Classification Project

By

Indranil Pradhan (2019202008)

Souptik Mondal (2019201090)

Overview

The project deals with Earthequake Data Analysis. The data has been collected from "Earthquake Engineering Research Centre" from "Internation Institute of Information Technology, Hyderabad".

By analysis we need to find out the Threshold value between [4,5] for which the data is well seperated into earthquake [1] and no earthquake [0].

The analysis comprises of two famous classifiers K nearest Neighbours and Decision Tree. For analysis we need to consider number of nearest neighbours for K nearest neighbours and pre-prune depth for Decision Tree. With these two classifiers it is needed to find hidden pattern among the data and report the best classifier with best parameter.

Dataset

The provided dataset has 20 columns and 52989 records.

The period of the data is from 2474 BC - 2015 AD.

The columns are respoectively

- SI. No.: Serial Number.
- Year, Month, Day: Date of a particular earthquake as per UTC (Coordinated Universal Time).
- Origin Time of earthquake in UTC and IST (Indian Standard Time) in [Hour: Minute: seconds] format.
- Magnitude of Earthquake: There are a different way to represent the magnitude of an earthquake. For your study, you can consider Mw, since we are deriving other types from Mw only.
- GPS Location in terms of Latitude(Lat) and Longitude(Long) of earth- quake.
- Depth: Depth of occurrence of an earthquake in kilometre.
- Location: Name of a region where an earthquake took place.
- Source: The agency from which we have gathered the data, for e.g. IMD= Indian Meteorological Department, Min. of Earth Science, Government of India.

The target here is Mw which is magnitude of the earthquake. Currently Mw is given as numerical value. So it is needed to apply threshold to the magnitude of the earhquake and transform these into catergorical value of 1 and 0 where 1 means earhquake and 0 means no earthquake i.e. if threshold is T, for Mw < T, label becomes 0 (no earthquake) and for Mw \geq T becomes 1 (earthquake).

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 52989 entries, 0 to 52988
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- 0 Searial No 52989 non-null int64
1 Year 52989 non-null int64
```

```
52971 non-null object
    Month
               52932 non-null float64
3
   Day
  (UTC)
               21186 non-null object
 4
                426 non-null object
40935 non-null float64
5
    (IST)
               426 non-null
 6
    Mw
7
               50485 non-null object
8
    Mb
               12283 non-null object
9
    Mb.1
              50497 non-null object
10 Ms
               52823 non-null object
11 ML
               52823 non-null object
12 Latitude 52989 non-null object
13 Longitude 52989 non-null object
14 Depth 50811 non-null float64
              41 non-null object
0 non-null float64
0 non-null float64
15 MM
16 MMI
17 MME
18 Location 9374 non-null object
19 Reference 51407 non-null object
dtypes: float64(5), int64(2), object(13)
memory usage: 8.1+ MB
```

Data Cleaning

After going through the dataset it is been noticed that first few rows are informal rows which are not needed for our analysis.

The number of missing values are calculated for each column. and the result is printed below.-

In []:

