Kapitel 1

Grundlegende Sätze

Differenzial indempotenter Elemente [Aufgabe 16.1 David Eisenbud 1994]

Lemma 1. Sei S eine R-Algebra und $d: S \longrightarrow M$ ein beliebige Ableitung von S in ein S-Modul M. Sei weiter $a \in S$ ein indempotentes Element $(a^2 = a)$.

Dann gilt
$$d(a) = 0$$
.

Beweis. Nutze hierfür allein die Leibnizregel (DEFINITION):

Schritt 1:
$$d_S(a) = d_S(a^2) = ad_S(a) + ad_S(a)$$

Schritt 2: $ad_S(a) = ad_S(a^2) = a^2d_S(a) + a^2d_S(a) = ad_S(a) + ad_S(a)$
 $\Rightarrow d_S(a) = ad_S(a) = 0$

Differenzial des Produktes von Algebren [Proposition 16.10 David Eisenbud 1994]

Proposition 2. Seien S_1, \ldots, S_n R-Algebran. Sei dazu $S := \prod_{i \in \{1, \ldots, n\}} S_i$ die direkte Summe. Dann gilt:

$$\Omega_{S/R} = \prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R}$$

Beweis. Sei für $i \in \{1, ..., n\}$ jeweils $e_i \in S$ die Einbettung es Einselement's von S_i in S, somit ist $p_i : e_i S \longrightarrow S_i$ ein Isomorphismus. Nutze weiter, dass e_i ein indempotentes Element $(e_i^2 = e_i)$ von S ist:

Nach lemma 1 gilt
$$d_S(e_i)=0$$

$$\Rightarrow \forall s \in s: d_S(e_is)=d_S({e_i}^2s)=e_id_S(e_is)+e_isd_S(e_i)=e_id_S(e_is)$$

Mit diesem Wissen können wir einen Isomorphismus $\Phi: \Omega_{S/R} \longrightarrow \prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$ definieren:

$$\Phi: \Omega_{S/R} \longrightarrow \prod_{i \in \{1,\ldots,n\}} e_i d_S(e_i S) \longrightarrow \prod_{i \in \{1,\ldots,n\}} \Omega_{S_i/R}$$

$$d_{S}(s) = \sum_{i \in \{1, \dots, n\}} d_{S}(e_{i}s) \longmapsto (e_{1}d_{S}(e_{1}s), \dots, e_{n}d_{S}(e_{n}s)) \longmapsto ((d_{S_{1}} \circ p_{1})(s), \dots, (d_{S_{n}} \circ p_{n})(s))$$

Da der Differenzialraum $\Omega_{S/R}$ bis auf eine eindeutige Isomophie eindeutig ist (PROPOSITION), definiere diesen ab jetzt als $\prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$.

Cotangent Sequenz [Proposition 16.2 David Eisenbud 1994(Wichtig für Körpererweiterungen)]

Proposition 3. Seien $\alpha: R \longrightarrow S$ und $\beta: S \longrightarrow T$ zwei Ringhomomorphismen. Dann existiert folgende Exakte Sequenz:

$$T \otimes_S \Omega_{S/R} \xrightarrow{t \otimes d_S(s) \mapsto t(d_T \circ \beta)(s)} \Omega_{T/R} \xrightarrow{d_T(t) \mapsto d_T(t)} \Omega_{T/S} \longrightarrow 0$$

Im Besonderen gilt für die Differenzialräume von T über R und S:

$$\Omega_{T/S} \simeq \Omega_{T/R}/T\langle (d_T \circ \beta)(S)\rangle.$$

Konormale Sequenz [vlg. Proposition 16.3 David Eisenbud 1994]

Satz 4. Sei $\pi: S \longrightarrow T$ ein R-Algebrenephimorphismus mit $Kern(\pi) := I$ Dann ist folgende Sequenz rechtsexakt:

$$I/I^2 \xrightarrow{f} T \otimes_S \Omega_{S/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit:
$$f: I/I^2 \longrightarrow T \otimes_S \Omega_{S/R}$$
, $[a]_{I^2} \longmapsto 1 \otimes d_S(a)$
 $g: T \otimes_S \Omega_{S/R} \longrightarrow \Omega_{T/R}$, $b \otimes d_S(c) \longmapsto b \cdot (d_S \circ \pi)(c)$

Beweis.

f ist wohldefiniert: Seien $a, b \in I^2$. Zeige $f(a \cdot b) = 0$:

$$f(a \cdot b) = 1 \otimes (d_S \circ \pi)(a \cdot b) = 1 \otimes \pi(a) \cdot (d_S \circ \pi)(b) + \pi(b) \cdot (d_S \circ \pi)(a) = 0$$

 $D\pi$ ist surjektiv:

$$\Omega_{S/R} \xrightarrow{D\pi} \Omega_{T/R}$$

$$d_{S} \uparrow \qquad \qquad d_{T} \uparrow$$

$$S \xrightarrow{\pi} T$$

Da $\Omega_{S/R}$ und $\Omega_{T/S}$ jeweils von d_S und d_T erzeugt werden, vererbt sich die Surjektivität von π auf $D\pi$. Somit ist auch $1 \otimes_S D\pi$ surjektiv.

im(f) = kern(g):

Dies folgt direkt aus der Isomorphie $(T \otimes_S \Omega_{S/R})/Im(f) \simeq \Omega_{T/R}$:

$$(T \otimes_S \Omega_{S/R})/Im(f)$$

$$= (T \otimes_S \Omega_{S/R})/(T \otimes_S d_S(I))$$

$$= T \otimes_S (\Omega_{S/R}/d_S(I))$$

$$= T \otimes_S (d_S(S)/d_S(I))$$

$$\simeq T \otimes_S d_S(S/I)$$

$$\simeq T \otimes_S d_T(T)$$

Differenzial ist Ableitung [Eigene Überlegung (Wichtig für Körpererweiterungen)]

Beispiel 5. Sei k ein Körper, somit entspricht $d_{k[x]}: k[x] \longrightarrow \Omega_{k[x]/k}$, $f \longmapsto f'd_{k[x]}(x)$ der analytischen Ableitung.

Teste dies an $f(x) = ax^2 + bx + c$:

$$d(f(x)) = a \cdot d(x^2) + b \cdot d(x) = (2ax + b)d(x) = f'(x)d(x)$$

Kapitel 2

Kolimes

2.1 Einführung in den Kolimes

Definition des Kolimes [vgl. Anhang A6 David Eisenbud 1994]

Definition 1. Sei A eine Kategorie und $C \in A$ ein Objekt

- Ein <u>Diagramm</u> über A ist eine Kategorie B zusammen mit einem Funktor $\mathcal{F}: \mathcal{B} \longrightarrow A$.
- Ein Morphismus $\psi : \mathcal{F} \longrightarrow C$ ist eine Menge von Funktionen $\{\psi_B \in Hom(F(B), C) | B \in \mathcal{B}\}$, wobei für alle $B_1, B_2 \in \mathcal{B}$ und $\varphi \in Hom(B_1, B_2)$ folgendes Diagramm kommutiert:

• Der Kolimes $\varinjlim \mathcal{F}$ eines Diagramms $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ist ein Objekt $A \in \mathcal{A}$ zusammen mit einem Morphismus $\psi: \mathcal{F} \longrightarrow A$ und folgender universellen Eigenschaft:

für alle Morphismen $\psi': \mathcal{F} \longrightarrow A'$ existiert genau eine Funktion $\varphi \in Hom(A, A')$, sodass folgendes Diagramm kommutiert:

Eindeutigkeit des Kolimes [vgl. A6 David Eisenbud 1994]

Lemma 2. Seien \mathcal{B} , \mathcal{A} zwei Kategorien und $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Funktor, so git: Im Falle der Existenz sind $\lim_{\longrightarrow} \mathcal{F}$ und der dazugehörige Morphismus $\psi: \mathcal{F} \longrightarrow \mathcal{A}$ bis auf eine eindeutige Isomorphie eindeutig bestimmt.

Beweis. Seien $A_1 \in \mathcal{A}, (\psi_1 : \mathcal{F} \longrightarrow A_1)$ und $A_2 \in \mathcal{A}, (\psi_2 : \mathcal{F} \longrightarrow A_2)$ beide gleich $\lim \mathcal{F}$.

Erhalte durch die universelle Eigenschaft des Kolimes die eindeutig bestimmten Funktionen $\varphi_1 \in Hom_{\mathcal{A}}(A_1, A_2)$ und $\varphi_2 \in Hom_{\mathcal{A}}(A_2, A_1)$, für welche die folgende Diagramme kommutieren:

Wende nun die Universelle Eigenschaft von ψ_1 auf ψ_1 selbst an und erhalte $id_{A_1} = \varphi_2 \circ \varphi_1$. Analog erhalte auch $id_{A_2} = \varphi_1 \circ \varphi_2$.

