Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 5

Jendrik Stelzner

Letzte Änderung: 14. Dezember 2017

Aufgabe 4

(a)

Für alle $(a,s) \in R \times S$ gilt $(a,s) \sim (a,s)$, denn für $1 \in S$ gilt

$$1 \cdot (as - as = 0).$$

Also ist \sim reflexiv. Für alle $(a,s),(a',s')\in R\times S$ mit $(a,0s)\sim (a',s')$ gibt es ein $t\in S$ mit

$$t \cdot (as' - a's) = 0.$$

Dann gilt

$$t \cdot (a's - as') = t \cdot (-(as' - a's)) = -(t \cdot (as' - a's)) = -0 = 0$$

und somit ebenfalls $(a', s') \sim (a, s)$. Das zeigt, dass \sim symmetrisch ist.

Für alle $(a,s),(a',s'),(a'',s'') \in R \times S$ mit $(a,s) \sim (a',s')$ und $(a',s') \sim (a'',s'')$ gibt es $t,u \in S$ mit

$$t \cdot (a's - as') = 0$$
 und $u \cdot (a''s' - a's'') = 0$,

also mit

$$t \cdot as' = t \cdot a's$$
 und $u \cdot a's'' = u \cdot a''s'$.

Diese Gleichungen sollte man so
 lesen, dass sich in Anwesenheit des Elements t die Ersetzung
 $as' \to a's$ durchführen lässt, und in Anwesenheit des Elements u die Ersetzung
 $a's'' \to a''s'$. In Anwesenheit des Elementes s'tu lässt sich dann auch die Ersetzung
 $as'' \to a''s$ durchführen, da

$$s'tu \cdot a''s = st \cdot u \cdot a''s' = st \cdot u \cdot a's'' = s''u \cdot t \cdot a's = s''u \cdot t \cdot as' = s'tu \cdot as''$$

gilt. Das zeigt die Transitivität von \sim . Ingesamt zeigt dies, dass \sim eine Äquivalenzrelation ist.