Decision Trees

Exercise 1: Decision Trees

Construct by hand decision trees corresponding to each of the following Boolean formulas. The examples $(\mathbf{x},c)\in D$ consist of a feature vector \mathbf{x} where each component corresponds to one of the Boolean variables (A,B,\ldots) used in the formula, and each example corresponds to one interpretation (i.e. assignment of 0/1 to the Boolean variables). The target concept c is the truth value of the formula given that interpretation. Assume the set D contains examples with all possible combinations of attribute values.

Hint: It may be helpful to write out the set D for each formula as a truth table.

(a)
$$A \land \neg B$$
Answer

(c)
$$A \lor (B \land C)$$

Answer

(d) $(A \wedge B) \vee (C \wedge D)$ Answer

Exercise 2: Impurity Functions

Let D be a set of examples over a feature space \mathbf{X} and a set of classes $C = \{c_1, c_2, c_3, c_4\}$, with |D| = 24. Consider the following illustration of two possible decision trees, T_1 and T_2 – the colors represent the classes present in each document set D(t) associated with a node t of a tree; the numbers denote how many examples of each class are present.

(a) First, consider only the first split that each of the two trees makes: compute $\Delta\iota(D,\{D(t_{1,1}),D(t_{1,2})\}) \text{ and } \Delta\iota(D,\{D(t_{2,1}),D(t_{2,2})\}) \text{ with (1) the misclassification rate } \iota_{misclass} \text{ and (2) the entropy criterion } \iota_{entropy} \text{ as splitting criterion.}$

Interpret the results: which of $\{D(t_{1,1}),D(t_{1,2})\}$ or $\{D(t_{2,1}),D(t_{2,2})\}$ is the better first split?

Answer

 $\Delta \iota_{misclass}$ is 0.25 for both splits. $\Delta \iota_{entropy}$ is 1.0 for the first split in T_1 and 0.54 for the one in T_2 .

With the misclassification rate both splits are identically evaluated. The entropy criterion prefers pure example sets. The split in T_1 gets rated higher. Intuitively, the entropy criterion is right: after the first split in T_1 , there is "less work to do" to purify all example sets.

(b) If we compare T_1 and T_2 in terms of their misclassification rate on D, which one is the better decision tree?

Answer

According to the training set error T_2 , i.e., $Err(T_2, D) = \frac{4}{24}$, is better than T_1 , i.e. $Err(T_1, D) = \frac{5}{24}$.

(c) Assuming the splits shown are the only possibilities, which of T_1 or T_2 would the ID3 algorithm construct, and why?

ID3 uses information gain (i.e., entropy impurity reduction) as the split criterion. Hence, as the first split, $\{D(t_{1,1}), D(t_{1,2})\}$ would be chosen, and the "less good" decision tree would result; this is because ID3 searches the hypothesis space by greedy local optimization. There is no guarantee to find a globally optimal hypothesis.

Exercise 3: Decision Trees

Given is the following dataset to classify whether a dog is dangerous or well-behaved in character:

Color	Fur	Size	Character (C)
brown	ragged	small	well-behaved
black	ragged	big	dangerous
black	smooth	big	dangerous
black	curly	small	well-behaved
white	curly	small	well-behaved
white	smooth	small	dangerous
red	ragged	big	well-behaved

(a) Use the ID3 algorithm to determine a decision tree, where the attributes are to be chosen with $\Delta \iota_{\text{entropy}}$.

Answer

• Determine $\iota_{\text{entropy}}(D)$:

$$\iota_{\text{entropy}}(D) = -\sum_{i=1}^{k} P(A_i) \cdot \log_2 P(A_i)$$
$$= -\left[\frac{4}{7} \cdot \log_2 \frac{4}{7} + \frac{3}{7} \cdot \log_2 \frac{3}{7}\right]$$
$$\approx 0.985$$

- Determine $\Delta \iota_{\mathrm{entropy}} = 0.985 \sum_{l=1}^{m} \frac{|D_l|}{|D|} \cdot \iota_{\mathrm{entropy}}(D_l)$ for each attribute and choose the attribute with maximum delta (i.e., information gain) to split:
 - Attribute *Color*:

