Guidelines on Building a Shiny Application

Kyuin LEE (Environmental Impact Data Collaborative, EIDC)

Table of contents

Learning Objectives	2
Instructions	3
I. Getting Started: Loading Shiny Apps & Data Processing	4
1. Create a new shiny web application in RStudio	
2. Install and load packages	4
3. Read in and merge the datasets	4
II. Data Visualization: An Interactive Map of the U.S	6
1. Define a custom function that generates an interactive map	6
2. Customize the layout of the map and store the map object	6
III. Setting up the Shiny Dashboard	8
1. Create the main skeleton of the Shiny application	8
2. Apply a ready-made template to the Shiny app	8
3. Add a page title and 2 tab panels for displaying the interactive map	8
4. Display a header for each landing page	9
5. Place the map within each tab and adjust the size of the output	10
6. Render the map object within the server	10
7. Test the application	11
IV. Publishing the App on the Cloud	11
1. Click on 'Publish the application or document' on the top right-hand corner of the	
source editor	11
2. Connect RStudio to shinyapps.io	11

Learning Objectives

- Build an interactive web application
- Plot an interactive map with custom pop-up tables
- Compare the extent of energy insecurity across the U.S.
 - Energy insecurity refers to the inability of a household to meet basic energy needs, which includes the following conditions:
 - * Reducing or forgoing basic necessities in order to pay energy bills
 - * Keeping one's home at unhealthy temperatures
 - * Receiving disconnection notice from energy providers
 - * Being unable to use A/C or heating equipment in the home, due to
 - · High costs of repair
 - · Failure to pay utility bills

- Examine state-level differences in annual household energy consumption, expressed in terms of the size of the housing unit
 - Compare Energy Use Intensity (EUI; Btu/square foot), which is an indication of energy efficiency of the home
- Transform and merge data of various formats (shp. and csv. data types)
 - Create user-defined functions to write clean and efficient blocs of code

Instructions

In this tutorial, we will build a Shiny web application that visualizes findings from the 2020 Residential Energy Consumption Survey (RECS). The app will display 2 maps:

- 1. One that summarizes the extent of household energy insecurity across U.S. states; and
- 2. Another that compares the average energy use intensity of U.S. homes.

The final dashboard will look like the following:

A STATE-LEVEL SUMMARY OF RESIDENTIAL ENERGY CONSUMPTION IN 2020 ENERGY INSECURITY ENERGY USE INTENSITY (EUI)

HOUSEHOLDS THAT STRUGGLE TO PAY ENERGY BILLS OR LIVE IN POTENTIALLY DANGEROUS THERMAL CONDITIONS

The *complete* R script for building a Shiny app can be found here.

I. Getting Started: Loading Shiny Apps & Data Processing

1. Create a new shiny web application in RStudio

• Click on 'new file' > 'shiny web app'

• Fill out the 'Application name' and select the directory in which to save the file.

Note: The file name should be saved as app.R.

2. Install and load packages

3. Read in and merge the datasets

- Define a function that:
 - Loads the following datasets

- * Two state-level summaries of the 2020 Residential Energy Consumption Survey (RECS)
 - energy_insecurity.csv, which provides data on the number of energy insecure households for each state;
 and
 - · energy_consumption.csv, which includes data on annual household energy consumption (per square foot)
- * A geospatial data of U.S. states
- Transforms the spatial data
 - * Rotate, scale, and transpose Alaska and Hawaii to locate them closer to the continental United States
 - * Project the map according to an Albers equal-area conic reference system, to preserve the correct proportion of the states
- Merges spatial data with the RECS, by state name
 - * Convert the names of each state to upper case, for consistency across datasets
 - * Perform a left join, using the state name variables as key:
 - · STATE variable for the RECS dataframe
 - · NAME variable for the US geospatial dataframe
- Store the merged data as energy_insecurity and energy_consumption, respectively

```
##### I. Create a user defined function that wrangles the data
merge_the_data <- function(file_name) {

### 1) Read in the RECS summary data
# Define the path directory
directory <-
    "https://raw.githubusercontent.com/quinnei/Residential-Energy-Consumption-2020/main/RECS-Shiny-App/1_Dataset/
# Specify the location of the csv file
file_path <- pasteO(directory, file_name, ".csv")
# Read the csv dataset
# RECS <- read.csv(file_path)

#### 2) Read in the geospatial data of the US, using the tigris package
US <- states(cb = TRUE, year = 2020) %>%
# Position Alaska & Hawaii below the continental US
shift_geometry(position = "below") %>%
# For a conic representation of the U.S
sf::st_transform("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96")
# Capitalize the state names
US$NAME <- toupper(US$NAME)

##### 3) Join the 2 datasets, by the state variable
merged_data <- left_join(RECS, US, by = c("STATE" = "NAME"))
# Make sure that the merged dataframe is recognized as a spatial object
st_geometry(merged_data) <- merged_data$geometry

return(merged_data)
}

##### II. Call the function and store the merged, spatial dataset
energy_insecurity <- merge_the_data("energy_insecurity")
energy_consumption <- merge_the_data("energy_consumption")
```

