Le Modèle de Black-Scholes

Master IDESSE 2e année

Université de Savoie

Philippe Briand

philippe.briand@univ-savoie.fr

Cours des 3 et 4 novembre 2009

Plan du cours

■ Introduction : de Cox-Ross-Rubinstein à Black-Scholes

- 2 Le mouvement brownien
 - Généralités
 - Intégrale stochastique

Plan du cours

Introduction : de Cox-Ross-Rubinstein à Black-Scholes

- 2 Le mouvement brownien
 - Généralités
 - Intégrale stochastique

- On observe une action S_t sur l'intervalle [0,T] à des instants réguliers $k\delta t = kT/N$
- ullet On observe donc la suite $\left(S_k^{(N)} = S_{k\delta t}
 ight)_{k=0,\ldots,N}$
- On suppose que la suite $\left(S_k^{(N)}=S_{k\delta t}\right)_{k=0,\dots,N}$ suit le modèle de Cox–Ross–Rubinstein le plus simple :

$$S_{k+1}^{(N)}=S_k^{(N)}u_N$$
 avec proba $1/2,\quad S_{k+1}^{(N)}=S_k^{(N)}d_N$ avec proba $1/2$

- On écrit $u_N = 1 + h_N$, $d_N = 1 + b_N$
- L'espérance et la variance de $ln(S_T/S_0)$ sont proportionnels à T:

$$\mathbb{E}\left[\ln(S_T/S_0)\right] = mT, \qquad \mathbb{V}\left[\ln(S_T/S_0)\right] = \sigma^2 T$$

On obtient :

$$\mathbb{E}\left[\ln\left(S_{N\delta t}^{(N)}/S_0\right)\right] = \frac{N}{2}\left(\ln(1+h_N) + \ln(1+b_N)\right) = mT,$$

$$\mathbb{V}\left[\ln\left(S_{N\delta t}^{(N)}/S_0\right)\right] = \frac{N}{4}\left(\ln(1+h_N) - \ln(1+b_N)\right)^2 = \sigma^2T$$

• Par suite, $\delta t = T/N$,

$$1 + h_N = e^{m\delta t + \sigma\sqrt{\delta t}}, \qquad 1 + b_N = e^{m\delta t - \sigma\sqrt{\delta t}}$$

• Ce qui au premier ordre donne :

$$h_N = (m + \sigma^2/2) \delta t + \sigma \sqrt{\delta t}, \qquad b_N = (m + \sigma^2/2) \delta t - \sigma \sqrt{\delta t}.$$

Notant $\mu = m + \sigma^2/2$

$$S_{(k+1)\delta t} = S_{k+1}^{(N)} = S_k^{(N)} \left(1 + \mu \, \delta t + \sigma \, \sqrt{\delta t} \, \xi_{k+1} \right) = S_{k\delta t} \left(1 + \mu \, \delta t + \sigma \, \sqrt{\delta t} \, \xi_{k+1} \right)$$

$$\text{avec } \mathbb{P}(\xi_{k+1} = \pm 1) = 1/2.$$

Soit encore

$$S_{(k+1)\delta t} - S_{k\delta t} = S_{k\delta t} \left(\mu \, \delta t + \sigma \, \sqrt{\delta t} \, \xi_{k+1} \right)$$

À la limite lorsque $\delta t ightarrow 0$

$$dS_t = S_t (\mu dt + \sigma d??)$$

FIGURE: T = 10, $\delta t = 1/10$

Figure: T = 100, $\delta t = 1/100$

Plan du cours

Introduction : de Cox-Ross-Rubinstein à Black-Scholes

- 2 Le mouvement brownien
 - Généralités
 - Intégrale stochastique

Un peu d'histoire

- Tout commence en 1827 avec le botaniste Robert Brown
- Il observe des particules de pollen dans l'eau et il voit

FIGURE: Une particule

FIGURE: Une deuxième particule

Mouvement brownien

- Il pense que les particules de pollen sont vivantes
- Il observe que le déplacement de la particule est proportionnel à \sqrt{t}
- Louis Bachelier (1900), Albert Einstein (1905), Norbert Wiener (1920), ...

Définition

Le mouvement brownien est un processus stochastique $(B_t)_{t>0}$ c'est à dire une application $B: \Omega \times \mathbf{R}_+ \longrightarrow \mathbf{R}$ telle que

- $B_0(\omega) = 0$ pour tout ω ;
- à trajectoires continues : pour tout ω , $t \mapsto B_t(\omega)$ est continue ;
- à accroissements indépendants : B_{t_1} , $B_{t_2} B_{t_1}$, ..., $B_{t_n} B_{t_{n-1}}$ sont des variables aléatoires indépendantes;
- pour tous 0 < s < t, $B_t B_s$ suit la loi normale centrée de variance t s.

Trajectoires browniennes

• Elles sont très irrégulières : nulle part dérivables

FIGURE: Une trajectoire brownienne

FIGURE: Une deuxième

• Calcul intégral et différentiel par rapport à B??

Processus à temps continu

- $\mathcal{F}_t = \sigma(\mathcal{B}_s: s \leq t)$ information du mouvement brownien à l'instant t
 - \star X est \mathcal{F}_t -mesurable si X dépend de la trajectoire de B jusqu'à t
 - * $X = \sin(B_t)$, $X = \sin(B_{t/2})$, $X = \sup_{s \le t} B_s$ sont \mathcal{F}_t -mesurable
 - \star B_{t+1} n'est pas \mathcal{F}_t -mesurable

Définition

Un processus stochastique est une famille $\{X_t\}_{t\geq 0}$ de variables aléatoires : pour tout t, X_t est une variable aléatoire.

- \star Un processus X est une application de $\Omega \times \mathbf{R}_+$ à valeurs dans \mathbf{R}
- \star À ω fixé, l'application $t \longmapsto X_t(\omega)$ s'appelle une trajectoire de X
- \star Un processus X est adapté si, pour tout t, X_t est \mathcal{F}_t -mesurable

Martingales à temps continu

Définition

Un processus stochastique X est une martingale si :

- pour tout t, $\mathbb{E}[|X_t|] < +\infty$;
- pour tout t, X_t est \mathcal{F}_t -mesurable;
- pour tout $0 \le s \le t$,

$$\mathbb{E}\left(X_{t}\mid\mathcal{F}_{s}\right)=X_{s}$$

Exemples

 B_t est une martingale

 $X_t = B_t^2 - t$ est aussi une martingale