The Common Trends Restriction and Dynamic Models of Economic Choice: a Reconciliation

Francesco Ruggieri

February 7, 2023

Background

- Difference-in-differences (DiD) designs are widely used for **policy evaluation**
- Recent methodological interest in designs with staggered adoption of an absorbing treatment
- This literature has focused on:
 - 1 The causal interpretation of linear regression coefficients under treatment effect heterogeneity
 - The construction of alternative estimands that are immune to the shortcomings of linear regression

Motivation

- Identification in DiD designs hinges on no anticipation and common trends restrictions
- These assumptions are typically stated within a dynamic potential outcomes (DPO) model
- DPO models do not require empiricists to specify a behavioral model of economic choice
- However, design assumptions in DPOs may mask the implied restrictions on dynamic selection
- This concern is especially salient if agents **choose** to **sort** into the treated arm...

Motivating Example: Kleven, Landais, and Søgaard (2019)

• A staggered DiD design around the time of child birth to estimate its effect on earnings

Motivating Example: Prato (2022)

• A staggered DiD design around the time of migration to estimate its effect on patenting

This Discussion

- A recent set of papers investigates the **economic content** of the **common trends** assumption:
 - Selection and Parallel Trends (March 2022), by Ghanem, Sant'Anna, and Wütrich
 - 2 Parallel Trends and Dynamic Choices (July 2022), by Marx, Tamer, and Tang
 - Not All Differences-in-Differences Are Equally Compatible with Outcome-Based Selection Models (October 2022), by de Chaisemartin and d'Haultfœuille
- Each of these papers maps standard DPOs to economic models of the outcome
- I will ignore #3 (a short note) and focus on #1, while drawing applications from #2

Model

Necessary Conditions for Common Trends

Sufficient Primitive Conditions for Common Trends

Conclusion

Model

Necessary Conditions for Common Trends

Sufficient Primitive Conditions for Common Trends

4 Conclusion

Setup

- *n* units are indexed by $i \in \{1, ..., n\}$ and observed for two time periods indexed by $t \in \{1, 2\}$
- $D_{it} \in \{0,1\}$ indicates unit i's **treatment assignment** at the *beginning* of period t
- $Y_{it} \in \mathbb{R}$ measures unit i's **outcome** at the *end* of period t
- **Sharp design**: the treatment is not available in t=1, i.e., $\mathbb{P}(D_{i1}=0)=1$
 - Marx, Tamer, and Tang (2022) considers the richer environment allowed for by fuzzy designs
- One-to-one mapping between treatment paths and time-invariant groups

$$(D_{i1}, D_{i2}) = (0, 0) \iff G_i = 0$$
 and $(D_{i1}, D_{i2}) = (0, 1) \iff G_i = 1$

Setup

- Following Robins (1986), a **dynamic potential outcomes** model with $Y_{it}(g)$ and $g \in \{0,1\}$
- A **separable model** for the untreated potential outcome,

$$Y_{it}(0) = A_i + \beta_t + U_{it}$$
 with $\mathbb{E}[U_{it}] = 0$

The following analysis extends to **nonseparable models** such as $Y_{it}(0) = h_t(A_i, U_{it})$

• A general model of **sorting** into the treated arm,

$$G_i = g(A_i, U_{i1}, U_{i2}, K_i, V_{i1}, V_{i2})$$

where (K_i, V_{i1}, V_{i2}) are unobserved determinants of the **choice to be treated**

Mode

Necessary Conditions for Common Trends

Sufficient Primitive Conditions for Common Trends

4 Conclusion

Common Trends and Unrestricted Selection

Assumption (CT): Common Trends in Untreated Potential Outcomes

 $Y_{i2}(0) - Y_{i1}(0)$ is mean independent of G_i .

• Let \mathcal{G}_{all} be the class of **all selection mechanisms** possibly implied by $g(A_i, U_{i1}, U_{i2}, K_i, V_{i1}, V_{i2})$

Proposition 1: Necessary Conditions for (CT) and $g \in \mathcal{G}_{\mathsf{all}}$

Assumption (CT) holds for any $g \in \mathcal{G}_{\mathsf{all}}$ only if $U_{i1} = U_{i2}$ almost surely.

