Lecture 3 Image Sampling

COMP3204 & COMP6223 Computer Vision

How is an image sampled and what does it imply?

(a) sampling at high frequency

(b) sampling at low frequency

Sampling at Different Frequencies

(a) high resolution

(c) low resolution - aliased

Aliasing in Sampled Imagery

(a) sampled signal

(b) oversampled spectra

(c) sampling at the Nyquist rate

(d) undersampled, aliased, spectra

Sampled Spectra

Correct and Incorrect Apparent Wheel Motion

https://www.youtube.com/watch?v=e1EqXE06xr8

Sampling theory

- Nyquist's sampling theorem is 1D
- E.g. speech 6kHz, sample at 12 kHz
- Video bandwidth (CCIR) is 5MHz
- Sampling at 10MHz gave 576×576 images
- Guideline: "two pixels for every pixel of interest"

https://www.pinterest. com/pin/27542333343 1517864/

Transform Pair for Sampled Pulse

(a) original sampled signal

(c) second coefficient Fp₁

(e) adding Fp₀, Fp₁, Fp₂ and Fp₃

(b) first coefficient Fp₀

(d) adding Fp₁ and Fp₀

(f) adding all six frequency components

Signal Reconstruction from Transform Components

(a) transform **(b)** transform (c) transform (d) transform (e) complete radius 1 radius 4 radius 9 radius 25 transform components components components components (f) image by radius (g) image by (h) image by (i) image by radius radius 4 1 components radius 9 25 components components components (j) reconstruction (k) reconstruction (I) reconstruction (m) reconstruction (n) reconstruction up to 4th up to 9th up to 1st up to 25^{th} with all

Shift invariance

Rotation

(a) original image

(b) rotated image

(c) transform of original image

(d) transform of rotated image

$$\mathbf{FP}_{u,v} = \frac{1}{N} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \mathbf{P}_{x,y} e^{-j\left(\frac{2\pi}{N}\right)(uy+vx)}$$

Filtering

 Fourier gives access to frequency components

(a) low-pass filtered image

(b) low-pass filtered transform

(c) high-pass filtered image

(d) high-pass filtered transform

Other transforms

• For Lena

Modelling Gait(s)

- Extended pendular thigh-model, based on angles
- Uses forced oscillator/ bilateral symmetry/ phase coupling

Modeling the Thigh's Motion 1

$$vs_x(t) = A\cos(\omega t + \phi)$$

Modeling the Thigh's Motion 2

$$vh_x(t) = Vx + A\cos(\omega t + \phi)$$

Modeling the Thigh's Motion 3

$$\phi(t) = a_0 + \sum_{k=1}^{N} \left[b_k \cos(k\omega_0 t + \psi) \right]$$

Validity?

Applications of 2D FT

- Understanding and analysis
- Speeding up algorithms
- Representation (invariance)
- Coding
- Recognition/ understanding (e.g. texture)