Laboratory-1 (Bisection Method for root finding)

August 24, 2020

1. Write a code to find roots of an arbitrary function using Bisection method. Stop iterating further when the difference $|x_L - x_R| < \epsilon$ and $f(x_{1/2}) < \delta$ where ϵ and δ are small enough values specified by you.

Get the code to inform you about the (a) $|x_L - x_R|$, the magnitude of the difference between successive approximations to the root, (b) number of steps N taken to get a desired accuracy.

- 2. <u>Testing your code</u> is critical. Never assume and fool yourself into believing that you cannot go wrong in coding (even if it a tiny piece of code). <u>DO NOT proceed without testing the code</u> against a problem with known results. So, here is what you should do now. Use your code to find roots of (and compare against exact result).
 - (a) $f(x) = x^2 4$
 - (b) $f(x) = x^2 3x + 1$

Record the number of steps N. For each of the above, how does N change on altering ϵ .

3. Now find the roots of $x^6 - x - 1 = 0$. What are the number of roots that the equations must possess? Were you able to locate all the roots?