Задача А. Компоненты связности

 Имя входного файла:
 matrix.in

 Имя выходного файла:
 matrix.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 16 мегабайт

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности.

Формат входного файла

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходного файла

Вывести одно целое число — искомое количество компонент связности графа.

Пример

matrix.in	matrix.out
6	3
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
0 0 0 0 0 0	

Задача В. Лесопосадки

 Имя входного файла:
 tree.in

 Имя выходного файла:
 tree.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 16 мегабайт

Дан неориентированный невзвешенный граф. Необходимо определить, является ли он деревом.

Формат входного файла

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходного файла

Вывести «YES», если граф является деревом, «NO» иначе.

Пример

5sp			
tree.in	tree.out		
6	NO		
0 1 1 0 0 0			
1 0 1 0 0 0			
1 1 0 0 0 0			
0 0 0 0 1 0			
0 0 0 1 0 0			
0 0 0 0 0 0			
3	YES		
0 1 0			
1 0 1			
0 1 0			

Задача С. Поиск цикла

 Имя входного файла:
 cycle.in

 Имя выходного файла:
 cycle.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 16 мегабайт

Дан ориентированный невзвешенный граф. Необходимо определить, есть ли в нём циклы, и если есть, то вывести любой из них.

Формат входного файла

В первой строке входного файла находятся два натуральных числа N и M ($1 \le N \le 100000, M \le 100000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Если в графе нет цикла, то вывести «NO», иначе — «YES» и затем перечислить все вершины в порядке обхода цикла.

Пример

٠,	· Þsþ				
	cycle.in	cycle.out			
	2 2	YES			
	1 2	2 1			
	2 1				
	2 2	NO			
	1 2				
	1 2				

Задача D. TopSort

Имя входного файла: topsort.in Имя выходного файла: topsort.out Ограничение по времени: 2 секунды Ограничение по памяти: 16 мегабайт

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Формат входного файла

В первой строке входного файла два натуральных числа N и M ($1 \le N \le 100000, M \le 100000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходного файла

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, вывести -1.

Пример

····cp	
topsort.in	topsort.out
6	4 6 3 1 2 5
2	
2	
2	
5	
5	
6	
3	-1
2	
3	
1	
	<u> </u>