IIC2685 Robótica Móvil I – 2022

Capítulo 2

Conceptos Básicos de Percepción Robótica

Profesor: Gabriel Sepúlveda V. grsepulveda@ing.puc.cl

Agenda

- Conceptos básicos
- Tipos de sensores y funcionamiento básico

Percepción

Volviendo a nuestra definición de ROBOT:

Una máquina AUTÓNOMA capaz de PERCIBIR, RAZONAR y ACTUAR en forma ADAPTIVA

Percepción

- Un robot autónomo necesita la habilidad de percibir su entorno
 - Localización 6 DoF en mundo 3D
 - Navegación, evasión de obstáculos
 - Interacción con objetos
 - Análisis de elementos de interés en el entorno
- Se usan sensores de muchos tipos
 - Encoders
 - Profundidad (cámara, laser, sonar)
 - Imagen (cámara)
 - GPS

Sensores

- Localización y Pose
 - Outdoor: GPS, DGPS
 - > Indoor: Encoders, sensores de profundidad, cámaras

DGPS

Encoder

Sonar

Kinect

Cámara Stereo

- Red de aproximadamente 30 satélites
- Altitud 20.000 [km]
- Para determinar la posición en tierra, se utiliza método de trilateración

- Red de aproximadamente 30 satélites
- Altitud 20.000 [km]
- Para determinar la posición en tierra, se utiliza método de trilateración
- "Solo" necesitamos conocer la distancia hacia cada satélite!

$$x^2 + y^2 = r_A^2$$
$$x^2 + y^2 = r_B^2$$
$$x^2 + y^2 = r_C^2$$

Cada satélite transmite información sobre su posición y reloj interno

$$r = (t_i - s_i - b) \cdot c$$

- Cada satélite transmite información sobre su posición y reloj interno
- La distancia "r" a cada satélite es deducida por el tiempo que demora en llegar la onda electromagnética al dispositivo en tierra

$$r = (t_i - s_i - b) \cdot c$$

- Cada satélite transmite información sobre su posición y reloj interno
- La distancia "r" a cada satélite es deducida por el tiempo que demora en llegar la onda electromagnética al dispositivo en tierra
- El reloj del satélite y del receptor deben encontrarse en sincronía

$$r = (t_i - s_i - b) \cdot c$$

- Cada satélite transmite información sobre su posición y reloj interno
- La distancia "r" a cada satélite es deducida por el tiempo que demora en llegar la onda electromagnética al dispositivo en tierra
- El reloj del satélite y del receptor deben encontrarse en sincronía
- A pesar de esta sincronía, existe error remanente: b [s]

$$r = (t_i - s_i - b) \cdot c$$

Para localización, se necesitan al menos 4 satélites

$$(x-x_i)^2+(y-y_i)^2+(z-z_i)^2=((t_i-s_i-b)\cdot c)^2$$

Differential Global Positioning System (DGPS)

- La posición entregada por GPS no es exacta ya que la velocidad de transmisión de la onda se ve afectada por la ionosfera y tropósfera
- Solución: Cuantificar el error y transmitirlo a cada receptor desde estaciones base

Encoders

- ¿ Cómo se realiza la odometría ?
- Mediante encoders o generador de pulsos
 - Transductor de energía cinética a energía eléctrica
 - Codifica movimiento mecánico en impulsos eléctricos

Encoders

- Tipos de encoders:
 - Encoders magnéticos
 - Encoders capacitivos
 - Encoders inductivos
 - Potenciómetros
 - Encoders ópticos
 - Incrementales
 - Absolutos

- Encoder incremental (básico): cuenta cantidad de ciclos (pulsos eléctricos) por revolución
- Parámetro relevante: Cycles Per Revolution (CPR): 2.000 10.000

- Encoder incremental (básico): cuenta cantidad de ciclos (pulsos eléctricos) por revolución
- Parámetro relevante: Cycles Per Revolution (CPR): 2.000 10.000
- ¿ Podemos saber la dirección de giro ?

- Encoder en cuadratura (desfase de 90°)
 - Entrega información sobre la dirección de giro
 - Resolución: incremento de 4x

Encoder en cuadratura

Encoder en cuadratura

¿ Podemos conocer la posición rotacional del eje ?

Encoders Ópticos Absolutos

- Con un encoder incremental es necesario almacenar información para saber la posición y velocidad de las ruedas.
- En un absoluto la posición siempre estará disponible.
- La configuración es más compleja

Encoders Ópticos Absolutos

Encoders Ópticos Absolutos

Para reducir errores: código Gray

#	Binary (B)	Gray (A)
0	0	0000
1	1	0001
2	10	0011
3	11	0010
4	100	0110
5	101	0111
6	110	0101
7	111	0100
8	1000	1100
9	1001	1101

Problemas Con Odometría

Ruedas distintas

Obstáculo

Hoyo

Sensores

- Percepción: profundidad es clave
 - Sonar
 - Cámara stereo
 - Cámara luz estructurada (Kinect)
 - Rangefinder (2D), Velodyne (3D)

- Dispositivo capaz de medir el alcance (range) hasta objetos utilizando pulsos de ultrasonido
- Utiliza principio de Time of Flight

