CH 7 Symmetric Matricies and Quadratic Forms

mrevanisworking

August 8, 2020

0.1 Diagonalization of Symmetric Matricies

Symmetric MX: a MX that $A^T = A$ (is square) maybe: row i = col i?

0.1.1 Orthogonal Evec Symmetry Theorem

if A is symmetric, then any two Evec from different ES are orthogonal.

0.1.2 Orthogonally Diagonalizable Theorem

a nxn is orthogonally diagonalizable if there are an orthogonal P $(P^{-1} = P^T)$ and d such that:

$$A = PDP^T = PDP^{-1}$$

Theorem: nxn A is orthogonally diagonalizable IFF A is a symmetric matrix.

0.1.3 Spectral Theorem

set of Evec of A is sometimes called the spectreum of A.

Theorem: a nxn symmetric A has:

- a. A has n real Evec, counting multiplicities.
- b. dim of ES for each EV λ equals the multiplicity of λ as a root of the chara equation.
- c. ES are mutually orthogonal: Evec corresponding to different EV are orthogonal.
- d. A is orthogonally diagonalizable.

0.1.4 Spectral Decomposition

$$A = \cdots + \lambda_n \boldsymbol{u_n} \boldsymbol{u_n^T}$$

because it breaks up A into pieces determined by the spectrum of A.

 $\boldsymbol{u_j}\boldsymbol{u_i^T}$ is a projection matrix:

for each x, the vector $(u_j u_j^T) x$ is the orthogonal projection of x onto subS spanned by u_j

0.2 Quadratic Forms

a quadratic form on \mathbb{R}^n is a fxn Q defined on \mathbb{R}^n whose value at \boldsymbol{x} is \mathbb{R}^n can be computed by $Q(\boldsymbol{x})\boldsymbol{x}^TA\boldsymbol{x}$ where A is A is

That A is the MX of the quadratic form.

quadratic forms are easier when no cross-product terms (when MX of quadratic form is diagonal)

cross-product term can be eliminated with change of variables

0.2.1 Change of Variable in a Quadratic Form

if x is a variable vec in rn, then change of variable is an equation of the form:

$$\boldsymbol{x} = P\boldsymbol{y} \text{ or } \boldsymbol{y} = P^{-1}\boldsymbol{x}$$

CHANGE OF VARIABLES (not change of coordinates)

*read 404 and check Theorem 2

SEE FIG1

0.2.2 The Principal Axes Theorem

A is nxn symmetric, then there is an orthogonal change of variable $\mathbf{x} = P\mathbf{y}$ that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term $(x_1 x_2)$

col of P in the theorem are the principle axes of xTAx.

y is the coordinate vec of x relative to the orthonormal basis of \mathbb{R}^n given by these principle axes

0.2.3 Geometry of Pinciple Axes

if $\mathbf{x}^T A \mathbf{x} = c$ where A is an invertible 2x2 symm, then it is either an ellipse, hyperbola, intersecting lines, a point, or no points.

If A is a DMX, then graph is in standard position.

nonDMX is rotated out of standard position.

The principle axes (determined by Evec of A) means finding a new coord system wrt which the graph is in standard position.

SEE EX5

0.2.4 Classifying Quadratic Forms

quadratic form Q is:

- a. positive definite if Q(x) > 0 for all $x \neq 0$
- b. negative definite if Q(x) < 0 for all $x \neq 0$
- c. indefinite if Q(x) assumes both positive and negative vals
- Q is positive semidefinite if ≥ 0
- Q is negative semidefinite if ≤ 0

0.2.5 QF and EV Theorem

let A be nxn symm. then QF $\boldsymbol{x}^T A \boldsymbol{x}$ is:

- a. +def IFF EV of A are all positive
- b. -def IFF EV of A are all negative
- c. indefinite IFF A has both positive and negative EV see diagram

0.2.6 QF MX

positive definite MX is a SMX for which the QF is +def

0.3 Constrained Optimization

the requirement that \boldsymbol{x} is a unit vector: mag = 1, mag squared = 1, $\boldsymbol{x}^T \boldsymbol{x} = 1$ See EX1 for min/max of Q

0.3.1 Optimization for SMX Theorem

let A be SMX, m is min, M is max EV of A. value of $\boldsymbol{x}^T A \boldsymbol{x}$ is M when x is a unit Evec u corresponding to M. the value of $\boldsymbol{x}^T A \boldsymbol{x}$ is m when x is a unit Evec corresponding to m.

0.3.2 Maximum for SMX Theorem(SEE NEXT THEOREM)

 $\mathbf{a}, \lambda, \boldsymbol{u}$ as in previous thm, max val of $\boldsymbol{x}^T A \boldsymbol{x}$ is subject to:

$$\boldsymbol{x}^T \boldsymbol{x} = 1$$
 , $\boldsymbol{x}^T \boldsymbol{u}_1 = 0$

is the second greatest EV λ_2 , and this max is attained when \boldsymbol{x} is an Evec $\boldsymbol{u_2}$ corresponding to λ_2

0.3.3 General Maxmimum for SMX Theorem

let A be symm nxn w/ orthogonal diagonalization $A = PDP^{-1}$ where the entries on the diag of D are arranged so that each EV is less than the previous entry, where col of P are corresponding unit Evec u. Then for $k = 2, \ldots, n$, the maximum value of \boldsymbol{x}^TAx subject to:

$$x^T x = 1$$
, $x^T u_1 = 0, ...$, $x^T u_{k-1} = 0$

is the EV λ_k and this max is at $\boldsymbol{x} = \boldsymbol{u}_k$

0.4 APPLICATIONS to Image Processing and Stats

later in STATS and round2