# PV-ESS 수요관리 모형 설계 프로그램(ESSD) 개요



스마트배전연구센터





- 1 PV-ESS연계 정책배경
- 2 PV-ESS 수요관리 모형
- (3) 설계 방법
- 4 분석 사례
- 5 프로그램 실행



- 1 PV-ESS연계 정책배경
- 2 PV-ESS 수요관리 모형
- 3 설계 방법
- 4 분석 사례
- 5 프로그램 실행



#### PV-ESS연계 정책배경

#### ◆ ESS 전기요금 할인제도 확대

- 출처: 한국전력공사, ESS 전기요금 할인제도, 2017. 2. 15.
- ESS 전기요금 할인 확대

| 구분               | 확대 전                           | 확대 후                                                                                             |
|------------------|--------------------------------|--------------------------------------------------------------------------------------------------|
| 적용대상             | 일반용, 산업용(을)                    | 일반용∙산업용(갑) Ⅱ<br>일반용∙산업용∙교육용(을)                                                                   |
|                  | 경부하 충전요금 10%                   | 경부하 충전요금 50% 할인<br>*적용기간 : '17.01.01 ~ '19.12.31                                                 |
| 요금할인 폭<br>및 적용기간 | ESS 이용 최대부하감축 대비<br>기본요금 1배 할인 | ESS 이용 최대부하감축 대비<br>기본요금 3배 할인<br>*적용기간: '17.01.01 ~ '20.12.31(3배),<br>'21.01.01 ~ '26.03.31(1배) |
|                  | -                              | 계약전력 대비 배터리용량 비율에 따른<br>할인<br>*적용기간: '17.01.01 ~ '19.12.31                                       |

(단, 기본요금할인 적용한도는 기본요금이며, 최대부하감축 적용한도는 배터리용량) \*2018년 ESS 운영시작 기준으로 경제성분석 적용



#### PV-ESS연계 정책배경

#### ◆ 신재생에너지 전기요금 할인제도 개정

- 출처: 한국전력공사 사이버지점 공지사항, 2017. 4. 26.
  - ✓ 신재생에너지 전기요금 할인

| 현 행                                                                   | 개 정                                                                                    |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 신재생에너지 자가소비량 비율에 따라<br>총 전기요금의 10~20% 할인<br>(자가소비율이 20% 미만인 경우 할인 제외) | 신재생에너지 자가소비로<br>절감되는 전기요금의 50% 할인<br>(자가소비량 × 전년도 해당 종별 중간 및<br>최대부하시간대 평균 판매단가 × 50%) |

✓ "ESS + 신재생에너지" 를 함께 설치한 고객에 대한 인센티브

| 계약전력 대비 ESS 배터리용량 비율 | 추가 할인금액          |  |  |  |
|----------------------|------------------|--|--|--|
| 5% 미만                | 없 음              |  |  |  |
| 5% 이상 ~ 10% 미만       | 신재생에너지 할인금액의 20% |  |  |  |
| 10% 이상               | 신재생에너지 할인금액의 50% |  |  |  |



- 1 PV-ESS연계 정책배경
- 2 PV-ESS 수요관리 모형
- 3 설계 방법
- 4 분석 사례
- 5 프로그램 실행



#### PV-ESS 수요관리 모형

#### ◆ PV-ESS 수요관리 모형 수익 계산식

● 전기요금 수익 = 기본요금 수익(절감, 할인) +

전력량요금 수익(절감, 할인) + 신재생 요금 할인







- 1 PV-ESS연계 정책배경
- 2 PV-ESS 수요관리 모형
- 3 설계 방법
- 4 분석 사례
- 5 프로그램 실행



#### ◆ PV-ESS 수요관리 모형 설계 절차

태양광발전 패턴

>

> 일사량 정보 수집

> 발전량 산정 및 패턴 산출

부하 패턴

> 부하 정보 수집 (ISMART)

> 부하분류 및 패턴 산출

최적운전계획 수립

> 일간 최적운전계획

> 최적화 연산

비용 및 수익 계산

> 투자비, 유지보수비

요금절감, 인센티브

경제성 평가

> 파라미터(할인율, 변동율, 저감율 등)

