

Question 2:

Given Bayesian Network,

Factorization of probability distribution can be given as,

 $P(\chi_1,\chi_2,\chi_3,\chi_4,\chi_5,\chi_6,\chi_1) = \prod_{i=1}^{n} P(\chi_i|Pa_i)$

 $= \prod_{i=1}^{n} P(x_i|\Pi_i) = \prod_{i=1}^{n} P(x_i|\Pi_i)$

P(x1, x2, x3, x4, x5, x6, x-1) = P(x1 | x4 x6).

P(22/24) P(23/2427) P(24/2526) P(25)

P(26/27) P(201)

Explanation:

- · xy -> xy -> x2 Markov chain with middle node shaded
- · 25 > 24 > 26 middle node not shaded
- · Ball doesnot pass $x_5 \rightarrow x_4 \rightarrow x_6 \rightarrow x_7 \rightarrow x_3 \rightarrow x_4$
- (e) 25 and 24 are conditionally independent given 23, 22 and 24 'False'

Explanation:

- · n5 -> n6 passes
- not shaded. passes & middle node

- · Doesn't pass $24 \rightarrow 24 \rightarrow 23 \rightarrow 27$ middle node not shaded.
- · 22 > 24 > 24 form Markov chain & middle node shaded.
- (b) x5 and x3 are conditionally independent given z6 and xy- 'False!

Explanation:

- · 25 -> 24 ->2 ->23 form 2 Markov chains
- (i) 25 and 22 are independent 'False'
 Explanation: No modes are shaded.
- (i) 22 and 24 are conditionally independent given 24 'True'

Question-3

Given,

To find: wood : we see se

(1) likelihood of p(y) using HMM
(ii) Individual marginals of states where p(q0/y) and p(q1/y).

Step 1: a state HMM

$$A = \begin{cases} q_0 \\ y_0 \\ y_1 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_6$$

: likelihood
$$P(y)$$
:

$$\begin{bmatrix}
\frac{1}{12} \times \frac{1}{4} & \frac{1}{12} \times \frac{7}{8} \\
\frac{1}{12} \times \frac{1}{8} & \frac{1}{12} \times \frac{7}{8}
\end{bmatrix} = \frac{1}{3} \begin{bmatrix} \frac{1}{12} \times \frac{1}{2} & \frac{1}{12} \\
\frac{1}{2} \times \frac{1}{2} & \frac{1}{2} \times \frac{1}{2}
\end{bmatrix}$$

$$\therefore P(y) = \begin{bmatrix} \frac{1}{12} + \frac{7}{3} + \frac{3}{4} + \frac{1}{12} \\
\frac{1}{128} \times \frac{384}{384} \times \frac{16}{16} \times \frac{16}{16}$$

$$= \frac{53}{192}.$$

Iteration 0: When using (1: (-4,-5)

