

Présentation projet final PP-GPU

Matthieu PETIT Djemsay MORVAN Ulysse CAROMEL

January 12, 2024

Table des matières

1. Les différentes méthodes d'intégration

Méthode de Simpson Méthode de Gauss 2D Méthode de Runge-Kutta Méthode de Monte-Carlo Comparaison des méthodes

2. Outils de parallélisation

Open MP MPI CUDA

3. Résultats

OpenMP MPI CUDA

Méthodes d'intégration

1. Les différentes méthodes d'intégration

Méthode de Simpson Méthode de Gauss 2D Méthode de Runge-Kutta Méthode de Monte-Carlo Comparaison des méthodes

 Outils de parallélisation Open MP MPI CLIDA

3. Résultats OpenMP MPI CUDA

Méthode de Simpson

- Division de l'intervalle [a,b] en sous-intervalles de largeur égale $h=\frac{b-a}{n}$, n étant pair.
- Approximation sur chaque sous-intervalle $[x_i, x_{i+2}]$:

$$\int_{x_i}^{x_{i+2}} f(x) dx \approx \frac{h}{3} \left[f(x_i) + 4f(x_{i+1}) + f(x_{i+2}) \right]$$

Estimation finale de l'intégrale :

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \Big[f(a) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(b) \Big]$$

Quadrature Gaussienne 2D

- Estimation numérique de l'intégrale d'une fonction f(x,y) sur une région bidimensionnelle définie par $a \le x \le b$ et $c \le y \le d$.
- Utilise un ensemble de points et de poids associés pour approximer l'intégrale.
- Formule générale :

$$\iint_{R} f(x,y) dx dy \approx \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} \cdot f(x_{i}, y_{j})$$

■ Formule spécifique pour un quadrilatère :

$$\iint_{R} f(x,y) \, dx \, dy \approx \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} \cdot f\left(\frac{1}{2}(1+\xi_{i})x\right) + \frac{1}{2}(1-\xi_{i})y, \frac{1}{2}(1+\eta_{j})x + \frac{1}{2}(1-\eta_{j})y$$

Offre une précision supérieure à la quadrature de Gauss unidimensionnelle.

Méthode de Runge-Kutta (RK4) pour les EDO

- Technique numérique pour résoudre des équations différentielles ordinaires (EDO).
- Méthode de Runge-Kutta d'ordre 4 (RK4) : équilibre entre précision et complexité.
- Forme générale d'une EDO du premier ordre :

$$\frac{dy}{dt} = f(t, y)$$

■ Étapes de la méthode RK4 :

$$k_1 = h \cdot f(t_n, y_n)$$

$$k_2 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = h \cdot f(t_n + h, y_n + k_3)$$

■ Mise à jour de la solution à chaque pas :

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

 Offre une meilleure précision que des méthodes de pas fixe plus simples, largement utilisée pour sa robustesse et polyvalence.

Méthode de Monte Carlo pour l'intégration

- Utilisée pour estimer numériquement des intégrales complexes, notamment dans des espaces multidimensionnels.
- Fondée sur des principes probabilistes, associant le hasard à des calculs numériques.
- Estimation d'une valeur en utilisant des échantillons aléatoires dans un domaine donné.
- Génération de points aléatoires dans le domaine *D*.
- Évaluation de la fonction f(x,y) pour chaque point généré.
- lacktriangle Calcul de la moyenne pondérée des valeurs de f(x,y) pour les points générés, multipliée par la mesure de D.

Formule d'estimation de Monte Carlo pour l'intégrale :

$$I \approx A \cdot \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i)$$

Avantages : Flexibilité, capacité à traiter des problèmes complexes en dimensions élevées. Précision dépend du nombre de points aléatoires générés.

Comparaison des méthodes numériques

Runge-Kutta (RK4)

- + Précision élevée.
- + Adaptée aux EDO.
 - Plus de calculs.

Gaussienne 2D

- + Haute précision.
- + Adaptée aux intégrales bidimensionnelles.
- Plus complexe.

Simpson

- + Simple à mettre en œuvre.
- + Bonne précision.
 - Limité aux formes simples.

Monte Carlo

- + Grande flexibilité.
- + Adaptée aux problèmes complexes.
- Précision dépend du nombre d'échantillons.

Outils de paralélisation

Méthode de Runge-Kutta

2. Outils de parallélisation

Open MP MPI

CUDA

Open MP

■ Intégration de Simpson

- Boucles for parallélisées avec #pragma omp parallel for reduction(+:integral) pour les deux versions.
- Pour compositeSimpsons_3_8, utilisation d'un pas de 3 pour les indices de boucle, améliorant l'efficacité de la méthode.

■ Intégration de Gauss 2D

- Parallélisation de la génération de points et de poids avec #pragma omp parallel for collapse(2).
- L'utilisation de collapse(2) exploite le parallélisme dans les deux boucles imbriquées, améliorant l'efficacité.

■ Runge-Kutta

- Boucle temporelle parallélisée avec #pragma omp parallel for.
- Copie temporaire des données (std::vector<double> tempU(u)) utilisée pour chaque thread, évitant les dépendances de données et optimisant les calculs.

Intégration de Monte Carlo

- La boucle de génération de points aléatoires est parallélisée avec #pragma omp parallel for reduction(+:total).
- Chaque thread utilise une graine différente (rd() + thread_id)
 pour éviter les séquences aléatoires identiques.

MPI

Intégration Simpson

- Division équitable des points entre les processus.
- Utilisation de MPI Reduce pour obtenir le résultat global.

■ Intégration Gauss 2D

- Parallélisation de la génération de points et de poids.
- Utilisation de MPI_Sendrecv pour l'échange des bords entre les processus.

■ Runge-Kutta

- Division des données spatiales entre les processus.
- Utilisation de MPI Gather pour collecter les résultats.

Intégration Monte Carlo

- Division équitable des points entre les processus.
- Utilisation de MPI Reduce pour obtenir le résultat global.

CUDA

Dans chaque code la méthode à son propre kernel CUDA, les autres fonctions sont utilisées sur le device et pour gérer la mémoire on utilise cudaMalloc et cudamemcpy.

Intégration Simpson

Nombre de block maximal disponible sur mon GPU: 8584 et 64 threads par block.

Intégration Gauss 2D

- Deux kernel, un pour la génération de points et de poids, l'autre pour l'intégration
- Nombre de block en fonction du nombre de points et des poids avec le nombre maximal de threads par block : 1024.

Runge-Kutta

 Nombre de block en fonction de la discrétisation et 64 threads par block.

■ Intégration Monte Carlo

Nombre de block maximal disponible sur mon GPU: 8584 et 64 threads par block.

Résultats

1. Les différentes méthodes d'intégration

Méthode de Simpson Méthode de Gauss 2D Méthode de Runge-Kutta Méthode de Monte-Carlo Comparaison des méthodes

2. Outils de parallélisation

Open M MPI CUDA

3. Résultats

OpenMP MPI CUDA

Résultats pour OpenMP

Simpson Temps

Gauss 2D Temps

Simpson Erreur

Gauss 2D Erreur

OpenMP

Runge Kutta Temps

Monte Carlo Temps

Runge Kutta Erreur

Monte Carlo Erreur

Résultats pour MPI

Simpson Temps

Gauss 2D Temps

Simpson Erreur

Gauss 2D Erreur

MPI

Runge Kutta Temps

Monte Carlo Temps

Runge Kutta Erreur

Monte Carlo Erreur

Résultats pour CUDA

Simpson Erreur

Gauss2D Temps

Gauss2D Erreur

CUDA

