Approximate data deletion and replication with the Bayesian influence function

Ryan Giordano (rgiordano berkeley. edu, UC Berkeley), Tamara Broderick (MIT) Stanford Statistics Seminar May 2024

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X = x_1, ..., x_N =$ Polling data (N = 361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores)

Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential election outcome from polling data.

Model:

- $X=x_1,\ldots,x_N=$ Polling data (N=361).
- $\theta = \text{Lots of random effects (day, pollster, etc.)}$
- $f(\theta) = \text{Democratic } \% \text{ of vote on election day }$

Typically, we compute Markov chain Monte Carlo (MCMC) draws from the posterior $p(\theta|X)$.

We want to know $\underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]$.

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 c

Compute time for the linear approximation: Seconds (But note the approximation has some error)

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 c

Compute time for the linear approximation: Seconds (But note the approximation has some error)

Results

Proposal: Use full—data posterior draws to form a linear approximation to *data reweightings*.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds (But note the approximation has some error)

- · Data reweighting
 - ullet Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N o \infty$
- What should the exchangeable unit be?

- · Data reweighting
 - ullet Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- · Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N o \infty$
- What should the exchangeable unit be?

- · Data reweighting
 - Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- · Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$
- What should the exchangeable unit be?

- · Data reweighting
 - ullet Write the change in the posterior expectation as linear component + error
 - The linear component can be computed from a single run of MCMC
- Finite-dimensional problems with posteriors which concentrate asymptotically
 - As $N \to \infty$, the linear component provides an arbitrarily good approximation
- · High-dimensional problems
 - The linear component is the same order as the error
 - Even for parameters which concentrate, even as $N \to \infty$
- · What should the exchangeable unit be?

Augment the problem with *data weights* w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$n(\theta) := \log p(x_n | \theta)$$
 $\log p(X | \theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathop{\mathbb{E}}_{p(\theta|X,w)}[f(\theta)] - \mathop{\mathbb{E}}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

ļ

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Augment the problem with data weights w_1, \ldots, w_N . We can write $\mathbb{E}_{p(\theta|X,w)}[f(\theta)]$.

$$\ell_n(\theta) := \log p(x_n|\theta)$$

$$\log p(X|\theta, w) = \sum_{n=1}^{N} w_n \ell_n(\theta)$$

Original weights:

Leave-one-out weights:

Bootstrap weights:

The re-scaled slope $N\psi_n$ is known as the "influence function" at data point x_n .

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Bootstrap. Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$

$$\begin{aligned} \text{Bootstrap variance} &= \underset{p(w)}{\text{Var}} \left(\underset{p(\theta|X,w)}{\mathbb{E}} \left[f(\theta) \right] \right) \\ &= \underset{p(w)}{\text{Var}} \left(\underset{n=1}{\overset{N}{\sum}} \psi_n(w_n-1) + \mathcal{E}(w_n) \right) \\ &= \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 + \text{Term involving } \mathcal{E}(w_n) \text{ for } n = 1, \dots, N \\ &\approx \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 \end{aligned}$$

How can we use the approximation?

Assume the slope is computable and error is small.

$$\mathbb{E}_{p(\theta|X,w)}[f(\theta)] - \mathbb{E}_{p(\theta|X)}[f(\theta)] = \sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Bootstrap. Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{split} \text{Bootstrap variance} &= \operatorname*{Var}_{p(w)} \left(\operatorname*{\mathbb{E}}_{p(\theta|X,w)} \left[f(\theta) \right] \right) \\ &= \operatorname*{Var}_{p(w)} \left(\sum_{n=1}^{N} \psi_n(w_n - 1) + \mathcal{E}(w_n) \right) \\ &= \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 + \text{Term involving } \mathcal{E}(w_n) \text{ for } n = 1, \dots, N \\ &\approx \frac{1}{N^2} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 \end{split}$$

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}}_{\substack{p(\theta|X)}} \left[\bar{f}(\theta) \bar{\ell}_n(\theta) \right] \qquad \mathcal{E}(w_n) = \frac{1}{2} \underbrace{\mathbb{E}}_{\substack{p(\theta|X,\bar{w}_n)}} \left[\bar{f}(\theta) \bar{\ell}_n(\theta) \bar{\ell}_n(\theta) \right] (w_n - 1)^2$$
Estimatable with MCMC!

Cannot compute directly (don't know \bar{w})

 $=O_p(N^{-1})$ under posterior concentration $=O_p(N^{-2})$ under posterior concentration

Theorem 1 [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem),⁴ then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$.

⁹Existing results are sufficient for a particular weight [Kass et al., 1990]. Glordano and Broderick [2023] proves that the result builds when averaged over all weights, as needed for variance estimation.

