

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90354 A1

(51) International Patent Classification⁷: C12N 15/12, 15/85, 15/86, C07K 14/47, 16/18, C12Q 1/68, G01N 33/577, A61K 31/713, 38/18, A01K 67/027

(21) International Application Number: PCT/GB01/02240

(22) International Filing Date: 21 May 2001 (21.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0012186.3

20 May 2000 (20.05.2000) GB

(71) Applicant (for all designated States except US): UNIVER-SITY OF LEEDS [GB/GB]; Leeds LS2 9JT (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MARKHAM, Alexander, Fred [GB/GB]; Molecular Medicine Unit, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF (GB). JACKSON, Andrew, Peter [GB/GB]; Molecular Medicine Unit, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF (GB). WOODS, Christopher, Geoffrey [GB/GB]; Molecular Medicine Unit, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF (GB).

- (74) Agent: HARRISON GODDARD FOOTE; Belgrave Hall, Belgrave Street, Leeds LS2 8DD (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TREATMENT OF CANCER AND NEUROLOGICAL DISEASES

(57) Abstract: The present invention relates to a nucleic acid molecule and the protein encoded thereby absence of which is associated with oral and other cancers and lack of neurogenesis. The invention also provides antibodies and the use of these products as therapeutic and/or diagnostic agents in gene therapy and/or tissue repair.

01/90354 A1

Treatment of Cancer and Neurological Diseases

The present invention relates to the isolation of a nucleic acid molecule and the protein encoded thereby; antibodies raised thereto and the use of these products as therapeutic and/or diagnostic agents particularly, but not exclusively, in gene therapy and/or tissue repair such as, without limitation enhancing neuronal repair /regeneration and in the treatment of cancer.

Background to the Invention

10

15

20

30

: ::::

`5

Oral cancer has significant morbidity and mortality rates. In England and Wales the 5-year survival is around 50%. Globally, oral cancer is one of most common cancers and in some parts of the world it is the most prevalent of all cancer types. For example, in India and Sri Lanka oral cancer accounts for up to 40% of all diagnosed cancers. In addition to geographic "hot spots", there seems to be a rising trend in the increased incidence of oral cancers in many developed nations.

Recent advances in cancer management have failed to impact significantly on the outcome of oral cancer. Surgery and radiotherapy remain the principle forms of treatment with a limited role for chemotherapy. Treatment can be mutilating and is associated with high morbidity that significantly impacts on the quality of life. Speech, swallowing and taste can be markedly impaired after treatment. New treatment modalities are required for oral cancer therapy.

25 Statement of the Invention

We have identified a gene, from human chromosome 8p23, which is deleted in oral cancer. The gene was found to have distant similarity to the gene encoding the protein "tolloid"; and contains multiple Sushi and CUB domains. We believe that this gene may have utility in diagnosis and gene therapy applications for oral and other cancers.

5

10

Moreover, and surprisingly, the gene from human chromosome 8p23 may also be implicated in aspects of the developmental regulation of neurogenesis. We base this belief on our observations that the gene has similarity with tolloid, an important developmental gene, and the fact that it is located in the autosomal recessive microcephaly locus, MCPH1, critical region. Sequence variations in this gene can segregate with microcephaly in some families. It therefore may have utility in the diagnosis and therapy of microcephaly, as well as therapies directed to neuronal repair and regeneration, including those utilising stem cells/neural progenitor cells. Having identified this gene we believe that a further use is in the production of transgenic animals. These may have an increased predisposition to oral cancer and/or have decreased or potentially increased neocortex. Such animals would be useful not only as models of oral cancer for the evaluation of novel therapeutics but also to improve understanding of neurological developmental abnormalities. They would also serve as models to test novel therapeutics for neuronal regeneration.

15

20

25

30

According to a first aspect of the present invention there is provided an isolated nucleic acid selected from the group consisting of:

- (a) DNA having the nucleotide sequence given herein as any one of SEQ ID NOS:1 TO 8;
- (b) nucleic acids which hybridize to DNA of (a) above (e.g., under stringent conditions);
- (c) nucleic acids having between 75-95% homology with any one of the nucleotide sequences given herein as SEQ ID NOS:1 to 8; and
- (d) nucleic acids which differ from the DNA of (a), (b) or (c) above due to the degeneracy of the genetic code.

DNAs of the present invention include those coding for proteins homologous to, and having essentially the same biological properties as, the proteins disclosed herein, and particularly the DNA disclosed herein as any one of SEQ ID NOS:1 to 8 and encoding the proteins given herein as SEQ ID NOS:9 to 16 This definition is intended to encompass natural allelic variations therein. Thus, isolated DNA or

cloned genes of the present invention can be of any species of origin, including mouse, rat, rabbit, cat, porcine, and human, but are preferably of-mammalian origin. Thus, DNAs which hybridize to DNA disclosed herein as any one of SEQ ID NOS:1 to 8 (or fragments or derivatives thereof which serve as hybridization probes as discussed below) and which code on expression for a protein of the present invention (e.g., a protein according to any one of SEQ ID NOS: 9 to 16), i.e. the protein lack of which is associated with oral or other cancers and/or lack of neurogenesis of the present invention are to be included in the definition.

5

10

15

20

25

30

Conditions which will permit other DNAs which code on expression for a protein of the present invention to hybridize to the DNAs of SEQ ID NO:1 to 8 disclosed herein can be determined in accordance with known techniques. For example, hybridization of such sequences may be carried out under conditions of reduced stringency, medium stringency or even stringent conditions (e.g., conditions represented by a wash stringency of 35-40% Formamide with 5x Denhardt's solution, 0.5% SDS and 1x SSPE at 37°C; conditions represented by a wash stringency of 40-45% Formamide with 5x Denhardt's solution, 0.5% SDS, and 1x SSPE at 42°C; and conditions represented by a wash stringency of 50% Formamide with 5x Denhardt's solution, 0.5% SDS and 1x SSPE at 42°C, respectively) to DNAs of SEQ ID NO:1 to 8 disclosed herein in a standard hybridization assay. See, e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual (2d Ed. 1989) (Cold Spring Harbor Laboratory). In general, sequences which code for proteins of the present invention and which hybridize to the DNAs of SEQ ID NO:1 to 8 disclosed herein will be at least preferably 75% homologous, 85% homologous, and even 95% homologous or more with SEQ ID NO:1 to 8. Further, DNAs which code for proteins of the present invention, or DNAs which hybridize to that given as any one of SEQ ID NOS:1 to 8, but which differ in codon sequence from SEQ ID NO:1 to 8 due to the degeneracy of the genetic code, are also an aspect of this invention. The degeneracy of the genetic code, which allows different nucleic acid sequences to code for the same protein or peptide, is well known in the literature. See, e.g., U.S. Patent No. 4,757,006 to Toole et al. at Col. 2, Table 1.

According to a yet further aspect of the invention there is provided a nucleic acid molecule which encodes a protein lack of which is associated with oral or other cancers and/or lack of neurogenesis and comprises a nucleotide sequence which hybridises to the nucleic acid of any one of SEQ ID NOS:1 to 8 under high stringency conditions.

Preferably, hybridisation occurs under stringent conditions such as 1 x SSC, 0.1% SDS at 65 °C.

Preferably, the nucleic acid is mammalian in origin, for example it may be human or murine.

5

20

25

30

Preferably, the nucleic acid of the present invention is at least 2kb and up to 12 kb and may be, for example 5.5kb. The nucleic acid being located on chromosome 8p23.

According to a yet further aspect of the invention there is provided use of the nucleic acid of the present invention, in determining loss of genomic material or loss of expression of mRNA in selected target tissue(s) for diagnosing oral or other cancers and/or neurological developmental abnormalities.

According to a yet further aspect of the invention there is provided use of the nucleic acids of the present invention, in determining the presence of mutants in the DNA and thus diagnosing patients suffering from oral or other cancers and/or neurological developmental abnormalities.

According to a further aspect of the invention there is provided a polypeptide, or a protein comprising an epitope for an antibody or a protein modified by one or more amino acid modifications and comprising an epitope, or a fragment modified or unmodified comprising an epitope for a protein lack of which is associated with oral

or other cancers and/or neurogenesis and encoded by SEQ ID NO:9 to 16. Ideally the polypeptide is encoded by the nucleic acid molecule of any one of SEQ ID NO:1 to 8.

According to a yet further aspect of the invention there is provided a polypeptide or protein encoded by the nucleic acids of the present invention, preferably the sequences of which are as set forth in SEQID NOS:9 to 16.

: :::::

10

15

20

25

According to a yet further aspect of the invention there is provided a delivery vehicle comprising the isolated nucleic acid molecule or polypeptide or protein of the present invention or antibodies to these.

Reference herein to the term delivery vehicle is intended to include any vector whether a viral vector or otherwise for example, without limitation, an adenovirus, a retrovirus, a herpesvirus, a plasmid, a phage, a phagemid or a liposome.

Ideally said delivery vehicle is adapted for administration, for example, but without limitation, by suitable formulation into a suspension.

More preferably, said delivery vehicle is adapted to deliver said nucleic acid molecule or polypeptide to selected tissue. Thus the delivery vehicle is provided with means to facilitate its binding and/or penetration to a specific target site. The nature of the means comprises conventional technologies well known to those skilled in the art for example, without limitation, in the instance where the delivery vehicle is a viral vector said viral vector is provided with surface protein adapted to ensure the viral vector binds to and/or penetrates specific target tissues. Alternatively, gene expression of any one of SEQ ID NOS:1 to 8 may be under the control of a tissue specific promoter. Thus, in this way, the nucleic acid molecule or peptide, fragments or derivatives thereof of the invention can be used in gene therapy treatments.

According to a yet further aspect of the invention there is provided antibodies raised against the polypeptide, fragment or derivative thereof, of the invention. Ideally the antibodies are monoclonal and more ideally genetically engineered to be humanised. It will be apparent to those skilled in the art that the antibodies of the invention can be used to determine the expression of the polypeptide of the invention in selected target tissue and thus aid in the diagnosis of patients suffering from oral cancers and/or neurological disorders.

According to a yet further aspect of the invention there is provided use of antibodies, fragments or derivatives thereof in diagnosis/detection/identification of oral or other cancers and/or neurological disorders. It will be appreciated that the antibodies as well as the fragments or derivatives of the antibodies recognise the epitope and are capable of binding to the antigenic protein. Also useful are recombinant antibodies. The invention also includes antibodies and other compositions of matter which are specific binding partners of the polyamino acids of the present invention. Reference herein to polyamino acids is intended to include proteins and polypeptides.

10

15

20

25

The invention further provides for assays using the antibodies of the present invention to detect individuals suffering from or having a predisposition towards oral or other cancers and/or neurological disorders. The assays may employ labelling, for example radioactive labels, enzymes, fluorescent compounds, chemiluminescent compounds, bioluminescent compounds and metal chelates.

Typical assays include assays known to the skilled person for quantitative or non-quantitative detection of antibodies and all involve contacting antigenic polypeptides of the present invention with a sample. The assay may involve for example and without limitation any one or more of the following techniques, RIA, EIA, ELISA, sandwich assays.

According to a yet further aspect of the invention there is provided a method for the treatment of oral cancers and/or neurological disorders comprising administering to a

patient suffering from these conditions the nucleic acid molecule or polypeptide/protein of the present invention.

Preferably, the nucleic acid molecule and/or polypeptide/protein is administered by the incorporation of said nucleic acid molecule or polypeptide/protein into a delivery vehicle as herein described and ideally the method of treatment involves the use of gene therapy.

According to a yet further aspect of the invention there is the nucleic acid and/or protein, as herein before described for use as a pharmaceutical.

According to a yet further aspect of the invention there is provided use of the nucleic acid and/or protein of the present invention for the manufacture of a medicament for the treatment of oral or other cancers and/or neurological disorders.

15

5

10

According to a yet further aspect of the invention there is provided a method of producing a transgenic non-human animal comprising disrupting a gene, or the effective part thereof, the gene comprising the nucleic acid of the present invention and/or the protein or effective part thereof of the present invention.

20

Reference herein to disruption is intended to include complete or partial disruption of expression of the protein such that the transgenic animal is unable to express levels of the said protein that are typically found in normal individuals as compared with those suffering from oral cancer and/or neurological developmental abnormalities.

25

Preferably, the transgenic mammal is a rodent and ideally a mouse and more preferably the gene encoding the protein lack of which is associated with oral cancer and/or neurogenesis is the nucleic acid molecule or fragment or derivative thereof as set forth in any one of SEQ ID NOS:1 to 8.

According to a yet further aspect of the invention there is provided a transgenic non-human animal whose somatic and germ cells do not contain or express a gene encoding a nucleic acid, or a nucleic acid which hybridises under high stringency conditions to, the sequence as set forth in any one of SEQ ID NOS:1 to 8, the gene having been deleted, mutated or disrupted in the animal or an ancestor of the animal at an embryonic stage and wherein the gene may be operably linked to an inducible promoter element.

Preferably, the transgenic mammal is a rodent and ideally a mouse.

10

:53

According to a yet further aspect of the invention there is provided a reporter gene construct based on the promoter region of the gene, or effective part thereof, encoded by any one of SEQ ID NOS:1 to 8 i.e. the nucleic acid of the present invention.

- According to a yet further aspect of the invention there is provided use of a reporter gene construct based on the promoter region of a gene, or effective part thereof, encoded by any one of SEQ ID NOS:1 to 8 in the detection/screening of pharmaceuticals and/or other compounds.
- According to a yet further aspect of the invention there is provided a method of determining the presence of or predisposition towards oral or other cancers and/or neurological developmental abnormalities comprising:
 - (i) identifying the regions of said DNA sample that contain the nucleic acid according to the present invention;
 - (ii) individually hybridising parallel samples of said DNAs with oligonucleotides specific for alleles of the gene encoding any one of said nucleic acids; and
 - (iii) identifying from among said DNA samples those with a loss of heterozygosity for said alleles, wherein identification of a DNA sample with a loss of heterozygosity indicates presence or a predisposition towards neurological developmental abnormalities.

30

Preferably, the DNA sample is obtained from a human patient, alternatively RNA samples may be obtained and used in the method.

Preferably, step (i) may involve amplification of the DNA regions, typically amplification is by PCR.

Brief Description of the Figures

The invention will now be described by way of example only with reference to the following Figures wherein:

Figure 1 represents haplotypes for nine markers from 8p22-pter, for families 1 and 2 segregating autosomal recessive microcephaly. Unaffected siblings from family 1 have been omitted, for clarity. Marker order and relative distances are presented here as deduced from the Généthon map: D8S504-3cM-D8S1824-3cM-D8S1798-3cM-D8S277-2cM-D8S1819-5cM-D8S1825-13cM-D8S552-5cM-D8S1731-5cM-D8S261.

Figure 2 represents sequenced BAC's in this region from the human genome project.

Position of candidate gene sequences 5R-3V2 (SEQ ID NO:5) and 5G-3V2 (SEQ ID NO:3) shown in blue (numbering corresponding to base-pair position in sequence). Sequenced BACs shown in red. BAC clone contig of [Sun, 1999 #387] shown in black, and STSs derived from this contig shown mapped onto the sequenced BACs by the vertical dashed black lines

25

10

15

Figure 3 represents the relationship between SEQ ID NO:1 and the sequence variants of SEQ ID NOS:2 to 8 (not to scale).

SEQ ID NO:1 to 8 represent the nucleic acids of the present invention.

30

SEQ ID NOS: 9 to 16 represent the corresponding protein sequences.

5

10

15

Materials and Methods

Subjects and Methods

A family containing five individuals affected with primary autosomal recessive microcephaly was ascertained. The family originated from the Mirpur region of Pakistan (Fig. 1, family 1). According to the clinical histories, the family confirmed that microcephaly was present from birth in all affected individuals and that there was no history of epilepsy in affected individuals. On examination, head circumferences were 5-9 SD below the population age-related mean. The affected individuals examined were 13-28 years old, and mental retardation ranged from mild to moderate in severity. None were able to read or write, but all could speak and had basic self-care skills. Except for microcephaly, there were no dysmorphic features. No affected individual had a sloping forehead, such as that described by Penrose (Cowie 1960), examination did not reveal weakness, spasticity or athertosis. Computed tomography had been performed on one affected individual at 5 years of age and results were normal. No environmental causes of microcephaly were identified. All parents appeared to be of normal intelligence and had normal head circumferences.

20

A further eight multiply affected consanguineous families were ascertained, with a total of 23 affected individuals displaying primary microcephaly. All of these families also originated from the Mirpur region of Pakistan and had pedigrees consistent with autosomal recessive inheritance.

25

30

DNA Extraction and Microsatellite Analysis

DNA was extracted from peripheral blood lymphocytes by means of a standard nonorganic extraction procedure. The ABI Prism linkage mapping primer set was used to perform a genomewide search. This panel contains 358 microsatellite repeat markers spaced at ~10-cM intervals, with an average heterozygosity of 0.81. PCR amplification of all the autosomal markers was performed according to the

manufacturer's specifications. Amplified markers were pooled and electrophoresed on the ABI Prism 377 gene sequencer with a 4.2% polyacrylamide gel at 3000 V and 52°C for 2 h. Fragment-length analysis was performed using the ABI Prism Genescan and Genotyper 1.1.1 analysis packages.

.5

: ::::

For fine mapping on 8p22-pter, D8S504 and D8S277 from the ABI Prism linkage set were used, and a further seven polymorphic markers from the Genome Database, were selected: tel-D8S1824-D8S1798-D8S1819-D8S1825-D8S552-D8S1731-D8S261-cen. PCR reactions were performed in 10-µl volumes that contained 50 ng genomic DNA; 1µM primers; 250µM each dGTP, dCTP, dTTP, and dATP; 5 U Taq DNA polymerase; and 1 x reaction buffer (1.5-2.0 mM MgCl₂, 10mM Tris-HCl pH 9.0, 50mM KCl, and 0.1% Triton X-100). Amplification was performed with a 5-min initial denaturing step at 95°C; 35 cycles of 94°C for 30 s, 54°C-60°C for 30 s, and 72°C for 30 s; and a final incubation step at 72°C for 5 min.

15

20

25

30

10

Linkage Analysis

A fully penetrant autosomal recessive mode of inheritance was assumed, and the disease allele frequency was estimated at 1/300. Two-point analysis was performed by the LINKAGE analysis programs (Terwilliger and Ott 1994) and HOMOZ-MAPMAKER was used for multipoint anlaysis (Kruglyak et al. 1995). An allele frequency of 0.1 was used in the genome screen for all markers. For further analysis of the candidate region, marker allele frequencies were calculated by genotyping 34 unrelated individuals from the same ethnic population, with a lower limit for allele frequencies set at 0.1. Heterogeneity testing was performed with the HOMOG program (Morton 1955; Terwilliger and Ott 1994).

True Microcephaly was thus mapped to chromosome 8p23 (the MCPH1 locus) (Jackson, 1998) using homozygosity mapping to perform a genomewide search. Refinement of the locus was achieved using further fluorescently labelled primers to microsatellite markers in the region. The overlap between the homozygous regions

from family 1 and 2 (Figure 1) defined the minimal critical region within which the disease gene lies, between D8S1825 and D8S1824. SEQ ID NO 1 maps to this interval on the basis of radiation hybrid mapping data (Genemap 98, Figure 4). This is additionally confirmed from genomic sequence data (SEQ ID NOS: 1 and 9) derived for the gene, which maps the gene to fully sequenced BACs (Figure 2). These BACs map to the critical region by virtue of containing polymorphic markers mapping within the critical region.

