TELINK SEMICONDUCTOR

应用文档:

泰凌 USB 模块使用说明

AN-18080201-C1

Ver 1.0.0

2018/8/7

简介:

本文档为泰凌 USB 模块的使用说明书。

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

Telink Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Telink Semiconductor does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling Telink Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Telink Semiconductor for any damages arising or resulting from such use or sale.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

AN-18080201-C1 1 Ver1.0.0

版本历史

版本	主要改动	日期	作者
1.0.0	初始版本	2018/8	ZXD, SGJ , Cynthia

目录

1	总述		4
2			5
3			
图	目录		
	图 1	USB 模块框图	4
	图 2	USB Transaction	
表	目录		
	表 1	LICD 柑也客方哭害	

1 总述

下图所示为 USB 模块的框图:

图 1 USB 模块框图

*注: usb_edps 对应 edp1~edp8。

USB 模块使用三种类型的时钟信号,包括: 48M osc(片内 48MHz osc 时钟), sclk(系统时钟),48Msyclk(48MHz 同步时钟)。

usb_cdr 用 48m 的同步时钟解析出原始的 usb 数据,将数据输出给 usb_rx 模块。

usb_rx 模块有 2 个时钟域,即 48m 同步时钟和系统时钟。usb_rx 模块将原始 usb 数据进行 NRZI 解码,并去除 0 填充码后,拼接成 byte 为单位的数据,将数据传递给 usb sie 模块。

usb_sie 模块对数据进行初步的分析,解析 PID、EPD_ADR、TOKEN 等基本数据,并自动产生 ACK/NAK 数据包(通过 usb_tx 发送),把其中有用的数据部分提供给 usb_edp0/usb_edps。

usb_edp0 中有一个 usb printer device (USB 打印设备)的 description table (描述表),可以自动枚举为 usb printer device,从而对芯片进行调试。另外也可以选择手动模式,枚举为自己定义的设备。edp0 收到或者发出的数据都有个内部8byte 的空间进行缓存。

AN-18080201-C1 4 Ver1.0.0

为方便程序进行进一步的处理,usb_edp1~usb_edp8 可以将收到的数据放到内部 RAM 中或者从 RAM 中读取数据。注意:针对 PC端,edp1~edp4 和 edp7~edp8 只能做输入,而 edp5~edp6 只能做输出。

2 寄存器表

表 1 USB 模块寄存器表

地址	寄存器	描述	复位值
0x0100	EDP0PTR	Endpoint 0 buffer point	RW(0)
0x0101	EDP0DAT	Endpoint 0 buffer data access address	RW(XX)
0x0102	EDP0CT	bit[0]: Ack data	
		bit[1]: Stall data	
		bit[2]: Ack status	
		bit[3] Stall status	
0x0103	EDP0ST	bit[3:0]: number of data transferred	RO
		bit[4]: setup interrupt flag	
		bit[5]: data interrupt flag	
		bit[6]: status interrupt flag	
		bit[7]: set interface interrupt flag	
0x0104	EDP0MODE	[0]: enable auto decoding set_address command	RW(0xff)
		[1]: enable auto decoding set_config command	
		[2]: enable auto decoding set_interface command	
		[3]: enable auto decoding get_status command	
		[4]: enable auto decoding sync_frame command	
		[5]: enable auto decoding get_descriptor command	
		[6]: enable auto decoding set_feature command	
		[7]: enable auto decoding standard command	
0x0105	USBCT	[0]: use auto calibrate clock if 1, use system clock if 0	RW(0x01)
		[1]: low speed mode if 1; full speed mode if 0	
		[2]: low jitter mode if 1;	
		[3]: usb test mode	
0x0106	RESERVED		
0x0107	RESERVED		
0x010a	MDEV	[0]: self power	RO
		[1]: SUB suspend status	
		[2]: wakeup feature status	
0x010b	USBADR	bit[6:0]: usb adress	RO
		bit[7]: config_now	
0x010c	SUSPENDCYC	bit[7:0]: suspend_cnt	RW(0x18)
0x010d	INTERFACE	bit[3:0]: set interface data now	RO

