自然言語処理 一CNN

https://satoyoshiharu.github.io/nlp/

100本ノック第9章とCNNの位置づけ

- 1 0 0 本ノック課題集第9章は、RNN、CNN、Transformerを扱っている。
- CNNは、現在、画像処理系では基本となる技術である。100本ノックの課題では、自然言語処理へ応用する事例が載せられている。

自然言語処理 CNN

解説動画

Convolution層 (CNN)

特徴を抽出する(2次元データの場合)

1	2	3	4	5
6	7	8	9	0
1	2	3	4	5
6	7	8	9	0
1	2	3	4	5

0	1	0
0	1	0
0	1	0

*

フィルター

11	14	17	
16	19	22	
11	14	17	

入力 出力

1 0	2	3	4	5	入力の窓内の値				
6	7	0 0		0	と、フィルターの値	11	14	17	
6	/	0	9		の積和をとっていく	"	1 4 	1 /	
1	2	3	4	5		16	19	22	
6	7	8	9	0		11	14	17	
1	2	3	4	5					

					_		
1	2 <i>0</i>	3	1	4 (9	5	
6	7 <i>0</i>	8	1	9 (9	0	
1	2 <i>0</i>	3	1	4 (9	5	
6	7	8		9	(0	
1	2	3		4		5	

							1	-	1	
1	2	3 <i>0</i>	4 1	5 <i>0</i>	入力の窓内の値 と、フィルターの値					
6	7	8 <i>0</i>	9 1	0 0	の積和をとっていく		11	14	17	
1	2	3 <i>0</i>	4 1	5 <i>O</i>			16	19	22	
6	7	8	9	0			11	14	17	
1	2	3	4	5						

以下省略...

フィルタの各要素が学習パラメータ

1	2	3	4	5
6	7	8	9	0
1	2	3	4	5
6	7	8	9	0
1	2	3	4	5

	k11	k12	K12
*	k21	k22	K23
	k31	k32	k33

フィルター

11	14	17	
16	19	22	
11	14	17	

入力

出力

Convolution層の入出力チャネルとパラメータ

入力チャネルが複数の場合

カーネルサイズ

カーネルサイズが大きいほど、グローバルに観察できるが、学習パラメータが増える

ストライド (歩幅、移動幅)

ストライドが小さいほどきめ細かに観察するが、計算量が増える。

パディング

Convolutionはデフォルトで出力は小さくなる。

パディング

0	1	0									
0	1 1	2 <i>0</i>	3	4	5	入 <i>力の窓内の値</i> と、フィルターの値	7	9	11	13	5
0	6 7	7 <i>0</i>	8	9	0	の積和をとっていく	8	11	14	17	10
	1	2	3	4	5		13	16	19	22	5
	6	7	8	9	0		8	11	14	17	10
	1	2	3	4	5		7	9	11	13	5

外境界上のConvolutionに関し、入力の外側に0とかを想定して計算し、 出力を同じサイズにする。

ディレーション(拡張、伸長)

ディレーション=2

1 0	2	3 7	4	5	
6	7	8	9	0	
1 0	2	3 1	4	50	
6	7	8	9	0	
1 0	2	3 <i>0</i>	4 -	5 0	

入力の窓内の値 と、フィルターの値 の積和をとっていく

よりグローバルに入力を観察して、高速に出力を得る。

CNNの貢献と今

- CNNはDeep Learningの発展を支えた。
- 今、Self-AttentionがCNNに影響を及ぼしている。

自然言語処理 MaxPooling

解説動画

1	2	3	4
6	7	8	9
1	2	3	4
6	7	8	9

入力 出力

- 広い範囲の情報を集約する。
- データを小さくして後続の計算量を小さくする。

自然言語処理 Dropout

解説動画

仮想的にサブネットワークを構成しそれらの多数決で出力を得る、<u>感じ</u>にすることで、般化能力を高める、と言われる(経験的)。

自然言語処理 Batch Normalization

解説動画

Normalizationとは?

