(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 November 2002 (21.11.2002)

PCT

(10) International Publication Number WO 02/093164 A2

(51) International Patent Classification7:

G01N 33/48

(21) International Application Number: PCT/EP02/05420

(22) International Filing Date: 16 May 2002 (16.05.2002)

•

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 01111858.5
 16 May 2001 (16.05.2001)
 EP

 60/293,528
 29 May 2001 (29.05.2001)
 US

 01117113.9
 13 July 2001 (13.07.2001)
 EP

 60/305,898
 18 July 2001 (18.07.2001)
 US

- (71) Applicant (for all designated States except US): AXXIMA PHARMACEUTICALS AG [DE/DE]; Am Klopferspitz 19, 82152 Martinsried (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): STEIN-GER-LACH, Matthias [DE/DE]; Stockdorfer Strasse 38A, 81475 München (DE). SALASSIDIS, Konstadinos [GR/DE]; Echinger strasse 20, 85386 Eching (DE). BACHER, Gerald [DE/DE]; Kriegerstrasse 62, 82110 Germering (DE). MÜLLER, Stefan [DE/DE]; Thalkirchner Str. 184, 81371 München (DE).

- (74) Agents: LEIDESCHER, Thomas et al.; Zimmermann & Partner, Postfach 330 920, 80069 München (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRIDYLPYRIMIDINE DERIVATIVES AS EFFECTIVE COMPOUNDS AGAINST PRION DISEASES

Compound 53 (Gleevec[™])

(57) Abstract: The present invention relates to pyridylpyrimidine derivatives of the general formula (I): wherein R represents hydrogen or methyl and Z represents nitrogen containing functional groups, the use of the pyridylpyrimidine derivatives as pharmaceutically active agents, especially for the prophylaxis and/or treatment of prion infections and prion diseases, as well as compositions containing at least one pyridylpyrimidine derivative and/or pharmaceutically acceptable salt thereof. Furthermore, the present invention is directed to methods for preventing and/or treating prion infections and prion diseases using said pyridylpyrimidine derivatives. Human cellular protein kinases, phosphatases and cellular signal transduction molecules are disclosed as targets for detecting, preventing and/or treating prion infections and diseases, especially BSE, vCJD, or CJD, which can be inhibited by the inventive pyridylpyrimidine derivatives.

10

15

30

35

Pyridylpyrimidine derivatives as effective compounds against prion infections and prion diseases

Specification

The present invention relates to pyridylpyrimidine derivatives, the use of the pyridylpyrimidine derivatives as pharmaceutically active agents, especially for the prophylaxis and/or treatment of prion infections and prion diseases, as well as compositions containing at least one pyridylpyrimidine derivative and/or pharmaceutically acceptable salt thereof, and methods for preventing and/or treating prion infections and prion diseases. Furthermore, human cellular protein kinases, phosphatases and cellular signal transduction molecules are disclosed as targets for detecting, preventing and/or treating prion infections and diseases, especially BSE, vCJD, or CJD.

Background of the invention

20 Pyridylpyrimidine derivatives are known from WO 9509851 as effective compounds for chemotherapy of tumors, from WO 9509853, EP-A-0 588 762, WO 9509847, WO 9903854, and EP-B-0 564 409 as effective compounds for treatment of tumors. Furthermore, EP-B-0 564 409 discloses the use of said compounds in the treatment of artherosclerosis and Exp. Opin. Ther. Patents, 1998, 8(12), 1599-1625 describes the use of pyridylpyrimidine derivatives, especially of GleevecTM, the Novartis compound CGP 57148, as tyrosine kinase inhibitors in cancer treatment.

Prions are infectious agents which do not have a nucleic acid genome. It seems that a protein alone is the infectious agent. A prion has been defined as "small proteinaceous infectious particle which resists inactivation by procedures that modify nucleic acids". The discovery that proteins alone can transmit an infectious disease has come as a considerable surprise to the scientific community. Prion diseases are often called "transmissible spongiform encephalopathies", because of the post mortem appearance of the brain with large vacuoles in the cortex and cerebellum. Probably most mammalian species develop these diseases. Prion diseases are a group of neurodegenerative disorders of humans and animals and the prion diseases can manifest as sporadic, genetic or infectious disorders. Examples for prion diseases acquired

by exogenous infection are the Bovine spongiform encephalitis (BSE) of cattle and the new variant of Creutzfeld-Jakob disease (vCJD) caused by BSE. Further examples include kuru, Gerstmann-Sträussler-Scheinker disease of humans as well as scrapie of animals. For many years, the prion diseases were thought to be caused by viruses despite intriguing evidence to the contrary. The unique characteristic common to all of these disorders, whether sporadic, dominantly inherited, or acquired by infection, is that they involve the aberrant metabolism of the prion protein (PrP). In many cases, the cellular prion protein (PrP°) ["c" refers to cellular] is converted into the scrapie isoform (PrPsc) ["Sc" refers to Scrapie] by a posttranslational process that involves a conformational change. Often, the human prion diseases are transmissible to experimental animals and all of the inherited prion diseases segregate with PrP gene mutations.

These prior diseases in animals and humans have a long incubation period and a long clinical course, and are always fatal leading via decerebration to death within an average period of 7 months (CJD). Neuropathological features consist of neuronal vacuolization, neuronal death and gliosis with hyperastrocytosis. The precise diagnosis of transmissible neurodegenerative diseases can be established only by the examination of the central nervous system after biopsy or autopsy.

20

5

10

15

Clinical symptoms of the disease are progressive dementia, myoclonus and prominent ataxia with the additional clinical features of dysautonomia and delirious psychomotor excitement and with relatively preserved verbal responses.

Between 1980 and, roughly, 1996, about 750,000 cattle infected with BSE were slaughtered for human consumption in Great Britain (Anderson, R. M. *et al. Nature* 382, 779-788,1996; Ferguson, N. M., Donnelly, C. A., Woolhouse, M. E. J. & Anderson, R. M. *Phil. Trans. R. Soc. Lond. B* 352, 803-838, 1997). The annual incidence of vCJD (3, 10, 10, 18, 14 and 33 deaths in 1995–2000, respectively) can be interpreted as a first sign of a steady or exponential increase over the next years. The suggestion by the European Union Scientific Steering Committee that up to 500,000 people could have been exposed to BSE from a single infected bovine has fuelled speculation that millions of consumers are at risk.

Recent findings demonstrate that the pathogenic PrP^{Sc} of vCJD can be found in the lymph system (e.g. tonsils, lymph nodes) in humans suggesting a high risk of horizontal spread via lymph and/or blood transmission, dramatically increasing the number of people at risk.

20

25

The medical need in prion diseases today can be clearly defined as the establishment of a diagnostic system, that can detect the disease as early as possible in living humans and/or animals, to estimate the medical need for the treatment in the future and to identify the infected animals to remove them from the food chain. The medical need for prion diseases in the future (approximately starting in 5-10 years) will be medical treatment that inhibits the disease symptoms, the manifestation and/or progression of the disease.

10 It is object of the present invention to provide novel and also known compounds which can be used as pharmaceutically active agents, especially for prophylaxis and/or treatment of prion infections and prion diseases, methods wherein said compounds are used in order to treat prion infections and prion diseases and compositions containing at least one inventive compound and/or pharmaceutically acceptable salt thereof as a pharmaceutically active ingredient.

The object of the present invention is solved by the teaching of the independent claims. Further advantageous features, aspects and details of the invention are evident from the dependent claims, the description, the examples, and the figures of the present application.

Description of the invention

One aspect of the present invention is related to compounds of the general formula (I):

wherein:

R represents hydrogen or methyl;

Y, Y', Y'' are independently of each other -H, -F, -CI, -Br, -I, $-CH_2F$, $-CH_2CI$, $-CH_2Br$, $-CH_2I$, -OH, $-OCH_3$, $-CH_3$, -CN, $-OCF_3$, 4-methylpiperazin-1-yl-methyl, $-C(CH_3)=N-NH-C(NH)-NH_2$;

Z represents -NO₂, -NH₂, -NH-CO-X, -NH-CS-X, -NH-CO-NH-X, -NH-SO₂-X;

X represents thiophenyl, cyclohexyl, isoquinolinyl, naphthyl, quinolinyl,

cyclopentyl, pyridinyl, naphthyridinyl, or

and pharmaceutically acceptable salts thereof.

Another aspect of the present invention relates to the use of compounds of the general formula (I):

wherein:

15

R represents hydrogen or methyl;

Y, Y', Y" are independently of each other -H, -F, -CI, -Br, -I, $-CH_2F$, $-CH_2CI$, $-CH_2Br$, $-CH_2I$, -OH, $-OCH_3$, $-CH_3$, -CN, $-OCF_3$, 4-

methylpiperazin-1-yl-methyl, $-C(CH_3)=N-NH-C(NH)-NH_2$;

Z represents $-NO_2$, $-NH_2$, -NH-CO-X, -NH-CS-X, -NH-CO-NH-X, $-NH-SO_2-X$;

X represents thiophenyl, cyclohexyl, isoquinolinyl, naphthyl, quinolinyl,

cyclopentyl, pyridinyl, naphthyridinyl, or

20

25

30

35

and pharmaceutically acceptable salts thereof as pharmaceutically active agents, especially for prophylaxis and/or treatment of infectious diseases, or in a more general sense, for prophylaxis and/or treatment of nerodegenerative diseases.

Thus, one embodiment of the present invention disclosed herein is directed to a method for preventing and/or treating infections and/or diseases associated with said infections in an individual. Said method comprises administering to the individual an amount of at least one compound according to general formula (I) and/or pharmaceutically acceptable salts thereof effective to prevent and/or treat said infections and/or diseases. Most preferred is the administration of a compound 53.

As revealed for the first time herein, the present invention discloses the use of compounds of the general formula (I) for the prophylaxis and/or treatment of prion infections and prion diseases. As described above, said pyridylpyrimidine derivatives have first of all been used in tumor therapy. The Novartis compound GleevecTM also known as GlivecTM, CGP-57148B, imatinib mesylate, STI-571, STI-571A, CAS 152459-95-5, or 4-((Methyl-1-piperazinyl)methyl)-N-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-phenyl]benzamide methanesulfonate, has been registered in many countries as anticancer drug. This GleevecTM compound (compound 53) is also the most active one in the indication prion diseases.

The name "prion" is used to describe the causative agents which underlie the transmissible spongiform encephalopathies. A prion is proposed to be a novel infectious particle that differs from viruses and viroids. It is composed solely of one unique protein that resists most inactivation procedures such as heat, radiation, and proteases. The latter characteristic has led to the term protease-resistant isoform of the prion protein. The protease-resistant isoform has been proposed to slowly catalyze the conversion of the normal prion protein into the abnormal form.

The term "isoform" in the context of prions means two proteins with exactly the same amino acid sequence that are folded into molecules with dramatically different tertiary structures. The normal cellular isoform of the prion protein (PrPC) has a high α -helix content, a low β -sheet content, and is sensitive to protease digestion. The abnormal, disease-causing isoform (PrPSc) has a lower α -helix content, a much higher β -sheet content, and is much more resistant to protease digestion.

20

25

30

35

Moreover, in a more general sense, the present invention is concerned with the prophylaxis ans/or treatment of neurodegenerative diseases. For example, Alzheimer is a well-known neurodegenerative disease.

- Preferred are the compounds wherein R represents hydrogen. Also preferred are compounds wherein Z represents -NH-CO-X or -NH-SO₂-X and/or wherein Y, Y', Y" are independently of each other -H, -F, -CI, -CH₂F, -CH₂CI, -OH, -OCH₃, -CN, -OCF₃, or a 4-methylpiperazin-1-yl-methyl residue.
- Also preferred are the following pyridylpyrimidine derivatives selected from the 10 group comprising:

(3-Nitrophenyl)-(4-pyridin-3-yl-pyrimidin-2-yl)-amine; Compound 1: (3-Aminophenyl)-(4-pyridin-3-yl-pyrimidin-2-yl)-amine; Compound 2: (5-Amino-2-methylphenyl)-(4-pyridin-3-yl-pyrimidin-2-yl)-Compound 3: 4-Chloromethyl-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-Compound 4: ylamino)-phenyl]-benzamide; 4-Chloromethyl-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-Compound 5:

phenyl]-benzamide;

Compound 6: 4-(4-Methylpiperazin-1-ylmethyl)-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;

Thiophene-3-carboxylic [4-methyl-3-(4-pyridin-4-yl-Compound 7: pyrimidin-2-ylamino)-phenyl]-amide;

Compound 8: 4-Chloro-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)phenyl]-benzamide;

4-Chloro-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-Compound 9: benzamide:

3,4,5-Trimethoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-Compound 10: phenyl]-benzamide;

Compound 11: 4-Cyano-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide;

4-Methoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-Compound 12: benzamide;

4-Chloro-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-Compound 13: benzenesulfonamide;

Compound 14: [3-(4-pyridin-3-yl-pyrimidin-2-Thiophene-3-carboxylic acid vlamino)-phenyl]-amide:

•	Compound 15:	3,5-Dimethoxy- <i>N</i> -[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 16:	3,4,5-Trimethoxy- <i>N</i> -[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
5	Compound 17:	4-Cyano-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 18:	4-Methoxy- <i>N</i> -[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
10	Compound 19:	4-Chloro-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzenesulfonamide;
	Compound 20:	Thiophene-3-carboxylic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-amide;
	Compound 21:	3,5-Dimethoxy- <i>N</i> -[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
15	Compound 22:	4-Trifluoromethoxy- <i>N</i> -[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 23:	Cyclohexanecarboxylic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-amide;
20	Compound 24:	Cyclohexanecarboxylic acid [3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-amide;
	Compound 25:	Isoquinoline-5-sulfonic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-amide;
	Compound 26:	Isoquinoline-5-sulfonic acid [3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-amide;
25	Compound 27:	(5-Nitro-2-methylphenyl)-(4-pyridin-2-yl-pyrimidin-2-yl)-amine;
	Compound 28:	(5-Amino-2-methylphenyl)-(4-pyridin-2-yl-pyrimidin-2-yl)-amine;
	Compound 29:	3,4,5-Trimethoxy- <i>N</i> -[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
30	Compound 30:	4-Cyano- <i>N</i> -[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 31:	(3-Aminophenyl)-(4-pyridin-2-yl-pyrimidin-2-yl)-amine;
	Compound 32:	4-Chloro-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
35	Compound 33:	Cyclohexanecarboxylic acid [4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-amide;
	Compound 34:	4-Cyano-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;

	Compound 35:	4-Chloro-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzenesulfonamide;
		•
	Compound 36:	4-Methoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
5	Compound 37:	4-Chloro-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-
		phenyl]-benzamide;
	Compound 38:	Cyclohexanecarboxylic acid [3-(4-pyridin-4-yl-pyrimidin-2-
	Y1	ylamino)-phenyl]-amide;
	Compound 39:	3,5-Dimethoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-
10		phenyl]-benzamide;
	Compound 40:	(5-Amino-2-methylphenyl)-(4-pyridin-4-yl-pyrimidin-2-yl)-
		amine;
	Compound 41:	Thiophene-3-carboxylic acid [3-(4-pyridin-4-yl-pyrimidin-2-
		ylamino)-phenyl]-amide;
15 -	Compound 42:	4-Chloro-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-
	•	benzenesulfonamide;
	Compound 43:	4-Chloro-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-
		benzamide;
	Compound 44:	(3-Aminophenyl)-(4-pyridin-4-yl-pyrimidin-2-yl)-amine;
20	Compound 45:	(3-Nitrophenyl)-(4-pyridin-4-yl-pyrimidin-2-yl)-amine;
	Compound 46:	4-Trifluoromethoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-
•		ylamino)-phenyl]-benzamide;
	Compound 47:	Isoquinoline-5-sulfonic acid [3-(4-pyridin-4-yl-pyrimidin-2-
		ylamino)-phenyl]-amide;
25	Compound 48:	4-Methoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-
		benzamide;
	Compound 49:	4-Cyano-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-
		benzamide;
	Compound 50:	3,4,5-Trimethoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-
30		phenyl]-benzamide;
	Compound 51:	3,5-Dimethoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-
		ylamino)-phenyl]-benzamide;
	Compound 52:	3,4,5-Trimethoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-
		ylamino)-phenyl]-benzamide;
35	Compound 53:	4-(4-Methylpiperazin-1-ylmethyl)- <i>N</i> -[4-methyl-3-(4-pyridin-3-yl-
	0	pyrimidin-2-ylamino)-phenyl]-benzamide (Gleevec M);
	Compound 54:	4-Methyl-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-
		phenyl]-benzenesulfonamide

	Compound 55:	4-Methoxy- <i>N</i> -[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;			
	Compound 56:	3,5-Dimethoxy- <i>N</i> -[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-			
	Compound so.	ylamino)-phenyl]-benzamide;			
5	Compound 57:	Naphthalene-2-carboxylic acid [4-methyl-3-(4-pyridin-3-yl-			
	Compound or.	pyrimidin-2-ylamino)-phenyl]-amide;			
	Compound 58:	N-[3-(4-Pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;			
	Compound 59:	4-Chloro- <i>N</i> -[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
	·	benzamide;			
10	Compound 60:	·			
	Compound co.	benzamide;			
٠	Compound 61:	4-Chloro-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
	Compound on	benzenesulfonamide;			
	Compound 62:	Thiophene-2-carboxylic acid 3-(4-pyridin-2-yl-pyrimidin-2-yl-			
15	oopouao	amino)-phenyl]-amide;			
	Compound 63:	Naphthalene-2-sulfonic-acid [3-(4-pyridin-2-yl-pyrimidin-2-yl-			
	P • • • • • • • • • • • • • • • • • • •	amino)-phenyl]-amide;			
	Compound 64:	Isoquinoline-5-sulfonic-acid [3-(4-pyridin-2-yl-pyrimidin-2-yl-			
		amino)-phenyl]-amide;			
20	Compound 65:	Cylopentanecarboxylic acid 3-(4-pyridin-2-yl-pyrimidin-2-yl-			
		amino)-phenyl]-amide;			
	Compound 66:	Naphthalene-2-carboxylic acid [3-(4-pyridin-2-yl-pyrimidin-2-			
		ylamino)-phenyl]-amide;			
	Compound 67:	4-Cyano-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
25		benzamide;			
3	Compound 68:	3,5-Dimethoxy-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-			
		phenyl]-benzamide;			
•	Compound 69:	4-Bromo-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
		benzamide;			
30	Compound 70:	4-Methyl-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
		benzamide;			
	Compound 71:	4-Fluoro-N-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
	*	benzenesulfonamide;			
	Compound 72:	3,5-Dichloro-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-			
35		benzamide;			
	Compound 73:	N-[3-(4-Pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;			
	Compound 74:	4-Chloromethyl-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-			
		phenyl]-benzamide;			

		*
	Compound 75:	4-Methyl-N-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzenesulfonamide
	Compound 76:	4-(4-Methylpiperazin-1-ylmethyl)- <i>N</i> -[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
5	Compound 77:	Naphthalene-2-carboxylic acid [3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-amide;
	Compound 78:	2-Methoxy- <i>N</i> -[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
10	Compound 79:	2-Methoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 80:	4-Methyl-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 81:	4-Methyl-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
15	Compound 82:	N-[4-Methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]- benzamide;
	Compound 83:	1-(3,5-Diacetyl-phenyl)-3-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-urea;
20	Compound 84:	1-{3,5-Bis-(amidinohydrazone)-phenyl}-3-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-urea;
	Compound 85:	N-[4-Methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-nicotinamide;
	Compound 86:	N-[3-(4-Pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-nicotinamide;
25	Compound 87:	[1,8]Naphthyridine-2-carboxylic acid [3-(4-pyridin-3-yl-pyrimidin -2-ylamino)-phenyl]-amide;
	Compound 88:	[1,8]Naphthyridine-2-carbothioic acid [3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-amide;
	Compound 89:	2-Methoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
30	Compound 90:	4-Trifluoromethoxy- <i>N</i> -[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;
	Compound 91:	4-Methyl-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;

and pharmaceutically active salts of these compounds.

35

Recent research has revealed how cells communicate with each other to coordinate the growth and maintenance of the multitude of tissues within the

25

human body. A key element of this communication network is the transmission of a signal from the exterior of a cell to its nucleus, which results in the activation or suppression of specific genes. This process is called signal transduction.

An integral part of signal transduction is the interaction of ligands, their receptors 5 and intracellular signal transduction molecules. Ligands are messengers that bind to specific receptors on the surface of target cells. As a result of the binding. the receptors trigger the activation of a cascade of downstream signaling molecules, thereby transmitting the message from the exterior of the cell to its nucleus. When the message reaches the nucleus, it initiates the modulation of 10 specific genes, resulting in the production of RNA and finally proteins that carry out a specific biological function. Disturbed activity of signal transduction molecules may lead to the malfunctioning of cells and disease processes. Specifically, interference of the pathogenic PrPSc from prion diseases with neuronal cells is necessary for the prion protein to induce its neuropathological 15 features such as neuronal vacuolization, neuronal death and gliosis with hyperastrocytosis.

A key element of this communication network is the transmission of a signal from the exterior of a cell to its nucleus, which results in the activation or suppression of specific genes. The human cellular protein kinases Abl and clk1 are two of the enzymes involved in said signal transduction process. As revealed herein said kinases Abl and clk1 serve as targets and are inhibited by the pyridylpyrimidine compounds of the general formula (I). It could be proved that prion infections and/or prion diseases can be treated and also be prevented by the inhibition of said kinase Abl using the inventive pyridylpyrimidine derivatives. Inhibition of the kinase clk1 by said pyridylpyrimidine compounds can be used for the treatment of infections and diseases.

A microarray platform technology consisting of more than 1100 signal transduction cDNAs has been established. The technology is used for the identification of changes in RNA expression patterns as a result of the manipulation of the host cell by PrPsc. In addition, differential display techniques were used in order to pinpoint these changes to those enzymes which could be potential targets for drug intervention.

Employing this predefined set of signal transduction relevant cDNAs on the filters, the expression pattern of signal transduction mRNAs in neuronal mouse cells

transfected with the pathogenic form of the prion protein (PrP^{Sc}) were compared with the same cells transfected with the non-pathogenic wild-type form (PrP^c) as a control. Interference of the PrP^{Sc} with the cellular signaling events is reflected in different gene expression when compared to the control cellular situation (PrP^c).

5

10

15

Using this technology, the human cellular protein kinases FGF-R1 (also known as flg, FI-1, FIt-2, or b-FGFR), Tkt (also known as CCK-2, DDR-2, or EDDR, EC Number 2.7.1.112), Abl (also known as c-abl), clk1, MKK7 (also known as SKK4, SAPKK4, SAPKK5, or JNKK2), LIMK-2, CaM-KI, JNK2 (also known as SAPK1a, SAPKalpha), CDC2 (also known as CDK1), PRK, the human cellular protein phosphatases PTP-SL (also known as MCP83), PTP-zeta, the cellular signal transduction molecules HSP86, and GPIR-1 were identified as potential anti-prion disease targets. Said cellular protein kinases, phosphatases and signal transduction molecules are found to be specifically up- or downregulated by PrP^{SC} in relevant mouse neuronal cells.

Surprisingly, it was found that the following human cellular targets are significantly up- or downregulated in prion infected cells:

20	target	regulation
	FGF-R1	3.6 fold stronger
	Abl	5.6 fold stronger
•	MKK7	4.1 fold stronger
• .	CDC2	2.0 fold weaker
25	Tkt ·	2.1 fold stronger
	LIMK-2	2.1 fold stronger
	CaM-KI	2.1 fold stronger
	JNK2	2.0 fold weaker
	PRK	2.0 fold weaker
30	PTPzeta	4.6 fold weaker
	PTP-SL	5.0 fold weaker
	HSP86	4.1 fold weaker
	GPIR-1	2.3 fold weaker

35 Thus, one aspect of the present invention relates to a method for preventing and/or treating prion infections and/or diseases associated with said prion infections in an individual which comprises administering to the individual an amount of at least one compound of the general formula (I) and/or pharmaceutically acceptable salts

PCT/EP02/05420

thereof effective to prevent and/or treat said prion infections and/or prion diseases. Most preferred is the administration of a compound according to claim 8.

It could be proven that inhibition of one target selected from FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 was effective to treat prion diseases. Therefore, another aspect of the invention relates to a method for preventing and/or treating prion infections and/or prion diseases in an individual comprising the step of administering a pharmaceutically effective amount of at least one compound according of the general formula (I) and/or pharmaceutically acceptable salts thereof which inhibits at least partially the activity of one target selectef from FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

The nucleoside sequences of the genes coding for the human cellular protein kinase AbI and the protein kinase clk1 and their amino acid sequences are disclosed in form of a sequence listing shown below. The nucleoside and amino acid sequences for the kinase AbI (Accession Number: M14752) and for the kinase clk1 (Accession Numbers: XM002520, NM004071, L29222, L29219) were obtained from NCBI (National Library of Medicine: PubMed).

20

25

15

The compounds of general formula (I) were identified as inhibitors of at least one target selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1 by the use of a method for detecting compounds useful for the prophylaxis and/or treatment of prion infections and/or diseases. Said method comprises

- a) contacting a test compound with at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1; and
- 30 b) detecting the activity of said human cellular protein kinase, phosphatase or cellular signal transduction molecule.

The activity of a human cellular protein kinase, phosphatase or cellular signal transduction molecule was preferably measured by means of an enzymatic assay.

35

As used herein, the term "inhibitor" refers to any compound capable of downregulating, decreasing, suppressing or otherwise regulating the amount and/or activity of at least one human cellular protein kinase, phosphatase or cellular

25

30

35

signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1. Generally, said inhibitors, including suicide inhibitors, may be proteins, oligo- and polypeptides, nucleic acids, genes, small chemical molecules, or other chemical moieties.

The present disclosure teaches for the first time the up- or downregulation of the above-mentioned human cellular protein kinases, phosphatases, or cellular signal transduction molecules specifically involved in prion infections and/or diseases. Thus, the present invention is also directed to a method for detecting prion infections and/or diseases in an individual comprising:

- a) providing a sample from said individual; and
- b) adding to said sample a pharmaceutically effective amount of at least one pharmaceutically active agent; and
- 15 c) detecting activity in said sample of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.
- As used herein the term "sample" refers to any sample that can be taken from a living animal or human for diagnostic purposes, especially said sample comprises blood, milk, saliva, sputum, excrement, urine, spinal cord liquid, liquor, lachrymal gland liquid, biopsies and all other samples that can be taken from a living animal or human for diagnostic purposes.

