RSA DIY with Large Numbers

Conception de la structure Grand Nombre

Notre objet BigInt stocke:

- mag : Un array de magnitude de type UIntArray avec les éléments dans la base de travail, en little endian. (ex: {0, 1, 0, 1} en base 2 ou {0, 1} en base 10)
- base : La base de travail
- sign: Le signe en Int (-1 est négatif, 0 est zéro)

La raison de stocker un tableau de magnitude et une base de travail est que nous allons analyser le String de la valeur.

Example:

```
BigInt.valueOf("12345", radix=10)
```

Ce qui donne dans l'objet :

```
{
    "mag": {5, 4, 3, 2, 1},
    "base": 10,
    "sign": 1
}
```

La raison du type du signe dans Int est que, pendant le calcul de times (ou *), le sign est `this.sign * other.sign.

Instancier BigInt

Constructeur

Nous n'avons qu'un constructeur :

```
class BigInt {
   val mag: UIntArray
   val base: UInt
   val sign: Int

constructor(mag: UIntArray, base: UInt, sign: Int = 1) {
      this.mag = mag.stripTrailingZero()
      this.base = base
      this.sign = if (this.mag.size == 1 && this.mag.first() == 0u) 0 else

sign // Sécurité du signe
   }
}
```

Ce qui se réduit à :

```
class BigInt(mag: UIntArray, val base: UInt, sign: Int = 1) {
   val mag: UIntArray
   val sign: Int

   init {
      this.mag = mag.stripTrailingZero()
      this.sign = if (this.mag.size == 1 && this.mag.first() == 0u) 0 else
   sign // Sécurité du signe
   }
}
```

Parser un String (BigInt.valueOf)

L'algorithme est assez simple, mais ne supporte que les bases 2 à 36 (car, en base 36, contient les caractères 0-9a-z).

En résumé:

- Vérifie s'il existe un signe et attribue le signe en fonction de la présence de signe
- Convertit les charactères en digit en fonction de la base de travail (radix)

```
fun valueOf(str: String, radix: Int = DEFAULT_BASE_STRING): BigInt {
   var i = 0
   val (mag, sign) = when {
        str.first() == '-' -> {
            i++
            UIntArray(str.length - 1) to -1
        }
        str.first() == '+' -> {
           i++
            UIntArray(str.length - 1) to 1
        }
        else -> {
           UIntArray(str.length) to 1
        }
   }
    for (j in mag.size - 1 downTo 0) {
        mag[j] = Character.digit(str[i], radix).toUInt()
        i++
    return BigInt(mag, radix.toUInt(), sign)
}
```

Si vous n'êtes pas familier à la déclaration par destructuration : <u>Pair</u>, <u>Control Flow</u>. En résumé, il est possible de faire une assignation parallèle avec val (a, b) = value1 to value2.

Egalement, chaque expression de contrôle de flux permet de retourner la dernière valeur. Exemple :

```
val a = if (condition) {
   println("...")
   32  // This is returned because it is the last line of the expression
} else {
   println("...")
   12  // This is returned because it is the last line of the expression
}
```

Cela permet de remplacer l'opérateur ternaire de Java (condition ? returnMeIfTrue : returnMeIfFalse).

Notez que cette méthode est **statique**, voire plus précisément est une <u>méthode factory</u>. Ce qui signifie qu'elle doit être stocké dans un objet factory ayant un cycle de vie de <u>singleton</u>.

En Kotlin, cela se résume à faire un companion object :

```
class BigInt(mag: UIntArray, val base: UInt, sign: Int = 1) {
    companion object {
        private const val DEFAULT_BASE_STRING = 10
        fun valueOf(str: String, radix: Int = DEFAULT_BASE_STRING): BigInt {
            var i = 0
            val (mag, sign) = when {
                str.first() == '-' -> {
                    UIntArray(str.length -1) to -1
                str.first() == '+' -> {
                    i++
                    UIntArray(str.length - 1) to 1
                }
                else -> {
                    UIntArray(str.length) to 1
                }
            }
            for (j in mag.size - 1 downTo 0) {
                mag[j] = Character.digit(str[i], radix).toUInt()
                i++
            return BigInt(mag, radix.toUInt(), sign)
        }
    }
}
```

Ce qui permet :

```
BigInt.valueOf("12345", 10)
```

object sous Kotlin est un singleton et permet de stocker des variables ou méthodes existant sur toute l'application. (En gros, c'est une méthode static au sens de C++, c'est-à-dire, partagé entre toutes les instances de classes).

Exemple:

```
object ImASingleton {
   fun hello() {}
}
ImASingleton.hello()
```

companion object associe la classe mère (ici, BigInt) avec l'object.

```
class ImNotASingletonBut {
    companion object { // This is a Singleton
        fun hello() {}
    }
}
ImNotASingletonBut.hello()
```

Comparaison

Implémenter Comparable<BigInt>

Parce qu'un nombre est comparable :

```
class BigInt(mag: UIntArray, val base: UInt, sign: Int = 1) : Comparable<BigInt>
{
    override fun compareTo(other: BigInt): Int {
        TODO("Not implemented yer")
    }
    override fun equals(other: Any?): Boolean {
        TODO("Not implemented yer")
    }
}
```

compareTo

L'algorithme est la suivant :

- Comparer les signes en premiers.
- Si les signes sont les mêmes, comparer la taille des arrays de magnitude
- Si les tailles et signes sont les mêmes, comparer les digits en partant de la fin.

