MIAT-STM32-EVB

軟硬體實驗模組與開發流程介紹

Declared Version

Training Only	
Declare	
Document Version	1.00
Release Date	2009.06.20
Document Title	MIAT-STM32-EVB軟硬體實驗模組與開發流程介紹
Exercise Time	■ Lecture 30 minutes ■ Operating 60 minutes
Platform	■ MIAT_STM32 ■ MIAT_IOB
Peripheral	Key Switch, LED
Author	■ WU-YANG Technology Co., Ltd.

Outline

- □ MIAT_STM32實驗板
 - 主要功能介紹
 - 硬體環境設定
- MIAT_IOB實驗板
 - 各個週邊模組功能介紹
- □ 整合開發流程介紹
 - 以基本I/O驅動為例
 - 硬體電路配置
 - RVMDK軟體基本使用方法
 - DFU韌體燒錄
- □ 開發流程練習

MIAT_STM32實驗板主要功能介紹

- □ 處理器編號STM32F103ZC
 - 256Kbytes of Flash memory
 - 48Kbytes of SRAM
 - 7 × 16 pin fast I/O ports
 - 3 × 12bit ADC
 - 1 × 12bit DAC
 - Flexible static memory controller
 - DMA controller
 - 2 x watchdog timers
 - 4 × 16-bit timers
 - 2 x I2C interfaces
 - 5 x USARTs
 - 3 × SPIs
 - 1 x RTC
 - CAN interface
 - USB 2.0 full speed interface
 - SDIO interface
 - Serial wire debug (SWD) & JTAG interfaces
 - Temperature sensor
 - LQFP 144

MIAT_STM32實驗板主要功能介紹

- □ 外部記憶體512Kbytes SRAM (可支援至1Mbytes)
- □ 8MHz crystal系統時脈
- □ 32.768KHz crystal 即時時鐘(RTC)時脈
- □ 可由USB介面燒錄程式
- □ 標準JTAG ICE接頭
- □ 1個紅色的使用者測試 LED
- □ 3個按鈕開關
- □ 核心晶片之I/O接腳以4排2.54mm間距的2x18PIN排針連接
- □ 電源DC5V:可由DC 座或mini USB座提供
- □ 尺寸:92.5x85mm

□ 電源輸入

□ 處理器啟動模式選擇

表 2.1 啟動模式選擇。

Jumper	Boot mode		
Configuration	BOOT1	воот0	Boot space
	X	0	Embedded main Flash memory(user Flash)
	0	1	System memory with boot loader for ISP
0	1	1	Embedded SRAM for debugging

□ LED與按鈕開關

Pin Name	I/O assignment
PC13	Tamper
PA0	Wakeup/DFU
PF11	User LED
PB9	User SW
NRST	RESET

□ USB介面連接設定

表 2.2 USB 介面裝置設定表。

Jumper Configuration	JP1	JP2	功能
	開路	開路	關閉USB介面功能。
	開路	短路	啟動 USB 介面功能。
	短路	開路	由軟體透過 PD2 控制 USB 介面功能是否啟動。

- □ DC5V與VDD(3.0V)電源輸出連接器
 - 一般使用PC之USB介面作為電源輸入可提供5V/500mA,若外接實驗 週邊使得POWER LED有閃爍、偏暗或熄滅的情況發生時,表示超過 可使用的電流量,建議將外接的實驗週邊另外連接獨立的電源或將 USB供電改由DC座供電並使用具有較高輸出電流之變壓器。

□ 擴充連接座(EXCON1~EXCON4)

MIAT_IOB實驗週邊功能介紹

- □ 2MPixels CMOS Sensor模組
- □ 2.4G RF模組
- □ 2x16文字型LCD模組 (含明暗度調整電阻)
- □ RS232介面
- □ AD轉換測試模組
- □ 蜂鳴器
- □ 4個紅色LED
- □ 4個綠色LED
- □ 4個按鈕開關
- □ 4 P指撥開關
- □ TFT LCD 2.54mm連接器
- □ 尺寸:145x103mm

整合開發流程介紹-以基本I/O驅動為例

- □ 實驗目的
 - 應用MIAT_STM32實驗板上的User Button控制User LED是否閃爍, User Button未按下時User LED不閃爍, 否則閃爍, 達成MCU之I/O控制目的。
- □ 硬體電路配置

Pin Name	I/O assignment
PB9 (4.32)	User SW
PF11 (2.13)	User LED

RVMDK軟體基本使用方法

□ 假設使用者已安裝Keil ARM軟體工具,在此以UserLED_Blinky為範例,目錄於CDROM\MIAT_STM32_EVB_Demonstrations\UserLED_Blinky,編譯設定步驟如下:

步驟一、開啟UserLED_Blinky範例程式的專案檔

RVMDK軟體基本使用方法

□ 步驟三、設定程式碼起始位置與勾選"Create HEX File"選項。

□ 步驟四、設定R/O Base為0x8003000。

RVMDK軟體基本使用方法與.hex至.dfu轉檔

□ 步驟五、重新編譯程式,產生.hex檔

□ 步驟六、執行DFU File Manager(HEX轉DFU格式程式)

.hex至.dfu轉檔

□ 步驟七、選擇來源檔(.hex),如 :"\obj\UserLED_Blinly.hex"。

□ 步驟八、產生.dfu檔,完成轉檔後即可將此檔透過DfuSe Demonstration下載至實驗板。

- □ 步驟一、安裝DfuSe_Demo_V2.2.1_Setup.exe,此檔案的目錄位置在光碟內的"\MIAT_STM32\MIAT_STM32_DfuSe\"。
- □ 步驟二、執行DfuSe Demonstration。

Supports Download Accelerat Can Detach	tion tolerant ed Upload (ST) DFU mode	Application Mendor ID: Procuet ID: Version:	Ve Pr	FU Mode: endor ID: occuct ID: Version:
ctions		Availabl	e Sectors (Dou	ble Click for more)
Upload Action File:	Upgrade or Ve File: Vendor ID:	10	gets in file:	

□ 步驟三、硬體環境設定

□ 步驟四、當實驗板第一次連接PC時,需安裝USB驅動程式,驅動程式目錄為C:\Program Files\STMicroelectronics\DfuSe\Driver。

□ 步驟五、同時按下RESET與DFU兩個按鈕,然後先放開RESET按鈕再放開DFU按鈕,DfuSe Demonstration視窗如下圖出現STM Device in DFU Mode選項。

□ 步驟六、開啟範例檔"UserLED_Blinky.dfu"。

□ 步驟七、執行軟體更新(下載)。

□ 步驟八、離開DFU模式,範例程式開始動作,UserLED閃爍,可測試按下User Button,觀察User LED閃爍情形。

練習一、開發流程練習

□ 步驟一、修改程式碼如下

```
int main(void)
        while (1)
          if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_9)==1)
            /* Turn on User LED */
           GPIO_SetBits(GPIOF, GPIO_Pin_11);
            /* Insert delay */
減少Delay
                                                   Delay(0xFFFFF); Delay(0xFFFFF);
            ·//Delay(0xFFFFF);
                                Delay(0xFFFFF);
            Delay(OxFFFFF);
                              Delay(OxFFFFF);
            /* Turn off User LED */
           GPIO_ResetBits(GPIOF, GPIO_Pin_11);
            /* Insert delay */
減少Delay
            -//Delay(0xFFFFF);
                                                   Delay(0xFFFFF); Delay(0xFFFFF);
                                Delay(0xFFFFF);
            Delay(0xFFFFF);
                              Delay(0xFFFFF);
```

□ 步驟二、重新編譯、轉檔與燒錄至實驗板後重新執行,觀察是否 為預期之結果。

練習二、軟硬體電路設計修改

- □ 步驟一、硬體電路配置
 - 將練習一修改為PF12連接LED_R1,PB13連接KEY1。使用KEY1控制LED_R1之閃爍功能。

LED

CONNECTOR2

MIAT_IOB之KEY1與LED之電路圖

練習二、軟硬體電路設計修改

□ 線路連接

練習二、軟硬體電路設計修改

□ 步驟二、修改程式碼後,重新編譯執行。以下為修改完成之程式碼。

```
//Example 2
// Configure PB13 (Kev1) *********
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// Configure PF12 (LED_R1) *******
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF, ENABLE);
GPIO InitStructure.GPIO Pin = GPIO Pin 12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOF, &GPIO_InitStructure);
while (1)
  if (GPIO_ReadInputDataBit (GPIOB, GPIO_Pin_13) == 1)
    // Turn on LED R1
    GPIO_SetBits(GPIOF, GPIO_Pin_12);
    // Insert delay
    Delay(OxFFFFF);
                       Delay(OxFFFFF);
    // Turn off LED_R1
    GPIO_ResetBits(GPIOF, GPIO_Pin_12);
    // Insert delay
    Delay(OxFFFFF);
                       Delav(OxFFFFF);
```

Q & A

