Machine Learning Assignment No.2

Que.1 By Taking reference of the Housing Price Dataset plot each independent variable with the dependent variable and store the name of independent variable in a list which show non linear behavior

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read csv("C:/Users/Lenovo/Documents/Data Set/housing.csv")
df
        Id MSSubClass MSZoning LotFrontage
                                                 LotArea Street Alley
LotShape \
                     60
                               RL
                                           65.0
                                                    8450
                                                            Pave
                                                                   NaN
         1
Reg
         2
                     20
                               RL
                                          80.0
                                                    9600
                                                                   NaN
                                                            Pave
1
Reg
         3
                     60
                               RL
                                           68.0
                                                   11250
                                                            Pave
                                                                   NaN
IR1
         4
                     70
                               RL
                                          60.0
                                                    9550
                                                            Pave
                                                                   NaN
IR1
         5
                     60
                               RL
                                           84.0
                                                   14260
                                                            Pave
                                                                   NaN
4
IR1
. . .
                    . . .
                              . . .
                                                      . . .
                                                                   . . .
. . .
1455
      1456
                     60
                               RL
                                          62.0
                                                    7917
                                                            Pave
                                                                   NaN
Reg
1456
                     20
                               RL
                                          85.0
      1457
                                                   13175
                                                            Pave
                                                                   NaN
Reg
1457
      1458
                     70
                               RL
                                          66.0
                                                    9042
                                                            Pave
                                                                   NaN
Reg
1458
                     20
                                           68.0
      1459
                               RL
                                                    9717
                                                            Pave
                                                                   NaN
Reg
1459
      1460
                     20
                               RL
                                           75.0
                                                    9937
                                                            Pave
                                                                   NaN
Reg
     LandContour Utilities
                              ... PoolArea PoolQC Fence MiscFeature
MiscVal \
0
             Lvl
                     AllPub
                                         0
                                               NaN
                                                      NaN
                                                                   NaN
                              . . .
0
1
                     AllPub
             Lvl
                              . . .
                                         0
                                               NaN
                                                      NaN
                                                                   NaN
0
2
                     AllPub ...
             Lvl
                                                      NaN
                                                                   NaN
                                         0
                                               NaN
0
```

3 0		Lvl	AllPub		0	NaN	NaN	NaN
4 0		Lvl	AllPub		0	NaN	NaN	NaN
• • •			• • • •	• • •				
1455 0		Lvl	AllPub		0	NaN	NaN	NaN
1456 0		Lvl	AllPub		0	NaN	MnPrv	NaN
1457 2500		Lvl	AllPub		0	NaN	GdPrv	Shed
1458 0		Lvl	AllPub		0	NaN	NaN	NaN
1459 0		Lvl	AllPub	• • •	0	NaN	NaN	NaN
0 1 2 3 4 1455 1456 1457 1458 1459	MoSold 2 5 9 2 12 8 2 5 4 6	YrSold 2008 2007 2008 2006 2008 2007 2010 2010 2010 2008	SaleType WD WD WD WD WD WD WD WD		eCondition Normal Normal Abnormal Normal Normal Normal Normal Normal		ePrice 208500 181500 223500 140000 250000 175000 210000 266500 142125 147500	

[1460 rows x 81 columns]

df.head()

`	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape
0	1	60	RL	65.0	8450	Pave	NaN	Reg
1	2	20	RL	80.0	9600	Pave	NaN	Reg
2	3	60	RL	68.0	11250	Pave	NaN	IR1
3	4	70	RL	60.0	9550	Pave	NaN	IR1
4	5	60	RL	84.0	14260	Pave	NaN	IR1

LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold \
0 Lvl AllPub ... 0 NaN NaN NaN 0

2 1 5 2 9 3 2 4 12	L	vl Al vl Al	lPub lPub lPub	•	0 0 0 0	NaN NaN NaN NaN	NaN NaN NaN NaN	Na Na	aN aN aN
0 2 1 2 2 2 3 2	Sold S 2008 2007 2008 2006 2008	aleType WD WD WD WD WD		ndition Normal Normal Normal Abnorml Normal	20 18 22 14	rice 8500 1500 3500 0000			
[5 rows x 81 columns]									
df.ta	ail()								
LotSh	Id nape \	MSSubCl	ass MSZc	oning L	.otFron	tage	LotArea	Street	Alley
1455 Reg	1456		60	RL	1	62.0	7917	Pave	NaN
1456 Reg	1457		20	RL		85.0	13175	Pave	NaN
1457	1458		70	RL		66.0	9042	Pave	NaN
Reg 1458	1459		20	RL	1	68.0	9717	Pave	NaN
Reg 1459 Reg	1460		20	RL		75.0	9937	Pave	NaN
		ntour Ut	ilities	Pc	olArea	Pool	QC Fence	e MiscFe	eature
Misc\ 1455	/al \	Lvl	AllPub		0	N	aN NaN	I	NaN
0 1456		Lvl	AllPub		0	N	aN MnPrv	,	NaN
0 1457		Lvl	AllPub		0	N	aN GdPrv	,	Shed
2500 1458		Lvl	AllPub		0	N	aN NaN	I	NaN
0 1459 0		Lvl	AllPub		0	N	aN NaN	I	NaN
1455 1456	MoSold 8 2	YrSold 2007 2010		oe Sale VD VD	Condit Nor Nor	mal	SalePrice 175000 210000)	

```
5
4
1457
               2010
                           WD
                                       Normal
                                                   266500
1458
               2010
                           WD
                                       Normal
                                                   142125
          6
                                       Normal
1459
               2008
                           WD
                                                   147500
```

[5 rows x 81 columns]

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
ĺ	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64

```
37
     BsmtUnfSF
                     1460 non-null
                                      int64
 38
     TotalBsmtSF
                     1460 non-null
                                      int64
 39
     Heating
                     1460 non-null
                                      object
 40
                     1460 non-null
     HeatingOC
                                      object
 41
     CentralAir
                     1460 non-null
                                      object
 42
     Electrical
                     1459 non-null
                                      object
 43
     1stFlrSF
                     1460 non-null
                                      int64
 44
     2ndFlrSF
                     1460 non-null
                                      int64
 45
     LowQualFinSF
                     1460 non-null
                                      int64
 46
     GrLivArea
                     1460 non-null
                                      int64
 47
     BsmtFullBath
                     1460 non-null
                                      int64
 48
     BsmtHalfBath
                     1460 non-null
                                      int64
 49
     FullBath
                     1460 non-null
                                      int64
 50
     HalfBath
                     1460 non-null
                                      int64
 51
     BedroomAbvGr
                     1460 non-null
                                      int64
 52
     KitchenAbvGr
                     1460 non-null
                                      int64
 53
     KitchenOual
                     1460 non-null
                                      object
 54
     TotRmsAbvGrd
                     1460 non-null
                                      int64
 55
     Functional
                     1460 non-null
                                      object
                     1460 non-null
 56
     Fireplaces
                                      int64
 57
     FireplaceQu
                     770 non-null
                                      object
 58
                     1379 non-null
                                      object
     GarageType
 59
     GarageYrBlt
                     1379 non-null
                                      float64
 60
     GarageFinish
                     1379 non-null
                                      object
 61
     GarageCars
                     1460 non-null
                                      int64
 62
                     1460 non-null
     GarageArea
                                      int64
 63
     GarageQual
                     1379 non-null
                                      object
 64
     GarageCond
                     1379 non-null
                                      object
 65
     PavedDrive
                     1460 non-null
                                      object
 66
     WoodDeckSF
                     1460 non-null
                                      int64
 67
     OpenPorchSF
                     1460 non-null
                                      int64
 68
     EnclosedPorch
                     1460 non-null
                                      int64
 69
     3SsnPorch
                     1460 non-null
                                      int64
 70
     ScreenPorch
                     1460 non-null
                                      int64
 71
     PoolArea
                     1460 non-null
                                      int64
 72
     Pool0C
                     7 non-null
                                      object
 73
     Fence
                     281 non-null
                                      object
 74
     MiscFeature
                     54 non-null
                                      object
 75
                     1460 non-null
     MiscVal
                                      int64
 76
     MoSold
                     1460 non-null
                                      int64
 77
     YrSold
                     1460 non-null
                                      int64
 78
     SaleType
                     1460 non-null
                                      object
 79
     SaleCondition
                     1460 non-null
                                      object
 80
     SalePrice
                     1460 non-null
                                      int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
df.isnull().sum()
Ιd
                    0
MSSubClass
                    0
```

```
MSZoning
                   0
LotFrontage
                 259
LotArea
                   0
MoSold
                   0
YrSold
                   0
SaleType
                   0
SaleCondition
                   0
SalePrice
                   0
Length: 81, dtype: int64
```

AllPub

FR2 ...

df = df.drop("LotFrontage",axis=1) # Independent variable df

LandC		MSSubClass	MSZoning	LotArea	Street	Alley	LotShape
0	ontour 1	60	RL	8450	Pave	NaN	Reg
Lvl 1 Lvl	2	20	RL	9600	Pave	NaN	Reg
2 Lvl	3	60	RL	11250	Pave	NaN	IR1
3 Lvl	4	70	RL	9550	Pave	NaN	IR1
4 Lvl	5	60	RL	14260	Pave	NaN	IR1
1455 Lvl	1456	60	RL	7917	Pave	NaN	Reg
1456 Lvl	1457	20	RL	13175	Pave	NaN	Reg
1457 Lvl	1458	70	RL	9042	Pave	NaN	Reg
1458 Lvl	1459	20	RL	9717	Pave	NaN	Reg
1459 Lvl	1460	20	RL	9937	Pave	NaN	Reg
		es LotConfi	.g Po	oolArea P	oolQC I	Fence N	MiscFeature
MiscV 0	al \ AllP	ub Insid	le	0	NaN	NaN	NaN
0 1 0	AllP	ub FF	R2	0	NaN	NaN	NaN
2	AllP	ub Insid	le	0	NaN	NaN	NaN
3	AllP	ub Corne	er	0	NaN	NaN	NaN
4	411D		12	0	NI - NI	NI - NI	NI - NI

NaN

NaN

0

NaN

```
0
. . .
1455
        AllPub
                    Inside
                                         0
                                               NaN
                                                      NaN
                                                                    NaN
                             . . .
1456
        AllPub
                    Inside
                                               NaN
                                                    MnPrv
                                                                    NaN
0
1457
        AllPub
                    Inside
                                         0
                                               NaN
                                                    GdPrv
                                                                   Shed
2500
1458
        AllPub
                    Inside
                                         0
                                               NaN
                                                      NaN
                                                                    NaN
                             . . .
0
1459
        AllPub
                    Inside
                                         0
                                               NaN
                                                      NaN
                                                                    NaN
                            . . .
     MoSold
              YrSold
                       SaleType
                                  SaleCondition
                                                   SalePrice
                2008
0
           2
                                          Normal
                                                       208500
                              WD
1
           5
                2007
                              WD
                                          Normal
                                                      181500
2
           9
                2008
                              WD
                                          Normal
                                                      223500
3
           2
                              WD
                                         Abnorml
                                                      140000
                2006
4
          12
                2008
                              WD
                                          Normal
                                                      250000
                             . . .
           8
1455
                2007
                              WD
                                          Normal
                                                      175000
           2
                                          Normal
1456
                2010
                              WD
                                                      210000
           5
                                          Normal
1457
                2010
                              WD
                                                      266500
1458
           4
                2010
                              WD
                                          Normal
                                                       142125
1459
           6
                2008
                              WD
                                          Normal
                                                      147500
[1460 rows x 80 columns]
df.shape
(1460, 80)
X = df.drop("SalePrice",axis = 1) # Independent variable
Χ
             MSSubClass MSZoning LotArea Street Alley LotShape
         Ιd
LandContour \
                      60
                                RL
                                        8450
                                                Pave
                                                       NaN
0
          1
                                                                  Reg
Lvl
          2
                      20
                                RL
                                        9600
                                                Pave
                                                       NaN
1
                                                                  Reg
Lvl
2
          3
                      60
                                RL
                                       11250
                                                Pave
                                                       NaN
                                                                  IR1
Lvl
          4
                                RL
                      70
                                        9550
                                                       NaN
                                                                  IR1
3
                                                Pave
Lvl
          5
                      60
                                RL
                                       14260
                                                                  IR1
4
                                                Pave
                                                       NaN
Lvl
. . .
                               . . .
                                         . . .
```

60

1455

1456

RL

7917

Pave

NaN

Reg

Lvl								
1456 Lvl	1457	20	R	L 1317	5 Pave	e NaN	J	Reg
1457	1458	70	R	L 904	2 Pave	e NaN	J	Reg
Lvl 1458	1459	20	R	L 971	7 Pave	e NaN	١	Reg
Lvl 1459 Lvl	1460	20	R	L 993	7 Pave	e NaN	N	Reg
		LotConfig		ScreenPor	ch Pool	Area Po	oolQC	Fence
0	eature \ AllPub	Inside			0	0	NaN	NaN
NaN 1	AllPub	FR2			0	0	NaN	NaN
NaN 2	AllPub	Inside			0	0	NaN	NaN
NaN 3	AllPub	Corner			0	0	NaN	NaN
NaN 4	AllPub	FR2			0	0	NaN	NaN
NaN 								
1455	AllPub	Inside			0	0	NaN	NaN
NaN 1456	AllPub	Inside			0	0	NaN	MnPrv
NaN 1457	AllPub	Inside			0	0	NaN	GdPrv
Shed 1458	AllPub	Inside			0	0	NaN	NaN
NaN 1459 NaN	AllPub	Inside			0	0	NaN	NaN
0 1 2 3 4 1455 1456 1457 1458 1459	MiscVal I 0 0 0 0 0 0 2500 0	2 2 5 2 9 2 2 2 12 2 8 2 2 2 5 2 4 2	001d 0008 0007 0008 0006 0008 0010 0010	SaleType WD	SaleCon	Normal Normal Normal Normal Normal Normal Normal Normal		

[1460 rows x 79 columns]

```
Y = df["SalePrice"] #dependent variables only target column will be in
Υ
        208500
0
1
        181500
2
        223500
3
        140000
4
        250000
         . . .
1455
        175000
1456
        210000
1457
        266500
1458
        142125
        147500
1459
Name: SalePrice, Length: 1460, dtype: int64
Y = df[["SalePrice"]].values # Dependent Variable
Υ
array([[208500],
       [181500],
       [223500],
       [266500],
       [142125],
       [147500]], dtype=int64)
X.head()
      MSSubClass MSZoning LotArea Street Alley LotShape LandContour
0
    1
                                8450
               60
                         RL
                                        Pave
                                               NaN
                                                         Reg
                                                                     Lvl
1
    2
                20
                         RL
                                9600
                                        Pave
                                               NaN
                                                         Reg
                                                                     Lvl
2
    3
                60
                         RL
                               11250
                                        Pave
                                               NaN
                                                         IR1
                                                                     Lvl
3
    4
                70
                         RL
                                9550
                                        Pave
                                               NaN
                                                         IR1
                                                                     Lvl
4
    5
               60
                         RL
                                               NaN
                                                         IR1
                                                                     Lvl
                               14260
                                        Pave
  Utilities LotConfig ... ScreenPorch PoolArea PoolQC Fence
MiscFeature
               Inside
     AllPub
                                                0
                                                      NaN
                                                            NaN
NaN
                   FR2 ...
1
     AllPub
                                       0
                                                0
                                                     NaN
                                                            NaN
NaN
```

```
AllPub
                Inside ...
2
                                        0
                                                  0
                                                       NaN
                                                              NaN
NaN
3
     AllPub
                Corner
                                        0
                                                  0
                                                       NaN
                                                              NaN
NaN
                   FR2 ...
     AllPub
                                                       NaN
                                                              NaN
4
                                        0
                                                  0
NaN
           MoSold
                    YrSold
                                        SaleCondition
 MiscVal
                             SaleType
0
                 2
                      2008
                                               Normal
                                   WD
                 5
1
        0
                      2007
                                   WD
                                               Normal
                 9
2
        0
                      2008
                                   WD
                                               Normal
3
        0
                 2
                      2006
                                   WD
                                              Abnorml
4
        0
                12
                      2008
                                   WD
                                               Normal
[5 rows x 79 columns]
# separate dataset into train and test
from sklearn.model_selection import train_test_split
X train, X test, Y train, Y test = train test split(
    Χ,
    Υ,
    test size=0.3,
    random state=50)
X train.shape, X test.shape
((1022, 79), (438, 79))
X train
        Id MSSubClass MSZoning LotArea Street Alley LotShape
LandContour \
175
                     20
                               RL
                                      12615
                                              Pave
                                                      NaN
       176
                                                                Reg
Lvl
1408
                     70
                               RM
      1409
                                       7740
                                              Pave
                                                      NaN
                                                                Reg
Lvl
1148
      1149
                     50
                               RM
                                       5700
                                              Pave
                                                      NaN
                                                                Reg
Lvl
861
       862
                    190
                               RL
                                      11625
                                              Pave
                                                      NaN
                                                                Reg
Lvl
220
       221
                     20
                               RL
                                       8990
                                                      NaN
                                                                IR1
                                              Pave
Lvl
. . .
       . . .
                    . . .
                              . . .
                                        . . .
                                               . . .
                                                      . . .
                                                                . . .
229
       230
                    120
                               RL
                                       3182
                                              Pave
                                                      NaN
                                                                Reg
Lvl
70
        71
                     20
                               RL
                                      13651
                                              Pave
                                                      NaN
                                                                IR1
Lvl
132
       133
                     20
                               RL
                                       7388
                                                      NaN
                                              Pave
                                                                Reg
Lvl
1313
      1314
                     60
                               RL
                                      14774
                                              Pave
                                                      NaN
                                                                IR1
```

Lvl 109 Lvl	110	20		RL 1175	51 Pav	⁄e NaN	I	IR1
		LotConf	ig	ScreenPo	ch Pool	Area Po	olQC	Fence
MiscFo 175 NaN	eature \ AllPub	Corn	er		0	0	NaN	MnPrv
1408	AllPub	Insi	de	:	168	0	NaN	NaN
NaN 1148	AllPub	Insi	de		0	0	NaN	NaN
NaN 861	AllPub	Insi	de		0	0	NaN	NaN
NaN 220 NaN	AllPub	Insi	de		0	0	NaN	NaN
		•						
229	AllPub	Insi	de		0	0	NaN	NaN
NaN 70	AllPub	Insi	de		0	0	NaN	NaN
NaN 132	AllPub	Corn	er		0	Θ	NaN	NaN
NaN 1313	AllPub	Corn	er		0	0	NaN	NaN
NaN 109 NaN	AllPub	Insi	de		0	0	NaN	MnPrv
175 1408 1148 861 220 229 70 132 1313 109	MiscVal 0 0 0 0 0 0 0 0 rows x 7	6 8 4 4 5 2 7 5	YrSold 2007 2010 2008 2010 2006 2009 2007 2007 2010 2010	SaleType WD WD WD New WD WD WD COD	SaleCo	onditior Normal Normal Normal Partial Normal Normal Normal		
0vera Id 0.027	llCond \ 990			bClass I 025180 -0	_otArea .042861	Overal	.lQual)17525	

MSSubClass	0.025180	1.000000	-0.114367	0.018828	-
0.078168 LotArea	-0.042861	-0.114367	1.000000	0.097441	-
0.002465 OverallOual	-0.017525	0.018828	0.097441	1.000000	_
0.111293					
OverallCond 1.000000	0.027990	-0.078108	-0.002465	-0.111293	
YearBuilt 0.387111	-0.012989	0.042625	0.015185	0.577101	-
YearRemodAdd 0.078987	-0.013134	0.053252	0.026488	0.555213	
MasVnrArea	-0.068046	0.025975	0.104614	0.414165	-
0.114867 BsmtFinSF1	-0.006606	-0.079230	0.224503	0.230208	-
0.056106 BsmtFinSF2	-0.022122	-0.088294	0.116479	-0.042107	
0.049775 BsmtUnfSF	0.016729	-0.129546	-0.013383	0.307859	-
0.138530 TotalBsmtSF	0.001622	-0.245195	0.266075	0.534580	_
0.179180 1stFlrSF	-0.000038	-0.256829	0.293272	0.470704	_
0.154743					
2ndFlrSF 0.005361	-0.006532	0.292979	0.042529	0.303157	
LowQualFinSF	-0.048756	0.059712	-0.007210	-0.036297	
0.043748	0.000004	0.057437	0 251200	0 505406	
GrLivArea 0.106192	-0.009664	0.057437	0.251388	0.595486	-
BsmtFullBath	-0.000926	0.000866	0.171255	0.085237	_
0.079731					
BsmtHalfBath	-0.044217	-0.001635	0.049252	-0.037835	
0.121766 FullBath	-0.011373	0.113428	0.140051	0.552090	_
0.216317	0.011575	0.113420	0.140031	0.332030	
HalfBath	0.002378	0.182245	0.001082	0.276522	-
0.071881 BedroomAbvGr	0.008400	-0.033968	0.128956	0.107916	
0.013135	0.000400	-0.033906	0.120930	0.10/910	-
KitchenAbvGr	0.006342	0.236044	-0.009992	-0.195035	-
0.106891	0 000633	0 027472	0 102074	0 425710	
TotRmsAbvGrd 0.101754	-0.000633	0.027472	0.182974	0.435719	-
Fireplaces 0.045240	-0.036304	-0.083865	0.280601	0.385690	-
GarageYrBlt	-0.003349	0.110443	-0.032688	0.557026	-
0.302170 GarageCars 0.202612	0.018369	-0.034364	0.140119	0.605606	-
 					

GarageArea 0.161514	0.015167	-0.093700 0.	165381 0	.577165 -	
WoodDeckSF 0.002512	-0.045645	0.010248 0.	169479 0	. 247537 -	
OpenPorchSF 0.026936	0.004472	0.013227 0.	069652 0	.299579 -	
EnclosedPorch 0.106672	0.013902	-0.011002 -0.	024140 -0	.105834	
3SsnPorch 0.024791	-0.075026	-0.064610 0.	011642 0	.016132	
ScreenPorch 0.036087	0.010995	-0.042803 0.	028306 0	.063606	
PoolArea 0.028996	0.020920	-0.007767 0.	088009 0	.101894 -	
MiscVal 0.079555	-0.004467	0.000907 0.	035375 - 0	.035628	
MoSold 0.002778	0.024806	-0.006537 -0.	013137 0	.066265	
YrSold 0.048223	0.009276	-0.021893 -0.	014502 -0	.014671	
D 15' 652 \	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	
BsmtFinSF2 \ Id 0.022122	-0.012989	-0.013134	-0.068046	-0.006606	-
MSSubClass 0.088294	0.042625	0.053252	0.025975	-0.079230	-
LotArea 0.116479	0.015185	0.026488	0.104614	0.224503	
OverallQual 0.042107	0.577101	0.555213	0.414165	0.230208	-
OverallCond 0.049775	-0.387111	0.078987	-0.114867	-0.056106	
YearBuilt 0.046764	1.000000	0.598748	0.308525	0.252258	-
YearRemodAdd 0.057883	0.598748	1.000000	0.171563	0.136949	-
MasVnrArea 0.063710	0.308525	0.171563	1.000000	0.263987	-
BsmtFinSF1 0.042417	0.252258	0.136949	0.263987	1.000000	-
BsmtFinSF2 1.000000	-0.046764	-0.057883	-0.063710	-0.042417	
BsmtUnfSF 0.208535	0.145947	0.147399	0.114849	-0.502190	-
TotalBsmtSF 0.113599	0.394536	0.270313	0.369768	0.537806	
1stFlrSF 0.117595	0.285877	0.232418	0.355018	0.454542	
2ndFlrSF	0.029176	0.161668	0.176942	-0.141532	-

0.113736					
LowQualFinSF	-0.169594	-0.068087	-0.070230	-0.042055	
0.011049 GrLivArea 0.006091	0.220770	0.299572	0.401767	0.215477	-
BsmtFullBath 0.165378	0.184121	0.110194	0.066960	0.647734	
BsmtHalfBath 0.057414	-0.047195	-0.010370	0.042605	0.044331	
FullBath 0.083134	0.475584	0.444591	0.283784	0.054317	-
HalfBath 0.023659	0.260997	0.194512	0.190178	-0.003646	-
BedroomAbvGr 0.016352	-0.048401	-0.039360	0.104784	-0.102588	-
KitchenAbvGr 0.036257	-0.159160	-0.164545	-0.035418	-0.082943	-
TotRmsAbvGrd 0.036636	0.117424	0.197051	0.295755	0.065795	-
Fireplaces 0.054814	0.155521	0.116917	0.263209	0.266428	
GarageYrBlt 0.097642	0.813789	0.651013	0.231085	0.150479	-
GarageCars 0.028433	0.527617	0.418037	0.346576	0.218608	-
GarageArea 0.017958	0.477330	0.387689	0.362806	0.298668	-
WoodDeckSF 0.057041	0.228017	0.226514	0.207229	0.177238	
OpenPorchSF 0.014051	0.201400	0.256033	0.103869	0.110250	
EnclosedPorch 0.026815	-0.416450	-0.177672	-0.131871	-0.109477	
3SsnPorch 0.030257	0.011016	0.025054	0.032758	-0.004082	-
ScreenPorch 0.091784	-0.009983	-0.026060	0.047905	0.064097	
PoolArea 0.042001	0.005994	0.039571	0.035591	0.236978	
MiscVal 0.002470	-0.039418	-0.009489	-0.040046	-0.004573	-
MoSold 0.012785	0.025161	0.022081	-0.020837	-0.043953	-
YrSold 0.021047	-0.029227	0.034888	-0.018832	0.019368	
	Garage	Area WoodDeck	kSF OpenPord	chSF Enclose	edPorch
\ Id	0.015	5167 -0.0456	645 0.004	1472 0.	013902

MSSubClass	 -0.093700	0.010248	0.013227	-0.011002	
LotArea	 0.165381	0.169479	0.069652	-0.024140	
OverallQual	 0.577165	0.247537	0.299579	-0.105834	
OverallCond	 -0.161514	-0.002512	-0.026936	0.106672	
YearBuilt	 0.477330	0.228017	0.201400	-0.416450	
YearRemodAdd	 0.387689	0.226514	0.256033	-0.177672	
MasVnrArea	 0.362806	0.207229	0.103869	-0.131871	
BsmtFinSF1	 0.298668	0.177238	0.110250	-0.109477	
BsmtFinSF2	 -0.017958	0.057041	0.014051	0.026815	
BsmtUnfSF	 0.183632	0.026537	0.118611	-0.011277	
TotalBsmtSF	 0.491643	0.234292	0.239787	-0.116877	
1stFlrSF	 0.497726	0.222607	0.189023	-0.079051	
2ndFlrSF	 0.152533	0.117434	0.204863	0.081864	
LowQualFinSF	 -0.054352	-0.000270	-0.015534	0.085925	
GrLivArea	 0.489400	0.261650	0.307754	0.016677	
BsmtFullBath	 0.169224	0.155536	0.081407	-0.059105	
BsmtHalfBath	 -0.036467	0.028290	-0.020259	-0.019276	
FullBath	 0.410229	0.222691	0.259877	-0.117271	
HalfBath	 0.193076	0.111364	0.212537	-0.097562	
BedroomAbvGr	 0.079784	0.071997	0.085638	0.021797	
KitchenAbvGr	 -0.049193	-0.087300	-0.050643	0.043848	
TotRmsAbvGrd	 0.358110	0.194187	0.229790	0.000650	
Fireplaces	 0.275484	0.228026	0.158219	-0.020807	
GarageYrBlt	 0.562112	0.220969	0.241712	-0.314456	

GarageCars	0.8	379030	0.24	2454	0.198639	-0.136279
GarageArea	1.6	00000	0.23	9356	0.253631	-0.108896
WoodDeckSF	0.2	39356	1.00	00000	0.055852	-0.132687
OpenPorchSF	0.2	253631	0.05	55852	1.000000	-0.104518
EnclosedPorch	0.1	.08896	-0.13	32687	-0.104518	1.000000
3SsnPorch	0.6	33450	-0.04	10471	-0.019403	-0.039606
ScreenPorch	0.6	53370	-0.07	0333	0.016460	-0.074408
PoolArea	0.1	.06756	0.03	9455	0.041268	0.109545
MiscVal	0.6	35755	-0.01	.4213	-0.036254	0.023738
MoSold	0.6	15672	0.03	88213	0.051491	-0.035075
YrSold	0.6	33988	0.04	5145	-0.016294	-0.039395
YrSold	3SsnPorch	Screen	Porch	PoolAr	rea MiscVal	MoSold
Id 0.009276	-0.075026	0.0	10995	0.0209	920 -0.004467	0.024806
MSSubClass 0.021893	-0.064610	-0.0	42803	-0.0077	767 0.000907	-0.006537 -
LotArea 0.014502	0.011642	0.0	28306	0.0886	0.035375	-0.013137 -
OverallQual 0.014671	0.016132	0.0	63606	0.1018	394 -0.035628	0.066265 -
OverallCond 0.048223	0.024791	0.0	36087	-0.0289	996 0.079555	0.002778
YearBuilt 0.029227	0.011016	-0.0	09983	0.0059	994 -0.039418	0.025161 -
YearRemodAdd 0.034888	0.025054	-0.0	26060	0.0395	571 -0.009489	0.022081
MasVnrArea 0.018832	0.032758	0.0	47905	0.0355	591 -0.040046	-0.020837 -
BsmtFinSF1 0.019368	-0.004082	0.0	64097	0.2369	978 -0.004573	-0.043953
BsmtFinSF2 0.021047	-0.030257	0.0	91784	0.0420	001 -0.002470	-0.012785
BsmtUnfSF 0.034031	0.036599	-0.0	16374	-0.0506	525 -0.019717	0.050622 -
TotalBsmtSF 0.005826	0.021133	0.0	84885	0.2147	770 -0.025406	-0.000514 -

1stFlrSF	0.041808	0.072976	0.188889	-0.030553	0.022552	
0.001376 2ndFlrSF 0.049469	-0.016551	-0.002855	0.100149	0.015084	0.034486	-
LowQualFinSF 0.015037	0.001540	-0.031614	0.116828	-0.001580	-0.019975	-
GrLivArea	0.017369	0.048856	0.232607	-0.010262	0.043444	-
0.041178 BsmtFullBath	-0.021664	0.030538	0.094942	-0.038425	-0.022647	
0.047220 BsmtHalfBath	0.031338	0.021563	0.047085	-0.002763	0.019802	-
0.058886 FullBath	0.033250	-0.028500	0.044232	-0.020825	0.076741	-
0.025906 HalfBath 0.026238	0.001197	0.069264	0.048676	0.003928	-0.034601	-
BedroomAbvGr 0.054573	0.019734	-0.003015	0.048259	0.004437	0.061194	-
KitchenAbvGr 0.025447	-0.023562	-0.055461	-0.013256	0.080628	0.048652	
TotRmsAbvGrd 0.029951	-0.001018	0.015995	0.076767	0.023662	0.054622	-
6.029931 Fireplaces 0.013111	0.005923	0.149292	0.105683	-0.017496	0.026723	-
GarageYrBlt 0.006770	0.006252	-0.044522	-0.012544	-0.035604	0.014729	
GarageCars 0.037423	0.019429	0.049214	0.039868	-0.051857	0.023925	-
GarageArea 0.033988	0.033450	0.053370	0.106756	-0.035755	0.015672	-
WoodDeckSF 0.045145	-0.040471	-0.070333	0.039455	-0.014213	0.038213	
OpenPorchSF 0.016294	-0.019403	0.016460	0.041268	-0.036254	0.051491	-
EnclosedPorch 0.039395	-0.039606	-0.074408	0.109545	0.023738	-0.035075	-
3SsnPorch 0.020883	1.000000	-0.028835	-0.006892	-0.009439	-0.005406	
ScreenPorch 0.038272	-0.028835	1.000000	-0.016223	-0.006470	0.015864	
PoolArea 0.052822	-0.006892	-0.016223	1.000000	-0.005311	-0.077185	-
MiscVal 0.006154	-0.009439	-0.006470	-0.005311	1.000000	-0.007057	-
MoSold 0.141790	-0.005406	0.015864	-0.077185	-0.007057	1.000000	-
YrSold 1.000000	0.020883	0.038272	-0.052822	-0.006154	-0.141790	

```
import seaborn as sns
import matplotlib.pyplot as plt
#Using Pearson Correlation
plt.figure(figsize=(15,8))
cor = X_train.corr()
sns.heatmap(cor, annot=True)
plt.show()
```


with the following function we can select highly correlated features
it will remove the first feature that is correlated with anything
other feature

```
def correlation(dataset, threshold):# X train, 0.5
    col corr = set() # Set of all the names of correlated columns
    col corr lst = []
    print(f"set initial {col corr}")
    print(f"list initial {col corr lst}")
    corr_arr = dataset.corr() # corr_arr is my correlaion matrix which
is 2d
    for row in range(len(corr arr)):
        for col in range(row):
            if abs(corr arr.iloc[row, col]) > threshold: # we are
interested in absolute coeff value
                colname = corr arr.columns[row] # getting the name of
column
                col corr lst.append(colname)
                col corr.add(colname)
                print(f"colname name which is correlated is
{colname}")
```

```
print(f"set {col corr}")
                print(f"lst {col corr lst}")
    print(f"list is {col corr lst}")
    return col corr
corr features = correlation(X train, 0.3)#data, threshold
len(set(corr features))
set initial set()
list initial []
colname name which is correlated is YearBuilt
set {'YearBuilt'}
lst ['YearBuilt']
colname name which is correlated is YearBuilt
set {'YearBuilt'}
lst ['YearBuilt', 'YearBuilt']
colname name which is correlated is YearRemodAdd
set {'YearRemodAdd', 'YearBuilt'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd']
colname name which is correlated is YearRemodAdd
set {'YearRemodAdd', 'YearBuilt'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd']
colname name which is correlated is MasVnrArea
set {'YearRemodAdd', 'YearBuilt', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea'l
colname name which is correlated is MasVnrArea
set {'YearRemodAdd', 'YearBuilt', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea']
colname name which is correlated is BsmtUnfSF
set {'YearRemodAdd', 'YearBuilt', 'BsmtUnfSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF']
colname name which is correlated is BsmtUnfSF
set {'YearRemodAdd', 'YearBuilt', 'BsmtUnfSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF']
colname name which is correlated is TotalBsmtSF
set {'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF']
colname name which is correlated is TotalBsmtSF
set {'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
```

```
'TotalBsmtSF'l
colname name which is correlated is TotalBsmtSF
set {'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF']
colname name which is correlated is TotalBsmtSF
set {'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF']
colname name which is correlated is TotalBsmtSF
set {'YearBuilt', 'YearRemodAdd', 'BsmtUnfSF', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF']
colname name which is correlated is 1stFlrSF
set {'YearBuilt', '1stFlrSF', 'YearRemodAdd', 'BsmtUnfSF',
'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF'l
colname name which is correlated is 1stFlrSF
set {'YearBuilt', '1stFlrSF', 'YearRemodAdd', 'BsmtUnfSF',
'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF']
colname name which is correlated is 1stFlrSF
set {'YearBuilt', '1stFlrSF', 'YearRemodAdd', 'BsmtUnfSF',
'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF']
colname name which is correlated is 1stFlrSF
set {'YearBuilt', '1stFlrSF', 'YearRemodAdd', 'BsmtUnfSF',
'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF']
colname name which is correlated is 2ndFlrSF
set {'YearBuilt', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd', 'BsmtUnfSF',
'TotalBsmtSF', 'MasVnrArea'}
```

```
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF']
colname name which is correlated is GrLivArea
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea'l
colname name which is correlated is GrLivArea
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea']
colname name which is correlated is GrLivArea
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea']
colname name which is correlated is GrLivArea
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea']
colname name which is correlated is GrLivArea
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea']
colname name which is correlated is BsmtFullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
```

```
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath']
colname name which is correlated is BsmtFullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath']
colname name which is correlated is BsmtFullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath']
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'} lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath']
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath']
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'} lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath']
```

```
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath']
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath']
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath']
colname name which is correlated is FullBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'FullBath', 'TotalBsmtSF', 'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath']
colname name which is correlated is HalfBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
```

```
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath']
colname name which is correlated is HalfBath
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'HalfBath']
colname name which is correlated is BedroomAbvGr
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
               'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'HalfBath', 'BedroomAbvGr']
colname name which is correlated is BedroomAbvGr
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr']
colname name which is correlated is BedroomAbvGr
set {'YearBuilt', 'GrLivArea', '1stFlrSF', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
```

```
'FullBath', 'HalfBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr'l
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd']
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd']
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd']
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
```

```
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd'l
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd']
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd']
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd']
colname name which is correlated is TotRmsAbvGrd
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath',
```

```
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
             , 'HalfBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'FullBath',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd'l
colname name which is correlated is Fireplaces
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'Fireplaces']
colname name which is correlated is Fireplaces
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces']
colname name which is correlated is Fireplaces
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF',
'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
```

```
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces']
colname name which is correlated is Fireplaces
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
 'Fireplaces']
colname name which is correlated is Fireplaces
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF',
'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces']
colname name which is correlated is GarageYrBlt
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
```

```
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'TotRmsAbvGrd', 'TotRmsAbvGrd'
 'Fireplaces', 'Fireplaces', 'GarageYrBlt']
 colname name which is correlated is GarageYrBlt
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
  'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt']
colname name which is correlated is GarageYrBlt
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
 'GarageYrBlt', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
 lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
  'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'TotRmsAbvGrd', 'TotRmsAbvGrd'
  'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
  'GarageYrBlt']
 colname name which is correlated is GarageYrBlt
 set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
 'GarageYrBlt', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
 'MasVnrArea', 'BedroomAbvGr'}
 lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
  '1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
```

```
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt']
colname name which is correlated is GarageYrBlt
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt']
colname name which is correlated is GarageYrBlt
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt']
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
 'MasVnrArea', 'BedroomAbvGr'}
```

```
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
                                                                                                              'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
 'GarageCars'l
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
                                'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'B
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars']
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'IstFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces',
 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
```

```
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageCars', 'GarageCars']
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageCars', 'GarageCars']
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'TotRmsAbvGrd', 'TotRmsAbvGrd'
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars']
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
```

```
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'Garag
'GarageCars']
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars']
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt'
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars']
```

```
colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
  'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'IstFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
  'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCar
 colname name which is correlated is GarageCars
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
  'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd'
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvG'
'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'TotRmsAbvGrd', 'T
 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars']
 colname name which is correlated is GarageCars
 set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
 'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'HalfBath', 'FullBath', 'TotalBsmtSF',
  'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
  'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
  'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
  'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
```

```
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars'
 'GarageCars'l
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath',
 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
                                            'GrLivArea', 'GrLivArea', 'GrLivArea',
 'GrLivArea'.
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'G
 'GarageCars', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt'
 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
```

```
'GarageCars', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt'
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'GarageArea', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
```

```
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
                                                                                                                                                            'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageArea', 'GarageAr
 'GarageArea'l
 colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt'
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageArea', 'GarageArea'
 colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
 'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
```

```
'FullBath', 'FullBath', 'FullBath', 'FullBath',
'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces',
 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt'
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'G
'GarageArea', 'GarageArea', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
'1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
                             'GrLivArea', 'GrLivArea', 'GrLivArea',
 'GrLivArea'.
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd',
'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath',
'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'IstFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces',
 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
```

```
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea', 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars'
'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageArea', 'G
 'GarageArea']
colname name which is correlated is GarageArea
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'Fireplaces', '2ndFlrSF', 'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath', 'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF'
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath',
 'FullBath', 'HalfBath', 'BedroomAbvGr', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageArea', 'GarageAr
```

```
'GarageArea', 'GarageArea']
 colname name which is correlated is OpenPorchSF
set {'YearBuilt', 'GrLivArea', 'TotRmsAbvGrd', '1stFlrSF',
'GarageYrBlt', 'GarageCars', 'OpenPorchSF', 'Fireplaces', '2ndFlrSF',
'YearRemodAdd', 'BsmtFullBath', 'BsmtUnfSF', 'GarageArea', 'HalfBath',
  'FullBath', 'TotalBsmtSF', 'MasVnrArea', 'BedroomAbvGr'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'BedroomAbvGr', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 
'GarageCars', 'GarageArea', 'G
 colname name which is correlated is EnclosedPorch
 set {'YearBuilt', 'TotRmsAbvGrd', 'GarageCars', '2ndFlrSF',
 'TotalBsmtSF', 'BedroomAbvGr', 'GrLivArea', 'GarageYrBlt',
'Fireplaces', 'BsmtFullBath', 'EnclosedPorch', '1stFlrSF',
'OpenPorchSF', 'YearRemodAdd', 'HalfBath', 'MasVnrArea', 'BsmtUnfSF',
'GarageArea', 'FullBath'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF',
 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
  'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
 'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'G
 colname name which is correlated is EnclosedPorch
 set {'YearBuilt', 'TotRmsAbvGrd', 'GarageCars', '2ndFlrSF',
```

