CSGE602055 Operating Systems CSF2600505 Sistem Operasi Minggu 03

Rahmat M. Samik-Ibrahim

Universitas Indonesia

http://rms46.vlsm.org/2/207.html

REV06 27-Feb-2017

Agenda

- Start
- 2 Agenda
- Week 03
- 4 Legacy BIOS
- UEFI
- **6** UEFI Boot
- Operating System (Boot) Loader
- GRUB Map
- init (legacy)
- UpStart
- systemd
- 12 The End

Week 03: BIOS, Boot and UpStart

- Reference: (Any Related Tutorial) (ETC 300-323)
 - Upstart Intro, Cookbook and Best Practices
 upstart.ubuntu.com/cookbook/upstart_cookbook.pdf
- Firmware
 - BIOS: Basic Input Output System.
 - UEFI: Unified Extensible Firmware Interface.
 - ACPI: Advanced Configuration and Power Interface.
- Operating System (Boot) Loader
 - BOOTMGT: Windows Bootmanager / Bootloader.
 - LILO: Linux Loader.
 - GRUB: GRand Unified Bootloader.
- Operating System Initialization
 - Init (legacy)
 - UpStart
 - Systemd
- Lab
 - Scripting
 - Simple Programs

Legacy BIOS

- Check Settings.
- Initialize CPU & RAM.
- POST: Power-On Self-Test.
- Initialize ports, LANS, etc.
- Load a Boot Loader.
- Handover to the Boot Loader.
- Provides "Native" (obsolete) Drivers only (not loadable).
- Provides "INT" services .
- Limitation.
 - Technology of 1970s.
 - 16 bits software.
 - 20 bits address space (1 MB).
 - 31 bits disk space (2 TB).

UEFI

- A Firmware Specification, not an Implementation!
- No (INT) service after boot.
- HII: Human Interface Infrastructure.
- Protected Mode.
- Flexible.
 - Technology of 2000s.
 - writen in C.
 - (third party) loadable drivers and tools.
 - Emulate Legacy BIOS transition (MBR block, INT service).
 - UEFI Shell: environment shell for diagnostic (no need for DOS).

Platform Initialization (PI) Boot Phases

Figure: UEFI Boot Process¹.

Operating System (Boot) Loader

- General
 - How/Where to start the operating system?
 - What to do?
 - How many ways to boot?
 - How many types of OS?
- GRUB/GRUB2: GRand Unified Boot system
 - Stage 1 (boot.img): MBR (Master Boot Record) Where is everything
 - Stage 1.5 (image.img): generated from diskboot.img
 - Stage 2: Kernel Selection: Windows, Linux, BSD, etc.
- GRUB2
 - More flexible than GRUB legacy
 - More automated than GRUB legacy

GRUB Map

GNU GRUB 2

Locations of boot.img, core.img and the /boot/grub directory

Example 1: an MBR-partitioned harddisc with sector size of 512 or 4096Bytes

Example 2: a GPT-partitioned harddisc with sector size of 512 or 4096Bytes

Figure: GRUB¹.

¹Source Shmuel Csaba Otto Traian 2013

init (legacy)

- File: /etc/inittab.
- Folders: /etc/rcX.d X = runlevel.
 - Seven (7) different runlevels:
 - 0 (shutdown).
 - 1 (single-user/admin).
 - 2 (multi-user non net).
 - 3 (standard).
 - 4 (N/A).
 - 5 (3+GUI).
 - 6 (reboot).
 - SXX-YYY: Start
 - KXX-YYY: Kill.
- One script at a time in order.
- dependency is set manually.

UpStart

- Developer: Ubuntu.
- Folder: /etc/init/.
- Control: initctl.
 - initctl list listing all processes managed by upstart.
- better support for hotplug devices.
- cleaner service management.
- faster service management.
- asynchronous.

systemd

- Better:
 - reliable and clean service management.
 - supports legacy systems (init).
 - simple service file (scripts).
 - better hotplug.
 - dependencies handling.
 - concurency handling.
 - overhead reducing.
 - unified way for all distros.
 - bloated: doing more with more resources.
 - linux specific: NOT portable.
- Control: systemctl.
 - systemctl
 - systemctl status ssh.service
 - systemctl start XXXX

The End

• This is the end of the presentation.