> NPV, IRR, Payback, ROI, Cash flow 등

적정 용량 산정

> 경제성 평가 지수 검토

> 적정용량 산정



#### ◆ 태양광발전 패턴 산출

- ① 일사량 정보 수집: 기상청 전자민원 사이트 → 설치위치 및 해당 연도 입력 → 1시간단위 일사량(수평면) 정보 다운로드
- ② 유효일사량 계산
- ③ PV 발전량 계산 및 일간 발전곡선 산출





#### ◆ 부하데이터 패턴 산출

- 부하정보 수집: I-SMART에서 다운로드
  - ▶ 요금제정보, 계약전력
  - ▶ 요금적용 전력(피크), 전기요금
  - 15분/1시간 단위 부하곡선 (1년)
- 월별 최대부하일 부하곡선 생성
- 월별 근무일/토요일 평균부하곡선 생성









월별 토요일 평균



#### ◆ ESS 최적운전계획 수립

|      | 수요관리 모형                                                                  |
|------|--------------------------------------------------------------------------|
| 변수   | 일간 시간별 ESS 충방전량                                                          |
| 목적함수 | Max. $\left[\sum_{i=1}^{24} ($ 기본요금 수익 $_i$ $+$ 전력량요금 수익 $_i$ $)]$       |
| 제약조건 | <ul> <li>ESS 출력 제약</li> <li>전지 SOC 제약</li> <li>피크 제약 및 역전력 제약</li> </ul> |
| 결과물  | 일간 전기요금 수익                                                               |



#### ◆ ESS 최적운전계획 예시





#### ◆ 비용 및 수익 계산

- 일간 수익 (월별 근무일/토요일 평균)
  - $\triangleright$  전력량요금 절감 =  $\Sigma$ {(PV 발전량 + ESS 충방전량\*) X 전력량요금 단가}
  - 전기요금 할인 = { Σ(ESS 충전량 X 할인차액)\*\*+(Σ ESS 방전량 Σ ESS 충전량 )\*\*\* X 기본요금 단가 / 당월 근무일수} X 배터리 용량 계수\*\*\*\*
  - ▶ 신재생요금 할인 = (PV 발전량 X 할인단가) X (1 + 연계 인센티브 계수)
- 월간 수익
  - ▶ 기본요금 절감 = 피크저감가능값 X 기본요금단가
  - ▶ 일간수익 합계 = 근무일 평균 수익 X 근무일수 + 토요일 평균 수익 X 토요일수
- 연간 수익
  - Σ 월간수익

\* 충전은 - 방전은 +

\*\* 경부하시간 대에 한함

\*\*\* 최대부하시간 대에 한함

\*\*\*\* 계약전력 대비 배터리용량으로 계수 결정



#### ◆ 경제성 평가

NPV(순현가화), IRR(내부 할인율), ROI (투자수익률), Payback Period (투자회수기간) 등

|           | 항목          | 내용                            |  |  |
|-----------|-------------|-------------------------------|--|--|
| 시스템<br>비용 | 투자비         | PV 설비, ESS 설비, 설치비, 운영시스템 개발비 |  |  |
|           | 유지보수비       | 연간 유지보수 비용                    |  |  |
| 경제성<br>분석 | 용량저감률       | PV 연간 출력 감쇄율, ESS 연간 용량 저감율   |  |  |
| 파라미터      | 전기요금 인상율    | 기본요금 인상율, 전력량요금 인상율           |  |  |
|           | 투자 할인율      | 미래의 화폐가치를 현재의 화폐가치와 같게 하는 비율  |  |  |
|           | 전기요금        | 기본요금 단가, 전력량 요금 단가(계절별 시간별)   |  |  |
| 수익        | ESS 전기요금 할인 | 기본요금/충전요금 인센티브 비율 및 적용 기간     |  |  |
|           | 신재생요금 할인    | 신재생 연계 인센티브 비율                |  |  |



#### ◆ 경제성 평가 파라미터 Default값

|        | 항목          | Default값                                                                            |  |  |  |
|--------|-------------|-------------------------------------------------------------------------------------|--|--|--|
| 시스템 비용 | 투자비         | - PV 설비: 17억/MWp<br>- ESS 설비: 리튬전지 5억/MWh, PCS 2.3억/MW)<br>- 설치비: 1억<br>- EMS: 0.3억 |  |  |  |
|        | 연간 유지보수비율   | 투자비의 1%/년                                                                           |  |  |  |
| 경제성 분석 | 평균 용량저감률    | - PV 0.7%/년<br>- ESS 2%/년                                                           |  |  |  |
| 파라미터   | 전기요금 평균 인상률 | 기본요금 및 전력량 요금 모두 3%<br>(물가상승률을 고려한 현재수준으로 유지 가정)                                    |  |  |  |
|        | 할인율         | 5%                                                                                  |  |  |  |



