Vector Calculus V: Change of Variables Formula and Applications of Integration

Oliver Zhao

Contents

1	Geo	metry of Maps from \mathbb{R}^2 to \mathbb{R}^2	43
		Geomatric Mapping	
		Images of Maps	
	1.3	One-to-One Maps	43
	1.4	Onto Maps	43
2	The	Change of Variables Theorem	43
	2.1	Jacobian Determinants	44
		Change of Variables Formula	
	2.3	Polar Coordinates	45
	2.4	Change of Variables Formula for Triple Integrals	45
	2.5	Cylindrical Coordinates	46
	2.6	Spherical Coordinates	46

1 Geometry of Maps from \mathbb{R}^2 to \mathbb{R}^2

1.1 Geomatric Mapping

Let D^* be a subset of \mathbb{R}^2 , suppose we have a continuously differentiable map $T: D^* \to \mathbb{R}^2$, so T takes points in D^* to points in \mathbb{R}^2 . We denote the set of image points by D or by $T(D^*)$. Hence, $D = T(D^*)$ is the set of all points $(x,y) \in \mathbb{R}^2$ such that

$$(x,y) = T(x^*, y^*) \text{ for some } (x^*, y^*) \in D^*.$$
 (1)

1.2 Images of Maps

Let A be a 2×2 matrix with det $A \neq 0$ and let T be the linear mapping of \mathbb{R}^2 to \mathbb{R}^2 given by $T(\mathbf{x}) = A\mathbf{x}$. Then T transforms parallelograms into parallelograms and the vertices into vertices. Moreover, if $T(D^*)$ is a parallelogram, D^* must be a parallelogram.

1.3 One-to-One Maps

A mapping T is one-to-one on D^* if for (u, v) and (u', v') ϵ D^* , T(u, v) = T(u', v') implies that u = u' and v = v'. This statement implies that two different points of D^* are never sent to the same point of D by T.

1.4 Onto Maps

The mapping T is onto D if for every point $(x,y) \in D$ there exists at least one point (u,v) in the domain of T such that T(u,v)=(x,y). Thus, if T is onto, we can solve the equation T(u,v)=(x,y) for (u,v), given $(x,y) \in D$.

A linear transformation of \mathbb{R}^n to \mathbb{R}^n given by mutiplication by a matrix A is one-to-one and onto when and only when det $A \neq 0$.

2 The Change of Variables Theorem

Given two regions D and D^* in \mathbb{R}^2 , a differentiable map T on D^* with image D, and ny real-valued integrable function $f:D\to\mathbb{R}$, we would like to express $\iint_D f(x,y)dA$ as an integral over D^* of the composite function $f\circ T$.

To do this, we assume that D^* is a region in the uv plane and that D is a region in the xy plane. The map T is given by two coordinate functions:

$$T(u, v) = (x(u, v), y(u, v)) \text{ for } (u, v) \in D^*.$$
 (2)

We may initially conjecture that

$$\iint_{D} f(x,y) \ dx \ dy = \int_{D^{*}} f(x(u,v), y(u,v) \ du \ dv, \tag{3}$$

Where $f \circ T(u,v) = f(x(u,v),y(u,v))$ is the composite function defined on D^* . But if we consider the function $f:D\to\mathbb{R}^2$ where f(x,y)=1, then the equation above would imply

$$A(D) = \iint_D dx \ dy \stackrel{?}{=} \iint_{D^*} du \ dv = A(D^*).$$
 (4)

The equation above only holds for special cases, and not for a general map T.

2.1 Jacobian Determinants

To find $A(D^*)$, we need to measure how a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ distorts the area of a region. This is given by the Jacobian determinant.

Let $T: D^* \subset \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 transformation given by x = x(u, v) and y = y(u, v). The Jacobian determinant of T, written $\delta(x, y)/\delta(u, v)$, is the determinant of the derivative matrix $\mathbf{D}T(u, v)$ of T:

$$\frac{\delta(x,y)}{\delta(u,v)} = \begin{vmatrix} \frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\ \frac{\delta y}{\delta u} & \frac{\delta y}{\delta v} \end{vmatrix}$$
 (5)

Under certain restrictions on T, we can show that the area of $D = T(D^*)$ is obtained by integrating the absolute value of the Jacobian $\delta(x,y)/\delta(u,v)$ over D^* , or

$$A(D) = \iint_D dx \ dy = \iint_{D^*} \left| \frac{\delta(x, y)}{\delta(u, v)} \right| du \ dv.$$
 (6)

2.2 Change of Variables Formula

Recall the method of substitution

$$\int_{a}^{b} f(x(u)) \frac{dx}{du} du = \int_{x(a)}^{x(b)} f(x) dx, \tag{7}$$

Where f is continuous and $u \mapsto x(u)$ is continuously differentiable on [a, b].

