Cryptography:Mathematical Foundation RSA

Udaya Parampalli

Department of Computing and Information Systems
University of Melbourne

January, 2016

Functions

Definition: A function is defined by a triplet $\langle X, Y, f \rangle$, where X: a set called domain; Y: a set called range or codomain and f: a rule which assigns to each element in X precisely one element in Y.

It is denoted by $f: X \to Y$ Example: Let $X = Y = \mathbf{Z}_5$, Then $f: X \to Y$ given by f(x) = 2 * x is a function.

Definitions

Image: If $x \in X$, the image of x in Y is an element $y \in Y$ such that y = f(x).

Pre-image: If $y \in Y$, then a Pre-image of y in X is an element $x \in X$ such that f(x) = y.

Image of a function f (Im(f): A set of all elements in Y which have at least one Pre-image.

$$Im(f) = \bigcup_{x \in X} \{f(x)\}\tag{1}$$

One-to-one (injective) Function

A function is one-to-one (injective) if each element in the codomain Y is the image of **at most** one element in the domian X. In other words, each element in x in X is related to different y in X, never two different elements in X map to a same element in Y. We can say that $|X| \leq |Y|$. An alternate definition would be, a $f: X \to Y$ is one-to-one (injective), provided

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.

Examples: Let $X = Y = \mathbf{Z}_4$, Then $f : X \to Y$ given by f(x) = 3 * x is a one-to-one function. However $f(x) = x^2$ is a not a one-to-one function.

Onto (surjective) Function

A function is Onto (surjective) if each element in the codomain Y is the image of **at least** one element in the domian X.

A function $f: X \to Y$ is onto if Im(f) = Y

We can say that, if f is onto then $|Y| \leq |X|$.

Example: Let $X = Y = \mathbf{Z}_5$, Then $f : X \to Y$ given by $f(x) = x^2$ is a onto function.

Bijection: A function which is both one-to-one and onto.

In this case, we have $|X| \leq |Y|$ and $|Y| \leq |X|$. This implies

|X|=|Y|.

If $f: X \to Y$ is one-to-one then $f: X \to Im(f)$ is a bijection.

If $f: X \to Y$ is onto and X and Y are finite sets of the same size then f is a bijection.

Bijection

Let m and n are relatively prime number, $X = \mathbf{Z}_{mn}$, $Y = \mathbf{Z}_m \times \mathbf{Z}_n$. Then the mapping

$$f: X \rightarrow Y, f(x) = ((x \mod m), x \mod n),$$

is a bijection.

Example: $X := \mathbf{Z}_6$, $Y = \mathbf{Z}_2 \times \mathbf{Z}_3$. The function f given below is a bijection:

$X = \mathbf{Z}_6$	\rightarrow	$\mathbf{Z}_2 imes \mathbf{Z}_3$
0	\rightarrow	(0,0)
1	\rightarrow	(1,1)
2	\rightarrow	(0,2)
3	\rightarrow	(1,0)
4	\rightarrow	(0,1)
5	\rightarrow	(1, 2)

Table: $f: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$

Can you show this is true using Euclidean algorithm?

One-Way functions

A function $f: X \to Y$ is said to be one - way, if It is **EASY** to compute f(x), for all $x \in X$, but for most elements $y \in Im(f)$, it is **computationally** infeasible to find any x such that f(x) = y. **Trapdoor one-way functions**: It is one - way function without the trapdoor. But it ceases to be one - way if the trapdoor information is known.

For an integer $n \ge 2$, let \mathbf{Z}_n^* be the set of all integers less than n but relatively prime to n.

Euler's Theorem

Theorem

If
$$a \in \mathbf{Z}_n^{\star}$$
, then $a^{\phi(n)} = 1 \pmod{n}$.

