# Artificial Intelligence Algorithms and Mathematics

**CSCN 8000** 



### Statistics

- Continue on statistics:
  - Data preprocessing
  - Feature normalization
  - Data Encoding
  - Feature Engineering
- Linear Regression
- Regression Evaluation Metrics







Garbage in, Garbage out

Low-quality data will lead to low-quality and misleading analysis results

(No matter how sophisticated the model is!)

# Data Preprocessing









 A crucial step to correct inconsistencies in the data via fuzzy joins, regular expressions or other methods.

| patientCity | Value Count |
|-------------|-------------|
| Guelph      | 1662        |
| Kitchener   | 1247        |
| Waterloo    | 793         |
| Cambridge   | 330         |
| Fergus      | 204         |
| KITCHENER   | 10          |
| KITTChener  | 21          |
| Geulph      | 12          |
| GUELPH      | 23          |
| WATERLO     | 9           |
| FRGUS       | 13          |

| patientCity | Value Count |
|-------------|-------------|
| Guelph      | 1697        |
| Kitchener   | 1278        |
| Waterloo    | 802         |
| Cambridge   | 330         |
| Fergus      | 217         |

### **Data Normalization**



- A crucial step in preparing data for machine learning algorithms. It helps to ensure that features are on a similar scale, which can lead to more stable and faster convergence during training.
- Allows us to make sure that no variable dominates the other variable.
- There are several ways to perform feature scaling in machine learning.





- Definition:
  - Values are shifted and rescaled to range from o to 1.
- Formulation:

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Implementation:
  - Sklearn provides MinMaxScaler for this.

| <ul> <li>Keeps variable</li> </ul> |
|------------------------------------|
| relationships intact               |
| • Suitable for                     |

Pros

 Suitable for algorithms requiring similar scales

| House | Cost (\$) | Size<br>(sq. ft) | Cost<br>Scaled | Size<br>Scaled |
|-------|-----------|------------------|----------------|----------------|
| 1     | 250000    | 2000             | 0.25           | 0.142          |
| 2     | 300000    | 2200             | 0.375          | 0.21           |
| 3     | 200000    | 1800             | 0.0            | 0.0            |
| 4     | 400000    | 2500             | 0.75           | 0.375          |
| 5     | 150000    | 1500             | 0.125          | 0.071          |
| 6     | 450000    | 2800             | 1.0            | 1.0            |
| 7     | 350000    | 2100             | 0.625          | 0.25           |
| 8     | 275000    | 1900             | 0.3125         | 0.118          |
| 9     | 325000    | 2300             | 0.5            | 0.429          |
| 10    | 275000    | 1600             | 0.3125         | 0.071          |





- Definition:
  - Scales the data to have a mean of o and a standard deviation of 1.
- Formulation:

$$X_{norm} = \frac{X-\mu}{\sigma}$$

- Implementation:
  - Sklearn provides StandardScaler for this

|  | $\boldsymbol{\smallfrown}$ | re |
|--|----------------------------|----|
|  |                            |    |
|  | ${f -}$                    |    |

- Maintains shape of original distribution.
- Less sensitive to outliers.

#### Cons

 Not suitable if needs to maintain the mean and standard deviation.

| House | Cost (\$) | Size<br>(sq. ft) | Cost<br>Scaled | Size<br>Scaled |
|-------|-----------|------------------|----------------|----------------|
| 1     | 250000    | 2000             | -0.588         | -0.226         |
| 2     | 300000    | 2200             | 0.117          | 0.159          |
| 3     | 200000    | 1800             | -1.293         | -0.543         |
| 4     | 400000    | 2500             | 1.822          | 1.063          |
| 5     | 150000    | 1500             | -1.949         | -1.351         |
| 6     | 450000    | 2800             | 2.117          | 1.866          |
| 7     | 350000    | 2100             | 0.823          | 0.523          |
| 8     | 275000    | 1900             | -0.411         | -0.098         |
| 9     | 325000    | 2300             | 0.529          | 0.764          |
| 10    | 275000    | 1600             | -0.411         | -1.072         |





- Definition:
  - Uses the median and the interquartile range (IQR) instead of the mean and standard deviation.
- Formulation:

• 
$$X_{norm} = \frac{X - median}{IQR}$$
  
• Implementation:

- - Sklearn provides RobustScaler for this.

