PCT

WORLD INTELLECTUAL PROPERTY International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATE

(51) International Patent Classification 6: A61K 39/12, C12N 15/14, 15/63

A1

(11) International Publication Number:

WO 96/04010

(43) International Publication Date:

15 February 1996 (15.02.96)

(21) International Application Number:

PCT/US95/09927

(22) International Filing Date:

4 August 1995 (04.08.95)

(81) Designated States: CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

SE).

(30) Priority Data:

08/287,941

5 August 1994 (05.08.94)

US

Published

With international search report.

(71) Applicant: REGENTS OF THE UNIVERSITY OF MIN-NESOTA [US/US]; 100 Church Street, S.E., Minneapolis, MN 55455 (US).

(72) Inventors: MURTAUGH, Michael, P.; 2957 Northview, Roseville, MN 55113 (US). ELAM, Margaret, R.; 2930 36th Avenue S., Minneapolis, MN 55406 (US). KAKACH, Laura, T.; 106 12th Avenue N., Hopkins, MN 55343 (US).

(74) Agent: COLLINS, John, M., Hovey, Williams, Timmons & Collins, Suite 400, 2405 Grand Boulevard, Kansas City, MO 64108 (US).

(54) Title: VR-2332 VIRAL NUCLEOTIDE SEQUENCE AND METHODS OF USE

(57) Abstract

A nucleotide sequence is provided for the VR-2332 virus, which is capable of causing Porcine Reproductive and Respiratory Syndrome. The nucleotide sequence includes protein coding regions that are inserted into recombinant vectors for the host expression of viral proteins according to a variety of vaccination techniques. Diagnostic assays utilize fragmentary sequences or oligonucleotides to selectively identify the VR-2332 nucleic acids by hybridization or PCR amplification reactions that distinguish VR-2332 nucleotide sequences from other PRRS-causative viruses which are immunologically distinct from VR-2332.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT.	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA:	Canada	. KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI .	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	. Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA.	Gabon				

VR-2332 VIRAL NUCLEOTIDE SEQUENCE AND METHODS OF USE

5 Sequence Listing

15

20

25

30

35

A printed Sequence Listing accompanies this application, and is also submitted with identical contents in the form of a computer-readable ASCII file.

10 Background of the Invention

1. Field of the Invention

The invention pertains to the field of molecular genetics and, in particular, to the use of man-made nucleotides in diagnosing animal diseases or vaccinating animals against disease. More specifically, the preferred nucleotides derive from an immunologically distinct strain of the porcine reproductive and respiratory syndrome ("PRRS") virus, and selectively target this virus in the application of vaccination or diagnostic techniques.

2. Description of the Prior Art

A new viral disease of pigs was detected in North America during 1987, and reported by Hill, *Overview and History of Mystery Swine Disease* (Swine Infertility and Respiratory syndrome), in Proceedings of the Mystery Swine Disease Committee Meeting, October 6, Denver CO, from the Livestock Conservation Institute of Madison, Wisconsin pp. 29-30 (1990). A disease having substantially identical clinical signs was found in Europe during 1990, as reported by Paton et al., Blue ear disease of pigs, 128 Vet Rec. 617 (1991). The clinically observed disease is commonly known by various names including porcine reproductive and respiratory syndrome ("PRRS"), swine infertility and respiratory syndrome ("SIRS"), porcine epidemic abortion and respiratory syndrome ("PEARS"), and mystery swine disease; herein, the term PRRS will suffice to indicate all of these names.

The consequences of this disease included late-term abortions and stillbirths in sows, as well as respiratory insufficiencies in nursery pigs that developed poorly and died easily. Decreases were observed in sow conception rates and litter sizes. Estimates stated that about ten to fifteen percent of pig production were lost annually due to reproductive failure. Early

clinical signs of the disease included anorexia and mild pyrexia. Other signs included bluish discolorations on the skin of diseased herd animals, with the discolorations being primarily located on the ears, teats, snout, and frontal portions of the neck and shoulders. Necropsy results indicated thickened alveolar septae caused by the presence of macrophages, degenerating cells, and debris in alveolar spaces. These abnormalities indicated the presence of PRRS virus.

5

10

15

20

25

30

35

The causative viral agent was suspected to be a small, enveloped positive-stranded RNA virus that was recovered primarily from alveolar macrophages of infected swine, as reported by Benfield et al., Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332), 4 J. Vet. Diagn. Invest. 127-133 (1992); and Wensvoort et al., Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome: a review of mystery swine disease research at Lelystad, 33 Vet. Micro. 185-193 (1992). The isolation technique for the Lelystad ("LV") virus included homogenizing infected swine lung tissue; mixing the homogenate with a physiological saline, e.g., Ringers solution, Hank's balanced salt solution, and Minimum Essential Medium ("MEM") to a 10% weight/volume amount of the homogenate; and filtering the mixture through a series of 0.45, 0.2 and 0.1 micron filters.

The LV virus appeared to be closely related to arteriviruses in morphology, genome organization, transcriptional regulation, and macrophage specificity, according to Plagemann et al., Lactate dehydrogenase-elevating virus, equine arteritis virus and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. 41 Adv. Vir. Res. 99-192 (1992).

The complete nucleotide sequence of the LV strain of the PRRS virus was identified by Meulenberg et al., Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV, 192 Virology 62-72 (1993). A partial LV sequence was also identified by Conzelmann et al., Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group, 193 Virology 193, 329-339. The positive-strand genome of the LV virus (Sequence ID. Nos. 14-26) included eight open reading frames ("ORFs"), which had some similarity in comparison with the genes of coronaviruses and arteriviruses. Two open reading frames likely coded for the viral RNA

10

15

20

25

30

polymerase. LV ORFs two through six appeared to code for structural proteins associated with viral membranes, and LV ORF 7 was believed to code for a nucleocapsid.

The LV viral proteins were expressed from a nested set of RNA transcripts that had overlapping 3' ends. While this expression strategy was shared with the Coronavirus family, the physical properties of the LV virus originally placed it in the Togavirus family. Plagemann et al. (see above) has proposed a new family, the Arteriviridae, to encompass viruses having these dual properties. This family included the PRRS virus, equine arteritis virus ("EAV"), lactate dehydrogenase-elevating virus ("LDV"), and simian hemorrhagic fever virus ("SHFV").

A second strain ("VR-2332") of the PRRS virus was isolated as a fourth cell culture passage, as reported by Benfield et al., *Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332*), 4 J. Vet. Diagn. Invest. 4, 127-133 (1992). Nevertheless, the viral genome was not sequenced. The VR-2332 isolate was deposited in the American Type Culture Collection, and now has an ATCC catalogue number VR-2332. The VR-2332 virus was characterized as spherical with an average diameter of 62 nm and a 25-30 nm core surrounded by an envelope. Viral particles had a buoyant density of 1.18-1.19 g/ml in cesium chloride and were further purified from filtered tissue homogenates by centrifugation on cesium chloride gradients.

The respective VR-2332 and LV virus isolates displayed vast differences in terms of antigenic variation, especially in view of their common morphology and similar clinical signs in swine. A comparison study between 24 field sera and seven viral isolates from Europe and North America failed to distinguish a single common antigen which was able to diagnose infection in a reliable manner for both viruses, as reported by Wensvoort et al., *Antigenic comparison of Lelystad virus and swine infertility and respiratory syndrome* (SIRS) virus, 4 J. Vet. Diagn. Invest. 134-138 (1992). Accordingly, despite the structural and symptomological similarities between the two virus strains, it is unlikely that a single vaccine could be developed from one strain of the virus for purposes of immunizing swine against both strains.

10

15

20

25

30

35

Summary of the Invention

The present invention overcomes the problems that are outlined above by providing man-made nucleotide sequences for the immunologically distinct VR-2332 strain of PRRS virus, as well as vaccines derived from these nucleotides and corresponding methods of vaccination.

Broadly speaking, the present invention includes materials and methods that derive from the VR-2332 form of PRRS pathogen. The materials preferably include VR-2332 virus based nucleic acids and proteins having lengths sufficient to make them unique in comparison with the LV form of PRRS pathogen. The methods involve the use of these materials in diagnostic assays and vaccination procedures.

A particularly preferred material of the present invention includes a purified and isolated nucleic acid coding for a fragmentary portion of the VR-2332 genomic sequence between ORF 2 and ORF 7. These sequences are unique with respect to the LV virus genome, and preferably code for the expression of a polypeptide capable of inducing an anti-VR-2332 PRRS immune response in swine. Despite the similarity in PRRS clinical signs and viral morphology between the VR-2332 and LV viruses, VR-2332 based oligonucleotides can be used as polymerase chain reaction ("PCR") primers for the selective amplification of VR-2332 cDNA. These sequences also include inverse complimentary oligonucleotide sequences derived from the VR-2332 genome. These oligonucleotide sequences are also capable of being used as probes in hybridization studies to selectively identify wild-type VR-2332 cDNA.

Portions of the VR-2332 nucleotide sequence may be recombined with a chimeric vector to place the VR-2332 coding region insert under the control of an appropriate promoter sequence and a termination sequence. This vector may be used for host expression of a protein coded for by the insert. Host expression may be accomplished in either prokaryotic or eukaryotic cells. These vectors may be constructed as recombinant plasmids and injected directly into swine to induce an immune response as the host-swine produces viral proteins. Alternatively, the viral proteins may be produced in cell cultures and injected into swine for immunization purposes.

These nucleotide sequences may also be used in PCR diagnostic assays utilizing primers that selectively amplify either VR-2332-based cDNA or LV-based cDNA. Alternatively, these primer sequences can be used in

10

15

20

25

30

35 .

hybridization reactions that indicate the presence of a particular PRRS-causative virus.

Other objects, advantages and salient features of the present invention will become apparent from the following detailed description which, when taken into conjunction with the annexed drawings, discloses a number of embodiments of the present invention.

Brief Description of the Drawings

Figure 1 depicts the positional organization of VR-2332 ORFs 2 through 7 with reference to shaded regions corresponding to cDNA fragments from various clones that were used to determine the nucleotide sequence of the VR-2332 strain of the PRRS virus to yield Sequence ID No. 1;

Fig. 2 depicts the nucleotide and deduced amino acid sequence of VR-2332 ORFs 2 through 7, which correspond to Sequence ID Nos. 1 through 13;

Fig. 3A depicts a comparison between the respective amino acid alignments of ORF 7 for VR-2332 and LV virus according to an IUPAC single letter amino acid code wherein identical residues are represented by capital letters and different residues are represented by lower case letters, and the full three letter amino acid code sequences for these residues are provided in Sequence ID No. 13 (VR-2332) and Sequence ID. No. 26 (LV virus);

Fig. 3B depicts a hydropathy profile for VR-2332 ORF 7, wherein the ordinate represents a hydrophobicity value and the abscissa represents a residue number;

Fig. 3C depicts a hydropathy profile for LV virus ORF 7, which is substantially similar to Fig. 3B;

Fig. 4A depicts a comparison between the respective amino acid alignments of ORF 6 for VR-2332 and LV virus according to an IUPAC single letter amino acid code wherein identical residues are represented by capital letters and different residues are represented by lower case letters, and the full three letter amino acid code sequences for these residues are provided in Sequence ID No. 11 (VR-2332) and Sequence ID. No. 24 (LV virus);

Fig. 4B depicts a hydropathy profile for VR-2332 ORF 6, wherein the ordinate represents a hydrophobicity value and the abscissa represents a residue number:

Fig. 4C depicts a hydropathy profile for LV virus ORF 6, which is substantially similar to Fig. 4B;

Fig. 5A depicts a comparison between the respective amino acid alignments of ORF 5 for VR-2332 and LV virus according to an IUPAC single letter amino acid code wherein identical residues are represented by capital letters and different residues are represented by lower case letters, and the full three letter amino acid code sequences for these residues are provided in Sequence ID No. 9 (VR-2332) and Sequence ID. No. 22 (LV virus);

Fig. 5B depicts a hydropathy profile for VR-2332 ORF 5, wherein the ordinate represents a hydrophobicity value and the abscissa represents a residue number:

Fig. 5C depicts a hydropathy profile for LV virus ORF 5, which is substantially similar to Fig. 5B;

Fig. 6A depicts a comparison between the respective amino acid alignments of ORF 4 for VR-2332 and LV virus according to an IUPAC single letter amino acid code wherein identical residues are represented by capital letters and different residues are represented by lower case letters, and the full three letter amino acid code sequences for these residues are provided in Sequence ID No. 7 (VR-2332) and Sequence ID. No. 20 (LV virus);

Fig. 6B depicts a hydropathy profile for VR-2332 ORF 4, wherein the ordinate represents a hydrophobicity value and the abscissa represents a residue number:

Fig. 6C depicts a hydropathy profile for LV virus ORF 4, which is substantially similar to Fig. 6B;

Fig. 7A depicts a comparison between the respective amino acid alignments of ORF 3 for VR-2332 and LV virus according to an IUPAC single letter amino acid code wherein identical residues are represented by capital letters and different residues are represented by lower case letters, and the full three letter amino acid code sequences for these residues are provided in Sequence ID No. 5 (VR-2332) and Sequence ID. No. 18 (LV virus);

Fig. 7B depicts a hydropathy profile for VR-2332 ORF 3, wherein the ordinate represents a hydrophobicity value and the abscissa represents a residue number:

Fig. 7C depicts a hydropathy profile for LV virus ORF 3, which is substantially similar to Fig. 7B;

10

5

15

20

30

25

Fig. 8A depicts a comparison between the respective amino acid alignments of ORF 2 for VR-2332 and LV virus according to an IUPAC single letter amino acid code wherein identical residues are represented by capital letters and different residues are represented by lower case letters, and the full three letter amino acid code sequences for these residues are provided in Sequence ID No. 3 (VR-2332) and Sequence ID. No. 16 (LV virus):

Fig. 8B depicts a hydropathy profile for VR-2332 ORF 2, wherein the ordinate represents a hydrophobicity value and the abscissa represents a residue number;

Fig. 8C depicts a hydropathy profile for LV virus ORF 2, which is substantially similar to Fig. 8B; and

Fig. 9 depicts a comparison between the respective 3' untranslated regions of VR-2332 and LV virus.

15 <u>Detailed Description of the Preferred Embodiment</u>

The following non-limiting Examples set forth preferred methods and materials for practicing the present invention.

EXAMPLE 1

20

25

30

5

10

GROWTH OF THE VR-2332 VIRUS

A virally pure MA-104 cell line culture of the ATCC VR-2332 virus was obtained for use as viral inoculum, courtesy of Boehringer Ingelheim of Ridgefield, Connecticut.

A culture was prepared for use in propagating the VR-2332 inoculum. The VR-2332 virus was grown in cells from a monkey kidney cell line according to the methods outlined by Gravell et al., **181** *Proc. Soc. Exp. Biol. Med.*, 112-119. Those skilled in the art may alternatively refer to the cell line as the 2621, MA-104 or USU-104 cell line. Uninfected cells were cultured in 50 ml of Eagle's MEM medium (purchased from Life Technologies, Inc., Gaithersburg, MD), which was supplemented with 10% fetal calf serum and 50 μ g/ml gentamicin from Sigma Chemical Co. of St. Louis, MO. Cells were dislodged from the flask surface with trypsin-versene, centrifuged to pellet the cells for separation from the trypsin-versene supernatant, and split 1:4 for subculturing. The cells were maintained in a 5% humidified CO₂ atmosphere

at 37°C in 75 cm² plastic tissue culture flasks, with media passage at 5-7 day intervals.

The four 50 ml cell cultures were each infected by decanting the growth media and adding the VR-2332 inoculum in 1 ml of growth media having a titer of approximately 10⁵-10⁶ tissue culture infective doses (TCID₅₀). The resultant mixture was incubated for 30 min, after which time was added 30 ml of fresh MEM media containing 4% fetal calf serum. The infected cells were incubated under CO₂ as described above for 24 or 48 hr, and harvested by decanting the media to leave cells adhered to the flask walls.

10

15

20

25

5

EXAMPLE 2 CONSTRUCTION OF A CDNA LIBRARY

The harvested cells from Example 1 were washed with phosphate-buffered saline, and lysed by the addition of 5M guanidine isothiocyanate. Total cellular RNA was extracted according to the protocols described by Chomczynski et al., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, 162 Anal. Biochem. 156-159 (1987). Poly A-containing RNA was selected by oligo dT column chromatography using conventional equipment and procedures from Gibco BRL of Gaithersburg, MD.

A cDNA library was constructed in the lambda unidirectional phage vector, UniZap™XR, using Gigapack® II Gold¹ packaging extract and *E. coli* SURE™ cells, as directed by the kit manufacturer (Stratagene, La Jolla, CA). This procedure is summarized below with reference to materials provided in the commercially available kit.

The poly A-selected RNA obtained from 2 ml of cell lysate was reverse transcribed with Moloney murine leukemia virus reverse transcriptase and a synthetic 50 base oligo dT primer containing a sequence including an Xho I restriction site, as follows:

30

¹UniZap XR, Gigapack II Gold, and SURE are trademarks of Stratagene Corp. of La Jolla, CA.

The first strand synthesis reaction also contained 5-methyl dCTP. Second strand synthesis was achieved by utilizing DNA polymerase I and the standard dCTP instead of 5-methyl dCTP. The ends of the double stranded cDNA were made blunt with T4 DNA polymerase, and EcoRI adaptors were added with T4 DNA ligase. The adaptors had the following synthetic nucleotide sequences:

5'-AATTCGGCACGAG-3'

3'-GCCGTGCTC-5'

The resulting cDNA was treated with polynucleotide kinase to phosphorylate the 5' ends, digested to completion with Xho I, and purified on a Sephacryl S-400 column.

The cDNA was ligated to the Uni-ZAP™ XR vector arms with DNA ligase and packaged in the high efficiency packaging extract, Gigapack® II Gold. The resulting packaged infectious phage preparation was plated on the *E. coli* cell line SURE™.

15

20

25

30

10

5

EXAMPLE 3

SCREENING THE cDNA LIBRARY BY PCR

Many unsuccessful attempts were made to screen the cDNA library of Example 2 for purposes of identifying VR-2332 positive plaques by polymerase chain reaction using PCR primer sequences derived from the reported LV virus. Synthetic DNA fragments or primers were produced and labeled with ³²P as an indicator according to conventional protocols. These oligonucleotide primers replicated portions of LV virus ORFs 2, 6 and 7, as were reported by Meulenberg et al., *Lelystad virus*, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV, 192 Virology 62-72 (1993). No PCR amplified nucleotide products were obtained under a variety of conditions.

The observed total failure in PCR amplification of VR-2332 nucleic acid sequences indicated that the two viruses (LV and VR-2332) have considerable nucleotide sequence differences, which are sufficient to prevent specific PCR amplification of VR-2332 cDNA using LV-derived primers. Therefore, an alternative cloning strategy was devised using LV sequences for hybridization, but not for PCR, to determine the nucleotide sequence corresponding to the structural genes of the VR-2332 strain of the PRRS virus.

EXAMPLE 4

SCREENING THE CDNA LIBRARY BY PLAQUE HYBRIDIZATION

A PCR-generated nucleotide fragment that replicated cDNA from LV ORF 7 (Sequence ID No. 26 of the LV virus) was ³²P-labeled, and used to probe Northern blots obtained using MA-104 cells infected with the VR-2332 virus. Radiographic bands were obtained from infected cells, but not from uninfected cells. These bands indicated that LV and VR-2332 shared similar sequences which were capable of hybridizing despite the failure of PCR screening in Example 3.

10

5

Several fifteen cm agar plates containing a total of about 50,000 plaques were screened from duplicate lifts onto NitroPlus nitrocellulose membranes (Micron Separations Inc., Westboro, MA). Positive plaques that hybridized to the corresponding LV virus probe were identified by their corresponding radiographic bands as determined by exposure to x-ray film. These positive plaques were replated and rescreened for confirmation. Hybridization-positive recombinant Uni-ZAPTM XR phage were subjected to *in vivo* excision as described in the Stratagene instruction manual, in order to obtain plasmid DNA for sequence analysis. A summary of the Stratagene procedure is set forth below.

20

15

Recombinant phage were combined with *E. coli* XL1-Blue cells as well as ExAssist helper phage at 37°C for 15 min and, thereafter, cultured in rich media for 2-3 hours with shaking at 37°C. The culture was heated to 70°C for 20 min, and clarified by centrifugation. Supernatant containing rescued phagemid was added to SOLR cells and plated on ampicillin-containing agar plates. These bacterial colonies contained recombinant plasmids.

30

25

The resultant clones were amplified in liquid culture. DNA was extracted and further analyzed by EcoRI and XhoI restriction endonuclease digestion (10X excess). The sizes of the VR-2332-specific inserts were estimated by electrophoresis in agarose gels with molecular weight standards. Next, the nucleotide sequence of 23 clones was determined at the 3' end by dideoxynucleotide sequencing using Sequenase, ³⁵S-dATP and Stratagene's synthetic M13 -20 primer:

5'-GTAAAACGACGGCCAGT-3'.

Sequencing products were analyzed on 6% denaturing polyacrylamide gels. Twenty of 23 clones had identical 3' sequences, suggesting these clones were coterminally nested. Six of these 20 clones of various sizes, all containing an identical 3' end, were selected for further DNA sequencing.

5

10

15

20

EXAMPLE 5 VR-2332 SEQUENCE ANALYSIS

Nucleotide sequence data were obtained for each of the six selected clones of Example 4 by manual dideoxynucleotide sequencing with Sequenase (US Biochemicals, Cleveland, OH) and automated fluorescence sequencing (Applied Biosystems, Foster City, CA).

Fig. 1 schematically depicts the native positions of the six clones, i.e., those designated 761, 712, 431, 412, 513, and 416, which were chosen for further sequence analysis. The fragment length scale proceeds from 0 to about 3.5 kb, with a positional reference to Sequence ID No. 1. Clones 431, 412, 513 and 416 were sequenced from their 5' ends to overlap with the sequence generated from the next smaller clone. The gap between the 5' end of clone 416 and the beginning of ORF 2, which was sequenced from both clones 712 and 761, was sequenced from both ends by synthesizing VR-2332-specific primers. Additional sequencing was performed to confirm the sequence on the opposite strand. This strategy produced a sequence of 3358 nucleotides, i.e., Sequence ID. No. 1, on both strands from a combination of six independent clones. Fig. 2 depicts this total sequence, together with its deduced amino acid translation.

25

30

Numerous differences between the LV and VR-2332 viruses occurred throughout the 3' genomic sequences that coded for ORFs 2 through 7, as well as the 3' untranslated region. These differences were due to nucleotide substitutions, base deletions and base additions. The sequence divergence arose, presumably, from error-prone replication, and suggests that the viral replicase has poor fidelity and lacks proofreading activity.

10

15

20

EXAMPLE 6

AMINO ACID RESIDUE SEQUENCE COMPARISON AND IMMUNOLOGICAL CROSS-REACTIVITY

An initial survey indicated that the deduced proteins from these six VR-2332 ORFs roughly corresponded to known ORFs 2 through 7 in each of LV virus, LDV, and EAV. Accordingly, a detailed comparative study was performed to determine differences between the amino acid residue sequences of the VR-2332 and the LV virus, as well as the other Arteriviridae including LDV and EAV. The amino acid sequence comparison was performed using GCG (University of Wisconsin, Madison, WI) and Intelligenetics, Inc. (Mountain View, CA) software. Sequence ID No. 1 includes the VR-2332 sequence for the 3'-most 3442 bases of the VR-2332 nucleotide sequence, as well as the 5'most 84 bases preceding the start of ORF 2. These 3358 nucleotides encode the structural proteins of the virus, and include six ORFs with each ORF corresponding to Sequence ID Nos. 2-13. These VR-2332 ORFs have varying degrees of homologies in comparison with LV ORFs 2-7 as well as other members of the Arteriviridae family including LV virus, LDV, and EAV. More specifically, a comparative sequence analysis indicates a degree of amino acid sequence homology between the VR-2332 virus and the LV virus ranging from 55% in ORF 5 to 79% in ORF 6. Table 1 provides the results of this Arteriviridae family comparison.

-13-

Table 1

Percent Amino Acid Identity
of VR-2332 with LV, LDV and EAV*

ORF	LV	LDV	EAV
2	63	43	23
3	60	41(31)	39(25)
4	70	39	22
5	-55	52	28
6	79	52	27
7	64	56	26

10

*Homologies were determined using the Needleman-Wunsch algorithm to align sequences and dividing the number of identical amino acids by the total number of amino acids in the smaller ORF. Since ORF 3 of LDV and EAV is significantly smaller than VR-2332 ORF 3, the homology based on division by VR-2332 is also shown in parentheses.

