Функции

Математически анализ

Информатика, I курс, задочно обучение ФМИ, ПУ "Паисий Хилендарски"

- 1 Функции
 - Определение
 - Монотонни функции
 - Обратни функции. Обратни тригонометрични функции
 - Четни и нечетни функции

2 Елементарни функции

Определение

закон (правило) f се съпоставя единствено число $y=f(x)\in Y$, казва се, че в множеството X е определена функция f, областта от стойностите на която е подмножество на множеството Y. Множеството X се нарича дефиниционна област на функцията f, а променливата x се нарича аргумент. Числото y=f(x) се нарича стойност на функцията f при стойност на аргумента, равна на x.

lacktriangle Нека $X\subset\mathbb{R}$ и $Y\subset\mathbb{R}$. Ако на всяко $x\in X$ по някакъв

В зависимост от природата на елементите на X и Y, в различните области на математиката терминът "функция" се заменя със синонимите му: изображение, преобразование, оператор, функционал и др.

Фигура 1: Дадената функция е дефинирана в множеството X, състоящо се от елементи с различна форма и цвят и приемаща за стойност цвета на елемента.

- lacktriangle Две функции f_1 и f_2 се наричат съвпадащи или равни, ако те имат една и съща дефиниционна област X и за всеки елемент $x\in X$ стойностите $f_1(x)$ и $f_2(x)$ на тези функции съвпадат. В този случай се пише $f_1=f_2$.
- lacktriangle Изображението f:X o Y се нарича:
 - а) инективно (или изображение на X в Y), ако различни елементи на X имат различни образи в Y;
 - б) сюрективно (или изборажение на X върху Y), ако за всеки елемент $y \in Y$ съществува поне един елемент $x \in X$, така че y = f(x);
 - в) биективно (или взаимно еднозначно), ако то е сюрективно и инективно едновременно.

Фигура 2: Инективно изображение – различни елементи имат различни образи

Фигура 3: Неинективно изображение – някои различни елементи имат еднакви образи

Фигура 4: Биективно изображение = инективно + сюрективно

Ако изображенията $f: X \to Y$ и $g: Y \to Z$ са такива, че едното от тях (в случая g) е дефинирано в множеството от стойностите на другото (в случая f), определено е ново изображение $g \circ f: X \to Z$, стойностите на което за елементите от X се определят по формулата $(g \circ f)(x) = g(f(x))$. Изображението $g \circ f$ се нарича композиция (суперпозиция) на f и g (в този ред).

Фигура 5: Композиция на две инективни изображения е инективно изображение

Монотонни функции

- Функцията $f: X \to Y$ се нарича монотонно растяща (намаляваща) в множеството X, когато за всеки две стойности x_1 и x_2 на аргумента, свързани с неравенството $x_1 < x_2$, съответните функционални стойности са свързани с неравенството $f(x_1) \le f(x_2)$ ($f(x_1) \ge f(x_2)$).
- Функцията $f: X \to Y$ се нарича монотонна в множеството X, ако тя е монотонно растяща или монотонно намаляваща в X.
- Ако за всеки две стойности x_1 и x_2 на аргумента на $f: X \to Y$, свързани с неравенството $x_1 < x_2$, съответните функционални стойности са свързани с неравенството $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$), функцията f се нарича строго растяща (намаляваща) в множеството X.

Обратни функции

- Ако изображението $f: X \to Y$ е биективно, то съществува функция, определена в множеството Y и съпоставяща на всеки елемент $y \in Y$ онази стойност $x \in X$, за която f(x) = y. Тази функция се означава с f^{-1} (бележи се още $x = f^{-1}(y), \ y \in Y$) и се нарича функция, обратна на функцията f.
- Очевидно

$$f[f^{-1}(y)] = y$$
 за всяко $y \in Y$, $f^{-1}[f(x)] = x$ за всяко $x \in X$.

Затова f и f^{-1} се наричат взаимно обратни функции.

