Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информационных технологий автоматизированных систем

Отчет по лабораторной работе №5 «ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ РИСКА И НЕОПРЕДЕЛЕННОСТИ НА ОСНОВЕ СТАТИСТИЧЕСКИХ МЕТОДОВ» Вариант №5

Выполнил: Ст. Гр. 820601 Шведов А.Р. Проверила: Протченко Е.В.

Задание:

Торговое предприятие составляет план закупок и продаж на очередной месяц. Предприятие имеет возможность закупать и продавать 4 вида товаров (Т1, Т2, Т3, Т4). Имеются сведения о ценах (за единицу товара), по которым предприятие закупало и продавало эти товары в последние 3 месяца.

		1-й м	есяц			2-й м	есяц		3-й месяц				
	T1	T2	Т3	T4	T1	T2	Т3	T4	T1	T2	Т3	T4	
Покупка	70	40	90	80	80	50	90	80	80	50	80	80	
Продажа	80	60	110	95	85	70	115	100	85	75	110	100	
Затраты на хранение	6	8	10	10	6	8	10	10	6	8	10	10	

Кроме того, известно, что затраты предприятия на хранение и подготовку к продаже каждой единицы товара T1 составляют 6 ден.ед., товара T2 - 8 ден.ед., T3 и T4 - по 10 ден.ед.

Закупка и продажа товара должны обеспечить получение не менее 1,1 денежных единиц на каждую вложенную денежную единицу при минимальном риске.

Ход работы:

1. Статистические методы

Статистические методы анализа и принятия решений могут применяться, если аналогичные решения уже принимались многократно, и имеются сведения об эффективности этих решений. Статистические методы основаны на анализе результатов принятия аналогичных решений в прошлом.

Как и при использовании других методов, процедуры выбора решения зависят от того, требуется ли выбрать только одно решение, или имеется возможность выбрать комбинацию решений.

2. Выбор единственного решения

Так как в нашем случае имеются сведения об эффективности каждого вида товара в прошлом, возможно применение статистического метода.

Найдем показатели эффективности товаров.

Найдем удельную эффективность товаров за первый месяц: Е₁₁ =

= 80/(70+6) = 1,05;

Аналогично находится удельная эффективность товаров в другие месяцы.

	1 мес	СЯЦ			2 мес	зц			3 месяц				
	T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	T3	T4	
Уд.эфф.	1,05	1,25	1,1	1,06	0,99	1,21	1,15	1,11	0,99	1,29	1,22	1,11	

В качестве оценки эффективности решений будем использовать среднюю удельную эффективность. Найдем эту оценку для каждого вида товаров:

$$\overline{E_1} = \frac{1,05 + 0,99 + 0,99}{3} = 1,01$$

$$\overline{E_2} = \frac{1,25 + 1,21 + 1,29}{3} = 1,25$$

$$\overline{E_3} = \frac{1,1 + 1,15 + 1,22}{3} = 1,16$$

$$\overline{E_4} = \frac{1,06 + 1,11 + 1,11}{3} = 1,09$$

Найдем оценки риска. В качестве таких оценок будем использовать величины дисперсии (вариации) удельной эффективности, определяемые по следующей формуле:

$$V_{ii} = \frac{1}{N-1} \sum_{i=1}^{N} (E_{ij} - \overline{E}_i)^2,$$
 $i=1,...,M,$

где М - количество решений (количество видов товаров);

N - количество случаев принятия решения в прошлом (количество месяцев);

 E_{ij} - эффективность i-го решения в j-м случае (удельная эффективность i-го товара в j-м месяце);

 E_{i} - средняя эффективность і-го решения (товара).

$$V_{11} = ((1,05-1,01)^2 + (0,99-1,01)^2 + (0,99-1,01)^2)/2 = 0,0014.$$

Аналогично найдем дисперсии удельной эффективности для остальных товаров: V22 = 0.0019; V33 = 0.0038; V44 = 0.001.

На основе полученных оценок эффективности и риска выберем решение. Сначала найдем допустимые решения, т.е. товары, имеющие среднюю удельную эффективность не ниже заданной (1,1). Это товары T2 и T3.

Из товаров Т2 и Т3 выберем решение с минимальным риском.

Для этого используем оценки риска: V22 = 0,0019; V33 = 0,0038. Выбираем товар T2, так как для него оценка риска меньше. Таким образом, предприятию следует приобрести товар T2.

3. Выбор комбинации решений

Для решения задачи будем использовать меры эффективности и риска, найденные выше. Кроме того, в качестве меры риска следует использовать величину, называемую *ковариацией*. Она отражает взаимосвязь между значениями эффективности решений.

