

Reinforcement Learning Tutorial

CAMP 2016, Bangalore Martin Angelhuber

Unsupervised Learning

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Supervised Learning

Reinforcement Learning

- → No feedback at all
- → Teaching signal:right solution is provided
- → Reward signal: scalar value

Unsupervised Learning

Supervised Learning

Reinforcement Learning

→ Reward is typically delayed!

- → No feedback at all
- → Teaching signal:right solution is provided
- → Reward signal: scalar value

Unsupervised Learning

Supervised Learning

Reinforcement Learning

- → Reward is typically delayed!
- → Agent has to perform a sequence of actions before reward arrives

- → No feedback at all
- → Teaching signal:right solution is provided
- → Reward signal: scalar value

Sequential decision task:

Sequential decision task:

Discrete set of states s and actions a

Transition model: P(s'|s,a)

Reward function R(s): $s \rightarrow \text{reward}$

Sequential decision task:

$$s_0$$
 s_1 s_2 s_t s_t

Discrete set of states s and actions a

Transition model: P(s'|s,a)

Reward function R(s): $s \rightarrow \text{reward}$

Policy: $\pi(s)$: $s \to a$

→ Maximize the expected future reward

$$E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t)]$$

$$0 \le \gamma \le 1$$

Sequential decision task:

Discrete set of states s and actions a

Transition model: P(s'|s,a)

Reward function R(s): $s \rightarrow \text{reward}$

Environment

Policy: $\pi(s)$: $s \to a$

→ Maximize the expected future reward

$$E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t)]$$

Example: Grid World

Navigating a simple grid:

Actions (up, down, left, right) are random! If agent moves against wall, he stays put

Introduce value function:

$$V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t) | s_0 = s, \pi]$$

expected future reward, when in state s and following policy π

Introduce value function:

$$V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t) | s_0 = s, \pi]$$

expected future reward, when in state s and following policy π

For now, assume the transition model P(s'|s,a) and reward function R(s) are known to the agent!

Introduce value function:

$$V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t) | s_0 = s, \pi]$$
 expected future reward, when in state s and following policy π

Recursive form (for each state s)

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

Introduce value function:

$$V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t) | s_0 = s, \pi]$$

expected future reward, when in state s and following policy π

Recursive form (for each state s)

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

→ can be solved iteratively:

Repeat for all
$$s$$
: $V_{k+1}^{\pi}(s) := R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V_k^{\pi}(s')$

Introduce value function:

$$V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ... + \gamma^t R(s_t) | s_0 = s, \pi]$$

expected future reward, when in state s and following policy π

Recursive form (for each state s)

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

→ can be solved iteratively:

Repeat for all
$$s$$
: $V_{k+1}^{\pi}(s) := R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V_k^{\pi}(s')$

• Optimal value function: $V^*(s) = \max_{\pi} V^{\pi}(s)$

$$V^*(s) = R(s) + \max_a \gamma \sum_{s'} P(s'|s,a) V^*(s')$$

Bellman equation

Value and policy iteration

Two ways of solving the Bellman equation iteratively:

Value iteration:

$$V(s) := 0, \forall s$$

2) Repeat until convergence:

$$V(s) := R(s) + \max_{a} \gamma \sum_{s'} P(s'|s,a) V(s'), \forall s$$

Value and policy iteration

Two ways of solving the Bellman equation iteratively:

Value iteration:

1) Initialize:

$$V(s) := 0, \forall s$$

2) Repeat until convergence:

$$V(s) := R(s) + \max_{a} \gamma \sum_{s'} P(s'|s,a) V(s'), \forall s$$

Policy iteration:

- 1) Start with random policy
- 2) Repeat until convergence:
 - a) Compute value function: $V(s) := V(s)^{\pi}$, $\forall s$
 - b) Update policy:

$$\pi(s) := \operatorname{arg\ max}_a \sum_{s'} P(s'|s,a) V(s'), \forall s$$

Assignment 1:

- 1) Familiarize yourself with the code for the grid world.
- 2) Complete the function policy_evaluation to compute the value function for a given policy!
- 3) Complete the code to implement value iteration.
- 4) Complete the code to implement policy iteration.

