	Rec	υv	hen	æ	rela	tians
7						

and interms of the everiors terms in the sequence

 $\frac{\alpha_{n} \rightarrow q_{0}, \alpha_{1}, \alpha_{2}, \qquad q_{n}, \qquad q_{n-2}, \alpha_{n-1}}{2}$

an = 2 an - 1 + 5 + an - 2 + an - 3

(a₀, a₁, a₂, ____, a_n)

 $\frac{1}{3}, \frac{5}{7}, \frac{7}{9}, \frac{9}{9}$ $\frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{1} \frac{1}{4} \frac{1}{1} \frac{1}{4} \frac{1}{2} \frac{1}{1} \frac{1}{4} \frac{1}{2} \frac{1}{1} \frac{1}{4} \frac{1}{2} \frac{1}{1} \frac{1}{4} \frac{1}{4}$

 $\frac{F_{n} = F_{n-1} + F_{n-2} \rightarrow 1}{F_{n} = 2 F_{n-2} + F_{n-3} \rightarrow 2}$

Compound Interest

Po $P_1 = P_1 = P_1 = P_1$ $P_2 = P_1 = P_2$ $P_3 = P_1 = P_1 = P_1 = P_2$ $P_4 = P_1 = P_2 = P_1$ $P_5 = P_6$ $P_7 = P_7 = P_7$ $P_8 = P_8 = P_8 = P_8$ $P_8 =$

 $\int_{P_{N}}^{P_{0}} P_{0} = P_{0} \left(1 + \frac{Y}{100}\right)^{h}$

 $T_n = 2 T_{n/2} + Cn$ $T_n = T_{n/3} + O(r)$

Tr - Tr/k + O(1) = O(lyn)

$$t_{n}=t_{n-1}+t_{n-2} \qquad to co, t_{1}=1$$

tn-tn-x-tn-2=0

x2 -n -1 = 0

 $Y_{1}=\left(\frac{1+\sqrt{5}}{2}\right)^{1/2}$

 $V_{\nu} = \begin{pmatrix} 1 - \overline{J_5} \end{pmatrix} h$

 $t_n = C_1 \left(\frac{1+J\overline{s}}{z} \right)^n + C_2 \left(\frac{1-J\overline{s}}{z} \right)^n$

 $=\frac{1}{J_{5}}\left(\frac{1+J_{5}}{2}\right)^{h}-\frac{1}{J_{5}}\left(\frac{1-J_{5}}{2}\right)^{h}$

 $\sim O(n^{1.6})$