UNIVERSIDAD MAYOR DE SAN ANDRÉS

FACULTAD DE CIENCIAS PURAS Y NATURALES

CARRERA DE INFORMÁTICA

INTERPOLACIÓN

ALUMNOS: APAZA HINOJOSA VANEZA

AYLLON QUEZADA MARIO HERNAN

DOCENTE: LIC. BRIGIDA CARVAJAL BLANCO

MATERIA: ANÁLISIS NUMÉRICO

LA PAZ – BOLIVIA

II/ 2024

21. The boiling temperature of water T_B at various altitudes h is given in the following table. Determine a linear equation in the form $T_B = mh + b$ that best fits the data. Use the equation for calculating the boiling temperature at 5,000 m. Make a plot of the points and the equation.

h (ft)	-1,000	0	3,000	8,000	15,000	22,000	28,000
T(°F)	213.9	212	206.2	196.2	184.4	172.6	163.1

1. Datos originales:

	X	у
0	-304,8	213,9
1	0	212
2	914,4	206,2
3	2438,4	196,2
4	4572	184,4
5	6705,6	172,6
6	8534,4	163,1

2. Fórmula de interpolación de Newton:

La fórmula de interpolación de Newton por diferencias divididas para un polinomio de grado n es:

$$P(x) = f(x0) + f[x0, x1](x - x0) + f[x0, x1, x2](x - x0)(x - x1)$$

... + f[x0, x1, ..., xn](x - x0)(x - x1)... + (x - xn - 1)

Donde:

- f[x0, x1, ..., xn] son las diferencias divididas de los puntos de la tabla.
- Los productos (x x0)(x x1)...(x xn 1) son los factores multiplicativos.

3. Diferencias divididas:

El cálculo de las diferencias divididas se muestra en la tabla que has proporcionado. A continuación, los valores de las primeras columnas:

	Х	у	1er nivel	2do nivel	3er nivel	4to nivel	5to nivel	6to nivel
0	-304,8	213,9	-0,0062336	-8,9699E-08	2,93095E-25	1,25E-13	-1,7972E-16	2,59276E-20
1	0	212	-0,00634296	-8,9699E-08	1,524E-10	-9,4109E-14	4,9464E-17	
2	914,4	206,2	-0,00656168	2,8191E-07	-7,7076E-11	2,65041E-14		
3	2438,4	196,2	-0,00553056	-2,8457E-21	1,98657E-11			
4	4572	184,4	-0,00553056	8,4771E-08				
5	6705,6	172,6	-0,00519466					
6	8534,4	163,1						

Cálculo de diferencias divididas:

• **1er nivel**: Se calcula restando valores de y divididos por la diferencia de xxx correspondiente. Por ejemplo, para el primer valor del primer nivel:

$$f[x_0, x_1] = \frac{213.9 - 212}{-304.8 - 0} = -0.0062363$$

• **2do nivel**: Se utiliza la diferencia entre dos valores consecutivos del 1er nivel y se divide por la diferencia de las xxx correspondientes:

$$f[x_0, x_1, x_2] = \frac{-0.00634296 - (-0.0062363)}{914.4 - (-304.8)} = -8.9699E - 08$$

• **3er nivel**: Se calcula usando los valores del segundo nivel y así sucesivamente. Cada nivel refina más el resultado y es útil para estimar los términos del polinomio de interpolación.

4. Interpolación para x = 5000:

El polinomio de interpolación de Newton, construido a partir de las diferencias divididas, se utiliza para calcular el valor de yyy (temperatura) para una altura de x=5000 x=5000 x=5000 pies.

Siguiendo la fórmula de Newton:

$$P(5000) = f(x_0) + f[x_0, x_1](5000 - x_0) + f[x_0, x_1, x_2](5000 - x_0)(5000 - x_1) + \dots$$

Utilizando los valores de las diferencias divididas de la tabla y evaluando el polinomio para x=5000 ,obtuviste una temperatura de:

$$P(5000) \approx 186.54^{\circ} F$$

Este resultado indica que la temperatura estimada para una altura de 5000 pies es **186.54°F**.

Como conclusión vemos que la interpolación por diferencias divididas de Newton ha sido utilizada correctamente para estimar la temperatura a una altura de 5000 pies. El proceso ha involucrado varios niveles de diferencias para garantizar la precisión del cálculo. El valor final obtenido para la temperatura a 5000 pies es 186.54°F, lo cual encaja dentro del comportamiento general de los datos, donde la temperatura disminuye a medida que la altura aumenta.