Walchand College Of Engineering, Sangli Department of Computer Science and Engineering Subject: Software Engineering Tools Lab

Batch: T5

Name: Gayatri Sopan Gade PRN:2020BTECS00210

Assignment 1

1: Weka is a GUI workbench that empowers data wranglers to assemble machine learning pipelines, train models, and run predictions without having to write code. Using Weka tool perform below tasks such as data preprocessing, data classification (use any appropriate ML algorithm) and data visualization efficiently on given dataset.

Data Classification:

- 2. Orange is an easy to use data visualization tool with a large toolkit. In spite of being a GUI-based beginner-friendly tool, you mustn't mistake it for a light-weight one. It can do statistical distributions and box plots as well as decision trees, hierarchical clustering and linear projections.
- a. Install orange
- b. Show data distribution
- c. Show linear projection
- d. Show FreeViz

Installation of orange:

Linear projection:

Distribution:

3. Differentiate in between free software, Open source software and proprietary software with respect to its properties

Open Source Software	Proprietary Software
Open source software is a computer	Proprietary software is a computer
software whose source code is	software where the source codes are
available openly in internet and	not publicly not available only the
programmers can modify it to add new	company which has created can modify
features and capabilities without any	it.
cost.	
Here the software is developed and	Here the software is developed and
tested through open collaboration.	tested by the individual or organization
	by which it is owned not by public.
In open source software the source	In proprietary software the source code
code is public.	is protected
Open source software can be installed	Proprietary software can be installed
into any computer.	into any computer without valid
	license.

Users do not need to have any	Users need to have a valid and
authenticated license to use this	authenticated license to use this
software.	software.
Users can get open software for free of	Users must have to pay to get the
charge.	proprietary software.
In open source software faster fixes of	In proprietary software the vendor is
bugs and better security is availed due	completely responsible for fixing of
to the community.	malfunctions.

4:Using Anaconda Python create Histogram, Scatter plot and Bar plot for the dataset given below. Dataset-

 $\frac{https://drive.google.com/file/d/1i11BZFe8Xj9kNq7eeE9KOa_Iz1KhEdXJ/view$

- a. Scatter plot- Scatter plot of Price Vs Age
- b. Histogram- for Kilometer and CC
- c. Bar plot- Bar plot for different fuel types
- a. Scatter plot-Scatter plot of Price Vs Age

```
>>> import pandas as pd
>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> plt.style.use('fivethirtyeight')
>>> data=pd.read_csv('Downloads/Toyota.csv')
>>> cc=data['CC']
>>> data.head(1)
Unnamed: 0 Price Age KM FuelType HP MetColor Automatic CC Doors Weight
0 0 13500 23.0 46986 Diesel 90 1.0 0 2000 three 1165
>>> plt.hist(cc,bins=4,edgecolor="black",color="red")
(array([416., 854., 14., 152.]), array([1300., 1475., 1650., 1825., 2000.]), <BarContainer object of 4 artists>)
>>> plt.title("Histogram CC")
Text(0.5, 1.0, 'Histogram CC')
>>> plt.xlabel("Frequency")
Text(0.5, 0, 'Frequency')
>>> plt.tight_layout()
>>> plt.tight_layout()
>>> plt.show()
```


b. Histogram- for Kilometer and CC

```
>>> import numpy as np
>>> import pandas as pd
 >>> from matplotlib import pyplot as plt
 >>> plt.style.use('fivethirtyeight')
 >>> data=pd.read_csv('Downloads/Toyota.csv')
 >>> km=data['KM']
  >>> data.head(2)
    Unnamed: 0 Price Age KM FuelType HP MetColor Automatic
0 13500 23.0 46986 Diesel 90 1.0 0
                                                                                                              CC Doors Weight
                                                                                                        0 2000 three
                                                                                                                                    1165
                                                                                                        0 2000
  >> data.head(2)
    Unnamed: 0 Price Age KM FuelType HP MetColor Automatic
0 13500 23.0 46986 Diesel 90 1.0 0
                                                                                                              CC Doors Weight
                                                                                                     0 2000
                                                                                                                                   1165
                                                                                                                     three
1 13750 23.0 72937 Diesel 90 1.0 0 2000 3 1165
>>> plt.hist(cc,bins=5,edgecolor="black",color="green")
(array([416., 0., 854., 14., 152.]), array([1300., 1440., 1580., 1720., 1860., 2000.]), <BarContainer object of 5 art
ists>)
>>> plt.title("Histogram KM")
Text(0.5, 1.0, 'Histogram KM')
>>> plt.xlabel("Range")
Text(0.5, 0, 'Range')
>>> plt.ylabel("Frequency")
Text(0, 0.5, 'Frequency')
>>> plt.tight_layout()

  >>> plt.show()
```



```
>>> plt.scatter(data['Age'],data['Price'],c="yellow")
<matplotlib.collections.PathCollection object at 0x0000017BBF098910>
>>> plt.title("Scatter plot - Price vs age")
Text(0.5, 1.0, 'Scatter plot - Price vs age')
>>> plt.xlabel("Age in yrs")
Text(0.5, 0, 'Age in yrs')
>>> plt.ylabel("Price")
Text(0, 0.5, 'Price')
>>> plt.show()
```


c. Bar plot- Bar plot for different fuel type

```
>>> fuel=pd.value_counts(data['FuelType'].values,sort=True)
>>> plt.xlabel("Frequency")
Text(0.5, 0, 'Frequency')
>>> plt.ylabel("Fuel type")
Text(0, 0.5, 'Fuel type')
>>> plt.ylabel("Fuel types Bar plot")
Text(0, 0.5, 'Fuel types Bar plot')
>>> fuel.plot.barh()
<AxesSubplot:xlabel='Frequency', ylabel='Fuel types Bar plot'>
>>> plt.show()
```


5. Enlist some examples along with its purpose and properties (at least 10) of FOSS and proprietary software with respect to database FOSS:

Examples are Android, Linux, Firefox, Open Office, GIMP, VLC Media player etc.

Proprietary Software:

Examples are Windows, MacOS, Internet Explorer, Google earth, Microsoft Office, Adobe Flash Player, Skype etc.