MA2503

Bachelor Mathematics Lecture Notes Sem A 2016/17

Peilin WU

September 7, 2017

Contents

1	Linear Equation	2
2	Rectangular System and Echelon Form	2
3	3.5 Elementary Matrices and Equivalence	3 3 3 3 4
4	3.6 LU Factorization	⁴ 5
5	Norms. Inner Product, and Orthogonality	8
6	Determinants	11
7	Eigenvalue and Eigenvectors	12

1 Linear Equation

2 Rectangular System and Echelon Form

GE: Gaussian elimination; G-J: Gauss-Jordan; U: row echelon form; E_A : reduced row echelon form.

Task	Method needed
Determining the rank of A	$A \xrightarrow{GE} U$, rank (A) = number of pivot in U
Solving linear system $Ax = b$	$[A b] \xrightarrow{GE} [U c] \text{ or } [A b] \xrightarrow{GJ} [E_A d]$ $\text{noted: if } \text{rank}(U) \neq \text{rank}([U c]), \text{ then inconsistent}$
Determining the column relation	$A \xrightarrow{GJ} E_A$
Computing the inverse of $A_{n\times n}$	$[A I_n] \xrightarrow{GJ} [I_n A^{-1}]$, noted: if A can not reduce to I_n , then A singular
Testing whether $A \sim B$	$A \xrightarrow{GE} U_A B \xrightarrow{GE} U_B$, then compare rank (U_A) equal to rank (U_B) or not
Testing whether $A \stackrel{row}{\sim} B$	$A \xrightarrow{GJ} E_A B \xrightarrow{GJ} E_B$, then check whether $E_A = E_B$
Testing whether $A \stackrel{col}{\sim} B$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Testing whether $b \in span\{v_1, \cdots, v_n\}$	$ [v_1 \cdots v_n b] = [A b] \xrightarrow{GE} [U c] $
Testing whether $span\{v_1, \cdots, v_n\} = \mathbb{R}^m$	$\begin{bmatrix} v_1 \cdots v_n \end{bmatrix} = A_{m \times n} \xrightarrow{GE} U$, then check whether $rank(A) = m$
Finding the fundamental subspaces of $A_{m \times n}$	$[A I_m] \xrightarrow{GE} [U P]$, then the bases are: R(A): basic columns of $AR(A^T): nonzero rows of UN(A): h_i's in the general solution of Ax = 0N(A^T): last m - r rows of P, where r = rank(A)$
Testing whether $R(A^T) = R(B^T) N(A) = N(B)$	$A \xrightarrow{G-J} E_A, B \xrightarrow{G-J} E_B$, then check whether $E_A = E_B$ (ie. whether $A \xrightarrow{row} B$)
Testing whether $R(A) = R(B) \ N(A^T) = N(B^T)$	$A^{T} \xrightarrow{G-J} E_{A^{T}}, B^{T} \xrightarrow{G-J} E_{B^{T}}, \text{ then check whether}$ $E_{A^{T}} = E_{B^{T}} \text{ (ie. whether } A \stackrel{col}{\sim} B)$
Testing whether $N(A_{m \times n}) = 0$	$A \xrightarrow{GE} U$, then check whether $rank(A) = n$
Testing whether $N(A_{m \times n})^T = 0$	$A \xrightarrow{GE} U$, then check whether $rank(A) = m$
Testing whether $\{v_1, \dots, v_n\}$ is linearly independent	$\begin{bmatrix} v_1 \cdots v_n \end{bmatrix} = A \xrightarrow{GE} U$, then check whether $rank(A) = n$
Finding linear relationship among $\{v_1, \cdots, v_n\}$	$[v_1 \cdots v_n]=A\xrightarrow{G-J}E_A$, then read off the relationships from E_A
Find a basis for $span\{v_1, \dots, v_n\}$	$[v_1 \cdots v_n] = A \xrightarrow{GE} U$, then the basic columns of A form a basis
Extending $\{v_1, \dots, v_n\}$ $(r < n)$ to a basis for \mathbb{R}^n	$[v_1 \cdots v_r e_1 \cdots e_n] = A \xrightarrow{GE} U$, then the basic columns of A form a basis