- > d: distancia hacia objeto
- c: velocidad de propagación de la onda
- > t: tiempo de vuelo

• Distribución de intensidad de un sensor ultrasónico

- (a) Sonar providing an accurate range measurement
- (b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response
- (d) Specular reflections cause walls to disappear
- (e) Open corners produce a weak spherical wavefront
- (f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

Óptica de una cámara RGB

www.cs.auckland.ac.nz

Óptica de una cámara RGB

$$\frac{X_i}{f} = \frac{X}{Z}$$

www.cs.auckland.ac.nz

Cámara Stereo consta de dos cámaras RGB

- Cámara Stereo consta de dos cámaras RGB
- Cada cámara "ve" una imagen distinta (dispar)

- Cámara Stereo consta de dos cámaras RGB
- Cada cámara "ve" una imagen distinta (dispar)
- Se calcula la correspondencia entre ambas imágenes

- Cámara Stereo consta de dos cámaras RGB
- Cada cámara "ve" una imagen distinta (dispar)

- Se calcula la correspondencia entre ambas imágenes
- Se calcula la disparidad (diferencia de posición) para todos los puntos en correspondencia

- Cámara Stereo consta de dos cámaras RGB
- Cada cámara "ve" una imagen distinta (dispar)

- Se calcula la correspondencia entre ambas imágenes
- Se calcula la disparidad (diferencia de posición) para todos los puntos en correspondencia
- Mapa de disparidad inversamente proporcional a la profundidad

Óptica de una cámara stereo

$$\frac{X_{l}}{f} = \frac{X}{Z}$$

$$\frac{X_{l}}{f} \cdot Z = \frac{X_{r}}{f} \cdot Z + b$$

$$Z = \frac{b \cdot f}{X_{l} - X_{r}}$$

 A partir de Z y las ecuaciones anteriores, es posible encontrar una expresión para la posición vertical y horizontal medida en metros

$$X = \frac{Z}{f} \cdot x_{I} = \frac{Z}{f} \cdot x_{r} + b$$

$$Y = \frac{Z}{f} \cdot y_{I} = \frac{Z}{f} \cdot y_{r}$$

www.cs.auckland.ac.nz

- Uso outdoor/indoor
- Problemas
 - Imagen de disparidad ruidosa
 - Sectores "planos" u homogéneos de la imagen no aportan
 - Depende de luminosidad externa

http://boofcv.org/index.php?title=Example_Stereo_Disparity

Kinect

EMISOR LUZ ESTRUCTURADA IR

Kinect

- Depth: proyección de luz estructurada IR es capturada por cámara IR y procesada
- Función de intensidad, densidad, etc.
- Salida: profundidad estimada (eje Z kinect)

Kinect

- Ventajas
 - Mejor mapa de profundidad que cámara stereo
 - No necesita de fuente de luz externa
- Problemas
 - Sólo indoor
 - Sombras dada por posición de emisor/sensor IR
- En en futuro será habitual en laptops, smartphones, etc.
 - Virtual Reality (VR), Augmented Reality (AR)
 - Detección de objetos es más simple que con sólo imagen RGB

Laser Rangefinder

- Light Detection And Ranging (LIDAR)
- Basados en láser 2D
- Utiliza principio de Time of Flight

Laser rangefinder

Rangefinder model (Thrun, 2004)

<u>Assumption:</u> range finder readings combine four sources of error around the true distance to obstacles

Rangefinder model (Thrun, 2004)

A weighted average of the four sources gives the following distribution for the range finder:

Velodyne

- Versión 3D de rangefinder
- En la práctica son varios Rangefinders a distintos ángulos

Velodyne

Sensores

- Percepción de objetos: cámara RGB
 - > Webcam
 - Cámaras industriales
- Ventaja: Permite obtener información semántica del mundo
- Imágenes tienen desafíos propios
 - Iluminación
 - Escala
 - Perspectiva
 - Deformaciones
 - Background clutter

- Obtener la imagen es fácil
- Interpretación/análisis difícil
 - Extracción de puntos/regiones de interés
 - Análisis de puntos/regiones de interés
 - En general un problema abierto hoy
 - Grandes avances en el área de Machine Learning

• Identificación de objetos: problema de clasificación

- Lectura de textos en imágen
 - Identificación de regiones de interés
 - Lectura de textos

SixthStreetPhoto_croppe_KenKwong.jpg

"PranZO Pizza E 431-199 25 RITE BE LIQUO CIGA SOR H TEL EASONABLE RATES SHOW TULAN Vietnamese Fo FAST FOOD TO HOTEL LEARE Onisiana and C"

TRY NATURAL LANGUAGE API

• Fundamental en la obtención de una correcta percepción del entorno

Resumen

- Percepción: sensores para obtener información del mundo que rodea al robot
- Prácticamente todas las tareas de un robot autónomo involucran algún grado de percepción
- GPS en robots outdoor
- Sensores de profundidad y RGB son los más usados
- Reconocimiento/detección de elementos en la imagen aún un campo abierto, aunque se ha avanzado bastante

Bibliografía

• Introduction to Autonomous Mobile Robots, Siegwart, Roland and Nourbakhsh, Illah R.