YS83B08/YS84B08/YS84C12

数据手册(版本 V1.2.3)

8位 MTP CMOS 单片机

1.0 器件概述

◆ 存储器:

MTP 空间: (4K+32)*14 位。可经受 1000 次写操作。 SRAM 空间: 256+128(程序可选)字节。

◆8级深硬件堆栈

◆ I/O 引脚配置

- 26 个双向输入/输出 IO 口。
- PA、PB、PD 端口独立的可编程弱上拉。
- PC 端口独立的可编程弱上、下拉。
- PA、PB 端口引脚电平变化中断唤醒。
- 高灌 (TYP: 30mA) /高拉 (TYP: 20mA) 电流能力(PA3 除外), 可直接驱动 LED。

◆ 定时器

Timer0: 带 8 位可编程预分频器的 8 位定时器/计数器

Timer1: - 带有预分频器的 16 位定时器/计数器。

- 外部 Timer1 门控(计数使能)。
- 如果选择了 INTOSC 模式,或者在 LP 模式下可选 择使用 OSC1 和 OSC2 作为 Timer1 的振荡器。

◆ 2 路 PWM 模块

-2 路 10bit 高分辨率 PWM 输出。

◆中断源

- Timer0、Timer1 中断。
- PWM 中断。
- PA、PB 电平变化中断。
- 触摸中断。
- I2C 中断。
- 两路外部中断 (INTO、INT1)。
- AD 转换完成中断。

◆ 8 通道 12 位 ADC

最多 8 个模拟输入通道。ADC 参考电压可用软件选择为内部或外部参考。当选择内部参考时,可通过配置寄存器选择片内1.024V、2.048V或者 VDD 作为参考电压。

◆ 15 通道 Touch KEY

可通过软件单独对每路调节灵敏度。

注:下表根据不同封装用"/"分隔列出资源数量

◆ 双时钟系统

外部高速时钟: 高达 20MHz。 内部高速时钟: 16MHz RC

> Fcpu 支持 16Mhz(VDD 需大于 4.5V)、 8MHz、4MHz、2MHZ、1MHZ、500KHz、

250KHz。

内部低速时钟: RC 振荡器 31KHz。

◆ 高性能的 RISCCPU

仅需学习 35 条指令。 除跳转指令外的所有指令都是单周期的。 直接、间接和相对寻址模式。

◆ 特殊特性

- 高精度内部振荡器,出厂时精度校准为+/-1%。
- 可用软件选择的频率范围为 250kHz 到 16MHz(。
- 软件可选的 31kHz 内部振荡器。
- 节能的休眠模式。
- 宽工作电压范围 (2.2V 到 5.5V)。
- 工业级温度范围。
- 上电复位 (Powe-onReset, POR)。
- 上电延时定时器(Power-upTimer, PWRT)和振荡器起振定时器(OscillatorStart-upTimer, OST)。
- 带软件控制选择的 LVR 低电压侦测选择(侦测电压有 1.9V、2.5V、3.8V 可选)。
- 带片上振荡器 (振荡器频率可由软件选择,当预分频比最大时其标称值为 268 秒)并且可软件使能的增强型低电流看门狗定时器 (WatchdogTimer, WDT)。
- 带上拉的主复位,可复用为输入引脚。
- 可编程代码保护。

◆ 低功耗特性

待机电流:

- 电压为 5V 时,典型值 1uA (无触摸)。

工作电流:

- 频率为 1MHz、电压为 3.3V 时,典型值为 600uA。
- 频率为 31kHz、电压为 3.3V 时,典型值为 400uA。

◆ 通过两个引脚(PA0, PA1)实现在线串行编程和调试

器件	ROM	RAM	I/O	12位A/D转换器	Timer	PWM	Touch	封装
YS83B08	4096	256+128	14	_	2	_	10	SOP16
YS84B08	4096	256+128	14/18/21	2/4/8	2	1/2/2	9/9/11	SOP16/SOP20(SSOP20) /SOP24(SSOP24)
YS84C12	4096	256+128	21/25	6/8	2	2/2	11/15	SOP24(SSOP24)/SOP28 (SSOP28)

目录

1.0 器件概述	1
1.1 系统结构图	4
	5
1.3 引脚说明	8
2.0 存储器构成	9
21 程序存储器构成	9
	10
	21
	25
	25
	30
	30
	31
	31
	40
	41
	43
	46
	48
	49
	51

6.5 其它引脚功能	51
6.6 PORTA 引脚说明和引脚图	55
6.7 PORTB 引脚说明和引脚图	61
6.8 PORTC 引脚说明和引脚图	62
6.9 PORTD 引脚说明和引脚图	63
7.0 定时器	69
7.1 TIMERO 模块	69
7.2 带门控的 TIMER1 模块	71
7.3 PWM 模块	76
8.0 模拟数字转换器(ADC)模块	82
8.1 ADC 框图	82
8.2 ADC 的配置	83
8.3 ADC 的工作过程	85
	86
	90
10.1 原理说明	90
	90
	90
10.4 寄存器说明	91
11.0 配置寄存器	95
11.1 CONFIG OPTION	96
12.0 指令表	97
13.0 电气特性	<u>98</u>
13.1 绝对极限参数	98
	100
	101
14.0 开发支持	102
14.1 仿直信息	102
	105
	105
	110
	111
16.0 汇春知识产权政策	112
16.1 专利权	112

16.2 著作权.......112

1.1 系统结构图

1.2 封装脚位图

1.2.1 16 引脚图 (SOP16)

注: PIN12 为 PA5 与 PD7 (内部短接) 共用引脚,编程时需特别注意信号处理

1.2.2 20 引脚图(SOP20、SSOP20)

1.2.3 24 引脚图 (SOP24、 SSOP24)

PB0 10PA0/ISCK/ULPWU/SDA 24 PB1/CCH1 23 PA1/ISDA/INT0 PB2/CCH2 3 22 IBUSY PB3/CCH3 4 21 PA3/MCLR/VPP PB4/CCH4 5 20 PA4/T1G/OSC2/CLKOUT PB5/CCH5 6 ☐ PA5/T1CKI/OSC1/CLKIN 19 PB6/CCH6 7 18 PD7/AN7/PWM0 PB7/CCH7 8 PD6/AN6/INT1 17 PC0/CCH8 PD5/AN5/PWM1 16 PC1/CCH9 15 PD4/AN4 DD1/CCH13/AN1 vss \square PD0/CCH12/AN0/VREF VDD 12

YS84C12 SOP24/SSOP24

1.2.4 28 引脚图(SOP28、SSOP28)

	_			
	РВО 🗆	10	28	PA0/ISCK/ULPWU/SDA
PB1	1/CCH1 🗀	2	27	PA1/ISDA/INT0
PB2	2/CCH2 🗀	3	26	☐ IBUSY
PB3	3/CCH3 □	4	25	PA3/MCLR/VPP
PB ²	4/CCH4 ☐:	5	24	PA4/T1G/OSC2/CLKOUT
PB5	5/CCH5 🗀	6	23	PA5/T1CKI/OSC1/CLKIN
PB6	6/CCH6 🗖	7	22	DD7/AN7/PWM0
PB7	7/CCH7 🗀	8	21	PD6/AN6/INT1
PCC	O/CCH8 🗀 :	9	20	DD5/AN5/PWM1
PC1	1/CCH9 🗆	10	19	PD4/AN4
PC2/	ССН10	11	18	PD3/CCH15/AN3
PC3/0	ССН11 🗆	12	17	PD2/CCH14/AN2
	vss 🗆	13	16	PD1/CCH13/AN1
	VDD □	14	15	PD0/CCH12/AN0/VREF
	YS	84C12 SO	P28/SSC	P28
				ERENTOION CO.
	功能	输入 类型	输出 类型	说明
	PA0	TIL	CMOS	具有可编程上拉和电平变化中断的PORTA I/O
	ISCK	ST	A.V	串行编程和调试时钟输入,
				tention of the dependence

1.3 引脚说明

			No. of the Contract of	
名称	功能	输入 类型	输出 类型	说明
	PA0	TIL	CMOS	具有可编程上拉和电平变化中断的PORTA I/O
PA0/SCK/ULPWU/SDA	ISCK	ST		串行编程和调试时钟输入,
PAU/SCK/ULPWU/SDA	ULPWU	AN	7	超低功耗唤醒输入
	SDA	ST	NMOS	I2C数据
-63.71	PA1	TTL	CMOS	具有可编程上拉和电平变化中断的PORTA I/O
PA1/SDA/INT0	ISDA	ST/TTL	CMOS	串行编程和调试数据输入输出,
	INT0	ST	_	外部中断
IBUSY	IBUSY	_	_	烧录BUSY信号
211	PA3	TTL	Open Drain	具有电平变化中断的PORTA I/O
PA3/MCLR/VPP	MCLR	ST	_	带有内部上拉的主复位
	VPP	HV	_	编程电压(9.5V)
	PA4	TTL	CMOS	具有可编程上拉和电平变化中断的PORTA I/O
PA4/AN3/T1G/OSC2/	T1G	ST	_	Timer1门控(计数使能)
CLKOUT	OSC2	1	XTAL	晶振/谐振器
	CLKOUT	_	CMOS	Fosc/4输出
	PA5	TTL	CMOS	具有可编程上拉和电平变化中断的PORTA I/O
PA5/T1CKI/OSC1/CLKIN	T1CKI	ST	_	Timer1时钟
PAS/TICKI/OSCI/CERIN	OSC1	XTAL	_	晶振/谐振器
	CLKIN	ST	_	外部时钟输入/RC振荡器连接
PB0	PB0	TL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PB1/CCH1	PB1	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PB1/CCH1	CCH1	NSI	_	触摸按键通道1输入
DD2/CCU2	PB2	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PB2/CCH2	CCH2	NSI		触摸按键通道2输入
PB3/CCH3	PB3	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PD3/00H3	CCH3	NSI	_	触摸按键通道3输入
PB4/CCH4	PB4	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O

	CCH4	NSI	_	触摸按键通道4输入
DDE/OOLIE	PB5	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PB5/CCH5	CCH5	NSI	_	触摸按键通道5输入
DDC/CCLIC	PB6	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PB6/CCH6	CCH6	NSI	_	触摸按键通道6输入
DDZ/CCLIZ	PB7	TTL	CMOS	具有可编程上拉和电平变化中断的PORTB I/O
PB7/CCH7	CCH7	NSI	_	触摸按键通道7输入
DC0/CCLI0	PC0	TTL	CMOS	具有可编程上、下拉的PORTC I/O
PC0/CCH8	CCH8	NSI	_	触摸按键通道8输入
DC4/CCLIO	PC1	TTL	CMOS	具有可编程上、下拉的PORTC I/O
PC1/CCH9	CCH9	NSI	_	触摸按键通道9输入
DC2/CCU10	PC2	TTL	CMOS	具有可编程上、下拉的PORTC I/O
PC2/CCH10	CCH10	NSI	_	触摸按键通道10输入
DOD/COLIA	PC3	TTL	CMOS	具有可编程上、下拉的PORTC I/O
PC3/CCH11	CCH11	NSI	_	触摸按键通道11输入
	PD0	TTL	CMOS	具有可编程上拉的PORTD I/O
DDO/CCLI40/ANOA/DEE	CCH12	NSI	_	触摸按键通道12输入
PD0/CCH12/AN0/VREF	AN0	AN	_	A/D通道0输入
	VREF	AN	_	A/D外部参考电压
	PD1	TTL	CMOS	具有可编程上拉的PORTD I/O
PD1/CCH13/AN1	CCH13	NSI	_	触摸按键通道13输入
	AN1	AN	_	A/D通道1输入
	PD2	TTL	CMOS	具有可编程上拉的PORTD I/O
PD2/CCH14/AN2	CCH14	NSI		触摸按键通道14输入
	AN2	AN	7	A/D通道2输入
	PD3	TTL	CMOS	具有可编程上拉的PORTD I/O
PD3/CCH15/AN3	CCH15	NSI	72	触摸按键通道15输入
	AN3	AN	_	A/D通道3输入
DD4/AN4	PD4	TTL	CMOS	具有可编程上拉的PORTD I/O
PD4/AN4	AN4	AN	47	A/D通道4输入
11/2	PD5	TTL	CMOS	具有可编程上拉的PORTD I/O
PD5/AN5/PWM1	AN5	AN	_	A/D通道5输入
	PWM1		CMOS	PWM1输出
-17	PD6	TTL	CMOS	具有可编程上拉的PORTD I/O
PD6/AN6/INT1	AN6	AN	_	A/D通道6输入
116,	INT1	ST	_	外部中断
	PD7	TTL	CMOS	具有可编程上拉的PORTD I/O
PD7/AN7/PWM0	AN7	AN	_	A/D通道7输入
	PWM0	_	CMOS	PWM0输出
VDD	VDD	电源		正电源端
VSS	VSS	电源		接地参考端

图注: AN = 模拟输入或输出

CMOS = CMOS 兼容输入或输出

W = 高压

ST = 带 CMOS 电平的施密特触发器输入

TTL = TLL 兼容输出

XTAL = 晶振

NSI= 无标准输入

2.0 存储器构成

2.1 程序存储器构成

YS83B08/YS84B08/YS84C12 在物理上实现了 $4K \times 14$ (0000h-0FFFh)的存储空间。访问该边界以外的单元将导致实际访问存储器的第一个 $4K \times 14$ 存储空间。复位向量地址为 0000h,中断向量地址为 0004h。

图 2-1

2.1.1 复位向量(0000H)

具有一个字长的系统复位向量(0000H)。

- 上电复位
- 看门狗复位
- 外部复位
- 欠压复位

发生上述任一种复位后,程序将从0000H处重新开始执行,系统寄存器也都将恢复为默认值。根据STATUS 寄存器中的 TF 和 PF 标志位的内容可以判断系统复位方式。

2.1.2 中断向量(0004H)

中断向量的地址为0004H。一旦有中断响应,程序计数器PC的当前值就会存入堆栈缓存器并跳转到0004H 开始执行中断服务程序。

2.2 数据存储器构成

数据存储器被分为 4 个存储区(bank),其中包含通用寄存器(GeneralPurposeRegister,GPR)和特殊 功能寄存器(SpecialFunctionRegister,SFR)特殊功能寄存器位于每个存储区开头的 32 个单元。通用寄存器 位于 Bank0、Bank1、Bank2 的 20h-6Fh 中, 70H-7FH 是公用存储区域, Bank1、Bank2 和 Bank3 中的寄存 器单元 F0h-FFh 指向 Bank0 中的地址单元 70h-7Fh。Bank3 中地址 1A0h 到 1DFh 和扩展存储器中地址 3A0h 到 3DFh 的 128Byte 是触摸模块专用存储区域,在没有使用触摸模块时,也可以用作通用寄存器。所有其他的 RAM 均未实现,读取它们时将返回 0。

STATUS 寄存器的 RP1、RP0 位为存储区选择位。

00 -> 选定 Bank0

- 01 -> 选定 Bank1
- 10 -> 选定 Bank2
- 11 -> 选定 Bank3

2.2.1 通用文件寄存器

在 YS83B08/YS84B08/YS84C12 中通用寄存器是按 128x8 的形式实现的。可直接访问每个寄存器或通过 文件选择寄存器(FileSelectRegister, MSR)间接访问每个存储器。

2.2.2 特殊功能寄存器

特殊功能寄存器是 CPU 和外设模块用来控制所需的器件操作的寄存器,这些寄存器都实现为静态 RAM。

力静态 RAI 山存器。那些与外设 特殊功能寄存器可分为两类:内核与外设。本章仅讲述与"内核"有关的特殊功能寄存器。那些与外设功 能部件的操作有关的特殊功能寄存器将在相应的外设功能部件章节中讲述。

IAR TMR0 PCL STATUS MSR	地址 00h 01h 02h	IAR OPT_REG	地址 80h
TMR0 PCL STATUS	01h		80h
PCL STATUS			041
STATUS			81h
	1 -	PCL	82h
MSR	03h	STATUS	83h
	04h	MSR	84h
PORTA	05h	CPIOA	85h
PORTB	06h	CPIOB	86h
PORTC	07h	CPIOC	87h
PORTD	1	CPIOD	88h
	4		89h
PCLATH	0Ah	PCLATH	8Ah
INTS	0Bh	INTS	8Bh
PIFB1	0Ch		8Ch
PIFB2	0Dh		8Dh
TMR1L	0Eh	PSTA	8Eh
TMR1H	0Fh	OSCCON	8Fh
T1STA	10h		90h
SSP1STAT	11h	ADINS	91h
SSP1CON1	12h	IRCTRIML	92h
SSP1CON2	13h	IRCTRIMH	93h
	-		94h
	1	PAPHR	95h
			96h
	-		97h
	4		98h
	4		99h
			9Ah
1 WWOON			9Bh
	3.3.3.1		9Ch
	F 10 100 100 100 1		9Dh
ADDECH	The second second	ADRESI	9Eh
ADRESH	1 "		9Fh
	N 9. 14. 1	ADOUTT	A0h
	2011		AUII
	/		
通用寄存器			
80字节		80字节	
	6Fh		EFh
	70h		F0h
公用RAM区			
16字节		访问70h~7Fh	
	7Fh		FFh
BANK 0		BANK 1	
	INTS PIFB1 PIFB2 TMR1L TMR1H T1STA SSP1STAT SSP1CON1 SSP1CON2 SSP1CON3 SSP1MSK SSP1ADD SSP1BUF WDTCON PIFB3 PWMCON ADRESH	O9h OAh OAh OAh OAh OAh OAh OAh OBh OCh PIFB1 OCh OEh TMR1L OEh TMR1L OEh T1STA 10h SSP1STAT 11h SSP1CON1 12h SSP1CON2 13h SSP1CON3 14h SSP1MSK 15h SSP1ADD 16h SSP1BUF OAh OAh	O9h

安士 明 安士 明								
	寄存器		寄存器地址					
LAB	地址	145	-					
IAR	100h	IAR	180h					
DOI	101h	BOI	181h					
PCL	102h	PCL	182h					
STATUS	103h	STATUS	183h					
MSR	104h	MSR	184h					
	105h		185h					
	106h		186h					
	107h		187h					
	108h		188h					
	109h		189h					
PCLATH	10Ah	PCLATH	18Ah					
INTS	10Bh	INTS	18Bh					
	10Ch		18Ch					
	10Dh		18Dh					
	10Eh		18Eh					
	10Fh		18Fh					
	110h	CSCTL	190h					
	111h	THCTL	191h					
PRL0L	112h	PWM0L	192h					
PRL1L	113h	PWM1L	193h					
	114h	CHRLTH	194h					
	115h	CHRLTL	195h					
	116h	CHSELH	196h					
T1PRLL	117h	CHSELL	197h					
ET1PRL	118h	EPR0	198h					
	119h	EPR1	199h					
	11Ah	T1PRLH	19Ah					
	11Bh	CSTMRH	19Bh					
	11Ch	CSTMRL	19Ch					
	11Dh	ADS0	19Dh					
ADC0CN	11Eh	CSANA0	19Eh					
	11Fh	CSANA1	19Fh					
	120h		1A0h					
		触摸专用寄存						
通用寄存器		器						
80字节		64字节	455					
,			1DFh 1E0h					
		林正法词	IEUII					
		禁止访问						
	16Fh		1EFh					
	170h		1F0h					
访问70h~7Fh) }						
		访问70h~7Fh						
	17Fh		1FFh					
BANK 2	-	BANK 3	-					
□ + ☆T□ 44 ¥4 ↓□	大块	±4-0						
□未实现的数据	i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	头 <i>八</i> U。						

图 2-2:数据存储映射

2.2.2.1 特殊功能寄存器位定义(BANK0)

地址	名称	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	默认值	
BANK0		DII /	DITO	BIIS	DII	BIII	DITZ	DITT	BIIO	MACOLIE	
00H	IAR	使	用 MSR 的内	容对数据有	存储器进行员		 比单元(不是			xxxx xxxx	
01H	TMR0					莫块寄存器				xxxx_xxxx	
02H	PCL	PC7	PC7						0000_0000		
03H	STATUS	IRP	RP1	RP0	TF	PF	Z	НС	С	0001_1xxx	
04H	MSR		间接数据存储器地址指针								
05H	<u>PORTA</u>	_	_	PA5	PA4	PA3	IBUSY	PA1	PA0	x0_x000	
06H	<u>PORTB</u>	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	0000_0000	
07H	PORTC	_	_	_	_	PC3	PC2	PC1	PC0	0000	
08H	PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000_0000	
09H	_	未实现								_	
0AH	<u>PCLATH</u>	_	_	_	_	PC11	PC10	PC9	PC8	0000	
0BH	<u>INTS</u>	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000_0000	
0CH	PIFB1	INT1E	ADCIE	OSFIE	TMR1IE	INT1F	ADCIF	OSFIF	TMR1IF	0000_0000	
0DH	PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000_0000	
0EH	TMR1L		16 位 TMR1 低字节的保持寄存器								
0FH	TMR1H			16 1	立 TMR1 高字	节的保持寄	存器			xxxx-xxxx	
10H	<u>T1STA</u>	T1GINV	TMR1GE	TIC	CKPS	TIOSCEN	TISYNC	TMR1CS	TMR10N	0000_0000	
11H	SSP1STAT	_	1	D/A	P	S	R/W	UA	BF	0000_0000	
12H	SSP1CON1	WCOL	SSP1OV	SSP1EN	CKP	SSP1M3	SSP1M2	SSP1M1	SSP1M0	0000_0000	
13H	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000_0000	
14H	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	_	SBCDE	AHEN	DHEN	0000_0000	
15H	SSP1MSK				I2C	掩码				0000_0000	
16H	SSP1ADD				波特率时钟	中分频与地址	Ŀ			0000_0000	
17H	SSP1BUF				I2C 数	据缓存				0000_0000	
18H	WDTCON	_	_	_		WD	TPS		SWDTEN	0_1000	
19H	PIFB3	_	_	_	BCL1IE	_	_	_	BCL1IF	00	
1AH	<u>PWMCON</u>	_	PWMFS	PWM10E	PWM0OE	PWM1EN	PWM0EN	TMR0EN	TIGSS	-000_0011	
1BH	_	未实现								_	
1CH	_	未实现								_	
1DH	_	未实现								_	
1EH	<u>ADRESH</u>				AD 结身	具寄存器				0000_0000	
1FH	_	未实现								_	
(日) (上)	+ 슈큐 대 삼	- >+ >!		ਾਂ ਜ ੀਵ	-la 1	T- /-	4	→ 70 B/	r		

图注: - = 未实现单元读为 0, u = 不变, x = 未知, q = 取值视情况而定, 阴影 = 未实现 注:配置字寄存器中的 CFG_MCLRE 为 1 时 RA3 上拉使能。

2.2.2.2 特殊功能寄存器位定义(BANK1)

地址	名称	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	默认值	
BANK1		•		•	•	•		•	•	•	
80H	<u>IAR</u>	使	用 MSR 的内	容对数据存	储器进行寻	址来寻址此	单元(不是	物理寄存器	=)	xxxx xxxx	
81H	OPT RE G	INT1EG	INT0EG	TCS	TCE	PSC		PS		1111_1111	
82H	<u>PCL</u>	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	0000_0000	
83H	<u>STATUS</u>	IRP	RP1	RP0	TF	PF	Z	НС	С	0001_1xxx	
84H	MSR]Ē	可接数据存储	者器地址指铂	†			xxxx-xxxx	
85H	<u>CPIOA</u>	_	_	CPIOA5	CPIOA4	CPIOA3	CPIOA2	CPIOA1	CPIOA0	11_1111	
86H	<u>CPIOB</u>	CPIOB7	CPIOB6	CPIOB5	CPIOB4	CPIOB3	CPIOB2	CPIOB1	CPIOB0	1111_1111	
87H	<u>CPIOC</u>	_	_	_	_	CPIOC3	CPIOC2	CPIOC1	CPIOC0	1111_1111	
88H	<u>CPIOD</u>	CPIOD7	CPIOD6	CPIOD5	CPIOD4	CPIOD3	CPIOD2	CPIOD1	CPIOD0	1111_1111	
89H		未实现								_	
8AH	<u>PCLATH</u>	_	_	_	_	PC11	PC10	PC9	PC8	0000	
8BH	<u>INTS</u>	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000_0000	
8CH	1	未实现	未实现								
8DH		未实现	未实现								
8EH	<u>PSTA</u>	_	_	ULPWUE	SLVREN	MCRL	IER	POR	LVR	01_100q	
8FH	OSCCON	_	27	IRCF	1.11	OSTS	HTS	LTS	SCS	-101_x001	
90H		未实现								_	
91H	<u>ADINS</u>	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111_1111	
92H	IRCTRIML			内音	『快时钟校』	E寄存器低 8	3位			0000_0000	
93H	<u>IRCTRIMH</u>	_	_	IRCTEN		内部快时	钟校正寄存	器高5位		00_0000	
94H	_	未实现								_	
95H	<u>PAPHR</u>	_	_	PAPHR5	PAPHR4	PAPHR3	PAPHR2	PAPHR1	PAPHR0	00_0000	
96H	<u>PBPHR</u>	PBPHR7	PBPHR6	PBPHR5	PBPHR4	PBPHR3	PBPHR2	PBPHR1	PBPHR0	1111_1111	
97H	<u>PCPHR</u>	PDC3	PDC2	PDC1	PDC0	PCPHR3	PCPHR2	PCPHR1	PCPHR0	0000_1111	
98H	<u>PDPHR</u>	PDPHR7	PDPHR6	PDPHR5	PDPHR4	PDPHR3	PDPHR2	PDPHR1	PDPHR0	1111_1111	
99H	<u>PAINTR</u>	_	_	PAINTR5	PAINTR4	PAINTR3	PAINTR2	PAINTR1	PAINTR0	0000_0000	
9AH	<u>PBINTR</u>	PBINTR7	PBINTR6	PBINTR5	PBINTR4	PBINTR3	PBINTR2	PBINTR1	PBINTR0	0000_0000	
9BH		未实现								_	
9CH	1	未实现								_	
9DH	_	未实现								_	
9EH	ADRESL				AD 结果	長寄存器				0000_0000	
9FH	ADC0TH				ADC 零点	交正寄存器				0000_0000	

