ใครงสร้างใลก

ระบบสุริยะ เกิดจากการหมุนวน
ของฝุ่นและแก๊สในอากาศ (เนบิวลา)
แรงโน้มถ่วงทำให้ฝุ่นและแก๊สในอากาศ
เกิดการยุบตัวและรวมกันจนในที่สุด
กลายเป็นระบบสุริยะ
และโลกอยู่ในระบบสุริยะ

การศึกษาโครงสร้างโลก

- ทางตรง คำนวณค่าความหนาแน่นเฉลี่ยของโลก มีค่าเป็น 2 เท่าของความหนาแน่นของหินบนโลก (Sir Isaac)
 - หินภูเขาไฟ
 สิ่งต่างๆที่ระเบิดออกมา
 - การเจาะสำรวจ
 วัดอุณหภูมิในบริเวณเหมืองลึกและภายในหลุมเจาะ
 (ยิ่งลึกอุณหภูมิยิ่งสูง)
 - กลุ่มหินในอดีต
 หินของเปลือกโลกใต้สมุทร
 - หินอุกกาบาตและหินจากดวงจันทร์
 องค์ประกอบคล้ายโครงสร้างโลก
- ทางอ้อม คลื่นไหวสะเทือน จากแผ่นดินไหวที่มนุษย์สร้าง
 - วัดค่าแรงโน้มถ่วงบริเวณผิวโลก

🛂 องค์ประกอบของโลกด้านสิ่งแวดล้อม

แบ่งได้ 4 ส่วน

- 1. ชีวภาค ส่วนของผิวโลกและบริเวณใกล้เคียงผิวโลก เป็นที่อยู่อาศัยของสิ่งมีชีวิต
- 2. อุทกภาค ส่วนที่เป็นน้ำ
- 3. บรรยากาศ อากาศรอบๆโลก ตั้งแต่พื้นดินถึงระดับสูง กว่า 800 กิโลเมตร
- 4. ธรณีภาค ของแข็งห่อหุ้มโลก ประกอบด้วยเปลือกโลก พื้นมหาสมุทรและพื้นทวีป เนื้อโลกส่วนบน

การแบ่งโครงสรางโลก

🛂 คลื่นไหวสะเทือน (กายภาพ)

แบ่งเป็น 2 แบบ

- คลื่นปฐมภูมิ
- 🧓 เคลื่อนผ่านตัวกลางทุกสถานะ
- Primary wave,
- ความเร็วมากกว่า S waves
- P waves
- คลื่นทุติยภูมิ
- เคลื่อนผ่านตัวกลางของแข็งเท่านั้น

Secondary wave,

S waves

แบ่งโครงสร้างออกเป็น 4 ชั้น

- 1. ธรณีภาค (Lithosphere)
- 2. ฐานธรณีภาค (Asthenosphere)
- 3. มีโชสเพียร์ (Mesosphere)
- 4. แก่นโลก (Core)
 - 4.1 แก่นโลกชั้นนอก (Outer core)
 - 4.2 แก่นโลกชั้นใน (Inner core)

ธรณีภาค (Lithosphere) เปลือกโลก + เนื้อโลกส่วนบน

- 🖇ลึกประมาณ 100 km. จากผิวโลก
- 🌞 P waves และ S waves เคลื่อนผ่านด้วยความเร็วเพิ่มขึ้นรวดเร็ว
- ประกอบด้วยหินสมบัติของแข็ง

ฐานธรณีภาค (Asthenosphere) เนื้อโลก

- 🌞 คลื่นไหวสะเทือนความเร็วไม่สม่ำเสมอ แบ่งเป็น 2 บริเวณ
 - 1. คลื่นไหวสะเทือนความเร็วลดลง (Low-velocity zone)
 - 🤏 ความลึก 100-400 km. จากผิวโลก
 - ประกอบด้วยหินสมบัติพลาสติก
 - แร่บางชนิดในหินหลอมตัวเล็กน้อย
 - 2. อัตราเร็วเพิ่มขึ้นไม่สม่ำเสมอ (transition zone)
 - 🎠 ความลึก 400-660 km. จากผิวโลก
 - 🔸 ประกอบด้วยของแข็งแกร่ง เปลี่ยนแปลงโครงสร้างแร่

มีโชสเพียร์ (Mesosphere)

- 🎋ความลึกประมาณ 660-2900 km. จากผิวโลก
- ⊱คลื่นไหวสะเทือนความเร็วเพิ่มขึ้นสม่ำเสมอ

แก่นโลกชั้นนอก (Outer core)

- 🖇ความลึกประมาณ 2,900-5,140 km. จากผิวโลก
- 🌞 สถานะของเหลว
- *P waves ความเร็วเพิ่มขึ้นช้าๆ S waves เคลื่อนที่ผ่านไม่ได้
- P waves สะท้อนและหักเห เกิด S waves เคลื่อนไปจุดกลางโลก
- 🖇 จุดศูนย์กลางโลกลึกประมาณ 6,371 km.

แกนโลกชั้นใน (Inner core)

- 🖇ความลึกประมาณ 5,140 km. ถึงจุดศูนย์กลางโลก
- P waves และ S waves อัตราเร็วค่อนข้างคงที่
- ของแข็งเนื้อเดียวกัน

- 1. เปลือกโลก (Crust)
- 2. เนื้อโลก (Mantle)
- 3. แก่นโลก (Core)
 - 3.1 แก่นโลกชั้นนอก (Outer core)

แบ่งโครงสร้างออกเป็น 3 ชั้น

3.2 แก่นโลกชั้นใน (Inner core)

เปลือกโลก (Crust)

เปลือกโลกทวีป

🚧ผิวด้านนอกที่ปกคลุมโลก แบ่งเป็น 2 บริเวณ

Continental crust	t
ส่วนที่เป็นพื้นทวีปและไหล่ทวีป	
ความหนา 35-40 km.	
บางบริเวณมากกว่า 70 km.	
Ex. เทือกเขาหิมาลัย	
เทือกเขาแอลป์	
เทือกเขาร็อกกี้	
ประกอบด้วย <mark>SiAI</mark> เรียก ไ ซ อัล	
ประกอบด้วย หินแกรนิก	

Oceanic crust
ส่วนใต้มหาสมุทร
ความหนา 5-10 km.
Ex. มหาสมุทรแปซิฟิก อินเดีย
แอตแลนติก
หมู่เกาะฮาวาย
ประเทศไอซ์แลนด์
ประกอบด้วย SiMa เรียก ไชมา

ประกอบด้วย หินบะชอลต์

เปลือกโลกมหาสมุทร

แนวแบ่งเขตโมโฮโรวิชิก (mohorovicic discontinuity)

- 🌞 เป็นแนวรอยต่อระหว่างเปลือกโลกกับเนื้อโลก เรียกสั้นๆ โมโฮ
- 🗱หนา 0.1-0.5 km. ใช้คลื่นไหวสะเทือนวัด
- 🌟 ศึกษาจากส่วนล่างของกลุ่มหินโอฟิโอไลต์ (หินในอดีต)

เนื้อโลก (Mantle) ฐานธรณีภาค

🚧 หนา 100-2,900 km. จากผิวโลก แบ่งออกเป็น 2 ชั้น

เนื้อโลกส่วนบน Upper mantle	เนื้อโลกส่วนล่าง Lower mantle
Opper marme	Lower manne
หนา 100-350 km. จากผิวโลก	หนา 350-2,900 km. จากผิวโลก
สภาพพลาสติก อ่อนตัวยึดหยุ่น	สภาพของแข็ง
หินหลอมเหลวเป็น magma	ประกอบด้วย SiO4 , Fe , Ma
อุณหภูมิ 1,400-3,000 °C	อุณหภูมิ 3,000 °C

แก่นโลก (Core)

- 🖇หนา 3,500 km. และความดันสูงมาก
- ประกอบด้วย Fe ร้อยละ 80 ที่เหลือเป็น Ni, O, Si, S ศึกษาจากอุกกาบาตเหล็ก จากแถบดาวเคราะห์น้อย
- 🚧 อุณหภูมิสูง 6,670 °C
- 🜟 แบ่งออกเป็น 2 ส่วน

แก่นโลกชั้นนอก Outer core	แก่นโลกชั้นใน Inner core	
ลีก 2,900 km. จากผิวโลก	ลึก 5,000 km. จากผิวโลก	
หนา 2,270 km.	หนา 1,216 km.	
ของเหลวร้อนจัด ประกอบด้วย Fe , Ni ละลายรวมกัน	bp & T สูง ทำให้ Fe & Ni อัดแน่น จนเป็นของแข็ง	
ความถ่วงจำเพาะ 12	ความถ่วงจำเพาะมากกว่า	

*ความถ่วงจำเพาะ (Specific gravity, SG) อัตราส่วนระหว่าง ความหนาแน่นของสสารหนึ่งๆ ต่อความหนาแน่นของน้ำ หมายความว่า วัตถุนั้นหนาแน่นถว่าน้ำ วันถุนั้นจมน้ำ

โลก 2การเปลี่ยนแปลง

ทฤษฎีแปรสัณฐานแผ่นธรณี (Plate tectonic theory) การเปลี่ยนแปลงของทวีปและมหาสมทร

ทฤษฎีทวีปเลื่อน (Continental drift theory) Dr. Alfred Wegener

ทฤษฎีพื้นสมุทรแผ่ขยาย (Seafloor spreading theory) Dr. Harry H.Hess

ทฤษฎีทวีปเลื่อนของเวเกเนอร์

ผืนแผ่นดินทั้งหมดบนโลก แต่เดิมเป็นแผ่นดินเดียวกันเรียกว่า "พันเจีย" เป็นภาษากรีก แปลว่า "แผ่นดินทั้งหมด" มีมหาสมุทรพันทาลัสซาล้อมรอบ