Для данной задачи использование ковариации требуется, так как показатели эффективности товаров во многих случаях взаимосвязаны. Ковариация находится по следующей формуле:

$$\begin{split} V_{ik} = & \frac{1}{N-1} \sum_{j=1}^{N} (E_{ij} - \overline{E}_i) \cdot (E_{kj} - \overline{E}_k), & i = 1, \dots, M, \ k = 1, \dots, M. \\ V_{12} = & \left((1,05\text{-}1,01) \cdot (1,25\text{-}1,25) + (0,99\text{-}1,01) \cdot (1,21\text{-}1,25) + (0,99\text{-}1,01) \cdot (1,29\text{-}1,25) \right) / 2 = 0. \\ V_{13} = & -0,00123; \ V_{14} = & -0,00079; \ V_{23} = 0,00104; \ V_{24} = 0; \ V_{34} = 0,00106; \end{split}$$

Смысл ковариации. Если ковариация эффективностей i-го и k-го решения *отрицательна*, это означает, что при *снижении* эффективности i-го решения *повышается* эффективность k-го решения, и наоборот.

Положительное значение ковариации означает, что при снижении эффективности і-го решения снижается и эффективность к-го решения, и наоборот. Комбинация решений, у которых ковариация отрицательна, обеспечивает снижение риска.

В данном примере одновременная покупка товаров Т1 и Т3 может снизить риск, связанный с непостоянством эффективности товаров.

Составим математическую модель задачи. Обозначим доли каждого из М возможных решений через переменные X_i , i=1,...,M. В данной задаче потребуются три переменные: X_1, X_2, X_3, X_4 . Математическая модель задачи имеет следующий вид:

$$\begin{split} \mathbf{V} &= \sum_{i=1}^{M} \sum_{k=1}^{M} \mathbf{V}_{ik} \cdot \mathbf{X}_{i} \cdot \mathbf{X}_{k} \longrightarrow \min \\ &\sum_{i=1}^{M} \overline{\mathbf{E}}_{i} \cdot \mathbf{X}_{i} \geq \mathbf{E}_{\mathsf{ДОП}} \\ &\sum_{i=1}^{M} \mathbf{X}_{i} = 1 \end{split}$$

Здесь целевая функция (V) означает, что риск, связанный с закупкой товаров, должен быть минимальным. Первое ограничение устанавливает, что эффективность товаров должна быть не меньше минимально допустимой величины (в данном примере $E_{\text{доп}}=1,1$). Третье

ограничение устанавливает, что товары T1, T2, T3, T4 образуют весь пакет товаров, закупаемых предприятием, т.е. сумма их долей равна единице.

Это задача *нелинейного программирования*. Для ее решения воспользуемся средствами табличного процессора Excel.

Предположим, что желательно получить результаты(значения переменных X_1 , X_2 , X_3 , X_4) в ячейках C23, D23, E23. В ячейке C24 введем формулу целевой функции.

=C13*C23^2+D13*D23^2+E13*E23^2+F13*F23^2+(2*(D15*C23*D23+D16*C23*E23+D17*C23*F23+D18*D23*E23+D19*D23*F23+D20*E23*F23))

В ячейке C26 введем правую часть этого ограничения: 1,1. В ячейке C25 введем формулу ограничения на сумму долей: =C23+D23+E23+F23

4. Решение

Α	В	С	D	E	F	G	н	1	J	К	L	М	N	0	P	Q
		П1	П2	ПЗ	П4	П1	П2	ПЗ	П4	П1	П2	ПЗ	П4			
	Продажа	80	60	110	95	85	70	115	100	85	75	110	100			
	Покупка	70	40	90	80	80	50	90	80	80	50	80	80			
	Затраты на хранение	6	8	10	10	6	8	10	10	6	8	10	10			
	E	1,052632	1,25	1,1	1,055556	0,988372	1,206897	1,15	1,111111	0,988372	1,293103	1,222222	1,111111			
		E1	E2	E3	E4											
		1,009792	1,25	1,157407	1,092593											
		V1	V2	V3	V4											
		0,001376	0,001858	0,003776	0,001029											
		V12	0		0											
		V13	-0.00123		-0.00246											
		V14	-0.00079		-0.00159											
		V23	0,001038		0,002075											
		V24	0		0											
		V34	0,001063		0,002126											
		X1	X2	хз	X4											
	Решение	0,328899	0,220062	0	0,451041											
	Целевая функция	0,000213				min										
	Ограничения	1,000001			-	1										
		1,1			>=	1,1										

Таким образом, получены следующие значения переменных: X_1 =0,329, X_2 =0,22, X_3 =0, X_4 =0,45. Это означает, что в пакете товаров, приобретенных предприятием, товар первого вида (T1) должны составлять 32,9%, T2 – 22%, T3 – 0%, T4 – 45%.

Ожидаемая удельная эффективность полученного решения, рассчитанная в ячейке, составит 1,1 денежной единицы на каждую вложенную денежную единицу. Оценка риска полученного решения (значение целевой функции) равна 0,000213.