$12n_{0024} \ (K12n_{0024})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -987290740395u^{33} - 5379029654817u^{32} + \dots + 837919692176b - 653062691196,$$

$$-1563526467031u^{33} - 8197997634981u^{32} + \dots + 837919692176a + 1275617520034,$$

$$u^{34} + 6u^{33} + \dots + 5u + 1 \rangle$$

$$I_2^u = \langle -a^3 - 3au + b + 3a + 1, \ a^5 + a^4u - 2a^4 + 2a^3u - 3a^3 - 5a^2u + 2a^2 - 2au + 4a + u, \ u^2 - u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -9.87 \times 10^{11} u^{33} - 5.38 \times 10^{12} u^{32} + \dots + 8.38 \times 10^{11} b - 6.53 \times 10^{11}, \ -1.56 \times 10^{12} u^{33} - 8.20 \times 10^{12} u^{32} + \dots + 8.38 \times 10^{11} a + 1.28 \times 10^{12}, \ u^{34} + 6u^{33} + \dots + 5u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.86596u^{33} + 9.78375u^{32} + \dots + 1.06021u - 1.52236 \\ 1.17826u^{33} + 6.41951u^{32} + \dots + 5.45973u + 0.779386 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.687698u^{33} + 3.36425u^{32} + \dots + 4.39952u - 2.30175 \\ 1.17826u^{33} + 6.41951u^{32} + \dots + 5.45973u + 0.779386 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.687698u^{33} + 3.36425u^{32} + \dots + 4.39952u - 2.30175 \\ 1.17826u^{33} + 6.41951u^{32} + \dots + 5.45973u + 0.779386 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.28785u^{33} - 8.52538u^{32} + \dots - 21.2336u - 4.29654 \\ 0.361519u^{33} + 2.60589u^{32} + \dots + 0.591225u - 0.926328 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.37658u^{33} - 9.45845u^{32} + \dots - 25.9217u - 6.02116 \\ 1.27771u^{33} + 6.49148u^{32} + \dots + 2.68331u - 0.525657 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00960441u^{33} - 1.00925u^{32} + \dots - 18.8321u - 4.39435 \\ 0.833123u^{33} + 4.09945u^{32} + \dots - 0.950070u - 1.07697 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.818376u^{33} - 6.54935u^{32} + \dots - 31.6588u - 7.66755 \\ 1.56035u^{33} + 7.49904u^{32} + \dots + 0.0306098u - 1.66930 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes $= \frac{1379117222209}{837919692176}u^{33} + \frac{1029169729969}{119702813168}u^{32} + \dots + \frac{2734506517567}{837919692176}u - \frac{434006716289}{104739961522}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{34} + 6u^{33} + \dots + 17u + 1$
c_2, c_5	$u^{34} + 6u^{33} + \dots + 5u + 1$
c_3	$u^{34} - 6u^{33} + \dots + 10043u + 23377$
c_4, c_7	$u^{34} + 3u^{33} + \dots + 4096u + 1024$
c_{6}, c_{10}	$u^{34} - 3u^{33} + \dots - 2u + 1$
c_8, c_{11}, c_{12}	$u^{34} - 3u^{33} + \dots - 2u + 1$
<i>c</i> ₉	$u^{34} + 3u^{33} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{34} + 50y^{33} + \dots + 17y + 1$
c_2, c_5	$y^{34} + 6y^{33} + \dots + 17y + 1$
<i>c</i> ₃	$y^{34} + 94y^{33} + \dots + 17344598433y + 546484129$
c_4, c_7	$y^{34} - 55y^{33} + \dots - 6291456y + 1048576$