20

25

While the VR-2332 ORFs were most like those of LV virus, the comparison of VR-2332 to LDV indicated that VR-2332 has shared an evolutionary history with LDV. VR-2332 shared 55% identity with ORF 5 of LV virus, but had the lowest overall degree of homology with LV. The VR-2332 ORF 5 had the greatest degree of overall homology with respect to its LDV counterpart. VR-2332 ORF 5, which had about 52% identity with LDV ORF 5, was only slightly more similar to LV than it was to LDV. When VR-2332 was compared to LDV, the homologies were higher in ORFs 5, 6, and 7 than in ORFs 2, 3, and 4. Other than providing a basis for explaining the observed antigenic variance between these related viruses, the further significance of these divergences is unclear, in part because the functions of proteins derived from ORFs 2, 3, and 4 are unknown.

30

35

These amino acid sequence analyses also demonstrated that, with few exceptions, the sequence differences were widely distributed. The principal differences were located in the signal-sequence coding 5' ends of the ORFs, and ORF 4 in the region of amino acid residues 50-70.

Both VR-2332 and the LV virus have been identified as different infectious agents that cause the PRRS clinical signs, but have demonstrated very little, if any, immunological cross-reactivity, as reported by Wensvoort et al. (see above). Nevertheless, the deduced amino acid sequence from the 3' end of VR-2332 (Sequence ID Nos. 3, 5, 7, 9, 11, and 13) revealed a genomic organization that is characteristic of the Arteriviridae, i.e., overlapping coding regions in different reading frames of Sequence ID No. 1.

A dot-matrix analysis was performed by utilizing the GCG software to compare the predicted protein structures for ORFs 2-7 of VR-2332 and the LV virus. As will be understood by those skilled in the art, the dot matrix analysis was performed according to a conventional technique by utilizing a sliding window of 21 amino acids with a requirement of 13 identical residues at each location. This analysis demonstrated that all of the ORFs were substantially collinear between VR-2332 and LV, i.e., the respective viral structures were very similar despite extensive amino acid diversity. The nearly collinear nature of the VR-2332 and LV ORFs also indicated that the amino acid residue differences did not arise from genomic rearrangements. Table 2 provides a detailed comparison of the various deduced amino acid residues that correspond to the respective ORFs in VR-2332 and LV virus.

20

25

30

5

10

15

Table 2
Comparison of VR-2332 and LV Virus ORFs 2-7

ORF	Amino Acids		Predicted KD		pl		Glycosylation Sites	
	2332	LV	2332	LV	2332	LV	2332	LV
2	256	249	29.4	28.4	11.0	10.2	2	2
3	254	265	29.0	30.6	8.1	9.4	7*	7
4	178	183	19.5	20.0	7.9	6.1	4	4
5	200	201	22.4	22.4	8.3	8.2	3	2
6	174	173	19.0	18.9	11.3	11.9	1 .	2
7	123	128	13.5	13.8	10.4	11.2	1*	1

*Not all predicted sites are identical.

10

15

20

25

30

35

While these studies demonstrated that VR-2332 was more closely related to the LV virus than were other members of the Arteriviridae, the homologies were much lower than expected for two viruses that cause the same disease; i.e., substitutions, deletions and additions occurred throughout the comparative sequences. The predicted proteins had different molecular weights, different isoelectric points, and different predicted glycosylation sites (Table 2).

Although the amino acid homologies were substantially less than expected for viruses that appear to cause an identical disease, the findings were consistent with the striking antigenic diversity reported from serological studies by Wensvoort et al. These studies provided an explanation as to why there is observed little, if any, serological cross-reactivity between naturally occurring VR-2332 and LV antigens. Antigenic differences between VR-2332 and LV virus are due to immunological responses of swine to the dissimilar amino acid sequence regions of the viruses.

EXAMPLE 7 HYDROPATHY PROFILE STUDIES

Other characteristics of the predicted proteins including the hydropathy profiles and percent basic character were compared. The results confirmed that the two viruses (LV and VR-2332) had functions and structures that were significantly more similar than was indicated by the amino acid comparison of Example 6 and immunological cross-reactivity reports.

Comparative hydropathy profiles were created utilizing the EUGENE software package from Daniben Systems Inc. of Cincinnati, Ohio, based upon the deduced amino acid residue sequences for VR-2332 (Sequence ID Nos. 2-13) and LV virus (Sequence ID Nos. 14-26). These profiles indicated that the ORFs of VR-2332 and LV virus correspond structurally despite significant amino acid residue sequence differences. These results are consistent with the observed biological similarities, which contrast with the distinct serological properties between the VR-2332 and LV virus isolates.

The hydropathy profiles compared each corresponding ORF in VR-2332 and the LV virus to indicate that protein structures and protein functions were conserved despite the extensive sequence differences. These

profiles demonstrated highly similar regions of uncharged and charged amino acids, and are accurate predictors of similar functionality in membrane associated proteins of regions that either span or do not span the membrane. Thus, the VR-2332 proteins are similar in structure and function to those of LV virus, but extensive amino acid differences in the viral proteins account for the extensive differences in serological cross-reactivity.

Figs. 3, 3A, 3B, and 3C depict the amino acid sequence alignment and hydropathy profiles for ORF 7 of VR-2332 (Sequence ID No. 13) and LV (Sequence ID No. 26). This ORF is located at the 3' end of the LV genome where the nucleocapsid protein has also been mapped in LDV and EAV, as reported by Godeny et al., *Map location of lactate dehydrogenase-elevating virus (LDV) capsid protein (Vp1) gene*, 177 Virol. 768-771 (1990), and de Vries et al., *Structural proteins of equine arteritis virus*, 66 J. Virol. 6294-6303 (1992). ORF 7 most likely forms the nucleocapsid protein in the PRRS virus. The protein was 64% similar between VR-2332 and LV virus, and VR-2332 ORF 7 was smaller by five amino acids. Nevertheless, the N-terminal half of both proteins encoded by ORF 7 was 26-28% basic and the hydrophobicity profiles were nearly identical. The basic residues presumably facilitate interactions with the RNA genome.

20

15

5

10

Figs. 4, 4A, 4B, and 4C depict the amino acid sequence alignment and hydropathy profiles for ORF 6 of VR-2332 (Sequence ID No. 11) and LV (Sequence ID No. 24). ORF 6 was the VR-2332 protein that was most similar to its LV virus counterpart, and was the only ORF that coded for an apparent amino terminal signal sequence. The LV and VR-2332 proteins shared 79% identity and one predicted glycosylation site (the LV virus had an additional site not found in VR-2332). Hydropathy profiles of ORF 6 of VR-2332, LV and EAV all showed three highly hydrophobic regions in the N-terminal half of the protein that indicate membrane spanning domains. These regions appear to be a conserved characteristic of all members of the Arteriviridae.

30

35

25

Figs. 5, 5A, 5B, and 5C depict the amino acid sequence alignment and hydropathy profiles for ORF 5 of VR-2332 (Sequence ID No. 9) and LV (Sequence ID No. 22). ORF 5 appears to encode an envelope protein in the Arteriviridae because of its hydropathy profile and putative glycosylation sites. Similarly, according to de Vries et al. (see above) the G_L or ORF 5

protein for EAV is glycosylated, VR-2332 ORF 5 contains three potential glycosylation sites, two of which are shared with LV. The LV and VR-2332 hydropathy profiles are highly similar although their percent identity (55%) was the lowest of all ORFs. In particular, only seven residues in the amino terminal 40 amino acids are the same, yet the hydropathy profiles are virtually identical. Potential membrane spanning domains between residues 65 and 130 are more pronounced in VR-2332.

Figs. 6, 6A, 6B, and 6C depict the amino acid sequence alignment and hydropathy profiles for ORF 4 of VR-2332 (Sequence ID No. 7) and LV (Sequence ID No. 20). After ORF 6, ORF 4 is the most highly conserved ORF. The carboxyl terminus also is exceptionally hydrophobic in both viruses. Five putative membrane spanning domains are much more distinct in VR-2332 than in LV virus.

Figs. 7, 7A, 7B, and 7C depict the amino acid sequence alignment and hydropathy profiles for ORF 3 of VR-2332 (Sequence ID No. 7) and LV (Sequence ID No. 18). ORF 3 is 60% similar between VR-2332 and LV virus. Nevertheless, ORF 3 is the least similar protein between the two viruses based on hydropathy profiles and by carboxyl terminal deletions of 12 amino acids in VR-2332. As a result of these differences, the corresponding LV protein has a strongly hydrophilic region centered on residue 240, whereas the VR-2332 protein appears amphipathic in this region. The nominal molecular mass of ORF 3 is approximately 30 kD, but it contains seven potential glycosylation sites in each virus, so that its apparent size can be significantly greater.

Figs. 8, 8A, 8B, and 8C depict the amino acid sequence alignment and hydropathy profiles for ORF 2 of VR-2332 (Sequence ID No. 5) and LV (Sequence ID No. 16). ORF 2 was determined to be the largest of the 3' ORFs in VR-2332, and coded for the expression of 256 amino acids. It had a highly basic isoelectric point of 11.0, which was exceeded only by ORF 6, which had a pl of 11.3. The differences in amino acid sequence between VR-2332 and LV virus were distributed throughout the ORF, but the principal

Fig. 9 VR-2332 depicts an alignment of the 3' untranslated sequence following ORF 7 in VR-2332 and LV virus. This region consisted of 151 nucleotides and a poly A tail of 19 to 20 bases in VR-2332. Similarly, the

effect on the hydropathy profile appeared in the amino terminus.

25

20

5

10

15

30

LV virus had a noncoding region of 115 bases. Bases 50-171 of the VR-2332 non-coding region of shared a strong homology to bases 13-135 of the LV non-coding region.

5

10

EXAMPLE 8 ISOLATION OF VR-2332 RNA

Viral RNA from infected cell supernatants is isolated for use in reverse transcription and PCR amplification reactions that selectively amplify either the VR-2332 or the LV viral nucleotides as a diagnostic tool for LV or PRRS. Additionally, PCR amplification is used to produce quantities of nucleotides for use in vaccines.

As a diagnostic measure, swine lung tissue homogenates are preferably obtained by selecting tissue samples from alveolar abnormalities that are typical of PRRS; homogenizing these samples; mixing the homogenate with an appropriate physiological saline, e.g., Minimum Essential Medium, to a 10% (w/v) tissue concentration; and filtering the homogenate mixture through a series of filters having 0.45, 0.2 and 0.1 micron openings.

The filtered homogenate is used as inoculum to infect cells of an appropriate cell line, e.g., monkey kidney cells or MA-104. The inoculated culture is incubated until a culture stock is obtained having a high virus titer from about log 5 to log 7.

A first solution is prepared to include 5 M guanidinium isothiocyanate, 50 mM Tris HCl pH 7.5, 25 mM EDTA, 0.5 w/v Sarcosyl, and 1% (v/v)2-mercaptoethanol. A 10 ml aliquot of this solution is mixed with 100 microliters of 2-mercaptoethanol. A 2 ml portion of the virus stock culture is mixed in a tube with 2 ml of the first solution aliquot, as is 0.4 ml of 2 M sodium acetate, 4 ml phenol, and 1 ml of a chloroform-isoamyl alcohol solution mixed at a ratio of 24 parts of chloroform to 1 part of isoamyl alcohol. The virus-containing mixture is vortexed briefly after the addition of each reagent. The final mixture is vortexed for thirty seconds, chilled on ice for 15 seconds, then centrifuged at 8000 rpm for 20 minutes at 4°C in a JA-20 rotor. The aqueous phase will separate to the top upon centrifugation, and contains the RNA of interest.

The aqueous phase is decanted and transferred to a new tube. About 4 ml of sterile water containing 2% by volume of diethylpyrocarbonate

20

15

25

30

15

20

25

30

35

before autoclaving, is added to this second tube, as is 4 ml phenol, and 1.6 ml of the 24:1 chloroform-isoamyl alcohol mixture. These ingredients are vortexed, chilled on ice for 15 minutes, centrifuged at 8000 rpm for 20 minutes at 4°C in a JA-20 rotor, and the aqueous phase is again extracted. The resultant aqueous extract is mixed with an equal volume of isopropanol, and chilled on ice for 1 hour to precipitate the RNA.

The precipitated RNA is sedimented by centrifugation at 8000 rpm for 20 minutes at 4°C in a JA-20 rotor. The isopropanol is decanted, and the invisible RNA pellet is dissolved in 0.3 ml of a solution containing 5 M guanidinium isothiocyanate, 50 mM Tris HCl pH 7.5, 25 mM EDTA, 0.5% Sarcosyl, and 1% 2-mercaptanol, and 0.1% 2-mercaptoethanol. The solution containing the dissolved pellet is transferred to a 1.5 ml microfuge tube, and the RNA is again precipitated with 0.3 ml of isopropanol for 1 hour on ice. The chilled solution is centrifuged at 15,000 rpm in a microfuge for 10 minutes, after which the isopropanol is decanted. The resultant pellet is washed with about 0.5 ml of a solution containing 75% ethanol mixed with 25% water containing 0.2% diethyl pyrocarbonate by volume. After washing, the mixture is vortexed, and centrifuged for 5-10 minutes. The alcohol is decanted, and the RNA pellet is vacuum-dried for about 3 minutes. The pellet is dissolved in 50 ml of water containing 0.2% diethylpyrocarbonate by volume.

EXAMPLE 9

REVERSE TRANSCRIPTION OF RNA TO FORM cDNA

The solution from Example 8 containing RNA and the 0.2% diethylpyrocarbonate water is next subjected to reverse transcription of the RNA to produce complimentary fragments of cDNA. This procedure is preferably conducted by using commercially available kits, such as the RT-PCR kit from Perkin-Elmer. The kits are used according to the manufacturers instructions, which describe the proper use of kit reagents.

By way of example, a master mixture is prepared from named reagents of the RT-PCR kit by mixing 4 ul MgCl₂, 2 ul of 10X buffer, 2 ul dGTP, 2 ul dCTP, 2 ul TTP, 1 ul RNase inhibitor, and 1 ul of reverse transcriptase. A 3 ul aliquot of the RNA and 0.2% diethylpyrocarbonate water mixture is placed into a microfuge tube taking care, if necessary, to dilute the aliquot with 0.2% diethylpyrocarbonate water so as to include no more than 1

10

15

20

25

30

35

μg of total RNA in the tube. The kit contains a mixture of random hexamers, and 1 ul of this mixture is added to the RNA and diethylpyrocarbonate water. The solution then is optionally heated to a temperature from about 65-70°C for 5 to 10 minutes, and placed on ice. The 16 ul of master mix is added to the sample, and incubated at room temperature for about 10 minutes. Thereafter, the tube is incubated in a thermal cycler under the following conditions: 42°C for 15 minutes, 99°C for 5 minutes, and 5°C for 5 minutes. The tube is removed from the thermal cycler and stored at 4°C. The result of this reverse transcriptase reaction contains cDNA, which is subsequently subjected to PCR amplification.

EXAMPLE 10 SELECTIVE PCR AMPLIFICATION OF cDNA

In preparation for PCR amplification, a master mixture of the following reagents is prepared. 1 ul of MgCl₂, 2 ul of 10X buffer, 0.5 ul of 5' primer, 0.5 ul of 3' primer, 15.875 ul of sterile water, and 0.125 ul of Taq polymerase. The 5' and 3' primers should have a concentration of approximately 10 uM, and are preferably comprised of synthetic nucleotides based upon the sequences listed below in Table 3. A 5 ul aliquot of the reverse transcriptase reaction solution from Example 9 is added to 20 ul of master mixture. The resultant 25 ul combination of master mixture and reverse transcriptase cDNA aliquot is overlain in a tube with 100 ul of mineral oil. The tube is incubated in a thermal cycler under the following conditions: 93°C for 4 minutes for one cycle; 55°C for 30 seconds, 72°C for 45 seconds, and 93°C for 45 seconds, for 30 cycles; and 55°C for 30 seconds, followed by 72°C for 10 minutes for one cycle. After these 32 cycles, the solution is then maintained at 4°C until it is removed from the thermal cycler. The resultant solution, which contains PCR-amplified cDNA, is analyzed on an agarose gel.

The preferred agarose gel includes 1.5% agarose mixed with TAE buffer, i.e., 1.5 grams of agarose per 100 ml of buffer. The mixture is melted in a microwave, and 1 ul of 10 mg/ml ethidium bromide solution is added per 100 ml of the gel. The mixture is poured into a casting stand, and allowed to harden for 30-45 minutes. A 5 ul aliquot of the PCR reaction solution is added into a tube, and 2 ul of a UV-sensitive running dye is added to the aliquot. An additional aliquot of 1-2 ul of an appropriate molecular weight marker is also

added, such as a 100 base ladder from Gibco-BRL. The gel is placed in an electrophoresis chamber and the chamber is filled with a conventional TAE running buffer. Samples are loaded, and run at 80 volts for 1 hour. The electrophoresed PCR products are visualized under UV light. The PCR generated fragments that are visualized under UV light after the agarose gel electrophoresis are subjected to DNA sequencing for unambiguous confirmation of the identity of the viral nucleotide product.

EXAMPLE 11

10

15

20

25

30

35

5

OLIGONUCLEOTIDE DESIGN FOR SELECTIVE PCR AMPLIFICATION OR HYBRIDIZATION

The 5' and 3' primers that are used in the PCR amplification of Example 10 are preferably constructed, according to conventional protocols or on commercial order, as synthetic nucleotide sequences that replicate regions of interest in the VR-2332 genome. The primer design preferably includes selecting appropriate primers as the entire amino acid-coding sequences of the viral protein, selected ORFs, or, most preferably, coding regions for amino acid sequences representing protein fragments.

The preferred oligonucleotides are selected to include those which specifically target small portions of the VR-2332 coding region, but are incapable of annealing with LV-derived nucleotides. These preferred oligonucleotides are used as primers for PCR amplification techniques to replicate long sequences of cDNA that are selected by the primers for use in vaccines and methods of vaccination. Similarly, the oligonucleotides are also used as probes for subsequent hybridization, cloning, and host expression of protein fragments and nucleotide products for subsequent use in vaccines.

Preferred examples of the cDNA coding regions for expressed protein fragments that are selected for use in producing vaccines include those in which the translated amino acid terminal hydrophobic sequences are removed, as these terminal sequences are usually not present on mature forms of the viral protein. Selected cDNA coding regions can also code for protein fragments in which putative membrane-spanning sequences are removed, as the membrane-spanning sequences likely will not induce immune responses, and this removal generally simplifies the production of immunologically-sensitive proteins by recombinant DNA techniques.

The sequences listed in Table 3 below represent exemplary primers with positional reference to the accompanying Sequence Listing. All sequences are provided in a 5' to 3' orientation. By way of example, Primer A represents the sequence 5'-GCTGTTAAACAGGGAGTGG-3'. Primer A' is the inverse compliment of the sequence 5'-GTCACCTATTCAATTAGGG-3' (Sequence ID No. 1 positions 3271-3289), i.e., the sequence 5'-CCCTAATTGAATAGGTGAC-3'in which reverse-ordered complimentary nucleotides have been substituted for the sequence at positions 3271-3289.

10

Table 3

Primer	Description	Positional Reference			
		Seq. ID	From	То	
A	VR-2332 ORF 7 based primer	1	2783	2801	
A'	VR-2332 ORF 7 based inverse compliment of the VR-2332 sequence	1	3271	3289	
В	VR-2332 ORF 6 based primer	1	2289	2307	
В'	VR-2332 ORF 6 based inverse compliment of the VR-2332 sequence	1	2862	2880	
С	LV ORF 6 based primer	14	14112	14131	
C'	LV ORF 6 based inverse compliment of the LV sequence	14	14551	14570	
D	LV ORF 7 based primer	14	14575	14594	
D,	LV ORF 7 based inverse compliment of the LV sequence	14	14955	14974	
E	VR-2332 ORF 7 based primer *	1	2814	2832	
E'	VR-2332 ORF 7 based inverse compliment of the VR-2332 sequence **	1	3273	3291	
F	VR-2332 ORF 7 based primer ***	1	2816	2834	
F'	VR-2332 ORF 7 based inverse compliment of the VR-2332 sequence	1	3181	3198	

10

5

*A synthetic oligonucleotide may be constructed to include a BarnHI restriction site with this sequence, i.e., the additional 5'-GCGGATCC nucleotides, for insertion into Pharmingen's pAcGP67B plasmid vector.

20

**A synthetic oligonucleotide may be constructed to include an inverse complimentary EcoRI restriction site with this sequence, i.e., the additional 5'-CCGAATTC nucleotides, for insertion into Pharmingen's pAcGP67B plasmid vector.

25

***A synthetic oligonucleotide may be constructed to include a Ndel restriction site with this sequence, i.e., the additional 5'-GCGCA nucleotides, for insertion into Novagen's pET25b plasmid vector.

30

****A synthetic oligonucleotide may be constructed to include an inverse complimentary HindIII restriction site with this sequence, i.e., the additional 5'-GCGAAGCT nucleotides, for insertion into Novagen's pET25b plasmid vector.

Primers A and A' of Table 3 will selectively amplify the VR-2332 ORF 7 protein-coding nucleotides in a manner that distinguishes the VR-2332 nucleotides from other viral nucleotide isolates, including LV isolates. Similarly, Primers B and B' will selectively amplify the VR-2332 ORF 6 protein-coding nucleotides in a manner that distinguishes the VR-2332 nucleotides from other viral nucleotide isolates. On the other hand, Primers C and C', will selectively amplify the ORF 6 coding region of LV virus without amplifying VR-2332 ORF 6. Primers D and D' will selectively amplify LV ORF 7 without amplification of VR-2332 ORF 7.

10

5

The preferred oligonucleotides of Table 3 are used for diagnosis of the specific PRRS-causative strain or virus through attempted PCR amplification of cDNA or conventional hybridization reactions. By way of example, if the PRRS signs are confirmed clinically in a diseased animal and if the primers that are specific for amplification of the Lelystad virus (e.g., Primers C, C' and D, D') fail to produce cDNA amplification in the PCR reaction, then the absence of LV cDNA would be consistent with a diagnosis of VR-2332 infection. On the other hand, the failure of VR-2332 primers A, A' or B, B' in PCR amplification would be consistent with a diagnosis of LV infection.

20

15

In cases where the presence of viral cDNA is confirmed by hybridization to these primer or probe sequences of Table 3, the hybridization occurs in solution with either cDNA or RNA affixed to a solid support such as nitrocellulose or nylon membranes. The recovered hybridized product is detected by conventional radioactive or non-radioactive techniques, which indicate the presence of viral nucleic acid sequence. Those skilled in the art will understand that an elementary list of diagnostic techniques includes dot-blot hybridization, slot-blot hybridization, solution hybridization, southern blot, northern blot, and RNase protection assays.

25

EXAMPLE 12

30

35

CLONING OF VR-2332 PROTEIN CODING SEQUENCES IN HOST EXPRESSION SYSTEMS FOR THE PRODUCTION OF RECOMBINANTLY DERIVED VIRAL PROTEINS

Selected portions of the VR-2332 nucleotide sequence (Sequence ID Nos. 1, 2, 4, 6, 8, 10, and 12) are used to clone an open reading frame, or a plurality of open reading frames, into a commercially available

10

15

20

25

30

35

plasmid, that is designed for protein expression in a host organism. Examples of commercially available or self-designated systems that are used for the expression of viral proteins in eukaryotic or prokaryotic cells follow.

The commercially available eukaryotic baculovirus system from Pharmingen of San Diego, California, which includes the vector pAcGP67B is preferred for use with Primers C and C'. As indicated in Table 3, Primers C and C' may be provided with respective BamHI and EcoRI restriction sites formed of synthetically joined nucleotides for use in linking these primers with the pAcGP67B vector. By this method, the resultant amplified cDNA would incorporate substantially the entire coding region of VR-2332 ORF 7, and would also have a 5'-most BamHI site as well as a 3'-most EcoRI site. These restriction sites are used to place the VR-2332 coding region under the control of the appropriate pAcGP67B promoter and termination sequences for eukaryotic host expression of VR-2332 ORF 7 proteins.

