# Задача А. Компоненты связности (1 балл)

Имя входного файла: components.in Имя выходного файла: components.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан неориентированный граф. Требуется выделить компоненты связности в нем.

#### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $1 \le n \le 100\,000,\ 0 \le m \le 200\,000$ ).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами  $b_i$ ,  $e_i$  — номерами концов ребра  $(1 \le b_i, e_i \le n)$ . Допускаются петли и параллельные ребра.

### Формат выходного файла

В первой строке выходного файла выведите целое число k — количество компонент связности графа. Во второй строке выведите n натуральных чисел  $a_1, a_1, \ldots, a_n$ , не превосходящих k, где  $a_i$  — номер компоненты связности, которой принадлежит i-я вершина.

| components.in | components.out |
|---------------|----------------|
| 3 1           | 2              |
| 1 2           | 1 1 2          |
| 4 2           | 2              |
| 1 3           | 2 1 2 1        |
| 2 4           |                |

## Задача В. Мосты (1 балл)

Имя входного файла: bridges.in Имя выходного файла: bridges.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан неориентированный граф. Требуется найти все мосты в нем.

#### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $n \le 20\,000$ ,  $m \le 200\,000$ ).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами  $b_i$ ,  $e_i$  — номерами концов ребра  $(1 \le b_i, e_i \le n)$ .

#### Формат выходного файла

Первая строка выходного файла должна содержать одно натуральное число b — количество мостов в заданном графе. На следующей строке выведите b целых чисел — номера ребер, которые являются мостами, в возрастающем порядке. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

| bridges.in | bridges.out |
|------------|-------------|
| 6 7        | 1           |
| 1 2        | 3           |
| 2 3        |             |
| 3 4        |             |
| 1 3        |             |
| 4 5        |             |
| 4 6        |             |
| 5 6        |             |

## Задача С. Точки сочленения (1 балл)

Имя входного файла: points.in
Имя выходного файла: points.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан неориентированный граф. Требуется найти все точки сочленения в нем.

#### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $n \le 20\,000$ ,  $m \le 200\,000$ ).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами  $b_i$ ,  $e_i$  — номерами концов ребра  $(1 \le b_i, e_i \le n)$ .

#### Формат выходного файла

Первая строка выходного файла должна содержать одно натуральное число b — количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел — номера вершин, которые являются точками сочленения, в возрастающем порядке.

| points.in | points.out |
|-----------|------------|
| 9 12      | 3          |
| 1 2 1 3   | 1          |
| 2 3 1 4   | 2          |
| 4 5 1 5   | 3          |
| 2 6 6 7   |            |
| 2 7 3 8   |            |
| 8 9 3 9   |            |

## Задача D. Двудольный граф (1 балл)

Имя входного файла: bipartite.in Имя выходного файла: bipartite.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Двудольным называется неориентированный граф  $\langle V, E \rangle$ , вершины которого можно разбить на два множества L и R, так что  $L \cap R = \emptyset$ ,  $L \cup R = V$  и для любого ребра  $(u, v) \in E$  либо  $u \in L, v \in R$ , либо  $v \in L, u \in R$ .

Дан неориентированный граф. Требуется проверить, является ли он двудольным.

#### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $1 \le n \le 100\,000, \, 0 \le m \le 200\,000$ ).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами  $b_i$ ,  $e_i$  — номерами концов ребра  $(1 \le b_i, e_i \le n)$ . Допускаются петли и параллельные ребра.

### Формат выходного файла

В единственной строке выходного файла выведите «YES», если граф является двудольным и «NO» в противном случае.

| bipartite.in | bipartite.out |
|--------------|---------------|
| 4 4          | YES           |
| 1 2          |               |
| 1 3          |               |
| 2 4          |               |
| 4 2          |               |
| 3 3          | NO            |
| 1 2          |               |
| 2 3          |               |
| 3 1          |               |

## Задача Е. Компоненты реберной двусвязности (2 балла)

Имя входного файла: bicone.in Имя выходного файла: bicone.out Ограничение по памяти: 2 секунды 64 мегабайта

Компонентой реберной двусвязности графа  $\langle V,E \rangle$  называется подмножество вершин  $S \subset V$ , такое что для любых различных u и v из этого множества существует не менее двух реберно не пересекающихся пути из u в v.

Дан неориентированный граф. Требуется выделить компоненты реберной двусвязности в нем.

#### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $n \le 20\,000$ ,  $m \le 200\,000$ ).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами  $b_i$ ,  $e_i$  — номерами концов ребра  $(1 \le b_i, e_i \le n)$ .

## Формат выходного файла

В первой строке выходного файла выведите целое число k — количество компонент реберной двусвязности графа. Во второй строке выведите n натуральных чисел  $a_1, a_1, \ldots, a_n$ , не превосходящих k, где  $a_i$  — номер компоненты реберной двусвязности, которой принадлежит i-я вершина.

| bicone.in | bicone.out  |
|-----------|-------------|
| 6 7       | 2           |
| 1 2       | 1 1 1 2 2 2 |
| 2 3       |             |
| 3 1       |             |
| 1 4       |             |
| 4 5       |             |
| 4 6       |             |
| 5 6       |             |

# Задача F. Компоненты вершинной двусвязности (2 балла)

Имя входного файла: biconv.in
Имя выходного файла: biconv.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Компонентой вершинной двусвязности графа  $\langle V, E \rangle$  называется подмножество ребер  $S \subset E$ , такое что любые два ребра из него лежат на вершинно простом цикле.

Дан неориентированный граф. Требуется выделить компоненты вершинной двусвязности в нем.

#### Формат входного файла

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ( $n \le 20\,000$ ,  $m \le 200\,000$ ).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами  $b_i$ ,  $e_i$  — номерами концов ребра  $(1 \le b_i, e_i \le n)$ .

#### Формат выходного файла

В первой строке выходного файла выведите целое число k — количество компонент вершинной двусвязности графа. Во второй строке выведите m натуральных чисел  $a_1, a_1, \ldots, a_m$ , не превосходящих k, где  $a_i$  — номер компоненты вершинной двусвязности, которой принадлежит i-е ребро. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

| biconv.in | biconv.out  |
|-----------|-------------|
| 5 6       | 2           |
| 1 2       | 1 1 1 2 2 2 |
| 2 3       |             |
| 3 1       |             |
| 1 4       |             |
| 4 5       |             |
| 5 1       |             |