A pipeline to analyse PAT-seq data

Reference

This repository contains the pipeline and raw results described in the manuscript:

• Botond Sipos, Adrian M. Stütz, Greg Slodkowicz, Tim Massingham, Jan Korbel, Nick Goldman: *PAT-seq - a whole-transcriptome poly(A) tail length determination assay for the Illumina platform.*

Click here for more details on the wetlab experiment.

Using the pipeline

The pipeline can be used by invoking the following make targets:

- Fetch raw data from ENA: make fetch
- Generate transcriptome from SGD annotation: make transcriptome
- Align and parse reads: make parse
- Test for differential polyadenylation: make test or make lsf_test
- Parse spike-in reads (make parse_spikeins) and build "error model" (make error_model)
- Filter test results by G-tail coverage: make gtail_cov_filter
- Plot correlation between technical replicates: make gtail_tech_corr
- Plot and cluster tail length distributions: make classify_tail_dists
- Correlate thresholded tail lengths with PASTA and PAL-seq: make corr_with_studies

Index of selected raw results

Illumina reads

Sequencing data are available in the <u>ArrayExpress database</u> under accession number <u>E-MTAB-2456</u>.

Alignment

Sample	Alignment log	Alignment report
WT1A	http://bit.ly/PAT-seq-WT1A_aln_log	http://bit.ly/PAT-seq-WT1A_align_pdf
WT1B	http://bit.ly/PAT-seq-WT1B aln log	http://bit.ly/PAT-seq-WT1B_align_pdf
WT1C	http://bit.ly/PAT-seq-WT1C aln log	http://bit.ly/PAT-seq- WT1C_align_pdf`
WT1D	http://bit.ly/PAT-seq-WT1D aln log	http://bit.ly/PAT-seq-WT1D align pdf

Sample	Alignment log	Alignment report
WT2A	http://bit.ly/PAT-seq-WT2A aln log	http://bit.ly/PAT-seq-WT2A align pdf
WT2B	http://bit.ly/PAT-seq-WT2B aln log	http://bit.ly/PAT-seq-WT2B align pdf
WT2C	http://bit.ly/PAT-seq-WT2C aln log	http://bit.ly/PAT-seq-WT2C align pdf
WT2D	http://bit.ly/PAT-seq-WT2D aln log	http://bit.ly/PAT-seq-WT2D_align_pdf
MUT1A	http://bit.ly/PAT-seq- MUT1A aln log	http://bit.ly/PAT-seq-MUT1A_aln_pdf
MUT1B	http://bit.ly/PAT-seq- MUT1B aln log	http://bit.ly/PAT-seq-MUT1B_aln_pdf
MUT1C	http://bit.ly/PAT-seq- MUT1C aln log	http://bit.ly/PAT-seq-MUT1C aln pdf`
MUT1D	http://bit.ly/PAT-seq- MUT1D_aln_log	http://bit.ly/PAT-seq-MUT1D aln pdf
MUT2A	http://bit.ly/PAT-seq- MUT2A_aln_log	http://bit.ly/PAT-seq-MUT2A aln pdf
MUT2B	http://bit.ly/PAT-seq- MUT2B aln log	http://bit.ly/PAT-seq-MUT2B aln pdf
MUT2C	http://bit.ly/PAT-seq- MUT2C aln log	http://bit.ly/PAT-seq-MUT2C aln pdf
MUT2D	http://bit.ly/PAT-seq- MUT2D aln log	http://bit.ly/PAT-seq-MUT2D aln pdf

Parsing alignments

Sample	Parse log	Parse report
WT1A	http://bit.ly/PAT-seq-WT1A_parse_log	http://bit.ly/PAT-seq-WT1A_parse_pdf
WT1B	http://bit.ly/PAT-seq-WT1B_parse_log	http://bit.ly/PAT-seq-WT1B_parse_pdf
WT1C	http://bit.ly/PAT-seq-WT1C_parse_log	http://bit.ly/PAT-seq-WT1C_parse_pdf
WT1D	http://bit.ly/PAT-seq-WT1D_parse_log	http://bit.ly/PAT-seq-WT1D_parse_pdf
WT2A	http://bit.ly/PAT-seq-WT2A parse log	http://bit.ly/PAT-seq-WT2A parse pdf
WT2B	http://bit.ly/PAT-seq-WT2B_parse_log	http://bit.ly/PAT-seq-WT2B parse pdf
WT2C	http://bit.ly/PAT-seq-WT2C parse log	http://bit.ly/PAT-seq-WT2C parse pdf