Genetic Analysis of Oral Cancers

10

15

20

25

30

1 500

· ·5

Samples of oral cancers were obtained with local Ethics Committee approval from patients undergoing resections of their tumours. DNA was extracted from 20 such tumours and from the corresponding matched normal tissues, by standard techniques well-known in the art, providing 20 pairs of matched normal and oral cancer DNA specimens. Analysis of these paired specimens for loss of particular genetic loci in the tumours, suggestive of the local presence of a tumour suppressor gene, was performed by use of the polymerase chain reaction. Analysis of known microsatellite markers including D8S1806, D8S1824, D8S1781, D8S1788 and D8S262 (see Figure 2) among others, showed frequent loss of one or both alleles at these loci in the majority of the oral tumours. Loss of heterozygosity was particularly frequent at the genetic markers D8S1824, D8S1781 and D8S1788.

The same matched tumour and normal tissue pairs were then compared for alterations in the gene encoding SEQ ID NO:1. In several of these tumours, deletion of both copies of this gene i.e. loss of both alleles, was detected in tumour DNA while PCR products of the expected size were amplified using DNA from matched normal control tissue. In all other cases, the relative amount of PCR amplification product generated using a variety of PCR primer pairs selected within SEQ ID NOS:1 to 8, was markedly reduced in the tumour DNA compared with that generated from normal DNA. In cases where one copy of the gene encoding the SEQ ID NO:1 was apparently retained in tumour tissue, mutations were detected in the remaining DNA

such that the open reading frame encoding the protein of SEQ ID NOS:9 to 16 was disrupted. In every case studied, the change in SEQ ID NOS:1 to 8 resulted in the alteration of a codon encoding a normal amino acid to a mis-sense amino acid or Thus in these cases, the oral cancer cells were unable to termination codon. synthesise the protein of SEQ ID NOS:9 to 16; as a result either of deletion of both copies of the gene described in SEQ ID NOS:1to 8 or as a result of deletion of one copy and truncating or mis-sense mutation in the residual second copy of the gene. This consistent loss of gene expression in tumours is entirely consistent with a role for the protein in SEO ID NOS:9 to 16 as a tumour suppressor protein. It also supports the hypothesis that replacement of a functional gene by provision of the nucleic acid sequence described in SEQ ID NOS:1 to 8 would have therapeutic utility in the treatment of oral and other cancers demonstrating a similar pattern of loss of heterozygosity. Such patterns have been observed in the past for a number of other human malignancies including prostate cancer, breast cancer, ovarian cancer and colorectal cancer. Thus the nucleic acid of SEQ ID NOS:1 to 8 and/or the protein of SEO ID NOS:9 to 16 may find equal utility in the treatment of these other common human cancers.

Accordingly the nucleic acid molecules and proteins encoded thereby of the present invention and products thereof, are of particular use in gene therapy and in identifying those suffering from or with a predisposition towards cancers, particularly oral cancers and neurological diseases.

5

10

References

1. Cowie V (1960). The genetics and sub-classification of microcephaly. J Ment. Defic. Res. 4:42-47.

5

2. Jackson AP, McHale DP, Campbell DA, Jafri H, Rashid Y, Mannan J, Karbani G, Corry P, Levene MI, Mueller RF, Markham AF, Lench NJ, Woods CG (1998). Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am. J. Hum. Genet. 63:541-546.

10

- 3. Morton NE (1955). The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. Am. J. Hum. Genet 7:80-96.
- 4. Terwilliger JD, Ott J (1994). Handbook of human genetic linkage. The Johns Hopkins University Press, Baltimore.
 - 5. Kruglyak L, Daly MJ and Lander ES (1995). Rapid multipart linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am. J. Hum. Genet. 56:519-527.

20

6. Sun PC, Schmidt AP, Pashima ME, Sunwoo JB and Schlmck SB (1999). Homozygous deletions define a region of 8p23.2 containing a putative tumour suppressor gene. Genomics. 62:184-188.

25

30

P32093wo

Claims

1. An isolated nucleic acid, the nucleic acid being selected from the group consisting of:

: 5,50

5

10

25

- (a) DNAs having the nucleotide sequence given herein as any one of SEQ ID NOS:1 to 8;
 - (b) nucleic acids which hybridise to DNAs of (a) above under stringent conditions;
 - (c) nucleic acids having between 75-95% homology with any one of the nucleotide sequences given herein as SEQ ID NOS:1 to 8; and
 - (d) nucleic acids which differ from the DNA of (a), (b) or (c) above due to the degeneracy of the genetic.
- Nucleic acids according to claim 1 wherein the stringent conditions are 1 x
 SSC, 0.1% SDS at 65 °C.
 - 3. Nucleic acids according to claim 1 consisting essentially of any one of SEQ ID NOS:1 to 8.
- 20 4. Nucleic acids according to claim 1 which hybridise to any one of SEQ ID NOS:1 to 8.
 - 5. Nucleic acids according to claim 1 having between 75-95% homology with any one of the nucleotide sequences given herein as SEQ ID NOS:1 to 8.

6. Nucleic acids according to claim 1 which differ from the DNAs of any one of claims 3 to 5.

7. Use of a nucleic acid according to any preceding claim in determining loss of genomic material or loss of expression of mRNA in sample.

8. Use according to claim 7 in detecting the presence of or predisposition towards oral or other cancers and/or neurological developmental abnormalities.

9. Use of a nucleic acid according to any one of claims 1 to 6 in determining the presence of mutants in DNA.

.:5

4.

15

- 10. Use according to claim 9 in identification of patients suffering from oral or other cancers and/or neurological developmental abnormalities.
- 10 11. A polypeptide or a protein encoded by the nucleic acid molecules of any one of claims 1 to 6.
 - 12. A delivery vehicle comprising any one of the isolated nucleic acid molecules of claims 1 to 6 or the polypeptides or proteins encoded thereby or antibodies to these polypeptides or proteins.
 - 13. A delivery vehicle according to claim 12 comprising a viral vector selected from the group comprising an adenovirus, a retrovirus, a herpesvirus, a plasmid, a phage, a phagemid or a liposome
 - 14. A delivery vehicle according to either claim 12 or 13 provided with surface protein adapted to facilitate binding and/or penetration to a specific target.
- 15. A pharmaceutical composition comprising a nucleic acid according to any one of claims 1 to 6, a polypeptide or protein according to claim 11 and/or the delivery vehicle of any one of claims 12 to 14 and a suitable excipient, diluent or carrier.
- 16. Antibodies which are specific binding partners of the polypeptide/protein of claim 11 or fragment or derivative thereof which are capable of binding to the antigenic part of the polypeptide/protein.

17. Antibodies according to claim 16 which are monoclonal and/or genetically engineered to be humanised.

: :::::

10

- 18. Use of antibodies or antibody fragments according to either claim 16 or 17 in determining the presence or level of expression of the polypeptide or protein of claim

 11.
 - 19. Use of antibodies or antibody fragments according to either claim 16 or 17 or fragments or derivatives thereof in detecting the presence or absence of binding partners whose absence is indicative of oral or other cancers and/or neurological disorders.
 - 20. A method for the treatment of oral cancers and/or neurological disorders comprising administering to a patient suffering from or predisposed to these conditions the nucleic acid molecule of any one of SEQ ID NOS:1 to 8 and/or the proteins encoded thereby.
- 21. A nucleic acid according to any one of claims 1 to 6 or polypeptide or protein of claim 11 or delivery vehicle of any one of claims 12 to 14 for use as a pharmaceutical.
 - 22. A polyamino acid as set forth in any one of SEQ ID NOS: 9-16 for use as a pharmaceutical.
- 25 23. Use of the nucleic acids according to any one of claims 1 to 6, for the manufacture of a medicament for the treatment of oral or other cancers and/or neurological disorders.
- 24. A method of producing a transgenic non-human animal comprising disrupting a gene comprising the nucleic acid of any one of claims 1 to 6, or the effective part

: 5:5:

20

thereof, the gene encoding a protein or effective part thereof lack of which is associated with oral or other cancers and/or lack of neurogenesis.

- 25. A method of producing a transgenic non-human animal comprising preventing expression of a protein or polypeptide of claim 11, or the effective part thereof, lack of expression of the protein being associated with oral or other cancers and/or lack of neurogenesis.
- 26. A transgenic non-human animal whose somatic and germ cells do not contain or express a gene encoding a nucleic acid according to any one of claims 1 to 6, the gene having been deleted, mutated or disrupted in the animal or an ancestor of the animal at an embryonic stage and wherein the gene may be operably linked to an inducible promoter element.
- 15 27. A transgenic non-human animal according to any one of claims 24 to 26 wherein the animal is a rodent.
 - 28. A reporter gene construct based on the promoter region of the gene, or effective part thereof, comprising the nucleic acid of any one of claims 1 to 6.
 - 29. Use of a reporter gene construct based on the promoter region of a gene, or effective part thereof, comprising the nucleic acid of any one of claims 1 to 6 in the detection/screening of pharmaceuticals and/or other compounds.
- 25 30. A method of determining the presence of or predisposition towards oral cancer comprising:
 - (i) identifying regions of a DNA sample that contain the nucleic acid according to any one of claims 1 to 6;
- (ii) individually hybridising parallel samples of said DNAs with
 oligonucleotides specific for alleles of the gene encoding any one of
 said nucleic acids; and

(iii) identifying from among said DNA samples those with a loss of heterozygosity for said alleles, wherein identification of a DNA sample with a loss of heterozygosity indicates presence or a predisposition towards oral cancer.

5

- 31. A modified method according to claim 30 wherein the sample comprises RNA.
- 32. A method of determining the presence of or predisposition towards neurological developmental abnormalities comprising:
 - (i) identifying regions of a DNA sample that contain the nucleic acid according to any one of claims 1 to 6;
 - (ii) individually hybridising parallel samples of said DNAs with oligonucleotides specific for alleles of the gene encoding any one of said nucleic acids; and
 - (iii) identifying from among said DNA samples those with a loss of heterozygosity for said alleles, wherein identification of a DNA sample with a loss of heterozygosity indicates presence or a predisposition towards neurological developmental abnormalities.

20

- 33. A modified method according to claim 32 wherein the sample comprises RNA.
- 34. A kit comprising the nucleic acids of any one of claims 1 to 6 and a set of instructions for use thereof.

5

SEQ ID NO:1

cDNA sequence (partial) 5.5kb

ttttagggatggtatgaatttaatatttttagtattacaatatattcttataaaaaaggtccaaqtq aaaaaggcgattgagttgaagtcaagaggagtcaagatgctgcccagcaaggATGGAAGCCATAAAAA CTCTGTCTGGCATATGGAATAACATCAACCATGTGACATCCGAAGAAGATACGTTCATTATGTATCTG 10 GGAAAACCATGGCTTCAAGTGAAAATTCAAGTGAGCCAAGGAGGTGTTGCATTGGTCTCTGACATGTG TCCAGATCCTGGGATTCCAGAAAATGGTAGAAGAGCAGGTTCCGACTTCAGGGTTGGTGCAAATGTAC AGTTTTCATGTGAGGACAATTACGTGCTCCAGGGATCTAAAAGCATCACCTGTCAGAGAGTTACAGAG 15 TCATCACCACCACCGACCGGACAAGGTÇATCAAGCTTGCCTTTGAAGAGTTTGAGCTGGAGCGAGGC TATGACACCCTGACGGTTGGTGATGCTGGGAAGGTGGGAGACACCAGATCGGTCTTGTACGTGCTCAC GGGATCCAGTGTTCCTGACCTCATTGTGAGCATGAGCAACCAGATGTGGCTACATCTGCAGTCGGATG GGAATCCCCGCCTATGGGAAGCGGACGGGCAGCAGTTTCCTCCATGGAGATACACTCACCTTTGAATG 20 CCCGGCGCCTTTGAGCTGGTGGGGGAGAGAGTTATCACCTGTCAGCAGAACAATCAGTGGTCTGGCA ACAAGCCCAGCTGTGTATTTTCATGTTTCTTCAACTTTACGGCATCATCTGGGATTATTCTGTCACCA AATTATCCAGAGGAATATGGGAACAACATGAACTGTGTCTGGTTGATTATCTCGGAGCCAGGAAGTCG AATTCACCTAATCTTTAATGATTTTGATGTTGAGCCTCAATTTGACTTTCTCGCGGTCAAGGATGATG GCATTTCTGACATAACTGTCCTGGGTACTTTTTCTGGCAATGAAGTGCCTTCCCAGCTGGCCAGCAGT 25 GGGCATATAGTTCGCTTGGAATTTCAGTCTGACCATTCCACTACTGGCAGAGGGTTCAACATCACTTA CACCACATTTGGTCAGAATGAGTGCCATGATCCTGGCATTCCTATAAACGGACGACGTTTTGGTGACA GGTTTCTACTCGGGAGCTCGGTTTCTTTCCACTGTGATGATGGCTTTGTCAAGACCCAGGGATCCGAG TCCATTACCTGCATACTGCAAGACGGGAACGTGGTCTGGAGCTCCACCGTGCCCCGCTGTGAAGCTCC ATGTGGTGGACATCTGACAGCGTCCAGCGGAGTCATTTTGCCTCCTGGATGGCCAGGATATTATAAGG 30 ATTCTTTACATTGTGAATGGATAATTGAAGCAAAACCAGGCCACTCTATCAAAATAACTTTTGACAGA CGGCGAGTACCACGGCACCCAGGCACCCCAGTTCCTCATCAGCACCGGGAACTTCATGTACCTGCTAT TCACCACTGACAACAGCCGCTCCAGCATCGGCTTCCTCATCCACTATGAGAGTGTGACGCTTGAGTCG GATTCCTGCCTGGACCCGGGCATCCCTGTGAACGGCCATCGCCACGGTGGAGACTTTGGCATCAGGTC 35 CACAGTGACTTTCAGCTGTGACCCGGGGTACACACTAAGTGACGACGAGCCCCTCGTCTGTGAGAGGA ACCACCAGTGGAACCACGCCTTGCCCAGCTGCGACGCTCTATGTGGAGGCTACATCCAAGGGAAGAGT GGAACAGTCCTTTCTCCTGGGTTTCCAGATTTTTATCCAAACTCTCTAAACTGCACGTGGACCATTGA AGTGTCTCATGGGAAAGGAGTTCAAATGATCTTTCACACCTTTCATCTTGAGAGTTCCCACGACTATT TACTGATCACAGAGGATGGAAGTTTTTCCGAGCCCGTTGCCAGGCTCACCGGGTCGGTGTTGCCTCAT 40 ACGATCAAGGCAGGCCTGTTTGGAAACTTCACTGCCCAGCTTCGGTTTATATCAGACTTCTCAATTTC GTACGAGGGCTTCAATATCACATTTTCAGAATATGACCTGGAGCCATGTGATGATCCTGGAGTCCCTG CCTTCAGCCGAAGAATTGGTTTTCACTTTGGTGTGGGAGACTCTCTGACGTTTTCCTGCTTCCTGGGA GCCAAGGTGTGTGGCCGAATGTGGAGCAAGTGTCAAAGGAAATGAAGGAACATTACTGTCTCCAAATT 45 TTCCATCCAATTATGATAATAACCATGAGTGTATCTATAAAATAGAAACAGAAGCCGGCAAGGGCATC CACCTTAGAACACGAAGCTTCCAGCTGTTTGAAGGAGATACTCTAAAGGTATATGATGGAAAAGACAG TTCCTCACGTCCACTGGGCACGTTCACTAAAAATGAACTTCTGGGGCTGATCCTAAACAGCACATCCA ATCACCTGTGGCTAGAGTTCAACACCAATGGATCTGACACCGACCAAGGTTTTCAACTCACCTATACC AGTTTTGATCTGGTAAAATGTGAGGATCCGGGCATCCCTAACTACGGCTATAGGATCCGTGATGAAGG 50 TGACCTGTTTGAGTGGAGACAGGAGAGTGTGGGACAAACCACTACCTTCGTGCATAGCGGAATGTGGT GGTCAGATCCATGCAGCCACATCAGGACGAATATTGTCCCCTGGCTATCCAGCTCCGTATGACAACAA CCTCCACTGCACCTGGATTATAGAGGCAGACCCAGGAAAGACCATTAGCCTCCATTTCATTGTTTTCG ACACGGAGATGGCTCACGACATCCTCAAGGTCTGGGACGGGCCGGTGGACAGTGACATCCTGCTGAAG 55 CAGCGACTTCTTCATCAGCAAGTCTGGCTTCTCCATCCAGTTCTCCACCTCAATTGCAGCCACCTGTA ACGATCCAGGTATGCCCCAAAATGGCACCCGCTATGGAGACAGCAGAGAGGGCTGGAGACACCGTCACA TTCCAGTGTGACCCTGGCTATCAGCTCCAAGGACAAGCCAAAATCACCTGTGTGCAGCTGAATAACCG GTTCTTTTGGCAACCAGACCCTCCTACATGCATAGCTGCTTGTGGAGGGAATCTGACGGGCCCAGCAG 60 GTGAACCCGGACTTTGTCATCGCCTTGATATTCAAAAGTTTCAACATGGAGCCCAGCTATGACTTCCT