Table 1: Summary of applications of Gaussian and Gauss-Jordan elimination

3 Matrix Algebra

3.1 Addition and Transposition

Theorem 1 (Symmetries). Let A be an $n \times n$ square matrix:

ullet symmetric: $A^T=A$

• skew- $symmetric: A^T = -A$

• hermitian: $A^* = A$

• $skew-hermitian: A^* = -A$

3.2 Linearity

Linear Function . Suppose that \mathcal{D} and \mathcal{R} are two sets equipped with an addition and a scalar multiplication operation (consider, for example, $\mathcal{D} = \mathbb{C}^n$ and $\mathcal{R} = \mathbb{C}^m$). A function f that maps points in \mathcal{D} to points in \mathcal{R} is said to be a linear function if f satisfies:

$$f(\alpha x + y) = \alpha f(x) + f(y)$$

for all $x, y \in \mathcal{D}$ and all scalars α .

3.3 Matrix Multiplication

General Definition of Matrix Multiplication . If matrices $A_{m \times p}$ and $B_{p \times n}$ are conformable, the matrix product AB is defined to be the $m \times n$ matrix as following:

$$[AB]_{ij} = A_{i*}B_{*j} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

$$\begin{pmatrix} * & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \vdots & a_{ip} \\ \vdots & \vdots & & \vdots \\ * & * & \cdots & * \end{pmatrix}_{m \times n} = \begin{pmatrix} * & \cdots & * & \cdots & * \\ * & \cdots & b_{1j} & \cdots & * \\ \vdots & & \vdots & & \vdots \\ * & \cdots & [AB]_{ij} & \cdots & * \\ \vdots & & \vdots & & \vdots \\ * & \cdots & * & \cdots & * \end{pmatrix}_{m \times n}$$

Rows and Columns of a Matrix Product . To express the individual columns and rows of a matrix product:

$$[AB]_{*j} = \begin{pmatrix} [AB]_{1j} \\ [AB]_{2j} \\ \vdots \\ [AB]_{mj} \end{pmatrix} = \begin{pmatrix} a_{11}b_{1j} + a_{12}b_{2j} + \dots + a_{1p}b_{pj} \\ a_{21}b_{1j} + a_{22}b_{2j} + \dots + a_{2p}b_{pj} \\ \vdots \\ a_{m1}b_{1j} + a_{m2}b_{2j} + \dots + a_{mp}b_{pj} \end{pmatrix} = \begin{pmatrix} a_{11}b_{1j} \\ a_{21}b_{1j} \\ \vdots \\ a_{m1}b_{1j} \end{pmatrix} + \dots + \begin{pmatrix} a_{1p}b_{pj} \\ a_{2p}b_{pj} \\ \vdots \\ a_{mp}b_{pj} \end{pmatrix}$$
$$= A_{*1}b_{1j} + A_{*2}b_{2j} + \dots + A_{*p}b_{pj}$$

3.4 Matrix Inversion

Matrix Inversion . For a given square matrix $A_{n\times n}$, the matrix $B_{n\times n}$ that satisfied the conditions

$$AB = I_n, \qquad BA = I_n$$

is called the inverse of A and is denoted by $B = A^{-1}$. an invertible matrix is said to be nonsingular, and a square matrix with no inverse is called a singular matrix.

Theorem 2 (4.Characterization of nonsingular matrices). For an $n \times n$ matrix A, the following statements are equivalent:

- A^{-1} exists (A is nonsingular);
- rank(A) = n;
- $A \xrightarrow{Gauss-Jordan} I$:
- Ax = 0 has only the trivial solution x = 0.

