

Universidade de Brasília - UnB Faculdade UnB Gama - FGA Projeto Integrador II

Pulverização de defensivos agrícolas através de Veículo Aéreo Não Tripulado V-STOL

Autor: Grupo 3

Orientador: Prof. Dr. Alex Reis, Prof. Dr. José Felício da Silva, Prof. Dr. Rhander Viana, Prof. Dr. Ricardo Matos Chaim e Prof. Dr. Paolo Gessini

Brasília, DF 2021

Pulverização de defensivos agrícolas através de Veículo Aéreo Não Tripulado V-STOL

Trabalho submetido na disciplina de graduação Projeto Integrador IIda Universidade de Brasília, como requisito parcial para aprovação na disciplina.

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Orientador: Prof. Dr. Alex Reis, Prof. Dr. José Felício da Silva, Prof. Dr. Rhander Viana, Prof. Dr. Ricardo Matos Chaim e Prof. Dr. Paolo Gessini

Brasília, DF 2021

Grupo 3

Pulverização de defensivos agrícolas através de Veículo Aéreo Não Tripulado V-STOL/ Grupo 3. – Brasília, DF, 2021-

 $77~\mathrm{p.}$: il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Alex Reis,
Prof. Dr. José Felício da Silva, Prof. Dr. Rhander Viana, Prof. Dr. Ricardo Matos Chaim e Prof. Dr. Pa
olo Gessini

Universidade de Brasília - UnB Faculdade UnB Gama - FGA , 2021.

1. . 2. . I. Prof. Dr. Alex Reis,
Prof. Dr. José Felício da Silva, Prof. Dr. Rhander Viana, Prof. Dr. Ricardo Matos Chaim e Prof. Dr. Paolo Gessini. II. Universidade de Brasília. III. Faculdade Un
B Gama. IV. Pulverização de defensivos agrícolas através de Veículo Aéreo Não Tripulado V-STOL

Grupo 3

Pulverização de defensivos agrícolas através de Veículo Aéreo Não Tripulado V-STOL

Trabalho submetido na disciplina de graduação Projeto Integrador IIda Universidade de Brasília, como requisito parcial para aprovação na disciplina.

Trabalho aprovado. Brasília, DF, :

Prof. Dr. Alex Reis Orientador

Prof. Dr. José Felício da Silva Orientador

> Prof. Rhander Viana Orientador

Prof. Dr. Ricardo Matos Chaim Orientador

> Prof. Dr. Paolo Gessini Orientador

> > Brasília, DF 2021

Integrantes do projeto

Coordenador Geral: Rodrigo Evangelista Aguiar de Souza
Diretora de Qualidade: Natália Paula Souza
Diretor Técnico de Estruturas: Vítor Lima Aguirra
Diretor Técnico de Elétrica: Francisco Barroso de Carvalho Neto
Diretor Técnico de Software: Lucas Gomes Silva

Demais integrantes:

Danielle Lima Bezerra
Thayná Cortês Pereira
Matheus de Cristo Doreia Estanislau
João Pedro Soares Cirqueira
Moacir Mascarenha Soares Junior
Lucas Regis
Douglas Alves de Castro
Marianna Amélia de S. B. Monteiro
Elias Queiroga Vieira

Lista de ilustrações

rigura i — Esquema basico de funcionamento do produto	14
Figura 2 — Design preliminar do projeto. Fonte: Autores	16
Figura 3 — Liberação de pesticidas no Brasil. Fonte: (JONES, 2019) $\ \ldots \ \ldots$	19
Figura 4 $-$ Comparação entre os processos de pulverização de um drone e um avião	
convencional.Fonte: (JONES, 2019)	20
Figura 5 — Vantagens e desvantagens do projeto. Fonte: Autores $\ \ldots \ \ldots \ \ldots$	21
Figura 6 $-$ Análise de mercado com os principais VANTs já existentes. Fonte: Autores	22
Figura 7 — Organograma dos integrantes do projeto. Fonte: Autores $\ \ldots \ \ldots$	24
Figura 8 – Configuração mais comum dos VANTs existentes no mercado. Fonte:	
Foxtech	38
Figura 9 — Vista isométrica e componentes mecânicos principais. Fonte: Autores $$.	39
Figura 10 — Vistas em perspectivas do projeto preliminar do VANT de pulverização.	
Fonte: Autores	39
Figura 11 – Motor brushless acoplado a uma hélice. Fonte: (MOTORES, 2021) $$	41
Figura 12 – Motor Quanum MT4108 700KV. Fonte: (HOBBYKING, 2021). Compra	
disponível em Hobbyking	41
Figura 13 – Motor Turnigy D0703-12000KV Brushless. (HOBBYKING, 2021) $$	42
Figura 14 – Motor Dr Mad 90mm-1600KV Brushless (HOBBYKING, 2021)	42
Figura 15 – Bateria Lipo	44
Figura 16 – a) Esquemático da bomba diafragma. Fonte: (PUMP, 2013); b) Bomba	
levantada para o VANT. Fonte: (FOXTECH, 2020)	45
Figura 17 – Sistema atuador solenoide-válvula	45
Figura 18 – Válvula solenoide - 1/4"x 1/4" 12 V DC	46
Figura 19 — Raspberry PI 3B utilizada no projeto. Fonte: Multipeças $\ \ldots \ \ldots$	46
Figura 20 – Sensor de velocidade do ar que será utilizado no VANT. Fonte: Holybro	51
Figura 21 – Sensor de fluxo YF-S201. Fonte:Baú da eletrônica	51
Figura 22 – Sensor de distanciamento utilizado no VANT. Fonte: SLAMTEC $$	52
Figura 23 – Arquitetura inicial de solução para o núcleo de elétrica. Fonte:Autores	53
Figura 24 – Paleta de cores desenvolvida para representar o produto. Fonte: Autores	55
Figura 25 — Logomarca desenvolvida para o produto. Fonte: Autores $\ \ldots \ \ldots \ \ldots$	55
Figura 26 – Interface para registro do VANT. Fonte: Autores	56
Figura 27 – Tela "Meus drones". Fonte: Autores	57
Figura 28 – Tela de monitoramento de dados coletados. Fonte: Autores $\ \ldots \ \ldots$	57
Figura 29 – Tela "meus voos"da interface. Fonte: Autores	58
Figura 30 – Tela de detalhamento de voos realizados. Fonte: Autores $\ \ldots \ \ldots$	59
Figura 31 – Ferramentas utilizadas ao longo do desenvolvimento do projeto	65

Figura 32 — Estrutura Analítica do ponto de controle 1	66
Figura 33 – Estrutura Analítica do ponto de controle 2.	67
Figura 34 – Estrutura Analítica de estruturas do ponto de controle 2	68
Figura 35 – Estrutura Analítica de Eletrônica do ponto de controle 2	69
Figura 36 – Estrutura Analítica de energia do ponto de controle 2	70
Figura 37 – Estrutura Analítica do ponto de controle 3	71

Lista de tabelas

Tabela 1 – Equipe do projeto. Fonte: Autores	23
Tabela 2 – Docentes da disciplina de Projeto Integrador de Engenharia 2. Fonte:	
Autores	24
Tabela 3 – Tabela de riscos gerais do projeto. Fonte: Autores	25
Tabela 4 $-$ Riscos de estrutura relacionados ao projeto. Fonte: Autores	25
Tabela 5 — Riscos e ações de estruturas do projeto. Fonte: Autores	26
Tabela 6 – Riscos dos subsistemas eletrônicos relacionados ao projeto. Fonte: Autore	s 26
Tabela 7 – Riscos e ações de eletrônica do projeto Fonte: Autores	27
Tabela 8 – Riscos dos subsistemas de energia relacionados ao projeto. Fonte: Autore	s 27
Tabela 9 — Riscos e ações de energia do projeto Fonte: Autores	28
Tabela 10 – Riscos dos subsistemas de software relacionados ao projeto. Fonte: Au-	
tores	29
Tabela 11 – Riscos e ações de software do projeto Fonte: Autores	29
Tabela 12 – Análise de possíveis riscos gerais do projeto. Fonte: Autores $\dots \dots$	32
Tabela 13 – Requisitos funcionais e não funcionais para o núcleo de estruturas	
Fonte: Autores	33
Tabela 14 – Requisitos funcionais e não funcionais do núcleo de elétrica (Energia e	
Eletrônica) Fonte: Autores	34
Tabela 15 – Requisitos funcionais e não funcionais do núcleo de software Fonte:	
Autores	34
Tabela 16 – Componentes mecânicos mais utilizados em VANTs. Fonte: Autores. $$.	35
Tabela 17 — Propriedades mecânicas e térmicas dos materiais escolhidos para o pro-	
jeto.Fontes: (MATERIALS, 1985), (DATA, 2020)	36
Tabela 18 – Comparação de motores pesquisados	43
Tabela 19 — Custo inicial estimado para a área de estrutura. Fontes: Autores $\ .$ $\ .$ $\ .$	61
Tabela 20 — Custo inicial estimado para a parte elétrica. Fonte: Autores 	62
Tabela 21 – Custo inicial estimado para software. Fonte: Autores	63
Tabela 22 – Análise do retorno de investimento do projeto. Fonte: Autores $\ \ldots \ \ldots$	63
Tabela 23 — Cronograma de atividades para o núcleo de estrutura. Fontes: Autores $$.	71
Tabela 24 — Cronograma de atividades para o núcleo de elétrica. Fontes: Autores $$.	72
Tabela 25 – Cronograma de atividades para o núcleo de software. Fontes: Autores $$.	72
Tabela 26 – Cronograma de reuniões realizadas para grupo geral. Fontes: Autores .	73
Tabela 27 — Cronograma de reuniões realizadas pelo núcleo de estrutura. Fontes: Auto	res 7
Tabela 28 – Cronograma de reuniões realizadas para o núcleo de elétrica. Fon-	
tes:Autores	73

Lista de abreviaturas e siglas

ABS Acrylonitrile Butadiene Styrene (Acrilonitrila Butadieno Estireno)

ANAC Agência Nacional de Aviação Civil

ANATEL Agência Nacional de Telecomunicações

BI Business Inteligence

CAD Computer Aided Design (Desenho Assistido por Computador)

CAVE Certificado de Autorização de Vôo Experimental

DECEA Departamento de Controle do Espaço Aéreo

ESC Eletronic Speed Controller (Controlador Eletrônico de Velocidade)

EMBRAPA Empresa Brasileira de Pesquisa Agropecuária

GUT Gravidade, Urgência, Tendência

IS Instituição Suplementar

LIPO Lithium Polymer Battery

PDCA Plan, Do, Check, Act (Planejar, Executar, Checar e Agir)

PMBOK Project Manangement Body Of Knowledge

Psi Pound force per square inch

RPA Aeronaves remotamente Pilotadas

rpm Rotações por minuto

SISANT Sistema de Aeronaves não Tripuladas

VANT Veículo Aéreo Não Tripulado

V-STOL Vertical/Short Take-Off and Landing (decolagem e aterragem vertical

ou em espaço reduzido)

Sumário

1	INTRODUÇÃO	12
2	DESCRIÇÃO DO PRODUTO	14
2.1	Diferença entre o VANT e o drone	14
2.2	Diferenças entre pulverização de área total e de precisão	15
2.3	Configuração do VANT escolhida para o projeto	
3	RESTRIÇÕES DO PROJETO	17
3.1	Lista é/Não é	17
3.1.1	É	17
3.1.2	Não é	17
3.2	Restrições do produto	18
4	TERMO DE ABERTURA DO PROJETO (TAP)	19
4.1	Justificativa do projeto	19
4.2	Objetivos do projeto	20
4.2.1	Objetivo geral	20
4.2.2	Objetivos específicos	21
4.3	Vantagens e desvantagens do projeto	21
4.3.1	Produtos concorrentes	21
5	PAPÉIS E RESPONSABILIDADES	23
5.1	Equipe	23
5.2	Professores	23
5.3	Público Alvo	24
6	RISCOS	25
6.1	Riscos Gerais	25
6.2	Riscos Estruturais	25
6.2.1	Análise dos Riscos e Ações de Estruturas	26
6.3	Riscos Eletrônicos	26
6.3.1	Análise dos Riscos e Ações de eletrônica	27
6.4	Riscos de energia	27
6.4.1	Análise dos Riscos e Ações de energia	28
6.5	Riscos de Software	29
6.5.1	Análise de Riscos e ações para software	29

7	REQUISITOS
7.1	Requisitos Legais
7.2	Requisitos Gerais
7.3	Requisitos Estrutura
7.4	Requisitos Eletrônica-Energia
7.5	Requisitos Software
8	SOLUÇÃO DO NÚCLEO DE ESTRUTURAS
8.1	Levantamento de componentes mecânicos
8.2	Considerações sobre a atribuição dos materiais
8.3	Projeto conceitual do veículo e justificativas iniciais
9	SOLUÇÕES DO NÚCLEO ELÉTRICO (ELETRÔNICA E ENERGIA) 40
9.1	Sistema de ignição e recarregamento da bateria 40
9.1.1	Considerações e escolha do motor adequado
9.1.2	Considerações sobre alimentação e recarregamento dos sistemas 42
9.2	Sistema de bombeamento e pulverização
9.2.1	Raspberry PI 3B
9.3	Sistema controlador de voo
9.3.1	Placa controladora de voo
9.3.2	Controlador Eletrônico de Velocidade - ESC
9.3.3	Módulo GPS
9.3.4	Câmera e vídeo transmissor
9.3.5	Receptor e controle de rádio
9.4	Sistema de medição
9.4.1	Sensor de velocidade do ar
9.4.2	Sensor de fluxo
9.4.3	Sensores de distanciamento
9.5	A arquitetura inicial
10	SOLUÇÃO DE SOFTWARE 54
10.1	Identidade visual do produto
10.1.1	Logomarca do produto
10.2	Arquitetura da informação 55
10.2.1	Telas principais
10.3	Inovação
10.3.1	Arquitetura de micro serviços
10.3.2	Método contínuo de desenvolvimento de software
11	ANÁLISE DE CUSTO 61
11.1	Custo de Estrutura

11.2	Custo de Eletrônica-Energia
11.3	Custo de Software
11.4	Análise de Viabilidade
12	GERENCIAMENTO
12.1	Metodologia
12.2	Ferramentas de Gerenciamento
12.3	EAP PC1
12.4	EAP PC2
12.4.1	EAP Estrutura
12.4.2	EAP Elétrica (Eletrônica e Energia)
12.5	EAP PC3
12.6	Cronograma de Estrutura
12.7	Cronograma elétrica
12.8	Cronograma de Software
12.9	Reuniões Gerais
12.10	Reuniões Estrutura
12.11	Reuniões do núcleo elétrico
	REFERÊNCIAS

1 Introdução

O aumento da população mundial acarreta na necessidade de aumentar a produção de insumos agrícolas nas próximas décadas. Nesse contexto, o Brasil destaca-se como um dos principais países capazes de prover essa grande demanda agrícola, e, entretanto, com a ressalva de que há ainda alguns desafios a serem enfrentados no que tange tecnologias capazes de implementar um aumento de produção agrícola sustentável e em quantidade suficiente (VALVERDE, 2020). De acordo com (AGRICULTURA, 2020), a produção de defensivos no Brasil cresceu cerca de 70% no último ano e movimentou 464,5 milhões de reais, ressaltando a importância da correta aplicação destes produtos dada sua potencial ação danosa que pode causar ao ambiente.