Transition model and reward function unknown

Transition model and reward function unknown

Agent learns purely from observing outcomes

→ Online trial-and-error learning

- Passive Learning: Policy is fixed
 - → problem of learning value function: similar to policy evaluation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

- Passive Learning: Policy is fixed
 - → problem of learning value function: similar to policy evaluation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

 \rightarrow instead of knowledge of $P(s'|s, \pi)$, we use the actual outcomes to compute a running average:

$$V^{\pi}(s) = (1 - \alpha) V^{\pi}(s) + \alpha [R(s) + \gamma V^{\pi}(s')]$$

= $V^{\pi}(s) + \alpha [R(s) + \gamma V^{\pi}(s') - V^{\pi}(s)]$

- Passive Learning: Policy is fixed
 - → problem of learning value function: similar to policy evaluation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

 \rightarrow instead of knowledge of $P(s'|s, \pi)$, we use the *actual outcomes* to compute a running average:

$$V^{\pi}(s) = (1 - \alpha) V^{\pi}(s) + \alpha [R(s) + \gamma V^{\pi}(s')]$$

= $V^{\pi}(s) + \alpha [R(s) + \gamma V^{\pi}(s') - V^{\pi}(s)]$

Temporal-Difference-error

- Passive Learning: Policy is fixed
 - → problem of learning value function: similar to policy evaluation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

 \rightarrow instead of knowledge of $P(s'|s, \pi)$, we use the *actual outcomes* to compute a running average:

$$V^{\pi}(s) = (1 - \alpha) V^{\pi}(s) + \alpha [R(s) + \gamma V^{\pi}(s')]$$

= $V^{\pi}(s) + \alpha [R(s) + \gamma V^{\pi}(s') - V^{\pi}(s)]$

Temporal-Difference-error

 \rightarrow since the state transitions occur at a relative frequency dictated by $P(s'|s,\pi)$, this converges to the true $V^{\pi}(s)$

- How to choose actions?
 - \rightarrow define value function Q(s,a) on state-action pairs!

- How to choose actions?
 - \rightarrow define value function Q(s,a) on state-action pairs!

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')$$

- How to choose actions?
 - \rightarrow define value function Q(s,a) on state-action pairs!

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')$$

→ iterative TD update:

$$Q(s, a) := Q(s, a) + \alpha [R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

- How to choose actions?
 - \rightarrow define value function Q(s,a) on state-action pairs!

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')$$

→ iterative TD update:

$$Q(s, a) := Q(s, a) + \alpha [R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

 \rightarrow Best action in state s is simply: arg max_a Q(s,a)

→ Problem: if the agent strictly follows one policy, he does not learn the Q-function for the entire state space!

- → Problem: if the agent strictly follows one policy, he does not learn the Q-function for the entire state space!
- → Trade-off between exploiting current knowledge and gathering additional knowledge

- → Problem: if the agent strictly follows one policy, he does not learn the Q-function for the entire state space!
- → Trade-off between exploiting current knowledge and gathering additional knowledge
- → Solution: Randomly make suboptimal choices!

- → Problem: if the agent strictly follows one policy, he does not learn the Q-function for the entire state space!
- → Trade-off between exploiting current knowledge and gathering additional knowledge
- → Solution: Randomly make suboptimal choices! ε-greedy agent:

Make random choice with probability ε , otherwise follow optimal policy.

Assignment 2:

- 1) Implement passive Temporal-Difference learning by completing the function passive td.
- 2) Complete the code for q_learning and the function best_policy which computes the optimal policy given a Q-function. Compare the results with the real Q-function as computed by value iteration q.
- 3*) Implement an epsilon-greedy agent.

References and further reading

- Russell, Norvig: Artificial Intelligence A modern approach.
 (Concise introduction to Markov decision processes and reinforcement learning, source of gridworld example)
- Sutton, Barto: Reinforcement Learning An introduction.
 (Standard textbook on reinforcement learning)