기계학습

3.6강. 앙상블

. 가 ...

김용대¹

서울대학교 통계학과¹

x ->

목차

- 1절: 의사결정나무
- 2절: 배깅
- 3절: 랜덤포레스트
- 4절: 부스팅

1절: 의사결정나무

의사결정나무

- Decision tree
- 회구분석이나 분류분석을 위한 모형
- "if-then"으로 구성된 규칙 생성
- SQL같은 DB언어로 규칙이 쉽게 표현
- 좋은 해석력

예제

의사결정나무 구축을 위한 4단계

partial Correlation ????

- 1 성장: 반복적으로 데이터를 분할하여 나무를 성장시킨다. 정지규칙을 만족하면 성장을 정지한다.
- 2 가지치기: 너무 큰 나무는 과적합으로 인하여 예측력이 저하되기 때문에 성장한 나무를 적당한 크기로 줄인다. Validation표본이나 교차확인방법을 이용한다.
- ③ 확인: 구축된 의사결정나무의 예측력을 확인하다 (예:gain chart, lift chart)
- 4 해석 및 예측

의사결정나무의 장점

- 규칙이 이해가 쉽다
- 연속변수 및 범주형변수도 쉽게 처리된다.
- 중요한 변수를 찾아준다.
- 입력변수의 이상치에 강건하다 (robust).
- 모형화 작업이 필요없다.

의사결정나무의 장점

- 규칙이 이해가 쉽다
- 연속변수 및 범주형변수도 쉽게 처리된다.
- 중요한 변수를 찾아준다.
- 입력변수의 이상치에 강건하다 (robust).
- 모형화 작업이 필요없다.

의사결정나무의 단점

- 회귀모형에서 얘측력이 떨어진다
- 나무의 크기가 크면 해석력이 떨어진다.
- 불안정하다.
- 주효과를 쉽게 파악할 수 없다.
- 비사각영역의 추정이 어렵다.

의사결정나무의 단점

- 회귀모형에서 얘측력이 떨어진다
- 나무의 크기가 크면 해석력이 떨어진다.
- 불안정하다.
- 주효과를 쉽게 파악할 수 없다.
- 비사각영역의 추정이 어렵다.

의사결정나무의 불안정성

• 두개의 bootstrap 자료로 부터 만든 두개의 의사결정나무

의사결정나무의 불안정성

- 두 나무에서 쓰인 변수가 거의 다르다 (거의 마지막에 쓰인 'RM'만 예외).
- 이런 이유는, 첫번째 분할에 쓰인 변수가 달라지면 완전 다른 나무가 구축되기 때문이다.
- 두개의 변수가 비슷하게 출력변수를 설명하는 경우 이런 현상이 자주 생긴다.
- 의사결정나무의 불안정성을 해결하기 위하여 개발된 방법이 앙상블(Ensemble)이다.

2절: 배깅 (Bagging)

앙상블 소개

- 앙상블이란 하나의 자료에 대해서 여러 개의 예측모형을 만든 후, 이를 결합하여 최종예측모형을 만드는 방법을 통칭한다.
- 앙상블 밥법의 예
 - Bagging (Breiman 1996)
 - Boosting (Freund and Schapire 1997)
 - Random Forest (Breiman 2004)
- 실증적으로 앙상블 방법이 의사결정나무 보다 훨씬 좋은 예측력을 갖는 것이 밝혀졌다.

배깅 알고리즘

- Bootstrap aggregating
- ℒ:학습자료
- 알고리즘
 - 1 B개의 붓스트랩 표본 $\{\mathcal{L}^{(b)}, b=1,\ldots,B\}$ 을 만든다 (data sets obtained by with replacement sampling from \mathcal{L}).
 - 2 가각의 붓스트랩표본에 대해서 예측모형 $\{f(\mathbf{x}, \mathcal{L}^{(b)}), b = 1, \dots, B\}$ 을 구축한다.
 - ③ y가 연속형변수이면 평균예측모형 $f_B(\mathbf{x}) = av_b f(\mathbf{x}, \mathcal{L}^{(b)})$ 를 사용하고
 - 4 y가 범주형이면 (class label), maority vote방법을 이용하여 다음과 같이 배깅예측모형을 만든다: $f_B(\mathbf{x}) = \operatorname{argmax}_j N_j$ where $N_j = \#\{b: f(\mathbf{x}, \mathcal{L}^{(b)}) = j\}.$

