

Arrangement

Geometric Transform

Junhui DENG

deng@tsinghua.edu.cn

Geometric Transform \mathcal{E}

- \mathcal{E} maps points in \mathcal{E}^d into hyperplanes in \mathcal{E}^{d+1} //lifting
- **\$\diamoldarrow\$** For any point $p = (\pi_1, ..., \pi_d)^T \in \mathcal{E}^d$, hyperplane $\mathcal{E}(p)$

$$= \{ \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_d, \mathbf{x}_{d+1})^{\mathsf{T}} \in \mathcal{E}^{d+1} \mid \mathbf{x}_{d+1} = 2\pi_1 \mathbf{x}_1 + \dots + 2\pi_d \mathbf{x}_d - (\pi_1^2 + \dots + \pi_d^2) \}$$

❖ Geometrically,

 $\mathcal{E}(p)$ is tangent to U

at the projection of p onto U

Computational Geometry, Tsinghua University

Distance to p

- \clubsuit Let p be a fix point in \mathcal{E}^d
- ❖ For any $x \in \mathcal{E}^d$, d(x, p) = ?//often asked by proximity queries
- ❖ Think of geometric transform...
- ❖ Denote the vertical projection of x
 - onto U as U(x)
 - onto a non-vertical hyperplane h as h(x)
- \Leftrightarrow Claim: $d^2(x, p) = d(U(x), h(x)), where <math>h = \mathcal{E}(p)$

(2

Bisector

- \clubsuit Let h_0 be the \mathcal{E}^d embedded in \mathcal{E}^{d+1}
- ***** For any 2 points p_1 and p_2 in h_0 the vertical projection of $\mathcal{E}(p_1)$ \cap $\mathcal{E}(p_2)$ onto h_0

between p_1 and p_2

is the bisector

Upper Envelope vs. Voronoi Diagram

- For P a finite set of points in E^d, let
 H = E(P) = { E(p) | p ∈ P }, and
 UE(P) be the upper envelope / topmost cell of the arrangement A(H)
 i.e. UE(P) = ∩_{p∈P} E(P)⁺

 The vertical projection of the facets of UE(P) onto h₀ is VD(P)
 //How about Delaunay triangulation then?
- ❖ Therefore, to compute a k-D Voronoi diagram, it suffices to
 - transform the set P of sites to a set H of hyperplanes in \mathcal{E}^{k+1} ,
 - compute the upper envelope UE($\mathcal{A}(H)$), and
 - project it back vertically onto h_o