Sheet 6: The Continuum Strikes Back

Definition 1 (Upper and Lower Bound) Let $A \subseteq C$ be a set. We say that $u \in C$ is an upper bound of A if for all $a \in A$ we have $a \le u$. We say that $l \in C$ is a lower bound of A if for all $a \in A$ we have $a \ge l$.

Exercise 2 Show that C has no upper or lower bounds.

Proof. Since C has no last point, for every point $u \in C$, there exists another point $u' \in C$ such that u' > u (A2.3). Similarly, since C has no first point, for every $l \in C$, there exists another point $l' \in C$ such that l' < l (A2.3). Thus, C can have no upper or lower bounds.

Definition 3 (Bounded Sets) A set $A \subseteq C$ is bounded above if there exists an upper bound of A. A set $A \subseteq C$ is bounded below if there exists a lower bound of A. A set $A \subseteq C$ is bounded if it is bounded above and bounded below.

Definition 4 (Least Upper Bound) Let $A \subseteq C$ be a set. We say that $u \in C$ is the least upper bound of A, or $u = \sup A$, if u is an upper bound of A and for all u' that are upper bounds of A we have $u \le u'$.

Definition 5 (Greatest Lower Bound) Let $A \subseteq C$ be a set. We say that $l \in C$ is the greatest lower bound of A, or $l = \inf A$, if l is a lower bound of A and for all l' that are lower bounds of A we have $l' \leq l$.

Exercise 6 Show that if sup A exists then it is unique.

Proof. Let $A \subseteq C$ be a set and let u and u' be least upper bounds of A. Then for all $a \in C$ such that a is an upper bound of A, we have $u \le a$ and $u' \le a$. But u and u' and upper bounds of A so we have $u \le u'$ and $u' \le u$. Thus we have u' = u and u is unique.

Theorem 7 For all a < b we have $\sup(a; b) = b$ and $\inf(a; b) = a$.

Proof. Let $a, b \in C$ such that a < b. We see b is an upper bound of (a; b) because b > p for all $p \in (a; b)$. Suppose to the contrary that there exists $u \in C$ such that u is an upper bound of (a; b) and u < b. Then for all $p \in (a; b)$ we have a < p and $p \le u < b$ and so we see that $u \in (a; b)$. But there exists a $u' \in C$ such that u < u' < b because regions are nonempty (5.8). Since a < u' < b, we see $u' \in (a; b)$. Thus, since u < u', this is a contradiction and so there are no upper bounds of (a; b) which are less than b. Therefore $b = \sup(a; b)$. A similar proof holds to show that $a = \inf(a; b)$.

Theorem 8 Let A be a point set that has a least upper bound $s = \sup A$. Show that if $s \notin A$ then s is a limit point of A.

Proof. Let $A \subseteq C$ such that $s = \sup A$ and let $s \notin A$. Consider the case where A has a last point x. Then $x \ge a$ for all $a \in A$ so x is an upper bound of A. Likewise, since x is the largest element of A, any other upper bound of A must be greater than x. Then x = s and so A has no last point. Consider a region (a; b) such that $s \in (a; b)$. Since $s = \sup A$ and A has no last point there exists $c \in A$ such that a < c < s. But then $c \in A$ and $c \in (a; b)$. Since every region containing s contains a point in A, s must be a limit point of A.

Theorem 9 Let $A \subseteq C$ be a set. Show that the set

 $N(A) = \{x \in C \mid x \text{ is not an upper bound of } A\}$

is open.

Proof. Let $p \in N(A)$ for some $A \subseteq C$. Then p is not an upper bound of A and so there exists $b \in A$ such that p < b. But C has no first point so there exists $a \in C$ such that a < p and since a < b, a is not an upper bound of A (A2.3). But then $p \in (a; b)$ and $(a; b) \subseteq N(A)$ and so N(A) must be open by the open condition (3.17).

Theorem 10 Let $A \subseteq C$ be a set. Show that the set

 $U(A) = \{x \in C \mid x \text{ is an upper bound of } A \text{ but not a least upper bound}\}$

is open.

