525

526

527

8 Overview IP Services Model

The IP Services model has eight main classes, Ipvc, IpvcEndPoint, IpUni, IpUniAccessLink, IpUniAccessLinkTrunk, IpEnni, IpEnniCommon and IpEnniLink. An IP Service is defined as having an IPVC and one or more IPVC End Points.

The IP Service Model supports Subscriber and Operator IP Services. Figure 3 shows the entire IP Services Model including classes used for both Subscriber and Operator IP Services. Further details for both Service types will be provided in this document.

Figure 3-IP Service Model Overview

529

Page 10

9 Overview of Subscriber IP Services

This specification describes a data model for MEF-defined IP Subscriber Services. A Subscriber IP Service is an IP Service provided to an end user (the Subscriber) by a Service Provider. There is no restriction on the type of organization that can act as a Subscriber; for example, a Subscriber can be an enterprise, a mobile operator, an IT system integrator, a government department, etc. At its most basic, a Subscriber IP Service provides connectivity for IP Packets between different parts of the Subscriber's network (usually at different physical locations) or between the Subscriber's network and an external network, such as the public Internet or a private cloud service.

A User Network Interface (IpUni) is the demarcation point between the responsibility of the SP and the responsibility of the Subscriber. A given IpUni always relates to a single SP and a single Subscriber.

A given IpUni consists of one or more distinct IP links, each of which is a single IP hop from a service perspective (i.e., there is no intermediate router that processes the IP Packets traversing the link). Each such IP link is known as a UNI Access Link (IpUniAccessLink) and is a subnetwork corresponding to a distinct IP subnet (which can have both IPv4 and IPv6 addressing).

An IP Service is formed of an IP Virtual Connection (Ipvc) that links together IPVC End Points (IpvcEndPoints) at External Interfaces (Els). In the case of a Subscriber IP Service, the IPVC End Points (IpvcEndPoints) are specifically at UNIs (IpUnis).

Each IpUniAccessLink is carried by an underlying construct that encapsulates the Layer 1 and Layer 2 characteristics of the link. This construct is the UNI Access Link Trunk (IpUniAccessLinkTrunk). An IpUniAccessLinkTrunk may carry packets for a single IpUniAccessLink, as is the case where the IpUniAccessLink is a direct physical connection or may carry packets for multiple IpUniAccessLinks.

Figure 4-Subscriber IP Service Model

For Subscriber IP Services an IPVC has one or more IPVC End Points. The IPVC End Point points to exactly one IP UNI, and the IP UNI has one or more IP UNI Access Links.

556

557

558

559

560

561

562

565

566

567

568

569

570

572

573574

10 Overview of Operator IP Services

This specification describes a data model for MEF-defined IP Operator Services. When a Service Provider provides an end-to-end Subscriber IP Service to a Subscriber, they might not be able to implement the entire service using their own network - for instance, one of the Subscriber UNIs might not be in a geographic region where the Service Provider does not operate. In this case, the Service Provider must partner with another Operator who can reach that UNI. The Operator provides an IP connectivity service between the UNI and a point where they can interconnect with the SP's network as described in MEF 61.1 [6], MEF 61.1.1 [7] and MEF 112 [10].

An External Network Network Interface (ENNI) is the demarcation point between the responsibility of one Operator and another - in other words, it is the interface where two Operators interconnect.

Like a UNI, an ENNI can comprise one or more distinct IP Links, each of which is a single IP hop. These links are known as ENNI Links, and typically each corresponds to a distinct IP subnet (which can have both IPv4 and IPv6 addressing). ENNI Links are assumed to be point-to-point.

When two Operators are connected by several ENNI Links, they need to agree how these links are grouped together to form ENNIs (via the ENNI List of ENNI Links Common Attribute). Each ENNI Link belongs to exactly one ENNI.

Figure 5-Operator IP Service Model

For Operator IP Services an IPVC has one or more IPVC End Points. The IPVC End Point points to one IP ENNI. The IP ENNI points to an IP ENNI Common and the IP ENNI has one or more IP ENNI Links.

576

577

578

579

580

581

582

583

584

585

11 Subscriber and Operator Service Superclasses

Several of the IP main classes are sub-classed from a parent class that holds common attributes that are used by similar classes in the IP Services model. The superclass objects are IpServicesExternalInterfaceLink and IpServicesExternalInterface.

The IpServicesExternalInterfaceLink represents the Link Interface used for IP services. This is an abstract class and the super class. It contains the common attributes of IpEnniLink and IpUniAccessLink.

Figure 6-IpServicesExternalInterfaceLink Model

The IpServicesExternalInterface represents the physical interface used for IP services. This is an abstract class and the superclass. It contains the common attributes of IpEnni and IpUni.

Figure 7-IpServicesExternalInterface Model

596

597

598

599

600

601

616

617

618

619

620

12 Data Model Design Principles and Assumptions

- A Service Attribute for a Service can have a value that is a simple datatype such as an integer or string (or list of simple datatypes) or a value that is an object with multiple properties or a composition of objects. Within this document each simple value (integer, string, Boolean, etc.) is referred to as a Service-Specific Attribute. A Service-Specific Attribute could be a Service Attribute (in the case where the Service Attribute itself has a simple type) or it could be a parameter within a Service Attribute (if the Service Attribute is a structured object or a composition of such objects). The classification for each Service-Specific Attribute may be different across Service Function, Service Action, and Service Offering.
 - Mandatory attributes that must be provided by the Client in a Service Order request or must be returned by the SOF for an Inventory request as specified in Section 0.
 - Optional attributes that may be provided by the Client in a Service Order request and may be returned by the SOF for an Inventory request as specified in Section 12.2.
 - Fixed attributes that are hard coded and may be specified by the Client in a Service Order request and may be returned by the SOF for an Inventory request as specified in Section 12.3.
- As noted above, the classification may depend on:
- Service Function a given Service-Specific Attribute may, for example, be classified as Fixed for the Create Service Order request; while it may be classified as Mandatory for the Create Service Order request.
- Service Action a given Service-Specific Attribute may, for example, be classified as Mandatory for the Create Service Order request for an INSTALL of a new service, while it may be classified as Fixed for the Create Service Order request for a CHANGE of an installed Service.
- Service Offering a given Service-Specific Attribute may, for example, be classified as Mandatory for Create Service Order request for Service Order (e.g., Premium Service), while it may be classified as Fixed for the Create Service Order request for a different Service Order (e.g., Basic Service).
- The Service-Specific Attribute classification can be defined and negotiated during the onboarding process or defined in a Service Catalog.
- The SOF and Client **MUST** agree, for each Service-Specific Attribute, whether the attribute is Mandatory, Optional, or Fixed for each Service Function (Service Order) and Service Action (INSTALL, CHANGE) for a Service Offering.
 - [R2] The SOF and Client MUST agree, for each Service-Specific Attribute, whether the attribute is Mandatory, Optional, or Fixed for Inventory for a Service Offering.
 - [R3] If, for a Service Offering, a Service-Specific Attribute is classified as Optional for any Service Function, and if applicable, Service Action, the SOF and the Client **MUST** agree on the default value for the attribute.

[R4] The SOF MUST reject and API request if the value for a Service-Specific Attribute 621 requested by the Client is not a supported value for the applicable Service Offering. 622 The IP Service data model supports both INSTALL and CHANGE actions for Service Order for IPVC, IP UNI, 623 IP UNI Access Link, IP UNI Access Link Trunk, IPVC End Point, ENNI, and ENNI Link. The IP Service data 624 model supports the RETRIEVE action for Inventory for all Service Order components. 625 The location and physical layer of a UNI Access Link Trunk or ENNI Link cannot be changed once it is 626 ordered; instead, this is handled as an installation (UNI Access Link Trunk or ENNI Link at new location) 627 and disconnect (UNI Access Link Trunk or ENNI Link at previous location), as there is often a requirement 628 for a smooth transition with minimum downtime. 629 630 12.1 Mandatory Service-Specific Attributes [R5] If a Service-Specific Attribute is agreed to be Mandatory for a Service Function 631 (Service Order) and Service Action (INSTALL, CHANGE), then the Client MUST include 632 a value for the Service Attribute in the corresponding API request. 633 [R6] If a Service-Specific Attribute is agreed to be Mandatory for Inventory, then the SOF 634 **MUST** include a value for the attribute in the corresponding API response. 635 [R7] When the SOF receives a Service Order request in which any of the Mandatory 636 Service-Specific Attributes are not included, the request MUST be rejected by the 637 SOF. 638 12.2 **Optional Service-Specific Attributes** 639 [01] If a Service-Specific Attribute is agreed to be Optional for a Service Function (Service 640 Order) and Service Action (INSTALL, CHANGE), then the Client MAY include a value 641 for the attribute in the corresponding API request. 642 [R8] The SOF MUST apply the agreed default value for an Optional Service-Specific 643 Attribute if a value is not included by the Client in the corresponding API request. 644 [R9] If a Service-Specific Attribute is agreed to be Optional for Inventory, then the SOF 645 MUST include a value for the attribute in the corresponding API response if the value 646 is not the agreed default value. 647 [02] If a Service-Specific Attribute is agreed to be Optional for Inventory, then the SOF 648 MAY include a value for the attribute in the corresponding API response if the value 649 is the agreed default value. 650

652

653

654

657

658

659

660

661

662

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

12.3 Fixed Service-Specific Attributes

- A Service-Specific Attribute may be classified a Fixed for a Service Function and Service Action when only one value is applicable for the SOF. This can be the case for example if:
- the SOF supports only a single value, or
- the value is derived by the SOF from the value of one more other Service-Specific Attributes, 655 656
 - the SOF specifies a single value in the Service Catalog for a specific Service Offering, or
 - the Client and SOF agree on a single value during onboarding.
 - Since these a Service-Specific Attributes, each value must still be agreed in some way between the Client and the SOF, which implies that even in the first two cases, the SOF must make the Client aware of what the value is or how it is derived, before the Client places and order. How this is done is outside the scope of this document.
- The SOF applies the one applicable value for every request for which the Service-Specific Attribute is 663 classified as Fixed. 664
 - The Client and SOF MUST agree on whether the Client can include Service-Specific [R10] Attributes that have been classified as Fixed in API requests for Service Order.
 - [R11] If the Client and SOF agree that Service-Specific Attributes classified as Fixed cannot be included in API requests (see [R10]), the Client and SOF MUST agree on whether the SOF includes Service-Specific Attributes classified as Fixed in the corresponding API responses.
 - [R12] If the Client and SOF agree that Service-Specific Attributes classified as Fixed cannot be included in the API requests (see [R10]), the SOF MUST reject an API request from the Client if it includes Service-Specific Attributes that has been classified as Fixed for the Service Function (Service Order), and Service Action (INSTALL, CHANGE).
 - [R13] If the Client and SOF agree that the Service-Specific Attributes classified as Fixed cannot be included in the API requests (see [R10]), and if a Service-Specific Attribute that has been classified as Fixed for Inventory, then the SOF MUST NOT include a value for a Service-Specific Attribute in the Inventory API response.
 - [R14] If the Client and SOF agree that Service-Specific Attributes classified as Fixed can be included in API requests (see [R10]), the SOF MUST reject an API request from the Client if it includes a Service-Specific Attribute that has been classified as Fixed for the Service Function (Service Order) or Service Action (INSTALL, CHANGE) and includes a value that is different than the agreed-on fixed value.

[R15]

684 685 686

687

If the Client and SOF agree that the Service-Specific Attributes classified as Fixed can be included in API requests (see [R10]), and if a Service-Specific Attribute is classified to be Fixed for Inventory for a Service Offering, then the SOF **MUST** include a value for the Service-Specific Attribute in the Inventory API responses.

689

690

691

692

693

694

695

696

697

698

699

700

701

13 Data Models for IP Services

The data models for the IP Service configuration are expressed as a set of YAML/JSON schemas based on JSON schema draft 7 and encoded in YAML. These schemas accompany this document. This section explains the organization and structure of these schemas.

13.1 Organization and Structure of the Schemas

The schemas are organized into a file structure as shown in Figure 8.

Figure 8-Schema Files Organization

Both Subscriber and Operator IP Service schemas are provided in the same directory. There is 1 file that provide common resources that are shared with Subscriber and Operator IP services:

ip/ipCommon.yaml – provides classes shared among all IP services.

These common classes are referenced in the relevant product component schema files. For example, the IpUniAccessLink.ipv4ConnectionAddressing attribute specified in IpUniAccessLink.yaml file refers to common UniIpv4ConnectionAddressing definition:

703

704

705

706

707

708

ipv4ConnectionAddressing:

description: UniIpv4ConnectionAddressing is a data type representing how Ipv4addresses are allocated to the devices on the UNI Access Link. Reference MEF 61.1 Section 13.4 UNI Access Link IPv4 Connection Addressing Service Attribute.

\$ref: "./ipCommon.yaml#/definitions/Ipv4ConnectionAddressing"

- The *ipCommon* YAML file contains resources that are common across Subscriber and Operator IP service components as well as a number of utility resources and types.
- On a CHANGE request a single Service Attribute cannot be changed. The Client must send a full-service configuration including all Mandatory Service Attributes (Section 12.1) and all Optional Service Attributes (Section 12.2) that were previously specified by the Client (in an INSTALL request or previous CHANGE request). Any Optional Service Attributes that are not specified in a CHANGE request are reset to their default value.
- 714 **[R16]** The Service Inventory for a product **MUST** include all Service Attributes that are categorized as Mandatory.
- 716 **[R17]** The Service Inventory for a product **MUST** include all Service Attributes that are categorized as Optional.
- 718 **[O3]** The Service Inventory for a service **MAY** contain Service Attributes that are categorized as Fixed.
- Including Service Attributes in the Inventory as specified in the previous requirements facilitates the CHANGE action. The Buyer can RETRIEVE the current values for the Service Attributes and make the desired changes and submit the CHANGE request.

13.2 Additional Details

- This section includes an explanation of some additional conventions for the schema structure as well as some additional attributes that have been added to facilitate product specification for some common
- 726 edge cases.

13.2.1 Naming Conventions

In the schemas, resource and type names are UpperCamelCase and Service Attribute property names are lowerCamelCase.

727

723

Subscriber IP Service.

731

735

744

745

746

747

748

14 Relationships Between Entities

- This section describes the constraints and relationships between the primary Service Order Items for both
- Subscriber and Operator IP Services. There are specific Service Order Items for both Subscriber and
- Operator IP Services that are described in respective sections below.

14.1 Subscriber IP Services Relationships Between Entities

- This section description the constraints and relationships between the five primary Service Order Items (IPVC, IPVC End Point, IP UNI, IP UNI Access Link, and IP UNI Access Link Trunk) for Subscriber IP Services.
- The use case for Subscriber IP Services is based on ordering the IPVC, IPVC End Point, a new or existing IP UNI, a new IP UNI Access Link, and IP UNI Access Link Trunk.
- The Subscriber IPVC Service is associated with exactly one IPVC, The IPVC is associated with one or more IPVC End Points, associated IP UNIs with each IPVC End Point, associated IP UNI Access Link with each IP UNI and associated IP UNI Access Link Trunk with each IP UNI Access Link. Figure 9 illustrates the Service-agnostic Service Order with several Service Order Items and their Service-specific relationship to a
 - A Service Order is composed of one or more Service Order Items. This is supported in the service-agnostic part of the Service Order API. The service-specific payload (IP Services) is where the main components are supported as part of IP Service Schemas. Each Service Order Item is then associated with a service-specific orderable component (i.e., Ipvc) which is within the payload. Figure 9-Subscriber IP Service Order

Figure 9-Subscriber IP Service Order API Associations

The relationships between each of the Service Order Items for Subscriber IP Services are shown in Table 3. The values in the Relationship Type column are used in the *relationshipType* field of the *OrderItemRelationship* types. Specification of IP UNI Access Link, IP UNI Access Link Trunk and IPVC are mandatory at INSTALL and CHANGE of the service.

Source Service Resource	Relationship Type	Cardinality	Target Service Resource
IpvcEndPoint	IPUNI_ENDPOINT_OF_IPVC	1	Ipvc
IpvcEndPoint	CONNECTS_TO_IPUNI	1	IpUni
IpUniAccessLink	PART_OF_IPUNI	1	IpUni
IpUniAccessLinkTrunk	PROVIDES_LINK	1	IpUniAccessLink

Table 3-Subscriber IP Service Relationship Roles

[R18] For a Subscriber IP Service, the Relationship Type field of the Service Relationship Order Item Relationship types MUST contain the value shown in the Relationship Type column in Table 3.Błąd! Nie można odnaleźć źródła odwołania.

[R19] For Service Order, the relationship to an IP UNI Access Link Trunk **MUST** be specified for every INSTALL of, or CHANGE to, a Subscriber IP Service.

[R20] For a Subscriber IP Service, the relationship to an IP UNI MUST reference an IP UNI Service Order Item.

[R21] For a Subscriber IP Service, the relationship to an IP UNI Access Link MUST reference an IP UNI Access Link Service Order Item.

[R22] For a Subscriber IP Service, the relationship to an IPVC MUST reference an IPVC Service Order Item.

[R23] For a CHANGE to Subscriber IP Service the relationship to the IP UNI Access Link Trunk

MUST NOT be changed from the value present in the Service Inventory.

The Subscriber IP UNI, IP UNI Access Link, IP UNI Access Link Trunk and IPVC End Point are included with the IPVC for a Subscriber IP Service Order. The Subscriber IP UNI Access Link Trunk is associated with a specific INSTALL_LOCATION and is required at INSTALL and CHANGE. Once a Subscriber UNI Access Link Trunk is associated with a specific location, the INSTALL_LOCATION cannot be changed. The install location is captured in the service-agnostic part of the Service Order API. The value in the Place Relationship Role column in the table below is used in the role field of the *RelatedPlaceRefOrValue* type.

Service Resource	Place Relationship Role	Cardinality	Install	Change

IpUniAccessLinkTrunk INSTALL	_LOCATION 1	Mandatory	Mandatory
------------------------------	-------------	-----------	-----------

777		Table 4-Subscriber IP Place Relationship Role						
778	[R24] Fo	or a Subscriber IP So	ervice, the R	ole field (role)	of the Related	Place		
779	(R	elatedPlaceRefOrValue)	type MUST co	ntain one of the v	alues shown in the	Place		
780	Re	elationship Role column	in Table 4.					
781 782		or Service Order, the Rela ery INSTALL of, or CHAN	· ·	•	•	ed for		
783 784		or a CHANGE to an IP UN changed from the value		•		NOT		
785 786 787	Changing the UNI Access Link Trunk location is not supported for an IP Service. The value included in a CHANGE request must be identical to the value in the Inventory. The relationships applicable to Subscriber IP Services are shown in the following diagram:							

790

791

792793

797

798

799

Figure 10-Subscriber IP Services Entities and Relationships

14.2 Operator IP Services Relationships Between Entities

- This section description the constraints and relationships between the eight primary Service Order Items (IPVC, IPVC End Point, IP UNI, IP UNI Access Link, IP UNI Access Link Trunk, IP ENNI, IP ENNI Trunk and IP ENNI Common) for Operator IP Services.
- The use case for Operator IP Services is based on ordering the IPVC, IPVC End Points with a new or existing IP UNI, a new IP UNI Access Link, and IP UNI Access Link Trunk; a new or existing IP ENNI and associated ENNI resources IP ENNI Common and IP ENNI Trunk.
 - The Operator IPVC Service is associated with exactly one IPVC, The IPVC is associated with one or more IPVC End Points, associated IP UNIs with each IPVC End Point, associated IP UNI Access Link with each IP UNI and associated IP UNI Access Link Trunk with each IP UNI Access Link. In addition, the IPVC has an

801

802

803

804

805

IPVC End Point associated with an IP ENNI. Figure 11 illustrates the Service-agnostic Service Order with several Service Order Items and their Service-specific relationship to an Operator IP Service.