* มหาทวีป

๔แบ่งออกเป็น 2 ส่วน ด้วยเส้นศูนย์สูตร

ลอเรเซีย เหนือเส้นศูนย์สูตร

- ๆวีปอเมริกาเหนือ
- กรีนแลนด์
- 🧶 ทวีปยูเรเซีย (ยนเว้นอินเดีย)

กอนด์วานา ใต้เสนศูนย์สูตร

- ทวีปอเริกาใต้
- ทวีปแอฟริกา
- ทวีปแอนตาร์กติกา
- ทวีปออสเตรเลีย
- อนุทวีปอินเดีย
- 🧶 เกาะมาดากัสการ์

* หลักฐานและเหตุผล

า. หลักฐานจากรอยต่อของทวีป

- Dr. Alfred Wegener อธิบายว่า เชื่อมต่อทวีปต่างๆแบบจึกชอ (แต่ไม่สมบรณ์) เนื่องจากการกัดเซาะของชายฝั่ง และสะสมตัวของตะกอน <u>ขอบทวีปเปลี่ยนแปลง</u>
- Sir Edward Bullard อธิบายว่า เชื่อต่อทวีปต่างๆที่ความลึก 2,000 เมตร จากระดับน้ำทะเล เป็นแนวลาดทวีป เนื่องจากการกัดกร่อน และสะสมของตะกอนน้อย

- 🏿 กลุ่มหินช่วง 359-146 ล้านปี (ยุคคาร์บอนิเฟอรัสถึงยุคจูแรสซิก) อเมริกาใต้ แอนตาร์กติกา แอฟริกา ออสเตรเลีย อนทวีปอินเดีย หนาวเย็น ภูเขาไฟระเบิดเหมือนกัน คิดว่าเคยเป็นแผ่นเดียวกัน
- 🧶 แนวเทือกเขาเชื่อมต่อกันได้ แนวเทือกเขาแอปพาเชียนฝั่งตะวันออกอเมริกาเหนือ อายุเท่ากับ แนวเทือกเขาด้านตะวันออกกรีนแลนด์ ไอร์แลนด์ อังกฤษ นอร์เวย์

3. หลักฐานจากหินที่เกิดจากการสะสมตัวของตะกอนจากธารน้ำแข็ง

- ตะกอนที่ได้จากน้ำแข็งมีอายุเท่ากัน บริเวณที่เคยเป็นกอนด์วานาถูกปกคลุมด้วยแผ่นน้ำแข็ง
- สังเกตรอยขูดในหินที่พบในทวีปต่างๆ เกิดจากรอยเลื่อนของชารน้ำแข็ง
 - *ธารน้ำแข็งเกิดในยุคพาสิโอโซอิก เรียก สมัยน้ำแข็งคะรู

4. หลักฐานจากซากดึกดำบรรพ์

- Mesosaurus สัตว์เลื้อยคลานอาศัยในน้ำจืด พบในทวีปอเมริกาใต้ แอฟริกาตอนใต้
- Lystrosaurus & Cynognathus สัตว์เลื้อยคลานบนบก พบในทวีปที่เคยเป็นกอนด์วานา *ไม่สามารถวายน้ำข้ามมหาสมทรได้
- Glossopteris พืชตระกูลเพิร์น ใช้สปอร์ขยายพันธุ์ อาศัยลม *เมล็ด Glossopteris ไม่สามารถอยู่รอดในมหาสมุทร

แผ่นเปลือกโลกใหญ่ ทั้ง 6 แผ่น

- 1. แผ่นยูเรเซีย --> ทวีปเอเชีย&ทวีปยุโรป
- 2. แผ่นอเมริกา --> ทวีปอเมริกาเหนือ &อเมริกาใต้
- 3. แผ่นแปซิฟิก --> มหาสมุทรแปซิฟิก
- 4. แผ่นออสเตรเลีย --> ทวีปออสเตรเลีย &ประเทศอินเดีย
- 5. แผ่นแอนตาร์กติกา --> ทวีปแอนตาร์กติก
- 6. แผ่นแอฟริกา --> ทวีปแอฟริกา

หลักฐาน&ข้อมูลสนับสนุน

🐙 เทือกสันเขาใต้มหาสมุทร & ร่องลิกกันมหาสมุทร

- 🔌 ฐานกว้าง เมื่อเทียบกับความสูง
- ยอดเขามีลักษณะ "หุบเขาทรุด" (Rift valley)
 รอยแยกตัดขวางบนเส้นเขาตลอดความยาว
 ศูนย์กลางแผ่นดินไหว&ภูเขาไฟระเบิด
- ร่องลึกกันมหาสมุทร แนวแคบแต่ลึก
 ร่องลึกกันมหาสมุทรมาเรียนา ลึก 11 km.
 ด้านตะวันตกทวีปอเมริกากลาง & อเมริกาใต้
 แนวหมู่เกาะภูเขาไฟรูปโค้ง (วงแหวนแห่งไฟ)
 Ex. หมู่เกาะญี่ปุ่น พิลิปปินส์ เกาะสุมาตรา
- ๔การปะทุของภูเขาไฟ แผ่นธรณีมหาสมุทรแยกกัน จากส่วนกลางเทือกสันเขาใต้ มหาสมุทร ร่องลึกกันมหาสมุทรจมตัว ดึงให้ธรณีภาคเคลื่อนที่

🐺 อายุหินบริเวณพื้นมหาสมุทร

📤 หินบะซอลต์ที่อยูไกลรอยแยกมีอายุมากกว่าหินที่ใกล้หุบเขาทรุด

🐺 ภาวะแม่เหล็กโลกบรรพกาล

- ร่องรอยสนามแม่เหล็กโลกในอดีต ศึกษาจากหินบะซอลต์
 ที่มีแร่แมกนีไทต์ (Fe₃O₄) เป็นส่วนประกอบ
- ๑ะตอมของธาตุเหล็กใน Fe₃O₄ ถูกเหนี่ยวนำโดยสนามแม่เหล็ก โลกให้เรียงตัวในทิศเดียวกับเส้นแรงไม่เหล็กโลก

กระบวนการเคลื่อนที่แผ่นธรณี

- การถ่ายโอนพลังงานภายในโลก ใต้เปลือกโลกมีสารร้อนไหล เวียนขึ้นมา เมื่อสารร้อนอุณหภูมิลดลง ความหนาแน่นมากขึ้น จะมุดตัวสู่ชั้นเนื้อโลกบริเวณร่องลึกกันมหาสมุทร
- <u>๔ สารร้อนที่ไหลเวียนเป็นวงจร</u> เรียก วงจรการพาความร้อน
- จงจรการพาความร้อน ทำให้เปลือกโลกบริเวณกลางมหาสมุทร แยกจากกัน หินบริเวณนั้นหลอมเป็นmagma แทรกขึ้นมา บนผิวโลกเกิดชั้นธรณีภาคใหม่ ห่างออกไปเป็นธรณีภาคเก่า ทำให้ความหนาแน่นไม่เท่ากัน

*ความหนาแน่นมากจะมุดตัวทำให้ธรณีเกิดการเคลื่อนที่

์ สมมติฐานกระแสการพาความร้อน

ความร้อนจากแก่นกลางโลกทำให้ชั้นเนื้อโลกร้อน ส่งผลต่อการ เคลื่อนที่ของแผ่นเปลือกโลก

* สมมติฐานการดันและการดึงของแผนทวีป

- แผ่นชั้นเปลือกโลกใต้มหาสมุทรที่เกิดใหม่เคลื่อนที่ออกจาก
 เทือกเขากลางมหาสมุทร และค่อยๆเย็นลง ความหนาแน่นมากขึ้น
- ๔แมื่อความหนาแน่นมากกว่าชั้นฐานเปลือกโลก จะมุดตัวลงดึงเอา เปลือกโลกชั้นนอกลงมาด้วย

รอยต่อ&การเคลื่อนที่แผ่นธรณี

๔แบ่งเป็น 3 แบบ

- 1. ธรณีเคลื่อนที่แยกออกจากกัน (Divergent boundary)
- 2. ธรณีเคลื่อนที่เข้าหากัน (Convergent boundary)
- 3. ธรณีเคลื่อนที่ผ่านกัน หรือเฉือนกัน

* แผ่นธรณีเคลื่อนที่แยกออกจากกัน (Divergent plate boundary)

- ๔เกิดได้กลางมหาสมุทร&กลางผืนทวีป
- กลางมหาสมุทรเกิดตรงเทือกเขากลางมหาสมุทร
 Ex. แนวเปลือกโลกออสเตรเลียกับแนวเปลือกโลกแอนตาร์กติก กลางมหาสมุทรแอตแลนติก

🖟 แผ่นธรณีเคลื่อนที่เข้าหากัน (Convergent plate boundary)

▲แบ่งเป็น 3 แบบ

แผ่นธรณีมหาสมุทรชนกับแผ่นธรณีมหาสมุทร

แผ่นหนึ่งมุดตัว อีกแผ่นโค้งเป็นภูเขาไฟปะทุ เกิดแผ่นดินไหว ภูเขาไฟมีพลัง Ex. แผ่นออสเตรเลียชนกับแผ่นแปชิฟิก

> หมู่เกาะมาริอานาส์ หมู่เกาะอาลูเทียน

🗷 แผ่นธรณีมหาสมุทรชนกับแผ่นธรณีทวีป

แผ่นธรณีทวีปหนาแน่นน้อยลอยตัวด้านบน แผ่นธรณีมหาสมุทรหนาแน่นมากมุดตัวในชั้นฐานธรณีภาค เกิดภูเขาไฟปะทุในส่วนแผ่นดิน และแผ่นดินไหวรุนแรง

แผ่นธรณีทวีปชนกับแผ่นธรณีทวีป

ชรณีภาคชั้นนอกถูกทำลาย หรือมุดตัวลงสู่ชั้นเนื้อโลก เมื่อชนกัน ขอบหนึ่งจะโค้ง อีกขอบจะมุดตัว เกิดเทือกเขาสูงแนวยาวในแผ่นธรณีภาค Ex. เทือกเขาหิมาลัยในทวีปเอเชีย เทือกเขาแอลป์ในทวีปยโรป