The term "individual" preferably refers to mammals, especially humans or ruminants. Ruminants are, for instance, muledeer, elk, cow, cattle, sheep, goat, deer, or buffalo. Minks are an example for mammals which do not belong to the species of ruminants.

As used herein the term "ruminants" refers to an animal, for instance, cattle, sheep, goat, deer, elk, or buffalo that has four separate stomach chambers, and is therefore able to digest a wide range of organic and plant foods. The term "ruminants" refers also to exotic ruminants, like captive nyala, gemsbok, Arabian oryx, eland, kudu, scimitar-horned oryx, ankole, or bison which are also accessible to develop spongiform encephalopathy.

A similar aspect of the present invention is directed to a method for detecting prior infections and/or prior diseases in cells, cell cultures and/or cell lysates comprising:

- a) providing said cells, cell cultures and/or cell lysates; and
- b) adding to said cells, cell cultures and/or cell lysates a pharmaceutically effective amount of at least one pharmaceutically active agent; and
- c) detecting activity in said sample of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

10

15

20

5

Furthermore, it has been shown that the inhibition of at least one target selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1 has an effect on the production of prions. Therefore, another aspect of the invention relates to a method for regulating the production of prions in an individual or in cells comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

25

The inventive compounds according to general formula (I) are examples for the above-mentioned pharmaceutically active agent. Preferably the targets FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, and CDC 2 are used with said methods.

Another type of pharmaceutically active agents useful within the methods disclosed herein are monoclonal or polyclonal antibodies which bind to a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1. Thus, a further aspect of the present invention is related to said monoclonal or polyclonal antibodies which bind to a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1,

30

35

MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

Another embodiment of the present invention utilizes the scientific findings that some targets such as JNK2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 are downregulated during prion infection and that upregulation of the effected target by means of an activator leads to an alternative way of treating prion infections and diseases associated with prion infection.

Thus, a method was developed for regulating the production of prions either in an individual or in cells. Said methods comprise the step of administering an individual or the cells a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent activates at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction
 molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1, or wherein said agent at least partially activates or stimulates the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

Preferably the targets JNK2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 are used within the above-described methods.

Because of the fact that the organism may upregulate a given target such as FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, and CDC 2 in order to compete with the prion infection, it is also a reasonable approach to further support said upregulation by means of an activator. Therefore, the above-mentioned methods apply either to targets which are downregulated but also to targets which are upregulated.

The novel and partially known pyridylpyrimidine compounds of the general formula (I) represent a new class of pharmaceuticals highly useful for the prophylaxis and treatment of prion infections and prion diseases.

Thus, a further aspect of the present invention describes the use of a compound of the general formula (I) and/or pharmaceutically acceptable salts thereof for the manufacture of a pharmaceutical formulation for prophylaxis and/or treatment of prion infections and/or diseases induced or caused by prion infection.

As used herein the Term "prion diseases" refers to transmissible spongiform encephalopathies. This group of neurologic diseases affects humans and many species of animals causing a "sponge-like" degeneration of brain tissue. Among other unique features, all of these diseases are associated with the accumulation of an abnormal form of the prion protein in nerve cells that eventually leads to the death of the host. While prion diseases can all be transmitted from one host to another, it remains contentious as to whether a virus-like infectious agent or the abnormal prion protein itself, the prion, causes the conversion of normal to abnormal protein.

Probably most mammalian species develop prion diseases. Specific examples for animals include:

- Scrapie sheep, goat
- TME (transmissible mink encephalopathy): mink
- CWD (chronic wasting disease): muledeer, deer, elk
- BSE (bovine spongiform encephalopathy): cows, cattles

20

30

Humans are also susceptible to several prion diseases. Examples are:

- CJD Creutzfeld-Jacob Disease
- GSS Gerstmann-Sträussler-Scheinker syndrome
- FFI Fatal familial Insomnia
- 25 Kuru
 - Alpers Syndrome

The human prion diseases include kuru, sporadic Creutzfeldt-Jakob disease (sCJD), familial CJD (fCJD), iatrogenic CJD (iCJD), Gerstmann-Sträussler-Scheinker (GSS) disease, fatal familial insomnia (FFI), and, more recently, new variant CJD (nvCJD or vCJD). In addition to these human diseases, prion-related

15

20

diseases, have been recognized in several animal hosts. Scrapie is a naturally occurring disease of sheep and goats that causes ataxia, behavioral changes, and a severe pruritus that leads to scraping behavior, from which the disease was named. Additional prion diseases in animals include transmissible mink encephalopathy (TME), chronic wasting disease (CWD) of deer and elk, feline spongiform encephalopathy (FSE), and bovine spongiform encephalopathy (BSE), among others.

The transmissible nature of prion disease was first demonstrated experimentally in 1936 when Cuillé and Chelle transmitted scrapie to a healthy goat by the intraocular administration of scrapie-infected spinal cord. Thirty years later, sCJD was transmitted to chimpanzees. The pathologic feature common to all these diseases is a prominent vacuolation of the gray matter of the brain that produces a "sponge-like" appearance on light microscopy. This histopathologic appearance, coupled with the transmissible nature of these diseases, led to their collective designation as "transmissible spongiform encephalopathies" or TSEs.

The etiologic agent of the TSEs was proposed to be a "slow virus" to explain its transmissible nature and the prolonged incubation period observed during experimental transmission studies. Early experiments suggested that protein may be a critical component of the infectious agent. These studies established the basis for a new form of a transmissible pathogen, one that is composed ostensibly of only protein and lacks any replicative elements such as nucleic acid.

- The term "prion" was coined to indicate an *infectious* agent with *proteinlike* properties. The unusual properties of the pathogen were demonstrated in early experiments in which conditions that degrade nucleic acids, such as exposure to ionizing and ultraviolet radiation, did not reduce the infectivity of scrapie fractions. On the other hand, treatments that degrade protein, such as prolonged exposure to proteases, correlated with a reduction in infectivity. A protein with relative resistance to protease digestion was found to be consistently present in the brains of animals and humans with TSE. Surprisingly, this protein was found to be one that is normally encoded by a chromosomal gene of the host.
- Thus, the question raised, how a normally expressed protein could also be a transmissible pathogen? It was hypothesized and later demonstrated that PrP exists in two major isoforms: the nonpathogenic or cellular form, designated PrPc, and the pathogenic or scrapie-inducing form, designated PrPc. Both PrPc and

15

20

25

30

35

PrPsc have the same amino acid sequence, yet they differ in their biochemical properties: PrPc is soluble in nondenaturing detergents and completely degraded by proteases, whereas PrPsc is insoluble in nondenaturing detergents and shows a relative resistance to proteases. Structural studies of PrPc and PrPsc indicate a difference in the conformation of the two isoforms: PrPc is predominantly helical, whereas PrPsc contains at least 40% pleated sheet structure. Conversion to this sheet structure appears to be the fundamental event in prion disease. The ultimate mechanism of how cells die coincident with the generation of prions is still unclear. Simple accumulation of pathogenic protein may not be sufficient to explain disease, however, it may constitute a critical step in cellular dysfunction.

It was shown that the pyridylpyrimidine compounds of the general formula (I) are highly effective for the prophylaxis and/or treatment of prion infections and/or prion diseases selected from the group comprising Scrapie, TME, CWD, BSE, CJD, vCJD, GSS, FFI, Kuru, and Alpers Syndrome. Preferably, the pyridylpyrimidine derivatives are used for preventing and/or treating BSE, vCJD, or CJD.

The above-mentioned prion infections and/or diseases associated with prion infections can be treated using the inventive pyridylpyrimidine derivatives by targeting at least one of the human cellular protein kinases, phosphatases or cellular signal transduction molecules selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1. Thereby, the compounds according to general formula (I) act as inhibitors for at least one of the above-mentioned targets and especially as inhibitors for at least one enzyme selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, and CDC 2.

According to these findings a further aspect of the present invention is directed to a method for preventing and/or treating prion infections and/or prion diseases in an individual comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

Another aspect is related to a method for preventing and/or treating prion infections and/or prion diseases in cells or cell cultures comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

The inventive pyridylpyrimidine compounds of formula (I) are examples for the above-mentioned inhibitor. Said pyridylpyrimidine compounds and/or pharmaceutically acceptable salts thereof are administered in a dosage corresponding to an effective concentration in the range of $0.01-50~\mu\text{M}$, preferably in the range of $0.01-10~\mu\text{M}$, more preferably in the range of $0.01-10~\mu\text{M}$.

20

25

30

35

10

15

Because of the fact that the targets JNK2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 are downregulated in cells infected with prions, an upregulation of said targets represents another strategy in order to treat prion infections and diseases like CJD (nvCJD or vCJD) associated with prion infections. Said upregulation can be performed by activators.

An agent that is able to upregulate, increase, activate, or stimulate the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1, but especially of JNK2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 is named "activator".

Thus, another embodiment of the present invention describes a method for preventing and/or treating prior infections and/or diseases in an individual comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which activates at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal

30

35

transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1, or which activates or stimulates the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1. Preferably, said method is directed to the targets JNK2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

As used herein, the term "agent" or "pharmaceutically active agent" refers to any chemical compound capable of down- or upregulating, de- or increasing, suppressing, activation, stimulating or otherwise regulating the amount and/or activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1. Tkt. Abi, cik1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86. 15 and GPIR-1. Generally, said agents may be proteins, oligo- and polypeptides, nucleic acids, genes, aptamers, small chemical molecules, or other chemical moieties. An agent may be either an inhibitor or an activator and especially an inhibitor for the enzymes FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, and CDC 2 and an activator for the targets JNK2, PRK, PTP-SL, PTP-zeta, HSP86, 20 and GPIR-1.

One special kind of said pharmaceutically active agents are aptamers which function as regulators of the activity of a wide range of cellular molecules such as Aptamers are nucleic acid human cellular protein kinase and phosphatase. molecules selected in vitro to bind small molecules, peptides, or proteins with high Aptamers not only exhibit highly specific molecular affinity and specificity. recognition properties but are also able to modulate the function of their cognate targets in a highly specific manner by agonistic or antagonistic mechanisms. Most famous examples for aptamers are DNA aptamers or RNA aptamers.

Further examples for pharmaceutically active agents are the pyridylpyrimidine compounds of the present invention and/or pharmaceutically acceptable salts Said compounds are administered in a dosage corresponding to an thereof. effective concentration in the range of 0.01 - 50 µM, preferably in the range of 0.01 – 10 μM, more preferably in the range of 0.01 – 1 μM, and most preferably in the range of $0.01 - 0.1 \mu M$.

15

20

The compounds of general formula (I) can be administered in a daily dosage in the range of 25 mg to 1000 mg, preferably in a daily dosage of 400 mg to 600 mg, more preferably in a daily dosage of 500 mg, and most preferably in continuously increased daily dosages starting at a initial daily dosage of 400 mg and ending up in a daily dosage of 600 mg at the end of the treatment.

A question is how PrPc does convert to PrPsc? Potential mechanisms that initiate conversion of PrPc to PrPsc include a germ line mutation of the human prion protein gene (PRNP), a somatic mutation within a particular neuron, and spontaneous conversion of PrPc to an aberrant conformation that is not refolded appropriately to its native structure. The prion protein gene (PRNP) is the single gene on the short arm of chromosome 20 in humans which encodes the normal cellular isoform of the prion protein. Regardless of the initiating event, once an "infectious unit" has been generated, PrPsc appears to act as a conformational template by which PrPc is converted to a new molecule of PrPsc through proteinprotein interaction of PrPsc and PrPc. This concept is supported by several studies which show that mice with the normal PrP gene deleted (PrP knockout mice) do not develop prion disease after inoculation with scrapie. Furthermore, transgenic (Tg) mice that express a chimeric PrP gene made of human and mouse segments develop protease-resistant chimeric mouse-human PrPsc in their brains when inoculated with brain extracts from humans with prion disease. These findings clearly illustrate that prions do not self-replicate but instead convert nonpathogenic PrPc to pathogenic PrPsc.

- In its sporadic or nonfamilial form, CJD is the most common of the human prion diseases. Confusion and forgetfulness which progress rapidly to severe cortical dementia in combination with ataxia, myoclonus, and an abnormal electroencephalogram (EEG) represents the "classic tetrad" of CJD. However, a host of other neurologic signs and symptoms, including diffuse or focal weakness, painful neuropathy, chore-iform movements, hallucinations, cortical blindness, primary language disturbance, supranuclear ophthalmoplegia, and alien hand syndrome, among others, have been observed. As the disease progresses from the early stage, ataxia commonly limits the patient's mobility.
- Familial CJD (fCJD) includes those cases with a dominantly inherited mutation of the *PRNP* gene, in which the pathologic features of spongiform change occur in the absence of GSS-type plaques. Although, familial cases of CJD tend to have a clinical and pathologic phenotype similar to that of sCJD.

The original description of a patient with the onset of ataxia and dysarthria followed by variable degrees of pyramidal and extrapyramidal symptoms and late developing dementia defines the classic presentation of GSS. The duration of said disease ranges from 2 to 10 years. Death usually results from secondary infection, often from aspiration pneumonia because of impaired swallowing. The presence of plaque deposits regionally or diffusely throughout the cortex that are immunoreactive to anti-human PrP antibodies is the hallmark of this form of prion disease.

10

FFI is a genetic disorder which manifests itself by many symptoms due to the degeneration of a certain part of the brain, the thalamus. The affected area of the brain is the area responsible for sleep, the thalamus. The thalamus is the center which communications from the brain to the body and the body to the brain pass through for proper directions to where a signal should be received. When sleep takes place, it is thought that the thalamus becomes less efficient at this signal transfer function allowing for the vegetative state of sleep to come over an Consequently, the symptoms of fatal familial insomnia are directly individual. related to the malfunction of the responsibilities of the thalamus, namely sleep.

20

There are four stages of the disease before an individual's life ends. The first stage is progressive insomnia, the characteristic feature of fatal familial insomnia. By now, there is no cure for this illness.

25

35

The term "familial" means: affecting several members of the same family, usually as a result of an underlying genetic mutation.

The occurrence of vCJD is sobering because it appears to represent a situation in

which the prion has "jumped" species, in this case from cow to human. Because the pathologic features and clinical presentation of vCJD differ significantly from 30

those of sCJD, it is considered a new "strain" of human prion disease. The same "protein signature" was observed following experimental transmission of BSE to several animal hosts, supporting the idea that vCJD results from the infection of humans with BSE. vCJD occurs primarily in younger individuals (average age 27) with a somewhat protracted course of approximately 16 months. shows diffuse vacuolation and the presence of distinctive dense core PrP-

containing plaques surrounded by a halo of spongiform change.

Kuru is the condition which first brought prion diseases to prominence in the 1950s. The disease was found in geographically isolated tribes in New Guinea. It was established that ingesting brain tissue of dead relatives for religious reasons was likely to be the route of transmission.

5

10

Alpers Syndrome is the name given to prion diseases in infants.

Scrapie is the accepted, albeit somewhat colloquial, name for the naturally occurring transmissible spongiform encephalopathy of sheep and goats found worldwide. Scrapie also infects laboratory mice and hamsters making it one of the most important sources of new scientific information about this group of disorders. Scrapie was the first example of this type of disease to be noticed and has been known about for many hundreds of years. There are two possible methods of transmission in sheep: a) Infection of pasture with placental tissue carrying the agent followed by ingestion, or b) direct sheep-lamb transmission.

CWD is a fatal neurodegenerative disease of deer and elk, now known to be a transmissible spongiform encephalopathy. To date, affected animals have been found exclusively in the United States.

20

25

15

BSE

Bovine spongiform encephalopathy or "mad cow disease" appears to have originated from scrapie that has been recognized in Europe since the mid-18th century. It has since spread to most sheep-breeding countries and is widespread in the United Kingdom, where until 1988 the rendered carcasses of livestock (including sheep) were fed to ruminants and other animals as a protein-rich nutritional supplement.

30

35

During rendering, carcasses from which all consumable parts had been removed were milled and then decomposed in large vats by boiling at atmospheric or higher pressures, producing an aqueous slurry of protein under a layer of fat (tallow). After the fat was removed, the slurry was desiccated into a meat and bone meal product that was packaged by the animal food industry and distributed to owners of livestock and other captive animals (e.g., zoo and laboratory animals, breeding species, pets).

A further aspect is related to a method for regulating the expression of at least one human cellular protein kinase, phosphatase or cellular signal transduction

molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 in an individual comprising the step of administering the individual a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent inhibits at least partially the transcription of DNA or the translation of RNA.

And a still further aspect of the present invention relates to a method for regulating the expression of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 in the cells, the method comprising the step of administering the cells a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent inhibits at least partially the transcription of DNA or the translation of RNA.

15

20

25

30

35

10

As used herein, the term "regulating expression and/or activity" generally refers to any process that functions to control or modulate the quantity or activity (functionality) of a cellular component. Static regulation maintains expression and/or activity at some given level. Upregulation refers to a relative increase in expression and/or activity. Accordingly downregulation refers to a relative decrease in expression and/or activity. Downregulation is synonymous with inhibition of a given cellular component's activity.

The transcription of DNA and the translation of RNA can be inhibited by oligonucleotides or oligonucleotide derivatives. Thus, the present invention discloses oligonucleotides and derivatives of oligonucleotides which may be used in the above-mentioned methods. The oligonucleotide and/or its derivatives bind to the DNA and/or RNA encoding a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 and suppress the transcription of DNA or translation of RNA.

As described above, said prion infection and/or disease associated with said prion infection is selected from the group comprising Scrapie, TME, CWD, BSE, vCJD, CJD, GSS, FFI, Kuru, and Alpers Syndrome. Preferably, the method is used for prophylaxis and/or treatment of BSE, vCJD, or CJD. The above disclosed methods are preferably applied to CJD, vCJD, and BSE, more preferably applied to vCJD and BSE, and most perferably applied to BSE.

Some methods of the present invention identify compounds useful for prophylaxis and/or treatment of prion infections and/or diseases by screening a test compound, or a library of test compounds, for its ability to inhibit at least one of the above-mentioned human cellular protein kinases, phosphatases, or cellular signal transduction molecules, identified herein as characteristically up- or downregulated during prion production or growth inside a cell or individual. A variety of assay protocols and detection techniques are well known in the art and easily adapted for this purpose by a skilled practitioner. Such methods include, but are not limited to, high throughput assays (e.g., microarray technology, phage display technology), and *in vitro* and *in vivo* cellular and tissue assays.

Thus, a solid support is disclosed in the present invention useful for screening compounds useful for the prophylaxis and/or treatment of prion infections and/or diseases in an individual, the solid support comprising at least one immobilized oligonucleotide, wherein said oligonucleotide encodes one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

20

25

10

15

A further aspect of the present invention is related to a solid support useful for screening compounds useful for the prophylaxis and/or treatment of prion infections and/or diseases in an individual, the solid support comprising at least one immobilized human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

known in the art and easily adapted for this purpose by a skilled practitioner (cf.,

In another embodiment, a component of the above-mentioned methods comprises peptide fragments of one or more of the above-identified human cellular protein kinases, phosphatases or cellular signal transduction molecules immobilized on a solid support. Once again the most preferred solid support embodiment would contain polymers of sufficient quality and quantity to detect all of the above-mentioned human cellular protein kinases, phosphatase and cellular signal transduction molecules (e.g., a nucleic acid or a peptide microarray). A variety of supports and constructions of the same for the methods disclosed herein are well

for example: Marschall, 1999 "Do-it-yourself gene watching" Science 286, 444-447; Service 2000 "Protein arrays step out of DNA's shadow" Science 289, 1673).

It is preferred that mRNA is measured as an indication of expression. Methods for assaying for mRNA include, but are not limited to, Northern blots, slot blots, dot blots, and hybridization to an ordered array of oligonucleotides. Nucleic acid probes useful for assay of a sample are preferably of sufficient length to specifically hybridize only to appropriate, complementary transcripts. Typically the oligonucleotide probes will be at least 10 to 25 nucleotides in length. In some cases longer probes of at least 30 to 50 nucleotides will be desirable.

The cDNA oligonucleotides immobilized on said membrane filter which are used for detecting the up- or downregulation of the above-mentioned human cellular protein kinases, phosphatases, and cellular signal transduction molecules by hybridization to the radioactively labeled cDNA probes have the nucleotide sequences listed in table 1.

Table 1: Nucleotide sequences of cDNA-arrays

Cellular kinase, phosphatase, or signal transduction molecule	Sequence of immobilized DNA on arrays (in relation to the respective Acc No)
FGF-R1	41 bp - 2619bp (X52833)
Tkt (EC 2.7.1.112)	1 bp - 3096bp (X74764)
Abl	2153 bp - 3765 bp (M14752)
clk1	156 bp -1610 bp (L29219)
MKK7	77 bp – 1323 bp (AF013588)
CDC2	77 bp – 1050 bp (X05360)
CaMKI	145 bp - 1452 bp (L41816)
JNK2	507 bp - 1782 bp (L31951)
LIMK-2	963 bp - 2047 bp (D45906)
PRK	n.a bp - 1862 bp (U56998)
PTP zeta (EC 3.1.3.48)	148 bp - 7604 bp (X54135)
PTP-SL	862 bp - 1902 bp (NM_002849)
HSP86	n.a bp - n.a bp (X07270)
GPIR-1	n.a bp – n.a bp (n.a)

20

10

15

Tkt has been assigned to the EC Number: 2.7.1.112

PTP zeta has been assigned to the EC Number: 3.1.3.48

10

30

The nucleoside sequences of the genes coding for the human cellular protein kinases, phosphatases, or cellular signal transduction molecules listed in Table 1 together with the amino acid sequences and the enzyme commission numbers (E.C. numbers) of said enzymes can be obtained from NCBI (National Library of Medicine: PubMed; Web address: www.ncbi.nlm.nih.gov/entrez).

The polypeptide product of gene expression may be assayed to determine the amount of expression as well. Methods for assaying for a protein include, but are not limited to, western blot, immuno-precipitation, radioimmuno assay, and peptide immobilization in an ordered array. It is understood, however, that any method for specifically and quantitatively measuring a specific protein or mRNA product can be used.

A variety of supports upon which nucleic acids or peptides can be immobilized are known in the art, for example filters, or polyvinyl chloride dishes. Any solid surface to which oligonucleotides or peptides can be bound, either directly or indirectly, either covalently or non-covalently, can be used. A preferred solid support is a microarray membrane filter or a "biochip". These contain particular polymer probes in predetermined locations on the array. Each predetermined location may contain more than one molecule of the probe, but each molecule within the predetermined location has an identical sequence.

The present invention incorporates by reference in their entirety techniques well known in the field of molecular biology. These techniques include, but are not limited to, techniques described in the following publications:

Ausubel, F.M. et al. eds., "Short Protocols In Molecular Biology" 4th Ed. 1999,

Ausubel, F.M. et al. eds., "Short Protocols In Molecular Biology" 4" Ed. 1999 John Wiley & Sons, NY (ISBN 0-471-32938-X);

Old, R.W. & S.B. Primrose "Principles of Gene Manipulation: An Introduction To Genetic Engineering" 3rd Ed. 1985, Blackwell Scientific Publications, Boston. Studies in Microbiology: V.2, 409 pp. (ISBN 0-632-01318-4);

Mayer, R.J. & J.H. Walker eds. "Immunochemical Methods In Cell and Molecular Biology" 1987, Academic Press, London. 325 pp. (ISBN 0-12480-855-7);

Winnacker, E.L. "From Genes To Clones: Introduction To Gene Technology" 1987 VCH Publishers, NY. (translated by Horst Ibelgaufts) 634 pp. (ISBN 0-89573-614-4).

As described above, a microarray platform technology was developed consisting of more than 1100 signal transduction cDNAs immobilized on a solid support. Thus, another aspect of the present invention is directed to a solid support useful for detecting prion infections and/or diseases in an individual, the solid support comprising an immobilized oligonucleotide, wherein said oligonucleotide is capable of detecting activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

10

15

20

The present invention discloses also for the first time a solid support useful for detecting prion infections and/or diseases in cells, the solid support comprising an immobilized oligonucleotide, wherein said oligonucleotide is capable of detecting activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

The present invention further incorporates by reference in their entirety techniques well known in the field of microarray construction and analysis. These techniques include, but are not limited to, techniques described in the following patents and patent applications describing array of biopolymeric compounds and methods for their fabrication:

25

30

U.S. Pat. Nos. 5,807,522; 6,087,102; WO 93/17126; WO 95/11995; WO 95/35505; EP 742 287; and EP 799 897.

Techniques also include, but are not limited to, techniques described in the following patents and patent application describing methods of using arrays in various applications:

U.S. Pat. Nos. 5,994,076; 6,033,860; 6,040,138; 6,040,140; WO 95/21265; WO 96/31622; WO 97/10365; WO 97/27317; EP 373 203; and EP 785 280

35

Still a further aspect of the present invention is directed to pharmaceutical compositions comprising at least one pharmaceutically active agent together with a pharmaceutically acceptable carrier, excipient or diluents. Examples for

pharmaceutically active agents are the above-mentioned inventive compounds according to formula (I), or other small chemical molecules, antibodies, aptamers, oligo- and polynucleotides, genes and other biological components capable of regulating the activity of at least one target selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTPzeta, HSP86, and GPIR-1, or which are effective to treat prion infections and diseases associated with prion infection. Said prion infections and diseases are preferably Scrapie, TME, CWD, BSE, vCJD, CJD, GSS, FFI, Kuru, and Alpers Syndrome.

10

15

20

25

5

Thus, the pharmaceutical compositions according to the present invention may comprise an inhibitor, such as the inventive pyridylpyrimidine compounds or an activator such as aptamers for at least one target selected from FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1. It is also possible to have a combination of inhibitors or activators as active ingredients in one single pharmaceutical composition. Furthermore, suitable are also combinations of at least one inhibitor and at least one activator for different targets within a single pharmaceutical composition. For example, a pharmaceutical composition could comprise compound 12 as an inhibitor for, for instance, the target Abl, and an activator such as an aptamer for, for instance, the human cellular protein kinase JNK2.

