Cloud Based Storage System CLOUD COMPUTING EXAM

Marco Tallone

September, 2024

Uni**TS**

Introduction: Exam Exercises

Exercise 1	CLOUD BASIC
Cloud Based Storage System with Docker Compose	₩
Exercise 2	CLOUD ADVANCED
Cloud Based Storage System with Kubernetes	�
Exercise 3	CLOUD ADVANCED
OSU Latency Test on Kubernetes Cluster	<u>~</u>

Exercise 1
Assignment

Exercise 1
Assignment

User	authentication 🔑 and file management 🃁
	Log in and log out
	Upload, download, read and delete files
	Private and shared files
User	administration 👮 and authorization 🔒
	User roles: admin and user
	Admin can manage users


```
Exercise 1
Assignment
```

User	authentication 🔑 and file management 🃁
	Log in and log out
	Upload, download, read and delete files
	Private and shared files
User	administration 👮 and authorization 🔒
	User roles: admin and user
	Admin can manage users
Addr	ess Security 🗍
	Secure file storage
	Secure user authentication
	Unauthorized access prevention

Exercise 1
Assignment

User	authentication 🔑 and file management 🃁
	Log in and log out
	Upload, download, read and delete files
	Private and shared files
User	administration 👮 and authorization 🔒
	User roles: admin and user
	Admin can manage users
Addı	ress Security 🤍
Addı	ress Security 🤍 Secure file storage
Addı	
Addı	Secure file storage
	Secure file storage Secure user authentication
	Secure file storage Secure user authentication Unauthorized access prevention

Exercise 1 Assignment

User authentication \nearrow and file management $\not =$	
Log in and log outUpload, download, read and delete filesPrivate and shared files	
User administration 🤦 and authorization 🔒	
User roles: admin and userAdmin can manage users	
Address Security 🗇	
Secure file storageSecure user authenticationUnauthorized access prevention	
Address Scalability 🚀 and Test 🧪	
Handle multiple users and filesTest the system performance	
Production Deployment iii and Cost-Efficiency	

∢差≯ ∢差≯

Nextcloud Built-In Features

- User authentication 🔑 and file management 📁
 - √ Log in and log out
 - ✓ Upload, download, read, delete files
 - ✓ Private and shared files

Nextcloud Built-In Features

- User authentication 🔑 and file management 📁
 - √ Log in and log out
 - ✓ Upload, download, read, delete files
 - √ Private and shared files

User administration 👮 and authorization 🔒

- √ User roles: admin and user
- √ Admin can manage users

Nextcloud Built-In Features

User authentication 🔑 and file management 📁

- √ Log in and log out
- ✓ Upload, download, read, delete files
- √ Private and shared files

User administration 👮 and authorization 🔒

- √ User roles: admin and user
- √ Admin can manage users

Address Security 🖤

- √ Secure file storage
- ✓ Secure user authentication
- √ Unauthorized access prevention

 + Open source

- + Open source

+ Docker image available 🐡

- + Open source
- 🕂 Docker image available 🖶
- + Helm chart available 🍪

- + Open source
- + Docker image available 🐡
- + Helm chart available 🏶
- + Extensive documentation

- + Open source
- + Docker image available 🐡
- 🕂 Helm chart available 🍪
- + Extensive documentation
- + Compatible with many databases

- + Open source 🗗
- → Multiple plugins ♥
- + Docker image available 🐡
- + Helm chart available 🏶
- + Extensive documentation
- + Compatible with many databases
- \checkmark Administration settings \rightarrow Security

- + Open source 🗗
- + Docker image available 🐡
- + Helm chart available 🏶
- + Extensive documentation
- + Compatible with many databases
- \checkmark Administration settings \to Security
- Server-side encryption (SSE)

 ■

- + Open source 🗗
- + Docker image available 🐡
- 🕂 Helm chart available 🍪
- + Extensive documentation
- + Compatible with many databases
- \checkmark Administration settings \to Security
- Server-side encryption (SSE)

 ■
- Password policies

- + Open source 🗗
- + Multiple plugins ♥
- + Docker image available 🐡
- + Helm chart available 🏶
- + Extensive documentation
- + Compatible with many databases
- \checkmark Administration settings \to Security
- ∇ Server-side encryption (SSE)
 ■
- Password policies
- 🜓 Two-factor authentication (2FA) 🏖

Docker Deployment 🐡


```
# Nextcloud app
app:
  image: nextcloud:27.1-fpm
  container name: app
  restart: always
  networks:
    - nextcloud
  volumes:
    - nextcloud:/var/www/html:z
  environment.
    # . . .
    - NEXTCLOUD_ADMIN_USER
    - NEXTCLOUD ADMIN PASSWORD
  depends on:
    - caddy
    - db
    - redis
# Cron iob
cron:
  image: nextcloud:29.0.3-fpm
  container name: cron
  restart: always
  networks:
    - nextcloud
  volumes:
    - nextcloud:/var/www/html:z
  entrypoint: /cron.sh
  # ...
```

Docker Deployment 🐡


```
# PostgreSQL database
  image: postgres:16.3-alpine
  container name: postgres
  restart: always
  networks:
    - nextcloud
  volumes:
        db:/var/lib/postgresql/data:Z
  environment:
    - POSTGRES DB
    - POSTGRES USER
    - POSTGRES_PASSWORD
    - POSTGRES_HOST
# Redis cache
redis:
  image: redis:7.2.5-alpine
  container_name: redis
  restart: always
  networks:
    - nextcloud
```

Docker Deployment 🐡

Locust Test

Request	@task Ratio	Probability
Read a file	10	32.3%
Download a file	5	16.1%
Upload a 1 KB file	10	32.3%
Upload a 1 MB file	5	16.1%
Upload a 1 GB file	1	3.2%

Table: Different requests and their respective probabilities during the load test.

