MACHINE LEARNING

Reinforcement Learning

Prof. Dr. Martin Riedmiller
AG Maschinelles Lernen und Natürlichsprachliche Systeme
Institut für Informatik
Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Martin.Riedmiller@informatik.uni-freiburg.de

Motivation

Can a software agent learn to play Backgammon by itself?

Motivation

Can a software agent learn to play Backgammon by itself?

Learning from success or failure

Neuro-Backgammon:

playing at worldchampion level (Tesauro, 1992)

Can a software	e agent learn to	balance a	pole by itsel	f?	

Can a software agent learn to balance a pole by itself?

Learning from success or failure

Neural RL controllers:

noisy, unknown, nonlinear (Riedmiller et.al.

Can a software agent learn to cooperate with others by itself?							

Can a software agent learn to cooperate with others by itself?

Learning from success or failure

Cooperative RL agents: complex, multi-agent, cooperative (Riedmiller et.al.)

has biological roots: reward and punishment

no teacher, but:

has biological roots: reward and punishment

no teacher, but:

actions

has biological roots: reward and punishment

no teacher, but:

actions + goal

has biological roots: reward and punishment

no teacher, but:

actions + goal $\stackrel{learn}{\rightarrow}$ algorithm/ policy

has biological roots: reward and punishment

no teacher, but:

actions + goal $\stackrel{learn}{\rightarrow}$ algorithm/ policy

'Happy Programming'

Actor-Critic Scheme (Barto, Sutton, 1983)

ACTOR-CRITIC SCHEME:

- Critic maps external, delayed reward in internal training signal
- Actor represents policy

Overview

I Reinforcement Learning - Basics

A First Example

A First Example

Repeat Choose: Action $a \in \{ \rightarrow, \leftarrow, \uparrow \}$ Until Goal is reached

The 'Temporal Credit Assignment' Problem

Which action(s) in the sequence has to be changed?

The 'Temporal Credit Assignment' Problem

Which action(s) in the sequence has to be changed?

⇒ Temporal Credit Assignment Problem

Sequential Decision Making

Examples:

Chess, Checkers (Samuel, 1959), Backgammon (Tesauro, 92) Cart-Pole-Balancing (AHC/ ACE (Barto, Sutton, Anderson, 1983)), Robotics and control, . . .

→ Describe environment as a Markov Decision Process (MDP)

⇒ Describe environment as a Markov Decision Process (MDP)

⇒ Formulate learning task as a dynamic optimization problem

⇒ Describe environment as a Markov Decision Process (MDP)

⇒ Formulate learning task as a dynamic optimization problem

⇒ Solve dynamic optimization problem by dynamic programming methods

S: (finite) set of states

S: (finite) set of states

A: (finite) set of actions

S: (finite) set of states

A: (finite) set of actions

Behaviour of the environment 'model'

$$p: S \times S \times A \rightarrow [0,1]$$

p(s', s, a) Probability distribution of transition

S: (finite) set of states

A: (finite) set of actions

Behaviour of the environment 'model'

$$p: S \times S \times A \rightarrow [0,1]$$

p(s', s, a) Probability distribution of transition

For simplicity, we will first assume a deterministic environment. There, the model can be described by a transition function

$$f: S \times A \rightarrow S$$
, $s' = f(s, a)$

S: (finite) set of states

A: (finite) set of actions

Behaviour of the environment 'model'

$$p: S \times S \times A \to [0,1]$$

p(s', s, a) Probability distribution of transition

For simplicity, we will first assume a deterministic environment. There, the model can be described by a transition function

$$f: S \times A \rightarrow S$$
, $s' = f(s, a)$

'Markov' property: Transition only depends on current state and action

S: (finite) set of states

A: (finite) set of actions

Behaviour of the environment 'model'

$$p: S \times S \times A \to [0,1]$$

p(s', s, a) Probability distribution of transition

For simplicity, we will first assume a deterministic environment. There, the model can be described by a transition function

$$f: S \times A \rightarrow S$$
, $s' = f(s, a)$

'Markov' property: Transition only depends on current state and action

$$Pr(s_{t+1}|s_t, a_t) = Pr(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2}, \dots)$$

every transition emits transition costs, 'immediate costs', $c: S \times A \to \Re$ (sometimes also called 'immediate reward', r)

every transition emits transition costs, 'immediate costs', $c: S \times A \to \Re$ (sometimes also called 'immediate reward', r)

