ZAVRŠNI ISPIT IZ EKSTREMALNE KOMBINATORIKE 10.02.2016.

1. (7 bodova)

- a) Treba ocijeniti 7 vrsti vina, svaka dva moraju biti uspoređena i to jednaki broj puta, svaki degustator može probati najviše 3 vina. Koristeći projektivnu ravninu reda 2 i diferencijski skup $\{0,1,3\}$ pokažite da ovaj posao može obaviti 7 degustatora na način da svaka dva vina budu uspoređena točno jednom. Zašto 6 degustatora to ne može obaviti?
 - b) Je li ova struktura suncokret? A je li 3-uniformni slabi Δ -sustav?
- ${f c}$) Koliko elemenata mora imati neka familija tročlanih skupova da bi sadržavala suncokret sk latica? Sadrži li projektivna ravnina reda 2 suncokret? Odgovore obrazložite.

2. (8 bodova)

- a) Neka je \mathcal{F} presijecajuća familija k-članih podskupova n-članog skupa. Pokažite da je u slučaju n < 2k svaka familija \mathcal{F} presijecajuća. Koliko najviše elemenata ona može imati u slučaju $n \geq 2k$? Navedite najbolju gornju ogradu i konstruirajte familiju za koju se ona postiže.
- **b)** Neka je $n \leq 2k$ i neka je A_1, \ldots, A_m familija k-članih podskupova skupa $\{1, 2, \ldots, n\}$ takva da je $A_i \cup A_j \neq \{1, 2, \ldots, n\}$ za sve i, j. Odredite najbolju gornju ogradu za m.

3. (6 bodova)

Napišite Hasseov dijagram za skup ternarnih vektora iz $\{0,1,2\}^2$ s parcijalnim uređajem $(a_1,a_2) \preccurlyeq (b_1,b_2) \Leftrightarrow a_1 \leq b_1$ i $a_2 \leq b_2$. Potom odredite jednu particiju ovog parcijalno uređenog skupa u antilance.

4. (8 bodova)

- **a)** Dokažite da za Ramseyeve brojeve (za 2-bojanja bridova grafova) vrijedi $R\left(3,3\right)=6.$
- **b)** Dokažite da u svakom grafu s 6 vrhova čiji svi bridovi su obojani u dvije boje postoje barem dva jednobojna trokuta.

- 5. (8 bodova)
- a) Dokažite da ako je $p \in (0,1), k, l, n \in \mathbb{N} \setminus \{1\}$ i

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1-p)^{\binom{l}{2}} < 1,$$

onda za Ramseyev broj vrijedi R(k, l) > n.

b) Iz prethodnog rezultata pokažite da za simetrične Ramseyeve brojeve vrijedi

$$\binom{n}{k} 2^{1-\binom{k}{2}} < 1 \quad \Rightarrow \quad R\left(k,k\right) > n.$$

c) Koristeći najjednostavniju ocjenu za binomne koeficijente $\binom{n}{k} \leq n^k$, izvedite donju ogradu za simetrične Ramseyeve brojeve

$$R(k,k) > 2^{k/2-1}, k \ge 3.$$

6. (8 bodova)

Neka je \mathcal{F} familija podskupova od $\{1,2,\ldots,n\}$ takva da nijedan skup iz \mathcal{F} ne sadrži neki drugi skup iz \mathcal{F} , tj. $A,B\in\mathcal{F},\ A\neq B\Longrightarrow A\subsetneq B,$ $B\subsetneq A$. Neka je σ proizvoljna n-permutacija i neka je X_{σ} slučajna varijabla definirana s

$$X_{\sigma} = \left| \left\{ i : \left\{ \sigma \left(1 \right), \sigma \left(2 \right), \dots, \sigma \left(i \right) \right\} \in \mathcal{F} \right\} \right|.$$

Je li X_{σ} indikatorska slučajna varijabla i zašto? Koristeći očekivanje $\mathbf{E}\left(\sum_{\sigma}X_{\sigma}\right)$ dokažite da vrijedi

$$|\mathcal{F}| \le \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}.$$

- 7.*
- a) Pretpostavimo da su sve točke prostora obojane crvenom, plavom ili zelenom bojom. Dokažite da tada postoji jedinična dužina s istobojnim rubnim točkama.
- b) Pretpostavimo da su sve točke prostora obojane crvenom, plavom, zelenom ili žutom bojom. Dokažite da tada postoji jedinična dužina s istobojnim rubnim točkama.

