Logic Circuit (2015)

Unit 6. Quine-McCluskey Method

Spring 2015

School of Electrical Engineering

Prof. Jong-Myon Kim

Objectives

- 1. Find the prime implicants of a function by using the Quine-McCluskey method.
- 2. Define prime implicants and essential prime implicants
- 3. Given the prime implicants, find the essential prime implicants and a minimum sum-of-products expression for a function, using a prime implicant chart and using Petrick method
- 4. Minimize an incompletely specified function, using the Quine-McCluskey method
- 5. Find a minimum sum-of-products expression for a function, using the method of map-entered variables

Quine-McClusky Method

- Systematic simplification procedure which can be programmed for a digital computer.
- Function must be given as a sum of minterms
- ◆ Eliminate as many literals as possible from each term by systematically applying XY + XY' = X
- Use a prime implicant chart to select a minimum set of prime implicants

The minterms are represented in binary notation and combined using

$$XY + XY' = X$$

The binary notation and its algebraic equivalent

$$AB'CD' + AB'CD = AB'C$$

1 0 1 0 +1 0 1 1 =1 0 1 -- (the dash indicates a missing variable)

 $X Y X Y X$
 $A'BC'D + A'BCD'$ (will not combine)

0 1 0 1 +0 1 1 0

The binary minterms are sorted into groups

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Is represented by the following list of minterms:

group 0	0	0000
	1	0001
group 1	2	0010
	8	1000
group 2	5	0101
	6	0110
	9	1001
group 3	<u>10</u>	1010
	7	0111
	<u>14</u>	1110

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Table 7–1 _____

Determination of Prime Implicants

C	olumi	ı I	Col	lumn II	Column III	
group 0	0	0000 .	0, 1	000- ✓	0, 1, 8, 9	-00-
	1	0001 ~	0, 2	00-0 ✓	0, 2, 8, 10	-0-0
group 1	2	0010	0, 8	-000 ✓	0, 8, 1, 9	-00-
	8	1000 🗸	1,5	0-01	0, 8, 2, 10	-0-0
	(5	0101	1,9	-001 ✓	2, 6, 10, 14	10
group 2	6	0110		0-10 ✓	2, 10, 6, 14	10
	9	1001 🗸		-010 ✓		
	10	1010 🗸	8,9	100- ✓		
2	7	0111 /	8, 10	10-0 ✓		
group 3 1	14	0111 V	5, 7	01 - 1		
			6, 7	011-		
			6, 14	-110·√		
			10, 14	1-10 ✓		

- Sort the binary minterms into groups according to the number of 1's in each term
- 2. Compare the terms in adjacent groups. Each time a term is combined with another term, it is checked off
- 3. Compare terms which have dashes in corresponding places and which differ by exactly one in the number of 1's
- Keep comparing terms and forming new groups of terms and new columns until no further terms can be combined
- 5. Terms which have not been checked off prime implicant

The function is equal to the sum of its prime implicants

$$f = acd + abd + abc + bc' + bd' + cd'$$
(1,5) (5,7) (6,7) (0,1,8,9) (0,2,8,10) (2,7,10,14)

Using the consensus theorem to eliminate redundant terms yields

$$f = a'bd + b'c' + cd'$$

Definition: Given a function F of n variables, a product term P is an implicant of F iff for every combination of values of the n variables for which P=1, F is also equal to 1.

Definition: A Prime implicant of a function F is a product term implicant which is no longer an implicant if any literal is deleted from it.

The Prime Implicant Chart

		0	1	2	5	6	<u> </u>	7	8	9	10	14
(0,1,8,9)	$b^{'}c^{'}$	X	X						X	\otimes		
(0, 2, 8, 10)	b'd'	X		X					X		X	
(2, 6, 10, 14)	cd			X		7	K				X	\otimes
(1,5)	acd		X		7	K						
(5,7)	a ['] bd]	X		X				
(6,7)	a'bc						X	X				

- ◆ If a given column contains only one X, the corresponding row is an EPI
- ◆ Each time a prime implicant is selected for inclusion in the minimum sum, the corresponding row & columns should be crossed out (see next slide)

The resulting chart (Table 6-3)

a'bd is essential?

The resulting minimum sum of products is

$$f = b'c' + cd' + a'bd$$

Example: cyclic prime implicants (two more X's in every column in chart)

$$F = \sum m(0, 1, 2, 5, 6, 7)$$

Derivation of prime implicants

The resulting prime implicant chart (Table 6-4)

One solution:

$$F = a'b' + bc' + ac$$

Again starting with the other prime implicant that covers column 0.