```
'TotalBsmtSF', 'BedroomAbvGr', 'GrLivArea', 'GarageYrBlt',
'Fireplaces', 'BsmtFullBath', 'EnclosedPorch', '1stFlrSF',
'OpenPorchSF', 'YearRemodAdd', 'HalfBath', 'MasVnrArea', 'BsmtUnfSF',
'GarageArea', 'FullBath'}
lst ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'GarageAre
 'EnclosedPorch']
list is ['YearBuilt', 'YearBuilt', 'YearRemodAdd', 'YearRemodAdd',
 'MasVnrArea', 'MasVnrArea', 'BsmtUnfSF', 'BsmtUnfSF', 'TotalBsmtSF',
 'TotalBsmtSF', 'TotalBsmtSF', 'TotalBsmtSF',
 '1stFlrSF', '1stFlrSF', '1stFlrSF', '2ndFlrSF', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea', 'GrLivArea',
 'BsmtFullBath', 'BsmtFullBath', 'BsmtFullBath', 'FullBath',
 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'BedroomAbvGr', 'TotRmsAbvGrd', 'TotRmsAbvGrd',
'TotRmsAbvGrd', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'Fireplaces', 'GarageYrBlt', 'GarageYrBlt',
'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageYrBlt', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageCars', 'GarageArea', 'GarageAr
 'EnclosedPorch']
19
corr features
{'1stFlrSF',
       '2ndFlrSF'
      'BedroomAbvGr',
      'BsmtFullBath',
```

```
'BsmtUnfSF',
 'EnclosedPorch',
 'Fireplaces',
 'FullBath',
 'GarageArea',
 'GarageCars',
 'GarageYrBlt',
 'GrLivArea',
 'HalfBath',
 'MasVnrArea',
 'OpenPorchSF'
 'TotRmsAbvGrd',
 'TotalBsmtSF',
 'YearBuilt',
 'YearRemodAdd'}
X train.drop(corr features,axis=1,inplace = True)
X test.drop(corr features,axis=1,inplace = True)
X train
        Id MSSubClass MSZoning LotArea Street Alley LotShape
LandContour \
175
       176
                      20
                               RL
                                      12615
                                               Pave
                                                      NaN
                                                                Reg
Lvl
1408
      1409
                     70
                               RM
                                       7740
                                               Pave
                                                      NaN
                                                                Reg
Lvl
1148
      1149
                      50
                               RM
                                       5700
                                               Pave
                                                      NaN
                                                                Reg
Lvl
861
       862
                     190
                               RL
                                      11625
                                               Pave
                                                      NaN
                                                                Reg
Lvl
220
                                       8990
       221
                      20
                               RL
                                               Pave
                                                      NaN
                                                                IR1
Lvl
. . .
       . . .
                     . . .
                               . . .
                                        . . .
                                                . . .
                                                       . . .
                                                                . . .
229
       230
                     120
                               RL
                                       3182
                                               Pave
                                                      NaN
                                                                Reg
Lvl
70
        71
                      20
                               RL
                                      13651
                                               Pave
                                                      NaN
                                                                IR1
Lvl
132
       133
                      20
                               RL
                                       7388
                                               Pave
                                                      NaN
                                                                Reg
Lvl
1313
      1314
                      60
                               RL
                                      14774
                                               Pave
                                                      NaN
                                                                IR1
Lvl
109
       110
                      20
                               RL
                                      11751
                                               Pave
                                                      NaN
                                                                IR1
Lvl
     Utilities LotConfig
                            ... ScreenPorch PoolArea PoolQC
                                                                Fence
MiscFeature \
175
        AllPub
                                                     0
                   Corner
                                           0
                                                           NaN
                                                                MnPrv
                            . . .
NaN
1408
        AllPub
                   Inside ...
                                         168
                                                     0
                                                           NaN
                                                                   NaN
```

NaN								
1148 NaN	AllPub	o Ins	ide		0	0	NaN	NaN
861	AllPuk	o Ins	ide		0	0	NaN	NaN
NaN 220 NaN	AllPuk	o Ins	ide		0	0	NaN	NaN
229 NaN	AllPuk	o Ins	ide		0	0	NaN	NaN
70 NaN	AllPuk	o Ins	ide		0	0	NaN	NaN
132	AllPuk	o Cor	ner		0	Θ	NaN	NaN
NaN 1313	AllPuk	o Cor	ner		0	Θ	NaN	NaN
NaN 109 NaN	AllPub	o Ins	ide		0	Θ	NaN	MnPrv
175 1408 1148 861 220	MiscVal 0 0 0 0 0	MoSold 6 6 8 4 4	YrSold 2007 2010 2008 2010 2006	SaleType WD WD WD WD New	SaleCo	ndition Normal Normal Normal Normal Partial		
229 70 132 1313 109	 0 0 0 0	5 2 7 5 1	2009 2007 2007 2010 2010	WD WD WD WD COD		Normal Normal Normal Normal Normal		

[1022 rows x 60 columns]

X_test

	Id	MSSubClass	MSZoning	LotArea	Street	Alley	LotShape
LandC 930	ontour 931	20	RL	8925	Pave	NaN	IR1
HLS	931	20	NL	0923	rave	IVAIN	IVI
530	531	80	RL	10200	Pave	NaN	Reg
Lvl 1291	1292	160	RM	1600	Pave	NaN	Dog
Lvl	1292	160	KII	1680	Pave	NaN	Reg
1385	1386	50	RM	5436	Pave	NaN	Reg
Lvl 305	306	20	RL	10386	Pave	NaN	Pog
Lvl	300	20	NL	10300	rave	IVAIV	Reg

1307	1308	20		RL 8	072	Pave	NaN		Reg	
Lvl 1078	1079	120		RM 4	435	Pave	NaN		Reg	
Lvl 1244 HLS	1245	70		RL 11	435	Pave	NaN		IR1	
406 Lvl	407	50		RL 10	480	Pave	NaN		Reg	
1459 Lvl	1460	20		RL 99	937	Pave	NaN		Reg	
MiccE		LotConfig		. ScreenP	orch [PoolAre	a Pod	olQC	Fence	
930 NaN	eature \ AllPub	Inside			0		0	NaN	NaN	
530 NaN	AllPub	Inside		•	0		0	NaN	NaN	
1291 NaN	AllPub	Inside			0		0	NaN	NaN	
1385 NaN	AllPub	Inside			0		0	NaN	MnPrv	
305 NaN	AllPub	Inside			0		0	NaN	NaN	
							•			
1307	AllPub	Inside			0		0	NaN	NaN	
NaN 1078	AllPub	Inside			0		Θ	NaN	NaN	
NaN 1244	AllPub	Corner			0		0	NaN	NaN	
NaN 406 NaN	AllPub	Inside			0		0	NaN	NaN	
1459 NaN	AllPub	Inside			0		0	NaN	NaN	
930 530 1291 1385	0 0 0	7 8 2 5	2009 2008 2009 2010	SaleType WD WD WD WD	Sale	Norm Abnor Norm Norm	al ml al al			
305 1307 1078 1244 406 1459	0 0 0 0 0	5 5 6 3	2007 2009 2006 2006 2008 2008	WD WD WD WD WD		Norm Norm Norm Norm Norm Norm	 al al al			

[438 rows x 60 columns]

df =
df.drop(["Alley","1stFlrSF","2ndFlrSF","BedroomAbvGr","BsmtFullBath","
BsmtUnfSF","EnclosedPorch","Fireplaces","FullBath","GarageArea","Garag
eCars","GarageYrBlt","GrLivArea","HalfBath","MasVnrArea","OpenPorchSF"
,"TotRmsAbvGrd","TotalBsmtSF","YearBuilt","YearRemodAdd","MSZoning","L
otConfig","Neighborhood","PoolQC","Fence","MiscFeature","YrSold","Sale
Type","SaleCondition","Condition1","Condition2","BldgType","HouseStyle
","RoofStyle","RoofMatl","Exterior1st","Exterior2nd","MasVnrType","Ext
erQual","ExterCond","Foundation","BsmtQual","BsmtCond","BsmtExposure",
"BsmtFinType1","BsmtFinType2","Heating","HeatingQC","CentralAir","Elec
trical","KitchenQual","Functional","FireplaceQu","GarageType","GarageF
inish","GarageQual","GarageCond","PavedDrive","LandSlope","Street","Lo
tShape","LandContour","Utilities"],axis = 1)
df

	Id	MSSubC	Class	LotArea	OverallQual	OverallCond	BsmtFinSF1
0	1		60	8450	7	5	706
1	2		20	9600	6	8	978
2	3		60	11250	7	5	486
3	4		70	9550	7	5	216
4	5		60	14260	8	5	655
1455	1456		60	7917	6	5	0
1456	1457		20	13175	6	6	790
1457	1458		70	9042	7	9	275
1458	1459		20	9717	5	6	49
1459	1460		20	9937	5	6	830
	Dowt	÷CE2	J O	-15:-C5	Dawtilal foath	V≟ + ab a a Ab C a	WaadDaal.CE
\	BSMTF	inSF2	LowQu	alfinsf	BsmtHalfBath	KitchenAbvGr	моодрескъг
ò		0		Θ	Θ	1	Θ
1		0		Θ	1	1	298

2	0	0	0	1	0
3	Θ	0	0	1	0
4	0	0	0	1	192
		• • •			
1455	0	0	0	1	0
1456	163	0	0	1	349
1457	0	0	0	1	0
1458	1029	0	0	1	366
1459	290	0	0	1	736

	3SsnPorch	ScreenPorch	PoolArea	MiscVal	MoSold	SalePrice
0	0	0	0	0	2	208500
1	0	0	Θ	0	5	181500
2	0	0	Θ	0	9	223500
3	0	0	Θ	0	2	140000
4	0	0	0	Θ	12	250000
1455	0	0	0	0	8	175000
1456	0	0	0	0	2	210000
1457	0	0	0	2500	5	266500
1458	0	0	0	0	4	142125
1459	0	0	0	0	6	147500

[1460 rows x 17 columns]

df.isnull().sum()

Id	0
MSSubClass	0
LotArea	0
OverallQual	0
OverallCond	0
BsmtFinSF1	0
BsmtFinSF2	0
LowQualFinSF	0
BsmtHalfBath	0
KitchenAbvGr	0
WoodDeckSF	0
3SsnPorch	0
ScreenPorch	0

```
PoolArea
                     0
                     0
MiscVal
MoSold
                     0
SalePrice
                     0
dtype: int64
X = df[['MSSubClass',
'LotArea', "OverallQual", "OverallCond", "BsmtFinSF1", "BsmtFinSF2", "LowQualFinSF", "BsmtHalfBath", "KitchenAbvGr", "WoodDeckSF", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", "MoSold"]].values #independent variable
X[0:5]
                     8450,
                                                  706,
array([[
              60,
                                           5,
                                                              0,
                                                                       Θ,
                                                                                0,
                                                                                         1,
                                  7,
                                                              2],
               0,
                         0,
                                  0,
                                           0,
                                                    0,
                     9600,
                                                                       Θ,
         [
              20,
                                  6,
                                           8,
                                                  978,
                                                              0,
                                                                                1,
                                                                                         1,
             298,
                                           0,
                                                              5],
                         0,
                                  0,
                                                    0,
                                           5,
         [
              60, 11250,
                                  7,
                                                  486,
                                                              0,
                                                                       0,
                                                                                0,
                                                                                         1,
                                           0,
               0,
                                  0,
                                                     0,
                                                              9],
                         0,
                     9550,
                                           5,
                                                              0,
              70,
                                  7,
                                                  216,
                                                                       0,
                                                                                0,
                                                                                         1,
                                           0,
                                                              2],
                                                    0,
               0,
                                  0,
                         0,
                                                                                0,
         [
              60, 14260,
                                  8,
                                           5,
                                                  655,
                                                              0,
                                                                       0,
                                                                                         1,
             192,
                         0,
                                  0,
                                           0,
                                                    0,
                                                             12]], dtype=int64)
Y = df[["SalePrice"]]
Υ
        SalePrice
0
            208500
1
            181500
2
            223500
3
            140000
4
            250000
1455
            175000
1456
            210000
1457
            266500
1458
            142125
1459
            147500
[1460 rows x 1 columns]
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, Y, test size =
0.2, random state = 500)
X train.shape
(1168, 15)
X test.shape
```

Feature Scaling

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
sc Y = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X test = sc X.transform(X test)
Y train = sc Y.fit transform(Y train)
Y test = sc \overline{Y}.transform(Y test)
X train
array([[-0.85469057, -0.0242262 , -0.78256106, ..., -0.07684505,
        -0.11595495,
                     0.24559339],
                                   0.63894954, ..., -0.07684505,
       [-0.85469057, -0.18471992,
        -0.11595495, -0.49181812],
       [0.09911675, 0.29260181, 2.77121545, ..., -0.07684505,
        -0.11595495, -0.12311237],
       [-0.85469057, -0.10082087, -0.07180576, \ldots, -0.07684505,
        -0.11595495, -0.86052387],
       [-0.85469057, -0.28343067, -0.78256106, ..., -0.07684505,
        -0.11595495, 0.24559339],
       [-0.85469057, -0.01966095, 0.63894954, ..., -0.07684505,
        -0.11595495, -0.12311237]])
X test
array([[ 0.09911675, -0.17731408, -0.07180576, ..., -0.07684505,
                     0.61429914],
        -0.11595495,
                                   0.63894954, ..., -0.07684505,
       [ 0.09911675, -0.01154496,
        -0.11595495, 0.98300489],
       [0.33756858, -0.11299485, -0.78256106, ..., -0.07684505,
        -0.11595495, -0.12311237],
       [0.09911675, -0.2562421, -0.07180576, ..., -0.07684505,
        -0.11595495,
                     2.08912215],
       [1.52982773, -0.26192329, -0.07180576, \ldots, -0.07684505,
        -0.11595495, 0.24559339],
       [0.09911675, -0.14353127, 0.63894954, \ldots, -0.07684505,
        -0.11595495, -0.12311237]])
Y train
array([[-0.47654967],
       [ 0.04412298],
       [ 3.30843421],
```

```
[-0.52555415],
       [-0.75955057],
       [-0.36628958]])
array([[-9.79900262e-02],
       [ 2.83019842e-01],
       [-4.33670746e-01],
       [-5.56181958e-01],
       [-9.67649141e-02],
       [ 6.24996610e-02],
       [ 6.07674553e-01],
       [-7.52199896e-01],
       [ 4.91288902e-01],
       [-2.49903929e-01],
       [-2.75214745e-01],
       [ 5.15791144e-01],
       [-5.90485097e-01],
       [-5.13303034e-01],
       [-7.22626718e-02],
       [ 4.07981278e-01],
       [ 1.23755267e-01],
       [-6.66442048e-01],
       [-3.81603481e-01],
       [-9.54343396e-01],
       [-3.41787337e-01],
       [ 4.90234277e-02],
       [ 5.28042265e-01],
       [ 5.26817153e-01],
       [ 2.52392039e-01],
       [-7.38723663e-01],
       [-2.74406171e-01],
       [-1.49339273e+00],
       [-5.99060882e-01],
       [-4.15294064e-01],
       [ 1.48257509e-01],
       [-3.67344204e-02],
       [ 2.70874183e+00],
       [ 8.94350788e-01],
       [-5.13303034e-01],
       [-1.00334788e+00],
       [-5.38859900e-02],
       [ 4.60661099e-01],
```

[-4.82675231e-01],

Y_test

```
[-9.42092275e-01],
[-2.65830386e-01],
[-2.92782853e-01],
[ 2.54413474e-01],
[-3.47912898e-01],
[-4.77604295e-02],
[-1.10070660e-02],
 5.28042265e-01],
[-7.83882324e-02],
[-1.10070660e-02],
 4.36264319e+00],
 3.13647645e-01],
[-7.95078821e-01],
[ 1.10384496e+00],
[-9.42092275e-01],
[-2.74406171e-01],
[-5.56181958e-01],
[ 1.89430863e-05],
 1.48257509e-01],
[-1.09016035e-01],
[-4.39796307e-01],
[-3.49909831e-01],
[-9.42092275e-01],
[-6.11312003e-01],
[ 2.57462975e-02],
[-5.01051913e-01],
  5.63741004e-02],
[-6.35814245e-01],
 5.09665584e-01],
  1.80093375e+00],
[-7.59550569e-01],
[-4.27545186e-01],
[-4.52047428e-01],
[-4.58172988e-01],
[-1.15036133e+00],
[-3.43012450e-01],
[-4.53272540e-01],
[-4.03042943e-01],
 2.21764236e-01],
[-5.37805276e-01],
  1.69189878e+001,
[-5.74558640e-01],
[-1.33412815e+00],
  1.20185393e+00],
[-1.70271641e-01],
[-2.68280610e-01],
[-1.21774250e+00],
[ 8.34320294e-01],
[ 5.63741004e-02],
[-1.09016035e-01],
```

```
[-4.64298549e-01],
[-6.48065367e-01],
[-9.05338911e-01],
[-4.64298549e-01],
[-1.04010124e+00],
[ 3.44275448e-01],
[-4.76549670e-01],
[-3.84666262e-01],
[ 6.75055719e-01],
[-1.64146081e-01],
[-4.88150538e-03],
[-6.35814245e-01],
[-2.49903929e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.45137930e-02],
 7.10583971e-01],
[-2.43778368e-01],
[-7.14221421e-01],
[-8.57389051e-02],
[-2.68280610e-01],
[ 4.60661099e-01],
[-1.13233994e+00],
 4.17782175e-01],
 1.53263420e+00],
[-7.64451018e-01],
  2.39633824e+00],
  1.16510057e+00],
 4.66786659e-01],
 6.86252216e-02],
 7.11809083e-01],
[-2.32581871e-02],
[-7.33823215e-01],
[-5.14528146e-01],
[-1.22386806e+00],
[-3.41787337e-01],
[-4.76549670e-01],
[-5.13915590e-01],
 8.09818052e-01],
 1.69189878e+00],
 9.92530245e-021,
[-2.43778368e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.25657619e-01],
[-7.95078821e-01],
[ 4.91288902e-01],
 2.79449968e+00],
[ 1.62835221e+00],
[-6.60316488e-01],
```

```
[-2.68280610e-01],
[ 1.96036882e-01],
[-1.33518278e-01],
[-2.19276126e-01],
[-5.13303034e-01],
[-4.70424110e-01],
[-9.35966714e-01],
[-8.45137930e-02],
[-2.68280610e-01],
[-7.70576578e-01],
[-5.31679715e-01],
[-1.49339273e+00],
[-1.08298017e+00],
 9.92530245e-02],
[-4.52047428e-01],
 1.03033823e+001,
[-7.27697654e-01],
 2.50353555e+00],
 1.32436514e+00],
[-1.00334788e+00],
 1.63064317e+00],
[-1.00334788e+00],
 1.75315438e+00],
[-5.75783752e-01],
 6.38302356e-01],
[-3.29536216e-01],
[-1.71326265e-02],
[-5.68433079e-01],
[ 9.06601909e-01],
[-5.74558640e-01],
[ 3.30799215e-01],
[-6.05186442e-01],
[-1.08910573e+00],
[-3.05033974e-01],
 6.50553477e-01],
  3.13647645e-01],
[-7.70576578e-01],
[-6.37039358e-01],
 2.34015357e-01],
[-1.45891910e-01],
[-6.66442048e-01],
[ 1.60508630e-01],
[-1.71326265e-02],
[-8.93590086e-01],
[ 4.23907735e-01],
[-5.77008864e-01],
[-6.35814245e-01],
[-5.13303034e-01],
[-1.45769399e-01],
[-3.05033974e-01],
```

```
[-9.78845638e-01],
[-2.69566978e-01],
[-6.11312003e-01],
[-8.45137930e-02],
[-2.31527247e-01],
[ 2.57462975e-02],
[-1.09016035e-01],
[-7.09320972e-01],
[-5.01051913e-01],
[ 2.58517600e-01],
[-4.64298549e-01],
[-1.34025371e+00],
 1.65024496e+001,
  9.44580385e-01],
[-2.68893166e-01],
 6.26051235e-01],
[-9.78845638e-01],
 5.89297871e-01],
 9.07827021e-01],
[-6.29688685e-01],
[-1.18711470e+00],
 8.70019034e-02],
[-9.64144293e-01],
 1.01270887e+00],
[-1.23611918e+00],
 2.57292488e-01],
  1.42131949e-01],
[-8.56334426e-01],
[-4.52047428e-01],
 8.33265670e-02],
[-2.93837477e-02],
 4.97414462e-011,
 1.07321716e+00],
 6.99557962e-01],
[-1.24959542e+00],
[-1.33518278e-01],
[-3.78540701e-01],
[-6.48065367e-01],
 1.02911312e+00],
[-5.50056397e-01],
 7.07962231e-011,
[-9.11464472e-01],
[-2.32581871e-02],
[-8.01204381e-01],
[ 3.48668803e+00],
[-5.25554155e-01],
[-8.80836669e-01],
[-2.32581871e-02],
[ 1.85010873e-01],
[ 1.25085841e+00],
```

```
[ 3.79974187e-02],
[-4.29995410e-01],
[ 4.05531054e-01],
[-4.76549670e-01],
[-1.17486358e+00],
[-2.25401686e-01],
 1.12834720e+00],
[-1.71496753e-01],
 2.17091761e+00],
 5.89297871e-01],
  6.87306840e-01],
  1.15284944e+00],
[-3.78540701e-01],
[-2.92782853e-01],
 3.91960590e+00],
[-3.72415140e-01],
[-8.19581063e-01],
 3.44275448e-01],
 3.67723066e-02],
 2.58517600e-01],
[-4.22644737e-01],
[-5.25554155e-01],
[-5.13303034e-01],
[-6.11312003e-01],
 1.23755267e-01],
 2.21764236e-01],
[-5.37805276e-01],
[ 2.42696605e+00],
 6.21150786e-01],
[-3.94467158e-01],
[-1.15036133e+00],
[-1.55464833e+00],
[-7.39948775e-01],
[-7.76702139e-01],
[ 1.26310954e+00],
[-1.45769399e-01],
[-2.07025005e-01],
[-4.21419625e-01],
[-5.13303034e-01],
[-4.15294064e-01],
[-3.29536216e-01],
[-6.05186442e-01],
[-7.76702139e-01],
[-7.70576578e-01],
[-9.67649141e-02],
 6.24996610e-02],
 1.13202254e+00],
[-4.76549670e-01],
[-3.99367607e-01],
[-1.00947344e+00],
```

```
[ 2.21764236e-01],
[ 1.36006388e-01],
[ 1.36006388e-01]])
```

Multiple Regression Model

```
from sklearn import linear model
regr = linear model.LinearRegression()
regr.fit(X train, Y train)#training func question + answers
# The coefficients
print ('Intercept: ',regr.intercept_)
print ('Coefficient : ',regr.coef_)
Intercept: [-9.63766304e-17]
Coefficient: [[-9.02873132e-02 9.87258038e-02 7.27431899e-01 -
2.45253111e-03
   1.50082091e-01 9.31031720e-03 7.51810841e-03 -3.46707655e-03
   4.88886019e-02 1.01349908e-01 3.38783711e-02 5.96773472e-02
   5.10781326e-03 5.93216756e-04 -1.01065850e-02]]
regr.intercept
array([-9.63766304e-17])
regr.coef
array([[-9.02873132e-02,
                          9.87258038e-02, 7.27431899e-01,
        -2.45253111e-03,
                          1.50082091e-01,
                                           9.31031720e-03,
         7.51810841e-03, -3.46707655e-03, 4.88886019e-02,
         1.01349908e-01, 3.38783711e-02,
                                           5.96773472e-02,
         5.10781326e-03, 5.93216756e-04, -1.01065850e-02]])
regr.coef [0][0]
-0.09028731320937944
regr.coef [0][1]
0.0987258037893155
y_pred = regr.predict(X_test)
y pred
array([[-0.33722427],
       [ 0.31952841],
       [-0.60598383],
       [-0.43255507],
       [-0.2066125],
       [-0.07160902],
       [ 0.6781571 ],
       [-1.10503171],
```

```
[ 0.21028814],
[-1.23931036],
[-0.814138
[ 0.4244962 ],
[-0.5451187],
[-0.21897612],
[-0.46689745],
[ 0.33025668],
[ 0.44355144],
[-0.08914773],
[-0.65128136],
[-0.34497513],
 0.07679373],
 0.327997961,
 0.46826844],
 0.31005931],
 0.13525266],
[-1.2042709],
[ 0.17498732],
[-0.74903129],
[-0.50982496],
[-0.4303928],
[-0.44485707],
[-0.31956605],
[ 0.98460265],
[ 0.29931619],
[-0.12868821],
[-0.52960458],
[ 0.02974848],
 0.33418911],
[-0.27523327],
[-0.72647106],
[ 0.07658592],
 0.10426839],
[ 0.15597823],
[-0.68344642],
 0.56527845],
[-0.31353658],
 0.43280447],
[-0.09031499],
 0.137009161,
[ 2.24160402],
[ 0.45744836],
[-0.02999004],
[ 0.43046149],
[-1.64726142],
[-0.05336739],
[ 0.10097173],
[ 0.17522168],
```

[0.38798755],

```
[ 0.03163575],
[-0.56627556],
[-0.26515208],
[-0.69104115],
[-0.03245363],
[ 0.38942499],
[-0.79396253],
[0.19121225],
[-0.89236777],
[-0.32129353],
[ 1.54942548],
[-0.68230439],
[-0.3041476],
[ 0.15680716],
[-0.17693343],
[-0.60565691],
[-0.36108329],
[-0.625252]
[-0.0261397],
[ 0.19006291],
[-0.52798787],
[0.99621294],
[-0.35212091],
[-0.81840694],
[ 1.61590636],
[ 0.81302414],
[-0.55413843],
[ 0.73116857],
[0.60807354],
[-0.31187296],
[-0.04262776],
[-0.33011247],
[-0.52552539],
[-1.30033641],
[ 0.14908033],
[-0.74441845],
[ 0.50556446],
[-0.21782159],
[-0.28690066],
[ 0.97966072],
[-0.00940664],
[ 0.3024453 ],
[-0.67620002],
[ 0.08262464],
[ 0.24298669],
[-0.34124958],
[ 0.70405685],
[ 0.72047602],
[-0.21422159],
[-1.104303
```

```
[-0.24206834],
[-0.93603582],
[ 0.25833981],
[-1.26780733],
[ 0.36339021],
 1.44178445],
[-0.89886932].
 1.93990215],
 1.40125033],
 1.08180221],
 0.69134642],
 0.62626405],
 0.3178701 ],
[-0.49942853],
[-0.73199092],
[-1.08795445],
[-0.50991548],
[-0.5287795],
[-0.60028323],
 0.72585446],
[ 1.34688684],
[-0.10122057],
[-0.2246643],
[ 0.19150164],
[-0.38169556],
[-0.42313689],
[-0.85662924],
[ 0.59962032],
[ 1.28761947],
 1.62859904],
[-0.44478709],
[-0.68480354],
[-0.11305694],
[-0.08475332],
[-0.21099322],
[ 0.3863821 ],
[-0.57207386],
[-0.31588738],
[-0.30103027],
[ 0.13363087],
[-0.6245721],
[-0.24182002],
[-2.33757118],
[-1.73137674]
[ 0.61196944],
[-0.53626757],
[ 1.4997626 ],
[-0.79273903],
[ 2.09032573],
[ 1.18323343],
```

```
[-1.22047336],
[ 1.0241325 ],
[-0.67923585],
 1.22813411],
[-0.1785582],
 0.33440121],
 0.47980554],
 1.00268185],
[-0.36115082],
[ 0.73208475],
[-0.75159389],
[ 0.23932238],
[-0.5761583],
[-0.95300175],
[-0.46454803],
[ 0.89185981],
[0.01033378],
[-0.55264001],
[-0.6759019],
[ 0.87387675],
[-0.12287569],
[-0.06103652],
[ 0.29288302],
 0.48033152],
[-0.66651045],
[ 0.0985792 ],
[-0.51018977],
[-0.52694856],
[-0.16585878],
[ 0.46081645],
[0.15920724],
[-1.00175711],
[ 0.30910305],
 0.22095195],
[-0.00307097],
[-0.36839809],
 0.31487625],
[ 0.08424518],
[-0.86897852],
[-0.15478399],
[ 0.80300416],
[-0.6564087],
[-1.82287847],
 1.48885577],
[ 0.84617202],
[-0.67168549],
[ 0.42930984],
[-0.2881596],
[ 1.0804899 ],
[-0.28413306],
```

```
[-0.10740637],
[-0.69173568],
[-0.70807322],
[-1.35978398],
[ 1.13528322],
[-1.46590868]
[ 0.87499778],
 0.28135719],
[-0.16744749],
[-0.63710845],
[-0.22709232],
[-0.4958855],
[ 0.31462704],
[ 0.73962659],
[ 0.87080469],
[-1.32949369],
[-0.10851957],
[-0.08476628],
[-0.48278032],
[ 1.00479167],
[-0.58486329],
[ 1.02508065],
[-0.77410236],
[ 0.1738029 ],
[-0.44820476]
[ 2.52769596],
[-0.68428717],
[-0.74762264],
[ 1.06881456],
 0.86047993],
 0.7355322 ],
 0.49234704],
[-0.07374643],
[ 0.29435635],
[-0.04721922],
[-0.80028664],
[-0.52011149],
[ 1.1620312 ],
[-0.02263783],
[ 0.83995179],
[-0.07400944]
[ 0.32020876],
[ 0.69308048],
[-0.0726412],
[-0.01250445],
[ 2.00040032],
[-0.01457152],
[-1.28043383],
[ 0.35846698],
```

[0.54553228],

```
[-0.08273755],
       [-0.77418483],
       [-0.5952292],
       [-0.38737299],
       [ 0.4172817 ],
       [-0.20340189].
       [-0.75876498],
       [ 1.61753864],
       [ 0.81413456],
       [-0.06252453],
       [-1.35475174],
       [-1.3305922],
       [-0.21381574],
       [-0.09886488],
       [ 1.87637359],
       [ 0.50861916],
       [-0.21921074],
       [ 0.12846956],
       [-0.52443234],
       [-0.4926669],
       [0.10661218],
       [-0.29863809],
       [-0.57362189],
       [-0.20341452],
       [-0.32581383],
       [-0.28527058],
       [ 0.71253515],
       [-0.56171185],
       [-0.15478399],
       [-0.43828999],
       [-0.26238376],
       [-0.37192232],
       [ 0.39365457]])
from sklearn.metrics import r2 score
print(f"R2 Score : {r2_score(Y_test,y_pred)*100} % ")
R2 Score: 70.281267555182 %
print(f"Mean absolute error: {np.mean(np.absolute(y_pred - Y_test))}
")#pred - actual
Mean absolute error: 0.3459234130131204
print("Residual sum of squares (MSE): %.2f" % np.mean((y pred -
Y test) **2))
Residual sum of squares (MSE): 0.22
accuracy = (f"accuracy : {r2_score(Y_test,y_pred)*100} % ")
```

[0.61861332],

```
'accuracy : 70.281267555182 % '
```

Apply Lasso Regression to cover the overfitting and underfitting problem

```
from sklearn.linear model import Lasso
L = Lasso(alpha = 1)
L.fit(X train,Y train)
Lasso(alpha=1)
ypred1 = L.predict(X test)
from sklearn.metrics import r2 score
print("R2-score", r2 score(Y test, ypred1))
print(f"Mean absolute error: {np.mean(np.absolute(ypred1 - Y_test))}
")# pred - actual
R2-score -0.004908518792945626
Mean absolute error: 0.6243935831081134
Plots
import matplotlib.pyplot as plt
plt.scatter(X test[:,14],X test[:,-1], c = y pred)
plt.plot(X_test, regr.coef_[0][14]*X_test + regr.intercept_[0], 'r') #
V = mx + c
plt.xlabel("1stFlrSF")
plt.ylabel("BsmtFinSF1")
Text(0, 0.5, 'BsmtFinSF1')
```



```
# This Independent variable shows the Non-Linear Relationship
lst = ["MSSubClass',
'LotArea','OverallQual','OverallCond','BsmtFinSF1','BsmtFinSF2','LowQu
alFinSF','BsmtHalfBath','KitchenAbvGr","WoodDeckSF","3SsnPorch","Scree
nPorch","PoolArea","MiscVal","MoSold"]
lst
["MSSubClass',
'LotArea','OverallQual','OverallCond','BsmtFinSF1','BsmtFinSF2','LowQu
alFinSF','BsmtHalfBath','KitchenAbvGr",
'WoodDeckSF',
'3SsnPorch',
'ScreenPorch',
'PoolArea',
'MiscVal',
'MoSold']
```

Ans: All the Independent Variable shows the Non-Linear Relationship

Apply Variance method

```
import pandas as pd
from sklearn.feature_selection import VarianceThreshold
df
```

LandC		SSubClass M	SZoning	LotArea	Street	Alley	LotShape	
0	Contour 1	60	RL	8450	Pave	NaN	Reg	
Lvl 1	2	20	RL	9600	Pave	NaN	Reg	
Lvl 2	3	60	RL	11250	Pave	NaN	IR1	
Lvl 3	4	70	RL	9550	Pave	NaN	IR1	
Lvl 4	5	60	RL	14260	Pave	NaN	IR1	
Lvl 								
1455	1456	60	RL	7917	Pave	NaN	Reg	
Lvl 1456	1457	20	RL	13175	Pave	NaN	Reg	
Lvl 1457	1458	70	RL	9042	Pave	NaN	Reg	
Lvl 1458	1459	20	RL	9717	Pave	NaN	Reg	
Lvl 1459 Lvl	1460	20	RL	9937	Pave	NaN	Reg	
MiscV 0 0 1 0 2 0 3 0 4 0 1455 0 1456 0 1457 2500 1458 0	Yal \ AllPu	b FR2 b Inside b Corner b FR2		0 0 0 0 0 0	NaN	NaN NaN NaN NaN NaN MaN MaN MaN MaN Man	NaN NaN NaN NaN NaN NaN Shed NaN	•
1459 0	AllPu	b Inside		0	NaN	NaN	NaN	

	MoSold	YrSold	SaleType	SaleCondition	SalePrice
0	2	2008	WD	Normal	208500
1	5	2007	WD	Normal	181500
2	9	2008	WD	Normal	223500
3	2	2006	WD	Abnorml	140000
4	12	2008	WD	Normal	250000
1455	8	2007	WD	Normal	175000
1456	2	2010	WD	Normal	210000
1457	5	2010	WD	Normal	266500
1458	4	2010	WD	Normal	142125
1459	6	2008	WD	Normal	147500

[1460 rows x 61 columns]

df.info()

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2 3	MSZoning	1460 non-null	object
	LotArea	1460 non-null	int64
4	Street	1460 non-null	object
5	Alley	91 non-null	object
6	LotShape	1460 non-null	object
7	LandContour	1460 non-null	object
8	Utilities	1460 non-null	object
9	LotConfig	1460 non-null	object
10	LandSlope	1460 non-null	object
11	Neighborhood	1460 non-null	object
12	Condition1	1460 non-null	object
13	Condition2	1460 non-null	object
14	BldgType	1460 non-null	object
15	HouseStyle	1460 non-null	object
16	OverallQual	1460 non-null	int64
17	OverallCond	1460 non-null	int64
18	RoofStyle	1460 non-null	object
19	RoofMatl	1460 non-null	object
20	Exterior1st	1460 non-null	object
21	Exterior2nd	1460 non-null	object
22	MasVnrType	1452 non-null	object
23	ExterQual	1460 non-null	object
24	ExterCond	1460 non-null	object
25	Foundation	1460 non-null	object
26	BsmtQual	1423 non-null	object
27	BsmtCond	1423 non-null	object

```
1422 non-null
 28
     BsmtExposure
                                     object
 29
     BsmtFinType1
                     1423 non-null
                                     object
 30 BsmtFinSF1
                     1460 non-null
                                     int64
 31
     BsmtFinType2
                     1422 non-null
                                     obiect
 32
     BsmtFinSF2
                     1460 non-null
                                     int64
 33
     Heating
                     1460 non-null
                                     object
 34
                     1460 non-null
     HeatingOC
                                     object
 35
     CentralAir
                     1460 non-null
                                     object
 36
    Electrical
                     1459 non-null
                                     object
 37
     LowQualFinSF
                     1460 non-null
                                     int64
 38
     BsmtHalfBath
                     1460 non-null
                                     int64
 39
     KitchenAbvGr
                     1460 non-null
                                     int64
 40
     KitchenOual
                     1460 non-null
                                     object
 41
     Functional
                     1460 non-null
                                     object
 42
     FireplaceQu
                     770 non-null
                                     object
 43
     GarageType
                     1379 non-null
                                     object
 44
     GarageFinish
                     1379 non-null
                                     object
 45
     GarageQual
                     1379 non-null
                                     object
 46
                     1379 non-null
     GarageCond
                                     object
 47
     PavedDrive
                     1460 non-null
                                     obiect
 48
                     1460 non-null
     WoodDeckSF
                                     int64
 49
     3SsnPorch
                     1460 non-null
                                     int64
 50
    ScreenPorch
                     1460 non-null
                                     int64
 51
     PoolArea
                     1460 non-null
                                     int64
 52
     Pool0C
                     7 non-null
                                     object
 53
     Fence
                     281 non-null
                                     object
 54
     MiscFeature
                     54 non-null
                                     object
 55
     MiscVal
                     1460 non-null
                                     int64
 56
     MoSold
                     1460 non-null
                                     int64
                                     int64
 57
     YrSold
                     1460 non-null
 58
     SaleType
                     1460 non-null
                                     object
 59
     SaleCondition
                    1460 non-null
                                     object
 60
     SalePrice
                     1460 non-null
                                     int64
dtypes: int64(18), object(43)
memory usage: 695.9+ KB
```

```
import matplotlib.pyplot as plt
plt.scatter(df.MSSubClass, df.SalePrice, color='blue')
plt.xlabel("MSSubClass")
plt.ylabel("SalePrice")
plt.show()
```



```
import matplotlib.pyplot as plt
plt.scatter(df.EnclosedPorch, df.SalePrice, color='red')
plt.xlabel("EnclosedPorch")
plt.ylabel("SalePrice")
plt.show()
```


import matplotlib.pyplot as plt
plt.scatter(df.OpenPorchSF, df.SalePrice, color='green')

```
plt.xlabel("OpenPorchSF")
plt.ylabel("SalePrice")
plt.show()
```



```
import matplotlib.pyplot as plt
plt.scatter(df.PoolArea, df.SalePrice, color='green')
plt.xlabel("PoolArea")
plt.ylabel("SalePrice")
plt.show()
```



```
import matplotlib.pyplot as plt
plt.scatter(df.BsmtFinSF1, df.SalePrice, color='green')
plt.xlabel("BsmtFinSF1")
plt.ylabel("SalePrice")
plt.show()
```


lst =
["OverallQual","EnclosedPorch","OpenPorchSF","PoolArea","BsmtFinSF1"]

Que.2 Columns which showed non linear behavior apply Polynomial Linear Regression to it ...