A Service Order is composed of one or more Service Order Items. This is supported in the service-agnostic part of the Service Order API. The service-specific payload (IP Services) is where the main components are supported as part of IP Service Schemas. Each Service Order Item is then associated with a service-specific orderable component (i.e., Ipvc) which is within the payload. Figure 9-Subscriber IP Service Order

Figure 11-Operator IP Service Order API Associations

The relationships between each of the Service Order Items for Operator IP Services are shown in Table 5. The values in the Relationship Type column are used in the relationship Type field of the OrderItemRelationship types. Specification of IP UNI Access Link, IP UNI Access Link Trunk, IP ENNI, IP ENNI Trunk, IP ENNI Common and IPVC are mandatory at INSTALL and CHANGE of the service.

Source Service Resource	Relationship Type	Cardinality	Target Service Resource
IpvcEndPoint	IPUNI_ENDPOINT_OF_IPVC	1	lpvc
IpvcEndPoint	IPENNI_ENDPOINT_OF_IPVC	1	Ipvc
IpvcEndPoint	CONNECTS_TO_IPUNI	1	IpUni

812

806

807

808

809

810

IpvcEndPoint	CONNECTS_TO_IPENNI	1	IpEnni
IpUniAccessLink	PART_OF_IPUNI	1	IpUni
IpUniAccessLinkTrunk	PROVIDES_LINK	1	IpUniAccessLink
IpEnniLink	PART_OF_IPENNI	1	IpEnni
IpEnni	USES	1	IpEnniCommon

Table 5-Operator IP Service Relationship Roles

814 815 816	[R27]	For an Operator IP Service, the Relationship Type field of the Service Relationship Order Item Relationship types MUST contain the value shown in the Relationship Type column in Table 5. Błąd! Nie można odnaleźć źródła odwołania.
817 818	[R28]	For Service Order, the relationship to an IP UNI Access Link Trunk MUST be specified for every INSTALL of, or CHANGE to, an Operator IP Service.
819 820	[R29]	For an Operator IP Service, the relationship to an IP UNI MUST reference an IP UNI Service Order Item.
821 822	[R30]	For an Operator IP Service, the relationship to an IP UNI Access Link MUST reference an IP UNI Access Link Service Order Item.
823 824	[R31]	For an Operator IP Service, the relationship to an IP UNI Access Link Trunk MUST reference an IP UNI Access Link Trunk Service Order Item.
825 826	[R32]	For a Subscriber IP Service, the relationship to an IPVC MUST reference an IPVC Service Order Item.
827 828	[R33]	For Service Order, the relationship to an IP ENNI Link Trunk MUST be specified for every INSTALL of, or CHANGE to, an Operator IP Service.
829 830	[R34]	For an Operator IP Service, the relationship to an IP ENNI MUST reference an IP ENNI Service Order Item.
831 832	[R35]	For an Operator IP Service, the relationship to an IP ENNI Link MUST reference an IP ENNI Link Service Order Item.
833 834	[R36]	For an Operator IP Service, the relationship to an IP ENNI Common MUST reference an IP ENNI Common Service Order Item.
835 836	[R37]	For a CHANGE to Operator IP Service the relationship to the IP UNI Access Link Trunk MUST NOT be changed from the value present in the Service Inventory.

The Operator IP UNI, IP UNI Access Link, IP UNI Access Link Trunk, IPVC End Points, IP ENNI Link, IP ENNI and IP ENNI Common are included with the IPVC for an Operator IP Service Order. The Operator IP UNI

Access Link Trunk and IP ENNI Trunk is associated with a specific INSTALL_LOCATION and is required at INSTALL and CHANGE. Once an Operator UNI Access Link Trunk is associated with a specific location, the INSTALL_LOCATION cannot be changed. The same is true for an ENNI Link The install location is captured in the service-agnostic part of the Service Order API. The value in the Place Relationship Role column in the table below is used in the role field of the *RelatedPlaceRefOrValue* type.

844

845

857

858

859

860

839

840 841

842

843

Service Resource	Place Relationship Role	Cardinality	Install	Change
IpUniAccessLinkTrunk	ACCESS_LINK_INSTALL_LOCATION	1	Mandatory	Mandatory
IpEnniLink	ENNI_LINK_INSTALL_LOCATION	1	Mandatory	Mandatory

Table 6-Operator IP Place Relationship Roles

846 [R38] For an Operator IP Service, the Role field (role) of the Related Place (RelatedPlaceRefOrValue) type MUST contain one of the values shown in the Place 847 Relationship Role column in Table 6. 848 [R39] For Service Order, the Related Place (RelatedPlaceRefOrValue) MUST be specified for 849 every INSTALL of, or CHANGE to an IP UNI Access Link Trunk. 850 [R40] For Service Order, the Related Place (RelatedPlaceRefOrValue) MUST be specified for 851 every INSTALL of, or CHANGE to an IP ENNI Link. 852 [R41] For a CHANGE to an IP UNI Access Link Trunk service, the Related Place MUST NOT 853 be changed from the value present in the Service Inventory. 854 For a CHANGE to an IP ENNI Access Link service, the Related Place MUST NOT be [R42] 855 changed from the value present in the Service Inventory. 856

Changing the UNI Access Link Trunk location is not supported for an IP Service. The value included in a CHANGE request must be identical to the value in the Inventory. Changing the ENNI Link location is not supported for an IP Service. The value included in a CHANGE request must be identical to the value in the Inventory. The relationships applicable to Operator IP Services are shown in Figure 12.

Figure 12-Operator IP Services Entities and Relationships

864

865

866

867

868

869

15 Subscriber IP Services Data Model

A Subscriber IP Service is an IP Service provided to an end user (the Subscriber) by a Service Provider. There is no restriction on the type of organization that can act as a Subscriber; for ex- ample, a Subscriber can be an enterprise, a mobile operator, an IT system integrator, a government department, etc. At its most basic, a Subscriber IP Service provides connectivity for IP Packets between different parts of the Subscriber's network (usually at different physical locations) or between the Subscriber's network and an external network, such as the public Internet or a private cloud service.

- The Resources and corresponding Attributes are listed in groups:
- Subscriber IP Services Resource:
- 872 o lpvc
- 873 o IpvcEndPoint
- o IpUni
- 875 o IpUniAccessLink
- o IpUniAccessLinkTrunk
- 877 **15.1 lpvc**
- An IP Service is formed of an IP Virtual Connection (IPVC) that links together IPVC End Points at External Interfaces (EIs). Reference MEF 61.1 Section 7.4 IP Virtual Connections and IPVC End Points. NOTE: The association of IPVC and IPVC End Points is implemented within the envelope part of the API.

Figure 13-Ipvc Model

Figure 13 presents the class diagram of classes present in the ipvc.yaml file. Note that all empty classes on it are only to show the type of the relation attributes while maintaining the readability of the diagram. Their detailed model will be described later.

\$id: urn:mef:lso:spec:legato:lpvc:v0.0.1:all						
Attribute Name	Туре	Multiplicity	Description			
administrativeState	AdminState	1	This attribute denotes the administrative state of IPVC. The values supported are LOCKED and UNLOCKED. When set to UNLOCKED, the IPVC is enabled and ready to forward traffic. When set to LOCKED, the IPVC is disabled and will block (i.e., not forward) traffic.			
operationalState	OperationalState	1	This attribute denotes the operational state of the IPVC, as			

883

884

Schema File Name: ip/ipvc.yaml				
\$id: urn:mef:lso:spec:legato:lpvc:v0.0.1:all				
			working ENABLED or not working DISABLED.	
ipvcIdentifier	String	1	A unique string identifier for the IPVC. Reference MEF 61.1 Section 10.1 IPVC Identifier Service Attribute.	
ipvcTopology	ServiceTopology	1	Attribute denoting the packet flow between any of the IPVC End Points for the IPVC. Reference MEF 61.1 Section 10.2 IPVC Topology Service Attribute.	
packetDelivery	PacketDelivery	1	Indicates whether packets are delivered per standard IP routing behavior or by some other means. Reference MEF 61.1 Section 10.4 IPVC Packet Delivery Service Attribute.	
maximumNumberOflp v4Routes	Integer	01	Maximum number of IPv4 routes supported by the service as a whole. Reference MEF 61.1 Section 10.5 IPVC Maximum Number of IPv4 Routes Service Attribute. Absence of this attribute corresponds to a value of "Unlimited".	
maximumNumberOflp v6Routes	Integer	01	Maximum number of IPv6 routes supported by the service as a whole. Reference MEF 61.1 Section 10.6 IPvC Maximum Number of IPv6 Routes Service Attribute. Absence of this attribute corresponds to a value of "Unlimited".	
dscpPreservation	EnabledDisabled	1	Indicates where the SP or Operator is allowed to modify the value of the IP DS field in the IP header of the Subscriber's traffic as it traverses the IPVC. Reference MEF 61.1 Section 10.7 IPVC DSCP Preservation Service Attribute.	

Schema File Name: ip/ipvc.yaml					
\$id: urn:mef:lso:spec:legato:lpvc:v0.0.1:all					
serviceLevelSpecificati on	IpSIs	01	The set of performance objectives for each CoS Name in the IPVC. The absence of this attribute corresponds to a value of "NONE". Reference MEF 61.1 Section 10.9 IPVC Service Level Specification Service Attribute.		
maximumTransferUnit	Integer	1	Indicates the maximum size (in octets) of an IP packet that can traverse the IPVC without fragmentation. Reference MEF 61.1 Section 10.10 IPVC MTU Service Attribute.		
pathMtuDiscovery	EnabledDisabled	1	Indicates whether the Path MTU Discovery is supported for the IPVC. Reference MEF 61.1 Section 10.11 IPVC Path MTU Discovery Service Attribute.		
fragmentation	EnabledDisabled	1	Indicates whether IPv4 Packets can be fragmented. Reference MEF 61.1 Section 10.12 IPVC Fragmentation Service Attribute.		
cloud	IpvcCloud	01	Reference MEF 61.1 Section 10.13 IPVC Cloud Service Attribute. The absence of this attribute corresponds to a value of "NONE".		
reservedPrefixes	Ipv4Ipv6Prefixes	1	Reference MEF 61.1 Section 10.14 IPVC Reserved Prefixes Service Attribute.		
listOfClassOfServiceNa mes	String	1*	The list of CoS Names supported by the IPVC. Reference MEF 61.1 Section 10.8 IPVC List of Class of Service Names Service Attribute.		

Table 7-Ipvc Service Attributes

15.2 **IpvcEndPoint**

An IPVC End Point is a logical entity at an EI, to which a subset of packets that traverse the EI is mapped. Reference MEF 61.1 Section 7.4 IP Virtual Connections and IPVC End Points.

891

887

888

889

892

893

Figure 14-IpvcEndPoint Model

Schema File Name: ip/ipvcEndPoint.yaml \$id: urn:mef:lso:spec:legato:lpvcEndPoint:v0.0.1:all					
Attribute Name	Туре	Multiplicity	Description		
administrativeState	AdminState	1	This attribute denotes the administrative state of IPVC End Point. The values supported are LOCKED and UNLOCKED. When set to UNLOCKED, the IPVC End Point is enabled and ready to forward traffic. When set to LOCKED, the IPVC End Point is disabled and will block (i.e., not forward) traffic.		
operationalState	OperationalState	1	This attribute denotes the operational state of the IPVC End Point, as working ENABLED or not working DISABLED.		
identifier	Identifier53	1	A unique identifier for the IPVC End Point for management purposes. Reference MEF 61.1 Section 11.1 IPVC EP Identifier Service Attribute.		
еіТуре	ExternalInterface Type	1	Indicates whether the IPVC End Point is at a UNI or an ENNI. (Operator IPVC EPs only). Reference MEF 61.1 Section 11.2 IPVC EP EI Type Service Attribute.		

Schema File Name: ip/ipvcEndPoint.yaml					
\$id: urn:mef:lso:spec:le	\$id: urn:mef:lso:spec:legato:lpvcEndPoint:v0.0.1:all				
role	IpvcEndPointRole	1	Role of the IPVC End Point in a a rooted multipoint IPVC. Reference MEF 61.1 Section 11.4 IPVC EP Role Service Attribute.		
prefixMapping	Ipv4Ipv6Prefixes	1	Is a list, possibly empty of IP Prefixes. It is used to specify which subnets with the Subscriber Network can access the IPVC via this IPVC EP. Reference MEF 61.1 Section 11.5 IPVC EP Prefix Mapping Service Attribute.		
enniServiceMappingId entifier	Identifier53	01	ENNI Service Mapping Identifier assigned by the SP/SO for associating IPVC End Points across and ENNI. (Operator IPVC End Points only). Reference MEF 61.1 Section 11.6 IPVC EP ENNI Service Mapping Identifier Service Attribute.		
maximumNumberOflp v4Routes	Integer	01	Maximum number of IPv4 routes supported by this IPVC End Point. Reference MEF 61.1 Section 11.7 IPVC EP Maximum Number of IPv4 Routes Service Attribute. Absence of this attribute corresponds to a value of "Unlimited".		
maximumNumberOflp v6Routes	Integer	01	Maximum number of IPv6 routes supported by this IPVC End Point. Reference MEF 61.1 Section 11.8 IPVC EP Maximum Number of IPv6 Routes Service Attribute. Absence of this attribute corresponds to a value of "Unlimited".		
ingressClassOfService Map	IngressClassOfSer viceMap	1	Specification of how ingress packets are mapped to different CoS Names. Reference MEF 61.1 Section 11.9 IPVC EP Ingress Class of Service Map Service Attribute.		
egressClassOfService Map	EgressClassOfServ iceMap	1	Specification of how Class of Service is indicated in egress packets. Reference MEF 61.1		

Schema File Name: ip/i	Schema File Name: ip/ipvcEndPoint.yaml				
\$id: urn:mef:lso:spec:legato:lpvcEndPoint:v0.0.1:all					
			Section 11.10 IPVC EP Egress Class of Service Map Service Attribute.		
ingressBandwidthProf ileEnvelope	IpvcEpIngressBwp Envelope	01	Ingress Bandwidth Profile Envelope for the IPVC End Point. The absence of this attribute corresponds to a value of "None". Reference MEF 61.1 Section 11.11 IPVC EP Ingress Bandwidth Profile Envelope Service Attribute.		
egressBandwidthProfil eEnvelope	IpvcEpEgressBwp Envelope	01	Egress Bandwidth Profile Envelope for the IPVC End Point. The absence of this attribute corresponds to a value of "None". Reference MEF 61.1 Section 11.12 IPVC EP Egress Bandwidth Profile Envelope Service Attribute.		

Table 8-IpvcEndPoint Service Attributes

15.3 IpUni

895

896

897

898

899

A User Network Interface (UNI) is the demarcation point between the responsibility of the SP and the responsibility of the Subscriber. Note that a given UNI always relates to a single SP and a single Subscriber. Reference MEF 61.1Bfqd! Nie można odnaleźć źródła odwołania. Section 7.3 UNIs and UNI Access Links.

901

902

903 904

905

Figure 15-IpUni Model

Figure 15-IpUni presents the class diagram of classes present in the IpUni.yaml file. Note that all empty classes on it are only to show the type of the relation attributes while maintaining the readability of the diagram. Their detailed model will be described later.

Attribute Name	Туре	Multiplicity	Description
managementType	UniManagementT	1	Attribute indicating whether
	уре		the CE is the responsibility of
			the Subscriber or the Service
			Provider. Reference MEF 61.1
			Section 12.2 UNI Management
			Type Service Attribute.

Schema File Name: ip/IpUni.yaml

MEF W102 **v0.2** © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

Schema File Name: ip/Ip	oUni.yaml		
\$id: urn:mef:lso:spec:leg	gato:lpUni:v0.0.1:all		
			attribute corresponds to a value of "None".
egressBwpProfileEnvel ope	IpUniEgressBwpEn velope	01	Attribute used for an egress UNI Bandwidth Profile. Reference MEF 61.1 Section 12.5 UNI Egress Bandwidth Profile Envelope Service Attribute. Absence of this attribute corresponds to a value of "None".
listOfControlProtocols	ControlProtocols	0*	Indication of IP Control Protocols that are not forwarded transparently by the SP. Reference MEF 61.1 Section 12.6 UNI List of Control Protocols Service Attribute. Absence of this attribute corresponds to a value of "None".
routingProtocols	RoutingProtocols	01	List of Routing Protocols used across the UNI. Reference MEF 61.1 Section 12.7 UNI Routing Protocols Service Attribute. Absence of this attribute corresponds to a value of "None".
reversePathForwardin g	EnabledDisabled	1	Indicates whether Reverse Path Forwarding checks are used by the SP at the UNI. Reference MEF 61.1 Section 12.8 UNI Reverse Path Forwarding Service Attribute.

Table 9-IpUni Service Attributes

15.4 IpUniAccessLink

An individual connection between the Subscriber and the SP that forms part of a UNI. Reference MEF 61.1Błąd! Nie można odnaleźć źródła odwołania. Section 7.3 UNIs and UNI Access Link.

906

907

908

912

Figure 16-IpUniAccessLink Model

Schema File Name: ip/IpUniAccessLink.yaml \$id: urn:mef:lso:spec:legato:IpUniAccessLink:v0.0.1:all			
Attribute Name	Туре	Multiplicity	Description
connectionType	ConnectionType	1	Attribute that indicates the number of interfaces that can be attached to the UNI Access Link. Reference MEF 61.1 Section 13.2 UNI Access Link Connection Type Service Attribute.
ipv4ConnectionAddres sing	Unilpv4Connectio nAddressing	01	IPv4 Connection Addressing. Reference MEF 61.1 Section 13.4 UNI Access Link IPv4 Connection Addressing Service Attribute. Absence of this attribute corresponds to a value of "None".
ipv6ConnectionAddres sing	Unilpv6Connectio nAddressing	01	IPv6 Connection Addressing. Reference MEF 61.1 Section 13.5 UNI Access Link IPv6 Connection Addressing Service Attribute. Absence of this attribute corresponds to a value of "None".
dhcpRelay	DhcpRelay	01	Indicates whether DHCP Relay functionality is enabled. Reference MEF 61.1 Section 13.6 UNI Access Link DHCP Relay Service Attribute.

