Generalized Linear Regression and Classification

Johanni Brea

Introduction to Machine Learning

EPFL BIO322 2021

Table of Contents

- 1. Multiple Linear Regression
- 2. Error Decomposition for Regression
- 3. Linear Classification

Learning Objectives for this Lesson

- You can perform linear regression and classification on data sets with multiple predictors.
- ► For a given data generating process and a function *f* you can compute the reducible and the irreducible errors.
- ➤ You can evaluate classification models with a confusion matrix, the error rate, the accuracy and the area under the receiver operating curve (AUC).

Multiple Linear Regression

00000

Wind Speed Prediction

- ► Training Set: Hourly data 2015-2018
- ► Training Loss (rmse): 10.0 km/h
- ► **Test Set**: Hourly data 2019-2020
- ► Test Loss (rmse): 11.5 km/h

root-mean-squared error:

rmse =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
.

Multiple Linear Regression

$$\hat{y} = f(x) = f(x_1, x_2, \dots, x_p) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$\begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}}_{\mathbf{X}} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

Often the output correlates with multiple factors.

> For example: x₁: pressure in Luzern x₂: temperature in Luzern x3: pressure in Basel x_4 : pressure in Lugano etc.

000000

Multiple Linear Regression Example: p = 2, n = 20

Multiple Linear Regression finds the plane closest to the data.

Multiple Linear Regression for Wind Speed Prediction

predictor name	fitted parameter
LUZ_pressure	-2.79 (km/h)/hPa
PUY_pressure	-2.39 (km/h)/hPa
BAS_precipitation	-0.66 (km/(h)/mm
:	:
LUZ_temperature	0.87 (km/h)/C
GVE_pressure	3.95 (km/h)/hPa

Interpretation

An increase of one hPa of LUZ_pressure correlates with a decrease of the expected wind speed by 2.79 km/h, if all other measurements remain the same.

Evaluation

- ► Training Set: Hourly data 2015-2018
- ► Training Loss (rmse): 8.1 km/h
- ► **Test Set**: Hourly data 2019-2020
- ► Test Loss (rmse): 8.9 km/h

Table of Contents

1. Multiple Linear Regression

2. Error Decomposition for Regression

3. Linear Classification

Error Decomposition for Regression

Conditional Data Generating Process: $Y = f(X) + \epsilon$

noise (or error term) ϵ , with expectation $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$ f represents **systematic** information that X provides about Y.

E.g.
$$f(X) = \sin(2X) + 2(X - 0.5)^3 - 0.5X$$

 $x_1 \approx 0.2$ $f(0.2) \approx 0.23$ $\epsilon_1 \approx -0.03$ $y_1 \approx 0.2$

Supervised Learning: $\hat{Y} = \hat{f}(X)$

 \hat{f} = estimate of f, \hat{Y} = predicted outcome

E.g.
$$\hat{f}(X) = 0.1 + X$$
 $\hat{y}_1 = \hat{f}(x_1) = 0.3$

residual
$$y_1 - \hat{y}_1$$

prediction error
$$(y_1 - \hat{y}_1)^2 = 0.1^2 = 0.01$$

Blackboard: Error Decomposition for Regression

$$\mathsf{E}_{Y|X}(Y-\hat{Y})^2 = \underbrace{\left(f(X) - \hat{f}(X)\right)^2}_{\mathsf{Reducible}} + \underbrace{\mathsf{Var}(\epsilon)}_{\mathsf{Irreducible}}$$

Quiz

- Let us assume the red data points in this figure were generated with the help of a function whose graph is shown in blue. What is correct?
 - A. A linear fit has a non-zero reducible error.
 - B. The irreducible error is zero.
 - C. A method with zero prediction error on the red data has a reducible error of zero.
- Assume we perform linear regression on the red data points and compute the residuals $\hat{\epsilon}_i = y_i - \hat{y}_i$ and the empirical variance $\frac{1}{n-1}\sum_{i=1}^{n} \hat{\epsilon}$. The irreducible error is

B. smaller A. larger than this empirical variance.

What is the irreducible error. for the following data generating process?

$$p(y|x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(y-2x)^2}{2}}$$

A.1 B.2 C.4

Summary

- ▶ The true systematic information *f* that *X* provides about *Y* is usually unknown.
- ightharpoonup Our goal: find the function \hat{f} that minimizes the reducible error.
- ▶ The test error of \hat{f} is never lower than the irreducible error.