Locust Test

Locust Test

Production Deployment

Real-World Deployment

On-premise laas Paas Saas

Production Deployment

Real-World Deployment

	On-premise	laas Paas		Saas
Initial Investment	High \$\$\$	Medium \$\$	Low \$	None
Set-Up Time	Long OOO	Medium QQ	Short O	None

Production Deployment

Real-World Deployment

	On-premise	laas	Paas	Saas
Initial Investment	High \$\$\$	Medium \$\$	Low \$	None
Set-Up Time	Long GGG	Medium QQ	Short ©	None
Hardware Cost	High \$\$\$	None	None	None
Maintenance Cost	High \$\$\$	Low \$	None	None
Fees Cost	None	Low \$	Medium \$\$	High \$\$\$

Production Deployment

Real-World Deployment

	On-premise	laas	Paas	Saas
Initial Investment	High \$\$\$	Medium \$\$	Low \$	None
Set-Up Time	Long CCC	Medium QQ	Short Q	None
Hardware Cost	High \$\$\$	None	None	None
Maintenance Cost	High \$\$\$	Low \$	None	None
Fees Cost	None	Low \$	Medium \$\$	High \$\$\$
Scalability	Limited 🌱	High 444	High 444	High 444
Security	Private	Shared	Your software	Vendor
Control & Privacy	Full	Medium	Low	None

- The cluster must run k8s 🐵 ; one node is sufficient
- Pods must have probes to handle miss-behaviors
- Volumes must survive pod crash and accidental deletion 🔄
- Service must be accessible via IP or FQDN (**)
- Databases or third-party services must run in their pod

Kubernetes Deployment 🐵

- Set-up a node using Vagrant (alternative: Minikube)
- 2
- 3
- 4
- 5
- 6

Kubernetes Deployment 😣

- Set-up a node using Vagrant (alternative: Minikube)
- Install k8s (and utilities) through provisioning script
- 3
- 4
- Ę
- 6

Kubernetes Deployment 🐵

- Set-up a node using Vagrant (alternative: Minikube)
- Install k8s (and utilities) through provisioning script
- 3 Deploy MetalLB through Helm chart
- 4
- 5
- 6

Kubernetes Deployment @

- Set-up a node using Vagrant (alternative: Minikube)
- Install k8s (and utilities) through provisioning script
- 3 Deploy MetalLB through Helm chart
- Deploy Ingress Nginx controller through Helm chart
- 5
- 6

Kubernetes Deployment 🐵

- Set-up a node using Vagrant (alternative: Minikube)
- Install k8s (and utilities) through provisioning script
- Deploy MetalLB through Helm chart
- Deploy Ingress Nginx controller through Helm chart
- Apply PVs, PVCs and Secrets for Nextcloud, PostgreSQL and Redis
- 6

Kubernetes Deployment 🐵

Deployment automated through **provisioning scripts**:

- Set-up a node using Vagrant (alternative: Minikube)
- Install k8s (and utilities) through provisioning script
- Deploy MetallB through Helm chart
- Deploy Ingress Nginx controller through Helm chart
- Apply PVs, PVCs and Secrets for Nextcloud, PostgreSQL and Redis
- 6 Deploy Nextcloud through Helm chart

Kubernetes Deployment 🐵

Simplified deployment scheme:

Kubernetes Deployment Features and Advantages

Advantages:

- √ Scalability: scale up or down pods or replicas
- ✓ **Self-healing**: automatic pod restart in case of failure
- ✓ Resurces Management: Horizontal Pod Autoscaler (HPA)
- √ Monitoring: Startup, Readiness and Liveliness probes
- √ Rolling Updates: zero update downtime interruption
- ✓ **Secrets Management**: for storing sensitive information
- ✓ Portability: Kubernetes is cloud-agnostic
- ✓ **Compatibility**: with many cloud providers
- ✓ Quick Deployment: declarative yaml files

Disadvantages:

- Complexity: more complex than Docker
- Requirements: 2 GB RAM and 2 CPUs

Exercise 3 Assignment

- The cluster must run k8s 🐵 ; two node are necessary
- The nodes must talk via either flannel or calico 🖧
- The mpi-operator must be installed
- Create a container with the OSU benchmark
- Estimate the latency between the two nodes
- Estimate the latency between the two nodes

- Set-up 2 nodes using Vagrant
- 2
- 3
- 4

- Set-up 2 nodes using Vagrant
- Install k8s, copy admin.conf file and add worker node with kubeadm join
- 3
- 4

- Set-up 2 nodes using Vagrant
- Install k8s, copy admin.conf file and add worker node with kubeadm join
- 3 Install flannel and set-up flannel network through Helm
- 4

- $lue{1}$ Set-up 2 nodes using Vagrant
- Install k8s, copy admin.conf file and add worker node with kubeadm join
- Install flannel and set-up flannel network through Helm
- Install mpi-operator with specialized containers deployment and create a mpi-job (yaml file)

Deployment steps:

- Set-up 2 nodes using Vagrant
- Install k8s, copy admin.conf file and add worker node with kubeadm join
- Install flannel and set-up flannel network through Helm
- Install mpi-operator with specialized containers deployment and create a mpi-job (yaml file)

Conducted benchmarks:

- Point-to-point latency test
- Broadcast latency test

OSU Benchmark: point-to-point latency test

Point-to-point Latency, workers on same node

OSU Benchmark: point-to-point latency test

Point-to-point Latency, workers on different nodes

OSU Benchmark: Broadcast latency test

Broadcast Latency, workers on same node

OSU Benchmark: Broadcast latency test

Broadcast Latency, workers on different nodes

