AACS3064 Computer Systems Architecture

Chapter 1: Numbering Systems

Chapter Overview

- 1) The basic of numbering system
 - How numbers work, the nature of counting, how calculations are performed.
- 2) Conversion between numbering systems
 - base 2(binary), 10(decimal), or 16(hexadecimal)
- 3) Performing Arithmetic in different numbering systems
 - Addition, subtraction and multiplication

1. The Basic of Numbering Systems

1. Numbering Systems

Introduction

Introduction - Binary Numbers

- Bit :
 - The fundamental building block of computer storage.
- Digits are 1 and 0 (1 = true / on, 0 = false / off)
 - MSB most significant bit
 - LSB least significant bit

Each bit represents a power of 2

Introduction

Base means the total number of digits including zero.

Base 2 (Binary)	Base 10 (Decimal)	
2 digits	10 digits	
(0,1)	(0,1,2,3,4,5,6,7,8,9)	

Base 8 (Octal)	Base 16 (Hexadecimal)

Decimal Systems: Position Notation: Base 10

Decimal Systems: Position Notation: Base 10

Binary Numbering Systems

Hexadecimal Numbering Systems

E.g. :

111010001100

11101000110011101110001

1010010110010000001001101001010

Hexadecimal Numbering Systems

Binary	Hexadecimal	Binary	Hexadecimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	E
0111	7	1111	F

Hexadecimal Numbering Systems

2. Conversions Between Numbering Systems

2. Conversion

Conversion between number systems

Example 8: base 8 -> base 10 Alternative conversion multiplication method (i) 7263₈ 7 $\frac{x8}{56}$ 56 + 2 = 58 $\frac{x8}{464} + 6 = 470$ $\frac{x8}{3760} + 3 = 3763_{10}$

3. Performing Arithmetic in Different Numbering Systems

3. Arithmetic

Binary Addition

Base 2 addition table

Example:

10

11

Binary Addition

Example:

Decimal	Binary	
109	110	1101
+ 22	+ 1	0110
<u></u> V		
131	1000	0011

NOTE: After addition, please check to ensure that the binary sum equals to that decimal values you added.

Binary Subtraction

Example:

Decimal	Binary
12	1 1 10 10
- 9	- 1 0 0 1
3	0 0 1 1

Binary Multiplication

Example 1: Base 2 Multiplication table Binary X 1101 101 1101 0000 1101 1000001

Binary Multiplication

Example 2: **Binary** 1101101 100110 1101101 1101101 1101101 1000000101110

Hexadecimal Addition

Example:

(i) 13B4H + 0033H

HINT: perform calculation from right to left

- Step 1: Think of the decimal equivalent of each digit.
- Step 2 : Add or subtract the decimal equivalents.
- Step 3: Reconvert the decimal result to its hexadecimal

Hexadecimal Addition

Example:

(ii) 53CDH + 0004H

- D+4 = 13+4 = 17. Binary representation for 17 = 0001 0001 = 11 (resulted in a carry of one bit)
- C+0+1 (carry bit from the previous sum) = 12+1=13=D
- 3+0=3; 5+0=5

Hexadecimal Addition

Example:

(iii) 8797H + 0777H

Hexadecimal		
2		8797H
	+	0777H
		8F0EH

- 7+7 = 14 = E
- 9+7=16 .Binary representation for 16 = 0001 0000 = 10 (resulted in a carry of one bit)
- 7+7+1 (carry bit from the previous sum) = 15 = F
- 8+0 =8

Hexadecimal Subtraction

Example:

(i) 53CBH - 0004H

Hexadecimal Subtraction

Example:

(ii) 13E7H - 13B4H

Hexadecimal Multiplication

Example: method 1

(i) E2H x 4AH

Hexadecimal

STEP 1:

$$E2 = 224 + 2 = 226_{10}$$

$$4A = 64 + 10 = 74_{10}$$

Hexadecimal Multiplication

Chapter Review

- 1) The basic of numbering system
 - How numbers work, the nature of counting, how calculations are performed.
- 2) Conversion between numbering systems
 - base 2(binary), 10(decimal), or 16(hexadecimal)
- 3) Performing Arithmetic in different numbering systems
 - Addition, subtraction and multiplication