Avanços recentes em áreas da tecnologia da computação, associados ao desenvolvimento de sistemas globais de navegação e geoprocessamento, estão ampliando as perspectivas de uso dos veículos aéreos não tripulados (VANT) na agricultura. Relativamente baratas e fáceis de usar, essas aeronaves, equipadas com sensores e recursos de imagem cada vez mais eficientes e precisos podem auxiliar agricultores a aumentar a produtividade e reduzir danos em lavouras por meio de levantamentos de dados que permitem detectar pragas e estimar o índice de crescimento das plantas, apenas para citar alguns exemplos.

A aplicação dos defensivos ocorre através dos VANTs com diretrizes estabelecidas na lei nº 7.802/1989 (GOV.FEDERAL, 2013), destacando as normas de classificação, inspeção e aplicação desses pulverizantes. Cita-se ainda as publicações dos autores (ARA-GAKI, 2019) e (FERREIRA, 2014), que destacam os problemas ambientais gerados pela má aplicação de defensivos.

Tendo em vista a questão ambiental levantada, é fundamental ressaltar a importância da regulamentação de drones voltados a aplicação de defensivos agrícolas, e nesse contexto destacam-se o Departamento de Controle do Espaço Aéreo (AEREO, 2017) a Agência Nacional de Aviação Civil (ANAC, 2017) e a Agência Nacional de Telecomunicações (ANATEL, 2017) surgem como órgãos responsáveis por controlar a regulamentação desses veículos no Brasil.

Segundo o engenheiro eletricista Lúcio André de Castro Jorge, pesquisador da Empresa brasileira de Pesquisa Agropecuária (EMBRAPA), 7% da área pulverizada no Brasil é realizada por aviões comerciais adaptados, enquanto que 62% é realizado por tratores e veículos terrestres. Os drones surgem nesse quesito como um complemento, cobrindo pequenas áreas e realizando pulverizações de precisão em áreas específicas. Destaca-se ainda a participação da EMBRAPA em um experimento com a empresa mineira AP Agrícola em uma lavoura de café, cujo objetivo era verificar a viabilidade da tecnologia de pulveri-

zação na comparação entre drones, aviões e helicópteros, concluindo que a qualidade dos drones na missão é relativamente superior (JONES, 2019).

Os dados levantados a respeito da pulverização por VANTs no Brasil mostram a área bastante promissora, principalmente pelos grandes avanços ocorridos na última década e pela demanda de insumos agrícolas. Tendo em vista o exposto, o projeto objetivase em construir um drone com configuração de voo denominada de Vertical/Short Take-Off and Landing (V-STOL - decolagem e aterragem vertical ou em espaço reduzido), capaz de decolar verticalmente sem o requisito de uma pista de decolagem, e depois alternar para voo horizontal. O drone terá autonomia de voo de 30 minutos, além de pesar 25 kg já contando sua carga máxima.

2 Descrição do produto

O produto final almejado no projeto é um VANT agrícola destinado a pulverização de defensivos. Essa aeronave terá massa total de 15 kg vazio e suporta carga útil de 10 kg de pesticidas. Além do diferencial de decolagem e pouso, o veículo apresenta sistema com alta capacidade de monitoramento de variáveis climáticas e quantitativas, como temperatura e umidade relativa, além de custo reduzido em comparação com os preços de mercado, visto que sua produção será feita nacionalmente. O diagrama da figura 1 descreve de maneira geral básica o plano de funcionamento do projeto.

Figura 1 – Esquema básico de funcionamento do produto

2.1 Diferença entre o VANT e o drone

A legislação brasileira aponta as diferenças entre as classificações drone e VANT, mesmo ambos tendo tecnologias semelhantes. De acordo com (FORCE, 2018), além de o drone ser uma aeronave de uso recreativo, o mesmo não possui nenhuma restrição para compra e não é necessário que o usuário porte algum tipo de licença ou autorização. A diferença do drone para os VANTs, é que estes últimos diferem apenas na aplicação destinada, onde o VANT é utilizado para uso comercial e também experimentos e pesquisas.

Ainda de acordo com (FORCE, 2018), outro fator importante é que para ser considerado um VANT, a aeronave deve possuir alguma carga útil embarcada, podendo ser sensores, câmeras ou algum tipo de produto, onde atualmente, existem diversos tipos de drones e VANTs disponíveis no mercado.

2.2 Diferenças entre pulverização de área total e de precisão

A pulverização de defensivos agrícolas trás com si algumas questões ambientais a serem observadas, sendo importante definir o problema mais proeminente enfrentado pelos métodos de pulverização antes de definir os métodos em si. A deriva pode ser definida como endógena (a parte do produto que não é retida pela planta e vai para o solo) e exógena (volume levado pelo vento para fora da área de pulverização).

Existem dois modelos utilizados atualmente pelos agropecuários no Brasil, o mais utilizado e antigo é o modelo de Área total que em sua essência se baseia em tratar os problemas pontuais da lavoura como um todo, gerando assim aspectos positivos e negativos. No que tange o uso dos defensivos agrícolas por se tratar de um processo no qual a lavoura inteira é pulverizada sem levar em consideração áreas focais, onde há a necessidade de maior atenção e controle de pragas, o modelo de área total acaba por generalizar muitos dos processos envolvidos na solução da praga e cura da planta, gerando maior gasto de defensivos agrícolas, de combustível utilizado pelas máquinas, danos ambientais e um controle menos específico sobre cada parte da lavoura. No entanto, as tecnologias envolvidas na pulverização de área total almejam todo o terreno em poucas dispersões.

O modelo de precisão é um processo que vem sendo implementado aos poucos no mercado agronômico brasileiro, onde todavia, vem se tornando cada vez mais visado devido às suas características únicas no que tange o comando, controle e produtividade das lavouras. Por se tratar de um modelo no qual a maior ênfase gira em torno de ações focais/precisas e controladas em tempo real, o modelo requer maior empenho do agricultor com sua lavoura, alto nível tecnológico e consequentemente alto custo.

2.3 Configuração do VANT escolhida para o projeto

A configuração de VANT escolhida foi do tipo quadrirrotor, no qual é amplamente difundida na indústria e bastante utilizada. O projeto foi dividido em duas fases: preliminar e detalhado. Na fase inicial, o projeto preliminar foi baseado no drone já existente "Thea 30 agricultura drone"Foxtech, onde a partir de ideias retiradas desse modelo, foi desenvolvido um CAD preliminar conforme ilustrado através da figura 2 e que será apresentado e explicado em detalhes no capítulo de solução do núcleo de estruturas. Ao longo do desenvolvimento do projeto, esse CAD será aprimorado e refinado na fase de detalhamento, de acordo com os componentes necessários para a elaboração do VANT e os requisitos funcionais.

Figura 2 – Design preliminar do projeto. Fonte: Autores

3 Restrições do projeto

A fim de desenvolver o projeto proposto na disciplina, as restrições estão descritas a seguir:

- O desenvolvimento do projeto deve respeitar as restrições de ensino remoto devido à pandemia de Covid-19;
- O projeto deve seguir às instruções estabelecidas segundo o plano de ensino da disciplina;
- 3. Cada integrante do grupo deve disponibilizar 10 horas semanais para o projeto;
- 4. O projeto deve englobar conhecimentos e práticas adquiridas entre as 5 engenharias da Faculdade do Gama, sendo elas a Automotiva, Aeroespacial, Energia, Eletrônica Software.

3.1 Lista é/Não é

3.1.1 É

- É capaz de permanecer em voo por cerca de 30 minutos ininterruptos, onde o tempo de voo pode ser menor caso o veículo fique durante todo o tempo em stand by, parado no ar.
- \bullet É capaz de realizar a pulverização de precisão de defensivos agrícolas.
- É capaz de desviar de animais e outros obstáculos, evitando colisões.
- É capaz de realizar a coleta de variáveis quantitativas, como temperatura, umidade do ar e velocidade de operação.
- É capaz de emitir ao operador um sinal de aviso caso algum bico nebulizador esteja entupido.

3.1.2 Não é

- Não é capaz de realizar acrobacias aerodinâmicas durante sua operação.
- Não é capaz de dispersar outros produtos que não sejam defensivos agrícolas.
- Não é capaz de funcionar sem carga na bateria.
- Não é adequado para pessoas sem experiência em manuseio prévio de veículos parecidos.
- Não é um sistema autônomo, e precisa de cuidado durante o manuseio.

3.2 Restrições do produto

Uma análise de aspectos técnicos restritivos foi levantada com o intuito de se avaliar e implementar o produto da melhor maneira possível. Essa análise leva em conta os seguintes itens:

- 1. Local de operação: O drone deve ser utilizado em áreas agrícolas abertas, livres de edificações altas e sem a presença de pessoas na região de voo.
- 2. Estabilidade do drone: A estabilidade do voo e o controle do processo de dispersão do drone são realizados remotamente pelo controle do operador, e indica-se possuir experiência antes de operar o produto.
- 3. Altitude de operação: Visto que o produto é destinado a operar em altitudes não muito elevadas, desobedecer essa restrição pode submeter os componentes a elevadas condições de temperatura e pressão, desbalanceando e até mesmo danificando o equipamento.
- 4. Acesso a ponto de energia: O local de operação deve possuir um ponto de energia para recarga da bateria do veículo, visto que sua autonomia de operação é de 30 minutos.

4 Termo de Abertura do Projeto (TAP)

4.1 Justificativa do projeto

O autor (FERREIRA, 2014) destaca em sua obra não só os danos causados ao solo proveniente dos defensivos agrícolas, mas também a sua ação danosa ao organismo humano. O autor ainda cita diversos estudos científicos apontando para o uso desses produtos com extrema cautela, principalmente pelos efeitos de deriva que podem transportar o produto até áreas urbanizadas e pelo perigo do contato com recém nascidos. A figura 3 mostra o aumento da frequência de uso dos agrotóxicos no Brasil ao longo dos anos.

Figura 3 – Liberação de pesticidas no Brasil. Fonte: (JONES, 2019)

No que tange as questões ambientais abordadas acima, destaca-se a importância dos VANTs no que diz respeito a minimizar as ações danosas dos pesticidas no ambiente, mostrando a importância dessas aeronaves e justificando o projeto proposto, visando suprir a demanda de VANTs que sejam eficientes e concomitantemente econômicos. A figura 4 ressalta as principais características existentes entre o processo de pulverização entre drones e aviões.

As recompensas decorrentes do uso dos drones para pulverização tem agradado o olhar de vários agropecuaristas, e o modelo é visado como o alicerce fundamental da agronomia do futuro, trazendo ótimo retorno financeiro a longo prazo ao mesmo tempo em que minimiza o prejuízo ambiental. Sendo assim, a abordagem no que tange o uso de drones para aplicação mais eficiente de defensivos ganha destaque no cenário nacional,

Figura 4 – Comparação entre os processos de pulverização de um drone e um avião convencional.Fonte: (JONES, 2019)

destacando os pontos citados nesta seção e os demais dados elencados no capítulo de introdução deste trabalho. Portanto, os grandes diferenciais do projeto em relação aos existentes no mercado seriam a autonomia de operação superior, o sistema de decolagem que não necessita de pista de pouso e o armazenamento e o monitoramento de variáveis quantitativas coletadas em tempo real durante o voo do veículo.

4.2 Objetivos do projeto

4.2.1 Objetivo geral

O objetivo do projeto é promover a correta aplicação de defensivos agrícolas concomitantemente com a diminuição do custo desse processo. Para isso, é desenvolvido um VANT de pulverização com a configuração de voo V-STOL, decolando sem a necessidade de pista e com maior autonomia de voo dentro os produtos da mesma classificação no mercado.