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \qquad \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know \bar{w})}} (w_n - 1)^2$$

 $=O_p(N^{-1})$ under posterior concentration

$$=O_{\mathcal{P}}(N^{-2})$$
 under posterior concentration

Theorem 1 [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem),^a ther

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$

^aExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}\left[f(\theta)\right] - \underset{p(\theta|X)}{\mathbb{E}}\left[f(\theta)\right] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{p(\theta|X)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \mathcal{E}(w_n) = \frac{1}{2}\underbrace{\mathbb{E}_{p(\theta|X,\bar{w}_n)}\left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know }\bar{w})} (w_n-1)^2$$

$$= O_p(N^{-1}) \text{ under posterior concentration}$$

$$= O_p(N^{-2}) \text{ under posterior concentration}$$

Theorem 1 [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem),^a then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$

^dExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

How to compute the slopes ψ_n ? How large is the error $\mathcal{E}(w)$?

For simplicity, let us consider a single weight for the moment.

$$\underset{p(\theta|X,w_n)}{\mathbb{E}}[f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)] = \psi_n(w_n - 1) + \mathcal{E}(w_n)$$

Let an overbar denote "posterior–mean zero." For example, $\bar{f}(\theta) := f(\theta) - \underset{p(\theta|X)}{\mathbb{E}}[f(\theta)].$

By dominated convergence and the mean value theorem, for some $\tilde{w}_n \in [0, w_n]$:

$$\psi_n = \underbrace{\mathbb{E}_{\substack{p(\theta|X)}} \left[\bar{f}(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Estimatable with MCMC!}} \quad \mathcal{E}(w_n) = \frac{1}{2} \underbrace{\mathbb{E}_{\substack{p(\theta|X,\bar{w}_n)}} \left[\bar{f}(\theta)\bar{\ell}_n(\theta)\bar{\ell}_n(\theta)\right]}_{\text{Cannot compute directly (don't know \bar{w})}} = O_p(N^{-1}) \text{ under posterior concentration}$$

Theorem 1 [Giordano and Broderick, 2023] (paraphrase):

If the posterior $p(\theta|X)$ "concentrates" (e.g. as in the Bernstein–von Mises theorem), a then

$$w_n \mapsto N\left(\underset{p(\theta|X,w_n)}{\mathbb{E}} [f(\theta)] - \underset{p(\theta|X)}{\mathbb{E}} [f(\theta)]\right)$$

becomes linear as $N \to \infty$, with slope $\lim_{N \to \infty} \psi_n$.

^aExisting results are sufficient for a *particular weight* [Kass et al., 1990]. Giordano and Broderick [2023] proves that the result holds when averaged over all weights, as needed for variance estimation.

Negative binomial experiment

Example: Negative binomial models with an unknown parameter γ .

For $n=1,\ldots,N$ let $x_n|\gamma \stackrel{iid}{\sim}$ NegativeBinomial (α,γ) for fixed α .

Write
$$\log p(X|\lambda,\gamma,w) = \sum_{n=1}^N w_n \ell_n(\gamma)$$
.

Negative Binomial model leaving out single datapoints with N = 800

Negative binomial experiment

Example: Negative binomial models with an unknown parameter γ .

For $n=1,\ldots,N$ let $x_n|\gamma \stackrel{iid}{\sim}$ NegativeBinomial (α,γ) for fixed α .

Write
$$\log p(X|\lambda,\gamma,w) = \sum_{n=1}^N w_n \ell_n(\gamma)$$
.

Negative Binomial model leaving out single datapoints with N = 800

Variance consistency theorem

Assumptions sketch:

- A well–behaved MAP *maximum a posteriori* estimator $\hat{\theta}$ exists:
 - The dimension of θ is fixed as $N \to \infty$.
 - The expected log likelihood has a unique maximum at $heta_{\infty}$
 - The observed log likelihood statisfies $\hat{\theta} \to \theta_{\infty}$
 - The expected log likelihood Hessian ${\mathcal I}$ is negative definite at θ_∞
- We can apply standard asymptotics:
 - · The log prior and log likelihood are four times continuously differentiable
 - · The prior is proper, and a technical set of squared expectations are finite
 - The log likelihood derivatives are dominated by a square—integrable envelope function in a neighborhood of θ_∞ .

Theorem 2 [Giordano and Broderick, 2023]

Under the above assumptions

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} [g(\theta)] - g(\theta_{\infty}) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N} (0, V^g) \quad \text{and}$$

$$V^{IJ} := \frac{1}{N} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 \xrightarrow[N \to \infty]{prob} V^g.$$
(1)

Equation 1 and the form of V^g is known ([Kleijn and Van der Vaart, 2012])

Our contribution is a consistent estimator of V^g using posterior samples rather than $\hat{ heta}.$

o

Variance consistency theorem

Assumptions sketch:

- A well–behaved MAP *maximum a posteriori* estimator $\hat{\theta}$ exists:
 - The dimension of θ is fixed as $N \to \infty$.
 - The expected log likelihood has a unique maximum at θ_{∞}
 - The observed log likelihood statisfies $\hat{\theta} \to \theta_{\infty}$
 - The expected log likelihood Hessian ${\mathcal I}$ is negative definite at θ_∞
- We can apply standard asymptotics:
 - · The log prior and log likelihood are four times continuously differentiable
 - · The prior is proper, and a technical set of squared expectations are finite
 - The log likelihood derivatives are dominated by a square–integrable envelope function in a neighborhood of θ_∞ .

