Bezwirowy przepływ płynu nieściśliwego

What happens without vorticity, stays without vorticity.

wniosek z twierdzenia Kelvina

Jeśli przepływ jest bezwirowy w t_0 , to pozostanie on bezwirowy dla $t > t_0(\vec{\omega} = 0)$

Pochodzenie wirowości

W układzie laboratoryjnym, bez siły Coriolisa ($\vec{\Omega} = 0$).

Ciecz idealna wprowadzona w ruch bez delt Diraca w rozkładach (np. dwie warstwy płynu płynące w przeciwne strony) będzie się ruszała bez wirowości.

W płynie lepkim **brzegi** generują wirowość! Wirowość może pojawiać się na ściankach i powierzchniach swobodnych, po czym dyfunduje z brzegów do obszaru bezwirowego.

Eksperyment: kulka w bezwirowym płynie

Nagle wprawiamy ją w ruch w chwili t_0 . Przepływ jest teraz potencjalny i na ogół nie spełnia warunku znikania stycznej składowej prędkości na brzegu $\vec{u} \times \vec{n}|_{\partial\Omega} = 0$, choć oczywiście spełnia $\vec{u} \cdot \vec{n}|_{\partial\Omega} = 0$.

Zatem w $t=t_0$ mamy przy przegu nieskończony gradient prędkości, więc nieskończoną wirowość (deltę Diraca), która następnie dyfunduje do cieczy. W czasie t wirowość dyfunduje na odległość $\sim \sqrt{t\nu}$

Ponadto wirowość jest unoszona (adwekcyjnie) w głąb cieczy.

Przykład: płytka poruszająca się w głąb cieczy

Płytka poruszająca się w płynie z prędkością U_0 w jej układzie odniesienia: wybrany element płytki pozostaje w pobliżu płytki przez czas $\sim \frac{L}{U_0}$.

W tym czasie wirowość dyfunduje na odległość $\sqrt{\frac{\nu L}{U_0}}.$

Warunkiem na to, by zasięg penetracji wirowości był porównywalny z długością płyty:

$$(\frac{\nu L}{U_0})^{\frac{1}{2}} \sim L,$$
czyli $\frac{\nu L}{U_0} = Re \sim 1$

- Jeśli Re<<1to wirowość dyfunduje jednakowo we wszystkie strony.
- Jeśli $Re \sim 1$ to mamy powyższe: wirowość na mniej więcej taki zasięg jak długość płyty.
- Jeśli zaś Re >> 1 to wirowość jest skoncentrowana przy powierzchni płyty.

Liczba Reynoldsa

Z równania Naviera Stokesa:

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = -\frac{\nabla p}{\rho} + \vec{F} + \nu \Big(\Delta \vec{u} + \frac{1}{3} \nabla (\nabla \cdot \vec{u}) \Big)$$

$$Re = |\frac{\rho(\vec{u} \cdot \nabla)\vec{u}}{\mu \Delta \vec{u}}|$$

Dla małych Re możemy pominąć człon nieliniowy, zaś dla dużych: człon lepki. Wtedy też mamy bardzo duże gradienty w bardzo małej **warstwie brzegowej** blisko ciała.

Siła nośna

Pochodzi właśnie od warstwy granicznej!

Dla Re >> 1 przepływ jest wszędzie z dużą dokładnością bezwirowy, z wyjątkiem cienkich warstw wirowości przylegających do brył sztywnych. Jednak warstwa przyścienna może się oddzielić od bryły sztywnej.

- Dla Re < 10 mamy mniej więcej przepływ laminarny.
- Dla $Re \sim 20$ przepływ jest mniej więcej taki jak dla wydłużonego walca, za kulą dwa wiry.
- Dalej warstwa przyścienna odrywa się i ze wzrostem Re obszar niezerowej
 (?) wirowości wydłuża się. Jest to tzw. separacja (oderwanie) warstwy przyściennej.
- Granica Re lim inf jest osobliwa szeregi którymi możemy to przybliżać są asymptotyczne.

Z doświadczenia wiadomo, że warstwa przyścienna odrywa się w takim punkcie (lub jego pobliżu), gdzie prędkość potencjalnego (bezwirowego) przepływu, jaki byłby, gdyby $\nu=0$, ma maksimum. (Ten punkt jest bardzo blisko punktu maksymalnego ciśnienia.)

Rozwój turbulencji

Opływ walca

- 1. $Re \sim 1e-2$, równanie Stokesa bez członu nieliniowego $\nabla p = \mu \Delta \vec{u}$.
- 2. $Re \sim 2e1$, charakter przepływu się zmienił: nie można go uzyskać przez przeskalowanie poprzedniego.
- 3. ścieżka wirów von Karmana

- 4. $Re \sim 1e2$, wiry odrywają się i porywa je przepływ za walcem. Można jeszcze rozpoznać w miarę regularne struktury.
- 5. $Re \sim 1e4$, turbulencja "jeszcze trochę regularna"
- 6. Ślad turbulentny $Re \sim 1e6$

Nie ma ogólnej teorii turbulencji, najwyżej statystyczne prawidłowości

Przepływ we współosiowych walcach

L/R<<1, wewnętrzny walec obracany jest ze stałą prędkością kątową $\vec{\omega}$. Pomiędzy walcami ciecz jest lepka. Współczynnik charakteryzujący przepływ: Liczba Taylora $Ta=\frac{\omega^2 l^3 R}{\nu^2}$.

