АВЛ-деревья

Лекция 2

АВЛ-дерево

Определение 1. Высотой дерева называется максимальная длина пути от корня до листа.

Определение 2. Бинарное дерево называется *сбалансированным* (или *AVL-деревом*), если для любой его вершины высота правого поддерева отличается от высоты левого поддерева не более чем на единицу.

В вершинах AVL-дерева расположены элементы массива так, что для любой вершины в левом ее поддереве расположены элементы не больше чем в данной вершине, а в правом поддереве — не меньше, чем в этой вершине.

АВЛ-дерево

Теорема 1.

Длина ветвей в n-вершинном сбалансированном дереве заключена между $\log_2 n$ и $\frac{3}{2}\log_2 n$.

Доказательство. Бинарное дерево высоты h не может содержать больше 2^{h+1} вершины, то есть $n \le 2^{h+1}$ или $h+1 \ge \log_2 n$.

Наиболее ассиметричное AVL-дерево T_h высоты h имеет наиболее ассиметричное AVL-дерево T_h-1 высоты h-1 в качестве одного из своих поддеревьев и наиболее ассиметричное AVL-дерево T_h-2 в качестве другого.

Обозначим через n(h) число вершин в дереве T_h .

Тогда
$$n(h) = n(h-1) + n(h-2) + 1$$
; $n(0) = 1, n(-1) = 0$.

Это числа Фиббоначи,
$$n(h) > \alpha^{h+1}$$
, где $\alpha = \frac{1+\sqrt{5}}{2}$.

Следовательно,
$$n \geq n(h) > \alpha^{h+1}$$
, откуда $h+1 \leq \frac{\log n}{\log \alpha} \approx 1,44 \log n$

При добавлении новой вершины v_{new} к AVL-дереву мы «скатываем» ее от корня вдоль веток и получаем новый лист (висячую вершину).

Дерево остается бинарным, но баланс может нарушиться. Эти нарушения могут возникнуть только у вершин, лежащих на пути от корня к новой вершине.

Будем последовательно подниматься от новой вершины к корню и восстанавливать баланс, если это необходимо.

Пусть v '— самая нижняя вершина дисбаланса, то есть наиболее удаленная от корня вершина такая, что одно ее поддерево с вершиной v_{new} имеет высоту k+2, а другое поддерево — высоту k:

Будем восстанавливать баланс в v' следующим образом. Если первые два шага на (единственном пути) от v' к v_{new} делаются в одном направлении (оба вправо, или оба влево), то применяем правило простого вращения (ППВ).

Если первые два шага делаются в разных направлениях, то применяем правило двойного вращения (ПДВ):

На место удаленной вершины v ставим либо самую правую вершину v_{rL} левого поддерева, либо самую левую вершину v_{lR} правого поддерева

Лекция 2. АВЛ деревья

Нюанс Каждая из вершин v_{rL} или v_{lR} может быть либо висячей, либо предвисячей, то есть имеющей в качестве потомков лишь одну вершину (разумеется, висячую):

Если на место удаленной вершины встает предвисячая вершина v_{rL} , то ее (вершины v_{rL}) потомок x подключается к ее предку:

Итак, можно считать, что всегда удаляем лист. Последовательно поднимаемся от удаленной вершины v_{rL} к корню и исправляем структуру дерева, если необходимо.

Пусть к текущей вершине x на пути от v к корню мы пришли справа по короткой ветке. Тогда возможно три случая:

а) В вершине y высоты поддеревьев равны:

б) В вершине у высота левого поддерева больше высоты правого поддерева:

в) В вершине y высота левого поддерева меньше высоты правого поддерева

Отметим, что устранение дисбаланса в одной из вершин, может нарушить баланс в вышестоящих вершинах. На рисунке показан предельный случай этого явления. При начальном дисбалансе лишь в одной вершине (лежащей непосредственно над v) приходится, тем не менее, производить перестройку дерева во всех вершинах на пути к

корню.

