Differential Cryptanalysis

- We deal with input and output differences
- \square Suppose we know inputs X and X
 - o For X the input to S-box is $X \oplus K$
 - For X the input to S-box is $X \oplus K$
 - o Key K is unknown
 - o Input difference: $(X \oplus K) \oplus (X \oplus K) = X \oplus X$
- □ Input difference is independent of key K
- lacktriangle Output difference: $Y \oplus Y$ is (almost) input difference to next round
- Goal is to "chain" differences thru rounds

S-box Differential Analysis

	column			
row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

- Input diff 000 not interesting
- □ Input diff 010 always gives output diff 01
- More biased, the better (for Trudy)

	Sbox	$\mathbf{x}(\mathbf{X}) \oplus$	Sbox((\mathbf{X})
	00	01	10	1
000	8	0	0	(
001	O	0	4	4
010	О	8	0	(
011	0	0	4	۷
100	0	0	4	۷
101	4	4	0	(
110	0	0	4	۷
111	4	4	0	(

Linear Cryptanalysis

- Like differential cryptanalysis, we target the nonlinear part of the cipher
- But instead of differences, we approximate the nonlinearity with linear equations
- □ For DES-like cipher we need to approximate S-boxes by linear functions
- □ How well can we do this?

S-box Linear Analysis

- □ Input $x_0x_1x_2$ where x_0 is row and x_1x_2 is column
- \bigcirc Output y_0y_1
- Count of 4 is unbiased
- Count of 0 or 8is best for Trudy

	column			
row	00	01	10	11
0	10	01	11	00
1	00	10	01	11

		output		
		y_0	\mathbf{y}_1	$y_0 \oplus y_1$
	0	4	4	4
i	\mathbf{x}_0	4	4	4
n	\mathbf{x}_1	4	6	2
p	\mathbf{x}_2	4	4	4
u	$\mathbf{x}_0 \oplus \mathbf{x}_1$	4	2	2
t	$x_0 \oplus x_2$	0	4	4
	$x_1 \oplus x_2$	4	6	6
\mathbf{x}_0	$\bigoplus x_1 \bigoplus x_2$	4	6	2

Tiny DES (TDES)

- A much simplified version of DES
 - o 16 bit block
 - o 16 bit key
 - o 4 rounds
 - o 2 S-boxes, each maps 6 bits to 4 bits
 - o 12 bit subkey each round
- \square Plaintext = (L_0, R_0)
- \Box Ciphertext = (L_4, R_4)

Differential Cryptanalysis of TDES

TDES

□ TDES SboxRight

- \square For X and X suppose $X \oplus X = 001000$
- □ Then $SboxRight(X) \oplus SboxRight(X) = 0010$ with probability 3/4

Differential Crypt. of TDES

Select P and P so that

$$P \oplus P = 0000\ 0000\ 0000\ 0010 = 0x0002$$

- □ Note that P and P differ in exactly 1 bit
- Let's carefully analyze what happens as these plaintexts are encrypted with TDES

TDES

□ Difference of (0000 0010) is expanded by TDES expand perm to diff. (000000 001000)

□ If $X \oplus X = 00000010$ then $F(X, K) \oplus F(X, K) = 00000010$ with prob. $\frac{3}{4}$

chain thru multiple rounds

Arr Select P and P with $P \oplus P = 0x0002$

$$(L_0, R_0) = P$$

$$L_1 = R_0$$

$$R_1 = L_0 \oplus F(R_0 K_1)$$

$$L_2 = R_1$$

$$R_2 = L_1 \oplus F(R_1, K_2)$$

$$L_3 = R_2$$

$$R_3 = L_2 \oplus F(R_2, K_3)$$

$$L_4 = R_3$$

$$R_4 = L_3 \oplus F(R_3, K_4)$$

$$\mathbf{C} = (\mathbf{L}_4, \mathbf{R}_4)$$

$$(L_0, R_0) = P$$

$$L_1 = R_0$$

$$R_1 = L_0 \oplus F(R_0, K_1)$$

$$L_2 = R_1$$

$$R_2 = L_1 \oplus F(R_1, K_2)$$

$$L_3 = R_2$$
 $L_3 = R_2$
 $R_3 = L_2 \oplus F(R_2, K_3)$ $R_3 = L_2 \oplus F(R_2, K_3)$