MEF W102

© MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

Page 37

Schema File Name: ip/IpUniAccessLink.yaml			
\$id: urn:mef:lso:spec:leg	gato:IpUniAccessLink	v0.0.1:all	
			Absence of this attribute corresponds to a value of "Disabled".
prefixDelegation	EnabledDisabled	1	Indicates whether DHCP Prefix delegation is enabled. Reference MEF 61.1 Section 13.7 UNI Access Link Prefix Delegation Service Attribute.
ingressBwpProfileEnve lope	IpUniAccessLinkIn gressBwpEnvelope	01	Ingress Bandwidth Profile Envelope for the UNI Access Link. Reference MEF 61.1 Section 13.10 UNI Access Link Ingress Bandwidth Profile Envelope Service Attribute. Absence of this attribute corresponds to a value of "None".
egressBwpProfileEnvel ope	IpUniAccessLinkEg ressBwpEnvelope	01	Egress Bandwidth Profile Envelope for the UNI Access Link. Reference MEF 61.1 Section 13.11 UNI Access Link Egress Bandwidth Profile Envelope Service Attribute. Absence of this attribute corresponds to a value of "None".
reservedVrids	Vrid	0*	List of VRRP (Virtual Router Redundancy Protocol) VRIDs (Virtual Router Identifier) reserved for use by the SP or Operator. Reference MEF 61.1 Section 13.12 UNI Access Link Reserved VRIDs Service Attribute.

Table 10-IpUniAccessLink Service Attributes

15.5 IpUniAccessLinkTrunk

A UNI Access Link Trunk is a construct that encapsulates the details of Layer 1 and Layer 2 configuration shared by one or more UNI Access Links. Reference MEF 61.1.1 Section A1-1 UNI Access Link Trunk Service Attributes.

913

914

915

916

919

920

921

922

923

924

Figure 17-IpUniAccessLinkTrunk Model

Schema File Name: ip/IpUniAccessLinkTrunk.yaml \$id: urn:mef:lso:spec:legato:IpUniAccessLinkTrunk:v0.0.1:all			
Attribute Name	Туре	Multiplicity	Description
identifier	Identifier53	1	Unique identifier for the UNI Access Link Trunk for management purposes. Reference MEF 61.1.1 Section A1-1.1 UNI Access Link Trunk Identifier Service Attribute.
trunkType	UniAccessLinkTrun kType	1	Specifies the Layer 2 technology that is used to implement the UNI Access Link Trunk. Reference MEF 61.1.1 Section A1-1.2 UNI Access Link Trunk Type Service Attribute.
ethernetUniAccessLink Trunk	EthernetUniAcces sLinkTrunk	01	Pointer to EthernetUniAccessLinkTrunk which is one of the possible types.

Table 11-IpUniAccessLinkTrunk Service Attributes

15.6 EthernerUniAccessLinkTrunk

A single point-to-point physical Ethernet channel or multiple physical Ethernet links combined into a Link Aggregation Group. The Ethernet frames associated with a given UNI Access Link can be either

untagged/priority tagged or VLAN tagged. Reference MEF 61.1.1 A1-1.3 Ethernet UNI Access Link Trunk Service Attributes.

927

928

925

Schema File Name: ip/ethernetUniAccessLinkTrunk.yaml \$id: urn:mef:lso:spec:legato:EthernetUniAccessLinkTrunk:v0.0.1:all			
Attribute Name	Туре	Multiplicity	Description
ethernetPhysicalLinks	EthernetPhysical Link	1*	A list of the physical link types along with some additional capabilities. Reference MEF 61.1.1 Section A1-1.3.1 UNI Access Link Trunk List of Ethernet Physical Links Service Attribute.
ethernetLinkAggregati on	UniAccessLinkEth ernetLinkAggrega tion	0*	Indicates whether the UNI Access Link Trunk is a Link Aggregation Group, and if so, specifies parameters that control the mapping of Ethernet frames to links in the LAG. Reference MEF 61.1.1 Section A1-1.3.2 UNI Access Link Trunk Ethernet Link Aggregation Service Attribute.
ethernetLinkOam	EnabledDisabled	1	Controls when and how Link OAM per IEEE Std 802.3-2018 is run on the physical links in the UNI Access Link Trunk. The value is either Enabled or Disabled. Reference MEF 61.1.1 Section A1-1.3.3.

Table 12-EthernetUniAccessLinkTrunk Attributes

930

931

932

933 934

935 936

937

943

944

945

946

16 Operator IP Services Data Model

When a Service Provider provides an end-to-end Subscriber IP Service to a Subscriber, they might not be able to implement the entire service using their own network – for instance, one of the Subscriber's UNIs might be in a geographic region where the Service Provider does not operate. In this case, the Service Provider must partner with another Operator who can reach that UNI. The Operator provides an IP connectivity service between the UNI and a point where they can interconnect with the SP's network. Such IP Services – provided by one Operator to another Operator or a Service Provider, to implement part of an end-to-end Subscriber IP Service – are known as Operator IP Services.

- Operator IP Services:
- 938 o lpUni
- 939 o IpUniAccessLink
- 940 o lpEnni
- 941 o IpEnniLink
- 942 o IpEnniCommon

16.1 IpEnni

An External Network Network Interface (ENNI) is the demarcation point between the responsibility of one Operator and another - other words, it is the interface where the two Operators interconnect. Reference MEF 61.1Błąd! Nie można odnaleźć źródła odwołania. Section 8.2 ENNI and ENNI Links.

Figure 18-IpEnni Model

Attribute Name	Туре	Multiplicity	Description
ipEnniCommon	IpEnniCommon	1	Reference to IP ENNI Common.
enniType	EnniType	1	Indication of the type of BGP Peering at the ENNI. Reference MEF 61.1 Section 14.2 ENNI Type Service Attribute.
routingInformation	EnniRoutingInfor mation	1	Per-service routing information applicable at the ENNI. Reference MEF 61.1 Section 14.3 ENNI Routing Information Service Attribute.
ingressBandwidthProfil eEnvelopes	IpEnniIngressBwp EnvelopePerEnniLi nk	1	Bandwidth Profile Envelope per ENNI Link used for an ingress Bandwidth Profile. Reference MEF 61.1 Section 14.4 ENNI Ingress Bandwidth Profile Envelopes Service Attribute.
egressBandwidthProfil eEnvelopes	IpEnniEgressBwpE nvelopePerEnniLin k	1	Bandwidth Profile Envelope per ENNI Link used for an egress Bandwidth Profile. Reference MEF 61.1 Section 14.5 ENNI Egress Bandwidth Profile Envelopes Service Attribute.

Table 13-IpEnni Service Attributes

16.2 **IpEnniLink**

950

951

952

953

954

955

An ENNI can comprise one or more distinct IP Links, each of which is a single IP hop. These links are known as ENNI Links, and typically each corresponds to a distinct IP subnet (which can have both IPv4 and IPv6 addressing). ENNI Links are assumed to be point-to-point. Reference MEF 61.1 Section 8.2 ENNIs and ENNI Links.

Figure 19-IpEnniLink Model

Schema File Name: ip/IpEnniLink.yaml \$id: urn:mef:lso:spec:legato:lpEnniLink:v0.0.1:all **Attribute Name** Multiplicity Description Type ipv4ConnectionAddres Ennilpv4Connection IPv4 Connection Addressing. 0..1 Addressing Reference MEF 61.1 Section sing 16.3 ENNI Link IPv4 Connection Addressing Attribute. ipv6ConnectionAddres Ennilpv6Connection 0..1 IPv6 Connection Addressing. sing Addressing Reference MEF 61.1 Section 16.4 ENNI Link IPv6 **Connection Addressing** Attribute.

Table 14-IpEnniLink Service Attributes

IpEnniCommon 16.3

ENNI Common Attributes that apply to each ENNI agreed between two LLOs (Lowest Level Operators). Reference MEF 61.1Błąd! Nie można odnaleźć źródła odwołania. Section 15 ENNI Common Attributes.

963

959

960

961

962

956

957

Schema File Name: ip/IpEnniCommon.yaml \$id: urn:mef:lso:spec:legato:IpEnniCommon:v0.0.1:all			
Attribute Name	Туре	Multiplicity	Description
peeringIdentifier	Identifier53	1	Unique identifier for the ENNI for management purposes. Reference MEF 61.1 Section 15.1 ENNI Peering Common Attribute.
peeringType	EnniPeeringType	1	Indication of the type of BGP Peering at the ENNI. Reference MEF 61.1 Section 15.2 ENNI Peering Type Common Attribute.
controlProtocolsList	ControlProtocols	0*	Indication of IP Control Protocols that are not forwarded transparently by the LLO. Reference MEF 61.1 Section 15.4 ENNI List of Control Protocols Common Attribute.
routingProtocols	RoutingProtocol s	1	List of Routing Protocols used across the ENNI. Reference MEF 61.1 Section 15.5 ENNI Routing Protocols Common Attribute.
serviceMap	EnniServiceMap	1	Mapping of ENNI Service Mapping Contexts across the ENNI. Reference MEF 61.1 Section 15.6 ENNI Service Map Common Attribute.

Table 15-IpEnniCommon Attributes

17 Common Classes and Types

This section is structure like the previous section but focuses on common classes and types used by the Service Attributes. Most of these are structured to support a variety of IP Services. This section details the data types and enumerations that are used by the IP Service model.

AccessLinkBfd 17.1

The Access Link BFD Service Attribute indicates whether Bidirectional Forwarding Detection (BFD) is enabled on the UNI Access Link. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute and Section 16.5 ENNI Link BFD Attribute.

973

965

966

967

968

969

970

Attribute Name	Туре	Multiplicity	Description
connectionAddressFa mily	ConnectionAddress Family	1	The Connection Address Family parameter specifies whether the session is established over IPv4 or IPv6 or whether two separate sessions are established using IPv4 and IPv6. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute and Section 16.5 ENNI Link BFD Attribute.
transmissionInterval	BfdTransmissionInt erval	1	BFD allows for asymmetrical operation, where packets can be sent a different interval in each direction, and a different detect multiplier can be used. For simplicity, this specification mandates symmetrical operation. Units are in milliseconds. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute and Section 16.5 ENNI Link BFD Attribute.
detectMultiplier	Integer	1	BFD Detect multiple as an Integer. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute and Section 16.5 ENNI Link BFD Attribute.

authenticationType	BfdAuthenticationT ype	1	BFD Authentication as describer in RFC 5880. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute and Section 16.5 ENNI Link BFD Attribute.
activeEnd	BfdActiveEnd	1	BFD Active End. At least one end of BFD session has to have an active role, meaning that it sends out asynchronous control messages regardless of whether it has received any. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute.

Table 16-AccessLinkBfd Attributes

17.2 Addressing

974

975

980

981

982

983

984

985

986

987 988

989

- 976 File: ip/ipCommon.yaml
- Enumeration representing the Address type for the Control Protocols data type.
- 978 Contains Enumeration Literals:
- 979 SP_OPERATOR_ADDRESSES:
 - o If the addressing information is SP/Operator Addresses, then Ingress IP Packets for the specified protocol that have a multicast or broadcast destination address, or a unicast destination address that is reachable within the SP's or Operator's network, are considered to be IP Control Protocol Packets, and Egress IP Packets for the specified protocol that have a source address that is reachable within the SP's or Operator's network are considered to be IP Control Protocol Packets.
 - ANY:
 - If the addressing information is Any, then all IP Packets for the specified protocol that cross the UNI are considered to be IP Control Protocol Packets.

17.3 BfdActiveEnd

- 990 File: ip/ipCommon.yaml
- At least one end of the BFD session must have an active role, meaning that it sends out asynchronous control messages regardless of whether it has received any. This enumeration represents the values that can be set for the BFD Active End. Reference MEF 61.1 Section 13.8 UNI Access Link BFD Service Attribute [R171] and [R172].

995		
996	Contai	ns Enumeration Literals:
997	•	SUBSCRIBER:
998		 Subscriber takes active BFD role.
999	•	SP:
1000		 Service Provider takes active BFD role.
1001	•	вотн:
1002		 Subscriber and Service Provider take active BFD role.
1003	17.4	BfdAuthenticationType
1003		
1004	File: ip,	/ipCommon.yaml
1005		
1006 1007		cess Link BFD authentication type. When Authentication is NOT NONE, RFC5880 Section 6.7 ntication mechanisms are used.
1008		
1009	Contai	ns Enumeration Literals:
1010	•	NONE:
1011		o No BFD authentication.
1012	•	SIMPLE_PASSWORD:
1013		 Simple Password Authentication is the most straightforward (and weakest) form of
1014		authentication. In this method of authentication one or more Passwords (with
1015 1016		corresponding Key IDs) are configured in each system and one of these Password/ID pairs is carried in each BFD Control packet. The receiving system accepts the packet if
1016		the Password and Key ID matches one of the Password/ID pairs configured in that
1017		system. Reference IETF RFC5880 Section 6.7.2.
1019	•	KEYED_MD5:
1020		 The Keyed MD5 and Meticulous Key MD5 Authentication mechanisms are very similar to
1021		those used in other protocols. In these methods of authentication, one or more security
1022		keys (with corresponding key IDs) are configured in each system. Reference RFC5880
1023		Section 6.7.3 Keyed MD5 and Meticulous Keyed MD5 Authentication.

METICULOUS_KEYED_MD5:

1025 1026 1027 1028		0	The Keyed MD5 and Meticulous Key MD5 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more security keys (with corresponding key IDs) are configured in each system. Reference RFC5880 Section 6.7.3 Keyed MD5 and Meticulous Keyed MD5 Authentication.
1029	•	KEYED.	_SHA1:
1030 1031 1032 1033		0	The Keyed SHA1 and Meticulous Key SHA1 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more secret keys (with corresponding key IDs) are configured in each system. Reference RFC5880 Section 6.7.4 Keyed SHA1 and Meticulous Keyed SHA1 Authentication.
1034	•	METIC	ULOUS_KEYED_SHA1:
1035 1036 1037 1038		0	The Keyed SHA1 and Meticulous Key SHA1 Authentication mechanisms are very similar to those used in other protocols. In these methods of authentication, one or more secret keys (with corresponding key IDs) are configured in each system. Reference RFC5880 Section 6.7.4 Keyed SHA1 and Meticulous Keyed SHA1 Authentication.
1039	17.5	BfdTra	ansmissionInterval
1040	File: ip/	ipComm	non.yaml
1041			
1042 1043		-	Nie można odnaleźć źródła odwołania. specifies a set of common intervals which are interoperability.
1044 1045	Contair	ıs Enum	eration Literals:
1046	•		IILLISECONDS:
1047			3.3 milliseconds
1048	•	10 MI	LLISECONDS:
1049		-	10 milliseconds
1050	•	20_MI	LLISECONDS:
1051		0	20 milliseconds
1052	•	50_MI	LLISECONDS:
1053		0	50 milliseconds
1054	•	100_M	IILLISECONDS:
1055	•	1_SEC	OND:

1056 o 1 second

17.6 Bgp

File: ip/ipCommon.yaml

1059

1060

1061

1057

1058

When an entry in the UNI Routing Protocol is for BGP, BGP as specified in RFC 4271 is used across the UNI to exchange routing information. Reference MEF 61.1 Section 12.7.3 BGP.

1062

Figure 20-Bgp Model

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
ipPrefixes	Ipv4Ipv6Prefixes	1	IPv4/IPv6 Prefixes that are advertised using BGP.
subscriberAsNumer	Integer	1	BGP Subscriber Autonomous System number.
peerAsNumber	Integer	1	BGP Peer Autonomous System Number.

connectionAddressFa mily	ConnectionAddress Familty	1	Connection Address Family (IPv4 or IPv6).
peeringAddresses	PeeringAddresses	1	Peering Addresses.
authentication	BgpAuthentication	1	BGP Authentication (None or MD5 plus a password).
bgpCommunityList	BgpCommunityListIt em	0*	Used to control which routers are accepted, preferred, distributed, or advertised.
bgpExtendedCommuni tyList	BgpExtendedComm unityListItem	0*	Mechanism for labeling information carried in BGP-4. Provide enhancement over existing BGP Community Attribute: An extended range, the addition of type field.
holdTime	Integer	1	Hold time in seconds. Indicates the agreed Hold Time used for BGP sessions. The possible values are 0 or an integer in the range 3 -65535.
damping	Damping	01	Route flap damping. When the Damping parameter is NONE, the attribute is NOT set. When not NONE a single set of parameters described in Section 4.3 of RFC 2430 MUST be agreed.
asOverride	EnabledDisabled	1	Autonomous System Override.
administrativeDistance	Integer	1	BGP Administrative Distance.

Table 17-Bgp Attributes

17.7 BgpAuthentication

File: ip/ipCommon.yaml

1068

1065

1066

1067

BGP Authentication options as an enumeration.

1070

1071

1072

1069

Contains Enumeration Literals:

NONE:

1073	 No authentication for BGP.
1074	MD5_PASSWORD:
1075	o BGP Authentication is MD5 plus a password.
1076	17.8 BgpCommunity
1077	File: ip/ipCommon.yaml
1078	Set of BGP Community enumerations.
1079	Contains Enumeration Literals:
1080	NO_ADVERTISE:
1081	 When a No-Advertise community is attached to a route, the BGP speaker won't
1082	advertise the route to any internal or external BGP peers.
1083	NO_EXPORT:
1084	 When a No-Export community is attached to a route, the router won't advertise the
1085	route to external peersonly to internal peers.
1086	• LOCAL_AS:
1087	 To avoid any BGP routing loops, there is an important rule regarding the internal BGP
1088	neighbors: an IBGP neighbor cannot advertise a route to an IBGP neighbor if it received
1089	that route from another IBGP neighbor.
1090	GRACEFUL SHUTDOWN:
1091	 The Graceful SHUTDOWN (65535:0) community is used to smoothly shut down paths a
1092	router might use when its peer router is about to be intentionally shut down.
1093	• EXTENDED:
1094	 An Extended community is an 8-byte value that is divided into two main sections:
1095	An extended community has three fields: type, administrator, assigned number
1096	(type:administrator:assigned-number). Based on the value of the high-order byte in the
1097	Type field, the administrator field can be an AS or an IP address.
1037	Type held, the duffillistrator field can be all A3 or all ill address.
1098	ROUTE TARGET:
1099	 The Route Target community is used in MPLS VPN environments to separate two
1100	customers routing tables.
1101	ROUTE_ORIGIN:
1102	 In an MPLS VPN environment, the route origin community is used to identify where
1102	routes originated from, so that readvertisement back to that site is avoided.
	• LARGE:
1104	
1105	
1106	began to be allocated. Since each of the standard or extended communities use 2-byte
1107	values for the AS, a 4-byte AS would not fit into the standard 2-byte value.

17.9 BgpCommunityListItem

BGP Community List.

1110

1108

1109

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
communityId	Integer	1	Unique identifier for BGP Community.
communityName	String	1	The name of BGP Community.
communityPrefixes	lpv4lpv4Prefixes	1	The prefixes that the BGP Community contains.
communityValue	BgpCommunity	1	BGP Community value.

Table 18-BgpCommunityListItem Attributes

17.10 BgpExtendedCommunityListItem

BGP Extended Community List.

1114

1111

1112

1113

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
routeDistinguisher	RouteDistinguisherF ields	1	Route Distinguisher.	
routeTargetImport	RouteDistinguisherF ields	1	Import route target.	
routeTargetExport	RouteDistinguisherF ields	1	Export route target.	
routeTargetOrigin	RouteDistinguisherF ields	1	Origin route target.	

Table 19-BgpExtendedCommunityListItem Attributes

17.11 BwRate

1117 File: ip/ipCommon.yaml

1118

1115

1116

Enumeration representing bandwidth rate units.

