| Polite | echnika | a Św  | iętokr: | zyska | W    | Kielcach | n Wydzia | ł |
|--------|---------|-------|---------|-------|------|----------|----------|---|
|        | Elektro | oniki | , Auto  | maty  | ki i | Informa  | tyki     |   |

Projekt: Architektura Systemów Komputerowych 2

Grupa: 2ID13A Temat: 6

Ocena: Rok akademicki: 2022/2023-S1

# Ocena z projektu

| lmię i nazwisko   | Numer<br>albumu | 1 termin Data: 30.01.2023 | 2 termin Data: 02.02.2023 | 3 termin Data: |
|-------------------|-----------------|---------------------------|---------------------------|----------------|
| Hubert Futrzyński |                 |                           |                           |                |
|                   |                 |                           |                           |                |
|                   |                 |                           |                           |                |
|                   |                 |                           |                           |                |

# Spis treści

| 1   | Temat projektu                                          | 4  |
|-----|---------------------------------------------------------|----|
| 2   | Wstęp teoretyczny omawianego projektu                   | 5  |
| 3   | Założenia projektowe                                    | 5  |
| 3.1 | Lista rejestrów uniwersalnych/specjalnego przeznaczenia | 5  |
| 3.2 | Lista rejestrów segmentowych                            | 5  |
| 3.3 | Lista rozkazów                                          | 6  |
| 3.4 | Zakodowana lista rozkazów                               | 7  |
| 4   | Opis sprzętowy                                          | 8  |
| 4.1 | Jednostka wykonawcza                                    | 8  |
| 5   | Schemat mikroprocesora                                  | 8  |
| 5.1 | Ścieżka danych                                          | 9  |
| 5.2 | Segment Stosu                                           | 10 |
| 5.3 | Bank rejestrów                                          | 11 |
| 5.4 | ALU – jednostka arytmetyczno-logiczna                   | 12 |
| 5.5 | Układ wykonawczy                                        | 13 |
| 6   | Mikroinstrukcje mikroprocesora                          | 14 |
| 6.1 | Przykład kodu wykonawczego w języku Asembler            | 17 |
| 7   | Kod HDL                                                 | 18 |
| 7.1 | Kod multipleksera                                       | 18 |
| 7.2 | Kod rejestru flag                                       | 19 |
| 7.3 | Kod komparatora                                         | 20 |
| 7.4 | Kod rejestru 16bitowego                                 | 21 |
| 8   | Podział pracy w projekcie                               | 22 |
| 9   | Spis rysunków                                           | 22 |
| 10  | Spis listingów                                          | 22 |
| 11  | Spis tabel                                              | 22 |
|     |                                                         |    |

### 1 Temat projektu

Wykonać projekt mikroprocesora oraz układów towarzyszących zgodnie z założeniami projektowymi przedstawionymi w zasadach zaliczenia projektu. Ponadto mikroprocesor musi:

- mieć możliwość zaadresowania 4096 słów pamięci operacyjnej,
- wspierać adresowania: domyślne, natychmiastowe, bezpośrednie, bazowe z przesunięciem,
- wspierać segmentację pamięci z podziałem na segment kodu programu i segment danych,
- posiadać odpowiednią liczbę rejestrów segmentowych,
- posiadać rejestr licznika rozkazów (tylko do odczytu),
- posiadać 3 rejestry uniwersalne 16 bitowe,
- obsługiwać stos,
- wykonywać rozkazy:
  - przesyłanie danych rej-nat, rej-rej, rej-pam,
  - dodawanie/odejmowanie 16 bitowe rej-nat, rej-rej,
  - porównywanie rej-rej, rej-nat,
  - wywołanie podprogramu dla adresu podanego jako liczba lub rejestr,
  - · wykonywanie skoku bezwarunkowego,
  - wykonywanie skoków warunkowych gdy większe, mniejsze, równe,
  - warunkowe wyliczanie wartości funkcji logicznych dla rej rej dla warunków: gdy większe, mniejsze, równe.

Podstawową długością słowa mikroprocesora jest 8 bitów. Rejestr znaczników musi być aktualizowany po wykonaniu odpowiednik rozkazów. Słowo rozkazu mikroprocesora MUSI posiadać zmienną długość. Długość słowa na magistrali danych mikroprocesora ma wynosić 8 bitów. W pamięci należy przygotować program, który będzie demonstrował możliwości mikroprocesora (treść pseudokodu wraz z treścią assemblera należy zamieścić w sprawozdaniu)

### 2 Wstęp teoretyczny omawianego projektu

Projekt obsługuje wszystkie założenia projektowe wszystkie adresowania. Wspiera segmentacje pamięci na segment kodu i danych. Posiada wszystkie potrzebne rejestry segmentowe takie jak SS-Rejestr Stosu, SP-Rejestr przetrzymujący wskaźnik na szczyt stosu, BP-Rejestr Bazowy oraz CS-Segment kodu i DS-Segment danych. Rejestr Licznika programu został nazwany IP od Instruction Pointer. Procesor zawiera 3 Rejestry 16 bitowe które zostały stworzony za pomocą 2 rejestrów 8 bitowych, długość słowa magistrali danych wynosi 8bitów więc takie połączenie rejestrów zostało wymuszone. Procesor obsługuje Stos który znajduję się w bloku segmentu. Wszystkie rozkazy które są wymienione w temacie projektu są realizowane przez stworzony w tym projekcie procesor.

