Analyzing Massive Data Sets Summer Semester 2019

Prof. Dr. Peter Fischer
Institut für Informatik
Lehrstuhl für Datenbanken und Informationssysteme

Chapter 0: Introduction

About myself

- Since Oktober 2017: Chair for Databases and Information Systems Before
 - Juniorprofessor for Web Science at University of Freiburg
 - Senior Researcher/Oberassistent at Systems Group, ETH Zürich
 - PhD from ETH Zürich (worked at Uni Heidelberg, TU München)
- Research Interests:
 - Real Time Analytics/Data Streams/Temporal Data
 - Social Media Analytics
 - Databases on modern hardware (Main Memory, Cluster)
 - Analysis and adaptation of Information
 - Assurance of Data Quality: Provenance
- Contact:
 - peter.fischer@informatik.uni-augsburg.de
 - Office hours: Tuesday 14:30 15:30 @ 2051 (N) or by e-mail appointment

Basic Course Information

- Credits: 4V + 2U (ask examination office for ECTS)
- Language: English
 (feel free to ask/answer in German)
- Lecture: Tuesday/Thursday 10:00-11:30 2045 N
- Exercises (4 groups 2056N):
 - Tuesday 14:00
 - Wednesday: 10:00
 - Thursday: 12:15 and 14:00
 - Do we need an English-only group?

Workload & Grading

Exercises

- Weekly exercise sheets with questions related to the lecture coverage
- Attendance to exercise sessions is not mandatory, but it is highly recommended to do well in the exam.

Exam

- No prerequisites, enroll in STUDIS (punctually!)
- Written exam, open book
- July 24 16:30, Mensa

Exercise Sessions

- Two types of exercises:
 - Homework: solve yourself, discuss in session
 - Live exercises: solve together in session
 - Written solutions for homework only, posted in the following week
- No hand-in, no grading (you may ask for feedback on your solution on a best effort basis)
- Enrollment via Digicampus:
 April 23 18:00 April 26, 17:59
- Sheets will be made available on Friday 14:00
- First sheet: April 20th
- First exercise sessions: Week starting April 29th

Course Material and Literature

- Slides will be uploaded on the evening before
- Recordings will be available a few days after the lecture
- Main book (and basis for many slides):
 Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of Massive Datasets (2nd ed.).
 Cambridge University Press, New York, NY, USA.
- Available in the library and on http://www.mmds.org/
- Additional books for selected topics:
 - Jake VanderPlas: Python Data Science Handbook, O'Reilly
 - Chambers/Zaharia: Spark The definitive guide (or others)
 - C. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval
 - Easly, Kleinberg: Networks, Crowds, and Markets

Prerequisites

- Programming (Info I/II)
 - We will do a short tutorial on Python: very popular as data analysis language, many good toolkits
 - C++/Java will also be useful
- Linear Algebra
 - Matrices
- Algorithms (~DS, Info 3)
 - Dynamic programming, basic data structures
 - Graphs and Graph Algorithms
- Basic probability ()
- Let's do a quick poll on the relevant backgrounds

Topics

- Big Data Platforms:
 - Single Node Tools (Python)
 - HDFS/MapReduce/Spark
- Text and High-Dimensional Data:
 - Similarity
 - Clustering
 - Retrieval and Ranking
- Graphs:
 - Link Analysis and Pagerank
 - Social Networks and Community Detection
 - Information Diffusion
- Streams and Temporal Data:
 - Basic Models
 - Sampling, Counting, Trends
- ...

Course Motivation: New Analytics

- No longer just structured, "clean" business data:
 - Text data, photos, videos
 - Social media: social networks, social streams
 - Science
 - **—** ...
- Much broader range of analytics
 - Information Retrieval
 - Machine Learning: Classification, Mining
 - Statistics
 - Human Interaction: Crowdsourcing, Interactive exploration
- Much larger volumes (think Google, Facebook!)
- Unpredictable workloads
- Results required in real time

Course Motivation: New Platforms

- Increasing CPU/GPU core count: Massive Parallelism
- Increasing RAM, "slower" disks, flash, new storage
- Faster Networks and massive Distribution
 - Racks and Datacenters as new basic building blocks
 - Global Replication, Consistency and Access
- New Processing paradigms
 - Map/Reduce, Distributed In-Memory Computations
 - Graph Computation Systems
 - Event, Data Stream Processing