- 入力データや推論中間データが、 トレーニング時と予測時とで、分 布が大きく異なると困る。
- ある範囲のデータに関して、分布 の偏り(凸凹)を小さくする。

$$m{\mu} = rac{1}{m} \sum_i m{H}_{i,:}, \ m{\sigma} = \sqrt{\delta + rac{1}{m} \sum_i (m{H} - m{\mu})_i^2} \qquad m{H}' = rac{m{H} - m{\mu}}{m{\sigma}},$$

Batch Normalization

Batch Normalization

データのばらつきを抑えることで、学習が高速化し、過学習にも効果がある、 と言われる。

データの平均と分散をとって補正する

以下、入力データをシリアライズし(H,W)、チャネル(C)、ミニバッチ(N)との3次元立体で示す

MNISTサンプルコード

MNISTサンプル

- 自然言語処理ではなく、画像処理になりますが、ディープラーニングの典型的な流れと構成要素の概略を把握するために、いいサンプルですので、見ておきます(ニューラルネットの入門書で最終章に用いられていたりする)。
- これは、CNNを利用しています。自然言語処理でもCNNを使うことがあります(例:100本ノック課題86)。

課題MNISTサンプルの理解

- Mnist_sample.ipynbをダウンロードして、Google Colaboratoryで動かしてみてください。
- 最初のコードは、PyTorchのサンプル集の中の https://github.com/pytorch/examples/tree/master/mnist (もとのPyTorchのコードは、煩雑になりがちなデータ回りの処理もクラス化されているため、Mnistの主要な処理構造が見えやすいものとなっています。)を、教育用に単純化したものです。後続のコード解説、コードのコメント、PyTorchのマニュアルを参照しながら、このコードを咀嚼して下さい。
- そのあとには、参考のため、Convolution結果を表示したり、モデルを変えたコードを入れてあります。

MNistサンプルコードを読むための 追加情報

PyTorchマニュアルの読み方

- https://pytorch.org/docs/stable/index.html へ行ってください。
- 左上に検索ボックスがあるので、そこにわからない書き方をタイプしてください。
- 各ページは英語です。Chromeの場合、該当ページ上で、右クリックで、 「日本語に翻訳」を選んでください。

torch.nnとtorch.nn.functionalの違い

- nn モジュール
 - クラス定義
 - 例えば、ちょっと複雑な初期設定したい場合、オブジェクトを作っておく。
 - self.conv1=nn.Conv2d(1,32,3,1)
 - nn パッケージ内の Conv2dクラスのオブジェクトを作成し、初期設定する。
 - x=self.conv1(x)
 - conv1オブジェクトを入力データに対し作用させる。Pythonの呼び出し可能オブジェクトの機能を使い、__call__している。
- functional モジュール
 - nn クラスの機能を、関数として利用できるようにしたもの。
 - 例えば
 - x=F.relu(x)
 - x=F.max_pool2d(x, 2)
 - nn モジュールの MaxPool2dのオブジェクトを作成し、引数で初期化して、入力データに作用させる。

Mnist サンプルの入出力

Train/Testは、データローダーを介して64個ずつのミニバッチ単位で計算

ネットワークモデル

ネットワークモデル、層の役割 conv1:Conv2D conv2:Conv2D fc2:Linear MaxPool 出力 Softmax ReLu 板

CNN2層で画 像の何らかの特 徴を抽出 サイズを小さくし、 グローバルに特徴 をまとめる

全結合2層で 情報の取捨 選択・集約

確率に 変換

Netクラス__Init__

nn.Conv2d(1, 32, 3, 1)

→ 入力チャネル数

→出力チャネル数

カーネルサイズ:整数か、 (高さ、幅)のTuple

ストライド:フィルターの窓 を移動させるときの移動数

パラメーター数は、3x3x32 + bias32=320

nn.Conv2d(32, 64, 3, 1) - 入力チャネル数 - 出力チャネル数

カーネルサイズ:整数か、 (高さ、幅)のTuple

> **ストライド:フィルターの窓** ◆ を移動させるときの移動数

パラメーター数は、3x3x32x64 + bias64 = 18,496

nn.Linear(9216, 128)

- 入力サイズ

出力サイズ

fc1

実際には、ミニバッチの数分、まとめて計算され、入力も出力も、1次元ベクトルではなく、ミニバッチを行方向に収めた行列となる

fc2

実際には、ミニバッチの数分、まとめて計算され、 入力も出力も、1次元ベクトルではなく、ミニバッチを行方向に収めた行列となる

Netクラス forward

活性化関数ReLU(Rectified Linear Unit)

max_pool2D(x, 2)

入力: (ミニバッチ数、チャネル数、高さ、幅) の sizeを持つテンソル

カーネルサイズ:整数

→ 省略可能引数にストライド(ウィンドウの移動幅)があり、 ストライドのデフォルトはカーネルサイズ

MaxPooling:広い範囲の情報を集約する。 データを小さくして計算量を小さくする。

1	2	3	4
6	7	8	9
1	2	3	4
6	7	8	9

入力

出力

torch.flatten(x, 1)

入力テンソル:ここでは、 → sizeは(ミニバッチ数、チャネル数、高さ、幅) ミニバッチ数分

64チャネル数x 高さ12x幅12 = 9216 個の情報

平板化する最初の次元1 -> size が
→ (ミニバッチ数、平板化されたデータ)となる。

tensor([[...],[...],....,[...]]

