Тестування та контроль якості (QA) вбудованих систем Лабораторна робота 1 Виконав студент групи IB-91 Кучеренко Іван

Підготовка

1. Додаємо офіційний РРА, щоб завантажити останню стабільну версію:

```
ivan@ivan-VirtualBox:~$ sudo add-apt-repository ppa:wireshark-dev/stable
[sudo] пароль для ivan:
Latest stable Wireshark releases back-ported from Debian package versions.
Back-porting script is available at https://github.com/rbalint/pkg-wireshark-ub
untu-ppa
From Ubuntu 16.04 you also need to enable "universe" repository, see:
http://askubuntu.com/questions/148638/how-do-i-enable-the-universe-repository
The packaging repository for Debian and Ubuntu is at: https://salsa.debian.org/
debian/wireshark
Больше информации: https://launchpad.net/~wireshark-dev/+archive/ubuntu/stable
Haжмите [ENTER] для продолжения или Ctrl-C, чтобы отменить добавление.
Сущ:1 http://ua.archive.ubuntu.com/ubuntu focal InRelease
Пол:2 http://ua.archive.ubuntu.com/ubuntu focal-updates InRelease [114 kB]
Пол:3 http://ua.archive.ubuntu.com/ubuntu focal-backports InRelease [108 kB]
Пол:4 http://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]
Пол:5 http://ppa.launchpad.net/wireshark-dev/stable/ubuntu focal InRelease [24,
4 kB]
Сущ:6 https://repo.skype.com/deb stable InRelease
Пол:7 http://ua.archive.ubuntu.com/ubuntu focal-updates/main i386 Packages [720
Пол:8 http://ua.archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [2.
086 kB]
Пол:9 http://ua.archive.ubuntu.com/ubuntu focal-updates/main Translation-en [37
1 kB]
Пол:10 http://ua.archive.ubuntu.com/ubuntu focal-updates/main amd64 DEP-11 Meta
Пол:37 http://ppa.launchpad.net/wireshark-dev/stable/ubuntu focal/main amd64 Pa
ckages [4.248 B]
Пол:38 http://ppa.launchpad.net/wireshark-dev/stable/ubuntu focal/main Translation-en [1.932 B]
Пол:39 http://security.ubuntu.com/ubuntu focal-security/main Translation-en [28
Пол:40 http://security.ubuntu.com/ubuntu focal-security/main amd64 DEP-11 Metad
ata [40,7 kB]
Пол:41 http://security.ubuntu.com/ubuntu focal-security/main amd64 c-n-f Metada
ta [11,1 kB]
Пол:42 http://security.ubuntu.com/ubuntu focal-security/restricted amd64 Packag
es [1.175 kB]
Пол:43 http://security.ubuntu.com/ubuntu focal-security/restricted Translation-
en [166 kB]
Пол:44 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages
[721 kB]
Пол:45 http://security.ubuntu.com/ubuntu focal-security/universe i386 Packages
[560 kB]
Пол:46 http://security.ubuntu.com/ubuntu focal-security/universe Translation-en
[132 kB]
Пол:47 http://security.ubuntu.com/ubuntu focal-security/universe amd64 DEP-11 M
etadata [77,3 kB]
Пол:48 http://security.ubuntu.com/ubuntu focal-security/universe amd64 c-n-f Me tadata [14,8 kB]
Пол:49 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 DEP-11
Metadata [2.464 B]
Получено 13,2 MB за 8c (1.570 kB/s)
Чтение списков пакетов… <u>Г</u>отово
ivan@ivan-VirtualBox:~$
```