Somit existiert genau eine Isomorphie $\varphi_1: A_1 \longrightarrow A_2$.

Im folgenden beschäftigen wir uns mit dem Fall des $\varinjlim \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$, bei welchem \mathcal{B} eine Unterkategorie von \mathcal{A} ist. Zur Vereinfachung unterschlagen dabei die triviale Existenz des Funktors $\varinjlim \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$. Wir werden also im folgenden von dem Diagramm \mathcal{B} und dem entsprechenden Kolimes $\varinjlim \mathcal{B}$, sowie dem Morphismus $\phi: \mathcal{B} \longrightarrow \mathcal{A}$ sprechen.

Vereinfachung des Kolimes [Eigene Überlegung (Beweis fehlt noch)]

Bemerkung 3. Seien $\mathcal{B} \nsubseteq \mathcal{A}$ zwei Kategorien und $\mathcal{F} : \mathcal{B} \longrightarrow \mathcal{A}$ ein Diagramm. Dann gilt im Falle der Existenz $\varinjlim \mathcal{F} = \varinjlim \mathcal{F}(\mathcal{B})$

DifferenzkokernUndKoproduktDef [vlg. A6 David Eisenbud 1994]

Definition 4. Sei A eine Kategorie.

- Das Koprodukt von {B_i} ⊆ A wird durch ∏_i{B_i} := lim B definiert, wobei B {B_i} als Objekte und die Identitätsabbildungen id_{B_i} : B_i → B_i als Morphismen enthält.
- Der Differenzkokern (oder auch Coequilizer) von $f,g \in Hom_{\mathcal{A}}(C_1,C_2)$ wird durch \varinjlim_{C} definiert, wobei \mathcal{C} $\{C_1,C_2\}$ als Objekte und $\{f,g\}:=Hom_{\mathcal{C}}(C_1,C_2)$ als Morphismen enthält.

NeuDifferenzenkokerndef [vlg. Wikipedia aber eigener Beweis]

Lemma 5. Sei A eine Kategorie mit $C_1, C_2 \in Hom_A(C_1, C_2)$, so sind folgende Formulierungen äquivalent zur Definition des Differenzkokern's $T := \lim_{n \to \infty} C$

- 1. Es existiert ein Morphismus $\psi: \mathcal{C} \longrightarrow T$, mit der Eigenschaft, dass für alle Morphismen $\psi': \mathcal{C} \longrightarrow T'$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ \psi = \psi'$ existiert.
- 2. Es existiert ein $q \in Hom_{\mathcal{A}}(C_2, T)$ mit $q \circ f = q \circ g$ und der Eigenschaft, dass für alle Morphismen $q' \in Hom_{\mathcal{A}}(C_2, Z)$ mit $q' \circ f = q' \circ g$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ q = q'$ existiert.

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} T$$

$$\downarrow^{q'} \qquad \downarrow^{\exists !\varphi}$$

$$T'$$

Beweis. 1. ist offensichtlich eine Ausformulierung der Einführung des Kolimes aus ??, zeige also im folgenden noch die Äquivalenz von 1. und 2.

• $1 \Rightarrow 2$:

Da $\psi: \mathcal{C} \longrightarrow T$ ein Morphismus ist, gilt für $\{f, g\} = Hom_{\mathcal{C}}(C_1, C_2)$: $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_1} \circ \psi_{C_2}$, setze also $q := \psi_{C_2}$.

Sei nun $q' \in Hom_{\mathcal{A}}(C_2, T)$ mit der Eigenschaft $q' \circ f = q' \circ g$ gegeben: Definiere den Morphismus $\psi' : \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q' \circ f, \psi_2 = q'\}$, somit folgt direkt aus der Universellen Eigenschaft von ψ , dass genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ existiert, mit $\varphi \circ q = q'$.

• $2 \Rightarrow 1$:

Definiere $\psi: \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q \circ f, \psi_2 = q\}$. Durch die Eigenschaft von q gilt $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_2} \circ g$.

Sei nun $\psi': \mathcal{C} \longrightarrow \mathcal{A}$ ein beliebiger Morphismus.

Definiere $d' := \psi'$, somit existiert durch die Eigenschaft von d genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ mit $\varphi \circ q = q'$.

$$\Rightarrow \varphi \circ \psi_2 = \psi_2'$$
 und $\varphi \circ \psi_1 = \varphi \circ \psi_2 \circ f = \varphi \circ \psi_2' \circ f = \varphi \circ \psi_1'$

Wenn im weiteren Verlauf von dem Differenzkokern zweier Homomorphismen $f,g:C_1\longrightarrow C_2$ gesprochen wird, meinen wir damit den Homomorphismus $q:C_2\longrightarrow T$ aus lemma 5.

Tensorprodukt des Differenzenkokerns [Eigene Bemerkung]

Bemerkung 6. Seien $f, g \in Hom_{\mathcal{A}}(S_1, S_2)$ R-Algebra-Homomorphismen, so können wir für den Differenzenkokern $q: S_2 \longrightarrow T$ für ein beliebiges S_1 -Modul das Tensorprodukt $T \otimes_{C_1} M$ definieren.

$$f\ddot{u}r \ s_1 \in S_1 \ und \ t \otimes m) \in T \otimes_{C_1} M \ gilt:$$
$$s_1 \cdot (t \otimes m) = ((q \circ f)(s_1)) \cdot t \otimes m = ((q \circ g)) \cdot (s_1)t \otimes m$$

R-Algebra-Kolimiten [vlg. Proposition A6.7 David Eisenbud 1994]

Proposition 7. in der Kategorie der R-Algebren existieren Koprodukte und Differenzkokerne, wobei:

- 1. Das Koprodukt einer endlichen Familie von R Algebren $\{S_i\}_{i\in\Lambda}$ entspricht deren Tesorprodukt $\bigotimes_{i\in\Lambda} S_i$.
- 2. Der Differenzkokern zweier R-Algebra-Homomorphismen $f, g: S_1 \longrightarrow S_2$ einspricht dem Homomorphismus $q: S_2 \longrightarrow S_2/Q$, $y \longmapsto [y]$, wobei $Q:=\{f(x)-g(x)\mid x\in S_2\}$ das Bild der Differenz von f und g ist.

Beweis. Zu 1.:

Sei \mathcal{B} die Unterkategorie der R-Algebren, welche $\{S_i\}_{i\in\Lambda}$ zusammen mit den Identitätsabbildungen enthält. Wir wollen die universellen Eigenschaften des Tensorproduktes und des Kähler-Differenzials nutzen, um einen Isomorphismus zwischen $\lim \mathcal{F}$ und $\bigotimes_{i\in\Lambda} B_i$ zu finden.

Es sind der Morphismus $\psi: \mathcal{B} \longrightarrow \varinjlim \mathcal{B}$ und die bilineare Abbildung $g: \oplus_i S_i \longrightarrow \otimes_i S_i$ gegeben.

Konstruiere den Morphismus $\psi': \mathcal{B} \longrightarrow \bigotimes_i S_i$ durch $\psi'_i: S_i \longrightarrow \bigotimes_i S_i$, $s_i \longmapsto g(1,..,1,s_i,1,..,1)$ für $i \in \lambda$ und die bilineare Abbildung $f: \bigoplus_i S_i \longrightarrow \varinjlim_i \mathcal{B}, s \longmapsto \prod_i \psi_i(s_i)$.

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:

$$\varphi: \lim_{\longrightarrow} \mathcal{B} \longrightarrow \bigotimes_{i} S_{i}$$
$$\phi: \bigotimes_{i} S_{i} \longrightarrow \lim_{\longrightarrow} \mathcal{B}.$$

Die Eindeutigkeit der universellen Eigenschaften liefert uns, das φ und ϕ zueinander Inverse sind und somit haben wir unsere gesuchten Isomorphismen zwischen $\lim \mathcal{B}$ und $\bigotimes_i S_i$ gefunden.

Zu 2.