Theorem 2 [Giordano and Broderick, 2023]:

Under the above assumptions,

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} [g(\theta)] - g(\theta_{\infty}) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N} (0, V^g) \quad \text{and}$$

$$V^{IJ} := \frac{1}{N} \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2 \xrightarrow[N \to \infty]{prob} V^g.$$
(1)

Equation 1 and the form of V^g is known ([Kleijn and Van der Vaart, 2012])

Our contribution is a consistent estimator of V^g using posterior samples rather than $\hat{\theta}$.

o

Variance consistency theorem

Assumptions sketch:

- A well–behaved MAP *maximum a posteriori* estimator $\hat{\theta}$ exists:
 - The dimension of θ is fixed as $N \to \infty$.
 - The expected log likelihood has a unique maximum at θ_{∞}
 - The observed log likelihood statisfies $\hat{\theta} \to \theta_{\infty}$
 - The expected log likelihood Hessian \mathcal{I} is negative definite at θ_{∞}
- We can apply standard asymptotics:
 - The log prior and log likelihood are four times continuously differentiable
 - The prior is proper, and a technical set of squared expectations are finite
 - The log likelihood derivatives are dominated by a square—integrable envelope function in a neighborhood of θ_∞ .

Theorem 2 [Giordano and Broderick, 2023]:

Under the above assumptions,

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} \left[g(\theta) \right] - g(\theta_{\infty}) \right) \xrightarrow[N \to \infty]{dist} \mathcal{N} \left(0, V^{g} \right) \quad \text{and}$$

$$V^{IJ} := \frac{1}{N} \sum_{n=0}^{N} \left(\psi_{n} - \overline{\psi} \right)^{2} \xrightarrow[N \to \infty]{prob} V^{g}.$$
(1)

Equation 1 and the form of V^g is known ([Kleijn and Van der Vaart, 2012]).

Our contribution is a consistent estimator of V^g using posterior samples rather than $\hat{\theta}$.

o

Data Analysis Using Regression and Multilevel/Hierarchical Models.

We ran rstanarm on 56 different models on 13 different datasets from Gelman and Hill [2006], including Gaussian and logistic regression, fixed and mixed-effects models.

Across all models, we estimate 799 distinct covariances (regression coefficients and log scale parameters).

Using the bootstrap as ground truth, compute the relative errors:

$$rac{V_{
m Bayes} - V_{
m Boot}}{|V_{
m Boot}|}$$
 and $rac{V_{
m IJ} - V_{
m Boot}}{|V_{
m Boot}|}$

Total compute time for all models:

Initial fit: 1.6 hours Bootstrap: 381.5 hours

How to connect to the election data?

Problem: MCMC is only interesting when the posterior doesn't concentrate.

High dimensional problems

Example: Exponential families with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

In general, we cannot hope for an asymptotic analysis of $\underset{p(\lambda,\gamma|X)}{\mathbb{E}}[f(\lambda)]$

Can we save the approximation when *some* parameters concentrate? Does the residual vanish asymptotically for $w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma]$?

Example: Exponential families with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

In general, we cannot hope for an asymptotic analysis of $\underset{p(\lambda,\gamma|X)}{\mathbb{E}}[f(\lambda)]$

Can we save the approximation when *some* parameters concentrate? Does the residual vanish asymptotically for $w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma]$?

Example: Exponential families with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

In general, we cannot hope for an asymptotic analysis of $\underset{p(\lambda,\gamma|X)}{\mathbb{E}}[f(\lambda)].$

Can we save the approximation when *some* parameters concentrate? Does the residual vanish asymptotically for $w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma]$?

Example: Exponential families with random effects (REs) λ and fixed effects γ .

If the observations per random effect remains bounded as $N \to \infty$, then

- Parameter λ ("local") grows in dimension with N.
- Parameter γ ("global") is finite-dimensional.
- Marginally $p(\lambda|X)$ does not concentrate.
- Marginally, $p(\gamma|X)$ concentrates.

In general, we cannot hope for an asymptotic analysis of $\underset{p(\lambda,\gamma|X)}{\mathbb{E}}[f(\lambda)].$

Can we save the approximation when *some* parameters concentrate? Does the residual vanish asymptotically for $w_n \mapsto \underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma]$?

