Multi-Criteria Optimization

Exercise 1: Concepts in Multi-Criteria Optimization

Analyse a Multi-Objective Optimization problem with the following six points and values in objective space:

$$\mathbf{x}^{(1)}$$
 with $\mathbf{f}^{(1)} = (10, 5)$
 $\mathbf{x}^{(2)}$ with $\mathbf{f}^{(2)} = (7, 8)$
 $\mathbf{x}^{(3)}$ with $\mathbf{f}^{(3)} = (4, 6)$
 $\mathbf{x}^{(4)}$ with $\mathbf{f}^{(4)} = (6, 4)$
 $\mathbf{x}^{(5)}$ with $\mathbf{f}^{(5)} = (9, 3)$
 $\mathbf{x}^{(6)}$ with $\mathbf{f}^{(6)} = (3, 7)$

- (a) Determine which of these points are Pareto optimal (find \mathcal{P}).
- (b) Sketch the objective space and indicate the Pareto front $f(\mathcal{P})$.
- (c) Assume a reference point R = (15, 15). Calculate the dominated hypervolume of the Pareto optimal points.
- (d) Perform non-dominated sorting.
- (e) Compute the crowding distance of the point $\mathbf{x}^{(3)}$ with the solution $\mathbf{f}^{(3)}$.
- (f) Compute the hypervolume contribution of the point $\mathbf{x}^{(5)}$ with the solution $\mathbf{f}^{(5)}$. Again, assume a reference point R = (15, 15).

Note: We want to minimize both objectives f_1, f_2 .