Zeige, dass $q: S_2 \longrightarrow S_2/Q$ die in lemma 5 eingeführten Eigenschaften des Differenzkokern's besitzt.

$$g \circ f = g \circ g$$
 gilt, da $kern(g) = Q = \{f(x) - g(x) \mid x \in C_2\}.$

Sei nun eine Funktion $q' \in Hom_{\mathcal{A}}(S_2, T')$ mit $q' \circ f = q' \circ$ gegeben. Somit gilt $q' \circ (f - g) = 0$, wodurch Q ein Untermodul von Q' := kern(q') ist. Mit dem Isomorphiesatz für R-Algebren erhalten wir:

$$S_2/Q' \simeq (S_2/Q)/(Q'/Q).$$

Somit ist $q': S_2 \longrightarrow (S_2/Q)/(Q'/Q)$, $y \longmapsto [y]'$ eine isomorphe Darstellung von $q': S_2 \longrightarrow T'$.

$$\Rightarrow \exists ! \varphi : S_2/Q \longrightarrow (S_2/Q)/(Q'/Q), [y] \longmapsto [y]' \ mit \ (\varphi \circ q) = q'.$$

Also ist $q: S_2 \longrightarrow S_2/Q$ der bis auf Isomorphie eindeutig bestimmte Differenzkokern von f und g.

Darstellung der Polynomalgebra als Tensorprodukt [Eigene Überlegung]

Bemerkung 8. Die Polynomalgebra $R[x_1,...,x_d]$ über R lässt sich wie folgt als Tensorprodukt darstellen:

$$R[x_1,...,x_n] = \bigotimes_{i \in \{1,...,n\}} R[x_i]$$

Genauer gilt für zwei Polynomalgebren $A = R[x_1,...,x_{n_A}], B = R[y_1,...,y_{n_B}]$ über R:

$$A \otimes_R B = R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}]$$

Skizziere den Beweis.

Beweis. Zeige, dass für $g:A\oplus B\longrightarrow R[x_1,...,x_{n_A},y_1,...,y_{n_B}]$, $(a,b)\longmapsto a\cdot b$ die Universelle Eigenschaft des Tensorproduktes gilt:

Es ist leicht nachzurechnen, dass es sich bei φ um folgende Funktion handeln muss:

$$\varphi: R[x_1, ..., x_{n_A}, y_1, ..., y_{n_B}] \longrightarrow M, (x_i \cdot y_j) \longmapsto f(x_i, 1) \cdot f(1, y_i)$$

R-Modul-Kolimiten [Proposition A6.2 David Eisenbud 1994]

Proposition 9. In Der Kategorie der R-Module existieren Koprodukte und Differenzkokerne, wobei:

- 1. das Koprodukt $\lim_{\longrightarrow} \mathcal{B}$ von R-Modulen $M_i \in (R Module)$ entspricht der direkten Summe $\sum_i M_i$.
- **2.** der Differenzenkokern zweier Homomorphismen $f, g: M_1 \longrightarrow M_2$ entspricht dem Kokern $M_2/im(f-g)$ der Differenzenabbildung.

Beweis. für 1. Sei $\phi:\{M_i\}\longrightarrow \mathcal{B}$ ein beliebiger Morphismus. Zeige:

Für ein beliebiges i existiert genau ein $\varphi_i:M_i\oplus 0\longrightarrow M'$, $(0,...,0,m_i,0,...,0\longmapsto \psi_i'(m_i)$ mit $\psi_i'=\psi_i\circ\varphi_i$

$$\Rightarrow \exists! \varphi: \bigoplus_i M_i \longrightarrow M', (m_1, ..., m_n) \longmapsto \sum_i \psi_i(m_i)$$

2. ist Analog zu proposition 7

Die in proposition 9 gezeigten Darstellungen gelten mit kurzen Überlegungen auch für S-Module, wobei S eine R-Algebra ist.

Lokalisierung von Algebren als Kolimes [vlg. Aufgabe A6.7 David Eisenbud 1994]

Lemma 10. Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$S[U^{-1}] = \lim_{\longrightarrow} \mathcal{B}$$

Wobei \mathcal{B} aus den Objekten $\{S[t^{-1}]|t \in U\}$ und den Morphismen $S[t^{-1}] \longrightarrow S[tt'^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{st'^n}{(tt')^n})_{(tt')} \ \forall t, t' \in U$ besteht.

Beweis. Sei $\psi: \mathcal{B} \longrightarrow A$ der Kolimes von \mathcal{B} . Zeige $S[U^{-1}] \simeq A$, definiere dazu:

$$\psi': \mathcal{B} \longrightarrow S[U^{-1}]$$

$$\psi'_{S[t^{-1}]}: S[t^{-1}] \longrightarrow S[t^{-1}], (\frac{s}{t^n})_t \longmapsto (\frac{s}{t^n})_U$$

 ψ' ist ein Morphismus, da für beliebige $t,t'\in U$ und $s\in S$ gilt:

$$\left(\frac{s}{t^n}\right)_{\scriptscriptstyle U} = \left(\frac{st'^n}{(tt')^n}\right)_{\scriptscriptstyle U}$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir den eindeutigen Homomorphismus $\varphi:A\longrightarrow S[U^{-1}].$

$$S[U^{-1}] \leftarrow A$$

Für $\phi: S[U^{-1}] \longrightarrow A$ benötigen wir kleinere Vorüberlegungen. Zunächst können wir jedes Element $(\frac{s}{u})_U \in S[U^{-1}]$ als $\psi_{S[t^{-1}]}((\frac{s}{t})_t)$ schreiben. Weiter gilt für alle $s_1, s_2 \in S, t_1, t_2 \in U$:

$$Sei \ \psi'_{S[t^{-1}]}((\frac{s_1}{t_1})_t) = \psi'_{S[t^{-1}]}((\frac{s_2}{t_2})_t)$$

$$\Rightarrow \exists u \in U : (s_1t_1 - s_2t_2) \cdot u = 0$$

$$\Rightarrow (\frac{s_1u}{t_1u})_{tu} = (\frac{s_2u}{t_2u})_{tu}$$

$$\Rightarrow \psi_{S[t^{-1}]}((\frac{s_1}{t_1})_t) = \psi_{S[t^{-1}]}((\frac{s_2}{t_2})_t)$$

Mit diesem Wissen können wir den R-Algebra-Homomorphismus $\phi: S[U^{-1}] \longrightarrow A$ definieren:

$$\phi: S[U^{-1}] \longrightarrow A\,,\, \psi_{S[t^{-1}]}'((\frac{s}{t})_{\iota}) \longmapsto \psi_{S[t^{-1}]}((\frac{s}{t})_{\iota})$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes:

$$\begin{array}{c|c}
\mathcal{B} \\
\psi \\
A & \\
A & \\
\end{array}$$

Für $\varphi \circ \phi \stackrel{!}{=} id_{S[U^{-1}]}$ wähle beliebige $s \in S, t \in U$, für diese gilt:

$$(\varphi \circ \phi)(\psi'((\frac{s}{t})_t)) = \varphi(\psi((\frac{s}{t})_t) = \psi'((\frac{s}{t})_t)$$

Damit haben wir gezeigt, dass φ, ϕ Isomorphismen sind und somit $A \simeq S[U^{-1}]$ gilt.

Da der Kolimes bis auf Isomorphie eindeutig ist, definiere ab sofort $S[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{B} .

Lokalisierung von Moduln als Kolimes [Eigene Idee, wurde angeschnitten im Beweis von Proposition 16.9 David Eisenbud 1994]

Korrolar 11. Sei M ein S-Modul, wobei S eine R-Algebra ist. Sei weiter $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$M[U^{-1}] = \lim_{\longrightarrow} \mathcal{C}$$

Wobei \mathcal{C} aus den Objekten $\{S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] | t \in U\}$ und folgenden Morphismen besteht:

$$S[U^{-1}] \otimes M[t^{-1}] \longrightarrow S[U^{-1}] \otimes M[(tt')^{-1}],$$
$$(\frac{s}{u})_{U} \otimes (\frac{m}{t^{n}})_{t} \longmapsto (\frac{s}{u})_{U} \otimes (\frac{t'^{n}m}{(tt')^{n}})_{t}$$

Auch wenn sich lemma 10 hier nicht direkt anwenden lässt, so können wir doch im Beweis gleich vorgehen.

Beweis. Schließe zunächst den trivialen Fall $0 \in U$ aus.

