Algebra Lineare

 $20~\mathrm{marzo}~2020$

Indice

1	Matrici e sistemi lineari				
	1.1	Matrici			
		1.1.1 Operazioni sulle matrici			
2	Spazi vettoriali				
	2.1	Spazi vettoriali e prime proprieta'			
	2.2	Applicazioni lineari			

Capitolo 1

Matrici e sistemi lineari

1.1 Matrici

Definizione 1.1.1. Si dice matrice $m \times n$ una tabella di m righe e n colonne i cui elementi appartengono ad un campo \mathbb{K} fissato, della forma

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = [A_{ij}]_{i \le m, j \le n}$$

$$(1.1)$$

Definizione 1.1.2. Si dice vettore colonna una matrice $n \times 1$ del tipo

$$\mathbf{v} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \tag{1.2}$$

Si dice vettore riga una matrice $1\times n$ del tipo

$$\boldsymbol{w} = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \tag{1.3}$$

L'insieme dei vettori colonna di n elementi appartenenti ad un campo \mathbb{K} si indica con \mathbb{K}^n , mentre l'insieme dei vettori riga di n elementiappartenenti ad un campo \mathbb{K} si indica con $\mathbb{K}^{\times n}$.

E' evidente che se i due vettori \boldsymbol{v} e \boldsymbol{w} hanno la stessa dimensione e contengono gli stessi elementi allora rappresentano la stessa informazione, ma sotto forme diverse. Verificheremo piu' avanti infatti che \mathbb{K}^n e $\mathbb{K}^{\times n}$ sono isomorfi, cioe' contengono gli stessi elementi in due forme diverse.

1.1.1 Operazioni sulle matrici

Consideriamo le operazioni fondamentali che coinvolgono matrici.

Somma di matrici

Siano A,B due matrici $m\times n$ a coefficienti reali. Allora possiamo definire un'operazione di somma $+:\mathbb{M}_{m\times n}(\mathbb{R})\times\mathbb{M}_{m\times n}(\mathbb{R})\to\mathbb{M}_{m\times n}(\mathbb{R})$ tale che

$$A + B = [A_{ij} + B_{ij}]_{ij}. (1.4)$$

Cioe' se

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ b_{21} & \dots & b_{2n} \\ \vdots & \vdots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}$$

$$\implies A + B = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

Capitolo 2

Spazi vettoriali

2.1 Spazi vettoriali e prime proprieta'

Definizione 2.1.1. Si dice spazio vettoriale su un campo \mathbb{K} un insieme V di elementi, detti vettori, insieme con due operazioni $+: V \times V \to V$ e $\cdot: \mathbb{K} \times V \to V$ e un elemento $\mathbf{0}_{V} \in V$ che soddisfano i seguenti assiomi:

$$\forall \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{u} \in V, \quad \forall h, k \in \mathbb{K}$$

1.	$(oldsymbol{v}+oldsymbol{w})\in V$	(chiusura di V rispetto a $+$)	(2.1)
2.	$\boldsymbol{v} + \boldsymbol{w} = \boldsymbol{w} + \boldsymbol{v}$	(commutativita' di +)	(2.2)
3.	(v + w) + u = w + (v + u)	(associativita' di +)	(2.3)
4.	$0_{\boldsymbol{V}}+\boldsymbol{v}=\boldsymbol{v}+0_{\boldsymbol{V}}=\boldsymbol{v}$	$(0_{V} \text{ el. neutro di } +)$	(2.4)
5.	$\exists (-\boldsymbol{v}) \in V. \boldsymbol{v} + (-\boldsymbol{v}) = \boldsymbol{0}_{\boldsymbol{V}}$	(opposto per +)	(2.5)
6.	$k oldsymbol{v} \in V$	(chiusura di V rispetto a $\cdot)$	(2.6)
7.	$k(\boldsymbol{v} + \boldsymbol{w}) = k\boldsymbol{v} + k\boldsymbol{w}$	(distributivita' 1)	(2.7)
8.	$(k+h)\boldsymbol{v} = k\boldsymbol{v} + h\boldsymbol{v}$	(distributivita' 2)	(2.8)
9.	$(kh)oldsymbol{v}=k(holdsymbol{v})$	(associativita' di $\cdot)$	(2.9)
10.	$1\mathbf{v} = \mathbf{v}$	$(1 \text{ el. neutro di } \cdot)$	(2.10)