Prokaryotic host expression of viral proteins is accomplished in a variety of commercially available host expression systems. The PET system from NovaGen of Madison, Wisconsin is preferred for prokaryotic expression, and includes the vector pET25b. The PET system is preferred for use with Primers D and D', which may be provided with respective Ndel and HindIII restriction sites for use in placing the VR-2332 ORF 7 coding region under the control of appropriate promoter and termination sequences.

The protein corresponding to VR-2332 ORF 7 of Sequence ID Nos. 12 and 13 is expressed by amplifying selected protein coding sequences corresponding to the putative mature protein of ORF 7. This amplification procedure will follow the RT-PCR amplification procedure that is outlined in Examples 8, 9, and 10. The PCR primers are preferably designed to include Ndel and HindIII restriction sites for cloning into the pET25b vector. These sites will result in a protein without a pelB leader or HisTag sequence, which provide alternative options for other expression systems. The mature protein is expressed without a signal peptide sequence by beginning the nucleotide sequence to code for either amino acid number 20 or number 30. The PCR fragments are cloned into the pET25b vector-amplified sequence and used in a host expression system.

In selecting protein coding regions other than ORF 7, it is advantageous to delete or truncate certain protein coding regions, e.g., deletion

of the membrane-spanning C-terminal 17 amino acids from ORF 4 will likely direct antibody responses to biologically relevant portions of the protein.

The recombinant clones are transformed into BL21 cells for induction by isopropyl-ß-D-thiogalactopyranoside ("IPTG"). After induction and an appropriate incubation, the expressed recombinant bioprotein is detected on a gel by comparing lysates from induced and uninduced cells. Inclusion body preps are washed with urea or guanidine at a concentration that removes contaminating proteins without solubilizing the ORF 4 protein. Aggregates are resolublized in urea and refolded in oxidized and reduced glutathione. The resultant soluble, dialyzed protein is further purified by ion-exchange and size exclusion chromatography.

EXAMPLE 13 INDUCTION OF AN IMMUNE RESPONSE IN AN ANIMAL BY INJECTION OF RECOMBINANT VIRAL PROTEINS

The purified proteins from bacterial or eukaryotic expression systems, as produced in Example 12, are injected into animals by conventional immunization routes to elicit immune responses sufficient to immunize the animal against the VR-2332 strains of PRRS virus. The proteins alone, or in combination with a conventional adjuvant, are administered by intramuscular injection, intradermal injection, subcutaneous injection, or otherwise.

As an alternative, live molecularly engineered bacteria or virus that express proteins corresponding to VR-2332 sequences are administered to animals by injection of the expression of VR-2332 proteins <u>in vivo</u>. This <u>in vivo</u> expression of recombinant proteins will also elicit an immune response to the VR-2332 virus.

EXAMPLE 14 THE USE OF VR-2332 DNA TO INDUCE A DIRECT IMMUNE RESPONSE IN AN ANIMAL

VR-2332 based oligonucleotide fragments, which code for ORFs or fragmentary portions of ORFs, are used to generate a direct immune response in an animal. This method generally follows the procedure described in Omer et al., 259 Science 1745-1749 (1993). The DNA is preferably included in plasmid constructs that are grown in bacteria, purified, and injected into

10

5

15

20

25

35

animals by intramuscular injection, intradermal injection, or by other routes. The injected animal will typically express the cloned protein, and produce a corresponding immune response to the protein that is expressed.

15

20

25

REFERENCES

The following references pertain to PRRS viruses, and are hereby incorporated by reference herein.

- Benfield, D. A., Nelson, E., Collins, J. E., Harris, L., Goyal, S. M., Robison, D., Christianson, W. T., Morrison, R. B., Gorcyca, D. E., and Chladek, D. W. (1992). Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J. Vet. Diagn. Invest. 4, 127-133.
 - Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
 - Collins, J. E., Benfield, D. A., Christianson, W. T., Harris, L., Hennings, J. C., Shaw, D. P., Goyal, S. M., McCullough, S., Morrison, R. B., Joo, H. S., Gorcyca, D. E., and Chladek, D. W. (1992). Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J. Vet. Diagn. Invest. 4, 117-126.
 - Conzelmann, K., Visser, N., Van Woensel, P. and Thiel, H. (1993). Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 193, 329-339.
 - den Boon, J. A., Snijder, E. J., Chirnside, E. D., de Vries, A. A. F., Horzinek, M. C., and Spann, W. J. M. (1991). Equine arteritis virus is not a togavirus but belongs to the coronavirus superfamily. J. Virol. 65, 2910-2920.
 - de Vries, A. A. F., Chirnside, E. D., Horzinek, M. C., and Rottier, P. J. M. (1992). Structural proteins of equine arteritis virus. J. Virol. 66, 6294-6303.
 - Godeny, E. K., Speicher, D. W., and Brinton, M. A. (1990). Map location of lactate dehydrogenase-elevating virus (LDV) capsid protein (Vp1) gene. Virol. 177, 768-771.
- 30 Godeny, E. K., Zeng, L., Smith, S. L., and Brinton, M. A. (1993). In Proceedings of the 9th International Congress of Virology, p 22, August 8-13, Glasgow, Scotland.
 - Gravell, M., W.T. London, M.E. Leon, A.E. Palmer and R.S. Hamilton. Proc. Soc. Exp. Biol. Med. 181, 112-119.

15

30

- Hill, H. (1990). Overview and History of Mystery Swine Disease (Swine Infertility and Respiratory syndrome). In: Proceedings of the Mystery Swine Disease Committee Meeting, October 6, Denver CO, pp. 29-30. Livestock Conservation Institute, Madison, WI.
- Kuo, L., Harty, J. T., Erickson, L., Palmer, G. A., and Plagemann, P. G. W. (1991). A nested set of eight mRNAs is formed in macrophages infected with lactate dehydrogenase-elevating virus. J. Virol. 65, 5118-5123.
 - Meulenberg, J. J. M., Hulst, M. M., de Veijer, E. J., Moonen, P. L. J. M., den Besten, A., de Kluyver, E. P., Wensvoort, G., and Moormann, R. J. M. (1993). Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192, 62-72.
 - Paton, D. J., Brown, I. H., Edwards., S. and Wensvoort, G. (1991). Blue ear disease of pigs. Vet Rec. 128, 617.
 - Plagemann, P. G. W. and Moennig, V. (1992). Lactate dehydrogenase-elevating virus, equine arteritis virus and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv. Vir. Res. 41, 99-192.
- Pol, J. M. A., Van Dijk, J. E., Wensvoort, G., and Terpstra, C. (1991). Pathological, ultrastructural, and immunohistochemical changes caused by Lelystad virus in experimentally induced infections of mystery swine disease (synonym: porcine epidemic abortion and respiratory syndrome (PEARS)). Vet. Q. 13, 137-143.
- Spaan, W. J. M., Cavanagh, D. and Horzinek, M. C. (1988). Coronaviruses: structure and genome erxpression. J. Gen. Virol. 69, 2939-2952.
 - Wensvoort, G., Terpstra, C., Pol, J. M. A., Ter Laak, E. A., Bloemraad, M., De Kluyver, E. P., Kragten, C., Van Buiten, L., Den Besten, A., Wagenaar, F., Broekhuijsen, J. M., Moonen, P. L. J. M., Zetstra, T., De Boer, E. A., Tibben, H. J., De Jong, M. F., Van't Veld, P., Groenland, G. J. R., Van Gennep, J. A., Voets, M. T., Verheijeden, J. H. M., and Braamskamp, J. (1991). Mystery swine disease in the Netherlands: the isolation of Lelystad virus. Vet. Q. 13, 121-130.
 - Wensvoort, G., de Kluyver, E. P., Pol, J. M. A., Wagenaar, F., Moormann, R. J. M., Hulst, M. M. Bloemraad, R., den Besten, A., Zetstra, T. and

Terpstra, C. (1992a). Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome: a review of mystery swine disease research at Lelystad. Vet. Micro. 33, 185-193.

Wensvoort, G., de Kluyver, E. P., Lujtze, E. A., den Besten, A., Harris, L., Collins, J. E., Christianson, W. T. and Chladek, D. (1992b). Antigenic comparison of Lelystad virus and swine infertility and respiratory syndrome (SIRS) virus. J. Vet. Diagn. Invest. 4, 134-138.

-31-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Murtaugh, Michael P.
 - (ii) TITLE OF INVENTION: VR-2332 VIRAL NUCLEOTIDE SEQUENCE AND METHODS OF USE
 - (iii) NUMBER OF SEQUENCES: 26
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: John M. Collins
 - (B) STREET: 1101 Walnut, Suite 1400
 - (C) CITY: Kansas City
 - (D) STATE: Missouri
 - (E) COUNTRY: USA
 - (F) ZIP: 64106
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Collins, John M.
 - (B) REGISTRATION NUMBER: 26122
 - (C) REFERENCE/DOCKET NUMBER: 22907
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (816) 474-9050
 - (B) TELEFAX: (816) 474-9057
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3358 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

	(20)	RIGINAL SOURCE:	
	(41)	(A) ORGANISM: Arteriviridae (Unclassified)	
		(B) STRAIN: VR-2332	
		(b) SIRAIN. VX-2332	
	(ix)	EATURE:	
	,,	(A) NAME/KEY: misc feature	
		(B) LOCATION: 1768	
		(C) IDENTIFICATION METHOD: experimental	
		(D) OTHER INFORMATION: /evidence= EXPERIMENTAL	
		/standard_name= "VR-2332 ORF2"	
	(ix)	EATURE:	
		(A) NAME/KEY: misc_feature	
		(B) LOCATION: 6241385	
		(D) OTHER INFORMATION: /standard_name= "VR-2332 ORF 3"	
	(ix)	EATURE:	
		(A) NAME/KEY: misc_feature	
		(B) LOCATION: 11691701 (D) OTHER INFORMATION: /standard_name= "VR-2332 ORF 4"	
		(D) OTHER INFORMATION: /SCANDARD_NAME= "VK-2332 ORF 4"	
	(iv)	EATURE:	
	(12,7)	(A) NAME/KEY: misc feature	
		(B) LOCATION: 17162315	
		(D) OTHER INFORMATION: /standard_name= "VR-2332 ORF 5"	
	(ix)	EATURE:	
		(A) NAME/KEY: misc_feature	
		(B) LOCATION: 23032824	
-		(D) OTHER INFORMATION: /standard_name= "VR-2332 ORF 6"	
	(ix)	EATURE:	
		(A) NAME/KEY: misc_feature	
		(B) LOCATION: 28173185	
		(D) OTHER INFORMATION: /standard_name= "VR-2332 ORF 7"	
	(aad 1	EQUENCE DESCRIPTION: SEO ID NO:1:	
	(XI)	EGORNCE DESCRIPTION: SEG ID NO:1:	
ATCI	ል ል ው ጥር /	GTCCATGCAA AGCCTTTTTG ACAAAATTGG CCAACTTTTT GTGGATGCTT	60
	MM10	GICCAIGCAA AGCCIIIIIG ACAAAAIIGG CCAACIIIII GIGGAIGCII	00
TCAC	CGGAG	CTTGGTGTCC ATTGTTGATA TCATTATATT TTTGGCCATT TTGTTTGGCT	120
		CITOURIUS ANTONIOS A	
TCA	CATC	CGGTTGGCTG GTGGTCTTTT GCATCAGATT GGTTTGCTCC GCGATACTCC	180
GTA	CGCGC	TGCCATTCAC TCTGAGCAAT TACAGAAGAT CTTATGAGGC CTTTCTTTCC	240
CAG"	rgcca.	TGGACATTCC CACCTGGGGA ACTAAACATC CTTTGGGGAT GCTTTGGCAC	300
CAT	AAGGT	CAACCCTGAT TGATGAAATG GTGTCGCGTC GAATGTACCG CATCATGGAA	360
AAA	GCAGG	AGGCTGCCTG GAAACAGGTG GTGAGCGAGG CTACGCTGTC TCGCATTAGT	420

AGTTTGGATG TGGTGGCTCA TTTTCAGCAT CTAGCCGCCA TTGAAGCCGA GACCTGTAAA

TATTTGGCCT	CCCGGCTGCC	CATGCTACAC	AACCTGCGCA	TGACAGGGTC	AAATGTAACC	540
ATAGTGTATA	ATAGCACTTT	GAATCAGGTG	TTTGCTATTT	TTCCAACCCC	TGGTTCCCGG	600
CCAAAGCTTC	ATGATTTTCA	GCAATGGTTA	ATAGCTGTAC	ATTCCTCCAT	ATTTTCCTCT	660
GTTGCAGCTT	CTTGTACTCT	TTTTGTTGTG	CTGTGGTTGC	GGGTTCCAAT	ACTACGTACT	720
GTTTTTGGTT	TCCGCTGGTT	AGGGGCAATT	TTTCTTTCGA	ACTCACAGTG	AATTACACGG	780
TGTGTCCACC	TTGCCTCACC	CGGCAAGCAG	CCACAGAGAT	CTACGAACCC	GGTAGGTCTC	840
TTTGGTGCAG	GATAGGGTAT	GACCGATGTG	GGGAGGACGA	TCATGACGAG	CTAGGGTTTA	900
TGATACCGCC	TGGCCTCTCC	AGCGAAGGCC	ACTTGACTGG	TGTTTACGCC	TGGTTGGCGT	960
TCTTGTCCTT	CAGCTACACG	GCCCAGTTCC	ATCCCGAGAT	ATTCGGGATA	GGGAATGTGA	1020
GTCGAGTTTA	TGTTGACATC	AAACATCAAC	TCATCTGCGC	CGAACATGAC	GGGCAGAACA	1080
CCACCTTGCC	TCGTCATGAC	AACATTTCAG	CCGTGTTTCA	GACCTATTAC	CAACATCAAG	1140
TCGACGGCGG	CAATTGGTTT	CACCTAGAAT	GGCTTCGTCC	CTTCTTTTCC	TCGTGGTTGG	1200
TTTTAAATGT	CTCTTGGTTT	CTCAGGCGTT	CGCCTGCAAA	CCATGTTTCA	GTTCGAGTCT	1260
TGCAGATATT	AAGACCAACA	CCACCGCAGC	GGCAAGCTTT	GCTGTCCTCC	AAGACATCAG	1320
TTGCCTTAGG	CATCGCGACT	CGGCCTCTGA	GGCGATTCGC	AAAATCCCTC	AGTGCCGTAC	1380
GGCGATAGGG	ACACCCGTGT	ATGTTACCAT	CACAGCCAAT	GTGACAGATG	AGAATTATTT	1440
ACATTCTTCT	GATCTCCTCA	TGCTTTCTTC	TTGCCTTTTC	TATGCTTCTG	AGATGAGTGA	1500
AAAGGGATTT	AAGGTGGTAT	TTGGCAATGT	GTCAGGCATC	GTGGCTGTGT	GTGTCAATTT	1560
TACCAGCTAC	GTCCAACATG	TCAAGGAGTT	TACCCAACGC	TCCCTGGTGG	TCGACCATGT	1620
GCGGTTGCTC	CATTTCATGA	CACCTGAGAC	CATGAGGTGG	GCAACTGTTT	TAGCCTGTCT	1680
TTTTGCCATT	CTGTTGGCAA	TTTGAATGTT	TAAGTATGTT	GGAGAAATGC	TTGACCGCGG	1740
GCTGTTGCTC	GCGATTGCTT	TCTTTGTGGT	GTATCGTGCC	GTTCTGTTTT	GCTGTGCTCG	1800
CCAACGCCAG	CAACGACAGC	AGCTCCCATC	TACAGCTGAT	TTACAACTTG	ACGCTATGTG	1860
AGCTGAATGG	CACAGATTGG	CTAGCTAACA	AATTTGATTG	GGCAGTGGAG	AGTTTTGTCA	1920
TCTTTCCCGT	TTTGACTCAC	ATTGTCTCCT	ATGGTGCCCT	CACTACCAGC	CATTTCCTTG	1980
ACACAGTCGC	TTTAGTCACT	GTGTCTACCG	CCGGGTTTGT	TCACGGGCGG	TATGTCCTAA	2040
GTAGCATCTA	CGCGGTCTGT	GCCCTGGCTG	CGTTGACTTG	CTTCGTCATT	AGGTTTGCAA	2100
AGAATTGCAT	GTCCTGGCGC	TACGCGTGTA	CCAGATATAC	CAACTTTCTT	CTGGACACTA	2160

AGGGCAGACT	CTATCGTTGG	CGGTCGCCTG	TCATCATAGA	GAAAAGGGGC	AAAGTTGAGG	2220
ICGAAGGTCA	TCTGATCGAC	CTCAAAAGAG	TTGTGCTTGA	TGGTTCCGTG	GCAACCCCTA	2280
TAACCAGAGT	TTCAGCGGAA	CAATGGGGTC	GTCCTTAGAT	GACTTCTGTC	ATGATAGCAC	2340
GCTCCACAA	AAGGTGCTTT	TGGCGTTTTC	TATTACCTAC	ACGCCAGTGA	TGATATATGC	2400
CCTAAAGGTG	AGTCGCGGCC	GACTGCTAGG	GCTTCTGCAC	CTTTTGATCT	TCCTGAATTG	2460
IGCTT TCA CC	TTCGGGTACA	TGACTTTCGC	GCACTTTCAG	AGTACAAATA	AGGTCGCGCT	2520
CACTATGGGA	GCAGTAGTTG	CACTCCTTTG	GGGGGTGTAC	TCAGCCATAG	AAACCTGGAA	2580
ATTCATCACC	TCCAGATGCC	GTTTGTGCTT	GCTAGGCCGC	AAGTACATTC	TGGCCCCTGC	2640
CCACCACGTT	GAAAGTGCCG	CACGGTTTCA	TCCGATTGCG	GCAAATGATA	ACCACGCATT	2700
rgtcgtccgg	CGTCCCGGCT	CCACTACGGT	CAACGGCACA	TTGGTGCCCG	GGTTAAAAAG	2760
CCTCGTGTTG	GGTGGCAGAA	AAGCTGTTAA	ACAGGGAGTG	GTAAACCTTG	TCAAATATGC	2820
CAAATAACAA	CGGCAAGCAG	ACAGAAGAGA	AGAAGGGGGA	TGGCCAGCCA	GTCAATCAGC	2880
TGTGCCAGAT	GCTGGGTAAG	ATCATCGCTC	AGCAAAACCA	GTCCAGAGGC	AAGGGACCGG	2940
AAAABAAAE	TAAGAAGAAA	AACCCGGAGA	AGCCCCATTT	TCCTCTAGCG	ACTGAAGATG	3000
ATGTCAGACA	TCACTTTACC	CCTAGTGAGC	GGCAATTGTG	TCTGTCGTCA	ATCCAGACCG	3060
CCTTTAATCA	AGGCGCTGGG	ACTTGCACCC	TGTCAGATTC	AGGGAGGATA	AGTTACACTG	3120
DATTTDADDT	TTTGCCTACG	CATCATACTG	TGCGCCTGAT	CCGCGTCACA	GCATCACCCT	3180
CAGCATGATG	GGCTGGCATT	CTTGAGGCAT	CTCAGTGTTT	GAATTGGAAG	AATGTGTGGT	3240
GAATGGCACT	GATTGACATT	GTGCCTCTAA	GTCACCTATT	CAATTAGGGC	GACCGTGTGG	3300
GGGTGAGATT	TAATTGGCGA	GAACCATGCG	GCCGAAATTA	AAAAAAAAA	ААААААА	3358

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 768 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..768
 - (C) IDENTIFICATION METHOD: experimental

(D) OTHER INFORMATION: /evidence= EXPERIMENTAL /standard_name= "VR-2332 ORF 2"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

			-					ĸ					-				
ATG	AAA	TGG	GGT	CCA	TGC	AAA	GCC	لململة	TTG	ACA	מממ	בותיים	GCC	22.0	والخلصات		40
Met	Lys	Trp	Gly	Pro	Cys	Lys	Ala	Phe	Leu	Thr	Lvs	Leu	Ala	Asn	Phe		48
1				5	•	•			10		-,-			15		*	
			<u>.</u>														
TTG	TGG	ATG	CTT	TCA	CGG	AGT	TCT	TGG	TGT	CCA	TTG	TTG	ATA	TCA	TTA		. 96
Leu	lib	Met	Leu	Ser	Arg	Ser	Ser		Cys	Pro	Leu	Leu		Ser	Leu		
			20					25					30				
TAT	TTT	TGG	CCA	TTT	TGT	TTG	GCT	TCA	CCA	TCG	CCG	C.L.L.	GGC	TGG	TGG		144
Tyr	Phe	Trp	Pro	Phe	Сув	Leu	Ala	Ser	Pro	Ser	Pro	Val	Glv	Trn	Trn		144
		35			-		40					45	1				
TCT	TTT	GCA	TCA	GAT	TGG	TTT	GCT	CCG	CGA	TAC	TCC	GTA	CGC	GCC	CTG		192
ser		Ala	Ser	Asp	Trp		Ala	Pro	Arg	Tyr		Val	Arg	Ala	Leu		
	50					55					60					•	
CCA	TTC	ACT	CTG	AGC	AAT	TAC	AGA	DGD.	ተርሳጥ	ייביי		GCC	doctruct	بلساني	TOO		240
Pro	Phe	Thr	Leu	Ser	Asn	Tyr	Arg	Arg	Ser	Tvr	Glu	Ala	Phe	Leu	Ser		240
65					70	,	5	5		75					80		
						``											
CAG	TGC	CAA	GTG	GAC	ATT	CCC	ACC	TGG	GGA	ACT	AAA	CAT	CCT	TTG	GGG		288
Gln	Cys	Gln	Val		Ile	Pro	Thr	Trp	Gly	Thr	Lys	His	Pro	Leu	Gly		
				85					90					95			
ATG	СТТ	TGG	CAC	СУТ	y y C	GTG	ጥርአ	NCC.	CTC	ידיידי מ	CAT	CNA	3 T/C	ama	maa		
Met	Leu	Trp	His	His	Lvs	Val	Ser	Thr	Leu	TIP	Aen	GAA	Met	Ual	Ser		336
			100		-,-			105	-	110	rop	GIU	110	Val	361		
CGT	CGA	ATG	TAC	CGC	ATC	ATG	GAA	AAA	GCA	GGG	CAG	GCT	GCC	TGG	AAA		384
Arg	Arg	Met	Tyr	Arg	Ile	Met	Glu	Lys	Ala	Gly	Gln	Ala	Ala	${\tt Trp}$	Lys		
		115					120					125					
CAG	GTG	GTG	AGC	CAG	CCT	y.cc.	CTC	Поте	ccc	א ייייי	N CT	200	THE C	CAM		,	
Gln	Val	Val	Ser	Glu	Ala	Thr	Leu	Ser	Ara	Tle	Ser	Ser	Len	Dan	Ual		432
	130					135			5		140			-mp	Vu.	•	
GTG	GCT	CAT	TTT	CAG	CAT	CTA	GCC	GCC	ATT	GAA	GCC	GAĠ	ACC	TGT	AAA		480
	Ala	His	Phe	Gln		Leu	Ala	Ala	Ile	Glu	Ala	Glu	Thr	Суз	Lys		
145					150					155					160		
TAT	TTG	GCC	TCC	ርርር	CTC	ccc	NTC	CTR	C	7 7 C	CITIC	CCC	N CCC	202	000		
		Ala															528
- 4 -				165				J-44	170	MOIL	weu	~ry	MEL	175	GIA	j.	
		GTA															576
Ser	Asn	Val		Ile	Val	Tyr	Asn	Ser	Thr	Leu	naA	Gln	Val	Phe	Ala		
			180					185					190				

