Resolubilidade global e subníveis conexos

R. B. Gonzalez

26 de maio de 2017

Campos vetoriais

Um campo vetorial complexo suave é uma aplicação

$$L: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$$

que é $\mathbb{C}-$ linear e satisfaz Leibniz

$$L(fg) = fLg + gLf$$
.

Localmente,

$$L=\sum_{j=1}^N c_j\partial_{x_j},\ c_j\in C^\infty.$$

Resolubilidade local

Dizemos que L é localmente resolúvel em p quando existe uma vizinhança U(p) tal que para toda $f \in C^{\infty}(\Omega)$ existe $u \in D'(\Omega)$ tal que Lu = f em U(p).

Via Teorema de Baire, vê-se que L é localmente resolúvel em p se para cada $f \in C^{\infty}(\Omega)$ existe $u \in D'(\Omega)$ tal que Lu = f em U(p, f).

Resolubilidade local

Dizemos que L é localmente resolúvel em p quando existe uma vizinhança U(p) tal que para toda $f \in C^{\infty}(\Omega)$ existe $u \in D'(\Omega)$ tal que Lu = f em U(p).

Via Teorema de Baire, vê-se que L é localmente resolúvel em p se para cada $f \in C^{\infty}(\Omega)$ existe $u \in D'(\Omega)$ tal que Lu = f em U(p, f).

A resolubilidade local para campos vetoriais complexos não-singulares é equivalente à condição P de Nirenberg-Treves (1963).

Em termos não muito precisos, "a condição P diz que a parte imaginária do símbolo principal do operador não pode mudar de sinal ao longo de curvas integrais de Hamiltoniano aplicado na parte real do símbolo."

Resolubilidade local

Dizemos que L é localmente resolúvel em p quando existe uma vizinhança U(p) tal que para toda $f \in C^{\infty}(\Omega)$ existe $u \in D'(\Omega)$ tal que Lu = f em U(p).

Via Teorema de Baire, vê-se que L é localmente resolúvel em p se para cada $f \in C^{\infty}(\Omega)$ existe $u \in D'(\Omega)$ tal que Lu = f em U(p, f).

A resolubilidade local para campos vetoriais complexos não-singulares é equivalente à condição P de Nirenberg-Treves (1963).

Em termos não muito precisos, "a condição P diz que a parte imaginária do símbolo principal do operador não pode mudar de sinal ao longo de curvas integrais de Hamiltoniano aplicado na parte real do símbolo."

Exemplo: Se $L = \partial_t + ib(t)\partial_x$, o símbolo é $\tau + ib(t)\xi$, $H = \partial_t$ e P diz que b não pode mudar de sinal.

Resolubilidade semiglobal

(Hormander) Seja $K \subset \Omega$ um compacto. L é resolúvel em K se existe um subespaço de codimensão finita de $C^{\infty}(\Omega)$ tal que, para toda f nesse espaço, existe $u \in D'(\Omega)$ tal que Lu = f em uma vizinhança de K.

Resolubilidade semiglobal

(Hormander) Seja $K \subset \Omega$ um compacto. L é resolúvel em K se existe um subespaço de codimensão finita de $C^{\infty}(\Omega)$ tal que, para toda f nesse espaço, existe $u \in D'(\Omega)$ tal que Lu = f em uma vizinhança de K.

A condição P é necessária para o tipo de resolubilidade acima. Além disso, a condição (P) é suficiente (com solução C^{∞}) se for somada à condição:

(\sharp) para todo ponto característico p sobre K, existe uma função q e um pedaço compacto de uma curva integral γ de $H\Re(q\ell)$ - sobre a qual $q\neq 0$ - com γ contendo p e sem pontos finais característicos sobre K.

Resolubilidade global

$$L: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$$
 é sobrejetor?

A imagem de *L* tem codimensão finita?

A imagem de L é fechada? (para nós, L é globalmente resolúvel quando tem imagem fechada)

Resolubilidade global no toro

Quando $\Omega=\mathbb{T}^2$, o dual de $C^\infty(\mathbb{T}^2)$ é $D'(\mathbb{T}^2)$ e L tem imagem fechada se e somente se $LC^\infty(\mathbb{T}^2)=(\ker{}^tL)^\circ$, onde ${}^tL:D'(\mathbb{T}^2)\to D'(\mathbb{T}^2)$; ou seja, para cada $f\in(\ker{}^tL)^\circ$ deve existir $u\in C^\infty(\mathbb{T}^2)$ tal que Lu=f.

Resolubilidade global no toro

Quando $\Omega=\mathbb{T}^2$, o dual de $C^\infty(\mathbb{T}^2)$ é $D'(\mathbb{T}^2)$ e L tem imagem fechada se e somente se $LC^\infty(\mathbb{T}^2)=(\ker{}^tL)^\circ$, onde ${}^tL:D'(\mathbb{T}^2)\to D'(\mathbb{T}^2)$; ou seja, para cada $f\in(\ker{}^tL)^\circ$ deve existir $u\in C^\infty(\mathbb{T}^2)$ tal que Lu=f.