Said pharmaceutical compositions are useful for the prophylaxis and/or treatment of an individual afflicted with prions comprising at least one agent capable of inhibiting

and/or activating at least partially the activity, the expression, and/or the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

30

35

The pyridylpyrimidine compounds of the present invention are basic and form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for such acid addition salt formation are hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, oxalic acid, malonic acid, salicylic acid, p-aminosalicylic acid, malic acid, fumaric acid, succinic acid, ascorbic acid, maleic acid, sulfonic acid, phosphonic acid, perchloric acid, nitric acid, formic acid, propionic acid, gluconic acid, lactic acid, tartaric acid, hydroxymaleic acid, pyruvic acid, phenylacetic acid, benzoic acid, p-aminobenzoic acid, p-hydroxybenzoic acid, methanesulfonic acid, ethanesulfonic acid, nitrous acid, hydroxyethanesulfonic acid, ethylenesulfonic acid, p-toluenesulfonic acid, naphthylsulfonic acid, sulfanilic acid, camphorsulfonic acid, china acid, mandelic acid, o-methylmandelic acid, hydrogen-benzenesulfonic acid, picric acid, adipic acid, d-o-tolyltartaric acid, tartronic acid, α -toluic acid, (o, m, p)-toluic acid, naphthylamine sulfonic acid, and other mineral or carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner.

10

It is also possible to obtain acid addition salts with amino acids like methionine, tryptophane, lysine or arginine, especially with pyridylpyrimidine compounds of the general formula (I) carrying a carboxylic acid residue.

15

Depending upon the substituents on the inventive pyridylpyrimidine compounds, one may be able to form salts with bases, too. Thus, for example, if there are carboxylic acid substituents in the molecule, salts may be formed with inorganic as well as organic bases such as, for example, NaOH, KOH, NH₄OH, tetraalkylammonium hydroxide, and the like.

20

25

The compounds of the general formula (I) can also be administered in form of their pharmaceutically active salts optionally using substantially nontoxic pharmaceutically acceptable carriers, excipients or diluents. The medications of the present invention are prepared in a conventional solid or liquid carrier or diluents and a conventional pharmaceutically-made adjuvant at suitable dosage level in a known way. The preferred preparations are in administratable form which is suitable for oral application. These administratable forms, for example, include pills, tablets, film tablets, coated tablets, capsules, powders and deposits.

30

The preferred administratable forms are tablets, film tablets, coated tablets, gelatin capsules, and opaque capsules. Each pharmaceutical composition contains at least one compound of the general formula (I), preferably compound 53 and/or pharmaceutically acceptable salts thereof in an amount of 50 mg to 150 mg, preferably 80 mg to 120 mg, and most preferably in an amount of 100 mg per formulation.

35

Furthermore, the subject of the present invention also includes pharmaceutical preparations for parenteral, including dermal, intradermal, intragastrical,

10

15

20

25

30

35

intracutaneous, intravasal, intravenous, intramuscular, intraperitoneal, intranasal, intravaginal, intrabuccal, percutaneous, rectal, subcutaneous, sublingual, topical or transdermal application, which in addition to typical vehicles and diluents contain a pyridylpyrimidine compound of the general formula (I) and/or a pharmaceutically acceptable salt thereof as active ingredient.

Within the disclosed methods the pharmaceutical compositions of the present invention, containing pyridylpyrimidine derivatives of the general formula (I) as active ingredients, will typically be administered in admixture with suitable carrier materials selected with respect to the intended form of administration, i.e. oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices. For example, for oral administration in the form of tablets or capsules, the active drug component may be combined with any oral nontoxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like. Moreover, when desired or needed, suitable binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture. Powders and tablets may be comprised of from about 5 to about 95 percent inventive composition.

Suitable binders include starch, gelatin, natural sugars, com sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylcellulose, polyethylene glycol and waxes. Among the lubricants, there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include starch, methylcellulose, guar gum and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate. Some of the terms noted above, namely disintegrants, diluents, lubricants, binders and the like, are discussed in more detail below.

Additionally, the compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize the therapeutic effects, i.e. antihistaminic activity and the like. Suitable dosage forms for sustained release include layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components

PCT/EP02/05420

15

25

30

35

and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injections or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier such as inert compressed gas, e.g. nitrogen.

For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides such as cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein by stirring or similar mixing. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidifies.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.

The inventive pyridylpyrimidine compounds of the present invention may also be deliverable transdermally. The transdermal compositions may take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

The term capsule refers to a special container or enclosure made of methyl cellulose, polyvinyl alcohols, or denatured gelatins or starch for holding or containing compositions comprising the active ingredients. Hard shell capsules are typically made of blends of relatively high gel strength bone and pork skin gelatins. The capsule itself may contain small amounts of dyes, opaquing agents, plasticizers and preservatives.

Tablet means compressed or molded solid dosage form containing the active ingredients with suitable diluents. The tablet can be prepared by compression of

20

25

mixtures or granulations obtained by wet granulation, dry granulation or by compaction well known to a person skilled in the art.

Oral gels refers to the active ingredients dispersed or solubilized in a hydrophillic semi-solid matrix.

Powders for constitution refers to powder blends containing the active ingredients and suitable diluents which can be suspended in water or juices.

Suitable diluents are substances that usually make up the major portion of the composition or dosage form. Suitable diluents include sugars such as lactose, sucrose, mannitol and sorbitol, starches derived from wheat, corn rice and potato, and celluloses such as microcrystalline cellulose. The amount of diluents in the composition can range from about 5 to about 95% by weight of the total composition, preferably from about 25 to about 75%, more preferably from about 30 to about 60% by weight.

The term disintegrants refers to materials added to the composition to help it break apart (disintegrate) and release the medicaments. Suitable disintegrants include starches, "cold water soluble" modified starches such as sodium carboxymethyl starch, natural and synthetic gums such as locust bean, karaya, guar, tragacanth and agar, cellulose derivatives such as methylcellulose and sodium carboxymethylcellulose, microcrystalline celluloses and cross-linked microcrystalline celluloses such as sodium croscarmellose, alginates such as alginic acid and sodium alginate, clays such as bentonites, and effervescent mixtures. The amount of disintegrant in the composition can range from about 2 to about 20% by weight of the composition, more preferably from about 5 to about 10% by weight.

Binders characterize substances that bind or "glue" powders together and make them cohesive by forming granules, thus serving as the "adhesive" in the formulation. Binders add cohesive strength already available in the diluents or bulking agent. Suitable binders include sugars such as sucrose, starches derived from wheat, corn rice and potato; natural gums such as acacia, gelatin and tragacanth; derivatives of seaweed such as alginic acid, sodium alginate and ammonium calcium alginate; cellulosic materials such as methylcellulose and sodium carboxymethylcellulose and hydroxypropylmethylcellulose; polyvinylpyrrolidone; and inorganics such as magnesium aluminum silicate. The

25

30

35

amount of binder in the composition can range from about 2 to about 20% by weight of the composition, more preferably from about 3 to about 10% by weight, even more preferably from about 3 to about 6% by weight.

Lubricant refers to a substance added to the dosage form to enable the tablet, granules, etc. after it has been compressed, to release from the mold or die by reducing friction or wear. Suitable lubricants include metallic stearates such as magnesium stearate, calcium stearate or potassium stearate; stearic acid; high melting point waxes; and water soluble lubricants such as sodium chloride,
 sodium benzoate, sodium acetate, sodium oleate, polyethylene glycols and D,L-leucine. Lubricants are usually added at the very last step before compression, since they must be present on the surfaces of the granules and in between them and the parts of the tablet press. The amount of lubricant in the composition can range from about 0.2 to about 5% by weight of the composition, preferably from about 0.5 to about 2%, more preferably from about 0.3 to about 1.5% by weight.

Glidents are materials that prevent caking and improve the flow characteristics of granulations, so that flow is smooth and uniform. Suitable glidents include silicon dioxide and talc. The amount of glident in the composition can range from about 0.1% to about 5% by weight of the total composition, preferably from about 0.5 to about 2% by weight.

Coloring agents are excipients that provide coloration to the composition or the dosage form. Such excipients can include food grade dyes and food grade dyes adsorbed onto a suitable adsorbent such as clay or aluminum oxide. The amount of the coloring agent can vary from about 0.1 to about 5% by weight of the composition, preferably from about 0.1 to about 1%.

As used herein, a "pharmaceutically effective amount" of an inhibitor and/or an activator is an amount effective to achieve the desired physiological result, either in cells treated *in vitro* or in a subject treated *in vivo*. Specifically, a pharmaceutically effective amount is an amount sufficient to inhibit and or activate, for some period of time, one or more of the clinically defined pathological processes associated with the prion infection. The effective amount may vary depending on the specific inhibitor and/or activator selected, and is also dependent on a variety of factors and conditions related to the subject to be treated and the severity of the infection. For example, if an inhibitor and/or activator is to be administered *in vivo*, factors such as the age, weight and health

10

15

20

25

of the patient as well as dose response curves and toxicity data obtained in preclinical animal work would be among those considered. If the inhibitor and/or activator is to be contacted with the cells *in vitro*, one would also design a variety of pre-clinical *in vitro* studies to assess such parameters as uptake, half-life, dose, toxicity, etc. The determination of a pharmaceutically effective amount for a given pharmaceutically active agent is well within the ability of those skilled in the art.

It is also apparent to a person skilled in the art that detection includes any method known in the art useful to indicate the presence, absence, or amount of a detection target. Such methods may include, but are not limited to, any molecular or cellular techniques, used singularly or in combination, including, but not limited to: hybridization and/or binding techniques, including blotting techniques and immunoassays; labeling techniques (chemiluminescent, colorimetric, fluorescent, radioisotopic); spectroscopic techniques; separations technology, including precipitations, electrophoresis, chromatography, centrifugation, ultrafiltration, cell sorting; and enzymatic manipulations (e.g., digestion).

It should be stressed that all above-mentioned features, aspects, and details of the present invention discussed and described in connection with infections and infectious diseases, equally apply to neurodegenerative diseases, like Alzheimer.

It is readily apparent to those skilled in the art that other suitable modifications and adaptations of the compositions and methods of the invention described herein are evident and may be made without departing from the scope of the invention or the embodiments disclosed herein. Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting of the invention.

30

35

Description of figures

- Fig. 1 shows 6 selected pyridylpyrimidine derivatives which are suitable inhibitors for prior diseases, namely compounds 4, 5, 37, 52, 84, and 88;
- Fig. 2 shows the compound 4-(4-Methylpiperazin-1-ylmethyl)-*N*-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide, also known as GleevecTM:
- Fig. 3 shows selected compounds that have been identified as potent inhibitors in a prion propagation assay at a concentration of 5 μm.

Examples

Materials and methods

5

1. Generation of cDNA-arrays on membranes

In order to manufacture cDNAs-arrays on membranes, the following strategy was pursued: cDNAs encoding parts of or full length proteins of interest - in the following referred to as "target cDNAs" - were cloned into the plasmid Bluescript II Large scale purifications of these plasmids were KS⁺ (Stratagene, USA). performed according to standard techniques and 200 µl aliquots (1 µg/µl plasmid concentration) were transferred into appropriate 96well plates. closed with sealing tape and chilled on ice for 5 minutes after incubation for 10 minutes at 95°C. 10 µl of 0.6 N NaOH were added and the mix was stored for 20 minutes at room temperature before addition of 10 µl 2.5 M Tris-HCl pH 7.1 and 20 µl 40x SSC (3 M NaCl, 300 mM Sodium Citrate, pH 7.0). Target cDNAs were spotted onto Nylon or Nitrocellulose membranes using a BioGrid (BioRobotics, UK) equipped with a 0.7 mm pintool. In this way, between 200 ng and 350 ng of plasmids encoding target cDNAs were transferred onto the membranes and crosslinked to the membranes by ultraviolet light (1.2x10⁵ µJ/cm²). were stored for use in subsequent experiments at room temperature.

2. Generation of cells

25

30

35

15

20

PrP^{Sc}- and PrP^c-transfected mouse neuronal cells (N2A) were cultured in MEM (Minimum Essential Medium, Life Technologies) supplemented with 10% fetal calf serum at 37°C and 5% CO₂ to obtain ~6x10⁶ cells per tissue culture flask.

3. Lysis of cells, isolation of total RNA and purification of polyA RNA

After incubation of the cells with the virus for the respective time-points, cells were washed twice with phosphate buffered saline (PBS) and then trypsinized. Subsequently, cells were removed from the culture dish by resuspension with PBS. Afterwards, cells were sedimented and directly lysed in Tri reagent by repetitive pipetting using in 1ml of Tri reagent (Molecular Research Centre, Inc., USA) per 1x10⁶ cells.

10

15

20

25

30

The lysates were stored at room temperature for 5 minutes and then centrifuged at 12000xg for 15 minutes at 4°C. The supernatant was mixed with 0,1 ml of 1-bromo-3-chloropropane per 1 ml of Tri reagent and vigorously shaken. The suspension was stored for 5 minutes at room temperature and then centrifuged at 12000xg for 15 minutes at 4°C.

The colourless upper phase was transferred into new tubes, mixed with 5 µl of poly-acryl-carrier (Molecular Research Centre, Inc., USA) and with 0.5 ml of isopropanol per 1 ml of Tri reagent and vigorously shaken. The samples were stored at room temperature for 5 minutes and then centrifuged at 12000xg for 8 minutes at 4°C. The supernatant was removed and the RNA pellet washed twice with 1 ml of 75% ethanol. The pellet was dried and resuspended for 10 minutes at 55°C in 50 µl of RNase-free buffer (5 mM Tris-HCl pH 7.5). The integrity of the isolated RNA was determined by agarose/formaldehyde gel electrophoresis and the RNA was finally stored at -70°C for use in subsequent experiments.

4. Preparation of radioactively labelled cDNA probes from RNA

In order to obtain radioactively labelled cDNA probes total RNA was transcribed into a cDNA-probe in the presence of radioactively labelled dATP. 12 μ l bidestilled DEPC (Diethylpyrocarbonate) treated H₂O containing 0.5 μ g of primer TXN (5'-TTT TTT TTT TTT TXN-3' with T \rightarrow dTTP; N \rightarrow dATP, dCTP, dGTP or dTTP; X \rightarrow dATP, dCTP or dGTP) and total RNA (1 to 10 μ g) were shaken between 5 and 15' at 60°C and then incubated on ice for 2 minutes. After centrifugation (30 seconds, 10000xg) 7 μ l of a mix consisting of 100 μ Ci dATP-P³³ (Amersham, UK) which were dried under vacuum previously and resuspended in 4 μ l first strand buffer (Life Technologies, USA), 2 μ l 0.1M DTT (Dithiothreitol) and 1 μ l labelling solution (4 mM dCTP, dGTP, dTTP each and 80 μ M dATP final concentration) were added. Following the addition of 1 μ l Superscript II reverse transcriptase (Life Technologies, USA) the reaction was incubated for 10 minutes at room temperature and then for 60 minutes at 38°C. Subsequently, the reaction was vigorously shaken for 30 minutes at 68°C after adding 5 μ l 0.5 M EDTA and 25 μ l 0.6M NaOH.

Unincorporated nucleotides were removed from the labelling reaction using ProbeQuant G-50 columns (Amersham, UK). The column was vigorously shaken and centrifuged for 1 minute at 735xg in an appropriate reaction tube after bottom closure and lid were removed. The column was placed into a new reaction tube,

10

20

25

30

35

the probe was applied onto the centre of the column material and the column was centrifuged for 2 minutes at 735xg. The flow-trough was transferred into new reaction tubes and filled up to a volume of 100 μ l with bidestilled H₂O. The probe was precipitated by centrifugation for 15 minutes at 12000xg after 4 μ l 5M NaCl, 1 μ l poly-acryl-carrier (Molecular Research Centre, Inc., USA) and 250 μ l ethanol were added. The supernatant was discarded and the pellet was dried at 50°C for 5 minutes before starting with the hybridisation.

5. Hybridisation of radioactively labelled cDNA-probes to cDNA-arrays

The pellet was resuspended in 10 μ l C₀T DNA (1 μ g/ μ l, Roche Diagnostics, Germany), 10 μ l yeast tRNA (1 μ g/ μ l Sigma, USA) and 10 μ l polyA (1 μ g/ μ l, Roche Diagnostics, Germany) and incubated at 55°C for 5 minutes. Herring sperm DNA was added to a final concentration of 100 μ g/ml and the volume was filled up to 100 μ l with 5 μ l 10% SDS (Sodiumdodecylsulfat), 25 μ l 20x SSPE (3M Sodium chloride, 0,2 M Sodium dihydrogen phosphate monohydrate, 0,02 M Ethylenedinitrilo tetraacetic acid, disodium salt dihydrate; pH 7,4) and bidestilled H₂O. The mix was put on 95°C for 5 minutes, centrifuged for 30 seconds at 10000xg and vigorously shaken for 60 minutes at 65°C. A 1 μ l aliquot of the probe was used to measure the incorporation of radioactive dATP with a scintillation counter. Probes with at least a total of 20x10⁶ cpm were used.

The arrays were prehybridised for at least 3 hours at 42°C in hybridisation solution in a roller bottle oven. After prehybridization the radioactively labelled probe was added into the hybridisation solution and hybridisation was continued for 20 to 40 hours.

The probe was discarded and replaced with wash solution A (2xSSC). The arrays were washed twice in wash solution A at room temperature in the roller oven. Afterwards, wash solution A was replaced by wash solution B (2x SSC, 0.5% SDS) preheated to 65°C and arrays were washed twice for 30 minutes at 65°C. Then, wash solution B was replaced by wash solution C (0.5x SSC, 0.5% SDS) preheated to 65°C and arrays were washed twice for 30 minutes at 65°C. The moist arrays were wrapped in airtight bags and exposed for 8 to 72 hours on erased phosphoimager screens (Fujifilm, Japan).

10

15

20

30

35

6. Analysis of cDNA-аггауs

The exposed phosphoimager screens were scanned with a resolution of 100µ and 16bits per pixel using a BAS-1800 (Fujifilm, Japan). Files were imported into the computer program ArrayVision (Imaging Research, Canada). Using the program's features, the hybridization signals of each target cDNA were converted into numbers. The strength of the hybridization signals reflected the quantity of RNA molecules present in the probe. Differentially expressed genes were selected according to the ratio of their signal strength after normalization to the overall intensity of the arrays.

7. Cell culture and expression of 3F4-tagged PrP (3F4-ScN2a)

The mouse neuroblastoma cell line 3F4-ScN2a represents a stably transfected clone of ScN2a cells (PrPSc infected N2a cells) which overexpress 3F4-epitopetagged murine PrP. Residues 109 and 112 of murine PrP were replaced by methionine to introduce the epitope for reactivity with the monoclonal anti-PrP antibody 3F4. Cells were maintained in Dulbecco's modified Eagle's (DMEM) or Opti-MEM medium containing 10 % fetal calf serum, antibiotics and glutamin. For generation of stable transfectants we used the vector pcDNA3.1/Zeo (Invitrogen; Leek, The Netherlands). Lipofection of cells with recombinant plasmids was done using standard procedures and recombinant clones were selected by addition of 300 µg Zeocin/ml medium.

8. Treatment of cells with inhibitors

25 All tested compounds were solubilized in DMSO (dimethylsulfoxide), and prepared as 10 mM stock solutions. The drugs were applied to the cells described above for three days in final concentrations between 5 and 20 µM.

Immunoblot and proteinase K (PK) analysis

Confluent cell cultures were lysed in cold lysis buffer (10 mM Tris-HCl, pH 7.5; 100 mM NaCl; 10 mM EDTA; 0.5 % Triton X-100; 0.5 % DOC) (EDTA: ethylene diamine tetraacetate; Triton X-100: t-octylphenoxypolyethoxyethanol; DOC: deoxycholic acid). Postnuclear lysates were split between those with and without proteinase K digestion. Samples without proteinase K digestion were supplemented with proteinase inhibitors (5 mM PMSF, 0.5 mM Pefabloc, and aprotinin) (PMSF: phenylmethylsulfonyl fluoride) and directly precipitated with ethanol. Samples for proteinase K digestion were incubated with 20 µg/ml proteinase K for 30 min at 37°C; digestion was stopped with proteinase inhibitors,

and samples were ethanol precipitated. After centrifuging for 30 min at 3,500 rpm the pellets were redissolved in TNE buffer (10 mM Tris-HCl pH7.5, 100 mM NaCl, 1mM EDTA) and gel loading buffer was then added. After boiling for 5 min an aliquot was analyzed on 12.5 % PAGE. For Western blot analysis, the proteins were electrotransferred to PVDF membranes (polyvinylidendifluorid). membrane was blocked with 5 % non-fat dry milk in TBST (0.05 % Tween 20, 100 mM NaCl, 10 mM Tris-HCl, pH 7.8) (Tween 20: polyoxyethylenesorbitan Tris-(hydroxymethyl)-aminomethane-hydrochloride), monolaurate; Tris-HCI: incubated overnight with the primary antibody at 4°C and stained using the enhanced chemiluminescence blotting kit from Amersham Corporation. Specific immuno-staining of the PrPc and PrPsc forms were obtained with the prion protein specific antibody 3F4 (Signet Pathologies, U.S.A.).

10. Results

10

15

25

30

Determination of the amount of the pathogenic form of the prion protein PrPSc upon treatment of prion infected cells with different types of small molecule protein kinase inhibitors resulted in the identification of a compound class of pyridylpyrimidine derivatives examplified by the compound 4-(4-Methylpiperazin-1ylmethyl)-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide (compound 53) and compounds 4, 5, and 37. 20

These compounds significantly reduced the amount of PrPSc in prior infected cells in a concentration range between 5 and 20 µM (final concentration). As shown in Fig. 3 the selected compounds 4, 5, 37, and 53 inhibit almost completely the activity of prion propagation within said concentration range.

The compounds did not show any toxic effects on the cells in these concentrations. Therefore these molecules described herein serve as potential inhibitors for the medical intervention of prion diseases such as transmissible spongiform encephalitis (TSE) infections which include Bovine spongiform encephalitis (BSE) or the new variant of Creutzfeld Jakob disease (vCJK).

Claims

1. Compounds having the general formula (I):

5

10

wherein:

R represents hydrogen or methyl;

Y, Y', Y" are independently of each other -H, -F, -CI, -Br, -I, $-CH_2F$, $-CH_2CI$, $-CH_2Br$, $-CH_2I$, -OH, $-OCH_3$, $-CH_3$, -CN, $-OCF_3$, 4-methylpiperazin-1-yl-methyl, $-C(CH_3)=N-NH-C(NH)-NH_2$;

Z represents $-NO_2$, $-NH_2$, -NH-CO-X, -NH-CS-X, -NH-CO-NH-X, $-NH-SO_2-X$;

X represents thiophenyl, cyclohexyl, isoquinolinyl, naphthyl, quinolinyl,

cyclopentyl, pyridinyl, naphthyridinyl, or

15

20

and pharmaceutically acceptable salts thereof.

2. Use of a compound having the general formula (I):

5 wherein:

R represents hydrogen or methyl;

Y, Y', Y" are independently of each other -H, -F, -CI, -Br, -I, $-CH_2F$, $-CH_2CI$, $-CH_2Br$, $-CH_2I$, -OH, $-OCH_3$, $-CH_3$, -CN, $-OCF_3$, 4-methylpiperazin-1-yl-methyl, $-C(CH_3)=N-NH-C(NH)-NH_2$;

Z represents -NO₂, -NH₂, -NH-CO-X, -NH-CS-X, -NH-CO-NH-X, -NH-SO₂-X;

X represents thiophenyl, cyclohexyl, isoquinolinyl, naphthyl, quinolinyl,

cyclopentyl, pyridinyl, naphthyridinyl, or

and pharmaceutically acceptable salts thereof as pharmaceutically active agents.

15

20

3. Use of a compound having the general formula (I):

5 wherein:

10

15

R represents hydrogen or methyl;

Y, Y', Y" are independently of each other -H, -F, -CI, -Br, -I, $-CH_2F$, $-CH_2CI$, $-CH_2Br$, $-CH_2I$, -OH, $-OCH_3$, $-CH_3$, -CN, $-OCF_3$, 4-methylpiperazin-1-yl-methyl, $-C(CH_3)=N-NH-C(NH)-NH_2$;

Z represents $-NO_2$, $-NH_2$, -NH-CO-X, -NH-CS-X, -NH-CO-NH-X, $-NH-SO_2-X$;

X represents thiophenyl, cyclohexyl, isoquinolinyl, naphthyl, quinolinyl,

cyclopentyl, pyridinyl, naphthyridinyl, or

and pharmaceutically acceptable salts thereof for prophylaxis and/or treatment of infectious diseases or neurodegenerative diseases.

- 4. Use of a compound according to claim 2 or 3 for the prophylaxis and/or treatment of prion infections and/or diseases induced by prion infection.
- Use of a compound according to any one of claims 2 4 wherein R
 represents hydrogen.
 - 6. Use of a compound according to any one of claims 2 5 wherein Z represents –NH–CO–X or –NH–SO₂–X.

7.

