M3P21 Geometry II: Algebraic Topology

Lectured by Dr Christian Urech Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	Some underlying geometric notions			
	0.1	Introduction	3	
	0.2	Homotopy	3	
	0.3	Cell complexes	4	
1	The fundamental group			
	1.1	Paths and homotopy	6	
		The fundamental group of the circle		
		Induced homomorphisms		
\mathbf{A}	Quo	ptient topology	13	

0 Some underlying geometric notions

0.1 Introduction

Combines topological spaces with algebraic objects, groups.

Lecture 1 Friday 11/01/19

- How to show that a torus is not homeomorphic to a sphere?
- How to show that $\mathbb{R}^n \ncong \mathbb{R}^m$ if $n \neq m$?

Content is fundamental groups and homology. We will follow chapter one and two from

• A Hatcher, Algebraic topology, 2002

Prerequisites are the following.

- Point set topology. Topological spaces, continuous maps, product and quotient topologies, Hausdorff spaces, etc.
- Basic group theory. Normal subgroups and quotients, isomorphism theorems, free groups, presentation of groups, etc.

0.2 Homotopy

Let X, Y be topological spaces and I = [0, 1].

Definition 0.1. A homotopy is a continuous map $F: X \times I \to Y$. For every $t \in I$ we obtain a continuous map

$$\begin{array}{cccc} f_t: & X & \to & Y \\ & x & \mapsto & f_t\left(x\right) = F\left(x,t\right) \end{array}.$$

Definition 0.2. Two continuous maps $f_0, f_1: X \to Y$ are **homotopic** if there exists a homotopy $F: X \times I \to Y$ such that

$$f_0(x) = F(x,0), \qquad f_1(x) = F(x,1),$$

for all $x \in X$. We write $f_0 \cong f_1$.

(Exercise: this is an equivalence relation)

Definition 0.3. Let $A \subseteq X$ be a subspace. A **retraction** of X onto A is a continuous map $r: X \to A$ such that

- r(X) = A, and
- \bullet $r \mid_A = id_A$.

Example 0.4. If $X \neq \emptyset$, $p \in X$, then X retracts to p by the constant map $X \to \{p\}$.

Definition 0.5. A **deformation retraction** of X onto $A \subseteq X$ is a retraction that is homotopic to the identity. That is, there is a continuous map

$$\begin{array}{cccc} F: & X \times I & \rightarrow & A \\ & (x,t) & \mapsto & f_t \left(x \right) \end{array},$$

such that $f_0 = id_X$ and $f_1 : X \to A$ is the deformation retraction.

Example 0.6. The closed n-dimensional n-disc

$$D^n = \{ x \in \mathbb{R}^n \mid |x| \le 1 \}$$

deformation retracts to $(0,\ldots,0)\in\mathbb{R}^n$. Let $f_t(x)=t\cdot x$. t=1 gives $f_1=id_{D^n}$ and t=0 gives $f_0:D^n\to(0,\ldots,0)$.

Example 0.7. Let S^n be the *n*-sphere,

$$\partial D^{n+1} = S^n = \{ x \in \mathbb{R}^n \mid |x| = 1 \}.$$

The cylinder $S^n \times I$ deformation retracts to $S^n \times \{0\}$, by defining $f_t(x,r) = (x,t \cdot r)$.

An observation is if X is a topological space, and $f: X \to \{p\}$ for $p \in X$ is a deformation retraction of X to p, then X is path connected. Indeed, if $F: X \times I \to X$ is a homotopy from id_X to f and $x \in X$ is a point, then this gives a path

$$\begin{array}{ccc}
I & \to & X \\
t & \mapsto & F(x,t)
\end{array}$$

that connects x to p. This implies that not all retractions are deformation retractions.

Example 0.8. A retraction that is not a deformation retraction. Take a space that is not path connected and retract it to a point. Let $X = \{0, 1\}$ with discrete topology. $x \mapsto 0$ is a retraction, but not a deformation retraction because X is not path connected.

Definition 0.9. A continuous map $f: X \to Y$ is a **homotopy equivalence** if there is a continuous map $g: Y \to X$ such that $fg \cong id_Y$ and $gf \cong id_X$. If there exists a homotopy equivalence between X and Y, X and Y are **homotopy equivalent** or they have the same **homotopy type**.