🛊 แผ่นธรณีเคลื่อนที่ผ่านกัน หรือเฉือนกัน

▲เกิดรอยเลื่อนขนาดใหญ่

Ex. รอยเลื่อนซานแอนเดรียส ประเทศสหรัฐอเมริกา รอยเลื่อนอัลไพน์ ประเทศนิวซีแลนด์

การเปลี่ยนแปลงลักษณะเปลือกโลก

- ๔แบ่งเป็น 2 ลักษณะ
 - 1. ชั้นหินคดโค้ง (Fold)
 - 2. รอยเลื่อน (Fault)

choose happy

* ชั้นหินคดโค้ง (Fold)

- ▲เกิดในชั้นหินหรือเปลือกโลกที่ความอ่อนตัวไม่มั่นคงเนื่องจาก มีแรงมากระทำ และแรงดันที่เกิดขึ้นทำให้เกิดการบีบอัดของ ชั้นหินและเปลือกโลก ส่งผลให้เปลือกโลกโค้งงอเป็นภูเขา
 ▲แบ่งเป็น 2 ชนิด
 - ■ชั้นหินคดโค้งรูปประทุนหรือกระทะคว่ำ (Anticline)
 รอยคดโค้งมีลักษณะคล้ายหลังต่ำ
 แขนด้านข้างเป็นมุมเอียงออกทั้งสองด้าน
 หินด้านล่างตอนกลางอายุมาก ด้านนอกอายุน้อย
 พัฒนาเป็นสันเขา ภูเขา
 - ชั้นหินคดโค้งรูปประทุนหงายหรือกระทะหงาย (Syncline)

 รอยคดโค้งลักษณะคล้ายกระทะหงายหรือเป็นแอ่ง

 แขนมีมุมเอียงพุ่งเข้าหากัน

 พัฒนาเป็นหุบเขา

🐺 รอยเลื่อน (Fault)

- ▲ลักษณะรอยแตกหรือแนวแตกในหิน มีด้านหนึ่งเคลื่อนไปจาก ที่เดิม โดยเคลื่อนไปตามรอยแนวแตก
- ๔ชั้นหินเหนือระนาบรอยแตก เรียก หินเพดาน (Hanging wall)
- 📤ชั้นหินด้านล่างระนาบรอยแตก เรียก หินพื้น (Foot wall)

- 1. รอยเลื่อนปกติ (Normal fault)
- 2. รอยเลื่อนย้อน (Reverse fault)
- 3. รอยเลื่อนตามแนวระนาบ (Strike-slip fault)

Strike-slip fault

ปรากฎการณ์ธรณีวิทยา

แผ่นดีนไหว (Earthquake)

การเลื่อนที่ของแผ่นธรณี ทำให้หินเปลี่ยนลักษณะ เลื่อนตัว แตกหัก ถ่ายโอนพลังงานความร้อนอย่างรวดเร็วให้กับชั้นหิน ที่ติดกันในรูปคลื่นไหวสะเทือน ซึ่งจะแผ่กระจายจากจุดกำเนิด ไปทุกทิศทาง

หน่วยรีกเตอร์	หน่วยเมอร์คิวลึ	ส่งผลกระทบต่อ
น้อยกว่า 3	I-II	ตรวจได้เฉพาะเครื่องมือ
3-3.9	III	คนอยู่ในบ้านรู้สึก
4-4.9	IV-V	ประชาชนส่วนใหญ่รู้สึก
5-5.9	VI-VII	ทุกคนรู้สึก , ตัวอาคารเสียหาย
6-6.9	VII-VIII	ประชาชนตื่นตกใจ , อาคารเสียหายปานกลาง
7-7.9	IX-X	อาคารเสียหายรุนแรง
มากกว่าหรือเท่ากับ 8	XI-XII	อาคารเสียหายเกือบทั้งหมด

:: ศนย์เกิดแผ่นดินไหว (Focus)

- ตำแหน่งที่เป็นจุดกำเนิดการไหวสะเทือนของแผ่นดิน เกิดได้หลายจุดในพื้นที่ตามแนวรอยเลื่อน
- แบ่งตามระดับความลึก ได้ 3 ระดับ
 - ระดับตั้น --> ที่ความลึกน้อยกว่า 70 km. จากผิวโลก
 - •ระดับปานกลาง --> ที่ความลึก 70-300 km. จากผิวโลก
 - ระดับลึก --> ที่ความลึกมากกว่า 300 km. จากผิวโลก

። จุดเหนือศูนย์เกิดแผ่นดินไหว (Epicenter)

ตำแหน่งบนผิวโลกที่อยู่เหนือศูนย์เกิดแผ่นดินไหว

แครื่องวัดความไหวสะเทือน (Seismograph or Seismometer)

- ใช้หลักต้านการเปลี่ยนแปลงการเคลื่อนที่ของมวลลูกตุ้มเหล็ก ลูกตุ้มจะเคลื่อนที่ในทิศตรงกันข้ามกับการเคลื่อนที่ของคลื่น ไหวสะเทือน
- กระดาษบันทึกความไหวสะเทือน (Seismogram) บันทึกแรง สั่นสะเทือนทั้งแนวราบ&แนวระดับ ปัจจุบัน ใช้ระบบดิจิทัล

:: มาตรการวัดแผนดินไหว

- ริกเตอร์ (วัดขนาด : Magnitude)
 - Charles F. Richter คิดค้นสูตรการวัดขนาดแผ่นดินไหว
 - --> น้อยกว่า 2.0 แผ่นดินไหวขนาดเล็ก
 - --> มากกว่า 6.0 แผ่นดินไหวขนาดใหญ่
 - วัดได้เฉพาะแผ่นดินไหวระดับตื้น สถานีอยู่จากแหล่ง กำเนิดแผ่นดินไหวระยะ 200-300 km. เท่านั้น
 - วัดได้เฉพาะคลื่นไหวสะเทือนที่มีความสูง ที่สุดเท่านั้น
- เมอร์คิวลี (วัดความรุนแรง: Intensity)
 - Giuseppe Mercalli ผู้คิดค้น
 - วัดโดยพิจารณาจาก
 - --> ความเสียหายจากแผ่นดินไหวที่เกิดบนผิวโลก
 - --> ค่าระดับความรุนแรงตั้งแต่ 1-12

คลื่นไหวสะเท็กน 2 หนิด

- คลื่นในตัวกลาง (Body waves)
 - คลื่นที่แผ่กระจายจากศูนย์เกิดแผ่นดินไหว เดินทาง ในตัวกลางที่คลื่นเคลื่อนที่ผ่าน
 - แบ่งเป็น 2 ชนิด
 - 🤛 คลื่นปฐมภูมิ (P waves)
 - -> เร็วกว่าคลื่นชนิดอื่น ผ่านตัวกลางทุกชนิด
 - 🧓 คลื่นทุติยภูมิ (S wave)
 - > เร็วน้อยกว่า P waves ผ่านตัวกลางของแข็ง

ะคลืนพื้นผิว (Surface waves

- คลื่นที่เคลื่อนที่บนผิวโลกหรือใต้ผิวโลกเล็กน้อย ด้วยอัตราเร็ว ห้ากว่าคลื่นในตัวกลาง
- แบ่งเป็น 2 ชนิด
- 👳 คลื่นเลิฟ (love wave : L wave)
 - -> คลื่นที่ทำให้อนุภาคตัวกลางสั่นในแนวราบ
 - โดยทิศทางตั้งฉากกับทิศทางการเคลื่อนที่
 - สร้างความเสียหายให้กับฐานรากอาคาร
- 🖙 คลื่นเรย์ลี (rayleigh wave : R wave)
 - คลื่นที่ทำให้อนุภาคตัวกลางเคลื่อนที่ในระนาบแนวดิ่ง
 - โดยทิศทางเดียวกับการเคลื่อนที่ของคลื่น
 - พื้นผิวโลกสั่นขึ้นลง

:: สาเหตุของการเกิดแผนดินไหว

- การเคลื่อนที่ของแผ่นเปลือกโลก
- การระเบิดของภูเขาไฟ
- จากการกระทำของมนุษย์

แนวแผนดินไหว <mark>คือตำแหน่งศูนย์เกิดแผ่นดินไหว</mark> ์ ที่<mark>มีความสัมพันธ์</mark>กับแนวรอยต่อของแผ่นเปลือกโลก โดยแบ่งออกเป็น 3 แนวสำคัญ

🤹 แนวรอยต่อที่ล้อมรอบมหาสมุทรแปซิฟิก (ร้อยละ 80)

- หำกิดแผ่นดินไหวค่อนข้างรุนแรง และเกิดมากที่สุด
- 🦸 Ex. เทือกเขาแอนดิสในอเมริกาใต้ เทือกเขาตามชายฝั่งทะเลของแคนนาดา หมู่เกาะอะลูเชียนทางเหนือของมหาสมุทรแปซิฟิก ทั้งหมดเรียกรวมกันว่า "วงแหวนแห่งไฟ"
- ศนย์เกิดแผ่นดินไหวระดับตื้น ปานกลาง ลีก 🤹 แนวรอยต่อเทือกเขาแอลป์ในทวีปยุโรป และเทือกเขาหิมาลัยในทวีปเอเชีย (ร้อยละ 15)
 - √ex. แถบบริเวณทะเลเมดิเตอร์เรเนียนในยุโรป บริเวณประเทศพม่า อัฟกานีสถาน อิหร่าน ตุรกี

🧏 แนวรอยต่อของเปลือกโลกที่เหลือ (ร้อยละ 5)

√Ex. เทือกเขากลางมหาสมุทรแอตแลนติก แนวสันเขาใต้มหาสมุทรอินเเดียและอาร์กติก ๙ศูนย์เกิดแผ่นดินไหวระดับติ้น