Suppose we have a C^1 function $u \mapsto x(u)$ that is one-to-one on [a, b]. Thus, w must have either $dx/du \ge 0$ on [a, b] or $dx/du \le 0$ on [a, b]. Let I^* denote the interval [a, b], and let I denote the closed interval with endpoints x(a) and x(b). With these conventions, we can rewrite Equation (7) as

$$\int_{I^*} f(x(u)) \left| \frac{dx}{du} \right| du = \int_{I} f(x) dx. \tag{8}$$

Let D and D^* be elementary regions in the plane and let $T:\to D^*\to D$ be of class C^1 . Suppose that T is one-to-one on D^* . Furtherfore, suppose that $D=T(D^*)$. Then for any integrable function $f:D\to\mathbb{R}$, we have

$$\iint_D f(x,y)dx \ dy = \iint_{D^*} f(x(u,v),y(u,v)) \left| \frac{\delta(x,y)}{\delta(u,v)} \right| du \ dv. \tag{9}$$

2.3 Polar Coordinates

One of the purposes of the change of variables theorem is to provide a method by which some double integrals can be simplified. For example, we can use it on polar coordinates where

$$\iint_{D} f(x,y)dx \ dy = \iint_{D_{*}^{*}} f(r\cos\theta, r\sin\theta)r \ dr \ d\theta. \tag{10}$$

2.4 Change of Variables Formula for Triple Integrals

The Jacobian of a transformation from \mathbb{R}^3 to \mathbb{R}^3 (and beyond) is just a simple extension of the two-variable case. Let $T:W\subset\mathbb{R}^3\to\mathbb{R}^3$ be a C^1 function defined by the equations x=x(u,v,w),y=y(u,v,w),z=z(u,v,w). Then the Jacobian of T, which is denoted $\delta(x,y,z)/\delta(u,v,w)$, is the determinant

$$\begin{vmatrix} \frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} & \frac{\delta x}{\delta w} \\ \frac{\delta y}{\delta u} & \frac{\delta y}{\delta v} & \frac{\delta y}{\delta w} \\ \frac{\delta z}{\delta u} & \frac{\delta z}{\delta v} & \frac{\delta z}{\delta w} \end{vmatrix} . \tag{11}$$

Just as in the two-variable case, the Jacobian measures how the transformation T distorts the volume of its domain. Hence, for triple (volume) integrals, the change of variables formula is

$$\iiint_{W} f(x,y,z) \ dx \ dy \ dz$$

$$= \iiint_{W^*} f(x(u,v,w), y(u,v,w), z(u,v,w)) \left| \frac{\delta(x,y,z)}{\delta(u,v,w)} \right| \ du \ dv \ dw,$$
(12)

Where W^* is an elementary region in the uvw space corresponding to W in the xyz space, under a mapping $T:(u,v,w)\mapsto (w(u,v,w),y(u,v,w),z(u,v,w))$, provided that T is of class C^1 and is one-to-one.

2.5 Cylindrical Coordinates

An example of a triple integral change of coordinates is converting Cartesian coordinates to cylindrical coordinates. Recall that

$$x = r\cos\theta \quad y = r\sin\theta \quad z = z,$$
 (13)

Where

$$\frac{\delta(x,y,z)}{\delta(r,\theta,z)} = \begin{vmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = r.$$
 (14)

Thus,

$$\iiint_W f(x,y,z) \ dx \ dy \ dz = \iiint_W f(r\cos\theta,r\sin\theta,z) \ r \ dr \ d\theta \ dz. \tag{15}$$

2.6 Spherical Coordinates

Meanwhile, for spherical coordinates recall that

$$x = \rho \sin\phi \cos\theta, \quad y = \rho \sin\phi \sin\theta, \quad z = \rho \cos\phi,$$
 (16)

Where

$$\frac{\delta(x,y,z)}{\delta(\rho,\theta,\phi)} = \begin{vmatrix} \sin\phi \cos\theta & -\rho\sin\phi \sin\theta & \rho\cos\phi \cos\theta \\ \sin\phi \sin\theta & \rho\sin\phi \cos\theta & \rho\cos\phi \sin\theta \\ \cos\phi & 0 & -\rho\sin\phi \end{vmatrix}$$
(17)

If we expand the formula, we get

$$\iiint_{W} f(x, y, z) \ dx \ dy \ dz$$

$$= \iiint_{W^{*}} f(\rho \sin\phi \cos\theta, \rho \sin\phi \sin\theta, \rho \cos\phi) \rho^{2} \sin\phi \ d\rho \ d\theta \ d\phi.$$
(18)