A Bifurcação Tangente e uma Possível Generalização

Eduardo Sodré

Novembro 2019

1 Introdução

Considera-se uma família de funções $f_{\lambda} \colon \mathbb{R} \longrightarrow \mathbb{R}$ parametrizada por uma variável real λ , de modo que f é suave nas duas variáveis; ou seja, $f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ é C^{∞} , com $(x,\lambda) \mapsto f(x,\lambda) = f_{\lambda}(x)$. Deseja-se estudar como a dinâmica discreta induzida pelas funções f_{λ} varia quando o parâmetro λ varia, principalmente o comportamento nas bifurcações de pontos fixos não-hiperbólicos. Sob certas condições, um ponto fixo não-hiperbólico bifurca em mais pontos fixos, ou pode ser gerada uma órbita de período 2 ao redor desse ponto fixo, ambos os casos marcando uma diferença clara de dinâmica. Procura-se estudar especificamente a bifurcação tangente e generalizações possíveis com relação a ela.

Para entender a importância de pontos fixos não-hiperbólicos e suas bifurcações, observase a estabilidade que pontos fixos hiperbólicos têm sob a variação do parâmetro. Tem-se o seguinte teorema:

Teorema 1.1. Seja x_0 tal que $f_{\lambda_0}(x_0) = x_0$ e $f'_{\lambda_0}(x_0) \neq 1$. Então existem intervalos abertos I e N, com $x_0 \in I$ e $\lambda_0 \in N$, e uma função suave $p: N \longrightarrow I$ tal que $p(\lambda_0) = x_0$, e para todo $\lambda \in N$, vale que $f_{\lambda}(p(\lambda)) = p(\lambda)$. Ainda, f_{λ} não tem outros pontos fixos em I.

A demonstração do teorema é uma aplicação direta do teorema da função implícita em \mathbb{R}^2 , tomando a função dada por $G(x,\lambda) = f_{\lambda}(x) - x$, e é feita em [1]. As mesmas ideias são reutilizadas para a demonstração do teorema usual para a bifurcação tangente:

Teorema 1.2 (Bifurcação Tangente). Suponha que $f_{\lambda_0}(x_0) = x_0$, $f'_{\lambda_0}(x_0) = 1$, $f''_{\lambda_0}(x_0) \neq 0$ $e \frac{\partial f}{\partial \lambda}(x_0, \lambda_0) \neq 0$. Então existe um intervalo aberto I com $x_0 \in I$ e uma função suave $p: I \longrightarrow \mathbb{R}$ tal que $p(x_0) = \lambda_0$, $p'(x_0) = 0$, $p''(x_0) \neq 0$, e para todo $x \in I$, vale que $f_{p(x)}(x) = x$ e $\frac{\partial f}{\partial \lambda}(x, p(x)) \neq 0$. Ainda, para $x \in I$, tem-se que

$$p'(x) = -\frac{\frac{\partial f}{\partial x}(x, p(x)) - 1}{\frac{\partial f}{\partial \lambda}(x, p(x))} \quad e \quad p''(x_0) = \frac{-f''_{\lambda_0}(x_0)}{\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)}.$$

A intuição por trás desse teorema é que, quando o parâmetro passa por λ_0 , o ponto fixo representado por x_0 bifurca em dois outros distintos ou desaparece, dependendo do sentido da evolução do parâmetro e da concavidade de f em x_0 . Isto pode ser visto mais visualmente no diagrama de bifurcação, onde marca-se a curva de nível do 0 em $G(x,\lambda) = f_{\lambda}(x) - x$, ou seja, marcam-se, para cada λ , os pontos fixos de f_{λ} . Tal curva de nível será localmente em (x_0, λ_0) o gráfico de p, explicando suas propriedades de concavidade.

2 Generalizações

Uma pergunta natural a ser feita é se é possível relaxar as hipóteses sobre f_{λ_0} em x_0 , por exemplo em relação a sua segunda derivada ou derivadas superiores. A hipótese de $\frac{\partial f}{\partial \lambda}$ é mantida para que ainda seja possível aplicar o teorema da função implícita em relação à variável do parâmetro. De fato, a pergunta inicial é se há alguma relação direta das derivadas superiores de p em x_0 com as derivadas superiores de f_{λ} em x_0 , sob quais condições, e que tipo de informação isso pode dar sobre a bifurcação. Lembra-se que

$$p'(x) = \frac{-\frac{\partial G}{\partial x}(x, p(x))}{\frac{\partial G}{\partial \lambda}(x, p(x))}$$