Lemma 0.10. A deformation retraction $f: X \to A$ is a homotopy equivalence.

Proof. Let $i: A \hookrightarrow X$ be the inclusion map. Then $fi = id_A$ and $if = f \cong id_X$ by definition.

Example 0.11. The disc with two holes is equivalent to ∞ .

Example 0.12. \mathbb{R}^n deformation retracts to a point, by $f_t(x) = t \cdot x$.

Definition 0.13.

- X is **contractible** if it is homotopy equivalent to a point.
- A continuous map is **nullhomotopic** if it is homotopy equivalent to a constant map.

0.3 Cell complexes

Example 0.14. The torus $S^1 \times S^1$ is the union of a point, two open intervals, and the open disc $Int(D^2)$.

These are called **cells**. Can think of discs D^n glued together.

Lecture 2 Tuesday 15/01/19

Definition 0.15. A CW-complex, or cell complex, is a topological space X such that there exists a decomposition

$$X = \bigcup_{n \in \mathbb{N}} X^n,$$

where the X^n are constructed inductively in the following way.

- X^n is a discrete set.
- For each $n \geq 0$ there is an collection of closed n-discs $\{D_n^n\}$ together with continuous maps

$$\phi_{\alpha}: \partial D_{\alpha}^n \to X^{n-1},$$

such that

$$X^n = \frac{X^{n-1} \sqcup \bigsqcup_{\alpha} D^n_{\alpha}}{\sim},$$

where $x \sim \phi_{\alpha}(x)$ for all $x \in \partial D_{\alpha}^{n}$ for all α .

• A subset $U \subseteq X$ is open if and only if $U \cap X^n$ is open for all n.

Remark 0.16.

• As a set,

$$X^n = X^{n-1} \sqcup \bigsqcup_{\alpha} e_{\alpha}^n,$$

where each e_{α}^{n} is homeomorphic to an open n-disc. These e_{α}^{n} are called the n-cells of X.

• If $X = X^m$ for some m, then X is called **finite dimensional**. The minimal m such that $X = X^m$ is the **dimension** of X.

Example 0.17.

- [0,1] is a CW-complex.
- \bullet $\mathbb R$ is a CW-complex.
- S^1 is a CW-complex.
- A graph is a CW-complex.
- $S^n = D^n/\partial D^n$ is a CW-complex. See worksheet 1.

Can also decompose CW-complexes.

- The sphere S^2 is one 0-cell, one 1-cell, and two 2-cells.
- The torus $S^1 \times S^1$ is one 0-cell, two 1-cells, and one 2-cell.
- The Möbius strip is two 0-cells, three 1-cells, and one 2-cell.
- The Klein bottle is one 0-cell, two 1-cells, and one 2-cell.

Definition 0.18. If X is a CW-complex with finitely many cells the **Euler characteristic** $\chi(X)$ of X is the number of even cells minus the number of odd cells.

A fact is that $\chi(X)$ does not depend of the choice of cells decomposition.

Example 0.19.

- $\chi(S^n) = 0$ if n is odd and $\chi(S^n) = 2$ if n is even.
- $\chi(S^1 \times S^1) = 0$.

This is the generalisation of the following observation by Leonhard Euler. Let P be a convex polyhedron, where

- V is the number of vertices of P,
- \bullet E is the number of edges of P, and
- F is the number of faces of P.

Then V - E + F = 2.

Example 0.20. A topological space that is not a CW-complex. $X = \{0, 1\}$ with trivial topology does not contain any closed points. A fact is that CW-complexes are always Hausdorff.

1 The fundamental group

1.1 Paths and homotopy

Let X be a topological space. A **path** is a continuous map $f: I \to X$, where I = [0, 1].

Definition 1.1. Two paths f_0 , f_1 are **homotopic** if there exists a homotopy between f_0 and f_1 preserving the endpoints, that is a continuous map

$$F: I \times I \to X (s,t) \mapsto f_t(s) ,$$

such that

$$f_t(0) = f_0(0), \qquad f_t(1) = f_0(1),$$

for all $t \in I$, and

$$F(s,0) = f_0(s), \qquad F(s,1) = f_1(s),$$

for all $s \in I$.