예측력 비교

• Bagging Classification trees

Data Set	Samples	Variables	Classes	\bar{e}_S	\bar{e}_B	Decrease
waveform	300	21	3	29.0	19.4	33%
heart	1395	16	2	10.0	5.3	47%
breast cancer	699	9	2	6.0	4.2	30%
ionosphere	351	34	2	11.2	8.6	23%
diabetes	1036	8	2	23.4	18.8	20%
glass	214	9	6	32.0	24.9	22%
soybean	307	35	19	14.5	10.6	27%

예측력 비교

• Bagging Regression trees

Data Set	\bar{e}_S	$ar{e}_B$	Decrease
Boston Housing	19.1	11.7	39%
Ozone	23.1	18.0	22%
Friedman # 1	11.4	6.2	46%
Friedman # 2	30,800	21,700	30%
Friedman # 3	.0403	.0249	38%

배깅의 원리

- 배깅의 원리는 불안전한 예측모형의 분산을 평균을 사용해서 줄이는 것이다.
- 따라서, 배깅에 의해서 예측력이 향상되는 예측모형은 분산은 크고 편이는 작아야 한다.
- 즉, 일부러 과적합된 예측모형이 배깅을 적용하였을 때 큰 효과를 볼 수 있다.
- 이 원리를 의사결정나무에 적용하면,가지치기를 하지 않은 나무 모형이 배깅하고 가장 잘 어울린다.
- 의사결정나무 구축에서 가장 시간이 많이 드는 부분이 가지치기인데, 그 이유는 모형선택(얼마나 많은 가지를 처낼 것인지를 결정)이 필요하기 때문이다.
- 즉, 배깅은 최적의 의사결정나무 구축보다 계산속도가 빠르다!

3절: 랜덤포레스트 (Random Forest)

서론

- 랜덤포레스트는 여러개의 의사결정나무를 핸덤하게 만든 후, 이를 결합하여 최종 예측모형을 만드는 방법이다.
- 배깅은 랜덤포레스트의 일종인데, 랜덤포레스트는 배깅보다 더 많은 무작위성을 사용한다.
- 랜덤포레스트의 장점은
 - 예측력이 배깅보다 좋으며
 - 이상치에 강건하고
 - 계산속도가 상대적으로 빠르며
 - 사용하기 쉽다. (초보자도 쉽게 사용 가능)

알고리즘

- RF1: 나무를 성장시킬 때, 각 노드에서 변수를 임의로 뽑아서 사용한다.
- RF2: 각 노드에서 k개의 변수를 임의로 뽑고, 이 변수들 중 가장 불순도를 크게 감소시키는 변수로 나무를 성장시킨다.
- RF-L
 - L개의 변수를 임의로 뽑는다.
 - L개의 변수를 이용하여 F개의 선형결합을 임의로 만든다 (가중치를 임의로 정한다).
 - F개의 새로운 변수중 가장 불순도를 크게 감소시키는 변수로 나무를 성장시킨다.
- 가지치기는 사용하지 않고, 부스트랩 표본을 사용한다.

예측력비교

Data Set	Single	Bagging	AdaBoost	RF1	RF1-L
waveform	29.0	19.4	18.2	17.2	16.1
breast cancer	6.0	5.3	3.2	2.9	2.9
ionosphere	11.2	8.6	5.9	7.1	5.7
diabetes	23.4	18.8	20.2	24.2	23.1
glass	32.0	24.9	22.0	20.6	23.5

이상치 강건성

- 5%의 자료를 임의로 뽑아서 속한 그룹을 임의로 바꾼다.
- 오차율의 증가량(%)

Data Set	AdaBoost	RF1
breast cancer	43.2	1.8
ionosphere	27.7	3.8
diabetes	6.8	1.8
glass	1.6	0.4

기하학적 설명

Remark

- 조율모수가 전혀 없어서 초보자도 쉽게 사용할 수 있다.
- 계산면에서도 RF는 매우 효율적인데, 완벽한 분산처리가 가능하기 때문이다.