Spesso il campo \mathbb{K} su cui e' definito uno spazio vettoriale V e' il campo dei numeri reali \mathbb{R} o il campo dei numeri complessi \mathbb{C} . Supporremo che gli spazi vettoriali siano definiti su \mathbb{R} a meno di diverse indicazioni. Le definizioni valgono comunque in generale anche su campi \mathbb{K} diversi da \mathbb{R} o \mathbb{C} .

Esempio 2.1.2. Possiamo fare diversi esempi di spazi vettoriali. Ad esempio sono spazi vettoriali:

- 1. i vettori geometrici dove:
 - l'elemento neutro e' il vettore nullo;
 - la somma e' definita tramite la regola del parallelogramma;
 - il prodotto per scalare e' definito nel modo usuale;

- 2. i vettori colonna $n \times 1$ o i vettori riga $1 \times n$ dove:
 - l'elemento neutro e' il vettore composto da n elementi 0;
 - la somma e' definita come somma tra componenti;
 - il prodotto per scalare e' definito come prodotto tra lo scalare e ciascuna componente;
- 3. le matrici $n \times m$, indicate con $\mathbb{M}_{n \times m}(\mathbb{K})$;
- 4. i polinomi di grado minore o uguale a n, indicati con $\mathbb{K}[x]^{\leq n}$;
- 5. tutti i polinomi, indicati con $\mathbb{K}[x]$.

Definizione 2.1.3. Sia V uno spazio vettoriale e $v_1, v_2, \ldots, v_n \in V$. Allora il vettore $v \in V$ si dice combinazione lineare di v_1, v_2, \ldots, v_n se

$$\boldsymbol{v} = a_1 \boldsymbol{v_1} + a_2 \boldsymbol{v_2} + \dots + a_n \boldsymbol{v_n} \tag{2.11}$$

per qualche $a_1, a_2, \ldots, a_n \in \mathbb{R}$.

Definizione 2.1.4. Sia V uno spazio vettoriale e $v_1, \ldots, v_n \in V$. Si indica con span $\{v_1, \ldots, v_n\}$ l'insieme dei vettori che si possono ottenere come combinazione lineare di v_1, \ldots, v_n :

$$span \{v_1, ..., v_n\} = \{a_1v_1 + \cdots + a_nv_n \mid a_1, ..., a_n \in \mathbb{R}\}$$
 (2.12)

Definizione 2.1.5. Sia V uno spazio vettoriale, $A \subset V$. Allora si dice che A e' un sottospazio vettoriale di V (o semplicemente sottospazio) se

$$\mathbf{0}_{V} \in A \tag{2.13}$$

$$(\boldsymbol{v} + \boldsymbol{w}) \in A \qquad \forall \boldsymbol{v}, \boldsymbol{w} \in A \qquad (2.14)$$

$$(k\mathbf{v}) \in A$$
 $\forall k \in \mathbb{R}, \mathbf{v} \in A$ (2.15)

Proposizione 2.1.6. Le soluzioni di un sistema omogeneo Ax = 0 con n variabili formano un sottospazio di \mathbb{R}^n .

Dimostrazione. Chiamiamo S l'insieme delle soluzioni. Dato che le soluzioni sono vettori colonna di n elementi, $S \subset \mathbb{R}^n$. Verifichiamo ora le condizioni per cui S e' un sottospazio di \mathbb{R}^n :

- 1. **0** appartiene a S, poiche' $A\mathbf{0} = \mathbf{0}$;
- 2. Se x, y appartengono ad S, allora $A(x + y) = Ax + Ay = 0 + 0 = 0 \in S$;
- 3. Se \boldsymbol{x} appartiene ad S, allora $A(k\boldsymbol{x}) = kA\boldsymbol{x} = k\boldsymbol{0} = \boldsymbol{0} \in S$.

