- KDDM Lab9

Name:- Kunal Sanjay Patil

PRN: 20190802025

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
iris = pd.read_csv("Iris.csv")
print(iris.head())
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

print(iris.describe())

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
iris.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")
plt.show()
```


from sklearn.datasets import load_iris
from sklearn.cluster import KMeans

```
iris data=load iris()
                      #loading iris dataset from sklearn.datasets
iris df = pd.DataFrame(iris data.data, columns = iris data.feature names) #creating datafr
kmeans = KMeans(n_clusters=3,init = 'k-means++', max_iter = 100, n_init = 10, random_sta
x = iris.iloc[:, :-1].values #last column values excluded
y = iris.iloc[:, -1].values #last column value
y_kmeans = kmeans.fit_predict(x)
print(kmeans.cluster_centers_) #display cluster centers
     [[ 25.5
                5.006 3.418 1.464
                                        0.244]
     [125.5
                6.588 2.974 5.552
                                        2.026]
      75.5
                5.936 2.77
                                4.26
                                        1.326]]
kmeans = KMeans(n_clusters = 3, init = 'k-means++', max_iter = 300, n_init = 10, random_st
y_kmeans = kmeans.fit_predict(x)
#Finding the optimum number of clusters for k-means classification
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, rando
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss)
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS') #within cluster sum of squares
plt.show()
```

The elbow method

```
250000 - \
```

```
#Visualising the clusters
```

```
plt.scatter(x[y\_kmeans == 0, 0], x[y\_kmeans == 0, 1], s = 100, c = 'purple', label = 'Iris plt.scatter(x[y\_kmeans == 1, 0], x[y\_kmeans == 1, 1], s = 100, c = 'orange', label = 'Iris plt.scatter(x[y\_kmeans == 2, 0], x[y\_kmeans == 2, 1], s = 100, c = 'green', label = 'Iris-
```

#Plotting the centroids of the clusters

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'rec

plt.legend()

<matplotlib.legend.Legend at 0x7f0730404d50>