ミニバッチ数分

9216要素のベクトル

ミニバッチの数だけ

F.softmax(x, dim=1)

→ 入力 _{ミニバッチ数分} [

softmaxをとる次元: 0がミニ バッチ、1が10要素のベクトル Softmax適用 ミニバッチ数分

10要素のベクトル

モデル内のパラメータ

main

データセット、データローダー

- データセット
 - 入力データを、Pytorch Tensor形式に変換したり、値を正規化したり、など変換してから、送る。
- データローダー
 - ミニバッチ単位にまとめて、モデルに送る。

optim.SGD(model.parameters(), Ir=0.1)

→ モデルのパラメータ

SGD (Stochastic Gradient Decent) 確率的勾配降下法。ほかにも。

勾配降下法なのだが、入力データはシャッフルしてあってランダムなので、確率的。

SGD以外にいろんなOptimizerが準備されている。

→学習レート

StepLR(optimizer, step_size=1, gamma=0.7)

エポック何個で学習具合を低減させるか

→ 学習レートの逓減率

エポックが変わったときに、段階的に、一律に学習レートを低減させる。 ほかに低減させるやり方のOptionが何個か準備されている。

train, test

ミニバッチ

$$(x1, x2, x3) \begin{pmatrix} w11 & w12 \\ w21 & w22 \\ w31 & w32 \end{pmatrix} = (x1w11 + x2w21 + x3w31, x1w12 + x2w22 + x3w32)$$

$$\begin{pmatrix} x11 & x12 & x13 \\ x21 & x22 & x23 \\ x31 & x32 & x33 \end{pmatrix} \begin{pmatrix} w11 & w12 \\ w21 & w22 \\ w31 & w32 \end{pmatrix} = \begin{pmatrix} x11w11 + x12w21 + x13w31 & x11w12 + x12w22 + x13w32 \\ x21w11 + x22w21 + x23w31 & x21w12 + x22w22 + x23w32 \\ x31w11 + x32w21 + x33w31 & x31w12 + x32w22 + x33w32 \end{pmatrix}$$

GPUの能力活用

outputs = model(inputs)が、forward呼び 出しに化ける訳

Pytorchは、Pythonの呼び出し可能オブジェクトの機能を多用している

- object.__call__(self[, args...])
 - <u>Called when the instance is "called" as a function; if this method is defined, x(arg1, arg2, ...) roughly translates to type(x). _call_(x, arg1, ...).</u>
 - オブジェクト() と書くと、クラス.__call__(インスタンス、引数...) に化ける
- Pytorchのコード
 - moduleクラスの_call_メソッドは、中で forward 呼び出しを行っている。

F.cross_entropy(output, target)

→ 検査するデータ

10要素、各数字である確率

ミニバッチ数

正解ラベル 1 が立っているインデックス0,..,9

赤の場合、出力は、-log(0.6)

発展:softmax の結果0..1の値でロスを計算するより、0..1の各値の対数とって-∞..0にしてから、ロス計算に回したほうが、分解能が高い。

- Net
 - forward
 - ...
 - output = F.log_softmax(x, dim=1)
 - ...
- Train/Test
 - •
 - loss = F.nll_loss(output, target)
 - ...

発展:計算結果が毎回変わる要素を減らすため、 乱数発生器の初期値を固定してもいい。

• main

- ...
- torch.manual_seed(args.seed)
- •

発展:過学習しないような対策

```
Net
__init__
...
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
...
forward
...
x = self.dropout1( F.max_pool2d( F.relu(self.conv2(x)) )
```

x = self.dropout2(F.relu(self.fc1(x)))

• モデルにランダムに欠落ノードを作ることで、常時接続した単一のモデルにはない 汎用性が仕込まれるらしい。経験的な知見でしかない。

100本ノック第9章課題80,86

- <u>「100本ノック」の9章の課題</u> の80(データ準備と86/87がCNNに関する課題です。
- 「NLP、CNNRNNTransformer.ipynb」というノートをコピーして下さい。 80、86回答例コードを完成し、実行ログを残してください。

確認クイズ

• 確認クイズをやってください。