```
Out[]:
Searial No
               0
Year
Month
               18
              57
Day
(UTC)
           31803
           52563
(IST)
            12054
Μw
Mw
            2504
            40706
Mb
Mb.1
            2492
Ms
             166
             166
ML
             0
Latitude
               0
Longitude
Depth
            2178
MM
            52948
MMI
           52989
MME
           52989
Location
           43615
            1582
Reference
dtype: int64
```

So after observing the missing values for each columns, the following steps are taken to clean the dataset-

- 1. The first few informal rows have been droped from the dataset as it is of no use.
- 2. Serial Number column has been dropped.
- 3. It has been observed that the columns (UTC),(IST),MM,MMI,MME,Location have more than 50% missing values. As it is undesirable to compensate for more than 50% missing values, so the columns (UTC), (IST),MM,MMI,MME,Location have been dropped.
- 4. The columns Mb,Mb.1,Ms,ML and Mw (Index 6) are the magnitude but in different form which can be derivable from Mw(Index 7). So using those columns make the models to unit conversion formula. So

Mb,Mb.1,Ms,ML and Mw (Index - 6) are dropped.

- 5. It's been noticed the target variable Mw has also missing values. The rows with Mw missing values have been dropped.
- 6. One of the row of Mw column has value #Value. That entire row has been dropped.

So after the data cleaning we are left with the following columns-

In []:

Out[]:

Year int64 Month object Day float64 Mwobject Latitude object object Longitude float64 Depth Reference object

Data Pre-processing

So after Data Cleaning we are left with following columns

1. Year - int64

dtype: object

- 2. Month object
- 3. Day float64
- 4. Mw object
- 5. Latitude object
- 6. Longitude object
- 7. Depth float64
- 8. Reference object

It's been observed that the following columns have missing values which need to be filled with preprocessing -

Month - 18

Day - 57

Depth - 2178

Reference - 1582

The following pre processing steps have been taken for the columns -

1. Month -

It's been observed that the column contains white space value which does not fall under Nan. So those white space values have been transformed into Nan to process later.

The missing values in Month have been filled by **foward fill** which propagates the last valid observation forward for the missing values.

It's been observed that this columns also hold the month value as 0 which does not represent any valid month. The 0 value has been replaced by the mode of the column value.

All the values have been converted into float64 value at the end.

The missing values in Day column have been filled by **foward fill** which propagates the last valid observation forward for the missing values.

It's been observed that this columns also hold the day value as 0 which does not represent any valid day. The 0 value has been replaced by the mode of the column value.

1. Depth -

The missing values of this column have been filled with mean value of the column.

1. Latitude & Longitude -

The latitude and longiude have been transformed into numerical value from string.

The latitude and longitude having **W** and **S** have been transformed to into negative numeric values i.e. 25W/S = -25.

The latitude and longitude having **N** and **E** have been kept as a positive numeric value i.e. 25N/E = 25.

The special character like °,? white space have been removed.

All the values have been transformed into float64.

1. Reference -

The missing values in Reference column has been replaced by the value Unknown.

Label Encoder is used to encode the string value of reference column.

1. Mw

The value of the Mw column is converted into float64 value.

So after the pre processing following is the status of the columns -

In []:

copydf.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 50482 entries, 0 to 52988
Data columns (total 7 columns):
   Column Non-Null Count Dtype
 #
              -----
              50482 non-null int64
0
   Year
1 Month
             50482 non-null float64
 2 Day
             50482 non-null float64
 3 Latitude 50482 non-null float64
 4 Longitude 50482 non-null float64
             50482 non-null float64
 5 Depth
 6 Reference 50482 non-null int64
dtypes: float64(5), int64(2)
memory usage: 3.1 MB
```

Data Visualization

Considering magnitude 4 as Threshold value.

1 460370 4445

Name: Labels, dtype: int64

Experiments & Analysis

- 1. 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5 values have been considered as threshold values where Mw < T, label becomes 0 (no earth- quake) and for $Mw \ge T$ becomes 1 (earthquake).
- 2. For every threshold value KNeighbours classifier has been experimented with three types of neighbours such as 1, 3, 5 and Decision tree classfiier has been experimented with three pre-prune depths such as 5, 10, 15.
- 3. For every experiment Classification report, Confusion Matrix and ROC curve has been reported.
- 4. In terms X and y, here the features ie. X are Year, Month, Day, Latitude, Longitude, Depth and Reference. The target value i.e. y is Mw converted into categorical of 0 and 1 based on threshold.

Threshold = 4

Accuracy - 0.8832326433594136

Classification report

In []:

	precision	recall	f1-score	support
0	0.33	0.32	0.32	889
1	0.93	0.94	0.94	9208
accuracy			0.88	10097
macro avg	0.63	0.63	0.63	10097
weighted avg	0.88	0.88	0.88	10097

Confusion Matrix

In []:

Receiver Operating Characteristic Curve

In []:

Kneighbours Classfier with number of Neighbours 3

Accuracy - 0.9067049618698624

Classification report

In []:

precision	recall	f1-score	support
0.45	0.30	0.36	889
0.93	0.97	0.95	9208
		0.91	10097
0.69	0.63	0.65	10097
0.89	0.91	0.90	10097
	0.45 0.93 0.69	0.45 0.30 0.93 0.97 0.69 0.63	0.45 0.30 0.36 0.93 0.97 0.95 0.69 0.63 0.65

Confusion Matrix

In []:

Receiver Operating Characteristic Curve

In []:

