Hands-on Classification

Describe the used dataset

• Name: MNIST

• Author: Yann LeCun, Corinna Cortes, Christopher J.C. Burges

• Content: 70,000 images of digits handwritten

• Source: MNIST Website

Get data

Download data

```
from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', as_frame=False)  # as_frame=False: get data as Nump
mnist.DESCR

/usr/local/anaconda3/envs/dhuy/lib/python3.11/site-packages/sklearn/datasets/_openml.py:1022

The default value of `parser` will change from `'liac-arff'` to `'auto'` in 1.4. You can set

"**Author**: Yann LeCun, Corinna Cortes, Christopher J.C. Burges \n**Source**: [MNIST Websit
```

Quick Look

```
## Size of dataset

X,y = mnist.data, mnist.target
print(X.shape, y.shape)

(70000, 784) (70000,)

## Quick look
import matplotlib.pyplot as plt

def plot_digit(data):
   image = data.reshape(28,28)
```

```
plt.imshow(image, cmap='binary') # binary: grayscale color map from 0 (white) to 255
some_digit = X[0] # Look at first digit
plot_digit(some_digit)
plt.show()
```


Create train, test set

```
## Split dataset into train set and test set as its describe (train: first 60000 images, t
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
print(X_train.shape)
```

(60000, 784)

Create a Binary Classfier(5 or non-5)

```
## Target labels

y_train_5 = (y_train == '5')
y_test_5 = (y_test == '5')
```

Stochastic Gradient Descent

Train model

```
from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
 sgd_clf.fit(X_train, y_train_5)

sgd_clf.predict([some_digit])

array([ True])
```

Evaluate model

Metrics:

- Accuracy
- Confusion matrix: Precision, Recall (TPR), FPR, ROC, ROC AUC
- Plot: Precision-Recall Curve, ROC Curve

Use case:

- Precision-Recall Curve: aim to care more about false positives than the false negatives
- Otherwise: ROC Curve

Accuracy

```
from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring='accuracy')
```

array([0.95035, 0.96035, 0.9604])

array([0.90965, 0.90965, 0.90965])

Warning

The accuracy scores are pretty good, but it may be due to the class imbalance. Let take a look at a Dummy Model which always classify as the most frequent class

```
## Dummy classifier
from sklearn.dummy import DummyClassifier
from sklearn.model selection import cross val score
dummy model = DummyClassifier(random state=248)
cross_val_score(dummy_model, X_train, y_train_5, cv=3, scoring='accuracy')
```

Important

The accuracy scores are over 90% because there's only about 10% of training set are 5

- => With class imbalance, accuracy score is not a useful metric
- => We will use other metrics such as Precision, Recall, ROC Curve, AUC

Confusion Matrix

```
from sklearn.model_selection import cross_val_predict
  from sklearn.metrics import confusion_matrix
  y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
  confusion_matrix(y_train_5, y_train_pred)
array([[53892,
                 687],
       [ 1891, 3530]])
  ## Precision and Recall
  from sklearn.metrics import precision_score, recall_score
```

```
print(f'Precision scores: {precision_score(y_train_5, y_train_pred):.4f}')
print(f'Recall scores: {recall_score(y_train_5, y_train_pred):.4f}')
```

Precision scores: 0.8371 Recall scores: 0.6512

```
## F1-score
from sklearn.metrics import f1_score
print(f'F1-score: {f1_score(y_train_5, y_train_pred):.4f}')
```

F1-score: 0.7325

Precision-Recall Trade-off

- Compute the scores of all instances in the training using decision_function
- Change the threshold to see the difference

```
y_score = sgd_clf.decision_function([some_digit])

threshold = [0, 1000, 3000]
for thr in threshold:
    print(f'With threshold of {thr:4d}: predicted value is {y_score>thr}')

With threshold of 0: predicted value is [ True]
With threshold of 1000: predicted value is [ True]
```

! Important

How to choose the suitable threshold?