1120

1121	Contair	ns Enum	eration Literals:
1122	•	BPS:	
1123		0	Bits per second.
1124	•	KBPS:	
1125		0	Kilobits per second.
1126	•	MBPS:	
1127		0	Megabits per second.
1128	•	GBPS:	
1129		0	Gigabits per second.
1130	17.12	BurstB	ehavior
1131	File: ip/	/ipComm	on.yaml
1132			
1133 1134 1135	61.1 Bł ą	d! Nie n	sed to select the Bandwidth Profile Flow Burst Behavior attribute. Reference MEF nożna odnaleźć źródła odwołania. Section 17.3 Table 29 Bandwidth Profile Parameters a Profile Flow.
1136			
1137	Contair	ns Enum	eration Literals:
1138	•	OPTIM	IZE_DELAY:
1139		0	Enumeration representing the Burst Behavior of optimization of delay.
1140	•	OPTIM	IZE_THROUGHPUT:
1141		0	Enumeration representing the Burst Behavior of optimization of throughput.
1142	17.13	Cloud	DataLimit
1143 1144 1145	cloud s	ervice in	solute limit on the amount of data the Subscriber can transmit to, or receive from, the a given time period. It is either Unlimited or a 4-tupe (scdl, tcdl, ucdl, dcdl). Reference on 10.13.3 Cloud Data Limit.
1146			
		Scho	ema File Name: ip/ipCommon.yaml

Schema File Name: ip/ipCommon.yaml			
Attribute Name Type Multiplicity Description			
startTime	DataTime	1	Specifies a start time.

duration	Duration	1	Specifies a duration. Together with the start time, it describes a service of contiguous time intervals, starting at the specified start time and each lasting for the specified duration.
upload	Integer	1	An integer indicating a limit, in octets, on the amount of IP traffic that can be transmitted towards the cloud service during each time interval described by startTime and duration.
download	Integer	1	An integer indicating a limit, in octets, on the amount of IP traffic received from the cloud service that can be delivered to the Subscriber during each time interval described by startTime and duration.

Table 20-CloudDataLimit Attributes

17.14 CloudDns

Data type representing a Domain Name System.

1150

1147

1148

1149

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
dnsType	DnsType	1	Domain Name System type.	
dnsServerIpv4List	String	0 *	DNS server list an IPv4 addresses.	
dnsServerIpv6List	String	0 *	DNS server list an IPv6 addresses.	

Table 21-CloudDns Attributes

17.15 CloudType

File: ip/ipCommon.yaml

1154

1155

1156

1153

1151

1152

Indicates the type of cloud service being accessed. Reference MEF 61.1 Table 10-Subscriber IPVC Cloud Service Attribute parameters.

1157		
1158	Contair	ns Enumeration Literals:
1159	•	INTERNET_ACCESS:
1160		o Indicates the cloud access IPVC is used to access the public Internet.
1161	•	PRIVATE:
1162 1163		 Indicates the cloud access IPVC provides a direct connection over the Service Provider's network to a cloud service.
1164	17.16	ConnectionAddressFamily
1165	File: ip/	'ipCommon.yamI
1166		
1167 1168	-	es whether the session is established over IPv4 or IPv6 or whether two separate session are shed using IPv4 and IPv6.
1169		
1170	Contair	ns Enumeration Literals:
1171	•	IPV4:
1172		 IPv4 is used for establishing the BFD session.
1173	•	IPV6:
1174		 IPv6 is used for establishing the BFD session.
1175	•	BOTH:
1176		 IPv4 and IPv6 are used for establishing the BFD session.
1177	17.17	ConnectionType
1178	File: ip/	ipCommon.yamI
1179		
1180	An enu	meration representing the connection type.
1181		
1182	Contair	ns Enumeration Literals:
1183	•	P2P:
1184		 Point-to-Point. Indicates that the link is logically point to point.

- 1185 MULTIPOINT:
- o Multipoint. Indicating that the link is logically multipoint.

1187 17.18 ConnectorType

Enumeration representing type of connector presented to Subscriber.

1189

1190

- **Contains Enumeration Literals:**
- 1191 RJ45:
- o Enumeration representing connector type for Copper based on IEC 60603-7, TIA568.
- 1193 SC:
- o Enumeration representing connector type for Fiber based on IEC 61754-4.
- 1195 LC:
- o Enumeration representing connector type for Fiber based on IEC 61754-20.

17.19 ControlProtocols

Data type representing Control Protocols. Each entry consists of a 3-tuple containing the protocol name, addressing information (either SP/Operator Addresses or Any) and one or more references. Reference MEF 61.1 Section 12.6 UNI List of Control Protocols Service Attribute.

1201

1197

1198

1199

1200

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
protocolName	String	1	Protocol name.
reference	String	1*	Protocol reference.
addressing	Addressing	01	Enumeration representing the addressing.

1202

Table 22-ControlProtocols Attributes

1203 **17.20 Damping**

BGP Damping parameters as defined in RFC 2439**Błąd! Nie można odnaleźć źródła odwołania.** BGP Route Flap Damping, Section 4.2.

1206

1204

1205

Schema File Name: ip/ipCommon.yaml

Attribute Name	Туре	Multiplicity	Description
cutoffThreshold	Integer	1	This value is expressed as a number of route withdrawals. It is the value above which a route advertisement will be suppressed.
reuseThreshold	Integer	1	This value is expressed as a number of route withdrawals. It is the value below which a suppressed route will now be used again.
decayHalfLifeWhileRea chable	Integer	1	This value is the time duration in seconds during which the accumulated stability figure of merit will be reduced by half if the route if considered reachable (whether suppressed or not).
decayHalfLifeWhileUnr eachable	Integer	1	This value is the time duration in seconds during which the accumulated stability figure of merit will be reduced by half if the route if considered unreachable. If not specified or set to zero, no decay will occur while a route remains unreachable.
decayMemoryLimit	Integer	1	This is the maximum time (in seconds) that any memory of previous instability will be retained given that the route's state remains unchanged, whether reachable or unreachable. This parameter is generally used to determine array sizes.
timeGranularity	Integer	1	This is the time granularity in seconds used to perform all decay computations.
reuseListTimeGranular ity	Integer	1	This is the time (in seconds) interval between evaluations of the reuse lists. Each reuse lists corresponds to an additional time increments.
reuseListMemoryReus eListMax	Integer	1	This is the time (in seconds) value corresponding to the last reuse

			list. This may be the maximum value of T-hold for all parameter sets of may be configured.
numberOfReuseLists	Integer	1	This is the number of reuse lists. It may be determined from reuse-list-max or set explicitly.
maxHoldDownTime	Integer	1	This value is the maximum time a route can be suppressed no matter how unstable it has been prior to this period of stability. In seconds.

Table 23-Damping Attributes

17.21 DateTime

Data type representing time and date.

1210

1211

1212

1213

1214

1215

1216

1209

1207

1208

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
time	String	1	Time of day as a String
date	String	1	Date as a String.

Table 24-DateTime Attributes

17.22 DhcpRelay

Dynamic Host Configuration Protocol (DHCP) Relay functionality is useful when the Subscriber uses DHCP (per RFC 2131Błąd! Nie można odnaleźć źródła odwołania. and RFC 8415Błąd! Nie można odnaleźć źródła odwołania.) in the Subscriber Network but does not want to place a DHCP server (or possibly a pair of redundant DHCP servers) in each part of the network.

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
dhcpServerList	DhcpServer	1*	Non-empty list of IP addresses for DHCP Servers belonging to the Subscriber. Reference MEF 61.1 Section 13.6 UNI Access Link DHCP Relay Server Attribute.	

ipvcEndPointIdentifier	IpvcEndPoint	1	IPVC identifier as described in MEF
			61.1 Section 11.1.

Table 25-DhcpRelay Attributes

17.23 DhcpServer

Data type representing a DHCP Server.

1221

1219

1220

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
ipv4Address	String	0 *	List of DHCP Server(s) IPv4 addresses.	
ipv6Address	String	0 *	List of DHCP Server(s) IPv6 addresses.	

Table 26-DhcpServer Attributes

1223 **17.24 DnsType**

1224 File: ip/ipCommon.yaml

1225 1226

1222

Enumeration representing the different types of DNS.

1227

1228

1230

1231

12321233

1234

1235

1236

1237

12381239

Contains Enumeration Literals:

1229 • DHCP:

 If DNS type is Dynamic Host Configuration Protocol, the SP provides DNS server addresses via DHCP at each UNI.

• PPP:

 If DNS type is Point to Point Protocol, the SP provides DNS service addresses via PPP at each UNI.

STATIC:

If DNS type is Static, the DNS server addresses are listed explicitly.

SLAAC:

If DNS type is StateLess Address Auto Configuration, the SP provides DNS server addresses via SLAAC Router Advertisement options (per RFC 8106).

17.25 Dscp

Differentiated Service Code Point is a 6-bit value that can be used to classify traffic for the purpose of associating specific forwarding behavior. Reference RFC 2474.

1243

1240

1241

1242

Schema File Name: ip/ipCommon.yaml				
Attribute Name Type Multiplicity Description				
value	Integer	1	0 <= value <= 63.	

1244

1245

Table 27-Dscp Attributes

17.26 DscpMapping

Ethernet PCP mapping for CoS name to PCP value.

1247

1246

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
cosName	String	1	Class of Service name.
ipds	Dscp	1	DSCP value (Integer 0 to 63).

1248

1249

Table 28-DscpMapping Attributes

17.27 Duration

Data type representing time duration.

1251

1250

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
value	Integer	1	Time value.
durationUnits	DurationUnits	1	Time duration units.

1252

1253

Table 29-Duration Attributes

17.28 DurationUnits

1254 File: ip/ipCommon.yaml

1256 Enumeration represents time duration.

1257

1258 Contains Enumeration Literals:

1259 • NS:

o Nanoseconds

1261 • US:

o Microseconds

1263 • MS

o Milliseconds

1265 • SEC

o Seconds

1267 • MIN

o Minutes

1269 • HOUR

1270 o Hour

1271 • DAY

1272 • WEEK

1273 ● MONTH

1274 ● YEAR

17.29 EgressClassOfServiceMap

Pair of values (D, P). D specifies how to set the DS field in Egress IP Data Packets based on CoS Name. It is either None, or a mapping from CoS Names to DSCP values. P specifies how to set the PCP field in VLAN Tagged Ethernet Frames containing Egress IP Data Packets based on CoS Name. It is either None, or a mapping from CoS Names to PCP values. Reference MEF 61.1 Section 11.10 IPVC EP Egress Class of Service Map Service Attribute.

1281

1275

1276

1277

1278

1279

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
pcpMapping	PcpMapping	0*	Reference to CoS to Ethernet PCP mapping.	

1283

1284

1285

1286

1287

1288

1289

1290

1291

dscpMapping	DscpMapping	0*	Reference to CoS to IP DSCP
			mapping.

Table 30-EgressClassOfServiceMap Attributes

17.30 EndPointIdentifierAndCosName

Data type representing IPVC End Point Identifier and CoS name used for Bandwidth Profiles.

 Schema File Name: ip/ipCommon.yaml

 Attribute Name
 Type
 Multiplicity
 Description

 ipvcEndPointIdentifier
 String
 1
 IPVC End Point Identifier for an IPVC End Point located at the UNI.

 cosName
 String
 1
 Class of Service Name.

Table 31-EndPointIdentifierAndCosName Attributes

17.31 Ennilpv4ConnectionAddressing

The ENNI Link IPv4 Connection Addressing specifies how IPv4 addresses are allocated to the devices connected to the ENNI Link. It is either NONE or STATIC, plus in the case of STATIC, some additional parameters. Reference MEF 61.1 Section 16.3 ENNI Link IPv4 Connection Addressing Attribute.

Schema File Name: ip/ipCommon.yaml Multiplicity **Attribute Name** Type Description enniLinklp4AddressTyp EnniLinklp4Addres 0..1 IPv4 address type for ENNI Link. sType Values are None or STATIC. If the attribute is not assigned that is equivalent of NONE. ipv4PrimarySubnet Ennilpv4Subnet 1 IPv4 Primary Subnet for ENNI Link. ipv4SecondarySubnet 0..* IPv4 Secondary Subnet for ENNI Ennilpv4Subnet

Table 32-Ennilpv4ConnectionAddressing Attributes

Link.

17.32 Ennilpv4Subnet

Data type representing IPv4 Subnet for ENNI Links. Reference MEF 61.1 16.3 ENNI Link IPv4 Connection Addressing Attribute.

1296

1292

1293

1294

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
ipv4Prefix	Ipv4Prefix	1	IPv4 Prefix (IPv4 address prefix and mask length between 0 and 31, in bits).
firstLloIpv4Address	String	1	First LLO (Lowest Level Operator) IPv4 Address.
secondLloIpv4Address	String	1	Second LLO (Lowest Level Operator) IPv4 Address.

Table 33-Ennilpv4Subnet Attributes

17.33 Ennilpv6ConnectionAddressing

The ENNI Link IPv6 Connection Addressing specifies how IPv6 addresses are allocated to the devices connected to the ENNI Link. It is one of the three values None, Static or LL-only, plus in the case of Static, some additional properties. Reference MEF 61.1 Section 16.4 ENNI Link IPv6 Connection Addressing Attribute.

Schema File Name: ip/ipComn

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
enniLinkIpv6AddressTy pe	EnniLinkIpv6Addres sType	01	IPv6 address type for ENNI Link. Values are NONE, STATIC and LL- only. If the attribute is not assigned that is equivalent of NONE.	
ennilpv6Subnet	Ennilpv6Subnet	01	IPv6 Subnet for ENNI Link.	

Table 34-Ennilpv6ConnectionAddressing Attributes

17.34 Ennilpv6Subnet

Data type representing IPv6 Subnet for ENNI Links. Reference MEF 61.1 Section 16.4 ENNI Link IPv6 Connection Addressing Attribute.

1308

1304

1305

1306 1307

1297

1298

1299

1300

1301

1302

Attribute Name	Туре	Multiplicity	Description
ipv6Prefix	Ipv6Prefix	1	IPv6 Prefix (IPv6 address prefix and mask length between 0 and 127 in bits).

firstLloIpv6Address	String	1	First LLO (Lowest Level Operator) IPv6 Address.
secondLloIpv6Address	String	1	Second LLO (Lowest Level Operator) IPv6 Address.

Table 35-Ennilpv6Subnet Attributes

17.35 EnniList

The ENNI List of ENNI Links Common Attribute is a list of 3-tuples of the form (*ID*, *L1*, *Links*). Each entry in the list corresponds to a distinct L1 link across the ENNI – in most cases, this means a separate physical link (although virtual or logical links are not precluded). The first element in the 3-tuple, *ID*, is the identifier of the L1 link. The second element, *L1*, contains the details of the L1 technology used for the link. The third element, *Links*, is a list (possibly empty) of ENNI Link Identifiers (see section 16.1) for the ENNI Links in this ENNI that traverse the L1 link. Reference MEF 61.1 Section 15.3 ENNI List of ENNI Links Common Attribute.

1318

1309

1310

1311

13121313

13141315

1316

1317

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
identifier	Identifier53	1	L1 Link Identifier. Reference MEF 61.1 Section 15.3.1 L1 Link Identifier.	
ennildentifier	Identifier53	1*	ENNI Identifiers.	
l1Technology	L1Technology	01	Layer 1 technology.	

Table 36-EnniList Attributes

17.36 EnniPeeringType

File: ip/ipCommon.yaml

1322

1323

1324

1325

1326

1319

1320

1321

Attribute indicates the type of BGP Peering used across the ENNI. The possible values are Option A, Option B, Option C or Option B and C. They refer to the options described in RFC 4364. Reference MEF 61.1 Section 15.2 ENNI Peering Type Common Attribute. For Options reference MEF 61.1 Section 8.6 Connecting Services across an ENNI.

1327

1328

1329

Contains Enumeration Literals:

OPTION_A:

13311332

1333

1334

1335

1336

1337

1338

1339

1340

1341

13421343

1344

1345

1346

1347

1348

1349

1350

1351

13521353

1354

1355

 A separate eBGP session is used across each ENNI Link and each session carries routes for one service. This results in packets for different services being sent over different ENNI Links. The packets can be plain IP Packets since it is the different links that distinguish them.

OPTION_B:

One or more eBGP sessions are used across the ENNI, each exchanging labelled VPN routes for multiple services. The routes for different services are distinguished by attributes such a Route Distinguishers and Route Targets. This results in IP Packets across the ENNI being encapsulated in MPLS where IP Packets for different services have different MPLS labels. Typically, each packet has a single MPLS label, that identifies both the egress PE and the service.

• OPTION C:

One or more eBGP sessions are used across the ENNI only to distribute labeled unicast routes (and labels) towards each Operator's own routers; furthermore, multi-hop eBGP sessions are used between the ingress PE and the egress PE (or equivalent route reflectors) to exchange labelled VPN routes for each service. This results in IP Packets across the ENNI being encapsulated in MPLS, typically with two MPLS labels, one representing the egress PE, and the second that (roughly speaking) identifies the service.

OPTIONS_B_AND_C:

Combination of Options B and C.

17.37 EnniRoutingInformation

For an ENNI Option A, the ENNI Routing Information Service Attribute is a mapping of ENNI Service Mapping Identifiers to four-tuples of the form (Administrative Distance, Route Flap Damping, AS Override, Static Routes). Each four-tuple applies to the corresponding ENNI Service Mapping Identifier. Reference MEF 61.1 Section 14.3.1 ENNI Routing Protocols for Option A.

Attribute Name	Туре	Multiplicity	Description
enniServiceMappingId entifier	Identifier53	1	A string identifier that is used at the ENNI to match the IPVC EP on one side of the ENNI with IPVC
			EPs on the other side. Reference MEF 61.1 Section 11.6 IPVC EP ENNI Service Mapping Identifier Service Attribute.

administrativeDistance	Integer	1	The Administrative Distance for a
administrativeDistance	Integer	1	given ENNI Service Mapping Identifier is an integer greater than
			O that indicates the value of the administrative distance assigned by the Operator to eBGP routes
			received from another Operator over the ENNI Links that are assigned to that ENNI Service Mapping
			Identifier at an ENNI using Option A. Reference MEF 61.1 Section 14.3.1.1 Administrative Distance.
routeFlapDamping	EnabledDisabled	1	The Route Flap Damping parameter for a given ENNI Service Mapping Identifier indicates whether
			the Operator applies route flap damping to routes received from another Operator over the ENNI
			Links assigned to that ENNI Service Mapping Identifier. Reference MEF 61.1 Section 14.3.1.2 Route
			Flap Damping.
asOverride	EnabledDisabled	1	The AS Override parameter for a given ENNI Service Mapping Identifier indicates whether AS Override
			behavior is enabled at the ENNI, for routes advertised towards another Operator over the ENNI Links
			assigned to that ENNI Service Mapping Identifier. Reference MEF 61.1 Section 14.3.1.3 AS Override.
staticRoute	StaticRoute	0*	The Static Routes parameter for a given ENNI Service Mapping Identifier is a list of static routes over
			the ENNI for the service identified by that ENNI Service Mapping Identifier. The list can be empty.

	Reference MEF 61.1 Section
	14.3.1.4 Static Routes.

Table 37-EnniRoutingInformation Attributes

17.38 EnniServiceMap

For an ENNI using Option A, the ENNI Service Map Common Attribute is a mapping from ENNI Service Mapping Contexts a set of ENNI Link Identifiers for ENNI Links in the ENNI. Reference MEF 61.1 Section 15.6.1 ENNI Service Map for Option A.