2. Оновлюємо списки пакетів з репозиторіїв для оновлення пакетів:

```
ivan@ivan-VirtualBox:~$ sudo apt-get update

Cyщ:1 http://ua.archive.ubuntu.com/ubuntu focal InRelease

Cyщ:2 http://ua.archive.ubuntu.com/ubuntu focal-updates InRelease

Cyщ:3 http://ua.archive.ubuntu.com/ubuntu focal-backports InRelease

Cyщ:4 https://repo.skype.com/deb stable InRelease

Пол:5 http://security.ubuntu.com/ubuntu focal-security InRelease [114 kB]

Cyщ:6 http://ppa.launchpad.net/wireshark-dev/stable/ubuntu focal InRelease

Пол:7 http://security.ubuntu.com/ubuntu focal-security/main amd64 DEP-11 Metada

ta [40,8 kB]

Пол:8 http://security.ubuntu.com/ubuntu focal-security/universe amd64 DEP-11 Metadata [77,5 kB]

Пол:9 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 DEP-11

Metadata [2.464 B]

Получено 235 kB за 2c (106 kB/s)

Чтение списков пакетов... Готово

ivan@ivan-VirtualBox:~$ [
```

3. Завантажуємо wireshark:

```
ivan@ivan-VirtualBox:~$ sudo apt-get install wireshark
Чтение списков пакетов... Готово
Построение дерева зависимостей
Чтение информации о состоянии... Готово
Будут установлены следующие дополнительные пакеты:
  libdouble-conversion3 libminizip1 libpcre2-16-0 libqt5core5a libqt5dbus5
  libqt5gui5 libqt5multimedia5 libqt5multimedia5-plugins
  libqt5multimediagsttools5 libqt5multimediawidgets5 libqt5network5
  libqt5opengl5 libqt5printsupport5 libqt5svq5 libqt5widqets5 libsmi2ldbl
  libsnappy1v5 libspandsp2 libssh-gcrypt-4 libwireshark-data libwireshark15
  libwiretap12 libwsutil13 libxcb-xinerama0 libxcb-xinput0
  qt5-gtk-platformtheme qttranslations5-l10n wireshark-common wireshark-qt
Предлагаемые пакеты:
  qt5-image-formats-plugins qtwayland5 snmp-mibs-downloader geoipupdate
  geoip-database geoip-database-extra libjs-leaflet
  libjs-leaflet.markercluster wireshark-doc
Следующие НОВЫЕ пакеты будут установлены:
  libdouble-conversion3 libminizip1 libpcre2-16-0 libqt5core5a libqt5dbus5
  libqt5gui5 libqt5multimedia5 libqt5multimedia5-plugins
  libqt5multimediagsttools5 libqt5multimediawidgets5 libqt5network5
  libat5openal5 libat5printsupport5 libat5sva5 libat5widaets5 libsmi2ldbl
  libsnappy1v5 libspandsp2 libssh-gcrypt-4 libwireshark-data libwireshark15
  libwiretap12 libwsutil13 libxcb-xinerama0 libxcb-xinput0
  qt5-qtk-platformtheme qttranslations5-l10n wireshark wireshark-common
 wireshark-qt
Обновлено 0 пакетов, установлено 30 новых пакетов, для удаления отмечено 0 паке
тов, и 483 пакетов не обновлено.
Необходимо скачать 35,3 МВ архивов.
После данной операции объём занятого дискового пространства возрастёт на 177 MB
```

Настраивается wireshark-common

Dumpcap can be installed in a way that allows members of the "wireshark" system group to capture packets. This is recommended over the alternative of running Wireshark/Tshark directly as root, because less of the code will run with elevated privileges.

For more detailed information please see /usr/share/doc/wireshark-common/README.Debian.gz once the package is installed.

Enabling this feature may be a security risk, so it is disabled by default. If in doubt, it is suggested to leave it disabled.

Should non-superusers be able to capture packets?

<Да>

awidgets5 amd64 5.12.8-Oubuntu1 [36,8 kB]