Note: If there is None column which is showing Non Linear Behavior you can take anyone of the column as independent variable and apply Polynomial Linear Regression to it

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

df = pd.read csv("C:/Users/Lenovo/Documents/Data Set/FuelConsumption.csv")

take a look at the dataset

df	.head()									
0 1 2 3 4	MODELYEA 201 201 201 201 201	L4 A(L4 A(L4 A(L4 A(MAKE CURA CURA CURA ILX CURA	ILX ILX X HYBRID MDX 4WD	COI	MPACT MPACT MPACT SMALL		IZE (2.0 2.4 1.5 3.5 3.5	CYLINDERS 4 4 4 6 6	\
0 1 2 3 4	TRANSMISS	AS5 M6 AV7 AS6 AS6	FUELTYPE Z Z Z Z Z Z	FUELCON	NSUMPTION	N_CITY 9.9 11.2 6.0 12.7 12.1	FUELCO	NSUMPT	FION_HWY 6.7 7.7 5.8 9.1 8.7	\
0 1 2 3 4	FUELCONS	SUMPT]	0N_COMB 8.5 9.6 5.9 11.1 10.6	FUELCOM	NSUMPTION	N_COMB_I	MPG CO 33 29 48 25 27	2EMISS	5IONS 196 221 136 255 244	
df	.tail()									
CY	MODEL LINDERS	YEAR	MAKE	MODEI	_ VEH:	ICLECLA	SS ENG	INESIZ	ZE	
10 6	62	2014	V0LV0	XC60 AWI) SU\	/ - SMA	LL	3.	. 0	

MODELYEAR		LYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE
	CYLINDERS	\				
	1062	2014	V0LV0	XC60 AWD	SUV - SMALL	3.0
	6					
	1063	2014	V0LV0	XC60 AWD	SUV - SMALL	3.2
	6					
	1064	2014	V0LV0	XC70 AWD	SUV - SMALL	3.0
	6					
	1065	2014	V0LV0	XC70 AWD	SUV - SMALL	3.2
	6					
	1066	2014	V0LV0	XC90 AWD	SUV - STANDARD	3.2

df.isnull().sum()

	TRANSMISSION	FUELTYPE	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HWY
1062	AS6	Х	13.4	9.8
1063	AS6	Х	13.2	9.5
1064	AS6	Х	13.4	9.8
1065	AS6	Х	12.9	9.3
1066	AS6	Χ	14.9	10.2
1062 1063 1064 1065 1066	FUELCONSUMPT	TION_COMB 11.8 11.5 11.8 11.3 12.8	FUELCONSUMPTION_COME	3_MPG C02EMISSIONS 24 271 25 264 24 271 25 260 22 294
df.shape				
(1067, 13)				
<pre>df.info()</pre>				
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 1067 entries, 0 to 1066 Data columns (total 13 columns): # Column Non-Null Count Dtype</class></pre>				
<pre>0 MODELYEAR 1 MAKE 2 MODEL 3 VEHICLECLASS 4 ENGINESIZE 5 CYLINDERS 6 TRANSMISSION 7 FUELTYPE 8 FUELCONSUMPTION_CITY 9 FUELCONSUMPTION_HWY 10 FUELCONSUMPTION_COMB 11 FUELCONSUMPTION_COMB 11 FUELCONSUMPTION_COMB_MPG 12 CO2EMISSIONS dtypes: float64(4), int64(4), memory usage: 108.5+ KB</pre>			1067 non-null	Int64 Object Object Tloat64 Int64 Object Object Tloat64 Tloat64 Tloat64 Tloat64 Int64 Int64

```
MODELYEAR
                              0
MAKE
                              0
                              0
MODEL
                              0
VEHICLECLASS
                              0
ENGINESIZE
                              0
CYLINDERS
TRANSMISSION
                              0
                              0
FUELTYPE
FUELCONSUMPTION CITY
                              0
                              0
FUELCONSUMPTION HWY
FUELCONSUMPTION COMB
                              0
                              0
FUELCONSUMPTION_COMB_MPG
                              0
CO2EMISSIONS
dtype: int64
df =
df.drop(["MODELYEAR","MAKE","MODEL","VEHICLECLASS","TRANSMISSION","FUE
LTYPE"],axis = 1)
df
      ENGINESIZE CYLINDERS
                              FUELCONSUMPTION CITY FUELCONSUMPTION HWY
\
                                                                        6.7
0
              2.0
                            4
                                                 9.9
1
              2.4
                                                 11.2
                                                                        7.7
                            4
2
              1.5
                            4
                                                 6.0
                                                                        5.8
3
              3.5
                            6
                                                12.7
                                                                        9.1
                                                                        8.7
4
              3.5
                            6
                                                12.1
              . . .
                          . . .
                                                  . . .
. . .
                                                                         . . .
1062
              3.0
                            6
                                                13.4
                                                                        9.8
1063
              3.2
                            6
                                                13.2
                                                                        9.5
1064
              3.0
                            6
                                                13.4
                                                                        9.8
1065
              3.2
                            6
                                                12.9
                                                                        9.3
1066
              3.2
                            6
                                                14.9
                                                                       10.2
      FUELCONSUMPTION COMB FUELCONSUMPTION COMB MPG CO2EMISSIONS
0
                         8.5
                                                      33
                                                                    196
1
                         9.6
                                                      29
                                                                    221
2
                         5.9
                                                      48
                                                                    136
```

```
3
                       11.1
                                                     25
                                                                   255
4
                       10.6
                                                     27
                                                                   244
                                                                   . . .
1062
                       11.8
                                                     24
                                                                   271
                                                     25
1063
                       11.5
                                                                   264
                                                     24
1064
                       11.8
                                                                   271
1065
                       11.3
                                                     25
                                                                   260
1066
                       12.8
                                                     22
                                                                   294
[1067 rows x 7 columns]
cdf =
df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']]
cdf.head(9)
                           FUELCONSUMPTION_COMB CO2EMISSIONS
   ENGINESIZE CYLINDERS
0
                                             8.5
          2.0
                        4
                                                            196
1
          2.4
                        4
                                             9.6
                                                            221
                        4
2
          1.5
                                             5.9
                                                            136
3
          3.5
                        6
                                            11.1
                                                            255
4
          3.5
                        6
                                            10.6
                                                            244
5
          3.5
                        6
                                            10.0
                                                            230
6
                        6
          3.5
                                            10.1
                                                            232
7
          3.7
                        6
                                            11.1
                                                            255
8
          3.7
                        6
                                            11.6
                                                            267
plt.scatter(cdf.ENGINESIZE, cdf.CO2EMISSIONS, color='blue')
plt.xlabel("Engine size")
plt.ylabel("Emission")
plt.show()
```



```
plt.scatter(cdf.CYLINDERS, cdf.CO2EMISSIONS, color='blue')
plt.xlabel("CYLINDERS")
plt.ylabel("Emission")
plt.show()
```


plt.scatter(cdf.FUELCONSUMPTION_COMB, cdf.C02EMISSIONS, color='blue')
plt.xlabel("FUELCONSUMPTION_COMB")

plt.ylabel("Emission") plt.show()

Apply polynomial regression on Fuelconsumption_Comb

Creating train and test dataset

len(cdf)

1067

cdf

0 1 2 3 4	ENGINESIZE 2.0 2.4 1.5 3.5 3.5	CYLINDERS 4 4 4 6	FUELCONSUMPTION_COMB 8.5 9.6 5.9 11.1 10.6	CO2EMISSIONS 196 221 136 255 244
1062 1063 1064 1065 1066	3.0 3.2 3.0 3.2 3.2	6 6 6 6	11.8 11.5 11.8 11.3 12.8	271 264 271 260 294

[1067 rows x 4 columns]

```
msk = np.random.rand(len(df)) < 0.8
msk
array([ True, True, True, True, True, True])
msk = np.random.rand(len(df)) < 0.8
train = cdf[msk]
test = cdf[~msk]
train
      ENGINESIZE CYLINDERS
                               FUELCONSUMPTION COMB
                                                       CO2EMISSIONS
0
              2.0
                            4
                                                  8.5
                                                                 196
                            4
1
              2.4
                                                  9.6
                                                                 221
2
                            4
              1.5
                                                  5.9
                                                                 136
4
              3.5
                            6
                                                 10.6
                                                                 244
5
              3.5
                            6
                                                 10.0
                                                                 230
. . .
                          . . .
                                                  . . .
                                                                 . . .
1062
              3.0
                            6
                                                 11.8
                                                                 271
              3.2
                            6
                                                 11.5
1063
                                                                 264
1064
              3.0
                            6
                                                 11.8
                                                                 271
                            6
                                                 11.3
                                                                 260
1065
              3.2
                            6
                                                 12.8
                                                                 294
1066
              3.2
[855 rows x 4 columns]
test
      ENGINESIZE CYLINDERS
                               FUELCONSUMPTION COMB
                                                       CO2EMISSIONS
3
                                                 11.1
              3.5
                            6
                                                                 255
                           12
12
              5.9
                                                 15.6
                                                                 359
23
                            4
                                                                 230
              2.0
                                                 10.0
                            8
34
              4.0
                                                 12.5
                                                                 288
39
              3.0
                            6
                                                 11.2
                                                                 258
1053
              2.0
                            4
                                                 10.7
                                                                 246
                            5
                                                  9.7
1056
              2.5
                                                                 223
                            5
                                                 10.1
                                                                 232
1057
              2.5
1059
              3.2
                            6
                                                 10.2
                                                                 235
                                                 11.5
1060
              3.0
                            6
                                                                 264
```

Polynomial Regression

[212 rows \times 4 columns]

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
train_x = np.asanyarray(train[['FUELCONSUMPTION_COMB']]) #independent
train_y = np.asanyarray(train[['CO2EMISSIONS']]) #dependent
#training -> train_x, train_y
```

```
test_x = np.asanyarray(test[['FUELCONSUMPTION_COMB']])
test_y = np.asanyarray(test[['CO2EMISSIONS']])
#y_hat=prediction -> test_x
#evaluation -> test y,y hat
train x
array([[ 8.5],
       [ 9.6],
       [5.9],
       [10.6],
       [10.],
       [10.1],
       [11.1],
       [11.6],
       [ 9.2],
       [ 9.8],
       [10.4],
       [15.6],
       [14.7],
       [15.4],
       [14.7],
       [15.4],
       [15.6],
       [8.8],
       [10.],
       [ 9.3],
       [10.],
       [ 9.3],
       [10.2],
       [10.9],
       [8.3],
       [11.2],
       [8.3],
       [11.2],
       [11.3],
       [8.4],
       [11.2],
       [15.7],
       [ 8.5],
       [10.5],
       [10.4],
       [ 9.2],
       [13.2],
       [10.9],
       [14.6],
       [17.7],
       [15.4],
       [17.8],
       [13.3],
       [13.4],
```

```
[12.6],
```

- [11.4],
- [12.4],
- [11.4],
- [12.4],
- [11.6],
- [12.2],
- [12.2],
- [12.9],
- [12.7],
- [9.1],
- [9.1],
- [10.3],
- [10.3],
- [15.5],
- [13.9],
- [16.5],
- [14.],
- [16.5],
- [19.],
- [8.4],
- [6.7],
- [6.7],
- [8.4],
- [8.7],
- [9.6],
- [10.3],
- [10.1],
- [8.4],
- [8.7],
- [9.1], [9.6],
- [10.3],
- [9.1],
- [7.9],
- [10.1],
- [10.7],
- [12.7],
- [10.1],
- [12.7],
- [12.2],
- [10.7],
- [12.7],
- [12.7],
- [15.5],
- [8.3],
- [9.3],
- [9.2],
- [12.7],
- [12.7],

```
[14.7],
```

- [13.8],
- [13.8],
- [13.8],
- [14.7],
- [13.8],
- [11.3],
- [10.],
- [11.],
- [11.1],
- [13.9],
- [16.1],
- [14.1],
- [9.1],
- [8.7],
- [12.1],
- [12.1],
- [12.3],
- [12.6],
- [8.5],
- [9.2],
- [11.5],
- [11.5],
- [8.2],
- [9.9],
- [9.8],
- [10.7],
- [8.2],
- [9.9],
- [9.8],
- [9.5], [9.6],
- [9.],
- [10.9],
- [10.1],
- [11.3],
- [11.4],
- [10.1],
- [10.8],
- [11.3],
- [12.8],
- [11.],
- [11.3],
- [11.1],
- [14.8],
- [16.6],
- [14.8],
- [14.8],
- [14.7],
- [20.1],

```
[16.4],
```

- [22.1],
- [12.3],
- [11.4],
- [11.8],
- [11.2],
- [11.7],
- [10.5],
- [12.8],
- [12.7],
- [16.6],
- [14.8],
- [12.],
- [7.8],
- [8.8],
- [8.2],
- [7.1], [7.7],

- [7.1],
- [16.2],
- [10.],
- [15.1],
- [15.9],
- [20.9],
- [21.5],
- [16.5],
- [21.5],
- [16.5],
- [21.5],
- [16.5],
- [22.6],
- [18.],
- [18.8],
- [25.7],
- [18.2],
- [25.8],
- [9.6],
- [10.6],
- [8.],
- [10.6],
- [10.2],
- [11.8],
- [12.7],
- [16.9],
- [14.1],
- [12.6],
- [17.8],
- [13.],
- [17.3],
- [14.3],

```
[ 8. ],
[ 7.5],
[ 8.3],
[ 7.9],
[ 7.5],
[ 7.9],
```

[8.3],

[7.9], [8.3],

[7.9],

[13.8],

[18.4],

[13.8],

[18.4],

[13.8],

[18.4],

[13.8],

[18.4],

[12.6],

[8.4],

[8.1],

[9.], [10.3],

[10.7],

[10.7],

[14.4],

[9.8],

[14.4],

[12.8],

[10.9],

[13.4],

[10.9],

[14.8],

[10.3], [13.9],

[13.9],

[9.8],

[10.],

[10.5],

[14.4],

[11.2],

[13.1],

[12.8],

[13.8],

[11.2],

[10.3],

[12.8],

[10.9],

[10.9],

[14.8],

```
[15.7],
```

[10.2],

[13.8],

[8.6],

[8.8],

[8.6],

[12.2],

[9.2],

[8.8],

[7.3],

[7.3],

[14.4],

[12.1],

[15.6],

[11.1], [16.2],

[7.8], [7.9],

[7.2],

[7.8],

[8.7],

[8.4],

[16.2],

[16.8],

[23.],

[21.2],

[18.3],

[23.9],

[9.8],

[10.8],

[11.5],

[9.1],

[9.6],

[9.4],

[9.3],

[10.], [16.],

[21.6],

[10.2],

[11.9],

[15.9],

[12.5],

[16.7],

[12.7],

[12.8],

[15.9],

[13.8],

[17.5],

[16.5],

[12.3],

```
[16.5],
```

- [19.7],
- [14.6],
- [19.7],
- [13.4],
- [18.],
- [13.4],
- [18.],
- [20.],
- [14.8],
- [19.9], [18.],
- [7.6],
- [8.],
- [11.5],
- [12.1],
- [7.7],
- [10.3],
- [7.8],
- [10.3],
- [7.2],
- [10.1],
- [8.5],
- [8.1],
- [8.9],
- [8.1],
- [9.4],
- [5.5],
- [10.6],
- [11.5],
- [12.7],
- [13.2],
- [10.6],
- [9.1],
- [11.8],
- [14.3],
- [11.2],
- [15.7],
- [9.5],
- [9.9],
- [10.1],
- [10.4],
- [12.3],
- [12.9],
- [15.1],
- [15.9],
- [20.9],
- [16.5],
- [21.5],
- [16.5],

```
[22.6],
```

- [16.5],
- [16.5],
- [22.6],
- [18.],
- [18.8],
- [25.7],
- [18.2],
- [25.8],
- [16.8],
- [12.7],
- [16.9],
- [14.1],
- [12.6],
- [13.], [17.3],
- [14.3],
- [9.1],
- [12.],
- [16.2],
- [10.],
- [12.6],
- [13.8],
- [18.4],
- [13.8], [18.4],
- [14.7],
- [20.1],
- [22.1],
- [13.8],
- [18.4],
- [8.1],
- [8.7],
- [9.1],
- [9.6],
- [10.9],
- [4.8],
- [7.2],
- [7.6],
- [9.1],
- [9.4],
- [6.3],
- [6.9],
- [7.5],
- [12.],
- [7.7],
- [8.6], [8.5],
- [13.2],
- [11.1],

```
[11.2],
```

- [11.6],
- [10.3],
- [11.5],
- [11.1],
- [9.6],
- [8.5],
- [6.2],
- [6.3],
- [9.3],
- [10.5],
- [10.6],
- [8.],
- [8.5],
- [10.2],
- [10.8],
- [7.5], [8.2],
- [11.7],
- [11.1],
- [11.6],
- [12.3],
- [11.6],
- [12.8],
- [11.8],
- [10.6],
- [8.5],
- [14.5],
- [15.], [10.3],
- [10.6],
- [12.8],
- [10.5],
- [12.2],
- [12.4],
- [13.3],
- [17.5],
- [12.4],
- [13.3],
- [17.5],
- [13.3],
- [13.3],
- [13.1],
- [12.6],
- [13.7],
- [13.5],
- [13.7],
- [13.5],
- [9.5],
- [10.5],

```
[10.],
[10.8],
[11.],
[10.9],
[11.6],
[ 9.1],
[ 9.8],
[ 9.4],
[ 9.4],
[11.1],
[ 9.9],
[12.1],
[15.6],
[15.8],
[ 9.8],
[ 9.1],
[ 9.8],
[ 9.4],
[10.2],
[ 9.4],
[11.1],
[12.8],
[12.8],
[13.4],
[13.4],
[10.9],
[ 8.3],
[8.],
[ 8.4],
[ 8.4],
[ 9.7],
[ 9.8],
[ 8.4],
[ 9.4],
[ 8.4],
[ 8.6],
[ 9.9],
[8.7],
[ 7.6],
[7.7],
[ 7.6],
[ 9.2],
[12.],
[10.3],
[11.4],
[11.],
[ 9. ],
[ 9.1],
[8.8],
[10.],
```

```
[11.3],
```

- [11.4],
- [10.7],
- [18.3],
- [15.7],
- [17.4],
- [11.9],
- [14.5],
- [9.8],
- [9.8],
- [15.4],
- [15.1],
- [12.4],
- [15.],
- [14.7],
- [20.7],
- [12.3],
- [12.3],
- [15.4],
- [21.4],
- [5.6],
- [6.],
- [9.6],
- [10.4],
- [13.9],
- [9.7],
- [10.4],
- [9.7],
- [10.6],
- [12.6],
- [12.9],
- [12.9],
- [11.4],
- [16.5],
- [11.7],
- [11.1],
- [8.2],
- [11.8],
- [11.3],
- [12.8],
- [10.2],
- [12.2],
- [12.2],
- [9.],
- [6.3],
- [16.],
- [21.6],
- [12.7],
- [12.7],
- [15.1],

```
[15.3],
```

- [14.5],
- [13.1],
- [8.2],
- [8.],
- [8.6],
- [8.5],
- [8.9],
- [12.6],
- [7.7],
- [6.9],
- [7.],
- [7.4],
- [7.3],
- [7.2],
- [7.7], [7.3],
- [9.7],
- [9.8],
- [7.6],
- [7.3],
- [10.2],
- [9.6],
- [8.],
- [9.4],
- [9.4],
- [10.5],
- [10.5],
- [10.6],
- [15.1],
- [15.3],
- [13.4],
- [7.8],
- [9.2],
- [11.5],
- [13.1],
- [13.1],
- [10.],
- [10.4],
- [10.5],
- [10.4],
- [10.2],
- [8.8],
- [11.6],
- [11.7], [11.4],
- [12.9],
- [13.5],
- [13.5],
- [17.7],

```
[12.],
[15.2],
[15.6],
[15.8],
[ 8.5],
[11.3],
[12.1],
[16.],
[10.3],
[14.2],
[15.5],
[12.1],
[12.],
[14.2],
[8.9],
[ 9. ],
[ 9.8],
[16.5],
[15.7],
[15.7],
[ 7.8],
[ 7.8],
[ 8.7],
[ 7.8],
[ 7.6],
[ 8.7],
 7.8],
[ 7.8],
[ 7.8],
[ 8.3],
[8.],
[8.3],
[8.],
[ 9. ],
[ 8.5],
[ 8.3],
[8.],
[ 9. ],
[8.5],
[ 8.3],
[
 8.],
[8.3],
[ 8. ],
[ 8.3],
[8.],
[
 8.5],
```

[8.3], [8.], [8.5], [8.3],

```
[ 8. ],
[ 8.2],
[ 8.3],
[12.5],
[11.6],
[ 8.6],
[ 8.6],
[ 6. ],
[ 6.4],
[ 8.6],
[ 9.1],
[10.2],
[8.7],
[8.8],
[ 9. ],
[11. ],
[11.5],
[11.7],
[ 9.3],
[16.5],
[12.3],
[11.3],
[12.7],
[13.7],
[13.1],
[12.9],
[ 8.1],
[ 8.6],
[ 8.7],
[11.8],
[10.6],
[11.],
[8.8],
[8.3],
[7.],
[ 7.8],
[15.6],
[17.3],
[ 6.6],
[ 7.7],
[14.2],
[13.7],
[10.1],
[10.7],
[10.3],
[10.7],
[10.5],
[11.],
[10.8],
```

[11.],

```
[10.1],
[10.7],
```

[10.6],

[10.8],

[10.7],

[11.9],

[11.9],

[11.9],

[11.9],

[9.2],

[9.9],

[10.4],

[12.],

[13.6],

[10.4], [13.9],

[13.],

[10.9],

[13.7],

[9.2],

[9.9],

[9.8],

[10.4],

[10.9],

[11.1],

[12.8],

[12.9],

[14.8], [13.6],

[14.1],

[10.6],

[12.6],

[17.8],

[10.2],

[11.9],

[16.8],

[11.3],

[11.4],

[16.],

[17.1],

[17.1],

[17.1],

[17.1],

[15.6],

[8.4],

[9.5],

[6.2],

[9.], [9.],

[9.9],

```
[ 9.9],
[8.],
[7.9],
[ 6.4],
[ 6.4],
[16.9],
[16.9],
[ 8.5],
[ 9.6],
[ 9.5],
[ 8.6],
[ 9.7],
[ 7.8],
[8.5],
[12.5],
[ 8.5],
[11.2],
[12.5],
[ 8.6],
[ 9.9],
[11.6],
[ 9. ],
[11.7],
[13.1],
[ 8.5],
[ 9.2],
[7.7],
[12.9],
[12.9],
[ 9.6],
[ 8.2],
[ 9.6],
[5.7],
[ 6. ],
[7.7],
[ 7.3],
[7.1],
[7.4],
[ 6.8],
[ 8.5],
[12.9],
[13.9],
[10.3],
[11.2],
[11.5],
[ 8.3],
[ 8.2],
[ 4.7],
[ 5.5],
```

[8.9],

```
[ 9.4],
[ 9.5],
```

[16.7],

[11.3],

[12.4],

[10.9],

[10.2],

[13.1],

[13.3],

[14.],

[13.5],

[14.3],

[15.5],

[15.1],

[16.2],

[10.],

[11.], [10.2],

[7.3],

[7.1],

[8.5],

[8.7],

[9.1],

[9.4],

[9.6],

[8.7],

[9.3],

[9.4],

[10.1],

[7.3],

[7.3],

[12.3],

[9.6],

[9.5],

[9.4],

[7.2],

[8.2],

[8.2],

[9.4],

[9.],

[9.],

[6.9],

[6.9],

[5.4],

[8.6],

[9.7],

[9.8],

[7.1],

[6.8],

[12.1],

```
[10.7],
       [11.6],
       [12.2],
       [10.4],
       [11.5],
       [11.2],
       [11.8],
       [11.5],
       [11.8],
       [11.3],
       [12.8]])
train x[0:5]
array([[ 8.5],
       [ 9.6],
       [ 5.9],
       [10.6],
       [10. ]]
poly = PolynomialFeatures(degree=2)
train x poly = poly.fit transform(train x)
train x poly
array([[
                  8.5 ,
                         72.25],
                  9.6 ,
          1. ,
                         92.161,
                        34.81],
                  5.9 ,
          1.
                 11.8 , 139.24],
          1. ,
                 11.3 , 127.69],
          1.
                 12.8 , 163.84]])
clf = linear model.LinearRegression()
train y = clf.fit(train x poly, train y)
# The coefficients
print ('Coefficients: ', clf.coef )
print ('Intercept: ',clf.intercept )
                             39.81542284 -0.87453348]]
Coefficients: [[ 0.
Intercept: [-76.35808794]
import numpy as np
np.arange(0,10,1)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
np.arange(0, 10, 0.5)
array([0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5,
6.,
       6.5, 7., 7.5, 8., 8.5, 9., 9.5
```

<matplotlib.collections.PathCollection at 0x19e677ff4f0>

XX = np.arange(0, 10, .1)

XX

```
2.6, 2.7, 2.8, 2.9, 3., 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,
3.8,
       3.9, 4., 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.,
5.1,
       5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6., 6.1, 6.2, 6.3,
6.4,
      6.5, 6.6, 6.7, 6.8, 6.9, 7., 7.1, 7.2, 7.3, 7.4, 7.5, 7.6,
7.7,
      7.8, 7.9, 8., 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,
9.,
       9.1. 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9])
\#v = b + m1xx + m2xx**2
yy = clf.intercept [0]+ clf.coef [0][1]*XX+ clf.coef [0]
[2]*np.power(XX, 2)
УУ
array([-7.63580879e+01, -7.23852910e+01, -6.84299847e+01, -
6.44921691e+01,
       -6.05718442e+01, -5.66690099e+01, -5.27836663e+01, -
4.89158134e+01.
       -4.50654511e+01, -4.12325795e+01, -3.74171986e+01, -
3.36193083e+01,
       -2.98389087e+01, -2.60759998e+01, -2.23305816e+01, -
1.86026540e+01,
       -1.48922171e+01, -1.11992709e+01, -7.52381529e+00, -
3.86585039e+00,
       -2.25376161e-01, 3.39760740e+00, 7.00310029e+00,
1.05911025e+01,
        1.41616141e+01, 1.77146349e+01, 2.12501652e+01,
2.47682047e+01,
        2.82687536e+01, 3.17518118e+01, 3.52173793e+01,
3.86654562e+01,
        4.20960424e+01, 4.55091379e+01, 4.89047427e+01,
5.22828569e+01,
        5.56434804e+01. 5.89866133e+01. 6.23122555e+01.
6.56204070e+01,
        6.89110678e+01, 7.21842380e+01, 7.54399175e+01,
7.86781063e+01,
        8.18988045e+01, 8.51020120e+01,
                                          8.82877288e+01,
9.14559549e+01,
        9.46066904e+01.
                         9.77399352e+01,
                                          1.00855689e+02,
1.03953953e+02,
        1.07034726e+02, 1.10098008e+02,
                                          1.13143799e+02,
1.16172100e+02,
        1.19182910e+02, 1.22176230e+02, 1.25152058e+02,
1.28110397e+02,
        1.31051244e+02. 1.33974601e+02. 1.36880467e+02.
1.39768842e+02,
```

```
1.42639727e+02, 1.45493121e+02,
                                         1.48329025e+02,
1.51147437e+02,
        1.53948359e+02, 1.56731791e+02,
                                         1.59497732e+02,
1.62246182e+02,
        1.64977141e+02, 1.67690610e+02,
                                         1.70386588e+02,
1.73065075e+02,
        1.75726072e+02. 1.78369578e+02.
                                         1.80995594e+02,
1.83604118e+02,
        1.86195152e+02, 1.88768696e+02,
                                         1.91324748e+02,
1.93863311e+02,
        1.96384382e+02, 1.98887963e+02,
                                         2.01374053e+02,
2.03842652e+02,
        2.06293761e+02, 2.08727379e+02, 2.11143506e+02,
2.13542143e+02,
        2.15923289e+02, 2.18286944e+02, 2.20633109e+02,
2.22961783e+02,
        2.25272966e+02, 2.27566659e+02, 2.29842861e+02,
2.32101572e+02])
import matplotlib.pyplot as plt
plt.scatter(train.FUELCONSUMPTION COMB, train.CO2EMISSIONS,
color='green')
XX = np.arange(0, 10, 0.2)
yy = clf.intercept_[0]+ clf.coef_[0][1]*XX+ clf.coef [0]
[2]*np.power(XX, 2)
plt.plot(XX, yy, 'r' )
plt.xlabel("FUELCONSUMPTION COMB")
plt.ylabel("Emission")
Text(0, 0.5, 'Emission')
```


Evaluation

```
from sklearn.metrics import r2_score
test_x_poly = poly.fit_transform(test_x)
test_x
array([[11.1],
       [15.6],
       [10.],
       [12.5],
       [11.2],
       [ 9.1],
       [14.6],
       [17.7],
       [15.4],
       [17.8],
       [12.9],
       [16.5],
       [8.7],
        [8.8],
        [ 9.1],
        [ 9.1],
       [ 9.1],
       [10.],
       [ 9.9],
       [10.],
       [ 9.9],
```

```
[8.8],
```

- [12.2],
- [12.7],
- [14.7],
- [14.7],
- [9.1],
- [11.9],
- [11.],
- [15.6],
- [16.5],
- [10.2],
- [11.2],
- [10.8],
- [11.4],
- [16.6],
- [16.6],
- [12.8],
- [12.6],
- [11.2],
- [7.8],
- [9.1],
- [12.],
- [12.6],
- [17.],
- [16.5],
- [22.6],
- [16.5],
- [18.9],
- [14.3],
- [8.7],
- [9.9],
- [16.8],
- [8.],
- [8.3],
- [6.9],
- [6.9],
- [12.3],
- [10.1],
- [10.],
- [10.5],
- [13.8],
- [16.8],
- [13.9],
- [13.4],
- [11.2],
- [13.9],
- [8.1],
- [11.8],
- [16.5],
- [12.4],

```
[12.],
[ 7.8],
[ 7.8],
[7.9],
[ 6.8],
[ 6. ],
[21.9],
[17.2],
[22.5],
[12.2],
[13.],
[13.4],
[12.3],
[14.6],
[14.9],
[ 7.6],
[ 6.6],
[ 7. ],
[12.8],
[ 8.9],
[8.],
[10.6],
[ 9. ],
[10.2],
[10.3],
[21.5],
[16.5],
[21.5],
[18.9],
[11.8],
[17.8],
[17.],
[16.4],
[18.4],
[13.8],
[ 7.9],
[ 7. ],
[10.7],
[ 7.7],
[10.6],
[11.5],
[13.4],
[7.7],
[10.1],
[10.],
[7.7],
[8.8],
[11.5],
[12.3],
```

[11.],

```
[ 7.6],
[11.],
```

[12.8],

[13.3],

[18.1],

[13.3], [10.1],

[9.8],

[10.2],

[14.8],

[8.5],

[9.6],

[9.3],

[11.8],

[8.9],

[21.4],

[12.4],

[17.4],

[17.3],

[15.1], [11.],

[7.6],

[10.6],

[11.],

[12.3],

[11.4],

[12.3],

[7.4],

[7.], [7.1],

[7.2], [8.1],

[9.9],

[14.],

[10.4],

[10.5],

[13.2],

[7.2],

[10.2],

[12.9],

[18.2],

[13.2],

[11.7],

[12.7],

[10.7],

[7.8],

[7.8],

[7.3],

[9.],

[9.],

```
[12.3],
        [11.4],
        [7.6],
        [10.9],
        [ 9.3],
        [11.1],
        [ 8.6],
        [11.],
        [11.2],
        [10.9],
        [14.],
        [ 9.8],
        [11.3],
        [11.5],
        [12.7],
        [11.3],
        [15.4],
        [15.9],
        [16.],
        [11.2],
        [ 7.8],
        [ 9.8],
        [ 6.9],
        [ 8.2],
        [ 4.8],
        [11.9],
        [11.8],
        [11.3],
        [ 9.8],
        [ 9.7],
        [ 9.8],
        [ 6.9],
        [ 9.2],
        [ 8.6],
        [10.8],
        [10.7],
        [ 9.7],
        [10.1],
        [10.2],
        [11.5]])
test_x_poly
                   11.1 , 123.21],
array([[
           1.
                   15.6 , 243.36],
           1.
                        , 100. ],
           1.
                   10.
                   12.5 ,
                          156.25],
        ]
           1.
           1.
                   11.2 , 125.44],
           1.
                    9.1 ,
                            82.81],
                   14.6 , 213.16],
           1.
```

[9.5],

```
313.29],
   1.
            17.7 ,
   1.
                    237.16],
            15.4
                  ,
[
   1.
            17.8
                    316.84],
                 ,
   1.
                    166.41],
            12.9
                 ,
            16.5 ,
                    272.25],
   1.
   1.
             8.7
                     75.69],
             8.8,
   1.
                     77.44],
             9.1
                     82.81],
   1.
   1.
             9.1
                     82.81],
   1.
             9.1,
                     82.81],
   1.
            10.
                    100.
                            ],
   1.
             9.9
                     98.01],
                    100.
   1.
            10.
                            ],
             9.9
   1.
                     98.01],
                     77.44],
   1.
             8.8
   1.
            12.2
                    148.84],
            12.7
                    161.29],
   1.
   1.
            14.7
                    216.09],
   1.
                    216.09],
            14.7
   1.
             9.1
                     82.81],
                    141.61],
   1.
            11.9
                 ,
                    121.
   1.
            11.
                            ],
   1.
            15.6
                    243.36],
                 ,
   1.
            16.5 ,
                    272.25],
            10.2 ,
                    104.04],
   1.
            11.2 ,
                    125.44],
   1.
                    116.64],
   1.
            10.8
   1.
            11.4 ,
                    129.96],
                    275.56],
   1.
            16.6
                 ,
   1.
            16.6
                    275.56],
                 ,
   1.
            12.8 ,
                    163.84],
            12.6 ,
   1.
                    158.76],
                    125.44],
   1.
            11.2 ,
   1.
             7.8 ,
                     60.84],
   1.
             9.1,
                     82.81],
                    144.
                           ],
[
   1.
            12.
   1.
                    158.76],
            12.6
                 ,
                    289.
                           ],
   1.
            17.
                    272.25],
   1.
            16.5
   1.
            22.6 ,
                    510.76],
                    272.25],
   1.
            16.5
                 ,
   1.
            18.9
                    357.21],
                 ,
            14.3 ,
                    204.49],
   1.
   1.
             8.7
                     75.69],
             9.9
                     98.01],
   1.
                    282.24],
[
   1.
            16.8
   1.
             8.
                     64.
                           ],
                     68.89],
   1.
             8.3
   1.
             6.9
                     47.61],
   1.
             6.9 ,
                     47.61],
```

```
12.3 ,
   1.
                    151.29],
            10.1 ,
   1.
                    102.01],
[
   1.
            10.
                    100.
                           ],
   1.
            10.5
                    110.25],
            13.8 ,
   1.
                    190.44],
   1.
            16.8
                    282.24],
   1.
            13.9 , 193.21],
            13.4 ,
   1.
                    179.56],
   1.
            11.2 , 125.44],
   1.
                    193.21],
            13.9 ,
   1.
             8.1
                     65.61],
                    139.24],
   1.
            11.8
                    272.25],
   1.
            16.5
            12.4 ,
   1.
                    153.76],
   1.
            12.
                    144.
                           ],
   1.
             7.8
                     60.84],
                     60.84],
             7.8
   1.
   1.
             7.9
                     62.41],
   1.
             6.8 ,
                     46.24],
                     36.
   1.
             6.
                           ],
                    479.61],
   1.
            21.9
            17.2
                    295.84],
[
   1.
   1.
            22.5
                    506.25],
            12.2 ,
   1.
                    148.84],
                    169.
   1.
            13.
                           ],
            13.4 ,
                    179.56],
   1.
            12.3 ,
   1.
                    151.29],
   1.
            14.6 ,
                    213.16],
            14.9 ,
                    222.01],
   1.
   1.
             7.6
                     57.76],
                 ,
   1.
             6.6 ,
                     43.56],
             7.
                     49.
                           ],
   1.
                    163.84],
   1.
            12.8
                     79.21],
   1.
             8.9
   1.
             8.
                     64.
                           ],
                    112.36],
[
   1.
            10.6
   1.
             9.
                     81.
                           ],
                    104.04],
   1.
            10.2
                    106.09],
   1.
            10.3
   1.
            21.5 ,
                    462.25],
                    272.25],
   1.
            16.5
                    462.25],
   1.
            21.5
                 ,
            18.9 ,
                    357.21],
   1.
                    139.24],
   1.
            11.8
            17.8 ,
[
   1.
                    316.84],
                    289.
[
   1.
            17.
                           ],
            16.4 ,
   1.
                    268.96],
                    338.56],
   1.
            18.4 ,
   1.
            13.8 , 190.44],
             7.9 ,
   1.
                     62.41],
```

```
49.],
   1.
             7.
                    114.49],
   1.
            10.7
[
   1.
             7.7
                     59.29],
   1.
            10.6
                    112.36],
                 ,
   1.
            11.5
                    132.25],
                 ,
   1.
            13.4
                    179.56],
            7.7 ,
   1.
                     59.29],
            10.1 ,
                    102.01],
   1.
   1.
                    100.
            10.
                           ],
   1.
             7.7
                     59.29],
   1.
             8.8
                     77.44],
   1.
            11.5
                    132.25],
   1.
            12.3
                    151.29],
                 ,
                    121.
   1.
            11.
                     57.76],
   1.
             7.6
   1.
            11.
                    121.
                           ],
            12.8
                    163.84],
   1.
   1.
            13.3 ,
                    176.89],
   1.
            18.1 ,
                    327.61],
            13.3 , 176.89],
   1.
            10.1 ,
                    102.01],
   1.
             9.8 ,
                     96.04],
   1.
            10.2 , 104.04],
   1.
            14.8 ,
   1.
                    219.04],
             8.5 ,
                     72.25],
   1.
             9.6 ,
   1.
                     92.16],
             9.3
   1.
                     86.49],
   1.
            11.8 ,
                    139.24],
   1.
             8.9
                     79.21],
            21.4
   1.
                    457.96],
            12.4 ,
   1.
                    153.76],
            17.4 ,
                    302.76],
   1.
   1.
            17.3 , 299.29],
            15.1 ,
                    228.01],
   1.
                    121.
   1.
            11.
                           ],
                     57.76],
[
   1.
             7.6
   1.
            10.6 ,
                    112.36],
   1.
                    121.
            11.
                           ],
                  ,
                    151.29],
   1.
            12.3
   1.
            11.4 ,
                    129.96],
            12.3 ,
                    151.29],
   1.
             7.4 ,
                     54.76],
   1.
             7.
                     49.
   1.
                           ],
             7.1
   1.
                     50.41],
             7.2
   1.
                     51.84],
[
   1.
             8.1
                     65.61],
             9.9
   1.
                     98.01],
   1.
            14.
                    196.
                           ],
                    108.16],
   1.
            10.4 ,
   1.
            10.5 ,
                    110.25],
```

```
13.2 ,
   1.
                    174.24],
             7.2 ,
   1.
                      51.84],
                    104.04],
[
   1.
            10.2
   1.
                    166.41],
            12.9
                    331.24],
   1.
            18.2
                 ,
   1.
            13.2 ,
                    174.24],
            11.7 ,
[
   1.
                    136.89],
[
   1.
            12.7
                    161.29],
   1.
                    114.49],
            10.7
   1.
             7.8 ,
                      60.84],
   1.
             7.8
                      60.84],
   1.
             7.3
                      53.29],
             9.
   1.
                      81.
                            ],
             9.
   1.
                      81.
                            ],
             9.5
                      90.25],
   1.
   1.
            12.3
                    151.29],
                  ,
                    129.96],
   1.
            11.4
   1.
             7.6
                      57.76],
   1.
            10.9 ,
                    118.81],
   1.
             9.3
                     86.49],
                    123.21],
   1.
            11.1
             8.6
                      73.96],
[
   1.
   1.
            11.
                    121.
                            ],
   1.
            11.2
                    125.44],
            10.9 ,
                    118.81],
   1.
            14.
                    196.
   1.
                            ],
                      96.04],
   1.
             9.8
   1.
            11.3
                    127.69],
                 ,
   1.
                    132.25],
            11.5
            12.7
   1.
                    161.29],
   1.
            11.3
                    127.69],
                    237.16],
   1.
            15.4
   1.
            15.9 ,
                    252.81],
                    256.
   1.
            16.
   1.
                    125.44],
            11.2
                      60.84],
[
   1.
             7.8
   1.
             9.8
                      96.04],
             6.9
   1.
                      47.61],
                      67.24],
   1.
             8.2
[
   1.
             4.8
                      23.04],
            11.9
                    141.61],
   1.
                    139.24],
   1.
            11.8
                 ,
            11.3 ,
                    127.69],
   1.
   1.
             9.8
                      96.04],
             9.7
[
   1.
                      94.09],
[
             9.8
   1.
                      96.04],
   1.
             6.9
                      47.61],
                      84.64],
   1.
             9.2
             8.6
   1.
                      73.96],
   1.
                    116.64],
            10.8 ,
```

```
1. , 10.7 , 114.49],
              , 9.7 , 94.09],
          1.
                 10.1 , 102.01],
          1. ,
                10.2 , 104.04],
                11.5 , 132.25]])
          1. ,
pred = clf.predict(test x poly)
print(f"Mean absolute error: {np.mean(np.absolute(pred - test y))}")
print(f"Residual sum of squares (MSE): {np.mean((pred - test y) **
2)}")
print(f"R2-score: {r2 score(pred , test y)}")
Mean absolute error: 13.976264079815174
Residual sum of squares (MSE): 699.408567190187
R2-score: 0.8066327979825534
New predictions get value of Engine Size transform it and then predict
transformed data = poly.fit transform([[3.25]])
transformed data
array([[ 1. , 3.25 , 10.5625]])
clf.predict(transformed data)
#clf.predict([[3.15]])
array([[43.80477646]])
Que.3: Apply multi Linear regression to the Housing Price Data Set
Note: You can take any number of Independent Variable Note: You
need to make 3 models atleast with different number of indepent
variable Note: Try to get the best possible accuracy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
df = pd.read csv("C:/Users/Lenovo/Documents/Data Set/housing.csv")
df
```

Id MSSubClass MSZoning LotFrontage LotArea Street Alley

65.0

80.0

8450

9600

Pave

Pave

NaN

NaN

RL

RL

LotShape \

Reg

Reg

1

2

60

20

2 IR1	3		60	RL	68	. 0	11250	Pave	NaN
3	4		70	RL	60	. 0	9550	Pave	NaN
IR1 4	5		60	RL	84	. 0	14260	Pave	NaN
IR1					•				
1455 Reg 1456 Reg 1457 Reg 1458 Reg 1459	1456		60	RL	62	. 0	7917	Pave	NaN
	1457		20	RL	85	. 0	13175	Pave	NaN
	1458		70	RL	66	. 0	9042	Pave	NaN
	1459		20	RL	68	. 0	9717	Pave	NaN
	1460		20	RL	75	. 0	9937	Pave	NaN
Reg									
Misc\		tour Ut	ilities		PoolArea Po	oolQC	Fence	MiscFe	ature
0 0	•	Lvl	AllPub		0	NaN	NaN		NaN
1 0 2		Lvl	AllPub		Θ	NaN	NaN		NaN
		Lvl	AllPub		0	NaN	NaN		NaN
0 3		Lvl	AllPub		0	NaN	NaN		NaN
0 4		Lvl	AllPub		0	NaN	NaN		NaN
0 									
1455		Lvl	AllPub		Θ	NaN	NaN		NaN
0 1456 0 1457 2500 1458		Lvl	AllPub		Θ	NaN	MnPrv		NaN
		Lvl	AllPub		Θ	NaN	GdPrv		Shed
		Lvl	AllPub		Θ	NaN	NaN		NaN
0 1459 0		Lvl	AllPub		0	NaN	NaN		NaN
0 1 2 3 4	MoSold 2 5 9 2 12	YrSold 2008 2007 2008 2006 2008	V V V	oe Sa VD VD VD VD VD	aleCondition Norma Norma Norma Abnorma Norma	l l l	LePrice 208500 181500 223500 140000 250000		

