

Tecnicatura Superior en Telecomunicaciones

Formación Profesional 2024

Curso: 1er Año

F.P.: Desarrollador de dispositivos IoT

La Formación Profesional

El trayecto formativo de "Desarrollador de Dispositivos IoT" busca formar técnicos capacitados para desempeñarse en todas las capas del Internet de las Cosas (IoT), desarrollando, administrando y manteniendo proyectos de IoT. Esto implica:

- · Desarrollo de dispositivos para el IoT
- · Configuración y administración de redes IoT
- Integración y gestión de datos en sistemas IoT
- · Implementación de medidas de seguridad en dispositivos y redes IoT

El Proyecto Central

Desarrollar un sistema de control y monitoreo distribuido para optimizar el uso y gestión del agua en diferentes entornos.

Este controlador, tipo célula, es capaz de abarcar el control general y amplio de jardines, plazas, huertas urbanas, así como grandes plantaciones agrícolas en campos rurales.

El sistema se enfoca en la eficiencia y sostenibilidad del riego mediante la gestión y monitoreo inteligente de los recursos hídricos locales.

Información General

El proyecto es llevado a cabo aplicando metodologías agiles y a lo largo de 4 Sprints:

Sprint 1: Planificación y Configuración Inicial

Objetivos:

- · Definir la arquitectura de red del proyecto.
- Planificar la comunicación inicial del proyecto.
- Identificar variables a sensorizar y actuar.
- Seleccionar y evaluar tecnologías de sensores y actuadores necesarios para el proyecto.
- Instalar y probar los sensores y actuadores seleccionados.

Sprint 2: Integración y Desarrollo de Software

Objetivos:

- Desarrollar software básico para la integración de sensores.
- Realizar simulaciones y pruebas con ESP32.
- Configurar protocolos de comunicación en red.
- Implementar la alimentación y pruebas de sensores y actuadores.
- Realizar pruebas de red y seguridad inicial.

Sprint 3: Configuración Avanzada y Optimización

Objetivos:

- Configurar comunicaciones inalámbricas (WiFi, Bluetooth).
- Implementar servicios de red (MQTT, HTTP, DNS) y seguridad.
- Realizar pruebas de seguridad y estabilidad.
- Optimizar la comunicación y preprocesamiento de datos.

Sprint 4: Prueba Final, Documentación y Presentación

Objetivos:

- · Realizar pruebas finales del sistema.
- Ajustar y corregir errores.
- Revisar el proyecto completo y obtener retroalimentación final.

- Preparar y entregar la documentación final del proyecto.
- Defender el proyecto ante los evaluadores.

Desarrollo

SPRINT 1

Objetivos:

- · Definir la arquitectura de red del proyecto.
- · Planificar la comunicación inicial del proyecto.
- Identificar variables a sensorizar y actuar.
- · Seleccionar y evaluar tecnologías de sensores y actuadores necesarios para el proyecto.
- Instalar y probar los sensores y actuadores seleccionados.

Empezamos con un desarrollo particular y luego iremos escalando la aplicación. La descripción del desarrollo inicial es "El control hidropónico de un cultivo vertical".

Se hace una descripción de las partes que solicitan el sprint 1:

1. Definir la arquitectura de red del proyecto.

Se articulará celularmente de forma de armar redes mesh, con sus correspondientes nodos Fog, los protocolos serán: wifi, Ble, ESP-mesh, Lora, Lora-Wan, HTTP, MQTT según la escala.

En esta etapa inicial la comunicación será wifi, Ble, ESP-mesh, Lora y Lora-Wan.

2. Planificar la comunicación inicial del proyecto.

Los alumnos conformaran Equipos de trabajo según metodologías agiles (scrum, Kanban, agile) y registraran todo en repositorios de la organización para la FP. Se organizarán y presentarán los equipos y forma de trabajo según se detalla a continuación:

Organización: https://qithub.com/ISPC-TST-FP-2024

Repo Proyecto: https://github.com/ISPC-TST-FP-2024/proyecto-CGRH.git

3. Identificar variables a sensorizar y actuar.

Se definirán los sensores y actuadores de acuerdo a lo siguiente:

Sensores

Humedad del suelo Luz ambiental

Humedad relativa ambiental Temperatura ambiental Nivel de cuba de agua Presencia de plagas

Actuadores

Bomba de agua Valvulas de agua Iluminacion Contactos auxiliares

4. Seleccionar y evaluar tecnologías de sensores y actuadores necesarios para el proyecto.

Entradas Analógicas y Digitales:

- 1. Sensores de Humedad del Suelo (HW-080) (x3):
 - Sensor 1: GPIO36 (ADC1_CHANNEL_0)
 - Sensor 2: GPIO39 (ADC1_CHANNEL_3)
 - Sensor 3: GPIO34 (ADC1_CHANNEL_6)
- 2. DHT11 (Temperatura y Humedad):
 - o GPIO14 (Digital)
- 3. Sensor de Lluvia (AB119):
 - o GPIO33 (Digital)
- 4. Sensor Ultrasónico (HC-SR04):
 - o **Trigger:** GPI012
 - o Echo: GPI013
- 5. LDR (Luz Ambiente):
 - GPIO32 (ADC1_CHANNEL_4)
- 6. Micrófono Electret:
 - GPIO35 (ADC1_CHANNEL_7)
- 7. Sensores PIR (HCSR501) (x3):
 - Sensor 1: GPI025
 - Sensor 2: GPI026
 - Sensor 3: GPI027

Salidas:

- 1. Tira LED WS2812B:
 - o GPIO15 (Digital)
- 2. Módulo de Relé de 4 Canales:
 - o Canal 1 (Bomba de Agua): GPIO4

Canal 2 (Válvula 1): GPI016
 Canal 3 (Válvula 2): GPI017
 Canal 4 (Válvula 3): GPI00

Interfaces de Comunicación:

SPI:

MOSI: GPI023
 MISO: GPI019
 SCK: GPI018
 SS (NSS): GPI05

I2C:

SCL: GPI022SDA: GPI021

Resumen Completo:

- Entradas Analógicas:
 - o GPI036, GPI039, GPI034, GPI032, GPI035
- Entradas Digitales:
 - o GPI014, GPI033, GPI012, GPI013, GPI025, GPI026, GPI027
- Salidas Digitales:
 - GPIO15 (tira LED), GPIO4 (Relé Canal 1), GPIO16 (Relé Canal 2), GPIO17 (Relé Canal 3), GPIO0 (Relé Canal 4)
- SPI:

MOSI: GPI023MISO: GPI019SCK: GPI018SS: GPI05

• I2C:

SCL: GPI022SDA: GPI021

5. Instalar y probar los sensores y actuadores seleccionados.

Se conectan los sensores listados en las I/O del ESP32 como se indica a continuación para realizar las pruebas.

Y se realizan las pruebas y distribución sobre el siguiente prototipo:

