

General Assembly DSI (NYC)
Chris Lee

Problem Statement

New York City is the biggest city on the east coast of the United States and there are tons of different kinds of foods and restaurants in the melting pot.

With the huge food market, NYC restaurant inspection is one of the most important issue since there are various ways to cook, store, and serve different kinds of food.

I resolved to tap into this wealth of information, and use it to create a tool to provide NYC restaurant inspectors by applying statistical models with some recommendations.

Agenda

- Data Collecting
- 2. Exploratory Data Analysis (EDA)
- 3. Preprocessing
- 4. Modeling & Evaluation
- 5. Conclusion & Recommendation

1. Data Collecting (dataset)

Which neighborhoods/area to identify?

NYC 5 boroughs (Manhattan, Queens, Brooklyn, Bronx, Staten Island)

What does this NYC restaurant inspection result data include?

CAMIS

DBA

- Violation Description Inspection Type

Boro

- Score
- Address
- Grade

Phone

- Grade date

- Violation Code - Inspection Date

etc.

About 350,000 observation with 23,000 unique restaurants / Period: 2015 ~ 2019

1. Data Collecting (dataset)

- Extract a list of NYC zip codes to use it as a search term in Yelp API
- Bronx 005 / Kings (Brooklyn) 047 / New York (Manhattan) 061 / Queens 081 / Richmond (Staten Island) 085

Yelp API (search term = list of zip codes)

What does this NYC restaurant inspection result data include?

- name

- rating

- phone

- address

- price

- zipcode

- cuisine

- Scraped about 6,000 unique restaurants

2. Exploratory Data Analysis (EDA)

• Cleaned data has 7,707 inspection results with 1388 restaurants

ZIP code distribution (after combining)

2. Exploratory Data Analysis (EDA)

2. EDA - Interesting fact

• McDonald's average inspection score **12.2**

Burger King average inspection score

Wendy's average inspection score

3. Preprocessing

Difficulties matching **NYC restaurant inspection result** and **Yelp data**

- 1. Restaurant name is different
- Address format is different
- 3. Phone number is different
- 4. and more ...

example)

NYC restaurant inspection result			Yelp API			
name	address	phone	name	address	phone	
carvel	36-10A 47th ave	7180000000	carvel ice cream	3610 47 avenue	+17180000000	
chris sushi II	237 w 7th street	6460000000	chris II	237 west 7th st	9170000000	

3. Preprocessing

Features (numerized)

- Borough one-hot encoded
- inspection date month and year
- inspection type initial inspection or not
- rating 1.0 ~ 5.0
- price \$\$ to number
- Cuisine one-hot encoded

Target

Inspection score

Grade A = 0 < score < 13

Grade B = 14 < score < 27

Grade C = 28 < score

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.

Regression Models - predict the inspection score

- Linear
- Linear regression
- Lasso
- Ridge
- Elastic net

- tree-based/
- Decision Tree
- Baggerd Tree
- Random Forest
- Extra Tree
- Ada Boost
- Gradient Boost

- Neural Network
- Neural Network

Classification Models - predict if the inspection score is within certain range

- Option A) Class 0 inspection score 0 ~ 13
 Class 1 inspection score 14 ~ 27
 Class 2 inspection score 28+
- Option B) Class 0 inspection score 0 ~ 13
 Class 1 inspection score 14+
- Option C) Class 0 inspection score 0 ~ 27
 Class 1 inspection score 28+

Classification Models - predict if the inspection score is within certain range

- Linear
- Logistic regression

- tree-based
- Decision Tree
- Bagged Tree
- Random Forest
- Extra Tree
- Ada Boost

- Neural Network
- Neural Network

Imbalanced class (over-sampling)

Option A) baseline accuracy - 66.17%

Option B) baseline accuracy - 66.13%

Option C) baseline accuracy - 89.61%

Option A) multi-class classification

			original		polynor	nial feature	+ pca
	model	cross-val_x	train_x	test_x	cross-val_y	train_y	test_y
0	RandomForestClassifier(bootstrap=True, class_w	0.610898	0.889792	0.601453	0.620245	0.898097	0.598858
1	ExtraTreeClassifier(class_weight=None, criteri	0.566783	0.908478	0.574987	0.541181	0.908478	0.550597
2	DecisionTreeClassifier(class_weight=None, crit	0.573182	0.908478	0.562013	0.542047	0.908478	0.542813
3	BaggingClassifier(base_estimator=None, bootstr	0.616094	0.887370	0.602491	0.611423	0.894637	0.578620
4	LogisticRegression(C=1.0, class_weight=None, d	0.652250	0.668858	0.655423	0.632873	0.719377	0.630514
5	KNeighborsClassifier(algorithm='auto', leaf_si	0.619893	0.714014	0.609237	0.625776	0.715398	0.618578

