Übungsblatt 7 Ana

Computational and Data Science FS2024

Lösungen Mathematik 2

Lernziele:

Sie kennen die Begriffe Mehrfachintegral, Integrationsgebiet und ihre wichtigsten Eigenschaften.

Sie können für die Vereinfachung von Zweifach- und Dreifachintegralen kartesische Koordinaten in Polar- bzw. Zylinderkoordinaten umwandeln.

> Sie können Mehrfachintegrale auf einfachen Gebieten in 2D und 3D berechnen und die Integrationsreihenfolge vertauschen.

> Sie können Masse, Volumen und Schwerpunkt mittels Mehrfachintegralen bestimmen.

1. Aussagen über Zweifachintegrale

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Ein Zweifachintegral beschreibt das Volumen zwischen dem Graphen einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und einem Gebiet in der xy-Ebene.	Х	
b) Die Fläche eines Gebiets in 2D lässt sich mit Hilfe eines Zweifachintegrals berechnen.	Х	
c) Für $f(x,y) \ge 0$ gilt: $\int_G f(x,y)dA \ge 0$ für jedes Gebiet G in der xy-Ebene.	X	
d) Für $f(x, y) \le 0$ gilt:		Х
$\int_{x_0}^{x_E} \int_{y_0}^{y_E} f(x, y) dy dx \le 0 \text{ für alle } x_0, x_E, y_0, y_E \in \mathbb{R}.$		

2. Integrale über Rechtecke

Berechnen Sie die folgenden Integrale.

a)
$$\int_{0}^{1} \int_{0}^{2} xy \, dx \, dy$$

b)
$$\int_{0}^{2} \int_{0}^{1} x^{2} dx dy$$

c)
$$\int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y} dx dy$$

d)
$$\int_0^1 \int_1^e \frac{x^2}{y} dy dx$$

e)
$$\int_{1}^{4} \int_{-1}^{2} (2x + 6x^{2}y) dx dy$$

a)
$$\int_0^1 \int_0^2 xy \, dx \, dy$$
 b) $\int_0^2 \int_0^1 x^2 \, dx \, dy$ c) $\int_0^{\ln 3} \int_0^{\ln 2} e^{2x+y} \, dx \, dy$ d) $\int_0^1 \int_1^e \frac{x^2}{y} \, dy \, dx$ e) $\int_1^4 \int_{-1}^2 (2x + 6x^2y) \, dx \, dy$ f) $\int_{-1}^2 \int_1^4 (2x + 6x^2y) \, dy \, dx$

a)
$$\underline{\underline{I}} = \int_0^1 \int_0^2 xy \, dx \, dy = \int_0^2 x \, dx \cdot \int_0^1 y \, dy = \frac{1}{2} \cdot \left[x^2 \right]_0^2 \cdot \frac{1}{2} \cdot \left[y^2 \right]_0^1 = \frac{1}{4} \cdot (2^2 - 0) \cdot (1^2 - 0)$$

$$= \frac{1}{4} \cdot 4 \cdot 1 = \underline{\underline{1}}.$$

b)
$$\underline{I} = \int_0^2 \int_0^1 x^2 \, dx \, dy = \int_0^1 x^2 \, dx \cdot \int_0^2 1 \, dy = \frac{1}{3} \cdot \left[x^3 \right] \Big|_0^1 \cdot \left[y \right] \Big|_0^2 = \frac{1}{3} \cdot (1^3 - 0) \cdot (2 - 0)$$

$$= \frac{1}{3} \cdot 1 \cdot 2 = \frac{2}{3}.$$

c)
$$\underline{I} = \int_{0}^{\ln(3)} \int_{0}^{\ln(2)} e^{2x+y} dx dy = \int_{0}^{\ln(3)} \int_{0}^{\ln(2)} e^{2x} \cdot e^{y} dx dy = \int_{0}^{\ln(2)} e^{2x} dx \cdot \int_{0}^{\ln(3)} e^{y} dy$$

$$= \frac{1}{2} \cdot \left[e^{2x} \right]_{0}^{\ln(2)} \cdot \left[e^{y} \right]_{0}^{\ln(3)} = \frac{1}{2} \cdot (e^{2 \cdot \ln(2)} - e^{0}) \cdot (e^{\ln(3)} - e^{0}) = \frac{1}{2} \cdot (2^{2} - 1) \cdot (3 - 1)$$

$$= \frac{1}{2} \cdot (4 - 1) \cdot 2 = \frac{1}{2} \cdot 3 \cdot 2 = \underline{3}.$$

d)
$$\underline{I} = \int_0^1 \int_1^e \frac{x^2}{y} \, dy \, dx = \int_0^1 x^2 \, dx \cdot \int_1^e \frac{1}{y} \, dy = \frac{1}{3} \cdot \left[x^3 \right] \Big|_0^1 \cdot \ln\left(\frac{e}{1}\right) = \frac{1}{3} \cdot (1^3 - 0) \cdot \ln(e)$$

$$= \frac{1}{3} \cdot 1 \cdot 1 = \frac{1}{3}.$$

e)

$$\underline{I} = \int_{1}^{4} \int_{-1}^{2} (2x + 6x^{2}y) dx dy = \int_{1}^{4} \left[x^{2} + 2x^{3}y \right]_{-1}^{2} dy = \int_{1}^{4} (4 + 16y - 1 + 2y) dy$$

$$= \int_{1}^{4} (3 + 18y) dy = \left[3y + 9y^{2} \right]_{1}^{4} = 12 + 144 - 3 - 9 = \underline{144}.$$

$$\underline{\underline{I}} = \int_{-1}^{2} \int_{1}^{4} (2x + 6x^{2}y) \, dy \, dx = \int_{-1}^{2} \left[2xy + 3x^{2}y^{2} \right]_{1}^{4} dx = \int_{-1}^{2} (8x + 48x^{2} - 2x - 3x^{2}) \, dx$$

$$= \int_{-1}^{2} (6x + 45x^{2}) \, dx = \left[3x^{2} + 15x^{3} \right]_{-1}^{2} = 12 + 120 - 3 + 15 = \underline{144}.$$

3. Zweifachintegrale

Berechnen Sie die folgenden Integrale.