A configuração de voo permite o melhor aproveitamento da área de plantio, e adicionalmente ajuda a aplicar o defensivo de maneira mais precisa. Há ainda o sistema de coleta de variáveis, onde posteriormente, o tratamento desses dados através de uma interface Business Inteligence (BI) pode ajudar a determinar o melhor horário para operação da aeronave e ainda indicar as áreas que mais necessitam da sua incisão.

Para o projeto, foi considerado o ambiente de operação como sendo uma lavoura com extensão média no Brasil.

4.2.2 Objetivos específicos

O veículo construído terá como objetivos específicos:

- Tornar o processo de pulverização mais eficiente, evitando a deriva do dispersante.
- Coletar variáveis em tempo real para futuras análises de dados.
- Garantir que todo o volume de defensivo seja dispersado adequadamente em regiões de maior precisão.
- Orientar o operador a respeito do processo de pulverização.

4.3 Vantagens e desvantagens do projeto

A partir dos parâmetros levantados e das análises de mercado efetuadas, algumas vantagens e desvantagens foram levantadas no que tange a proposta desenvolvida. Essas vantagens e desvantagens são listadas abaixo na figura 5.

PROJETO: VANT DE PULVERIZAÇÃO			
VANTAGENS	DESVANTAGENS		
Excelente viabilidade econômica	Investimento elevado a curto prazo		
Monitoramento em tempo real de variáveis	Necessário pessoa especializada para operação		
Diminuição de impactos ambientais	Autonomia de voo inversamente proporcional ao peso		
Alcance geográfico ampliado e mais preciso	Operável somente em territórios despovoados		
Longa vida útil			

Figura 5 – Vantagens e desvantagens do projeto. Fonte: Autores

4.3.1 Produtos concorrentes

Foi realizado uma pesquisa de mercado mostrada na figura 6 considerando os concorrentes que competem no mesmo nicho de mercado.

Cifid	Modelos de drones consagrados			
Serviços fornecidos	BRRB10L-6E	DJI Agras MG-1P	THEA 130S	DRACTOR 25A
Capacidade de carga	10 kg	10 kg	10 kg	10 kg
Autonomia de voo (min)	10	20	12	60
Alcance do sinald e rádio	2 km	5 km NFC	1 km	5 km
Velocidade de voo (m/s)	10	15	10	10
Peso total (kg)	24,6	23	24	Não divulgado
Preço	R\$ 75.000,00	R\$ 83.000,00	R\$ 25.000,00	Não divulgado

Figura 6 – Análise de mercado com os principais VANTs já existentes. Fonte: Autores

A análise de mercado mostra que a carga pretendida de 10 kg está dentro do mais difundido na indústria. Em relação a autonomia de voo, a meta inicial de 30 minutos é um diferencial, se mostrando quase 2 vezes maior do que a autonomia dos drones atuais. É importante ressaltar também que o peso da aeronave a ser projetada não vai ultrapassar 25 kg, já incluindo os 10 kg de defensivos.

5 Papéis e Responsabilidades

5.1 Equipe

A equipe responsável pelo projeto é formada por 14 alunos da FGA. A equipe foi alocada em 3 núcleos de desenvolvimento: estrutura, elétrica e software. A área de estrutura é formada por alunos das engenharias Automotiva e Aeroespacial é responsável por toda a parte estrutural do projeto. Por sua vez, o núcleo de elétrica é composto por alunos das engenharia de Energia e Eletrônica, e é responsável pela estruturação dos sensores, microcontroladores e baterias, bem como a comunicação com o software. Por fim, a área de software é formada pelos alunos do curso de Engenharia de Software, sendo responsáveis pela captação das variáveis coletadas pelo drone e o tratamento e disposição dos dados. Dentre os 14 alunos, alguns deles assumiram papéis de diretores e de coordenação, sendo: 1 coordenador geral, 1 diretora de qualidade e 3 diretores técnicos sendo cada um responsável por cada área. Os nomes dos alunos estão mostrados na tabela 1 enquanto que a disposição dos cargos é mostrada na figura 7.

Tabela 1 – Equipe do projeto. Fonte: Autores.

Número	Nome	Matrícula	Curso
1	1 Rodrigo Evangelista Aguiar de Souza 1		Engenharia Aeroespacial
2	Danielle Lima Bezerra	16/0151589	Engenharia Aeroespacial
3	Vitor Lima Aguirra	16/0047412	Engenharia Aeroespacial
4	Natalia Paula Souza	16/0015871	Engenharia de Energia
5	Francisco Barroso de Carvalho Neto	19/0106751	Engenharia de Energia
6	Thayná Côrtes Pereira	17/0063577	Engenharia de Energia
7	Lucas Gomes Silva	16/0133505	Engenharia de Software
8 Matheus de Cristo Doreia Estanislau		15/0141220	Engenharia de Software
9 João Pedro Soares Cirqueira		15/0132344	Engenharia de Software
10 Moacir Mascarenha Soares Junior		17/0080366	Engenharia de Software
11 Lucas Regis		15/0137443	Engenharia Automotiva
12 Douglas Alves de Castro		16/0005167	Engenharia Automotiva
13	Marianna Amélia de S. B. Monteiro	16/0160472	Engenharia Eletrônica
14 Elias Queiroga Vieira		16/0118719	Engenharia Eletrônica

5.2 Professores

Os professores são responsáveis por avaliar e auxiliar as equipes dos projetos ao longo da disciplina a medida que surgirem dificuldades técnicas. Os professores responsáveis pela disciplina se encontram na tabela 2.

Figura 7 – Organograma dos integrantes do projeto. Fonte: Autores

Tabela 2 – Docentes da disciplina de Projeto Integrador de Engenharia 2. Fonte: Autores.

Docente	Área de Atuação
Alex Reis	Engenharia de Energia
Ricardo Matos Chaim	Engenharia de Software
José Felício da Silva	Engenharia Eletrônica
Rhander Viana	Engenharia Automotiva
Paolo Gessini	Engenharia Aeroespacial

5.3 Público Alvo

O principal público alvo são produtores agrícolas e fazendeiros que possuem o aporte financeiro necessário para suprir a operação do veículo, visto que os custos iniciais são elevados, mas são compensados com lucro com o passar dos anos. O intuito do produto é eliminar pragas do campo e consequentemente diminuir os danos causados, ocasionando maior retorno na produção agrícola.

6 Riscos

A análise de riscos objetiva-se a mitigar os riscos que possam levar ao comprometimento do projeto. Para tal análise, foi implementada a metodologia de análise de Gravidade, Urgência e Tendência (GUT), que é uma ferramenta auxiliadora na priorização das decisões em um projeto (SILVA, 2016). Cada núcleo do projeto possui uma análise de risco específica, que por sua vez são mostradas nas tabelas 3, 4, 5, 6, 7, 8, 9, 10 e 11.

6.1 Riscos Gerais

Tabela 3 – Tabela de riscos gerais do projeto. Fonte: Autores.

ID	Risco	Consequência	
1	Trancamento da disciplina	Sobrecarregar os demais membros	
2	Equipe inexperiente	Atraso em implementar o projeto	
3	Dificuldade na comunicação e alinhamento		
	entre estrutura, eletrônica e software	Mal funcionamento do produto	

6.2 Riscos Estruturais

Tabela 4 – Riscos de estrutura relacionados ao projeto.

Fonte: Autores

ID	Categoria	Risco	Consequência
1	Desempenho	Fratura da estrutura devido	Quebras de componentes mecânicos
		aos ciclos de trabalho	durante a operação
2	Desempenho	Falha devido a erro	Possiveis quebras
		de projeto mecânicos	durante operação
3	Desempenho	Mal dimensionamento	Dificuldade de operação
		das hélices	e/ou queda durante voo
		Impactos devido a condições	Danos físicos ao drone,
4	Operador	climáticas ou fauna local	contaminação excessiva do solo
			nas proximidades com agrotóxico,
			incêndios
5	Desempenho	Falha/entupimento dos	Pulverização prejudicada
		bicos pulverizadores	
6	Operador	Impactos	Danos físicos às pessoas
			próximas e ao drone

ID	Categoria	Risco	Consequência
7	Desempenho	Falha da estrutura devido	Possiveis quebras
		a grandes variações	durante operação
		de cargas térmicas	
8	Desempenho	Vibrações induzidas nos	Mal funcionamento e
		componentes internos	quebra do veículo

6.2.1 Análise dos Riscos e Ações de Estruturas

Tabela 5 — Riscos e ações de estruturas do projeto. Fonte: Autores.

ID	Ação	Ação Reativa	\mathbf{G}	U	\mathbf{T}	Grau
1	Operador	substituição de componentes	5	1	2	10
		comprometidos				
2	Desempenho	Validações analíticas e	5	5	5	125
		numéricas				
		Estudar novo dimensionamento				
3	Desempenho	dos motores e/ou hélices	5	5	5	125
		e substituição				
		Verificação do clima pelo				
4	Operador	operador e uso consciente	5	2	1	10
		do equipamento				
5	Operador	Limpeza periódica dos	3	2	1	6
		pulverizadores				
6	Operador	Ações de prevenção e	5	4	4	80
		treinamento do operador				
7	Desempenho	Análises numéricas	5	5	5	125
8	Desempenho	Isolamento dos	4	3	4	48
		componentes internos				

6.3 Riscos Eletrônicos

Tabela 6 – Riscos dos subsistemas eletrônicos relacionados ao projeto. Fonte: Autores

ID	Categoria	Risco	Consequência
1	Desempenho	Curto circuito	Dano ao sistema
2	Desempenho	Falha dos sensores	Perda do monitoramento
3	Desempenho	Falha dos motores	Voo instável e com possibilidade de queda
4	Desempenho	Falha na comunicação entre o controle e o VANT	Perda de controle sobre VANT

ID	Categoria	Risco	Consequência		
5	Desempenho	Falha na placa	Veículo passível de queda		
5 Desempenno		controladora de voo	veiculo passivei de queda		
6	Desempenho	Desencaixe de	Dano crítico interno que		
0 Desemi	Desempenno	algum componente	pode levar a queda		

6.3.1 Análise dos Riscos e Ações de eletrônica

Tabela 7 – Riscos e ações de eletrônica do projeto Fonte: Autores

ID	Ação	Ação Reativa	G	U	\mathbf{T}	Grau
1	Acompanhamento	Manutenção	5	5	5	125
1	Acompannamento	periódica	0	9	9	120
2	Acompanhamento	Manutenção	4	4	3	64
	Acompannamento	periódica	4	4	3	04
3	Acompanhamento	Teste antes do voo	5	5	5	125
	Acompannamento	e manutenção	9	9	9	120
4	Acompanhamento	Manutenção	5	5	5	125
4	Acompannamento	periódica	9)	120
5	Acompanhamento	Manutenção	5	5	4	100
0	Acompannamento	periódica))	4	100
6	Acompanhamento	Manutenção	5	5	5	125
	Acompannamento	periódica)		0	120

6.4 Riscos de energia

Tabela 8 – Riscos dos subsistemas de energia relacionados ao projeto. Fonte: Autores

ID	Categoria	Risco	Consequência
1	Integração	Falha na integração entre	Não funcionamento
1	Imegração	eletrônica, energia e estrutura	do VANT
2	Desempenho	Não funcionamento da fonte	Não funcionamento
2	Desempenno	de alimentação	do VANT
3	Desempenho	Falha na alimentação	Queda e quebra
	Desempenno	durante o voo	do veículo
1	4 Desempenho	Superaquecimento do motor	Queima do motor
4		Superaqueennento do motor	e incêndio interno

ID	Categoria	Risco	Consequência		
5	Desempenho	Falha no carregamento	Inoperância total		
0	Desempenno	das baterias	ou parcial do veículo		
6	Desempenho	Erro no dimensionamento	Não cumpre a autonomia		
	Desempenno	do motor	de voo estabelecida		
7	7 Desempenho	Desempenho Inoperância da bomba	Falha na dispersão		
'			do defensivo agrícola		
			Autonomia de voo		
8	Desempenho	Superaquecimento da bateria	comprometida e possibilidade		
			de explosão e incêndio		

6.4.1 Análise dos Riscos e Ações de energia

Tabela 9 – Riscos e ações de energia do projeto Fonte: Autores

ID	Ação	Ação Reativa	G	U	T	Grau
1	Integração	Ajuste do alinhamento e comunicação entre as três áreas	5 5 5 1		125	
2	Mitigar	Estudo completo de carga e correto dimensionamento	carga e correto 5 5 5		5	125
3	Mitigar	Manutenção periódica do sistema de alimentação	5	5	5	125
4	Mitigar	Manutenção periódica do motor e controle de temperatura	5	5	5	125
5	Mitigar	Conferir o estado dos fios e bateria 4 4		4	64	
6	Integração	Alinhamento entre a demanda e consumo	4	4	5	80
7	Desempenho	Garantir o correto dimensionamento da bomba	5	5	5	125
8	Mitigar	manutenção periódica e troca dos componentes quando necessário	4	4	5	80

6.5 Riscos de Software

Tabela 10 – Riscos dos subsistemas de software relacionados ao projeto. Fonte: Autores

