Nonparametric Statistics

Ch.7 Bootstrap

Motivation

- ❖ Very often, we want to estimate the variance of a statistic. This is sometimes possible or easy to obtain, but, in many cases, it is hard to find or almost impossible.
- ❖ For example, to construct a confidence interval for the population mean, we need to know the variance of the sample mean.

Confidence interval :
$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 where $var(\bar{X}) = \frac{\sigma^2}{n}$

Replacing σ^2 by S^2 enables us to obtain a confidence interval.

Suppose that we have $\hat{\theta}$, an estimator of a parameter θ and want to construct a confidence interval. Is it possible to find $var(\hat{\theta})$ in a general setting?

Motivation

- * "Bootstrap" is a easy-to-use and powerful method to estimate the variance of a statistic. More generally, the "Bootstrap" method can provide approximations of sampling distributions of statistics.
- The "Bootstrap" method is particularly useful when no results on distributions are available. However, even if some distributional properties are known, bootstrap generally provides competitive or better approximations.
- There are some cases where the bootstrap does not work. However, we do not mention about this topic.

Bootstrap

- A basic idea is to replace the <u>unknown</u> distribution function F by its empirical version \widehat{F}_n which is in principle <u>known</u>.
- Suppose that we have a sample $\mathcal{X} = \{X_1, ..., X_n\}$ and a statistic T_n is a function of it $T_n = T(\mathcal{X})$. Basically, we want to know the distribution of T_n , $G(x) = P(T_n \le x)$ which relies on F. The problem here is that we do not know F.
- We replace F by \widehat{F}_n and resample from it. That is, we have $\mathcal{X}^* = \{X_1^*, ..., X_n^*\}$ from \widehat{F}_n . Note that

$$P(X_i^* \le x) = \widehat{F}_n(x).$$

So, $T_n^* = T(\mathcal{X}^*)$ only depends on \widehat{F}_n which is known. T_n^* is a surrogate statistic to T_n .

The <u>known</u> sampling properties of T_n^* could mimic the <u>unknown</u> sampling properties of T_n .

Bootstrap: "Adventures of Baron"


```
Award Modular BIOS v6.00PG, An Energy Star Ally
Copyright (C) 1984-2007, Award Software, Inc.

Intel X38 BIOS for X38-DQ6 F6b

Main Processor: Intel(R) Core(TM)2 Extreme CPU X9770 @ 3.20GHz(400x8)

CCPUID:0676 Patch ID:0606>
Memory Testing: 2096064K OK

Memory Runs at Dual Channel Interleaved
IDE Channel 1 Master: WDC WD3200AAJS-00RYA0 12.01B01

Detecting IDE drives...

CDEL>:BIOS Setup <F9>:XpressRecovery2 <F12>:Boot Menu <End>:Qf lash
10/30/2007-X38-ICH9-6A79060QC-00
```

- ❖ In the simplest case, the bootstrap estimates could be calculated analytically.
- ❖ In general, the bootstrap estimates could also be obtained by Monte-Carlo simulations as follows:
- Draw B samples of size n ($\mathcal{X}^{(b)}$, b=1,...,B) from \hat{F}_n
- Compute $T(X^{(b)}), b = 1, ..., B$.
- By the strong law of large numbers, CDF of $T_n = T(\mathcal{X})$ can be approximated by $\frac{1}{B}\sum_{b=1}^B I(\mathcal{X}^{(b)} \leq x)$
- Simply speaking, $T(X^{(b)})$, b = 1, ..., B could be regarded as a sample from the true distribution of $T_n = T(X)$.

- \bullet How do we simulate from \widehat{F}_n ?
- => \hat{F}_n gives probability 1/n to each data point. Therefore, drawing n points at random from \hat{F}_n is the same as drawing a sample of size n with replacement from the original data.

- Ex] Sample mean : $\bar{X} = T(X_1, ..., X_n)$
- $B\dot{a}s(\bar{X}) = E(\bar{X}) \mu = 0$
- $Var(\bar{X}) = \sigma^2/n$
- CDF of $\bar{X} = \text{CDF of } N(\mu, \frac{\sigma^2}{n})$
- The bootstrap estimator : Monte-Carlo simulations
- Draw B samples from \hat{F}_n and compute $\bar{X}^{(b)} = T(\mathcal{X}^{(b)}), b = 1, ..., B$.
- $B\dot{a}s$ $(\bar{X}) pprox rac{1}{B} \sum_b \bar{X}^{(b)} \bar{X}$
- $Var(\bar{X}) \approx \frac{1}{B} \sum_{b} \left(\bar{X}^{(b)} \frac{1}{B} \sum_{b} \bar{X}^{(b)} \right)^2 = \frac{1}{B} \sum_{b} \left(\bar{X}^{(b)} \right)^2 \left(\frac{1}{B} \sum_{b} \bar{X}^{(b)} \right)^2$
- CDF of $\bar{X} \approx \frac{1}{B} \sum_{b=1}^{B} I(\bar{X}^{(b)} \le x)$

