

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
200V	8.8mΩ	120A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO220AB Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	200	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	120	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	81	Α	
I _{DM}	Pulsed Drain Current ²	460	Α	
EAS	Single Pulse Avalanche Energy ³	324	mJ	
las	Avalanche Current	36	Α	
P _D @T _C =25°C	Total Power Dissipation ⁴	357	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹ 45		45	°C/W
Rejc	Thermal Resistance Junction-Case ¹		0.42	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
$\triangleBV_{DSS}/\triangleT_J$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =60A		8.8	10.6	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	2	3	4	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -250UA				mV/°C
I _{DSS}	Drain-Source Leakage Current	V _{DS} =200V, V _{GS} =0V, T _J =25°C V _{DS} =200V, V _{GS} =0V, T _J =100°C			1	uA
IDSS	Diam-Source Leakage Current				100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =60A		103.5		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3.5		Ω
Qg	Total Gate Charge			74		
Q _{gs}	Gate-Source Charge	V _{DS} =100V , V _{GS} =10V , I _D =60A		30		nC
Q _{gd}	Gate-Drain Charge			16		
T _{d(on)}	Turn-On Delay Time			35		
T _r	Rise Time	V_{GS} =10V, V_{DD} =100V, R_{G} =2.7 Ω , I_{D} =60A		111		
T _{d(off)}	Turn-Off Delay Time			84		ns
T _f	Fall Time			112		
C _{iss}	Input Capacitance	V _{DS} =100V , V _{GS} =0V , f=1MHz		5268		
Coss	Output Capacitance			462		pF
C _{rss}	Reverse Transfer Capacitance			24		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			120	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =60A , T _J =250			1.3	V
t _{rr}	Reverse Recovery Time	IF=17A , di/dt=100A/μs ,		150.8		nS
Q _{rr}	Reverse Recovery Charge	T _J =250		779.4		nC

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C
- 2. The EAS data shows Max. rating . The test condition is V_{DD} =100V, V_{GS} =10V,L=0.5mH, I_{AS} =36A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width ≤ 300us , duty cycle ≤ 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Performance Characteristics

Fig 8: BVdss vs. Temperature 1.20 $I_D = 1 \text{mA}$ 1.15 1.10 BVdss_Normalized 1.05 1.00 0.95 0.90 0.85 0.80 125 150 175 -50 -25 25 50 75 100 Tj - Junction Temperature (°C)

Fig 13: Safe Operating Area

Fig 14: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Mechanical Dimensions for TO220

OMMON DIMENSIONS

OVARDOL	MM		
SYMBOL	MIN	MAX	
Α	9.70	10.30	
В	3.40	3.80	
С	8.80	9.40	
D	1.17	1.47	
E	2.60	3.50	
F	15.10	16.70	
G	19.55MAX		
Н	2.54REF		
1	0.70	0.95	
J	9.35	11.00	
K	4.30	4.77	
L	1.20	1.45	
М	0.40	0.65	
N	2.20	2.60	