

Assurance of ML: Challenges & Approaches John McDermid

Agenda

Key Topics

- Challenges of AI and ML
 - Fundamentals
- Approaches
 - Life cycle models
 - Assurance of AI and ML
- Wider Issues
 - Analysis of perception and decision-making
 - Ethical Issues
- Conclusions

AI/ML vs Human Decision-Making

- Autonomous systems
 - Transfer decision-making from human to machine (AI/ML)
 - ML learns future behaviour generalising from training data
- Humans have a semantic model, e.g., know what a bicycle is and its likely behaviour
 - Machines do not have these models
- Humans have contextual models, e.g., know what a roundabout is and the effects on driver behaviour ...
 - Machines do not have these models

Trompe l'oeil

AI/ML Safety

- Safety processes assume
 - Know system boundary and it is fixed
 - Know (can specify precisely) system behaviour
 - Know system environment and can assess hazards
 - Life-cycle progressively adds detail so can analyse easily
- With AI/ML
 - Functional boundary unknown and may change
 - Behaviour not known precisely (learnt not specified)
 - Models can be opaque
 - Environment extremely complex (unpredictable)
 - Life-cycle highly iterative

Perception, Planning and More

Failure to regulate accountability for safety of automated driving

Inadequate engineering processes and lack of oversight of operators

Failure of operator to detect that system was not operating correctly

Failure of system to correctly detect pedestrian and avoid collision

Agenda

Key Topics

- Challenges of AI and ML
 - Fundamentals
- Approaches
 - Life cycle models
 - Assurance of AI and ML
- Wider Issues
 - Analysis of perception and decision-making
 - Ethical Issues
- Conclusions

Take-Away 1

Safety Must Embrace ML

Safety must adopt ML models and methods to assure ML

ML Life-Cycle Model

Learning and Deployment

* may involve regulators, hospital managers, developers, insurers

Data Management

Garbage In – Garbage Out

- Data Management is critical GIGO
 - Need to assure properties of data
- Criteria for data management
 - Conformant data formats, units, etc. respected
 - Complete all elements of records included
 - Accurate reflects "ground truth"
 - Balanced reflects the real-world distribution
 - Relevant to the problem at hand, e.g. class of patient, road types, etc.

Weaning from Mechanical Ventilation

- Time of weaning from mechanical ventilation is critical
 - Too early, may lead to an emergency or reintubation
 - Too late, can lead to long-term effects, e.g. muscle damage
 - Clinically difficult judgment

Data Selection

- Data selection shown diagrammatically
 - Data for training, verification and testing
- Shows data excluded if it is not conformant, complete, accurate or relevant
 - Balance depends on data sources

Model Selection

Performant and Assurable

- We need ensure the ML component works well
 - And to assure that it does so
- Some ML models are intrinsically explainable
 - Can interrogate the design to ascertain how decisions were made, e.g. classifying inputs
 - May be challenges with model size
- Some models are not "opaque"
 - But explainable AI (XAI) methods which can illuminate
 - Approximations to model behaviour

Take Away 2

A Trade-Space

- Assurance is multifaceted
 - Need to balance different facets
- Performance and explainability both important
 - Neither is over-riding
 - Model selection should consider both

Comparing Model Performance

CNN	Convolutional Neural Network			
ANN	Artificial Neural Network			
LR	Logistic Regression			
SVM	Support Vector Machine			
DT	Decision Tree			
RF	Random Forest			

Area under the receiver-operator curve (AUC-ROC)

Performance Measures

- Logistic regression is the best performing of the intrinsically explainable models
 - But CNNs significantly better and there are XAI methods that can be used for CNNs

Methods	Accuracy	Precision	Recall	F1-Score	AUC
CNN	86%	82%	86%	84%	0.94
ANN	85%	84%	76%	79%	0.76
Logistic Regression	82%	78%	84%	79%	0.83
Support Vector Machine	70%	61%	61%	61%	0.61
Decision Tree	81%	76%	74%	74%	0.74
Random Forest Tree	87%	90%	77%	80%	0.77

Model Learning

Developers Developers Development process Model verification selection Model verification selection Persulan Deployment Authorities* * may involve regulators, hospital managers, develores; insurers with the process of the

Learning Safe Behaviour

- Models learn from the training dataset
- Performance is key
 - The model learning process focuses on meeting performance criteria
- Safety is also key
 - Performance criteria need to reflect safety constraints for the application
- Safety can influence model learning directly
 - Loss function "shaped" by safety considerations
 - Use of ML methods to improve robustness, etc.

Performance Requirements

Example 1.