c_6,c_{10}	$y^{34} + 3y^{33} + \dots - 2y + 1$
c_8, c_{11}, c_{12}	$y^{34} - 25y^{33} + \dots - 2y + 1$
<i>c</i> ₉	$y^{34} + 59y^{33} + \dots + 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.460595 + 0.926013I		
a = 1.65664 + 1.65921I	-1.92220 + 2.39604I	9.18658 + 7.54131I
b = 0.408796 - 0.306002I		
u = 0.460595 - 0.926013I		
a = 1.65664 - 1.65921I	-1.92220 - 2.39604I	9.18658 - 7.54131I
b = 0.408796 + 0.306002I		
u = 0.916388 + 0.231859I		
a = 0.575411 + 0.072095I	1.77655 + 0.14759I	6.63914 + 0.92800I
b = 0.740585 + 0.042237I		
u = 0.916388 - 0.231859I		
a = 0.575411 - 0.072095I	1.77655 - 0.14759I	6.63914 - 0.92800I
b = 0.740585 - 0.042237I		
u = -0.139053 + 0.917478I		
a = 0.883284 + 0.335732I	-6.97147 + 2.86372I	-9.65845 - 4.16249I
b = -0.309625 - 1.098890I		
u = -0.139053 - 0.917478I		
a = 0.883284 - 0.335732I	-6.97147 - 2.86372I	-9.65845 + 4.16249I
b = -0.309625 + 1.098890I		
u = 0.615154 + 0.975680I		
a = -0.929833 + 0.597421I	0.54741 + 2.67952I	3.39595 - 1.50494I
b = -0.525453 - 0.313759I		
u = 0.615154 - 0.975680I		
a = -0.929833 - 0.597421I	0.54741 - 2.67952I	3.39595 + 1.50494I
b = -0.525453 + 0.313759I		
u = 0.429644 + 0.715588I		
a = -0.53311 - 2.00244I	-1.17601 + 1.39012I	-7.01664 - 5.97525I
b = 0.036081 + 0.595902I		
u = 0.429644 - 0.715588I		
a = -0.53311 + 2.00244I	-1.17601 - 1.39012I	-7.01664 + 5.97525I
b = 0.036081 - 0.595902I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.523759 + 0.558320I		
a = -1.97777 - 0.12112I	-5.45470 - 5.60091I	-2.61064 + 1.17728I
b = -0.563128 + 1.220590I		
u = -0.523759 - 0.558320I		
a = -1.97777 + 0.12112I	-5.45470 + 5.60091I	-2.61064 - 1.17728I
b = -0.563128 - 1.220590I		
u = 0.976795 + 0.800627I		
a = -0.742471 + 0.095802I	1.16029 + 3.25320I	4.65048 - 6.79539I
b = -0.726847 - 0.193549I		
u = 0.976795 - 0.800627I		
a = -0.742471 - 0.095802I	1.16029 - 3.25320I	4.65048 + 6.79539I
b = -0.726847 + 0.193549I		
u = -1.089890 + 0.830630I		
a = 0.725849 + 0.611806I	9.51601 + 5.95991I	0.51921 - 2.93310I
b = 1.11344 + 0.97215I		
u = -1.089890 - 0.830630I		
a = 0.725849 - 0.611806I	9.51601 - 5.95991I	0.51921 + 2.93310I
b = 1.11344 - 0.97215I		
u = -0.982318 + 0.958357I		
a = 1.53840 + 0.41969I	8.99044 - 1.80322I	0. + 1.42178I
b = 1.00540 - 1.12383I		
u = -0.982318 - 0.958357I		
a = 1.53840 - 0.41969I	8.99044 + 1.80322I	0 1.42178I
b = 1.00540 + 1.12383I		
u = 0.502370 + 1.284930I		
a = 0.386591 - 0.485376I	-1.85905 + 5.40081I	-1.55683 - 8.82721I
b = 0.637032 + 0.537211I		
u = 0.502370 - 1.284930I		
a = 0.386591 + 0.485376I	-1.85905 - 5.40081I	-1.55683 + 8.82721I
b = 0.637032 - 0.537211I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.957231 + 0.999067I		
a = 0.518277 + 0.648716I	8.85325 - 5.31381I	0. + 2.92536I
b = 1.11992 + 1.01734I		
u = -0.957231 - 0.999067I		
a = 0.518277 - 0.648716I	8.85325 + 5.31381I	0 2.92536I