II. Data Visualization: An Interactive Map of the U.S.

1. Define a custom function that generates an interactive map

- Use the tmap package for visualization
- The function takes in 4 arguments:
 - dataset:
 - main variable of interest, which to indicate in varying degrees of colors;
 - title of the legend; and
 - pop-up labels, for displaying supplementary information
- Delineate state boundaries in black and apply a line width of 0.5
- Fill in the state geometries, using the default yellow-orange color scheme; Set the transparency of the colors to 0.85
- Remove the external borders of the map, which comes as a default
- Place the legend on the top right-hand corner, to prevent it from overlapping with the map
- Make sure that the map is represented according to the Albers equal-area conic reference system

2. Customize the layout of the map and store the map object

- Create a pair of interactive maps based on the 1) energy_insecurity and 2) energy_consumption dataframe
 - Store the output as map_energy_insecurity and map_energy_consumption
- Apply the following layout to each output:

	Energy Insecurity	Energy Use Intensity
Variable used to fill in state geometries	PERCENTAGE	ENERGY_CONSUMPTION_PER_SQFT
Legend title	Energy Insecure Households (%)	Energy Use Intensity (Btu/square ft)
Info to display in the pop-up table and their respective variable names	 PERCENTAGE OF ENERGY INSECURE HOUSEHOLDS (%) - PERCENTAGE NUMBER OF ENERGY INSECURE HOUSEHOLDS - NUM_ENERGY_INSECURE_HOUSEHOLDS TOTAL NUMBER OF HOUSEHOLDS - TOTAL HOUSEHOLDS 	• EUI (BTU/SQFT) - ENERGY_CONSUMPTION_PER_SQFT • EXPENDITURES ON ENERGY (\$) - ENERGY_EXPENDITURE_PER_SQFT • CLIMATE - CLIMATE

```
##### IV. Create an interactive map of 1) energy insecurity 2) Energy Use Intensity (EUI)

map_energy_insecurity <- create_map(
    energy_insecurity, 'PERCENTAGE', "Energy Insecure Households (%)",

# Indicate % and absolute values of energy insecurity & total number of households in each state
    c("PERCENTAGE OF ENERGY INSECURE HOUSEHOLDS (%)" = "PERCENTAGE",
        "NUMBER OF ENERGY INSECURE HOUSEHOLDS" = "NUM_ENERGY_INSECURE_HOUSEHOLDS",
        "TOTAL NUMBER OF HOUSEHOLDS" = "TOTAL_HOUSEHOLDS"))

map_energy_consumption <- create_map(
    energy_consumption, 'ENERGY_CONSUMPTION_PER_SQFT', "Energy Use Intensity (Btu/square ft)",

# For each state, indicate EUI, total average expenditures on energy, and climate region
    c("EUI (BTU/SQFT)" = "ENERGY_CONSUMPTION_PER_SQFT",
        "EXPENDITURES ON ENERGY ($)" = "ENERGY_EXPENDITURE_PER_SQFT",
        "CLIMATE" = "CLIMATE"))</pre>
```


III. Setting up the Shiny Dashboard

Note that Steps III-2 to III-5 are about designing the user interface (ui), whereas III-6 relates to creating the server logic.

1. Create the main skeleton of the Shiny application

```
##### V. Create a user interface that defines the visual elements of the app
ui <- fluidPage()

##### VI. Create a server, which consists of an 1) input and 2) output
##### Tells the server how to generate outputs from the inputs provided
server <- function(input, output){}

##### VII. Run the Shiny app
shinyApp(ui = ui, server = server)</pre>
```

2. Apply a ready-made template to the Shiny app

- Select any of the themes provided by the bslib package
 - Run bootswatch_themes() to check out the full list of themes available

```
##### V. Create a user interface that defines the visual elements of the app
ui <- fluidPage(
##### 1) Apply a minimalist theme
  theme = bs_theme(bootswatch = "lux")
)</pre>
```

3. Add a page title and 2 tab panels for displaying the interactive map

The application should look like the following:

A STATE-LEVEL SUMMARY OF RESIDENTIAL ENERGY CONSUMPTION IN 2020

PAGE TITLE

TAB NAME

BERGY INSECURITY

TAB NAME

HOUSEHOLDS THAT STRUGGLE TO PAY ENERGY BILLS OR LIVE IN POTENTIALLY DANGEROUS THERMAL CONDITIONS HEADER

- Create a navigation bar at the top of the page
- · Add the title of the web page: A STATE-LEVEL SUMMARY OF RESIDENTIAL ENERGY CONSUMPTION IN 2020
- Create 2 tabs, which will display an interactive map of 1) energy insecurity and 2) energy use intensity
 - Assign names to each tab; Introduce the topic/main theme of the visualized output

	Energy Insecurity	Energy Use Intensity
Tab name	ENERGY INSECURITY	ENERGY USE INTENSITY (EUI)
Header	HOUSEHOLDS THAT STRUGGLE TO PAY ENERGY BILLS OR LIVE IN POTENTIALLY DANGEROUS THERMAL CONDITIONS	ANNUAL HOUSEHOLD ENERGY CONSUMPTION (PER SQUARE FOOTAGE)
Output ID Output size	<pre>energy_insecurity_map width = "100%", height = "865px"</pre>	<pre>energy_consumption_map width = "100%", height = "865px"</pre>

