Теорема (Понселе). Пусть Γ , γ — невырожденные коники общего положения, а X_1, X_2, \ldots, X_n — точки Γ , не лежащие на γ . Тогда если существует n—угольник, одновременно вписанный в Γ и описанный вокруг γ , все вершины которого не принадлежат γ , и известно, что все прямые $X_1X_2, X_2X_3, \ldots, X_{n-1}X_n$ касаются γ , то X_nX_1 также касается γ .

- **1.** Даны попарно различные прямые $\ell_1, \ell_2, \dots, \ell_6$. Обозначим $L_{ij} = \ell_i \cap \ell_j, i \neq j$. Докажите, что прямые $\ell_1, \ell_2, \dots, \ell_6$ касаются некоторой коники если и только если точки $L_{12}L_{34} \cap L_{45}L_{61}, L_{25}$ и L_{36} лежат на одной прямой.
- **2.** а) Треугольники ABC и $A_1B_1C_1$ вписаны в конику Γ так, что все шесть рассматриваемых вершин попарно различны. Докажите, что шесть прямых, содержащих стороны этих треугольников, касаются некоторой коники γ .
- б) Докажите теорему Понселе для случая n=3.

Пусть $A_1A_2\dots A_n$ — хороший многоугольник, вписанный в Γ и описанный около γ , а B_1,B_2,\dots,B_n — точки Γ , для которых B_iB_{i+1} касается $\gamma, \forall i \in \overline{2,n-1}$. Для $1 \leqslant i \leqslant n-1$ определим $I_p = A_pA_{p+1} \cap B_pB_{p+1}$.

- **3.** а) Предположим, точка $X=B_pA_q\cap A_pB_q$ лежит на прямой I_pI_q , причём p< q и точки I_p,I_q,X попарно различны. Докажите, что точки X,I_{p-1},I_{q+1} попарно различны и коллинеарны.
- б) В обозначениях предыдущей задачи предположим, что точки X, I_{p-1}, I_{q+1} попарно различны и коллинеарны. Тогда точки $X' = A_{p-1}B_{q+1} \cap B_{p-1}A_{q+1}$, I_{p-1}, I_{q+1} также попарно различны и коллинеарны.
- в) Докажите, что точки $I=A_1A_2\cap B_1B_2,\ X=A_2B_{n-1}\cap B_2A_{n-1}$ и $I'=A_{n-1}A_n\cap B_{n-1}B_n$ попарно различны и коллинеарны.
- **4.** Докажите теорему Понселе для $n \geqslant 4$.

Задачи

- 5. Докажите, что точка пересечения диагоналей всех четырехугольников, вписанных в окружность Ω и описанных вокруг окружности ω , не зависит от выбора четырехугольника.
- 6. Дан треугольник ABC со вписанной окружностью (I) и описанной окружностью (O). Пусть (I) касается BC в точке B, а $U \neq D$ вторая точка пересечения AD и (I). Предположим, касательная к (I) в точке U пересекает (O) в точках Y и Z. Через $d_Y \neq YZ$ обозначим касательную к (I) из Y, аналогично определим прямую d_z . Докажите, что точки d_Y , d_Z и A-симедиана треугольника ABC пересекаются в одной точке.