ID	Categoria	Risco	Consequência
1	Planejamento	Dificuldade com as	Atraso na
1	1 lanejamento	tecnologias escolhidas	entrega do projeto
2	Planejamento	Possível redução	Atraso na
	1 lanejamento	de membros	entrega do projeto
3	Planejamento	Falta de comunicação	Baixa qualidade
	1 lanejamento	rana de comunicação	do software
		Entrega de relatórios	Débitos técnicos
4	Planejamento	com atrasos	para os próximos
		com attasos	relatórios
		Falta de priorização	Funcionalidades
5	Planejamento	dos requisitos	cruciais deixadas
		dos requisitos	em segundo plano
6	 Infraestrutura	Danos à base	Perda de dados
	iiiiaesti atara	de dados	da aplicação
		Ambiente de	Falhas durante a
7	Infraestrutura	desenvolvimento mau	operação
		configurado	operação
		Falha com a conexão	Monitoramento
8	Desempenho	de rede do VANT	em tempo real
		de rede do vinivi	sem atualização
9	Desempenho	Bugs do software	Mal funcionamento
	Description	Dags do sonware	do sistema

6.5.1 Análise de Riscos e ações para software

Tabela 11 – Riscos e ações de software do projeto Fonte: Autores

ID	Ação	Ação Reativa	G	U	\mathbf{T}	Grau
1	Mitigar	Mitigar Estudar a documentação da tecnologia utilizada		4	5	60
2	Prevenção	Ajuste do escopo e tarefas do projeto		4	5	80

ID	Ação	Ação Reativa	G	U	\mathbf{T}	Grau
	Comunicação e interação					
3	Prevenção	mais eficiente	4	3	3	36
		entre o núcleo do projeto				
4	Prevenção	Melhorar a organização	5	5 4 4 90	80	
4	i revenção	dos integrantes	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)	
5	Prevenção	Reavaliar os requisitos	$\begin{bmatrix} 5 & 5 & 2 \end{bmatrix}$		50	
	i revenção	e criar nova priorização			4	50
6	Prevenção	Realização de backups	5 5 4		4	100
		Ajustes prévios e				
7	Mitigação	periódicos no ambiente de	4	3	2	24
		desenvolvimento				
8	Mitigação	Salvar os dados localmente	4	2	3	24
		para depois exportá-los	'1 		J	<i>∆</i> 1
9	Prevenção	Realizar testes de features	4	3	3	36

7 Requisitos

7.1 Requisitos Legais

No Brasil, o uso recreativo de drones não requer nenhum tipo de autorização, ao contrário da utilização de VANTs. De acordo com (ANAC, 2015), o uso de VANTs não autônomos só é permitido mediante autorização expressa da ANAC ou pela emissão do Certificado de Autorização de Voo Experimental (CAVE) emitido segundo a Instituição Suplementar (IS) nº 21-002A.

O CAVE é uma autorização que permite o uso de aeronaves experimentais. Atualmente, o procedimento para que uma aeronave receba essa certificação segue o que dispõe a IS nº 21-002A intitulada "Emissão de Certificado de Autorização de Voo Experimental para Veículos Aéreos Não Tripulados". Entretanto, tal certificado permite apenas operações experimentais sobre áreas não densamente povoadas, ou seja, não permite operações com fins lucrativos e nem operações em áreas urbanas, com exceção de operações com finalidade de pesquisas e desenvolvimento e de treinamento de pilotos. A autorização da ANAC é condição necessária, porém não suficiente, para a operação desses equipamentos, pois também há permissões a serem concedidas pela (ANATEL, 2017) e pelo DECEA (ANAC, 2015). Atualmente, 6 VANTs possuem o CAVE vigente: dois da Polícia Ambiental de São Paulo, dois da Polícia Federal; um do Departamento Nacional de Produção Mineral, e um do Instituto de Pesquisas Tecnológicas de São Paulo. Além do CAVE, as operações do Departamento de Polícia Federal foram permitidas pela ANAC em 2011 e outras 7 autorizações foram emitidas.

Ainda de acordo com o autor (ANAC, 2015), além da autorização da ANAC, é necessário levar em consideração as diretrizes do DECEA e da ANATEL. No que tange o uso indevido de VANTs não autônomos em áreas proibidas, na esfera penal, há previsão na Lei de Contravenções Penais, Decreto-lei nº 3.688/1941 (REPUBLICA, 1941), especificamente no art. 35, de tipificação para a conduta de prática da aviação fora da zona em que a lei a permite, sujeitando o autor da contravenção à pena de prisão simples ou de multa. Ainda no art. 33 do mesmo decreto, há previsão de apenas operadores licenciados podem operar. Além disso, há os limites estabelecidos pelo Código Penal, em seus artigos nº. 261 e 262.

Existem atualmente 3 classificações de Aeronaves Remotamente Pilotadas (RPA) (VANT destinado à operação remotamente pilotada). São eles:

- Classe 1 = RPA com Peso Máximo de Decolagem maior 150 quilos (kg).
- Classe 2 = RPA com Peso Máximo de Decolagem maior que 25kg e menor ou igual a

150kg.

• Classe 3 = RPA com Peso Máximo de Decolagem menor ou igual a 25kg.

7.2 Requisitos Gerais

Dados os requisitos legais apresentados, o VANT escolhido pertence a Classe 3, e de acordo com o autor (VISUAL, 2018), para operar um RPA dessa classificação o operador deve atender alguns requisitos gerais, nos quais citam-se os mais relevantes logo abaixo:

- Idade mínima de 18 anos para pilotar ou auxiliar a operação como observador.
- Somente os equipamentos com peso máximo de decolagem acima de 250g precisam ser cadastrados na ANAC por meio do Sistema de Aeronaves não Tripuladas (SISANT), disponível em: https://sistemas.anac.gov.br/sisant?AspxAutoDetectCookieSupport=1>.
- O cadastro vai gerar uma identificação que deverá ser confeccionada em material não inflamável, ser legível e ficar acessível na aeronave.
- Pilotos não precisam de documento emitido pela ANAC e são considerados devidamente licenciados, caso não pretendam voar acima de 400 pés (120 metros).
- Só é permitido operar um único sistema de RPA por vez.
- É obrigatório possuir seguro com cobertura de danos a terceiros para pilotar aeronaves.
- Fazer uma avaliação de risco operacional para operações.
- É permitida a troca do piloto remoto em comando durante a operação.
- Não é necessário registrar os vôos.
- As operações só poderão ser iniciadas se houver autonomia suficiente da aeronave para realizar o voo e para pousar em segurança no local previsto, levando-se em conta as condições meteorológicas conhecidas.
- Para operar drones é necessário também seguir as regras da ANATEL e de utilização do espaço aéreo do DECEA.

Para que o VANT levante voo e consiga despejar os defensivos agrícolas de forma eficiente e segura, citam-se ainda alguns requisitos gerais de funcionamento, conforme a tabela 12, estabelecendo que algumas premissas devem ser cumpridas e seguidas rigorosamente para o correto manuseio do VANT.

Tabela 12 – Análise de possíveis riscos gerais do projeto.

Fonte: Autores

Requisito Conceito	Análise de requisito
--------------------	----------------------

Requisito	Conceito	Análise de requisito		
Condições	Condições adequadas	A velocidade do vento não pode		
climáticas	para operação	ultrapassar a de operação do		
Cililaticas		VANT, pois afetará a aeodinâmica		
		A bateria do VANT e do controle		
Carregamento	Carga bateria/controle	devem estar com carga total		
		para o correto funcionamento		
Bicos	Higienização dos bicos	A limpeza garante o correto		
nebulizadores	por parte do operador	funcionamento da pulverização		
		A limpeza impede a mistura		
Limpeza	Higienização do	de químicos reagentes,		
do tanque	tanque	conservando o defensivo corretamente		
Área de voo	Território de operação	A área de voo deve ser livre		
		de edificações e pessoas		

7.3 Requisitos Estrutura

Os requisitos para o Sistema estrutural do projeto podem ser observados na tabela 13.

Tabela 13 – Requisitos funcionais e não funcionais para o núcleo de estruturas Fonte: Autores.

ID	Categoria	Requisito	Prioridade
RF01	Desempenho estrutural	Projetar a estrutura para suportar	Alta
		os esforços solicitantes	
RF02	Sistema geral	Dimensionar o tanque de defensivo	Alta
RF03	Sistema Geral	Disposição dos componentes internos	Alta
RF04	Desempenho estrutural	Dimensionamento do trem de pouso	Alta
RF05	Desempenho estrutural	Dimensionamento das hélices	Alta
RF06	Sistema geral	Isolamento de vibrações para os componentes	Alto
RF07	Sistema hidráulico	Correta armazenagem do defensivo no tanque	Média
RF08	Pós venda	Manutenção fácil e acessível	Média
RNF09	Pós venda	Manual de montagem inuitivo	Média
RF10	Desempenho estrutural	utural Desempenho aerodinâmico	
RF11	Desempenho estrutural	Validação numérica dos cálculos	Alta

7.4 Requisitos Eletrônica-Energia

Os requisitos que englobam o núcleo de elétrica são a junção dos requisitos de Energia e Eletrônica. Esses requisitos são mostrados na tabela 14.

Tabela 14 – Requisitos funcionais e não funcionais do núcleo de elétrica (Energia e Eletrônica) Fonte: Autores.

ID	Categoria	Requisito	Prioridade
		Armazenar e liberar energia	
RF01	Sist.de alimentação	para os componentes internos adequadamente	Alta
RF02	Sist. de alimentação	Fornecer energia para sensores e motor	Alta
RF03	Sist. de alimentação	Tornar a distribuição de energia eficiente	Média
RF04	Sist. de alimentação	Fornecer energia para a missão proposta	Alta
RF05	Sist. de carregamento	Recarregar a bateria de forma rápida e eficiente	Alta
		Detalhamento no manual de montagem	
RF06	Pós venda	a respeito do encaixe das baterias	Média
		Acionamento da bomba para a dispersão	
RF07	Sist. de dispersão	do defensivo agrícola	Alta
RF08	Sist. do motor	Motor deve operar em diferentes faixas de rotação	Alta
RF09	Controle de voo	Garantir a estabilidade do voo	Alta
RF10	Monitoramento	Garantir o envio de sinais dos componentes	Alta

7.5 Requisitos Software

Os principais requisitos para o núcleo de software podem ser observados na tabela 15.

Tabela 15 – Requisitos funcionais e não funcionais do núcleo de software Fonte: Autores.

ID	Categoria Requisito		Prioridade
RF01	Monitoramento	Monitoramento Receber os níveis de bateria do VANT	
RF02	Monitoramento	Receber dados de temperatura e umidade	Média
RF03	Monitoramento	Receber dados GPS do VANT	Alta
RF04	Monitoramento	Recepção de dados de velocidade e volume do tanque	Média
RF05	Monitoramento	O sistema de monitoramento deve notificar o operador	Alta
RF06	Registro	O sistema deve manter os dados de voo	Alta
RF07	Registro	O sistema deve disponibilizar os dados ao operador	Alta
RF08	Registo	O sistema deve gerar relatórios através de solicitações	Média
RF09	Monitoramento	Armazenar localmente os dados de cada voo	Média
RF10	Monitoramento	pramento Envio de dados para o servidor	
RF11	Monitoramento Verificar se há internet para envio de dados		Alta
		Manter dados para envio quando	
RF12	Monitoramento	não houver disponibilidade de rede	Alta
RF13	Monitoramento O sistema deve informar os dados a cada 10 s		Média
RF14	Monitoramento	Continuar operando mesmo sem internet	Alta
		O sistema deve ter baixo tempo de	
RF15	Desempenho	resposta para requisições	Média

8 Solução do núcleo de estruturas

A estrutura tem como objetivo projetar uma configuração V-STOL de VANT que seja capaz de carregar 10 kg de defensivos agrícolas, suportando todas as tensões e demais esforços solicitantes que sejam provenientes da operação do veículo. Nesse contexto, dar suporte ao funcionamento do motor e baterias além de alocar todos os componentes internos são requisitos fundamentais que devem ser levados em consideração na concepção da configuração projetada. Para projetar tal configuração, inicialmente levou-se em consideração três parâmetros fundamentais que nortearão o projeto estrutural, sendo eles o levantamento de componentes mecânicos do VANT, a escolha de materiais para cada componente e uma pesquisa de mercado para concepção de um design inicial e preliminar.

8.1 Levantamento de componentes mecânicos

O levantamento de componentes mecânicos tem como intuito nortear os projetistas a respeito dos componentes necessários para design da configuração, para que posteriormente seja realizado o dimensionamento e testes de resistência mecânica. A tabela 16 mostra os principais componentes mecânicos que são utilizados em conjunto com a carcaça de alguns VANTs mais consagrados do mercado. Vale salientar que os componentes mencionados são os principais e mais utilizados. Outros componentes mais básicos são também utilizados e serão incorporados na estrutura do VANT ao longo do andamento do projeto.

		1							
1	.abeia 10 –	Componentes	mecanicos	mais	utilizados	em	VANIS	. гоше	Autores.
П	labala 16	Commontes				0.700	VANTO	Fonto	Automog

ID	Componente	Funcionalidade			
01	Trem de pouso	Sistema de pouso do veículo			
02	Acoplamento de hélices	Encaixe e manobrabilidade das hélices			
03	Hélices	Sistema de decolagem e pouso			
04	Tanque de defensivo	armazenamento do defensivo agrícola			
05	Câmera de monitoramento	Sistema de monitoramento e GPS			
06	Bicos de nebulização	Sistema de dispersão do defensivo			
07	LED Sistema de alerta para falha de componentes				
08	Carcaça de proteção	Proteção de componentes externos que sejam articulados			

8.2 Considerações sobre a atribuição dos materiais

Tendo vista os componentes mecânicos citados acima, algumas considerações importantes devem ser realizadas antes da escolha dos materiais de fabricação.

