May 23rd

Textbook P12.8. Give an example of a set 5 such that the interior of closure of 5.

20

int(Q)= Ø 2Q = IR Q = IR int(Q) = int(R)=R

1.(e)(P12)

 $\hat{S} = \{(x,y) : x > 0 \text{ and } y = \sin(\frac{1}{x})\}$

 $int(S), \partial S, \overline{S} = ?$

 $S=SU\left\{(x,y)\left|x=0,y\in\{0,1]\right\}\right\}$

P19. #8

Sps $f:R^n \rightarrow R^k$ has the following property: For any open set $U \subset R^k$, $f(\vec{x}) \in U$ is an open set in R^n . Show that f' is antinuous on R^n . Show also that the same result holds for "closed".

f-1(W) "anti-image of U".

(So to pen set " f(xo))

(open set " "open ball" be a ball why? BE the spear set is open.

Note:
$$(f^{-1}(A))^c = f^{-1}(A^c)$$

P19 #6, #7 (E-5 argument)

P23 #2 $\chi_{k} = \frac{3k+4}{k-5} \quad \text{them } \lim_{k\to\infty} \chi_{k} = 3. \text{ Given } \mathcal{E} > 0. \text{ find } K \text{ s.t. } |\chi_{k}-3| < \mathcal{E}$ when k-5

$$\frac{|3k+4|}{|k-5|} - 3| < 0 <=> |\frac{19}{|k-5|} < \epsilon <=> |k-5| > |9/\epsilon|$$

<=>K≥5+19/E