### 3 Założenia projektowe

- 1: Wspierać adresowania: domyślne, natychmiastowe, bezpośrednie oraz bazowe z przesunięciem.
- 2: Wspierać segmentację pamięci z podziałem na segment kodu i danych.
- 3: Posiadać specjalny rejestr licznika oraz 3 rejestry uniwersalne 16 bitowe.
- 4: Obsługiwać stos
- 5: Wykonywać rozkazy przesyłania danych, dodawanie i odejmowanie, wykonywanie skoków warunkowych i bezwarunkowych, wyliczanie wartości funkcji logicznych, wywoływanie podprogramu oraz porównywanie danych.

### 3.1 Lista rejestrów uniwersalnych/specjalnego przeznaczenia

Tabela 1 Tabela z reiestrami uniwersalnymi

| LP. | Numer<br>rejestru | Nazwa rejestru | Opis rejestru                 |
|-----|-------------------|----------------|-------------------------------|
| 1   | 00                | R0             | Rejestr uniwersalny 16 bitowy |
| 2   | 01                | R1             | Rejestr uniwersalny 16 bitowy |
| 3   | 10                | R2             | Rejestr uniwersalny 16 bitowy |

### 3.2 Lista rejestrów segmentowych

Tabela 2 Lista z rejestrami segmentowymi

| LP. | Numer<br>rejestru | Nazwa rejestru | Opis rejestru             |
|-----|-------------------|----------------|---------------------------|
| 1   | 000               | CS             | Segment Kodu              |
| 2   | 001               | DS             | Segment Danych            |
| 3   | 010               | SS             | Segment Stosu             |
| 4   | 011               | SP             | Wskaźnik na szczyt Stosu  |
| 5   | 100               | BP             | Rejestr Bazowy            |
| 6   | 101               | IP             | Rejestr Licznika Rozkazów |

### 3.3 Lista rozkazów

Tabela 3 Tabela rozkazów

| LP. | Rozkaz | Opis rozkazu                                      |
|-----|--------|---------------------------------------------------|
| 1   | JMP    | skok bezwarunkowy                                 |
| 2   | JG     | skok warunkowy, gdy >                             |
| 3   | JL     | skok warunkowy, gdy <                             |
| 4   | JE     | skok warunkowy, gdy =                             |
| 5   | NOP    | Nic nie rób                                       |
| 6   | RET    | Powrót z procedury                                |
| 7   | RESET  | Restart programu                                  |
| 8   | CALL   | Wywołanie podprogramu                             |
| 9   | PUSH   | Odłożenie wartości z rejestru na stos             |
| 10  | POP    | Zdjęcie wartości ze stosu i zapisanie w rejestrze |
| 11  | TOP    | Sczytanie wartości ze szczytu stosu               |
| 12  | NOT    | Negacja Rejestru                                  |
| 13  | AND    | Koniunkcja                                        |
| 14  | OR     | Alternatywa                                       |
| 15  | XOR    | Alternatywa wykluczająca                          |
| 16  | NOR    | Negacja sumy logicznej                            |
| 17  | NAND   | Negacja koniunkcji                                |
| 18  | CMP    | Porównywanie danych                               |
| 19  | ADD16B | Dodawanie 16 bitowe                               |
| 20  | SUB16B | Odejmowanie 16 bitowe                             |
| 21  | MOV    | Adresowanie danych                                |
| 22  | LEA    | Odczyt licznika rozkazów                          |