a)
$$\int_0^2 \int_{y^2}^{2y} (4x - y) \, dx \, dy$$
 b) $\int_1^2 \int_{1-x}^{\sqrt{x}} x^2 \, dy \, dx$ c) $\int_1^2 \int_0^x e^{\frac{y}{x}} \, dy \, dx$

a)
$$\underline{I} = \int_{0}^{2} \int_{y^{2}}^{2y} (4x - y) \, dx \, dy = \int_{0}^{2} \left[2x^{2} - yx \right]_{y^{2}}^{2y} \, dy$$

$$= \int_{0}^{2} \left(2 \cdot 4y^{2} - y \cdot 2y - 2 \cdot y^{4} + y \cdot y^{2} \right) \, dy = \int_{0}^{2} \left(6y^{2} - 2y^{4} + y^{3} \right) \, dy$$

$$= \left[2y^{3} - \frac{2y^{5}}{5} + \frac{y^{4}}{4} \right]_{0}^{2} = 2 \cdot 2^{3} - \frac{2 \cdot 2^{5}}{5} + \frac{2^{4}}{4} - 0 + 0 - 0 = 16 - \frac{64}{5} + 4 = 20 - \frac{64}{5}$$

$$= \frac{100}{5} - \frac{64}{5} = \frac{36}{5}.$$

$$\begin{split} & \underline{I} = \int_{1}^{2} \int_{1-x}^{\sqrt{x}} x^{2}y \, \mathrm{d}y \, \mathrm{d}x = \int_{1}^{2} x^{2} \cdot \frac{1}{2} \cdot \left[y^{2} \right] \Big|_{1-x}^{\sqrt{x}} \, \mathrm{d}x = \frac{1}{2} \int_{1}^{2} x^{2} \cdot \left(x - (1-x)^{2} \right) \mathrm{d}x \\ & = \frac{1}{2} \int_{1}^{2} x^{2} \cdot \left(x - 1 + 2x - x^{2} \right) \mathrm{d}x = \frac{1}{2} \int_{1}^{2} x^{2} \cdot \left(3x - 1 - x^{2} \right) \mathrm{d}x \\ & = \frac{1}{2} \int_{1}^{2} \left(3x^{3} - x^{2} - x^{4} \right) \mathrm{d}x = \frac{1}{2} \cdot \left[\frac{3x^{4}}{4} - \frac{x^{3}}{3} - \frac{x^{5}}{5} \right] \Big|_{1}^{2} \\ & = \frac{1}{2} \cdot \left(\frac{3 \cdot 2^{4}}{4} - \frac{2^{3}}{3} - \frac{2^{5}}{5} - \frac{3 \cdot 1^{4}}{4} + \frac{1^{3}}{3} + \frac{1^{5}}{5} \right) = \frac{1}{2} \cdot \left(12 - \frac{8}{3} - \frac{32}{5} - \frac{3}{4} + \frac{1}{3} + \frac{1}{5} \right) \\ & = \frac{1}{2} \cdot \left(12 - \frac{7}{3} - \frac{31}{5} - \frac{3}{4} \right) = \frac{1}{2} \cdot \left(\frac{720}{60} - \frac{140}{60} - \frac{372}{60} - \frac{45}{60} \right) = \frac{1}{2} \cdot \frac{163}{60} = \frac{163}{120}. \end{split}$$

$$\mathbf{C})$$

$$\underline{I} = \int_{1}^{2} \int_{0}^{x} e^{\frac{y}{x}} \, \mathrm{d}y \, \mathrm{d}x = \int_{1}^{2} \left[x \cdot e^{\frac{y}{x}} \right] \Big|_{0}^{x} \, \mathrm{d}x = \int_{1}^{2} x \cdot \left(e^{\frac{x}{x}} - e^{\frac{0}{x}} \right) \, \mathrm{d}x = (e-1) \int_{1}^{2} x \, \mathrm{d}x \\ & = (e-1) \cdot \frac{1}{2} \cdot \left[x^{2} \right] \Big|_{1}^{2} = (e-1) \cdot \left(\frac{2^{2}}{2} - \frac{1^{2}}{2} \right) = (e-1) \cdot \left(\frac{4}{2} - \frac{1}{2} \right) = \frac{3}{2} \cdot (e-1). \end{split}$$

4. Integrale über Gebiete

Berechnen Sie das folgende Integral über das jeweils angegebene Gebiet G.

$$I = \int_{C} 2xy^2 dA$$

- a) Rechteck mit Eckpunkten (-1;-1), (4;-1), (4;2), (-1;2)
- b) Dreieck mit Eckpunkten (0;0), (3;1), (-2;1)

a)

$$\underline{I} = \int_{G} 2xy^{2} dA = 2 \int_{G} xy^{2} dA = 2 \int_{-1}^{2} \int_{-1}^{4} xy^{2} dx dy = 2 \int_{-1}^{4} x dx \cdot \int_{-1}^{2} y^{2} dy$$

$$= 2 \cdot \frac{1}{2} \cdot \left[x^{2} \right]_{-1}^{4} \cdot \frac{1}{3} \cdot \left[y^{3} \right]_{-1}^{2} = \left(4^{2} - (-1)^{2} \right) \cdot \frac{1}{3} \cdot \left(2^{3} - (-1)^{3} \right) = (16 - 1) \cdot \frac{1}{3} \cdot (8 + 1)$$

$$= 15 \cdot \frac{1}{3} \cdot 9 = 5 \cdot 9 = \underline{45}.$$

b)

$$\underline{I} = \int_{G} 2xy^{2} dA = 2 \int_{G} xy^{2} dA = 2 \int_{0}^{1} \int_{-2y}^{3y} xy^{2} dx dy = 2 \int_{0}^{1} y^{2} \int_{-2y}^{3y} x dx dy$$

$$= 2 \int_{0}^{1} y^{2} \cdot \frac{1}{2} \cdot \left[x^{2} \right]_{-2y}^{3y} dy = \int_{0}^{1} y^{2} \cdot \left((3y)^{2} - (-2y)^{2} \right) dy = \int_{0}^{1} y^{2} \cdot \left(9y^{2} - 4y^{2} \right) dy$$

$$= \int_{0}^{1} y^{2} \cdot 5y^{2} dy = 5 \int_{0}^{1} y^{4} dy = 5 \cdot \frac{1}{5} \cdot \left[x^{5} \right]_{0}^{1} = 1^{5} - 0^{5} = 1 - 0 = \underline{1}.$$

5. Integrationsreihenfolge tauschen

Vertauschen Sie die Integrationsreihenfolge für die folgenden Integrale.

a)
$$\int_{1}^{3} \int_{2}^{5} f(x, y) \, dx \, dy$$

b)
$$\int_0^1 \int_{2x}^2 f(x, y) \, dy \, dx$$

a)
$$\int_{1}^{3} \int_{2}^{5} f(x, y) dx dy$$
 b) $\int_{0}^{1} \int_{2x}^{2} f(x, y) dy dx$ c) $\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) dx dy$ d) $\int_{0}^{2} \int_{y^{2}}^{4} f(x, y) dx dy$ e) $\int_{0}^{8} \int_{\sqrt{x}}^{5} f(x, y) dy dx$ f) $\int_{1}^{3} \int_{\ln x}^{3} f(x, y) dy dx$

d)
$$\int_0^2 \int_{y^2}^4 f(x, y) \, dx \, dy$$

e)
$$\int_0^8 \int_{\sqrt[3]{x}}^5 f(x, y) \, dy \, dx$$

f)
$$\int_{1}^{3} \int_{\ln x}^{3} f(x, y) \, dy \, dx$$

a)

$$\underline{\underline{I}} = \int_G f \, \mathrm{d}A = \int_2^5 \int_1^3 f(x; y) \, \mathrm{d}y \, \mathrm{d}x.$$

$$\underline{\underline{I}} = \int_G f \, \mathrm{d}A = \underbrace{\int_0^2 \int_0^{\frac{y}{2}} f(x; y) \, \mathrm{d}x \, \mathrm{d}y}.$$

$$\underline{\underline{I}} = \int_{G} f \, dA = \int_{0}^{2} \int_{0}^{x^{2}} f(x; y) \, dy \, dx.$$

d)

$$\underline{\underline{I}} = \int_G f \, dA = \int_0^4 \int_0^{\sqrt{x}} f(x; y) \, dy \, dx.$$

e)

$$\underline{\underline{I}} = \int_{G} f \, dA = \underbrace{\int_{0}^{2} \int_{0}^{y^{3}} f(x; y) \, dx \, dy}_{Q}.$$

$$\underline{\underline{I}} = \int_{G} f \, dA = \int_{G_{1}} f \, dA + \int_{G_{2}} f \, dA$$

$$= \int_{0}^{\ln(3)} \int_{1}^{e^{y}} f(x; y) \, dx \, dy + \int_{\ln(3)}^{3} \int_{1}^{3} f(x; y) \, dx \, dy.$$