```
. . .
         . . .
                            . . .
1455
           8
               2007
                             WD
                                         Normal
                                                      175000
1456
           2
               2010
                             WD
                                         Normal
                                                      210000
1457
           5
               2010
                             WD
                                         Normal
                                                      266500
                                         Normal
           4
1458
               2010
                             WD
                                                      142125
1459
           6
               2008
                             WD
                                         Normal
                                                      147500
[1460 rows x 81 columns]
cdf = df[["1stFlrSF","2ndFlrSF","0penPorchSF","SalePrice"]]
cdf
      1stFlrSF
                  2ndFlrSF
                             OpenPorchSF
                                            SalePrice
            856
                       854
0
                                       61
                                               208500
1
           1262
                         0
                                        0
                                               181500
2
                                       42
            920
                       866
                                               223500
3
            961
                       756
                                       35
                                               140000
4
           1145
                      1053
                                       84
                                               250000
            953
                                               175000
1455
                       694
                                       40
1456
           2073
                         0
                                        0
                                               210000
1457
           1188
                      1152
                                       60
                                               266500
1458
           1078
                         0
                                        0
                                               142125
1459
           1256
                         0
                                       68
                                               147500
[1460 \text{ rows } \times 4 \text{ columns}]
cdf.head()
              2ndFlrSF
                         OpenPorchSF
                                        SalePrice
   1stFlrSF
0
        856
                    854
                                    61
                                            208500
1
        1262
                      0
                                     0
                                            181500
2
         920
                    866
                                    42
                                            223500
3
                                    35
        961
                    756
                                            140000
4
        1145
                   1053
                                    84
                                            250000
cdf.tail()
      1stFlrSF
                  2ndFlrSF
                             OpenPorchSF
                                           SalePrice
1455
            953
                       694
                                       40
                                               175000
           2073
1456
                                        0
                                               210000
                         0
1457
           1188
                      1152
                                       60
                                               266500
1458
           1078
                         0
                                        0
                                               142125
                         0
1459
           1256
                                       68
                                               147500
cdf.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 4 columns):
     Column
                    Non-Null Count Dtype
```

```
0
     1stFlrSF
                   1460 non-null
                                    int64
 1
     2ndFlrSF
                   1460 non-null
                                    int64
 2
     OpenPorchSF
                   1460 non-null
                                    int64
                   1460 non-null
 3
     SalePrice
                                    int64
dtypes: int64(4)
memory usage: 45.8 KB
cdf.describe()
          1stFlrSF
                        2ndFlrSF
                                   OpenPorchSF
                                                     SalePrice
count
       1460.000000
                     1460.000000
                                   1460.000000
                                                   1460,000000
       1162.626712
                                                 180921.195890
                      346.992466
                                     46.660274
mean
        386.587738
                      436.528436
                                     66.256028
                                                  79442.502883
std
        334.000000
                        0.000000
min
                                      0.000000
                                                  34900.000000
25%
        882.000000
                        0.000000
                                      0.000000
                                                 129975.000000
50%
       1087.000000
                        0.000000
                                     25.000000
                                                 163000.000000
       1391.250000
75%
                      728.000000
                                     68.000000
                                                 214000.000000
       4692.000000
                     2065.000000
                                    547.000000
max
                                                 755000.000000
cdf.isnull().sum()
                0
1stFlrSF
                0
2ndFlrSF
OpenPorchSF
                0
SalePrice
                0
dtype: int64
X = np.asarray(df[["1stFlrSF","2ndFlrSF","0penPorchSF"]]) #
Independent Variable
Χ
array([[ 856,
                854,
                       61],
       [1262,
                  0,
                        0],
       [ 920,
               866,
                       42],
       [1188, 1152,
                       60],
       [1078,
                  0,
                        0],
       [1256,
                       68]], dtype=int64)
                  0,
set(df["1stFlrSF"])
{334,
 372,
 438,
 480,
 483,
 495,
 520,
 525,
 526,
```

546,

551,

561,

572,

575,

576,

581,

596,

600,

605,

612,

616,

624,

625,

626,

630,

649,

658,

660, 661,

663,

664,

672,

673,

676,

679,

680,

682,

684,

686,

689,

691,

693,

694,

696,

697,

698, 702,

703,

707,

708,

713,

716,

720,

725,

728,

729,

734,

736, 738,

741,

742,

747,

750,

751,

752,

753,

754,

755,

756,

757,

760,

764,

765,

767,

768, 769,

770,

772,

773,

774,

778,

779,

780,

783,

784, 786,

788,

789,

790,

792,

793,

794,

796,

798,

799,

800,

802,

803,

804, 806,

807,

808,

810,

811,

812,

813,

816,

818,

820,

822,

824,

825,

827,

829,

831,

832,

833,

835,

838,

840,

841, 842,

845,

846,

847,

848,

849,

851,

854, 855,

856,

858,

859,

860,

861,

864,

865,

866,

869,

872,

874,

875,

876,

877,

879,

880,

882,

884,

885,

886,

887,

888, 889,

892,

896,

897,

899,

900,

901,

902,

904,

905, 907,

908,

909, 910,

912,

913,

914,

915,

916,

918,

920, 923,

924,

925,

926,

927,

928,

929,

930,

932,

933,

935,

936,

938,

939,

941,

943, 944,

948,

949,

950,

951,

952,

953,

954,

955,

956,

958, 959,

960,

963,

964,

965,

966,

968,

969,

970,

971,

972,

974,

975,

976,

977,

979,

980,

981,

983,

984,

985,

986,

988, 989,

990,

991,

992,

993,

996,

997,

998,

999,

1001, 1002,

1003,

1004,

1005,

1006,

1007,

1008,

1010,

1012,

1013,

1014, 1015,

1020,

1021, 1022,

1024,

1026, 1028,

1032,

1034,

1035,

1036,

1038,

1039,

1040,

1041,

1042,

1044,

1047,

1048,

1050,

1051,

1052,

1053,

1054,

1055,

1056, 1057,

1058,

1060,

1061,

1062,

1063,

1064,

1065,

1067,

1068,

1069,

1071,

1072,

1073,

1074,

1075,

1077,

1078, 1079,

1080,

1082,

1085,

1086,

1088, 1089,

1090,

1091,

1092,

1094,

1097,

1098,

1099,

1100,

1103,

1104,

1105,

1107,

1108,

1110,

1112,

1113,

1114,

1116,

1117,

1118,

1120,

1121,

1122, 1124,

1125,

1126,

1127,

1128,

1130,

1131,

1132,

1133,

1134,

1136,

1137,

1138,

1140,

1141,

1142,

1143,

1144,

1145, 1146,

1148,

1149,

1150,

1152,

1153,

1154,

1155,

1156,

1158,

1161,

1163,

1164,

1165,

1166,

1167,

1168,

1170,

1172,

1173,

1175,

1178,

1180,

1181, 1182,

1184,

1186,

1187,

1188,

1190,

1192,

1194,

1195,

1196, 1199,

1200,

1203,

1204,

1207,

1208,

1210,

1211,

1212,

1214,

1215,

1216,

1217,

1218, 1220,

1221,

1222,

1223,

1224,

1225,

1226,

1228,

1229,

1232,

1236,

1238,

1240,

1241,

1242,

1244,

1246,

1247,

1248,

1249,

1251,

1252,

1253,

1256,

1258,

1260,

1261,

1262,

1264,

1265,

1266,

1268,

1269,

1272,

1274,

1276,

1277,

1279,

1281,

1282,

1283,

1284,

1285,

1287,

1288,

1291,

1294,

1296,

1297,

1298,

1299, 1301,

1301,

1302, 1304,

1306,

1307,

1309,

1310,

1318,

1319,

1320,

1324,

1325,

1327,

1328,

1332,

1334,

1336,

1337,

1338,

1339,

1340,

1342,

1344,

1349,

1350, 1352,

1357,

1358,

1360,

1361,

1362,

1363,

1364,

1368,

1370,

1372,

1375,

1377,

1378,

1381,

1382,

1383,

1389,

1390,

1391,

1392,

1394,

1402,

1405,

1407,

1411,

1412,

1414,

1416,

1419,

1425,

1426,

1428,

1429,

1430,

1431,

1432,

1434,

1436,

1437,

1440,

1442,

1444,

1445,

1453,

1454,

1456,

1459,

1462, 1464,

1465,

1466,

1468, 1470,

1472,

1473,

1476,

1478,

1479,

1482,

1484,

1486,

1489,

1490,

1493,

1494,

1496, 1498,

1500,

1501,

1502,

1504,

1505,

1506,

1507, 1509,

1512,

1516,

1521,

1523,

1525,

1526,

1530,

1532,

1533,

1535,

1536,

1537,

1541,

1542,

1547,

1548,

1549,

1552,

1553,

1554,

1555,

1557,

1559,

1560,

1561, 1563,

1566,

1567,

1569,

1571,

1572,

1573,

1574,

1575,

1576, 1578,

1580,

1582, 1584,

1586,

1588,

1593,

1600,

1601,

1602,

1604,

1610,

1614,

1616,

1617,

1621,

1622,

1624,

1625,

1629,

1630,

1632,

1634,

1636,

1640,

1644, 1646,

1647,

1651,

1652, 1654,

1656,

1657, 1659,

1660,

1661,

1663,

1664,

1668,

1670,

1675,

1679,

1680,

1682,

1684,

1686,

1687,

1689,

1690,

1694,

1696,

1698,

1699,

1700,

1701,

1702,

1704,

1707,

1709,

1710,

1712,

1713,

1717,

1720,

1721,

1724,

1726,

1728,

1733,

1734,

1742,

1746,

1752,

1766,

1768,

1771,

1776,

1779,

1787,

1788,

1792,

1795,

1800,

1801,

1803,

1811,

1824,

1826,

1828,

1831,

1836, 1838,

1839,

1842,

1844, 1848,

1850,

1856, 1867,

1869,

1872,

1888,

1898,

1902,

1905,

1922,

1932,

1940,

1944,

1959,

1966,

```
1973,
 1976,
 1980,
 1987,
 1992,
 2000,
 2018,
 2020,
 2028,
 2036,
 2042,
 2046,
 2053,
 2069,
 2073,
 2076,
 2084,
 2097,
 2110,
 2113,
 2117,
 2121,
 2129,
 2136,
 2156,
 2158,
 2196,
 2207,
 2217,
 2223,
 2234,
 2259,
 2364,
 2392,
 2402,
 2411,
 2444,
 2515,
 2524,
 2633,
 2898,
 3138,
 3228,
 4692}
set(df['GarageCars'])
{0, 1, 2, 3, 4}
Y = np.asarray(df[["SalePrice"]].values) # Dependent Variable
```

```
Υ
array([[208500],
       [181500],
       [223500],
       [266500],
       [142125],
       [147500]], dtype=int64)
Creating Train and Test dataset
# Splitting the dataset into the Training set and Test set
from sklearn.model selection import train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size =
0.2, random state = 500)
X train.shape
(1168, 3)
X_test.shape
(292, 3)
Y train.shape
(1168, 1)
Y test.shape
(292, 1)
Feature Scaling
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc Y = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X test = sc X.transform(X test)
Y_train = sc_Y.fit_transform(Y_train)
Y_test = sc_Y.transform(Y_test)
X_train
array([[ 0.10235513, -0.78522929, 0.94757715],
       [0.60747084, -0.78522929, 0.85855721],
       [ 1.40050251, 0.52565775, 3.36595228],
       . . . ,
```

```
[ 1.15804697, -0.78522929, -0.69929179],
       [-0.52651394, -0.78522929, -0.69929179],
       [ 0.49634538, -0.78522929, -0.69929179]])
X test
array([[-1.06951333e+00,
                           9.45695502e-01, -1.80008792e-01],
                                             3.24437552e-011,
       [-1.90611989e-01,
                           1.21341187e+00,
       [-7.20983489e-01,
                           9.59542900e-01,
                                           -6.99291794e-01],
       [-3.11839760e-01,
                          -7.85229289e-01,
                                             4.03360185e+00],
       [-1.23620152e+00,
                           1.23649087e+00,
                                            -1.35498820e-01],
       [-8.62415890e-01,
                           1.24110667e+00,
                                             3.39274210e-011,
       [-5.31565096e-01,
                           1.12801958e+00.
                                             7.25027297e-01],
                          -7.85229289e-01,
       [-7.81597375e-01,
                                           -6.99291794e-01],
       [-4.55797739e-01,
                           2.08349006e+00, -6.99291794e-01],
       [-1.75458517e-01,
                           7.93374120e-01, -6.99291794e-01],
       [-8.22006632e-01,
                           7.65679324e-01, -6.99291794e-01],
       [ 4.66038441e-01,
                          -7.85229289e-01, -1.80008792e-01],
       [-3.37095546e-01, -7.85229289e-01, -6.99291794e-01],
                          -7.85229289e-01, -2.54192078e-01],
         5.08973277e-01,
       [-1.12255048e+00,
                           8.97229608e-01,
                                           -2.24518764e-01],
       [-1.03415523e+00,
                           1.02185619e+00, -3.16422201e-02],
         6.50405677e-01,
                          -7.85229289e-01,
                                           -1.80008792e-01],
       [-5.41667411e-01,
                           1.56393797e-01, -6.99291794e-01],
                          -7.85229289e-01, -6.99291794e-01],
       [ 3.87745505e-01,
       [-6.17434768e-01,
                           1.35880955e+00,
                                             2.23836633e+001.
       [-1.03415523e+00,
                           1.20418027e+00, -2.98702049e-01],
       [-1.01900176e+00,
                           1.08878528e+00,
                                           -3.16422201e-02],
         3.29657198e-01,
                           1.48343614e+00, -3.87721993e-01],
                         -7.85229289e-01,
         1.23128875e+00,
                                           -1.94845449e-01],
       [ 4.91294227e-01,
                          -7.85229289e-01,
                                           -1.80008792e-01],
       [-1.00889945e+00,
                           2.67172984e-01,
                                             1.46397666e-01],
                           1.47189664e+00,
         1.01661457e+00,
                                             1.28677515e-02],
         2.58940998e-01,
                          -7.85229289e-01,
                                            -6.99291794e-01],
       [-3.37095546e-01,
                         -7.85229289e-01,
                                           -6.99291794e-011,
       [-4.66540097e-02,
                          -7.85229289e-01,
                                            -6.99291794e-01],
       [ 6.52931256e-01,
                          -7.85229289e-01,
                                             1.97130650e+00],
                                             3.68947524e-01],
                           8.32608416e-01,
       [-9.86169240e-01,
         7.99414813e-01,
                           2.22427195e+00,
                                             1.46686016e+001,
       [-4.60848896e-01,
                           1.42112284e+00,
                                             1.31849358e+00],
       [-2.63853767e-01,
                          -7.85229289e-01,
                                             1.16724352e-01],
       [-1.74384281e+00,
                           3.77952170e-01,
                                           -6.99291794e-01],
       [-1.06193660e+00,
                           9.24924404e-01, -6.99291794e-01],
                                           -6.99291794e-011,
       [-5.39141832e-01,
                           1.01493249e+00,
       [-7.05830018e-01, -7.85229289e-01, -6.99291794e-01],
       [-7.53816011e-01, -7.85229289e-01, -6.99291794e-01],
       [-7.19097955e-02, -7.85229289e-01, -4.61905279e-01],
       [-3.90772740e-02, -7.85229289e-01,
                                            4.25410659e-021,
       [ 4.91294227e-01, -7.85229289e-01,
                                           -1.80008792e-01],
       [ 9.73679735e-01, -7.85229289e-01,
                                            1.02176044e+001,
       [ 9.73039691e-02, -7.85229289e-01, -6.99291794e-01],
```

```
[-6.25011504e-01,
                    7.79526722e-01, -1.65172135e-01],
[-4.25490796e-01,
                    1.47189664e+00, -6.99291794e-01],
[-1.03415523e+00,
                    1.20418027e+00, -2.98702049e-01],
 8.34772913e-01.
                   -7.85229289e-01,
                                    -6.99291794e-01],
                    2.88202337e+00, -1.65172135e-01],
  1.30453053e+00,
 3.54912984e-01,
                  -7.85229289e-01,
                                     2.20580952e-01],
[-4.35593110e-01,
                    6.77979134e-01,
                                    -6.99291794e-01],
 9.30744899e-01,
                    2.28427734e+00,
                                     3.48464553e+00],
[-1.21094573e+00,
                    4.14878566e-01,
                                    -6.99291794e-01],
  5.18435547e-02, -7.85229289e-01,
                                    -6.99291794e-01],
  5.46856956e-01,
                  -8.36277739e-02,
                                    -6.99291794e-011,
  6.45354520e-01, -7.85229289e-01,
                                     9.32740497e-01],
  1.68020169e-01, -7.85229289e-01,
                                     6.80517325e-01],
[-1.63470668e-02, -7.85229289e-01,
                                    -3.13538707e-01],
 6.69970262e-02, -7.85229289e-01,
                                     2.50254266e-01],
                  -7.85229289e-01,
  1.27610912e-01,
                                    -6.99291794e-011,
[-5.18937203e-01,
                    1.56393797e-01, -6.99291794e-01],
[-5.08834889e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
 1.20603296e+00, -7.85229289e-01, -6.99291794e-01],
[-1.85560831e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-1.05435986e+00,
                    1.05416679e+00,
                                    -3.16422201e-02],
[-3.77504803e-01,
                    1.38419645e+00,
                                     2.14934639e+00],
[-2.56277031e-01,
                    3.77952170e-01,
                                     3.92974525e+00],
  1.35251652e+00,
                  -7.85229289e-01,
                                     2.65090924e-01],
                                    -6.99291794e-01],
[-9.60913454e-01,
                  -3.51618798e-02,
[-8.04327582e-01,
                    2.92559881e-01,
                                    -6.99291794e-01],
                                     4.25410659e-021,
[-7.48764854e-01,
                    5.99510544e-01,
[-8.22006632e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-1.63776851e+00,
                    5.23349853e-01,
                                    -6.99291794e-01],
  6.44714476e-02,
                  -7.85229289e-01,
                                     2.35417609e-01],
                  -7.85229289e-01,
[-2.20918931e-01,
                                    -6.99291794e-01],
[-4.28016375e-01,
                  -7.85229289e-01,
                                    -6.99291794e-011,
[-1.40794086e+00,
                    1.68883921e+00,
                                     9.92087126e-01],
                                    -6.99291794e-011,
[-9.02825147e-01,
                  -7.85229289e-01,
[ 1.32726074e+00,
                    2.72970199e+00,
                                    -6.99291794e-01],
[-3.16890917e-01,
                  -7.85229289e-01,
                                    -4.02558650e-01],
[-1.03415523e+00,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-2.20918931e-01,
                    1.14879068e+00,
                                     4.13457496e-01],
[-6.50267289e-01,
                    1.12109588e+00,
                                     1.80810327e+00],
                    7.10289730e-01,
 1.49647450e+00,
                                    -6.99291794e-01],
                                    -6.99291794e-01],
  5.99894106e-01,
                  -7.85229289e-01,
 3.14503727e-01,
                    2.02117677e+00,
                                    -6.99291794e-011,
[-5.34090675e-01,
                    1.13032748e+00, -6.99291794e-01],
[-5.41667411e-01,
                    8.57995313e-01,
                                    -1.35498820e-01],
[ 4.30680341e-01,
                  -7.85229289e-01, -2.83865392e-01],
[-5.99755718e-01,
                  -7.85229289e-01, -6.99291794e-01],
                   9.57235001e-01, -6.99291794e-01],
[-1.05688544e+00,
[-9.05350725e-01,
                    1.23418297e+00, -6.99291794e-01],
                  -7.85229289e-01, -3.16422201e-02],
[-7.36136961e-01,
[-6.07332454e-01,
                    1.46497294e+00,
                                     1.27398361e+00],
```

```
[-6.32588239e-01, -7.85229289e-01, -6.99291794e-01],
[-3.37095546e-01, -7.85229289e-01,
                                    -6.99291794e-01],
                    1.29880416e+00,
                                      2.43124287e+00],
[-1.14844631e-01,
                                     -6.99291794e-011,
 4.45833813e-01,
                   -7.85229289e-01,
                   -7.85229289e-01,
 2.23582898e-01,
                                     -6.99291794e-01],
 4.50884970e-01,
                   -7.85229289e-01,
                                     -6.99291794e-01],
                  -7.85229289e-01,
                                     -6.99291794e-01],
 4.25629184e-01,
[-2.00714303e-01,
                   -7.85229289e-01,
                                     -6.99291794e-01],
[-3.09314182e-01,
                    1.03339569e+00,
                                      1.14045370e+00],
                    8.69534811e-01,
                                     -3.72885335e-01],
[-1.12255048e+00,
[-6.88150968e-01,
                    1.29188046e+00,
                                      1.02176044e+00],
 2.86722362e-01,
                  -7.85229289e-01,
                                     -4.47068621e-01],
[-4.63374475e-01,
                   -7.85229289e-01,
                                     -6.99291794e-01],
                                      1.21463698e+00],
                  -7.85229289e-01,
[-2.13982240e-02,
                    1.47651244e+00,
                                     -6.99291794e-01],
[-5.69448775e-01,
                    1.70961031e+00,
[-8.24532211e-01,
                                      1.28677515e-021,
[-1.07267896e-01,
                   -7.85229289e-01,
                                      3.68947524e-01],
[-9.07876304e-01,
                    1.19956447e+00,
                                      7.25027297e-01],
  1.31463284e+00,
                   -7.85229289e-01,
                                      1.46397666e-01],
[-1.37258276e+00,
                    7.65679324e-01,
                                     -6.99291794e-01],
  1.44596293e+00,
                   -7.85229289e-01,
                                     -1.20662163e-01],
 6.83238199e-01,
                    8.30300516e-01,
                                      7.54700611e-01],
[-6.22485925e-01,
                    1.49497564e+00,
                                      1.52620678e+00],
  3.41645047e-02,
                    4.37957563e-01,
                                     -1.65172135e-01],
 3.37233934e-01,
                    1.64037332e+00,
                                     -1.05825506e-01],
[-8.42211261e-01,
                    1.12571168e+00,
                                      3.09600895e-01],
[-5.16411625e-01,
                   -7.85229289e-01,
                                     -6.99291794e-01],
                  -7.85229289e-01,
 6.27675470e-01,
                                     -6.99291794e-011,
                   -7.85229289e-01,
[-8.39685682e-01,
                                     -6.99291794e-01],
[-4.91795883e-02,
                  -7.85229289e-01,
                                      1.61234323e-01],
                  -7.85229289e-01,
  1.15804697e+00,
                                     -6.99291794e-01],
[-7.44353740e-02,
                  -7.85229289e-01,
                                     -6.99291794e-011,
[-4.45695425e-01,
                    2.18734555e+00,
                                      1.31561009e-01],
 1.84752992e+00,
                   -7.85229289e-01,
                                      2.13450973e+00],
  1.03176804e+00,
                  -7.85229289e-01,
                                      2.23836633e+00],
                   -7.85229289e-01,
  7.70993405e-02,
                                      2.96536253e+00],
[-6.50267289e-01,
                    1.31495946e+00,
                                     -6.99291794e-01],
                   -7.85229289e-01,
[-1.14844631e-01,
                                     -4.02558650e-01],
[-1.23620152e+00,
                    7.93374120e-01,
                                      1.64490004e+00],
[-7.31085804e-01,
                    2.85636182e-01,
                                     -6.99291794e-01],
                  -7.85229289e-01,
  1.27927474e+00,
                                     -4.64788773e-021,
  2.22131555e+00,
                    1.94963188e+00,
                                      5.76660725e-01],
  1.65306037e+00, -7.85229289e-01,
                                      9.03067183e-01],
[-5.44192989e-01,
                  -7.85229289e-01,
                                      2.34222293e+00],
[-4.98732575e-01, -1.90065817e-02,
                                      3.39274210e-01],
 1.39040020e+00, -7.85229289e-01,
                                     -6.99291794e-01],
[-7.96750847e-01,
                                      5.46987410e-011,
                    1.19494867e+00,
 1.07406283e-01, -7.85229289e-01,
                                      1.15529035e+00],
[-9.46400027e-02, -7.85229289e-01,
                                    -6.99291794e-01],
[ 2.38736369e-01, -7.85229289e-01, -6.99291794e-01],
```

```
[-8.62415890e-01, -7.85229289e-01, -6.99291794e-01],
[-1.19895788e-01, -7.85229289e-01, -6.99291794e-01],
[-4.81053525e-01,
                   9.84929797e-01, -6.99291794e-01],
[-9.33132090e-01,
                  -7.85229289e-01,
                                    -6.99291794e-011.
                  -7.85229289e-01,
[-7.05830018e-01,
                                     1.43718684e+00],
[-9.43234404e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-3.37095546e-01,
[-2.84058396e-01,
                    1.20418027e+00,
                                    -1.20662163e-01],
[-4.63374475e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
  1.28937706e+00,
                  -7.85229289e-01,
                                     3.68947524e-01],
[-1.03162965e+00,
                    5.99510544e-01,
                                    -1.65172135e-011,
                  -7.85229289e-01,
                                     8.58557211e-01],
  3.07748669e+00,
 7.45737619e-02,
                    2.26812204e+00,
                                     4.57967467e-011,
[-9.73541347e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                    1.89193439e+00,
                                     2.79927581e-01],
 7.48903242e-01,
                  -7.85229289e-01,
  1.23886549e+00,
                                    -6.99291794e-011,
  8.24670599e-01,
                    1.80423420e+00, -2.24518764e-01],
[-9.78592504e-01,
                    1.14851602e-01,
                                    -6.99291794e-01],
 2.58940998e-01,
                    1.07032209e+00, -6.99291794e-01],
[-1.51148958e+00,
                    5.07194555e-01,
                                    -6.99291794e-01],
 6.78187041e-01,
                  -7.85229289e-01, -1.94845449e-01],
                   4.17186466e-01, -6.99291794e-01],
[-7.61392747e-01,
                    1.84808429e+00, -6.99291794e-01],
[-6.18074812e-02,
[-7.08355597e-01, -7.85229289e-01, -6.99291794e-01],
[ 8.06991549e-01,
                  -7.85229289e-01,
                                    -1.20662163e-01],
                                     1.25914696e+00],
[-4.40644268e-01,
                  -7.85229289e-01,
                    5.44120950e-01,
[-9.15453040e-01,
                                    -6.99291794e-01],
                                     2.77044087e-02],
[-2.10816617e-01,
                  -7.85229289e-01,
                  -7.85229289e-01,
 8.87810063e-01,
                                    -1.65172135e-01],
[-7.81597375e-01,
                    1.20879607e+00,
                                     1.31561009e-01],
                  -7.85229289e-01,
  1.40050251e+00,
                                    -6.99291794e-01],
[-2.86583974e-01,
                  -7.85229289e-01,
                                     9.32740497e-011,
 7.38800927e-01, -7.85229289e-01,
                                    -4.32231964e-01],
                                    -6.99291794e-011,
 3.59964141e-01,
                  -7.85229289e-01,
[-7.81597375e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-8.24532211e-01,
                    1.75576830e+00,
                                     1.28677515e-02],
 6.35252206e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
  2.13480584e-01, -7.85229289e-01,
                                    -6.99291794e-01],
[-7.91699690e-01,
                    1.75346040e+00,
                                     1.28677515e-02],
[-6.90676547e-01, -7.85229289e-01,
                                    -2.24518764e-01],
                                    -6.99291794e-01],
[-7.05830018e-01,
                  -7.85229289e-01,
[-8.22006632e-01, -7.85229289e-01,
                                    -6.99291794e-011,
[-1.19359535e-03, -7.85229289e-01,
                                     1.08110707e+00],
[-4.43169846e-01,
                   9.78006098e-01,
                                    -6.99291794e-011,
 1.17508598e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
 2.33685212e-01,
                  -7.85229289e-01,
                                    -4.61905279e-01],
[-8.06853161e-01,
                  -7.85229289e-01,
                                     9.62413812e-01],
[-3.34569967e-01,
                    8.34916315e-01, -6.99291794e-01],
                                    -3.28375364e-01],
[ 1.20034176e-01,
                    8.09529418e-01,
[-1.02216738e-01,
                   8.00297820e-01,
                                     7.84373925e-01],
```

```
[-1.03415523e+00,
                    1.20418027e+00, -2.98702049e-01],
[-2.13342196e-01,
                   7.40292427e-01, -6.99291794e-01],
[-8.22006632e-01,
                   -7.85229289e-01, -6.99291794e-01],
 2.53889841e-01,
                   -7.85229289e-01,
                                     7.54700611e-011.
                    7.14905530e-01, -6.99291794e-01],
[-7.56341589e-01,
[-1.14528069e+00,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                   6.82594934e-01,
                                    -1.05825506e-01],
 8.14568285e-01,
 9.00437956e-01,
                  -7.85229289e-01,
                                    -1.65172135e-01],
[-2.20918931e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-5.49244146e-01,
                    1.81808160e+00,
                                    -3.16422201e-02],
                  -7.85229289e-01,
[-4.73476789e-01,
                                      1.19980033e+001,
[-4.28016375e-01,
                    1.17186967e+00,
                                      8.73393868e-01],
 1.23633991e+00,
                  -7.85229289e-01,
                                      1.333333024e+001,
                   9.54927101e-01,
[-1.13265280e+00,
                                    -4.64788773e-02],
                   -7.85229289e-01,
                                    -2.54192078e-01],
[-3.82555960e-01,
                    2.93279716e+00,
[-4.63374475e-01,
                                    -6.99291794e-011,
[-7.36136961e-01,
                  -7.85229289e-01, -6.99291794e-01],
[ 9.93884363e-01,
                  -7.85229289e-01, -6.99291794e-01],
[-1.37258276e+00, -7.85229289e-01, -6.99291794e-01],
[-4.55797739e-01,
                    1.32649896e+00, -6.99291794e-01],
 1.27674916e+00,
                   -7.85229289e-01,
                                    -7.61521916e-02],
 3.65015298e-01,
                    5.62584148e-01, -6.99291794e-01],
[-4.35593110e-01,
                    1.52497833e+00, -6.99291794e-01],
[-8.19481054e-01,
                    1.08647739e+00, -6.99291794e-01],
[-3.06788603e-01,
                    8.76458510e-01,
                                    -3.43212021e-01],
[-7.31085804e-01,
                    1.87116329e+00,
                                      1.28677515e-02],
[-1.00889945e+00,
                    1.97040298e+00,
                                     4.13457496e-01],
[ 1.00398668e+00,
                   -7.85229289e-01,
                                    -1.65172135e-011,
                   -7.85229289e-01,
                                    -6.99291794e-01],
[-1.07709007e+00,
[-7.20983489e-01,
                    7.74910923e-01,
                                     4.25410659e-02],
[-1.44835012e+00,
                    5.99510544e-01,
                                      1.85261324e+00],
                                    -6.99291794e-01],
[-7.44353740e-02,
                   -7.85229289e-01,
                                    -2.09682106e-01],
[ 7.84261342e-01,
                  -7.85229289e-01,
[-4.17914060e-01,
                   -7.85229289e-01,
                                    -6.99291794e-01],
[ 8.70131013e-01,
                   6.71055435e-01,
                                    -6.13155345e-02],
[-8.75043783e-01,
                   -7.85229289e-01,
                                    -6.99291794e-01],
[-9.25555354e-01,
                   8.34916315e-01,
                                     4.13457496e-01],
[-7.96750847e-01, -7.85229289e-01,
                                    -6.99291794e-01],
                   -7.85229289e-01,
 3.68615113e+00,
                                      1.37784021e+00],
[-1.29428983e+00,
                    5.74123647e-01,
                                    -6.99291794e-01],
                                    -6.99291794e-01],
[-1.24125268e+00,
                   4.79499758e-01,
 4.13001291e-01,
                   -7.85229289e-01,
                                    -6.99291794e-011,
                   -7.85229289e-01,
                                      5.46987410e-01],
  1.85699219e-01,
[-4.22965217e-01,
                    1.61498642e+00,
                                      2.20580952e-011,
[-7.28560225e-01,
                    1.13725118e+00,
                                      6.95353982e-01],
                                    -6.99291794e-01],
[-2.81532817e-01,
                  -7.85229289e-01,
[-8.24532211e-01,
                   1.78115520e+00,
                                      1.28677515e-02],
 3.90271084e-01, -7.85229289e-01,
                                    -3.13538707e-01],
[-1.21852247e+00, -7.85229289e-01, -4.02558650e-01],
[-5.29039518e-01, -7.85229289e-01, -6.99291794e-01],
```

```
8.70131013e-01, -7.85229289e-01,
                                      1.37784021e+001,
 4.05424555e-01, -7.85229289e-01,
                                    -4.61905279e-01],
 1.93592517e+00,
                    2.10887696e+00,
                                    -6.99291794e-01],
 1.61012554e+00,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-6.60369604e-01,
                    2.01886887e+00,
                                      2.14934639e+00],
 7.79210185e-01,
                    1.73499721e+00,
                                      1.49653347e+00],
[-1.65039641e+00,
                    5.99510544e-01,
                                      1.76359330e+00],
 3.24606041e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
 2.67844527e+00,
                  -7.85229289e-01,
                                      1.90907638e-01],
[-5.44192989e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                  -7.85229289e-01,
[-4.25490796e-01,
                                    -6.99291794e-011,
 2.27182712e+00, -7.85229289e-01,
                                    -6.99291794e-01],
 6.69970262e-02,
                  -7.85229289e-01,
                                    -9.09888488e-02],
 8.34772913e-01,
                  -7.85229289e-01,
                                      2.79927581e-01],
[-1.65039641e+00,
                   6.52592237e-01,
                                      1.76359330e+00],
[-1.50896401e+00,
                   4.44881262e-01,
                                    -6.99291794e-011,
[-5.99755718e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-6.19960346e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                                    -1.20662163e-01],
 7.21121877e-01,
                  -7.85229289e-01,
 6.73135884e-01,
                    2.53814631e+00,
                                     9.32740497e-01],
[-9.46400027e-02,
                    9.87237697e-01,
                                    -6.99291794e-01],
 2.26172481e+00,
                    5.39505151e-01,
                                      5.46987410e-01],
 7.96889235e-01,
                  -7.85229289e-01,
                                      1.37784021e+00],
 1.57917855e-01,
                  -7.85229289e-01,
                                      1.64490004e+00],
[-1.58473136e+00,
                                    -6.99291794e-01],
                   4.74883959e-01,
[-9.53336718e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                                    -6.99291794e-01],
                  -7.85229289e-01,
 5.51908113e-01,
                  -7.85229289e-01,
                                    -2.24518764e-01],
[-9.02825147e-01,
                  -7.85229289e-01,
                                    -3.16422201e-021,
 1.24896780e+00,
[-2.15867774e-01,
                  -7.85229289e-01,
                                      3.98620838e-01],
 1.27610912e-01, -7.85229289e-01,
                                      3.81105199e+00],
 2.08429426e-01,
                  -7.85229289e-01,
                                      3.09600895e-01],
 1.02355126e-01,
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-2.56277031e-01,
                  -7.85229289e-01,
                                    -2.83865392e-01],
[-1.20589458e+00,
                    8.76458510e-01,
                                    -4.64788773e-02],
[-8.80094940e-01,
                    5.69507847e-01,
                                    -6.99291794e-01],
[-8.62415890e-01,
                    1.01004204e-01,
                                    -6.99291794e-01],
                  -2.77491351e-01,
                                    -6.99291794e-01],
[-3.57300175e-01,
[-1.19074110e+00,
                    1.01262459e+00,
                                    -1.65172135e-01],
                    9.71082399e-01,
                                      7.84373925e-01],
[-2.00714303e-01,
                    1.49728354e+00,
[-1.65356203e-01,
                                      1.82293993e+001,
[-7.44353740e-02,
                  -7.85229289e-01,
                                    -6.99291794e-01],
                  -7.85229289e-01,
                                    -6.99291794e-01],
[-8.22006632e-01,
                  -7.85229289e-01,
[-6.45216132e-01,
                                    -6.99291794e-011,
[-4.12862903e-01,
                   2.11580066e+00,
                                    -1.68055629e-02],
                  -7.85229289e-01,
 1.12016329e+00,
                                     3.24437552e-01],
[-7.36136961e-01,
                   1.31034366e+00,
                                     6.06334039e-0111)
```

```
array([[-0.47654967],
       [ 0.04412298],
       [ 3.30843421],
       [-0.52555415],
       [-0.75955057],
       [-0.36628958]])
Y_test
array([[-9.79900262e-02],
       [ 2.83019842e-01],
       [-4.33670746e-01],
       [-5.56181958e-01],
       [-9.67649141e-02],
       [ 6.24996610e-02],
       [ 6.07674553e-01],
       [-7.52199896e-01],
       [ 4.91288902e-01],
       [-2.49903929e-01],
       [-2.75214745e-01],
       [ 5.15791144e-01],
       [-5.90485097e-01],
       [-5.13303034e-01],
       [-7.22626718e-02],
       [ 4.07981278e-01],
         1.23755267e-01],
       [-6.66442048e-01],
       [-3.81603481e-01],
       [-9.54343396e-01],
       [-3.41787337e-01],
        4.90234277e-02],
         5.28042265e-01],
         5.26817153e-01],
       [ 2.52392039e-01],
       [-7.38723663e-01],
       [-2.74406171e-01],
       [-1.49339273e+00],
       [-5.99060882e-01],
       [-4.15294064e-01],
       [ 1.48257509e-01],
       [-3.67344204e-02],
       [ 2.70874183e+00],
       [ 8.94350788e-01],
       [-5.13303034e-01],
       [-1.00334788e+00],
       [-5.38859900e-02],
       [ 4.60661099e-01],
       [-4.82675231e-01],
       [-9.42092275e-01],
       [-2.65830386e-01],
```

```
[-2.92782853e-01],
[ 2.54413474e-01],
[-3.47912898e-01],
[-4.77604295e-02],
[-1.10070660e-02],
 5.28042265e-01],
[-7.83882324e-02],
[-1.10070660e-02],
[ 4.36264319e+00],
 3.13647645e-01],
[-7.95078821e-01],
[ 1.10384496e+00],
[-9.42092275e-01],
[-2.74406171e-01],
[-5.56181958e-01],
[ 1.89430863e-05],
  1.48257509e-01],
[-1.09016035e-01],
[-4.39796307e-01],
[-3.49909831e-01],
[-9.42092275e-01],
[-6.11312003e-01],
 2.57462975e-02],
[-5.01051913e-01],
[ 5.63741004e-02],
[-6.35814245e-01],
  5.09665584e-01],
 1.80093375e+00],
[-7.59550569e-01],
[-4.27545186e-01],
[-4.52047428e-01],
[-4.58172988e-01],
[-1.15036133e+00],
[-3.43012450e-01],
[-4.53272540e-01],
[-4.03042943e-01],
 2.21764236e-01],
[-5.37805276e-01],
 1.69189878e+00],
[-5.74558640e-01],
[-1.33412815e+00],
[ 1.20185393e+00],
[-1.70271641e-01],
[-2.68280610e-01],
[-1.21774250e+00],
 8.34320294e-01],
 5.63741004e-021,
[-1.09016035e-01],
[-4.64298549e-01],
[-6.48065367e-01],
```

