Teaching Dimension

Homework 7, Machine Teaching WISCERS, 2023 Spring

Ruixuan Tu

ruixuan@cs.wisc.edu

University of Wisconsin-Madison

26 April 2023

Definition

$$\mathrm{TD}(C) = \max_{c \in C} \left(\min_{\tau \in T(c)} |\tau| \right)$$

Problem 2

By problem setting, $C=\{c_{ab}:1\leq a\leq b\leq n\}$, we could calculate the cardinality $|C|=\sum_{a=1}^{n-1}\sum_{b=a}^n1=n^2-n$.

For an teaching instance c_{ab} , we can see we need at least $T(c_{ab}) = \{a,b\}$ to specify it. By this specification, with the setting $x_i = i$ for all $i \in [1,n] \cup \mathbb{Z}$, we can interpret a teaching

$$\text{set } T(c_{ab}) \text{ as the rule } \text{sgn}(x_i) = \begin{cases} + & \text{if } i \in [a,b] \\ - & \text{otherwise} \end{cases}. \text{ The max cardinality } \max |T(c_{ab})| = 2 \text{ for all } a,b. \text{ Therefore, } \text{TD}(C) = 2. \ \Box$$

In case that $C = \{c_{ab}\}$ with a, b be constants, as there is only one teaching instance, we do not need to distinguish it from other instances, so $T(c_{ab}) = 0$ and TD(C) = 0.

The $T(c_{ab})$ above is the maximum situation for the original C, because we could use only a=n-1 to specify $c_{n-1,n}$ and only b=2 to specify $c_{1,2}$, in which case $T(c_{ab})=1$.

Problem 3

By problem setting, $C = \{c_{ab}, \bar{c}_{ab} : 1 \leq a \leq b \leq n\}$. For an teaching instance c_{ab} , we can see we need at least $T(c_{ab}) = \{a, b, p\}$ where p = + to specify it, because we need to distinct the complement case: for \bar{c}_{ab} , $T(\bar{c}_{ab}) = \{a, b, p\}$ where p = -. By this specification, with the setting $x_i = i$ for all $i \in [1, n] \cup \mathbb{Z}$ and the notation c'_{abp} defined by $c'_{ab+} = c_{ab}$ and $c'_{ab-} = \bar{c}_{ab}$,

we can interpret a teaching set
$$T(c'_{abp})$$
 as the rule $\operatorname{sgn}(x_i) = \begin{cases} + \cdot p & \text{if } i \in [a,b] \\ - \cdot p & \text{if } i \in [a,b] \end{cases}$. The max

cardinality $\max |T(c_{ab})|=3$ for all a,b. Therefore, $\mathrm{TD}(C)=3.$ \square

If we remove one case (either c_{ab} or \bar{c}_{ab} from C), we do not need p to distinguish instances, so we reduce this setting to Problem 2.