অধ্যায়-৮

विकान्यि

অনুশীলনী-৮.৩

অনুশীলনীটি পড়ে যা জানতে পারবে-

- ঋণাত্মক কোণ (–,θ) এর অনুপাতসমূহ নির্ণয়।
- ২. বিভিন্ন প্রকার কোণের ত্রিকোণমিতিক অনুপাত নির্ণয়।
- ৩. পূর্ণ সংখ্যা $n(n \le 4)$ এর জন্য $(n, \frac{\pi}{2} \pm \theta)$ কোণের ত্রিকোণমিতিক অনুপাত নির্ণয় ও প্রয়োগ।
- 8. সহজ ত্রিকোণমিতিক সমীকরণের সমাধান নির্ণয়।

১৫টি অনশীলমীর প্রস্র

৭৬টি বৃত্তনির্বাচনি প্রশ্ন

৪২টি সাধারণ বহুনির্বাচনি

১৩টি বহুপদী সমাশ্তিস্চক

২১টি অভিনু তথ্যভিত্তিক
২৮টি সৃত্তনশীল প্রশ্ন

২টি অনুশীলনী

২টি শ্রেণির কাজ

১৯টি মাস্টার ট্রেনার প্রণীত

৫টি প্রশ্নব্যাংক

অনুশীলনীর সৃজনশীল বহুনির্বাচনি প্রশু

১. $\sin A = \frac{1}{\sqrt{2}}$ হলে $\sin 2A$ এর মান কড?

$$\overline{\Phi}$$
. $\frac{1}{\sqrt{2}}$

₹. $\frac{1}{2}$

গ. 1

ঘ. √2

$2 \text{ with sinA} = \frac{1}{\sqrt{2}}$

 $\sin A = \sin 45^{\circ}$.: $A = 45^{\circ}$

এখন, sin2A = sin (2 × 45°) = sin 90° = 1

২. – 300° কোণটি কোন চতুর্বভাগে থাকবে?

ক. প্রথম

খ. দ্বিতীয়

গ. তৃতীয়

ষ, চতুৰ্থ

ব্যাখ্যা: খণাত্মক কোল ঘড়ির কাটার দিকে ঘূরবে এবং ধনাত্মক কোণ ঘড়ির কাঁটার বিপরীত দিকে ঘূরবে।

৩, sinθ + cosθ = 1 হলে θ এর মান হবে---

- i. 0°
- ii. 30°
- iii. 90°

শিচের কোনটি সঠিক?

可, i vi ii

♥. i ♥ iii

প. ii ও iii

ष. i,ii ७ iii

ব্যাখ্যা: (i) 0° ঘারা সমীকরণটি সিন্ধ হয় :: $\theta = 0^\circ$

- (ii) 30° ঘারা সমীকরণটি সিন্ধ হয় না।
- (iii) 90° **যারা সমীকরণটি সিন্ধ হয় ∴ θ =** 90°

৪. পাশের চিত্র অনুসারে

ii. $\sin\theta = \frac{5}{3}$

iii. $\cos^2\theta = \frac{9}{25}$

নিচের কোনটি সঠিকা

季. i ଓ ii

થે. i ઉ iii

প, ii ও iii

च. i,ii ও iii

ব্যাখ্যা: এখানে, লম্ম 4 একক, ভূমি 3 একক এবং অতিভূজ $\sqrt{4^2+5^2}=5$ একক

i. সঠিক, কারণ
$$\tan \theta = \frac{\sigma \pi}{\sqrt[6]{2}} = \frac{4}{3}$$

ii. সঠিক নয়, কারণ
$$\sin\theta=\frac{\mbox{\mbox{\it em}} \pi}{\mbox{\mbox{\tiny MO}}\mbox{\mbox{\tiny Φ}}\mbox{\mbox{\tiny Φ}}}=\frac{4}{5}$$

iii. সঠিক, কারণ
$$\cos^2\theta = \frac{59}{500}$$
 $\frac{9}{500}$

শিচের চিত্রের আলোকে ৫ ও ৬ শং প্রশ্নের উত্তর দাও:

₹. 2

প. $\frac{a^2+b^2}{ab}$

 \sqrt{ab}

•

হাণ্টা: $sinB + cosC = \frac{AC}{BC} + \frac{AC}{BC}$ b b 2b

 $=\frac{b}{a}+\frac{b}{a}=\frac{2b}{a}$

৬. tanB এর মান কোনটিঃ

$$\overline{\Phi}$$
. $\frac{a}{a^2-b^2}$

 $\forall . \frac{b}{a^2 - b^2}$

গ. $\frac{a}{\sqrt{a^2-b^2}}$

₹. b

9

[: AB =
$$\sqrt{BC^2 - AC^2} = \sqrt{a^2 + b^2}$$
]

অনুশীলনীর প্রশ্ন ও সমাধান

৭. মান নির্ণয় কর:

(i) $\sin 7\pi$

সমাধান: $\sin 7\pi = \sin \left(14.\frac{\pi}{2} + 0\right)$ এখানে, n = 14 জোড় সংখ্যা। তাই \sin অপরিবর্তিত থাকবে এবং কোণটি তৃতীয় চতুর্ভাগে থাকে ফলে \sin এর চিহ্ন হবে ঋণাজুক।

$$\therefore \sin\left(14.\frac{\pi}{2}+0\right)=-\sin=0$$

্ৰ নিৰ্দেয় মান = 0

(ii) $\cos \frac{11\pi}{2}$

সমাধান: $\cos 11.\frac{\pi}{2} = \cos \left(11.\frac{\pi}{2} + 0\right)$

এখানে, n = 11 বিজ্ঞাড় সংখ্যা। তাই \cos পরিবর্তিত হয়ে \sin হবে। এবং কোণটি চতুর্থ চতুর্ভাগে থাকে ফলে \cos এর চিহ্ন হবে ধনাত্মক।

$$\therefore \cos \frac{11\pi}{2} = \cos \left(11 \cdot \frac{\pi}{2} + 0\right) = \sin 0 = 0$$

∴ নির্ণেয় মান = 0

(iii) cot11π

সমাধান: cotl lπ এখানে, n = 22 জোড় সংখ্যা। তাই cot অপরিবর্তিত থাকবে। এবং কোণটি তৃতীয় চতুর্ভাগে থাকে ফলে cot এর চিহ্ন ধনাত্মক হবে।

 $\cot 11\pi = \cot \left(22.\frac{\pi}{2} + 0\right) = \cot 0 =$ অসংজ্ঞায়িত।

(iv)
$$\tan\left(-\frac{23\pi}{6}\right)$$

সমাধান: $-\tan\frac{23\pi}{6}$ [: $\tan(-\theta) = -\tan\theta$] $= -\tan\left(4\pi - \frac{\pi}{6}\right)$ $= -\tan\left(8 \times \frac{\pi}{2} - \frac{\pi}{6}\right)$

এখানে, n = 8 জোড় সংখ্য, তাই tan অপরিবর্তিত থাকবে এবং কোণটি চতুর্থ চতুর্ভাগে অবস্থিত। তাই tan ঋণাত্মক।

$$= \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$$

∴ নির্ণেয় মান = $\frac{1}{\sqrt{3}}$

(v) cosec $\frac{19\pi}{3}$

সমাধান: $\csc \frac{19\pi}{3} = \csc \left(6\pi + \frac{\pi}{3}\right)$

$$= \operatorname{cosec} \left(12 \times \frac{\pi}{2} + \frac{\pi}{3} \right)$$

এখানে, n = 12, জোড় সংখ্যা, অতএব cosec অপরিবর্তিত থাকবে এবং কোণটি প্রথম চতুর্ভাগে অবস্থান করছে বলে cosec এর চিহ্ন ধনাত্মক হবে।

$$\therefore \csc \frac{19\pi}{3} = \csc \left(12 \times \frac{\pi}{2} + \frac{\pi}{3}\right) = \csc \frac{\pi}{3}$$
$$= \frac{2}{\sqrt{3}} \left[\because \csc \frac{\pi}{3} = \frac{2}{\sqrt{3}} \right]$$

