A new potential molecule for D/A type OLED for high luminescence: A DFT computational molecular design of study

Banasree Sarkar Mou, Ahsan Ullah, Md. Rakib Hossain and Nazia Chawdhury*
Department of Physics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.

*e-Mail: nc-phy@sust.edu

Abstract

A plethora of attention is being attracted on Organic Light Emitting Diodes (OLEDs) in recent years employing Thermally Activated Delayed Fluorescence (TADF) emitters which is rare metal-free, environmentally safe and highly efficient with an Internal Quantum Efficiency (IQE) of nearly 100%. We applied a theoretical design strategy for Donor–Acceptor (D\A)-type small molecules as they facilely permit reduced exchange energy (J) hence the small energy gap (ΔE_{ST}) between singlet–triplet states, between electron-donating and accepting subunits for efficient Reverse Intersystem Crossing (RISC) which is a prerequisite for successful TADF. Our approach involves molecular design of 2,4-diphenyl-1,3,5-triazine acceptor and 9,10-dihydroacridine donor moieties connected by a 1,2-phenylene bridge which shows less ΔE_{ST} suggesting a better candidate for TADF prior to further experimental studies.

Introduction

- OLEDs based on TADF can successfully replace phosphorescent emitters which includes expensive rare metals and complex fabrication process [1].
- After electron-hole recombination, excitons are formed and transferred to lowest excited singlet and triplet states in the ratio of 1:3, respectively [2].
- With a small singlet-triplet splitting energy, (ΔE_{ST}) along with the aid of thermal activation, triplet excitons are back transferred to singlet state and thus enable delayed fluorescence for OLEDs..

Figure 1: Illustration for thermally activated delayed fluorescence.

Methodology

- Dependence of RISC rate on temperature can be expressed in a Boltzmann distribution relation [3] : $k_{RISC} \propto exp \frac{\Delta E_{ST}}{K_BT}$
- ΔE_{ST} is particularly important according to the above equation, which is the difference between E_S and E_T , is equal to the twice of exchange energy, $J: \Delta E_{ST} = E_S E_T = 2 J$
- Here, HOMO of donor and LUMO of acceptor of organic D-A molecular system are designed to be separated by a linker; this renders small overlap of frontier orbitals and reduced exchange energy J, resulting in a small ΔE_{ST} .
- All calculations are adopted by DFT, TD-DFT methods in Gaussian16 package for gaseous phase using APFD\LanL2MB functional.

References

- [1] Tang, X., Cui, LS., Li, HC. et al. Nat. Mater. 19, 1332–1338, 2020.
- [2] M.G. Fan, J.N. Yao, Photochemistry and Optical Function Materials, Science Press, 2009.
- [3] K. Goushi, K. Yoshida, K. Sato, and C. Adachi, Nat. Photonics 6, 253, 2012.

Result and Discussion

Calculated HOMO and LUMO are allocated on donor and acceptor units, respectively

- and their overlap is negligible. Dipole moment of S₁ is 7.33 Debye.

 We observe two triplet bands corresponding to S₁ → T₂ transition. Higher lying triplet
- We observe two triplet bands corresponding to S_o → T₁ transition. Higher lying triplet band may involve RISC from triplet to singlet.

Figure 4: Energy level diagram

Figure 5: UV-Vis Spectra

Conclusion

The estimated ΔE_{ST} of our designed compound is 0.14 eV which is small enough to facilitate TADF process and energy gap E_g is 3.6 eV. This result suggests that, control of donor-acceptor conformation by linker can lead to effective RISC and photoluminescence yield.

Acknowledgment

This work is supported by Bangladesh Ministry of Education under Grant of Advanced Research in Education. Project ID: PS2017535

