Color Image Processing

박 운 상

컴퓨터비전 및 영상 처리 연구실 http://cviplab.sogang.ac.kr

컴퓨터공학과 서강대학교

Image Processing

- Image improvement (enhancement)
 - Improving the visual appearance of images to a human viewer
- Image analysis
 - Preparing images for measurement of the features and structures present

Image Processing

What is an image? – The bitmap representation

- Also called "raster or pixel maps" representation
- An image is broken up into a grid

What is an image? – The vector representation

- Object-oriented representation
- Does not show information of individual pixel, but information of an object (circle, line, square, etc.)

Comparison

- Bitmap
 - Can represent images with complex variations in colors, shades, shapes.
 - Larger image size
 - Fixed resolution
 - Easier to implement

- Vector
 - Can only represent simple line drawings (CAD), shapes, shadings, etc.
 - Efficient
 - Flexible
 - Difficult to implement

What is an image? – The bitmap representation

Image acquisition

- Video camera
- Infrared camera
- Range camera
- Line-scan camera
- Hyperspectral camera
- Omni-directional camera
- and more …

Image enhancement

Movie film restoration

Image restoration

Image correction

- Geometric correction
- Radiometric correction

Image warping – geometric transformation

Image segmentation

Fine Arts

Other processing

- Content-based image retrieval
- Human identification
- Multi-sensor data fusion
- Hexagonal pixel
- Steganography concealing data into other data

How to address pixels of an image?

C language

· Neighbors of a pixel

8-neighborhood

Why use color in image processing?

- Why use color in image processing?
 - Color is a powerful descriptor
 - Object identification and extraction
- E.g., Face detection using skin colors
- Humans can discern thousands of color shades and intensities

c.f. Human discern only two dozen shades of

grays

Two category of color image processing

- Full color processing
 - Images are acquired from full-color sensor or equipment
- Pseudo-color processing
 - In the past decade, color sensors and processing hardware were limited
 - Colors are assigned to a range of monochrome intensities

- Physical phenomenon
 - Physical nature of color is known
- Psysio-psychological phenomenon
 - How human brain perceive and interpret color?

• 1666, Isaac Newton

FIGURE 6.1 Color spectrum seen by passing white light through a prism. (Courtesy of the General Electric Co., Lamp Business Division.)

Visible light

 Chromatic light span the electromagnetic spectrum (EM) from 400 to 700 nm

FIGURE 6.2 Wavelengths comprising the visible range of the electromagnetic spectrum. (Courtesy of the General Electric Co., Lamp Business Division.)

 The color that human perceives in an object = the light reflected from the object

- Physical quantities to describe a chromatic light source
 - Radiance: total amount of energy that flow from the light source, measured in watts (W)
 - Luminance: amount of energy an observer perceives from a light source, measured in lumens
 - Far infrared light: high radiance, but 0 luminance
 - Brightness: subjective descriptor that is hard to measure, similar to the achromatic notion of intensity

- 6~7M cones are the sensors in the eye
- 3 principal sensing categories in eyes
- Red light 65%, green light 33%, and blue light 2%

RGB Color Matching Functions (1931)

- In 1931, CIE (International Commission on Illumination) defines specific wavelength values to the primary colors
 - B = 435.8 nm, G = 546.1 nm, R = 700 nm
 - However, we know that no single color may be called red, green, or blue
- Secondary colors: G+B=Cyan, R+G=Yellow,

R+B=Magenta

- Primary color of pigments
 - Color that subtracts or absorbs a primary color of light and reflects or transmits the other two

Color TV

CIE XYZ model

RGB -> CIE XYZ model

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 0.431 & 0.342 & 0.178 \end{bmatrix} \begin{bmatrix} R \\ G \end{bmatrix}$$

$$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} 0.222 & 0.707 & 0.071 \end{bmatrix} \begin{bmatrix} G \\ B \end{bmatrix}$$

Normalized tri-stimulus values

$$x = \frac{X}{X + Y + Z} \quad y = \frac{Y}{X + Y + Z} \quad z = \frac{Z}{X + Y + Z}$$

=> x+y+z=1. Thus, x, y (chromaticity coordinate) is enough to describe all colors

CIE XYZ model

CIE XYZ model

FIGURE 6.6 Typical color gamut of color monitors (triangle) and color printing devices (irregular region).

Color models

- Color model, color space, color system
 - Specify colors in a standard way
 - A coordinate system that each color is represented by a single point

- RGB model
- CYM model
- CYMK model
- HSI model

Suitable for hardware or applications

- match the human description

RGB color model

Pixel depth

- Pixel depth: the number of bits used to represent each pixel in RGB space
- Full-color image: 24-bit RGB color image
 - (R, G, B) = (8 bits, 8 bits, 8 bits)

Safe RGB colors

- Subset of colors is enough for some application
- Safe RGB colors (safe Web colors, safe browser colors)

 $(6)^3 = 216$

Number System		Color Equivalents				
Hex	00	33	66	99	CC	FF
Decimal	0	51	102	153	204	255

TABLE 6.1
Valid values of each RGB component in a

safe color.

CMY model (+Black = CMYK)

- CMY: secondary colors of light, or primary colors of pigments
- Used to generate hardcopy output

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ - \begin{bmatrix} G \\ B \end{bmatrix}$$

- Will you describe a color using its R, G, B components?
- Human describe a color by its hue, saturation, and brightness
 - Hue: color attribute
 - Saturation: purity of color (white->0, primary color->1)
 - Brightness: achromatic notion of intensity

• RGB -> HSI model

RGB to HSV

Map R, G, B value range to 0~1

R'= R / 255 G'= G / 255 B'= B / 255

Cmax = max(R', G', B') Cmin = min(R', G', B') $\Delta = Cmax - Cmin$

$$H = \begin{cases} 0^{\circ} & \Delta = 0\\ 60^{\circ} \times \left(\frac{G' - B'}{\Delta} mod 6\right) & , C_{max} = R'\\ 60^{\circ} \times \left(\frac{B' - R'}{\Delta} + 2\right) & , C_{max} = G'\\ 60^{\circ} \times \left(\frac{R' - G'}{\Delta} + 4\right) & , C_{max} = B' \end{cases}$$

$$S = \begin{cases} 0 & , C_{max} = 0\\ \frac{\Delta}{C_{max}} & , C_{max} \neq 0 \end{cases}$$

V = Cmax

• 3-D view of intensity image

Radiation test pattern — 8 color regions

X-ray image of a weld

Combine several monochrome images

Example: multi-spectral images

Color pixel

- A pixel at (x,y) is a vector in the color space
 - RGB color space

$$\mathbf{c}(x,y) = \begin{bmatrix} R(x,y) \\ G(x,y) \\ B(x,y) \end{bmatrix}$$

c.f. gray-scale image f(x,y) = I(x,y)

How to deal with color vector?

- Per-color-component processing
 - Process each color component
- Vector-based processing
 - Process the color vector of each pixel
- When can the above methods be equivalent?
 - Process can be applied to both scalars and vectors
 - Operation on each component of a vector must be independent of the other component

Color models and Image Processing

- RGB ⇔ CMY(K) ⇔ HSI
- Theoretically, any transformation can be performed in any color model
- Practically, some operations may be better suited to specific color model

Color models and Image Processing

- Image processing techniques typically used gray scale images
- Deep learning utilizes colors better