### 3.4 Zakodowana lista rozkazów

Tabela 4 Zakodowana Tabela rozkazów

| Kod grupy                                               |                                                                              | ela 4 Zakodowana Tabela rozkazow Opis rozkazu     |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| nou grupy                                               |                                                                              | peracje jednoargumentowe                          |  |  |
| M - kod podgrupy , CC - kod operacji, RR - kod rejestru |                                                                              |                                                   |  |  |
|                                                         | dla M=0                                                                      | M CC [nat8]                                       |  |  |
|                                                         | 0 000 [nat8]                                                                 | jmp                                               |  |  |
|                                                         | 0 000 [nat8]                                                                 |                                                   |  |  |
|                                                         | 0 010 [nat8]                                                                 | jg<br>jl                                          |  |  |
|                                                         | 0 010 [nat8]                                                                 |                                                   |  |  |
|                                                         |                                                                              | je<br>La ana                                      |  |  |
|                                                         | 1 100                                                                        | nop                                               |  |  |
| 00                                                      | 1 101                                                                        | ret                                               |  |  |
|                                                         | 1 110                                                                        | reset                                             |  |  |
|                                                         | dla M=1                                                                      | M CCC RR                                          |  |  |
|                                                         | 1 000 RR                                                                     | jmp                                               |  |  |
|                                                         | 1 001 RR                                                                     | call RR                                           |  |  |
|                                                         | 1 010 RR                                                                     | push RR                                           |  |  |
|                                                         | 1 011 RR                                                                     | pop RR                                            |  |  |
|                                                         | 1 100 RR                                                                     | top RR                                            |  |  |
|                                                         | 1 101 RR                                                                     | not RR                                            |  |  |
|                                                         |                                                                              | peracje dwuargumentowe                            |  |  |
|                                                         | M - kod podgrupy, CCCC - kod operacji, RR - kod rejestru I, RR -kod rejestru |                                                   |  |  |
|                                                         | 11 14 0                                                                      | M coop DD DD                                      |  |  |
|                                                         | dla M=0                                                                      | M CCCC RR RR                                      |  |  |
|                                                         | 0 0000RR RR<br>0 0001RR RR                                                   | add16B RR, RR                                     |  |  |
|                                                         |                                                                              | sub16B RR, RR                                     |  |  |
|                                                         | 0 0010RR RR                                                                  | cmp RR, RR                                        |  |  |
|                                                         | 0 0011RR RR                                                                  | and RR, RR                                        |  |  |
| 01                                                      | 0 0100RR RR                                                                  | or RR, RR                                         |  |  |
|                                                         | 0 0101RR RR                                                                  | xor RR, RR                                        |  |  |
|                                                         | 0 0110RR RR                                                                  | nor RR, RR                                        |  |  |
|                                                         | 0 0111RR RR                                                                  | nand RR, RR                                       |  |  |
|                                                         | dla M=1                                                                      | M CC RR - [nat8]                                  |  |  |
|                                                         | 1 00 RR - [nat8]                                                             | add16B RR, nat8                                   |  |  |
|                                                         | 1 01 RR - [nat8]                                                             | sub16B RR, nat8                                   |  |  |
|                                                         | 1 10 RR - [nat8]                                                             | cmp RR, nat8                                      |  |  |
|                                                         |                                                                              | syłania danych rej-rej, rej-nat, rej-pam          |  |  |
|                                                         | _                                                                            | odgrupy, RR - kod rejestru I, RR -kod rejestru II |  |  |
| 10                                                      | dla M=0                                                                      | M RR RR                                           |  |  |
|                                                         | 0 RR RR -                                                                    | mov RR, RR                                        |  |  |
|                                                         |                                                                              | podgrupy, CC - kod operacji, RR - kod rejestru    |  |  |
|                                                         | dla M=0                                                                      | M RR [nat8] 11 dla: [BP]                          |  |  |
|                                                         | 0 00 RR - [nat8]                                                             | mov RR, nat8                                      |  |  |
| 1 11                                                    | 0 01 RR - [nat8]                                                             | mov RR, [BP+nat8]                                 |  |  |
| 11                                                      |                                                                              |                                                   |  |  |
| 11                                                      | 0 10 RR - [nat8]                                                             | mov RR, [nat8]                                    |  |  |
| 11                                                      | 0 10 RR - [nat8]<br><b>dla M=1</b><br>1 00 RR -                              | mov RR, [nat8]  M RR                              |  |  |

### 4 Opis sprzętowy

Układ wykonawczy zbudowany jest z czterech demultiplekserów, posiada wejście danych 8bitowe oraz wyjście danych 8 bitowe. Układ posiada także wyjście rejestru flag które wychodzi ze zbudowanego komponentu ALU.

Układ ALU czyli Jednostka Arytmetyczno Logiczna zbudowana jest z trzech demultiplekserów i dwóch multiplekserów. Nasza jednostka posiada także sumator 8 bitowy który przyjmuje daną Cin która odpowiada za zmianę operacji z dodawania na odejmowanie i na odwrót. W ALU znajduję się także nasz własny komparator stworzony na potrzeby projektu by wyliczał wartości funkcji logicznych gdy porównywane liczby są mniejsze, większe lub równe, dla każdego warunku mogą być wyliczone odpowiednie funkcje logiczne. W Jednostce Arytmetyczno Logicznej znajduje się także rejestr flag w którego skład wchodzą flagi wychodzące z sumatora oraz komparatora takie jak Cout- Flaga Carry- przeniesienia najstarszego bitu, Oout- Flaga Overflow - przepełnienia, Zout- Flaga Zero - zera, oraz wym – Flaga mniejszości, wyr – Flaga równości oraz wyw – Flaga większości. Układ Banku Rejestrów zbudowany jest z jednego demultipleksera oraz pięciu multiplekserów posiada 3 rejestry uniwersalne 16 bitowe umożliwiające adresowanie starszej i młodszej części rejestru. Posiada jedno wejście danych oraz 4 wyjścia które umożliwiają dodawanie i porównywanie danych 16 bitowych na magistrali 8 bitowej.