O trem de pouso deve possuir resistência mecânica para suportar as tensões atuantes na estrutura, visto que é um dos componentes mais solicitados durante o pouso e decolagem do VANT. Além disso, deve suportar os possíveis impactos mecânicos que venham a ocorrer no veículo, absorvendo, distribuindo e dissipando a energia das colisões. Por sua vez, o acoplamento para o sistema de hélices deve possuir resistência contra fenômenos de vibrações ocasionadas pelas hélices, visto que fenômenos dessa natureza podem se propagar ao longo da estrutura e ocasionar a quebra de componentes e acidentes graves durante a operação do veículo. As hélices devem ser leves e bastante resistentes, gerando pouca contribuição no peso total do veículo.

No que tange a escolha do tanque de defensivos, este deve ser confeccionado de um material que não reaja com os defensivos, permaneça inodoro após o esvaziamento do tanque e que preserve essas características ao longo da vida útil do produto. Por fim, a carcaça da estrutura deve ser leve e resistente, suportando todas as condições de voo possíveis para a missão do veículo e também conduzir um bom desempenho aerodinâmico para o voo do VANT, além de possuir isolamento térmico e elétrico para armazenar os componentes eletrônicos internos.

Levando em consideração a missão do VANT e as considerações a respeito dos componentes, um levantamento preliminar de materiais foi realizado com o intuito de reduzir o campo de busca e tornar a escolha dos materiais a mais correta possível. O levantamento preliminar de materiais levou em consideração não somente as propriedades mecânicas e térmicas dos materiais, mas também o custo benefício de sua implementação e a manutenção do componente mecânico caso preciso. Levando em conta que toda a estrutura externa do drone não deve exceder o limite de 10kg, os materiais escolhidos para compor o projeto foram a fibra de vidro S, fibra de carbono, Alumínio 2024 T851 e Alumínio 2024 T81. A tabela 17 ilustra as propriedades mecânicas e térmicas dos materiais escolhidos para efeitos de comparação e os respectivos preços sem incidência de impostos, e logo abaixo é realizado uma análise das vantagens e desvantagens a respeito de cada material abordado.

Tabela 17 – Propriedades mecânicas e térmicas dos materiais escolhidos para o projeto. Fontes: (MATERIALS, 1985), (DATA, 2020)

Propriedades	Al 2024-T851	AL 2024-T81	Fibra de vidro	Fibra
mecânicas e térmicas				de Carbono
Densidade (g/cm^3)	2,78	2,78	2,48	1,6
Tensão de				
resistência a tração (MPa)	455	485	4445	600
Alongamento máximo(%)	5	2 a 6	5,4	0,85
Coef. Poisson	0,33	0,33	0,22	0,1

Propriedades	Al 2024-T851	AL 2024-T81	Fibra de vidro	Fibra
mecânicas e térmicas			S	de Carbono
Módulo elástico (GPa)	72,4	72,4	86	70
Tensão de fadiga (MPa)	117	125	N.F	N.F
Módulo de				
cisalhamento (GPa)	27	28	35	33
Tensão de resistência				
ao cisalhamento (MPa)	296	295	N.F	260
Resistividade				
Elétrica (Ohm-m)	$5,7 \times 10^{-8}$	$4,49 \times 10^{-8}$	$9,05 \times 10^{8}$	N.F
Coef. expansão térmica				
$(\mu^{\circ}C^{-}1)$	24,1	24,7	5,3	2,15
Condutividade				
Térmica (W/m K)	120	151	N.F	N.F
Preço médio (\$/kg)	10	9 a 12	20 a 30	80 a 150

O levantamento de materiais mostra que a fibra de vidro S e a fibra de Carbono apresentam-se como os materiais mais leves e resistentes, onde a fibra de vidro se destaca por conta de seu custo benefício. Trazendo à tona as considerações iniciais a respeito dos componentes da estrutura do VANT e comparando os materiais da tabela, chegou-se a uma decisão preliminar sobre a escolha dos materiais para os componentes. Vale salientar que a escolha dos materiais para os componentes foi tomada de maneira preliminar. Posteriormente, análises computacionais de impacto e de resistência estrutural, além de cálculos analíticos precisos irão nortear com maior rigor de detalhes a matriz de decisão para escolha definitiva dos materiais mais adequados para cada componente, e essa matriz será colocada no ponto de controle 2.

Inicialmente, será considerado projetar o acoplamento das hélices e o trem de pouso de fibra de Carbono, devido à alta resistência a impacto e baixo peso. A fibra de vidro será adotada no projeto de toda carcaça da estrutura devido a sua boa resistência e baixa condutividade elétrica, dando segurança aos componentes eletrônicos internos. As hélices e demais componentes mecânicos serão projetados com o AL 2024-T851 devido ao baixo preço e baixa condutividade, além sua boa resistência a fadiga. Em relação ao tanque de defensivos, pesquisas preliminares direcionam para seu projeto utilizando os materiais polipropileno (PLASTECNO, 2020) ou plástico ABS, devido as considerações já mencionadas anteriormente.

As chapas utilizadas na construção da carcaça serão fixadas com parafusos e utilizando como base arruelas autotravantes. De acordo com o autor (UNISTAMP, 2020), esse componente fixador é um elemento de fixação de alto desempenho, onde sua função

é atuar como assento para que a pressão entre porca e parafuso seja distribuída para uma área maior, o que eleva o nível de fixação entre os elementos. Segundo (FIXACOES, 2020), essa tecnologia de travamento é muito utilizada industrialmente em componentes com condições de elevada vibração ou carga dinâmica, promovendo maior segurança na fixação, garantindo menor necessidade de manutenção.

8.3 Projeto conceitual do veículo e justificativas iniciais

A concepção do design preliminar da estrutura do VANT de pulverização aqui idealizado baseou-se em três pilares fundamentais, sendo eles a pesquisa de mercado, a criatividade dos projetistas e os requisitos levantados acerca da missão. Por conta da legislação de drones no Brasil dificultar a obtenção de licença e homologação de VANTs das classes 1 e 2, optou-se por projetar um VANT de classificação classe 3 (peso máximo de decolagem até 25 kg). Dessa forma, descontando o peso de 10 kg do defensivo, toda a carcaça e componentes eletrônicos tem limitação máxima de peso total de 10 kg, onde os 5 kg restantes são destinados as baterias, motores e demais componentes elétricos.

As pesquisas realizadas mostraram que os VANTs existentes no mercado possuem um design padrão pré estabelecido, de tal maneira a dar o máximo desempenho aerodinâmico para veículos dessa natureza. Esses designs por sua vez baseiam-se em quatro ou seis rotores e braços mecânicos articulados para facilitar a montagem e manuseio do equipamento. A figura 8 ilustra o design padrão dos drones existentes no mercado, onde o projeto conceitual para o VANT proposto foi baseado em modelos parecidos.

Figura 8 – Configuração mais comum dos VANTs existentes no mercado. Fonte: Foxtech

Após a pesquisa de mercado, foi elaborado nos softwares SolidWorks e FreeCAD um design preliminar para o projeto de VANT desejado. As figuras 9 e 10 ilustram as vistas do veículo e os principais componentes mecânicos do veículo, onde esse sistema será desenvolvido e aprimorado ao longo dos outros pontos de controle.

Figura 9 – Vista isométrica e componentes mecânicos principais. Fonte: Autores

Figura 10 – Vistas em perspectivas do projeto preliminar do VANT de pulverização. Fonte: Autores

9 Soluções do núcleo elétrico (Eletrônica e Energia)

Uma vez feitas as considerações e estimativas iniciais para o núcleo de estruturas, é necessário fazer um levantamento dos principais componentes eletrônicos que serão acoplados no interior do veículo. A arquitetura de solução para o núcleo de elétrica pode então ser dividida em 4 classificações: Sistema de ignição e recarregamento da bateria, sistema de bombeamento e pulverização, sistema controlador de voo e sistema de medição.

Antes de adentrar no detalhamento dos principais componentes que serão utilizados, é importante ter em mente os requisitos da missão ao qual o projeto visa cobrir. Sendo assim, cita-se novamente que é esperado uma autonomia de 30 minutos de voo para o VANT, levando em consideração que a massa carregada de defensivos diminui ao longo do tempo. É importante também salientar que os links para compra dos componentes descritos na arquitetura de solução do sistema elétrico são colocados nas tabelas referentes ao estudo de análise de custo, que por sua vez é apresentado no próximo capítulo deste projeto.

9.1 Sistema de ignição e recarregamento da bateria

Essa classificação engloba a escolha de três componentes fundamentais para que o veículo consiga decolar e pousar com sucesso, além de interferir diretamente na vida útil do VANT. Esses componentes são o motor, alimentação do sistema e recarregamento das baterias, onde a escolha desse conjunto irá determinar a autonomia do veículo e suas condições de desempenho ao longo da sua vida útil.

9.1.1 Considerações e escolha do motor adequado

A escolha adequada do motor é crucial para o desenvolvimento do projeto, visto que o torque do motor e as rotações por minuto (rpm) irão afetar diretamente no dimensionamento do conjunto de hélices do veículo e na escolha do controlador de velocidade (ESC). Uma análise preliminar de fornecedores desses componentes, como por exemplo (HOBBYKING, 2021) e (DRURY, 2013), podem guiar a escolha preliminar no que tange a escolha adequada do motor para a missão de pulverização.

A seleção deve obedecer a alguns parâmetros e critérios, tais quais a força de propulsão do VANT, força para manutenção do voo, e também para as manobras; portanto, uma das soluções muito utilizada comercialmente, são os motores sem escovas, também

chamados de "brushless", que se configura basicamente como um ímã permanente rotativo, aumentando a vida útil e custo de manutenção (SANTOS, 2015).

Figura 11 – Motor brushless acoplado a uma hélice. Fonte: (MOTORES, 2021)

Com base nisso, foram feitas algumas pesquisas de motores brushless no mercado, a serem apresentadas neste estudo; vale salientar, que o dimensionamento do motor, será realizado no Ponto de Controle 2, pois neste ponto de controle, o foco é o levantamento de alternativas de tecnologias dos motores disponíveis.

Um parâmetro muito importante a ser conhecido é o KV, que denota a relação entre as Rotações por Minuto (rpm) pela tensão, isto é, se um motor denominado 700KV, significa que a multiplicação entre 700 pela tensão fornecida da bateria, resulta nas rotações do motor (SILVA, 2018); para entender melhor, vamos contextualizar com o motor da fabricante Quanum, série MT4108:

Figura 12 – Motor Quanum MT4108 700KV. Fonte: (HOBBYKING, 2021).Compra disponível em Hobbyking

Percebe-se o parâmetro KV é de 700, caso a bateria forneça 11,1V, o motor pode oferecer até 7.770 rpm, como vemos abaixo:

$$rpm = KV \cdot Tens\~aodaBateria$$
 (9.1)

Logo, o KV é diretamente proporcional às rotações, e também na escolha das hélices, influenciando também em sua autonomia. (SILVA, 2018)

É deveras importante a pesquisa e o levantamento de motores existentes no mercado, e pensando nisso, foi explorado na literatura e também em sites especializados em VANTs e drones alguns dos motores utilizados comercialmente; vale ressaltar que o dimensionamento será feito durante o projeto.

Abaixo, é apresentado possíveis soluções de motor elétrico brushless para o projeto, como o motor D0703, 12.000KV mostrado na figura 13, com peso de 1,9 g. Entretanto, é fácil notar que esse motor por si só não teria capacidade de levantar voo para uma carga elevada, mas é citado neste trabalho como pesquisa de mercado.

Figura 13 – Motor Turnigy D0703-12000KV Brushless. (HOBBYKING, 2021)

Durante as pesquisas encontrou-se motores mais robustos, que inclusive já possuem hélices acopladas ao eixo de rotação, conforme observado na figura 14. Não obstante, seu peso pode ser determinante para sua escolha.

Figura 14 – Motor Dr Mad 90mm-1600KV Brushless(HOBBYKING, 2021)

Na tabela 18 mostrada a seguir, pode-se observar uma visão sistêmica dos motores citados:

9.1.2 Considerações sobre alimentação e recarregamento dos sistemas

Esse módulo consiste na escolha adequada do sistema de alimentação das baterias e seu respectivo recarregamento após uma descarga completa durante a operação de pul-

Motor	Fabricante	KV (RPM/V)	Potência (W)	Massa (g)	Preço médio (R\$)
MT4108	Quantum	700	560,6	108	207,21
D0703	Turnigy	12000	24,4	1,9	42,02
B3748	Dr. Mad	1600	2100	440	518,68

Tabela 18 – Comparação de motores pesquisados

verização. É de suma importância pois guia a vida útil da bateria e afeta diretamente a autonomia de voo do VANT.

Na estrutura geral do VANT estarão presentes sensores, dentre outros componentes eletrônicos e um motor elétrico que necessitam de um Sistema de Alimentação que entregue autonomia para o funcionamento pleno do VANT. Essa alimentação será feita através de um sistema de baterias que deverá ser capaz de alimentar todo o sistema de acordo com as principais características das baterias que são: carga, taxa de descarga, número de células e peso. A carga mede, especificamente, a quantidade de energia armazenada nas células eletroquímicas da bateria, onde a unidade de medida é o Ampere-hora equivalente a 3600 Coulomb. A taxa de descarga, mede o quanto de corrente a bateria é capaz de fornecer e é tratada pelos fabricantes pela designação C, por exemplo, uma bateria de 1000mAh e 2C seria capaz de fornecer uma corrente máxima de 2000mA (2 x 1000). (HOBBYKING, 2021)

O dimensionamento das baterias ocorrerá de acordo com a demanda total do VANT que conta com o peso da estrutura, autonomia de voo,peso dos defensivos,potência dos componentes eletrônicos, potência do motor, entre outros.

