

FHPC/P1.2 course:

Lecture 1: Introduction to HPC (second part)

Stefano Cozzini

CNR/IOM and eXact-lab srl

Agenda of the previous lecture

- Prologue: why and where HPC?
- What is HPC?
 - Definitions&metrics
- Component of a HPC infrastructure
- HPC Concepts
 - Parallel programming paradigms
 - Evolution of paradigms
 - Ahmdal law / Gustafson law
 - Strong/weak scalability
- HOMEWORK&LABS

Agenda: for today

- What is HPC infrastructure ?
 - Supercomputers & HPC Cluster
 - CPUs and Accelerators
 - Network/storage
- Software stack for HPC
 - Middleware: queue systems
 - Libraries/ Compiler/ performance Tools

HPC Cluster Computer Architecture

Parallel Applications

Sequential Applications

Parallel Programming Environment

Cluster Middleware (Single System Image and Availability Infrastructure)

Multiprocessor/ Multicore server

+ accelerators

Communications Software

Network Interface Hardware

Multiprocessor/ Multicore server

+ accelerators

Communications
Software

Network Interface Hardware

Multiprocessor/ Multicore server

+ accelerators

Communications
Software

Network Interface Hardware

Multiprocessor/ Multicore server

+ accelerators

Communications
Software

Network Interface Hardware

Cluster Interconnection Network/Switch

A modern node picture (Ullysses node)

About HPC jargon

- Multiprocessor = server with more than 1 CPU
- Multicore= a CPU with more than 1 core
 Processor = CPU =socket

BUT SOMETIME:

Processor= core

a process for each processor (i.e. each core)

Elements of the clusters

- Several computers, nodes, often in special cases for easy mounting in a rack
- One or more networks (interconnects) to hook the nodes together
- Storage facilities.

A node of modern HPC cluster 10 box 1 or 2 accelerators

A shared memory machine (SMP or NUMA)

Some times also blades.. In racks

SISSA

Building blocks of a cluster

Dual socket CPU

DDR3 Ram 12 slots

Northbridge

PCI 8x 1 slot ·

Gb Ethernet dual port

The motherboard components Infiniband 4x QDR

Which CPUs on TOP500 system?

Processor Generation System Share

Processor Generation Performance Share

About network for cluster

- The performance of the network cannot be ignored
 - Latency: Initialization time before data can be sent
 - Per-link Peak Bandwidth: Maximum data transmission rate (varies with packet size)
 - Topology: how the network is done.

Clustering topology

2D Torus

Hypercube (4-sissa cube)

Latency&bandwidth

NETWORK	Latency	Bandwidth (GB/sec)	
Gigabit	70-40	~ 0.125	
10G	<5	~1.250	
Infiniband 4DDR	~1.5/1.9	~ 3.2	
Infiniband FDR	<1.0	~ 5	

What is the UNIT OF MEASURE OF LATENCY?

Microseconds: 3 order of magnitude larger than unit of measure of FP operations

HPC cluster logical structure..

HPC cluster: 3 kind of network

- HIGH SPEED NETWORK
 - parallel computation
 - low latency /high bandwidth
 - Usual choices: Infiniband...
- I/O NETWORK
 - I/O requests (NFS and/or parallel FS)
 - latency not fundamental/ good bandwidth
 - GIGABIT is ok
- Management network
 - management traffic
 - any standard network

Network in Top500

Interconnect System Share

Interconnect Performance Share

Accelerators: GPU

- Co-processors or accelerators have been around for a while
- Big burst in its adoption in HPC when Nvidia released CUDA (2006).
- GPGPUs or simply GPUs work in a different way to conventional CPUs. Emphasis on stream processing.
- Acceleration can be significant but depends on application.
- Nvidia market leader with astonishing performance..

GPU PERFORMANCE COMPARISON

	P100	V100	Ratio
DL Training	10 TFLOPS	120 TFLOPS	12x
DL Inferencing	21 TFLOPS	120 TFLOPS	6x
FP64/FP32	5/10 TFLOPS	7.5/15 TFLOPS	1.5x
HBM2 Bandwidth	720 GB/s	900 GB/s	1.2x
TREAM Triad Perf	557 GB/s	855 GB/s	1.5x
NVLink Bandwidth	160 GB/s	300 GB/s	1.9x
L2 Cache	4 MB	6 MB	1.5x
L1 Caches	1.3 MB	10 MB	7.7x

Accelerators: Intel PHI (MIC)

- Also an accelerator but more similar to a conventional multicore CPU.
- Cores
 connected in a
 ring topology.
- No need to write CUDA or OpenCL as Intel compilers will compile Fortran or C code for the MIC.

