Databricks ml/ow Object Relationships

Andre Mesarovic

Sr. Resident Solutions Architect

2 January 2022

Overview

- Describe the relationships between Databricks MLflow objects:
 - Runs
 - Experiments
 - Notebook experiments
 - Workspace experiments
 - Models
 - Registered models and model versions
 - MLflow models
 - Model artifacts
 - Notebooks

MLflow Object Relationships

Diagram Legend

- Diagram uses the <u>UML</u> modeling language.
 - *: indicates a many relationship
 - 1: indicates a required one relationship.
 - 0..1: indicates an optional one relationship.
- This is a logical diagram. Not all nuances are captured for simplification.
- The diagram represents a notebook experiment.
- A workspace experiment is not represented in the diagram.

Model Terminology

- Model is an overloaded term with three meanings:
 - Native model artifact this is at the lowest level and is simply the native flavor's serialized format.
 For sklearn it's a pickle file, for Keras it's a directory with TensorFlow's native <u>SaveModel</u> format files.
 - MLflow model a wrapper around the native model artifact with metadata in the MLmodel file and environment information in conda.yaml and requirements.txt files.
 - Registered model a bucket for model versions. A model version contains one MLflow model that is cached in the model repository. A version has the following links (expressed as tags):
 - run_id points to the run that generated the version's model.
 - source points to the path of MLflow model in the run that corresponds to the version's model.
 - workspace_uri currently missing. Needed if using shared model registry. ML-19472.

Model Relationships

Registered models

- A registered model can have several model versions.
- The production and staging stage have one "latest" version.
- A version has one MLflow model which is linked to one run.
- Registered model versions are cached in the model registry.
- This is a clone of the run's MLflow model that the version points to.
- If source run is in a different workspace we have a lineage reachability problem.
 See ML-19472.

Experiments

- An experiment has one or more runs.
- Two types of experiments:
 - Notebook experiment
 - Relationship of experiment to notebook is one-to-one.
 - Workspace path of the experiment is the same as its notebook.
 - Workspace experiment
 - Relationship of experiment to notebook is one-to-many.
 - Explicitly specify the experiment path with <u>set experiment</u> method.
 - Different notebooks can create runs in the experiment.

Runs

- A run belongs to only one experiment.
- A run is linked to one notebook revision. MLflow notebook tags:
 - mlflow.databricks.notebookRevisionID
 - mlflow.databricks.notebookID
 - mlflow.databricks.notebookPath
- Optionally a run can be linked to a git reference.
 - See discussion on Notebook below for details.
- A run can have one or more MLflow models (flavors) such as Sklearn and ONNX.
- Every run has a Pyfunc flavor.

Notebooks

- A notebook has many revisions.
- Optionally, a notebook revision can be checked into git with Databricks Repos.
- Need to capture git reference analogous to the MLflow open source tags:
 - mlflow.source.git.commit
 - mlflow.source.git.repoURL
 - mlflow.gitRepoURL
- See <u>ML-19473</u>
- Two sources of truth for a notebook snapshot that can be confusing:
 - Databricks notebook revision
 - Git version

Thank You!

Happy MLflow journey!