6. Doppelintegrale

Lösen Sie die beiden folgenden Integrale unter Verwendung von Polarkoordinaten.

a) $I = \iint_A (1+x+y)dA$, wobei der Integrationsbereich der Einheitskreis sein soll

b) $I=\iint_A (3\sqrt{x^2+y^2}+4)dA$, wobei der Integrationsbereich der angegebene Kreisring sein soll (Innenradius = 1, Aussenradius = 3).

a)

Unter Verwendung von *Polarkoordinaten* transformiert sich der *Integrand* wie folgt $(x = r \cdot \cos \varphi, y = r \cdot \sin \varphi)$:

$$z = f(x; y) = 1 + x + y = 1 + r \cdot \cos \varphi + r \cdot \sin \varphi$$

Das Flächenelement dA lautet in Polarkoordinaten $dA = r dr d\varphi$, die Integrationsgrenzen sind (sie

r-Integration: von r = 0 bis r = 1

 φ -Integration: von $\varphi = 0$ bis $\varphi = 2\pi$

Damit gilt:

$$I = \iint_{(A)} (1 + x + y) dA = \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} (1 + r \cdot \cos \varphi + r \cdot \sin \varphi) r dr d\varphi =$$

$$= \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} (r + r^2 \cdot \cos \varphi + r^2 \cdot \sin \varphi) dr d\varphi$$

Wir integrieren zunächst nach r, dann nach φ .

Innere Integration (nach der Variablen r)

$$\int_{r=0}^{1} (r + r^2 \cdot \cos \varphi + r^2 \cdot \sin \varphi) dr = \left[\frac{1}{2} r^2 + \frac{1}{3} r^3 \cdot \cos \varphi + \frac{1}{3} r^3 \cdot \sin \varphi \right]_{r=0}^{1} =$$

$$= \frac{1}{2} + \frac{1}{3} \cdot \cos \varphi + \frac{1}{3} \cdot \sin \varphi - 0 - 0 - 0 = \frac{1}{2} + \frac{1}{3} \cdot \cos \varphi + \frac{1}{3} \cdot \sin \varphi$$

Äußere Integration (nach der Variablen φ)

$$I = \int_{\varphi=0}^{2\pi} \left(\frac{1}{2} + \frac{1}{3} \cdot \cos \varphi + \frac{1}{3} \cdot \sin \varphi \right) d\varphi = \left[\frac{1}{2} \varphi + \frac{1}{3} \cdot \sin \varphi - \frac{1}{3} \cdot \cos \varphi \right]_{0}^{2\pi} =$$

$$= \pi + \frac{1}{3} \cdot \underbrace{\sin (2\pi)}_{0} - \frac{1}{3} \cdot \underbrace{\cos (2\pi)}_{1} - 0 - \frac{1}{3} \cdot \underbrace{\sin 0}_{0} + \frac{1}{3} \cdot \underbrace{\cos 0}_{1} = \pi - \frac{1}{3} + \frac{1}{3} = \pi$$

Ergebnis: $I = \pi$ b)

 $I = \iint_A (3\sqrt{x^2 + y^2} + 4)dA$, wobei der Integrationsbereich der angegebene Kreisring sein soll.

Die Transformationsgleichungen für den Übergang von kartesischen Koordinaten zu Polarkoordinaten lauten:

$$x = r \cdot \cos \varphi$$
, $y = r \cdot \sin \varphi$, $dA = r dr d\varphi$

Die Integrationsgrenzen des kreisringförmigen Integrationsbereiches sind (sie

r-Integration: von r = 1 bis r = 3

 φ -Integration: von $\varphi = 0$ bis $\varphi = 2\pi$

Unter Berücksichtigung von

$$x^{2} + y^{2} = r^{2} \cdot \cos^{2} \varphi + r^{2} \cdot \sin^{2} \varphi = r^{2} (\underbrace{\cos^{2} \varphi + \sin^{2} \varphi}_{1}) = r^{2}$$

transformiert sich der Integrand des Doppelintegrals wie folgt:

$$z = f(x; y) = 3 \cdot \sqrt{x^2 + y^2} + 4 = 3 \cdot \sqrt{r^2} + 4 = 3r + 4$$

Das Doppelintegral I lautet damit in Polarkoordinaten:

$$I = \iint\limits_{(A)} (3 \cdot \sqrt{x^2 + y^2} + 4) dA = \int\limits_{\varphi=0}^{2\pi} \int\limits_{r=1}^{3} (3r + 4) r dr d\varphi = \int\limits_{\varphi=0}^{2\pi} \int\limits_{r=1}^{3} (3r^2 + 4r) dr d\varphi$$

Die Auswertung erfolgt in der üblichen Weise (erst nach r, dann nach φ integrieren).

Innere Integration (nach der Variablen r)

$$\int_{r=1}^{3} (3r^2 + 4r) dr = \left[r^3 + 2r^2\right]_{r=1}^{3} = 27 + 18 - 1 - 2 = 42$$

Äußere Integration (nach der Variablen φ)

$$I = \int_{\varphi=0}^{2\pi} 42 \, d\varphi = 42 \cdot \int_{0}^{2\pi} 1 \, d\varphi = 42 \left[\varphi\right]_{0}^{2\pi} = 42 (2\pi - 0) = 84\pi$$

Ergebnis: $I = 84 \pi$

7. Schwerpunkt

Bestimmen Sie den Flächenschwerpunkt S des skizzierten Kreisringausschnitts mit Innenradius $r_1 = 2$ und Aussenradius $r_2 = 6$.

