Exercises for Computational Physics (physik760) WS 2019/2020

B. Kostrzewa and C. Urbach

Exercises for the week from 4th to 8th of November 2019.

Central Limit Theorem

1: In this exercise we will study the convergence properties of the central limit theorem (CLT). Consider $X_1^{\alpha}, X_2^{\alpha}, \dots$ i.i.d. random variables with p.d.f.

$$f_{\alpha}(x) = \frac{1}{2\alpha} |x|^{-1 - \frac{1}{\alpha}} \mathbb{1}_{\{|x| \ge 1\}},$$

where $\alpha \in (0,1)$.

- a) Determine the cumulative distribution function, F_{α} , and its inverse analytically.
- b) Set up the generalized inverse transform method for sampling $X \sim f_{\alpha}$. Verify your sampling visually by comparing your observed distribution via the known pdf and cdf.
- c) Consider the partial sums

$$S_K^{\alpha} = \frac{1}{\sqrt{K \operatorname{Var}(X_1^{\alpha})}} \sum_{n=1}^K X_n^{\alpha}, \quad X_n \sim f_{\alpha} \,\forall \, n.$$

Implement the sampling of S_K^{α} .

- d) Sample S_K^{α} for $\alpha = 0.1$, 0.25, 0.45 and K = 100 and compare your observed distribution to $\mathcal{N}_{0,1}$ in a Q-Q-plot. Use $N = 10^6$ samples. You can employ *Sturges' formula* $N_{\text{bin}} = \log_2(N) + 1$ for the binning.
- e) How does the distribution of S_{100}^{α} behave as a function of α and why? *Bonus:* Derive the variance as a function of α analytically. Which constraint on α does this suggest for the validity of the CLT?

3 Estimators

2: Show that

$$\Sigma_N^2 = \frac{1}{N-1} \sum_{i} (X_i - \bar{X}_N)^2$$
 (1)

is an unbiased estimator for the variance σ^2 .