Sei $\psi:\mathcal{C}\longrightarrow A$ der Colimes von $\mathcal{C}.$ Zeige $S[U^{-1}]\simeq A,$ definiere dazu folgenden Morphismus :

$$\psi: \mathcal{C} \longrightarrow M[U^{-1}]$$

$$\psi_t: S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}] \longrightarrow M[U^{-1}], \left(\frac{s}{u}\right)_U \otimes \left(\frac{m}{t^n}\right)_t \longmapsto \left(\frac{sm}{ut^n}\right)_U$$

Die Wohldefiniertheit von ψ'_t für ein beliebiges $t \in U$ folgt direkt aus der Universellen Eigenschaft des Tensorprodukt's. Denn für die bilineare Abbildung $f: S[U^{-1}] \oplus M[t^{-1}] \longrightarrow M[t^{-1}]$, $((\frac{s}{n})_U, (\frac{m}{t^n})_t) \longmapsto (\frac{sm}{nt^n})_U$ gilt:

$$S[U^{-1}] \oplus M[t^{-1}] \xrightarrow{g} S[U^{-1}] \otimes_{S[t^{-1}]} M[t^{-1}]$$

$$\downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ M[U^{-1}]$$

Durch die Universelle Eigenschaft des Kolimes erhalten wir nun den eindeutigen Homomorphismus $\varphi:A\longrightarrow M[U^{-1}].$

$$M[U^{-1}] \leftarrow \cdots \qquad A$$

Für $\phi: M[U^{-1}] \longrightarrow A$ benötigen wir kleinere Vorüberlegungen. Zunächst können wir jedes Element $(\frac{m}{u})_U \in M[U^{-1}]$ als $\psi((\frac{1}{u})_U \otimes (\frac{m}{1})_t)$ schreiben. Wobei mit ψ gemeint ist, dass wir ein beliebiges $t \in U$ wählen und dann ψ_t

betrachten. Diese Verallgemeinerung ist möglich, da für beliebige $t_1, t_2, u \in U$ und $m \in M$ gilt:

$$\psi_{t_1}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_1}) = (\frac{m}{u})_{U} = \psi_{t_2}((\frac{1}{u})_{U} \otimes (\frac{m}{1})_{t_2})$$

Definiere nun mit diesem Wissen folgenden Homomorphismus:

$$\phi: M[U^{-1}] \longrightarrow A, \ \psi((\frac{1}{u})_{U} \otimes t) \longmapsto \psi'((\frac{1}{u})_{U} \otimes t)$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes. Für $\varphi\circ\phi\stackrel{!}{=}id_{M[U^{-1}]}$ wähle $(\frac{m}{u})_U\in M[U^{-1}]$ beliebig, für dieses gilt:

$$(\varphi \circ \phi)(\psi'((\frac{1}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{1})_{\scriptscriptstyle t}))$$

$$= \varphi(\psi((\frac{1}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{1})_{\scriptscriptstyle t}))$$

$$= \psi'((\frac{1}{u})_{\scriptscriptstyle U} \otimes (\frac{m}{1})_{\scriptscriptstyle t})$$

Damit haben wir $A \simeq M[U^{-1}]$ gezeigt, definiere also ab sofort $M[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{C} .

2.2 Kähler-Differenzial von Kolimiten

Differenzial des Kolimes von R-Algebren [vlg. Korolar 16.7 David Eisenbud 1994]

Proposition 12.

1. Sei $T = \bigotimes_{i \in \Lambda} S_i$ das Koprodukt der R-Algebren S_i . Dann gilt:

$$\Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

2. Seien S_1, S_2 R-Algebren und $\varphi, \varphi': S_1 \longrightarrow S_2$ R-Algebra-Homomorphismen. Sei weiter $q: S_2 \longrightarrow T$ der Differenzkokern von φ, φ' . Dann ist folgende Sequenz rechtsexakt:

$$T \otimes_{S_1} \Omega_{S_1/R} \xrightarrow{f} T \otimes_{S_2} \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

$$mit: f: T \otimes \Omega_{S_1/R} \longrightarrow T \otimes_{S_2} \Omega_{S_2/R}, t \otimes d_{S_1}(x_1) \longmapsto t \otimes d_{S_2}(\varphi(x_1) - \varphi(x_2))$$

$$g: T \otimes_{S_2} \Omega_{S_2/R} \longrightarrow \Omega_{T/R}, t \otimes d_{S_2}(x_2) \longmapsto (d_T \circ q)(x_2)$$

Beweis.

Für 1. finde durch die Universelle Eigenschaft des Kähler-Differenzials Isomor-

phismen $\Omega_{T/R} \longleftrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$. Definiere das Differenzial $e: T \longrightarrow \bigoplus_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$, $(s_i \otimes ...) \longmapsto (1 \otimes d_{S_1}, ...)$ und erhalte dadurch

$$T \xrightarrow{d_T} \Omega_{T/R}$$

$$\downarrow_{\exists ! \varphi} \qquad \varphi : \Omega_{T/R} \longrightarrow \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}).$$

$$\bigoplus_{i \in \Lambda} T \otimes_{S_i} \Omega_{S_i/R}$$

Definiere nun das Differenzial $k: S_i \hookrightarrow T \longrightarrow \Omega_{T/R}$ und erhalte dadurch:

$$S_{i} \xrightarrow{d_{S_{i}}} \Omega_{S_{i}/R} \xrightarrow{a} T \otimes_{S_{i}} \Omega_{S_{i}/R}$$

$$\downarrow_{\exists!k'} \qquad \qquad \phi_{i} : \bigoplus_{i \in \Lambda} (T \otimes_{S_{i}} \Omega_{S_{i}/R}) \longrightarrow \Omega_{T/R}$$

$$\Omega_{T/R}$$

$$\phi: \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R}) \longrightarrow \Omega_{T/R}, (..., t_i \otimes d_{S_i}(s_i), ...) \longmapsto \prod_{i \in \Lambda} t_i \cdot \phi_i(d_{S_i}(s_i))$$

Damit haben wir zwei zue
inander inverse Funktionen φ,ϕ gefunden.

$$\Rightarrow \Omega_{T/R} \simeq \bigoplus_{i \in \Lambda} (T \otimes_{S_i} \Omega_{S_i/R})$$

Für 2. Wende satz 4 auf den Differenzkokern $q:S_2\longrightarrow S_2/Q$ (vlg. proposition 7) an und erhalte dadurch eine exakte Sequenz, welche ähnlich zu der gesuchten ist:

$$Q/Q^2 \xrightarrow{f'} T \otimes \Omega_{S_2/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit $f': Q/Q^2 \longrightarrow T \otimes_{S_2} \Omega_{S/R}$, $[s_2]_{Q^2} \longmapsto 1 \otimes d_{S_2}(s_2)$. Somit gilt $im(f) = T \otimes_{S_2} d_{S_2}(Q) = im(f')$. \Rightarrow die gesuchte Sequenz ist exakt.

 \mathbf{s}

Differenzial von Polynomalgebren 1 [vlg. Proposition 16.1 David Eisenbud 1994]

Korrolar 13. Sei $S = R[x_1, ..., x_n]$ eine Polynomalgebra über R. Dann gilt:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} S\langle d_S(x_i) \rangle$$

Wobei $S\langle d_S(x_i)\rangle$ das von $d_S(x_i)$ erzeugt Modul über S ist.

Beweis. Wie in bemerkung 8 gezeigt, können wir S als $\bigotimes_{i \in \{1,...,n\}} R[x_i]$ schreiben. In proposition 12 haben wir gezeigt, wie das Differenzial eines solchen Tensorproduktes aussieht:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} \Omega_{R[x_i]/R})$$

Da $R[x_i]$ die aus dem Element x_i erzeugte Algebra über R ist, folgt $[vlg.\ BE-MERKUNG\ ZU\ ENDLICH\ ERZEUGTEN\ ALGEBREN]$:

$$\Omega_{S/R} = \bigoplus_{i \in \{1, \dots, n\}} (S \otimes_{R[x_i]} R[x_i] \langle d_{S[x_i]}(x_i) \rangle) \simeq \bigoplus_{i \in \{1, \dots, n\}} S \langle d_S(x_i) \rangle$$

Für die letzte Isomorphie nutze, dass wegen $R[x_i] \subseteq S$ zum Einen $d_{R[x_i]}$ als Einschränkung von d_S gesehen werden kann und zum Anderen $S \otimes_{R[x_i]} R[x_i] \simeq S$ gilt.