ACACATCTATGAAGGGGAAGATTCCAACAGCCCCCTCATTGGGAGTTACCAGGGCTCTCAGGCCCCAG AAAGAATAGAGAGTAGCGGAAACAGCCTGTTTCTGGCATTTCGGAGTGATGCCTCCGTGGGCCTTTCA GÁCAAGAGTTGGAACAGACTTCAAGCTTGGCTCCACCATCACCTACCAGTGTGACTCTGGCTATAAGA 5 TTCTTGACCCCTCATCCATCACCTGTGTGATTGGGGCTGATGGGAAACCCTCCTGGGACCAAGTGCTG CCCTCCTGCAATGCTCCCTGTGGAGGCCAGTACACGGGATCAGAAGGGGTAGTTTTATCACCAAACTA CCCCCATAATTACACAGCTGGTCAAATATGCCTCTATTCCATCACGGTACCAAAGGAATTCGTGGTCT TTGGACAGTTTGCCTATTTCCAGACAGCCCTGAATGATTTTGGCAGAATTATTTGATGGAACCCATGCA CAGGCCAGACTTCTCAGCTCACTCTCGGGGTCTCACTCAGGGGAAACATTGCCCTTGGCTACGTCAAA TCAAATTCTGCTCCGATTCAGTGCAAAGAGCGGTGCCTCTGCCCGCGGCTTCCACTTCGTGTATCAAG 10. CTGTTCCTCGTACCAGTGACACCCAATGCAGCTCTGTCCCCGAGCCCAGATACGGAAGGAGAATTGGT TCTGAGTTTTCTGCCGGCTCCATCGTCCGATTCGAGTGCAACCCGGGATACCTGCTTCAGGGTTCCAC GGCGCTCCACTGCCAGTCCGTGCCCAACGCCTTGGCACAGTGGAACGACACGATCCCCAGCTGTGTGG TACCCTGCAGTGGCAATTTCACTCAACGAAGAGGTACAATCCTGTCCCCCGGCTACCCTGAGCCATAC 15 GGAAACAACTTGAACTGTATATGGAAGATCATAGTTACGGAGGGCTCGGGAATTCAGATCCAAGTGAT CAGTTTTGCCACGGAGCAGAACTGGGACTCCCTTGAGATCCACGATGGTGGGGATGTGACCGCACCCA CATTTCCAGTCTGACATTAGTGTGGCAGCTGCTGGTTTCCACCTGGAATACAAAACTGTAGGTCTTGC TGCATGCCAAGAACCAGCCCTCCCCAGCAACAGCATCAAAATCGGAGATCGGTACATGGTGAACGACG TGCTCTCCAGTGCGAGCCCGGGTACACCCTGCAGGGCCGTTCCCACATTTCCTGTATGCCAGGG 20 ACCGTTCGCCGTTGGAACTATCCGTCTCCCCTGTGCATTGCAACCTGTGGAGGGACGCTGAGCACCTT GGGTGGTGTGATCCTGAGCCCCGGCTTCCCAGGTTCTTACCCCAACAACTTAGACTGCACCTGGAGGA TCTCATTACCCATCGGCTATGGTGCACATATTCAGTTTCTGAATTTTTCTACCGAAGCTAATCATGAC TTCCTTGAAATTCAAAATGGACCTTACCACACCAGCCCCATGATTGGACAATTTAGCGGCACGGATCT 25 CCCCGCGGCCTGCTGAGCACAACGCATGAAACCCTCATCCACTTTTATAGTGACCATTCGCAAAACC GGCAAGGATTTAAACTTGCTTACCAAGCCTATGAATTACAGAACTGTCCAGATCCACCCCCATTTCAG **AATGGGTACATGATCAACTCGGATTACAGCGTGGGGCAATCAGTATCTTTCGAGTGTTATCCTGGGTA** CATTCTAATAGGCCATCCTCCG

SEQ ID NO:2

				2 1D NO.2		
		cleotide sec	quence	6145 bp		*******
: 575-	; 1	TTTTAGGGAT	GGTATGAATT	TAATATTTT	TAGTATTACA	ATATATTCTT
	51	ATAAAAAAGG	TCCAAGTGAA	AAAGGCGATT	GAGTTGAAGT	CAAGAGGAGT
5	101	CAAGATGCTG	CCCAGCAAGG	ATGGAAGCCA	TAAAAACTCT	GTCTGGCATA
	151	TGGAATAACA	TCAACCATGT	GACATCCGAA	GAAGATACGT	TCATTATGTA
	201	TCTGGGAAAA	.CCATGGCTTC	AAGTGAAAAT	TCAAGTGAGC	CAAGGAGGTG
	-251	TTGCATTGGT	CTCTGACATG	TGTCCAGATC	CTGGGATTCC	AGAAAATGGT
* ***	4 301	AGAAGAGCAG	GTTCCGAÇTT	CAGGGTTGGT	GCAAATGTAC	AGTTTTCATG
10	351	TGAGGACAAT	TACGTGCTCC	AGGGATCTAA	AAGCATCACC	TGTCAGAGAG
٠	401	TTACAGAGAC	GCTCGCTGCT	TGGAGTGACC	ACAGGCCCAT	CTGCCGAGCG
	451	AGAACATGTG	GATCCAATCT	GCGTGGGCCC	AGCGGCGTCA	TTACCTCCCC
	501	TAATTATCCG	GTTCAGTATG	AAGATAATGC	ACACTGTGTG	TGGGTCATCA
	551	CCACCACCGA	CCCGGACAAG	GTCATCAAGC	TTGCCTTNGA	AGAGTTTGAG
15	601	CTGGAGCGAG	GCTATGACAC	CCTNACGGTT	GGTGATGCTG	GGAAGGTGGG
	· 651	AGACACCAGA	TCGGTCTTGT	ANGTGCTCAC	GGGATCCAGT	GTTCCTGACC
	701	TCATTGTGAG	CATGAGCAAC	CAGATGTGGC	TACATCTGCA	GTCGGATGAT
	751	AGCATTGGCT	CACCTGGGTT	TAAAGCTGTT	TACCAAGAAA	TTGAAAAGGG
	801	AGGGTGTGGG	GATCCTGGAA	TCCCCGCCTA	TGGGAAGCGG	ACGGGCAGCA
20	851	GTTTCCTCCA	TGGAGATACA	CTCACCTTTG	AATGCCCGGC	GGCCTTTGAG
	901	CTGGTGGGGG	AGAGAGTTAT	CACCTGTCAG	CAGAACAATC	AGTGGTCTGG
	951	CAACAAGCCC	AGCTGTGTAT	TTTCATGTTT	CTTCAACTTT	ACGGCATCAT
	1001	CTGGGATTAT	TCTGTCACCA	AATTATCCAG	AGGAATATGG	GAACAACATG
	1051	AACTGTGTCT	GGTTGATTAT	CTCGGAGCCA	GGAAGTCGAA	TTCACCTAAT
25	1101	СТТТААТСАТ	TTTGATGTTG	AGCCTCAATT	TGACTTTCTC	GCGGTCAAGG
	1151	ATGATGGCAT	TTCTGACATA	ACTGTCCTGG	GTACTTTTTC	TGGCAATGAA
	1201	GTGCCTTCCC	AGCTGGCCAG	CAGTGGGCAT	ATAGTTCGCT	TGGAATTTCA
	1251	GTCTGACCAT	TCCACTACTG	GCAGAGGGTT	CAACATCACT	TACACCACAT
	1301	TTGGTCAGAA	TGAGTGCCAT	GATCCTGGCA	TTCCTATAAA	CGGACGACGT
30	1351	TTTGGTGACA	GGTTTCTACT	CGGGAGCTCG	GTTTCTTTCC	ACTGTGATGA
50	1401	TGGCTTTGTC	AAGACCCAGG	GATCCGAGTC	CATTACCTGC	ATACTGCAAG
	1451	ACGGGAACGT	GGTCTGGAGC	TCCACCGTGC	CCCGCTGTGA	AGCTCCATGT
	1501	GGTGGACATC	TGACAGCGTC	CAGCGGAGTC	ATTTTGCCTC	CTGGATGGCC
	1551	AGGATATTAT	AAGGATTCTT	TACATTGTGA	ATGGATAATT	GAAGCAAAAC
35	1601	CAGGCCACTC	TATCAAAATA	ACTTTTGACA	GATTTCAGAC	AGAGGTCAAT
	1651	TATGACACCT	TGGAGGTCAG	AGATGGGCCA	GCCAGTTCGT	CCCCACTGAT
	1701	CGGCGAGTAC	CACGGCACCC	AGGCACCCCA	GTTCCTCATC	AGCACCGGGA
	1751	ACTTCATGTA	CCTGCTATTS.	ACCACTGACA	ACAGCCGCTC	CAGCATCGGC
	1801	TTCCTCATCC	ACTATGAGAĞ	TGTGACGCTT	GAGTCGGATT	CCTGCCTGGA
40	1851	CCCGGGCATC	CCTGTGAACG	GCCATCGCCA	CGGTGGAGAC	TTTGGCATCA
	1901	GGTCCACAGT	GACTTTCAGC	TGTGACCCGG	GGTACACACT	AAGTGACGAC
	1951	GAGCCCCTCG	TCTGTGAGAG	GAACCACCAG	TGGAACCACG	CCTTGCCCAG
	2001	CTGCGACGCT	CTATGTGGAG	GCTACATCCA	AGGGAAGAGT	GGAACAGTCC
	2051	TTTCTCCTGG	GTTTCCAGAT	TTTTATCCAA	ACTCTCTAAA	CTGCACGTGG
45	2101	ACCATTGAAG	TGTCTCATGG	GAAAGGAGTT	CAAATGATCT	TTCACACCTT
	2151	TCATCTTGAG	AGTTCCCACG	ACTATTTACT	GATCACAGAG	GATGGAAGTT
	2201	TTTCCGAGCC	CGTTGCCAGG	CTCACCGGGT	CGGTGTTGCC	TCATACGATC
	2251	AAGGCAGGCC	TGTTNGGAAA	CTTCACTGCC	CAGCTTCGGT	TTATATCAGA
	2301	СТТСТСААТТ	TCGTACGAGG	GCTTCAATAT	CACATTTTCA	GAATATGACC
50	2351	TECACCCATE	TGATGATCCT	GGAGTCCCTG	CCTTCAGCCG	AAGAATTGGT
50	2401	TTTTCACTTTC	GTGTGGGAGA	CTCTCTGACG	TTTTCCTGCT	TCCTGGGATA
	2451	TCCTTTDCDD	GGTGCCACCA	AGCTTACCTG	CCTGGGTGGG	GGCCGCCGTG
	2501	TCGITIAGAA	ACCTCTGCCA	AGGTGTGTGG	CCGAATGTGG	AGCAAGTGTC
		ANACCANATC	AAGGAACATT	ACTETETECA	AATTTTCCAT	CCAATTATGA
55	2551 2601	MANGGMANIG	GAGTGTATCT	ACTOTOTOM	AACAGAAGCC	GGCAAGGGCA
55		TAMINACCAI	AACACGAAGC	ምምርር አርርጥርጥ	TTCAACCACA	TACTCTAAAG
	2651	CENTRACTIAG	GAAAAGACAG	TTCCACTGI	CCACTEGGCA	CCTTCACTAA
	2701	GIAIAIGAIG	CTGGGGCTGA	TOCTORCUL	CACATCCAAT	CACCTGTGGC
	2751	AAATGAACTT	CACCAATGGA	TOCINARCAG	PCC P PCC LALLA	TCAACTCACC
60	2801	TAGAGTTCAA	TTGATCTGGT	101GACACCG	CATCCCCCCA	TCCCTAACTA
60	2851	TATACCAGTT	ATCCGTGATG	PACCCCACAA	TACCCACACA	CTACTTCTCT
	2901	CGGCTATAGG	CCCGGGGTAC	CCCDACCACII	CCACCACACI	CCTCACCTCT
	2951	ACAGTTGCAA	ACAGGAGAGT	GCCAIGCAIG	CCACTACAC	CCTCCATACC
	3001	TTGAGTGGAG	ACAGGAGAG1	GIGGGACAAA	CONCINCUIT	COLUCATAGO

	2051	CCNNMCMCCM	CCMCN CN TICC	3,5003,0003,0	7 mor cor cor	
	3051			ATGCAGCCAC		
م	3101			GACAACAACC		
	3151			CATTAGCCTC		
5	3201			TCAAGGTCTG		
J	3251			AGTGGCTCCG		
	3301			CCTGCAGTTC		
	3351			AGTTCTCCAC		
•	3401			AATGGCACCC		
10	3451			CCAGTGTGAC		
10	3501 3551			TGCAGCTGAA		
	3601			GCTGCTTGTG		
				CAACTACCCA		
	3651 3701			AAGTGAACCC GAGCCCAGCT		
15	3751					
10	3801			CCCCCTCATT		
	3851			GTAGCGGAAA		
	3901			CTTTCAGGGT TGACCCAGGA		
	3951			TTGGCTCCAC		
20	4001			CCCTCATCCA		
20	4051			CCAAGTGCTG		
	4101			CAGAAGGGGT		
	4151			CAAATATGCC		
•	4201			ACAGTTTGCC		
25	4251			ATGGAACCCA		
25	4301			TCAGGGGAAA		
-	4351			CAGTGCAAAG		
	4401			CTGTTCCTCG		
	4451			TACGGAAGGA		
30	4501			CGAGTGCAAC		
50	4551			AGTCCGTGCC		
	4601			GTGGTACCCT		
	4651			CCCCGGCTAC		
	4701			TCATAGTTAC		
35	4751			ACGGAGCAGA		
	4801			CGCACCCAGA		
	4851			ACAGTACTTC		
	4901			GCAGCTGCTG		
	4'951			CCAAGAACCA		
40	5001			TGGTGAACGA		
	5051			GGCCGTTCCC		•
•	5101	ACCGTTCGCC	GTTGGAACTA	TCCGTCTCCC	CTGTGCATTG	CAACCTGTGG
	5151			GTGGTGTGAT		
	5201			GACTGCACCT		
45	5251	GGCTATGGTG	CACATATTCA	GTTTCTGAAT	TTTTCTACCG	AAGCTAATCA
	5301			ATGGACCTTA		
	5351	GACAATTTAG	CGGCACGGAT	CTCCCCGCGG	CCCTGCTGAG	CACAACGCAT
	5401	GAAACCCTCA	TCCACTTTTA	TAGTGACCAT	TCGCAAAACC	GGCAAGGATT
	5451	TAAACTTGCT	TACCAAGNTA	TGGAACAACA	ACGAGAACCG	AAACCCAAAT
50	5501	CTAAATACAC	TTCTTACATG	TAAATTGTAT	TTAAGTATAA	ATCTCCCTAA
	5551	CTGGTTCCAA	GCTTGTACGA	GTGGAATAAT	TTTTTGGTGG	AATGTTGGTT
	5601	TCTGGTTAGT	AGTGGAACAC	TTGTTGTTTT	TGAAAACAGA	GGTAAGGACA
	5651	CAGACGGAAC	CACCAGTGGG	TTCGCCTTTT	CTGCTGCCCA	GACAGAGCCG
_	5701	ATTTATCAAG	ACGGGAATTG	CAATGGAGAA	AGAGTAATTC	ACGCAGAGCC
55	5751	AGATGTGTGG	GAGACCGGAG	TTTTATTGTG	ACTCAATTCA	GTCTCCCCAG
	5801	CATTCAGGGA	TTCAAGTTTT	TAAAGATAAT	TTGGCGGCCG	GGCGCGGTGG
	5851	CTCACGCCTG	TAATCCCAGC	ACTTTGGAAG	GCCGAGGCGG	GCGGATCACG
	5901			TCCTGGCTAA		
	5951			GCCGGGCATA		
60	6001	CAGCTACTCG	GGAGGCTGAG	GCAGGANAGT	GGCGTGAACC	CGGGAGGCGG
	6051			·CGCGCCACTG		
<u>.</u>	6101	AGCCAGACTC	CATCTCGAAA	ААААААААА	AAAAAAAAA	AAAAA
•						

SEQ ID NO:3

Brank Company	EC-2322 No.	cleotide se	mience	6409 bp		
	36-3V2 Nu		GGTATGAATT		ΤΑΟΤΑΤΤΑ	<u> አጥ</u> ልጥልጥጥርጥጥ
5	51		TCCAAGTGAA			
·	101		CCCAGCAAGG			
	151		TCAACCATGT			
	201		CCATGGCTTC			
1.	, 251		CTCTGACATG			
10	301		GTTCCGACTT			
10	351		TACGTGCTCC			
	401		GCTCGCTGCT			
	451		GATCCAATCT			
	501		GTTCAGTATG			
15	551		CCCGGACAAG			
15	601		GCTATGACAC			
	651		TCGGTCTTGT			
	701		CATGAGCAAC			
	751		CACCTGGGTT			
20	801		GATCCTGGAA			
	· 851		TGGAGATACA			
	901		AGAGAGTTAT			
	951		AGCTGTGTAT			
	1001		TCTGTCACCA			
25	1051		GGTTGATTAT			
	1101		TTTGATGTTG			
	1151		TTCTGACATA			
	1201		AGCTGGCCAG			
	1251	GTCTGACCAT	TCCACTACTG	GCAGAGGGTT	CAACATCACT	TACACCACAT
30	1301	TTGGTCAGAA	TGAGTGCCAT	GATCCTGGCA	TTCCTATAAA	CGGACGACGT
	1351		GGTTTCTACT			
	1401		AAGACCCAGG			
	1451		GGTCTGGAGC			
	1501		TGACAGCGTC			
35	1551	AGGATATTAT	AAGGATTCTT	TACATTGTGA	ATGGATAATT	GAAGCAAAAC
	1601	CAGGCCACTC	TATCAAAATA	ACTTTTGACA	GATTTCAGAC	AGAGGTCAAT
	1651	TATGACACCT	TGGAGGTCAG	AGATGGGCCA	GCCAGTTCGT	CCCCACTGAT
	1701		CACGGCACCC			
	1751		CCTGCTATTC			
40	1801		ACTATGAGAG			
	1851		CCTGTGAACG			
	1901		GACTTTCAGC			
	1951		TCTGTGAGAG			
15	2001		CTATGTGGAG			
45	2051	TTTCTCCTGG			ACTCTCTAAA	
•	2101	ACCATTGAAG	TGTCTCATGG AGTTCCCACG	DAAAGGAGTT	CAMATGATCT	CARCCAACCII
	2151	TCATCTTGAG	CGTTGCCAGG	ACTATTIACT	CCCTCTTCCC	GWI GGWWGII
	2201		TGTTNGGAAA			
50	2251 2301	AAGGCAGGCC	TCGTACGAGG	CITCMCIGCC	CAGCIICGGI	CNADATCAGA
50	2351	TITCICAAII	TGATGATCCT	CCACTCCATAI	CACATTICA	DACAATTICACC
	2401	TOGAGCCATG	GTGTGGGAGA	CTCTCTCACC	TTTTTCCTCCT	TOOTECCATA
	2451		GGTGCCACCA			
	2501		ACCTCTGCCA			
55	2551 2551	10100AG1GC	AAGGAACATT	AGGIGIGIGG	で なっつかかかなる	CCDDTTDTCD
55		MAAGGAAAIG	GAGTGTATCT	ACIGICICCA	DACAGAAGCC	GCCAAGGGCA
	2601 2651	TAMIMACCAI	AACACGAAGC	TICCOCTED	TTGAACCACA	TACTCTAAAG
	2701		GAAAAGACAG			
	2751 2751		CTGGGGCTGA			
60	2801	TACACTACTA CARCIT	CACCAATGGA	TCTGACACCG	ACCAAGGTTT	TCAACTCACC
	2851	TATACCACTT	TTGATCTGGT	AAAATGTGAG	GATCCGGGCA	TCCCTAACTA
	2901	CGGCTATAGG	ATCCGTGATG	AAGGCCACTT	TACCGACACT	GTAGTTCTGT
	2951	ACAGTTGCAA	CCCGGGGTAC	GCCATGCATG	GCAGCAACAC	CCTGACCTGT
						·

