$= 0, 1, 2, \ldots$) при $x \in (a, b)$. Доказать, что функция f(x) разлагается в степенной ряд

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x_0 \in (a, b)),$$

cходящийся в интервале (a, b).

2899.2. Пусть $f(x) \in C^{(\infty)}$ [— 1,1] и $f^{(n)}(x) \ge 0$ ($n = 0, 1, 2, \ldots$) при $x \in [-1,1]$. Доказать, что в интервале (— 1,1) функция f(x) разлагается в степенной ряд

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

У казание. Используя монотонность производных $f^{(n)}(x)$ для остаточного члена $R_n(x)$ ряда Тейлора функции f(x), получить оценку

$$|R_n(x)| \le |x|^{n+1} f(1).$$

2900. Доказать, что если 1) $a_n \ge 0$ и 2) существует

$$\lim_{x \to R \to 0} \sum_{n=0}^{\infty} a_n x^n = S, \text{ to } \sum_{n=0}^{\infty} a_n R^n = S.$$

Разложить в степенной ряд функции:

2901.
$$\int_{0}^{x} e^{-t^{2}} dt$$
. 2902. $\int_{0}^{x} \frac{dt}{\sqrt{1-t^{4}}}$. 2903. $\int_{0}^{x} \frac{\sin t}{t} dt$. 2904. $\int_{0}^{x} \frac{\operatorname{arctg } x}{x} dx$. 2905. $\int_{0}^{x} \frac{t dt}{\ln (1+t)}$ (написать четыре члена).

Применяя почленное дифференцирование, вычислить суммы следующих рядов:

2906.
$$x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$$

2907. $x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$
2908. $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$