11

We assume that $p(\gamma|X)$ concentrates but $p(\lambda|X)$ does not. By our series expansion:

In general,
$$w_n \mapsto N\left(\underset{\substack{n(\gamma \mid X, w) \\ n(\gamma) \neq N}}{\mathbb{E}} [\gamma] - \underset{\substack{n(\gamma \mid X, w) \\ n(\gamma) \neq N}}{\mathbb{E}} [\gamma]\right)$$
 remains non-linear as $N \to \infty$.

We assume that $p(\gamma|X)$ concentrates but $p(\lambda|X)$ does not. By our series expansion:

$$\begin{split} & \underset{p(\gamma,\lambda|X,w_n)}{\mathbb{E}} \left[\gamma \right] - \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\gamma \right] = \\ & \psi_n(w_n - 1) \\ & = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)} \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)} \right] \left[\bar{\ell}_n(\gamma,\lambda) \right] \left[(w_n - 1) \right] \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underbrace{\bar{\ell}_n(\gamma,\lambda)} \right] \left[(w_n - 1) \right] \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1) \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1) \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & + \underbrace{\frac{1}{2} \underset{p(\gamma|X),\bar{w}_n}{\mathbb{E}}} \left[\bar{\gamma} F_2(\gamma)$$

Corollary [Giordano and Broderick, 2023]: In general,
$$w_n \mapsto N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma] - \underset{p(\gamma|X)}{\mathbb{E}} [\gamma]\right)$$
 remains non-linear as $N \to \infty$.

We assume that $p(\gamma|X)$ concentrates but $p(\lambda|X)$ does not. By our series expansion:

$$\begin{split} & \underset{p(\gamma,\lambda|X,w_n)}{\mathbb{E}} \left[\gamma \right] - \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\gamma \right] = \\ & \psi_n(w_n - 1) \\ & = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|\gamma,X)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,w_n)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,\gamma,\bar{w}_n)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & + \frac{1}{2} \underset{p(\gamma|X,\bar{w}_n)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{O_p(N^{-1})}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{O_p(N^{-1})}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1) \\ & \Rightarrow \psi_n = O_p(N^{-1}) \\ & & \mathcal{E}(w_n) = O_p(N^{-1}) \end{split}$$

Corollary [Giordano and Broderick, 2023]: In general,
$$w_n\mapsto N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma]-\underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right)$$
 remains non-linear as $N\to\infty$.

We assume that $p(\gamma|X)$ concentrates but $p(\lambda|X)$ does not. By our series expansion:

$$\begin{split} & \underset{p(\gamma,\lambda|X,w_n)}{\mathbb{E}} \left[\gamma \right] - \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\gamma \right] = \\ & \psi_n(w_n - 1) \\ & = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,X)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,X)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \underset{p(\lambda|X,X,X)}{\mathbb{E}} \left[\bar{\ell}_n(\gamma,\lambda) \right] \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} F_1(\gamma) \right] (w_n - 1) \\ & + \frac{1}{2} \underset{p(\gamma|X,X,X)}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{O_p(N^{-1})}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1)^2 \\ & \underset{O_p(N^{-1})}{\mathbb{E}} \left[\bar{\gamma} F_2(\gamma) \right] (w_n - 1) \\ & \Rightarrow \psi_n = O_p(N^{-1}) \\ & & \mathcal{E}(w_n) = O_p(N^{-1}) \end{split}$$

Corollary [Giordano and Broderick, 2023]:

In general,
$$w_n \mapsto N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma] - \underset{p(\gamma|X)}{\mathbb{E}} [\gamma]\right)$$
 remains non-linear as $N \to \infty$.

Experiments

Example: Poisson regression with Gamma-distributed random effects

For
$$g=1,\ldots,G,\ \lambda_g\overset{iid}{\sim}\operatorname{Gamma}(\alpha,\beta)$$
 for fixed α,β
$$\operatorname{For} n=1,\ldots,N,\ g_n\overset{iid}{\sim}\operatorname{Categorical}(1,\ldots,G),\ y_n|\lambda_n,\gamma,g_n\overset{iid}{\sim}\operatorname{Poisson}(\gamma\lambda_{g_n}).$$

$$x_n=(y_n,g_n) \text{ are IID given } \lambda,\gamma. \text{ Write } \log p(X|\lambda,\gamma,w)=\sum_{n=1}^N w_n\ell_n(\lambda,\gamma).$$

Poisson random effect model leaving out single datapoints with N = 800

Experiments

Example: Poisson regression with Gamma-distributed random effects

For
$$g=1,\ldots,G,\ \lambda_g\overset{iid}{\sim}\operatorname{Gamma}(\alpha,\beta)$$
 for fixed α,β
$$\operatorname{For} n=1,\ldots,N,\ g_n\overset{iid}{\sim}\operatorname{Categorical}(1,\ldots,G),\ y_n|\lambda_n,\gamma,g_n\overset{iid}{\sim}\operatorname{Poisson}(\gamma\lambda_{g_n}).$$

$$x_n=(y_n,g_n) \text{ are IID given } \lambda,\gamma. \text{ Write } \log p(X|\lambda,\gamma,w)=\sum_{n=1}^N w_n\ell_n(\lambda,\gamma).$$

Poisson random effect model leaving out single datapoints with N = 800

Bayesian von–Mises Expansion

How can we apply the single-weight result to variance computations?

