Project Documentation: SolarGuard: Intelligent Defect Detection on Solar Panels using DeepLearning

Project Title

SolarGuard: Intelligent Defect Detection on Solar Panels using DeepLearning

Project Overview and Objectives

Extract Data

Load solar panel images from the dataset (organized by class).

Process Data

- Resize, normalize, and augment images.
- Prepare the data for both classification and optional object detection.

Build Models

- Train CNN models for image classification.
- Optionally train YOLOv8 for object detection.

Visualize & Interact

- Develop an interactive Streamlit app to:
 - Upload and classify images.
 - Display defect predictions and insights

Technologies Used

Component Tools / Frameworks

Language Python

Frontend Streamlit

Backend/Database MySQL

ML Libraries scikit-learn, scipy, pandas

Visualization Matplotlib, Seaborn, Streamlit

Deployment (Optional) Streamlit Cloud / Localhost

Model Architecture

• Input Size: 224x224 RGB images.

• Layers: 3 convolution layers, pooling, dropout, dense softmax.

 Output Classes: Clean, Dusty, Bird-Drop, Electrical-Damage, Physical-Damage, Snow-Covered.

• Optional: YOLOv8 for object detection.

Challenges Faced

1. Learning Deep Learning Concepts

• Understanding CNN layers, parameters, and architecture design.

2. Model Training & Tuning

Ensuring balanced data and avoiding overfitting with dropout and augmentation.

3. Streamlit UI Design

Designing a responsive UI with accurate result rendering.

4. Image Preprocessing & Normalization

o Managing different image formats and handling grayscale or corrupted files.

5. Model Optimization

Learning and implementing pruning and quantization.

Insights and Lessons Learned

1. Image Data Handling

- How to clean and prepare image datasets.
- Importance of resizing and normalization.

2. Model Development

- Building CNNs from scratch and understanding hyperparameter tuning.
- Comparison between different architectures.

3. Optimization Techniques

Applying TensorFlow Model Optimization Toolkit for pruning & quantization.

4. Streamlit Integration

- Building a web interface from scratch and integrating with a trained model.
- Handling file uploads and preprocessing in real-time.