#### Pros

 Least sensitive to outliers compared to Min-Max/Z-score

#### Cons

 Still influenced by extreme outliers.

| Hous<br>e | Cost (\$) | Size<br>(sq. ft) | Cost<br>Scaled | Size<br>Scaled |
|-----------|-----------|------------------|----------------|----------------|
| 1         | 250000    | 2000             | -0.25          | 0.0            |
| 2         | 300000    | 2200             | 0.25           | 0.2857         |
| 3         | 200000    | 1800             | -0.75          | -0.2857        |
| 4         | 400000    | 2500             | 1.25           | 0.5714         |
| 5         | 150000    | 1500             | -1.25          | -0.5714        |
| 6         | 450000    | 2800             | 1.5            | 1.1429         |
| 7         | 350000    | 2100             | 0.75           | 0.4286         |
| 8         | 275000    | 1900             | 0.0            | 0.1429         |
| 9         | 325000    | 2300             | 0.5            | 0.8571         |
| 10        | 275000    | 1600             | 0.0            | -0.4286        |

### **Box Cox Transformation**



- Definition:
  - Used to stabilize the variance and make the data more normally distributed.
- Formulation:

$$X_{norm} = \begin{cases} \log(X), & if \ \lambda = 0 \\ \frac{X^{\lambda - 1}}{\lambda}, & otherwise \end{cases}$$

- Implementàtion:
  - Scipy.stats provides boxcox() for this.

#### Pros

 Best if the algorithm requires normal distributions

#### Cons

Assumes that all values are strictly positive

Lambda value used for Transformation: 0.30656155175590766



### **Data Encoding**



- Its primary purpose is to transform categorical variables, which represent qualitative attributes, into a numerical format that can be effectively utilized by mathematical models.
- This conversion is imperative because most machine learning algorithms are designed to operate on numerical data
- There are several ways to perform data encoding in machine learning.





- Assigns a unique integer to each category.
- Suitable for ordinal categorical variables with a clear order.
- May introduce unintended ordinal relationships.

| Sample | <b>Education Level</b> |
|--------|------------------------|
| 1      | High School            |
| 2      | Bachelor's Degree      |
| 3      | Master's Degree        |
| 4      | High School            |
| 5      | PhD                    |
| 6      | Bachelor's Degree      |
| 7      | High School            |
| 8      | Master's Degree        |
| 9      | Bachelor's Degree      |
| 10     | High School            |

| Sample | Encoded<br>Education Level |
|--------|----------------------------|
| 1      | 0                          |
| 2      | 1                          |
| 3      | 2                          |
| 4      | 0                          |
| 5      | 3                          |
| 6      | 1                          |
| 7      | 0                          |
| 8      | 2                          |
| 9      | 1                          |
| 10     | 0                          |



- Represents each category as a binary vector.
- Suitable for nominal categorical variables.
- Avoids the assumption of ordinality between categories.
- Can lead to highdimensional data if there are many categories.

| Sample | Favorite<br>Color |
|--------|-------------------|
|        |                   |
| 1      | Red               |
| 2      | Blue              |
| 3      | Green             |
| 4      | Red               |
| 5      | Blue              |
| 6      | Green             |
| 7      | Red               |
| 8      | Blue              |
| 9      | Green             |
| 10     | Red               |

| Sample | Red | Blue | Green |
|--------|-----|------|-------|
| 1      | 1   | 0    | 0     |
| 2      | 0   | 1    | 0     |
| 3      | 0   | 0    | 1     |
| 4      | 1   | 0    | 0     |
| 5      | 0   | 1    | 0     |
| 6      | 0   | 0    | 1     |
| 7      | 1   | 0    | 0     |
| 8      | 0   | 1    | 0     |
| 9      | 0   | 0    | 1     |
| 10     | 1   | 0    | 0     |





