

KSE801 – Recommender System and Machine Learning on Graph

Lecture 0: Course Logistics

Prof. Chanyoung Park

Department of Industrial & Systems Engineering KAIST cy.park@kaist.ac.kr

COURSE INFORMATION

- Instructor: Chanyoung Park (cy.park@kaist.ac.kr)
 - Office: Rm #4104, E2-2
 - Office hour: By appointments
- Classroom: Rm #1122, E2-2
- This is an Edu 4.0 course
- Non real-time online class 50% + real-time in-person class presentation 50%
 - Video recordings for the lectures will be provided
 - All course materials will be uploaded on KLMS
- We will have student presentations on every Thursday at 10:30 AM
 - Starting from week 3 (Refer to Slide 9 for detailed schedule)

PREREQUISITES

- Basics of machine learning
- Math (basic linear algebra, statistics)
- Experience in coding with Python

MATERIALS

- Textbook (Not required)
 - Aggarwal, Charu C. Recommender systems. Vol. 1. Cham: Springer International Publishing, 2016.
 - http://www.charuaggarwal.net/Recommender-Systems.htm
 - Hamilton, William L. "Graph representation learning." Synthesis Lectures on Artificial Intelligence and Machine Learning 14.3 (2020): 1-159.
 - https://www.cs.mcgill.ca/~wlh/grl_book/
- Online courses
 - Recommender System course at Coursera
 - https://www.coursera.org/specializations/recommender-systems
 - Stanford CS224W: Machine Learning with Graphs
 - Course website: http://web.stanford.edu/class/cs224w/
 - Video: https://www.youtube.com/playlist?list=PLoROMvodv4rPLKxlpqhjhPgdQy7imNkDn

GRADING

- Class participation (20%)
 - The amount of video watching time (10%)
 - Participation in the presentation (Questions, discussions, etc) (10%) ← Important!
- Project (45%)
 - Proposal (5%), Progress report (10%), Final presentation (15%), Final report (15%)
 - Evaluation for presentation: Instructor 7.5% + Peer evaluation 7.5%
- Paper review (15%)
 - Each student will write a comprehensive review on one top-conference paper.
- Paper Presentation (20%)
 - Evaluation: Instructor 10% + Peer evaluation 10%

PAPER PRESENTATION

- Starting from Week 3 (9/15)
 - Individual presentation
 - 30 minutes + 5 minutes Q&A and discussion
- 2 students will present per class
- Review of the paper + research idea
- The papers to be presented are pre-selected by instructor (Due date: 9/11)
 - Recent papers about RecSys and GNN (including best papers in RecSys and KDD)
 - Link: https://docs.google.com/spreadsheets/d/1jVVqvNxnJzmWbTNHBs05BXqJOvm0CgdryqvaMuh9nJI/edit?usp=sharing

PAPER REVIEW

- You will choose a recent paper by yourselves, and review it
 - The selected paper should not have been reviewed or summarized elsewhere on the internet
 - Korean students should write reviews in Korean
- Papers should be selected from top-tier DM/AI conferences (past 3 years)
 - ex) KDD/WWW/SIGIR/CIKM/ICDM/AAAI/ICLR/ICML/NeurIPS ...
- To deliver reviews in high quality, your reviews will be peer reviewed by other students
- Process
 - Paper selection (9/25) → Write review (10/16) → Peer evaluation (10/30) → Revise review and re-submit (11/20)
 → Final peer evaluation (12/11)
- Link
 - https://docs.google.com/spreadsheets/d/1u0ryNWyHb8P0JkxJJJTydk9E1PKNf6-O1dgzsvGBl6k/edit?usp=sharing

PROJECT

- This is a group project (Team decision due: 9/18)
 - Maximum 3 students in a team. No individual team allowed
 - Any topic regarding recommender system or graph machine learning is fine
 - Link: https://docs.google.com/spreadsheets/d/1LhUyPH1sy5dWROwWJrPEOmvFI0Z5CODhUISzZjanEPs/edit?usp=sharing
- The final goal of this project is to write a research paper!
 - Project proposal report: 10/9 (No template (1 page))
 - Project progress report: 11/6 (No template (no page limit))
 - 1. Task (What is the problem to be solved?)
 - 2. Why is it hard? (Why do current approaches fail?)
 - 3. Method description (What are the key components of the proposed approach?)
 - 4. Preliminary result
 - 5. Future direction
 - Project final presentation: 11/29, 12/6, 12/8
 - Project final report / Source code: 12/18
 - ex) ACM latex article template: https://www.acm.org/publications/proceedings-template
 - Max 8 pages (+ reference)

COURSE SCHEDULE

Week	Content	Assignments (Due date: end of each week)	Realtime Class
1	Course Logistics & Introduction to Recommender System		9/1
2	Neighborhood-Based Collaborative Filtering	Presentation paper selection due	-
3	Model-based Collaborative filtering	[Project] Team decision due	9/15
4	Side Information-based Recommender System (1)	[Paper review] Paper selection due	9/22
5	Side Information-based Recommender System (2)		9/29
6	Sequential Recommendation & Graph-based Recommendation	[Project] Proposal report due	10/6
7	Introduction to Graph-based ML	[Paper review] Review due (1st round)	10/13
8	Midterm Exam Week (No exam)		
9	Node-level Network Embedding (1)	[Paper review] Peer evaluation due	10/27
10	Node-level Network Embedding (2)(3)	[Project] Progress report due	11/3
11	Graph Neural Network		11/10
12	Advanced Topics in GNN	[Paper review] Review due (2 nd round)	11/17
13	Applications of Graph Machine Learning		11/22, 11/24adm
14	Project Presentation I		11/29, 12/1 e
15	Project Presentation II	[Paper review] Final peer evaluation due	12/6, 12/8
16	Final Exam Week (No exam)	[Project] Final report due	-

IMPORTANT DATES

Assignment	Due date
Presentation paper selection	9/11
[Project] Team decision	9/18
[Paper review] Paper selection	9/25
[Project] Proposal report	10/9
[Paper review] Review (1st round)	10/16
[Paper review] Peer evaluation	10/30
[Project] Progress report	11/6
[Paper review] Review (2nd round)	11/20
[Paper review] Final peer evaluation	12/11
[Project] Final report	12/18