Cały układ posiada pin resetu który zeruje wszystkie rejestry uniwersalne oraz rejestr flag, dzięki czemu procesor zaczyna pracę od nowa.

Segment Stosu zrobiony jest osobno, nie znajduje się w środku jednostki wykonawczej składa się on z pięciu rejestrów segmentowych, jednego multipleksera i jednego demultipleksera oraz bloku ATU (Jednostka tłumaczenia adresów) który tłumaczy adres logiczny na fizyczny który jest potem podawany jako MAR (magistrala adresowa) i MBR (magistrala danych). Jako wejście są podawane dane które mają być zapisane na stos lub też informacja o tym że chcemy je sczytać. Jako wyjście podawane są dane które sczytaliśmy ze stosu.

#### 4.1 Jednostka sterująca

Jednostka sterująca przyjmuje jako wejście dane wyjściowe oraz dane rejestru flag które wychodzą z jednostki wykonawczej.

Do naszej jednostki jako dane wejściowe wchodzą także kody instrukcji zawarte w zakodowanej liście rozkazów.

Jako dane wyjściowe jednostka sterująca przekazuje do układu wykonawcze dane 8bitowe oraz przekazuje odpowiednie wartości dla multiplekserów oraz rejestrów aby na naszych danych mogły być wykonywane operacje zgodne z założeniami projektowymi. Z naszej jednostki do osobnego segmentu stosu wychodzą dane które chcemy zapisać na stosie bądź też informacja że chcemy je sczytać ze stosu. A wracają jako dane wejściowe

właśnie sczytane informacje.

### 5 Schemat mikroprocesora

Poniżej przedstawione uproszczone schematy poszczególnych elementów mikroprocesora.

## 5.1 Ścieżka danych



Rysunek 1 Ścieżka danych

### 5.2 Segment



Rysunek 2 Segment

## 5.3 Bank rejestrów



Rysunek 3 Bank rejestrów

### 5.4 ALU – jednostka arytmetyczno-logiczna



Rysunek 4 ALU

### 5.5 Układ wykonawczy



Rysunek 5 Układ wykonawczy

# 6 Mikroinstrukcje mikroprocesora

| Lp. | Cykl                               | Mikroinstrukcja                | Opis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-----|------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | PRZESYŁANIE DANYCH/ODCZYT LICZNIKA |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 1.  |                                    | Raa=WE                         | Ładowanie wartości z wejścia układu do<br>rejestrów.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     | t0:                                | ADR0=0, ADR1=01, ADR6=000      | Adresowanie natychmiastowe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|     | t1:                                | LD1=1                          | Adresowanie natychimastowe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 2.  |                                    | Rbb=Raa                        | Ładowanie wartości z jednego rejestru do drugiego.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|     | t0:                                | ADR2=00, ADR1=00, ADR6=010     | Adrosowania domyćlno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|     | t1:                                | LD2=1                          | Adresowanie domyślne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 3.  |                                    | Raa=[nat8]                     | Ładowanie wartości z pamięci do rejestru.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | t0:                                | ADR2=00, ADR1=00, ADR6=000     | Adresowanie bezpośrednie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|     | t1:                                | LD1=1                          | (nat8 jako adres pamięci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 4.  |                                    | Raa=[BP+nat8]                  | Ładowanie wartości z rejestru bazowego do rejestru.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|     | t0:                                | ADR2=00, ADR1=00, ADR6=000     | Advance in the control of the contro |  |  |  |  |  |
|     | t1:                                | LD1=1                          | Adresowanie bazowe z przesunięciem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 5.  | Rcc=[IC]                           |                                | Ładowanie wartości rejestru licznika<br>rozkazów do rejestru.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|     | t0:                                | ADR1=00, ADR6=100              | Oderut liernike reakeráw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|     | t1:                                | LD3=1, ADR1=10, ADR4=1, ADR5=0 | Odczyt licznika rozkazów                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