```
[-9.05338911e-01],
[-4.64298549e-01],
[-1.04010124e+00],
[ 3.44275448e-01],
[-4.76549670e-01],
[-3.84666262e-01],
[ 6.75055719e-01],
[-1.64146081e-01],
[-4.88150538e-03],
[-6.35814245e-01],
[-2.49903929e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.45137930e-02],
[ 7.10583971e-01],
[-2.43778368e-01],
[-7.14221421e-01],
[-8.57389051e-02],
[-2.68280610e-01],
 4.60661099e-01],
[-1.13233994e+00],
 4.17782175e-01],
 1.53263420e+00],
[-7.64451018e-01],
 2.39633824e+00],
  1.16510057e+00],
 4.66786659e-01],
 6.86252216e-02],
 7.11809083e-01],
[-2.32581871e-02],
[-7.33823215e-01],
[-5.14528146e-01],
[-1.22386806e+00],
[-3.41787337e-01],
[-4.76549670e-01],
[-5.13915590e-01],
 8.09818052e-01],
 1.69189878e+00],
 9.92530245e-02],
[-2.43778368e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.25657619e-01],
[-7.95078821e-01],
[ 4.91288902e-01],
 2.79449968e+00],
 1.62835221e+001,
[-6.60316488e-01],
[-2.68280610e-01],
[ 1.96036882e-01],
```

```
[-1.33518278e-01],
[-2.19276126e-01],
[-5.13303034e-01],
[-4.70424110e-01],
[-9.35966714e-01],
[-8.45137930e-02],
[-2.68280610e-01],
[-7.70576578e-01],
[-5.31679715e-01],
[-1.49339273e+00],
[-1.08298017e+00],
[ 9.92530245e-02],
[-4.52047428e-01],
 1.03033823e+00],
[-7.27697654e-01],
 2.50353555e+00],
  1.32436514e+00],
[-1.00334788e+00],
 1.63064317e+00],
[-1.00334788e+00],
 1.75315438e+00],
[-5.75783752e-01],
[ 6.38302356e-01],
[-3.29536216e-01],
[-1.71326265e-02],
[-5.68433079e-01],
 9.06601909e-01],
[-5.74558640e-01],
[ 3.30799215e-01],
[-6.05186442e-01],
[-1.08910573e+00],
[-3.05033974e-01],
[ 6.50553477e-01],
 3.13647645e-01],
[-7.70576578e-01],
[-6.37039358e-01],
 2.34015357e-01],
[-1.45891910e-01],
[-6.66442048e-01],
[ 1.60508630e-01],
[-1.71326265e-02],
[-8.93590086e-01],
[ 4.23907735e-01],
[-5.77008864e-01],
[-6.35814245e-01],
[-5.13303034e-01],
[-1.45769399e-01],
[-3.05033974e-01],
[-9.78845638e-01],
[-2.69566978e-01],
```

```
[-6.11312003e-01],
[-8.45137930e-02],
[-2.31527247e-01],
[ 2.57462975e-02],
[-1.09016035e-01],
[-7.09320972e-01],
[-5.01051913e-01],
 2.58517600e-01],
[-4.64298549e-01],
[-1.34025371e+00],
  1.65024496e+00],
 9.44580385e-01],
[-2.68893166e-01],
 6.26051235e-01],
[-9.78845638e-01],
 5.89297871e-01],
 9.07827021e-01],
[-6.29688685e-01],
[-1.18711470e+00],
 8.70019034e-02],
[-9.64144293e-01],
 1.01270887e+00],
[-1.23611918e+00],
 2.57292488e-01],
 1.42131949e-01],
[-8.56334426e-01],
[-4.52047428e-01],
[ 8.33265670e-02],
[-2.93837477e-02],
 4.97414462e-01],
 1.07321716e+00],
 6.99557962e-011,
[-1.24959542e+00],
[-1.33518278e-01],
[-3.78540701e-01],
[-6.48065367e-01],
 1.02911312e+00],
[-5.50056397e-01],
[ 7.07962231e-01],
[-9.11464472e-01],
[-2.32581871e-02],
[-8.01204381e-01],
[ 3.48668803e+00],
[-5.25554155e-01],
[-8.80836669e-01],
[-2.32581871e-02],
 1.85010873e-01],
  1.25085841e+00],
[ 3.79974187e-02],
[-4.29995410e-01],
```

```
[ 4.05531054e-01],
[-4.76549670e-01],
[-1.17486358e+00],
[-2.25401686e-01],
 1.12834720e+00],
[-1.71496753e-01],
 2.17091761e+00],
  5.89297871e-01],
 6.87306840e-01],
  1.15284944e+00],
[-3.78540701e-01],
[-2.92782853e-01],
 3.91960590e+001,
[-3.72415140e-01],
[-8.19581063e-01],
 3.44275448e-011,
  3.67723066e-02],
 2.58517600e-01],
[-4.22644737e-01],
[-5.25554155e-01],
[-5.13303034e-01],
[-6.11312003e-01],
 1.23755267e-01],
 2.21764236e-01],
[-5.37805276e-01],
 2.42696605e+00],
  6.21150786e-01],
[-3.94467158e-01],
[-1.15036133e+00],
[-1.55464833e+00],
[-7.39948775e-01],
[-7.76702139e-01],
[ 1.26310954e+00],
[-1.45769399e-01],
[-2.07025005e-01],
[-4.21419625e-01],
[-5.13303034e-01],
[-4.15294064e-01],
[-3.29536216e-01],
[-6.05186442e-01],
[-7.76702139e-01],
[-7.70576578e-01],
[-9.67649141e-02],
 6.24996610e-02],
 1.13202254e+00],
[-4.76549670e-01],
[-3.99367607e-01],
[-1.00947344e+00],
[ 2.21764236e-01],
```

```
[ 1.36006388e-01], [ 1.36006388e-01]])
```

Multiple Regression Model

```
from sklearn import linear model
regr = linear model.LinearRegression()
regr.fit(X train, Y train)#training func question + answers
# The coefficients
print ('Intercept: ',regr.intercept_)
print ('Coefficient : ',regr.coef_)
Intercept: [-1.22690901e-16]
Coefficient : [[0.67069037 0.42959836 0.07104694]]
regr.intercept
array([-1.22690901e-16])
regr.coef
array([[0.67069037, 0.42959836, 0.07104694]])
regr.coef [0][0]
0.6706903674798578
regr.coef_[0][1]
0.4295983638014665
regr.coef [0][2]
0.07104693987752371
y pred = regr.predict(X test)
y_pred
array([[-0.32383212],
       [ 0.41648842],
       [-0.12102116],
       [-0.25990607],
       [-0.30754077],
       [-0.02113224],
       [ 0.17959075],
       [-0.91122559],
       [ 0.539682231,
       [0.17347134],
       [-0.27205989],
       [-0.0375548],
       [-0.6131025],
       [-0.01402931],
```

```
[-0.3833868],
[-0.25685829],
[ 0.08609853],
[-0.34578714],
[-0.12695858],
[ 0.32866389],
[-0.19750595],
[-0.21794237],
[ 0.83083318],
[ 0.47463711],
[-0.02061599],
[-0.55148096],
[ 1.3150722 ],
[-0.21334653],
[-0.6131025],
[-0.41830615],
[ 0.24063678],
[-0.2775144],
[ 1.59591933],
 0.39510007],
[-0.50600449],
[-1.05689348],
[-0.36456718],
[ 0.02473356],
[-0.86040915],
[-0.8925929],
[-0.41837938],
[-0.36051956],
[-0.02061599],
[ 0.38829735],
[-0.32175493],
[-0.09604077],
[ 0.29726927],
[-0.19750595]
[ 0.17285839],
[ 2.10131361],
[-0.0836249],
[-0.05057192],
[ 1.85313685],
[-0.68362103],
[-0.35224479],
[ 0.2811628 ],
[ 0.1617682 ],
[-0.17629504],
[-0.370573
            ],
[-0.27461916],
[-0.30142835],
[-0.33054221],
[-0.72828642],
[ 0.42185893],
```

```
[-0.51146962],
[-0.25652876],
[ 0.49416418],
 0.26968147],
[ 0.58862048],
[-0.70926343],
[-0.46345406].
[-0.24161821],
[-0.93832769],
[-0.92328787],
[-0.27736714],
[-0.53518396],
[-0.67408222],
[-0.14828506],
[-0.99253189],
[ 2.01317396],
[-0.57846946],
[-1.08061371],
[ 0.37472529],
 0.173953151,
 1.2591278 ],
 0.01532744],
[
 1.02954631],
[ 0.07769482],
[-0.00432451],
[-0.06864783],
[-0.78926614],
[-0.34729884],
[-0.12668957],
[-0.83330127],
[ 0.31253059],
[-0.8112866],
[-0.6131025],
[ 0.65367132],
[-0.08799932],
[-0.23706086],
[-0.08461155],
[-0.10155037],
[-0.52163291],
[ 0.3175168 ],
[-0.40582543],
[ 0.16604646],
[-0.17679415],
[-0.69779656],
[-0.26538856],
 0.20270098],
[ 0.18235419],
[-0.38306417],
[-0.04206199],
[0.55477947],
```

```
[-0.64132599],
[ 0.62388751],
 0.86855619],
 0.33317609],
 0.19932468],
 0.92336267],
[-0.05926289],
[-0.73336806],
[ 0.03396013],
[-0.95018486],
[-0.35886229],
[ 0.38967519],
[-0.43693885],
[ 0.65010345],
 1.05343769],
 0.513692751,
[-0.0749435],
[ 0.07909388],
[-0.44295897],
[-0.37141111],
[-0.41730591],
[ 0.51736185],
 2.36834359],
[ 0.83551861],
[-0.53591044],
[-0.31855594],
 0.54551226],
[ 0.01783666],
[-0.18321701],
[-0.4504899],
[-0.22689758],
[-0.96542979],
[-0.46742871],
[ 0.05080372],
[-1.01285846],
[-0.70861888],
[-1.01963399],
[-0.6131025],
[ 0.31822597],
[-0.69779656],
 0.553652151,
[-0.4460903],
[ 1.78770532],
 1.05693461],
[-1.03996056],
 1.33494211],
 0.443879391,
 1.31224332],
[-0.65667505],
[ 0.58379531],
```

```
[-0.8455341],
[ 0.10367713],
[-0.3811187],
[ 0.70279776],
[-0.86210304],
[ 0.19533556],
[-0.54341055].
[-0.42991461],
[-0.47675758],
[ 0.24637746],
 0.00443399],
[ 0.55228779],
[-0.46327397],
[ 0.12746469],
[-0.14559128],
[-0.91122559],
[ 0.20218359],
[ 0.03904178],
[-0.24383639],
[ 0.22321258],
[-0.8165147],
[-0.86040915],
[-0.93832769],
[-0.2613244],
[ 0.07323753],
[-0.30820388],
[-0.21341975],
[-0.8101053],
[ 0.08460329],
 0.40494821],
[ 0.33097822],
[-0.19750595],
[ 0.12525932],
[-0.93832769],
[-0.11343258],
[-0.24983131],
[-1.15514449],
[ 0.83204619],
[ 0.25484687],
[-0.53518396],
[ 0.41042404],
[-0.5696474],
[ 0.2784188 ],
[ 0.58659708],
[-0.35272638],
[-0.61196938],
[ 0.89946152],
[-0.88073573],
[ 0.27957291],
[-1.3075938],
```

```
[ 0.21448009],
[0.51355977],
 0.43681493],
 0.31329755],
[-0.13255168],
 0.14638082],
 0.3144307],
 0.19919764],
[ 0.324296
[-1.10940969],
[-0.1476338],
[-0.58222322],
[-0.43693885],
[ 0.17376604],
[-0.66730669],
[ 0.86751652],
[-0.9738992],
[-0.23270749],
[-0.92138888],
[ 2.23282417],
[-0.67110768],
[-0.67618644],
[-0.11001977],
[-0.17392476],
[ 0.42578843],
[ 0.04932569],
[-0.57583711],
[ 0.21308976],
[-0.09785813],
[-1.18318506],
[-0.74183747],
[ 0.3441466 ],
[-0.09823583],
[ 2.15469392],
[ 0.69287993],
[
 0.57710372],
 1.37428485],
[-0.72405832],
[-0.16930562],
[ 1.47263763],
[-0.75200076],
[-0.67238834],
[ 1.13667681],
[-0.29886344],
[ 0.24242893],
[-0.70125451],
[-0.8706099 ],
[-0.78926614],
[-0.80281719],
[ 0.1377436 ],
```

```
[ 1.60811761],
       [ 0.31095902],
       [ 1.78754935],
       [ 0.295024051,
       [-0.11455412],
       [-0.90853723],
       [-1.02640951],
       [-0.0168563],
       [-0.95880072],
       [ 0.49808937],
       [-0.45379286],
       [0.01901777],
       [-0.17554541],
       [-0.31836716],
       [-0.52938352],
       [-0.43555892],
       [-0.3952941],
       [-0.58470533],
       [-0.40853016],
       [-0.37533169],
       [ 0.33828563],
       [ 0.66184205],
       [-0.43693885],
       [-0.93832769],
       [-0.819756],
       [ 0.63084735],
       [ 0.43699981],
       [ 0.1122797 ]])
from sklearn.metrics import r2 score
print(f"R2 Score : {r2 score(Y test,y pred)*100} % ")
R2 Score: 65.71391638689818 %
print(f"Mean absolute error: {np.mean(np.absolute(y pred - Y test))}
")#pred - actual
Mean absolute error: 0.3503742187252111
print("Residual sum of squares (MSE): %.2f" % np.mean((y pred -
Y test) **2))
Residual sum of squares (MSE): 0.25
accuracy = print(f"R2 Score : {r2_score(Y_test,y_pred)*100} % ")
R2 Score: 65.71391638689818 %
```

Plot Outputs

```
import matplotlib.pyplot as plt
plt.scatter(X_test[:,0],X_test[:,2],c=Y_test)
plt.plot(X_train, regr.coef_[0][1]*X_train + regr.intercept_[0], 'r')
# y = mx+c
plt.xlabel("1stFlrSF")
plt.ylabel("OpenPorchSF")
```

Text(0, 0.5, 'OpenPorchSF')


```
from sklearn.linear_model import Lasso
L = Lasso(alpha = 1)
L.fit(X_train,Y_train)
Lasso(alpha=1)
ypred2 = L.predict(X_test)
from sklearn.metrics import r2_score
print("R2-score",r2_score(Y_test,ypred2))
print(f"Mean absolute error : {np.mean(np.absolute(ypred2 - Y_test))}
")# pred - actual
R2-score -0.004908518792945626
Mean absolute error: 0.6243935831081134
```

2nd Model

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing

df = pd.read_csv("C:/Users/Lenovo/Documents/Data Set/housing.csv")
df

•								
LotSh	Id ape \	MSSubClass	MSZoning	LotFront	age Lo	otArea :	Street	Alley
0	1	60	RL	6	5.0	8450	Pave	NaN
Reg 1	2	20	RL	8	0.0	9600	Pave	NaN
Reg 2	3	60	RL	6	8.0	11250	Pave	NaN
IR1 3	4	70	RL	6	0.0	9550	Pave	NaN
IR1 4 IR1	5	60	RL	8	4.0	14260	Pave	NaN
1455	1456	60	RL	6	2.0	7917	Pave	NaN
Reg 1456	1457	20	RL	8	5.0	13175	Pave	NaN
Reg 1457	1458	70	RL	6	6.0	9042	Pave	NaN
Reg 1458	1459	20	RL	6	8.0	9717	Pave	NaN
Reg 1459 Reg	1460	20	RL	7	5.0	9937	Pave	NaN
		ntour Utili	ties	PoolArea	PoolQC	Fence	MiscFe	ature
MiscV 0	al \	Lvl Al	lPub	Θ	NaN	NaN		NaN
0		Lvl Al	lPub	Θ	NaN	NaN		NaN
0 2		Lvl Al	lPub	0	NaN	NaN		NaN
0 3		Lvl Al	lPub	0	NaN	NaN		NaN
0 4 0		Lvl Al	lPub	0	NaN	NaN		NaN
 1455		Lvl Al	lPub	0	NaN	NaN		NaN

0							
1456 0	Lvl	AllPub	0	NaN N	InPrv		NaN
1457 2500	Lvl	AllPub	0	NaN (GdPrv	9	Shed
1458	Lvl	AllPub	0	NaN	NaN		NaN
0 1459 0	Lvl	AllPub	0	NaN	NaN		NaN
0 1 2 3 4 1455 1456 1457 1458 1459	50ld YrSold 2 2008 5 2007 9 2008 2 2006 12 2008 8 2007 2 2010 5 2010 4 2010 6 2008	WD WD WD WD WD WD WD WD	aleCondition Norma Norma Abnorm Norma Norma Norma Norma Norma Norma Norma	L 26 L 18 L 22 L 14 L 25 L 17 L 26 L 14	Price 08500 31500 23500 40000 50000 75000 10000 42125 47500		
df.head(-					
Id M	ISSubClass M	SZoning Lot	Frontage L	otArea S	Street	Alley L	otShape
\ 0 1	60	RL	65.0	8450	Pave	NaN	Reg
1 2	20	RL	80.0	9600	Pave	NaN	Reg
2 3	60	RL	68.0	11250	Pave	NaN	IR1
3 4	70	RL	60.0	9550	Pave	NaN	IR1
4 5	60	RL	84.0	14260	Pave	NaN	IR1
LandCo MoSold	ontour Utili \	ties Po	olArea Pool	QC Fence	e MiscF	- eature	MiscVal
		lPub	0 Na	aN NaN	I	NaN	0
0 2 1 5 2 9 3	Lvl Al	lPub	0 Na	aN NaN	I	NaN	0
2 9	Lvl Al	lPub	0 Na	aN NaN	I	NaN	0
3	Lvl Al	lPub	9 N	aN NaN	I	NaN	0

4 12	Lvl Al	lPub	0 Na	N NaN	NaN
YrSold 0 2008 1 2007 2 2008 3 2006 4 2008	SaleType WD WD WD WD WD	SaleCondition Norma Norma Norma Abnorma Norma	20850 al 18150 al 22350 nl 14000	0 0 0 0	
[5 rows x	81 column	s]			
df.tail()					
I LotShape	d MSSubCl	ass MSZoning	LotFrontag	e LotArea	Street Alley
1455 145 Reg		60 RL	62.	9 7917	Pave NaN
1456 145	57	20 RL	85.	0 13175	Pave NaN
Reg 1457 145	8	70 RL	66.	9042	Pave NaN
Reg 1458 145	9	20 RL	68.	9717	Pave NaN
Reg 1459 146 Reg	60	20 RL	75.	9937	Pave NaN
	lContour Ut	ilities	PoolArea Po	olQC Fence	e MiscFeature
MiscVal 1455	\ Lvl	AllPub	0	NaN NaN	l NaN
0 1456	Lvl	AllPub	0	NaN MnPrv	v NaN
0 1457	Lvl	AllPub	Θ	NaN GdPrv	Shed
2500 1458	Lvl	AllPub	0	NaN NaN	l NaN
0 1459 0	Lvl	AllPub	0	NaN NaN	I NaN
1455 1456 1457 1458 1459	old YrSold 8 2007 2 2010 5 2010 4 2010 6 2008	WD WD WD WD WD	aleCondition Normal Normal Normal Normal	SalePrice 175000 210000 266500 142125 147500)) ;

df.isnull().sum()

0

```
Ιd
                    0
MSSubClass
                    0
MSZoning
                    0
LotFrontage
                  259
LotArea
                    0
MoSold
                    0
YrSold
                    0
SaleType
                    0
SaleCondition
                    0
SalePrice
                    0
Length: 81, dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
#
                     Non-Null Count
     Column
                                       Dtype
- - -
     _ _ _ _ _ _
                      _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
     Ιd
 0
                      1460 non-null
                                       int64
 1
     MSSubClass
                      1460 non-null
                                       int64
 2
                      1460 non-null
                                       object
     MSZoning
 3
     LotFrontage
                     1201 non-null
                                       float64
 4
                      1460 non-null
                                       int64
     LotArea
 5
     Street
                      1460 non-null
                                       obiect
 6
     Alley
                     91 non-null
                                       object
 7
     LotShape
                      1460 non-null
                                       object
 8
     LandContour
                     1460 non-null
                                       object
 9
     Utilities
                      1460 non-null
                                       object
 10
     LotConfig
                     1460 non-null
                                       object
 11
     LandSlope
                     1460 non-null
                                       object
 12
                     1460 non-null
     Neighborhood
                                       object
 13
     Condition1
                     1460 non-null
                                       object
 14
     Condition2
                     1460 non-null
                                       object
 15
     BldgType
                      1460 non-null
                                       object
 16
     HouseStyle
                     1460 non-null
                                       object
 17
     OverallOual
                      1460 non-null
                                       int64
 18
     OverallCond
                     1460 non-null
                                       int64
 19
     YearBuilt
                     1460 non-null
                                       int64
 20
     YearRemodAdd
                     1460 non-null
                                       int64
 21
     RoofStyle
                      1460 non-null
                                       object
 22
     RoofMatl
                      1460 non-null
                                       object
 23
     Exterior1st
                      1460 non-null
                                       object
 24
                     1460 non-null
     Exterior2nd
                                       object
                     1452 non-null
 25
     MasVnrType
                                       object
 26
                     1452 non-null
     MasVnrArea
                                       float64
 27
     ExterQual
                     1460 non-null
                                       object
 28
     ExterCond
                     1460 non-null
                                       object
 29
     Foundation
                     1460 non-null
                                       object
 30
                     1423 non-null
     BsmtQual
                                       object
```

31 32 33 34 35	BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2	1423 non-null 1422 non-null 1423 non-null 1460 non-null 1422 non-null	object object object int64 object
36 37	BsmtFinSF2 BsmtUnfSF	1460 non-null 1460 non-null	int64 int64
38	TotalBsmtSF	1460 non-null	int64
39 40	Heating HeatingQC	1460 non-null 1460 non-null	object object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44 45	2ndFlrSF LowQualFinSF	1460 non-null 1460 non-null	int64 int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr KitchenAbvGr	1460 non-null 1460 non-null	int64
52 53	KitchenQual	1460 non-null	int64 object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
56	Fireplaces	1460 non-null	int64
57	FireplaceQu	770 non-null	object
58	GarageType	1379 non-null	object
59	GarageYrBlt	1379 non-null	float64
60 61	GarageFinish	1379 non-null 1460 non-null	object
62	GarageCars GarageArea	1460 non-null	int64 int64
63	GarageQual	1379 non-null	object
64	GarageCond	1379 non-null	object
65	PavedDrive	1460 non-null	object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch	1460 non-null	int64
69 70	3SsnPorch ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null 1460 non-null	int64 int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76 77	MoSold	1460 non-null	int64
77 78	YrSold SaleType	1460 non-null 1460 non-null	int64 object
76 79	SaleCondition	1460 non-null	object
80	SalePrice	1460 non-null	int64
-			

```
dtypes: float64(3), int64(35), object(43)
```

memory usage: 924.0+ KB

cdf1 = df[["MSSubClass","MoSold","LotArea","SalePrice"]]

cdf1

	MSSubClass	MoSold	LotArea	SalePrice
0	60	2	8450	208500
1	20	5	9600	181500
2	60	9	11250	223500
3	70	2	9550	140000
4	60	12	14260	250000
1455	60	8	7917	175000
1456	20	2	13175	210000
1457	70	5	9042	266500
1458	20	4	9717	142125
1459	20	6	9937	147500

[1460 rows x 4 columns]

cdf1.head()

	MSSubClass	MoSold	LotArea	SalePrice
0	60	2	8450	208500
1	20	5	9600	181500
2	60	9	11250	223500
3	70	2	9550	140000
4	60	12	14260	250000

cdf1.tail()

	MSSubClass	MoSold	LotArea	SalePrice
1455	60	8	7917	175000
1456	20	2	13175	210000
1457	70	5	9042	266500
1458	20	4	9717	142125
1459	20	6	9937	147500

cdf1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	MSSubClass	1460 non-null	int64
1	MoSold	1460 non-null	int64
2	LotArea	1460 non-null	int64
3	SalePrice	1460 non-null	int64

```
dtypes: int64(4)
memory usage: 45.8 KB
cdf1.describe()
        MSSubClass
                           MoSold
                                          LotArea
                                                        SalePrice
       1460.000000
                     1460.000000
                                      1460.000000
count
                                                      1460.000000
                                     10516.828082
                                                    180921.195890
mean
          56.897260
                         6.321918
std
         42.300571
                         2.703626
                                      9981.264932
                                                     79442.502883
min
         20.000000
                         1.000000
                                      1300.000000
                                                     34900.000000
25%
         20,000000
                         5.000000
                                      7553.500000
                                                    129975.000000
50%
         50.000000
                         6.000000
                                      9478,500000
                                                    163000.000000
75%
                                     11601.500000
         70.000000
                         8.000000
                                                    214000.000000
        190.000000
                        12.000000
                                   215245.000000
                                                    755000.000000
max
cdf1.isnull().sum()
MSSubClass
               0
               0
MoSold
LotArea
               0
SalePrice
               0
dtype: int64
X = df[["MSSubClass","MoSold","LotArea"]]
Χ
      MSSubClass
                   MoSold
                            LotArea
0
               60
                         2
                               8450
                         5
1
               20
                               9600
2
                         9
               60
                              11250
                         2
3
               70
                               9550
4
               60
                        12
                              14260
              . . .
1455
               60
                         8
                               7917
                         2
1456
               20
                              13175
                         5
               70
1457
                               9042
1458
               20
                         4
                               9717
                         6
1459
               20
                               9937
[1460 rows x 3 columns]
Y = df[["SalePrice"]]
Υ
      SalePrice
0
         208500
1
         181500
2
         223500
3
          140000
4
         250000
```

```
. . .
1455
         175000
         210000
1456
1457
         266500
1458
         142125
1459
         147500
[1460 rows x 1 columns]
Creating Train and Test Dataset
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X train, X test, Y train, Y test = train test split(X, Y, test size =
0.2, random state = 500)
X_train.shape
(1168, 3)
X test.shape
(292, 3)
Y train.shape
(1168, 1)
Y_test.shape
(292, 1)
Feature Scaling
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
sc Y = StandardScaler()
X train = sc X.fit transform(X train)
X test = sc X.transform(X test)
Y_train = sc_Y.fit_transform(Y_train)
Y_test = sc_Y.transform(Y_test)
X train
array([[-0.85469057, 0.24559339, -0.0242262],
       [-0.85469057, -0.49181812, -0.18471992],
       [0.09911675, -0.12311237, 0.29260181],
```

```
[-0.85469057, -0.86052387, -0.10082087],
                       0.24559339, -0.28343067],
       [-0.85469057,
       [-0.85469057, -0.12311237, -0.01966095]])
X test
array([[ 9.91167493e-02,
                           6.14299139e-01, -1.77314083e-01],
         9.91167493e-02,
                           9.83004891e-01, -1.15449627e-02],
         3.37568579e-01,
                         -1.23112366e-01,
                                            -1.12994853e-01],
       [-8.54690568e-01, -1.96664113e+00,
                                             6.61456757e-03],
         9.91167493e-02,
                          -1.22922962e+00,
                                             1.33629830e-01],
         9.91167493e-02, -1.23112366e-01,
                                            -1.32168882e-01],
                          -4.91818118e-01,
         9.91167493e-02,
                                             1.86789572e-01],
       [-8.54690568e-01,
                           1.72041640e+00,
                                            -3.68648575e-01],
         9.91167493e-02,
                           1.72041640e+00,
                                             2.44717459e-01],
       [-1.39335080e-01,
                           1.72041640e+00,
                                             6.65714526e-02],
       [-1.39335080e-01,
                           2.45593386e-01, -6.18215305e-01],
         1.52982773e+00,
                          -1.23112366e-01,
                                            -4.28402561e-01],
       [-8.54690568e-01,
                           2.45593386e-01,
                                            -3.07778642e-01],
                          -1.23112366e-01,
       [-8.54690568e-01,
                                             7.26584460e-021,
       [ 2.48363504e+00,
                          -1.23112366e-01,
                                            -7.47056665e-01],
         9.91167493e-02,
                          -1.23112366e-01, -1.98212760e-01],
       [-8.54690568e-01,
                           9.83004891e-01,
                                            -1.59966152e-01],
       [-1.39335080e-01,
                           1.72041640e+00, -4.41692496e-01],
       [-8.54690568e-01,
                           2.45593386e-01, -3.25228023e-01],
        4.56794493e-01,
                           2.45593386e-01,
                                            -5.14736417e-01],
                                            -8.26390479e-011,
         2.48363504e+00,
                           1.35171064e+00,
       [ 9.91167493e-02,
                           9.83004891e-01,
                                            -2.30676725e-01],
       [-1.39335080e-01,
                           2.45593386e-01,
                                             5.07168325e-01],
       [-8.54690568e-01,
                          -4.91818118e-01,
                                             1.56557505e-01],
         1.52982773e+00,
                           9.83004891e-01,
                                            -3.69155825e-01],
       [-1.39335080e-01,
                           6.14299139e-01,
                                            -5.96707928e-01],
         3.37568579e-01,
                           2.45593386e-01,
                                             2.09190021e-02],
       [-8.54690568e-01,
                          -1.23112366e-01,
                                            -1.03762913e-01],
                         -1.23112366e-01,
       [-8.54690568e-01,
                                            -3.13865635e-011,
         6.95246323e-01,
                          -1.23112366e-01,
                                             1.20542794e-01],
         5.76020408e-01,
                          -1.23112366e-01,
                                             5.64386063e-01],
         9.91167493e-02,
                           2.45593386e-01,
                                            -3.61972860e-02],
         9.91167493e-02,
                           2.45593386e-01,
                                             4.61008625e-01],
         9.91167493e-02,
                          -4.91818118e-01,
                                             1.98659209e-01],
                           1.35171064e+00,
         1.52982773e+00,
                                            -6.64577905e-01],
         2.48363504e+00,
                           1.72041640e+00,
                                            -9.04303995e-01],
         3.37568579e-01,
                           1.72041640e+00,
                                            -3.13865635e-01],
         3.37568579e-01,
                           2.45593386e-01,
                                             2.56789996e-01],
                          -1.23112366e-01,
       [-8.54690568e-01,
                                             2.79616222e-01],
       [-6.16238739e-01,
                           1.72041640e+00,
                                            -4.53866483e-01],
       [ 1.52982773e+00,
                           9.83004891e-01,
                                            -7.51926260e-01],
       [-8.54690568e-01, -4.91818118e-01,
                                             2.51413152e-01],
       [ 1.52982773e+00, -1.22922962e+00,
                                           -3.85692157e-01],
       [-6.16238739e-01, -1.23112366e-01, -2.52995701e-01],
       [-8.54690568e-01, -1.23112366e-01, -1.51545811e-01],
```

```
9.91167493e-02,
                   2.45593386e-01,
                                     2.48755478e-021,
 9.91167493e-02, -4.91818118e-01,
                                     1.70639062e-02],
  2.48363504e+00, -1.23112366e-01,
                                    -8.08129499e-01],
  1.52982773e+00, -4.91818118e-01,
                                    -7.51926260e-011.
  9.91167493e-02, -1.23112366e-01,
                                     4.35323510e+00],
 1.52982773e+00, -8.60523870e-01,
                                    -5.61099017e-01],
[-1.39335080e-01, -1.23112366e-01,
                                    -5.36040894e-01],
 9.91167493e-02,
                   2.45593386e-01,
                                     1.65687995e-01],
[-1.39335080e-01,
                  -1.96664113e+00,
                                    -1.86464550e-02],
                   2.45593386e-01,
                                    -1.70821290e-01],
[-8.54690568e-01,
[-1.39335080e-01,
                  -1.23112366e-01,
                                    -2.22560734e-01],
[-8.54690568e-01, -1.23112366e-01,
                                     4.04906836e-01],
[-8.54690568e-01, -4.91818118e-01,
                                    -2.06734551e-01],
[-8.54690568e-01,
                   2.45593386e-01,
                                    -1.36531227e-01],
                   1.35171064e+00, -1.38357325e-01],
[-8.54690568e-01,
                  -1.23112366e-01,
                                    -3.62764482e-011,
[ 8.14472237e-01,
[-1.39335080e-01, -8.60523870e-01,
                                    -1.11777454e-01],
[-8.54690568e-01,
                 -4.91818118e-01,
                                    -2.63140690e-01],
[-8.54690568e-01,
                   1.72041640e+00,
                                     1.84862024e-01],
[-8.54690568e-01,
                  -8.60523870e-01,
                                     1.92673666e-011.
  9.91167493e-02, -1.22922962e+00,
                                    -2.50459454e-01],
  3.37568579e-01,
                   1.72041640e+00, -2.09879498e-01],
  3.37568579e-01,
                  -4.91818118e-01,
                                     1.09466464e+00],
  1.52982773e+00, -1.96664113e+00, -5.55417823e-01],
 3.19899053e+00, -4.91818118e-01,
                                    -2.83430668e-01],
  2.48363504e+00, -1.23112366e-01, -8.40593464e-01],
                   6.14299139e-01,
                                    -4.36417102e-01],
 -1.39335080e-01,
                                    -6.24505198e-011,
 1.52982773e+00, -1.23112366e-01,
  2.48363504e+00, -1.22922962e+00, -9.04303995e-01],
  1.52982773e+00, -1.22922962e+00,
                                    -2.74097278e-01],
[-8.54690568e-01, -4.91818118e-01,
                                    -3.99509319e-02],
[-8.54690568e-01, -1.22922962e+00,
                                     6.56584035e-021,
  9.91167493e-02, -4.91818118e-01,
                                     2.23615882e-01],
[-8.54690568e-01, -1.23112366e-01,
                                    -4.05170536e-01],
 9.91167493e-02, -4.91818118e-01,
                                     1.80804029e-01],
[-8.54690568e-01, -1.23112366e-01,
                                    -4.48205267e-02],
[-6.16238739e-01, -1.23112366e-01,
                                    -5.43953985e-01],
  9.91167493e-02, -1.23112366e-01,
                                     1.43774819e-01],
  3.37568579e-01,
                   1.72041640e+00,
                                     7.17981196e-01],
                                     2.09190021e-02],
 3.19899053e+00, -4.91818118e-01,
 -8.54690568e-01, -8.60523870e-01,
                                     1.32513881e-01],
  9.91167493e-02, -8.60523870e-01,
                                     5.84554614e-02],
  9.91167493e-02, -4.91818118e-01,
                                    -3.37624886e-02],
 9.91167493e-02,
                  -1.59793537e+00,
                                     2.61943963e-021,
[-8.54690568e-01, -1.23112366e-01,
                                    -1.10661505e-01],
[-8.54690568e-01,
                  -4.91818118e-01,
                                    -4.79431855e-01],
 3.37568579e-01,
                   1.35171064e+00,
                                   -1.53169009e-01],
[ 4.56794493e-01,
                   2.45593386e-01, -1.76908283e-01],
                   2.08912215e+00,
                                     2.13876693e-01],
[-8.54690568e-01,
[ 9.91167493e-02,
                   2.45593386e-01, -1.87053272e-01],
```

```
1.52982773e+00, -4.91818118e-01, -2.61923291e-01],
[-8.54690568e-01,
                   9.83004891e-01, -1.81980778e-01],
 9.91167493e-02,
                  -1.22922962e+00, -1.13705002e-01],
                  -1.23112366e-01, -1.59661802e-01],
 5.76020408e-01.
                  -4.91818118e-01, -1.00820866e-01],
[-8.54690568e-01,
 5.76020408e-01,
                    2.45593386e-01,
                                    -3.71692072e-01],
                    9.83004891e-01, -8.15453868e-02],
[-8.54690568e-01,
[-8.54690568e-01,
                  -1.23112366e-01,
                                    -1.43855597e-02],
 9.91167493e-02,
                  -1.23112366e-01,
                                    -2.93575657e-01],
  9.91167493e-02,
                   6.14299139e-01,
                                     1.14417218e+00],
 9.91167493e-02,
                  -1.23112366e-01,
                                    -1.32696109e-021,
[-8.54690568e-01,
                  -1.22922962e+00,
                                    -7.74873912e-02],
[-8.54690568e-01,
                   6.14299139e-01,
                                    -2.56039198e-011,
  5.76020408e-01,
                  -4.91818118e-01,
                                    -1.59661802e-01],
                                    -3.56271689e-01],
                    2.45593386e-01,
  3.19899053e+00,
                    2.45593386e-01,
 9.91167493e-02,
                                    -2.42850712e-011,
[-6.16238739e-01,
                  -1.22922962e+00,
                                    -4.73649212e-01],
 9.91167493e-02,
                  -1.96664113e+00,
                                    -3.13865635e-01],
[-8.54690568e-01,
                   6.14299139e-01,
                                    -5.17191192e-02],
  2.48363504e+00,
                  -1.59793537e+00,
                                    -9.04303995e-01],
[-8.54690568e-01,
                    1.35171064e+00,
                                     4.36051952e-01],
[-1.39335080e-01,
                  -1.23112366e-01,
                                     1.50557927e+01],
 9.91167493e-02,
                  -1.59793537e+00,
                                    -5.60814644e-02],
[-1.39335080e-01,
                  -8.60523870e-01,
                                     3.21007777e-01],
[-1.39335080e-01,
                   9.83004891e-01,
                                     3.55137517e+00],
 9.91167493e-02,
                   9.83004891e-01,
                                     7.33685952e-021,
                  -1.96664113e+00,
[-8.54690568e-01,
                                    -2.41247491e-02],
[-8.54690568e-01,
                   6.14299139e-01,
                                     1.77354732e-01],
                                    -2.22560734e-011,
[-8.54690568e-01,
                   9.83004891e-01,
[-8.54690568e-01,
                    1.72041640e+00,
                                     4.12089801e-02],
                  -1.23112366e-01,
[ 8.14472237e-01,
                                     1.46150744e+00],
[-8.54690568e-01,
                   9.83004891e-01,
                                    -2.75821926e-011,
  9.91167493e-02, -1.23112366e-01,
                                     4.12089801e-02],
[-8.54690568e-01,
                  -1.22922962e+00,
                                     1.09180406e-01],
[-8.54690568e-01, -1.23112366e-01,
                                     2.62818117e+00],
  1.52982773e+00, -1.23112366e-01,
                                    -6.18215305e-01],
 3.37568579e-01,
                  -1.23112366e-01,
                                    -8.21115085e-01],
                    2.08912215e+00, -1.92125767e-01],
[-8.54690568e-01,
 3.37568579e-01,
                    1.35171064e+00,
                                    -7.09520206e-01],
                  -4.91818118e-01,
[-1.39335080e-01,
                                    -4.66040470e-01],
[-8.54690568e-01,
                    2.08912215e+00,
                                     1.12621555e+00],
[-1.39335080e-01,
                  -1.22922962e+00,
                                     4.18602571e-01],
                    2.45593386e-01,
[-8.54690568e-01,
                                     1.11615204e-01],
                  -1.59793537e+00,
  1.52982773e+00,
                                    -5.74794752e-01],
[-1.39335080e-01, -1.23112366e-01,
                                    -1.00820866e-01],
  5.76020408e-01,
                  -1.23112366e-01,
                                     7.38271174e-01],
  9.91167493e-02, -1.22922962e+00,
                                    -1.36632677e-011,
  1.52982773e+00, -4.91818118e-01, -6.18215305e-01],
                    2.45593386e-01, -1.41400822e-01],
[-8.54690568e-01,
[-8.54690568e-01,
                    1.35171064e+00, -1.32676131e-01],
```

