Métaheuristiques parallèles

Mathieu Larose

15 avril 2010

Article et auteurs

Article: Parallel Meta-heuristics, 2009.

Auteurs

- Teodor Gabriel Crainic, CIRRELT.
- Michel Toulouse, CIRRELT.

Définition

Plusieurs tâches travaillent simultanément sur un même problème.

Définition

Plusieurs tâches travaillent simultanément sur un même problème.

Coût du parallélisme

- Lancement des tâches
- Synchronisation
- Communication

Définition

Plusieurs tâches travaillent simultanément sur un même problème.

Coût du parallélisme

- Lancement des tâches
- Synchronisation
- Communication

Efficacité du parallélisme (speedup)

- $S_p = \frac{T_1}{T_P}$
- T₁ : temps de calcul du meilleur algorithme séquentiel.
- T_p : temps de calcul en parallèle avec p processeurs.

Efficacité du parallélisme (speedup)

- $S_p = \frac{T_1}{T_P}$
- T₁: temps de calcul du meilleur algorithme séquentiel.
- T_p : temps de calcul en parallèle avec p processeurs.

 Idéalement, si on double le nombre de processeurs, on voudrait que le programme s'exécute deux fois plus vite. (S_p = p)

Mesures de performance des métaheuristiques

- Qualité de la solution trouvée
- Temps de calcul
- Robustesse

Trois dimensions des métaheuristiques parallèles

Nombre de processus contrôlant la recherche

1-control (1C) Contrôlée par un seul processus.

p-control (pC) Contrôlée par plusieurs processus.

Trois dimensions des métaheuristiques parallèles

Nombre de processus contrôlant la recherche

- 1-control (1C) Contrôlée par un seul processus.
- p-control (pC) Contrôlée par plusieurs processus.

Communication

- Rigid (RS) Système de communication simple.
- Knowledge Synchronization (KS) échanges synchrones.
- Collegial (C) échanges asynchrones sans inférence de nouvelles connaissances.
- Knowledge Collegial (KC) échanges asynchrones avec inférence de nouvelles connaissances.

Trois dimensions des métaheuristiques parallèles

Variation dans la recherche

- SPSS Same initial Point/Population, Same search Strategies
- SPDS Same initial Point/Population, Different search Strategies
- MPSS Multiple initial Points/Populations, Same search Strategies
- MPDS Multiple initial Points/Populations, Different search Strategies

Quatre classes de métaheuristiques parallèles

- Parallélisme de bas niveau
- Décomposition du domaine
- Recherches multiples indépendantes
- Stratégies de recherche coopératives

Métaheuristiques à base de voisinage

Évaluation en parallèle du voisinage.

Métaheuristiques à base de population

Métaheuristiques à base de voisinage

Évaluation en parallèle du voisinage.

Métaheuristiques à base de population

Métaheuristiques à base de voisinage

Évaluation en parallèle du voisinage.

Métaheuristiques à base de population

Métaheuristiques à base de voisinage

Évaluation en parallèle du voisinage.

Métaheuristiques à base de population

- Type de parallélisme : 1C/RS/SPSS.
- La logique de l'algorithme et l'espace de recherche (par rapport à la version séquentielle) ne sont pas modifiés.
- Le seul gain possible est en terme de vitesse d'exécution.

Décomposition du domaine

Décomposition de l'espace de recherche ou décomposition d'un problème en sous-problèmes.

Deux approches

- 1C/KS
- pC/KS

1C/KS

Implanté selon le modèle maître-esclave.

VRP (Taillard, 1993)

- Partition des clients en sous-ensembles disjoints et exhaustifs.
- Chaque sous-problème est résolu à l'aide d'une recherche tabou.
- La synchronisation entre les processus se fait à chaque n itérations.
- Un sous-problème ne communique qu'avec les sous-problèmes adjacents.
- Informations échangées : clients non désservis.

Recherches multiples indépendantes

Propriétés

- Les processus travaillent en parallèle de manière indépendante.
- pC/RS/{SPDS, MPSS, MPDS}
- La solution choisie est la meilleure parmi toutes les solutions trouvées.
- Facile d'implantation.

Stratégies de recherche coopérative

Stratégies de recherche coopérative

- Description Plusieurs processus travaillent simultanément en s'échangeant de l'information.
 - But Obtenir de meilleurs résultats que la simple concaténation des processus pris individuellement.
 - Défi Partager de l'information pertinente au bon moment.

Stratégies de recherche coopérative

Stratégies de recherche coopérative

- Description Plusieurs processus travaillent simultanément en s'échangeant de l'information.
 - But Obtenir de meilleurs résultats que la simple concaténation des processus pris individuellement.
 - Défi Partager de l'information pertinente au bon moment.

Sous-classes

- Synchrone
 - pC/KS
- Asynchrone
 - pC/C (sans inférence de nouvelles connaissances)
 - pC/KC (avec inférence de nouvelles connaisances)

pC/KS (Synchrone)

Algorithme

- Les processus exécutent leur recherche.
- Synchronisation entre les processus.
- Ommunication entre les processus.
- Vérification du critère d'arrêt.
- Détermination de la prochaine phase de synchronisation (nombre d'itérations, temps, etc.)

pC/KS (Synchrone)

Recherche tabou

Les processus recommencent avec la meilleure solution trouvée. (SPDS)

pC/KS (Synchrone)

Algorithme génétique

Migration entre les populations.

Asynchrone

Caractéristiques d'une recherche coopérative asynchrone.