উন্তর: $\frac{2}{\sqrt{3}}$

(vi) $\sec\left(-\frac{25\pi}{2}\right)$

সমাধান:
$$\sec\left(\frac{25\pi}{2}\right) = \sec\left(\frac{25\pi}{2}\right) \left[\because \sec\left(-\theta\right) = \sec\theta\right)$$

$$= \sec\left(12\pi + \frac{\pi}{2}\right)$$

$$= \sec\left(24 \cdot \frac{\pi}{2} + \frac{\pi}{2}\right)$$

এখানে, n = 24 জ্বোড় সংখ্যা এবং কোণটি প্রথম চতুর্ভাগে অবস্থিত।

∴
$$\sec\left(-\frac{25\pi}{2}\right) = \sec\frac{\pi}{2} = অসংজ্ঞায়িত ।$$

(vii) $\sin \frac{31\pi}{6}$

সমাধান:
$$\sin \frac{31\pi}{6} = \sin \left(5\pi + \frac{\pi}{6}\right)$$

$$= \sin \left(10.\frac{\pi}{2} + \frac{\pi}{6}\right)$$

- এখানে n = 10 জোড় সংখ্যা। তাই sin অপরিবর্তীত থাকবে এবং কোণটির অবস্থান তৃতীয়-চতুর্থভাগে ফলে sin এর চিহ্ন ঋণাত্মক হবে।

$$= -\sin\frac{\pi}{6}$$

$$\therefore \sin\left(10.\frac{\pi}{2} + \frac{\pi}{6}\right)$$

$$= -\frac{1}{2}$$

∴ নির্লেয় মান = $-\frac{1}{2}$

(viii)
$$\cos\left(-\frac{25\pi}{6}\right)$$

সমাধান: $\cos \frac{25\pi}{6}$ [... $\cos (-\theta) = \cos \theta$] $= \cos \left(4\pi + \frac{\pi}{6}\right)$ $= \cos \left(8. \frac{\pi}{2} + \frac{\pi}{6}\right)$

[n=8 জোড় সংখ্যা, তাই \cos অপরিবর্তিত থাকবে এবং $\left(8,\frac{\pi}{2}+\frac{\pi}{6}\right)$ প্রথম চতুর্ভাগে থাকে বলে \cos এর চিহ্ন হবে ধনাজ্মক।

$$= \cos\frac{\pi}{6}$$

$$\therefore \cos\left(8.\frac{\pi}{2} + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

∴ নির্ণের মান = $\frac{\sqrt{3}}{2}$

৮. প্রমাণ কর যে,

(i)
$$\cos \frac{17\pi}{10} + \cos \frac{13\pi}{10} + \cos \frac{9\pi}{10} + \cos \frac{\pi}{10} = 0$$

সমাধান: বামপক = $\cos \frac{17\pi}{10} + \cos \frac{13\pi}{10} + \cos \frac{9\pi}{10} + \cos \frac{\pi}{10}$

$$= \cos\left(2\pi - \frac{3\pi}{10}\right) + \cos\left(\pi + \frac{3\pi}{10}\right) + \cos\left(\pi - \frac{\pi}{10}\right) + \cos\frac{\pi}{10}$$

$$= \cos\frac{3\pi}{10} - \cos\frac{3\pi}{10} - \cos\frac{\pi}{10} + \cos\frac{\pi}{10}$$

$$= 0$$

$$= \sin^{2}\frac{\pi}{10}$$

$$\therefore \cos\frac{17\pi}{10} + \cos\frac{13\pi}{10} + \cos\frac{9\pi}{10} + \cos\frac{\pi}{10} = 0 \text{ (214) Pb}$$

(ii) $tan \frac{\pi}{12} tan \frac{5\pi}{12} tan \frac{7\pi}{12} tan \frac{11\pi}{12} = 1$

সমাধান: বামপক

$$= \tan \frac{\pi}{12} \tan \frac{5\pi}{12} \tan \frac{7\pi}{12} \tan \frac{11\pi}{12}$$

= tan15° tan 75° tan105° tan165°

=
$$tan 15^{\circ} tan (90^{\circ} - 15^{\circ})tan(90^{\circ} + 15^{\circ}) tan(180^{\circ} - 15^{\circ})$$

= tan15° cot15° (-cot15°) (- tan15°)

$$= \tan^2 15^\circ \cot^2 15^\circ = \tan^2 15^\circ \times \frac{1}{\tan^2 15^\circ} = 1$$

$$\therefore \tan \frac{\pi}{12} \tan \frac{5\pi}{12} \tan \frac{7\pi}{12} \tan \frac{11\pi}{12} = 1$$
 (প্রমাণিত)

(iv)
$$\sin \frac{7\pi}{3} \cos \frac{13\pi}{6} - \cos \frac{5\pi}{3} \sin \frac{11\pi}{6} = 1$$

ৰামপ্ৰক =
$$\sin \frac{7\pi}{3} \cos \frac{13\pi}{6} - \cos \frac{5\pi}{3} \sin \frac{11\pi}{6}$$

= $\sin \left(2\pi + \frac{\pi}{3}\right) \cos \left(2\pi + \frac{\pi}{6}\right) - \cos \left(2\pi - \frac{\pi}{3}\right) \sin \left(2\pi - \frac{\pi}{6}\right)$
= $\sin \frac{\pi}{3} \cos \frac{\pi}{6} - \cos \frac{\pi}{3} \cdot \left(-\sin \frac{\pi}{6}\right)$
= $\sin \frac{\pi}{3} \cos \frac{\pi}{6} + \cos \frac{\pi}{3} \sin \frac{\pi}{6}$
= $\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2}$
= $\frac{3}{4} + \frac{1}{4} = \frac{3+1}{4} = \frac{4}{4} = 1$
= ভালপ্ৰক
 $\therefore \sin \frac{7\pi}{3} \cos \frac{13\pi}{6} - \cos \frac{5\pi}{3} \sin \frac{11\pi}{6} = 1$ (2) বিশ্ব বিশ্

(v)
$$\sin \frac{13\pi}{3} \cos \frac{13\pi}{6} - \sin \frac{11\pi}{6} \cos \left(-\frac{5\pi}{3}\right) = 1$$

 $= \sin \frac{13\pi}{3} \cos \frac{13\pi}{6} - \sin \frac{11\pi}{6} \cos \left(-\frac{5\pi}{3}\right)$

$$= \sin\left(4\pi + \frac{\pi}{3}\right)\cos\left(2\pi + \frac{\pi}{6}\right) - \sin\left(2\pi - \frac{\pi}{6}\right)\cos\left(2\pi - \frac{\pi}{3}\right)$$

$$= \sin\frac{\pi}{3}\cos\frac{\pi}{6} - \left(-\sin\frac{\pi}{6}\right)\cos\frac{\pi}{3}$$

$$= \sin\frac{\pi}{3}\cos\frac{\pi}{6} + \sin\frac{\pi}{6}\cos\frac{\pi}{3}$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{3}{4} + \frac{1}{4} = \frac{3+1}{4}$$

$$= \frac{4}{4} = 1 = \sqrt{3\pi} \cos\frac{13\pi}{6} - \sin\frac{11\pi}{6}\cos\left(-\frac{5\pi}{3}\right) = 1 (24)$$

$$\therefore \sin\frac{13\pi}{3}\cos\frac{13\pi}{6} - \sin\frac{11\pi}{6}\cos\left(-\frac{5\pi}{3}\right) = 1 (24)$$

