

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica

PROGRAMA DE SISTEMAS REALIMENTADOS - 2024/1

Professores: José Leandro Félix Salles e Celso Jose Munaro e-mail: jose.salles@ufes.br , celso.munaro@ufes.br

Ementa:

Sistemas realimentados contínuos e discretos. Critérios de desempenho e métodos de sintonia de controladores em geral. O método do lugar das raízes para análise e síntese de sistemas realimentados. Análise de sistemas monovariáveis no domínio da frequência: Diagramas de resposta em frequência e análise de estabilidade, critério de Nyquist. Compensação ou projeto de controladores clássicos no domínio da frequência e do tempo, para sistemas contínuos e discretos. Controle por realimentação de estados e observadores de estados para sistemas contínuos e discretos.

Carga Horária Semanal: 4hs

Objetivos:

Projetar controladores PID usando métodos de sintonia e baseados em modelo de referência. Analisar sistemas de controle e projetar controladores PID usando o método do lugar das raízes e da resposta em frequência. Projetar controladores PID com dois graus de liberdade. Projetar controladores usando realimentação de estados para sistemas lineares e multivariáveis. Utilizar o Software Matlab para análise e projeto de controladores.

Metodologia:

O curso será desenvolvido através de aulas presenciais, com os materiais disponibilizados no google classroom. Este mesmo ambiente será utilizado para a entrega dos trabalhos computacionais.

Recursos

Quadro negro e giz e retroprojetor para apresentação de slides. O Matlab/simulink será usado para realização dos trabalhos computacionais e para expor tópicos da disciplina.

Aula	Data	Ite m	Conteúdo	Comentário
		1	Introdução	
1	12/03	1.1	Introdução à disciplina e sua metodologia. Revisão do	
			Matlab e uso de live scripts	
2	14/03	1.2	O problema de controle; configurações de controle	
3	19/03	1.3	Especificações de controle e controlador PID	EP1
		2	Métodos de sintonia de PID	
4	21/03	2.1	Métodos de sintonia: Síntese direta	EP2
5	26/03	2.2	Métodos de sintonia: IMC	EP3
6	28/03	2.3	Métodos de sintonia: Ziegler (métodos 1 e 2)	EP4
7	02/04	2.4	Controle feedforward	EP5
		3	O método do lugar das raízes	
8	04/04	3.1	O método do lugar das raízes	
9	09/04			Prova 1: Introdução e métodos de sintonia
10	11/04	3.1	O método do lugar das raízes	EP6
11	16/04			
12	18/04			
13	23/04			
14	25/04	3.1	O método do lugar das raízes para sistemas discretos	EP7
	30/4	3.2	Projeto PD e PI via LR	EP8, EP9
	02/05	3.3	Projeto PI e PID via LR	EP10, EP11
	07/05	3.4	Projeto PID via LR	EP12, EP13
		4	Resposta em frequência	
15	09/05	4.1	Resposta frequência: gráfico polar	T1 : projeto PID via LR
16	14/05	4.2	Resposta frequência: Critério de Nyquist	EP14, EP15
17	16/5			Prova 2: O Método do LR e projeto de PID via LR
18	21/05	4.2	Resposta frequência: Critério de Nyquist	EP16
19	23/05	4.2	Resposta frequência: Critério de Nyquist	EP17
20	28/05	4.3	Resposta frequência: Estabilidade relativa	EP18
21	04/06	4.4	Resposta frequência: Gráfico de Bode	EP19
22	06/06	4.4	Resposta frequência: Gráfico de Bode	EP20
23	11/06	4.5	Resposta frequência: Estabilidade relativa e sistemas de fase não mínima	EP21
24	13/06	4.6	Projeto PI via Bode	EP22
25	18/06	4.7	Projeto PD via Bode	EP23
26	20/06	4.8	Projeto PID via Bode	EP24
		5	Espaço de estados	
27	25/06	5.1	Revisão espaço de estados	EP25 T2: projeto PID via

				Bode
28	27/07	5.2	Controlabilidade e realimentação de estados	EP23
29	04/07			Prova 3: Resposta em frequência e projeto do PID via Bode
30	11/07	5.3	Realimentação integral de estados	EP24
	16/7			EP25
	18/7			T3: projeto usando realimentação de estados
				Prova final

Avaliação

A avaliação será feita através de 3 trabalhos computacionais (T1 a T3) feitos individualmente, usando o Matlab; 3 provas feitas em sala de aula (P1 a P3); exercícios propostos aos alunos (EP) que serão entregues em datas específicas e deverão ser apresentados em dupla na sala de aula. A média parcial será composta por:

Média parcial = 0,5x (P1+P2+P3)/3+ 0,3 x(T1+T2+T3)/3 +0,2(Média de EP).

Observações:

Trabalhos: devem ser entregues apenas no google class em formato pdf, e não são aceitos se enviados por email. Trabalhos atrasados são penalizados pela expressão P=exp(-h/48), onde h são as horas de atraso. Exemplo: h=24h P=0.60, ou seja, 60% da nota.

Exercícios propostos: serão sorteados no início das aulas e devem ser entregues em formato pdf no google class até a data especificada, quando serão apresentados na sala de aula (15 min) pelo grupo de 2 participantes. Podem ser feitos usando live scripts do Matlab. Os grupos podem trocar os exercícios (e as datas) havendo comum acordo e comunicando o professor (caso de doença, etc).

Bibliografia:

Principal

Kuo, Benjamin C., Automatic Control Systems, Prentice-Hall International, 10 th edition, McGraw-Hill (livro texto), (2017).

Complementar

- Ogata, K. Engenharia de Controle Moderno, 4ª edição. Prentice Hall, São Paulo, 2003.
- Seborg, Dale E.; Edgar, Thomas F.; Mellicamp, Ducan E; Doyle III, Francis J. Process Dynamics and Control, John Wiley & Sons, 3ª ed. 2011.
- Astrom, Karl J.; Hagglund, Tore. Advanced PID Control. ISA, 2006.