# 计算机图形学第一次作业报告

姓名: 江金昱 学号: 17341067

# 0. 前言

| 文件名            | 文件描述                     |
|----------------|--------------------------|
| myfunction.h   | 实现了报告中提到的函数              |
|                | 诸如平移函数,旋转函数,矩阵乘法,直线      |
|                | 绘制算法等                    |
| myglwidget.cpp | 在 scene_1 中实现了使用自己的方法绘制了 |
|                | scene_0 同样的场景            |

### 1. 平移变换函数 Translate 原理:

代码位置: myfunction.h 的 myTranslatef

opengl 内置的函数 glTranslate 接受三个参数,分别表示沿着 x 轴,y 轴,z 轴平移的距离。我使用了**矩阵乘法**实现了自己的平移变换函数 **myTranslatef(GLfloat x,GLfloat y,GLfloat z)。** 

在 opengl 中维护一个 modelview 矩阵,用以实现对屏幕中的物体的各种变换操作,如空间变换(平移、旋转等)。 modelview 矩阵是一个 4X4 的矩阵,是齐次坐标的表现形式。假设我们有一个点  $\vec{x}=(x,y,z)$ 需要进行平移变换,我们用齐次坐标表示(x,y,z,1)表示,我们想要将其沿着 x,y,z 轴分别平移 $d_x,d_y,d_z$ 个大小。那么我们需要构造一个平移变换矩阵 T

$$T = T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

我们求 $T \cdot \vec{x}$ 可得结果:

$$\begin{bmatrix} x + d_x \\ y + d_y \\ z + d_z \\ 1 \end{bmatrix}$$

可以看到已经平移成功

在 opengl 中,使用 **glGetFloatv(GL\_MODELVIEW\_MATRIX,mat)**可从 modelview 栈中获取 栈顶矩阵,并保存在**一维大小为 16** 的数组 mat 中,且 mat 是以 **column-major** 的形式保存的。我们将 mat 右乘平移变换矩阵 T,即 $mat \cdot T$ 然后再使用 **glLoadMatrixf** 将结果矩阵放入 栈顶即可完成任务

### 2. 矩阵乘法的实现

### 代码位置: myfunction.h 里的 myMultiMatrix

由于 opengl 里面是以 column-major 的方法存储矩阵的, 也就是说, 假如我们有矩阵:

$$A = \begin{bmatrix} a & e & i & m \\ b & f & j & n \\ c & g & k & o \\ d & h & l & p \end{bmatrix}$$

那么我们使用函数 glGetFloatv 取到并存储在一维数组 mat 里的顺序将会是这样的:

$$mat = [a b c d e f g h i j k l m n o p]$$

因此我们最后使用 glLoadMatrix 上传的时候也要注意是以 columnmajor 的形式上传,代码实现如下:

```
/* 函数: myMultiMatrix

* 函数描述: 实现将 mat 矩阵右乘变换矩阵 T

* 参数描述:

* result: 结果矩阵

* mat: 栈顶矩阵

* T: 变换矩阵

*/

void myMultiMatrix(GLfloat* result, GLfloat* mat, GLfloat* T) {
    for(int i=0;i<16;i++) {
        int row=i%4;
        int col=i/4;

        result[i]=0;
        for(int j=0;j<4;j++) {
            result[i]+=mat[row+j*4]*T[col*4+j];
        }
    }
}
```

# 3. 旋转变换函数的原理

#### (1) 使用矩阵乘法实现旋转变换

代码位置: myfunction.h 里的 myTranslatef

基本思想: 给定一个旋转轴  $\vec{n}=(a,b,c)$ (这里  $\vec{n}$ 需要为单位向量)我们可以将 x, y, z 轴的基向量绕着该轴旋转,得到新的一组基向量,然后计算在新的基向量下点的坐标。 比如基向量  $\vec{v}=[1\ 0\ 0]$ 绕  $\vec{n}$ 进行旋转 $\theta$ °,可得旋转后的基向量:

$$\begin{bmatrix} a^2(1-\cos\theta)+\cos\theta\\ ab(1-\cos\theta)+c\cdot\sin\theta\\ ac(1-\cos\theta)-b\cdot\sin\theta \end{bmatrix}$$

由此可得[010]和[001]旋转后的基向量,组装成矩阵可得

$$T = \begin{bmatrix} a^2(1-\cos\theta) + \cos\theta & ab(1-\cos\theta) - c \cdot \sin\theta & ac(1-\cos\theta) + b \cdot \sin\theta \\ ab(1-\cos\theta) + c \cdot \cos\theta & b^2(1-\cos\theta) + \cos\theta & bc(1-\cos\theta) - a \cdot \sin\theta \\ ac(1-\cos\theta) - b\sin\theta & bc(1-\cos\theta) + a \cdot \sin\theta & c^2(1-\cos\theta) + \cos\theta \end{bmatrix}$$

