1 SEM MCA (NCBCS) 101

Contd.

2019

(December)

COMPUTER APPLICATION

Paper: MCA-101

(Theory of Computer Science)

Full Marks: 75

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any four from the rest.

1. (a)	Fill	in the blanks: $1 \times 5 = 5$		
	(i) CLF can be recognized by			
	(ii)	Push down machine represents grammar.		
	(iii)	If two FSM are equivalent they should have the same number of		
		•		

- (iv) The number of vertices in a binary tree is _____.
- (v) If L is the set accepted by an NDFA, then there exists a _____ which also accepts L.
- (b) State True or False for the following: 1×5=5
 - (i) If s = abcd is defined over $\Sigma = \{a, bc, d\}$ then reverse of the string s is dcba.
 - (ii) If $\Sigma = \{aa, b\}$, then |aaaa baa bb| = 5.
 - (iii) Every nfa can be converted into an equivalent dfa.
 - (iv) A regular language cannot be infinite.
 - (v) A graph is said to be a tree if it is connected and no circuit.
- (c) Construct grammars for the following languages 2+2=4
 - (i) $L = (a, b)^*$ where b appears before a
 - (ii) $L = (a + b)^*$, where there is at least one b

- (d) Define Levi's theorem.
- 2. (a) Prove the following by principle of Induction: 2+2=4

(i)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(ii)
$$1+4+7+....+(3n-2)=\frac{n(3n-1)}{2}$$

- (b) State the Pigeonhole principle. 1
- (c) Construct a Mealy m/c equivalent to the Moore m/c given in table 1. 5

Table-1

Present	Next state		Output
state	a = 0	a = 1	
	93 91 92 93	9 ₁ 9 ₂ 9 ₃ 9 ₀	0 1 0 0

- (d) Given a grammar $G: S \rightarrow 0S1, S \rightarrow \wedge$ Find L(G).
- (e) Define equivalence relation. 3
- 3. (a) Given a grammar G: 3 $S \rightarrow a |abSb|aAb|$

 $A \rightarrow bS |aAA|b$

Show that the grammar is ambiguous.

(b) Represent the following sets in regular expression—

(i)
$$\{a^2, a^5, a^8, ...\}$$

(ii)
$$\left\{a^n \mid n \text{ is divisible by } 2 \text{ or } 3\right\}$$

- (iii) The set of all strings over {0, 1} beginning and ending with 00
- (c) Find the highest type no grammar for the following productions—

(i)
$$S \rightarrow Aa, A \rightarrow c \mid Ba, B \rightarrow abc \mid$$

(ii)
$$S \rightarrow ASB \mid d, A \rightarrow aA$$

(iii)
$$S \rightarrow aS | ab$$
.

$$3 \times 1 = 3$$

(d) Construct a minimum state automata given in Table 2.

Table 2

θ Σ	0	1
$\rightarrow q_0$	q_0	q_3
q_1	q_2	q_5
q_2	q_3	q_4
q_3	q_0	q_5
q_4	q_0	q_6
q_5	q_1	q_4
(96)	q_1	9 3

4. (a) Consider the ndfa given in Figure 3.

Figure 3

Convert it to an equivalent dfa.

(b) Consider the finite automata (Fig. 4) with ∧-move.

Obtain an equivalent automation without \(\lambda \) -move. 5

Fig. 4

5

(c) Given two DFAs M and M' (Fig. 5) over $\{0, 1\}$.

Figure 5

Prove that the M and M' are equivalent.

5. (a) Find the regular expression corresponding to the automata (Fig. 6) using Arden's theorem.

Fig. 6

- (b) Prove the language given by $A = \left\{ a^n b^n \middle| n \ge 0 \right\} \text{ is not regular using pumping lemma.}$
- (c) Find a reduced grammar equivalent to the grammar having productions 5 $P: S \to AC \mid B, A \to a, C \to c \mid BC, E \to aA \mid c$
- 6. Write short notes on: (any three)
 - (a) CNF
 - (b) Chomsky classification of Grammars
 - (c) Turing m/c
 - (d) Push down automata
 - (e) Parsing.

5×3=15