Proof: Let $R(n) = \{r_1, r_1, \ldots, r_{\phi(n)}\}$, be reduced set of residues modulo n. Now consider the set a $R(n) = \{a$ r_1, a r_1, \ldots, a $r_{\phi(n)}\}$. Since a is relatively prime to n, the set aR(n) is identically equal to R(n). Note that a only rearranges the residues in R(n). Hence we can multiply all the elements in R(n) and equate with the multiplication of all the elements of a R(n). Hence we can write:

$$r_1 \times r_1 \cdots \times r_{\phi(n)} = ar_1 \times ar_1 \cdots \times ar_{\phi(n)}$$
.

Note that r_i s are relatively prime to n and hence we can cancel r_i in the above equation by multiplying r_i^{-1} to both the side of the equation. Then the above equation simplifies to

$$1=a^{\phi(n)}.$$

Hence the result.

Fermat's Theorem

Theorem

Let p be a prime number, then if gcd(a, p) = 1, then

$$a^{p-1} = 1 \ (mod \ p).$$

This is the particular case of Euler's Theorem when n is prime.

Fermat's Little Theorem

Theorem

Let p be a prime number,

$$a^p = a \pmod{p}$$
, for any integer a.

When a is relatively prime, the theorem follows from the Fermatss theorem. When a is multiple of p, the result is trivially true.

Chinese Remainder Theorem (CRT)

Let n_1 , n_2 be pair-wise relatively prime integers, he system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1},$$

$$x \equiv a_2 \pmod{n_2},$$

has a unique solution modulo $n = n_1 n_2$.

Note that the mapping $f: \mathbf{Z}_{n_1 \ n_2} \to \mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2}$ given by $f(x) \to x \mod n_1$, $x \mod n_2$ is a bijection.

The proof has two points. First show that the function is one-to-one. If there exists two elements x and y such that

$$x \mod n_1 = y \mod n_1,$$

and

$$x \mod n_2 = y \mod n_2$$
,

then x-y is divisible by both n_1 and n_2 . Since n_1 and n_2 are relatively prime, x-y is divisible by n_1 $n_2=n$. Hence x and y are identical equal modulo n. This proves that the function is one-to-one. In the next slide, we give an explicit construction for the inverse function which proves that the map is onto. Hence the f is bijection.

In fact, Chinese Remainder theorem gives a construction method to obtain the inverse function. Let

$$N_1 = n/n_1 = n_2, N_2 = n/n_2 = n_1.$$

Choose

$$M_1 = (N_1)^{-1} \pmod{n_1}$$

and

$$M_2 = (N_2)^{-1} \pmod{n_2}$$

.

Then the solution to the simultaneous congruences is given by

$$x = a_1 (N_1 M_1) + a_2 (N_2 M_2) \pmod{n}$$
.

You can immediately verify that x determined as above satisfies the congruences (This is because $N_1 \mod n_2 = 0$ and $N_2 \mod n_1 = 0$)

Chinese Remainder Theorem (CRT)

If n_1, n_2, \ldots, n_k are pair-wise relatively prime integers, k being a positive integer, the system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1},$$
 $x \equiv a_2 \pmod{n_2},$
 $x \equiv a_3 \pmod{n_3},$
 \dots
 $x \equiv a_k \pmod{n_k},$

has a unique solution modulo $n = n_1 n_2 \dots n_k$.

Let

$$N_i = n/n_i$$

for i = 1, 2, ..., k.

Choose

$$M_i = (N_i)^{-1} \pmod{n_i},$$

for i = 1, 2, ..., k.

Then the solution is given by

$$x = \sum_{i=1}^{k} a_i N_i M_i \pmod{n}.$$

RSA: Key Generation by entities

Before starting any transactions, Alice(A) and Bob(B) will set up the following key initializations.

Alice will do the following:

- Generate two large and distinct primes p_A and q_A of almost equal size.
- **2** Compute $n_A = p_A q_A$ and $\phi_A = (p_A 1)(q_A 1)$.
- **3** Select a random integer e_A , such that $GCD[e_A, \phi_A] = 1$.
- **4** Compute the integer d_A such that

$$e_A d_A \equiv 1 \pmod{\phi_A}$$
.

(Use Extended Euclidean Algorithm).