As baterias de Polímero de Lítio, também chamadas de LIPO (Lithium Polymer Battery),são comumente utilizadas em VANTs por proporcionar um maior aproveitamento da relação potência, leveza , por ter uma boa autonomia e ter uma grande vida útil em relação as demais. São baterias potentes, com uma alta taxa de descarga, porém como os motores exigem uma alta taxa energética e o peso uma variável determinante, estas baterias possuem um tamanho relativo a sua estrutura e seus a componentes.

A bateria LIPO é composta por um número de células (S) que define quantos grupos de pequenas baterias existe no conjunto comercial vendido. Cada grupo ou célula é definido como uma bateria de LIPO de 3,7V quando descarregadas (limite de descarga de 80% da capacidade total) e 4,2V quando totalmente carregadas. Pode-se dizer então que uma bateria 1S tem 3,7V, uma bateria 2S tem 2*3,7V = 7,4V, e assim por diante. Como dito anteriormente,quando a bateria é carregada ela é capaz de armazenar até 4,2V por célula, ou seja, uma bateria 1S armazena até 4,2V, uma 2S até 8,4V, e assim por diante. Na figura 15 abaixo tem-se um exemplo de bateria do tipo LIPO , a Traxxas Power Cell.

O Sistema de baterias deverá ser recarregado através do auxílio da Rede Elétrica.

Figura 15 – Bateria Lipo

Após o criterioso dimensionamento da bateria, os desenvolvedores da parte de energia do núcleo de elétrica optaram pela construção de um carregador com o suporte de fonte de alimentação, justificando essa decisão pela arquitetura simplificada desse sistema e com o intuito de diminuir os gastos do projeto. Um transformador, uma ponte retificadora, um módulo de carregador e mais alguns outros elementos são alguns dos itens necessários para a construção desse sistema de carregamento.

9.2 Sistema de bombeamento e pulverização

O defensivo agrícola estará contido em um reservatório e necessitará que a pulverização se dê através do bombeamento entre o reservatório e os bicos nebulizadores do defensivo; isto é, a montante (antes da bomba), é definida como tubulação de admissão, localizado o reservatório; a jusante (depois da bomba), situa-se os bicos, definido como a linha de recalque (FILHO, 2015).

Para este projeto, pode-se utilizar a bomba diafragma representada na figura 16a, em que o aumento de pressão se deve pela variação do volume provocado por uma membrana elástica.

Nas pesquisas realizadas, foi encontrado uma bomba com vazão máxima de 5 litros por minuto, pressão máxima de 0,8 MPa, potência de 60W, e tensão nominal de 12V. Essa bomba é mostrada abaixo na figura 16b.

Para o controle do fluido, é necessário pelo menos uma válvula normalmente fechada na tubulação de recalque (FILHO, 2015), com o intuito de permitir a passagem do fluido quando receber um sinal elétrico.

Um atuador solenoide conforme representado na figura 17, consiste em uma bobina de fio com um núcleo de ferro, que se move em uma direção, quando recebe um fluxo de corrente, que então estabelece um campo magnético; consequentemente, a bobina age

Figura 16 – a) Esquemático da bomba diafragma. Fonte: (PUMP, 2013); b) Bomba levantada para o VANT. Fonte: (FOXTECH, 2020)

como um imã empurrando ou puxando a carga, isto é, a válvula.(KLUEVER, 2018)

Figura 17 – Sistema atuador solenoide-válvula

Portanto, foram encontradas algumas válvulas solenoides no mercado, que podem compor o projeto do VANT, conforme representado na figura 18, em que a válvula possui entradas e saídas com seção transversal de ¼", e tensão nominal de trabalho de 12V DC. Vale ressaltar, que todos os componentes aqui mencionados fazem parte de uma análise preliminar de levantamento de requisitos e soluções, e que uma análise mais criteriosa para o ponto de controle 2 irá confirmar as escolhas adotadas pelos desenvolvedores.

Figura 18 – Válvula solenoide - 1/4"x1/4" 12 V DC

9.2.1 Raspberry PI 3B

A bomba e os sensores responsáveis pelo envio de informações ao sistema de monitoramento implementado pelo software (que será apresentado no capítulo seguinte) funcionarão através do envio e recepção de sinais que controlarão o acionamento destes componentes. Sendo assim, esses itens serão conectados ao microcontrolador Raspberry Pi modelo 3B. A representação desse microcontrolador pode ser vista na figura 19, e logo abaixo é listado suas principais características.

Figura 19 – Raspberry PI 3B utilizada no projeto. Fonte: Multipeças

9.3 Sistema controlador de voo

O sistema controlador de voo consiste nos módulos eletrônicos responsáveis por habilitar e controlar todo o processo de decolagem, voo e aterrissagem do VANT. É de fundamental importância, visto que sem o devido controle, o veículo não irá levantar voo e consequentemente será incapaz de executar a missão para a qual foi projetado. Esse Sistema compreende fundamentalmente da placa controladora de voo, que irá operar em conjunto com o sistema de medição e monitoramento (descrito na próxima seção), visto

47

que necessita sensores responsáveis por monitorar as variáveis do processo de controle de voo e também com o sistema de ignição descrito na seção 9.1. Os outros componentes que fazem parte desse sistema são a ESC, módulo GPS, câmera, vídeo transmissor e receptor e controle de rádio.

9.3.1 Placa controladora de voo

A placa controladora de voo apresenta algumas configurações já vindas de fábrica, além de possuir alguns sensores já acoplados em sua configuração, tais como sensor barométrico, giroscópio, bússola e acelerômetro. No que tange a necessidade de controle e assim como acesso as informações da placa controladora, foi adotada a Pixhawk4 como placa a ser utilizada no VANT, uma placa controladora de voo open source. Suas principais características são descritas abaixo.

Processador FMU (Flash Management Utiliy):

• 32 Bit Arm® Cortex®-M7, 216MHz, 2MB memory, 512KB RAM

Sensores integrados:

- Giroscópio
- Magnetrômetro
- Barométrico
- Acelerômetro

Alimentação:

• Entradas POWER1 e POWER2: 4,9 a 5,5V

• Entrada USB: 4,75 a 5,25V

Opera na faixa de Temperatura: -40 a 85mºC

9.3.2 Controlador Eletrônico de Velocidade - ESC

O controlador é responsável por ajustar a velocidade dos motores com as informações processadas e repassadas pela controladora de voo, e a partir de então altera a potência fornecida para cada motor. Para o projeto, foi adotado o modelo Tekko32 F4 Metal 4in 1 65A, onde as características são dadas abaixo.

- F4(M4 Core) 108Mhz MCU with BLHELI32 firmware
- Maximum PWM output upto128K (default 96K)
- The 4in1 has onboard analog current sensorUses metal case mosfet for better heat dissipation
- Dimensões:43 x 44mm
- peso 15,8 g

9.3.3 Módulo GPS

O GPS no VANT serve para auxiliar o piloto em um voo estável e também pode ser usado para criar um registro de voo detalhado em algumas aplicações. O modulo GPS escolhido foi o Pixhawk 4 GPS Module.

- módulo Ublox Neo-M8N
- Industry leading -167 dBm navigation sensitivity
- Cold starts: 26s
- 25 x 25 x 4 mm ceramic patch antenna
- Regulador de baixo ruido de 3,3 V
- Consumo de corrente: menos de 150mA a 5V
- LEDS indicadores
- Case protetor
- Cabo de 10 pinos compatível com a Pixhawk4 incluido

9.3.4 Câmera e vídeo transmissor

Optou-se por utilizar uma câmera para melhor monitoramento do local a ser pulverizado e para auxiliar o voo. A câmera escolhida foi o modelo 1200TVL Foxeer Micro Razer FPV.

O vídeo transmissor objetiva-se a transmitir as imagens da câmera, onde foi adotado o modelo transmissor FPV (First Person View). As características da câmera e do vídeo transmissor são mostradas abaixo.

Câmera

• Day / Night: EXT / Auto / Color / B&W

- Potência requerida: DC 4.5V 25V
- Temperatura de operação: -10 ° $C \rightarrow 50$ °C
- Umidade de trabalho: Entre 20% e 80%
- Temperatura de armazenamento: Entre -20°C e 70°C

Vídeo transmissor

- Potências de saída: 0.5 mW (pit mode), 25 mW, 200 mW, 500 mW, 800 mW
- Áudio: 6,5MHz Mono
- Protocolo: Smart Audio 2.0
- Conector de antena: MMCX
- Tensão de entrada: de 7 a 28V (2-6S LIPO) com máximo absoluto de 42 Volts
- Dimensões: 35x25x7mm, incluindo a altura do USB

9.3.5 Receptor e controle de rádio

Controle à radio e seu respectivo receptor é sistema usado para que seja possível controlar o veículo não tripulado manualmente, consiste em uma unidade de controle remoto que usa o transmissor para comunicar as posições com o receptor localizado no VANT. A princípio, escolheu-se 2 modelos base para utilização no VANT, que por sua vez são descritos abaixo. Uma análise aprofundada de compatibilidade irá determinar qual dos dois modelos a seguir será adotado de acordo com a missão do veículo.

Modelo 1: Radiolink T8S FHSS 8CH Mode2 + Receptor R8FM 2.4Ghz

- Peso: 142 g
- Dimensões: 162.5 x 95.5x 57 mm (Transmissor), 48.5 x 21 x 11 mm (Receptor)
- Tensão operacional T8S: 4,2 V
- Tensão operacional R8EF: 4,6-10V
- Corrente de operação T8S: $<150~(\pm~5\text{mA})$
- R8EF Corrente operacional: <30mA
- Alcance: 2km

Modelo 2: Foxtech DA16S + 16- Channel Radio Controller

• Dimensões: 194,5x172,5x114mm

• Peso: 610g

• Bateria: 4000 mAh 1S Lipo

• Carregamento: Micro USB 5V 2ª

 Saída de sinal: S.Bus de 16 canais, PPM / PWM de 9 canais Porta de conexão FC: UART, Tamanho: 51x38x14mm

• Tensão de trabalho: 5V-8,4V

• Temperatura de trabalho: -10 °C -55°C

9.4 Sistema de medição

O sistema de medição e monitoramento é responsável por coletar dados qualitativos e quantitativos do ambiente em que o VANT opera. Esses dados podem sofrer um pós processamento posterior a fim de melhorar a eficiência do uso do VANT por parte do operador. Esse sistema irá atuar em conjunto com o sistema de monitoramento desenvolvido pelo núcleo de software, que será descrito nas seções seguintes.

O sistema de medição é composto basicamente por uma grande variedade e quantidade de sensores, que por sua vez são responsáveis pela captação dos dados do ambiente de operação do VANT. A escolha desses sensores é descrita abaixo.

9.4.1 Sensor de velocidade do ar

A velocidade ar é um parâmetro de grande importância para decolagem e manutenção da estabilidade do voo, além de garantir um pouso bem controlado. A medição é feita de forma mais eficaz usando um tubo de pitot e um sensor de pressão diferencial. Como modelo inicial proposto para a aferição deste parâmetro, optouse pelo modelo Digital Air Speed Sensor Pix32, representado na figura 20. Este sensor apresenta taxa de medição de 1 Psi (pound force per square inch) e resolução de 0,84 Pa, características que são suficientes para o cumprimento da missão de pulverização.

9.4.2 Sensor de fluxo

Monitorar o fluxo de líquido que é bombeado para os bicos nebulizadores é fundamental para monitorar a vazão dos defensivos agrícolas utilizados e também para verificação periódica acerca do funcionamento correto do sistema de bombeamento e dispersão de defensivos. Caso o fluxo de defensivo bombeado varie com grande discrepância de um dia

Figura 20 – Sensor de velocidade do ar que será utilizado no VANT. Fonte: Holybro

para o outro ou tenha uma grande variação entre um bico nebulizador e outro, isso pode significar falha em algum componente responsável pela dispersão e bombeamento, e uma manutenção deve ser realizada. Sendo assim, utilizou-se o sensor de fluxo para realização dessa aferição, onde o modelo escolhido para operação foi o YF-S201 mostrado na figura 21. As características principais do sensor são mostradas logo abaixo da figura.

Figura 21 – Sensor de fluxo YF-S201. Fonte:Baú da eletrônica

• Tensão: DC 5-24V

• Máxima corrente de operação: 15 mA

- Faixa de fluxo: 1-30 L/min

Pressão máxima: 2 MPa

• Temperatura de operação: -25 a 80°C

9.4.3 Sensores de distanciamento

Os sensores de distanciamento serão utilizados para o controle de colisões do veículo com pássaros, árvores e outros componentes que podem vir a colidir com o VANT durante sua operação. Programando o sensor com uma distância mínima de detecção de colisão, o mesmo irá atuar em conjunto com a ESC e com a placa controladora de voo para desviar o VANT do objeto colisor, garantindo a segurança do produto e a continuidade da missão de pulverização. Dentre os modelos disponíveis no mercado, optou-se por utilizar o sensor a laser RPLIDAR A2, com capacidade de varredura de 360° e alcance de 16 metros de raio. Além de possuir integração com a placa controladora Pixhawk4 utilizada no projeto, esse sensor utiliza usa um mini motor sem escova, projetado para reduzir o atrito mecânico em funcionamento e minimizando a presença de ruídos do VANT.Além disso, apresenta um sistema de triangulação a laser que mapeia os dados de distância cerca de 8000 vezes por segundo, tudo isso possuindo dimensões inferiores a 5 cm devido a alta tecnologia empregada em sua construção. A representação do sensor é mostrada abaixo na figura 22, e as principais características são mostradas logo abaixo.

