Prototype of a 3D polyedral modeler

Florent GENIET

LASTIG April 17, 2024

Context: Creation of a semi-automatic reconstruction pipeline

Polyedral modeler overview

Topological data structure

Topological data stucture

We use the **half-edge data structure**.

half-edge pointers	pointed data type
origin	vertex
opposite	half-edge
next	half-edge
face	face

Topological data stucture

vertex pointers	pointed data type
half-edge	half-edge

Topological data stucture

face pointers	pointed data type
Exterior half-edge	half-edge
Interior half-edges	half-edge[]

Topological validity

We want to ensure that our objects stay closed, manifold and have no borders. This means that they define one unique volume.

Not manifold: the surface defines 2 volumes

The surface has a border : it doesn't define a volume

Operators

Operators

■ Face Shift

■ Point Merge/Point Split

■ Edge Flip

Shift operator

There is no need for topological modification! We just modify the plane equation of the face: translation along the normal of the face.

Shift operator

We want to avoid faces self-intersections!

For the triangle (A, B, C), we define the orientation as follow:

$$Ori_{ABC} = \vec{n} \cdot (\vec{AB} \wedge \vec{AC})$$

But we can also compute that value using the plan's equations of the faces:

$$Ori_{P,P_1,P_2,P_3} = \begin{vmatrix} \vec{n_P} & PP_2P_3 \\ 0 & 1 \end{vmatrix} \frac{P_1PP_2}{1} \frac{P_1PP_3}{1}$$

And we find that $Ori_{P,P_1,P_2,P_3} = a\delta + b$

Flip operator

Flip operator

Example of bad flip:

Split operator

Split operator

Example of bad split:

Dual structure

Dual structure

Definition of the dual structure of a geometrical form:

Dual structure

The topology is thus well defined, but the geometry is not! We need a **geometrical embedding** for the dual structure.

Some embeddings exemples:

$$\blacksquare \ (\frac{a}{d}, \frac{b}{d}, \frac{c}{d})$$

$$\blacksquare$$
 (a(d+1), b(d+1), c(d+1))

$$\blacksquare (a_{\overline{a^2+b^2+c^2}}^{d^2}, b_{\overline{a^2+b^2+c^2}}^{d^2}, c_{\overline{a^2+b^2+c^2}}^{d^2})$$

$$\blacksquare$$
 $(x, y, z) = center(face)$

Thank you for your attention !!