Soit, sur Kotlin:

```
override fun compareTo(other: BigInt): Int {
    return when {
        sign < other.sign -> -1 // This is negative, and other is positive
        sign > other.sign -> 1 // This is positive, and other is negative
        sign == -1 && other.sign == -1 -> -1 * this.compareUnsignedTo(other) //
Both are negative.
        else -> this.compareUnsignedTo(other) // Both are positive
    }
}
```

```
private fun compareUnsignedTo(other: BigInt): Int {
    return when {
        this.mag.size < other.mag.size -> -1
        this.mag.size > other.mag.size -> 1
        else -> compareMagnitudeTo(other)
    }
}
```

```
private fun compareMagnitudeTo(other: BigInt): Int {
   for (i in mag.size - 1 downTo 0) {
      if (mag[i] < other.mag[i]) {
        return -1
      } else if (mag[i] > other.mag[i]) {
        return 1
      }
   }
   return 0
}
```

equals

```
override fun equals(other: Any?): Boolean {
   if (this === other) return true // Instance check
   if (javaClass != other?.javaClass) return false // Class type check
   other as BigInt // Cast check
   if (this.compareTo(other) != 0) return false // Data check
   return true
}
```

Opérateurs basique

unaryMinus et unaryPlus

Opérateurs +a et -a. Rien de plus simple :

```
operator fun unaryPlus() = this
operator fun unaryMinus() = BigInt(mag, base, -sign)
```

plus

Notre implémentation contient quelques conditions pour la sécurité :

```
operator fun plus(other: BigInt): BigInt {
    if (base != other.base) throw NumberFormatException()
    if (this == zero) return other
    if (other == zero) return this

if (this.sign != other.sign) {
        // Subtract instead
        val cmp = this.compareUnsignedTo(other)
        if (cmp == 0) return zero
        val result = if (cmp > 0) this.subtractMagnitude(other) else

other.subtractMagnitude(this)
        val resultSign = if (cmp == sign) 1 else -1
        return BigInt(result, base, resultSign)
   }

val result = this addMagnitude other // Implémentation

return BigInt(result, base, sign)
}
```

Allons voir l'implémentation de addMagnitude.

```
private infix fun addMagnitude(other: BigInt): UIntArray {
   val result = UIntArray(max(mag.size, other.mag.size) + 1)
   var carry = 0uL
   var i = 0
   // Add common parts of both numbers
   while (i < mag.size && i < other.mag.size) {</pre>
       val sum = mag[i] + other.mag[i] + carry
        result[i] = (sum % base).toUInt()
        carry = sum / base
       i++
   }
   // Add the last part
   while (i < mag.size) {</pre>
       val sum = mag[i] + carry
        result[i] = (sum % base).toUInt()
        carry = sum / base
```

```
i++
}
while (i < other.mag.size) {
   val sum = other.mag[i] + carry
   result[i] = (sum % other.base).toUInt()
   carry = sum / base
   i++
}

// Add the last carry (if exists)
if (carry > Ou) result[i] = carry.toUInt()
return result
}
```

Notez le infix à la déclaration de la fonction. Cela permet a addMagnitude b en plus de a.addMagnitude(b).

Ici, il s'agit de l'algorithme de l'addition classique :

- val sum = mag[i] + other.mag[i] + carry est assez explicite, nous additionnons digits par digits.
- result[i] = sum % base permet d'éviter l'overflow de la base. Si cela overflow (sum / base > 0), alors nous mettons cet overflow dans le carry: carry = sum / base.

minus

Notre implémentation contient quelques conditions pour la sécurité :

```
operator fun minus(other: BigInt): BigInt {
   if (base != other.base) throw NumberFormatException()
   if (this == zero) return BigInt(other.mag, base, -other.sign)
   if (other == zero) return this

if (this.sign != other.sign) {
     // Add instead
     val result = this.addMagnitude(other)
     return BigInt(result, base, sign)
}

val result = this subtractMagnitude other
val resultSign = if (this < other) -1 else 1

return BigInt(result, base, resultSign)
}</pre>
```

Allons voir subtractMagnitude.

```
private infix fun subtractMagnitude(other: BigInt): UIntArray {
   val result = UIntArray(max(mag.size, other.mag.size))
   var carry = 0uL
   val (largest, smallest) = if (this.compareUnsignedTo(other) < 0) {</pre>
        other to this
   } else {
       this to other
   // Subtract common parts of both numbers
   for (i in smallest.mag.indices) {
        var sub: ULong
        carry = if (largest.mag[i] < carry + smallest.mag[i]) {</pre>
            sub = largest.mag[i] + (largest.base - carry - smallest.mag[i])
        } else {
            sub = largest.mag[i] - smallest.mag[i] - carry
        }
        result[i] = sub.toUInt()
   }
   // Subtract the last part
   for (i in smallest.mag.size until largest.mag.size) {
        var sub: ULong
        carry = if (largest.mag[i] < carry) {</pre>
            sub = largest.mag[i] + (largest.base - carry)
            1u
        } else {
            sub = largest.mag[i] - carry
```

```
}
result[i] = sub.toUInt()
}
return result
}
```