Dunque S e' un sottospazio di \mathbb{R}^n .

Proposizione 2.1.7. Sia V uno spazio vettoriale, $v_1, \ldots, v_n \in V$. Allora $A = \text{span}\{v_1, \ldots, v_n\} \subset V$ e' un sottospazio di V.

Dimostrazione. Dimostriamo che valgono le tre condizioni per cui Ae' un sottospazio di $V\colon$

1. $\mathbf{0}_{\mathbf{V}}$ appartiene ad A, in quanto basta scegliere $a_1 = \cdots = a_n = 0$;

2. Siano $\boldsymbol{v}, \boldsymbol{w} \in A$. Allora per qualche $a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R}$ vale che

$$\mathbf{v} + \mathbf{w} = (a_1 \mathbf{v_1} + \dots + a_n \mathbf{v_n}) + (b_1 \mathbf{v_1} + \dots + b_n \mathbf{v_n})$$
$$= (a_1 + b_1) \mathbf{v_1} + \dots + (a_n + b_n) \mathbf{v_n} \in A$$

3. Siano $\mathbf{v} \in A, k \in \mathbb{R}$. Allora per qualche $a_1, \ldots, a_n \in \mathbb{R}$ vale che

$$k\mathbf{v} = k(a_1\mathbf{v_1} + \dots + a_n\mathbf{v_n})$$

= $(ka_1)\mathbf{v_1} + \dots + (ka_n)\mathbf{v_n} \in A$

cioe' A e' un sottospazio di V.

Definizione 2.1.8. Sia V uno spazio vettoriale, $v_1, \ldots, v_n \in V$. Allora l'insieme $\{v_1, \ldots, v_n\}$ si dice insieme di vettori linearmente indipendenti se

$$a_1 \mathbf{v_1} + \dots + a_n \mathbf{v_n} = \mathbf{0_V} \iff a_1 = \dots = a_n = 0$$
 (2.16)

cioe' se l'unica combinazione lineare di v_1, \ldots, v_n che da' come risultato il vettore nullo e' quella con $a_1 = \cdots = a_n = 0$.

Possiamo usare una definizione alternativa di dipendenza lineare, equivalente alla precedente, tramite questa proposizione:

Proposizione 2.1.9. Sia V uno spazio vettoriale, $v_1, \ldots, v_n \in V$. Allora l'insieme dei vettori $\{v_1, \ldots, v_n\}$ e' linearmente dipendente se e solo se almeno uno di essi e' esprimibile come combinazione lineare degli altri.

Dimostrazione. Dimostriamo entrambi i versi dell'implicazione.

• Supponiamo che $\{v_1,\ldots,v_n\}$ sia linearemente dipendente, cioe' che esistano a_1,\ldots,a_n non tutti nulli tali che

$$a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n} = \mathbf{0_V}.$$

Supponiamo senza perdita di generalita' $a_1 \neq 0$, allora segue che

$$\boldsymbol{v_1} = -\frac{a_2}{a_1}\boldsymbol{v_1} - \dots - \frac{a_n}{a_1}\boldsymbol{v_n}$$

dunque $\boldsymbol{v_1}$ puo' essere espresso come combinazione lineare degli altri vettori.

• Supponiamo che il vettore v_1 sia esprimibile come combinazione lineare degli altri (senza perdita di generalita'), cioe' che esistano $k_2, \ldots, k_n \in \mathbb{R}$ tali che

$$\mathbf{v_1} = k_2 \mathbf{v_2} + \dots + k_n \mathbf{v_n}.$$

Consideriamo una generica combinazione lineare di v_1, v_2, \ldots, v_n :

$$a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$$

$$= a_1 (k_2 \mathbf{v_2} + \dots + k_n \mathbf{v_n}) + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$$

$$= (a_1 k_2 + a_2) \mathbf{v_2} + \dots + (a_1 k_n + a_n) \mathbf{v_n}$$

Se scegliamo $a_1 \in \mathbb{R}$ libero, $a_i = -a_1 k_i$ per ogni $2 \le i \le n$, otterremo

