Kryptografia z elementami algebry

Laboratorium 1, arytmetyka w strukturach algebraicznych miniprojekt nr 1

1. (2pkt) Zaimplementuj algorytm (funkcję) obliczania odwrotności w grupie $\Phi(n)$. Wykorzystaj Rozszerzony Algorytm Euklidesa.

Dane: $n \in \mathbb{N}, b \in \Phi(n)$ Wynik: $b^{-1} \in \Phi(n)$

2. (3pkt) Zaimplementuj algorytm (funkcję) efektywnego potęgowania w zbiorze \mathbb{Z}_n^* . Wykorzystaj algorytm iterowanego podnoszenia do kwadratu.

Dane: $n, k \in \mathbb{N}, b \in \mathbb{Z}_n^*$ Wynik: $b^k \in \mathbb{Z}_n^*$

3. (3pkt) Zaimplementuj test (funkcję), który sprawdza liczba naturalna n jest liczbą pierwszą. Wykorzystaj test Fermata

Dane: $n \in \mathbb{N}$

Wynik: True jeśli n jest liczbą pierwszą, False w przeciwnym wypadku.

4. (1pkt) Niech p będzie liczbą pierwszą. Zaimplementuj test (funkcję), który sprawdza czy element zbioru \mathbb{Z}_p^* jest resztą kwadratową w \mathbb{Z}_p^* . Wykorzystaj twierdzenie Eulera.

Dane: $b \in \mathbb{Z}_p^*$

 \mathbf{Wynik} : True jeśli b jest resztą kwadratową, False w przeciwnym wypadku.

5. (1pkt) Niech $p \equiv 3 \pmod 4$ będzie liczbą pierwszą. Zaimplementuj funkcję, która oblicza pierwiastek kwadratowy w $\Phi(p)$. Wykorzystaj twierdzenie Eulera.

Dane: $p \equiv 3 \pmod{4}, b \in \Phi(p), b$ jest resztą kwadratową (mod p)

Wynik: $a \in \Phi(p)$ taki, że $a^2 \equiv b \pmod{p}$.