সমাধান: দেওয়া আছে,

$$\tan\theta = \frac{3}{4}$$
 এবং $\sin\theta$ ঋণাস্ত্ৰক।

বা, $3\cos\theta = 4\sin\theta$

বা, 9cos²θ = 16 sin²θ [উভয় পক্ষকে বৰ্গ করে]

বা,
$$9(1-\sin^2\theta) = 16\sin^2\theta$$

বা,
$$9 - 9\sin^2\theta - 16\sin^2\theta = 0$$

বা,
$$\sin^2\theta = \frac{9}{25}$$

বা,
$$\sin\theta = \pm \frac{3}{5}$$

∴
$$\sin\theta = -\frac{3}{5}$$
 [∵ $\sin\theta$ ঋণাত্মক]

আবার,
$$\tan \theta = \frac{3}{4}$$

$$\frac{\sin\theta}{\cos\theta} = \frac{3}{4}$$

বা, $3\cos\theta = 4\sin\theta$

$$\therefore \cos\theta = \frac{4}{3} \times \left(-\frac{3}{5}\right) = -\frac{4}{5}$$

এবং
$$\sec\theta = \frac{1}{\cos\theta} = \frac{1}{-\frac{4}{5}} = -\frac{5}{4}$$

া বামপক =
$$\frac{\sin \theta + \cos \theta}{\sec \theta + \tan \theta}$$

$$= \frac{-\frac{3}{5} - \frac{4}{5}}{-\frac{5}{4} + \frac{3}{4}}$$

$$= \frac{-\frac{3-4}{5}}{-\frac{5+3}{4}} = \frac{-\frac{7}{5}}{-\frac{2}{4}}$$

$$= \frac{-\frac{7}{5} \times \frac{4}{-2} = \frac{14}{5}}{=\frac{\sin \theta + \cos \theta}{\sin \theta + \cos \theta}} = \frac{14}{5}$$
(Condition) হ

$$\therefore \frac{\sin\theta + \cos\theta}{\sec\theta + \tan\theta} = \frac{14}{5}$$
 (CPAICH)

भाग निर्णश कतः

(i)
$$\cos \frac{9\pi}{4} + \cos \frac{5\pi}{4} + \cos \frac{31\pi}{36} - \sin \frac{5\pi}{36}$$

Parameter: $\cos \frac{9\pi}{4} + \cos \frac{5\pi}{4} + \cos \frac{31\pi}{36} - \sin \frac{5\pi}{36}$
 $= \cos \left(2\pi + \frac{\pi}{4}\right) + \cos \left(\pi + \frac{\pi}{4}\right) + \sin \left(\pi - \frac{5\pi}{36}\right) - \sin \frac{5\pi}{36}$
 $= \cos \frac{\pi}{4} - \cos \frac{\pi}{4} + \sin \frac{5\pi}{36} - \sin \frac{5\pi}{36}$
 $= 0$
 $\therefore \text{ Parameter } 1$

(ii)
$$\cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{5\pi}{20} \cot \frac{7\pi}{20} \cot \frac{9\pi}{20}$$

THERE: $\cot \frac{\pi}{20} \cot \frac{3\pi}{20} \cot \frac{5\pi}{20} \cot \frac{7\pi}{20} \cot \frac{9\pi}{20}$

$$= \cot \frac{\pi}{20} \cot \left(\frac{\pi}{2} - \frac{7\pi}{20}\right) \cot \frac{\pi}{4} \cot \frac{7\pi}{20} \cot \left(\frac{\pi}{2} - \frac{\pi}{20}\right)$$

$$= \cot \frac{\pi}{20} \tan \frac{7\pi}{20} \cdot 1 \cdot \cot \frac{7\pi}{20} \tan \frac{\pi}{20}$$

$$= \cot \frac{\pi}{20} \cdot \frac{1}{\cot \frac{7\pi}{20}} \cdot \cot \frac{7\pi}{20} \cot \frac{\pi}{20} = 1$$

(iii)
$$\sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \frac{5\pi}{4} + \sin^2 \frac{7\pi}{4}$$

সমাধান: প্রদেশ্ত রাশি

$$= \sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \frac{5\pi}{4} + \sin^2 \frac{7\pi}{4}$$

$$= \sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \left(\frac{\pi}{2} + \frac{3\pi}{4}\right) + \sin^2 \left(\frac{3\pi}{2} + \frac{\pi}{4}\right)$$

$$= \sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \cos^2 \frac{3\pi}{4} + \cos^2 \frac{\pi}{4}$$

$$= \left(\sin^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{4}\right) + \left(\sin^2 \frac{3\pi}{4} + \cos^2 \frac{3\pi}{4}\right)$$

$$= 1 + 1 = 2$$

$$\therefore নির্দেশ্য মান = 2$$

∴ নির্ণেয় মান = 2

(v)
$$\sin^2 \frac{17\pi}{18} + \sin^2 \frac{5\pi}{8} + \cos^2 \frac{37\pi}{18} + \cos^2 \frac{5\pi}{8}$$

সমাধান: প্রদন্ত রাশি

= $\sin^2 \frac{17\pi}{18} + \sin^2 \frac{5\pi}{8} + \cos^2 \frac{37\pi}{18} + \cos^2 \frac{5\pi}{8}$

$$= \left(\sin\frac{17\pi}{18}\right)^2 + \left(\sin\frac{5\pi}{8}\right)^2 + \left(\cos\frac{37\pi}{18}\right)^2 + \left(\cos\frac{5\pi}{8}\right)^2$$

$$= \sin\left(\frac{17\pi}{18}\right)^2 + \cos\left(\frac{37\pi}{18}\right)^2 + \sin^2\frac{5\pi}{8} + \cos^2\frac{5\pi}{8}$$

$$= \left\{\sin\left(\pi - \frac{\pi}{18}\right)\right\}^2 + \left\{\cos\left(2\pi + \frac{\pi}{18}\right)\right\}^2 + \sin^2\frac{5\pi}{8} + \cos^2\frac{5\pi}{8}$$

$$= \sin^2\frac{\pi}{18} + \cos^2\frac{\pi}{18} + \sin^2\frac{5\pi}{8} + \cos^2\frac{5\pi}{8}$$

$$= \left(\sin^2\frac{\pi}{18} + \cos^2\frac{\pi}{18}\right) + \left(\sin^2\frac{5\pi}{18} + \cos^2\frac{5\pi}{8}\right)$$

$$= 1 + 1 \quad [\because \sin^2\theta + \cos^2\theta = 1]$$

$$= 2$$

$$\therefore \text{ Active in where } 2$$

১০. $\theta = \frac{\pi}{3}$ হলে নিম্নাক্ত অভেদসমূহ প্রমাণ কর।

(i)
$$\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$
সমাধান: দেওয়া আছে, $\theta = \frac{\pi}{3}$
ৰামপক্ষ = $\sin 2\theta = \sin 2 \cdot \frac{\pi}{3}$ [$\because \theta = \frac{\pi}{3}$]
$$= \sin \frac{2\pi}{3}$$

$$= \sin \left(\pi - \frac{\pi}{3}\right)$$

$$= \sin \frac{\pi}{3}$$

$$= \frac{\sqrt{3}}{2}$$

মধ্যশক্ষ =
$$2 \sin\theta \cos\theta = 2 \sin\frac{\pi}{3} \cos\frac{\pi}{3} \ [\because \theta = \frac{\pi}{3}]$$

