Robotics

Estimation and Learning with Dan Lee

Week 2. Kalman Filter

2.2 System and Measurement Models

Bayesian Kalman Filtering

- Modeling motion and noise
- Mathematical underpinnings of Kalman filters
- Position tracking example

Linear Modeling

Discrete Linear dynamical system of motion

•
$$x_{t+1} = A x_t + B u_t$$
 $z_t = C x_t$

Simple state vector, x, is position and velocity

•
$$X_{t+1} := [v^{dv}/_{dt}]$$

Description of Dynamics

•
$$A = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix}$$

KF: Bayesian filtering

KF: Bayesian filtering

- Find x_t
- Know x_{t-1}
- Know z_t

Bayesian modeling

• Prediction using state dynamics model $p(x_{t+1}|x_t)$

- Inference from noisy measurements $p(z_t|x_t)$
- Model x_t with a Gaussian (mean and covariance)

$$p(x_t) = \mathcal{N}(x_t, P_t)$$

Bayesian filtering

Apply linear dynamics

$$p(x_{t+1}|x_t) = Ap(x_t)$$
$$p(z_t|x_t) = Cp(x_t)$$

Add noise for motion and observations

$$p(x_{t+1}|x_t) = Ap(x_t) + v_m$$
$$p(z_t|x_t) = Cp(x_t) + v_o$$

Introduce Gaussian model of x_t

$$p(x_{t+1}|x_t) = A\mathcal{N}(x_t, P_t) + \mathcal{N}(0, \Sigma_m)$$
$$p(z_t|x_t) = C\mathcal{N}(x_t, P_t) + \mathcal{N}(0, \Sigma_o)$$

Bayesian filtering

Consolidate expression using special properties

$$p(x_{t+1}|x_t) = A\mathcal{N}(x_t, P_t) + \mathcal{N}(0, \Sigma_m)$$
$$p(z_t|x_t) = C\mathcal{N}(x_t, P_t) + \mathcal{N}(0, \Sigma_o)$$

Apply linear transform to Gaussian distributions

$$p(x_{t+1}|x_t) = \mathcal{N}(Ax_t, AP_tA^T) + \mathcal{N}(0, \Sigma_m)$$
$$p(z_t|x_t) = \mathcal{N}(Cx_t, CP_tC^T) + \mathcal{N}(0, \Sigma_o)$$

Apply summation

$$p(x_{t+1}|x_t) = \mathcal{N}(Ax_t, AP_tA^T + \Sigma_m)$$
$$p(z_t|x_t) = \mathcal{N}(Cx_t, CP_tC^T + \Sigma_o)$$

Bayesian filtering

Consolidate expression using special properties

$$p(x_{t+1}|x_t) = A\mathcal{N}(x_t, P_t) + \mathcal{N}(0, \Sigma_m)$$
$$p(z_t|x_t) = C\mathcal{N}(x_t, P_t) + \mathcal{N}(0, \Sigma_o)$$

Apply linear transform to Gaussian distributions

$$p(x_{t+1}|x_t) = \mathcal{N}(Ax_t, AP_tA^T) + \mathcal{N}(0, \Sigma_m)$$
$$p(z_t|x_t) = \mathcal{N}(Cx_t, CP_tC^T) + \mathcal{N}(0, \Sigma_o)$$

Apply summation

$$p(x_{t+1}|x_t) = \mathcal{N}(Ax_t, AP_tA^T + \Sigma_m)$$
$$p(z_t|x_t) = \mathcal{N}(Cx_t, CP_tC^T + \Sigma_o)$$