Example 1.2. Let $X \subseteq \mathbb{R}^n$ be a convex set. Then all the paths in X are homotopic if they have the same endpoints.

Proof. Let $f_0, f_1: I \to X$ be two paths such that $f_0(0) = f_1(0)$ and $f_0(1) = f_1(1)$. Define

$$f_t(s) = (1 - t) f_0(s) + t f_1(s).$$

Lemma 1.3. Being homotopic is an equivalence relation on the set of paths with fixed endpoints. We will write $f_0 \cong f_1$ for two homotopic paths f_0 and f_1 .

Proof.

- f is homotopic to f.
- If f_0 is homotopic to f_1 by a homotopy f_t , then f_1 is homotopic to f_0 by the homotopy f_{1-t} .
- If f_0 is homotopic to f_1 by a homotopy f_t and $f_1 = g_0$ is homotopic to g_1 by a homotopy g_t , then f_0 is homotopic to g_1 by the homotopy

$$h_t = \begin{cases} f_{2t} & 0 \le t \le \frac{1}{2} \\ g_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}.$$

Then

$$H: \quad \begin{array}{ccc} I \times I & \to & X \\ & (s,t) & \mapsto & h_t \left(s \right) \end{array}$$

is continuous because its restriction to the closed subsets $I \times [0, 1/2]$ and $I \times [1/2, 1]$ is continuous, since if the restriction to two closed subsets is continuous then the restriction to the union of these subsets is continuous.

Let X be a topological space and I = [0,1]. If $f: I \to X$ is a path, [f] is the class of all paths on X homotopic to f.

Definition 1.4. Let $f, g: I \to X$ be two paths such that f(1) = g(0). The **product path** $f \cdot g$ is the path

$$(f \cdot g)(s) = \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \le s \le 1 \end{cases}.$$

Lecture 3 Wednesday 16/01/19

A convention is that whenever we write $f \cdot g$ we implicitly assume f(1) = g(0).

Lemma 1.5. Let f_0, f_1, g_0, g_1 be paths on X such that $f_1 \cong f_0$ and $g_0 \cong g_1$. Then $f_0 \cdot g_0 \cong f_1 \cdot g_1$.

Proof.

$$I \times I \rightarrow X$$

 $(s,t) \mapsto (f_t \cdot g_t)(s)$

is a homotopy between $f_0 \cdot g_0$ and $f_1 \cdot g_1$.

Remark 1.6. Let $\phi:[0,1]\to[0,1]$ be continuous such that $\phi(0)=0$ and $\phi(1)=1$. If $f:I\to X$ is a path, then $f\circ\phi\cong f$. This is a **reparametrisation**.

Proof. Define

$$\phi_t(s) = (1 - t)\phi(s) + ts,$$

then $f \circ \phi_t$ is a homotopy between $f \circ \phi$ and f.

For $x \in X$, let the **constant path** at x be

$$\begin{array}{cccc} c_x: & I & \to & X \\ & s & \mapsto & x \end{array}.$$

For a path $f: I \to X$, define

$$\begin{array}{cccc} f^{-1}: & I & \to & X \\ & s & \mapsto & f\left(1-s\right) \end{array}.$$

Lemma 1.7. Let $f, g, h: I \to X$ be paths. Then

- 1. $(f \cdot g) \cdot h \cong f \cdot (g \cdot h)$,
- 2. $f \cdot c_{f(1)} \cong f$ and $c_{f(0)} \cdot f \cong f$, and
- 3. $f \cdot f^{-1} \cong c_{f(0)}$ and $f^{-1} \cdot f \cong c_{f(1)}$.

Proof.

1. $((f \cdot q) \cdot h) \circ \phi = f \cdot (q \cdot h)$, where

$$\phi\left(s\right) = \begin{cases} \frac{s}{2} & s \in \left[0, \frac{1}{2}\right] \\ s - \frac{1}{4} & s \in \left[\frac{1}{2}, \frac{3}{4}\right], \\ 2s - 1 & s \in \left[\frac{3}{4}, 1\right] \end{cases}$$

so $(f \cdot g) \cdot h \cong f \cdot (g \cdot h)$ by reparametrisation.