5 Alice's Public key is (n_A, e_A) . Alice's Private key is d_A .

Similarly, Bob will also initialize the key parameters. Let **Bob's Public key be** (n_B, e_B) and **Bob's Private key be** d_B ,

RSA Public encryption

Here we assume that Bob wants to send a message to Alice. $Encryption \ at \ B$

- Get A's Public Key (n_A, e_A) .
- ② Choose a message M as an integer in the interval $[0, n_A 1]$.
- **3** Compute $c = M^{e_A} \pmod{n_A}$.
- Send the cipher text c to A.

Decryption at A

1 To recover m compute $M = c^{d_A} \mod n_A$ using the secret d_A .

Proof of RSA Decryption

Since $e_A d_A \equiv 1 \pmod{\phi_A}$, by the extended Euclidean algorithm it is possible to find k such that

$$e_A d_A = 1 + k \phi_A = 1 + k(p_A - 1)(q_A - 1)$$

(Run Extended Euclidean algorithm on $(e_A, \phi(n_A))$ or $(d_A, \phi(n_A))$.) From Fermat' theorem we get,

$$M^{p_A-1} \equiv 1 \pmod{p_A}$$
.

Hence,

$$M^{e_Ad_A} \equiv M^{1+k(p_A-1)(q_A-1)} \equiv M \; (M^{(p_A-1)})^{(q_A-1)} \equiv M \; (mod \; p_A).$$

Similarly,

$$M^{e_Ad_A} \equiv M^{1+k(p_A-1)(q_A-1)} \equiv M \; (M^{(q_A-1)})^{(p_A-1)} \equiv M \; (mod \; q_A).$$

Since, p_A and q_A are distinct primes, it follows from Chinese Remainder Theorem that

$$M^{e_A d_A} \equiv M \pmod{n_A}$$
.

This implies,

$$c^{d_A}=(M^{e_A})^{d_A}\equiv M\ (mod\ n_A).$$

More serious proof of RSA Decryption

Note that we need to prove

$$(M^{e_A})^{d_a}=M^{e_A}$$
 $d_A=M$ mod n_A .

If M is relatively prime to n_A , then this implies $(M, p_A) = (M, q_A) = 1$. Then the arguments in the previous slides prove the result.

You can also see this as an application of Eulers's theorem. Note that,

$$e_A d_A = 1 + k \phi_A = 1 + k(p_A - 1)(q_A - 1).$$
 (2)

Then

$$M^{e_A \ d_A} = M^{1+k\phi_A} = M \ M^{k\phi_A} = M \ (M^{\phi_A})^k = M$$

as $M^{\phi_A} = 1 \mod n_A$ (Eulers's theorem).

However, again note that to be able to use Fermat's or Euler's theorem, we need $(M, n_A) = 1$.

What if M is not relatively prime to n?

Note that the probability that M is not relatively prime to n_A is very small $(1/p_A+1/q_A-1/(p_Aq_A))$. If we just ignore this possibility we are done. But, if you are serious and want to prove the RSA result for all $M < n_A$, then see the following.

Case when M is not relatively prime to n_A .

In this case M is divisible by either p_A or q_A . If it is divisible by both p_A and q_A , then M=0 mod n_A and hence the RSA result is trivially true. Then with out loss of generality assume that p_A divides M and hence we can write M=c p_A . Then we must have $(M,q_A)=1$ (Otherwise, M is also multiple of q_A and hence identically equal to 0 mod n_A).

Now we can use Fermat's theorem

$$M^{(q_A-1)}=1 \bmod q$$

Then taking $(k(p_A-1))^{th}$ power on either side of the above equation, we get,

$$M^{k(p_A-1)(q_A-1)} = 1 \mod q_A,$$

where k is as in (2). This implies

$$M^{k(p_A-1)(q_A-1)} = 1 + k' q_A.$$

Multiplying each side by $M = cp_A$, we get

$$M^{k(p_A-1)(q_A-1)+1} = M + k' \ c \ p_A \ q_A = M + k'' \ n_A.$$

Taking $mod n_A$ on both sides gives the result.