#### ◆ 적정 용량 산정

- 경제성 분석 결과를 바탕으로 투자비 및 기대수익 등을 고려하여 적정한 PV 용량(kWp), ESS PCS 정격 (kW)와 전지용량 [kWh] 선정
- Full combination, Filtering 및 Optimal search 등

[표] 용량별 경제성 비교 예시

| 용량             | 투자회수<br>기간[년] | 수익률<br>[%] |
|----------------|---------------|------------|
| 100kW-200kWh   | 8.57          | 16.1       |
| 100kW-300kWh   | 8.09          | 22.4       |
| 100kW-400kWh   | 7.91          | 25.2       |
| 100kW-500kWh   | 7.82          | 27.0       |
| 100kW-600kWh   | 7.84          | 26.0       |
| 100kW-700kWh   | 7.92          | 25.0       |
| 100kW-800kWh   | 8.12          | 22.0       |
| 100kW-900kWh   | 8.43          | 18.0       |
| 100kW-1,000kWh | 8.81          | 14.0       |





- 1 PV-ESS연계 정책배경
- 2 PV-ESS 수요관리 모형
- 3 설계 방법
- 4 분석 사례
- 5 프로그램 실행



### 분석 사례

#### ◆ PV-ESS 연계

- PV 230kW, ESS 250kW-500kWh 적용 시
- 수요관리 적용: 계약전력 990kW, Peak 617kW, 산업용(을) 고압A 선택 Ⅱ

|            |                 |     | PV+ESS |          | PV                |                          | ESS                      |                          |                   |                   |            |                    |
|------------|-----------------|-----|--------|----------|-------------------|--------------------------|--------------------------|--------------------------|-------------------|-------------------|------------|--------------------|
| PV<br>[kW] | ESS<br>[kW-kWh] |     |        | 요금<br>절감 | 인센<br>티브<br>[백만원] | 전력량<br>요금<br>절감<br>[백만원] | 신재생<br>요금<br>할인<br>[백만원] | 전력량<br>요금<br>절감<br>[백만원] | 요금<br>할인<br>[백만원] | 누적<br>수익<br>[백만원] | IRR<br>[%] | 투자비<br>회수기간<br>[년] |
| -          | 250-500         | 316 | 63     | 233      |                   | -                        |                          | 165                      | 392               | 410               | 25.2       | 3.6                |
| 230        | 250-500         | 733 | 147    | 291      | 28                | 462                      | 57                       | 188                      | 371               | 517               | 14.7       | 6.7                |

<sup>\*</sup> 비용 및 수익은 투자시점으로 현가화

<sup>\*\* 20</sup>년 운영 기준



# 분석 사례

#### ◆ 적용 파라미터

|     | 항목       | Baseline                                                                                                               |  |  |  |  |
|-----|----------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 비용  | 투자비      | - PV 설비: 17억/MWp<br>- ESS 설비: 리튬전지 4.5억/MWh, PCS 2억/MW)<br>- EMS : 설비비 3억 미만 시, 6.5억 미만 시, 6.5억 이상 시 설비비 15%, 12%, 10% |  |  |  |  |
|     | 유지보수비    | 투자비의 1%/년                                                                                                              |  |  |  |  |
|     | 용량저감률    | - PV 0.7%/년<br>- ESS 10년간 2%/년, 이후 10년간 3%/년                                                                           |  |  |  |  |
| 변동율 | 전기요금 인상율 | 기본요금 및 전력량 요금 모두 3%(물가상승률을 고려한 현재수준으로 유지 가정)                                                                           |  |  |  |  |
|     | 할인율      | 5%                                                                                                                     |  |  |  |  |
|     | 전기요금     | - 산업용(을) 고압A 선택II                                                                                                      |  |  |  |  |
| 수익  | ESS 인센티브 | - 기본요금 인센티브 기존 3배: 3년 적용, 1배는 이후 7년간 적용 후 소멸<br>- 경부하 시 충전요금 할인 50%는 3년간 적용<br>- 계약전력대비 ESS배터리용량 비율에 따른 할인금액 차등 적용     |  |  |  |  |