								* *.	-36-							
		CCA														624
Ile	Phe	Pro 195	Thr	Pro	Gly	Ser	Arg 200	Pro	Lys	Leu	His	Asp 205	Phe	Gln	Gln	
TGG	TTA	ATA	GCT	GTA	CAT	TCC	TCC	ATA	TTT	TCC	TCT	GTT	GCA	GCT	TCT	672
Trp	Leu 210	Ile	Ala	Val	His	Ser 215	Ser	Ile	Phe	Ser	Ser 220	Val	Ala	Ala	Ser	
TGT	ACT	CTT	TTT	GTT	GTG	CTG	TGG	TTG	CGG	GTT	CCA	ATA	CTA	CGT	ACT	720
-	Thr	Leu	Phe	Val		Leu	Trp	Leu	Arg		Pro	Ile	Leu	Arg		
225					230					235					240	
		GGT														768
Val	Phe	Gly	Phe		Trp	Leu	Gly	Ala		Phe	Leu	Ser	Asn		Gln .	
				245					250					255		
(2)	INF	ORMA:	CION	FOR	SEQ	ID 1	10:3	:								
		(i) 5	SEOU	ENCE	СНАІ	RACTI	ERIS'	rics						-		
		, , ,						ino a		3						
							ac:	_								
			(D)	TO	POLO	3Y: .	line	ar								
	(:	Li) 1	OLE	CULE	TYPI	E: p	rote	in								
	. (:	ki) S	EQUI	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	3 :					
Met 1	Lys	Trp	Gly	Pro 5	Сув	Lys	Ala	Phe	Leu 10	Thr	Lys	Leu	Ala	Asn 15	Phe	
Leu	Trp	Met	Leu 20	Ser	Arg	Ser	Ser	Trp 25	Сув	Pro	Leu	Leu	Ile 30	Ser	Leu	
Tyr	Phe	Trp 35		Phe	Сув	Leu	Ala 40	Ser	Pro	Ser	Pro	Val -45	Gly	Trp	Trp	

Ser Phe Ala Ser Asp Trp Phe Ala Pro Arg Tyr Ser Val Arg Ala Leu

Pro Phe Thr Leu Ser Asn Tyr Arg Arg Ser Tyr Glu Ala Phe Leu Ser 65

75

Gln Cys Gln Val Asp Ile Pro Thr Trp Gly Thr Lys His Pro Leu Gly

Met Leu Trp His His Lys Val Ser Thr Leu Ile Asp Glu Met Val Ser 100 105

Arg Arg Met Tyr Arg Ile Met Glu Lys Ala Gly Gln Ala Ala Trp Lys 120

Gln Val Val Ser Glu Ala Thr Leu Ser Arg Ile Ser Ser Leu Asp Val 140 130 135

Val	Ala	His	Phe	Gln	His	Leu	Ala	Ala	Ile	Glu	Ala	Glu	Thr	Cys	Lys
145					150					155				-	160

Tyr Leu Ala Ser Arg Leu Pro Met Leu His Asn Leu Arg Met Thr Gly
165 170 175

Ser Asn Val Thr Ile Val Tyr Asn Ser Thr Leu Asn Gln Val Phe Ala 180 185 190

Ile Phe Pro Thr Pro Gly Ser Arg Pro Lys Leu His Asp Phe Gln Gln
195 200 205

Trp Leu Ile Ala Val His Ser Ser Ile Phe Ser Ser Val Ala Ala Ser 210 215 220

Cys Thr Leu Phe Val Val Leu Trp Leu Arg Val Pro Ile Leu Arg Thr 225 230 235 240

Val Phe Gly Phe Arg Trp Leu Gly Ala Ile Phe Leu Ser Asn Ser Gln 245 250 255

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 762 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..762
 - (C) IDENTIFICATION METHOD: experimental
 - (D) OTHER INFORMATION: /evidence= EXPERIMENTAL /standard name= "VR-2332 ORF 3"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATG GTT AAT AGC TGT ACA TTC CTC CAT ATT TTC CTC TGT TGC AGC TTC

Met Val Asn Ser Cys Thr Phe Leu His Ile Phe Leu Cys Cys Ser Phe

1 5 10 15

TTG TAC TCT TTT TGT TGT GCT GTG GTT GCG GGT TCC AAT ACT ACG TAC
Leu Tyr Ser Phe Cys Cys Ala Val Val Ala Gly Ser Asn Thr Thr Tyr
20 25 30

TGT TTT TGG TTT CCG CTG GTT AGG GGC AAT TTT TCT TTC GAA CTC ACA

144

Cys Phe Trp Phe Pro Leu Val Arg Gly Asn Phe Ser Phe Glu Leu Thr

35

40

45

GTG	AAT	TAC	ACG	GTG	TGT	CCA	CCT	TGC	CTC	ACC	CGG	CAA	GCA	GCC	ACA	192	
Val	Asn	Tyr	Thr	Val	Сув	Pro	Pro	Cys	Leu	Thr	Arg	Gln	Ala	Ala	Thr		
	50	-				55		-			60						
GAG	ATC	TAC	GAA	CCC	GGT	AGG	TCT	CTT	TGG	TGC	AGG	ATA	GGG	TAT	GAC	240	
	Ile																
65		- 2 -			70	5	•			75			-	•	80		
															77.		
CGA	TGT	GGG	GAG	GAC	GAT	САТ	GAC	GAG	CTA	GGG	TTT	ATG	ATA	CCG	ĊСТ	288	
	Cys																
	-7-	,		85					90	4- 3				95			
				-				•									
ccc	CTC	TCC	AGC	GD D	GGC	ראכ	TTG	ъст	GGT	CTT	ጥልሮ	GCC	TGG	TTG	GCG	336	
	Leu									_		_		_	_		
GL y	Deu	Set	100	GIU	GIY	1110	nea.	105	GIY	VAL	- 7 -	via	110	2Cu	AIU		
			100					103					110				
THE C	TTG	TOO	רותיים	NCC.	ሞአር	N.CG	ccć	CNG	THIC	ChT	ccc	GNG	מידת	THE	ggg	384	
																304	
Pile	Leu		PHE	ser	TYL	IIII		GIII	PILE	nis	410		116	FIIE	GIY		
		115					120					125					
					003					3.000			G3.3°	Omo	N	430	
	GGG															432	
ITE	Gly		Val	Ser	Arg		Tyr	Val	Asp	11e	· . •	HIS	Gin	Leu	TTE		
	130					135					140						
												·					
	GCC															480	
CAs	Ala	Glu	His	Asp	Gly	Gln	Asn	Thr	Thr		Pro	Arg	His	qaA			
145					150					155					160		
												-					
	TCA															528	
Ile	Ser	Ala	Val	Phe	Gln	Thr	Tyr	Tyr		His	Gln	Val	Asp		Gly		
				165					170					175			
	TGG															576	
Asn	Trp	Phe	His	Leu	Glu	Trp	Leu	Arg	Pro	Phe	Phe	Ser	Ser	Trp	Leu		
			180					185					190				
	TTA															624	
Val	Leu	Asn	Val	Ser	Trp	Phe	Leu	Arg	Arg	Ser	Pro	Ala	Asn	His	Val		
		195					200					205					
											-						
TCA	GTT	CGA	GTC	TTG	CAG	ATA	TTA	AGA	CCA	ACA	CCA	CCG	CAG	CGG	CAA	672	
Ser	Val	Arg	Val	Leu	Gln	Ile	Leu	Arg	Pro	Thr	Pro	Pro	Gln	Arg	Gln		
14.5	210					215					220		•				
										٠.							
GCT	TTG	CTG	TCC	TCC	AAG	ACA	TCA	GTT	GCC	TTA	GGC	ATC	GÇG	ACT	CGG	720	
	Leu																
225					230					235	•				240		
CCT	CTG	AGG	CGA	TTC	GCA	AAA	TCC	CTC	AGT	GCC	GTA	CGG	CGA			762	
	Leu																
		3	3	245		4 -			250			- 3					
								٠.									

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- Met Val Asn Ser Cys Thr Phe Leu His Ile Phe Leu Cys Cys Ser Phe
 1 5 10 15
- Leu Tyr Ser Phe Cys Cys Ala Val Val Ala Gly Ser Asn Thr Thr Tyr
 20 25 30
- Cys Phe Trp Phe Pro Leu Val Arg Gly Asn Phe Ser Phe Glu Leu Thr 35 40 45
- Val Asn Tyr Thr Val Cys Pro Pro Cys Leu Thr Arg Gln Ala Ala Thr
 50 55 60
- Glu Ile Tyr Glu Pro Gly Arg Ser Leu Trp Cys Arg Ile Gly Tyr Asp
 65 70 75 80
- Arg Cys Gly Glu Asp Asp His Asp Glu Leu Gly Phe Met Ile Pro Pro 85 90 95
- Gly Leu Ser Ser Glu Gly His Leu Thr Gly Val Tyr Ala Trp Leu Ala 100 105 110
- Phe Leu Ser Phe Ser Tyr Thr Ala Gln Phe His Pro Glu Ile Phe Gly 115 120 125
- Ile Gly Asn Val Ser Arg Val Tyr Val Asp Ile Lys His Gln Leu Ile 130 135 140
- Cys Ala Glu His Asp Gly Gln Asn Thr Thr Leu Pro Arg His Asp Asn 145 150 155 160
- Ile Ser Ala Val Phe Gln Thr Tyr Tyr Gln His Gln Val Asp Gly Gly
 165 170 175
- Asn Trp Phe His Leu Glu Trp Leu Arg Pro Phe Phe Ser Ser Trp Leu 180 185 190
- Val Leu Asn Val Ser Trp Phe Leu Arg Arg Ser Pro Ala Asn His Val 195 200 205
- Ser Val Arg Val Leu Gln Ile Leu Arg Pro Thr Pro Pro Gln Arg Gln 210 215 220
- Ala Leu Leu Ser Ser Lys Thr Ser Val Ala Leu Gly Ile Ala Thr Arg 225 230 235 240

Pro Leu Arg Arg Phe Ala Lys Ser Leu Ser Ala Val Arg Arg 245 250

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 534 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..534
- (C) IDENTIFICATION METHOD: experimental
- (D) OTHER INFORMATION: /evidence= EXPERIMENTAL /standard_name= "VR-2332 ORF 4"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATG	GCT	TCG	TCC	CTT	CTT	TTC	CTC	GTG	GTT	GGT	TTT	AAA	TGT	CTC	TTG	41	3
Met	Ala	Ser	Ser	Leu	Leu	Phe	Leu	Val	Val	Gly	Phe	Lys	Сув	Leu	Leu		
1				5					10					15			
GTT	TCT	CAG	GCG	TTC	GCC	TGC	AAA	CCA	TGT	TTC	AGT	TCG	AGT	CTT	GCA	96	5
Val	Ser	Gln	Ala	Phe	Ala	Cys	Lys	Pro	Cys	Phe	ser	Ser	Ser	Leu	Ala		
			20					25					30				
GAT	ATT	AAG	ACC	AAC	ACC	ACC	GCA	GCG	GCA	AGC	TTT	GCT	GTC	CTC	CAA	14	4
Asp	Ile	Lys	Thr	Asn	Thr	Thr	Ala	Ala	Ala	Ser	Phe	Ala	Val	Leu	Gln		
		35					40					45					
		1.															
GAC	ATC	AGT	TGC	CTT	AGG	CAT	CGC	GAC	TCG	GCC	TCT	GAG	GCG	ATT	CGC	19:	2
Asp	Ile	Ser	Суя	Leu	Arq	His	Arq	Asp	Ser	Ala	Ser	Glu	Ala	Ile	Arq		
	50		•			55		•			60						
AAA	ATC	CCT	CAG	TGC	CGT	ACG	GCG	ATA	GGG	ACA	CCC	GTG	TAT	GTT	ACC	24	٥
Lvs	Ile	Pro	Gln	Cvs	Arσ	Thr	Ala	Ile	Glv	Thr	Pro	Val	Tyr	Val	Thr		
65					70	-		-		75					80		
															_		
ATC	ACA	GCC	AAT	GTG	ACA	GAT	GAG	AAT	TAT	TTA	CAT	TCT	TCT	GAT	CTC	28	8
		Ala															
				85				•	.90		•			95		*	
CTC	ATG	CTT	TCT	TCT	TGC	CTT	TTC	TAT	GCT	TCT	GAG	ATG	AGT	GAA	AAG	33	6
		Leu															-
			100		0,0			105					110		-,-	• •	
			100				•	-05								•	
4DD	ململمك	AAG	стс	ATD.	ململسات	ccc	таа	GTG	TCA	GGC	ATC	GTG	CCT	GTG	тст	38	4
		Lys													_	30	•
J.Y	2 110	115	101	*41	2116	GLY	120	. v ea 1	Jer	GLY	116	125	AT a	AGI	Cys		
							.120					143					

WO 96/04010 PCT/US95/09927

-41-	-	4	1	-
------	---	---	---	---

GTC	TAA	TTT	ACC	AGC	TAC	GTC	CAA	CAT	GTC	AAG	GAG	TTT	ACC	CAA	CGC	432
Val	Asn	Phe	Thr	Ser	Tyr	Val	Gln	His	Val	Lys	Glu	Phe	Thr	Gln	Arg	
	130					135					140				-	
TCC	CTG	GTG	GTC	GAC	CAT	GTG	CGG	TTG	CTC	CAT	TTC	ATG	ACA	CCT	GAG	480
Ser	Leu	Val	Val	Asp	His	Val	Arg	Leu	Leu	His	Phe	Met	Thr	Pro	Glu	
145	7			_	150					155					160	
ACC	ATG	AGG	TGG	GCA	ACT	GTT	TTA	GCC	TGT	CTT	TTT	GCC	ATT	CTG	TTG	528
Thr	Met	Arg	Trp	Ala	Thr	Val	Leu	Ala	Cys	Leu	Phe	Ala	Ile	Leu	Leu	
				165					170					175		
GCA	ATT															534
Ala	Ile				•											

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 178 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Ala Ser Ser Leu Leu Phe Leu Val Val Gly Phe Lys Cys Leu Leu 1 5 10 15

Val Ser Gln Ala Phe Ala Cys Lys Pro Cys Phe Ser Ser Ser Leu Ala 20 25 30

Asp Ile Lys Thr Asn Thr Thr Ala Ala Ala Ser Phe Ala Val Leu Gln 35 40 45

Asp Ile Ser Cys Leu Arg His Arg Asp Ser Ala Ser Glu Ala Ile Arg 50 55 60

Lys Ile Pro Gln Cys Arg Thr Ala Ile Gly Thr Pro Val Tyr Val Thr 65 70 75 80

Ile Thr Ala Asn Val Thr Asp Glu Asn Tyr Leu His Ser Ser Asp Leu 85 90 95

Leu Met Leu Ser Ser Cys Leu Phe Tyr Ala Ser Glu Met Ser Glu Lys
100 105 110

Gly Phe Lys Val Val Phe Gly Asn Val Ser Gly Ile Val Ala Val Cys 115 120 125

Val Asn Phe Thr Ser Tyr Val Gln His Val Lys Glu Phe Thr Gln Arg 130 135 140

-42-

Ser	Leu	Val	Val	Asp	His	Val	Arg	Leu	Leu	His	Phe	Met	Thr	Pro	Glu
145					150					155					160

Thr Met Arg Trp Ala Thr Val Leu Ala Cys Leu Phe Ala Ile Leu Leu 165 170 175

Ala Ile

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 600 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..600
- (C) IDENTIFICATION METHOD: experimental
- (D) OTHER INFORMATION: /evidence= EXPERIMENTAL /standard_name= "VR-2332 ORF5"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ΙA	G :	TTG	GAG	AAA	TGC	TTG	ACC	GCG	GGC	TGT	TGC	TCG	CGA	TTG	CTT	TCT	48
Me	t 1	Leu	Glu	Lys	Cys	Leu	Thr	Ala	Gly	Сув	Сув	Ser	Arg	Leu	Leu	Ser	
	1				5					10		*			15		
TI	'G :	TGG	TGT	ATC	GTG	CCG	TTC	TGT	TTT	GCT	GTG	CTC	GCC	AAC	GCC	AGC	96
Le	u '	Trp	Cvs	Ile	Val	Pro	Phe	Cvs	Phe	Ala	Val	Leu	Ala	Asn	Ala	Ser	
		•	•	20				-4-	25					30			
AZ	C (GAC	AGC	AGC	TCC	СУТ	СТЪ	CAG	CTG	ידידמ	TAC	אאכ	TTC	ACG	מידים	TCT	144
																	+
A)11 /	vaħ		Set	Ser	urs	ren		Leu	TTE	Tyr	ASII	_	Inr	Leu	Cys	
			35					40			1		45				
	_									*. *							
G.F	IG (CTG	TAA	GGC	ACA	GAT	TGG	CTA	GCT	AAC	AAA	TTT	GAT	TGG	GCA	GTG	192
G]	u l	Leu	Asn	Gly	Thr	Asp	Trp	Leu	Ala	Asn	Lys	Phe	Asp	Trp	Ala	Val	
		50					55					60	,				
G.	G i	AGT	TTT	GTC	ATC	TTT	CCC	GTT	TTG	ACT	CAC	ATT	GTC	TCC	TAT	GGT	240
G]	u i	Ser	Phe	Val	Ile	Phe	Pro	Val	Leu	Thr	His	Ile	Val	Ser	Tyr	Gly	
	55					70					75				-	80	
GC	c (CTC	ACT	ACC	AGC	CAT	TTC	CTT	GAC	ACA	GTC	GCT	TTA	GTC	ACT	GTG	288
					Ser												
-					85					90					95		

TCT	ACC	GCC	GGG	TTT	GTT	CAC	GGG	CGG	TAT	GTC	CTA	AGT	AGC	ATC	TAC	336
Ser	Thr	Ala	Gly	Phe	Val	His	Gly	Arg	Tyr	Val	Leu	Ser	Ser	Ile	Tyr	
			100					105					110			
GCG	GTC	TGT	GCC	CTG	GCT	GCG	TTG	ACT	TGC	TTC	GTC	ATT	AGG	TTT	GCA	384
Ala	Val	Cys	Ala	Leu	Ala	Ala	Leu	Thr	Cys	Phe	Val	Ile	Arg	Phe	Ala	
		115					120		-			125				
AAG	AAT	TGC	ATG	TCC	TGG	CGC	TAC	GCG	TGT	ACC	AGA	TAT	ACC	AAC	TTT	432
Lys	Asn	Cys	Met	Ser	Trp	Arg	Tyr	Ala	Cys	Thr	Arg	Tyr	Thr	Asn	Phe	
	130					135					140	_				
												٠.				
CTT	CTG	GAC	ACT	AAG	GGC	AGA	CTC	TAT	CGT	TGG	CGG	TCG	CCT	GTC	ATC	480
Leu	Leu	Asp	Thr	Lys	Gly	Arg	Leu	Tyr	Arq	Trp	Arq	Ser	Pro	Val	Ile	
145					150	_				155					160	
						•	•									
ATA	GAG	AAA	AGG	GGC	AAA	GTT	GAG	GTC	GAA	GGT	CAT	CTG	ATC	GAC	CTC	528
Ile	Glu	Lys	Arg	Gly	Lys	Val	Glu	Val	Glu	Gly	His	Leu	Ile	Asp	Leu	
				165					170	•				175		
AAA	AGA	GTT	GTG	CTT	GAT	GGT	TCC	GTG	GCA	ACC	CCT	ATA	ACC	AGA	GTT	576
Lys	Arg	Val	Val	Leu	Asp	Gly	Ser	Val	Ala	Thr	Pro	Ile	Thr	Arq	Val	
			180					185					190	,		
			٠													
	GCG									. '						600
Ser	Ala	Glu	Gln	Trp	Gly	Arg	Pro									
		195					200									

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 200 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Leu Glu Lys Cys Leu Thr Ala Gly Cys Cys Ser Arg Leu Leu Ser 1 5 10 15

Leu Trp Cys Ile Val Pro Phe Cys Phe Ala Val Leu Ala Asn Ala Ser

Asn Asp Ser Ser Ser His Leu Gln Leu Ile Tyr Asn Leu Thr Leu Cys
35 40 45

Glu Leu Asn Gly Thr Asp Trp Leu Ala Asn Lys Phe Asp Trp Ala Val
50 55 60

Glu Ser Phe Val Ile Phe Pro Val Leu Thr His Ile Val Ser Tyr Gly
65 70 75 80

-44	-
-----	---

Ala	Leu	Thr	Thr	Ser	His	Phe	Leu	Asp	Thr	Val	Ala	Leu Val	Thr	Val
				85					90				95	

Ser Thr Ala Gly Phe Val His Gly Arg Tyr Val Leu Ser Ser Ile Tyr 100 105 110

Ala Val Cys Ala Leu Ala Ala Leu Thr Cys Phe Val Ile Arg Phe Ala 115 120 125

Lys Asn Cys Met Ser Trp Arg Tyr Ala Cys Thr Arg Tyr Thr Asn Phe 130 140

Leu Leu Asp Thr Lys Gly Arg Leu Tyr Arg Trp Arg Ser Pro Val Ile 145 150 155 160

Ile Glu Lys Arg Gly Lys Val Glu Val Glu Gly His Leu Ile Asp Leu 165 170 175

Lys Arg Val Val Leu Asp Gly Ser Val Ala Thr Pro Ile Thr Arg Val 180 185 190

Ser Ala Glu Gln Trp Gly Arg Pro 195 200

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 522 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

20

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..522
 - (C) IDENTIFICATION METHOD: experimental
 - (D) OTHER INFORMATION: /evidence= EXPERIMENTAL /standard_name= "VR-2332 ORF 6"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATG GGG TCG TCC TTA GAT GAC TTC TGT CAT GAT AGC ACG GCT CCA CAA

Met Gly Ser Ser Leu Asp Asp Phe Cys His Asp Ser Thr Ala Pro Gln

1 10 15

AAG GTG CTT TTG GCG TTT TCT ATT ACC TAC ACG CCA GTG ATG ATA TAT Lys Val Leu Leu Ala Phe Ser Ile Thr Tyr Thr Pro Val Met Ile Tyr

GCC	CTA	AAG	GTG	AGT	CGC	GGC	CGA	CTG	CTA	GGG	CTT	CTG	CAC	CTT	TTG	144
Ala	Leu	Lys	Val	Ser	Arg	Gly	Arg	Leu	Leu	Gly	Leu	Leu	His	Leu	Leu	
		35					40					45				
ATC	שיייכי	CTG	ידממ	тст	CCT	TOTAL CO	200	TWT-C	000	ms o	3.000			GCG		
Ile	Phe	Len	Ven	Cve	Δ1 =	Dhe	The	Dho	GGG	TAC	ATG	ACT	TTC	GCG	CAC His	192
	50	200	7.511	Cys	νīα	- 55	1111	FIIE	GIY	Tyt	60	Inr	Pne	ATA	HIS	
TTT	CAG	AGT	ACA	AAT	AAG	GTC	GCG	CTC	ACT	ATG	GGA	GCA	GTA	GTT	GCA	240
	Gln	Ser	Thr	Asn	Lys	Val	Ala	Leu	Thr	Met	Gly	Ala	Val	Val	Ala	
65					70					75					80	
CTC	CTT	TGG	GGG	GTG	TAC	тса	GĆC	מדמ	CAN	ACC	таа	222	יושיירי	ATC	200	200
Leu	Leu	Trp	Glv	Val	Tvr	Ser	Ala	Tle	Glu	Thr	Tra	Tare	Dhe	Ile	The	288
		-	•	85	-4-				90			2,5		95	1111	
							•		•					• •		
TCC	AGA	TGC	CGT	TTG	TGC	TTG	CTA	GGC	CGC	AAG	TAC	ATT	CTG	GCC	CCT	336
Ser	Arg	Cys		Leu	Cys	Leu	Leu	Gly	Arg	Lys	Tyr	Ile	Leu	Ala	Pro	
			100					105					110			
GCC	CAC	CAC	GTT	GAA	AGT	GCC	GCA	CGG	ттт	CAT	CCG	АТТ	GCG	GCA	እልጥ	384
Ala	His	His	Val	Glu	Ser	Ala	Ala	Ara	Phe	His	Pro	Ile	Ala	Ala	Asn	30%
		115					120					125				
		+ 1,								,						
GAT	AAC	CAC	GCA	TTT	GTC	GTC	CGG	CGT	CCC	GGC	TCC	ACT	ACG	GTC	AAC	432
Asp	Asn	His	Ala	Phe			Arg	Arg	Pro	Gly	Ser	Thr	Thr	Val	Asn	
	130			•		135					140					
GC	ACA	TTG	GTG	ררר	GGG	מיזייני	מממ	AGC	حسات	CTC	Janes.	CCT	CCC	AGA		400
Gly	Thr	Leu	Val	Pro	Glv	Leu	Lvs	Ser	Len	Val	Len	GIV	GIV	Arg	LVO	480
145			_		150		-,,	-	LCu	155	u	G ₂	Gry	 9	160	
	GTT													50 L		522
Ala	Val	Lys	Gln		Val	Val	Asn	Leu	Val	Lys	Tyr	Ala	Lys			
				165					170							
												*				

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 174 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Gly Ser Ser Leu Asp Asp Phe Cys His Asp Ser Thr Ala Pro Gln

