1 Lezione del 24-03-25

1.1 Pivoting

L'algoritmo di eliminazione di Gauss che abbiamo definito alla scorsa lezione ha un punto di fallimento nel caso uno degli elementi $a_{ii}^{(i-1)}$ sia = 0, o comunque \approx 0, in quanto vorremmo a quel punto calcolare un moltiplicatore $l_{ji} = \frac{a_{ji}}{a_{ii}} \rightarrow$ non ben definito.

In tal caso si può modificare l'algoritmo sfruttando una matrice di permutazione che porti un elemento diverso da zero nella stessa posizione di a_{ii} . Vorremo quindi cercare un indice h tal per cui $a_{hi}^{(i-1)}$ sia di modulo massimo nella sua colonna al di sotto di i, cioè:

$$a_{hi}^{(i-1)} \ge \max_{j=i,\dots,n} |a_{ji}^{(i-1)}|$$

e scambiare la riga i con la riga h. Infatti, se $\det(A) \neq 0$, allora necessariamente esiste un $a_{ji}^{(i-1)} \neq 0$ (altrimenti si ha uno 0 obbligato sulla diagonale, che con la matrice triangolare a blocchi dà $\det(A^{(i-1)}) = 0$).

Un altra conseguenza di questo approccio è che tutti i moltiplicatori l_{ji} diventeranno ≤ 1 . L'algoritmo di Gauss con questa modifica si chiama **eliminazione di Gauss con pivoting parziale** (parziale perché ne esistono versioni più sofisticate, che non vedremo).

Osserviamo che ogni scambio di righe equivale a moltiplicare a sinistra per una matrice di permutazione Π_i . Quindi il metodo di Gauss con pivoting può essere rappresentato come:

Algoritmo 1 Eliminazione di Gauss con pivoting parziale

```
Input: un sistema lineare qualsiasi Ax = b

Output: un sistema lineare triangolare superiore Ux = c

for i = 1 to n do

Trova la matrice \Pi_i che porta l'elemento di modulo massimo in testa A \leftarrow \Pi_i A

for j = i to n do

Calcola il moltiplicatore l_{ji} = \frac{a_{ji}^{(i-1)}}{a_{ii}^{(i-1)}}

Aggiungi alla riga j la riga i moltiplicata per l_{ij}

end for
end for
```

Vediamo un esempio pratico dell'algoritmo prima di procedere all'implementazione MATLAB. Prendiamo la matrice A e il vettore b:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Nel ridurre la matrice aumentata *Ab*:

$$\begin{pmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 2 \\ 7 & 8 & 0 & 3 \end{pmatrix}$$

ci accorgiamo che alla prima colonna l'entrata di modulo massimo è 7, di indice 3. Si permutano quindi la prima e la terza riga:

$$\xrightarrow{\Pi_1} \begin{pmatrix} 7 & 8 & 0 & 3 \\ 4 & 5 & 6 & 2 \\ 1 & 2 & 3 & 1 \end{pmatrix} \xrightarrow{H_1\Pi_1} \begin{pmatrix} 7 & 8 & 0 & 3 \\ 0 & \frac{3}{7} & 6 & \frac{2}{7} \\ 0 & \frac{6}{7} & 3 & \frac{4}{7} \end{pmatrix}$$

nuovamente, l'entrata di modulo massimo è all'indice 3. Si permutano quindi la seconda e la terza riga:

$$\frac{\Pi_{2}H_{1}\Pi_{1}}{0} \xrightarrow{\begin{pmatrix} 7 & 8 & 0 & 3 \\ 0 & \frac{6}{7} & 3 & \frac{4}{7} \\ 0 & \frac{3}{7} & 6 & \frac{2}{7} \end{pmatrix} \xrightarrow{H_{2}\Pi_{2}H_{1}\Pi_{1}} \xrightarrow{\begin{pmatrix} 7 & 8 & 0 & 3 \\ 0 & \frac{6}{7} & 3 & \frac{4}{7} \\ 0 & 0 & \frac{9}{2} & 0 \end{pmatrix}$$

1.1.1 Implementazione MATLAB del metodo di eliminazione di Gauss con pivoting

Modifichiamo quindi la funzione gauss_decomp() per introdurre il meccanismo di pivoting appena visto:

```
function [A, b] = gauss_decomp(A, b)
      n = height(A);
      if nargin < 2
          b = zeros(n, 1);
7
      for i = 1:n % i itera sulle diagonali
8
          % qui fai il pivot
9
          max_abs = max(abs(A(i:n, i)));
10
          h = find(abs(A(i:n, i)) == max_abs, 1);
11
          h = h + i - 1; % max abs si conta da i in poi
12
13
14
          A([i, h], :) = A([h, i], :); % permuta A
15
          b([i, h]) = b([h, i]); % permuta b
16
           den = A(i, i);
17
18
           for j = (i + 1):n \% j itera sulle righe
19
               mul = A(j, i) / den; % moltiplicatore
20
               L(j, i) = mul;
21
22
               A(j, :) = A(j, :) - A(i, :) * mul;
23
               b(j) = b(j) - b(i) * mul;
24
27 end
```