$$L_4 = R_3$$
 $L_4 = R_3$ $R_4 = L_3 \oplus F(R_3, K_4)$ $R_4 = L_3 \oplus F(R_3, K_4)$

$$\mathbf{C} = (\mathbf{L}_4, \mathbf{R}_4)$$

$$P \oplus P = 0x0002$$

$$L_1 = R_0$$
 With probability 3/4

$$R_1 = L_0 \oplus F(R_0, K_1)$$

$$R_1 = L_0 \oplus F(R_0, K_1)$$

$$(L_1, R_1) \oplus (L_1, R_1) = 0x0202$$

$$L_2 = R_1$$
 With probability $(3/4)^2$
 $R_2 = L_1 \oplus F(R_1, K_2)$ $R_2 = L_1 \oplus F(R_1, K_2)$ $(L_2, R_2) \oplus (L_2, R_2) = 0x0200$

With probability
$$(3/4)^2$$

 $(L_3,R_3) \oplus (L_3,R_3) = 0 \times 0002$

With probability
$$(3/4)^3$$
 $(L_4,R_4) \oplus (L_4,R_4) = 0x0202$

$$\mathbb{C} \oplus \mathbb{C} = 0$$
x0202

- \square Choose P and P with $P \oplus P = 0x0002$
- \Box If $C \oplus C = 0x0202$ then

$$R_4 = L_3 \oplus F(R_3, K_4) \qquad R_4 = L_3 \oplus F(R_3, K_4)$$

$$R_4 = L_3 \oplus F(L_4, K_4) \qquad R_4 = L_3 \oplus F(L_4, K_4)$$
and $(L_3, R_3) \oplus (L_3, R_3) = 0 \times 0002$

- □ Then $L_3 = L_3$ and $C=(L_4, R_4)$ and $C=(L_4, R_4)$ are both known
- □ Since $L_3 = R_4 \oplus F(L_4, K_4)$ and $L_3 = R_4 \oplus F(L_4, K_4)$, for correct choice of subkey K_4 we have

$$R_4 \oplus F(L_4, K_4) = R_4 \oplus F(L_4, K_4)$$

- □ Choose P and P with $P \oplus P = 0x0002$
- $\Box \text{ If } \mathbb{C} \oplus \mathbb{C} = (\mathbb{L}_4, \mathbb{R}_4) \oplus (\mathbb{L}_4, \mathbb{R}_4) = 0 \times 0202$
- \Box Then for the correct subkey K_4

$$R_4 \oplus F(L_4, K_4) = R_4 \oplus F(L_4, K_4)$$

which we rewrite as

$$R_4 \oplus R_4 = F(L_4, K_4) \oplus F(L_4, K_4)$$

where the only unknown is K_4

□ Let $L_4 = l_0 l_1 l_2 l_3 l_4 l_5 l_6 l_7$. Then we have

$$0010 = SBoxRight(l_0l_2l_6l_5l_0l_3 \oplus k_{13}k_{14}k_{15}k_9k_{10}k_{11})$$

 \oplus SBoxRight($l_0l_2l_6l_5l_0l_3 \oplus k_{13}k_{14}k_{15}k_9k_{10}k_{11}$)