Dozvoljena je upotreba "podsjetnika za ZI" i kalkulatora. Ispit se piše 120 minuta.

RJEŠENJA ZAVRŠNOG ISPITA IZ EKSTREMALNE KOMBINATORIKE

10.02.2016.

- **1.** a) $\{0,1,3\}$, $\{1,2,4\}$, $\{2,3,5\}$, $\{3,4,6\}$, $\{4,5,0\}$, $\{5,6,1\}$, $\{6,0,2\}$. 6 degustatora nije dovoljeno jer je $6 \cdot \binom{3}{2} < \binom{7}{2}$.
 - b) Nije suncokret, je 3-uniformni slabi Δ -sustav.
- c) Više od $6(k-1)^3$ elemenata, gdje je k broj latica. Dakle, familija s tročlanim podskupovima $\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,0\},\{5,6,1\},\{6,0,2\}$ prema suncokretovoj lemi sigurno sadrži suncokret s k=2 latica. Očito je da sadrži i suncokret s k=2 latica pr. $\{0,1,3\},\{1,2,4\},\{5,6,1\}$.
- **2. a)** Ako je n < 2k onda za svaka dva k-člana podskupa A i B vrijedi da im je presjek neprazan:

$$|A \cap B| = |A| + |B| - |A \cup B| \ge |A| + |B| - n = 2k - n > 0.$$

Ako je $n \geq 2k$ onda prema Erdős-Ko-Radovom teoremu svaka presijecajuća familija \mathcal{F} k-članih podskupova od n-članog skupa ima najviše $\binom{n-1}{k-1}$ članova. Presijecajuću familiju k-članih podskupova sa $\binom{n-1}{k-1}$ članova možemo dobiti uzimanjem svih $\binom{n-1}{k-1}$ k-članih podskupova koji sadrže element 1.

b) Pogledajmo komplemente $\overline{A_i} = \{1, 2, \dots, n\} \setminus A_i$, za njih vrijedi

$$\overline{A_i} \cap \overline{A_j} = \overline{A_i \cup A_j} \neq \overline{\{1, 2, \dots, n\}} = \emptyset$$

i svi su (n-k)-člani podskupovi. Provjerimo uvjete Erdős-Ko-Radovog teorema

$$n > 2(n-k) \Leftrightarrow n < 2k$$

i potom ga primijenimo

$$m \le \binom{n-1}{n-k-1} = \binom{n-1}{k}.$$

3. Imamo 5 nivoa u Hasseovom dijagramu, to su (od najnižeg):

00;

01, 10;

02, 11, 20;

12, 21;

22.

Spojeni parovi su: $\{00,01\}$, $\{00,10\}$, $\{01,02\}$, $\{01,11\}$, $\{10,11\}$, $\{10,20\}$, $\{02,12\}$, $\{11,12\}$, $\{11,21\}$, $\{20,21\}$, $\{12,22\}$, $\{21,22\}$.

Particija u antilance $\{00\}$, $\{01, 10\}$, $\{02, 11, 20\}$, $\{12, 21\}$, $\{22\}$.

4. a) Najprije dokažimo $R(3,3) \leq 6$. Uzmimo proizvoljan vrh V. Kako je u K_6 stupanj svakog vrha, pa i vrha V jednak 5, prema Dirichletovom načelu najmanje 3 brida iste boje su incidentna vrhu V. Bez smanjenja općenitosti pretpostavimo da je ta boja crvena i da su to bridovi $\{V,X\}$, $\{V,Y\}$ i $\{V,Z\}$. Ako bi neki od bridova $\{X,Y\}$, $\{Y,Z\}$, $\{X,Z\}$ bio crvene boje imali bi crveni trokut. Ako nijedan od bridova $\{X,Y\}$, $\{Y,Z\}$, $\{X,Z\}$ nije crvene boje, onda imamo plavi trokut X,Y,Z. S ovim je dokazano $R(3,3) \leq 6$.

Kontraprimjerom ćemo pokazati R(3,3) > 5, da rezultat ne vrijedi za graf s 5 vrhova: obojimo crvenom bojom sve stranice peterokuta, a plavom sve dijagonale. Među ovako obojanim bridovima očito nema istobojnog trokuta.

Kako je
$$R(3,3) \le 6$$
 i $R(3,3) > 5$ slijedi $R(3,3) = 6$.