1 5 10 15

Lys Val Leu Leu Ala Phe Ser Ile Thr Tyr Thr Pro Val Met Ile Tyr 20 25 30

Ala	Leu	Lys 35	Val	Ser	Arg	Gly	Arg 40	Leu	Leu	Gly	Leu	Leu 45	His	Leu	Lev
Ile	Phe 50	Leu	Asn	Cys	Ala	Phe 55	Thr	Phe	Gly	Tyr	Met 60	Thr	Phe	Ala	His
Phe 65	Gln	Ser	Thr	Asn	Lys 70	Val	Ala	Leu	Thr	Met 75	Gly	Ala	Val	Val	Ala 80
Leu	Leu	Trp	Gly	Val 85	Tyr	Ser	Ala	Ile	Glu 90	Thr	Trp	Lys	Phe	Ile 95	Thr
Ser	Arg	Суз	Arg 100	Leu	Cys	Leu	Leu	Gly 105	Arg	Lys	Tyr	Ile	Leu 110	Ala	Pro
Ala	His	His 115	Val	Glu	Ser	Ala	Ala 120	Arg	Phe	His		Ile 125	Ala	Ala	Asn
Asp	Asn 130	His	Ala	Phe	Val	Val 135	Arg	Arg	Pro	Gly	Ser 140	Thr	Thr	Val	Asn
Gly 145		Leu	Val	Pro	Gly 150	Leu	ГЛа	Ser	Leu	Val 155	Leu	Gly	Gly	Arg	Lys 160

(2) INFORMATION FOR SEQ ID NO:12:

165

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 369 base pairs

Ala Val Lys Gln Gly Val Val Asn Leu Val Lys Tyr Ala Lys

170

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..369
 - (C) IDENTIFICATION METHOD: experimental
 - (D) OTHER INFORMATION: /evidence= EXPERIMENTAL /standard_name= "VR-2332 ORF 7"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CAA	AAC	CAG	TCC	AGA	GGC	AAG	GGA	CCG	GGA	DAA	AAA	TAA	AAG	AAG	AAA		144
Gln	Asn	Gln	Ser	Arg	Gly	Lys	Gly	Pro	Gly	Lys	Lys	Asn	Lys	Lys	Lys		
		35					40					45					
						•											
AAC	CCG	GAG	AAG	CCC	CAT	TTT	CCT	CTA	GCG	ACT	GAA	GAT	GAT	GTC	AGA		192
Asn	Pro	Glu	Lys	Pro	His	Phe	Pro	Leu	Ala	Thr	Glu	Asp	Asp	Val	Arg		
	50					. 55					60						
~ · ·	CAC		a cc	CCT	N.C.T	C10	-		mmc	mcm.	OTC	moo.	TO N	a mc	CNC		
	CAC																240
	HIS	Pne	Int	PIO		GIU	Arg	GIN	Leu	_	Leu.	ser	ser	116	Gln		
65					70					75					80	٠	
ACC	GCC	TTT	AAT	CAA	GGC	GCT	GGG	ACT	TGC	ACC	CTG	TCA	GAT	TCA	GGG		288
	Ala																
				85	•		•		90				•	95	-		
AGG	ATA	AGT	TAC	ACT	GTG	GAG	TTT	AGT	TTG	CCT	ACG	CAT	CAT	ACT	GTG		336
Arg	Ile	Ser	Tyr	Thr	Val	Glu	Phe	Ser	Leu	Pro	Thr	His	His	Thr	Val		
			100					105					110				
									2.5								
CGC	CTG	ATC	CGC	GTC	ACA	GCA	TCA	CCC	TCA	GCA							369
Arg	Leu	Ile	Arg	Val	Thr	Ala	Ser	Pro	Ser	Ala							
		115					120										
															100		

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Pro Asn Asn Gly Lys Gln Thr Glu Glu Lys Lys Gly Asp Gly

1 10 15

Gln Pro Val Asn Gln Leu Cys Gln Met Leu Gly Lys Ile Ile Ala Gln

Gln Asn Gln Ser Arg Gly Lys Gly Pro Gly Lys Lys Asn Lys Lys Lys

Asn Pro Glu Lys Pro His Phe Pro Leu Ala Thr Glu Asp Asp Val Arg

His His Phe Thr Pro Ser Glu Arg Gln Leu Cys Leu Ser Ser Ile Gln 65 70 75 80

Thr Ala Phe Asn Gln Gly Ala Gly Thr Cys Thr Leu Ser Asp Ser Gly 85 90 95

```
Arg Ile Ser Tyr Thr Val Glu Phe Ser Leu Pro Thr His His Thr Val
```

Arg Leu Ile Arg Val Thr Ala Ser Pro Ser Ala 115 120

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15101 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Arteriviridae
 - (B) STRAIN: VR-2332
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 7384..11775
 - (C) IDENTIFICATION METHOD: experimental
 - (D) OTHER INFORMATION: /evidence= EXPERIMENTAL
 /label= ORF1b
 /citation= ([1])
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 11786..12535
 - (D) OTHER INFORMATION: /standard_name= "LV ORF 2" /citation= ([1])
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 212..7402
 - (D) OTHER INFORMATION: /standard_name= "LV ORF la"
 /citation= ([1])
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 12394..13191
 - (D) OTHER INFORMATION: /standard_name= "LV ORF 3"
 /citation= ([1])
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 12936..13487
 - (D) OTHER INFORMATION: /standard_name= "LV ORF 4"
 /citation= ([1])

480

					- 					
	(iv)	FEAT	TIDE.							
	(IX)			3V: 6.						
				EY: misc_fe DN: 13484						
		(0)			: /standard_	_name=	"LV OR	F 5"		
			/010	ation= ([1	1)					
	(iv)	FEAT	TIDE.							*
	111			Y: misc fe						
				N: 14077						
		(D)	OTHER 1	ation= ([1	: /standard_	_name=	"LV OR	F 6"		
			/010	acion= ([I	17					
	(ix)	EE'S T	TTO EO .							
	(11,			nr						
				Y: misc_fe						
				N: 14588						
		(D)			: /standard_	name=	"LV OR	7"		
			/cit	ation= ([1	1)					
	()	5755	~~~							
	(X)			INFORMATIO						
		(A)	AUTHORS		rg, J. J.M.					
				Hulst, M						
				de Veije	•					
				Moonen,						
				den Best						
				de Kluyv	er, E. P.					
				Wensvoor	t, G.					
				Moormann	, R. J.		2.7			
		(B)	TITLE:	Lelystad v	irus, the ca	usativ	e agent	of		•
			proc	ine epidem	ic abnortion	and r	espirat	ory		
					S) is relate	d to L	DV and	EAV.		
		(C)	JOURNAL	: Virology						
		(D)	VOLUME:	192						
		(F)	PAGES:	62-72						
		(G)	DATE: 1	993						
		(K)	RELEVAN	T RESIDUES	IN SEQ ID N	0:14:	FROM 1	TO 1510	L	
	(xi)	SEQUI	ENCE DES	CRIPTION: S	SEQ ID NO:14	:				
						-				
GGGT	ATTCC	c cc:	TACATACA	CGACACTTC'	AGTGTTTGTG	TACCT	TGGAG G	CGTGGGT	AC .	60
										•
AGCC	CCGCC	C CA	CCCTTGG	CCCCTGTTC	T AGCCCAACAG	GTATC	ביידיים ב	ידרידרככ <i>ב</i> ני	2C .	120
						011110		.1010000	3.0	120
GAGT	GCGCC	G CC	rccrccrc	CCTTGCAGC	GGAAGGACCT	CCCGA	יי ייייי מידים	CCGGAGAG	20	180
					o comedace:	CCCGA	JANII 1	CCGGAGA	3C	100
ACCT	GCTTT	A CGC	GATCTCC	ACCCTTTAN	CATGTCTGGG	ልርርም	בתרכר ה	יביים ביים איביים:	rc.	240
				·	- CALUICIGG	ACGII.		OTOCHIG:		240
CACC	CCGGC	ፐ ሮርሳ	ጉርርርርጥኔጥ	TTTGGAACC	CGGCCAAGTC	- كىلملململ	ርክሮክሮ ና	CTCTCTCCC.	٠.	300
		- 500	INI	LILGGMACG	- COUCCAMUIC	11110	CHCHC C	GIGICIC	10	300
TGCC	ርርርጥር	سساس س	- مشحشاشاشا	CACACCONTC	GGACACTGAC	COLO	TCC20 =	MAAAA	nen	
	-0316	:		CWGWGCTTC	A GUACACIGAC	C 1 C G G	racure 1	TRECTILE.	LT.	360

TTACAAGCCT AGGGACAAGC TTCACTGGAA AGTCCCTATC GGCATCCCTC AGGTGGAATG

TACTCCATCC GGGTGCTGTT GGCTCTCAGC TGTTTTCCCT TTGGCGCGTA TGACCTCCGG

CAATCACAAC	TTCCTCCAAC	GACTTGTGAA	GGTTGCTGAT	GTTTTGTACC	GTGACGGTTG	540
CTTGGCACCT	CGACACCTTC	GTGAACTCCA	AGTTTACGAG	CGCGGCTGCA	ACTGGTACCC	600
GATCACGGGG	CCCGTGCCCG	GGATGGGTTT	GTTTGCGAAC	TCCATGCACG	TATCCGACCA	660
GCCGTTCCCT	GGTGCCACCC	ATGTGTTGAC	TAACTCGCCT	TTGCCTCAAC	AGGCTTGTCG	720
GCAGCCGTTC	TGTCCATTTG	AGGAGGCTCA	TTCTAGCGTG	TACAGGTGGA	AGAAATTTGT	780
GGTTTTCACG	GACTCCTCCC	TCAACGGTCG	ATCTCGCATG	ATGTGGACGC	CGGAATCCGA	840
TGATTCAGCC	GCCCTGGAGG	TACTACCGCC	TGAGTTAGAA	CGTCAGGTCG	AAATCCTCAT	900
TCGGAGTTTT	CCTGCTCATC	ACCCTGTCGA	CCTGGCCGAC	TGGGAGCTCA	CTGAGTCCCC	960
TGAGAACGGT	TTTTCCTTCA	ACACGTCTCA	TTCTTGCGGT	CACCTTGTCC	AGAACCCCGA	1020
CGTGTTTGAT	GGCAAGTGCT	GGCTCTCCTG	CTTTTTGGGC	CAGTCGGTCG	AAGTGCGCTG	1080
CCATGAGGAA	CATCTAGCTG	ACGCCTTCGG	TTACCAAACC	AAGTGGGGCG	TGCATGGTAA	1140
GTACCTCCAG	CGCAGGCTTC	AAGTTCGCGG	CATTCGTGCT	STAGTCGATC	CTGATGGTCC	1200
CATTCACGTT	GAAGCGCTGT	CTTGCCCCCA	GTCTTGGATC	AGGCACCTGA	CTCTGGATGA	1260
TGATGTCACC	CCAGGATTCG	TTCGCCTGAC	ATCCCTTCGC	ATTGTGCCGA	ACACAGAGCC	1320
TACCACTTCC	CGGATCTTTC	GGTTTGGAGC	GCATAAGTGG	TATGGCGCTG	CCGGCAAACG	1380
GGCTCGTGCT	AAGCGTGCCG	CTAAAAGTGA	GAAGGATTCG	GCTCCCACCC	CCAAGGTTGC	1440
CCTGCCGGTC	CCCACCTGTG	GAATTACCAC	CTACTCTCCA	CCGACAGACG	GGTCTTGTGG	1500
TTGGCATGTC	CTTGCCGCCA	TAATGAACCG	GATGATAAAT	GGTGACTTCA	CGTCCCCTCT	1560
GACTCAGTAC	AACAGACCAG	AGGATGATTG	GGCTTCTGAT	TATGATCTTG	TTCAGGCGAT	1620
TCAATGTCTA	CGACTGCCTG	CTACCGTGGT	TCGGAATCGC	GCCTGTCCTA	ACGCCAAGTA	1680
CCTTATAAAA	CTTAACGGAG	TTCACTGGGA	GGTAGAGGTG	AGGTCTGGAA	TGGCTCCTCG	1740
стесетттет	CGTGAATGTG	TGGTTGGCGT	TTGCTCTGAA	GGCTGTGTCG	CACCGCCTTA	1800
TCCAGCAGAC	GGGCTACCTA	AACGTGCACT	CGAGGCCTTG	GCGTCTGCTT	ACAGACTACC	1860
CTCCGATTGT	GTTAGCTCTG	GTATTGCTGA	CTTTCTTGCT	AATCCACCTC	CTCAGGAATT	1920
CTGGACCCTC	GACAAAATGT	TGACCTCCCC	GTCACCAGAG	CGGTCCGGCT	TCTCTAGTTT	1980
GTATAAATTA	CTATTAGAGG	TTGTTCCGCA	AAAATGCGGT	GCCACGGAAG	GGGCTTTCAT	204
CTATGCTGTT	GAGAGGATGT	TGAAGGATTG	TCCGAGCTCC	AAACAGGCCA	TGGCCCTTCT	210
GGCAAAAATT	AAAGTTCCAT	CCTCAAAGGC	CCCGTCTGTG	TCCCTGGACG	AGTGTTTCCC	216

TACGGATGTT	TTAGCCGACT	TCGAGCCAGC	ATCTCAGGAA	AGGCCCCAAA	GTTCCGGCGC	2220
TGCTGTTGTC	CTGTGTTCAC	CGGATGCAAA	AGAGTTCGAG	GAAGCAGCCC	CGGAAGAAGT	2280
TCAAGAGAGT	GGCCACAAGG	CCGTCCACTC	TGCACTCCTT	GCCGAGGGTC	CTAACAATGA	2340
GCAGGTACAG	GTGGTTGCCG	GTGAGCAACT	GAAGCTCGGC	GGTTGTGGTT	TGGCAGTCGG	2400
GAATGCTCAT	GAAGGTGCTC	TGGTCTCAGC	TGGTCTAATT	AACCTGGTAG	GCGGGAATTT	2460
GTCCCCCTCA	GACCCCATGA	AAGAAAACAT	GCTCAATAGC	CGGGAAGACG	AACCACTGGA	2520
TTTGTCCCAA	CCAGCACCAG	CTTCCACAAC	GACCCTTGTG	AGAGAGCAAA	CACCCGACAA	2580
CCCAGGTTCT	GATGCCGGTG	CCCTCCCCGT	CACCGTTCGA	GAATTTGTCC	CGACGGGGCC	2640
TATACTCTGT	CATGTTGAGC	ACTGCGGCAC	GGAGTCGGGC	GACAGCAGTT	CGCCTTTGGA	2700
TCTATCTGAT	GCGCAAACCC	TGGACCAGCC	TTTAAATCTA	TCCCTGGCCG	CTTGGCCAGT	2760
GAGGGCCACC	GCGTCTGACC	CTGGCTGGGT	CCACGGTAGG	CGCGAGCCTG	TCTTTGTAAA	2820
GCCTCGAAAT	GCTTTCTCTG	ATGGCGATTC	AGCCCTTCAG	TTCGGGGAGC	TTTCTGAATC	2880
CAGCTCTGTC	ATCGAGTTTG	ACCGGACAAA	AGATGCTCCG	GTGGTTGACG	CCCCTGTCGA	2940
CTTGACGACT	TCGAACGAGG	CCCTCTCTGT	AGTCGATCCT	TTCGAATTTG	CCGAACTCAA	3000
GCGCCCGCGT	TTCTCCGCAC	AAGCCTTAAT	TGACCGAGGC	GGTCCACTTG	CCGATGTCCA	3060
IGCAAAAATA	AAGAACCGGG	TATATGAACA	GTGCCTCCAA	GCTTGTGAGC	CCGGTAGTCG	3120
rgcaacccca	GCCACCAGGG	AGTGGCTCGA	CAAAATGTGG	GATAGGGTGG	ACATGAAAAC	3180
TTGGCGCTGC	ACCTCGCAGT	TCCAAGCTGG	TCGCATTCTT	GCGTCCCTCA	AATTCCTCCC.	3240
IGACATGATT	CAAGACACAC	CGCCTCCTGT	TCCCAGGAAG	AACCGAGCTA	GTGACAATGC	3300
CGGCCTGAAG	CAACTGGTGG	CACAGTGGGA	TAGGAAATTG	AGTGTGACCC	CCCCCCAAA	3360
CCGGTTGGG	CCAGTGCTTG	ACCAGATCGT	CCCTCCGCCT	ACGGATATCC	AGCAAGAAGA	3420
TGTCACCCCC	TCCGATGGGC	CACCCCATGC	GCCGGATTTT	CCTAGTCGAG	TGAGCACGGG	3480
GGGAGTTGG	AAAGGCCTTA	TGCTTTCCGG	CACCCGTCTC	GCGGGGTCTA	TCAGCCAGCG	3540
CTTATGACA	TGGGTTTTTG	AAGTTTTCTC	CCACCTCCCA	GCTTTTATGC	TCACACTTTT	3600
TCGCCGCGG	GGCTCTATGG	CTCCAGGTGA	TTGGTTGTTT	GCAGGTGTCG	TTTTACTTGC	3660
CTCTTGCTC	TGTCGTTCTT	ACCCGATACT	CGGATGCCTT	CCCTTATTGG	GTGTCTTTTC	3720
GGTTCTTTG	CGGCGTGTTC	GTCTGGGTGT	TTTTGGTTCT	TGGATGGCTT	TTGCTGTATT	3780
TTATTCTCG	ACTCCATCCA	ACCCAGTCGG	TTCTTCTTGT	GACCACGATT	CGCCGGAGTG	3840

TCATGCTGAG	CTTTTGGCTC	TTGAGCAGCG	CCAACTTTGG	GAACCTGTGC	GCGGCCTTGT	3900
GGTCGGCCCC	TCAGGCCTCT	TATGTGTCAT	TCTTGGCAAG	TTACTCGGTG	GGTCACGTTA	3960
TCTCTGGCAT	GTTCTCCTAC	GTTTATGCAT	GCTTGCAGAT	TTGGCCCTTT	CTCTTGTTTA	4020
TGTGGTGTCC	CAGGGGCGTT	GTCACAAGTG	TTGGGGAAAG	TGTATAAGGA	CAGCTCCTGC	4080
GGAGGTGGCT	CTTAATGTAT	TTCCTTTCTC	GCGCGCCACC	CGTGTCTCTC	TTGTATCCTT	4140
etgtgatcga	TTCCAAACGC	CAAAAGGGGT	TGATCCTGTG	CACTTGGCAA	CGGGTTGGCG	4200
CGGGTGCTGG	CGTGGTGAGA	GCCCCATCCA	TCAACCACAC	CAAAAGCCCA	TAGCTTATGC	4260
CAATTTGGAT	GAAAAGAAAA	TGTCTGCCCA	AACGGTGGTT	GCTGTCCCAT	ACGATCCCAG	4320
TCAGGCTATC	AAATGCCTGA	AAGTTCTGCA	GGCGGGAGGG	GCCATCGTGG	ACCAGCCTAC	4380
ACCTGAGGTC	GTTCGTGTGT	CCGAGATCCC	CTTCTCAGCC	CCATTTTTCC	CAAAAGTTCC	4440
AGTCAACCCA	GATTGCAGGG	TTGTGGTAGA	TTCGGACACT	TTTGTGGCTG	CGGTTCGCTG	4500
CGGTTACTCG	ACAGCACAAC	TGGTTCTGGG	CCGGGGCAAC	TTTGCCAAGT	TAAATCAGAC	4560
CCCCCCAGG	AACTCTATCT	CCACCAAAAC	GACTGGTGGG	GCCTCTTACA	CCCTTGCTGT	4620
GGCTCAAGTG	TCTGCGTGGA	CTCTTGTTCA	TTTCATCCTC	GGTCTTTGGT	TCACATCACC	4680
TCAAGTGTGT	GGCCGAGGAA	CCGCTGACCC	ATGGTGTTCA	AATCCTTTTT	CATATCCTAC	4740
CTATGGCCCC	GGAGTTGTGT	GCTCCTCTCG	ACTTTGTGTG	TCTGCCGACG	GGGTCACCCT	4800
GCCATTGTTC	TCAGCCGTGG	CACAACTCTC	CGGTAGAGAG	GTGGGGATTT	TTATTTTGGT	4860
GCTCGTCTCC	TTGACTGCTT	TGGCCCACCG	CATGGCTCTT	AAGGCAGACA	TGTTAGTGGT	4920
CTTTTCGGCT	TTTTGTGCTT	ACGCCTGGCC	CATGAGCTCC	TGGTTAATCT	GCTTCTTTCC	4980
TATACTCTTG	AAGTGGGTTA	CCCTTCACCC	TCTTACTATG	CTTTGGGTGC	ACTCATTCTT	5040
GGTGTTTTGT	CTGCCAGCAG	CCGGCATCCT	CTCACTAGGG	ATAACTGGCC	TTCTTTGGGC	5100
AATTGGCCGC	TTTACCCAGG	TTGCCGGAAT	TATTACACCT	TATGACATCC	ACCAGTACAC	5160
CTCTGGGCCA	CGTGGTGCAG	CTGCTGTGGC	CACAGCCCCA	GAAGGCACTT	ATATGGCCGC	5220
CGTCCGGAGA	GCTGCTTTAA	CTGGGCGAAC	TTTAATCTTC	ACCCCGTCTG	CAGTTGGATC	5280
CCTTCTCGAA	GGTGCTTTCA	GGACTCATAA	ACCCTGCCTT	AACACCGTGA	ATGTTGTAGG	5340
CTCTTCCCTT	GGTTCCGGAG	GGGTTTTCAC	CATTGATGGC	AGAAGAACTG	TCGTCACTGC	5400
TGCCCATGTG	TTGAACGGCG	ACACAGCTAG	AGTCACCGGC	GACTCCTACA	ACCGCATGCA	5460
CACTTTCAAG	ACCAATGGTG	ATTATGCCTG	GTCCCATGCT	GATGACTGGC	AGGGCGTTGC	5520

WO 96/04010

CCCTGTGGTC	AAGGTTGCGA	AGGGGTACCG	CGGTCGTGCC	TACTGGCAAA	CATCAACTGG	5580
TGTCGAACCC	GGTATCATTG	GGGAAGGGTT	CGCCTTCTGT	TTTACTAACT	GCGGCGATTC	5640
GGGGTCACCC	GTCATCTCAG	AATCTGGTGA	TCTTATTGGA	ATCCACACCG	GTTCAAACAA	5700
ACTTGGTTCT	GGTCTTGTGA	CAACCCCTGA	AGGGGAGACC	TGCACCATCA	AAGAAACCAA	5760
GCTCTCTGAC	CTTTCCAGAC	ATTTTGCAGG	CCCAAGCGTT	CCTCTTGGGG	ACATTAAATT	5820
GAGTCCGGCC	ATCATCCCTG	ATGTAACATC	CATTCCGAGT	GACTTGGCAT	CGCTCCTAGC	5880
CTCCGTCCCT	GTAGTGGAAG	GCGGCCTCTC	GACCGTTCAA	CTTTTGTGTG	TCTTTTTCCT	5940
TCTCTGGCGC	ATGATGGGCC	ATGCCTGGAC	ACCCATTGTT	GCCGTGGGCT	TCTTTTTGCT	6000
GAATGAAATT	CTTCCAGCAG	TTTTGGTCCG	AGCCGTGTTT	TCTTTTGCAC	TCTTTGTGCT	6060
TGCATGGGCC	ACCCCTGGT	CTGCACAGGT	GTTGATGATT	AGACTCCTCA	CGGCATCTCT	6120
CAACCGCAAC	AAGCTTTCTC	TGGCGTTCTA	CGCACTCGGG	GGTGTCGTCG	GTTTGGCAGC	6180
TGAAATCGGG	ACTTTTGCTG	GCAGATTGTC	TGAATTGTCT	CAAGCTCTTT	CGACATACTG	6240
CTTCTTACCT	AGGGTCCTTG	CTATGACCAG	TTGTGTTCCC	ACCATCATCA	TTGGTGGACT	6300
CCATACCCTC	GGTGTGATTC	TGTGGTTATT	CAAATACCGG	TGCCTCCACA	ACATGCTGGT	6360
TGGTGATGGG	AGTTTTTCAA	GCGCCTTCTT	CCTACGGTAT	TTTGCAGAGG	GTAATCTCAG	6420
AAAAGGTGTT	TCACAGTCCT	GTGGCATGAA	TAACGAGTCC	CTAACGGCTG	CTTTAGCTTG	6480
CAAGTTGTCA	CAGGCTGACC	TTGATTTTTT	GTCCAGCTTA	ACGAACTTCA	AGTGCTTTGT	6540
ATCTGCTTCA	AACATGAAAA	ATGCTGCCGG	CCAGTACATT	GAAGCAGCGT	ATGCCAAGGC	6600
CCTGCGCCAA	GAGTTGGCCT	CTCTAGTTCA	GATTGACAAA	ATGAAAGGAG	TTTTGTCCAA	6660
GCTCGAGGCC	TTTGCTGAAA	CAGCCACCCC	GTCCCTTGAC	ATAGGTGACG	TGATTGTTCT	6720
GCTTGGGCAA	CATCCTCACG	GATCCATCCT	CGATATTAAT	GTGGGGACTG	AAAGGAAAAC	6780
TGTGTCCGTG	CAAGAGACCC	GGAGCCTAGG	CGGCTCCAAA	TTCAGTGTTT	GTACTGTCGT	6840
GTCCAACACA	CCCGTGGACG	CCTTGACCGG	CATCCCACTC	CAGACACCAA	CCCCTCTTTT	6900
TGAGAATGGT	CCGCGTCATC	GCAGCGAGGA	AGACGATCTT	AAAGTCGAGA	GGATGAAGAA	6960
ACACTGTGTA	TCCCTCGGCT	TCCACAACAT	CAATGGCAAA	GTTTACTGCA	AAATTTGGGA	7020
CAAGTCTACC	GGTGACACCT	TTTACACGGA	TGATTCCCGG	TACACCCAAG	ACCATGCTTT	7080
TCAGGACAGG	TCAGCCGACT	ACAGAGACAG	GGACTATGAG	GGTGTGCAAA	CCACCCCCCA	7140
ACAGGGATTT	GATCCAAAGT	CTGAAACCCC	TGTTGGCACT	GTTGTGATCG	GCGGTATTAC	7200

