I - Définitions

Définition Une boucle est une répétition d'instructions. Chaque passage dans la boucle est une iteration.

Rappel En C, deux mots clés permettent de définir des boucles : **for** et **while**. Pas d'inquiétude, il est aussi possible de définir des boucles en OCaml, comme nous le verrons plus tard.

Définition Un variant de boucle est une quantité : **entière**, **minorée**, qui décroît **strictement** à chaque passage dans la boucle.

Définition Un *invariant de boucle* est une propriété qui est vraie à l'initialisation d'une boucle et qui est conservée à l'issue d'un passage dans la boucle (si elle était vraie avant le passage).

II - Terminaison

Propriété Si une boucle admet un variant de boucle alors elle ne peut pas être infinie (donc elle termine).

A_ Exemple de l'algorithme d'Euclide

Définissons en C une fonction utilisant l'algorithme d'Euclide pour calculer le PGCD de deux entiers a et b>0.

```
int pgcd(int a, int b)
2
    {
3
      assert (b > 0);
5
      int tmp;
6
      while (b != 0)
7
8
         tmp = b;
9
         b = a \% b;
10
         a = tmp;
11
      }
12
      return a:
13
    }
```

La précondition b>0 est vérifiée ici à la **ligne 3**, en utilisant la fonction assert .

Montrons que b est un *variant* de la boucle while. b est:

une quantité entière? b est un entier

minorée ? b est initialement strictement supérieur à 0 et l'exécution de la boucle s'arrête si b = 0

strictement décroissante? à chaque passage dans la boucle, b prend la valeur de a % b, c'est-à-dire le reste de la division euclidienne de a par b, quantité qui est, quelle que soit la valeur de a, strictement inférieure à b.

Ainsi, la boucle while admet un variant donc son exécution se termine, d'après la propriété ci-dessus.

B₋ Exemple de la recherche dichotomique

Nous nous intéressons à la recherche d'un élément entier dans un tableau contenant des entiers en ordre croissant. Un exemple de code pour la fonction recherche_dicho est donné page suivante.

Les préconditions de la boucle sont :

- le tableau tableau contient des éléments en ordre trié
- l'indice a est un indice valide dans le tableau
- l'indice a est strictement inférieur à la valeur de b dont la valeur maximum possible est l'indice max du tableau + 1.

La fonction recherche_dicho contient une boucle while.

Montrons que la quantité représentée par b - a est un variant de la boucle while.

- b et a sont des entiers, b a est un entier,
- la précondition impose que a < b , donc b a > 0 et la boucle s'arrête si a = b , donc si b a = 0 , la quantité b a est donc minorée par 0,
- soit a et b vérifiant les préconditions : quelles sont les valeurs de a' et b' au prochain passage dans la boucle ? D'après le code, on calcule $i = \left\lfloor \frac{a+b}{2} \right\rfloor$. Puisque a < b, alors i < b et $i \ge a$. Dans le cas où la condition du test de la **ligne 10** n'est pas remplie, le test de la ligne **15** implique deux cas possibles :
 - \bigcirc lorsque le test amène en **ligne 17**, alors a'=a et b'=i. On a alors b'-a'=i-a< b-a,

O lorsque le test amène en **ligne 21**, alors a'=i+1 et b'=b. On a alors b'-a'=b-(i+1)=b-i-1, or $i \ge a$ donc b'-a' < b-a.

Si la condition du test de la ligne 8 est vérifiée, alors la boucle s'arrête.

Ainsi dans tous les cas, soit l'exécution de la boucle s'arrête, soit la quantité b-a décroît strictement. La quantité b-a est donc un variant de la boucle. Cette dernière s'arrête.

```
int recherche_dicho(const int *tableau, int n, int e)
2
    {
3
      int res = -1;
4
      bool trouve = false;
5
      int a = 0;
6
      int b = n;
7
      while (a < b && !trouve)
8
9
        int i = (a + b)/2;
10
        if (tableau[i] == e)
11
        {
12
           trouve = true;
13
           res = i;
        }
14
        else if (tableau[i] > e)
15
16
17
           b = i;
        }
18
19
        else
20
        {
21
           a = i+1;
22
23
      }
24
      return res;
25
   }
```

C_ Remarques

L'analyse effectuée pour les boucles est très proche des raisonnements effectués pour garantir la terminaison d'une fonction récursive. Il est tout à fait possible de parler de *variant* lors de l'étude d'une fonction récursive si on a repéré une quantité entière, minorée et strictement décroissante... ou une quantité entière, majorée et strictement croissante.

III - Correction

Prouver la correction d'un algorithme comportant une boucle nécessite de montrer qu'une propriété intéressante est un *invariant* de la boucle.

Le raisonnement sera encore très proche de ce que nous avons fait pour prouver la correction des fonctions récursives. On démontre que la propriété $\mathcal I$ est vraie juste avant la boucle, c'est l'initialisation.

Puis on démontre que si la propriété est vraie en début d'itération alors elle reste vraie à la fin de l'itération, c'est l'hérédité.

On conclut en utilisant l'invariant après arrêt de l'exécution de la boucle.

