Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 12, w maju 2021

Symbol $z(\cdot)$ oznacza od teraz – aż do odwołania – kwantyl rozkładu N(0,1). Oprócz tego: zadania 1–10 są zadaniami ćwiczeniowymi (0.5 pkt każde), zaś zadania 11–16 są kategorii (**E0.5**) każde.

- 1. Obszar krytyczny określony jest nierównością z>2. Poziom istotności α jest równy: a) 0.2280 b) 0.0228 c) 0.0500 d) 0.1000
- 2. Poziom istotności α odpowiadający obszarowi krytycznemu |z|>1.55to a) 0.5500 b) 0.0606 c) 0.1211 d) 0.1234
- 3. Poziom istotności $\alpha=0.075$. Obszar krytyczny dla lewostronnej hipotezy alternatywnej to: a) z<-1.34 b) z<-1.38 c) z<-1.40 d) z<-1.44.
- 4. Znaleźć wartość p-value dla z=2.34 i $H_a: \mu \neq \mu_0$: a) 0.0096 b) 0.0101 c) 0.0193 d) 0.0202
- 5. Znaleźć p-value jeśli $z=-3.05, H_a: \mu < \mu_0$: a) 0.0011 b) 0.0111 c) 0.0038 d) 0.0001
- 6. Podać wartość p-value jeśli $z=1.89, H_a: \mu>\mu_0$: a) 0.0588 b) 0.1234 c) 0.0249 d) 0.0669
- 7. Testowana hipoteza to $H_0: \mu = 10$, hipoteza alternatywna $H_a: \mu \neq 10$, poziom istotności $\alpha = 0.01$. Dla którego z poniższych 99% przedziałów ufności dla μ odrzucimy hipotezę zerową? a) (12.1, 15.3) b) (8.8 12.5) c) (5.5, 15.5) d) (9.9 10.5)
- 8. Testujemy hipoteze o wartości oczekiwanej na podstawie jednej, dużej próbki.

Które z poniższych zdań są prawdziwe? a) Testowana hipoteza jest jednostronna. b) Obliczona wartość statystyki testowej to -22.59. c) Rozmiar próbki jest równy 500. d) Wartością μ_0 jest 5.51912.

9. W trakcie eksperymentu mierzono czas reakcji na bodziec neurologiczny.

Które z poniższych zdań są prawdziwe? a) Testowana hipoteza jest dwustronna. b) Pole obszaru na prawo od t=3.30 pod gęstością t(14) jest równy 0.005. c) Nie odrzucamy hipotezy zerowej na poziomie istotności $\alpha=0.05$, ponieważ 1.5 nie należy do 95% przedziału ufności (1.665, 2.277). d) Próbka ma rozmiar 15.

10. Poniżej znajdują się wyniki ankiety typu TAK-NIE.

```
Test of p = 0.4 vs p not = 0.4 
Sample X N Sample p 95%CI Z-Value P-Value 1 180 400 0.450000 (0.401247,0.498753) 2.04 0.041
```

Które z poniższych zdań są prawdziwe? a) Ankietowano 400 osób, 180 osób udzieliło odpowiedzi TAK. b) Testowano hipotezę jednostronną. c) Poziom istotności to $\alpha=0.05$. d) Obszar pod krzywą gęstości, na prawo od punktu 2.04, ma pole 0.041.

11. (E0.5) Przepytano 500 osób, pytanie było typu TAK-NIE.

	Α	В	С	D	E	1
1	0.25	Frequency of YES answer	'=125/500)		
2	0.0194	standard error	'=SQRT(C1*(1-C1)	/500)	
3	1.96	quantile of N(0,1)	'=NORM.	INV(0.975	5,0,1)	
4					1	
5	0.212	left side of confidence interval	*'=C1-C2*	C3		
6	0.288	right side of confidence inter-	'=C1+C2	*C3	i	
7					1	
8	2.7951	value of test statistics	'=(C1-0.2)/SQRT(0	.2*0.8/500)
9	0.0052	p-value	'=2*(1-NC	RM.DIST	(C8,0,1, 1)))
10			2 200		1	

Które z poniższych zdań są prawdziwe? a) Wartością testowaną jest $p_0=0.20$ b) Wartość 0.0052 to jednostronne p-value. c) Wartość p_0 nie należy do 95% przedziału ufności. d) Wartość n jest duża, $np_0 \geqslant 5$, zatem można przybliżać rozkład dwumianowy rozkładem normalnym.

12. **(E0.5)** Stawiamy hipotezę, że odchylenie standardowe zmiennej jest mniejsze od 5.

	Α	В	С	D	E	F
1	70	3.437758	Standard	deviation	=STDEV	(A1:A12)
2	73	5.2	Value of	est statist	ics =11*E	31^2/25
3	70					
4	72	0.078905	p-value =	CHISQ.D	IST(B2,1:	1,1)
5	74					
6	70	p-value > 0.0	5, do not i	reject H0 l	nypothesi	s
7	74					
8	76					
9	75					
10	80					
11	74			y.		
12	80					
12						

Które z poniższych zdań są prawdziwe? a) S^2 dla próbki ma wartość 3.43776. b) Przy poziomie istotności $\alpha = 0.05$ nie odrzucamy hipotezy H_0 . c) Obszar pod gęstością rozkładu $\chi^2(11)$ ma pole 0.078905. d) Jest to test prawostronny.

- 13. **(E0.5)** Zmierzono prędkości 100 samochodów. Poniżej wyznaczono 95%-procentowy przedział ufności dla odchylenia standardowego.
 - Które z poniższych zdań są prawdziwe? a) $S^2=10.64818$ b) Przedział ufności dla σ^2 to (87.40710, 153.0102) c) Przedział ufności dla σ to (9.349181, 12.36973) d) Pole obszaru pod gęstością $\chi^2(99)$ od 73.3611 do 128.4219 jest równe 0.99.
- 14. **(E0.5)** Testujemy hipotezę na poziomie istotności $\alpha=0.05$. Przy której wartości **p-value** odrzucimy hipotezę zerową: a) p-value= 0.05 b) p-value= 0.14 c) p-value= 0.024 d) p-value= 0.34.
- 15. **(E0.5)** Przedmiotem testowania hipotez jest a) opisywanie próbek, b) opisywanie populacji, c) wnioskowanie o populacji na podstawie próbek, d) wnioskowanie o próbkach na podstawie populacji.

	Α	В	С	D	E	
1						
2	10.64818	Standard	deviation	=STDEV	(A15:J24)	
3	113.3838	Variance	=A2^2			
4						
5	73.3611	Quantile (0.975 = C	HISQ.INV	(0.025,99)	
6	128.4219	Quantile (0.025 = C	HISQ.INV	(0.975,99)	
7						
8	87.40719	Left side	of CI for v	ariance =	99*A2/A6	
9	153.0102	Right side	of CI for	variance	=99*A2/A	5
10						
11	9.349181	Left side	of st devia	tion =s	qrt(A8)	
12	12.36973	Right side	of st dev	iation =so	qrt(A9)	
13		10000				
14						

16. **(E0.5)** Wykonujemy test t o równości średnich dla dwóch próbek. Zakładamy przy tym, że: a) próbki są niezależne b) próbki pochodzą z populacji o rozkładzie normalnym c) próbki pochodzą z rozkładu $t(n_1+n_2-2)$ d) próbki pochodzą z tej samej populacji.

Niniejszym odwołuję założenie iż $z_{(\cdot)}$ oznacza kwantyl rozkładu N(0,1),

Witold Karczewski