- In general for $T_n = T(X_1, ..., X_n)$ to estimate $\theta(F)$.
- $B \dot{a} s (T_n) = E(T_n) \theta(F) = 0$
- $Var(T_n) = E(T_n E(T_n))^2$
- The bootstrap estimator : Monte-Carlo simulations
- Draw B samples from \hat{F}_n and compute $T_n^{(b)} = T(\mathcal{X}^{(b)}), b = 1, ..., B$.
- $B\dot{a}s$ $(T_n) \approx \frac{1}{B}\sum_b T_n^{(b)} \theta(\hat{F}_n)$
- $Var(T_n) \approx \frac{1}{B} \sum_b \left(T_n^{(b)} \frac{1}{B} \sum_b T_n^{(b)} \right)^2 = \frac{1}{B} \sum_b \left(T_n^{(b)} \right)^2 \left(\frac{1}{B} \sum_b T_n^{(b)} \right)^2$
- CDF of $T_n \approx \frac{1}{B} \sum_{b=1}^B I(T_n^{(b)} \le x)$

Bootstrap: Example

- **❖** X_i ∼ $Exp(\mu)$, $\mu = 50$, n = 10
- * Bootstrap estimation of the distribution of the sample mean with B = 5000.
- $\Gamma(n, \frac{\mu}{n})$ vs $\Gamma(n, \frac{\bar{X}}{n})$

vs $N(\bar{X}, \frac{s^2}{n})$ vs Bootstrap

❖ Bootstrap mean & var :

44.91 & 198.35

(Note that the true values are 50 & 250)

Parametric Bootstrap

- So far, we have estimated F nonparametrically. There is also a parametric bootstrap. Let F_{θ} depends on a parameter θ . Then, the parametric bootstrap is drawing a sample from $F_{\widehat{\theta}}$ instead of \widehat{F}_n .
- \bullet How do we simulate from $F_{\widehat{\theta}}$? Use the fact that

$$X \sim F \rightarrow F^{-1}(U) \sim F$$
 where $U \sim U(0,1)$

Normal interval

$$T_n \pm z_{\alpha/2} \sqrt{Var^*(T_n)}$$

where $Var^*(T_n)$ is a Bootstrap estimator of the variance of T_n . This is not accurate unless T_n is well approximated by normal.

Pivotal interval

Let $\theta(F)$ be a parameter of interest and $T_n = T(\mathcal{X})$ is its estimator. We call $T_n - \theta(F)$ "pivot" or "root". If we know the distribution of $T_n - \theta(F)$, say H. We have

$$P\left(u\left(\frac{\alpha}{2}\right) \le T_n - \theta(F) \le u\left(1 - \frac{\alpha}{2}\right)\right) = 1 - \alpha$$

where u(a) is the a-quantile satisfying $H(u(a)) = P(T_n - \theta(F) \le u(a)) = a$. Then, $100(1-\alpha)\%$ confidence interval for θ is given by

$$(T_n-u\left(1-\frac{\alpha}{2}\right),T_n+u\left(\frac{\alpha}{2}\right))$$

A basic idea is to estimate $u\left(1-\frac{\alpha}{2}\right)$ and $u\left(\frac{\alpha}{2}\right)$ by Bootstrapping.

Pivotal interval (continued)

Let \widehat{H}^* be a Bootstrap estimator of H, that is, the distribution function of $T_n^* - \theta(\widehat{F}_n)$. Note that

$$\widehat{H}^*(x) = P^* \big(T_n^* - \theta \big(\widehat{F}_n \big) \le x \big) \approx \frac{1}{B} \sum_{b=1}^B I(T_n^* - \theta \big(\widehat{F}_n \big) \le x)$$

Practical computation

Let $u^*(a)$ be the quantile of \widehat{H}^* and $v^*(a)$ be the quantile of \widehat{G}^* where $\widehat{G}^*(x) = P^*(T_n^* \le x) \approx \frac{1}{B} \sum_{b=1}^B I(T_n^* \le x)$. Then, $u^*(a) = v^*(a) - \theta(\widehat{F}_n)$ and $v^*(a)$ is directly obtained by \widehat{G}^* . Therefore, $100(1-\alpha)\%$ confidence interval is given by

$$(T_n-u^*\left(1-\frac{\alpha}{2}\right),T_n+u^*\left(\frac{\alpha}{2}\right))$$

Pivotal interval (continued)