<Нет>

Хотите продолжить? [Д/н] Ү Пол:1 http://ua.archive.ubuntu.com/ubuntu focal/universe amd64 libdouble-conver sion3 amd64 3.1.5-4ubuntu1 [37,9 kB] Пол:2 http://ua.archive.ubuntu.com/ubuntu focal/main amd64 libpcre2-16-0 amd64 10.34-7 [181 kB] Пол:3 http://ua.archive.ubuntu.com/ubuntu focal-updates/universe amd64 libqt5core5a amd64 5.12.8+dfsg-0ubuntu2.1 [2.006 kB] Пол:4 http://ua.archive.ubuntu.com/ubuntu focal-updates/universe amd64 libqt5db us5 amd64 5.12.8+dfsg-0ubuntu2.1 [208 kB] Пол:5 http://ua.archive.ubuntu.com/ubuntu focal-updates/universe amd64 libqt5ne twork5 amd64 5.12.8+dfsg-0ubuntu2.1 [673 kB] Пол:6 http://ua.archive.ubuntu.com/ubuntu focal/main amd64 libxcb-xinerama0 amd 64 1.14-2 [5.260 B] Пол:7 http://ua.archive.ubuntu.com/ubuntu focal/main amd64 libxcb-xinput0 amd64 1.14-2 [29,3 kB] Пол:8 http://ua.archive.ubuntu.com/ubuntu focal-updates/universe amd64 libqt5gu i5 amd64 5.12.8+dfsg-Oubuntu2.1 [2.971 kB] Пол:9 http://ua.archive.ubuntu.com/ubuntu focal-updates/universe amd64 libqt5wi dgets5 amd64 5.12.8+dfsg-Oubuntu2.1 [2.295 kB] Пол:10 http://ua.archive.ubuntu.com/ubuntu focal/universe amd64 libqt5svg5 amd6 4 5.12.8-0ubuntu1 [131 kB] Пол:11 http://ua.archive.ubuntu.com/ubuntu focal/universe amd64 libminizip1 amd 64 1.1-8build1 [20,2 kB] Пол:12 http://ua.archive.ubuntu.com/ubuntu focal/universe amd64 libqt5multimedi a5 amd64 5.12.8-0ubuntu1 [283 kB] Пол:13 http://ua.archive.ubuntu.com/ubuntu focal-updates/universe amd64 libqt5o pengl5 amd64 5.12.8+dfsg-Oubuntu2.1 [136 kB]
Пол:14 http://ua.archive.ubuntu.com/ubuntu focal/universe amd64 libqt5multimedi

```
Haстраивается пакет libqt5core5a:amd64 (5.12.8+dfsq-0ubuntu2.1) .
Настраивается пакет libwireshark-data (3.6.5-1~ubuntu20.04.0+wiresharkdevstable
Hастраивается пакет libqt5dbus5:amd64 (5.12.8+dfsg-0ubuntu2.1) ...
Hастраивается пакет libqt5network5:amd64 (5.12.8+dfsg-0ubuntu2.1) ...
Настраивается пакет libwireshark15:amd64 (3.6.5-1~ubuntu20.04.0+wiresharkdevsta
Настраивается пакет wireshark-common (3.6.5-1~ubuntu20.04.0+wiresharkdevstable)
Hастраивается пакет libqt5gui5:amd64 (5.12.8+dfsg-0ubuntu2.1) ...
Hастраивается пакет libqt5widgets5:amd64 (5.12.8+dfsg-Oubuntu2.1) ...
Настраивается пакет qt5-gtk-platformtheme:amd64 (5.12.8+dfsg-0ubuntu2.1) ...
Настраивается пакет libqt5multimedia5:amd64 (5.12.8-Oubuntu1) ...
Настраивается пакет libqt5printsupport5:amd64 (5.12.8+dfsq-0ubuntu2.1) ...
Hастраивается пакет libqt5opengl5:amd64 (5.12.8+dfsg-Oubuntu2.1) ...
Hастраивается пакет libqt5svg5:amd64 (5.12.8-Oubuntu1) ...
Hастраивается пакет libqt5multimediawidgets5:amd64 (5.12.8-Oubuntu1) ...
Настраивается пакет wireshark-qt (3.6.5-1~ubuntu20.04.0+wiresharkdevstable) …
Hастраивается пакет libqt5multimediagsttools5:amd64 (5.12.8-0ubuntu1) ...
Настраивается пакет libqt5multimedia5-plugins:amd64 (5.12.8-0ubuntu1)
Настраивается пакет wireshark (3.6.5-1~ubuntu20.04.0+wiresharkdevstable) …
Обрабатываются триггеры для libc-bin (2.31-Oubuntu9) ...
Обрабатываются триггеры для man-db (2.9.1-1)
Обрабатываются триггеры для shared-mime-info (1.15-1) ..
Обрабатываются триггеры для desktop-file-utils (0.24-1ubuntu3) ...
Обрабатываются триггеры для mime-support (3.64ubuntu1) …
Обрабатываются триггеры для hicolor-icon-theme (0.17-2)
Обрабатываются триггеры для gnome-menus (3.36.0-1ubuntu1) ...
ivan@ivan-VirtualBox:~$
```

