

Mathématiques

Classe: BAC

Chapitre: Dérivabilité

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Opérations sur les fonctions dérivables

Soient f et g deux fonctions dérivables sur un intervalle I.

Retenons

Soient f et g deux fonctions dérivables sur un intervalle I.

Fonction	Fonction dérivée		
f + g	f' + g'		
$f \times g$	f'g+fg'		
f^n	$nf'f^{n-1}$		
1	<u>-g'</u>		
g	$\overline{g^2}$		
\underline{f}	$\underline{f'g-fg'}$		
g	g^2		
\sqrt{f}	$rac{f'}{2\sqrt{f}}$		
$\sqrt[n]{f}$	$\frac{1}{n} \frac{f' \cdot \sqrt[n]{f}}{f} = \frac{1}{n} \frac{f'}{\sqrt[n]{f^{n-1}}}$		
g(x) = f(ax + b)	g'(x) = a.f'(ax+b)		

R						
- 14	ДΙ	΄Δ	n	റ	n٠	
- 1 \	U	٠.		v	ш,	

Fonction	Fonction dérivée		
λf	$\lambda f'$		
$g \circ f$	$f' \times g' \circ f$		
$f(\sin x)$	$(\cos x).f'(\sin x)$		
$f(\cos x)$	$(-\sin x).f'(\cos x)$		
$f\left(\frac{1}{x}\right)$	$-\frac{1}{x^2} \cdot f'\left(\frac{1}{x}\right)$		
$\ln x$	$\frac{1}{r}$		
$\ln u(x) $	$\frac{u'(x)}{u(x)}$ $f'(x) = e^{x}$		
$f(x) = e^x$ $f(x) = e^{u(x)}$	$f'(x) = e^x$		
	$f'(x) = u'(x)e^{u(x)}$		
$g(x) = \int_{a}^{u(x)} f(t) dt$	g'(x) = u'(x)f(u(x))		

Dérivée de la fonction composée

Théorème

Soit f une fonction définie sur un intervalle I contenant a et g une fonction définie sur un intervalle J contenant f(a).

- Si f est dérivable en a et g est dérivable en f(a) alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = f'(a) \times g'(f(a))$
- Si $\begin{cases} f & \text{est d\'erivable sur } I \\ g & \text{est d\'erivable sur } J \end{cases}$ Alors $g \circ f$ est d'erivable sur I et $\forall x \in I \quad (g \circ f)'(x) = f'(x) \times g'(f(x))$

Théorème

Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable en $a \in I$. Alors f est continue en a.

Dérivées successives

Soit f une fonction dérivable sur intervalle I . La fonction f^\prime est la dérivée première de f .

Si f' est dérivable sur I, sa fonction dérivée notée f'' ou $f^{(2)}$ est la dérivée seconde de f.

Si $f^{(n-1)}$, $(n \ge 2)$ est dérivable sur I, sa fonction dérivée est la fonction dérivée n-ième de f, ou dérivée d'ordre n de f on la note $f^{(n)}$.

Dérivée et extremum local

Définition

Soit f une fonction définie sur un intervalle I et a un réel de I:

- On dit que f admet un maximum local en a, s'il existe un intervalle ouvert J contenant a et inclus dans I tel que : pour tout $x \in J$ on a : $f(x) \le f(a)$.
- On dit que f admet un minimum local en a, s'il existe un intervalle ouvert J contenant a et inclus dans I tel que : pour tout $x \in J$ on a : $f(x) \ge f(a)$.
- ullet On dit que f admet un extremum local en a. Si f admet un maximum ou un minimum local en a.

Théorème

Soit f une fonction dérivable sur un intervalle I contenant a:

- 1. Si f admet un extremum local en a alors f'(a) = 0
- 2. Si f' s'annule en changeant de signe en a alors f admet un extremum local en a.

Accroissements finis

Théorème de Rôlle

Soit f une fonction définie sur [a,b], a < b. Si

- *f* est continue sur [*a*, *b*]
- *f* est dérivable sur] *a*, *b*[
- f(a) = f(b)

Alors il existe au moins un réel $c \in]a, b[$ tel que f'(c) = 0.

Interprétation graphique

Si les conditions du théorème de Rôlle sont justifiées pour une fonction f sur un intervalle [a,b] alors la courbe de f admet au moins une tangente horizontale.

Théorème (Égalité des accroissements finis)

Soit f une fonction définie sur [a,b], a < b. Si

- *f* est continue sur [*a*, *b*]
- f est dérivable sur]a,b[

Alors il existe au moins un réel $c \in]a,b[$ tel que $f'(c)=\frac{f(b)-f(a)}{b-a}.$

Interprétation graphique

Si les conditions du (T.A.F) sont justifiées pour une fonction f sur un intervalle [a,b] alors la courbe de f admet au moins une tangente parallèle à la droite (AB) tel que A(a,f(a)) et B(b,f(b)).

Théorème (Inégalité des accroissements finis)

Soit f une fonction définie sur [a,b], a < b. Si

- *f* est continue sur [*a*, *b*]
- f est dérivable sur]a,b[
- il existe deux réels m et M tels que $\forall x \in]a,b[, m \le f'(x) \le M$

Alors: $m(b-a) \le f(b) - f(a) \le M(b-a)$.

corollaire

Soit f une fonction définie sur un intervalle I . Si

- f est dérivable sur I
- il existe un réel k > 0 tel que $\forall x \in I$, $|f'(x)| \le k$
- ullet a et b sont deux réels de I

Alors: $|f(b) - f(a)| \le k|b-a|$.

Accroissements finis et suites récurrentes

On considère une suite (u_n) vérifiant la relation de récurrence $u_{n+1}=f(u_n)$ où f est une fonction dérivable sur un intervalle I. Si

- il existe un réel k > 0 tel que $\forall x \in I$, $|f'(x)| \le k$
- il existe un réel α de I tel que $f(\alpha) = \alpha$
- $\forall n, u_n \in I$

Alors: $\forall n$, $|u_{n+1} - \alpha| \le k |u_n - \alpha|$

Théorème (Signe de la dérivée et sens de variation)

Soit f une fonction dérivable sur un intervalle I.

- Si la fonction dérivée f' est nulle, alors la fonction est constante sur I.
- Si la fonction dérivée est strictement positive (sauf en quelques points isolés de I où elle s'annule), alors la fonction f est strictement croissante sur I.
- Si la fonction dérivée est strictement négative (sauf en quelques points isolés de *I* où elle s'annule), alors la fonction *f* est strictement décroissante sur *I*.

Alors: $m(b-a) \le f(b) - f(a) \le M(b-a)$.

Théorème

Soit f une fonction continue sur [a,b] et dérivable sur]a,b[.

- Si $\forall x \in]a, b[$, f'(x) = 0 alors la fonction f est constante sur [a, b].
- Si $\forall x \in]a, b[$, $f'(x) \ge 0$ alors la fonction f est croissante sur [a, b].
- Si $\forall x \in]a, b[$, f'(x) > 0 alors la fonction f est strictement croissante sur [a, b].
- Si $\forall x \in]a,b[, f'(x) \le 0$ alors la fonction f est décroissante sur [a,b].
- Si $\forall x \in]a, b[$, f'(x) < 0 alors la fonction f est strictement décroissante sur [a, b].

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000