Theoretische Informatik und Logik Übungsblatt 1 (2015S) Lösungen

Aufgabe 1.1 Seien P_1 und P_2 Probleme und $P_1 \leq P_2$. (Es gibt eine Reduktion von P_1 auf P_2). Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort.

- a) Ist P_2 entscheidbar, so ist auch P_1 entscheidbar.
- b) Ist P_1 unentscheidbar, so kann P_2 entscheidbar sein.
- c) Ist P_2 unentscheidbar, dann muss P_1 auch unentscheidbar sein.
- d) Ist P_1 entscheidbar, so ist auch P_2 entscheidbar.
- e) Ist P_1 rekursiv aufzählbar, so ist auch P_2 rekursiv aufzählbar.

Lösung

- a) Das ist korrekt. Gibt es eine Reduktion von P_1 auf P_2 , so muss P_2 mindestens so schwierig wie P_1 sein. Eine Lösung von P_2 kombiniert mit der Reduktion von P_1 auf P_2 impliziert auch eine Lösung von P_1 .
- b) Nein. Die Reduktion und ein Algorithmus, der P_2 entscheidet, können dazu verwendet werden, P_1 zu entscheiden. Dies ist aber im Widerspruch zur Angabe (P_1 unentscheidbar).
- c) Nein. Ist P_2 unentscheidbar, so muss P_1 nicht notwendigerweise unentscheidbar sein. Ein einfaches Gegenbeispiel: Sei $P_1 = \{\}$, also die Leersprache, welche jedenfalls entscheidbar ist: Die Frage ob $w \in P_1$ ist, kann für jedes Wort w mit "nein" beantwortet werden. Sei nun M eine Turingmaschine, die P_1 akzeptiert und P_2 die unentscheidbare Sprache $L_{ne} = \{M \mid L(M) \neq \{\}\}$ (s. Folie 58). Dann können wir eine Reduktion von P_1 auf P_2 so konstruieren: Gegeben eine Instanz w von P_1 , fragen wir ob M in L_{ne} ist. Nachdem $L(M) = \{\}$, ist die Antwort immer "nein".
- d) Nein. Ist P_1 entscheidbar, so muss P_2 nicht notwendigerweise auch entscheidbar sein. (Gegenbeispiel siehe c)).
- e) Nein. Ist P_1 rekursiv aufzählbar, so muss P_2 nicht notwendigerweise auch rekursiv aufzählbar sein. Gegenbeispiel: Sei $P_1 = \{\}$, also die Leersprache, welche jedenfalls entscheidbar (und somit auch rekursiv aufzählbar) ist: Die Frage ob $w \in P_1$ ist, kann für jedes Wort w mit "nein" beantwortet werden. Sei nun M eine Turingmaschine, die eine nicht-leere Sprache akzeptiert und P_2 das nicht rekursiv aufzählbare Problem $L_e = \{M \mid L(M) = \{\}\}$ (s. Folie 58). Dann können wir eine Reduktion von P_1 auf P_2 so konstruieren: Gegeben eine Instanz w von P_1 , fragen wir ob M in L_e ist. Nachdem $L(M) \neq \{\}$, ist die Antwort immer "nein".

Aufgabe 1.2 Geben Sie an, ob folgende Probleme (un)entscheidbar sind, und begründen Sie jeweils Ihre Antwort. Sofern jeweils möglich, verwenden Sie dafür den Satz von Rice.

- a) Ist die von einer Turingmaschine akzeptierte Sprache leer?
- b) Ist die von einer Turingmaschine akzeptierte Sprache nicht rekursiv aufzählbar?
- c) Enthält die von einer Turingmaschine akzeptierte Sprache mindestens 10 Wörter?
- d) Macht eine Turingmaschine mehr als 1000 Bewegungen, wenn sie mit einem leeren Band gestartet wird?