1362

1357

1358

1359

1360

1361

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
enniServiceMappingCo ntext	EnniServiceMapping Context	1	Pointer to ENNI Service Mapping Context.
enniLinks	EnniList	1	Pointer to ENNI Link list.

Table 38-EnniServiceMap Attributes

1363

1364

1365

1366

1367

17.39 EnniServiceMappingContext

A pair of SP/SO, ENNI Service Mapping Identifier. It uniquely identifies services for a given SP/SO on either side of the ENNI that have been assigned the same ENNI Service Mapping Identifier. Reference MEF 61.1 Section 15.6.1 ENNI Service Map for Option A.

1368

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
serviceProvider	String	1	Service Provider identifier.
serviceOperator	String	1	Service Operator identifier.
enniServiceMappingId entifier	String	1	ENNI Service Mapping identifier.

Table 39-EnniServiceMappingContext Attributes

1369 1370

17.40 EnniType

1371 File: ip/ipCommon.yaml

Indication of the type of BGP Peering at the ENNI. Reference MEF 61.1 Section 14 ENNI Service 1373 Attributes. 1374 1375 **Contains Enumeration Literals:** 1376 OPTION A: 1377 OPTION_B: 1378 OPTION_C: 1379 EthernetPhysicalLayer 1380 17.41 File: ip/ipCommon.yaml 1381 1382 Enumeration representing the different Ethernet physical layers. Reference MEF 61.1.1 Table A1-4 1383 Ethernet PHYs for UNI Access Link Trunks. 1384 1385 **Contains Enumeration Literals:** 1386 1387 10BASE_FB 10BASE_FL 1388 10BASE FP 1389 10BASE T 1390 10BASE_T1L 1391 10BASE_T1S 1392 10BASE TE 1393 10BROAD36 1394 10PASS_TS 1395 100BASE_BX10 1396 100BASE FX 1397 100BASE_LX10 1398 1399 100BASE_T 100BASE T1 1400 100BASE T2 1401 100BASE_T4 1402 100BASE_TX 1403 100BASE_X 1404 1000BASE_BX10 1405 1000BASE_CX 1406 1407 1000BASE_LX

- 1408 1000BASE_LX10
- 1000BASE_PX10
- 1410 1000BASE_PX20
- 1411 1000BASE_RHA
- 1412 1000BASE_RHB
- 1413 1000BASE_RHC
- 1000BASE_SX
- 1000BASE_T
- 1000BASE_T1
- 1000BASE_X
- 1418 2_5GBASE_T
- 1419 2_5GBASE_T1
- 5GBASE_T
- 1421 5GBASE T1
- 10GBASE_E
- 1423 10GBASE_EW
- 1424 10GBASE_L
- 1425 10GBASE_LR
- 10GBASE_LRM
- 1427 10GBASE_LW
- 1428 10GBASE LX4
- 10GBASE R
- 10GBASE_S
- 10GBASE_SR
- 10GBASE_SW
- 10GBASE_T
- 1434 10GBASE_T1
- 10GBASE_X

- 25GBASE_CR
 - 25GBASE_CR_S
- 1438 25GBASE_ER
- 25GBASE_SR
- 1440 25GBASE_T
- 40GBASE_CR4
- 40GBASE_ER4
- 40GBASE_FR
- 40GBASE_LR4
- 40GBASE_R
- 1446 40GBASE_SR4
- 40GBASE_T
- 50GBASE CR

1449	•	50GBASE_ER
1450	•	50GBASE_FR
1451	•	50GBASE_LR
1452	•	50GBASE_SR
1453	•	100GBASE_CR10
1454	•	100GBASE_CR2
1455	•	100GBASE_CR4
1456	•	100GBASE_DR
1457	•	100GBASE_ER4
1458	•	100GBASE_LR4
1459	•	100GBASE_R
1460	•	100GBASE_SR10
1461	•	100GBASE_SR2
1462	•	100GBASE_SR4
1463	•	200GBASE_CR4
1464	•	200GBASE_DR4
1465	•	200GBASE_ER4
1466	•	200GBASE_FR4
1467	•	200GBASE_LR4
1468	•	200GBASE_SR4
1469	•	400GBASE_DR4
1470	•	400GBASE_ER8
1471	•	400GBASE_FR8
1472	•	400GBASE_LR8
1473	•	400GBASE_SR16
1474	•	400GBASE_SR4_2
1475	•	400GBASE_SR8
1476	17.42	EthernetPhysicalLink
1477	File: ip,	/ipCommon.yaml
1478		
1479	Data ty	/pe representing UNI Access Link Trunk List of Ethernet Physical Links of form <id,pl,fs,ct,gn> as</id,pl,fs,ct,gn>

v0.2

defined in MEF 61.1.1 Section A1-1.3.1.

1480

1483

Figure 21-EthernetPhysicalLink Model

Attribute Name	Туре	Multiplicity	Description
identifier	EthernetPhysical Link	1	The value of id is an identifier for the physical link.
physicalLayer	EthernetPhysical Layer	1	The value of pl specifies a physical layer.
gender	Gender	1	The value of gn indicates the gender of the connector presented to the Subscriber.
synchronousEthernet	SynchronousEthe rnet	1	Enumeration representing value of fs synchronous ethernet.
connectorType	ConnectorType	1	Enumeration representing ct Connector Type.

Table 40-EthernetPhysicalLink Attributes

1484

1485

1486

17.43 ExternalInterfaceType

File: ip/ipCommon.yaml

1487

1488

Enumeration representing the different External Interface types.

1489

1490

Contains Enumeration Literals:

1491 • UNI:

1492

External interface type is UNI (User Network Interface).

- 1493 ENNI:
- o External interface type is ENNI (External Network Network Interface).

17.44 ForwardingInformation

Forwarding information, consisting of either a nexthop IP address in the Subscriber Network (if the access medium is multipoint capable, e.g., Ethernet), or a specific UNI Access Link (if the access medium is strictly point-to-point, e.g., HDLC, PPP over DSL).

1499

1495

1496

1497

1498

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
nextHopIpAddress	String	01	Next Hop IP Address.
uniAccessLink	Identifier53	01	UNI Access Link unique identifier.

Table 41-ForwardingInformation Attributes

1501 **17.45** Gender

1502 Enumeration representing the gender of the connector presented to the Subscriber.

1503

1504

1506

1507

1509

1510

1511

1500

- **Contains Enumeration Literals:**
- 1505 SOCKET:
 - Subscriber is expected to provide a cable (copper or fiber) with a plug (with a connector type specified in ct).
- 1508 PLUG:
 - The SP provides the cable, then it is presenting a plug to the Subscriber (*gn* is *plug*), and the Subscriber is expected to provide equipment that can connect to a plug of type *ct*.

17.46 HeaderFieldTypes

HeaderFieldTypes is an enumeration for fields defined in MEF 61.1 Section 10.13.2 Cloud Ingress Class of Service Map.

1514

- **Contains Enumeration Literals:**
- SOURCE_IP_ADDRESS:
- o Field type Source IP Address.

- DESTINATION_IP_ADDRESS:
- o Field type Destination IP Address.
- L4_PROTOCOL:
- o Field type Layer 4 Protocol.
- SOURCE L4 PORT:
- o Field type Source Layer 4 Port.
- DESTINATION_L4_PORT:
- o Field type Destination Layer 4 Port.
- ETHERNET_PCP:
- o Field type Ethernet PCP.
- 1528 IP_DS:

1531

1532

1533

1534

1535

1536

1537

o Field type IP Differentiated Service.

17.47 Identifier53

A data type used for a unique identifier consists of ASCII characters in the range 32-126 inclusive. The length of must be less than or equal to 53 characters.

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
identifier	String	1	Unique identifier as a String with length restrictions.

Table 42-Identifier53 Attributes

17.48 InformationRate

Data type representing bandwidth in unit of bits per second.

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
irValue	Integer	1	The value of the information rate. For example if the rate is 70 kbps, 70 is the value.

irUnits	IrUnits	1	Bandwidth rate units.

Table 43-InformationRate Attributes

1336	Table 43-Information attendates					
1539	17.49 IrUnits					
1540	File: ip/ipCommon.yaml					
1541						
1542	Enumeration representing information rate units.					
1543						
1544	Contains Enumeration Literals:					
1545	BPS:					
1546	 Bits per second. 					
1547	• KBPS:					
1548	 Kilobits per second. 					
1549	• MBPS:					
1550	 Megabits per second. 					
1551	• GBPS:					
1552	 Gigabits per second. 					
1553	• TBPS:					
1554	 Terabits per second. 					
1555	PBPS:					
1556	 Petabits per second. 					
1557	• EBPS:					
1558	 Exabits per second. 					
1559	• ZBPS:					
1560	 Zettabits per second. 					
1561	YBPS:					
1562	 Yottabits per second. 					

17.50 IngressClassOfServiceMap

Is a triple (F,M,D) where F is a list of one or more fields in the packet header that are used to determine the CoS Name, M is a mapping from combinations of values of those fields to CoS Names, and D is a default CoS Name used when the map cannot be applied. Reference MEF 61.1 Section 10.13.2 Cloud Ingress Class of Service Map and Section 11.10 IPVC EP Egress Class of Service Map Service Attribute.

1568

1563

1564

1565

1566

1567

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
default Cos Name	String	1	Default Class of Service Name. Reference MEF 61.1 Section 10.13.2 Cloud Ingress Class of Service Map and Section 11.9 IPVC EP Ingress Class of Service Map Service Attribute.	
headerFieldTypes	HeaderFieldType s	1*	Is a list of one or more fields in the packet header that are used to determine the CoS Name. Reference MEF 61.1 Section 10.13.2 Cloud Ingress Class of Service Map.	
ingressClassOfService Mapping	ClassOfServiceM apEntry	0 *	Pointer to Class of Service Map Entry.	

Table 44-IngressClassOfServiceMap Attributes

17.51 IngressClassOfServiceMapEntry

Values for the Cloud Ingress Class of Service Map. Reference MEF 61.1 Table 11 - Values for the Cloud Ingress Class of Service Map, 11.0 IPVC EP Ingress Class of Service Map Service Attribute.

1573

1569

1570

1571

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	Class of Service Name.
sourcelpAddress	Ipv4Prefix	01	Source IP address.
destinationIpAddress	Ipv4Prefix	01	Destination IP address.
l4Protocol	Integer	01	Layer 4 protocol number. Integer from 0 to 255.

sourceL4Port	Integer	01	Source Layer 4 port number. Integer from 0 to 65535.
destinationL4Port	Integer	01	Destination Layer 4 port number. Integer from 0 to 65535.
ipds	DSCP	01	DSCP values (Integer 0 to 63).
ethernetPcp	PCP	01	PCP values (Integer 0 to 7).

Table 45-IngressClassOfServiceMapEntry Attributes

17.52 IpvcCloud

The IPVC Cloud Service Attribute is a set of parameters describing the access connectivity to the cloud service. Reference MEF 61.1 Section 10.13 IPVC Cloud Service Attribute.

1578

1574

1575

1576

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
type	CloudType	1	Cloud Type indicates the type of cloud service being accessed. Reference MEF 61.1 Section 10.13.1 Cloud Type.	
ingressClassOfService Map	IngressClassOfServ iceMap	1	Specification of how ingress packets are mapped to different CoS Names. Reference MEF 61.1 Section 10.13.2 Cloud Ingress Class of Service Map.	
dataLimit	CloudDataLimit	01	Limit on the amount of Data traffic sent to/received from the cloud service. Unlimited or a 4-tupe (scdl, Tcdl, ucdl, dcdl). If not provided, then Unlimited. Reference MEF 61.1 Section 10.13.3 Cloud Data Limit.	
dns	CloudDns	01	Whether and how DNS is provided for the service. Reference MEF 61.1 Section 10.13.5 Cloud DNS Service.	
networkAddressTransl ation	lpv4Prefix	01	Whether Network Address Translation is used, and if so the	

			IPv4 Prefix. If not selected, then Disabled. Reference MEF 61.1 Section 10.13.4 Cloud Network Address Translation.
subscriberPrefixList	Ipv4Ipv6Prefixes	01	List of Public IP Prefixes used in the Subscriber Network. Reference MEF 61.1 Section 10.13.6 Cloud Subscriber Prefix List.

Table 46-IpvcCloud Attributes

1580 17.53 IpvcEndPointRole

File: ip/ipCommon.yaml

1582

1583

1584

1581

1579

The IPVC End Point Role is one of Root, Leaf, or Trunk and specifies the role the IPVC EP plays in the IPVC Topology. Reference MEF 61.1 Section 11.4 IPVC EP Role Service Attribute.

1585

1586

1587

1588

1589

1591

1592

1594

1595

1596

Contains Enumeration Literals:

- ROOT:
 - The IPVC connects multiple UNIs with restricted connectivity. Reference MEF 61.1
 Section 7.10 IPVC Topology.
- 1590 ◆ LEAF:
 - An IPVC End Point with role of Leaf can only send and receive traffic from IPVC End Points with a role of Root. Reference MEF 61.1 Section 7.10 IPVC Topology.
- 1593 TRUNK:
 - Indicates that the IPVC End Points carry traffic from both roots and leaves. Reference MEF 61.1 Section 8.7 Rooted Multipoint Services across an ENNI.

17.54 Ipv4Prefix

Data type representing IPv4 address prefix and mask length between 0 and 31 bits.

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description

ipv4Address	String	1	IPv4 address.
prefixLength	Integer	1	IPv4 address prefix. Length 0-31.

Table 47-Ipv4Prefix Attributes

17.55 Ipv4Subnet

Data type representing IPv4 Subnet. Reference MEF 61.1 Section 13.4 UNI Access Link IPv4 Connection Addressing Service Attribute.

1603

1599

1600

1601 1602

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
serviceProviderIpv4Ad dresses	String	1*	Service Provider (for Subscriber IP Services) or Operator (for Operation IP Services) IPv4 Addresses (Non-empty list of IPv4 addresses).
ipv4Prefix	Ipv4Prefix	1	IPv4 address prefix (IPv4 address prefix and mask length between 0 and 31 in bits).
subscriberIpv4Address	String	01	Subscriber IPv4 Address (IPv4 address or Not Specified).
ipv4ReservedPrefixList	lpv4Prefix	0 *	Reserved Prefixes List (List of IPv4 Prefixes, possibly empty).

Table 48-Ipv4Subnet Attributes

17.56 Ipv4Ipv6Prefixes

IPv4 and IPv6 prefix lists. Includes subnet addresses and prefix length.

1607

1606

1604

1605

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
listOflpv4ReservedPref ixes	Ipv4Prefix	0 *	List of IPv4 address prefixes.
listOflpv6ReservedPref ixes	Ipv6Prefix	0 *	List of IPv6 address prefixes.

Table 49-Ipv4Ipv6Prefixes Attributes

17.57 Ipv6Prefix

Data type representing IPv6 address prefix and mask length between 0 and 127 in bits.

1611

1609

1610

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
ipv6Address	String	1	IPv6 address.
prefixLength	Integer	1	IPv6 address prefix. Length 0-127.

1612

1613

1614

1615

Table 50-Ipv6Prefix Attributes

17.58 Ipv6Subnet

Data type representing IPv6 Subnet. Reference MEF 61.1 Section 13.5 UNI Access Link IPv6 Connection Addressing Service Attribute.

1616

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
ipv6prefix	Ipv6Prefix	1	IPv6 Prefix (IPv6 address prefix and mask length between 0 and 127 in bits).
serviceProviderIpv6Ad dress	String	1*	Service Provider (for Subscriber IP Services) or Operator (for Operator IP Services) IPv6 Addresses (Non-empty list of IPv6 addresses).
ipv6ReservedPrefixList	lpv6Prefix	0*	Reserved Prefixes List (List of IPv6 Prefixes, possibly empty).

1617

Table 51-Ipv6Subnet Attributes

1618 **17.59** LacpVersion

1619 File: ip/ipCommon.yaml

1620

1621

1622

Enumeration representing the LACP version. Reference MEF 61.1.1 Section A1-1.3.2 UNI Access Link Trunk Ethernet Link Aggregation Service Attribute.

1623

1624

Contains Enumeration Literals:

1625 • LACPV1:

1626 • LACPV2:

1627 • STATIC:

o LACP is not used.

17.60 L2Technology

Specifies the UNI Access Link Trunk used to carry IP Packets across the UNI along with information needed to identify IP Packets for this UNI Access Link. Reference MEF 61.1.1 Section 13.3 UNI Access Link L2 Technology Service Attribute.

1633

1629

1630

1631

1632

1634

1635

Figure 22-L2Technology Model

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
trunkld	String	1	UNI Access Link Trunk Identifier.
demux	Demux	1	Value that is specific to each type of UNI Access Link Trunk and indicates which Layer 2 subchannel should be selected for this UNI Access Link.

Table 52-L2Technology Attributes

1637 **17.61 Ospf**

When an entry in the UNI Routing Protocols is for OSPF, OSPF as specified in RFC 2328 for IPv4) and/or RFC 5340 (for IPv6) is used across each UNI Access Link to exchange routing information. Reference MEF 61.1 Section 12.7.2 OSPF.

1641

1636

1638

1639

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
ipPrefixes	lpv4lpv6Prefixes	1	IPv4/IPv6 Prefixes that are advertised using OSPF.
areald	Integer	1	Area ID (0-429967295), normally expressed as an IPv4 address.
areaType	OspfAreaType	1	OSPF Area Type enumeration.
authenticationType	OspfAuthenticatio nType	1	OSPF Authentication Type.
helloInterval	Integer	1	Hello Interval (0-65535, in seconds).
deadInterval	Integer	1	Dead interval (0-4294967295, in seconds).
retransmissionInterval	Integer	1	Retransmit Interval (Integer greater than 0, in seconds).
administrativeDistance	Integer	1	Administrative Distance (Integer greater than 0).

Table 53-Ospf Attributes

17.62 OspfAuthenticationType

1644 File: ip/ipCommon.yaml

1645

1646

1642

1643

OSPF Authentication Type enumeration.

1647

1650

1651

1652

- 1648 Contains Enumeration Literals:
- NONE:
 - This is the default method and means that no authentication is used for OSPF.
 - PASSWORD:
 - o It is also known as "authentication with unencrypted text", because the password in the update is sent as unencrypted text over the network.
- MESSAGE_DIGEST:

1655 1656	 The password is never exchanged between peers. Instead, it is calculated using the MD5 algorithm.
1657	17.63 OspfAreaType
1658	File: ip/ipCommon.yaml
1659	
1660	OSPF Area Type enumeration as defined in RFC-3101.
1661	
1662	Contains Enumeration Literals:
1663	NORMAL:
1664	 The area is not a STUB or NSSA.
1665	STUB: Stub Area.
1666	NSSA: Not-so-Stubby Area.
1667	17.64 PacketDelivery
1668	File: ip/ipCommon.yaml
1669 1670 1671	For each Ingress IP Data Packet that is mapped to one of the IPVC EPs for the IPVC it takes one of two values. STANDARD_ROUTING or POLICY-BASED_ROUTING.
1672	Contains Enumeration Literals:
1673	• STANDARD_ROUTING:
1674 1675 1676 1677 1678	 If the IPVC Packet Delivery is Standard Routing, the egress UNI and UNI Access Link or egress ENNI and ENNI Link are generally selected by examining the destination IP address in the packet and matching it to an IP Prefix reachable via the IPVC EP at the egress EI – in other words, by normal IP routing. POLICY_BASED_ROUTING:
1679 1680	 The behavior and requirements when the IPVC Packet Delivery Service Attribute is set to Policy-Based Routing are deferred to a future revision of this specification (MEF 61.1)
1681	17.65 Pcp
1682 1683	A 3-bit field which refers to the IEEE 802.1p class of service and maps to the frame priority level. Different PCP values can be used to prioritize different classes of traffic.
1684	

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
value	Integer	1	0 <= value <=7.