** ขั้นตอนการเกิดแผ่นดินไหว

- 1. แผ่นดินไหวนำ (Fore shock)
- --> แผ่นดินไหวขนาดเล็ก ก่อนเกิดแผ่นดินไหวหลัก
- --> เกิดก่อนหลายชั่วโมง หรือหลายวัน
- 2. แผ่นดินไหวหลัก (Main shock)
 - --> การปรับตัวของเปลือกโลก
- 3. แผ่นดินไหวตาม (After shock)
- --> แผ่นดินไหวขนาดเล็ก ตามมาอีกหลายครั้ง

" แนวรอยเลื่อนมีพลัง (Active faults)

- แนวรอยเลื่อนบนเปลือกโลกที่ยังเคลื่อนที่ได้
- Ex. รอยเลื่อนมีพลังในไทย ภาคเหนือ --> รอยเลื่อนเชียงแสน รอยเลื่อนแม่ทา ภาคตะวันตก --> รอยเลื่อนศรีสวัสดิ์ ภาตใต้ --> รอยเลื่อนระนอง รอยเลื่อนคลองมะรู่ย

น คาบอบัติซ้ำ

- 🕶 ระยะครบรอบของแผ่นดินไหวที่เคยเกิดขึ้น ณ ที่นั้นกลับมาเกิดซ้ำ
- ส่วนใหญ่เกิดตามแนวรอยเลื่อน

(Volcano)

ภูเขาที่เกิดจากการปะทุของ magma จากใต้เปลือกโลก โดยสิ่งที่พุ่งออกมาจากปล่องภูเขาไฟ เรียก "Lava"

:: แนวภูเขาไฟ

- ส่วนใหญ่เกิดบริเวณที่แผ่นเปลือกโลกมาชนกันและแยกจากกัน เป็นสาเหตุการเกิดแผ่นดินไหวและภูเขาไฟระเบิด
- 🕨 รอบมหาสมุทรแปซิฟิก เรียก "วงแหวนแห่งไฟ"

🔢 การระเบิดของภูเขาไฟ (Volcanic eruption)

- แบ่งได้ 3 ชนิด
- ภูเขาไฟที่ดับสนิท หรือภูเขาไฟสิ้นพลัง (Extinct volcanoes)
 - -> ภูเขาไฟที่ไม่สามารถระเบิดได้อีก
 - -> Ex. The Cascades, Columbia Plateau
- ภูเขาไฟสงบ (Dormant volcanoes)
 - ภูเขาไฟที่หยุดการระเบิด แต่สามารถระเบิดได้

- ภเขาไฟมีพลัง (Active volcanoes)
 - ภูเขาไฟที่ระเบิดค่อนข้างถี่ มีแนวโน้มจะระเบิดอีก

หืนชิ้นภูเขาไฟ (Pyroclastic rock)

จากการเย็นตัวและแข็งตัวของlava กลายเป็นหิน มีชื่อเรียกตามขนาด ดังนี้

- เส้นผ่านศูนย์กลาง 0.06-2 mm. : Tuff
- เส้นผ่านศูนย์กลางใหญ่กว่า 64 mm. มีเหลี่ยม : Block
- รปร่างคล้ายหยดน้ำ : Bomb
- Block ผสมกับ Bomb : หินกรวดเหลี่ยมภูเขาไฟ
- Lava เย็นตัว&แข็งตัว อย่างรวดเร็ว : Pumice Pumice or หินแกรกเขาไฟ มีรูพรุน น้ำหนักเบา ลอยน้ำได้

ลักษณะภูเขาไฟ

- แบ่งออกเป็น 3 ลักษณะ
 - ภูเขาไฟรูปโล่ (Shield volcano)
 - -> คล้ายโล่คว่ำ ความลาดชั้นน้อยประมาณ 4-10 องศา
 - -> ภูเขาไฟขนาดใหญ่สุด
 - -> มีการไหลของlava พอกเป็นชั้นๆ รอบปล่องภูเขาไฟ

- ภูเขาไฟทรงกรวย (Cinder cone volcano)
 - → ความลาดชั้นสูง 30-40 องศา
 - ยอดปล่องภูเขาไฟกว้าง ตรงกลางเป็นแอ่งตื้น
 - -> lava หนืด ถูกพ่นออกมาทับถมเป็นชั้นๆ รอบปล่อง
 - -> การระเบิดภูเขาไฟเรียก Strombolian eruption
- กรวยภูเขาไฟสลับชั้น (Composite cone)
 - -> สลับชั้นหินlava & ชิ้นภูเทไฟ เป็นชั้นๆรอบปล่อง
 - -> เกิดการระเบิดรุนแรง เนื่องจากความดันสูง
 - ความลาดชันขึ้นอยู่กับเศษตะกอนที่เกาะโดยไม่ไหล
 - -> การระเบิดภูเขาไฟเรียก Plinian eruption

... ภเขาไฟในประเทศไทย

- --> ภเขาไฟทับช้างเขียน: เชียงราย
- --> ภูเขาไฟดอยผาคอกหินฟู : ลำปาง
- --> ภูเขาบ่อพลอย : กาญจนบุรี
- --> ภูเขาไฟวิเชียรบุรี : เพชรบูรณ์
- --> ภูเขาไฟเขาวัว : นนทบุรี
- —> ภูเขาไฟกระโดง , ภูเขาไฟภูพระอังคาร : บุรีรัมย์

** โทษจากภูเขาไฟ

- การไหลของlava ทำให้เกิดผลเสียต่อชีวิต & ทรัพย์สิน
- กลุ่มควัน เถ้าธรีในอากาศ ทำให้เกิดมลพิษทางอากาศ
- การระเบิดภูเขาไฟใต้ทะเล ทำให้เกิดคลื่นสีนามิ
- เถ้าภูเขาไฟ ทำให้ดินโคลนถล่ม ถ้าฝนตกหนัก

ประโยชน์จากภูเขาไฟ

- ปรับระดับเปลือกโลกให้สมดูล
- เป็นแหล่งท่องเที่ยว
- ค้นพบอัญมณี นำมาทำเครื่องประดับ

รรณีประวัติ

ธรณีประวัติ หมายถึง การศึกษาเหตุการณ์ที่ เกิดขึ้นในอดีตจากหลักฐานร่องรอย ที่ปรากฏ บนหิน หรือแผ่นเปลือกโลก

การศึกษาข้อมูลทางธรณีวิทยา

- 🐨 อายุทางธรณีวิทยา
- 🐨 ซากดึกดำบรรพ์
- 🕡 โครงสร้างและการลำดับชั้นหิน 🕽

อายุทางธรณีวิทยา

อายุเปรียบเทียบ (Relative age)

- 🖐 เปรียบเทียบอายุหิน ว่ามากหรือน้อยกว่ากัน
- โดยการเจาะสำรวจ
- 👺 นำมาเปรียบเทียบกับช่วงเวลาทางธรณีวิทยา ธรณีกาล
 - Ex. ซากดึกดำบรรพ์ที่ทราบอายุ
 ลักษณะลำดับชั้นหิน

อายุสัมบูรณ์ (Absolute age)

- 🖐 บอกอายุหิน เป็นจำนวนปีที่ค่อนข้างแน่นอน
 - Ex. การวิเคราะห์ปริมาณไอโซโทปของธาตุกัมมันตรังสี

C-14 K-40 Ra-226 Rb-87 U-238

_อายุน้อยกว่า 70,000 ปี

-อายุสัมบูรณ์ 100 ปี

ชากดึกดำบรรพ์ หรือฟอสซิล (Fossil)

- 👺 ซากหรือร่องรอยสิ่งมีชีวิต ที่เคยอาศัยอยู่บริเวณนั้น
- 😃 เมื่อตาย ถูกทับถม ฝังตัวในชั้นหินตะกอน
- สามารถบอกถึงลักษณะ

 - 🛮 ช่วงอายุหินอื่น ร่วมกับหินตะกอน มีโครงร่างแข็งแรง
 - 🕹 ชะลอการสลายตัว ถ้าถูกฝังอย่างรวดเร็ว
 - 🕹 ธาตุที่ทำให ้ fossil แข็งตัว คงรูป แคลไชด์ โดโลไมต์ ซิลิกา
 - การพิมพ์รอย เช่น รอยตีนสัตว์ รอยเปลือกหอย
 - - –สัตว์ทะเล จมลงท[้]องทะเล ถูกโคลนทรายละเอียดถม
 - —ช้างแมมมอธ ตายในน้ำแข็ง จะถูกแช่แข็ง —แมลงตายในยางไม้ หรืออำพัน

ซากดึกดำบรรพ์ดัชนี (Index fossil)

- 🖐 บอกอายุได้แน่นอน
- 🖐 วิวัฒนาการรวดเร็ว แตกต่างแต่ละช่วงอายุ
- 🖐 ปรากฏเพียงช่วงและสูญพันธุ์
 - Ex. ไทโลไบต์ในดินทรายแดง
 - แกรปโตไลต์ในดินดานสีดำ
 - ฟิวซูลินิดทรงรี หรือ โปรโตซัว ในหินปูน

ชากดึกดำบรรพ์ในประเทศไทย

- ไดโนเสาร์ภูเวียงโกชอรัส สิรินธรเน กินพืช เดินสี่เท้า
 คอและหางยาว เจอที่ภูเวียง ขอนแก่น
- 👱 เมอริโคโปเตมัส หมู เลี้ยงลูกด้วยนม เจอที่นครสวรรค์
- 🗷 ส่วนมากเจอที่ภาคตะวันออกเฉียงเหนือ ในชั้นหินทรายแป้ง

ี้ ตารางเวลาทางธรณีวิทยา (Geological Time Scale)

หมายถึง ตารางจัดหมวดหมู่ตามอายุวิวัฒนาการ แบ่งเป็น 4 มหายุค

- —1. มหายุคพรีแคมเบรียน (The Precambrian Era)
- -2. มหายุคพาลีโอโซอิก (The Paleozoic Era)
- 🔑 3. มหายุคมีโสโซอิก (The Mesozoic Era)
 - -4. มหายุคซีโนโซอิก (The Cenozoic Era)

