Induction

Section 5

Proof by Induction

yet another proof technique

The method of *proof by induction* is based on the following principle.

Principle of Mathematical Induction

Let P(n) be any statement about n. Suppose we have proved that

$$P(1)$$
 is true (1)

and that

for each natural number
$$n$$
, if $P(n)$ is true, then $P(n+1)$ is true. (2)

Then we may conclude that for each natural number n, P(n) is true.

• This is a commonly used technique to prove a universal sentence $(\forall x \in A)P(x)$ when A is \mathbb{N} .

Steps in Proof by Induction

(Unews) P(n)

Sum of Odd Natural Numbers

For each
$$n \in \mathbb{N}$$
 $1+3+\cdots+(2n-1)=n^2$.

Proof. Let P(n) be the sentence

$$1+3+\cdots+(2n-1)=n^2$$
.

BASE CASE: Observe that P(1) is true because if n=1, then the left-hand side is just 1 and the right-hand side is $1^2=1$.

Declare P(n).

Show P(1) is true.

INDUCTIVE STEP: Let $n \in \mathbb{N}$ such that P(n) is true. Then

$$(LHS) = 1 + 3 + \dots + (2n-1) + [2(n+1) - 1]$$

$$= n^2 + [2(n+1) - 1]$$

$$= n^2 + 2n + 2 - 1 = n^2 + 2n + 1$$

$$= (n+1)^2 = (RHS)$$

Thus P(n+1) is true.

CONCLUSION: Therefore, by induction, for each $n \in \mathbb{N}$, P(n) is true. That is, for each $n \in \mathbb{N}$, $1+3+\cdots+(2n-1)=n^2$. \qed

Show $(\forall n \in \mathbb{N})(P(n) \Rightarrow P(n+1))$.

The first sentence in this paragraph is called the inductive hypothesis.

Use induction to conclude.

$$p(n): 1+3+\cdots+(2n-1) = n^{\frac{3}{2}}$$

$$P(n+1): 1+3+---+(2n-1)+(2(n+1)-1] = (n+1)^{2}$$

Example 1

Prove by induction that for each $n \in \mathbb{N}$.

Scratch P(n+1)

1+2+...+ n+(n+1)

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Proof Let P(n) be the Sentence $1+2+\cdots+n=\frac{N(n+1)}{n}$

(fne(N)[P(n) ⇒ P(n+1)]

INDUCTIVE STEP Let nEIN such that P(n) is true.

 $= \left(\frac{n}{2} + 1\right) (n+1)$

 $1+2+\cdots+n+(n+1) = \frac{n(n+1)}{n+1} + (n+1)$

 $= \left(\frac{n+2}{2}\right)(n+1) = \frac{(n+1)\left[(n+1)+1\right]}{2}$

BASE CASE P(1) is true because the LHS of P(1) (P(1) ts true) ts 1, and the RHS ts $\frac{1(1+1)}{2} = \frac{1\cdot 2}{2} = 1$. = (n+1)(n+1)+1]

This may show up

(N+1)(N+2)

Thus P(n+1) is true.

CONCLUSION Therefore, by industron, for each nEIN, P(n) is true. In other words, for each n = IN,

 $1+2+\cdots+n=n(n+1)/2.$

$$-M = M(M+1)/2$$

Example 2

Prove by induction that for each $n \in \mathbb{N}$.

Prove by induction that for each
$$n \in \mathbb{N}$$
,
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$
 Proof Let $p(n)$ be the sentence
$$1 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$
 BAGE CASE $p(1)$ is true because the LHS of $p(1)$ (PL) is true.

(P(1) is true) is $L^2 = 1$, and the RHS is $\frac{L(1+1)(2\cdot 1+1)}{L} = \frac{1\cdot 2\cdot 3}{6} = 1$.

Scratch P(n+1)

$$1^{2} + 2^{2} + \cdots + n^{2} + (n+i)^{2}$$

$$= (n+1) \left[(n+i) + 1 \right] \left[2(n+i) + 1 \right]$$

$$(n+1)(n+2)(2n+3)$$

5/6

$$= \frac{(n+1)(2n^2+n+6n+6)}{6}$$

$$= \frac{(n+1)(2n^2+7n+6)}{6}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

$$= \frac{(n+1)[(n+1)+1][2(n+1)+1]}{6}$$

Thus P(n+1) is true.

CONCLUSION Therefore, by induction, for each $n \in \mathbb{N}$, $P(n) \text{ is true. In other words, for each } n \in \mathbb{N},$ $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6.$

Example 3

Prove by induction that for each $n \in \mathbb{N}$, 3 divides $4^n - 1$.

- · Assumption: MEW s.t. P(n) is true, i.e. 3 divides 4 -1.
- · WTS: P(n+1) 15 true, i.e., 3 divides 4-1
- · Key observation:

$$4^{n+1} - 1 = 4 \cdot 4^{n} - 1$$

$$= (3+1) \cdot 4^{n} - 1$$

$$= 3 \cdot 4^{n} + 4^{n} - 1$$