3.5 Elementary Matrices and Equivalence

Elementary Matrix . Matrices of the form $I - uv^T$ where u and v are $n \times 1$ column vectors with $v^T u \neq 1$ are called elementary matrices.

Equivalence . whenever B can be derived from A by a combination of elementary row and column operations, we say that A and B are equivalent matrices and write $A \sim B$; in matrix terms,

$$A \sim B \iff PAQ = B$$
 for nonsingular P and Q
 $A \stackrel{row}{\sim} B \iff PAQ = B$ for nonsingular P
 $A \stackrel{col}{\sim} B \iff PAQ = B$ for nonsingular Q

and note that if $A \stackrel{row}{\sim} B$, then:

$$B_{*k} = \sum_{j=1}^{n} \alpha_j B_{*j} \iff A_{*k} = \sum_{j=1}^{n} \alpha_j A_{*j}$$

Same as the column equivalence, in summary, row equivalence preserves column relationships, and column equivalence preserves row relationships.

Theorem 3 (6.Rank Normal Form). If A is an $m \times n$ matrix such that rank(A) = r, then

$$A \sim N_r = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

where N_r is called the rank normal form of A. It is the end product of a complete reduction of A by using both row and column operations.

Theorem 4 (7.Testing for equivalence). For $m \times n$ matrices A and B the following statement are true:

- $A \sim B \iff rank(A) = rank(B)$
- $A \sim^{row} B \iff E_A = E_B$
- $A \sim^{col} B \iff E_{A^T} = E_{B^T}$

Note: in particular, that:

- either $A \sim^{row} B$ or $A \sim^{col} B$ implies $A \sim B$, but not vice versa
- multiplication by nonsingular matrices doesn't change rank.

3.6 LU Factorization

$$PA = LU$$

Follow the process of Gaussian Elimination.

$$Ax = b$$
: $Ly = b \rightarrow y = Ux$

4 Vector Space

Theorem 5 (3 Characterization of subspaces). The range of every linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^m , and every subspace of \mathbb{R}^m is the range of some linear function $g: \mathbb{R}^r \to \mathbb{R}^m$ $(r \le m)$.

Theorem 6 (4 **Testing for equal ranges**). For $m \times n$ matrices A and B the following statements are true.

- $R(A^T) = R(B^T)$ if and only if $A \stackrel{row}{\sim} B$;
- R(A) = R(B) if and only if $A \stackrel{col}{\sim} B$.

Theorem 7 (5 **Testing for equal null spaces**). For $m \times n$ matrices A and B the following statements are true.

- N(A) = N(B) if and only if $A \stackrel{row}{\sim} B$;
- $N(A^T) = N(B^T)$ if and only if $A \stackrel{col}{\sim} B$.

Theorem 8 (7 Linear independence and rank). If A is $m \times n$, then:

- the columns of A form a linearly independent set if and only if either of the following holds: (i) $N(A) = \{0\}$, or (ii) rank(A) = n;
- the rows of A form a linearly independent set if and only if either of the following holds: (i) $N(A^T) = \{0\}$, or (ii) rank(A) = m;
- if A is a square matrix, then A is nonsingular if and only if:
 - the columns of A form a linearly independent set, or
 - the rows of A form a linearly independent set.

Theorem 9 (8 Maximal independent subsets). if A is an $m \times n$ matrix and rank(A) = r, then:

- any maximal independent subset of columns (rows) from A contains exactly r columns (rows);
- in particular, the r basic columns in A constitute one maximal independent subset of columns from A.

Theorem 10 (9 Basic facts of independence). For a nonempty set of vectors $S = \{u_1, u_2, \dots, u_n\}$ in a space V, the following are true:

- if S contains a linearly dependent subset, then S itself must be linearly dependent; conversely, if S is linearly independent, then every subset of S must also be linearly independent;
- if S is linearly independent and if $v \in V$, then the extension set $S_{ext} = S \cup \{v\}$ is linearly independent if and only if $v \notin span(S)$;
- if $S \subseteq \mathbb{R}^m$ and if n > m, then S must be linearly dependent.