- Involves creating new features or modifying existing ones to improve the performance of machine learning models.
- Example:
  - Combine two or more existing features to create new ones
  - Create summary statistics (i.e. fill with mean, median per another categorical feature)

| Height (cm) | Weight (kg) |  |
|-------------|-------------|--|
| 165         | 70          |  |
| 170         | 68          |  |
| 155         | 60          |  |
| 180         | 75          |  |
| 160         | 65          |  |
| 175         | 72          |  |

| ВМІ   |
|-------|
| 25.71 |
| 23.53 |
| 24.97 |
| 23.15 |
| 25.39 |
| 23.51 |

# **Machine Learning Algorithms**

### **Recall Equation of Line**





```
mx + b
                y value when x=0
Slope or
Gradient
                  (see Y Intercept)
    y = how far up
    x = how far along
    m = Slope or Gradient (how steep the line is)
    \mathbf{b} = \text{value of } \mathbf{y} \text{ when } \mathbf{x} = \mathbf{0}
```

# Linear Regression: Formulation



Assume we have a set of three 2D points where the x-axis represents Height and y-axis represents Weight, such that [(160,120),(170,125),(180,130)). Can we directly compute the equation of line passing through the three points?



$$y=\frac{1}{2}x+40$$

### Linear Regression: Formulation



Assume we have a set of 20 randomly scattered 2D points where the x-axis represents Height and y-axis represents Weight. Can we directly compute the equation of line passing through all the points?



# Linear Regression: Formulation



- Linear regression is a supervised learning algorithm which allows us to find the **best fit** line/hyperplane passing through the set of available data points.
- The predicted **best fit line** equation corresponds to predicting a continuous variable  $\hat{y}$  given input features x, such that:

$$\widehat{y} = \overrightarrow{w} \, \overrightarrow{x} + b$$

•  $\overrightarrow{w}$ ,  $\overrightarrow{b}$  are the missing parameters that need to be estimated to get the best fit line equation.



$$w = ?, b = ?$$

### Linear Regression: Cost Function



- By definition, the best fit line is one that has the minimum distances (residuals) between itself and all the data points available.
- Which of these could be the best fit line?





# Linear Regression: Cost Function



- By definition, the **best fit** line is one that has the minimum distances (residuals) between itself and all the data points available.
- To find the best fit line, we need to **minimize** the average of the squared distances between the predictions  $\hat{y}$  and the actual output y, such that:

$$L(\vec{w}, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - (\vec{w} \, \vec{x_i} + b))^2$$

- *L* is usually referred to as "Loss Function" or "Cost Function".
- Our target is to find the value of  $\overrightarrow{w}$  and b at which L is minimum.

### Linear Regression: Loss Minimization



- Given a function f(x), how to get the x value at which f(x) is minimum?
- In general, one should get the x-value at which the derivative (differentiation) of f(x) with respect to x is **equal to zero**, such that,

$$\frac{d(f(x))}{dx} = 0$$





### Linear Regression: Loss Minimization



$$L(\overrightarrow{\boldsymbol{w}}, \boldsymbol{b}) = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{y}_i - (\overrightarrow{\boldsymbol{w}} \, \overrightarrow{\boldsymbol{x}_i} + \boldsymbol{b}))^2$$