- 1. Przepływ laminarny $Ta<1708=Ta_{kr}$. Przepływ tylko dopasowuje się do różnicy prędkości. Powyżej niestabilności!
- 2. $Ta > Ta_{kr} = 1708$, pojawiają się komórki Taylora (torusy). Przepływ niepotencjalny, z niezerową wirowością.
- 3. Ta jeszcze większa: oscylacje falowe
- 4. Oscylacje plus turbulencja, przepływ super chaotyczny z ciutką struktur
- 5. Czysta turbulencja

Transport momentu pędu od wewnętrznego walca do zewnętrznego. Dla niskich Re stabilny przepływ, satysfakcjonujący. Przy wyższych Re nowy przepływ, turbulentny, robi się bardziej efektywny (jest minimum energetycznym).

Konwekcja Rayleigha-Benarda

Ciecz jest nieściśliwa z dobrym przybliżeniem (dywergencja prędkości w przybliżeniu zerowa) ale siła wyporu jest.

Podgrzewamy od dołu.

$$Ra = \frac{g\alpha\Delta TL^3}{\nu\kappa}$$
$$\kappa = \frac{k}{\rho c_p}$$
$$\alpha = \frac{1}{V}\frac{\partial V}{\partial T_P}$$

- 1. Przewodnictwo cieplne bez ruchu cieczy dla $Ra < Ra_c = 1708$. Czysto molekularny transport ciepła. To 1708 można wyznaczyć tak teoretycznie (liniowa analiza stabilności!), jak doświadczalnie i doskonale się zgadza! Może zależeć od warunków brzegowych. Dla warunków von Neumanna zamiast tak jak obecnie Dirichleta 1651.
- 2. $Ra > Ra_c = 1708$ rolki konwekcyjne, zwane też komórkami Benarda

- 3. Oscylacje
- 4. Oscylacje + nieregularnośc
- 5. Turbulencja

Stabilność

Dlaczego i w jakim momencie następuje zmiana jakościowa przepływu? Jaki jest nowy przepływ? Zmiana charakteru przepływu wiąże się ze stabilnością.

Przykłady: 1. Potencjał x^2 - stabilny 2. Potencjał $-x^2$ - niestabilny 3. Potencjał $x^2-5+(x-4)^4$ - stabilny lokalnie w 0, globalnie w 4

Asymptotyczna stabilność - gdy mamy tarcie i punkt wraca do spoczynku w tym samym miejscu po pewnym czasie.

Oscylacje dają stabilność neturalną.

Przykład:

$$\dot{x} = F(x)$$

Rozwiązanie x(t) - jakaś trajektoria.

x(t) jest stabilne jeśli

$$\forall_{\epsilon>0} \forall_{t_0} \exists_{n(\epsilon,t_0)} \forall_{y(t)} (||x(t_0) - y(t_0)|| < \eta) \implies \forall_{t>t_0} (||x(t) - y(t)|| < \epsilon)$$

Jeśli dodatkowo $\lim_{t\to\infty}||x(t)-y(t)||=0,$ rozwiązanie asymptotycznie stabilne.

Badanie stabilności lokalnej

Zazwyczaj analiza liniowa. Przykład: stabilność rozwiązania stacjonarnego. Założenie:

$$x_0 = 0 = F(x_0)$$

Podstawiamy $x = x_0 + \delta_x$

$$\dot{\delta}_x = F(x_0 + \delta_x) \sim F(x_0) + F'(x_0)\delta_x$$

Wprowadzamy operator liniowy L działający na δ_x

$$\dot{\delta}_x = \hat{L}\delta_x$$

I szukamy modów $S_x \sim e^{-i\omega t}$. Nie wszystkie wartości ω są dopuszczalne przez warunki brzegowe. W ogólności $\omega \in C, \omega = \omega_r + i\omega_i$. Jeżeli wszystkie ω_i są mniejsze niż zero, to rozwiązanie x_0 jest asymptotycznie stabilne, bowiem

$$\delta_x \sim e^{\omega_i t} e^{-i\omega_r t}$$

Jeśli istnieje chociaż jeden mod gdzie $\omega_i > 0$, rozwiązanie będzie niestabilne.

Liniowa analiza stabilności to analiza stabilności względem infinitezymalnie małych zaburzeń pozwalających na linearyzację równań. Jeżeli układ jest niestabilny liniowo, to znaczy że jest niestabilny - w drugą stronę niekoniecznie!

Liniowa stabilność nie musi oznaczać nieliniowej stabilności, ponieważ układ może być niestabilny względem zaburzeń o skończonej amplitudzie.