1 Introduction to Rings

1.1 Basic Definitions and Examples

Definition.

- 1. A ring R is a set together with two binary operations + and \times (called addition and multiplication) satisfying the following axioms:
 - (a) (R, +) is an abelian group,
 - (b) \times is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$,
 - (c) the distributive laws hold in R: for all $a, b, c \in R$,

$$(a+b) \times c = (a \times c) + (b \times c)$$
 and $a \times (b+c) = (a \times b) + (a \times c)$.

- 2. The ring R is *commutative* if multiplication is commutative.
- 3. The ring R is said to have an *identity* (or *contain a 1*) if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a$$
 for all $a \in R$.

Note.

- 1. We shall write ab rather than $a \times b$ for $a, b \in R$.
- 2. The additive identity of R will be denoted by 0
- 3. The additive of an element a will be denoted -a.

Note. $R = \{0\}$ is called the *zero ring*, denoted R = 0. R = 0 is the only ring where 1 = 0. We will often exclude this ring by imposing the condition $1 \neq 0$.

Definition. A ring R with identity $1 \neq 0$, is called a *division ring* (or *skew field*) if every nonzero element $a \in R$ has a multiplicative inverse, i.e., there exists $b \in R$ such that ab = ba = 1. A commutative division ring is called a *field*.

Proposition 1. Let R be a ring. Then

- 1. 0a = a0 = 0 for all $a \in R$.
- 2. (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- 3. (-a)(-b) = ab for all $a, b \in R$.
- 4. If R has an identity 1, then the identity is unique and -a = -1(a).

Definition. Let R be a ring

- 1. A nonzero element a of R is called a zero divisor if there is a nonzero element b of R such that either ab = 0 or ba = 0.
- 2. Assume R has an identity $1 \neq 0$. An element u of R is called a *unit* in R if there is some v in R such that vu = uv = 1. The set of units in R is denoted R^{\times} .

Note.

- 1. R^{\times} forms a group under multiplication and will be referred to as the *group of units* of R.
- 2. Using the above terminology a field is a commutative ring F with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $F^{\times} = F \{0\}$.

Definition. A commutative ring with identity $1 \neq 0$ is called an *integral domain* if it has no zero divisors.

Proposition 2. Assume a, b and c are elements of any ring with a not a zero divisor. If ab = ac then either a = 0 or b = c (i.e., if $a \neq 0$ we can cancel the a's). In particular, if a, b, c are elements in an integral domain and ab = ac, then either a = 0 or b = c.

Corollary 3. Any finite integral domain is a field.

Definition. A subring of the ring R is a subgroup of R that is closed under multiplication.

Note. To show that a subset of a ring R is a subring it is enough to show that it is nonempty and closed under subtraction and under multiplication.

1.2 Examples: Polynomial Rings, Matrix Rings, and Group Rings

Proposition 4. Let R be an integral domain and let p(x), q(x) be nonzero elements of R[x]. Then

- 1. $\operatorname{degree} p(x)q(x) = \operatorname{degree} p(x) + \operatorname{degree} q(x)$,
- 2. The units of R[x] are just the units of R,
- 3. R[x] is an integral domain.

1.3 Ring Homomorphisms and Quotient Rings

Definition. Let R and S be rings.

- 1. A ring homomorphism is a map $\varphi \colon R \to S$ satisfying
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$ (so φ is a group homomorphism on the additive groups) and
 - (b) $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.
- 2. The kernel of the ring homomorphism φ , denoted $\ker \varphi$, is the set of elements of R that map to 0 in S. (i.e., the kernel of φ viewed as a homomorphism of additive groups).
- 3. A bijective ring homomorphism is called an *isomorphism*.

Proposition 5. Let R and S be rings and let $\varphi \colon R \to S$ be a homomorphism.

1. The image of φ is a subring of S.

2. The kernel of φ is a subring of R. Furthermore, if $\alpha \in \ker \varphi$ then $r\alpha$ and $\alpha r \in \ker \varphi$ for every $r \in R$, i.e., $\ker \varphi$ is closed under multiplication by elements from R.

Definition. Let R be a ring, let I be a subset of R and let $r \in R$.

- 1. $rI = \{ra \mid a \in I\}$ and $Ir = \{ar \mid a \in I\}$.
- 2. A subset I of R is a left Ideal of R if
 - (a) I is a subring of R, and
 - (b) I is closed under left multiplication by elements of R, i.e., $rI \subseteq I$ for all $r \in R$.

Similarly I is a right ideal if (a) holds and in place of (b) one has

- (b)' I is closed under right multiplication by elements from R, i.e., $Ir \subseteq I$ for all $r \in R$.
- 3. A subset I that is both a left ideal and a right ideal is called an *ideal* (or, for added emphasis, a *two-sided ideal*) of R.

Proposition 6. Let R be a ring and let I be an ideal of R. Then the (additive) quotient group R/I is a ring under the binary operations:

$$(r+I) + (s+I) = (r+s) + I$$
 and $(r+I) \times (s+I) = (rs) + I$

for all $r, s \in R$. Conversely, if I is any subgroup such that the above operations are well defined, then I is an ideal of R.

Definition. When I is an ideal of R the ring R/I with the operations in the previous proposition us called the *quotient ring* of R by I.

- **Theorem 7.** 1. (The First Isomorphism Theorem for Rings) If $\varphi \colon R \to S$ is a homomorphism of rings, then the kernel of φ is an ideal of R, the image of φ is a subring of S and $R/\ker \varphi$ is isomorphic as a ring to $\varphi(R)$.
 - 2. If I is any ideal of R, then the map

$$R \to R/I$$
 defined by $r \mapsto r + I$

is a surjective ring homomorphism with kernel I (this homomorphism is called the *natural projection* of R onto R/I). Thus every ideal is the kernel of a ring homomorphism and vice versa.

Theorem 8. Let R be a ring.

- 1. (The Second Isomorphism Theorem for Rings) Let A be a subring and let B be an ideal of R. Then $A + B = \{a + b \mid a \in A, b \in B\}$ is a subring of R, $A \cap B$ is an ideal of A and $(A + B)/B \cong A/(A \cap B)$.
- 2. (The Third Isomorphism Theorem for Rings) Let I and J be ideals of R with $I \subseteq J$. Then J/I is an ideal of R/I and $(R/I)/(J/I) \cong R/J$.

3. (The Fourth or Lattice Isomorphism Theorem for Rings) Let I be an ideal of R. The correspondence $A \leftrightarrow A/I$ is an inclusion preserving bijective between the set of subrings A of R that contain I and the set of subrings of R/I. Furthermore, A (a subring containing I) is an ideal of R if and only if A/I is an ideal of R/I.

Definition. Let I and J be ideals of R.

- 1. Define the sum of I and J by $I + J = \{a + b \mid a \in I, b \in J\}$.
- 2. Define the *product* of I and J, denoted by IJ, to be the set of all finite sums of elements of the form ab with $a \in I$ and $b \in J$.
- 3. For any $n \geq 1$, define the n^{th} power of I, denoted I^n , to be the set consisting of all finite sums of elements of the form $a_1 a_2 \cdots a_n$ with $a_i \in I$ for all i. Equivalently, I^n is defined inductively by defining $I^1 = I$ and $I^n = II^{n-1}$ for $n = 2, 3, \ldots$

1.4 Properties of Ideals

Throughout this section R is a ring with identity $1 \neq 0$.

Definition.