Use of a compound according to any one of claims 2 - 6 wherein Y, Y', Y"

are independently of each other -H, -F, -Cl, -CH₂F, -CH₂Cl, -OH, -OCH₃, -CH₃, -CN₁, -OCF₃, 4-methylpiperazin-1-yl-methyl. 5 Use of a compound according to claim 2 or 3 wherein the compound is 8. selected from the group comprising: (3-Nitrophenyl)-(4-pyridin-3-yl-pyrimidin-2-yl)-amine; (3-Aminophenyl)-(4-pyridin-3-yl-pyrimidin-2-yl)-amine; 10 (5-Amino-2-methylphenyl)-(4-pyridin-3-yl-pyrimidin-2-yl)-amine; 4-Chloromethyl-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide: 4-Chloromethyl-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-(4-Methylpiperazin-1-ylmethyl)-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)phenyl]-benzamide; 15 Thiophene-3-carboxylic acid [4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)phenyl]-amide; 4-Chloro-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-Chloro-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 20 3,4,5-Trimethoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-Cyano-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Methoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Chloro-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-25 benzenesulfonamide; Thiophene-3-carboxylic acid [3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]amide: 3,5-Dimethoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 3,4,5-Trimethoxy-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-30 benzamide; 4-Cyano-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-Methoxy-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide: 35 4-Chloro-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide;

Thiophene-3-carboxylic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)phenyl]-amide; 3,5-Dimethoxy-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-Trifluoromethoxy-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide: Cyclohexanecarboxylic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)phenyl]-amide; Cyclohexanecarboxylic acid [3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-10 amide: Isoquinoline-5-sulfonic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)phenyl]-amide; Isoquinoline-5-sulfonic acid [3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]amide; 15 (5-Nitro-2-methylphenyl)-(4-pyridin-2-yl-pyrimidin-2-yl)-amine; (5-Amino-2-methylphenyl)-(4-pyridin-2-yl-pyrimidin-2-yl)-amine; 3,4,5-Trimethoxy-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzamide: 4-Cyano-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-20 benzamide; (3-Aminophenyl)-(4-pyridin-2-yl-pyrimidin-2-yl)-amine; 4-Chloro-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzamide; Cyclohexanecarboxylic acid [4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-25 phenyl]-amide; 4-Cyano-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-Chloro-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide; 30 4-Methoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-Chloro-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide; Cyclohexanecarboxylic acid [3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-35 amide: 3,5-Dimethoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; (5-Amino-2-methylphenyl)-(4-pyridin-4-yl-pyrimidin-2-yl)-amine;

Thiophene-3-carboxylic acid [3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]amide; 4-Chloro-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide; 4-Chloro-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 5 (3-Aminophenyl)-(4-pyridin-4-yl-pyrimidin-2-yl)-amine; (3-Nitrophenyl)-(4-pyridin-4-yl-pyrimidin-2-yl)-amine; 4-Trifluoromethoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide; Isoquinoline-5-sulfonic acid [3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-10 amide: 4-Methoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Cyano-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 3,4,5-Trimethoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide: 15 3.5-Dimethoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 3,4,5-Trimethoxy-N-[4-methyl-3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 4-(4-Methylpiperazin-1-ylmethyl)-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-20 ylamino)-phenyl]-benzamide; 4-Methyl-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide; 4-Methoxy-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 25 3,5-Dimethoxy-N-[4-methyl-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzamide: Naphthalene-2-carboxylic acid [4-methyl-3-(4-pyridin-3-yl-pyrimidin-2ylamino)-phenyl]-amide; 30 N-[3-(4-Pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Chloro-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Methoxy-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Chloro-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide; Thiophene-2-carboxylic acid 3-(4-pyridin-2-yl-pyrimidin-2-yl-amino)-phenyl]-35 amide: Naphthalene-2-sulfonic-acid [3-(4-pyridin-2-yl-pyrimidin-2-yl-amino)-phenyl]amide;

Isoquinoline-5-sulfonic-acid [3-(4-pyridin-2-yl-pyrimidin-2-yl-amino)-phenyl]-Cylopentanecarboxylic acid 3-(4-pyridin-2-yl-pyrimidin-2-yl-amino)-phenyl]amide: Naphthalene-2-carboxylic acid [3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-5 amide; 4-Cyano-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 3,5-Dimethoxy-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Bromo-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Methyl-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 10 4-Fluoro-N-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide: 3,5-Dichloro-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; N-[3-(4-Pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Chloromethyl-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 15 4-Methyl-N-3-(4-pyridin-2-yl-pyrimidin-2-ylamino)-phenyl]benzenesulfonamide; 4-(4-Methylpiperazin-1-ylmethyl)-N-[3-(4-pyridin-2-yl-pyrimidin-2-ylamino)phenyl]-benzamide; Naphthalene-2-carboxylic acid [3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-20 amide: 2-Methoxy-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide; 2-Methoxy-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 4-Methyl-N-[3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 25 4-Methyl-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]benzamide: N-[4-Methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; 1-(3,5-Diacetyl-phenyl)-3-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-30 phenyl]-urea; 1-{3,5-Bis-(amidinohydrazone)-phenyl}-3-[4-methyl-3-(4-pyridin-3-ylpyrimidin-2-ylamino)-phenyl]-urea; N-[4-Methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-nicotinamide; N-[3-(4-Pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-nicotinamide; [1,8]Naphthyridine-2-carboxylic acid [3-(4-pyridin-3-yl-pyrimidin -2-ylamino)-35 phenyl]-amide; [1,8]Naphthyridine-2-carbothioic acid [3-(4-pyridin-3-yl-pyrimi-din-2-ylamino)phenyl]-amide;

10

15

20

25

2-Methoxy-N-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;

4-Trifluoromethoxy-*N*-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide;

- 4-Methyl-*N*-[3-(4-pyridin-4-yl-pyrimidin-2-ylamino)-phenyl]-benzamide; and/or a pharmaceutically acceptable salt of these compounds.
- 9. Use according to claim 8 wherein the compound is 4-(4-Methylpiperazin-1-ylmethyl)-N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)-phenyl]-benz-amide.
- 10. Use of a compound recited in any one of claims 2 9 and/or pharmaceutically acceptable salts thereof for the manufacture of a pharmaceutical composition for prophylaxis and/or treatment of prion infections and/or diseases induced by prion infection and/or neurodegenerative diseases.
- 11. Use according to claim 4 or 10 wherein said prion infection and/or disease is selected from the group comprising Scrapie, TME, CWD, BSE, CJD, vCJD, GSS, FFI, Kuru, and Alpers Syndrome.
- 12. Use according to claim 11 wherein said prion infection is BSE, vCJD, or CJD.
- 13. Use of a compound recited in any one of claims 2 9 as an inhibitor for at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.
- 14. Use of a compound according to any one of claims 2 to 13 wherein the compound of the general formula (I) and/or pharmaceutically acceptable salts thereof is administered in a dosage corresponding to an effective concentration in the range of 0.01 50 μM.
- 15. Pharmaceutical composition comprising at least one compound recited in any one of claims 2 9 as an active ingredient, together with one or more pharmaceutically acceptable carrier(s), excipient(s) or diluents.

10

25

- Method for preventing and/or treating infections and/or diseases in an individual which comprises administering to the individual an amount of at least one compound recited in claims 2 9 and/or pharmaceutically acceptable salts thereof effective to prevent and/or treat said infections and/or diseases.
- 17. Method for preventing and/or treating prion infections and/or prion diseases induced by prion infections in an individual which comprises administering to the individual an amount of at least one compound recited in any one of claims 3 to 8 and/or pharmaceutically acceptable salts thereof effective to prevent and/or treat said prion infection and/or disease.
- Method for preventing and/or treating prion infections and/or prion diseases induced by prion infections in an individual which comprises administering to the individual an amount of at least one compound recited in claim 8 and/or pharmaceutically acceptable salts thereof effective to prevent and/or treat said prion infection and/or disease.
- 19. Method for detecting prion infections and/or prion diseases in an individual20 comprising:
 - a) providing a sample from said individual;
 - b) adding to said sample a pharmaceutically effective amount of at least one pharmaceutically active agent; and
 - c) detecting activity in said sample of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.
- 20. Method according to claim 19 wherein said sample comprises blood, milk, saliva, sputum, excrement, urine, spinal cord liquid, liquor, lachrymal gland liquid, biopsies and all other samples that can be taken from a living animal or human for diagnostic purposes.
- 21. Method for detecting prion infections and/or prion diseases in cells, cell cultures and/or cell lysates comprising:
 - a) providing said cells, cell cultures and/or cell lysates;
 - adding to said cells, cell cultures and/or cell lysates a pharmaceutically effective amount of at least one pharmaceutically active agent; and

c) detecting activity in said sample of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

5 .

22. Method for preventing and/or treating prion infections and/or prion diseases in an individual comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

15

10

Method for preventing and/or treating prion infections and/or prion diseases 23. in cell or cell cultures comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits 20 at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

25

Method for regulating the production of prions in an individual comprising the 30 24. step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, 35 HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt,

20

25

30

Abi, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

Method for regulating the production of prions in cells comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which inhibits at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1, or which inhibits at least partially the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1.

A monoclonal or polyclonal antibody that binds to a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

- 27. Method according to any one of claims 19 25, wherein the agent is a monoclonal or polyclonal antibody which binds to a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
 - 28. Method according to any one of claims 19 25, wherein the agent is at least one compound of the general formula (I) and/or pharmaceutically acceptable salts thereof.
 - 29. Method according to any one of claims 16 25, wherein the agent is 4-(4-Methylpiperazin-1-ylmethyl)-*N*-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-yl-amino)-phenyl]-benzamide and/or pharmaceutically acceptable salts thereof.
- 35 30. Method according to claim 28 wherein the compound of the general formula (I) and/or pharmaceutically acceptable salts thereof is administered in a dosage corresponding to an effective concentration in the range of 0.01 50 μM.

10

15

20

35

- 31. Method for detecting compounds useful for the prophylaxis and/or treatment of prion infections and/or diseases comprising:
 - a) contacting a test compound with at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, GPIR-1; and
 - b) detecting the activity of said human cellular protein kinase, phosphatase or cellular signal transduction molecule.
- 32. Method for preventing and/or treating prion infections and/or diseases in an individual comprising the step of administering a pharmaceutically effective amount of at least one pharmaceutically active agent which activates at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1, or which activates or stimulates the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
- 33. Method for regulating the production of prions in an individual comprising the step of administering an individual a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent activates at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1, or wherein said agent at least partially activates or stimulates the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
 - 34. Method for regulating the production of prions in cells comprising the step of administering the cells a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent activates at least partially

30

the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1, or wherein said agent at least partially activates or stimulates the production of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 in the cells.

- Method for regulating the expression of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 in an individual comprising the step of administering the individual a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent inhibits at least partially the transcription of DNA or the translation of RNA.
- 36. Method for regulating the expression of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1 in the cells comprising the step of administering the cells a pharmaceutically effective amount of at least one pharmaceutically active agent wherein said agent inhibits at least partially the transcription of DNA or the translation of RNA.
 - 37. Oligonucleotide that binds to the DNA or RNA encoding a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
- 38. Method according to claim 22, 23, 24, 25, 35 or 36 wherein the agent is a oligonucleotide which binds to the DNA and/or RNA encoding a human cellular protein kinase, phosphatase or a cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

15

- 39. Method according to claims 16, 17, 18, 19, 22, 24, 32, 33, or 35 wherein said individual is a human or ruminant.
- 40. Method according to any one of claims 17, 18, 19, 21, 22, 23, 31, or 32 wherein said prion infection and/or prion disease is selected from the group comprising Scrapie, TME, CWD, BSE, vCJD, CJD, GSS, FFI, Kuru, and Alpers Syndrome.
- 41. Method according to claim 40 wherein said prion infection and/or prion disease is BSE, vCJD, or CJD.
 - 42. A solid support useful for detecting prion infections and/or diseases in an individual, the solid support comprising an immobilized oligonucleotide, wherein said oligonucleotide is capable of detecting activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
- A solid support useful for detecting prion infections and/or diseases in cells, the solid support comprising an immobilized oligonucleotide, wherein said oligonucleotide is capable of detecting activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
- 44. A solid support useful for screening compounds useful for the prophylaxis and/or treatment of prion infections and/or diseases in an individual, the solid support comprising at least one immobilized oligonucleotide, wherein said oligonucleotide encodes one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
- 35 45. A solid support useful for screening compounds useful for the prophylaxis and/or treatment of prion infections and/or diseases in an individual, the solid support comprising at least one immobilized human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the

10

20

group comprising FGF-R1, Tkt, AbI, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.

- 46. Composition useful for the prophylaxis and/or treatment of an individual afflicted with prions comprising at least one agent capable of inhibiting at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
- 47. Composition useful for the prophylaxis and/or treatment of an individual afflicted with prions comprising at least one agent capable of activating or stimulating at least partially the activity of at least one human cellular protein kinase, phosphatase or cellular signal transduction molecule selected from the group comprising FGF-R1, Tkt, Abl, clk1, MKK7, LIMK-2, CaM-KI, JNK2, CDC2, PRK, PTP-SL, PTP-zeta, HSP86, and GPIR-1.
 - 48. Composition according claim 46 or 47, wherein the agent is at least one compound of the general formula (I) and/or pharmaceutically acceptable salts thereof.

Fig. 1

Compound 4

Compound 37

Compound 5

Compound 84

Compound 88

Fig. 2

Compound 53 (GleevecTM)

Fig. 3

SEQUENCE LISTING

<110> Axxima Pharmaceuticals AG

5 <120> Human cellular protein kinases and phosphatases as targets for dignosis and treatment of prion diseases

<130> AXX-P11001-WO

10 <140> 0111858.5

<141> 2001-05-16

<150> US 60/293,528

<151> 2001-05-29

15

<160>

<170> PatentIn Ver. 2.1

20 <210> 1

<211> 2662

<212> DNA

<213> Homo sapiens

25 <220> FGF-R1

<223> Description of Sequence: N/A

<400> 1

tcagtttgaa aaggaggatc gagctcactc gtggagtatc catggagatg tggagccttg 60

tcaccaacct ctaactgcag aactgggatg tggagctgga agtgcctcct cttctgggct 120
gtgctggtca cagccacact ctgcaccgct aggccgtccc cgaccttgcc tgaacaagcc 180
cagccctggg gagcccctgt ggaagtggag tccttcctgg tccaccccgg tgacctgctg 240
cagcttcgct gtcggctgcg ggacgatgtg cagagcatca actggctgcg ggacggggtg 300
cagctggcgg aaagcaaccg cacccgcatc acaggggagg aggtggaggt gcaggactcc 360

35 gtgcccgcag actccggcct ctatgcttgc gtaaccagca gcccctcggg cagtgacacc 420
acctacttct ccgtcaatgt ttcagatgct ctcccctcct cggaggatga tgatgatgat 480
gatgactcct cttcagagga gaaagaaaca gataacacca aaccaaaccg tatgcccgta 540
gctccatatt ggacatcccc agaaaagatg gaaaagaaat tgcatgcagt gccggctgcc 600

	aagacagtga	agttcaaatg	cccttccagt	gggaccccaa	accccacact	gcgctggttg	660
•	aaaaatggca	aagaattcaa	acctgaccac	agaattggag	gctacaaggt	ccgttatgcc	720
	acctggagca	tcataatgga	ctctgtggtg	ccctctgaca	agggcaacta	cacctgcatt	780
	gtggagaatg	agtacggcag	catcaaccac	acataccagc	tggatgtcgt	ggagcggtcc	840
5	cctcaccgcc	ccatcctgca	agcagggttg	cccgccaaca	aaacagtggc	cctgggtagc	900
٠.	aacgtggagt	tcatgtgtaa	ggtgtacagt	gacccgcagc	cgcacatcca	gtggctaaag	960
	cacatcgagg	tgaatgggag	caagattggc	ccagacaacc	tgccttatgt	ccagatcttg	1020
	aagactgctg	gagttaatac	caccgacaaa	gagatggagg	tgcttcactt	aagaaatgtc	1080
	tcctttgagg	acgcagggga	gtatacgtgc	ttggcgggta	actctatcgg	actctcccat	1140
10	cactctgcat	ggttgaccgt	tctggaagcc	ctggaagaga	ggccggcagt	gatgacctcg	1200
	ccctgtacc	tggagatcat	catctattgc	acaggggcct	tcctcatctc	ctgcatggtg	1260
	gggtcggtca	tcgtctacaa	gatgaagagt	ggtaccaaga	agagtgactt	ccacagccag	1320
	atggctgtgc	acaagctggc	caagagcatc	cctctgcgca	gacaggtaac	agtgtctgct	1380
. 1	gactccagtg	catccatgaa	ctctggggtt	cttctggttc	ggccatcacg	gctctcctcc	1440
15	agtgggactc	ccatgctagc	aggggtctct	gagtatgagc	ttcccgaaga	ccctcgctgg	1500
	gagctgcctc	gggacagact	ggtcttaggc	aaacccctgg	gagagggctg	ctttgggcag	1560
	gtggtgttgg	cagaggctat	cgggctggac	aaggacaaac	ccaaccgtgt	gaccaaagtg	1620
	gctgtgaaga	tgttgaagtc	ggacgcaaca	gagaaagact	tgtcagacct	gatctcagaa	1680
	atggagatga	tgaagatgát	cgggaagcat	aagaatatca	tcaacctgct	gggggcctgc	1740
20	acgcaggatg	gtcccttgta	tgtcatcgtg	gagtatgcct	ccaagggcaa	cctgcgggag	1800
	tacctgcagg	cccggaggcc	cccagggctg	gaatactgct	acaaccccag	ccacaaccca	1860
	gaggagcagc	tctcctccaa	ggacctggtg	tcctgcgcct	accaggtggc	ccgaggcatg	1920
	gagtatctgg	cctccaagaa	gtgcatacac	cgagacctgg	cagccaggaa	tgtcctggtg	1980
	acagaggaca	atgtgatgaa	gatagcagac	tttggcctcg	cacgggacat	tcaccacatc	2040
25	gactactata	aaaagacaac	caacggccga	ctgcctgtga	agtggatggc	acccgaggca	2100
	ttatttgacc	ggatctacac	ccaccagagt	gatgtgtggt	ctttcggggt	gctcctgtgg	2160
	gagatcttca	ctctgggcgg	ctccccatac	cccggtgtgc	ctgtggagga	acttttcaag	2220
	ctgctgaagg	agggtcaccg	catggacaag	cccagtaact	gcaccaacga	gctgtacatg	2280
	atgatgcggg	actgctggca	tgcagtgccc	tcacagagac	ccaccttcaa	gcagctggtg	2340
30	gaagacctgg	accgcatcgt	ggccttgacc	tccaaccagg	agtacctgga	cctgtccatg	2400
	cccctggacc	agtactcccc	cagctttccc	gacacccgga	gctctacgtg	ctcctcaggg	2460
	gaggattccg	tettetetea	tgagccgctg	cccgaggagc	cctgcctgcc	ccgacaccca	2520
•	gcccagcttg	ccaatggcgg	actcaaacgc	cgctgactgc	cacccacacg	ccctccccag	2580
	actccaccgt	cagctgtaac	cctcacccac	agcccctgcc	tgggcccacc	acctgtccgt	2640
35	ccctgtcccc	tttcctgctg	aa				2662

2/36

<211> 822 <212> PRT <213> Homo sapiens 5 <220> <223> Description of Sequence: N/A <400> 2 Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 10 10 Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln 25 30 20 Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly 40 Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 15 55 60 Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg 70 Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser 85 20 90 Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 105 Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 120 125 . Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr 25 135 Lys Pro Asn Arg Met Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 155 150 Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 30 170 Lys Cys Pro Ser Ser Gly Thr Pro Asn Pro Thr Leu Arg Trp Leu Lys 185 190 Asn Gly Lys Glu Phe Lys Pro Asp His Arg Ile Gly Gly Tyr Lys Val 200 Arg Tyr Ala Thr Trp Ser Ile Ile Met Asp Ser Val Val Pro Ser Asp 35 215 Lys Gly Asn Tyr Thr Cys Ile Val Glu Asn Glu Tyr Gly Ser Ile Asn

230

225

	His	Thr	Tyr	Gln	Leu	qaA	Val	Val	Glu	Arg	Ser	Pro	His	Arg	Pro	Ile
					245					250					255	
	Leu	Gln	Ala	Gly	Leu	Pro	Ala	Asn	Lys	Thr	Val	Ala	Leu	Gly	Ser	Asn
				260				-	265					270		
5	Val	Glu	Phe	Met	Cys	Lys	Val	Tyr	Ser	Asp	Pro	Gln	Pro	His	Ile	Gln
			275					280					285			
	Trp	Leu	Lys-	His	Ile	Glu	Val	Asn	Gly	Ser	Lys	Ile	Gly	Pro	Asp	Asn
		290					295					300				
	Leu	Pro	Tyr	Val	Gln	Ile	Leu	Lys	Thr	Ala	Gly	Val	Asn	Thr	Thr	Asp
10	305				-	310		·			315					320
	Lys	Glu	Met	Glu	Val	Leu	His	Leu	Arg	Asn	Val	Ser	Phe	Glu	qaA	Ala
					325		•			330					335	
	Gly	Glu	Tyr	Thr	Cys	Leu	Ala	Gly	Asn	Ser	Ile	Gly	Leu	Ser	His	His
				340				•	345					350		
15	Ser	Ala	Trp	Leu	Thr	Val	Leu	Glu	Ala	Leu	Glu	Glu		Pro	Ala	Val
			355	·				360					365			
	Met			Pro	Leu	Tyr		Glu	Ile	Ile	Ile		Сув	Thr	Gly	Ala
٠.		370					375		_			380	_	_		
00		Leu	Ile	Ser	Сув		Val	Gly	Ser	Val		Val	Tyr	Lys	Met	
20	385				_	390	•	Dh.	*** -	0	395		22-	77- 1	Wia	400
	ser	GLY	Thr	rys		ser	Авр	Pue	HIB	410	GIII	Met	AIA	Val	415	БУБ
	T ou	77-	7 1/0	Cor	405	Pro	T.OU	Ara	Ara		Val	Thr	Val	Ser		Asn
	Leu	мта	пув	420	116	FIO	Deu	rra	425	GIII	var		V	430	7124	·
25	Sar	Ser	Ala		Met	λen	Ser	Glv		Leu	Leu	Val	Arg	Pro	Ser	Arg
	501		435	001				440					445			
	Leu	Ser		Ser	Gly	Thr	Pro	Met	Leu	Ala	Gly	val	Ser	Glu	Tyr	Glu
		450					455		•			460				
	Leu	Pro	Glu	Asp	Pro	Arg	Trp	Glu	Leu	Pro	Arg	Asp	Arg	Leu	Val	Leu
30	465		•			470		٠			475					480
	Gly	Lys	Pro	Leu	Gly	Glu	Gly	Сув	Phe	Gly	Gln	Val	Val	Leu	Ala	Glu
					485	0				490					495	
•	Ala	Ile	Gly	Leu	Asp	Lys	Asp	Ŀys	Pro	Asn	Arg	Val	Thr	Lys	Val	Ala
				500					505					510		
35	Val	Lys	Met	Leu	Lys	Ser	Asp	Ala	Thr	Glu	Lys	Asp	Leu	Ser	Asp	Leu
			515					520	•				525			
	Ile	Ser	Glu	Met	Glu	Met	Met	Lys	Met	Ile	Gly	Lys	His	Lys	Asn	Ile
		530					535					540				

	Ile	Asn	Leu	Leu	Gly	Ala	Сув	Thr	Gln	Asp	Gly	Pro	Leu	Tyr	Val	Ile
	545					550					555					560
	Val	Glu	Tyr	Ala	Ser	Lys	Gly	Asn	Leu	Arg	Glu	Tyr	Leu	Gln	Ala	Arg
					565					570					575	
5	Arg	Pro	Pro	Gly	Leu	Glu	Tyr	Сув	Tyr	Asn	Pro	Ser	His	Asn	Pro	Glu
				580					585					590		•
	Glu	Gln	Leu	Ser	Ser	Lys	Asp	Leu	Val	Ser	Сув	Ala	Tyr	Gln	Val	Ala
		•	595					600					605			
	Arg	Gly	Met	Glu	Tyr	Leu	Ala	Ser	Lys	Lys	Сув	Ile	His	Arg	Asp	Leu
10		610					615					620		•		
	Ala	Ala	Arg	Asn	Val	Leu	Val	Thr	Glu	Asp	Asn	Val	Met	Lys	Ile	Ala
	625					630					635					640
	Asp	Phe	Gly	Leu	Ala	Arg	Asp	Ile	His	His	Ile	Asp	Tyr	Tyr	Lys	Lys
					645					650				•	655	
15	Thr	Thr	Asn	Gly	Arg	Leu	Pro	Val	Lys	Trp	Met	Ala	Pro	Glu	Ala	Leu
				660					665				-	670		:
	Phe	Asp	Arg	Ile	Tyr	Thr	His	Gln	Ser	Asp	Val	Trp	Ser	Phe	Gly	Val
•			675					680					685			•
	Leu	Leu	Trp	Glu	Ile	Phe	Thr	Leu	Gly	Gly	Ser	Pro	Tyr	Pro	Gly	Val
20		690					695		•			700		٠		
	Pro	Val	Glu	Glu	Leu	Phe	Lys	Leu	Leu	Lys	Glu	Gly	His	Arg	Met	Asp
	705					710					715					720
	Lys	Pro	Ser	Asn	Cys	Thr	Asn	Glu	Leu	Tyr	Met	Met	Met	Arg	Asp	Cys
					725				-	730					735	٠.
25	Trp	His	Ala	Val	Pro	Ser	Gln	Arg	Pro	Thr	Phe	Lys	Gln	Leu	Val	Glu
				740					745					750		
٠.	Asp	Leu	qaA	Arg	Ile	Val	Ala	Leu	Thr	Ser	Asn	Gln	Glu	Tyr	Leu	Asp
			755					760					765			
	Leu	Ser	Met	Pro	Leu	Asp	Gln	Tyr	Ser	Pro	Ser	Phe	Pro	Авр	Thr	Arg
30		770					775					780				
	Ser	Ser	Thr	Сув	Ser	Ser	Gly	Glu	Asp	Ser	Val	Phe	Ser	His	Glu	Pro
	785		•		•	790	•				795					800
	Leu	Pro	Glu	Glu	Pro	Сув	Leu	Pro	Arg	His	Pro	Ala	Gln	Leu	Ala	Asn
					805	*				810					815	
35	Gly	Gly	Leu	Lys	Arg	Arg				•				•		
				820	٠		•									

```
<210> 3
```