Differenzial von Polynomalgebren 2 [vgl. Korrolar 16.6 David Eisenbud 1994]

Korrolar 14. Sei S eine R-Algebra und $T := S[x_1, ..., x_n]$ eine Polynomalgebra über S. Dann gilt:

$$\Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis.Betrachte Tals Tensorprodukt über R-Algebren und wende anschließend proposition 12 an:

$$T \simeq S \otimes_R R[x_1, ..., x_n]$$

$$\Rightarrow \Omega_{T/R} \simeq (T \otimes_S \Omega_{S/R}) \oplus (T \otimes_{R[x_1, ..., x_n]} \Omega_{R[x_1, ..., x_n]/R})$$

Zuletzt wende den soeben gezeigten korrolar 13 an und nutze schließlich $R[x_1, ..., x_n] \subseteq T$ um das Tensorprodukt zu vereinfachen:

$$T \otimes_{R[x_1,...,x_n]} \Omega_{R[x_1,...,x_n]/R}$$

$$\simeq T \otimes_{R[x_1,...,x_n]} \bigoplus_{i \in \{1,...,n\}} R[x_1,...,x_n] \langle d_{R[x_i]}(x_i) \rangle$$

$$\simeq \bigoplus_{i \in \{1,...,n\}} T \langle d_R(x_i) \rangle$$

Differenzial der Lokalisierung [vlg. Proposition 16.9 David Eisenbud 1994]

Theorem 15. Sei S eine R – Algebra und $U \subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}, Wobei:$$

$$d_{S[U^{-1}]}((\frac{1}{u})_U) \longmapsto -(\frac{1}{u^2})_U \otimes d_S(u)$$

Beweis. Wir wollen THEOREM16.8 auf $\mathcal{B} = \{S[t^{-1}]|t \in U\}$ aus lemma 10 anwenden.

14

Zeige also zunächsten den einfacheren Fall $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R}$ für ein beliebiges $t \in U$:

Nutze hierfür die Isomorphe Darstellung $S[t^{-1}] \simeq S[x]/(tx-1)$, sowie die Isomorphie $\Omega_{S[x]/R} \simeq S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$. aus korrolar 14 Daraus erhalten wir folgende Isomorphismen:

$$\alpha: S[t^{-1}] \longrightarrow S[x]/(tx-1)$$

$$\beta: S[x]/(tx-1) \longrightarrow S[t^{-1}]$$

$$\gamma: \Omega_{S[x]/R} \longrightarrow S[x] \otimes_S \Omega_{S/R} \oplus S[x] d_{S[x]}(x)$$

Nutze diese nun, um $\Omega_{S[t^{-1}]/R}$ isomorph zu $S[t^{-1}] \otimes_S \Omega_{S/R}$ umzuformen:

$$\Omega_{S[t^{-1}]/R} \qquad \qquad d_{S[t^{-1}]}((\frac{s}{t})_t)$$

$$\downarrow^{D\alpha} \qquad \qquad \downarrow^{D\alpha}$$

$$\Omega_{S[x]/R}/d_{S[x]}(tx-1) \qquad \qquad [d_{S[x]}(sx)] = [xd_{S[x]}(s) + sd_{S[x]}(x)]$$

$$\downarrow^{\gamma} \qquad \qquad \downarrow^{\gamma}$$

$$(S[x] \otimes_S \Omega_{S/R} \oplus S[x]d_{S[x]}x)/((tx-1)d_{S[x]}(tx-1)) \qquad \qquad [x \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$(S[t^{-1}] \otimes_S \Omega_{S/R}) \oplus S[t^{-1}]d_{S[x]}(x)/d_{S[x]}(tx-1) =: M \qquad \qquad [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$(S[t^{-1}] \otimes_S \Omega_{S/R}) \oplus S[t^{-1}]d_{S[x]}(x)/d_{S[x]}(tx-1) =: M \qquad \qquad [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)]$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta}$$

$$((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Die ersten drei Schritte ergeben sich aus den oben angegeben Isomorphismen. Für den letzten Schritt definiere:

$$f: M \longrightarrow S[t^{-1}] \otimes_S \Omega_{S/R}, [(\frac{1}{t})_t \otimes d_S(s), sd_{S[x]}(x)] \longmapsto ((\frac{1}{t})_t \otimes d_S(s)) - ((\frac{s}{t^2})_t \otimes d_S(t))$$

Damit f ein Isomorphismus ist, genügt es zu zeigen, dass $S[t^{-1}] \otimes_S \Omega_{S/R}$ ein eindeutiges Repräsentantensystem von M ist.

Sei dazu $[m_1, (\frac{s}{t^n})_t d_{S[x]}(x)]$ ein beliebiger Erzeuger von M. Somit gilt:

$$\begin{split} d_{S[x]}(tx-1) &= td_{S[x]}(x) + \beta(x)d_{S[x]}(s) \\ \Rightarrow & [0,d_{S[x]}(x)] = [-(\frac{1}{t^2})_t d_S(t),0] \\ \Rightarrow & [m_1,(\frac{s}{t^n})_t d_{S[x]}(x)] = [m_1 - (\frac{s}{t^{n+2}})_t d_S(t),0] = [f([m_1,(\frac{s}{t^n})_t d_{S[x]}(x)]),0] \end{split}$$

f ist also wie vermutet ein Isomorphismus und aus obigen Umformungen folgt $\Omega_{S[t^{-1}]/R} \simeq S[t^{-1}] \otimes_S \Omega_{S/R} = \Omega_{S/R}[t^{-1}].$

Definiere für beliebige $t \in U$ folgenden Isomorphismus:

$$f \circ \beta \circ \gamma \circ D\alpha =: \delta_t : \Omega_{S[t^{-1}]/R} \longrightarrow \Omega_{S/R}[t^{-1}], d_{S[t^{-1}]}((\frac{1}{t})_t) \longmapsto -(\frac{d_S(t)}{t^2})_t$$

Zeige nun den Allgemeinen Fall $\Omega_{S[U^{-1}]/R} \simeq S[U^{-1}] \otimes_S \Omega_{S/R}$: Wähle $\mathcal{B} = \{S[t^{-1}]|t \in U\}$ wie in lemma 10, sodass $\lim_{\longrightarrow} \mathcal{B} = S[U^{-1}]$ gilt. Mit THEOREM16.8 folgt somit:

$$\Omega_{S[U^{-1}]/R} = \lim_{\longrightarrow} \mathcal{F} \text{ mit:}$$

$$\mathcal{F}: \mathcal{B} \longrightarrow (S[U^{-1}] - Module), S[t^{-1}] \longmapsto S[U^{-1}] \otimes \Omega_{S[t^{-1}]/R}$$

$$(\varphi: S[t^{-1}] \longrightarrow S[tt'^{-1}])$$

$$\longmapsto (1 \otimes D\varphi: S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[t^{-1}]/R} \longrightarrow S[U^{-1}] \otimes_{S[t^{-1}]} (S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}))$$

Zur Vereinfachung der Morphismen in $\mathcal{F}(\mathcal{B})$ definiere folgenden Isomorphismus:

$$g: S[U^{-1}] \otimes_{S[t^{-1}]} (S[t^{-1}] \otimes_{S[t^{-1}]} \Omega_{S[tt'^{-1}]/R}) \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S[tt'^{-1}]/R}$$
$$(\frac{s}{u})_{U} \otimes ((\frac{s'}{t})_{t} \otimes d_{S[tt'^{-1}]}(x)) \longmapsto (\frac{s}{u})_{U} \otimes \varphi((\frac{s'}{t})_{t}) d_{S[tt'^{-1}]}(x)$$

Als letzten Schritt wollen wir ?? anwenden. Nutze dazu $\delta_t : \Omega_{S[t^{-1}]/R} \longrightarrow \Omega_{S/R}[t^{-1}]$ um den zu \mathcal{F} isomorphen Funktor $\mathcal{F}' := \delta \circ \mathcal{F}$ zu erhalten. Um ein genaueres Bild von \mathcal{F}' zu erlangen, betrachte folgendes Kommutatives Diagramm:

$$(\frac{s}{t})_{t} \xrightarrow{\varphi} (\frac{st'}{tt'})_{tt'}$$

$$\downarrow d_{S[t^{-1}]} \qquad \downarrow d_{S[t^{-1}]}$$

$$1 \otimes ((\frac{1}{t})_{t}d_{S[t^{-1}]}((\frac{s}{1})_{t}) + (\frac{s}{1})_{t}d_{S[t^{-1}]}((\frac{1}{t})_{t})) \xrightarrow{g \circ (1 \otimes D\varphi)} 1 \otimes ((\frac{1}{tt'})_{tt'}d_{S[tt'^{-1}]}((\frac{st'}{1})_{tt'}) + (\frac{st'}{1})_{tt'}d_{S[tt'^{-1}]}((\frac{1}{tt'})_{tt'}))$$

$$\downarrow \delta_{t} \qquad \qquad \downarrow \delta_{tt'}$$

$$1 \otimes ((\frac{d_{S}(s)}{t})_{t} - (\frac{sd_{S}(t)}{t^{2}})_{t}) \xrightarrow{1 \otimes \varphi} 1 \otimes ((\frac{t'd_{S}(s)}{tt'})_{tt'} - (\frac{st'd_{S}(t)}{(tt')^{2}})_{tt'}) (*)$$

