

CSC380: Principles of Data Science

Linear Models 3

Xinchen Yu

Bias-Variance Tradeoff

Bias-Variance Tradeoff: an example

Student ID	GPA	Working experiences	 Demographics
0			

Task: given a new student, predict if accepted or rejected.

Option 1: overly simple model

Models are similar but wrong on average:

- Bias high
- Variance low

 GPA_i is similar for i = 1, 2, ... k

Model 1

Model 2

Model 3

. . .

Model k

Option 2: overly complex model

Models are different but right on average:

- Bias low
- Variance high

small changes in training set — big changes in the model

Model 1

Model 2

Model 3

...

Model k

Regularized Least Squares

Ordinary least-squares (OLS) estimation (no regularizer),

$$w^{\text{OLS}} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2}$$

L2 norm:
$$||w|| = \sqrt{\sum_{d=1}^{D} w_d^2}$$

L1 norm: $||w||_1 = \sum_{d=1}^{D} |w_d|$

L2-regularized Least-Squares (Ridge)

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||^{2}$$

Convention: Just saying 'RLS' means L2-RLS

Constrained Optimization Viewpoint

(Theorem) If

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||^{2}$$

then there exists a function $\delta(\lambda)$ s.t.

$$w^{\text{L2}} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2}$$

subject to $||w||^{2} \le \delta(\lambda)$

[Source: Hastie et al. (2001)]

Regularized Least Squares

Ordinary least-squares (OLS) estimation (no regularizer),

$$w^{\text{OLS}} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2}$$

L2 norm:
$$||w|| = \sqrt{\sum_{d=1}^{D} w_d^2}$$

L1 norm: $||w||_1 = \sum_{d=1}^{D} |w_d|$

L2-regularized Least-Squares (Ridge)

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||^{2}$$

Convention: Just saying 'RLS' means L2-RLS

L1-regularized Least-Squares (LASSO) LASSO: Least Absolute Shrinkage and Selection Operator

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||_{1}$$

Looks subtle but L2-RLS and L1-RLS are often quite different!

L1 Regularized Least-Squares

Feature Weight Profiles

Varying regularization parameter adjusts *shrinkage factor*

For moderate regularization strength weights for many features go to zero

- Induces feature sparsity
- Ideal for high-dimensional settings since it reduced variance from having too many features!
- Gracefully handles D>m case, for D features and m training data

Feature Weight Profiles

Learning L1 Regularized Least-Squares

$$w^{L2} = \arg\min_{w} \sum_{i=1}^{m} (y^{(i)} - w^{T} x^{(i)})^{2} + \lambda ||w||_{1}$$

Not differentiable...

$$\frac{d}{dx}|x|$$

...doesn't exist at x=0

Can't set derivatives to zero as in the L2 case!

Learning L1 Regularized Least-Squares

- Not differentiable, no closed-form solution. => Need to use iterative methods
- But it is convex!
 - Global minimum can be found!
 - Efficient optimization algorithms exist
- Least Angle Regression (LAR) computes full solution path for a range of values λ

sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, normalize='deprecated', precompute=False, copy_X=True, $max_iter=1000$, tol=0.0001, $warm_start=False$, positive=False, $random_state=None$, selection='cyclic') [source]

Parameters:

alpha: float, default=1.0 \leftarrow this is λ

Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0 is equivalent to an ordinary least square, solved by the LinearRegression object. For numerical reasons, using alpha = 0 with the Lasso object is not advised. Given this, you should use the LinearRegression object.

fit_intercept : bool, default=True

Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

precompute: 'auto', bool or array-like of shape (n_features, n_features), precompute

Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as argument. For sparse input this option is always False to preserve sparsity.

copy_X : bool, default=True

If True, X will be copied; else, it may be overwritten.

Specialized methods for cross-validation...

sklearn.linear_model.LassoCV

```
class \ sklearn.linear\_model.LassoCV(*, eps=0.001, n\_alphas=100, alphas=None, fit\_intercept=True, normalize='deprecated', \\precompute='auto', max\_iter=1000, tol=0.0001, copy\_X=True, cv=None, verbose=False, n\_jobs=None, positive=False, \\random\_state=None, selection='cyclic') [source]
```

Tries out a range of α values and reports the best, but maintains other values of α as well.