Note here that $T_n = \theta(\hat{F}_n)$ in general and therefore $100(1-\alpha)\%$ confidence interval is given by

$$(2T_n-v^*\left(1-\frac{\alpha}{2}\right),2T_n-v^*\left(\frac{\alpha}{2}\right))$$

Bootstrap: Example (continued)

❖ 2.5% and 97.5% sample quantiles of 5000 bootstrap sample means are $v^*(0.025) = 20.96, v^*(0.975) = 75.07$, respectively. Therefore, 95% pivotal confidence interval for the mean is

$$(2\bar{X} - v^*(0.975), 2\bar{X} - v^*(0.025)) = (2 \times 44.60 - 75.07, 2 \times 44.60 - 20.96)$$

= (14.13, 68.25)

Normal interval is given by

$$\bar{X} \pm z_{\alpha/2} \sqrt{Var^*(\bar{X})} = 44.60 \pm 1.96 \times \sqrt{198.35} = (17.00, 72.21)$$

Note that other confidence intervals are available.

- \diamond Consider the case that we are interested in estimating the distribution of the sample correlation coefficient r.
- \diamond Do you know anything about the sampling distribution of r? Some asymptotic results exist, but they demand advanced statistical techniques.
- \diamond We can automatically obtain the sampling distribution of r via bootstrapping!

Let

$$X \sim N_2 \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 & 1.5 \\ 1.5 & 1 \end{pmatrix}$$
.

Here $\rho = 0.75$. We have a sample of size 100, and the sample correlation coefficient r = 0.7367.

* We resample B = 5000 bootstrap samples and calculate the bootstrap estimators $r^{*,b}$ b = 1, ..., 5000. Then, the bootstrap approximations of the mean and the variance of the distribution of r are given by

$$E^*(r) = \frac{1}{5000} \sum_{b} r^{*,b} = 0.7432$$

$$Var^*(r) = \frac{1}{5000} \sum_{b} (r^{*,b})^2 - \left(\frac{1}{5000} \sum_{b} r^{*,b}\right)^2 = 0.0113$$

• This figure depicts the Bootstrap distribution of r^* .

- Confidence interval :
- Normal interval

$$(r - 1.96\sqrt{Var^*(r)}, r + 1.96\sqrt{Var^*(r)}) = (0.5280, 0.9454)$$

Pivotal interval

$$(2r - v^*(0.975), 2r - v^*(0.025)) = (0.5799, 0.9934)$$

where $v^*(a)$ is the lower a -quantile of the Bootstrap distribution.

• Can you give an answer for the hypotheses $H_0: \rho = 0$ vs $H_1: \rho \neq 0$?

More on confidence interval: percentile

Percentile interval :

$$\left(v^*\left(1-\frac{\alpha}{2}\right),v^*\left(\frac{\alpha}{2}\right)\right)$$

where $v^*(a)$ is the lower a -quantile of the Bootstrap distribution.

• Justification : Suppose that there exists a monotone transformation function m such that $U_n = m(T_n)$ and $U_n \sim N(\phi, c^2)$ where $\phi = m(\theta(F))$. Then, the pivotal confidence interval for ϕ is

$$\left(U_n-u_U^*\left(1-rac{lpha}{2}
ight)$$
 , $U_n-u_U^*\left(rac{lpha}{2}
ight)
ight)$

where $u_U^*(a)$ is the lower a -quantile of the Bootstrap distribution of $U_n^* - m(\theta(\hat{F}_n))$.

More on confidence interval : percentile

Note that $U_n - m(\theta(F))$ is symmetric around 0. Therefore, $u_U^* \left(1 - \frac{\alpha}{2}\right) \approx -u_U^* \left(\frac{\alpha}{2}\right)$ and $u_U^* \left(\frac{\alpha}{2}\right) \approx -u_U^* \left(1 - \frac{\alpha}{2}\right)$. The interval can be rewritten as $\left(U_n + u_U^* \left(\frac{\alpha}{2}\right), U_n + u_U^* \left(1 - \frac{\alpha}{2}\right)\right)$

where $v_U^*(a)$ is the lower a -quantile of the Bootstrap distribution of U_n^* .

Recall that $u_U^*(a) = v_U^*(a) - m(\theta(\widehat{F}_n)) = v_U^*(a) - U_n$. Therefore, the interval is

$$\left(v_U^*\left(\frac{\alpha}{2}\right), v_U^*\left(1-\frac{\alpha}{2}\right)\right)$$

Note that this is the confidence interval for $\phi = m(\theta(F))$.

More on confidence interval : percentile

lacktriangle Due to the monotonicity of m, the percentile confidence interval for $\theta(F)$ is given by

$$\left(v^*\left(\frac{\alpha}{2}\right), v^*\left(1-\frac{\alpha}{2}\right)\right)$$

$$v_U^*(a) = m(v^*(a)).$$

- \diamond Surprisingly, we do not need to know the transformation function m. The existence of such transformation is enough.
- Actually, this interval is valid whenever $U_n \phi$ follows a symmetric distribution around 0, which means that this may fail for biased estimators.