With threshold of 3000: predicted value is [False]

- Use Precision-Recall Curve
- precision_recall_curve: require *scores* computed from decision_function or *probabilities* from predict_proba

```
### Precision-Recall Curve

### Compute scores by decision_function

y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, method='decision_function')

### Plot Precision-Recall Curve vs Threshold

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

plt.plot(thresholds, precisions[:-1], label='Precision', color='darkslateblue')

plt.plot(thresholds, recalls[:-1], label='Recall', color='crimson')

plt.grid()

plt.legend(loc='center left')

plt.xlim([-100000,40000])

plt.title('Precision and Recall versus Threshold')

plt.show()
```


i Note

The higher Precision, the lower Recall and vice versa

```
## Plot Precision versus Recall

plt.plot(recalls, precisions)
plt.title('Precision versus Recall')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.grid()

plt.show()
```


? Tip

Depend on your project, you would trade between precision and recall

Find Threshold of over 0.90 Precision

```
idx_90_precision = (precisions >= 0.90).argmax()
threshold_90_precision = thresholds[idx_90_precision]
threshold_90_precision
```

3045.9258227053647

```
y_train_90_precision = (y_scores > threshold_90_precision)

from sklearn.metrics import accuracy_score
print(f'Accuracy score: {accuracy_score(y_train_5, y_train_90_precision):.4f}')
print(f'Precision score: {precision_score(y_train_5, y_train_90_precision):.4f}')
print(f'Recall score: {recall_score(y_train_5, y_train_90_precision):.4f}')
print(f'F1 score: {f1_score(y_train_5, y_train_90_precision):.4f}')
```

Accuracy score: 0.9626 Precision score: 0.9002 Recall score: 0.6587 F1 score: 0.7608

```
## ROC AUC
from sklearn.metrics import roc_auc_score, roc_curve
print(f'AUC score: {roc_auc_score(y_train_5, y_scores):.4f}')
```

AUC score: 0.9648

```
## ROC Curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
idx_threshold_90_precision = (thresholds<=threshold_90_precision).argmax()  # threshold
fpr_90, tpr_90 = fpr[idx_threshold_90_precision], tpr[idx_threshold_90_precision]

plt.plot(fpr, tpr, label='ROC Curve', color='darkslateblue')
plt.plot([fpr_90], [tpr_90], 'o', label='Threshold for 90% precision', color='crimson')
plt.title('ROC Curve')
plt.xlabel('False Positive Rate (Fall-out)')
plt.ylabel('True Positive Rate (Recall)')</pre>
```

```
plt.legend(loc='center right')
plt.grid()
plt.show()
```


! Important

Another trade-off: The higher TPR, the lower FPR and vice versa

Logistic Regression

```
from sklearn.linear_model import LogisticRegression
logistic = LogisticRegression(random_state=29)

y_pred_logis = cross_val_predict(logistic, X_train, y_train_5, cv=3, method='predict_probates)
```

/usr/local/anaconda3/envs/dhuy/lib/python3.11/site-packages/sklearn/linear_model/_logistic.pg

```
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
/usr/local/anaconda3/envs/dhuy/lib/python3.11/site-packages/sklearn/linear_model/_logistic.pg
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
/usr/local/anaconda3/envs/dhuy/lib/python3.11/site-packages/sklearn/linear_model/_logistic.pg
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  ## Measure performance
  threshold = 0.5
  f1_logis = f1_score(y_train_5, y_pred_logis>=threshold)
  auc_logis = roc_auc_score(y_train_5, y_pred_logis>=threshold)
  print(f'F1 score Random Forest: {f1_logis:.4f}')
  print(f'AUC Random Forest: {auc_logis:.4f}')
F1 score Random Forest: 0.8487
AUC Random Forest: 0.9004
```

