大規模P2Pネットワーク仮想環境のDHTを用いた安定性と分断耐性の向上

P2P NVE DHT Kademlia メタバース MMO

田中勇気1,高見利也2

1大分大学大学院工学研究科工学専攻,2大分大学理工学部

背景 P2P型ネットワーク仮想環境 (NVE) に関する研究

例) MMOゲーム, メタバース等のリアルタイム通信部分

課題

システム詳細

DHT(分散ハッシュテーブル) Kademlia

- ❖ データ検索ホップ数 O(log n)
- ❖ ノードIDとデータIDの XOR距離 に基づいてデータを配置・検索する

Kademliaを拡張

狙い: リアルタイムに空間内の情報を同期すること

- ❖ ノードリスト交換: 2 秒ごとに実施
- ❖ TTL 設定: ノードリストに 10 秒を付与し、自動的に消滅

Kademlia イメージ図 実際のデータ構造は木ではないが、 バケット分割は木を使用するのが分かりやすい

ノード間 コネクション確立 (接続確立)

- ❖ Node自体でシグナリング※を行う
- ❖ 第三者ノードがシグナリングメッセージ を中継することで、NAT環境下でも安 定して接続を確立できる

※ シグナリングとは

接続する相手の情報(IP、ポート、接続条件など)を交換するプロセス P2P 通信での「接続準備」や「相手探し」に相当

評価

①接続状態の評価

❖ 空間サイズは2000 m²

ノード状態可視化

評価

ノード状態の集約

②ネットワーク分断耐性の確認

❖ Gossip Protocolを用いて検証 メッセージが"うわさ"のように拡散していく仕組み

ノード状態可視化と評価の様子

水色: 理想と実際の表示が一致していることを表す

中継サーバー

実験で使用する計算機の情報

目的 P2P NVE における通信量を削減すること

- ❖ 分散ハッシュテーブル (DHT) を用いてユーザーの位置を管理 → 効率的な検索
- ◆ 仮想空間で近いノード同士のみ接続 → 通信量を抑える

仮想空間内の座標を基にしたP2P接続

評価結果

評価項目	50 Nodes	100 Nodes	150 Nodes	200 Nodes
①平均 近距離ノード接続成功率	66.50 %	46.83 %	25.16 %	16.76 %
平均 メッセージ数	471.1 /s	335.0 /s	416.7 /s	241.0 /s
平均 スループット	2.42 <i>Mbps</i>	1.98 <i>Mbps</i>	2.25 <i>Mbps</i>	1.05 <i>Mbps</i>
平均 RTT	42.5 ms	43.9 ms	104.0 ms	182.9 ms
②メッセージ応答数 (ネットワーク分断確認)	41/50	98/100	96/150	114/200

考察

50 Nodes

- ❖ 近距離接続成功率良好①
- ❖ 高い接続性(ほぼ分断なし)②
- ❖ スループット・RTT ともに安定

100 Nodes ~

- ❖ 近距離接続成功率が大幅低下①
- ❖ 分断が一部発生②
- ❖ スループット・メッセージ数が増加し、負荷上昇

❖ 最大接続数

20に設定

❖ RTT が悪化し遅延が増加

今後の展望

- ❖ アルゴリズムの改良安定
- ❖ ノードが増えた際の安定性の向上が必要