Algorithm to find right 6 bits of subkey K_4

```
\begin{aligned} &\text{count}[i] = 0, \text{ for } i = 0,1,\dots,63\\ &\text{for } i = 1 \text{ to iterations}\\ & &\textit{Choose P and P with } P \oplus P = 0x0002\\ &\textit{Obtain corresponding C and C}\\ &\text{ if } C \oplus C = 0x0202\\ &\text{ for } K = 0 \text{ to } 63\\ &\text{ if } 0010 == (SBoxRight(\ l_0l_2l_6l_5l_0l_3 \oplus K) \oplus SBoxRight(\ l_0l_2l_6l_5l_0l_3 \oplus K))\\ &++\text{count}[K]\\ &\text{ end if }\\ &\text{ next } K\\ &\text{ end if }\end{aligned}
```

All K with max count[K] are possible (partial) K_4

- Experimental results
- □ Choose 100 pairs P and P with $P \oplus P = 0x0002$
- □ Found 47 of these give $C \oplus C = 0x0202$
- □ Tabulated counts for these 47
 - Max count of 47 for each
 K ∈ {000001,001001,110000,111000}
 - o No other count exceeded 39
- \square Implies that K_4 is one of 4 values, that is,

```
k_{13}k_{14}k_{15}k_9k_{10}k_{11} \! \in \{000001,\!001001,\!110000,\!111000\}
```

□ Actual key is K=1010 1001 1000 0111

Linear Cryptanalysis of TDES

Linear Approx. of Left S-Box

□ TDES left S-box or SboxLeft

- □ Notation: $y_0y_1y_2y_3 = SboxLeft(x_0x_1x_2x_3x_4x_5)$
- □ For this S-box, $y_1=x_2$ and $y_2=x_3$ both with probability 3/4
- Can we "chain" this thru multiple rounds?

TDES Linear Relations

- Recall that the expansion perm is $expand(r_0r_1r_2r_3r_4r_5r_6r_7) = r_4r_7r_2r_1r_5r_7r_0r_2r_6r_5r_0r_3$
- □ And $y_0y_1y_2y_3 = SboxLeft(x_0x_1x_2x_3x_4x_5)$ with $y_1=x_2$ and $y_2=x_3$ each with probability 3/4
- lacktriangleq Also, expand(R_{i-1}) \oplus K_i is input to Sboxes at round i
- □ Then $y_1 = r_2 \oplus k_m$ and $y_2 = r_1 \oplus k_n$ both with prob 3/4
- \square New right half is $y_0y_1y_2y_3...$ plus old left half
- □ Bottom line: New right half bits: $r_1 \leftarrow r_2 \oplus k_m \oplus l_1$ and $r_2 \leftarrow r_1 \oplus k_n \oplus l_2$ both with probability 3/4

Recall TDES Subkeys

- \square **Key**: $K = k_0k_1k_2k_3k_4k_5k_6k_7k_8k_9k_{10}k_{11}k_{12}k_{13}k_{14}k_{15}$
- □ Subkey $K_1 = k_2 k_4 k_5 k_6 k_7 k_1 k_{10} k_{11} k_{12} k_{14} k_{15} k_8$
- \square Subkey $K_2 = k_4 k_6 k_7 k_0 k_1 k_3 k_{11} k_{12} k_{13} k_{15} k_8 k_9$
- \square Subkey $K_3 = k_6 k_0 k_1 k_2 k_3 k_5 k_{12} k_{13} k_{14} k_8 k_9 k_{10}$
- \square Subkey $K_4 = k_0 k_2 k_3 k_4 k_5 k_7 k_{13} k_{14} k_{15} k_9 k_{10} k_{11}$

TDES Linear Cryptanalysis

□ Known $P=p_0p_1p_2...p_{15}$ and $C=c_0c_1c_2...c_{15}$

Part 1 — Cryptography

20

TDES Linear Cryptanalysis

- Experimental results
- □ Use 100 known plaintexts, get ciphertexts.
 - Let $P=p_0p_1p_2...p_{15}$ and let $C=c_0c_1c_2...c_{15}$

Resulting counts

- o $c_1 \oplus p_{10} = 0$ occurs 38 times
- o $c_1 \oplus p_{10} = 1$ occurs 62 times
- o $c_2 \oplus p_9 = 0$ occurs 62 times
- o $c_2 \oplus p_9 = 1$ occurs 38 times

Conclusions

- Since $k_0 \oplus k_1 = c_1 \oplus p_{10}$ we have $k_0 \oplus k_1 = 1$
- Since $k_7 \oplus k_2 = c_2 \oplus p_9$ we have $k_7 \oplus k_2 = 0$
- □ Actual key is K = 1010 0011 0101 0110

To Build a Better Block Cipher...

