

Physique

Classe: 4ème année

Chapitre: les filtres

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(\$ 30 min

6 pts

On considère un filtre électrique RC constitué d'un résistor de résistance R et d'un condensateur de capacité C=0,47 μ F.

Lorsqu'on applique à l'entrée du filtre une tension sinusoïdale $u_E(t)=U_{Em}\sin{(2\pi Nt)}$ de fréquence N réglable, on obtient à la sortie une tension $u_s(t)=U_{sm}\sin{(2\pi Nt+\phi_s)}$

- a. En appliquant la loi des mailles, établir l'équation différentielle régissant la tension $u_s(t)$.
- b. Faire la construction de Fresnel relative à cette équation différentielle.
- c. Déterminer l'expression de la transmittance T en fonction de R,C et N.
- d. En déduire que le gain de ce filtre s'écrit $G = -10 \log (1 + (2\pi NRC)^2)$
- 2. La courbe suivante représente l'évolution du gain G du filtre en fonction de la fréquence N.

- a. Déterminer graphiquement :
- La valeur maximale G_0 du gain G.
- $\bullet \ \ \,$ La fréquence de coupure N_C
- La largeur de la bande passante
- b. On applique à l'entrée de ce filtre une tension électrique $\mathbf{u}_{E(t)} = \mathbf{9}$ sin (800 π t)
- Indiquer en justifiant, si cette tension sera transmise ou non
- Si oui, calculer la valeur maximale Usm de la tension transmise?

- a. Etablir l'expression de la fréquence de coupure N_{C} de ce filtre en fonction de R et C.
- b. Calculer la valeur de la résistance R.
- 4. Sans modifier la valeur de R, faut-il augmenter ou diminuer la valeur de C pour que la bande passante du filtre soit plus large ? justifier .

Exercice 2

(\$ 30 min

6 pts

A l'entrée du filtre (F) schématisé ci-contre, on applique une tension sinusoïdale $\mathbf{u}_{\mathrm{E}}(t) = \mathbf{U}_{\mathrm{Em}} \sin (2\pi N t)$ de valeur maximale \mathbf{U}_{Em} constante, et de fréquence N réglable.

La tension de sortie du filtre est $u_s(t) = U_{sm} \sin(2\pi N t + \phi)$

A/ Etude théorique

1.

- a. Définir un filtre électrique
- b. Indiquer la différence entre un filtre passe-bas et un filtre passe-haut
- 2. La transmittance T du filtre ainsi réalisé est $T = \frac{1}{\sqrt{1 + \frac{1}{(2\pi NRC)^2}}}$
 - a. Montrer que le gain du filtre s'écrit : $G = -10 \log (1 + \frac{1}{(2\pi NRC)^2})$
 - b. Montrer que la valeur maximale G_0 du gain du filtre est nulle (G_0 =0dB)

- a. Quelle condition doit satisfaire le gain G pour que le filtre soit passif?
- b. Montrer que la fréquence de coupure du filtre est : $N_C = \frac{1}{2\pi RC}$

B/ Etude expérimental

Pour une tension maximale U_{Em} donné, l'évolution du gain G du filtre en fonction de la fréquence N est donnée par le graphique ci-dessous :

- a. Montrer que le filtre (F) est passif
- b. Déterminer graphiquement la valeur de sa fréquence de coupure $N_{\mbox{\scriptsize C}}$.
- c. En déduire la bande passante du filtre. Ce filtre est-il passe-haut ou passe-bas?
- d. Déterminer la valeur de la capacité C. On donne $R=500\Omega$
- 2. On applique à l'entrée du filtre, deux signaux (S1) et (S2) de fréquences respectives : N_1 =600 Hz et N_2 =200 Hz
 - a. Préciser, en le justifiant, lequel de deux signaux est transmis.
 - b. On garde le condensateur précédent de capacité C, et on remplace le conducteur ohmique de résistance R par un autre de résistance R'=2R.
 Justifier que les deux signaux (S₁) et (S₂) sont transmis.

Exercice 3

(§ 30 min

6 pts

On considère deux filtres électriques (F_1) et (F_2) schématisés ci-contre. Chacun de ces filtres est alimenté par une tension alternative sinusoïdale $U_e(t)$ d'amplitude U_{Em} et de fréquence N réglable.

L'amplificateur opérationnel est idéal polarisé à $\pm 15V$, les deux condensateurs ont la même capacité $C=0,47~\mu F$ et R, R₁ et R₂ sont les résistances des trois résistors.

Les tensions de sorties $U_{s1}(t)$ et $U_{s2}(t)$ des filtres (F_1) et (F_2) sont sinusoïdales de même fréquence N que Ue(t) et d'amplitudes respective U_{s1m} et U_{s2m}

Les gains des filtres (F_1) et (F_2) sont respectivement :

$$G_1=20 \log \frac{R_1}{R} - 10 \log [1+(2\pi NR_1C)^2]$$

Et
$$G_2 = -10 \log \left[1 + \frac{1}{(2\pi N R_2 C)^2}\right]$$

On rappelle qu'un filtre électrique est passant lorsque $G \geq G_0$ -3dB avec G_0 son gain maximal

1. Préciser, en le justifiant, s'il s'agit d'un filtre passif ou actif pour (F1) et (F2)

2. On suit l'évolution du gain G de chacun des filtres (F_1) et (F_2) en fonction de la fréquence N. On obtient alors les courbes (A) et (B)

En exploitant les courbes (A) et (B) ainsi que les expressions de G_1 et G_2

- a. Justifier que la courbe (A) représente le gain G₁ en fonction de N
- b. Déterminer les valeurs maximales G₀₁ et G₀₂ respectivement de G₁ et G₂
- c. Identifier, lequel des deux filtres (F_1) et (F_2) permet d'amplifier la tension électrique.
- d. Déterminer les valeurs des fréquences de coupures N_{C1} et N_{C2} , respectivement de (F_1) et (F_2) .
- e. Préciser la nature (passe bas, passe haut) de chacun des filtres.

3.

- a. Montrer que les fréquences de coupure NC1 et NC2, respectivement de (F1) et (F2) ont pour expression $N_{C1} = \frac{1}{2\pi R_1 C}$ et $N_{C2} = \frac{1}{2\pi R_2 C}$
- b. Calculer les valeurs de R_1 , R_2 et R
- 4. Etablir la condition que doit satisfaire les résistances R_1 , R_2 , et R_3 pour avoir à la fois la même valeur maximale de G_0 du gain et la même fréquence de coupure N_C

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000