Der Integrationsbereich für die Berechnung des Flächenschwerpunktes $S = (x_S; y_S)$ lautet:

r-Integration: von r = 2 bis r = 6

 φ -Integration: von $\varphi = 0$ bis $\varphi = \pi$

Der benötigte Flächeninhalt A lässt sich elementar berechnen (als Differenz zweier Halbkreisflächen):

$$A = \frac{1}{2} (\pi r_2^2 - \pi r_1^2) = \frac{1}{2} \pi (r_2^2 - r_1^2) = \frac{1}{2} \pi (36 - 4) = 16\pi = 50,2655$$

Wegen der Spiegelsymmetrie der Fläche liegt der Schwerpunkt auf der y-Achse. Somit ist $x_S = 0$. Die Ordinate y_S berechnen wir mit dem folgenden Doppelintegral:

$$y_S = \frac{1}{A} \cdot \iint_{(A)} y \, dA = \frac{1}{16\pi} \cdot \int_{\varphi=0}^{\pi} \int_{r=2}^{6} r^2 \cdot \sin \varphi \, dr \, d\varphi$$

(Transformationsgleichungen: $y = r \cdot \sin \varphi$, Flächenelement $dA = r dr d\varphi$)

Innere Integration (nach der Variablen r)

$$\int_{r=2}^{6} r^2 \cdot \sin \varphi \, dr = \sin \varphi \cdot \int_{r=2}^{6} r^2 \, dr = \sin \varphi \left[\frac{1}{3} r^3 \right]_{r=2}^{6} = \frac{1}{3} \cdot \sin \varphi \left[r^3 \right]_{r=2}^{6} = \frac{1}{3}$$

Äußere Integration (nach der Variablen φ)

$$y_{S} = \frac{1}{16\pi} \cdot \frac{208}{3} \cdot \int_{\varphi=0}^{\pi} \sin\varphi \, d\varphi = \frac{13}{3\pi} \left[-\cos\varphi \right]_{0}^{\pi} = \frac{13}{3\pi} \left(-\underbrace{\cos\pi}_{-1} + \underbrace{\cos0}_{1} \right) = \frac{13}{3\pi} \left(1+1 \right) = \frac{26}{3\pi} = 2,7587$$

Schwerpunkt: S = (0; 2,7587)

8. Volumen zylinderförmiger Körper

Berechnen Sie das Volumen V des Körpers, der durch einen in der xy-Ebene gelegenen kreisförmigen Boden mit Radius r = 1 und einen Deckel mit der Fläche $z = e^{x^2 + y^2}$ gebildet wird.

Wir verwenden Polarkoordinaten (wegen der Kreis- bzw. Rotationssymmetrie). Der kreisförmige "Boden" liefert den Integrationsbereich : $0 \le r \le 1$, $0 \le \varphi \le 2\pi$. Die Rotationsfläche bildet den "Deckel" des zylindrischen Körpers, ihre Gleichung in Polarkoordinaten erhalten wir wie folgt (Transformationsgleichungen: $x = r \cdot \cos \varphi$, $y = r \cdot \sin \varphi$):

$$x^2 + y^2 = r^2 \cdot \cos^2 \varphi + r^2 \cdot \sin^2 \varphi = r^2 \underbrace{(\cos^2 \varphi + \sin^2 \varphi)}_{1} = r^2 \Rightarrow z = e^{x^2 + y^2} = e^{r^2}$$

(unter Verwendung des "trigonometrischen Pythagroas" $\sin^2 \varphi + \cos^2 \varphi = 1$)

Damit gilt für das gesuchte Volumen:

$$V = \iint_{(A)} z \, dA = \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} e^{r^2} \cdot r \, dr \, d\varphi \qquad \text{(Flächenelement } dA = r \, dr \, d\varphi)$$

Innere Integration (nach der Variablen r)

Wir lösen das innere Integral mit Hilfe der folgenden Substitution:

$$u = r^2$$
, $\frac{du}{dr} = 2r$, $dr = \frac{du}{2r}$, Grenzen $<$ unten: $r = 0 \Rightarrow u = 0$ oben: $r = 1 \Rightarrow u = 1$

$$\int_{r=0}^{1} e^{r^{2}} \cdot r \, dr = \int_{u=0}^{1} e^{u} \cdot \mathbf{w} \cdot \frac{du}{2\mathbf{w}} = \frac{1}{2} \cdot \int_{u=0}^{1} e^{u} \, du = \frac{1}{2} \left[e^{u} \right]_{u=0}^{1} = \frac{1}{2} \left(e^{1} - e^{0} \right) = \frac{1}{2} \left(e^{1} - e^{0} \right)$$

Äußere Integration (nach der Variablen φ)

$$V = \frac{1}{2} (e - 1) \cdot \int_{\varphi=0}^{2\pi} 1 d\varphi = \frac{1}{2} (e - 1) [\varphi]_{0}^{2\pi} = \frac{1}{2} (e - 1) (2\pi - 0) = (e - 1) \pi$$

Volumen: $V = (e - 1) \pi = 5{,}398$

Übungsblatt Ana 7

Computational and Data Science BSc FS

2023

Lösungen

Analysis und Lineare Algebra 2

1. Aussagen über partielle Ableitungen

Wir betrachten $n \in \mathbb{N}^+$ und eine Funktion $f : \mathbb{R}^n \to \mathbb{R}$.

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Unter den partiellen Ableitungen von f versteht man die Ableitungen von f nach jeweils einer der n Variablen, wobei die andern formell wie Konstanten behandelt werden.	•	0
b) Die partiellen Ableitungen können mit Hilfe des Differenzquotienten definiert werden.	•	0
c) Die Rechenregeln für gewöhnliche Ableitungen einer Funktion in einer Variablen gelten auch für partielle Ableitungen.	•	0
d) Die partiellen Ableitungen von f sind Funktionen des Typs $f_{,\mu}: \mathbb{R} \to \mathbb{R}$.	0	•
e) Ohne weitere Voraussetzungen gilt $f_{,\nu,\mu} = f_{,\mu,\nu}$ für alle $\mu,\nu \in \{1,\ldots,n\}$.	0	•
f) Es gilt $f_{,\nu,\mu} = f_{,\mu,\nu}$ für alle $\mu, \nu \in \{1,, n\}$ falls $f_{,\nu,\mu}$ und $f_{,\mu,\nu}$ beide existieren und $stetig$ sind.	•	0

2. Ableitungen von Funktionen in zwei Variablen

Wir berechnen jeweils den *Gradienten*, die HESSE-*Matrix* und die LAPLACE-*Ableitung* der angegebenen *Funktion*.

a) Wir betrachten die Funktion

$$f(x;y) = 3x + 5y. \tag{1}$$

Für Gradient, HESSE-Matrix und LAPLACE-Ableitung erhalten wir

$$\underline{\underline{\nabla}f} = \begin{bmatrix} f_{,1} \\ f_{,2} \end{bmatrix} = \begin{bmatrix} 3 \cdot 1 + 0 \\ 0 + 5 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
 (2)

$$\underline{\nabla^2 f} = \begin{bmatrix} f_{,1,1} & f_{,1,2} \\ f_{,2,1} & f_{,2,2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (3)

$$\underline{\Delta f} = \operatorname{tr}(\mathbf{\nabla}^2 f) = 0 + 0 = \underline{\underline{0}}.$$
(4)

b) Wir betrachten die Funktion

$$f(x;y) = x^2 + 2xy - 3y^2. (5)$$

Für Gradient, Hesse-Matrix und Laplace-Ableitung erhalten wir

$$\underline{\nabla f} = \begin{bmatrix} f_{,1} \\ f_{,2} \end{bmatrix} = \begin{bmatrix} 2x^{2-1} + 2 \cdot 1 \cdot y - 0 \\ 0 + 2x \cdot 1 - 3 \cdot 2y^{2-1} \end{bmatrix} = \begin{bmatrix} 2x + 2y \\ 2x - 6y \end{bmatrix}$$
(6)