	222	mma> cmcc> c	3 C3 CC3 C3 CB	COCCOACAAA	CCACMACCMM	CCTCCNTNCC
	3001	TTGAGTGGAG	ACAGGAGAGT	GTGGGACAAA	AMCACCACCA	TO I GCAI AGC
	3051	GGAATGTGGT	GGTCAGATCC	ATGCAGCCAC	MCCACGACGA	CHCCAMMAN
	3101	CTGGCTATCC	AGCTCCGTAT	GACAACAACC	CARROCARRO	CIGGATIATA
_	3151	GAGGCAGACC	CAGGAAAGAC	CATTAGCCTC TCAAGGTCTG	CCALLICATIO	CTCCACACAC
5	3201	GGAGATGGCT	CACGACATCC.	AGTGGCTCCG	CCCTTCCCCA	CCACATCATCCAC
	3251	ACATCCTGCT	DAAGGAGTGG	CCTGCAGTTC	COCTICCOGA	TOTAL TOTAL
	3301	AGCACCTTCA	MUCUCCAUTCAC	AGTTCTCCAC	CTCNNTTCCN	CCCACCACA
	3351	CAAGTCTGGC	TICICCAICC	AATGGCACCC	CICAMIIGCA	CACCACACAC
10	3401	ACGATCCAGG	CCCTCACATT	CCAGTGTGAC	CCTGCCTATC	ACCTCCAACC
10	3451	DC T GGAGACA	ATCACCTCTC	TGCAGCTGAA	TAACCGCTTC	ጥጥጥጥርርርር አልር
	3501	CACACCCTCC	TOTOTOTO	GCTGCTTGTG	CACCCAATCT	CACCCCCCCA
	3551 3601	CAGACCTCT	THURIGUALA	CAACTACCCA	CACCCCTATC	CTCCTGGGAA
	3651	CCANTCTCAC	TCCACACTAA	AAGTGAACCC	GGACTTTGTC	ATCCCCTTGA
15	3701	TATTCABABC	TTTCAACATG	GAGCCCAGCT	ATGACTTCCT	ACACATCTAT
13	3751	CANCECENAG	ATTCCAACAIG	CCCCTCATT	GGGAGTTACC	AGGGCTCTCA
	3801			GTAGCGGAAA		
	3851	CCACTCATC	CTCCCTCCCC	CTTTCAGGGT	TCGCCATTGA	ATTTAAAGAG
- '	3901	ANACCACCC	አልርርጥጥርጥጥጥ	TGACCCAGGA	AATATAATGA	ATGGGACAAG
20	3951			TTGGCTCCAC		
20	4001	CTCCCTATAA	CATTCTTCAC	CCCTCATCCA	TCACCTGTGT	GATTGGGGCT
	4051	CATCCCAAAC	CCTCCTGGGA	CCAAGTGCTG	CCCTCCTGCA	ATGCTCCCTG
•	4101	TECAGECCAG	TACACGGGAT	CAGAAGGGGT	AGTTTTATCA	CCAAACTACC
	4151	CCCATAATTA	CACAGCTGGT	CAAATATGCC	TCTATTCCAT	CACGGTACCA
25	4201	AAGGAATTCG	TGGTCTTTGG	ACAGTTTGCC	TATTTCCAGA	CAGCCCTGAA
23	4251	TCATTTCCCA	GAATTATTTG	ATGGAACCCA	TGCACAGGCC	AGACTTCTCA
•	4301	GCTCACTCTC	GGGGTCTCAC	TCAGGGGAAA	CATTGCCCTT	GGCTACGTCA
	4351	AATCAAATTC	TGCTCCGATT	CAGTGCAAAG	AGCGGTGCCT	CTGCCCGCGG
	4401	CTTCCACTTC	GTGTATCAAG	CTGTTCCTCG	TACCAGTGAC	ACCCAATGCA
30	4451			TACGGAAGGA		
20	4501	GCCGGCTCCA	TCGTCCGATT	CGAGTGCAAC	CCGGGATACC	TGCTTCAGGG
	4551	TTCCACGGCG	CTCCACTGCC	AGTCCGTGCC	CAACGCCTTG	GCACAGTGGA
	4601	ACGACACGAT	CCCCAGCTGT	GTGGTACCCT	GCAGTGGCAA	TTTCACTCAA
	4651	CGAAGAGGTA	CAATCCTGTC	CCCCGGCTAC	CCTGAGCCAT	ACGGAAACAA
35	4701	CTTGAACTGT	ATATGGAAGA	TCATAGTTAC	GGAGGGCTCG	GGAATTCAGA
	4751	TCCAAGTGAT	CAGTTTTGCC	ACGGAGCAGA	ACTGGGACTC	CCTTGAGATC
	4801	CACGATGGTG	GGGATGTGAC	CGCACCCAGA	CTGGGAAGCT	TCTCAGGCAC
	4851	CACAGTACCG	GCACTGCTGA	ACAGTACTTC	CAACCAACTC	TACCTGCATT
	4901	TCCAGTCTGA	CATTAGTGTG	GCAGCTGCTG	GTTTCCACCT	GGAATACAAA
40	4951	ACTGTAGGTC	TTGCTGCATG	CCAAGAACCA	GCCCTCCCCA	GCAACAGCAT
	5001	CAAAATCGGA	GATCGGTACA	TGGTGAACGA	CGTGCTCTCC	TTCCAGTGCG
	5051	AGCCCGGGTA	CACCCTGCAG	GGCCGTTCCC	ACATTTCCTG	TATGCCAGGG
	5101	ACCGTTCGCC	GTTGGAACTA	TCCGTCTCCC	CTGTGCATTG	CAACCTGTGG
	5151	AGGGACGCTG	AGCACCTTGG	GTGGTGTGAT	CCTGAGCCCC	GGCTTCCCAG
45	5201	GTTCTTACCC	CAACAACTTA	GACTGCACCT	GGAGGATCTC	ATTACCCATC
	5251	GGCTATGGTG	CACATATTCA	GTTTCTGAAT	TTTTCTACCG	AAGCTAATCA
	· 5301	TGACTTCCTT	GAAATTCAAA	ATGGACCTTA	CCACACCAGC	CCCATGATTG
	5351	GACAATTTAG	CGGCACGGAT	CTCCCCGCGG	CCCTGCTGAG	CACAACGCAT
	5401	GAAACCCTCA	TCCACTTTTA	TAGTGACCAT	TCGCAAAACC	GGCAAGGATT
50	5451	TAAACTTGCT	TACCAAGCCT	ATGAATTACA	GAACTGTCCA	GATCCACCCC
	5501	CATTTCAGAA	TGGGTACATG	ATCAACTCGG	ATTACAGCGT	GGGGCAATCA
	5551	GTATCTTTCG	AGTGTTATCC	TGGGTACATT	CTAATAGGCC	ATCCTGTCCT
	5601	CACTTGTCAG	CATGGGATCA	ACAGAAACTG	GAACTACCCT	TTTCCAAGAT
	5651	GTGATGCCCC	TTGTGGGTAC	AACGTAACTT	CTCAGAACGG	CACCATCTAC
55	5701	TCCCCTGGCT	TTCCTGATGA	GTATCCGATC	CTGAAGGACT	GCATTTGGCT
	5751	CATCACGGTG	CCTCCAGGGC	ACGGAGTTTA	CATCAACTTC	ACCCTGTTAC
	5801	AGACGGAAGC	TGTCAACGAT	TACATTGCTG	TTTGGGACGG	TCCCGATCAG
	5851	AACTCACCCC	AGCTGGGAGT	TTTCAGTGGC	AACACAGCCC	TCGAAACGGC
	5901	GTATAGCTCC	ACCAACCAAG	TCCTGCTCAA	GTTCCACAGC	GACTTTTCAA
60	5951	ATGGAGGCTT	CTTTGTCCTC	AATTTCCACG	GTCAGTTGAT	TTTCACTCCG
	6001	TTAGTTAAGA	CTGAGAATTC	CATGTGGTGT	TTACTGCAGT	GTTGTCCCAC
	6051	GCCTTGTTTC	CAGCTGAAGT	TTCTTGATTC	AGCCGAGGGC	GTGTATGATT
	6101	CTTTTGCACT	GGAGGCCAGC	GTTTCCTGTG	GTCCTTTTTT	TGTTTAATGA

6201 6251 6301 5 6351	TGTCTTTATT TGTATCCTAA CCTTTTATAG TGTCATGTAA ATGCACTCTA CACGAACAC	GTGAAACTCT ATTTACTCAT CTATAAATGG	AAGATGAAGA CCCTGTCTCA TGTGAAAGCA	CCATTGAAAG AGATAAGGTG AACCTCCAAT	AGATTTGGTA TTATAGCAAA AATCCTGGGA
--------------------------------	--	--	--	--	--

SEQ ID NO:4

* * **		•		•		
: 5.55	5G-3V3 Nu	cleotide sec		5667 bp		
	1				TAGTATTACA	
5	51				GAGTTGAAGT	
•	101				TAAAAACTCT	
	151				GAAGATACGT	
	201				TCAAGTGAGC	
ı	' 251				CTGGGATTCC	
10	301				GCAAATGTAC	
,	351	TGAGGACAAT	TACGTGCTCC	AGGGATCTAA	AAGCATCACC	TGTCAGAGAG
	401				ACAGGCCCAT	
	451	AGAACATGTG	GATCCAATCT	GCGTGGGCCC	AGCGGCGTCA	TTACCTCCCC
	501	TAATTATCCG	GTTCAGTATG	AAGATAATGC	ACACTGTGTG	TGGGTCATCA
15	551	CCACCACCGA	CCCGGACAAG	GTCATCAAGC	TTGCCTTNGA	AGAGTTTGAG
	601				GGTGATGCTG	
	651				GGGATCCAGT	
	701	TCATTGTGAG	CATGAGCAAC	CAGATGTGGC	TACATCTGCA	GTCGGATGAT
	751	AGCATTGGCT			TACCAAGAAA	
20	801				TGGGAAGCGG	
20	851	COULDEDD	TECACATACA	CTCACCTTTG	AATGCCCGGC	GGCCTTTGAG
	901	CTECTECE	ACACACTTAT	CACCTGTCAG	CAGAACAATC	AGTGGTCTGG
	951	CARCARCCC	ACCTCTCTAT	TTTCATCTTT	CTTCAACTTT	ACGGCATCAT
	1001	CMACAAGCCC	TCTCTCTCTCT	אמיימיירכאב	AGGAATATGG	CDACAACATC
25					GGAAGTCGAA	
23	1051 1101	CHEMPARACAM	MMMC V MC MMC	ACCCACY VAL	TGACTTTCTC	CCCCTCAACC
	1151				GTACTTTTTC	
					ATAGTTCGCT	
	1201			GCAGAGGGTT		TACACCACAT
30	1251	WWCCWCA CAA	TCCACIACIG	CARCCACCCA	TTCCTATAAA	
30	1301	TIGGICAGAA	TGMGTGCCMT	CCCCACCTCC	GTTTCTTTCC	ACTICTE ATEA
-	1351	TITIGGTGACA	DACACCCACC	CARCCCACTC	CATTACCTGC	ACIGIGAIGA
	1401				CCCGCTGTGA	
	1451	ACGGGAACGT			ATTTTGCCTC	
35	1501					GAAGCAAAAC
33	1551	AGGATATTAT			GATTTCAGAC	
	1601	CAGGCCACTC	TATCAAAATA	ACTITIONCA	GCCAGTTCGT	AGAGGI CAAI
	1651	TATGACACCT	CACCCCACCC	ACCCACCCCA	GTTCCTCATC	DECACCECA
	1701	A CHINCANG TAC	CAUGGUACUU	ACCACTCACA	ACAGCCGCTC	CACCACCGGGA
40	1751	ACTTCATGTA	ACMAMCACAC	TOTO TOTO TOTO	GAGTCGGATT	CAGCATCGGC
40	1801	TTCCTCATCC.	ACTATGAGAG	GCCATCGCCA	CCCTCCACAC	TTTGGCATCA
	1851	GGTCCACAGT		TCTCX CCCCC	GGTACACACT	
	1901	GGTCCACAGT			TGGAACCACG	
	1951	GAGCCCCTCG	TUTGTGAGAG	COMPCAUCAG	AGGGAAGAGT	CCTIGCCCAG
15	2001		CTATGTGGAG	GCTACATCCA	ACTCTCTAAA	CUCCACCUCC
45	2051	TTTCTCCTGG	GTTTCCAGAT	CRRRCOM	CAAATGATCT	CIGCACGIGG
	2101	ACCATTGAAG	TGTCTCATGG	GAAAGGAG11	CAMAIGAICI	CARCCACCII
	2151	TCATCTTGAG.	AGTTCCCACG	ACTATTTACT	GATCACAGAG	GWIGGWWGII
	2201	TTTCCGAGCC	CGTTGCCAGG	CTCACCGGGT	CGGTGTTGCC	TCATACGATC
C O	2251	AAGGCAGGCC	TGTTNGGAAA	CTTCACTGCC	CAGCTTCGGT	TIMIMICAGA
50	2301	CTTCTCAATT	TCGTACGAGG	GCTTCAATAT	CACATTTTCA	BAATATGACC
	2351	TGGAGCCATG	TGATGATCCT	GGAGTCCCTG	CCTTCAGCCG	AAGAATTGGT
	2401	TTTCACTTTG	GTGTGGGAGA	CTCTCTGACG	TTTTCCTGCT	TCCTGGGATA
	2451	TCGTTTAGAA	GGTGCCACCA	AGCTTACCTG	CCTGGGTGGG	GGCCGCCGTG
	2501	TGTGGAGTGC	ACCTCTGCCA	AGGTGTGTGG	CCGAATGTGG	AGCAAGTGTC
55	2551	AAAGGAAATG	AAGGAACATT	ACTGTCTCCA	AATTTTCCAT	CCAATTATGA
	2601	TAATAACCAT	GAGTGTATCT	ATAAAATAGA	AACAGAAGCC	GGCAAGGGCA
	2651	TCCACCTTAG	AACACGAAGC	TTCCAGCTGT	TTGAAGGAGA	TACTCTAAAG
	2701	GTATATGATG	GAAAAGACAG	TTCCTCACGT	CCACTGGGCA	CGTTÇACTAA
_	2751	AAATGAACTT	CTGGGGCTGA	TCCTAAACAG	CACATCCAAT	CACCTGTGGC
60	2801	TAGAGTTCAA	CACCAATGGA	TCTGACACCG	ACCAAGGTTT	TCAACTCACC
	2851	TATACCAGTT	TTGATCTGGT	AAAATGTGAG	GATCCGGGCA	TCCCTAACTA
	2901	CGGCTATAGG	ATCCGTGATG	AAGGCCACTT	TACCGACACT	GTAGTTCTGT
	2951	ACAGTTGCAA	CCCGGGGTAC	GCCATGCATG	GCAGCAACAC	CCTGACCTGT

			mmon cmccn C	NCACCACACT	GTGGGACAAA	CCDCTDCCTT	CGTGCATAGC
		3001	TTGAGTGGAG	ACAGGAGAG1	ATGCAGCCAC	ATCAGGACGA	ΔΤΔΤΤGTCCC
		3051	GGAATGTGGT	A COMCCCMATT	GACAACAACC	TCACOACOA	СТССАТТАТА
100.	;	3101	CTGGCTATCC	AGCTCCGIAI	CATTAGCCTC	CATTTCATTC	TTTTCGACAC
_		3151	GAGGCAGACC	CAGGAAAGAC	TCAAGGTCTG	CCALLICATIO	CTCCACACTC
5		3201	GGAGATGGCT	CACGACATCC	AGTGGCTCCG	CCCTTCCCCA	CCACATCCAC
٠		3251	ACATCCTGCT	GAAGGAGTGG	CCTGCAGTTC	CACACCCACT	TCTTCATCAC
		3301	AGCACCTTCA	ACTUACTUAC	AGTTCTCCAC	CTCN NTTCCN	CCCACCTCTA
		3351	CAAGTCTGGC	TTCTCCATCC	AGTTCTCCAC	CICAMIIGCA	CACCACACACA
* 1	ı	3401	ACGATCCAGG	TATGCCCCAA	CCAGTGTGAC	CCTAIGGAGA	ACCACCAGAGAG
10		3451	GCTGGAGACA	CCGTCACATT	TGCAGCTGAA	TA ACCCCTATC	TTTTTCCCAAGG
		3501	ACAAGCCAAA	ATCACCTGTG	GCTGCTTGTG	CACCCAATCT	CACCCCCCA
		3551	CAGACCCTCC	TACATGCATA	GCIGCIIGIG	CACCCCTATC	CTCCTCCCAA
		3601	GCAGGTGTTA	TTTTGTCACC	CAACTACCCA	CAGCUGIAIC	VACCCCGGGGG
		3651	GGAATGTGAC	TGGAGAGTAA	AAGTGAACCC	AMCACATCCT	ACACATCTAT
15		3701	TATTCAAAAG	TTTCAACATG	GAGCCCAGCT	CCCACTTACC	ACACATCTAT
		3751	GAAGGGGAAG	ATTCCAACAG	CCCCCTCATT	CACCOCOCO	CHCCCNTTTC
		3801	GGCCCCAGAA	AGAATAGAGA	GTAGCGGAAA	CAGCCIGIII	CIGGCAIIIC
		3851	GGAGTGATGC	CTCCGTGGGC	CTTTCAGGGT	TCGCCATTGA	ATTIAAAGAG
		3901	AAACCACGGG	AAGCTTGTTT	TGACCCAGGA	AATATAATGA	AIGGGACAAG
20		3951	AGTTGGAACA	GACTTCAAGC	TTGGCTCCAC	CATCACCTAC	CAGIGIGACI
		4001	CTGGCTATAA	GATTCTTGAC	CCCTCATCCA	TCACCTGTGT	AMCCMCCCMC
٠٠٠,		4051	GATGGGAAAC	CCTCCTGGGA	CCAAGTGCTG	CCCTCCTGCA	AIGCICCCIG
		4101	TGGAGGCCAG	TACACGGGAT	CAGAAGGGGT	AGTTTTATCA	CAAACIACC
		4151	CCCATAATTA	CACAGCTGGT	CAAATATGCC	TCTATTCCAT	CACGGIACCA
25		4201	AAGGAATTCG	TGGTCTTTGG	ACAGTTTGCC	TATTTCCAGA	TAGCCCTGAA
		4251	TGATTTGGCA	GAATTATTTG	ATGGAACCCA	TGCACAGGCC	AGACTICICA
		4301	GCTCACTCTC	GGGGTCTCAC	TCAGGGGAAA	CATTGCCCTT	CHCCCCCCCC
		4351	AATCAAATTC	TGCTCCGATT	CAGTGCAAAG	AGCGGTGCCT	ACCCA AUCCA
		4401	CTTCCACTTC	GTGTATCAAG	CTGTTCCTCG	TACCAGTGAC	MCA CHMMMCM
30		4451	GCTCTGTCCC	CGAGCCCAGA	TACGGAAGGA	CAATTGGTTC	TGAGIIIICI
		4501	GCCGGCTCCA	TCGTCCGATT	CGAGTGCAAC	CCGGGATACC	CCACACACACCA
		4551	TTCCACGGCG	CTCCACTGCC	AGTCCGTGCC	CAACGCCIIG	GCACAGIGGA
		4601	ACGACACGAT	CCCCAGCTGT	GTGGTACCCT	CCMCA CCCAM	TITCACTCAA
		4651	CGAAGAGGTA	CAATCCTGTC	CCCCGGCTAC	CCTGAGCCAI	CCNNTTCNCN
35		4701	CTTGAACTGT	ATATGGAAGA	TCATAGTTAC	ACMCCCA CMC	CCTTCACATC
		4751	TCCAAGTGAT	CAGTTTTGCC	ACGGAGCAGA	ACTGGGACTC	TCTTGAGATC
	•	4801	CACGATGGTG	GGGATGTGAC	CGCACCCAGA	CIGGGAAGCI	TCTCAGGCAC
		4851	CACAGTACCG	GCACTGCTGA	ACAGTACTTC	CMACCAACIC	TACCIOCALI
4.0		4901	TCCAGTCTGA	CATTAGTGTG	GCAGCTGCTG	CCCCTCCCCC	CCANCACCAT
40		4951	ACTGTAGGTC	TTGCTGCATG	CCAAGAACCA	GCCCTCCCCA	WALCAGO ST
		5001	CAAAATCGGA	GATCGGTACA	TGGTGAACGA	TCTGCTCTCC	TICCAGIGCG
		5051	AGCCCGGGTA	CACCCTGCAG	GGCCGTTCCC	COCOCCATO	LWIGCCWGGG
		5101	ACCGTTCGCC	GTTGGAACTA	TCCGTCTCCC	CIGIGCALIG	CAACCIGIGG
		5151	AGGGACGCTG	AGCACCTTGG	GTGGTGTGAT	CCTGAGCCCC	ATTACCCAG
45		5201	GTTCTTACCC	CAACAACTTA	GACTGCACCT	MMMMCMACCC	ATTACCCATC
		5251	GGCTATGGTG	CACATATTCA	GTTTCTGAAT	TTTTCTACCG	CCCATCATUA
		5301	TGACTTCCTT	GAAATTCAAA	ATGGACCTTA	CCACACCAGC	CACARCATIO
		5351	GACAATTTAG	CGGCACGGAT	CTCCCGCGG	TOCOTOCT GAG	CACAACGCAI
		5401	GAAACCCTCA	TCCACTTTTA	TAGTGACCAT	TCGCAAAACC	GGCHAGGAII
50		5451	TAAACTTGCT	TACCAAGCCT	AATCTGGAAA	CATTEGTCCT	NACCACHUMOC
		5501	GTCTTGACAC	CCCATTCCAA	GCCAGATGTC	AAGGAGAAGA	AMGGACTITC
		5551	AAAAAATTAA	AAAACAAAAA	CTCGAAACAA	CATGTTTTT	ATTGTACGCC
		5601	ATTAATTTCC	TATCACTGAG	ATATAAAAAT	AAATAATGCC	AAAAAAA
		5651	AAAAAAAAA	AAAAAA			•
55							

