$$\frac{100}{100} = \frac{100}{100} =$$

LAB REPORT (Weight: 50%)

<u>PART (A)</u>: <u>ERROR ANALYSIS</u>: Calculate the error observed in the experimentally determined $R_{in}(Expt)$ and in the ohmmeter-measured value $R_{in}(OM)$ with respect to the theoretical value $R_{in}(calc)$. Comment on the results.

") Error in
$$R_{in}(expt) = 100 [R_{in}(expt) - R_{in}(calc)] / R_{in}(calc) = ... \bigcirc .48.5.$$

9 Error in
$$R_{in}(OM) = 100 [R_{in}(OM) - R_{in}(calc)] / R_{in}(calc) = ... \odot \cdot 0.545...$$
%

PART (B) :TEC & MPT:

(a) Calculate the value of V_T and R_T from the data of Steps 7 & 8 Draw the TEC in the space provided below.

(c) Plot P_L against the five selected values of R_L in the co-ordinate space provided below:

MARIO Elshaer Guziory

(LAB RECORD Continued)

Maximum Power Transfer Theorem Verification: [Step 9]

Nominal Load Resistor (R_L) Values used: [Note: $R_a < R_b < R_T$ and $R_d > R_c > R_T$]

[
$$R_L = R_T$$
 when $V_L = V_T/2$]

$$R_a = \dots \cancel{400} \dots \qquad \Omega \; , \quad R_b = \dots \cancel{600} \dots \qquad \Omega \; ,$$

$$R_c = ... 1600$$
 Ω , $R_d = ... 2400$ Ω ,

Load Resistance $R_L \Omega$	Load Voltage V _L volts	$P_{L} = (V_{L})^{2}/R_{L}$ Wor mW	
$R_a = 400$	2-9408	0.02162	
$R_b = .600$	3.9099	0-025470	
R _L (for V _T /2)	5.4843	0.028354	
$R_c = 1600$	6-6563	0-027691	
R _d = 2400	7.7519	0-052038	

	MP	
TA signature:	1	