Теорема 1 (За съществуване на обратна функция)

Ако функцията $f: X \to Y$ е строго растяща (намаляваща) в множеството X и Y е множеството от функционалните й стойности, то съществува обратната функция $f^{-1}: Y \to X$ на функцията f, която е строго растяща (намаляваща) в Y.

Примери.

1) От училищния курс е известно, че функцията

$$f(x) = a^x$$

е строго растяща при a>1 и строго намаляваща при 0< a<1. Следователно винаги когато a>0 и $a\neq 1$, функцията $f(x)=a^x$ е обратима. Нейната обратна функция е функцията $\varphi(x)=\log_a x$. Тя очевидно е дефинирана само в интервала $(0,+\infty)$, тъй като функцията $f(x)=a^x$ има, както знаем, само положителни стойности. От свойствата на обратните функции получаваме равенствата

$$a^{\log_a x} = x$$
 при $x > 0$, $\log_a a^x = x$ за всяко x .

Освен това непосредствено получаваме и заключението, че функцията $\varphi(x) = \log_a x$ е строго растяща, когато a>1, и строго намаляваща, когато 0< a<1.

Фигура 6: $\mathsf{Plot}[2^x,\{x,-5,5\}]$

Фигура 7: $\mathsf{Plot}[\left(\frac{1}{2}\right)^x, \{x, -5, 5\}]$

Фигура 8: $\mathsf{Plot}[\mathsf{Log}[2,x],\{x,-1,10\}]$

Фигура 9: $\mathsf{Plot}[\mathsf{Log}[\frac{1}{2},x],\{x,-1,10\}]$

- 2) Функцията $f(x)=\sin x$, където ъгълът x е измерен в радиани, е строго растяща в интервала $[-\frac{\pi}{2},\frac{\pi}{2}]$. Следователно тя е обратима в този интервал. Нейната обратна функция се нарича "аркус синус от x" и се бележи така: $\arcsin x$. От дефиницията за обратна функция следва, че $\arcsin x$ е онзи ъгъл (той е единствен), който, измерен в радиани, се намира в интервала $[-\frac{\pi}{2},\frac{\pi}{2}]$ и който има синус, равен на x. (Както знаем от геометрията, такъв ъгъл сигурно съществува при $|x|\leq 1$.) Като вземем предвид свойствата на обратните функции, стигаме до заключения за функцията $\arcsin x$:
 - а) тя е дефинирана в интервала [-1, 1];
 - б) нейните функционални стойности са в интервала $[-\frac{\pi}{2},\frac{\pi}{2}]$;
 - в) тя е строго растяща;

г) валидни са равенствата

$$\sin(\arcsin x) = x$$
 при $-1 \le x \le 1$, $\arcsin(\sin x) = x$ при $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

Фигура 10: $\mathsf{Plot}[\mathsf{Sin}[x], \{x, -2\mathsf{Pi}, 2\mathsf{Pi}\}]$

Фигура 11: $Plot[ArcSin[x], \{x, -1, 1\}, AspectRatio -> Automatic]$

- 3) Функцията $f(x)=\cos x$ е строго намаляваща и следователно обратима в интервала $[0,\pi]$. Нейната обратна функция се нарича "аркус косинус от x" и се бележи така: $\arccos x$. Следователно $\arccos x$ е онзи ъгъл, който, измерен в радиани, се намира в интервала $[0,\pi]$ и който има косинус, равен на x. (Такъв ъгъл сигурно съществува при $|x|\leq 1$ и той е единствен.) Ясно е, че:
 - а) функцията $\arccos x$ е дефинирана в интервала $[-1,\ 1];$
 - б) нейните функционални стойности са в интервала $[0,\pi]$;
 - в) тя е строго намаляваща;
 - г) валидни са равенствата

$$\cos(\arccos x) = x$$
 при $-1 \le x \le 1$, $\arccos(\cos x) = x$ при $0 \le x \le \pi$.