$$(a_1k_2 + a_2)\mathbf{v_2} + \dots + (a_1k_n + a_n)\mathbf{v_n}$$

$$= (a_1k_2 - a_1k_2)\mathbf{v_2} + \dots + (a_1k_n - a_1k_n)\mathbf{v_n}$$

$$= 0\mathbf{v_2} + \dots + 0\mathbf{v_n}$$

$$= 0_{\mathbf{V}}$$

dunque esiste una scelta dei coefficienti a_1, a_2, \ldots, a_n diversa da $a_1 = \cdots = a_n = 0$ per cui la combinazione lineare da' come risultato il vettore nullo, cioe' l'insieme dei vettori non e' linearmente indipendente.

Inoltre per comodita' spesso si dice che i vettori v_1, \ldots, v_n sono indipendenti, invece di dire che l'insieme formato da quei vettori e' un insieme linearmente indipendente.

Definizione 2.1.10. Sia V uno spazio vettoriale, $v_1, \ldots, v_n \in V$. Allora si dice che $\mathcal{B} = \langle v_1, \ldots, v_n \rangle$ e' una base di V se

- span $\{v_1, \ldots, v_n\} = V;$
- i vettori v_1, \ldots, v_n sono linearmente indipendenti.

Definizione 2.1.11. Sia V uno spazio vettoriale, $v \in V$ e $\mathcal{B} = \langle v_1, \dots, v_n \rangle$ una base di V. Allora si dice vettore delle coordinate di v rispetto a \mathcal{B} il vettore colonna

$$[\boldsymbol{v}]_{\mathcal{B}} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^n \tag{2.17}$$

tale che

$$\boldsymbol{v} = a_1 \boldsymbol{v_1} + \dots + a_n \boldsymbol{v_n} \tag{2.18}$$

Proposizione 2.1.12. Sia V uno spazio vettoriale, $v \in V$ e $\mathcal{B} = \langle v_1, \dots, v_n \rangle$ una base di V. Allora le coordinate di v rispetto a \mathcal{B} sono uniche.

Dimostrazione. Supponiamo per assurdo che esistano due vettori colonna distinti a, b che rappresentino le coordinate di v rispetto a \mathcal{B} . Allora

$$\mathbf{0}_{V} = \boldsymbol{v} - \boldsymbol{v}$$

$$= (a_{1}\boldsymbol{v}_{1} + \dots + a_{n}\boldsymbol{v}_{n}) - (b_{1}\boldsymbol{v}_{1} + \dots + b_{n}\boldsymbol{v}_{n})$$

$$= (a_{1} - b_{1})\boldsymbol{v}_{1} + \dots + (a_{n} - b_{n})\boldsymbol{v}_{n}$$

Ma per definizione di base v_1, \ldots, v_n sono linearmente indipendenti, dunque l'unica combinazione lineare che da' come risultato il vettore $\mathbf{0}_V$ e' quella in cui tutti i coefficienti sono 0. Da cio' segue che

$$a_1 - b_1 = a_2 - b_2 = \dots = a_n - b_n = 0$$

$$\implies \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \mathbf{b}$$

cioe' i due vettori sono uguali. Ma cio' e' assurdo poiche' abbiamo supposto $a \neq b$, dunque le coordinate di v rispetto a $\mathcal B$ devono essere uniche.

2.2 Applicazioni lineari

Definizione 2.2.1. Siano V,W spazi vettoriali. Allora un'applicazione $f:V\to W$ si dice lineare se

$$f(\mathbf{0}_{V}) = \mathbf{0}_{W} \tag{2.19}$$

$$f(\boldsymbol{v} + \boldsymbol{w}) = f(\boldsymbol{v}) + f(\boldsymbol{w}) \qquad \forall v, w \in V$$
 (2.20)

$$f(k\mathbf{v}) = kf(\mathbf{v})$$
 $\forall v \in V, k \in \mathbb{R}$ (2.21)