# 분석 사례

## ◆ 연차별 수익 (수요관리)

| 연차 | 투자비     | 유지보수비 | 기본요금 절감 | 전력량요금 절감 | 기본요금 할인 | 충전요금 할인 | 연간 순 수익  | 누적 수익    |
|----|---------|-------|---------|----------|---------|---------|----------|----------|
| 1  | 316,250 | 3,163 | 17,372  | 12,301   | 61,586  | 4,301   | -228,353 | -223,853 |
| 2  | -       | 3,163 | 16,700  | 11,826   | 60,822  | 4,134   | 90,319   | -133,533 |
| 3  | -       | 3,163 | 16,047  | 11,364   | 60,065  | 3,973   | 88,286   | -45,247  |
| 4  | -       | 3,163 | 15,414  | 10,915   | 59,314  | -       | 82,480   | 37,233   |
| 5  | -       | 3,163 | 14,798  | 10,479   | 25,410  | -       | 47,525   | 84,758   |
| 6  | -       | 3,163 | 14,201  | 10,056   | 24,384  | _       | 45,479   | 130,237  |
| 7  | -       | 3,163 | 13,621  | 9,646    | 23,388  | _       | 43,492   | 173,729  |
| 8  | -       | 3,163 | 13,058  | 9,247    | 22,421  | -       | 41,563   | 215,293  |
| 9  | -       | 3,163 | 12,511  | 8,860    | 21,483  | -       | 39,691   | 254,984  |
| 10 | -       | 3,163 | 11,981  | 8,484    | 20,572  | -       | 37,874   | 292,857  |
| 11 | -       | 3,163 | 11,323  | 8,018    | -       | -       | 16,178   | 309,035  |
| 12 | -       | 3,163 | 10,685  | 7,567    | -       | -       | 15,089   | 324,125  |
| 13 | -       | 3,163 | 10,068  | 7,129    | -       | -       | 14,035   | 338,159  |
| 14 | -       | 3,163 | 9,470   | 6,706    | -       | _       | 13,014   | 351,173  |
| 15 | -       | 3,163 | 8,892   | 6,297    | -       | -       | 12,026   | 363,199  |
| 16 | -       | 3,163 | 8,332   | 5,900    | -       | _       | 11,069   | 374,268  |
| 17 | -       | 3,163 | 7,790   | 5,516    | -       | _       | 10,144   | 384,412  |
| 18 | -       | 3,163 | 7,266   | 5,145    | -       | _       | 9,248    | 393,660  |
| 19 | -       | 3,163 | 6,759   | 4,786    | -       | _       | 8,382    | 402,043  |
| 20 | -       | 3,163 | 6,268   | 4,439    | -       | _       | 7,545    | 409,587  |

단위:천원



- 1 PV-ESS연계 정책배경
- 2 PV-ESS 수요관리 모형
- 3 설계 방법
- 4 분석 사례
- 5 프로그램 실행



#### 프로그램 실행

◆ ESS Designer 프로그램은 아래의 7단계로 진행



◆ 각 단계별 업무기능 탭 내의 "도움말 보기" 버튼을 클릭 하여 참고 가능





#### 참고문헌

#### ◆참고문헌

- 1) "고속철도 변전소 피크부하 저감용 ESS 용량 산정 및 경제성 분석", 김슬기 외, 대한전기학회 국문논문지, Vol.63, No.1, pp.27~34, 2014
- 2) "전력소비자 수요관리용 전지전력저장시스템의 적정 가격 산정", 김슬기 외, 대한전기학회 국문논문지, Vol.62, No.10, pp.1390~1396, 2013
- 3) "수용가 수요관리용 전지전력저장시스템의 최적용량 산정방법", 조경희 외, 대한전기학회 국문논문지, Vol.62, No.1, pp.21~28, 2013



# 감사합니다!

#### Q&A

담당자) 전기연구원 스마트배전연구센터 조경희 연구원 연락처) 055-280-1365 이메일) kx1004xh@keri.re.kr