AN-18080201-C1 5 Ver1.0.0

地址	寄存器	描述	复位值
		bit[7:4]: set interface buff idx	
0x0110	EDP8PTR		RW
0x0111	EDP1PTR		RW
0x0112	EDP2PTR		RW
0x0113	EDP3PTR		RW
0x0114	EDP4PTR		RW
0x0115	EDP5PTR		RW
0x0116	EDP6PTR		RW
0x0117	EDP7PTR		RW
0x0120	EDP8CT	[0]: ACK	
		[1]: Stall	
		[2]: Set Data0	
		[3]: Set Data1	X
		[7]: Launch EOF for FIFO mode	
0x0121	EDP1 CT	[0]: ACK	
		[1]: Stall	
		[2]: Set Data0	>
		[3]: Set Data1	
0x0122	EDP2 CT		
0x0123	EDP3 CT		
0x0124	EDP4 CT		
0x0125	EDP5 CT		
0x0126	EDP6 CT	X	
0x0127	EDP7 CT		
0x0128	EDP8 ADR	Endpoint 8 buffer address	RW(0x00)
0x0129	EDP1 ADR	Endpoint 1 buffer address	RW(0x08)
0x012a	EDP2 ADR	Endpoint 2 buffer address	RW(0x10)
0x012b	EDP3 ADR	Endpoint 3 buffer address	RW(0x40)
0x012c	EDP4 ADR	Endpoint 4 buffer address	RW(0xC0)
0x012d	EDP5 ADR	Endpoint 5 buffer address	RW(0x20)
0x012e	EDP6 ADR	Endpoint 6 buffer address	RW(0x30)
0x012f	EDP7 ADR	Endpoint 7 buffer address	RW(0x18)
0x130	USBRAM	[0]: CEN in power down mode	RW(0x00)
		[1]: CLK in power down mode	
		[2]: Reserved	
		[3]: WEN in power down mode	
		[4]: CEN in function mode	
0x138	USBSO	Enable endpoint ISO mode	RW(0xc0)
		bit[0]: Endpoint 8 iso mode	
		bit[1]: Endpoint 1 iso mode	

地址	寄存器	描述	复位值
		bit[7]: Endpoint 7 iso mode	
0x139	USBIRQ	bit[0]: Endpoint 8 irq	RW(0x00)
		bit[1]: Endpoint 1 irq	
		bit[7]: Endpoint 7 irq	
0x13a	USBMASK	irq mask, same as USBIRQ	RW(0xff)
0x13b	USBMAX8	the max buff size for Endpoint 8:	RW(0x10)
		max_size = {USBMAX0[5:0],3'h0}	
0x13c	USBMIN8	the min data in buff to send as a packet:	RW(0x40)
		the buff must have USBMIN8 data to ack to IN TOKEN	
0x13d	USBFIFO	bit[0]: Endpoint 8 fifo mode:	RW(0x01)
		the pointer of Endpoint8 auto as a circuit buffer	A. ()
		bit[1]: fifo full status	X
		bit[7:2]: dma mode for Endpoint8(NO USED FOR	
		MATRIX)	
0x13e	USBMAX	bit[7:0]: max data in for Endpoint buffer(execept 7)	RW(0x08)
		max data size = USBMAX*8)
0x13f	USBTICK	bit[7:0]: just a tick that increase on posedge of the	RW(0)
		sclk_usb	

3 USB Transaction

下图所示为 USB 的一个 Transaction,例如 get device description。

图 2 USB Transaction

*注:黑色部分代表 device 发送的数据包,上面的中断为 Endpoint0 的中断,其它 Endpoint 的中断类似于 data irq。

AN-18080201-C1 7 Ver1.0.0

数据收发机制如下所示:

当 PC 发送一个 IN 或者 OUT 的 token 时,如果 EDP_CT 中的 ACK bit 置位,会从各个端点对应的 buffer 中取数据发送给 PC(IN) ,或者从 PC 接受数据保存到 buffer(OUT)。然后返回 ACK 信号(OUT)。如果对应的 ACK bit 没有置位,则会返回 NAK 数据包,通知 PC 稍后重传。

AN-18080201-C1 8 Ver1.0.0