



March 14, 2018

#### Introduction to Data Science

Zeev Waks, Intel

#### **Feature selection**





Agenda – Curse of dimensionality

- Quick ML review
- Model evaluation
  - Performance metrics
  - Hold-out evaluation
  - Cross validation
  - Training with imbalanced classes
  - Overfitting/underfitting
- Dimensionality and feature selection
  - Curse of dimensionality
  - Filter feature selection
  - Wrapper feature selection
  - Principal Component Analysis (dimensionality reduction)





## Curse of Dimensionality • What is it? (Bellman 1961)

- - A name for various problems that arise when analyzing data in high dimensional space. Dimensions = independent features in ML
  - Occurs when # dimensions is large in relation to number of samples.
- Real life examples:
  - We have about 10<sup>6</sup> possible genomic features, but our human sample sizes are often in the 100s or 1000s of different genomes.

### So what is this curse?



#### Sparse data:

- When the dimensionality d increases, the volume of the space increases so fast that the available data becomes sparse, i.e. a few points in a large space
- Many features are not balanced, or are 'rarely occur' sparse features
- Noisy data: More features can lead to increased noise 

  it is harder to find the true signal
- **Less clusters**: Neighborhoods with fixed k points are less concentrated as d increases.
- Complex features: High dimensional functions tend to have more complex features than low-dimensional functions, and hence harder to estimate



## Curse of dimensionality – Runtime complexity

 Complexity (running time) increase with dimension d

A lot of methods have at least O(n\*d²)
 complexity, where n is the number of samples

 As d becomes large, this complexity becomes very costly (\$).



## Data becomes sparse as dimensions increase

 A sample that maps 10% of the 1x1 squares in 2D represent only 1% of the 1x1x1 cubes in 3D



 There is an exponential increase in the searchspace

## Visual example 2



 9 samples in 2D look sparse. Need 81 to keep same density





## Some mathematical (weird) effects



 Ratio between the volume of a sphere and a cube for d=3:

$$\frac{(\frac{4}{3})\pi r^3}{(2r)^3} \approx \frac{4r^3}{8r^3} \approx 0.5$$

When d tends to infinity the volume tends to zero

- Most of the data is in the corner of the cube
  - Thus, Euclidian distance becomes meaningless, most two points are "far" from each others
- Very problematic for methods such as k-NN classification or k-means clustering because most of the neighbors are equidistant



### The K-NN problem: visualization

 If all the points are pushed on the outer shell of the sphere then all potential NN (nearest neighbors) appear equidistant from the query point





# Just a second...What is a dimension anyway?

```
x1 x2 x3x4
1 2 1 1
2 4 0.5 1
3 6 171
```

 How many dimensions does the data intrinsically have here?

```
– Two!
```

- $x1 = \frac{1}{2} * x2$  (no additional information)
- x4 is constant



### How to avoid the curse?

#### Reduce dimensions

- Feature selection Choose only a subset of features
- Use algorithms that transform the data into a lower dimensional space (example - PCA)
- \*Both methods often result in information loss







- Quick ML review
- Model evaluation
  - Performance metrics
  - Hold-out evaluation
  - Cross validation
  - Training with imbalanced classes
  - Overfitting/underfitting



- Curse of dimensionality
- Filter feature selection
- vvrapper reature selection
- Principal Component Analysis (dimensionality reduction)





## Feature selection goals

- Benefits of feature selection
  - Reduce overfit risk (by reducing model complexity)
  - Reduce dimensionality
  - Improve compute speed
- Feature selection is not always necessary





## Feature selection challenges

- It is a search/optimization problem
  - Exhaustive testing of feature combinations is often unrealistic
- Goal of feature selection methods is to find a 'good enough' feature set
  - Requires score for ranking
  - A heuristic to prune the space of possible feature subsets, and will guide the search





- Filter method: Ranks features or feature subsets independently of the classifier
  - Low computational power
  - Independent of model type
- Wrapper method: Uses a predictive model (machine learning) to score feature subsets.
  - Often better than filter method
  - Requires training a model for each feature set
- Embedded method: Performs variable selection (implicitly) in the course of model training (e.g. decision tree, WINNOW)

### Filter methods



 Select subsets of variables as a preprocessing step, by ranking according to some scoring metric, independently of the learning model



- Relatively fast & not tuned by a given learner
- Very commonly used



# Feature ranking – common examples

- Label association:
  - Example: Choose the top 10 features correlated with the label
- Low variation features:
  - Remove features with little variation in their value
- Correlated features (redundancy):
  - Keep only one of two highly correlated features



## Common scoring functions

#### **Pearson Correlation**

 Can only detect linear dependencies



Mutual information
(MI) "How much information two variables share"
Can detect any form of statistical





## Multivariate filter methods -Types of search strategies

#### **Background**

- Choose search strategy Feature subset combinatorial space is often very large
- Choose ranking/evaluation method for feature subsets
  - Provide a feedback to the search strategy for the relevancy of the candidate subsets