$$\underline{\nabla^2 f} = \begin{bmatrix} f_{,1,1} & f_{,1,2} \\ f_{,2,1} & f_{,2,2} \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 + 0 & 0 + 2 \cdot 1 \\ 2 \cdot 1 - 0 & 0 - 6 \cdot 1 \end{bmatrix} = \underline{\begin{bmatrix} 2 & 2 \\ 2 & -6 \end{bmatrix}}$$
 (7)

$$\underline{\Delta f} = \operatorname{tr}(\nabla^2 f) = 2 - 6 = \underline{-4}. \tag{8}$$

c) Wir betrachten die Funktion

$$f(x;y) = x^2 y^2 + 1. (9)$$

Für Gradient, Hesse-Matrix und Laplace-Ableitung erhalten wir

$$\underline{\nabla f} = \begin{bmatrix} f_{,1} \\ f_{,2} \end{bmatrix} = \begin{bmatrix} 2x^{2-1} \cdot y^2 + 0 \\ x^2 \cdot 2y^{2-1} + 0 \end{bmatrix} = \underbrace{\begin{bmatrix} 2xy^2 \\ 2x^2y \end{bmatrix}}$$

$$\tag{10}$$

$$\underline{\nabla^2 f} = \begin{bmatrix} f_{,1,1} & f_{,1,2} \\ f_{,2,1} & f_{,2,2} \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 \cdot y^2 & 2x \cdot 2y^{2-1} \\ 2 \cdot 2x^{2-1}y & 2x^2 \cdot 1 \end{bmatrix} = \begin{bmatrix} 2y^2 & 4xy \\ 4xy & 2x^2 \end{bmatrix}$$
(11)

$$\underline{\Delta f} = \operatorname{tr}(\nabla^2 f) = 2y^2 + 2x^2 = \underline{2(x^2 + y^2)}.$$
 (12)

d) Wir betrachten die Funktion

$$f(x;y) = 2^{3x-5y}. (13)$$

Für Gradient, HESSE-Matrix und LAPLACE-Ableitung erhalten wir

$$\underline{\nabla f} = \begin{bmatrix} f_{,1} \\ f_{,2} \end{bmatrix} = \ln(2) \cdot 2^{3x-5y} \begin{bmatrix} 3 \cdot 1 - 0 \\ 0 - 5 \cdot 1 \end{bmatrix} = \ln(2) \cdot 2^{3x-5y} \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$
 (14)

$$\underline{\underline{\boldsymbol{\nabla}^2 f}} = \left[\begin{array}{cc} f_{,1,1} & f_{,1,2} \\ f_{,2,1} & f_{,2,2} \end{array} \right] = \ln(2) \cdot \ln(2) \cdot 2^{3x - 5y} \left[\begin{array}{cc} 3 \cdot (3 \cdot 1 - 0) & 3 \cdot (0 - 5 \cdot 1) \\ -5 \cdot (3 \cdot 1 - 0) & -5 \cdot (0 - 5 \cdot 1) \end{array} \right]$$

$$= \ln^2(2) \cdot 2^{3x-5y} \begin{bmatrix} 9 & -15 \\ -15 & 25 \end{bmatrix}$$
 (15)

$$\underline{\Delta f} = \text{tr}(\nabla^2 f) = \ln^2(2) \cdot 2^{3x - 5y} \cdot (9 + 25) = 34 \ln^2(2) \cdot 2^{3x - 5y}.$$
 (16)

e) Wir betrachten die Funktion

$$V(r;h) = \pi r^2 h. \tag{17}$$

Für Gradient, Hesse-Matrix und Laplace-Ableitung erhalten wir

$$\underline{\nabla V} = \begin{bmatrix} V_{,1} \\ V_{,2} \end{bmatrix} = \begin{bmatrix} \pi \cdot 2r^{2-1} \cdot h \\ \pi r^2 \cdot 1 \end{bmatrix} = \underline{\begin{bmatrix} 2\pi rh \\ \pi r^2 \end{bmatrix}}$$
 (18)

$$\underline{\underline{\nabla}^{2}V} = \begin{bmatrix} V_{,1,1} & V_{,1,2} \\ V_{,2,1} & V_{,2,2} \end{bmatrix} = \begin{bmatrix} 2\pi \cdot 1 \cdot h & 2\pi r \cdot 1 \\ \pi \cdot 2r^{2-1} & 0 \end{bmatrix} = \begin{bmatrix} 2\pi h & 2\pi r \\ 2\pi r & 0 \end{bmatrix}$$
(19)

$$\underline{\Delta V} = \operatorname{tr}(\mathbf{\nabla}^2 V) = 2\pi h + 0 = \underline{2\pi h}. \tag{20}$$

f) Wir betrachten die Funktion

$$(t;x) = A\sin(\omega t - kx). \tag{21}$$

Für Gradient, HESSE-Matrix und LAPLACE-Ableitung erhalten wir

$$\underline{\nabla \psi} = \begin{bmatrix} \psi_{,0} \\ \psi_{,1} \end{bmatrix} = A\cos(\omega t - kx) \begin{bmatrix} \omega \cdot 1 - 0 \\ 0 - k \cdot 1 \end{bmatrix} = A\cos(\omega t - kx) \begin{bmatrix} \omega \\ -k \end{bmatrix}$$
 (22)

$$\underline{\nabla^{2}\psi} = \begin{bmatrix} \psi_{,0,0} & \psi_{,0,1} \\ \psi_{,1,0} & \psi_{,1,1} \end{bmatrix} = -A\sin(\omega t - kx) \begin{bmatrix} \omega \cdot (\omega \cdot 1 - 0) & \omega \cdot (0 - k \cdot 1) \\ -k \cdot (\omega \cdot 1 - 0) & -k \cdot (0 - k \cdot 1) \end{bmatrix}$$

$$= -A\sin(\omega t - kx) \begin{bmatrix} \omega^{2} & -\omega k \\ -\omega k & k^{2} \end{bmatrix}$$
(23)

$$\underline{\Delta\psi} = \operatorname{tr}(\nabla^2\psi) = -(\omega^2 + k^2)A\sin(\omega t - kx). \tag{24}$$

3. Aussagen über den Gradienten

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Der Gradient ist nur für Skalarfelder in 2D und 3D definiert.	0	•
b) Der <i>Gradient</i> eines <i>Skalarfeldes</i> ist ein <i>Vektorfeld</i> .	•	0
c) Ist der <i>Graph</i> von f die Hälfte einer <i>Sphäre</i> , dann ist ∇f ein <i>homogenes Vektorfeld</i> .	0	•
d) Verschwindet der <i>Gradient</i> eines <i>Skalarfeldes</i> an jedem <i>Punkt</i> , dann ist das <i>Skalarfeld konstant</i> .	•	0
e) Es gilt die Faktor-Regel $\nabla(a \cdot g) = a \cdot \nabla g$.	•	0
f) Es gilt die <i>Produkt-Regel</i> $\nabla(g \cdot h) = h \cdot \nabla g + g \cdot \nabla h$.	•	0

4. Divergenz und Rotation von Vektorfeldern in der Ebene

Wir berechnen jeweils *Divergenz* und *Rotation* des *Vektorfeldes*.

a) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y) = \begin{bmatrix} 0.5\\ 0.25 \end{bmatrix}. \tag{25}$$

Für Divergenz und Rotation erhalten wir

$$\operatorname{div}(\mathbf{v}) = v_{,1}^1 + v_{,2}^2 = 0 + 0 = \underline{0} \tag{26}$$

$$\underline{\operatorname{rot}(\mathbf{v})} = v^{2}_{,1} - v^{1}_{,2} = 0 - 0 = \underline{0}. \tag{27}$$

b) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y) = \begin{bmatrix} x \\ y \end{bmatrix}. \tag{28}$$

Für *Divergenz* und *Rotation* erhalten wir

$$\operatorname{div}(\mathbf{v}) = v_{,1}^1 + v_{,2}^2 = 1 + 1 = \underline{\underline{2}} \tag{29}$$

$$rot(\mathbf{v}) = v_{,1}^2 - v_{,2}^1 = 0 - 0 = \underline{0}. \tag{30}$$

c) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y) = \begin{bmatrix} -y \\ x \end{bmatrix}. \tag{31}$$

Für Divergenz und Rotation erhalten wir

$$\operatorname{div}(\mathbf{v}) = v_{,1}^1 + v_{,2}^2 = 0 + 0 = \underline{0}$$
(32)

$$\underline{\text{rot}(\mathbf{v})} = v^{2}_{,1} - v^{1}_{,2} = 1 - (-1) = \underline{\underline{2}}.$$
(33)

d) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y) = \begin{bmatrix} y \\ -x \end{bmatrix}. \tag{34}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\text{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} = 0 + 0 = \underline{0}$$
(35)

$$rot(\mathbf{v}) = v_{,1}^2 - v_{,2}^1 = -1 - 1 = \underline{-2}.$$
(36)

e) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y) = \begin{bmatrix} x^2 \\ 1 \end{bmatrix}. \tag{37}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\operatorname{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} = 2x^{2-1} + 0 = \underline{2x}.$$
(38)

$$\underline{\text{rot}(\mathbf{v})} = v^{2}_{,1} - v^{1}_{,2} = 0 - 0 = \underline{0}. \tag{39}$$

f) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y) = \begin{bmatrix} 1\\ xy \end{bmatrix}. \tag{40}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\operatorname{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} = 0 + x \cdot 1 = \underline{\underline{x}}$$

$$\tag{41}$$

$$\underline{\cot(\mathbf{v})} = v^{2}_{,1} - v^{1}_{,2} = 1 \cdot y - 0 = \underline{y}. \tag{42}$$

5. Aussagen über die Divergenz

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Divergenz ist nur für Vektorfelder in 2D und 3D definiert.	0	•
b) Die <i>Divergenz</i> eines <i>Vektorfeldes</i> ist selbst wieder ein <i>Vektorfeld</i> .	0	•
c) Ist ein Vektorfeld homogen, dann verschwindet seine Divergenz.	•	0
d) Verschwindet die <i>Divergenz</i> , dann ist das <i>Vektorfeld homogen</i> .	0	•
e) Es gilt die Summen-Regel $\operatorname{div}(\mathbf{v} + \mathbf{w}) = \operatorname{div}(\mathbf{v}) + \operatorname{div}(\mathbf{w})$.	•	0
f) Es gilt die <i>Produkt-Regel</i> div $(f \cdot \mathbf{v}) = f \cdot \text{div}(\mathbf{v})$.	0	•

6. Divergenz und Rotation von Vektorfeldern im Raum

Wir berechnen jeweils Divergenz und Rotation des Vektorfeldes.

a) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y;z) = \begin{bmatrix} -2\\3\\5 \end{bmatrix}. \tag{43}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\operatorname{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} + v^{3}_{,3} = 0 + 0 + 0 = \underline{\underline{0}}$$
(44)

$$\underline{\underline{\operatorname{rot}(\mathbf{v})}} = \begin{bmatrix} v^{3}_{,2} - v^{2}_{,3} \\ v^{1}_{,3} - v^{3}_{,1} \\ v^{2}_{,1} - v^{1}_{,2} \end{bmatrix} = \begin{bmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 0 \end{bmatrix} = \underline{\underline{0}}.$$
(45)

b) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y;z) = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}. \tag{46}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\operatorname{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} + v^{3}_{,3} = 1 + 1 + 0 = \underline{\underline{2}}$$
(47)

$$\underline{\operatorname{rot}(\mathbf{v})} = \begin{bmatrix} v^{3}_{,2} - v^{2}_{,3} \\ v^{1}_{,3} - v^{3}_{,1} \\ v^{2}_{,1} - v^{1}_{,2} \end{bmatrix} = \begin{bmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 0 \end{bmatrix} = \underline{\underline{0}}.$$
(48)

c) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y;z) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}. \tag{49}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\operatorname{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} + v^{3}_{,3} = 1 + 1 + 1 = \underline{\underline{3}}$$
(50)

$$\underline{\operatorname{rot}(\mathbf{v})} = \begin{bmatrix} v^{3}_{,2} - v^{2}_{,3} \\ v^{1}_{,3} - v^{3}_{,1} \\ v^{2}_{,1} - v^{1}_{,2} \end{bmatrix} = \begin{bmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 0 \end{bmatrix} = \underline{\underline{0}}.$$
(51)

d) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y;z) = \begin{bmatrix} -y \\ x \\ 4 \end{bmatrix}. \tag{52}$$

Für Divergenz und Rotation erhalten wir

$$\operatorname{div}(\mathbf{v}) = v_{,1}^1 + v_{,2}^2 + v_{,3}^3 = 0 + 0 + 0 = \underline{0}$$
(53)

$$\underline{\underline{\operatorname{rot}(\mathbf{v})}} = \begin{bmatrix} v^{3}_{,2} - v^{2}_{,3} \\ v^{1}_{,3} - v^{3}_{,1} \\ v^{2}_{,1} - v^{1}_{,2} \end{bmatrix} = \begin{bmatrix} 0 - 0 \\ 0 - 0 \\ 1 - (-1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$$
(54)

e) Wir betrachten das Vektorfeld

$$\mathbf{v}(x;y;z) = \begin{bmatrix} -z \\ 2 \\ x \end{bmatrix}. \tag{55}$$

Für Divergenz und Rotation erhalten wir

$$\underline{\text{div}(\mathbf{v})} = v^{1}_{,1} + v^{2}_{,2} + v^{3}_{,3} = 0 + 0 + 0 = \underline{0}.$$
(56)

$$\underline{\underline{\operatorname{rot}(\mathbf{v})}} = \begin{bmatrix} v^{3}_{,2} - v^{2}_{,3} \\ v^{1}_{,3} - v^{3}_{,1} \\ v^{2}_{,1} - v^{1}_{,2} \end{bmatrix} = \begin{bmatrix} 0 - 0 \\ -1 - 1 \\ 0 - 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}.$$
(57)