L'algorithme de la soustraction ${\bf non\ sign\'e}$ est également classique et assez similaire à l'addition :

- Partir du plus petit et soustraire les parties communes.
 - largest.mag[i] smallest.mag[i] carry est assez explicite
 - o if (largest.mag[i] < smallest.mag[i] + carry) vérifie s'il existe un carry (e.g:
 "sub est-il négatif?" ou "sub est-il en underflow?").</pre>
 - Si oui, alors on fait remontrer dans les nombres positifs en faisans sub += base et on stocke (1u) dans le carry.
- Finir par la dernière partie.

times

Rien de surprenant non plus :

```
operator fun times(other: BigInt): BigInt {
    if (base != other.base) throw NumberFormatException()
   if (this == zero || other == zero) return zero
   val result = UIntArray(mag.size + other.mag.size)
    // Basic multiplication
   for (i in other.mag.indices) {
        var carry = 0uL
        for (j in mag.indices) {
            val sum: ULong = result[i + j].toULong() + other.mag[i].toULong() *
mag[j].toULong() + carry
            carry = sum / base
            result[i + j] = (sum % base).toUInt()
        result[i + mag.size] = carry.toUInt()
    }
    return BigInt(result, base, sign * other.sign)
}
```

Il s'agit du cas d'école. La seule différence est carry = result[i + j] / base et result[i + j]
= result[i + j] % base.

De la même manière que plus et minus, % base et / base permet d'éviter l'overflow de la base. % base va faire que le nombre dépasse pas la base et / base récupère le carry.

shl ou littéralement shift left (pas bitwise)

En little-endian, nombre sh1 n divisera le nombre par $base^n$.

L'implémentation est immédiate :

```
infix fun shl(n: Int): BigInt {
   if (n == 0) return this
   val result = if (n < mag.size) mag.copyOfRange(n, mag.size) else
uintArrayOf(Ou)
   return BigInt(result, base, sign)
}</pre>
```

remsh1 ou le reste du shift left

L'algorithme est choisi est le cas d'école :

```
infix fun remShl(k: Int): BigInt {
   if (k == 0) return zero

   val divResult = this shl k
   return this - basePowK(k) * divResult
}
```

Car le reste de x/n^k est $rem = x - n^k \times \lfloor \frac{x}{n^k} \rfloor$.

Note: L'implémentation de basePowk.

```
fun basePowK(base: UInt, k: Int): BigInt {
   val mag = UIntArray(k + 1).apply {
      set(k, 1u)
   }
   return BigInt(mag, base, 1)
}
```

Sur Kotlin, apply permet enchainer des opérations à la déclaration. Equivalent :

```
fun basePowK(base: UInt, k: Int): BigInt {
   val mag = UIntArray(k + 1)
   mag[k] = 1u
   return BigInt(mag, base, 1)
}
```

div

div est nécessaire d'être implémenté afin de faire l'opérateur rem (ou %) et de calculer le modInverse.

Cependant, div est actuellement lourd à implémenter. Par conséquent, **nous essaierons de l'éviter au mieux**.

L'implémentation est l'algorithme de Binary Search.

```
operator fun div(other: BigInt): BigInt {
   if (base != other.base) throw NumberFormatException()
   if (other == zero) throw ArithmeticException("/ by zero")
   if (this == one || this == zero) return zero
   var left = zero
   var right = this
   var prevMid = zero
   while (true) {
        val mid = left + (right - left).divBy2()
        val productResult = other * mid
        // If result is the same.
        if (productResult == this || prevMid == mid) {
            return mid
        }
        if (productResult < this) {</pre>
            left = mid
        } else {
            right = mid
        }
        prevMid = mid
   }
}
```

En effet, l'algorithme s'applique car les données ($other \times x$ est croissants). Par conséquent, en appliquant cet algorithme, si $other \times mid = this$ alors $\frac{this}{other} = mid$.

L'implémentation de divBy2() est le cas d'école :

```
fun divBy2(): BigInt {
   if (this == zero || this == one) return zero
   val result = mag.copyof() // Pour avoir un array de même

   var carry = Ou
   for (i in mag.size - 1 downTo 0) {
       result[i] = result[i] + carry
       carry = if (result[i] % 2u == 1u) base else Ou
       result[i] = result[i] shr 1 // Div by 2
   }

   return BigInt(result, base, sign)
}
```