#### **Approaches**

- Sequential algorithms (forward selection, backward selection)
  - Add or remove features sequentially, but have a tendency to become trapped in local minima
- Randomized algorithms (Genetic algorithms, simulated annealing)
  - Incorporating randomness into their search procedure to escape local minima





- Quick ML review
- Model evaluation
  - Performance metrics
  - Hold-out evaluation
  - Cross validation
  - Training with imbalanced classes
  - Overfitting/underfitting
- Dimensionality and feature se
  - Curse of dimensionality
  - Filter feature selection
  - Wrapper feature selection
  - Principal Component Analysis (dimensionality reduction)



## Wrapper methods



- Definition: Use of a learning model to choose features. The model is NOT 'the model' that is eventually used.
- Features and feature subsets are ranked based on their contribution to model performance
- Benefit: Often good selection of feature subsets
- Drawbacks
  - Computational requirement: Requires training a model on each feature subset
  - Variation: Result vary for different learning models



## Wrapper methods in practice

- Often preceded by filter methods to reduce computational cost
- Various heuristic search strategies are used. Most common are:
  - Forward selection Start with an empty feature set and add features at each step
  - Backward selection Start with a full feature set and discard features at each step
- \*Both are greedy since exhaustive search is often not feasible
- Evaluation is usually done on validation (development) set



## Sequential Forward Selection (SFS)



s a



# Sequential Backward Selection (SBS)



### Forward vs. Backward



- Forward selection considered computationally more efficient and has an advantage detecting the strongest single feature
- Backward selection can detect "stronger" subsets because the importance of features is assessed in the context of other features
- Hybrid techniques attempt to enjoy both approaches



## Feature selection summary

- Feature selection is usually good practice
- Filter methods are:
  - Fast, model independent, tend to select large subsets
  - Frequently used examples:
    - Correlation with label, correlation between features, features with little variation
- Wrapper methods are:
  - Accurate, avoid overfitting, slow, model dependent

## Agenda - PCA



- Quick ML review
- Model evaluation
  - Performance metrics
  - Hold-out evaluation
  - Cross validation
  - Training with imbalanced classes
  - Overfitting/underfitting
- Dimensionality and feature se
  - Curse of dimensionality
  - Filter feature selection
  - Wrapper feature selection
  - Principal Component Analysis (dimensionality reduction)





## Dimensionality reduction goals

- Improve ML performance
- Compress data
- Visualize data (you can't visualize >3 dimensions)
- Generate new features



# Example – reducing data from 2d to 1d • X1 and x2 are pretty redundant. We can reduce them to

- X1 and x2 are pretty redundant. We can reduce them to 1d along the green line
- This is done by projecting the points to the line (some information is lost, but not much)





## Example - 3D to 2D (1)

Let's have a look at a 3D dataset





 Despite having 3D data most of it lies close to a plane



## Example - 3D to 2D (2)

 If we were to project the data onto a plane we would have a more compact representation



 So how do we find that plane without loosing too much of the variance in our data? PCA is a linear method for doing this



# Principal Component Analysis (PCA)

- The idea is to project the data onto a subspace which compresses most of the variance in as little dimensions as possible.
- Each new dimension is a principle component
- The principle components are ordered according to how much variance in the data they capture
  - Example:
    - PC1 55% of variance
    - PC2 22% of variance
    - PC3 10% of variance
    - PC4 7% of variance
    - PC5 2% of variance
    - PC6 1% of variance
    - PC7 ....



### Geometrical intuition

 We want to find new axis in which the variance is maximal.

Large variance axis

Small variance axis









Intel - Advanced Analytics

## PCA algorithm



- 1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the average of each dimension zero.
- 2. Covariance matrix: Calculate the covariance matrix
- 3. Eigenvectors and eigenvalues: Calculate them
  - Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of the data variance on the new axis is the eigenvalue for that eigenvector.
- 4. Rank eigenvectors by eigenvalues
- 5. Keep top k eigenvectors and stack them to form a feature vector
- 6. Transform data to PCs:
- 7. New data = featurevectors(transposed) \* original data

$$\begin{pmatrix} y_1 \\ \vdots \\ y_K \end{pmatrix} = \begin{pmatrix} u_1 & \cdots & u_K \\ \vdots & \ddots & \vdots \\ u_1 & \cdots & u_K \end{pmatrix}^T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$



### When not to use PCA?

- PCA is completely unsupervised. It is designed for better data representation not for data classification
- Projecting the data on the axis of maximum variance can be disastrous for classification problems



 In case of Labeled multiclass data, it is better to perform Linear Discriminant Analysis (LDA)

## Agenda - Done



- Quick ML review
- Model evaluation
  - Performance metrics
  - Hold-out evaluation
  - Cross validation
  - Training with imbalanced classes
  - Overfitting/underfitting
- Dimensionality and feature sc
  - Curse of dimensionality
  - Filter feature selection
  - Wrapper feature selection
  - Principal Component Analysis (dimensionality reduction)









Intel - Advanced Analytics