Data to Knowledge

- Gathering insight is main selling point for most organizations when collecting data
- But to extract the knowledge data needs to be
 - Stored
 - Managed
 - And ANALYZED ← this class
- Buzzword Bingo:
 Data Mining ≈ Big Data ≈
 Predictive Analytics ≈ Data Science

Buzzword 1: Big Data

- Shorthand for challenges occurring in current data management and analysis
- No longer just storage and retrieval, but also complex computations
- Often expressed as the 4 -7 V's (depending on source)
- Relative Term:
 - Not always Peta/Exabytes
 - My "Big Data" is not Googles, is not CERNs

1st V: Volume

- Scale of Data
 - Scientific applications(CERN: 70MPixel*40M/s, 15PB/year)
 - Genomics:(single genome > 1.5TB)
 - Web Data
 - **–** ...
- 90% of all data was created in the last two years!
- => Beyond what a single machine can handle

2nd V: Velocity

- Speed of data and expected reactions
- Stock exchanges (NASDAQ: >35K msg/s, 1ms for common operations)
- Social Media (>150K msg/s peak on Twitter)
- Environmental Sensors (>100 sensors on a car, ms response time)
- Web indexing (reindex within minutes, queries with less than 0.5 seconds)
- Storing is easy, quick answers are hard
- Data potentially unbounded

3rd V: Variety

Form(at) of data not uniform

 Structured vs non-structured (or hidden structure): relations, graphs, text, audio/voice, video, ...

 Broad range of sources: customers, transactions, logs, sensors, ...

 Skewed data/Power laws dealing with popular data vs long tail

4th V: Veracity

- Uncertainty of Data
- Data Quality and Completeness
 - Sensor readings inconsistent (faults, calibration, ...)
 - Social media messages contain slang, abbrevations, colloqualism, ...
 - User Profiles faked, duplicated, ...

MODEL CALCULATIONS
"Garbage In-garbage Out" Paradigm

- Interpretation
 - Underlying model unknown
 - Wrong choice of parameters

http://blog.potterzot.com/2007/09/25/garbage-ingarbage-out-and-the-desire-to-cover-our-own-ass-isruining-the-world/

5th V: Value

- Data contains value and knowledge
- Specific to application domain
- Ask the right questions, do not blindly apply methods
- Understand usefulness: customer analysis, trading, business/personal/ technology/... improvement)

Additional/Disputed V's

- Variability:
 properties of data change over time
- Visualization: complex data cannot be understood without appropriate presentation

Buzzword 2: Data Mining

- Given lots of data
- Discover patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

Data Mining Tasks

- Descriptive methods
 - Find human-interpretable patterns that describe the data
 - Example: Clustering
- Predictive methods
 - Use some variables to predict unknown or future values of other variables
 - Example: Recommender systems

Meaningfulness of Analytic Answers

- A risk with "Data mining" is that an analyst can "discover" patterns that are meaningless
- Statisticians call it **Bonferroni's principle**:
 - Roughly, if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap

Interesting Correlations

- Looks legitimate
- Correlation Coefficient: 0.98
- What could it be?

Interesting Correlations

- Per capita consumption of mozarella cheese
- Number of laywers in Hawaii

Other examples

Apple Stock price (Jan 1st)
Vs.
Commercial space launches

Divorce rate in Arizona Vs.
Deaths caused by lightning

http://www.tylervigen.com/spurious-correlations

More serious: suspect detection

- We want to find (unrelated) people who at least twice have stayed at the same hotel on the same day
 - 10⁹ people being tracked
 - 1,000 days
 - Each person stays in a hotel 1% of time (1 day out of 100)
 - Hotels hold 100 people (so 10⁵ hotels)
 - If everyone behaves randomly (i.e., no terrorists) will the data mining detect anything suspicious?
- Expected number of "suspicious" pairs of people:
 - -250,000
 - ... too many combinations to check we need to have some additional evidence to find "suspicious" pairs of people in some more efficient way

What matters when dealing with data?

Data Mining: Cultures

- Data mining overlaps with:
 - Databases: Large-scale data, simple queries
 - Machine learning: Small data, Complex models
 - CS Theory: (Randomized) Algorithms
- Different cultures:

To a DB person, data mining is an extreme form of

analytic processing – queries that examine large amounts of data

- Result is the query answer
- To a ML person, data-mining is the inference of models
 - Result is the parameters of the model
- In this class we will do both!

