Код Гилберта-Мура

5 января 2023 г. 1:22

Проблема кода Шеннона: если символов очень много (близко к ∞), то сортировка вероятностей усложняет всю процедуру

Мы имеем побуквенный код и стремимся расширить алфавит для улучшения сжатия. т.е. пытаемся приблизиться к наименьшей возможной избыточности. Код Шеннона такую возможность не дает, т.к. требует сортировки

$\frac{x p(x) q(x) I(x) c(x)}{3 0.1 0.04 0000}$ we gerographete									
	X	p(x)	q(x)	I(x)	c(x)	ne gerograpyeras	o gray ras cro		
	а	0.1	0	4	0000	9 0 10			
	b	0.3	0.1	2	00				
	С	0.6	0.4	1	0	_			

Используя код Гилберта-Мура, можно избежать необходимость сортировки вероятностей за счет введения дополнительной избыточности

Результат для кода Гилберта-Мура:

	X	p(x)	q(x)	$\sigma(x)$	I(x)	c(x)
	0	0.1	0.0	0.05	5	00001
	1	0.6	0.1	0.4	2	01
	2	0.3	0.7	0.85	3	110

Код Гилберта-Мура сжимает еще хуже, чем код Шеннона, зато не требует сортировки

Итак, в коде Гилберта-Мура не происходит сортировки вероятностей и вводится модифицированная кумулятивная вероятность.

Т.е. имеем ансамбль $X = \{1, 2, \dots, M\}, \{p_1, p_2, \dots, p_M\}$

Для каждого $x \in X$ вычислим модифицированную кумулятивную вероятность (сигма):

$$\sigma_i=q_i+rac{p_i}{2},\ i=1,2,\ldots,M$$

Здесь $q_1=\overset{ au}{0},\;q_i=\sum_{j=1}^{i-1}p_j$. Кодовое слово x_i - это двоичная последовательность, представляющая собой первые $l_i = \left\lceil -lo\,g\!\left(rac{p_i^{\,\prime}}{2}
ight)
ight
ceil$ бит после запятой в двоичном представлении σ_i

Т.е. длина кодового слова будет больше на 1, чем в коде Шеннона (средняя длина кодового слова < H+2 для кода Гилберта-Мура)

Пример:

•									
	X	p(x)	q(x)	$\sigma(x)$	I(x)	c(x)			
	а	0.35	0	0.175	3	001			
	b	0.20	0.35	0.450	4	0111			
	С	0.15	0.55	0.625	4	1010			
	d	0.1	0.70	0.750	5	11000			
	е	0.1	0.80	0.850	5	11011			
	f	0.1	0.90	0.950	5	11110			

$$\bar{l} = \sum_{x} p(x) l(x) = 3.95 > H = 2.4016$$

Код Гилберта-Мура является префиксным Код является префиксным: для $i < j, \sigma_j > \sigma_i$

$$\begin{split} \sigma_{j} - \sigma_{i} &= \sum_{h=1}^{j-1} p_{h} + \frac{p_{j}}{2} - \sum_{h=1}^{j-1} p_{h} - \frac{p_{i}}{2} = \\ &= \sum_{h=i}^{j-1} p_{h} + \frac{p_{j} - p_{i}}{2} \geq \\ &\geq p_{i} + \frac{p_{j} - p_{i}}{2} = \\ &= \frac{p_{j} + p_{i}}{2} \geq \frac{\max{\{p_{i}, p_{j}\}}}{2} \geq 2^{-\min{\{l_{i}, l_{j}\}}}, \end{split}$$

где

$$I_m = \left\lceil -\log \frac{p_m}{2} \right\rceil \ge -\log \frac{p_m}{2}.$$

Это означает, что слова $oldsymbol{c}_i$ и $oldsymbol{c}_i$ различаются в одном из первых $\min\{l_i,l_j\}$ двоичных символов, т.е., ни одно из двух слов не может

быть началом другого.

Свойства префиксного кода:

- 1. Любое кодовое слово не должно быть началом другого
- 2. Декодирование однозначно (причем однозначно декодируемый код не обязательно префиксный)
- Кодовым словам соответствуют только листья двоичного кодового дерева
- Древовидный код является префиксным

Графическая интерпретация кода Гилберта-Мура:

- 1. Отмечаем на отрезке от 0 до 1 значения q и σ (на рисунке q и s)
- Как и в коде Шеннона, делим отрезок пополам и смотрим, с какой стороны нужная модифицированная кумулятивная вероятность, формируем кодовое слово (справа от середины - 1, иначе 0)
- Выполняем, пока на отрезке не останется только одна σ рассматриваемая нами
 - $X = \{x_1, x_2, x_3\}, p(x_1) = 0.1, p(x_2) = 0.6, p(x_3) = 0.3$
- $q(x_1) = 0, q(x_2) = 0.1, q(x_3) = 0.7$
- $s(x_1) = 0.05, s(x_2) = 0.4, s(x_3) = 0.85$

Рассмотрим колирование ха

Декодер:

Декодер получает не сами "сигмы", а их аппроксимацию, потому что вместо 0.4 мы передали 2 бита: 01. Назовем их округленными "сигмами"

(Если взять 0.01 в бинарном представлении, это 0.25 в десятичной СС)

- 1. На отрезке от 0 до 1 отмечаем q, "сигмы" и округленные "сигмы"
- 2. Смотрим, между какими q попала искомая округленная "сигма"
- 3. Выдаем левую q. Точнее, x, ей соответствующий

•
$$p(x_1) = 0.1, p(x_2) = 0.6, p(x_3) = 0.3$$

•
$$q(x_1) = 0, q(x_2) = 0.1, q(x_3) = 0.7$$

•
$$s(x_1) = 0.05, s(x_2) = 0.4, s(x_3) = 0.85$$

• Декодируем кодовое слово 01 или $\hat{s} = 0.25$.

- После округления до $I(x_i)$ разрядов, число $s(x_i) = q(x_i) + p(x_i)/2$ уменьшается не более чем на $p(x_i)/2$, поскольку ошибка округления не больше, чем $2^{-l(x_i)} \le p(x_i)/2$.
- ullet Декодирование: найти x_i , такое что $q(x_i) \leq \hat{s} < q(x_{i+1})$.

Итак, код Гилберта-Мура лучше кода Шеннона отсутствием необходимости сортировать вероятности, но хуже с точки зрения избыточности. Чтобы уменьшить кодовую избыточность, можно использовать блоковое кодирование