Stock Data Analysis

Lei Fang

The goal is to find a strategy that uses the fact that this ETF is constantly going down, in order to make a daily compounding profit.

What we have

- UVXY
 - Daily Open/Close Prices
 - Daily High/Low Prices
 - Daily Volume
 - Split-Adjusted Equivalent Open/Close Prices
- VIX
 - Daily Open/Close Prices

Descriptive Analysis

```
library(knitr)
options(scipen = 100)
options(digits = 2)
kable(stat.desc(UVXY_desc, desc = F), caption = "UVXY Descriptive Table")
```

Table 1: UVXY Descriptive Table

	Open	Close	Adj_Open	Adj_Close	High	Low	Volume
nbr.val	1355.0	1355.0	1355	1355	1355.0	1355.0	1355
nbr.null	0.0	0.0	0	0	0.0	0.0	120
nbr.na	0.0	0.0	0	0	0.0	0.0	0
\min	4.7	3.9	19	19	4.8	3.9	0
max	100.7	102.8	12134988	10289989	108.4	97.9	32269500
range	96.0	98.9	12134969	10289971	103.7	94.0	32269500
sum	34734.7	34581.1	567289728	561941598	36450.1	33249.5	1746013800

```
kable(stat.desc(VIX_desc, desc = F), caption = "VIX Descriptiv Table")
```

Table 2: VIX Descriptiv Table

	Vix_Open	Vix_Close
nbr.val	1355	1355
nbr.null	0	0
nbr.na	0	0
min	10	10

	Vix_Open	Vix_Close
max	46	41
range	36	30
sum	22186	22041

Task 1

For example, consider you short sell UVXY every morning and buy to cover at the end of every day. On average, how profitable would this strategy be?

• Time Series Plot of Log Split-Adjusted Equivalent Open/Close Prices

```
plot(Date, log(UVXY_Adj_Open), ylab = "Price", col = "red", type = "l", lwd = 2)
lines(Date, log(UVXY_Adj_Close), col = "blue")
legend('topright', legend = c('Open Price', 'Close Price'), col = c("red", "blue"), lty=1)
```


• Time Series Plot of Daily Open/Close Prices

```
plot(Date, UVXY_Open, ylab = "Price", col = "red", type = "l", lwd = 2)
lines(Date, UVXY_Close, col = "blue")
legend('topright', legend = c('Open Price', 'Close Price'), col = c("red","blue"), lty=1)
```


• Suppose we trade 100 shares of UVXY per day and we use original daily UVXY open/close price,

```
daily_profit_ave = mean((UVXY_Open - UVXY_Close)*100)
daily_profit_max = max((UVXY_Open - UVXY_Close)*100)
daily_profit_min = min((UVXY_Open - UVXY_Close)*100)
```

Daily Profit based on 100 Shares	Average	Max	Min
	11.33	1837	-2308

Task 2

What was the return of this strategy every year on a yearly basis, 2011-present?

• **2011**

```
plot(data2011$Open-data2011$Close, ylab = "Profit",
    main = "Time Series of Daily Profit per Share")
```

Time Series of Daily Profit per Share

• **2012**

Time Series of Daily Profit per Share

Daily Profit based on 100 Shares	Average	Max	Min
	14.14	772	-504

• **2013**

Time Series of Daily Profit per Share

• **2014**

Time Series of Daily Profit per Share

• **2015**

Time Series of Daily Profit per Share

Daily Profit based on 100 Shares	Average	Max	Min
	2.71	1107	-2308

• **2016**

Time Series of Daily Profit per Share

• **2017**

Time Series of Daily Profit per Share

Further Thinking

For example, considering the VIX (volatility index) as part of the calculation or excluding certain days of the week.

• Time Series Plot of Daily UVXY Open Prices, VIX Open Prices and Daily Profit per Share

UVXY/VIX Open Price and Daily Profit per Share

• Time Series Plot of VIX Open Prices and Daily Profit per Share

```
plot(data$Open-data$Close, ylim = c(-12, 50), ylab = "Price / Profit",
    main = "VIX Open Price and Daily Profit per Share")
lines(Date, VIX_Open, col = "blue")
legend('topright', legend = c('Profit', 'VIX'),
    col = c("black", "blue"), lty=1)
```

VIX Open Price and Daily Profit per Share

