5. TÉMA

ELEKTRONIKA

Bipoláris tranzisztoros AC erősítők

Feladat megoldások

1. Bipoláris tranzisztorral megvalósított közös emitterű (*FE*) erősítő kapcsolás látható az ábrán.

Adatok:

tranzisztor áramerősítési tényezője: $\beta = 200$ tápfeszültség: $U_t = 10 \text{ V}$ bázisosztó ellenállásai: $R_1 = 74 \text{ k}\Omega$ $R_2 = 26 \text{ k}\Omega$ kollektorellenállás: $R_C = 3.5 \text{ k}\Omega$ emitterellenállás: $R_E = 1 \text{ k}\Omega$ terhelőellenállás: $R_t = 3.5 \text{ k}\Omega$ - tranzisztor bázis-emitter feszültsége: $U_{BEmp} = 0.6 \text{ V}$ $U_T = 26 \text{ mV}$ termikus feszültség:

a) Határozza meg kapcsolás I_C kollektoráramának, valamint a tranzisztor U_C kollektor feszültségének értékét!

$$U_B = U_t \frac{R_2}{R_1 + R_2} = 10 \frac{26 \cdot 10^3}{74 \cdot 10^3 + 26 \cdot 10^3} = 2,6 V$$

$$U_E = U_B - U_{BE} = 2,6 - 0,6 = 2 \text{ V}$$

$$U_{RE} = U_E = 2 \text{ V}$$

$$I_E = \frac{U_{RE}}{R_E} = \frac{2}{1 \cdot 10^3} = 2 \text{ mA}$$

$$I_E \cong I_C$$

b) Határozza meg a kapcsolás A_u feszültségerősítésének értékét! Adja meg a feszültségerősítés értékét dB-ben is!

$$r_E = \frac{U_T}{I_{CM}} = \frac{26 \cdot 10^{-3}}{2 \cdot 10^{-3}} = 13 \,\Omega$$

 $r_E = 13 \Omega$

$$g_m = S = \frac{I_{CM}}{U_T} = \frac{2 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 0,0769 S$$

 $g_m = S = 0.0769 S$

$$A_u = -g_m (R_C \times R_t) = -\frac{R_C \times R_t}{r_E} = -76.9 \cdot 10^{-3} \frac{3.5 \cdot 10^3 \cdot 3.5 \cdot 10^3}{(3.5 + 3.5) \cdot 10^3} = -134.575$$

$$A_u = -134,575$$

$$A_u[dB] = 20 \text{ lg } |A_u| = 42,579 \text{ dB}$$

$$A_u[dB] = 42,579 dB$$

c) Határozza meg a kapcsolás bemeneti ellenállásának (R_{be}) és kimeneti ellenállásának (R_{ki}) nagyságát!

$$R_{be} = (R_1 \times R_2) \times \beta r_E = (74 \cdot 10^3 \times 26 \cdot 10^3 \times 200 \cdot 13) = 1,464 k\Omega$$

$$R_{be} = 2.29 \text{ k}\Omega$$

$$R_{ki} \approx R_C = 3.5 \ k\Omega$$

$$R_{ki} = 3.5 \text{ k}\Omega$$

2. Bipoláris tranzisztorral megvalósított közös emitterű (FE) erősítő kapcsolás látható az ábrán.

Adatok:

_	tranzisztor áramerősítési tényezője:	$\beta = 200$
_	tápfeszültség:	$U_t = 12 \text{ V}$
	1 6	•
_	bázisosztó ellenállásai:	$R_1 = 9,4 \text{ k}\Omega$
		$R_2 = 2.6 \text{ k}\Omega$
_	kollektorellenállás:	$R_C = 5 \text{ k}\Omega$
_	emitterellenállás:	$R_E = 2 \text{ k}\Omega$
_	terhelőellenállás:	$R_t = 5,42 \text{ k}\Omega$
_	tranzisztor bázis-emitter feszültsége:	$U_{BEmp} = 0.6 \text{ V}$
_	termikus feszültség:	$U_T = 26 \text{ mV}$

a) Határozza meg kapcsolás I_C kollektoráramának, valamint a tranzisztor U_C kollektor feszültségének értékét!