|    |     | DODAWANIE, ODEJMOWAN             | IE, PORÓWNANIE                                                                 |
|----|-----|----------------------------------|--------------------------------------------------------------------------------|
| 6. |     | NAT cmp RRbb                     | Porównanie wartości natychmiastowej i<br>rejestru i zapisanie w rejestrze flag |
|    | t0: | ADR4=0, ADR4=01, LD_FLAGS=1      |                                                                                |
| 7. |     | RRaa cmp Rbb                     | Porównanie wartości z rejestru 1 i rejestru 2 i<br>zapisanie w rejestrze flag  |
|    | t0: | ADR2=00, ADR4=01, LD_FLAGS=1     |                                                                                |
| 8. |     | Raa = Raa AND Rbb                | Koniunkcja                                                                     |
|    | t0: | ADR2=00, ADR4=01                 |                                                                                |
|    | t1: | LD_FLAGS=1, ADR7=00, ADR3=0      | Zapis do flag warunku mniejsze , równe czy                                     |
|    | t2: | LD5=1, ADR0=1, ADR1=00, ADR6=000 | większe                                                                        |
|    | t3: | LD1=1                            |                                                                                |
| 9. |     | Raa = Raa OR Rbb                 | Alternatywa                                                                    |
|    | t0: | ADR2=00, ADR4=01                 |                                                                                |
|    | t1: | LD_FLAGS=1, ADR7=01, ADR3=0      | Zapis do flag warunku mniejsze , równe czy                                     |
|    | t2: | LD5=1, ADR0=1, ADR1=00, ADR6=000 | większe                                                                        |
|    | t3: | LD1=1                            |                                                                                |

| 10. |     | Raa = Raa XOR Rbb                | Alternatywa wykluczająca                                           |  |
|-----|-----|----------------------------------|--------------------------------------------------------------------|--|
|     | t0: | ADR2=00, ADR4=01                 |                                                                    |  |
|     | t1: | ·                                | Zapis do flag warunku mniejsze , równe czy                         |  |
|     | t2: |                                  | większe                                                            |  |
|     |     | LD1=1                            | <u> </u>                                                           |  |
|     |     | L                                |                                                                    |  |
| 11. |     | Raa = Raa NOR Rbb                | Negacja sumy logicznej                                             |  |
|     | t0: | ADR2=00, ADR4=01                 |                                                                    |  |
|     | t1: | LD_FLAGS=1, ADR8=11, ADR3=0      | Zapis do flag warunku mniejsze , równe czy                         |  |
|     | t2: | LD5=1, ADR0=1, ADR1=00, ADR6=000 | większe                                                            |  |
|     | t3: | LD1=1                            |                                                                    |  |
| 12. |     | Raa = Raa NAND Rbb               | Negacja koniunkcji                                                 |  |
|     | t0: | ADR2=00, ADR4=01                 |                                                                    |  |
|     | t1: | LD_FLAGS=1, ADR8=10, ADR3=0      | Zapis do flag warunku mniejsze , równe czy                         |  |
|     | t2: | LD5=1, ADR0=1, ADR1=00, ADR6=000 | większe                                                            |  |
|     | t3: | LD1=1                            |                                                                    |  |
| 13. |     | Raa = NOT Raa                    | Negacja Rejestru                                                   |  |
|     | t0: | ADR2=00                          |                                                                    |  |
|     | t1: | LD_FLAGS=1, ADR8=00, ADR3=0      | Zapis do flag warunku mniejsze , równe czy                         |  |
|     | t2: | LD5=1, ADR0=1, ADR1=00, ADR6=000 | większe                                                            |  |
|     | t3: | LD1=1                            |                                                                    |  |
| 14. |     | Raa = Raa + Rbb                  | Dodawanie wartości dwóch rejestrów i zapis<br>wyniku do rejestru   |  |
|     | t0: | ADR2=00, ADR3=01, ADR1=0, ADR2=0 |                                                                    |  |
|     | t1: | CIN=0                            | Dodanie młodszych bitów                                            |  |
|     | t2: | LD_FLAGS=1, ADR8=00, ADR3=1      |                                                                    |  |
|     | t3: | LD5=1, ADR0=1, ADR1=00, ADR6=000 |                                                                    |  |
|     | t4: | ADR4=00, ADR5=01, ADR1=1, ADR2=1 |                                                                    |  |
|     | t5: | CIN=0                            | Dodanie starszych bitów                                            |  |
|     | t6: | LD_FLAGS=1, ADR8=00, ADR3=1      |                                                                    |  |
|     | t7: | LD5=1, ADR0=1, ADR1=00, ADR6=001 |                                                                    |  |
| 15. |     | Raa = Raa -Rbb                   | Odejmowanie wartości dwóch rejestrów i<br>zapis wyniku do rejestru |  |
|     | t0: | ADR2=00, ADR3=01, ADR1=0, ADR2=0 |                                                                    |  |
|     | t1: | CIN=1                            | Dodania młodszych hitów                                            |  |
|     | t2: | LD_FLAGS=1, ADR8=00, ADR3=1      | Dodanie młodszych bitów                                            |  |
|     | t3: | LD5=1, ADR0=1, ADR1=00, ADR6=000 |                                                                    |  |
|     | t4: | ADR4=00, ADR5=01, ADR1=1, ADR2=1 |                                                                    |  |
|     | t5: | CIN=1                            | Dodanie starszych hitów                                            |  |
|     | t6: | LD_FLAGS=1, ADR8=00, ADR3=1      | Dodanie starszych bitów                                            |  |
|     | t7: | LD5=1, ADR0=1, ADR1=00, ADR6=001 |                                                                    |  |

