\Box 1

Groupe:

Nom:	
Prénom: .	

- 1. (15 points) Considérons l'interférence de Young. Si la distance entre les fentes est de 1 mm, que l'écran est à une distance de 1m des fentes et que le laser utilisé a une longueur d'onde de 400 nm, déterminez:
 - (a) (1 Point) La position du maximum central (interférence constructive);

 \square 3

- (b) (2 Points) La position du premier minimum (interférence destructrice);
- (c) (2 Points) La position du premier maximum;

 \square 2

- (d) (2 Points) La position du deuxième minimum;
- (e) (2 Points) La position du deuxième maximum;
- (f) (1 Point) La distance entre deux minima consécutifs;
- (g) (1 Point) La distance entre deux maxima consécutifs;
- (h) (1 Point) La distance entre un minimum et un maximum consécutifs;
- (i) (3 Points) Un schéma de la situation.
- (a) y = 0;
- (b) Pour les minima: $y_m = \frac{(m+1/2)\lambda L}{d} = \frac{(m+1/2)400 \cdot 10^{-6} \, \text{mm} \cdot 1 \cdot 10^3 \, \text{mm}}{1 \, \text{mm}} = 0.4 (m+1/2) \, \text{mm}.$ Premier minimum (m=0 ou m=-1): $y=\pm 0.2 \, \text{mm}$
- (c) Pour les maxima: $y_m = \frac{m\lambda L}{d} = \frac{m400 \cdot 10^{-6} \text{mm} \cdot 1 \cdot 10^3 \text{mm}}{1 \text{mm}} = 0.4 \text{mmm}$. Premier maximum $(m = \pm 1)$: $y_{\pm 1} = \pm 0.4 \text{mm}$
- (d) Deuxième minimum (m=1 ou m=-2): $y=\pm 0.6$ mm
- (e) Deuxième maximum ($m=\pm 2$): $y_{\pm 2}=\pm 0.8$ mm
- (f) La distance entre deux minima consécutifs est toujours la même. Par simplicité, nous pouvons prendre m=0 et m=1: $\Delta y=y_1-y_0=0.4$ mm.
- (g) La distance entre deux maxima consécutifs est toujours la même. Par simplicité, nous pouvons prendre m=0 et m=1: $\Delta y=y_1-y_0=0.4$ mm. **Note**: La distance entre deux maxima ou deux minima consécutifs est la même.
- (h) La distance entre un maximum et un minimum consécutifs est toujours la même. Par simplicité, nous pouvons prendre 0.4 mm et 0.2 mm: $\Delta y = 0.2$ mm.

Abbildung 1: Q1 (i)

2. (5 points) Choix de réponse. Choisissez la (les) réponse(s) juste(s). Vous n'avez pas besoin de justifier votre réponse.
(a) (1 Point) La lumière est une onde stationnaire:
□ Vrai;
☑ Faux;
☐ Il manque d'informations
(b) (1 Point) La lumière est une onde longitudinale:
□ Vrai;
☑ Faux;
☐ Il manque d'informations
(c) (1 Point) Dans une pellicule mince, il y a toujours deux sources de rayonnement.
□ Vrai;
☑ Faux;
\square Il manque d'informations
(d) (1 Point) Dans l'interférence de Young, les deux sources ne sont pas cohérentes.
□ Vrai;
☑ Faux;
\square Il manque d'informations
(e) (1 Point) La différence de marche correspond au fait que chaque onde a une vitess
différente.
□ Vrai;
rd Faux

$\Delta \phi = \phi_2 - \phi_1$	$\Delta\phi_{\text{tot}} = \Delta\phi_{\delta} + \Delta\phi_{r} + \Delta\phi_{0}$	$\delta = r_2 - r_1$
$d\sin\theta = \delta$	an heta = y/L	$\Delta \phi_{\delta} = \left(\frac{r_2 - r_1}{\lambda}\right) (2\pi)$
$m\lambda = \frac{yd}{L}$	$(m+1/2)\lambda = \frac{yd}{L}$	$\Delta\phi_{\delta}=rac{4\pi e n_p}{\lambda_0}$
$\Delta \phi_{\mathrm{tot}} = m(2\pi)$	$\Delta\phi_{\rm tot}=(m+1/2)(2\pi)$	$(1+x)^{\alpha} \approx 1 + \alpha x$
$\cos x \approx 1 - x^2/2 \approx 1$	$\sin x \approx x$	$\tan x \approx x$
$a\sin\theta=M\lambda$	an heta = y/L	$y_M = \frac{M\lambda L}{a}$
$\theta_c = \frac{1.22\lambda}{D}$	$\tan\theta_p=n_2/n_1$	$I = I_0/2 I = I_0 \cos^2 \theta$

 \square Il manque d'informations

Tabelle 1: Formules Utiles

Question	1	2	Total
Points	15	5	20
Points Boni	0	0	0
Obtenus			