PIC16F8X

TABLE 4-1 REGISTER FILE SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note3)
Bank 0	Bank 0										
00h	INDF	Uses contents of FSR to address data memory (not a physical register)									
01h	TMR0	8-bit real-time clock/counter xxxx xxxx								uuuu uuuu	
02h	PCL	Low order 8 bits of the Program Counter (PC) 0000 0000 0000 0000									
03h	STATUS (2)	IRP	RP1	RP0	TO PD Z DC C					0001 1xxx	000q quuu
04h	FSR	Indirect data memory address pointer 0 xxxx xxxx uuuu uuuu									uuuu uuuu
05h	PORTA	_	_	_	RA4/T0CKI	RA3	RA2	RA1	RA0	x xxxx	u uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	xxxx xxxx	uuuu uuuu
07h		Unimplemented location, read as '0'									
08h	EEDATA	EEPROM data register								xxxx xxxx	uuuu uuuu
09h	EEADR	EEPROM address register								xxxx xxxx	uuuu uuuu
0Ah	PCLATH	_	-	Write buffer for upper 5 bits of the PC (1)						0 0000	0 0000
0Bh	INTCON	GIE	EEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
Bank 1											
80h	INDF	Uses contents of FSR to address data memory (not a physical register)									
81h	OPTION_ REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Low ord	er 8 bits of	Program Co	ounter (PC)		0000 0000	0000 0000			
83h	STATUS (2)	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect data memory address pointer 0								xxxx xxxx	uuuu uuuu
85h	TRISA	— — PORTA data direction register							1 1111	1 1111	
86h	TRISB	PORTB data direction register								1111 1111	1111 1111
87h		Unimplemented location, read as '0'									
88h	EECON1	_	_	_	EEIF	WRERR	WREN	WR	RD	0 x000	0 q000
89h	EECON2	EEPROM control register 2 (not a physical register)									
Ah 8Ah	PCLATH	_	_	_	Write buffer for upper 5 bits of the PC (1)					0 0000	0 0000
oen 8Bh		GIE	EEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u

Legend: x = unknown, u = unchanged. - = unimplemented read as '0', <math>q = value depends on condition.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> is never transferred to PCLATH.

- 2: The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ status bits in the STATUS register are not affected by a $\overline{\text{MCLR}}$ reset.
- 3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

PIC16F8X

TABLE 9-2 PIC16FXX INSTRUCTION SET

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notes	
				MSb			LSb	Affected		
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	<u>l</u> fff	ffff	Z	24	
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		4	
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENTED FILE REGISTER OPERATIONS										
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL AND CONTROL OPERATIONS										
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk				
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into standby mode	1	0.0	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

4: Die unterstrichenen Zeichen bei CLRF und MOVWF sind keine l (L) sondern 1 (eins)

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

^{3:} If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16F8X PINOUT DESCRIPTION TABLE 3-1

Pin Name	DIP No.	SOIC No.	I/O/P Type	Buffer Type	Description	
OSC1/CLKIN	16	16	I	ST/CMOS (3)	Oscillator crystal input/external clock source input.	
OSC2/CLKOUT	15	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.	
MCLR	4	4	I/P	ST	Master clear (reset) input/programming voltage input. This pin is an active low reset to the device.	
					PORTA is a bi-directional I/O port.	
RA0	17	17	I/O	TTL		
RA1	18	18	I/O	TTL		
RA2	1	1	I/O	TTL		
RA3	2	2	I/O	TTL		
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type.	
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.	
RB0/INT	6	6	I/O	TTL/ST (1)	RB0/INT can also be selected as an external interrupt pin.	
RB1	7	7	I/O	TTL		
RB2	8	8	I/O	TTL		
RB3	9	9	I/O	TTL		
RB4	10	10	I/O	TTL	Interrupt on change pin.	
RB5	11	11	I/O	TTL	Interrupt on change pin.	
RB6	12	12	I/O	TTL/ST (2)	Interrupt on change pin. Serial programming clock.	
RB7	13	13	I/O	TTL/ST (2)	Interrupt on change pin. Serial programming data.	
Vss	5	5	Р	_	Ground reference for logic and I/O pins.	
VDD	14	14	Р	_	Positive supply for logic and I/O pins.	

Legend: I= input

O = output

I/O = Input/Output

TTL = TTL input

P = power ST = Schmitt Trigger input

— = Not used Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

FIGURE 4-1: REGISTER FILE MAP - PIC16F83/CR83

FIGURE 4-2: REGISTER FILE MAP - PIC16F84/CR84

PIC16F8X

PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), and the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram for the PIC16F8X is shown in Figure 3-1, its corresponding pin description is shown in Table 3-1.

FIGURE 3-1: PIC16F8X BLOCK DIAGRAM