4절:부스팅 (Boosting)

서론

- 부스팅은 약한 예측모형 (random guess보다 조금 좋은 모형) 여러개를 결합하여 매우 정확한 예측모형을 만드는 방법
- Freund and Schapire (1997)가 처음으로 실제 자료분석에 쓸 수 있는 부스팅알고리즘을 개발하였으며 "AdaBoost (Adaptive Boost)"로 명명함.
- 그 이후로 다양한 종류의 부스팅 알고리즘이 개발됨.
- 본 장에서는 다음의 내용을 다룸
 - 1 AdaBoost 알고리즘
 - ② 알고리즘에 대한 통계학적인 이해
 - ③ 로지스틱회귀모형을 위한 부스팅: Gradient 부스팅
 - 4 부스팅과 라쏘의 관계

예제

- 경마장에 100명의 자칭 전문가들이 있다고 하자.
- 전문가들은 많은 시간과 비용을 사용했기 때문에, 일반인 보다는 예측의 정확도가 높다. 그러나 많이 높지는 않다.
- 이제 문제는 "이 100명 전문가의 예측결과를 합쳐서 매우 정확한 예측을 할 수는 없을까?"이다.
- 놀랍게도 이것이 가능하다는 것이 밝혀졌으며, 이 이론을 weak learnability로 부른다.
- AdaBoot는 weak learnability를 실제 자료분석을 위하여 구현한 최초의 알고리즘이다.

알고리즘

가 가 , /// 가 가 .

- ① 모든 관측치의 가중치를 같게 놓는다: $w_i = 1/n, i = 1, ..., n$.
- 2 다음을 m = 1, ..., M 만큼 반복한다;
 - ① 현재 가중치 w_i 를 이용하여 분류함수 $f_m(\mathbf{x}) \in \{-1, 1\}$ 를 만든다.
 - 2 오차률 err,,,를 계산한다:

$$\operatorname{err}_m = \frac{\sum_{i=1}^n w_i I(y_i \neq f_m(\mathbf{x}_i))}{\sum_{i=1}^n w_i}.$$

- $c_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$ 라 놓는다.
- ④ 가중치를 다음과 같이 갱신한다: $w_i = w_i \exp(c_m I(y_i \neq f_m(\mathbf{x}_i)))$.
- ③ 최종 분류모형은 $\operatorname{sign}(\sum_{m=1}^{M} c_m f_m(\mathbf{x}))$ 으로 한다.

예측력 비교

Data Set	Single	AdaBoost	Decrease	Bagging
waveform	29.0	18.2	37%	19.4
breast cancer	6.0	3.2	47%	5.3
ionosphere	11.2	5.9	47%	8.6
diabetes	23.4	20.2	14%	18.8
glass	32.0	22.0	31%	24.9

AdaBoost의 통계학적 이해

- M-추정방법론의 적용
- 예측모형구축의 목적은 최적의 예측모형

$$f^0 = \arg\min_{f \in \mathcal{F}} \mathbb{E}_{(Y,\mathbf{X})} l(Y,f(\mathbf{X}))$$

를 구축하는 것이다.

• M-추정방법은 f^0 를 \hat{f} 로 추정한다:

$$\hat{f} = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} l(y_i, f(\mathbf{x}_i))/n.$$

• 즉, empirical risk를 최소화 하는 예측모형을 찾는다.