<211> 3840

<212> DNA

5 <213> Homo sapiens

<220> Abl

<223> Description of Sequence: N/A

10 <400> 3

ggeetteece etgegaggat egeegttgge eegggttgge tttggaaage ggeggtgget 60 ttgggccggg ctcggcctcg ggaacgccag gggcccctgg gtgcggacgg gcgcggccag 120 gagggggtta aggcgcaggc ggcggcgggg cgggggcggg cctggcgggc gccctctccg 180 ggccctttgt taacaggcgc gtcccggcca gcggagacgc ggccgccctg ggcgggcgcg 240 ggcggcggc ggcggtgagg gcggcctgcg gggcggcgcc cgggggccgg gccgagccgg 300 15 geetgageeg ggeeeggaee gagetgggag aggggeteeg geeegategt tegettggeg 360 caaaatgttg gagatctgcc tgaagctggt gggctgcaaa tccaagaagg ggctgtcctc 420 gtcctccagc tgttatctgg aagaagccct tcagcggcca gtagcatctg actttgagcc 480 teagggtetg agtgaageeg etegttggaa etecaaggaa aacetteteg etggaceeag 540 tgaaaatgac cccaaccttt tcgttgcact gtatgatttt gtggccagtg gagataacac 600 20 tctaagcata actaaaggtg aaaagctccg ggtcttaggc tataatcaca atggggaatg 660 gtgtgaagcc caaaccaaaa atggccaagg ctgggtccca agcaactaca tcacgccagt 720 caacagtotg gagaaacact cotggtacca tgggcotgtg tocogcaatg cogotgagta 780 tccgctgagc agcgggatca atggcagctt cttggtgcgt gagagtgaga gcagtcctag 840 ccagaggtcc atctcgctga gatacgaagg gagggtgtac cattacagga tcaacactgc 900 25 ttctgatggc aagctctacg tctcctccga gagccgcttc aacaccctgg ccgagttggt 960 tcatcatcat tcaacggtgg ccgacgggct catcaccacg ctccattatc cagccccaaa 1020 gcgcaacaag cccactgtct atggtgtgtc ccccaactac gacaagtggg agatggaacg 1080 cacggacatc accatgaagc acaagctggg cgggggccag tacgggggagg tgtacgaggg 1140 cgtgtggaag aaatacagcc tgacggtggc cgtgaagacc ttgaaggagg acaccatgga 1200 30 ggtggaagag ttcttgaaag aagctgcagt catgaaagag atcaaacacc ctaacctagt 1260 gcageteett ggggtetgca ecegggagee ecegttetat ateateactg agtteatgae 1320 ctacgggaac ctcctggact acctgaggga gtgcaaccgg caggaggtga acgccgtggt 1380 gctgctgtac atggccactc agatctcgtc agccatggag tacctagaga agaaaaactt 1440 catccacaga gatcttgctg cccgaaactg cctggtaggg gagaaccact tggtgaaggt 1500 35 agctgatttt ggcctgagca ggttgatgac aggggacacc tacacagccc atgctggagc 1560 caagttcccc atcaaatgga ctgcacccga gagcctggcc tacaacaagt tctccatcaa 1620 gtccgacgtc tgggcatttg gagtattgct ttgggaaatt gctacctatg gcatgtcccc 1680

	ttacccggga	attgaccgtt	cccaggtgta	tgagctgcta	gagaaggact	accgcatgaa	1740
	gcgcccagaa	ggctgcccag	agaaggtcta	tgaactcatg	cgagcatgtt	ggcagtggaa	1800
	tccctctgac	cggccctcct	ttgctgaaat	ccaccaagcc	tttgaaacaa	tgttccagga	1860
	atccagtatc	tcagacgaag	tggaaaagga	gctggggaaa	caaggcgtcc	gtggggctgt	1920
5	gactaccttg	ctgcaggccc	cagagetgee	caccaagacg	aggacctcca	ggagagctgc	1980
	agagcacaga	gacaccactg	acgtgcctga	gatgcctcac	tccaagggcc	agggagagag	2040
	cgatcctctg	gaccatgagc	ctgccgtgtc	tccattgctc	cctcgaaaag	agcgaggtcc	2100
	cccggagggc	ggcctgaatg	aagatgagcg	ccttctcccc	aaagacaaaa	agaccaactt	2160
	gttcagcgcc	ttgatcaaga	agaagaagaa	gacagececa	acccctccca	aacgcagcag	2220
10	ctccttccgg	gagatggacg	gccagccgga	gcgcagaggg	gccggcgagg	aagagggccg	2280
	agacatcagc	aacggggcac	tggctttcac	ccccttggac	acagctgacc	cagccaagtc	2340
	cccaaagccc	agcaatgggg	ctggggtccc	caatggagcc	ctccgggagt	ccgggggctc	2400
	aggcttccgg	tctccccacc	tgtggaagaa	gtccagcacg	ctgaccagca	geegeetage	2460
	caccggcgag	gaggagggcg	gtggcagctc	cagcaagcgc	ttcctgcgct	cttgctccgt	2520
15	ctcctgcgtt	ccccatgggg	ccaaggacac	ggagtggagg	tcagtcacgc	tgcctcggga	258 0
	cttgcagtcc	acgggaagac	agtttgactc	gtccacattt	ggagggcaca	aaagtgagaa	2640
	gccggctctg	cctcggaaga	gggcagggga	gaacaggtct	gaccaggtga	cccgaggcac	2700
	agtaacgcct	cccccaggc	tggtgaaaaa	gaatgaggaa	gctgctgatg	aggtcttcaa	2760
	agacatcatg	gagtccagcc	cgggctccag	cccgcccaac	ctgactccaa	aacccctccg	2820
20	gcggcaggtc	accgtggccc	ctgcctcggg	cctccccac	aaggaagaag	cctggaaagg	2880
	cagtgcctta	gggacccctg	ctgcagctga	gccagtgacc	cccaccagca	aagcaggctc	2940
-	aggtgcacca	aggggcacca	gcaagggccc	cgccgaggag	tccagagtga	ggaggcacaa	3000
	gcactcctct	gagtcgccag	ggagggacaa	ggggaaattg	tccaagctca	aacctgcccc	3060
•	gccgcccca	ccagcagcct	ctgcagggaa	ggctggagga	aagccctcgc	agaggcccgg	3120
25	ccaggaggct	gccggggagg	cagtcttggg	cgcaaagaca	aaagccacga	gtctggttga	3180
	tgctgtgaac	agtgacgctg	ccaagcccag	ccagccggca	gagggcctca	aaaagcccgt	3240
	geteceggee	actccaaagc	cacaccccgc	caagccgtcg	gggaccccca	tcagcccagc	3300
	ccccgttccc	ctttccacgt	tgccatcagc	atcctcggcc	ttggcagggg	accagccgtc	3360
	ttccactgcc	ttcatccctc	tcatatcaac	ccgagtgtct	cttcggaaaa	cccgccagcc	3420
30	tccagagcgg	gccagcggcg	ccatcaccaa	gggcgtggtc	ttggacagca	ccgaggcgct	3480
	gtgcctcgcc	atctctggga	actccgagca	gatggccagc	cacagcgcag	tgctggaggc	3540
	cggcaaaaac	ctctacacgt	tctgcgtgag	ctatgtggat	tccatccagc	aaatgaggaa	3600
	caagtttgcc	ttccgagagg	ccatcaacaa	actggagaat	aatctccggg	agcttcagat	3660
	ctgcccggcg	tcagcaggca	gtggtccggc	ggccactcag	gacttcagca	agctcctcag	3720
35	ttcggtgaag	gaaatcagtg	acatagtgca	gaggtagcag	cagtcagggg	tcaggtgtca	3780
	ggcccgtcgg	agctgcctgc	agcacatgcg	ggctcgccca	tacccatgac	agtggctgag	3840
		•		_			

```
<210> 4
     <211> 1130
     <212> PRT
     <213> Homo sapiens
     <223> Description of Sequence: N/A
    <400> 4
    Met Leu Glu Ile Cys Leu Lys Leu Val Gly Cys Lys Ser Lys Lys Gly
10
                       5
                                         10
     Leu Ser Ser Ser Ser Cys Tyr Leu Glu Glu Ala Leu Gln Arg Pro
     Val Ala Ser Asp Phe Glu Pro Gln Gly Leu Ser Glu Ala Ala Arg Trp
15
                                 40
     Asn Ser Lys Glu Asn Leu Leu Ala Gly Pro Ser Glu Asn Asp Pro Asn
          50
                              55
     Leu Phe Val Ala Leu Tyr Asp Phe Val Ala Ser Gly Asp Asn Thr Leu
                     . 70
                                            75
     Ser Ile Thr Lys Gly Glu Lys Leu Arg Val Leu Gly Tyr Asn His Asn
20
                      85 .
                                         90
     Gly Glu Trp Cys Glu Ala Gln Thr Lys Asn Gly Gln Gly Trp Val Pro
                                    105
                 100
     Ser Asn Tyr Ile Thr Pro Val Asn Ser Leu Glu Lys His Ser Trp Tyr
25
             115
                                 120
     His Gly Pro Val Ser Arg Asn Ala Ala Glu Tyr Pro Leu Ser Ser Gly
                             135
     Ile Asn Gly Ser Phe Leu Val Arg Glu Ser Glu Ser Fro Ser Gln
                                            155
                    . 150
30
     Arg Ser Ile Ser Leu Arg Tyr Glu Gly Arg Val Tyr His Tyr Arg Ile
                                        170
     Asn Thr Ala Ser Asp Gly Lys Leu Tyr Val Ser Ser Glu Ser Arg Phe
                                     185
                 180
     Asn Thr Leu Ala Glu Leu Val His His His Ser Thr Val Ala Asp Gly
35
                                 200
     Leu Ile Thr Thr Leu His Tyr Pro Ala Pro Lys Arg Asn Lys Pro Thr
                             215
     Val Tyr Gly Val Ser Pro Asn Tyr Asp Lys Trp Glu Met Glu Arg Thr
```

	225					230					235					240
	Asp	Ile	Thr	Met	Lys	His	Lys	Leu	Gly	Gly	Gly	Gln	Tyr	Gly	Glu	Val
					245	. •	•			250		•	•		255	٠.
	Tyr	Glu	Gļy	Val-	Trp	Lys	Lys	Tyr	Ser	Leu	Thr	Val	Ala	Val	Lys	Thr
5				260					265					270		
•	Leu	Lys	Glu	Asp	Thr	Met	Glu	Val	Glu	Glu	Phe	Leu	Lys	Glu	Ala	Ala
			275					280					285			
	Val	Met	Lys	Glu	Ile	Lys	His	Pro	Asn	Leu	Val	Gln	Leu	Leu	Gly	Val
		290	•				295		•			300				
10	Сув	Thr	Arg	Glu	Pro	Pro	Phe	Tyr	Ile	Ile	Thr	Glu	Phe	Met	Thr	Tyr
	305					310					315					320
	Gly	Asn	Leu	Leu	Asp	Tyr	Leu	Arg	Glu	Сув	Asn	Arg	Gln	Glu	Val	Asn
					325	-				330					335	•
	Ala	Val	Val	Leu	Leu	Tyr	Met	Ala	Thr	Gln	Ile	Ser	Ser	Ala	Met	Glu
15				340					345					350		
	Tyr	Leu	Glu	Lys	Lys	Asn	Phe	Ile	His	Arg	Asp	Leu	Ala	Ala	Arg	Asn
			355					360			-		365		٠	
	Cys	Leu	val	Gly	Glu	Asn	His	Leu	Val	Lys	Val	Ala	Asp	Phe	Gly	Leu
		370			••		375					380		•		
20	Ser	Arg	Leu	Met	Thr	Gly	Двр	Thr	Tyr	Thr	Ala	His	Ala	Gly	Ala	Lys
	385					390	•				395					400
	Phe	Pro	Ile	Lys	Trp	Thr	Ala	Pro	Glu	Ser	Leu	Ala	Tyr	Asn	Lys	Phe
					405		••			410					415	
	Ser	Ile	Lys	Ser	Asp	Val	Trp	Ala	Phe	Gly	Val	Leu	Leu	Trp	Glu	Ile
25				420				-	425					430		
	Ala	Thr	Tyr	Gly	Met	Ser	Pro	Tyr	Pro	Gly	Ile	Asp	Arg	Ser	Gln	Val
			435					440					445			
	Tyr	Glu	Leu	Leu	Glu	Lys	Авр	Tyr	Arg	Met	Lys	Arg	Pro	Glu	Gly	Cys
		450		÷			455					460				
30	Pro	Glu	Lys	Val	Tyr	Glu	Leu	Met	Arg	Ala	Сув	Trp	Gln	Trp	Asn	Pro
	465					470		_			475					480
	Ser	Asp	Arg	Pro	Ser	Phe	Ala	Glu	Ile	His	Gln	Ala	Phe	Glu	Thr	Met
					485	•				490					495	
	Phe	Gln	Glu	Ser	Ser	Ile	Ser	Asp	Glu	Val	Glu	Lys	Glu	Leu	Gly	Lys
35				500					505					510		
	Gln	Gly	Val	Arg	Gly	Ala	Val	Thr	Thr	Leu	Leu	Gln	Ala	Pro	Glu	Leu
			515					520			•		525			
	Pro	Thr	Lys	Thr	Arg	Thr	Ser	Arg	Arg	Ala	Ala	Glu	His	Arg	Asp	Thr
			_					,	•						•	

10/36

		530					535					540				
	Thr	Asp	Val	Pro	Glu	Met	Pro	His	Ser	Lys	Gly	Gln	Gly	Glu	Ser	двр
	545					550					555					560
	Pro	Leu	Asp	His	Glu	Pro	Ala	Val	Ser	Pro	Leu	Leu	Pro	Arg	Lys	Glu
5					565					570					575	
	Arg	Gly	Pro	Pro	Glu	Gly	Gly	Leu	Asn	Glu	Asp	Glu	Arg	Leu	Leu	Pro
				580					585		-			590		
•	Lys	qaA	Lys	Lys	Thr	Asn	Leu	Phe	Ser	Ala	Leu	Ile	Lys	Lys	Lys	Lys
		•	595					600	•		•		605			
10	Lys	Thr	Ala	Pro	Thr	Pro	Pro	Lys	Arg	Ser	Ser	Ser	Phe	Arg	Glu	Met
		610				-	615	•				620				
	Asp	Gly	Gln	Pro	Glu	Arg	Arg	Gly	Ala	Gly	Glu	Glu	Glu	Gly	Arg	•
	625		•			630		,			635				•	640
	Ile	Ser	Asn	Gly			Ala	Phe	Thr		Leu	Asp	Thr	Ala		Pro
15					645					650					655	
	Ala	Lys	Ser		Lys	Pro	Ser	Asn	•	Ala	Gly	Val	Pro	•	Gly	Ala
				660					665	_	_	_		670	_	_
•	Leu	Arg	Glu		Gly	Gly	Ser	_	Phe	Arg	Ser	Pro		Leu	Trp	Lye
00			675		_			680	_				685			
20	Lys		Ser	Thr	Leu	Thr		Ser	Arg	Leu	Ala		GTA	GIU	GIU	GIU
		690	61				695	•	nh -	.		700	~		1707	Com
	_	GLY	Gly	ser	ser	•	гув	Arg	Pne	ren		ser	сув	ser	vai	720
	705	¥7- 3	Pro	***	61	710	T.:.	N am	mb w	C1	715	7.50	50×	Val	Th.	
25	Сув	vai	PFO	uis	725	Ala	гуз	Asp	1111	730	пр	Arg	. Set	Vai	735	Tea
20	Dro	7 ~~	Asp	Len		cor.	Thir	Glv	λνα		Dhe	Aen	Ser	Ser		Dhe
	PIO	Arg	dev	740	GIII	361	1111	GLY	745	G1	FIIC	лор	Der	750		1110
	GIV	Glv	His		Ser	G] 11	Tve	Pro		Leu	Pro	Ara	Lvs		Ala	Glv
	GLY	O ₁	755			010	2,0	760					765	5		 1.
30	Glu	Asn	Arg	Ser	Asp	Gln	Val		Arg	Glv	Thr	Val		Pro	Pro	Pro
		770	3				775		3			780				
	Arg		Val	Lvs	Lvs	Asn		Glu	Ala	Ala	gaA			Phe	Lys	Asp
	785			-, -		790		•			795					800
	•	Met	Glu	Ser	Ser		Gly	Ser	Ser	Pro	Pro	Asn	Leu	Thr	Pro	Lys
35					805		- 3			810	-				815	•
	Pro	Leu	Arg	Arg		Val	Thr	Val	Ala	Pro	Ala	Ser	Gly	Leu	Pro	His
				820					825				-	830		
	Lys	Glu	Glu	Ala	Trp	Lys	Gly	Ser	Ala	Leu	Gly.	Thr	Pro	Ala	Ala	Ala
	-															

			835		•			840					845			
	Glu I	Dro		Thr	Pro	Thr	Ser		Ala	Glv	Ser	Glv		Pro	Arg	Glv
		850	*41	****		1111	855	270		017	JU-	860			3	
	Thr 8		T 240	C1	Bro	פות		Glu	Ser	Ara	Val		Ara	Wi a	Tare	Hic
5		er	БУВ	GIY	FIO	870	GIU	GIU		9	875	9	. 9		D , C	880
5	865 Ser 5		~ 3		D		3	3	Two	C1		T 022	50×	T 1/0	Lon	
	ser :	ser	GIU	ser		GIY	Arg	Авр	пув	890	БУБ	neu	Ser	пув	895	БУБ
					885		D	77.	31 -		71.	61	T	27.0	•	C1
	Pro I	ата .	Pro		PIO	Pro	PIO	Ата		ser	Ald	GIY	гув		GIY	GTA
40				900	_	_			905		-1-			910	**- 1	•
10	Lys I	Pro		Gln	Arg	Pro	GIA		GIU	Ala	Ala	GIÀ		Ala	vaı	rea
			915			_		920			_		925			_
	Gly A	Ala	Lys	Thr	Lys	Ala		Ser	Leu	Val	Asp	•	Val.	Asn	ser	Авр
		930					935					940			_	
	Ala A	Ala	Lys	Pro.	Ser	Gln	Pro	Ala	Glu	Gļy		Lys	Lys	Pro	Val	
15	945					950					955					960
	Pro 1	Ala	Thr	Pro	ГÀв	Pro	His	Pro	Ala	Lys	Pro	Ser	Gly	Thr	Pro	Ile
			*		965					970			•		975	
	Ser	Pro	Ala	Pro	Val	Pro	Leu	Ser	Thr	Leu	Pro	Ser	Ala	Ser	Ser	Ala
				980					985			-		990		
20	Leu A	Ala	Gly	qaA	Gln	Pro	Ser	Ser	Thr	Ala	Phe	Ile	Pro	Leu	Ile	Ser
			995					1000					1005			
•	Thr A	Arg	Val	Ser	Leu	Arg	Lys	Thr	Arg	Gln	Pro	Pro	Glu	Arg	Ala	Ser-
	-10	010				1	1015		•		:	1020				*
	Gly A	Ala	Ile	Thr	Lys	Gly	Val	Val	Leu	Asp	Ser	Thr	Glu	Ala	Leu	Сув
25	1025				:	L030				• :	1035				;	1040
	Leu i	Ala	Ile	Ser	Gly	Asn	Ser	Glu	Gln	Met	Ala	Ser	His	Ser	Ala	Val
				. :	L045		•		:	1050				:	1055	
	Leu (Glu	Ala	Gly	Lys	Asn	Leu	Tyr	Thr	Phe	Сув	Val	Ser	Tyr	Val	Asp
			1	106Ó				:	1065		•		:	1070		
30	Ser :	Ile	Gln	Gln	Met	Arg	Asn	Lys	Phe	Ala	Phe	Arg	Glu	Ala	Ile	Asn
		1	1075				:	108Ó					1085			
	Lys :	Leu	Glu	Asn	Asn	Leu	Arg	Glu	Leu	Gln	Ile	Cys	Pro	Ala	Ser	Ala
	1	090				:	1095				:	1100				
	Gly	Ser	Gly	Pro	Ala	Ala	Thr	Gln	Asp	Phe	Ser	Lys	Leu	Leu	Ser	Ser
35	1105					1110				:	1115	•			•	1120
	Val :	Lys	Glu	Ile	Ser	Asp	Ile	Val	Gln	Arg		,				
-					1125				:	1130		į				••

<210> 5 <211> 1461

```
5
     <212> DNA
     <213> Homo sapiens
     <220> MKK7
     <223> Description of Sequence: N/A
10
     <400> 5
     aggcggtgtt tgtctgccgg actgacgggc ggccgggcgg tgcgcggcgg cggtggcggc 60
     ggggaaaatg gcggcgtcct ccctggaaca gaagctgtcc cgcctggaag caaagctgaa 120
     gcaggagaac egggaggece ggeggaggat egaceteaac etggatatea geceecageg 180
     geccaggece accetgeage tecegetgge caacgatggg ggcageeget egecateete 240
15
     agagagetee eggeageace ecaegeeee egeeeggeee egeeacatge tggggeteee 300
     gtcaaccctg ttcacacccc gcagcatgga gagcattgag attgaccaga agctgcagga 360
     gatcatgaag cagacgggct acctgaccat cgggggccag cgctaccagg cagaaatcaa 420
     cgacctggag aacttgggcg agatgggcag cggcacctgc ggccaggtgt ggaagatgcg 480
     cttccggaag accggccacg tcattgccgt taagcaaatg cggcgctccg ggaacaagga 540
20
     ggagaacaag cgcatcctca tggacctgga tgtggtgctg aagagccacg actgccccta 600
     categtgeag tgetttggga egtteateae caacaeggae gtetteateg ceatggaget 660
     catgggcacc tgcgctgaga agctcaagaa gcggatgcag ggccccatcc ccgagcgcat 720
     totgggcaag atgacagtgg cgattgtgaa ggcgctgtac tacctgaagg agaagcacgg 780
     tgtcatccac cgcgacgtca agccctccaa catcctgctg gacgagcggg gccagatcaa 840
25
     gttetgegae tteggeatea geggeegeet ggtggaetee aaageeaaga egeggagege 900
     cggctgtgcc gcctacatgg cacccgagcg cattgacccc ccagacccca ccaagccgga 960
     ctatgacatc cgggccgacg tatggagcct gggcatctcg ctggtggagc tggcaacagg 1020
     acagtttccc tacaagaact gcaagacgga ctttgaggtc ctcaccaaag tcctacagga 1080
     agagececeg ettetgeeeg gacacatggg ettetegggg gactteeagt eettegteaa 1140
30
     agactgcctt actaaagatc acaggaagag accaaagtat aataagctac ttgaacacag 1200
     cttcatcaag cgctacgaga cgctggaggt ggacgtggcg tcctggttca aggatgtcat 1260
     ggcgaagact gagtcaccgc ggactagcgg cgtcctgagc cagccccacc tgcccttctt 1320
     caggtagetg ettggeggeg gecagececa cagggggeca ggggeatgge cacaggeece 1380
     cctccccact tggccaccca gctgcctgcc aggggagacc tgggacctgg acggccacct 1440
35
                                                             1461
     aggactgagg acagagagtg g
```

<210> 6 <211> 419 <212> PRT <213> Homo sapiens 5 <220> <223> Description of Sequence: N/A <400> 6 Met Ala Ala Ser Ser Leu Glu Gln Lys Leu Ser Arg Leu Glu Ala Lys 10 Leu Lys Gln Glu Asn Arg Glu Ala Arg Arg Ile Asp Leu Asn Leu 25 Asp Ile Ser Pro Gln Arg Pro Arg Pro Thr Leu Gln Leu Pro Leu Ala 40 15 Asn Asp Gly Gly Ser Arg Ser Pro Ser Ser Glu Ser Ser Pro Gln His 60 . 55 Pro Thr Pro Pro Ala Arg Pro Arg His Met Leu Gly Leu Pro Ser Thr **75** · . 70 Leu Phe Thr Pro Arg Ser Met Glu Ser Ile Glu Ile Asp Gln Lys Leu 20 85 90 Gln Glu Ile Met Lys Gln Thr Gly Tyr Leu Thr Ile Gly Gln Arg 105 100 Tyr Gln Ala Glu Ile Asn Asp Leu Glu Asn Leu Gly Glu Met Gly Ser 125 25 120 115 Gly Thr Cys Gly Gln Val Trp Lys Met Arg Phe Arg Lys Thr Gly His 135 Val Ile Ala Val Lys Gln Met Arg Arg Ser Gly Asn Lys Glu Glu Asn 155 145 150 Lys Arg Ile Leu Met Asp Leu Asp Val Val Leu Lys Ser His Asp Cys 30 170 Pro Tyr Ile Val Gln Cys Phe Gly Thr Phe Ile Thr Asn Thr Asp Val 185 180 Phe Ile Ala Met Glu Leu Met Gly Thr Cys Ala Glu Lys Leu Lys Lys 35 200 Arg Met Gln Gly Pro Ile Pro Glu Arg Ile Leu Gly Lys Met Thr Val 215 210 Ala Ile Val Lys Ala Leu Tyr Tyr Leu Lys Glu Lys His Gly Val Ile

	225					230					235.	•				240
•	His	Arg	qaA	Val	Lys	Pro	Ser	Asn	Ile	Leu	Leu	Asp	Glu	Arg	Gly	Gln
					245	•				250					255	
	Ile	Lys	Phe	Сув	qaA	Phe	Gly	Ile	ser	Gly	Arg	Leu	Val	Asp	Ser	Lys
5				260					265			•		270		
)	Ala	Lys	Thr	Arg	Ser	Ala	Gly	Сув	Ala	Ala	Tyr	Met	Ala	Pro	Glu	Arg
			275					280					285			
	Ile	Asp	Pro	Pro	Asp	Pro	Thr	Lys	Pro	Asp	Tyr	Asp	Ile	Arg	Ala	Asp
		290					295				-	300				
10	Val	Trp	Ser	Leu	Gly	Ile	Ser	Leu	Val	Glu	Leu	Ala	Thr	Gly	Gln	Phe
	305					310	٠.				315					320
	Pro	Tyr	Lys	Asn	Сув	Lys	Thr	Asp	Phe	Glu	Val	Leu	Thr	Lys	Val	Leu
					325				•	330	•				335	
	Gln	Glu	Glu	Pro	Pro	Leu	Leu	Pro	Gly	His	Met	Gly	Phe	Ser	Gly	qaA
15	*			340					345					350		
	Phe	Gln	Ser	Phe	Val	Lys	Asp	Cys	Leu	Thr	Lys	Asp	His	Arg	Lys	Arg
			355		•		•	360	٠.				365			•
	Pro	Lys	Tyr	Asn	Lys	Leu	Leu	Glu	His	Ser	Phe	Ile	Lys	Arg	Tyr	Glu
		370					375					380				
20	Thr	Leu	Glu	Val	Asp	Val	Ala	Ser	Trp	Phe	Lys	Asp	Val	Met	Ala	Lys
*	385					390					395	•				400
	Thr	Glu	Ser	Pro	Arg	Thr	Ser	Gly	Val	Leu	Ser	Gln	Pro	His	Leu	Pro
		-			405					410					415	
	Phe	Phe	Arg													
25										•						

