RING THEORY

- 1. RINGS AND FIELDS
- 2. IDEALS AND QUOTIENT RINGS
- 3. HOMOMORPHISM OF RINGS
- 4. EUCLIDEAN RINGS, PID
- 5. POLYNOMIAL RINGS, UFD

1. RINGS AND FIELDS

1. 4b 2020 IFoS

Let K be a finite field. Show that the number of elements in K is p^n , where p is a prime, which is characteristic of K and $n \ge 1$ is an integer. Also, prove that $\frac{\mathbb{Z}_3[X]}{(X^2+1)}$ is a field. How many elements does this field have?

15

2. 1a 2019 IFoS

Let R be an integral domain. Then prove that $\operatorname{ch} R$ (characteristic of R) is 0 or a prime.

8

3. 3a 2018

Find all the proper subgroups of the multiplicative group of the field (\mathbb{Z}_{13} , $+_{13}$, \times_{13}), where $+_{13}$ and \times_{13} represent addition modulo 13 and multiplication modulo 13 respectively.

4. 1b 2015

Give an example of a ring having identity but a subring of this having a different identity.

5. 4a 2015

Do the following sets form integral domains with respect to ordinary addition and multiplication? If so, state if they are fields:

5+6+4=15

- (i) $b\sqrt{2}$ के रूप की संख्याओं का समुच्चय, जहाँ b परिमेय संख्या है

 The set of numbers of the form $b\sqrt{2}$ with b rational
- (ii) सम पूर्णांकों का समुच्चय The set of even integers
- (iii) धनात्मक पूर्णांकों का समुच्चयThe set of positive integers

6. 2a 2015 IFoS

12. (a) If p is a prime number and e a positive integer, what are the elements 'a' in the ring \mathbb{Z}_{pe} of integers modulo p^e such that $a^2 = a$? Hence (or otherwise) determine the elements in \mathbb{Z}_{35} such that $a^2 = a$.

7, 2a 2014

Show that \mathbb{Z}_7 is a field. Then find $([5] + [6])^{-1}$ and $(-[4])^{-1}$ in \mathbb{Z}_7 .

8. 3a 2014

Show that the set $\{a+b\omega:\omega^3=1\}$, where a and b are real numbers, is a field with respect to usual addition and multiplication.

9. 4a 2014

Prove that the set $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$ is a commutative ring with identity.

10. 2a IFoS 2014

2. (a) Let J_n be the set of integers mod n. Then prove that J_n is a ring under the operations of addition and multiplication mod n. Under what conditions on n, J_n is a field? Justify your answer.

11. 2a 2013 IFoS

(a) Show that any finite integral domain is a field.

12. 2b 2013 IFoS

(b) Every field is an integral domain — Prove it.

13. 1b 2012 IFoS

(b) Show that every field is without zero divisor.

10

10

14. 1b 2011 IFoS

(b) Let Q be the set of all rational numbers. Show that

$$Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Q\}$$

is a field under the usual addition and multiplication.

15. 2b 2010

(b) Let $C = \{ f : I = [0, 1] \rightarrow \mathbb{R} | f \text{ is continuous} \}.$

Show C is a commutative ring with 1 under pointwise addition and multiplication.

Determine whether C is an integral domain. Explain.

16. 1b 2010 IFoS

(b) Let F be a field of order 32. Show that the only subfields of F are F itself and {0, 1}.

17. 4b 2009 IFoS

(b) Show that a field is an integral domain and a non-zero finite integral domain is a field.

18. 2c 2009 IFoS

(c) Find the multiplicative inverse of the element

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

of the ring, M, of all matrices of order two over the integers.

2. IDEALS AND QUOTIENT RINGS

1. 1b 2020

Let R be a principal ideal domain. Show that every ideal of a quotient ring of R is principal ideal and R/P is a principal ideal domain for a prime ideal P of R.

2, 2a 2020 IFoS

Let R be a non-zero commutative ring with unity. Show that M is a maximal ideal in a ring R if and only if R/M is a field.

3. 3b 2018 IFoS

(b) Show by an example that in a finite commutative ring, every maximal ideal need not be prime.

4. 2c 2017 IFoS

2.(c) Let A be an ideal of a commutative ring R and B = {x∈R : xⁿ∈A for some positive integer n}. Is B an ideal of R? Justify your answer.

10

5. 3b 2013

(b) Let R^C = ring of all real valued continuous functions on [0, 1], under the operations

$$(f+g) = f(x) + g(x)$$

(fg)
$$x = f(x) g(x)$$
.

$$Let\ M \,=\, \Bigg\{ f \in R^C \ \bigg|\ f\bigg(\frac{1}{2}\bigg) \,=\,\, 0\ \Bigg\}.$$

Is M a maximal ideal of R? Justify your answer.

6. 3b 2013 IFoS

- (b) Prove that :
 - the intersection of two ideals is an ideal.
 - (ii) a field has no proper ideals.

7. 3a 2012

3. (a) Is the ideal generated by 2 and X in the polynomial ring Z[X] of polynomials in a single variable X with coefficients in the ring of integers Z, a principal ideal? Justify your answer.

15

8. 4a 2012

4. (a) Describe the maximal ideals in the ring of Gaussian integers $\mathbb{Z}[i] = \{a+bi \mid a, b \in \mathbb{Z}\}.$

9. 3b 2009

(b) How many elements does the quotient ring $\frac{\mathbb{Z}_{5}[X]}{(X^{2}+1)}$ have? Is it an integral domain? Justify yours answers.

