Introduction to Discrete Math

Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking –Find Example

HOW TO FIND AN EXAMPLE

- Magic Square
- Narrow Search
- Multiplicative Magic Squares
- Additional Puzzles
- Integer Linear Combinations
- Paths in a Graphs

Find ways!

Melancholia (1514) An engraving by Albrecht Durer

magic square!

^{*} melancholia – very deep sadness, depression, withdrawal , apathy

^{*} apathy – lack of interest, concern or enthusiasm

Magic Square

definition:

- a table with unique numbers whose sum for all 4 rows, 4 columns, and 2 diagonals (for a 4x4) are the same
- For a *n* x *n* square
 - 1, 2, 3, ..., 15, 16
 - 1, 2, 3, ..., n^2

Magic Square

Taking a good look

- You can see some numbers are not clear, can you identify the numbers?
 - 2nd row, 1st col
 - It is 5
 - 3rd row, 1st col
 - It is 9

Find Magic Squares

- Durer: gave proof that magic square of size 4 (composed of 1,2,...,16) exists
- but! a magic square of size 2 (composed of 1,2,3,4) does not exist
 - why?

$$a+b=a+c \Rightarrow b=c$$

- which violates uniqueness of items

What about size 3?

Can we make a magic square with items 1,2,...,9?

- a magic square exists if n > 2
- brute force for 3 x 3 feasible?
- * brute force use all combinations possible by trial & error
- all permutations (possible mix) for 9 digits
 - $9 \times 8 \times 7 \times ... \times 1 = 362880$
 - no problem for computers, but challenging for most humans
- what is row/column/diagonal sum s?
 - $ts \Rightarrow 1 + 2 + 3 + ... + 9 = 45$; ts = total sum

- ts = 3s
- $s \Rightarrow 45 / 3 = 15$ per row/col, since there are 3 rows & 3 cols

- hint: focus on the center
 - summing up 4 lines passing through the center

- let **4s** represent the total sum for 4 lines
- note that we used all the numbers once to get 4s except the center one which was used 4 times
 - ts (sum up all numbers) + $3 \times C$ (center number, only 3 times since used once already in ts), therefore
- 4s = ts + 3C, recall ts = 3s
- $4s 3s = 3C \Rightarrow s = 3C$
- C = s/3, recall s = 15, hence $\Rightarrow C = 5$

Now let us analyze where we can put "1", how about corner?

- recall s = 15, therefore we need 14
- 14 = 5 + 9, 6 + 8; only possible combinations
- Let's try 6 + 8
- Hence, "1" cannot be in the corner

15

Let us put "1" in the middle?

$$4 + 9 + 2 =$$
 $4 + 5 + 6 =$
 15

$$4+3+8=3+5+7=7$$
 4 5 4 5

↓ 12 **②**

Hence, we proved the existential statement: "A magic square of 3x3 exists."

Magic Square, Product not Sum

- magic square: sums for rows, cols, diagonals are same
- how about the product?
 - cannot use sequential numbers, ex: 1, 2, 3, 4, 5, 6, 7, 8, 9
 - why? take for example "7" in a 3x3 square
 - we put "7" anywhere
 - 7 is part of product with dash lines
 - all the others do not have 7
 - No other number can give 7 in combination

• is it possible though?

 $\frac{7(x)}{(x)}$!(x) !(x)

Magic Square, Product not Sum

•
$$2^{x+y} = 2^x * 2^y$$

exponentiation: addition → multiplication

 $2^{15} = 2^4 \times 2^9 \times 2^2$

 $2^{1/4} = 2^3 \times 2^8 \times 2^1$

(4,096)

sum:	15	—	4	9	2	_	24	2
			3	5	7	\rightarrow	2 ³	2
		_	8	1	6		28	2
T		1 .		_		- 4 0	27	6

(32,768) product:

⇒ product:

- numbers are big, $2^9 = 512$
- how about get numbers less than 300?
 - divide numbers by 2, hence largest would be $2^9 / 2 = 256 (2^8)$
- how about less than 40?

How To Find Example – Multiplicative Magic Square

Magic Square, Product not Sum

numbers less than 40

18

12

100??? Divisible by 9127

- a 6-digit number starting with "100" & divisible by 9127?
 - not that many candidates
- lazy(?) programmers way, (brute force version)

```
for i = 1000000 to 100999
   if i is multiple of 9127
        print (i)
```

- mathematical way, paper & pencil (aka hard way :D)
 - $100,000/9127 = 10.956503 \approx 11 \text{ (round to } 11 \text{)}$
 - why not 10? Checking, $10 \times 9,127 = 91,270$ (incorrect)
 - $11 \times 9,127 = 100,397$ (candidate solution).
 - try 12×9 , 127 = 109,524 (above limit)
 - therefore 11 is the correct answer

3-digit number N, Remainder One

- a 3-digit number N that gives a remainder of 1 when divided by 2, 3, 4, 5, 6, & 7?
 - we set 3-digits since if not, we can say answer is "1"
 - recall, 1 divided by any number from 2 will give a remainder of 1 (1/N = X rem 1)
 - take note that $N/\{2,3,4,5,6,7\}$ will give remainder 1
 - hence, (N-1)/{2,3,4,5,6,7} will give us remainder "0"
 - so taking the multiple of 2,3,4,5,6,7
 - $2 \times 2 \times 3 \times 5 \times 7 = 420$, ; why 4 & 6 are not used?
 - 4 has factors (1, 2 & 4), 6 has (1,2,3 & 6)
 - N 1 = 420; $N = 421_{\checkmark}$
 - Try other candidates:
 - $420 \times 2 + 1 = 841$
 - $420 \times 3 + 1 = 1261$, not three digits any more; $N = \{421, 841\}$

Perfect Square That Starts With 31415

• an integer *n* such that $n^2 = 31415...$?

