ICFP M2 - Statistical physics 2 Homework no 1

Grégory Schehr, Francesco Zamponi

In the TD 1 we have studied the distribution of the maximum M_n of a large number n of independent and identically distributed random variables X_1, \ldots, X_n . One can investigate more detailed extremal properties of such large samples of random variables, for instance:

- what is the law of the second largest variable among X_1, \ldots, X_n ?
- what is the law of the k-th largest variable among X_1, \ldots, X_n , for arbitrary k?

To answer some of these questions we suggest the following approach. First, we recall a few results:

• If a_n and b_n are the series introduced in the TD that define the rescaling under which $(M_n-a_n)/b_n$ has a non-trivial limit, we have

$$F_X(a_n + b_n x) = 1 - \frac{\gamma(x)}{n} + o(1/n)$$
 i.e. $\lim_{n \to \infty} F_X(a_n + b_n x)^n = G(x) = e^{-\gamma(x)}$, (1)

where G(x) is the cumulative distribution function of the rescaled variable $(M_n - a_n)/b_n$.

• A binomial distribution

$$p(k) = \operatorname{Binom}(k; n, p) = \binom{n}{k} p^k (1 - p)^{n - k}$$
(2)

converges to a Poisson distribution when $n \to \infty$ with fixed $\lambda = pn$, i.e.

$$p(k) = \text{Pois}(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 (3)

• A multinomial distribution

$$p(k_1, \dots, k_m) = \text{Multinom}(k_1, \dots, k_m; n, p_1, \dots, p_m)$$

$$= \frac{n!}{k_1! \cdots k_m! (n - k_1 - \dots - k_m)!} p_1^{k_1} \cdots p_m^{k_m} (1 - p_1 - \dots - p_m)^{n - k_1 - \dots - k_m}$$
(4)

converges to a product of independent Poisson distributions when $n \to \infty$ with fixed $\lambda_i = p_i n$, i.e.

$$p(k_1, \dots, k_m) \rightarrow \operatorname{Pois}(k_1; \lambda_1) \cdots \operatorname{Pois}(k_m; \lambda_m) .$$
 (5)

Keeping in mind these results:

- From the independent random variables X_1, \ldots, X_n define $\widehat{X}_1, \ldots, \widehat{X}_n$ with $\widehat{X}_i = (X_i a_n)/b_n$.
- Call $N_n([u,v])$ the (random) number of points \widehat{X}_i among $\widehat{X}_1,\ldots,\widehat{X}_n$ which falls in the interval [u,v].
- Determine the probability distribution of $N_n([u,v])$, and of its limit N([u,v]) as $n\to\infty$.
- Characterize the joint law of $N_n([u_1, v_1]), \ldots, N_n([u_p, v_p])$ when the intervals $[u_i, v_i]$ are disjoint, and then take the limit $n \to \infty$.
- Find back from this approach the distribution of the maximum derived in the TD. Hint: consider the probability that the maximum is smaller than x, and express it in terms of the variable $N([x, \infty[)$.
- \bullet Generalize this result to the k-th maximum.