Sample	Parse log	Parse report
--------	-----------	--------------

WT2D	http://bit.ly/PAT-seq-WT2D parse log	http://bit.ly/PAT-seq-WT2D_parse_pdf
MUT1A	http://bit.ly/PAT-seq- MUT1A parse log	http://bit.ly/PAT-seq-MUT1A_parse_pdf
MUT1B	http://bit.ly/PAT-seq- MUT1B parse log	http://bit.ly/PAT-seq-MUT1B parse pdf
MUT1C	http://bit.ly/PAT-seq- MUT1C parse log	http://bit.ly/PAT-seq-MUT1C parse pdf
MUT1D	http://bit.ly/PAT-seq- MUT1D parse log	http://bit.ly/PAT-seq-MUT1D parse pdf
MUT2A	http://bit.ly/PAT-seq- MUT2A parse log	http://bit.ly/PAT-seq-MUT2A parse pdf
MUT2B	http://bit.ly/PAT-seq- MUT2B parse log	http://bit.ly/PAT-seq-MUT2B parse pdf
MUT2C	http://bit.ly/PAT-seq- MUT2C parse log	http://bit.ly/PAT-seq-MUT2C_parse_pdf
MUT2D	http://bit.ly/PAT-seq- MUT2D parse log	http://bit.ly/PAT-seq-MUT2D_parse_pdf

Quantifying tail length slippage using spike-in standards

• Tail run lengths until the first 1-5 non-A bases in reads mapped to spike-in poly(A) tracts <u>PDF</u>

Testing differences between wild type and mutant tail runs

Comparison	Test log	Test report	Results
WT1 vs. MUT1	http://bit.ly/PAT-seq- TEST WT1 vs MUT1 log	http://bit.ly/PAT-seq- TEST WT1 vs MUT1 pdf	http://bit.ly/PAT-seq- TEST WT1 vs MUT1 trs ta b
WT2 vs. MUT2	http://bit.ly/PAT-seq- TEST WT2 vs MUT2 log	http://bit.ly/PAT-seq- TEST WT2 vs MUT2 pdf	http://bit.ly/PAT-seq- TEST WT2 vs MUT2 trs ta b

Tail run distributions from all transcripts with G-tail coverage > 1000

- WT1: http://bit.ly/PAT-seq-CLS WT1 pdf
- WT2: http://bit.ly/PAT-seq CLS WT2 pdf
- MUT1: http://bit.ly/PAT-seq-CLS MUT1 pdf
- MUT2: http://bit.ly/PAT-seq-CLS_MUT2_pdf

Cross-study correlation

- PAL total vs. WT1: http://bit.lv/PAT seg PAL total vs WT1 pdf
- PAL total vs. WT2: http://bit.ly/PAT-seq PAL total vs WT2 pdf
- PAL total vs. PASTA: http://bit.ly/PAT-seq-PAL total vs PASTA pdf

Dependencies

- Platform LSF
- Python 2.x
- <u>numpy</u> >= 1.6.2
- <u>matplotlib</u> >= 1.1.0
- scipy >= 0.10.1
- $\underline{\text{biopython}} >= 1.60$
- <u>Bowtie2</u> >= 2.1.0
- <u>samtools</u> >= 0.1.19+
- wget

