Computing Efficient Portfolios in R

Eric Zivot

November 11, 2008

Abstract

This note describes the computation of mean-variance efficient portfolios using R.

1 Portfolio Analysis Functions

I have written a few R functions for computing Markowitz mean-variance efficient portfolios allowing for short sales. These functions are meant to be used for learning the basics of portfolio theory. They are summarized in Table 1.

1.1 Examples

The following examples illustrate the use of the functions in Table 1. These examples are also available in the R script file testport.r on the class R hints web page. To begin, open the script file portfolio.r and select Edit/Run all to source the portfolio functions into memory.

Next, consider the input data $(\mu, \Sigma \text{ and } r_f)$ used for the three firm example used in the class lectures (see 3firmExample.xls on the class syllabus web page).

```
> asset.names <- c("MSFT", "NORD", "SBUX")
> er <- c(0.0427, 0.0015, 0.0285)
> names(er) <- asset.names</pre>
```

Function	Description
getPortfolio	create portfolio object
globalMin.portfolio	compute global minimum variance portfolio
efficient.portfolio	compute minimum variance portfolio subject to target return
tangency.portfolio	compute tangency portfolio
efficient.frontier	compute efficient frontier of risky assets

Table 1: R functions for computing mean-variance efficient portfolios

```
> covmat <- matrix(c(0.0100, 0.0018, 0.0011,
+     0.0018, 0.0109, 0.0026,
+     0.0011, 0.0026, 0.0199),
+ nrow=3, ncol=3)
> rk.free <- 0.005
> dimnames(covmat) <- list(asset.names, asset.names)</pre>
```

To specify a portfolio, you need an expected return vector and covariance matrix for the assets under consideration as well as a vector of portfolio weights. To create an equally weighted portfolio use

```
> ew = rep(1,3)/3
> equalWeight.portfolio = getPortfolio(er=er,cov.mat=covmat,weights=ew)
> class(equalWeight.portfolio)
[1] "portfolio"
```

Portfolio objects have the following components

There are print(), summary() and plot() methods for portfolio objects. The print() method gives

```
> equalWeight.portfolio
Call:
getPortfolio(er = er, cov.mat = covmat, weights = ew)
```

Portfolio expected return: 0.02423333 Portfolio standard deviation: 0.07586538 Portfolio weights:

MSFT NORD SBUX 0.3333 0.3333

The plot() method shows a bar chart of the portfolio weights

```
> plot(equalWeight.portfolio)
```

The global minimum variance portfolio (allowing for short sales) \mathbf{m} solves the optimization problem

$$\min_{\mathbf{m}} \mathbf{m}' \mathbf{\Sigma} \mathbf{m} \text{ s.t. } \mathbf{m}' \mathbf{1} = 1.$$

To compute this portfolio use the function globalMin.portfolio()

Portfolio Weights

Figure 1:

```
> gmin.port <- globalMin.portfolio(er, covmat)</pre>
> attributes(gmin.port)
$names
[1] "call"
              "er"
                         "sd"
                                    "weights"
$class
[1] "portfolio"
> gmin.port
Call:
globalMin.portfolio(er = er, cov.mat = covmat)
Portfolio expected return:
                                0.02489184
Portfolio standard deviation:
                                0.07267607
Portfolio weights:
  MSFT
         NORD
                 SBUX
0.4411 0.3656 0.1933
```

A mean-variance efficient portfolio ${\bf x}$ that achieves the target expected return μ_0 solves the optimization problem

$$\min_{\mathbf{x}} \mathbf{x}' \mathbf{\Sigma} \mathbf{x} \text{ s.t. } \mathbf{x}' \mathbf{1} = 1 \text{ and } \mathbf{x}' \boldsymbol{\mu} = \mu_0.$$

To compute this portfolio for the target expected return $\mu_0 = E[R_{msft}] = 0.04275$ use the efficient.portfolio() function

MSFT NORD SBUX 0.8275 -0.0907 0.2633

The tangency portfolio \mathbf{t} is the portfolio of risky assets with the highest Sharpe's slope and solves the optimization problem

$$\max_{\mathbf{t}} \frac{\mathbf{t}' \boldsymbol{\mu} - r_f}{(\mathbf{t}' \boldsymbol{\Sigma} \mathbf{t})^{1/2}} \text{ s.t. } \mathbf{t}' \mathbf{1} = 1,$$

where r_f denotes the risk-free rate. To compute this portfolio with $r_f=0.005$ use the tangency.portfolio() function

```
> tan.port <- tangency.portfolio(er, covmat, rk.free)
> tan.port
Call:
tangency.portfolio(er = er, cov.mat = covmat, risk.free = rk.free)
```

Portfolio expected return: 0.05188967 Portfolio standard deviation: 0.1115816

Portfolio weights:

MSFT NORD SBUX 1.0268 -0.3263 0.2994

The the set of efficient portfolios of risky assets can be computed as a convex combination of any two efficient portfolios. It is convenient to use the global minimum variance portfolio as one portfolio and an efficient portfolio with target expected return equal to the maximum expected return of the assets under consideration as the other portfolio. Call these portfolios \mathbf{m} and \mathbf{x} , respectively. For any number α , another efficient portfolio can be computed as

$$\mathbf{z} = \alpha \mathbf{m} + (1 - \alpha) \mathbf{x}$$

The function efficient.frontier() constructs the set of efficient portfolios using this method for a collection of α values. For example, to compute 20 efficient portfolios for values of α between -2 and 1.5 use

```
> ef <- efficient.frontier(er, covmat, alpha.min=-2,</pre>
                           alpha.max=1.5, nport=20)
> attributes(ef)
$names
[1] "call"
             "er"
                       "sd"
                                  "weights"
$class
[1] "Markowitz"
> ef
Call:
efficient.frontier(er = er, cov.mat = covmat, nport = 20, alpha.min = -2,
    alpha.max = 1.5)
Frontier portfolios' expected returns and standard deviations
   port 1 port 2 port 3 port 4 port 5 port 6 port 7
ER 0.0783 0.0750 0.0718 0.0685 0.0652 0.0619 0.0586
SD 0.1826 0.1732 0.1640 0.1548 0.1458 0.1370 0.1284
   port 8 port 9 port 10 port 11 port 12 port 13 port 14
ER 0.0554 0.0521 0.0488 0.0455 0.0422
                                           0.039 0.0357
SD 0.1200 0.1120 0.1044 0.0973 0.0908
                                           0.085 0.0802
   port 15 port 16 port 17 port 18 port 19 port 20
ER 0.0324 0.0291 0.0258 0.0225 0.0193 0.0160
SD 0.0764 0.0739 0.0727 0.0730 0.0748 0.0779
```

Use the summary() method to show the weights of these portfolios. Use the plot() method to plot the efficient frontier

> plot(ef)

The resulting plot is shown in Figure 2.

To create a plot of the efficient frontier showing the original assets and the tangency portfolio use

```
> plot(ef, plot.assets=T)
> points(gmin.port$sd, gmin.port$er, col="blue")
> points(tan.port$sd, tan.port$er, col="red")
> sr.tan = (tan.port$er - rk.free)/tan.port$sd
> abline(a=rk.free, b=sr.tan)
```

The resulting plot is shown in Figure 3.

Figure 2: Plot method for Markowitz object.

Figure 3: Efficient frontier for three firm example.