- How can cryptographers make linear and differential attacks more difficult?
 - 1. More rounds success probabilities diminish with each round
 - Better confusion (S-boxes) reduce success probability on each round
 - 3. Better diffusion (permutations) more difficult to chain thru multiple rounds

Knapsack Lattice Reduction Attack

Lattice?

- Many problems can be solved by finding a "short" vector in a lattice
- \Box Let b_1,b_2,\ldots,b_n be vectors in \Re^m
- □ All $\alpha_1b_1+\alpha_2b_2+...+\alpha_nb_n$, each α_i is an integer is a discrete set of points

What is a Lattice?

- □ Suppose $b_1 = [1,3]^T$ and $b_2 = [-2,1]^T$
- □ Then any point in the plane can be written as $\alpha_1b_1+\alpha_2b_2$ for some $\alpha_1,\alpha_2\in\Re$
 - o Since b_1 and b_2 are linearly independent
- \square We say the plane \Re^2 is spanned by (b_1,b_2)
- $\ \square$ If α_1,α_2 are restricted to integers, the resulting span is a lattice
- Then a lattice is a discrete set of points

Lattice Example

- □ Suppose $b_1 = [1,3]^T$ and $b_2 = [-2,1]^T$
- □ The lattice spanned by (b₁,b₂) is pictured to the right

Exact Cover

- Exact cover given a set S and a collection of subsets of S, find a collection of these subsets with each element of S is in exactly one subset
- Exact cover is can be solved by finding a "short" vector in a lattice

Exact Cover Example

- \square Set $S = \{0,1,2,3,4,5,6\}$
- □ Spse m = 7 elements and n = 13 subsets

Subset: 0 1 2 3 4 5 6 7 8 9 10 11 12 Elements: 013 015 024 025 036 124 126 135 146 1 256 345 346

- Find a collection of these subsets with each element of S in exactly one subset
- □ Could try all 213 possibilities
- □ If problem is too big, try heuristic search
- Many different heuristic search techniques

Exact Cover Solution

Exact cover in matrix form

- Set $S = \{0,1,2,3,4,5,6\}$
- Spse m = 7 elements and n = 13 subsets

Subset:

Elements: 013 015 024 025 036 124 126 135 146 256 345 346

subsets

mxn

Solve: AU = Bwhere $u_i \in \{0,1\}$

Solution:

 $U = [0001000001001]^{T}$

n x 1

Example

 \square We can restate AU = B as MV = W where

$$\begin{bmatrix} I_{n\times n} & 0_{n\times 1} \\ A_{m\times n} & -B_{m\times 1} \end{bmatrix} \begin{bmatrix} U_{n\times 1} \\ 1_{1\times 1} \end{bmatrix} = \begin{bmatrix} U_{n\times 1} \\ 0_{m\times 1} \end{bmatrix} \iff AU = B$$
 Matrix M Vector V Vector W

- The desired solution is U
 - o Columns of M are linearly independent
- \square Let $c_0, c_1, c_2, \dots, c_n$ be the columns of M
- \square Let $v_0, v_1, v_2, \dots, v_n$ be the elements of V
- □ Then $W = v_0c_0 + v_1c_1 + ... + v_nc_n$

Example

- Let L be the lattice spanned by c_0,c_1,c_2,\ldots,c_n (c_i are the columns of M)
- □ Recall MV = W
 - Where $W = [U,0]^T$ and we want to find U
 - o But if we find W, we've also solved it!
- □ Note W is in lattice L since all v_i are integers and $W = v_0c_0 + v_1c_1 + ... + v_nc_n$

Facts

 \square W = [$u_0,u_1,...,u_{n-1},0,0,...,0$] \in L, each $u_i \in \{0,1\}$

□ Then the length of W is

$$||W|| = sqrt(u_0^2 + u_1^2 + ... + u_{n-1}^2) \le sqrt(n)$$

- □ So W is a very short vector in L where
 - o First n entries of Wall 0 or 1
 - o Last m elements of W are all 0
- □ Can we use these facts to find U?