, MLE, - log likelihood, logistic loss

Steepest descent 알고리즘으로의 AdaBoost

weak learner(=base learner,

- *H*를 기저예측모형의 집합이라 하자.
- AdaBoost는 exponential 손실함수 $l(y,f(\mathbf{x})) = \exp(-yf(\mathbf{x}))$, where $y \in \{-1,1\}$ 를 이용한 M-추정방법으로 이해할 수 있다.
- $F_m = \sum_{k=1}^m c_k f_k$ 을 현재의 앙상블모형이라 하자.
- 그러면, AdaBoost는

$$(c_{m+1}, f_{m+1}) = \operatorname{argmin}_{c \in [0, \infty), f \in \mathcal{H}} \sum_{i=1}^{n} \exp\left[-y_i \{F_m(\mathbf{x}_i) + cf(\mathbf{x}_i)\}\right]$$

인 (c_{m+1}, f_{m+1}) 를 구한 후, 앙상블 모형을 $F_{m+1} = F_m + c_{m+1} f_{m+1}$ 로 갱신한다.

• Schapire and Singer (1999)는 이러한 steepest descent 방법이 정확히 AdaBoost알고리즘과 같다는 것을 증명하였다.

Remark on exponential 손실함수

Fisher consistent

$$f^*(\mathbf{x}) = \operatorname{argmin}_f \mathbb{E}_{(Y,\mathbf{X})} \exp(-Yf(\mathbf{X}))$$

라 하면

$$f^*(\mathbf{x}) = \frac{1}{2} \log p(\mathbf{x}) / (1 - p(\mathbf{x})) \stackrel{\text{exp}}{\underset{\text{logistic regression}}{\text{adaboost}}}$$

이고 $p(\mathbf{x}) = \Pr(Y = 1 | \mathbf{X} = x)$ 임이 증명가능하다.

• 즉, 로지스틱회귀모형과 유사하다.

	yc average(2
??	5%
= ^1.5)

Gradient 부스팅 (Friedman 2001)

- Friedman (2001)은 AdaBoost 알고리즘을 다양한 손실함수로 확장하였다.
- 하지만, exponential 손실함수 이외에는 steepest descent방법을 적용할 수 없다.
- Friedman (2001)은 functional gradient descent 방법을 사용하여 다양한 부스팅알고리즘을 개발하였다.

Functional gradient descent 알고리즘

- F_{m-1} 를 현재의 앙상블모형이라 하자.
- $C(F) = \sum_{i=1}^{n} l(y_i, F(\mathbf{x}_i))$ 는 경험위험함수 (Empirical risk)이다.
- 경험위함함수를 현재 앙상블 모형 F_{m-1} 에서 얻은 gradient를 g_m 일 하자:

$$g_m(\mathbf{x}) = \left[\frac{\partial C(F)}{\partial F(\mathbf{x})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}.$$

• 상수 ρ_m 을 다음과 같이 구한다:

$$\rho_m = \operatorname{argmin}_{\rho \in R} C(F_{m-1} + \rho g_m).$$

• 앙상블 모형을 $F_m = F_{m-1} + \rho g_m$ 로 갱신한다.

Gradient 부스팅 알고리즘

- 하지만, g_m 은 대부분 기저예측모형 \mathcal{H} 에 포함되지 않는다.
- gm대신 기저위함수 중에서 gm과 가장 가까운 모형 fm을 사용한다:

$$f_m = \operatorname{argmin}_{f \in \mathcal{H}} \sum_{i=1}^n \{g_m(\mathbf{x}_i) - f(\mathbf{x}_i)\}^2.$$

• 앙상블 모형을 $F_m = F_{m-1} + \rho f_m$ 로 갱신하다. 여기서, ρ 는 다음과 같이 구한다:

$$\rho_m = \operatorname{argmin}_{\rho \in R} C(F_{m-1} + \rho f_m).$$

로짓부스팅

- 로지스틱 손실함수 (로지스틱모형의 negative 로그 가능도함수)와 의사결정나무를 기저예측모형으로 사용한 gradient 부스팅 알고리즘
- 로지스틱 손실함수: $l(y,f) = \log\{1 + \exp(-2yf)\}$ for $y \in \{-1,1\}$.
- Gradient:

$$g_m(\mathbf{x}_i) = \frac{2y_i \exp(-2y_i F_{m-1}(\mathbf{x}_i))}{1 + \exp(2y_i F_{m-1}(\mathbf{x}_i))}.$$

- Graidnent값을 출력변수로 만든 가상자료 $\{(\mathbf{x}_i, g_m(\mathbf{x}_i)), i = 1, \dots, n\}$ 를 이용하여 L개의 마지막 노드를 갖는 의사결정나무 T_m 을 구축
- 앙상블모형을 $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + T_m(\mathbf{x})$ 으로 갱신.