30

<210> 7 <211> 1050 <212> DNA <213> Homo sapiens

<220> CDC2

<223> Description of Sequence: N/A

35

<400> 7

ggggggggg ggcacttggc ttcaaagctg gctcttggaa attgagcgga gacgagcggc 60 ttgttgtagc tgccgtgcgg ccgccgcgga ataataagcc gggatctacc ataccattga 120

ctaactatgg aagattatac caaaatagag aaaattggag aaggtaccta tggagttgtg 180 tataagggta gacacaaaac tacaggtcaa gtggtagcca tgaaaaaaat cagactagaa 240 agtgaagagg aaggggttcc tagtactgca attcgggaaa tttctctatt aaaggaactt 300 cgtcatccaa atatagtcag tcttcaggat gtgcttatgc aggattccag gttatatctc 360 atctttgagt ttctttccat ggatctgaag aaatacttgg attctatccc tcctggtcag 420 5 tacatggatt cttcacttgt taagagttat ttataccaaa tcctacaggg gattgtgttt 480 tgtcactcta gaagagttct tcacagagac ttaaaacctc aaaatctctt gattgatgac 540 aaaggaacaa ttaaactggc tgattttggc cttgccagag cttttggaat acctatcaga 600 gtatatacac atgaggtagt aacactetgg tacagatete cagaagtatt getggggtea 660 getegttact caactecagt tgacatttgg agtataggca ccatatttgc tgaactagca 720 10 actaagaaac cacttttcca tggggattca gaaattgatc aactcttcag gattttcaga 780 gctttgggca ctcccaataa tgaagtgtgg ccagaagtgg aatctttaca ggactataag 840 aatacatttc ccaaatggaa accaggaagc ctagcatccc atgtcaaaaa cttggatgaa 900 aatggcttgg atttgctctc gaaaatgtta atctatgatc cagccaaacg aatttctggc 960 aaaatggcac tgaatcatcc atattttaat gatttggaca atcagattaa gaagatgtag 1020 15 1050 ctttctgaca aaaagtttcc atatgttatg

<210> 8

20 <211> 297

<212> PRT

<213> Homo sapiens

<220>

25 <223> Description of Sequence: N/A

<400> 8

Met Glu Asp Tyr Thr Lys Ile Glu Lys Ile Gly Glu Gly Thr Tyr Gly

5 10 15

30 Val Val Tyr Lys Gly Arg His Lys Thr Thr Gly Gln Val Val Ala Met

20 25 . . . 30

Lys Lys Ile Arg Leu Glu Ser Glu Glu Glu Gly Val Pro Ser Thr Ala

35 40 41

Ile Arg Glu Ile Ser Leu Leu Lys Glu Leu Arg His Pro Asn Ile Val

35 50 55 60

Ser Leu Gln Asp Val Leu Met Gln Asp Ser Arg Leu Tyr Leu Ile Phe

65 70 75 8

Glu Phe Leu Ser Met Asp Leu Lys Lys Tyr Leu Asp Ser Ile Pro Pro

					85					90	٠,				95	
	Gly	Gln	Tyr	Met	Авр	Ser	Ser	Leu	Val	Lys	Ser	Tyr	Leu	Tyr	Gln	Ile
				100			• • •	-	105					110		
	Leu	Gln	Gly	Ile	Val	Phe	Сув	His	Ser	Arg	Arg	Val	Leu	His	Arg	qaA
5			115					120					125			
٠.	Leu	Lys	Pro	Gln	Asn	Leu	Leu	Ile	Asp	Asp	Lys	Gly	Thr	Ile	Lys	Leu
		130					135	•				140				
	Ala	Asp	Phe	Gly	Leu	Ala	Arg	Ala	Phe	Gly	Ile	Pro	Ile	Arg	Val	Tyr
	145					150					155					160
10 ·	Thr	His	Glu	Val	Val	Thr	Leu	Trp	Tyr	Arg	Ser	Pro	Glu	Val	Leu	Leu
					165		٠.	• •		170					175	
	Gly	Ser	Ala	Arg	Tyr	Ser	Thr	Pro	Val	Asp	Ile	Trp	Ser		Gly	Thr
				180					185					190		
	Ile	Phe	Ala	Glu	Leu	Ala	Thr	Lys	Lys	Pro	Leu	Phe	His	Gly	Asp	Ser
15			195			•		200					205			
	Glu	Ile	Asp	Gln	Leu	Phe			Phe	Arg	Ala		Gly	Thr	Pro	Asn
		210					215					220		_	_	em1
	Asn	Glu	Val	Trp	Pro		Val	Glu	Ser	Leu		Asp	Tyr	Lys	Asn	
	225			•	•	230			_		235			7	3	240
20	Phe	Pro	Lys	Trp		Pro	Gly	.ser	Leu		ser	H18	vaı	гув	Asn 255	rea
		_			245	_	_			250	14-4	T		The exc		Bro
	Asp	Glu	Asn			Asp	Leu	Leu			Met	Leu		270	Asp	PIO
	_	_	_	260					265		7 ~~	ui o			Phe	λan.
05	Ala	Lys			ser	GIA	гув			Ten	ASII	UIP	285		riic	Asn
25	*		275		~1-	T10	Taro	280					203			
	Asp		qaA	ASN	Gin	тте	ьув 295		MEC							
		290			•		433									

30

<210> 9

<211> 1480

<212> DNA

<213> Homo sapiens

35

<220> CamKI

<223> Description of Sequence: N/A

<400> 9

```
gaatteegag caagagegeg ggegggtgge ccaggeaege agegggtgag gaeegegeee 60
     acagetegge gecaaceace gegggeetee cagecagece egennngage egeagganee 120
    ctggctgtgg tcgggggca gtgggccatg ctgggggcag tggaaggccc caggtggaag 180
     caggoggagg acattagaga catctacgac ttccgagatg ttctgggcac gggggccttc 240
     tcggaggtga tcctggcaga agataagagg acgcagaagc tggtggccat caaatgcatt 300
     gccaaggagg ccctggaggg caaggaaggc agcatggaga atgagattgc tgtcctgcac 360
     aagatcaagc accccaacat tgtagccctg gatgacatct atgagagtgg gggccacctc 420
     tacctcatca tgcagctggt gtcgggtggg gagctctttg accgtattgt ggaaaaaggc 480
     ttctacacgg agcgggacgc cagccgcctc atcttccagg tgctggatgc tgtgaaatac 540
10
     ctgcatgacc tgggcattgt acaccgggat ctcaagccag agaatctgct gtactacagc 600
     ctggatgaag actccaaaat catgatctcc gactttggcc tctccaagat ggaggacccg 660
     ggcagtgtgc tctccaccgc ctgtggaact ccgggatacg tggcccctga agtcctggcc 720
     cagaagccct acagcaaggc tgtggattgc tggtccatag gtgtcatcgc ctacatcttg 780
15
     ctctgcggtt accctccctt ctatgacgag aatgatgcca aactctttga acagattttg 840
     aaggeegagt aegagtttga eteteettae tgggaegaea tetetgaete tgeeaaagat 900
     ttcatccggc acttgatgga gaaggaccca gagaaaagat tcacctgtga gcaggccttg 960
     cagcacccat ggattgcagg agatacagct ctagataaga atatccacca gtcggtgagt 1020
     gagcagatca agaagaactt tgccaagagc aagtggaagc aagccttcaa tgccacggct 1080
20
     gtggtgcggc acatgaggaa actgcagctg ggcaccagcc aggaggggca ggggcagacg 1140
     gcgagccatg gggagctgct gacaccagtg gctggggggc cggcagctgg ctgttgctgt 1200
     cgagactgct gcgtggagcc gggcacagaa ctgtccccca cactgcccca ccagctctag 1260
     ggccctggac ctcgggtcat gatcctctgc gtgggagggc ttgggggcca gcctgctccc 1320
     cttccctccc tgaaccggga gtttctctgc cctgtcccct cctcacctgc ttccctacca 1380
25
     ctcctcactg cattttccat acaaatgttt ctattttatt gttccttctt gtaataaagg 1440
                                                                       1480
     gaagataaaa ccaaaaaaaa aaaaaaaaaa acggaattcc
```

<210> 10

30 <211> 370

<212> PRT

<213> Homo sapiens

<220>

35 <223> Description of Sequence: N/A

<400> 10

Met Leu Gly Ala Val Glu Gly Pro Arg Trp Lys Gln Ala Glu Asp Ile

	. 1				5					10	٠.				15	
	Arg	Asp	Ile	Tyr	Asp	Phe	Arg	Asp	Val	Leu	Gly	Thr	Gly	Ala	Phe	Ser
				20			•		25					30		
	Glu	Val	Ile	Leu	Ala	Glu	Asp	Lys	Arg	Thr	Gln	Lys	Leu	Val	Ala	Ile
5		•	35				٠	40					45			
	Lys	Cys	Ile	Ala	Lys	Glú	Ala	Leu	Glu	Gly	Lys	Glu	Gly	Ser	Met	Glu
		50	•				55					60				
•	Asn	Glu	Ile	Ala	Val	Leu	His	ŗĀ	Ile	Lys	His	Pro	Asn	Ile	Val	Ala
	65	•				70					75					80
10	Leu	Asp	Asp	Ile	Tyr	Glu	Ser	Gly	Gly	His	Leu	Tyr	Leu	Ile		Gln
					. 85			•		. 90			_	٠.	95	_
	Leu	Val	Ser	Gly	Gly	Glu	Leu	Phe		Arg	Ile	Val	Glu			Phe
			•	100					105		_,			110		27.
.`	Tyr	Thr		Arg	Asp	Ala	Ser	Arg	Leu	He	Phe	GIn		ren	Asp	Ala
15		_	115				•:	120	Tla	17-3	77 d or	7. w.c	125	T ON	Tara	Pro
	Val	_	Tyr	Leu	HIS	Asp	135	Gly	TTE	vai	uir	140	мыр	Dea	nys	-
•	<i>C</i> 1	130	Lou	ī.au	ጥረም	ጥኒታ		Leu	Agn	Glu	Asp		Lva	Ile	Met	Ile
	145	ASII	Ten	neu		150	Ser	Бец	лор	oru.	155		270			160
20	Ser	Δsn	Phe	Glv	Leu		Lvs	Met	Glu	Asp		Glv	Ser	Val	Leu	•
20		nop		1	165					170	·	•	÷		175	
	Thr	Ala	Сув	Gly	Thr	Pro	Gly	Tyr	Val	Ala	Pro	Glu	Val	Leu	Ala	Gln
			_	180		•			185					190		•
	Lys	Pro	Tyr	Ser	Lys	Ala	Val	Asp	Cys	Trp	Ser	Ile	Gly	Val	Ile	Ala
25			195					200					205	•		
	Tyr	Ile	Leu	Leu	Сув	Gly	Tyr	Pro	Pro	Phe	Tyr	Asp	Glu	Asn	Asp	Ala
		210			•		215					220			,	
	Lys	Leu	Phe	Glu	Gln	Ile	Leu	Lys	Ala	Glu	Tyr	Glu	Phe	Asp	Ser	Pro
•	225			•		230					235					240
30	Tyr	Trp	Asp	Asp	Ile	Ser	Asp	Ser	Ala	Lys	Asp	Phe	Ile	Arg	His	Leu
					245				,	250			•		255	· .
	Met	Glu	Lys			Glu	Lys	Arg			Сув	Glu	Gln		Leu	Gln
	٠.	•		260		_			265		_	_	_	270	•••	
.05	His	Pro		Ile	Ala	Gly	Asp			Leu	Авр	Lys			HIS	Gln
35		••- •	275	01 -		T 7	T	280		nh-	77.	T	285		Tvv	Lare
	ser			GIU	GIN	тте	. цув 295		wall	FIIC	wid	300 TAR		пyв	ıτρ	Lys
	61 -	290		Non	- ומ	ም ኮ~			۲eV	Arc	His			Lve	Len	Gln
	GIN	WIS	Fue	ASI	WIG	1111	wid	val	val	~r9	1118	1-16	n. 9	~y 0	264	· •

320 315 305 Leu Gly Thr Ser Gln Glu Gly Gln Gly Gln Thr Ala Ser His Gly Glu 330 Leu Leu Thr Pro Val Ala Gly Gly Pro Ala Ala Gly Cys Cys Arg 5 340 345 Asp Cys Cys Val Glu Pro Gly Thr Glu Leu Ser Pro Thr Leu Pro His 365 360 355 Gln Leu 370 10 <210> 11 <211> 1782 15 <212> DNA <213> Homo sapiens <220> JNK2 <223> Description of Sequence: N/A 20 <400> 11 gggcgggcga gggatctgaa acttgcccac ccttcgggat attgcaggac gctgcatcat 60 gagcgacagt aaatgtgaca gtcagtttta tagtgtgcaa gtggcagact caaccttcac 120 tgtcctaaaa cgttaccagc agctgaaacc aattggctct ggggcccaag ggattgtttg 180 tgctgcattt gatacagttc ttgggataag tgttgcagtc aagaaactaa gccgtccttt 240 25 tcagaaccaa actcatgcaa agagagctta tcgtgaactt gtcctcttaa aatgtgtcaa 300 tcataaaaat ataattagtt tgttaaatgt gtttacacca caaaaaactc tagaagaatt 360 tcaagatgtg tatttggtta tggaattaat ggatgctaac ttatgtcagg ttattcacat 420 ggagetggat catgaaagaa tgteetaeet tetttaeeag atgetttgtg gtattaaaea 480 tetgeattea getggtataa tteatagaga tttgaageet ageaacattg ttgtgaaate 540 30 agactgcacc ctgaagatcc ttgactttgg cctggcccgg acagcgtgca ctaacttcat 600 gatgacccct tacgtggtga cacggtacta ccgggcgccc gaagtcatcc tgggtatggg 660 ctacaaagag aacgttgata tctggtcagt gggttgcatc atgggagagc tggtgaaagg 720 ttgtgtgata ttccaaggca ctgaccatat tgatcagtgg aataaagtta ttgagcagct 780 gggaacacca tcagcagagt tcatgaagaa acttcagcca actgtgagga attatgtcga 840 35 aaacagacca aagtatcctg gaatcaaatt tgaagaactc tttccagatt ggatattccc 900 atcagaatct gagcgagaca aaataaaaac aagtcaagcc agagatctgt tatcaaaaat 960

gttagtgatt gatcctgaca agcggatctc tgtagacgaa gctctgcgtc acccatacat 1020

cactgtttgg tatgaccccg ccgaagcaga agccccacca cctcaaattt atgatgccca 1080 gttggaagaa agagaacatg caattgaaga atggaaagag ctaatttaca aagaagtcat 1140 ggattgggaa gaaagaagca agaatggtgt tgtaaaagat cagccttcag atgcagcagt 1200 aagtagcaac gccactcctt ctcagtcttc atcgatcaat gacatttcat ccatgtccac 1260 tgagcagacg ctggcctcag acacagacag cagtcttgat gcctcgacgg gaccccttga 1320 5 aggetgtega tgataggtta gaaatageaa acetgteage attgaaggaa eteteacete 1380 cgtgggcctg aaatgcttgg gagttgatgg aaccaaatag aaaaactcca tgttctgcat 1440 gtaagaaaca caatgccttg ccctattcag acctgatagg attgcctgct tagatgataa 1500 aatgaggcag aatatgtctg aagaaaaaa ttgcaagcca cacttctaga gattttgttc 1560 aagatcattt caggtgagca gttagagtag gtgaatttgt ttcaaattgt actagtgaca 1620 10 gtttctcatc atctgtaact gttgagatgt atgtgcatgt gaccacaaat gcttgcttgg 1680 acttgcccat ctagcacttt ggaaatcagt atttaaatgc caaataatct tccaggtagt 1740 gctgcttctg aagttatctc ttaatcctct taagtaattt gg 1782 15 <210> 12 <211> 424 <212> PRT <213> Homo sapiens 20 <220> <223> Description of Sequence: N/A <400> 12 Met Ser Asp Ser Lys Cys Asp Ser Gln Phe Tyr Ser Val Gln Val Ala 25 10 Asp Ser Thr Phe Thr Val Leu Lys Arg Tyr Gln Gln Leu Lys Pro Ile 25 Gly Ser Gly Ala Gln Gly Ile Val Cys Ala Ala Phe Asp Thr Val Leu 30 Gly Ile Ser Val Ala Val Lys Lys Leu Ser Arg Pro Phe Gln Asn Gln 55 Thr His Ala Lys Arg Ala Tyr Arg Glu Leu Val Leu Leu Lys Cys Val Asn His Lys Asn Ile Ile Ser Leu Leu Asn Val Phe Thr Pro Gln Lys 35 Thr Leu Glu Glu Phe Gln Asp Val Tyr Leu Val Met Glu Leu Met Asp 100 105

	Ala	Asn	Leu	Сув	Gln	Val	Ile	His	Met	Glu	Leu.	Asp	His	Glu	Arg	Met
			115			•		120					125			
	Ser	Tyr	Leu	Leu	Tyr	Gln	Met	Leu	Cys	Gly	Ile	Lys	His	Leu	His	Ser
		130					135					140				
5	Ala	Gly	Ile	Ile	His	Arg	qaA	Leu	Lys	Pro	Ser	Asn	Ile	Val	Val	Lys
	145					150					155					160
	Ser	Asp	Сув	Thr	Leu	Lys	Ile	Leu	qaA	Phe	Gly	Leu	Ala	Arg	Thr	Ala
					165					170					175	
	Сув	Thr	Asn	Phe	Met	Met	Thr	Pro	Tyr	Val	Val	Thr	Arg	Tyr	Tyr	Arg
10				180				.*	185		٠	•		190		
	Ala	Pro	Glu	Val	Ile	Leu	Gly	Met	Gly	Tyr	Lys	Glu	Asn	Val	Asp	Ile
			195				•	200					205			-
	Trp	Ser	Val	Gly	Сув	Ile	Met	Gly	Glu	Leu	Val	Lys	Gly	Сув	Val	Ile
		210		•			215					220	_		· :_	
15	Phe	Gln	Gly	Thr	Asp	His	Ile	Asp	Glņ	Trp		Lys	Val	Ile	Glu	
	225					230					235			_		240
	Leu	Gly	Thr	Pro		Ala	Glu	Phe	Met		Lys	Leu	Gln	Pro		vai
٠					245			_	_	250	_		~ 1.		255	G3.4
	Arg	Asn	Tyr		Glu	Asn	Arg	Pro		Tyr	Pro	GIA	Пе		Pne	GIU
20				.260 _				Db -	265	C =				270	Nan	Lve
	Glu	Leu		Pro	Asp	Trp	He	Phe	Pro	ser	GIU	Ser	285	Arg	Авр	пув
	-1 -	- .:_	275	0		315	2	280 Asp	Lou	Len	Sar	Lva		ī.eu	Val	Tle
	11e	ட்ys 290	THE	ser	GIII	ALA	295		Dea	Бец	Ber	300		Deu	•••	
25) en		Agn	T.ve	Ara	Tle		Val	Asp	Glu	Ala			His	Pro	Tyr
20	305	FIO	App	n, s		310		,,,			315					320
		Thr	Val	Trp	Tvr			Ala	Glu	Ala		Ala	Pro	Pro	Pro	Gln
					325					330					335	
	Ile	Tyr	Авр	Ala	Gln	Leu	Glu	Glu	Arg	Glu	His	Ala	Ile	Glu	Glu	Trp
30		_	•	340					345					350		
	Lys	Glu	Leu	Ile	Tyr	Lys	Glu	Val	Met	Asp	Trp	Glu	Glu	Arg	Ser	Lys
			355			•		360					365		•	
•	Asn	Gly	Val	Val	Lys	Asp	Gln	Pro	Ser	Asp	Ala	Ala	Val	Ser	Ser	Asn
		370					375					380				
35	Ala	Thr	Pro	Ser	Gln	Ser	Ser	Ser	Ile	Asn	Двр	Ile	Ser	Ser	Met	Ser
	385					390		•			395					400
	Thr	Glu	Gln	Thr	Leu	Ala	Ser	Asp	Thr	qaA	Ser	Ser	Leu	Asp	Ala	Ser
					405					410					415	

Thr Gly Pro Leu Glu Gly Cys Arg
420

5

<210> 13

<211> 3668

<212> DNA

<213> Homo sapiens

10

<220> LIMK-2

.

<400> 13

<223> Description of Sequence: N/A

15 qtqqtcttcc cqcqcctgag gcggcggcgg caggagctga ggggagttgt agggaactga 60 ggggagetge tgtgteecee geeteeteet ecceatttee gggeteeegg gaccatgtee 120 gcgctggcgg gtgaagatgt ctggaggtgt ccaggctgtg gggaccacat tgctccaagc 180 cagatatggt acaggactgt caacgaaacc tggcacggct cttgcttccg gtgttcagaa 240 tgccaggatt ccctcaccaa ctggtactat gagaaggatg ggaagctcta ctgccccaag 300 gactactggg ggaagtttgg ggagttctgt catgggtgct ccctgctgat gacagggcct 360 20 tttatggtgg ctggggagtt caagtaccac ccagagtgct ttgcctgtat gagctgcaag 420 qtqatcattg aggatgggga tgcatatgca ctggtgcagc atgccaccct ctactgtggg 480 aagtgccaca atgaggtggt gctggcaccc atgtttgaga gactctccac agagtctgtt 540 caggagcage tgccctacte tgtcacgete atetecatge eggecaceae tgaaggcagg 600 cggggcttct ccgtgtccgt ggagagtgcc tgctccaact acgccaccac tgtgcaagtg 660 25 aaagaggtca accggatgca catcagtccc aacaatcgaa acgccatcca ccctggggac 720 cgcatcctgg agatcaatgg gacccccgtc cgcacacttc gagtggagga ggtggaggat 780 gcaattagcc agacgagcca gacacttcag ctgttgattg aacatgaccc cgtctcccaa 840 cgcctggacc agctgcggct ggaggcccgg ctcgctcctc acatgcagaa tgccggacac 900 ccccacgccc tcagcaccct ggacaccaag gagaatctgg aggggacact gaggagacgt 960 30 tecetaagge geagtaacag tatetecaag teceetggee ecagetecee aaaggageee 1020 ctgctgttca gccgtgacat cagccgctca gaatcccttc gttgttccag cagctattca 1080 cagcagatet teeggeeetg tgacetaate catggggagg teetggggaa gggettettt 1140 gggcaggcta tcaaggtgac acacaaagcc acgggcaaag tgatggtcat gaaagagtta 1200 attcgatgtg atgaggagac ccagaaaact tttctgactg aggtgaaagt gatgcgcagc 1260 35 ctggaccacc ccaatgtgct caagttcatt ggtgtgctgt acaaggataa gaagctgaac 1320 ctgctgacag agtacattga ggggggcaca ctgaaggact ttctgcgcag tatggatccg 1380 ttcccctggc agcagaaggt caggtttgcc aaaggaatcg cctccggaat ggcctatttg 1440

	cactctatgt	gcatcatcca	ccgggatctg	aactcgcaca	actgcctcat	caagttggac	1500
	aagactgtgg	tggtggcaga	ctttgggctg	tcacggctca	tagtggaaga	gaggaaaagg	1560
	gcccccatgg	agaaggccac	caccaagaaa	cgcaccttgc	gcaagaacga	ccgcaagaag	1620
	cgctacacgg	tggtgggaaa	cccctactgg	atggcccctg	agatgctgaa	cggaaagagc	1680
5	tatgatgaga	cggtggatat	cttctccttt	gggatcgttc	tctgtgagat	cattgggcag	1740
	gtgtatgcag	atcctgactg	ccttccccga	acactggact	ttggcctcaa	cgtgaagctt	1800
	ttctgggaga	agtttgttcc	cacagattgt	ccccggcct	tetteeeget	ggccgccatc	1860
	tgctgcagac	tggagcctga,	gagcagacca	gcattctcga	aattggagga	ctcctttgag	1920
	gccctctccc	tgtacctggg	ggagctgggc	atcccgctgc	ctgcagagct	ggaggagttg	1980
10	gaccacactg	tgagcatgca	gtacggcctg	accegggact	cacctcccta	gccctggccc	2040
	agccccctgc	aggggggtgt	tctacagcca	gcattgcccc	tetgtgcccc	attcctgctg	2100
	tgagcagggc	cgtccgggct	tcctgtggat	tggcggaatg	tttagaagca	gaacaagcca	2160
	ttcctattac	ctccccagga	ggcaagtggg	cgcagcacca	gggaaatgta	tctccacagg	2220
	ttctggggcc	tagttactgt	ctgtaaatcc	aatacttgcc	tgaaagctgt	gaagaagaaa	2280
15	aaaacccctg	gcctttgggc	caggaggaat	ctgttactcg	aatccaccca	ggaactccct	2340
	ggcagtggat	tgtgggaggc	tcttgcttac	actaatcagc	gtgacctgga	cctgctgggc	2400
	aggatcccag	ggtgaacctg	cctgtgaact	ctgaagtcac	tagtccagct	gggtgcagga	2460
	ggacttcaag	tgtgtggacg	aaagaaagac	tgatggctca	aagggtgtga	aaaagtcagt	2520
	gatgctcccc	ctttctactc	cagatectgt	ccttcctgga	gcaaggttga	gggagtaggt	2580
20	tttgaagagt	cccttaatat	gtggtggaac	aggccaggag	ttagagaaag	ggctggcttc	2640
	tgtttacctg	ctcactggct	ctagccagcc	cagggaccac	atcaatgtga	gaggaagcct	2700
	ccacctcatg	ttttcaaact	taatactgga	gactggctga	gaacttacgg	acaacatcct	2760
	ttctgtctga	aacaaacagt	cacaagcaca	ggaagaggct	gggggactag	aaagaggccc	2820
	tgccctctag	aaagctcaga	tcttggcttc	tgttactcat	actcgggtgg	gctccttagt	2880
25	cagatgccta	aaacattttg	cctaaagctc	gatgggttct	ggaggacagt	gtggcttgtc	2940
					aatctcttgg		
		•			cagcagettg		
					tageteectg		
					gctcctgggc		
30					tcccagagct		
			•		cttgcaccat		
					tgtattggag		
					ttgggtggta		
					ctggtcagag		
35					tagggctgag		
					cctggctgtc		
	gtaggagtgg	tgggcctgaa	ctgggccatt	gatcagacta	aataaattaa	gcagttaaca	
	taactggc						3668