2. Again reparametrisation, by

$$\psi\left(s\right) = \begin{cases} 2s & s \in \left[0, \frac{1}{2}\right] \\ 1 & s \in \left[\frac{1}{2}, 1\right] \end{cases}, \qquad \chi\left(s\right) = \begin{cases} 0 & s \in \left[0, \frac{1}{2}\right] \\ 2s - 1 & s \in \left[\frac{1}{2}, 1\right] \end{cases}.$$

3. Define

$$H(s,t) = \begin{cases} f(\max\{1-2s,t\}) & s \in [0,\frac{1}{2}] \\ f(\max\{2s-1,t\}) & s \in [\frac{1}{2},1] \end{cases}.$$

H is continuous, and

$$H(s,0) = f^{-1} \cdot f, \qquad H(s,1) = c_{f(1)}.$$

The inverse is similar.

Definition 1.8. A loop with basepoint $x_0 \in X$ is a path $f: I \to X$ such that $f(0) = f(1) = x_0$.

Definition 1.9. Denote by $\pi_1(X, x_0)$ the set of homotopy classes [f] of loops $f: I \to X$ with basepoint x_0 .

Proposition 1.10. $\pi_1(X, x_0)$ is a group with product $[f][g] = [f \cdot g]$ and neutral element $c_{x_0} : I \to X$, the constant path at x_0 .

Proof. Follows directly from Lemma 1.5 and Lemma 1.7.

Definition 1.11. $\pi_1(X, x_0)$ is the fundamental group of X at x_0 .

Example 1.12. Let $X \subseteq \mathbb{R}^n$ be a convex set and $x_0 \in X$. Then $\pi_1(X, x_0) = 0$.

Proof. X is convex gives that all loops are homotopic to each other.

Example 1.13.

- The fundamental group of a space X with the trivial topology is trivial, since X is simply connected, because all maps $f: I \to X$ are continuous, so path connected and all paths are homotopic.
- The fundamental group of a space X with the discrete topology is trivial, since $f: I \to X$ continuous gives f constant.

Assume $x_0, x_1 \in X$ such that x_0 and x_1 are in the same path component of X. Let $h: I \to X$ be a path such that $h(0) = x_0$ and $h(1) = x_1$. Define

$$\beta_h: \quad \pi_1\left(X, x_1\right) \quad \to \quad \pi_1\left(X, x_0\right) \\ \left[f\right] \quad \mapsto \quad \left[h \cdot f \cdot h^{-1}\right] \ .$$

This is well-defined by Lemma 1.5.

Proposition 1.14. $\beta_h: \pi_1(X, x_1) \to \pi_1(X, x_0)$ is an isomorphism.

Proof. It is a homomorphism.

$$\beta_h\left[f\cdot g\right] = \left[h\cdot f\cdot g\cdot h^{-1}\right] = \left[h\cdot f\cdot h^{-1}\right] \left[h\cdot g\cdot h^{-1}\right] = \beta_h\left[f\right]\cdot\beta_h\left[g\right],$$

and $\beta_h[c_{x_1}] = [c_{x_1}]$. It is bijective with $(\beta_h)^{-1} = \beta_{h^{-1}}$.

If X is path connected, we often write $\pi_1(X)$ instead of $\pi_1(X, x_0)$.

Definition 1.15. X is simply connected if it is path connected and $\pi_1(X) = 0$.

Proposition 1.16. X is simply connected if and only if there exists a unique homotopy class of paths between any two points of X.

Proof.

- \implies There exists a path between any two points. Let f, g be two paths from x_0 to x_1 for $x_0, x_1 \in X$. $f \cdot g^{-1} \cong g \cdot g^{-1}$ gives $f \cong f \cdot g^{-1} \cdot g \cong g \cdot g^{-1} \cdot g \cong g$.
- \iff X is path connected. $x_1 = x_0$ gives that all loops at x_0 are homotopic to each other, so $\pi_1(X) = 0$.

1.2 The fundamental group of the circle

Goal is to show that $\pi_1(S^1) \cong \mathbb{Z}$.

Lecture 4 Friday 18/01/19

Definition 1.17. A covering space of a space X is a space \widetilde{X} and a continuous map $p:\widetilde{X}\to X$ such that for each $x\in X$ there is an open $x\in U\subseteq X$ such that

- $p^{-1}(U) = \bigcup_{j \in J} \widetilde{U_j}$, where $\widetilde{U_j} \subseteq \widetilde{X}$ is open,
- $\widetilde{U_i} \cap \widetilde{U_j} = \emptyset$ if $i \neq j$, and
- $p \mid_{\widetilde{U_i}} : \widetilde{U_j} \to U_i$ is a homeomorphism for all $j \in J$.