Now, an agent policy $\pi:S\to A$ can be evaluated (and judged):

Consider pathcosts:

$$J^{\pi}(s) = \sum_{t} c(s_{t}, \pi(s_{t})), s_{0} = s$$

every transition emits transition costs, 'immediate costs', $c: S \times A \rightarrow \Re$ (sometimes also called 'immediate reward', r)

Now, an agent policy $\pi:S\to A$ can be evaluated (and judged):

Consider pathcosts:

$$J^{\pi}(s) = \sum_{t} c(s_{t}, \pi(s_{t})), s_{0} = s$$

Wanted: optimal policy $\pi^* : \mathcal{S} \to \mathcal{A}$ where $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t c(s_t, \pi(s_t)) | s_0 = s \}$

every transition emits transition costs, 'immediate costs', $c: S \times A \rightarrow \Re$ (sometimes also called 'immediate reward', r)

Now, an agent policy $\pi:S\to A$ can be evaluated (and judged):

Consider pathcosts:

$$J^{\pi}(s) = \sum_{t} c(s_{t}, \pi(s_{t})), s_{0} = s$$

Wanted: optimal policy $\pi^*: \mathcal{S} \to \mathcal{A}$ where $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t c(s_t, \pi(s_t)) | s_0 = s \}$

→ Additive (path-)costs allow to consider all events

every transition emits transition costs, 'immediate costs', $c: S \times A \rightarrow \Re$ (sometimes also called 'immediate reward', r)

Now, an agent policy $\pi:S\to A$ can be evaluated (and judged):

Consider pathcosts:

$$J^{\pi}(s) = \sum_{t} c(s_{t}, \pi(s_{t})), s_{0} = s$$

Wanted: optimal policy $\pi^* : \mathcal{S} \to \mathcal{A}$ where $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t c(s_t, \pi(s_t)) | s_0 = s \}$

- → Additive (path-)costs allow to consider all events.
- ⇒ Does this solve the temporal credit assignment problem? YES!

Choice of immediate cost function $c(\cdot)$ specifies policy to thet learned Example: $J^{\pi}(s_{start}) = 1004$

Example:

$$J^{\pi}(s_{start}) = 1004$$

$$c(s) = \begin{cases} 0 & , & \text{if } s \text{ success } (s \in Goal) \\ 1000 & , & \text{if } s \text{ failure } (s \in Failure) \\ 1 & , & else \end{cases}$$

Choice of immediate cost function $c(\cdot)$ specifies policy to thet learned Example: $J^{\pi}(s_{start}) = 1004$

Example:

$$J^{\pi}(s_{start}) = 1004$$

$$c(s) = \begin{cases} 0 & , & \text{if } s \text{ success } (s \in Goal) \\ 1000 & , & \text{if } s \text{ failure } (s \in Failure) \\ 1 & , & else \end{cases}$$

specification of requested policy by $c(\cdot)$ is simple!

3. Solving the optimization problem

For the optimal path costs it is known that

$$J^*(s) = \min_{a} \{ c(s, a) + J^*(f(s, a)) \}$$

(Principle of Optimality (Bellman, 1959))

 \Rightarrow Can we compute J^* (we will see why, soon)?