2.2.2.3 特殊功能寄存器位定义(BANK2)

地址	 名称	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	默认值	
BANK2					I			<u> </u>		1	
100H	IAR	包	吏用 MSR 的	力内容对数 据	存储器进行	寻址来寻址此	上 单元(不是	物理寄存器	;)	xxxx xxxx	
101H	_	未实现								_	
102H	<u>PCL</u>	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	0000_0000	
103H	<u>STATUS</u>	IRP	RP1	RP0	TF	PF	Z	НС	С	0001_1xxx	
104H	MSR		间接数据存储器地址指针								
105H	_	未实现								_	
106H	_	未实现								_	
107H		未实现								_	
108H		未实现								_	
109H	_	未实现						1		_	
10AH	<u>PCLATH</u>	_	_		_	PC11	PC10	PC9	PC8	000	
10BH	INTS	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000_0000	
10CH		未实现								_	
10DH		未实现								_	
10EH		未实现								_	
10FH		未实现								_	
110H		未实现								_	
111H		未实现		D.	mso la della		/or observation			_	
112H	PRL0L		340			重载寄存器				0000_0000	
113H	PRL1L	+ + 10	I.V.	PV	MI 占至比。	重载寄存器	(低子节			0000_0000	
114H		未实现								_	
115H		未实现									
116H 117H	T1PRLL	小 头奶		DWMO /	 L 周期寄存器	的任字芸				0000_0000	
117H	ET1PRL					存器的低字章	<u></u>			0000_0000	
119H	<u>ETITKE</u>	未实现		1 #110/ 2	1 川州主教刊	11 HE H 1 1 1 1 1	1				
11AH		未实现								_	
11BH		未实现								_	
11CH	_	未实现								_	
11DH	_	未实现								_	
11EH	ADC0CN	ADCTHSEL	ADFM	SC1	SC0	ADC_EN	GO/DONE	CM1	CM0	0000_0000	
11FH		未实现		501		I II U_EI	GO/DONE	C2.71			
ППП		小大坑									

2.2.2.4 特殊功能寄存器位定义(BANK3)

地址	名称	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	默认值
BANK3					l					
180H	IAR	使	用 MSR 的内	容对数据存	储器进行寻	- 址来寻址此	上单元(不是	是物理寄存器	器)	xxxx xxxx
181H	_	未实现								_
182H	<u>PCL</u>	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	0000_0000
183H	<u>STATUS</u>	IRP	RP1	RP0	TF	PF	Z	НС	С	0001_1xxx
184H	MSR	•	<u>'</u>	间接数据	存储器地址	指针				xxxx-xxxx
185H	_	未实现	长实现							_
186H	_	未实现								-
187H	_	未实现								_
188H	_	未实现								_
189H	_	未实现								_
18AH	<u>PCLATH</u>	_	_	_	_	_	PC10	PC9	PC8	0000
18BH	<u>INTS</u>	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000_0000
18CH	1	未实现	未实现							
18DH	1	未实现	未实现							
18EH	_	未实现	未实现							
18FH	_	未实现	未实现							
190H	<u>CSCTL</u>	CSEN	RAMEN	XRAM	CSBUSY	CSINTS	CSACU2	CSACU1	CSACU0	0000_0011
191H	<u>THCTL</u>	_	THGAP1	THGAP0	THMOD2	THMOD1	THMOD0	THDS1	THDS0	0010_1001
192H	PWM0L			PWM	0 占空比比	较寄存器低	字节			0000_0000
193H	PWM1L			PWM	1 占空比比	较寄存器低	字节			0000_0000
194H	<u>CHRLTH</u>			角	独摸通道结	果高8位标	志			0000_0000
195H	<u>CHRLTL</u>			角	独摸通道结	果低8位标	志			0000_0000
196H	<u>CHSELH</u>			触	摸通道使能	寄存器高 8	位			0000_0000
197H	<u>CHSELL</u>			触	摸通道使能	寄存器低 8	位			0000_0000
198H	EPR0	_	_	_	_	EPR0H	(从动)	PWN	МОН	0000
199H	EPR1	_	_	_	_	EPR1H	(从动)	PWN	M1H	0000
19AH	<u>T1PRLH</u>	_	_	_	_	ET1PRH	(从动)	T1Pl	RLH	0000
19BH	<u>CSTMRH</u>			魚	摸扫描周期	计数器高 8	位			0000_0000
19CH	CSTMRL			魚	摸扫描周期	计数器低 8	位		1	1111_1111
19DH	ADS0		CHNS	EL<3:0>		REFS	L<1:0>	_	VREFSEL	0000_01-1
19EH	<u>CSANA0</u>	_	BSTRM2	BSTRM1	BSTRM0	CMF	TRM	VTSEL1	VTSEL0	0010_0111
19FH	CSANA1	_	— — DTTRM CTTRM							0_1011

2.2.2.5 STATUS 状态寄存器

状态(STATUS)寄存器包含:

- · ALU 的算术运算状态
- 复位状态
- 数据存储器 (SRAM) 的存储区选择位

和其他寄存器一样,状态寄存器也可以作为任何指令的目标寄存器。如果一条影响 Z、HC 或 C 位的指令以状态寄存器作为目标寄存器,将禁止写这三位。根据器件逻辑,这些位会被置 1 或清零。此外,也不能写 TF 和 PF 位。因此,当执行一条把状态寄存器作为目标寄存器的指令后,状态寄存器的结果可能和预想的不一样。

例如,执行 CLRR STATUS 指令会清零该寄存器的高 3 位并将 Z 位置 1。从而使状态寄存器的值为 "000uu1uu" (其中 u 表示不变)。

因此,建议仅使用 BCR、BSR、SWAPR 和 STWR 指令来改变状态寄存器,因为这些指令不影响任何状态位。欲知其他不会影响任何状态位的指令,请参见第 12.0 节 "指令表"。

寄存器 03H/83H/183H: 状态寄存器 (STATUS)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TF	PF	Z	HC	С
bit7					1127	7	bit0

图注:		7 7 42 , 105;
R = 可读位	W = 可写位	U = 未实现位,读为0
-n = POR时的值	1 = 置1	0 = 清零 $x = 未知$

bit7 IRP: 间接寻址最高位:

1 = 间接寻址第2、3页

0 = 间接寻址第0、1页

bit6 bit5 RP1RP0: 寄存器存储区选择位(用于直接寻址)

00 = 直接寻址第0页

01 = 直接寻址第1页

10 = 直接寻址第2页

11 = 直接寻址第3页

bit4 TF:超时状态位

1 = 上电后,执行了CLRWT指令或SLEEP指令

0 = 发生WDT超时溢出

bit3 PF: 掉电标志位

1 = 上电复位后或执行了CLRWT指令

0 = 执行了SLEEP指令

bit2 **Z**: 零标志位

1 = 算术运算或逻辑运算的结果为零

0 = 算术运算或逻辑运算的结果不为零

bit1 HC: 半进位/借位位(ADDWR、ADDWI、SUBWR和SUBWI指令)。对于借位,极性是相反的。

1 = 结果的第4低位向高位发生了进位 0 = 结果的第4低位未向高位发生进位

bit0 C: 进位/借位位⁽¹⁾ (ADDWR、ADDWI、SUBWR和SUBWI指令)

1 = 结果的最高位发生了进位(减法时,没有发生借位时为1)

0 = 结果的最高位未发生进位

注 1. 借位的极性是相反的。减法是通过加上第二个操作数的二进制补码(Two'sComplement)来实现的。对于移位指令(RRR和RLR),此位的值来自源寄存器的最高位或最低位。

2.2.2.6 OPT_REG 选项寄存器

选项(OPT_REG)寄存器是可读写的寄存器,包含可对以下各项进行配置的各种配置位:

- Timer0/WDT 预分频器分配位
- 外部中断
- Timer0

注: 要为Timer0指定1:1的预分频比,应将OPT_REG寄存器的PSC位置1,以将预分频器分配给WDT。请参见第7.1.4节"软件可编程预分频器"。

寄存器 81H:选项寄存器(OPT_REG)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
INT1EG	INT0EG	_	_	PSC	PS2	PS1	PS0
bit7						1.5	bit0

图注:		- UK - 10
R = 可读位	W = 可写位	U = 未实现位,读为0
-n = POR时的值	1 = 置1	0 = 清零 x = 未知

bit7 INT1EG: INT1中断边沿选择位

1 = 由PD6/INT1引脚的上升沿触发中断 0 = 由PD6/INT1引脚的下降沿触发中断

bit6 INTOEG: INTO中断边沿选择位

1 = 由PA1/INT0引脚的上升沿触发中断 0 = 由PA1/INT0引脚的下降沿触发中断

bit5-4 未实现: 读为0

bit3 PSC: 预分频器分配位

1 = 将预分频器分配给WDT

0 = 将预分频器分配给Timer0模块

bit2-0 **PS<2:0>**: 预分频比选择位

位值	TMR0分频 比	WDT分频比
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

2.2.2.7 PSTA 寄存器

电源控制(PSTA)寄存器包含区分以下复位的标志位:

- 上电复位 (POR)
- 欠压复位(LVR)
- 看门狗定时器复位(WDT)

• 外部MCLR复位

PSTA 寄存器也用于控制超低功耗唤醒和 LVR 的软件使能。

寄存器 8EH: 电源控制寄存器1(PSTA)

U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-x
_	_	ULPWUE	SLVREN	MCR	IER	POR	LVR
bit7							bit0

 图注:
 R = 可读位
 W = 可写位
 U = 未实现位, 读为0

 -n = POR时的值
 1 = 置1
 0 = 清零
 x = 未知

bit7-6 未实现: 读为0

bit5 ULPWUE: 超低功耗唤醒使能位

1 = 使能超低功耗唤醒 0 = 禁止超低功耗唤醒

bit4 SLVREN: 软件欠压检测使能位⁽¹⁾

1 = 使能欠压检测 0 = 禁止欠压检测

bit3 MCR:外部复位状态位

1 = 上电复位值 0 = 发生了外部复位

bit2 IER: 指令错误复位状态位

1 = 发生了指令错误复位

0 =上电复位值

bit1 POR: 上电复位状态位

1 = 未发生上电复位

0 = 发生了上电复位(必须在上电复位发生后用软件置1)

bit0 LVR: 欠压复位状态位

1 = 未发生欠压复位

0 = 已发生欠压复位(必须在发生欠压复位后用软件置1)

`注 1: 当配置字寄存器中的LVREN<1:0> = 01时允许使用该位对LVR进行控制。

2.3 PCL 和 PCLATH

程序计数器 (PC) 为 12 位宽。其低 8 位来自可读写的 PCL 寄存器,高 4 位 (PC<11:8>) 来自 PCLATH,不能直接读写。只要发生复位,PC 就将被清零。图 2-3 显示了装载 PC 值的两种情形。图 2-3 中上方的例子说明在写 PCL (PCLATH<3:0>→PCH) 时是如何装载 PC 的。

图 2-3: 在不同情况下装载 PC

2.3.1 修改 PCL

执行任何以 PCL 寄存器为目标寄存器的指令将同时使程序计数器的 PC<11:8>位(PCH)被 PCLATH 寄存器的内容所取代。这样可通过将所需的高 4 位写入 PCLATH 寄存器来改变程序计数器的所有内容。当低 8 位写入 PCL 寄存器时,程序计数器的所有 12 位将变为 PCLATH 寄存器中所包含的值以及写入 PCL 寄存器中的值。

计算 LJUMP 指令是通过向程序计数器加入偏移量(ADDWR PCL)来实现的。通过修改 PCL 寄存器跳转 到查找表或程序分支表(计算 LJUMP)时应特别谨慎。假定 PCLATH 设置为表的起始地址,如果表长度大于 255 条指令,或如果存储器地址的低 8 位在表的中间从 0xFF 计满返回到 0x00,那么在每次表起始地址与表内的目标地址之间发生计满返回时,PCLATH 必须均必须递增。

2.3.2 堆栈

YS83B08/YS84B08/YS84C12 器件具有 8 级深×12 位宽的硬件堆栈(见图 2-2 和图 2-4)。堆栈空间既不占用程序存储区空间,也不占用数据存储区空间,而且堆栈指针是不可读写的。当执行 CALL 指令或当中断导致程序跳转时,值 PC 将被压入(PUSH)堆栈。而在执行 RET、RTIW 或 RTFI 指令时,堆栈中的断点地址将从堆栈中弹出(POP)到 PC 中。PCLATH 不受 PUSH 或 POP 操作的影响。

堆栈的工作原理犹如循环缓冲区。这意味着当堆栈压栈 8 次后,第 9 次压栈的数值将会覆盖第一次压栈时 所保存的数值,而第十次压栈数值将覆盖第二次压栈时保存的数值,以后依次类推。

- 注: 1: 不存在指明堆栈是否上溢或下溢的状态标志位。
 - 2: 不存在被称为PUSH或POP的指令/助记符。堆栈的压入或弹出是源于执行了CALL、RET、RTIW和RTFI指令,或源于指向中断向量地址。

寄存器 02H/82H/182H: 程序计数器低字节控制寄存器(PCL)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PC0 |
| bit7 | | | | | | | Bit0 |

图注:			
R = 可读位	W = 可写位	U = 未实现位,读为0	
-n = POR时的值	1 = 置1	0 = 清零	x = 未知

bit7-0 PC<7:0>: 程序计数器低8位。

寄存器 OAH/8AH/18AH: 程序计数器高字节控制寄存器(PCLATH)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	PC11	PC10	PC9	PC8
bit7							bit0

图注:

W = 可写位 U = 未实现位, 读为0 R = 可读位

0 = 清零 -n = POR时的值 1 = 置1 x = 未知

bit7-4 未实现:读为0

bit3-0 PC<11:8>: 程序计数器高4位。

2.4 间接寻址、IAR 和 MSR 寄存器

IAR 寄存器不是实际存在的寄存器,使用 IAR 寄存器寻址将产生间接寻址。

使用 IAR 寄存器可进行间接寻址。任何使用 IAR 寄存器的指令,实际上是对文件选择寄存器(MSR)所 指向的数据进行存取。间接对 IAR 进行读操作将返回 00h。间接对 IAR 寄存器进行写操作将导致空操作(尽管 可能会影响状态标志位)。通过将8位的 MSR 寄存器与 STATUS 寄存器的 IRP 位进行组合可得到一个有效的9 位地址,如图 2-4 所示。

例 2-1 给出了一个使用间接寻址将 RAM 地址单元 20h-2Fh 清零的简单程序。

例 2-1: 间接寻址

;功能: 地址 20 开始的连续 16 个字节的 RAM 清 0

LDWI 0X20

STWR MSR ;地址指针赋初值

NEXT: CLRR IAR ;清除 MSR 值对应的寄存器值

> **INCR** ;递增地址指针 MSR,R BTSS MSR,4 :完成没有? LJUMP

NEXT ;没完成,继续

CONTINUE: :完成了

图 2-4: YS83B08/YS84B08/YS84C12 的直接/间接寻址

2.5 看门狗定时器 (WDT)

WDT 具有以下特性:

- 工作于 LFINTOSC (31kHz)
- 包含 16 位预分频器
- 与 Timer0 共用 8 位预分频器
- 配置位和使用软件控制

WDT 在如表 2-1 所述的情况下清零。

2.5.1 WDT 振荡器

WDT 的时基来源于 31kHz LFINTOSC。OSCCON 寄存器的 LTS 位不反映 LFINTOSC 是否被使能。在所有复位时 WDTCON 的值为 "---01000"。这样标称时基为 17ms。

注: 当执行振荡器起振定时器(OST)时,WDT保持复位状态,因为OST使用WDT纹波计数器来执行振荡器延时计数。OST计数到期后,WDT将开始计数(如果使能)。

2.5.2 WDT 控制

WDTE 位在配置字寄存器中。该位置 1 时,WDT 连续运行。

配置字寄存器中的 WDTE 位置 1 时,WDTCON 寄存器中的 SWDTEN 位不起作用。如果 WDTE 清零,那么 SWDTEN 位可用于使能和禁止 WDT。该位置 1 使能 WDT,该位清零禁止 WDT。

看门狗定时器框图中(<u>图 2-5</u>)的 PSC 和 PS<2:0>位在 OPT_REG 寄存器中。更多信息请参见<u>第 7. 1 节</u> "Timer0 模块"。

图 2-5: 看门狗定时器框图

寄存器 18H: 看门狗定时器控制寄存器 (WDTCON)

U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN
bit7				C37.37	-///		bit0

图注: $R = 可读位 \qquad W = 可写位 \qquad U = 未实现位, 读为0 \\ -n = POR时的值 \qquad 1 = 置1 \qquad 0 = 清零 \qquad x = 未知$

bit7-5 未实现: 读为0

Bit4-1 **WDTPS<3:0>**: 看门狗定时器周期选择位

位值 = 预分频

0000 = 1:32

0001 = 1:64

0010 = 1:128

0011 = 1:256

0100 = 1:512 (复位值)

0101 = 1:1024

0110 = 1:2048

0111 = 1:4096

1000 = 1:8192

1001 = 1:16384

1010 = 1:32768

1011 = 1:65536

1100 = 保留

1101 = 保留

1110 = 保留

1111 = 保留

Bit0 **SWDTEN**: 软件使能或禁止看门狗定时器位⁽¹⁾

1 = WDT 开启

0 = WDT 关闭 (复位值)

注

1: 如果配置字寄存器(CONFIG)的WDTE配置位=1,则WDT始终被使能,而与该控制位的状 态无关。

如果配置字寄存器(CONFIG)的WDTE配置位=0,则可以使用该控制位开启/关闭WDT。

表 2-1: WDT 状态

条件	WDT
CLRWT 命令	
振荡器失效检测	清零
退出休眠 + 系统时钟 = T1OSC、EXTRC、NTRC 或 EXTCLK	
退出休眠 + 系统时钟 = XT、HS 或 LP	清零直到 OST 结束

表 2-2: 与看门狗定时器相关的寄存器汇总

WDTCON — OPT_REG — CONFIGO — 图注: 看门狗定时器不使用注 1: 关于配置字寄存	用阴影单元。	一 TCS MCLRE 的操作,请参	WDTPS3 TCE PWRTE 参见寄存器 C	WDTPS2 PSC WDTE CFG0	WDTPS1 PS2 FOSC2	WDTPS0 PS1 FOSC1	SWDTEN PS0 FOSC0	0 0000 1111 1111 	XXXX XXXX XXXX XXXX
CONFIG0 — 图注: 看门狗定时器不使用	用阴影单元。	MCLRE	PWRTE	WDTE				7.1	XXXX XXXX —
图注: 看门狗定时器不使用	用阴影单元。			•	FOSC2	FOSC1	FOSC0	67. -CA) *
		的操作,请多	参见 <u>寄存器 C</u>	CFG0。	17.	1.001. 12.1.	n_{0j_0}	27	
		的操作,请参	参见 <u>寄存器 C</u>	CFG0。					

3.0 复位

3.1 概述

YS83B08/YS84B08/YS84C12 有以下几种不同类型的复位:

- a) 上电复位 (POR)
- b) 正常工作期间的 WDT 复位
- c) 休眠期间的 WDT 复位
- d) 休眠期间的MCLR复位
- e) 欠压复位(LVR)

有些寄存器不受任何复位的影响;在上电复位时它们的状态未知,而在其他复位时状态不变。大多数寄存器在以下复位时会复位到各自的"复位状态":

- 上电复位
- MCLR 复位
- 休眠期间的MCLR复位
- WDT 复位

WDT 唤醒不会导致寄存器像 WDT 复位那样复位,这是因为唤醒被视为恢复正常工作。TF 和 PF 位在不同的复位情形下会分别被置 1 或清零,如表 3-1 所示。软件可使用这些位判断复位的性质。

图 3-1 给出了片上复位电路的简化框图。MCLR 复位路径上有一个噪声滤波器,用来检测并滤除小脉冲。 关于脉冲宽度规范,请参见第 13.0 节 "电气特性"。

图 3-1: 片上复位电路的简化框图

表 3-1: STATUS/PSTA 位及其含义

POR	LVR	TF	PF			
FOR	LVI	11	ГІ	本丁		
0	Х	1	1	上电复位		
u	0	1	1	欠压复位		
u	u	0	u	WDT 复位		
u	u	0	0	WDT 唤醒		
u	u	u	u	正常工作期间的MCLR复位		
U	u	1	0	休眠期间的MCLR复位		

图注: u = 不变, x = 未知

3.2 上电复位

在 VDD 达到足以使器件正常工作的电平之前,片上上电复位电路将使器件保持在复位状态。要有效利用 POR,只要将MCLR引脚通过一个电阻连接到 VDD 即可。需要一个最大上升时间才能达到 VDD。详见<u>第 13.0</u> 节"电气特性"。如果使能了欠压复位,那么该最大上升时间规范将不再适用。欠压复位电路将使器件保持在复位状态,直到 VDD 达到 VLVR(见第 3.5 节"欠压复位(LVR))"。

注: 当VDD降低时,上电复位电路不会产生内部复位。要重新使能上电复位,VDD必须至少保持100us 的 Vss电压。

当器件开始正常工作(退出复位状态)时,器件的工作参数(即电压、频率和温度等)必须得到满足,以确保其正常工作。如果不满足这些条件,那么器件必须保持在复位状态,直到满足工作条件为止。

3.3 MCLR

YS83B08/YS84B08/YS84C12 在MCLR 复位路径中有一个噪声滤波器。该滤波器检测并滤除小脉冲。

应注意,WDT 复位不会将MCLR 引脚驱动为低电平。

若施加在MCLR引脚上的电压超出规范值,则在 ESD 事件发生期间可导致MCLR复位且器件中流过超过规范值的过电流。因此,建议不要把MCLR引脚直接连接到 VDD。建议使用图 3-3 给出的 RC 网络。

通过清零配置字寄存器中的MCLR位,可使能内部MCLR选项。当MCLRE = 0时,在内部产生芯片的复位信号。当MCLRE = 1时,PA3/MCLR引脚变成外部复位输入。在这种模式下,PA3/MCLR引脚具有到VDD的弱上拉功能。

图 3-3: 建议的MCLR 电路

3.4 上电延时定时器 (PWRT)

上电延时定时器仅在上电时(上电复位或欠压复位)提供一个 55ms(标称值)的固定延时。上电延时定时器采用 LFINTOSC 振荡器作为时钟源,工作频率为 31kHz。更多信息,请参见第 4.5 节"内部时钟模式"。

只要 PWRT 处于活动状态,芯片就保持在复位状态。配 PWRT 延时使 VDD 有足够的时间上升到所需的电平。置位 PWRTE 可以禁止(如果置 1)或使能(如果清零或被编程)上电延时定时器。虽然不是必需的,但是在使能欠压复位时也应使能上电延时定时器。

由于以下原因不同芯片的上电延时定时器的延时也各不相同:

- VDD 差异
- 温度差异
- 制造工艺差异

详见直流参数 (第13.0节"电气特性")。

注: 在MCLR 引脚的低于VSS的电压尖峰,包括大于80mA的电流,可导致闭锁。因此,在MCLR 引脚上施加"低"电平时,应使用阻值在50-100Ω的串联电阻,而不是将该引脚直接拉到VSS。

3.5 欠压复位

配置字寄存器中的 LVREN0 和 LVREN1 位用于选择 4 种欠压复位模式中的一种。其中添加了两种允许使用软件或硬件对 LVR 的使能进行控制的模式。当 LVREN<1:0> = 01 时,可由 PSTA 寄存器的 SLVREN 位使能/禁止 LVR,从而能用软件对其进行控制。通过选择 LVREN<1:0>,可使欠压复位在休眠时被自动禁止,从而节约功耗;而在唤醒后被重新使能。在此模式下,SLVREN 位被禁止。关于配置字的定义,请参见寄存器 PSTA。

如果 VDD 下降到 VLVR 以下,且持续时间超过参数值(TLVR)(见<u>第 13.0 节"电气特性"</u>,欠压状况将使)器件复位。不管 VDD 的变化速率如何,上述情况都会发生。如果 VDD 低于 VLVR 的时间少于参数值(TLVR),则不一定会发生复位。