Theorem 11 (11 Characterizations of a basis). Let V be a subspace of \mathbb{R}^m , and let $\mathcal{B} = \{b_1, b_2, \dots, b_n\} \subseteq V$. The following statement are equivalent:

- \mathcal{B} is a basis for \mathcal{V} ;
- \mathcal{B} is a minimal spanning set for \mathcal{V} ;
- \mathcal{B} is a maximal linearly independent subset of \mathcal{V} .

Theorem 12 (12 **Dimension theorem**). Let V be a subspace of \mathbb{R}^m . Then any two linearly independent spanning sets (i.e. any two bases) for V must have the same number of elements.

Theorem 13 (13 Rank plus nullity theorem). if A is an $m \times n$ matrix, then:

$$dimR(A) + dimN(A) = n$$

$$dimR(A^T) + dimN(A^T) = m$$

Theorem 14 (14 **Dimension of a sum**). If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} , then:

$$dim(\mathcal{X} + \mathcal{Y}) = dim\mathcal{X} + dim\mathcal{Y} - dim(\mathcal{X} \cap \mathcal{Y})$$

Summary of the rank . if A is an $m \times n$ matrix and rank(A) = r, then:

r = the number of nonzero rows in any row echelon form of A

= the number of pivots in any row echelon form of A

= the number of basic columns in A

= the size of a maximal independent set of columns from A

= the size of a maximal independent set of rows from A

 $= dim \mathcal{R}(A)$

 $= dim \mathcal{R}(A^T)$

 $= n - dim \mathcal{N}(A)$

 $= m - dim \mathcal{N}(A^T)$

 $= the \ size \ of \ the \ largest \ nonsingular \ submatrix \ in \ A$

Figure 1: Four Fundamental Subspace of Matrix

Figure 2: Dimensions and orthogonality for any m by n matrix A of rank r

Figure 3: Orthonormal bases that diagonalize A (3 by 4) and A⁺ (4 by 3)

5 Norms. Inner Product, and Orthogonality

Norm . For an $n \times 1$ vector x, the Euclidean norm of x is defined to be:

$$||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} = \sqrt{x^T x}$$

whenever $x \in \mathbb{R}^{n \times 1}$, or

$$||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} = \sqrt{x^*x}$$

whenever $x \in \mathcal{C}^{n \times 1}$

The p-norm can also defined as:

$$||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} = (x^*x)^{\frac{1}{p}}$$

whenever $x \in \mathcal{C}^{n \times 1}$, $p \ge 1$

Standard Inner Product . The Euclidean vector norm can be viewed as a norm induced by the standard inner product:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i$$
 whenever $x, y \in \mathbb{R}^{n \times 1}$

$$\langle x, y \rangle = x^* y = \sum_{i=1}^n \bar{x_i} y_i$$
 whenever $x, y \in \mathbb{C}^{n \times 1}$

with the Euclidean norm defined by $||x|| = \langle x, x \rangle^{1/2}$

Orthogonality . Let \mathcal{V} be either \mathbb{R}^n or \mathbb{C}^n , Two vectors $x, y \in \mathcal{V}$ are said to be orthogonal (to each other) if $\langle x, y \rangle = 0$, and this is denoted by writing $x \perp y$. And note that:

- For \mathbb{R}^n with the standard product, $x \perp y \implies x^T y = 0$
- For \mathbb{C}^n with the standard product, $x \perp y \implies x^*y = 0$

General Angle . According to the law of cosine:

$$||u-v||^2 = ||u||^2 + ||v||^2 - 2||u||||v||\cos\theta$$

in general, it implies that:

$$\cos\theta = \frac{||u||^2 + ||v||^2 - ||u - v||^2}{2||u||||v||} = \frac{u^T v}{||u||||v||}$$