Start with arbitrary $J_0(s)$

Start with arbitrary $J_0(s)$

for all states s:

Start with arbitrary $J_0(s)$

for all states $s: J_{k+1}(s) :=$

Start with arbitrary $J_0(s)$ for all states $s:J_{k+1}(s):=\min_{a\in\mathcal{A}}$

Start with arbitrary $J_0(s)$ for all states $s:J_{k+1}(s):=\min_{a\in\mathcal{A}}\{c(s,a)\}$

Start with arbitrary $J_0(s)$ for all states $s:J_{k+1}(s):=\min_{a\in\mathcal{A}}\{c(s,a)+J_k()\}$

Start with arbitrary $J_0(s)$ for all states $s:J_{k+1}(s):=\min_{a\in\mathcal{A}}\{c(s,a)+J_k(f(s,a))\}$

Start with arbitrary $J_0(s)$ for all states $s:J_{k+1}(s):=\min_{a\in\mathcal{A}}\{c(s,a)+J_k(f(s,a))\}$

Start with arbitrary $J_0(s)$ for all states $s:J_{k+1}(s):=\min_{a\in\mathcal{A}}\{c(s,a)+J_k(f(s,a))\}$

Value iteration converges under certain assumptions, i.e. we have $lim_{k\to\infty}J_k=J^*$

Value iteration converges under certain assumptions, i.e. we have $\lim_{k\to\infty}J_k=J^*$

 \Rightarrow Discounted problems: $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t \gamma^t c(s_t, \pi(s_t)) | s_0 = s \}$ where $0 \le \gamma < 1$ (contraction mapping)

Value iteration converges under certain assumptions, i.e. we have $\lim_{k\to\infty}J_k=J^*$

- \Rightarrow Discounted problems: $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t \gamma^t c(s_t, \pi(s_t)) | s_0 = s \}$ where $0 \le \gamma < 1$ (contraction mapping)
- ⇒ Stochastic shortest path problems:
- there exists an absorbing terminal state with zero costs

Value iteration converges under certain assumptions, i.e. we have $\lim_{k\to\infty}J_k=J^*$

- \Rightarrow Discounted problems: $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t \gamma^t c(s_t, \pi(s_t)) | s_0 = s \}$ where $0 \le \gamma < 1$ (contraction mapping)
- ⇒ Stochastic shortest path problems:
- there exists an absorbing terminal state with zero costs
- there exists a 'proper' policy (a policy that has a non-zero chance to finally reach the terminal state)

Value iteration converges under certain assumptions, i.e. we have $\lim_{k\to\infty}J_k=J^*$

- \Rightarrow Discounted problems: $J^{\pi^*}(s) = \min_{\pi} \{ \sum_t \gamma^t c(s_t, \pi(s_t)) | s_0 = s \}$ where $0 \le \gamma < 1$ (contraction mapping)
- ⇒ Stochastic shortest path problems:
- there exists an absorbing terminal state with zero costs
- there exists a 'proper' policy (a policy that has a non-zero chance to finally reach the terminal state)
- every non-proper policy has infinite path costs for at least one state

$$\pi^*(s) \in \operatorname{arg\,min}_{a \in \mathcal{A}} \{ \}$$

$$\pi^*(s) \in \operatorname{arg\,min}_{a \in \mathcal{A}} \{ c(s, a) + J^*(f(s, a)) \}$$

$$\pi^*(s) \in \operatorname{arg\,min}_{a \in \mathcal{A}} \{ c(s, a) + J^*(f(s, a)) \}$$

Back to our maze

 $\begin{array}{c} \bullet \ \ {\rm Description\ of\ the\ learning\ task\ as\ an\ MDP} \\ S,A,T,f,c \\ c \ \ {\rm specifies\ requested\ behaviour/\ policy} \\ \end{array}$

- Description of the learning task as an MDP S,A,T,f,c c specifies requested behaviour/ policy
- iterative computation of optimal pathcosts J^* : $\forall s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k(f(s, a))\}$

- Description of the learning task as an MDP S,A,T,f,c c specifies requested behaviour/ policy
- iterative computation of optimal pathcosts J^* : $\forall s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k(f(s, a))\}$
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg\min_{a \in \mathcal{A}} \{c(s, a) + J^*(f(s, a))\}$