任何复位(上电复位、欠压复位或看门狗定时器复位等)都会使芯片保持复位状态,直到 VDD 上升到 VLVR 以上(见图 3-5)。如果使能了上电延时定时器,此时它将启动,并且会使器件保持复位状态的时间延长 64ms。

注: 配置字寄存器中的PWRTE位用于使能上电延时定时器。

如果在上电延时定时器运行过程中,VDD降低到VLVR以下,芯片将重新回到欠压复位状态并且上电延时定时器会恢复为初始状态。一旦VDD上升到VLVR以上,上电延时定时器将执行一段64ms的复位。

图 3-5: 欠压情形

表 3-5: 与欠压有关的寄存器汇总

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
PSTA	_	_	ULPWUE	SLVREN	MCR	IER	POR	LVR	0001 100x	xxxx xxxx
STATUS	IRP	PR1	PAGE	TF	PF	Z	HC	С	0001 1xxx	xxxx xxxx

图注: u = 不变, x = 未知, - = 未实现位, 读为 0, q = 取值视具体情况而定。 LVR 不使用阴影单元。

注 1: 其他(非上电)复位包括正常工作时的MCLR复位和看门狗定时器复位。

3.6 延时时序

上电时的延时时序如下:

- 在 POR 延时结束后,施加一段 PWRT 延时。
- PWRT 超时后激活 OST。

总延时时间取决于振荡器配置和PWRTE位的状态。例如,在 EC 模式且PWRTE位被擦除(PWRT 禁止)的情况下,根本不会出现延时。图 3-6-1、3-6-2 和 3-6-3 分别给出了各种情形下的延时时序。当振荡器起振后,通过使能故障保护监控器,器件将以 INTOSC 作为时钟源来执行代码(<u>第 4.9 节"故障保护时钟监控器"</u>)。

由于延时是由上电复位脉冲触发的,因此如果MCLR保持足够长时间的低电平,所有延时都将结束。将MCLR电平拉高后,器件将立即开始执行代码(见图 3-6-2)。这对于测试或同步多个并行工作的YS83B08/YS84B08/YS84C12器件来说是非常有用的。

表 3-6-1 给出了一些特殊寄存器的复位条件,而表 3-2 给出了所有寄存器的复位条件。

图 3-6-1: 上电时的超时时序 (MCLR延时): 情形 1

图 3-6-2: 上电时的超时时序(MCLR延时): 情形 2

图 3-6-3: 上电时的超时时序(MCLR及 VDD)

表 3-6-1: 特殊寄存	F器的初始状态
---------------	---------

条件	程序计数器	状态寄存器	PSTA 寄存器
上电复位	0000h	0001 1xxx	010x
正常工作期间的MCLR复位	0000h	000u uuuu	0uuu
休眠期间的MCLR复位	0000h	0001 0uuu	0uuu
WDT 复位	0000h	0000 uuuu	0uuu
WDT 唤醒	PC + 1	uuu0 0uuu	uuuu
欠压复位	0000h	0001 1uuu	01u0
通过中断从休眠唤醒	PC + 1 ⁽¹⁾	uuu1 Ouuu	uuuu

图注: u = 不变, x = 未知, -= 未实现位, 读为 0。

注 1: 当器件被中断唤醒且全局中断允许位 GIE 位置 1 时,执行 PC+1 后,PC 装入中断向是(0004h)。

表 3-6-2: 各种情形下的超时

	上电		欠压	II £L.HELJD -kovê ze	
振荡器配置	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	从休眠状态唤醒
XT, HS, LP	T _{PWRT} + 1024 * T _{OSC}	1024 * T _{OSC}	T _{PWRT} + 1024 * T _{OSC}	1024 * T _{OSC}	1024 * T _{OSC}
RC, EC, INTOSC	T _{PWRT}		T_{PWRT}		_

3.7 电源控制 (PSTA) 寄存器

电源控制寄存器 PSTA(寄存器 8EH)有两个状态位,用于指示上次发生的复位的类型。

bit0 是 LVR (欠压复位)标志位。LVR 在上电复位时未知。然后,用户必须将该位置 1,并在随后的复位发时检查 LVR 是否为 0,如果是,则表示已发生欠压复位。当禁止欠压复位电路(配置字寄存器中的 LVR EN<1:0>=00)时,LVR 状态位是"无关位"并且不一定预测得到。

bit1 是 POR(上电复位)标志位,在上电复位时值为 0,其他情况下不受影响。上电复位后,用户必须对该位写 1。发生后续复位后,如果 POR 为 0,则表示发生了上电复位(即 VDD 可能已经变为了低电平)。

更多信息,请参见第 6.5.5 节 "超低功耗唤醒"和第 3.5 节 "欠压复位 (LVR)"。

4.0 系统时钟

4.1 概述

振荡器有多种时钟源和选择功能,从而使其应用非常广泛,并可最大限度地提高性能和降低功耗。图 4-1 给出了振荡器模块的框图。

时钟源可以配置为由外部振荡器、石英晶体谐振器、陶瓷谐振器以及阻容(RC)电路提供。此外,系统时钟源可以配置为由两个内部振荡器中的一个提供,并可以通过软件选择速度。其他时钟功能包括:

- 通过软件选择外部或内部系统时钟源(注意:上电默认系统时钟为内部时钟)。
- 故障保护时钟监视器(FSCM)旨在检测外部时钟源的故障(LP、XT、HS、EC 或 RC 模式)并自动切换到内部振荡器。

振荡器模块可配置为以下8种时钟模式之一。

- 1. EC——外部时钟, I/O 在 PA4 上, 时钟从 PA5 输入。
- 2. LP——32kHz 低功耗晶振模式。
- 3. XT——中等增益晶振或陶瓷谐振振荡器模式。
- 4. HS——高增益晶振或陶瓷谐振器模式。
- 5. RC——外部阻容(RC), FOSC/4 输出到 OSC2/CLKOUT。
- 6. RC+IO——外部阻容, I/O 在 PA4 上。
- 7. IRC——内部振荡器, PA4 输出 1/4 系统时钟频率, PA5 为 I/0 PIN。
- 8. IRC+IO——内部振荡器, PA4、PA5 作为 I/O PIN。

通过配置字寄存器(CONFIG)的 FOSC<2:0>位来配置时钟源模式。内部时钟可用两个内部振荡器产生。HFINTOSC 是经过校准的高频振荡器。LFINTOSC 是未经校准的低频振荡器。

图 4-1: MCU 时钟源框图

4.2 振荡器控制

图注:

R = 可读位

振荡器控制(OSCCON)寄存器(图 4-1)控制系统时钟和频率选择等选项。OSCCON 寄存器包含以下 位:

- 频率选择位(IRCF)
- 频率状态位(HTS 和 LTS)
- · 系统时钟控制位(OSTS和SCS)

寄存器 8FH: 振荡器控制寄存器(OSCCON)

U-0	R/W-1	R/W-0	R/W-1	R-1	R-0	R-0	R/W-1
_	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
bit7							bit0

U = 未实现位,读为0

-n = POR	时的值 1 = 置1	0 = 清零	x = 未知
bit7	未实现:读为0		OR IN
bit6-4	IRCF<2:0>: 内部振荡器频	率选择位	
	000 = 31kHz		
	001 = 250kHz		
	010 = 500kHz		
	011 = 1 MHz		
	100 = 2MHz		
	101 = 4MHz (缺省值)		
	110 = 8MHz		
bit3	111 = 16MHz OSTS :振荡器起振超时状态	元 (1)	
DIIO			
	1 = 器件运行在FOSC<2:0:		
hita		之下(HFINTOSC或LFINTOSC)	
bit2	HTS: HFINTOSC (高频—	—TOMHZ到25UKHZ)从念位	
	1 = HFINTOSC稳定		
h:44	0 = HFINTOSC不稳定	04111 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
bit1	LTS: LFINTOSC (低频——	-31KHZ)状念位	
	1 = LFINTOSC稳定		
N. a	0 = LFINTOSC不稳定		
bit0	SCS: 系统时钟选择位		
	1 = 内部振荡器用于系统时		
	0 = 时钟源由FOSC<2:0>ÿ		
注	1: 故障保护模式使能时,该	《位将复位为0。	

W = 可写位1 = 置1

4.3 时钟源模式

时钟源模式可分为外部和内部模式。

- 外部时钟模式依靠外部电路提供时钟源。例子有:振荡器模块(EC模式)、石英晶体谐振器或陶瓷谐 振器(LP、XT和HS模式)以及阻容(RC)模式电路。
- 内部时钟源内置于振荡器模块中。振荡器模块有两个内部振荡器,一个是 16MHz 高频内部振荡器 (HFINTOSC),另一个是 31kHz 低频内部振荡器(LFINTOSC)。

可通过 OSCCON 寄存器的系统时钟选择 (SCS) 位,在外部或内部时钟源之间选择系统时钟。(欲了解更 多信息,请参见第 4.6 节"时钟切换")。

4.4 外部时钟模式

4.4.1 振荡器起振定时器 (OST)

如果振荡器模块配置为 LP、XT 或 HS 模式,振荡器起振定时器(OST)对来自 OSC1 的振荡计数 1024次。这发生在上电复位(POR)之后以及上电延时定时器(PWRT)延时结束(如果配置了)时,或从休眠中唤醒后。在此期间,程序计数器不递增,程序执行暂停。OST 确保使用石英晶体谐振器或陶瓷谐振器的振荡器电路已经启动并向振荡器模块提供稳定的系统时钟信号。当在时钟源之间切换时,需要一定的延时以使新时钟稳定。表 4-4-1 给出了振荡器延时的例子。

切换自	切换到	频率	振荡器延时	
休眠/POR	LFINTOSC HFINTOSC	31kHz 250kHz到16MHz	振荡器预热延时(T _{WARM})	
休眠/POR	EC, RC	DC—20MHz	双周期	
LFINTOSC (31kHz)	EC, RC	DC—20MHz	每次一周期	
休眠/POR	LP, XT, HS	32kHz到20MHz	1024个时钟周期(OST)	
LFINTOSC (31kHz)	HFINTOSC	250kHz到16MHz	1us(近似值)	

表 4-4-1. 振荡器延时示例

4.4.2 EC 模式

外部时钟(EC)模式允许外部产生的逻辑电平作为系统时钟源。工作在此模式下时,外部时钟源连接到OSC1输入,OSC2引脚可用作通用I/O。图 4-4-2 给出了 EC 模式的引脚连接。

当选取 EC 模式时,振荡器起振定时器(OST)被禁止。因此,上电复位(POR)后或者从休眠中唤醒后的操作不存在延时。因为 YSPRING MCU 的设计是完全静态的,停止外部时钟输入将使器件暂停工作并保持所有数据完整。当再次启动外部时钟时,器件恢复工作,就好像没有停止过一样。

图 4-4-2:外部时钟(EC)模式的工作原理

4.4.3 LP、XT 和 HS 模式

LP、XT 和 HS 模式支持连接到 OSC1 和 OSC2 的石英晶体谐振器或陶瓷谐振器的使用(图 4-4-3-1)。模式选择内部反相放大器的低、中或高增益设定,以支持各种谐振器类型及速度。

LP 振荡器模式选择内部反相放大器的最低增益设定。LP 模式的电流消耗在三种模式中最小。该模式设计 仅用于驱动 32.768kHz 音叉(Tuning Fork)式晶振(钟表晶振)。

XT 振荡器模式选择内部反相放大器的中等增益设定。XT 模式的电流消耗在三种模式中居中。该模式最适用于驱动具备中等驱动电平规格要求的谐振器。

HS 振荡器模式选择内部反相放大器的最高增益设定。HS 模式的电流消耗在三种模式中最大。该模式最适用于驱动需要高驱动设定的谐振器。

图 4-4-3-1 和图 4-4-3-2 分别给出了石英晶体谐振器和陶瓷谐振器的典型电路。

- 注 **1.** 石英晶振的特性随类型、封装和制造商而变化。要了解规格说明和推荐应用,应查阅制造商提供的数据手册。
 - 2: 应始终验证振荡器在应用预期的VDD和温度范围内的性能。

图 4-4-3-1: 石英晶体的工作原理 (LP、XT或 HS 模式)

图 4-4-3-2: 陶瓷谐振器的工作原理(XT或 HS 模式)

4.4.4 外部 RC 模式

外部阻容 (RC)模式支持使用外部 RC 电路。对时钟精度要求不高时,这使设计人员有了很大的频率选择空间,且保持成本最低。有 RC 和 RCIO 两种模式。

在 RC 模式下,电路连接到 OSC1。RCOSC2/CLKOUT 输出 RC 振荡频率的 4 分频。该信号可用来为外部电路、同步、校准、测试或其他应用需求提供时钟。图 4-4-4 给出了外部 RC 模式的连接图。

图 4-4-4: 外部 RC 模式

在 RCIO 模式下,RC 电路连接到 OSC1。OSC2 成为额外的通用 I/O 引脚。I/O 引脚成为 PORTA 的 bit4 (PA4)。图 4-5-5 给出了 RCIO 模式的连接图。RC 振荡器频率是供电电压、电阻(R_{EXT})和电容(C_{EXT})值以及工作温度的函数。影响振荡器频率的其他因素有:

- 电压门限值变化
- 元件容差
- 不同封装的电容

用户还应考虑因所使用的外部 RC 元件的容差而导致的差异。

4.5 内部时钟模式

振荡器模块有两个独立的内部振荡器,可配置或选取为系统时钟源。

- 1. HFINTOSC(高频内部振荡器)出厂时已校准,工作频率为 16MHz,精度范围为±1%。
- 2. LFINTOSC(低频内部振荡器)未经校准,工作频率为 31kHz。

通过软件对 OSCCON 寄存器的内部振荡器频率选择位 IRCF<2:0>进行操作,可选择系统时钟速度。

4.5.1 INTOSC 和 INTOSCIO 模式

当在配置字寄存器(CONFIG)中使用振荡器选择位 FOSC<2:0>设置器件时,在 INTOSC 和 INTOSCIO模式下将内部振荡器配置为系统时钟源。在 INTOSC 模式下,OSC1/CLKIN 可用作通用 I/O。OSC2/CLKOUT输出所选内部振荡器频率的 4 分频。CLKOUT信号可用来为外部电路、同步、校准、测试或其他应用需求提供时钟。在 INTOSCIO模式下,OSC1/CLKIN和 OSC2/CLKOUT引脚可用作通用 I/O。

4.5.2 HFINTOSC

高频内部振荡器(HFINTOSC)是出厂时已校准的 16MHz 内部时钟源。

HFINTOSC 的输出连接到后分频器和多路复用器(见图 4-1)。使用 OSCCON 寄存器的 IRCF<2:0>位,

可通过软件选择七个频率之一。更多信息,请参见第 4.5.4 节"频率选择位(IRCF)"。

将 OSCCON 寄存器的 ICRF<2:0>位设置为≠000 选择 16MHz 到 250kHz 之间的任一频率,可使能 HFINTOSC。OSCCON 寄存器的 HF 内部振荡器(HTS)位用于显示 HFINTOSC 是否稳定。

4.5.3 LFINTOSC

低频内部振荡器(LFINTOSC)是未经校准的 31kHz 内部时钟源。LFINTOSC 的输出连接到后分频器和多路复用器(见图 4-1)。通过软件对 OSCCON 寄存器的 IRCF<2:0>位进行操作,选取 31kHz。更多信息,请参见第 4.5.4 节 "频率选择位(IRCF)"。LFINTOSC 还是上电延时定时器(PWRT)、看门狗定时器(WDT)以及故障保护时钟监控器(FSCM)的时钟源。选取 31kHz(将 OSCCON 寄存器的 IRCF<2:0>位设置为 000)为系统时钟源(OSCCON 寄存器的位 SCS = 1),或者使能以下任一项时,LFINTOSC 将被使能:

- 上电延时定时器 (PWRT)
- 看门狗定时器(WDT)
- 故障保护时钟监控器 (FSCM)

OSCCON 寄存器的 LF 内部振荡器 (LTS) 位用于指示 LFINTOSC 是否稳定。

4.5.4 频率选择位(IRCF)

16MHz HFINTOSC 和 31kHz LFINTOSC 的输出连接到后分频器和多路复用器(见图 4-1)。OSCCON 寄存器的内部振荡器频率选择位 IRCF<2:0>用于选择内部振荡器的频率输出。可通过软件选择以下 8 个频率之

- 16MHz
- 8MHz
- 4MHz (复位后的缺省值)
- 2MHz
- 1MHz
- 500kHz
- 250kHz
- 31kHz

注: 任何复位后,OSCCON寄存器的IRCF<2:0>位将被置为101且频率选择置为4MHz。用户可修改IRCF位来选择其他频率。

4.5.5 HFINTOSC 和 LFINTOSC 时钟切换时序

当在 LFINTOSC 和 HFINTOSC 之间切换时,新的振荡器可能为了省电已经关闭(见图 4-5-5)。在这种情况下,OSCCON 寄存器的 IRCF 位被修改之后、频率选择生效之前,存在一个延时。OSCCON 寄存器的 LTS 和 HTS 位将反映 LFINTOSC 和 HFINTOSC 振荡器的当前活动状态。频率选择时序如下:

- 1. OSCCON 寄存器的 IRCF<2:0>位被修改。
- 2. 如果新时钟是关闭的,开始一个时钟启动延时。
- 3. 时钟切换电路等待当前时钟下降沿的到来。
- 4. CLKOUT 保持为低,时钟切换电路等待新时钟上升沿的到来。
- 5. 现在 CLKOUT 连接到新时钟。OSCCON 寄存器的 HTS 和 LTS 位按要求被更新。
- 6. 时钟切换完成。

更多信息请参见图 4-1。

如果选取的内部振荡器速度在 16MHz 到 250kHz 之间,选取新频率不存在启动延时。这是因为新旧频率都来自经过后分频器和多路复用器的 HFINTOSC。

启动延时规范在第13.0节"电气特性"中与振荡器相关的表格中。

图 4-5-5: 内部振荡器切换时序

4.6 时钟切换

通过软件对 OSCCON 寄存器的系统时钟选择(SCS)位进行操作,可将系统时钟源在外部和内部时钟源 之间切换。

4.6.1 系统时钟选择(SCS)位

OSCCON 寄存器的系统时钟选择(SCS)位选择用于 CPU 和外设的系统时钟源。

- OSCCON 寄存器的位 SCS = 0 时,系统时钟源由配置字寄存器(CONFIG)中 FOSC<2:0>位的配 置决定。
- OSCCON 寄存器的位 SCS = 1 时,根据 OSCCON 寄存器的 IRCF<2:0>位所选的内部振荡器频率选 取系统时钟源。复位后, OSCCON 寄存器的 SCS 总是被清零。
- 注: 任何自动时钟切换(可能产生自故障保护时钟监控器)都不更新OSCCON寄存器的SCS位。用户可监 控OSCCON寄存器的OSTS位以确定当前的系统时钟源。

4.6.2 振荡器起振超时状态(OSTS)位

OSCCON 寄存器的振荡器起振超时状态(OSTS)位用于指示系统时钟是来自外部时钟源,还是来自内部时钟源。外部时钟源由配置字寄存器(CONFIG)的 FOSC<2:0>定义。OSTS 还特别指明在 LP、XT 或 HS 模式下,振荡器起振定时器(OST)是否已超时。

4.7 掉电模式 (休眠)

通过执行 SLEEP 指令可进入掉电模式。

如果使能看门狗定时器:

- WDT 将被清零并保持运行。
- 状态寄存器中的 PF 位被清零。
- TF 位被置 1。
- 关闭振荡器驱动器。
- I/O端口保持执行 SLEEP 指令之前的状态(驱动为高电平、低电平或高阻状态)。

为使这种模式下的电流消耗降至最低,所有 I/O 引脚都应保持为 VDD 或 VSS,以确保没有外部电路从 I/O 引脚消耗电流。为了避免输入引脚悬空而引入开关电流,应在外部将高阻输入的 I/O 引脚拉为高电平或低电平。还应考虑 PORTA 片上上拉的影响。

MCLR引脚必须为逻辑高电平。

注: 请注意,由于WDT超时产生的复位不会将MCLR 引脚驱动为低电平。

4.7.1 从休眠状态唤醒

由于在休眠期间没有片上时钟处于工作状态,下列外设中断可以将器件从休眠状态唤醒:

- 1. TMR1 中断。Timer1 必须用作异步计数器
- 2. PORTA、PORTB 电平变化中断
- 3. 来自 INT0 与 INT1 引脚的外部中断
- 4. 来自 CS 模块的触摸中断
- 5. 看门狗定时器唤醒(如果 WDT 使能)

MCLR 引脚上的有效信号会导致器件复位。其他事件被认为是程序执行的继续。状态寄存器中的 TF 和 PF 位用于确定器而在执行 SLEEP 件复位的原因。PF 位在上电时被置 1,执行指令时被清零。TF 位在发生 WDT 唤醒时被清零。

当执行 SLEEP 指令时,下一条指令(PC+1)将预先取出。如果希望通过中断事件唤醒器件,则必须将相应的中断允许位置 1(使能)。发生唤醒与 GIE 位的状态无关。如果 GIE 位被清零(禁止),器件将继续执行 SLEEP 指令之后的指令。如果 GIE 位被置 1(使能),器件执行 SLEEP 指令之后的指令,然后跳转到中断地址(0004h)处执行代码。如果不希望执行 SLEEP 指令之后的指令,用户应该在 SLEEP 指令后面放置一条 NOP 指令。

注: 如果禁止了全局中断(GIE被清零),但有任一中断源将其中断允许位以及相应的中断标志位置1,器件将立即从休眠状态唤醒。

器件从休眠状态唤醒时,WDT都将被清零,而与唤醒原因无关。

4.7.2 使用中断唤醒

当禁止全局中断(GIE 被清零)时,并且有任一中断源将其中断允许位和中断标志位置 1,将会发生下列事件之一:

- 如果在执行 SLEEP 之前产生了中断,那么 SLEEP 指令将被作为一条 NOP 指令执行。因此,WDT 及其预分频器和后分频器(如果使能)将不会被清零,并且 TF 位将不会被置 1,同时 PF 位也不会被清零。
- 如果在执行 SLEEP 指令期间或之后产生了中断,那么器件将被立即从休眠状态唤醒。SLEEP 指令将在唤醒之前执行完毕。因此,WDT 及其预分频器和后分频器(如果使能)将被清零,并且 TF 位将被置 1,同时 PF 位也将被清零。

即使在执行 SLEEP 指令之前,检查到标志位为 0,它也可能在 SLEEP 指令执行完毕之前被置 1。要确定是否执行了 SLEEP 指令,可测试 PF 位。如果 PF 位置 1,则说明 SLEEP 指令被当作一条 NOP 指令执行了。

在执行 SLEEP 指令之前,必须先执行一条 CLRWT 指令,来确保将 WDT 清零。详情请参见图 4-8。

图 4-8: 通过中断将器件从休眠状态唤醒

4.8 故障保护时钟监控器

故障保护时钟监控器(FSCM)使得器件在出现外部振荡器故障时仍能继续工作。FSCM 能在振荡器起振延时定时器(OST)到期后的任一时刻检测振荡器故障。FSCM 通过将配置字寄存器(CONFIG)中的 FCMEN位置 1 来使能。FSCM 可用于所有外部振荡模式(LP、XT、HS、EC、RC 和 RCIO)。

图 4-9: FSCM 框图

4.8.1 故障保护检测

FSCM 模块通过将外部振荡器与 FSCM 采样时钟比较来检测振荡器故障。LFINTOSC 除以 64, 就产生了采样时钟。请参见图 4-9。故障检测器内部有一个锁存器。在外部时钟的每个下降沿,锁存器被置 1。在采样时钟的每个上升沿,锁存器被清零。如果采样时钟的整个半周期流逝而主时钟依然未进入低电平,就检测到故障。

4.8.2 故障保护操作

当外部时钟出现故障时,FSCM 将器件时钟切换到内部时钟源,并将 PIFB 寄存器的 OSFIF 标志位置 1。如果在 PIFB 寄存器的 OSFIE 位置 1 的同时将该标志位置 1,将产生中断。器件固件随后会采取措施减轻可能由故障时钟所产生的问题。系统时钟将继续来自内部时钟源,直到器件固件成功重启外部振荡器并切换回外部操作。FSCM 所选的内部时钟源由 OSCCON 寄存器的 IRCF<2:0>位决定。这使内部振荡器可以在故障发生前就得以配置。

4.8.3 故障保护条件清除

复位、执行 SLEEP 指令或翻转 OSCCON 寄存器的 SCS 位后,故障保护条件被清除。OSCCON 寄存器的 SCS 位被修改后,OST 将重新启动。OST 运行时,器件继续从 OSCCON 中选定的 INTOSC 进行操作。OST 超时后,故障保护条件被清除,器件将从外部时钟源进行操作。必须先清除故障保护条件,才能清零 OSFIF标志位。

4.8.4 复位或从休眠中唤醒

FSCM 设计为能在振荡器起振延时定时器 (OST) 到期后的任一时刻检测振荡器故障。OST 的使用场合为从休眠状态唤醒后以及任何类型的复位后。OST 不能在 EC 或 RC 时钟模式下使用,所以一旦复位或唤醒完成,FSCM 就处于激活状态。当 OST 运行时,器件总是处于代码执行阶段。

