1 1

電気回路

1 直流と交流

1 直流と交流

図1のように、乾電池から流れる電流は、時間に対して、大きさと向きが一

① direct current (記号DC)

② alternating current (記号AC)

定である。このような電流を**直流[●]という**。

また、われわれの家庭に送られてくる電流は、図2のように電流の大きさと向きが時間とともに周期的に変化する。このような電流を交流 2 という。

2 自由電子

電流が流れるという現象は、どのよう なことだろうか。物質は原子から構成

され、原子はさらに原子核と電子に分けることができる。物質によっては、図3(a)に示すように、物質内を自由に動き回る電子がある。この電子を自由電子 $^{oldsymbol{0}}$ という。

3 free electron 第4章p.115参照。

自由電子の存在する物質に、図(b)のように電池を接続すると、自由電子は、電池の正極に向かって移動する。すなわち、電流が流れる現象は、自由電子の移動である。

図3 自由電子と自由電子の流れ

自由電子が多い物質ほど、電気をよく伝えるので、このような物質を導体[®]とよぶ。また、自由電子が少ない物質は、電気をほとんど伝えないので絶縁体[®]とよび、電気の伝え方が導体と絶縁体の中間の物質を半導体[®]とよぶ。一般に金属は、自由電子が多い。

3 電流の 向きと大きさ

図4のように、電流は、電子の流れ(移動する向き)と逆向きに、**正極**(⊕)から

負極(⊖)に向かって流れるものと決められている。

図4 電子が流れる向きと電流の向き

図 5 電荷の移動と電流の大きさ

物体を摩擦すると、その物体に電気を生じることがある。このような現象は**電荷[©]**によって生じ、電流の大きさは、物体の任意の断面を1秒間に通過する電荷の量で表す(図5)。

電荷の単位には \mathbf{D} ーロン (単位記号 \mathbf{C}) が用いられ、電流の単位には \mathbf{D} ンペア \mathbf{D} (単位記号 \mathbf{A}) が用いられる。

物体の任意の断面を、t秒間にQ[C]の電荷が一定の割合で通過するときの電流I[A]は、次の式で表される。

$$\mathbf{I} = \frac{\mathbf{Q}}{t} [\mathbf{A}]$$
 (1)

1 ある導体の断面を、0.5秒間に0.032Cの電荷が通過した。このときの 電流はいくらか。

門 2 電子 1 個のもっている電荷は - 1.602 × 10⁻¹⁹C である。1Aの電流とは、1 秒間に何個の電子が移動したことに相当するか。

20 - 2 電気回路

1 簡単な電気回路

電流が流れる通路を**電気回路^{oldsymbol{o}}**, またはたんに**回路**という。図 $oldsymbol{o}$ (a)は、電池・

豆電球・スイッチ・電流計●を導線で接続してつくった簡単な電気

- conductor
- 2 insulator
- semiconductor半導体については、第4 章で学ぶ。

● electric charge 電荷には正と負があり、 電子1個あたりの電荷量 は-1.602×10⁻¹⁹Cであ

6 ampere

る。

1アンペアとは, 1秒間に1クーロンの割合で電荷が通過するときの電流の大きさである。

1[A] = 1[C/s]

6 electric circuit

電流計については第 5章で学ぶ。

図 6

回路である。

図(a)において、スイッチを閉じると、電流は電池の正極 (+極)か ら、スイッチ、電流計、豆電球を通り、負極(-極)に向かって流れ、 豆電球は点灯する。この電池のような電気エネルギーの供給源を電 **源**[●]という。

また、豆電球のように、電源から電気エネルギーを受け、光や熱 などのエネルギーに変えるものを**負荷[●]という。ブザー・**電磁石・ 電動機などは負荷の例である。このように、電源と負荷およびそれ らを結ぶ導線とスイッチが、電気回路の基本的な構成要素である。

