St. Scholastica's College

MATHEMATICS EXTENSION 2 April 2003

Time allowed: 3 hours plus 5 minutes reading time

Directions to candidates:

Attempt all questions
Begin all questions on a new page
Show all necessary working
Marks may not be awarded for careless or badly arranged work

NAME:

Topics	Question	Descriptors: O - Outstanding C - Competent D - Developing L - Limited
Integrals (3U) work	1	
Complex Numbers	2	
Graphing Techniques	3	
Conics	4	
Induction, Trig Equation,	5	
Calculus (3U)		
Conic, Polynomials	6	
Permutations, Combinations	7	
Binomial Th'm, Inequality (3U)		
Inequalities, Circles, Calculus (3U)	8	

Question 1 (15 marks)

- (a) Find $\int_{0}^{2} \sqrt{4-x^2} dx$ either from a geometrical diagram or making the substitution $x = 2 \sin \theta$
- (b) Find $\int \frac{\cos^3 x}{\sin^2 x} dx$ making the substitution $u = \sin x$
- (c) Find $\int \frac{dx}{x(\ln x)^6}$ making a suitable substitution 2
- (d) (i) Show that $\frac{3}{t+2} + \frac{2}{t-3} = \frac{5t-5}{(t+2)(t-3)}$
 - (ii) Hence find $\int_{4}^{5} \frac{(t-1)}{(t+2)(t-3)} dt$ correct to 2 decimal places
- (e) Find the equations of one tangent to the curve $x^2 + xy + y^2 = 7$ at the point on the curve where the gradient is $-\frac{4}{5}$

Question 2 (15 marks)

- (a) Given the complex number $\omega = \frac{5+3i}{2-i}$, find
 - i) $\overline{\omega}$
 - ii) $\omega \overline{\omega}$
 - iii) $|\omega|$
- (b) Express $z = \frac{\sqrt{2}}{1-i}$ in modulus-argument form and hence find z^5 in the form x+iy
- (c) i) Find the five fifth roots of $\sqrt{3} + i$.
 - ii) Show the five roots of $\sqrt{3} + i$ on an Argand diagram.
- (d) Sketch the region in the Argand Plane consisting of those points z for which $\left|\arg z\right| \geq \frac{\pi}{3}$ intersecting with $|z| \leq 3$
- (e) Find the zeros of $P(x) = x^4 5x^3 + 7x^2 + 3x 10$ over the set of complex numbers if 2-i is a zero.
 - Hence factorise P(x) completely over the complex set of numbers

Question 3 (15 marks)

Sketch the following curves on separate axes, showing all intercepts and turning points.

(a)
$$y = x^3 - 4x$$
 and hence $y = |x^3 - 4x|$

(in the domain: $-3 \le x \le 3$)

4

(b) i)
$$y = 1 - 2\sin x$$

(in the domain: $0 \le x \le 2\pi$)

2

ii) hence
$$y = |1 - 2\sin x|$$

(in the domain: $0 \le x \le 2\pi$)

2

iii) hence
$$y = \ln |1 - 2\sin x|$$

(in the domain: $0 \le x \le 2\pi$)

2

(c)
$$y = \sqrt{4-x^2} + 2^x$$

(in the domain: $-2 \le x \le 2$)

3

(d)
$$|y| = 1 - \frac{1}{x}$$

(in the domain: $-3 \le x \le 3$)

Question 4 (15 marks)

- (a) i) For the ellipse $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$, derive the equation of the tangents at $P(a\cos\theta, b\sin\theta)$.

 and at the ends of the major axes.
 - ii) Find the coordinates of the points Q and R where the tangent at P meets the two tangents at the extremities of the major axis
 - iii) Hence prove that the interval QR subtends a right angle at either focus
- (b) $P\left(4p, \frac{4}{p}\right)$ and $Q\left(4q, \frac{4}{q}\right)$ are points on the rectangular hyperbola xy = 16.
 - i) Derive the equations of the tangents at P and Q.

ii) The tangents at P and Q intersect at the point R.

- Derive the coordinates of the point R
- iii) If the chord PQ passes through the point (4,0), derive the locus of R.

1

Question 5 (15 marks)

- (a) Prove by mathematical induction that $\sin(x + n\pi) = (-1)^n \sin x$ where n is a positive integer.
- (b) Find the general solution to $\sin 4x + \sin 6x = \sin 10x$

Hint:
$$\sin X + \sin Y = 2\sin \frac{X+Y}{2}\cos \frac{X-Y}{2}$$

- (c) (i) Differentiate $y = \ln(1+x)$, and hence draw y = x and $y = \ln(1+x)$ on one graph. 2
 - (ii) Using this graph explain why

$$ln(1+x) < x$$
, for all $x > 0$

- (d) (i) Differentiate $\frac{x}{1+x}$, and hence draw $y = \frac{x}{1+x}$ and $y = \ln x$ on one graph.
 - (ii) Using this graph explain why

$$\frac{x}{1+x} < \ln(1+x) \text{ for all } x > 0$$

Question 6 (15 marks)

(a) The hyperbola H has equation $16x^2 - 9y^2 = 144$

(ii)

- (i) Find the foci points and the equations of the directrices and asymptotes.
 - Sketch *H*: $16x^2 9y^2 = 144$
- (iii) Hence or otherwise find the gradient at the point $(3 \sec \vartheta, 4 \tan \vartheta)$
- (iv) Find the equation of the tangent at $(3 \sec \vartheta, 4 \tan \vartheta)$
- (b) Factorise P(x) over C (the set of complex numbers) if it has a root of multiplicity 3.

$$P(x) = 3x^4 + 8x^3 + 6x^2 - 1$$

- (c) i) Derive the five roots of the equation $z^5 1 = 0$
 - ii) Hence find the exact value of $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}$

Six letters are chosen from the letters of the word PYTHAGORAS. These six letters are then placed alongside each other to form a six-letter arrangement. Find the number of distinct six-letter arrangements which are possible, considering

3

- A box contains 6 cards, two of which are identical. From this box 3 cards are drawn without replacement.

How many different selections could be made? (i)

2

What is the probability that a selection will include the two identical cards (ii)

1

(iii) If this process of selecting three cards was repeated, with all cards being replaced after each selection, how many repetitions would be necessary to make the probability of drawing a combination containing the two identical cards at least once, Hint: Solve for n

3

(c) Give the expansion for $x^3(1+x)^n$ (i)

1

By differentiating both sides of this binomial expansion, and making a suitable substitution show that

 $2^{n-1}(6+n) = \sum_{r=0}^{n} (r+3).^{n}C_{r}$ 3

(d) Solve $3x^2 - 2x - 2 \le |3x|$

Question 8 (15 marks)

- (a) Given that p > 0, q > 0, r > 0, prove that (p+2q)(2q+3r)(3r+p) > 48pqr 3
- (b) In the figure AB and CD are two chords of the circle. AB and CD intersect at E. F is a point such that $\angle ABF$ and $\angle DCF$ are right angles.

Prove that FE produced is perpendicular to AD.

5

(c) Let
$$f(x) = 3x^5 - 10x^3 + 16x$$

(i) Show that $f'(x) \ge 1$ for all x

2

(ii) For what values if x is f''(x) positive?

2

3

(iii) Sketch the graph of y = f(x) indicating any turning points and points of inflection.