注: 由于振荡器起振时间的范围变化较大,在振荡器起振期间(即,从复位或休眠中退出时),故障保护电路不处于激活状态。经过一段适当的时间后,用户应检查OSCCON寄存器的OSTS位,以验证振荡器是否已成功起振以及系统时钟是否切换成功。

4.9 内部快时钟调频功能

当系统时钟为内部快时钟(IRC)且需要对频率进行调节时,可设置 IRC 频率调节使能位 IRCTEN 为 1, 使能 IRC 校准功能。此时通过设置 **IRCTRIM** { IRCTRIMH<4: 0>, IRCTRIML<7:3> } 的值可对 IRC 频率进行 粗调, 每个 LSB (步长) 变化约为 50KHz;设置 IRCFT<2:0>值则可以微调, 每个 LSB (步长) 变化约为 6KHz。

IRCTRIM 值变化对应频率变化的规律如下:

注:

- 1、IRCTEN 为 0 时,对 IRC 的调节失效,此时 IRC 频率为出厂校准值;
- 2、频率的变化步长并非是绝对的;
- 3、由于 IRC 可能会存在小幅抖动,IRCFT 微调功能仅供参考;

寄存器92H: 快时钟校正寄存器低8位 < IRCTRIML >

频 	000000000						
	0000000000	> 两个值	频率相邻				
率	11111111111	<u> </u>	7X — 111 VP				
最小	1000000000						
注:							
1、IRC	TEN 为 0 时,	对 IRC 的调节	5失效,此时 IR	C 频率为出厂	校准值;		
2、频率	区的变化步长并	非是绝对的;					
3、由于	FIRC 可能会存	在小幅抖动,	IRCFT 微调功	能仅供参考;			
寄存器92H:	快时钟校正寄	存器低8位	< IRCTRIML >				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit7			-/ /	4111:			bit0
		IRCTRIM<4: 0>				IRCFT	

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

-n = POR时的值 1 = 置1 0 = 清零 x = 未知

bit7-3 IRCTRIM<4: 0>: IRC 频率调节位低 5 位

bit2-0 IRCFT: IRC 频率微调位

寄存器93H: 快时钟校正寄存器高5位 < IRCTRIMH >

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	IRCTEN		IRCTRIM<9: 5>			
bit7							bit0

图注:

W = 可写位 U = 未实现位, 读为0 R = 可读位

0 = 清零 1 = 置1 -n = POR时的值 x = 未知

bit7 未实现位 bit6 未实现位

bit5 IRCTEN: IRC 频率调节使能位

> 1 = IRC 频率调节使能 0 = IRC 频率调节禁止

bit4-0 IRCTRIM<9: 5>: IRC频率调节位高5位

5.0 中断

YS83B08/YS84B08/YS84C12 有以下多种中断源:

- 外部中断 PA1/INT0、PD6/INT1
- Timer0、Timer1 溢出中断、PWM 中断
- PA、PB 电平变化中断
- A/D 中断
- 触摸中断、I2C 中断
- 时钟丢失中断

中断控制寄存器(INTS)和外设中断请求寄存器(PIFB1、PIFB2、PIFB3)在各自的标志位中记录各种 中断请求。INTS寄存器还包括各个中断允许位和全局中断允许位。

INTS 寄存器中的全局中断允许位 GIE 在置 1 时允许所有未屏蔽的中断,而在清零时禁止所有中断。可以 通过 INTS 和 PIFB(1、2、3)寄存器中相应的允许位来禁止各个中断。复位时 GIE 被清零。

响应中断时,自动发生以下动作:

- · GIE 被清零以禁止任何其他中断。
- 返回地址被压入堆栈。
- 在 PC 中装入 0004h。

执行"从中断返回"指令 RTFI 退出中断程序并将 GIE 位置 1,从而重新使能未屏蔽的中断。 echnolog)

INTS 寄存器包含以下中断标志位:

- INTO 引脚中断
- PORTA 电平变化中断
- Timer0 溢出中断

外设中断允许和标志位在 PIFB1、PIFB2、PIFB3 寄存器中。

对于外部中断事件,如 INT0、INT1 引脚或 PORTA、PORTB 电平变化中断,中断响应延时将为 3 到 4 个 指令周期。确切的延时时间取决于发生中断事件的时间(见图 5-1-1)。对于单周期或双周期指令,中断响应延 时完全相同。进入中断服务程序之后,就可以通过查询中断标志位来确定中断源。在重新允许中断前,必须用 软件将中断标志位清零,以避免重复响应该中断。

- 1: 各中断标志位的置1不受相应的中断屏蔽位或GIE位状态的影响。 注:
 - 2: 当执行一条清零GIE位的指令后,任何等待在下一周期执行的中断都将被忽略。当GIE位被再次置1 后,被忽略的中断仍会继续等待处理。

关于 Timer1、A/D 模块的更多信息,请参见相应的外设章节。

图 5-1-1: 中断逻辑

图 5-1-2: INT 引脚中断时序

5.1 中断特殊功能寄存器

5.1.1 INTS 寄存器

图注:

R = 可读位

INTS 寄存器是可读写的寄存器,包含 TMR0 寄存器溢出、PORTA 电平变化和外部 PA1/INT0 引脚中断的各种允许和标志位。

注: 当有中断条件产生时,不管相应的中断允许位或INTS寄存器的全局允许位GIE状态如何,中断标志位都将置1。用户软件应该在允许中断之前确保将相应的中断标志位清零。

寄存器 0BH/8BH/10BH/18BH: 中断控制寄存器 (INTS)

W = 可写位

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TIS | INT0E | PAIE | TIF | INT0F | PAIF |
| bit7 | | | | | | | bit0 |

U = 未实现位,读为0

2: 当TMR0计满回零时,TIF位置1。复位时TMR0的状态不变,它应该在清零TIF位之前被初始化。

	102	· · · · ·	つ バスの間上が	12730
-n =	POR时的值	1 = 置1	0 = 清零	x = 未
bit7		全局中断允许位		
		允许所有未屏蔽的中断		
		禁止所有中断		
bit6		: 外设中断允许位		
		允许所有未屏蔽的外设中断		
		禁止所有外设中断 ————		
bit5	TIS:	Timer0溢出中断允许位		
	1 = ;	允许Timer0中断		
	$0 = \frac{3}{2}$	禁止Timer0中断		
bit4	INT0	E: PA1/INTO外部中断允许值	Ÿ	
	1 = ;	允许PA1/INTO外部中断		
	0 = 3	禁止PA1/INT0外部中断		
bit3	PAIE	: PORTA电平变化中断允许	·位 ⁽¹⁾	
	1 = /:	允许PORTA电平变化中断		
	0 = 3	禁止PORTA电平变化中断		
bit2	TIF:	Timer0溢出中断标志位 ^②		
	1 = 7	Timer0寄存器已经溢出(必须	须用软件清零)	
	0 =	Timer0寄存器没有溢出		
bit1	INT0	F: PA1/INTO外部中断标志位	<u>V</u>	
	1 = 2	发生了PA1/INT0外部中断(必须用软件清零)	
	0 = 3	未发生PA1/INT0外部中断		
bit0	PAIF	: PORTA电平变化中断标志	K位 ⁽¹⁾	
	1 = 3	至少一个PORTA<5:0>引脚	的电平状态发生了改变(必	必须用软件清零)
	0 = 3	没有一个PORTA<5:0>引脚	的电平状态发生改变	
注	1: 业	5须同时使能 PAINTR 寄存器。	0	

5.1.2 外设中断允许寄存器

PIFB1、PIFB2、PIFB3 寄存器包含外设中断允许和标志位。

注: 当有中断条件产生时,不管相应的中断允许位或INTS寄存器的全局允许位GIE状态如何,中断标志位都将置1。用户软件应该在允许中断之前确保将相应的中断标志位清零。

寄存器0CH:外设中断请求寄存器1(PIFB1)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ĺ	INT1E	ADCIE	OSFIE	TMR1IE	INT1F	ADCIF	OSFIF	TMR1IF
ĺ	bit7							bit0

图注:

bit6

R = 可读位 W = 可写位 U = 未实现位,读为0

-n = POR时的值 $1 = \mathbb{Z}1$ 0 = 清零 x = 未知

bit7 **INT1E**: PD6/INT1外部中断允许位

1 = 允许PD6/INT1外部中断

0 = 禁止PD6/INT1外部中断 **ADCIF**: ADC转换器中断允许位

1 = 允许A/D转换器中断

0 = 禁止A/D转换器中断

bit5 OSFIE: 振荡器故障中断允许位

1 = 允许振荡器故障中断

0 = 禁止振荡器故障中断

bit4 TMR1IE: Timer1溢出中断允许位

1 = 允许Timer1溢出中断 0 = 禁止Timer1溢出中断

bit3 INT1F: PD6/INT1外部中断标志位

1 = 发生了PD6/INT1外部中断(必须用软件清零)

0 = 未发生PD6/INT1外部中断

bit2 ADCIF: ADC中断标志位

1 = A/D转换完成

0 = A/D转换尚未完成或尚未启动

bit1 OSFIF: 振荡器故障中断标志位

1 = 系统振荡器发生故障,时钟输入切换为INTOSC(必须用软件清零)

0 = 系统时钟正常运行

bit0 TMR1IF: Timer1溢出中断标志位

1 = Timer1寄存器已经溢出(必须用软件清零)

0 = Timer1寄存器未溢出

寄存器0DH:外设中断请求寄存器2(PIFB2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 $1 = \mathbb{Z}1$ 0 = 清零 x = 未知

bit7 SSP1IE: I2C中断允许位

> 1 = 允许I2C中断 0 = 禁止I2C中断

bit6 CSIE: 触摸中断允许位

1 = 允许触摸中断0 = 禁止触摸中断

bit5 PBIE: PORTB电平变化中断允许位

> 1 = 允许PORTB电平变化中断 0 = 禁止PORTB电平变化中断

bit4 PWMIE: PWM中断允许位

> 1 = 允许PWM中断 0 = 禁止PWM中断

bit3 SSP1IF: I2C中断标志位

1 = 发生了I2C中断(必须用软件清零)

0 = 未发生I2C中断

bit2 CSIF: 触摸中断标志位

1 = 发生了触摸中断 0 = 未发生触摸中断

bit1 PBIF: PORTB电平变化中断标志位

1 = 至少一个PORTB<7:0>引脚的电平状态发生了改变(必须用软件清零)

0 = 没有一个PORTB<7:0>引脚的电平状态发生改变

bit0 PWMIF: PWM中断标志位

1 = 发生PWM中断(必须用软件清零)

0 = 未发生PWM中断

寄存器19H:外设中断请求寄存器3(PIFB3)

R-0	R-0	R-0	R/W-0	R-0	R-0	R-0	R/W-0
_	_	_	BCL1IE	_	_	_	BCL1IF
bit7		5/// / 1.	121				bit0
		7.111		, 41			

	all Carrier and the control of the c		
图注:	-36. 10.		
R = 可读位	W = 可写位	U = 未实现位,读为0	
-n = POR时的值	1 = 置1	0 = 清零	x = 未知

bit7 未实现 bit6 未实现 bit5 未实现 bit4 BCL1IE: I2C总线冲突中断允许位

1 = 允许I2C总线冲突中断

0 = 禁止I2C总线冲突中断

bit3 未实现 bit2 未实现 bit1 未实现

bit0 BCL1IF: I2C总线冲突中断标志位

> 1 = 发生了I2C总线冲突中断 0 = 未发生I2C总线冲突中断

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
INTS	GIE	PEIE	TIS	INS	PAIE	TIF	INTF	PAIF	0000 0000	XXXX XXXX
PAINTRA	1	1	PAINTRA5	PAINTRA4	PAINTRA3	PAINTRA2	PAINTRA1	PAINTRA0	00 0000	XXXX XXXX
PBINTRB	PAINTRB7	PAINTRB6	PAINTRB5	PAINTRB4	PAINTRB3	PAINTRB2	PAINTRB1	PAINTRB0	0000 0000	XXXX XXXX
PIFB1	INT1IE	ADCIE	OSFIE	TMR1IE	INT1IF	ADCIF	OSFIF	TMRIF	0000 0000	XXXX XXXX
PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000 0000	XXXX XXXX
PIFB3	_	_	_	BCL1IE	_	_	_	BCL1IF	00	xxxx xxxx

表 5-1: 与中断相关的寄存器

图注: x = 未知, u = 不变, — = 未实现(读为0), q = 取值视情况而定。中断模块不使用阴影单元。

5.2 外部中断

INTO(PA1)、INT1(PD6)引脚上的外部中断是边沿触发的; 当 OPT_REG 寄存器的 INT1EG 与 INTOEG 位被置 1 时在上升沿触发,而当 INT1EG 与 INTOEG 位被清零时在下降沿触发。当 INTO(PA1)、INT1(PD6)引脚上出现有效边沿时,INTS 寄存器的 INTOF 位、PIFB1 寄存器的 INT1F 位置 1。可以通过将 INTS 寄存器的 INTOE、PIFB1 寄存器的 INT1E 控制位清零来禁止该中断。在重新允许该中断前,必须在中断服务程序中先用软件将INTOF、INT1F 位清零。如果 INTOE 与 INT1F 位在进入休眠状态前被置 1,则 INTO(PA1)、INT1(PD6)引脚上中断能将处理器从休眠状态唤醒。关于 INTO(PA1)、INT1(PD6)引脚上中断将处理器从休眠状态唤醒的时序,请参见图 4-8。

注: 必须对ADINS和CPIOA、CPIOD寄存器进行初始化,以将模拟通道配置为数字输入。配置为模拟输入的引脚总是读为0。

5.3 Timer0 中断

TMR0 寄存器溢出(FFh→ 00h)会将 INTS 寄存器的 TOIF 位置 1。可以通过置 1/清零 INTS 寄存器的 TOIE 位来使能/禁止该中断。关于 Timer0 模块的操作,请参见第 7.1 节 "Timer0 模块"。

5.4 PORTA、PORTB 电平变化中断

PORTA、PORTB 输入电平的变化会使的 PAIF、PBIF 位置 1。可以通过置 1/清零的 PAIE、PBIE 位来使能/禁止该中断。此外,可通过 PAINTAR、PAINTBR 寄存器对该端口的各个引脚进行配置。

注: 当读操作正在执行时发生了I/O引脚电平变化,则PAIF、PBIF中断标志位可能不会被置1。

5.5 A/D 中断

ADC 模块在模数转换完成时, PIFB1 寄存器中的 ADCIF 中断标志位均置 1。可以通过置 1/清零 PIFB1 寄存器中的 ADCIE 位来使能/禁止该中断。

5.6 中断的现场保护

在中断期间,仅将返回的 PC 值压入堆栈。通常情况下,用户可能希望在中断期间保存关键寄存器(例如,W 寄存器和状态寄存器)。这必须用软件实现。应将临时保存寄存器 W TEMP 和 STATUS TEMP 置于 GPR

的末 16 字节中(见图 2-2)。这 16 个单元是所有存储区共用的,无需分区。这样就简化了现场保护和恢复操 作。例 5-7 中所示的代码可用于:

- 保存W寄存器
- 保存状态寄存器
- 执行 ISR 代码
- 恢复状态寄存器(和存储区选择位寄存器)
- 恢复W寄存器

注: YS83B08/YS84B08/YS84C12通常不需要保存PCLATH。但是,如果要在ISR和主程序中使用计算 LJUMP, 就必须在ISR中保存和恢复PCLATH。

例 5-7: 将状态寄存器和 W 寄存器保存在 RAM 中

STWR W_TEMP ;保存W寄存器到W_TEMP

SWAPR STATUS, W ;将 STATUS 寄存器高低四位交换后保存到 W(目的:不改变标志)

STWR STATUS_TEMP ;保存 STATUS 寄存器内容到 STATUS_TEMP

; 中断服务程序 ;(ISR)

SWAPR STATUS_TEMP, W ;交换 STATUS_TEMP 高低四个字节

STATUS ;恢复标志状态寄存器 STWR

SWAPR W_TEMP, R :恢复W寄存器值(用交换指令的目的:不改变状态寄存器值)

SWAPR W_TEMP, W

6.0 I/O 端口

YS83B08/YS84B08/YS84C12 共有 26 个通用 I/O 引脚。根据使能的外设不同,有些(或全部)引脚不能用作通用 I/O。通常使能了一个外设后,相关的引脚就不能用作通用 I/O 引脚了。

6.1 PORTA 和 CPIOA 寄存器

PORTA 是 6 位宽的双向端口。PORTA 对应的数据方向寄存器是 CPIOA(<u>寄存器 85H</u>)。将 CPIOA 位置 1 (= 1)可以使对应的 PORTA 引脚作为输入引脚(即禁止相应的输出驱动器)。将 CPIOA 位清零 (= 0)将使对应的 PORTA 引脚作为输出引脚(即使能输出驱动器并将输出锁存器的内容置于所选的引脚上)。PA3 是个例外,它是开漏极输出,且驱动能力很弱,最大只能 5ma 的灌电流。例 6-1 给出了初始化 PORTA 的方法。

读 PORTA 寄存器(<u>寄存器 05H</u>)将读取引脚的状态而写该寄存器将会写入端口锁存器。所有写操作都是读一修改一写操作。因此,写一个端口就意味着读该端口的引脚电平,修改读到的值,然后再将改好的值写入端口数据锁存器。当 MCLRE = 1 时,PA3 读为 0。

即使在 PORTA 引脚被用作模拟输入的时候,CPIOA 寄存器仍然控制 PORTA 引脚的方向。在将它们用作模拟输入时,用户必须确保 CPIOA 寄存器中的位保持为置 1 状态。配置为模拟输入的 I/O 引脚始终读为 0。

注: 必须对ADINS寄存器进行初始化以将模拟通道配置为数字输入通道。配置为模拟输入的引脚读为0。

例 6-1: 初始化 PORTA

BCR STATUS, PAGE ;Bank0

CLRR PORTA ;清除端口 A 输出缓冲器

BSR STATUS, PAGE ;Bank1

CLRR ADINS ; 所有模拟/数字复用端口设置为数字端口LDWI 0CH :设置端口 A 的<3.2>位为输入,其他输出

STWR CPIOA ;

BCR STATUS, PAGE ; Bank 0

寄存器 05H: PORTA寄存器 (PORTA)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	PA5	PA4	PA3	IBUSY	PA1	PA0
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 $1 = \mathbb{Z}1$ 0 = 清零 x = 未知

bit7-6 未实现: 读为0

bit2 IBUSY:烧录BUSY信号

bit5-3 、 **PA<5:0>**: PORTA I/O引脚位

bit1-0 1 = PORTA引脚电平>V_{IH}

0 = PORTA引脚电平<V_{IL}

寄存器85H: PORTA三态寄存器(CPIOA)

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	CPIOA5	CPIOA4	CPIOA3	_	CPIOA1	CPIOA0
bit7							bit0

图注:

 $R = \overline{\eta}$ $W = \overline{\eta}$ $\overline{\eta}$

U = 未实现位,读为0

-n = POR时的值

1 = 置1

0 = 清零

x = 未知

bit7-6 未实现: 读为0

bit5-0 **CPIOA<5:0>:** PORTA三态控制位

1 = PORTA引脚配置为输入(三态)

0 = PORTA引脚配置为输出

注 1: 在XT、HS和LP振荡模式下, CPIOA<5:4>始终读为1;

2: PA3仅可作开漏输出 (Open Drain):

6.2 PORTB 和 CPIOB 寄存器

PORTB 是 8 位宽的双向端口。引脚可以配置为 I/O 或作为触摸模拟输入。PORTB 对应的数据方向寄存器是 CPIOB(寄存器 86H)。将 CPIOB 位置 1(=1)可以使对应的 PORTB 引脚作为输入引脚(即禁止相应的输出驱动器)。将 CPIOB 位清零(=0)将使对应的 PORTA 引脚作为输出引脚(即使能输出驱动器并将输出锁存器的内容置于所选的引脚上)。

读 PORTB 寄存器(<u>寄存器 06H</u>)将读取引脚的状态而写该寄存器将会写入端口锁存器。所有写操作都是读一修改一写操作。因此,写一个端口就意味着读该端口的引脚电平,修改读到的值,然后再将改好的值写入端口数据锁存器。

即使在 PORTB 引脚被用作模拟输入的时候,CPIOB 寄存器仍然控制 PORTB 引脚的方向。在将它们用作模拟输入时,用户必须确保 CPIOB 寄存器中的位保持为置 1 状态。配置为模拟输入的 I/O 引脚始终读为 0。

寄存器06H: PORTB寄存器(PORTB)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PB7 | PB6 | PB5 | PB4 | PB3 | PB2 | PB1 | PB0 |
| bit7 | | | | | | | bit0 |

图注:

R = 可读位

W = 可写位

U = 未实现位, 读为0

-n = POR时的值 1

1 = 置1

0 = 清零

x = 未知

bit7-0 PB<7:0>: PORTB I/O引脚位

1 = PORTB引脚电平>V_{IH} 0 = PORTB引脚电平<V_{II}

寄存器86H: PORTB三态寄存器(CPIOB)

R/W-1	R/W-1	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
CPIOB7	CPIOB6	CPIOB5	CPIOB4	CPIOB3	CPIOB2	CPIOB1	CPIOB0
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 $1 = \mathbb{Z}1$ 0 = 清零 x = 未知

bit7-0 **CPIOB<7:0>**: PORTB三态控制位

1 = PORTB引脚配置为输入(三态)

0 = PORTB引脚配置为输出

6.3 PORTC 和 CPIOC 寄存器

PORTC 是由 4 个双向引脚组成的通用 I/O。引脚可以配置为 I/O 或作为触摸模拟输入。

注: 必须对ADINS寄存器进行初始化以将模拟通道配置为数字输入通道。配置为模拟输入的引脚读为0。

例 6-4: 初始化 PORTC

BCR STATUS,PAGE ;Bank 0

CLRR PORTC ;清输出缓冲区

BSR STATUS,PAGE ;Bank 1

CLRR ADINS ;设置端口为数字端口

LDWI OCh ;设置 PC1, PC2 为输入, 其他 PC 口输出

STWR CPIOC

BCR STATUS,PAGE ;Bank 0

寄存器 07H: PORTC寄存器 (PORTC)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	_	PC3	PC2	PC1	PC0
bit7	11.	- 14 N					bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

Bit3-0 PC<3:0>: PORTCI/O引脚位

1 = PORTC引脚电平>VIH

0 = PORTC引脚电平<VIL

寄存器 87H: PORTC三态寄存器 (CPIOC)

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_	_	CPIOC3	CPIOC2	CPIOC1	CPIOC0
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 1 = 21 0 = 清零 x = 未知

Bit3-0 **CPIOC<3:0>**: PORTC三态控制位

1 = PORTC引脚配置为输入(三态)

0 = PORTC引脚配置为输出

6.4 PORTD 和 CPIOD 寄存器

PORTD 是由 8 个双向引脚组成的通用 I/O。引脚可以配置为 I/O 或作为触摸模拟输入。要了解各个功能的特定信息(ADC、Touch),请参见本数据手册的相应章节。

寄存器08H: PORTD寄存器 (PORTD)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 |
| bit7 | | | | | | | bit0 |

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

bit7-0 **PD<7:0>:** PORTD I/O引脚位

1 = PORTD引脚电平>V_{IH} 0 = PORTD引脚电平<V_{IL}

寄存器88H: CPIOD寄存器(CPIOD)

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CPIOD7 | CPIOD6 | CPIOD5 | CPIOD4 | CPIOD3 | CPIOD2 | CPIOD1 | CPIOD0 |
| bit7 | | 120 | 1 | 11. | | | bit0 |

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

bit7-0 CPIOD<7:0>: PORTD 三态控制位

1 = PORTD引脚配置为输入(三态)

0 = PORTD引脚配置为输出

6.5 其它引脚功能

YS83B08/YS84B08/YS84C12 上的每一个 PORTA 引脚具有电平变化中断和弱上拉功能。PA0 具有超低功耗唤醒功能。下面三个小节将介绍这些功能。PORTB 引脚具有电平变化中断和弱上拉功能、PORTC 引脚具有弱上、下拉功能。PORTD 引脚具有弱上拉功能。

6.5.1 ADINS 寄存器

ADINS 寄存器用于将 I/O 引脚的输入模式配置为模拟。将相应的 ADINS 位置为高电平将使对该引脚的所有读操作结果为 0,并使该引脚的模拟功能正常进行。

ADINS 位的状态对数字输出功能没有影响。CPIO 清零且 ADINS 置 1 的引脚仍将作为数字输出工作,但其输出模式将为模拟。在对受影响端口执行读-修改-写指令时,这将导致意外的操作。

寄存器 91H: 模拟选择寄存器 (ADINS)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ANS7 | ANS6 | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANS0 |
| PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 |
| bit7 | | | | | | | bit0 |

图注:

-n = POR时的值

W = 可写位 R = 可读位

U = 未实现位,读为0 1 = 置1 0 = 清零 x = 未知

bit7-0 ANS<7:0>: 模拟选择位

1 =模拟输入。引脚被分配为模拟输入(1)。

0 =数字I/O。引脚被分配给端口或特殊功能。

注 1: 将某引脚设置为模拟输入将自动禁止数字输入电路、弱上拉以及电平变化中断(如果有的话)。 相应CPIO位必须设置为输入模式以允许对该引脚的电压进行外部控制。

