

P1 MIDTERM PROJECT

In Partial Fulfillment for the Subject

CPE C401-301G: Computer Architecture and Organization

Submitted to the Computer Engineering Department

Engr. Amor S. Ellares

Submitted By:

Bautista, Rizelle B.

Canas, Fiona Yvonne

Cuisia, Johann Maier

Hao, Joquin Alec P.

Table of Contents

Title PageTitle Page	1
Table of Contents	2
Introduction	3
Objectives	3
Materials	3
Truth Tables	3
Schematic Diagram	3
Pictures	3
Reflection	3

Google Drive Link for Video Presentation:

https://drive.google.com/drive/folders/1RMc4Qei7JrQ7bIN52P4YAGsYqWnEMIDE?usp=sharin

g

Introduction

This project implements a 4-bit binary adder and subtractor circuit using discrete logic on ICs on a breadboard. The circuit can perform both addition and subtraction operations on two 4-bit binary numbers (A and B) and displays the results in both binary form (using LEDs) and decimal form (using 7-segment display).

The circuit uses the two's complement method for subtraction, where subtraction A - B is performed as $A + (\bar{B} + 1)$, where \bar{B} represents the bitwise complement of B.

Objectives:

- 1. Add 2 4-bit inputs and display on the sum of outputs on the 7-segment display
- 2. Subtract 2 4-bit inputs and display the difference between the inputs on the 7-segment display, it should also display negative values.
- 3. Use a switch to change modes between addition and subtraction
- 4. Use LEDs to determine if an input is switched on. Display the sum or difference of the inputs through LEDs (in binary).
- 5. Use a 7-segment display to display the output of the sum and difference, and convert the binary output into decimal output for the 7-segment.

Materials:

Materials	Quantity
5-9V Power Source	1
Breadboard	4
Jumper Wires	several
7-Segment Display	1
LED	several
Switch	1
Resistor (220 Ω)	several
4-Dip Switch SPDT	2
74LS83- 4-bit adder IC	1
74LS86 - XOR IC	1
CD4511 - BCD to 7-Segment IC	1

Truth Tables:

Addition Truth Table				
A3 A2 A1 A0	B3 B2 B1 B0	Sum	S3 S2 S1 S0	Carry
0000 (0)	0000 (0)	0	0000	0
0001 (1)	0001 (1)	2	0010	0
0101 (5)	0011 (3)	8	1000	0
1000 (8)	0111(7)	15	1111	0
1001 (9)	1000 (8)	17	0001	1
1111 (15)	1111 (15)	30	1110	1

Subtraction Truth Table						
A3 A2 A1 A0	B3 B2 B1 B0	Difference	S3 S2 S1 S0	Sign	Display	2's Compleme nt Display
1000 (8)	0011 (3)	+5	0101	0	05	1
1000 (8)	1111 (15)	-7	1001	1	-07	9
0101 (5)	1010 (10)	-5	1011	1	-05	11
1111 (15)	0001 (1)	+14	1110	0	14	14
0000 (0)	1111 (15)	-15	0001	1	-15	-15

XOR Gate Truth Table				
В	SUB	B SUB		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Schematic Diagram:

Pictures:

Final Output

12 - 3

15 - 8

8-1

8 + 8

M.

3 + 9

8 + 1

Trial and Error:

Initial design with 1 7-Segment Display:

Reflection:

We discovered that the output for subtraction uses two's complements to display negative values hence why equations that lead to negative values such as 8 minus 15 display an output of 1001 which is the two's complement of -7. In order to improve the display of 7-segment from 1 digit to 2 digits, a process/algorithm called double dabble is needed, but it would require a lot of logic gates to implement just to display 2-digit numbers through the 7-segment displays.