$$U_B = U_t \frac{R_2}{R_1 + R_2} = 12 \frac{2.6 \cdot 10^3}{9.4 \cdot 10^3 + 2.6 \cdot 10^3} = 2.6 V$$

$$U_E = U_B - U_{BE} = 2,6 - 0,6 = 2 \text{ V}$$

$$U_{RE} = U_E = 2 \text{ V}$$

$$I_E = \frac{U_{RE}}{R_E} = \frac{2}{2 \cdot 10^3} = 1 \, mA$$

$$I_E \cong I_C$$

$$I_C = 1 \text{ mA}$$

$$U_{RC} = I_C \cdot R_C = 1 \cdot 10^{-3} \cdot 5 \cdot 10^3 = 5 V$$

$$U_C = U_t - U_{RC} = 12 - 5 = 7 V$$

$$U_C = 7 \text{ V}$$

b) Határozza meg a kapcsolás A_u feszültségerősítésének értékét! Adja meg a feszültségerősítés értékét dB-ben is!

$$r_E = \frac{U_T}{I_{CM}} = \frac{26 \cdot 10^{-3}}{1 \cdot 10^{-3}} = 26 \,\Omega$$

 $r_E = 26 \Omega$

$$g_m = S = \frac{I_{CM}}{U_T} = \frac{1 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 0,03846 S$$

 $g_m = S = 0.03846 S$

$$A_u = -g_m(R_C \times R_t) = -\frac{R_C \times R_t}{r_E} = -38,46 \cdot 10^{-3} \frac{5 \cdot 10^3 \cdot 5,42 \cdot 10^3}{(5 + 5,42) \cdot 10^3} = -100$$

 $A_u = -100$

$$A_u[dB] = 20 \text{ lg } |A_u| = 40 \text{ dB}$$

 $A_{u}[dB] = 40 dB$

c) Határozza meg a kapcsolás bemeneti ellenállásának (R_{be}) és kimeneti ellenállásának (R_{ki}) nagyságát!

$$R_{be} = (R_1 \times R_2) \times \beta r_E = (9.4 \cdot 10^3 \times 2.6 \cdot 10^3 \times 200 \cdot 26) = 1.464 \ k\Omega$$

 $R_{be} = 1,464 \text{ k}\Omega$

$$R_{ki} \approx R_C = 5 k\Omega$$

 $R_{ki} = 5 \text{ k}\Omega$

d) Rajzolja meg léptékhelyesen az $u_{be}(\omega t)$ bemeneti feszültség, az $u_{ki}(\omega t)$ kimeneti feszültség és a tranzisztor $u_C(\omega t)$ kollektorfeszültségének időfüggvényét, ha a bemeneti feszültség: $u_{be} = 0.02\sin\omega t$ [V]!

3. Határozza meg az alábbi földelt emitteres kapcsolás kollektor áramát! Számítsa ki az erősítő fokozat feszültségerősítését (A_u) , bemeneti (R_{be}) és kimeneti (R_{ki}) ellenállását sávközépen! Adja meg a feszültségerősítést dB-ben is!

Adatok:

$$T = BC \ 182C, \ \beta = 250$$
 $R_E = 3 \ k\Omega$
 $R_C = 5.1 \ k\Omega$
 $R_t = 10 \ k\Omega$
 $C_2 = 10 \ \mu F$
 $C_E = 47 \ \mu F$
 $U_{BEmp} = 0.6 \ V$
 $U_{t1} = + 15 \ V$
 $U_{t2} = -5 \ V$
 $U_T = 26 \ mV$

A kapcsolás kisjelű fizikai helyettesítő képe:

 $R_{be} \approx r_{B} = \beta r_{E} = 250 \cdot 17.8 = 4.45 k\Omega$

 $R_{ki} \approx R_C = 5.1 \, k\Omega$

$$U_{B} = 0$$

$$U_{E} = U_{B} - U_{BE} = -0.6 \text{ V}$$

$$U_{RE} = U_{E} - (U_{t2}) = -0.6 - (-5) = 4.4 \text{ V}$$

$$I_{E} = \frac{U_{RE}}{R_{E}} = \frac{4.4}{3 \cdot 10^{3}} = 1.46 \text{ mA}$$

$$I_{E} \approx I_{C} = 1.46 \text{ mA}$$

$$g_{m} = \frac{I_{C}}{U_{T}} = \frac{1.46 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 56 \text{ mS}$$

$$r_{E} = \frac{U_{T}}{I_{C}} = \frac{26 \cdot 10^{-3}}{1.46 \cdot 10^{-3}} = 17.8 \Omega$$

