Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6

по «Вычислительной математике»
Вариант 4

Выполнил:

Студент группы Р3208

Дашкевич Егор Вячеславович

Преподаватели:

Машина Екатерина Алексеевна

Санкт-Петербург

Оглавление

Цель работы	3
Задание:	3
Вычислительная часть	Ошибка! Закладка не определена
Листинг программы:	4
Вывод	.

Цель работы

решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Задание:

- 1. В программе численные методы решения обыкновенных дифференциальных уравнений (ОДУ) должен быть реализован в виде отдельного класса /метода/функции;
 - 2. Пользователь выбирает ОДУ вида y' = f(x, y)

(не менее трех уравнений), из тех, которые предлагает программа;

- 3. Предусмотреть ввод исходных данных с клавиатуры: начальные условия $y_0 = y(x_0)$, интервал дифференцирования $[x_0, x_n]$, шаг h, точность ε ;
- 4. Для исследования использовать одношаговые методы и многошаговые методы (см. табл.1);
- 5. Составить таблицу приближенных значений интеграла дифференциального уравнения, удовлетворяющего начальным условиям, для всех методов, реализуемых в программе;
- 6. Для оценки точности одношаговых методов использовать правило Рунге;
- 7. Для оценки точности многошаговых методов использовать точное решение задачи:
- 8. Построить графики точного решения и полученного приближенного решения (разными цветами);
- 9. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.
- 10. Проанализировать результаты работы программы.

Методы которые необходимо реализовать:

- Метод Эйлера
- Усовершенствованный метод Эйлера
- Метод Адамса

Рабочие формулы методов:

Эйлер:

Гогда получаем формулу Эйлера:

$$y_{i+1} = y_i + hf(x_i, y_i)$$

Усовершенствованный Эйлер:

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))], i = 0, 1 \dots$$

Адамс:

$$\Delta f_i = f_i - f_{i-1}$$

$$\Delta^2 f_i = f_i - 2f_{i-1} + f_{i-2}$$

$$\Delta^3 f_i = f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}$$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}\Delta f_i + \frac{5h^3}{12}\Delta^2 f_i + \frac{3h^4}{8}\Delta^3 f_i$$

Листинг программы:

Эйлер:

```
def solve(f, x0, y0, h, n):
    result = [y0]
    prev_y = y0

for i in range(n-1):
        prev_y += h * f(x0 + i*h, prev_y)
        result.append(prev_y)

return result
```

Усовершенствованный Эйлер:

```
def solve(f, x0, y0, h, n):
    result = [y0]
    prev_x, prev_y = x0, y0
    x = prev_x + h

for i in range(n-1):
    prev_y += (h/2) * (f(prev_x, prev_y) + f(x, prev_y + h*f(prev_x, prev_y)))
    prev_x, x = x, x + h
    result.append(prev_y)
```

Адамс:

```
def solve(f, x0, y0, h, n):
    result = euler.solve(f, x0, y0, h, n: 4)
    pre_f = []

for i in range(4):
    pre_f.append(f(x0 + h * i, result[i]))

prev_y = result[-1]

for i in range(4, n):
    df = pre_f[-1] - pre_f[-2]
    d2f = pre_f[-1] - 2 * pre_f[-2] + pre_f[-3]
    d3f = pre_f[-1] - 2 * pre_f[-2] + 3 * pre_f[-3] - pre_f[-4]

    prev_y += h * pre_f[-1] + (h ** 2) / 2 * df + 5 * (h ** 3) / 12 * d2f + 3 * (h ** 4) / 8 * d3f
    result.append(prev_y)
    pre_f.append(f(x0 + h * i, result[-1]))

• return result
```

Вывод программы:

i x	0 1.0	1 2.0	2 3.0	3 4.0	4 5.0	5 6.0	6 7.0	7 8.0	8 9.0	9 10.0	10 11.0	11 12.0	12 13.0	13 14.0	14 15.0
h =	-1.0 -0.5 -0.375 -0.2871 -0.2268 -0.1848 -0.1548 -0.1327 -0.1161 -0.1033 -0.0931 -0.0848 -0.078 -0.0722 -0.0672 Desired precision haven't been achieved yet. Changing parameters h = 0.5 n = 40														
i x			2 2.0		4 3.0	5 3.5	6 4.0		8 5.0		10 6.0		12 7.0		14 8.0
				-0.4297 et. Changing			-0.2581	-0.2276	-0.2036	-0.1843	-0.1685			-0.1341	-0.1256
i x					4 2.0				8 3.0		10 3.5		12 4.0		14 4.5
у		-0.8105	-0.6781	-0.5813	-0.508	-0.4507	-0.4049	-0.3675	-0.3363	-0.3101	-0.2876	-0.2682	-0.2512	-0.2363	-0.223

Вывод

В ходе выполнения работы разобрал решение дифференциальных уравнений численными методами, реализовал их на ЭВМ