7 Пространство C(K)

Пусть K – компактное метрическое пространство. Обозначим через C(K) множество заданных на K вещественнозначных непрерывных функций. Ясно, что C(K) – линейное пространство.

Теорема 7.1. Всякая функция $f \in C(K)$ ограничена и достигает своего максимального и минимального значений.

Доказательство. Пусть $f \in C(K)$. Существует последовательность $\{t_n\}_{n=1}^{\infty} \subset K$ такая, что

$$\sup_{t \in K} f(t) = \lim_{n \to \infty} f(t_n).$$

Пользуясь компактностью K, выделим из нее подпоследовательность $t_{n_k} \to t_0 \in K$. В силу непрерывности f имеем

$$\sup_{t \in K} f(t) = \lim_{k \to \infty} f(t_{n_k}) = f(t_0).$$

Значит, f ограничена сверху и достигает своего максимального значения.

Совершенно аналогично доказывается, что f ограничена снизу и достигает своего минимального значения.

Опр. Функция $f \in C(K)$ называется равномерно непрерывной, если для любого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что

$$|f(t') - f(t'')| < \varepsilon \quad \forall t', t'' \in K : \rho(t', t'') < \delta(\varepsilon).$$

Теорема 7.2. Всякая функция $f \in C(K)$ равномерно непрерывна.

Доказательство. Предположим, что некоторая функция $f \in C(K)$ не является равномерно непрерывной. Тогда существуют $\varepsilon_0 > 0$ и последовательности $\{t_n'\}_{n=1}^{\infty}, \ \{t_n''\}_{n=1}^{\infty} \subset K$ такие, что

$$|f(t'_n) - f(t''_n)| \ge \varepsilon_0 > 0 \quad \rho(t'_n, t''_n) < 1/n.$$

Выделим из $\{t_n'\}_{n=1}^\infty$ подпоследовательность $t_{n_k}' \to t_0 \in K$. Заметим, что $t_{n_k}'' \to t_0$ Переходя к пределу в неравенстве

$$|f(t'_{n_k}) - f(t''_{n_k})| \geqslant \varepsilon_0 > 0,$$

получим

$$0 = |f(t_0) - f(t_0)| \geqslant \varepsilon > 0.$$

Полученное противоречие доказывает теорему.

Введение на пространстве C(K) нормы

$$||f||_{C(K)} = \max_{t \in K} |f(t)|$$

превращает его в нормированное пространство и тем самым — в метрическое пространство с метрикой

$$\rho(f,g) = \|f - g\|_{C(K)} = \max_{t \in K} |f(t) - g(t)|.$$

Теорема 7.3. C(K) – полное метрическое пространство.

Доказательство. Рассмотрим произвольную фундаментальную последовательность $\{f_n\}_{n=1}^{\infty} \subset C(K)$. Для нее для каждого $\varepsilon > 0$ существует $N(\varepsilon) > 0$ такое, что

$$\rho(f_n, f_m) = \max_{t \in K} |f_n(t) - f_m(t)| < \varepsilon \quad \forall n, m > N(\varepsilon).$$

Как следствие, для каждого $t \in K$ имеем

$$|f_n(t) - f_m(t)| < \varepsilon \quad \forall n, m > N(\varepsilon).$$
 (7.1)

Значит, последовательность значений $\{f_n(t)\}_{n=1}^{\infty}$ фундаментальна и для каждого $t \in K$ существует предел

$$f(t) = \lim_{n \to \infty} f_n(t).$$

Переходя в (7.1) к пределу при $m \to \infty$, получим

$$|f_n(t) - f(t)| \leq \varepsilon \quad \forall n > N(\varepsilon).$$

Фиксируем f_n с $n > N(\varepsilon)$. В силу непрерывности функции f_n в точке $t_0 \in K$ существует $\delta(\varepsilon) > 0$ такое, что

$$|f_n(t) - f_n(t_0)| < \varepsilon \quad \forall t \in B_{\delta(\varepsilon)}(t_0).$$

Но тогда

$$|f(t)-f(t_0)| \le |f(t)-f_n(t)|+|f_n(t)-f_n(t_0)|+|f_n(t_0)-f(t_0)| < 3\varepsilon \quad \forall t \in B_{\delta(\varepsilon)}(t_0).$$

Следовательно $f \in C(K)$. Теперь из (7.1) следует, что

$$\rho(f_n, f) = \max_{t \in K} |f_n(t) - f(t)| \leqslant 3\varepsilon \quad \forall n > N(\varepsilon).$$

Опр. Пусть $\mathscr{F} = \{f\}$ - семейство функций $f \in C(K)$. Говорят, что \mathscr{F} равномерно ограничено, если существует постоянная C > 0 такая, что

$$||f||_{C(K)} \leqslant C \quad \forall f \in \mathscr{F}.$$

Опр. Семейство функций \mathscr{F} называется равностепенно непрерывным, если для любого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что

$$|f(t') - f(t'')| < \varepsilon \quad \forall t', t'' \in K : \ \rho(t', t'') < \delta(\varepsilon) \quad \forall f \in \mathscr{F}.$$