e conclui-se, por aplicações da regra da cadeia, que

$$p''(x) = -\frac{\frac{\partial^2 G}{\partial x^2}(x, p(x)) + \frac{\partial^2 G}{\partial \lambda \partial x}(x, p(x))p'(x)}{\frac{\partial G}{\partial \lambda}(x, p(x))} + \frac{\frac{\partial G}{\partial x}(x, p(x)) \left[\frac{\partial^2 G}{\partial x \partial \lambda}(x, p(x)) + \frac{\partial^2 G}{\partial \lambda^2}(x, p(x))p'(x)\right]}{\left(\frac{\partial G}{\partial \lambda}(x, p(x))\right)^2}.$$

Com base nessas fórmulas, faz-se a suposição sobre f de que $f_{\lambda_0}(x_0) = x_0$, $f'_{\lambda_0}(x_0) = 1$. Como de acordo com o teorema, acha-se que

$$p(x_0) = \lambda_0, \ p'(x_0) = 0, \ e \ p''(x_0) = \frac{-f''_{\lambda_0}(x_0)}{\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)}.$$

Se supormos, então, que $f''_{\lambda_0}(x_0) = 0$, acharemos que $p''(x_0) = 0$. Mas que informação podemos obter da terceira derivada de p, por exemplo? Calculando p'''(x) e avaliando em x_0 , é possível observar que

 $p'''(x_0) = \frac{-f'''_{\lambda_0}(x_0)}{\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)}.$

Tal informação sugere a seguinte conclusão:

Proposição 2.1. Dado $r \in \mathbb{N}$, suponha que $\frac{\partial f}{\partial \lambda}(x_0, \lambda_0) \neq 0$, $f_{\lambda_0}(x_0) = x_0$, $f'_{\lambda_0}(x_0) = 1$, e para todo n natural com $2 \leq n < r$, $f_{\lambda_0}^{(n)}(x_0) = 0$.

Então $p(x_0) = \lambda_0$, para todo n natural com $1 \le n < r$ vale que $p^{(n)}(x_0) = 0$, e

$$p^{(r)}(x_0) = \frac{-f_{\lambda_0}^{(r)}(x_0)}{\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)}.$$

Demonstração. A demonstração é feita com indução em mente. Vê-se que os casos para r=2 e r=3 são visíveis, mas a fórmula geral da derivada r-ésima de p começa a ficar intratável para valores maiores de r. No entanto, o que é relevante é apenas a sua avaliação em x_0 , e é possível deduzir que muitos dos fatores na fórmula, avaliados em x_0 e sob as hipóteses de indução, serão iguais a 0. Por exemplo, qualquer derivada parcial de G com respeito a λ produz um fator de p'(x) em um dos termos, que será cancelado pois $p'(x_0) = 0$. De fato, considere

$$B(x) = p'(x)\frac{\partial G}{\partial \lambda}(x, p(x)) = -\frac{\partial G}{\partial x}(x, p(x)).$$

Tomando as derivadas sucessivas de $B(x) = -\frac{\partial G}{\partial x}(x, p(x))$, veremos que a (n-1)-ésima derivada será da forma

$$B^{(n-1)}(x) = -\frac{\partial^n G}{\partial x^n}(x, p(x)) - S_n(x)$$

onde $S_n(x)$ será uma soma de vários termos compostos de derivadas parciais de G e potências de derivadas de p', com cada termo contendo pelo menos uma potência de derivadas de p' como fator. Isto pode ser intuído a partir do fato que todos os termos serão derivadas de $\frac{\partial G}{\partial x}$ onde derivou-se parcialmente em λ pelo menos uma vez, obtendo pelo menos uma potência de uma derivada de p'. Uma visão mais formal da soma pode ser obtida a partir da generalização da fórmula de Faà di Bruno para o caso de funções multivariadas (a fórmula de Faà di Bruno descreve a n-ésima derivada da composição de duas funções). Ainda, pode-se afirmar que a maior derivada de p aparecendo na soma S é $p^{(n-1)}$, em sucessivas aplicações da regra do produto na derivação.