```
[-2.58560995e-01, -1.23112366e-01, -3.41561455e-01],
[-8.54690568e-01, -1.22922962e+00,
                                     5.08994423e-011,
[-1.39335080e-01,
                   2.45593386e-01,
                                     1.94195414e-01],
[-6.16238739e-01,
                  -1.59793537e+00,
                                    -3.44300602e-01],
[-8.54690568e-01, -8.60523870e-01, -2.17488239e-01],
[-6.16238739e-01,
                  -1.96664113e+00,
                                    -4.53866483e-01],
                   2.45593386e-01, -2.07951950e-01],
 8.14472237e-01,
  9.91167493e-02,
                  -1.23112366e-01, -4.13712304e-02],
[-8.54690568e-01,
                  -1.59793537e+00, -1.36835577e-01],
  1.52982773e+00,
                   2.45593386e-01, -1.77009733e-01],
                   6.14299139e-01,
                                    -8.79956021e-01],
  2.48363504e+00,
[-8.54690568e-01,
                  -1.23112366e-01,
                                     2.91993108e-01],
 9.91167493e-02,
                   2.08912215e+00,
                                    -4.80669231e-02],
 -6.16238739e-01, -8.60523870e-01,
                                    -3.19343929e-011,
  9.91167493e-02, -1.23112366e-01,
                                    -1.41400822e-01],
  8.14472237e-01,
                  -4.91818118e-01,
                                    -7.79946407e-021,
  9.91167493e-02, -8.60523870e-01,
                                     1.68630042e-01],
[-1.39335080e-01,
                   2.45593386e-01,
                                    -4.66040470e-01],
  3.37568579e-01, -1.23112366e-01,
                                     3.28900891e-02],
 3.37568579e-01,
                  -8.60523870e-01,
                                    -3.44300602e-01],
[-8.54690568e-01, -4.91818118e-01,
                                     1.27542836e-01],
[-1.39335080e-01, -8.60523870e-01,
                                     5.95734079e-01],
 9.91167493e-02, -4.91818118e-01,
                                     6.65714526e-02],
[-2.58560995e-01, -4.91818118e-01,
                                    -1.00820866e-01],
[-8.54690568e-01,
                  -8.60523870e-01,
                                     2.56789996e-01],
[-8.54690568e-01,
                 -1.22922962e+00,
                                    -2.87691563e-01],
  3.19899053e+00,
                   1.72041640e+00,
                                    -4.66040470e-01],
                                    -3.62155783e-011,
[-8.54690568e-01,
                  -1.23112366e-01,
                   9.83004891e-01, -1.51545811e-01],
[-8.54690568e-01,
 9.91167493e-02,
                  -4.91818118e-01,
                                    -1.82893827e-01],
                   1.72041640e+00,
 8.14472237e-01,
                                     3.06382142e-03],
                                    -6.46215475e-01],
  1.52982773e+00,
                  -1.23112366e-01,
                                    -1.69299542e-01],
[-8.54690568e-01,
                   2.45593386e-01,
[-8.54690568e-01,
                   1.35171064e+00,
                                    -3.61972860e-02],
[-8.54690568e-01,
                   1.35171064e+00,
                                    -1.51545811e-01],
 9.91167493e-02,
                   9.83004891e-01,
                                     1.82528677e-01],
[-8.54690568e-01,
                   2.45593386e-01,
                                    -4.24871792e-02],
  8.14472237e-01, -1.96664113e+00,
                                     2.33963771e-01],
 9.91167493e-02, -4.91818118e-01,
                                    -2.78256724e-01],
[-8.54690568e-01, -4.91818118e-01,
                                    -3.44300602e-01],
                                    -8.41830840e-02],
 -8.54690568e-01, -4.91818118e-01,
  1.52982773e+00, -4.91818118e-01,
                                    -6.24809548e-01],
  6.95246323e-01, -1.96664113e+00,
                                     3.16527131e-03],
 3.37568579e-01,
                   1.35171064e+00,
                                    -3.44300602e-01],
[-8.54690568e-01, -8.60523870e-01, -1.74169136e-01],
[-8.54690568e-01, -1.22922962e+00,
                                    -7.51926260e-01],
[-2.58560995e-01,
                   2.45593386e-01,
                                    -4.53866483e-01],
 9.91167493e-02, -1.23112366e-01,
                                     1.12223903e-01],
[ 3.19899053e+00, -8.60523870e-01,
                                     2.09190021e-02],
[-1.39335080e-01, -1.23112366e-01, -1.49516813e-01],
```

```
2.48363504e+00,
                    2.45593386e-01, -8.44651459e-01],
 3.37568579e-01,
                  -1.23112366e-01, -1.61690800e-01],
                   -4.91818118e-01,
                                    -6.25722597e-01],
  1.52982773e+00,
[-8.54690568e-01,
                   -1.96664113e+00,
                                    -1.80560479e-011.
                    2.45593386e-01,
                                      7.61077422e-02],
[-1.39335080e-01,
[-8.54690568e-01,
                    2.45593386e-01,
                                     -4.02431389e-01],
                    9.83004891e-01,
                                      1.75832984e-01],
[-1.39335080e-01,
[-8.54690568e-01,
                    1.72041640e+00,
                                     4.03587987e-01],
                   -1.23112366e-01,
 5.76020408e-01,
                                      2.84688716e-01],
  9.91167493e-02,
                   -1.96664113e+00,
                                    -4.58350256e-02],
[-6.16238739e-01,
                  -4.91818118e-01,
                                     -4.47779490e-011,
 9.91167493e-02,
                    2.08912215e+00,
                                     -1.54995107e-01],
 -8.54690568e-01,
                  -1.22922962e+00,
                                     4.32513348e+001,
  9.91167493e-02,
                  -1.22922962e+00,
                                      2.96558353e-011,
                   -1.23112366e-01,
                                    -3.44300602e-01],
[-6.16238739e-01,
                  -4.91818118e-01,
  3.37568579e-01,
                                    -7.62699926e-021,
                                    -5.16765415e-01],
[-2.58560995e-01, -8.60523870e-01,
  1.52982773e+00,
                    1.35171064e+00,
                                    -6.70766348e-01],
                                    -8.82999518e-01],
  2.96053870e+00, -1.23112366e-01,
 9.91167493e-02,
                   -8.60523870e-01,
                                      3.64935579e-011.
[-8.54690568e-01,
                    1.35171064e+00,
                                    -2.50459454e-01],
  8.14472237e-01,
                   -8.60523870e-01,
                                    -1.68792292e-01],
  8.14472237e-01,
                    6.14299139e-01,
                                    -4.38649000e-01],
  3.37568579e-01,
                    6.14299139e-01,
                                      1.41441471e-01],
 4.56794493e-01,
                    2.45593386e-01,
                                    -2.22560734e-01],
  9.91167493e-02,
                   -4.91818118e-01,
                                    -1.10458605e-01],
  9.91167493e-02,
                   -4.91818118e-01,
                                      1.42963220e-011,
[-8.54690568e-01,
                    2.08912215e+00,
                                     4.02959310e-021,
[-6.16238739e-01, -1.23112366e-01,
                                    -4.83794201e-011,
 9.91167493e-02,
                  -8.60523870e-01,
                                    -2.22560734e-01],
                  -1.23112366e-01,
 2.48363504e+00,
                                    -7.51926260e-01],
[-8.54690568e-01,
                  -1.23112366e-01,
                                     -1.03762913e-01],
                    2.08912215e+00,
                                    -1.57937154e-01],
[-8.54690568e-01,
[-8.54690568e-01,
                    2.45593386e-01,
                                     8.43251833e-02],
[-1.39335080e-01,
                    6.14299139e-01,
                                      2.26050680e-01],
                   -8.60523870e-01,
[-8.54690568e-01,
                                    -3.44300602e-01],
 9.91167493e-02,
                    2.45593386e-01,
                                    -2.75821926e-01],
[-8.54690568e-01, -1.59793537e+00,
                                    -3.43590453e-01],
[-8.54690568e-01,
                   -1.22922962e+00,
                                     8.17889361e-02],
[-1.39335080e-01,
                    1.72041640e+00,
                                    -5.30765500e-01],
[-1.39335080e-01,
                   -4.91818118e-01,
                                    -1.56029583e-02],
 1.52982773e+00,
                    1.35171064e+00,
                                    -5.27417653e-01],
  1.52982773e+00,
                   -8.60523870e-01,
                                    -7.38331975e-01],
 9.91167493e-02,
                    6.14299139e-01,
                                      3.16527131e-031,
 9.91167493e-02,
                    2.08912215e+00,
                                     -4.59364754e-02],
                                     7.49917934e-02],
  5.76020408e-01,
                   -4.91818118e-01,
  9.91167493e-02,
                    2.45593386e-01,
                                      1.21963092e-01],
[-8.54690568e-01, -1.23112366e-01,
                                    -8.15453868e-02],
[-6.16238739e-01, -1.96664113e+00,
                                    -5.26910404e-01],
[-6.16238739e-01,
                   6.14299139e-01,
                                     2.80630720e-01],
```

```
1.52982773e+00, -8.60523870e-01,
                                     2.11340446e-01],
[-8.54690568e-01,
                  -8.60523870e-01,
                                    -9.57483714e-021,
 3.37568579e-01,
                   9.83004891e-01,
                                     1.59702452e-01],
[-8.54690568e-01.
                   2.45593386e-01,
                                     3.57225387e-01],
 9.91167493e-02,
                   1.72041640e+00,
                                     2.56789996e-01],
 9.91167493e-02,
                   1.72041640e+00,
                                    -1.02038265e-01],
 2.48363504e+00,
                  -1.23112366e-01,
                                    -7.52129160e-01],
 5.76020408e-01,
                   1.35171064e+00,
                                    -1.26183338e-01],
[-8.54690568e-01,
                   2.45593386e-01,
                                     6.92821623e-01],
[-8.54690568e-01,
                  -8.60523870e-01,
                                     2.20978185e-01],
[-8.54690568e-01,
                   1.72041640e+00,
                                    -1.62116577e-021,
[-8.54690568e-01,
                  -1.59793537e+00,
                                     2.61862491e-01],
[-8.54690568e-01,
                   6.14299139e-01,
                                    -5.18205691e-02],
                  -1.23112366e-01,
                                     1.30789233e-01],
[-8.54690568e-01,
                   2.45593386e-01,
                                    -8.16651290e-01],
 2.48363504e+00,
 5.76020408e-01,
                   2.08912215e+00,
                                    -9.51596494e-031,
 8.14472237e-01,
                   6.14299139e-01,
                                    -3.44300602e-01],
[-8.54690568e-01,
                  -1.23112366e-01,
                                     2.74543727e-01],
[-8.54690568e-01,
                   9.83004891e-01,
                                    -1.87154722e-01],
 3.19899053e+00,
                  -1.22922962e+00,
                                     3.06581915e-021.
[-1.39335080e-01, -4.91818118e-01,
                                    -3.44300602e-01],
 9.91167493e-02, -1.22922962e+00,
                                     3.14413534e-01],
[-8.54690568e-01,
                  -1.23112366e-01,
                                     6.31221563e-02],
[-8.54690568e-01, -8.60523870e-01,
                                    -3.23300475e-01],
[ 2.48363504e+00,
                   6.14299139e-01,
                                    -8.49825404e-01],
[-6.16238739e-01,
                 -1.96664113e+00,
                                    -7.05868010e-01],
                  -4.91818118e-01,
[-8.54690568e-01,
                                     7.58033925e-02],
 8.14472237e-01,
                  -4.91818118e-01,
                                     1.26528338e-01],
                   2.45593386e-01,
[-8.54690568e-01,
                                     6.63685528e-021,
 1.52982773e+00,
                   1.35171064e+00,
                                    -6.99781016e-01],
                  -1.23112366e-01,
 1.52982773e+00,
                                    -6.18215305e-01],
[-8.54690568e-01,
                  -1.23112366e-01,
                                    -6.66322530e-02],
[-8.54690568e-01, -8.60523870e-01, -1.44444319e-01],
 2.96053870e+00, -1.23112366e-01,
                                    -7.01911464e-01],
 2.48363504e+00, -4.91818118e-01,
                                    -8.13810693e-01],
[-1.39335080e-01, -4.91818118e-01, -4.66040470e-01],
[-1.39335080e-01,
                   1.35171064e+00, -2.14444743e-01],
[-1.39335080e-01, -8.60523870e-01, -1.00820866e-01],
 9.91167493e-02,
                  -1.22922962e+00,
                                    -2.50459454e-01],
 5.76020408e-01,
                   6.14299139e-01, -1.00820866e-01],
                                    -8.56033824e-02],
                  -1.23112366e-01,
 9.91167493e-02,
 5.76020408e-01,
                 -1.22922962e+00,
                                    -2.46604358e-01],
 1.52982773e+00, -4.91818118e-01, -6.25722597e-01],
                                    -2.74097278e-01],
                  -8.60523870e-01,
 1.52982773e+00,
 9.91167493e-02,
                   2.08912215e+00, -2.56242097e-01],
                   2.45593386e-01, -2.61923291e-01]
 1.52982773e+00,
 9.91167493e-02, -1.23112366e-01, -1.43531270e-01]])
```

```
array([[-0.47654967],
       [ 0.04412298],
       [ 3.30843421],
       [-0.52555415],
       [-0.75955057],
       [-0.36628958]])
Y_test
array([[-9.79900262e-02],
       [ 2.83019842e-01],
       [-4.33670746e-01],
       [-5.56181958e-01],
       [-9.67649141e-02],
       [ 6.24996610e-02],
       [ 6.07674553e-01],
       [-7.52199896e-01],
       [ 4.91288902e-01],
       [-2.49903929e-01],
       [-2.75214745e-01],
       [ 5.15791144e-01],
       [-5.90485097e-01],
       [-5.13303034e-01],
       [-7.22626718e-02],
       [ 4.07981278e-01],
         1.23755267e-01],
       [-6.66442048e-01],
       [-3.81603481e-01],
       [-9.54343396e-01],
       [-3.41787337e-01],
        4.90234277e-02],
         5.28042265e-01],
         5.26817153e-01],
       [ 2.52392039e-01],
       [-7.38723663e-01],
       [-2.74406171e-01],
       [-1.49339273e+00],
       [-5.99060882e-01],
       [-4.15294064e-01],
       [ 1.48257509e-01],
       [-3.67344204e-02],
       [ 2.70874183e+00],
       [ 8.94350788e-01],
       [-5.13303034e-01],
       [-1.00334788e+00],
       [-5.38859900e-02],
       [ 4.60661099e-01],
       [-4.82675231e-01],
       [-9.42092275e-01],
       [-2.65830386e-01],
```

```
[-2.92782853e-01],
[ 2.54413474e-01],
[-3.47912898e-01],
[-4.77604295e-02],
[-1.10070660e-02],
 5.28042265e-01],
[-7.83882324e-02],
[-1.10070660e-02],
[ 4.36264319e+00],
 3.13647645e-01],
[-7.95078821e-01],
[ 1.10384496e+00],
[-9.42092275e-01],
[-2.74406171e-01],
[-5.56181958e-01],
[ 1.89430863e-05],
  1.48257509e-01],
[-1.09016035e-01],
[-4.39796307e-01],
[-3.49909831e-01],
[-9.42092275e-01],
[-6.11312003e-01],
 2.57462975e-02],
[-5.01051913e-01],
[ 5.63741004e-02],
[-6.35814245e-01],
  5.09665584e-01],
 1.80093375e+00],
[-7.59550569e-01],
[-4.27545186e-01],
[-4.52047428e-01],
[-4.58172988e-01],
[-1.15036133e+00],
[-3.43012450e-01],
[-4.53272540e-01],
[-4.03042943e-01],
 2.21764236e-01],
[-5.37805276e-01],
 1.69189878e+00],
[-5.74558640e-01],
[-1.33412815e+00],
[ 1.20185393e+00],
[-1.70271641e-01],
[-2.68280610e-01],
[-1.21774250e+00],
 8.34320294e-01],
 5.63741004e-021,
[-1.09016035e-01],
[-4.64298549e-01],
[-6.48065367e-01],
```

```
[-9.05338911e-01],
[-4.64298549e-01],
[-1.04010124e+00],
[ 3.44275448e-01],
[-4.76549670e-01],
[-3.84666262e-01],
[ 6.75055719e-01],
[-1.64146081e-01],
[-4.88150538e-03],
[-6.35814245e-01],
[-2.49903929e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.45137930e-02],
[ 7.10583971e-01],
[-2.43778368e-01],
[-7.14221421e-01],
[-8.57389051e-02],
[-2.68280610e-01],
 4.60661099e-01],
[-1.13233994e+00],
 4.17782175e-01],
 1.53263420e+00],
[-7.64451018e-01],
 2.39633824e+00],
  1.16510057e+00],
 4.66786659e-01],
 6.86252216e-02],
 7.11809083e-01],
[-2.32581871e-02],
[-7.33823215e-01],
[-5.14528146e-01],
[-1.22386806e+00],
[-3.41787337e-01],
[-4.76549670e-01],
[-5.13915590e-01],
 8.09818052e-01],
 1.69189878e+00],
 9.92530245e-02],
[-2.43778368e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.25657619e-01],
[-7.95078821e-01],
[ 4.91288902e-01],
 2.79449968e+00],
 1.62835221e+001,
[-6.60316488e-01],
[-2.68280610e-01],
[ 1.96036882e-01],
```

```
[-1.33518278e-01],
[-2.19276126e-01],
[-5.13303034e-01],
[-4.70424110e-01],
[-9.35966714e-01],
[-8.45137930e-02],
[-2.68280610e-01],
[-7.70576578e-01],
[-5.31679715e-01],
[-1.49339273e+00],
[-1.08298017e+00],
[ 9.92530245e-02],
[-4.52047428e-01],
 1.03033823e+00],
[-7.27697654e-01],
 2.50353555e+00],
  1.32436514e+00],
[-1.00334788e+00],
 1.63064317e+00],
[-1.00334788e+00],
 1.75315438e+00],
[-5.75783752e-01],
[ 6.38302356e-01],
[-3.29536216e-01],
[-1.71326265e-02],
[-5.68433079e-01],
 9.06601909e-01],
[-5.74558640e-01],
[ 3.30799215e-01],
[-6.05186442e-01],
[-1.08910573e+00],
[-3.05033974e-01],
[ 6.50553477e-01],
 3.13647645e-01],
[-7.70576578e-01],
[-6.37039358e-01],
 2.34015357e-01],
[-1.45891910e-01],
[-6.66442048e-01],
[ 1.60508630e-01],
[-1.71326265e-02],
[-8.93590086e-01],
[ 4.23907735e-01],
[-5.77008864e-01],
[-6.35814245e-01],
[-5.13303034e-01],
[-1.45769399e-01],
[-3.05033974e-01],
[-9.78845638e-01],
[-2.69566978e-01],
```

```
[-6.11312003e-01],
[-8.45137930e-02],
[-2.31527247e-01],
[ 2.57462975e-02],
[-1.09016035e-01],
[-7.09320972e-01],
[-5.01051913e-01],
 2.58517600e-01],
[-4.64298549e-01],
[-1.34025371e+00],
  1.65024496e+00],
 9.44580385e-01],
[-2.68893166e-01],
 6.26051235e-01],
[-9.78845638e-01],
 5.89297871e-01],
 9.07827021e-01],
[-6.29688685e-01],
[-1.18711470e+00],
 8.70019034e-02],
[-9.64144293e-01],
 1.01270887e+00],
[-1.23611918e+00],
 2.57292488e-01],
 1.42131949e-01],
[-8.56334426e-01],
[-4.52047428e-01],
[ 8.33265670e-02],
[-2.93837477e-02],
 4.97414462e-01],
 1.07321716e+00],
 6.99557962e-011,
[-1.24959542e+00],
[-1.33518278e-01],
[-3.78540701e-01],
[-6.48065367e-01],
 1.02911312e+00],
[-5.50056397e-01],
[ 7.07962231e-01],
[-9.11464472e-01],
[-2.32581871e-02],
[-8.01204381e-01],
[ 3.48668803e+00],
[-5.25554155e-01],
[-8.80836669e-01],
[-2.32581871e-02],
 1.85010873e-01],
  1.25085841e+00],
[ 3.79974187e-02],
[-4.29995410e-01],
```

```
[ 4.05531054e-01],
[-4.76549670e-01],
[-1.17486358e+00],
[-2.25401686e-01],
 1.12834720e+00],
[-1.71496753e-01],
 2.17091761e+00],
  5.89297871e-01],
 6.87306840e-01],
  1.15284944e+00],
[-3.78540701e-01],
[-2.92782853e-01],
 3.91960590e+001,
[-3.72415140e-01],
[-8.19581063e-01],
 3.44275448e-011,
  3.67723066e-02],
 2.58517600e-01],
[-4.22644737e-01],
[-5.25554155e-01],
[-5.13303034e-01],
[-6.11312003e-01],
 1.23755267e-01],
 2.21764236e-01],
[-5.37805276e-01],
 2.42696605e+00],
  6.21150786e-01],
[-3.94467158e-01],
[-1.15036133e+00],
[-1.55464833e+00],
[-7.39948775e-01],
[-7.76702139e-01],
[ 1.26310954e+00],
[-1.45769399e-01],
[-2.07025005e-01],
[-4.21419625e-01],
[-5.13303034e-01],
[-4.15294064e-01],
[-3.29536216e-01],
[-6.05186442e-01],
[-7.76702139e-01],
[-7.70576578e-01],
[-9.67649141e-02],
 6.24996610e-02],
 1.13202254e+00],
[-4.76549670e-01],
[-3.99367607e-01],
[-1.00947344e+00],
[ 2.21764236e-01],
```

```
[ 1.36006388e-01], [ 1.36006388e-01]])
```

Multiple Regression Model

```
from sklearn import linear model
regr = linear model.LinearRegression()
regr.fit(X_train, Y_train)#training func question + answers
# The coefficients
print ('Intercept: ',regr.intercept_)
print ('Coefficient : ',regr.coef )
Intercept: [3.82889473e-17]
Coefficient: [[-0.05383768 0.04488339 0.24819609]]
regr.intercept
array([3.82889473e-17])
regr.coef
array([[-0.05383768, 0.04488339, 0.24819609]])
regr.coef [0][1]
0.044883387796239835
regr.coef_[0][2]
0.2481960930581826
y pred = regr.predict(X test)
y pred
array([[-2.17730518e-02],
       [ 3.59189594e-02],
       [-5.17444895e-02],
       [-4.06132510e-02],
       [-2.73418038e-02],
       [-4.36657158e-02],
       [ 1.89497631e-02],
       [ 3.17355357e-02],
       [ 1.32619818e-01],
       [ 1.01242368e-01],
       [-1.34914083e-01],
       [-1.94215914e-01],
       [-1.93518376e-02],
       [ 5.85223979e-02],
       [-3.24655389e-01],
       [-6.00575484e-02],
       [ 5.04321714e-02],
```

```
[-2.49067585e-02],
[-2.36827058e-02],
[-1.41325259e-01],
[-2.78150679e-01],
[-1.84686878e-02],
 1.44401737e-01],
 6.27970533e-02],
[-1.29864816e-01],
[-1.13027273e-01],
[-1.95883065e-03],
 1.47353060e-02],
[-3.74113688e-02],
[-1.30378972e-02],
 1.03541114e-01],
[-3.29717740e-03],
 1.20107387e-011,
 2.18957607e-02],
[-1.86638659e-01],
[-2.80939746e-01],
[-1.88560165e-02],
 5.65834286e-02],
 1.09888509e-01],
[-2.25290886e-03],
[-2.24866943e-01],
[ 8.63398543e-02],
[-2.33261649e-01],
[-3.51413818e-02],
[ 2.87577732e-03],
 1.18608613e-02],
[-2.31754841e-02],
[-3.39813428e-01],
[-2.91061996e-01],
[ 1.06959403e+00],
[-2.60248183e-01],
[-1.31067478e-01],
[ 4.68099606e-02],
[-8.53960165e-02],
[ 1.46404420e-02],
[-5.32629275e-02],
[ 1.40985150e-01],
[-2.73706156e-02],
[ 2.31511016e-02],
 7.23441610e-02],
[-1.39411721e-01],
[-5.88644768e-02],
[-4.13703989e-02],
 1.69114704e-01],
 5.52121801e-02],
[-1.22671263e-01],
[ 6.95293648e-03],
```

```
[ 2.31443115e-01],
[-3.08484422e-01],
[-2.64647070e-01],
[-3.47870857e-01],
[-7.32437160e-02],
[-2.42887823e-01],
[-4.13329852e-01],
[-2.05564236e-01],
 1.40244270e-02],
 7.13872496e-03],
 2.80899094e-02],
[-6.00728885e-02],
 1.74641746e-021,
 2.93645759e-02],
[-1.07356091e-01],
 2.48224326e-02],
 2.37244336e-01],
[-1.89108671e-01],
[ 4.02807565e-02],
[-2.94510251e-02],
[-3.57903967e-02],
[-7.05556219e-02],
 1.30231023e-02],
[-9.50530211e-02],
 4.47949490e-03],
[-5.74776364e-02],
 1.92864795e-01],
[-4.07390438e-02],
[-1.69445173e-01],
 4.49682272e-02],
[-8.87293427e-02],
[-7.61647368e-02],
[-1.08325277e-03],
[-1.12241058e-01],
 6.98958989e-02],
  3.69184158e-02],
[-8.37262468e-02],
 3.06214677e-01],
[-1.41553813e-02],
[-2.83895020e-02],
 1.00384535e-021,
[-9.27135000e-02],
[-2.49628400e-01],
[-5.45877503e-02],
[-1.39553011e-01],
[-1.71505956e-01],
[ 6.07498987e-02],
[-4.29878615e-01],
[ 2.14910299e-01],
[ 3.73876470e+00],
```

```
[-9.09761691e-02],
[ 4.85511266e-02],
 9.33059510e-01],
 5.69941728e-02],
[-4.82426293e-02],
 1.17605134e-01],
  3.48964407e-02],
  1.33460580e-01],
 3.13365442e-01],
 2.16772208e-02],
[-6.34007841e-04],
 1.79407160e-02],
 6.92793155e-011,
[-2.41326696e-01],
[-2.27497164e-01],
[ 9.20965703e-02],
[-1.33604698e-01],
[-1.30242410e-01],
[ 4.19303735e-01],
 5.62250099e-02],
 8.47400763e-02],
[-2.96744937e-01],
[-2.30475679e-02],
 1.46698720e-01],
[-9.44199021e-02],
[-2.57875459e-01],
  2.19424872e-02],
 7.37542111e-02],
[-7.63795951e-02],
  1.17172993e-01],
 6.67230835e-02],
[-1.23997955e-01],
[-4.65884023e-02],
[-1.67740541e-01],
[-8.44390923e-02],
[-2.11300934e-02],
[-5.96682531e-02],
[-1.15272433e-01],
[-3.24542964e-01],
[ 1.12960404e-01],
 7.65006413e-021,
[-8.47062793e-02],
[-4.59570472e-02],
[-8.52817224e-02],
[-2.10612464e-03],
[-9.71448835e-02],
[-1.55364169e-02],
[-1.42251199e-01],
[ 5.55957259e-02],
[ 1.16737121e-01],
```

```
[-1.08879045e-02],
[-3.31774848e-02],
[ 7.11256028e-02],
[-8.05613563e-02],
[-2.10677530e-01],
[-4.93967948e-02],
 5.25220671e-02],
[-7.28042122e-02],
[ 3.41292507e-02],
[-2.48276229e-01],
  1.50181340e-02],
 9.76998836e-02],
 6.90708304e-021,
 8.40872785e-02],
[ 4.64924669e-02],
[-7.40499165e-02],
[-9.64729106e-02],
[-6.15139720e-02],
[ 3.04617971e-03],
[-2.59512124e-01],
[-1.24914356e-01],
[-4.29586197e-02],
[-3.58367702e-02],
[-1.95782594e-01],
[-8.77045011e-02],
[ 1.69916186e-02],
[-2.05657434e-01],
[-3.51337118e-02],
[-3.32329273e-01],
[-6.38306333e-02],
[-2.59738740e-01],
[-8.70693664e-02],
[ 3.74141846e-02],
[-4.28442797e-02],
 9.52631266e-02],
 2.23401633e-01],
 3.41213258e-02],
[-1.04981806e-01],
[-1.00034720e-01],
 4.99614838e-02],
 1.06432380e+001,
 1.30964191e-02],
[-5.78029015e-02],
[-5.91782859e-02],
[-1.52962060e-01],
[-1.88174606e-01],
[-3.84071260e-01],
[ 4.66161427e-02],
[ 4.45208507e-02],
[-1.24366108e-01],
```

```
[-1.25148435e-01],
[ 4.45031386e-02],
[-6.88083963e-02],
[-5.48260733e-02],
[ 8.07223363e-03],
 1.49782728e-01],
[-9.24246677e-02],
[-9.91981468e-02],
[-3.25864004e-01],
 1.47353060e-02],
  1.00582051e-01],
 7.79667998e-02],
 9.11781991e-02],
[-7.80627352e-02],
[-6.27710769e-02],
[-1.10984005e-01],
 1.11422601e-02],
[-4.70143299e-02],
[-1.84455795e-02],
[-1.52596020e-01],
[-3.04236710e-01],
 2.30212188e-02],
 7.70294101e-02],
[-3.44733944e-02],
 3.59576106e-02],
 2.02496091e-02],
[-1.85869757e-01],
[ 1.30400138e-01],
[-6.85317261e-02],
[-1.63730427e-02],
 6.55842058e-02],
  1.45699564e-01],
  1.35616174e-01],
  4.65564020e-02],
[-3.25914363e-01],
[-1.66045985e-03],
 2.28993239e-01],
 6.22372512e-02],
 1.19209002e-01],
 3.92870496e-02],
  6.07247192e-021,
 7.29502321e-02],
[-3.25379740e-01],
 6.03934530e-02],
[-1.01731532e-01],
 1.08629536e-01],
 4.36840744e-02],
[-2.19788969e-01],
[-1.00027050e-01],
[ 1.75280052e-02],
```

```
[ 5.61555281e-02],
       [-7.28505857e-02],
       [-3.17064662e-01],
       [-2.30286336e-01],
       [ 4.27541981e-02],
       [-3.45199183e-02],
       [ 7.35100343e-02],
       [-1.95375934e-01],
       [-2.41326696e-01],
       [ 2.39509906e-02],
       [-2.84591866e-02],
       [-3.39125912e-01],
       [-3.57772241e-01],
       [-1.30242410e-01],
       [ 1.49464828e-02],
       [-5.61450944e-02],
       [-1.22671263e-01],
       [-2.84631198e-02],
       [-3.21083408e-02],
       [-1.47389829e-01],
       [-2.59738740e-01],
       [-1.89015473e-01],
       [ 2.48323764e-02],
       [-1.36347647e-01],
       [-4.64858160e-02]])
from sklearn.metrics import r2 score
print(f"accuracy : {r2 score(Y test,y pred)*100} % ")
accuracy : 9.092114450354227 %
print(f"Mean absolute error: {np.mean(np.absolute(y pred - Y test))}
")#pred - actual
Mean absolute error: 0.5837743155131746
print("Residual sum of squares (MSE): %.2f" % np.mean((y pred -
Y_test) **2))
Residual sum of squares (MSE): 0.66
accuracy = print(f"accuracy : {r2_score(Y_test,y_pred)*100} % ")
accuracy: 9.092114450354227 %
Apply Lasso Regression to cover overfitting and undefitting Problem
from sklearn.linear model import Lasso
L = Lasso(alpha = 1)
```

```
L.fit(X train, Y train)
Lasso(alpha=1)
ypred = L.predict(X test)
from sklearn.metrics import r2 score
print("R2-score", r2 score(Y test, ypred))
print(f"Mean absolute error: {np.mean(np.absolute(ypred - Y test))}
")# pred - actual
R2-score -0.004908518792945626
Mean absolute error: 0.6243935831081134
regr.fit (Independent and Dependent Variable)
regr.fit(X train, Y train)
LinearRegression()
# The coefficients
print ('Coefficients: ', regr.coef )
print ('Intercept: ',regr.intercept_)
Coefficients: [[-0.05383768 0.04488339 0.24819609]]
Intercept: [3.82889473e-17]
Plot Outputs
import matplotlib.pyplot as plt
plt.scatter(X test[:,0],X test[:,2],c=Y test)
plt.plot(X train, regr.coef [0][1]*X train + regr.intercept [0], 'r')
#y = mx + c
plt.xlabel("MSSubClass")
plt.ylabel("LotArea")
Text(0, 0.5, 'LotArea')
```


3rd Model

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing

df = pd.read_csv("C:/Users/Lenovo/Documents/Data Set/housing.csv")
df

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley
LotSha		60	DI	65.0	0.450	Davie	NaN
0 Reg	1	00	RL	65.0	8450	Pave	NaN
1	2	20	RL	80.0	9600	Pave	NaN
Reg	_	60	ъ.	60.0	11050	_	
2 IR1	3	60	RL	68.0	11250	Pave	NaN
3	4	70	RL	60.0	9550	Pave	NaN
IR1	_					_	
4 IR1	5	60	RL	84.0	14260	Pave	NaN
11.1							
			• • • •			• • •	• • •
1455	1456	60	RL	62.0	7917	Pave	NaN
Reg 1456	1457	20	RL	85.0	13175	Pave	NaN
Reg	147/	20	INL	05.0	13173	rave	Man

1457	1458		70	RL	6	66.0	9042	Pave	NaN
Reg 1458	1459		20	RL	6	68.0	9717	Pave	NaN
Reg 1459 Reg	1460		20	RL	7	75.0	9937	Pave	NaN
Misc\		ntour Ut	ilities		PoolArea	PoolQC	Fence	MiscFe	ature
0 0	rac (Lvl	AllPub		0	NaN	NaN		NaN
1 0		Lvl	AllPub		0	NaN	NaN		NaN
2		Lvl	AllPub		0	NaN	NaN		NaN
3		Lvl	AllPub		Θ	NaN	NaN		NaN
4 0		Lvl	AllPub		Θ	NaN	NaN		NaN
1455 0		Lvl	AllPub		Θ	NaN	NaN		NaN
1456 0		Lvl	AllPub		Θ	NaN	MnPrv		NaN
1457 2500		Lvl	AllPub		0	NaN	GdPrv		Shed
1458 0		Lvl	AllPub		0	NaN	NaN		NaN
1459 0		Lvl	AllPub		0	NaN	NaN		NaN
0 1 2 3 4 1455 1456 1457 1458 1459	MoSold 2 5 9 2 12 8 2 5 4 6	YrSold 2008 2007 2008 2006 2008 2007 2010 2010 2010 2008	M M M M M M	De Sa ID ID ID ID ID ID ID ID	aleConditi Norm Norm Abnom Norm Norm Norm Norm Norm	nal nal nal nal nal nal nal	181500 181500 223500 140000 250000 175000 210000 266500 142125 147500		

[1460 rows x 81 columns]

df.describe()

Id	MSSubClass	LotFrontage	LotArea	
OverallQual \ count 1460.000000	1460.000000	1201.000000	1460.000000	
1460.000000 mean 730.500000	56.897260	70.049958	10516.828082	
6.099315 std 421.610009	42.300571	24.284752	9981.264932	
1.382997 min 1.000000	20.000000	21.000000	1300.000000	
1.000000 25% 365.750000	20.000000	59.000000	7553.500000	
5.000000 50% 730.500000	50.000000	69.000000	9478.500000	
6.000000 75% 1095.250000	70.000000	80.000000	11601.500000	
7.000000 max 1460.000000	190.000000	313.000000 2	215245.000000	
10.000000				
OverallCond BsmtFinSF1 \	YearBuilt	YearRemodAdd	MasVnrArea	
count 1460.000000	1460.000000	1460.000000	1452.000000	
1460.000000 mean 5.575342	1971.267808	1984.865753	103.685262	
443.639726 std 1.112799	30.202904	20.645407	181.066207	
456.098091 min 1.000000	1872.000000	1950.000000	0.000000	
0.000000 25% 5.000000	1954.000000	1967.000000	0.000000	
0.000000 50% 5.000000	1973.000000	1994.000000	0.000000	
383.500000 75% 6.000000	2000.000000	2004.000000	166.000000	
712.250000 max 9.000000	2010.000000	2010.000000	1600.000000	
5644.000000				
WoodDeckSF ScreenPorch \	OpenPorchSF	EnclosedPorch	3SsnPorch	
count 1460.000000 1460.000000	1460.000000	1460.000000	1460.000000	
mean 94.244521 15.060959	46.660274	21.954110	3.409589	
std 125.338794 55.757415	66.256028	61.119149	29.317331	
min 0.000000	0.000000	0.000000	0.000000	
0.000000 25% 0.000000 0.000000	0.000000	0.000000	0.00000	

50% 0.000000 0.000000	25.000000	0.000000	0.000000
75% 168.000000	68.000000	0.000000	0.000000
0.000000 may 857 000000	E 47 000000	EE2 000000	E00 000000
max 857.000000 480.000000	547.000000	552.000000	508.000000
PoolArea	MiscVal	MoSold	YrSold
SalePrice			
count 1460.000000	1460.000000	1460.000000	1460.000000
1460.000000			
mean 2.758904	43.489041	6.321918	2007.815753
180921.195890			
std 40.177307	496.123024	2.703626	1.328095
79442.502883			
min 0.000000	0.000000	1.000000	2006.000000
34900.000000			
25% 0.000000	0.000000	5.000000	2007.000000
129975.000000			
50% 0.000000	0.000000	6.000000	2008.000000
163000.000000			
75% 0.000000	0.000000	8.000000	2009.000000
214000.000000			
max 738.000000	15500.000000	12.000000	2010.000000
755000.000000			

[8 rows x 38 columns]

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Data	cocumins (cocac	or cocamins).	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object

15 16 17 18 19 20 21 22 23	BldgType HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl Exterior1st	1460 1460 1460 1460 1460 1460 1460	non-null non-null non-null non-null non-null non-null non-null non-null	object object int64 int64 int64 object object
24	Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond	1460	non-null	object
25		1452	non-null	object
26		1452	non-null	float64
27		1460	non-null	object
28		1460	non-null	object
29	Foundation BsmtQual BsmtCond BsmtExposure BsmtFinType1	1460	non-null	object
30		1423	non-null	object
31		1423	non-null	object
32		1422	non-null	object
33		1423	non-null	object
34 35 36 37 38	BsmtFinSF1 BsmtFinType2 BsmtFinSF2 BsmtUnfSF TotalBsmtSF	1460 1422 1460 1460 1460	non-null non-null non-null non-null	int64 object int64 int64 int64
39	Heating	1460	non-null	object
40	HeatingQC	1460	non-null	object
41	CentralAir	1460	non-null	object
42	Electrical	1459	non-null	object
43 44 45 46 47	1stFlrSF 2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath	1460 1460 1460 1460	non-null non-null non-null non-null	int64 int64 int64 int64
48	BsmtHalfBath	1460	non-null	int64
49	FullBath	1460	non-null	int64
50	HalfBath	1460	non-null	int64
51	BedroomAbvGr	1460	non-null	int64
52	KitchenAbvGr	1460	non-null	int64
53	KitchenQual	1460	non-null	object
54	TotRmsAbvGrd	1460	non-null	int64
55	Functional	1460	non-null	object
56	Fireplaces	1460	non-null	int64
57	FireplaceQu	770	non-null	object
58 59 60 61 62 63 64	GarageType GarageFinish GarageCars GarageArea GarageQual GarageCond	1379 1379 1379 1460 1460 1379 1379	non-null non-null non-null non-null non-null non-null	object float64 object int64 int64 object

```
65
     PavedDrive
                     1460 non-null
                                       object
 66
    WoodDeckSF
                     1460 non-null
                                       int64
     OpenPorchSF
 67
                     1460 non-null
                                       int64
 68
    EnclosedPorch
                     1460 non-null
                                       int64
     3SsnPorch
                     1460 non-null
 69
                                       int64
 70 ScreenPorch
                     1460 non-null
                                       int64
                     1460 non-null
 71
    PoolArea
                                       int64
 72
    PoolQC
                     7 non-null
                                       object
 73
    Fence
                     281 non-null
                                       object
 74 MiscFeature
                     54 non-null
                                       object
 75
    MiscVal
                     1460 non-null
                                       int64
 76 MoSold
                     1460 non-null
                                       int64
 77
     YrSold
                     1460 non-null
                                       int64
                     1460 non-null
 78
     SaleType
                                       object
 79
     SaleCondition
                     1460 non-null
                                       object
 80
     SalePrice
                     1460 non-null
                                       int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
cdf2 = df[["OverallCond","OverallQual","MiscVal","SalePrice"]]
cdf2
      OverallCond
                    OverallOual
                                  MiscVal
                                            SalePrice
0
                 5
                                               208500
                               7
                                         0
                 8
1
                               6
                                         0
                                               181500
                 5
2
                               7
                                         0
                                               223500
                 5
3
                               7
                                         0
                                               140000
                 5
4
                               8
                                         0
                                               250000
                 5
                                         0
                                               175000
1455
                               6
1456
                 6
                               6
                                         0
                                               210000
                 9
                               7
1457
                                      2500
                                               266500
                 6
                               5
                                               142125
1458
                                         0
                 6
                               5
1459
                                         0
                                               147500
[1460 \text{ rows } \times 4 \text{ columns}]
X = df[["OverallCond","OverallQual","MiscVal"]] # Independent Variable
Χ
      OverallCond
                    OverallOual
                                  MiscVal
0
                 5
                               7
                                         0
                 8
1
                               6
                                         0
2
                 5
                               7
                                         0
3
                 5
                               7
                                         0
4
                 5
                               8
                                         0
                 5
1455
                               6
                                         0
1456
                 6
                               6
                                         0
```

```
1457
                                    2500
                6
1458
                                       0
1459
                6
                                        0
[1460 rows x 3 columns]
Y = df[["SalePrice"]]
Υ
      SalePrice
0
         208500
1
         181500
2
         223500
3
         140000
4
         250000
1455
         175000
1456
         210000
1457
         266500
1458
         142125
1459
         147500
[1460 rows x 1 columns]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X train, X test, Y train, Y test = train test split(X, Y, test size =
0.2, random state = 500)
X train.shape
(1168, 3)
Y_train.shape
(1168, 1)
X test.shape
(292, 3)
Y_test.shape
(292, 1)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
sc Y = StandardScaler()
X_train = sc_X.fit_transform(X_train)
```