- e) Ist die von einer Turingmaschine akzeptierte Sprache eine Menge von Wörtern?
- **Lösung** a) Unentscheidbar, Satz von Rice: Es handelt sich um die Eigenschaft $P = \{\{\}\}$. Diese Eigenschaft kommt einer Sprache L zu, naemlich $L = \{\}$. Keine andere rekursiv aufzählbare Sprache ist in P, dementsprechend ist P nicht trivial, und damit nach dem Satz von Rice unentscheidbar.
 - (Anmerkung: Beachten Sie den Unterschied zwischen $P = \{\{\}\}$, der Eigenschaft die Leersprache zu sein und der leeren Eigenschaft $P = \{\}$, welche keiner rekursiv aufzählbaren Sprache zukommt, siehe auch b))
 - b) Hierbei handelt es sich um eine triviale Eigenschaft: Es trifft auf keine rekursiv aufzählbare Sprache zu, nicht rekursiv aufzählbar zu sein. In der Tat ist dieses Problem entscheidbar.
 - c) Unentscheidbar, Satz von Rice: $P = \{L \mid |L| \ge 10\}$ ist keine triviale Eigenschaft, denn es gilt z.B. $\{\underline{\mathtt{a}}\} \notin P$ aber $\{\underline{\mathtt{a}}\}^* \in P$. Daher ist dieses Problem nach dem Satz von Rice unentscheidbar.
 - d) Dieses Problem ist entscheidbar: Simuliere 1001 Schritte der Turingmaschine. (Satz von Rice ist hier nicht anwendbar, da es sich nicht um eine Eigenschaft der von Turingmaschinen akzeptierten Sprachen handelt, sondern um die Turingmaschinen selbst.)
 - e) Die Eigenschaft eine Menge von Wörtern zu sein trifft auf alle rekursiv aufzählbaren Sprachen zu. Es handelt sich also um eine triviale Eigenschaft, welche auch entscheidbar ist.

Aufgabe 1.3 Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort.

- a) Für jede Sprache L gilt: $|L| < |L^*|$ (wobei |A| die Anzahl der Elemente in A bezeichnet).
- b) Ist die Sprache $L_1 \cdot L_2$ regulär, dann sind sowohl L_1 wie auch L_2 regulär.
- c) Sei L eine Sprache über Σ . Ist $\Sigma^* L$ regulär, dann ist auch L regulär.
- d) Ist L_2 regulär und $L_1 \subseteq L_2$, dann ist auch L_1 regulär.

Lösung

- a) Falsch. Gegenbeispiel: $L = \{\varepsilon\}$. Dann gilt: $L = L^* = \{\varepsilon\}$.
- b) Falsch. z.B.: $L_2 = \{\}$, dann ist $L_1L_2 = \{\}$ regulär. Über L_1 kann damit aber keine Aussage getroffen werden.
- c) Richtig. Reguläre Sprachen sind unter Komplement abgeschlossen.
- d) Falsch. Gegenbeispiel: $\{\underline{\mathtt{a}}^n\underline{\mathtt{b}}^n\mid n\geq 0\}$ ist eine Teilmenge der regulären Sprache $\{\underline{\mathtt{a}},\underline{\mathtt{b}}\}^*$, jedoch selbst sicher nicht regulär!

Aufgabe 1.4

- a) Sei $\Sigma = \{\underline{0},\underline{1}\}$ sowie $L = \{\underline{1}^n\underline{0}^{n \text{ mod } 3} \mid n \geq 0\}$. Geben Sie einen deterministischen endlichen Automaten (DEA) für die Sprache L sowie ihr Komplement $\overline{L} = \Sigma^* L$ an. (Graphische Darstellung genügt.) (*Hinweis:* n mod 3 steht für den Rest der (ganzzahligen) Division von n durch 3.)
- b) Sei $L = \{\underline{1}^{5m}\}\{\underline{1}^{2015}\}^*$ wobei m Ihre Matrikelnummer (ohne Berücksichtigung von eventuell führenden Nullen) ist. Geben Sie einen deterministischen endlichen Automaten (DEA) \mathcal{A} an, der L akzeptiert.

