Modèle et objectif

Processus de Poisson et meth. actuariels

M1 MMD

Gubinelli Massimiliano

Poly 4 - v.4 20120514

1 Théorie de la ruine

1 Modèle et objectif

Dans ce chapitre on considere le modèle de de Lundberg pour la charge sinistrale totale

$$S(t) = \sum_{i=1}^{N(t)} X_i, \qquad t \geqslant 0$$

οù

- les $(X_i)_{i\geqslant 1}$ sont iid positives et de loi commune F_X et d'esperance finie $\mu = \mathbb{E}[X_1]$. On notera $F_X(x) = \mathbb{P}(X \leqslant x)$ et $\overline{F}_X(x) = \mathbb{P}(X > x) = 1 - F_X(x)$.
- $(N(t))_{t\geqslant 0}$ est indépendant des $(X_i)_{i\geqslant 1}$ et est un processus de renouvellement. On note $(\tau_i)_{i\geqslant 1}$ est temps d'inter-arrivée, $\tau_i>0$ presque sûrement, et avec $(T_i)_{i\geqslant 0}$ les temps de saut de $(N(t))_{t\geqslant 0}$. Alors $T_n=\sum_{i=1}^n \tau_i$. On note $\lambda=1/\mathbb{E}[\tau_1]$ et on suppose $\mathbb{E}[\tau_1]<+\infty$.

On suppose que la prime perçue par l'assureur est linéaire en fonction du temps, c-à-d p(t) = c t est la prime perçue sur l'intervalle de temps [0,t]. c est appelé taux instantané de prime. Typiquement, lorsque N est un $PP(\lambda)$, cette situation se produit quand la prime est construite sur le principe de l'espérance mathématique:

$$p(t) = \pi(S(t)) = \mathbb{E}[S(t)](1+\tilde{\rho})$$

où $\tilde{\rho}$ est le coefficient de chargement technique: on a alors $p(t) = \mathbb{E}[N(t)]\mathbb{E}[X_1](1+\tilde{\rho}) = \lambda t \mu(1+\tilde{\rho})$, c-à-d $c = \lambda \mu(1+\tilde{\rho})$. Le processus de risque de l'assureur est alors défini par

$$U(t) = u + ct - S(t), \qquad t \geqslant 0$$

où u est le montant au temps 0 des fonds propres de l'assureur.

Définition 1. On appelle ruine l'événement $\{\exists t \ge 0 : U(t) < 0\}$ et

- Le temps de ruine est alors $T_u = \inf\{t \ge 0 : U(t) < 0\} \in [0, \infty]$ avec la convention que $\inf \emptyset = \infty$
- La probabilité de ruine

$$\Psi(u) = \mathbb{P}(\exists t \ge 0 : U(t) < 0 | U(0) = u) = \mathbb{P}(T_u < \infty), \quad u > 0.$$

L'assureur a clairement intérêt à ce que la probabilité $\Psi(u)$ soit la plus petite possible. D'un point de vue mathématique, cette probabilité n'est pas facile à évaluer. L'objectif de ce chapitre est de la calculer, lorsque c'est possible, sinon de donner une idée de son comportement quand u est grand. Il y a cependant un cas o'ù $\Psi(u)$ se calcule facilement.

Proposition 2.

i. Pour tout u > 0 on a que $U(t)/t \rightarrow c - \lambda \mu$ presque sûrement quand $t \rightarrow \infty$.

ii. Par consequent, si $c \leq \lambda \mu$ on a que $\Psi(u) = 1$ pour tout $u \geq 0$.

Démonstration.

$$\frac{U(t)}{t} = \frac{u}{t} + c - \frac{S(t)}{t}$$

on a déjà vu que $S(t)/t \to \lambda \mu$ presque sûrement pour $t \to \infty$ puisque N est un processus de renouvellement avec temps d'interarrivée de moyenne $1/\lambda$. Donc si $c < \lambda \mu$ on a que

$$\frac{U(t)}{t} \to c - \lambda \mu < 0$$

presque sûrement quand $t \to \infty$. Donc presque sûrement il existe un temps $t^* \ge 0$ tel que $U(t^*) < 0$ ce qu'implique que $\Psi(u) = 1$. Si $c = \lambda \mu$ le résultât reste vrai mai la preuve, plus complexe, est admise.

Définition 3. On pose $\rho = c/(\lambda \mu) - 1$. On appelle condition de profit net l'hypothèse $\rho > 0$.

On travaillera toujours sous cette hypothése dans la suite, sinon le modèle n'a aucun intérêt pour l'assureur. Dans ce cas, $U(t) \to \infty$ presque sûrement d'après la prop. précédente. Remarquons que ceci n'est pas incompatible avec le fait que les probabilités $\Psi(u)$ soient strictement positives.