Figura 22 – Sensor de distanciamento utilizado no VANT. Fonte: SLAMTEC

9.5 A arquitetura inicial

A arquitetura inicial dos componentes visa representar de maneira simplificada o acoplamento dos componentes elétricos mais importantes apresentados ao longo deste capítulo. Abaixo na figura 23, é possível observar a arquitetura inicial para o núcleo elétrico do projeto.

Figura 23 – Arquitetura inicial de solução para o núcleo de elétrica. Fonte: Autores

10 Solução de software

O núcleo de desenvolvedores responsáveis por implementar os sistemas de software ao longo do projeto tem como arquitetura de solução facilitar o monitoramento de VANTs agrícolas, além de coletar informações do ambiente de operação do VANT e disponibilizar em uma interface de forma amigável e intuitiva de modo a gerar valor para o usuário, por meio de uma aplicação web. Esse sistema desenvolvido objetiva-se a auxiliar o controlador do voo com informações relevantes do VANT e também manter o histórico dessas informações de maneira fácil e acessível, simplificando ao máximo o processo de monitoramento.

Para melhor explanação acerca da arquitetura de solução desenvolvida, dividiu-se as informações em três blocos, sendo eles a identidade visual do produto, a arquitetura da informação e a inovação.

10.1 Identidade visual do produto

A identidade visual representa toda a sintetização do design de um produto, onde é criado um conjunto de elementos gráficos com o objetivo de se comunicar com o público levando os valores do produto.

Diante do contexto apresentado, uma paleta de cores foi pensada de modo a representar, de maneira harmônica, todos os ideais do produto. Tendo em vista que o VANT é projetado para o meio rural e agropecuário, foram escolhidas duas variações da cor verde para representar a tonalidade das plantações e reforçar a preocupação dos desenvolvedores com a correta aplicação dos defensivos, minimizando os danos ambientais. Outras duas variantes de cor azul foram escolhidas com o intuito de representar o céu azul e sem poluições, local de operação do VANT. Por fim, a cor cinza foi escolhida por conta da sua neutralidade e para representar os defensivos agrícolas, entrando em harmonia com as ouras cores da paleta e simbolizando que a correta aplicação dos defensivos visa trazer benefícios à produção sem agredir o ambiente. A paleta de cores desenvolvida pode ser observada abaixo na figura 24.

Figura 24 – Paleta de cores desenvolvida para representar o produto. Fonte: Autores

10.1.1 Logomarca do produto

A logo foi projetada de forma a representar as duas principais cores presentes na paleta de cores, verde e azul. Sendo assim, a logo possui um VANT localizado na parte central e na cor azul, representando a missão do produto, e uma plantação na cor verde representando o local de utilização do veículo. O arco em amarelo, representado com a ajuda do trigo, foi adicionado para dar um maior contraste à imagem e trazer um pouco mais a ideia de campo, direcionando o design do veículo para o público agropecuarista. A logomarca idealizada para o produto é mostrada abaixo na figura 25.

Figura 25 – Logomarca desenvolvida para o produto. Fonte: Autores

10.2 Arquitetura da informação

O protótipo de alta fidelidade foi desenvolvido utilizando a ferramenta figma (TOOL, 2021) com o intuito de assemelhar-se ao produto final desenvolvido. Além disso,

o protótipo é uma ótima ferramenta para a verificação e validação dos requisitos licitados.

Os padrões de design utilizados foram baseados nos padrões de design da linguagem de design desenvolvida pela Google (GOOGLE, 2021). As telas do protótipo foram idealizadas para telas de tablets com tamanho variando entre 768 a 1366 pixels, com resolução de 768 X 1024. Entretanto, por conta da responsividade, telas de computadores também poderão ser utilizadas. Para acesso completo do protótipo com as iterações entre as telas Clique aqui

10.2.1 Telas principais

Inicia-se através do processo de cadastrar o drone na plataforma. A figura 26 ilustra a interface responsável pela coleta de informação para o cadastro de um novo VANT.

Figura 26 – Interface para registro do VANT. Fonte: Autores

A tela seguinte ilustra o ambiente responsável por mostrar todos os veículos do usuário já cadastrados anteriormente. Essa tela pode ser vista na figura 27.

Figura 27 – Tela "Meus drones". Fonte: Autores

Clicando nas opções que direcionam o usuário para a tela de monitoramento, é apresentado ao usuário os dados coletados pelos sensores do VANT durante os voos realizados, como temperatura, velocidade, nível de bateria, nível de pesticida, dentre outros. O protótipo de alta fidelidade da tela de monitoramento pode ser observado na figura 28.

Figura 28 – Tela de monitoramento de dados coletados. Fonte: Autores

A tela "meus voos "lista os voos realizados pelo veículo cadastrados pelo usuário. Essa tela pode ser observada abaixo na figura 29.

Figura 29 – Tela "meus voos"da interface. Fonte: Autores

A tela "Detalhes-voos" apresenta o detalhamento de um determinado voo finalizado, por meio de gráficos visuais e interativos. Essa tela é representada abaixo na figura 30.

Figura 30 – Tela de detalhamento de voos realizados. Fonte: Autores

10.3 Inovação

10.3.1 Arquitetura de micro serviços

Para a construção da plataforma de monitoramento do VANT, foi necessário realizar um extenso estudo inicial para que fosse possível realizar a comunicação do veículo via rede em regiões com difícil acesso de internet. As pesquisas constataram que a utilização de arquitetura orientada a micro serviços seria benéfica dentro do escopo do projeto, fornecendo a divisão em pequenos serviços independentes e com finalidades únicas. Esse tipo de arquitetura é facilmente implantado, podendo ser reutilizado em múltiplas aplicações, além de ser menos suscetível a falhas.

10.3.2 Método contínuo de desenvolvimento de software

Com o processo iterativo de desenvolvimento, o código é continuamente criado, testado e implantado minando a chances de ocorrerem falhas no desenvolvimento utilizando códigos com falhas ou erros. Esse processo de integração contínua é uma prática de

desenvolvimento de software que visa tornar a integração de código mais eficiente através de builds e testes de forma automática, verificando e validando a nova versão submetida. A entrega contínua é uma etapa complementar da integração contínua e que visa a implantação da nova versão gerada, diminuindo as configurações manuais e automatizando o processo.

11 Análise de Custo

11.1 Custo de Estrutura

Na fase preliminar do projeto, os custos relacionados a estrutura são relacionados a escolha dos materiais. Essa escolha foi discutida na seção anterior (seção 8.2) e mostrada na tabela 17. Essa escolha foi baseada em uma matriz de tomada de decisão que levou em consideração o alinhamento entre as propriedades dos materiais disponíveis e as propriedades necessárias para os requisitos da missão, além do custo benefício na implementação de cada material. Análises numéricas aprofundadas que serão realizadas ao longo do aprofundamento do projeto irão guiar os projetistas a respeito da necessidade de mudar ou não os materiais escolhidos. É importante ressaltar que deseja-se comprar tubos e chapas dos materiais abordados, e que essas mudanças de geometria podem incrementar os valores da tabela 17 em cerca de 20% ,isso ainda sem levar em conta o preço da mão de obra ou impostos incidentes na compra dos produtos. A tabela 19 ilustra uma estimativa de preço total para os itens iniciais planejados para compra. No momento da elaboração da tabela, a cotação do dólar americano em relação ao real é de 1US\$ = R\$ 5,25.

Tabela 19 – Custo inicial estimado para a área de estrutura. Fontes: Autores

Item	Valor unitário	Quantidade	Valor total	Fornecedor
Tubo de	7,20US\$	10 Un.	72,00US\$	Alibaba
Alumínio	7,20050	10 011.	72,00050	Alibaba
Chapa de	5US\$	20 Un.	100US\$	Chengming Steel
Alumínio	σορφ	20 011.	100050	Chenghing Steel
(250 cm x 100 x 0,2 cm)				
Chapa de fibra				
de vidro	7US\$	30 Un.	210US\$	Sou barato
(17 cm x 30 cm)				
Chapa fibra de				
Carbono	60US\$	10 Un.	600US\$	Magazineluiza
(25cm x 20cm x 0,4cm)				
Arruela	0,35US\$	100 Un.	35US\$	Pires Martins
autotravante	0,5505	100 011.	33000	1 Hes Mai IIIIs

11.2 Custo de Eletrônica-Energia

Tabela 20 – Custo inicial estimado para a parte elétrica. Fonte: Autores

Item	Valor unitário	Quantidade	Valor total	Fornecedor
Tanque 10 L	46US\$	1 Un.	46US\$	AliExoress
Mangueira de borracha	8,2US\$	6 Un.	49US\$	Borrachas Londrina
Motor Brushless	18US\$	4 Un.	72US\$	Spitz Motores
Servo motor	3US\$	1 Un.	3US\$	Amazon
Bomba de Líquido	10,50US\$	1 Un.	10,50US\$	Mercado Livre
Bico Nebulizador	3,40US\$	4 Un.	14US\$	Mercado Livre
Bateria Lipo	600US\$	1 Un.	114US\$ US\$	EEMB Battery
Placa Pixhawk 4	235US\$	1 Un.	235US\$	Bangood
ESC Tekko 32 F4	75US\$	4 un.	300US\$	Holybro
Módulo GPS Pixhwk	55US\$	1 Un.	55US\$	Holybro
Câmera 1200TVL Foxeer Micro Razer FPV	26US\$	1 Un.	26US\$	Foxeer
Transmissor FPV	47US\$	1 Un.	47US\$	Mercado Livre
Receptor e controle a rádio Radiolink T8S FHSS 8CH	58US\$	1US\$	58US\$	RadioLink
Sensor de velocidade do ar	49US\$	1 Un.	49US\$	Holybro
Sensor de fluxo YF-S201	6US\$	2 Un.	12US\$	Baú da Eletrônica
Raspberry Pi 3B	62US\$	1 Un.	62US\$	Mercado Livre

11.3 Custo de Software

Item	Valor unitário	Quantidade	Valor total	Fornecedor
Digital Ocean	10US\$/Mês			Digital Ocean
Doker Droplet	1005\$/10165			Digital Ocean
Bando de dados	35US\$/Mês			AWS
postgres	330 Sø/ Mes			AWS
Sensor de	Fornecido somente			
distanciamento	mediante confirmação	2		SLAMTEC
	de compra			

Tabela 21 – Custo inicial estimado para software. Fonte: Autores

11.4 Análise de Viabilidade

O retorno financeiro da implementação de VANTs agrícolas é observado logo na redução do tempo de trabalho de 16 horas para 4 horas de acordo com Johann Coelho, CEO da Bembras Agro (ACRITICA.NET, 2019), sendo esta uma diminuição de 75% do tempo. O autor ainda constata que a utilização desse tipo de veículo representa uma economia total 92,3 % em comparação com a metodologia tradicional que utiliza tratores, combustível e mão de obra, diminuindo o custo por hectare de R\$ 23,87 para R\$ 1,84.

O autor (LAVOURA, 2018) cita ainda o crescimento projetado para a agropecuária entre 2016 e 2022, e aponta que este setor já é responsável por 25% do faturamento global da indústria de drones. Pelas justificativas dos autores citados e também por estudos mais aprofundados encontrados na literatura, o projeto de um drone com a autonomia proposta e voltado para a aplicação de defensivos agrícolas é totalmente justificável. A tabela 22 mostra o custo total dos componentes das tabelas 19, 20 e 21, bem como o tempo necessário para o retorno financeiro na implementação do VANT. Assumindo que o gasto por hectare com as tecnologias tradicionais de pulverização são de R\$ 23,84 e vão cair para R\$ 1,84 de acordo com (ACRITICA.NET, 2019), isso representa uma economia de R\$ 22,03/hectare. Considerando considerando ainda o desempenho médio dos drones de mercado que pulverizam 15 hectares/hora, tem-se o valor de R\$ 330,45/hora (US\$ 63/hora na cotação mencionada anteriormente). Tomando como base este valor, o tempo de recuperação do investimento que é calculado usando o preço total estimado para o drone como base, conforme mostrado na tabela 22.

Tabela 22 – Análise do retorno de investimento do projeto. Fonte: Autores

Descrição	
Preço inicial do núcleo de estruturas	1017US\$

Descrição	
Preço inicial dos componentes do núcleo elétrico	1150,5US\$
Preço anual para manter os componentes	
da área de software	540US\$
Custo total estimado para o VANT	
(sem mão de obra inclusa)	2707,5US\$
Mão de obra (50% do preço do VANT)	1353,75US\$
Preço com licenciamento e homologação	500US\$
Preço total estimado para o drone	4061,25US\$
Tempo de recuperação do	65 horas de
investimento estimado	operação contínua do VANT
Economia realizada no período	4095 US\$

12 Gerenciamento

12.1 Metodologia

As metodologia e ferramentas que foram analisadas e aplicadas como suporte para o desenvolvimento do projeto foram o PMBOK (Project Management Body of Knowledge), juntamente com o ciclo PDCA com a finalidade de promover um controle e melhoria contínua do processo e o Trello como ferramenta de gestão.