Regularization

- 부스팅 알고리즘은 경험위험함수를 가장 작게 하는 기저예측모형의 선형결합을 찾는 알고리즘으로 이해할 수 있다.
- 기저예측모형은 단순해도 기저예측모형의 선형결합은 매우 복잡한 함수도 근사시킬 수 있다.
- 예를 들면, p + 1개의 마지막 노드를 갖는 의사결정나무는 p 차원의 어떤 함수도 근사시킬 수 있음을 Breiman (2000)에 증명하였다.
- M-추정방법은 고려하는 모형이 복잡하지 않을 때만 좋은 예측력을 보인다 (과적합문제).
- 부스팅 알고리즘도 과적합 문제로 인하여 예측력이 나쁠 것으로 예상할 수 있다.
- 부스팅의 예측력을 항상시키기 위해서는 적절한 regularization 이 필요하다.

축소 (Shrinkage, Frieman 2001)

- $F_m = F_{m-1} + T_m$ 으로 갱신하는 대신, 적당한 작은 상수 $\gamma \in (0,1)$ 에 대해서 $F_m = F_{m-1} + \gamma T_m$ 으로 앙상블 모형을 갱신한다.
- Friedman (2001)은 $\gamma = 0.1$ 일때 예측력이 좋다는 것을 실증적으로 보였다.
- 이 방법은 축소추정량과 밀접한 관련이 있다.
- 이해하기 쉽지 않은 부분은 축소모수 γ를 작게 할 수록 예측력이 계속 좋아진다는 것이다.
- 놀랍게도, 이러한 이상한 현상을 LASSO로 설명할 수 있다!

부스팅 알고리즘과 고차원 회귀모형

- 주어진 학습자료 £에 대해서 유한개의 기저예측모형만이 다른 값을 가질 수 있다 (예: 학습자료에서 서로 다른 값을 갖는 의사결정나무는 유한개다)
- 즉, $\mathcal{H} = \{T_1, \dots, T_q\}$ 라 할 수 있는데, 여기서 기저예측모형의 개수 q는 매우 크기는 하지만 유한이다.
- 로짓부스팅은 다음의 고차원 로지스틱 회귀모형에서 회귀계수를 추정하는 문제로 이해할 수 있다:

$$\log \frac{\Pr(Y=1|\mathbf{x})}{\Pr(Y=-1|\mathbf{x})} = \beta_0 + \sum_{i=1}^q \beta_i T_i(\mathbf{x}).$$

부스팅 알고리즘과 고차원 회귀모형 (계속)

- 즉, 로짓부스팅은 다음의 두 단계로 구성되어 있다:
 - 1 입력변수를 의사결정나무를 이용하여 새로운 변수로 변환한다,
 - 2 변환된 입력변수들의 선형 로지스틱 회귀모형을 고려하고, 회귀계수를 추정하다.
- 이러한 면에서, 로짓부스팅은 다항회귀와 유사하다고 볼 수 있다:

$$\log \frac{\Pr(Y=1|\mathbf{x})}{\Pr(Y=-1|\mathbf{x})} = \beta_0 + \sum_{j=1}^p \beta_j x_j + \sum_{j,k} \beta_{jk} x_j x_k + \sum_{j,k,l} \beta_{jkl} x_j x_k x_l + \cdots$$

• 의사결정나무를 이용하여 입력변수를 변환하는 방법의 튼 장점은 입력변수의 잡음에 강건하다는 것이다!

부스팅과 LASSO

- Regularized 부스팅 알고리즘에서 ϵ 을 0으로 보내면, LASSO 알고리즘과 같아진다.
- 즉, Regularized gradient 부스팅알고리즘은 의사결정나무로 변환된 입력변수를 사용하여 로지스틱 모형의 회귀계수를 LASSO로 구한 알고리즘이라고 이해할 수 있다.