On appelera ρ coeff. de chargement de sécurité. Celui-ci est aussi parfois appelé coeff. de chargement technique (comme on a deja vu auparavant). Dans le cas du PP et lorsque la prime est construite sur le principe de l'esp. mathématique, il s'agit bien du coeff. de chargement technique noté $\tilde{\rho}$ toute à l'heure.

2 Petits et grands risques.

On va considerer ici deux catégories de lois pour modéliser X_1 , le coût d'un sinistre. Pour toute v.a. $X \ge 0$ on note $\bar{F}_X(x) = \mathbb{P}(X > x)$ pour tout $x \ge 0$.

Définition 4. Soit X une v.a. positive,

i. On dit que la loi de X est à queue fine s'il existe $\gamma > 0$ tel que

$$\limsup_{x \to +\infty} \frac{\mathbb{P}(X > x)}{e^{-\gamma x}} < \infty$$

(décroissance exponentielle)

ii. Si $\lim_{x\to\infty} \mathbb{P}(X>x)e^{\gamma x} = \infty$ pour tout $\gamma>0$ on dit que la loi de X est a queue épaisse (ou lourde).

Par abus de language on dira dans le deux cas que X est à queue fine ou queue lourde. L'étude de la probabilité de ruine et notamment son comportement asymptotique vont dépendre significativement du type de la loi de X (queue fine ou lourde). Historiquement, Lundberg et Cramer on fait leur étude pour les lois à queues fines, qui ont l'avantage d'être plus simples à manipuler. Cependant des études statistiques ont montré que des événements comme les catastrophes naturelles, tremblements de terres, ou les attaques terroristes, relativement rares mais d'un coût trés élevé, ne peuvent être modélisés par des lois à queues fines. La théorie du risque s'est donc développée également pour des lois à queues lourdes.

3 Distributions à queues fines: cas des petits risques

Proposition 5. Soit X une v.a. positive. Alors la loi de X est à queue fine ssi la fonction generatrice des moments de X est définie sur un voisinage de 0 ou de façon equivalente si $\exists a > 0 \colon \mathbb{E}[e^{aX}] < \infty$.

Démonstration. Si la loi de X est à queue fine alors existe $\gamma > 0$ et C > 0 tels que

$$\mathbb{P}(X > x) \leq \mathrm{Ce}^{-\gamma x}, \qquad x \geqslant 0$$

Par consequent

$$\int_0^\infty e^{ax} \mathbb{P}(X \geqslant x) \mathrm{d}x < \infty$$

pour tout $0 < a < \gamma$. Alors par Fubini

$$\int_0^\infty e^{ax} \mathbb{P}(X \geqslant x) dx = \mathbb{E}\left[\int_0^\infty e^{ax} \mathbb{I}_{X \geqslant x} dx\right] = \mathbb{E}\left[\frac{e^{aX} - 1}{a}\right] < \infty$$

ce qu'implique $\mathbb{E}[e^{aX}] < \infty$. Comme $\mathbb{E}[e^{aX}] < \infty$ pour tout a < 0 puisque $X \ge 0$ on a que la f.g.m. est définie sur $]-\infty, \gamma[$.

Réciproquement, supposons qu'il existe a > 0 : $\mathbb{E}[e^{aX}] < +\infty$ alors

$$\mathbb{P}(X \geqslant x) \leqslant \mathbb{E}[e^{aX}]e^{-ax}$$

ce qui donne directement que X est à queue fine.

Exemple 6. Quelques lois à queues fines

- 1. la loi exponentielle $\mathcal{E}(\lambda)$;
- 2. la loi Gamma $\Gamma(\alpha, \beta)$, $\alpha, \beta > 0$;
- 3. la loi de Weibull de paramètres c, γ avec $\gamma \ge 1$.

$$f(x) = c\gamma x^{\gamma - 1} e^{-cx^{\gamma}} \mathbb{I}_{x \geqslant 0}$$

Dans le cas des petits risques, pour évaluer la probabilité de ruine, on aura souvent besoin de faire une hypothése supplementaire: l'existence du coefficient d'ajustement:

Définition 7. Supposons que la f.g.m. de X_1 existe dans un voisinage de 0. S'il existe une solution strictement positive à l'equation

$$a \mapsto \mathbb{E}\big[e^{a(X_1 - c\tau_1)}\big] = 1$$

on l'appelle coefficient d'ajustement. On le notera R.