Beschreiben Sie \mathcal{A} sowohl durch einen Graphen als auch durch ein 5-Tupel.

c) Sei $L = \{\underline{1}^{5m}\}^*\{\underline{1}^{2015}\}$ wobei m Ihre Matrikelnummer (ohne Berücksichtigung von eventuell führenden Nullen) ist. Geben Sie einen deterministischen endlichen Automaten (DEA) \mathcal{A} mit höchstens 5m Zuständen an, der L akzeptiert.

Beschreiben Sie \mathcal{A} sowohl durch einen Graphen als auch durch ein 5-Tupel.

Lösung

a) Den Automaten \mathcal{A}' für \overline{L} erhalten wir aus \mathcal{A} indem wir Endzustände und Nichtendzustände vertauschen (wobei es hier wesentlich ist, nicht auf die Falle zu vergessen!):

b) $\mathcal{A} = \langle \{q_i \mid 0 \le i \le 5m + 2014\}, \{\underline{1}\}, \delta, q_0, \{q_{5m}\} \rangle, \text{ wobei}$ $\delta(q_i, \underline{1}) = q_{i+1} \text{ für } 0 \le i < 5m + 2014, \quad \delta(q_{5m+2014}, \underline{1}) = q_{5m}$

c) $\mathcal{A} = \langle \{q_i \mid 0 \leq i \leq 5m-1\}, \{\underline{1}\}, \delta, q_0, \{q_{2015}\} \rangle, \text{ wobei}$ $\delta(q_i, \underline{1}) = q_{i+1} \text{ für } 0 \leq i < 5m-1, \quad \delta(q_{5m-1}, \underline{1}) = q_0$ $\cdots \qquad \qquad \cdots \qquad \underline{1} \qquad q_{m+1}$ $\underline{1} \qquad q_{0} \qquad \underline{1} \qquad \cdots \qquad \underline{1} \qquad \underline{1} \qquad \underline{1} \qquad q_{2016} \qquad \cdots \qquad \underline{1} \qquad q_{m}$

Aufgabe 1.5 Geben Sie für die folgenden Sprachen L jeweils eine induktive Definition an, und beweisen Sie mithilfe des Pumping Lemmas für reguläre Sprachen, dass diese Sprachen nicht regulär sind.

(Wählen Sie mindestens zwei Unterpunkte.)

- a) $L = \{w\underline{c}^n \mid w \in \{\underline{\mathtt{a}},\underline{\mathtt{b}}\}^*, n = 2|w|_{\underline{\mathtt{a}}} + |w|_{\underline{\mathtt{b}}}\}.$ (*Hinweis*: $|w|_a$ bezeichnet die Anzahl der Symbole a in w.)
- b) $L = \{ww^r \mid w \in \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}\}^*\}$. (*Hinweis:* w^r bezeichnet das Spiegelbild von w.)

- c) $L = \{0^n 1^m \mid n < m\}$
- d) $L = \{ 0^n 1^m \mid n > m \}$

Lösung

- a) L ist die kleinste Menge für die gilt:
 - $-\varepsilon \in L$.
 - Ist $w \in L$, so auch $awcc \in L$, $bwc \in L$.

Beweis indirekt. Angenommen, L ist regulär. Sei dann m die Konstante aus dem Pumping Lemma und das gewählte Wort z.B.

$$w=\mathtt{a}^m\mathtt{c}^{2m}.$$

Dann gilt $w \in L$ und |w| = 3m > m.

Wir teilen nun w in xyz so auf, dass $|xy| \le m$ und |y| > 0. Nachdem $|xy| \le m$ und $w = \underline{\mathbf{a}}^m \underline{\mathbf{c}}^{2m}$, kann xy nur aus Symbolen $\underline{\mathbf{a}}$ bestehen.

Nach dem Pumping Lemma muss aber $xy^iz \in L$ für alle $i \geq 0$ gelten.

Wenn wir nun

$$i = 0$$

wählen, müsste auch $xy^0z = \underline{\mathbf{a}}^{m-|y|}\underline{\mathbf{c}}^{2m}$ aus L sein, was aber nicht der Fall ist! Wir haben also einen Widerspruch gefunden, L kann somit keine reguläre Sprache sein.

- b) Sei $\Sigma = \{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}}\}$ L ist die kleinste Menge für die gilt:
 - $-\varepsilon\in L.$
 - Ist $w \in L$ und $a \in \Sigma$, so auch $awa \in L$.

Beweis indirekt. Angenommen, L ist regulär. Sei dann m die Konstante aus dem Pumping Lemma und das gewählte Wort z.B.

$$w = \mathbf{a}^m \mathbf{b} \mathbf{b} \mathbf{a}^m$$
.

Dann gilt $w \in L$ und |w| = 2m + 2 > m.

Wir teilen nun w in xyz so auf, dass $|xy| \le m$ und |y| > 0. Nachdem $|xy| \le m$ und $w = \underline{\mathbf{a}}^m \underline{\mathbf{b}} \underline{\mathbf{b}} \underline{\mathbf{a}}^m$, kann xy nur aus Symbolen $\underline{\mathbf{a}}$ bestehen.

Nach dem Pumping Lemma muss aber $xy^iz \in L$ für alle $i \geq 0$ gelten.

Wenn wir nun z.B. i=2 wählen, müsste auch $xy^2z=\underline{\mathtt{a}}^{m+|y|}\underline{\mathtt{b}}\underline{\mathtt{b}}\underline{\mathtt{a}}^m$ aus L sein, was aber nicht der Fall ist! Wir haben also einen Widerspruch gefunden, L kann somit keine reguläre Sprache sein.

- c) Sei $\Sigma = \{\underline{0}, \underline{1}\}$ L ist die kleinste Menge für die gilt:
 - $\underline{1} \in L$.
 - Ist $w \in L$, so auch 0w1 und $w1 \in L$.

Beweis indirekt. Angenommen, L ist regulär. Sei dann m die Konstante aus dem Pumping Lemma und das gewählte Wort z.B.

$$w = \mathbf{0}^m \mathbf{1}^{m+1}.$$

Dann gilt $w \in L$ und |w| = 2m + 1.

Wir teilen nun w in xyz so auf, dass $|xy| \le m$ und |y| > 0. Nachdem $|xy| \le m$ und $w = 0^m 1^{m+1}$, kann xy nur aus Symbolen $\underline{0}$ bestehen.

Nach dem Pumping Lemma muss aber $xy^iz \in L$ für alle $i \geq 0$ gelten.

Wenn wir nun

$$i = 2$$

wählen, müsste auch $xy^2z = \underline{0}^{m+|y|}\underline{1}^{m+1}$ aus L sein, was aber nicht der Fall ist! Wir haben also einen Widerspruch gefunden, L kann somit keine reguläre Sprache sein.

- d) Sei $\Sigma = \{ \underline{\mathtt{0}}, \underline{\mathtt{1}} \}$ List die kleinste Menge für die gilt:
 - $\underline{0} \in L.$
 - Ist $w \in L$, so auch $\underline{0}w\underline{1}$ und $\underline{0}w \in L$.

Beweis indirekt. Angenommen, L ist regulär. Sei dann m die Konstante aus dem Pumping Lemma und das gewählte Wort z.B.

$$w = \underline{\mathbf{0}}^m \underline{\mathbf{1}}^{m-1}.$$

Dann gilt $w \in L$ und |w| = 2m - 1.

Wir teilen nun w in xyz so auf, dass $|xy| \le m$ und |y| > 0. Nachdem $|xy| \le m$ und $w = \underline{0}^m \underline{1}^{m-1}$, kann xy nur aus Symbolen $\underline{0}$ bestehen.

Nach dem Pumping Lemma muss aber $xy^iz\in L$ für alle $i\geq 0$ gelten.

Wenn wir nun

$$i = 0$$

wählen, müsste auch $xy^2z = \underline{0}^{m-|y|}\underline{1}^{m-1}$ aus L sein, was aber nicht der Fall ist! Wir haben also einen Widerspruch gefunden, L kann somit keine reguläre Sprache sein.