11/20/2017 a6.html

CSE 415 Assignment 6: Bayes' Rule and Markov Deicision

Chongyi Xu, 1541273

Problems

- 1. Should Anyone Panic?
 - (a) **Solution.** Let D be the event that the Lucy has HPAI and E the event that test result is positive. Then the probability will be

$$egin{aligned} P(D|E) &= rac{P(D \cap E)}{P(E)} \ &= rac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)P(D^c)} \end{aligned}$$

We have the probability table

	True(Effected)	False(Not Effected)
Positive	0.95	0.05
Negative	0	1

$$egin{aligned} P(D|E) &= rac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)P(D^c)} \ &= rac{(0.95)(rac{1}{1000})}{(0.95)(rac{1}{1000}) + (0.05)(rac{999}{1000})} \ &pprox 0.01866 \ &= 1.866\% \end{aligned}$$

So the updated probability that Lucy has HPAI is 1.866%

(b) **Solution**. Similiarly, let D be the event that the Lucy has HPAI and E the event that test result is positive. Then the probability will be

11/20/2017 a6.htm

$$egin{aligned} P(D|E) &= rac{P(D \cap E)}{P(E)} \ &= rac{P(E|D)P(D)}{P(E|D)P(D) + P(E|D^c)P(D^c)} \ &= rac{(0.95)(rac{1}{80})}{(0.95)(rac{1}{80}) + (0.05)(rac{79}{80})} \ &pprox 0.1939 \ &= 19.39\% \end{aligned}$$

So the updated probability that James has HPAI is 19.39%

As the result, James should seek for assistance since he has a probability of \sim 19% that he has *HPAI* meanwhile Lucy could be not panic for having the decease.

- 2. The Mecha-Mouse at the Hostel for Travelling Droids
 - i. Answer. The number of different policies that are possible for Mecha-mouse is

$$3^4 = 81$$

where 4 is the number of rooms (s), and 3 is the number of possible actions (a) in each room (state).

ii. Answer. Using the Bellman Equation

$$V_{k+1}^*(s) = max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_k^*(s')]$$

Value iterations for six times which means iterating til k=6 from k=0

Iteration	Dormitory	Mess Hall	Lavatory	Pantry	Ambushed	Kaput
#1	3.2	6	6	3.2	0	0
#2	6.2	7.6	7.6	6.2	0	0
#3	7	9.1	9.1	7	0	0
#4	7.75	9.5	9.5	7.75	0	0
#5	7.95	9.875	9.875	7.95	0	0
#6	8.1375	9.975	9.975	8.1375	0	0

iii. Answer: The optimal policy I got is

11/20/2017 a6.html

D	L	P	M	A	K
Y	X	X	X	*	*