Remarque 8. La fonction $q(a) = \mathbb{E}\left[e^{a(X_1-c\tau_1)}\right]$ est convexe et continue sur son ensemble de definition. On peut montrer l'unicité de la solution strictement positive à l'equation q(a) = 1 en étudiant le sens de variation de la fonction q: en effet on a que q(0) = 1 et q'(0) < 0 et que q est convexe.

Exemple 9. Si $N \sim PP(\lambda)$ alors $\tau_1 \sim \mathcal{E}(\lambda)$ et

$$q(a) = \mathbb{E}[e^{a(X_1 - c\tau_1)}] = \mathbb{E}[e^{aX_1}]\mathbb{E}[e^{-ac\tau_1}] = \mathbb{E}[e^{aX_1}]\frac{\lambda}{\lambda + ac}$$

on cherche donc a > 0 tel que

$$\frac{\lambda + a c}{\lambda} = 1 + \frac{a c}{\lambda} = \mathbb{E}[e^{aX_1}]$$

et si la condition de profit net est réalisée $(\mu < c/\lambda)$ alors le coeff. d'ajustement existe car la fonction $f(a) = \mathbb{E}[e^{aX_1}]$ est convexe, f(0) = 1, $f'(0) = \mu$ et

$$f(a) \geqslant \mathbb{E}[e^{ab}\mathbb{I}_{X_1 \geqslant b}] \geqslant e^{ab} \mathbb{P}(X_1 \geqslant b)$$

donc si on prend b>0 tel que $\mathbb{P}(X_1 \ge b)>0$ on voit que f(a) croit de façon exponentielle vers l'infini.

4 Distributions à queues épaisses: cas des grands risques.

Dans ce cas, la f.g.m. de X_1 n'est pas définie. On va avoir besoin de conditions de régularité supplémentaires sur la loi de X_1 pour pouvoir étudier la probabilité de ruine associée:

Définition 10. Soit Y une v.a. strictement positive. Sa loi est dite sous-exponentielle si pour une suite $(Y_i)_{i \ge 1}$ iid de loi Y, avec $S_n = Y_1 + \cdots + Y_n$, $M_n = \max(Y_1, \dots, Y_n)$ on a

$$\lim_{x \to \infty} \frac{\mathbb{P}(S_n > x)}{\mathbb{P}(M_n > x)} = 1 \quad \text{pour tout } n \ge 1.$$

Les grandes valeurs de la somme de v.a. iid sous-exponentielles sont donc due à leur maximum. Autrement di, si des coûts de sinistres sont modélisés par des lois sous-exponentielles c'est un unique sinistre qui peut mettre en défaut l'assureur, contrairement au cas des petits risques où c'est l'accumulation des sinistres qui conduira à la ruine.

On verra plus loi qu'une loi sous-exponentielle est nécessairement à queue lourde.

Comme determiner si une loi est sous-exponentielle? (Les résultats ci-dessous sont admis)

Proposition 11. [Cas des puissances] Si $\mathbb{P}(X > x) \sim cx^{-\alpha}$ quand $x \to \infty$ pour un $\alpha > 0$ et une constante C > 0 alors la loi de X est sous-exponentielle.

Remarque 12. Plus généralement, cette condition peut être remplacée par la condition

$$\mathbb{P}(X > x) = \frac{L(x)}{x^{\alpha}}$$

où L est une fonction à variation lente, c-à-d telle que $\lim_{x\to\infty} L(c\,x)/L(x)\to 1$ pour tout c>0.

Théorème 13. [Pitman] Supposons que X soit une v.a. positive, avec densité f et posons

$$q(x) = \frac{f(x)}{\mathbb{P}(X > x)}, \qquad x \geqslant 0$$

Alors la loi de X est sous-exponentielle si q est décroissante dans un voisinage de l'infini et la fonction $x \mapsto e^{xq(x)} f(x)$ est integrable sur \mathbb{R}_+ .

Exemple 14.

• La loi de Pareto $(\alpha, \lambda > 0)$

$$f(x) = \alpha \lambda^{\alpha} (\lambda + x)^{\alpha + 1} \mathbb{I}_{x \ge 0}.$$

$$\mathbb{P}(X > x) = \alpha \lambda^{\alpha} \int_{x}^{\infty} (\lambda + y)^{\alpha + 1} dy = \alpha \lambda^{\alpha} (\lambda + x)^{\alpha} \sim \lambda^{\alpha} / x^{\alpha}$$

donc X est sous-exponentielle (cas puissance)

• Loi de Weibull

$$f(x) = c\gamma x^{\gamma - 1} e^{-cx^{\gamma}} \mathbb{I}_{x \geqslant 0}$$

$$\mathbb{P}(X > x) = [-e^{-cy^{\gamma}}]_{y = x}^{y = +\infty} = e^{-cx^{\gamma}}$$

