

NEW TRENDS FOR SUSTAINABLE ENERGY ICNTSE 1-3 Oct. 2016, Pharos University, Alex

Multipurpose Applications by Thermodynamic Solar MATS Project

Prof. Radwan H. Abdel Hamid (ASRT/HU Team Work)

Introduction: Exchanging the RE Projects Experience

- ☐ Briefing of RE Strategy in Egypt
- ☐ Some EU-Egypt Research and Innovation Cooperation
- ☐ Exploring New Frontiers in Renewable Energy Research and Innovation in Egypt

Natural RE Assessment

Solar

ICNTSE Pharos Univ. 1-3 Oct. 2016

RE Strategy (Source: NREA)

Areas					
Zone		Areas (km²)	Capacity MW		
Suez Gulf (wind)		1220	3550		
East Nile	Wind	841	5800		
	Solar	1290	34900		
West Nile	Wind	3636	25350		
	Solar	606	17400		
Benban (Solar)		37	1800		
Kom Ombo (Solar)		7	260		
TOTAL		7637	≈90,000		

Yellow shaded cells represent the available areas as a whole

Introduction: Some Joint Funded Projects Running in Cooperation with EU

- 1- Multipurpose Applications by Thermodynamic Solar (MATS) FP7 Project 2011-2015 (*FP7*)
- 2- EURO-MEDITERRANEAN COOPERATION ON RESEARCH & TRAINING IN SUN BASED RENEWABLE ENERGIES (FP7)
- 3- Small scale Thermal Solar district Units for Mediterranean Communities (STSmed) Ref. I-A/2.3/174 (ENPI)
- 4- First Egyptian Renewable Energy Cluster Inititivee (ERECI)
 RDI Project
- 5- GIS Wind Farms Siting Atlas of Egypt with MCDS

MATS Project

MATS = " Multipurpose Applications by Thermodynamic Solar " it is a EU / 7th Framework Programme (7FP) collaborative project

Theme: "Demonstration of innovative multi-purpose solar power plant" (ENERGY.2010.2.9-1)

EU Grant agreement no: 268219

Starting date: July 2011 End date: July 2017

Total costs: **21,960,135 Euro** EC funding: **12,515,552 Euro**

+ co-funding by Egyptian Government (2,400,000 Euro) and partners

MATS Consortium

- 1- ENEA (Italy)
- 2- KT Kinetics Technology, KT (Italy)
- 3- Academy of Scientific Research and Technology, ASRT (Egypt)
- 4- New & Renewable Energy Authority, NREA , Egypt
- 5- Delft Environment (Egypt)
- 6- Fraunhofer Institute (ISE) (Germany)
- 7- University of Cranfield (UK)
- 8- Orascom Construction Industries, OCL___ypt)
- 9 CEA (France)

MATS concept

- ☐ Applying ENEA's direct molten salts in troughs technology up to 550°C to distributed energy production
- ☐ Focusing on the innovative components and their integration:
 - Thermal Energy Storage integrated with a Steam Generator (TES-SG)
 - hybridization with a Molten Salts Heater (MSH, by NG or biomass derived gas)

co-generation (desalination & air conditioning)

ICNTSE

the FLEXIBILITY of the Technology

dispatch flexibility =

store the captured solar thermal power to be used when necessary, regardless the effective solar availability

source flexibility

integrate the solar power with a gas back up source to further ensure continuous and stable power production

output flexibility

produce different services like electric power, demi water, air conditioning, following seasonal/instantaneous demand

International cooperation in MATS

A demonstration in the demonstration...

In MATS we firstly aim to demonstrate the capability of EU organizations and industries to:

- ☐ fruitfully cooperate
 with Egyptian partners
 with a common
 objective
- □ develop, construct & manage an innovative demo plant in Egypt
- ☐ transfertechnology

MATS demo plant in Borg El Arab (Egypt)

The site selected for the demo plant is the City for Science and Technology (SRTA-City) in Borg El-Arab, Alexandria (Egypt)

MATS demo plant in Borg El Arab (Egypt)

Main Plant Features:

Electric Power			MWel
Outlet Thermal Power			MW th
Inlet Thermal Power		5.7	MWth
	Type	MED	
Desalting Unit	Capacity	250	m³ per
			day

Plant in Borg El-Arab will represent a unique tool to:

- **Q** get visibility with an highly advanced CSP technology
- demonstrate and test new solutions about the combined heat and power production from combined solar and gas sources
- additional duties of desalination and/or building heating/cooling can improve the economical balance of the plant
- After demonstration, the project can be replicated in several sites in Egypt and Middle East

