Chapter 3: Angular Momentum

Yuquan Chen

2019/04/16

We have discussed position and momentum operator before, now let's consider the rotation of a system, which leads to angular position and angular momentum. Before we dive in, there's some prerequisites we should know.

1 Some prerequisites

In a 3D system, we use $\vec{r} = (x, y, z)$ to represent the coordinate, and the momentum is $\vec{p} = (p_x, p_y, p_z)$. In position representation, we have $p_x \leftrightarrow -i\hbar \frac{\partial}{\partial x}$, $p_y \leftrightarrow -i\hbar \frac{\partial}{\partial y}$, and $p_z \leftrightarrow -i\hbar \frac{\partial}{\partial z}$, together we get $\vec{p} = (-i\hbar \frac{\partial}{\partial x}, -i\hbar \frac{\partial}{\partial y}, -i\hbar \frac{\partial}{\partial z}) = -i\hbar \vec{\nabla}$.

Now let's switch to spherical coordinate (r, θ, φ) .

For a point in space, we use a ket $|\psi\rangle$ to represent it,

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \quad \Rightarrow r = \sqrt{x^2 + y^2 + z^2} \\ z = r \cos \theta \end{cases}$$

now let's consider a rotation along \hat{z} direction. Here φ becomes $\varphi+d\varphi,$ and r,θ remain the same. We have

$$|x, y, z\rangle \xrightarrow{\text{rotation}} |x', y', z'\rangle$$
 (1)

and the corresponding

$$(r, \theta, \varphi) \xrightarrow{\text{rotation}} (r, \theta, \varphi + d\varphi)$$
 (2)

then we try to find out the expression of x', y', z' in terms of $r, \theta, \varphi, d\varphi$

$$\begin{cases} x' = r \sin \theta \cos(\varphi + d\varphi) \simeq r \sin \theta \cos \varphi - r \sin \theta \sin \varphi d\varphi \\ y' = r \sin \theta \sin(\varphi + d\varphi) \simeq r \sin \theta \sin \varphi + r \sin \theta \cos \varphi d\varphi \end{cases} \Rightarrow \begin{cases} x' = x - y d\varphi \\ y' = y + x d\varphi \end{cases}$$

$$z' = r \cos \theta = z$$
 (3)

On a spin- $\frac{1}{2}$ system, we have Pauli operators $\sigma_x, \sigma_y, \sigma_z$. In the σ_z basis, we have

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (4)

and

$$[\sigma_k, \sigma_l] = 2i\varepsilon_{klm}\sigma_m, \quad \varepsilon_{klm} = \begin{cases} 1 & \text{if } k, l, m \text{ in order} \\ -1 & \text{if out of order} \end{cases}$$
 (5)

define the spin operator,

$$\begin{cases} \vec{S} = \frac{\hbar}{2}\vec{\sigma}, \ S_z = \frac{\hbar}{2}\sigma_z \\ \vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z) \end{cases}$$
 (6)

here we should mention that $[S_k, S_l] = i\hbar \varepsilon_{klm} S_m$ is generally true for angular momentum operators, including spin- $\frac{1}{2}$ operators.

$$\vec{S}^2 = S_x^2 + S_y^2 + S_z^2 = \frac{\hbar^2}{4} \left(\sigma_x^2 + \sigma_y^2 + \sigma_z^2 \right) = \frac{3}{4} \hbar^2 I \tag{7}$$

notice that for each k in x, y, z, we have $\sigma_k^2 = I$ so $\vec{S}^2 \propto I$, and we also have $[\vec{S}^2, S_k] = 0$. If we define unite length vector

$$\vec{n} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta) \tag{8}$$

we have

$$\vec{\sigma} \cdot \vec{n} = \sigma_x \sin \theta \cos \varphi + \sigma_y \sin \theta \sin \varphi + \sigma_z \cos \theta \tag{9}$$

