Quiz 1 A family of sets over \mathbb{Z} is a set of sets of integers.

In other words a family of sets over \mathbb{Z} is a subset of $\mathcal{P}(ints)$.

For example, $F_1 = \{\{1,2\}, \{1,4,5\}, \{6\}\}$ and $F_2 = \{\{1,2\}, \{1,4,5\}, \{2\}\}$ are both families of sets over \mathbb{Z} .

1. A *cover* for a set of integers S is a family F of sets over \mathbb{Z} such that each element of S belongs to at least one set in F.

For example F_1 is a cover for $\{1,6\}$, but F_2 is not. Express the predicate

COVER(S, F) ="family F is a cover for set S"

using only the predicate MEMBER, quantifiers, and logical connectives, where

for any integer $e \in \mathbb{Z}$ and any subset of integers $S \subseteq \mathbb{Z}$,

MEMBER(e, S) ="e is an element of S". Solution:

$$\forall e \in S, \exists f_i \in F, \text{MEMBER}(e, f_i)$$

2. A family of sets F over \mathbb{Z} is cover-free if, for each set $S \in F$, the family of other sets in F is not a cover for S. For example, F_1 is cover-free, but F_2 is not. Express "F is cover-free" as a predicate using only the predicates = and MEMBER, quantifiers, and logical connectives. **Solution**:

$$\forall S \in F, \exists e \in S, \forall f_i \in F, (e \neq f_i) \lor (S = f_i)$$

Use the notation from the course slides and MIT book. Use parentheses to eliminate any possible ambiguities.