- Description of the learning task as an MDP S,A,T,f,c c specifies requested behaviour/ policy
- iterative computation of optimal pathcosts J^* : $\forall s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k(f(s, a))\}$
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg\min_{a \in \mathcal{A}} \{c(s, a) + J^*(f(s, a))\}$
- value function ('costs-to-go') can be stored in a table

• value iteration in stochastic environments:

$$\forall s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{ (c(s, a) + J_k(s')) \}$$

• value iteration in stochastic environments:

$$\forall s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{ \sum_{s' \in \mathcal{S}} p(s, s', a) \left(c(s, a) + J_k(s') \right) \}$$

- value iteration in stochastic environments: $\forall s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{ \sum_{s' \in \mathcal{S}} p(s, s', a) \left(c(s, a) + J_k(s') \right) \}$
- Computation of an optimal policy from J^* $\pi^*(s) \in \arg\min_{a \in \mathcal{A}} \{ \sum_{s' \in S} p(s, s', a) (c(s, a) + J_k(s')) \}$
- ullet value function J ('costs-to-go') can be stored in a table

Problems of Value Iteration:

Problems of Value Iteration:

for all $s \in \mathcal{S}$:

Problems of Value Iteration:

for all
$$s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k()\}$$

Problems of Value Iteration:

for all
$$s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k(f(s, a))\}$$

Problems of Value Iteration:

for all $s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k(f(s, a))\}$ problems:

- Size of S (Chess, robotics, . . .) \Rightarrow learning time, storage?
- 'model' (transition behaviour) f(s,a) or p(s',s,a) must be known!

Reinforcement Learning

Problems of Value Iteration:

for all $s \in \mathcal{S} : J_{k+1}(s) = \min_{a \in \mathcal{A}} \{c(s, a) + J_k(f(s, a))\}$ problems:

- Size of S (Chess, robotics, . . .) \Rightarrow learning time, storage?
- ullet 'model' (transition behaviour) f(s,a) or p(s',s,a) must be known!

Reinforcement Learning is dynamic programming for very large state spaces and/ or model-free tasks

Important contributions - Overview

 Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Model-free learning (Q-Learning, (Watkins, 1989))

neural representation of value function (or alternative function approximators)

Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Idea:

instead For all $s \in S$ now For some $s \in S$. . .

Real Time Dynamic Programming (Barto, Sutton, Watkins, 1989)

Idea:

instead For all $s \in S$ now For some $s \in S$. . .

⇒ learning based on trajectories (experiences)

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go. $Q_{\pi}(s,a)$ denotes the expected future pathcosts for applying action a in state s (and continuing according to policy π):

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go. $Q_{\pi}(s,a)$ denotes the expected future pathcosts for applying action a in state s (and continuing according to policy π):

$$Q_{\pi}(s,a) := (c(s,a) + J_{\pi}(s'))$$

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go. $Q_{\pi}(s,a)$ denotes the expected future pathcosts for applying action a in state s (and continuing according to policy π):

$$Q_{\pi}(s, a) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_{\pi}(s'))$$

Idea (Watkins, Diss, 1989):

In every state store for every action the expected costs-to-go. $Q_{\pi}(s,a)$ denotes the expected future pathcosts for applying action a in state s (and continuing according to policy π):

$$Q_{\pi}(s, a) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_{\pi}(s'))$$

where $J_{\pi}(s')$ expected pathcosts when starting from s' and acting according to π

Q-learning: Action selection

is now possible without a model:

Original VI: state evaluation Action selection:

$$\pi^*(s) \in \arg\min\{c(s, a) + J^*(f(s, a))\}\$$

Q-learning: Action selection

is now possible without a model:

Original VI: state evaluation Action selection:

Q: state-action evaluation Action selection:

$$\pi^*(s) = \arg\min Q^*(s, a)$$

$$\pi^*(s) \in \arg\min\{c(s, a) + J^*(f(s, a))\}$$

To find Q^* , a value iteration algorithm can be applied

$$Q_{k+1}(s, u) := (c(s, a) + J_k(s'))$$

To find Q^* , a value iteration algorithm can be applied

$$Q_{k+1}(s,u) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_k(s'))$$

To find Q^* , a value iteration algorithm can be applied

$$Q_{k+1}(s,u) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_k(s'))$$

where $J_k(s) = \min_{a' \in \mathcal{A}(s)} Q_k(s, a')$

To find Q^* , a value iteration algorithm can be applied

$$Q_{k+1}(s, u) := \sum_{s' \in S} p(s', s, a)(c(s, a) + J_k(s'))$$

where $J_k(s) = \min_{a' \in \mathcal{A}(s)} Q_k(s, a')$

 \diamond Furthermore, learning a Q-function without a model, by experience of transition tuples $(s, a) \rightarrow s'$ only is possible:

Q-LEARNING (Q-Value Iteration + Robbins-Monro stochastic approximation)

$$Q_{k+1}(s, a) := (1 - \alpha) Q_k(s, a) + \alpha \left(c(s, a) + \min_{a' \in \mathcal{A}(s')} Q_k(s', a') \right)$$

Q-learning is a variant of value iteration when no model is available it is based on two major ingredigents:

Q-learning is a variant of value iteration when no model is available it is based on two major ingredigents:

ullet uses a representation of costs-to-go for state/ action-pairs Q(s,a)

Q-learning is a variant of value iteration when no model is available it is based on two major ingredigents:

- ullet uses a representation of costs-to-go for state/ action-pairs Q(s,a)
- uses a stochastic approximation scheme to incrementally compute expectation values on the basis of observed transititions $(s,a) \rightarrow s'$

Q-learning is a variant of value iteration when no model is available it is based on two major ingredigents:

- ullet uses a representation of costs-to-go for state/ action-pairs Q(s,a)
- uses a stochastic approximation scheme to incrementally compute expectation values on the basis of observed transititions $(s,a) \rightarrow s'$
- converges under the same assumption as value iteration + 'every state/ action pair has to be visited infinitely often' + conditions for stochastic approximation

REPEAT

Repeat

Repeat start in arbitrary initial state s_0 ; t=0 Repeat

```
Repeat start in arbitrary initial state s_0; t=0 Repeat choose action greedily u_t := \arg\min_{a \in \mathcal{A}} Q_k(s_t, a)
```

```
Repeat start in arbitrary initial state s_0; t=0 Repeat choose action greedily u_t := \arg\min_{a \in \mathcal{A}} Q_k(s_t, a) or u_t according to an exploration scheme
```

UNTIL UNTIL

```
Repeat start in arbitrary initial state s_0; t=0 Repeat choose action greedily u_t := \arg\min_{a \in \mathcal{A}} Q_k(s_t, a) or u_t according to an exploration scheme apply u_t in the environment: s_{t+1} = f(s_t, u_t, w_t)
```

```
REPEAT start in arbitrary initial state s_0; t=0 REPEAT choose action greedily u_t := \arg\min_{a \in \mathcal{A}} Q_k(s_t, a) or u_t according to an exploration scheme apply u_t in the environment: s_{t+1} = f(s_t, u_t, w_t) learn Q-value:
```

```
REPEAT start in arbitrary initial state s_0; t=0 REPEAT choose action greedily u_t := \arg\min_{a \in \mathcal{A}} Q_k(s_t, a) or u_t according to an exploration scheme apply u_t in the environment: s_{t+1} = f(s_t, u_t, w_t) learn Q-value: Q_{k+1}(s_t, u_t) := (1-\alpha)Q_k(s_t, u_t) + \alpha(c(s_t, u_t) + J_k(s_{t+1})) where J_k(s_{t+1}) := \min_{a \in \mathcal{A}} Q_k(s_{t+1}, a) Until Until
```

```
REPEAT start in arbitrary initial state s_0; t=0 REPEAT choose action greedily u_t:=\arg\min_{a\in\mathcal{A}}Q_k(s_t,a) or u_t according to an exploration scheme apply u_t in the environment: s_{t+1}=f(s_t,u_t,w_t) learn Q-value: Q_{k+1}(s_t,u_t):=(1-\alpha)Q_k(s_t,u_t)+\alpha(c(s_t,u_t)+J_k(s_{t+1})) where J_k(s_{t+1}):=\min_{a\in\mathcal{A}}Q_k(s_{t+1},a) Until Terminal state reached Until
```

```
REPEAT start in arbitrary initial state s_0; t=0 REPEAT choose action greedily u_t := \arg\min_{a \in \mathcal{A}} Q_k(s_t, a) or u_t according to an exploration scheme apply u_t in the environment: s_{t+1} = f(s_t, u_t, w_t) learn Q-value: Q_{k+1}(s_t, u_t) := (1-\alpha)Q_k(s_t, u_t) + \alpha(c(s_t, u_t) + J_k(s_{t+1})) where J_k(s_{t+1}) := \min_{a \in \mathcal{A}} Q_k(s_{t+1}, a) Until Terminal state reached Until policy is optimal ('enough')
```