- Les processus sont autonomes.
- Échanges d'informations durant la recherche.
- Mémoire centrale
- Peu de temps perdu pour la communication.

Caractéristiques d'une recherche coopérative asynchrone.

- Les processus sont autonomes.
- Échanges d'informations durant la recherche.
- Mémoire centrale
- Peu de temps perdu pour la communication.

Asynchrone

Caractéristiques d'une recherche coopérative asynchrone.

- Les processus sont autonomes.
- Échanges d'informations durant la recherche.
- Mémoire centrale
- Peu de temps perdu pour la communication.

Deux approches

- pC/C (sans inférence de nouvelles connaissances)
- pC/KC (avec inférence de nouvelles connaisances)

pC/C (Asynchrone)

Algorithme génétique

- Plusieurs populations avec beaucoup d'individus.
- Migration entre les populations.

pC/C (Asynchrone)

Métaheuristiques non exclusivement génétiques

- Les *n* meilleurs éléments sont gardés dans la mémoire centrale.
- Sélection aléatoire (biaisée ou non) des éléments dans la mémoire centrale.

pC/C (Asynchrone)

Métaheuristiques non exclusivement génétiques

- Les *n* meilleurs éléments sont gardés dans la mémoire centrale.
- Sélection aléatoire (biaisée ou non) des éléments dans la mémoire centrale.

Caractéristiques

- Plusieurs métaheuristiques peuvent être utilisées (ainsi que plusieurs types de méthodes).
- Diversification simple : suppression d'une partie de la mémoire centrale

pC/KC (Asynchrone)

Observation

Les éléments dans la mémoire centrale forment une population élite.

Idées

- Produire des statistiques.
- Appliquer des méthodes pour améliorer cette population.

Le Bouthiller et Crainic, 2005

Problème

VRPTW

Deux algorithmes génétiques

- Order (OX)
- Edge Recombination (ER)

Deux recherches tabous

- Unified Tabu
- Taburoute

Mémoire centrale

Les éléments stockés dans la mémoire centrale sont des solutions complètes.

Le Bouthiller et Crainic, 2005

Post-optimisation

Un processus applique une post-optimisation (2-opt, 3-opt, Or-opt et une procédure de chaîne d'éjection) à toutes les nouvelles solutions dans la mémoire centrale.

Statistiques

Trois groupes de solutions sont créés :

- 10% meilleures
- 2 10% 90% meilleures
- 10% pires

La fréquence des arcs dans chacun des groupes est utilisée lors des périodes d'intensification et de diversification.

Le Bouthiller et Crainic, 2005

Conclusion

- Sans trop de calibration, l'algorithme donnent de bons résultats (robustesse).
- Speedup linéaire (pour 5 processeurs).

Recherche coopérative par intégration (Integrative Cooperative Search, ICS)

Métaheuristique parallèle pour résoudre des problèmes où les attributs sont de natures différentes. Ce sont des problèmes riches (rich problem).

Quatre composantes

Solver partiel Métaheuristiques ou méthodes exactes travaillant de manière indépendante sur un sous-ensemble des attributs.

Intégrateur Combine les solutions partielles.

Solver complet Métaheuristiques travaillant sur une solution complète.

Coordonnateur Surveille la mémoire centrale et l'information échangée afin de coordonner la recherche.

Periodic Vehicle Routing Problem (PVRP)

- Un client doit être visité plusieurs fois.
- Exemple des préférences pour un client qui doit être visité deux fois : (lundi, mercredi) ou (mardi, vendredi).

Periodic Vehicle Routing Problem (PVRP)

- Un client doit être visité plusieurs fois.
- Exemple des préférences pour un client qui doit être visité deux fois : (lundi, mercredi) ou (mardi, vendredi).

Multi-Depot Vehicle Routing Problem (MDVRP)

Plusieurs dépôts.

Periodic Vehicle Routing Problem (PVRP)

- Un client doit être visité plusieurs fois.
- Exemple des préférences pour un client qui doit être visité deux fois : (lundi, mercredi) ou (mardi, vendredi).

Multi-Depot Vehicle Routing Problem (MDVRP)

Plusieurs dépôts.

Multi-Depot Periodic Vehicle Routing Problem with Time Windows (MDPVRPTW)

- Les clients sont visités plusieurs fois (PVRP)
- et pour chaque visite il y a une fenêtre de temps pour le servir (VRPTW)
- de plus, les véhicules peuvent être associés à n'importe quel dépôt (MDVRP).

Deux types de solver partiel

- P₁ Résoud des instances où chaque client a un dépôt assigné.
 - Chaque dépôt, avec ses clients qu'il dessert, représente une instance de type PVRPTW.
- Résoud des instances où les visites aux clients sont fixées.
 - Chaque journée représente une instance de type MDVRPTW.

Intégrateur

- Les solutions des instances PVRPTW indiquent de bonnes paires (client, visites).
- Les solutions des instances MDVRPTW indiquent de bonnes paires (client, dépôt).
- Construit des instances de VRPTW à partir de ces informations, puis les résout pour former une solution complète.
- Possibilité de combiner des morceaux des solutions partielles.

Coordonnateur (Mécanisme de feedback)

Détecte les situations indésirables :

- Peu de diversité dans P.
- Stagnation dans l'amélioration de la valeur de la meilleure solution.
- Certaines zones de l'espace de recherche n'ont pas été explorées (diversification)

et réoriente la recherche.

