(a)
$$L = \{ p \in \mathcal{P}_{L}(F) : p(c) = 0 \}$$
.

Bans of $L : \{ p \in \mathcal{P}_{L}(F) : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p \in U : p(c) = 0 \}$.

 $P(c) = 0 \text{ for } p$

•
$$U + U = Su(F)$$

Since B is a basis of $Su(F) = 1$ span $B = Su(F)$?

 $\{x - 6, x(x - 6), x^2(x - 6), x^3(x - 6)\} \subset U$
 $= 1$ $U_1(F) = 1$ span $U_2 = 1$ $U_2(F) = 1$ $U_$