Accelerators in Top500

Accelerator/CP Family System Share

Accelerator/CP Family Performance Share

Why accelerators?

- GPUs and MIC mandatory in HPC because of high performance and efficiency (i.e. Flops/watt).
- they are mainly to be attached to host CPUs via the PCIe bus (a standard PC-like connection).
- Both device families have limitations:
 - low device memory
 - slow transfer rate via PCIe link
 - difficulty in programming (particularly CUDA).
 - speedup is highly application and data dependent.
- New model are standalone models (e.g Knight's Landing) and/or and with faster connections (Nvlink).

Last but not least: Storage

- High Speed Storage is required for HPC
 - Parallel Filesystem is mandatory:
 - Lustre/GPFS/BeeGFS etc..
- Hierarchical storage is also a solution:
 - Hierarchical storage management (HSM) is a data storage technique, which automatically moves data between high-cost and low-cost storage media.
 - First layer: SSD
 - Second layer : parallel FS
 - Third layer: SAN
 - Fourth layer: Tapes

Cluster example

System stack of a supercomputing [from ref 1]

Figure 1.9 The system stack of a general supercomputer consists of a system hardware layer and several software layers. The first software layer is the operating system, encompassing both resource management and middleware to access input/output (I/O) channels. Higher software layers include runtime systems and workflow management.

HPC platform: the software stacks

the software stacks: sys. adm...

Cluster middleware: Middleware Design Goals

- Complete Transparency (Manageability):
 - Lets us see a single cluster system..
 - Single entry point, ftp, ssh, software loading...
- Scalable Performance:
 - Easy growth of cluster
 - no change of API & automatic load distribution.
- Enhanced Availability:
 - Automatic Recovery from failures
 - Employ checkpointing & fault tolerant technologies

Cluster middleware

Administration software:

- user accounts
- NTP/NFS/ etc...

Resource management and scheduling software (LRMS)

- Process distribution
- Load balance
- Job scheduling of multiple tasks

How much does it cost a computational infrastructure ?

- It is not just a matter of HW...
- Total Cost of Ownership is the right way to calculate the budget for an HPC infrastructure..

Total Cost of Ownership

- It is the sum of all of the costs that a customer incurs during the lifetime of a technology solution.
- In the High Performance Computing (HPC) field, the Total Cost of Ownership is normally referred to the data center costs.
- Cost to the owner to build, operate and maintain the data center.
- Cost of Services delivered should be computed taking into account TCO.

What should be included in the TCO for HPC?

- Investment, operation and maintenance costs:
 - Hardware: servers, storage, networking, cabling, etc.
 - Electrical equipment: power distribution units, UPS, generators, etc.
 - Cooling systems: air conditioners, water cooling, etc.
- Infrastructure for the data center, power adaptation issues, etc.
- Energy consumption of the hardware and cooling systems
- Software licenses
- Human resources
- Maintenance

HOW can l reduce TCO?

Cloud computing is the answer?

cloud approach

The dream

- Cloud computing offers almost unlimited storage and instantly available and scalable computing resources,
- All the above at a reasonable metered cost.. (pay per use)
- However...
- the use of a typical cloud needs a bit of care..
- Remote HPC services can range from shared HPC clusters to fully virtualized cloud environments.

Cloud computing and HPC

- The case for HPC in the cloud is growing stronger, but still has a way to go, especially for the more traditional HPC segments in the public sector.
- https://www.hpcwire.com/2018/03/15/how-the-cloud-isfalling-short-for-research-computing/

HPC on cloud..

- cloud computing represented about 2% of the HPC market by total revenue in 2016.
- About 35% of HPC users make occasional use of public cloud resources.
- A number of vendors already exist within the industry providing HPC in the cloud solutions.

HPC cloud providers

- AMAZON WEB SERVICES (AWS)
- GOOGLE CLOUD PLATFORM
- MICROSOFT AZURE
- IBM SPECTRUM COMPUTING
- PENGUIN COMPUTING ON DEMAND (POD)

Conclusions

- HPC is about performance but not only
- Supercomputers are clusters!
- Clusters have many different components
- Parallel programming is needed to use HPC systems at best
- Several options/tools are available and sometime more than one approach is needed at the same time
- There are a lot of other lectures where all what we discussed in this first lectures will be analyzed in details

