Model and Cost Function

Model Representation

500

0

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

1000

Predict real-valued output

1500

Size (feet²)

2000

2500

3000

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(, , , , , , , , , , , , , , , , , , ,	1534	315
	852	178

Notation:

```
m = Number of training examples
```

x's = "input" variable / features

y's = "output" variable / "target" variable

How do we represent h?

$$h_{e}(x) = \Theta_{0} + \Theta_{1} \times Shorthard: h(x)$$

Linear regression with one variable. (x)
Univariate linear regression.

Lone varial

Cost Function: How to choose θ s?

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Sample relations

- Assume we want to find the relation between the weight and the height of the students in this university.
- We have the following data:

Height	Weight		
163	58		
164	55		
166	64		
169	71		
169	73		
171	71		
171	77		
172	75		
173	82		
175	94		

Sample relations

Which line is better?

Xi	y_i	\widehat{y}	e_i	e_i^2	y_i	\widehat{y}	e_i	e_i^2
163	58	51.4	6.6	43.56	58	56.1	1.9	3.61
164	55	54.6	0.4	0.16	55	58.8	-3.8	14.44
166	64	61	3	9	64	64.2	-0.2	0.04
169	71	70.6	0.4	0.16	71	72.3	-1.3	1.69
169	73	70.6	2.4	5.76	73	72.3	0.7	0.49
171	71	77	-6	36	71	77.7	-6.7	44.89
171	77	77	0	0	77	77.7	-0.7	0.49
172	75	80.2	-5.2	27.04	75	80.4	-5.4	29.16
173	82	83.4	-1.4	1.96	82	83.1	-1.1	1.21
175	94	89.8	4.2	17.64	94	88.5	5.5	30.25
				141.28				126.27

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin. Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

andrey. Ng

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Gradient descent algorithm

```
\begin{array}{ll} \text{repeat until convergence } \{ \\ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) & \text{(for } j = 0 \text{ and } j = 1) \\ \} & \text{Learning Derivativ} & \text{Simultaneously} \\ \text{rate} & \text{e} & \text{update } \theta_0 \text{ and } \theta_1 \end{array}
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

- Convex function.

- It's a bowl shaped function.

- Always converges to global optimum.

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidir

Windows'u Etkinleştir
Windows'u etkinleştirmek için Avarlar'a gidin

 $J(\theta_0, \theta_1)$

Windows'u Etkinlestir

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

Windows'u Etkinleştir
Windows'u etkinlestirmek için Avarlar'a gidin

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidi

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin

 $J(\theta_0, \theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin

The Best Fitting Line (from END2991)

- "best" line: minimum SSE.
- "least squares criterion," which says
- "minimize the Sum of the Squared prediction Errors (SSE) or residual sum of squares.
- Find b_0 and b_1 that minimize:

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Method of Least Squares (from END2991)

• Differentiating SSE with respect to b_0 and b_1 and setting the resulting equations to zero we get:

• Solving these two equations will yield the computing formulas for b_0 and b_1 as follows:

$$\frac{\partial (SSE)|}{\partial b_0} = -2\sum_{i=1}^n (y_i - b_0 - b_1 x_i) \qquad \frac{\partial (SSE)|}{\partial b_1} = -2\sum_{i=1}^n (y_i - b_0 - b_1 x_i) x_i.$$

Method of Least Squares (from END2991)

$$nb_0 + b_1 \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i = \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} y_i, \qquad b_0 \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i + b_1 \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i^2 = \overset{n}{\underset{i=1}{\overset{n}{\bigcirc}}} x_i y_i$$

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} - b_{1} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \bar{y} - b_{1}\bar{x}.$$