MANUFACTURING PROCESSES

MMAW or SMAW

Shielded metal arc welding (SMAW) is an AW process that uses a consumable electrode consisting of a filler metal rod coated with chemicals that provide flux and shielding.

- The filler metal used in the rod must be compatible with the metal to be welded, the composition usually being very close to that of the base metal.
- The coating consists of powdered cellulose (i.e., cotton and wood powders) mixed with oxides, carbonates, and other ingredients, held together by a silicate binder.
- Metal powders are also sometimes included in the coating to increase the amount of filler metal and to add alloying elements.

- The heat of the welding process melts the coating to provide a protective atmosphere and slag for the welding operation.
- It also helps to stabilize the arc and regulate the rate at which the electrode melts.
- Currents typically used in SMAW range between
 30 and 300 A at voltages from 15 to 45 V.

- Selection of the proper power parameters depends on the metals being welded, electrode type and length, and depth of weld penetration required.
- Shielded metal arc welding is usually performed manually.
- Common <u>applications</u> include construction, pipelines, machinery structures, shipbuilding, job shop fabrication, and repair work.

- It is preferred over oxyfuel welding for thicker sections—above 5 mm—because of its higher power density.
- The equipment is portable and low cost, making SMAW highly versatile and probably the most widely used of the AW processes.
- Base metals include steels, stainless steels, cast irons, and certain nonferrous alloys.

 It is not used or seldom used for aluminum and its alloys, copper alloys, and titanium.

POLARITY

- When using a DC power source, the question of whether to use electrode negative or positive polarity arises.
- Some electrodes operate on both DC straight and reverse polarity, and others on DC negative or DC positive polarity only.
- Direct current flows in one direction in an electrical circuit and the direction of current flow and the composition of the electrode coating will have a definite effect on the welding arc and weld bead.

POLARITY

 Figure shows the connections and effects of straight and reverse polarity.

DC Electrode Negative (DCEN) or Straight Polarity

 DC Electrode Negative (DCEN) or Straight Polarity causes heat to build up on the workpiece, thereby increases the weld penetration.

DC Electrode Positive (DCEP) or Reverse Polarity

 Reversing the polarity ie. DC electrode positive (DCEP) increase the electrode melting rate and decrease the depth of the weld.

AC

With alternating current the polarity changes over 100 times per second, creating an even heat distribution and providing a balance between electrode melting rate and penetration.

