CHAPTER 8. SEQUENCES & SERIES Section 8.1. Sequences.(Part II)

- Convergence (divergence) of a sequence $\{a_n\}$ defined recursively.

 Definition: A sequence $\{a_n\}$ is called *increasing* if $a_n \leqslant a_{n+1}$ for all $n \geq 1$. It is called *decreasing* if $a_n > a_{n+1}$ for all $n \geq 1$. It is called *monotonic* if it is either increasing or decreasing.
- Proof by Induction: The following reasoning is a powerful tool to prove statements in the context of sequences defined recursively. (It is used for all kinds of proofs.)

 Suppose we wish to show that a property P(n) is true for every $n \ge 1$ where n is a natural number.

Step 1 Show that P(1) is true.

Step 2 Assume P(k) is true for some $k \leq n$. Use this assumption to show that P(n+1) is true. The conclusion then, is that P(n) is true for all n.

Example: Show that the sequence $a_1 = \sqrt{2}$, $a_{n+1} = \sqrt{2 + a_n}$ is increasing. $a_1 = \sqrt{2}$, $a_2 = \sqrt{2 + \sqrt{2 + a_n}}$ is increasing.

P(n): $a_{n+1} \neq a_n$ Show P(1) is true: $a_2 \neq a_1$ $a_2 = \sqrt{2 + \sqrt{2 + a_n}} = \sqrt{2 + a_n}$ Assumption

Assume P(k) is true for $k \leq n$ The analysis of $(\sqrt{2 + a_k + 1}, \sqrt{2 + a_k})$ or $(\sqrt{2 + a_k + 1}, \sqrt{2 + a_k})$ Conclusion:

By induction $a_{n+1} \neq a_n$ a_{n+

$$\alpha_1 = \sqrt{2}$$

$$a_{n+1} = \sqrt{2+a_n}$$

<u>Definition</u>: A sequence $\{a_n\}$ is bounded above if there is a number M such that $a_n \leq M$ for all $n \geq 1$.

It is $\{a_n\}$ is bounded below if there is a number m such that $a_n \geq m$ for all $n \geq 1$. If it bounded above and below, then $\{a_n\}$ is a bounded sequence.

Example: Show that the sequence in the previous example is bounded above by 3.

an = 3. Proof by induction:

$$P(1)$$
 $a_1 = \sqrt{2} < 3$ $(\sqrt{2+ak'} \le 3)$

- Assume P(k)istrue: "ak 53". Show that aprt1 53

$$2 + a_k \le 5$$

 $\sqrt{2 + a_k} \le \sqrt{5} \le 3$
therefore $a_k + 1 \le 3$. Conclusion a

Monotonic Sequence Theorem: Every bounded monotonic sequence is convergent.

Remark: This theorem means that any increasing bounded above sequence is convergent, any decreasing bounded below sequence is convergent. an= 1 lim 1 =0

Theorem: If $\{a_n\}$ is convergent and $\lim_{n\to\infty} a_n = L$, then

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n = L$$

ant = [lim == 0

Example: Use the above theorem to find where the sequence in the previous example converges to. a = 52

Since an is increasing and bounded (Fran
$$\leq 3$$
). Therefore aris convergent: lim an=L = liman+1