- (CT) is incompatible with both unrestricted selection and time-varying unobservables
- Because $U_{i1} = U_{i2}$ a.s. is an implausible assumption, it is necessary to **restrict selection**

Common Trends and Restricted Selection

• Consider a restricted class of selection mechanisms,

$$G_1 = \{g \in G_{\mathsf{all}} : g(a, u_1, u_2, k, v_1, v_2) = \tilde{g}(a, u_1, k, v_1, v_2)\}$$

• \mathcal{G}_1 restricts sorting **not** to depend on unobserved, time-specific shocks to $Y_{i2}(0)$

Proposition 2: Necessary Conditions for (CT) and $g \in \mathcal{G}_1$

Assumption (CT) holds for any $g \in \mathcal{G}_1$ only if $\mathbb{E}[U_{i2}|A_i,U_{i1}]=U_{i1}$ almost surely.

- If selection does not depend on U_{i2} , (CT) is compatible with $\mathbb{P}(U_{i1} = U_{i2}) \in [0,1)$
- However, time-varying unobservables must satisfy a martingale-type restriction

Common Trends and Further Restricted Selection

• Consider a further restricted class of selection mechanisms,

$$G_2 = \{g \in G_{\mathsf{all}} : g(a, u_1, u_2, k, v_1, v_2) = \tilde{g}(a, k, v_1, v_2)\}$$

• \mathcal{G}_2 restricts sorting **not** to depend on unobserved, time-specific shocks to $Y_{i1}(0)$ and $Y_{i2}(0)$

Proposition 3: Necessary Conditions for (CT) and $g \in \mathcal{G}_2$

Assumption (CT) holds for any $g \in \mathcal{G}_2$ only if $\mathbb{E}[U_{i2}|A_i] = \mathbb{E}[U_{i1}|A_i]$ almost surely.

- If selection does not depend on U_{i1} and U_{i2} , (CT) is compatible with $\mathbb{P}(U_{i1}=U_{i2})\in[0,1)$
- However, the conditional mean of time-varying unobservables must be stationary

Takeaways from Necessary Conditions

• For practically relevant purposes, common trends implies restrictions on sorting behavior

- Tighter restrictions on selection allow for weaker restrictions on time-varying unobservables
- This trade-off illustrates the economic content embedded in the common trends assumption

Mode

2 Necessary Conditions for Common Trends

3 Sufficient Primitive Conditions for Common Trends

4 Conclusion

A Two-Period Model of Migration

- To guide the intuition, consider a two-period model of migration
 - In t = 1, agents live in their home country
 - At the beginning of t=2, they choose whether to stay $(G_i=0)$ or move $(G_i=1)$
- Let Y_{it} denote **earnings** and assume that $Y_{it}(0) = A_i + \beta_t + U_{it}$
 - A_i interpretable as the **permanent skill-related** component of earnings
 - β_t interpretable as the **business cycle** component of earnings in the home country

A Two-Period Model of Migration with Selection on the Level

- Consider a choice model that features selection on the level
- An agent migrates if lifetime earnings in their home country are below a subsistence level c,

$$G_{i} \equiv \mathbb{I}\left[\mathbb{E}\left[Y_{i1}\left(0\right) + \delta Y_{i2}\left(0\right) \middle| \mathcal{I}_{i}\right] \leq c\right]$$

where $\delta \in [0,1]$ is a discount factor and \mathcal{I}_i denotes agent i's information set

Rearranging terms,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[\left(1+\delta\right)A_i + U_{i1} + \delta U_{i2}|\mathcal{I}_i\right] \leq \tilde{c}\right]$$

with
$$\tilde{c} \equiv c - \beta_1 - \delta \beta_2$$

A Two-Period Model of Migration with Selection on the Gain

- Consider a choice model that features selection on the gain, i.e., a Roy model
- Let K_i and V_{i2} denote an individual-specific migration cost and earnings benefit, respectively
- Migration is a choice described by a simple dynamic program:

$$W_{i1} \equiv \mathbb{E}\left[Y_{i1}\left(0
ight) + \delta \max_{g \in \left\{0,1
ight\}} \left\{W_{i2}\left(g
ight)
ight\} \left|\mathcal{I}_{i}
ight]
ight]$$

with
$$W_{i2}(0) \equiv Y_{i2}(0)$$
 and $W_{i2}(1) \equiv Y_{i2}(1) - K_i$

• An individual migrates ($G_i = 1$) if and only if $\underbrace{\mathbb{E}\left[V_{i2}|\mathcal{I}_i\right]}_{\text{expected benefit}} \geq \underbrace{\mathbb{E}\left[K_i|\mathcal{I}_i\right]}_{\text{expected cos}}$