Bootstrap: Example (correlation) revisited

Percentile interval :

$$(v^*(0.025), v^*(0.975)) = (0.4800, 0.8934)$$

where $v^*(a)$ is the lower a -quantile of the Bootstrap distribution.

- Compare it to the aforementioned intervals.
- Normal interval

(0.5280, 0.9454)

- Pivotal interval

(0.5799, 0.9934)

Duration data: 10 observations of duration times.

$$X = (1,5,12,15,20,26,78,145,158,358)$$

- For duration times, the exponential modelling $(X \sim \exp(\mu))$ is reasonable in many cases. Note that in the exponential model $\mu = \sigma$ where $\mu = E(X)$ and $\sigma = \sqrt{Var(X)}$.
- Suppose that we are interested in estimating the sampling distribution of the sample mean \bar{X} .
- Note that $\bar{x} = 81.8$, s = 112.94.

- ❖ Several approaches are possible based on parametric (①~③) and nonparametric (④~⑤) methods.
- 1 Exact result based on the exponential model

$$\bar{X} \sim \Gamma(n, \mu/n), \hat{\mu} = \bar{x}$$

② CLT based on the exponential model ($\mu = \sigma$)

$$\bar{X} \sim N(\mu, \mu^2/n), \hat{\mu} = \bar{x}$$

③ Parametric Bootstrap

Generate Bootstrap samples from $Exp(\bar{x})$.

4 CLT

$$\bar{X}$$
 \sim N(μ , σ^2/n), $\hat{\mu} = \bar{x}$, $\widehat{\sigma^2} = s^2$

(Nonparametric) Bootstrap

Generate Bootstrap samples from \hat{F}_n .

Distributions of the sample mean

 \bullet Estimation of the mean and standard deviation of \bar{X} .

①
$$\widehat{E}(\bar{X}) = \bar{x} = 81.8$$
, $\widehat{Std}(\bar{X}) = \frac{\bar{x}}{\sqrt{n}} = 25.87$

②
$$\widehat{E}(\bar{X}) = \bar{x} = 81.8$$
, $\widehat{Std}(\bar{X}) = \frac{\bar{x}}{\sqrt{n}} = 25.87$

③
$$\hat{E}(\bar{X}) \approx 81.89$$
, $\widehat{Std}(\bar{X}) \approx 26.10$

(4)
$$\widehat{E}(\bar{X}) = \bar{x} = 81.8$$
, $\widehat{Std}(\bar{X}) = \frac{s}{\sqrt{n}} = 35.71$

(5)
$$\widehat{E}(\overline{X}) \approx 82.09$$
, $\widehat{Std}(\overline{X}) \approx 33.46$

- ❖ 95% Confidence interval for the population mean.
- ① $\bar{X} \sim Gam \ m \ a\left(n, \frac{\mu}{n}\right) \Rightarrow \frac{\bar{X}}{\mu} \sim Gam \ m \ a\left(n, \frac{1}{n}\right)$

$$\Rightarrow P\left(G_{0.025}\left(n,\frac{1}{n}\right) \leq \frac{\bar{X}}{\mu} \leq G_{0.975}\left(n,\frac{1}{n}\right)\right) = 1 - \alpha$$

$$\Rightarrow C.I. for \ \mu : \left(\frac{\bar{x}}{G_{0.975(n,\frac{1}{n})}}, \frac{\bar{x}}{G_{0.025(n,\frac{1}{n})}}\right) = (47.88,170.58)$$

- ② $\bar{X} \sim N\left(\mu, \frac{\mu^2}{n}\right) \Rightarrow C.I. for \ \mu : \left(\bar{x} \pm z_{0.975} \frac{\bar{x}}{\sqrt{n}}\right) = (31.10, 132.50)$
- ③ Pivotal: (24.07,124.66), Percentile: (38.94,139.53)
- (4) $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow C.I. for \ \mu: \left(\bar{x} \pm z_{0.975} \frac{s}{\sqrt{n}}\right) = (11.80, 151.80)$
- ⑤ Pivotal: (8.79,137.30), Percentile: (26.30,154.81)

- Note that $1 \sim 3$ are based on the exponential model and $\bar{x} = 81.8$, s = 112.94, which suggests that the parametric approximation to the exponential distribution is questionable.
- ❖ In this example, the sample size is too small to apply CLT, and therefore ⑤ is only possibility remained.
- ❖ There are more advanced Bootstrap confidence intervals to improve the accuracy of interval estimation.