SEQ ID NO:5

	5R-3V2 Nuc	cleotide se	quence	7323 bp		
	1		CGCGGCGGGT	CTTGGGACCG	GGCNCTCTCT	CCGGCTCGCC
5	51		GTGATTATTT			
•	101		GTGTCGCGTG			
	151		. CCAGTCGCTG			
	201		TCACTGCAGC			
	251		GGCACTATTG			
10	301		CTGCACCTGG			
10	351		TCCATACCTT			
		•	•			
	401		GGACAGCCTC			
	451		GCCCTCCTCT			
1.5	501		CAGACTTCGC			
15	551		CCTAGCCACA			
	601		TGGAACGAGA			
	651		GCTACATCTT			
•	701		AATGGTGCAT			
	751		CTGCGGAGGA			
20	801		TCCCTTCAGA			
	851		GAGCCCGGGG			
	901		AGGATATGAT			
•	951	TCCATATGGC	TAACTGGCAT	GAACCTCCCC	TCTCCAGTTA	TCAGTAGCAA
	1001		CGACTCCATT			
25	1051	GATTTAACGC	TCAGTTCCAA	GTGAAAAAGG	CGATTGAGTT	GAAGTCAAGA
	1101	GGAGTCAAGA	TGCTGCCCAG	CAAGGATGGA	AGCCATAAAA	ACTCTGTCTT
	1151	GAGCCAAGGA	GGTGTTGCAT	TGGTCTCTGA	CATGTGTCCA	GATCCTGGGA
	1201	TTCCAGAAAA	TGGTAGAAGA	GCAGGTTCCG	ACTTCAGGGT	TGGTGCAAAT
	1251	GTACAGTTTT	CATGTGAGGA	CAATTACGTG	CTCCAGGGAT	CTAAAAGCAT
30	1301	CACCTGTCAG	AGAGTTACAG	AGACGCTCGC	TGCTTGGAGT	GACCACAGGC
	1351	CCATCTGCCG	AGCGAGAACA	TGTGGATCCA	ATCTGCGTGG	GCCCAGCGGC
	1401	GTCATTACCT	CCCCTAATTA	TCCGGTTCAG	TATGAAGATA	ATGCACACTG
	1451		ATCACCACCA			
	1501		TGAGCTGGAG			
35	1551		TGGGAGACAC			TCACGGGATC
	1601		GACCTCATTG			
	1651		TGATAGCATT			
	1701		AGGGAGGGTG			
	1751		AGCAGTTTCC			
40	1801		TGAGCTGGTG			
-	1851		CTGGCAACAA			
	1901		TCATCTGGGA			
	1951		CATGAACTGT			
	2001		TAATCTTTAA			
45	2051		AAGGATGATG			
	2101		TGAAGTGCCT			
	2151		TTCAGTCTGA			
	2201		ACNTTTGGTC			
	2251		ACGTTTTGGT			
50	2301		ATGATGGCTT			
50	2351		CAAGACGGGA			
	2401		ATGTGGTGGA			
	2451		GGCCAGGATA			
	2501		AAACCAGGCC			
55	2551		CAATTATGAC			
55			TGATCGGCGA			
	2601					
	2651		GGGAACTTCA			
	. 2701		CGGCTTCCTC			
60	2751		TGGACCCGGG			
60	2801		ATCAGGTCCA			
	2851		CGACGAGCCC			
	2901		CCAGCTGCGA			
	2951	GAGTGGAACA	GTCCTTTCTC	CTGGGTTTCC,	AGATTTTTAT	CCAAACTCTC

	3001	TAAACTGCAC	GTGGACCATT	GAAGTGTCTC	ATGGGAAAGG	AGTTCAAATG
	3051	ATCTTTCACA	CCTTTCATCT	TGAGAGTTCC	CACGACTATT	TACTGATCAC
	3101	AGAGGATGGA	AGTTTTTCCG	AGCCCGTTGC	CAGGCTCACC	GGGTCGGTGT
•	3151	TGCCTCATAC	GATCAAGGCA	GGCCTGTTNG	GAAACTTCAC	TGCCCAGCTT
5	3201	CGGTTTATAT	CAGACTTCTC	AATTTCGTAC	GAGGGCTTCA	ATATCACATT
	3251	TTCAGAATAT	GACCTGGAGC	CATGTGATGA	TCCTGGAGTC	CCTGCCTTCA
	3301	GCCGAAGAAT	TGGTTTTCAC	TTTGGTGTGG	GAGACTCTCT	GACGTTTTCC
i	3351	TGCTTCCTGG	GATATCGTTT	AGAAGGTGCC	ACCAAGCTTA	CCTGCCTGGG
	3401	TGGGGGCCGC	CGTGTGTGGA	GTGCACCTCT	GCCAAGGTGT	GTGGCCGAAT
10	3451	GTGGAGCAAG	TGTCAAAGGA	AATGAAGGAA	CATTACTGTC	TCCAAATTTT
	3501	CCATCCAATT.	ATGATAATAA	CCATGAGTGT	ATCTATAAAA	TAGAAACAGA
	3551	AGCCGGCAAG	GGCATCCACC	TTAGAACACG	AAGCTTCCAG	CTGTTTGAAG
	3601	GAGATACTCT	AAAGGTATAT	GATGGAAAAG	ACAGTTCCTC	ACGTCCACTG
_	3651	GGCACGTTCA	CTAAAAATGA	ACTTCTGGGG	CTGATCCTAA	ACAGCACATC
15	3701	CAATCACCTG	TGGCTAGAGT	TCAACACCAA	TGGATCTGAC	ACCGACCAAG
	3751	GTTTTCAACT	CACCTATACC	AGTTTTGATC	TGGTAAAATG	TGAGGATCCG
	3801	GGCATCCCTA	ACTACGGCTA	TAGGATCCGT	GATGAAGGCC	ACTITACCGA
•	3851	CACTGTAGTT	CTGTACAGTT	GCAACCCGGG	GTACGCCATG	CATGGCAGCA
	3901	ACACCCTGAC	CTGTTTGAGT	GGAGACAGGA	CAGTGTGGGA	CAAACCACIA
20	3951	CCTTCGTGCA	TAGCGGAATG	TGGTGGTCAG	ATCCATGCAG	AACCTCCACT
•	4001	ACGAATATTG	TCCCCTGGCT	ATCCAGCTCC	DCDCCDTTDC	AMCCICCACI
	4051	GCACCTGGAT	TATAGAGGCA	GACCCAGGAA	AGACCATIAG	TCTCCATTIC
	4101	ATTGTTTTCG	ACACGGAGAT	GGCTCACGAC TGCTGAAGGA	CTCCACTCCC	TCTGGGACGG
0.5	4151	GCCGGTGGAC	AGTGACATCC	TTCAACTCAC	TCACCCTCCA	CTTCGACAGC
25	4201	CGGAGGACAT	CCACAGCACC	TGGCTTCTCC	ATCCACTTCT	CCACCTCAAT
•	4251	GACTTCTTCA	TCAGCAAGIC	CAGGTATGCC	CCDADATGGC	ACCCCCTATG
	4301	TGCAGCCACC	TGTAACGAIC	GACACCGTCA	CATTCCACTC	TGACCCTGGC
	4351	GAGACAGCAG	AGAGGCIGGA	CAAAATCACC	TETETECAGE	TGAATAACCG
20	4401	TATCAGCTCC	CAACCACACC	CTCCTACATG	CATAGCTGCT	TGTGGAGGGA
30	4451	THETTTIGG	CCCACCAGACC	GTTATTTTGT	CACCCAACTA	CCCACAGCCG
	4501	MARCORCORC	CCARCARA	TGACTGGAGA	GTAAAAGTGA	ACCCGGACTT
	4551	TATCCICCIG	TTCATATTCA	AAAGTTTCAA	CATGGAGCCC	AGCTATGACT
	4601	TGICAICGCC	CTATCAACCC	GAAGATTCCA	ACAGCCCCCT	CATTGGGAGT
35	4651 4701	TACCIACACAI	CTCAGGCCCC	AGAAAGAATA	GAGAGTAGCG	GAAACAGCCT
<i>33</i> .	4751	CTTTCCAGGCI	TTTCGGAGTG	ATGCCTCCGT	GGGCCTTTCA	GGGTTCGCCA
	4801	TTCAATTTAA	AGAGAAACCA	CGGGAAGCTT	GTTTTGACCC	AGGAAATATA
	4851	ATCAATCCCA	CAAGAGTTGG	AACAGACTTC	AAGCTTGGCT	CCACCATCAC
	4901	CTACCAGTGT	GACTCTGGCT	ATAAGATTCT	TGACCCCTCA	TCCATCACCT
40	4951	CTCTCATTCC	GGCTGATGGG	AAACCCTCCT	GGGACCAAGT	GCTGCCCTCC
,,	5001	TECAATECTC	CCTGTGGAGG	CCAGTACACG	GGATCAGAAG	GGGTAGTTTT
	5051	A TCACCAAAC	TACCCCCATA	ATTACACAGC	TGGTCAAATA	TGCCTCTATT
	5101	CCDTCDCGGT	ACCAAAGGAA	TTCGTGGTCT	TTGGACAGTT	TGCCTATTTC
	5151	CAGACAGCCC	TGAATGATTT	GGCAGAATTA	TTTGATGGAA	CCCATGCACA
45	5201	CCCCAGACTT	CTCAGCTCAC	TCTCGGGGTC	TCACTCAGGG	GAAACATTGC
	5251	CCTTGGCTAC	GTCAAATCAA	ATTCTGCTCC	GATTCAGTGC	AAAGAGCGGT
	5301	GCCTCTGCCC	GCGGCTTCCA	CTTCGTGTAT	CAAGCTGTTC	CTCGTACCAG
	5351	TGACACCCAA	TGCAGCTCTG	TCCCCGAGCC	CAGATACGGA	AGGAGAATTG
	5401	GTTCTGAGTT	TTCTGCCGGC	TCCATCGTCC	GATTCGAGTG	CAACCCGGGA
50	5451	TACCTGCTTC	AGGGTTCCAC	GGCGCTCCAC	TGCCAGTCCG	TGCCCAACGC
	5501	CTTGGCACAG	TGGAACGACA	CGATCCCCAG	CTGTGTGGTA	CCCTGCAGTG
	5551	GCAATTTCAC	TCAACGAAGA	GGTACAATCC	TGTCCCCCGG	CTACCCTGAG
	5601	CCATACGGAA	ACAACTTGAA	CTGTATATGG	AAGATCATAG	TTACGGAGGG
	5651	CTCGGGAATT	CAGATCCAAG	TGATCAGTTT	TGCCACGGAG	CAGAACTGGG
55	5701	ACTCCCTTGA	GATCCACGAT	GGTGGGGATG	TGACCGCACC	CAGACTGGGA
	5751	AGCTTCTCAG	GCACCACAGT	ACCGGCACTG	CTGAACAGTA	CTTCCAACCA
	5801	ACTCTACCTG	CATTTCCAGT	CTGACATTAG	TGTGGCAGCT	CCTGGTTTCC
_	5851	ACCTGGAATA	CAAAACTGTA	GGTCTTGCTG	CATGCCAAGA	ACCAGCCCTC
	5901	CCCAGCAACA	GCATCAAAAT	CGGAGATCGG	TACATGGTGA	TCCCACATOUT
60	5951	CTCCTTCCAG	TGCGAGCCCG	GGTACACCCT	ACMARCCCEC	TOCOMONITI
	6001	CCTGTATGCC	AGGGACCGTT	CGCCGTTGGA	MULATUUGTU	TOCOCTATAC
	6051	ATTGCAACCT	GTGGAGGGAC	DOCCORROTA	1100010010	TGATCCTGAG
	6101	CCCCGGCTTC	CCAGGTTCTT	ACCCCAACAA	CITHOMCIGC	ACCTGGAGGA

PCT/GB01/02240

		6151	TCTCATTACC	CATCGGCTAT	GGTGCACATA	TTCAGTTTCT	GAATTTTTCT
		6201	ACCGAAGCTA		CCTTGAAATT	CAAAATGGAC	CTTACCACAC
1 ***	;	6251	CAGCCCCATG	ATTGGACAAT	TTAGCGGCAC	GGATCTCCCC	GCGGCCCTGC
. ~~	,	6301	TGAGCACAAC	GCATGAAACC	CTCATCCACT	TTTATAGTGA	CCATTCGCAA
5		6351	AACCGGCAAG	GATTTAAACT	TGCTTACCAA	GCCTATGAAT	TACAGAACTG
•		6401	TCCAGATCCA	CCCCCATTTC	AGAATGGGTA	CATGATCAAC	TCGGATTACA
		6451	GCGTGGGGCA	ATCAGTATCT	TTCGAGTGTT	ATCCTGGGTA	CATTCTAATA
		6501	GGCCATCCTG	TCCTCACTTG	TCAGCATGGG	ATCAACAGAA	ACTGGAACTA
		6551	CCCTTTTCCA	AGATGTGATG	CCCCTTGTGG	GTACAACGTA	ACTTCTCAGA
1.0.		6601	ACGGCACCAT	CTACTCCCCT	GGCTTTCCTG	ATGAGTATCC	GATCCTGAAG
٠		6651	GACTGCATTT	GGCTCATCAC	GGTGCCTCCA	GGGCACGGAG	TTTACATCAA
		6701	CTTCACCCTG	TTACAGACGG	AAGCTGTCAA	CGATTACATT	GCTGTTTGGG
		6751	ACGGTCCCGA	TCAGAACTCA	CCCCAGCTGG	GAGTTTTCAG	TGGCAACACA
		6801	GCCCTCGAAA	CGGCGTATAG	CTCCACCAAC	CAAGTCCTGC	TCAAGTTCCA
15 .		6851	CAGCGACTTT	TCAAATGGAG	GCTTCTTTGT	CCTCAATTTC	CACGGTCAGT
		6901	TGATTTTCAC	TCCGTTAGTT	AAGACTGAGA	ATTCCATGTG	GTGTTTACTG
	•	6951	CAGTGTTGTC	CCACGCCTTG	TTTCCAGCTG	AAGTTTCTTG	ATTCAGCCGA
		7001	GGGCGTGTAT	GATTCTTTTG	CACTGGAGGC	CAGCGTTTCC	TGTGGTCCTT
		7051	TTTTTGTTTA	ATGATGTCTT	TATTATTTCA	CATCGTATCC	AGCTTGGATT
20		7101	TATTCCAAGA	TACATGTATC	CTAAGTGAAA	CTCTAAGATG	AAGACCATTG
		7151	AAAGAGATTT	GGTACCTTTT	ATAGATTTAC	TCATCCCTGT	CTCAAGATAA
		7201	GGTGTTATAG	CAAATGTCAT	GTAACTATAA	ATGGTGTGAA	AGCAAACCTC
		7251	CAATAATCCT	GGGAATGCAC	TCTAAACGAT	ATGTAGAACA	TCTGTCAATC
		7301	NATCGCTTAT	CTCTCACGAA	CAC		