Option B) binary classification

			original		polynon	nial feature	+ pca
	model	cross-val_x	train_x	test_x	cross-val_y	train_y	test_y
0	RandomForestClassifier(bootstrap=True, class_w	0.746390	0.963639	0.792520	0.780650	0.961801	0.834252
1	ExtraTreeClassifier(class_weight=None, criteri	0.714621	0.969808	0.770866	0.723810	0.969808	0.789370
2	DecisionTreeClassifier(class_weight=None, crit	0.721186	0.969808	0.775197	0.738248	0.969808	0.780709
3	BaggingClassifier(base_estimator=None, bootstr	0.742711	0.960226	0.775984	0.790759	0.962457	0.848819
4	LogisticRegression(C=1.0, class_weight=None, d	0.628774	0.674455	0.630315	0.706878	0.870832	0.730315
5	KNeighborsClassifier(algorithm='auto', leaf_si	0.611445	0.766868	0.635433	0.632972	0.772381	0.644094

Option C) binary classification

			original	-	polynoi	mial feature	+ pca
	model	cross-val_x	train_x	test_x	cross-val_y	train_y	test_y
0	RandomForestClassifier(bootstrap=True, class_w	0.928107	0.984207	0.956699	0.971418	0.983916	0.982854
1	ExtraTreeClassifier(class_weight=None, criteri	0.893906	0.984498	0.927928	0.942157	0.984498	0.966579
2	DecisionTreeClassifier(class_weight=None, crit	0.890514	0.984498	0.929090	0.946517	0.984498	0.967742
3	BaggingClassifier(base_estimator=None, bootstr	0.903595	0.982560	0.931706	0.972193	0.984207	0.983435
4	LogisticRegression(C=1.0, class_weight=None, d	0.676291	0.705455	0.673641	0.855537	0.932177	0.881720
5	KNeighborsClassifier(algorithm='auto', leaf_si	0.760875	0.877047	0.820110	0.758163	0.879760	0.826795

Ada Boost

Neural Network

Confusion matrix of tree based models:

Decision Tree

70	Pred Neg	Pred Pos
Act Neg	6229	677
Act Pos	77	6829

Random Forest

	Pred Neg	Pred Pos
Act Neg	6293	613
Act Pos	59	6847

Bagged Tree

-	Pred Neg	Pred Pos
Act Neg	6212	694
Act Pos	81	6825

Extra Tree

	Pred Neg	Pred Pos
Act Neg	6227	679
Act Pos	77	6829

Random Forest Feature importance Logistic regression Coefficient

feat

rating	0.177868
price	0.063179
summer	0.037286
Brooklyn = 2	0.026463
Manhattan = o	0.026441
Queens = 3	0.026191
Cycle Inspection / Re-inspection	0.022963

Feature	coef	exp(coef)
0 = Manhattan	0.2162	1.24
1 = Bronx	0.0036	1.00
2 = Brooklyn	0.0693	1.07
3 = Queens	-0.0686	0.93
4 = Staten Island	-0.0781	0.92
rating	-0.2713	0.76
price	0.0197	1.02
summer	0.4227	1.53
Cycle Inspection	-0.2552	0.77
pizza	0.1774	1.19
mexican	0.1924	1.21
coffee	-0.2314	0.79
chinese	0.3018	1.35
hotdogs	-0.2570	0.77

•••

Conclusion & Recommendation

- If a restaurant have <u>one-unit higher rating</u>, the chance to get inspection grade of C <u>decrease by 23%</u>.
- During the <u>summer season</u>, the probability to get 28 inspection score or more <u>increase by 50%</u>.
- Manhattan area tends to have poor inspection score.
- A restaurant being re-inspected would have lower chance to get the inspection grade of C.

Next step...

- If we could match each restaurants name in inspection data and yelp data, we may be able to build stronger and more accurate model with better accuracy.
- If we could collect more data such as size of the restaurant, number of visitors, etc.

Q & A