Biomedical Monitoring System - Code Implementation

1. Introduction

This report details the implementation of the **Biomedical Monitoring System** using **ESP32**, Arduino IDE, and **Blynk IoT App**. The system continuously monitors **body temperature**, **heart rate**, **blood oxygen levels (SpO2)**, **and humidity**. Data is transmitted via Wi-Fi and displayed on the **Blynk** app for real-time remote monitoring.

2. Development Environment & Tools

2.1 Software & Tools

- Arduino IDE Used for programming the ESP32.
- **Blynk IoT Platform** Cloud-based application for remote data visualization.
- ESP32 Board Package Required for ESP32 support in Arduino IDE.
- Libraries:
 - WiFi.h Enables Wi-Fi communication.
 - WebServer.h Allows web-based access to sensor data.
 - Wire.h For I2C communication with sensors.
 - MAX30100_PulseOximeter.h Reads heart rate and SpO2 levels.
 - o OneWire.h & DallasTemperature.h For DS18B20 temperature sensor.
 - o DHT.h Reads humidity and temperature.
 - o BlynkSimpleEsp32.h For Blynk IoT integration.

2.2 Blynk IoT App Overview

Blynk is an **IoT platform** that allows users to monitor and control IoT devices remotely. It provides:

- **Cloud Connectivity** Secure data transmission and storage.
- **Mobile Dashboard** Real-time visualization via the Blynk app.
- Virtual Pins Easy communication between ESP32 and the app.
- Widgets Customizable UI for displaying sensor data.
- Event Notifications Alerts for abnormal sensor readings.

2.3 Hardware Components

• **ESP32 Microcontroller** – Wi-Fi-enabled processing unit.

- MAX30100 Pulse Oximeter Sensor Measures heart rate and SpO2.
- **DS18B20 Temperature Sensor** Reads body temperature.
- **DHT11 Sensor** Monitors ambient temperature and humidity.
- Wi-Fi Network Enables data transmission to Blynk cloud.

3. Setting Up the Development Environment

3.1 Installing Required Libraries

- 1. Open Arduino IDE.
- 2. Navigate to **Sketch > Include Library > Manage Libraries**.
- 3. Install the following libraries:
 - Blynk (BlynkSimpleEsp32)
 - Pulse Oximeter (MAX30100_PulseOximeter)
 - Dallas Temperature (Dallas Temperature)
 - DHT Sensor Library (DHT.h)

3.2 Connecting ESP32 to Blynk

- 1. Install the **Blynk IoT app** from Google Play or App Store.
- 2. Create a new project and select **ESP32** as the device.
- 3. Add widgets to display heart rate, SpO2, temperature, and humidity.
- 4. Obtain the **Blynk Authentication Token** from the app.
- 5. Replace BLYNK AUTH TOKEN in the code with the obtained token.

4. Setting Up Sensors

4.1 MAX30100 Pulse Oximeter Setup

- Connect VCC to 3.3V and GND to GND.
- Connect SCL to GPIO22 and SDA to GPIO21.
- Ensure finger placement on the sensor for accurate readings.

4.2 DS18B20 Body Temperature Sensor Setup

- Connect VCC to 3.3V and GND to GND.
- Connect Data Pin to GPIO5.
- Use a 4.7kΩ pull-up resistor between VCC and Data Pin.

4.3 DHT11 Temperature & Humidity Sensor Setup

- Connect VCC to 3.3V and GND to GND.
- Connect Data Pin to GPIO18.

4.4 Wi-Fi and Blynk Integration

- Ensure ESP32 is connected to Wi-Fi before transmitting data.
- Link virtual pins in the Blynk app to corresponding sensor readings.

5. Code Implementation

The ESP32 code is written in C++ and is uploaded using the **Arduino IDE**. The program reads data from sensors, processes the readings, and transmits the information to the **Blynk IoT App** over Wi-Fi. The code includes:

- Wi-Fi Connection Handling Ensures ESP32 connects to the network.
- Sensor Data Acquisition Reads values from MAX30100, DS18B20, and DHT11 sensors.
- Blynk Integration Sends real-time data to the Blynk Cloud using virtual pins.
- **Serial Monitoring** Prints sensor readings for debugging.

The complete code is structured to run continuously in the loop() function, updating sensor values every second and sending data to the Blynk app.

6. Uploading and Running the Code

- 1. Open Arduino IDE and paste the ESP32 sketch.
- 2. Select Board: Go to Tools > Board > ESP32 Dev Module.
- 3. Set COM Port: Go to Tools > Port > Select the correct port.
- 4. **Install Required Libraries** if not installed previously.
- 5. **Upload the Code** by clicking the **Upload** button.
- 6. Monitor Serial Output: Open Tools > Serial Monitor and set baud rate to 115200.
- 7. **Open Blynk App:** Ensure the ESP32 appears online and is transmitting sensor data.

Once the upload is complete, the ESP32 will start transmitting real-time sensor data to the Blynk Cloud, making it accessible through the mobile app.

7. Troubleshooting & Debugging

• Wi-Fi Connection Issues:

- Verify SSID and password in the code.
- o Ensure the Wi-Fi network is stable.
- o Check if the **ESP32** is in range of the router.

Blynk Not Updating:

- o Ensure Blynk Authentication Token is correct.
- o Check if **ESP32** is online in the Blynk app.
- Restart the ESP32 if data is not appearing.

• Sensor Readings are NaN or Zero:

- Verify sensor connections and wiring.
- Ensure proper power supply to sensors.
- Check library dependencies for compatibility.

Code Upload Failure:

- Ensure the correct ESP32 board is selected.
- Check if another application is using the **serial port**.
- o Press and hold the **BOOT button** on ESP32 while uploading.

8. Conclusion

This project successfully integrates **ESP32**, **Blynk IoT**, **and biomedical sensors** to create a real-time **health monitoring system**. The data is displayed remotely via **Blynk Cloud**, allowing continuous tracking of patient vitals. Future enhancements may include **cloud data storage**, **SMS** alerts, and **AI-based anomaly detection**.

9. Resources & References

- Blynk Documentation: https://docs.blynk.io
- ESP32 Technical Documentation: https://docs.espressif.com/projects/esp-idf/en/latest/
- Arduino Libraries: https://www.arduino.cc/en/Reference/Libraries
- MAX30100 Pulse Oximeter Guide: https://lastminuteengineers.com/max30100-pulse-oximeter-arduino-tutorial/
- DS18B20 Temperature Sensor Guide: https://www.analog.com/en/parametricsearch/11094#/

• DHT11 Sensor Datasheet: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT11.pdf

• Blynk Cloud API Reference: https://blynkapi.docs.apiary.io/