Déduction à propos choix de l'algorithme Binary Search : Le choix de cet algorithme a actuellement un complexité faible : $\mathcal{O}(1)$ si other est un multiple de 2. **Cela influencera l'implémentation de l'algorithmie modulaire.**

rem ou modulo

Même implémentation de remsh1. Il s'agit du cas d'école.

```
operator fun rem(other: BigInt): BigInt {
   if (base != other.base) throw NumberFormatException()
   if (other == zero) throw ArithmeticException("/ by zero")
   if (this == other || other == one) return zero

val divResult = this / other
   return this - other * divResult
}
```

modInverse avec pgcd(a, n) = 1

Maintenant, que nous avons implémenté div, nous pouvons implémenter modInverse selon l'algorithme d'Euclide étendue sachant gcd(this, other) == 1:

```
infix fun modInverse(other: BigInt): BigInt {
   var (oldR, r) = this to other
   var (oldT, t) = one to zero
   if (other == one) return zero
    while (r > one) {
       val q = oldR / r
        (oldR - q * r).let { // it = oldR - q * r}
            oldR = r
            r = it
        }
        (oldT - q * t).let { // it = oldT - q * t}
           oldT = t
            t = it
        }
   }
   if (t < zero) t += other
    return t
}
```

Notez .1et, cela permet de faire (oldR, r) = (r, oldR - q * r) en séquentiel sans passer par une variable temporaire.

Algorithmie sous la forme de Mongomery

montgomeryTimes

```
A\otimes B=A\cdot B\cdot r^{-1} \bmod n
```

Rien d'extraordinaire. Nous suivons l'implémentation indiqué par l'algorithme de réduction de Montgomery.

```
fun montgomeryTimes(other: BigInt, n: BigInt, v: BigInt): BigInt {
   val s = this * other
   val t = (s * v) remShl n.mag.size
   val m = s + t * n
   val u = m shl n.mag.size
   return if (u >= n) u - n else u
}
```

Notez remsh1 qui signifie "reste de shift left n.mag.size fois" soit "reste de $/base^{\mathrm{n.mag.size}}$ ".

Tests de montgomeryTimes

Avant de passer à la suite, il serait intéressant de tester montgomeryTimes pour passer sous la forme de Montgomery et afin de montrer l'utilisation de cette méthode.

Nous rappelons que la forme de Montgomery est $\phi(a) = a \cdot r \mod n$.

Or:

$$a \otimes r^2 \mod n = a \cdot r^2 \cdot r^{-1} \mod n$$

= $a \cdot r \mod n$
= $\phi(a)$

Inversement:

$$\phi(a) \otimes 1 = \phi(a) \cdot 1 \cdot r^{-1} \mod n$$
$$= a \cdot r \mod n \cdot r^{-1} \mod n$$
$$= a \mod n$$

Donc notre test est:

```
"A to phi(A) with A = 413 * 4096 mod 3233 = 789" {
   val a = BigInt.valueOf("413", 10).toBase2()
   val n = BigInt.valueOf("3233", 10).toBase2()

   // Convert to base 2
   val r = BigInt.basePowK(2u, n.mag.size)
   val rSquare = BigInt.basePowK(2u, n.mag.size * 2) % n
   val v = r - (n modInverse r)

   val aMgy = a.montgomeryTimes(rSquare, n, v)

aMgy shouldBe BigInt.valueOf("789", 10).toBase2()
}
```

Note: Le test est sous format Kotest.

Nous pouvons également tester en base 10 :

```
"A to phi(A) with A = 413 * 10000 mod 3233 = 1459 in base 10" {
   val a = BigInt.valueOf("413", 10)
   val n = BigInt.valueOf("3233", 10)

   val r = BigInt.basePowK(10u, n.mag.size)
   val rSquare = BigInt.basePowK(10u, n.mag.size * 2) % n
   val v = r - (n modInverse r)

   val aMgy = a.montgomeryTimes(rSquare, n, v)

   aMgy shouldBe BigInt.valueOf("1459", 10)
}
```

Notez v issue de l'identité de Bezout $r \cdot r' - n \cdot v = 1$ soit $n \cdot v \equiv -1 \mod r$.

Nous pouvons également tester les 2 sens de transformation de Montgomery :

```
"phi(A) to A with A = 413 * 4096 \mod 3233" {
   val a = BigInt.valueOf("413", 10).toBase2()
   val n = BigInt.valueOf("3233", 10).toBase2()
   val r = BigInt.basePowK(2u, n.mag.size)
   val rSquare = BigInt.basePowK(2u, n.mag.size * 2) % n
   val v = r - (n modInverse r)
   val aMgy = a.montgomeryTimes(rSquare, n, v)
   val aNotMgy = aMgy.montgomeryTimes(BigInt.one(base = 2u), n, v)
   aNotMgy shouldBe a
}
"phi(A) to A with A = 413 * 10000 mod 3233 = 1459 in base 10" {
   val a = BigInt.valueOf("413", 10)
   val n = BigInt.valueOf("3233", 10)
   val r = BigInt.basePowK(10u, n.mag.size)
   val rSquare = BigInt.basePowK(10u, n.mag.size * 2) % n
   val v = r - (n modInverse r)
   val aMgy = a.montgomeryTimes(rSquare, n, v)
   val aNotMgy = aMgy.montgomeryTimes(BigInt.one(base = 10u), n, v)
   aNotMgy shouldBe a
}
```

Ce qui donne:

```
      ✓ Test Results
      59 ms

      ✓ me.nguye.number.BigIntTest
      59 ms

      ✓ montgomeryTimes should
      59 ms

      ✓ A to phi(A) with A = 413 * 10000 mod 3233 = 1459 in base 10
      33 ms

      ✓ phi(A) to A with A = 413 * 10000 mod 3233 = 1459 in base 10
      7 ms

      ✓ A to phi(A) with A = 413 * 4096 mod 3233 = 789
      12 ms

      ✓ phi(A) to A with A = 413 * 4096 mod 3233
      7 ms
```

Notez bien que en base 2, le temps est divisé par 3 pour le passage sous forme de Montgomery.