Define the "generalized posterior" functional

$$T(\mathbb{G}, N) := \frac{\int g(\theta) \exp\left(N \int \ell(x_0 | \theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}{\int \exp\left(N \int \ell(x_0 | \theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}.$$

Let \mathbb{F}_N denote the empirical distribution. Then

$$\mathbb{E}_{p(\theta|X)}\left[g(\theta)\right] = \frac{\int g(\theta) \exp\left(N\frac{1}{N}\sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta}{\int \exp\left(N\frac{1}{N}\sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta} = T(\mathbb{F}_N, N).$$

Let \mathbb{F} denote the true distribution of x_n , and let $\mathbb{F}_N^t = t\mathbb{F} + (1-t)\mathbb{F}_N$.

We can study the von Mises expansion

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} [g(\theta)] - T(\mathbb{F}, N) \right) = \sqrt{N} \left. \frac{\partial T(\mathbb{F}_N^t, N)}{\partial t} \right|_{t=0} (\mathbb{F}_N - \mathbb{F}) + \mathcal{E}(\tilde{t})$$

$$= \sqrt{N} \sum_{n=1}^{N} (\psi_n - \overline{\psi}) + o_p(1) + \mathcal{E}(\tilde{t}).$$

Infinitesimal jackknife estimator

Bayesian von-Mises Expansion

How can we apply the single-weight result to variance computations?

Define the "generalized posterior" functional

$$T(\mathbb{G},N) := \frac{\int g(\theta) \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}{\int \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}.$$

Let \mathbb{F}_N denote the empirical distribution. Then

$$\mathbb{E}_{p(\theta|X)}\left[g(\theta)\right] = \frac{\int g(\theta) \exp\left(N\frac{1}{N} \sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta}{\int \exp\left(N\frac{1}{N} \sum_{n=1}^{N} \ell(x_n|\theta)\right) \pi(\theta) d\theta} = T(\mathbb{F}_N, N).$$

Let \mathbb{F} denote the true distribution of x_n , and let $\mathbb{F}_N^t = t\mathbb{F} + (1-t)\mathbb{F}_N$.

We can study the von Mises expansion

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} [g(\theta)] - T(\mathbb{F}, N) \right) = \sqrt{N} \left. \frac{\partial T(\mathbb{F}_N^t, N)}{\partial t} \right|_{t=0} (\mathbb{F}_N - \mathbb{F}) + \mathcal{E}(\tilde{t})$$

$$= \sqrt{N} \sum_{n=1}^{N} (\psi_n - \overline{\psi}) + o_p(1) + \mathcal{E}(\tilde{t}).$$

Infinitesimal jackknife estimato

Bayesian von-Mises Expansion

How can we apply the single-weight result to variance computations?

Define the "generalized posterior" functional

$$T(\mathbb{G},N) := \frac{\int g(\theta) \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}{\int \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}.$$

Let \mathbb{F}_N denote the empirical distribution. Then

$$\underset{p(\theta|X)}{\mathbb{E}}\left[g(\theta)\right] = \frac{\int g(\theta) \exp\left(N\frac{1}{N}\sum_{n=1}^{N}\ell(x_{n}|\theta)\right)\pi(\theta)d\theta}{\int \exp\left(N\frac{1}{N}\sum_{n=1}^{N}\ell(x_{n}|\theta)\right)\pi(\theta)d\theta} = T(\mathbb{F}_{N},N).$$

Let \mathbb{F} denote the true distribution of x_n , and let $\mathbb{F}_N^t = t\mathbb{F} + (1-t)\mathbb{F}_N$.

We can study the von Mises expansion

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} \left[g(\theta) \right] - T(\mathbb{F}, N) \right) = \sqrt{N} \left. \frac{\partial T(\mathbb{F}_N^t, N)}{\partial t} \right|_{t=0} (\mathbb{F}_N - \mathbb{F}) + \mathcal{E}(\tilde{t})$$

$$= \sqrt{N} \sum_{n=1}^{N} (\psi_n - \overline{\psi}) + o_p(1) + \mathcal{E}(\tilde{t})$$

Infinitesimal jackknife estimato

Bayesian von–Mises Expansion

How can we apply the single-weight result to variance computations?

