PHYSICS 204 - Physics for Computer Science II, Sections 1,2,3

Aims of the Course:

1. To understand the principles of Physics that can help you design Computer Software and Hardware.

2. To give you experience in thinking to solve problems. Engineers solve (real world) problems.

Lecture/Recitation: Tuesday & Thursday, 2:15-4:05 PM in Science Building Room C205

Dr. Larry Liebovitch: http://people.qc.cuny.edu/Faculty/Larry.Liebovitch/

Office Hours: Tuesdays/Thursdays 1:15 PM - 2:15 in SB B322

Textbook (REQUIRED):

Michael G. Raymer. The Silicon Web: Physics for the Internet Age. (Taylor & Francis, 2009).

Other Sources (not required):

Barabasi. Linked. (Perseus Publishing, 2002).

Hecht. College Physics, 11th Ed. (Schaum's Outlines, 2012) Liebovitch & Shehadeh. Fractals&Statistics (DecoBytes, 2003)

https://drive.google.com/drive/u/0/folders/0B3t7HoVL1Ct7RTJucGxtVHJOeW8

Liebovitch. Fractals and Chaos: Simplified for the Life Sciences (Oxford University Press, 1998). Mazzucato. The Entrepreneurial State: Debunking Public vs. Private Sector Myths (Anthem, 2013).

Mermin. Quantum Computer Science. (Cambridge University Press, 2007).

My Lecture Videos and other materials will be posted at:

https://drive.google.com/drive/u/1/folders/0BxKjzHTZ7PXHUEIMY2t6MFhxajg

Attendance in Lecture and Recitation is required and attendance will be taken

Grading Policy:

Recitation Problems: 20%

Done in class, no makeups

Exams: 20%

These will consist of problems similar to those in the Recitation Problems

Midterm: October 20, 2016: 10%

Final Exam: (TBA, December 14-21, 2016): 10%

Projects: 40%

TWO executable PROGRAMS illustrating physical concepts from the course, each WITH an explanatory VIDEO #1 program/video due 2:15 PM Thursday 10/27/16; #2 program/video due 2:15 PM Thursday 12/08/16

Each Program (any computer language): 10%

Each Video (MUST not be longer than 4 minutes): 10%

Lab: 20%

Lab reports graded by the lab instructor

Week	Tuesday	Topic	Reference	Thursday	Topic	Reference
1				8/25/16	Introduction - Heat	Raymer: pp. 112-129
2	8/30/16	Scaling Laws	Liebovitch&Shehedah : Lectures 21-30	9/1/16	Recitation/Problems	
3	9/6/16	Networks	Barabasi: pp. 41-92	9/8/16	Recitation/Problems	
4	9/13/16	Dynamics (& chaos)	Liebovitch: pp. 115- 241	9/15/16	Recitation/Problems	
5	9/20/16	Electricity & Magnetism	Raymer: pp. 141-180	9/22/16	Recitation/Problems	
6	9/27/16	Circuits	Hecht: 281-334	9/29/16	Recitation/Problems	
7	10/4/16	X	No Classes	10/6/16	x	Monday Schedule
8	10/11/16	X	No Classes	10/13/16	Recitation/Problems	
				FRIDAY 10/14/16	AC/DC	Tuesday Schedule
9	10/18/16	Recitation/Problems		10/20/16	MIDTERM EXAM	
10	10/25/16	Quantum Mechanics	Raymer: pp. 299-330	10/27/16	Recitation/Problems #1 Program/Video Due	
11	11/1/16	Quantum Devices	Raymer: pp. 319-374, 467-517	11/3/16	Recitation/Problems	
12	11/8/16	Algorithms, FFT	Mermin: 63-87	11/10/16	Recitation/Problems	
13	11/15/16	Algorithms, RSA, Apple Pay		11/17/16	Recitation/Problems	
14	11/22/16	Quantum Computing	Mermin: 35-62	11/24/16	х	No Classes
15	11/29/16	Artificial Intelligence		12/1/16	Recitation/Problems	
16	, -, -	Technology	Mazzucato	12/8/16	Recitation/Problems #2 Program/Video Due	
	FINAL EXAM December 14-21, 2016					

```
Some More Details:
Heat (Raymer: pp. 112-129)
           cooling: the limits of computers and bicyclists
           conduction, convection, radiation
           the heat of bits, Feynman Figure 46-1
Scaling Laws (Liebovitch&Shehedah: Lectures 21-30)
           dimension, scaling, fractals
           using fractals: storage, bandwidth, antennas, connections, error transmission
Networks (Barabasi: pp. 41-92)
           random, power law, small world
           how they form
           routers, IPs, the actors who did movies with Christopher Walken
           real world analysis: motifs
Dynamics (Liebovitch: pp. 115-241)
           what they lied to you about in Physics for CS - I
           chaos: butterflies, attractors and intermittency
           computation: what works, what doesn't
Electricity and Magnetism (Raymer: pp. 141-180)
           E and M separately
           E and M together
           the truth about special relativity
Circuits (Hecht: 281-334)
           capacitors
           resistors
           Kirchoff's Laws
AC/DC
           war of the currents
           beta v. vhs
           tipping points
Quantum Mechanics: basics (Raymer: pp. 299-330)
           introduction: waves and particles
           two slits: Heisenberg
           Schrodinger Equation: probability waves
           entanglement: teleportation (maybe) and Bell's theorem
           band gaps: insulators, semi-conductors, conductors
Quantum Devices (Raymer: pp. 319-374, 467-517))
           amplifiers: downhill is easier than uphill
           tubes(valves): triodes, and transistors: junction, MOSFET
           LEDs, solar (photovoltaic) cells
           Lasers: making light, talking over fibers
Algorithms, FFT
           FT (Fourier Transforms)
           polynomials instead of 10<sup>x</sup>
           FFT (Fast Fourier Transforms)
           how to multiply fast (with FFT)
Algorithms, RSA, Apple Pay
           RSA
           near field commication (NFC)
           Apple Pay
Quantum Computing (Mermin: 35-87)
           Why?
           Quantum Hardware
           Quantum Algorithms: Deutsch, Shor, Grover
Artificial Intelligence
           Artificial neural networks
           Storing memories: Hopfield, feedforward
           Training: supervised, unsupervised
           Deep Learning: AI finally understands what you're saying on the phone
```

Technology (Mazzucato)

Government vs. Entrepreneurs

Siri is: AI, GPS, chips, etc. research funded by the US government