มหายุคพรีแคมเบรียน (The Precambrian Era)

- ข อายุ 4,000 ล้านปี
- 🕊 ธารน้ำแข็งปกคลุม
- สัตว์ตัวนิ่มคล้าย แมงกะพรุน ไส้เดือน

Much_chehn

มหายุคพาลีโอโซอิก (The Paleozoic Era) แบ่งออกเป็น 7 ยุค

ออร์โดวิเชียน 🔟 สัตว์ไม่มีกระดูกสันหลัง อาศัยในทะเล

🛾 เริ่มมีปลา

ไซลูเรียน 🗸 สัตว์บก ครึ่งบกครึ่งน้ำ

ู่ ๕สัตว์ลำตัวเป็นปล[้]อง ออสตราคอต

ุชสัตว์มีกระดูกสันหลัง ปลา สาหร่าย

ดีโวเนียน ผลัตว์คล้ายปลา

ุ่⊌มี "ปลา" เป็นสัตว์ประจำยุค

ู ู ไตรโลไบต์ลดลง

มิสชิลชิปเปียน 🗸 สัตว์มีกระดูกสันหลัง สัตว์บกอื่นๆ

ุ ชัตว์ไม่มีกระดูกสันหลัง ปะการัง

เพนชิวาเนียน 🕹 ยุคของ "แมลงสาบ"

เพอร์เมียน 🗸 ธารน้ำแข็งปกคลุม

ู่⊌ไตรโลไบต์สูญพันธุ์

ุ แมลงปีกแข็ง

มหายุคมิโสโซอิก (The Mesozoic Era)

แบ่งออกเป็น 3 ยุค

ไตรแอสสิก 🛾 🕊 ยุคเริ่มสัตว์เลื้อยคลาน ไดโนเสาร์

ุ่นไดโนเสาร์ชนิดแรก "ซิโลไฟซิส"

จูแรสสิก 🔟 ไดโนเสาร์จำนวนมาก

🕹 กำเนิดนก

เกิดสัตว์เลี้ยงลูกด้วยนม

ครีตาเซียส 🕹 ไดโนเสาร์กินเนื้อ

Ψ ไดโนเสาร์สูญพันธุ์

ยุคซิโนโซอิก (The CenoZoic Era)

แบ่งออกเป็น 2 ยุค

เทอร์เทียรี 🗸 สัตว์เลี้ยงลูกด้วยนมใช้ฟันแทะ

🕹 ต้นตระกูล ม้า ค้างคาว

🕊 ลิงไม่มีหาง สุนัข แมว ม้า 3 เล็บ

🕊 อูฐ ยีราฟ กวาง

🛾 ม้าเหมือนปัจจุบัน สัตว์กินพืช

ควอเทอร์นารี 🕡 ยุคน้ำแข็ง

🕊 มนุษย์ รู้คิด เขียน บันทึก

การลำดับชั้นหิน

การอธิบายความเป็นมาของพื้นที่ในอดีต เหมือนกับหน้าของหนังสือ บอกเรื่องราวตั้งแต่อดีตถึงปัจจุบัน มีการวางตัวดังนี้

1. วางตัวแนวราบ

- 🖐 ขนานกับพื้นโลก หินใหม่วางบนหินเก่า
- 2. เกิดการเปลื่นรูป
 - 🖐 หินเปลี่ยนรูปจากเดิม มีรอยคดโค้ง รอยเลื่อน

3. เกิดการแทรกของหินเข้าไป

หินอัคนีแทรกผ่านหินตะกอน
 อายุน้อย
 อายุมาก

4. รอยชั้นไม่ต่อเนื่องทางธรณี

- 🗷 รอยชั้นไม่ต่อเนื่องเชิงมุม
- 💆 รอยชั้นไม่ต่อเนื่องคงระดับ
- 🖐 รอยชั้นไม่ต่อเนื่องแบบต่างๆ

เพิ่มเติม

ชนิดของหิน

หินอัคนี (Igneous rock) จากการเย็นตัวของ magma แบ่งเป็น หหินอัคนีแทรกซอน --> magma เย็นตัวช้า ผลิกขนาดใหญ่ Ex. Granite, Diorite

🥆 หินอัคนีพุ --> lava เย็นตัวเร็ว ผลิกขนาดเล็ก Ex. Basalt , Andesite , Rhyolite

หินชั้นหรือหินตะกอน (Sedimentary rock)

จากการทับถมของตะกอน โคลน ซากพืช ซากสัตว์ แบ่งเป็น

หินชั้นเนื้อประสม --> ชั้นเนื้อเดิมของตะกอน กรวดทราย

Ex. หินทราย หินดินดาน หินกรวดมน

หินชั้นประสาน --> เกิดจากการตกผลึกทางเคมี จากสิ่งมีชีวิต

Ex. หินปูน หินเชิร์ต เกลือหิน ถ่านหิน

หินแปร (Metamorphic rock) หินที่แปรสภาพโดยผ่านค.ร้อน

Ex. หินแกรนิต --> หินไนส์ : ทำครก , หินโม่

หินปูน --> หินอ่อน : หินแกะสลัก , อุตสาหกรรม

หินดินดาน --> หินชนวน : ทำกระดานชนวน

หินทราย --> หินควอตไซต์ : อุตสาหกรรมแก้ว

เอกภพ (Universe) อวกาศกว้างใหญ่ไพศาล ้แหล่งรวมทุกสรรพสิ่งในธรรมชาติ

เอกภพวิทยาในอดีต

- เส้นผ่านศูนย์กลาง 26,000 ล้านปีแสง
- 🦥 1 ปีแสงคือ ระยะทางที่แสงเกิดทางในอวกาศนาน 1 ปี ระยะ ทาง 9.461×10^{15} เมตรหรือ 9.5 ล้านๆก็โลเมตร

🏅 แบบจำลองเอกภพของชาวสูเมเรียนและแบบจำลองเอกภพของชาว บาบีโลน (The Sumerians and the Babylonians)

- แบบจำลองเอกภพ ของชาวสูเมเรียน
- 🦦 ดินแดนเมโสโปเตเมีย ปัจจุบันคือ "ประเทศอิรัก"
- ลิคิดคนอักษรรูปลิ่มเรียก "คูนิฟอร์ม" บันทึกลงแผ่นดินเหนียว
- 🥶 บันทึกตำแหน่งดาว
- โลกแบนอยู่กับที่
- 🦥 ตั้งชื่อกลุ่มดาว
- 🦥 เชื่อมีเทพเจ้าปกครองโลก
- แบบจำลองเอกภพ ของชาวบาทีโลน
- 🔭 สังเกตจดบันทึกดวงดาว
- 🦥 แคตตาล็อกระบุเส้นทางการขึ้นตก ของดาวฤกษ์ ดาวเคราะห์
- 🦥 ทำนายการเคลื่อนที่ดวงดาวแม่นยำ
- **ใช้ประโยชน์ด้านการเกษตร**

🖫 แบบจำลองเอกภพของกรีก (Greeek cosmology)

- 🦥 ปรากฏการณ์ต่างๆ อาศัยหลักทางคณิตศาสตร์
- และเรขาคณิต
- 🦥 เริ่มใช้ Cosmology แนวความคิดความสมมาตรและความสอด คล้องกลุมกลืน

เอกภพ

Aristotle	ั ⊌ โลกกลม
Aristarchus of Samos	โลกโคจรรอบดวงอาทิตย์เป็นเวลา1 ปีมีดวงอาทิตย์เป็นจุดศูนยย์กลาง
C.Ptolemy	🦥 โลกแบน
Nicolaus Copernucus	ขัดแย้งเรื่องโลกเป็นจุดศูนย์กลางเขียนหนังสือ นำเสนอระบบดวงอาทิตย์เป็นศูนย์กลาง

*หนังสือที่ Nicolaus เขียน มีชื่อว่า Derevolutionibus orbium coelestium (ปฏิวัติความเชื่อเรื่องท้องฟ้า)

🛚 แบบจำลองเอกภพของเคพเลอร์

Tycho Brahe	ดาวเคราะห์เคลื่อนที่รอบดวงอาทิตย์เป็นวงกลม
Johannes Kepler	 ๑าวเคราะห์เคลื่อนที่รอบดวงอาทิตย์ เป็นวงรี

กฎเคลื่อนที่ 3 ข้อที่ใช้ในปัจจุบัน

- ดาวเคราะห์โคจรรอบดวงอาทิตย์ มีดวงอาทิตย์ เป็นจุดโฟกัส
- 2. เวลาในการโคจรรอบดวงอาทิตย์ คาบเวลาเท่า กวาดพื้นที่เท่า
- 3. กำลังสองคาบวงโคจร แปรผันตามกำลังสาม ระยะห่างจาก ดวงอาทิตย์ p²/a³ = k, k เป็นค่าคงตัว

Galileo Galilei

- ๑วงอาทิตย์ศูนย์กลางระบบสุริยะ
- ดาวเคราะห์เคลื่อนที่เป็นวงกลม
- คนแรกที่ใช้กล้องโทรทัศน์
- 🕯 ผิวดวงจันทร์ มีภูเขา หลุม
- 🦥 เห็นทางช้างเผือก
- 🦥 ดาวเสาร์ไกลโลกมากสุด สัญลักษณ์อินพินิตี้
- 🦥 แบบจำลองเอกภพใช้หลักการทางคณิตศาสตร์ เรื่องของจำนวน Sir Isaac Newton 🦥 การโคจรของดาว ผลมาจากแรงโน้มถ่วงตาม กฎความถวงสากล
 - 🤐 ดาวเคราะห์โคจรรอบดวงอาทิตย์เป็นวงรี
 - 🥹 มีดวงอาทิตย์เป็นจุดโฟัส

