Final Project

Job Assignment Machine

1. 問題描述

派工機(Job Assignment Machine) (後文以 JAM表示)的應用相當廣泛,當有n件工作需要完成,而 n 個工人對每件工作可能有不同的工作成本,如何來指派那一個工人去執行那一件工作,以期達到最低成本,此即派工機的目的。

解決派工問題最直覺的方法是計算所有可能組合的成本,然後可找到最低成本的組合。 本題題目輸入工人工作成本資訊,請以窮舉法列出所有的配對組合,然後找到最低的成本 以及符合最低成本的組合數量。

		ð	X	::	000
(\mathfrak{C})	12	22	34	54	12
(F)	45	21	97	98	34
	54	88	21	22	34
	12	43	57	21	33
(E)	35	98	32	1	13

圖一、工作成本表格

2. 設計規格

2.1 系統方塊圖

圖二、系統方塊圖

2.2 輸入/輸出介面

表一、輸入/輸出訊號

Signal Name	1/0	Wid.	Simple Description	
CLK	I	1	Clock Signal (positive edge trigger)	
RST	I	1	Reset Signal (active high)。由 testbench 提供,拉高 2 cycle後恢復為 low。	
Cost	I	7	成本數值,當W及J設定完成,Cost回應第W 位工人 在第J項工作的成本數值。Cost為無號 二進位整數,數值範圍為O到100的正整數。	
W	0	3	指定取得第 W 位工人成本資料, 0≤W≤7	
J	0	3	指定取得第J項成本資料, 0 ≤ J ≤ 7	
MatchCount	0	4	輸出符合最小成本的可能組合的數量。	
MisCost	0	10	輸出最小總工作成本的數值。 MinCost 為無號二進位整數 testbench 的最小總工作成本不會超過1024。	
Valid	0	1	當 Valid 為 high,表示目前 MatchCount 以及 MinCost 為有效的輸出,testbench 會在下一 cycle 立刻結束模擬。	

2.3 資料輸入與結果輸出描述

題工作成本資料儲存在一塊 8×8 的非同步 $cost_rom$ 中,系統於重置後, JAM 電路指定 W及 J 訊號取得第 W 位工人在第 J 項工作的成本資料。W 及 J 數 值範圍皆為 0 到 7。

成本資料從 Cost 輸入,直接回應 W 及 J 的內容,不受 CLK 限制。 JAM 電路可重覆取用 $cost_rom$ 內資料。

圖三、Job Assignment Machine 之輸入訊號波形

JAM 計算出最小總工作成本,以及符合此成本的組合數量後,分別從 MinCost 及 MatchCount輸出,同時拉高 Valid 訊號, testbench 收到 Valid 訊號即會停止模擬並比對結果正確性。

圖四、Job Assignment Machine 之輸入訊號波形

2.4 字典序演算法描述

給以窮舉方式產生所有的配對組合,計算符合最小工作成本的組合數量,本題 需針對 n=8 (指派 8 個工人去完成 8 件工作)的案例進行派工機 JAM 電路作設計。

給定 n 個數字,最多可以有 n! 種排列,列出這 n 個數字所有的排列組合,稱為全排列。以n=4 為例,[0,1,2,3]的全排列為:

產生全排列的方式有很多種,在此介紹方法為字典序演算法,字典序的意思是,將序列元素依數字大小排列,比如說[2,3,1,0]就排在[2,3,0,1]後面,如果有一個方法,可以找到任一序列的下一序列,就可以依續找到所有的序列,這就是字典序演算法。

字典序演算法分成 3 步驟,以下範例以 n=7,七個數字[0,1,2,3,4,5,6]為例, 假設目前序列為 [3,0,4,6,5,2,1],求下一字典序列。

1. 從右邊開始,找到第一組相鄰且右邊比左邊大的位置:

以上面序列為例,[2,1]右邊較小不合條件;

[5, 2] 不合條件;

[6,5] 不合條件;

[4,6] 右邊較大,符合條件

我們稱 4 的位置為替換點,且 4 為替換數。[3,0,4,6,5,2,1]

- 2. 在替換點右邊的的數字中,找到比替換數大的最小數字,將之和替換數交換上面例子,替換數為 4,右邊的數字為[6,5,2,1],這幾個數中比 4 大的最小數為 5 把 4 和 5 交換,序列變成[3,0,5,6,4,2,1]
- 最後把替換點後的數字前後順序翻轉過來,即可得下一字典序列。
 把[6, 4, 2, 1]翻轉過來,序列就變成[3, 0, 5, 1, 2, 4, 6],此序列就是原序列[3, 0, 4, 6, 5, 2, 1]的下一序列。