Such a U is called **evenly covered**. The \widetilde{U}_i are called **sheets**.

Example 1.18.

$$p: \ \mathbb{R} \ \to \ S^1$$
$$s \ \mapsto \ (\cos(2\pi s, \sin(2\pi s)))$$

Definition 1.19. Let $p: \widetilde{X} \to X$ be a covering space. A **lift** of a continuous map $f: Y \to X$ is a continuous map $\widetilde{f}: Y \to \widetilde{X}$ such that $p \circ \widetilde{f} = f$, so

$$Y \xrightarrow{\widetilde{f}} \widetilde{X} \downarrow_{p}.$$

Proposition 1.20 (Unique lifting property). Let $p: \widetilde{X} \to X$ be a covering space and $f: Y \to X$ be a continuous map. If there are two lifts $\widetilde{f}_1, \widetilde{f}_2: Y \to \widetilde{X}$ of f such that $\widetilde{f}_1(y) = \widetilde{f}_2(y)$ for some $y \in Y$ and if Y is connected, then $\widetilde{f}_1 = \widetilde{f}_2$.

Proof. Let $y \in Y$ and $U \subseteq X$ be an evenly covered neighbourhood of f(y). Then

$$p^{-1}\left(U\right) = \bigcup_{i} \widetilde{U_{j}}.$$

Let $\widetilde{U_1}$ be the sheet such that $\widetilde{f_1}(y) \in \widetilde{U_1}$, and let $\widetilde{U_2}$ be the sheet such that $\widetilde{f_2}(y) \in \widetilde{U_2}$. Let $N \subseteq Y$ be open and $y \in N$ such that $\widetilde{f_1}(N) \subseteq \widetilde{U_1}$ and $\widetilde{f_2}(N) \subseteq \widetilde{U_2}$. We have $p \circ \widetilde{f_1} = p \circ \widetilde{f_2}$.

$$\widetilde{f}_{1}\left(y\right) = \widetilde{f}_{2}\left(y\right) \qquad \Longleftrightarrow \qquad \widetilde{U}_{1} = \widetilde{U}_{2} \qquad \Longleftrightarrow \qquad \widetilde{f}_{1}\mid_{N} = \widetilde{f}_{2}\mid_{N}.$$

Let

$$A = \left\{ y \in Y \mid \widetilde{f}_1(y) = \widetilde{f}_2(y) \right\},\,$$

so A is open and $Y \setminus A$ is open. Thus $A \neq \emptyset$ gives A = Y.

Proposition 1.21 (Homotopy lifting property). Let $p: \widetilde{X} \to X$ be a covering space and $F: Y \times I \to X$ be a continuous map such that there exists a lift $\widetilde{f}_0: Y \times \{0\} \to \widetilde{X}$ of $F\mid_{Y \times \{0\}}$. Then there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$ of F such that $\widetilde{F}\mid_{Y \times \{0\}} = \widetilde{f}_0$.

Proof. Let $y_0 \in Y$ and $t \in I$. There are open $y_0 \in N_t \subseteq Y$ and $t \in (a_t, b_t) \subseteq I$ such that $F(N_t \times (a_t, b_t)) \subseteq U \subseteq X$, where $U \subseteq X$ is open and evenly covered. Compactness of I gives that there exist

$$0 = t_0 < \dots < t_m = 1,$$

and there exists $y_0 \in N \subseteq Y$ open such that $F(N \times [t_i, t_{i+1}]) \subseteq U_i \subseteq X$, where $U_i \subseteq X$ is open and evenly covered. We inductively construct a lift $\widetilde{F}|_{N \times I}$ of $F|_{N \times I}$.