6.5.2 弱上拉与下拉

PORTA、PORTB、PORTC、PORTD 引脚的某些位可配置内部弱上拉与下拉,控制位 PAPHRX、PBPHRX、 PCPHRx、PDPHRX 使能或禁止每一个弱上拉。请参见寄存器 95H、寄存器 96H、寄存器 97H、和寄存器 98H。 当将端口引脚配置为输出时,其弱上拉电路会自动切断。在 PA3 配置为MCLR时,自动启动 PA3 的弱上拉功 能。MCLR上拉不受软件控制。

注意: PORTC 引脚复位过程中为默认输入上拉,可能会产生短暂的高电平(与复位时间有关),应用设计 中要特别注意

寄存器 95H: 弱上拉PORTA寄存器(PAPHR)

				The state of the s			
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	PAPHR5	PAPHR4	PAPHR3	PAPHR2	PAPHR1	PAPHR0
bit7		P11/1 1 1 1	100	-			bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

1 = 置1 0 = 清零 -n = POR时的值 x =#x =#

bit7-6 未实现:读为0

bit5-0 PAPHR<5:0>: PORTA弱上拉控制位

> 1 = 使能上拉 0 = 禁止上拉

1: 如果引脚处于输出模式 (CPIO = 0),则弱上拉器件被自动禁止。 注

2: 在XT、HS和LP振荡模式下PAPHR<5:4>始终读为1。

寄存器96H: 弱上拉PORTB寄存器(PBPHR)

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PBPHR7 | PBPHR6 | PBPHR5 | PBPHR4 | PBPHR3 | PBPHR2 | PBPHR1 | PBPHR0 |
| bit7 | | | | | | | bit0 |

图注:	W = 可写位	U = 未实现位,读为0	
R = 可读位	1 = <u>置</u> 1	0 = 清零	x = 未知

-n = POR时的值

bit7-0 PBPHR <7:0>: PORTB弱上拉控制位

1 = 使能上拉 0 = 禁止上拉

寄存器97H: PORTC弱上拉和弱下拉寄存器(PCPHR)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PDC3	PDC2	PDC1	PDC0	PCPHR3	PCPHR2	PCPHR1	PCPHR0
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

-n = POR时的值 $1 = \mathbb{Z}1$ 0 = 清零 x = 未知

bit7-4 **PDC <7:4>:** PORTC下拉控制位

1 = 使能下拉 0 = 禁止下拉

bit3-0 PCPHR <3:0>: PORTC上拉控制位

1 = 使能上拉 0 = 禁止上拉

寄存器98H: 弱上拉PORTD寄存器(PDPHR)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PDPHR7	PDPHR6	PDPHR5	PDPHR4	PDPHR3	PDPHR2	PDPHR1	PDPHR0
bit7				<i>k5X</i> 77	-11.		bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

bit7-0 PDPHR <7:0>: PORTD上拉控制位

1 = 使能上拉 0 = 禁止上拉

6.5.3 电平变化中断

PORTA 和 PORTB 引脚的每一位均可分别配置为电平变化中断引脚。控制位 PAINTRx 与 PBINTRx 使能或禁止每个引脚的中断功能,在上电复位时禁止电平变化中断。

对于已允许电平变化中断的引脚,则将该引脚上的值同上一次读 PORTA、PORTB 时锁存的值进行比较。将上一次"不匹配"的输出一起作逻辑或运算,以便将 INTS、PIFB2 寄存器(<u>寄存器 0BH 和寄存器 0DH</u>)中 PORTA、PORTB 电平变化中断标志位(PAIF 和 PBIF)置 1。

该中断能唤醒休眠下的器件。用户在中断服务程序中通过以下方式清除中断:

- a) 对 PORTA、PORTB 进行读或写操作。这将结束引脚电平不匹配条件。
- b) 将标志位 PAIF、PBIF 清零。

电平不匹配条件会继续将 PAIF、PBIF 标志位置 1。而读 PORTA、PORTB 将结束不匹配条件并允许将 PAIF 和 PBIF 标志位清零。锁存器将保持最后一次读取的值不受MCLR 和欠压复位的影响。在这些复位之后,如果出现电平不匹配,PAIF 和 PBIF 标志位将继续被置 1。

注: 在执行任何PORTA、PORTB操作时如果I/O引脚的电平发生变化,则PAIF和PBIF中断标志位可能不会被置1。

寄存器99H: 电平变化中断PORTA寄存器(PAINTR)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	PAINTR5	PAINTR4	PAINTR3	PAINTR2	PAINTR1	PAINTR0
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

bit7-6 未实现: 读为0。

bit5-0 **PAINTR<5:0>**: 电平变化中断PORTA控制位

1 = 允许电平变化中断0 = 禁止电平变化中断

注 1: 必须允许全局中断允许(GIE)以使各中断被识别。

2: 在XT、HS和LP振荡模式下PAINTR<5:4>始终读为1。

寄存器9AH: 电平变化中断PORTB寄存器(PBINTR)

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PBINTR7 | PBINTR6 | PBINTR5 | PBINTR4 | PBINTR3 | PBINTR2 | PBINTR1 | PBINTR0 |
| bit7 | | | | F3X.3X | -/// | | bit0 |

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 1 = 21 0 = 清零 x = 未知

bit7-0 PBINTR <7:0>: PORTB电平变化中断允许位

1 =允许电平变化中断

0 =禁止电平变化中断

6.5.4 超低功耗唤醒

PAO 上的超低功耗唤醒允许电压缓慢跌落,从而可在不消耗额外电流的情况下,产生 PAO 电平变化中断。通过将 ULPWUE 位 (PSTA<5>)置 1 选择该模式。这将产生一个很小的灌电流,可用于将 PAO 上的电容放电。

要使用该功能,PAO 引脚应先被配置为输出高电平以对电容充电,允许 PAO 的电平变化中断并且 PAO 要配置为输入引脚。将 ULPWUE 置 1 开始放电,执行 SLEEP 指令。当 PAO 上的电压下降到 VIL 后,器件将被唤醒并执行下一条指令。如果 INTS 寄存器的 GIE 位置 1,器件将调用中断服务程序(0004h)。更多信息,请参见<u>第 6.5.4 节"电平变化中断"</u>。

该功能提供了低功耗技术,可周期性地唤醒休眠下的器件,一般应用电路如图 6-5-1 所示。延时取决于 PAO 上 RC 电路的放电时间。要了解如何初始化超低功耗唤醒模块,请参见例 6-5-4。

串联电阻提供了 PAO 引脚的过电流保护功能,允许在软件中对延时进行校准(见图 6-6-1)。可用定时器测量电容的充放电时间。然后调整充电时间以提供所需的中断延时。该技术可补偿温度、电压和元件精度所带来的影响。超低功耗唤醒外设还可以配置为简单可编程低压检测设备或温度传感器。

例 6-5-4: 超低功耗唤醒的初始化

BCR STATUS, PAGE :Bank 0 ;清 0 端口 A 的 PA0 **BSR** PORTA,0 **BSF** STATUS, PAGE :Bank 1 **BCR** ADINS,0 ;端口 A 的 PAO 设置为数字口 **BCR** CPIOA,0 ;端口 A 的 PAO 设置为输出 LCALL CapDelay : 延时 BSR PSTA,ULPWUE ;使能超低功耗唤醒功能 BSR PAINTR,0 ;设置 PAO 口电平变化唤醒功能 BSR CPIOA,0 ;设置 PA0 口输入 B'10001000' LDWI :使能电平变化中断、全局中断 Kechnology Co. STWR INTS **SLEEP** :睡眠,等待唤醒 NOP

图 6-5-1 超低功耗唤醒应用电路

6.6 PORTA 引脚说明和引脚图

每个 PORTA 引脚都与其他功能复用,其他复用功能请参见本数据手册中的相关章节。

6.6.1 PA0/ISCK/ULPWU/SDA

图 6-6-1 给出了此引脚的引脚图。PAO/ISCK/ULPWU/SDA 引脚可配置为下列功能之一:

- 在线串行编程(In-CircuitSerialProgramming™)烧录和调试的时钟 SCK
- 超低功耗唤醒的模拟输入
- I2C 数据

图 6-6-1: PA0 框图

6.6.2 PA1/ISDA/INTO

图 6-6-2 给出了此引脚的引脚图。PA1/ISDA/INTO 引脚可配置为下列功能之一:

- 通用 I/O
- 在线串行编程烧录和调试的数据端口 ISDA
- · 外部中断 INTO

图 6-6-2: PA1 框图

6.6.3 PA3/MCLR/VPP

图 6-6-4 给出了此引脚的引脚图。PA3/MCLR/VPP 引脚可配置为下列功能之一:

- 输入引脚或开漏输出引脚;
- 带弱上拉的外部复位;
- 高压烧写引脚

图 6-6-4: PA3 框图

6.6.4 PA4/T1G/OSC2/CLKOUT

图 6-6-5 给出了此引脚的引脚图。PA4/T1G/OSC2/CLKOUT 引脚可配置为下列功能之一:

- 通用 I/O
- Timer1 门控(计数使能)
- 晶振/谐振器连接
- 时钟输出

图 6-6-5: PA4 框图

- 注: 1、CLK 模式为 XT、HS、LP 和 LPTMR1, 且 CLKOUT 使能。
 - 2、具有 CLKOUT 选项。

6.6.5 PA5/T1CKI/OSC1/CLKIN

图 6-6-6 给出了此引脚的引脚图。PA5/T1CKI/OSC1/CLKIN 引脚可配置为下列功能之一:

- 通用 I/O
- TMR1 时钟输入
- 晶振/谐振器连接
- 时钟输入

图 6-6-6: PA5 框图

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
ADINS	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	xxxx xxxx
PSTA	1	I	ULPWUE	SLVREN	MCLR	IER	POR	LVR	01qq	xxxx xxxx
INTS	GIE	PE1E	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
PAINTR	1	1	PAINTR5	PAINTR4	PAINTR3	PAINTR2	PAINTR1	PAINTR0	00 0000	xxxx xxxx
OPT_REG	INT1EDG	INT0EDG	TCS	TCE	PSC	PS2	PS1	PS0	1111 1111	xxxx xxxx
PORTA	1	I	PA5	PA4	PA3	IBUSY	PA1	PA0	x0 x000	xxxx xxxx
CPIOA	-	-	CPIOA5	CPIOA4	_	CPIOA2	CPIOA1	CPIOA0	11 1111	xxxx xxxx
PAPHR	_	_	PAPHR5	PAPHR4	PAPHR3	PAPHR2	PAPHR 1	PAPHR0	11 1111	XXXX XXXX

表 6-4: 与 PORTA 相关的寄存器汇总

x =未知,u =不变,- =未实现(读为 0)。PORT A 不使用阴影单元。 图注:

6.7 PORTB 引脚说明和引脚图

6.7.1 PBX/CCHX

图 6-7-1 给出了此引脚的引脚图。PBX/CCHX 引脚可配置为下列功能之

- 通用 I/O
- 触摸的模拟输入

图 6-7-1: PBX 框图

表 6-7: 与 PORTB 相关的寄存器汇总

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
INTS	GIE	PE1E	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000 0000	xxxx xxxx
PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	0000 0000	xxxx xxxx
CPIOB	CPIOB7	CPIOB6	CPIOB5	CPIOB4	CPIOB3	CPIOB2	CPIOB1	CPIOB0	1111 1111	xxxx xxxx
PBPHR	PBPHR7	PBPHR6	PBPHR5	PBPHR4	PBPHR3	PBPHR2	PBPHR1	PBPHR0	1111 1111	xxxx xxxx
PBINTR	PBINTR7	PBINTR6	PBINTR5	PBINTR4	PBINTR3	PBINTR2	PBINTR1	PBINTR0	1111 1111	xxxx xxxx

图注: x =未知,u =不变,- =未实现(读为0)。PORTB 不使用阴影单元。

6.8 PORTC 引脚说明和引脚图

HATE REALING. 图 6-8-1 所示给出了此引脚的引脚图。PCx/CHS, PC 引脚可以配置为下列功能之一:

- 通用 I/O
- 触摸的模拟输入

图 6-8-1: PCX 框图

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
INTS	GIE	PE1E	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000 0000	xxxx xxxx
PORTC	_	1	-	-	PC3	PC2	PC1	PC0	0000	xxxx xxxx
CPIOC	_	I	_	-	CPIOC3	CPIOC2	CPIOC1	CPIOC0	1111	xxxx xxxx
PCPHR	PDC3	PDC2	PDC1	PDC0	PCPHR3	PCPHR2	PCPHR1	PCPHR0	0000 1111	xxxx xxxx

表 6-8: 与 PORTC 相关的寄存器汇总

图注: x =未知, u =不变, - =未实现(读为 0)。PORTC 不使用阴影单元。

6.9 PORTD 引脚说明和引脚图

6.9.1 PD0/CCH12/AN0/VREF

图 6-9-1 所示给出了此引脚的引脚图。PD0/AN0/CCH/VREF 引脚可配置为下列功能之一:

- 通用 I/O
- A/D 模拟输入
- A/D 参考电压输入
- 触摸模拟输入

图 6-9-1: PD0 框图

6.9.2 PD1~3/CCH13~15/AN1~3

图 6-9-2 所示给出了此引脚的引脚图。PD1~3/CCH13~15/AN1~3 引脚可配置为下列功能之一:

- 通用 I/O
- A/D 模拟输入
- A/D 参考电压输入
- 触摸模拟输入

图 6-9-2: PD1~3 框图

6.9.3 PD4/AN4

图 6-9-3 所示给出了此引脚的引脚图。PD0/AN4 引脚可配置为下列功能之一:

- 通用 I/O
- A/D 模拟输入

图 6-9-3: PD4 框图

6.9.4 PD5/AN5/PWM1

图 6-9-4 所示给出了此引脚的引脚图。PD0/AN5/PWM1 引脚可配置为下列功能之一:

- 通用 I/O
- A/D 模拟输入
- PWM1 输出

图 6-9-4: PD5 框图

6.9.5 PD6/AN6/INT1

图 6-9-5 所示给出了此引脚的引脚图。PD6/AN6/INT1 引脚可配置为下列功能之一:

- 通用 I/O
- A/D 模拟输入
- 外部中断 INT1

图 6-9-5: PD6 框图

6.9.6 PD7/AN7/PWM0

图 6-9-6 所示给出了此引脚的引脚图。PD7/AN7/PWM0 引脚可配置为下列功能之一:

- 通用 I/O
- A/D 模拟输入
- PWM0 输出

图 6-9-6: PD7 框图

表 6-9: 与 PORTD 相关的寄存器汇总

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
INTS	GIE	PE1E	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000 0000	xxxx xxxx
ADINS	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	xxxx xxxx
PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000 0000	xxxx xxxx
CPIOD	CPIOD7	CPIOD6	CPIOD5	CPIOD4	CPIOD3	CPIOD2	CPIOD1	CPIOD0	1111 1111	xxxx xxxx
PDPHR	PDPHR7	PDPHR6	PDPHR5	PDPHR4	PDPHR3	PDPHR2	PDPHR1	PDPHR0	0000 1111	xxxx xxxx

图注: x =未知, u =不变, - =未实现 (读为 0)。PORTC 不使用阴影单元。

7.0 定时器

7.1 Timer0 模块

Timer0 模块是 8 位定时器/计数器, 具备以下特性:

- 8 位定时器/计数器寄存器(TMR0)
- 8 位预分频器(与看门狗定时器共用)
- 可编程内部或外部时钟源
- 可编程外部时钟边沿选择
- 溢出中断
- 定时器/计数器重载功能

图 7-1: Timer0 模块的框图

7.1.1 Timer0 的工作原理

Timer0 是一个 8 位并具有重载功能的定时器/计数器,读 TMR0,读的是计数器的值,写 TMR0,写的是重载寄存器里的值。

寄存器 01H: Timer0模块寄存器(TMR0)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TMR07 | TMR06 | TMR05 | TMR04 | TMR03 | TMR02 | TMR01 | TMR00 |
| bit7 | | | | | | | bit0 |

图注:			
R = 可读位	W = 可写位	U = 未实现位,读为0	
-n = POR时的值	1 = 置1	0 = 清零	x = 未知

bit7-0 TMR0 <7:0>: 8位定时器/计数器寄存器

7.1.2 8 位定时器模式

Timer0 的开关使能位 TMR0EN 见寄存器 PWMCON(<u>寄存器 1AH</u>),只有打开使能位,Timer0 才能工作。作为定时器使用时,Timer0 模块将在每个指令周期递增(无预分频器)。将 OPT_REG 寄存器(<u>寄存器 81H</u>)的 TCS 位清零选择定时器模式。

当 TMR0 被写入时,写入后将立即禁止 2 周期递增。

注: 在TMRO被写入时,为了计入两个指令周期的延时,可以调整写入TMRO寄存器的值。

7.1.3 软件可编程预分频器

Timer0 或看门狗定时器(WDT)之一可使用一个软件可编程预分频器,但两者不能同时使用。预分频器的分配由 OPT_REG 寄存器的 PSC 位控制。要将预分频器分配给 Timer0,必须将 PSC 位清零。

Timer0 模块的预分频比有 8 种选项,从 1:2 至 1:256。预分频比可通过 OPT_REG 寄存器(<u>寄存器 81H</u>)的 PS<2:0>位进行选择。要使 Timer0 模块得到 1:1 的预分频比,必须将预分频器分配给 WDT 模块。

预分频器不可读写。当预分频器被分配给 Timer0 模块时,所有写入 TMR0 寄存器的指令均会将预分频器清零。当预分频器被分配给 WDT 时,一条 CLRWT 指令将同时清零预分频器和 WDT。

7.1.3.1 在 Timer0 和 WDT 模块间切换预分频器

由于预分频器可分配给 Timer0 或 WDT,因此在切换预分频比时可能产生不想要的器件复位。当把预分频器从 Timer0 切换到 WDT 模块时,必须执行例 7-1-4-1-1 所示的指令序列。

例 7-1-4-1-1: 更改预分频器(TIMER0→WDT)

BCR CLRWT CLRR BSR LDWI TMODE CLRWT	STATUS,PAGE TMR0 STATUS,PAGE b'10001111'	;Bank 0 ;清看门狗定时器 ;清 TMR0 ;Bank 1 ;禁止上拉,TMR0 分频给看门狗,分频比 1:128 ;
BCR	STATUS,PAGE	;Bank 0

当将预分频器从 WDT 切换到 Timer0 模块时,必须执行以下指令序列(见例 7-1-4-1-2)。

例 7-1-4-1-2: 更改预分频器 (WDT→TIMER0)

CLRWT ;清看门狗 BSR STATUS,PAGE ;Bank 1	 . > 2	
LDWI b'xxxx0xxx' ;将分频器分配给 TMR0 TMODE ; BCR STATUS,PAGE ;Bank 0	BSR STATUS,PAGE LDWI b'xxxx0xxx' TMODE	;Bank 1 ;将分频器分配给 TMR0 ;

7.1.4 Timer0 中断

TMR0 寄存器从 FFh 溢出到 00h 时,Timer0 将产生中断。INTS 寄存器的 TIF 中断标志位将在每次 TMR0 寄存器溢出时被置 1,无论是否允许了 Timer0 中断。必须用软件将 TIF 位清零。Timer0 中断允许位是 INTS 寄存器的 TIS 位。

注: 由于定时器在休眠时被冻结,因此Timer0中断无法将处理器从休眠中唤醒。

7.1.5 Timer0 重装载功能

Timer0 具有重装载功能,往 TMR0 寄存器内写入装载值后,Timer0 的计数值范围是 TMR0 的装载值~0XFF,记满后 Timer0 溢出中断标志位置 1, 计数器重新装载 TMR0 数值

表 7-1-7: 与 TIMERO 相关的寄存器汇总

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
TMR0	Timer0 模块	寄存器						23 1	XXXX XXXX	XXXX XXXX
INTS	GIE	PE1E	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
OPT_REG	INT1EG	INT0EG	TCS	TCE	PSC	PS2	PS1	PS0	1111 1111	xxxx xxxx
PWMCON		PWMFS	PWM10E	PWM00E	PWM1EN	PWM0EN	TMR0EN	T1GSS	00 0011	XXXX XXXX
CPIOA	_	_	CPIOA5	CPIOA4	_	CPIOA2	CPIOA1	CPIOA0	11 1111	xxxx xxxx

图注: x =未知, u =不变, - =未实现(读为0)。Timer0 不使用阴影单元

7.2 带门控的 Timer1 模块

Timer1 模块是 16 位定时器/计数器, 具备以下特性:

- 16 位定时器/计数器寄存器(TMR1H:TMR1L)
- 可编程内部或外部时钟源
- 3 位预分频器
- 可选 LP 振荡器
- 同步或异步操作
- T1G 引脚的 Timer1 门控(计数使能)
- 溢出中断
- 溢出时唤醒(仅限外部时钟且异步模式时)

图 7-2: Timer1 模块的框图

7.2.1 Timer1 的工作原理

Timer1 模块是 16 位递增计数器,通过一对寄存器 TMR1H:TMR1L 访问。对 TMR1H 或 TMR1L 的写操作将直接更新计数器。

与内部时钟源配合使用时,该模块为定时器。与外部时钟源配合使用时,该模块可用作定时器或计数器。

如寄存器 10H 所示,Timer1 控制寄存器 T1STA 用于控制 Timer1 并选择 Timer1 模块的各种功能。

寄存器 10H: TIMER1控制寄存器(T1STA)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N
bit7							bit0

 图注:
 R = 可读位
 W = 可写位
 U = 未实现位, 读为0

 -n = POR时的值
 1 = 置1
 0 = 清零
 x = 未知

bit7 **T1GINV**: Timer1门控翻转位⁽¹⁾

1 = Timer1门控为高电平有效(门控为高电平时Timer1计数)

0 = Timer1门控为低电平有效(门控为低电平时Timer1计数)

bit6 TMR1GE: Timer1门控使能位⁽²⁾

如果TMR1ON = 0:

此位被忽略

如果TMR1ON = 1:

1 = Timer1在Timer1门控不活动时打开

0 = Timer1打开

bit5-4 T1CKPS<1:0>: Timer1输入时钟预分频比选择位

11 = 1:8 10 = 1:4 01 = 1:2

00 = 1:1

bit3 T10SCEN: LP振荡器使能控制位

如果无CLKOUT振荡器的INTOSC处于激活状态:

1 = LP振荡器被使能用于Timer1时钟

0 = LP振荡器关闭

否则:

此位被忽略

bit2 TISYNC: Timer1外部时钟输入同步控制位

TMR1CS = 1:

1 = 不同步外部时钟输入 0 = 同步外部时钟输入

TMR1CS = 0:

此位被忽略。Timer1使用内部时钟

bit1 TMR1CS: Timer1时钟源选择位

1 = 来自T1CK1引脚(上升沿)的外部时钟

0 = 内部时钟 (FOSC)

bit0 TMR1ON: Timer1打开位

1 = 使能Timer1 0 = 停止Timer1

注 1: 无论门控源为何,T1GINV位均将翻转Timer1门控逻辑。

2: 必须将TMR1GE位置1以使用T1G引脚。

Timer1 模块是 16 位定时器/计数器, TMR1H:TMR1L。

寄存器 0EH: 16位Timer1低字节的保持寄存器(TMR1L)

	R/W-x							
Ī	TMR1<7>	TMR1<6>	TMR1<5>	TMR1<4>	TMR1<3>	TMR1<2>	TMR1<1>	TMR1<0>
	bit7	-12	XI.	10.				bit0

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

bit7-0 **TMR1 <7:0>**: 16位Timer1定时器/计数器低字节寄存器

寄存器 OFH: 16位Timer1高字节的保持寄存器(TMR1H)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
TMR1<15>	TMR1<14>	TMR1<13>	TMR1<12>	TMR1<11>	TMR1<10>	TMR1<9>	TMR1<8>
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 $1 = \mathbb{Z}1$ 0 = 清零 x = 未知

bit7-0 **TMR1 <15:8>**: 16位Timer1定时器/计数器高字节寄存器

7.2.2 时钟源选择

T1STA 寄存器的 TMR1CS 位用于选择时钟源。当 TMR1CS = 0 时,时钟源为 FOSC。TMR1CS = 1 时,时钟源由外部提供。

7.2.2.1 内部时钟源

选择内部时钟源时,TMR1H:TMR1L 这对寄存器将在 FOSC 的某个倍数递增,倍数由 Timer1 预分频器决定。

7.2.2.2 外部时钟源

选择外部时钟源时,Timer1 模块可作为定时器,也可作为计数器工作。

计数时,Timer1 在外部时钟输入 T1CKI 的上升沿递增。此外,计数器模式时钟可同步到单片机系统时钟,也可异步运行。

若需外部时钟振荡器(且单片机使用不带 CLKOUT 的 INTOSC),则 Timer1 可使用 LP 振荡器作为时钟源。

- 注: 计数器模式下,发生以下任何一个或多个情况后,计数器在首个上升沿递增前,必须先经过一个下降沿:
 - POR复位后使能Timer1
 - 写入TMR1H或TMR1L
 - Timer1被禁止
 - T1CKI为高电平时Timer1被禁止
 - (TMR1ON = 0), 然后在T1CKI为低电平时Timer1被使能(TMR1ON = 1)。