1.1.2 Fattorizzazione LU con pivoting

Vediamo come ricavare una fattorizzazione LU dal metodo di Gauss modificato con il pivoting. Si ha quindi che la matrice U si evolve come:

$$A \to \Pi_1 A \to H_1 \Pi_1 A \to \dots \to H_{n-1} \Pi_{n-1} \dots H_1 \Pi_1 A = U$$

mentre per la L dovremo notare che:

$$LU = \Pi A$$

dove la matrice Π rappresenta tutte le permutazioni fatte sulle righe di A. Si ha quindi che:

- *U* è la matrice triangolare superiore trovata alla fine del metodo di Gauss con pivoting;
- L è la matrice dei moltiplicatori, a cui però si devono applicare gli scambi delle righe, come segue: se al passo i applico la matrice Π_i , devo applicare lo stesso cambio nelle prime i-1 colonne di L, sotto la diagonale.

Vediamo un esempio numerico spieghi il processo di formazione della matrice L e della matrice di permutazione Π . Presa la stessa matrice dell'esempio precedente:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{pmatrix}$$

abbiamo che le permutazioni sono, in sequenza:

$$\Pi_1: \begin{pmatrix} 1\\2\\3 \end{pmatrix} \rightarrow \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \quad \Pi_2: \begin{pmatrix} 3\\2\\1 \end{pmatrix} \rightarrow \begin{pmatrix} 3\\1\\2 \end{pmatrix}$$

o, in forma matriciale:

$$\Pi_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \Pi_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Calcoliamo quindi L. Π_1 è irrilevante al calcolo di L, quindi la ignoriamo. Vediamo che i primi due moltiplicatori sono $l_{21}=\frac{4}{7}$ e $l_{31}=\frac{1}{7}$, da cui si imposta $L^{(1)}$:

$$L^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{4}{7} & 1 & 0 \\ \frac{1}{7} & 0 & 1 \end{pmatrix}$$

Notiamo quindi che dalla Π_2 dobbiamo scambiare gli elementi sotto la diagonale della prima colonna, quindi:

$$L^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{7} & 1 & 0 \\ \frac{4}{7} & 0 & 1 \end{pmatrix}$$

Infine, l'ultimo moltiplicatore $l_{32} = \frac{1}{2}$ non ha ambiguità:

$$L^{(2)} = L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{7} & 1 & 0 \\ \frac{4}{7} & \frac{1}{2} & 1 \end{pmatrix}$$

Il calcolo di Π deriva invece direttamente studiando la permutazione complessiva data dalle $\Pi_1, ..., \Pi_{n-1}$, in questo caso:

$$\Pi: \begin{pmatrix} 1\\2\\3 \end{pmatrix} \xrightarrow{\Pi_1} \begin{pmatrix} 3\\2\\1 \end{pmatrix} \xrightarrow{\Pi_2} \begin{pmatrix} 3\\1\\2 \end{pmatrix}$$

da cui:

$$\Pi = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Con brevi calcoli si verifica che:

$$LU = \Pi A$$

1.1.3 Implementazione MATLAB completa del metodo di eliminazione di Gauss con pivoting

Vediamo quindi l'implementazione completa, che calcola anche la matrice L e la matrice Π . Notiamo inoltre l'argomento condizionale b, che viene ignorato se non fornito (abbiamo constatato che spesso è così).

```
function [A, b, L, P] = gauss_decomp(A, b)
      n = height(A);
3
4
      if nargin < 2
5
          b = zeros(n, 1);
6
      L = eye(n); % prepara L
      P = eye(n); % prepara P
9
10
      for i = 1:n % i itera sulle diagonali
11
          % qui fai il pivot
12
          max_abs = max(abs(A(i:n, i)));
13
          h = find(abs(A(i:n, i)) == max_abs, 1);
14
          h = h + i - 1; % max abs si conta da i in poi
15
16
17
          A([i, h], :) = A([h, i], :); % permuta A
          b([i, h]) = b([h, i]); % permuta b
18
          if i > 1
              L([i, h], 1:(i-1)) = L([h, i], 1:(i-1)); % permuta L
20
21
          P([i, h], :) = P([h, i], :); % permuta P
22
23
          den = A(i, i);
24
25
          for j = (i + 1):n \% j itera sulle righe
26
               mul = A(j, i) / den; % moltiplicatore
27
               L(j, i) = mul;
28
29
               A(j, :) = A(j, :) - A(i, :) * mul;
               b(j) = b(j) - b(i) * mul;
31
32
          end
      end
33
34 end
```