SEQ ID NO:6

5R23V2

55

AGCAAGGAAGGGAGATCAAAGGATGGAGGCGGGACTCTGCCCCTGCAGAAACCCTCCAG 5 TTTGCTGGAGTTGCCGGATTACATTGTTCCTCCCCGGTGTGCGGCGTGAGCTTCCCCCACC CGAGCGCCCAACAAGTCTCCTTTCTCCAGCCTGCGCGCTGCTGCGCTGAGGCCGAATGAA GCCGTGCCCAGCCTCGGTCCCCTCTCTGTGGGTAAGGATGGTTGAGTCCAGCCTCCACGG CAGCGGCTCCTTGTGCCACTAGCAGCCCTTČTTCTGCGCTCTCCGCCTTTTCTCTCTAGAC 10 TGGATCTCTCCCCCCGCGCCCCCCCCCCCCCCCCCACTCCCCACTCGCTGGCTCTCTCCCA GCAGCCTCGCCGCCTTGGTGCCTTCCTGCCCGGCTCGGCCGCGCCCCGGCCCCG GCCCGCCAGCCCGGGTCTCCGCGCTCGGAGCAGCTCAGCCCTGCAGTGGCTCGGGACCC GATGCTATGAGAGGGAAGCGAGCCGGGCGCCCAGACCTTCAGGAGGCGTCGGATGCGCG 15 GCGGGTCTTGGGACCGGGCTCTCTCTCCGGCTCGCCTTGCCCTCGGGTGATTATTTGGCTC CAGACATGACTGCGTGGAGGAGATTCCAGTCGCTGCTCCTGCTTCTCGGGCTGCTGGTGC TGTGCGCGAGGCTCCTCACTGCAGCGAAGGGTCAGAACTGTGGAGGCTTAGTCCAGGGTC CCAATGGCACTATTGAGAGCCCAGGGTTTCCTCACGGGTATCCGAACTATGCCAACTGCA 20 CCTGGATCATCACGGGCGAGCGCAATAGGATACAGTTGTCCTTCCATACCTTTGCTCT TGAAGAAGATTTTGATATTTTATCAGTTTACGATGGACAGCCTCAACAAGGGAATTTAAA AGTGAGATTATCGGGATTTCAGCTGCCCTCCTCTATAGTGAGTACAGGATCTATCCTCACT CTGTGGTTCACGACAGACTTCGCTGTGAGTGCCCAAGGTTTCAAAGCATTATATGAAGTT TTACCTAGCCACACTTGTGGAAATCCTGGAGAAATCCTGAAAGGAGTTCTGCATGGAACG **25** AGATTCAACATAGGAGACAANATCCGGTACAGCTGCCTCCCTGGCTACATCTTGGAAGGC CACGCCATCCTGACCTGCATCGTCAGCCCAGGAAATGGTGCATCGTGGGACTTCCCAGCT CCCTTTTGCAGAGCTGAGGGAGCCTGCGGAGGAACCTTACGCGGGACCAGCAGCTCCATC TCCAGCCGCACTTCCCTTCAGAGTACGAGAACAACGCGGACTGCACCTGGACCATTCTG GCTGAGCCCGGGGACACCATTGCGCTGGTCTTCACTGACTTTCAGCTAGAAGAAGGATAT 30 GATTTCTTAGAGATCAGTGGCACGGAAGCTCCATCCATATGGCTAACTGGCATGAACCTC CCCTCTCCAGTTATCAGTAGCAAGAATTGGCTACGACTCCATTTCACCTCTGACAGCAACC ACCGACGCAAAGGATTTAACGCTCAGTTCCAAGTGAAAAAGGCGATTGAGTTGAAGTCA AGAGGAGTCAAGATGCTGCCCAGCAAGGATGGAAGCCATAAAAACTCTGTCTTGAGCCA AGGAGGTGTTGCATTGGTCTCTGACATGTGTCCAGATCCTGGGATTCCAGAAAATGGTAG 35 AAGAGCAGGTTCCGACTTCAGGGTTGGTGCAAATGTACAGTTTTCATGTGAGGACAATTA GAGTGACCACAGGCCCATCTGCCGAGCGAGAACATGTGGATCCAATCTGCGTGGGCCCAG GGTCATCACCACCGACCCGGACAAGGTCATCAAGCTTGCCTTNGAAGAGTTTGAGCT 40 GGAGCGAGGCTATGACACCCTNACGGTTGGTGATGCTGGGAAGGTGGGAGACACCAGAT CGGTCTTGTANGTGCTCACGGGATCCAGTGTTCCTGACCTCATTGTGAGCATGAGCAACC AGATGTGGCTACATCTGCAGTCGGATGATAGCATTGGCTCACCTGGGTTTAAAGCTGTTT ACCAAGAAATTGAAAAGGGAGGGTGTGGGGATCCTGGAATCCCCGCCTATGGGAAGCGG ACGGGCAGCAGTTTCCTCCATGGAGATNCACTNACCTTTGAATGCCCGGCGGCCTTTGAG 45 CTGGTGGGGGAGAGAGTTATCACCTGTCAGCAGAACAATCAGTGGTCTGGCAACAAGCCC AGCTGTGTATTTTCATGTTTCTTCAACTTTACGGCATCATCTGGGGATTATTCTGTCACCAA ATTATCCAGAGGAATATGGGAACAACATGAACTGTGTCTGGTTGATTATCTCGGAGCCAG GAAGTCGAATTCACCTAATCTTTAATGATTTTGATGTTGAGCCTCAATTTGACTTTCTCGC GGTCAAGGATGATGGCATTTCTGACATAACTGTCCTGGGTACTTTTTCTGGCAATGAAGT 50 GCCTTCCCAGCTGGCCAGCAGTGGGCATATAGTTCGCTTGGAATTTCAGTCTGACCATTCC ACTACTGGCAGAGGGTTNAACATCACTTACACCACNTTTGGTCAGAATGAGTGCCATGAT CCTGGCATTCCTATAAACGGACGACGTTTTGGTGACAGGTTTCTACTCGGGAGCTCGGTT TCTTTCCACTGTGATGATGGCTTTGTCAAGACCCAGGGATCCGAGTCCATTACCTGCATAC

TGCAAGACGGGAACGTGGTCTGGAGCTCCACCGTGCCCCGCTGTGAAGCTCCATGTGGTG

GACATCTGACAGCGTCCAGCGGAGTCATTTTGCCTCCTGGATGGCCAGGATATTATAAGG ATTCTTTACATTGTGAATGGATAATTGAAGCAAAACCAGGCCACTCTATCAAAATAACTT

GTTCGTCCCACTGATCGCGAGTACCACGGCACCCAGGCACCCAGTTCCTCATCAGCA CCGGGAACTTCATGTACCTGCTATTCACCACTGACAACAGCCGCTCCAGCATCGGCTTCCT : ::::: 5 GAACGGCCATCGCCACGGTGGAGACTTTGGCATCAGGTCCACAGTGACTTTCAGCTGTGA CCCGGGGTACACACTAAGTGACGACGAGCCCCTCGTCTGTGAGAGGAACCACCAGTGGA ACCACGCCTTGCCCAGCTGCGACGCTCTATGTGGAGGCTACATCCAAGGGAAGAGTGGAA CAGTCCTTTCTCCTGGGTTTCCAGATTTTTATCCAAACTCTCTAAACTGCACGTGGACCAT TGAAGTGTCTCATGGGAAAGGAGTTCAAATGATCTTTCACACCTTTCATCTTGAGAGTTCC 10 CACGACTATTTACTGATCACAGAGGATGGAAGTTTTTCCGAGCCCGTTGCCAGGCTCACC GGGTCGGTGTTGCCTCATACGATCAAGGCAGGCCTGTTNGGAAACTTCACTGCCCAGCTT CGGTTTATATCAGACTTCTCAATTTCGTACGAGGGCTTCAATATCACATTTTCAGAATATG ACCTGGAGCCATGTGATGATCCTGGAGTCCCTGCCTTCAGCCGAAGAATTGGTTTTCACTT TGGTGTGGGAGACTCTCTGACGTTTTCCTGCTTCCTGGGATATCGTTTAGAAGGTGCCACC 15 AAGCTTACCTGCCTGGGTGGGGCCGCCGTGTGTGGAGTGCACCTCTGCCAAGGTGTGTG GCCGAATGTGGAGCAAGTGTCAAAGGAAATGAAGGAACATTACTGTCTCCAAATTTTCCA TCCAATTATGATAATAACCATGAGTGTATCTATAAAATAGAAACAGAAGCCGGCAAGGGC ATCCACCTTAGAACACGAAGCTTCCAGCTGTTTGAAGGAGATACTCTAAAGGTATATGAT GGAAAAGACAGTTCCTCACGTCCACTGGGCACGTTCACTAAAAATGAACTTCTGGGGCTG 20 ATCCTAAACAGCACATCCAATCACCTGTGGCTAGAGTTCAACACCAATGGATCTGACACC GACCAAGGTTTTCAACTCACCTATACCAGTTTTGATCTGGTAAAATGTGAGGATCCGGGC ATCCCTAACTACGGCTATAGGATCCGTGATGAAGGCCACTTTACCGACACTGTAGTTCTG TACAGTTGCAACCCGGGGTACGCCATGCATGGCAGCAACACCCTGACCTGTTTGAGTGGA GACAGGAGAGTGTGGGACAAACCACTACCTTCGTGCATAGCGGAATGTGGTGGTCAGAT 25 CCATGCAGCCACATCAGGACGAATATTGTCCCCTGGCTATCCAGCTCCGTATGACAACAA CCTCCACTGCACCTGGATTATAGAGGCAGACCCAGGAAAGACCATTAGCCTCCATTTCAT TGTTTTCGACACGGAGATGGCTCACGACATCCTCAAGGTCTGGGACGGGCCGGTGGACAG TGACATCCTGCTGAAGGAGTGGAGTGGCTCCGCCCTTCCGGAGGACATCCACAGCACCTT CAACTCACTCACCCTGCAGTTCGACAGCGACTTCTTCATCAGCAAGTCTGGCTTCTCCATC 30 CAGTTCTCCACCTCAATTGCAGCCACCTGTAACGATCCAGGTATGCCCCAAAATGGCACC CGCTATGGAGACAGCAGAGAGGCTGGAGACACCGTCACATTCCAGTGTGACCCTGGCTAT CAGCTCCAAGGACAAGCCAAAATCACCTGTGTGCAGCTGAATAACCGGTTCTTTTGGCAA CCAGACCCTCCTACATGCATAGCTGCTTGTGGAGGGAATCTGACGGGCCCAGCAGGTGTT 35 AAAGTGAACCCGGACTTTGTCATCGCCTTGATATTCAAAAGTTTCAACATGGAGCCCAGC TATGACTTCCTACACATCTATGAAGGGGAAGATTCCAACAGCCCCCTCATTGGGAGTTAC CAGGGCTCTCAGGCCCCAGAAAGAATAGAGAGTAGCGGAAACAGCCTGTTTCTGGCATTT CGGAGTGATGCCTCCGTGGGCCTTTCAGGGTTCGCCATTGAATTTAAAGAGAAACCACGG GAAGCTTGTTTTGACCCAGGAAATATAATGAATGGGACAAGAGTTGGAACAGACTTCAAG 40 CTTGGCTCCACCATCACCTACCAGTGTGACTCTGGCTATAAGATTCTTGACCCCTCATCCA TCACCTGTGTGATTGGGGCTGATGGGAAACCCTCCTGGGACCAAGTGCTGCCCTCCTGCA ATGCTCCCTGTGGAGGCCAGTACACGGGATCAGAAGGGGTAGTTTTATCACCAAACTACC CCCATAATTACACAGCTGGTCAAATATGCCTCTATTCCATCACGGTACCAAAGGAATTCG TGGTCTTTGGACAGTTTGCCTATTTCCAGACAGCCCTGAATGATTTGGCAGAATTATTTGA 45 ATTGCCCTTGGCTACGTCAAATCAAATTCTGCTCCGATTCAGTGCAAAGAGCGGTGCCTCT GCCGCGGCTTCCACTTCGTGTATCAAGCTGTTCCTCGTACCAGTGACACCCAATGCAGCT CTGTCCCCGAGCCCAGATACGGAAGGAGAATTGGTTCTGAGTTTTCTGCCGGCTCCATCG TCCGATTCGAGTGCAACCCGGGATACCTGCTTCAGGGTTCCACGGCGCTCCACTGCCAGT 50 CCGTGCCCAACGCCTTGGCACAGTGGAACGACACGATCCCCAGCTGTGTGGTACCCTGCA GTGGCAATTTCACTCAACGAAGAGGTACAATCCTGTCCCCCGGCTACCCTGAGCCATACG GAAACAACTTGAACTGTATATGGAAGATCATAGTTACGGAGGGCTCGGGAATTCAGATCC AAGTGATCAGTTTTGCCACGGAGCAGAACTGGGACTCCCTTGAGATCCACGATGGTGGGG ATGTGACCGCACCCAGACTGGGAAGCTTCTCAGGCACCACAGTACCGGCACTGCTGAACA 55 GTACTTCCAACCAACTCTACCTGCATTTCCAGTCTGACATTAGTGTGGCAGCTGCTGGTTT CCACCTGGAATACAAAACTGTAGGTCTTGCTGCATGCCAAGAACCAGCCCTCCCCAGCAA

CAGCATCAAAATCGGAGATCGGTACATGGTGAACGACGTGCTCTCCTTCCAGTGCGAGCC

CGGGTACACCCTGCAGGGCCGTTCCCACATTTCCTGTATGCCAGGGACCGTTCGCCGTTG
GAACTATCCGTCTCCCCTGTGCATTGCAACCTGTGGAGGGACGCTGAGCACCTTGGGTGG
TGTGATCCTGAGCCCCGGCTTCCCAGGTTCTTACCCCAACAACTTAGACTGCACCTGGAG
GATCTCATTACCCATCGGCTATGGTGCACAACTTATCCAACTTTCTACCGAAGCT

5 AATCATGACTTCCTTGAAATTCAAAATGGACCTTACCACACCAGCCCCATGATTGGACAA
TTTAGCGGCACGGATCTCCCCGCGGCCCTGCTGAGCACAACGCATGAAACCCTCATCCAC
TTTTATAGTGACCATTCGCAAAACCGGCAAGGATTTAAACTTGCTTACCAAGCCTATGAA
TTACAGAACTGTCCAGATCCACCCCCATTTCAGAATGGGTACATGATCAACTCGGATTAC
AGCGTGGGGCAATCAGTATCTTTCGAGTGTTATCCTGGGTACATTCTAATAGGCCATCCT

10 GTCCTCACTTGTCAGCATGGGATCAACAGAAACTGGAACTACCCTTTTCCAAGATGTGAT GCCCCTTGTGGGTACAACGTAACTTCTCAGAACGGCACCATCTACTCCCCTGGCTTTCCTG ATGAGTATCCGATCCTGAAGGACTGCATTTGGCTCATCACGGTGCCTCCAGGGCACGGAG TTTACATCAACTTCACCCTGTTACAGACGGAAGCTGTCAACGATTACATTGCTGTTTTGGGA CGGTCCCGATCAGAACTCACCCCAGCTGGGAGTTTTCAGTGGCAACACAGCCCTCGAAAC

20 GTATCCTAAGTGAAACTCTAAGATGAAGACCATTGAAAGAGATTTGGTACCTTTTATAGA TTTACTCATCCCTGTCTCAAGATAAGGTGTTATAGCAAATGTCATGTAACTATAAATGGTG TGAAAGCAAACCTCCAATAATCCTGGGAATGCACTCTAAACGATATGTAGAACATCTGTC AATCNATCGCTTATCTCTCACGAACACN

SEQ ID NO:7

5R2 OC147

5 AAGGGAGATCAAAGGATGGAGGCGGGACTCTGCCCCTGCAGAAACCCTCCAGTTTGCTGGAGTTGCCG GATTACATTGTTCCTCCCGGTGTGCGGCGTGAGCTTCCCCCACCGAGCGCCCAACAAGTCTCCTTT CTCCAGCCTGCGCGCTGCTGCGCTGAGGCCGAATGAAGCGCAGCACGGTGCGGGCAGCCCGAGGCCCC GAGGCTGGGCTCTGTCTGTGGGACTGCGCCGTGCCCAGCCTCGGTCCCCTCTCTGTGGGTAAGGAT GGTTGAGTCCAGCCTCCACGGCAGCGGCTCCTTGTGCCACTAGCAGCCCTTCTTCTGCGCTCTCCGCC 10 CGCAGCCTCGČCGCCTTGGTGCCTTCCTGCCCGGCTCGGCCGCCTCGTCCCCGGCCCCGGCCCCGC CAGCCCGGGTCTCCGCGCTCGGAGCAGCTCAGCCCTGCAGTGGCTCGGGACCCGATGCTATGAGAGGG AAGCGAGCCGGGCGCCCAGACCTTCAGGAGGCGTCGGATGCGCGGGGGTCTTGGGACCGGGCTCTCT 15 CTCCGGCTCGCCTTGCCCTCGGGTGATTATTTGGCTCCGCTCATAGCCCTGCCTTCCTCGGAGGAGCC ATCGGTGTCGCGTGCGTGTGGAGTATCTGCAGACATGACTGCGTGGAGGAGATTCCAGTCGCTGCTCC TGCTTCTCGGGCTGCTGGTGCTGTGCGCGAGGCTCCTCACTGCAGCGAAGGGTCAGAACTGTGGAGGC TTAGTCCAGGGTCCCAATGGCACTATTGAGAGCCCAGGGTTTCCTCACGGGTATCCGAACTATGCCAA CTGCACCTGGATCATCACGGGCGAGCGCAATAGGATACAGTTGTCCTTCCATACCTTTGCTCTTG 20 AAGAAGATTTTGATATTTTATCAGTTTACGATGGACAGCCTCAACAAGGGAATTTAAAAAGTGAGATTA TCGGGATTTCAGCTGCCCTCCTCTATAGTGAGTACAGGATCTATCCTCACTCTGTGGTTCACGACAGA CTTCGCTGTGAGTGCCCAAGGTTTCAAAGCATTATATGAAGTTTTACCTAGCCACACTTGTGGAAATC CTGGAGAAATCCTGAAAGGAGTTCTGCATGGAACGAGATTCAACATAGGAGACAAAATCCGGTACAGC TGCCTCCCTGGCTACATCTTGGAAGGCCACGCCATCCTGACCTGCATCGTCAGCCCAGGAAATGGTGC 25 ATCGTGGGACTTCCCAGCTCCCTTTTGCAGAGCTGAGGGAGCCTGCGGAGGAACCTTACGCGGGACCA GCAGCTCCATCTCCAGCCCGCACTTCCCTTCAGAGTACGAGAACAACGCGGACTGCACCTGGACCATT CTGGCTGAGCCCGGGGACACCATTGCGCTGGTCTTCACTGACTTTCAGCTAGAAGAAGGATATGATTT CTTAGAGATCAGTGGCACGGAAGCTCCATCCATATGGCTAACTGGCATGAACCTCCCCTCTCCAGTTA TCAGTAGCAAGAATTGGCTACGACTCCATTTCACCTCTGACAGCAACCACCGACGCAAAGGATTTAAC 30 GCTCAGTTCCAAGTGAAAAAGGCGATTGAGTTGAAGTCAAGAGGAGTCAAGATGCTGCCCAGCAAGGA TGGAAGCCATAAAAACTCTGTCTGTGAGTCCCTTTCCTTTCTATCTGAGGATTGATACGCCCTTGTAA GCAGAGGAGAATGGAGCAGTG