Table 54-Pcp Attributes

17.66 PcpMapping

Ethernet PCP mapping for CoS name to PCP value.

1688

1685

1686

1687

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
cosName	String	1	Class of Service name.
ethernetPcp	Рср	1	PCP value (Integer 0 to 7).

Table 55-PcpMapping Attributes

1689

1690

1691

1692

17.67 PeeringAddress

Peering Addresses. Connection Addresses, or Loopbacks plus a list of pairs of IP addresses.

Reference MEF 61.1 Section 12.7.3 BGP.

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
connectionAddress	EnabledDisabled	1	If the Peering Addresses parameter is Connection Addresses, a separate BGP peering session is established over each UNI Access Link, using the primary IPv4 addresses in the UNI Access Link IPv4 Connection Addressing Service Attribute (section 13.4) or the first IPv6 addresses in the UNI Access Link IPv6 Connection Addressing Service Attribute (section 13.5), as indicated by the Connection Address Family parameter.
loopbacks	EnabledDisabled	1	If the Peering Addresses parameter is Loopbacks, a list of

			pairs of IP addresses is additionally specified, each pair containing the Subscriber's loopback address and the SP's or Operator's loopback address. A single BGP peering session is established for each pair of addresses.
serviceProviderLoopba ck	String	1	Service Provider Loopback IP address.
subscriberLoopback	String	1	Subscriber Loopback IP address.

Table 56-PeeringAddress Attributes

17.68 PortMap

LACP Portmap as a 2-tuple <vid, lspl> where vid is VLAN ID and lslp is Link Selection Priority List. Reference MEF 61.1.1 Section A1-1.3.2 UNI Access Link Ethernet Link Aggregation Service Attribute.

1698

1694

1695

16961697

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
vlanId	String	1	VLAN ID.
linkSelection	Рср	1	Link Selection Priority List.

Table 57-PortMap Attributes

17.69 RouteDistinguisherFields

BGP Route Distinguisher with two fields.

1702

1703

1704

1705

1701

1699

1700

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
field_1	String	1	Route Distinguisher field 1.
field_2	String	1	Route Distinguisher field 2.

Table 58-RouteDistinguisherFields Attributes

17.70 RoutingProtocols

Data type to support routing protocols and associated parameters that are used to exchange IP

MEF W102

v0.2

routes across the UNI. The value is a list of protocols (possibly empty), where each entry consists of the protocol name (one of Static, OSPF or BGP) the type of routes that will be exchanged (one of IPv4 or IPv6 or Both) and set of additional parameters as specified. Reference MEF 61.1 Section 12.7 UNI Routing Protocols Service Attributes.

1710

1706

17071708

1709

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
static	Static	01	Reference to Static routing.
ospf	Ospf	01	Reference to OSPF routing.
bgp	Вдр	01	Reference to BGP routing.

Table 59-RoutingProtocols Attributes

1712 17.71 ServiceTopology

File: ip/ipCommon.yaml

1714

1715

1713

1711

Enumeration used to represent the different Service Topologies.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Contains Enumeration Literals:

• MULTIPOINT:

 A multipoint IPVC allows packets to flow between any of the IPVC End Points for the IPVC. In this case, every IPVC End Point has a root role. Reference MEF 61.1 Section 10.2 IPVC Topology Service Attribute.

• ROOTED_MULTIPOINT:

 A rooted multipoint service is used to implement a hub-and-spoke topology. In a rooted multipoint service, each IPVC End Point is assigned either root or leaf role. Reference MEF 61.1 Section 10.2 IPVC Topology Service Attribute.

CLOUD_ACCESS:

 A cloud access IPVC allows traffic to flow between one or more IPVC End Points and the public Internet or private cloud service. Reference MEF 61.1 Section 10.2 IPVC Topology Service Attribute.

17.72 Static

When an entry in the UNI Routing Protocols list is Static, the IP Prefixes used in the Subscriber Network that are reachable via this UNI are specified as additional parameters in the entry. These are known as Static IP Prefixes. Reference MEF 61.1 Section 12.7.1 Static.

1734

1730

1731

1732

1733

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
staticIpEntry	StaticIpEntry	1*	Pointer to StaticIpEntry

1735 Table 60-Static Attributes

17.73 StaticIpEntry

StaticIpEntry data type including IPv4/IPv6 prefixes, forwarding information and administrative distance.

1738

1736

1737

Schema File Name: ip/ipCommon.yaml				
Attribute Name Type Mul		Multiplicity	Description	
staticlpPrefix	Ipv4Ipv6Prefixes	1	Static IP prefix either IPv4 or IPv6.	
forwardingInformation	ForwardingInform ation	1	Forwarding information with either Next Hop IP address or UNI Access Link identifier.	
administrativeDistance	Integer	1	Administrative Distance, an integer > 0.	

Table 61-StaticIpEntry Attributes

1740 **17.74 StaticRoute**

Data type representing IP static routes.

1742

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Description		
ipv4Prefix	Ipv4Prefix	01	IPv4 address prefix.
ipv6Prefix	Ipv6Prefix	01	IPv4 address prefix.
administrative Distance	Integer	1	The administrative distance is a numeric metric used to control which routes are selected, when

			there are multiple routes for the same IP Prefix. A lower number indicates a more preferable route.
targetRole	TargetRole	1	The target role indicates whether the route is towards an IPVC EP in the SP/SO's or a higher IPVC with Roole role or Leaf role.

Table 62-StaticRoute Attributes 1743 SynchronousEthernet 1744 17.75 Enumeration representing the value of fs which indicates if the physical link supports Synchronous 1745 1746 Ethernet. 1747 1748 **Contains Enumeration Literals: DISABLED:** 1749 Enumeration representing fs and Synchronous Ethernet MUST NOT be used on 1750 1751 corresponding physical link. ESMC - Ethernet Synchronous Messaging Channel. 1752 ESMC: Enumeration representing fs and Synchronous Ethernet MUST be used on 1753 corresponding physical link. ESMC - Ethernet Synchronous Messaging Channel. 1754 NO ESMC: 1755 1756 Enumeration representing fs and Synchronous Ethernet MUST NOT be used on corresponding physical link. ESMC - Ethernet Synchronous Messaging Channel. 1757 **TargetRole** 17.76 1758 File: ip/ipCommon.yaml 1759 1760 Enumeration representing the Static Route Target Role. Reference MEF 61.1 Section 14.3.1.4 1761 1762 Static Routes. 1763 **Contains Enumeration Literals:** 1764 1765 ROOT: Root role. 1766

1767

LEAF:

o Leaf role.

17.77 TimeDuration

1770 File: ip/ipCommon.yaml

1771

1772

1773

1769

This class is used to describe durations expressed as a 2-tuple, (value, units). The units from nanoseconds to years.

1774

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
timeDurationValue	Integer	1	The value of the duration. For example, if duration is 20 ms, this element is 20.	
timeDurationUnits	TimeDurationUnit s	1	The unit of measure in the duration. For example, if an interval is 2ms, this element is MS.	

Table 63-TimeDuration Attributes

1776 17.78 TimeDurationUnits

1777 File: ip/ipCommon.yaml

17781779

1775

The unit of measure in the duration.

1780

1781 Contains Enumeration Literals:

1782 • NS

1783 • US

1784 ● MS

1785 ● SEC

1786 ● MIN

1787 ● HOUR

1788 • DAY

1789 ● WEEK

1790 ● MONTH

YEAR

17.79 UniAccessLinkEthernetLinkAggregation

Link Aggregation, as described in IEEE Std. 802.1AX-2020 allows one or more parallel instances of full-duplex point-to-point Ethernet links to be aggregated to form a Link Aggregation Group (LAG)such that the MAC Client (the UNI Access Link) can treat the LAG as if it were a single link. Reference MEF 61.1.1 Section A1-1.3.2 UNI Access Link Trunk Ethernet Link Aggregation Service Attribute.

1797

1791

1792

1793

1794

1795

1796

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Description	
lacpVersion	LacpVersion	1	Link Aggregation Control Protocol version.
portMap	PortMap	0*	LAG port map representing VLAN ID to Aggregation Link Map.

Table 64-Ipv6ConnectionAddressing Attributes

17.80 UniAccessManagementTrunkType

File: ip/ipUniAccessLinkTrunk.yaml

1801

1798

1799

1800

Enumeration representing the UNI Access Link Trunk Type Service Attribute.

1802 1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Contains Enumeration Literals:

ETHERNET:

 Enumeration value of Ethernet. The data transferred across the UNI Access Link Trunk MUST be formatted as Ethernet MAC frames as specified in clause 3 of IEEE Std. 802.3.
 Reference MEF 61.1.1 Section A1-1.2 UNI Access Link Trunk Type Service Attribute.

OTHER:

 Enumeration value of Other. The Subscriber and Service Provider of SP/SO and Operator MUST agree on the format of the data transferred across the UNI Access Link Trunk.
 Reference MEF 61.1 Section A1-1.2 UNI Access Link Trunk Type Service Attribute [A1-R18].

1814	17.81	UniAccessLinkIpv4AddressType
1815	File: ip/	ipCommon.yaml
1816		
1817	Enumer	ration representing IPv4 Address Types specific for UNI Access Links.
1818		
1819	Contain	s Enumeration Literals:
1820	•	DHCP:
1821 1822		 Dynamic Host Configuration Protocol (DHCP) is used by the Subscriber devices to request IPv4 addresses in each subnet from the SP or Operator.
1823	•	STATIC:
1824 1825		 IPv4 addresses in each IPv4 subnet are statically assigned to the SP or Operator and to the Subscriber.
1826	•	UNNUMBERED:
1827 1828 1829		 The SP or Operator and the Subscriber each assign an IPv4 address (from their own address pools) independently. These addresses can be on different subnets, and so an interface-based routing protocol is needed to ensure reachability.
1830	17.82	UniAccessLinkIpv6AddressType
1831	File: ip/	ipCommon.yaml
1832		
1833	Enumer	ration representing IPv6 Address Types specific for UNI Access Links.
1834		
1835	Contain	s Enumeration Literals:
1836	•	DHCP:
1837 1838		 Dynamic Host Configuration Protocol (DHCP) is used by the Subscriber devices to request IPv6 addresses in each subnet from the SP or Operator.
1839	•	SLAAC:
1840 1841 1842		 Stateless Address Autoconfiguration (SLAAC) is used by the Subscriber devices to create unique IPv6 global addresses within an IP Prefix advertised by the SP or Operator as describer in RFC 4862.
1843	•	STATIC:

- IPv6 addresses in a given IPv6 subnet are statically assigned to the SP or Operator and to the Subscriber.
- LL_ONLY:
 - o If the value is LL-only, these are only IPv6 addresses used on the UNI Access Link.

17.83 Unilpv4ConnectionAddressing

Unilpv4ConnectionAddressing is a data type representing how IPv4 addresses are allocated to the devices on the UNI Access Link. Reference MEF 61.1 Section 13.4 UNI Access Link IPv4 Connection Addressing Service Attribute.

1852

1844

1845

1846

1847

1848

1849

1850

1851

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIpv4Addr essType	UniAccessLinklpv4 AddressType	01	IPv4 address type for UNI Access Link. Values are DHCP, STATIC and UNNUMBERED.
ipv4PrimarySubnet	Ipv4Subnet	1	IPv4 Primary Subnet.
ipv4SecondarySubnet	Ipv4Subnet	0*	IPv4 Secondary Subnet List.

Table 65-Unilpv4ConnectionAddressing Attributes

17.84 Unilpv6ConnectionAddressing

Unilpv6ConnectionAddressing is a data type representing how IPv6 addresses are allocated to the devices on the UNI Access Link. Reference MEF 61.1 Section 13.5 UNI Access Link IPv6 Connection Addressing Service Attribute.

1858

1853

1854

1855

1856

1857

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Description	
uniAccessLinkIpv6Addr essType	UniAccessLinkIpv6 AddressType	01	IPv6 address type for UNI Access Link. Values are DHCP, SLAAC, STATIC and LL_ONLY.
subscriberIpv6Address	String	01	Subscriber IPv6 address.
ipv6Subnet	Ipv6Subnet	0*	IPv6 Subnet.

Table 66-Ipv6ConnectionAddressing Attributes

17.85 UniManagementType

File: ip/ipCommon.yaml

1862

1860

1861

Enumeration representing the UNI Management Type options. Reference MEF 61.1 Section 12.2 UNI Management Type Service Attribute.

1865

1866

1867

1868

1870

Contains Enumeration Literals:

- SUBSCRIBER_MANAGED:
 - o Enumeration indicating the CE is the responsibility of the Subscriber.
- 1869 PROVIDER_MANAGED:
 - o Enumeration indicating the CE is the responsibility of the Service Provider.

1871 17.86 VlanId

1872 File: ip/ipCommon.yaml

1873

Data type with single attribute, vlanId which is defined as a PositiveInteger. Value 1 to 4094.

1875

1874

Schema File Name: ip/ipCommon.yaml				
Attribute Name	Туре	Multiplicity	Description	
vlanId	Integer	1	Data type with single attribute, vlanId which is a positive integer. Value 1 to 4094.	

1876 Table 67-VlanId Attributes

1877 **17.87** Vrid

1878 File: ip/ipCommon.yaml

Data type representing VRID (Virtual Router ID) as defined in RFC 5798**Błąd! Nie można odnaleźć źródła odwołania.** is a number between 1 and 255.

1881

1879

Schema File Name: ip/ipCommon.yaml			
Attribute Name	Туре	Multiplicity	Description

value	Integer	1	VRID value as an Integer.

Table 68-Vrid Attributes

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

18 IP Bandwidth Profile and Bandwidth Profile Envelope

The following section provides a detailed information model for the IP Bandwidth Profile and IP Bandwidth Profile Envelope as specified in MEF 61.1 Section 17.1 Structure of Bandwidth Profiles. The following section will provide the complete set of IP Bandwidth Profile/Bandwidth Profile Envelope models.

18.1 IP Bandwidth Profile and Envelope

The two data types that each specific model inherits are IpBwpEnvelope and IpBwpFlow.

18.1.1 IpBwpFlow

A Bandwidth Profile Flow is a stream of IP Packets meeting certain criteria. The criteria than can be used depends on which BWP Envelope the BWP Flow is a part of. Reference MEF 61.1 Section 17.2 Bandwidth Profile Flows.

Figure 23-IpBwpFlow Model

18.1.2 BurstBehavior

Enumeration used to select the Bandwidth Profile Flow Burst Behavior attribute. Reference MEF 61.1 Section 17.3 Table 29 Bandwidth Profile Parameters for a Bandwidth Profile Flow.

Contains Enumeration Literals:

- OPTIMIZE_DELAY:
 - o Enumeration representing the Burst Behavior of optimization of delay.
- OPTIMIZE_THROUGHPUT:
 - Enumeration representing the Burst Behavior of optimization of throughput.

18.1.3 **IpBwpEnvelope**

A BWP Envelope is a list of Bandwidth Profile Flows, plus additional parameters for the BWP as a whole. A BWP Envelope is a set of one or more BWP Flows that are associated such that the amount of traffic for one flow can affect the amount that is permitted for another flow. Reference MEF 61.1 Section 17.3 Bandwidth Profile Envelopes.

1908

1903

1904

1905

1906

1907

Attribute Name	Туре	Multiplicity	Description
maxIrE	InformationRate	1	The Envelope Maximum Information Rate in bits per second. This is the limit on the total aggregate information rate of traffic across all BWP Flows in the Envelope. Reference MEF 61.1 Section 17.3 Bandwidth Profile Envelopes.
tE	Float	1	The Envelope IR Time in milliseconds. This is the time period over which average Information Rates are calculated and thus it limits the size of a burst. Reference MEF 61.1 Section 17.3 Bandwidth Profile Envelopes.

Table 69-IpBwpEnvelope

18.1.4 IpBwpFlow

A Bandwidth Profile Flow is a stream of IP Packets meeting certain criteria. The criteria than can be used depends on which BWP Envelope the BWP Flow is a part of. Reference MEF 61.1 Section 17.2 Bandwidth Profile Flows.

1914

1909

1910

1911

1912

Attribute Name	Туре	Multiplicity	Description
flowIdentifier	Integer	1	Identifier for the BWP Flow within the BWP Envelope. Unique integer between 1 and n where n is the number of BWP Flows in the BWP Envelope. Reference MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
cir	InformationRate	1	Identifier for Committed Information Rate in bits per second. Average information rate of IP Packets that is committed to

			this BWP Flow. Reference MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
maxir	InformationRate	1	Identifier for Maximum Information Rate in bits per second. Limit on the average information rate of IP Packets for this BWP Flow. Reference MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
weight	Integer	1	Identifier for Weight as an integer greater than or equal to 0. Relative weight for this BWP Flow compared to other BWP Flows in the BWP Envelope. Reference MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.
burstBehavior	BurstBehavior	1	Identifier for Burst Behavior either Optimize-Delay or Optimize- Throughput. Whether the SP is requested to optimize the delay characteristic of this flow, or the throughput. Reference MEF 61.1 Table 29 - Bandwidth Profile Parameters for a Bandwidth Profile Flow.

Table 70-IpBwpFlow

18.2 UNI Ingress Bandwidth Profile Envelope

The following section details the UNI Ingress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 12.4. Note that the tables below do not repeat inherited attributes from superclasses.

1915

1916

1917

Figure 24-IpUniIngressBwpEnvelope Model

18.2.1 IpUniIngressBwpEnvelope

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile Flow specifications. If specified, the BWP Envelope is used for an ingress Bandwidth Profile. The BWP Flows can be defined per UNI, per IPVC EP, per UNI Access Link, per CoS Name, etc. Reference MEF 61.1 Section 12.4 UNI Ingress Bandwidth Profile Envelope Service Attribute.

1919

1920

1921

1922

1923

1924

Attribute Name	Туре	Multiplicity	Description
ipUniIngressBwpIpvcE pCos	lpUniIngressBwplpv cEpCos	0 *	Pointer to IpUniIngressBwpIpvcEpCos.
ipUniIngressBwpAcces sLink	IpUniIngressBwpAcc essLink	0 *	Pointer to IpUniIngressBwpAccessLink.
ipUniIngressBwpIpvcE pAccessLink	IpUniIngressIpvcEpB wpAccessLink	0 *	Pointer to IpUniIngressIpvcEpBwpAccessLin k.
ipUniIngressBwpIpvcE pCosAccessLink	IpUniIngressBwpIpv cEpCosAccessLink	0 *	Pointer to IpUniIngressBwpIpvcEpCosAcces sLink
ipUniIngressBwpIpvcE p	lpUniIngressBwplpv cEp	0 *	Pointer to IpUniIngressBwpIpvcEp.
ipUniIngressBwpUni	IpUniIngressBwp	01	Pointer to IpUniIngressBwpUni

Table 71-IpUniIngressBwpEnvelope Attributes

18.2.2 IpUniIngressBwp

All Ingress IP Data Packets at the UNI. Reference MEF 61.1 Section 12.4 UNI Ingress BWP Envelope.