Define the "generalized posterior" functional

$$T(\mathbb{G},N) := \frac{\int g(\theta) \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}{\int \exp\left(N \int \ell(x_0|\theta) \mathbb{G}(dx_0)\right) \pi(\theta) d\theta}.$$

Let \mathbb{F}_N denote the empirical distribution. Then

$$\underset{p(\theta|X)}{\mathbb{E}}\left[g(\theta)\right] = \frac{\int g(\theta) \exp\left(N\frac{1}{N}\sum_{n=1}^{N}\ell(x_{n}|\theta)\right)\pi(\theta)d\theta}{\int \exp\left(N\frac{1}{N}\sum_{n=1}^{N}\ell(x_{n}|\theta)\right)\pi(\theta)d\theta} = T(\mathbb{F}_{N},N).$$

Let \mathbb{F} denote the true distribution of x_n , and let $\mathbb{F}_N^t = t\mathbb{F} + (1-t)\mathbb{F}_N$.

We can study the von Mises expansion:

$$\sqrt{N} \left(\underset{p(\theta|X)}{\mathbb{E}} [g(\theta)] - T(\mathbb{F}, N) \right) = \sqrt{N} \left. \frac{\partial T(\mathbb{F}_N^t, N)}{\partial t} \right|_{t=0} (\mathbb{F}_N - \mathbb{F}) + \mathcal{E}(\tilde{t})$$

$$= \sqrt{N} \sum_{n=1}^{N} (\psi_n - \overline{\psi}) + o_p(1) + \mathcal{E}(\tilde{t}).$$

Infinitesimal jackknife estimator

14

Bayesian von-Mises Expansion Results

Theorem 3 [Giordano and Broderick, 2023] (sketch):

(Consistency of the von-Mises expansion in finite dimensions)

Under slightly stronger conditions our original finite-dimensional posterior consistency result,

$$\sup_{\tilde{t} \in [0,1]} |\mathcal{E}(\tilde{t})| \to 0 \quad \text{in the Bayesian von-Mises expansion.}$$

Theorem 4 [Giordano and Broderick, 2023] (sketch, not yet on arxiv):

(Inconsistency of the von-Mises expansion in infinite dimensions)

Assume that x_n comes with a random group assignment $g_n \in 1, ..., G$. Conditional on g, x_n is modeled as a finite-dimensional exponential family given λ, γ :

$$\log p(x_n|g_n=g,\gamma,\lambda) = \tau(x_n)^{\mathsf{T}} \eta_g(\gamma,\lambda) + \mathsf{Constant}.$$

Define the average product of second moments:

$$\mathcal{V}_{\mathcal{N}} := \frac{1}{N} \sum_{q=1}^{G} \underset{\mathbb{F}(x_n)}{\mathbb{E}} \left[\tau(x_n) \tau(x_n)^\intercal \right] \underset{p(\lambda, \gamma \mid \mathbb{F})}{\operatorname{Cov}} \left(\eta_g(\gamma, \lambda) \right)$$

If $\mathcal{V}_{\mathcal{N}}$ is strictly bounded away from 0 as $N \to \infty$, then

$$\sup_{ ilde{t}\in[0,1]}|\mathcal{E}(ilde{t})| o\infty$$
 in the Bayesian von–Mises expansion.

Bayesian von-Mises Expansion Results

Theorem 3 [Giordano and Broderick, 2023] (sketch):

(Consistency of the von-Mises expansion in finite dimensions)

Under slightly stronger conditions our original finite-dimensional posterior consistency result,

$$\sup_{\tilde{t} \in [0,1]} |\mathcal{E}(\tilde{t})| \to 0 \quad \text{in the Bayesian von-Mises expansion}.$$

Theorem 4 [Giordano and Broderick, 2023] (sketch, not yet on arxiv): (Inconsistency of the von–Mises expansion in infinite dimensions)

Assume that x_n comes with a random group assignment $g_n \in 1, ..., G$. Conditional on g, x_n is modeled as a finite-dimensional exponential family given λ , γ :

$$\log p(x_n|g_n=g,\gamma,\lambda) = \tau(x_n)^\mathsf{T} \eta_g(\gamma,\lambda) + \mathsf{Constant}.$$

Define the average product of second moments:

$$\mathcal{V}_{\mathcal{N}} := \frac{1}{N} \sum_{g=1}^{G} \underset{\mathbb{F}(x_n)}{\mathbb{E}} \left[\tau(x_n) \tau(x_n)^{\mathsf{T}} \right] \underset{p(\lambda, \gamma \mid \mathbb{F})}{\operatorname{Cov}} \left(\eta_g(\gamma, \lambda) \right).$$

If $\mathcal{V}_{\mathcal{N}}$ is strictly bounded away from 0 as $N \to \infty$, then

$$\sup_{\tilde{t} \in [0,1]} |\mathcal{E}(\tilde{t})| \to \infty \quad \text{in the Bayesian von-Mises expansion.}$$

Negative binomial observations. Asymptotically linear in w.

Poisson observations with random effects. Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Negative binomial observations. Asymptotically linear in w.