Random Forest

```
from sklearn.ensemble import RandomForestClassifier
  rf_clf = RandomForestClassifier(random_state=42)
  y_train_pred_rf = cross_val_predict(rf_clf, X_train, y_train_5, cv=3, method='predict_prob
  ## Measure performance
  threshold = 0.5
  f1_rf = f1_score(y_train_5, y_train_pred_rf>=threshold)
  auc_rf = roc_auc_score(y_train_5, y_train_pred_rf>=threshold)
  print(f'F1 score Random Forest: {f1_rf:.4f}')
  print(f'AUC Random Forest: {auc_rf:.4f}')
F1 score Random Forest: 0.9275
AUC Random Forest: 0.9358
  ## PR Curve
  precisions_rf, recalls_rf, thresholds_rf = precision_recall_curve(y_train_5, y_train_pred_
  plt.plot(recalls, precisions, "-", label='SGD')
  plt.plot(recalls_rf, precisions_rf, label='Random Forest')
  plt.title('Precision versus Recall')
  plt.xlabel('Recall')
  plt.ylabel('Precision')
  plt.legend()
  plt.grid()
  plt.show()
```



```
## ROC Curve

fpr_rf, tpr_rf, thresholds = roc_curve(y_train_5, y_train_pred_rf)

plt.plot(fpr, tpr, label='SGD', color='darkslateblue')
plt.plot(fpr_rf, tpr_rf, label='Random Forest', color='crimson')
plt.title('ROC Curve')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.grid()

plt.show()
```


Multiclass Classification

- Logistic Regression, Random Forest Classifier, Gaussian NB: natively handle Multiclass Classification
- SGDClassifier and SVC: strictly binary classifiers
 - ovo: one versus one strategy, preferred with scale poorly algorithms (i.e. SVC)
 - ovr: one versus rest strategy, preferred for almost algorithms

SVC

Default: ovo strategy

```
from sklearn.svm import SVC

svc_clf = SVC(random_state=42)
svc_clf.fit(X_train[:1000], y_train[:1000])
svc_clf.predict([some_digit])
```

```
array(['5'], dtype=object)
  ## Scores from decision_function
  some_digit_svc = svc_clf.decision_function([some_digit])
  some_digit_svc.round(4)
array([[ 1.7583, 2.7496, 6.1381, 8.2854, -0.2873, 9.3012, 0.7423,
         3.7926, 7.2085, 4.8576]])
  ## Class of highest score
  idx_svc = some_digit_svc.argmax()
  idx_svc
5
  ## Classes of prediction
  svc_clf.classes_[idx_svc]
'5'
Force: ovr strategy
  ## Train model
  from sklearn.multiclass import OneVsRestClassifier
  ovr_svc_clf = OneVsRestClassifier(SVC(random_state=42))
  ovr_svc_clf.fit(X[:1000], y_train[:1000])
  ovr_svc_clf.predict([some_digit])
```

array(['5'], dtype='<U1')

```
## Compute scores
  some_digit_ovr_svc = ovr_svc_clf.decision_function([some_digit])
  some_digit_ovr_svc.round(4)
array([[-1.3439, -1.5195, -1.221 , -0.9294, -2.0057, 0.6077, -1.6226,
        -0.9998, -1.2764, -1.7031]
  ## Class of hishest score
  some_digit_ovr_svc.argmax()
5
  ## Extract classes
  ovr_svc_clf.classes_
array(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], dtype='<U1')
SGD
  ## Train model
  from sklearn.linear_model import SGDClassifier
  sgd_clf = SGDClassifier(random_state=42)
  sgd_clf.fit(X_train, y_train)
  sgd_clf.predict([some_digit])
array(['3'], dtype='<U1')
That's incorrect. As we can see, The Classifier is not very confident about its prediction.
  ## Compute scores
```

```
sgd_clf.decision_function([some_digit])
array([[-31893.03095419, -34419.69069632, -9530.63950739,
          1823.73154031, -22320.14822878, -1385.80478895,
        -26188.91070951, -16147.51323997, -4604.35491274,
        -12050.767298 ]])
We will use cross validation to evaluate our model
  cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring='accuracy')
array([0.87365, 0.85835, 0.8689])
We can scale the data to get better result
  from sklearn.preprocessing import StandardScaler
  scaler = StandardScaler()
  X_train_scaled = scaler.fit_transform(X_train.astype('float64'))
  cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring='accuracy')
array([0.8983, 0.891, 0.9018])
Let's look at the confusion matrix of our prediction
  ## Predict using cross_val_predict
  from sklearn.metrics import ConfusionMatrixDisplay
  y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
Confusion matrix with (right) and without (left) normalization.
  fig,ax = plt.subplots(1,2,figsize=(9, 4))
  ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred, ax=ax[0])
  ax[0].set_title("Confusion matrix")
  ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred, ax=ax[1], normalize='true',
  ax[1].set_title("CM normalized by row")
```

