Linear Classification

Machine Learning - Prof. Dr. Stephan Günnemann

Leonardo Freiherr von Lerchenfeld

November 24, 2017

Contents

1	Linear separability	2
	1.1 Problem 1	2
	1.2 Problem 2	2
	1.3 Problem 3	3
2	Basis functions	3
	2.1 Problem 4	3

1 Linear separability

1.1 Problem 1

The convex hull $co\mathcal{X}$ is the set of all points x given by

$$h(x) = w^{T}x$$

$$= w^{T} \sum_{i} \alpha_{i} x^{i}$$

$$= \sum_{i} \alpha_{i} w^{T} x^{i}$$

$$with \sum_{i} \alpha_{i} = 1$$

Similarly the convex hull $co\mathcal{Y}$ can be described by

$$h(y) = \sum_{j} \beta_{j} w^{T} y^{j}$$

$$with \qquad \sum_{j} \beta_{j} = 1$$

When the convex hulls intersect, they must have at least one point in common. This point belongs to both convex hulls, hence, there must be a set of common points, which is built by α_i and β_j . The linear discriminant of this common set, let's call it z, can be written by

$$h(z) = \sum_{i} \alpha_{i} w^{T} x^{i} = \sum_{j} \beta_{j} w^{T} y^{j}$$

For linear separability, the following conditions must be fulfilled

$$h(x^i) = w^T x^i > 0$$

$$h(y^j) = w^T y^j < 0$$

It is a contradiction! The linear discriminant h(z) has to be simultaneously greater than zero and less than zero, which is impossible, since $\forall i: \alpha_i \geq 0, \beta_i \geq 0$.

1.2 Problem 2

A hyperplane puts all points on the correct side. The probability of being in class 1 is given by

$$p(y = 1|x) = \frac{1}{1 + exp(-(w^T x))}$$
$$= \sigma(w^T x)$$
$$w^T x > 0 \qquad if \ x \ on \ normal \ side$$
$$w^T x < 0 \qquad else$$

When the magnitude of w is infinity, the probability for each point is 100%. Thus, the probability function has not the shape of a sigmoid function, but a ramp function. To prevent this, one can add a regularization to penalize a large w.

1.3 Problem 3

I want to classify the circles. When you look at the values of the circles, they are either both positive or both negative. So an adequate basis function is:

$$\Phi(x_1, x_2) = x_1 x_2$$

2 Basis functions

2.1 Problem 4

A hyperplane is defined by a normal vector \mathbf{w} and an offset b (= w_0)

$$\mathbf{w}^T \mathbf{x} + b = 0$$
 if x on the plane

$$w_{0} + w_{1}x_{1} + w_{1}x_{2} = 0$$

$$w_{0} + 2x_{1} = 0$$

$$w_{0} + 5x_{2} = 0$$

$$-w_{0} = 5x_{2}$$

$$-w_{0} = 2x_{1}$$

$$w_{0} = -5$$

$$w_{2} = 1$$

$$w_{1} = \frac{5}{2}$$

Here I set $w_0 = -5$ but one can choose any other real value.