Vollständige xi-Formeln Tabelle - T0-Theorie

Grundwert des Parameters

• $\xi = 4/3 \times 10^{-4} = 1.333... \times 10^{-4}$ (fundamentaler geometrischer Parameter)

1. FUNDAMENTALE BEZIEHUNGEN (einfachste)

Parameter	Formel	Potenz	Beschreibung
Basis-Parameter	$\xi = 4/3 \times 10^{-4}$	ξ1	Geometrische Konstante
Gravitationskopplung	$\alpha G = \xi^2$	ξ²	= 1.78 × 10 ⁻⁸
Schwache Kopplung	$\alpha W = \xi^{\wedge}(1/2)$	ξ^(1/2)	= 1.15 × 10 ⁻²
Starke Kopplung	$\alpha S = \xi^{(-1/3)}$	ξ^(-1/3)	= 9.65
4		•	>

2. ENERGIESKALEN UND CHARAKTERISTISCHE GRÖSSEN

Parameter	Formel	Potenz	Wert
Charakteristische Energie	Εξ = 1/ξ	ξ-1	7500 (nat. Einh.)
Charakteristische Länge	Lξ = ξ	ξ1	1.33 × 10 ⁻⁴ (nat. Einh.)
xi-Feld Energiedichte	$\rho \xi = E \xi^4$	ξ-4	3.16 × 10 ¹⁶
T0-Kopplungsparameter	$\varepsilon T = \xi \cdot E_0^2$	ξ1	Abgeleitet
4	•	1	>

3. LEPTONMASSEN (verschiedene Darstellungsformen)

Einfache Formeln:

Teilchen	Formel	Potenz	Koeffizient
Elektron	me = $(2/3) \cdot \xi^{(5/2)}$	ξ^(5/2)	2/3
Myon	$m\mu = (8/5) \cdot \xi^2$	ξ²	8/5
Tau	$m\tau \sim \xi^{(2/3)}$	ξ^(2/3)	Mit Faktor
✓	•	•	>

Erweiterte geometrische Formeln:

Teilchen	Erweiterte Formel	Geometrische Faktoren
Elektron	me = $(3\sqrt{3})/(2\pi\sqrt{\alpha}) \cdot \xi^{(5/2)}$	3√3, 2π, √α
Myon	$m\mu = 9/(4\pi\alpha) \cdot \xi^2$	9, 4π, α

Yukawa-Kopplungen:

Lepton	Yukawa-Kopplung	Formel	Potenz
Elektron	ye	(32/9√3) · ξ^(3/2)	ξ^(3/2)
Myon	уμ	(64/15) · ξ	ξ1
Tau	ут	(5/4) ⋅ ξ^(2/3)	ξ^(2/3)
4	•		>

4. KOMPLEXE BEZIEHUNGEN

Feinstrukturkonstante $\alpha = ce \cdot c\mu \cdot \xi^{\wedge}(11/2)$ $\xi^{\wedge}(11/2)$ Sehr hochVollständige α-Formel $\alpha = (27\sqrt{3})/(8\pi^2\alpha^{\wedge}(3/2)) \cdot \xi^{\wedge}(11/2)$ $\xi^{\wedge}(11/2)$ HöchsteAufgelöst nach α $\alpha = ((27\sqrt{3})/(8\pi^2))^{\wedge}(2/5) \cdot \xi^{\wedge}(11/5)$ $\xi^{\wedge}(11/5)$ Hoch	Parameter	Formel	Potenz	Komplexität
Aufgelöst nach α = $((27\sqrt{3})/(8\pi^2))^{^{^{^{2}}}}(2/5) \cdot \xi^{^{^{^{^{\prime}}}}}(11/5)$	Feinstrukturkonstante	$\alpha = ce \cdot c\mu \cdot \xi^{(11/2)}$	ξ^(11/2)	Sehr hoch
	Vollständige α-Formel	$\alpha = (27\sqrt{3})/(8\pi^2\alpha^{(3/2)}) \cdot \xi^{(11/2)}$	ξ^(11/2)	Höchste
	Aufgelöst nach α	$\alpha = ((27\sqrt{3})/(8\pi^2))^{\wedge}(2/5) \cdot \xi^{\wedge}(11/5)$	ξ^(11/5)	Hoch
Charakteristische Energie $E_0 = \sqrt{(me \cdot m\mu)} = \sqrt{(ce \cdot c\mu) \cdot \xi^{\wedge}(9/4)}$ $\xi^{\wedge}(9/4)$ Mittel	Charakteristische Energie	$E_0 = \sqrt{(\text{me} \cdot \text{m}\mu)} = \sqrt{(\text{ce} \cdot \text{c}\mu) \cdot \xi^{\wedge}(9/4)}$	ξ^(9/4)	Mittel