負荷として接続されている豆電球を、別の大きさ(ワット数)のも のと取り替え、回路に流れる電流の値を電流計で読むと、その値が 変化していることがわかる。これは、負荷の大きさによって、電流 の流れをさまたげる働きが異なるためである。この電流の流れをさ またげる働きをするものを電気抵抗、またはたんに抵抗⁰とよぶ。 抵抗の単位にはオーム(単位記号 Ω)が用いられる。

15

20

図(a)のような実体配線図では、回路構成を表すのに手間がかかる ため,電気回路の回路図は,図(b)のように**電気用図記号[●]を**用いて 表す。

図7のように、水位の高いタンクAと 2 電位·電圧·起電力 低いタンクBをパイプで接続すると、

水位の高いタンクAから低いタンクBに水が流れ、水車が回る。

これを電気の場合に対応させると、水位に相当するものが**電位⁶** で、電位の高いほうから低いほうに電流が流れる。この電位の差を 電位差または電圧[©]という。

• power source

2 load

3 resistance

一般に抵抗とは、抵抗 器(resistor)を表す場合 と, 抵抗器の抵抗の値, つまり抵抗値(resistance) を表す場合とが ある。

● 日本工業規格JIS C $0617-1:2011 \sim 0617-13:2011$ による。後見返し参照。

6 電位は一般に、大地 を基準に 0 Vとする。

6 voltage

18 第1章 直流回路

電位の差がな くなるまで電 流が流れる \oplus 雷流 高電位 起電力 (電圧) 低電位 \bigcirc

図7 水位と水流

図8 電池に生じる電圧

図8のように、豆電球に電流が流れるのは、電池の内部の化学作 用によって、正極と負極の間に電位差(電圧)が生じるからである。 この場合、電池の正極は負極より電位が高い。電池のように、電圧 を発生させる働きを**起電力[●]という。また、電位差・電圧・起電力** の単位には、ボルト(単位記号V)が用いられる。

1 electromotive force

電圧・電流・抵抗 の単位

電圧の単位にはV(ボルト)、電流の単 位にはA(アンペア). 抵抗の単位には

 $\Omega(\tau-\Delta)$ が用いられ、1000000V、1000 Ω 、0.001V、0.000001Aな どのように、大きな値や小さな値を扱うときには、単位に**接頭語**[®] の $M(x \pi)$, $k(+\pi)$, $m(\xi y)$, $\mu(\neg (-1/2) \pi)$ などをつけて表すこ とが多い。表1に、よく使われる電圧・電流・抵抗の接頭語をつけ た単位とその関係を示す。

2 接頭語は、電圧・電 流・抵抗以外の諸量の値 を表すときにも使われる。

表 1 電圧・電流・抵抗の単位

	単位	単位記号	単位の関係
æ	キロボルト	kV	$1kV = 10^3V = 1000V$
電	ボルト	V	
圧	ミリボルト	mV	$1\text{mV} = 10^{-3}\text{V} = \frac{1}{1000}\text{V}$
	アンペア	A	
電流	ミリアンペア	mA	$1 \text{mA} = 10^{-3} \text{A} = \frac{1}{1000} \text{A}$
//16	マイクロアンペア	μΑ	$1 \mu A = 10^{-6} A = \frac{1}{10000000} A$
抵	メガオーム [●] キロオーム オーム	$M\Omega$	$1 \mathrm{M}\Omega = 10^6 \Omega = 1000000 \Omega$
抗	キロオーム	kΩ	$1\mathrm{k}\Omega = 10^3\Omega = 1000\Omega$
37 L	オーム	Ω	

 $\mathbf{0}$ $\mathbf{M}\Omega$ \mathbf{e} \mathbf{y} \mathbf{f} \mathbf{f} \mathbf{h} 読む場合もある。

問 **3** 次の値を()内の単位記号で表せ。

- (1) 200 mA (A)
- (2) $50 k \Omega (\Omega)$
- (3) $2 \mu A (mA)$

- (4) 1 MV (kV)
- (5) 0.003 V (mV) (6) $300\ 000\ \Omega\ (\text{M}\ \Omega)$