Kneighbours Classfier with number of Neighbours 5

Accuracy - 0.9134396355353075

CLassification Report

In []:

	precision	recall	f1-score	support
0 1	0.52 0.93	0.28 0.97	0.36 0.95	889 9208
accuracy macro avg weighted avg	0.72 0.90	0.63 0.91	0.91 0.66 0.90	10097 10097 10097

Confusion Matrix

In []:

Receiver Operating Characteristic Curve

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.9134396355353075

Decision tree with depth = 5

Accuracy - 0.9157175398633257

Classification report

In []:

	precision	recall	f1-score	support
0	0.57	0.18	0.27	889
1	0.93	0.99	0.96	9208
accuracy			0.92	10097
macro avg	0.75	0.58	0.61	10097
weighted avg	0.89	0.92	0.90	10097

Confusion Matrix

In []:

Receiver operating characteristic curve

Decision Tree Classifier with depth = 10

Accuracy - 0.9174012082796871

Classification Report

In []:

	precision	recall	f1-score	support
0	0.57	0.26	0.36	889
1	0.93	0.98	0.96	9208
accuracy			0.92	10097
macro avg	0.75	0.62	0.66	10097
weighted avg	0.90	0.92	0.90	10097

Confusion Matrix

In []:

Receiver operating characteristic curve

Decision Tree with depth = 15

Accuracy - 0.9074972764187382

Classification report

In []:

	precision	recall	f1-score	support
0	0.46	0.31	0.37	889
1	0.94	0.96	0.95	9208
accuracy			0.91	10097
macro avg	0.70	0.64	0.66	10097
weighted avg	0.89	0.91	0.90	10097

Confusion Matrix

In []:

Receiver operating characteristic curve

The graph for Depth = [5,10,15] with respect to validation accuracies.

In []:

Best Depth: 10

Best Validation Accuracy: 0.9174012082796871

Threshold = 4.1

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.8615430325839358

In []:

C1 2 2 2 3	£ ;	a + i	00	report

	precision	recall	f1-score	support
0 1	0.58 0.88	0.25 0.97	0.35	1503 8594
accuracy macro avg weighted avg	0.73 0.84	0.61 0.86	0.86 0.64 0.84	10097 10097 10097

In []:

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.8633257403189066

In []:

Classification report

	precision	recall	f1-score	support
0 1	0.61	0.23 0.97	0.34	1503 8594
accuracy macro avg weighted avg	0.74 0.84	0.60	0.86 0.63 0.84	10097 10097 10097

In []:

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.8433197979597901

In []:

Classification report

	precision	recall	f1-score	support
0 1	0.46 0.88	0.27 0.94	0.34	1503 8594
accuracy macro avg	0.67	0.61	0.84	10097 10097
weighted avg	0.82	0.84	0.83	10097

In []:

0 1 Predicted label

Receiver operating characteristic curve

In []:

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.8633257403189066

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.8027136773299

C1 2 2 2 2 -	ifian	+ i 0 n	report
CIASS.	LLLCa		TEDOLL

	precision	recall	fl-score	support
0 1	0.33	0.33	0.33	1503 8594
accuracy macro avg	0.61	0.61	0.80 0.61	10097 10097

weighted avg 0.80 0.80 0.80 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.839259185896801

In []:

Classification report

	precision	recall	f1-score	support
0 1	0.44 0.88	0.28 0.94	0.34	1503 8594
accuracy macro avg weighted avg	0.66 0.82	0.61 0.84	0.84 0.63 0.82	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.8515400614043775

In []:

Classification report

support	f1-score	recall	precision	
1503	0.35	0.26	0.50	0
8594	0.92	0.95	0.88	1
10097	0.85			accuracy
10097	0.63	0.61	0.69	macro avg
10097	0.83	0.85	0.82	weighted avg

In []:

C------

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.8515400614043775

Threshold 4.2

Decision tree with Depth = 5

Tn [] •

---- L J •

Accuracy

Out[]:

0.790531841140933

In []:

Classification report

	precision	recall	f1-score	support
0 1	0.62 0.80	0.08	0.15 0.88	2186 7911
accuracy macro avg weighted avg	0.71 0.76	0.53 0.79	0.79 0.51 0.72	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7994453798157869

In []:

Classificatio	n report			
	precision	recall	f1-score	support
0	0.60	0.22	0.32	2186
1	0.82	0.96	0.88	7911
accuracy			0.80	10097
macro avg	0.71	0.59	0.60	10097
weighted avg	0.77	0.80	0.76	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.7819154204219075