Therefore, the radian measure of the angle between two nonzero vectors $x, y \in \mathbb{R}^n$ is defined to be the number $\theta \in [0, \pi]$ such that:

$$\cos \theta = \frac{\langle x, y \rangle}{||x||||y||}$$

Orthogonal Set . Let $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ be a set of vectors in \mathbb{R}^n or \mathbb{C}^n , \mathcal{B} is called an orthogonal set if $||u_i|| = 1$ for each i and $u_i \perp u_j$ for all $i \neq j$. In other words, \mathcal{B} is orthogonal if:

$$\langle u_i, u_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

where δ_{ij} is the classical Kronecker delta symbol.

Properties of Orthogonal Sets . Let $\mathcal{B} = \{u_1, u_2, \cdots, u_r\}$ be an orthogonal set in $\mathbb{R}^n(\mathbb{C}^n)$, then:

- B is linearly independent;
- if r = n, then \mathcal{B} forms an orthogonal basis for the $\mathbb{R}^n(\mathbb{C}^n)$.

Fourier Expansion . For an orthogonal basis $\mathcal{B} = \{u_1, u_2, \cdots, u_r\}$:

• the expression:

$$x = \sum_{i=1}^{n} \langle u_i, x \rangle u_i$$

is called the Fourier expansion of x (with respect to the basis \mathcal{B}), and the scalars $\xi_i = \langle u_i, x \rangle$ are called the Fourier coefficients of x.

• geographically, the Fourier expansion resolves x into n mutually orthogonal vectors $< u_i, x > u_i$, each of which represents the orthogonal projection of x onto the space (line) spanned by u_i .

Theorem 15 (Gram-Schmidt Procedure). The complete Gram-Schmidt procedure proceeds as follows, where $V = \{v_1, v_2, \dots, v_n\}$, and after the procedure into the orthogonal basis $\mathcal{B} = \{\eta_1, \eta_2, \dots, \eta_n\}$

$$\begin{array}{lll} \boldsymbol{\beta}_1 = \boldsymbol{v}_1 & \Longrightarrow & \boldsymbol{\eta}_1 = \frac{\boldsymbol{\beta}_1}{\|\boldsymbol{\beta}_1\|} \\ \boldsymbol{\beta}_2 = \boldsymbol{v}_2 - \langle \boldsymbol{v}_2, \boldsymbol{\eta}_1 \rangle \boldsymbol{\eta}_1 & \Longrightarrow & \boldsymbol{\eta}_2 = \frac{\boldsymbol{\beta}_2}{\|\boldsymbol{\beta}_2\|} \\ \boldsymbol{\beta}_3 = \boldsymbol{v}_3 - \langle \boldsymbol{v}_3, \boldsymbol{\eta}_1 \rangle \boldsymbol{\eta}_1 - \langle \boldsymbol{v}_3, \boldsymbol{\eta}_2 \rangle \boldsymbol{\eta}_2 & \Longrightarrow & \boldsymbol{\eta}_3 = \frac{\boldsymbol{\beta}_3}{\|\boldsymbol{\beta}_3\|} \\ \vdots & \vdots & & \vdots & & \vdots \\ \boldsymbol{\beta}_k = \boldsymbol{v}_k - \sum_{i=1}^{k-1} \langle \boldsymbol{v}_k, \boldsymbol{\eta}_i \rangle \boldsymbol{\eta}_i & \Longrightarrow & \boldsymbol{\eta}_k = \frac{\boldsymbol{\beta}_k}{\|\boldsymbol{\beta}_k\|} \\ \vdots & & \vdots & & \vdots & & \vdots \\ \boldsymbol{\beta}_n = \boldsymbol{v}_n - \sum_{i=1}^{n-1} \langle \boldsymbol{v}_n, \boldsymbol{\eta}_i \rangle \boldsymbol{\eta}_i & \Longrightarrow & \boldsymbol{\eta}_n = \frac{\boldsymbol{\beta}_n}{\|\boldsymbol{\beta}_n\|} \end{array}$$

