FTML practical session 13

14 juin 2025

TABLE DES MATIÈRES

Bound on the estimation error

1 BOUND ON THE ESTIMATION ERROR

Step 2]

The fact that

$$2\sup_{h\in F}|R(h)-R_n(h)|\geqslant t\tag{1}$$

is equivalent to:

$$\cup_{h \in F} \left(2|R(h) - R_n(h)| \geqslant t \right) \tag{2}$$

Then, Boole's inequality shows that:

$$P\Big(\cup_{h\in F}\Big(2|R(h)-R_{\mathfrak{n}}(h)|\geqslant t\Big)\Big)\leqslant \sum_{h\in F}P\Big(2|R(h)-R_{\mathfrak{n}}(h)|\geqslant t\Big) \tag{3}$$

Step 3]

For each $h \in F$, we need to bound

$$P(2|R(h) - R_n(h)| \ge t) \tag{4}$$

We can apply Hoeffding's inequality to $X_i = l(h(x_i), y_i)$:

- The X_i are independent and identically distributed.
- $\forall i, E[X_i] = R(h)$ (see section 3.1.8 in lecture_notes.pdf)

Hence,

$$\forall h \in F, P(2|R(h) - R_n(h)| \geqslant t) \leqslant 2 \exp\left(-\frac{nt^2}{2(b-a)^2}\right)$$
 (5)

The result can then be obtained by summing over the estimators $h \in F$.

Step 4]

We write

$$\delta = 2|F| \exp\left(-\frac{nt^2}{2(b-a)^2}\right) \tag{6}$$

Using ??

$$P(R(f_n) - R(f_a) < t) = 1 - P(R(f_n) - R(f_a) \ge t)$$

$$\ge 1 - \delta$$
(7)

Hence, with probability larger than $1-\delta$, $R(f_n)-R(f_\alpha)< t$. We just need to express t as a function of δ .

$$\frac{\delta}{2|F|} = \exp\left(-\frac{nt^2}{2(b-a)^2}\right) \tag{8}$$

$$-2(b-a)^2\log(\frac{\delta}{2|F|}) = nt^2$$
 (9)

$$2(b-a)^2\log(\frac{2|F|}{\delta}) = nt^2 \tag{10}$$

$$2(b-\alpha)^2\Big(\log(\frac{2}{\delta}) + \log(|F|)\Big) = nt^2 \tag{11}$$

$$\sqrt{\frac{2(b-a)^2\left(\log(\frac{2}{\delta}) + \log(|F|)\right)}{n}} = t \tag{12}$$