In []:

~ 7			
Class	111	cation	report

	precision	recall	f1-score	support
0 1	0.49 0.82	0.29 0.92	0.37 0.87	2186 7911
accuracy macro avg weighted avg	0.66 0.75	0.60 0.78	0.78 0.62 0.76	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7994453798157869

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

 $\tt 0.7283351490541745$

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.37 0.83	0.37 0.83	0.37 0.83	2186 7911
accuracy macro avg weighted avg	0.60 0.73	0.60 0.73	0.73 0.60 0.73	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.7674556799049222

In []:

α		1 1	Report.
1.1200	רד רי	α	RANARE

	precision	recall	f1-score	support
0 1	0.45 0.83	0.34	0.39 0.86	2186 7911
accuracy			0.77	10097
macro avg	0.64	0.61	0.62	10097
weighted avg	0.75	0.77	0.75	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.7792413588194513

In []:

0100	- f - f	00+100	Report
C. Las	$S \cap I$	ісаі іоп	REDOLL

	precision	recall	f1-score	support
0 1	0.48 0.83	0.31	0.38 0.87	2186 7911
accuracy macro avg weighted avg	0.66 0.75	0.61 0.78	0.78 0.62 0.76	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

False Positive Rate

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.7792413588194513

Threshold 4.3

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.7182331385560068

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.55 0.74	0.21 0.93	0.30 0.82	2952 7145
accuracy macro avg weighted avg	0.64 0.68	0.57 0.72	0.72 0.56 0.67	10097 10097 10097

In []:

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7287313063286125

In []:

01	1 61	and the desired	D +
Class	III	cation	Report

	precision	recall	f1-score	support
0 1	0.58 0.75	0.27 0.92	0.37 0.83	2952 7145
accuracy macro avg weighted avg	0.66 0.70	0.59 0.73	0.73 0.60 0.69	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.7140734871744082

In []:

Classification	Report
----------------	--------

	precision	recall	f1-score	support
0	0.51 0.78	0.42 0.83	0.46	2952 7145
accuracy macro avg weighted avg	0.65 0.70	0.63 0.71	0.71 0.63 0.71	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7287313063286125

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.6784193324749925

In []:

Classification Report

	precision	recall	f1-score	support
0	0.45 0.77	0.44	0.44	2952 7145
accuracy macro avg weighted avg	0.61 0.68	0.61 0.68	0.68 0.61 0.68	10097 10097 10097

In []:

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.7067445775973061

In []:

Classification Report

support	f1-score	recall	precision	
2952 7145	0.46	0.42 0.83	0.50 0.77	0 1
10097 10097 10097	0.71 0.63 0.70	0.62 0.71	0.64 0.69	accuracy macro avg weighted avg

In []:

In []:

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.716450430821036

In []:

C1 ~ ~ ~	-i -f -i	an + i nn	Report.
CIASS	\perp \perp \perp	Callon	REDUIL.

	precision	recall	f1-score	support
0	0.52	0.40	0.45	2952
1	0.77	0.85	0.81	7145
accuracy			0.72	10097
macro avg	0.65	0.62	0.63	10097
weighted avg	0.70	0.72	0.71	10097

In []:

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.716450430821036

Threshold 4.4

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.6838664949985144

т... г п.

TH []:

Class	ifi	cation	Report

	precision	recall	f1-score	support
0 1	0.59 0.77	0.71 0.66	0.65 0.71	4120 5977
accuracy macro avg weighted avg	0.68 0.70	0.69 0.68	0.68 0.68 0.69	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7033772407645835

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.65 0.74	0.60 0.78	0.62 0.76	4120 5977
accuracy macro avg weighted avg	0.69 0.70	0.69 0.70	0.70 0.69 0.70	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.6883232643359414

	precision	recall	f1-score	support
0	0.62	0.62	0.62	4120

1	0.74	0.73	0.74	5977
accuracy			0.69	10097
macro avg	0.68	0.68	0.68	10097
weighted avg	0.69	0.69	0.69	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7033772407645835

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.6474200257502228

In []:

	precision	recall	f1-score	support
0 1	0.57 0.70	0.56 0.71	0.56 0.70	4120 5977
accuracy			0.65	10097
macro avg	0.63	0.63	0.63	10097
weighted avg	0.65	0.65	0.65	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.674655838367832