#### (2) 使用四元数实现旋转变换

代码位置: myfunction.h 里的 quaternionRotate

四元数是指这样的数:

$$Q = xI + yJ + zK + w = [\vec{v}, w]$$

给定旋转轴  $\vec{n}$ . 需要旋转的角度为 $2\theta$ . 构造四元数

$$Q = [\vec{n}sin\theta, cos\theta]$$

于是可求得对应的x,y,z,w,那么我们有对应的旋转矩阵:

$$\begin{bmatrix} 1 - 2y^2 - 2z^2 & 2(xy - wz) & 2(xz + wy) \\ 2(xy + wz) & 1 - 2x^2 - 2z^2 & 2(yz - wx) \\ 2(xz - wy) & 2(yz + wx) & 1 - 2x^2 - 2y^2 \end{bmatrix}$$

右乘栈顶矩阵即可

# 4. 画线算法

给定两个坐标 $(x_0, y_0)$ 以及 $(x_1, y_1)$ 我们目标是要在这两点间画一条直线

代码位置: myfunction.h 里的 drawline

使用了 Bresenham 算法



如图,基本思想是,对于每一个 $(x_i+1,\overline{y_{i+1}})$ ,假如 $d_{lower} < d_{upper}$ ,那么  $\overline{y_{i+1}} = \overline{y_i}$  否则  $\overline{y_{i+1}} = \overline{y_i} + 1$ 

 $i \exists p_i = \Delta x \cdot (d_{lower_i} - d_{upper_i})$ 

可通过公式 $p_{i+1} - p_i = 2\Delta y - 2\Delta x \cdot (\overline{y_{i+1}} - \overline{y_i})$ 迭代计算 $p_i$ 

当 $p_i \le 0$ 时,可知 $d_{lower} \le d_{upper}$ ,取下方像素,因此有 $p_{i+1} = p_i + 2\Delta y$ 

当 $p_i > 0$ 时,可知 $d_{lower} > d_{upper}$ ,取上方像素,因此  $p_{i+1} = p_i + 2\Delta y - 2\Delta x$ 

迭代计算以上步骤即可得到 $(x_0,y_0)$ 与 $(x_1,y_1)$ 之间的直线

上述算法只阐述了从左下角画到右上角的直线算法,为了能够使得算法适用下图八个方向的直线绘制



- ①④: x<sub>i+i</sub>=x<sub>i</sub>+1、x<sub>i</sub>-1 y<sub>i+i</sub>=y<sub>i</sub> 或 y<sub>i</sub>+1
- ⑧⑤:  $x_{i+1} = x_i + 1$ 、 $x_i 1$  $y_{i+1} = y_i$  或  $y_i - 1$
- ②⑦:  $y_{i+1}=y_i+1$ 、 $y_i-1$  $x_{i+1}=x_i$  或  $x_i+1$
- ③⑥:  $y_{i+1} = y_i + 1$ 、 $y_i 1$  $x_{i+1} = x_i$  或  $x_i - 1$

需要对算法进行微小的改动。

其中方向①8/5/4 可分为一组,上述算法仍然适用,除了要将 x 和 y 递增/递减的方向更改一下,而且 $\Delta x = |x_1 - x_0|$ , $\Delta y = |y_1 - y_0|$ 。

②③⑥⑦分为一组,此时需要将算法中的 $\Delta x$ 与 $\Delta y$ 进行对换

算法的具体实现见 myfunction.h 里的 drawline

# 5. 多个变换之间的顺序关系对结果的影响

opengl 将"最后写的函数最先应用",比如你先写了 translate 再写了 rotate,其实最终是先进行 rotate 再进行 translate

### 6. 解决显示过于稀疏的问题

由于 Bresenham 算法是基于整数进行画线,因此为了让显示不过于稀疏,需要调整 GlOrtho 中的宽和高,使得显示在窗口中的像素密度变大,同时也要等比缩放 glTranslate,以及画线的位置的 x,y,即乘上放大的比例。

比如, scene0 中使用

glOrtho(0.0f, 100.0f, 0.0f, 100.0f, -1000.0f, 1000.0f);

scene1 中使用

glOrtho(0.0f, 5000.0f, 0.0f, 5000.0f, -1000.0f, 1000.0f);

则在 glTranslate 中宽和高要分别乘上一个系数:

GLfloat w\_ratio=5000.0f/100.0f;

GLfloat h\_ratio=5000.0f/100.0f;

### 7. 运行结果截图

scene0:



### scene1:

