autoNomous, self-Learning, **OPTI**mal and compLete **U**nderwater **S**ystems **NOPTILUS**

FP7-ICT-2009.6: Information and Communication Technologies

2nd Project Review

WP6 (Situation Understanding) Progress Report

E. Orfanoudakis, N. Kofinas, and M. G. Lagoudakis Telecommunication Systems Institute (TSI), Greece

November 28, 2013 FEUP, Portugal

WP6: Situation Understanding

>Event Recognition

- observations: abstract sensor readings, estimated state
- events: patterns in observation sequences

Models

Probabilistic Context-Free Grammars (PCFGs)

Task 6.1: PCFG Parsing [Orfanoudakis]

real-time, hierarchical parsing for on-line recognition

Task 6.2: PCFG Learning [Kofinas]

off-line learning of PCFGs from past AUV mission logs

>Task 6.3: Integration

on-line event recognition using learned PCFGs

WP6 Summary from 1st Review

>Preprocessing

abstraction from raw data to observations

>Event recognition

- events: diving behavior
- technology: probabilistic context-free grammars
- successful recognition on several past mission logs
- demonstration of feasibility and potential

>Software

optimized parser for event recognition in Matlab

Diving Behavior Event Recognition

WP6 Plans from 1st Review

>Software

>Event recognition

new events: getting caught in net, vehicle faults, ...

>Rethinking events

- normal vs. abnormal AUV operation
- idea: instead of looking for the abnormal and rare, ...
- ... why not look after the normal and frequent?

Structured prediction

- automatic construction of grammars
- learning rules and probabilities from past missions

rethink

WP6: Event Recognition

Rethinking Events

External Events

>Intention

recognize events which are "external" to the AUV

Observations

- salinity sensor measurements
- temperature sensor measurements
- other external (processed) readings from other WPs

>Events

- crossing borders of areas with different salinity
- unusual variations in temperature

Importance

- salinity affects ranging measurements
- temperature may relate to the presence of a current

Normal/Abnormal Events

Considerations

- what is an interesting event? what do we care about?
- likely interesting events are unusual and unexpected
- in most missions almost nothing abnormal occurs
- *idea*: instead of looking for the abnormal and rare, ...
- ... why not look after the normal and frequent?
- easier to define normal as opposed to abnormal

Normal Operation

typical patterns in motion and measurements (PCFG!)

Abnormal Operation

any pattern that does not occur in normal operation

WP6 Task 6.1: PCFG Parsing

Optimized parser implementation in Dune

Noptilus Dune Code Architecture Noptilus

TSI Dune Code Repository

Github

- https://github.com/vosk/dune/
- fork of the main LSTS-Dune repository
- C++ software architecture (and simulator) for AUVs
- eventually, will be integrated into the main repository

>Development (ongoing)

- WP3: Cooperative Localization
 - partial and fully cooperative localization schemes
 - simulation of acoustic range measurements
- WP6: Event Recognition
 - real-time CYK parser engine for any given PCFG
 - messaging for communicating observations and events

Implementation Challenges

Complexity

- thousands of lines of code
- additions of new features
- debugging new functionality
- compatibility with updates/upgrades

Optimization

- execution on a limited embedded platform
- real-time synchronization of observations
- hard to assess real-time performance

Simulation

- accuracy of acoustic model and measurements
- accuracy of acoustic environment model

Dune+Neptus Environment

WP6 Task 6.2: PCFG Learning

Learning the structure of a grammar

Learning Approaches

- existing work mostly in natural language processing
- no single algorithm can learn any arbitrary grammar!

Using annotated examples

- annotated strings and/or syntactic trees are required
- problem: infeasible to annotate lots of data!

Using positive and negative examples

- near-miss negative data are required
- problem: near-misses can hardly be defined!

