The first definition

1 Setup

Definition 1. Let (X, \mathcal{B}, μ) be a measure space. A function $T: X \to X$ is called a measure transformation if for every measurable set $A \in \mathcal{B}$, the preimage $T^{-1}(A)$ is also in \mathcal{B} . Yang: To be checked

Example 2. Let X = [0,1) with the Borel σ -algebra \mathcal{B} and the Lebesgue measure μ . Define $T: X \to X$ by $T(x) = 2x \mod 1$. Then T is a measure-preserving transformation but not invertible. Indeed, for any measurable set $A \in \mathcal{B}$, we have

$$\mu(T^{-1}(A)) = \mu\left(\{x \in [0,1) : 2x \mod 1 \in A\}\right) = \frac{1}{2}\mu(A) + \frac{1}{2}\mu(A) = \mu(A).$$

However, T is not invertible since, for example, both x = 0.1 and x = 0.6 map to T(x) = 0.2. Yang: To be checked

Definition 3. Let (X, \mathcal{B}, μ) be a measure space and $T: X \to X$ be a measure transformation. Let $A \in \mathcal{B}$ be a measurable set. A point $x \in A$ is called *recurrent* if $T^n(x) \in A$ for some integer n > 0.

Theorem 4 (Poincaré Recurrence Theorem). Let (X, \mathcal{B}, μ) be a measure space with finite measure $\mu(X) < \infty$, and let $T: X \to X$ be a measure-preserving transformation, i.e., for all $A \in \mathcal{B}$, $\mu(T^{-1}(A)) = \mu(A)$. Then for any measurable set A with $\mu(A) > 0$, the almost every point in A is recurrent.

Let (X, \mathcal{B}, μ) be a measure space with finite measure $\mu(X) < \infty$, and let $T : X \to X$ be a measure transformation. Let $E \in \mathcal{B}$ be a measurable set.

Given a point $x \in X$ and given $N \in \mathbb{N}$, for the ratio η the number of these points $\{n \in 1, ..., N : T^n(x) \in A\}$ to N+1, we want to find the limit of η as $N \to \infty$. Yang: To be checked

Let f denote the characteristic function of E, i.e.,

$$f(x) = \begin{cases} 1, & x \in E, \\ 0, & x \notin E. \end{cases}$$

Then the ratio η_N can be expressed as

$$\eta_N = \frac{1}{N+1} \sum_{n=0}^{N} f(T^n(x)).$$

We are interested in the limit

$$\lim_{N\to\infty}\eta_N=\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^N f(T^n(x)).$$

Yang: By "function on X" I mean a map $X \to \mathbb{C}$. To be checked

Date: September 23, 2025, Author: Tianle Yang, My Homepage

2

Let f be a measurable function on X and $T: X \to X$ be a measure transformation. Let $g: X \to \mathbb{C}$ be defined by g(x) = f(T(x)). We usually write $g = U_f$. More precisely, for every function f on X, we define $U_f = f \circ T$. This gives a linear operator $U: f \mapsto U_f$ on the space of measurable functions on X.

Proposition 5. Let (X, \mathcal{B}, μ) be a measure space with finite measure $\mu(X) < \infty$, and let $T: X \to X$ be a measure-preserving transformation. Let

$$L^1(X,\mu)=\{f\,:\,X\to\mathbb{C}\mid f\text{ is measurable and }\int_X|f|d\mu<\infty\}.$$

Then U maps $L^1(X,\mu)$ to itself and is an isometry, i.e., for every $f \in L^1(X,\mu)$, we have $U_f \in L^1(X,\mu)$ and $||U_f||_1 = ||f||_1$.

Proof. Yang: To be completed

More generally, for $1 \le p \le \infty$, let

$$L^p(X,\mu) = \{f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_p < \infty\},\$$

where

$$||f||_p = \begin{cases} \left(\int_X |f|^p d\mu \right)^{1/p}, & 1 \le p < \infty, \\ \operatorname{ess\ sup}_{x \in X} |f(x)|, & p = \infty. \end{cases}$$

Then $L^p(X,\mu)$ is a Banach space with the norm $\|\cdot\|_p$. Proposition 5 can be generalized to L^p .

Special case: p=2 . On $L^2(X,\mu)$, we can define an inner product by

$$\langle f,g\rangle = \int_X f\overline{g}d\mu.$$

Then $L^2(X,\mu)$ is a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$.

Definition 6. Let \mathcal{H} be a Hilbert space. A linear operator $U: \mathcal{H} \to \mathcal{H}$ is called an *isometry* if for every $x \in \mathcal{H}$, ||Ux|| = ||x||. The operator U is called *unitary* if $\langle Ux, Uy \rangle = \langle x, y \rangle$ for every $x, y \in \mathcal{H}$.

Proposition 7. Let $U: \mathcal{H} \to \mathcal{H}$ be a linear operator on a Hilbert space \mathcal{H} . Then U is isometry if and only if $U^*U = \mathrm{id}_{\mathcal{H}}$, where U^* is the adjoint operator of U. Moreover, U is unitary if and only if $U^*U = UU^* = \mathrm{id}_{\mathcal{H}}$. In particular, U is unitary if and only if U is an isometry and surjective.

Proposition 8. Let (X, \mathcal{B}, μ) be a measure space with finite measure $\mu(X) < \infty$, and let $T: X \to X$ be a measure-preserving transformation which is also invertible. Then the operator $U: L^2(X, \mu) \to L^2(X, \mu)$ defined by $U_f = f \circ T$ is unitary.

Proof. Yang: To be completed

Recall the limit we want to find:

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^N f(T^n(x)).$$

This can be rewritten as

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^N U^n f(x).$$

So let us focus on the limit of

$$\frac{1}{N+1}\sum_{n=0}^{N}U^{n}.$$

In the case $\mathcal{H} = \mathbb{C}$, the unitary operator $U : \mathbb{C} \to \mathbb{C}$ is just a multiplication by a complex number $e^{i\theta}$ with $\theta \in \mathbb{R}$. Then the limit

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^N U^n$$

converges for all θ and the limit is given by

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^N U^n=\begin{cases} 1, & \exp(i\theta)=1,\\ 0, & \text{otherwise.} \end{cases}$$

In the case $\mathcal{H}=\mathbb{C}^n$, the unitary operator $U:\mathbb{C}^n\to\mathbb{C}^n$ can be represented by a unitary matrix. Then the limit

$$\lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} U^n = P$$

is the orthogonal projection onto the subspace of \mathbb{C}^n spanned by the eigenvectors of U corresponding to the eigenvalue 1.

Theorem 9 (von Neumann Mean Ergodic Theorem). Let \mathcal{H} be a Hilbert space and $U: \mathcal{H} \to \mathcal{H}$ be an isometry and P the orthogonal projection onto the subspace of \mathcal{H} consisting of all vectors y such that Uy = y. Then the limit

$$\lim_{N\to\infty}\frac{1}{N+1}\sum_{n=0}^N U^n$$

converges to P. Yang: To be checked Yang: What is the projection exactly?

Proof. Yang: To be completed Yang: Hint: $\mathcal{H} = \ker(U - I) \oplus \overline{\mathrm{Im}(U - I)}$ and this is the orthogonal decomposition.

Lemma 10. If $U: \mathcal{H} \to \mathcal{H}$ is an isometry, then $U\xi = \xi$ if and only if $U^*\xi = \xi$.

Proof. Yang: To be completed