일반화 가법 모형

- 일반화 가법 모형 (Generalized additive model, GAM)은 구조화된 비모수함수모형이다.
- 선형모형 = 가

$$-Y = \beta_0 + \sum_{i=1}^p \beta_i x_i + \epsilon.$$

• 일반화 가법 모형

$$-Y = \beta_0 + \sum_{j=1}^p f_j(x_j) + \epsilon.$$

• 예제

$$- Y = \exp(-1 + 2x_1) + \sin(2\pi x_2) + \epsilon.$$

부스팅과 일반화 가법 모형

- 기저예측모형 *H*가 노드가 두개인 의사결정나무로 구성되어 있다고 하자.
- Gradient 부스팅을 통하여 구축한 예측모형은 다음과 같이 쓸수 있다:

$$F(\mathbf{x}) = \beta_0 + \sum_{T_m \in \mathcal{H}} \beta_m T_m(\mathbf{x}).$$

- v(m)을 나무 T_m 에서 사용된 변수라고 하자.
- 그러면 앙상블 모형 F는 다음과 같이 쓸 수 있다: $F(\mathbf{x}) = \beta_0 + \sum_{i=1}^p f_i(x_i)$ 이고

$$f_j(x_j) = \sum_{T_m \in \mathcal{H}} \beta_m T_m(\mathbf{x}) I(v(m) = j)$$

이다.

• 즉, 부스팅은 일반화 가법 모형에서 각 component 함수 f_j 를 의사결정나무의 선형결합으로 추정한 것이다.

교호작용 추정

- #가 3개의 노드를 갖는 의사결정나무로 구성되어 있다고 하자.
- 즉, 각 의사결정나무는 두개의 변수를 사용한다.
- 따라서, 앙상블 모형을 다음과 같이 쓸 수 있다: $F(\mathbf{x}) = \beta_0 + \sum_{j,k} f_{jk}(x_j, x_k)$, 이고

$$f_{jk}(x_j, x_k) = \sum_{T_m \in \mathcal{H}} \beta_m T_m(\mathbf{x}) I(v(m) = \{j, k\}).$$

 즉, 기저예측모형의 노드수를 결정하는 것은 앙상블모형의 교호작용의 차수를 결정하는 것이다.

해석

- 의사결정나무의 선형결합을 어떻게 해석할 수 있을까?
- 입력변수의 상대적 중요도 (Relative importance)와 부분의존도그림 (Partial dependency plot)를 이용

상대적 중요도

- 설명을 쉽게 하기 위하여, H가 노드수가 2개인 의사결정나무로 구성되어 있다고 하자.
- 주어진 나무 T에 대해서 s(T)를 어미노드와 자식노드들 사이의 불순도 측정치의 차이라 하자 (불순도의 차이가 클수록 중요한 변수임).
- 변수 *j*의 상대적 중요도는 다음과 같이 구한다:

$$RI_{j} = \sum_{m=1}^{M} s(T_{m})I(v(m) = j).$$

부분의존도 그림

• 주어진 앙상블 모형 $F(\mathbf{x})$ 에서 j번째 변수의 부분의존도 그림은 다음과 같이 정의된다:

$$f_j(x_j) = \frac{1}{n} \sum_{i=1}^n F(x_{i1}, \dots, x_{i(j-1)}, x_j, x_{i(j+1)}, \dots, x_{ip}).$$

Example

Experiment settings

- J = 6 terminal nodes
- Learning rate: v = 0.1

Data set: California Housing

- Response Variable: Median house value
- Eight Predictor Variables:
 - median Income (MedInc), housing density (Population), average occupancy (AveOccup), location (Longitude and Latitude), average number of rooms (AveRooms) and bedrooms (AveBedrms), age of the house(HouseAge)

Results

- Training and test error
- Relative importance and partial dependence plots

Training and Test Error

Relative Importance of Predictor Variables

Partial Dependence Plots (1-dim)

Partial Dependence Plots (2-dim)

11

Thank you!!