请参见图7-2-2

图 7-2-2: TIMER1 递增边沿

7.2.3 Timer1 的预分频器

Timer1 有四种预分频选项,可对时钟输入进行 1、2、4 或 8 分频。T1STA 寄存器的 T1CKPS 位控制预分频计数器。预分频计数器不可直接读写;但当发生对 TMR1H 或 TMR1L 的写操作时,预分频计数器被清零。

7.2.4 Timer1 振荡器

OSC1(输入)引脚与 OSC2(放大器输出)引脚之间内置有一个低功耗 32.768kHz 振荡器电路。T1STA 寄存器将的 T1OSCEN 控制位置 1 使能振荡器。休眠时振荡器继续工作。Timer1 振荡器与系统 LP 振荡器共用。这样,Timer1 就只能在主系统时钟来自内部振荡器或振荡器处于 LP 模式时使用此模式。用户必须提供软件延

时以确保振荡器正常起振。Timer1振荡器被使能时,CPIOA5和CPIOA4位置1。PA5和PA4位读为0且CPIOA5和CPIOA4位读为1。

注: 振荡器在使用前需要一段起振和稳定时间。这样,应将T1OSCEN置1并在使能Timer1前应有一段适当的延时。

7.2.5 Timer1 工作于异步计数器模式

若 T1STA 寄存器的控制位T1SYNC置 1,则外部时钟输入不同步。定时器与内部相位时钟异步递增。若选择了外部时钟源,则定时器将在休眠时继续运行,并可在溢出时产生中断,唤醒处理器。然而,读写定时器时应特别谨慎(见第 7.2.5.1 节 "在异步计数器模式下读写 Timer1")。

注: 从同步操作切换为异步操作时,有可能错过一次递增从异步操作切换为同步操作时,有可能多产生一次 递增。

7.2.5.1 在异步计数器模式下读写 Timer1

定时器运行于外部异步时钟时,读取 TMR1H 或 TMR1L 将确保读操作有效(由硬件负责)。然而,应该注意的是,用两个 8 位值来读取 16 位定时器本身就会产生某些问题,这是因为定时器可能在两次读操作之间产生溢出。

对于写操作,建议用户直接停止计数器,然后写入所期望的值。如果寄存器正进行递增计数,对定时器寄存器进行写操作,可能会导致写入竞争,从而可能在 TMR1H: TMR1L 这对寄存器中产生不可预测的值。

7.2.6 Timer1 门控

Timer1 门控源可软件配置为T1G 引脚, 这使器件可直接使用T1G 为外部事件定时。Timer1 门控源的选择请参见 PWMCON 寄存器(寄存器 1AH)。

注: T1STA寄存器的TMR1GE位必须置1,更多有关选择Timer1门控源请参见PWMCON寄存器(<u>寄存器</u>1AH)。

使用 T1STA 寄存器的 T1GINV 位可翻转 Timer1 门控。这将配置 Timer1 以确保事件之间存在低电平有效或高电平有效的时间。

7.2.7 Timer1 中断

Timer1 的一对寄存器(TMR1H:TMR1L)递增至 FFFFh 后返回 0000h。Timer1 计满返回时,PIFB 寄存器的 Timer1 中断标志位被置 1。为确保计满返回时产生中断,您必须将以下位置 1:

- T1STA 寄存器的 TMR1ON 位
- PIFB 寄存器的 TMR1IE 位
- INTS 寄存器的 PEIE 位
- INTS 寄存器的 GIE 位

在中断服务程序中将 TMR1IF 位清零将清除中断标志。

注: TMR1H:TTMR1L这对寄存器和TMR1IF位应在允许中断前清零。

7.2.8 Timer1 在休眠模式下的工作原理

只有在设定异步计数器模式时,Timer1 才能在休眠模式下工作。在该模式下,可使用外部晶振或时钟源信号使计数器递增。要设置定时器以唤醒器件:

- 必须将 T1STA 寄存器的 TMR1ON 位置 1
- 必须将 PIFB1 寄存器的 TMR1IE 位置 1
- 必须将 INTS 寄存器的 PEIE 位置 1
- 必须将 T1STA 寄存器的 T1SYNC 位置 1
- 必须将 T1STA 寄存器的 TMR1CS 位置 1
- 可将 T1STA 寄存器的 T1OSCEN 位置 1

溢出时器件将被唤醒并执行下一条指令。若 INTS 寄存器的的 GIE 位置 1,器件将调用中断服务程序 (0004h)。

7.2.9 与 Timer1 相关的寄存器汇总

表 7-2-12: 与 TIMER1 相关的寄存器汇总

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
PWMCON	I	PWMFS	PWM10E	PWM0OE	PWM1EN	PWM0EN	TMR0EN	T1GSS	0000 0011	xxxxxxx
INTS	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxxxxx
PIFB1	INT1E	ADCIE	OSFIE	TMR1IE	INT1IF	ADCIF	OSFIF	TMR1IF	0000 0000	xxxxxxx
TMR1H	16 位 TMF	R1 高字节的保持寄	存器	- / A	27.47		11/1/1		XXXX XXXX	xxxxxxx
TMR1L	16 位 TMF	R1 低字节的保持寄	存器	1 36.5	1	2006	1		xxxx xxxx	xxxxxxx
T1STA	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	xxxxxxx

图注: x =未知, u =不变, - =未实现(读为 0)。Timer1 模块不使用阴影单元。

7.3 PWM 模块

脉宽调制(PWM)是通过一种完全开启和完全关闭之间进行快速切换而为负载供电的方案。PWM 信号类似于方波,信号的高电平部分视为开启状态,信号的低电平部分视为关闭状态。高电平部分(也称脉宽)可随而变,并以步幅为单位进行定义。施加的步幅数量越多(这会增大脉宽),为负载提供的电量就越多。施加的步幅数量降低时(这会缩短脉宽),提供的电量就会下降。PWM 周期定义为一个完整周期的持续时间,或者开启和关闭时间相加的总时间。

PWM 分辨率定义可以在单个 PWM 周期中出现的最大步幅数量。分辨率越高,就可以精确地控制脉宽时间,从而更精确地控制在负载上的供电量。占空比这一术语描述开启时间与关闭时间之间以百分比形式表示的比例,0%代表完全关闭,100%代表完全开启。占空比越低,对应的供电量就越低,占空比越高,对应的供电量就越高。图 7-3-3 给出了典型的 PWM 波形图。

7.3.1 PWM 的输出

PWM 模式将在 PD7、PD5 引脚产生频率相同、脉宽可调制的 2 路 PWM 信号。PWM 使能时,当 {TMR1H,TMR1L} == {T1PRLH,T1PRLL}时,下一计数周期 Timer1 计数器清零。当{TMR1H,TMR1L} == 0 时,PWM 输出高电平,当{TMR1H,TMR1L} == {PWMXH,PWMXL}时,PWM 输出低电平。其占空比,周期和分辨率由以下寄存器决定:

- T1PRLL
- T1PRLH
- PWMXL

PWMXH

图7-3-3 两路PWM输出

7.3.2 PWM 的周期

PWM 周期由 Timer1 的 T1PRLH、T1PRLL 寄存器来指定。ET1PRL 是周期重载从动寄存器的低 8 位,高两位是 T1PRLH[3:2]。PWM 周期计算公式:

PWM 周期 = [{T1PRLH,T1PRLL+1}] * Tosc * TMR1 预分频值。

当 TMR1 等于{T1PRLH,T1PRLL}时,下一次递增周期将发生以下三个事件:。

- TMR1 被清零。
- PWM 引脚被置 1 (例外: 若 PWM 占空比 = 0%, 引脚不被置 1)。
- PWM 占空比重载寄存器值锁存到占空比寄存器;

通过对以下几个寄存器写入 10 位值可设定 PWM 占空比: PRLxH, PRLxL 为占空比重载寄存器, PWMxL、PWMxH 为占空比比较寄存器(只读)。脉冲宽度直到周期完成时才将占空比重载寄存器的值锁存到占空比比较寄存器,这样可以防止程序改变占空比时造成脉冲宽度跳变。用户设定占空比只需写占空比重载寄存器,而不是占空比比较寄存器;

脉冲宽度计算公式:

脉冲宽度 = [{PWMxH,PWMxL}+1] * Tosc * TMR1 预分频值。

占空比 = [{PWMxH,PWMxL}+1] /[{T1PRLH,T1PRLL}+1] 。

7.3.3 PWM 的分辨率

分辨率决定某个周期的有效占空比。例如,10 位分辩率有 1024 个分立的占空比,而 8 位分辩率则有 256 个分立的占空比。

[{T1PRLH,T1PRLL}] 为 1024 时产生 10 位的最大 PWM 分辩率。分辩率是[{T1PRLH,T1PRLL}]的函数。

PWM分辨率

表 7-3-3-1: PWM 频率和分辨率示例 (Fosc = 16MHz)

PWM 频率	1.953kHz	3.906kHz	7.8125kHz	15.625kHz	62.5kHz	4000kHz
定时器预分频比(1、2、4、8)	8	4	2	1	11	1
[T1PRLH,T1PRLL]的值	0x03,0xFF	0x03,0xFF	0x03,0xFF	0x03,0x FF	0x00,0xFF	0x00,0x03
最大分辨率(位)	10	10	10	10	8	2

表 7-3-3-2: PWM 频率和分辨率示例 (Fosc = 4MHz)

PWM 频率	0.488kHz	0.976kHz	1.953kHz	3.906kHz	15.625kHz	1000kHz
定时器预分频比(1、2、4、8)	8	4	2	7 1	(0.4.	1
[T1PRLH,T1PRLL]的值	0x03,0xFF	0x03,0xFF	0x03,0xFF	0x03,0xFF	0x00,0xFF	0x00,0x03
最大分辨率(位)	10	10	10	10	8	2

7.3.4 PWM 的高低频模式

每个 PWM 输出提供高频低频两种模式,高频模式下 PWM 输出噪声比较小,低频模式下 PWM 输出噪声比较大,高低频模式切换由 PWMCON 寄存器的 PWMFS 位控制。

7.3.5 PWM 的中断

PWM可产生定时中断。当TIMER1完成一个PWM周期时,可产生一个PWM中断,PIFB2的PWMIF中断标志位会置1。此时GIE与PEIE也为1,则会进入中断服务程序。

7.3.6 PWM 输出配置

以下是配置PWM输出的步骤示例:

1、端口配置:

配置PD5,PD7为输出口

2、配置周期:

配置TIMER1控制寄存器(<u>T1STA</u>),设定TIMER1为定时器模式,并设定预分频比配置T1PRLH、T1PRLL(详见7.3.2 PWM的周期)

3、配置占空比:

配置占空比重载寄存器PRLxH,PRLxL

4、使能PWM:

设置PWM控制寄存器(PWMCON),如果只要PWM

5、 使能TIMER1

置位TMR1ON,此时将会使PRLxH,PRLxL载入PWMxH,PWMxL

7.3.7 PWM 的寄存器定义

寄存器 1AH: PWM控制寄存器 (PWMCON)

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
_	PWMFS	PWM10E	PWM0OE	PWM1EN	PWM0EN	TMR0EN	T1GSS
bit7	_		_	_			bit0

图注: R = 可读位 W = 可写位 U = 未实现位, 读为0Filtz Agamones Co. Ind. -n = POR时的值 1 = 置1 0 = 清零 x = 未知

bit7 未实现位

bit6 PWMFS: PWM高低频模式选择位

> 0 = PWM以低频模式输出 1 = PWM以高频模式输出

注: 高频模式下比低频模式下PWM的驱动能力要小。

bit5 PWM1OE:PWM1引脚输出使能位

0 = PWM1禁止输出

1 = PWM1允许由PD5引脚输出

bit4 PWM0OE: PWM0引脚输出使能位

0 = PWM0 禁止输出

1 = PWM0 允许由 PD7 输出

bit3 PWM1EN: PWM1模块使能位

> 0 = PWM1 模块禁止 1 = PWM1 模块允许

bit2 PWM0EN: PWM0模块使能位

> 0 = PWM0 模块禁止 1 = PWM0 模块允许

bit1 TMR0EN: Timer0使能位

> 1 = Timer0打开 0 = Timer0关闭

bit0 T1GSS: TIMER1 门控源选择位。

1 = Timer1门控源为 T1G引脚(配置为数字输入)

0 = Timer1门控源为常开

寄存器 117H: PWM0/1周期寄存器的低字节(T1PRLL)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit7							bit0
		Р	WM0/1周期寄	存器的低字节	0		

图注:

W = 可写位 U = 未实现位, 读为0 R = 可读位

-n = POR时的值 1 = 置1 0 = 清零 x = 未知

T1PRLL: PWM0/1周期寄存器的低字节 bit7-0

寄存器19AH: PWM0/1周期寄存器的高2位(T1PRLH)

_	_	_	_	ET1	PRH	T1P	RLH
bit7							bit0
R-0	R-0	R-0	R-0	R-0	R-0	R/W-0	R/W-0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 1 = 置1 0 = 清零 x = 未知

bit7-4 未实现位

bit3-2 ET1PRH: PWM0/1周期重载寄存器的高2位(只读位)

bit1-0 T1PRLH: PWM0/1周期寄存器的高2位。

寄存器118H: PWM0/1周期重载寄存器(ET1PRL)

R-0	R-0	R-0	R-0	R-0	R-0	R/W-0	R-0
bit7							bit0
			ET1			/ 4	

图注:

W = 可写位 R = 可读位 U = 未实现位,读为0

1 = 置1 x = 未知 -n = POR时的值 0 = 清零

bit7-0 ET1PRL: PWM0/1周期寄重载存器的低字节

重载寄存器只能读,不能写。 注:

寄存器 112H: PWM0占空比重载寄存器低字节(PRL0L)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit7							bit0
		P۱	VM0占空比重	载寄存器的低8	3位		
图注:	1	11/1/12	2.4/				
R = 可读位		W = 可写位		U = 未实现(立,读为0		
-n = POR时的	值	1 = 置1	11/	0 = 清零		x = 未知	

Fhuolog)

寄存器 192H: PWM0占空比比较寄存器低字节(PWM0L)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
bit7							bit0
图注:							
图注: R = 可读位		W = 可写位		U = 未实现值	位,读为0		
-n = POR时的	的值	1 = 置1		0 = 清零		x = 未知	

bit7-0 PWM0L: PWM0占空比比较寄存器低字节

寄存器 198H, PWM0占空比比较寄存器高2位与占空比重裁寄存器高2位(EPR0)

R-0	R-0	R-0	R-0	R-0	R-0	R/W-0	R/W-0		
bit7							bit0		
				PWI	ИОН	PRL	.0H		
图注:									
R = 可读位		W = 可写位		U = 未实现值	立,读为0				
-n = POR时的值		1 = 置1		0 = 清零		x = 未知			

bit3-2 PWM0H: PWM0 占空比比较寄存器高 2 位。 bit1-0 PRLOH: PWM0占空比重载寄存器高2位。

寄存器 113H: PWM1占空比重载寄存器低字节(PRL1L)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit7							bit0
		PW	M1占空比重载	战寄存器的低8位	•		
图注:							
R = 可读位		W = 可写位		U = 未实现位	ī,读为 0		
-n = POR时的信	直	1 = 置1		0 = 清零		x = 未知	

寄存器 193H: PWM1占空比比较寄存器低字节(PWM1L)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
bit7							bit0
图注:							
R = 可读位		W = 可写位		U = 未实现位	ī,读为 0		
-n = POR时的值		1 = 置1		0 = 清零		x = 未知	(A)

bit7-0 PWM1L: PWM1占空比比较寄存器低字节

寄存器 199H: PWM1占空比比较寄存器高2位与占空比重载寄存器高2位(EPR1)

. 4 14 144			_ +		1 -7 1		
R-0	R-0	R-0	R-0	R-0	R-0	R/W-0	R/W-0
bit7				~ B.d~	V	03	bit0
				PWM1I	H\\	PRI	L1H
图注:			7/ 28	(XX)	1111		
R = 可读位		W = 可写位		U = 未实现位,	读为0		
-n = POR时的f	直	1 = 置1	张小	0 = 清零		x = 未知	

 bit3-2
 PWM1H: PWM1 占空比比较寄存器高 2 位。

 bit1-0
 PRL1H: PWM1 占空比重载寄存器高 2 位。

表 7-3-6: 与 PWM 相关的寄存器汇总

	10 1-3-0	: →J 1 VVIVI /	阳大的句子	的仁心		•	,	1		
名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
PWMCON	_	PWMFS	PWM10E	PWM0OE	PWM1EN	PWM0EN	TMR0EN	T1GSS	0000 0011	xxxx xxxx
INTS	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000 0000	xxxx xxxx
PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000 0000	xxxx xxxx
CPIOD	CPIOD7	CPIOD6	CPIOD5	CPIOD4	CPIOD3	CPIOD2	CPIOD1	CPIOD0	1111 1111	xxxx xxxx
PWM0L	PWM0 占	空比寄存器低字	节						0000 0000	xxxx xxxx
PWM1L	PWM1 占空	区比寄存器低字节	វ						0000 0000	xxxx xxxx
T1PRLL	PWM0/1 周]期寄存器低字节	î						0000 0000	xxxx xxxx
T1PRLH		_	_	_	ET1PF	RH	T1PI	RLH	0000 0000	xxxx xxxx
ET1PRL	PWM0/1 周	期从动寄存器低	字节						0000 0000	xxxx xxxx
PR0H	PWM0 占空	区比从动寄存器低	长字节						0000 0000	xxxx xxxx
PR1H	PWM1 占空	区比从动寄存器低	氏字节						0000 0000	xxxx xxxx
PWM0H	_	_	_	_	EPR0	Н	PWI	ИОН	0000 0000	xxxx xxxx
PWM1H	_	_	_	_	EPR1	Н	PWI	И1 Н	0000 0000	xxxx xxxx
TMR1H	16 位 TMR	1 高字节的保持	寄存器						xxxx xxxx	xxxx xxxx
TMR1L	16 位 TMR	1 低字节的保持	寄存器						xxxx xxxx	xxxx xxxx
T1STA	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	xxxx xxxx

图注: x =未知, u =不变, - =未实现 (读为 0)。 Timer1 模块不使用阴影单元。

8.0 模拟数字转换器(ADC)模块

模数转换器(Analog-to-digitalConverter,ADC)可将模拟输入信号转换为相应的 12 位二进制表征值。该器件采用多个模拟输入复用到一个采样保持电路。采样保持电路的输出与转换器的输入相连接。转换器通过逐次逼近法产生 12 位二进制值,并将转换结果保存在 ADC 结果寄存器(ADRESL:ADRESH)中。为了保证转换结果的精度,器件内部设置了零点值校正寄存器。零点校正值是修正转换器转换模拟地的偏差值,在实际应用中,先进行对 VSS 采样 AD值,并写入零点校准寄存器,器件内部硬件自动将 ADC 每次转换得到的值再减去零点校正值之后存入到 ADC 结果寄存器(ADRESL:ADRESH)中。零点校正值由 ADCOCN 寄存器的ADCTHSEL 位来选择是 ADCOTH 寄存器,还是内部工厂校正值。

8.1 ADC 框图

8.2 ADC 的配置

配置和使用 ADC 时,必须考虑以下功能:

- 端口配置
- 通道选择
- · ADC 参考电压选择
- ADC 转换时钟
- · ADC 启动转换的方式
- · ADC 中断控制
- 转换结果的对齐方式

8.2.1 端口配置

ADC 可用于模拟信号转换成数字信号。转换模拟信号时,应将相关的 <u>CPIOD</u>和 <u>ADINS</u> 位置 1 将 I/O 引脚应配置为模拟输入功能。更多信息请参见相应的端口章节。

注: 如果定义为数字输入的引脚上存在模拟电压,可导致输入缓冲器传导过大的电流。

8.2.2 通道选择

ADSO 寄存器的 CHNSEL<3:0>位决定将哪个通道连接到采样保持电路。

改变通道时,开始下一次转换前需要一个延时。更多信息请参见第 8.3 节 "ADC 的工作过程"。

8.2.3 ADC 参考电压选择

ADSO 寄存器的 REFSEL<1:0>位决定正电压参考的选择。正参考电压可以是:

- 选电压电压 VDD 做为 ADC 的参考。
- 选外部(来自 PD0)做为 ADC 的参考。
- 选内部 BANDGAP 的输出电压做为 ADC 的参考,这个电压可以通过配置寄存器选择 1.024V, 2.048V。

负参考电压始终连接到参考地。

8.2.4 ADC 转换时钟

可用软件选择转换时钟源,通过设置 ADCOCN 寄存器的 SCx 位,有以下 4 种时钟选项:

- FOSC/2
- FOSC/4
- FOSC/8
- FOSC/16

完成一位(bit)的转换时间定义为 T_{AD}。完成 12 位转换需要 17 个 T_{AD}周期,如图 8-2-4 所示。

表 8-2-4 所示为正确选择 ADC 时钟的示例。

注: 任何系统时钟频率的变化均会改变ADC时钟频率,这将对ADC结果产生负面影响。

图 8-2-4: 模数转换 Tad 周期

表 8-2-4: ADC 时钟周期(T_{AD}) —器件工作频率(Vdd≥3.0V)

ADC 时钟原	周期(T _{AD})		器件频率	(Fosc)	115
ADC 时钟源	SCx<1:0>	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	00	125 ns ⁽¹⁾	250 ns ⁽¹⁾	500 ns ⁽¹⁾	2.0 us
F _{OSC} /4	01	250 ns ⁽¹⁾	500 ns ⁽¹⁾	1.0 us	4.0 us
Fosc/8	10	500 ns ⁽²⁾	1.0 us	2.0 us	8.0 us ⁽²⁾
Fosc/16	11	1 us	2.0 us	4.0 us	16.0 us ⁽²⁾

图注: 阴影单元超出了建议范围。

注 1: 这些值违反了最小 TAD 时间要求。

2: 要加快转换,建议选择其他时钟源。

8.2.5 转换启动方式

有 3 种 A/D 转换启动方式,由 ADC0CN 中的 ADC0 转换启动方式位 CM[1:0]的状态决定采用哪一种方式。转换的触发源有:

- GO/DONE写 1
- Timer0 溢出
- Timer1 溢出

注: ADC 转换进行中,即使新的转换启动条件有效,ADC 并不中断当前转换,硬件忽略新的转换启动。

8.2.6 ADC 模块中断

ADC 转换完成时,如果 ADC 中断 ADIE 使能并且全局中断标志 GIE 也使能的情况,将产生 ADC 中断,进入中断服务程序,在中断服务程序中必须软件清除中断标志 ADIF (清 0)。

8.2.7 数据对齐方式

ADC 转换结果可以设置右对齐或者左对齐,寄存器 ADCOCN 的 ADFM 位来决定。

8.3 ADC 的工作过程

8.3.1 启动转换

要使能 ADC 模块,必须将 ADS0 寄存器的 ADON 位置 1。将 ADS0 寄存器的 GO/DONE位置 1 将启动模数转换。

注: 请参见<u>第8.3.3节 "A/D转换步骤"</u>。

8.3.2 转换完成

转换完成时, ADC 模块将:

- 将 GO/DONE 位清零
- 将 ADIF 标志位置 1
- 用新的转换结果更新 ADRESH: ADRESL 寄存器

8.3.3 A/D 转换步骤

以下是使用 ADC 进行模数转换的步骤示例:

- 1. 配置端口:
 - 配置 IO 引脚为输入(见 CPIO 寄存器)
 - 将引脚配置为模拟口
- 2. 配置 ADC 模块:
 - 选择 ADC 转换时钟
 - 配置参考电压
 - 选择 ADC 输入通道
 - 选择转换结果的格式
 - 打开 ADC 模块
- 3. 配置 ADC 中断 (可选):
 - · 将 ADC 中断标志清零
 - 允许 ADC 中断
 - 允许外设中断
 - 允许全局中断(1)
- 4. 等待所需的采集时间⁽²⁾
- 5. 将 GO/ DONE 置 1 启动转换(或等等待 TMR0、TMR1 溢出启动)
- 6. 通过以下情况之一等待 ADC 转换完成:
 - 查询 GO/ DONE 位

- 等待 ADC 中断 (允许中断时)
- 7. 读取 ADC 结果
- 8. 将 ADC 中断标志清零(必允许中断)。

例 8-3-4: A/D 转换

BANK1 LDWI 00010000B STWR **CPIOD** LDWI 00010000B :PD4 作为模拟输入(AN4) :模拟口、数字口设定, 1: 模拟口, 0: 数字口 STWR **ADINS** 01010001B LDWI ,延时 LCALL GET_AD **LJUMP** ;ADC 转换子程序: GET AD: BANK3 STWR ADS0 BK3TOBK2 BSR ADC_EN ;开启 ADC 模块后需要延时 LDWI LCALL DELAY_US BSR GO ;启动 AD 转换 BTSC BUSY ;等待 AD 转换结束 LJUMP \$-1 BANK1 LDR ADRESL.W STWR ADC_L BK1TOBK0 LDR ADRESH.W STWR ADC_H BK0TOBK2 BCR ADC_EN ;关闭 ADC 转换模块,可以省电, BK2TOBK0 **GET AD EXIT:** RET

