Лекшия 2

1.1.4. Регистры состояния и управления

В микропроцессор включены несколько регистров (см. рис. 1.1.4), которые постоянно содержат информацию о состоянии как самого микропроцессора, так и программы, команды которой в данный момент загружены на конвейер. К этим регистрам относятся:

- 1. регистр флагов eflags/flags;
- 2. регистр указателя команды еір/ір.

Используя эти регистры, можно получать информацию о результатах выполнения команд и влиять на состояние самого микропроцессора. Рассмотрим подробнее назначение и содержимое этих регистров:

eflags/flags (flag register) — регистр флагов. Разрядность eflags/flags — 32/16 бит. Отдельные биты данного регистра имеют определенное функциональное назначение и называются флагами. Младшая часть этого регистра полностью аналогична регистру flags для i8086.

Рис. 1.1.4. Регистр флагов

Таблина

Назначение бит регистра флагов

Мнемоника	Флаг	№ бита	Содержание и назначение
флага		в eflags	
CF	Флаг переноса	0	1 — указывает на переполнение старшего бита при
	(Carry Flag);		арифметических командах. Старшим является 7, 15,
	Переполнение		31-й бит в зависимости от размерности операнда
PF	Флаг чётности	2	1 — 8 младших разрядов (только для 8 младших
	(Parity Flag)		разрядов) результата содержат четное число единиц
AF	Флаг коррекции	4	1- если арифметическая операция производит перенос
	(Adjust Flag)		или заём в/из 3-й бит результата, иначе - сбрасывается.
			Этот флаг используется для двоично-кодированной
			десятичной (BCD - Binary-Coded Decimal) арифметики
ZF	Флаг нуля (Zero	6	1 — результат нулевой;
	Flag)		0 — результат ненулевой
SF	Флаг знака	7	Отражает состояние старшего бита результата (биты 7,
	(Sign Flag)		15, 31 для 8, 16, 32-разрядных операндов соот-но):
			1 — старший бит результата равен 1;
			0 — старший бит результата равен 0
TF	Флаг ловушки	8	1 - то процессор использует покомандную отладку
	(Trap Flag)		текущей программы;
			0 - программа выполняется обычным образом
IF	Флаг	9	1 - то в ответ на IRQ процессор генерирует

	разрешения прерываний (Interrupt enable Flag)		прерывания; 0 - процессор не отвечает на них (но не игнорирует)
DF	Флаг направления (Direction Flag)	10	1 - строковые команды обрабатывают строки данных, переходя от младших адресов к старшим; 0 - то в обратном направлении
OF	Флаг переполнения (Overflow Flag)	11	1 — в результате операции происходит перенос (заем) в(из) старшего, знакового бита результата (биты 7, 15 или 31 для 8, 16 или 32-разрядных операндов соответственно); Флаги состояния используются командами целочисленной арифметики трёх типов. При переполнении, индикатором является: 1. для знаковой арифметики - флаг OF , 2. для беззнаковой арифметики - флаг CF , 3. для ВСD-арифметики - флаг AF
IOPL	Уровень Привилегий ввода-вывода (Input/Output Privilege Level)	12, 13	Используется в защищенном режиме работы микропроцессора для контроля доступа к командам ввода-вывода в зависимости от привилегированности задачи
NT	Флаг вложенной задачи (Nested Task flag)	14	1 - текущая задача является вызванной из предыдущей; 0 - текущая задача либо <i>HE</i> является вызванной из предыдущей
RF	Флаг возобновления (Resume Flag)	16	Управляет ответом процессора на исключение отладки.
VM	Флаг режима виртуального 8086 (Virtual-8086 Mode flag)	17	1 - процессор переходит в режим виртуального 8086; 0 - возвращается в защищённый режим
AC	Флаг проверки выравнивания (Alignment Check flag)	18	1- заставляет процессор проверять выравнивание при доступе к памяти и в случае невыравненного доступа генерировать исключение
VIF	Флаг виртуальных прерываний (Virtual Interrupt)	19	Это виртуальный образ флага IF, используется совместно с флагом VIP при включённом расширении режима виртуального 8086
VIP	Флаг ожидания виртуального прерывания (Virtual Interrupt Pending flag)	20	Устанавливается, когда возникает прерывание. Процессором только считывается и используется совместно с флагом VIF; изменяется только программно
ID	Флаг идентификации (IDentification flag)	21	Если программа смогла установить и сбросить этот флаг, то это значит, что процессор может выполнить команду CPUID

Десятичное значение 42936

Преобразование десятичного формата в шестнадцатеричный

	. .	Шес	Остаток	Частное
(младшая цифра)	8	8	2683	42936 / 16
	В	11	167	2683 / 16
	7	7	10	167 / 16
(старшая цифра)	Α	10	0	10 / 16

Преобразование шестнадцатеричного формата в десятичный

Первая цифра: А (10) Умножить на 16 <u>ї</u>	10 <u>*16</u> 160
Прибавить следующую цифру, 7	+7 167
Умножить на 16	*16 2672
Прибавить следующую цифру, В (11)	<u>+11</u>
Умножить на 16	2683 *16
Прибавить следующую цифру, 8 Десятичное значение	42928 <u>+8</u> 42936

1.2 Особенности выполнения команд

Шина МП 8086 состоит из трех шин: информационной (16 бит), адресной (20 бит) и управляющей, по которой передаются сигналы управления. Выполнение программы заключается в повторении 5-ти этапов. Эти этапы выполняются последовательно.

