ANYANG TECHNOLOGICAL UNIVERSITY **School of Electrical & Electronic Engineering**

IE2108 Data Structures and Algorithms

Tutorial No. 3 (Sem 1, AY2022-2023)

- 1. Determine the order of growth of the following sums. Use the O(q(n)) notation with the *simplest* function g(n) possible.

 - (ii)
 - $\sum_{i=0}^{n-1} (i^2 + 1)^2$ $\sum_{i=2}^{n-1} \lg i^2$ $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$ (iii)
- 2. The algorithm for finding the maximum element of an array is shown as follows:

Input: array A of n integers Output: maximum element of A

Algorithm arrayMax(A, n) currentMax = A[0]for i = 1 to n-1if A[i] > currentMax currentMax = A[i]return currentMax

Determine the number of times that the statement "currentMax = A[i]" will be executed in the best case and in the worst case.

- 3. For each of the following algorithms, give an asymptotic notation for the number of times that the statement x = x + 1 is executed.
 - (i) for i = 1 to nfor j = 1 to i for k = 1 to i x = x + 1
 - (ii) j = nwhile $(j \ge 1)$ { for i = 1 to jx = x + 1j = j/3
- 4. Find the first 4 terms of the recurrence relation $a_k = 2a_{k-1} + k$, where $a_1 = 1$.
- 5. Solve the recurrence relation to compute the value for a_n : $a_n = a_{n-1} + 3$, where $a_1 = 2$.

6. Determine the complexity of the following recursive function. (You may assume that $n = 2^k$).

$$T(n) = 2T\left(\frac{n}{2}\right) + cn \quad \text{if } n > 1$$

$$T(n) = 1 \quad \text{if } n = 1.$$

7. Consider the following recursive algorithm,

```
Input: positive integer n
Output: Q(n)

Algorithm Q(n)
if n = 1
return 1
else
return Q(n-1) + 2*n - 1
```

Set up a recurrence relation for the *number of multiplications* made by the algorithm and solve it.