Correction DST Maths TU 27/03/2020

Exercice 1:

1.
$$(x-4)(x+4)-3(x-4)=0$$

 $(x-4)[(x+4)-3]=0$

$$(x-h)(x+1)=0$$

$$x = 4$$
 on $x = -1 = 7$ $S = \{-1, 4\}$

2.
$$e^{2x} - 3 = 0$$

 $e^{2x} = 3 \implies x = \frac{1}{2} \ln 3 \implies S = \frac{1}{2} \ln 3 \frac{1}{2}$

3.
$$e^{6x} - e^{3x} = 0$$

$$e^{3} \times (e^{3} \times -1) = 0 = 0 = 0$$
 = $e^{3} \times = 1 = 0 \times = 0$ = $e^{3} \times = 1 = 0$ = $e^{3} \times = 1 = 0$

$$X_1 = \frac{5-1}{4} = 1$$
 $X_2 = \frac{5+1}{4} = \frac{3}{2}$

$$e^x = \frac{3}{2} = 7$$

$$x_2 = \ln \frac{3}{2} \implies$$

Ensemble de définitions

3x2>0 et x+1>0

=> D=]-1;0[v]0;+00[

$$e^{x} = 1 = 7 \times \frac{1}{4} = 0$$
 $e^{x} = \frac{3}{2} = 7 \times \frac{1}{2} = 0$ $S = \{0; ln \} \}$

$$ln(3x^2) = ln(\frac{x+1}{2})$$

$$3x^2 = \frac{x+1}{2} = \frac{x+1}{2}$$

$$x_1 = \frac{1-5}{12} = -\frac{1}{3}$$
 $x_2 = \frac{1+5}{12} = \frac{1}{2}$

$$S = \{-\frac{1}{3}; \frac{1}{2}\}$$

Exercice 2:

1.
$$\frac{1}{x} > \frac{x}{x+2}$$

Ensemble de définition:

$$\frac{1}{x} - \frac{x}{x+2} > 0$$

$$\frac{x+2-x^2}{x(x+2)} > 0$$

Étude de signe:

$$x_1 = \frac{-1-3}{-2} = 2$$
 $x_2 = \frac{-1+3}{-2} = -1$

Tableau de signe:

×	-00 -2	- 2		0	2	+00
$-x^2+x+2$	-	- 4) †	1 +	0	-
×	_	-	_	+		+
~12	-	+	+	+		+
Pr Pr	-	+ 0) -	+	ф	

2.
$$\ln\left(\frac{x+2}{x-2}\right) \geq 0$$

Ensemble de dé hinstian?

2+2	1	
2-2	-	

×	_ 10	-2	2	+00
x+2	-	¢ i		+
2-2	-	-		+
Pr	+	0 -		+

D=]-x;-z[U]2;+x[

$$\frac{x+2-x+2}{x-2} > 0 \Rightarrow \frac{4}{x-2} > 0$$

Tableau de sipre:

×	- 00	-2	2	+00
4	+	V///	11/1	+
×-2	-			+
Pr	-	1//	///	+

Exercise 3 (
$$e^{x}+1$$
)($e^{x}-3$)

	lu 3		+00
+		+	
_	•	+	
	0	+	
	+	ln 3 + - 0	+ + + - + + - +

Exercice h

$$f(x) = ax + b \implies \begin{cases} f(z) = 2a + b = 3 \\ f(4) = ba + b = -7 \end{cases} \Rightarrow \begin{cases} 2a + b = 3 \\ ba + b = -7 \end{cases} \Rightarrow \begin{cases} b = 3 - 2a \\ 4a + 3 - 2a = -7 \end{cases}$$

$$= \begin{cases} b = 3 - 2a \\ 2a = -10 \end{cases} \Rightarrow \begin{cases} b = 3 - 2a \\ a = -5 \end{cases} \Rightarrow \begin{cases} b = 13 \\ a = -5 \end{cases} \Rightarrow \begin{cases} f(x) = -5x + 13 \end{cases}$$

$$\partial u : x_A = 2 \quad y_A = 3 \quad ; \quad x_B = 4 \quad y_B = -7$$

$$= 2 \quad = \frac{y_B - y_A}{x_B - x_A} = \frac{-7 - 3}{4 - 2} = \frac{-10}{2} = -5 \quad \Rightarrow \quad f(x) = -5x + b$$

$$f(z) = 3 \quad \Rightarrow \quad -5 \times 2 + b = 3 \quad \Rightarrow \quad b = 13 \quad \Rightarrow \quad f(x) = -5x + 13$$

Exercice 5

Coefficient directeur =
$$\frac{3}{1,5} = 2$$

Ordonnée à l'anigure = 3

Exercises 6

la maison d'édition réalise danc un bénéhice si elle vend plus de 10000 livres.