```
X \text{ test} = \text{sc } X.\text{transform}(X \text{ test})
Y train = sc Y.fit transform(Y train)
Y_test = sc_Y.transform(Y_test)
X train
array([[-0.5039999 , -0.78256106, -0.11595495],
       [-0.5039999 ,
                      0.63894954, -0.11595495],
       [-0.5039999]
                     2.77121545, -0.11595495],
       [0.39063822, -0.07180576, -0.11595495],
       [-0.5039999, -0.78256106, -0.11595495],
       [-0.5039999, 0.63894954, -0.11595495]])
Y train
array([[-0.47654967],
       [ 0.04412298],
       [ 3.30843421],
       . . . ,
       [-0.52555415],
       [-0.75955057],
       [-0.36628958]])
X test
array([[-0.5039999 , -0.07180576, -0.11595495],
       [ 0.39063822,
                      0.63894954, -0.11595495],
       [ 1.28527634, -0.78256106, -0.11595495],
       [0.39063822, -0.78256106, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999 ,
                      0.63894954, -0.11595495],
       [ 0.39063822, -1.49331636, 1.46830692],
       [-0.5039999 ,
                      0.63894954, -0.11595495],
       [-0.5039999 , -1.49331636, -0.11595495],
                     -0.78256106, -0.11595495],
       [-0.5039999 ,
       [-0.5039999]
                      0.63894954, -0.115954951,
       [-0.5039999, -0.78256106, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999 ,
                     -0.07180576, -0.11595495],
       [-0.5039999]
                      0.63894954, -0.11595495],
       [-0.5039999]
                      0.63894954, -0.11595495],
       [0.39063822, -0.07180576, -0.11595495],
       [ 0.39063822,
                     -0.78256106, -0.11595495],
       [ 0.39063822, -0.07180576, -0.11595495],
       [-0.5039999]
                      0.63894954, -0.115954951,
       [-0.5039999]
                       0.63894954, -0.11595495],
                      0.63894954, -0.11595495],
       [-1.39863801,
                       0.63894954, -0.115954951,
       [-0.5039999]
                      0.63894954, -0.11595495],
       [-0.5039999 ,
```

```
1.28527634, -1.49331636, -0.11595495],
 2.17991445,
               0.63894954, -0.115954951,
[-2.29327613,
              -0.78256106, -0.11595495],
[-0.5039999]
              -0.78256106. -0.115954951.
                             1.15145454],
  1.28527634,
              -0.78256106,
  1.28527634,
              -0.78256106, -0.11595495],
              -0.07180576. -0.115954951.
[-0.5039999]
               1.34970485, -0.11595495],
[-0.5039999
               0.63894954, -0.11595495],
[-0.5039999
  0.39063822,
              -0.07180576, -0.11595495],
[-0.5039999]
              -0.07180576, -0.11595495],
  1.28527634,
              -0.07180576, -0.11595495],
               0.63894954, -0.11595495],
  0.39063822,
              -0.78256106, -0.115954951,
[-0.5039999
  1.28527634,
              -0.78256106, -0.11595495],
[-0.5039999
               0.63894954, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999
[-0.5039999
               0.63894954, -0.11595495],
              -0.78256106, -0.11595495],
[ 0.39063822,
               0.63894954, -0.11595495],
[-0.5039999
[-0.5039999
              -0.07180576, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999
[-0.5039999
               0.63894954, -0.11595495],
[-0.5039999
               0.63894954, -0.11595495],
               1.34970485, -0.11595495],
[-0.5039999
               0.63894954, -0.115954951,
[-0.5039999
  2.17991445,
              -0.07180576, -0.11595495],
  1.28527634,
              -0.07180576, -0.11595495],
[-1.39863801,
              -2.20407167, -0.11595495],
  0.39063822,
              -0.07180576,
                           -0.11595495],
[-0.5039999]
              -0.07180576, -0.11595495],
              -0.07180576, -0.11595495],
  0.39063822.
               0.63894954, -0.115954951,
[-0.5039999]
              -0.07180576, -0.11595495],
  0.39063822,
  2.17991445.
              -0.78256106, -0.11595495],
[-0.5039999]
              -0.78256106, -0.11595495],
              -0.78256106, -0.11595495],
[-0.5039999
  0.39063822,
              -0.07180576, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999
[-0.5039999
              -1.49331636, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999
 0.39063822,
              -0.78256106, -0.11595495],
              -0.78256106, -0.11595495],
  0.39063822,
[-0.5039999]
               2.06046015, -0.11595495],
 1.28527634,
              -0.78256106, -0.115954951,
              -0.07180576, -0.11595495],
[-0.5039999 ,
 1.28527634,
               0.63894954, -0.115954951,
[-0.5039999, -0.07180576, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999 ,
[-0.5039999, -0.07180576, -0.11595495],
```

```
1.28527634, -0.78256106, -0.115954951,
 1.28527634,
              -0.07180576,
                             2.10201166],
[-0.5039999]
              -0.07180576,
                             1.15145454],
              -0.78256106.
 2.17991445.
                            -0.115954951.
[-0.5039999 ,
                            -0.11595495],
               0.63894954,
[-0.5039999
              -0.78256106,
                            -0.11595495],
              -0.78256106. -0.115954951.
[-0.5039999
               1.34970485, -0.11595495],
[-0.5039999
[ 3.07455257,
               1.34970485, -0.11595495],
              -0.78256106, -0.11595495],
[-1.39863801,
               0.63894954, -0.11595495],
[-0.5039999
               0.63894954, -0.11595495],
[-0.5039999
              -0.07180576, -0.11595495],
[-0.5039999
              -0.07180576, -0.115954951,
[-0.5039999
[-0.5039999]
              -0.78256106, -0.11595495],
 1.28527634,
              -0.78256106, -0.115954951,
[-0.5039999]
              -1.49331636, -0.11595495],
 0.39063822,
               0.63894954, -0.11595495],
              -0.78256106, -0.11595495],
[-0.5039999]
               0.63894954, -0.11595495],
[-0.5039999
[-0.5039999
              -0.07180576, -0.11595495],
              -0.78256106, -0.11595495],
  1.28527634,
[-0.5039999
               1.34970485, -0.11595495],
[-0.5039999]
              -0.07180576, -0.11595495],
              -0.07180576, -0.11595495],
 2.17991445,
              -0.78256106, -0.115954951,
[-1.39863801,
[-0.5039999
              -0.07180576, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999
              -0.07180576, -0.115954951,
[-0.5039999
[-0.5039999]
               0.63894954, -0.11595495],
[-0.5039999
               1.34970485, -0.11595495],
  1.28527634.
              -0.78256106, -0.11595495],
              -1.49331636, -0.11595495],
[-0.5039999]
              -0.07180576, -0.11595495],
  1.28527634,
  2.17991445.
              -0.78256106, -0.11595495],
[-0.5039999]
               0.63894954, -0.11595495],
  1.28527634,
              -1.49331636, -0.11595495],
               0.63894954, -0.115954951,
[-0.5039999]
               1.34970485, -0.11595495],
[-0.5039999
 1.28527634,
              -0.78256106, -0.11595495],
               2.06046015, -0.11595495],
[-0.5039999
 1.28527634,
              -0.07180576,
                             1.468306921,
               1.34970485, -0.11595495],
[-0.5039999
[-0.5039999]
               0.63894954,
                           -0.115954951,
[ 2.17991445,
              -0.07180576, -0.115954951,
               0.63894954, -0.11595495],
[-0.5039999]
 0.39063822,
              -0.78256106, -0.115954951,
[-0.5039999]
              -0.78256106,
                             1.785159291,
[-1.39863801,
              -1.49331636, -0.11595495],
[0.39063822, -0.78256106, -0.11595495],
```

```
[-1.39863801,
              -0.78256106, -0.11595495],
              -0.78256106, -0.115954951,
[ 0.39063822,
[-0.5039999]
               1.34970485, -0.11595495],
               2.06046015. -0.115954951.
[-0.5039999
[-0.5039999
              -0.78256106, -0.11595495],
[-0.5039999
              -0.07180576, -0.11595495],
               0.63894954, -0.115954951,
  2.17991445.
  0.39063822,
              -0.78256106, -0.11595495],
  1.28527634,
              -0.07180576, -0.11595495],
              -0.78256106, -0.11595495],
  2.17991445,
              -0.07180576, -0.11595495],
  3.07455257,
[-0.5039999]
               1.34970485, -0.115954951,
[-0.5039999
               2.06046015, -0.115954951,
              -0.07180576, -0.115954951,
[-0.5039999
  1.28527634,
              -0.78256106, -0.11595495],
[-0.5039999]
              -0.07180576, -0.115954951,
  0.39063822,
              -0.07180576, -0.11595495],
 -0.5039999 ,
              -0.07180576, -0.11595495],
  0.39063822, -0.07180576, -0.11595495],
              -0.78256106, -0.11595495],
  1.28527634.
  0.39063822,
              -0.07180576, -0.11595495],
  0.39063822,
              -0.78256106, -0.11595495],
[
  1.28527634,
              -0.07180576,
                             4.0031259 ],
  1.28527634, -0.78256106, -0.11595495],
 2.17991445,
              -0.78256106, -0.11595495],
[-2.29327613,
              -2.91482697, -0.115954951,
[-1.39863801,
              -2.20407167, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999
              -0.78256106, -0.115954951,
[-0.5039999
[-0.5039999
               2.06046015,
                           -0.11595495],
[-0.5039999
              -0.78256106, -0.11595495],
               2.77121545, -0.11595495],
[-0.5039999
               1.34970485, -0.115954951,
[-0.5039999
              -1.49331636, -0.11595495],
[-0.5039999
[-0.5039999]
               1.34970485. -0.115954951.
[-0.5039999
              -0.78256106, -0.11595495],
               1.34970485, -0.11595495],
[-0.5039999
  3.07455257.
              -0.07180576, -0.11595495],
               0.63894954, -0.11595495],
  3.07455257.
 3.07455257,
               0.63894954, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999]
  1.28527634,
              -0.78256106, -0.11595495],
[-0.5039999 ,
               1.34970485, -0.11595495],
  1.28527634.
              -0.78256106,
                           -0.115954951,
[-0.5039999]
              -0.07180576, -0.115954951,
              -0.78256106, -0.11595495],
 1.28527634,
[-1.39863801,
              -0.78256106, -0.115954951,
              -0.78256106, -0.11595495],
[-0.5039999 ,
               0.63894954, -0.11595495],
[-0.5039999]
[-0.5039999, -0.07180576, -0.11595495],
```

```
[-1.39863801, -0.78256106, -0.11595495],
              -0.78256106, -0.115954951,
[ 1.28527634,
[-0.5039999]
               1.34970485, -0.11595495],
              -0.07180576. -0.115954951.
[-0.5039999
 0.39063822,
              -0.07180576,
                             1.30988073],
[-0.5039999
               0.63894954, -0.11595495],
              -0.07180576. -0.115954951.
[-0.5039999
[-1.39863801.
              -1.49331636, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999]
              -0.78256106, -0.11595495],
  1.28527634,
  1.28527634,
              -0.78256106, -0.11595495],
[-0.5039999]
              -0.07180576, -0.11595495],
  0.39063822,
               0.63894954, -0.115954951,
               0.63894954, -0.115954951,
  1.28527634,
              -1.49331636, -0.11595495],
[-0.5039999
[-0.5039999
               0.63894954, -0.11595495],
               0.63894954, -0.11595495],
  2.17991445,
              -0.07180576, -0.11595495],
  0.39063822,
              -0.07180576, -0.11595495],
  1.28527634,
               0.63894954, -0.11595495],
  0.39063822.
[-0.5039999]
               0.63894954, -0.11595495],
              -0.78256106, -0.11595495],
  0.39063822,
L
[-0.5039999
              -0.07180576, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999
[-0.5039999
              -0.78256106, -0.11595495],
              -2.20407167, -0.115954951,
  0.39063822,
  2.17991445,
               1.34970485, -0.11595495],
[-0.5039999
               0.63894954, -0.11595495],
              -0.78256106, -0.115954951,
[-0.5039999
[-0.5039999
               0.63894954, -0.11595495],
[-0.5039999
              -0.07180576, -0.11595495],
               1.34970485, -0.11595495],
[-0.5039999
              -1.49331636, -0.115954951,
  0.39063822,
  2.17991445,
              -0.07180576, -0.11595495],
[-1.39863801.
              -0.78256106, -0.11595495],
  0.39063822,
              -0.78256106, -0.11595495],
[
              -1.49331636, -0.11595495],
  0.39063822,
[-0.5039999]
               1.34970485. -0.115954951.
              -1.49331636, -0.11595495],
  1.28527634.
[-0.5039999 ,
               1.34970485, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999
              -0.07180576, -0.11595495],
[-0.5039999
  0.39063822,
              -0.78256106, -0.11595495],
              -0.07180576,
                           -0.115954951,
  1.28527634,
 2.17991445,
              -0.78256106, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999
[-0.5039999
               1.34970485, -0.115954951,
               1.34970485, -0.11595495],
[-0.5039999
[-0.5039999]
              -1.49331636, -0.11595495],
[0.39063822, -0.07180576, -0.11595495],
```

```
[-0.5039999]
               0.63894954, -0.11595495],
[ 0.39063822,
              -0.78256106, -0.115954951,
[-0.5039999]
               1.34970485, -0.11595495],
  0.39063822,
              -0.78256106. -0.115954951.
               0.63894954, -0.11595495],
[-0.5039999 ,
  1.28527634.
              -0.78256106, -0.11595495],
               0.63894954. -0.115954951.
 -0.5039999
  1.28527634,
              -0.78256106, -0.11595495],
[-0.5039999
               2.77121545, -0.11595495],
              -0.78256106, -0.11595495],
  0.39063822,
  0.39063822,
              -0.78256106, -0.11595495],
[-0.5039999
               1.34970485, -0.115954951,
[-0.5039999
               1.34970485, -0.115954951,
               0.63894954, -0.115954951,
[-0.5039999
[-0.5039999
               0.63894954, -0.11595495],
[-0.5039999
              -0.07180576, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999
[-0.5039999
              -0.07180576, -0.11595495],
              -0.78256106, -0.11595495],
  0.39063822,
              -0.78256106, -0.11595495],
  1.28527634.
[-0.5039999]
               1.34970485, -0.11595495],
              -0.07180576, -0.11595495],
[-0.5039999
  0.39063822,
               1.34970485, -0.11595495],
  1.28527634,
              -0.07180576, -0.11595495],
[-0.5039999
               0.63894954, -0.11595495],
               1.34970485, -0.11595495],
[-0.5039999
[-0.5039999
               0.63894954, -0.11595495],
              -0.07180576, -0.11595495],
 1.28527634,
               2.06046015, -0.115954951,
[-0.5039999
 2.17991445,
              -0.07180576, 48.99616286],
[-0.5039999]
              -1.49331636, -0.11595495],
              -0.07180576, -0.11595495],
  0.39063822,
               0.63894954, -0.115954951,
[-0.5039999
               0.63894954, -0.11595495],
[-0.5039999
               0.63894954, -0.115954951,
[-0.5039999
  1.28527634,
              -0.78256106, -0.11595495],
              -0.78256106, -0.11595495],
[-0.5039999
  1.28527634.
              -0.78256106, -0.11595495],
               0.63894954, -0.11595495],
[-0.5039999 ,
 1.28527634,
              -0.07180576, -0.11595495],
[-1.39863801,
              -0.78256106, -0.11595495],
[-0.5039999
               2.06046015, -0.11595495],
[-0.5039999
               1.34970485, -0.11595495],
  1.28527634,
              -0.07180576,
                           -0.115954951,
[-1.39863801,
              -1.49331636, -0.11595495],
              -1.49331636, -0.11595495],
[-1.39863801,
[ 0.39063822,
              -0.78256106, -0.115954951,
              -0.07180576, -0.11595495],
[-0.5039999]
[-0.5039999]
               2.06046015, -0.11595495],
               1.34970485, -0.11595495],
[-0.5039999]
```

```
[-0.5039999, -0.07180576, -0.11595495],
       [ 0.39063822, -0.78256106, -0.11595495],
       [ 1.28527634, -0.78256106,
                                   1.15145454],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999 ,
                      0.63894954, -0.11595495],
       [ 0.39063822,
                     -0.07180576, -0.11595495],
       [-0.5039999, -0.78256106, -0.11595495],
                     -0.07180576, -0.11595495],
       [-0.5039999 ,
       [-0.5039999]
                     -0.07180576, -0.11595495],
       [1.28527634, -0.07180576, -0.11595495],
         0.39063822,
                      0.63894954, -0.11595495],
       [ 0.39063822, -0.78256106, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999, -0.07180576, -0.11595495],
       [-0.5039999 ,
                      0.63894954, -0.1159549511)
Y test
array([[-9.79900262e-02],
       [ 2.83019842e-01],
       [-4.33670746e-01],
       [-5.56181958e-01],
       [-9.67649141e-02],
       [ 6.24996610e-02].
         6.07674553e-01],
       [-7.52199896e-01],
       [ 4.91288902e-01],
       [-2.49903929e-01],
       [-2.75214745e-01],
       [ 5.15791144e-01],
       [-5.90485097e-01],
       [-5.13303034e-01],
       [-7.22626718e-02],
       [ 4.07981278e-01],
         1.23755267e-01],
       [-6.66442048e-01],
       [-3.81603481e-01],
       [-9.54343396e-01],
       [-3.41787337e-01].
       [ 4.90234277e-02],
         5.28042265e-01],
         5.26817153e-011,
       [ 2.52392039e-01],
       [-7.38723663e-01],
       [-2.74406171e-01],
       [-1.49339273e+00],
       [-5.99060882e-01],
       [-4.15294064e-01],
       [ 1.48257509e-01],
```

```
[-3.67344204e-02],
[ 2.70874183e+00],
 8.94350788e-01],
[-5.13303034e-01],
[-1.00334788e+00],
[-5.38859900e-02],
[ 4.60661099e-01],
[-4.82675231e-01],
[-9.42092275e-01],
[-2.65830386e-01],
[-2.92782853e-01],
[ 2.54413474e-01],
[-3.47912898e-01],
[-4.77604295e-02],
[-1.10070660e-02],
[ 5.28042265e-01],
[-7.83882324e-02],
[-1.10070660e-02],
[ 4.36264319e+00],
 3.13647645e-01],
[-7.95078821e-01],
 1.10384496e+00],
[-9.42092275e-01],
[-2.74406171e-01],
[-5.56181958e-01],
 1.89430863e-05],
  1.48257509e-01],
[-1.09016035e-01],
[-4.39796307e-01],
[-3.49909831e-01],
[-9.42092275e-01],
[-6.11312003e-01],
[ 2.57462975e-02],
[-5.01051913e-01],
[ 5.63741004e-02],
[-6.35814245e-01],
 5.09665584e-01],
 1.80093375e+00],
[-7.59550569e-01],
[-4.27545186e-01],
[-4.52047428e-01],
[-4.58172988e-01],
[-1.15036133e+00],
[-3.43012450e-01],
[-4.53272540e-01],
[-4.03042943e-01],
[ 2.21764236e-01],
[-5.37805276e-01],
[ 1.69189878e+00],
[-5.74558640e-01],
```

```
[-1.33412815e+00],
[ 1.20185393e+00],
[-1.70271641e-01],
[-2.68280610e-01],
[-1.21774250e+00],
 8.34320294e-01],
 5.63741004e-02],
[-1.09016035e-01],
[-4.64298549e-01],
[-6.48065367e-01],
[-9.05338911e-01],
[-4.64298549e-01],
[-1.04010124e+00],
[ 3.44275448e-01],
[-4.76549670e-01],
[-3.84666262e-01],
[ 6.75055719e-01],
[-1.64146081e-01],
[-4.88150538e-03],
[-6.35814245e-01],
[-2.49903929e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.45137930e-02],
[ 7.10583971e-01],
[-2.43778368e-01],
[-7.14221421e-01],
[-8.57389051e-02],
[-2.68280610e-01],
 4.60661099e-01],
[-1.13233994e+00],
 4.17782175e-01],
 1.53263420e+00],
[-7.64451018e-01],
 2.39633824e+00],
 1.16510057e+00],
 4.66786659e-01],
 6.86252216e-02],
 7.11809083e-01],
[-2.32581871e-02],
[-7.33823215e-01],
[-5.14528146e-01],
[-1.22386806e+00],
[-3.41787337e-01],
[-4.76549670e-01],
[-5.13915590e-01],
[ 8.09818052e-01],
 1.69189878e+00],
 9.92530245e-02],
[-2.43778368e-01],
```

```
[-3.29536216e-01],
[-3.29536216e-01],
[-8.25657619e-01],
[-7.95078821e-01],
[ 4.91288902e-01],
 2.79449968e+00],
 1.62835221e+00],
[-6.60316488e-01],
[-2.68280610e-01],
[ 1.96036882e-01],
[-1.33518278e-01],
[-2.19276126e-01],
[-5.13303034e-01],
[-4.70424110e-01],
[-9.35966714e-01],
[-8.45137930e-02],
[-2.68280610e-01],
[-7.70576578e-01],
[-5.31679715e-01],
[-1.49339273e+00],
[-1.08298017e+00],
 9.92530245e-02],
[-4.52047428e-01],
 1.03033823e+00],
[-7.27697654e-01],
 2.50353555e+00],
  1.32436514e+00],
[-1.00334788e+00],
 1.63064317e+00],
[-1.00334788e+00],
 1.75315438e+00],
[-5.75783752e-01],
[ 6.38302356e-01],
[-3.29536216e-01],
[-1.71326265e-02],
[-5.68433079e-01],
 9.06601909e-01],
[-5.74558640e-01],
[ 3.30799215e-01],
[-6.05186442e-01],
[-1.08910573e+00],
[-3.05033974e-01],
[ 6.50553477e-01],
 3.13647645e-01],
[-7.70576578e-01],
[-6.37039358e-01],
[ 2.34015357e-01],
[-1.45891910e-01],
[-6.66442048e-01],
[ 1.60508630e-01],
```

```
[-1.71326265e-02],
[-8.93590086e-01],
[ 4.23907735e-01],
[-5.77008864e-01],
[-6.35814245e-01],
[-5.13303034e-01],
[-1.45769399e-01],
[-3.05033974e-01],
[-9.78845638e-01],
[-2.69566978e-01],
[-6.11312003e-01],
[-8.45137930e-02],
[-2.31527247e-01],
[ 2.57462975e-02],
[-1.09016035e-01],
[-7.09320972e-01],
[-5.01051913e-01],
[ 2.58517600e-01],
[-4.64298549e-01],
[-1.34025371e+00],
 1.65024496e+00],
 9.44580385e-01],
[-2.68893166e-01],
 6.26051235e-01],
[-9.78845638e-01],
  5.89297871e-01],
 9.07827021e-01],
[-6.29688685e-01],
[-1.18711470e+00],
 8.70019034e-02],
[-9.64144293e-01],
 1.01270887e+001,
[-1.23611918e+00],
 2.57292488e-01],
 1.42131949e-01],
[-8.56334426e-01],
[-4.52047428e-01],
[ 8.33265670e-02],
[-2.93837477e-02],
 4.97414462e-01],
  1.07321716e+001,
 6.99557962e-01],
[-1.24959542e+00],
[-1.33518278e-01],
[-3.78540701e-01],
[-6.48065367e-01],
[ 1.02911312e+00],
[-5.50056397e-01],
[ 7.07962231e-01],
[-9.11464472e-01],
```

```
[-2.32581871e-02],
[-8.01204381e-01],
 3.48668803e+00],
[-5.25554155e-01],
[-8.80836669e-01],
[-2.32581871e-02],
 1.85010873e-01],
  1.25085841e+00],
 3.79974187e-02],
[-4.29995410e-01],
[ 4.05531054e-01],
[-4.76549670e-01],
[-1.17486358e+00],
[-2.25401686e-01],
 1.12834720e+00],
[-1.71496753e-01],
  2.17091761e+00],
  5.89297871e-01],
 6.87306840e-01],
  1.15284944e+00],
[-3.78540701e-01],
[-2.92782853e-01],
[ 3.91960590e+00],
[-3.72415140e-01],
[-8.19581063e-01],
  3.44275448e-01],
  3.67723066e-02],
 2.58517600e-01],
[-4.22644737e-01],
[-5.25554155e-01],
[-5.13303034e-01],
[-6.11312003e-01],
 1.23755267e-01],
  2.21764236e-01],
[-5.37805276e-01],
 2.42696605e+00],
 6.21150786e-01],
[-3.94467158e-01],
[-1.15036133e+00],
[-1.55464833e+00],
[-7.39948775e-01],
[-7.76702139e-01],
[ 1.26310954e+00],
[-1.45769399e-01],
[-2.07025005e-01],
[-4.21419625e-01],
[-5.13303034e-01],
[-4.15294064e-01],
[-3.29536216e-01],
[-6.05186442e-01],
```

```
[-7.76702139e-01],

[-7.70576578e-01],

[-9.67649141e-02],

[ 6.24996610e-02],

[ 1.13202254e+00],

[-4.76549670e-01],

[-3.99367607e-01],

[-1.00947344e+00],

[ 2.21764236e-01],

[ 1.36006388e-01],

[ 1.36006388e-01]])
```

Multiple Regression Model

```
from sklearn import linear model
regr = linear model.LinearRegression()
regr.fit(X train, Y train)#training func question + answers
# The coefficients
print ('Intercept: ',regr.intercept_)
print ('Coefficient : ',regr.coef )
Intercept: [-5.45294703e-17]
Coefficient : [[-0.00535786  0.79887333  0.01851957]]
regr.intercept
array([-5.45294703e-17])
regr.coef
array([[-0.00535786, 0.79887333, 0.01851957]])
regr.coef_[0][0]
-0.005357859174442641
regr.coef [0][1]
0.7988733281398422
regr.coef [0][2]
0.01851956792706759
y pred = regr.predict(X test)
y pred
array([[-0.05681078],
       [ 0.50619933],
       [-0.63420092],
       [-0.62940758],
       [-0.05681078],
```

```
[-0.05681078],
[ 0.51099267],
[-1.16787119],
[ 0.51099267],
[-1.19241769],
[-0.62461423],
[ 0.51099267],
[-0.62461423],
[-0.05681078],
[-0.05681078],
[ 0.51099267],
[ 0.51099267],
[-0.06160413],
[-0.62940758],
[-0.06160413],
[ 0.51099267],
 0.51099267],
 0.51578602],
[ 0.51099267],
 0.51099267],
[-1.20200438],
[ 0.49661264],
[-0.61502754],
[-0.62461423],
[-0.61072905],
[-0.63420092],
[-0.05681078],
[ 1.07879613],
[ 0.51099267],
[-0.06160413],
[-0.05681078],
[-0.06639747],
[ 0.50619933],
[-0.62461423],
[-0.63420092],
[ 0.51099267],
[-0.05681078],
[ 0.51099267],
[-0.62940758],
[ 0.51099267],
[-0.05681078]
[ 0.51099267],
 0.51099267],
 0.51099267],
[ 1.07879613],
 0.51099267],
[-0.07119082],
[-0.06639747],
[-1.7554278],
[-0.06160413],
```

```
[-0.05681078],
[-0.06160413],
[ 0.51099267],
[-0.06160413],
[-0.63899427],
[-0.62461423],
[-0.62461423],
[-0.06160413],
[-0.05681078],
[-1.19241769],
[ 0.51099267],
[-0.62940758],
[-0.62940758],
[ 1.64659958],
[-0.63420092],
[-0.05681078],
[ 0.50140598],
[-0.05681078],
[-0.05681078],
[-0.05681078],
[-0.63420092],
[-0.02532169],
[-0.0333389],
[-0.63899427],
[ 0.51099267],
[-0.62461423],
[-0.62461423],
[ 1.07879613],
[ 1.05962275],
[-0.61982089],
[ 0.51099267],
 0.51099267],
[-0.05681078],
[-0.05681078],
[-0.62461423],
[-0.63420092],
[-1.19241769],
[ 0.50619933],
[-0.62461423],
[ 0.51099267],
[-0.05681078]
[-0.63420092],
[ 1.07879613],
[-0.05681078],
[-0.07119082],
[-0.61982089],
[-0.05681078],
[-0.05681078],
[-0.05681078],
[ 0.51099267],
```

```
[ 1.07879613],
[-0.63420092],
[-1.19241769],
[-0.06639747],
[-0.63899427],
[ 0.51099267],
[-1.20200438].
[ 0.51099267],
[ 1.07879613],
[-0.63420092],
 1.64659958],
[-0.03705763],
 1.07879613],
 0.51099267],
[-0.07119082],
[ 0.51099267],
[-0.62940758],
[-0.58940642],
[-1.18762434],
[-0.62940758],
[-0.61982089],
[-0.62940758],
[ 1.07879613],
[ 1.64659958],
[-0.62461423],
[-0.05681078],
[ 0.49661264],
[-0.62940758],
[-0.06639747],
[-0.63899427],
[-0.07598416],
[ 1.07879613],
[ 1.64659958],
[-0.05681078],
[-0.63420092],
[-0.05681078],
[-0.06160413],
[-0.05681078],
[-0.06160413],
[-0.63420092],
[-0.06160413],
[-0.62940758],
[ 0.00988613],
[-0.63420092],
[-0.63899427],
[-2.31843791],
[-1.7554278]
[ 0.51099267],
[-0.62461423],
[ 1.64659958],
```

```
[-0.62461423],
[ 2.21440304],
[ 1.07879613],
[-1.19241769],
[ 1.07879613],
[-0.62461423],
[ 1.07879613].
[-0.07598416],
[ 0.49181929],
 0.49181929],
 0.51099267],
[-0.63420092],
 1.078796131,
[-0.63420092],
[-0.05681078],
[-0.63420092],
[-0.61982089],
[-0.62461423],
[ 0.51099267],
[-0.05681078],
[-0.61982089],
[-0.63420092],
[ 1.07879613],
[-0.05681078],
[-0.03519826]
[ 0.51099267],
[-0.05681078],
[-1.18762434],
[-0.05681078],
[-0.63420092],
[-0.63420092],
[-0.05681078],
[ 0.50619933],
[ 0.50140598],
[-1.19241769],
[ 0.51099267],
 0.49661264],
[-0.06160413],
[-0.06639747],
[ 0.50619933],
[ 0.51099267],
[-0.62940758],
[-0.05681078],
[ 0.51099267],
[-0.62461423],
[-1.76501449],
[ 1.06441609],
[ 0.51099267],
[-0.62461423],
[ 0.51099267],
```

```
[-0.05681078],
[ 1.07879613],
[-1.19721103],
[-0.07119082],
[-0.61982089],
[-0.62940758],
[-1.19721103],
[ 1.07879613],
[-1.20200438],
[ 1.07879613],
[-0.05681078],
[-0.05681078],
[-0.62940758],
[-0.06639747],
[-0.63899427],
[ 0.51099267],
 1.07879613],
 1.07879613],
[-1.19241769],
[-0.06160413],
[ 0.51099267],
[-0.62940758],
[ 1.07879613],
[-0.62940758],
[ 0.51099267],
[-0.63420092],
 0.51099267],
[-0.63420092]
[ 2.21440304],
[-0.62940758],
[-0.62940758],
 1.07879613],
[ 1.07879613],
 0.51099267],
[ 0.51099267],
[-0.05681078],
[ 0.51099267],
[-0.05681078],
[-0.62940758],
[-0.63420092],
 1.078796131,
[-0.05681078],
[ 1.07400278],
[-0.06639747],
[ 0.51099267],
 1.07879613],
 0.510992671,
[-0.06639747],
[ 1.64659958],
[ 0.83834439],
```

```
[-1.19241769],
       [-0.06160413],
       [ 0.51099267],
       [ 0.51099267],
       [ 0.51099267],
       [-0.63420092],
       [-0.62461423],
       [-0.63420092],
       [ 0.51099267],
       [-0.06639747],
       [-0.61982089],
       [ 1.64659958],
       [ 1.07879613],
       [-0.06639747],
       [-1.18762434],
       [-1.18762434],
       [-0.62940758],
       [-0.05681078],
       [ 1.64659958],
       [ 1.07879613],
       [-0.05681078],
       [-0.62940758],
       [-0.61072905],
       [-0.05681078],
       [ 0.51099267],
       [-0.06160413],
       [-0.62461423],
       [-0.05681078],
       [-0.05681078],
       [-0.06639747],
       [ 0.50619933],
       [-0.62940758],
       [-0.05681078],
       [-0.05681078],
       [-0.05681078],
       [-0.05681078],
       [ 0.51099267]])
from sklearn.metrics import r2_score
print(f"R2 Score : {r2 score(Y test,y pred)*100} % ")
R2 Score : 55.15103204321362 %
print(f"Mean absolute error: {np.mean(np.absolute(y_pred - Y_test))}
")#pred - actual
Mean absolute error: 0.4076871161048974
print("Residual sum of squares (MSE): %.2f" % np.mean((y_pred -
Y test) **2))
```

```
Residual sum of squares (MSE): 0.33
accuracy = print(f"accuracy : {r2 score(Y test,y pred)*100} % ")
accuracy : 55.15103204321362 %
Plot Outputs
import matplotlib.pyplot as plt
plt.scatter(X test[:,1],X test[:,2],c=Y test)
plt.plot(X_train, regr.coef_[0][1]*X_train + regr.intercept_[0], 'r')
\#y = mx + c
plt.xlabel("OverallQual")
plt.ylabel("MiscVal")
Text(0, 0.5, 'MiscVal')
     50
    40
     30
  MiscVal
    20
    10
     0
```

Ans: The best possible accuracy is having the 2nd model that is R2 Score is 9.09%.

The lower value of R2 Score then it is a accurate model

10

OverallQual

15

20

25

5

0

-5

Que.4 We are providing you churn dataset and we expect you to apply logistic regression on it and try to change the hyperparameters so that you can get the best possible acuracy

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
churn_df = pd.read_csv("C:/Users/Lenovo/Documents/Data
Set/ChurnData.csv")
churn df.head()
            age address
   tenure
                          income
                                   ed employ equip callcard
wireless \
     11.0
          33.0
                     7.0
                           136.0 5.0
                                          5.0
                                                 0.0
                                                            1.0
1.0
                                          0.0
     33.0 33.0
                    12.0
                            33.0
                                 2.0
                                                 0.0
                                                            0.0
1
0.0
                     9.0
2
     23.0 30.0
                            30.0 1.0
                                          2.0
                                                 0.0
                                                            0.0
0.0
3
     38.0 35.0
                     5.0
                            76.0 2.0
                                         10.0
                                                 1.0
                                                            1.0
1.0
      7.0 35.0
                    14.0
                            80.0 2.0
                                         15.0
                                                 0.0
                                                            1.0
4
0.0
                 pager internet callwait confer ebill
                                                           loglong
   longmon
            . . .
logtoll \
                   1.0
                             0.0
                                       1.0
                                               1.0
                                                      0.0
                                                              1.482
      4.40
3.033
      9.45
                   0.0
                             0.0
                                       0.0
                                               0.0
                                                      0.0
                                                              2.246
1
3.240
      6.30
                             0.0
2
                   0.0
                                       0.0
                                               1.0
                                                      0.0
                                                              1.841
3.240
      6.05
                   1.0
                             1.0
                                       1.0
                                               1.0
                                                      1.0
                                                              1.800
3.807
      7.10
                   0.0
                             0.0
                                       1.0
                                               1.0
                                                      0.0
                                                              1.960
3.091
   lnine custest
                   churn
```

	CUTUC	custcat	Churn
0	4.913	4.0	1.0
1	3.497	1.0	1.0
2	3.401	3.0	0.0
3	4.331	4.0	0.0
4	4.382	3.0	0.0

[5 rows x 28 columns]

Data Pre-Processing and Selection

```
churn_df = churn_df[['tenure', 'age', 'address', 'income', 'ed',
  'employ', 'equip', 'callcard', 'wireless', 'churn']]
churn_df.head()
```

t	enure	age	address	income	ed	employ	equip	callcard
wire	less	\						
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0
1.0								
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0
0.0								
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0
0.0								
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0
1.0								
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0
0.0								

churn 0 1.0 1 1.0 2 0.0 3 0.0 4 0.0

churn_df['churn'] = churn_df['churn'].astype('int')
churn_df.head()

t	enure	age	address	income	ed	employ	equip	callcard
wire		\						
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0
1.0	22.0	22.0	12.0	22.0	2.0	0 0	0 0	0.0
7 V	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0
0.0 2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0
0.0	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0
1.0								
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0
0.0								

churn_df.shape # No. of rows nd no. of cols

```
(200, 10)
churn df.columns
dtvpe='object')
churn df.info() #how many null/empty values present
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 10 columns):
              Non-Null Count
#
    Column
                             Dtype
- - -
     -----
 0
    tenure
              200 non-null
                             float64
 1
              200 non-null
                             float64
    age
 2
    address
              200 non-null
                             float64
 3
              200 non-null
                             float64
    income
 4
              200 non-null
                             float64
    ed
 5
    employ
              200 non-null
                             float64
 6
              200 non-null
                             float64
    equip
 7
    callcard 200 non-null
                             float64
8
    wireless 200 non-null
                             float64
 9
              200 non-null
                             int32
    churn
dtypes: float64(9), int32(1)
memory usage: 15.0 KB
churn df.isnull().sum()
           0
tenure
           0
age
           0
address
income
           0
           0
ed
employ
equip
           0
           0
callcard
wireless
           0
churn
           0
dtype: int64
#independent variable
#asarray is used to concert columns to same data type to the array
X = np.asarray(churn_df[['tenure', 'age', 'address', 'income', 'ed',
'employ', 'equip']]) # Independent variable
X[0:1] # 0,1,2,3,4,5,6
array([[ 11., 33., 7., 136.,
                                5., 5.,
                                            0.]])
```

```
# Dependent variable
y = np.asarray(churn df['churn']) # Dependent variable
y [0:10]
array([1, 1, 0, 0, 0, 0, 0, 0, 0, 0])
Also we Normalize the Dataset
# For the values are for 1 to 10 and some are the 10 to 100 range
that's why we have to convert that values in the range
X[0:5]
                     7., 136.,
array([[ 11.,
               33.,
                                  5.,
                                        5.,
                                              0.],
       [ 33.,
               33.,
                     12., 33.,
                                  2.,
                                        0.,
                                              0.],
                                        2.,
               30.,
                      9.,
                           30.,
                                  1.,
                                              0.],
       [ 23.,
                     5.,
               35.,
                          76.,
                                       10.,
                                              1.],
       [ 38.,
                                  2.,
              35.,
                     14..
                           80..
                                  2..
                                       15.,
       [ 7.,
                                              0.11)
from sklearn import preprocessing
X = preprocessing.StandardScaler().fit(X).transform(X)
X[0:1]
array([[-1.13518441, -0.62595491, -0.4588971 , 0.4751423 , 1.6961288
        -0.58477841, -0.85972695]])
Train Test Dataset
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split( X, y,
test size=0.2, random state=200) # Trainingsize = 80%, Test = 20%
print ('Train set:', X train.shape, y train.shape)
print ('Test set:', X test.shape, y test.shape)
```

Train set: (160, 7) (160,) Test set: (40, 7) (40,)

Modeling (Logistic Regression with Scikit-learn)

Lets build our model using LogisticRegression from Scikit-learn package. This function implements logistic regression and can use different numerical optimizers to find parameters, including 'newtoncg', 'lbfgs', 'liblinear', 'sag', 'saga' solvers. You can find extensive information about the pros and cons of these optimizers if you search it in internet.

```
from sklearn.linear model import LogisticRegression
LR = LogisticRegression(solver='sag')
LR.fit(X train,y train) # Training
LR
LogisticRegression(solver='sag')
yhat = LR.predict(X test)#only questions passed and answers are saved
for evaluation
yhat[:5]
array([1, 0, 0, 0, 0])
yhat prob = LR.predict proba(X test)
yhat prob[:5]
array([[0.25580103, 0.74419897],
       [0.79835828, 0.20164172],
       [0.97099194, 0.02900806],
       [0.96104168, 0.03895832],
       [0.78135768, 0.21864232]])
```