Poisson observations with random effects. Asymptotically non-linear in \boldsymbol{w} .

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}\left[\gamma\right]$ linear in the data weights or not?

Negative binomial observations. Asymptotically linear in w.

Poisson observations with random effects.

Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$ in general.

Uses $\log p(x_n|\gamma, \lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma, \lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma, \lambda) \right]$

Computable from γ , $\lambda \sim p(\gamma, \lambda | X)$

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is somewhat concentrated

Negative Binomial model leaving out single datapoints with N = 800

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

Observations and consequences

- For finite–dimensional models which concentrate asymptotically:
 - · Posterior expectations are approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is consistent
 - · The residual of the von Mises expansion vanishes
- For high–dimensional models which marginally concentrate only asymptotically:
 - · Posterior expectations are not approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is inconsistent
 - · The residual of the von Mises expansion does not vanish
 - Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.
- When the weighting is linear, there are many other applications:
 - Cross-validation
 - Conformal inference
 - · Identification of influential subsets
- When the weighting is non–linear, the inconsistency results should apply more widely:
 - The EM algorithm
 - The nonparametric bootstrap
 - Local prior sensitivity measures

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466) (Major update in progress, coming soon.)

Observations and consequences

- For finite–dimensional models which concentrate asymptotically:
 - · Posterior expectations are approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is consistent
 - · The residual of the von Mises expansion vanishes
- For high–dimensional models which marginally concentrate only asymptotically:
 - · Posterior expectations are not approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is inconsistent
 - · The residual of the von Mises expansion does not vanish
 - Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.
- When the weighting is linear, there are many other applications:
 - · Cross-validation
 - · Conformal inference
 - · Identification of influential subsets
- When the weighting is non–linear, the inconsistency results should apply more widely:
 - · The EM algorithm
 - · The nonparametric bootstrap
 - · Local prior sensitivity measures

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466) (Major update in progress, coming soon.)

Observations and consequences

- For finite-dimensional models which concentrate asymptotically:
 - · Posterior expectations are approximately linear in data weights
 - The linearized variance estimate (infinitesimal jackknife) is consistent
 - · The residual of the von Mises expansion vanishes
- For high–dimensional models which marginally concentrate only asymptotically:
 - · Posterior expectations are not approximately linear in data weights
 - · The linearized variance estimate (infinitesimal jackknife) is inconsistent
 - · The residual of the von Mises expansion does not vanish
 - Even if the error $\mathcal{E}(w)$ does not vanish, it can still be small enough in practice.
 - \dots Especially given the linear approximation's huge computational advantage.
- When the weighting is linear, there are many other applications:
 - · Cross-validation
 - · Conformal inference
 - · Identification of influential subsets
- When the weighting is non–linear, the inconsistency results should apply more widely:
 - · The EM algorithm
 - · The nonparametric bootstrap
 - · Local prior sensitivity measures

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466) (Major update in progress, coming soon.)

References

- A. Gelman and M. Heidemanns. The Economist: Forecasting the US elections., 2020. URL https://projects.economist.com/us-2020-forecast/president. Data and model accessed Oct., 2020.
- A. Gelman and J. Hill. Data analysis using regression and multilevel/hierarchical models. Cambridge university press, 2006.
- R. Giordano and T. Broderick. The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466, 2023.
- J. Huggins and J. Miller. Reproducible model selection using bagged posteriors. Bayesian Analysis, 18(1):79-104, 2023.
- R. Kass, L. Tierney, and J. Kadane. The validity of posterior expansions based on Laplace's method. Bayesian and Likelihood Methods in Statistics and Econometrics, 1990.
- B. Kleijn and A. Van der Vaart. The Bernstein-von-Mises theorem under misspecification. Electronic Journal of Statistics, 6: 354–381, 2012.

Data re-weighting.

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \approx \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] - \psi_n$$

Example: Approximate bootstrap

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

Bootstrap variance
$$= \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] \right)$$

$$\approx \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] + \psi_n(w_n - 1) \right)$$

$$= \sum_{n=1}^{N} \left(\psi_n - \overline{\psi} \right)^2.$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}.$$

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[f(\theta) \right] - \psi_{\mathbf{n}}$$

Example: Approximate bootstrap

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$

Bootstrap variance
$$= \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} [f(\theta)] \right)$$

$$\approx \underset{p(w)}{\operatorname{Var}} \left(\underset{p(\theta|x)}{\mathbb{E}} [f(\theta)] + \psi_n(w_n - 1) \right)$$

$$= \underset{n=1}{\overset{N}{\sum}} \left(\psi_n - \overline{\psi} \right)^2.$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}.$$

Data re-weighting.

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[f(\theta) \right] - \psi_{\mathbf{n}}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{split} \text{Bootstrap variance} &= \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] \right) \\ &\approx \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] + \psi_n(w_n - 1) \right) \\ &= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2. \end{split}$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^{K} \psi_{(n)}$$

Data re-weighting.

