

Temporal Disaggregation using JDemetra+ (GUI and rjd3bench)

Webinar 2023

María Novás National Statistical Institute of Spain

September 20th 2023

Introduction

Temporal disaggregation Methods: These methods are used to disaggregate a series from low frequency to high-frequency.

When there are high frequency related indicators, these methods provide high frequency estimations for a series whose sums, averages, last or first values are consistent with the observed low frequency series, applying a regression model where it is assumed that monthly observations (if available) of the series to be estimated satisfy a multiple regression with p related series (indicators).

Temporal disaggregation methods

Two types of temporal disaggregation methods:

- 1. There is no high frequency related indicator:
 - ► **Softened methods**: such as Boot, Fiebes and Lisman (1967). Identical to Denton considering as proxy a series of ones.
 - ▶ Methods of time series: such as: Wei and Stram (1990).
- 2. There is a high frequency related indicator: these methods are known as optimal methods and among them are Chow-Lin (1971), Fernández (1981), Litterman (1983), Santos Silva and Cardoso, and Proietti.

High frequency model

High frequency model. It is assumed that monthly observations (if available) of the series to be estimated satisfy a multiple regression with p related series:

$$y = X\beta + u \tag{1}$$

where y is monthly observations (if available) of the series to be estimated, X is the matrix with the regression variables in columns, β is a vector of coefficients and u follows:

- ▶ **Chow-Lin**: $u_t = \phi u_{t-1} + \epsilon_t$, with $-1 < \phi < 1$ and ϵ_t white noise
- ▶ **Fernández**: $\nabla u_t = \epsilon_t$, with ϵ_t white noise
- ▶ **Litterman**: $\nabla u_t = \phi \nabla u_{t-1} + \epsilon_t$, with $-1 < \phi < 1$ and ϵ_t white noise

Low frequency model

Low frequency model. This is the model directly estimated, obtained premultiplying the high frequency model by a matrix:

$$My = MX\beta + Mu (2)$$

where

$$E(Mu) = ME(u) = 0$$
 and $Cov(Mu) = MCov(u)M^{T}$

Install the plug-in I

- Download the file nbdemetra-benchmarking-2.2.2.nbm https://github.com/nbbrd/jdemetra-benchmarking/releases
- 2. Add the plugin in the GUI version 2.2.2

Install the plug-in II

3. Benchmarking and Temporal Disaggregation options

Example

- ► Input series: The Services Producer Price Index without direct taxes with quarterly frequency: Air Transport branch. From the first quarter of 2010 to the first quarter of 2018.
- ► Indicator: The CPI at constant taxes series with monthly frequency: 0733 Air Transport. From January 2010 to June 2018.
- ► Output series: The Services Producer Price Index, air transport branch, with monthly frequency.

Steps to choose the method

- 1. Graphical Analysis
- 2. Cointegration Test (optional)
- **3.** Chow-Lin
- 4. Fernández and Litterman
- 5. ADL Models: Proietti and Santos Silva and Cardoso
- **6.** Extrapolation

1. Graphical Analysis

Series 51 Air transport: CPI vs SPPI

2. Cointegration test

High frequency model. It is assumed that monthly observations (if available) of the series to be estimated satisfy a multiple regression with p related series:

$$y = X\beta + u \tag{3}$$

where y is monthly observations (if available) of the series to be estimated, X is the matrix with the regression variables in columns, β is a vector of coefficients and u follows:

- ▶ **Chow-Lin**: $u_t = \phi u_{t-1} + \epsilon_t$, with $-1 < \phi < 1$ and ϵ_t white noise
- ▶ **Fernández**: $\nabla u_t = \epsilon_t$, with ϵ_t white noise
- ▶ **Litterman**: $\nabla u_t = \phi \nabla u_{t-1} + \epsilon_t$, with $-1 < \phi < 1$ and ϵ_t white noise

2. Cointegration test

- ▶ If the series are cointegrated in high frequency, Chow-Lin should be applied.
- ► If the series are **not cointegrated** in high frequency we apply **Fernández and** Litterman.

This test can only be done in low frequency and the test conclusions **cannot be scaled from low to high frequency**.

	Specifications
All	
Ar1	
~	
Sum	
Quarterly	
0,00001	
DKF	
\checkmark	
0	
	Ar1 Sum Quarterly 0,00001 DKF

4. Fernández

4. Litterman

Litterman

Likelihood statistics

Number of effective observations = 33 Number of estimated parameters = 4

Loglikelihood = -42.97055716264021

Standard error of the regression (ML estimate) = 0.15681419618642797

AIC = 93.94111432528042

AICC = 95.36968575385185

BIC (corrected for length) = -3.387522952751936

Variance

 Component
 Variance
 % variance

 Indicators
 350,623615
 21,19

 Smoothing
 1304,120243
 78,81

Model

Rho = 0.29166666374999994 [0,3218]

Regression model

Coefficients T-Stat P[[T] > t]
Hoja1 51H [frozen] 0,244512 7,01 0,0000

4. Analysis of the residuals

4. Disaggregated series (Fernández)

4. Results: Air transport (Fernández)

rjd3bench

- https://github.com/rjdemetra/rjd3bench/releases
- ► temporaldisagggregation function:

```
function (series, constant = T, trend = F, indicators = NULL,
    model = c("Ar1", "Rw", "RwAr1"), freq = 4, conversion = c("Sum",
        "Average", "Last", "First", "UserDefined"), conversion.obsposition = 1,
    rho = 0, rho.fixed = F, rho.truncated = 0, zeroinitialization = F,
    diffuse.algorithm = c("SqrtDiffuse", "Diffuse", "Augmented"),
    diffuse.regressors = F)
```


5. ADL Models

In Santos Silva and Cardoso the model is:

$$y_t = \phi y_{t-1} + x_t \beta + \epsilon_t \tag{4}$$

In Projetti the model is:

$$y_t = \phi y_{t-1} + m + gt + x_t \beta + x_{t-1} \gamma + \epsilon_t$$
 (5)

where ϵ_t is a white noise process with variance σ^2

5. ADL Models

- ► Likelihood ratio test:
 - ► Proietti and Santos Silva Cardoso
 - ▶ Projetti and Chow-Lin
- ► Analysis of the residuals

6. Extrapolation

Using 8 quarters of extrapolated data.

► Chow-Lin:

$$RMSE = 0,60$$

(6)

▶ Fernández:

$$RMSE = 0.59$$

(7)

► Litterman:

$$RMSE = 0.70$$

(8)