$$A = \sqrt{(-3+4)^{2} + (-1+5)^{2}} = 4.12$$

$$B = \sqrt{(-1+4)^{2} + (-3+5)^{2}} = 3.60$$

$$C = \sqrt{(-2+4)^{2} + (-6+5)^{2}} = 2.23$$

$$D = \sqrt{(-5+4)^{2} + (-1+5)^{2}} = 2.23$$

$$E = \sqrt{(3+4)^{2} + (1+5)^{2}} = 4.21$$

$$E = \sqrt{(3+4)^{2} + (1+5)^{2}} = 10$$

$$G = \sqrt{(3+4)^{2} + (1+5)^{2}} = 13.03$$

$$H = \sqrt{(8+4)^{2} + (1+5)^{2}} = 13.41$$

$$When using $C_{2} = (5,4)$

$$A = \sqrt{(3-5)^{2} + (-1-4)^{2}} = 9.43$$

$$B = \sqrt{(-1-5)^{2} + (-3-4)^{2}} = 9.21$$

$$C = \sqrt{(-2-5)^{2} + (-6-4)^{2}} = 9.21$$

$$E = \sqrt{(3-5)^{2} + (-1-4)^{2}} = 3.60$$$$

$$F = \sqrt{(2-5)^2 + (3-4)^2} = 3.16$$

$$G = \sqrt{(3-5)^2 + (6-4)^2} = 2.82$$

$$H = \sqrt{(8-5)^2 + (1-4)^2} = 4.24$$
Distance matrix can be given as,

$$A B C D E F G H$$

$$D_0 = 4.12 3.60 2.23 2.23 9.21 10 13.03 13.41 G$$

$$9.43 9.21 12.20 15.62 3.60 3.16 2.82 4.29 G$$

$$C_1 \text{ is considered as group 1}$$

$$C_2 \text{ is considered as group 2}$$

$$Step 3: Object Clustering:$$
We have to assign each object basing upon the minimum distance.

$$A, B, C, D \text{ belong to group 1}$$

$$E, F, G, H \text{ belong to group 2}$$

$$Then,
$$G' = \begin{bmatrix} A B C D E F G H \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$group 2$$$$

$$Q = \left(\frac{-3-1-2-5}{4} \right), \frac{-1-3-6-7}{4} = \left(\frac{-11}{4}, \frac{-17}{4} \right)$$

$$= \left(\frac{-2.75}{.95}, \frac{-1-3-6-7}{.95} \right)$$

$$C_2 = \left(\frac{3+2+3+8}{4}, \frac{1+3+6+1}{4}\right) = \left(\frac{4}{1}\right) = \left$$

Iteration 1: Using G

$$A = \sqrt{(-3+2-75)^{2}+(-1+4.25)^{2}} = 3.25$$

$$G = (3+2.75)^{2} + (6+4.25)^{2} = 11.75$$

When using
$$(2 = (4, 2.75))$$
 $A = (-3-4)^{2} + (-1-2.75)^{2} = 7.94$
 $B = (-1-4)^{2} + (-3-2.75)^{2} = 7.61$
 $C = (-2-4)^{2} + (-6-2.75)^{2} = 10.60$
 $D = (-5-4)^{2} + (-1-2.75)^{2} = 13.26$
 $E = (3-4)^{2} + (1-2.75)^{2} = 2.01$
 $G = (3-4)^{2} + (6-2.75)^{2} = 3.40$
 $G = (3-4)^{2} + (6-2.75)^{2} = 3.40$
 $G = (3-4)^{2} + (4-2.75)^{2} = 3.40$

Distance matrix 1 group:

 $G = (3-4)^{2} + (4-2.75)^{2} = 3.40$

Distance matrix 1 group:

 $G = (3-4)^{2} + (4-2.75)^{2} = 3.40$
 G

N19774260
Question-5
Jensen's inequality:
To prove: for non-negative real numbers x_1, x_2, \dots, x_n
$\frac{2_1+2_2+\cdots+2_n}{n} \geq \sqrt{2_1\cdot 2_2\cdot \cdots \times n}$
This is of the form that Arithmetic mean greater than the Geometric mean.
As 'log' function is an increasing function, we apply 'log' on both sides to proceed with Jensen's inequality.
ie; log (x1+x2++xn) > 1 log(x1.x2xn)
$= \frac{\log x_1 + \cdots + \log x_n}{n}$
i·e; $\log\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \geq \frac{1}{n}\log\left(x_{1}x_{n}\right)$

(2/2, y-1)
is feature
maphere.

2)+2
154 Luestion Como lution layer: 8-710, 2x2, 2x2 => (3, 4-1) Max Pooling: 3 (101-2)+2 $(7-6+4)(4-3) = 302 \times 154$ Celebbbbbbbb Flattening: 10 x 12 x 9 -> 1080 (2-2) \(\frac{\chi_2}{4} = 12\)
\(\chi_2 = \frac{\chi_2}{4} = 12\)
\(\chi_2 = \frac{\chi_2}{4} = 12\) x = 50 4-3=9 REW: No effect