Consider an autonomous driving application in which a subsystem may be required to identify pedestrians at a crossing. A component within the perception pipeline may have a requirement of the form "When Ego is 50 metres from the crossing, the object detection component shall identify pedestrians that are on or close to the crossing in their correct position."

Take Away 3

Safety should Drive Design

- Good safety engineering improves design
 - Principle still applies with ML
 - Use classical safety methods, e.g. HAZOP, adapted if necessary to produce safety requirements

HAZOP

Table 1. Fragment of SHARD analysis showing a single hazard 2 The pump fails, e.g. due to electrical problem or ag/syringe not installed correctly 3 The delivery line might not be connected to ulling out the central line 4 The drug might not be added to the diluent, so the syringe/bag just contains saline (a problem when bags/syringes are being changed over) mendation by doctor has a sharp change in dose and doctor carried through the recommendation (not considered in this paper) Strokes, Renal failure 6 RL agent recommends a sharp change in dose Heart attack could and doctor accepts the advice, e.g. due to occur from a sharp automation bias Sudden change of Doctor fails to check current dose
 Features in state space of the RL model are no s administered sufficient to represent the patient conditions for onsecutive doses Cardiac Arrhythmia 10 Reward function used for RL model is coarse Strokes, Raised ntracranial pressur Pulmonary oedema 13 Training data for RL model development is not 15 Data corruption (e.g. invalid or wrong data produced by over-writing patient's features) 16 Features for wrong patient entered 17 Wrong patient feature values entered (e.g. due to 18 Test results for wrong patient received

DSRs

	Features in state space (R1)	Cost Function(R3)
RL model in [32]	48	$L(\theta) = E[(Q_{double-target} - Q(s, a; \theta))^{2}] + \lambda_{1} max(Q(s, a; \theta) - Q_{thresh}, 0)$
Modified RL model	48 (Removed one feature – timestep, added an extra one – relative dose change)	$\begin{split} L(\theta) &= E[(Q_{double-turpet} - Q(s, a; \theta))^2] + \\ \lambda_t max[(Q(s, a; \theta)] - Q_{dorean}, 0) + \\ \lambda_2 max[(V_{double}) - O.75, 0) + \\ \lambda_2 max[(V_{double}) - O.75, 0) + \\ V_{double}_{double} \text{ is the agent recommended dose (argmax of Q(s, a; \theta)) minus the vasopressor dose in the previous step; \lambda_1 and \lambda_2 are the tuning parameters that decide how much to penalise the flexibility of the model. \end{split}$

ML Performance

Figure 4. Original Policy: Comparison of max absolute vasopressor dose change in one step for each patient in the test data set between the clinician and the learnt optimal policy

Figure 5. Modified Policy: Comparison of max absolute vasopressor dose change in one step for each patient in the test data set between the clinician and the learnt modified policy

Model V&V

Verification and Validation

- Verification a core part of ML development
 - Undertaken as part of model development
 - Tested using separate dataset (recall three-way split of data in data management)
- Validation is concerned with how well the models work in the real world
 - On the road, in the clinical setting, etc.
 - Hard to evaluate prior to deployment
 - Explanations (XAI Methods) have a role to play in making the "black box" models open for validation

Explanations for Validation

- Validation needs to be carried out by clinicians
 - Example illustrates feature importance
 - Clinicians can judge if the ranking is plausible
 - Age, gender, ethnicity not relevant here (NB ethics)
 - No "absolute" but can refer to clinical literature and compare different models (CNNs "better" than ANNs)

Explanations and Robustness

- Robustness is also important
 - Counterfactuals input change to change output
 - How well the models cope with changes in inputs
 - Some similarity with "no single point of failure criterion"

Features	Original instance	Counterfactual Examples			
	Original instance	1	2	3	
Admit Type	Emergency		_	_	
Ethnicity	White	9 		-	
Gender	Female			<u>12 20</u>	
Age	78.2	8 -3	4 5 - 9 1		
Admission Weight	86.5	_	2	-	
Heart Rate	119	_	110	100 mm	
Respiratory Rate	24	26	_	_	
SpO2	98	<u> </u>		96	
Inspired O2 Fraction	100%	-	40%	-	
PEEP set	10	5	5	5	
Mean Airway Pressure	14	2===	10		
Tidal Volume (observed)	541	_		560	
PH (Arterial)	7.46		1 <u>1 - 1</u>		
Respiratory Rate(Spont)	0	s 	24	-	
Richmond-RAS Scale	-1	-	0	_	
Peak Insp. Pressure	21	e 	()	20-24	
O2 Flow	5		-	-	
Plateau Pressure	19		1 <u>1 - 1</u>		
Arterial O2 pressure	124	108	118	-	
Arterial CO2 Pressure	33	<u> </u>	32-0	<u> 184 - 187</u>	
Blood Pressure (systolic)	101	_	4	-	
Blood Pressure (diastolic)	65	-	-	-	
Blood Pressure (mean)	76	_		2.3	
Spontaneous breathing trials	No result	Successfully Completed	Successfully Completed	Successfully Completed	
Ventilator Mode	CMV/ASSIST/ AutoFlow	PCV+	SIMV/PSV	SIMV/PSV	
Predicted outcome	0.93	0.44	0.17	0.36	

