

INTRODUÇÃO

Qual combinação de pratos maximiza o lucro?

- Custo e lucro dos pratos conhecidos.
- Lucro de um prato reduzido pela metade caso esteja sendo cozinhado pela segunda vez seguida.
- Lucro de um prato zerado caso esteja sendo cozinhado pela terceira vez seguida em diante.

METODOLOGIA: PARADIGMA GULOSO

- Otimização local por meio da relação lucro/custo.
- A cada dia, procura-se o prato que oferece a melhor relação lucro/custo, considerando os pratos dos dois últimos dias para reajustar o lucro.
- Não garante solução ótima:
 - Uma decisão localmente ótima pode resultar em uma redução dos lucros dos dias seguintes.
 - Orçamento pode não ser eficientemente aproveitado devido ao limite de dias.

METODOLOGIA: PROGRAMAÇÃO DINÂMICA

- Tabela multidimesional: table[day][lastDish][count][budget]
- Cada estado da tabela representa uma combinação possível de dias, pratos, contagem consecutiva e orçamento.
- Para cada dia, decide-se qual prato cozinhar, levando em consideração o custo, o lucro e a penalidade por cozinhar o mesmo prato consecutivamente.
- Preenche-se a tabela para todos os dias e, no último dia, busca-se o estado que proporciona o maior lucro.

SOLUÇÃO

- Linguagem utilizada: JavaScript.
- Interface web feita com Svelte.

Algoritmo guloso	Programação dinâmica
Número de dias:	Orçamento:
3	20
Pratos:	
Nome	Valor
Prato 1	2
Prato 2	18
Prato 3	1
Prato 4	3
Prato 5	2

CONCLUSÃO

O algoritmo com programação dinâmica, apesar de possuir uma pior ordem de complexidade ($O\left(n^4\right)$), com relação ao guloso ($O\left(n^2\right)$), considerando os limites da entrada de dados, é mais adequado para o problema por garantir a solução ótima global.

REFERÊNCIAS

ROCHA, Anderson; DORINI, Leyza Baldo. Algoritmos gulosos: definições e aplicações. Campinas, SP, v. 53, 2004.

VASCONCELOS, Amália Soares Vieira. Programação Dinâmica. 2024. Betim. Notas de aula.

OBRIGADO!