(ici on n'est pas dans le cas de variation regulier, ni puissance)

$$q(x) = c \gamma x^{\gamma - 1}$$

si $\gamma < 1$ alors $e^{xq(x)}f(x) = e^{c\gamma x^{\gamma}}c\,\gamma\,x^{\gamma-1}e^{-c\gamma x^{\gamma}}$ est integrable à l'infini car $\gamma < 1$ et integrable prés de 0 car $\gamma > 0$. Par le théorème de Pitman on a alors que X est à queue lourde si $\gamma < 1$. On remarque que si $\gamma \geqslant 1$ on a déjà montré que X est à queue fine. Elle ne peut donc être sous-exponentielle vu le résultat suivant:

Proposition 15. Si F_X est sous-exponentielle, alors

$$\lim_{x \to \infty} \frac{\mathbb{P}(X > x - y)}{\mathbb{P}(X > x)} = 1 \tag{1}$$

pour tout y>0. De plus si l'equation precedente est vérifiée alors pour tout $\varepsilon>0$ on a que

$$e^{\varepsilon x}\mathbb{P}(X>x)\to\infty$$

pour $x \to \infty$. Donc une loi sous-exponentielle est à queue lourde.

Démonstration. Par simplicité on suppose que X admet une densité f. Soient X_1, X_2 iid de loi X et indépendantes:

$$\mathbb{P}(X_1 + X_2 \leqslant x) = \int_0^\infty \mathbb{P}(X_1 \leqslant x - y) f(y) dy$$
$$+ X_2 > x) \quad \mathbb{P}(X_1 \leqslant x) + \mathbb{P}(X_1 > x) - \mathbb{P}(X_1 + X_2 \leqslant x)$$

et

$$\frac{\mathbb{P}(X_1 + X_2 > x)}{\mathbb{P}(X_1 > x)} = \frac{\mathbb{P}(X_1 \leqslant x) + \mathbb{P}(X_1 > x) - \mathbb{P}(X_1 + X_2 \leqslant x)}{\mathbb{P}(X_1 > x)}$$

$$=1+\int_0^\infty \frac{\mathbb{P}(X>x-y)}{\mathbb{P}(X>x)} f(y) dy$$

Soit $0 \le t \le x$, alors

$$=1+\int_0^t \frac{\mathbb{P}(X>x-y)}{\mathbb{P}(X>x)} f(y) dy + \int_t^\infty \frac{\mathbb{P}(X>x-y)}{\mathbb{P}(X>x)} f(y) dy$$

$$\geqslant \mathbb{P}(X > x)\mathbb{P}(X < t) + \frac{\mathbb{P}(X > x - t)}{\mathbb{P}(X > x)}(\mathbb{P}(X \leqslant x) - \mathbb{P}(X \leqslant t))$$

$$\Rightarrow 1 \leqslant \frac{\mathbb{P}(X > x - t)}{\mathbb{P}(X > x)} \leqslant \left(\frac{\mathbb{P}(X_1 + X_2 \geqslant x)}{\mathbb{P}(X \geqslant x)} - 1 - F(y)\right) \frac{1}{F(x) - F(y)}$$

$$\frac{\mathbb{P}(X_1 + X_2 \geqslant x)}{\mathbb{P}(X \geqslant x)} = \frac{\mathbb{P}(X_1 + X_2 \geqslant x)}{\mathbb{P}(\max(X_1, X_2) \geqslant x)} \frac{\mathbb{P}(\max(X_1, X_2) \geqslant x)}{\mathbb{P}(X \geqslant x)}$$

or

et

$$\mathbb{P}(\max(X_1, X_2) \ge x) = 1 - \mathbb{P}(X \le x)^2 = 1 - (1 - \mathbb{P}(X > x))^2$$

donc

$$\frac{\mathbb{P}(\max(X_1, X_2) \geqslant x)}{\mathbb{P}(X \geqslant x)} \to 2$$

si $x \to \infty$ et par hypothése

$$\frac{\mathbb{P}(X_1 + X_2 \geqslant x)}{\mathbb{P}(\max(X_1, X_2) \geqslant x)} \to 1$$

donc dans l'equation (1) le numérateur et le dénominateur convergent vers 1 - F(y).

Dans la direction opposée, de (1) on déduit que $\mathbb{P}(X \geqslant \log x)$ est a variation lente et donc que $x^{\varepsilon} \mathbb{P}(X \geqslant \log x)$ est a variation réguliere d'indice $\varepsilon > 0$ et donc que $x^{\varepsilon} \mathbb{P}(X \geqslant \log x) \to \infty$ si $x \to \infty$.