กำเนิดเอกภพ

เกิดจากทฤษฎีบิกแบง (Big Bang) จุดเริ่มต้นของเอกภพ และเวลา

วิวัฒนาการของเอกภพ

- 1. ระเบิดบิกแบง เอกภพขยายตัวรวดเร็ว
- 2. สสารเกิดในรูปอนุภาคมูลฐาน ได้แก่ quark lepton electron neutrino พร้อมเกิดปฏิอนุภาค ทั้งคู่มีประจุ ไฟฟ้าตรงข้าม ซึ่งอนุภาคมีมากกว่า
- 3. พลังงานไม่เปลี่ยนเป็นสสาร อยู่ในรูป "โฟตอน"
- 4. อนุภาครวมกับปฏิอนุภาค เป็นพลังงานทำลายล้าง เหมือนซุบร้อนๆ
- 5. อนุภาคที่เหลือ ประกอบเป็นสสารในเอกภพ
- 6. หลังระเบิด 10-6 วินาที
 - 🖈 อุณหภูมิเหลือ 10 ล้านล้านเคลวิน
 - 🖈 quaek รวมตัวเป็น proton และ neutron
- 7. หลังระเบิด 3 นาที
 - ★ อุณหภูมิเหลือ 100 ล้านเคลวิน
 - 🖈 proton และ neutron รวมตัวเป็นนิวเคลียสของ He
- 8. หลังระเบิด 300,000 ปี
 - 🖈 อุณหภูมิเหลือ 10,000 เคลวิน
 - 🖈 นิวเคลียสของ H ดึง electron า อนุภาคเป็นอะตอม H
 - ★ นิวเคลียสของ He ดึง electron 2 อนุภาค เป็น อะตอมของ He
 - ★ ไม่มีลักษณะซุป
- หลังระเบิด 1,000 ล้านปี
 - ★ เกิดกาแล็กซี มี H และ He
- ★ สารเริ่มต้นกำเนิดดาวฤกษ์
- 🖈 ธาตุมวลมากกว่า He เป็นดาวฤกษ์ขนาดใหญ่

*quark อนุภาคขนาดเล็กกว่านิวเคลียสอะตอม มี 6 ชนิดคือ up, down, top, bottom, strange, charm มี 3 สีคือ แดง เขียว น้ำเงิน

หลักฐานสนับสนุนทฤษฎีบิกแบง

อการขยายตัวของเอกภพ

★Edwin Powell Hubble นักดาราศาสตร์ ชาวอเมริกันเป็นบุคคลแรก ที่ค้นพบว่า...

🖈 เอกภพไม่ได้มีสภาพหยุดนิ่ง แต่กำลังขยายตัว

★ กาแล็กซีมีการเลื่อนทางแดง (Redshift) Edwin Powell Hubble ของเส้นสเปกตรัม คือวัตถุในอวกาศ กำลังเคลื่อนที่ถอยห่างจาก ผู้สังเกตบนโลก ทำให้ทราบความเร็วในการถอย & ระยะห่าง ของกาแล็กซี่

กฎของฮับเบิล

 $V = H_0 d$

โดยที่ --> V = ความเร็ว

--> d = ระยะทาง

--> H₀ = ค่าคงที่ของฮับเบิล = 75 km/s/Mpc

- การค้นพบคลื่นไมโครเวฟพื้นหลังจากอวกาศ ซึ่งสอดคล้องกับ อุณภูมิเฉลี่ยของอวกาศคือ 2.73 เคลวิน
 - ่★ผู้ค้นพบคือ Arno Penzias & Robert Wilson

การลำดับขนาดภายในอวกาศ

- 1. ระบบที่ใหญ่สุด --> เอกภพ
- 2. ระบบรอง --> กระจุกกาแล็กซี (Cluster of Galaxies)
- 3. กาแล็กซีชนิดต่างๆ Ex. กาแล็กซีทางช้างเผือก

Galaxy หรือดาราจักร

อาณาจักรหรือระบบของดาวฤกษ์ จำนวนนับแสนล้านดวง อยู่รวมกันด้วยแรงโน้มถ่วงระหว่างมวล เกิดขึ้นหลังบิกแบงประมาณ 1,000 ล้านปี

▼องค์ประกอบภายในกาแล็กซี

- 🦥 ดาวฤกษ์จำนวนมหาศาล
- 🥞 ตัวกลางระหว่างดาวฤกษ์

🗓 กาแล็กซีทางช้างเผือก (Milky way Galaxy)

- **★** เห็นเป็นฝ้าขาวจางๆ กว้าง 15 องศา
- ★พาดผ่านเป็นทางยาวรอบท้องฟ้าทิศกลุ่มดาวแมงบ่อง
- ★ดาวฤกษ์จำนวนมากกระจายบนท้องฟ้า บริเวณแขนหรือแกน กลางของกาแล็กซี
- ★โลกห่างจากศูนย์กลางกาแล็กชี 30,000 ปีแสง ด้านกลุ่มดาว นายพราน
- ★เป็นกาแล็กซีแบบกังหันมีคานหรือกันหอยมีคาน
- ★เส้นผ่านศูนย์กลาง 100,000 ปีแสง
- ่★หนา 1,000 ปีแสง
- ★มวล 5.8 แสนล้านเท่าของมวลดวงอาทิตย์
- 🖈 ประกอบด้วยดาวฤกษ์ 1-4 แสนล้านดวง

🔽 กาแล็กซีเพื่อบ้าน

- 🦥 กาแล็กซีแมกเจลแลนใหญ่ (Large Magellanic Cloud : LMC)
- 🦥 กาแล็กซีแมกเจลแลนเล็ก (Small Magellanic Cloud : SMC)
- 🦥 กาแล็กซีแอนโดรเมดา (Andromeda Galaxy)
 - ★เรียกสั้นๆว่า M31 หรืออีกชื่อ NGC224
 - ★ กลุ่มดาวแอนโดรเมดา สังเกตง่ายในฤดูหนาว ระหว่างกลุ่ม ดาวม้า&กลุ่มดาวค้างคาว
 - ★ เป็นกาแล็กซีกังหัน ใหญ่กว่า Mlky way และไม่มีคาน

🧤 กานล็กซีปกติ --> แบ่งตามรูปร่างที่ปรากฏ

🦥 กาแล็กชีไม่มีรูปร่าง --> Ex. LMC

🖫 ฮับเบิลแบ่งกาแล็กซีเป็น 3 ประเภท

- 🦥 กานล็กซีรี (Elliptical Galaxy)
 - 🖈 รูปร่างค่อนข้างราบเรียบ แบนมาก แบนน้อย กลมมาก ค่อนข้างรื
- ★มีการกระจายดาวฤกษ์ของแสงสม่ำเสมอ
- ★ใช้รหัส E ตามด้วยเลข แสดงความแป้นของทรงรีที่ปรากฏ
- 🦥 กาแล็กชีรูปกังหันหรือก้นหอย (Spiral Galaxy)
 - ★ใจกลางสว่างเพราะมีดาวจำนวนมาก
 - ★ แขนหลัก 2 แขน คล้ายใบพัดของกังหัน
- 🖈 ตรงกลางมีดาวฤกษ์หนาแน่น เรียก ใจกลางกาแล็กซี รหัส S
- ★ ตรงกลางมีคาน เรียก กาแล็กซีกังหันแบบมีคาน รหัส SB
- ★ แบ่งได้เป็น 2 ประเภท
- 🥒 กาแล็กซีกังหัน : ความหนาแน่นขดของแกนกังหันชัดเจน
- 🥏 กาแล็กซีกังหันมีคาน : มีแถบสว่างหรือมืดพาดบริเวณใจกลาง
- 🦥 กาแล็กซีลูกสะบ้า or กาแล็กซีเลนส์ (Lenticular Galaxy)
 - \star รูปร่างคล้ายเลนส์อยู่ระหว่างกาแล็กซีรี&กาแล็กซีกังหัน
 - ★ใช้รหัส So
 - ★ใจกวางสว่าง ล้อมด้วยโครงสร้างคล้ายจาน

ดาวฤกษ์

ก้อนแก๊สร้อนขนาดใหญ่
องค์ประกอบส่วนใหญ่ 99% เป็น H
รองลงมาเป็น He รวมอยู่ใน
สภาพสมดุลระหว่างแรงโน้มถ่วง
มีทิศเข้าสู่ศูนย์กลาง

วิวัฒนาการของดาวฤกษ์

- แก๊ดจากการยุบรวมตัวของ เนบิวลา
 ดาวฤกษ์ขนาดใหญ่ มวลมาก ใช้เชื้อเพลิงมาก --> ระเบิด
 มวลสารมากกว่าดวงอาทิตย์มากๆ --> "หลุมดำ"
 มวลสารมากกว่าดวงอาทิตย์มาก --> "ดาวนิวตรอน"
- ๑าวฤกษ์มวลน้อยใช้เชื้อเพลิงน้อยไม่ระเบิด --> "ดาวแคระขาว"

ทำเน็ด&วิวัฒนาการดวงอาทิตย*์*

- จากการยุบรวมตัวของ nebula ด้วยแรงโน้มถ่วงของ nebula เอง
- ความดัน nebula เพิ่มขึ้น อุณหภูมิสูง เป็นแสนเคลวิน
 ความดัน nebula การแป็นความวริตะเอ่างานอิด (Protocup)
- nebula กลายเป็นดวงอาทิตย์ก่อนเกิด (Protosun) แรงโน้มถ่วง > แรงดัน
- Protosun เมื่ออุณหภูมิแก่นกลางถึง 15 ล้านเคลวิน เกิด
 Thermonuclear reaction หลอม nucleus H -> nucleus He
 Sun อยู่ในสภาพสมดุลระหว่างแรงโน้มถ่วง&แรงดัน