GTATAACAGG	TATCTGATCA	AAGGTAAGGA	GGTTCTGGTC	CCCAAGCCTG	ACAACTGCCT	7260
TGAAGCTGCC	AAGCTGTCCC	TTGAGCAAGC	TCTCGCTGGG	ATGGGCCAAA	CTTGCGACCT	7320
TACAGCTGCC	GAGGTGGAAA	AGCTAAAGCG	CATCATTAGT	CAACTCCAAG	GTTTGACCAC	7380
TGAACAGGCT	TTAAACTGTT	AGCCGCCAGC	GGCTTGACCC	GCTGTGGCCG	CGGCGGCCTA	7440
GTTGTGACTG	AAACGGCGGT	AAAAATTATA	AAATACCACA	GCAGAACTTT	CACCTTAGGC	7500
CCTTTAGACC	TAAAAGTCAC	TTCCGAGGTG	GAGGTAAAGA	AATCAACTGA	GCAGGGCCAC	7560
GCTGTTGTGG	CAAACTTATG	TTCCGGTGTC	ATCTTGATGA	GACCTCACCC	ACCGTCCCTT	7620
GTCGACGTTC	TTCTGAAACC	CGGACTTGAC	ACAATACCCG	GCATTCAACC	AGGGCATGGG	7680
GCCGGGAATA	TGGGCGTGGA	CGGTTCTATT	TGGGATTTTG	AAACCGCACC	CACAAAGGCA	7740
GAACTCGAGT	TATCCAAGCA	AATAATCCAA	GCATGTGAAG	TTAGGCGCGG	GGACGCCCCG	7800
AACCTCCAAC	TCCCTTACAA	GCTCTATCCT	GTTAGGGGGG	ATCCTGAGCG	GCATAAAGGC	7860
CGCCTTATCA	ATACCAGGTT	TGGAGATTTA	CCTTACAAAA	CTCCTCAAGA	CACCAAGTCC	7920
GCAATCCACG	CGGCTTGTTG	CCTGCACCCC	AACGGGGCCC	CCGTGTCTGA	TGGTAAATCC	7980
ACACTAGGTA	CCACTCTTCA	ACATGGTTTC	GAGCTTTATG	TCCCTACTGT	GCCCTATAGT	8040
GTCATGGAGT	ACCTTGATTC	ACGCCCTGAC	ACCCCTTTTA	TGTGTACTAA	ACATGGCACT	8100
TCCAAGGCTG	CTGCAGAGGA	CCTCCAAAAA	TACGACCTAT	CCACCCAAGG	ATTTGTCCTG	8160
CCTGGGGTCC	TACGCCTAGT	ACGCAGATTC	ATCTTTGGCC	ATATTGGTAA	GGCGCCGCCA	8220
TTGTTCCTCC	CATCAACCTA	TCCCGCCAAG	AACTCTATGG	CAGGGATCAA	TGGCCAGAGG	8280
TTCCCAACAA	AGGACGTTCA	GAGCATACCT	GAAATTGATG	AAATGTGTGC	CCGCGCTGTC	8340
AAGGAGAATT	GGCAAACTGT	GACACCTTGC	ACCCTCAAGA	AACAGTACTG	TTCCAAGCCC	8400
AAAACCAGGA	CCATCCTGGG	CACCAACAAC	TTTATTGCCT	TGGCTCACAG	ATCGGCGCTC	8460
AGTGGTGTCA	CCCAGGCATT	CATGAAGAAG	GCTTGGAAGT	CCCCAATIGC	CTTGGGGAAA	8520
AACAAATTCA	AGGAGCTGCA	TTGCACTGTC	GCCGGCAGGT	GTCTTGAGGC	CGACTTGGCC	8580
TCCTGTGACC	GCAGCACCCC	CGCCATTGTA	AGATGGTTTG	TTGCCAACCT	CCTGTATGAA	8640
CTTGCAGGAT	GTGAAGAGTA	CTTGCCTAGC	TATGTGCTTA	ATTGCTGCCA	TGACCTCGTG	8700
GCAACACAGG	ATGGTGCCTT	CACAAAACGC	GGTGGCCTGT	CGTCCGGGGA	CCCCGTCACC	8760
AGTGTGTCCA	ACACCGTATA	TTCACTGGTA	ATTTATGCCC	AGCACATGGT	ATTGTCGGCC	8820
TTGAAAATGG	GTCATGAAAT	TGGTCTTAAG	TTCCTCGAGG	AACAGCTCAA	GTTCGAGGAC	8880

		ē.				
CTCCTTGAAA	TTCAGCCTAT	GTTGGTATAC	TCTGATGATC	TTGTCTTGTA	CGCTGAAAGA	8940
CCCACATTTC	CCAATTACCA	CTGGTGGGTC	GAGCACCTTG	ACCTGATGCT	GGGTTTCAGA	9000
ACGGACCCAA	AGAAAACCGT	CATAACTGAT	AAACCCAGCT	TCCTCGGCTG	CAGAATTGAG	9060
GCAGGGCGAC	AGCTAGTCCC	CAATCGCGAC	CGCATCCTGG	CTGCTCTTGC	ATATCACATG	9120
AAGGCGCAGA	ACGCCTCAGA	GTATTATGCG	TCTGCTGCCG	CAATCCTGAT	GGATTCATGT	9180
GCTTGCATTG	ACCATGACCC	TGAGTGGTAT	GAGGACCTCA	TCTGCGGTAT	TGCCCGGTGC	9240
GCCCGCCAGG	ATGGTTATAG	CTTCCCAGGT	CCGGCATTIT	TCATGTCCAT	GTGGGAGAAG	9300
CTGAGAAGTC	ATAATGAAGG	GAAGAAATTC	CGCCACTGCG	GCATCTGCGA	CGCCAAAGCC	9360
GACTATGCGT	CCGCCTGTGG	GCTTGATTTG	TGTTTGTTCC	ATTCGCACTT	TCATCAACAC	9420
TGCCCTGTCA	CTCTGAGCTG	CGGTCACCAT	GCCGGTTCAA	AGGAATGTTC	GCAGTGTCAG	9480
TCACCTGTTG	GGGCTGGCAG	ATCCCCTCTT	GATGCCGTGC	TAAAACAAAT	TCCATACAAA	9540
CCTCCTCGTA	CTGTCATCAT	GAAGGTGGGT	ААТААААСАА	CGGCCCTCGA	TCCGGGGAGG	9600
TACCAGTCCC	GTCGAGGTCT	CGTTGCAGTC	AAGAGGGGTA	TTGCAGGCAA	TGAAGTTGAT	9660
CTTTCTGATG	GGGACTACCA	AGTGGTGCCT	CTTTTGCCGA	CTTGCAAAGA	CATAAACATG	9720
GTGAAGGTGG	CTTGCAATGT	ACTACTCAGC	AAGTTCATAG	TAGGGCCACC	AGGTTCCGGA	9780
AAGACCACCT	GGCTACTGAG	TCAAGTCCAG	GACGATGATG	TCATTTACAC	ACCCACCCAT	9840
CAGACTATGT	TTGATATAGT	CAGTGCTCTC	AAAGTTTGCA	GGTATTCCAT	TCCAGGAGCC	9900
TCAGGACTCC	CTTTCCCACC	ACCTGCCAGG	TCCGGGCCGT	GGGTTAGGCT	TATTGCCAGC	9960
GGGCACGTCC	CTGGCCGAGT	ATCATACCTC	GATGAGGCTG	GATATTGTAA	TCATCTGGAC	10020
ATTCTTAGAC	TGCTTTCCAA	AACACCCCTT	GTGTGTTTGG	GTGACCTTCA	GCAACTTCAC	10080
CCTGTCGGCT	TTGATTCCTA	CTGTTATGTG	TTCGATCAGA	TGCCTCAGAA	GCAGCTGACC	10140
ACTATTTACA	GATTTGGCCC	TAACATCTGC	GCACGCATCC	AGCCTTGTTA	CAGGGAGAAA	10200
CTTGAATCTA	AGGCTAGGAA	CACTAGGGTG	GTTTTTACCA	CCCGGCCTGT	GGCCTTTGGT	10260
CAGGTGCTGA	CACCATACCA	TAAAGATCGC	ATCGGCTCTG	CGATAACCAT	AGATTCATCC	10320
CAGGGGCCA	CCTTTGATAT	TGTGACATTG	CATCTACCAT	CGCCAAAGTC	ССТАЛАТАЛА	10380
TCCCGAGCAC	TTGTAGCCAT	CACTCGGGCA	AGACACGGGT	TGTTCATTTA	TGACCCTCAT	10440
AACCAGCTCC	AGGAGTTTTT	CAACTTAACC	CCTGAGCGCA	CTGATTGTAA	CCTTGTGTTC	10500
AGCCGTGGGG	ATGAGCTGGT	AGTTCTGAAT	GCGGATAATG	CAGTCACAAC	TGTAGCGAAG	10560
						•

GCCCTTGAGA	CAGGTCCATC	TCGATTTCGA	GTATCAGACC	CGAGGTGCAA	GTCTCTCTTA	10620
GCCGCTTGTT	CGGCCAGTCT	GGAAGGGAGC	TGTATGCCAC	TACCGCAAGT	GGCACATAAC	10680
CTGGGGTTTT	ACTTTTCCCC	GGACAGTCCA	ACATTTGCAC	CTCTGCCAAA	AGAGTTGGCG	10740
CCACATTGGC	CAGTGGTTAC	CCACCAGAAT	AATCGGGCGT	GGCCTGATCG	ACTIGTCGCT	10800
AGTATGCGCC	CAATTGATGC	CCGCTACAGC	AAGCCAATGG	TCGGTGCAGG	GTATGTGGTC	10860
GGGCCGTCCA	CCTTTCTTGG	TACTCCTGGT	GTGGTGTCAT	ACTATCTCAC	ACTATACATC	10920
AGGGGTGAGC	CCCAGGCCTT	GCCAGAAACA	CTCGTTTCAA	CAGGGCGTAT	AGCCACAGAT	10980
TGTCGGGAGT	ATCTCGACGC	GGCTGAGGAA	GAGGCAGCAA	AAGAACTCCC	CCACGCATTC	11040
ATTGGCGATG	TCAAAGGTAC	CACGGTTGGG	GGGTGTCATC	ACATTACATC	AAAATACCTA	11100
CCTAGGTCCC	TGCCTAAGGA	CTCTGTTGCC	GTAGTTGGAG	TAAGTTCGCC	CGGCAGGGCT	11160
GCTAAAGCCG	TGTGCACTCT	CACCGATGTG	TACCTCCCCG	AACTCCGGCC	ATATCTGCAA	11220
CCTGAGACGG	CATCAAAATG	CTGGAAACTC	AAATTAGACT	TCAGGGACGT	CCGACTAATG	11280
GTCTGGAAAG	GAGCCACCGC	CTATTTCCAG	TTGGAAGGGC	TTACATGGTC	GGCGCTGCCC	11340
GACTATGCCA	GGTTTATTCA	GCTGCCCAAG	GATGCCGTTG	TATACATTGA	TCCGTGTATA	11400
GGACCGGCAA	CAGCCAACCG	TAAGGTCGTG	CGAACCACAG	ACTGGCGGGC	CGACCTGGCA	11460
GTGACACCGT	ATGATTACGG	TGCCCAGAAC	ATTTTGACAA	CAGCCTGGTT	CGAGGACCTC	11520
GGGCCGCAGT	GGAAGATTTT	GGGGTTGCAG	CCCTTTAGGC	GAGCATTTGG	CTTTGAAAAC	11580
ACTGAGGATT	GGGCAATCCT	TGCACGCCGT	ATGAATGACG	GCAAGGACTA	CACTGACTAT	11640
AACTGGAACT	GTGTTCGAGA	ACGCCCACAC	GCCATCTACG	GGCGTGCTCG	TGACCATACG	11700
TATCATTTTG	CCCCTGGCAC	AGAATTGCAG	GTAGAGCTAG	GTAAACCCCG	GCTGCCGCCT	11760
GGGCAAGTGC	CGTGAATTCG	GGGTGATGCA	ATGGGGTCAC	TGTGGAGTAA	AATCAGCCAG	11820
CTGTTCGTGG	ACGCCTTCAC	TGAGTTCCTT	GTTAGTGTGG	TTGATATTGC	CATTTTCCTT	11880
GCCATACTGT	TTGGGTTCAC	CGTCGCAGGA	TGGTTACTGG	TCTTTCTTCT	CAGAGTGGTT	11940
TGCTCCGCGC	TTCTCCGTTC	GCGCTCTGCC	ATTCACTCTC	CCGAACTATC	GAAGGTCCTA	12000
TGAAGGCTTG	TTGCCCAACT	GCAGACCGGA	TGTCCCACAA	TTTGCAGTCA	AGCACCCATT	12060
GGGTATGTTT	TGGCACATGC	GAGTTTCCCA	CTTGATTGAT	GAGATGGTCT	CTCGTCGCAT	12120
TTACCAGACC	ATGGAACATT	CAGGTCAAGC	GGCCTGGAAG	CAGGTGGTTG	GTGAGGCCAC	12180
TCTCACGAAG	CTGTCAGGGC	TCGATATAGT	TACTCATTTC	CAACACCTGG	CCGCAGTGGA	12240

GGCGGATTCT	TGCCGCTTTC	TCAGCTCACG	ACTCGTGATG	CTAAAAAATC	TTGCCGTTGG	12300
CAATGTGAGC	CTACAGTACA	ACACCACGTT	GGACCGCGTT	GAGCTCATCT	TCCCCACGCC	12360
AGGTACGAGG	CCCAAGTTGA	CCGATTTCAG	ACAATGGCTC	ATCAGTGTGC	ACGCTTCCAT	12420
TTTTTCCTCT	GTGGCTTCAT	CTGTTACCTT	GTTCATAGTG	CTTTGGCTTC	GAATTCCAGC	12480
TCTACGCTAT	GTTTTTGGTT	TCCATTGGCC	CACGGCAACA	CATCATTCGA	GCTGACCATC	12540
AACTACACCA	TATGCATGCC	CTGTTCTACC	AGTCAAGCGG	CTCGCCAAAG	GCTCGAGCCC	12600
GGTCGTAACA	TGTGGTGCAA	AATAGGGCAT	GACAGGTGTG	AGGAGCGTGA	CCATGATGAG	12660
TTGTTAATGT	CCATCCCGTC	CGGGTACGAC	AACCTCAAAC	TTGAGGGTTA	TTATGCTTGG	12720
CTGGCTTTTT	TGTCCTTTTC	CTACGCGGCC	CAATTCCATC	CGGAGTTGTT	CGGGATAGGG	12780
AATGTGTCGC	GCGTCTTCGT	GGACAAGCGA	CACCAGTTCA	TTTGTGCCGA	GCATGATGGA	12840
CACAATTCAA	CCGTATCTAC	CGGACACAAC	ATCTCCGCAT	TATATGCGGC	ATATTACCAC	12900
CACCAAATAG	ACGGGGGCAA	TTGGTTCCAT	TTGGAATGGC	TGCGGCCACT	CTTTTCTTCC	12960
TGGCTGGTGC	TCAACATATC	ATGGTTTCTG	AGGCGTTCGC	CTGTAAGCCC	TGTTTCTCGA	13020
CGCATCTATC	AGATATTGAG	ACCAACACGA	CCGCGGCTGC	CGGTTTCATG	GTCCTTCAGG	13080
ACATCAATTG	TTTCCGACCT	CACGGGGTCT	CAGCAGCGCA	AGAGAAAATT	TCCTTCGGAA	13140
AGTCGTCCCA	ATGTCGTGAA	GCCGTCGGTA	CTCCCCAGTA	CATCACGATA	ACGGCTAACG	13200
TGACCGACGA	ATCATACTTG	TACAACGCGG	ACCTGCTGAT	GCTTTCTGCG	TGCCTTTTCT	13260
ACGCCTCAGA	AATGAGCGAG	AAAGGCTTCA	AAGTCATCTT	TGGGAATGTC	TCTGGCGTTG	13320
TTTCTGCTTG	TGTCAATTTC	ACAGATTATG	TGGCCCATGT	GACCCAACAT	ACCCAGCAGC	13380
ATCATCTGGT	AATTGATCAC	ATTCGGTTGC	TGCATTTCCT	GACACCATCT	GCAATGAGGT	13440
GGGCTACAAC	CATTGCTTGT	TTGTTCGCCA	TTCTCTTGGC	AATATGAGAT	GTTCTCACAA	13500
ATTGGGGCGT	TTCTTGACTC	CGCACTCTTG	CTTCTGGTGG	CTTTTTTTGC	TGTGTACCGG	13560
CTTGTCCTGG	TCCTTTGCCG	ATGGCAACGG	CGACAGCTCG	ACATACCAAT	ACATATATAA	13620
CTTGACGATA	TGCGAGCTGA	ATGGGACCGA	CTGGTTGTCC	AGCCATTTTG	GTTGGGCAGT	13680
CGAGACCTTT	GTGCTTTACC	CGGTTGCCAC	TCATATCCTC	TCACTGGGTT	TTCTCACAAC	13740
AAGCCATTTT	TTTGACGCGC	TCGGTCTCGG	CGCTGTATCC	ACTGCAGGAT	TTGTTGGCGG	13800
GCGGTACGTA	CTCTGCAGCG	TCTACGGCGC	TTGTGCTTTC	GCAGCGTTCG	TATGTTTTGT	13860
CATCCGTGCT	GCTAAAAATT	GCATGGCCTG	CCGCTATGCC	CGTACCCGGT	TTACCAACTT	13920

CATTGTGGAC	GACCGGGGGA	GAGTTCATCG	ATGGÄAGTCT	CCAATAGTGG	TAGAAAAATT	13980
GGGCAAAGCC	GAAGTCGATG	GCAACCTCGT	CACCATCAAA	CATGTCGTCC	TCGAAGGGGT	14040
TAAAGCTCAA	CCCTTGACGA	GGACTTCGGC	TGAGCAATGG	GAGGCCTAGA	CGATTTTTGC	14100
AACGATCCTA	TCGCCGCACA	AAAGCTCGTG	CTAGCCTTTA	GCATCACATA	CACACCTATA	14160
ATGATATACG	CCCTTAAGGT	GTCACGCGGC	CGACTCCTGG	GGCTGTTGCA	CATCCTAATA	14220
TTTCTGAACT	GTTCCTTTAC	ATTCGGATAC	ATGACATATG	TGCATTTTCA	ATCCACCAAC	14280
CGTGTCGCAC	TTACCCTGGG	GGCTGTTGTC	GCCCTTCTGT	GGGGTGTTTA	CAGCTTCACA	14340
GAGTCATGGA	AGTTTATCAC	TTCCAGATGC	AGATTGTGTT	GCCTTGGCCG	GCGATACATT	14400
CTGGCCCCTG	CCCATCACGT	AGAAAGTGCT	GCAGGTCTCC	ATTCAATCTC	AGCGTCTGGT	14460
AACCGAGCAT	ACGCTGTGAG	AAAGCCCGGA	CTAACATCAG	TGAACGGCAC	TCTAGTACCA	14520
GGACTTCGGA	GCCTCGTGCT	GGGCGGCAAA	CGAGCTGTTA	AACGAGGAGT	GGTTAACCTC	14580
GTCAAGTATG	GCCGGTAAAA	ACCAGAGCCA	GAAGAAAAG	AAAAGTACAG	CTCCGATGGG	14640
GAATGGCCAG	CCAGTCAATC	AACTGTGCCA	GTTGCTGGGT	GCAATGATAA	AGTCCCAGCG	14700
CCAGCAACCT	AGGGGAGGAC	AGGCCAAAAA	GAAAAAGCCT	GAGAAGCCAC	ATTITCCCCT	14760
GGCTGCTGAA	GATGACATCC	GGCACCACCT	CACCCAGACT	GAACGCTCCC	TCTGCTTGCA	14820
ATCGATCCAG	ACGGCTTTCA	ATCAAGGCGC	AGGAACTGCG	TCGCTTTCAT	CCAGCGGGAA	14880
GGTCAGTTTT	CAGGTTGAGT	TTATGCTGCC	GGTTGCTCAT	ACAGTGCGCC	TGATTCGCGT	14940
GACTTCTACA	TCCGCCAGTC	AGGGTGCAAG	TTAATTTGAC	AGTCAGGTGA	ATGGCCGCGA	15000
TIGGCGTGTG	GCCTCTGAGT	CACCTATTCA	ATTAGGGCGA	TCACATGGGG	GTCATACTTA	15060
ATCAGGCAGG	AACCATGTGA	CCGAAATTAA	AAAAAAAAA	A		15101

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 747 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..747
- (D) OTHER INFORMATION: /standard_name= "LV ORF 2"

-59-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

		•	-					_								
											AGC Ser					48
1				5	-,-			-/-	10			-,-		15		
											TTG Leu					96
PLO	ser	Leu	20	ser	Leu	Leu	Val	25	neu	ITE	Leu	PIO	30	Ser	ren	
											TAC					144
Pro	Tyr	Cys 35	Leu	Gly	Ser	Pro	Ser 40	Gln	Asp	Gly	Tyr	Trp 45	Ser	Phe	Phe	
TCA	GAG	TGG	TTT	GCT	CCG	CGC	TTC	TCC	GTT	CGC	GCT	CTG	CCA	TTC	ACT	192
Ser	Glu 50	Trp	Phe	Ala	Pro	Arg 55	Phe	Ser	Val	Arg	Ala 60	Leu	Pro	Phe	Thr	
CTC	CCG	AAC	TAT	CGA	AGG	TCC	TAT	GAA	GGC	TTG	TTG	CCC	AAC	TGC	AGA	240
Leu 65	Pro	Asn	Tyr	Arg	Arg 70	Ser	Tyr	Glu	Gly	Leu 75	Leu	Pro	Asn	Cys	Arg 80	
											TTG Leu					288
	•			. 85					90					95	_	
											GTC					336
HIS	Mer	Arg	100	ser	His	Leu	IIe	105	GIU	мес	Val	ser.	Arg 110	Arg	TIE	
TAC	CAG	ACC	ATG	GAA	CAT	TCA	GGT	CAA	GCG	GCC	TGG	AAG	CAG	GTG	GTT	384
Tyr	Gln	Thr 115	Met	Glu	His	Ser	Gly 120	Gln	Ala	Ala	Trp	Lys 125	Gln	Val	Val	
GGT	GAG	GCC	ACT	CTC	ACG	AAG	CTG	TCA	GGG	CTC	GAT	ATA	GTT	ACT	CAT	432
Gly	Glu 130	Ala	Thr	Leu	Thr	Lys 135	Leu	Ser	Gly	Leu	Asp 140	Ile	Val	Thr	His	
											TGC					480
Phe 145	Gln	His	Leu	Ala	Ala 150	Val	Glu	Ala	Asp	Ser 155	Сув	Arg	Phe	Leu	Ser 160	
											GGC					528
Ser	Arg	Leu	Val	Met 165	Leu	Lys	Asn	Leu	Ala 170	Val	Gly	Asn	Val	Ser 175	Leu	
											ATC					576
Gln	Tyr	Asn	Thr 180		Leu	Asp	Arg	Val 185	Glu	Leu	Ile	Pne	Pro 190	Thr	Pro	
											TGG					624
Gly	Thr	Arg 195	Pro	Lys	Leu	Thr	Asp 200	Phe	Arg	Gln	Trp	Leu 205	Ile	Ser	Val	
CAC	GCT	TCC	ATT	TTT	TCC	TCT	GTG	GCT	TCA	TCT	GTT	ACC	TTG	TTC	ATA	672