2.5 計算總工作成本

當計算出某一序列後,即可依此序列數值分配工作給每一位工人,總工作成本計算方式是將每一位工人分配到的工作的成本相加。

比如 n=5 序列[3, 2, 4, 0, 1], 依下圖表格可計算此組合之成本為 54+97+34+12+98

		Ħ	X	::	
	12	22	34	54	12
()	45	21	97	98	34
	54	88	21	22	34
9	12	43	57	21	33
©	35	98	32	1	13

圖五、工作成本表格

3. 評分標準

本次作業評分方式會依照設計完成的程度、時間和面積,分為A、B、C、D四種等級。作業最多兩人一同協作完成,若三人以上程式碼雷同,則三人皆視為等級D,兩人只須要有一人繳交程式碼即可,請在程式碼前面註明兩人的姓名學號。結報(每人)內容須包含協作者名稱、程式貢獻比例、程式面積、設計心得、遭遇的困難、解決的方法和學期心得。

◆ 等級A:90~100分

等級 A條件:面積最小的100分、第二小99分依此類推,第十名及以後皆為90分 a、總模擬cycle數小於430,000cycle。

◆ 等級B:80分

等級 B 條件:

a、總模擬cycle數小於600,000cycle。(大於600,000cycle為70分)

◆ 等級C:59分

等級 C 條件:

a、準時繳交學期心得。

◆ 等級D:()分

等級D條件:符合下列任一項

- a、未繳交程式。
- b、繳交程式碼功能不齊全。
- C、未通過防抄襲比對。

3.1 程式面積

將完成的程式,使用 Quartus 軟體合成,並記錄下程式使用的邏輯閘和暫存器數量。

Family	MAX 10
Device	10M50DAF484C7G
Timing Models	Final
Total logic elements	764 / 49,760 (2 %)
Total registers	289
Total pins	36 / 360 (10 %)
Total virtual pins	0
Total memory bits	0 / 1,677,312 (0%)
Embedded Multiplier 9-bit elements	2 / 288 (< 1 %)
Total PLLs	0/4(0%)
UFM blocks	0/1(0%)
ADC blocks	0/2(0%)

圖七、Quartus合成的數據報告

4. 附錄

附錄4.1~3為設計檔案說明;附錄4.4為測試樣本;

4.1 設計檔案說明

表二、設計檔案說明

檔名	檔案說明
JAM. v	所有學生使用的設計檔,包含輸入輸出宣告。
tb. v	TestBench檔案。
cost_rom	測資資料。

4.2 測試檔內容

本次練習所提供的testbench檔案和設計檔,有多增加幾行特別用途的敘述:

4.3 特殊情況

若在執行的過程中出現以下警告,可以忽略:

```
VCD info: dumpfile <a href="Lab.fsdb">Lab.fsdb</a> opened for output. 
VCD warning: array word <a href="Pin_Name">Pin_Name</a> will conflict with an escaped identifier.
```

4.4 測試樣本

Pattern1:

```
MinCost=119 , MatchCount=3
Min cost at job serial : (in order from W0 to W7)
1 7 5 0 4 3 6 2
                        J0 J1 J2 J3 J4 J5 J6 J7
6 7 5 0 4 3 1 2
                     W0 11 25 53 41 59 32 25 59
6 7 5 0 4 3 2 1
                        4 11 25 11 59 31 53 11
                     W1
                     W2 11 59 15 11 15 15 53 53
                     W3 4 59 32 34 53 41 34 59
                     W4 15 32 41 34 4 59 34 32
                     W5 41 59 59 4 4 41 34 34
                     W6 53 31 25 41 59 32 31 53
                     W7 11 31 25 11 34 34 53 32
Pattern2:
MinCost=250, MatchCount=6
Min cost at job serial : (in order from W0 to W7)
4 1 2 0 3 5 6 7
4 1 2 0 3 6 5 7
4 1 2 0 7 5 6 3
                        J0 J1 J2 J3 J4 J5 J6 J7
                     W0 54 59 59 59 32 40 62 40
4 1 2 0 7 6 5 3
                     W1 54 32 32 79 32 38 32 62
4 1 2 3 7 5 6 0
                     W2 54 54 30 38 32 38 59 54
4 1 2 3 7 6 5 0
                     W3 30 59 32 32 62 40 45 79
                     W4 32 32 38 32 62 38 62 32
                     W5 79 45 32 62 32 32 32 59
                     W6 32 38 32 59 54 30 30 45
                     W7 30 79 32 32 62 30 45 32
Pattern3:
MinCost=485, MatchCount=9
Min cost at job serial : (in order from W0 to W7)
1 5 2 7 4 0 3 6
1 5 4 7 6 0 3 2
2 5 4 7 6 0 3 1
                        J0 J1 J2 J3 J4 J5 J6 J7
3 5 2 7 4 0 1 6
                     W0 81 60 60 65 96 60 65 96
3 5 4 7 6 0 1 2
                     W1 96 60 66 96 60 60 60 81
                     W2 96 66 60 99 60 81 65 65
5 1 2 7 4 0 3 6
                     W3 66 96 80 99 81 81 96 60
5 1 4 7 6 0 3 2
                     W4 81 96 65 96 60 96 60 81
5 4 2 7 6 0 3 1
                     W5 60 96 80 96 80 60 81 60
5 6 2 7 4 0 3 1
                     W6 99 60 99 65 80 80 81 66
```

W7 65 60 60 99 99 80 60 96