

- Creating a virtual mechanism
 - Three orthogonal prismatic joints (X, Y, Z)
 - One revolute joint around Z axis
- Insert parts
 - X.CatPart,
 - XY.CatPart,
 - YZ.CatPart,
 - Z.CatPart
 - Rot_ZY.CatPart

- New mechanism: «Assembly constraints conversion»
 - Create a new mechanism from previous one
 - Change the name «Scara IK»
 - Use «Auto create» to use the previous joint definition

Create a rigid joint between «Robot_link0» and «X»

- Create three prismatic joint between
 - «X» and «XY»
 - «XY» and «YZ»
 - «YZ» and «Z»
- Create a revolution joint between «Z» and «Rot ZY»
- Create a rigid joint between «Rot_ZY» and «Robot_link3»

Only 4 dof for the mechanism at the end

The mechanism can be simulated

Rename the commands

- Kinematics simulation
- Caution: the rotation axis is not well defined!

• 9 joints, 4 commands and 4 degrees of freedom

Update direct kinematics

New Mechanism

? | X |

More >>

- Delete the first mechanism
- Assembly constraints conversio

ssembly Constraints Conversion

Auto Create

- Defining a spreadsheet that describes a square in the XY plane
- 5 columns, X, Y, Z, Theta, and the number of lines (Max)
- No unit ... because Catia real only real numbers

Microsoft Excel - trajectoire_carre.xls									
Eichier Edition Affichage Insertion Format Outils Données Fenêtre ? Adobe PDF									
) 🚅 🖫 🖨	Q ₩ X	🖺 🔒 🍼 🕝) + CH + 🦺	$\Sigma f_* \stackrel{A}{\simeq} \downarrow$	Z	00% 🔻 🍳	. € 👌	, »] 🔁 »
F26 ▼ =									
	Α	В	С	D	Е	F	G	Н	
1	X	Υ	Z	Theta	Max				
2	() 0	0	0	301				
3	1	1	0	0	301				
4	2	2 2	! 0	0	301				
5	3	3	0	0	301				
6	4	1 4	. 0	0	301				
7	5	_	_	0	301				
8	6	6 6	0	0	301				
9	7	7 7	0	0	301				
10	8	8	0	0	301				
11	9	9 9	0	0	301				

Link to an Excel spreadsheet

- Creating parameters
- Why?
 - Allow association with the Excel file (X, Y, Z, Theta)
 - See the variations of the position of the tool (XX, YY,
 ZZ, THETA)
 - Number of rows in the Excel file (Max)
- Caution
 - Create the parameters with the proper type (length and angle).

Link to an Excel spreadsheet

Create a design table

Name of the table

- Select the Excel file
- Combine the columns of the table with the parameters of the product automatically

Link to an Excel spreadsheet

- Creation of a formula to read Excel spreadsheet
- Warning:
 - No function to known the number of lines
 - The timer is between 1 and 10 seconds by default
 - Create new laws for the « Scara IK"

Trace the trajectory made by the end-effector

Make a simulation with «Scara IK»

Object to trace out: Scara IK

Elements to trace out: Point.1

Reference product: Scara Robot

Number of steps: 301

Trace Destination

New part

OK

Cancel

Save as « Trace_EMARO.CATPart »

Trace the trajectory made by the end-effector

Insert the part «Trace_EMARO» in the product

Animation

Display the coordinates of the trajectory

• Problem:

Nantes

- No change in the configuration parameter table
- How to display the position of the tool?
- Defining a rule in the Knowledge module
 - Same formula but parameters associated with XX, YY,
 - ZZ, THETA