b = 1.11992 - 1.01734I		
u = -1.046170 + 0.937050I		
a = -0.620076 - 0.611485I	13.38330 + 0.23885I	2.96282 + 0.I
b = -1.11562 - 0.99302I		
u = -1.046170 - 0.937050I		
a = -0.620076 + 0.611485I	13.38330 - 0.23885I	2.96282 + 0.I
b = -1.11562 + 0.99302I		
u = 0.198700 + 0.560261I		
a = -1.17033 - 1.74922I	-1.29654 + 1.36041I	-5.30238 - 4.63375I
b = 0.007937 + 0.744382I		
u = 0.198700 - 0.560261I		
a = -1.17033 + 1.74922I	-1.29654 - 1.36041I	-5.30238 + 4.63375I
b = 0.007937 - 0.744382I		
u = -0.96143 + 1.05476I		
a = -1.50621 - 0.49472I	12.9727 - 7.5739I	2.34047 + 4.26054I
b = -1.02274 + 1.10646I		
u = -0.96143 - 1.05476I		
a = -1.50621 + 0.49472I	12.9727 + 7.5739I	2.34047 - 4.26054I
b = -1.02274 - 1.10646I		
u = -0.90074 + 1.11269I		
a = 1.50810 + 0.56457I	8.5560 - 13.1935I	0. + 6.90026I
b = 1.04148 - 1.09306I		
u = -0.90074 - 1.11269I		
a = 1.50810 - 0.56457I	8.5560 + 13.1935I	0 6.90026I
b = 1.04148 + 1.09306I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.373509 + 0.310679I		
a = 2.41143 + 0.07043I	-0.05073 - 2.05660I	0.17254 + 2.58405I
b = 0.482363 - 0.901628I		
u = -0.373509 - 0.310679I		
a = 2.41143 - 0.07043I	-0.05073 + 2.05660I	0.17254 - 2.58405I
b = 0.482363 + 0.901628I		
u = -0.125550 + 0.377744I		
a = -1.22419 - 1.84916I	-2.61203 - 0.40815I	-2.95865 - 1.32770I
b = -0.829608 - 0.231361I		
u = -0.125550 - 0.377744I		
a = -1.22419 + 1.84916I	-2.61203 + 0.40815I	-2.95865 + 1.32770I
b = -0.829608 + 0.231361I		

II. $I_2^u = \langle -a^3 - 3au + b + 3a + 1, \ a^4u + 2a^3u + \dots + 2a^2 + 4a, \ u^2 - u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{3} + 3au - 3a - 1 \\ a^{3} + 3au - 3a - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a^{3} - 3au + 4a + 1 \\ a^{3} + 3au - 3a - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{4}u - a^{4} - 3a^{2}u - au + a - u + 1 \\ -a^{4}u + 3a^{2} + au + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{4}u - a^{4} - 3a^{2}u - au + a - u + 1 \\ -a^{4}u + 3a^{2} + au + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{4}u + a^{4} + a^{3}u - 2a^{3} + 2a^{2}u - 5a^{2} - 6au + 2a - u + 2 \\ 2a^{4}u - a^{4} - a^{3}u - 3a^{2}u - 2a^{2} - 2au + 3a + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{4}u + a^{4} + a^{3} - 3a^{2}u + au - a - u \\ -a^{4}u + a^{3}u + 3a^{2} + au - 2a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6a^4u 6a^4 3a^3u 2a^3 19a^2u + 5a^2 11au + 17a + 4u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^5$
c_2	$(u^2 + u + 1)^5$
c_4, c_7	u^{10}
<i>c</i> ₆	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$
c ₈	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$
<i>c</i> 9	$(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$
c_{10}	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$
c_{11}, c_{12}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2+y+1)^5$
