Tutorato Algebra Lineare e Geometria (A.A. 2023/24)

Lezione 12 (ripasso per il compitino)

06/06/2024

Esercizio 1

Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia \mathscr{S} la sfera di centro C=(2,-1,1) passante per il punto A=(3,1,0).

- (a) Determinare l'equazione cartesiana del piano tangente a $\mathcal S$ nel punto A.
- (b) Sia γ la circonferenza ottenuta intersecando la sfera $\mathscr S$ con il piano $\pi: 3x+y+2z-2=0.$ Trovare il centro e il raggio di γ .
- (c) Dopo aver verificato che il punto P=(0,-2,2) appartiene alla circonferenza γ , scrivere le equazioni parametriche della retta r tangente a γ nel punto P.

Esercizio 2

Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia r la retta passante per il punto R=(1,-2,-2) con direzione data dal vettore $v_r=(3,1,-4)$. Sia inoltre π il piano di equazione 3x-y+2z-1=0.

- (a) Si determini la proiezione ortogonale A' del punto A=(-7,2,-2) sul piano π e la distanza di A' dalla retta r.
- (b) Si determini il raggio della circonferenza ottenuta dall'intersezione della sfera di raggio 1 centrata nell'origine con il piano π .

Esercizio 3

Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni:

$$U : \begin{cases} 2x_1 - x_2 - x_3 - 3x_4 = 0 \\ x_2 + 3x_4 = 0 \end{cases}$$

e sia $L \subset \mathbb{R}^4$ il sottospazio generato dal vettore $\ell = (0, 1, 1, 0)$.

- (a) Trovare una base ortogonale di U.
- (b) Sia $V = U^{\perp} \cap L^{\perp}$. Trovare una base di V.
- (c) Dato il vettore $w=(2,3,-2,2)\in\mathbb{R}^4$, determinare la sua proiezione ortogonale su V^\perp .

Esercizio 4

Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito ponendo $f(e_1) = (-3, -1, 1), f(e_2) = (4, 1, -2)$ e tale che Ker(f) è generato dal vettore (2, 1, -1).

- (a) Si scriva la matrice A di f rispetto alla base canonica.
- (b) Si determinino gli autovalori e gli autospazi di A e si dica se A è diagonalizzabile.
- (c) Si dimostri che, per ogni intero **dispari** n>0, si ha $A^n=A$.