COMP110: Principles of Computing
4: Logic and memory

Learning outcomes

- Distinguish the basic types of logic gate
- ▶ Use logic gates to build simple circuits
- ► Explain how computer memory works

Quiz B

Due Friday 27th October

Logic gates

Boolean logic

- ▶ Works with two values: True and False
- ► Foundation of the **digital computer**: represented in circuits as **on** and **off**
- ► Representing as 1 and 0 leads to **binary notation**
- ► One boolean value = one **bit** of information
- Programmers use boolean logic for conditions in if and while statements

Simulating logic circuits

http://logic.ly/demo/

Not

NOT A is True if and only if A is False

Α	NOT A
FALSE	TRUE
TRUE	FALSE

And

A AND B is True if and only if **both** A **and** B are True

Α	В	A and B
FALSE	FALSE	FALSE
FALSE	TRUE	FALSE
True	FALSE	FALSE
TRUE	TRUE	TRUE

Or

A OR B is TRUE if and only if either A or B, or both, are TRUE

Α	В	A and B
FALSE	FALSE	FALSE
FALSE	TRUE	True
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

What is the value of

A AND (B OR C)

when

A = TRUE

 $B = \mathsf{FALSE}$

 $C = \mathsf{TRUE}$

What is the value of

(NOT
$$A$$
) AND ($B \cap C$)

when

 $A = \mathsf{TRUE}$

 $B = \mathsf{FALSE}$

 $C = \mathsf{TRUE}$

For what values of A, B, C, D is

A and not B and not $(C ext{ or } D) = T$ rue

What is the value of

A or not A

What is the value of

A and not A

What is the value of

A or A

What is the value of

 \boldsymbol{A} and \boldsymbol{A}

What expression is equivalent to this circuit?

Writing logical operations

Operation	Python	C family	Mathematics
NOT A	not a	!a	$\neg A$ or \overline{A}
A and B	a and b	a && b	$A \wedge B$
A or B	a or b	a b	$A \lor B$

Other operators can be expressed by combining these

De Morgan's Laws

NOT $(A \cap B) = (\text{NOT } A) \text{ AND } (\text{NOT } B)$

NOT (A AND B) = (NOT A) OR (NOT B)

Exclusive Or

A XOR B is TRUE if and only if either A or B, but not both, are TRUE

Α	B	A and B
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	FALSE

How can $A \times B$ be written using the operations AND, OR, NOT?

Negative gates

NAND , NOR , XNOR are the **negations** of AND , OR , XOR

A NAND B = NOT (A AND B)A NOR B = NOT (A OR B)A XNOR B = NOT (A XOR B)

Binary notation

How we write numbers

- ► We write numbers in base 10
- ▶ We have 10 **digits**: 0, 1, 2, ..., 8, 9
- ▶ When we write 6397, we mean:
 - Six thousand, three hundred and ninety seven
 - (Six thousands) and (three hundreds) and (nine tens) and (seven)
 - $(6 \times 1000) + (3 \times 100) + (9 \times 10) + (7)$
 - $(6 \times 10^3) + (3 \times 10^2) + (9 \times 10^1) + (7 \times 10^0)$

Binary

- Binary notation works the same, but is base 2 instead of base 10
- ▶ We have 2 digits: 0, 1
- ▶ When we write 10001011 in binary, we mean:

$$(1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (0 \times 2^4)$$

+ $(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$
= $2^7 + 2^3 + 2^1 + 2^0$
= $128 + 8 + 2 + 1$ (base 10)
= 139 (base 10)

Bits, bytes and words

- ► A **bit** is a binary digit
 - Can store a 0 or 1 (i.e. a boolean value)
- ► A byte is 8 bits
 - Can store a number between 0 and 255 in binary
- A word is the number of bits that the CPU works with at once
 - 32-bit CPU: 32 bits = 1 word
 - 64-bit CPU: 64 bits = 1 word
- An *n*-bit word can store a number between 0 and $2^n 1$
 - $ightharpoonup 2^{16} 1 = 65,535$
 - $ightharpoonup 2^{32} 1 = 4,294,967,295$
 - $2^{64} 1 = 18,446,744,073,709,551,615$

Computer memory

What does this circuit do?

- ► This is called a NAND latch
- ▶ It "remembers" a single boolean value
- Put a few billion of these together (along with some control circuitry) and you've got memory!

Memory

- Memory works like a set of boxes
- Each box has a number, its address
- ► Each box contains a **byte** (8 bits)

Data representation

- Memory stores sequences of numbers
- Therefore, any data stored by a computer must be represented as a sequence of numbers
 - Text: sequence of ASCII (or Unicode etc) character codes
 - Image: sequence of pixel colour values
 - 3D model: sequence of vertex coordinates
 - Audio: sequence of displacements
 - Executable: sequence of machine code operations

Arithmetic Logic Unit

Arithmetic Logic Unit

Arithmetic Logic Unit

- Important part of the CPU
- ► Inputs:
 - Operand words A, B
 - Opcode
 - Status bits
- ► Outputs:
 - Result word Y
 - Status bits
- Opcode specifies how Y is calculated based on A and B

ALU operations

Typically include:

- Add with carry
- Subtract with borrow
- ▶ Negate (2's complement)
- ► Increment, decrement
- ► Bitwise AND, OR, NOT, ...
- ▶ Bit shifts

Addition with carry

In base 10:

Addition with carry

In base 2:

1-bit adder

n-bit adder

Worksheet B