- 1. выбор служебной машинной команды из памяти;
- 2. расшифровка команды;
- 3. чтение операндов из памяти (если необходимо);
- 4. выполнение команды;
- 5. запись операндов в память (если необходимо).

Для ускорения выполнения команд они реализуются двумя устройствами: интерфейсом шины (Bus Interface Unit) и операционным блоком (Execution Unit) (рис. 1.2.1.). Первое устройство считывает команду и осуществляет передачу данных. Второй - лишь выполняет команды. Интерфейс шины может выбирать следующую команду в то время, как операционное устройство выполняет раньше выбранную.

Рис. 1.2.1. Операционное устройство и шинный интерфейс.

Процессор имеет внутреннюю память, которая называется *очередью команд*. Здесь сохраняется до 4 (в 8086 - до 6) предварительно выбранных из потока команд-байтов. То есть, реализуется своеобразный конвеер команд. Как же формируется абсолютный адрес команды?

В регистре указателя команд IP записан исполнительный адрес, а в регистре сегмента кода CS - адрес начала сегмента. Абсолютный адрес равняется сумме CS+IP и записывается в 20 бит, в то время как и CS и IP имеют по 16.

Принято, что сегмент должен начинаться не с любого адреса, а кратного 16 бит. Область памяти 16 бит называется *параграфом*. Иначе говоря, сегмент выравнивается по границе параграфа. Следовательно, сегмент может начинаться лишь с адресов 16, 32, 48. В двоичной системе это будет:

00000 1000000 1100000

Как видим, при этом последние 4 биты будут нулевыми. Для хранения они лишние и их отбрасывают. То есть, в 16-ти разрядных регистрах сегментов фактически сохраняется 20-ти разрядный адрес, но без 4 нулей справа.

При вычислении абсолютного адреса к содержанию регистра CS дописывают 4 нуля справа, а к содержанию IP - 4 нуля налево и полученные коды добавляют.

1.2.1. Реализация прерываний

Считывание символа и запись к памяти длится несколько микросекунд. Если ЦП будет лишь принимать эти символы, то большинство времени он будет простаивать. Потому, закончив обработку символа, ЦП переходит к выполнению другой программы. Каждый раз, как нажимается клавиша, устройство подает запрос на прерывание. ЦП перерывает выполнение программы и переходит к выполнению процедуры обработки для прерываний для клавиатуры. Каждая такая процедура является определенной программой, записанной в памяти.

Для того, чтобы к ней перейти, нужно знать ее начальный адрес. Этот начальный адрес и записан в так называемом *векторе прерывания*. Каждое из возможных 256 прерываний имеет свой вектор прерывания в памяти. Вектор прерываний состоит из двух слов: **CS:IP**. Записанные в начальных адресах от 0 к 03FFH (1024 байта).

Особенности 32-разрядных процессоров

В процессоре i80286 адресная шина состояла из 24 битов, что дало возможность адресовать ло 16М памяти. Но это возможно сделать в т. зв. *защищенном режиме*.

В процессоре i486 32-разрядное слово, которое дает возможность адресовать $2^{32} = 4^{*230} = 4$ Гбайт. При сегментной организации памяти размер сегмента и будет таким. Кроме того, есть еще и страничная организация памяти. Размер страницы - 4 Кб. Такой способ позволяет использовать виртуальную память, объем которой больше физической, около 4 Тбайт.

Эти процессоры должны возможность реализовать многозначительные вычисления. Потому их структура сложнее.

Для программиста процессор состоит из 32 регистров, 16 из которых является системными, а остальные - пользователя.

Рассмотрим особенности регистров пользователя.

Регистры общего назначения: 32-разрядные. Имя 32-разрядного начинается буквой E (extended): **EAX, EBX, ECX, EDX**. Младшая половина просто **AX**. Младшая половина доступна и может делиться пополам. Старшая половина отдельно недоступна.

Регистры-указатели - такие же имена: **ESP**, **EBP**, **ESI**, **EDI**. Младшая половина - SP.

Сегментные регистры - 16-разрядны: **CS, SS, DS, ES** и есть еще 2 дополнительных -- **GS, FS**. То есть, 6 регистров.

Регистры управления: 32-разрядные -- EFLAGS и EIP, а младшая часть - FLAGS и IP.