Proof. U(A) can have no first point. To show this we assume the first point of U(A) is x and consider two possibilities. First, if $\sup A$ exists, then the region $(\sup A; x)$ is empty because there are no non-least upper bounds of A which are less than the first point x. But this is a contradiction because regions are nonempty (5.8). Similarly, if $\sup A$ does not exist, then x is an upper bound of A which is less than or equal to all upper bounds of A so $x = \sup A$. But this is a contradiction as well since $\sup A \notin U(A)$.

Let $p \in U(A)$ for some $A \subseteq C$. Then p is an upper bound of A but $p \neq \sup A$. C has no last point so there exists $b \in C$ such that p < b and so b is an upper bound of A since it is greater than every point in A (2.3). Since U(A) has no first point, there exists another upper bound a of A such that a < p. But then $p \in (a; b)$ and $(a; b) \subseteq U(A)$ so U(A) must be open by the open condition (3.17).

Theorem 11 (Nonempty Bounded Sets Have Least Upper Bounds) Let A be a nonempty point set that is bounded above. Show that sup A exists.

Proof. Let A be a nonempty set which is bounded above such that $\sup A$ doesn't exist. The sets N(A) and U(A) are two open sets that share no common points by definition. That is $N(A) \cap U(A) = \emptyset$. But also, since there is no least upper bound of A, every point in C is either in N(A) or U(A) and so $N(A) \cup U(A) = C$. But A is bounded above so U(A) is not empty. Also A is nonempty and C has no first point so there exists some point which is less than a point in A so N(A) is nonempty (A2.3). Then this is a contradiction because $N(A) \neq \emptyset$ and $U(A) \neq \emptyset$ (5.17). So $\sup A$ must exist.

Theorem 12 (Nonempty Bounded Sets Have Greatest Upper Bounds) Let A be a nonempty point set that is bounded below. Show that inf A exists.

Proof. We can make analogous proofs for Theorems 9 and 10 about lower bounds of a set $A \subseteq C$. Using the two sets defined in these proofs for lower bounds we can make another analogous proof for Theorem 11 about inf A.

Exercise 13 Do the above two theorems hold in $(\mathbb{Q}, <)$?

No.

Proof. Let $(\mathbb{Q}, <)$ be a model of the continuum and consider the set $S = \{x \in C \mid x^2 < 2\}$. For $x \in S$ we have $x^2 < 2$ and so $x < \sqrt{2}$ or $x > -\sqrt{2}$. Thus $\sqrt{2}$ is an upper bound of S. Suppose that p is an upper bound of S such that $p < \sqrt{2}$. We know that $1^2 < 2$ and so $1 \in S$ which means $1 . But then <math>1 < p^2 < 2$. Consider the set $T = \{1 + \frac{2n+1}{n^2} \mid n \in \mathbb{N} \setminus \{1,2\}\}$. This set is based on the reciprocals of the natural numbers and so it reverses their ordering. That is $1 + \frac{1}{n^2} > 1 + \frac{1}{(n+1)^2}$ for $n \in \mathbb{N}$. Using the Archimedean Property we know that there exists an element of T such that this element is less than p^2 (4.20). But using the Well Ordering Principle we know that there exists a greatest such element $1 + \frac{2q+1}{q^2}$. But then $p^2 < 1 + \frac{2(q-1)+1}{(q-1)^2}$. We see that $1 + \frac{2(q-1)+1}{(q-1)^2} = \frac{q^2}{(q-1)^2}$ and so $\sqrt{\frac{q^2}{(q-1)^2}} = \pm \frac{q}{q-1}$. But then we have $p < \frac{q}{q-1} < \sqrt{2}$ and so there exists an element of S which is greater than an upper bound of S. This is a contradiction and so $\sqrt{2} = \sup S$. But $\sqrt{2} \notin C$ and so $(\mathbb{Q}, <)$ is not a model of C.