7. Aussagen über die Rotation

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Rotation ist nur für Vektorfelder in 2D und 3D definiert.	0	•
b) Nur in 3 Dimensionen ist die <i>Rotation</i> eines <i>Vektorfeldes</i> selbst wieder ein <i>Vektorfeld</i> .	•	0
c) Verschwindet die <i>z-Komponente</i> eines <i>räumlichen Vektorfeldes</i> , dann steht seine <i>Rotation</i> senkrecht auf der <i>x-y-</i> Ebene.	0	•
d) Verschwindet die <i>Rotation</i> , dann ist das <i>Vektorfeld homogen</i> .	0	•
e) Es gilt die Faktor-Regel $rot(a \cdot \mathbf{v}) = a \cdot rot(\mathbf{v})$.	•	0
f) In 3D gilt die <i>Produkt-Regel</i> $\operatorname{rot}(f \cdot \mathbf{v}) = \nabla f \times \mathbf{v} + f \cdot \operatorname{rot}(\mathbf{v})$.	•	0

8. Spezielle Divergenzen und Rotationen

Wir betrachten eine Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ und ein Vektorfeld $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$.

a) Es gilt

$$\underline{\frac{\operatorname{div}(\nabla f)}{\prod}} = \operatorname{div}\left(\begin{bmatrix} f_{,1} \\ f_{,2} \\ f_{,3} \end{bmatrix}\right) = f_{,1,1} + f_{,2,2} + f_{,3,3} = \underline{\Delta f}. \tag{58}$$

b) Weil die partiellen Ableitungen einer Funktion kommutieren, gilt

$$\underline{\operatorname{rot}(\mathbf{\nabla}f)} = \operatorname{rot}\left(\begin{bmatrix} f_{,1} \\ f_{,2} \\ f_{,3} \end{bmatrix}\right) = \begin{bmatrix} f_{,3,2} - f_{,2,3} \\ f_{,1,3} - f_{,3,1} \\ f_{,2,1} - f_{,1,2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \underline{\underline{0}}.$$
(59)

c) Weil die partiellen Ableitungen einer Funktion kommutieren, gilt

$$\underline{\operatorname{div}(\operatorname{rot}(\mathbf{v}))} = \operatorname{div}\left(\begin{bmatrix} v_{,2}^3 - v_{,3}^2 \\ v_{,3}^1 - v_{,1}^3 \\ v_{,1}^2 - v_{,2}^1 \end{bmatrix}\right) = (v_{,2}^3 - v_{,3}^2)_{,1} + (v_{,3}^1 - v_{,1}^3)_{,2} + (v_{,1}^2 - v_{,2}^1)_{,3}$$

$$= v_{,2,1}^3 - v_{,3,1}^2 + v_{,3,2}^1 - v_{,1,3}^3 - v_{,1,2}^3 + v_{,1,3}^3 - v_{,2,3}^1$$

$$= v_{,2,1}^3 - v_{,1,2}^3 + v_{,1,3}^3 - v_{,3,1}^2 + v_{,3,2}^1 - v_{,2,3}^1$$

$$= v_{,2,1}^3 - v_{,1,2}^3 + v_{,1,3}^3 - v_{,3,1}^3 + v_{,3,2}^1 - v_{,2,3}^1$$

$$= v_{,2,1}^3 - v_{,1,2}^3 + v_{,1,3}^3 - v_{,3,1}^3 + v_{,3,2}^1 - v_{,2,3}^1$$

$$= v_{,2,1}^3 - v_{,1,2}^3 + v_{,1,3}^3 - v_{,3,1}^3 + v_{,3,2}^1 - v_{,2,3}^1$$

$$= v_{,2,1}^3 - v_{,1,2}^3 + v_{,3,2}^1 - v_{,3,1}^3 + v_{,3,2}^1 - v_{,2,3}^1$$

$$= v_{,2,1}^3 - v_{,3,1}^3 + v_{,3,2}^1 - v_{,3,1}^3 + v_{,3,2}^1 - v_{,3,2}^1$$

$$= v_{,2,1}^3 - v_{,3,2}^3 + v_{,3,2}^1 - v_{,3,2}^1$$

$$= v_{,2,1}^3 - v_{,3,2}^3 + v_{,3,2}^1 - v_{,3,2}^1$$

$$= v_{,2,1}^3 - v_{,3,2}^3 + v_{,3,2}^1$$

d) Weil die partiellen Ableitungen einer Funktion kommutieren, gilt

$$\underline{\operatorname{rot}(\operatorname{rot}(\mathbf{v}))} = \operatorname{rot}\left(\begin{bmatrix} v_{,2}^{3} - v_{,3}^{2} \\ v_{,3}^{1} - v_{,1}^{3} \\ v_{,1}^{2} - v_{,2}^{2} \end{bmatrix}\right) = \begin{bmatrix} (v_{,1}^{2} - v_{,2}^{1})_{,2} - (v_{,3}^{1} - v_{,1}^{3})_{,3} \\ (v_{,3}^{3} - v_{,3}^{2})_{,3} - (v_{,1}^{2} - v_{,2}^{1})_{,1} \\ (v_{,3}^{1} - v_{,1}^{3})_{,1} - (v_{,2}^{3} - v_{,3}^{2})_{,2} \end{bmatrix}$$

$$= \begin{bmatrix} v_{,1,2}^{2} - v_{,2,2}^{1} - v_{,3,3}^{1} + v_{,1,3}^{3} \\ v_{,2,3}^{3} - v_{,3,3}^{2} - v_{,1,1}^{2} + v_{,2,1}^{1} \\ v_{,3,1}^{1} - v_{,1,1}^{3} - v_{,3,2}^{3} + v_{,3,2}^{2} \end{bmatrix} = \begin{bmatrix} v_{,2,1}^{2} + v_{,3,3}^{3} - v_{,1,1}^{2} - v_{,3,3}^{2} \\ v_{,1,3}^{1} + v_{,2,1}^{2} + v_{,3,2}^{3} - v_{,1,1}^{2} - v_{,3,3}^{2} \\ v_{,1,3}^{1} + v_{,2,2}^{2} + v_{,3,3}^{3} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \\ v_{,1,3}^{1} + v_{,2,3}^{2} + v_{,3,3}^{3} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,1} - v_{,1,1}^{1} - v_{,2,2}^{1} - v_{,3,3}^{2} \\ v_{,1,3}^{1} + v_{,2,2}^{2} + v_{,3,3}^{3} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,1} - v_{,1,1}^{1} - v_{,2,2}^{1} - v_{,3,3}^{2} \\ (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,2} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,1} - v_{,1,1}^{1} - v_{,2,2}^{2} - v_{,3,3}^{2} \\ (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,2} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,2} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \\ (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,3} - v_{,1,1}^{2} - v_{,2,2}^{2} - v_{,3,3}^{2} \\ (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,3} - v_{,1,1}^{3} - v_{,2,2}^{2} - v_{,3,3}^{3} \\ (v_{,1}^{1} + v_{,2}^{2} + v_{,3}^{3})_{,3} - v_{,1,1}^{3} - v_{,2,2}^{3} - v_{,3,3}^{3} \end{bmatrix}$$

$$= \nabla \operatorname{div}(\mathbf{v}) - \Delta \mathbf{v}.$$
(61)

9. Eigenschaften des Ortsvektorfeldes

Wir betrachten das *Ortsvektorfeld* und seinen *Betrag*

$$\mathbf{r}(x;y;z) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{bzw.} \quad r(x;y;z) = \sqrt{x^2 + y^2 + z^2}. \tag{62}$$