									-60-	•						
His	Ala 210	Ser	Ile	Phe	Ser	Ser 215	Val	Ala	Ser	Ser	Val 220	Thr	Leu	Phe	Ile	
						Pro			CGC Arg							
	CCC Pro															
																1
(2)					SEQ											
		(1) 5	(A)	LE:		249 amino	ami aci	ino a id	acida	3						
					TYPI											
Mat			-						Sor			Care	Cor	Waren.	Thr	
1	GIN	iip	GIA	5	Сув	GIY	val	БуS	Ser 10	AIG	Ser	Cys	261	15		
Pro	Ser	Leu	Ser 20	Ser	Leu	Leu	Val	Trp 25	Leu	Ile	Leu	Pro	Phe 30	Ser	Leu	
Pro	Tyr	Cys 35	Leu	Gly	Ser	Pro	Ser 40	Gln	Asp	Gly	Tyr	Trp 45	Ser	Phe	Phe	
Ser	Glu 50	Trp	Phe	Ala	Pro	Arg 55	Phe	Ser	Val	Arg	Ala 60	Leu	Pro	Phe	Thr	
Leu 65	Pro	Asn	Tyr	Arg	Arg 70	Ser	Tyr	Glu	Gly	Leu 75	Leu	Pro	Asn	Сув	Arg 80	
Pro	Asp	Val	Pro	Gln 85	Phe	Ala	Val	Lys	His 90	Pro	Leu	Gly	Met	Phe 95	Trp	
His	Met	Arg	Val 100	Ser	His	Leu	Ile	Asp 105	Glu	Met	.Val	Ser	Arg 110	Arg	Ile	
Tyr	Gln	Thr 115	Met	Glu	His	Ser	Gly 120	Gln	Ala	Ala	Trp	Lys 125	Gln	Val	Val	
Gly	Glu 130	Ala	Thr	Leu	Thr	Lys 135	Leu	Ser	Gly	Leu	Asp 140		Val	Thr	His	
Phe 145	Gln	His	Leu	Ala	Ala 150		Glu	Ala	Asp	Ser 155	-	Arg	Phe	Leu	Ser 160	•
Ser	Arg	Leu	Val	Met 165	Leu	Lys	Asn	Leu	Ala 170		Gly	Asn	Val	Ser 175	Leu	

									-61	-							
Gln	Tyr	Asn	Thr		Leu	Asp	Arg	Val	Glu	Leu	Ile	Phe	Pro		Pro		
· .					_												
GIA	Thr	Arg 195	Pro	Lys	Leu	Thr	Asp 200	Phe	Arg	Gln	Trp	Leu 205	Ile	Ser	Val		
His	Ala 210	Ser	Ile	Phe	Ser	Ser 215	Val	Ala	Ser	Ser	Val 220	Thr	Leu	Phe	Ile		
Val	Leu	Tro	Leu	Arg	Ile	Pro	Ala	Leu	Ara	Tvr	Val	Phe	Glv	Phe	Wia.		
225				5	230				5	235		. :	-		240		
Trp	Pro	Thr	Ala	Thr 245	His	His	Ser	Ser									
(2)	INF	ימאמר	PTOM	FOR	CEO	TD 1	VO - 1	-									
(2)	TME	JRUM.	ITON	FOR	SEQ	ו ענ	NO:1	<i>/</i> :								•	
	(i)				HARA				_								
					nuc:		•	•	5								
					DEDNI OGY:			ble									
	(ii	MOI	LECU	LE T	YPE:	¢DN2	A		- 1 1		:						
			٠														
	(ix)) FE/			KEY:	CDS											
		(1	3) L	OCAT:	ION:	1:											
		(1)) O	THER	INF	ORMA:	rion	: /s1	anda	ard_i	name	= "L\	V OR	F 3"			
	(**)	CE	\TT:\ \	75 Di	econ:	r nm z /	NAT	CEO :	FD 37								
					ESCR:												
	GCT Ala																48
1	nau		GIII	5	714	Arg	FIIC	nis	10	PHE	Deu	Сув	GIY	15	116		
	TAC															•	96
Сув	Tyr	rea	20	HIS	ser	Ala	Leu	25	Ser	ASII	Ser	ser	30	inr	ren		
	TTT																144
Cys	Phe	35	Phe	Pro	Leu	Ala	His 40	Gly	Asn	Thr	Ser	Phe 45	Glu	Leu	Thr		
	AAC																192
Ile	Asn 50	Tyr	Thr	Ile	Cys	Met 55	Pro	Cys	Ser	Thr	Ser 60	Gln	Ala	Ala	Arg		
	AGG																240
Gln 65	Arg	Leu	Glu	Pro	Gly 70	Arg	naA	Met	Trp	Cys 75	Lys	Ile	Gly	His	Asp 80		

AGG	TGT	GAG	GAG	CGT	GAC	CAT	GAT	GAG	TTG	ATT	ATG	TCC	ATC	CCG	TCC		288
Arg	Cys	Glu	Glu	Arg	Asp	His	Asp	Glu	Leu	Leu	Met	Ser	Ile	Pro	Ser		
- :			•	85					90					. 95		1	
															_		
											GCT						336
GLY	Tyr	Asp		Leu	Lys	Leu	Glu	-	Tyr	Tyr	Ala	Trp		Ala	Phe		
			100					105					110				
בייתים	TCC	delete	ጥርር	ምአ ረግ	CCC	CCC		444	CNT		GAG	TTC	TTC	ccc	אידיא		204
															Ile		384
		115	-	- 7 -	714	Aza	120	1110	*****		014	125	2	UL J	110		
																:	
GGG	AAT	GTG	TCG	CGC	GTC	TTC	GTG	GAC	AAG	CGA	CAC	CAG	TTC	ATT	TGT		432
Gly	Asn	Val	Ser	Arg	Val	Phe	Val	Asp	Lys	Arg	His	Gln	Phe	Ile	Сув		
	130			_		135			-		140						
							•										
GCC	GAG	CAT	GAT	GGA	CAC	AAT	TCA	ACC	GTA	TCT	ACC	GGA	CAC	AAC	ATC		480
	Glu	His	Asp	Gly	His	Asn	Ser	Thr	Val	Ser	Thr	Gly	His	Asn	Ile		
145					150					155					160		
	· 															:	
											ATA						52B
ser	ATA	ren	ıyr		Ala	туг	Tyr	HIS		Gin	Ile	Asp	GIA	-	ASD		
				165					170					175			
TGG	TTC	тап	TTG	445)	TCC	CTG	ccc	CCA	י	بلسلسك	TCT	TCC	TGG	CTG	GTG		576
											Ser						3,0
			180					185					190				
CTC	AAC	ATA	TCA	TGG	TTT	CTG	AGG	CGT	TCG	CCT	GTA	AGC	CCT	GTT	TCT		624
Leu	Asn	Ile	Ser	Trp	Phe	Leu	Arg	Arg	Ser	Pro	Val	Ser	Pro	Val	Ser		
		195					200					205					
															GTT		672
Arg	-	Ile	Tyr	Gln	Ile		Arg	Pro	Thr	Arg	Pro	Arg	Leu	Pro	Val		
	210					215					220						
ጥ ር እ	TOC	TOO	TT C	200	202	TO B	א מייני	COO	TCC	C3.C	CTC	n.cc	ccc	ייירי	CNC		720
											Leu						120
225		DCI	FIIC	, ALY	230	SEL	116	AGI	Jer	235	DÇU	****	GLY	Der	240		
											_						
CAG	CGC	AAG	AGA	AAA	TTT	CCT	TCG	GAA	AGT	CGT	CCC	AAT	GTC	GTG	AAG		768
											Pro						
	_	-		245					250				• .	255	•		
						· ',											
CCG	TCG	GTA	CTC	CCC	AGT	ACA	TCA	CGA									795
Pro	Ser	Val	Leu	Pro	Ser	Thr	Ser	Arg									
			260					265									

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 265 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Met Ala His Gln Cys Ala Arg Phe His Phe Phe Leu Cys Gly Phe Ile
 1 5 10 15
- Cys Tyr Leu Val His Ser Ala Leu Ala Ser Asn Ser Ser Ser Thr Leu
 20 25 30
- Cys Phe Trp Phe Pro Leu Ala His Gly Asn Thr Ser Phe Glu Leu Thr
- Ile Asn Tyr Thr Ile Cys Met Pro Cys Ser Thr Ser Gln Ala Ala Arg
 50 55 60
- Gln Arg Leu Glu Pro Gly Arg Asn Met Trp Cys Lys Ile Gly His Asp
 65 70 75 80
- Arg Cys Glu Glu Arg Asp His Asp Glu Leu Leu Met Ser Ile Pro Ser 85 90 95
- Gly Tyr Asp Asn Leu Lys Leu Glu Gly Tyr Tyr Ala Trp Leu Ala Phe 100 105 110
- Leu Ser Phe Ser Tyr Ala Ala Gln Phe His Pro Glu Leu Phe Gly Ile 115 120 125
- Gly Asn Val Ser Arg Val Phe Val Asp Lys Arg His Gln Phe Ile Cys 130 135 140
- Ala Glu His Asp Gly His Asn Ser Thr Val Ser Thr Gly His Asn Ile
 145 150 155 160
- Ser Ala Leu Tyr Ala Ala Tyr Tyr His His Gln Ile Asp Gly Gly Asn 165 170 175
- Trp Phe His Leu Glu Trp Leu Arg Pro Leu Phe Ser Ser Trp Leu Val 180 185 190
- Leu Asn Ile Ser Trp Phe Leu Arg Arg Ser Pro Val Ser Pro Val Ser 195 200 205
- Arg Arg Ile Tyr Gln Ile Leu Arg Pro Thr Arg Pro Arg Leu Pro Val 210 215 220
- Ser Trp Ser Phe Arg Thr Ser Ile Val Ser Asp Leu Thr Gly Ser Gln 225 230 235 240
- Gln Arg Lys Arg Lys Phe Pro Ser Glu Ser Arg Pro Asn Val Val Lys
 245 250 255
- Pro Ser Val Leu Pro Ser Thr Ser Arg 260 265

	(2)	INFORMATION	FOR	SEO	ID	NO:19
--	-----	-------------	-----	-----	----	-------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 549 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..549

(D) OTHER INFORMATION: /standard_name= "LV ORF 4"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GCT Ala							 _	48
TCT Ser								96
ATT Ile		 	 	 			 	144
ATC Ile 50							AAA Lys	192
TCC Ser								240
TAC Tyr		-					Tyr	288
GCG Ala		 		 			GAA Glu	336
AGC Ser								384
							CAA Gln	432

-65-

CAT His 145	ACC Thr	CAG Gln	CAG Gln	CAT	CAT His 150	CTG Leu	GTA Val	ATT	GAT Asp	CAC His 155	ATT Ile	CGG Arg	TTG Leu	CTG Leu	CAT His 160	480
TTC Phe	CTG Leu	ACA Thr	CCA Pro	TCT Ser 165	GCA Ala	ATG Met	AGG Arg	TGG Trp	GCT Ala 170	ACA Thr	ACC Thr	ATT Ile	GCT Ala	TGT Cys 175	TTG Leu	528
		ATT Ile														549

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 183 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met Ala Ala Ala Thr Leu Phe Phe Leu Ala Gly Ala Gln His Ile Met

1 5 10 15

Val Ser Glu Ala Phe Ala Cys Lys Pro Cys Phe Ser Thr His Leu Ser 20 25 30

Asp Ile Glu Thr Asn Thr Thr Ala Ala Gly Phe Met Val Leu Gln
35 40 45

Asp Ile Asn Cys Phe Arg Pro His Gly Val Ser Ala Ala Gln Glu Lys
50 55 60

Ile Ser Phe Gly Lys Ser Ser Gln Cys Arg Glu Ala Val Gly Thr Pro
65 70 75 80

Gln Tyr Ile Thr Ile Thr Ala Asn Val Thr Asp Glu Ser Tyr Leu Tyr 85 90 95

Asn Ala Asp Leu Leu Met Leu Ser Ala Cys Leu Phe Tyr Ala Ser Glu 100 105 110

Met Ser Glu Lys Gly Phe Lys Val Ile Phe Gly Asn Val Ser Gly Val

Val Ser Ala Cys Val Asn Phe Thr Asp Tyr Val Ala His Val Thr Gln 130 135 140

His Thr Gln Gln His His Leu Val Ile Asp His Ile Arg Leu Leu His 145 150 155 160

-66-

Phe	Leu	Thr	Pro	Ser	Ala	Met	Arg	Trp	Ala	Thr	Thr	Ile	Ala	Cys	Leu
				165					170					175	

Phe Ala Ile Leu Leu Ala Ile 180

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 603 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..603
- (D) OTHER INFORMATION: /standard_name= "LV ORF 5"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATG	AGA	TGT	TCT	CAC	AAA	TTG	GGG	CGT	TTC	TTG	ACT	CCG	CAC	TCT	TGC	48
Met	Arg	Суз	Ser	His	Lys	Leu	Gly	Arg	Phe	Leu	Thr	Pro	His	Ser	Сув	
1				5					10					15		**
	mca	maa	~~~	-	m m0	~~~			000	mma.	mcc.	mc0	maa.		000	96
		TGG														36
Pne	Trp	Trp		Phe	Leu	reń	Cys		GIY	Leu	ser	Trp		Pne	Ala	
			20					25					30			
GAT	GGC	AAC	GGC	GAC	AGC	TCG	ACA	TAC	CAA	TAC	ATA	TAT	AAC	TTG	ACG	144
Asp	Gly	Asn	Gly	Asp	Ser	Ser	Thr	Tyr	Gln	Tyr	Ile	Tyr	Asn	Leu	Thr	
•	•	35	•				40	-		•		45				
ATA	TGC	GAG	CTG	AAT	GGG	ACC	GAC	TGG	TTG	TCC	AGC	CAT	TTT	GGT	TGG	192
Ile	Сув	Glu	Leu	Asn	Gly	Thr	Asp	Trp	Leu	Ser	Ser	His	Phe	Gly	Trp	
	50				-	55	-	_			60			_		
GCA	GTC	GAG	ACC	TTT	GTG	CTT	TAC	CCG	GTT	GCC	ACT	CAT	ATC	CTC	TCA	240
Ala	Val	Glu	Thr	Phe	Val	Leu	Tyr	Pro	Val	Ala	Thr	His	Ile	Leu	Ser	
65			•		70					75					.80	
CTG	GGT	TTT	CTC	ACA	ACA	AGC	CAT	TTT	TTT	GAC	GCG	CTC	GGT	CTC	GGC	288
Leu	Gly	Phe	Leu	Thr	Thr	Ser	His	Phe	Phe	Asp	Ala	Leu	Gly	Leu	Gly	
				85					90					95		
															.5	
GCT	GTA	TCC	ACT	GCA	GGA	TTT	GTT	GGC	GGG	CGG	TAC	GTA	CTC	TGC	AGC	336
Ala	Val	Ser	Thr	Ala	Gly	Phe	Val	Gly	Gly	Arg	Tyr	Val	Leu	Cys	Ser	•
•			100					105					110			

GTC.	TAC	GGC	GCT	TGT	GCT	TTC	GCA	GCG	TTC	GTA	TGT	TTT	GTC	ATC	CGT		384
Val	Tyr	Gly	Ala	Cys	Ala	Phe	Ala	Ala	Phe	Val	Cys	Phe	Val	Ile	Arg		
		115		-			120				-	125			•		
GCT	GCT	AAA	AAT	TGC	ATG	GCC	TGC	CGC	TAT	GCC	CGT	ACC	CGG	TTT	ACC		432
Ala	Ala	Lys	Asn	Cvs	Met	Ala	Cvs	Arq	Tyr	Ala	Arq	Thr	Arg	Phe	Thr		
	130	-		•		135	•	_	•		140		_				
AAC	TTC	TTA	GTG	GAC	GAC	CGG	GGG	AGA	GTT	CAT	CGA	TGG	AAG	TCT	CCA		480
Asn	Phe	Ile	Val	Asp	Asp	Arg	Gly	Arg	Val	His	Arg	Trp	Lys	Ser	Pro		
145				-	150	_	-			155	_		-		160		
ATA	GTG	GTA	GAA	AAA	TTG	GGC	AAA	GCC	GAA	GTC	GAT	GGC	AAC	CTC	GTC		528
	Val																
				165		•	•		170		-	-		175			
							•										
DOA	OTA	AAA	CAT	GTÇ	GTC	CTC	GAA	GGG	GTT	AAA	GCT	CAA	CCC	TTG	ACG		576
															Thr		
			180					185		·			190			+ 2	
AGG	ACT	TCG	GCT	GAG	CAA	TGG	GAG	GCC									603
Arg	Thr	Ser	Ala	Glu	Gln	Trp	Glu	Ala									
-		195				-	200										
																4	

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 201 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met Arg Cys Ser His Lys Leu Gly Arg Phe Leu Thr Pro His Ser Cys

1 10 15

Phe Trp Trp Leu Phe Leu Leu Cys Thr Gly Leu Ser Trp Ser Phe Ala 20 25 30

Asp Gly Asp Ser Ser Thr Tyr Gln Tyr Ile Tyr Asn Leu Thr

Ile Cys Glu Leu Asn Gly Thr Asp Trp Leu Ser Ser His Phe Gly Trp
50 60

Ala Val Glu Thr Phe Val Leu Tyr Pro Val Ala Thr His Ile Leu Ser
65 70 75 80

Leu Gly Phe Leu Thr Thr Ser His Phe Phe Asp Ala Leu Gly Leu Gly 85 90 95

VO 96/04010		PCT/IIS95/0997
· · · / / / / / / / / / / / / / / / / /		PE 1/1/3/4/100/

-	6	8	•
---	---	---	---

									- 6 6 -	•						
Ala	Val	Ser	Thr 100	Ala	Gly	Phe	Val	Gly 105	Gly	Arg	Tyr	Val	Leu 110	Сув	Ser	
Val	Tyr	Gly 115	Ala	Cys	Ala	Phe	Ala 120	Ala	Phe	Val	Cys	Phe 125	Val	Ile	Arg	
Ala	Ala 130	-	Asn	Cys	Met	Ala 135	Cys	Arg	Tyr	Ala	Arg 140	Thr	Arg	Phe	Thr	
145	Phe				150					155					160	
Ile	Val	Val	Glu	Lys 165	Leu	Gly	Lys	Ala	Glu 170	Val	Asp	Gly	Asn	Leu 175	Val	
Thr	Ile	Lys	His 180	Val	Val	Leu	Glu	Gly 185	Val	Lys	Ala	Gln	Pro 190	Leu	Thr	
Arg	Thr	Ser 195	Ala	Glu	Gln	Trp	Glu 200	Ala								
(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:2	3:					٠.			
	(i)	(1	QUENC A) LI B) T	ENGTI YPE :	H: 5	19 ba leic	ase p	pair:	5							
			C) S7					ole					*			
	(ii)	MOI	LECUI	LE T	YPE:	CDN	A									
	(ix	PE2	ATURI	P .									•			
	,		A) NI		KEY:	CDS										
			B) LO					. (0	rand:			_ #17	י. ער אי	E 60		
			D) 07	IREK	INP	JRPIA.	LION	, /8	Lanue	11.00_1	Tame:	- 1,	VOR		•	
	(X1)	SE	QUEN	CE DI	ESCR.	IPTIC	ON: 3	SEQ .	ID N	3:23	:					
	GGA															48
Met 1	Gly	Gly	Leu	Asp 5	_	Phe	Сув	Asn	Asp 10	Pro	Ile	Ala	Ala	Gln 15	Lys	
	GTG Val															96
	AAG Lys															144
	CTG Leu	-	– –				-									192

CAA	TCC	ACC	AAC	CGT	GTC	GCA	CTT	ACC	CTG	GGG	GCT	GTT	GTC	GCC	CTT	240
Gln	Ser	Thr	Asn	Arg	Val	Ala	Leu	Thr	Leu	Gly	Ala	Val	Val	Ala	Leu	
65					70					75					80	
CTG	TGG	GGT	GTT	TAC	AGC	TTC	ACA	GAG	TCA	TGG	AAG	TTT	ATC	ACT	TCC	288
Leu	Trp	Gly	Val	Tyr	Ser	Phe	Thr	Glu	Ser	Trp	Lys	Phe	Ile	Thr	Ser	
				85					90					95		
	TGC															336
Arg	Cys	Arg		Сув	Суѕ	Leu	Gly	_	_	Tyr	Ile	Leu		Pro	Ala	
			100					105					110			
	CAC															384
HIS	His		GIu	Ser	Ala	Ala	-	Leu	His	Ser	IIe		Ala	Ser	GIA	
		115					120					125				
N N C		~~			ama				~~~		3.03	max			-	
	CGA															432
ASII	Arg 130	Ala	ıyr	ATA	val	_	гув	PIO	GIY	Leu		ser	vai	ASII	GIY	
	130					135					140					
ארד	СТЪ	GTA	CCA	GCA	ماست	ccc	AGC	CTC	GTG.	CTG	ccc	GGC	מממ	CGA	GCT	480
	Leu															
145				,	150					155	,	,	-,-	9	160	
GTT	AAA	CGA	GGA	GTG	GTT	AAC	CTC	GTC	AAG	TAT	GGC	CGG				519
Val	Lys	Arg	Gly	Val	Val	Asn	Leu	Val	Lys	Tyr	Gly	Arg				
	-	_		165					170	_	-	-				

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Gly Gly Leu Asp Asp Phe Cys Asn Asp Pro Ile Ala Ala Gln Lys
1 5 10 15

Leu Val Leu Ala Phe Ser Ile Thr Tyr Thr Pro Ile Met Ile Tyr Ala 20 25 30

Leu Lys Val Ser Arg Gly Arg Leu Leu Gly Leu Leu His Ile Leu Ile 35 40 45

Phe Leu Asn Cys Ser Phe Thr Phe Gly Tyr Met Thr Tyr Val His Phe

Gln Ser Thr Asn Arg Val Ala Leu Thr Leu Gly Ala Val Val Ala Leu 65 70 75 80

-	7	0	_
---	---	---	---

Leu	Trp	Gly	Val	Tyr 85	Ser	Phe	Thr	Glu	Ser 90	Trp	ГЛЯ	Phe	Ile	Thr 95	Ser	
Arg	Сув	Arg	Leu 100	Суз	Суз	Leu	Gly	Arg 105	Arg	Tyr	Ile	Leu	Ala 110	Pro	Ala	
His	His	Val 115	Glu	Ser	Ala	Ala	Gly 120	Leu	His	Ser	Ile	Ser 125	Ala	Ser	Gly	
Asn	Arg 130	Ala	Tyr	Ala	Val	Arg 135	Lys	Pro	Gly	Leu	Thr 140	Ser	Val	Asn	Gly	
Thr 145	Leu	Val	Pro	Gly	Leu 150	Arg	Ser	Leu	Val	Leu 155	Gly	Gly	Lys	Arg	Ala 160	
Val	Lys	Arg	Gly	Val 165	Val	Asn	Leu	Val	Lys 170	Tyr	Gly	Arg				
(2)	INF	ORMA!	CION	FOR	SEQ	ID 1	10:2	5:								
	(i)	(1	A) LI	CE CI ENGTI YPE:	I: 36	34 ba	ase j	pair	9							
		((c) s:	TRANI	DEDNI	ESS:	doul									
	(ii) MOI	LECUI	LE T	YPE:	CDN	A .									•
	(ix) FE	-	E: AME/1	KEY:	CDS										
				CAT:				: /s	tand	ard_i	name	- "L\	V OR	F 7"		
	(xi) SE	QUEN	CE DI	ESCR:	IPTIC	ON:	SEQ	ID N	0:25	:					
Met									Lys					Ala	CCG Pro	48
															GCA	 96
Met	Gly	Asn	Gly 20	Gln	Pro	Val	Asn	Gln 25		Суб	Gln	Leu	Leu 30		Ala	
			Ser					Pro							AAG Lys	144
															ATC	192