What will we learn?

- We will learn to mine different types of data:
 - Data is high dimensional
 - Data is labeled
 - Data is a graph
 - Data is infinite/never-ending
- We will learn to use different models of computation:
 - Single machine in-memory
 - MapReduce/Spark
 - Streams and online algorithms

Example Application: Tracing Information Diffusion

- Understanding how a information spreads
 - Who was the source of information?
 - Who forwarded it at what time and why?
 - **—** ...
- Conceptual similarity to epidemiology (also shared vocabulary)
- Applies techniques shown in this lecture
- Part of my ongoing research

 $Source: \\ http://blog.datasift.com/2013/05/08/gangnam-style-vs-harlem-shake-the-take-by-face/$

- 2016 US precedential election: orchestrated bots supporting certain candidates
- Trump received disproportionally positive messages from bots compared to Clinton.
- Biases his public perception & endangers democratic processes

- Large share of population participates in social media
- Large audiences:
 - Information can be easily spread and consumed:
 - No information verification/ provenance
- Identify:

Uni Augsburg, SS 2019

- who spreads information and influences others?
- how information is diffused?
- what are the sources (indications for trust and relevance assessment)?
- Analyze in a prompt way to mitigate the negative effects of diffusion

Research Question Q1

How to model and trace information by unraveling user-to-user influence?

Challenges:

- Incomplete/ non existing social media provenance
- Latent/ external influence
- Lack of ground truth & high uncertainty
- Incomplete datasets/ API restrictions
- Lack of consistent models

Research Question Q1

How to model and trace information by unraveling user-to-user influence?

Contributions:

 Identification, classification & computation of user interactions

Explicit: partial social media provenance

- Direct linkage based
- Source based
 - → Inference: social graph

Source based

root

Research Question Q1

How to model and trace information by unraveling user-to-user influence?

Contributions:

- Identification, classification & computation of user interactions
 - Explicit: partial social media provenance
 - Direct linkage based
 - Source based
 - → Inference: social graph
 - Implicit: latent influence
 - Similarity based
 - Additional influence indicators
 - → user conventions to reveal influence

Research Question Q2

Is it feasible to trace information diffusion in an online fashion?

Challenges:

- Fast social media rates & huge social graphs
- Very large search space
- Limited support for systems that traces information diffusion in a online fashion
- Scalability, short response times

Research Question Q2

Is it feasible to trace information diffusion in an online fashion?

Contributions

- Explicit interactions:
 - Streaming reconstruction of information diffusion graphs
 → stream iterative problem combined with large social graphs
- Implicit interactions:
 - Streaming computation of latent influece
 - → similarity computations and clustering over infinite streams

•

Implicit Interactions

How to model and trace information by unraveling user-to-user influence?

- Clustering of similar messages with SimClus, lower similarity threshold
 - Tf-idf, cosine similarity
- Within each cluster:
 - Coarse grained provenance:
 Indirect derivations
 - → oldest message
 - Fine grained provenance:
 Direct derivations
 - → most similar message

Implicit Interactions – Influence indicators

How to model and trace information by unraveling userto-user influence?

Empirical methods to identify user activity patterns

In this example:

User Influence/Explicit credit:
 mention of the influencer
 → @Tom

 Self Influence/ Promotion: user promotes some previously written content

Web-scale implicit provenance reconstruction - Challenges

- All previous messages might be relevant (in the range of millions)
- Constant changes in TF-IDF model, clustering and provenance
- Similarity matrix
 ¬ quadratic complexity (# of documents)

Is it feasible to trace information diffusion in an online fashion?

Optimizations at every stage to

- 1. Reduce unnecessary computations
- Update the model on demand

Large scale Evaluation – Computational Times

 Dataset: 2012 Olympics in London, terms: "olympics" & "london2012, August 3 to 7th, 2012, ~4.6 M messages, similarity threshold 0.75, batch size: 2500

Results:

- Stable computational costs over time, scalability for the twitter streams
- Incremental vs re-computed: up tp 4 orders of magnitude speed-up

Wrap up

- Data has little value on itself, extracting knowledge is crucial
- Fallacy of mining "fake" results
- Complexity and Volume make "mining" hard
- Wide variety of models and methods
- Mindset+Methods from multiple directions needed