Dass das Diagramm in dieser Form kommutiert, ergibt sich in fast allen Fällen direkt aus dem Einsetzen in die entsprechenden Homomorphismen. Der einzige

Fall, welcher nicht direkt klar ist, ist (*). Rechne diesen also nochmal nach:

$$\begin{split} \delta_{tt'} \big(1 \otimes \big(\big(\frac{1}{tt'} \big)_{tt'} d_{S[tt'^{-1}]} \big(\big(\frac{st'}{1} \big)_{tt'} \big) + \big(\frac{st'}{1} \big)_{tt'} d_{S[tt'^{-1}]} \big(\big(\frac{1}{tt'} \big)_{tt'} \big) \big) \big) \\ &= 1 \otimes \big(\big(\frac{d_{S}(st')}{tt'} \big)_{tt'} - \big(\frac{t'sd_{S}(tt')}{(tt')^{2}} \big)_{tt'} \big) \\ &= 1 \otimes \big(\big(\frac{t'd_{S}(s')}{tt'} \big)_{tt'} + \big(\frac{sd_{S}(t')}{tt'} \big)_{tt'} - \big(\frac{tt'd_{S}(t')}{(tt')^{2}} \big)_{tt'} - \big(\frac{t'^{2}sd_{S}(t)}{(tt')^{2}} \big)_{tt'} \big) \\ &= 1 \otimes \big(\big(\frac{t'd_{S}(s)}{tt'} \big)_{tt'} - \big(\frac{t'^{2}sd_{S}(t)}{(tt')^{2}} \big)_{tt'} \big) \\ &= (1 \otimes \varphi) \big(1 \otimes \big(\big(\frac{d_{S}(s)}{t} \big)_{t} - \big(\frac{sd_{S}(t)}{t^{2}} \big)_{t} \big) \big) \end{split}$$

Damit ist \mathcal{F}' zu \mathcal{F} isomorph und für $\mathcal{C} := \mathcal{F}'(\mathcal{B})$ gilt $\Omega_{S[U^{-1}]/R} = \varinjlim \mathcal{F}' = \varinjlim \mathcal{C}$ [vlg. bemerkung 3]. Wobei die Form von \mathcal{C} genau dem Fall aus ?? entspricht:

$$\mathcal{C} = \{S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] | t \in U\} \text{ mit den Morphismen}$$

$$1 \otimes \varphi : S[U^{-1}] \otimes_{S[t^{-1}]} \Omega_{S/R}[t^{-1}] \longrightarrow S[U^{-1}] \otimes_{S[tt'^{-1}]} \Omega_{S/R}[tt'^{-1}]$$

$$(\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{d_S(x)}{t^n})_{\scriptscriptstyle t} \longmapsto (\frac{s}{u})_{\scriptscriptstyle U} \otimes (\frac{t'^n d_S(x)}{(tt')^n})_{\scriptscriptstyle tt'}$$

Somit folgt $\lim_{\longrightarrow} \mathcal{C} = \Omega_{S/R}[U^{-1}]$ und wir haben $\Omega_{S[U^{-1}]/R} = \Omega_{S/R}[U^{-1}]$ gezeigt.

Kapitel 3

Körpererweiterungen

Definition der Differenzialbasis [vlg. Chapter 16.5 David Eisenbud 1994]

Definition 1. Sei $L \supset k$ eine Körpererweiterung. Dann nennen wir eine Teilmenge $\{b_i\}_{i\in\Lambda} \subseteq L$ eine <u>Differenzialbasis</u> von L über k, falls $\{d_K(b_i)\}_{i\in\Lambda}$ eine Vektorraumbasis von $\Omega_{L/R}$ über L ist.

Differential von rationalen Funktionen 1 [vlg. Chapter 16.5 David Eisenbud 1994]

Beispiel 2. Sei k ein Körper und $L = k(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über k.

Dann gilt:

$$\Omega_{L/k} \simeq L\langle d_{k[x_1,...x_n]}(x_i)\rangle$$

Insbesondere ist $\{x_i\}_{i\in\{1,\ldots,n\}}$ eine Differenzialbasis von $\Omega_{L/k}$.

Beweis. Betrachte $L=k[x_1,\ldots,x_n][k[x_1,\ldots,x_n]^{-1}]$ als Lokalisierung um theorem 15 anwenden zu können. Anschließend forme noch $\Omega_{k[x_1,\ldots,x_n]/k}$ mithilfe von korrolar 13 isomorph um:

$$\Omega_{L/k} \simeq L \otimes \Omega_{k[x_1,...,x_n]/k}$$

$$\simeq L \otimes \bigoplus_{i \in \{1,...,n\}} k[x_1,...,x_n] \langle d_{k[x_1,...x_n]}(x_i) \rangle$$

$$\simeq L \langle d_{k[x_1,...x_n]}(x_i) \rangle$$

Damit ist $\{d_L(x_i)\}_{i\in\{1,\ldots,n\}}$ eine Vektorraumbasis von $\Omega_{L/k}$.

Differential von rationalen Funktionen 2 [Aufgabe 16.6 David Eisenbud 1994]

Korrolar 3. Sei k ein Körper und $L \supset k$ eine Körpererweiterung und $T = L(\{x_i\}_{i \in \{1,...,n\}})$ der Körper der rationalen Funktionen in n Varablen über L.

Dann gilt:

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Beweis. Betrachten T als Lokalisierung von $L[x_1, \ldots, x_n]$ und gehen dann analog zu beispiel 2 vor:

$$\Omega_{T/k} \simeq T \otimes_{L[x_1,...,x_n]} \Omega_{L[x_1,...,x_n]/k} \text{ (theorem 15)}$$

$$\Omega_{L[x_1,...,x_n]/R} \simeq (L[x_1,...,x_n] \otimes_L \Omega_{L/R}) \oplus_{i \in \{1,...,n\}} L[x_1,...,x_n] \langle d_{L[x_1,...,x_n]}(x_i) \rangle \text{ (korrolar 14)}$$

$$\Rightarrow \Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus_{i \in \{1,...,n\}} T \langle d_T(x_i) \rangle$$

Cotangent Sequenz von Koerpern 1 [Aufgabe 16.6 David Eisenbud 1994]

Bemerkung 4. Sei $L \supset k$ eine Körpererweiterung und $T = L(x_1, \ldots, x_n)$ der Körper der rationalen Funktionen in n Variablen über L. Dann ist die COTAN-GENT SEQUENZ (proposition 3) von $k \hookrightarrow L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Im Genauen ist $\varphi: T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{T/k}$, $t \otimes d_L(l) \longmapsto t \cdot d_T(l)$ injektiv.

Beweis. Die Injektivität von φ folgt direkt aus der isomorphen Darstellung von $\Omega_{T/k}$, die wir uns in korrolar 3 erarbeitet haben.

$$\Omega_{T/k} \simeq (T \otimes_L \Omega_{L/R}) \oplus \bigoplus_{i \in \{1, \dots, n\}} T \langle d_T(x_i) \rangle$$

Um sicher zu gehen definiere $\varphi' \simeq \varphi$ und durchlaufe die in korrolar 3 genutzten Isomorphismen noch einmal Schritt für Schritt:

Damit ist φ eine injektive Einbettung von $T \otimes_L \Omega_{L/k}$ in $\Omega_{T/k}$.

Aufbaulemma Koerperdifferenzial [vlg. Lemma 16.15 David Eisenbud 1994]

Lemma 5. Sei $L \subset T$ eine seperable und algebraische Körpererweiterung und $R \longrightarrow L$ ein Ringhomomorphismus. Dann gilt:

$$\Omega_{T/R} = T \otimes_L \Omega_{L/R}$$

Insbesondere ist in diesem Fall die COTANGENT SEQUENZ (proposition 3) $von R \rightarrow L \hookrightarrow T$ eine kurze Exakte Sequenz:

$$0 \longrightarrow T \otimes_L \Omega_{L/R} \longrightarrow \Omega_{T/R} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Beweis. Wähle $\alpha \in T$ mit $L[\alpha] = T$. Sei weiter f(x) das Minimalpolynom von α . Betrachte dazu die conormale Sequenz von $\pi: L[x] \longrightarrow L[x]/(f) \simeq T$ (satz 4):

$$(f)/(f^2) \xrightarrow{1 \otimes d_{L[x]}} T \otimes_{L[x]} \Omega_{L[x]/R} \xrightarrow{D\pi} \Omega_{T/R} \longrightarrow 0$$

Wende nun Proposition 16.6 auf $\Omega_{L[x]/R}$ an und tensoriere mit T, somit gilt:

$$T \otimes_{L[x]} \Omega_{L[x]/R} \simeq T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle$$

Zusammen mit der conormalen Sequenz bedeutet dies:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R} \oplus T \langle d_{L[x]}(x) \rangle) / (d_{L[x]}(f))$$

Wenn wir $d_{L[x]}:(f)\longrightarrow T\otimes_L\Omega_{L/R}\oplus T\langle d_{Lx}\rangle$ wie in beispiel 5 betrachten, sehen wir:

$$d_{L[x]}((f)) = J \oplus (f'(\alpha)d_{L[x]}) = J \oplus T\langle d_{S[x]}(x)\rangle$$
, wobei $J \subseteq T \otimes_L \Omega_{L/R}$ ein Ideal ist.