A restricted class of selection mechanisms.

$$G_1 = \{g \in G_{\mathsf{all}} : g(a, u_1, u_2, k, v_1, v_2) = \tilde{g}(a, u_1, k, v_1, v_2)\}$$

Proposition 3: Sufficient Conditions for (CT) with $g \in \mathcal{G}_1$

Assumption (CT) holds for any $g \in \mathcal{G}_1$ if

$$\mathbb{E}[U_{i2}|A_i, U_{i1}] = U_{i1}$$
 a.s. and $(K_i, V_{i1}, V_{i2})|A_i, U_{i1}, U_{i2} \stackrel{d}{\sim} (K_i, V_{i1}, V_{i2})|A_i, U_{i1}|$

• The first condition is also **necessary** for (CT) (Proposition 1)

• With selection on the **level**,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[\left(1+\delta\right)A_i + U_{i1} + \delta U_{i2}|\mathcal{I}_i\right] \leq \tilde{c}\right]$$

If $\mathcal{I}_i = \{A_i, U_{i1}, U_{i2}\}$, (CT) is implied by $\delta = 0$ (full discounting)

• With selection on the gain,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[V_{i2}|\mathcal{I}_i\right] \geq \mathbb{E}\left[K_i|\mathcal{I}_i\right]\right]$$

If $\mathcal{I}_i = \{K_i, V_{i2}\}$, (CT) is implied by $(K_i, V_{i2}) | A_i, U_{i1}, U_{i2} \stackrel{d}{\sim} (K_i, V_{i2}) | A_i, U_{i1}$

• A further restricted class of selection mechanisms,

$$G_2 = \{g \in G_{\mathsf{all}} : g(a, u_1, u_2, k, v_1, v_2) = \tilde{g}(a, k, v_1, v_2)\}$$

Proposition 4: Sufficient Conditions for (CT) with $g \in \mathcal{G}_2$

Assumption (CT) holds for any $g \in \mathcal{G}_2$ if

$$\mathbb{E}\left[U_{i2}|A_{i}\right] = \mathbb{E}\left[U_{i1}|A_{i}\right] \text{ a.s. and } (K_{i}, V_{i1}, V_{i2})|A_{i}, U_{i1}, U_{i2} \overset{d}{\sim} (K_{i}, V_{i1}, V_{i2})|A_{i}$$

• The first condition is also **necessary** for (CT) (Proposition 2)

• With selection on the **level**,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[\left(1+\delta\right)A_i + U_{i1} + \delta U_{i2}|\mathcal{I}_i\right] \leq \tilde{c}\right]$$

If $\mathcal{I}_i = \{A_i, U_{i1}, U_{i2}\}$, (CT) is implied by $\delta = 0$ (full discounting) and $U_{i1} = 0$ almost surely

• With selection on the gain,

$$G_i \equiv \mathbb{I}\left[\mathbb{E}\left[V_{i2}|\mathcal{I}_i\right] \geq \mathbb{E}\left[K_i|\mathcal{I}_i\right]\right]$$

If
$$\mathcal{I}_i = \{K_i, V_{i2}\}$$
, (CT) is implied by $(K_i, V_{i2}) | A_i, U_{i1}, U_{i2} \stackrel{d}{\sim} (K_i, V_{i2}) | A_i$

Takeaways from Sufficient Primitive Conditions

- The plausibility of the common trends assumption is context-specific
- Before implementing a DiD design, it may be useful to sketch a model of economic choice
 - Agents' information set may be particularly salient
- The model can offer guidance on restrictions implied by alternative selection mechanisms
- This analysis may help determine if (CT) is or is not compatible with agents' sorting behavior

Mode

Necessary Conditions for Common Trends

Sufficient Primitive Conditions for Common Trends

Conclusion

Conclusion

Perhaps unsurprisingly. DiD designs and standard panel data models are linked

- In practice, the **common trends** assumption **restricts** sorting and/or time-varying unobservables
- Its context-specific plausibility should be assessed based on **economic** (vs. statistical) **arguments**