Safety Case

Role of Artefacts across Life Cycle

Agenda

Key Topics

- Challenges of AI and ML
 - Fundamentals
- Approaches
 - Life cycle models
 - Assurance of AI and ML
- Wider Issues
 - Analysis of perception and decision-making
 - Ethical Issues
- Conclusions

Wider Issues

ML is part of a Wider System

- Need to analyse the system as a whole
 - Socio-technical system, e.g. in healthcare
 - Technical system e.g. autonomous vehicles
 - Complex environment technical, human, organisation
- AAIP is addressing the system issues
 - Assurance and safety analysis processes
- AAIP also considers applications across domains
 - Land, sea, air, healthcare, space, quarrying/mining, factory automation, solar farms ... including tailoring

AAIP Research Strategy

Key Research Pillars

- Five pillars defining a safety and assurance process for robotics and autonomous systems
 - Societal Acceptability of Autonomous Systems (SOCA)
 - Safety of Autonomy in Complex Environments (SACE)
 - Safety Assurance of Understanding in AS (SAUS)
 - Safety Assurance of Decision-Making in AS (SADA)
 - Assurance of Machine Learning for AS (AMLAS)
- Producing 5 linked manuals/guides for use by engineers, developers and regulators
 - But *generic*, so need *tailoring* to application domains ...

AMLAS

Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)

Richard Hawkins, Colin Paterson, Chiara Picardi, Yan Jia, Radu Calinescu and Ibrahim Habli.

Assuring Autonomy International Programme (AAIP)
University of York

Version 1, February 2021

The material in this document is provided as guidance only. No responsibility for loss occasioned to any person acting or refraining from action as a result of this material or any comments made can be accepted by the authors or The University of York.

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Requests for permission for wider use or dissemination should be made to the authors:-

Contact : firstname.lastname@york.ac.uk

- AMLAS provides
 - Defined process
 - Set of safety case patterns
- AMLAS enables
 - 1. Integration of safety assurance into development of ML components
 - 2. Generation of evidence base for justifying acceptable safety
- Resulting in structured safety case for ML component
 - Which will become part of the overall (AS/AV) safety case

https://www.york.ac.uk/assuring-autonomy/guidance/amlas/

AMLAS Overview

- For each stage AMLAS provides
 - Process description
 - Defined activities and artefacts (evidence)
 - Safety argument pattern

SACE

System in Context

- Connects with AMLAS
 - Safety requirements flow down to ML components

Ethical Assurance

Drawing on Biomedical Ethics

- Can adapt safety arguments to include ethical issues
 - Central argument relates to beneficence (do good), maleficence (do no harm) and (human) autonomy
 - Supported by transparency
 - Principles are defeasible, so admit trade-offs
 - Would be reflected in the justice argument

Operational Monitoring

Monitoring to "Close the Loop"

Take Away 4

Specific and Generic

- Generic is valuable
 - Identify all the dimensions of interest
 - Safety requirements, data management ...
 - Reusable across domains

- Tailoring to a domain is essential
 - Adopts its language
 - Addresses particular concerns, e.g. explainability
 - Illustrative example reflects AMLAS, but particularised to healthcare

Conclusions

Plus ça change, plus c'est la même chose

- Assurance of AI/ML-based systems poses unique challenges
 - ML developed iteratively, not via a conventional life-cycle, opacity of learnt models, etc. – plus ça change
- Must adopt & adapt established safety engineering methods
 - Hazard analysis, derived safety requirements, etc
 plus c'est la même chose
- Safety and ML need to "embrace each other", e.g.
 - Apply ML methods to assuring safety of ML
- Recognise that assurance is multi-faceted
 - A lot to do, but a much already done
- International collaboration needed to solve these challenging problems

References

Where to learn more

- AAIP: https://www.york.ac.uk/assuring-autonomy/
- AMLAS: https://www.assuringautonomy.com/amlas
- Illustrative (weaning) example: https://ieeexplore.ieee.org/abstract/document/9769937
- Safety-driven design in healthcare: https://www.sciencedirect.com/science/article/pii/S153204

 6421000915 (example on slide 19)
- Ethical assurance argument: https://arxiv.org/abs/2203.15370

Addressing global challenges in assuring the safety of robotics and autonomous systems