Theorem 16 (Characteristic of Direct Sums). Let V be a vector space and X, Y be subspaces of V with respective basis \mathcal{B}_{X} and \mathcal{B}_{Y} . Then the following statements are equivalent:

- $\mathcal{V} = \mathcal{X} \oplus \mathcal{Y}$
- for each $v \in \mathcal{V}$, there are unique $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, such that v = x + y
- $\mathcal{B}_{\mathcal{X}} \cap \mathcal{B}_{\mathcal{Y}} = \emptyset$ (empty set) and $\mathcal{B}_{\mathcal{X}} \cup \mathcal{B}_{\mathcal{Y}}$ is a basis for \mathcal{V}

Orthogonal Complement . Let \mathcal{V} be either \mathbb{R}^n or \mathbb{C}^n and let \mathcal{M} be a subset of \mathcal{V} . The orthogonal complement \mathcal{M}^{\perp} of \mathcal{M} is the set of all vectors in \mathcal{V} that are orthogonal to every vector in \mathcal{M} . In other words:

$$\mathcal{M}^{\perp} = \{ y \in \mathcal{V} : \langle x, y \rangle = 0, \forall x \in \mathcal{M} \}$$

Theorem 17 (Orthogonal Complementary Subspaces). Let V be either \mathbb{R}^n or \mathbb{C}^n . If \mathcal{M} is a subspace of \sqsubseteq , then:

$$\mathcal{V} = \mathcal{M} \oplus \mathcal{M}^{\perp}$$

Furthermore, if \mathcal{N} is a subspace such that $\mathcal{V} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ and $\mathcal{N} \perp \mathcal{M}$, then:

$$\mathcal{N} = \mathcal{M}^{\perp}$$

Theorem 18 (Perp Operation). Let V be either \mathbb{R}^n or \mathbb{C}^n and let \mathcal{M} be a subset of V. Then the following statements are true:

$$dim\mathcal{M}^{\perp} = n - dim\mathcal{M}$$

 $(\mathcal{M}^\perp)^\perp = \mathcal{M}$

Theorem 19 (Orthogonal Decomposition Theorem). For every $A \in \mathbb{R}^{m \times n}$, the following statements are true:

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T)$$

$$\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$$

Consequently, every matrix $A \in \mathbb{R}^{m \times n}$ produces an orthogonal decomposition of \mathbb{R}^m and \mathbb{R}^n in th sense that:

$$\mathbb{R}^m = \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} = \mathcal{R}(A) \oplus \mathcal{N}(A^T)$$

$$\mathbb{R}^n = \mathcal{N}(A) \oplus \mathcal{N}(A)^{\perp} = \mathcal{N}(A) \oplus \mathcal{R}(A^T)$$

6 Determinants

Determinant . Let $A = [a_{ij}]$ be an $n \times n$ matrix. the determinant of A is defined to be the scalar:

$$det(A) = \sum_{p} \sigma(p) a_{1_{p_1}} a_{2_{p_2}} \cdots a_{n_{p_n}}$$

where the sum is taken over the n! permutations $p = (p_1, p_2, \dots, p_n)$ of $(1, 2, \dots, n)$. The determinant of A can be denoted by det(A) or |A|.

