

Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Bacharelado em Ciência da Computação Engenharia de Computação

Arquitetura e Organização de Computadores I Aula 5

MIPS monociclo: controle da ULA, execução das instruções, bloco de controle principal, desempenho de máquinas monociclo.

Prof. Guilherme Corrêa gcorrea@inf.ufpel.edu.br

Bloco Operativo Monociclo

Capaz de Realizar instruções tipo R, lw, sw e beq

O Controle da ULA

- A ULA tem 3 entradas de controle (8 combinações possíveis)
- Somente 4 combinações são usadas

Entrada de controle da ULA	Função
000	AND
001	OR
010	Adição
110	Subtração

O Controle da ULA

Entrada de controle da ULA	Função
000	AND
001	OR
010	Adição
110	Subtração

Uso da ULA

- lw/sw: adição (para calcular o endereço de acesso à memória)
- beq: subtração (para testar se os registradores Rs e Rt são iguais)
- Instruções tipo R: depende do campo "funct", podendo ser AND, OR, adição ou subtração.

O Controle da ULA

- A ULA terá um controle próprio, separado do bloco de controle principal (e portanto, menos complexo e mais rápido)
- Este controle tem como entradas:
 - Os 6 bits do campo "funct"
 - 2 bits vindos do bloco de controle global ("ULAOp"), que serve para identificar a qual classe a instrução a ser executada pertence

ULAOp	Classe de instrução	ULA deve realizar
00	lw/sw	adição
01	beq	subtração
10	tipo R	depende do campo "funct"
11	-	-

O Controle da ULA

Correspondência entre "funct" & "ULAOp" com "controle da ULA"

Instrução	ULAOp	Campo "funct"	Operação da ULA	Operação da ULA
lw	00	XXXXXX	adição	010
sw	00	XXXXXX	adição	010
beq	01	XXXXXX	subtração	110
add	10	100000	adição	010
sub	10	100010	subtração	110
and	10	100100	and	000
or	10	100101	or	001

Conclusões:

- Apenas algumas das 64 combinações possíveis a partir dos 6 bits do campo "funct" são de interesse
- O campo "funct" somente interessa quando ULAOp = 10

O Controle da ULA

Tabela-Verdade para a Geração dos 3 Bits de Controle da ULA

Instrução	ULAOp	Campo "funct"	Operação da ULA	Operação da ULA
lw	00	xxxxxx	adição	010
sw	00	xxxxxx	adição	010
beq	01	xxxxxx	subtração	110
add	10	100000	adição	010
sub	10	100010	subtração	110
and	10	100100	and	000
or	10	100101	or	001

ULAOp1	ULAOp2	F5	F4	F3	F2	F1	F0	Operação da ULA
0	0	X	X	X	X	X	X	010
X	1	X	X	X	X	X	X	110
1	X	X	Х	Х	0	0	0	010
1	Х	Х	Х	Х	0	1	0	110
1	X	Х	Х	Х	1	0	0	000
1	X	X	Х	Х	1	0	1	001

O Controle da ULA

Tabela-Verdade para a Geração dos 3 Bits de Controle da ULA

ULAOp1	ULAOp2	F5	F4	F3	F2	F1	F0	Operação da ULA
0	0	X	X	X	X	X	X	010
X	1	X	X	X	X	X	X	110
1	X	X	X	X	0	0	0	010
1	X	X	X	X	0	1	0	110
1	X	X	Х	X	1	0	0	000
1	X	X	Х	X	1	0	1	001

Bloco Operativo + Controle da ULA

O Bloco de Controle Principal

Relembrando os formatos das 4 principais classes de instrução

Instrução tipo R:

Instrução store word:

Instrução load word:

O Bloco de Controle Principal

Relembrando os formatos das 4 principais classes de instrução

Instrução branch on equal:

Os Sinais de Controle

Execução de uma Instrução Tipo R

Seja uma instrução tipo R, como por exemplo add \$t1, \$t2, \$t3:

Podemos imaginar que esta instrução é executada em 4 etapas:

- 1. Busca da instrução (na memória de instruções) e incremento do PC
- 2. Leitura de dois registradores (no caso, \$t2 e \$t3, ou Rs e Rt) e geração dos sinais de controle para o resto do bloco operativo (decodificação da instrução)
- 3. Operação na ULA
- 4. Escrita (do resultado da operação realizada na ULA) no registrador destino (\$t1 ou Rd)

Como estes passos ocorrem dentro do mesmo ciclo de relógio (regime monociclo), a ordem real irá depender do atraso de cada componente.