Assuma que o teorema valha para r, por hipótese de indução, e mostremos que ele vale para r+1. Sob a hipótese de $f_{\lambda_0}^{(n)}(x_0)=0$ para $2\leq n< r+1$, tem-se que $\frac{\partial^n G}{\partial x^n}(x,p(x))=0$, para $0\leq n< r+1$. Sob hipótese de indução, conclui-se que $p^{(n)}(x_0)=0$ para $1\leq n< r-1$, e como

$$p^{(r)}(x_0) = \frac{-f_{\lambda_0}^{(r)}(x_0)}{\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)},$$

teremos que $p^{(r)}(x_0) = 0$. Basta então calcular $p^{(r+1)}(x_0)$; para tal, veja que

$$B^{(r)}(x) = -\frac{\partial^{r+1} G}{\partial x^{r+1}}(x, p(x)) - S_{r+1}(x)$$

em que

$$B^{(r)}(x) = \sum_{n=0}^{r} {r \choose n} p^{(n+1)}(x) \left(\frac{\partial G}{\partial \lambda}(x, p(x)) \right)^{(r-n)}.$$

Mas observe que, na segunda expressão para $B^{(r)}(x_0)$, todos os termos se anularão pelas derivadas em p exceto possivelmente o primeiro, de modo que

$$B^{(r)}(x_0) = p^{(r+1)}(x_0) \left(\frac{\partial G}{\partial \lambda}(x_0, \lambda_0) \right).$$

E a partir da primeira relação, teremos que para $p^{(n)}(x_0) = 0$ para $1 \le n < r + 1$, tem-se que $S_{r+1}(x_0) = 0$. Deste modo, deduz-se que

$$p^{(r+1)}(x_0)\left(\frac{\partial G}{\partial \lambda}(x_0,\lambda_0)\right) = -\frac{\partial^{r+1}G}{\partial x^{r+1}}(x_0,\lambda_0),$$

que, reescrevendo em termos de f_{λ_0} , termina a demonstração.

Obtem-se então, com esse teorema, uma forte relação entre os aspectos de f_{λ_0} em x_0 e como a bifurcação tangente deve ocorrer, dada a condição de regularidade de $\frac{\partial f}{\partial \lambda}(x_0, \lambda_0) \neq 0$. Considere a seguinte proposição:

Proposição 2.2. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função C^n tal que $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$, mas $f^{(n)}(x_0) \neq 0$. Então:

- Se n é par, então x_0 é máximo ou mínimo local estrito de f;
- Se n é impar, então f é localmente estritamente monótona em x_0 .

A demonstração pode ser feita prontamente usando a forma generalizada da regra de L'Hôpital, incorporando o teorema de Taylor:

$$f(x_0+h) = f(x_0) + \frac{f'(x_0)}{1!}h + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + r(h) = f(x_0) + \left[\frac{f^{(n)}(x_0)}{n!} + \rho(h)\right]h^n,$$

com $\lim_{h\to 0} \frac{r(h)}{h^n} = \lim_{h\to 0} \rho(h) = 0$. Como $\frac{f^{(n)}(x_0)}{n!} \neq 0$, para h suficientemente pequeno, $\frac{f^{(n)}(x_0)}{n!} + \rho(h)$ será sempre positivo ou sempre negativo, de modo que o comportamento da função será determinado pela paridade de n exatamente como nas funções x^n .

Com tais conclusões, pode-se re-enunciar o seguinte teorema sobre bifurcações tangentes:

Teorema 2.3 (Bifurcações Tangentes Generalizadas). Seja f_{λ} uma família parametrizada de funções reais pelo parâmetro λ , tal que $f \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$ é C^{∞} , e $r \geq 2$ natural. Suponha que $f_{\lambda_0}(x_0) = x_0, \ f'_{\lambda_0}(x_0) = 1, \ para \ 2 \le n < r, \ f^{(n)}_{\lambda_0}(x_0) = 0, \ f^{(r)}_{\lambda_0}(x_0) \ne 0 \ e \ \frac{\partial f}{\partial \lambda}(x_0, \lambda_0) \ne 0.$ Então existe um intervalo aberto I tal que $x_0 \in I$, e uma função $p: I \longrightarrow \mathbb{R}$ de classe

 C^{∞} tal que:

- $p(x_0) = \lambda_0$;
- para todo $x \in I$, $f_{p(x)}(x) = x$, $e \frac{\partial f}{\partial \lambda}(x, p(x)) \neq 0$;
- para $1 \le n < r$, $p^{(n)}(x_0) = 0$;

•
$$p^{(r)}(x_0) = \frac{-f_{\lambda_0}^{(r)}(x_0)}{\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)}.$$

Ainda, existe um intervalo aberto N com $\lambda_0 \in N$ tal que:

- se r é par, então para valores de λ de um lado de λ_0 em N, f_{λ} não possui pontos fixos em I, e para valores de λ do outro lado de λ_0 em N, há exatamente dois pontos fixos de f_{λ} em I, com um sendo sempre ponto hiperbólico repulsor e o outro sendo sempre hiperbólico atrator;
- se r é impar, então para todo $\lambda \in N$ tem-se que f_{λ} tem um único ponto fixo em I. Tal ponto será atrator para todo $\lambda \in N$, ou repulsor para todo $\lambda \in N$, sendo não-hiperbólico apenas para λ_0 .

Demonstremos as últimas afirmações do teorema. No caso par, suponha sem perda de generalidade x_0 mínimo local estrito de p (pode-se supor mínimo global, escolhendo Iapropriadamente), e $x_0 \in (a,b)$ com $[a,b] \subset I$. Como $p(a) > p(x_0) = \lambda_0$ e $p(b) > p(x_0)$, pode-se assumir ainda p(a) = p(b); caso contrário, bastaria aplicar o teorema do valor intermediário no intervalo contendo o número cujo valor pela função seja maior, encontrando um outro em que o valor é igual. Assim, para todo $\lambda \in (\lambda_0, p(a))$, há (pelo teorema do valor intermediário) exatamente dois valores x_1 e x_2 de x para os quais $p(x) = \lambda$, com $x_1 \in (a, x_0)$ e $x_2 \in (x_0, b)$, e no caso de $\lambda \in N$ com $\lambda < \lambda_0$, não há valores em I para os quais $p(x) = \lambda$, ou seja, não havendo pontos fixos de f_{λ} em I (devido ao teorema da função implícita). Ainda, nos casos dos pontos x_1 e x_2 , a conclusão de que um será hiperbólico repulsor e o outro hiperbólico atrator, dependendo do lado em relação a x_0 , vem da relação para todo $x \in I$

$$p'(x) = -\frac{\frac{\partial f}{\partial x}(x, p(x)) - 1}{\frac{\partial f}{\partial \lambda}(x, p(x))},$$

em que, com p' estritamente monótona em I e $\frac{\partial f}{\partial \lambda}(x,p(x))$ sempre positivo ou sempre negativo para todo $x \in I$, $\frac{\partial f}{\partial x}(x, p(x)) - 1$ também será estritamente monótona em $x \in I$, com, sem perda de generalidade, $f'_{\lambda}(x_1) < 1 < f'_{\lambda}(x_2)$. Escolhendo apropriadamente I por continuidade, pode-se assumir o menor desses valores como maior que 0, para que seja ponto fixo hiperbólico atrator. No caso de r ímpar, com p estritamente monótona em I, a unicidade do ponto fixo de f_{λ} para $\lambda \in N$ resulta de argumentos análogos aos feitos antes. Ainda, por x_0 ser extremante local estrito de p' e pela relação vista antes entre $f'_{p(x)}(x)$ e p'(x), pode-se concluir a afirmação do teorema. A direção da bifurcação, no caso relevante de r par, depende diretamente do sinal de $\frac{\partial f}{\partial \lambda}(x_0, \lambda_0)$ e de se f' é monótona crescente ou monótona decrescente. Exemplos de tais bifurcações são encontrados mais claramente em $f_{\lambda}(x) = x + x^n + \lambda$, com as bifurcações ocorrendo em $\lambda_0 = 0$, descritas no teorema.

Um contraexemplo para quando $\frac{\partial f}{\partial \lambda}(x_0, \lambda_0) = 0$ ocorre em $f(x) = \lambda x + x^n$, com $x_0 = 0$ e $\lambda_0 = 1$. Com análise gráfica, observa-se que para n ímpar, na bifurcação um ponto fixo origina 3 pontos fixos, e para n par, há 2 pontos fixos em que um parece "passar" pelo outro, mantendo ambos.

Há perguntas mais específicas a serem feitas acerca do resultado do teorema, por exemplo, no caso de r par, se o ponto fixo hiperbólico atrator originado da bifurcação varia suavemente com o parâmetro λ em N, assim, como o ponto hiperbólico repulsor originado. E há ainda uma grande variedade de dinâmicas de bifurcação distintas possíveis quando se elimina a hipótese da derivada com respeito a λ em (x_0, λ_0) ser diferente de 0, em que nesses casos não seria mais possível aplicar diretamente o teorema da função implícita com respeito à variável λ .

Referências

[1] Devaney, Robert L. An Introduction to Chaotic Dynamical Systems.

The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. Reprinted by Westview Press, 2003.