$E = mc^2 : c = 300,000 \text{ km/s}$

- ผู้อเพลิงเหลือน้อย แรงดันลด แรงโน้มถ่วงสูงกว่า เกิดยุบตัว
 แกนกลาง sun มี T สูง 100 ล้านเคลวิน
- จนเกิด Thermonuclear reaction หลอม nucleus He เป็น C
- # H รอบนอกแก่น He มี T สูงเกิดปฏิกิริยาหลอม H เป็น He อีกครั้ง
 แกิดพลังงานมหาศาล sun ขยายตัวใหญ่ขึ้น 100 เท่าของปัจจุบัน
- แรงดันเพิ่ม ผิวด้านนอกขยาย T ลด สีเปลี่ยนจากเหลือง -> แดง กลายเป็น "ดาวยักแดง" (Red giant)

ความสองสวาง&โชติมาตรของดาวฤกษ์

- 🕏 ความส่องสว่าง (Brightness) ของดาวฤกษ์
 - พลังงานจากดาวฤกษ์ที่ปลดปล่อยออกมาใน 1 s / หน่วยพื้นที่ หน่วยเป็น วัตต์ต่อตารางเมตร
- 🕫 โชติมาตร หรือ อันดับความสว่าง (Magnitude)
 - การกำหนดค่าการเปรียบเทียบความสว่างของดาวฤกษ์ ไม่มีหน่วย
 - 🖥 ดวงดาวริบหรี่ที่สุด มองด้วยตาเปล่า -> Magnitude 6
 - 흅 ดวงดาวสว่างที่สุด มองด้วยตาเปล่า -> Magnitude 1
 - ดาวที่มี magnitude ต่างกัน 1 จะมีความสวางต่างกัน 2.512 เท่า
 - 🖥 ดาวที่มี magnirude ต่างกัน 5 จะมีความสว่างต่างกัน 2.5125 เท่า
 - § Sun มี magnitude -26.7
 - 🎳 Venus มี magnitude -4.5
 - * ดาวที่มี magnitude น้อยจะมีความส่องสวางมาก

โชติมาตรปรากฏ (Apparent magnitude)

อันดับความสว่างของดาวฤกษ์ที่สังเกตได้จากโลกด้วยตาเปล่า
 แต่ไม่สามารถเปรียบเทียบความสว่างจริงของดาวแต่ละดวงได้
 สามารถคำนวณความแตกต่างระหว่าง magnitude โดยใช้

 $m1 - m2 = 2.5 \log (b1/b2)$

โดยที่ m1, m2 : โชติมาตรของดาวดวงที่ 1 & 2

b1, b2: ความสว่างปรากฏของดาวดวงที่ 1 & 2

โชติมาตรสัมบูรณ์ (Absolute magnitude)

- ความสว่างจริงของดวงดาว บอกอันดับความสว่างที่แพ้จริง
- กำหนดระยะทางเป็น 10 พาร์เซก หรือ 32.62 ปีแสง
- สามารถคำนวณหาโชติมาตรสัมบูรณ์ ได้จาก

 $m - M = 5 \log d - 5$

โดยที่ m : โชติมาตรปรากฏ

M : โชติมาตรสัมบรณ์

d : ระยะห่างระหว่างโลก&ดาว หน่วย พาร์เซก (Parsec)

Much_chphn

้สี&อุณหภูมิผิวของดาวฤกษ์

- แบ่งชนิดของดาวฤกษ์ตามสีและอุณหภูมิผิวของดาวฤกษ์
 ได้ 7 สเปกตรัม แต่ละสเปกตรัมแบ่งย่อยอีก 10 ชนิด
- ใช้ตัวเลขและอักษรตัวใหญ่ในภาษาอังกฤษกำกับ
- สีของดาวฤกษ์สัมพันธ์กับอุณหภูมิ&อายุ
 ดาวฤกษ์อายุน้อย สีน้ำเงิน อุณหภูมิสูง
 ดาวฤกษ์อายุมาก สีแดง อุณหภูมิต่ำ

ชนิด	สีของดาว	อุณหภูมิผิว (เคลวีน)	ด้วอย่างดาวฤกษ์	ชนิดสเปกตรัม
0	น้ำเงิน	สูงกว่า 30,000	ดาวเชตาในกลุ่มดาวนายพราน	09.5
В	น้ำเงินแกมขาว	30,000-10,000	ดาวอะเคอร์นารในกลุ่มดาวแม่น้ำ	Вз
Α	ขาว	10,000-7,500	ดาวหางหงส์ในกลุ่มดาวหงส์	A2
F	ขาวแกมเหลือง	7,500-6,000	ดาวโปรซืออนในกลุ่มดาวสุนัขเล็ก	F5
G	เหลือง	6,000-4,900	ดวงอาทิตย์	G2
K	ล้ม	4,900-3,500	ดาวดวงแก้วในกลุ่มดาวคนเลี้ยงสัตว์	K1.5
M	แดง	3,500-2,000	ดาวปาริชาตในกลุ่มดาวแมงป่อง	M1.5

ระยะหางของดาวฤกษ์

แพรัลแลกซ์ (Parallax) การวัดระยะห่างของดาวฤกษ์ ที่อยู่ใกล้เคียงกับโลก ได้อย่างแม่นยำ

หลักการ

- สังเกตดาวฤกษ์ที่เปลี่ยนตำแหน่งไป เมื่อเทียบกับดาวฤกษ์อ้างอิง
- สังเกตดาวฤกษ์จากโลก 2 ครั้ง ระยะห่างกัน 6 เดือน
- วัดมุมที่เปลี่ยนไประหว่างดาวฤกษ์นั้น กับดาวฤกษ์อ้างอิง
- คำนวณหาระยะห่างระหว่าง sun กับดาวฤกษ์นั้น

$p = \frac{1}{r}$

เมื่อ r = ระยะทางถึงดาว หน่วย พาร์เซก p = มุมแพรัลแลกซ์ หน่วย พิลิปดา

โดยที่ 1 องศา = 60 ลิปดา

า ลิปดา = 60 ฟิลิปดา

าพาร์เซก = 3.262 ปีแสง

ระบบดาวฤกษ์

- ิดาวฤกษ์กลุ่มเล็กๆจำนวนหนึ่ง ที่โคจรรอบกันและกัน โดยมีแรงดึงดูดระหว่างกัน ทำให้จับกลุ่มกัน ลักษณะของกระจุกดาว มี 2 ชนิด
- 🕏 กระจุกดาวเปิด (Open Cluster)
 - กระจุกดาวที่อยู่ห่างกัน อายุน้อย
 - «Ex. กระจุกดาวลูกไก่ กระจุกดาวนายพราน
 - ริกระจุกดาวทรงกลม (Globular Cluster)
 - 🧸 กระจุกดาวอายุมาก ห่างจากโลกมาก
 - Ex. กระจุกดาวHercules

มวลของดาวฤกษ์

 การคำนวณหามวลของระบบดาวคู่ซึ่งโคจรรอบกันและกันโดยอาศัย ความสัมพันธ์ระหว่างคาบวงโคจรและระยะห่างระหว่างดาวทั้งสอง
 ตามกฎของเคปเลอร์-นิวตัน

 $M1 + M2 = \frac{a3}{p2}$

โดยที่ M1, M2 = มวลของดาวทั้งสองในระบบดาวคู่
หน่วยเป็นจำนวนเท่าของ sun
a = ความยาวของเส้นผ่านครึ่งวงโคจรตามแกนยาว
ของดาวดวงใดดวงหนึ่ง หน่วย AU
p = คาบการโคจร หน่วยเป็นปี

้เนบิวลา แหล่งกำเน็ดดาวฤกษ์

- คือ กลุ่มฝุ่น &แก๊สที่กระจายในบริเวณกว้าง มีความสว่างจากดาวฤกษ์
 ภายในมีดาวฤกษ์เกิดใหม่จำนวนมาก ค่อนไปทางสีน้ำเงิน
 แบ่งเป็น 3 ประเภท
 - รูเนบิวลาสว่าง --> กลุ่มเมฆ H ประกอบด้วยดาวฤกษ์ร้อน
 - * เนบิวลาสะท้อนแสง
 - ៓ เนบิวลามืด --> กลุ่มเมฆฝุ่นและแก๊ส ไม่มีดาวฤกษ์ร้อน

ระบบสุริยะ

ระบบสุริยะ (Solar System)
ประกอบด้วยดวงอาทิตย์ ดาวเคราะห์
บริวารของดาวเคราะห์ ดาวหาง
ดาวเคราะห์น้อย อุกกาบาต มวลสาร
และรังสีระหว่างดาวเคราะห์

ดวงอาทิตย์

- เป็นดาวฤกษ์ที่ใกล้โลกมากที่สุด
- ≈เป็นก้อนแก๊สมีความโน้มถ่วงผิวมากกว่าโลก 28 เท่า
- *เส้นผ่านศูนย์กลาง 864,000 ไมล์
- ≈ใหญ่กว่าโลก 1,300,000 เท่า มวลมากกว่าโลก 330,000 เท่า
- ⇒หมุนรอบตัวเองไม่เหมือนวัตถุแข็งทั่วไป
- ⇒พื้นผิวมีอุณหภูมิประมาณ 20,000,000°C
- ≛เป็นแหล่งสร้างพลังงาน ได้จากปฏิกิริยา Nuclear fusion

~โครงสร้างของดวงอาทิตย์

ใจกลางดวงอาทิตย์

- หนาแน่นมากที่สุด แหล่งเกิดพลังงาน ขนาด 10% ของเส้น ผ่านศูนย์กลางดวงอาทิตย์
- ≈โฟโตสเพีย (Photosphere)
 - ครงกลมแสงให้แสงทุกสีเป็นพื้นผิวของดวงอาทิตย์ที่มองเห็น
 - ลลึกลงไปเป็น Convection Zone ตัวพาพลังงานออกมา
- ≈โครโมสเพียร์ (Chromosphere)
 - ทรงกลมสี มีแสงสีแดง เป็นชั้นบรรยากาศ หนาแน่นต่ำ
 - ⇒อุณหภูมิ 15,000 °C มีแก๊สเป็นโครงสร้างรูปร่างต่างๆ
- ≈โคโรนา (Corona)
 - ชั้นสูงสุด ความหนาแน่นต่ำสุด ไม่มีขอบเขตแน่นอน
 - รูปร่างเปลี่ยนแปลงตามค่าสนามแม่เหล็กบนดวงอาทิตย์
 - = อุณหภูมิสูง 2,000,000 °C