Lattice Reduction

- If we can find a short vector in L, with first n entries all 0 or 1 and last m entries all 0...
 - o Then we might have found solution U
- LLL lattice reduction algorithm will efficiently find short vectors in a lattice
- □ About 30 lines of pseudo-code specify LLL
- □ No guarantee LLL will find desired vector
- But probability of success is often good

Knapsack Example

- What does lattice reduction have to do with the knapsack cryptosystem?
- Suppose we have
 - Superincreasing knapsack

$$S = [2,3,7,14,30,57,120,251]$$

- Suppose m = 41, $n = 491 \Rightarrow m^{-1} = 12 \mod n$
- Public knapsack: $t_i = 41 \cdot s_i \mod 491$

$$T = [82,123,287,83,248,373,10,471]$$

□ Public key: T Private key: (S,m⁻¹,n)

Knapsack Example

Public key: T Private key: (S,m^{-1},n) S = [2,3,7,14,30,57,120,251] T = [82,123,287,83,248,373,10,471] $n = 491, m^{-1} = 12$

- □ Example: 10010110 is encrypted as 82+83+373+10 = 548
- □ Then receiver computes

$$548 \cdot 12 = 193 \mod 491$$

and uses S to solve for 10010110

Knapsack LLL Attack

Attacker knows public key

```
T = [82,123,287,83,248,373,10,471]
```

- □ Attacker knows ciphertext: 548
- \square Attacker wants to find $u_i \in \{0,1\}$ s.t.

```
82u_0 + 123u_1 + 287u_2 + 83u_3 + 248u_4 + 373u_5 + 10u_6 + 471u_7 = 548
```

□ This can be written as a matrix equation (dot product): $T \cdot U = 548$

Knapsack LLL Attack

- Attacker knows: T = [82,123,287,83,248,373,10,471]
- Wants to solve: $T \cdot U = 548$ where each $u_i \in \{0,1\}$
 - Same form as AU = B on previous slides!
 - \circ We can rewrite problem as MV = W where

$$M = \begin{bmatrix} I_{8\times8} & 0_{8\times1} \\ T_{1\times8} & -C_{1\times1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 82 & 123 & 287 & 83 & 248 & 373 & 10 & 471 & -548 \end{bmatrix}$$

LLL gives us short vectors in the lattice spanned by the columns of M

LLL Result

- □ LLL finds short vectors in lattice of M
- □ Matrix M' is result of applying LLL to M

$$M' = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & -1 & 1 & 2 \\ 1 & -1 & -1 & 1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -2 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ \hline 1 & -1 & 1 & 0 & 0 & 1 & -1 & 2 & 0 \end{bmatrix}$$

- Column marked with "*" has the right form
- □ Possible solution: $U = [1,0,0,1,0,1,1,0]^T$
- Easy to verify this is actually the plaintext

Side Channel Attack on RSA

Side Channel Attacks

- Sometimes possible to recover key without directly attacking the crypto algorithm
- A side channel consists of "incidental info"
- Side channels can arise due to
 - o The way that a computation is performed
 - o Media used, power consumed, emanations, etc.
- Induced faults can also reveal information
- Side channel may reveal a crypto key

Types of Side Channels

- Emanations security (EMSEC)
 - Electromagnetic field (EMF) from computer screen can allow screen image to be reconstructed at a distance
- Differential power analysis (DPA)
 - o Smartcard power usage depends on the computation
- Differential fault analysis (DFA)
- Timing analysis
 - Different computations take different time
 - o RSA keys recovered over a network (openSSL)!