| 16. |     | RESET                                     | Zresetowanie programu                                                              |
|-----|-----|-------------------------------------------|------------------------------------------------------------------------------------|
|     | t0: | RESET=1                                   |                                                                                    |
|     |     | SKOKI: BEZWARUNKOWE                       | I WARUNKOWE                                                                        |
| 17. |     | JMP, [nat8]                               | Skok bezwarunkowy do adresu pamięci<br>podanego jako wartość natychmiastowa        |
|     | t0: | ADR0=0                                    | Skok                                                                               |
| 18. |     | JMP, RR                                   | Skok bezwarunkowy do adresu pamięci<br>podanego jako rejestr                       |
|     | t0: | ADR0=1                                    | Skok                                                                               |
| 19. |     | JG                                        | Skok warunkowy (jump if greater) skacze, jeśli<br>flaga większości jest ustawiona. |
|     | t0: | LD_FLAGS=1                                | Jeśli poprzednia operacja arytmetyczna                                             |
|     | t1: | nop                                       | większa od 0 to może skoczyć                                                       |
| 20. |     | JL                                        | Skok warunkowy (jump if less) skacze, jeśli flaga mniejszości jest ustawiona       |
|     | t0: | LD_FLAGS=1                                | Jeśli poprzednia operacja arytmetyczna                                             |
|     | t1: | nop                                       | mniejsza od 0 to może skoczyć                                                      |
| 21. |     | JE                                        | Skok warunkowy (jump if equal) skacze, jeśli<br>flaga równości jest ustawiona      |
|     | t0: | LD_FLAGS=1                                | Jeśli poprzednia operacja arytmetyczna jest                                        |
|     | t1: | nop                                       | równa 0 to może skoczyć                                                            |
|     |     | OPERACJE NA ST                            | TOSIE                                                                              |
| 22. |     | SS=Raa                                    | Odłożenie wartości z rejestru na stos                                              |
|     | t0: | ADR2=00, ADR4=1, ADR5=0                   |                                                                                    |
|     | t1: | SS=0                                      |                                                                                    |
| 23. |     | Raa=SP                                    | Zdjęcie wartości ze stosu i zapisanie w<br>rejestrze                               |
|     | t0: | SP=1, SADR=01, ADR0=0, ADR1=01, ADR6=000  |                                                                                    |
|     | t1: | LD1=1                                     |                                                                                    |
| 24. |     | Raa=SP                                    | Sczytanie wartości ze szczytu stosu                                                |
|     | t0: | SP=1 , SADR=01, ADR0=0, ADR1=01, ADR6=000 |                                                                                    |
| L   | t1: | LD1=1                                     |                                                                                    |
| 25. |     | CALL                                      | Wywołanie podprogramu dla adresu<br>podanego jako rejestr                          |
|     | t0: | SS=0                                      | Zanisania adrosu noveretu na stocia                                                |
|     | t1: | nop                                       | Zapisanie adresu powrotu na stosie                                                 |
| 25. |     | RET                                       | Powrót z procedury                                                                 |
|     | t0: | SS=1                                      | Odczytanie adresu powrotu ze stosu                                                 |
|     | ι   |                                           |                                                                                    |

#### 6.1 Przykład kodu wykonawczego w języku Asembler

```
//Wczytaj liczbę natychmiastową do rej. A
1: MOV A, 6;
                  //Dodaj do liczby 5, wynik zapisz w A
2: ADD16B A, 5;
                  //Umieść wartość rejestru A na szczycie stosu
3: PUSH A;
                  //Wczytaj liczbę natychmiastową do rej. B
4: MOV B, 8;
5: ADD16B B, 2;
                 //Dodaj do liczby 2, wynik zapisz w B
                 //Umieść wartość rejestru B na szczycie stosu
6: PUSH B;
7: TOP A;
                 //Zapisz adres wierzchołka stosu do rejestru A
8: CALL A;
                 //Skocz do adresu podanego przez rejestr A i zapisz adres powrotu na stos
9: POP A;
                 //Pobierz wartość z wierzchołka stosu i przypisz do rejestru A
                 //Pobierz wartość z wierzchołka stosu i przypisz do rejestru B
10: POP B;
11: CMP A, B;
                 //Porównaj rejestr A z rejestrem B
                 //Jeżeli A > B skocz do instrukcji 14
12: JG 14;
13: JMP 15;
                 //Skocz bezwarunkowo do instrukcji 15
14: NAND A, B;
                 //Wykonaj operację NAND na rejestrach A i B, wynik zapisz w A
15: NOP;
                 //Instrukcja nop
16: MOV C, 18;
                 //Wczytaj liczbę natychmiastową do rej. C
17: JMP C;
                 //Skocz do adresu podanego przez rejestr C
18: CMP A, 10;
                 //Porównaj rejestr A z 10
19: JE 19;
                 //Jeżeli rejestr A jest równy 10 skocz do instrukcji 19
20: RET;
                  //Powrót do adresu zapisanego na stosie
                  //Resetuje stos i wszystkie rejestry
21: RESET;
```

