Perception for Autonomous Driving

Soohwan Kim

SWCS2020

Perception? Autonomous Driving?

Autonmous Systems

Boston Dynamics - Spot

Waymo Self-Driving Car

DJI - Phantom 4

Naverlabs - M1

Three Blocks of Autonomous Systems

Three Blocks of Autonmous Systems

```
void main()
   // Initialization
   setup();
   // Infinite loop
   while(true)
      // Step 1: perception
      sense();
      // Step 2: planning
      think();
      // Step 3: control
      act();
   }
   // Finalization
   shutdown();
```

Sensors!

Sensors for Self-Driving Cars

Sensors for Self-Driving Cars

https://www.ansys.com/about-ansys/advantage-magazine/volume-xii-issue-1-2018/autonomous-vehicle-radar

LIDAR (Light Detection And Ranging)

Velodyne Lidar - Alpha Prime^[1]

Velodyne Lidar - Alpha Prime^[2]

Pros

- Generates point clouds
- Accurate point positions
- Works well even at night
- 1. https://velodynelidar.com/products/alpha-prime/
- 2. https://www.youtube.com/watch?v=tZ8WbSNsNaU

Cons

- Very expensive
- Sparse points
- Issues in fog, rain and snow

RADAR (RAdio Detection And Ranging)

Aptive - ESR 2.5^[1]

Texas Insrument - AWR1642^[2]

Pros

- Long operating distance
- Effective for relative speeds
- Works in fog, rain, snow, night
- 1. https://autonomoustuff.com/product/aptiv-esr-2-5-24v/
- 2. https://www.youtube.com/watch?v=ziQjbVXcSts

Cons

- Low resolution
- Very sparse
- Noisy and less accurate

Camera

Continental - SVC210^[1]

KITTI Vision Dataset^[2]

Pros

- Rich texture information
- Very affordable

Cons

- No depth information
- Issues in sun glare and shadow
- 1. https://www.continental-automotive.com/en-gl/2-Wheeler/Safe-Mobility/Sensors/Surround-View-Camera-SVC210
- 2. https://www.youtube.com/watch?v=KXpZ6B1YB_k

LIDAR vs. Camera

Velodyne Lidar - Lidar vs Camera Comparison^[1]
Google vs. Tesla?

^{1.} https://www.youtube.com/watch?v=y3Q7v5a0lnI

LIDAR vs. Camera

Waymo Self-Driving Car^[1]

We Need Sensor Fusion!

^{1.} https://www.youtube.com/watch?v=B8R148hFxPw

Camera-RADAR Sensor Fusion

NVIDIA (6 Cameras and 8 RADARs) [1,2]

Detection + Position, Velocity and Acceleration

- 1. https://www.youtube.com/watch?v=cMlGyIJH5L8
- 2. https://developer.nvidia.com/blog/autonomous-vehicle-radar-perception-in-360-degrees/

LIDAR-Camera Sensor Fusion

LIDAR-CAMERA Fusion [1]

^{1.} https://www.youtube.com/watch?v=XzLE-RW9wv8

GNSS and IMU

Global Navigation Satellite System

NovAtel - GPS-704-X^[1]

- [+] Global position, all weather
- [-] Issues in downtown

Inertial Measurement Unit

Xsens - MTi-100^[1]

- [+] Egomotion, cheap, all weather
- [-] Very noisy, bias

^{1.} https://novatel.com/products/antennas/high-performance-gnss-gps-antennas/gps-704-x

^{2.} https://www.xsens.com/products/mti-100-series

Other Sensors

- Odometry sensors
- Ultrasonic sensors
- Thermal cameras
- Solid-State LIDAR

Perception for Autonomous Driving!

