

University of Washington

BEE331 Lab 1.2

2301991 Jason Truong Henry Haight

1900585

supervised by Prof. Joseph Decuir

Characterising Diodes; I-V Curve Design Objective

In this lab, we introduce ourselves to the Zener diode, we characterise its function by the I-V curve.

Circuit Design Outline

With a resistor of an arbitrary impedance greater than 100Ω ($R \ge 100\Omega$), and the natural impedance of the Function Generator in series ($R_{TOT} = R_{FG} + R \ge 150\Omega$), the (1N4732 or 1n5223) Zener diode is set in series set in reverse-polarity to procate reverse-breakdown from the diode; through the function generator. Set the function generator @ f=1kHz and $V_P = 5V$ (We'll be focusing on the negative portion of V_P).

Figure 1: Series R + Diode D_Z

(d) Series RD Circuit $10k\Omega$

Descriptions of Measurements & Calculations

Given the default theoretical calculation for a Diode in forward-bias: $I_D = I_S(e^{\frac{V_D}{V_T}} - 1)$; the dataset is similar in-nature - not exact because the characteristics of this diode differs - from section 1.1 of the lab.

The characteristic of a Zener Diode is its relationship to $-V_D$, as I_D enters **Reverse-Breakdown** @ $-V_{Z0}$; the point of breakdown.

Figure 1: RD_Z Circuit

Summary & Conclusions

Revealed in Figure RD-Circuit 1A & 1B, the generated oscilloscope readings of the two periodic function match the characteristics of the transfer function found in 1b (RD_Z Circuit). So the measurements do infact closely align.

-9 99F-03

-0.00103359

-0.00510156

Discussion

• i. Describe how you measured I_D and V_D ?

At the node where R; $(R > 100\Omega)$ and the Zener Diode; (D_Z) meet, we denote this junction as V_{out} . We attach our Multimetre's positive lead (Red) to V_{out} , and attached our ground lead to the opposing node of the Zener Diode; (D_Z) which should be grounded.

• ii. In this experiment how would you determine the value of $I_{D,max}$

Forward-Bias: $I_D = I_S(e^{\frac{V_D}{V_T}} - 1)$; reference Figure 1b.

Reverse-Breakdown: The functioning range when $V_D < V_{D_{BR}}$; the output voltage of a reverse-breakdown Zener diode is $V_o = V_i - R_i *_i$ (the subscript of i meaning input of the function generator.)

• iii. In the circuit, what limits I_D ?

Forward-Bias: The characteristics of the I-V curve of a diode has current I_D exponentially rise towards a cut-off at the threshold, towards the C.V.D @ V_D .

Reverse-Breakdown: Similarly to how the Forward-Bias meets an exponential curve towards its threshold; V_D , the Reverse-Breakdown meets and meets a sharp declination of V_o towards $-V_{D_{BR}}$.

• iv. Explain why V_D does not change much while I_D can change a lot.

Given the equation of a Diode's characteristics of $I_D = I_S(e^{\frac{V_D}{V_T}} - 1)$. Putting the equation in reference to I_D is an exponential function, while V_D is a logarithmic function with a very slow rise time. This goes for both Forward-Bias and Reverse-Breakdown, only the output voltage nature changes.

Bibliography

Cited:

- Lab 1 Manual
- Sedra, Adel, and Kenneth Smith. Microelectronic Circuits. S.L., Oxford Univ Press Us, 2019.
- "How Do You Calculate, a Silicon Junction Diode with N=1 Has v=0.7 v al I=1 MA. What Is the Voltage Drop at I=0.1 MA and I=10 MA.?" Quora, 2024, appliedmathematics.quora.com/How-to-calculate-A-silicon-junction-diode-with-n-1-has-v-0-7-V-al-I-1-mA-What-is-the-voltage-drop-at-I-0-1-mA-an?top_ans=223007030. Accessed 15 July 2024.

(a) Look at her, she's perfect.