PLONK Grand Product Polynomial Example

Generated by ChatGPT

Overview

This document illustrates a numeric example of the grand product argument in the PLONK zero-knowledge proof protocol. It highlights the role of the random field elements β and γ in verifying the permutation of wire assignments through a step-by-step computation.

Wire Assignment and Permutation

We consider a simple 2-gate circuit with 6 wire values and a known permutation mapping.

Index	Value v_i	Permutation $\sigma(i)$	Result Term (mod 17)
0	2	0	1
1	3	4	5
2	5	3	6
3	5	2	3
4	3	1	7
5	8	5	1

Mathematical Steps

We compute the term for each index using the formula:

$$Term_i = \frac{v_i + \beta \cdot \sigma(i) + \gamma}{v_i + \beta \cdot i + \gamma}$$

Let $\beta = 2$, $\gamma = 5$ in the field F_{17} .

$$\begin{aligned} & \operatorname{Term}_0 = \frac{2+2\cdot 0+5}{2+2\cdot 0+5} = \frac{7}{7} \equiv 1 \mod 17 \\ & \operatorname{Term}_1 = \frac{3+2\cdot 4+5}{3+2\cdot 1+5} = \frac{16}{10} \equiv 5 \mod 17 \\ & \operatorname{Term}_2 = \frac{5+2\cdot 3+5}{5+2\cdot 2+5} = \frac{16}{14} \equiv 6 \mod 17 \\ & \operatorname{Term}_3 = \frac{5+2\cdot 2+5}{5+2\cdot 3+5} = \frac{14}{16} \equiv 3 \mod 17 \\ & \operatorname{Term}_4 = \frac{3+2\cdot 1+5}{3+2\cdot 4+5} = \frac{10}{16} \equiv 7 \mod 17 \\ & \operatorname{Term}_5 = \frac{8+2\cdot 5+5}{8+2\cdot 5+5} = \frac{6}{6} \equiv 1 \mod 17 \end{aligned}$$

Final Verification

Multiplying all terms:

$$1 \cdot 5 \cdot 6 \cdot 3 \cdot 7 \cdot 1 = 630 \equiv 1 \mod 17$$

This confirms that the grand product argument validates the wire value permutation.