From the relationship between W^+ and W^- :

$$W^{+} = a \cdot d \cdot W^{-s} + a \cdot (1 - d) \cdot \hat{W}^{-s}$$

where \hat{W}^- is the independent copy of W^- . Applying the double integral, the probability of W^+ is thus the following:

$$P(W^{+} > x) = P(d \cdot W^{-s} + (1 - d) \cdot \hat{W}^{-s} > \frac{x}{a})$$
$$= \left(\frac{c_1}{c}\right)^{-\beta} + \left(\frac{c_2}{c}\right)^{-\beta} - \left(\frac{c_1 c_2}{c^2}\right)^{-\beta}$$

where c_1 is the integral boundary value for W^- : $c_1 = \frac{1}{d}^{\frac{1}{s}} \cdot (\frac{x}{a} - (1 - d) \cdot c^s)^{\frac{1}{s}}$; and c_2 for \hat{W}^- : $c_2 = \frac{1}{1-d}^{\frac{1}{s}} \cdot (\frac{x}{a} - d \cdot c^s)^{\frac{1}{s}}$. Hence the power law distribution:

$$\lim_{x \to +\infty} \frac{\left(\frac{c_1}{c}\right)^{-\beta} + \left(\frac{c_2}{c}\right)^{-\beta} - \left(\frac{c_1c_2}{c^2}\right)^{-\beta}}{x^{-\alpha}} = constant$$

To satisfy the power law requirement, we need:

$$s = \frac{\beta}{\alpha}$$

By definition, the lower bound for W^+ is parameter b, which could also be shown in the form of a and c:

$$b = a \cdot d \cdot c^s + a \cdot (1 - d) \cdot c^s = a \cdot c^s$$

Additionally, as the mean of in-degree should be equal to that of out-degree, we have:

$$E(W^{+}) = E(W^{-}) \Rightarrow a \cdot E(W^{-s}) = E(W^{-s})$$
$$\Rightarrow a \cdot \frac{\beta}{\beta - s} \cdot c^{s} = \frac{\beta}{\beta - 1} \cdot c$$

Specifically in consideration of the case where s=1, given that case in-degree and out-degree are supposed to be equal, thus identical W^+ and W^- , a should also be 1.

Notes:

Samp_Dist_Corr

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The

#

$$\begin{split} s &= \frac{\beta}{\alpha} \\ a \frac{\beta c^s}{\beta - s} &= \frac{\beta c}{\beta - 1} \\ &\Rightarrow a = 1 \text{ when } s = 1 \\ a &= \frac{\beta - s}{a^{s-1}(\beta - 1)}, \text{ otherwise} \end{split}$$

para 1 a long long word awd mesf mawdf mfesfmsef msfe sergmmggrdmmm rdgdrgd drg.

para 2 a long long word awd mesf mawdf m
fesfmsef m
sfe sergmmggrdmmm rdgdrgd drg.

para
3 a long long word awd mesf mawdf m
fesfmsef m
sfe sergmmggrdmmm rdgdrgd drg.

para 4 a long long word awd mesf mawdf m
fesfmsef m
sfe sergmmggrdmmm rdgdrgd drg.

Leslie Lamport was the initial developer of \LaTeX , a document preparation system[1] based on \TeX .

Let's see this webstie wiki page method description in doc

1. directed configuration model [source code]

directed configuration model (in degree sequence, out_degree_sequence, create

Return a directed random graph with the given degree sequences.

The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequences.

To remove parallel edges:

$$>>> D=nx.DiGraph(D)$$

To remove self loops:

[4]

[3]

From Table 1, we could see that...

awff

algorithm aefaef

References

- [1] Leslie Lamport, ATEX: A Document Preparation System. Addison Wesley, Massachusetts, 2nd Edition, https://en.wikibooks.org/wiki/LaTeX/Hyperlinks 1994.
- [2] networkx package https://networkx.github.io/documentation/networkx-1.11/ Released Jan 30, 2016
- [3] directed_configuration_model https://networkx.github.io/documentation/networkx-1.11/reference/generated/networkx.generators.degree_seq.directed_configuration_model.html?highlight=directed%20configuration%20model#networkx.generators.degree_seq.directed_configuration_model

Table 1: Wikipedia vote network statistics

Feature name	Value
Nodes size	7115
Edges	103689
Expected degree	14.57
In-out degree correlation	0.317
Average clustering coefficient	0.1409
Number of triangles	608389
Diameter(longest shortest path)	7