4. Запускаємо wireshark:

```
ivan@ivan-VirtualBox:~$ sudo wireshark
  ** (wireshark:6977) 16:34:04.043641 [GUI WARNING] -- QStandardPaths: XDG_RUNTI
ME_DIR not set, defaulting to '/tmp/runtime-root'
```


Для захоплення пакетів, обераємо бажаний інтерфейс та натискаємо на піктограму Почати захоплення пакетів.

В іншому терміналі вводимо \$ ping google.com та відстежуємо трафік, який передається через обраний інтерфейс — захоплення пакетів програмою Wireshark:

Тепер можна виділити будь-який пакет та переглянути детальну інформацію:

Щоб припинити захоплення пакетів, необхідно натиснути на червону піктограму:

Приклад фільтрів по протоколу:

Виконання лабораторного завдання:

Дану лабораторну роботу я виконував з віртуальної операційної системи, тому для початку потрібно приєднати її напряму до WI-FI модуля:

Виводимо arp таблицю:

```
ivan@ivan-VirtualBox:~$ arp -a
_gateway (192.168.0.1) в ac:84:c6:ac:3d:05 [ether] на enp0s3
ivan@ivan-VirtualBox:~$
```

Очищаємо таблицю та знову виводимо її:

```
ivan@ivan-VirtualBox:~$ sudo arp -d 192.168.0.1
ivan@ivan-VirtualBox:~$ arp -a
ivan@ivan-VirtualBox:~$
```

Таблиця пуста.

Далі запускаємо Wireshark з іншого терміналу:

```
ivan@ivan-VirtualBox:~$ sudo wireshark
[sudo] пароль для ivan:
** (wireshark:2366) 14:48:02.042993 [GUI WARNING] -- QStandardPaths: XDG_RUNTI
ME_DIR not set, defaulting to '/tmp/runtime-root'
```

Обираємо захоплення пакетів із потрібного інтерфейсу:

Інформація мережевих налаштувань телефону:

IP = 192.168.0.192 MAC = 2a:bc:b0:df:c1:60 Пінгуємо смартфон:

```
ivan@ivan-VirtualBox:~$ ping 192.168.0.192
PING 192.168.0.192 (192.168.0.192) 56(84) bytes of data.
64 bytes from 192.168.0.192: icmp_seq=1 ttl=64 time=115 ms
64 bytes from 192.168.0.192: icmp_seq=2 ttl=64 time=23.4 ms
64 bytes from 192.168.0.192: icmp_seq=3 ttl=64 time=44.0 ms
64 bytes from 192.168.0.192: icmp_seq=4 ttl=64 time=67.3 ms
64 bytes from 192.168.0.192: icmp_seq=5 ttl=64 time=89.8 ms
64 bytes from 192.168.0.192: icmp_seq=6 ttl=64 time=112 ms
64 bytes from 192.168.0.192: icmp_seq=7 ttl=64 time=31.5 ms
64 bytes from 192.168.0.192: icmp_seq=8 ttl=64 time=54.4 ms
64 bytes from 192.168.0.192: icmp_seq=9 ttl=64 time=73.5 ms
```

Переглядаємо дані в Wireshark:

Time	Source	Destination	Protocol	Length Info
41.968182601	Tp-LinkT_ac:3d:05	Broadcast	ARP	60 Who has 192.168.0.133? Tell
42.296560505	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request id=0x00
42.317873701	PcsCompu_52:25:98	2a:bc:b0:df:c1:60	ARP	42 Who has 192.168.0.192? Tell
42.374105032	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply id=0x00
42.374105396	2a:bc:b0:df:c1:60	PcsCompu_52:25:98	ARP	60 192.168.0.192 is at 2a:bc:b0
42.656138558	Tp-LinkT_ac:3d:05	Broadcast	ARP	60 Who has 192.168.0.177? Tell
42.656157421	PcsCompu_52:25:98	Tp-LinkT_ac:3d:05	ARP	42 192.168.0.177 is at 08:00:2
43.297044539	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request id=0x00
43.395453019	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply id=0x00
43.492355911	Tp-LinkT_ac:3d:05	Broadcast	ARP	60 Who has 192.168.0.144? Tell
44.297240578	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request id=0x0
44.378299730	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply id=0x00
45.297600311	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request id=0x00
45.305020290	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply id=0x00
45.539048335	Tp-LinkT_ac:3d:05	Broadcast	ARP	60 Who has 192.168.0.144? Tell
46.299181657	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request id=0x00
46.389205838	192.168.0.133	239.255.255.250	SSDP	217 M-SEARCH * HTTP/1.1

▶ Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface enp0s3, id 0
▶ Ethernet II, Src: Tp-LinkT_ac:3d:05 (ac:84:c6:ac:3d:05), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
▶ Address Resolution Protocol (request)

На скріншоті видно що у виділеному рядку комп'ютер надсилає запит, щоб дізнатися MAC-адресу смартфона. В наступному ми отримуємо відповідь від смартфона.

Виводимо arp таблицю:

```
ivan@ivan-VirtualBox:~$ arp -a
_gateway (192.168.0.1) в ac:84:c6:ac:3d:05 [ether] на enp0s3
? (192.168.0.192) в 2a:bc:b0:df:c1:60 [ether] на enp0s3
ivan@ivan-VirtualBox:~$
```

З'явився рядок з даними смартфона.

Виконання QА завдання:

1. Переконатися в отриманні МАС-адреси по відомій ІР-адресі.

IP = 192.168.0.192 MAC = 2a:bc:b0:df:c1:60

```
ivan@ivan-VirtualBox:~$ arp -a
_gateway (192.168.0.1) в ac:84:c6:ac:3d:05 [ether] на enp0s3
? (192.168.0.192) в 2a:bc:b0:df:c1:60 [ether] на enp0s3
ivan@ivan-VirtualBox:~$
```

Дані співпадають.

2. <u>Переконатися в тому, що агр-таблиця оновлюється при отриманні агр-</u>reply.

До пінгування сматфону таблиця була пуста, а після пінгування з'явились записи (arp-reply) з'явились записи із отриманою MAC-адресою.

3. Додати статичний запис у агр-таблицю та після цього пропінгувати інший пристрій, при цьому відстежувати трафік у wireshark.

Додаємо статичний запис:

```
ivan@ivan-VirtualBox:~$ sudo arp -s 192.168.0.192 2a:bc:b0:df:c1:60
[sudo] пароль для ivan:
ivan@ivan-VirtualBox:~$ arp -a
_gateway (192.168.0.1) в ac:84:c6:ac:3d:05 [ether] на enp0s3
? (192.168.0.192) в 2a:bc:b0:df:c1:60 [ether] PERM на enp0s3
ivan@ivan-VirtualBox:~$
```

