- 1. Find the work done in moving a particle from (0,0) to (1,1) in the force field $\vec{F} = (xy + 2y^2)\vec{i} + (3x^2 + y)\vec{j}$ along the paths, (a) $y = x^2$; (b) y = x; (c) the y-axis and then y = 1. What work is done if the particle moves from (0,0) to (1,1) along path (b) and returns to the origin along path (a)?
- 2. Prove that the vector field $\vec{F} = (3x^2 y)\vec{i} + (2yz^2 x)\vec{j} + 2y^2z\vec{k}$ is conservative, but not solenoidal. Hence find a scalar function f(x, y, z) such that $F = \nabla f$ and evaluate $\int_C \vec{F} \cdot d\vec{r}$ along any curve C joining the point (0,0,0) to the point (1,2,3).
- 3. Calculate the flux $\iint_S \vec{f} \cdot \vec{n} dS$ where $\vec{f} = v_0 \vec{k}$ and S is the hemispherical surface of radius a with equation $z = \sqrt{a^2 x^2 y^2}$ and with outer unit normal vector \vec{n} .

4. Find the flux of the vector field $\vec{f} = x\vec{i} + y\vec{j} + 3\vec{k}$ out of *S*, where *S* is the closed surface of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4. (i.e. to find $\iint_S \vec{F} \cdot d\vec{S}$.)

5. Consider the magnetic field $\vec{B} = (x+2)\vec{i} + (1-3y)\vec{j} + 2z\vec{k}$ and evaluate the total magnetic flux through each of the faces of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. Check that your result is consistent with the divergence theorem.

- 6. Use the divergence theorem to show that $\iint_S (x^2 + y + z) dS = \frac{4}{3}\pi$ where W is the solid ball $x^2 + y^2 + z^2 \le 1$ and S is its boundary.
- 7. Verify the divergence theorem for the vector field $\vec{F} = (8+z)\vec{j} + z^2\vec{k}$ and the region bounded by the planes z = 0, z = 6, x = 2, y = 0 and the surface $y^2 = 8x$ in the first octant.
- 8. Verify Stokes's theorem for the vector field $\vec{F} = (x y)\vec{i} + 2z\vec{j} + x^2\vec{k}$ where *S* is the cone $z = \sqrt{x^2 + y^2}$ for $x^2 + y^2 \le 4$.
- 9. Verify Stokes's theorem by evaluating both sides of $\iint_S \nabla \times \vec{F} \cdot \vec{n} dS = \oint_C \vec{F} \cdot d\vec{r}$ for the vector field $\vec{F} = (2x y)\vec{i} yz^2\vec{j} y^2z\vec{k}$ where *S* is the curved surface of the hemisphere $x^2 + y^2 + z^2 = 16$, $z \le 0$ and *C* is its boundary.
- 10. Let *S* be the portion of the cylinder $y = e^x$ in the first octant that projects parallel to the *x*-axis onto the rectangle R_{yz} : $1 \le y \le 2$, $0 \le z \le 1$ in the *yz*-plane. Let \vec{n} be the unit vector normal to *S* that points away from the *yz*-plane. Find the flux of the field $\vec{F}(x, y, z) = -2\vec{i} + 2y\vec{j} + z\vec{k}$ across *S* in the direction of \vec{n} .

11. Let $\vec{F} = (y^2 - z^2)\vec{i} + (z^2 - x^2)\vec{j} + (x^2 - y^2)\vec{k}$. Use Stoke's Theorem to calculate $\oint_C \vec{F} \cdot d\vec{r}$ where C is the path which is the intersection of the plane x + y + z = 2 and the faces of a parallelepiped bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 2. The direction of the path C is anticlockwise when looking from the positive direction of x-axis.

-End-