55

-71-

CGG	CAC	CAC	CTC	ACC	CAG	ACT	GAA	CGC	TCC	CTC	TGC	TTG	CAA	TCG	ATC	240
Arg	His	His	Leu	Thr	Gln	Thr	Glu	Arg	Ser	Leu	Cys	Leu	Gln	Ser	Ile	
65					70					75					80	
CAG	ACG	GCT	TTC	AAT	CAA	GGC	GCA	GGA	ACT	GCG	TCG	CTT	TCA	TCC	AGC	288
Gln	Thr	Ala	Phe	Asn	Gln	Gly	Ala	Gly	Thr	Ala	Ser	Leu	Ser	Ser	Ser	
				85				•	90					95		
GGG	AAG	GTC	AGT	TTT	CAG	GTT	GAG	TTT	ATG	CTG	CCG	GTT	GCT	CAT	ACA	336
Gly	Lys	Val	Ser	Phe	Gln	Val	Glu	Phe	Met	Leu	Pro	Val	Ala	His	Thr	
			100					105					110			
GTG	CGC	CTG	ATT	CGC	GTG	ACT	TCT	ACA	TCC	GCC	AGT	CAG	GGT	GÇA	AGT	384
Val	Arg	Leu	Ile	Arg	Val	Thr	Ser	Thr	Ser	Ala	Ser	Gln	Gly	Ala	Ser	
		115					120					125		٠		
						-										

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Ala Gly Lys Asn Gln Ser Gln Lys Lys Lys Ser Thr Ala Pro 1 5 10

Met Gly Asn Gly Gln Pro Val Asn Gln Leu Cys Gln Leu Leu Gly Ala 20 25 30

Met Ile Lys Ser Gln Arg Gln Gln Pro Arg Gly Gln Ala Lys Lys
35 40 45

Lys Lys Pro Glu Lys Pro His Phe Pro Leu Ala Ala Glu Asp Asp Ile 50 60

Arg His His Leu Thr Gln Thr Glu Arg Ser Leu Cys Leu Gln Ser Ile
65 70 75 80

Gln Thr Ala Phe Asn Gln Gly Ala Gly Thr Ala Ser Leu Ser Ser Ser 85 90 95

Gly Lys Val Ser Phe Gln Val Glu Phe Met Leu Pro Val Ala His Thr 100 105 110

Val Arg Leu Ile Arg Val Thr Ser Thr Ser Ala Ser Gln Gly Ala Ser 115 120 125

Claims:

5

10

15

20

- 1. A purified and isolated nucleic acid comprising a fragmentary portion of the VR-2332 genome between ORF 2 and ORF 7 and having a length sufficient to provide a nucleotide sequence that is unique with respect to the LV virus genome.
- 2. The nucleic acid as set forth in Claim 1, said portion including a coding region for the expression of a polypeptide capable of inducing an anti-PRRS immune response in swine.
- 3. The nucleic acid as set forth in Claim 1, including said portion selected from Sequence ID No. 1 and being sufficiently dissimilar from portions of Sequence ID. No. 14 to prevent PCR amplification of portions of said Sequence ID No. 1.
- 4. The nucleic acid as set forth in Claim 3, including said portion consisting essentially of a sequence selected from a group consisting of Sequence ID Nos. 2, 4, 6, 8, 10, 12, and combinations thereof, together with all complimentary strands and degenerate amino acid residue coding equivalencies that may be obtained by site-directed mutagenesis.
- 5. The nucleic acid as set forth in Claim 3, including said portion consisting essentially of a sequence selected from a group consisting of Sequence ID Nos. 2, 4, 6, 8, 10, and 12, as well as inverse complimentary sequences depending from Sequence ID Nos. 2, 4, 6, 8, 10, and 12.

10

25

30

- 6. The nucleic acid as set forth in Claim 5, said group consisting of Sequence ID No. 1 from positions 2783 to 2801, the inverse compliment of Sequence ID No. 1 from positions 3271 to 3289, Sequence ID No. 1 from positions 2289 to 2307, the inverse compliment of Sequence ID No. 1 from positions 2862 to 2880, Sequence ID No. 14 from positions 14112 to 14131, the inverse compliment of Sequence ID No. 14 from positions 14551 to 14570, Sequence ID No, 14 from positions 14575 to 14594, and the inverse compliment of Sequence ID No. 14 from positions 14955 to 14974, sequence ID No. 1 from positions 2814 to 2832, the inverse compliment of Sequence ID No. 1 from positions 3273 to 3291, Sequence ID No. 1 from positions 2816 to 2834, and the inverse compliment of Sequence ID No. 1 from positions 3181 to 3198.
- 7. A chimeric vector for use in expressing viral proteins from a host cell, comprising a promoter and a termination sequence connected by a coding region insert including a fragmentary portion of the VR-2332 genome between ORF 2 and ORF 7, said insert having a length sufficient to provide a nucleotide sequence unique with respect to the LV virus genome, together with all degenerate amino acid residue coding equivalencies that may be obtained by site-directed mutagenesis.
 - 8. The vector as set forth in Claim 7, including said insert consisting essentially of a sequence selected from a group consisting of Sequence ID Nos. 2, 4, 6, 8, 10, and 12, as well as inverse complimentary sequences depending from Sequence ID Nos. 2, 4, 6, 8, 10, and 12.
 - 9. A vaccine for immunizing animals against a VR-2332 form of PRRS, comprising a polypeptide-coding region replicating a nucleotide sequence selected as a portion of Sequence ID No. 1 and having a length sufficient to provide a nucleotide sequence unique in comparison with respect to Sequence ID No. 14.
 - 10. The vaccine as set forth in Claim 9, said coding region consisting essentially of a member selected from the group consisting of Sequence ID Nos. 2, 4, 6, 8, 10, and 12, and combinations thereof.

11. A vaccine for immunizing animals against a VR-2332 form of PRRS, comprising a VR-2332 amino acid residue sequence having a length sufficient to provide uniqueness in comparison with respect to LV virus amino acid residue sequences.

5

12. The vaccine as set forth in Claim 11, said VR-2332 amino acid residue sequence consisting essentially of a sequence selected from the group consisting of Sequence ID Nos. 3, 5, 7, 9, 11, and 13, and combinations thereof.

10

- 13. A diagnostic assay for distinguishing between PRRS-causative viral strains, said assay comprising the steps of:
 - providing PCR oligonucleotide primers capable of selectively amplifying fragmentary genomic portions of a wild-type PRRS-causative virus:

15

- obtaining a sample including cDNA derived from swine exhibiting PRRS clinical signs; and
- using said primers in a polymerase chain reaction under conditions capable of selective amplification of cDNA from said PRRS-causative virus in said sample.

20

14. The assay as set forth in Claim 13, said PRRS-causative virus being selected from a group consisting of VR-2332 and LV virus.

25

30

15. The assay as set forth in Claim 14, including said primers being selected from a group consisting of fragmentary portions of Sequence ID No. 1, complimentary fragments of Sequence ID No. 1, fragmentary portions of Sequence ID No. 14, and complimentary fragments of Sequence ID No. 14, said primers being unique in comparison with respect to Sequence ID No. 14 when said primers derive from Sequence ID No. 1 when said primers derive from Sequence ID No. 1 when said primers derive from Sequence ID No. 14;

- 16. A method of vaccinating an animal against VR-2332-caused PRRS, said method comprising the steps of:
 - providing a vaccine including at least one material selected from a group consisting of VR-2332 based polypeptides and VR-2332 based nucleic acids; and
 - administering said vaccine to said animal in a manner permitting said animal to develop an immune response to said material.


```
Fig. 2A.
```

MKWGPCKAFLIKLANFLWML ORF 2 1 ATGAAATGGGGTCCATGCAAAGCCTTTTTGACAAAATTGGCCAACTTTTTGTGGATGCTT SRSSWCPLLISLYFWPFCLA S P S P V G V W S F A S D W F A P R Y S 121 TCACCATCGCCGGTTGGCTGGTGGTCTTTTGCATCAGATTGGTTTGCTCCGCGATACTCC V R A L P F T L S N Y R R S Y E A F L S Q C Q V D I P T V G T K H P L G M L V H 241 CAGTGCCAAGTGGACATTCCCACCTGGGGAACTAAACATCCCTTTGGGATGCTTTGGCAC HKVSTLIDEMVSRRMYRIME 301 CATAAGGTGTCAACCCTGATTGATGAAATGGTGTCGCGTCGAATGTACCGCATCATGGAA KAGQAAVKQVVSEATLSRIS 361 AAAGCAGGCAGGCTGCCTGGAAACAGGTGGTGAGCGAGGCTACGCTGTCTCGCATTAGT SLDVVAHFOHLAAIEAETCK 421 AGTTTGGATGTGGTGGCTCATTTTCAGCATCTAGCCGCCATTGAAGCCGAGACCTGTAAA YLASRLPMLHNLRMTGSNVT 481 TATTTGGCCTCCCGGCTGCCCATGCTACACAACCTGCGCATGACAGGGTCAAATGTAACC IVYNSTLNQVFAIFPTPGSR 541 ATAGTGTATAATAGCACTTTGAATCAGGTGTTTGCTATTTTTCCAACCCCTGGTTCCCGG DRF 3 MVNSCTFLHIFL PKL H D F Q Q W L I A V H S S I F S S 601 CCAAAGCTTCATGATTTTCAGCAATGGTTAATAGCTGTACATTCCTCCATATTTTCCTCT CCSFLYSFCCAVVAGSNTTY V A A S C T L F V V L W L R V P I L R T 661 GTTGCAGCTTCTTGTACTCTTTTTGTTGTGCTGTGGTTGCGGGTTCCAATACTACGTACT CFWFPLVRGNFSFELTVNYT V F G F R W L G A I F L S N S Q * 721 GTTTTTGGTTTCCGCTGGTTAGGGGCAATTTTTCTTTCGAACTCACAGTGAATTACACGG V C P P C L T R Q A A T E I Y E P G R S 781 TGTGTCCACCTTGCCTCACCCGGCAAGCAGCCACAGAGATCTACGAACCCGGTAGGTCTC LWCRIGYDRCGEDDHDELGF 841 TTTGGTGCAGGATAGGGTATGACCGATGTGGGGAGGACGATCATGACGAGCTAGGGTTTA MIPPGLSSEGHLTGVYAWLA 901 TGATACCGCCTGGCCTCTCCAGCGAAGGCCACTTGACTGGTGTTTACGCCTGGTTGGCGT FLSFSYTAQFHPEIFGIGNV 961 TCTTGTCCTTCAGCTACACGGCCCAGTTCCATCCCGAGATATTCGGGATAGGGAATGTGA SRVYVDIKHQLICAEHDGQN 1021 GTCGAGTTTATGTTGACATCAAACATCAACTCATCTGCGCCGAACATGACGGGCAGAACA

Fig.2B.

	<i>3</i> · · · -	
		T T L P R H D N I S A V F Q T Y Y Q H Q CCACCTTGCCTCGTCATGACAACATTTCAGCCGTGTTTCAGACCTATTACCAACATCAAG
ORF		MASSLLFLVVG
	1141	V D G G N W F H L E W L R P F F S S W L TCGACGGCGGCAATTGGTTTCACCTAGAATGGCTTCGTCCCTTCTTTTCCTCGTGGTTGG
		FKCLLVSQAFACKPCFSSSL
	1201	V L N V S W F L R R S P A N H V S V R V TTTTAAATGTCTCTTGGTTTCTCAGGCGTTCGCCTGCAAACCATGTTTCAGTTCGAGTCT
		A D I K T N T T A A A S F A V L Q D I S
		L Q I L - R P T P P Q R Q A L L S S K T S
	1561	TGCAGATATTAAGACCAACACCACCGCAGCGGCAAGCTTTGCTGTCCTCCAAGACATCAG
		C L R H R D S A S E A I R K I P Q C R T V A L G I A T R P L R R F A K S L S A V
	1321	TTGCCTTAGGCATCGCGACTCGGCCTCTGAGGCGATTCGCAAAATCCCTCAGTGCCGTAC
		AIGTPVYVTITANVTDENYL
		R R *
	1381	GGCGATAGGGACACCCGTGTATGTTACCATCACAGCCAATGTGACAGATGAGAATTATTT
	1441	H S S D L L M L S S C L F Y A S E M S E ACATTCTTCTGATCTCCTCATGCTTTCTTGCCTTTTCTATGCTTCTGAGATGAGTGA
		KGFKVVFGNVSGIVAVCVNF
	1501	AAAGGGATTTAAGGTGGTATTTGGCAATGTGTCAGGCATCGTGGCTGTGTGTG
	1561	T S Y V Q H V K E F T Q R S L V V D H V TACCAGCTACGTCCAACATGTCAAGGAGTTTACCCAACGCTCCCTGGTGGTCGACCATGT
		RLLHFMTPETMRWATVLACL
	1621	
DRF		FAILLAI* MLEKCLTA
	1681	TTTTGCCATTCTGTTGGCAATTTGAATGTTTAAGTATGTTGGAGAAATGCTTGACCGCGG
74	1741	G C C S R L L S L W C I V P F C F A V L GCTGTTGCTCGCGATTGCTTCTTTGTGGTGTATCGTGCCGTTCTGTTTTGCTGTGCTCG
		ANASNDSSSHLOLIYNLTLC
	1801	CCAACGCCAGCAACGACAGCTCCCATCTACAGCTGATTTACAACTTGACGCTATGTG
	1861	E L N G T D W L A N K F D W A V E S F V AGCTGAATGGCACAGATTGGCTAGCTAACAAATTTGATTGGGCAGTGGAGAGTTTTGTCA
		IFPVLTHIVSYGALTISHFL
	1921	TCTTTCCCGTTTTGACTCACATTGTCTCCTATGGTGCCCTCACTACCAGCCATTTCCTTG
	1981	D T V A L V T V S T A G F V H G R Y V L ACACAGTCGCTTTAGTCACTGTGTCTACCGCCGGGTTTGTTCACGGGCGGTATGTCCTAA
		SSIYAVCALAALTCFVIRFA
	2041	GTAGCATCTACGCGGTCTGTGCCCTGGCTGCGTTGACTTGCTTCGTCATTAGGTTTGCAA

```
Fig. 2C.
```

J		
	2101	K N C M S W R Y A C T R Y T N F L L D T AGAATTGCATGTCCTGGCGCTACGCGTGTACCAGATATACCAACTTTCTTCTGGACACTA
		K G R L Y R W R S P V I I E K R G K V E
	2116	AGGGCAGACTCTATCGTTGGCGGTCGCCTGTCATCATAGAGAAAAGGGGGCAAAGTTGAGG
DDE (2221	V E G H L I D L K R V V L D G S V A T P TCGAAGGTCATCTGATCGACCTCAAAAGAGTTGTGCTTGATGGTTCCGTGGCAACCCCTA
ORF 6		MGSSLDDFCHDST ITRVSAEQWGRP*
	2281	TAACCAGAGTTTCAGCGGAACAATGGGGTCGTCCTTAGATGACTTCTGTCATGATAGCAC
	2341	A P Q K V L L A F S I T Y T P V M I Y A GGCTCCACAAAAGGTGCTTTTGGCGTTTTCTATTACCTACACGCCAGTGATGATATATGC
	2401	L K V S R G R L L G L L H L L I F L N C CCTAAAGGTGAGTCGCGGCCGACTGCTAGGGCTTCTGCACCTTTTGATCTTCCTGAATTG
	2461	A F T F G Y M T F A H F Q S T N K V A L TGCTTTCACCTTCGGGTACATGACTTTCGCGCACTTTCAGAGTACAAATAAGGTCGCGCT
	2521	T M G A V V A L L W G V Y S A I E T W K CACTATGGGAGCAGTAGTTGCACTCCTTTGGGGGGTGTACTCAGCCATAGAAACCTGGAA
	2581	F I T S R C R L C L L G R K Y I L A P A ATTCATCACCTCCAGATGCCGTTTGTGCTTGCTAGGCCGCAAGTACATTCTGGCCCCTGC
	2641	H H V E S A A R F H P I A A N D N H A F CCACCACGTTGAAAGTGCCGCACGGTTTCATCCGATTGCGGCAAATGATAACCACGCATT
	2701	V V R R P G S T T V N G T L V P G L K S TGTCGTCCGGCGTCCACTACGGTCAACGGCACATTGGTGCCCGGGTTAAAAAG
ORF 7		M
	2761	L V L G G R K A V K Q G V V N L V K Y A CCTCGTGTTGGGTGGCAGAAAAGCTGTTAAACAGGGAGTGGTAAACCTTGTCAAATATGC
		PNNNGKQTEEKKGDGQPVNQ K*
	2821	CAAATAACAACGGCAAGCAGACAGAAGAAGAAGAAGGGGGGATGGCCAGCCA
		L C Q M L G K I I A Q Q N Q S R G K G P TGTGCCAGATGCTGGGTAAGATCATCGCTCAGCAAAACCAGTCCAGAGGCAAGGGACCGG
	2941	G K K N K K N P E K P H F P L A T E D GAAAGAAAATAAGAAGAAAACCCGGAGAAGCCCCATTTTCCTCTAGCGACTGAAGATG
	3001	D V R H H F T P S E R Q L C L S S I Q T ATGTCAGACATCACTTTACCCCTAGTGAGCGGCAATTGTGTCTGTC
	3061	A F N Q G A G T C T L S D S G R I S Y T CCTTTAATCAAGGCGCTGGGACTTGCACCCTGTCAGATTCAGGGAGGATAAGTTACACTG
		en e

Fig. 3A.

LV 1 MaqkNqsOkkkKstapnGnGOPVNQLCQ1LGamIksOrQ-qprG-G-qaKKKkPEKPHFPLAaEDD:RHH1 2332

69 psERqLCLsSiQTAFNQGAGTctLSdSGr;SytVEFsLPthHTVRLIRV--T-ASpsA

70 qtERSLCLqSIQIAFNQGAGTasLSSSGkvSfqVEFmLPvaHIVRLIRVtsTsASqgAs

SUBSTITUTE SHEET (RULE 28)

MrcshklgrfltphscfwwlfllCtglswsfadgNgdSStyQyJYNLTiCELNGTDWLsshFgWAVEtFVly

PVIIHIvSyGaLTISHFIDtvaLvtVSIAGFVhGRYVLsSiYavCalAAltCFVIRFAKNCMswRYACTRy

PvaTH11S1GFLTTSHFfDa1gLgaVSTAGFVgGRYVLcSvYgaCAFAAFvCFV1RaAKNCMacRYArTRFT

NF i v Ddr GRvh RWk SP i v v EK I GKa E V d Gn L v t i K h V V L e G v k A g P I TR t SA E QWe a 143 145

Fig.5B.

VR-2332

Hydrophobicity C

73

SUBSTITUTE SHEET (RULE 26)

145

RPIpPgrgal SskIS-V-al-G--iatR--P--IR-rfak-S-LsavrR RPIrPrlpvswSfrTSiVsdLtGsqqrkRkfPsesRpnvvKpSvLpstsR

TAATCAGGCAGGAACCATGTGACCGAAATTAAAAAAAAAA	98	>
123 TAAT TGGCGAGAACCATGCGGCCGAAATTAAAAAAAAAA	123	VR-2332
CGATTGGCGTGTGGCCTCTGAGTCACCTATTCAATTAGGGCGATCACATGGGGGTCATACT	25	>
62 TGATTGACATTGTGCCTCTAAGTCACCTATTCAATTAGGGCGACCGTGTGGGGGTGAGATT	62	VR-2332
	-	≥
1 IGGGCIGGCATICTIGAGGCATCTCAGTGTTIGAATIGGAAGAATGTGTGGAGAATGGCAC	-	VR-2332

INTERNATIONAL SEARCH REPORT

In....national application No.
PCT/US95/09927

	SSIFICATION OF SUBJECT MATTER A61K 39/12; C12N 15/14, 15/63		
, ,	424/186.1, 218.1, 815; 435/320; 536/23.72, 24.3		
	o International Patent Classification (IPC) or to both	national classification and IPC	
	DS SEARCHED		
	ocumentation searched (classification system follower	d by classification symbols)	
ii e	424/186.1, 218.1, 815; 435/320; 536/23.72, 24.3		
0.3.	424/186.1, 216.1, 613; 433/320; 336/23.72, 24.3		
Documental	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched
Class			
Electronic o	ata base consulted during the international search (na	ime of data base and, where practicable	, scarch terms used)
Please S	ee Extra Sheet.		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.
X	WO 93/03760 (COLLINS ET AL.) 04 MARCH 1993, see	9, 11, 16
	page 3 and claims.		
Υ	•		1-8, 10, 12-15
Υ	Journal of Veterinary Diagnostic	Investigation Volume 4	1-16
	,		
*	· · · · · · · · · · · · · · · · · · ·	992, Benfield et al.,	
	"Characterization of swine in		
	syndrome (SIRS) virus (isolate ATC	CC VR-2332)", pages 127-	
	133, see entire document.		
			* * * * * * * * * * * * * * * * * * * *
			· ·
X Furth	er documents are listed in the continuation of Box C	. See patent family annex.	
• Sp	icial cetagories of cited documents:	"I" least document published after the inte date and not in conflict with the applic	
"A" doc	rument defining the general state of the art which is not considered be of particular relevances	principle or theory underlying the inv	
		"X" document of particular relevance; the	claimed invention cannot be
	lier document published on or after the international filing date	considered novel or cannot be conside when the document is taken slope	red to involve an inventive step
Cita	nument which may throw doubts on priority claim(s) or which is do setablish the publication date of another citation or other		
~	cial remon (as specified)	considered to involve an inventive	stop when the document is
O doc	sument referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in the	
			·
the	priority date claimed	"A" document member of the same putent	
Date of the	actual completion of the international search	Date of mailing of the international sea	tou topoit
29 SEPTE	MBER 1995	190CT1995	
Name and a	sailing address of the ISA/US	Authorized officer V Ten and	/
Commission	ner of Patents and Trademarks	1 +) (00)	AO 10 1
Box PCT	D.C. 20031	LAWRENCE J. CARROLL, II	7 1
wasnington	, D.C. 20231	7-1hans No. (702) 208 0106	′

INTERNATIONAL SEARCH REPORT

Inc. .ational application No. PCT/US95/09927

Category*		Dalaus - An Shi - M-
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Archives of Virology, Volume 135, issued 1994, Suarez et al., "Direct detection of the porcine reproductive and respiratory syndrome (PRRS) virus by reverse polymerase chain reaction (RT-PCR)", pages 89-99, see summary and page 97 first full paragraph.	1-6, 13-16
Y	Journal of General Virology, Volume 75, Number 7, issued July 1994, Meng et al., "Molecular cloning and nucleotide sequencing of the 3'-terminal genomic RNA of the porcine reproductive and respiratory syndrome virus", pages 1795-1801, see entire document.	1-6
Y	Journal of General Virology, Volume 75, Number 3, issued March 1994, Mardassi et al., "Identification of the major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus", pages 681-685, see figure 2.	1-6
P, Y	Veterinary Microbiology, Volume 44, issued 1995, Katz et al., Antigenic differences between European and American isolates of porcine reproductive and respiratory syndrome virus (PRRSV) are encoded by the carboxyterminal portion of viral open reading frame 3", pages 65-76, see entire document.	1-16

INTERNATIONAL SEARCH REPORT

Incornational application No. PCT/US95/09927

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, DIALOG, MEDLINE, INPADOC, DERWENT WPI, AGRICOLA, CABA
SEARCH TERMS:PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME, PRRS, SWINE
RESPIRATORY AND INFERTILITY SYNDROME, SIRS, PORCINE EPIDEMIC ABORTION AND RESPIRATORY
SYNDROME, PEARS, VR 2332