Finite versus countable additivity

By definition, a probability space Ω , \mathcal{F} , P) has countably additive properties: \mathcal{F} is stable under countable union,

• for a finite of countable family $A_i, i \in I$ of disjoint elements of \mathcal{F} , (these are subsets of Ω), we have $P(\cup_{i \in I} A_i) = \sum_{I \in I} P(A_i)$.

Let Ω be an infinite countable set. Let $\mathcal F$ be the family of all finite sets and their complements. Show that this family is stable under finite union but not countable union. For $A\in\mathcal F$, set P(A)=0 if A is finite and P(A)=1 otherwise. Show that this is a finitely additive P. Then show that this finitely additive P cannot be extended to a countably additive measure on all subsets of Ω . What is the problem?

A set function m on all subsets of $\mathbb Z$ is called a mean if it is finitely additive, non-negative and $m(\mathbb Z)=1$. It is an invariant means if it gives the same value to a set A and any of its translates $A+r=\{a+r:a\in A\}$ where $r\in \mathbb Z$.

- Prove that an invariant mean, if it exists, cannot be countably additive.
- It is a fact that there are many many invariant means on Z. A simple one is constructed by "taking limits" of

$$P_k(A) = rac{\#A \cap \{-k,\ldots,k\}}{k}$$

when k tends to infinity (too complicated to explain here).

This is an entry into the world of "Amenability" and the "Banach--Tarski paradox." IT IS NOT PART OF THE COURSE.