

## Universidad Politécnica de Madrid

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

# Basic Exercises - Theoretical exercises

Author: Sergio Marín Sánchez

Email: sergio.marins@alumnos.upm.es

Date: Friday  $8^{\rm th}$  March, 2024

#### Exercise 2d

Estimate the number of operations of operations to process a  $n \times n$  input image using:  $\delta_B(I)$  or  $\delta_C(\delta_D(I))$ .



First of all, it is defined the function op(f) that counts the number of operations required to compute f. It is also defined that computing the maximum of two numbers  $a, b \in \mathbb{Z}$  needs only 1 operation, thus,  $op(\max\{a,b\}) = 1$ .

Using these assumptions computing the maximum of n numbers  $(x_i)$  will require n-1 operations.

$$op(\underbrace{\max\{\cdots\max\{\max\{x_1,x_2\},x_3\},\cdots,x_n\}}) = n-1$$
max is repeated  $n-1$  times

The number of operations required to compute  $\delta_B(I)$  will be computed as the maximum among the structuring element B that has  $m^2$  elements, so it will require  $m^2 - 1$  operations. This is performed in each pixel of the image, that is  $n^2$  times.

The number of operations required to compute  $\delta_C(\delta_D(I))$  will be computed as the maximum among the structuring element C that has m elements, so it will require m-1 operations, plus computing the maximum among the other structuring element D that will also require m-1 operations because it has m elements too. This is performed in each pixel of the image, that is  $n^2$  times.

In conclusion,

$$n^{2}(m^{2}-1) = op(\delta_{B}(I)) \ge op(\delta_{C}(\delta_{D}(I))) = n^{2}(m-1) + n^{2}(m-1) = 2n^{2}(m-1)$$

#### Exercise 8a

Let I be the input image in file isn\_256.pgm, which has a binary impulsive noise added("salt-and-pepper" noise). Let B be a structuring element square of size  $3 \times 3$ .

The results of executing the respective filters can be seen in Fig. 1. The best results are obtained using Filter 4 (Opening-Closing  $\gamma\varphi$ ) where it is easy to see there is only one artifact left in the image (on top of the black part).

The second best filter is Filter 3 (Closing-Opening  $\varphi \gamma$ ) where a few more artifacts remain in the image, in this case, in the white part.

As we can see in Filters 1 (Opening  $\gamma$ ) and 2 (Closing  $\varphi$ ), each operation removes artifacts from one of the parts, and thus, the combinations of both are the ones that obtain better results.



 ${\rm Orignal\ image:\ isn\_256.pgm}$ 



Filter 1: Opening  $\gamma_B(I)$ 



Filter 2: Closing  $\varphi_B(I)$ 



Filter 3: Closing-Opening  $\varphi_B \gamma_B(I)$ 

Filter 4: Opening-Closing  $\gamma_B \varphi_B(I)$ 

Figure 1: Images from Exercise  $8\mathrm{a}$ 

### Exercise 9a

#### Proof the idempotence of the 'closing-opening' alternated filter.

To prove the idempotence of the closing-opening  $(\varphi_B \gamma_B)$  we first need to assume some statements:

- Both  $\gamma_B$  (opening) and  $\varphi_B$  (closing) are increasing and idempotent.
- $\gamma_B$  (opening) is anti-extensive.
- $\varphi_B$  (closing) is extensive.

**Theorem 1.** Idempotence of the 'closing-opening' alternated filter:

$$\varphi_B \gamma_B \varphi_B \gamma_B(I) = \varphi_B \gamma_B(I)$$

*Proof.* The proof is done showing that both of the inequalities are satisfied.

$$\varphi_B \gamma_B \varphi_B \gamma_B(I) \le \varphi_B \gamma_B(I)$$

$$\varphi_B \gamma_B(I) = \varphi_B \gamma_B(I) \Rightarrow 
\varphi_B \varphi_B \varphi_B \gamma_B(I) = \varphi_B \gamma_B(I) \Rightarrow 
\varphi_B \gamma_B \varphi_B \gamma_B(I) \le \varphi_B \gamma_B(I)$$
(1)

 $\varphi_B \gamma_B \varphi_B \gamma_B(I) \ge \varphi_B \gamma_B(I)$ 

$$\varphi_B \gamma_B(I) = \varphi_B \gamma_B(I) \Rightarrow$$

$$\varphi_B \gamma_B \gamma_B \gamma_B(I) = \varphi_B \gamma_B(I) \Rightarrow$$

$$\varphi_B \gamma_B \varphi_B \gamma_B(I) \ge \varphi_B \gamma_B(I)$$
(2)

By (1) and (2) it can be concluded that the equality  $\varphi_B \gamma_B \varphi_B \gamma_B(I) = \varphi_B \gamma_B(I)$  holds.