In []:

Classification	Donort
CIASSILLCALION	report

	precision	recall	f1-score	support
0 1	0.61 0.72	0.58 0.74	0.59 0.73	4120 5977
accuracy macro avg weighted avg	0.66 0.67	0.66 0.67	0.67 0.66 0.67	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 5

Accuracy

Out[]:

0.6863424779637516

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.62 0.73	0.59 0.75	0.60 0.74	4120 5977
accuracy macro avg weighted avg	0.67 0.68	0.67 0.69	0.69 0.67 0.68	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.6863424779637516

Threshold 4.5

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.6825789838565911

In []:

Classification Report

	precision	precision recall f1-sc		
(0.64 0.75	0.80 0.58	0.71 0.65	4894 5203
accuracy	7		0.68	10097
macro avo	0.69	0.69	0.68	10097
weighted avo	0.70	0.68	0.68	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7059522630484302

In []:

Classification Report

support	f1-score	recall	precision	
4894	0.71	0.75	0.68	0
5203	0.70	0.67	0.74	1
10097	0.71	0 71	0 51	accuracy
10097	0.71	0.71	0.71	macro avg weighted avg
10097	0.71	0.71	0.71	

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

ROC Curve of DT

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.6845597702287808

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.67 0.70	0.70 0.67	0.68 0.69	4894 5203
accuracy			0.68	10097
macro avg	0.68	0.68	0.68	10097
weighted avg	0.69	0.68	0.68	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7059522630484302

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.6354362681984748

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.62 0.65	0.62 0.65	0.62 0.65	4894 5203
accuracy macro avg weighted avg	0.64 0.64	0.64 0.64	0.64 0.64 0.64	10097 10097 10097

In []:

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.6658413390115876

In []:

α		c :			Report
	2881		call	() []	RANORI

	precision	recall	f1-score	support
0 1	0.66 0.67	0.65 0.68	0.65 0.68	4894 5203
accuracy macro avg weighted avg	0.67 0.67	0.67 0.67	0.67 0.67 0.67	10097 10097 10097

In []:

In []:

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.6781222145191641

In []:

~ 7		1 1	D 1
CHAS	SITI	cation	Report
OIG	0	CUCIOII	TOPOLO

	precision	recall	f1-score	support
0 1	0.67 0.69	0.68 0.68	0.67	4894 5203
accuracy macro avg weighted avg	0.68 0.68	0.68 0.68	0.68 0.68 0.68	10097 10097 10097

In []:

0 1
Predicted label

Receiver operating characteristic curve

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.6781222145191641

Threshold 4.6

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.6973358423294048

In []:

	precision	recall	f1-score	support
0	0.68	0.85	0.76	5626
1	0.73	0.51	0.60	4471

accuracy			0.70	10097
macro avg	0.71	0.68	0.68	10097
weighted avg	0.70	0.70	0.69	10097

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7150638803605032

In []:

support	f1-score	recall	precision	
5626 4471	0.76	0.82 0.58	0.71 0.72	0
	0.04	0.30	0.72	1
10097 10097	0.72 0.70	0.70	0.72	accuracy macro avg

weighted avg 0.72 0.72 0.71 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.6883232643359414

In []:

	precision	recall	f1-score	support
0 1	0.70 0.67	0.77 0.59	0.73 0.63	5626 4471
accuracy macro avg weighted avg	0.68 0.69	0.68	0.69 0.68 0.69	10097 10097 10097

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7150638803605032

Kneighbours Classfier with number of Neighbours 1

Accuracy

Out[]:

0.6389026443498069

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.68 0.59	0.67 0.59	0.68 0.59	5626 4471
accuracy macro avg weighted avg	0.63 0.64	0.63 0.64	0.64 0.63 0.64	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.6687134792512628

In []:

Classification	Report
----------------	--------

	precision	recall	f1-score	support
0 1	0.70 0.63	0.72 0.61	0.71 0.62	5626 4471
accuracy macro avg weighted avg	0.66 0.67	0.66 0.67	0.67 0.66 0.67	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.6862434386451421

_				
$C1 \sim a$	a i	£ ;	$a \rightarrow + i \rightarrow n$	D 0 20 0 20 +
Clasi	\sim 1	1 1	Carron	Report

support	f1-score	recall	precision	
5626 4471	0.73 0.63	0.75 0.61	0.71 0.66	0 1
10097 10097 10097	0.69 0.68 0.68	0.68 0.69	0.68 0.68	accuracy macro avg weighted avg

