Lösungen

1. Ionen sind elektrisch geladene Teilchen. Sie sind durch Aufnahme oder Abgabe von Elektronen entstanden. Anionen sind negativ geladene, Kationen sind positiv geladene Teilchen.

2.

Atomname	Element- symbol	Anzahl der Außen- elektronen	Anzahl der aufgenommene n/ abgegebenen Elektronen	Entstandenes Ion	Gleiche Elektronenhülle wie
Natrium	Na	1	- 1	Na⁺	Ne
Magnesium	Mg	2	-2	Mg ²⁺	Ne
Fluor	F	7	+1	F ⁻	Ne
Aluminium	Al	3	-3	Al ³⁺	Ne
Schwefel	S	6	+2	S ²⁻	Ar
Sauerstoff	0	6	+2	O ²⁻	Ne
Calcium	Ca	2	-2	Ca ²⁺	Ar

3.

Verhältnis- formel	Name	Kationen	Anionen	Verhältnis Kationen : Anionen	Verhältnisformel
CaO	Calciumoxid	Ca ²⁺	O ²⁻	1:1	CaO
LiBr	Lithiumbromid	Li ⁺	Br ⁻	1:1	LiBr
AIF ₃	Aluminiumtrifluorid	Al ³⁺	F ⁻	1:3	AIF ₃
MgBr ₂	Magnesiumdibromid	Mg ²⁺	Br⁻	1:2	MgBr ₂
ZnCl ₂	Zinkdichlorid	Zn ²⁺	CI ⁻	1:2	ZnCl ₂
PbO ₂	Bleidioxid	Pb ⁴⁺	O ²⁻	1:2	PbO ₂

4. Kristallin; Leiten den Strom im geschmolzenen oder gelösten, nicht aber im festen Zustand; Hohe Schmelz- und Siedepunkte; Spröde

Erklärung: Ionen, Ionengitter, starke Anziehungskräfte, Abstoßung von Ionen gleicher Ladung

5 a) Ein Magnesiumatom gibt 2 Elektronen an Fluor ab und wird zum Kation, 2 Fluoratome nehmen jeweils ein Elektron auf und werden zum Anion.

b) 2 Lithiumatome geben jeweils ein Elektron an Sauerstoff ab. Sie werden zu Kationen. Ein Sauerstoffatom nimmt diese zwei Elektronen auf und wird zum Anion.

- 6+8 a) Mg + F₂ \rightarrow MgF₂ Ox: Mg \rightarrow Mg²⁺ + 2e⁻ Red: F + e⁻ \rightarrow F⁻ oder: 2 F + 2e⁻ \rightarrow 2 F⁻
- b) $4 \text{ Li} + O_2 \rightarrow 2 \text{ Li}_2\text{O}$ Ox: $\text{Li} \rightarrow \text{Li}^+ + 1 \text{ e}^-$ oder: $4 \text{ Li} \rightarrow 4 \text{ Li}^+ + 4 \text{ e}^-$ Red: $O + 2\text{e}^- \rightarrow O^{2-}$ oder: $2 O + 4\text{e}^- \rightarrow 2 O^{2-}$
- 7. Oxidation: Elektronenabgabe; Reduktion: Elektronenaufnahme
- 9. a) Aluminium und Kupferoxid: Reaktion möglich 2 AI + 3 Cu²⁺ → 2 AI³⁺ + 3 Cu
 - b) Kupfer und Zinkoxid: Reaktion nicht möglich
 - c) Silberoxid und Eisen: Reaktion möglich 2 Ag⁺ + Fe → 2 Ag + Fe²⁺

11. Anode (Pluspol): Ox: $Br^{-} \rightarrow Br + e^{-}$ oder: $2Br^{-} \rightarrow Br_{2} + 2e^{-}$ Kathode (Minuspol): Red: $Cu^{2+} + 2e^{-} \rightarrow Cu$