1

Quiz 1

Savarana Datta - AI20BTECH11008

Download latex-tikz codes from

https://github.com/SavaranaDatta/EE3900/blob/main/EE3900 Quiz1

1 Question

For the following signal determine whether the system is (1) stable, (2) casual, (3) linear and (4) time invariant.

$$T(x[n]) = x[n^2]$$
 (1.0.1)

2 Solution

Fig. 0: plot of the system

Definition 2.1. *Stable* A system is said to be BIBO stable if the response to a bounded input is always bounded.

As the given signal input x[n] is bounded,

$$|x[n]| < M$$
 for some real M (2.0.1)

Hence
$$|x[n^2]| < M$$
 (2.0.2)

So $x[n^2]$ is also bounded. Hence, the system is stable i.e, bounded input bounded output stable.

Definition 2.2. Casual The output at any instant does not depend on the future inputs i.e, for at n_0 $y[n_0]$ does not depend on x[n] for $n > n_0$.

Here, for this signal the output depends on $x[n_0^2]$. As n_0 is an integer $n_0^2 > n_0$ for $n_0 > 1$. For example consider n=2

$$x[2] \implies x[4] \tag{2.0.3}$$

Here the output for n=2 depends on n=4. So the output depends on the future input. Hence, the system is non casual.

Definition 2.3. *Linear* The response to an arbitary linear combination of input signals is always the same linear combinations of the individual responses to these signals

$$x_1[n] \implies x_1[n^2] \tag{2.0.4}$$

$$x_2[n] \implies x_2[n^2] \tag{2.0.5}$$

$$ax_1[n] + bx_2[n] \implies ax_1[n^2] + bx_2[n^2]$$
 (2.0.6)

As this system obeys both law of addition and law of homogenity, the given system is linear.

Definition 2.4. *Time Invariant* The response to an arbitrary translated set of inputs is always the response to the original set, but translated by the same amount.

If

$$x[n] \implies y[n]$$
 (2.0.7)

then

$$x[n - n_0] \implies v[n - n_0]$$
 (2.0.8)

for all x and n_0 .

Here

$$x[n] \implies x[n^2] \tag{2.0.9}$$

adding time $delay(n_0)$ to the output signal

$$x[n^2] \implies x[(n-n_0)^2]$$
 (2.0.10)

adding time $delay(n_0)$ to the input signal

$$x[n] \implies x[n - n_0] \tag{2.0.11}$$

Now the ouput signal

$$x[n - n_0] \implies x[n^2 - n_0]$$
 (2.0.12)

As 2.0.10 and 2.0.12 are not same, the given signal is time variant.