The MRFIC Line 900 MHz Downconverter (LNA/Mixer)

The MRFIC2001 is an integrated downconverter designed for receivers operating in the 800 MHz to 1.0 GHz frequency range. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device. Applications for the MRFIC2001 include CT-1 and CT-2 cordless telephones, remote controls, video and audio short range links, low cost cellular radios, and ISM band receivers. A power down control is provided to minimize current drain with minimum recovery/turn-on time.

- Conversion Gain = 23 dB (Typ)
- Supply Current = 4.7 mA (Typ)
- Power Down Supply Current = 2.0 μA (Max)
- Low LO Drive = -10 dBm (Typ)
- LO Impedance Insensitive to Power Down
- No Image Filtering Required
- No Matching Required for RF IN Port
- · All Ports are Single Ended
- Order MRFIC2001R2 for Tape and Reel.
 R2 suffix = 2,500 Units per 12 mm, 13 inch Reel.
- Device Marking = M2001

MRFIC2001

900 MHz DOWNCONVERTER LNA/MIXER SILICON MONOLITHIC INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	5.5	Vdc
Control Voltage	ENABLE	5.0	Vdc
Input Power, RF and LO Ports	P _{RF} , P _{LO}	+10	dBm
Operating Ambient Temperature	T _A	-35 to + 85	°C
Storage Temperature	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage Range	Vcc	2.7 to 5.0	Vdc
Control Voltage Range	ENABLE	0 to 5.0	Vdc
RF Port Frequency Range	fRF	500 to 1000	MHz
IF Port Frequency Range	fIF	0 (dc) to 250	MHz

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (V_{CC}, ENABLE = 3.0 V, T_{A} = 25°C, RF @ 900 MHz, LO @ 1.0 GHz, P_{LO} = $-7.0 dBm, T_{A} = 25°C, RF @ 900 MHz, LO @ 1.0 GHz, P_{LO} = $-7.0 dBm, T_{A} = 25°C, T_{A} = $25^{$ IF @ 100 MHz unless otherwise noted)

Characteristic (1)	Min	Тур	Max	Unit
Supply Current: On-Mode	_	4.7	5.5	mA
Supply Current: Off-Mode (ENABLE < 1.0 Volts)	_	0.1	2.0	μΑ
ENABLE Response Time	_	1.0	_	μs
Conversion Gain	20	23	26	dB
Input Return Loss (RF IN Port)		13	_	dB
Single Sideband Noise Figure		5.5	_	dB
Input 3rd Order Intercept Point	- 26	- 22.5	_	dBm
Output Power at 1.0 dB Gain Compression	_	-10	_	dBm
LO – RF Isolation (1.0 GHz)	_	37	_	dB
LO – IF Isolation (1.0 GHz)	_	33	_	dB
RF – IF Isolation (900 MHz)	-	4.0	_	dB
RF – LO Isolation (900 MHz)	_	19	_	dB

NOTE:

1. All Electrical Characteristics measured in test circuit schematic shown in Figure 1 below:

C1, C2, C4, C7 — 100 pF Chip Capacitor C3, C5, C8 — 1000 pF Chip Capacitor C6 — 6.8 pF Chip Capacitor

L1 — 8.2 nH Chip Inductor

L2 — 270 nH Chip Inductor

L3 — 150 nH Chip Inductor RF Connectors — SMA Type Board Material — Epoxy/Glass ϵ_Γ = 4.5,

Dielectric Thickness = 0.014" (0.36 mm)

Figure 1. Test Circuit Configuration