1.1.4 Determinante con pivoting

Possiamo sfruttare la matrice Π per il calcolo del determinante. Si ha infatti dal teorema di Binet-Cauchy (4.1) che:

$$\det(\Pi)\det(A) = \det(\Pi A) = \det(LU) = \det(L)\det(U)$$

e quindi:

$$\det(A) = \det(\Pi)^{-1} \det(L) \det(U)$$

dove det(L) = 1 (triangolare inferiore con diagonale di 1). Si nota poi che $det(\Pi)^{-1}$ è $(-1)^s$ è il numero di pivot che effettuiamo. A questo punto det(U) è semplicemente il prodotto degli elementi sulla diagonale (triangolare superiore), cioè:

$$\prod_{i=1}^{n} a_{ii}^{(i-1)} = \prod_{i=1}^{n} u_{ii}$$

e quindi:

$$\det(A) = (-1)^s \prod_{i=1}^n a_{ii}^{(i-1)} = (-1)^s \prod_{i=1}^n u_{ii}$$

Si può quindi usare il metodo di Gauss, ancora una volta, per il calcolo del determinante di una matrice, con costo pari al costo dell'eliminazione di Gauss $(O(\frac{2}{3}n^3))$, molto meglio dello sviluppo di Laplace! (O(n!)).

1.1.5 Implementazione MATLAB del metodo di Gauss per il determinante

In MATLAB si può calcolare il prodotto delle diagonali come prod(diag(A)) e il segno di una permutazione come det(P) (anche se sicuramente esistono approcci più efficienti). Si può quindi realizzare uno script simile al seguente per il calcolo del determinante sfuttando gauss_decomp() con permutazioni:

```
function d = gauss_det(A)

function s = perm_sign(P)

s = det(P); % ci sono modi piu' efficienti, vale l'esempio
end

[U, ~, ~, P] = gauss_decomp(A);
d = prod(diag(U)) * perm_sign(P);
end
```

1.2 Condizionamento di un sistema lineare

Date $A \in \mathbb{C}^{n \times n}$ e $b \in \mathbb{C}^n$, supponiamo di voler trovare Ax = b ma a causa di errori nei dati o errori di arrotondamento troviamo (con un qualunque metodo) un vettore perturbato $x + \delta x \in \mathbb{C}^n$ che risolve un sistema lineare di per sé perturbato:

$$(A + \delta A)(x + \delta x) = (b + \delta b)$$

con δA e δB perturbazioni "piccole" della matrice A e del vettore b, quindi $A+\delta A\in\mathbb{C}^{n\times n}$ e $b+\delta b\in\mathbb{C}^n$

La domanda è, se δA e δb sono piccole, posso concludere che anche δx è relativamente piccolo? Si scopre che la risposta a questa domanda è generalmente no. Prendiamo ad esempio il sistema 2×2 :

$$\begin{pmatrix} 1 & -1 \\ 1 & 1.000001 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

da cui x esatto è $\begin{pmatrix} 1 & 0 \end{pmatrix}$. Perturbando b a $\begin{pmatrix} 0.999999 & 1 \end{pmatrix}$, si ha x perturbato a $\begin{pmatrix} -10^{-6} & -1 \end{pmatrix}$, che è chiaramente un cambiamento drastico. Viene da sé che agendo sulla matrice A potremo ottenere effetti anche più drammatici.

1.2.1 Condizionamento in $\delta \mathbf{b}$

Riprendiamo quindi la definizione di errore relativo:

$$\epsilon = \frac{|\delta x|}{|x|}$$

Pirma di valutare questo errore, diamo la definizione di numero di condizionamento:

Definizione 1.1: Numero di condizionamento

Chiamiamo numero di condizionamento di una matrice A, data una certa norma $|\cdot|$, il valore:

$$\mu(A) = |A| \cdot |A^{-1}|$$

Si potrà allora dare, rispetto alla sola deviazione in b (δb), il seguente risultato:

Teorema 1.1: Condizionamento in $\delta {f b}$

Se $\delta A = 0$, si ha:

$$\frac{|\delta x|}{|x|} \le \mu(A) \cdot \frac{|\delta b|}{|b|}$$

Assumendo $\delta A=0$ con $\det(A)\neq 0$, come nell'esempio precedente, e quindi perturbazioni solo del termine noto, si ha:

$$A(x + \delta x) = (b + \delta b) \Leftrightarrow A\delta x = \delta b$$

visto che Ax = b. Passando alle norme, si ha che:

$$|\delta x| \le |A^{-1}| \cdot |\delta b|$$

e inoltre:

$$|Ax| = |b| \implies |A||x| \ge |b| \implies |x| \ge \frac{|b|}{|A|}$$

quindi:

$$\frac{|\delta x|}{|x|} \leq \frac{|A^{-1}|\cdot|\delta b|\cdot|A|}{|b|} = \frac{|\delta b|}{|b|}\cdot|A|\cdot|A^{-1}|$$

dove ci interessa il valore $|A|\cdot |A^{-1}|$, cioè il numero di condizionamento $\mu(A)$, l'unico che non dipende dall'errore assoluto δb .

Abbiamo quindi che se $\mu(A) >> 1$, allora l'errore relativo può essere molto più grande dell'errore relativo dei dati e il problema si dice *mal condizionato*.