- $\widetilde{F}|_{N\times[0,0]} = \widetilde{f}_0|_{N\times[0,0]}$ exists.
- Assume the lift has been constructed on $N \times [0, t_i]$. Let $\widetilde{U_i} \subseteq \widetilde{X}$ be such that $p \mid_{\widetilde{U_i}} : \widetilde{U_i} \to U_i$ such that $\widetilde{F}(y_0, t_i) \subseteq \widetilde{U_i}$. After shrinking N, may assume $\widetilde{F}(N \times \{t_i\}) \subseteq \widetilde{U_i}$. Define \widetilde{F} on $N \times [t_i, t_{i+1}]$ to be composition of F with the homeomorphism $p^{-1} : U_i \to \widetilde{U_i}$.

After finitely many steps we obtain a lift $\widetilde{F}: N \times I \to \widetilde{X}$, where $y_0 \in N \subseteq Y$ is open, so for each $y \in Y$ there is a neighbourhood $N_y \subseteq Y$ such that $F|_{N_y \times I}: N_y \times I \to X$ lifts. For all $y \in Y$, $\{y\} \times I$ is connected and can be lifted, so Proposition 1.20 gives that the lift of $N \times I$ is unique. Thus there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$.

Example 1.22. Let X be a topological space and A be discrete. Then $p: X \times A \to X$ is a covering space. This is the **trivial covering**. (Exercise: show the unique lifting property and the homotopy lifting property for the trivial covering)

Corollary 1.23. Let $f: I \to X$ be a path, $f(0) = x_0$, and $p: \widetilde{X} \to X$ be a covering space. For each $\widetilde{x_0} \in p^{-1}(x_0)$, there is a unique lift $\widetilde{f}: I \to \widetilde{X}$ such that $\widetilde{f}(0) = \widetilde{x_0}$.

Proof. Proposition 1.21 for Y a point.

Theorem 1.24. Let $x_0 = (1,0) \in S^1$. $\pi_1(S^1, x_0)$ is the infinite cyclic group generated by the homotopy class of the loop

$$\omega: I \to S^1$$

 $s \mapsto (\cos(2\pi s), \sin(2\pi s))$.

Remark 1.25.

• $[\omega]^n = [\omega_n]$, where

$$\omega_n(s) = (\cos(2\pi ns), \sin(2\pi ns)).$$

•

$$p: \begin{tabular}{ll} $p:$ & \mathbb{R} & \to & S^1 \\ & s & \mapsto & (\cos{(2\pi s)}\,,\sin{(2\pi s)}) \end{tabular}$$

is a covering space.

• ω_n lifts to

$$\widetilde{\omega_n}: I \to \mathbb{R}$$
 $s \mapsto ns$,

such that $\widetilde{\omega_n}(0) = 0$ and $\widetilde{\omega_n}(1) = n$.

Proof of Theorem 1.24.

- If $f: I \to S^1$ be a loop at x_0 , then the homotopy lifting property gives that there exists a lift $\widetilde{f}: I \to \mathbb{R}$ such that $\widetilde{f}(0) = 0$. Since $p\left(\widetilde{f}(1)\right) = f(1) = x_0$, then $\widetilde{f}(1) = n$ for some $n \in \mathbb{Z}$. $\widetilde{\omega_n}: I \to \mathbb{R}$ is another path such that $\widetilde{\omega_n}(0) = 0$ and $\widetilde{\omega_n}(1) = n$, so $\widetilde{f} \cong \widetilde{\omega_n}$. Let $F: I \times I \to \mathbb{R}$ be a homotopy equivalence between \widetilde{f} and $\widetilde{\omega_n}$. Then $p \circ F: I \times I \to S^1$ gives a homotopy between $p \circ \widetilde{f} = f$ and $p \circ \widetilde{\omega_n} = \omega_n$.
- Let $m, n \in \mathbb{Z}$ and assume $\omega_m \cong \omega_n$. Let $F: I \times I \to S^1$ be a homotopy.

$$F(0,t) = \omega_m(t)$$
, $F(1,t) = \omega_n(t)$, $F(s,0) = F(s,1) = x_0$,

for all $s,t\in I$. The unique lifting property gives that $\widetilde{\omega_n},\widetilde{\omega_m}:I\to\mathbb{R}$ are unique lifts such that $\widetilde{\omega_n}(0)=0=\widetilde{\omega_m}(0)$. The homotopy lifting property gives that F lifts uniquely to a homotopy $\widetilde{F}:I\times I\to\mathbb{R}$ between $\widetilde{\omega_n}$ and $\widetilde{\omega_m}$, and $\widetilde{F}(s,1)\in\mathbb{Z}$ for all $s\in I$. Thus $\widetilde{F}(s,1)=n=m$, so $\omega_m\cong\omega_n$ if and only if n=m.