8.4 ADC 寄存器定义

8.4.1 ADC0CN

寄存器 11EH: A/D控制寄存器

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTHSEL	ADFM	SC1	SC0	ADC0EN	GO/DONE	CM1	CM0
bit7							bit0

图注:			
R = 可读位	W = 可写位	U = 未实现位,读为0	
-n = POR时的值	1 = 置1	0 = 清零	x = 未知

bit7 ADCTHSEL: ADC零点校正值选择位

0 = ADC的零点校正值为内部工厂校正值

1 = ADC的零点校正值为ADC0TH

bit6 ADFM: ADC输出结果对齐方式选择位。

0 = 左对齐,低位补零 **1** = 右对齐,高位补零

bit5-4 **SC<1:0>**: ADC时钟预分频选择位

00 = sys_clk 2分频 01 = sys_clk 4分频 10 = sys_clk 8分频 11 = sys_clk 16分频

bit3 ADC_EN: ADC使能位

0 = ADC禁止 1 = ADC使能

bit2 GO/DONE (BUSY): ADC启动(忙)标志位

0 = 不忙 1 = 转换(忙)

bit1-0 CM<1:0>: ADC0启动转换模式选择,指定ADC启动转换源

0x = GO/DONE写1。 10 = Timer0溢出 11 = Timer1溢出

8.4.2 ADRESH: ADC 结果高位寄存器

寄存器 1EH: ADC结果高位寄存器

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit7		X		4/11/2			bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

-n = POR时的值 1 = 21 0 = 清零 x = 未知

bit7-0 ADC结果高字节寄存器位,

注:写数据动作使得ADRESH寄存器清零

8.4.3 ADRESL: ADC 结果低位寄存器

寄存器 9EH: ADC结果寄存器

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| bit7 | | | | | | | bit0 |

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

bit7-0 ADC结果低字节寄存器位

注: 写数据动作使得ADRESL寄存器清零

8.4.4 ADC0TH: ADC 零点值校正寄存器

寄存器9FH: ADC结果寄存器

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| bit7 | | | | | | | bit0 |

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

-n = POR时的值 1 = 21 0 = 清零 x = 未知

bit7-0 ADC零点校正寄存器。

8.4.5 ADS0

寄存器 19DH: A/D控制寄存器

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R-1	R/W-1
CHNSEL3	CHNSEL2	CHNSEL1	CHNSEL0	REFSL1	REFSL0	_	VREFSEL
bit7						415	bit0

ring rechn

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

bit7-4

CHNSEL<3:0>: ADC模拟通道选择位

其他 = ADC 输入通道关断;

0001 = PD0 ADC 输入通道 0

0010 = PD1 ADC 输入通道 1

0011 = PD2 ADC 输入通道 2

0100 = PD3 ADC 输入通道 3

0101 = PD4 ADC 输入通道 4

0110 = PD5 ADC 输入通道 5

0111 = PD6 ADC 输入通道 6

1000 = PD7 ADC 输入通道 7

1110 = VSS ADC 输入电压为 VSS

1111 = VDD ADC 输入电压为 VDD/4

bit3-2 **REFSL<1:0>**: 电压参考选择

00 = ADC 电压参考是 VDD pin。

01 = ADC 电压参考是 PD0/VREF pin。

1X = ADC 电压参考是内部电压参考。

bit1 未实现

bit0 **VREFSEL**: 内部电压参考选择(1.024V/2.048V)

1 = 2.048V

0 = 1.024V

表 8-4: 与 ADC 相关的寄存器汇总

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值
ADC0CN	ADCTHSEL	ADFM	SC1	SC0	ADCEN	GO/ DONE	CM1	СМО	0000 0000	xxxx xxxx
ADINS	ANS7	ANS6	AN5	AN3	AN4	AN2	AN1	AN0	1111 1111	xxxx xxxx
ADS0	CHNSEL3	CHNSEL2	CHNSEL1	CHNSEL0	REFSL1	REFSL0	_	VREFSEL	0000 0100	xxxx xxxx
ADRESH	A/D 结果寄存器	高字节							XXXX XXXX	XXXX XXXX
ADRESL	A/D 结果寄存器	低字节							XXXX XXXX	XXXX XXXX
INTS	GIE	PEIE	TIS	INS	PAIE	TIF	INTF	PAIF	0000 0000	XXXX XXXX
PIFB1	INT1E	ADCIE	OSFIE	TMR1IE	INT1IF	ADCIF	OSFIF	TMRIF	0000 0000	XXXX XXXX
PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	XXXX XXXX	XXXX XXXX
CPIOD	CPIOD7	CPIOD6	CPIOD5	CPIOD4	CPIOD3	CPIOD2	CPIOD1	CPIOD0	1111 1111	XXXX XXXX

10.0 电容触摸模块

对于YS83B08/YS84B08/YS84C12, 触摸模块最多可监视15个输入(CHSEL<15:1>); 要使用触摸功能, 用户必须:

- 通过设置CHSELH跟CHSELL寄存器选择引脚为触摸功能。
- 将相应的CPIO位置1。
- 设置触摸相关参数(触摸灵敏度、初始化环境值、扫描时间等,详细说明见下文。)运行软件算法

10.1 原理说明

YS83B08/YS84B08/YS84C12 主要检测的是电容充电和放电的时间。首先,由一个 GPIO 对电容 Cx 进行 充电;同时开启计时器进行计时;随着充电的进行,Cx的电压中不断升高,最终它将会操作某个门限电压V, 当其超过门限电压 V 后,GPIO 将会检测到这个事件,同时停止计时器并读出此时的数值。这样,就完成了一 次充电计时过程,当手指接触到触摸按键时, Cx 将会变大,显然,充电时间也会变长。通过不断比较每次充电 的时间,很自然地就能得知当前是否有按键被"按下"。

10.2 配置说明

要使用触摸功能,必须先配置触摸门限差值以及触摸门限初值,配置{CSTMRH、CSTMRL}设定帧频率, 配置{CHSELH、CSSELL}选择触摸通道,配置 CSACU[2:0]选择通道扫描帧次数,配置 THCTL 选择工作模式, ring Techn 配置完成后打开触摸使能开关 CSEN, 触摸模块开始工作。

10.3 电容感应数据区

下表列出每个通道电容感应的相关数据:

	,	日心/21/11/00 3/11 :							
感应	感应电容值	门限值	门限差	门限累加值					
通道编号	(16'b) L:H	(16'b) L:H	(12'b)L:H(bit3~0)	(20'b) L(bit7~4): M: H					
第1通道	0X1C3 :	0X1A3 :	0X3A3:0X3A2	0X3A2 : 0X3C3 :					
	0X1C2	0X1A2		0X3C2					
第2通道	0X1C5 :	0X1A5 :	0X3A5 : 0X3A4	0X3A4 : 0X3C5 :					
	0X1C4	0X1A4		0X3C4					
第3通道	0X1C7 :	0X1A7 :	0X3A7:0X3A6	0X3A6 : 0X3C7 :					
	0X1C6	0X1A6		0X3C6					
第4通道	0X1C9 :	0X1A9 :	0X3A9:0X3A8	0X3A8 : 0X3C9 :					
	0X1C8	0X1A8		0X3C8					
第5通道	0X1CB :	0X1AB :	0X3AB: 0X3AA	0X3AA : 0X3CB :					
	0X1CA	0X1AA		0X3CA					
第6通道	0X1CD :	0X1AD :	0X3AD : 0X3AC	0X3AC : 0X3CD :					
	0X1CC	0X1AC		0X3CC					
第7通道	0X1CF :	0X1AF :	0X3AF : 0X3AE	0X3AE : 0X3CF :					
	0X1CE	0X1AE		0X3CE					
第8通道	0X1D1 :	0X1B1 :	0X3B1:0X3B0	0X3B0 : 0X3D1 :					
	0X1D0	0X1B0		0X3D0					
第9通道	0X1D3 :	0X1B3 :	0X3B3:0X3B2	0X3B2 : 0X3D3 :					
	0X1D2	0X1B2		0X3D2					

第 10 通道	0X1D5 :	0X1B5 :	0X3B5 : 0X3B4	0X3B4 : 0X3D5 :
	0X1D4	0X1B4		0X3D4
第 11 通道	0X1D7 :	0X1B7 :	0X3B7:0X3B6	0X3B6 : 0X3D7 :
	0X1D6	0X1B6		0X3D6
第 12 通道	0X1D9 :	0X1B9 :	0X3B9:0X3B8	0X3B8 : 0X3D9 :
	0X1D8	0X1B8		0X3D8
第 13 通道	0X1DB :	0X1BB :	0X3BB: 0X3BA	0X3BA : 0X3DB :
	0X1DA	0X1BA		0X3DA
第 14 通道	0X1DD :	0X1BD :	0X3BD : 0X3BC	0X3BC : 0X3DD :
	0X1DC	0X1BC		0X3DC
第 15 通道	0X1DF :	0X1BF :	0X3BF : 0X3BE	0X3BE : 0X3DF :
	0X1DE	0X1BE		0X3DE

10.4 寄存器说明

寄存器190H: 触摸控制存器 < CSCTL >

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-1	R/W-1
CSEN	RAMEN	XRAM	CSBUSY	CSINTS	CSACU2	CSACU1	CSACU0
bit7					2/1		bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

bit7 CSEN: 触摸模块使能位

1 = 触摸模块打开 0 = 触摸模块关闭

bit6 RAMEN: CS RAM控制选择位

1 = CS RAM区域由MCU控制

0 = CS RAM区域由触摸模块控制(XRAM位无效)

bit5 XRAM: MCU 访问扩展区域 SRAM (RAMEN 为 1 有效)

1 = 访问扩展区域 (访问3A0H~3DFH)

0 = 正常访问(访问1A0H~1DFH)

bit4 CSBUSY: 触摸扫描标志位

1 = 触摸扫描正在进行

0 = 触摸空闲

bit3 CSINTS: 触摸产生方式选择

1 = 有触摸按键产生中断

0 = 每帧扫描完产生中断

bit2-0 **CSACU <2:0>**: 通道每帧扫描次数

000 = 1

001 = 2

010 = 4

011 = 8 (缺省值)

100 = 16

101 = 32

110 = 64

111 = 128

寄存器191H: 触摸门限自动更新寄存器 < THCTL>

R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1
THFIB	THGAP1	THGAP0	THMOD2	THMOD1	THMOD0	THDS1	THDS0

bit7 bit0

图注:

W = 可写位 R = 可读位U = 未实现位, 读为0

-n = POR时的值 1 = 置1 0 = 清零 **x** = 未知

bit7 未使用,请写0

bit6-5 THGAP<1: 0>: 门限抽取间隔帧数

00 = 3

01=7 (缺省值)

10 = 15

11 = 31

bit4-2 THMOD<2:0>: 门限累加次数

000 = 2

001 = 4

010 = 8 (缺省值)

011 = 16

100 = 32

101 = 64

110 = 128

111 = 256

·扁的帧数 bit1-0 THDS<1:0>: 在触摸按键释放后门限更新累加所需间隔的帧数

00 = 16

01 = 32 (缺省值)

10 = 64

11 = 128

寄存器194H: 触摸通道结果标志高位寄存器 < CHRLTH >

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
CHRLT15	CHRLT14	CHRLT13	CHRLT12	CHRLT11	CHRLT10	CHRLT9	CHRLT8
bit7	-170	λ1	.00				bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

1 = 置1 0 = 清零 -n = POR时的值 x =#

bit7-0 **CHRLT<15:8>:** 触摸通道结果标志

1=对应通道有触摸

0=对应通道没有触摸

寄存器195H: 触摸通道结果标志低位寄存器 < CHRLTL >

R-0	R-0						
CHRLT7	CHRLT6	CHRLT5	CHRLT4	CHRLT3	CHRLT2	CHRLT1	
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

1 = 置1 -n = POR时的值 0 = 清零 x = 未知

bit7-0 CHRLT<7:1>: 触摸通道结果标志

1=对应通道有触摸

0=对应通道没有触摸

寄存器196H: 触摸通道掩码高位寄存器 < CHSELH >

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHSEL15	CHSEL14	CHSEL13	CHSEL12	CHSEL11	CHSEL10	CHSEL9	CHSEL8
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为0

0 = 清零 -n = POR时的值 1 = 置1 x = 未知

bit7-0 CHSEL<15:8>: 允许/禁止该通道为触摸通道

> 1 = 对应通道配置成触摸通道 0 = 对应通道没有配置成触摸通道

寄存器197H: 触摸通道掩码低位寄存器 < CHSELL >

* ** ***	74.01.						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHSEL7	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	
bit7							bit0

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

x = 未知 0 = 清零 -n = POR时的值 1 = 置1

寄存器19BH: 触摸自动扫描定时器寄存器高8位 < CSTMRH >

	, H 4 H			- 113 (7 11741					
bit7-0	bit7-0										
可行品 1901	1: 概读日初归	抽足的备可什么	命回の位くし、	S I INIKU >							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CSTMR15	CSTMR14	CSTMR13	CSTMR12	CSTMR11	CSTMR10	CSTMR9	CSTMR8				
bit7		11) (1)	1.6/	7			bit0				

图注:

R = 可读位 W = 可写位 U = 未实现位,读为0

-n = POR时的值 1 = 置1 0 = 清零 x = 未知

bit7-0 CSTMR<15:8>: 触摸扫描周期计数器高 8 位

寄存器19CH: 触摸自动扫描定时器寄存器低8位 < CSTMRL >

	R/W-1							
	CSTMR7	CSTMR6	CSTMR5	CSTMR4	CSTMR3	CSTMR2	CSTMR1	CSTMR0
Ī	bit7							bit0

图注:

W = 可写位 U = 未实现位,读为0 R = 可读位

-n = POR时的值 1 = 置1 0 = 清零 **x** = 未知

bit7-0 CSTMR<7:0>: 触摸扫描周期计数器低 8 位

寄存器19EH: 触摸灵敏度调节寄存器0 < CSANA0 >

U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
_	BSTRM2	BSTRM1	BSTRM0	CMPTRM1	CMPTRM0	VTSEL1	VTSEL0
bit7							bit0

图注:

R = 可读位

W = 可写位

U = 未实现位,读为0

-n = POR时的值

1 = 置1

0 = 清零

x = 未知

bit7

未实现位

bit6-4

BSTRM<2: 0>: BIAS输出电流调节

000 = 3.5uA

001 = 3.75uA

010 = 4uA(缺省值)

011 = 4.25uA

100 = 4.5uA

101 = 5uA

110 = 5.5uA

寄存器19FH: 触摸灵敏度调节寄存器1 < CSANA1 >

bit3-2	00 = 6uA		部比较器消耗电	土流			
	01 = 12uA 10 = 18uA 11 = 24uA	(缺省值)					
bit1-0	VTSEL <1:0> 00 = 0.65V 01 = 1.3V 10 = 1.9V		比较高电平选择	: 			
	11 = 2.55V	(缺省值)					
寄存器19FH	l: 触摸灵敏度		< CSANA1 >		<u> </u>		
U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1
_	_		DTTRM1	DTTRM0	CTTRM2	CTTRM1	CTTRM0
bit7		. 3	1	A. 1885			bit0

图注:

R = 可读位

W = 可写位

U = 未实现位,读为0

-n = POR时的值

1 = 置1

0 = 清零

x = 未知

bit7-5

未实现

Bit4-3

DTTRM <1:0>: 触摸放电时间调节

00 = 0.75us

01 = 1us(缺省值)

10 = 1.25us

11 = 1.5us

Bit2-0

CTTRM <2:0>: 触摸充电电流调节,用于调节片外触摸电容量程,提高触摸精度

000 = 0.25uA (量程: 0~256pF)

001 = 0.5uA (量程: 0~128pF)

010 = 0.75uA (量程: 0~96pF)

011 = 1uA(量程: 0~64pF) (缺省值)

100 = 1.25uA (量程: 0~56pF)

101 = 1.5uA (量程: 0 ~ 48pF)

110 = 1.75uA (量程: 0~40pF)

111 = 2uA(量程: 0~32pF)

表 10-4-1: 与触摸相关的寄存器汇总

名称	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR 和 LVR 时的值	所有其他 复位值

INTS	GIE	PEIE	TIS	INT0E	PAIE	TIF	INT0F	PAIF	0000 0000	xxxx xxxx
PIFB2	SSP1IE	CSIE	PBIE	PWMIE	SSP1IF	CSIF	PBIF	PWMIF	0000 0000	xxxx xxxx
PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	0000 0000	XXXX XXXX
CPIOB	CPIOB7	CPIOB6	CPIOB5	CPIOB4	CPIOB3	CPIOB2	CPIOB1	CPIOB0	1111 1111	XXXX XXXX
PORTC	_	_	_	_	PC3	PC2	PC1	PC0	0000	XXXX XXXX
CPIOC	_	_	_	_	CPIOC3	CPIOC2	CPIOC1	CPIOC0	1111	xxxx xxxx
PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000 0000	xxxx xxxx
CPIOD	CPIOD7	CPIOD6	CPIOD5	CPIOD4	CPIOD3	CPIOD2	CPIOD1	CPIOD0	1111 1111	xxxx xxxx
ADINS	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	xxxx xxxx
CSCTL	CSEN	RAMEN	XRAM	CSBUSY	CSINTS	CSACU2	CSACU1	CSACU0	0000 0000	xxxx xxxx
THCTL	THFIB	THGAP1	THGAP0	THMOD2	THMOD1	THMOD0	THDS1	THDS0	0000 0000	xxxx xxxx
CHRLTH	CHRLT15	CHRLT14	CHRLT13	CHRLT12	CHRLT11	CHRLT10	CHRLT9	CHRLT8	0000 0000	xxxx xxxx
CHRLTL	CHRLT7	CHRLT6	CHRLT5	CHRLT4	CHRLT3	CHRLT2	CHRLT1	_	0000 0000	xxxx xxxx
CHSELH	CHSEL15	CHSEL14	CHSEL13	CHSEL12	CHSEL11	CHSEL10	CHSEL9	CHSEL8	0000 0000	xxxx xxxx
CHSELL	CHSEL7	CHSEL6	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	_	0000 0000	xxxx xxxx
CSTMRH	触摸扫描周期	期计数器高8位		•					0000 0000	xxxx xxxx
CSTMRL	触摸扫描周期	期计数器低 8 位							0000 0000	xxxx xxxx
CSANA0	_	BSTRM2	BSTRM1	BSTRM0	CMPTRM1	CMPTRM1	VTSEL1	VTSEL0	0000 0000	xxxx xxxx
CSANA1	_	_	_	DTTRM1	DTTRM0	CTTRM2	CTTRM1	CTTRM0	0000 0000	xxxx xxxx
图注: x = 未知, u = 不变, 一 = 未实现(读为0)。										

11.0 配置寄存器

配置寄存器是用来配置 MCU 的设置, 其原始值存在 MTP 的某些位置, 在 MCU 启动时从 MTP Boot 到配 置寄存器中,配置寄存器位宽为 8 位,由于 Flash 的位宽为 14 位,Boot 时,只 Boot 低 8 位至配置寄存器。

11.1 Config Option

Config Option 用于给客户提供配置选项。

寄存器 801H: 配置字寄存器高8位(Config1 Option)

_	RD_CTRL	LVDS1	LVDS0	FCMEN	IESO	LVREN1	LVREN0
bit15							bit8

寄存器 800H: 配置字寄存器低8位(Config0 Option)

_	СРВ	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit7		•			1		bit0
bit15	未实现: 保	留					
bit14	RD_CTRL:输出模式时读端口控制						
		¦口返回的PIN₋ ¦口返回的锁存					
bit13-12		>: 低电压复位					
	00: 1.9V						
	01: 2.5V 10: 3.8V						
	11: 3.8V						
bit11	FCMEN: 系	《 统时钟失效监	测使能位				
	1: 使能系统	於时钟失效监测	,仅在系统时针	中为外部晶振	模式才起作用		
	 林山 亥 分 	胡姑生粉吃油					

0: 禁止系统时钟失效监测

bit10 IESO: 内、外时钟切换使能位,二速启动模式使能,

1: 使能二速启动模式,仅在系统时钟为外部晶振模式才起作用

0: 禁止二速启动模式

bit9-8 LVREN <1:0>: 低电压复位选择⁽¹⁾

11: 低电压复位使能

10: MCU工作时,低电压复位开启; MCU睡眠时,低电压复位关闭

01: 低电压复位由PCON之SLVREN位决定

00: 禁止低电压复位

bit7 未实现:保留

bit6 **CPB**: 代码保护位⁽³⁾ 1: Flash 内容不保护

0: 启动Flash内容保护,MCU能读,串口不能读

bit5 MCLRE: PA3/MCLR引脚功能选择位⁽⁴⁾

> 1: PA3/MCLR 脚执行MCLR功能,是复位脚 0: PA3/MCLR 脚执行PA3功能,是数字输入引脚

PWRTE: 上电延时定时器使能位

1: PWRT禁止 0: PWRT使能

bit3 WDTE: 看门狗定时器使能位

1: WDT使能,程序不能禁止

0: WDT禁止,但程序可通过设置WDTCON的SWDTEN位将WDT使能

bit2-0 FOSC <2:0>: 振荡器选择位

111: INTOSCIO Oscillator模式,PA4为IO引脚,PA5为IO引脚

110: RCIO Oscillator模式,PA4为IO引脚,PA5时钟输入脚CLKIN

bit4

101: INTOSC Oscillator模式, PA4输出时钟CLKOUT, PA5为IO引脚

100: RC Oscillator模式,PA4输出时钟CLKOUT,PA5是时钟输入脚CLKIN

011: EC模式, PA4为IO引脚, PA5时钟输入脚CLKIN

010: HS Oscillator模式, PA4、PA5接高频晶振

001: XT Oscillator模式, PA4、PA5接晶振

000: LP Oscillator模式, PA4、PA5接低频晶振

注 1: 使能欠压复位不会自动使能上电延时定时器。

2: 在INTOSC或RC模式下当MCLR有效时,内部时钟振荡器被禁止。

12.0 指令表

指令	功能	操作	影响状态位
NOP	空操作	无	无
CLRWT	清看门狗	O→WT	/TF, /PF
SLEEP	进入睡眠模式	0→WT, stop OSC	/TF, /PF
TMODE	将 W 寄存器值装入选项寄存器 (81H)	W→81H	无