1930 NOTE: No attributes are needed.

18.2.3 IpUniIngressBwplpvcEp

All Ingress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs. Reference MEF

1933 61.1 Section 12.4 UNI Ingress BWP Envelope.

1934

1931

1927

1928

Attribute Name	Туре	Multiplicity	Description
ipvcEndPointIdentifier	String	1*	IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Table 28.

Table 72-IpUniIngressBwpIpvcEp Attributes

18.2.4 IpUniIngressBwplpvcEpCos

All Ingress IP Data Packets at the UNI that are mapped to any of a given set of (IPVC, EP, CoS Name)

pairs. Reference MEF 61.1 Section 12.4 UNI Ingress BWP Envelope.

1939

1935

1936

1937

Attribute Name	Туре	Multiplicity	Description
ipvcEpIdCosName	EndPointIdentifier	1*	IPVC End Point and CoS Identifier.
	AndCosName		Reference MEF 61.1 Table 28.

Table 73-IpUniIngressBwpIpvcEpCos Attributes

18.2.5 IpUniIngressBwpAccessLink

All Ingress IP Data Packets at the UNI that are received over one of a give set of UNI Access Links.

1943 Reference MEF 61.1 Section 12.4 UNI Ingress BWP Envelope.

1944

1945

1940

1941

Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIdentifier	String	1*	UNI Access Link Identifier. Reference MEF 61.1 Table 28.

Table 74-IpUniIngressBwpAccessLink Attributes

18.2.6 IpUniIngressBwpIpvcEpAccessLink

All Ingress IP Data Packets at the UNI that are received over one of a given set of UNI Access Links, and are mapped to any of a given set of IPVC End Points. BWP Flow Parameters are a set each entry comprising of a UNI Access Link Identifier for a UNI Access Link in the UNI, a set, each entry comprising IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Section 12.4 UNI Ingress BWP Envelope.

1952

1951

1946

1947

1948

1949 1950

Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIdentifier	String	1*	UNI Access Link Identifier. Reference MEF 61.1 Table 28.
ipvcEndPointIdentifier	String	1*	IPVC End Point Identifier. Reference MEF 61.1 Table 28.

Table 75-IpUniIngressIpvcEpBwpAccessLink Attributes

18.2.7 IpUniIngressBwpIpvcEpCosAccessLink

All Ingress IP Data Packets at the UNI that are received over one of a given set of UNI Access Links, and that are mapped to the any of a given set of (IPVC EP, CoS Name) pairs. Reference MEF 61.1 Section 12.4 UNI Ingress BWP Envelope.

1958

1959

1960

1961

1962

1953

1954

1955

1956

1957

Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIdentifier	String	1*	UNI Access Link Identifier. Reference MEF 61.1 Table 28.
ipvcEpIdCosName	EndPointIdentifierA ndCosName	1*	IPVC End Point and CoS Identifier. Reference MEF 61.1 Table 28.

Table 76-IpUniIngressBwpIpvcEpCosAccessLink Attributes

18.3 UNI Egress Bandwidth Profile Envelope

The following section details the UNI Egress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 12.5. Note that the tables below do not repeat inherited attributes from superclasses.

1964

1966 1967 1968

1965

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile Flow specifications. If specified, the BWP Envelope is used for an egress Bandwidth Profile. The BWP Flows can be defined per UNI, per IPVC EP, per UNI Access Link, per CosName, etc. Reference MEF 61.1 Section 12.5 UNI Egress Bandwidth Profile Envelope Service Attribute.

Figure 25-IpUniEgressBwpEnvelope Model

1969

Attribute Name	Туре	Multiplicity	Description
ipUniEgressBwpUni	IpUniEgressBwpUni	01	Pointer to IpUniEgressBwpUni
ipUniEgressBwpIpvcEp	IpUniEgressBwpIpvc Ep	0 *	Pointer to IpUniEgressBwpIpvcEp
ipUniEgressBwpIpvcEp Cos	IpUniEgressBwpIpvc EpCos	0 *	Pointer to IpUniEgressBwpIpvcEpCos
ipUniEgressBwpAccess Link	IpUniEgressBwpAcc essLink	0 *	Pointer to IpUniEgressBwpAccessLink
ipUniEgressIpvcBwpEp AccessLink	IpUniEgressIpvcEpB wpAccessLink	0 *	Pointer to IpUniEgressIpvcEpBwpAccessLi nk
ipUniEgressBwpIpvcEp CosAccessLink	IpUniEgressBwpIpvc EpCosAccessLink	0 *	Pointer to IpUniEgressBwpIpvcEpCosAcce ssLink

Table 77-IpUniEgressBwpEnvelope Attributes

18.3.1 IpUniEgressBwp

19711972

All Egress IP Data Packets at the UNI. Reference MEF 61.1 Section 12.4 UNI Egress BWP Envelope. NOTE:

No attributes are needed.

18.3.2 IpUniEgressBwplpvcEp

All Egress IP Data Packets at the UNI that are mapped to any of a given set of IPVC EPs. Reference MEF 61.1 Section 12.5 UNI Egress BWP Envelope.

1978

1975

1976

1977

Attribute Name	Туре	Multiplicity	Description
ipvcEndPointIdentifier	String	1*	IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Table 28.

Table 78-IpUniEgressBwpIpvcEp Attributes

1979

1980

18.3.3 IpUniEgressBwplpvcEpCos

All Egress IP Data Packets at the UNI that are mapped to any of a given set of (IPVC, EP, CoS Name) pairs.

1982 Reference MEF 61.1 Section 12.5 UNI Egress BWP Envelope.

1983

Attribute Name	Туре	Multiplicity	Description
ipvcEpIdCosName	EndPointIdentifierA	1*	IPVC End Point and CoS
	ndCosName		Identifier. Reference MEF 61.1
			Table 28.

Table 79-IpUniEgressBwpIpvcEpCos Attributes

1984

1985

18.3.4 IpUniEgressBwpAccessLink

All Egress IP Data Packets at the UNI that are received over one of a give set of UNI Access Links.

1987 Reference MEF 61.1 Section 12.5 UNI Egress BWP Envelope.

1988

Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIdentifier	String	1*	UNI Access Link Identifier.
			Reference MEF 61.1 Table 28.

1989

Table 80-IpUniEgressAccessLink Attributes

18.3.5 IpUniEgressIpvcEpBwpAccessLink

All Egress IP Data Packets at the UNI that are received over one of a given set of UNI Access Links, and are mapped to any of a given set of IPVC End Points. BWP Flow Parameters are a set each entry comprising UNI Access Link Identifier for a UNI Access Link in the UNI, a set, each entry comprising IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Section 12.5 UNI Egress BWP Envelope.

1996

1990

1991

1992

1993

1994

1995

Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIdentifier	String	1*	UNI Access Link Identifier. Reference MEF 61.1 Table 28.
ipvcEndPointIdentifier	String	1*	IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Table 28.

Table 81-IpUniEgressIpvcEpBwpAccessLink Attributes

18.3.6 IpUniEgressBwpIpvcEpCosAccessLink

All Egress IP Data Packets at the UNI that are received over one of a given set of UNI Access Links, and that are mapped to the any of a given set of (IPVC EP, Cos Name) pairs. Reference MEF 61.1 Section 12.5 UNI Egress BWP Envelope.

20012002

2003

2004

2005

2006

2007

2008

20092010

1997

1998

1999

2000

Attribute Name	Туре	Multiplicity	Description
uniAccessLinkIdentifier	String	1*	UNI Access Link Identifier. Reference MEF 61.1 Table 28.
ipvcEpIdCosName	EndPointIdentifierA ndCosName	1*	IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Table 28.

Table 82-IpUniEgressBwpIpvcEpCosAccessLink Attributes

18.4 UNI Access Link Ingress Bandwidth Profile Envelope Model

The following section details the UNI Access Link Ingress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 13.10. Note that the tables below do not repeat inherited attributes from superclasses.

18.4.1 IpUniAccessLinkIngressBwpEnvelope

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile Flow specifications. An Ingress Bandwidth Profile Envelope can be specified for one of a UNI, a UNI Access, or an IPVC EP. Reference MEF 61.1 Section 13.10 UNI Access Link Ingress Bandwidth Profile Envelope Service Attribute.

Attribute Name	Туре	Multiplicity	Description
ipUniAccessLinkIngress Bwp	IpUniAccessLinkIngr essBwp	01	Pointer to IpUniAccessLinkIngressBwp.
ipUniAccessLinkBwpIp vcEp	IpUniAccessLinkIngr essBwpIpvcEp	0 *	Pointer to IpUniAccessLinkBwpIpvcEp
ipUniAccessLinkBwpIp vcEpCos	IpUniAccessLinkIngr essBwpIpvcEpCos	0 *	Pointer to IpUniAccessLinkBwpIpvcEpCos

Table 83-IpUniAccessLinkIngressBwpEnvelope Attributes

18.4.2 lpUniAccessLinkIngressBwp

20132014

2015

2016

2017

2018

2019

2020

2012

All Ingress IP Data Packets at the UNI Access Link. Reference MEF 61.1 Reference MEF 61.1 Section 13.10 UNI Access Link Ingress BWP Envelope. NOTE: No attributes are needed.

18.4.3 IpUniAccessLinkIngressBwpIpvcEp

All Ingress IP Data Packets at the UNI that are received over the UNI Access Link and are mapped to any of a given set of IPVC End Points. Reference MEF 61.1 Section 13.10 UNI Access Link Ingress BWP Envelope.

2021

Attribute Name	Туре	Multiplicity	Description
ipvcEpIdentifier	String	1*	IPVC End Point Identifier for an IPVC End Point located at the UNI Access Link. Reference MEF 61.1 Table 28.

Table 84-IpUniAccessLinkIngressBwpIpvcEp Attributes

18.4.4 IpUniAccessLinkIngressBwpIpvcEpCos

All Ingress IP Data Packets at the UNI that are received over the UNI Access Link and are mapped to any of a given of IPVC End Point that has a CoS Name. Reference MEF 61.1 Section 13.10 UNI Access Link Ingress BWP Envelope.

2027

2022

20232024

2025

Attribute Name	Туре	Multiplicity	Description
ipvcEpIdentifier	String	1	IPVC End Point Identifier for an IPVC End Point located at the UNI Access Link. Reference MEF 61.1 Table 28.

ipvcEpIdCosName	EndPointIdentifierA	1*	IPVC End Point Identifier for an
	ndCosName		IPVC End Point located at the
			UNI. Reference MEF 61.1 Table
			28.

Table 85-IpUniAccessLinkIngressBwpIpvcEpCos Attributes

18.5 UNI Access Link Egress Bandwidth Profile Envelope Model

The following section details the UNI Access Link Egress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 13.11. Note that the tables below do not repeat inherited attributes from superclasses.

18.5.1 IpUniAccessLinkEgressBwpEnvelope

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile Flow specifications.

2034 An Egress Bandwidth Profile Envelope can be specified for one of a UNI, a UNI Access, or an IPVC EP.

Reference MEF 61.1 Section 13.11 UNI Access Link Egress Bandwidth Profile Envelope Service Attribute.

2036

2037

2038

2039

2040

2041

2035

2028

2029

2030

2031

2032

2033

Attribute Name	Туре	Multiplicity	Description
ipUniAccessLinkEgress Bwp	IpUniAccessLinkEgr essBwp	01	Pointer to IpUniAccessLinkEgressBwp.
ipUniAccessLinkEgress BwpIpvcEp	IpUniAccessLinkEgr essBwpIpvcEp	0 *	Pointer to IpUniAccessLinkEgressBwpIpvcE p.
ipUniAccessLinkEgress BwpIpvcEpCos	IpUniAccessLinkEgr essBwpIpvcEpCos	0 *	Pointer to IpUniAccessLinkEgressBwpIpvcE pCos

Table 86-IpUniAccessLinkEgressBwpEnvelope Attributes

18.5.2 IpUniAccessLinkEgressBwp

All Egress IP Data Packets at the UNI Access Link. Reference MEF 61.1 Reference MEF 61.11 Section 13.11 UNI Access Link Egress BWP Envelope. NOTE: No attributes are needed.

18.5.3 IpUniAccessLinkEgressBwplpvcEp

Attribute Name	Туре	Multiplicity	Description
ipvcEpIdentifier	String	1	IPVC End Point Identifier for an IPVC End Point located at the UNI Access Link. Reference MEF 61.1 Table 28.

Table 87-IpUniAccessLinkEgressBwpIpvcEp Attributes

2044

2045

2046

2047

2048

2049

2050

2051

2052

20532054

18.5.4 IpUniAccessLinkEgressBwpIpvcEpCos

 Attribute Name
 Type
 Multiplicity
 Description

 ipvcEpIdentifier
 String
 1
 IPVC End Point Identifier.

 ipvcEpIdCosName
 EndPointIdentifierA ndCosName
 1...*
 IPVC End Point Identifier for an IPVC End Point located at the UNI. Reference MEF 61.1 Table 28.

Table 88-IpUniAccessLinkEgressBwpIpvcEpCos Attributes

18.6 ENNI Access Link Ingress Bandwidth Profile Envelope per ENNI Link Model

The following section details the ENNI Access Link Ingress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 14.4. Note that the tables below do not repeat inherited attributes from superclasses.

18.6.1 IpEnniIngressBwpEnvelopePerEnniLink

Is a list (possibly empty) of pairs of (ENNI Service Mapping Identifier, Bandwidth Profile Envelope), where each Bandwidth Profile Envelope consists of parameters and Bandwidth Profile Flow specifications. An Ingress Bandwidth Profile Envelope at an ENNI can be specific for either ENNI Links or an IPVC EP. Reference MEF 61.1 Section 14.4 ENNI Ingress Bandwidth Profile Envelopes Service Attribute.

2055

2056

Attribute Name	Туре	Multiplicity	Description
ipEnniIngressBwp	IpEnniIngressBwp	01	Reference to IpEnniIngressBwp
ipEnniIngressBwpCos	IpEnniIngressBwpCo s	1 *	Reference to IpEnniIngressBwpCos

Table 89-IpEnniIngressBwpEnvelopePerEnniLink Attributes

2057 18.6.2 lpEnnilngressBwp

All Ingress IP Data Packets at the ENNI Access Link. Reference MEF 61.1 Section 14.4. NOTE: No attributes are needed.

18.6.3 IpEnniIngressBwpCos

All Egress-Eligible IP Data Packets at the ENNI that if transmitted, would be transmitted over the ENNI Link, and that were mapped on ingress to any of a given set of CoS Names. Reference MEF 61.1 Section 14.4.

2064

2063

2060

2066

2067

2068

2069

2070

2071

20722073

2074

2075

2076

2077

2078

2079

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	Class of Service name.

Table 90-IpEnniIngressBwpCos Attributes

18.7 ENNI Access Link Egress Bandwidth Profile Envelope per ENNI Model

The following section details the ENNI Access Link Egress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 14.5. Note that the tables below do not repeat inherited attributes from superclasses.

18.7.1 IpEnniEgressBwpEnvelopePerEnniLink

Is a list (possibly empty) of pairs of (ENNI Service Mapping Identifier, Bandwidth Profile Envelope), where each Bandwidth Profile Envelope consists of parameters and Bandwidth Profile Flow specifications. An Egress Bandwidth Profile Envelope at an ENNI can be specific for either ENNI Links or an IPVC EP. Reference MEF 61.1 Section 14.5 ENNI Egress Bandwidth Profile Envelopes Service Attribute.

 Attribute Name
 Type
 Multiplicity
 Description

 ipEnniEgressBwp
 IpEnniEgressBwp
 0...1
 Reference to IpEnniIngressBwp

 ipEnniEgressBwpCos
 IpEnniEgressBwpCos
 0...*
 Reference to IpEnniEgressBwpCos.

Table 91-IpEnniEgressBwpEnvelopePerEnniLink Attributes

18.7.2 IpEnniEgressBwp

All Egress IP Data Packets at the ENNI Access Link. Reference MEF 61.1 Section 14.5. NOTE: No attributes are needed.

18.7.3 IpEnniEgressBwpCos

All Egress-Eligible IP Data Packets at the ENNI that if transmitted, would be transmitted over the ENNI Link, and that were mapped on ingress to any of a given set of CoS Names. Reference MEF 61.1 Section 14.5.

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	Class of Service name.

Table 92-IpEnniEgressBwpCos Attributes

18.8 **IPVC End Point Ingress Bandwidth Profile Envelope**

The following section details the IPVC End Point Ingress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 11.11. Note that the tables below do not repeat inherited attributes from superclasses.

2088

2085

2086

2087

2089 2090

2092

2093

2094

2095

2091

18.8.1 **IpvcEpIngressBwpEnvelope**

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile specifications. An Ingress Bandwidth Profile Envelope can be specified for one of a UNI, a UNI Access Link and ENNI Link or an IPVC End Point. Reference MEF 61.1 Section 11.11 IPVC EP Ingress Bandwidth Profile Envelope Service Attribute.

2096

Attribute Name	Туре	Multiplicity	Description
ipvcEpIngressBwpAII	IpvcEpIngressBwpAll	01	Pointer to IpvcEpIngressBwpAll.
ipvcEpIngressBwp	IpvcEpIngressBwp	1 *	Pointer to IpvcEpIngressBwp.

Table 93-IpvcEpIngressBwpEnvelopeAttributes

20992100

2101

2102

2103

2104

2105

2106

2107

18.8.2 IpvcEpIngressBwpAll

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile specification applied to all ingress IP Packets. Reference MEF 61.1 Section 11.11. NOTE: No attributes are needed.

18.8.3 lpvcEpIngressBwp

An Ingress Bandwidth for and IPVC End Point with an associated Class of Service identifier.

Attribute Name	Туре	Multiplicity	Description
cosName	String	1*	Class of Service name.

Table 94-IpvcEpIngressBwpAttributes

18.9 IPVC End Point Egress Bandwidth Profile Envelope

The following section details the IPVC End Point Egress Bandwidth Profile Envelope model as defined in MEF 61.1 Section 11.12. Note that the tables below do not repeat inherited attributes from superclasses.

Figure 27-IpvcEpEgressBwpEnvelope Model

18.9.1 IpvcEpEgressBwpEnvelope

A single Bandwidth Profile Envelope consisting of parameters and Bandwidth Profile specifications. An Egress Bandwidth Profile Envelope can be specified for one of a UNI, a UNI Access Link and ENNI Link or an IPVC End Point. Reference MEF 61.1 Section 11.11 IPVC EP Egress Bandwidth Profile Envelope Service Attribute.

2115

2116

2117

2110

Attribute Name	Туре	Multiplicity	Description
ipvcEpEgressBwpAll	IpvcEpEgressBwpAll	01	Pointer to IpvcEpEgressBwpAll
ipvcEpEgressBwp	IpvcEpEgressBwp	1 *	Pointer to IpvcEpEgressBwp

Table 95-IpvcEpEgressBwpEnvelope Attributes

18.9.2 IpvcEpEgressBwpAll

All Egress IP Data Packets at the IPVC End Point. Reference MEF 61.1 Section 11.12. NOTE: No attributes are needed.

2120 18.9.3 IpvcEpEgressBwp

2121 An Egress Bandwidth for and IPVC End Point with an associated Class of Service identifier.

2122

2123

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	Class of Service name.