$$R_{C} \times R_{t} = \frac{5.1 \cdot 10^{3} \cdot 10 \cdot 10^{3}}{(5.1 + 10) \cdot 10^{3}} = 3.37 \text{ k}\Omega$$

$$A_{u} = -g_{m}(R_{C} \times R_{t}) = -\frac{R_{C} \times R_{t}}{r_{E}} = -189.13$$

$$A_{u}[dB] = 201 \text{g}|A_{u}| = 45.53 \text{ dB}$$

4) a) Határozza meg az ábrán látható tranzisztoros közös emitterű erősítő kapcsolás kollektoráramának (I_C) értékét, valamint a kapcsolás feszültségerősítésének (A_u) , bemeneti ellenállásának (R_{be}) és kimeneti ellenállásának (R_{ki}) nagyságát!

Adatok:

a tranzisztor áramerősítési tényezője: tápfeszültség:

a bázisosztó ellenállásai:

az emitterellenállás:

a kollektorellenállás:

a terhelőellenállás:

a tranzisztor bázis-emitter feszültsége:

a termikus feszültség:

$$\beta$$
 = 300,

 $U_t = 15 \text{ V},$

 $R_1 = 12,4 \text{ k}\Omega,$

 $R_2 = 2,6 \text{ k}\Omega$,

 $R_E = 1 \text{ k}\Omega$,

 $R_C = 4 \text{ k}\Omega$,

 $R_t = 4 \text{ k}\Omega$,

 $U_{BEmp} = 0.6 \text{ V},$

 $U_T = 26 \text{ mV}.$

$$U_B = U_t \frac{R_2}{R_1 + R_2} = 15 \frac{2,6 \cdot 10^3}{2,6 \cdot 10^3 + 12,4 \cdot 10^3} = 2,6 V$$

 $U_B = 2,6 \text{ V}$

$$U_E = U_B - U_{BE} = 2,6 - 0,6 = 2 \text{ V}$$

 $U_F = 2 \text{ V}$

$$U_{RE} = U_E = 2 \text{ V}$$

$$I_E = \frac{U_{RE}}{R_E} = \frac{2}{10^3} = 2 \text{ mA}$$

$$I_E \cong I_C$$

 $I_C = 2 \text{ mA}$

$$U_{t} = U_{RC} + U_{CE} + U_{RE}$$

$$U_{CE} = U_{t} - I_{C} (R_{C} + R_{E}) = 15 - 2 \cdot 10^{-3} (4 \cdot 10^{3} + 10^{3}) = 5 V$$

 $U_{CE} = 5 \text{ V}$

$$g_m = S = \frac{I_{CM}}{U_T} = \frac{2 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 77 \text{ mS}$$

$$g_m = S = 0.077 S$$

$$r_E = \frac{U_T}{I_{CM}} = \frac{26 \cdot 10^{-3}}{2 \cdot 10^{-3}} = 13 \,\Omega$$

$$A_u = -g_m (R_C \times R_t) = -\frac{R_C \times R_t}{r_E} = -77 \cdot 10^{-3} \frac{4 \cdot 10^3 \cdot 4 \cdot 10^3}{(4+4) \cdot 10^3} = -153,85$$

$$A_u = -153,85$$

$$A_{us}[dB] = 20 \text{ lg } |A_{us}| = 43,74 \text{ dB}$$

$$A_u[dB] = 43,74 dB$$

$$R_{be} = (R_1 \times R_2) \times \beta r_E = 1{,}328 k\Omega$$

$$R_{be} = 1,328 \text{ k}\Omega$$

$$R_{ki} \approx R_C = 4 k\Omega$$

$$R_{ki} = 4 \text{ k}\Omega$$

b) Rajzolja meg léptékhelyesen a kapcsolás egyenáramú és váltakozó áramú munkaegyenesét! A váltakozó áramú munkaegyenes rajzolásához határozza meg a ΔU_{CE} kollektor-emitter feszültség változást!

$$\Delta U_{CE} = \Delta I_C (R_C \times R_t) = 2 \cdot 10^{-3} (4 \cdot 10^3 \times 4 \cdot 10^3) = 4 V$$

5. Határozza meg az ábrán látható tranzisztoros közös emitterű erősítő kapcsolás kollektor áramának (I_C) értékét, valamint a kapcsolás feszültségerősítésének (A_u) , bemeneti ellenállásának (R_{be}) és kimeneti ellenállásának (R_{ki}) nagyságát!