5 Inégalité de Lundberg: cas des petits risques.

Dans cette partie on supposera

- 1. que la condition de profit net est réalisée
- 2. que la loi du coût d'un sinistre X_1 est à queue fine
- 3. que le coefficient d'ajustement R existe.

Remarque 16. L'hypothése 3 implique la 1 et la 2.

On a alors l'inégalité de Lundberg

Théorème 17. Pour tout $u \ge 0$

$$\Psi(u) \leqslant e^{-Ru}$$

Ceci implique que si le capital initial est trés grand la probabilité de ruine est trés petite. On ne peut pas obtenir d'aussi bon majorants lorsque le coût d'un sinistre est à queue lourde.

La preuve du théorème repose sur la constatation suivante (vraie même sans les hyp. 1,2,3 ci-dessous):

$$\{\exists t \ge 0: U(t) < 0\} = \{\exists n \ge 1: u + cT_n - S(T_n) < 0\}$$

car le processus U(t) ne saute et ne décroît qu'au temps T_n . Clairement, on a l'inclusion \supset . Dans l'autre sens, si u+c $T_n-S(T_n)\geqslant 0$ pour tout $n\geqslant 1$ alors u+c $t-S(t)\geqslant 0$ pour tout $t\geqslant 0$ par construction: si $T_n\leqslant t< T_{n+1}$ alors u+c t-S(t)=u+c $t-S(T_n)\geqslant u+c$ $t-S(T_n)\geqslant 0$. Or $S(T_n)=\sum_{i=1}^n X_i$ et $T_n=\sum_{i=1}^n \tau_i$ pour tout $n\geqslant 1$. Donc

$$\Psi(u) = \mathbb{P}\left(\exists n \geqslant 1: u + \sum_{i=1}^{n} (c \tau_i - X_i) < 0\right)$$

Cette probabilité peut être interpreté la probabilité q'une marche aléatoire puisse passer en-dessous d'un certain niveau -u.

Démonstration. Pour tout $n \ge 1$ soit $S_n = \sum_{i=1}^n (c \tau_i - X_i)$ alors

$$\Psi_n(u) = \mathbb{P}\Big(\max_{1 \le k \le n} S_k > u\Big) = \mathbb{P}(\exists k \in \{1, ..., n\} : S_k > u).$$

Clairement $\Psi_n(u) \nearrow \text{ si } n \nearrow \text{ et } \Psi_n(u) \rightarrow \Psi(u) \text{ pour } n \rightarrow \infty$. Il suffit donc de montrer que $\Psi_n(u) \leqslant e^{-Ru}$ pour tout $u \geqslant 0$ et $n \geqslant 1$. On fera ça par recurrence sur n. Si n = 1 alors

$$\Psi_1(u) = \mathbb{P}(S_1 > u) = \mathbb{P}(e^{RS_1} \geqslant e^{Ru}) \leqslant e^{-Ru} \mathbb{E}[e^{RS_1}] = e^{-Ru} \mathbb{E}\left[e^{R(c\tau_1 - X_1)}\right] = e^{-Ru}$$

par definition du coefficient d'ajustement. Supposons maintenant que $\Psi_k(u) \leq e^{-Ru}$ pour tout $1 \leq k \leq n$ et $u \geq 0$:

$$\Psi_{n+1}(u) = \mathbb{P}(S_1 > u) + \mathbb{P}\left(S_1 \leqslant u, \max_{2 \leqslant k \leqslant n+1} S_k > u\right)$$

$$\mathbb{P}(S_1 > u) \leqslant e^{-Ru} \int_u^{\infty} e^{Rx} \mathbb{P}_{S_1}(\mathrm{d}x)$$

$$\mathbb{P}\left(S_1 \leqslant u, \max_{2 \leqslant k \leqslant n+1} S_k > u\right) = \mathbb{E}\left[\mathbb{I}_{S_1 \leqslant u} \mathbb{I}_{\max_{2 \leqslant k \leqslant n+1} S_k - S_1 > u - S_1}\right]$$

$$= \int_0^u \mathbb{P}\left(\max_{1 \leqslant k \leqslant n} S_k > u - x\right) \mathbb{P}_{S_1}(\mathrm{d}x) \leqslant \int_0^u e^{-R(u - x)} \mathbb{P}_{S_1}(\mathrm{d}x)$$

