Desafío STEM: Medición de la Densidad de un Líquido usando el Principio de Arquímedes

Objetivos

- Determinar la densidad de un líquido usando dos métodos distintos basados en el principio de Arquímedes.
- Desarrollar la capacidad de derivar y comprender los modelos físicos utilizados.
- Analizar gráficamente los resultados y extraer parámetros físicos de las rectas obtenidas.
- Comparar ambos métodos y discutir sus resultados.

Número de sesiones 2 (cada una de 1.5 h)

Conexiones STEM

- Ciencia: Aplicación del principio de Arquímedes para determinar densidades mediante condiciones de equilibrio.
- **Tecnología:** Uso de balanza digital, jeringas, tubos graduados y otros instrumentos de medición.
- Ingeniería: Validación de modelos físicos por análisis experimental y ajuste de datos.
- Matemáticas: Derivación de expresiones, linealización, ajuste de datos y extracción de pendientes.

Preparación previa

El estudiante debe estudiar previamente:

- El principio de Arquímedes.
- Las condiciones de equilibrio de fuerzas.
- Cómo se deriva la relación lineal en cada método.
- Definición y significado de cada variable en los modelos.

Método 1: Tubo de ensayo sumergido

Figura 1: Método 1: Tubo de ensayo sumergido en agua destilada.

Definición de variables: Ver figura 1.

- ρ_x : Densidad del líquido desconocido (alcohol/glicerina).
- ρ_a : Densidad del agua destilada (1.0 g/cm³).
- g: Aceleración gravitacional.
- ullet d_e , d_i : Diámetros externo e interno del tubo de ensayo.
- $\bullet \ A_e = \frac{\pi d_e^2}{4}$: Área de la sección transversal externa del tubo.
- $A_i = \frac{\pi d_i^2}{4}$: Área interna.
- m_t : Masa del tubo.
- m_l : Masa del lastre (esferas metálicas).
- x: Altura del líquido dentro del tubo.
- y: Altura del nivel externo del agua desplazada.
- V_0 , V_{x0} : Volúmen del tubo y del líquido por debajo del punto de referencia.

Modelo físico y derivación:

$$(m_t + m_l + m_x)g = \rho_a g V$$

$$\operatorname{donde} V = V_0 + A_e y$$

$$\operatorname{y} m_x = \rho_x (V_{x0} + A_i x)$$

$$\Rightarrow m_t + m_l + \rho_x (V_{x0} + A_i x) = \rho_a (V_0 + A_e y)$$

$$\Rightarrow y = \frac{1}{\rho_a A_e} \left[\rho_x V_{x0} - \rho_a V_0 + m_t + m_l \right] + \frac{\rho_x}{\rho_a} \frac{A_i}{A_e} x$$
Definimos: $b_1 = \frac{1}{\rho_a A_e} (\rho_x V_{x0} - \rho_a V_0 + m_t + m_l)$

$$n = \frac{\rho_x}{\rho_a} \frac{A_i}{A_e}$$

$$\Rightarrow y = b_1 + nx$$

Cálculo de densidad:

$$\rho_x = \rho_a \frac{A_e}{A_i} n = \rho_a \frac{d_e^2}{d_i^2} n$$

Método 2: Barra cilíndrica suspendida

Definición de variables: Ver figura 2.

Figura 2: Método 2: Barra cilíndrica parcialmente sumergida en el líquido.

- ρ_x : Densidad del líquido.
- g: Aceleración gravitacional.
- A: Área de la sección transversal de la barra.
- x: Profundidad de inmersión de la barra.
- ullet N: Lectura de la balanza.

• m_v : Masa del vaso.

• m_x : Masa del líquido.

Modelo físico y derivación:

$$N = m_v g + m_x g + \rho_x g A x$$

$$= b_2 + p x$$
donde $b_2 = (m_v + m_x) g$

$$p = \rho_x g A$$

$$\Rightarrow \rho_x = \frac{p}{g A}$$

Evaluación experimental y análisis

ullet Ajuste lineal y vs x para el Método 1.

 \blacksquare Ajuste lineal N vs x para el Método 2.

• Comparar los valores de ρ_x obtenidos.

• Discuta posibles errores y significado físico de b_1 y b_2 .

Nota: Todos los grupos deben realizar ambos métodos experimentales descritos en esta guía. Sin embargo, durante la sesión de sustentación, será el profesor quien asigne aleatoriamente a cada grupo cuál de los dos métodos deberá exponer y analizar en profundidad. Por tanto, es indispensable que todos los integrantes comprendan y dominen completamente ambos procedimientos.

Evaluación

Primera sesión: Realización experimental.

Segunda sesión: Entrega de informe y exposición de 10 minutos por grupo.

Rúbrica del informe escrito (2.5 puntos)

Criterio	Puntaje
Objetivo, materiales y método descritos con claridad	0.5
Derivación coherente de los modelos físicos	0.5
Gráficas bien presentadas con análisis adecuado	0.5
Discusión crítica de resultados y errores	0.5
Conclusiones comparativas bien argumentadas	0.5
Total	2.5

Rúbrica de sustentación oral (2.5 puntos)

Criterio	Puntaje
Explicación clara del procedimiento experimental	0.5
Comprensión de los modelos físicos	0.5
Interpretación adecuada de gráficas y ecuaciones	0.5
Participación balanceada entre integrantes	0.5
Respuestas adecuadas al jurado	0.5
Total	2.5

Nota final: Suma de informe (2.5) + sustentación (2.5) = 5.0 puntos.