12.2 Ferramentas de Gerenciamento

As ferramentas que foram selecionadas pelos projetistas para auxiliar no desenvolvimento do projeto podem ser encontradas na figura 37.

	Ferramenta	Função	
417	Microsoft Teams	Ferramenta utilizada para as reuniões gerais	
	Wilciosoft Teams	e as reuniões das subequipes.	
		Ferramenta utilizada para o armazenamento	
	Google Drive	de todos os processos e dos dados gerados	
		para construção do projeto.	
		Ferramenta utilizada como plataforma	
		principal de comunicação entre diretoria e	
	WhatsApp	desenvolvedores, para analisar o	
		desenvolvimento do projeto, para suporte	
		em dúvidas e para a marcação das reuniões.	
6	Overleaf	Ferramenta utilizada para a elaboração e	
	Overlear	formatação dos relatórios do projeto.	
		Ferramenta utilizada para o controle dos	
()	GitHub	códigos gerados para o desenvolvimento do	
		software aplicado no projeto.	
	Trello	Ferramenta utilizada para o controle de	
	Ticho	prazos e entregas das subequipes.	
/\nsys	Pacote Computacional Ansys	Software utilizado para desenvolvimento	
	1 acote Computacional Ansys	das simulações estrutural do projeto.	
35	Catia	Software utilizado para desenvolvimento	
CATIA	Calla	do CAD estrutural do projeto.	
35	Solidworks	Software utilizado para desenvolvimento	
SOLIDWORKS	Solidworks	do CAD estrutural do projeto.	

Figura 31 – Ferramentas utilizadas ao longo do desenvolvimento do projeto.

12.3 EAP PC1

Figura 32 – Estrutura Analítica do ponto de controle 1

12.4 EAP PC2

Figura 33 – Estrutura Analítica do ponto de controle 2.

12.4.1 EAP Estrutura

Figura 34 – Estrutura Analítica de estruturas do ponto de controle 2.

12.4.2 EAP Elétrica (Eletrônica e Energia)

Figura 35 – Estrutura Analítica de Eletrônica do ponto de controle 2.

Figura 36 – Estrutura Analítica de energia do ponto de controle 2.

12.5 EAP PC3

Figura 37 – Estrutura Analítica do ponto de controle 3.

12.6 Cronograma de Estrutura

Tabela 23 – Cronograma de atividades para o núcleo de estrutura. Fontes: Autores

Cronograma de atividades	Início	Fim
Levantamento bibliográfico sobre VANTs	04/08/2021	05/08/2021
Pesquisa sobre modelos de VANT no mercado	05/08/2021	06/08/2021
Levantamento de requisitos e componentes	07/08/2021	10/08/2021
Levantamento de custos e riscos	10/08/2021	11/08/2021
Alinhamento sobre o Ponto de Controle 1	10/08/2021	11/08/2021
Reunião com o professor Alex para esclarecimentos	11/08/2021	11/08/2021
Modelagem CAD preliminar	11/08/2021	18/08/2021

Cronograma de atividades	Início	Fim
Elaboração dos slides para apresentação	22/08/2021	25/08/2021

12.7 Cronograma elétrica

Tabela 24 – Cronograma de atividades para o núcleo de elétrica. Fontes: Autores

Cronograma de atividades	Início	Fim
Pesquisas gerais sobre o VANT	02/08/2021	12/08/2021
Levantamento de requisitos, riscos e soluções elétricas	05/08/2021	12/08/2021
Alinhamento entre as equipes de eletrônica e software	09/08/2021	19/08/2021
Concepção de soluções	12/08/2021	18/08/2021
Validação das soluções	18/08/2021	19/08/2021
Escrita do PC1	19/08/2021	21/08/2021
Elaboração da apresentação	19/08/2021	21/08/2021

12.8 Cronograma de Software

Tabela 25 – Cronograma de atividades para o núcleo de software. Fontes: Autores

Cronograma de atividades	Início	Fim	
Elaboração do escopo do projeto	05/08/2021	07/08/2021	
Elicitação de requisitos	07/08/2021	07/08/2021	
funcionais e não funcionais	, ,	, ,	
Definição de custos	07/08/2021	08/08/2021	
Definição de riscos	08/08/2021	10/08/2021	
Definição da identidade visual	10/08/2021	17/08/2021	
Elaboração de protótipos	10/08/2021	17/08/2021	
Documentação da arquitetura	10/08/2021	17/08/2021	
da solução empregada	10/00/2021	11/00/2021	

12.9 Reuniões Gerais

N° da reunião	Objetivo	Data
	Apresentação dos integrantes do	
1	grupo e discussão dos projetos	26/07/2021
	propostos	
	Definições relacionadas a estrutura	
2	organizacional, horários das reuniões,	30/07/2021
	repositórios e escrita do PC1	
3	Resultados iniciais das pesquisas e	06/08/2021
	dos levantamentos de requisitos	00/08/2021
	Alinhamento de diretrizes para escrita	
4	do PC1 e definições relacionadas a	13/08/2021
T. Control of the Con	I .	

Tabela 26 – Cronograma de reuniões realizadas para grupo geral. Fontes: Autores

12.10 Reuniões Estrutura

Tabela 27 – Cronograma de reuniões realizadas pelo núcleo de estrutura. Fontes: Autores

apresentação do mesmo

N° da reunião	Objetivo	Data
1	Discussão sobre os modelos já existentes	
	no mercado, além de brainstorm e debate	05/08/2021
	geral sobre o design do VANT do projeto	
2	Definição sobre o design base do projeto	06/08/2021
	e divisão de tarefas para a escrita do PC1	
	Resultados do projeto CAD preliminar	
3	do VANT e debate sobre modificações a	13/08/2021
	serem efetuadas	
4	Alinhamento de pesquisas e nova divisão	16/08/2021
	de tarefas já planejando o PC2	

12.11 Reuniões do núcleo elétrico

Tabela 28 – Cronograma de reuniões realizadas para o núcleo de elétrica. Fontes: Autores

N° da reunião	Objetivo	Data
1	Brainstorm e debate geral sobre energia e	02/08/2021

N° da reunião	Objetivo	Data
	eletrônica necessária no VANT.	
2	Levantamento de requisitos e	05/08/2021
	dúvidas acerca do projeto.	
3	Reunião com o professor Alex sobre	06/08/2021
	dúvidas de alimentação do VANT.	
4	Reunião entre equipe de eletrônica e software.	09/08/2021
5	Planejamento e divisão das atividades	12/08/2021
	para finalização do PC1.	
6	Reunião com o Professor Alex - Prevista	13/08/2021
7	Reunião entre equipe de eletrônica e software - Prevista.	a determinar
8	Reunião com o Professor Alex - Prevista.	18/08/2021
9	Reunião Ordinária DIREL - Prevista.	19/08/2021

Referências

ACRITICA.NET. Uso de drones na agricultura aumenta rentabilidade e diminui o tempo de trabalho. 2019. https://www.acritica.net/editorias/agropecuaria/uso-de-drones-na-agricultura-aumenta-rentabilidade-e-reduz-tempo-de/352076/. Acessado em 15/08/2021. Citado na página 63.

AEREO, D. de Controle do E. Regulamentações gerais. 2017. https://www.decea.mil.br/drone/. Acessado em 08/08/2021. Citado na página 12.

AGRICULTURA, P. e. A. Ministério da. *Mercado de biodefensivos cresce mais de 70% no Brasil em um ano.* 2020. https://www.gov.br/agricultura/pt-br/assuntos/noticias/feffmercado-de-biodefensivos-cresce-em-mais-de-50-no-brasil). Acessado em 08/08/2021. Citado na página 12.

ANAC. Perguntas e Respostas sobre VANT. 2015. https://www2.anac.gov.br/Arquivos/pdf/Perguntas_e_respostas_VANT_02092015.pdf>. Acessado em 08/08/2021. Citado na página 31.

ANAC. Orientação para usuários de drones: apostila geral. 2017. https://www.anac.gov.br/assuntos/setor-regulado/paginas-tematicas/drones/orientacoes_para_usuarios.pdf. Acessado em 08/08/2021. Citado na página 12.

ANATEL. Apostila para homologação de drones. 2017. https://www.anatel.gov.br/ Portal/verificaDocumentos/documento.asp?numeroPublicacao=347841&pub=original& filtro=1&documentoPath=347841.pdf>. Acessado em 08/08/2021. Citado 2 vezes nas páginas 12 e 31.

ARAGAKI, C. Morte de meio bilhão de abelhas é consequência de agrotóxicos. 2019. https://jornal.usp.br/atualidades/ morte-de-meio-bilhao-de-abelhas-e-consequencia-de-agrotoxicos/>. Acessado em 08/08/2021. Citado na página 12.

DATA, M. P. Mwchanical properties of generic figer glass-S. 2020. http://www.matweb.com/search/datasheet.aspx?MatGUID=6eb41a1324834878a1524129d915ca09. Acessado em 12/08/2021. Citado 2 vezes nas páginas 7 e 36.

DRURY, A. A. B. Eletric motors and drivers. Waltham, p. v.9 n.1, 2013. Citado na página 40.

FERREIRA, M. L. P. C. A pulverizacao aerea de agrotoxicos no brasil: Cenario atual e desafios. Santa Catarina, Brasil, p. 45, 2014. Citado 2 vezes nas páginas 12 e 19.

FILHO, G. F. Bombas, ventiladores e compressores : fundamentos. São Paulo, p. 320, 2015. Citado na página 44.

FIXACOES, R. Principais elementos de fixação utilizados na indústria. 2020. https://www.rudolphfixacoes.com.br/informativos/os-principais-elementos-de-fixacao-usados-na-industria-e-suas-aplicacoes/. Acessado em 15/08/2021. Citado na página 38.

Referências 76

FORCE, P. Drones na Agricultura: tudo sobre a tecnologia que está mudando o setor. 2018. https://pixforce.com.br/drones-na-agricultura/. Acessado em 07/08/2021. Citado na página 14.

FOXTECH. High Pressure Micro Diaphragm Water Pump. 2020. https://www.foxtechfpv.com/high-pressure-micro-diaphragm-water-pump.html#yt_tab_products1. Acessado em 20/08/2021. Citado 2 vezes nas páginas 5 e 45.

GOOGLE. Material design language. 2021. https://material.io/design>. Acessado em 20/08/2021. Citado na página 56.

GOV.FEDERAL. Regulamentação e diretrizes diversas para produção, armazenamento, inspeção, aplicação e outros fins para agrotóxicos. Rio de Janeiro, Brasil, 2013. 75 p. Citado na página 12.

HOBBYKING. Site oficial da loja. 2021. https://hobbyking.com/pt_pt/ batteries-chargers/batteries/lipo.html>. Acessado em 15/08/2021. Citado 5 vezes nas páginas 5, 40, 41, 42 e 43.

JONES, F. F. *Pulverização por drones*. 2019. https://revistapesquisa.fapesp.br/ pulverização-por-drones/>. Acessado em 08/08/2021. Citado 4 vezes nas páginas 5, 13, 19 e 20.

KLUEVER, C. A. Sistemas dinâmicos : modelagem, simulação e controle. 2018. Citado na página 45.

LAVOURA, A. *Uso de drones decola no agronegócio*. 2018. https://alavoura.com.br/pesquisa-inovacao/tecnologia-agricola/uso-de-drones-decola-no-agro/. Acessado em 15/08/2021. Citado na página 63.

MATERIALS, A. S. Thermal and mechanical properties of Aluminum. 1985. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T851. Acessado em 11/08/2021. Citado 2 vezes nas páginas 7 e 36.

MOTORES, D. E800 tuned propulsion system. 2021. https://www.dji.com/br/e800. Acessado em 20/08/2021. Citado 2 vezes nas páginas 5 e 41.

PLASTECNO. Tarugo de polipropileno. 2020. https://plastecno.com.br///amp/tarugo-de-polipropileno.php>. Acessado em 08/08/2021. Citado na página 37.

PUMP, T. Bomba pneumática de duplo diafragma. 2013. https://www.technopump.com.br/bomba-de-diafragma.htm>. Acessado em 20/08/2021. Citado 2 vezes nas páginas 5 e 45.

REPUBLICA, P. da. *Lei das contravencoes penais.* 1941. http://www.planalto.gov.br/ccivil_03/decreto-lei/Del3688.htm. Acessado em 08/08/2021. Citado na página 31.

SANTOS, T. R. S. D. Integração de um vant. Universidade do Vale do Paraíba, 2015. Citado na página 41.

SILVA, C. Drone stand-alone. UNIVERSIDADE AUTÓNOMA DE LISBOA, 2018. Citado na página 41.

Referências 77

SILVA, R. de Faveri Alexandre da. Metodologia gut aplicada à gestão de desastres: uma ferramenta de auxilio para a hierarquização de riscos. Brasil, p. v.9 n.1, 2016. Citado na página 25.

TOOL, U. D. Figma. 2021. https://www.figma.com>. Acessado em 20/08/2021. Citado na página 55.

UNISTAMP. Principais elementos de fixação utilizados na indústria. 2020. https://www.unistampmetais.com.br/arruela-auto-travante. Acessado em 15/08/2021. Citado na página 37.

VALVERDE, M. País pode ser estratégico no abastecimento global. 2020. https://diariodocomercio.com.br/agronegocio/ pais-e-capaz-de-atender-alta-da-demanda-global-por-alimentos/>. Acessado em 08/08/2021. Citado na página 12.

VISUAL, D. CONHEÇA A LEGISLAÇÃO DE DRONES NO BRASIL. 2018. homologacao. Acessado em 08/08/2021. Citado na página 32.