10/789,586 Page 2 of 9

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

	DISTRICT CONTENTS
1	 (original) An optical return-to-zero transmitter comprising:
2	means for providing a pulsed optical signal;
3	an optical modulator arranged to receive a non-return-to-zero electrical
4	data signal and a bias signal, to modulate said optical signal with said data
5	signal;
6	whereby said optical signal providing means and said modulator
7	provide a return-to-zero optical output signal modulated with said data signal;
8	means for controlling the difference in phase between said pulsed
9	optical signal and said data signal in response to a phase control signal;
10	means for adding a first dither signal to said difference in phase and a
11	second dither signal, having a different frequency than said first dither signal,
12	to said bias signal;
13	means for monitoring the amplitude of variations in the power of the
14	optical output signal corresponding to cross-modulation of said first and
15	second dither signal frequencies; and
16	means responsive to said monitored amplitude for adjusting said phase
17	control signal to maintain phase synchronization between said pulsed optical
18	signal and said data signal.
1	2. (original) The optical return-to-zero transmitter of claim 1, wherein
2	said means for providing a pulsed optical signal comprises:
3	means for providing a continuous optical signal;
4	a second optical modulator arranged to receive a clock signal to
5	modulate said optical signal with pulses.

10/789,586 Page 3 of 9

	Page 3 of 9
1	3. (original) The transmitter of claim 2, wherein said second optical modulator
2	is connected downstream of said optical modulator arranged to receive said
3	non-return-to-zero electrical data signal.
1	4. (original) The transmitter of claim 2, wherein said optical modulators are
2	Mach-Zehnder modulators.
1	5 (original) The managing of alain 1 mb and a 2 C
2	5. (original) The transmitter of claim 1, wherein the frequency of said second
3	dither signal is substantially lower than the frequency of said first dither
4	signal, and said means for monitoring the amplitude comprises first means for
5	monitoring a first amplitude, being the amplitude of variations in the power of
	the optical output signal at the frequency of the first dither signal and second
6	means for monitoring the amplitude of variations of said first amplitude at the
7	frequency of the second dither signal.
1	6. (original) In a return-to-zero optical transmitter in which an optical signal is
2	modulated by a non-return-to-zero electrical data signal applied to an electro-
3	optical modulator and pulsation at the data rate of said data signal is provided
4	by a clock signal, to provide a return-to-zero optical output signal, a method of
5	controlling the difference in phase between said clock signal and said data
6	signal, said method comprising:
·7	adding a first dither signal to said difference in phase and a second
8	dither signal, having a different frequency than said first dither signal, to a bias
9	signal applied to said electro-optical modulator;
10	monitoring the amplitude of variations in the power of the optical
11	output signal corresponding to cross-modulation of said first and second dither
12	signal frequencies, and
13	controlling said difference in phase in response to said amplitude

2 Mach-Zehnder modulator.

1

7. (original) The method of claim 6, wherein said optical modulator is a

10/789,586 Page 4 of 9

Ţ	8. (original) The method of claim 6, wherein the frequency of said second
2	dither signal is substantially lower than the frequency of said first dither
3	signal, and monitoring the amplitude comprises monitoring a first amplitude,
4	being the amplitude of variations in the power of the optical output signal at
5	the frequency of the first dither signal and monitoring the amplitude of
6	variations of said first amplitude at the frequency of the second dither signal.
1	9. (New) An optical transmitter comprising:
2	a first optical modulator adapted to provide a NRZ modulated optical
3	signal in response to a data signal and a NRZ bias signal summed with a first
4	dither signal;
5	a second optical modulator for modifying said NRZ modulated optical
6	signal in response to a periodic pulse signal adapted according to a feedback
7	signal and a second dither signal to provide a resulting optical signal; and
8	a feedback circuit for processing said resultant optical signal to provide
9	said feedback signal, said feedback circuit including a two-dimensional
10	demodulator for detecting a mean optical output power of said resultant
11	optical signal corresponding to a cross modulation of said first and second
12	dither signals
1	10. (New) The optical transmitter of claim 9, wherein said optical modulators
2	are Mach-Zehnder modulators.
1	11. (New) The optical transmitter of claim 9, wherein the frequency of said
2	second dither signal being substantially lower than the frequency of said first
3	dither signal.