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.6862434386451421

Threshold 4.7

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.7165494701396454

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.72 0.70	0.89 0.42	0.80 0.53	6321 3776
accuracy macro avg weighted avg	0.71 0.71	0.66 0.72	0.72 0.66 0.70	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7320986431613351

In []:

Classification Report

support	f1-score	recall	precision	
6321 3776	0.80 0.59	0.87 0.51	0.75 0.69	0 1
10097	0.73			accuracy
10097	0.69	0.69	0.72	macro avg
10097	0.72	0.73	0.73	weighted avg

In []:

Confusion Matrix

Receiver operating characteristic curve

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.7167475487768644

In []:

~ 7		4.0	ъ .
Class	111	cation	Report

	precision	recall	f1-score	support
0	0.75 0.64	0.82 0.54	0.78 0.59	6321 3776
accuracy			0.72	10097
macro avg	0.70	0.68	0.69	10097
weighted avg	0.71	0.72	0.71	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7320986431613351

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.6619788055858176

In []:

Classification Report

support	f1-score	recall	precision	
6321 3776	0.73 0.55	0.73 0.55	0.73 0.55	0 1
10097	0.66			accuracy
10097	0.64	0.64	0.64	macro avg
10097	0.66	0.66	0.66	weighted avg

In []:

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.6940675448152916

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.74 0.60	0.78 0.54	0.76 0.57	6321 3776
accuracy macro avg weighted avg	0.67 0.69	0.66	0.69 0.67 0.69	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.7052589878181638

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.74 0.62	0.81 0.53	0.77 0.57	6321 3776
accuracy macro avg weighted avg	0.68 0.70	0.67 0.71	0.71 0.67 0.70	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.7052589878181638

Threshold 4.8

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.7458651084480539

In []:

Classification Report

	precision	recall	f1-score	support
(1	0.77	0.91 0.37	0.83 0.47	6993 3104
accuracy macro avo	0.71	0.64	0.75 0.65 0.72	10097 10097 10097

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7599286916906012

In []:

Classification Report

	precision	recall	f1-score	support
0	0.79	0.90 0.45	0.84 0.53	6993 3104
accuracy	0.50	0.65	0.76	10097
macro avg weighted avg	0.72 0.75	0.67 0.76	0.69 0.74	10097 10097

In []:

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.740021788650094

In []:

Classification Report

	precision	recall	f1-score	support
0	0.79 0.59	0.85	0.82 0.54	6993 3104
accuracy	0.60	0 67	0.74	10097
macro avg weighted avg	0.69 0.73	0.67 0.74	0.68 0.73	10097 10097

In []:

In []:

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 10

Best Validation Accuracy: 0.7599286916906012

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.687233831831237

_ - -

support	f1-score	recall	precision	
6993 3104	0.77 0.49	0.77	0.77 0.49	0 1
10097 10097 10097	0.69 0.63 0.69	0.63	0.63 0.69	accuracy macro avg weighted avg

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.7200158462909775

In []:

	precision	recall	f1-score	support
0	0.78 0.55	0.83 0.46	0.80 0.50	6993 3104
accuracy macro avg weighted avg	0.67 0.71	0.65 0.72	0.72 0.65 0.71	10097 10097 10097

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.7348717440824007

Classification Report

	precision	recall	f1-score	support
Ω	0 78	n 86	N 82	6993

•	0.10	0.00	0.02	0,,,,
1	0.59	0.45	0.51	3104
accuracy			0.73	10097
macro avg	0.68	0.66	0.66	10097
weighted avg	0.72	0.73	0.72	10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.7348717440824007

Threshold 4.9

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.7916212736456373

In []:

	precision	recall	f1-score	support
0 1	0.79 0.75	0.97 0.24	0.88 0.37	7584 2513
accuracy macro avg weighted avg	0.77 0.78	0.61 0.79	0.79 0.62 0.75	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.7916212736456373

In []:

Class	ification	Report
CIGOS.		ICPOLC

	precision	recall	f1-score	support
0 1	0.81	0.95 0.31	0.87 0.43	7584 2513
accuracy macro avg weighted avg	0.74 0.77	0.63 0.79	0.79 0.65 0.76	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.78528275725463

In []:

07			Report
11266	: T T :	ıcarıon	KANOTT
CIUDI	/		ICCOTC

	precision	recall	f1-score	support
0 1	0.82 0.60	0.91	0.86	7584 2513
accuracy macro avg weighted avg	0.71 0.77	0.66 0.79	0.79 0.67 0.77	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

The graph for Depth = [5,10,15] with respect to validation accuracies.

