Vulnerability Analysis of the Bay Area's Water Supply Network

Talia Arauzo & Sydney Holgado

Motivation

Global Water Crisis - Effects very apparent in California

- Climate Change
 - Rising temperatures
 - Increased drought
 - Decreased reliability of snowpack
- Source Depletion
 - Anthropogenic desiccation
 - Groundwater depletion

Animation from: **USGS**

Dataset

- Aggregation of 2010 CA UWMP data
 - Utilized 2020 projections
- Data attributes
 - Consumption & transmission volumes
 - Transmission & treatment electricity consumption
- Selected 3 Bay Area water systems
 - SFPUC, ACWD, SJWC

Network

Bay Area Water Supply Network:

- SFPUC: San
 Francisco Public
 Utilities
 Commission
- ACWD: Alameda County Water District
- SJWC: San Jose Water Company

Methods & Metrics

- Selective network **fragmentation**
 - Determine each node's impact
- Metrics analysed

Metric	Meaning	Equation	Method of Calculation
Meshedness	Network connectivity & redundancy	$\alpha(r_m) = \frac{e^{-v}}{2v-5}$	momepy.meshedness() from the momepy package
Average Path Length	Efficiency of mass transport	$L = \frac{1}{\nu(\nu-1)} \sum_{i \neq j} d_{ij}$	nx.averge_shortest_path_length() from Networkx
Average Clustering Coefficient	Node clustering & density	$C_N = \frac{1}{n} \sum_{i=1}^{n} \frac{e_i}{k_i (k_i - 1)}$	nx.average_clustering() from Networkx
Average Node Centrality	Node's importance in bridging network	$C_b(v) = \sum_{s, t \in V} \frac{\sigma(s, t v)}{\sigma(s, t)}$	Average of nx.betweenness_centrality() from Networkx

Meshedness

- Low values -> node removal caused decrease in network connectivity
- Most important nodes:
 - o 1805003PD
 - San Joaquin River
 - Sacramento River
 - o 1805089PD

Average Shortest Path Length

- High value -> node removal negatively impacted mass transport ability
- Misleading result due to ill defined metric: San Francisco Bay Delta
- Important node:
 - o SW1805081EB

Average Node Centrality

- Significantly lower value

 node removed was
 integral in bridging
 network
- Important nodes:
 - Sacramento River
 - San Francisco Bay Delta

Conclusions

- Important nodes based on analysis
 - San Francisco Bay Delta
 - San Joaquin and Sacramento Rivers
 - Certain reservoirs/storage of potable water
- Recommendations
 - Investment in upkeep and maintenance of identified important nodes
 - Consider alternatives if important nodes become unreliable
- Potential additional research areas
 - Additional research on weighting the network differently
 - Look into modeling different types of resilience