IT3020 TOÁN RỜI RẠC

Phiên bản: 2021.01.15

1. THÔNG TIN CHUNG

Tên học phần: Toán rời rạc

(Discrete Mathematics)

Mã số học phần: IT3020 Khối lượng: 3(3-1-0-6)

- Lý thuyết: 45 tiết

- Bài tập/BTL: 15 tiết bài tập lớn

- Thí nghiệm: 0 tiết

Học phần tiên quyết: - Không

Học phần học trước: - Không

Học phần song hành: Không

2. MÔ TẢ HỌC PHẦN

Học phần này nhằm cung cấp cho sinh viên một số phương pháp tư duy của toán học rời rạc và các kiến thức của toán rời rạc cần thiết cho các môn học chuyên ngành Công nghệ thông tin. Sinh viên nắm được một số mô hình và một số bài toán đặc trưng của toán học rời rạc, một số thuật toán thường gặp để giải các bài toán hữu hạn và có khả năng thiết kế các thuật toán để có thể thực thi trên máy tính.

3. MỤC TIÊU VÀ CHUẨN ĐẦU RA CỦA HỌC PHẦN

Sinh viên hoàn thành học phần này có khả năng:

Mục tiêu/CĐR	Mô tả mục tiêu/Chuẩn đầu ra của học phần	CĐR được phân bổ cho HP/ Mức độ (I/T/U)
[1]	[2]	[3]
M1	Tổ chức lưu trữ và xử lý thông tin bằng máy tính khi	1.1.4; 1.2.1;
	phân tích, giải quyết các bài toán có tính rời rạc,	2.1.1; 2.1.2;
	không liên tục.	2.1.3; 2.1.4
M1.1	Nhận diện và hiểu rõ các thành phần của bài toán rời rạc không liên tục	[1.1.4] (IT)
M1.2	Nhận diện, so sánh và phân loại được các bài toán rời rạc	[1.1.4] (T)
M1.3	Có khả năng giải quyết các bài toán cơ bản	[1.2.1] (ITU); [2.1.1; 2.1.2; 2.1.3; 2.1.4] (ITU)

Mục tiêu/CĐR	Mô tả mục tiêu/Chuẩn đầu ra của học phần	CĐR được phân bổ cho HP/ Mức độ (I/T/U)
M2	Áp dụng các mô hình và thuật toán của toán rời rạc để giải quyết các bài toán xuất hiện trong các lĩnh vực CNTT nói riêng và thực tiễn nói chung.	1.1.4; 1.3.4; 1.3.5; 2.1.1; 2.1.2; 2.1.3; 2.1.4; 2.2.1; 2.2.2; 2.2.3; 2.2.4; 2.3.4; 2.4.2; 2.4.3; 3.1.4
M2.1	Nắm vững các mô hình toán rời rạc có nhiều ứng dụng trong việc giải quyết các bài toán thực tiễn	[1.1.4; 1.3.5] (IT)
M2.2	Chủ động tìm hiểu và nhận dạng các ứng dụng của toán rời rạc	[2.2.2;2.2.3;2.2.4] (IT); [3.1.4](I)
M2.3	Hiểu và vận dụng được các mô hình ứng dụng của toán rời rạc để giải quyết các bài toán thực tiễn quan trọng	[2.1.1; 2.1.2; 2.1.3; 2.1.4;2.2.1] (ITU); [2.3.4] (TU)
M2.4	Nắm được và biết cách triển khai ứng dụng toán rời rạc vào việc giải quyết các vấn đề phát sinh từ thực tiễn	[1.3.4](I); [2.3.4; 2.4.2;2.4.3] (U)

4. TÀI LIỆU HỌC TẬP

Giáo trình

- [1] Nguyễn Đức Nghĩa, Nguyễn Tô Thành. *Toán rời rạc*. Nhà xuất bản ĐHQG Hà nội, 2003.
- [2] Kenneth Rosen. *Discrete Mathematics and Its Applications*. McGraw-Hill ISBN: 9781259676512. 8th Edition, 2019.
- [3] Kenneth Rosen. Discrete Mathematics and Its applications. (dịch bởi Phạm Văn Thiều, Đặng Hữu Thịnh, *Toán rời rạc trong ứng dụng tin học*, Nhà xuất bản khoa học và kỹ thuật, 2007).

Sách tham khảo:

- [1] Johnsonbaugh R. Discrete Mathematics. Prentice Hall Inc., N. J., 1997.
- [2] Grimaldi R.P. Discrete and Combinatorial Mathematics (an Applied Introduction), Addison-Wesley, 5th edition, 2004.
- [3] R. Graham, O. Patashnik, and D.E. Knuth. *Concrete Mathematics*, Second Edition. Addison-Wesley, 1994.
- [4] Albert R. Meyer. *Mathematics for Computer Science. Course Notes* 6.042J/18.400J, Spring 2007. MIT.
- [5] Phan Đình Diệu. Lý thuyết ôtômat hữu hạn và thuật toán. NXB ĐHTHCN, Hà nội, 1977.
- [6] Nguyễn Hữu Anh. Toán rời rạc, NXB Giáo dục,1999.

- [7] Nguyễn Xuân Quỳnh. Cơ sở Toán rời rạc và ứng dụng. NXB KHKT, Hà nội, 1996.
- [8] Đỗ Đức Giáo. Toán rời rạc. NXB KHKT, Hà nội, 2001.
- [9] Hoàng Chúng. Đại cương về toán hữu hạn. NXB Giáo dục, 1997.