Perception for Autonomous Driving

- 1. Localization
- 2. Detection
- 3. Tracking
- 4. Estimation
- 5. Prediction

1. Localization

HD Maps

TomTom - HD Maps^[1]

- SLAM using sesor fusion (LIDAR, camera, RADAR, GNSS, IMU, odometry)
- Lanes, center lines, road boundaries, intersections
- Traffic signs, traffic lights, poles, road markings

^{1.} https://www.youtube.com/watch?v=ga5fW-QSXp0

GNSS+INS vs. HD-map Based Localization

Naver Labs - HD Map Based Localization^[1]

^{1.} https://www.youtube.com/watch?v=PIf5fh2-3z4

^{2.} https://www.youtube.com/watch?v=s0GK2EBpGZ8

Localization using Cameras

NVIDIA using cameras^[1]

- Ego lane lines, center of ego lane, road boundaries
- Intersection lines, poles, traffic signs, traffic lights
- 1. https://www.youtube.com/watch?v=jcKnb65wpWA
- 2. https://www.youtube.com/watch?v=5IydCAYB5N0&t=20s

Localization using Sensor Fusion

NVIDIA - Localization using camera, lidar, and radar layers^[1]

^{1.} https://www.youtube.com/watch?v=jcKnb65wpWA

2. Detection

Lane Detection

NVIDIA - LaneNet^[1]

• Solid lane lines, dashed lane lines

^{1.} https://www.youtube.com/watch?v=IzvlqCEYjg4

Object Detection

Waymo Self-driving Car at a Crowded School Crossing^[1]

- Cars (back), cars (front)
- Pedestrians
- Traffic signs

^{1.} https://www.youtube.com/watch?v=Vu8gmFhiGko

Object Detection

Waymo Self-driving Car Navigates a Police Controlled Intersection^[1]

- Cars
- Pedestrians
- Traffic cones, intersections

^{1.} https://www.youtube.com/watch?v=Vu8gmFhiGko

Map Feature Detection

NVIDIA - MapNet^[1]

- Lanes: Road boundaries, dashed lines, solid lines
- Intersections: Intersections, cross-traffic intersections
- Others: Poles, road markings

^{1.} https://www.youtube.com/watch?v=dl8MI4vZmUY

Traffic Sign and Traffic Light Detection

NVIDIA - WaitNet, LightNet, SignNet^[1]

WaitNet: intersections

• SignNet: traffic signs

• LightNet: red light, green light

1. https://www.youtube.com/watch?v=Uz5mIdRtdeA

Intersection Detection

NVIDIA - Intersection Detection^[1]

Where to stop and exit?

^{1.} https://www.youtube.com/watch?v=KPLTA4S_3Yo

Parking Space Detection

NVIDIA - ParkNet^[1]

Where to park? How to enter?

- Parking lines, entry lines
- 1. https://www.youtube.com/watch?v=Bzfmc-PDwtM

3. Tracking

Feature Tracking

NVIDIA - Feature Tracking^[1]

- Tracked features: features, feature track histories
- Detected Objects: moving away, getting closer, urgent

^{1.} https://www.youtube.com/watch?v=y2X_7KwppoI

Object Tracking

NVIDIA -Surround Camera Object Tracking^[1]

^{1.} https://www.youtube.com/watch?v=aQwqD5cB2ck

Pixel-level Object Detection and Tracking

NVIDIA - Pixel-Perfect Perception^[1]

- Detection (top): Cars, Pedestrians, Drivable space
- Tracking (bottom): object id (unique numbers and colors)

^{1.} https://www.youtube.com/watch?v=HS1wV9NMLr8

4. Estimation

Depth Estimation from Single Camera

 ${
m NVIDIA}$ - ${
m Depth}$ Estimation from Single Camera $^{[1]}$

- Cars
- Pedestrians

^{1.} https://www.youtube.com/watch?v=ftsUg5VlzIE

5. Prediction

Car Trajectories

NVIDIA - Predicting moving objects using camera and $radar^{[1]}$

^{1.} https://www.youtube.com/watch?v=NG_O4RyQqGE

Pedestrian Trajectories

Waymo Self-driving Car Allowing Cyclists to Pass^[1]

^{1.} https://www.youtube.com/watch?v=NG_O4RyQqGE

Summary

Perception for Autonomous Driving

- Three Blocks
 - 1. Perception
 - 2. Planning
 - 3. Control
- Sensors
 - 1. LIDAR
 - 2. RADAR
 - 3. Camera
 - 4. GNSS, IMU
 - 5. Sensor Fusion

- Perception
 - 1. Localization: HD Maps
 - 2. Detection: objects
 - 3. Tracking: feature/object
 - 4. Estimation: depth
 - 5. Prediction: object trajectories

Thanks!

For slides with videos, visit https://soohwank.github.io/SWCS2020/