Семинар 23

8 апреля 2020

Прямая в \mathbb{R}^3

Способы задания прямой:

- $A + \langle u \rangle \sim A + tu, t \in \mathbb{F}$ (точка + направляющий вектор, траектория равномерного прямолинейного движения);
- система уравнений;

Направляющий вектор — любой (ненулевой!) вектор на прямой (параллельный прямой) Все направляющие векторы коллинеарны (=пропорциональны)

Прямая в \mathbb{R}^3 — через две точки

Задача.
$$I \ni A(x_0, y_0, z_0), B(x_1, y_1, z_1) - ?$$

 $M\left(x,y,z
ight)\in I\Longleftrightarrow\overrightarrow{AM}\parallel\overrightarrow{AB}$, то есть \overrightarrow{AM} и \overrightarrow{AB} пропорциональны:

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}$$

Прямая в \mathbb{R}^3 — точка и напр. вектор

Задача.
$$I \ni A(x_0, y_0, z_0); I \parallel u = (\alpha, \beta, \gamma) - ?$$

 $M\left(x,y,z
ight)\in I\Longleftrightarrow\overrightarrow{AX}\parallel u$, то есть \overrightarrow{AX} и u пропорциональны:

$$\frac{x - x_0}{\alpha} = \frac{y - y_0}{\beta} = \frac{z - z_0}{\gamma}$$

Прямая в \mathbb{R}^3 — через две точки

Применяйте с осторожностью:

Пример. $I \ni A(1,2,0), B(-1,2,1) - ?$

$$\frac{x-1}{-2} = \frac{y-2}{0} = \frac{z-0}{1}$$
?!

Всё нормально, если правильно всё понимать:

$$\frac{y-2}{0} = \frac{z-0}{1}$$
 означает $(y-2) \cdot 1 = (z-0) \cdot 0$

То есть y=2. Логично! Но важно не забыть $\frac{x-1}{-2}=\frac{z-0}{1}$.

Прямая в \mathbb{R}^3 — пересечение двух плоскостей

Пример.
$$I = \{x - 2z = 1\} \cap \{y + 3z = -2\} - ?$$

• Пишем систему:

$$\begin{cases} x - 2z = 1; \\ y + 3z = -2 \end{cases}$$

• Находим общее решение:

$$\begin{pmatrix} 1+2z \\ -2-3z \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} z$$

• Пишем ответ:

$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-0}{1}$$

Прямая в \mathbb{R}^3 — взаимное расположение двух прямых

Дано.
$$I = A + \langle u \rangle$$
, $I = B + \langle v \rangle$

- Параллельность (или совпадение): $u \parallel v$ (они пропорциональны)
- ullet Параллельность (и не совпадение): при этом ещё $\overrightarrow{AB}
 mid u$
- Прямые не параллельны, но пересекаются в одной точке = прямые лежат в одной плоскости и не параллельны = векторы $u, v, \overrightarrow{AB}$ компланарны, $u \not | v$. Компланарность проверяем: $(u, v, \overrightarrow{AB}) = 0$
- ullet Прямые скрещиваются: $(u,v,\overrightarrow{AB})
 eq 0$

Плоскость в \mathbb{R}^3

Способы задания плоскость:

- $A + \langle u, v \rangle$;
- Параметрическое задание (то же самое, но длинней):

$$\begin{cases} x = A_x + tu_x + sv_x, \\ y = A_y + tu_y + sv_y, \\ z = A_z + tu_z + sv_z \end{cases}$$

• Линейное уравнение ax + by + cz + d = 0;

Плоскость в \mathbb{R}^3 — нормальный вектор

Пусть
$$\alpha$$
: $ax + by + cz + d = 0$, $\alpha \ni A(x_0, y_0, z_0)$, $B(x_0, y_0, z_0)$.

$$ax_0 + by_0 + cz_0 + d = 0$$

 $ax_1 + by_1 + cz_1 + d = 0$ $\Longrightarrow a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0) = 0$

Вывод: любой вектор в α ортогонален вектору $n_{\alpha}=(a,b,c)$.

Нормальный вектор к плоскости — это ненулевой вектор, ортогональный плоскости. Мы поняли: все нормальные векторы пропорциональны вектору (a,b,c).

Плоскость в \mathbb{R}^3 — через три точки

Задача.
$$\alpha \ni A(x_0, y_0, z_0), B(x_1, y_1, z_1), C(x_2, y_2, z_2) - ?$$

 $M(x,y,z)\in I\Longleftrightarrow \overrightarrow{AM}$ коллинеарен \overrightarrow{AB} и \overrightarrow{AC} , то есть $(\overrightarrow{AM},\overrightarrow{AB},\overrightarrow{AC})=0$, то есть:

$$\begin{vmatrix} x - x_0 & x_1 - x_0 & x_2 - x_0 \\ y - y_0 & y_1 - y_0 & y_2 - y_0 \\ z - z_0 & z_1 - z_0 & z_2 - z_0 \end{vmatrix} = 0$$

Плоскость в \mathbb{R}^3 — точка + два вектора

Задача.
$$\alpha \ni A (x_0, y_0, z_0), \ \alpha \parallel u (u_x, u_y, u_z), v (v_x, v_y, v_z) - ?$$

- $n_{\alpha} = [u, v] = (a, b, c);$
- Теперь подставляем точку A, чтобы найти d:

$$d = -ax_0 - by_0 - cz_0$$

Плоскость в \mathbb{R}^3 — ещё пример

Задача.
$$\alpha \ni A(x_0, y_0, z_0), B(x_1, y_1, z_1), \alpha \parallel u(u_x, u_y, u_z) - ?$$

Плоскость в \mathbb{R}^3 — ещё пример

Задача.
$$\alpha \ni A(x_0, y_0, z_0), B(x_1, y_1, z_1), \alpha \parallel u(u_x, u_y, u_z) - ?$$

Сводим к тому, что уже умеем, одним из двух способов:

- C = A + u; $v = \overrightarrow{AB}$

Плоскость в \mathbb{R}^3 — ещё пример

Задача.
$$\alpha \ni A$$
, $\alpha \supseteq I = B + \langle u \rangle - ?$

\square лоскость в \mathbb{R}^3 — ещё пример

Задача.
$$\alpha \ni A$$
, $\alpha \supseteq I = B + \langle u \rangle - ?$

И снова сводим к тому, что уже умеем, одним из двух способов:

- C = B + u; $v = \overrightarrow{AB}$.

