Aula 27

Séries de Laurent

Parte Principal ou Singular

$$\underbrace{(z-z_0)^2}_{} + \underbrace{\frac{b_1}{(z-z_0)}}_{} + \underbrace{a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots}_{} \\
+ \underbrace{a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots}_{} \\$$
Parte Regular

Teorema (Laurent): Se $f: D_f \subset \mathbb{C} \to \mathbb{C}$ holomorfa na coroa circular $0 \le r_1 < |z - z_0| < r_2 \le \infty$. Então, para todo o z nessa coroa, é válido o desenvolvimento em série de Laurent

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

em que os coeficientes são dados de forma única por

$$a_n = \frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} dz \quad n = 0, 1, 2, \dots$$

$$b_n = \frac{1}{2\pi i} \oint_{|z-z_0|=r} f(z)(z-z_0)^{n-1} dz \quad n = 1, 2, \dots$$

para qualquer $r_1 < r < r_2$. Em particular

$$\oint_{|z-z_0|=r} f(z) \, dz = 2\pi i \, b_1.$$

Definição: Diz-se que z_0 é uma **singularidade isolada** de f, se f é holomorfa em $B_{\delta}(z_0) \setminus \{z_0\}$ para algum $\delta > 0$ (e f, ou não está definida, ou não é diferenciável em z_0). Designa-se por **resíduo de** f **em** z_0 , e representa-se por Res (f,z_0) , o coeficiente da correspondente série de Laurent centrada em z_0 , na coroa $0 < |z-z_0| < \delta$.

Teorema dos Resíduos: Seja $\Omega \subset \mathbb{C}$ uma região e f holomorfa em Ω à exceção dum número finito de singularidades isoladas distintas $z_1, z_2, \ldots, z_n \in \Omega$. Seja γ um caminho fechado que não passa por nenhum dos z_j , e homotópico a um ponto em Ω . Então

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{j=1}^{n} I(\gamma, z_j) \mathrm{Res}(f, z_j).$$

Classificação de Singularidades

<u>Definição</u>: Diz-se que uma singularidade isolada z_0 de f é uma **singularidade removível** se a correspondente série de Laurent em torno desse ponto satisfaz $b_j = 0$ para todo o $j = 1, 2, \ldots$

Proposição: Uma singularidade isolada z_0 de f é removível se e só se alguma das seguintes condições é satisfeita

- f é prolongável a z_0 de forma a ser holomorfa.
- ullet f é limitada numa vizinhança de z_0 .
- $\lim_{z\to z_0} f(z)$ existe (finito).

<u>Definição</u>: Diz-se que uma singularidade isolada z_0 de f é uma **singularidade essencial** se a correspondente série de Laurent em torno desse ponto satisfaz $b_j \neq 0$ para um conjunto infinito de índices j.

Teorema (Casorati-Weierstrass): Seja z_0 uma singularidade isolada de f essencial. Então, dado qualquer $w \in \mathbb{C}$ existe uma sucessão $z_n \to z_0$ tal que $f(z_n) \to w$.

Proposição: Uma singularidade isolada z_0 de f é essencial se e só $\lim_{z\to z_0} f(z)$ não existe, nem é ∞ .

Definição: Diz-se que uma singularidade isolada z_0 de f é uma **pólo de ordem** k se a correspondente série de Laurent em torno desse ponto satisfaz $b_k \neq 0$ e $b_j = 0$ para $j = k+1, k+2, \ldots$ Ou seja, se a série de Laurent centrada em z_0 é da forma

$$\frac{b_k}{(z-z_0)^k} + \dots + \frac{b_1}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots$$

Proposição: Seja z_0 uma singularidade isolada de f. Então f tem um pólo em z_0 se e só se $\lim_{z\to z_0} f(z) = \infty$.

A ordem do pólo pode ser determinada pelo mínimo valor de k para o qual

$$\lim_{z \to z_0} (z - z_0)^k f(z) \neq \infty.$$

O resíduo dum pólo de ordem k em z_0 pode ser dado pela fórmula

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} [(z-z_0)^k f(z)].$$