Donc, finalement,

$$\Psi_{n+1}(u) \leq e^{-Ru} \int_{u}^{\infty} e^{Rx} \, \mathbb{P}_{S_1}(\mathrm{d}x) + \int_{0}^{u} e^{-R(u-x)} \mathbb{P}_{S_1}(\mathrm{d}x) = e^{-Ru} \int_{0}^{\infty} e^{Rx} \, \mathbb{P}_{S_1}(\mathrm{d}x)$$

$$= e^{-Ru}.$$

Exemple 18. Soit $N \sim PP(\lambda)$ et $X_i \sim \mathcal{E}(\gamma)$. Dans ce cas $\mu = \mathbb{E}[X_1] = 1/\gamma$. On suppose la condition de profit net réalisée, donc on prend c tel que $c \gamma / \lambda - 1 > 0$. Par ailleurs, une loi exponentielle est à queue fine. Quid de l'existence du coefficient d'ajustement? On cherche R > 0 tel que $\mathbb{E}[e^{R(X_1 - c\tau_1)}] = 1 \Leftrightarrow$

$$\frac{\gamma \lambda}{\gamma - R} \frac{1}{\lambda + cR} = 1 \Leftrightarrow R = \gamma - \lambda/c$$

ce calcul est justifié car finalement $0 < R < \gamma$ grace à la condition de profit net. On a encore

$$R = \frac{\rho}{\rho + 1} \gamma$$

avec $\rho = c \gamma / \lambda - 1$. Conclusion

$$\Psi(u) \leqslant e^{-\rho \gamma u/(1+\rho)}$$

et on y voit donc le rôle de γ et ρ . Plus γ est petit, plus la probabilité de ruine est grande. On verra que dans ce cas on peut calculer explicitement $\Psi(u)$ qui sera de la forme $Ce^{-\rho\gamma u/(1+\rho)}$ pour une constante $C \leq 1$.

6 Comportement asymptotique de la probabilité de ruine.

Dans cette partiel on travaille avec le modèle de Cramer-Lundberg. On suppose également que les variables $(X_i)_{i\geqslant 1}$ ont une densité, notée f_X , et que la condition de profit net est réalisée. Notre but est de mettre en place une equation vérifiée par la probabilité de ruine et de la résoudre à l'aide de la théorie du renouvellement.

Lemme 19. La probabilité de non-ruine $\varphi(u) = 1 - \Psi(u)$ vérifié l'equation

$$\varphi(u) = \varphi(0) + \frac{1}{(1+\rho)\mu} \int_0^u \mathbb{P}(X_1 > y) \varphi(u - y) dy$$

pour tout $u \ge 0$ avec, de plus, $\varphi(0) = \rho/(1+\rho)$.

Remarque 20. Le fait que $\varphi(0) = \rho/(1+\rho)$ vient directement de l'equation vérifiée par la φ et d'un argument de convergence monotone. En effet

$$\varphi(u) = \mathbb{P}(\forall t \ge 0 : u + c t - S(t) \ge 0)$$

par la condition de profit net on a que $(ct - S(t))/t \to c - \lambda \mu > 0$ presque sûrement. Donc la fonction ct - S(t) a un minimum presque sûrement ce qu'implique que $\varphi(u) \to 1$ si $u \to +\infty$. Alors en prenant $u \to \infty$ dans l'eq. on obtient

$$1 = \varphi(0) + \frac{1}{(1+\rho)\mu} \int_0^\infty \mathbb{P}(X_1 > y) dy = \varphi(0) + \frac{1}{(1+\rho)\mu} \mathbb{E}[X_1].$$

Démonstration. $\varphi(u) = 1 - \Psi(u) = \mathbb{P}(S_k \leq u, \forall k \geq 1)$ où $S_k = \sum_{i=1}^k (X_i - c\tau_i)$. Alors

$$\varphi(u) = \mathbb{P}(S_1 \leqslant u, S_n - S_1 \leqslant u - S_1 \,\forall n \geqslant 2)$$

$$= \mathbb{E}\bigg[\mathbb{I}_{S_1 \leqslant u} \mathbb{P}\bigg(\max_{n \geqslant 1} \tilde{S}_n \leqslant u - S_1 | S_1\bigg)\bigg]$$

où $(\tilde{S}_n = S_{n+1} - S_1)_{n \geqslant 1}$ est indépendant de S_1 . Maintenant

 $\mathbb{P}\left(\max_{n\geqslant 1}\tilde{S}_n\leqslant u-S_1|S_1=x\right)=\mathbb{P}\left(\max_{n\geqslant 1}\tilde{S}_n\leqslant u-x\right)=\varphi(u-x)$

donc

$$\varphi(u) = \mathbb{E}[\mathbb{I}_{S_1 \leqslant u} \varphi(u - S_1)] = \int_0^\infty \int_0^\infty \mathbb{I}_{x - cy \leqslant u} \varphi(u - x + cy) \mathbb{P}_{X_1}(\mathrm{d}x) \lambda e^{-\lambda y} \mathrm{d}y$$