Adatok:

a tranzisztor típusa:	2N5086
váltakozó áramú áramerősítési tényezője:	$\beta = 300$
a bázisosztó ellenállásai:	$R_1 = 73 \text{ k}\Omega$
	$R_2 = 27 \text{ k}\Omega$
az emitter ellenállás:	$R_E = 2 \text{ k}\Omega$
a kollektor ellenállás:	$R_C = 5 \text{ k}\Omega$
a terhelő ellenállás:	$R_t = 10 \text{ k}\Omega$
a bemeneti csatolókondenzátor:	$C_1 = 10 \mu F$
a kimeneti csatolókondenzátor:	$C_2 = 10 \ \mu F$
a tranzisztor bázis-emitter feszültsége:	$U_{BEmp} = 0.7 \text{ V}$
a termikus feszültség:	$U_T = 26 \text{ mV}$
tápfeszültség:	$U_t = 10 \text{ V}$

A kapcsolás kisjelű, fizikai helyettesítő képe:

A tranzisztor i_C kollektorárama az R_E emitterellenálláson létrehozza az $u_v = u_{RE}$ visszacsatolt feszültséget, amely az $u_I = u_{BE}$ feszültséggel sorba kapcsolódik: összegük az u_{be} bemeneti feszültség.

Ez a kapcsolás SOROS-ÁRAM visszacsatolást valósít meg.

$$U_B = U_t \frac{R_2}{R_1 + R_2} = 10 \frac{27 \cdot 10^3}{27 \cdot 10^3 + 73 \cdot 10^3} = 2,7 \text{ V}$$

$$U_E = U_B - U_{BE} = 2.7 - 0.6 = 2 \text{ V}$$

$$U_{RE} = U_E = 2 \text{ V}$$

$$I_E = \frac{U_{RE}}{R_E} = \frac{2}{2 \cdot 10^3} = 1 \, mA$$

$$r_E = \frac{U_T}{I_C} = \frac{26 \cdot 10^{-3}}{1 \cdot 10^{-3}} = 26 \,\Omega$$

$$A_u \cong -\frac{R_C \times R_t}{R_E} = \frac{5 \cdot 10^3 \cdot 10 \cdot 10^3}{(5+10) \cdot 10^3} \cdot \frac{1}{2 \cdot 10^3} = -1,6$$

$$R_{be} = (R_1 \times R_2) \times \beta(r_E + R_E) = 19,09 \, k\Omega$$

$$R_{ki} \approx R_C = 5 \, k\Omega$$

6. Bipoláris tranzisztorral megvalósított közös emitterű (*FE*) kapcsolás látható a 3. ábrán.

a) Rajzolja le a kapcsolás váltakozó áramú (kisjelű) fizikai helyettesítő képét!

 \boldsymbol{b}) Határozza meg az erősítő A_u feszültségerősítését! Adja meg az erősítés értékét dB-ben is!

$$r_E = \frac{U_T}{I_C} = \frac{26 \cdot 10^{-3}}{1.6 \cdot 10^{-3}} = 16,25 \,\Omega$$

$$g_m = \frac{I_C}{U_T} = \frac{1,6 \cdot 10^{-3}}{26 \cdot 10^{-3}} = 0,0615 S$$

$$A_u = -g_m (R_C \times R_t) = -61,5 \cdot 10^{-3} \left(\frac{2,6 \cdot 10^3 \cdot 3 \cdot 10^3}{2,6 \cdot 10^3 + 3 \cdot 10^3} \right) = -85,66$$

$$A_u = -85,66$$

$$A_u[dB] = 20\log|A_u| = 20\log|85,66| = 38,655 dB$$

$$A_u[dB] = 38,655 dB$$

c) Határozza meg a kapcsolás R_{be} bemeneti ellenállásának és R_{ki} kimeneti ellenállásának nagyságát!

$$R_{be} = (R_1 \times R_2) \times \beta r_E = (70.5 \cdot 10^3 \times 29.5 \cdot 10^3 \times 200 \cdot 16.25) = 2.81 \text{ k}\Omega$$

 $R_{be} = 2.81 \text{ k}\Omega$

$$R_{ki} \approx R_C = 2.6 \ k\Omega$$

$$R_{ki} = 2.6 \text{ k}\Omega$$

d) Hogyan változik meg a kapcsolás kisjelű helyettesítő képe, ha az emmitterhidegítő kondenzátort eltávolítjuk? Rajzolja le a megváltozott kisjelű helyettesítő képet!

