МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Операционные системы»

Тема: «Исследование организации управления основной памятью»

Студент гр. 9383	 Ноздрин В.Я.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2020

Цель работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организациии, принятый в ОС. В лабораторной работе рассматривается нестраничная память и способ управления динамическими разделами. Для реализации управления памятью а этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Задание.

Шаг 1. Для выполнения лабораторной работы необходимо написать и отладить программный модуль типа .COM, который выбирает и распечатывает следующую информацию:

- 1) Количество доступной памяти.
- 2) Размер расширенной памяти.
- 3) Выводит цепочку блоков управления памятью.

Адреса при выводе представляются шестнадцатеричными числами. Объем памяти функциями управления памятью выводится в параграфах. Необходимо преобразовать его в байты и выводить в в иде десятичных чисел. Последние восемь байт МСВ выводятся как символы, не следует преобразовывать их в шестнадцатеричные числа.

Запустите программу и внимательно оцените результаты. Сохраните результаты, полученные программой, и включите их в отчет в виде скриншота.

Шаг 2. Измените программу таким образом, чтобы она освобождала память, которую она не занимает. Для этого используйте функция 4Ah прерывания 21h. Повторите эксперимекнт, запустив модифицированную программу. Сравните выходные данные с результатами, получеными на предыдущем шаге. Сохрание результаты, полученные программой и включите их в отчет в виде скриншота.

Шаг 3. Измените программу еще раз таким образом, чтобы после освобождения памяти, программа запрашивала 64Кб памяти функцией 48h прерывания 21h. Повторите эксперимекнт, запустив модифицированную программу. Сравните выходные данные с результатами, получеными на предыдущем шаге. Сохрание результаты, полученные программой и включите их в отчет в виде скриншота.

Шаг 4. Первоначальный вариант программы, запросив 64Кб памяти функцией 48h прерывания 21h до освобождения памяти. Обязательно обрабатывайте завершениее функций ядра, проверяя флаг CF. Сохрание результаты, полученные программой и включите их в отчет в виде скриншота.

Шаг 5. Оцените результаты, полученные на предыдущих шагах.

Основные теоретические положения.

Учет занятой и свободной памяти ведется при помощи списка блоков управления памятью MCB (memory control block). MCB занимает 16 байт (параграф) и располагается всегда с адреса, кратного 16 (адрес сегмента ОП) и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещение	Длина поля (байт)	Содержимое поля
00h	1	Тип МСВ:
		5Ah , если последний в списке,
		4Dh, если не последний
01h	2	Сегментный адрес PSP владельца участка памяти, либо
		0000h — свободный участок,
		0006h — участок принадлежит драйверу OS XMS UMB
		0007h — участок является исключенной верхней памятью
		драфверов
		0008h — участок принадлежит MS DOS
		FFFAh — участок занят управляющим блоком 386MAX
		UMB
		FFFDh — участок заблокирован 386MAX
		FFFEh — участок принадлежит 386MAX UMB
03h	2	Размер участка в параграфах
05h	3	Зарезервирован
08h	8	«SC» - если участок принадлежит MS DOS, то в нем
		системный код
		«SD» - если участок принадлежит MS DOS, то в нем
		системные данные

По сегментному адресу и размеру участка памяти, контролируемого этим MCB можно определить местоположение следующего MCB в списке.

Адрес первого MCB находится во внутренней структуре MS DOS, называемой «List of Lists». Доступ к указателю на эту структуру мможно получить использую функцию f52h «Get List of Lists» int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого MCB.

Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конйигурации ПЭВМ. Объем памяти составляент 64 байта. Размер расширенной памяти в Кбайтах можно определить обращаясь к ячейкам CMOS следующим образом:

```
mov AL, 30h
                   ; запись адреса ячейки CMOS
    out 70h, AL
        AL, 71h
    in
                   ; чтение младшео
                                       байта
                                              размера
                                                       расширенной
памяти
    mov BL, AL
    mov AL, 31h
                   ; запиьс адреса ячейки CMOS
    out 70h, AL
        AL. 71h
                      чтение старшего байта размера расширенной
```

Выполнение работы.