$$= \int_0^\infty \left(\int_0^{u + cy} \varphi(u - x + cy) \mathbb{P}_{X_1}(\mathrm{d}x) \right) \lambda e^{-\lambda y} \mathrm{d}y$$

$$= \frac{\lambda}{c} e^{\lambda u/c} \int_u^\infty \left(\int_0^z \varphi(z - x) \mathbb{P}_{X_1}(\mathrm{d}x) \right) \lambda e^{-\lambda z/c} \mathrm{d}y$$

avec z = u + c y. Comme X_1 a une densité, la fonction

$$z \mapsto \int_0^z \varphi(z-x) \mathbb{P}_{X_1}(\mathrm{d}x)$$

est continue et donc φ est differentiable. En dérivant on obtient

$$\varphi'(u) = \frac{\lambda}{c}\varphi(u) - \frac{\lambda}{c}\int_0^u \varphi(u-x)\mathbb{P}_{X_1}(\mathrm{d}x)$$

et en integrant

$$\varphi(u) = \varphi(0) + \int_0^u \left(\frac{\lambda}{c}\varphi(v) - \frac{\lambda}{c}\int_0^v \varphi(v-x)\mathbb{P}_{X_1}(\mathrm{d}x)\right)\mathrm{d}v$$

$$= \varphi(0) + \frac{\lambda}{c}\int_0^u \varphi(u-v)\mathrm{d}v - \frac{\lambda}{c}\int_0^u \int_0^v \varphi(v-x)\mathbb{P}_{X_1}(\mathrm{d}x)\mathrm{d}v$$

$$= \varphi(0) + \frac{\lambda}{c}\int_0^u \varphi(u-v)\mathrm{d}v - \frac{\lambda}{c}\int_0^u \int_x^u \varphi(v-x)\mathrm{d}v\mathbb{P}_{X_1}(\mathrm{d}x)$$

mais

$$\int_0^u \int_0^v \varphi(v-x) \mathbb{P}_{X_1}(\mathrm{d}x) \mathrm{d}v = \int_0^u \int_x^u \varphi(v-x) \mathrm{d}v \mathbb{P}_{X_1}(\mathrm{d}x)$$

$$= \int_0^u \int_x^u \varphi(u-v) \mathrm{d}v \mathbb{P}_{X_1}(\mathrm{d}x) = \int_0^u \varphi(u-v) \left(\int_0^v \mathbb{P}_{X_1}(\mathrm{d}x)\right) \mathrm{d}v$$

$$= \int_0^u \varphi(u-v) \mathbb{P}(X_1 \leqslant v) \mathrm{d}v$$

et donc

$$\varphi(u) = \varphi(0) + \frac{\lambda}{c} \int_0^u \varphi(u - v) dv - \frac{\lambda}{c} \int_0^u \varphi(u - v) \mathbb{P}(X_1 \leq v) dv$$
$$= \varphi(0) + \frac{\lambda}{c} \int_0^u \varphi(u - v) \mathbb{P}(X_1 > v) dv$$

On peut connaître la probabilité de ruine si on arrive à résoudre cette équation. Dans la suite, introduisons la fonction de répartition suivante

$$F_{X_1,I}(y) = \frac{1}{\mu} \int_0^y \mathbb{P}(X_1 > z) dz, \quad y > 0.$$

Est facile de verifier qu'elle est bien la fonction de repartition d'une v.a. positive que admet la densité

$$f_{X_1,I}(y) = \frac{\mathbb{P}(X_1 > y)}{\mu} \mathbb{I}_{y>0}$$

donc l'equation du lemme precedent se ré-écrit comme:

$$\varphi(u) = \frac{\rho}{1+\rho} + \frac{1}{1+\rho} \int_0^u \varphi(u-y) dF_{X_1,I}(y)$$

Proposition 21. La probabilité de ruine est solution de l'equation integrale

$$\Psi(u) = \frac{1 - F_{X_1, I}(u)}{1 + \rho} + \int_0^u \Psi(u - y) \frac{dF_{X_1, I}(y)}{1 + \rho}$$

Cette equation (à retenir) ressemble à une equation de renouvellement, mais ça n'en est pas une, car $\mathrm{d}F_{X_1,I}(y)/(1+\rho)$ n'est même pas une mesure de probabilité.

Théorème 22. Supposons, en plus des hypothéses du debut de la Sec. 6, que X_1 à une f.g.m. définie sur $(-\infty, h_0)$ avec $h_0 > 0$ et que le coeff. d'ajustement R existe et $R < h_0$. Alors

$$e^{Ru}\Psi(u) \to \frac{\rho \mu}{R \int_0^\infty x \, e^{Rx} \bar{F}_{X_1}(x) \mathrm{d}x} \in (0, \infty)$$

quand $u \to \infty$.