En effet, remarquez la ligne val rsquare = BigInt.basePowK(10u, n.mag.size * 2) % n,
nous utilisons actuellement le modulo!

Egalement pour modInverse !

Pour que le calcul de $\mod n$, ou plus précisément /n, soit efficace, il faut que n soit en base 2^k .

modPow, exponentiation modulaire avec la réduction de Montgomery

L'algorithme utilisé est <u>square-and-multiply</u>.

```
fun modPow(exponent: BigInt, n: BigInt): BigInt {
   if (base != n.base) throw NumberFormatException()
   val exponentBase2 = exponent.toBase2()
   val r = basePowK(n.mag.size)
   val rSquare = basePowK(n.mag.size * 2) % n
   val v = r - (n \mod n + n) / (n * n) = 1 \mod r, n' = 1 \mod r, n' = 1 \mod r
n' = ''-1/n \mod r''
   val thisMgy = this.montgomeryTimes(rSquare, n, v)
   var p = r - n // 1 sous forme Montgomery
    for (i in exponentBase2.mag.size - 1 downTo 0) {
        p = p.montgomeryTimes(p, n, v) // Square
        if (exponentBase2.mag[i] == 1u) {
            p = p.montgomeryTimes(thisMgy, n, v) // Multiply
   }
    return p.montgomeryTimes(one, n, v)
}
```

Faisons ligne par ligne:

- val exponentBase2 = exponent.toBase2() permet exponentiation via l'algorithme squareand-multiply.
- val r = basePowK(n.mag.size), car, r est choisi tel que si $base^{k-1} \le n < base^k$ alors $r = base^k$ pour que r soit premier avec n.
- val rSquare = basePowK(n.mag.size * 2) % n afin de mettre sous forme de Montgomery.
- val v = r (n modInverse r) est un coefficient de Bezout issue de $r \cdot r' n \cdot v = 1$.

```
var p = r - n // 1 sous forme Montgomery
for (i in exponentBase2.mag.size - 1 downTo 0) {
   p = p.montgomeryTimes(p, n, v) // Square
   if (exponentBase2.mag[i] == 1u) {
      p = p.montgomeryTimes(thisMgy, n, v) // Multiply
   }
}
```

est l'algorithme square-and-multiply.

Elle fonctionne de la manière suivante :

- \circ Si x^k , en mettant k est décomposable en base 2. (exemple si $k=22=(10110)_2$) Donc, $x^k=x^{a_n2^n+\ldots+a_0}$. ($x^{22}=x^{16+4+2}=x^{16}x^4x^2$)
- o Si il y a des 1, alors il faut multiplier, car $x^a\cdot x^b=x^{a+b}$ (plus précisément : $x^{a_i2^i}\cdot x^{a_j2^j}=x^{a_i2^i+a_j2^j}$).

- Nous utilisons "square" pour multiplier l'exposant par 2 (décaler à gauche les bits de l'exposant), car $x^a \cdot x^a = x^{2a}$ (plus précisément : $x^{a_i 2^i} \cdot x^{a_i 2^i} = x^{a_i 2^{i+1}}$.
- o Donc, en reprenant l'exemple :
 - On itère 5 fois. Chaque itération (squaring) multiplie les exposants par 2.
 - lacksquare La première multiplication à la première itération va permettre de construire x^{16} .
 - lacktriangle La deuxième multiplication à la troisième itération va permettre de construire x^4
 - lacktriangle La troisième multiplication à la quatrième itération va permettre de construire x^2
- p.montgomeryTimes(one, n, v) est la mise sous la forme "standard".

Tests de modPow

Test 1: Base 16

Paramètres

- Base de travail : 16 (hexadecimal)
- Entrées:

```
d =
942E315D898EA7934F2B8C233E0529E7D4E32B206679EBBA31D18F803F077C3AC9599226A027
9FACF10B9958507ACF7E2F43811E69E90A4D185E962D211240245FF4FB9873731D0655FE559E
D2FF3C9412B1A64CB3AA510A4F5DAA9C01410AED01482F493545BDE0AE978F972B39DC7691B6
7C06D645A164511EDA0CAB6A68DD
c1 =
2967CB2D53ACF0D909D95BA2D4EA606C3BD8133706E74CE9EE70D8904B30D52ED481BD957F53
3A192DF2AFE1F72FBA4366A6D690C5E0C3D3721A3C68DB0E12494DE52B25F2487C5DE449C73E
5142982877E02088274FE79AFD0C6FE037729B1266F2FA9CC577975611B34D92AE9AAC683979
7F54EB2ABDBB36D1E1D5995A7C2E
c2 =
1AD59925CA4330FE3E7CAB199E04441725CE8641B1DF11C56A4ADB0EA0AEC117DE4045C9EF25
6E6FBBD9CCC35AAB317EBD13E342E3B664369CAAF5E62358D249E939B9D1DA984BFFEE8DE1EE
87993C186FCAB0CBFF867EA69E15AE50A402FBC5818BFA9D077CAEC64F4AC96859961C294CAD
DBC24C2CFEB1E01DFB632ACFFE48
00000000000000000000000002A7B
```