Für jedes $p \in \mathbb{R} \setminus \{0\}$ sei

$$\mathbf{w}(p) = r^p \cdot \hat{\mathbf{r}} \tag{63}$$

das faktorierte Ortsvektorfeld auf $\mathbb{R}^3 \setminus \{0\}$.

a) Mit Hilfe der Ketten-Regel erhalten wir

$$\underline{\nabla r} = \begin{bmatrix} r_{,1} \\ r_{,2} \\ r_{,3} \end{bmatrix} = \frac{1}{2 \cdot \sqrt{x^2 + y^2 + z^2}} \begin{bmatrix} 2x^{2-1} + 0 + 0 \\ 0 + 2y^{2-1} + 0 \\ 0 + 0 + 2z^{2-1} \end{bmatrix} = \frac{1}{2 \cdot \sqrt{x^2 + y^2 + z^2}} \begin{bmatrix} 2x \\ 2y \\ 2z \end{bmatrix}$$

$$= \frac{1}{\sqrt{x^2 + y^2 + z^2}} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{r} \cdot \mathbf{r} = \hat{\mathbf{r}}.$$
(64)

b) Für *Divergenz* und *Rotation* von **r** erhalten wir

$$\operatorname{div}(\mathbf{r}) = r^{1}_{,1} + r^{2}_{,2} + r^{3}_{,3} = 1 + 1 + 1 = \underline{\underline{3}}$$
(65)

$$\underline{\underline{\operatorname{rot}(\mathbf{r})}} = \begin{bmatrix} r_{,2}^3 - r_{,3}^2 \\ r_{,3}^1 - r_{,1}^3 \\ r_{,1}^2 - r_{,2}^1 \end{bmatrix} = \begin{bmatrix} 0 - 0 \\ 0 - 0 \\ 0 - 0 \end{bmatrix} = \underline{\underline{0}}.$$
(66)

c) Mit Hilfe der Ketten-Regel und (67) berechnen wir zunächst

$$\nabla\left(\frac{1}{r}\right) = \nabla r^{-1} = -r^{-1-1} \cdot \nabla r = -r^{-2} \cdot \hat{\mathbf{r}} = -\frac{1}{r^2} \cdot \hat{\mathbf{r}}.$$
 (67)

Daraus und mit Hilfe der Produkt-Regeln für Divergenz und Rotation erhalten wir

$$\underline{\operatorname{div}(\hat{\mathbf{r}})} = \operatorname{div}\left(\frac{1}{r} \cdot \mathbf{r}\right) = \left\langle \nabla \left(\frac{1}{r}\right), \mathbf{r} \right\rangle + \frac{1}{r} \cdot \operatorname{div}(\mathbf{r}) = \left\langle -\frac{1}{r^2} \cdot \hat{\mathbf{r}}, r \cdot \hat{\mathbf{r}} \right\rangle + \frac{1}{r} \cdot 3$$

$$= -\frac{1}{r} \cdot \left\langle \hat{\mathbf{r}}, \hat{\mathbf{r}} \right\rangle + 3 \cdot \frac{1}{r} = -\frac{1}{r} \cdot 1 + 3 \cdot \frac{1}{r} = \frac{3-1}{r} = \frac{2}{r}$$
(68)

$$\underline{\underline{\operatorname{rot}(\hat{\mathbf{r}})}} = \operatorname{rot}\left(\frac{1}{r} \cdot \mathbf{r}\right) = \nabla\left(\frac{1}{r}\right) \times \mathbf{r} + \frac{1}{r} \cdot \operatorname{rot}(\mathbf{r}) = \left(-\frac{1}{r^2} \cdot \hat{\mathbf{r}}\right) \times \left(r \cdot \hat{\mathbf{r}}\right) + \frac{1}{r} \cdot 0$$

$$= -\frac{1}{r^2} \cdot r \cdot \hat{\mathbf{r}} \times \hat{\mathbf{r}} + 0 = 0 + 0 = \underline{0}.$$
(69)

d) Mit Hilfe der Ketten-Regel und (67) berechnen wir zunächst

$$\nabla r^p = p \cdot r^{p-1} \cdot \nabla r = p \cdot r^{p-1} \cdot \hat{\mathbf{r}}. \tag{70}$$

Daraus und mit Hilfe der *Produkt-Regeln* für *Divergenz* und *Rotation* und durch Einsetzen von (71) und (72) erhalten wir

$$\underline{\underline{\operatorname{div}}(\mathbf{w}(p))} = \operatorname{div}(r^{p} \cdot \hat{\mathbf{r}}) = \langle \nabla r^{p}, \hat{\mathbf{r}} \rangle + r^{p} \cdot \operatorname{div}(\hat{\mathbf{r}}) = \langle p \cdot r^{p-1} \cdot \hat{\mathbf{r}}, \hat{\mathbf{r}} \rangle + r^{p} \cdot \frac{2}{r}$$

$$= p \cdot r^{p-1} \cdot \langle \hat{\mathbf{r}}, \hat{\mathbf{r}} \rangle + 2 \cdot r^{p-1} = p \cdot r^{p-1} + 2 \cdot r^{p-1} = (p+2) \cdot r^{p-1}$$
(71)

$$\underline{\underline{\operatorname{rot}(\mathbf{w}(p))}} = \operatorname{rot}(r^{p} \cdot \hat{\mathbf{r}}) = \nabla r^{p} \times \hat{\mathbf{r}} + r^{p} \cdot \operatorname{rot}(\hat{\mathbf{r}}) = p \cdot r^{p-1} \cdot \hat{\mathbf{r}} \times \hat{\mathbf{r}} + r^{p} \cdot 0 = 0 + 0$$

$$= \underline{0}. \tag{72}$$

e) Auf $\mathbb{R}^3 \setminus \{0\}$ gilt

$$r > 0. (73)$$

Gemäss (74) und (75) verschwindet die Rotation des faktorierten Ortsvektorfeldes $\mathbf{w}(p)$ in jedem Fall. Sowohl die Divergenz als auch die Rotation verschwinden demnach genau dann, wenn gilt

$$0 = \operatorname{div}(\mathbf{w}(p)) = (p+2) \cdot r^{p-1} \qquad | : r^{p-1}$$
 (74)

$$\Leftrightarrow \qquad 0 = p + 2 \qquad \qquad |-2. \tag{75}$$

Daraus erhalten wir die Bedingung

$$\underline{p = -2.} \tag{76}$$

f) Auf $\mathbb{R}^3 \setminus \{0\}$ gilt

$$r > 0. (77)$$

Gemäss (74) und (75) ist die Rotation des faktorierten Ortsvektorfeldes $\mathbf{w}(p)$ in jedem Fall konstant. Sowohl die Divergenz als auch die Rotation sind demnach genau dann konstant, wenn gilt

$$c = \operatorname{div}(\mathbf{w}(p)) = (p+2) \cdot r^{p-1}. \tag{78}$$

Dies ist genau dann der Fall, wenn entweder

$$(p+2) = 0$$
 oder $(p-1) = 0.$ (79)

Daraus erhalten wir die Bedingung

$$\underline{p \in \{-2, 1\}}.\tag{80}$$