Sob quais condições a imagem de

$$L = \partial_t + ib(t)\partial_x, \ (x,t) \in \mathbb{T}^2,$$

é fechada?

Teorema das bilineares

Se L tem imagem fechada, existem $m \in \mathbb{Z}_+$ e C > 0 tais que

$$\left|\int_{\mathbb{T}^2} f v \right| \leq C \rho_m(f) \rho_m({}^t L v),$$

quaisquer que sejam $f \in (\ker^t L)^\circ$ e $v \in C^\infty(\mathbb{T}^2)$, onde

$$\rho_m(\phi) = \sum_{|\alpha| \le m} \sup |\partial^{\alpha} \phi|.$$

Teorema das bilineares

Se L tem imagem fechada, existem $m \in \mathbb{Z}_+$ e C > 0 tais que

$$\left| \int_{\mathbb{T}^2} f v \right| \leq C \rho_m(f) \rho_m({}^t L v),$$

quaisquer que sejam $f \in (\ker^t L)^\circ$ e $v \in C^\infty(\mathbb{T}^2)$, onde

$$\rho_m(\phi) = \sum_{|\alpha| \le m} \sup |\partial^{\alpha} \phi|.$$

Ideia da demonstração: Eu gostaria de demonstrar da seguinte forma: considere em $C^{\infty}(\mathbb{T}^2)$ a família de seminormas $\theta_m(v) = \rho_m({}^tLv)$ e a forma bilinear

$$(\ker^t L)^{\circ} \times C^{\infty}(\mathbb{T}^2) \ni (f, v) \mapsto \int_{\mathbb{T}^2} fv.$$

Como $C^{\infty}(\mathbb{T}^2)$ é EVT localmente convexo metrizável e a forma bilinear é separadamente contínua, segue o resultado.

Resolubilidade global e subníveis conexos

(Treves, Hounie) Se $b_0 = 0$, então $L = \partial_t + ib(t)\partial_x$ tem imagem fechada se e somente se os subníveis

$$S_r = \left\{ t \in \mathbb{T}^1; \int_0^t b(\tau) d\tau < r \right\}$$

são conexos.

Resolubilidade global e subníveis conexos

(Treves, Hounie) Se $b_0 = 0$, então $L = \partial_t + ib(t)\partial_x$ tem imagem fechada se e somente se os subníveis

$$S_r = \left\{ t \in \mathbb{T}^1; \int_0^t b(\tau) d\tau < r \right\}$$

são conexos.

Lema: Se S_r é desconexo, existe $r_0 < r$ tal que S_{r_0} tem duas componentes conexas com fechos disjuntos, de forma que

existem $f_0, v_0 \in C^{\infty}(\mathbb{T}^1)$ tais que $\int_0^{2\pi} f_0 = 0$, $\int_0^{2\pi} f_0 v_0 > 0$, $\sup f_0 \cap S_{r_0} = \emptyset$ e $\sup pv'_0 \subset S_{r_0}$.

Pausa

Pausa!

Problemas em aberto

$$L = \partial_t + ib(t)\partial_x$$

Sob quais condições um operador da forma de L mas em mais variáveis $L: D'(\mathbb{T}^N) \to D'(\mathbb{T}^N)$ é globalmente resolúvel?

Como tratar o problema nas classes Gevrey ou nos duais dos Gevrey (ultradistribuições)?

Como tratar o problema no caso analítico? (Bastante difícil)

Caso Gevrey

Definição: para $s \geq 1$ e h > 0, $G_h^s(\mathbb{T}^N)$ (funções Gevrey de ordem s e amplitude h) é formado pelas funções $\phi \in C^\infty(\mathbb{T}^N)$ tais que

$$|\partial^{\alpha}\phi(x)| \leq Ch^{|\alpha|}\alpha!^{s},$$

para todo α e x.

Se h < h', então $G_h^s \subset G_{h'}^s$. Defini-se $G^s = \cup_h G_h^s$.

 G_h^s é um Banach com norma

$$\|\phi\|_{s,h} = \sup\{|\partial^{\alpha}\phi(x)|h^{-|\alpha|}\alpha!^{-s}; \alpha \in \mathbb{Z}_{+}^{N}, x \in \mathbb{T}^{N}\}.$$

Teorema das Bilineares - Caso Gevrey

Se L é s-globalmente resolúvel, então para cada h>0 e k>0, existe C>0 tal que

$$\left| \int_{\mathbb{T}^N} f v \right| \leq C \|f\|_{s,h} \|^t L v\|_{s,k},$$

para toda $f \in (\ker{}^t L)^{\circ} \cap G_h^s$ e $v \in C^{\infty}$ tal que ${}^t L v \in G_k^s$.

Fim! Obrigado!