3.1 On considère trois modèles de régression emboîtés afin de modéliser le nombre d'accidents de voiture selon la région (region). La variable catégorielle niveaux de risque (risque) a 3 niveaux et le nombre d'années d'expérience (expe) au volant est un facteur à 4 niveaux.

Modèle	variables	<i>p</i> + 1	$\ell(\widehat{m{eta}})$	AIC	BIC
M_1	risque	3	-244.566	495.132	510.362
M_2	risque+region	*	-151.620	*	*
M_3	risque + region + expe	10	-139.734	299.468	350.235

Table 1: Mesures d'adéquation de trois modèles emboîtés avec les covariables, le nombre de coefficients du modèle (p+1), la valeur de la log-vraisemblance évaluée au maximum de vraisemblance $(\ell(\widehat{\beta}))$ et les critères d'information.

Quelle est la différence entre le AIC et le BIC du modèle M2 (en valeur absolue)?

Solution

La différence est approximativement de 35.54. Les seules informations requises ici sont le nombre de paramètres du modèle M_2 et la taille de l'échantillon. On peut utiliser la première ligne pour calculer cette dernière,

$$\mathsf{BIC} = -2\ell(\mathsf{M}_1) + 3\ln(n)$$

et on trouve en arrondissant n = 1184. Le nombre de paramètres dépend du nombre de niveaux de la variable région. On trouve $DF(M_3) - DF(M_1) - 3 = 7$; il y K = 4 catégories pour les années d'expérience, mais seulement trois paramètres additionnels dans le modèle. La différence $BIC - AIC = 7 \cdot \{ln(1184) - 2\}$.

3.2 Une variable aléatoire X suit une loi géométrique de paramètre p si sa fonction de masse est

$$P(X = x) = (1 - p)^{x-1}p, \qquad x = 1, 2, ...$$

- (a) Écrivez la vraisemblance et la log-vraisemblance d'un échantillon aléatoire de taille *n* si les observations sont indépendantes.
- (b) Dérivez l'estimateur du maximum de vraisemblance pour le paramètre *p*.
- (c) Calculez l'information observée.
- (d) Supposons qu'on a un échantillon de 15 observations, {5,6,3,7,1,2,11,8,7,34,1,7,10,1,0}, dont la somme est 103. Calculez l'estimé du maximum de vraisemblance et son erreur-type approximative.
- (e) Calculez la statistique du rapport de vraisemblance et la statistique de Wald pour un test à niveau 5% de l'hypothèse \mathcal{H}_0 : $p_0 = 0.1$ contre l'alternative bilatérale \mathcal{H}_a : $p_0 \neq 0.1$.

Solution

(a)

$$L(p; \mathbf{x}) = \prod_{i=1}^{n} (1-p)^{x_i-1} p = (1-p)^{\sum_{i=1}^{n} (x_i-1)} p^n$$

$$\ell(p; \mathbf{x}) = \ln(1-p) \sum_{i=1}^{n} (x_i - 1) + n \ln(p)$$

(b)

$$\frac{d}{dp}\ell(p; \mathbf{x}) = -\frac{1}{(1-p)} \sum_{i=1}^{n} (x_i - 1) + \frac{n}{p}$$

Si on fixe la fonction de score à zéro et qu'on réarrange l'expression, on obtient

$$\frac{1}{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

La dérivée deuxième est négative, donc l'estimateur du maximum de vraisemblance est la réciproque de la moyenne, $\hat{p} = \overline{X}^{-1}$.

(c) La fonction d'information observée vaut −1 fois la hessienne de la log-vraisemblance,

$$-\frac{\mathrm{d}^2}{\mathrm{d}p^2}\ell(p; \mathbf{x}) = \frac{n(\overline{x} - 1)}{(1 - p)^2} + \frac{n}{p^2}.$$

Si on évalue à l'estimé du maximum de vraisemblance, on obtient $j(\hat{p}) = n\overline{x}^3/(\overline{x}-1)$.

- (d) L'estimé du maximum de vraisemblance est 0.1456 et son erreur-type est 0.0347.
- (e) La statistique de Wald vaut 1.72 et la statistique du rapport de vraisemblance 0.558. Les deux peuvent être comparées à une loi χ_1^2 : les valeurs-p sont 0.19 et 0.45, donc on ne rejette pas \mathcal{H}_0 : p = 0.1.
- 3.3 On considère le temps avant défaillance de machines sur la base de leur niveau de corrosion w. Spécifiquement, le temps avant défaillance, T, est modélisé à l'aide d'une loi exponentielle de densité $f(t) = \lambda \exp(-\lambda t)$, mais d'intensité $\lambda = aw^b$; si b = 0, le temps de défaillance moyen est constant et vaut $E(T_i) = a^{-1}$. On suppose que les n observations sont indépendantes et que les niveaux de corrosion w_i sont supposés connus (donc fixes). [Coles (2001)]
 - (a) Écrivez la log-vraisemblance du modèle
 - (b) Dérivez les matrices d'informations observées et de Fisher.
 - (c) Montrez que la log-vraisemblance profilée pour b est

$$\ell_{p}(b) = n \ln(\widehat{a}_{b}) + b \sum_{i=1}^{n} \ln(w_{i}) - \widehat{a}_{b} \sum_{i=1}^{n} w_{i}^{b} t_{i},$$

et dérivez une formule explicite pour l'estimateur du maximum de vraisemblance partiel \hat{a}_b .

Solution

(a) La log-vraisemblance est

$$\ell(a, b; \mathbf{w}, \mathbf{t}) = n \ln(a) + b \sum_{i=1}^{n} \ln(w_i) - a \sum_{i=1}^{n} w_i^b t_i$$

(b) L'information de Fisher est l'espérance du négatif de la hessienne. L'information observée est

$$j(a,b) = -\begin{pmatrix} \partial^2 \ell / \partial a^2 & \partial^2 \ell / \partial a \partial b \\ \partial^2 \ell / \partial b \partial a & \partial^2 \ell / \partial b^2 \end{pmatrix} = \begin{pmatrix} n a^{-2} & \sum_{i=1}^n w_i^b \, t_i \ln(w_i) \\ \sum_{i=1}^n w_i^b \, t_i \ln(w_i) & a \sum_{i=1}^n w_i^b \, t_i \ln^2(w_i) \end{pmatrix}.$$

Pour obtenir l'information de Fisher, on calcule l'espérance de chaque entrée de la matrice. Seuls les fonctions des T_i sont aléatoires et chaque entrée n'a que des facteurs linéaires (T_i fois une constante). Puisque $\mathsf{E}(T_i) = a^{-1}w_i^{-b}$, l'information de Fisher est

$$I(a,b) = \begin{pmatrix} na^{-2} & a^{-1}\sum_{i=1}^{n}\ln(w_i) \\ a^{-1}\sum_{i=1}^{n}\ln(w_i) & \sum_{i=1}^{n}\ln^2(w_i) \end{pmatrix}$$

(c) On obtient l'estimateur du maximum de vraisemblance partiel \hat{a}_b en dérivant la log-vraisemblance par rap-

port à a tout en traitant b comme fixe,

$$\frac{\partial \ell}{\partial a} = \frac{n}{a} - \sum_{i=1} w_i^b t_i = 0$$

et on voit que la valeur de a qui maximise cette expression est $\widehat{a}_b = n/\sum_{i=1}^n w_i^b t_i$, puisque la dérivée deuxième calculée précédemment est négative.