Question Number	Answer		Mark
18(a)(i)	Either 1st generation, u and d, are a pair and 2nd gen, s and c, are a pair So 6th quark is a pair with b By symmetry of the standard model	(1) (1) (1)	
	Or A quark to match each lepton (Electron and muon had associated neutrino, so predict) neutrino for tau, so 6 th quark would match that By symmetry of the standard model	(1) (1) (1)	
18(a)(ii)	Mesons and baryons	(1)	3
18(b)(i)	 Either If target is stationary there is resultant momentum, so products must have resultant momentum after collision So products must have high kinetic energy (Therefore) less/little energy available for formation of particles (so) less massive particles formed 	(1) (1) (1) (1)	
	 Or If beams collide there is zero resultant momentum, so products may have no/low momentum after collision So products do not have high kinetic energy (Therefore) all/most/more energy available for formation of particles (so) more massive particles formed 	(1) (1) (1) (1)	4
18(b)(ii)	Use of total energy = rest mass energy + kinetic energy Use of eV to J conversion Kinetic energy = 1.16×10^{-7} J Example of calculation Kinetic energy = $900 \text{ GeV} - 173 \text{ GeV} = 727 \text{ GeV}$ Kinetic energy = $727 \times 10^9 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1}$ Kinetic energy = 1.16×10^{-7} J	(1) (1) (1)	3
18(b)(iii)	Use of $\Delta E = c^2 \Delta m$ to convert from GeV/ c^2 to kg Use of $E_K = \frac{1}{2} mv^2$ $v = 8.8 \times 10^8 \mathrm{m \ s^{-1}}$, which is greater than the speed of light $\frac{\mathrm{Example \ of \ calculation}}{\mathrm{mass}} = \frac{173 \mathrm{GeV}/c^2 \times 10^9 \times 1.6 \times 10^{-19} \mathrm{JeV^{-1}}}{(3 \times 10^8)^2 (\mathrm{m \ s^{-1}})^2} = 3.08 \times 10^{-25} \mathrm{kg}$ $1.16 \times 10^{-7} \mathrm{J} = \frac{1}{2} \times 3.08 \times 10^{-25} \mathrm{kg} \times v^2$ $v = 8.8 \times 10^8 \mathrm{m \ s^{-1}}$	(1) (1) (1)	3