5. GRAVITATIONSTHEORIE

Parameter	Formel	Einheiten	Beschreibung
Gravitationskonstante	$G = \xi^2/(4m\mu)$	$m^3/(kg\cdot s^2)$	Abgeleitet
T0-Fundamentalformel	ξ = 2√(G · m)	dimensionslos	In nat. Einh.
Geometrische Faktoren	$\xi i = f(ni, li, ji) \cdot \xi_0$	dimensionslos	Teilchenspezifisch
◀			>

6. KOSMOLOGISCHE PARAMETER

Parameter	Formel	Beschreibung
CMB-Temperatur	$TCMB = (16/9) \cdot \xi^2 \cdot E\xi$	2.725 K
CMB-Energiedichte	$ρCMB = (ξ\hbar c)/Lξ^4$	Stefan-Boltzmann
CMB-Anisotropie	$\delta T = \xi^{\wedge}(1/2) \cdot TCMB$	~ 10 ⁻⁵
Hubble-Parameter	$H_0 = \xi^2 \cdot \text{Etypical}$	67.2 km/s/Mpc
Rotverschiebung	$z(\lambda,d) = \xi \cdot \lambda \cdot d$	Wellenlängenabhängig
Energieverlust	$dE/dx = -\xi^2 \cdot E^2$	Photonenenergieverlust

7. CASIMIR-EFFEKT UND VAKUUM

Parameter	Formel	Beschreibung
Lξ-Charakteristische Länge	Lξ = verschiedene Geometrien	228 nm bis 18 μm
Modifizierte Casimir-Formel	Integration mit ξ-Parameter	Geometrieabhängig
Vakuum-Energiedichte	ρνας = $\xi\hbar$ c/L ξ ⁴	Verbindet lokale/kosmische Skalen
4		→

8. ANOMALIEN UND QUANTENKORREKTUREN

Observable	Formel	Potenz/Abhängigkeit
Elektron g-2	$\Delta ae = 251 \times 10^{-11} \times (me/m\mu)^2$	(me/mμ) ²
Myon g-2	$\Delta a \mu = 251 \times 10^{-11}$	Referenz
Tau g-2	$\Delta a \tau = 251 \times 10^{-11} \times (m\tau/m\mu)^2$	(mτ/mμ) ²
4	•	>

9. DIRAC-VEREINFACHUNG

Traditionell	T0-Vereinfacht	Vereinfachung
(iγ ^μ ∂μ - m)ψ = 0	$\partial^2 \delta m = 0$	4×4-Matrizen → einfache Wellengleichung
Komplexe Spinoren	Feldknoten	Abstrakt → physikalisch anschaulich
Mysteriöser Spin	Knotenrotation	Intrinsisch → geometrisch
4	•	•

10. GEOMETRIEABHÄNGIGE ξ-PARAMETER HIERARCHIE

ξ-Variante	Beschreibung	Beziehung
ξ-flach	Flache Geometrie	Basis-Version
ξ-Higgs	Higgs-Sektor	$\lambda h^2 v^2 / (16\pi^3 Eh^2)$
ξ-sphärisch	Sphärische Geometrie	Krümmungskorrigiert
ξ-fraktal	Fraktale Dimension Df = 2.94	Loop-Integral-Modifikation
◀	·	•

11. DIMENSIONSLOSE SKALENVERHÄLTNISSE

Verhältnis	Formel	Bedeutung	
Planck-Compton	$\xi = 2\ell P/\lambda C$	Längenverhältnis	
Energie-Skalen	$\xi = \lambda h^2 v^2 / (16\pi^3 Eh^2)$	Higgs-Sektor	
Masse-Verhältnisse	$me/m\mu = (5\sqrt{3}/18) \times 10^{-2}$	4.8 × 10 ⁻³	

	Verhältnis	Formel	Bedeutung	
	Gravitationsskalen	G-Ableitung	Universelle Konsistenz	
l	4	•	→	

12. HIERARCHIE DER ABHÄNGIGKEITEN

Die zentrale Kette: $\xi \rightarrow v$ (Higgs) \rightarrow Massen \rightarrow $E_0 \rightarrow \alpha$

Stufe	Parameter	Abhängigkeit	Komplexität
0	ξ	Geometrie	Fundamental
1	Kopplungen	ξ^n (n = -1/3, 1/2, 2)	Niedrig
2	Massen	ξ^n (n = 3/2, 1, 2/3, 2, 5/2)	Mittel
3	E ₀	ξ^(9/4)	Hoch
4	α	ξ^(11/2) oder ξ^(11/5)	Höchste

ZENTRALE ERKENNTNIS

Die gesamte Physik des Standardmodells ist eine zwingende Konsequenz der Geometrie des dreidimensionalen Raums, kodiert in einem einzigen Parameter:

$$\xi = 4/3 \times 10^{-4}$$

Von >20 Standardmodell-Parametern → 1 geometrischer Parameter