Теорема 7.4. (Теорема Асколи-Арцела) Семейство функций $\mathscr{F} = \{f\}$ предкомпактно в C(K) тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Доказательство. <u>Необходимость</u>. Пусть семейство \mathscr{F} относительно компактно. Тогда оно вполне ограничено и, следовательно, – ограничено. Кроме того, для каждого $\varepsilon > 0$ для \mathscr{F} существует конечная $\varepsilon/3$ сеть f_1, f_2, \ldots, f_N .

Для каждого f_k существует $\delta_k(\varepsilon)$ такое, что

$$|f_k(t') - f_k(t'')| < \varepsilon/3 \quad \forall t', t'' \in K, \quad \rho(t', t'') < \delta_k(\varepsilon).$$

Положим $\delta(\varepsilon) = \min_{1 \leq k \leq N} \delta_k(\varepsilon)$.

Пусть $f \in \mathscr{F}$. Тогда найдется f_k такое, что $||f - f_k||_{C(K)} < \varepsilon/3$. Поэтому

$$|f(t') - f(t'')| \leq |f(t') - f_k(t')| + |f_k(t') - f_k(t'')| + |f_k(t'') - f(t'')| \leq$$

$$\leq 2||f - f_k||_{C(K)} + |f_k(t') - f_k(t'')| < \varepsilon \quad \forall t', t'' \in K : \rho(t', t'') < \delta(\varepsilon).$$

Таким образом, У равномерно ограничено и равностепенно непрерывно.

<u>Достаточность</u>. Пусть теперь семейство \mathscr{F} равномерно ограничено и равностепенно непрерывно.

Возьмем произвольные последовательность $\{f_n\}_{n=1}^{\infty} \subset \mathscr{F}$ и $\varepsilon > 0$.

Так как K компакт, то на K существует конечная $\delta(\varepsilon/3)$ - сеть

$$t_1, t_2, \ldots, t_M$$
.

Из равномерной ограниченности \mathscr{F} следует, что $|f_n(t_j)| \leqslant C$ для всех $j=1,2,\ldots,M$. Следовательно существует подследовательность $\{f_n'\}_{n=1}^{\infty}$, сходящаяся в каждой из точек t_j .

Пусть $t \in K$. Тогда существует точка t_j такая, что $\rho(t,t_j) < \delta(\varepsilon/3)$. Из равностепенной непрерывности следует, что

$$|f'_n(t) - f'_m(t)| \le |f'_n(t) - f'_n(t_j)| + |f'_n(t_j) - f'_m(t_j)| + |f'_m(t_j) - f'_m(t)| < \varepsilon/3 + |f'_n(t_j) - f'_m(t_j)| + \varepsilon/3.$$

$$(7.2)$$

Из сходимости последовательностей $\{f_n'(t_j)\}_{n=1}^{\infty},\ 1\leqslant j\leqslant M$ следует, что

$$|f'_n(t_j) - f'_m(t_j)| < \varepsilon/3 \quad \forall n, m > N(\varepsilon) \quad \forall j = 1, 2, \dots, M.$$

Поэтому из (7.2) следует, что

$$|f'_n(t) - f'_m(t)| < \varepsilon \quad \forall t \in K \quad \forall n, m > N(\varepsilon).$$

Значит,

$$||f'_n - f'_m||_{C(K)} = \max_{t \in K} |f'_n(t) - f'_m(t)| < \varepsilon \quad \forall n, m > N(\varepsilon).$$

Последовательность $\{f'_n\}_{n=1}^{\infty}$ фундаментальна в C(K) и поэтому сходится в C(K) к некоторой функции $f \in C(K)$.

8 Критерий Рисса предкомпактности в $L_p(E), 1 \leqslant p < \infty$

Опр. Семейство функций $\mathscr{F} = \{f\} \subset L_p(E), 1 \leqslant p < \infty$ называется равномерно ограниченным, если существует постоянная C > 0 такая, что

$$||f||_{L_p(E)} \leqslant C \quad \forall f \in \mathscr{F}$$

и называется равностепенно непрерывным, если для любого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что

$$||f(\cdot + h) - f(\cdot)||_{L_p(E)} < \varepsilon \quad \forall h : |h| < \delta(\varepsilon), \quad \forall f \in \mathscr{F}.$$

Теорема 8.1. Пусть E – ограниченное измеримое множество в \mathbb{R}^m . Семейство функций $\mathscr{F} \subset L_p(E), \ 1 \leqslant p < \infty$ предкомпактно в $L_p(E)$ тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Доказательство. Для удобства продолжим все функции нулем вне E.

