MATH 1025: Introduction to Cryptography

Bonus 1

unstable cipher

Problem 1.

(a) [2 pts] Let $1 \le k \le 26$ and find how many simple substitution ciphers have at least k letters fixed.

(b) [3 **pts**] Find how many simple substitution ciphers have no letters fixed. ¹

(c) [3 **pts**] Find the answer to (b) for a general n (instead of 26). Let us denote your answer by \mathcal{D}_n . Compute the limit $\lim_{n\to\infty}\frac{\mathcal{D}_n}{n!}$.

¹Hint: look up and use the inclusion-exclusion principle, starting with all simple substitution ciphers, subtracting simple substitution ciphers that fix at least one letter, etc.

²**Hint:** you may use that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$.

Remark. As n! is the number of all possible simple substitution ciphers, the number you have found in (c) above is the probability that a randomly chosen simple substitution cipher will not fix any elements. In other words, this number represents the share of permutations that fix no elements. Such permutations are known as *derangements*.

Problem 2 [2 **pts**] Write a program that computes GCD(a, b). The program should take two positive integers $a, b \in \mathbb{Z}_{>0}$ as an input and return a single number GCD(a, b). Acceptable formats: pseudocode, Python or C#.