Фигура 12: $\mathsf{Plot}[\mathsf{Cos}[x], \{x, -2\mathsf{Pi}, 2\mathsf{Pi}\}]$

Фигура 13: $Plot[ArcCos[x], \{x, -1, 1\}, AspectRatio -> Automatic]$

- 4) Аналогично се въвежда функцията $\arctan x$, обратна на функцията $\tan x$ в интервала $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. При това се вижда, че:
 - а) функцията $\operatorname{arctg} x$ е дефинирана в интервала $(-\infty, +\infty)$;
 - б) нейните функционални стойности са в интервала $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$;
 - в) тя е строго растяща;
 - г) валидни са равенствата

$$\operatorname{tg}(\operatorname{arctg} x) = x$$
 за всяко $x,$ $\operatorname{arctg}(\operatorname{tg} x) = x$ при $-\frac{\pi}{2} < x < \frac{\pi}{2}.$

Фигура 14: $\mathsf{Plot}[\mathsf{Tan}[x], \{x, -2\mathsf{Pi}, 2\mathsf{Pi}\}]$

Фигура 15: $Plot[ArcTan[x], \{x, -100, 100\}]$

- 5) Накрая въвеждаме е функцията $\operatorname{arcctg} x$, обратна на функцията $\operatorname{ctg} x$ в интервала $(0,\pi)$. За нея имаме:
 - а) функцията $\operatorname{arcctg} x$ е дефинирана в интервала $(-\infty, +\infty)$;
 - б) нейните функционални стойности са в интервала $(0,\pi)$;
 - в) тя е строго намаляваща;
 - г) валидни са равенствата

$$\operatorname{ctg}(\operatorname{arcctg} x) = x$$
 за всяко x , $\operatorname{arcctg}(\operatorname{ctg} x) = x$ при $0 < x < \pi$.

Фигура 16: $\mathsf{Plot}[\mathsf{Cot}[x], \{x, -2\mathsf{Pi}, 2\mathsf{Pi}\}]$

Четни и нечетни функции

- lacktriangle Функцията f: X o Y се нарича четна (нечетна), ако са изпълнени условията:
 - (i) Ako $x \in X$, to $u(-x) \in X$;
 - (ii) f(-x) = f(x) (f(-x) = -f(x)) за всяко $x \in X$.

Фигура 17: Функцията $y=x^2$ е четна и нейната графика е симетрична спрямо оста Oy. За построяване на графиката е използвана функцията ${\sf Plot}[{\sf x}^2,\,\{{\sf x},\,{\sf -10},\,{\sf 10}\}]$ на Wolfram Mathematica.

Четни и нечетни функции

Фигура 18: Функцията $y=x^3$ е нечетна и нейната графика е симетрична спрямо точката O. За построяване на графиката е използвана функцията $\operatorname{Plot}[\mathsf{x}^3, \{\mathsf{x}, -10, 10\}]$ на Wolfram Mathematica.

Основни елементарни функции

Някои от функциите, които често срещаме, са добре изучени отдавна и поради това е прието да се отделят в категорията на т.нар. основни елементарни функции. Тук влизат:

- 1) Степенната функция $y = x^{\alpha}$ (α реално число);
- 2) Показателната функция $y = a^x \ (a > 0, \ a \neq 1);$
- 3) Логаритмичната функция $y = \log_a x \ (a > 0, \ a \neq 1)$;
- 4) Тригонометричните функции $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$;
- 5) Обратните тригонометрични функции $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$,

Елементарна функция се нарича такава функция, която е получена от основните елементарни функции чрез краен брой суперпозиции и четирите аритметични действия (събиране, умножение, изваждане и деление). Примери за елементарни функции са:

Полиномите

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n,$$

където n е цяло неотрицателно число, a_0, a_1, \ldots, a_n са реални числа. Числата a_0, a_1, \ldots, a_n се наричат коефициенти на дадения полином, a_n се нарича свободен член, n — степен на полинома. Константите се разглеждат като полиноми от нулева степен!

Дробно-рационалните функции

$$f(x) = \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m},$$

където $m \geq 1$. Дробно-рационалните функции и полиномите образуват множеството на рационалните функции.

Ирационалните функции, например

$$f(x) = \sqrt{x-1}$$
 при $x \ge 1$,

$$f(x) = 2x^2 + 1 + 5\sqrt[3]{x+1}.$$