Table of Contents

- 1. Multiple Linear Regression
- 3. Linear Classification

Spam Classification

spam

Subject: follow up here 's a question i've been wanting to ask you, are you feeling down but too embarrassed to go to the doc to get your m / ed 's?

here 's the answer, forget about your local p harm. acy and the long waits, visits and embarassments. do it all in the privacy of your own home, right now. http://chopin.manilamana.com/p/test/duetit's simply the best and most private way to obtain the stuff you need without all the red tape.

Feature Representation

There are many ways to extract useful features from text. Here we use a very simple "bag of words" approach: word counts for a lexicon of size *p*.

E.g.
$$X_1$$
 (your) X_2 (need) X_3 (pay) \cdots X_p (red) 3 1 0 \cdots 1

All n emails get such a representation.

Multiple Logistic Regression

$$\Pr(Y = \text{spam}|X) = \sigma(\theta_0 + \theta_1 X_1 + \dots + \theta_p X_p)$$

$$\sigma(x) = \frac{1}{1 + e^{-x}} \quad \sigma(0) = 0.5 \quad \sigma(-\infty) = 0 \quad \sigma(\infty) = 1$$

Find $\hat{\theta}_0, \hat{\theta}_1, \dots, \hat{\theta}_n$ that maximize the likelihood function.

Predictions (at **decision threshold** 0.5):

A new email is classified as spam, if its feature representation x leads to

$$\sigma(\hat{\theta}_{\mathsf{O}} + \hat{\theta}_{\mathsf{1}}x_{\mathsf{1}} + \dots + \hat{\theta}_{\mathsf{d}}x_{\mathsf{d}}) \geq 0.5.$$

The corresponding **decision boundary** is linear:

$$\hat{\theta}_0 + \hat{\theta}_1 x_1 + \dots + \hat{\theta}_d x_d = 0$$

Multiple Logistic Regression Example: p = 2

Error Decomposition

Confusion Matrix

Pr(
$$Y = \text{true}|X = x$$
) = $\sigma(x)$
Pr($Y = \text{true}|X = x$) = $\sigma(2x)$
Pr($Y = \text{true}|X = x$) = $\sigma(x/2)$

At d	lecision	thres	hold	0.5	

, 11 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1					
	true class label				
		false	true	Total	
predicted	false	42	4	46	
class label	true	7	47	54	
	Total	49	51	100	

At decision threshold $\sigma(x) = 0.1$

	true class label			
		false	true	Total
predicted	false	25	1	26
class label	true	24	50	74
	Total	49	51	100

Confusion Matrix & Error Rates

		true class label				
		Neg		Pos.	Total	
predicted Ne		True Neg	g. (TN)	False Neg. (FN)	\mathcal{N}^*	
class labe	Pos.	os. False Pos. (FP)		True Pos. (TP)	P^*	
	Total	N		P		
Name	Definit	ion		Synonym	ns	
False Pos. rate	FP/I	V		Type I error, 1-Specificity		
True Pos. rate	TP/N	TP/P 1-Type		e II error, Power, Sensitivity, Recall		
False Neg. rate	FN/	P				
Pos. Pred. value	TP/F	TP/P^* Pred		Precision, 1-false discovery, Proportion		
Error Rate	(FP + FN)/	(P + FN)/(P + N) Misclassification rate		on rate		
Accuracy	1 - Error	Rate				
Multiple Linear Regression			Error Deco	mposition		Line

Error Decomposition

Decision Thresholds and Error Rates

Finding the right threshold value depends on domain knowledge: which error do we most care about?

E.g. disease detection: do we want a small false negative rate?

ROC curve and AUC

- measure True Pos. rate and False Pos. rate for different thresholds on test data to obtain the receiver operating characteristics ROC curve.
- Random classification would be on diagonal.
- Area under the ROC curve AUC assesses the classifier.
- ▶ Random classifier has AUC = 0.5, perfect classifier has AUC = 1.

Quiz

- 1. Multiplying all parameters of logistic regression by a factor larger than 1 leaves the decision boundary unchanged.
- 2. If it is possible to perfectly classify the data, there exists a classifier with AUC = 1.
- 3. If we classify according to the worst classifier (class A if $p_A < 0.5$ and class B otherwise), the AUC is expected to be smaller than 0.5.
- 4. Typically we expect the AUC on the training set to be higher than on the test set.
- 5. No matter what classifier we use, the ROC curve always starts at (0, 0) and ends at (1, 1).