

CMR TECHNICAL CAMPUS Accredited by NBA & NAAC with 'A' Grade Approved by AICTE, New Delhi and JNTU, Hyderabad DEPARTMENT OF INFORMATION TECHNOLOGY

Real Time Project Review on AIRBOARD USING HAND GESTURES

Under the guidance of Dr. V. Malsoru

Presented by:

V. Sri Varsha, 227R1A1259

V. Niteesh, 227R1A12622

G. Abhinav, 237R5A1204

CONTENTS

- ABSTRACT
- INTRODUCTION
- SOFTWARE/HARDWARE REQUIREMENTS
- EXISTING SYSTEM
- EXISTING SYSTEM DISADVANTAGES
- PROPOSED SYSTEM
- PROPOSED SYSTEM ADVANTAGES

ABSTRACT

- Air board hand gestures are a novel form of interaction that enables users to manipulate virtual objects in a three-dimensional space using natural hand movements.
- These gestures allow for intuitive and precise control, providing a more immersive and engaging user experience compared to traditional input devices.
- Research in this area focuses on developing advanced algorithms for gesture recognition and enhancing the accuracy and responsiveness of gesture-based interactions.

INTRODUCTION

- Air board using hand gestures is a technology that allows users to interact with a digital interface through hand movements.
- Python is a popular programming language used to develop applications that utilize hand gesture recognition.
- In this presentation, we will explore the concept of air board and how it can be implemented using Python.

SOFTWARE & HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS: HARDWARE REQUIREMENTS:

- pycharm
- Cv2 module
- media pipe

* laptop

EXISTING SYSTEM

- An air board system using hand gestures is a cutting-edge technology that allows users to interact with a virtual interface without physical touch.
- The system utilizes sensors to detect and interpret hand movements, enabling users to navigate, draw, and interact with digital content in a hands-free manner.
- This innovative technology has the potential to revolutionize the way we interact with computers and digital devices, offering a more intuitive and immersive user experience.

EXISTING SYSTEM - DISADVANTAGES

- Limited Accuracy: The existing system for air board using hand gestures often struggles to accurately interpret complex gestures, leading to errors in controlling the board's movements.
- Lack of Customization: Users have limited control over customizing hand gestures to suit their preferences, resulting in a one-size-fits-all approach that may not be optimal for all users.
- Environmental Interference: External factors such as lighting conditions and background movements can interfere with the system's ability to accurately detect and interpret hand gestures, impacting the overall user experience.

PROPOSED SYSTEM

Steering

 Tilt your hand left or right to steer the Airboard in the desired direction.

Speed Control

 Raise or lower your hand to adjust the Airboard's speed, with a simple palm-up or palm-down motion.

Braking

• Extend your hand in front of you to engage the Airboard's braking system and slow down gradually.

PROPOSED SYSTEM - ADVANTAGES

- **1.Intuitive Interaction**: Hand gestures provide a natural and intuitive way for users to interact with the airboard. This can make the control process more accessible to a wider range of users, including those who may not be familiar with traditional joystick or remote control interfaces.
- **2.Hands-Free Operation**: Unlike traditional controls that require physical input devices, controlling the airboard with hand gestures allows users to operate it hands-free. This can be particularly advantageous in situations where users need to maintain balance or perform other tasks simultaneously.
- **3.Enhanced Mobility**: Hand gesture control frees the user from being tethered to a physical controller, allowing for greater mobility and flexibility in controlling the airboard. Users can move more freely while still maintaining control over the device.

THANK YOU