Lecture 5

Tuesday 22/01/19

Lecture 6 Wednesday

23/01/19

Lecture 5 is a problem class.

Theorem 1.26. Every non-constant polynomial $p \in \mathbb{C}[z]$ has a root in \mathbb{C} .

Proof. May assume

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_n.$$

Assume p has no roots in \mathbb{C} . For each $r \in \mathbb{R}_{>0}$ we obtain a loop

$$f_r: I \to \mathbb{C}$$

$$s \mapsto \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|},$$

so $|f_r(s)| = 1$. $f_r(0) = 1$ and $f_r(1) = 1$, so f_r is a loop based at 1. f_0 is the constant loop at 1. $f_r(s)$ depends continuously on r, so $f_r \cong f_0$ for all $r \in \mathbb{R}_{\geq 0}$ and $[f_r] = [f_0] = 0 \in \pi_1(S^1)$. Fix $r \in \mathbb{R}_{\geq 0}$ such that r > 1 and $r > |a_1| + \cdots + |a_n|$. For |z| = r we have

$$|z^n| > (|a_1| + \dots + |a_n|) |z^{n-1}| \ge |a_1 z^{n-1}| + \dots + |a_n| \ge |a_1 z^{n-1} + \dots + |a_n|$$

Hence, for $0 \le t \le 1$ the polynomial $p_t(z) = z^n + t(a_1 z^{n-1} + \dots + a_n)$ has no root z with |z| = r. Define

$$F_r\left(t,s\right) = \frac{p_t\left(re^{2\pi is}\right)/p_t\left(r\right)}{\left|p_t\left(re^{2\pi is}\right)/p_t\left(r\right)\right|}.$$

 $F_r\left(0,s\right)=\omega_n\left(s\right)$ and $F_r\left(1,s\right)=f_r\left(s\right)$, so $\left[\omega_n\right]=\left[f_r\right]=0\in\pi_1\left(S^1\right)$. Theorem 1.24 gives that n=0, so p is constant.

See Hatcher Theorem 1.9 and Theorem 1.10 for more applications.

Proposition 1.27. Let X, Y be topological spaces, $x_0 \in X$, and $y_0 \in Y$. Then

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Proof. A map

$$\begin{array}{ccc} f: & Z & \rightarrow & X \times Y \\ & z & \mapsto & (g\left(z\right), h\left(z\right)) \end{array}$$

is continuous if and only if $g: Z \to X$ and $h: Z \to Y$ are continuous. For Z = I,

 $\{ \text{ loops in } X \times Y \text{ based at } (x_0, y_0) \} \longleftrightarrow \{ \text{ loops in } X \text{ based at } x_0 \} \times \{ \text{ loops in } Y \text{ based at } y_0 \}.$

Two loops

$$f_1: I \rightarrow X \times Y$$
 $f_2: I \rightarrow X \times Y$ $s \mapsto (g_1(s), h_1(s))$, $s \mapsto (g_2(s), h_2(s))$

are homotopic if and only if $g_1 \cong g_2$ and $h_1 \cong h_2$, so there is a bijection

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

 $f_1 \cdot f_2 = (g_1 \cdot g_2, h_1 \cdot h_2)$ and the constant loop is mapped to the constant loop, so this is also a group isomorphism.

Example 1.28. The torus $S^1 \times S^1$ has

$$\pi_1\left(S^1\times S^1\right)\cong\pi_1\left(S^1\right)\times\pi_1\left(S^1\right)\cong\mathbb{Z}^2.$$

1.3 Induced homomorphisms

Let X, Y be topological spaces, $x_0 \in X$, and $\phi: X \to Y$. An observation is that ϕ induces a homomorphism

$$\phi_*: \quad \pi_1\left(X, x_0\right) \quad \to \quad \pi_1\left(Y, \phi\left(x_0\right)\right) \\ \left[f\right] \quad \mapsto \quad \left[\phi \circ f\right] \quad .$$

 ϕ_* is well-defined, since if f_t is a homotopy between the loops f_0 and f_1 based at x_0 , then $\phi \circ f_t$ is a homotopy of loops between $\phi \circ f_0$ and $\phi \circ f_1$. Moreover,

$$\phi \circ (f \cdot g) = (\phi \circ f) \cdot (\phi \circ g),$$

and ϕ maps the constant path at x_0 to the constant path at $\phi(x_0)$, so ϕ is a homomorphism.

Proposition 1.29.

1. Let $\psi: X \to Y$ and $\phi: Y \to Z$ be continuous maps between topological spaces, $x_0 \in X$, and

$$\psi_*: \pi_1(X, x_0) \to \pi_1(Y, \psi(x_0)), \qquad \phi_*: \pi_1(Y, \psi(x_0)) \to \pi_1(Z, (\phi \cdot \psi)(x_0)),$$

(/ //*

 $(\phi \circ \psi)_* : \pi_1(X, x_0) \to \pi_1(Z, (\phi \cdot \psi)(x_0)).$

Then $(\phi \circ \psi)_* = \phi_* \circ \psi_*$.

2. Let $id_X: X \to X$ be the identity then

$$(id_X)_*: \pi_1(X, x_0) \to \pi_1(X, x_0)$$

is the identity.

Proof.

1. Let $f: I \to X$ be a loop at x_0 , then

$$\left(\phi\circ\psi\right)_{*}\left([f]\right)=\left[\left(\phi\circ\psi\right)\circ f\right]=\left[\phi\circ\left(\psi\circ f\right)\right]=\phi_{*}\left(\left[\psi\circ f\right]\right)=\phi_{*}\left(\psi_{*}\left([f]\right)\right)=\left(\phi_{*}\circ\psi_{*}\right)\left([f]\right).$$

2. $(id_X)_*([f]) = [id_X \circ f] = [f].$

These two observations yield in particular that if $\phi: X \to Y$ is a homeomorphism with inverse $\psi: Y \to X$, then

$$\phi_*: \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0))$$

is an isomorphism with inverse ψ_* .

Proposition 1.30. If $n \geq 2$, then $\pi_1(S^n) = 0$.

A Quotient topology

Recall that if X is a set with equivalence relation \sim , there is a quotient set X/\sim . The quotient map

$$\pi: X \to \frac{X}{\sim}$$

$$x \mapsto [x]$$

is characterised by the following universal property. For every map $g: X \to Y$ such that

$$a \sim b \implies g(a) = g(b),$$

there exists a unique $f: X/\sim Y$ such that $g=f\cdot \pi$, so

Let X be a topological space and \sim be an equivalence relation on X. We define a topology on X/\sim by

$$U \subseteq \frac{X}{\sim}$$
 open \iff $\pi^{-1}(U)$ open.

Remark A.1.

• This is the largest topology on X/\sim such that π is continuous. Exercise 1 states that if Z is a topological space and $f:X/\sim\to Z$ is a map, then f is continuous if and only if $f\circ\pi:X\to Z$ is continuous. This implies that the topological quotient $\pi:X\to X/\sim$ is characterised by the following universal property. For any topological space Z and a continuous $g:X\to Z$ such that

$$a \sim b \implies g(a) = g(b),$$

there exists a unique continuous map $f: X/\sim \to Z$ such that $gf\cdot \pi$, so

- The quotient map is in general not open. For example, if $\pi:[0,1]\to S^1$, then $[0,1]\subset[0,1)$ is open but $\pi([0,1))\subseteq S^1$ is not open.
- If X is Hausdorff, in general X/\sim is not Hausdorff.
- If \sim is the trivial relation, then $\pi: X \to X/\sim$ is a homeomorphism. Exercise 3 states that if X,Y are topological spaces, X is compact, Y is Hausdorff, and $\pi: X \to Y$ is surjective and continuous, then π is a quotient, that is there exists \sim on X and $\pi: X \to Y \cong X/\sim$ is a quotient map.
- In particular, if $\pi: X \to Y$ is bijective, then π is a homeomorphism. Exercise 4, 5, 6 states that if f is continuous and surjective, $f(\partial D^n)$ is a point, and f is a bijection on $D^n \setminus \partial D^n$, then

$$\begin{array}{c|c}
D^n \\
\downarrow \\
D^n \\
\hline
\partial D^n \\
\hline
\end{array} S^1$$