- b) Jedan trokut već imamo prema a) dijelu zadatka. BSO pretpostavimo da je crveni i njegovi vrhovi su A, B, C. Ako preostale tri točke čine trokut onda smo gotovi. Ako ne, među njima postoji jedan plavi i jedan crveni brid. Neka je EF plavi brid. Ako iz vrha A prema E i F izlaze dva plava brida imamo plavi trokut. Isto vrijedi i za vrhove B i C. Ako ne, iz svakog od vrhova A, B, C izlazi barem po jedan crveni brid prema vrhovima E i F. Prema Dirichletovom načelu od ta tri brida barem dva crvena brida moraju ići u isti vrh. I imamo još jedan crveni trokut.
- **5.** a) Pogledajmo slučajni graf G(n, p) s n vrhova, gdje je vjerojatnost da su bilo koja dva vrha povezana bridom jednaka p i nezavisna o drugim bridovima. Za bilo koji skup od k fiksnih vrhova, vjerojatnost da formiraju kliku K_k jednaka je

$$p_1 = p^{\binom{k}{2}}.$$

Slično, vjerojatnost za N_l -skup od l nezavisnih vrhova je

$$p_2 = (1-p)^{\binom{l}{2}}.$$

U grafu s n vrhova ima $\binom{n}{k}$ skupova od k vrhova i $\binom{n}{l}$ skupova od l vrhova, pa primijenimo li nejednakost za vjerojatnost zbroja događaja dobijemo da je

$$P\left(G\left(n,p\right) \text{ sadrži } K_{k} \text{ ili } N_{l}\right) \leq \binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} \left(1-p\right)^{\binom{l}{2}}.$$

Dakle, uz uvjet

$$\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} \left(1 - p\right)^{\binom{l}{2}} < 1$$

vjerojatnost događaja "G(n,p) ne sadrži ni K_k ni N_l " je strogo pozitivna, odnosno vrijedi R(k,l) > n.

- **b)** Tvrdnja slijedi direktno uzmemo li k = l i $p = \frac{1}{2}$.
- c) Koristeći najjednostavniju ocjenu za binomne koeficijente $\binom{n}{k} \leq n^k$, dobije se

$$2n^k < 2^{k(k-1)/2}$$

što je sigurno ispunjeno ako je

$$n \le 2^{k/2 - 1}.$$

pa je

$$R(k,k) > n \ge 2^{k/2-1}$$
, za $k \ge 3$.

6. X_{σ} je indikatorska slučajna varijabla, jer ni jedan skup iz familije \mathcal{F} ne sadrži neki drugi skup iz \mathcal{F} (niti je sadržan u drugom skupu familije) pa može poprimiti samo vrijednosti 0 i 1. Za zadani $A \in \mathcal{F}$ imamo |A|! (n - |A|)! permutacija za koje X_{σ} poprima vrijednost 1. Također, zbog disjunktnosti događaja " $A = \{\sigma(1), \sigma(2), \ldots, \sigma(i)\}$ " i " $B = \{\sigma(1), \sigma(2), \ldots, \sigma(j)\}$ " za $A, B \in \mathcal{F}$ vrijedi

$$\mathbf{E}\left(\sum_{\sigma} X_{\sigma}\right) = \sum_{A \in \mathcal{F}} \frac{|A|! (n - |A|)!}{n!} = \sum_{A \in \mathcal{F}} \binom{n}{|A|}^{-1} \le 1$$

odakle zbog $\binom{n}{|A|} \leq \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$ imamo

$$|\mathcal{F}| \cdot {n \choose \lfloor \frac{n}{2} \rfloor}^{-1} \le \sum_{A \in \mathcal{F}} {n \choose |A|}^{-1} \le 1.$$

7. a) Neka je T tetraedar stranice duljine 1. Po Dirichletovom principu T mora imati dva jednobojna vrha. Oni su rubne točke tražene dužine.

b) Pretpostavimo da takva dužina ne postoji i neka je ABCD pravilan tetraedar sa stranicama duljine 1. On mora imati vrhove u različitim bojama. BSO pretpostavimo da je vrh A crvene boje i dopišimo s vanjske strane tetraedra ABCD tetraedar BCDE. Vrh E mora biti crvene boje. Kao u propziciji 3.7 zaključujemo da sve točke udaljene za $2h = 2\sqrt{\frac{2}{3}}$ od točke A moraju biti iste boje. Posebno, sve točke sfere sa središtem u točki A radijusa 2h moraju biti crvene, a kako na sferi radijusa većeg od 1/2 uvijek postoje dvije točke udaljene za 1 tvrdnja je dokazana.