<210> 14 <211> 638 5 <212> PRT <213> Homo sapiens <220> <223> Description of Sequence: N/A 10 <400> 14 Met Ser Ala Leu Ala Gly Glu Asp Val Trp Arg Cys Pro Gly Cys Gly Asp His Ile Ala Pro Ser Gln Ile Trp Tyr Arg Thr Val Asn Glu Thr 15 25 Trp His Gly Ser Cys Phe Arg Cys Ser Glu Cys Gln Asp Ser Leu Thr 40 Asn Trp Tyr Tyr Glu Lys Asp Gly Lys Leu Tyr Cys Pro Lys Asp Tyr 55 Trp Gly Lys Phe Gly Glu Phe Cys His Gly Cys Ser Leu Leu Met Thr 20 75 65 70 Gly Pro Phe Met Val Ala Gly Glu Phe Lys Tyr His Pro Glu Cys Phe 90 85 Ala Cys Met Ser Cys Lys Val Ile Ile Glu Asp Gly Asp Ala Tyr Ala 25 105 100 Leu Val Gln His Ala Thr Leu Tyr Cys Gly Lys Cys His Asn Glu Val 120 Val Leu Ala Pro Met Phe Glu Arg Leu Ser Thr Glu Ser Val Gln Glu 135 130 Gln Leu Pro Tyr Ser Val Thr Leu Ile Ser Met Pro Ala Thr Thr Glu 30 155 150 Gly Arg Arg Gly Phe Ser Val Ser Val Glu Ser Ala Cys Ser Asn Tyr 170 165 Ala Thr Thr Val Gln Val Lys Glu Val Asn Arg Met His Ile Ser Pro 35 185 Asn Asn Arg Asn Ala Ile His Pro Gly Asp Arg Ile Leu Glu Ile Asn 200 195 Gly Thr Pro Val Arg Thr Leu Arg Val Glu Val Glu Asp Ala Ile 25/36

		210					215					220				
	Ser	Gln	Thr	Ser	Gln	Thr	Leu	Gln	Leu	Leu	Ile	Glu	His	Asp	Pro	Val
	225					230					235					240
	Ser	Gln	Arg	Leu	Asp	Gln	Leu	Arg	Leu	Glu	Ala	Arg	Leu	Ala	Pro	His
5					245					250					255	
	Met	Gln	Asn	Ala	Gly	His	Pro	His	Ala	Leu	Ser	Thr	Leu	Asp	Thr	Lys
				260					265					270		
	Glu	Asn	Leu	Glu	Gly	Thr	Leu	Arg	Arg	Arg	Ser	Leu	Arg	Arg	Ser	Asn
			275					280					285			
10	Ser	Ile	Ser	Lys	Ser	Pro	Gly	Pro	Ser	Ser	Pro	Lys	Glu	Pro	Leu	Leu
		290					295					300				
	Phe	Ser	Arg	Asp	Ile	Ser	Arg	Ser	Glu	Ser	Leu	Arg	Сув	Ser	Ser	Ser
	305					310					315			•		320
	Tyr	Ser	Gln	Gln	Ile	Phe	Arg	Pro	Cys	Asp	Leu	Ile	His	Gly	Glu	Val
15					325				•	330					335	
	Leu	Gly	Lys	Gly	Phe	Phe	Gly	Gln	Ala	Ile	Lys	Val	Thr	His	Lys	Ala
				340					345		•			350		
	Thr	Gly	Lys	Val	Met	Val	Met	Lys	Glu	Leu	Ile	Arg	Сув	qaA	Glu	Glu
			355					360					365			
20	Thr	Gln	Lys	Thr	Phe	Leu	Thr	Glu	Val	Lys	Val	Met	Arg	Ser	Leu	Asp
		370					375					380				
	His	Pro	Asn	Val	Leu	Lys	Phe	Ile	Gly	Val	Leu	Tyr	Lys	Asp	Lys	Lys
	385					390					395					400
	Leu	Asn	Leu	Leu	Thr	Glu	Tyr	Ile	Glu	Gly	Gly	Thr	Leu	Г'n	Asp	Phe
25					405					410					415	
	Leu	Arg	Ser	Met	Asp	Pro	Phe	Pro	Trp	Gln	Gln	Lys	Val	Arg	Phe	Ala
				420					425					430		
	Lys	Gly	Ile	Ala	Ser	Gly	Met	Ala	Tyr	Leu	His	Ser	Met	Сув	Ile	Ile
			435					440					445			
30	His	Arg	qaA	Leu	Asn	Ser	His	Asn	Сув	Leu	Ile	Lys	Leu	Asp	Lys	Thr
		450					455					460				
	Val	Val	Val	Ala	Asp	Phe	Gly	Leu	Ser	Arg	Leu	Ile	Val	Glu	Glu	Arg
	465					470					475					480
	Lys	Arg	Ala	Pro	Met	Glu	Lys	Ala	Thr	Thr	Lys	Lys	Arg	Thr	Leu	Arg
35					485					490					495	
	Lys	Asn	Авр	Arg	Lys	Lys	Arg	Tyr	Thr	Val	Val	Gly	Asn	Pro	Tyr	Trp
				500			•		505					510		
	Met	Ala	Pro	Glu	Met	Leu	Asn	Gly	Lys	Ser	Tyr	Asp	Glu	Thr	Val	Asp

26/36

520 525 515 Ile Phe Ser Phe Gly Ile Val Leu Cys Glu Ile Ile Gly Gln Val Tyr 535 Ala Asp Pro Asp Cys Leu Pro Arg Thr Leu Asp Phe Gly Leu Asn Val 550 555 560 5 545 Lys Leu Phe Trp Glu Lys Phe Val Pro Thr Asp Cys Pro Pro Ala Phe 570 565 Phe Pro Leu Ala Ala Ile Cys Cys Arg Leu Glu Pro Glu Ser Arg Pro 585 580 Ala Phe Ser Lys Leu Glu Asp Ser Phe Glu Ala Leu Ser Leu Tyr Leu 10 600 Gly Glu Leu Gly Ile Pro Leu Pro Ala Glu Leu Glu Glu Leu Asp His 610 615 620 Thr Val Ser Met Gln Tyr Gly Leu Thr Arg Asp Ser Pro Pro 15 625 630 635

<210> 15

20 <211> 2169

<212> DNA

<213> Homo sapiens

<220> PRK

25 <223> Description of Sequence: N/A

<400> 15

ccgcctccga gtgccttgcg cggacctgag ctggagatgc tggccggct accgacgtca 60 gaccccgggc gcctcatcac ggacccgcc agcggccgca cctacctcaa aggccgcttg 120

10 ttgggcaagg ggggcttcgc ccgctgctac gaggccactg acacagagac tggcagcgcc 180 tacgctgtca aagtcatccc gcagagccgc gtcgccaagc cgcatcagcg cgagaagatc 240 ctaaatgaga ttgagctgca ccgagacctg cagcaccgcc acatcgtgcg tttttcgcac 300 cactttgagg acgctgacaa catctacatt ttcttggagc tctgcagccg aaagtccctg 360 gcccacatct ggaaggcccg gcacaccctg ttggagccag aagtgcgcta ctacctgcgg 420

13 cagatcctt ctggcctcaa gtacttgcac cagcgcgca tcttgcaccg ggacctcaag 480 ttgggaaatt ttttcatcac tgagaacatg gaactgaagg tgggggattt tggggctgc 540 gcccggttgg agcctccgga gcagaggaag aagaccatct gtggcaccc caactatgtg 600 gctccagaag tgctgctga acagggccac ggccctgaag cggatgtatg gtcactgggc 660

PCT/EP02/05420 WO 02/093164 27/36

```
tgtgtcatgt acacgetget etgegggage eetecetttg agaeggetga eetgaaggag 720
     acqtaccgct gcatcaagca ggttcactac acgctgcctg ccagcctctc actgcctgcc 780
     cggcagetec tggccgccat cettegggee teaceeegag acegeeete tattgaccag 840
     atcctgcgcc atgacttctt taccaagggc tacacccccg atcgactccc tatcagcagc 900
     tgcgtgacag tcccagacct gacacccccc aacccagcta ggagtctgtt tgccaaagtt 960
     accaagagcc tctttggcag aaagaagaag agtaagaatc atgcccagga gagggatgag 1020
     gtctccggtt tggtgagcgg cctcatgcgc acatccgttg gccatcagga tgccaggcca 1080
     gaggetecag cagettetgg eccageceet gteageetgg tagagacage acetgaagae 1140
     aqctcaccc gtgggacact ggcaagcagt ggagatggat ttgaagaagg tctgactgtg 1200
10
    qccacaqtaq tqqaqtcaqc cctttqtqct ctqaqaaatt qtataqcttt catqccccca 1260
     gcggaacaga acceggeece cetggeecag ceagageete tggtgtgggt cageaagtgg 1320
     gttgactact ccaataagtt cggctttggg tatcaactgt ccagccgccg tgtggctgtg 1380
     ctcttcaacg atggcacaca tatggccctg tcggccaaca gaaagactgt gcactacaat 1440
     cccaccagca caaagcactt ctccttctcc gtgggtgctg tgccccgggc cctgcagcct 1500
     cagctgggta tcctgcggta cttcgcctcc tacatggagc agcacctcat gaagggtgga 1560
15
     gatctgccca gtgtggaaga ggtagaggta cctgctccgc ccttgctgct gcagtgggtc 1620
     aagacggatc aggctctcct catgctgttt agtgatggca ctgtccaggt gaacttctac 1680
     ggggaccaca ccaagctgat teteagtgge tgggageeec teettgtgae ttttgtggee 1740
     cqaaatcgta gtgcttgtac ttacctcgct tcccaccttc ggcagctggg ctgctctcca 1800
20
     gacctgcggc agcgactccg ctatgctctg cgcctgctcc gggaccgcag cccagcttag 1860
     gacccaagcc ctgaaggcct gaggcctgtg cctgtcaggc tctggccctt gcctttgtgg 1920
     ccttcccct tcctttggtg cctcactggg ggctttgggc cgaatccccc agggaatcag 1980
     ggaccagett tactggagtt ggggggget tgtetteget ggeteetace ccatetecaa 2040
     gataagcctg agccttagct cccagctagg gggcgttatt tatggaccac ttttatttat 2100
     tgtcagacac ttatttattg ggatgtgagc cccagggggc ctcctcctag gataataaac 2160
25
                                                                       2169
     aattttgca
```

```
<210> 16
```

30 <211> 607

<212> PRT

<213> Homo sapiens

<220>

35 <223> Description of Sequence: N/A

<400> 16

Met Leu Ala Gly Leu Pro Thr Ser Asp Pro Gly Arg Leu Ile Thr Asp

28/36

	1				5					10					15	
	Pro	Arg	Ser	Gly	Arg	Thr	Tyr	Leu	Lys	Gly	Arg	Leu	Leu	Gly	Lys	Gly
				20					25					30		
	Gly	Phe	Ala	Arg	Сув	Tyr	Glu	Ala	Thr	qaA	Thr	Glu	Thr	Gly	Ser	Ala
5			35					40					45			
	Tyr	Ala	Val	Lys	Val	Ile	Pro	Gln	Ser	Arg	Val	Ala	Lys	Pro	His	Gln
		50					55	•				60				
	Arg	Glu	Lys	Ile	Leu	Asn	Glu	Ile	Glu	Leu	His	Arg	qaA	Leu	Gln	
	65					70					75					80
10	Arg	His	Ile	Val	Arg	Phe	Ser	His	His	Phe	Glu	Asp	Ala	Asp		Ile
					85	-		•		90					95	
	Tyr	Ile	Phe	Leu	Glu	Leu	Сув	Ser	Arg	Lys	Ser	Leu	Ala	His	Ile	Trp
				100					105					110		
	Lys	Ala	Arg	His	Thr	Leu	Leu	Glu	Pro	Glu	Val	Arg		Tyr	Leu	Arg
15			115			•		120	•				125	_		
	Gln	Ile	Leu	Ser	Gly	Leu	Lys	Tyr	Leu	His	Gln		Gly	Ile	Leu	His
		130					135					140	_			-
	Arg	Asp	Leu	Lys	Leu		Asn	Phe	Phe	Ile		Glu	Asn	Met	GIu	•
	145					150	_			_	155	~ 3		D	a 1	160
20	Lys	Val	Gly	Asp		Gly	Leu	Ala	Ala		Leu	GIU.	Pro	Pro		GIN
					165	_		_,		170		**- 1		D	175	1701
	Arg	Lys	Lys		Ile	Cys	GIY	Thr		Asn	ıyr	vai	Ala	Pro 190	Gru	Val
	_	_		180			01	D	185	77-	3.00	บาไ	10 mm		Len	Glv
25	Leu	Leu		Gin	GIY	нів	GIY		GIU	MIA	дая	vai	205	Ser	Deu	GIY
25	2. -	**- 1	195	(Th	m>	T 011	T ou	200	G) v	Sor	Pro	Pro		Glu	Thr	Ala
•	Сув	210	Met	ıyı	Int	теп	215	Cys	GIY	D,EI	110	220	1	014		-,
	7.00		Tura	C1	The	The same		Cve	TÌA	Lva	Gln		His	Tyr	Thr	Leu
	225	Dea	nys	GIU	1111	230	nrg	Cyb		-70	235			-,-		240
30		Δla	Ser	T.e.	Ser		Pro	Ala	Arg	Gln		Leu	Ala	Ala	Ile	
30	FIO	nια	561	Deu	245		110		5	250					255	
	Ara	Δla	Ser	Pro			Ara	Pro	Ser			Gln	Ile	Leu		His
	in 9		501	260		ш			265					270		•
	Asp	Phe	Phe			Glv	Tvr	Thr		Asp	Arq	Leu	Pro	Ile	Ser	Ser
35			275				- 4	280		-			285			
	Cvs	Val			Pro	Asp	Leu			Pro	Asn	Pro	Ala	Arg	Ser	Leu
	- 3 -	290				•	295					300				
	Phe			Val	Thr	Lvs			Phe	Gly	Arq			Lys	Ser	Lys
			_, _			,				-	-	-	•	-		_

29/36

	305					310					315					320
	Asn	His	Ala	Gln	Glu	Arg	Asp	Glu	Val	Ser	Gly	Leu	Val	Ser	Gly	Leu
					325					330					335	
	Met	Arg	Thr	Ser	Val	Gly	His	Gln	Asp	Ala	Arg	Pro	Gļu	Ala	Pro	Ala
5				340					345					350		
	Ala	Ser	Gly	Pro	Ala	Pro	Val	Ser	Leu	Val	Glu	Thr	Ala	Pro	Glu	qaA
			355					360					365			
	Ser	Ser	Pro	Arg	Gly	Thr	Leu	Ala	Ser	Ser	Gly	Asp	Gly	Phe	Glu	Glu
		370					375					380				
10	Gly	Leu	Thr	Val	Ala	Thr	V al	Val	Glu	Ser	Ala	Leu	Сув	Ala	Leu	Arg
	385					390					395					400
	Asn	Cys	Ile	Ala	Phe	Met	Pro	Pro	Ala	Glu	Gln	Asn	Pro	Ala	Pro	Leu
					405					410				•	415	
	Ala	Gln	Pro	Glu	Pro	Leu	Val	Trp	Val	Ser	Lys	Trp	Val	Asp	Tyr	Ser
15				420		-			425					430		
	Asn	Lys	Phe	Gly	Phe	Gly	Tyr	Gln	Leu	Ser	Ser	Arg	Arg	Val	Ala	Val
			435					440					445			
	Leu	Phe	Asn	Asp	Gly	Thr	His	Met	Ala	Leu	Ser	Ala	Asn	Arg	Lys	Thr
		450					455					460		•		
20	Val	His	Tyr	Asn	Pro	Thr	Ser	Thr	Lys	His	Phe	Ser	Phe	Ser	Val	Gly
	465					470					475					480
	Ala	Val	Pro	Arg	Ala	Leu	Gln	Pro	Gln	Leu	Gly	Ile	Leu	Arg	Tyr	Phe
					485				•	490					495	
	Ala	Ser	Tyr	Met	Glu	Gln	His	Leu	Met	Lys	Gly	Gly	Asp	Leu	Pro	Ser
25				500					505					510		
	Val	Glu	Glu	Val	Glu	Val	Pro	Ala	Pro	Pro	Leu	Leu	Leu	Gln	Trp	Val
			515					520					525			
	Lys	Thr	Asp	Gln	Ala	Leu	Leu	Met	Leu	Phe	Ser	Asp	Gly	Thr	Val	Gln
		530					535					540				
30	Val	Asn	Phe	Tyr	Gly	Asp	His	Thr	Lys	Leu	Ile	Leu	Ser	Gly	Trp	
	545					550		-			555			_		560
	Pro	Leu	Leu	Val	Thr	Phe	Val	Ala	Arg			Ser	Ala	Cys		Tyr
					565		-			570				_	575	
	Leu	Ala	Ser			Arg	Gln	Leu			Ser	Pro	Авр			GIN
35				580				_	585			_	_	590		
	Arg	Leu	_	_	Ala	Leu	Arg	Leu		Arg	Asp	Arg			Ala	
			595					600					605			

<210> 17

```
<211> 3492
5
    <212> DNA
    <213> Homo sapiens
    <220> PTP-SL
    <223> Description of Sequence: N/A
10
     <400> 17
    cagctaagac ccggagaggt ggaatttcac tttgaaattc ccttgcctcg tgagggccgg 60
     accetgeegt etergeettg gettetggge gteragaagg craggeattt gregeetetg 180
     agegettetg tteccettae eegeaacete etactgetet teetetetee etetettagg 240
15
     gaggttgaag ctggtgctgg tttctgtcgg cgccacagac tgactgctct gcaaacccca 300
     geegaggace tgaateeegg agactagaag accettggeg gtggetettt etaatageae 360
     tttacctgaa gtggggtcgt ggtggagttt ctcctccacc tctcaatgca aacactatgc 420
     ggagagcagt ctgcttccct gcgctgtgcc tgctccttaa tcttcacgct gcagggtgct 480
     tttcaggaaa caatgatcat tttttggcaa ttaatcagaa gaagagtggg aagccggtat 540
20
     tcatttataa gcattcacaa gacattgaga agagcctgga tatagcccca caaaaaatct 600
     acagacatag ctaccattcc tcttccgaag ctcaagtaag caaacgccac cagattgtca 660
     atteageatt tectagacce geatatgace egteteteaa tetgetggee atggatggte 720
     aagatettga agtggaaaat eteceaatee eageageaaa tgtaattgtg gtgacaetge 780
     aaatggatgt aaacaagctg aacataacct tgcttcggat cttccgccaa ggagtggctg 840
25
     cagetttagg actettacce cageaagtge acateaateg ceteattgga aagaagaaca 900
     gtattgaact gtttgtgtct cccataaacc gaaaaacagg aatttctgat gctctgccct 960
     ctgaggaagt tettegttea ettaatatea atgttttgea teaaagttta teecagtttg 1020
     gaattacaga agteteteet gagaaaaatg ttttacaagg geageatgaa geggaeaaaa 1080
     tctggagcaa agaaggattt tatgctgttg tcatttttct cagcatcttt gttattatag 1140
30
     taacgtgttt gatgattctt tacagattaa aagaaagatt tcagctttcc ttaagacaag 1200
     acaaagagaa aaaccaggag atccacctat cgcccatcac attacagcca gcactgtccg 1260
     aggcaaagac agtccacagc atggtccaac ctgagcaggc cccaaaggta ctgaatgttg 1320
     tcgtggaccc tcaaggccga ggtgctcctg agatcagagc taccaccgct acctctgttt 1380
     gecettetee ttteaaaatg aageeeatag gaetteaaga gagaagaggg tecaaegtat 1440
35
     ctcttacatt ggacatgagt agcttgggga acattgaacc ctttgtgtct ataccaacac 1500
     cacgggagaa ggtagcaatg gagtatctgc agtcagccag ccgaattctc acaaggtctc 1560
```

agctgaggga cgtcgtggca agttcacatt tactccaaag tgaattcatg gaaataccga 1620

31/36

	tgaactttgt	ggatcccaaa	gaaattgata	ttccgcgtca	tggaactaaa	aatcgctata-	1680
	agaccatttt	accaaatccc	ctcagcagag	tgtgtttaag	accaaaaaat	gtaaccgatt	1740
	cattgagcac	ctacattaat	gctaattata	ttaggggcta	cagtggcaag	gagaaagcct	1800
	tcattgccac	gcagggcccc	atgatcaaca	ccgtggatga	tttctggcag	atggtttggc	1860
5	aggaagacag	ccctgtgatt	gttatgatca	caaaactcaa	agaaaaaaat	gagaaatgtg	1920
	tgctatactg	gccggaaaag	agagggatat	atggaaaagt	tgaggttctg	gttatcagtg	1980
	taaatgaatg	tgataactac	accattcgaa	accttgtctt	aaagcaagga	agccacaccc	2040
	aacatgtgaa	gcattactgg	tacacctcat	ggcctgatca	caagactcca	gacagtgccc	2100
	agcccctcct	acagctcatg	ctggatgtag	aagaagacag	acttgcttcc	cagggccgag	2160
10	ggcctgtggt	tgtccactgc	agtgcaggaa	taggtagaac	agggtgtttt	attgctacat	2220
	ccattggctg	tcaacagctg	aaagaagaag	gagttgtgga	tgcactaagc	attgtctgcc	2280
	agcttcgtat	ggatagaggt	ggaatggtcc	aaaccagtga	gcagtatgaa	tttgtgcacc	2340
	atgctctgtg	cctgtatgag	agcagacttt	cagcagagac	tgtccagtga	gtcattgaag	2400
	acttgtcaga	ccatcaatct	cttggggtga	ttaatcaaat	tacccaccca	aggcttctag	2460
15	aaggagcttc	ctgcaatgga	aggaaggaga	agctctgaag	cccatgtatg	gcatggattg	2520
	tggaagactg	ggcaacatat	ttaagatttc	cagctccttg	tgtatatgaa	tgcatttgta	2580
	agcatccccc	aaattattct	gaaggttttt	tgatgatgga	ggtatgatag	gtttatcaca	2640
·	cagcctaagg	cagattttgt	tttgtctgta	ctgactctat	ctgccacaca	gaatgtatgt	2700
	atgtaatatt	cagtaataaa	tgtcatcagg	tgatgactgg	atgagctgct	gaagacattc	2760
20	gtattatgtg	ttagatgctt	taatgtttgc	aaaatctgcc	ttgtgaatgg	actgtcagct	2820
	gttaaactgt	tcctgttttg	aagtgctatt	acctttctca	gttaccagaa	tcttgctgct	2880
	aaagttgcaa	gtgattgata	atggatttt	aacagagaag	tctttgtttt	tgaaaaacaa	2940
	aaatcaaaaa	cagtaactat	tttatatgga	aatgtgtctt	gataatatta	cctattaaat	3000
	gtgtatttat	agtccctcct	atcaaacaat	tacagagcac	aatgattgtc	attgggtata	3060
25	tatgtattta	ctctctatta	ttgggcataa	aggtggcttc	tgctccagaa	ctctatccac	3120
	tgtatttcca	catcgtgagt	cattttactt	taaaagggaa	aaacaaattt	gtagcaactc	3180
	tgaagtatca	agagttttaa	ctacttgact	ctcttttgct	aagaagggat	ttttgaatat	3240
	gctatctacc	tggaatctct	ctctcaacaa	aaggtatatg	ccttcaggaa	tgatataatc	3300
	tgtcccattt	tcgaggctcc	ttataaggac	atttccatgt	atgtccttac	atttctgaaa	3360
30	gctttcaatc	ttcaagagcc	aaaaaaatt	aaaataacta	ccctcagcaa	acactagctg	3420
	ttctgctcat	atatgaattt	ttaatgcagc	aatgttgact	ttgtttcata	ctgccaataa	3480
	actcttaata	ct				: 5	3492

^{35 &}lt;210> 18

<211> 657

<212> PRT

<213> Homo sapiens

<220>

<223> Description of Sequence: N/A

5	<400	> 18	3													
	Met	Arg	Arg	Ala	Val	Сув	Phe	Pro	Ala	Leu	Cys	Leu	Leu	Leu	naA	Leu
	1				5					10					15	
	His	Ala	Ala	Gly	Cys	Phe	Ser	Gly	Asn	Asn	qaA	His	Phe	Leu	Ala	Ile
				20					25					30		
10	Asn	Gln	Lys	Lys	Ser	Gly	Lys	Pro	Val	Phe	Ile	Tyr	Lys	His	Ser	Gln
			. 35					40					45		•	
	Asp	Ile	Glu	Lys	Ser	Leu	Asp	Ile	Ala	Pro	Gln	Lys	Ile	Tyr	Arg	His
		50					55		•			60				
	Ser	Tyr	His	Ser	Ser	Ser	Glu	Ala	Gln	Val	Ser	Lys	Arg	His	Gln	Ile
15	65					70					75				٠	80
	Val	Asn	Ser	Ala	Phe	Pro	Arg	Pro	Ala	Tyr	Asp	Pro	Ser	Leu	Asn	Leu
					85					90					95	•
	Leu	Ala	Met	Asp	Gly	Gln	Asp	Leu	Glu	Val	Glu	Asn	Leu	Pro	Ile	Pro
				100					105					110		
20	Ala	Ala	Asn	Val	Ile	Val	Val	Thr	Leu	Gln	Met	Asp	Val	Asn	Lys	Leu
			115			-		120				•	125			
	Asn	Ile	Thr	Leu	Leu	Arg	Ile	Phe	Arg	Gln	Gly	Val	Ala	Ala	Ala	Leu
		130					135					140				
	Gly	Leu	Leu	Pro	Gln	Gln	Val	His	Ile	Asn	Arg	Leu	Ile	Gly	Lys	ГÀв
25	145					150		•			155					160
	Asn	Ser	Ile	Glu	Leu	Phe	Val	Ser	Pro	Ile	Asn	Arg	Lys	Thr	Gly	Ile
					165					170					175	
	Ser	Asp	Ala	Leu	Pro	Ser	Glu	Glu	Val	Leu	Arg	Ser	Leu	Asn	Ile	Asn
				180					185					190		
30	Val	Leu	His	Gln	Ser	Leu	Ser	Gln	Phe	Gly	Ile	Thr	Glu	Val	Ser	Pro
			195					200					205			···•
	Glu	Lys	Asn	Val	Leu	Gln	Gly	Gln	His	Glu	Ala	qaA	Lys	Ile	Trp	Ser
•		210					215					220				
	Lys	Glu	Gly	Phe	Tyr	Ala	Val	Val	Ile	Phe	Leu	Ser	Ile	Phe	Val	Ile
35	225					230					235					240
	Ile	Val	Thr	Сув	Leu	Met	Ile	Leu	Tyr	Arg	Leu	ŗ'ns	Glu	Arg	Phe	Gln
					245					250					255	
	Leu	Ser	Leu	Arg	Gln	Asp	Lys	Glu	Lys	Asn	Gln	Glu	Ile	His	Leu	Ser