= $2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}$

ডানস্থাৰ =
$$\frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{2 \tan \frac{\pi}{3}}{1 + \tan^2 \frac{\pi}{3}}$$
 [: $\theta = \frac{\pi}{3}$]
$$= \frac{2 \cdot \sqrt{3}}{1 + (\sqrt{3})^2}$$

$$= \frac{2 \sqrt{3}}{1 + 3}$$

$$= \frac{2\sqrt{3}}{4}$$

$$= \frac{\sqrt{3}}{2}$$

$$\therefore \sin 2\theta = 2 \sin \theta \cos \theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$$
 (214199)

sin 30 = 3cos
$$\theta$$
 - 4sin θ
সমাধান: দেওয়া আছে, $\theta = \frac{\pi}{3}$
বামপক = sin 3 θ
= sin $\left(3, \frac{\pi}{3}\right)$ [$\because \theta = \frac{\pi}{3}$]
= sin π
= sin $\left(2, \frac{\pi}{2} + \theta\right)$
= sin θ

ভানপ্ৰ =
$$3\sin\theta - 4\sin^3\theta$$

= $3\sin\frac{\pi}{3} - 4\sin^3\frac{\pi}{3}$ [: $\theta = \frac{\pi}{3}$]
= $3.\frac{\sqrt{3}}{2} - 4.(\frac{\sqrt{3}}{2})^3$
= $\frac{3\sqrt{3}}{2} - 4.\frac{3\sqrt{3}}{8}$
= $\frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2}$
= 0
= 0

 $\therefore \sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$ (প্রমাণিত)

(iii)
$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$
.

সমাধান: দেওয়া আছে,
$$\theta = \frac{\pi}{3}$$

বামপক =
$$\cos 3\theta$$

= $\cos 3 \cdot \frac{\pi}{3} \quad [\because \theta = \frac{\pi}{3}]$
= $\cos \pi$
= $\cos \left(2 \cdot \frac{\pi}{2} + 0\right)$

ডানপক =
$$4\cos^3\theta - 3\cos\theta$$

$$= 4 \cos^{3} \frac{\pi}{3} - 3 \cos \frac{\pi}{3} \quad [\because \theta = \frac{\pi}{3}]$$

$$= 4 \cdot \left(\frac{1}{2}\right)^{3} - 3 \cdot \frac{1}{2}$$

$$= 4 \cdot \frac{1}{8} - \frac{3}{2}$$

$$=\frac{1}{2}-\frac{3}{2}$$

$$=\frac{1-3}{2}$$

$$=\frac{-2}{2}$$

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta.$$
 (214198)

(iv)
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

সমাধান: দেওয়া আছে,
$$\theta = \frac{\pi}{3}$$

$$= \tan 2 \cdot \frac{\pi}{3} \quad [\because \theta = \frac{\pi}{3}]$$

$$=\tan\frac{2\pi}{3}$$

$$= \tan \left(\pi - \frac{\pi}{3}\right)$$

$$=-\tan\frac{\pi}{3}$$

$$=-\sqrt{3}$$

ডানপক =
$$\frac{2 \tan \theta}{1 + \tan^2 \theta}$$

$$= \frac{2 \tan \frac{\pi}{3}}{1 - \tan^2 \frac{\pi}{3}} \quad [\because \theta = \frac{\pi}{3}]$$

$$= \frac{2 \cdot \sqrt{3}}{1 - (\sqrt{3})^2}$$

$$= \frac{2\sqrt{3}}{1-3}$$

$$= \frac{2\sqrt{3}}{-2}$$

$$= -\sqrt{3}$$

$$\therefore \tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} \quad (2141198)$$

১১. প্রদন্ত শর্ভ পূরণ করে α (আলকা) এর মান নির্ণর কর:

(i)
$$\cot \alpha = -\sqrt{3}$$
; $\frac{3\pi}{2} < \alpha < 2\pi$

সমাধান: চতুর্থ চতুর্ভাগে
$$\cot \alpha = -\sqrt{3}$$

$$\cot \alpha = -\cot \frac{\pi}{6}$$

$$= \cot \left(2\pi - \frac{\pi}{6}\right)$$

$$= \cot \left(\frac{12\pi - \pi}{6}\right)$$

$$= \cot \left(\frac{11\pi}{6}\right)$$

$$\therefore \alpha = \frac{11\pi}{6}$$
 এটি গ্রহণযোগ্য মান কারণ $\frac{3\pi}{2} < \alpha < 2\pi$

$$\therefore$$
 নির্ণেয় মান $\alpha = \frac{11\pi}{6}$

[বি: দ্র: পাঠ্যবইয়ের প্রশ্নে
$$\frac{\sqrt{3}}{2}$$
 এর পরিবর্তে $-\sqrt{3}$ এবং 3π এর

পরিবর্তে
$$\frac{3\pi}{2}$$
 হবে ।]

(ii)
$$\cos\alpha = -\frac{1}{2}$$
; $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$

সমাধান: দ্বিতীয় চতুর্ভাগে
$$\cos \alpha = -\frac{1}{2}$$

বা,
$$\cos \alpha = \cos \left(\pi - \frac{\pi}{3}\right)$$

বা,
$$\alpha = \frac{3\pi - \pi}{3}$$

বা,
$$\alpha = \frac{2\pi}{3}$$

যা
$$\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$$
 শর্ত পালন করে

আবার, তৃতীয় চতুর্ভাগে,
$$\cos \alpha = -\frac{1}{2}$$

বা,
$$\alpha = \frac{3\pi + \pi}{3}$$

বা,
$$\alpha = \frac{4\pi}{3}$$

যা
$$\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$$
 শর্ত পালন করে

নির্ণেয় মান :
$$\alpha = \frac{2\pi}{3}$$
 এবং $\frac{4\pi}{3}$

(iii)
$$\sin \alpha = -\frac{\sqrt{3}}{2}$$
; $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$

সমাধান:
$$\sin \alpha = -\frac{\sqrt{3}}{2}$$

বা,
$$\sin \alpha = -\sin \frac{\pi}{3}$$

পা. মা. উ. গণিত-১০ৰ

বা, $\sin\alpha = \sin\left(\pi + \frac{\pi}{3}\right)$ [\because তৃতীয় চতুর্ভাগে \sin ঋণাত্মক]

বা,
$$\alpha = \pi + \frac{\pi}{3}$$

$$\therefore \alpha = \frac{4\pi}{3}$$
 যা, $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$ শর্ত পূরণ করে

$$\therefore$$
 নির্ণেয় মান = $\frac{4\pi}{3}$

(iv) $\cot \alpha = -1$; $\pi < \alpha < 2\pi$

$$\overline{4}$$
, $\cot \alpha = -\cot \frac{\pi}{4}$

বা,
$$\cot \alpha = \cot \left(2\pi - \frac{\pi}{4}\right)$$
; [চতুর্থ চতুর্ভাগে $\cot 4$ পাত্রক]