Table 96-IpvcEpEgressBwp Attributes

2125

2126

2127

2128

2129

2130

2131

2132

21332134

2135

2136

2137

19 IP SLS

The IPVC Service Level Specification (SLS) describes the performance objectives for the performance of conformant IP Data Packets that flow over the IPVC. The following section is the model representative of the resources and attributes defined in MEF 61.1 Section 10.9 IPVC Service Level Specification Service Attribute.

Figure 28-IpSIs Model

19.1 **IpSIs**

Attribute Name

elay

Type

tDelay

The IPVC Service Level Specification (SLS) describes the performance objectives for the performance of conformant IP Data Packets that flow over the IPVC. The IPVC Service Level Specification Attribute is either None, or a four-tuple of the form (s,T,E,L) where s is the start time, T is a period of time, E is a set of SLS entries and L is a set of the CoS Name and number of other parameters specific to the Performance Metric. Reference MEF 61.1 Section 10.9 IPVC Service Level Specification Service Attribute.

	,	. ,	•
startTime	DateTime	1	Start time of IP SLS.
periodOfTime	Duration	1	Period of time over which IP SLS is measured.
oneWayMeanpacketd	OneWayMeanPacke	0*	Pointer to One-way Mean

Multiplicity Description

Packet Delay metric.

Page 110

v0.2

oneWayInterpacketdel ayvariation	OneWayInterPacket DelayVariation	0*	Pointer to One-way Inter-Packet Delay Variation metric.
oneWayPacketdelayra nge	OneWayPacketDela yRange	0*	Pointer to One-way Packet Delay Range metric.
oneWayPacketLossRati o	OneWayPacketLoss Ratio	0*	Pointer to One-way Packet Loss Ratio metric.
oneWayPacketDelayPe rcentile	OneWayPacketDela yPercentile	0*	Pointer to One-way Packet Delay Percentile metric.
serviceUptime	ServiceUpTime	0*	Pointer to Service uptime metric.
meanTimeToRepair	MeanTimeToRepair	0*	Pointer to Mean Time To Repair metric.
locationList	Location	1*	Pointer to (L)ocation list.

Table 97-IpSIs Attributes

The following requirements ([R18], [R19], [R20]), specify the required values that apply to CoS Labels:

2140 2141	[R43]	If the SLS for a Subscriber IP VPN Service contains at least one entry for a CoS Label, the value of T in the SLS MUST be less than or equal to 1 calendar month.
2142 2143	[R44]	In an SLS for a Subscriber IP VPN Service, each entry for a CoS Label MUST use parameter values that are not in parenthesis conforming with Table 3.
2144 2145	[R45]	In an SLS for a Subscriber IP VPN Service, each entry for a CoS Label MUST use performance objective values that are not in parenthesis for the appropriate

Performance Tier conforming with Table 4 through Table 9.

19.2 IpvcEndPointIdentifier

IPVC End Point identifier as described in MEF 61.1 Section 11.1. Note, it points to the value of IpvcEndPoint.identifier Service Attribute.

Attribute Name	Туре	Multiplicity	Description
	String maxLength=53	1	IPVC End Point identifier as described in MEF 61.1 Section 11.1. Note, it points to the value of IpvcEndPoint.identifier Service Attribute.

Table 98-IpvcEndPointIdentifier Attributes

2138

2146

2147

2148

2149

19.3 IpvcEndPointRef

A subclass of a SIsReferencePoint point to an instance of IPVC Endpoint.

2154

2152

2153

Attribute Name	Туре	Multiplicity	Description
ipvcEndPointIdentifier	IpvcEndPointIdentifi er	1	IPVC End Point identifier as described in MEF 61.1 Section 11.1. Note, it points to the value of IpvcEndPoint.identifier Service Attribute. It is not intended to point to the potential Service identifier is IPVC End Point is an instance of a service.

Table 99-IpvcEndPointRef Attributes

2155

2156

2157

19.4 Location

A subclass of a SIsReferencePoint.

2158

Attribute Name	Туре	Multiplicity	Description
name	String	1	Location name.
description	String	1	Location description.
cloudService	Boolean	1	Attribute to indicate if associated with a cloud service.
ipvcEndPointIdentifier	IpvcEndPointRef	1*	Pointer to IPVC End Point

2159

2160

2161

2162

Table 100-Location Attributes

19.5 MeanTimeToRepair

The Mean Time To Repair Performance Metric is the arithmetic mean of the durations of all outages that start in a given time period, excluding any pre-agreed maintenance.

2163

Attribute Name	Туре	Multiplicity	Description
name	String	1	Name.
mttrObjective	TimeDuration	1	MTTR Objective.

2164

Table 101-MeanTimeToRepair Attributes

19.6 OneWayInterPacketDelayVariation

The One-way Inter-Packet Delay Variation Performance Metric is the maximum, over all the ordered pairs of SLS-RPs in a given set S, of the vth percentile of differences between the one-way packet delays of Qualified Packets that arrive at time separated by a given interval tau, for a given ordered pair of SLS-RPs, a given CoS Name, and a given time period Tk. Reference MEF 61.1 Section 10.9.6 One-way Inter-Packet Delay Variation Performance Metric.

2171

2165

2166

2167

2168

21692170

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference MEF 61.1 Section 10.9.6 One- way Inter-Packet Delay Variation Performance Metric, Table-6.
packetArrivalTimeDiffe rence	Number	1	Difference in the time of arrival of packets. Reference MEF 61.1 Section 10.9.6 One-way Inter- Packet Delay Variation Performance Metric, Table 6.
slsRpPairs	SlsRpPair	1*	Set of ordered SLS-RP pairs. Reference MEF 61.1 Section 10.9.6 One-way Inter-Packet Delay Variation Performance Metric, Table-6.
interPacketDelayVariat ionPercentile	Percentage	1	Inter-Packet Delay Variation Percentile. Reference MEF 61.1 Section 10.9.6 One-way Inter- Packet Delay Variation Performance Metric, Table 6.
interPacketDelayVariat ionObjective	Number	1	Inter-Packet Delay Variation Objective. Reference MEF 61.1 Section 10.9.6 One-way Inter- Packet Delay Variation Performance Metric, Table 6.

Table 102-OneWayInterPacketDelayVariation Attributes

19.7 OneWayMeanPacketDelay

The One-way Mean Packet Delay Performance Metric is the maximum, over all the ordered pairs of SLS-RPs in a given set S, of the arithmetic mean of one-way packet delay for Qualified Packets for a given ordered pair of SLS-RPs, a given CoS Name, and a given time period Tk. Reference MEF 61.1 Section 10.9.5 One-way Mean Packet Delay Performance Metric.

2172

2173

2174

21752176

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference MEF 61.1 Section 10.9.5 One- way Mean Packet Delay Performance Metric, Table-5.
meanPacketDelayObje ctive	Number	1	Mean Packet Delay Objective. Reference MEF 61.1 Section 10.9.5 One-way Mean Packet Delay Performance Metric, Table-5.
slsRpPairs	SIsRpPair	1 *	Set of ordered SLS-RP pairs. Reference MEF 61.1 Section 10.9.5 One-way Mean Packet Delay Performance Metric, Table-5.

Table 103-OneWayMeanPacketDelay Attributes

19.8 OneWayPacketDelayPercentile

The One-way Packet Delay Percentile Performance Metric is the maximum, over all the order pairs of SLS-RPs in a given set S, of the pth percentile of one-way packet delay for Qualified Packets for a given order pair of SLS-RPs, a given CoS Name and a given time period Tk. Reference MEF 61.1 Section 10.9.4 One-way Packet Delay Percentile Performance Metric.

2179

2180

2181

2182

2183

Attribute Name	Туре	Multiplicity	Description
cosName	String	1	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference MEF 61.1 Section 10.9.4 One- way Packet Delay Percentile Performance Metric, Table-4.
packetDelayPercentile	Percentage	1	Packet Delay Percentile. Reference MEF 61.1 Section 10.9.4 One-way Packet Delay Percentile Performance Metric, Table-4.
packetDelayObjective	Number	1	Packet Delay Objective. Reference MEF 61.1 Section 10.9.4 One-way Packet Delay

			Percentile Performance Metric, Table-4.
slsRpPairs	SIsRpPair	1 *	Set of ordered SLS-RP pairs. Reference MEF 61.1 Section 10.9.4 One-way Packet Delay Percentile Performance Metric, Table-4.

Table 104-OneWayPacketDelayPercentile Attributes

19.9 OneWayPacketDelayRange

The One-way Packet Delay Range Performance Metric is the maximum, over all the ordered pairs of SLS-RPs in a given set S, of the difference between the rth percentile of one-way packet delay and the minimum one-way packet delay, for Qualified Packets for a given ordered pair of SLS-RPs, a given CoS Name, and a given time period Tk. Reference MEF 61.1 Section 10.9.7 One-way Packet Delay Range Performance Metric.

2193

2186

2187

2188

2189

2190

2191

Attribute Name	Туре	Multiplicity	Description
slsRpPairs	SlsRpPair	1 *	Set of ordered SLS-RP pairs. Reference MEF 61.1 Section 10.9.7 One-way Packet Delay Range Performance Metric, Table-7.
packetDelayRangePerc entile	Percentage	1	Packet Delay Range Percentile. Reference MEF 61.1 Section 10.9.7 One-way Packet Delay Range Performance Metric, Table 7.
packetDelayRangeObj ective	Number	1	Packet Delay Range Objective. Reference MEF 61.1 Section 10.9.7 One-way Packet Delay Range Performance Metric, Table 7.
cosName	String	1	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference MEF 61.1 Section 10.9.7 One- way Mean Packet Delay Performance Metric, Table-7.

Table 105-OneWayPacketDelayRange Attributes

19.10 OneWayPacketLossRatio

The One-way Packet Loss Ratio Performance Metric is the maximum, over the ordered pairs of SLS-RPs in a given set S, of the ratio of lost packets to transmitted packets for a given ordered pair of SLS-RPs, a given CoS Name and a given time period Tk. Reference MEF 61.1 Section 10.9.8 One-way Packet Loss Ratio Performance Metric.

2200

2195

2196

2197

2198

2199

Attribute Name	Туре	Multiplicity	Description
slsRpPairs	SlsRpPair	1 *	Set of ordered SLS-RP pairs. Reference MEF 61.1 Section 10.9.8 One-way Packet Loss Ratio Performance Metric, Table-8.
cosName	String	1	One of the values in the IPVC List of Class of Service Names Service Attribute. Reference MEF 61.1 Section 10.9.8 One- way Packet Loss Ratio Performance Metric, Table-8.
packetLossRatioObject ive	Percentage	1	Packet Loss Ratio Objective. Reference MEF 61.1 Section 10.9.8 One-way Packet Loss Ratio Performance Metric, Table 8.

Table 106-OneWayPacketLossRatio Attributes

19.11 ServiceUptime

The Service Uptime Performance Metric is the proportion of time, during a given time period Tk, that the service is working from the perspective of the Subscriber (for a Subscriber IP Service) or the perspective of the SP/SO (for an Operator IP Service), excluding any pre-agreed exceptions, for example maintenance intervals. Reference MEF 61.1[1] Section 10.9 Service Uptime Performance Metric.

2207

2201

2202

2203

2204

2205

Attribute Name	Туре	Multiplicity	Description
serviceUptimeObjectiv	Percentage	1	Service Uptime Objective.
е			Reference MEF 61.1 Section
			10.9.9 Service Uptime
			Performance Metric, Table 9.

Table 107-ServiceUptime Attributes

2213

2214

2215

2216

2217

19.12 SIsReferencePoint

- 2210 SIsReferencePoint is an abstract data type that can be subclassed to IpvcEndPoint and Location.
- 2211 Reference MEF 61.1 Section 10.9.1 SLS Reference Points.

2212 **19.13** SlsRpPair

Service Level Specification Reference Point Pair. In a multipoint or rooted multipoint IPVC, performance objectives are ideally specified as applying between pairs of IPVC EPs - in other words, they apply to the performance that IP Data Packets experience as they flow from one EI to another. The SIsRpPair is a representation of this association. Reference MEF 61.1 Section 10.9.1.

Attribute Name	Туре	Multiplicity	Description
toSIsReferencePoint	SIsReferencePoint	1	Pointer to the "to" SLS Reference Point.
fromSlsReferencePoint	SIsReferencePoint	1	Pointer to the "from" SLS Reference Point.

Table 108-SIsRpPair Attributes

Page 117

20 References

2219 2220 2221	[1]	IETF JSON Schema draft 7, <i>JSON Schema: A Media Type for Describing JSON Documents</i> and associated documents, by Austin Wright and Henry Andrews, March 2018. Copyright © 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
2222 2223	[2]	IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, by Scott Bradner, March 1997
2224	[3]	IETF RFC 3444, On the Difference between Information Models and Data Models, January 2003
2225 2226 2227	[4]	IETF RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, by Barry Leiba, May 2017. Copyright © IETF Trust and the persons identified as the document authors (2017). All Rights Reserved
2228 2229	[5]	IETF RFC 4271, A Border Gateway Protocol 4 (BGP-4), by Dr. Yakov Rekhter, January 2006. Copyright © The Internet Society (2006). All Rights Reserved.
2230	[6]	MEF 61.1, IP Service Attributes, May 2019
2231 2232	[7]	MEF 61.1.1, Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, Mean Time to Repair Performance Metric, July 2022.
2233	[8]	MEF 69.1, Subscriber IP Service Definitions, February 2022
2234 2235	[9]	MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and Framework, January 2021
2236 2237	[10]	MEF 112, MEF Services Model: Information Model for IP/IP VPN, July 2022.
2231		

Appendix A Usage examples (Informative)

2239

2238

- 2240 This appendix aims to provide an extensive set of examples to cover:
- Different Service Order configuration variants,
- Basic Service Order API walkthrough to order an IP Service,
- Common modifications,
- Deletion of a Service

2245

- The examples are delivered in two forms:
- As part of this document to allow comments and rich explanation.
 - As a Postman collection for ease of use in testing.

A.1 High-level Flow

2250

2251

2252

2249

2248

The Legato Interface Reference Point is formed from a set of APIs that service different functions in the end-to-end flow. shows all the functions and their sequence.

2253

22542255

Figure 29-Legato End-to-End Function Flow

- Service Catalog allows the Client to query SOF for available Services as well as what attributes are fixed and/or elastics with values/ranges.
- Service Order allows the Client to request the SOF to initiate and complete the fulfillment process of installation of a Service Offering, an update to an existing Service, or a disconnect of an existing Service.
- Service Inventory allows the Client to retrieve information about existing Service instances from the SOF's Service Inventory.
- 2262 All the above-mentioned APIs are provided in the SDK together with accompanying Developer Guides.
- 2263 Please refer to those documents for more details and examples of functional APIs.

A.2 Integration of Service Specification into the Service Order API

- The Service Order API is service-agnostic in the meaning that they serve as an interaction between the Client and the Server (SOF) and they do not contain any service-specific information in their specifications.
- To pass the service-specific information, an extension pattern is used. This applies to any of the Legato
- Service APIs that carry service-specific information: Service Catalog, Service Order and Service Inventory.
- The extension hosting type in the API data model is MefServiceConfiguration. The @type
- 2270 attribute of that type must be set of a value that uniquely identifies the service specification. See Figure
- 30 to Figure 33. A unique identifier for MEF standard service specifications is in URN format and is assigned
- by MEF. This identifier is provided as root schema \$id and in service specification documentation. In this
- case, this will be in format of examples below:
- urn:mef:lso:spec:legato:IpUni:v0.0.1:all
- urn:mef:lso:spec:legato:Ipvc:v.0.0.1:all
- urn:mef:lso:spec:legato:IpvcEndPoint:v.0.0.1:all

Figure 30-The Extension Pattern: Subscriber IP (1 of 2)

22812282

2283

2284

2287

2288

2289

- urn:mef:lso:spec:legato:IpUniAccessLink:v0.0.1:all
 - urn:mef:lso:spec:legato:IpUniAccessLinkTrunk:v.0.0.1:all

Figure 31-The Extension Pattern: Subscriber IP (2 of 2)

- urn:mef:lso:spec:legato:IpUni:v0.0.1:all
- urn:mef:lso:spec:legato:Ipvc:v.0.0.1:all
- urn:mef:lso:spec:legato:IpvcEndPoint:v.0.0.1:all
- urn:mef:lso:spec:legato:IpUniAccessLink:v.0.0.1:all

Figure 32-The Extension Pattern: Operator IP (1 of 2)

- urn:mef:lso:spec:legato:IpUniAccessLinkTrunk:v0.0.1:all
- urn:mef:lso:spec:legato:IpEnni:v.0.0.1:all

MEF W102 **v0.2**

© MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the following statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any of the information contained herein.

- urn:mef:lso:spec:legato:IpEnniLink:v.0.0.1:all
 - urn:mef:lso:spec:legato:IpEnniCommon:v.0.0.1:all

2295

2296

22972298

2299

2300

2301

2302

2292

Figure 33-The Extension Pattern: Operator IP (2 of 2)

Use of non-MEF standard service definitions is allowed. In such a case the schema identifier must be agreed upon between the Client and the SOF.

Service specifications are provided as JSON/YAML schemas without the MefServiceConfiguration context. Service-specific attributes are introduced via the MefServiceRefOrValue (defined by the Client). This entity has the serviceConfiguration attribute of type MefServiceConfiguration which is used as an extension point for service-specific attributes. The example result of such a binding in a request payload may look like this for Service Order.

Editor Note 4: Add JSON example

2303

2304

2305

2312

Figure 34-Service Order with Subscriber IP Example

A.3 Action: Add

- This section guides through all the steps of Legato Service Order API that is needed to be performed to successfully order a Subscriber IP UNI service.
- NOTE: SOF is free to mandate some of these steps.
- NOTE: As the examples of steps in many cases will replicate the service-specific information, in some of the snippets some parts of it will be omitted for better readability.
- There are rules for all request items for creation requests (Service Order):

• item.action must be set to add

2315

2317

2319

2320

2321

- item.service.id must not be provided
 - service.serviceConfiguration must contain all desired configurations

A.3.1 Use Case 1: Service Order

2316 Editor Note 5: Add Service Order Request

Figure 35-UC1: Service Order Request

2318 Editor Note 6: Add Service Order Response

Figure 36-UC1: Service Order Response

Editor Note 7: Add Service Order Sequence Diagram

Figure 37-UC1: Service Order Sequence Diagram

Figure 38-UC1: Setup Diagram

2324 This setup involves:

- Creation of the Subscriber IP UNI(s):
 - place: Minneapolis (Location)
 - o place: St. Paul (Location)
- Creation of the IPVC, including End Points:
 - o Configuration of a new Subscriber IP UNI End Point with id

2322

2323

23252326

2327

2328

2331	A.4	Action: Modify
2332		
2333	A.4.1	Use Case 2: Service Order: Bandwidth change
2334		
2335	A.4.2	Use Case 3: Service Order: IPv4 Static IP Address change at the Subscriber IP UNI
2336		
2337	A.5	Action: Delete
2338		
2339 2340	A.5.1	Use Case 4: Service Order: Delete Subscriber IP UNI(s), IPVC and associated IP VC End Points
2341		
2342	A.5.2	Use Case 5: Move Subscriber IP UNI to a different Location
2343		
2344		