Pattern Recognition

組員:蔡龍佑(M10517035)

蕭任均(M10517029)

董屹晨 (M10517028)

Question

Please discuss the similarities and differences between EM. K-means and Bayesian classification?

please use examples or experiments to support your statement.

Types of problems and tasks

Supervised learning

- Classification
 - In which the aim is to assign each input vector to one of a finite number of discrete categories.
- Regression
 - If the desired output consists of one or more continuous variables.

Unsupervised learning

- Clustering
 - To discover groups of similar examples within the data.
 - · Determine the distribution of data within the input space
 - Known as density estimation
 - Project the data from a high-dimensional space down to two or three dimensions for the purpose of *Visualization*.

Reinforcement learning

• Concerned with the problem of finding suitable actions to take in a given situation in order to maximize a reward.

What is this task?

Thirty people

Mathematics		English	
66	67	67	33
86	92	21	89
77	85	3	44
64	42	66	49
59	57	75	58
88	47	87	28
98	89	18	84
80	35	37	90
81	29	27	56
93	87	41	39
23	91	88	45
48	44	29	64
68	43	12	81
17	41	38	51
4	65	13	0

Pass or not

Thirty people

```
: plt.plot(getcol(_pass,0),getcol(_pass,1),'ro',c='g')
plt.plot(getcol(_non_pass,0),getcol(_non_pass,1),'ro',c='r')
plt.show()
```


Two clusters

Thirty people

```
plt.plot(getcol(cluster_1,0),getcol(cluster_1,1),'ro',c='g')
plt.plot(getcol(cluster_2,0),getcol(cluster_2,1),'ro',c='r')
plt.show()
```


Discuss Question

Please discuss the similarities and differences between EM,K-means and Bayesian classification?

Classification

Bayesian Classification

Clustering

K-means

EM

Classification

Clustering

- Partitioning method
- Hierarchical method
- Density-base method
- Grid-based method
- Model-based method

Outlier detection

Partitioning method

- Usually start with a random (partial)
- partitioning

Model-based method

· Instead of a Gaussian mixture

Considerations

• Finding good seeds is even more critical for EM than for k-means (EM is prone to get stuck in local optima)

• Therefore (as in k-means) an initial assignment is often computed by another algorithm

Mean-Shift Clustering Algorithm

```
In [91]: # The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)

ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_|
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
print("number of estimated clusters : %d" % n_clusters_)
number of estimated clusters : 3
```