বা,
$$\alpha = 2\pi - \frac{\pi}{4}$$

$$\therefore \alpha = \frac{7\pi}{4}$$
, যা, $\pi < \alpha < 2\pi$ শর্জ পূরণ করে

∴ নির্ণেয় মান
$$=\frac{7\pi}{4}$$

১২. সমাধান কর: $\left($ যখন $0 < \theta < \frac{\pi}{2}\right)$

(i) $2\cos^2\theta = 1 + 2\sin^2\theta$

সমাধান: দেওয়া আছে,

$$2\cos^2\theta = 1 + 2\sin^2\theta$$

বা,
$$2\cos^2\theta - 2\sin^2\theta = 1$$

$$Φ1$$
, 2 (1-sin²θ) - 2 sin²θ = 1 [∴ cos²θ = 1 - sin²θ]

বা,
$$2-2\sin^2\theta-2\sin^2\theta=1$$

বা,
$$2-4\sin^2\theta=1$$

$$4\sin^2\theta = -1$$

বা,
$$\sin^2\theta = \frac{1}{4}$$

বা,
$$\sin \theta = \pm \frac{1}{2}$$

যেহেতু
$$0 < \theta < \frac{\pi}{2}$$
, সুতরাং $\sin \theta = -\frac{1}{2}$ গ্রহণযোগ্য নয়।

$$\therefore \sin \theta = \frac{1}{2}$$

বা,
$$\sin \theta = \sin \frac{\pi}{6}$$
 [: $\sin \frac{\pi}{6} = \frac{1}{2}$]

$$\therefore \theta = \frac{\pi}{6}$$

∴ নির্দেয় সমাধান,
$$\theta = \frac{\pi}{6}$$

(ii) 2 sin² θ – 3 cos θ = 0
 সমাধান: দেওয়া আছে,

$$2\sin^2\theta - 3\cos\theta = 0$$

বা,
$$2(1-\cos^2\theta) - 3\cos\theta = 0$$

$$\P1, 2-2\cos^2\theta-3\cos\theta=0$$

বা,
$$-(2\cos^2\theta + 3\cos\theta - 2) = 0$$

ৰা,
$$2\cos^2\theta + 3\cos\theta - 2 = 0$$

$$41, 2\cos^2\theta + 4\cos\theta - \cos\theta - 2 = 0$$

$$\overline{4}$$
1, $2\cos\theta(\cos\theta+2)-1(\cos\theta+2)=0$

বা,
$$(2\cos\theta - 1)(\cos\theta + 2) = 0$$

এখানে $\cos \theta + 2 \neq 0$ কারণ, $\cos \theta + 2 = 0$ হলে $\cos \theta = -2$ হয় যা গ্রহণযোগ্য নয়, কারণ $\cos \theta$ এর মান । অপেক্ষা বৃহত্তর এবং – । অপেক্ষা ক্ষুদ্রতর হতে পারে না।

$$\therefore 2\cos\theta - 1 = 0$$
 ফখন $0^{\circ} < \theta < \frac{\pi}{2}$

বা,
$$2\cos\theta=1$$

বা,
$$\cos\theta = \frac{1}{2}$$

বা,
$$\cos \theta = \cos \frac{\pi}{3}$$

$$\theta = \frac{\pi}{3}$$

∴ নির্ণেয় সমাধান,
$$\theta = \frac{\pi}{3}$$

(iii) $6 \sin^2 \theta - 11 \sin \theta + 4 = 0$

সমাধান: দেওয়া আছে,

$$6\sin^2\theta - 11\sin\theta + 4 = 0$$

বা,
$$6 \sin^2 \theta - 8 \sin \theta - 3 \sin \theta + 4 = 0$$

বা,
$$2 \sin \theta (3 \sin \theta - 4) - 1(3 \sin \theta - 4) = 0$$

বা,
$$(2 \sin \theta - 1) (3 \sin \theta - 4) = 0$$

এখানে,
$$3\sin\theta - 4 \neq 0$$
 কেননা $3\sin\theta - 4 = 0$ হলে

$$\sin \theta = \frac{4}{3}$$
, যা গ্রহণযোগ্য নয়, কারণ $\sin \theta$ এর মান । অপেক্ষা

বৃহত্তর এবং — **৮ অপেক্ষা ক্ষ্**দুতর হতে পারে না।

বা,
$$\sin \theta = \frac{1}{2}$$

বা,
$$\sin \theta = \sin \frac{\pi}{6}$$

$$\therefore \theta = \frac{\pi}{6}$$

∴ নির্দেয় সমাধান,
$$\theta = \frac{\pi}{6}$$

(iv) $\tan \theta + \cot \theta = \frac{4}{\sqrt{3}}$

সমাধান: দেওয়া আছে,

$$\tan \theta + \cot \theta = \frac{4}{\sqrt{3}}$$

বা,
$$\tan \theta + \frac{1}{\tan \theta} = \frac{4}{\sqrt{3}}$$

$$41, \frac{\tan^2\theta + 1}{\tan\theta} = \frac{4}{\sqrt{3}}$$

$$41$$
, $\tan^2\theta + 1 = \frac{4 \tan \theta}{\sqrt{3}}$

বা,
$$\sqrt{3} \tan^2 \theta + \sqrt{3} = 4 \tan \theta$$

বা,
$$\sqrt{3} \tan^2 \theta - 4 \tan \theta + \sqrt{3} = 0$$

বা,
$$\sqrt{3} \tan^2 \theta - 3 \tan \theta - \tan \theta + \sqrt{3} = 0$$

$$71, \sqrt{3} \tan \theta (\tan \theta - \sqrt{3}) - 1 (\tan \theta - \sqrt{3}) = 0$$

বা,
$$(\tan \theta - \sqrt{3})(\sqrt{3} \tan \theta - 1) = 0$$

হয়
$$\tan \theta - \sqrt{3} = 0$$
 অথবা, $\sqrt{3} \tan \theta - 1 = 0$

বা,
$$tan\theta = \sqrt{3}$$
 বা, $tan\theta = \frac{1}{\sqrt{3}}$

বা,
$$\tan \theta = \tan \frac{\pi}{3}$$
 , বা, $\tan \theta = \tan \frac{\pi}{6}$

$$\therefore \theta = \frac{\pi}{3} \left[\because \tan \frac{\pi}{3} = \sqrt{3} \right] \therefore \theta = \frac{\pi}{6} \left[\because \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \right]$$

য়া,
$$0 < \theta < \frac{\pi}{2}$$
 শর্ত পূরণ করে

∴ নির্দেয় সমাধান,
$$\theta = \frac{\pi}{6}$$
, $\frac{\pi}{3}$

(v) $2\sin^2\theta + 3\cos\theta = 3$

সমাধান: দেওয়া আছে,

$$2\sin^2\theta + 3\cos\theta = 3$$

$$\sqrt{1}$$
, 2 $(1-\cos^2\theta) + 3\cos\theta - 3 = 0$

$$\sqrt{1}$$
, $2-2\cos^2\theta+3\cos\theta-3=0$

$$41$$
, $-(2\cos^2\theta - 3\cos\theta + 1) = 0$

$$\sqrt{1}$$
, $2\cos^2\theta - 3\cos\theta + 1 = 0$

বা,
$$2\cos^2\theta - 2\cos\theta - \cos\theta + 1 = 0$$

বা,
$$2\cos\theta(\cos\theta-1)-1(\cos\theta-1)=0$$

$$\overline{1}$$
, $(2\cos\theta-1)(\cos\theta-1)=0$

অথবা,
$$\cos \theta - 1 = 0$$

বা,
$$\cos \theta = \frac{1}{2}$$

বা,
$$\cos \theta = 1$$

বা,
$$\cos \theta = \cos \theta$$

বা,
$$\cos \theta = \cos \frac{\pi}{3}$$

কিন্দু
$$0 < \theta < \frac{\pi}{2}$$

$$\theta = \frac{\pi}{3}$$

 $\theta = 0$

∴ নির্দেয় সমাধান,
$$\theta = \frac{\pi}{3}$$

১৩. সমাধান কর: (যখন 0 < θ < 2π)

