MULTIVARIATE STATISTICAL ANALYSIS

Lecture 7 Multivariate Linear Classification

Associate Professor Lý Quốc Ngọc

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Contents

7. Classification

- 7.1. Purpose of Classification
- 7.2. Problem Statement
- **7.3**. Method
- 7.4. Geometrical Explanation
- 7.5. Model Checking
- 7.6. Case study

7.1. Purpose of Classification

Discrimination (separation) to describe the differential features of objects from several known populations.

Classification (allocation) to sort objects into two or more labeled classes.

fit@hcmus

LDA for two classes

Select the projection that maximizes the ratio of dissimilarity between classes and dissimilarity in class.

Suppose that we have 2 classes lớp C_1, C_2 , with expect. μ_1, μ_2 C_1, C_2 are presented by $X^{(1)}(N_1 \times p), \ X^{(2)}(N_2 \times p)$

Projecting data onto a straight line can be described using a coefficient vector w:

$$y_n = w^T x_n, \ 1 \le n \le N$$

The expectation of each class after projection:

$$m_i = \frac{1}{N_i} \sum_{n=1}^{N_i} y_n = w^T \mu_i, i = 1,2$$

fit@hcmus

Dissimilarity between classes:

$$(m_1 - m_2)^2 = w^T (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w = w^T S_B w$$

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$$

Dissimilarity in class:

$$s_1^2 + s_2^2 = \sum_{k=1}^2 \sum_{n \in C_k} (w^T (x_n - \mu_k))^2 =$$

$$= w^T (\sum_{k=1}^2 \sum_{n \in C_k} (x_n - \mu_k)(x_n - \mu_k)^T) w$$

$$= w^T S_w w$$

Find w to maximize $F_{\it fisher}(w)$

$$F_{fisher}(w) = \frac{w^T S_B w}{w^T S_w w}$$

7.3. Method

fit@hcmus

The necessary condition for $F_{\it fisher}(w)$ to achieve a maximum value:

$$\nabla_w F_{fisher}(w) = 0$$

$$\nabla_{w} \left(\frac{w^{T} S_{B} w}{w^{T} S_{w} w} \right) = 0$$

$$(w^T S_w w)(2S_B w) - (w^T S_B w)(2S_w w) = 0$$

$$S_B w = \frac{w^T S_B w}{w^T S_w w} (S_w w)$$

$$S_w^{-1} S_B w = F_{fisher}(w) w$$

7.3. Method

fit@hcmus

Select w such that $(\mu_1-\mu_2)^Tw=F_{fisher}(w)=L$ is the largest eigen value of $S_w^{-1}S_B$

$$Lw = S_w^{-1}(\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w = LS_w^{-1}(\mu_1 - \mu_2)$$
$$w = \alpha S_w^{-1}(\mu_1 - \mu_2)$$

LDA for multiclass

7.3. Method

LDA for multiclass

7.4. Geometrical Explanation

Bàn luận trên lớp

7.5. Model Checking

7.6. Case Study