Listing 1 Przykładowy program w języku Asembler

#### 7 Kod HDL

Kody VHDL tworzone były poprzez analizę kodów zawartych na stronie hector.tu.kielce.pl pod własne potrzeby założeń projektowych.

#### 7.1 Kod multipleksera

Porty wejścia to WE jako dane 8bitowe, Port adr ustawia port wyjścia na 00, 01 lub inny czyli ten trzeci Porty wyjścia wy0,wy1,wy2 jako dane 8bitowe Niżej opisane wszystkie przypadki dla warunków wejściowych

```
library ieee;
use ieee.std_logic_1164.all;
entity mux1x3_8b is
  port(we: in std_logic_vector(7 downto 0);
       adr: in std_logic_vector(1 downto 0);
       wy0, wy1, wy2: out std_logic_vector(7 downto 0));
end mux1x3 8b;
architecture mux1x3_8b_arch of mux1x3_8b is
begin
 process(we, adr)
 begin
    if adr = "00" then
      wv0 <= we;
      wy1 <= "00000000";
      wy2 <= "00000000";
    elsif adr = "01" then
      wy0 <= "00000000";
      wy1 <= we;
      wy2 <= "00000000";
    else
      wy0 <= "00000000";
      wy1 <= "00000000";
      wy2 <= we;
    end if;
  end process;
end mux1x3 8b arch;
```

Listing 2 Kod układu multipleksera

#### 7.2 Kod rejestru flag

Porty wejścia to dane uzyskane w komparatorze takie jak większe, mniejsze, równe oraz dane uzyskane z sumatora takie jak flaga Carry, Overfloat i flaga Zero
Port Id ustawiony na 1 pozwala na zapis tych flag w rejestrze flag
Port Reset resetuje rejestr flag jak i także pozostałe inne rejestry zawarte w programie.

```
library ieee;
use ieee.std_logic_1164.all;
entity flag_reg_only_extended is
port(wym, wyw, wyr: in std logic;
Cout, Oout, Zout: in std_logic;
ld: in std_logic;
reset: in std_logic;
flag: out std_logic_vector(5 downto 0));
end flag_reg_only_extended;
architecture flag_reg_only_extended_arch of flag_reg_only_extended is
process(ld,reset)
begin
if reset = '1' then
flag <= (others => '0');
elsif rising_edge(ld) then
flag(0) <= wym;</pre>
flag(1) <= wyw;
flag(2) <= wyr;
flag(3) <= Cout;
flag(4) <= Oout;
flag(5) <= Zout;</pre>
end if;
end process;
end flag reg only extended arch;
```

Listing 3 Kod układu rejestru flag

#### 7.3 Kod komparatora

Porty wejścia to a oraz b czyli dane 8 bitowe przekazane do porównania.

Dane wyjściowe zostają przekazane na wyjście dopiero po ich porównaniu i sprawdzeniu czy równe, mniejsze lub większe. Pod każdym tym warunkiem obliczane są wybrane funkcje logiczne, tak jak zostało to napisane w temacie i założeniach projektu.

Dane wyjściowe wyw-większe, wym-mniejsze i wyr-równe zostają przekazane do rejestru flag.

```
library ieee;
use ieee.std logic 1164.all;
use ieee.std_logic_signed.all;
entity logic comp 8b extend is
    port(a, b: in std_logic_vector(7 downto 0);
          and_res, or_res, xor_res, not_res, nand_res, nor_res:
          out std_logic_vector(7 downto 0);
         wym, wyw, wyr: out std_logic);
end logic comp 8b extend;
architecture logic_comp_8b_extend_arch of logic_comp_8b_extend is
begin
    process(a, b)
    begin
        wyw <= '0';
        wym <= '0';
        wyr <= '0';
        if a > b then
             and_res <= a and b;</pre>
             not_res <= not a;</pre>
             nand_res <= not (a and b);</pre>
             wyw <= '1';
        elsif a < b then
             or res <= b or a;
             not_res <= not b;</pre>
             nor_res <= not (b or a);</pre>
             wym <= '1';
        else
             xor res <= a xor b;</pre>
             not_res <= not a;</pre>
             not res <= not b;</pre>
             wyr <= '1';
        end if;
    end process;
end logic comp 8b extend arch;
```