• Attendu:

```
m1 = 7b (123 en base 10)
m2 = c8 (200 en base 10)
```

Code / Protocole

```
@ExperimentalTime
@ExperimentalUnsignedTypes
fun main() {
    val workingBase = 16

    val d = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val c1 = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val c2 = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val n = BigInt.valueOf("...", workingBase) // Entrée tronquée

println("decrypting")
    measureTime {
        println(c1.modPow(d, n))
        println(c2.modPow(d, n))
    }.also { println("Time Elapsed : $it") }
}
```

Résultat

```
decrypting
7b
c8
Time Elapsed: 40.2s
```

Résultat satisfaisant.

Test 2: Base 16 ramené à la base 65536

Paramètres

- Base de travail : 16 (hexadecimal) ramené à 65536
- Entrées:

```
d =
942E315D898EA7934F2B8C233E0529E7D4E32B206679EBBA31D18F803F077C3AC9599226A027
9FACF10B9958507ACF7E2F43811E69E90A4D185E962D211240245FF4FB9873731D0655FE559E
D2FF3C9412B1A64CB3AA510A4F5DAA9C01410AED01482F493545BDE0AE978F972B39DC7691B6
7C06D645A164511EDA0CAB6A68DD
c1 =
2967CB2D53ACF0D909D95BA2D4EA606C3BD8133706E74CE9EE70D8904B30D52ED481BD957F53
3A192DF2AFE1F72FBA4366A6D690C5E0C3D3721A3C68DB0E12494DE52B25F2487C5DE449C73E
5142982877E02088274FE79AFD0C6FE037729B1266F2FA9CC577975611B34D92AE9AAC683979
7F54EB2ABDBB36D1E1D5995A7C2E
c2 =
1AD59925CA4330FE3E7CAB199E04441725CE8641B1DF11C56A4ADB0EA0AEC117DE4045C9EF25
6E6FBBD9CCC35AAB317EBD13E342E3B664369CAAF5E62358D249E939B9D1DA984BFFEE8DE1EE
87993C186FCAB0CBFF867EA69E15AE50A402FBC5818BFA9D077CAEC64F4AC96859961C294CAD
DBC24C2CFEB1E01DFB632ACFFE48
00000000000000000000000002A7B
```

• Attendu:

```
m1 = { 123 } (123 en base 65536)
m2 = { 200 } (200 en base 65536)
```

Code / Protocole

```
@ExperimentalTime
@ExperimentalUnsignedTypes
fun main() {
   val workingBase = 16
   val d = BigInt.valueOf("...", workingBase).toBase2PowK(16) // Entrée
tronquée
   val c1 = BigInt.valueOf("...", workingBase).toBase2PowK(16) // Entrée
tronquée
   val c2 = BigInt.valueOf("...", workingBase).toBase2PowK(16) // Entrée
tronquée
   val n = BigInt.valueOf("...", workingBase).toBase2PowK(16) // Entrée
tronquée
    println("decrypting")
   measureTime {
        println(c1.modPow(d, n))
        println(c2.modPow(d, n))
   }.also { println("Time Elapsed : $it") }
}
```

Résultat

decrypting
{123}
{200}
Time Elapsed: 5.00s

Résultat satisfaisant.

Test 3: Base 10

Paramètres

- Base de travail: 10
- Entrées:

```
d =
1040558441671077812485897526089204421214358524130047196074639508239873128211
3275916680998868588284966002871345280915424736058018571225927752937375563384
3749387184470871012615224812078370633557809434904918225321388120741945280206
1816838347990192467401138829296232117477093653198571818079774556436887188512
70877
c1 =
2907589156223685355406259912832815959018302898055210108554426270478005354953
4418578507236855720567419975163282590047789761592080601496152946952125090156
7446011587172953825114315233286969047361527760435665801422048859124438317920
7778418363139822182666461154723983793619893969217826316733888203460760986573
1118
c2 =
1884373410417546174762005634597764433919185101394525088563340762993600120692
4360108249391255994307246258972445193033936764824225343511129353256115730527
6340533720594607574733025175393648331282672638754090446864553851327686234406
1352945624304163487361558480011365417897195417316438238034880347571065633374
1640
n =
1797693134862315907729305190789024733617976978942306572734300811577326758055
0096313270847732240753602112011387987139335765878976881441662249284743063947
7074095512480796227391561801824887394139579933613278628104952355769470429079
0618088095228864239559174423176933873251711350717926983445502235717324055626
49211
```

• Attendu:

```
m1 = 123

m2 = 200
```

Code / Protocole

```
@ExperimentalTime
@ExperimentalUnsignedTypes
fun main() {
    val workingBase = 10

    val d = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val c1 = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val c2 = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val n = BigInt.valueOf("...", workingBase) // Entrée tronquée

println("decrypting")
    measureTime {
        println(c1.modPow(d, n))
        println(c2.modPow(d, n))
    }.also { println("Time Elapsed : $it") }
}
```

Résultat

decrypting
123
200
Time Elapsed: 305s

Résultat satisfaisant malgré le temps de traitement élevé.