Color	well-behaved	dangerous	Probability
brown	1	0	P(brown) = 1/7
black	1	2	P(black) = 3/7
white	1	1	P(white) = 2/7
red	1	0	P(red) = 1/7

$$\begin{split} \Delta \iota_{\text{entropy}} &= 0.985 - \left[\frac{1}{7}\left(-\left(\frac{1}{1}\log_2\frac{1}{1} + \frac{0}{1}\log_2\frac{0}{1}\right)\right) + \frac{3}{7}\left(-\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right)\right) \right. \\ &\quad + \frac{2}{7}\left(-\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right)\right) + \frac{1}{7}\left(-\left(\frac{1}{1}\log_2\frac{1}{1} + \frac{0}{1}\log_2\frac{0}{1}\right)\right)\right] \\ &= 0.985 - \left[0 + \frac{3}{7}\left(-\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right)\right) + \frac{2}{7}\left(-\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right)\right) + 0\right] \\ &\approx 0.306 \end{split}$$

- Attribute Fur:

		Fur	well-behaved	dangerous	Probability	
		ragged	2	1	P(ragged) = 3/7	-
		smooth	0	2	P(smooth) = 2/7	
		curly	2	0	P(curly) = 2/7	
$\Delta \iota_{ ext{entropy}}$	=	0.985 -	$\frac{3}{7} \left(-\left(\frac{2}{3}\log_2\frac{2}{3}\right) \right)$	$\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}$	$\left(-\frac{2}{7} \left(-\left(\frac{0}{2} \log_2 \frac{1}{2} \right) \right) \right)$	$\left(\frac{0}{2} + \frac{2}{2}\log_2\frac{2}{2}\right)$
		$+\frac{2}{7}\left(-\left(\right.\right.\right)$	$\left(\frac{2}{2}\log_2\frac{2}{2} + \frac{0}{2}\log_2\frac{2}{2}\right)$	$\log_2 \frac{0}{2} \bigg) \bigg) \bigg]$		
	=	0.985 -	$\frac{3}{7} \left(-\left(\frac{2}{3}\log_2\frac{2}{3}\right) \right)$	$\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}$	$\bigg) \bigg) + 0 + 0 \bigg]$	
	\approx	0.591				

- Attribute Size:

 $\Delta \iota_{\mathrm{entropy}}$ is maximal for attribute Fur. Generated tree with reduced dataset is pictured below.

				Fui	r		
Color	Size	Character (C)	ragged	smooth		curly	
brown black	small big	well-behaved dangerous	•	Label: dar	ngerous		Label: well-behaved
red	big	well-behaved					

• ID3 is applied recursively to remaining non-terminal nodes. Determine $\iota_{\text{entropy}}(D)$ for the reduced dataset:

$$\iota_{\text{entropy}}(D) = -\sum_{i=1}^{k} P(A_i) \cdot \log_2 P(A_i)$$
$$= -\left[\frac{1}{3} \cdot \log_2 \frac{1}{3} + \frac{2}{3} \cdot \log_2 \frac{2}{3}\right]$$
$$\approx 0.918$$

- Determine $\Delta \iota_{\mathrm{entropy}} = 0.918 \sum_{l=1}^{m} \frac{|D_l|}{|D|} \cdot \iota_{\mathrm{entropy}}(D_l)$ for each remaining attribute and choose the attribute with maximum delta (i.e., information gain) to split:
 - Attribute Color:

Color	well-behaved	dangerous	Probability
brown	1	0	P(brown) = 1/3
black	0	1	P(black) = 1/3
red	1	0	$P(\mathrm{red}) = 1/3$

$$\Delta \iota_{\text{entropy}}(D) = 0.918 - \left[\frac{1}{3} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) + \frac{1}{3} \left(-\left(\frac{0}{1} \log_2 \frac{0}{1} + \frac{1}{1} \log_2 \frac{1}{1} \right) \right) + \frac{1}{3} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) \right]$$

$$= 0.918$$

- Attribute Size:

Size	well-behaved	dangerous	Probability
small	1	0	P(small) = 1/3
big	1	1	P(big) = 2/3

$$\Delta \iota_{\text{entropy}}(D) = 0.918 - \left[\frac{1}{3} \left(-\left(\frac{1}{1} \log_2 \frac{1}{1} + \frac{0}{1} \log_2 \frac{0}{1} \right) \right) + \frac{2}{3} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) \right]$$

$$= 0.918 - \left[0 + \frac{2}{3} \left(-\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2} \right) \right) \right]$$

$$\approx 0.252$$

 $\Delta \iota_{\text{entropy}}$ is maximal for attribute *Color*. Generated tree is pictured below.

(b) Classify the new example (Color=black, Fur=ragged, Size=small) using your decision tree.

Answer

- 1. Check attribute fur.
- 2. Fur=ragged \rightarrow Check attribute color.
- 3. color=black → Assign class=dangerous