 $2\sin^2\theta + 3\cos\theta = 0$

সমাধান: দেওয়া আছে,

$$2\sin^2\theta + 3\cos\theta = 0$$

$$41, 2(1-\cos^2\theta) + 3\cos\theta = 0$$

বা,
$$2-2\cos^2\theta+3\cos\theta=0$$

বা,
$$2\cos^2\theta - 3\cos\theta - 2 = 0$$
 [উভয়পক্ষকে (-1) দ্বারা গুণ করে]

বা,
$$2\cos^2\theta - 4\cos\theta + \cos\theta - 2 = 0$$

বা,
$$2\cos\theta$$
 ($\cos\theta - 2$) +1 ($\cos\theta - 2$) = 0

$$\overline{1}, (2\cos\theta + 1)(\cos\theta - 2) = 0$$

কিন্তু,
$$\cos\theta - 2 \neq 0$$
 কেননা $\cos\theta - 2 = 0$ হলে

$$\cos\theta = 2$$
, যা অসম্ভব।

বা,
$$\cos\theta = -\frac{1}{2}$$

বা,
$$\cos\theta = -\frac{1}{2} = -\cos\frac{\pi}{3}$$

বা,
$$\cos\theta = \cos\left(\pi - \frac{\pi}{3}\right)$$
, $\cos\left(\pi + \frac{\pi}{3}\right)$ [শর্তানুসার $0 < \theta < 2\pi$]

$$\overline{41}$$
, $\cos\theta = \cos\frac{2\pi}{3}$, $\cos\frac{4\pi}{3}$

$$\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$$
, যা $0 < \theta < 2\pi$ শর্ত পূরণ করে

∴ নির্দিষ্ট সীমার মধ্যে
$$\theta$$
 এর সম্ভাব্য মানসমূহ $=\frac{2\pi}{3}$, $\frac{4\pi}{3}$

(ii) $4(\cos^2\theta + \sin\theta) = 5$

$$4 (1 - \sin^2\theta + \sin\theta) = 5$$

$$4 - 4 \sin^2 \theta + 4 \sin \theta = 5$$

বা,
$$4 \sin^2 \theta - 4 \sin \theta + 1 = 0$$
 [উভয়পক্ষকে (-1) দ্বারা গুণ করে]

বা,
$$(2 \sin \theta - 1)^2 = 0$$

বা,
$$2\sin\theta - 1 = 0$$
 [বর্গমূল করে]

বা,
$$\sin \theta = \frac{1}{2}$$

বা,
$$\sin \theta = \sin \frac{\pi}{6}$$
, $\sin(\pi - \frac{\pi}{6})$ [শর্তানুসারে]

বা,
$$\sin\theta = \sin\frac{\pi}{6}$$
, $\sin\frac{5\pi}{6}$

$$\therefore \theta = \frac{\pi}{6}, \frac{5\pi}{6}$$
, যা, $0 < \theta < 2\pi$ শর্ত পূরণ করে

.: নির্দিষ্ট সীমার মধ্যে
$$\theta$$
 এর সম্ভাব্য মানসমূহ = $\frac{\pi}{6}$, $\frac{5\pi}{6}$

(iii) $\cot^2\theta + \csc^2\theta = 3$.

সমাধান: দেওয়া আছে,

$$\cot^2\theta + \csc^2\theta = 3$$

$$41, \cot^2\theta + 1 + \cot^2\theta = 3$$

বা,
$$2\cot^2\theta = 2$$

বা,
$$\cot^2\theta = 1$$

বা,
$$\cot\theta = \pm 1$$

$$\cot\theta = 1$$
 নিয়ে পাই

$$\cot\theta = \cot\frac{\pi}{4}$$
, $\cot(\pi + \frac{\pi}{4})$ [শর্তানুসারে]

বা,
$$\cot\theta = \cot\frac{\pi}{4}$$
, $\cot\frac{5\pi}{4}$

$$\theta = \frac{\pi}{4}, \frac{5\pi}{4}$$

আবার, cotθ = – । থেকে পাই,

$$\cot\theta = -\cot\frac{\pi}{4}$$

বা,
$$\cot\theta = \cot\left(\pi - \frac{\pi}{4}\right)$$
, $\cot(2\pi - \frac{\pi}{4})$ [পর্তানুসারে]

$$\overline{4}$$
, $\cot \theta = \cot \frac{3\pi}{4}$, $\cot \frac{7\pi}{4}$

$$\therefore \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$$
, যা $0 < \theta < 2\pi$ শর্ত পূরণ করে।

$$\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

(iv) $tan^2\theta + cot^2\theta = 2$

সমাধান: দেওয়া আছে,

$$tan^2\theta + cot^2\theta = 2$$

বা,
$$\tan^2\theta + \frac{1}{\tan^2\theta} = 2$$

বা,
$$tan^4\theta + 1 = 2 tan^2\theta$$
 [উভয় পক্ষকে $tan^2\theta$ ছারা গুণ করে]

বা,
$$tan^4\theta - 2tan^2\theta + 1 = 0$$

বা,
$$(\tan^2\theta - 1)^2 = 0$$

বা,
$$tan^2\theta - 1 = 0$$

বা,
$$tan^2 \dot{\theta} = 1$$

বা,
$$\tan \theta = \pm 1$$

এখন, $\tan \theta = 1$ নিয়ে পাই:

 $\tan\theta = \tan\frac{\pi}{4}$, $\tan(\pi + \frac{\pi}{4})$ (শর্তানুসারে)

 $\overline{1}$, $\tan\theta = \tan\frac{\pi}{4}$, $\tan\frac{5\pi}{4}$

$$\therefore \theta = \frac{\pi}{4}, \frac{5\pi}{4}$$

আবার, $\tan\theta = -1$ নিয়ে পাই.

$$\tan\theta = -\tan\frac{\pi}{4}$$

বা, $\tan\theta = \tan (\pi - \frac{\pi}{4})$, $\tan (2\pi - \frac{\pi}{4})$ (শর্তানুসারে)

$$\overline{4}, \tan\theta = \tan\frac{3\pi}{4}, \tan\frac{7\pi}{4}$$

$$\therefore \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$$

∴ নির্দিষ্ট সীমার মধ্যে ৪ এর সম্ভাব্য মানসমূহ,

$$\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

(v)
$$\sec^2\theta + \tan^2\theta = \frac{5}{3}$$

সমাধান: দেওয়া আছে,

$$(\sec^2\theta + \tan^2\theta) = \frac{5}{3}$$

41, 3 (1 + $\tan^2\theta$ + $\tan^2\theta$) = 5

বা,
$$3 + 6 \tan^2 \theta - 5 = 0$$

বা,
$$6 \tan^2 \theta = 2$$

বা,
$$tan^2\theta = \frac{1}{3}$$

$$\therefore \tan \theta = \pm \frac{1}{\sqrt{3}}$$

এখন, $tan \theta = \frac{1}{\sqrt{3}}$ নিয়ে পাই,

 $\tan\theta = \tan\frac{\pi}{6}$, $\tan(\pi + \frac{\pi}{6})$ [শর্তানুসারে]