The Scenario

- □ Alice's public key: (N,e)
- □ Alice's private key: d
- □ Trudy wants to find d
- Trudy can send any message M to Alice and Alice will respond with M^d mod N
 - o That is, Alice signs M and sends result to Trudy
- Trudy can precisely time Alice's computation of M^d mod N

Timing Attack on RSA

- □ Consider Md mod N
- We want to find private key d, where $d = d_0d_1...d_n$
- Repeated squaring used for M^d mod N
- Suppose, for efficiency

```
mod(x,N)

if x \ge N

x = x \% N

end if

return x
```

Repeated Squaring

```
x = M

for j = 1 to n

x = mod(x^2,N)

if d_j == 1 then

x = mod(x*M,N)

end if

next j
```

Timing Attack

- \Box If $d_j = 0$ then
 - o $x = mod(x^2,N)$
- □ If $d_j = 1$ then
 - o $x = mod(x^2,N)$
 - o x = mod(x*M,N)
- Computation time differs in each case
- Can attacker take advantage of this?

Repeated Squaring

```
x = M

for j = 1 to n

x = mod(x^2,N)

if d_j == 1 then

x = mod(x*M,N)

end if

next j

return x
```

mod(x,N)

```
if x \ge N

x = x \% N

end if

return x
```

Timing Attack

- \Box Choose M with $M^3 < N$
- \Box Choose M with $M^2 < N < M^3$
- \Box Let x = M and x = M
- \bigcirc Consider j = 1
 - o $x = mod(x^2,N)$ does no "%"
 - o x = mod(x*M,N) does no "%"
 - o $x = mod(x^2, N)$ does no "%"
 - o $\mathbf{x} = \text{mod}(\mathbf{x} * \mathbf{M}, \mathbf{N})$ does "%" only if $\mathbf{d}_1 = 1$
- ☐ If $d_1 = 1$ then j = 1 step takes longer for M than for M
- But more than one round...

Repeated Squaring

```
x = M
for j = 1 to n
x = mod(x^2,N)
if d_j == 1 then
x = mod(x*M,N)
end if
next j
return x
```

mod(x,N)

```
if x \ge N

x = x \% N

end if

return x
```

Timing Attack on RSA

- □ An example of a chosen plaintext attack
- \square Choose M_0, M_1, \dots, M_{m-1} with
 - o M_i^3 < N for i=0,1,...,m-1
- \square Let t_i be time to compute $M_i^d \mod N$

o
$$t = (t_0 + t_1 + ... + t_{m-1}) / m$$

- \square Choose M_0, M_1, \dots, M_{m-1} with
 - o $M_i^2 < N < M_i^3$ for i=0,1,...,m-1
- \square Let t_i be time to compute $M_i^d \mod N$

o
$$t = (t_0 + t_1 + ... + t_{m-1}) / m$$

- \Box If t > t then $d_1 = 1$ otherwise $d_1 = 0$
- \Box Once d_1 is known, find d_2 then d_3 then ...

Side Channel Attacks

- □ If crypto is secure Trudy looks for shortcut
- What is good crypto?
 - More than mathematical analysis of algorithms
 - Many other issues (such as side channels) must be considered
- □ Lesson: Attacker's don't play by the rules!

- Terminology, History
- Symmetric key crypto
 - Stream ciphers
 - A5/1 and RC4
 - Block ciphers
 - DES, AES, TEA
 - Modes of operation
 - Integrity

- Public key crypto
 - Knapsack
 - o RSA
 - o Diffie-Hellman
 - o ECC
 - o PKI, etc.

- Hashing
 - o Birthday problem
 - Tiger hash
 - o HMAC
- Secret sharing
- Random numbers

- Information hiding
 - o Steganography, Watermarking
- Cryptanalysis
 - Linear and differential cryptanalysis
 - o RSA timing attack
 - Knapsack attack