Best Depth: 5

Best Validation Accuracy: 0.7916212736456373

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.732296721798554

In []:

Classification Report

	precision	recall	fl-score	support
0 1	0.82 0.46	0.82 0.46	0.82 0.46	7584 2513
accuracy macro avg weighted avg	0.64 0.73	0.64 0.73	0.73 0.64 0.73	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.7677527978607507

In []:

Classification Report

	precision	recall	f1-score	support
0	0.82 0.54	0.88 0.42	0.85 0.47	7584 2513
accuracy macro avg weighted avg	0.68 0.75	0.65 0.77	0.77 0.66 0.76	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.7762701792611667

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.82 0.57	0.90 0.39	0.86	7584 2513
accuracy macro avg weighted avg	0.70 0.76	0.65 0.78	0.78 0.66 0.76	10097 10097 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.7762701792611667

Threshold 5

Decision tree with Depth = 5

In []:

Accuracy

Out[]:

0.8420322868178667

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.84 0.87	0.99	0.91 0.35	8143 1954
accuracy			0.84	10097
macro avg	0.86	0.60	0.63	10097
weighted avg	0.85	0.84	0.80	10097

In []:

In []:

Decision tree with Depth = 10

In []:

Accuracy

Out[]:

0.8427255620481331

In []:

Classification Report

	precision	recall	f1-score	support
0 1	0.85 0.76	0.98 0.27	0.91	8143 1954
accuracy macro avg weighted avg	0.80 0.83	0.63 0.84	0.84 0.66 0.81	10097 10097 10097

In []:

In []:

Decision tree with Depth = 15

In []:

Accuracy

Out[]:

0.8287610181241953

In []:

Classification	Report
----------------	--------

	precision	recall	f1-score	support
0 1	0.86 0.60	0.94 0.35	0.90 0.44	8143 1954
accuracy macro avg weighted avg	0.73 0.81	0.65 0.83	0.83 0.67 0.81	10097 10097 10097

In []:

In []:

In []:

The graph for DEpth = [5,10,15] with respect to validation accuracies.

Best Depth : 10

Best Validation Accuracy: 0.8427255620481331

Kneighbours Classfier with number of Neighbours 1

In []:

Accuracy

Out[]:

0.7839952461127068

In []:

p	recision	recall	f1-score	support
0 1	0.86	0.87 0.43	0.87	8143 1954

 accuracy
 0.78
 10097

 macro avg
 0.65
 0.65
 0.65
 10097

 weighted avg
 0.78
 0.78
 0.78
 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 3

In []:

Accuracy

Out[]:

0.8185599683074181

In []:

	precision	recall	f1-score	support
0	0.86 0.54	0.92 0.38	0.89	8143 1954
accuracy macro avg	0.70	0.65	0.82	10097

weighted avg 0.80 0.82 0.81 10097

In []:

Confusion Matrix

Receiver operating characteristic curve

In []:

Kneighbours Classfier with number of Neighbours 5

In []:

Accuracy

Out[]:

0.8291571753986332

In []:

	precision	recall	f1-score	support
0 1	0.86	0.95 0.34	0.90 0.44	8143 1954
accuracy macro avg weighted avg	0.73 0.81	0.64	0.83 0.67 0.81	10097 10097 10097

Confusion Matrix

Receiver operating characteristic curve

In []:

In []:

the graph for K = [1,3,5] with validation accuracies

Best K Value : 5

Best Validation Accuracy: 0.8291571753986332

Observations

For the Threshold 4 both of the classifier performs the best.