A. Exemple de l'algorithme d'Euclide

Rappelons les propriétés suivantes du pgcd pour deux entiers u et v positifs ou nuls et $u \mod v$, le reste de la division euclidienne de u par v:

$$\operatorname{pgcd}(u,0) = u \tag{1}$$

$$pgcd(u,v) = pgcd(v,u \bmod v)$$
 (2)

Invariant de boucle $PGCD(a, b) = PGCD(a_0, b_0)$ où a_0 et $b_b 0$ sont les valeurs de a et b à l'appel de la fonction. Il est toujours possible de copier les valeurs d'entrées dans de nouvelles variables, pour faciliter le raisonnement.

Initialisation Avant la boucle, a et b n'ont pas été modifiées et valent a_0 et b_0 donc $PGCD(a, b) = PGCD(a_0, b_0)$.

Hérédité Supposons que PGCD $(a, b) = PGCD(a_0, b_0)$ à l'entrée de la boucle. Alors, d'après le code, en sortie de boucle on a a' = b et $b' = a \mod b$. D'après la propriété (2), PGCD $(b, a \mod b) = PGCD(a, b)$, donc PGCD(a', b') = PGCD(a, b) et par hypothèse de récurrence, PGCD $(a', b') = PGCD(a_0, b_0)$.

Conclusion L'invariant étant conservé, à la suite de la dernière itération, on a $PGCD(a, b) = PGCD(a_0, b_0)$. Or puisque la boucle se termine, on a b = 0 et d'après la propriété (1), $a = PGCD(a_0, b_0)$.

B. Exemple de la recherche dichotomique

Voici une représentation sur un tableau de taille n de l'effet de la recherche dichotomique en cours d'exécution.

Si à la sortie de la boucle res != -1 , alors res contient l'indice d'un élément du tableau dont la valeur est égale à l'élément recherché e .

Il faut montrer que lorsque le résultat est -1, la valeur de e ne se trouvait pas dans le tableau.

Nous allons prouver l'invariant suivant : « avant l'indice a , tous les éléments du tableaux sont strictement inférieurs à l'élément e cherché et à partir de la position b , tous les éléments du tableau sont strictement supérieurs à l'élément e cherché ».

Initialisation Avant le premier passage dans la boucle, d'après le code on a a=0 et b=n. Dans ce tableau d'indices compris dans l'intervalle [0;n-1], il n'y a pas d'élément avant 0, ni d'élément à partir de n. L'élément cherché ne peut donc se trouver ni dans la partie d'indices inférieurs à a ni dans la partie de positions supérieures ou égales à b. Donc l'invariant est vérifié.

Hérédité Supposons l'invariant vérifié à l'entrée d'une boucle. Alors les éléments avant l'indice a sont strictement inférieurs à l'élément cherché e et les éléments à partir de l'indice b sont strictement supérieurs à l'élément e cherché. Supposons que l'élément au milieu e de l'intervalle ne soit pas égal à l'élément e cherché. Deux cas sont possibles :

- si l'élément tableau[i] est strictement supérieur à e , alors puisque le tableau est en ordre croissant, l'élément tableau[i] est inférieur ou égal à tous les éléments d'indice supérieurs à i et l'élément cherché ne peut pas se trouver dans la partie comprise entre l'indice i inclus et l'indice b . Par hypothèse de récurrence, l'élément cherché ne peut pas se trouver dans la partie située à partir de l'indice b donc il ne peut pas se trouver dans toute la partie située à partir de l'indice i . Or d'après le code, à la fin de l'itération on a b'=i et a'=a. Puisque les éléments dans la partie située avant l'indice a sont par hypothèse de récurrence strictement inférieurs à l'élément cherché, alors les éléments d'indice inférieur à a' sont strictement inférieurs à l'élément e et les éléments d'indice supérieur ou égal à b' sont strictement supérieurs à e. Donc les propriétés de l'invariant sont conservées.
- si l'élement tableau[i] est strictement inférieur à e alors puisque le tableau est en ordre croissant et par hypothèse de récurrence comme précédemment, l'élément cherché est strictement supérieur à tous les éléments situés de l'indice 0 à l'indice i inclus. À la fin de l'itération on a a'=i+1 et b'=b. Par hypothèse de récurrence, les élémens d'indice supérieur ou égal à b sont strictement supérieurs à l'élément cherché. Encore une fois, les éléments situés avant a' sont strictement inférieurs à e et les éléments situés après b' sont strictement supérieurs à e et les propriétés de l'invariant sont conservés.

Lycée Champollion 3 / 4

Conclusion Si l'élément n'est pas trouvé, nous avons montré que l'exécution de la boucle s'arrête lorsque a=b. Dans ce cas, il n'y a plus d'éléments à considérer dans le tableau, l'intervalle [[a,a[[étant vide. Et puisque l'invariant est vérifié, l'élément cherché est strictement supérieur à tous les éléments de l'intervalle [0,a-1] et strictement inférieurs à tous les éléments situés dans l'intervalle [a,n-1]. On peut donc affirmer que l'élément cherché ne se trouvait pas dans le tableau, le résultat a est correct.

Lycée Champollion 4 / 4