MATS PLANT Molten Salt Tank EL. 0.00 (+13.000 A.S.L. EL. -4.000 (+9.000 A.S.L.) EL.-6.000 (+7.000 A.S.L. Three levels **Operation Plant Solar Field**

Collector length 102m Mirror span:5.9m

MATS PLANT

All parts of molten salt circuit must be self draing into molten salt tank (Min slope 5/1000)

3 DIFFERENT LEVELS:

• FIRST LEVEL: + 13 m. (A.S.L.) (0.000 m) Solar Field

• SECOND LEVEL: + 9 m. (A.S.L.) (-4.000 m) Operation Plant

• THIRD LEVEL: + 7 m. (A.S.L.) (-6.000 m) Molten Salt Tank

 $\Delta H_{TOT} = 6 m.$

MATS PLANT: Site Selection

Project MATS: status of works

Acknowledgments

The financial support from the European Commission within the 7th Framework Programme, through project MATS (GA No. 268219) is acknowledged.

The financial support from the Egyptian Government is acknowledged.

EUROSUNMED Partners

Participant no. *	Participant organisation name	Participant short name	Country
1 (Coordinator)	CNRS, Centre National de la Recherche	CNRS	France
	Scientifique		
2	Stiftelsen Sintef	SINTEF	Norway
3	SINTEF ENERGI AS	SINTEF E	Norway
4	CENER, National Renewable Energy center	CENER	Spain
5	IK4-Tekniker	IK4	Spain
6	EUREC, European Renewable Energy	EUREC	Belgium
	Council		
7	EMRS, European Materials Research	EMRS	France
	Society		
8	CNESTEN, Centre National de l'Energie,	CNESTEN	Morocco
	des Sciences et Techniques Nucléaires		
9	CNRST, Centre National pour la Recherche	CNRST	Morocco
	Scientifique et Technique		
10	MASCIR, Moroccan Foundation for	MASCIR	Morocco
	Advances Science, Innovation and Research		
11	Mohammed V-AgdalUniversity	UM5a	Morocco
12	Al Akhawayn University	AUI	Morocco
13	MASEN, Moroccan Agency for Solar	MASEN	Morocco
	Energy		
14	Helwan University	HU	Egypt
15	Alexandria University	AU	Egypt
16	TURBODEN	TURBO	Italy
17	Nile Valley Engineering	NVE	Egypt

Project's Work Packages

First Heliostat Experimental Field in Egypt (Probably in Arabic Countries)

Installing the Heliostats at HU site

Heliostat and camera positions with relative distance to the tower and control room

Small scale Thermal Solar district

Units for Mediterranean communities

Ref. I-A/2.3/174

Consorzio ARCA ITALY Sicily

ENEA ITALY Lazio

Cyprus Chamber of Commerce & Industry **CYPRUS**

CYPRUS The Cyprus Institute

Al Balqa Applied University **JORDAN** Irbid

Millenium Energy Industries **JORDAN** Amman

ASRT EGYPT Al-Ismailiyah

> **EGYPT** Al-Ismailiyah

GREECE Attiki

FRANCE Provence-Alpes-Côte-d'Azur

EGYPT

JORDAN

ITALY Sicily

FRANCE Provence-Alpes-Côte-d'Azur

ICNTSE

Elsewedy Electric

Institute of Accelerating Sys. and App.

Central European of Enterprises (CEEI)

New and Renewable Energy Authority

Ministry of Energy & Mineral Resources

Sicilian Region, Dept. of Prod Activities

CEA - Alternative Energy Atomic

Pharos Univ. 1-3 Oct. 2016

General Project Objective

Promotion and implementation of innovative technologies and know-how transfer in the field of solar energy, including that stemming from the private sector and especially from SMEs, and that may be implemented in particular in public facilities through public procurement processes.

Site Description

- ☐ Latitude 31° longitude 30°.
- \square Building area about 963 m².
- ☐ Air condition represents 63 % of summer electricity load.

Solar Field

- \square 120 kW_{th} at 900 W/m² and 30 °C.
- ☐ PTC parabolic trough collectors 208 m²
- □ NCSA of 296 m² (LFR).
- ☐ Considering local manufacturing potential of LFR in Egypt.

Public medical center at Belbis, Sharkia, Egypt

The First LFR Solar Plant in Egypt (ENPI Fund)

Huge Data Treatment (16 GIS layers: Vector and Raster Data Sets)

GIS ATLAS of Egypt

Optimal Ranking of Wind Farm Suitable Sites(Wind class >=2) - Ranking scale=5

Thank You

ولكم جزيل الشكر

<u>radwanha@helwan.edu.eg</u> <u>www.helwan.edu.eg</u>