<u>Необходимость</u>. Пусть семейство \mathscr{F} относительно компактно. Тогда оно вполне ограничено и, следовательно, – ограничено. Кроме того, для каждого $\varepsilon>0$ существует конечная $\varepsilon/3$ – сеть g_1,g_2,\ldots,g_N . Для каждой из функций g_k существует $\delta_k(\varepsilon)>0$ такое, что

$$||g_k(\cdot + h) - g_k(\cdot)||_{L_p(E)} < \varepsilon/3 \quad \forall h: |h| < \delta_k(\varepsilon).$$

Для всякого $f \in \mathscr{F}$ существует g_k такое, что $||f - g_k||_{L_p(E)} < \varepsilon/3$. Поэтому

$$||f(\cdot + h) - f(\cdot)||_{L_{p}(E)} \le \le ||f(\cdot + h) - g_{k}(\cdot + h)||_{L_{p}(E)} + ||g_{k}(\cdot + h) - g_{k}(\cdot)||_{L_{p}(E)} + ||g_{k}(\cdot) - f(\cdot)||_{L_{p}(E)} < < \varepsilon/3 + ||g_{k}(\cdot + h) - g_{k}(\cdot)||_{L_{p}(E)} + \varepsilon/3 < \varepsilon$$

для всех h таких, что $|h| < \delta(\varepsilon) = \min_{11 \leqslant k \leqslant N} \delta_k(\varepsilon/3)$. Следовательно $\mathscr F$ равностепенно непрерывно.

<u>Достаточность</u>. Пусть теперь семейство $\mathscr{F} = \{f\}$ равномерно ограничено и равностепенно непрерывно.

Построим множество $\mathscr{F}_{\delta} = \{f_{\delta}\}$ соответствующих средних функций. Напомним, что

$$||f - f_{\delta}||_{L_p(E)} \le \sup_{|z| \le \delta} ||f(\cdot + z) - f(\cdot)||_{L_p(E)}.$$

В силу равностепенной непрерывности $\mathscr F$ для любого $\varepsilon>0$ найдется такое $\delta>0$, что $\mathscr F_\delta$ является $\varepsilon/2$ – сетью для $\mathscr F$.

Пусть \overline{B} — замкнутый шар достаточно большого радиуса, содержащий E. Заметим, что

$$|f_{\delta}(x)| \leqslant \int\limits_{\mathbb{R}^m} |f(x+z)| \omega_{\delta}(z) \, dz \leqslant \|f\|_{L_p(E)} \left[\int\limits_{\mathbb{R}^m} \omega_{\delta}(z)^{p'} \, dz \right]^{1/p'} = C_{\delta} \|f\|_{L_p(E)},$$

$$|f_{\delta}(x+h) - f_{\delta}(x)| \leqslant \int\limits_{\mathbb{R}^m} |f(x+h+z) - f(x+z)| \omega_{\delta}(z) \, dz \leqslant$$

$$\leqslant \|f(\cdot + h) - f(\cdot)\|_{L_p(E)} \left[\int\limits_{\mathbb{R}^m} \omega_{\delta}(z)^{p'} \, dz \right]^{1/p'} = C_{\delta} \|f(\cdot + h) - f(\cdot)\|_{L_p(E)},$$
где $C_{\delta} = \left[\int\limits_{\mathbb{R}^m} \omega_{\delta}(z)^{p'} \, dz \right]^{1/p'}.$

Из полученных неравенств следует, что при фиксированном δ семейство функций $\mathscr{F}_{\delta} = \{f_{\delta}\}$ равномерно ограничено и равностепенно непрерывно в $C(\overline{B})$. Поэтому оно относительно компактно в $C(\overline{B})$ и, тем более, – в $L_p(E)$.

Следовательно для любого $\varepsilon > 0$ для \mathscr{F}_{δ} существует конечная $\varepsilon/2$ – сеть g_1, g_2, \ldots, g_N , которая будет ε – сетью для \mathscr{F} .

Теорема доказана.

Теорема 8.2. Пусть E – неограниченное измеримое множество в \mathbb{R}^m . Семейство функций $\mathscr{F} \subset L_p(E)$, $1 \leq p < \infty$ предкомпактно в $L_p(E)$ тогда и только тогда, когда оно равномерно ограничено, равностепенно непрерывно и равностепенно интегрируемо.

Опр. Семейство функций $\mathscr{F} \subset L_p(E), 1 \leqslant p < \infty$ называется равностепенно интегрируемым, если для всякого $\varepsilon > 0$ найдется $R = R(\varepsilon) > 0$ такое, что

$$\int_{E \setminus B_R(0)} |f(x)|^p dx < \varepsilon \quad \forall f \in \mathscr{F}.$$

Домашнее задание к 18 марта.

Задачи 4.1, 4.2, 4.6, 4.7, 4.9 - 4.11, 4.13 - 4.15.