Triangular Determinants . For a triangular matrix, it determinant is equal to the product of its diagonal entries:

$$det(T) = \begin{vmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{nn} \end{vmatrix} = t_{11}t_{22}\cdots t_{nn}$$

Theorem 20 (2.**Effects of row operations**). Let B be the matrix obtained from $A_{n\times n}$ by one of the three elementary row operations:

- ullet type I: interchange rows i and j
- type II: multiply row i by $\alpha \neq 0$
- type III: add α times row i to row j

Then, the determinant det(B) is given by:

- det(B) = -det(A) for the type I operations
- $det(B) = \alpha det(A)$ for the type II operations
- det(B) = det(A) for the type III operations

Theorem 21 (3.Invertibility and Determinants). For every $n \times n$ matrix A, the following statements are true:

- A is non-singular if and only if $det(A) \neq 0$, or equivalently
- A is singular if and only if det(A) = 0

Theorem 22 (4.Product Rule). For all $n \times n$ matrices A and B,

$$det(AB) = det(A)det(B)$$

Cofactor Expansion . Let A be an $n \times n$ matrix, with $n \ge 2$. The (i,j)-minor of A, M_{ij} , is defined to be the determinant of the $(n-1) \times (n-1)$ submatrix of A obtained by deleting the i-th row and the j-th column of A. The (i,j)-cofactor of A, A_{ij} , is defined to be $(-1)^{i+j}M_{ij}$. And follow the definition, we can express the determinant as the following:

$$det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}, \qquad (about the row i)$$

$$det(A) = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}, \qquad (about the column j)$$

Characteration of Nonsingular Matrices . If A is a $n \times n$ matrix, the following statement are equivalent:

- A^{-1} n exists (A is nonsingular)
- rank(A) = n

- $A \xrightarrow{G-J} I$
- Ax = 0 has only the trivial solution x = 0
- A is the product of elementary matrices of type I, II or III
- the columns of A forms a linearly independent set
- the rows of A forms a linearly independent set
- $det(A) \neq 0$

7 Eigenvalue and Eigenvectors

Eigenvalue and Eigenvector . For an $n \times n$ matrix A, scalar λ and vectors $x_{n \times 1} \neq 0$ satisfying $Ax = \lambda x$ are called the eigenvalue and eigenvectors of A, and any pair, (λ, x) , is called an eigenpair for A. The set of distinct eigenvalues, denoted by $\sigma(A)$, is called the spectrum of A.

Similarity Transformation. Two $n \times n$ matrices A and B are said to be similar if there exists a non-singular matrix P such that $P^{-1}AP = B$. The product $P^{-1}AP$ is called a similarity transformation of A.

Diagonalizability . Let A be an $n \times n$ matrix

- \bullet A is said to be diagonalizable if A is similar to a diagonal matrix.
- A i9s said to have a complete set of eigenvectors if A has a set of n linearly independent eigenvectors, if A fails to process a complete set of eigenvectors, then A is called deficient or defective.

Theorem 23 (4.Schurs triangularization theorem). Every square matrix is unitarily similar to an upper-triangular matrix. That is, for each $n \times n$ matrix A, there exists a unitary matrix \mathcal{U} (not unique) and an upper-triangular matrix T (not unique) such that $\mathcal{U}^*A\mathcal{U} = T$, and the diagonal entries of T are the eigenvalues of A.

Theorem 24 (5.The Cayley-Hamilton Theorem). Every square matrix satisfies its own characteristic equation $p(\lambda) = 0$

Multiplicities . Let $\lambda \in \sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_s\}$

- The algebraic multiplicity of λ , denoted by alg $mult_A(\lambda)$, is the number of times it is repeated as a root of the characteristic polynomial.
- when alg $mult_A(\lambda) = 1$, λ is called a simple eigenvalue.
- the geometric multiplicity of λ , denoted by geo $mult_A(\lambda)$, is the dimension of the eigenspace $\mathcal{N}(A-\lambda I)$.
- Eigenvalues such that alg $mult_A(\lambda) = geo\ mult_A(\lambda)$ are called semisimple eigenvalues of A.

Theorem 25 (7.**Diagonalizality and multiplicities**). An $n \times n$ matrix A is diagonalizable if and only if:

$$geo \ mult_A(\lambda) = alg \ mult_A(\lambda)$$

for each $\lambda \in \sigma(A)$, i.e. if and only if every eigenvalue is semisimple.