7.1.1 在同一个磁芯上绕三组线圈,绕向如图 7.1 所示,他们的电感量各位 L_1 , L_2 , L_3 , 之间的互感各为 M_{12} , M_{23} , M_{31} 。(1)对线圈 1,2,3 分别标上同名端标记;(2)设线圈分别通过电流 \dot{I} 1, \dot{I} 2, \dot{I} 3,其方向如图所示,求三组线圈的端电压 \dot{U} 1, \dot{U} 2, \dot{U} 3;电源角频率为 ω (rad/s)

图 7.1 习题 7.1.1 的图

图 7.2 习题 7.1.2 的图

解: (1) 同名端标记如下图所示

(2)
$$\dot{U}_1 = j\omega L_1 \dot{I}_1 - j\omega M_{12} \dot{I}_2 - j\omega M_{13} \dot{I}_3$$

$$\dot{U}_2 = j\omega L_2 \dot{I}_2 - j\omega M_{12} \dot{I}_1 + j\omega M_{23} \dot{I}_3$$

$$\dot{U}_3 = -j\omega L_3 \dot{I}_3 + j\omega M_{13} \dot{I}_1 - j\omega M_{23} \dot{I}_2$$

7.1.2.图 7.2 所示电路中, L_1 =1H, L_2 =0.25H,M=0.5H,求 u_2 .(1) i_1 =5sin2tA, i_2 =0;(2) i_1 =0, i_2 =3sin2tA;(3) i_1 =5sin2tA, i_2 =3sin2tA。

图 7.2 习题 7.1.2 的图

图 7.3 习题 7.2.1 的图

解: $\dot{U}_2 = j\omega L_2 \dot{I}_2 - j\omega M \dot{I}_1$, $\omega L_2 = 0.5$, $\omega M = 1$.

(1) $u_2 = -5\cos 2t$

(2)
$$u_2 = \frac{3}{2}\cos 2t$$

(3)
$$u_2 = -\frac{7}{2}\cos 2t$$

7.2.1 图 7.3 所示电路中,R1=5 Ω ,R2=8 Ω , ω L1=15 Ω , ω L2=25 Ω , ω M=6 Ω ,电源电压 \dot{U}_s = 50 \angle 0°V。求开关断开和闭合时的电流 \dot{I} 。

解: 开关断开时 $\dot{U}_S = \dot{I}(R_1 + R_2) + j\omega(L_1 + L_2 + 2M)\dot{I}$,则 $\dot{I} = 1.52\angle -75.96$ 。A 开关闭合时解耦电路如下图所示

所以 $\dot{I} = 7.8 \angle -51.48$ A

7.2.2 图 7.4 所示电路中,已知 $R_1=X_1=X_2=5\,\Omega$, $X_3=4\,\Omega$, $X_M=2\,\Omega$,在 $I_3=5A$ 时,若 使 X_2 上电压等于 0。问必须与 X_2 串联接入多大的阻抗 Z? 并求电路的输入电压和 各支路电流。

图 7.4 习题 7.2.2 的图

图 7.5 习题 7.2.3 的图

解:
$$\dot{U}_Z = 0 = jX_2\dot{I}_2 - jX_M\dot{I}_3$$

$$\dot{I}_{7}Z = jX_{3}\dot{I}_{3} - jX_{M}\dot{I}_{2} = \dot{U}_{3}$$

$$\Leftrightarrow \dot{I}_3 = 5 \angle 0^{\circ} \text{ A}$$

7.2.3 图 7.5 电路中, \dot{I}_s 为角频率 ω 的正弦电流源,求 \dot{I}_2

解:解耦电路为:

$$\dot{U}_{1} = j\omega(L_{1} + M)\dot{I}_{s} + j\omega Mg\dot{U}_{1}$$
 (1)

$$\overset{\bullet}{I_2} = \overset{\bullet}{I_s} + g \overset{\bullet}{U}_1 \tag{2}$$

联合式(1)(2)可得:

$$\vec{I}_2 = \frac{1 + j\omega L_1 g}{1 - j\omega M g} \vec{I}_s$$

7.2.4 作出图 7.6 电路的去耦等效电路。如果 R_1 , L_1 , R_2 , L_2 , R_3 , L_3 是已知的,以及 $M_{12}=M_{13}=M_{23}=M$ 。

图 7.6 习题 7.2.4 的图

图 7.7 习题 7.2.5 的图

解:由题可知其耦合电路如下图所示,

其去耦等效电路如下图所示,

7.2.5 试列写出图 7.7 所示电路的相量形式的回路电流方程,电源角频率为 ω (rad/s)。回路方向均为顺时针。

解: 去耦电路为:

$$\begin{cases} R_{1}i_{1} + j\omega(L_{1} - M_{23} - M_{12})(i_{1} - i_{3}) + \left[j\omega(L_{2} + M_{23} - M_{12}) + R_{2}\right](i_{1} - i_{2}) = 0\\ U_{s} = -j\frac{1}{\omega C}i_{2} + \left[j\omega(L_{2} + M_{23} - M_{12}) + R_{2}\right](i_{2} - i_{1}) + j\omega(L_{3} + M_{23} + M_{12})(i_{2} - i_{3})\\ i_{3} = I_{s} \end{cases}$$

7.3.1. 在图 7.8 电路中,已知 $\dot{I}_s = 2\angle 45^\circ \text{A}$,R1=R2=10 Ω , ω L1= ω L2=40 Ω 。 $1/\omega$ C1= $1/\omega$ C2= ω M=20 Ω 。试求:(1)作无互感等效电路;(2) \dot{I}_{C1} =?, \dot{I}_{L2} =?;(3)电流源 \dot{I}_s 供出的复功率。

图 7.8 习题 7.3.1 的图

解:

M 和 C_2 发生了串联谐振,其阻抗为 0,(L_1 -M)和 C_1 发生了并联谐振,阻抗为无穷大。 电流源供出的复功率为 $S^*=\stackrel{\bullet}{U}I_S=I_SR_1\stackrel{*}{I_S}=40$

$$\vec{I}_{C1} = \frac{\vec{I}_{S} R_{1}}{-j \frac{1}{\omega C_{1}}} = -\frac{\sqrt{2}}{2} + j \frac{\sqrt{2}}{2}$$

$$I_{L2}^{\bullet} = 0$$