🟲 บริวารของดวงอาทิตย์

🗻 แบ่งเป็น 4 ส่วน

≥ดาวเคราะห์ชั้นใน (Inner planets)

- = ได้แก่ ดาวพุธ ดาวศุกร์ โลก ดาวอังคาร
- »พื้นผิวแข็ง แก่นเป็นโลหะ เรียก "ดาวเคราะห์หิน" หรือดาวเคราะห์แบบโลก (Terrestrial planets)
- ุ≱แถบดาวเคราะห์น้อย (Asteroid belt)
 - בระหว่างดาวอังคาร & ดาวพฤหัส
 - Ex. Ceres ดาวเคราะห์แคระ ขนาดใหญ่สุดในแถบดาวนี้ Pallas ใหญ่เป็นอันดับสองของแถบดาวเคราะห์น้อย Gaspra

ุ ≥ดาวเคราะห์ชั้นนอก (Outer planets)

- 🗈 ถัดจากดาวเคราะห์น้อยออกไป
- ะได้แก่ ดาวพฤหัส ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน
- =องค์ประกอบหลักเป็น H , He เรียก "ดาวเคราะห์แก๊ส"
- ≥ดงดาวหางของออร์ต (Oort's comet cloud)
 - 🌦 ที่อยู่ของดาวหาง วัตถุบนฟ้าที่ไม่มีแสงสว่างในตัวเอง
 - 🛎 ประกอบด้วย ฝุ่นผง เศษหิน ก้อนน้ำแข็ง แก๊ส
 - โคจรรอบดวงอาทิตย์เป็นวงรี
 - ไกลจากดวงอาทิตย์ ไม่มีหางและแสงสว่าง
- = ใกล้ดวงอาทิตย์ จะมีแก๊สพุ่งออกมาเป็นหาง และสว่างขึ้น

์ดาวเคราะห์ในระบบสุริยะ

นิยามของดาวเคราะห์

- 🗻 ไม่ใช่ดาวฤกษ์
- ไม่ใช่จันทร์บริวาร
- 🗻 มีแรงดึงดูดมากพอที่จะทำให้โครงสร้างของดาวเป็นทรงกลม
- โคจรรอบดาวฤกษ์ --> ดวงอาทิตย์
- ⇒เส้นผ่านศูนย์กลางอย่างน้อย 500 ไมล์ (804.63 km.)

รายชื่อดาวเคราะหในระบบสุริยะ

≈ดาวพุธ (Mercury)

- เส้นผ่านศูนย์กลาง 1.3 เท่าของดวงจันทร์
- 🗻 ผิวมีหลุมบ่อ หุบเขา เทือกเขา รอยแตก ที่ราบ
- บรรยากาศน้อย
- 🗻 เปรียบเสมือน "เตาไฟแช่แข็ง"

ั≈ดาวศุกร์ (Venus)

- ดาวเคราะห์ที่สว่างที่สุด
- = ถ้าเห็นตอนเช้า เรียก "ดาวรุ่ง , ดาวประกายพรีก"
- = ถ้าเห็นตอนเย็นเรียก "ดาวประจำเมือง"
- = ขนาดเกือบเท่าโลก เรียก ฝาแฝดของโลก (Earth's twin)
- หมุนรอบตัวเองตามเข็มนาพิกา
- ะ เมฆหนาปกคลุมจนมองไม่เห็นพื้นผิวดาวศุกร์

≈โลก (Earth)

- ฉายา "ดาวเคราะห์สีน้ำเงิน"
- พื้นส่วนใหญ่ปกคลุมด้วยน้ำถึง 3/4 ส่วน ได้ชื่อว่า ดาวเคราะห์แห่งน้ำ

a ดาวอังคาร (Mars)

- เส้นผ่านศูนย์กลางครึ่งหนึ่งของโลก
- บรรยากาศกลางวันและกลางคืนต่างกันมาก
- บรรยากาศเบาบาง ฤดูกาลคล้ายโลก
- มองผ่านกล้องโทรทรรศ์เห็นเป็นสีแดง เนื่องจากการ
 Oxidation ของ Fe บนพื้นผิว

a ดาวพฤหัส (Jupiter)

- 🛎 เส้นผ่านศูนย์กลาง 11.2 เท่าของโลก มีขนาดใหญ่มากที่สุด
- เป็นดาวเคราะห์แก๊ส
- หมุนรอบตัวเองเร็วที่สุด

a ดาวเสาร์ (Saturn)

- ≛ เส้นผ่านศูนย์กลาง ฯ.4 เท่าของโลก
- 🗻 เป็นดาวเคราะห์ที่สวยงาม มีวงแหวนล้อมรอบ
- 🗻 ลอยน้ำได้
- 🇻 มีดวงจันทร์เป็นบริวารที่มีขนาดใหญ่ที่สุดชื่อ Titan

a ดาวยุเรนัส (Uranus)

- = เรียกอีกชื่อว่า "ดาวมฤตยู"
- = เส้นผ่านศูนย์กลาง 4 เท่าของโลก
- ะ เป็นดาวเคราะห์แก๊ส สีฟ้าน้ำเงิน
- = แกนกลางเป็นหินแข็ง
- = มีวงแหวนจางมาก บรรยากาศคล้ายดาวเสาร์ดาวพฤหัส

🗻 ดาวเนปจูน (Neptune)

- 🗻 เรียกอีกชื่อว่าดาวเกตุ
- ส้นผ่านศูนย์กลางเกือบเท่าดาวยูเรนัส
- 🗻 อยู่ห่างไกลดวงอาทิตย์มากที่สุด ได้รับแสงน้อย
- ⇒มีสีเขียวปนน้ำเงิน ส่วนประกอบคล้ายดาวยูเรนัส แต่สภาพเป็นน้ำแข็งมากกว่า มีวงแหวนจาง

ดาวเคราะหน่อย Asteroid

- ระหว่างดาวอังคารกับดาวพฤหัส
- วัตถุที่โคจรรอบดวงอาทิตย์ลักษณะคล้ายก้อนหิน เรียกว่า "ดาวเคราะห์น้อยหรือ Asteroid"
- 🌫 ส่วนใหญ่มีขนาด 1-10 km. ใหญ่สุด 1,000 km. ชื่อ Ceres

สะเก็ดดาว

ดาวเคราะห์น้อยที่มีขนาดเท่าก้อนหินขนาดใหญ่ลงไปถึงผงฝุ่น

ดาวหาง Comet

- ก้อนแก๊สแข็งที่มีอนุภาคของแข็งปนอยู่
- โคจรรอบดวงอาทิตย์เป็นวงรี หรือพาราโบลา
- 🛎 แบ่งเป็น 3 ส่วน

Nucleus เล็กสุดแต่มวลมากสุด

Come ส่วนที่ล้อมรอบ nucleus ขนาดใหญ่ขึ้นเมื่อเข้า Sun Tail เป็นฝุ่น ขนาดใหญ่ขึ้นเมื่อเข้าใกล้ดวงอาทิตย์

เทคโนโลยีอวกาศ

กล้องโทรทรรศน์ 🕽

- 🎍 กล้องโทรทรรศน์แบบหักเหแสง (Refractor)
 - 🔊ใช้เลนส์รวมแสง ขนาดเล็กแต่ยาว
 - 🔊ใช้สังเกตพื้นผิวดวงจันทร์ & ดาวเคราะห์
 - 🛎 ภาพคมชัด แต่ถ้าส่องดาวที่สว่างมาก สีอาจคลาดเคลื่อน
 - รคิดคันโดย Galileo
- 🏖 กล้องโทรทรรศน์แบบสะท้อนแสง (Reflector)
 - 🅦 คิดคุนโดย Isaac Newton
 - ๑อีกชื่อว่า Newtonian telescope
 - 🔊ใช้กระจกเว้าสะท้อนแสง ขนาดใหญ่และสั้น
 - 🛎ใช้สังเกตวัตถุที่อยู่ไกล ไม่สว่าง

Ex. Nebula, Galaxy

距 ดาวเทียมสำรวจทรัพยากร

- 🏂 บันทึกข้อมูลผิวโลก พื้นที่ป่าไม้
- Ex. THEOS : ดวงแรกของไทย

LANDSAT : USA ดวงแรกของโลก

SPOT-4: France

ERS: EU

RADARSAT: Canada

🌽 ดาวเทียมสื่อสาร

- 🛎 เพื่อการติดต่อสื่อสาร โทรคมนาคม
- ▶Ex. THAICOM 1-5: Thailand

SAKURA: Japan COMSTAR: USA

🍑 ดาวเทียมอุตุนิยมวิทยา

ดาวเทียม

- 🔊 บันทึกข้อมูลด้านอุตุนิยมวิทยา เพื่อพยากรอากาศและเตือนภัย
- Ex. GMS-5, GOES-10: Japan

NOAA: USA

FY-2: China

🍑 ดาวเทียมบอกตำแหน่ง : GPS

- บอกตำแหน่งวัตถุต่างๆบนผิวโลก
- Ex. Navstar

🍑 ดาวเทียมสมุทรศาสตร์

- บันทึกข้อมูลด้านสมุทรศาสตร์
- Ex. Seasat ดวงแรกของโลก

MOS 1 (Marine Observation Satellite)

Robinson 34

กระสวยอวกาศ

- ประกอบด้วย
 - จรวดเชื้อเพลิงแข็ง
 - 🛎 ถังเชื้อเพลิงภายนอก
 - 🐞 ยานขนส่งอวกาศ