Noticed that if you try to use Mathematica to implement $\vec{\sigma} \cdot \vec{n}$, use the expression $\vec{n} \cdot \vec{\sigma}$ instead. When we are dealing with matrix exponential, we use Taylor expansion

$$e^{i\phi\hat{\sigma}_x} = I + i\phi\sigma_x - \frac{\phi^2\sigma_x^2}{2!} + \frac{i\phi^3\sigma_x^3}{3!} - \dots$$
 (10)

we use

$$\begin{cases} e^{\hat{A}} = I + \hat{A} + \frac{\hat{A}^2}{2!} + \dots + \frac{\hat{A}^n}{n!} + \dots \\ \sigma_x^2 = I \end{cases}$$
 (11)

to get

$$e^{i\phi\hat{\sigma}_x} = \left(I - \frac{\phi^2}{2!}I + \frac{\phi^4}{4!}I - \dots\right) + i\sigma_x \left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots\right)$$
(12)

$$=\cos\phi I + i\sin\phi\sigma_x\tag{13}$$

2 Orbital angular momentum

Let's consider a small rotation: $\varphi \to \varphi + d\varphi$,

$$\begin{cases} x' \simeq x - yd\varphi \\ y' \simeq y + xd\varphi \\ z' = z \end{cases}$$
 (14)

if we have a state $|\psi\rangle$ expressed in position coordinate $\langle x, y, z | \psi \rangle = \psi(x, y, z)$ (we can also write it in spherical basis $\psi(r, \theta, \varphi)$, as we discussed above), then we apply a rotation to the state, we get from

$$\psi(r,\theta,\varphi) \to \psi(r,\theta,\varphi - d\varphi)$$
 (15)

and we know

$$\psi(r,\theta,\varphi-d\varphi) \simeq \psi(r,\theta,\varphi) - d\varphi \cdot \frac{\partial}{\partial \varphi} \psi(r,\theta,\varphi)$$
 (16)

we can express this small rotation as

$$I - \frac{\partial}{\partial \varphi} = I + \frac{1}{i\hbar} \hat{L}_z \tag{17}$$

here we can see the relationship:

$$\hat{L}_z = \frac{\varphi \text{ coordinate}}{-i\hbar} - i\hbar \frac{\partial}{\partial \varphi} \longleftrightarrow p_x = \frac{x \text{ coordinate}}{-i\hbar} - i\hbar \frac{\partial}{\partial x}$$
 (18)

then we express \hat{L}_z in x, y, z coordinates,

$$\psi(x, y, z) \xrightarrow{I - \frac{\partial}{\partial \varphi}} \psi(x', y', z') \tag{19}$$

rotate axis along z by $d\varphi$

$$\begin{cases} x' = x - yd\varphi \\ y' = y + xd\varphi & \xrightarrow{\text{want } -d\varphi} \begin{cases} x' = x + yd\varphi \\ y' = y - xd\varphi \\ z' = z \end{cases}$$
 (20)

so

$$\psi(x', y', z') \simeq \psi(x + yd\varphi, y - xd\varphi, z) \tag{21}$$

$$= \psi(x, y, z) + yd\varphi \frac{\partial}{\partial x} \psi(x, y, z) - xd\varphi \frac{\partial}{\partial y} \psi(x, y, z)$$
 (22)

we have

$$p_x \leftrightarrow -i\hbar \frac{\partial}{\partial x}, \ p_y \leftrightarrow -i\hbar \frac{\partial}{\partial y}$$
 (23)

$$\psi(x', y', z') = \psi(x, y, z) + yd\varphi\left(\frac{\hat{p}_x}{-i\hbar}\right)\psi(x, y, z) - xd\varphi\left(\frac{\hat{p}_y}{-i\hbar}\right)\psi(x, y, z)$$
(24)

$$= \left(I + \frac{1}{-i\hbar}d\varphi(yp_x - xp_y)\right)\psi(x, y, z) \tag{25}$$

$$= \left(I + \frac{1}{i\hbar}\hat{L}_z\right)\psi(x, y, z) \tag{26}$$

So \hat{L}_z expressed with x,y,z coordinate with respected operators should be

$$\hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x \tag{27}$$

similarly, we an write out the \hat{L}_x and \hat{L}_y . In total,

$$\begin{cases}
\hat{L}_x = \hat{y}\hat{p}_z - \hat{z}\hat{p}_y \\
\hat{L}_y = \hat{z}\hat{p}_x - \hat{x}\hat{p}_z \\
\hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x
\end{cases}$$
(28)

which is the same as classical mechanics $\vec{L} = \vec{r} \times \vec{p}$, so we get an orbital angular momentum operator in analog to classical.