11

算法核心原理

• 决策树的核心思想: 相似的输入产生相似的输出。

年龄	学历	经历	性别	==>	薪资
1	1	1	1	==>	6000 (低)
2	1	3	1	==>	10000 (中)
3	3	4	1	==>	50000 (高)
1	3	2	1	==>	15000 (中)
	***	****		==>	
1	3	2	2	==>	?

CART分类树

CART分类树算法对每个特征进行二分,寻找分割点时使用基尼系数来表达数据集的不纯度,基尼系数越小,不纯度越低,数据集划分的效果越好。

CART分类树划分子表的过程:

针对每个特征,基于基尼系数计算最优分割值。在计算出来的各个特征的每个分割值对数据集D的基尼系数中,选择基尼系数最小的特征A和对应的分割值a。根据这个最优特征和最优分割值,把数据集划分成两部分D₁和D₂,同时建立当前节点的左右节点,左节点的数据集D为D₁,右节点的数据集D为D₂。对左右的子节点递归调用这个过程,生成决策树。

基尼系数

对于样本D,个数为|D|,假设K个类别,第k个类别的数量为 $|C_k|$,则样本D的基尼系数表达式:

Gini
$$(D) = 1 - \sum_{k=1}^{K} \left(\frac{|C_k|}{|D|} \right)^2$$

有100个样本(D_1)包含A与B两个类别,数量分别为40与60,Gini (D_1) = ?

$$1 - \left(\left(\frac{40}{100} \right)^2 + \left(\frac{60}{100} \right)^2 \right) = 1 - (0.16 + 0.36) = 0.48$$

有100个样本(D_2)包含A与B两个类别,数量分别为10与90, Gini (D_2) = ?

$$1 - \left(\left(\frac{10}{100} \right)^2 + \left(\frac{90}{100} \right)^2 \right) = 1 - (0.01 + 0.81) = 0.18$$

基尼系数(续1)

对于样本D,个数为|D|,根据特征A的某个值a,把D分成 $|D_1|$ 和 $|D_2|$,则在特征A的条件下,样本D的基尼系数表达式为:

Gini
$$(D, A) = \frac{|D_1|}{|D|}$$
Gini $(D_1) + \frac{|D_2|}{|D|}$ Gini (D_2)

决策树的生成过程

- 算法输入训练集D, 基尼系数的阈值, 样本个数阈值。输出决策树T。
- (1)对于当前节点的数据集为D,如果样本个数小于阈值,则返回决策子树,当前节点停止递归。
- (2)计算样本集D的基尼系数,如果基尼系数小于阈值,则返回决策树子树,当前节点停止递归。
- (3)计算当前节点现有的各个特征的各个特征值对数据集D的基尼系数。
- (4)在计算出来的各个特征的各个特征值对数据集D的基尼系数中,选择基尼系数最小的特征A和对应的特征值a。根据这个最优特征和最优特征值,把数据集划分成两部分 D_1 和 D_2 ,同时建立当前节点的左右节点,做节点的数据集D为 D_1 ,右节点的数据集D为 D_2 。
- (5)对左右的子节点递归的调用1-4步, 生成决策树。

预测过程:对生成的决策树做预测的时候,假如测试集里的样本A落到了某个叶子节点,而节点里有多个训练样本。则对于A的类别预测采用的是这个叶子节点里概率最大的类别。

决策树分类实现

· 决策树分类器模型相关API:

知识讲解

集合模型分类实现

集合模型提供的常用分类器:

import sklearn.ensemble as se

- model = se.RandomForestClassifier(...)
- model = se.AdaBoostClassifier(...)
- model = se.GridientBoostingClassifier(...)

随机森林分类器

AdaBoost分类器

GBDT分类器