Listing 4 Kod układu komparatora

#### 7.4 Kod rejestru 16bitowego

Porty wejścia A,A2 oraz B,B2 oznaczane jako młodsza i starsza część danej 16 bitowej którą mamy dodawać/odejmować. S i SS to wyniki wyjścia. Cin na 0 oznacza dodawanie a na 1 odejmowanie. Kod opracowany na postawie 8 bitowego sumatora tylko dodane kolejne 8bitów.

```
library ieee;
use ieee.std logic 1164.all;
entity full_add_16b is
  port(A, A2, B, B2: in std_logic_vector(7 downto 0);
       Cin: in std_logic;
       S: out std logic vector(7 downto 0);
       SS: out std logic vector(7 downto 0);
       Cout, Oout, Zout: out std logic);
end full add 16b;
library ieee;
use ieee.std_logic_1164.all;
entity full add is
 port(A, B: in std_logic;
       Cin: in std logic;
       S: out std logic;
       Cout: out std logic);
end full add;
architecture full_add_16b_arch of full_add_16b is
component full add
  port(A, B: in std logic;
       Cin: in std_logic;
       S: out std logic;
       Cout: out std_logic);
end component;
signal Cr, LS, Cr1, LS1: std_logic_vector(7 downto 0);
begin
  -- 8-bitowy sumator dla pierwszych 8 bitów
  s0: full_add port map (A1(0), B1(0), Cin,
                                               LS(0), Cr(0);
 s1: full_add port map (A1(1), B1(1), Cr(0), LS(1), Cr(1));
 s2: full_add port map (A1(2), B1(2), Cr(1), LS(2), Cr(2));
 s3: full_add port map (A1(3), B1(3), Cr(2), LS(3), Cr(3));
 s4: full_add port map (A1(4), B1(4), Cr(3), LS(4), Cr(4));
 s5: full_add port map (A1(5), B1(5), Cr(4), LS(5), Cr(5));
 s6: full_add port map (A1(6), B1(6), Cr(5), LS(6), Cr(6));
 s7: full_add port map (A1(7), B1(7), Cr(6), LS(7), Cr(7));
  -- 8-bitowy sumator dla drugich 8 bitów
 ss0: full_add port map (A2(0), B2(0), Cin,
                                                LS1(0), Cr1(0));
 ss1: full add port map (A2(1), B2(1), Cr(0), LS1(1), Cr1(1));
 ss2: full_add port map (A2(2), B2(2), Cr(1), LS1(2), Cr1(2));
 ss3: full_add port map (A2(3), B2(3), Cr(2), LS1(3), Cr1(3));
 ss4: full_add port map (A2(4), B2(4), Cr(3), LS1(4), Cr1(4));
 ss5: full_add port map (A2(5), B2(5), Cr(4), LS1(5), Cr1(5));
 ss6: full_add port map (A2(6), B2(6), Cr(5), LS1(6), Cr1(6));
 ss7: full add port map (A2(7), B2(7), Cr(6), LS1(7), Cr1(7));
 Cout \leftarrow Cr(7);
 Oout \leftarrow Cr(7) xor Cr(6);
 Zout \leftarrow not (LS(0) or LS(1) or LS(2) or LS(3) or LS(4) or LS(5) or LS(6) or LS(7));
 S \leftarrow LS(7 \text{ downto } 0);
 SS <= LS1(7 downto 0);
end full add 16b arch;
```

## 8 Podział pracy w projekcie

| lmię i nazwisko   | Numer albumu | Podział procentowy |
|-------------------|--------------|--------------------|
| Hubert Futrzyński |              | 100%               |
|                   |              |                    |
|                   |              |                    |
|                   |              |                    |

## 9 Spis rysunków

| Rysunek 1 Ścieżka danych                        | 9  |
|-------------------------------------------------|----|
| Rysunek 2 Segment                               |    |
| Rysunek 3 Bank rejestrów                        |    |
| Rysunek 4 ALU                                   | 12 |
| Rysunek 5 Układ wykonawczy                      |    |
| 10 Spis listingów                               |    |
| Listing 1 Przykładowy program w języku Asembler | 17 |
| Listing 2 Kod układu multipleksera              |    |
| Listing 3 Kod układu rejestru flag              | 19 |
| Listing 4 Kod układu komparatora                | 20 |
| Listing 5 Kod układu rejestru 16bitowego        | 21 |
| 11 Spis tabel                                   |    |
| Tabela 1 Tabela z rejestrami uniwersalnymi      | 5  |
| Tabela 2 Lista z rejestrami segmentowymi        | 5  |
| Tabela 3 Tabela rozkazów                        | 6  |
| Tabela 4 Zakodowana Tabela rozkazów             | 7  |