FILTROS

FILTROS

Filtros

Utilização de filtros em sistemas de telecomunicações

Eliminação (redução) de interferências

Deseja-se amplificar um sinal em 1 kHz onde existe uma forte interferência em 60 Hz proveniente da linha de alimentação. O sinal interferente é cerca de 40 dB maior que o sinal a ser amplificado. Que tipo de filtro e qual atenuação devem ser usados para garantir que o sinal interferente fique 20 dB abaixo do sinal interferente?

A banda de operação de sinais de GPS vai de 1570 a 1580 MHz. Quais interferências podem corromper o sinal de GPS nessa faixa de freqüência? Qual filtro deve ser utilizado para reduzir a interferência?

Características de filtros

Realista

Classificação de Filtros - I

Classificação de Filtros - II

Contínuo

Classificação de Filtros - III

Função de Transferência

1 pólo : 1ª ordem O filtro com decaimento de 20 dB/dec

2 pólos : 2ª ordem O filtro com decaimento de 40 dB/dec; melhor seletividade

Malha geral de dois acessos de um filtro genérico

Função de transferência:
$$T(s) = \frac{V_o(s)}{V_i(s)}$$

Características ideais de transmissão de quatro tipo de filtros

Características ideais de transmissão de quatro tipo de filtros

Especificação das Características de transmissão de filtro passa-baixas

Módulo da resposta de um filtro que atende as especificações

Encontre a função de transferência para os circuitos (a) e (b)

Filtro de 1^a ordem: Passa-Baixas

s-Plane Singularities

-			
(a)	Low	pass	(LP)

Filter Type and T(s)

$$T(s) = \frac{a_0}{s + \omega_0}$$

Função de Transferência GERAL:

$$T(s) = \frac{a_1 s + a_0}{s + \omega_0}$$

Bode Plot for |T|

Filtro de 1^a ordem: Passa-Altas

s-Plane Singularities

Filter Type and T(s)						
(b)	High pass (HP)					

$$T(s) = \frac{a_1 s}{s + \omega_0}$$

$$T(s) = \frac{a_1 s + a_0}{s + \omega_0}$$

Op Amp-RC Realization

 ω_0

 $\omega(\log)$

Bode Plot for |T|

High-frequency gain =
$$-\frac{R}{R}$$

Filtro de 1^a ordem: Genérico

Filter Type and $T(s)$	s-Plane Singularities	Bode Plot for T	Passive Realization	Op Amp–RC Realization
(c) General $T(s) = \frac{a_1 s + a_0}{s + \omega_0}$	$ \begin{array}{c c} & j\omega \\ \hline & \omega_0 \end{array} $	$ T , dB$ $20 \log \left \frac{a_0}{\omega_0} \right -20 \frac{dB}{decade}$ $20 \log \left a_1 \right $	C_{1} C_{1} C_{2} C_{2} C_{3} C_{4} C_{1} C_{2} C_{4} C_{2} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{2} C_{3} C_{4} C_{2} C_{4} C_{5} C_{6} C_{1} C_{1} C_{1} C_{1} C_{2} C_{3} C_{4} C_{5} C_{6} C_{1} C_{1} C_{1} C_{1} C_{2} C_{3} C_{4} C_{1} C_{1} C_{2} C_{3} C_{4} C_{5} C_{6} C_{1} C_{1} C_{1} C_{2} C_{3} C_{4} C_{5} C_{6} C_{7} C_{7	R_1 C_2 C_1 C_2 $C_2R_2 = \frac{1}{\omega_0}$ $C_1R_1 = \frac{a_1}{a_1}$
	$\frac{a_0}{a_1}$	$0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	DC gain = $\frac{a_0}{R_1 + R_2}$ HF gain = $\frac{C_1}{C_1 + C_2}$	DC gain = $-\frac{R_2}{R_1}$ HF gain = $-\frac{C_1}{C_2}$

Determine a função de transferência do circuito abaixo:

 $R_2C_2 > R_1C_1$

Sugestão de Estudo:

- Sedra & Smith 5ed. Cap. 12, itens 12.1 e 12.2

-Razavi. 2ed. Cap. 14, itens 14.1 e 14.2

Exercícios correspondentes.