памяти

Шаг 1. Написан текст исходного .COM модуля lab3_1.asm, который определчет количество доступной памяти и выводит его на экран, затем вычисляет количество расширенной памяти и выводит его на экран, а затем выводит на экран информацию о блоках МСВ.

```
C:\>LAB3_1.COM
Available memory (B): 648912
Extended memory (KB): 15360
| MCB Type | PSP Address | Size | SC/SD |
                 0008
                             16
     4D
     4D
                 00000
                             64
     4D
                 0040
                             256
     4D
                             144
                         648912
                                   LAB3_1
                 0192
```

Рисунок 1 — Вывод модуля LAB3_1.COM

Шаг 2. lab3_1.com изменен таким образом, чтобы программа освобождала память, которую она не занимает. Для этого использовалась функция 4Ah прерывания INT 21h.

```
C:\>LAB3_2.COM
Available memory (B): 648912
Extended memory (KB): 15360
 MCB Type | PSP Address | Size | SC/SD |
     4D
                0008
                             16
     4D
                             64
                0000
     4D
                0040
                            256
     4D
                0192
                            144
     4D
                                  LAB3 2
                0192
                          13184
                0000
                         635712
                                  써ïllê^_
```

Рисунок 2 — Вывод модуля LAB3_2.COM

Шаг 3. lab3_2.com изменен таким образом, чтобы программа освобождала память, которую она не занимает, а затем запрашивает 64Кб памяти. Для этого использовалась функция 48h прерывания INT 21h.

```
C:\>LAB3_3.COM
Available memory (B): 648912
Extended memory (KB): 15360
 MCB Type | PSP Address | Size | SC/SD |
     4D
                 0008
                             16
     4D
                 0000
                             64
     4D
                 0040
                            256
     4D
                 0192
                            144
     4D
                 0192
                          13296
                                   LAB3 3
     4D
                 0192
                          65536
                                   LAB3_3
     5A
                 0000
                         570048
```

Рисунок 3 — Вывод модуля LAB3_3.COM

Шаг 4. Исходный модуль lab3_1.com изменент так, чтобы запрос 64Кб памяти происходил до освобождения памяти. В процессе выполнения программы на экран выводится сообщение об ошибке и очистке памяти, которую программа не заниммает.

```
C:\>LAB3 4.COM
Available memory (B): 648912
Extended memory (KB): 15360
Memory allocation error
 MCB Type | PSP Address | Size | SC/SD |
     4D
                0008
                             16
     4D
                0000
                             64
     4D
                0040
                            256
     4D
                0192
                            144
     4D
                0192
                            164
                                  LAB3_4
     5A
                0000
                         648832
```

Рисунок 4 — Вывод модуля LAB3 4.COM

Используемые функции

TETR_TO_HEX – функция, переводящая десятичную цифру в код символа.

BYTE_TO_HEX — функция, переводящая байт в шестнадцатеричной системе счисления в код символа.

WRD_TO_HEX — функция, переводящая шестнадцатеричное число в символьный код.

BYTE_TO_DEC – функция, переводящая байт в шестнадцатеричной системе счисления в символьный код десятичной системы счисления.

PRINT_STRING – функция, выводящая строку на экран

GET_AVAILABLE_MEMORY – функция определяющая количество доступной памяти и выводящая результат на экран.

GET_EXTENDED_MEMORY – функция определяющая количество расширенной памяти и выводящая результат на экран.

GET_MCB_DATA – функция получает данные о каждом MCB блоке.

GET_MCB_ADDRESS – функция определяет адрес MCB блока.

GET_MCB_TYPE – функция определяет тип MCB блока.

GET_MCB_SIZE – функция определяет размер участка в параграфах.

GET_PCP_ADDRESS – определяет адрес PSP.

Контрольные вопросы.

Сегментный адрес недоступной памяти

- 1) Что означает «доступный объем памяти»? Доступный объем памяти это максимально возможный объем памяти, выделенный программе операционной системой.
- 2) Где МСВ блок Вашей программы в списке? MCB lab3_1.com расположен последним в списке

MCB lab3_2.com расположен предпоследним в списке. Последним идет блок, обозначенный как пустой участок.

MCB lab3_3.com расположен тертьим с конца в списке. После него идут выделенный по запросу и свободный блоки.

MCB lab3_4.com расположен предпоследним в списке. Последним идет блок, обозначенный как пустой участок.

3) Какой размер памяти занимает программа в каждом случае?

Lab3_1.com: 648912Bt

Lab3_1.com: 648912Bt-635712Bt-16Bt=13184Bt

Lab3_1.com: 648912Bt-570048Bt-65536Bt-2*16Bt=13296Bt

Lab3_1.com: 648912Bt-648832Bt-16Bt=64Bt

Выводы.

В процессе выполнения лабораторной работы были изучены структуры данных и работа функций управления памятью ядра операционной системы.