Caleb Logemann MATH 520 Methods of Applied Math II Homework 2

Section 10.9

#10 Let S_+ and S_- be the left and right shift operators on ℓ^2 . Show that $S_- = S_+^*$ and $S_+ = S_-^*$.

Proof. Both S_+ and S_- are in $\mathcal{B}(\ell^2)$ therefore they both have unique adjoints. Consider $x, y \in \ell^2$, then

$$\langle S_{+}x, y \rangle = \sum_{n=1}^{\infty} ((S_{+}x)_{n} \cdot \overline{y_{n}})$$

$$= \sum_{n=2}^{\infty} (x_{n-1} \cdot \overline{y_{n}})$$

$$= \sum_{n=2}^{\infty} (\overline{x_{n-1}}y_{n})$$

#11 Let T be the Volterra integral operator $Tu=\int_0^x u(y)\,\mathrm{d}y$ considered as an operator on $L^2(0,1)$. Find T^* and $N(T^*)$.

#12 Suppose $T \in \mathcal{B}(\mathbf{H})$ is self-adjoint and there exists a constant c > 0 such that $||Tu|| \ge c||u||$ for all $u \in \mathbf{H}$. Show that there exists a solution of Tu = f for all $f \in \mathbf{H}$. Show by example that the conclusion may be false if the assumption of self-adjointedness is removed.

Proof. This conclusion may be false if that operator is not self-adjoint. Consider the operator S_+ on ℓ^2 . We have already shown that $S_+^* = S_-$ so S_+ is not self-adjoint. However $||S_+x|| = ||x||$ for all $x \in \ell^2$, so with c = 1 S_+ satisfies $||S_+x|| \ge c||x||$ for all $x \in \ell^2$. However $R(S_+) = \{x \in \ell^2 : x_1 = 0\}$, so $S_+u = x$ will not have a solution if $x_1 \ne 0$.

#13 Let M be the multiplication operator Mu(x)=xu(x) in $L^2(0,1)$. Show that R(M) is dense but not closed.

#15 An operator $T \in \mathcal{B}(\mathbf{H})$ is said to be normal if it commutes with its adjoint, i.e. $TT^* = T^*T$.

#19