33/36

				260					265					270		
	Pro	Ile	Thr		Gln	Pro	Ala	Leu [.]	Ser	Glu	Ala	Lys	Thr	Val	His	Ser
			275					280				_	285			
	Met	Val		Pro	Glu	Gln	Ala	Pro	Lys	Val	Leu	Asn	Val	Val	Val	Asp
5		290					295		-			300				
	Pro		Gly	Arq	Gly	Ala	Pro	Glu	Ile	Arg	Ala	Thr	Thr	Ala	Thr	Ser
	305		•		-	310					315					320
		Сув	Pro	Ser	Pro	Phe	Lys	Met	Lys	Pro	Ile	Gly	Leu	Gln	Glu	Arg
		•			325					330					335	
10	Arg	Gly	Ser	Asn	Val	Ser	Leu	Thr	Leu	Asp	Met	Śer	Ser	Leu	Gly	Asn
		_		340					345					350		
	Ile	Glu	Pro	Phe	Val	Ser	Ile	Pro	Thr	Pro	Arg	Glu	Lys	Val	Ala	Met
			355					360		٠			365			
	Glu	Tyr	Leu	Gln	Ser	Ala	Ser	Arg	Ile	Leu	Thr	Arg	Ser	Gln	Leu	Arg
15		370					375			•		380				
	Asp	Val	Val	Ala	Ser	Ser	His	Leu	Leu	Gln	Ser	Glu	Phe	Met	Glu	Ile
	385				•	390					395					400
	Pro	Met	Asn	Phe	Val	Asp	Pro	Lys	Glu	Ile	Asp	Ile	Pro	Arg	His	Gly
					405					410					415	
20	Thr	Lys	Asn	Arg	Tyr	Lys	Thr	Ile	Leu	Pro	Asn	Pro	Leu	Ser	Arg	Val
				420					425					430		
	Cys	Leu	Arg	Pro	Lys	Asn	Val	Thr	Asp	Ser	Leu	Ser	Thr	Tyr	Ile	Asn
•			435					440					445			
	Ala	Asn	Tyr	Iļle	Arg	Gly	Tyr	Ser	Gly	Lys	Glu		Ala	Phe	Ile	Ala
25		450					455					460				
	Thr	Gln	Gly	Pro	Met		Asn	Thr	Val	Asp		Phe	Trp	Gln	Met	
	465	_	_			470					475		_	_	_	480
	Trp	Gln	Glu	Авр	Ser	Pro	Val	Ile	Val		Ile	Thr	Lys	Leu		GIU
20	_	_		_	485		•			490		• .		a 1	495	M
30	Lys	Asn	GIU	_	Сув	vai	Leu	туг		Pro	GIU	гув	Arg	•	He	IVE
	~ 1	T		500	wal	Ton	Wa I	Tlo	505	Wo l	n an	C3		510	Aen	Tur
	GIÀ	гув	515	GIU	Val	Leu	vai	520	ser	vai	Abii	Gru	525	vob	non	171
	Thr	Tla		λen	Leu	Val	Len		Gln	G) v	Ser	Hig		Gln	нія	Val
35	1111	530	n+9	AGII	Deu		535	2,0	01	G. y	JCI	540		02	0	
00	Lvs		ጥህም	Trn	Tyr	Thr		Тто	Pro	Asp	His		Thr	Pro	Asp	Ser
	545		- 3 -	- - ₽	-1-	550		- - -			555					560
		Gln	Pro	Leu	Leu		Leu	Met	Leu	Asp		Glu	Glu	Авр	Arg	
										_						

570 575 565

Ala Ser Gln Gly Arg Gly Pro Val Val Val His Cys Ser Ala Gly Ile 585

Gly Arg Thr Gly Cys Phe Ile Ala Thr Ser Ile Gly Cys Gln Gln Leu 600 595

Lys Glu Glu Gly Val Val Asp Ala Leu Ser Ile Val Cys Gln Leu Arg 615 620

Met Asp Arg Gly Gly Met Val Gln Thr Ser Glu Gln Tyr Glu Phe Val 635 630 625

His His Ala Leu Cys Leu Tyr Glu Ser Arg Leu Ser Ala Glu Thr Val 10 650 655 645

Gln

15

5

<210> 19

<211> 985

<212> DNA

<213> Homo sapiens

20

<220> HSP86

<223> Description of Sequence: N/A

<400> 19

ccggcccggt gtggctgtgc cgttggtcct gtgcggtcac ttagccaaga tgcctgagga 60 25 aacccagacc caagaccaac cgatggagga ggaggaggtt gagacgttcg cctttcaggc 120 agaaattgcc cagttgatgt cattgatcat caatactttc tactcgaaca aagagatctt 180 tctgagagag ctcatttcaa attcatcaga tgcattggac aaaatccggt atgaaagctt 240 gacagatccc agtaaattag actctgggaa agagctgcat attaacctta taccgaacaa 300 30 acaagatcga actctcacta ttgtggatac tggaattgga atgaccaagg ctgacttgat 360 caataacctt ggtactatcg ccaagtctgg gaccaaagcg ttcatggaag ctttgcaggc 420 tggtgcagat atctctatga ttggccagtt cggtgttggt ttttattctg cttatttggt 480 tgctgagaaa gtaactgtga tcaccaaaca taacgatgat gagcagtacg cttgggagtc 540 ctcagcaggg ggatcattca cagtgaggac agacacaggt gaacctatgg gtcgtggaac 600 aaaagttatc ctacacctga aagaagacca aactgagtac ttggaggaac gaagaataaa 660 35 ggagattgtg aagaaacatt ctcagtttat tggatatccc attactcttt ttgtggagaa 720 ggaacgtgat aaagaagtaa gcgatgatga ggctgaagaa aaggaagaca aagaagaaga 780 aaaagaaaaa gaagagaaag agtcggaaga caaacctgaa attgaagatg ttggttctga 840

tgaggaagaa gaaaagaagg atggtgacaa gaagaagaag aagaagatta aggaaaagta 900 catcgatcaa gaagagctca acaaaacaaa gcccatctgg accagaaatc ccgacgatat 960 tactaatgag gagtacggag aattc 985

5

<210> 20

<211> 312

<212> PRT

<213> Homo sapiens

10

<220>

<223> Description of Sequence: N/A

<400> 20

15 Met Pro Glu Glu Thr Gln Thr Gln Asp Gln Pro Met Glu Glu Glu Glu 1 5 10 15

Val Glu Thr Phe Ala Phe Gln Ala Glu Ile Ala Gln Leu Met Ser Leu
20 25 30

20

Ile Ile Asn Thr Phe Tyr Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu 35 40 45

Ile Ser Asn Ser Ser Asp Ala Leu Asp Lys Ile Arg Tyr Glu Ser Leu 25 50 55 60

Thr Asp Pro Ser Lys Leu Asp Ser Gly Lys Glu Leu His Ile Asn Leu 65 70 75 80

30 Ile Pro Asn Lys Gln Asp Arg Thr Leu Thr Ile Val Asp Thr Gly Ile
85 90 95

Gly Met Thr Lys Ala Asp Leu Ile Asn Asn Leu Gly Thr Ile Ala Lys

100 105 110

35

Ser Gly Thr Lys Ala Phe Met Glu Ala Leu Gln Ala Gly Ala Asp Ile 115 120 125

•	Ser	Met	Ile	Gly	Gln	Phe	Gly	Val	Gly	Phe	Tyr	Ser	Ala	Tyr	Leu	Val
		130					135					140				
	Ala	Glu	Lys	Val	Thr	Val	Ile	Thr	Lys	His	Asn	Asp	qaA	Glu	Gln	Tyr
5	145					150					155					160
	Ala	Trp	Glu	Ser	Ser	Ala	Gly	Gly	Ser	Phe	Thr	Val	Arg	Thr	Asp	Thr
					165					170					175	
10	Gly	Glu	Pro	Met	Gly	Arg	Gly	Thr	Lys	Val	Ile	Leu	His	Leu	Lys	Glu
				180				ě	185					190		
	qaA	Gln	Thr	Glu	Tyr	Leu	Glu	Glu	Arg	Arg	Ile	Lys	Glu	Ile	Val	Lys
15			195					200					205			
13	Lys	His	Ser	Gln	Phe	Ile	Gly	Tyr	Pro	Ile	Thr	Leu	Phe	Val	Glu	Lys
		210				·	215	-				220				•
	Glu	Arg	Asp	. Lys	Glu	val	Ser	Asp	Asp	Glu	Àla	Glu	Glu	Lys	Glu	Asp
20	225					230					235				-	240
	ŗys	Glu	Glu	Glu	Lys	Glu	Lys	Glu	Glu	Lys	Glu	Ser	Glu	qaA	Lys	Pro
		•			245					250					255	
25	Glu	Ile	Glu	qaA	Val	Gly	Ser	Asp	Glu	Glu	Glu	Glu	Lys	Lys	Asp	Gly
				260					265					270		
• •	Asp	Lys	Lys	Lys	Lys	Lys	Lys	Ile	Lys	Glu	Lys	Tyr	Ile	Asp	Gln	Glų
30			275					280					285			
	Glu	Leu	Asn	Lys	Thr	Lys	Pro	Ile	Trp	Thr	Arg	Asn	Pro	Asp	Asp	Ile
		290				•	295					300				
	Thr	Asņ	Glu	Glu	Tyr	Gly	Glu	Phe								
35	305					310				•						
												•				

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 November 2002 (21.11.2002)

PCT

(10) International Publication Number WO 02/093164 A3

- (51) International Patent Classification⁷: A61K 31/506, G01N 33/68, C12Q 1/42, 1/48, C07K 16/40, C12N 15/11, A61P 25/28, C07D 401/04, 409/14, 401/14, 471/04
- (21) International Application Number: PCT/EP02/05420
- (22) International Filing Date: 16 May 2002 (16.05.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

01111858.5 60/293.528	16 May 2001 (16.05.2001) 29 May 2001 (29.05.2001)	EF US
01117113.9	13 July 2001 (13.07.2001)	EF
· 60/305,898	18 July 2001 (18.07.2001)	ÜS

- (71) Applicant (for all designated States except US): AXXIMA PHARMACEUTICALS AG [DE/DE]; Am Klopferspitz 19, 82152 Martinsried (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): STEIN-GER-LACH, Matthias [DE/DE]; Stockdorfer Strasse 38A, 81475 München (DE). SALASSIDIS, Konstadinos [GR/DE]; Echinger strasse 20, 85386 Eching (DE). BACHER, Gerald [DE/DE]; Kriegerstrasse 62, 82110 Germering (DE). MÜLLER, Stefan [DE/DE]; Thalkirchner Str. 184, 81371 München (DE).

- (74) Agents: LEIDESCHER, Thomas et al.; Zimmermann & Partner, Postfach 330 920, 80069 München (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 4 September 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRIDYLPYRIMIDINE DERIVATIVES AS EFFECTIVE COMPOUNDS AGAINST PRION DISEASES

Compound 53 (GleevecTM)

(57) Abstract: The present invention relates to pyridylpyrimidine derivatives of the general formula (I): wherein R represents hydrogen or methyl and Z represents nitrogen containing functional groups, the use of the pyridylpyrimidine derivatives as pharmaceutically active agents, especially for the prophylaxis and/or treatment of prion infections and prion diseases, as well as compositions containing at least one pyridylpyrimidine derivative and/or pharmaceutically acceptable salt thereof. Furthermore, the present invention is directed to methods for preventing and/or treating prion infections and prion diseases using said pyridylpyrimidine derivatives. Human cellular protein kinases, phosphatases and cellular signal transduction molecules are disclosed as targets for detecting, preventing and/or treating prion infections and diseases, especially BSE, vCJD, or CJD, which can be inhibited by the inventive pyridylpyrimidine derivatives.

INTERNATIONAL SEARCH REPORT

PCT/EP 02/05420

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K31/506 G01N33/68 C12Q1/42 C12Q1/48 C07K16/40 C12N15/11 A61P25/28 C07D401/04 C07D409/14 C07D401/14 C07D471/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED	
According to International Patent Classification (IPC) or to both national classification and IPC	
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07D	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched	
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)	
C DOCUMENTS CONCIDEDED TO DE DEL EVANT	
C. DOCUMENTS CONSIDERED TO BE RELEVANT Category: Citation of document with indication, where appropriate of the relevant passages Relevant to de	aim No
Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to citation of document, with indication, where appropriate, of the relevant passages	
X ZIMMERMANN J ET AL: 1,2,15, 16	
derivatives: a new class of potent and	
highly selective PDGF-receptor	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS,	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD. GB.	•)(•
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04),	0)0
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD. GB.	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1 /	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1 -/	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ Yearn family members are listed in annex * Special categories of cited documents: That are document published after the international filing date or priority date and not in conflict with the application but	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, Vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ * Special categories of cited documents: * Special categories of cited documents: * A' document defining the general state of the art which is not The tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ *Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "It alter document published after the international filing date or priority date and not in conflict with the application but direct to understand the principle or theory underlying the considered to be of particular relevance.	
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ * Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or	e
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ *Special categories of cited documents: -/ *A' document defining the general state of the air which is not considered to be of particular relevance 'A' document which may throw doubts on priority daim(s) or which is cited to establish the publication date of another citation or other special reason (es specified) "L' document which may throw doubts on priority daim(s) or which is cited to establish the publication date of another citation or other special reason (es specified) "L' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventily as teps when the document is taken alon to cannot be considered to involve an inventile or inventile and invention cannot be considered to be oncoment of particular relevance; the claimed invention cannot be considered to be oncoment of particular relevance; the claimed invention cannot be considered to be oncoment of particular relevance; the claimed invention cannot be considered to be inventive an inventile step when the	0
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ *Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E" earlier document but published on or after the international filing date "C" document which may throw doubts on priority daim(s) or which is cited to establish the publication daile of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other special reason (but on the speci	e
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ *Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E' earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as a specified) "O' document reterring to an oral disclosure, use, exhibition or other means "P' document) published prior to the international filing date but	e
highly selective PD6F-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, Vol. 6, no. 11, 4 June 1996 (1996-06-04), pages 1221-1226, XP004134858 ISSN: 0960-894X table 1 -/ *Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance; E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disckosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search priority date may be a person skilled. The document of particular relevance; the claimed invention cannot be considered to movide an inventive step when the document is taken alon victory and the priority date and not provide an inventive step when the document or more other such documents. Such combination being obvious to a person skilled in the art. Socient the main transport of the same patent family.	e
highly selective PDGF-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ * Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority dating(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'C' document reterring to an oral dischosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed Trialter document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alon or other special reason (as specified) 'C' document reterring to an oral dischosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed Trialter document published after the international filing date or priority date and not in conflict with the application or clied to understand the principle or theory underlying the cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alon in conflict with the application cannot be considered to involve an inventive step when the document is taken alon cannot be considered to involve an inventive step when the document is taken alon cannot be considered to involve an inventive step when the document is taken alon cannot be considered to involve an inventive step when the document is taken alon cannot be considered to involve an inventive step when the document is taken a	e
highly selective PD6F-receptor autophosphorylation inhibitors" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, Vol. 6, no. 11, 4 June 1996 (1996–06–04), pages 1221–1226, XP004134858 ISSN: 0960–894X table 1 -/ * Special categories of cited documents: "A" document defining the general state of the at which is not considered to be of particular relevance: "E" earlier document which may throw doubts on priority dain(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other special reason (as specified) "O" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search Date of the actual completion of the international search 15	e

INTERNATIONAL SEARCH REPORT

Internation Application No PCT/EP 02/05420

0.10	A DOCUMENTS CONFIDENCE TO BE DELEMANT	PCI/EP 02	7 0 0 7 2 0
C.(Continue Calegory °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	ZIMMERMANN J ET AL: "Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 7, no. 2, 21 January 1997 (1997-01-21), pages 187-192, XP004135990 ISSN: 0960-894X table 1		1,2,15, 16
X	ZIMMERMANN J ET AL: "PHENYLAMINO-PYRIMIDINE (PAP) DERIVATIVES: A NEW CLASS OF POTENT ANDSELECTIVE INHIBITORS OF PROTEIN KINASE C (PKC)" ARCHIV DER PHARMAZIE, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, DE, vol. 329. no. 7, July 1996 (1996-07), pages 371-376. XP000885618 ISSN: 0365-6233 table I		1,2,15, 16
X	WO 95 09847 A (CIBA GEIGY AG ;ZIMMERMANN JUERG (CH)) 13 April 1995 (1995-04-13) cited in the application page 8, line 2; claim 1 page 13, line 1		1-3,15, 16
X .	EP 0 564 409 A (CIBA GEIGY AG) 6 October 1993 (1993-10-06) cited in the application claim 1		1,2,15,
Y	JIMI T ET AL: "HIGH LEVELS OF NERVOUS SYSTEM-SPECIFIC PROTEINS IN CEREBROSPINAL FLUID IN PATIENTS WITH EARLY STAGE CRUTZFELDT-JAKOB DISEASE" CLINICA CHIMICA ACTA, AMSTERDAM, NL, vol. 211, no. 1/2, 15 October 1992 (1992-10-15), pages 37-46, XP002071132 ISSN: 0009-8981 page 37 page 40		19,21, 26,42,43
Υ	JAE-KWANG ET AL.: "Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice" NEUROSCIENCE LETTERS, vol. 273, 1999, pages 37-40, XP002229677 abstract figure 1 page 39		19,21, 26,42,43
	-/		·

Internation Application No PCT/EP 02/05420

Category *	citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	WO 00 64894 A (KANZAKI NAOYUKI ;MIWATASHI SEIJI (JP); OHKAWA SHIGENORI (JP); TAKE) 2 November 2000 (2000-11-02) page 12, line 1-8 -& EP 1 180 518 A 20 February 2002 (2002-02-20) page 1, line 5-8 page 12, line 1-8	22-25	
A	US 6 107 301 A (ALDRICH PAUL EDWARD ET AL) 22 August 2000 (2000-08-22) the whole document		3,10,17, 18
	*		·
			·
			·
			į.
-			
•			

INTERNATIONAL SEARCH REPORT

Internacional application No.
PCT/EP 02/05420

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2. X Claims Nos.: 1,2,15,16 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
see FURTHER INFORMATION sheet PCT/ISA/210	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Decause they are dependent claims and are not draited in accordance with the second and third sentences of the outquire	
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
This International Searching Authority found multiple inventions in this International application, as follows:	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment	
of any additional fee.	
3. As only some of the required additional search fees were timety paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the daims; it is covered by claims Nos.:	
3, 10, 17, 18	
Remark on Protest The additional search fees were accompanied by the applicant's protest.	
No protest accompanied the payment of additional search fees.	

Continuation of Box I.2

Claims Nos.: 1,2,15,16

The initial phase of the search revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claims may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons, a meaningful search over the whole breadth of the independent claims 1, 2, 15, and 16 is impossible. Consequently, the search has been restricted to the use of the compounds for treating infectious diseases or neurodegenerative diseases (cf. claim 3).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

1. Claims: 3,10,17,18

Use of compounds of formula (I) for the treatment of infectious diseases or neurodegenerative diseases.

2. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein FGF-R1: Use of compounds of formula (I) as inhibitors of FGF-R1, method for detecting prion disease by detecting activity of FGF-R1, method for preventing prion disease by applying an inhibitor of FGF-R1, method for regulating production of prions by applying an inhibitor of FGF-R1, monoclonal antibody binding to FGF-R1 etc.

3. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein Tkt: Use of compounds of formula (I) as inhibitors of Tkt, method for detecting prion disease by detecting activity of Tkt, method for preventing prion disease by applying an inhibitor of Tkt, method for regulating production of prions by applying an inhibitor of Tkt, monoclonal antibody binding to Tkt etc..

4. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein Abl: Use of compounds of formula (I) as inhibitors of Abl, method for detecting prion disease by detecting activity of Abl, method for preventing prion disease by applying an inhibitor of Abl, method for regulating production of prions by applying an inhibitor of Abl, monoclonal antibody binding to Abl etc..

5. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein clk1: Use of compounds of formula (I) as inhibitors of clk1, method for detecting prion disease by detecting activity of clk1, method for preventing prion disease by applying an inhibitor of clk1, method for regulating production of prions by applying an inhibitor of clk1, monoclonal antibody binding to clk1 etc..

6. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein MKK7: Use of compounds of formula (I) as inhibitors of MKK7, method for detecting prion disease by detecting activity of MKK7, method for preventing prion disease by applying an inhibitor of MKK7, method for regulating production of prions by applying an inhibitor of MKK7, monoclonal antibody binding to MKK7 etc...

7. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein LIMK-2: Use of compounds of formula (I) as inhibitors of LIMK-2, method for detecting prion disease by detecting activity of LIMK-2, method for preventing prion disease by applying an inhibitor of LIMK-2, method for regulating production of prions by applying an inhibitor of LIMK-2, monoclonal antibody binding to LIMK-2 etc..

8. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein CaM-KI: Use of compounds of formula (I) as inhibitors of CaM-KI, method for detecting prion disease by detecting activity of CaM-KI, method for preventing prion disease by applying an inhibitor of CaM-KI, method for regulating production of prions by applying an inhibitor of CaM-KI, monoclonal antibody binding to CaM-KI etc..

9. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein JNK2: Use of compounds of formula (I) as inhibitors of JNK2, method for detecting prion disease by detecting activity of JNK2, method for preventing prion disease by applying an inhibitor of JNK2, method for regulating production of prions by applying an inhibitor of JNK2, monoclonal antibody binding to JNK2 etc..

10. Claims: 13(part),19(part),21-26(part),31-37(part),
42-47(part)

Inventions related to protein CDC2: Use of compounds of

formula (I) as inhibitors of CDC2, method for detecting prion disease by detecting activity of CDC2, method for preventing prion disease by applying an inhibitor of CDC2, method for regulating production of prions by applying an inhibitor of CDC2, monoclonal antibody binding to CDC2 etc...

11. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein PRK: Use of compounds of formula (I) as inhibitors of PRK, method for detecting prion disease by detecting activity of PRK, method for preventing prion disease by applying an inhibitor of PRK, method for regulating production of prions by applying an inhibitor of PRK, monoclonal antibody binding to PRK etc.

12. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein PTP-SL: Use of compounds of formula (I) as inhibitors of PTP-SL, method for detecting prion disease by detecting activity of PTP-SL, method for preventing prion disease by applying an inhibitor of PTP-SL, method for regulating production of prions by applying an inhibitor of PTP-SL, monoclonal antibody binding to PTP-SL etc..

13. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein PTP-zeta: Use of compounds of formula (I) as inhibitors of PTP-zeta, method for detecting prion disease by detecting activity of PTP-zeta, method for preventing prion disease by applying an inhibitor of PTP-zeta, method for regulating production of prions by applying an inhibitor of PTP-zeta, monoclonal antibody binding to PTP-zeta etc..

14. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein HSP86: Use of compounds of formula (I) as inhibitors of HSP86, method for detecting prion disease by detecting activity of HSP86, method for preventing prion disease by applying an inhibitor of HSP86, method for regulating production of prions by applying an inhibitor of HSP86, monoclonal antibody binding to HSP86

etc..

15. Claims: 13(part),19(part),21-26(part),31-37(part), 42-47(part)

Inventions related to protein GPIR-1: Use of compounds of formula (I) as inhibitors of GPIR-1, method for detecting prion disease by detecting activity of GPIR-1, method for preventing prion disease by applying an inhibitor of GPIR-1, method for regulating production of prions by applying an inhibitor of GPIR-1, monoclonal antibody binding to GPIR-1 etc..

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation Application No
PCT/EP 02/05420

Patent document cited in search repor		Publication date	Patent family member(s)		Publication date	
WO 9509847	A	13-04-1995	AU 6934 AU 76976 CA 21489 EP 06720 JP 85039 US 56123	94 A 31 A 35 A 71 T	02-07-1998 01-05-1995 13-04-1995 20-09-1995 30-04-1996 18-03-1997	á-
EP 0564409	A	06-10-1993	AU 35694 BR 11007 CA 20932 CN 10777 CZ 93005 DE 593099 DK 5644 ES 21428 FI 9314 GR 30329 HU 640 IL 1052 JP 27066 JP 60878 KR 2613 MX 93019 NO 9312 NZ 2472 PT 5644 RU 21259 SG 438	39 A 203 A, C 13 A, B 660 A 31 D 857 T 858 A 227 T 950 A 264 A 283 A 299 A 299 A 299 C 359 A 293 A	15-02-2000 07-10-1993 06-06-2000 04-10-1993 27-10-1993 16-02-1994 24-02-2000 19-06-2000 01-05-2000 04-10-1993 31-07-2000 29-11-1993 11-04-1999 28-01-1998 29-03-1994 01-08-2000 29-07-1994 04-10-1993 26-07-1995 30-06-2000 10-02-1999 14-11-1997 06-04-1994 28-05-1996 04-10-1993	
WO 0064894	A	02-11-2000	AU 38401 BR 00099 CA 23702 CN 13537 CZ 200138 EP 11809 JP 33337 JP 20011147 JP 20023631 NO 200155 SK 149520	952 A 264 A 710 T 305 A 518 A 774 B 779 A 179 A	10-11-2000 26-03-2002 02-11-2000 12-06-2002 17-04-2002 20-02-2002 15-10-2002 24-04-2001 18-12-2002 18-12-2001 04-04-2002	
US 6107301	A	22-08-2000	AU 80122 BR 9407 CA 21740 CZ 96010 EP 0723! HR 9400 HU 744 NO 9614 NZ 2749 PL 3133 SK 476	484 B 294 A 799 A 080 A 014 A 533 A 664 A 425 A 978 A 973 A 096 A 503 B	11-06-1998 04-05-1995 06-05-1997 20-04-1995 13-11-1996 31-07-1996 31-12-1996 12-06-1996 27-04-1998 05-08-1996 01-10-1996 29-01-2002	

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/EP 02/05420

Patent document Publication lited in search report date			Patent family member(s)	Publication date
US 6107301 A		CN	1142817 A	12-02-1997
	9 .	FI	961599 A	07-06-1996
		JP	9504520 T	06-05-1997
		RU	2153494 C	27-07-2000
		WO	9510506 A	20-04-1995
		ZA	9407921 A	11-04-1996