5. CÁCH ĐÁNH GIÁ HỌC PHẦN

Điểm thành phần	Phương pháp đánh giá cụ thể	Mô tả	CĐR được đánh giá	Tỷ trọng
[1]	[2]	[3]	[4]	[5]
A1. Điểm quá trình (*)	Đánh giá quá trình			40%
	A1.1. Bài thi viết	Tự luận	M1÷M2	40%
	hoặc A1.2. Bài tập lớn	Làm việc nhóm, viết báo cáo, thuyết trình	M1÷M3	40%
A2. Điểm cuối kỳ	A2.1. Thi cuối kỳ	Thi viết	M1÷M2	60%

^{*} Điểm quá trình sẽ được điều chỉnh bằng cách cộng thêm điểm chuyên cần. Điểm chuyên cần có giá trị từ -2 đến +1, theo Quy chế Đào tạo đại học hệ chính quy của Trường ĐH Bách khoa Hà Nội.

6. KÉ HOẠCH GIẢNG DẠY

Tuần	Nội dung	CDR học phần	Hoạt động dạy và học	Bài đánh giá	
[1]	[2]		[4]	[5]	
1	Mở đầu: Giới thiệu môn học Chương 0. Tập hợp và quan hệ 0.1. Tập hợp và các phép toán với tập hợp 0.2. Quan hệ và hàm 0.3. Quan hệ tương đương và quan hệ thứ tự 0.4. Lực lượng của tập hợp	M1.1	Đọc trước tài liệu; Giảng bài	A1, A2	
2	Chương 1. Bài toán đếm 1.1. Sơ lược về tổ hợp 1.2. Một số nguyên lý cơ bản 1.3. Các cấu hình tổ hợp cơ bản 1.4. Nguyên lý bù trừ	M1.2; M1.3; M2.1; M2.3	Đọc trước tài liệu; Giảng bài;	A1,A2	
3	Chương 1. Bài toán đếm (tiếp) 1.5. Công thức truy hồi 1.6. Hàm sinh	M1.2; M1.3; M2.1; M2.3	Đọc trước tài liệu; Giảng bài;	A1,A2	

4	Chương 2. Bài toán tồn tại 2.1. Giới thiệu bài toán 2.2. Các kỹ thuật chứng minh cơ bản 2.3. Nguyên lý Dirichlet 2.4. Một số ứng dụng của nguyên lý Dirichlet 2.5. Định lý Ramsey	M1.2; M1.3	Đọc trước tài liệu; Giảng bài;	A1, A2
5	Chương 3. Bài toán liệt kê 3.1. Giới thiệu bài toán 3.2. Thuật toán, Kí hiệu tiệm cận và độ phức tạp của thuật toán 3.3. Phương pháp sinh	M1.2; M1.3	Đọc trước tài liệu; Giảng bài;	A1, A2
6	 3.4. Thuật toán quay lui Chương 4. Bài toán tối ưu tổ hợp 4.1. Phát biểu bài toán 4.2. Duyệt toàn bộ 			
7	4.3. Thuật toán nhánh cận và các ví dụ	M1.2; M2.3	Đọc trước tài liệu; Giảng bài; Bài tập minh họa	A1, A2
8	Ôn tập / Kiểm tra giữa kỳ			
	Chương 5. Các khái niệm cơ bản cuả lý thuyết đồ thị	M1.2;	Giảng bài;	A1, A2
9	 5.1. Mở đầu 5.2. Các định nghĩa cơ bản 5.3. Đường đi, hành trình, dây chuyền và chu trình 5.4. Đồ thị liên thông 5.5. Các loại đồ thị 5.6. Bài toán tô màu đồ thị 	M2.2;	Báo cáo bài tập nhóm	
9	 5.2. Các định nghĩa cơ bản 5.3. Đường đi, hành trình, dây chuyền và chu trình 5.4. Đồ thị liên thông 5.5. Các loại đồ thị 	M2.2; M2.3;		A1, A2

	8.3. Thuật toán Prim 8.4. Thuật toán Kruskal	M2.3; M2.4	Báo cáo bài tập nhóm	
12	Chương 9. Bài toán đường đi ngắn nhất 9.1. Phát biểu bài toán. Các ứng dụng thực tế 9.2. Thuật toán Bellman-Ford 9.3. Thuật toán Dijkstra 9.4. Đường đi ngắn nhất trong đồ thị không có chu trình	M2.1; M2.2; M2.3; M2.4	Đọc trước tài liệu; Giảng bài; Báo cáo bài tập nhóm	A1, A2
13	9.5. Thuật toán Floyd-Warshall 9.6. Sơ đồ mạng Chương 10. Bài toán luồng cực đại trong mạng 10.1. Phát biểu bài toán 10.2. Định lý về luồng cực đại và lát cắt hẹp nhất	M2.1; M2.2; M2.3; M2.4	Đọc trước tài liệu; Giảng bài; Báo cáo bài tập nhóm	A1, A2
14	10.3. Thuật toán Ford-Fulkerson 10.4. Thuật toán Edmond-Karp 10.5. Một số ứng dụng thực tế	M2.1; M2.2; M2.3; M2.4	Đọc trước tài liệu; Giảng bài; Báo cáo bài tập nhóm	A1, A2
15	Tổng kết – Hướng dẫn ôn tập – Giải đáp thắc mắc – Báo cáo bài tập nhóm		Giảng bài; Báo cáo bài tập nhóm	

7. QUY ĐỊNH CỦA HỌC PHẦN

(Các quy định của học phần nếu có)

8.	NGÀY PHÊ DUYỆT:	
•	TOTAL TIPE Delipi.	

Chủ tịch Hội đồng

Nhóm xây dựng đề cương

9. QUÁ TRÌNH CẬP NHẬT

Lần cập nhật	Nội dung điều chỉnh	Ngày tháng được phê duyệt	Áp dụng từ kỳ/khóa	Ghi chú
1				
2				