Representation of the path-costs in a function approximator

Idea: neural representation of value function (or alternative function approximators) (Neuro Dynamic Programming (Bertsekas, 1987))

Representation of the path-costs in a function approximator

Idea: neural representation of value function (or alternative function approximators) (Neuro Dynamic Programming (Bertsekas, 1987))

⇒ few parameters (here: weights) specify value function for a large state space

Representation of the path-costs in a function approximator

Idea: neural representation of value function (or alternative function approximators) (Neuro Dynamic Programming (Bertsekas, 1987))

- ⇒ few parameters (here: weights) specify value function for a large state space
- \Rightarrow learning by gradient descent: $\frac{\partial E}{\partial w_{ij}} = \frac{\partial (J(s') c(s,a) J(s))^2}{\partial w_{ij}}$

Example: learning to intercept in robotic soccer

- as fast as possible (anticipation of intercept position)
- random noise in ball and player movement → need for corrections
- sequence of $\text{TURN}(\theta)$ and DASH(v)-commands required

⇒handcoding a routine is a lot of work, many parameters to tune!

Goal: Ball is in kickrange of player

• state space: S^{work} = positions on pitch

Goal: Ball is in kickrange of player

• state space: S^{work} = positions on pitch

• S^+ : Ball in kickrange

Goal: Ball is in kickrange of player

• state space: S^{work} = positions on pitch

• S^+ : Ball in kickrange

• S^- : e.g. collision with opponent

Goal: Ball is in kickrange of player

- state space: S^{work} = positions on pitch
- S^+ : Ball in kickrange
- S^- : e.g. collision with opponent

•
$$c(s) = \begin{cases} 0, & s \in S^+ \\ 1, & s \in S^- \\ 0.01, & else \end{cases}$$

Goal: Ball is in kickrange of player

- state space: S^{work} = positions on pitch
- S^+ : Ball in kickrange
- S^- : e.g. collision with opponent

•
$$c(s) = \begin{cases} 0, & s \in S^+ \\ 1, & s \in S^- \\ 0.01, & else \end{cases}$$

• Actions: $TURN(10^o)$, $TURN(20^o)$, . . . $TURN(360^o)$, . . . DASH(10), DASH(20), . . .

Goal: Ball is in kickrange of player

- state space: S^{work} = positions on pitch
- S^+ : Ball in kickrange
- S^- : e.g. collision with opponent

•
$$c(s) = \begin{cases} 0, & s \in S^+ \\ 1, & s \in S^- \\ 0.01, & else \end{cases}$$

- Actions: $TURN(10^o)$, $TURN(20^o)$, . . . $TURN(360^o)$, . . . DASH(10), DASH(20), . . .
- neural value function (6-20-1-architecture)

Learning curves

Percentage of successes

Costs (time to intercept)