The resulting table (Table 6-5)

Finish the solution and show that

$$F = ac' + bc + ab.$$

Notice

- ◆ Compare the previous two solutions with Fig. 5-9
- ◆ Each minterm can be covered by two different loops vs. each minterm can be covered by two different prime implicants

- Technique to determine all minimum SOP solutions from a PI chart
- As the # of variables increases, the complexity of the PI chart increases significantly
- Before applying Petrick's method, all EPI's and the minterms they cover should be removed from the chart

- Reduce the PI chart by eliminating EPI rows & corresponding columns
- 2. Label the rows of the reduced PI chart P₁, P₂, P₃, etc
- 3. Form a logic function P
- 4. Reduce P to a minimum SOP by multiplying out and applying (X+Y)(X+Z)=X+YZ and X+XY=X
- 5. Each term represents a solution
- 6. Choose the term which has minimum total number of literals

- A technique for determining all minimum SOP solution from a PI chart

Because we must cover all of the minterms, the following function must be true:

$$P = (P_1 + P_2)(P_1 + P_3)(P_2 + P_4)(P_3 + P_5)(P_4 + P_6)(P_5 + P_6) = 1$$
minterm0 minterm1

- Reduce P to a minimum SOP

First, we multiply out, using (X+Y)(X+Z) = X+YZ and the ordinary Distributive law

$$P = (P_1 + P_2 P_3)(P_4 + P_2 P_6)(P_5 + P_3 P_6)$$

$$= (P_1 P_4 + P_1 P_2 P_6 + P_2 P_3 P_4 + P_2 P_3 P_6)(P_5 + P_3 P_6)$$

$$= P_1 P_4 P_5 + P_1 P_2 P_5 P_6 + P_2 P_3 P_4 P_5 + P_2 P_3 P_5 P_6 + P_1 P_3 P_4 P_6$$

$$+ P_1 P_2 P_3 P_6 + P_2 P_3 P_4 P_6 + P_2 P_3 P_6$$

Use X+XY=X to eliminate redundant terms from P

$$P = P_1 P_4 P_5 + P_1 P_2 P_5 P_6 + P_2 P_3 P_4 P_5 + P_1 P_3 P_4 P_6 + P_2 P_3 P_6$$

- Choose P1,P4,P5 or P2,P3,P6 for minimum solution

$$F = a'b' + bc' + ac$$
 or $F = a'c' + b'c + ab$.

Simplification of Incompletely Specified Functions

- ◆How to modify Q-M when don't care terms are present?
 - ❖ To find the prime implicants, we treat X's as if they are required minterms
 - When forming the prime implicant chart, X's are not listed at the top

Simplification of Incompletely Specified Functions

Example:

$$F(A, B, C, D) = \sum m(2,3,7,9,11,13) + \sum d(1,10,15)$$

Don't care terms are treated like required minterms...

Simplification of Incompletely Specified Functions

Don't care columns are omitted when forming the PI chart...

$$F = B'C + CD + AD$$

Replace each term in the final expression for F

$$F = (m_2 + m_3 + m_{10} + m_{11}) + (m_3 + m_7 + m_1 + m_{15}) + (m_9 + m_{11} + m_{13} + m_{15})$$

The don't care terms in the original truth table for F

for
$$ABCD = 0001$$
, $F = 0$; for 1010 , $F = 1$; for 1111 , $F = 1$

Simplification Using Map-Entered Variables

- Quine-McCluskey method : not efficient for functions which have many variables & few terms
- Extend K-map: to have variables in the map entry
 Fig 6-1: 4 variable map with two additional variables entered in the map
- When E appears in the map
 - \Leftrightarrow if E = 1, the corresponding minterm is present
 - ❖ if E = 0, the minterm is absent
- $G = m_0 + m_2 + m_3 + Em_5 + Em_7 + Fm_9 + m_{11} + m_{15} + (don't care terms)$

Simple Example

- F = A'B'C + A'BC + A'BC'D + ABCD + (AB'C) Choose D as a map-entered variable. Why?
- How to solve?
 - ❖ when D = 0: Fig 6-2(a) F = A'C
 - ❖ when D = 1: Two 1's already covered, they are changed to X's. (Fig 6-2(b))F = C + A'B
 - Combining these two F = A'C + D(C+A'B) = A'C + CD + A'BD
 - verify using 4 variable map

General Method

- ◆ If a variable P_i is placed in square m_j of a map of a function F, this means that F = 1 when P_i = 1 and the variables are chosen so that m_i = 1
- - ❖ MS_0 : minimum sum obtained by setting $P_1=P_2=...=0$
 - ❖ MS₁: minimum sum obtained by setting P₁=1, P₂=0(j!=1), and replacing all 1's on the map with don't cares
 - ❖ MS₂: minimum sum obtained by setting P₂=1, Pj =0(j!=2), and replacing all 1's on the map with don't cares
 - *****

Example

- $G = m_0 + m_2 + m_3 + Em_5 + Em_7 + Fm_9 + m_{11} + m_{15} + (don't care terms)$
- $G = MS_0 + P_1MS_1 + P_2MS_2 + ...$ = A'B'+ACD+EA'D+FAD
- Verify the result using 6 variable map at home