- Get the values of  $\overrightarrow{w}$ ,  $\overrightarrow{b}$  at which  $L(\overrightarrow{w}, \overrightarrow{b})$  is minimum  $\rightarrow$  Get the values of  $\overrightarrow{w}$ ,  $\overrightarrow{b}$  at which  $\frac{d(L)}{d\overrightarrow{w}} = 0$ , and  $\frac{d(L)}{d\overrightarrow{b}} = 0$ .
- For linear regression,  $\frac{d(L)}{d\vec{w}} = 0$  and  $\frac{d(L)}{d\vec{b}} = 0$  both have **closed-form** solutions that can be derived by making  $\vec{w}$  and  $\vec{b}$  the subjects of their equations.
- In this case, the closed-form solution corresponds to:

$$\begin{bmatrix} \overrightarrow{\boldsymbol{w}} \\ \boldsymbol{h} \end{bmatrix} = (X^T X)^{-1} X^T y$$

X is a matrix where each row represents a data point and each column represents a feature, y is a vector of needed output.

### Linear Regression: Loss Minimization



- There are other machine learning algorithms for which their cost functions don't have a closed-form solution.
- In other words, we cannot set  $\overrightarrow{w}$  and  $\overrightarrow{b}$  the subject of their equations  $\frac{d(L)}{d\overrightarrow{w}}=0$  and  $\frac{d(L)}{d\overrightarrow{b}}=0$ , respectively.
- For that reason, we utilize iterative optimization approaches like the famous *Gradient Descent* algorithm.

# Linear Regression: Solution





$$\widehat{y} = w_1 x + b$$
  
 $w = 0.533, b = 27.94$ 

### Linear Regression: Single vs Multiple Variables

#### Linear Regression: Single Variable

$$\widehat{y} = \beta_0 + \beta_1 x$$
Predicted output Coefficients Input

Linear Regression: Multiple Variables

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

# **Evaluation Metrics for Regression Models**

- Difference between the actual value and the model's estimate a residual or error.
- Evaluation metrics are measurements that take our collection of residuals and condense them into a single value that represents the predictive ability of our model.
  - Mean Absolute Error (MAE)
  - Mean Square Error (MSE)
  - Mean Absolute Percentage Error (MAPE)
  - Mean Percentage Error (MPE)



### Mean Absolute Error



### Formulation:

• 
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

#### Pros

- Easy to understand and interpret
- Not sensitive to outliers, as it treats all errors equally

#### Cons

 Doesn't punish large errors as much as MSE, which may be a drawback if you want to heavily penalize outliers.







### Formulation:

• 
$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

#### Pros

 It is differentiable, making it possible to reach closedform solutions.

#### Cons

 Sensitive to outliers and gives more weight to larger errors.



# Mean Absolute Percentage Error



### Formulation:

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right| * 100$$

#### Pros

- Expresses errors as a percentage of the actual values, which can be more intuitive
- Gives an idea of the relative size of the error.

#### Cons

 Problematic when actual values are close to zero







### Formulation:

• 
$$MPE = \frac{1}{N} \sum_{i=1}^{N} \frac{y_i - \hat{y}_i}{y_i} * 100$$

#### Pros

 It gives a sense of the direction (overestimation or underestimation) of the errors.

#### Cons

 Problematic when actual values are close to zero



# Summary



| Acroynm | Full Name                      | Residual Operation? | Robust To Outliers? |
|---------|--------------------------------|---------------------|---------------------|
| MAE     | Mean Absolute Error            | Absolute Value      | Yes                 |
| MSE     | Mean Squared Error             | Square              | No                  |
| RMSE    | Root Mean Squared Error        | Square              | No                  |
| MAPE    | Mean Absolute Percentage Error | Absolute Value      | Yes                 |
| MPE     | Mean Percentage Error          | N/A                 | Yes                 |

### References



- https://learning.oreilly.com/library/view/practical-statisticsfor/9781491952955/cho6.html
- https://www.mathsisfun.com/data/standard-deviation.html

# Thank you!

Any questions?



### Disclaimer



Due to nature of the course, various materials have compiled from different open source resources with some moderation. I sincerely acknowledge their hard work and contribution





Thank You
Youssef Abdelkareem
yabdelkareem@conestogac.on.ca