Mean square error on each fold: coordinate descent (train time: 0.38s)

L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

```
model = LassoCV(cv=20).fit(X, y)
```

Plot the error for range of alphas,

```
3600
                                  all these colored dotted lines
plt.figure()
                                                                           3400
                                  for each test fold
ymin, ymax = 2300, 3800
                                                                           3200
plt.semilogx(model.alphas + EPSILON, model.mse path , ":")
plt.plot(
                                               all alphas
                                                                           3000
                                                                         Mean
2800
    model.alphas + EPSILON,
    model.mse path .mean(axis=-1),
                                                                           2600
    label="Average across the folds",
                                                                                   Average across the folds
    linewidth=2,
                                                                           2400
                                                                                   alpha: CV estimate
                                       adds vertical line
                                                                                        10^{-2}
                                                                                                     10^{-1}
                                                                                                                   100
plt.axvline(
    model.alpha + EPSILON, linestyle="--", color="k", label="alpha: CV estimate"
                                             the best alpha
```

Least Angle Regression (LAR)

If 20 fold:

```
from sklearn.linear_model import LassoLarsCV, LassoCV
l1 = LassoLarsCV(cv=20, normalize=False).fit(X train, Y train)
# compute stats
# get mean mse for each fold
mean_mse = l1.mse_path_.mean(axis=-1)
# get standard error of mse for each fold
std_mse = l1.mse_path_.std(axis=-1)
# get best alpha
best alpha l1 = l1.alpha
```

Feature Selection

Rate of Prostate Cancer

https://www.medicalnewstoday.com/articles/age-range-for-prostate-cancer

Example: Prostate Cancer Dataset

Term	LS	Ridge	Lasso
Intercept	2.465	2.452	2.468
lcavol	0.680	0.420	0.533
lweight	0.263	0.238	0.169
age	-0.141	-0.046	
lbph	0.210	0.162	0.002
svi	0.305	0.227	0.094
lcp	-0.288	0.000	
gleason	-0.021	0.040	1
pgg45	0.267	0.133	
	. – . – .		

<u>Task</u>: predict logarithm of prostate specific antigen (PSA).

Best LASSO model learns to ignore several features (age, lcp, gleason, pgg45).

Wait...Is **age** really not a significant predictor of prostate cancer? What's going on here?

Age is highly correlated with other factors and thus *not significant* in the presence of those factors

Best-Subset Selection

The optimal strategy for p features looks at models over *all possible combinations* of features,

```
For k in 1,...,p:
subset = Compute all subset of k-features (p-choose-k)

For kfeat in subset:
model = Train model on kfeat features
score = Evaluate model using cross-validation

Choose the model with best cross-validation score
```

Best-Subset Selection

Models with 1 variable:

Models with 2 variables:

Models with 3 variables:

Best subset works well!

reasonably good test error, low standard deviation, and only based on two features!

Term	LS	Best Subset	Ridge	Lasso			
Intercept	2.465	2.477	2.452	2.468			
lcavol	0.680	0.740	0.420	0.533			
lweight	0.263	0.316	0.238	0.169			
age	-0.141	I	-0.046				
lbph	0.210	:	0.162	0.002			
svi	0.305	<u>.</u>	0.227	0.094			
lcp	-0.288	i	0.000				
gleason	-0.021	:	0.040				
pgg45	0.267	I	0.133				
Test Error	0.521	0.492	0.492	0.479			
Std Error	0.179	0.143	0.165	0.164			

[Source: Hastie et al. (2001)]

Time complexity

- Data have 8 features, there are 8-choose-k subsets for each k=1,...,8 for a total of 255 models
- Using 10-fold cross-val requires 10 x 255 = 2,550 training runs!
- In general, $O(2^p)$ time complexity

... who can afford exponential time complexity?

Forward Sequential Selection

An efficient method adds the most predictive feature one-by-one

```
featSel = empty
featUnsel = All features
For iter in 1,...,p:
  For kfeat in featUnsel:
   thisFeat = featSel + kfeat
    model = Train model on this Feat features
    score = Evaluate model using cross-validation
  featSel = featSel + best scoring feature
  featUnsel = featUnsel - best scoring feature
Choose the model with best cross-validation score
```

Forward Sequential Selection

Backward Sequential Selection

Backwards approach starts with all features and removes one-by-one

```
featSel = All features
For iter in 1, ..., p:
  For kfeat in featSel:
   thisFeat = featSel - kfeat
    model = Train model on this Feat features
    score = Evaluate model using cross-validation
  featSel = featSel - worst scoring feature
Choose the model with best cross-validation score
```

Backward Sequential Selection

Comparing Feature Selection Methods

Sequential selection is greedy, but often performs well...

Example Feature selection on synthetic model with p=30 features with pairwise correlations (0.85). True feature weights are all zero except for 10 features, with weights drawn from N(0,6.25).

Sequential selection with p features takes O(p²) time, compared to exponential time for best subset

Sequential feature selection available in Scikit-Learn under: feature selection. Sequential Feature Selector

General Principles of Regularization

From the loss function point of view

$$\mathrm{Model} = \min_{\mathrm{model}} \mathrm{Loss}(\mathrm{Model}, \mathrm{Data}) + \lambda \cdot \mathrm{Regularizer}(\mathrm{Model})$$

$$\mathbf{Regularization} \quad \mathbf{Regularization} \quad \mathbf{Regularization} \quad \mathbf{Penalty}$$

$$\mathbf{Strength}$$

•We will see more examples of loss functions going forward.