3.2. Árboles AVL

DEFINICIONES (I)

- La eficiencia en la búsqueda de un elemento en un árbol binario de búsqueda se mide en términos de:
 - Número de comparaciones
 - La altura del árbol
- Árbol completamente equilibrado: los elementos del árbol deben estar repartidos en igual número entre el subárbol izquierdo y el derecho, de tal forma que la diferencia en número de nodos entre ambos subárboles sea como mucho 1
- Problema: el mantenimiento del árbol
- Árboles AVL: desarrollado por Adelson-Velskii y Landis (1962). Los AVL son árboles balanceados (equilibrados) con respecto a la altura de los subárboles:
 - "Un árbol está equilibrado respecto a la altura si y solo si para cada uno de sus nodos ocurre que las alturas de los dos subárboles difieren como mucho en 1"
- Consecuencia 1. Un árbol vacío está equilibrado con respecto a la altura
- Consecuencia 2. El árbol equilibrado óptimo será aquél que cumple:

$$n = 2^h - 1$$
,

donde n = nº nodos y h = altura

Tema 3. El tipo árbol

3.2. Árboles AVL

DEFINICIONES (II)

- Si T es un árbol binario no vacío con TL y TR como subárboles izquierdo y derecho respectivamente, entonces T está balanceado con respecto a la altura si y solo si
 - TL y TR son balanceados respecto a la altura, y
 - | hl hr | ≤ 1 donde hl y hr son las alturas respectivas de TL y TR
- El factor de equilibrio FE (T) de un nodo T en un árbol binario se define como hr - hl. Para cualquier nodo T en un árbol AVL, se cumple FE (T) = -1, 0, 1

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. INSERCIÓN (I)

- Representación de árboles AVL
 - Mantener la información sobre el equilibrio de forma implícita en la estructura del árbol
 - Atribuir a, y almacenar con, cada nodo el factor de equilibrio de forma explícita

TNodoArb {

Titem fitem;

TArbBin fiz, fde;

int FE; }

- Inserción en árboles AVL. Casos:
 - Después de la inserción del ítem, los subárboles I y D igualarán sus alturas

3

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. INSERCIÓN (II)

 Después de la inserción, I y D tendrán distinta altura, pero sin vulnerar la condición de equilibrio

Si hl > hD y se realiza inserción en I, ó hl < hD y se realiza inserción en D
 Formas de rotación: II, ID, DI, DD

- ROTACIÓN II (-2,-1)

Tema 3. El tipo debol

3.2. Árboles AVL

OPERACIONES BÁSICAS. INSERCIÓN. EJEMPLO (IV)

• Ejemplo. Insertar en el siguiente árbol los elementos 5 y 12

 Hay que tener en cuenta que la actualización del FE de cada nodo se efectúa desde las hojas hacia la raíz del árbol

```
Tema 3. El tipo d
```

3.2. Árboles AVL OPERACIONES BÁSICAS. INSERCIÓN. IMPLEMENTACIÓN (V) ALGORITMO INSERTAR ALGORITMO INSERTARALIX ENTRADA/SALIDA I : Iterador; Crece: Integer; c : Item ; ENTRADA/SALIDA A: AVL; c : Item VAR CreceIz, CreceDe : Integer ; B : Arbol ; VAR I : Iterador ; Crece : Integer ; METODO METODO si EsVacioArbIt (I) entonces I = Primer(A);B = Enraizar (c); Mover (I, B); Crece = TRUE; InsertarAux (I, c, Crece); fMETODO Crece = CreceIz = CreceDe = FALSE; $si\ (\ c < Obtener\ (\ I\)\)\ entonces \\ INSERTARAUX\ (\ HijoIzq\ (\ I\),\ c,\ CreceIz\)\ ;$ Crece = CreceIz; sino si (c > Obtener (I)) entonces INSERTARAUX~(~HijoDer~(~I~),~c,~CreceDe~)~;Crece = CreceDe; fsi si Crece entonces caso de: 1) (CreceIz y FE (I) = 1) \acute{o} (CreceDe y FE (I) = -1) : Crece = FALSE; FE (I) = 0; 2) CreceIz y FE (I) = 0 : FE (I) = -1 ; 3) CreceDe y FE (I) = 0 : FE (I) = 1 ; 4) CreceIz y FE (I) = -1 : EquilibrarIzquierda (I, Crece) ; 5) CreceDe y FE (I) = 1 : EquilibrarDerecha (I, Crece) ; fcaso fsi

fsi fMETODO

3.2. Árboles AVL

EJERCICIOS inserción

- 1) Construir un árbol AVL formado por los nodos insertados en el siguiente orden con etiquetas 4, 5, 7, 2, 1, 3, 6
- 2) Insertar las mismas etiquetas con el siguiente orden: 1, 2, 3, 4, 5, 6, 7

9

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. BORRADO (I)

- Borrado en árboles AVL. Casos:
 - Borrar el ítem nos llevará en el árbol a un FE = 0, no será necesario reequilibrar

 Borrar el ítem nos llevará en el árbol a un FE = ±1, en este caso tampoco será necesario reequilibrar

3.2. Árboles AVL
OPERACIONES BÁSICAS. BORRADO (IV)

- Rotaciones dobles

- ROTACIÓN DI
(+2,-1)
La altura del árbol decrece

- ROTACIÓN ID
(-2,+1)
La altura del árbol decrece

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. INSERCIÓN Y BORRADO

- Estudio de las complejidades de ambos algoritmos
 - El análisis matemático del algoritmo de inserción es un problema todavía no resuelto. Los ensayos empíricos apoyan la conjetura de que la altura esperada para el árbol AVL de n nodos es

- Estos árboles deben utilizarse sólo si las recuperaciones de información (búsquedas) son considerablemente más frecuentes que las inserciones → debido a la complejidad de las operac. de equilibrado
- Se puede borrar un elemento en un árbol equilibrado con log (n) operaciones (en el caso más desfavorable)
- Diferencias operacionales de borrado e inserción:
 - Al realizar una inserción de una sola clave se puede producir como máximo una rotación (de dos o tres nodos)
 - El borrado puede requerir una rotac. en todos los nodos del camino de búsqueda
 - Los análisis empíricos dan como resultado que, mientras se presenta una rotación por cada dos inserciones,
 - sólo se necesita una por cada cinco borrados. El borrado en árboles equilibrados, pues, tan sencillo (o tan complicado) como la inserción

Tema 3. El tipo árbol

Tema 3. El tipo árbol

3.2. Árboles AVL

EJERCICIOS borrado

1) Dado el siguiente árbol AVL de entrada, efectuar los siguientes borrados en el mismo: 4, 8, 6, 5, 2, 1, 7. (Nota: al borrar un nodo con 2 hijos, sustituir por el mayor de la izquierda)

3.2. Árboles AVL

EJERCICIOS borrado

2) Dado el siguiente árbol AVL de entrada, efectuar los siguientes borrados en el mismo: 55, 32, 40, 30. (Nota: al borrar un nodo con 2 hijos, sustituir por el mayor de la izquierda)

3.2. Árboles AVL

Preguntas de tipo test: Verdadero vs. Falso

- Los árboles AVL son aquellos en los que el número de elementos en los subárboles izquierdo y derecho difieren como mucho en 1
- Cuando se realiza un borrado en un árbol AVL, en el camino de vuelta atrás para actualizar los factores de equilibrio, como mucho sólo se va a efectuar una rotación
- El siguiente árbol está balanceado con respecto a la altura