Test 4: Base 2

Paramètres

- Base de travail : 2
- Entrées :

d =

c1 =

c2 =

• Attendu:

```
m1 = 1111011 (123 en base 2)
m2 = 11001000 (200 en base 2)
```

Code / Protocole

```
@ExperimentalTime
@ExperimentalUnsignedTypes
fun main() {
    val workingBase = 2

    val d = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val c1 = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val c2 = BigInt.valueOf("...", workingBase) // Entrée tronquée
    val n = BigInt.valueOf("...", workingBase) // Entrée tronquée

println("decrypting")
    measureTime {
        println(c1.modPow(d, n))
        println(c2.modPow(d, n))
    }.also { println("Time Elapsed : $it") }
}
```

Résultat

```
decrypting
1111011
11001000
Time Elapsed: 495s
```

Résultat satisfaisant mais un temps trop élevé.

Le comportement de RSA est immédiat :

```
@ExperimentalUnsignedTypes
object Rsa {
   fun decrypt(c: BigInt, d: BigInt, n: BigInt) = c.modPow(d, n)
   fun encrypt(m: BigInt, e: BigInt, n: BigInt) = m.modPow(e, n)
}
```

Benchmark

Après les tests précédents, nous avons remarqué que la base 10 est plutôt lente, mais les bases en 2^k ont l'air d'être rapide selon nos hypothèses. (Car la division euclidienne est basé sur l'algorithme binary search).

Par conséquent, nous allons tester différente base 2^k

Benchmark: $2790^{413} \mod 3233$

Paramètres

- Base de travail : 2^k avec k variant entre [1,64]
- Entrée:

```
c = 2790
d = 413
n = 3233
```

• Attendu: m = 65

Code / Protocole

```
"(2790, 413, 3233)" When {
        "decrypt" should {
            "returns 65 in base 2^k from 1 to 31" {
                checkAll(Exhaustive.ints(1..3)) { iteration ->
                    val writer =
File("output_2790_413_3233_2to64_$iteration.txt").printWriter()
                    writer.use { out ->
                        checkAll(Exhaustive.ints(1..31)) { k ->
                            val c = BigInt.valueOf("101011100110",
2).toBase2PowK(k)
                            val d = BigInt.valueOf("110011101",
2).toBase2PowK(k)
                            val n = BigInt.valueOf("110010100001",
2).toBase2PowK(k)
                            val expected = BigInt.valueOf("1000001",
2).toBase2PowK(k)
                            var result: BigInt
                            measureTime {
                                result = Rsa.decrypt(c, d, n)
                            }.also {
```

```
println("Base 2^$k, m = $result, Time elapsed:

out.println("$k\t${it.toLongNanoseconds()}")
}

result shouldBe expected

}
}
}
}
}
}
```

Note: Le test est sous format Kotest.

Résultats

```
Base 2^1, m = 1000001, Time elapsed: 23.1ms
Base 2^2, m = 1001, Time elapsed: 9.03ms
Base 2^3, m = 101, Time elapsed: 3.61ms
Base 2^4, m = 41, Time elapsed: 3.44ms
Base 2^5, m = 21, Time elapsed: 2.61ms
Base 2^6, m = \{1, 1\}, Time elapsed: 3.02ms
Base 2^7, m = \{65\}, Time elapsed: 939us
Base 2^8, m = \{65\}, Time elapsed: 2.67ms
Base 2^9, m = \{65\}, Time elapsed: 1.08ms
Base 2^10, m = \{65\}, Time elapsed: 951us
Base 2^11, m = \{65\}, Time elapsed: 1.02ms
Base 2^12, m = \{65\}, Time elapsed: 933us
Base 2^13, m = \{65\}, Time elapsed: 1.09ms
Base 2^14, m = \{65\}, Time elapsed: 823us
Base 2^15, m = 65, Time elapsed: 857us
Base 2^16, m = \{65\}, Time elapsed: 883us
Base 2^17, m = \{65\}, Time elapsed: 913us
Base 2^18, m = 65}, Time elapsed: 823us
Base 2^19, m = \{65\}, Time elapsed: 694us
Base 2^2, m = \{65\}, Time elapsed: 947us
Base 2^2, m = \{65\}, Time elapsed: 775us
Base 2^2, m = \{65\}, Time elapsed: 1.69ms
Base 2^2, m = \{65\}, Time elapsed: 1.68ms
Base 2^24, m = \{65\}, Time elapsed: 1.20ms
Base 2^2, m = \{65\}, Time elapsed: 1.64ms
Base 2^26, m = \{65\}, Time elapsed: 1.80ms
Base 2^2, m = \{65\}, Time elapsed: 1.42ms
Base 2^28, m = \{65\}, Time elapsed: 1.08ms
Base 2^2, m = {65}, Time elapsed: 1.37ms
Base 2^30, m = \{65\}, Time elapsed: 968us
Base 2^31, m = \{65\}, Time elapsed: 923us
```

En l'exécutant 3 fois :

La première courbe $Try \, n^{\circ}0$ peut être plus élevé que les autres du fait que Java est compilé en Just-In-Time.