- 10 7
- note: finite decimal fraction is good enough, $(10x)^2 = 100x^2$
 - YYY.YYY x $10 \Rightarrow$ YYYY.YY, move decimal pt one place to the right
 - $(YYY.YYY)^2 \Rightarrow YYYYY.Y$, move decimal pt two places to the right
- Just take for now $\sqrt{(31415)} = 177.242771$ (calculator)
 - $177.242771^2 = 31414.999872...$ (calculator)
 - $177.243^2 = 31415.081049$, round off 3 decimal pts left hand side
 - for left hand side of eqn: move dec pt 3 places to right then square
 - $177.243 \rightarrow 177 243.00^2$
 - then for right hand side: move dec pt double (3x2=6) places to right
 - $31415.081049 \rightarrow 31415081049.00$
 - Hence, $177243^2 = 31415081049$

Two Perfect Squares That Starts With 31415

- another integer *n* with different first digit such that $n^2 = 31415...$?
- can we use same method?
- let's try with 3141.5
 - $\sqrt{(3141.5)} = 56.0490856...$ (calculator)
 - $5605^2 = 31416025$; too big (calculator)
 - $560 491^2 = 314 150 161 081$; Ok
- hence the two perfect squares starting with 31415 are:
 - 177 243 & 560 491

How To Find Example – Integer Linear Combinations

Just 7 & 13

Imagine a country with currency of only 7 & 13 ewan coins Two person with same amount of coins for each type

- possible for one person to pay 6 ewans to the other?
 - Yes: $6 = 1 \times 13$ ewans 1×7 ewans; easy ___
- how about paying 1 ewan?
 - Yes: 2×7 ewans 1×13 ewans = 1 ewan; or 7 6 = 1 (using prev knowledge above)
- 2 ewans?
 - Yes: 4×7 ewans -2×13 ewans = 2 ewans; or $2 \times 1 = 2$ (use prev knowledge again)
- mathematically speaking, for any integer amount (for any integer c)
 - 7x + 13y = c

Now just 15 & 21

What if coins were changed to 15 & 21 only

- Possible to pay 6 ewans?
 - $6 = 1 \times 21$ ewans -1×15 ewans 2
- how about paying 8 ewans? L L
 - No: obstacle, coins are multiples of 3, cannot get 8 or 1 —
- 3 ewans?
 - Yes: $6 = 1 \times 21 1 \times 15 \rightarrow 9 = 1 \times 15 6 \rightarrow 3 = 9 6$; or
- Unfolding to find out how we paid for 3 ewans:
 - $9 = 2 \times 15$ ewans 1×21 ewans, $3 = 3 \times 15$ ewans 2×21 ewans
- Hence, any multiple of 3 can be paid 3777 4 64963
- mathematically speaking
 - $15x + 21y = c \Leftrightarrow$ multiple of 3 (has integer solutions iff *c* multiple of 3)

How To Find Example – Integer Linear Combinations

Ewan challenge (Assignment)

- With 7 & 13 ewan coins, is it possible to pay 5 ewans?
- How about with 15 & 21 ewan coins?

How To Find Example – Paths In A Graph

Lotsa Hotel

- One night stay vouchers for 3 hotels
 - one voucher for one night

- cannot use/stay two consecutive/successive nights in one hotel
- Hotel A (10 vouchers)
- Hotel B (15 vouchers)
- Hotel C (20 vouchers)
- Can you use all 45 vouchers (10+15+20)
 - for 45 consecutive nights changing hotels each night?

Hotels & Paths

Let us now shift from Number Theory to Graph Theory:D

- Hotels A(10), B(15), & C (25)
 - change hotel every night for 45 (10 + 15 + 20) nights

- 10, 15 & 20 multiples of 5; we can simplify them into 2, 3 & 4 \cdot \mathbf{C}_{\rightarrow}
 - hence, total path should be: length of 9 repeated 5 times
- must be different end points: ex: A→B, B→C; not A→B, B→A
- since 4 C's, let us set C as every second point

How To Find Example – Paths In A Graph

A Path Does Not Always Exist

Hotels A(10), B(15), & C (30)

- 29
- change hotel every night for 55 (10 + 15 + 30) nights
- Is it possible?
- Obstacle: too many vouchers for C
- How to prove?

- $\bullet \quad \mathsf{C} \to \mathsf{A} \to \mathsf{C} \to \mathsf{A$

Thank you.