• For a preview of the Shiny app, click on 'Run app' on the top right-hand corner of the source editor.

```
###### V. Create a user interface that defines the visual elements of the app
ui <- fluidPage(
##### 1) Apply a minimalist theme
    theme = bs_theme(bootswatch = "lux"),

###### 2) Create a navigation bar at the top of the page
    navbarPage(
# 2-1) Specify the title of the web page
    title = "A STATE-LEVEL SUMMARY OF RESIDENTIAL ENERGY CONSUMPTION IN 2020",

# 2-2) Create 2 main tabs
# 2-2-a) title of tab 1
    tabPanel("ENERGY INSECURITY"),

# 2-2-a') title of tab 2
    tabPanel("ENERGY USE INTENSITY (EUI)")
    )
)</pre>
```

4. Display a header for each landing page

The header will be displayed above the interactive map, underneath every tab.

- Apply a h4 HTML style heading to the header
 - Tags that define HTML headings range from h1 to h6
 - h1 defines the most important heading and is the largest in size.
 - h6 defines the least important heading and is the smallest in size

5. Place the map within each tab and adjust the size of the output

- Instruct Shiny to display 2 outputs: the interactive maps to be defined in Step III-6
 - Tell Shiny where to display the map object by listing tmapOutput(outputId) within ui
 - * Nest the map object under each tab, using tabPanel(..., tmapOutput(outputId))
- Set the width of the output to 100% and height to 865px, using tmapOutput(outputId, width = ..., height = ...)

```
##### V. Create a user interface that defines the visual elements of the app
ui <- fluidPage(
 theme = bs_theme(bootswatch = "lux"),
 navbarPage(
    title = "A STATE-LEVEL SUMMARY OF RESIDENTIAL ENERGY CONSUMPTION IN 2020",
# 2-2-a) title of tab 1
    tabPanel("ENERGY INSECURITY",
# 2-2-b) title of the landing page
            h4("HOUSEHOLDS THAT STRUGGLE TO PAY ENERGY BILLS OR LIVE IN POTENTIALLY DANGEROUS THERMAL CONDITIONS"),
             tmapOutput("energy_insecurity_map", width = "100%", height = "865px")
# 2-2-a') title of tab 2
    tabPanel("ENERGY USE INTENSITY (EUI)",
# 2-2-b') title of the landing page
            h4("ANNUAL HOUSEHOLD ENERGY CONSUMPTION (PER SQUARE FOOTAGE)"),
# 2-2-c') Define the size of the map
             tmapOutput("energy_consumption_map", width = "100%", height = "865px")
```

6. Render the map object within the server

- Render the map object defined in Step II-2 (i.e. map_energy_insecurity and map_energy_consumption)
- Toggle on the interactive mode
 - The map can be plotted either as a static image or an interactive, zoomable output, using the "plot" or "view" mode
- Create a list of outputs (i.e.energy_insecurity_map and energy_consumption_map) inside the server, to make these outputs visible
 - Note: The output names in both the server (i.e. output\$name) and the ui (i.e. tmapOutput("name")) should be identical to each another
 - * output $energy_insecurity_map$ in the server $\underline{should\ match}$ the tmapOutput("energy_insecurity_map") in the ui
 - * output $energy_consumption_map$ in the server $\underline{should\ match}$ the tmapOutput("energy_consumption_map") in the ui

```
##### VI. Create a server, which consists of input and output
server <- function(input, output) {
###### 1) Generate the 'energy_insecurity_map' output
   output$energy_insecurity_map <- renderTmap({
# 1-a) Turn on interactive feature of the map
        tmap_mode("view")
# 1-b) Return the output that was defined in Part I.
        map_energy_insecurity
})

###### 2) Generate the 'energy_consumption_map' output
   output$energy_consumption_map <- renderTmap({
# 2-a) Turn on interactive feature of the map
        tmap_mode("view")
# 2-b) Return the output that was defined in Part I.
        map_energy_consumption
})
</pre>
```

7. Test the application

- Click on each tab and check whether the map has been rendered successfully
- Make sure that the information displayed in the pop-up table is without error

IV. Publishing the App on the Cloud

Subscribers of shinyapps.io can host their web applications for free, without having to set up a Shiny Server from scratch. Under the free plan, users can deploy up to 5 applications, which supports a monthly usage of up to 25 active hours.

1. Click on 'Publish the application or document' on the top right-hand corner of the source editor

2. Connect RStudio to shinyapps.io

- Sign in/Sign up for a free account at shinyapps.io
- (For new subscribers only) Authorize the shinyapps.io account
 - Copy the token by clicking on 'Show secret' > 'Copy to clipboard'
 New users can skip the installation of rsconnect, as it has already been done in Step I-2

- Paste the token in the space provided. Then proceed to 'Connect Account'

• Select 1) the app.R file, 2) your shinyapps.io account, and 3) provide a title for the Shiny app. Then click 'Publish'