Benchmark Grand Nombre

Paramètres

- Base de travail : 2^k avec k variant entre [1,64]
- Entrée:

d =

n =

• Attendu: m = 1111011 (123 en binaire)

```
"(Big, Big, Big)" When {
        "decrypt" should {
            "returns a good result in base 2<sup>k</sup> from 1 to 31" {
                checkAll(Exhaustive.ints(1..3)) { iteration ->
                    val writer =
File("output_Big_2to64_$iteration.txt").printWriter()
                    writer.use { out ->
                         checkAll(Exhaustive.ints(1..31)) { k ->
                             val c = BigInt.valueOf("...", 2).toBase2PowK(k)
                            val d = BigInt.valueOf("...", 2).toBase2PowK(k)
                             val n = BigInt.valueOf("...", 2).toBase2PowK(k)
                            val expected = BigInt.valueOf("1111011",
2).toBase2PowK(k)
                            var result: BigInt
                             measureTime {
                                 result = Rsa.decrypt(c, d, n)
                             }.also {
                                 println("Base 2^$k, m = $result, Time elapsed:
$it")
                                 out.println("$k\t${it.toLongNanoseconds()}")
                            }
                             result shouldBe expected
                        }
                    }
                }
            }
        }
   }
```

Note: Le test est sous format Kotest.

Résultats

```
Base 2^1, m = 1111011, Time elapsed: 226s
Base 2^2, m = 1323, Time elapsed: 64.4s
Base 2^3, m = 173, Time elapsed: 30.9s
Base 2^4, m = 7b, Time elapsed: 18.3s
Base 2^5, m = 3r, Time elapsed: 13.0s
Base 2^6, m = \{59, 1\}, Time elapsed: 9.52s
Base 2^7, m = {123}, Time elapsed: 7.53s
Base 2^8, m = {123}, Time elapsed: 6.03s
Base 2^9, m = \{123\}, Time elapsed: 5.32s
Base 2^10, m = {123}, Time elapsed: 4.16s
Base 2^11, m = {123}, Time elapsed: 3.81s
Base 2^12, m = {123}, Time elapsed: 3.30s
Base 2^13, m = {123}, Time elapsed: 2.95s
Base 2^14, m = {123}, Time elapsed: 2.79s
Base 2^15, m = {123}, Time elapsed: 2.48s
Base 2^16, m = {123}, Time elapsed: 2.38s
Base 2^17, m = {123}, Time elapsed: 2.14s
Base 2^18, m = {123}, Time elapsed: 2.09s
Base 2^19, m = {123}, Time elapsed: 2.09s
Base 2^2, m = \{123\}, Time elapsed: 2.21s
```

```
Base 2^21, m = {123}, Time elapsed: 2.05s
Base 2^22, m = {123}, Time elapsed: 2.02s
Base 2^23, m = {123}, Time elapsed: 1.69s
Base 2^24, m = {123}, Time elapsed: 1.45s
Base 2^25, m = {123}, Time elapsed: 1.42s
Base 2^26, m = {123}, Time elapsed: 1.49s
Base 2^27, m = {123}, Time elapsed: 1.30s
Base 2^28, m = {123}, Time elapsed: 1.27s
Base 2^29, m = {123}, Time elapsed: 1.31s
Base 2^30, m = {123}, Time elapsed: 1.41s
Base 2^31, m = {123}, Time elapsed: 1.52s
```

En l'exécutant 3 fois :

Le résultat est assez claire : plus la base est grande et sous format 2^k , plus les opérations sont rapides.

Conclusion

Nous pouvons conclure que la base est grande et sous format 2^k , plus les opérations sont rapides. Cependant, comme nos ordinateurs sont en 64bits, 2^{31} est le maximum (sinon l'implémentation de la multiplication overflow).

De plus, le temps de conversion de la base 2 vers la base 2^k n'est pas très couteuse :

Par contre, le temps de conversion de la base n vers la base 2^k est assez longue (5s environ pour une conversion d'un mot 1025 bits en base 16 vers une base 2^k , 7s environ pour une conversion d'un mot 1025 bits en base 10 vers une base 2^k). En effet, pour convertir vers la base 2^k , le nombre est d'abord convertit en base 2. Or, cette conversion utilise des divisions et des modulos, ce qui n'est pas optimal.

Une voie de développement serait d'optimiser cette conversion pour mieux supporter les conversions de base de 2^j à 2^k .