Határozza meg ebben az esetben az Au feszültségerősítés értékét!

$$A_{u} = -\frac{R_{C} \times R_{t}}{r_{E} + R_{E}} \cong -\frac{R_{C} \times R_{t}}{R_{E}} = -\left(\frac{2,6 \cdot 10^{3} \cdot 3 \cdot 10^{3}}{2,6 \cdot 10^{3} + 3 \cdot 10^{3}}\right) \cdot \frac{1}{1,5 \cdot 10^{3}} = -0,928$$

$$A_u = -0.928$$

7. Határozza meg az ábrán látható tranzisztoros közös kollektorú erősítő (FC) kapcsolás A_u feszültségerősítésének, R_{be} bemeneti ellenállásának, valamint R_{ki} kimeneti ellenállásának értékét!

Adatok:

a tranzisztor típusa:	BC182
váltakozó áramú áramerősítési tényezője:	β = 200
a bázisosztó ellenállásai:	$R_1 = 12,4 \text{ k}\Omega$
	$R_2 = 2.6 \text{ k}\Omega$
az emitterellenállás:	$R_E = 1 \text{ k}\Omega$
a terhelőellenállás:	$R_t = 3 \text{ k}\Omega$
a bemeneti csatolókondenzátor:	$C_1 = 10 \ \mu \text{F}$
a kimeneti csatolókondenzátor:	$C_2 = 10 \ \mu \text{F}$
a tranzisztor bázis-emitter feszültsége:	$U_{BEmp} = 0.7 \text{ V}$
a termikus feszültség:	$U_T = 26 \text{ mV}$
a tranzisztor munkaponti emitterárama:	$I_E = 2 \text{ mA}$
tápfeszültség:	$U_t = 15 \text{ V}$

A kapcsolás kisjelű helyettesítő képe:

Az R_E emitterellenállás $u_v = u_{RE}$ feszültsége a tranzisztor $u_I = u_{BE}$ feszültségével sorba kapcsolódik, összegük az u_{be} bemeneti feszültség. A visszacsatoló tag, azaz az emitterellenállás feszültsége az u_{ki} kimeneti feszültség.

Ez a kapcsolás SOROS-FESZÜLTSÉG visszacsatolást valósít meg.

A kapcsolás eredő feszültségerősítése:

$$A_u' = \frac{A_u}{1+H} = \frac{A_u}{1+A_uB_u}$$

A visszacsatolatlan rendszer feszültségerősítése:

$$A_{u} = \frac{u_{ki}}{u_{1}} = \frac{i_{C}(R_{E} \times R_{t})}{u_{BE}} = \frac{g_{m}u_{BE}(R_{E} \times R_{t})}{u_{BE}} = g_{m}(R_{E} \times R_{t}) = \frac{1}{13} \cdot \frac{10^{3} \cdot 3 \cdot 10^{3}}{(10^{3} + 3 \cdot 10^{3})} = 58$$

A visszacsatoló tag feszültségerősítése:

$$B_{u} = \frac{u_{v}}{u_{ki}} = \frac{u_{ki}}{u_{ki}} = 1$$

$$A_u' = \frac{A_u}{1+H} = \frac{A_u}{1+A_uB_u} = \frac{58}{59} = 0.98$$

$$R_{be} = R_1 \times R_2 \times (r_B + r_B g_m(R_E \times R_t)) = R_1 \times R_2 \times \left(\beta r_E + \beta r_E \frac{1}{r_E} (R_E \times R_t)\right)$$

$$R_{he} = R_1 \times R_2 \times \beta (r_E + (R_E \times R_E)) \approx 2.1 k\Omega$$

$$R_{ki}^{'} = \frac{R_{ki}}{1 + H_{ii}}$$

$$R_{ki} = R_E$$

$$A_{u\ddot{u}} = g_m R_E$$

$$B_{u\ddot{u}} = 1$$

$$H_{ii} = A_{uii}B_{uii} = g_{m}R_{E}$$

$$R_{ki}' = \frac{R_{ki}}{1 + H_{ii}} = \frac{R_E}{1 + g_m R_E} = r_E \times R_E \cong 13 \ \Omega$$