Układ sekwencyjny – wartości wyjść są funkcją aktualnego stanu, sekwencji poprzednich stanów oraz wejść układu cyfrowego

- Autonomiczne włączanie lampek choinkowych
- Sterowanie w zaplanowanej kolejności "pokazem fontann"
- Światła kierujące ruchem ulicznym
- Reklamy świetlne...
- Sekwencyjna wymiany danych

Układ sekwencyjny...

Asynchroniczny – zmiany stanów następują bezpośrednio po zmianie wartości sygnałów wejściowych (układ rzadko stosowany)

Synchroniczny – zmiany stanów następują na podstawie wartości sygnałów wejściowych w chwilach określanych przez zewnętrzny sygnał taktujący, zazwyczaj okresowy stąd zwany zegarowym autonomiczny – układ synchroniczny bez wejść sterujących, tylko zegar

Sposoby wyzwalania układu synchronicznego sygnałem zegarowym C

Zbocze narastające (zmiana $0 \rightarrow 1$)

Zbocze opadające (zmiana $1 \rightarrow 0$)

Model matematyczny układu sekwencyjnego nazywany jest *AUTOMATEM*

Rozróżniamy dwa modele automatów:

- automat Mealy'ego (1955 r.) sygnały wyjściowe zależą od stanu w jakim układ się znajduje oraz od sygnałów wejściowych (rzadko stosowany)
- automat Moore'a (1956 r.) sygnały wyjściowe zależą tylko od stanu w jakim układ się znajduje

Schemat blokowy automatu Mealy'ego

$$Q = \delta(Q, X)$$
 $Y = \lambda(Q, X)$

UP – układ pamięciowy

Schemat blokowy automatu Moore'a

$$Q = \delta(Q, X)$$
 $Y = \lambda(Q)$

UP – układ pamięciowy

Sposoby opisu układu sekwencyjnego

Graf stanów

Sposoby opisu układu sekwencyjnego

Tablica przejść i wyjść

Stan – stan aktualny, Stan – stan następny

ELEMENTY PAMIĘCIOWE => przerzutniki

Ze względu na sposób przełączenia:

- przerzutniki asynchroniczne tylko wyjściowe sygnały wyzwalające zmianę stanu wyjścia; zatrzask, latch
- przerzutniki synchroniczne wyjściowe sygnały wyzwalające zmianę stanu wyjścia oraz sygnał taktujący (zegar)

Ze względu na działanie:

- SR (Set Reset)
- D (Data, Delay)
- JK (ulepszona wersja SR)
- T (Toggle ang. przełączenie)

ASYNCHRONICZNY PRZERZUTNIK SR

Zasada działania

 $S - Set \rightarrow dla S=1 ustaw Q=1$

 $R - Reset \rightarrow dla R=1 ustaw Q=0$

Tablica przejść		
SR	Q,	
0 0 0 1 1 0	Q 0 1	

Przykładowe przebiegi sygnałów

Asynchroniczny przerzutnik SR – sposoby opisu działania

Symbol

Graf przejść

Siatka Karnaugh

Tablica przejść

Tablica wzbudzeń

$$\begin{array}{c|cc} Q \to Q^+ & S & R \\ \hline 0 \to 0 & 0 - \\ 0 \to 1 & 1 & 0 \\ 1 \to 0 & 0 & 1 \\ 1 \to 1 & -0 \\ \end{array}$$

Asynchroniczny przerzutnik SR – realizacja układowa

 \overline{R} , \overline{S} – znak negacji oznacza reakcję tych wejść na stan 0

Asynchroniczny przerzutnik SR – realizacja układowa

...kilka wejść S i R...

Przerzutnik SR – z zezwoleniem... (bramkowany zatrzask)

$$\overline{SC} = \begin{cases} 1 & \text{dla } C = 0 \\ \overline{S} & \text{dla } C = 1 \end{cases}$$

$$\overline{RC} = \begin{cases} 1 & \text{dla } C = 0 \\ \overline{R} & \text{dla } C = 1 \end{cases}$$

Stany wejść S i R są przenoszone przez bramki NAND tylko przy sygnale zezwalającym C = 1.

Przykładowe przebiegi sygnałów

Przerzutnik typu Master-Slave

Jest to najprostsze rozwiązanie eliminujące "przeźroczystość", stanowiące szeregowe połączenie dwóch bramkowanych zatrzasków wyzwalanych w przeciwnych fazach impulsem sygnału zegarowego.

Przerzutnik SR MS

"ASYNCHRONICZNY" PRZERZUTNIK D

Zasada działania

dla D=1 ustaw Q=1

dla D=0 ustaw Q=0

Tablica przejść

D Q₊

0 0
1 1

Przykładowe przebiegi sygnałów

"super-przeźroczysty..."

Przerzutnik D – sposoby opisu działania

Siatka Karnaugh

Tablica przejść

Tablica wzbudzeń

Q→Q ⁺	D
0→0	0
0→1	1
1→0	0
1→1	1

Przerzutnik D – z zezwoleniem... (bramkowany, zatrzask)

Powstał z zatrzasku SR w wyniku połączenia wejścia S przez inwerter do wejścia R.

Tablica przejść		
S R	Q.	
0 0	Q	
0 1	0	
10		
1 1	_	

Przykładowe przebiegi sygnałów

"prawie nieprzeźroczysty..."

Przerzutnik D – z zezwoleniem... prostsza budowa...