For Decisiont Tree classifier, the classifier with preprune depth = 10 and for KNN classifier, the classifier with K = 5 give the best validation accuracy

Decision Tree

Accuracy - 0.9174012082796871

In []:

Classfication	n Report			
	precision	recall	f1-score	support
0	0.57	0.26	0.36	889
1	0.93	0.98	0.96	9208
accuracy			0.92	10097
macro avg	0.75	0.62	0.66	10097
weighted avg	0.90	0.92	0.90	10097

In []:

ROC curve

KNeighbours Classifier

Accuracy - 0.9134396355353075

In []:

Classificatio	n Report			
	precision	recall	f1-score	support
0	0.52	0.28	0.36	889
1	0.93	0.97	0.95	9208
accuracy			0.91	10097
macro avg	0.72	0.63	0.66	10097
weighted avg	0.90	0.91	0.90	10097

In []:

ROC curve

1. Plot ROC for both these classifiers for K as parameter in KNN and pre-prune depth as a parameter in Decision Tree.

So from the above analysis we have seen that if we use 4 as Threshold then both of classifiers produce the best validation accuracy. So considering 4 as Threshold we have plot the ROC curves of Kneighbours Classifier for the number of neighbours of [1,3,5] and Decision Tree classifier for the prep-prune depth of [5,10,15].

In []:

Kneightbours Classifier for neighbours [1,3,5]

In []:

Decision Tree CLassifier for pre-prune depth of [5,10,15]

2. Which is the better classifier for this data amongst the two? Give Reasoning.

As we have observed that for all the threshold we can say that Decision Tree is better classifier than KNN from the observation of ROC curve and validation accuracy.

Decision Tree uses Information Gain/Gini Index to prioritise it's features. And it selects the features which classify the data better than others based on information gain. So it's has advantage of choosing best performing features.

On the other hand KNN uses distance metrics to compute the distance from test data to the training data. And it chooses nearest neighbours from the training data. KNN performs best when the data is well seperated and it also gives equal priority to all the features. So KNN relying on only distance metrics and prioritising the features gives Decison Tree the advantages of performing better than KNN.

3. What could be the best possible values of the parameters for respective classifier based on the ROC curves? Give Reasoning.

As we have observed that if we consider the Threshold 4 then KNN and Decision Tree performs better than in other Thresholds.

In []:

Kneightbours Classifier for neighbours [1,3,5]

In []:

Decision Tree CLassifier for pre-prune depth of [5,10,15]

As, ROC curve is btter when the area covered by ROC curve is bigger. So from the above two observation-

For KNN, when K = 5 ROC curve covers the bigger area than the other two parameters. So K = 5 is the best performing parameter for KNN.

For Decision Tree, when pre-prune Depth = 10 it covers the bigger area than the other two paraeters, So **pre-prune Depth** = 10 is the best performing paramter for Decision Tree.

4. If you have to choose only a subset of two features to predict earthquake, which ones would it be? Give Reasoning. [Hint: You may use nodes of estimated Decision Tree or other techniques]

Here are the feature importance which has been calculated using Decision Tree Classifier -

In []:

Descion Tree selects features based on Information Gain/Gini Index which means it selects the features which can classify the data more accurately.

So the if we have to choose two subset of features then those two features would be - Latitude and Longitude

5. Consider test results of the best model from above analysis. Report the input features that was used to achieve this. Try to improvise the test results by applying feature processing(You may come up with additional features by processing original ones). Report the new set of features that was used and also report the improvements in test results that was achieved. Please use appropriate metrics to report the results.

From the above analysis it's been observed that when Threshold is 4 and Decision Tree with pre-prune Depth = 10 performs best among all. FOllowing are the report from the experiment - Accuracy - 0.9174012082796871. and The ROC curve -

In []:

The input features which have been used for this are - Year, Month, Day, Laittude, Longitude, Reference

To improvise the result

adding new feature which is Period.

Basically this feature contains period between years of two consecutive earthquakes. Using this new feature, KNN has produced better result than the previous best result while K = 5. New accuracy = 0.9161136971377637 and the previous best accuracy = 0.9134396355353075.

For Decision Tree the result does not change. The accuracy remains almost same.

In []:

Classificatio	Classification report using Improvised features for KNN with $k=5$						
	precision	recall	f1-score	support			
0	0.54	0.30	0.39	889			
1	0.94	0.98	0.95	9208			
accuracy			0.92	10097			
macro avg	0.74	0.64	0.67	10097			
weighted avg	0.90	0.92	0.91	10097			

In []:

COnfusion matrix using Improvised features for KNN with k = 5

In []:

ROC curve using Improvised features for KNN with k = 5

