Linear Independence

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Linear Independence

- Plane P includes origin and three non-zero vectors $\{v, u, w\}$ in P
- If no two of $\{v, u, w\}$ are parallel, then $P=span\{u, v, w\}$
- Any two vectors determines a plane and express the other as a linear combination of those two:

$$w = d_1 u + d_2 v \ (d_1 \& d_2 \ can't \ both \ be \ zero)$$

- Independence is a property of a set of vectors.

Definition

Geometry:

- A set of vectors is independent if the subspace dimensionality (its span) equals the number of vectors.
- Example: 1,2,3 vectors spans?

Definition

Algebra

- Dependent
 - A set of vectors is dependent if at least one vector in the set can be expressed as a linear weighted combination of the other vectors in that set.
 - For at least one $\lambda \neq 0$ $\mathbf{0} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + ... + \lambda_n \mathbf{v}_n, \quad \lambda \in \mathbb{R}$
- Independence
 - No vector in the set is a linear combination of the others (has only the trivial solution)
 - Only when all $\lambda_i=0$ $\mathbf{0}=\lambda_1\mathbf{v}_1+\lambda_2\mathbf{v}_2+...+\lambda_n\mathbf{v}_n, \quad \lambda\in\mathbb{R}$

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

 A set containing only one vector—say, v—is linearly independent if and only if v is not

a. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ b. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

b.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Properties

Theorem:

Any set of vectors that contains the zeros vector is guaranteed to be linearly dependent

Properties

Theorem:

Any set of M > N vectors in \mathbb{R}^{N} is necessarily linearly dependent.

Any set of $M \leq N$ vectors in \mathbb{R}^{N} could be linearly independent.

Properties

 If a collection of vectors is linearly dependent, then any superset of it is linearly dependent.

 Any nonempty subset of a linearly independent collection of vectors is linearly independent.

Example

a.
$$\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$

b.
$$\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 8 \end{bmatrix}$

c.
$$\begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ -6 \\ -9 \\ 15 \end{bmatrix}$

Characterization of Linearly Dependent sets

Characterization of Linearly Dependent Sets

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Linear Dependent Properties

• Suppose vectors v_1, \dots, v_n are linearly dependent:

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0$$

with $c_1 \neq 0$. Then:

$$\operatorname{span}\{v_1,\ldots,v_n\}=\operatorname{span}\{v_2,\ldots,v_n\}$$

 When we write a vector space as the space of a list of vectors, we would like that list to be as short as possible. This can achieved by iterating.

Linear combinations of linearly independent vectors

• suppose x is linear combination of linearly independent vectors a_1, \ldots, a_k :

$$x = \beta_1 a_1 + \cdots + \beta_k a_k$$

- the coefficients β_1, \ldots, β_k are unique
- proof

Conclusion

- Step 1: Count the number of vectors (call that number M) in the set and compare to N in $\mathbb{R}^{\mathbb{N}}$. As mentioned earlier, if M > N, then the set is necessarily dependent. If $M \leq N$ then you have to move on to step 2.
- Step 2: Check for a vector of all zeros. Any set that contains the zeros vector is a dependent set.
- The rank of a matrix is the estimate of the number of linearly independent rows or columns in a matrix.