10. 2a 2009

2. (a) How many proper, non-zero ideals does the ring Z_{12} have? Justify your answer. How many ideals does the ring $Z_{12} \oplus Z_{12}$ have? Why?

2+3+4+6=15

3. HOMOMORPHISM OF RINGS

1. 3a 2020

Let R be a finite field of characteristic p(>0). Show that the mapping $f: R \rightarrow R$ defined by $f(a) = a^p$, $\forall a \in R$ is an isomorphism.

2. 2a 2019 IFoS

Let I and J be ideals in a ring R. Then prove that the quotient ring (I + J)/J is isomorphic to the quotient ring $I/(I \cap J)$.

3. 2d 2018 IFoS

(d) Let R be a commutative ring with unity. Prove that an ideal P of R is prime if and only if the quotient ring R/P is an integral domain.

4. 2a 2015

If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R', prove that $\phi(1)$ is the unit element of R'.

5. 1a 2013

Show that the set of matrices $S = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$ is a field under the usual binary operations of matrix addition and matrix multiplication. What are the additive and multiplicative identities and what is the inverse of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$? Consider the map $f: \mathbb{C} \to S$ defined by $f(a+ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Show that f is an isomorphism. (Here \mathbb{R} is the set of real numbers and \mathbb{C} is the set of complex numbers.)

6. 3b 2010

(b) Show that the quotient ring $\mathbb{Z}[i]/(1+3i)$ is isomorphic to the ring $\mathbb{Z}/10\mathbb{Z}$ where $\mathbb{Z}[i]$ denotes the ring of Gaussian integers. 15

4. EUCLIDEAN RINGS, PID

1. 3d 2019

Let a be an irreducible element of the Euclidean ring R, then prove that R/(a) is a field.

2. 2d 2017 IFoS

2.(d) Prove that the ring $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}, i = \sqrt{-1}\}$ of Gaussian integers is a Euclidean domain. 10

3. 2c 2016 IFoS

Show that in the ring $R = \{a + b\sqrt{-5} \mid a, b \text{ are integers}\}$, the elements $\alpha = 3$ and $\beta = 1 + 2\sqrt{-5}$ are relatively prime, but $\alpha \gamma$ and $\beta \gamma$ have no g.c.d in R, where $\gamma = 7(1 + 2\sqrt{-5})$.

4. 3a 2013

Let $J = \{a + bi \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers (subring of \mathbb{C}). Which of the following is J: Euclidean domain, principal ideal domain, unique factorization domain? Justify your answer.

5. 4a 2010 IFoS

4. (a) Let R be a Euclidean domain with Euclidean valuation d. Let n be an integer such that d(1) + n ≥ 0. Show that the function d_n: R - {0} → S, where S is the set of all negative integers defined by d_n(a) = d(a) + n for all a ∈ R - {0} is a Euclidean valuation.

6. 4a 2009 IFoS

4. (a) Show that d(a) < d(ab), where a, b be two non-zero elements of a Euclidean domain R and b is not a unit in R.

domain R and b is not a unit in R. 13

5. POLYNOMIAL RINGS, UFD

1. 1a 2018

Let R be an integral domain with unit element. Show that any unit in R[x] is a unit in R.

2. 2c 2017

Let F be a field and F[X] denote the ring of polynomials over F in a single variable X. For f(X), $g(X) \in F[X]$ with $g(X) \neq 0$, show that there exist q(X), $r(X) \in F[X]$ such that degree (r(X)) < degree (g(X)) and

 $f(X) = q(X) \cdot g(X) + r(X).$

20

3. 1a 2016

Let K be a field and K[X] be the ring of polynomials over K in a single variable X. For a polynomial $f \in K[X]$, let (f) denote the ideal in K[X] generated by f. Show that (f) is a maximal ideal in K[X] if and only if f is an irreducible polynomial over K.

10

4. 4a 2016

Show that every algebraically closed field is infinite.

15

5. 3a 2014 IFoS

3. (a) Let R be an integral domain with unity. Prove that the units of R and R[x] are same.

10

6. 3c 2012 IFoS

(c) If R is an integral domain, show that the polynomial ring R[x] is also an integral domain.
14

7. 3a 2011

3. (a) Let F be the set of all real valued continuous functions defined on the closed interval [0, 1]. Prove that (F, +, ·) is a Commutative Ring with unity with respect to addition and multiplication of functions defined pointwise as below:

8. 3a 2010

3. (a) Consider the polynomial ring Q[x]. Show $p(x) = x^3 - 2$ is irreducible over Q. Let I be the ideal in Q[x] generated by p(x). Then show that Q[x]/I is a field and that each element of it is of the form $a_0 + a_1t + a_2t^2$ with a_0 , a_1 , a_2 in Q and t = x + I.

9. 3a 2009

Show that Z[X] is a unique factorization domain that is not a principal ideal domain (Z is the ring of integers). Is it possible to give an example of principal ideal domain that is not a unique factorization domain? (Z [X] is the ring of polynomials in the variable X with integer.) 15

*MISCELLANEOUS (EXTENSION FIELD)

1. 3a 2016

Let K be an extension of a field F. Prove that the elements of K, which are algebraic over F, form a subfield of K. Further, if $F \subset K \subset L$ are fields, L is algebraic over K and K is algebraic over F, then prove that L is algebraic over F.