We claim:

 A method of inducing the virus resistance of plants which comprises treating the plants, the soil or seeds with an effective amount of a compound of the formula I

$$X_m \longrightarrow A$$

Ι

in which

X is halogen, C_1 - C_4 -alkyl or trifluoromethyl;

m is 0 or 1;

Q is $C(=CH-CH_3)-COOCH_3$, $C(=CH-OCH_3)-COOCH_3$, $C(=N-OCH_3)-COOCH_3$, or $N(-OCH_3)-COOCH_3$;

A is -O-B, $-CH_2O-B$, $-OCH_2-B$, -CH=CH-B, $-C\equiv C-B$, $-CH_2O-N=C(R^1)-B$ or $-CH_2O-N=C(R^2)=N-OR^3$, where

B is phenyl, naphthyl, 5-membered or 6-membered hetaryl or 5-membered or 6-membered heterocyclyl, containing one to three N atoms and/or one O or S atom or one or two O and/or S atoms, the ring systems being unsubstituted or substituted by one to three radicals Ra:

30

35

15

20

25

Ra is cyano, nitro, amino, aminocarbonyl,
aminothiocarbonyl, halogen, C₁-C₆-alkyl,
C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl,
C₁-C₆-alkylsulfonyl, C₁-C₆-alkylsulfinyl,
C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,
C₁-C₆-alkyloxycarbonyl, C₁-C₆-alkylthio,
C₁-C₆-alkylamino, di-C₁-C₆-alkylamino,
C₁-C₆-alkylaminocarbonyl, di-C₁-C₆-alkylamino-carbonyl, C₁-C₆-alkylaminothiocarbonyl,
di-C₁-C₆-alkylaminothiocarbonyl, C₂-C₆-alkenyl,
C₂-C₆-alkenyloxy, phenyl, phenoxy, benzyl,
benzyloxy, 5- or 6-membered heterocyclyl, 5- or

6-membered hetaryl, 5- or 6-membered hetaryloxy,

 $C (=NOR^{\alpha}) - OR^{\beta}$ or $OC (R^{\alpha})_2 - C (R^{\beta}) = NOR^{\beta}$.

40

45

25

30

35

the cyclic radicals, in turn, being unsubstituted or substituted by one to three radicals R^b:

5	RÞ	is cyano, nitro, halogen, amino, amino-carbonyl, aminothiocarbonyl, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -alkylsulfinyl, C_3-C_6 -cycloalkyl,
10		C ₁ -C ₆ -alkoxy, C ₁ -C ₆ -haloalkoxy, C ₁ -C ₆ -alkoxy-carbonyl, C ₁ -C ₆ -alkylthio, C ₁ -C ₆ -alkylamino,
		di-C ₁ -C ₆ -alkylamino, C ₁ -C ₆ -alkylamino- carbonyl, di-C ₁ -C ₆ -alkylaminocarbonyl, C ₁ -C ₆ -alkylaminothiocarbonyl, di-C ₁ -C ₆ -alkyl-
15		aminothiocarbonyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyloxy, C_3 - C_6 -cycloalkyl,
		C ₃ -C ₆ -cycloalkenyl, phenyl, phenoxy, phenylthio, benzyl, benzyloxy, 5- or 6-membered heterocyclyl, 5- or 6-membered
20		hetaryl, 5- or 6-membered hetaryloxy or $C(=NOR^{\alpha})-OR^{\beta};$
		0

 R^{α} , R^{β} are hydrogen or C_1 - C_6 -alkyl;

- R¹ is hydrogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy;
- R² is phenyl, phenylcarbonyl, phenylsulfonyl, 5- or 6-membered hetaryl, 5- or 6-membered hetarylcarbonyl or 5- or 6-membered hetarylsulfonyl, the ring systems being unsubstituted or substituted by one to three radicals R^a,

 C_1 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, C_1 - C_{10} -alkylcarbonyl, C_2 - C_{10} -alkenyl-carbonyl, C_3 - C_{10} -alkynylcarbonyl, C_1 - C_{10} -alkyl-sulfonyl, or C(= NOR^α)- OR^β , the hydrocarbon radicals of these groups being unsubstituted or substituted by one to three radicals R^c :

40

Re is cyano, nitro, amino, aminocarbonyl,
aminothiocarbonyl, halogen, C₁-C₆-alkyl,
C₁-C₆-haloalkyl, C₁-C₆-alkylsulfonyl,
C₁-C₆-alkylsulfinyl, C₁-C₆-alkoxy,
C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyl,
C₁-C₆-alkylthio, C₁-C₆-alkylamino,
di-C₁-C₆-alkylamino, C₁-C₆-alkylaminocarbonyl,
di-C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkylamino-

5

10

15

thiocarbonyl, $di-C_1-C_6-alkylaminothiocarbonyl$, $C_2-C_6-alkenyl$, $C_2-C_6-alkenyl$, $C_2-C_6-alkenyl$

C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, 5- or 6-membered heterocyclyl, 5- or 6-membered heterocyclyloxy, benzyl, benzyloxy, phenyl, phenoxy, phenylthio, 5- or 6-membered hetaryl, 5- or 6-membered hetaryloxy and hetarylthio, it being possible for the cyclic groups, in turn, to be partially or fully halogenated or to have attached to them one to three radicals R^a; and

R³ is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, the hydrocarbon radicals of these groups being unsubstituted or substituted by one to three radicals R^c ;

which compound is taken up by the plants or seeds.

- 20 2. A method as claimed in claim 1, wherein the index m is zero and the substituents of formula I have the following meanings:
- 25 A is -O-B, $-CH_2O-B$, $-CH_2O-N=C(R^1)-B$ or $CH_2-O-N=C(R^1)-C(R^2)=N-OR^3$;
 - B is phenyl, pyridyl, pyrimidinyl, pyrazolyl, triazolyl, these ring systems being substituted by one or two radicals Ra;
- 30 $R^2 \quad \text{is } C_1-C_6-\text{alkyl}, \ C_2-C_{10}-\text{alkenyl}, \ C_3-C_6-\text{cycloalkyl}, \\ \text{these groups being unsubstituted or substituted by} \\ \text{one or two radicals } R^{b'};$
- 35 $R^{b'}$ is $C_1-C_6-alkyl$, $C_3-C_6-cycloalkyl$, $C_1-C_6-alkoxy$, $C_1-C_6-haloalkoxy$, benzyl, phenyl or phenoxy;

phenyl which is unsubstituted or substituted by one or two radicals R^a ; and

 R^3 is C_1-C_6 -alkyl, C_2-C_{10} -alkenyl or C_2-C_{10} -alkynyl.

40

3. A method as claimed in claim 1 or 2, wherein an active ingredient of the formula II

is used.

4. A method as claimed in claim 1 or 2, wherein an active ingredient of the formula III

15 0 V
R
a
III
20

is used.

25

5. A method as claimed in claim 1 or 2, wherein an active ingredient selected from the group of I-5, III-4 and VII-1

30
$$O_{OCH_3}$$
 $I-5$ O_{OCH_3} $O_{OCH_$

is used.

40 6. The use of the compounds of the formula I as claimed in any of claims 1 to 5 for inducing the virus resistance of plants.