Using the analysis tools

The analysis tool can be found under patsy/:

```
patsy-align - classify read pairs and align them using Bowtie2
usage: patsy-align [-h] -1 fq1 -2 fq2 -f ref [-o outdir] [-s stats_pickle]
                       [-l gtail_sig] [-G gtag_min] [-N max_N] [-I min_fsize]
                      [-X max_fsize] [-p nr_threads] [-r report]
Align PAT-seq reads using Bowtie2 (1.1).
optional arguments:
  -h, --help
                      show this help message and exit
  -1 fq1
                      First FASTQ file.
  -2 fq2
                      Second FASTQ file.
  -f ref
                      Reference fasta.
  -o outdir
                     Output directory.
  -s stats_pickle Stats pickle file.
                     Portion of read start/end used for G-tail classification
  -l gtail_sig
                      (14).
  rength(3).

rength(3).

rength(3).

rength(3).

rength(3).

rength(3).

Minimum number of Ns in th

Minimum fragment size (0).

Maximum fragment size (500)

Number of the size (500)

Number of the size (500)
                      Maximum number of Ns in the first -1 bases (6).
                      Maximum fragment size (500).
                      Number of threads to use (1).
patsy-parse - parse classified and aligned PAT-seq read pairs
usage: patsy-parse [-h] -g gtail_sam -n nvtr_sam -d dataset_id -f ref
                      [-l gtail_sig] [-G gtag_min] [-N max_N] [-e err_tol]
                      [-o out_pickle] [-i tr_list] [-q min_q] [-r report] [-t]
```

Parse classified and aligned PAT-seq read pairs (1.1).

Reference fasta.

-d dataset_id Dataset identifier.

show this help message and exit

SAM file containing G-tail alignments. SAM file containing NVTR alignments.

optional arguments: -h, --help sh

-g gtail_sam

-n nvtr_sam

-f ref

```
-l gtail_sig
                 Portion of read start/end used for G-tail classification.
  -G gtag_min
                 Minimum G-tag length(3).
  -N max_N
                 Maximum number of Ns in the first -1 bases (6).
                 Number of errors tolerated in the tail.
  -e err_tol
                 Output pickle file.
  -o out_pickle
                 List of transcripts considered.
  -i tr_list
                 Mapping quality treshold (30).
  -q min_q
  -r report
                 Report PDF.
  - †
                 Plot per-transcript coverage reports.
patsy-test - test for differential polyadenylation in PAT-seq data
usage: patsy-test [-h] -a [a_pickles [a_pickles ...]] -na a_name -b
                  [b_pickles [b_pickles ...]] -nb b_name [-i lrt_list]
                  [-P lik_penalty] [-M min_size_U] [-s sig_level]
                  [-op out_pickle] [-ot out_trs] [-og out_glob]
                  [-otr out_runs_prefix] [-orr out_rep_prefix] [-r report]
Test for differential polyadenylation in PAT-seq data (1.1).
optional arguments:
  -h, --help
                        show this help message and exit
  -a [a_pickles [a_pickles ...]]
                        Parsed read pickles - group A.
  -na a name
                        Name of data group A.
  -b [b_pickles [b_pickles ...]]
                        Parsed read pickles - group B.
                        Name of data group B.
  -nb b_name
  -i lrt_list
                        Transcripts to be tested with anchors LRT.
                        Log-likelihood penalty for data points outside valid
  -P lik_penalty
                        range.
                        Minimum sample size when performing Mann-Whitney U
  -M min_size_U
                        test (30).
                        Significance level.
  -s sig_level
                        Output pickle file.
  -op out_pickle
                        Output tabular file: transcript properties.
  -ot out_trs
                        Output tabular file: global results.
  -og out_glob
                        Output tabular file: tail runs prefix.
  -otr out_runs_prefix
  -orr out_rep_prefix
                        Output tabular file: tail means per replicate.
  -r report
                        Report PDF.
                        Plot reports for all transcripts.
  -t
patsy-spike - estimate the number of sequencing errors in runs of bases.
usage: patsy-spike [-h] -n spike_sam -f ref [-w window] [-m max_errors_plot]
                   [-o out_pickle] [-q min_q] [-r report] [-l read_len]
                   [-pk pickle]
Estimate the number of sequencing errors in runs of bases (1.0).
optional arguments:
                      show this help message and exit
  -h, --help
  -n spike_sam
                      SAM file containing NVTR alignments.
  -f ref
                      Reference fasta with the spike-in sequences.
  -w window
                      Size of the flanking sequence around the run of As.
  -m max_errors_plot
                      Maximum number of errors for which to plot the length
                      distribution.
                      Output pickle file.
  -o out_pickle
                      Mapping quality treshold (30).
  -q min_q
  -r report
                      Report PDF.
                      Read length.
  -l read_len
  -pk pickle
                      Result pickle file.
```