Using positive examples

- algorithms specialized for certain grammar classes
- typically assume few symbols and few examples

Our Approach

Ongoing investigation

- review of existing approaches and their assumptions
- implementation of promising learning algorithms
- adaptation to the characteristics of our problem
- experiments on examples from real AUV data
- focus on handling large sets of positive training strings

Current promising learning algorithm

- learn with basic chunk and merge operations
- use iterative bi-clustering to decide the best chunk
- at each iteration, check for possible merge operations
- repeat until the training corpus is full reduced
- rule probabilities can be extracted during the process

Grammar Learning Example (1)

	а	b	С
а	6	0	4
b	0	6	0
С	0	4	0

Corpus:

acb

aⁿcbⁿ

Rules:

• $N0 \rightarrow ac$

- aacbb
- aaacbbb
- aaaacbbbb

	а	b	N0
а	3	0	3
b	0	6	0
N0	0	4	0

Corpus:

- N0 b
- a N0 bb
- aa N0 bbb
- aaa N0 bbbb

- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$

Grammar Learning Example (2)

	а	b	N1
а	3	0	3
b	0	3	0
N1	0	3	0

Corpus:

- N1
- a N1 b
- aa N1 bb
- aaa N1 bbb

\mathbf{D}	1	
Ru.	les:	
Nu	LUO.	

- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$
- $N2 \rightarrow a N1$

	а	b	N2
а	1	0	2
b	0	3	0
N2	0	3	0

Corpus:

- N1
- N2 b
- a N2 bb
- aa N2 bbb

- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$
- $N2 \rightarrow a N1$
- $N3 \rightarrow N2 b$

Grammar Learning Example (3)

	а	b	N3
а	1	0	2
b	0	1	0
N3	0	2	0

Corpus:

- N1
- N3
- a N3 b
- aa N3 bb

	а	b	N4
а	0	0	1
b	0	1	0
N4	0	2	0

Corpus:

- N1
- N3
- N4 b
- a N4 bb

Rules:

- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$
- $N2 \rightarrow a N1$
- $N3 \rightarrow N2 b$
- $N4 \rightarrow a N3$

- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$
- $N2 \rightarrow a N1$
- $N3 \rightarrow N2 b$
- $N4 \rightarrow a N3$
- $N5 \rightarrow N4 b$

aⁿcbⁿ

Grammar Learning Example (4)

	а	b	N4
а	0	0	1
b	0	1	0
N4	0	2	0

Corpus:

- N1
- N3
- N4 b
- a N4 bb

Corpus:

- N1
- N3
- N3
- N3

Rules:

- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$
- $N2 \rightarrow a N1$
- $N3 \rightarrow N2 b$
- N4 → a N3
- $N5 \rightarrow N4 b$

- $S \rightarrow N1$
- $S \rightarrow N3$
- $N0 \rightarrow ac$
- $N1 \rightarrow N0 b$
- $N2 \rightarrow a N1$
- $N2 \rightarrow a N3$
- $N3 \rightarrow N2 b$

WP6 Progress and Plans

What's there? What's next?

WP6 Incremental Progress

>**Events**

normal vs. abnormal events in AUV operation

>Task 6.1: PCFG Parsing

- implementation/development on cloned Dune repository
- optimized parser for real-time event recognition in Dune
- required messaging modifications in IMC

>Task 6.2: PCFG Learning

- learning (structured prediction) of grammars
- learning using positive data only from past missions

WP6 Plans

Task 6.1: Software

- integration of parser in the main Dune repository
- on-board testing and debugging

>Task 6.2: Structured prediction

- efficient implementation of grammar learning algorithm
- learning experiments on data from past missions
- testing on similar mission logs
- testing on synthetic abnormalities

Events

- identification of normal/abnormal external events
- focus on specific measurements for parsing
- (hierarchical) grammar learning on selected inputs

WP6 Integration/Contribution

>Off-line (before)

- identify type of event
- identify related data
- collect normal data
- learn grammar(s)

>On-line (during)

- execute parser onboard
- recognize abnormal
- signal detection(s)

Off-line (after)

- parse past mission logs
- feature detection

Event

- propeller free-winding
- current, control, gyro
- normal mission data
- rules and probabilities

Mission

- use learned grammar
- detect abnormality
- reset controller

Investigation

- detect past occurrences
- extract event statistics

Thank you!