plt.show()

In row #5 and column #8 on the left plot, it's means 10% of true 5s is misclassified as 8s. Kinda hard to see the errors made by model. Therefore, we will put 0 weight on correct prediction (error plot).

Confustion matrix with error normalized by row (left) and by column (right) (normalize=['true', 'pred'])

```
fig,ax = plt.subplots(1,2,figsize=(9, 4))
sample_weight = (y_train != y_train_pred)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred, ax=ax[0],sample_weight=samp ax[0].set_title("Confusion matrix")
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred, ax=ax[1],sample_weight=samp ax[1].set_title("CM normalized by row")
plt.show()
```


In row #5 and column #8 on the left plot, it's means 55% of errors made on true 5s is misclassified as 8s.

In row #5 and column #8 on the right plot, it's means 19% of misclassified 8s are actually 5s.

Analyzing the made errors can help us gain insights and why the classifier failing

Multilabel Classification

Output is multilabel for each instances. For example, we will classify whether the digit is large (>7) and is odd

K Nearest Neighbors

```
## Train model
import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7')
y_train_odd = (y_train.astype('int8') % 2 == 1)
y_train_multilabel = np.c_[y_train_large, y_train_odd]
```

```
knn = KNeighborsClassifier()
knn.fit(X_train_scaled, y_train_multilabel)
knn.predict([some_digit])

array([[False, True]])

Compute average F1 score across all labels (equally important)

## Evaluate model

y_train_pred_knn = cross_val_predict(knn, X_train_scaled, y_train, cv=3)
f1_score(y_train, y_train_pred_knn, average='macro')
```

0.9396793112547043

Another approach is to give each label a weight equal to its number of instances

```
f1_score(y_train, y_train_pred_knn, average='weighted')
```

0.940171964265114

SVC

- SVC does not natively support multilabel classification. Therefore, there are 2 strategies:
- 1. Train one model per label. It turns out that it's hard to capture the dependencies between labels
- 2. Train models sequentially (ChainClassifier): using input features and all predictions of previous models in the chain

```
from sklearn.multioutput import ClassifierChain

chain_clf = ClassifierChain(SVC(), cv=3, random_state=42)
  chain_clf.fit(X_train_scaled[:2000], y_train_multilabel[:2000])
  chain_clf.predict([some_digit])

array([[0., 1.]])
```

Multioutput Classification

- Multiclass-multilabel classification
- For example, we will build a model that removes noise from an digit image
- Output is a clean image 28x28: multilabel (one label per pixel) and multiclass (pixel intensity range from 0-255 per label)

```
## Create a noisy train set

np.random.seed(42)

noise = np.random.randint(0,100,(len(X_train), 28*28))
X_train_noise = X_train + noise
y_train_noise = X_train

noise = np.random.randint(0,100,(len(X_test), 28*28))
X_test_noise = X_test + noise
y_test_noise = X_test
```

Let's look at sample images

```
plt.subplot(1,2,1)
plot_digit(X_train_noise[0])
plt.subplot(1,2,2)
plot_digit(y_train_noise[0])
plt.show()
```


knn.fit(X_train_noise, y_train_noise)
y_pred_noise = knn.predict([X_train_noise[0]])
plot_digit(y_pred_noise)