5R2 AW

 ${\tt AGCTTGTGCCCTTTCCACCTGCATTTCTGATCTA}{\overline{\mathsf{AGTTAGGTAGGGGGGCTGCTCTCTGGTCAGCAAGG}}$ AAGGGAGATCAAAGGATGGAGGCGGGACTCTGCCCCTGCAGAAACCCTCCAGTTTGCTGGAGTTGCCG 5 GATTACATTGTTCCTCCCCGGTGTGCGGCGTGAGCTTCCCCCACCCGAGCGCCCAACAAGTCTCCTTT CTCCAGCCTGCGCGCTGCGCCTGAGGCCGAATGAAGCGCAGCACGGTGCGGGCAGCCCGAGGCCCC GAGGCTGGGCTCTGTCTGGGACTGCGCCGTGCCCAGCCTCGGTCCCCTCTCTGTGGGTAAGGAT GGTTGAGTCCAGCCTCCACGGCAGCGGCTCCTTGTGCCACTAGCAGCCCTTCTTCTGCGCTCTCCGCC 10 CGCAGCCTCGCCGCCTTGGTGCCTTCCTGCCCGGCTCGGCCGGCGCTCGTCCCCGGCCCCGGCCCCGC CAGCCCGGGTCTCCGCGCTCGGAGCAGCTCAGCCCTGCAGTGGCTCGGGACCCGATGCTATGAGAGGG AAGCGAGCCGGGCGCCCAGACCTTCAGGAGGCGTCGGATGCGCGGGGGGTCTTGGGACCGGGCTCTCT CTCCGGCTCGCCTTGCCCTCGGGTGATTATTTGGCTCCGCTCATAGCCCTGCCTTCCTCGGAGGAGCC 15 ATCGGTGTCGCGTGCGTGTGGAGTATCTGCAGACATGACTGCGTGGAGGAGATTCCAGTCGCTGCTCC TGCTTCTCGGGCTGCTGGTGCTGCGCGAGGCTCCTCACTGCAGCGAAGGGTCAGAACTGTGGAGGC TTAGTCCAGGGTCCCAATGGCACTATTGAGAGCCCAGGGTTTCCTCACGGGTATCCGAACTATGCCAA CTGCACCTGGATCATCACCGGGCGAGCGCAATAGGATACAGTTGTCCTTCCATACCTTTGCTCTTG AAGAAGATTTTGATATTTTATCAGTTTACGATGGACAGCCTCAACAAGGGAATTTAAAAGTGAGATTA 20 TCGGGATTTCAGCTGCCCTCCTCTATAGTGAGTACAGGATCTATCCTCACTCTGTGGTTCACGACAGA CTTCGCTGTGAGTGCCCAAGGTTTCAAAGCATTATATGAAGTTTTACCTAGCCACACTTGTGGAAATC CTGGAGAAATCCTGAAAGGAGTTCTGCATGGAACGAGATTCAACATAGGAGACAAAATCCGGTACAGC TGCCTCCCTGGCTACATCTTGGAAGGCCACGCCATCCTGACCTGCATCGTCAGCCCAGGAAATGGTGC ATCGTGGGACTTCCCAGCTCCCTTTTGCAGAGCTGAGGGAGCCTGCGGAGGAACCTTACGCGGGACCA 25 GCAGCTCCATCTCCAGCCCGCACTTCCCTTCAGAGTACGAGAACAACGCGGACTGCACCTGGACCATT CTGGCTGAGCCCGGGGACACCATTGCGCTGGTCTTCACTGACTTCAGCTAGAAGAAGGATATGATTT CTTAGAGATCAGTGGCACGGAAGCTCCATCCATATGGCTAACTGGCATGAACCTCCCCTCTCCAGTTA TCAGTAGCAAGAATTGGCTACGACTCCATTTCACCTCTGACAGCAACCACCGACGCAAAGGATTTAAC GCTCAGTTCCAAGTGAAAAAGGCGATTGAGTTGAAGTCAAGAGGAGTCAAGATGCTGCCCAGCAAGGA 30 TCATGACAAGGAATGGGAGAATTTCCCTGACAGCCTCAGGAAACTTGCAGTTTGATAATTAAACAGAT CAAGGTCACTCAGATGAGCTGATGGGACATGCTGTGTACGGAGGAGCATTTGCAGTTACAACACTTTG TAGCCATGCAGGATGGGGCAATTAATCCAGAACCATTATTTAATAAAAAGATGATTTTTTAAATGTGA 35

: :::::::

SEQ ID NO:9

protein sequence >ORF:121..5598 Frame +1

.5 MEAIKTLSGIWNNINHVTSEEDTFIMYLGKPWLQVKIQVSQGGVALVSDMCPDPGIPENGRRAGSDFR VGANVQFSCEDNYVLQGSKSITCQRVTETLAAWSDHRPICRARTCGSNLRGPSGVITSPNYPVOYEDN AHCVWVITTTDPDKVIKLAFEEFELERGYDTLTVGDAGKVGDTRSVLYVLTGSSVPDLIVSMSNOMWL 10 HLQSDDSIGSPGFKAVYQEIEKGGCGDPGIPAYGKRTGSSFLHGDTLTFECPAAFELVGERVITCQQN NOWSGNKPSCVFSCFFNFTASSGIILSPNYPEEYGNNMNCVWLIISEPGSRIHLIFNDFDVEPQFDFL AVKDDGISDITVLGTFSGNEVPSQLASSGHIVRLEFQSDHSTTGRGFNITYTTFGQNECHDPGIPING RRFGDRFLLGSSVSFHCDDGFVKTQGSESITCILQDGNVVWSSTVPRCEAPCGGHLTASSGVILFPGW PGYYKDSLHCEWIIEAKPGHSIKITFDRFQTEVNYDTLEVRDGPASSSPLIGEYHGTQAPQFLISTGN 15 FMYLLFTTDNSRSSIGFLIHYESVTLESDSCLDPGIPVNGHRHGGDFGIRSTVTFSCDPGYTLSDDEP LVCERNHQWNHALPSCDALCGGYIQGKSGTVLSPGFPDFYPNSLNCTWTIEVSHGKGVQMIFHTFHLE SSHDYLLITEDGSFSEPVARLTGSVLPHTIKAGLFGNFTAQLRFISDFSISYEGFNITFSEYDLEPCD DPGVPAFSRRIGFHFGVGDSLTFSCFLGYRLEGATKLTCLGGGRRVWSAPLPRCVAECGASVKGNEGT LLSPNFPSNYDNNHECIYKIETEAGKGIHLRTRSFQLFEGDTLKVYDGKDSSSRPLGTFTKNELLGLI 20 LNSTSNHLWLEFNTNGSDTDQGFQLTYTSFDLVKCEDPGIPNYGYRIRDEGHFTDTVVLYSCNPGYAM HGSNTLTCLSGDRRVWDKPLPSCIAECGGQIHAATSGRILSPGYPAPYDNNLHCTWIIEADPGKTISL HFIVFDTEMAHDILKVWDGPVDSDILLKEWSGSALPEDIHSTFNSLTLOFDSDFFISKSGFSIOFSTS IAATCNDPGMPONGTRYGDSREAGDTVTFQCDPGYQLQGQAKITCVQLNNRFFWQPDPPTCIAACGGN LTGPAGVILSPNYPQPYPPGKECDWRVKVNPDFVIALIFKSFNMEPSYDFLHIYEGEDSNSPLIGSYQ GSQAPERIESSGNSLFLAFRSDASVGLSGFAIEFKEKPREACFDPGNIMNGTRVGTDFKLGSTITYOC 25 DSGYKILDPSSITCVIGADGKPSWDOVLPSCNAPCGGQYTGSEGVVLSPNYPHNYTAGQICLYSITVP KEFVVFGOFAYFQTALNDLAELFDGTHAQARLLSSLSGSHSGETLPLATSNQILLRFSAKSGASARGF HFVYQAVPRTSDTQCSSVPEPRYGRRIGSEFSAGSIVRFECNPGYLLQGSTALHCQSVPNALAQWNDT IPSCVVPCSGNFTQRRGTILSPGYPEPYGNNLNCIWKIIVTEGSGIQIQVISFÄTEQNWDSLEIHDGG 30 DVTAPRLGSFSGTTVPALLNSTSNQLYLHFQSDISVAAAGFHLEYKTVGLAACQEPALPSNSIKIGDR YMVNDVLSFQCEPGYTLQGRSHISCMPGTVRRWNYPSPLCIATCGGTLSTLGGVILSPGFPGSYPNNL

DCTWRISLPIGYGAHIOFLNFSTEANHDFLEIQNGPYHTSPMIGQFSGTDLPAALLSTTHETLIHFYS

DHSQNRQGFKLAYQAYELQNCPDPPPFQNGYMINSDYSVGQSVSFECYPGYILIGHPP

15.55	56-3V1 Pro	otein sequen	ce	1801 AA		
	1	MEAIKTLSGI	WNNINHVTSE	EDTFIMYLGK	PWLQVKIQVS	QGGVALVSDM
5	51	CPDPGIPENG		ANVQFSCEDN	YVLQGSKSIT	CQRVTETLAA
	101	WSDHRPICRA		SGVITSPNYP	VQYEDNAHCV	WVITTTDPDK
	151	VIKLAFEEFE.		GDAGKVGDTR	SVLYVLTGSS	VPDLIVSMSN
	201	OMWLHLQSDD	SIGSPGFKAV	YQEIEKGGCG	DPGIPAYGKR	TGSSFLHGDT
* ***	, 251	LTFECPAAFE	LVGERVITCQ	QNNQWSGNKP	SCVFSCFFNF	TASSGIILSP
10	301	NYPEEYGNNM	NCVWLIISEP	GSRIHLIFND	FDVEPQFDFL	AVKDDGISDI
···.	351	TVLGTFSGNE	VPSQLASSGH	IVRLEFQSDH	STTGRGFNIT	YTTFGQNECH
	401	DPGIPINGRR	FGDRFLLGSS	VSFHCDDGFV	KTQGSESITC	ILQDGNVVWS
	451	STVPRCEAPC	GGHLTASSGV	ILPPGWPGYY	KDSLHCEWII	EAKPGHSIKI
	501	TFDRFQTEVN	YDTLEVRDGP	ASSSPLIGEY	HGTQAPQFLI	STGNFMYLLF
15	551	TTDNSRSSIG	FLIHYESVTL	ESDSCLDPGI	PVNGHRHGGD	FGIRSTVTFS
	601	CDPGYTLSDD	EPLVCERNHQ	WNHALPSCDA		GTVLSPGFPD
	651	FYPNSLNCTW	TIEVSHGKGV	QMIFHTFHLE	SSHDYLLITE	DGSFSEPVAR
	701	LTGSVLPHTI	KAGLFGNFTA	QLRFISDFSI	SYEGFNITES	EYDLEPCDDP
•	751	GVPAFSRRIG	FHFGVGDSLT	FSCFLGYRLE	GATKLTCLGG	GRRVWSAPLP
20	801	RCVAECGASV	KGNEGTLLSP	NFPSNYDNNH	ECIYKIETEA	GKGIHLRTRS
	. 851	FQLFEGDTLK	VYDGKDSSSR	PLGTFTKNEL	LGLILNSTSN	HLWLEFNTNG
****	901	SDTDQGFQLT	YTSFDLVKCE	DPGIPNYGYR	IRDEGHFTDT	VVLYSCNPGY
	951	AMHGSNTLTC	LSGDRRVWDK	PLPSCIAECG	GQIHAATSGR	ILSPGYPAPY
	1001	DNNLHCTWII	EADPGKTISL	HFIVFDTEMA	HDILKVWDGP	VDSDILLKEW
25	1051	SGSALPEDIH	STFNSLTLQF	DSDFFISKSG	FSIQFSTSIA	ATCNDPGMPQ
	1101	NGTRYGDSRE	AGDTVTFQCD	PGYQLQGQAK	ITCVQLNNRF	FWQPDPPTCI
	1151	AACGGNLTGP	AGVILSPNYP	QPYPPGKECD	WRVKVNPDFV	IALIFKSFNM
	. 1201	EPSYDFLHIY	EGEDSNSPLI	GSYQGSQAPE	RIESSGNSLF	LAFRSDASVG
	1251	LSGFAIEFKE	KPREACFDPG	NIMNGTRVGT	DFKLGSTITY	QCDSGYKILD
30	1301	PSSITCVIGA	DGKPSWDQVL	PSCNAPCGGQ	YTGSEGVVLS	PNYPHNYTAG RLLSSLSGSH
	1351	QICLYSITVP	KEFVVFGQFA	YFQTALNDLA	ELFDGTHAQA	TOCSSVPEPR
	1401	SGETLPLATS	NQILLRFSAK	SGASARGFHF	VYQAVPRTSD	AOWNDTIPSC
	1451	YGRRIGSEFS	AGSIVRFECN	PGYLLQGSTA	LHCQSVPNAL	GIOIOVISFA
	1501	VVPCSGNFTQ	RRGTILSPGY	PEPYGNNLNC	IWKIIVTEGS	YLHFOSDISV
35	1551	TEQNWDSLEI	HDGGDVTAPR	LGSFSGTTVP	ALLNSTSNQL DRYMVNDVLS	FOCEPGYTLQ
	1601	AAAGFHLEYK	TVGLAACQEP	ALPSNSIKIG		GFPGSYPNNL
	1651	GRSHISCMPG	TVRRWNYPSP	LCIATCGGTL	STLGGVILSP	
	1701	DCTWRISLPI	GYGAHIQFLN	FSTEANHDFL		PMIGQFSGTD KPKSKYTSYM
	1751	LPAALLSTTH	ETLIHFYSDH	SQNRQGEKLA	YQGMEQQREP	VLVSVIISIM
40	1801	*				

	5G-3V2 Pr	otein sequer	ace	2009 AA		
	1			EDTFIMYLGK	PWLQVKIQVS	QGGVALVSDM
5	- 51			ANVQFSCEDN		
	101	WSDHRPICRA	RTCGSNLRGP	SGVITSPNYP	VQYEDNAHCV	WVITTTDPDK
	151	VIKLAFEEFE	LERGYDTLTV	GDAGKVGDTR	SVLYVLTGSS	VPDLIVSMSN
	201		SIGSPGFKAV		DPGIPAYGKR	
•	251	LTFECPAAFE	LVGERVITCQ	QNNQWSGNKP	SCVFSCFFNF	TASSGIILSP
10	301	NYPEEYGNNM	NCVWLIISEP	GSRIHLIFND	FDVEPQFDFL	AVKDDGISDI
•	351		VPSQLASSGH	IVRLEFQSDH	STTGRGFNIT	YTTFGQNECH
	401	DPGIPINGRR	FGDRFLLGSS	VSFHCDDGFV	KTQGSESITC	ILQDGNVVWS
	451		GGHLTASSGV	ILPPGWPGYY	KDSLHCEWII	EAKPGHSIKI
	501	TFDRFOTEVN	YDTLEVRDGP	ASSSPLIGEY	HGTQAPQFLI	STGNFMYLLF
15	551	TTDNSRSSIG	FLIHYESVTL		PVNGHRHGGD	
	601	CDPGYTLSDD	EPLVCERNHQ	WNHALPSCDA	LCGGYIQGKS	GTVLSPGFPD
	651	FYPNSLNCTW	TIEVSHGKGV	QMIFHTFHLE	SSHDYLLITE	DGSFSEPVAR
<i>ç</i> .	701	LTGSVLPHTI	KAGLFGNFTA			EYDLEPCDDP
	751	GVPAFSRRIG	FHFGVGDSLT	FSCFLGYRLE	GATKLTCLGG	GRRVWSAPLP
20	801	RCVAECGASV	KGNEGTLLSP	NFPSNYDNNH	ECIYKIETEA	GKGIHLRTRS
	851	FQLFEGDTLK	VYDGKDSSSR	PLGTFTKNEL	LGLILNSTSN	HLWLEFNTNG
	901	SDTDQGFQLT	YTSFDLVKCE	DPGIPNYGYR	IRDEGHFTDT	VVLYSCNPGY.
	951	AMHGSNTLTC	LSGDRRVWDK	PLPSCIAECG	GQIHAATSGR	ILSPGYPAPY
	1001	DNNLHCTWII	EADPGKTISL	HFIVFDTEMA	HDILKVWDGP	VDSDILLKEW
25	1051	SGSALPEDIH	STFNSLTLQF	DSDFFISKSG	FSIQFSTSIA	ATCNDPGMPQ
	1101	NGTRYGDSRE	AGDTVTFQCD	PGYQLQGQAK	ITCVQLNNRF	FWQPDPPTCI
	1151	AACGGNLTGP	AGVILSPNYP	QPYPPGKECD	WRVKVNPDFV	IALIFKSFNM
	1201			GSYQGSQAPE		
	1251	LSGFAIEFKE	KPREACFDPG	NIMNGTRVGT	DFKLGSTITY	QCDSGYKILD
30	1301			PSCNAPCGGQ		PNYPHNYTAG
	1351			YFQTALNDLA		RLLSSLSGSH
	1401			SGASARGFHF		TQCSSVPEPR
	1451			PGYLLQGSTA		
	1501			PEPYGNNLNC		
35	1551			LGSFSGTTVP		
	1601			ALPSNSIKIG		FQCEPGYTLQ
	1651			LCIATCGGTL		
	1701			FSTEANHDFL		
	1751			SQNRQGFKLA		
40	1801	INSDYSVGQS	VSFECYPGYI	LIGHPVLTCQ	HGINRNWNYP	FPRCDAPCGY
	1851	NVTSQNGTIY	SPGFPDEYPI	LKDCIWLITV -	PPGHGVYINF	TLLQTEAVND
	1901			NTALETAYSS		
	1951		LVKTENSMWC	L'LQCCPTPCF	QLKFLDSAEG	VYDSFALEAS
	2001	VSCGPFFV*				

100	56-3V3 Pr	otein sequen	ice	1784 AA		
	1	MEATKTLSGI	WNNINHVTSE	EDTFIMYLGK	PWLQVKIQVS	QGGVALVSDM
5	51	CPDPGIPENG	RRAGSDFRVG	ANVQFSCEDN	YVLQGSKSIT	CQRVTETLAA
٠	101	WSDHRPICRA	RTCGSNLRGP	SGVITSPNYP	VQYEDNAHCV	WVITTTDPDK
	151	VIKLAFEEFE.	LERGYDTLTV	GDAGKVGDTR		VPDLIVSMSN
	201	QMWLHLQSDD	SIGSPGFKAV	YQEIEKGGCĞ	DPGIPAYGKR	
* ***	' 251	LTFECPAAFE	LVGERVITCQ	QNNQWSGNKP	SCVFSCFFNF	TASSGIILSP
10	301	NYPEEYGNNM	NCVWLIISEP	GSRIHLIFND	FDVEPQFDFL	AVKDDGISDI
٠	351	TVLGTFSGNE	VPSQLASSGH	IVRLEFQSDH	STTGRGFNIT	YTTFGQNECH
	401	DPGIPINGRR	FGDRFLLGSS	VSFHCDDGFV	KTQGSESITC	ILQDGNVVWS
	451	STVPRCEAPC	GGHLTASSGV	ILPPGWPGYY	KDSLHCEWII	EAKPGHSIKI
	501	TFDRFQTEVN	YDTLEVRDGP	ASSSPLIGEY	HGTQAPQF'L1	STGNFMYLLF
15	551		FLIHYESVTL	ESDSCLDPGI	PVNGHRHGGD	FGIRSTVTFS
	601	CDPGYTLSDD	EPLVCERNHQ	WNHALPSCDA	LCGGYIQGKS	GTVLSPGFPD
	651	FYPNSLNCTW	TIEVSHGKGV	QMIFHTFHLE	SSHUYLLITE	DGSFSEPVAR
	701	LTGSVLPHTI	KAGLFGNFTA	QLRFISDFSI	SYEGENITES	EYDLEPCDDP GRRVWSAPLP
	751	GVPAFSRRIG	FHFGVGDSLT	FSCFLGYRLE	GATKLICLGG	
20	801	RCVAECGASV	KGNEGTLLSP	NFPSNYDNNH	FCTIVIETER	HLWLEFNTNG
	851		VYDGKDSSSR	PLGTFTKNEL	TRUECREADA	VVLYSCNPGY
	901	SDTDQGFQLT	YTSFDLVKCE	DPGIPNYGYR	TKDEGUEIDI	
	951	AMHGSNTLTC	LSGDRRVWDR	PLPSCIAECG HFIVFDTEMA	GOTUWATOCK	ADSIGITATI
٥.	1001		EADPGRIISE	DSDFFISKSG	FCIOFCTCIA	ATCNDPGMPO
25	1051	SGSALPEDIH	STENSLILL	PGYQLQGQAK	TTCVOLNNER	FWOPDPPTCI
	1101		AGDIVITOCO	QPYPPGKECD	MBAKANDULA	IALIFKSFNM
	1151	AACGGNLTGP	AGATTOLNIE	GSYQGSQAPE	RIESSGNSLE	LAFRSDASVG
	1201	EASIDEPHTI	FGFDSNSETT	NIMNGTRVGT	DEKLGSTITY	QCDSGYKILD
30	1251	PSGIMITION	DCKBSMDOVI.	PSCNAPCGGQ		
30	1301	OICLYSITVP	PGKE2MPQ 4 P	YFQTALNDLA	ELFOGTHAOA	RLLSSLSGSH
	1351 1401	SGETLPLATS	MOTILEFSAK	SGASARGFHF	VYOAVPRTSD	TOCSSVPEPR
	1451	YGRRIGSEFS	ACSTURFECH	PGYLLQGSTA	LHCOSVPNAL	
	1501	VVPCSGNFTQ	PRCTTI-SPGY	PEPYGNNLNC	IWKIIVTEGS	GIQIQVISFA
35	1551	TEONWDSLEI	-	LGSFSGTTVP	ALLNSTSNQL	YLHFQSDISV
55	1601	AAAGFHLEYK	TVGLAACOEP	ALPSNSIKIG	DRYMVNDVLS	FQCEPGYTLQ
	1651	GRSHISCMPG	TVRRWNYPSP	LCIATCGGTL	STLGGVILSP	GFPGSYPNNL
	1701	DCTWRISLPI	GYGAHIQFLN	FSTEANHDFL	EIQNGPYHTS	PMIGQFSGTD
	1751	LPAALLSTTH	ETLIHFYSDH	SQNRQGFKLA	YQA*	
				•		