Плоскость в \mathbb{R}^3 — взаимное расположение трёх плоскостей

Дано.
$$\alpha_i$$
: $a_i x + b_i y + c_i z + d_i$, $i = 1, 2, 3$ $n_i = (a_i, b_i, c_i) \perp \alpha_i$

- Пересекаются в одной точке: $(n_1, n_2, n_3) \neq 0$;
- «Прямая пересечения любых двух параллельна третьей»: $(n_1, n_2, n_3) = 0$, но никакая пара не коллинеарна (и все прямые пересечения параллельны $[n_1, n_2]$), система не имеет решений;
- Пересекаются по прямой: $(n_1, n_2, n_3) = 0$, но никакая пара не коллинеарна, система имеет решения;
- ullet $lpha_i \parallel lpha_j$: n_i и n_j пропорциональны.

Сложная задача

 $oldsymbol{3}$ адача. I
i A, I пересекает $k=B+\langle u
angle$ и $m=C+\langle v
angle$

Сложная задача

 $egin{aligned} \mathbf{3}$ адача. I
ightarrow A, I пересекает $k=B+\langle u
angle$ и $m=C+\langle v
angle \end{aligned}$

- $I \ni A$, I пересекает $k = B + \langle u \rangle$ это значит, что I лежит в плоскости, содержащей A и k задаём эту плоскость уравнением;
- $I \ni A$, I пересекает $m = C + \langle v \rangle$ это значит, что I лежит в плоскости, содержащей A и m задаём эту плоскость уравнением;
- Находим прямую пересечения этих плоскостей!
- А что если плоскости совпали?

Расстояние от точки до прямой

Задача.
$$I = A + \langle u \rangle$$
. $\rho(B, I) = ?$.

Расстояние от точки до прямой

Задача.
$$I = A + \langle u \rangle$$
. $\rho(B, I) = ?$.

Расстояние равно длине высоты параллелограмма, образованного векторами \overrightarrow{AB} и u. Оно равно

$$\frac{S(\overrightarrow{AB},u)}{|u|}$$

Расстояние между скрещивающимися прямыми

Задача.
$$I = A + \langle u \rangle$$
, $k = B + \langle v \rangle$. $\rho(I, k) = ?$.

Расстояние между скрещивающимися прямыми

Задача.
$$I = A + \langle u \rangle$$
, $k = B + \langle v \rangle$. $\rho(I, k) = ?$.

Расстояние равно объёму параллелепипеда, построенного на этих прямых, делённому на площадь его основания:

$$\rho(l,k) = \frac{|(\overrightarrow{AB}, u, v)|}{|[u, v]|}$$

Расстояние между скрещивающимися прямыми

Задача.
$$A=(x_0,y_0,z_0), \ \alpha: ax+by+cz+d=0. \ \rho(A,\alpha)=?$$

Задача.
$$A=(x_0,y_0,z_0),\ \alpha:ax+by+cz+d=0.\ \rho(A,\alpha)=?$$

$$\rho(A,\alpha)=\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$$

Задача.
$$A=(x_0,y_0,z_0), \ \alpha: ax+by+cz+d=0. \ \rho(A,\alpha)=?$$

Задача.
$$A=(x_0,y_0,z_0),\ \alpha:ax+by+cz+d=0.\ \rho(A,\alpha)=?$$

$$\rho(A,\alpha)=\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$$

Проекция точки на плоскость

Задача.
$$A=(x_0,y_0,z_0), \ \alpha: ax+by+cz+d=0. \ pr_{\alpha}(A)=?$$

Проекция точки на плоскость

Задача.
$$A=(x_0,y_0,z_0),\ \alpha:ax+by+cz+d=0.\ pr_{\alpha}(A)=?$$

 $A-pr_{\alpha}(A)$ — это перпендикуляр, то есть что-то, коллинеарное $n_{\alpha}=(a,b,c)$.

Ищем такое $t \in \mathbb{R}$, для которого $A + tn_{\alpha} \in \alpha$. Подставляем в уравнение плоскости и находим:

$$a(x_0 + ta) + b(y_0 + tb) + c(z_0 + tc) + d = 0$$
$$t = \frac{ax_0 + by_0 + cz_0 + d}{a^2 + b^2 + c^2}$$

Углы

- Угол между прямыми = угол между направляющими векторами или (т - этот угол); в любом случае, косинус правильного угла — это модуль косинуса угла между напр. векторами;
- Косинус угла между плоскостями = модуль косинуса угла между нормальными векторами;
- Косинус угла между прямой и плоскостью =

Углы

- Угол между прямыми = угол между направляющими векторами или $(\pi$ этот угол); в любом случае, косинус правильного угла это модуль косинуса угла между напр. векторами;
- Косинус угла между плоскостями = модуль косинуса угла между нормальными векторами;
- Косинус угла между прямой и плоскостью = синус угла между направляющим вектором прямой и нормальным вектором к плоскости.