

Building a Remote-Controlled Valve and Pump Module for Performing Multi-Column Extraction Chromatographic Separations

HIPPO Horizon-Broadening Isotope Production Pipeline

Opportunities

Vivek Tara, Justin Peikin, Taylor Johnson, Paul Ellison

Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705

Motivation and Objectives

Cancer is one of the leading causes of death worldwide. Terbium (Tb) isotopes stand out with great potential for use in both cancer therapy and imaging. Specifically, ^{161}Tb , which exhibits beta particle and Auger-electron emissions, has shown the potential to replace ^{177}Lu in targeted radionuclide therapy. A challenge in production of the ^{161}Tb isotope lies in its isolation from neighboring lanthanides Gadolinium (Gd) and Dysprosium (Dy). A recent study conducted at the University of Wisconsin by Peikin et al. showed promise in using LN2 extraction chromatography (EXC) resin to isolate the Tb isotope from Gd¹. The focus of this study is to build a remote-controlled valve and pump module to automate the multi-column extraction chromatographic separation performed in this study from commercially available systems.

Chemical Process Summary

- Dissolve 100 mg Gd₂O₃, 50 µg in ~2 mL [HNO3]_{conc}, evaporate to dryness, reconstitute in 5.6 mL 0.1 M HNO₃
- Column 1 ($100.60 \text{ mm x } 8.00 \text{ mm } \emptyset$, $2.7 \text{ g LN2 resin } 20 50 \text{ \mu m}$)
- 1. Load Gd, Tb in 0.1 M HNO₃ to column
- 2. Rinse with 100 mL 0.2 M HNO₃ to remove Gd
- 3. Elute 10 mL 1 M HNO₃ collect **Tb** in 4 mL fraction
- Dilute Column 1 elute to 0.1 M HNO₃
- Column 2 (30.00 mm x 5.50 mm \emptyset , 300 mg LN2 resin, 20 50 μ m)
 - 1. Load Gd, Tb in 0.1 M HNO₃ to column
- 2. Rinse with 13 mL 0.2 M HNO₃ to remove Gd
- 3. Elute Tb with 1 mL 1 M HNO₃
- Column 3 (40.85 x mm x 4.00 mm Ø, 100 mg bDGA resin, 50 100 μm)
 - 1. Load Tb in 1 M HNO₃ to column
 - 2. Rinse with 10 mL 2 M HNO₃, 2 mL 0.5 M HNO₃ to remove Fe, Cu, Zn
 - 3. Elute Tb with 1 mL 0.01 M HCl

Materials & Methods

Framework Construction: Utilized ready-made plastic enclosures modified to accommodate the attachment of hardware (PTR-28487-C/PW-12850-T, Bud Industries).

Fluidic Logic and Flow Rate: Serial configuration of solenoid flipper valves (6724, Bürkert Fluid Control System) and variable voltage peristaltic pumps (WPM1-P3AA-WP/WPM1-P3BA-WP, Welco).

Valve/Pump Control Method: Transistor-Transistor Logic (TTL) signals generated by a National Instruments USB-6008 Multifunction I/O device, coupled with a custom designed circuit².

Data Acquisition: Two custom radiation detection systems consisting of a CsI scintillator (1 x 1cm, Hilger Crystal Ltd) coupled to a photomultiplier tube (E849-35, Hamamatsu Photonics) powered and processed with bench-top electronics (925-SCINT, Ortec)³. One custom Geiger-Mueller radiation detector modified from the open-source design on MightyOhm. Data was acquired and logged through use of the digital counter inputs of the USB-6008s⁴.

Software: LabView software was written to automate control of hardware components and perform the acquisition and analysis of chromatogram data.

Acknowledgments

This work is supported in part by the Horizon-broadening Isotope Production Pipeline Opportunities (HIPPO) program, under Grant DE-SC0022550 from the Department of Energy's Isotope R&D and Production Program.

Fluidic Logic Control Custom IC

Figure 1. Diagram of Fluidic Logic Control board.

Custom Menu-Driven Interface

Figure 3. Image of Custom Programmed LabVIEW Menu-Driven Interface

Valve and Pump Module

Figure 2. Diagram of Built Valve and Pump Module.

Valve and Pump Control Modules

Figure 4. Diagram of Built Valve Control Box.

Figure 5. Diagram of Built Pump Control Box.

References

- "Efficient Separation Method for Terbium and Gadolinium Using LN2 Resin." American Chemical Society Spring 2024 Meeting, acs.digitellinc.com/p/s/efficient-separation-method-for-terbium-and-gadolinium-using-ln2-resin-596453. Accessed 29 July 2024.
- Betthauser, Tobey. "SearchInvestigation of Novel Positron Emission Tomography Radioligands for In Vivo Characterization of Alzheimer's Disease Pathophysiology." Investigation of Novel Positron Emission Tomography Radioligands for In Vivo Characterization of Alzheimer's Disease Pathophysiology - UWDC - UW-Madison Libraries, UW-Madison Dissertations and Theses, 2019, digital.library.wisc.edu/1711.dl/GUQ7K7NYQ4K4J8W
- Da Silva, Isidro, et al. "A high separation factor for 165Er from HO for targeted radionuclide therapy." *Molecules*, vol. 26, no. 24, 11 Dec. 2021, p. 7513, https://doi.org/10.3390/molecules26247513.
- "Geiger Counter." MightyOhm, 27 Dec. 2022, mightyohm.com/blog/products/geiger-counter/. Accessed 29 July 2024.