বা,
$$\tan\theta = \tan\frac{\pi}{6}$$
, $\tan\frac{7\pi}{6}$

$$\therefore \theta = \frac{\pi}{6}, \frac{7\pi}{6}$$

আবার, $\tan\theta = -\frac{1}{\sqrt{3}}$ নিয়ে পাই,

বা,
$$\tan\theta = -\tan\frac{\pi}{6}$$

বা, $\tan\theta = \tan \left(\pi - \frac{\pi}{6}\right)$, $\tan \left(2\pi - \frac{\pi}{6}\right)$ [পর্তানুসারে]

$$\overline{6}, \tan\theta = \tan\frac{5\pi}{6}, \tan\frac{11\pi}{6}$$

$$\therefore \theta = \frac{5\pi}{6}, \frac{11\pi}{6}$$

$$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

(vi) $5\cos^2\theta - 7\cot\theta \csc\theta - 2 = 0$ সমাধান: দেওয়া আছে,

 $5\csc^2\theta - 7\cot\theta\csc\theta - 2 = 0$

বা,
$$\frac{5}{\sin^2\theta} - \frac{7\cos\theta}{\sin^2\theta} - 2 = 0$$

বা,
$$5-7\cos\theta-2\sin^2\theta=0$$

বা,
$$5 - 7\cos\theta - 2(1 - \cos^2\theta) = 0$$

বা,
$$5 - 7\cos\theta - 2 + 2\cos^2\theta = 0$$

$$\sqrt{1}, 2\cos^2\theta - 7\cos\theta + 3 = 0$$

$$41, 2\cos^2\theta - 6\cos\theta - \cos\theta + 3 = 0$$

বা,
$$2\cos\theta(\cos\theta - 3) - 1(\cos\theta - 3) = 0$$

বা,
$$(2\cos\theta - 1)(\cos\theta - 3) = 0$$

হয়,
$$2\cos\theta - 1 = 0$$
 অথবা, $\cos\theta - 3 = 0$

$$\cos \theta = 3$$

$$\therefore \cos\theta = \frac{1}{2}$$

অথবা 3

কিম্তু cost এর মান 1 অপেক্ষা বৃহত্তর হতে পারে না।

$$\therefore \cos\theta = \frac{1}{2}$$

$$\cos\theta = \cos\frac{\pi}{3}$$
, $\cos(2\pi - \frac{\pi}{3})$ [শর্তানুসারে]

$$\therefore \theta = \frac{\pi}{3}, \frac{5\pi}{3}$$
, যা প্রদন্ত সীমা $0 < \theta < 2\pi$ এর মধ্যে অবস্থিত

় নির্দিষ্ট সীমার মধ্যে
$$\theta$$
 এর সম্ভাব্য সকল মানসমূহ $\frac{\pi}{3}$, $\frac{5\pi}{3}$

(vii) $2 \sin x \cos x = \sin x \ (0 \le x \le 2\pi)$.

সমাধান: 2 sinx cosx = sinx

বা,
$$4 \sin^2 x \cos^2 x = \sin^2 x$$

বা,
$$4 \sin^2 x (1 - \sin^2 x) = \sin^2 x$$

$$4 \sin^2 x - 4 \sin^4 x - \sin^2 x = 0$$

$$4\sin^4 x + 3\sin^2 x = 0$$

বা,
$$-\sin^2 x(4\sin^2 x - 3) = 0$$

বা,
$$\sin^2 x (4\sin^2 x - 3) = 0$$

হয়,
$$\sin^2 x = 0$$

অথবা, $4 \sin^2 x - 3 = 0$.

বা, sinx = sin0°, sin(
$$\pi$$
 – 0), sin(2π – 0) বা, sin²x = $\frac{3}{4}$

বা,
$$\sin x = \pm \sqrt{\frac{3}{4}}$$

বা, $\sin x = \pm \frac{\sqrt{3}}{2}$

$$\therefore x = 0, \pi, 2\pi$$

$$\boxed{31, \sin x = \sin \frac{\pi}{3}, \sin \left(\pi - \frac{\pi}{3}\right), \sin \left(2\pi - \frac{\pi}{3}\right)}$$

$$\therefore \sin x = \sin \frac{\pi}{3}, \sin \frac{2\pi}{3}, \sin \frac{5\pi}{3}$$

$$x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}$$
; যা সীমা $0 \le x \le 2\pi$ এর মধ্যে অবস্থিত

$$0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{5\pi}{3}$$

অনুশীলনীর সৃজনশীল রচনামূলক প্রশু

2[4] ▶ 28

- ক. চিত্রে ABC একটি বৃত্তাকার চাকা এবং চাকাটির AB চাপের দৈর্ঘ্য 25 সে.মি, হলে θ = কত? চাকাটি । বার ঘুরে কত মিটার দূরত্ব অতিক্রম করবে?
- খ. ABC চাকাটি প্রতি সেকেন্ডে 5 বার আবর্তিত হলে চাকাটির গতিবেগ ঘণ্টায় কত হবে?
- গ. চিত্রে $\triangle BOD$ হলে $\sin\theta$ এর মান ব্যবহার করে প্রমাণ কর যে, $\tan\theta + \sec\theta = x$.

১৪ নং প্রস্নের সমাধান

মনে করি, চাকাটির AB চাপের দৈর্ঘ্য, S = 25 সে.মি. চিত্র হতে পাই, ব্যাসার্থ, r = 25 সে.মি. সূতরাং আমরা জানি, S = r0

বা,
$$\theta = \frac{s}{r}$$

বা, $\theta = \frac{25}{25}$ রেডিয়ান
= । রেডিয়ান
= $\frac{180^{\circ}}{\pi}$
= 57.30°

∴ নির্ণেয় θ এর মান 57.30°

উडव: 57.30°

চাকাটি ৷ বার ঘুরে অতিক্রম করবে 2π

- = 2 × 3.1416 × 25 সে.মি.
- = 157.08 स्म.मि.
- = 1.5708 মি. (প্রায়)
- = 1.57 মি. (প্রায়)
- ∴ চাকাটি। বার ঘুরে দূরত্ব অতিক্রম করে 1.57 মি. (প্রায়)
- 1 ঘণ্টা = 60 মিনিট = 60 × 60 সেকেন্ড = 3600 সেকেন্ড

ABC চাকাটি। সেকেন্ডে আবর্তিত হয় 5 বার

- :. চাকাটি। ঘণ্টায় আবর্তিত হবে = (3600 × 5) বার = 18000 বার
- ∴ চাকাটি ৷ ঘণ্টায় দূরত্ব অতিক্রম করবে !8000 × 1.57 মি. ['ক' হতে]

= 28260 মি. = 28.26 কি.মি. (প্রায়)

সূতরাং চাকাটির গতিবেগ ঘণ্টায় 28.26 কি.মি. (প্রায়) Ans. 28.26 কি.মি. (প্রায়)

