Higher-order logic

Bohua Zhan

Institute of Software, Chinese Academy of Sciences

December 2022

Reading

- Specification and Verification I (Mike Gordon), Chapter 6
- Concrete Semantics (Nipkow & Klein), Chapter 2

Higher-order logic

A generalization of first-order logic. Major features:

 Ability to quantify over predicates / functions. This allows (for example) directly stating induction rules:

$$\forall P. \ P(0) \longrightarrow (\forall n. \ P(n) \longrightarrow P(n+1)) \longrightarrow (\forall n. \ P(n))$$

Lambda terms for representing predicates / functions. E.g.:

Predicates on natural numbers:

$$\lambda x. \ x > 2, \quad \lambda x. \ \text{prime}(x) \land \text{prime}(x+2)$$

Functions on natural numbers:

$$\lambda x. \ x + 2, \quad \lambda x. \ \lambda y. \ x^2 + y^2$$

Types

Each term in higher-order logic has a type.

- Fundamental types: nat, bool, ...
- Function type $\alpha \Rightarrow \beta$.
- Types depending on other types: α list, α set, $\alpha \times \beta$, ...
- Construct new type by induction (examples later).
- Construct new type by subtyping.

Terms

Terms are constructed from:

- Variables: x, y, v, w, a, b, . . .
- Constants: zero, Suc, plus, times, nil, cons, append, ...
- Function application, written as f x instead of f(x).
- Lambda terms λx . e (where e is a term possibly containing x).

Typing rules (informally):

- Each variable and constant is associated a type.
- For function application f x, f and x must have types $\alpha \Rightarrow \beta$ and α for some α and β . Then f x has type β .
- For lambda term λx . e, if x has type α and e has type β , then λx . e has type $\alpha \Rightarrow \beta$.

Currying

• Function taking two arguments of type α and β , and returns a value of type γ , can be represented as a term of type

$$\alpha \Rightarrow (\beta \Rightarrow \gamma)$$

or more simply $\alpha \Rightarrow \beta \Rightarrow \gamma$ (operation \Rightarrow associates to the right).

• Application of such a function f to values a (of type α) and b (of type β) is written as $(f \ a) \ b$, or more simply $f \ a \ b$ (function application associates to the left).

Make sure you understand why this makes sense!

Notation

- plus and times are functions of type $nat \Rightarrow nat \Rightarrow nat$.
- We use infix notations:

$$a + b$$
 for plus $a b$ and $a \times b$ for times $a b$.

• Forall and Exists are functions of type

$$(\alpha \Rightarrow bool) \Rightarrow bool$$

• We use binder notations:

$$\forall x. Px \text{ for Forall } (\lambda x. Px) \text{ and } \exists x. Px \text{ for Exists } (\lambda x. Px).$$

Deduction rules

Mostly generalizes that of first-order logic. Some new rules:

• Beta-conversion:

$$\vdash (\lambda x. t) s = t[s/x]$$

.

Abstraction:

$$\frac{\Gamma \vdash t_1 = t_2}{\Gamma \vdash (\lambda x. t_1) = (\lambda x. t_2)}$$

where x does not occur in Γ .

Forall introduction and elimination:

$$\frac{\Gamma \vdash t}{\Gamma \vdash \forall x. t} \quad \text{and} \quad \frac{\vdash \forall x. t}{\vdash t[s/x]}$$

Isabelle

- Interactive Theorem Prover: user proves theorems by interacting with the computer. The computer checks the proofs according to the rules of higher-order logic.
- Free (and open source) at

https://isabelle.in.tum.de/

Demo!