Für die letzte Gleichheit nutze, dass $T \supset L$ seperabel und somit $f'(\alpha) \neq 0$ ist und nach obiger Wahl $T = L[\alpha]$ gilt.

Damit erhalten wir nun:

$$\Omega_{T/R} \simeq (T \otimes_L \Omega_{L/R})/J$$

 $\Rightarrow T \otimes_L \Omega_{L/R} \hookrightarrow \Omega_{T/R} \text{ ist surjektiv.}$

Somit muss J = 0 gelten und es folgt $T \otimes_L \Omega_{L/R} \simeq \Omega_{T/R}$. Damit haben wir insbesondere auch gezeigt, dass $T \otimes_L \Omega_{L/R} \to \Omega_{T/R}$ injektiv und somit die COTANGENT SEQUENZ von $R \to L \hookrightarrow T$ eine kurze exakte Sequenz ist.

Transzendenzbasis ist Differenzialbasis [vlg. Theorem 16.4 David Eisenbud 1994]

Theorem 6. Sei $T \supset k$ eine seperabel generierte Körpererweiterung und $B = \{b_i\}_{i \in \Lambda} \subseteq T$. Dann ist B genau dann eine Differenzialbasis von T über k, falls eine der folgedenen Bedingungen erfüllt ist:

- 1. char(k) = 0 und B ist eine Transzendenzbasis von T über k.
- **2.** char(k) = p und B ist eine p-Basis von T über k.

Beweis.

1., \Leftarrow ": Sei B eine Transzendenzbasis von T über k.

Damit ist die Körpererweiterung $L := k(B) \supset k$ algebraisch und seperabel. Mit lemma 5 folgt:

$$\Omega_{T/k} = T \otimes_L \Omega_{L/k}$$

Betrachte $L=k[B][k[B]\setminus 0^{-1}]$ als Lokalisierung und wende theorem 15 auf $\Omega_{L/k}$ an, somit gilt:

$$\Omega_{L/k} = L \otimes_{k[B]} \Omega_{k[B]/k}$$

In korrolar 13 haben wir gesehen, dass $\Omega_{k[B]/k}$ ein freis Modul über k[B] mit $\{b_i\}_{i\in\Lambda}$ als Basis ist. Dies liefert uns letztendlich die gewünschte Darstellung

$$\Omega_{T/k} = \bigoplus_{\{i \in \Lambda\}} T \langle d_T(b_i) \rangle.$$

 $\underline{\mathbf{1.,}}\Rightarrow$ ": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$.

Zeige zunächst, dass T algebraisch über L := k(B) ist:

Die COTANGENT SEQUENZ (proposition 3) von $k \hookrightarrow L \hookrightarrow T$ besagt $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(S) \rangle$ und nach Vorraussetzung gilt $\Omega_{T/k} = T \langle d_T(B) \rangle$. $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$

Da, wie wir in " \Leftarrow_1 ."gezeigt haben, jede Transzendenzbasis B' von T über L auch eine Differenzialbasis von $\Omega_{T/L}=0$ ist, gilt für diese $B'=\emptyset$. Somit ist T schon algebraisch über L.

Zeige noch, dass B auch algebraisch unabhängig über L ist:

Sei dazu Γ eine minimale Teilmenge von Λ , für welche T noch algebraisch über $k(\{b_i\}_{i\in\Gamma})$ ist. Für diese ist $\{b_i\}_{i\in\Gamma}$ algebraisch unabhängig über K. Damit ist nach \Leftarrow_1 . " $\{b_i\}_{i\in\Gamma}$ ebenfalls eine Differenzialbasis von T über k. Also muss schon $\Gamma = \Lambda$ gegolten haben und B ist eine Transzendenzbasis von T über k.

 $\mathbf{2} \centerdot,,⇐":$ Sei B eine p-Basis von T über k.

Somit wird nach DEFINITION-PROPOSITION T von B als Algebra

über $(k*T^p)$ und $\Omega_{T/(k*T^p)}$ von $d_T(B)$ als Vektorraum über T (PROPOSITION) erzeugt. Zeige also $\Omega_{T/k} \simeq \Omega_{T/(T^p*k)}$: Die Cotangent Sequenz (proposition 3) von $K \hookrightarrow (k*T^p) \hookrightarrow T$ besagt:

$$\Omega_{T/(T^p*k)} \simeq \Omega_{T/k}/d_T(T^p*k)$$

Für beliege
$$t^p \in T^p$$
 gilt $d_T(t^p) = pt^{p-1}d_T(t) = 0$, da $char(T) = p$.

$$\Rightarrow d_T(T^p * k) = d_T(k(T^p)) = 0$$

Damit ist $d_T: T \longrightarrow \Omega_{T/k}$ auch $(T^p * k)$ -linear und es gilt $\Omega_{T/k} \simeq \Omega_{T/(T^p * k)}$.

2.,,⇒": Sei $d_T(B)$ eine Vektorraumbasis von $\Omega_{T/k}$. Zeige zunächst, dass T von B als Algebra über k erzeugt wird:

> Die COTANGENT SEQUENZ (proposition 3) von $k \hookrightarrow L := k(B) \hookrightarrow T$ besagt $\Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle$ und nach Vorraussetzung gilt $\Omega_{T/k} = T \langle d_T(B) \rangle$. $\Rightarrow \Omega_{T/L} \simeq \Omega_{T/k}/T \langle d_T(L) \rangle = \Omega_{T/k}/T \langle d_T(B) \rangle = \Omega_{T/k}/\Omega_{T/k} = 0$

Da, wie wir in " \Leftarrow_2 ."gezeigt haben, jede p-Basis B' von T über L auch eine Differenzialbasis von $\Omega_{T/L}=0$ ist, gilt für diese $B'=\emptyset$. Somit wird T schon von B als Algebra über k erzeugt.

Zeige noch, dass B auch minimal als Erzeugendensystem von T als Algebra über k ist:

Sei dazu Γ die minimale Teilmenge von Λ , für welche T noch von $\{b_i\}_{i\in\Gamma}$ als Algebra über k erzeugt wird. Dann ist $\{b_i\}_{i\in\Gamma}$ eine p-Basis von T über k. Somit ist nach $\underset{\leftarrow}{}_{\infty}$: $\{b_i\}_{i\in\Gamma}$ ebenfalls eine Differenzialbasis von T über k. Es muss also schon $\Gamma = \Lambda$ gegolten haben und B ist eine p-Basis von T über k.

Kapitel 4

Aufgaben

- Aufgabe 6.7 aus David Eisenbud 1994 ist lemma 10.
- Aufgabe 16.6 a) aus David Eisenbud 1994 ist bemerkung 4.