Instrução Tipo R: busca da instrução e cálculo de PC+4

Instrução Tipo R: leit. de Rs e Rt e geração sinais de controle

Instrução Tipo R: operação na ULA (depende de "funct")

Instrução Tipo R: escrita no registrador-destino

Instrução Tipo R: escrita no registrador-destino

Execução de uma Instrução Iw

Seja a instrução load word, lw \$t1, deslocamento(\$t2):

Podemos imaginar que esta instrução é executada em 5 etapas:

- 1. Busca da instrução (na memória de instruções) e incremento do PC
- 2. Leitura de dois registradores (no caso, \$t1 e \$t2, ou Rs e Rt) e geração dos sinais de controle para o resto do bloco operativo (decodificação da instrução). Apenas o registrador \$t2 (Rs) interessa, pois é o registrador-base. Rt será desprezado...
- 3. Cálculo do endereço usando a ULA (adição)
- 4. Acesso à memória de dados para uma leitura (endereço = resultado da ULA)
- 5. Escrita (do valor lido da memória de dados) no registrador destino (\$t1, que neste caso correponde ao campo Rt)

Instrução Iw: busca da instrução e cálculo de PC+4

Instrução Iw: leitura de Rs (e Rt) e geração sinais de controle

Instrução Iw: cálculo do endereço usando a ULA (adição)

Instrução Iw: acesso à memória de dados para uma leitura

Instrução lw: escrita no registrador-destino

Execução de uma Instrução beq

Seja a instrução de desvio condicional, beq \$11, \$12, deslocamento:

Podemos imaginar que esta instrução é executada em 3 etapas:

- 1. Busca da instrução (na memória de instruções) e incremento do PC
- 2. Leitura de dois registradores (no caso, \$t1 e \$t2, ou Rs e Rt) e geração dos sinais de controle para o resto do bloco operativo (decodificação da instrução)
- 3. Cálculo da subtração entre os registradores \$t1 e \$t2 (Rs e Rt) usando a ULA (adição). O valor na saída "zero" da ULA é usado para decidir se o PC será atualizado com PC+4 ou com o endereçoalvo do desvio condicional.

Instrução beq: busca da instrução e cálculo de PC+4

Instrução beq: leit. de Rs e Rt e geração sinais de controle

Instrução beq: operação na ULA (subtração)

Projeto do Bloco de Controle Principal

Valores dos Sinais de Controle para as Instruções R, lw, sw e beq

instrução	RegDst	ULAFonte	MemParaReg	EscReg	LerMem	EscMem	DvC	ULAOp1	ULAOp0
Tipo R	1	0	1	1	0	0	0	1	0
lw	0	1	0	1	1	0	0	0	0
sw	X	1	X	0	0	1	0	0	0
beq	X	0	X	0	0	0	1	0	1

Valores do campo "opcode" para as Instruções R, lw, sw e beq

instrução	Opcode em decimal	Op5	Op4	Op3	Op2	Op1	Op0
Tipo R	0	0	0	0	0	0	0
lw	35	1	0	0	0	1	1
sw	43	1	0	1	0	1	1
beq	4	0	0	0	1	0	0

Projeto do Bloco de Controle Principal

Tabela-Verdade para os Sinais de Controle

entradas								saída	S					
Op5	Op4	Op3	Op2	Op1	Op0	RegDst	ULAFonte	MemParaReg	EscReg	LerMem	EscMem	DvC	ULAOp1	ULAOp0
0	0	0	0	0	0	1	0	0	1	0	0	0	1	0
1	0	0	0	1	1	0	1	1	1	1	0	0	0	0
1	0	1	0	1	1	Х	1	Х	0	0	1	0	0	0
0	0	0	1	0	0	X	0	X	0	0	0	1	0	1

Inclusão do Desvio Incondicional (jump)

Instrução jump:

- A instrução jump se parece com a instrução beq
- Porém, calcula o endereço-alvo concatenando:
 - Os 4 bits de mais significativos de PC+4 com
 - Os 26 bits do campo "deslocamento" da instrução de jump (campo imediato) e com
 - os bits "00" (menos significativos)

Bloco operativo monociclos com controle

Inclusão do Desvio Incondicional (jump)

Desempenho de Máquinas Monociclo

Unidades funcionais utilizadas por cada instrução

instrução	Etapa 1	Etapa 2	Etapa3	Etapa 4	Etapa 5
Tipo R	Busca da instrução	Lê registrador(es)	ULA	Escreve registrador	
lw	Busca da instrução	Lê registrador(es)	ULA	Lê memória	Escreve registrador
sw	Busca da instrução	Lê registrador(es)	ULA	Escreve na memória	
beq	Busca da instrução	Lê registrador(es)	ULA		
jump	Busca da instrução				

Desempenho de Máquinas Monociclo

Tempo de execução de cada instrução (com valores hipotéticos de atraso para cada etapa)

instrução	Acesso à memória de instruções	Leitura de registradores	Operação na ULA	Acesso à memória de dados	Escrita no registrador	Total
Tipo R	4 ns	1 ns	2 ns		1 ns	8 ns
lw	4 ns	1 ns	2 ns	4 ns	1 ns	12 ns
SW	4 ns	1 ns	2 ns	4 ns		11 ns
beq	4 ns	1 ns	2 ns			7 ns
jump	4 ns					4 ns

Bibliografia recomendada

• PATTERSON, David A.; HENESSY, John L. **Organização e Projeto de Computadores: a interface hardware/software**. 2ª.ed. Rio de Janeiro: LTC, 2000.