CP10 R 设置端口方向寄存器(1输入、0输射)				
LDR R	CPIO R	设置端口方向寄存器(1输入,0输出)	W→CPIO r	无
LDW 1	STWR R	将W寄存器内容送R寄存器	W→R	无
SWAPR R, t 交換寄存器 R 的高低四位,结果保存在 R(t-1)或者 W(t-0)中	LDR R, t	读寄存器 R, 结果保存在 R(t=1)或者 W(t=0)	R→t	Z
INCR R. 遠境寄存器 R. 结果保存在 R(t=1)或者 W(t=0) 中 如果结果等于 0 则能	LDWI I	立即数送₩寄存器	$I \rightarrow W$	无
LINCRSZ R,	SWAPR R, t	交换寄存器 R 的高低四位,结果保存在 R(t=1)或者 W(t=0)中	$[R(0^{\sim}3) \ R(4^{\sim}7)] \rightarrow t$	无
t	INCR R, t	递增寄存器 R, 结果保存在 R(t=1)或者 W(t=0)中	R + 1→t	Z
To	INCRSZ R,	递增寄存器 R, 结果保存在 R(t=1)或者 W(t=0)中;如果结果等于 0则跳	D + 1 > 4	工
SUBWR R, t R 寄存器减去 W 寄存器,结果保存在 R(t=1)或者 W(t=0) 中 RAW→t (R+/W+1→t) C, HC, Z DECR R, t 递减寄存器 R, 结果保存在 R(t=1)或者 W(t=0) 中 R A 1→t Z DECRS Z R, 递减寄存器 R, 结果保存在 R(t=1)或者 W(t=0) 中;如果结果等于 0 则跳	t	过该指令接下来的指令	K + 1→t	
DECR R, t 遊滅寄存器 R, 结果保存在 R(t=1)或者 W(t=0) 中 R A1→t Z	ADDWR R, t	W 寄存器与 R 寄存器相加,结果保存在 R(t=1)或者 W(t=0)中	W + R→t	C, HC, Z
DECRSZ R,	SUBWR R, t	R 寄存器减去 W 寄存器, 结果保存在 R(t=1)或者 W(t=0)中	$R \land W \rightarrow t (R+/W+1 \rightarrow t)$	C, HC, Z
t 过该指令接下来的指令 ANDWR R,t R 寄存器与 W 寄存器做 "与"操作,结果保存在 R(t=1)或者 W(t=0)中 R □ W→t Z IORWR R,t R 寄存器与立即数 I 做 "与"操作,结果保存在 R(t=1)或者 W(t=0)中 R □ W→t Z IORWR R,t R 寄存器与立即数 I 做 "与"操作,结果保存在 R(t=1)或者 W(t=0)中 R □ W→t Z IORWI I W 寄存器与立即数 I 做 "或"操作,结果保存在 R(t=1)或者 W(t=0)中 I □ W→W Z XORWR R,t R 寄存器与证即数 I 做 "或"操作,结果保存在 R(t=1)或者 W(t=0)中 R ⊕ W→t Z XORWI I W 寄存器与立即数 I 做 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中 I ⊕ W→W Z COMR R,t R 寄存器 "取反"操作,结果保存在 R(t=1)或者 W(t=0)中 R ⊕ W→t Z RRR R,t R 寄存器循环 "右移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(m)→R(n=1), C→R(7), R(0)→C C RLR R,t R 寄存器循环 "右移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(m)→r(n+1), C→R(0), R(7)→C C CLRW W 寄存器清 0 O→R Z BCR R,b R 寄存器的第 b 位清 0 D→R(b) 无 BSR R,b R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R,b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=1 无 DJWN I 带立即数从子程序返回 Stack→PC, I→W 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 CHC, Z SIUBWI I 立即数 I 被太 将 条存器,结果保存到 W 寄存器中 PC+1→PC, W+I→W C, HC, Z SIUBWI I 立即数 I 被太 I W 等存器,结果保存到 W 寄存器中 I I W→W C, HC, Z RTIF I 中断返回 Stack→PC, I→GIS 无	DECR R, t	递减寄存器 R, 结果保存在 R(t=1)或者 W(t=0)中	R A1→t	Z
L 过该指令接下来的指令	DECRSZ R,	递减寄存器 R, 结果保存在 R(t=1)或者 W(t=0)中; 如果结果等于 0 则跳	D A 1 ->+	= 4
ANDWI I W 寄存器与立即数 I 做 "与"操作,结果保存到 W 寄存器中	t	过该指令接下来的指令	K AI-t	1
TORWR R, t R 寄存器与 W 寄存器做 "或"操作,结果保存在 R(t=1)或者 W(t=0)中 R ∪ W→t Z	ANDWR R, t	R 寄存器与 W 寄存器做"与"操作,结果保存在 R(t=1)或者 W(t=0)中	$R \cap W \rightarrow t$	Z
IORWI I W 寄存器与立即数 I 做 "或"操作,结果保存在 R(t=1)或者 W(t=0)中 I ∪ W→W Z XORWR R, t R 寄存器与 W 寄存器伪 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中 R ⊕ W→t Z XORWI I W 寄存器与立即数 I 做 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中 I ⊕ W→W Z COMR R, t R 寄存器 "取反"操作,结果保存在 R(t=1)或者 W(t=0)中 /R→t Z RRR R, t R 寄存器循环 "右移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→R(n-1), C→R(7), R(0)→C C RLR R, t R 寄存器循环 "左移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→r(n+1), C→R(0), R(7)→C C CLRW W 寄存器消 0 O→W Z CLRW W 寄存器消 0 O→W Z CLRR R R 寄存器的第 b 位治 0 O→R(b) 无 BSR R, b R 寄存器的第 b 位潜 0 R 寄存器的第 b 位潜 0 无 BSR R, b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调射指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 <tr< td=""><td>ANDWI I</td><td>₩寄存器与立即数Ⅰ做"与"操作,结果保存到₩寄存器中</td><td>$I \cap W \rightarrow W$</td><td>Z</td></tr<>	ANDWI I	₩寄存器与立即数Ⅰ做"与"操作,结果保存到₩寄存器中	$I \cap W \rightarrow W$	Z
XORWR R, t R 寄存器与 W 寄存器做 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中 R ⊕ W→t Z XORWI I W 寄存器与立即数 I 做 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中 I ⊕ W→W Z COMR R, t R 寄存器 "取反"操作,结果保存在 R(t=1)或者 W(t=0)中 /R→t Z RRR R, t R 寄存器循环 "右移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→R(n-1), C→R(0)→C C RLR R, t R 寄存器循环 "左移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→r(n+1), C→R(0), R(7)→C C CLRW W 寄存器清 0 0→W Z CLRR R R 寄存器的第 0 0→R Z BCR R, b R 寄存器的第 b位清 0 0→R(b) 无 BSR R, b R 寄存器的第 b位置 1 1→R(b) 无 BTSS R, b 如果 R 寄存器的第 b位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调转指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIVI 带立即数从子程序返回 Stack→PC, I→W 无 ADWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z RTF	IORWR R, t	R 寄存器与 W 寄存器做"或"操作,结果保存在 R(t=1)或者 W(t=0)中	R ∪ W→t	Z
XORWI I W 寄存器与立即数 I 做 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中 I ⊕ W→W Z COMR R, t R 寄存器 "取反"操作,结果保存在 R(t=1)或者 W(t=0)中 /R→t Z RRR R, t R 寄存器循环 "右移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→R(n-1), C→R(7), R(0)→C C RLR R, t R 寄存器循环 "左移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→r(n+1), C→R(0), R(7)→C C CLRW W 寄存器清 0 0→W Z CLRR R R 寄存器尚第 0 0→R(b) 无 BCR R, b R 寄存器的第 b 位清 0 0→R(b) 无 BSR R, b R 寄存器的第 b 位为 0, 则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1, 则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调精指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 減去 W 寄存器,结果保存到 W 寄存器中 I →W W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	IORWI I	W 寄存器与立即数 I 做"或"操作,结果保存在 R(t=1)或者 W(t=0)中	$I \cup W \rightarrow W$	Z
COMR R, t R 寄存器"取反"操作,结果保存在 R(t=1)或者 W(t=0)中 /R→t Z RRR R, t R 寄存器循环 "右移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→R(n-1), C→R(7), R(0)→C C RLR R, t R 寄存器循环 "左移"操作,结果保存在 R(t=1)或者 W(t=0)中 R(n)→r(n+1), C→R(0), R(7)→C C CLRW W 寄存器清 0 0→W Z CLRR R R 寄存器尚第 0 0→R Z BCR R, b R 寄存器的第 b 位清 0 0→R(b) 无 BSR R, b R 寄存器的第 b 位为 1 1→R(b) 无 BTSC R, b 如果R 寄存器的第 b 位为 0, 则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果R 寄存器的第 b 位为 1, 则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 守 PC+1→PC, W+I→W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	XORWR R, t	R 寄存器与 W 寄存器做"异或"操作,结果保存在 R(t=1)或者 W(t=0)中	R ⊕ W→t	- Z
RRR R, t R 寄存器循环 "右移" 操作,结果保存在 R(t=1) 或者 W(t=0) 中 R(n)→R(n-1), C→R(7), R(0)→C C RLR R, t R 寄存器循环 "左移" 操作,结果保存在 R(t=1) 或者 W(t=0) 中 R(n)→r(n+1), C→R(0), R(7)→C C CLRW W 寄存器清 0 0→W Z CLRR R R 寄存器的第 b 位清 0 0→R Z DSR R, b R 寄存器的第 b 位置 1 1→R(b) 无 BTSC R, b 如果 R 寄存器的第 b 位为 0, 则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1, 则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 1 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I—W→W C, HC, Z RTIFI 中断返回 Stack→PC, 1→GIS 无	XORWI I	W 寄存器与立即数 I 做 "异或"操作,结果保存在 R(t=1)或者 W(t=0)中	The state of the Colonia and the coloni	Z
RRR R, t R 寄存器循环 "右移" 操作, 结果保存在 R(t=1) 或者 W(t=0) 中 C→R(7), R(0)→C R(n)→r(n+1), C→R(0), R(7)→C CLRW W 寄存器清 0 0→W Z CLRR R R 寄存器清 0 0→R Z DCLRR R R 寄存器前 0 0→R Z DCLRR R R 寄存器前 0 0→R DCLRR R R 寄存器前 0 0→R DCLRR R R 寄存器的第 b 位清 0 0→R(b) 无 DSR R, b R 寄存器的第 b 位置 1 1→R(b) 无 DSTSC R, b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 DTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 DCLALL N 在整个 2K 区域内的调用指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I-W→W C, HC, Z SUBWI I 中断返回 Stack→PC, 1→GIS 无	COMR R, t	R 寄存器"取反"操作,结果保存在 R(t=1)或者 W(t=0)中	/R→t	Z
C→R(7), R(0)→C	DDD D +	P 宏方界活环"七段" 揭作	$R(n) \rightarrow R(n-1)$,	C
RLR R, t R 寄存器循环 "左移" 操作,结果保存在 R(t=1) 或者 W(t=0) 中 C→R(0), R(7)→C C C C C W 寄存器清 0 0→W Z C C C R R R 寄存器清 0 0→R Z D D→R D→R D→R D→R D→R D→R D→R D→R D→R D	KKK K, U	和可存储值外 有物 抹扑,给未体存在 M(t=1) 或有 m(t=0) 平	$C \rightarrow R(7), R(0) \rightarrow C$	C
CLRW W 寄存器清 0 0→W Z CLRR R R 寄存器清 0 0→R Z BCR R, b R 寄存器的第 b 位清 0 0→R(b) 无 BSR R, b R 寄存器的第 b 位置 1 1→R(b) 无 BTSC R, b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 減去 W 寄存器,结果保存到 W 寄存器中 I-W→W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	RIR R +	R 寄存器循环"左移"操作,结果保存在 R(t=1) 或者 W(t=0) 中	$R(n) \rightarrow r(n+1)$,	C
CLRR R R 寄存器清 0 0→R Z BCR R, b R 寄存器的第 b 位清 0 0→R (b) 无 BSR R, b R 寄存器的第 b 位置 1 1→R (b) 无 BTSC R, b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I-W→W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	KER K, C	N H I III III II I I I I I I I I I I I I	$C \rightarrow R(0), R(7) \rightarrow C$	O .
BCR R,b R 寄存器的第 b 位清 0	CLRW	W 寄存器清 0	0 → W	Z
BSR R, b R 寄存器的第 b 位置 1 1→R(b) 无 BTSC R, b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC, PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 申 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I-W→W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	CLRR R	R 寄存器清 0	0→R	Z
BTSC R, b 如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令 Skip if R(b)=0 无 BTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC,PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC,I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC,W+I→W C,HC,Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I-W→W C,HC,Z RTFI 中断返回 Stack→PC,1→GIS 无	BCR R, b	R 寄存器的第 b 位清 0	0→R(b)	无
BTSS R, b 如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令 Skip if R(b)=1 无 LCALL N 在整个 2K 区域内的调用指令 N→PC,PC+1→Stack 无 LJUMP N 在整个 2K 区域内的跳转指令 N→PC 无 RTIW I 带立即数从子程序返回 Stack→PC,I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC,W+I→W C,HC,Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I−W→W C,HC,Z RTFI 中断返回 Stack→PC,1→GIS 无	BSR R, b	R 寄存器的第 b 位置 1	1→R(b)	无
LCALL N在整个 2K 区域内的调用指令N→PC, PC+1→Stack无LJUMP N在整个 2K 区域内的跳转指令N→PC无RTIW I带立即数从子程序返回Stack→PC, I→W无ADDWI IW 寄存器与立即数 I 相加,结果保存到 W 中PC+1→PC, W+I→WC, HC, ZSUBWI I立即数 I 减去 W 寄存器,结果保存到 W 寄存器中I-W→WC, HC, ZRTFI中断返回Stack→PC, 1→GIS无	BTSC R, b	如果 R 寄存器的第 b 位为 0,则跳过该指令接下来的指令	Skip if R(b)=0	无
LJUMP N在整个 2K 区域内的跳转指令N→PC无RTIW I带立即数从子程序返回Stack→PC, I→W无ADDWI IW 寄存器与立即数 I 相加,结果保存到 W 中PC+1→PC, W+I→WC, HC, ZSUBWI I立即数 I 减去 W 寄存器,结果保存到 W 寄存器中I-W→WC, HC, ZRTFI中断返回Stack→PC, 1→GIS无	BTSS R, b	如果 R 寄存器的第 b 位为 1,则跳过该指令接下来的指令	Skip if R(b)=1	无
RTIW I 带立即数从子程序返回 Stack→PC, I→W 无 ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 减去 W 寄存器,结果保存到 W 寄存器中 I−W→W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	LCALL N	在整个 2K 区域内的调用指令	N→PC, PC+1→Stack	无
ADDWI I W 寄存器与立即数 I 相加,结果保存到 W 中 PC+1→PC, W+I→W C, HC, Z SUBWI I 立即数 I 減去 W 寄存器,结果保存到 W 寄存器中 I-W→W C, HC, Z RTFI 中断返回 Stack→PC, 1→GIS 无	LJUMP N	在整个 2K 区域内的跳转指令	N→PC	无
SUBWI I立即数 I 減去 W 寄存器,结果保存到 W 寄存器中I-W→WC, HC, ZRTFI中断返回Stack→PC, 1→GIS无	RTIW I	带立即数从子程序返回	Stack→PC, I→W	无
RTFI 中断返回 Stack→PC, 1→GIS 无	ADDWI I	W 寄存器与立即数 I 相加,结果保存到 W 中	$PC+1 \rightarrow PC, W+I \rightarrow W$	C, HC, Z
	SUBWI I	立即数 I 减去 W 寄存器,结果保存到 W 寄存器中	$I-W \rightarrow W$	C, HC, Z
RET 从子程序返回 Stack→PC 无	RTFI	中断返回	Stack→PC, 1→GIS	无
	RET	从子程序返回	Stack→PC	无

13.0 电气特性

13.1 绝对极限参数

偏置电压下的环境温度......-40°C 至+85°C

储存温度65	°C 至+150°C
VDD 引脚相对于 VSS 的电压	0.3V至+6.5V
MCLR 引脚相对于 Vss 的电压0.	3V 至+9.5V
所有其他引脚相对于 VSS 的电压0.3V 至	
总功耗 ⁽¹⁾	600mW
流出 VSS 引脚的最大电流	120mA
流入 VDD 引脚的最大电流	120mA
输入钳位电流, I _{IK} (V _I <0 或 V _I >VDD)	±20mA
输出钳位电流,I _{OK} (V _o <0 或 V _o >VDD)	±20mA
任一 I/O 引脚的最大输出灌电流	25mA
任一 I/O 引脚的最大输出拉电流	25mA
注 1: 功耗计算公式为: P _{DIS} = VDD x { I _{DD} - ∑ I _{OH} } + ∑ { (V _{DD} - V _{OH}) x I _{OH} } + ∑ (V _{OL} x I _{OL})	

注意: 如果运行条件超过了上述"绝对极限参数值",即可能对器件造成永久性损坏。上述值仅为运行条件的极大值,我们不建议器件运行在该规范范围以外。器件长时间工作在绝对极限参数条件下,其稳定性可能受到影响。

图 13-1-1: YS83B08/YS84B08/YS84C12 外部振荡电压一频率图, -40 ℃ ≤ TA ≤ +85 ℃

图 13-1-2: 器件 VDD 和工作温度范围内 IRC 偏移量(左边参数为偏移百分比,如 0.01 为 1%)

13.2 直流电气特性

	直流特性			标准: 工作温度 -	工作条件 40℃≤Ta≤	+85℃		
符号	特性	最小值	典型值 ⁽¹⁾	最大值	单位	1	条件	
VDD	电源电压	2.2	247	5.5	V			
VDR	RAM 数据保持电压 (2)	-72	0.5*		V	岩	器件处于休眠模式	
VPOR	Vdd 起始电压确保能够产生上 电复位信号	-	Vss	-	V			
SVDD	Vdd 上升速率确保能够产生上 电复位信号	0.05*		_	V/ms			
		64,	680				1M	
	11, 11,		996			3.3V	4M	WDT C
IDD	IDD 工作电流 ⁽³⁾		1400		uA		8M	WDT En LVR Dis IRC
JUD		_	800		uA		1M	
			1170			5V	4M	
			1668				8M	
IPD	掉电流 ⁽⁴⁾	_	1	_	uA	WDT	Disable VD	D=2.5V
\triangle IWDT	WDT 电流 ⁽⁴⁾		0.5	_	uA		VDD=5V	'
		VSS		1.1	_	3V TLL		
VIL	 输入低电压	VSS		1.1	- V	3V SCHMITT		
VIL	1117人以七八	VSS		1.6		5V TLL		
		VSS		1.6		5V SCHMITT		
		1.1		VDD			3V TLL	
\ //L I	<i>★</i> 〉 > + □	1.6		VDD			3V SCHMI	TT
VIH	输入高电压	1.6		VDD	V		5V TLL	
		3.0		VDD]		5V SCHMI	TT
		_	_	_		VO	L=0.7V	0)/
101	<i>t</i> A 11 1# -1 17	_	18	_	1 .	VO	L=0.3V	3V
IOL	输出灌电流	_	_	_	mA	VO	L=0.9V	5) (
		_	40	_		VO	L=0.5V	5V

		_	1	_		VOH=2.5V	21/	
ЮН	 OH		7	_	A	VOH=2.7V	3V	
1011	IOR 制出拉电流	_	-	_	mA	VOH=4.0V	5 \/	
		_	15	_		VOH=4.5V	5V	
			1.9	1.9 +20%	V	LOW		
VLVR	低电压复位电压	2.5 -20%	2.5	2.5 +20%		MIDDLE		
		3.8 -20%	3.8	3.8 +20%		HIGH		
Devi			_	_	3V			
Rpu	上拉电阻	_	31	_	K	5V		

注: "一"表示没有,或待定。

- (1) 典型栏中数据均为25℃条件下值,此部分数据仅供参考。
- (2) 该电压是保证不丢失 RAM 数据的最小 VDD。
- (3) 工作电流主要随工作电压和频率而变化。其它因素,如总线负载、总线速率、内部代码执行模式和温度也会影响电 流消耗。
- (4) 掉电电流是在器件休眠时,所有 I/O 引脚都处于高阻态并且连接到 Vdd 或 Vss 时测得。

13.3 交流电气特性

	交流特性		工作温	标准工作条 6 温度 -40℃≤T		105%
符号	特性	最小值	典型值 (1)	最大值	单位	条件
Fosc	系统时钟	0	8M	20M	Hz	5V
F _{HIRC}	内部高速时钟	(-40	4M	16M	Hz	5V
F _{LIRC}	内部低速时钟	1	31K		Hz	5V
T _{INT}	中断脉冲	4	2	3	Tins	指令周期
	系统启动时间 (上电复位)	17	13	20	ms	5V
T _{SST}	系统启动时间 (由 SLEEP 模式唤醒, Fsys 在 SLEEP 模式下关 闭)		1024		Tsys	5V
	系统启动时间(由 SLEEP 模式唤醒,主要在 SLEEP 模式下开启)		1024		Tsys	5V
_	系统复位延迟时间 (上电复位)		13	20	ms	5V
T _{RSTD}	系统复位时间 (WDT 正常复位)		77	84	ms	5V
TLVR	VDD 降低到 VLVR 以下 持续时间	2	5		us	

14.0 开发支持

14.1 仿真信息

14.1.1 软件: MDT-IDE

14.1.2 硬件: YS-Link

14.1.3 接口:

YS83B08/YS84B08/YS84C12 具备片内仿真功能,可通过串口模式仿真调试程序,串口接口如下:

YS83B08	YS84B08/YS84C12	YS-Link
VDD	VDD	VDD
GND	GND	GND
PA3	PA3	VPP
PB1	PA0	SCK
PB2	PA1	SDA

14.2 烧录信息

14.2.1 烧录软件: YSpringPro

14.2.2 烧录器: YS-Writer

MTP 类型 MCU 烧录时需要选择五线烧录模式或六线烧录模式。

	烧录模式	烧录器使用引脚
	栈烧录模式: 需要 MCU 烧录 Busy 信号,烧录速度通常机台烧录时选用。	YS84XXX 引脚: VDD、VSS、VPP、PA0、PA1、IBUSY (Busy 信号)
		YS83B08 引脚: VDD、GND、VPP、PB1、PB2、 IBUSY(Busy 信号)
烧录	栈烧录模式:无需 Busy 信号,通过延时完成烧录, 快速度慢,通常板上烧录没有引出 MCU Busy 信号即时使用。	YS84XXX 引脚: VDD、VSS、VPP、PA0、PA1 YS83B08引脚: VDD、GND、VPP、PB1、PB2

15.0 封装信息

15.1 SOP16

CVMDOLC	MIN	NOR	MAX	CVMPOL C	MIN	NOR	MAX
SYMBOLS		(mm)		SYMBOLS	(mm)		
Α		_	1.75	E1	3.70	3.90	4.10
A1	0.05	_	0.225	е	1.27BSC		
A2	1.30	1.40	1.50	h	0.25	_	0.50

А3	0.60	0.65	0.70	L	0.50		0.80
D	9.70	9.90	10.10	L1	1.05 BSC		
E	5.80	6.00	6.20	θ	0 - 8°		

15.2 SOP20

SYMBOLS	MIN	NOR	MAX	SYMBOLS -	MIN	NOR	MAX
STIVIBULS	- 75	(mm)	211			(mm)	
Α		$a_{G_{\overline{G}_{1}}}$	2.65	E1	7.40	7.50	7.60
A1	0.10		0.30	е	1.27BSC		
A2	2.25	2.30	2.35	h	0.25	_	0.75
А3	0.97	1.02	1.07	L	0.70	_	1.00
D	12.70	12.80	12.90	L1	1.40REF		
E	10.10	10.30	10.50	θ	0	_	8°
				b	0.35	_	0.43

15.3 SSOP20

SYMBO	MIN	NOR	MAX	SYMBO	MIN	NOR	NOR	
LS	(mm)			LS	(mm)			
Α	_	_	1.75	E1.	3.80	3.90	4.00	
A 1	0.10	0.15	0.25	е	0.635BSC			
A2	1.30	1.40	1.50	С	0.20	_	0.24	
А3	0.60	0.65	0.70		0.50	_	0.80	
D	8.55	8.65	8.75	L1		1.05REF		
h	0.30 🥤	3.M.	0.50	c1	0.19	0.20	0.21	
E	5.80	6.00	6.20	θ	0	_	80	
		Chan.		b	0.23	_	0.31	

15.4 SOP 24

CVMDOLO	MIN	NOR	MAX	OVARDO O	MIN	NOR	MAX	
SYMBOLS -	(mm)			SYMBOLS	37	(mm)		
Α	2.36	2.54	2.64	E1	7.40	7.50	7.60	
A 1	0.10	0.20	0.30	е	1.27BSC			
A2	2.26	2.30	2.35	h	0.25	_	0.75	
А3	0.97	1.02	1.07	L	0.70	_	1.00	
D	15.30	15.40	15.50	L1		1.40REF		
E	10.10	10.30	10.50	θ	0	_	8°	
				b	0.39	_	047	

15.5 SSOP24

SYMBO	MIN	NOR	MAX	SYMBO	MIN	NOR	NOR
LS	(mm)		LS	(mm)			
Α	_	_	1.75	E1	3.80	3.90	4.00
A 1	0.10	0.15	0.25	е	0.635BSC		
A2	1.30	1.40	1.50	С	0.20	. —	0.24
А3	0.60	0.65	0.70	4//	0.50	_	0.80
D	8.55	8.65	8.75	L1	1.05REF		
h	0.30	У Л	0.50	с1	0.19	0.20	0.21
E	5.80	6.00	6.20	θ	0	_	80
		dien.		b	0.23	_	0.31

15.6 SOP 28

SYMBO	MIN	NOR	MAX	SYMBO	MIN	NOR	NOR	
LS	(mm)			LS	(mm)			
Α	_	_	2.65	E1	7.40	7.50	7.60	
A 1	0.10	_	— 0.30 e 1.27ВS			1.27BSC	SC SC	
A2	2.25	2.30	2.35	С	0.25		0.29	
А3	0.97	1.02	1.07	4//	0.70	_	1.00	
D	17.90	18.00	18.10	L1	-	1.40REF		
E	10.10	10.30	10.50	θ	0	_	80	
	1 Victorial			b	0.39	_	0.47	

15.7 SSOP 28

SYMBO	MIN	NOR	MAX	SYMBO	MIN	NOR	NOR	
LS	(mm)			LS	(mm)			
Α	_	_	1.75	E1	3.80	3.90	4.00	
A 1	0.05	_	0.225	е	0.635BSC			
A2	1.30	1.40	1.50	С	0.20	_	0.24	
А3	0.60	0.65	0.70	1,50	0.50	_	0.80	
D	9.80	9.90	10.00	L1	1.05REF			
h	0.25	У Я	0.50	c1	0.19	0.20	0.21	
E	5.80	6.00	6.20	θ	0	_	80	
		dien.	-	b	0.23	_	0.31	

16.0 汇春知识产权政策

16.1 专利权

汇春公司在全球各地区已核准和申请中之专利权至少有30件以上,享有绝对之合法权益。与汇春公司MCU 或其它产品有关的专利权并未被同意授权使用,任何经由不当手段侵害汇春公司专利权之公司、组织或个人, 汇春将采取一切可能的法律行动,遏止侵权者不当的侵权行为,并追讨汇春公司因侵权行为所受之损失、或侵 权者所得之不法利益。

16.2 著作权

Copyright 2017 by INC.

规格书中所出现的信息在出版当时相信是正确的,然而汇春对于规格内容的使用不负责任。文中提到的应 用其目的仅仅是用来做说明,汇春不保证或不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使 用在会由于故障或其它原因可能会对人身造成危害的地方。汇春产品不授权使用于救生、维生器件或系统中做 为关键器件。汇春拥有不事先通知而修改产品的权利,对于最新的信息,请从我们官方网站中获取,网址:

http://www.yspringtech.com;