Cotangent Sequenz von Koerpern 3 [Aufgabe 16.6 b) David Eisenbud 1994] Wir nennen eine Körpererweiterung $T \supset L$ pur inseperabel, falls gilt:

$$char(L) = p > 0 \ und \ \forall t \in T \ \exists l \in L \ \exists n \in \mathbb{N} : t^{p^n} = l$$

Proposition 1. Seien $T \supset L \supset k$ endliche Körpererweiterungen. Betrachte die COTANGENT SEQUENZ (proposition 3) von $k \hookrightarrow L \hookrightarrow T$:

$$T \otimes_L \Omega_{L/k} \stackrel{\varphi}{\longrightarrow} \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Sei weiter die Körpererweiterung $T \supset L$ algebraisch und pur inseperabel und existiere ein $\alpha \in T$ mit $L(\alpha) = T$ und $Mipo(\alpha) = f(x) = x^p - a$. Dann gilt:

$$\varphi$$
 ist injektiv $\Leftrightarrow d_L(a) = 0$

Beweis. Lege zunächst T = L[x]/(f(x)) fest und betrachte den kanonischen Epimorphismus $\pi: L[x] \longrightarrow T$, sowie die dazugehörige Konormale Sequenz (satz 4). Forme diese leicht um (2), sodass wir sie mit der COTANGENT SEQUENZ von $k \hookrightarrow L \hookrightarrow T$ (3) vergleichen können:

$$(f(x))/(f(x)^2) \xrightarrow{1 \otimes d_{L[x]}} T \otimes_{L[x]} \Omega_{L[x]/k} \xrightarrow{D\pi} \Omega_{T/k} \longrightarrow 0$$
 (1)

$$T\langle d_{L[x]}(f(x))\rangle \longleftrightarrow T\otimes_L \Omega_{L/k} \oplus T\langle d_{L[x]}(x)\rangle \xrightarrow{\widetilde{D\pi}} \Omega_{T/k} \longleftrightarrow 0$$
 (2)

$$T \otimes_L \Omega_{L/k} \xrightarrow{\varphi} \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$
 (3)

Zeige, dass (2) auch wirkliche exakt ist:

$$(1 \otimes d_{L[x]})(f(x)) = T \otimes_{L[x]} L[x] \langle d_{L[x]}(f(x)) \rangle \simeq T \langle d_{L[x]}(f(x)) \rangle$$

$$\Rightarrow \text{ Ersetze } 1 \otimes d_{L[x]} : (f(x))/(f(x)^2) \longrightarrow T \otimes_{L[x]} \Omega_{L[x]/k}$$

$$\text{durch } T \langle d_{L[x]}(f(x)) \rangle \hookrightarrow T \otimes_{L[x]} \Omega_{L[x]/k}.$$

nach korrolar 14 gilt $\Omega_{L[x]/k} \simeq L[x] \otimes_L \Omega_{L/k} \oplus L[x] \langle d_{L[x]}(x) \rangle$ und tensorieren mit T ergibt $T \otimes_{L[x]} \Omega_{L[x]/k} \simeq T \otimes_L \Omega_{L/k} \oplus T \langle d_{L[x]}(x) \rangle$.

<u>"⇒</u> ": Wenn wir nun unsere zwei exakten Sequenzen betrachten sehen wir, dass φ eine Einschränkung von $D\pi$ auf einen kleineren Definitionsbereich ist. Zeige also, dass $D\pi$ injektiv ist:

Nach Vorraussetung gilt
$$d_L(a) = 0$$
 also auch $d_{L[x]}(a) = 0$

$$\Rightarrow d_{L[x]}(f) = d_{L[x]}(x^p) - d_{L[x]}(a) = px^{p-1}d_{L[x]}(x) - d_{L[x]}(a) = 0 - 0$$

$$\Rightarrow T\langle d_{L[x]}(f(x))\rangle = 0$$

Bezogen auf die exakte Sequenz (2) bedeutet dies, dass $D\pi$ injektiv ist.

"
 \Leftarrow ": Da φ nach Vorrausetzung injektiv ist, genügt e
s $\varphi 1 \otimes a = 0$ zu zeigen:

In
$$T$$
 gilt $[f(x)]_T = 0$

$$\Rightarrow 0 = d_T([f(x)]_T) = d_T([x^p]_T) - d_T([a]_T) = d_T([a]_T)$$

$$\Rightarrow \varphi(1 \otimes d_L(a)) = d_T([a]_T) = 0$$

Da φ nach Voraussetzung injektiv ist, gilt $1\otimes d_{L[x]}(a)=0$ und somit auch $d_L(a)=0.$

Cotangent Sequenz von Koerpern 3 Beispiel [Aufgabe 16.6 b) David Eisenbud 1994]

Beispiel 2. Betrachte das in proposition 1 gegebenen Szenario und wähle:

$$k = \mathbb{F}_3, L = k[y]/(y^2 + 1), T = L(\sqrt[3]{y}) \simeq L[x]/(x^3 - y).$$

Hierbei gilt $d_L(x) \neq 0$ und somit ist $\varphi : T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{L/k}$ nicht injektiv.

seperabel generierte Koerpererweiterung mit DifR(T)(R) ist 0 [Aufgabe 16.10 David Eisenbud 1994(steht im Bezug zu Korrolar 16.17)]

Beispiel 3. Sei k ein Körper mit char(k) = p > 0 und sei weiter K(x) der

Raum der Rationalen Funktionen über k.

Definiere:
$$L := k(x^{1/p^{\infty}}) = \lim_{\longrightarrow} \{k(x^{1/p^n}) | n \in \mathbb{N}\}$$

Dann gilt : $\Omega_{L/k} = 0$

Prüfe noch, ob $L \supset k$ eine seperabel generierte Körpererweiterung ist.

Beweis. Es gilt:

$$d_L(x^{1/p^n}) = d_L\left(\prod_{i \in \{1, \dots, p\}} x^{1/p^{n+1}}\right) = p \cdot \left(\prod_{i \in \{1, \dots, p-1\}} x^{1/p^{n+1}}\right) \cdot d_L(x^{1/p^{n+1}}) = 0$$

Nute noch proposition 12 und beispiel 2 um zu folgern, dass $\Omega_{L/k}$ von $\{d_L(x^{1/p^n})|n\in\mathbb{N}\}$ erzeugt wird.

Differenzial algebraischer Algebren ist Null [Aufgabe 16.11 David Eisenbud 1994]

Beispiel 4. Sei K ein Körper mit char(K) = 0 und T eine noethersche K-Algebra. Dann gilt:

$$\Omega_{T/K} = 0$$

 $T = \prod_{i \in \{1, \dots, n\}} K(\alpha_i) \text{ ist ein endliches Produkt algebraischer K\"{o}rpererweiterungen}.$

Beweis.

"⇒ ": DaT noethersch ist, ist Tals Algebra über K endlich erzeugt und es gilt:

$$T = \prod_{i \in \{1, \dots, n\}} K[\alpha_i] / I_i$$

Wobei $I_i \subseteq K[\alpha_i]$ ein Ideal ist. $(\forall i \in \{1, \dots, n\})$

Zur Vereinfachung definiere $T':=\prod_{i\in\{1,\dots,n\}}K[\alpha_i]$. Betrachte nun den Differentialraum von T genauer:

$$\Omega_{T/K} = d_{T'} \left(\prod_{i \in \{1, \dots, n\}} K[\alpha_i] / I_i \right)$$

$$= \prod_{i \in \{1, \dots, n\}} d_{K[\alpha]} \left(K[\alpha_i] / I_i \right) \quad (proposition \ 2)$$

Betrachte also jeweils für $i \in \{1, ..., n\}$ die K-Algebra $K[\alpha_i]/I_i$. Sei $I_i \neq K[\alpha_i]$, da andernfalls $K[\alpha_i]/I_i = 0$ und somit α_i kein Erzeuger vor T wäre.

Unterscheide nun zwischen den zwei möglichen Fällen $\underline{I_i=0}$ und $\underline{I_i\neq 0}$:

Dies bedeutet
$$K[\alpha_i] \simeq K[x]$$

 $\Rightarrow \Omega_{K[\alpha_i]/K} \simeq K[x] \langle d_{K[x]}(x) \rangle \neq 0$ (korrolar 13)

Dies steht allerdings im Widerspruch zu $K[\alpha_i] = 0$. Folglich war unsere Annahme falsch und α_i ist algebraisch über K.

Folglich ist $K[\alpha_i] = K(\alpha_i)$ eine algebraische Körpererweiterung.

$$K[\alpha_i] \simeq K[x]$$
 und $I \simeq (f(x))$ mit $f(x) \in K[x]$
 $\Rightarrow K[\alpha_i] \simeq K[\beta_1, \dots \beta_n] = K(\beta_1, \dots \beta_n)$, wobei $\beta_1, \dots \beta_n$ die Nullstellen von f sind.

Somit haben wir gezeigt, dass auch in diesem Fall $K[\alpha_i]/I_i$ eine Algebraische Körpererweiterung ist.

<u>"</u>— ": proposition 2 besagt, dass das direkte Produkt unter Bildung des Differenzials erhalten bleibt, also gilt in diesem Fall:

$$\Omega_{T/K} = \prod_{i \in \{1, \dots, n\}} \Omega_{K(\alpha_i)/K}$$

Nach Voraussetzung sind alle Körpererweiterungen $K\alpha_i\supset K$ algebraisch. Wir haben schon in BSP gesehen, dass somit deren Differentiale gleich 0 sind. Folglich ist auch das direkte Produkt der einzelnen Differenziale und somit $\Omega_{T/K}$ gleich 0.