On va transformer l'equation impliquant la probabilité de ruine en un equation de renouvellement. Pour cela, introduisons la mesure

$$dF_R(x) = \frac{e^{Rx}}{1+\rho} dF_{X_1,I}(x)$$

de fonction de repartition

$$F_R(x) = \frac{1}{1+\rho} \int_0^x e^{Ry} dF_{X_1,I}(y), \qquad x > 0.$$

On a
$$F_R(0)=0$$
 et
$$F_R(x)\to \frac{1}{1+\rho}\int_0^\infty e^{Ry}\mathrm{d}F_{X_1,I}(y)=1$$
 en effet:
$$1\int_0^\infty P_{X_1,I}(y)=1\int_0^\infty P_{X_1,I}(y)=1$$

$$\frac{1}{1+\rho} \int_0^\infty e^{Ry} dF_{X_1,I}(y) = \frac{1}{1+\rho} \int_0^\infty e^{Ry} \frac{\mathbb{P}(X_1 > y)}{\mu} dy$$

$$= \frac{1}{(1+\rho)\mu} \int_0^\infty \left(\int_0^x e^{Ry} dy \right) dF_{X_1}(x)$$

$$= \frac{1}{(1+\rho)\mu} \int_0^\infty \frac{e^{Rx} - 1}{R} dF_{X_1}(x) = \frac{1}{(1+\rho)\mu} \frac{\mathbb{E}[e^{RX_1} - 1]}{R}$$

$$= \frac{1}{(1+\rho)\mu} \frac{\frac{\lambda + Rc}{\lambda} - 1}{R} = \frac{c}{\lambda \mu (1+\rho)} = 1$$

car

$$1 = \mathbb{E}\left[e^{R(X_1 - c\tau_1)}\right] = \mathbb{E}\left[e^{RX_1}\right] \mathbb{E}\left[e^{-Rc\tau_1}\right] = \mathbb{E}\left[e^{RX_1}\right] \frac{\lambda}{\lambda + Rc}$$

étant $\tau_1 \sim \mathcal{E}(\lambda)$.

Proposition 23. $\forall u > 0$,

$$e^{Ru}\Psi(u) = \frac{e^{Ru}\bar{F}_{X_1,I}(u)}{1+\rho} + \int_0^u \Psi(u-y)e^{R(u-y)}dF_R(y)$$

Démonstration. Par definition de F_R .

Donc la fonction $u \mapsto e^{Ru}\Psi(u)$ est solution de l'equation de renouvellement ci dessous. Celle-ci n'est pas toujours facile à résoudre explicitement, car il est parfois difficile d'avoir explicitement la mesure de renouvellement associée. Il y a cependant des cas où c'est faisable, en particulier lorsque les $(X_i)_{i\geqslant 1}$ ont des lois exponentielles.

Exercice 1. Supposons que $X_1 \sim \mathcal{E}(\gamma)$ avec $\gamma > 0$. Alors, en utilisant l'equation ci-dessous, on montre que

$$\Psi(u) = \frac{1}{1+\rho} e^{\rho \gamma u/(\rho+1)}$$

pour tout $u \ge 0$.

Lorsque'on n'arrive pas à résoudre l'éq. de renouvellement ci-dessous, on peut néanmoins utiliser les résultats de la théorie du renouvellement sur le comportement asymptotique des solutions pour aboutir au théorème precedent.

Démonstration. La fonction

$$u \mapsto \frac{e^{Ru}\bar{F}_{X_1,I}(u)}{1+\rho}$$

est ≥0, bornée sur les intervalles bornés. Elle est integrable

$$\int_0^\infty \frac{e^{Ru}\bar{F}_{X_1,I}(u)}{1+\rho} du = \frac{\rho}{R}$$

cependant elle n'est pas, en general, décroissante. On admet que elle est directement Riemman integrable et que donc on peut lui appliquer le théorème du renouvellement-clé. Cela donne

$$e^{Ru}\Psi(u) \to \lambda_R \int_0^\infty \frac{e^{Ru}\bar{F}_{X_1,I}(u)}{1+\rho} du = \lambda_R \frac{\rho}{R(1+\rho)}$$

οù

$$\frac{1}{\lambda_R} = \int_0^\infty x \, \mathrm{d}F_R(x) = \frac{1}{1+\rho} \int_0^\infty x \, e^{Rx} \mathrm{d}F_{X_1,I}(x) = \frac{1}{(1+\rho)\mu} \int_0^\infty x \, e^{Rx} \bar{F}_{X_1}(x) \mathrm{d}x < \infty$$
 (ici on utilise l'hypothése $R < h_0$).