	5R-3V2 Pr	otein seque	ace	2353 AA		
	1	•			SSEEPSVSRA	CGVSADMTAW
5	. 51					SPGFPHGYPN
	101			_		OGNLKVRLSG
	151		-		~ ~	CGNPGEILKG
	201	_		_		WDFPAPFCRA
	251	EGACGGTLRG	TSSSISSPHF	PSEYENNADC	TWTILAEPGD	TIALVFTDFO
10	301	LEEGYDFLEI	SGTEAPSIWL	TGMNLPSPVI	SSKNWLRLHF	TSDSNHRRKG
	351	ENAOFOVKKA.	IELKSRGVKM	LPSKDGSHKN	SVLSQGGVAL	VSDMCPDPGI
	401	PENGRRAGSD	FRVGANVQFS	CEDNYVLQGS	KSITCQRVTE	TLAAWSDHRP
	451	ICRARTCGSN	LRGPSGVITS	PNYPVQYEDN	AHCVWVITTT	DPDKVIKLAF
	501	EEFELERGYD	TLTVGDAGKV	GDTRSVLYVL	TGSSVPDLIV	SMSNQMWLHL
15	551	QSDDSIGSPG	FKAVYQEIEK	GGCGDPGIPA	YGKRTGSSFL	HGDXLTFECP
	601	AAFELVGERV	·ITCQQNNQWS	GNKPSCVFSC	FFNFTASSGI	ILSPNYPEEY
	651	GNNMNCVWLI	ISEPGSRIHL	IFNDFDVEPQ	FDFLAVKDDG	ISDITVLGTF
* .	701	SGNEVPSQLA	SSGHIVRLEF	QSDHSTTGRG	XNITYTTFGQ	NECHDPGIPI
	751	NGRRFGDRFL	LGSSVSFHCD	DGFVKTQGSE	SITCILODGN	VVWSSTVPRC
20	801	EAPCGGHLTA	SSGVILPPGW	PGYYKDSLHC	EWIIEAKPGH	SIKITFDRFQ
•	851	TEVNYDTLEV	RDGPASSSPL	IGEYHGTQAP	QFLISTGNFM	YLLFTTDNSR
	901	SSIGFLIHYE	SVTLESDSCL	DPGIPVNGHR	HGGDFGIRST	VTFSCDPGYT
	951	LSDDEPLVCE	RNHQWNHALP	SCDALCGGYI	QGKSGTVLSP	GFPDFYPNSL
	1001	NCTWTIEVSH	GKGVQMIFHT	FHLESSHDYL	LITEDGSFSE	PVARLTGSVL
25	1051	PHTIKAGLFG	NFTAQLRFIS	DFSISYEGFN	ITFSEYDLEP	CDDPGVPAFS
•	1101	RRIGFHFGVG	DSLTFSCFLG	YRLEGATKLT	CLGGGRRVWS	APLPRCVAEC
	1151	GASVKGNEGT	LLSPNFPSNY	DNNHECIYKI	ETEAGKGIHL	RTRSFQLFEG
	1201	DTLKVYDGKD	SSSRPLGTFT	KNELLGLILN	STSNHLWLEF	NTNGSDTDQG
••	1251	_			FTDTVVLYSC	
30	1301				TSGRILSPGY	
	1351				MDGBADSDIT	
	1401		_	_	TSIAATCNDP	-
	1451				NNRFFWQPDP	
25	1501				PDFVIALIFK	4
35	1551		_	-	NSLFLAFRSD	
	1601				TITYQCDSGY	
	1651				VVLSPNYPHN	
	1701				HAQARLLSSL	
40	1751				RTSDTQCSSV	
40	1801		_		PNALAQWNDT	
	1851				TEGSGIQIQV	
	1901				SNQLYLHFQS	
	1951	LEYKTVGLAA				
45	2001	CMPGTVRRWN	YPSPLCIATC	GGTLSTLGGV	ILSPGFPGSY	PNNLDCTWRI
43	2051	SLPIGYGAHI				
	2101				QNCPDPPPFQ	
	. 2151	_		_	WNYPFPRCDA	
	2201				YINFTLLQTE	
50	2251				KFHSDFSNGG	
30	2301		PWMCTTÖCCE	TECTOPKEDD	SAEGVYDSFA	TEMS ASCREE
	2351	FV*				

		UENCE 5R23V	2			
	LOCUS 5R23V2.				DATED 05.	/11/101
5	DEFINITION -					
,	ACCESSION -					
	KEYWORDS -					
	SOURCE -	•				
	FEATURES From	To/Span	Description	on		
10	Peptide 1	2307	851 to 77	71 of 5R23V2	(translate	d)
70	OPICIN 2					
•	1 MTAWRREOS	L LLLLGLLVLC	ARLLTAAKGO	·NCGGLVQGPN	GTIESPGFPH	GYPNYANCTW
	61 TITTGERNR	COLSPHTFALE	EDFDILSVYD	GOPQQGNLKV	RLSGFQLPSS	IVSTGSILTL
	121 WETTDEAUS	OCEKALYEVI	PSHTCGNPGE	ILKGVLHGTR	FNIGDXIRYS	CLPGYILEGH
15	181 AILTCIVSPO	NGASWDFPAP	FCRAEGACGG	TLRGTSSSIS	SPHFPSEYEN	NADCTWTILA
13	241 EPGDTTALV	TOFOLEEGYD	FLEISGTEAP	SIWLTGMNLP	SPVISSKNWL	RLHFTSDSNH
	301 PRKCENAOF	VKKATELKSR	GVKMLPSKDG	SHKNSVLSQG	GVALVSDMCP	DPGIPENGRR
	361 ACCREPUCA	VOFSCEDNYV	LOGSKSITCO	RVTETLAAWS	DHRPICRART	CGSNLRGPSG
	421 UTTSDNYPU	YEDNAHCVWV	ITTTDPDKVI	KLAXEEFELE	RGYDTLTVGD	AGKVGDTRSV
20	481 LXVLTGSSV	DITYSMSNOM	WI.HLOSDDSI	GSPGFKAVYO	EIEKGGCGDP	GIPAYGKRTG
20	541 SSFLHGDXL	r FECPAAFEIV	GERVITCOON	NOWSGNKPSC	VFSCFFNFTA	SSGIILSPNY
	601 PERYGNNMN	VWITTSEPGS	RIHLIFNDFD	VEPOFDFLAV	KDDGISDITV	LGTFSGNEVP
	661 SQLASSGHI	Z RIFFOSDHST	TGRGXNITYT	TEGONECHDP	GIPINGRRFG	DRFLLGSSVS
	721 FRCDDGFVK	r OGSESTTCIL	ODGNVVWSST	VPRCEAPCGG	HLTASSGVIL	PPGWPGYYKD
25	781 SLHCEWIIE	KDCHSTKITF	DRECTEVNYD	TLEVRDGPAS	SSPLIGEYHG	TOAPOFLIST
22	841 GNFMYLLFT	P DNSBSSTGFT.	THYESVTLES	DSCLDPGIPV	NGHRHGGDFG	IRSTVTFSCD
	901 PGYTLSDDE	P LUCERNHOWN	HALPSCDALC	GGYIOGKSGT	VLSPGFPDFY	PNSLNCTWTI
	961 EVSHGKGVQ	A TEHTEHLESS	HDYLLITEDG	SFSEPVARLT	GSVLPHTIKA	GLXGNFTAQL
	1021 RFISDFSIS	Y EGENITESEY	DLEPCDDPGV	PAFSRRIGFH	FGVGDSLTFS	CFLGYRLEGA
30	1081 TKLTCLGGG	PUWSAPI.PRC	VAECGASVKG	NEGTLLSPNF	PSNYDNNHEC	IYKIETEAGK
50	1141 CTHIRTRSE	1.FEGDTLKVY	DGKDSSSRPL	GTFTKNELLG	LILNSTSNHL	WLEFNTNGSD
•	1201 700670177	r SEDIUKCEDP	GIPNYGYRIR	DEGHFTDTVV	LYSCNPGYAM	HGSNTLTCLS
	1261 CDBRUMDKP	. PSCTAECGGO	IHAATSGRIL	SPGYPAPYDN	NLHCTWIIEA	DPGKTISLHF
	1221 TVFDTFMAH	D TIKVWDGPVD	SDILLKEWSG	SALPEDIHST	FNSLTLQFDS	DFFISKSGFS
35	1201 105575733	r CNDDGMPONG	TRYGDSREAG	DTVTFOCDPG	YOLOGOAKIT	CVQLNNRFFW
55	1441 ODDDDTCTA	A CECNITEPAG	VILSPNYPOP	YPPGKECDWR	VKVNPDFVIA	LIFKSFNMEP
	1501 CVDELUTVE	2 FDSNSPLIGS	YOGSOAPERI	ESSGNSLFLA	FRSDASVGLS	GFALEFKEKP
	1561 PEACEDRON	T MNGTRVGTDF	KLGSTITYOC	DSGYKILDPS	SITCVIGADG	KPSWDQVLPS
	1621 CNAPCGGOY	r csecvvispn	YPHNYTAGOI	CLYSITVPKE	FVVFGQFAYE	OTATINDTAFF
40	1681 FDGTHAOAR	i. i.ssi.sgsHsG	ETLPLATSNO	ILLRFSAKSG	ASARGFHEVY	QAVPRISDIQ
	· 1741 CSSVDEDRY	RRIGSEFSAG	SIVRFECNPG	YLLOGSTALH.	CQSVPNALAQ	WNDTIPSCVV
	1901 PCSCNFTOR	R CTITISPGYPE	PYGNNLNCIW	KIIVTEGSGI	QIQVISFATE	ONMOSPETHD
	1861 CCDUTABRI.	C SESCTTUPAL	LNSTSNOLYL	HFOSDISVAA	AGFHLEYKTV	GLAACQEPAL
	1921 PSNSTKTGD	R YMVNDVLSFO	CEPGYTLOGR	SHISCMPGTV	RRWNYPSPLC	IATCGGTLST
45	1981 T.CCVTT.SPG	F PESYPNNIDE	TWRISLPIGY	GAHIOFLNFS	TEANHDFLEI	QNGPYHTSPM
	2041 TCORSCIDE	THUTTOIJIES O	I.THFYSDHSO	NROGFKLAYQ	AYELQNCPDP	PPFQNGYMIN
	2101 SDYSVGOSV	S FECYPGYILI	GHPVLTCOHG	INRNWNYPFP	RCDAPCGYNV	TSQNGTIYSP
	2161 GEDDEYDII.	K DCTWITTVPP	GHGVYINFTL	LOTEAVNDYI	AVWDGPDQNS	POLGVESGNT
	2221 ALETAYSST	N OVLLKFHSDF	SNGGFFVLNF	HGQLIFTPLV	KTENSMWCLL	QCCPTPCFQL
50	2281 KFLDSAEGV	Y DSFALEASVS	CGPFFV*	·		

100	;	5R2 OC147 PROTEIN				
5	LOCUS TRANSI DEFINITION - ACCESSION - KEYWORDS - SOURCE -	LATIO 347 A.	A PROT	UPDATED	05/11/101	
10	FEATURES From Peptide ORIGIN ?	1 347	•	5r2_oc147 (tra	·	
٠.,	61 IIITGER	RI QLSFHTFALE	ARLLTAAKGQ NCGG EDFDILSVYD GQPQ PSHTCGNPGE ILKG	QGNLKV RLSGFQLP	SS IVSTGSILTL	
15	181 AILTCIVS 241 EPGDTIAI	PG NGASWDFPAP VF TDFQLEEGYD	FCRAEGACGG TLRG FLEISGTEAP SIWL GVKMLPSKDG SHKN	TSSSIS SPHFPSEY TGMNLP SPVISSKN	EN NADCTHTILA	

153	;			5R2 AW	PROTEIN	•	
. 5	LOCUS DEFINITION ACCESSION KEYWORDS	5R2_AW_PF					/11/101
10	SOURCE FEATURES Peptide ORIGIN	2	To/Span 372		66 of 5r2_av		
15	61 II 121 W 181 A 241 E 301 R	IITGERŅRI FTTDFAVSA ILTCIVSPG PGDTIALVF	QLSFHTFALE QGFKALYEVL NGASWDFPAP TDFQLEEGYD VKKAIELKSR	EDFDILSVYD PSHTCGNPGE FCRAEGACGG FLEISGTEAP	NCGGLVQGPN GQPQQGNLKV ILKGVLHGTR TLRGTSSSIS SIWLTGMNLP SHKNSVWHQQ	RLSGFQLPSS FNIGDKIRYS SPHFPSEYEN SPVISSKNWL	IVSTGSILTL CLPGYILEGH NADCTWTILA RLHFTSDSNH
20	//				٠		

1/3

FIGURE 1.

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

n anal Application No PCT/GB 01/02240

A. CLASSIF	FICATION OF SUBJECT MATTER C12N15/12 C12N15/85 C12N15/8	6 C07K14/47 C	D7K16/18		
110 /	C12N15/12 C12N15/65 C12N15/6 C12Q1/68 G01N33/577 A61K31/7		01K67/027		
	International Patent Classification (IPC) or to both national classification	tion and IPC			
B. FIELDS	SEARCHED currentation searched (classification system followed by classification)	n symbols)			
IPC 7	C12N C07K C12Q G01N A61K A01K				
•					
Documentat	ion searched other than minimum documentation to the extent that si	uch documents are included in the fie	elds searched		
Electronic da	ata base consulted during the international search (name of data bas	se and, where practical, search terms	used)		
WPI Data, PAJ, CAB Data, STRAND, BIOSIS, EPO-Internal					
1	ou, , , , o, , , , , , , , , , , , , , ,				
j*-					
0.000.00	THE CONSIDERED TO BE DELEVANT				
Category °	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the rele	evant nassages	Relevant to claim No.		
Calegory	Challon of document, warrandication, where appropriate, or the tox				
x	DATABASE EMBL SEQUENCE DATABASE	'Online!	1-6		
^	Hinxton, UK; 21 October 1999 (199				
	NCI-CGAP: "xd71c12.x1 Soares_NFL_				
	Homo sapiens cDNA clone IMAGE:260	3062 37			
	mRNA sequence; EST" XP002175139				
	EMBL:AW104197, Comparison of Acce	ssion no.			
	AW104197 and SEQ ID No. 8;		·		
	abstract				
	-	-/			
		•	•		
	·				
'					
	·				
X Funi	her documents are listed in the continuation of box C.	Patent family members are	listed in annex.		
° Special ca	ntegories of cited documents:	"T" later document published after th	e International filing date		
A docume	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict cited to understand the principle	or theory underlying the		
	document but published on or after the international	invention "X" document of particular relevance	; the claimed invention		
'L' docume	ent which may throw doubts on priority claim(s) or	cannot be considered novel or of involve an inventive step when	the document is taken alone		
citatio	is cited to establish the publication date of another n or other special reason (as specified).	"Y" document of particular relevance cannot be considered to involve document is combined with one	an inventive step when the		
other	ent referring to an oral disclosure, use, exhibition or means	ments, such combination being in the art.			
"P" docume later ti	ent published prior to the international filing date but han the priority date claimed	*8* document member of the same p	patent family		
Date of the	actual completion of the international search	Date of mailing of the Internation	nal search report		
1	7 August 2001	29/08/2001			
Name and r	mailing address of the ISA	Authorized officer			
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk				
1	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hornig, H			

INTERNATIONAL SEARCH REPORT

In anal Application No
PCT/GB 01/02240

C (C==1:=	otion) DOCUMENTS CONSIDERED TO BE STORY	PC1/GB 01/02240
Category	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	:
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL SEQUENCE DATABSE 'Online! Hinxton, UK; 3 March 2000 (2000-03-03) L. HILLIER ET AL.: "zj96c05.s1 Soares_fetal_liver_spleen_INFLS_S1 Homo sapiens cDNA clone; EST" XP002175140 EMBL:AA705177, Comparison of Accession no. AA705177 and SEQ ID No.2; abstract	1-6
X	DATABASE EMBL SEQUENCE DATABASE 'Online! Hinxton, UK; 2 January 2000 (2000-01-02) K. KYUNG ET AL.: "Homo sapiens BAC clone RP11-221H10 from 8, complete sequence; HTG" XP002175141 EMBL:AC019176, Comparison of Accession no. AC019176 from position 13832-14773 and SEQ ID No. 6; abstract	1-6
A :	SUN PAUL C ET AL: "Homozygous deletions define a region of 8p23.2 containing a putative tumor suppressor gene." GENOMICS, vol. 62, no. 2, 1 December 1999 (1999-12-01), pages 184-188, XP002175136 ISSN: 0888-7543 cited in the application the whole document	·
A	ISHWAD CHANDRAMOHAN S ET AL: "Frequent allelic loss and homozygous deletion in chromosome band 8p23 in oral cancer." INTERNATIONAL JOURNAL OF CANCER, vol. 80, no. 1, 5 January 1999 (1999-01-05), pages 25-31, XP002175137 ISSN: 0020-7136 the whole document	
A	SUNWOO JOHN B ET AL: "Localization of a putative tumor suppressor gene in the sub-telomeric region of chromosome 8p." ONCOGENE, vol. 18, no. 16, 22 April 1999 (1999-04-22), pages 2651-2655, XP001015856 ISSN: 0950-9232 the whole document ————————————————————————————————————	

INTERNATIONAL SEARCH REPORT

h stional Application No PCT/GB 01/02240

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
	SUN PAUL C ET AL: "Transcript map of the 8p23 putative tumor suppressor region." GENOMICS, vol. 75, no. 1-3, July 2001 (2001-07), pages 17-25, XP002175138 ISSN: 0888-7543 the whole document						

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claim 20 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claim(s) 18 and 19 (as far as in vivo methods are concerned) are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.