c_4, c_7	y^{10}
c_6, c_{10}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$
c_8, c_{11}, c_{12}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$
<i>C</i> 9	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.535003 - 0.266485I	-5.87256 - 2.37095I	-1.90884 + 0.95814I
b = 0.455697 - 1.200150I		
u = 0.500000 + 0.866025I		
a = -1.31030 + 0.92177I	-0.32910 + 3.56046I	-2.43337 - 7.40396I
b = -0.339110 - 0.822375I		
u = 0.500000 + 0.866025I		
a = 1.54372 - 0.52281I	-5.87256 + 6.43072I	-7.21285 - 8.37016I
b = 0.455697 + 1.200150I		
u = 0.500000 + 0.866025I		
a = 0.114093 - 0.334410I	-0.329100 + 0.499304I	1.41726 + 0.48644I
b = -0.339110 + 0.822375I		
u = 0.500000 + 0.866025I		
a = 1.68749 - 0.66409I	-2.40108 + 2.02988I	0.137791 - 1.258916I
b = 0.766826		
u = 0.500000 - 0.866025I		
a = -0.535003 + 0.266485I	-5.87256 + 2.37095I	-1.90884 - 0.95814I
b = 0.455697 + 1.200150I		
u = 0.500000 - 0.866025I		
a = -1.31030 - 0.92177I	-0.32910 - 3.56046I	-2.43337 + 7.40396I
b = -0.339110 + 0.822375I		
u = 0.500000 - 0.866025I		
a = 1.54372 + 0.52281I	-5.87256 - 6.43072I	-7.21285 + 8.37016I
b = 0.455697 - 1.200150I		
u = 0.500000 - 0.866025I		
a = 0.114093 + 0.334410I	-0.329100 - 0.499304I	1.41726 - 0.48644I
b = -0.339110 - 0.822375I		
u = 0.500000 - 0.866025I		
a = 1.68749 + 0.66409I	-2.40108 - 2.02988I	0.137791 + 1.258916I
b = 0.766826		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^5)(u^{34} + 6u^{33} + \dots + 17u + 1)$
c_2	$((u^2 + u + 1)^5)(u^{34} + 6u^{33} + \dots + 5u + 1)$
c_3	$((u^2 - u + 1)^5)(u^{34} - 6u^{33} + \dots + 10043u + 23377)$
c_4, c_7	$u^{10}(u^{34} + 3u^{33} + \dots + 4096u + 1024)$
<i>C</i> ₅	$((u^2 - u + 1)^5)(u^{34} + 6u^{33} + \dots + 5u + 1)$
<i>c</i> ₆	$((u^5 - u^4 + 2u^3 - u^2 + u - 1)^2)(u^{34} - 3u^{33} + \dots - 2u + 1)$
<i>C</i> ₈	$((u^5 + u^4 - 2u^3 - u^2 + u - 1)^2)(u^{34} - 3u^{33} + \dots - 2u + 1)$
<i>c</i> ₉	$((u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2)(u^{34} + 3u^{33} + \dots - 2u + 1)$
c_{10}	$((u^5 + u^4 + 2u^3 + u^2 + u + 1)^2)(u^{34} - 3u^{33} + \dots - 2u + 1)$
c_{11}, c_{12}	$((u5 - u4 - 2u3 + u2 + u + 1)2)(u34 - 3u33 + \dots - 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^5)(y^{34} + 50y^{33} + \dots + 17y + 1)$
c_2, c_5	$((y^2+y+1)^5)(y^{34}+6y^{33}+\cdots+17y+1)$
c_3	$((y^2 + y + 1)^5)(y^{34} + 94y^{33} + \dots + 1.73446 \times 10^{10}y + 5.46484 \times 10^8)$
c_4, c_7	$y^{10}(y^{34} - 55y^{33} + \dots - 6291456y + 1048576)$
c_6, c_{10}	$((y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2)(y^{34} + 3y^{33} + \dots - 2y + 1)$
c_8, c_{11}, c_{12}	$((y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2)(y^{34} - 25y^{33} + \dots - 2y + 1)$
<i>c</i> ₉	$((y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2)(y^{34} + 59y^{33} + \dots + 6y + 1)$