How can we use the approximation?

Cross validation. Let $w_{(-n)}$ leave out point n, and loss $f(\theta) = -\ell(x_n|\theta)$.

$$\text{LOO CV loss at point } n = \underset{p(\theta|x,w_{(-n)})}{\mathbb{E}} \left[f(\theta) \right] \underset{p(\theta|x)}{\thickapprox} \mathbb{E} \left[f(\theta) \right] - \psi_{\textbf{n}}$$

Example: Approximate bootstrap.

Draw bootstrap weights $w \sim p(w) = \text{Multinomial}(N, N^{-1})$.

$$\begin{split} \text{Bootstrap variance} &= \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] \right) \\ &\approx \operatorname*{Var}_{p(w)} \left(\underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] + \psi_n(w_n - 1) \right) \\ &= \sum_{n=1}^N \left(\psi_n - \overline{\psi} \right)^2. \end{split}$$

Influential subsets: Approximate maximum influence perturbation (AMIP).

Let $W_{(-K)}$ denote weights leaving out K points.

$$\max_{w \in W_{(-K)}} \left(\underset{p(\theta|x,w)}{\mathbb{E}} \left[f(\theta) \right] - \underset{p(\theta|x)}{\mathbb{E}} \left[f(\theta) \right] \right) \approx - \sum_{n=1}^K \psi_{(n)}.$$

Consider $p(X|\gamma) = \prod_{n=1}^N \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N \to \infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}} [\gamma] - \underset{p(\gamma|X)}{\mathbb{E}} [\gamma]\right) = \psi_n(w_n - 1) + O_p(N^{-1}).$$

Negative Binomial model leaving out single datapoints with N = 800

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N\to\infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{N}.$$

Negative Binomial model leaving out single datapoints with N = 800

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N\to\infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{N}.$$

Negative Binomial model leaving out single datapoints with N = 800

Consider $p(X|\gamma) = \prod_{n=1}^{N} \text{NegativeBinomial}(x_n|\gamma)$. Here, $\theta = \gamma$ is a scalar.

As $N\to\infty$, $p(\gamma|X)$ concentrates at rate $1/\sqrt{N}$ (Bernstein–von Mises).

$$\Rightarrow N\left(\underset{p(\gamma|X,w_n)}{\mathbb{E}}[\gamma] - \underset{p(\gamma|X)}{\mathbb{E}}[\gamma]\right) = \psi_n(w_n - 1) + \frac{O_p(N^{-1})}{N}.$$

Negative Binomial model leaving out single datapoints with N = 800

Experiments

Example: Poisson model with random effects (REs) λ and fixed effect $\gamma.$

Negative binomial observations.

Asymptotically linear in w.

Poisson observations with random effects. Asymptotically non-linear in \boldsymbol{w} .

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is
$$rac{\mathbb{E}}{p(\gamma|X,w)}[\gamma]$$
 linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

Negative binomial observations.

Asymptotically linear in w.

Poisson observations with random effects. Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{n(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint

Negative binomial observations.

Poisson observations with random effects.

Asymptotically linear in w.

Asymptotically non-linear in w.

$$\log p(X|\gamma, w^m) = \sum_{n=1}^N w_n^m \log p(x_n|\gamma) \quad \ \log p(X|\gamma, \lambda, w^c) = \sum_{n=1}^N w_n^c \log p(x_n|\lambda, \gamma)$$

With a constant regressor, Gamma REs, and one RE per observation, these are the same model, with the same $p(\gamma|X)$.

Is $\underset{p(\gamma|X,w)}{\mathbb{E}}[\gamma]$ linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$ in general

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \underset{p(\gamma,\lambda|X)}{\mathbb{E}} \left[\bar{\gamma}\bar{\ell}_n(\gamma,\lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma, \lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma, \lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma, \lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is somewhat concentrated

Negative Binomial model leaving out single datapoints with N = 800

Our results were actually computed on **identical datasets** with G=N and $g_n=n$.

Uses $\log p(x_n|\gamma)$: $\psi_n = \underset{p(\gamma|X)}{\mathbb{E}} \left[\bar{\gamma} \bar{\ell}_n(\gamma) \right]$

Not computable from $\gamma, \lambda \sim p(\gamma, \lambda|X)$ in general.

Uses $\log p(x_n|\gamma,\lambda)$: $\psi_n = \mathop{\mathbb{E}}_{p(\gamma,\lambda|X)} \left[\bar{\gamma} \bar{\ell}_n(\gamma,\lambda) \right]$

Computable from $\gamma, \lambda \sim p(\gamma, \lambda | X)$.

May still be useful when $p(\lambda|X)$ is *somewhat* concentrated.

Negative Binomial model leaving out single datapoints with N = 800