SYNCHRONICZNY PRZERZUTNIK D

- wyzwalany zboczem sygnału zegara

Przykładowe przebiegi sygnałów

"całkowicie nieprzeźroczysty..."

Wyjście Q przyjmuje stan wejścia D tylko w momentach zmiany na C z 0 na 1

Synchroniczny przerzutnik D – realizacja układowa

SYNCHRONICZNY PRZERZUTNIK **JK**

J – John

K – Kilby

Ulepszona wersja przerzutnika SR – brak stanu zabronionego !

Zasada działania

J (set) \rightarrow dla J=1 ustaw Q=1

K (*reset*) \rightarrow dla K=1 ustaw Q=0

Tablica przejść		
JK	Q.	
0 0 0 1	Q 0	
1 0 11	$\frac{1}{Q}$	

Dla J = 1 i K = 1 wyjście Q przyjmuje stan przeciwny!

Synchroniczny przerzutnik JK – przykładowe przebiegi sygnałów

Tablica przejść		
JK	Q.	
0 0 0 1 1 0 1 1	Q 0 1 Q	

Synchroniczny przerzutnik JK – sposoby opisu działania

Symbol

Graf przejść

Siatka Karnaugh

Tablica przejść

Tablica wzbudzeń

Q→Q ⁺	JK
0→0 0→1	0 – 1 –
1→0 1→1	_1 _1 _0

Synchroniczny przerzutnik JK – realizacja układowa

SYNCHRONICZNY PRZERZUTNIK T

T – toggle – przełączać...

Zasada działania

- → dla T=1 ustaw na Q stan przeciwny, czyli not Q
- → dla T=0 nie zmieniaj stanu wyjścia Q

Tablica przejść			
	Т	Q ₊	
	0	Q	
	1	Q	

Synchroniczny przerzutnik T

przykładowe przebiegi sygnałów

Tablica przejść

T Q₊

0 Q

Synchroniczny przerzutnik T – sposoby opisu działania

Symbol

Graf przejść

Siatka Karnaugh

Tablica przejść

$$\begin{array}{c|c}
T & Q^{\dagger} \\
\hline
0 & Q \\
1 & \overline{Q}
\end{array}$$

Tablica wzbudzeń

Q→Q ⁺	Т
0→0	0
0→1	1
1→0	1
1→1	0

Synchroniczny przerzutnik T – realizacje układowe

Tablica wzbudzeń

Q→Q ⁺	Т
0→0	0
0→1	1
1→0	1
1→1	0

Przerzutniki synchroniczne z asynchronicznymi wejściami ustawiającymi i kasującymi

Wejścia zerowania R i ustawienia S zawsze należy podłączyć do sygnału sterującego lub na stałe podać odpowiedni stan logiczny tak, aby nie były aktywne w czasie działania układu sekwencyjnego.

Projektowanie układów sekwencyjnych

ETAPY:

- 1. Opis słowny działania układu
- 2. Utworzenie grafu automatu
- 3. Utworzenie pierwotnej tablicy przejść i wyjść
- 4. Minimalizacja liczby stanów automatu
- 5. Kodowanie stanów
- 6. Wybór elementów pamięciowych
- 7. Utworzenie funkcji wzbudzeń przerzutników
- 8. Utworzenie funkcji wyjść
- 9. Schemat układu (bramki, przerzutniki)

Przykład – opis słowny działania układu

Zaprojektować synchroniczny układ sekwencyjny generujący sekwencję sygnałów sterujących 10, 01, 00, 11 dla sygnału wejściowego x=0 oraz sekwencję 01, 10 dla x=1. Przy zmianie sygnału x układ generuje nową sekwencję tak, aby należał do niej ostatni wyraz poprzedniej sekwencji.

Przykład – graf automatu

 $x=0 \rightarrow 10, 01, 00, 11$ oraz $x=1 \rightarrow 10, 01$ (brak 00 i 11!)

Przykład – pierwotna tablica przejść i wyjść

	x=0	x=1	y_1y_0
1	2	6	10
2	3	5	0 1
3	4	6	0 0
4	1	6	11
5	2	6	1 0
6	3	5	0 1

Przykład – minimalizacja liczby stanów

Dwa stany są równoważne, jeżeli dla każdej kombinacji wejść dają taką samą wartość wyjścia oraz przenoszą automat do tego samego stanu lub stanów równoważnych.

Stany równoważne sklejamy w jeden stan.

Zredukowana liczba stanów

Przykład – minimalizacja liczby stanów

$$\begin{array}{c} \textbf{(1,5)} \rightarrow \textbf{A} \\ \textbf{(2,6)} \rightarrow \textbf{B} \\ \textbf{3} \rightarrow \textbf{C} \\ \textbf{4} \rightarrow \textbf{D} \end{array}$$

Minimalny graf automatu

Minimalna tablica przej. i wyj.

Przykład – kodowanie stanów

Kody stanów: $A \le 00$ (Q_1Q_0) B <= 01 C <= 10D <= 11

Przykład – zakodowana minimalna tablica przejść i wyjść w postaci siatek Karnaugh

Moore

Przykład – funkcje wzbudzeń

Przykład – funkcje wzbudzeń dla przerzutników JK

Przykład – funkcje wzbudzeń dla przerzutników JK

 \mathbf{Q}_1

Tablica wzbudzeń

Q→Q ₊	JK
0→0	0 —
0→1 1→0	1 – – 1
1→1	– 0

Przykład – funkcje wyjść y₁ i y₀

Przykład – schemat logiczny automatu