Пінгуємо смартфон:

```
ivan@ivan-VirtualBox:~S ping 192.168.0.192
PING 192.168.0.192 (192.168.0.192) 56(84) bytes of data.
64 bytes from 192.168.0.192: icmp_seq=1 ttl=64 time=181 ms
64 bytes from 192.168.0.192: icmp_seq=2 ttl=64 time=42.4 ms
64 bytes from 192.168.0.192: icmp_seq=3 ttl=64 time=225 ms
64 bytes from 192.168.0.192: icmp_seq=4 ttl=64 time=173 ms
64 bytes from 192.168.0.192: icmp seq=5 ttl=64 time=9.55 ms
64 bytes from 192.168.0.192: icmp seq=6 ttl=64 time=35.5 ms
64 bytes from 192.168.0.192: icmp seq=7 ttl=64 time=52.5 ms
64 bytes from 192.168.0.192: icmp_seq=8 ttl=64 time=77.4 ms
64 bytes from 192.168.0.192: icmp_seq=9 ttl=64 time=94.7 ms
64 bytes from 192.168.0.192: icmp_seq=10 ttl=64 time=177 ms
64 bytes from 192.168.0.192: icmp seq=11 ttl=64 time=40.8 ms
64 bytes from 192.168.0.192: icmp seq=12 ttl=64 time=72.3 ms
64 bytes from 192.168.0.192: icmp_seq=13 ttl=64 time=186 ms
64 bytes from 192.168.0.192: icmp_seq=14 ttl=64 time=103 ms
64 bytes from 192.168.0.192: icmp_seq=15 ttl=64 time=28.2 ms
64 bytes from 192.168.0.192: icmp_seq=16 ttl=64 time=41.4 ms
64 bytes from 192.168.0.192: icmp_seq=17 ttl=64 time=119 ms
64 bytes from 192.168.0.192: icmp seq=18 ttl=64 time=135 ms
64 bytes from 192.168.0.192: icmp seq=19 ttl=64 time=163 ms
64 bytes from 192.168.0.192: icmp seq=20 ttl=64 time=599 ms
64 bytes from 192.168.0.192: icmp_seq=21 ttl=64 time=13.8 ms
64 bytes from 192.168.0.192: icmp_seq=22 ttl=64 time=48.2 ms
```

No	. Time	Source	Destination	Protocol	Length Info
_+	1 0.000000000	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
-	2 0.181182526	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	3 0.999684212	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
	4 1.042043775	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	5 2.000364798	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
	6 2.225385388	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	7 3.001321553	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
	8 3.174029234	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	9 4.003734093	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
	10 4.013262200	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	11 5.005615441	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
	12 5.041086896	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	13 5.317433688	2a:bc:b0:df:c1:60	Broadcast	ARP	60 Who has 192.168.0.177
	14 5.317449400	PcsCompu_52:25:98	2a:bc:b0:df:c1:60	ARP	42 192.168.0.177 is at (
	15 6.007547287	192.168.0.177	192.168.0.192	ICMP	98 Echo (ping) request
L	16 6.060068093	192.168.0.192	192.168.0.177	ICMP	98 Echo (ping) reply
	17 6.763533507	192.168.0.1	192.168.0.177	NBNS	92 Name query NBSTAT *<6
4					<u></u>

- ▶ Frame 1: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface enp0s3, id 0
 ▶ Ethernet II, Src: PcsCompu_52:25:98 (08:00:27:52:25:98), Dst: 2a:bc:b0:df:c1:60 (2a:bc:b0:df:c1:6
- ▶ Internet Protocol Version 4, Src: 192.168.0.177, Dst: 192.168.0.192
- Internet Control Message Protocol

Test Case за варіантом:

Варіант: $17 \mod 3 = 2$ (Додати статичний запис у агр-таблицю та після цього пропінгувати інший пристрій, при цьому відстежувати трафік у wireshark.)

Setup Description:

PC ----- WI-FI ----- Mobiletelefone(Mb)

PC: 192.168.0.1

Mb: 192.168.0.192

Steps:

1. Clean arp table:

arp -d <for PC of Mb>

ER: verify that value for Mb is absent

- 2. Run Wireshark for Wi-Fi
- 3. Run ping from PC to Mb

ER: ping is running

4. Verify that ARP table with arp -a command

MAC was resolve by ARP protocol for Mb and appeared in ARP table

- 5. Verify that in Wireshark ARP request and ARP reply are present for IP and MAC of Mb
- 6. Add static entry to ARP table with arp -s command
- 7. Verify that ARP table with arp -a command
- 8. Run ping from PC to Mb
- 9. track traffic in Wireshark

Expected Results

A static entry with the smartphone IP address and its MAC address was added to the ARP table. Pinging another device is in progress.

Actual Result

The ARP table has been updated and a static entry with the smartphone IP address and its MAC address has been added to it. Pinging another device is in progress.

Status

The test was successful.

Висновки: Під час виконання даної лабораторної роботи було напрацьовано навички налаштовувати мережне оточення для тестування вбудованих систем та пристроїв ІоТ, також використовувати утиліту wireshark для аналізу трафіка в комп'ютерній мережі. Протестувати мережне оточення на канальному рівні моделі OSI.