

区块链在汽车金融中的应用

鄢倩

ThoughtWorks 高级咨询师

EDD Geekbang Info Q M K S 和 A 技

TABLE OF

CONTENS 大纲

- 区块链是什么
- 汽车金融行业背景
- 区块链 + 汽车金融
- 技术实现

分布式账本

分布式数据库

可追溯

不可篡改

数字货币

区块链

去中心化

点对点网络

透明

信任机器

小结: 区块链的特征

• 分布式账本

• 可追溯

• 智能合约: 信任的机器

汽车金融行业背景

汽车的生命周期

汽车金融公司业务模式

业务痛点

• 财务成本高昂且效率不高

资金利用率不透明

• 信任主体数量较多,审核门槛高

区块链+汽车金融

AP: ¥200,000

实时账本

应收账款:80,000,000 <rmb></rmb>		
1. 经销商 A 2. 经销商 B 3. 经销商 C 4	50,000,000 20,000,000 10.000,000	2018-6-1 2018-7-1 2018-8-1

应付账款: 50,000,000 <rmb></rmb>			
1. 销售公司 2. 经销商 A 3. 经销商 C 4	40,000,000 5,000,000 5.000,000	2018-6-1 2018-7-1 2018-8-1	

价值溯源

价值溯源

价值溯源

设计和实施

上链数据识别

区域销售 物流 经销商 法律实体 区域销售 -> 经销商 物流 -> 区域销售 -> 经销商 物流 所有权转移 业务事件 经销商 确认已发送 物流已发送 车已就绪 订单已完成 占用权转移 所有权 占有权 占有权 创建方 债 位置信息 实际价格 建议价格 位置信息

Corda state

corda 中的 state 代表在账本上某个时刻被一个或者多个节点共识的事实(fact)

STATE

利用Corda state进行数据建模

VehicleState

Participants

销售公司 经销商

Properties VIN owner salesValue

LiabilityState

Participants

销售公司 经销商

Properties VIN Lender Borrower **Amount** dueDate

data class VehicleState(val VIN: String,

val owner: AbstractParty,

val salesValue: Amount<Currency>, override val linearld: Uniqueldentifier,

override val participants: List<AbstractParty>): LinearState

data class LiabilityState(

val VIN: String,

val lender: AbstractParty, val borrower: AbstractParty,

val amount: Amount<Currency>,

val dueDate: String,

override val linearld: Unique Identifier,

override val participants: List<AbstractParty>): LinearState

kotlin

kotlin

UTXO (unspent transaction output)

VehicleState

Participants

消售公司A 经销商A Properties VIN: 123ABC456

owner: 经销商A salesValue: 50,000

CNY

•••

LiabilityState

Participants

销售公司A 经销商A **Properties**

VIN: 123ABC456

Lender: 销售公司A Borrower: 经销商A

Amount: 50,000 CNY

dueDate: 2018-12-31

销售公司A签名

经销商A 签名

智能合约实现

区域销售

所有权转移合约

该合约将唯一识别是 VIN的车从 From 转移给 To同时,产生一笔从 To到 From 价值为 Amount的债务,还款截止时间是Date

验证:

交易双方必须签名

合约模板

经销商

所有权转移合约

该合约将唯一识别是 123 的车从 销售公司 转移给 经销商 同时,产生一笔从 经销商

同时,产生一笔从_经销商 到 销售公司_价值为 50,000 CNY_的债务,还 款截止时间是_2018-12-31 验证:

交易双方必须签名

合约实例

Corda flow and contract

Flow 就是一系列自动化的步骤告诉节点如何更新账本上的状态,Contract 用于验证交易的有效性

合约实现

```
class VehicleTransferFlow(...) : FlowLogic<SignedTransaction>() {
@Suspendable
                                                                            kotlin
override fun call(): SignedTransaction {
    val inputVehicleState = find(VIN, owner)
    val outputVehicleState = inputVehicleState.withNewOwner(newOwner)
    val liabilityState = Liability(newOwner, owner, salesValue, date)
      val txBuilder = TransactionBuilder(firstNotary)
                   .addInputState(inputVehicleState)
                   .addOutputState(outputVehicleState, Vehicle_CONTRACT_ID)
                   .addOutputState(liabilityState, Liability_CONTRACT_ID)
                   .addCommand(Commands.Transfer...)
      txBuilder.verify(serviceHub)
      val session = initiateFlow(ne "com.thoughtworks.VehicleStateContract"
                                                                                kotlin
                                  class VehicleStateContract : Contract {
                                      override fun verify(tx: LedgerTransaction) {
                                          val command =
                                  tx.commands.requireSingleCommand<Commands>()
                                          when (command.value) {
                                              is Commands.Transfer -> verifyTransfer(tx)
```

Contract

Flow

API设计

- 1 识别资源
- ② 设计URI
- ③定义 REST API

平台分层架构

部署单元

网络部署架构

区块链汽车金融平台和传统平台的差异点

THANKS