ি চিত্ৰ হতে পাই, $\sin\theta = \frac{BD}{BO}$

$$= \sqrt{1 - \left(\frac{x^2 - 1}{x^2 + 1}\right)^2}$$

$$= \sqrt{1 - \frac{(x^2 - 1)^2}{(x^2 + 1)^2}}$$

$$= \sqrt{\frac{(x^2 + 1)^2 - (x^2 - 1)^2}{(x^2 + 1)^2}}$$

$$= \sqrt{\frac{4x^2}{(x^2 + 1)^2}}$$

$$= \frac{2x}{x^2 + 1}$$

এখন,
$$\tan \theta + \sec \theta = \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta}$$

$$= \frac{\frac{x^2 - 1}{x^2 + 1}}{\frac{2x}{x^2 + 1}} + \frac{1}{\frac{2x}{x^2 + 1}}$$

$$= \left(\frac{x^2 - 1}{x^2 + 1} \times \frac{x^2 + 1}{2x}\right) + \left(1 \times \frac{x^2 + 1}{2x}\right)$$

$$= \frac{x^2 - 1}{2x} + \frac{x^2 + 1}{2x}$$

$$= \frac{x^2 - 1 + x^2 + 1}{2x}$$

$$= \frac{2x^2}{2x}$$

 $\therefore \tan\theta + \sec\theta = x$ (প্রমাণিত)

27 ► >0

- ক. চিত্রে O, বৃত্তের কেন্দ্র হলে ∠B এর বৃত্তীয়মান এবং AC নির্ণয় কর।
- খ. প্রমাণ কর যে, tanA + tanB + tanC + tanD = 0
- গ. sec θ + cos θ = P হলে, P এর মান নির্ণয় কর এবং সমীকরণটি
 সমাধান কর।

১৫ নং প্রস্লের সমাধান

ক চিত্ৰে ∠B = 90°

আমরা জানি, $1^\circ = \frac{\pi}{180}$ রেডিয়ান।

$$\therefore 90^{\circ} = \left(\frac{\pi}{180}.90\right)$$

$$= \frac{\pi}{2}$$

∴∠B এর বৃত্তীয়মান $\frac{\pi}{2}$ রেডিয়ান। (Ans.)

আবার, ∆ABC-এ ∠B = 90°

পীথাগোরাসের উপপাদ্য অনুসারে,

 $AC^2 = AB^2 + BC^2$

 $41, AC^2 = (\sqrt{3})^2 + 1^2$

ত কেন্দ্র বিশিষ্ট ABCD বৃত্তে ABCD চতুর্ভুক্তটি অভার্লিখিত।

এখন, বামপক = tanA + tanB + tanC + tanD

- $= tanA + tan(180^{\circ} D) + tan (180^{\circ} A) + tanD$
- $= tanA + tan(2 \times 90^{\circ} D) + tan(2 \times 90^{\circ} A) + tanD$
- = tanA tanD tanA + tanD [∵ ২য় চতুর্থভাগে tan ঋণাজুক]
- = 0
- = ডানপক্ষ।
- ∴ tanA + tanB + tanC + tanD = 0 (প্রমাণিত)
- দেওয়া আছে, sec θ + cos θ = P (i)

এখানে,
$$\sec\theta = \frac{AC}{BC} = \frac{2}{1} = 2$$
 [: $AC = 2$ এবং $BC = 1$]

আবার,
$$\cos\theta = \frac{BC}{AC} = \frac{1}{2}$$

secθ এবং cosθ এর মান (i) নং এ বসিয়ে পাই,

$$2+\frac{1}{2}=P$$

বা,
$$\frac{4+1}{2} = P$$
 বা, $P = \frac{5}{2}$

∴ নির্পের P এর মান 🗦

এখন, (i) নং থেকে,
$$\sec\theta + \cos\theta = \frac{5}{2}$$

বা,
$$\frac{1}{\cos \theta} + \cos \theta = \frac{5}{2}$$

$$\frac{1+\cos^2\theta}{\cos\theta}=\frac{5}{2}$$

বা,
$$2\cos^2\theta + 2 = 5\cos\theta$$

বা,
$$2\cos^2\theta - 5\cos\theta + 2 = 0$$

ৰা,
$$2\cos^2\theta - 4\cos\theta - \cos\theta + 2 = 0$$

বা,
$$(2\cos\theta - 1)(\cos\theta - 2) = 0$$

হয়,
$$2\cos\theta - 1 = 0$$
 অপবা, $\cos\theta - 2 = 0$

$$\cos \theta = 2$$

বা,
$$\cos \theta = \frac{1}{2}$$
 কিন্দু $\cos \theta \neq 2$

কারণ, cos θ এর মান । অপেক্ষা বৃহত্তর হতে পারে না।

বা,
$$\cos \theta = \cos \frac{\pi}{3}$$

$$\theta = \frac{\pi}{3}$$

∴ নির্দের সমাধান
$$\theta = \frac{\pi}{3}$$

মাস্টার ট্রেইনার প্রণীত সৃজনশীল বহুনির্বাচনি প্রশু

(–0) কোপের ব্রেকোপামাডক অনুপাত:

	•
$sin(-\theta) = -sin\theta$	$cosec(-\theta) = -cosec\theta$
$\cos(-\theta) = \cos\theta$	$sec(-\theta) = sec\theta$
$tan(-\theta) = -tan\theta$	$\cot(-\theta) = -\cot\theta$

চিত্রে sec (- β) धात माम निक्ति कोमण्डि (সহজ)

২. $\cos(-\theta) = \frac{\sqrt{3}}{2}$ হলে, θ এর মান কভ ডিগ্রিং (মধ্যম)

- 0

কাশা: $cos(-\theta) = cos\theta = \frac{\sqrt{3}}{2}$ বা, $cos\theta = cos30^{\circ}$ $\therefore \theta = 30^{\circ}$

- ত. $\sin(-\theta) = \frac{1}{2}$ হলে, θ এর মান কত ব্রেডিয়ান? (মধ্যম)

- $-\frac{\pi}{3}$) এর মান কতা (সহজ)

- $tan(-\theta) = -tan\theta$
 - $tan(-60^\circ) = -\sqrt{3}$ ii. $tan^2(-60^\circ) = 3$

- iii. $\sec^2(-60^\circ) = 4$ নিচের কোনটি সঠিক 🛚 (মধ্যম)
- 1ii 🕏 iii iii 🕑 i 📵 **4) (- 60°)** = $1 + \tan^2(-60°) = 4$
- নিচের তথ্যের ভিত্তিতে (৭-৯) নং প্রশ্নের উত্তর দাও।

$$\csc\left(-\theta\right) = \frac{2}{\sqrt{3}}$$

9. 0 **এর মান কত ডিপ্রি?** (মধ্যম)

- **1** 45

® i, ii 🕏 iii 🔭

- কাৰ্যা: $\csc(-\theta) = \frac{2}{\sqrt{3}}$ বা, $\csc(-\theta) = \csc 60^\circ$: $\theta = -60^\circ$
- ৮. sinθ **এর মান কত**? (সহজ)

b. $\csc^2(-\theta) + \sin^2\theta = \Phi$ তা (মধ্যম)

- अनुवाकित्रमुद्द Ten शृष्टी ३५8
- $-\theta$) এবং $\left(rac{\pi}{2}+ heta
 ight)$ কোণের ত্রিকোণমিভিক অনুপাত

$\sin(90^{\circ} - \theta) = \cos\theta$	$cosec(90^{\circ} - \theta) = sec\theta$
$cos(90^{\circ} - \theta) = sin\theta$	$\sec(90^{\circ} - \theta) = \csc\theta$
$tan(90^{\circ}-\theta) = cot\theta$	$\cot(90^{\circ} - \theta) = \tan\theta$
-:-(000 : 0)0	

$\sin(90^{\circ} + \theta) = \cos\theta$	$cosec(90^{\circ} + \theta) = sec\theta$
$\cos(90^{\circ} + \theta) = -\sin\theta$	$sec(90^{\circ} + \theta) = - cosec\theta$
$tan(90^{\circ} + \theta) = -\cot\theta$	$cot(90^{\circ} + \theta) = -tan\theta$