Evaluation

```
from sklearn.metrics import f1_score
f1_score(y_test, yhat) #actualvale,predvalue
0.75
```

churn df

t	enure	age	address	income	ed	employ	equip	callcard
wirele								
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0
1.0	22.0	22.0	12.0	22.0	2.0	0 0	0 0	0.0
1 0.0	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0
2	23 O	30.0	9.0	30 0	1 0	2.0	0 0	0.0
0.0	2310	3010	3.0	3010	1.0	210	0.0	0.0

```
38.0 35.0
                       5.0
                               76.0 2.0
                                             10.0
                                                     1.0
                                                                1.0
1.0
4
        7.0 35.0
                       14.0
                               80.0
                                     2.0
                                             15.0
                                                     0.0
                                                                1.0
0.0
. .
                                                     . . .
                                                                . . .
. . .
       55.0
             44.0
                       24.0
                               83.0
                                     1.0
                                                     0.0
                                                                1.0
                                             23.0
195
0.0
196
       34.0
            23.0
                       3.0
                               24.0
                                     1.0
                                             7.0
                                                     0.0
                                                                1.0
0.0
197
       6.0 32.0
                       10.0
                               47.0 1.0
                                             10.0
                                                     0.0
                                                                1.0
0.0
                       0.0
                               25.0 4.0
                                              5.0
                                                     0.0
                                                                1.0
198
       24.0 30.0
1.0
199
       61.0 50.0
                       16.0
                              190.0 2.0
                                             22.0
                                                     1.0
                                                                1.0
1.0
     churn
0
         1
1
         1
2
         0
3
         0
4
         0
       . . .
195
         0
196
         0
197
         0
         1
198
199
         0
[200 rows x 10 columns]
X test
array([[-1.18150902e+00, -1.00927084e+00, -2.61522001e-01,
        -1.01476095e-03,
                           9.16299467e-01, -1.03245566e+00,
         1.16316000e+00],
                           3.70666503e-01,
       [-2.08692340e-01,
                                             1.12010367e+00,
         5.37589130e-01,
                           9.16299467e-01,
                                             3.10576093e-01,
        -8.59726954e-01],
       [ 9.95747358e-01,
                           1.44395110e+00,
                                             8.24041023e-01,
        -4.77171824e-01, -6.43359200e-01,
                                             1.87744647e+00,
        -8.59726954e-011,
       [ 1.69061641e+00,
                           2.59389889e+00,
                                             3.58729236e+00,
        -4.77171824e-01, -6.43359200e-01, -4.72859097e-01,
        -8.59726954e-011,
       [ 1.61904490e-01, -1.31592358e+00, -9.52334835e-01,
        -3.83501582e-01, -6.43359200e-01, -6.96697723e-01,
        -8.59726954e-01],
       [ 9.03098150e-01, 8.30645618e-01, 1.02141612e+00,
```

```
4.04889621e-01, -1.42318853e+00,
                                     1.98936579e+00,
 -8.59726954e-011,
[ 4.39852113e-01, -1.46924996e+00, -9.52334835e-01,
 -3.05443047e-01.
                   9.16299467e-01, -1.14437497e+00,
  1.16316000e+00],
[ 1.69061641e+00,
                   2.59389889e+00,
                                     2.50172933e+00,
 -3.28860608e-01, -1.42318853e+00,
                                     3.78007479e+00,
 -8.59726954e-01],
                   1.59727748e+00,
                                     1.90960405e+00,
[ 1.41266879e+00,
-2.19578659e-01, -6.43359200e-01, -6.96697723e-01,
-8.59726954e-011,
[ 1.08839657e+00,
                   1.06063518e+00,
                                     1.71222895e+00,
 -2.58607926e-01,
                   1.36470133e-01,
                                     1.20593060e+00,
 -8.59726954e-011,
                                     6.26665928e-01,
                   3.70666503e-01,
[ 1.55164260e+00,
 -7.12674424e-02, -6.43359200e-01,
                                     9.82091970e-01,
 -8.59726954e-01],
[-1.59843045e+00, -8.55944470e-01, -8.53647287e-01,
                   9.16299467e-01, -8.08617036e-01,
  4.67336448e-01,
  1.16316000e+001.
[-7.64587585e-01, -7.02618098e-01, 3.45406417e-02,
 -3.22381749e-02,
                   9.16299467e-01, -5.84778410e-01,
  1.16316000e+00],
[ 1.64429181e+00,
                   5.23992875e-01,
                                     1.31747876e+00,
  1.66163203e+00,
                   1.36470133e-01,
                                     9.82091970e-01,
 -8.59726954e-011,
[ 3.93527509e-01,
                                     7.25353475e-01,
                   2.94003318e-01,
  1.00461334e-01, -1.42318853e+00,
                                     1.20593060e+00,
 -8.59726954e-011,
[-9.96210604e-01, -1.16259721e+00, -1.05102238e+00,
 -3.91307435e-01, -6.43359200e-01, -1.14437497e+00,
-8.59726954e-011,
[-5.79289170e-01,
                   6.77319247e-01, -1.05102238e+00,
                   9.16299467e-01, -2.49020471e-01,
  5.92230104e-01,
 -8.59726954e-01],
[ 1.50531800e+00,
                   8.30645618e-01,
                                     5.27978380e-01,
  3.50248646e-01, -1.42318853e+00,
                                     1.54168853e+00,
 -8.59726954e-01],
[ 4.39852113e-01, -1.08593403e+00, -8.53647287e-01,
                   1.36470133e-01, -9.20536348e-01,
 -2.82025487e-01,
 -8.59726954e-011,
[-1.08885981e+00, -1.31592358e+00, -9.52334835e-01,
 -4.38142556e-01, -1.42318853e+00, -1.14437497e+00,
 -8.59726954e-011,
[ 1.59796721e+00, -4.72628541e-01, -7.54959740e-01,
 -2.11772805e-01, -6.43359200e-01, -1.37101158e-01,
 -8.59726954e-011,
                   1.06063518e+00,
                                     1.21879121e+00,
[ 1.69061641e+00,
                   1.36470133e-01,
  5.36262135e-02,
                                    1.65360785e+00,
  1.16316000e+00],
```

```
[-8.10912189e-01, -5.49291726e-01, -7.54959740e-01,
 -2.58607926e-01, -6.43359200e-01, 4.22495406e-01,
 -8.59726954e-01],
[-1.36680743e+00, -9.32607656e-01, -7.54959740e-01,
-4.38142556e-01, -6.43359200e-01, -5.84778410e-01,
 -8.59726954e-01],
[-1.27415823e+00. -1.46924996e+00. -8.53647287e-01.
 -3.91307435e-01,
                   9.16299467e-01, -1.14437497e+00,
 -8.59726954e-01],
[ 1.32001958e+00, -1.23926040e+00, -7.54959740e-01,
 6.79109254e-03,
                   1.36470133e-01, -9.20536348e-01,
  1.16316000e+00],
[ 3.47202905e-01, -9.32607656e-01, -7.54959740e-01,
 -3.28860608e-01, -1.42318853e+00, 3.10576093e-01,
 -8.59726954e-01],
[-4.40315359e-01, -8.55944470e-01, -7.54959740e-01,
 6.79109254e-03,
                  1.36470133e-01, -3.60939784e-01,
 1.16316000e+00],
[-2.33939249e-02, -5.49291726e-01, -4.58897097e-01,
  2.24027995e-02.
                   9.16299467e-01, -2.51818454e-02,
 -8.59726954e-01],
[-1.16043132e-01, -6.25954912e-01, 3.45406417e-02,
 -2.58607926e-01,
                   9.16299467e-01, -3.60939784e-01,
  1.16316000e+00],
                                    1.31747876e+00,
[ 8.10448943e-01,
                   1.21396155e+00,
 -2.97637194e-01,
                  -1.42318853e+00, -3.60939784e-01,
-8.59726954e-01],
                   1.40676946e-01, -8.53647287e-01,
[ 3.47202905e-01,
 -1.57131831e-01,
                   9.16299467e-01, 8.70172658e-01,
  1.16316000e+00]
                                     5.27978380e-01,
[ 7.64124339e-01,
                   6.40137602e-02,
 -3.75695728e-01,
                   1.36470133e-01, -2.49020471e-01,
 -8.59726954e-01],
                   2.67056208e+00,
[ 1.22737038e+00,
                                     8.24041023e-01,
 -3.13248901e-01,
                   1.36470133e-01,
                                    8.70172658e-01,
 -8.59726954e-01],
[ 5.32501320e-01, -8.93126115e-02,
                                    4.29290832e-01,
 4.04889621e-01,
                   9.16299467e-01,
                                    1.98656780e-01,
 1.16316000e+00],
                   4.47329689e-01, -1.05102238e+00,
[ 1.61904490e-01,
                   9.16299467e-01, -2.51818454e-02,
 -5.56557354e-02,
 -8.59726954e-011,
                   1.52061429e+00,
[ 1.69061641e+00,
                                   2.20566669e+00,
 -1.10296710e-01, -1.42318853e+00, -2.49020471e-01,
 -8.59726954e-01],
[-1.62367736e-01, -1.08593403e+00, -8.53647287e-01,
                   9.16299467e-01, -1.03245566e+00,
 1.23878895e-01,
  1.16316000e+001,
[-1.22783362e+00, -1.26494257e-02, 3.45406417e-02,
 -2.82025487e-01, 9.16299467e-01, -8.08617036e-01,
```

```
1.16316000e+001,
       [ 4.86176716e-01, 2.94003318e-01, 3.45406417e-02,
         1.62908162e-01,
                         1.36470133e-01, 7.58253345e-01,
         1.16316000e+0011)
X test[:,1] #1 index col values
array([-1.00927084, 0.3706665, 1.4439511, 2.59389889, -
1.31592358,
        0.83064562, -1.46924996, 2.59389889, 1.59727748,
1.06063518.
        0.3706665 , -0.85594447 , -0.7026181 , 0.52399288 ,
0.29400332,
       -1.16259721, 0.67731925, 0.83064562, -1.08593403, -
1.31592358,
       -0.47262854, 1.06063518, -0.54929173, -0.93260766, -
1.46924996,
       -1.2392604 , -0.93260766 , -0.85594447 , -0.54929173 , -
0.62595491,
        1.21396155, 0.14067695, 0.06401376, 2.67056208, -
0.08931261,
        0.44732969, 1.52061429, -1.08593403, -0.01264943,
0.294003321)
X test[:,-2] #2nd last column values
array([-1.03245566, 0.31057609, 1.87744647, -0.4728591 , -
0.69669772,
        1.98936579, -1.14437497, 3.78007479, -0.69669772,
1.2059306
        0.98209197, -0.80861704, -0.58477841, 0.98209197,
1.2059306 ,
       -1.14437497, -0.24902047, 1.54168853, -0.92053635, -
1.14437497,
       -0.13710116, 1.65360785, 0.42249541, -0.58477841, -
1.14437497,
       -0.92053635, 0.31057609, -0.36093978, -0.02518185, -
0.36093978.
       -0.36093978, 0.87017266, -0.24902047, 0.87017266,
0.19865678,
       -0.02518185, -0.24902047, -1.03245566, -0.80861704,
0.75825334])
plt.scatter(X test[:,1],X test[:,-2])
<matplotlib.collections.PathCollection at 0x1c2aaec3550>
```


import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c = y_test) #coloring based on
actual values

<matplotlib.collections.PathCollection at 0x1c2aafc2910>

import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c = yhat)

<matplotlib.collections.PathCollection at 0x1c2ab032430>

```
3
   2
   1
   0
  -1
            -1
                        0
                                   1
                                               2
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression(solver='newton-cg')
LR.fit(X_train,y_train) # Training
LR
LogisticRegression(solver='newton-cg')
yhat = LR.predict(X_test)#only questions passed and answers are saved
for evaluation
vhat[:5]
array([1, 0, 0, 0, 0])
yhat prob = LR.predict proba(X test)
yhat_prob[:5]
array([[0.25573477, 0.74426523],
       [0.79831414, 0.20168586],
       [0.97100876, 0.02899124],
       [0.96102166, 0.03897834],
       [0.78136144, 0.21863856]])
from sklearn.metrics import fl score
fl score(y test, yhat) #actualvale, predvalue
0.75
churn df
                                                         callcard
     tenure
              age address
                            income
                                     ed
                                          employ equip
wireless
```

11.0

33.0

7.0

136.0 5.0

5.0

0.0

1.0

```
1.0
       33.0 33.0
                       12.0
                                33.0 2.0
                                               0.0
                                                       0.0
                                                                  0.0
1
0.0
2
       23.0
              30.0
                        9.0
                                30.0
                                      1.0
                                               2.0
                                                       0.0
                                                                  0.0
0.0
3
       38.0
             35.0
                        5.0
                                76.0
                                      2.0
                                              10.0
                                                       1.0
                                                                  1.0
1.0
        7.0
             35.0
                       14.0
                                80.0
                                      2.0
                                              15.0
                                                       0.0
                                                                  1.0
4
0.0
. .
                                                       . . .
                         . . .
                                                                  . . .
195
       55.0
              44.0
                       24.0
                                83.0
                                       1.0
                                              23.0
                                                       0.0
                                                                  1.0
0.0
                        3.0
                                      1.0
                                                       0.0
                                                                  1.0
196
       34.0
              23.0
                                24.0
                                               7.0
0.0
197
        6.0 32.0
                       10.0
                                47.0
                                      1.0
                                              10.0
                                                       0.0
                                                                  1.0
0.0
198
       24.0
             30.0
                        0.0
                                25.0 4.0
                                               5.0
                                                       0.0
                                                                  1.0
1.0
                       16.0
            50.0
                               190.0 2.0
                                              22.0
                                                       1.0
                                                                  1.0
199
       61.0
1.0
     churn
0
         1
1
         1
2
         0
3
         0
4
         0
. .
       . . .
195
         0
196
         0
197
         0
         1
198
199
[200 rows x 10 columns]
X test
array([[-1.18150902e+00, -1.00927084e+00, -2.61522001e-01,
        -1.01476095e-03,
                            9.16299467e-01, -1.03245566e+00,
         1.16316000e+00],
       [-2.08692340e-01,
                            3.70666503e-01,
                                              1.12010367e+00,
         5.37589130e-01,
                            9.16299467e-01,
                                              3.10576093e-01,
        -8.59726954e-01],
                            1.44395110e+00,
       [ 9.95747358e-01,
                                              8.24041023e-01,
        -4.77171824e-01, -6.43359200e-01,
                                              1.87744647e+00,
        -8.59726954e-01],
       [ 1.69061641e+00,
                            2.59389889e+00,
                                              3.58729236e+00,
        -4.77171824e-01, -6.43359200e-01, -4.72859097e-01,
```

```
-8.59726954e-01],
[ 1.61904490e-01, -1.31592358e+00, -9.52334835e-01,
 -3.83501582e-01, -6.43359200e-01, -6.96697723e-01,
-8.59726954e-011.
                   8.30645618e-01,
                                     1.02141612e+00,
[ 9.03098150e-01,
  4.04889621e-01, -1.42318853e+00,
                                     1.98936579e+00,
 -8.59726954e-011.
[ 4.39852113e-01, -1.46924996e+00, -9.52334835e-01,
 -3.05443047e-01,
                   9.16299467e-01, -1.14437497e+00,
  1.16316000e+00],
[ 1.69061641e+00,
                   2.59389889e+00,
                                     2.50172933e+00,
                                     3.78007479e+00,
 -3.28860608e-01, -1.42318853e+00,
 -8.59726954e-011,
                   1.59727748e+00,
[ 1.41266879e+00,
                                     1.90960405e+00,
 -2.19578659e-01, -6.43359200e-01, -6.96697723e-01,
 -8.59726954e-01],
                                     1.71222895e+00,
[ 1.08839657e+00,
                   1.06063518e+00,
 -2.58607926e-01,
                   1.36470133e-01,
                                     1.20593060e+00,
 -8.59726954e-01],
[ 1.55164260e+00,
                   3.70666503e-01.
                                     6.26665928e-01.
 -7.12674424e-02,
                  -6.43359200e-01,
                                     9.82091970e-01,
 -8.59726954e-01],
[-1.59843045e+00, -8.55944470e-01, -8.53647287e-01,
  4.67336448e-01,
                   9.16299467e-01, -8.08617036e-01,
  1.16316000e+00],
[-7.64587585e-01, -7.02618098e-01,
                                     3.45406417e-02,
 -3.22381749e-02,
                   9.16299467e-01, -5.84778410e-01,
  1.16316000e+001,
[ 1.64429181e+00,
                   5.23992875e-01,
                                     1.31747876e+00,
  1.66163203e+00,
                   1.36470133e-01,
                                     9.82091970e-01,
 -8.59726954e-01],
[ 3.93527509e-01,
                   2.94003318e-01,
                                     7.25353475e-01,
  1.00461334e-01, -1.42318853e+00,
                                     1.20593060e+00,
 -8.59726954e-01],
[-9.96210604e-01, -1.16259721e+00, -1.05102238e+00,
 -3.91307435e-01, -6.43359200e-01, -1.14437497e+00,
-8.59726954e-01],
                   6.77319247e-01, -1.05102238e+00,
[-5.79289170e-01,
  5.92230104e-01,
                   9.16299467e-01, -2.49020471e-01,
 -8.59726954e-01],
                                     5.27978380e-01,
[ 1.50531800e+00,
                   8.30645618e-01,
  3.50248646e-01, -1.42318853e+00,
                                     1.54168853e+00,
 -8.59726954e-01],
[ 4.39852113e-01, -1.08593403e+00, -8.53647287e-01,
                   1.36470133e-01, -9.20536348e-01,
 -2.82025487e-01,
 -8.59726954e-01],
[-1.08885981e+00, -1.31592358e+00, -9.52334835e-01,
 -4.38142556e-01, -1.42318853e+00, -1.14437497e+00,
 -8.59726954e-01],
[ 1.59796721e+00, -4.72628541e-01, -7.54959740e-01,
```

```
-2.11772805e-01, -6.43359200e-01, -1.37101158e-01,
 -8.59726954e-011,
                   1.06063518e+00,
                                     1.21879121e+00,
[ 1.69061641e+00,
 5.36262135e-02.
                   1.36470133e-01,
                                     1.65360785e+00,
  1.16316000e+00],
[-8.10912189e-01, -5.49291726e-01, -7.54959740e-01,
 -2.58607926e-01, -6.43359200e-01, 4.22495406e-01,
 -8.59726954e-01],
[-1.36680743e+00, -9.32607656e-01, -7.54959740e-01,
 -4.38142556e-01, -6.43359200e-01, -5.84778410e-01,
 -8.59726954e-01],
[-1.27415823e+00, -1.46924996e+00, -8.53647287e-01,
 -3.91307435e-01,
                   9.16299467e-01, -1.14437497e+00,
 -8.59726954e-011,
[ 1.32001958e+00, -1.23926040e+00, -7.54959740e-01,
                   1.36470133e-01, -9.20536348e-01,
 6.79109254e-03,
  1.16316000e+00],
[ 3.47202905e-01, -9.32607656e-01, -7.54959740e-01,
-3.28860608e-01, -1.42318853e+00, 3.10576093e-01,
 -8.59726954e-011.
[-4.40315359e-01, -8.55944470e-01, -7.54959740e-01,
 6.79109254e-03,
                   1.36470133e-01, -3.60939784e-01,
 1.16316000e+00],
[-2.33939249e-02, -5.49291726e-01, -4.58897097e-01,
 2.24027995e-02,
                   9.16299467e-01, -2.51818454e-02,
 -8.59726954e-01],
[-1.16043132e-01, -6.25954912e-01, 3.45406417e-02,
                   9.16299467e-01, -3.60939784e-01,
 -2.58607926e-01,
  1.16316000e+001,
[ 8.10448943e-01,
                   1.21396155e+00,
                                    1.31747876e+00,
                  -1.42318853e+00, -3.60939784e-01,
 -2.97637194e-01,
-8.59726954e-01],
                   1.40676946e-01, -8.53647287e-01,
[ 3.47202905e-01,
                   9.16299467e-01, 8.70172658e-01,
 -1.57131831e-01,
  1.16316000e+00],
[ 7.64124339e-01,
                   6.40137602e-02,
                                     5.27978380e-01,
-3.75695728e-01,
                   1.36470133e-01, -2.49020471e-01,
-8.59726954e-01],
[ 1.22737038e+00,
                   2.67056208e+00,
                                     8.24041023e-01,
 -3.13248901e-01,
                   1.36470133e-01,
                                     8.70172658e-01,
 -8.59726954e-01],
[ 5.32501320e-01, -8.93126115e-02,
                                     4.29290832e-01,
 4.04889621e-01,
                   9.16299467e-01,
                                     1.98656780e-01,
  1.16316000e+001,
[ 1.61904490e-01,
                   4.47329689e-01, -1.05102238e+00,
 -5.56557354e-02,
                   9.16299467e-01, -2.51818454e-02,
 -8.59726954e-011,
                   1.52061429e+00, 2.20566669e+00,
[ 1.69061641e+00,
 -1.10296710e-01, -1.42318853e+00, -2.49020471e-01,
-8.59726954e-01],
```

```
[-1.62367736e-01, -1.08593403e+00, -8.53647287e-01,
         1.23878895e-01,
                         9.16299467e-01, -1.03245566e+00,
         1.16316000e+00],
       [-1.22783362e+00, -1.26494257e-02, 3.45406417e-02,
        -2.82025487e-01.
                         9.16299467e-01, -8.08617036e-01,
         1.16316000e+00],
       [ 4.86176716e-01, 2.94003318e-01, 3.45406417e-02,
         1.62908162e-01, 1.36470133e-01, 7.58253345e-01,
         1.16316000e+00]])
X test[:,1] #1 index col values
array([-1.00927084, 0.3706665, 1.4439511, 2.59389889, -
1.31592358,
        0.83064562, -1.46924996, 2.59389889, 1.59727748,
1.06063518,
        0.3706665 , -0.85594447 , -0.7026181 , 0.52399288 ,
0.29400332,
       -1.16259721, 0.67731925, 0.83064562, -1.08593403, -
1.31592358,
       -0.47262854, 1.06063518, -0.54929173, -0.93260766, -
1.46924996,
       -1.2392604 , -0.93260766 , -0.85594447 , -0.54929173 , -
0.62595491,
        1.21396155, 0.14067695, 0.06401376, 2.67056208, -
0.08931261.
        0.44732969, 1.52061429, -1.08593403, -0.01264943,
0.29400332])
X test[:,-2] #2nd last column values
array([-1.03245566, 0.31057609, 1.87744647, -0.4728591 , -
0.69669772,
        1.98936579, -1.14437497, 3.78007479, -0.69669772,
1.2059306
        0.98209197, -0.80861704, -0.58477841, 0.98209197,
1.2059306
       -1.14437497, -0.24902047, 1.54168853, -0.92053635, -
1.14437497,
       -0.13710116, 1.65360785, 0.42249541, -0.58477841, -
1.14437497,
       -0.92053635, 0.31057609, -0.36093978, -0.02518185, -
0.36093978,
       -0.36093978, 0.87017266, -0.24902047, 0.87017266,
0.19865678,
       -0.02518185, -0.24902047, -1.03245566, -0.80861704,
0.758253341)
plt.scatter(X test[:,1],X test[:,-2])
<matplotlib.collections.PathCollection at 0x1c2ab094e80>
```


import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c = y_test) #coloring based on
actual values

<matplotlib.collections.PathCollection at 0x1c2ab0fc1f0>

import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c = yhat)

<matplotlib.collections.PathCollection at 0x1c2ab1556d0>

LogisticRegression(solver='liblinear')

LR

```
from sklearn.metrics import f1_score
f1_score(y_test, yhat) #actualvale,predvalue
0.75
```

Ans: The Best possible accuracy will be 75%

694 776715

Que 5: We are providing you the cell dataset and we expect you to use all the independent variables for creating the SVM machine learning model and change the hyperparameters so that you can get the best accuracy

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.model selection import train test split
import matplotlib.pyplot as plt
cell df = pd.read csv("C:/Users/Lenovo/Documents/Data
Set/cell samples.csv")
cell_df.head()
        ID
           Clump UnifSize UnifShape MargAdh SingEpiSize
BareNuc \
  1000025
                5
                           1
                                      1
                                               1
                                                             2
                                                                     1
  1002945
                5
                           4
                                      4
                                               5
                                                             7
                                                                    10
1
2
  1015425
                3
                           1
                                               1
                                                             2
                                                                     2
                                      1
  1016277
                                               1
                                                                     4
3
                6
                           8
                                      8
                                                             3
  1017023
                4
                           1
                                      1
                                               3
                                                             2
                                                                     1
   BlandChrom
               NormNucl Mit Class
0
            3
                      1
                            1
                                   2
            3
                      2
                                   2
                            1
1
            3
2
                      1
                            1
                                   2
3
            3
                      7
                            1
                                   2
4
                      1
                            1
                                   2
cell df.tail()
             Clump UnifSize UnifShape MargAdh SingEpiSize BareNuc
```

(695	841769	2	2	1	1	_	1	2	1
(696	888820	5	5	10	10)	3	7	3
(697	897471	4	ļ	8	6	j	4	3	4
(698	897471	4	ļ	8	8	3	5	4	5
((694 695 696 697 698		om N 1 1 8 10	NormNucl 1 1 10 6 4	1 1 2 1	Class 2 2 4 4 4				
(cell_									
,	\	ID	Clun						SingEpiSize	
(0	1000025		5	1		1	1	2	1
:	1	1002945		5	4		4	5	7	10
2	2	1015425		3	1		1	1	2	2
3	3	1016277		6	8		8	1	3	4
4	4	1017023		4	1		1	3	2	1
ı				•						
(694	776715		3	1		1	1	3	2
(695	841769		2	1		1	1	2	1
(696	888820		5	10	1	.0	3	7	3
(697	897471		4	8		6	4	3	4
(698	897471		4	8		8	5	4	5
	0 1 2 3	BlandChr	om N 3 3 3	NormNucl 1 2 1 7	1 1 1	Class 2 2 2 2 2				

```
4
               3
                          1
                               1
                                       2
             . . .
                        . . .
                                       2
694
               1
                          1
                               1
                         1
                                       2
695
               1
                               1
                               2
                         10
696
               8
                                       4
697
              10
                               1
                                       4
                          6
698
              10
                          4
                               1
                                       4
```

[699 rows x 11 columns]

Data pre-processing and selection

cell_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 699 entries, 0 to 698
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	ID	699 non-null	int64
1	Clump	699 non-null	int64
2	UnifSize	699 non-null	int64
3	UnifShape	699 non-null	int64
4	MargAdh	699 non-null	int64
5	SingEpiSize	699 non-null	int64
6	BareNuc	699 non-null	object
7	BlandChrom	699 non-null	int64
8	NormNucl	699 non-null	int64
9	Mit	699 non-null	int64
10	Class	699 non-null	int64

dtypes: int64(10), object(1)

memory usage: 60.2+ KB

cell_df.describe()

	ID	Clump	UnifSize	UnifShape	MargAdh	\
count	6.990000e+02	699.000000	699.000000	699.000000	699.000000	
mean	1.071704e+06	4.417740	3.134478	3.207439	2.806867	
std	6.170957e+05	2.815741	3.051459	2.971913	2.855379	
min	6.163400e+04	1.000000	1.000000	1.000000	1.000000	
25%	8.706885e+05	2.000000	1.000000	1.000000	1.000000	
50%	1.171710e+06	4.000000	1.000000	1.000000	1.000000	
75%	1.238298e+06	6.000000	5.000000	5.000000	4.000000	
max	1.345435e+07	10.000000	10.000000	10.000000	10.000000	
	SingEpiSize	BlandChrom	NormNucl	Mit	Class	
count	699.000000	699.000000	699.000000	699.000000	699.000000	
mean	3.216023	3.437768	2.866953	1.589413	2.689557	
std	2.214300	2.438364	3.053634	1.715078	0.951273	
min	1.000000	1.000000	1.000000	1.000000	2.000000	

25%	2.000000	2.000000	1.000000	1.000000	2.000000
50%	2.000000	3.000000	1.000000	1.000000	2.000000
75%	4.000000	5.000000	4.000000	1.000000	4.000000
max	10.000000	10.000000	10.000000	10.000000	4.000000

cell_df.drop('BareNuc',axis = 1,inplace = True)

cell_df

	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize
Blan	dChrom \					
0 3	1000025	5	1	1	1	2
1 3	1002945	5	4	4	5	7
2	1015425	3	1	1	1	2
2 3 3 3	1016277	6	8	8	1	3
4	1017023	4	1	1	3	2
• •						
694 1	776715	3	1	1	1	3
695 1	841769	2	1	1	1	2
696 8	888820	5	10	10	3	7
697 10	897471	4	8	6	4	3
698 10	897471	4	8	8	5	4

	NormNucl	Mit	Class
0	1	1	2
1	2	1	2
2	1	1	2
3	7	1	2
4	1	1	2
694	1	1	2
695	1	1	2
696	10	2	4
697	6	1	4
698	4	1	4

[699 rows x 10 columns]

feature_df = cell_df[['Clump', 'UnifSize', 'UnifShape', 'MargAdh',
'SingEpiSize', 'BlandChrom', 'NormNucl', 'Mit']]
feature_df # Independent Variable

		UnifSize	UnifShape	MargAdh	SingEpiSize	BlandChrom
NormNu						
0	5	1	1	1	2	3
1						
1	5	4	4	5	7	3
2	_	-	-	-		_
2	3	1	1	1	2	3
1	6	8	8	1	3	3
3	O	0	0	1	3	3
4	4	1	1	3	2	3
1	7	_	_	3	2	J
-						
694	3	1	1	1	3	1
1						
695	2	1	1	1	2	1
1						
696	5	10	10	3	7	8
10		•			_	10
697	4	8	6	4	3	10
6	4	0	0	F	4	10
698 4	4	8	8	5	4	10
7						

	Mit
0	1
1	1
2	1
3	1
4	1
694	1
695	1
696	2
697	1
698	1

[699 rows x 8 columns]

feature_df.dtypes

Clump	int64
UnifSize	int64
UnifShape	int64
MargAdh	int64
SingEpiSize	int64

```
BlandChrom
               int64
NormNucl
               int64
Mit
               int64
dtype: object
X = np.asarray(feature df) # Independet variable independent variable
array got created
X[0:5] # show me elements from zeroth row to 5th row
array([[5, 1, 1, 1, 2, 3, 1, 1],
       [5, 4, 4, 5, 7, 3, 2, 1],
       [3, 1, 1, 1, 2, 3, 1, 1],
       [6, 8, 8, 1, 3, 3, 7, 1],
       [4, 1, 1, 3, 2, 3, 1, 1]], dtype=int64)
cell df['Class'] = cell df['Class'].astype('int')
y = np.asarray(cell_df['Class']) # Dependent variable
y [0:5]
array([2, 2, 2, 2, 2])
Train/Test dataset
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random_state=50)
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
Train set: (559, 8) (559,)
Test set: (140, 8) (140,)
```

Modeling (SVM with Scikit-learn)

The SVM algorithm offers a choice of kernel functions for performing its processing. Basically, mapping data into a higher dimensional space is called kernelling. The mathematical function used for the transformation is known as the kernel function, and can be of different types, such as:

- 1.Linear
- 2.Polynomial
- 3. Radial basis function (RBF)
- 4.Sigmoid

Each of these functions has its characteristics, its pros and cons, and its equation, but as there's no easy way of knowing which function performs best with any given dataset, we usually choose different functions in turn and compare the results. Let's just use the default, RBF (Radial Basis Function) for this lab.

```
from sklearn import svm
clf = svm.SVC(kernel='poly')
clf.fit(X_train, y_train) # Question and Answers
SVC(kernel='poly')
yhat = clf.predict(X_test) # Question
yhat [0:5]
array([2, 2, 2, 2, 2])
```

Evaluation

```
from sklearn.metrics import fl_score
fl score(y test, yhat, average='weighted')
```

0.9425054112554112

```
# write your code here
clf2 = svm.SVC(kernel='rbf')
clf2.fit(X_train, y_train)
yhat2 = clf2.predict(X test)
print("Avg F1-score: %.4f" % f1 score(y test, yhat2,
average="weighted"))
Avg F1-score: 0.9714
# write your code here
clf2 = svm.SVC(kernel='linear')
clf2.fit(X_train, y_train)
yhat2 = clf2.predict(X_test)
print("Avg F1-score: %.4f" % f1 score(y test, yhat2,
average="weighted"))
Avg F1-score: 0.9644
cell_df
          ID Clump UnifSize UnifShape MargAdh SingEpiSize
BlandChrom \
0
     1000025
                   5
                              1
                                                   1
                                                                 2
                                         1
3
1
                   5
                              4
                                         4
                                                   5
                                                                 7
     1002945
3
2
     1015425
                   3
                              1
                                         1
                                                   1
                                                                 2
3
3
     1016277
                   6
                              8
                                                   1
                                         8
                                                                 3
3
4
                                                   3
                                                                 2
     1017023
                   4
                              1
                                         1
3
. .
         . . .
                 . . .
                            . . .
                                       . . .
                                                 . . .
                                                               . . .
      776715
694
                   3
                              1
                                         1
                                                   1
                                                                 3
1
                   2
                                                                 2
695
      841769
                              1
                                         1
                                                   1
1
696
      888820
                   5
                             10
                                        10
                                                   3
                                                                 7
8
697
                              8
      897471
                   4
                                         6
                                                   4
                                                                 3
10
698
      897471
                   4
                              8
                                         8
                                                   5
                                                                 4
10
     NormNucl Mit Class
0
            1
                  1
                         2
```

```
2
2
               2
1
2
               1
                     1
                             2
3
               7
                     1
                             2
               1
                     1
4
                             2
694
               1
                     1
695
              1
                     1
                             2
696
                     2
                             4
             10
697
              6
                     1
                             4
                     1
698
               4
                             4
[699 rows x 10 columns]
X_test
```

X_test.shape

(140, 8)

```
import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c=y_test)
```

<matplotlib.collections.PathCollection at 0x1c2ab1e0190>

import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c=yhat2)

<matplotlib.collections.PathCollection at 0x1c2ab222ee0>

cell_df

D1	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize
0	dChrom \ 1000025	5	1	1	1	2
3	1002945	5	4	4	5	7
3	1015425	3	1	1	1	2
3 3 3	1016277	6	8	8	1	3
3 4 3	1017023	4	1	1	3	2
694	776715	3	1	1	1	3
695	841769	2	1	1	1	2
1 696	888820	5	10	10	3	7
8 697	897471	4	8	6	4	3
10 698 10	897471	4	8	8	5	4

```
NormNucl Mit Class
0
                1
                         2
            1
            2
1
                1
                         2
2
                         2
            1
                 1
3
            7
                1
                         2
4
           1
                1
                         2
          . . . . . . . . .
           \begin{matrix}1&&1\\1&&1\end{matrix}
                        2
694
                         2
695
           10 2
                        4
696
                1
697
            6
                         4
698
            4
                 1
[699 rows x 10 columns]
clf2.predict([[6,13,13,5,7,3,2,4]])
array([4])
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=50)
from sklearn import svm
clf = svm.SVC(kernel='poly')
clf.fit(X_train, y_train) #Training Model
training pred = clf.predict(X train)
print(f"training accuracy is {f1 score(y train, training pred,
average='weighted') }")
training accuracy is 0.9676813490496357
yhat = clf.predict(X test) #final
from sklearn.metrics import fl score
print(f"testing accuracy is {f1 score(y test, yhat,
average='weighted') }")
testing accuracy is 0.9425054112554112
```

Best accuracy can be give the hyperparameter is rbf (Radial Basis Function) = 97.14 %

Que 6 : Take the same cell Dataset and instead of SVM apply logistic regression in it.

```
import pandas as pd
import numpy as np
```

from sklearn import preprocessing
import matplotlib.pyplot as plt

cell_df = pd.read_csv("C:/Users/Lenovo/Documents/Data
Set/cell_samples.csv")
cell_df.head()

	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	
Ba 0	reNuc \ 1000025	5	1	1	1	2	1
1	1002945	5	4	4	5	7	10
2	1015425	3	1	1	1	2	2
3	1016277	6	8	8	1	3	4
4	1017023	4	1	1	3	2	1

	BlandChrom	NormNucl	Mit	Class
0	3	1	1	2
1	3	2	1	2
2	3	1	1	2
3	3	7	1	2
4	3	1	1	2

cell_df.tail()

\	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc
694	776715	3	1	1	1	3	2
695	841769	2	1	1	1	2	1
696	888820	5	10	10	3	7	3
697	897471	4	8	6	4	3	4
698	897471	4	8	8	5	4	5

	BlandChrom	NormNucl	Mit	Class
694	1	1	1	2
695	1	1	1	2
696	8	10	2	4
697	10	6	1	4
698	10	4	1	4

set(cell_df['Class'])

```
{2, 4}
cell df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 699 entries, 0 to 698
Data columns (total 11 columns):
                  Non-Null Count
#
     Column
                                   Dtype
     -----
                   0
     ID
                   699 non-null
                                   int64
 1
     Clump
                  699 non-null
                                   int64
 2
     UnifSize
                  699 non-null
                                   int64
 3
     UnifShape
                  699 non-null
                                   int64
 4
                  699 non-null
                                   int64
     MargAdh
 5
                                   int64
     SingEpiSize 699 non-null
 6
     BareNuc
                  699 non-null
                                   object
 7
     BlandChrom
                  699 non-null
                                   int64
 8
     NormNucl
                   699 non-null
                                   int64
 9
     Mit
                  699 non-null
                                   int64
 10
                  699 non-null
                                   int64
    Class
dtypes: int64(10), object(1)
memory usage: 60.2+ KB
cell df.isnull().sum()
ID
               0
               0
Clump
UnifSize
               0
               0
UnifShape
MargAdh
SingEpiSize
               0
BareNuc
               0
BlandChrom
               0
               0
NormNucl
Mit
               0
               0
Class
dtype: int64
cell df.drop('BareNuc',axis = 1,inplace = True)
cell df
              Clump
                     UnifSize
                                UnifShape
                                           MargAdh SingEpiSize
BlandChrom
0
     1000025
                  5
                             1
                                         1
                                                  1
                                                                2
3
1
                                                                7
     1002945
                  5
                             4
                                         4
                                                  5
3
2
                  3
                                                                2
     1015425
                             1
                                         1
                                                  1
3
3
                  6
                             8
                                        8
                                                  1
                                                                3
     1016277
3
```

4	1017023	4	1	:	1 3	2	
694	776715	3	1	;	1 1	3	
1 695 1	841769	2	1	:	1 1	2	
696 8	888820	5	10	10	9 3	7	
697 10	897471	4	8	(6 4	3	
698 10	897471	4	8	:	8 5	4	
	NormNucl	1 1 1 1 1 2 1	ass 2 2 2 2 2 2 2 4 4 4				
cell Chro		ıcl","Mit			,"MargAdh","S	ingEpiSize","Bland	
		Size Ur	ifShape	MargAdh	SingEpiSize	BlandChrom	
0	Nucl \ 5	1	1	1	2	3	
1	5	4	4	5	7	3	
2	3	1	1	1	2	3	
1 2 2 1 3 7	6	8	8	1	3	3	
7 4 1	4	1	1	3	2	3	
Mit Class 0 1 2							

```
2
1
     1
2
     1
            2
            2
3
     1
            2
4
     1
cell df.tail()
     Clump UnifSize UnifShape MargAdh SingEpiSize BlandChrom
NormNucl \
         3
694
                   1
                               1
                                        1
                                                      3
                                                                  1
1
695
         2
                   1
                               1
                                        1
                                                      2
                                                                  1
1
696
         5
                  10
                              10
                                        3
                                                      7
                                                                  8
10
697
         4
                   8
                               6
                                        4
                                                      3
                                                                 10
6
                   8
                               8
698
         4
                                        5
                                                      4
                                                                 10
4
     Mit Class
694
              2
       1
              2
695
       1
696
       2
              4
697
       1
              4
698
       1
cell df.shape
(699, 9)
cell df.columns
Index(['Clump', 'UnifSize', 'UnifShape', 'MargAdh', 'SingEpiSize',
       'BlandChrom', 'NormNucl', 'Mit', 'Class'],
      dtype='object')
# Independent variable
# asarray is used to concert columns to same data type to the array
np.asarray(cell df[["Clump","UnifSize","UnifShape","MargAdh","SingEpiS
ize","BlandChrom","NormNucl","Mit"]]) # independent variable
X[0:1]#0,1,2,3,4
array([[5, 1, 1, 1, 2, 3, 1, 1]], dtype=int64)
# Dependent variable
y = np.asarray(cell df['Class']) #dependent variable
y [0:9]
array([2, 2, 2, 2, 2, 4, 2, 2, 2], dtype=int64)
```

```
X[0:5]
array([[5, 1, 1, 1, 2, 3, 1, 1],
       [5, 4, 4, 5, 7, 3, 2, 1],
       [3, 1, 1, 1, 2, 3, 1, 1],
       [6, 8, 8, 1, 3, 3, 7, 1],
       [4, 1, 1, 3, 2, 3, 1, 1]], dtype=int64)
Train/Test dataset
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split( X, y,
test size=0.2, random state=200) # trainingsize = 80% test = 20%
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
Train set: (559, 8) (559,)
Test set: (140, 8) (140,)
Modeling (Logistic Regression with Scikit-learn)
Lets build our model using LogisticRegression from Scikit-learn
package. This function implements logistic regression and can use
different numerical optimizers to find parameters, including 'newton-
cg', 'lbfgs', 'liblinear', 'sag', 'saga' solvers. You can find extensive
information about the pros and cons of these optimizers if you search
it in internet.
from sklearn.linear model import LogisticRegression
LR = LogisticRegression(solver='saga')
LR.fit(X train,y train) # training
LR
C:\Users\Lenovo\anaconda3\lib\site-packages\sklearn\linear model\
sag.py:352: ConvergenceWarning: The max iter was reached which means
the coef did not converge
 warnings.warn(
LogisticRegression(solver='saga')
yhat = LR.predict(X test)# only questions passed and answers are saved
for evaluation
```

yhat[:5]

array([4, 2, 4, 4, 2], dtype=int64)

Evaluation

from sklearn.metrics import fl_score
fl_score(y_test, yhat, average='weighted') # actualvalue,predvalue
0.9498499911759516

cell_df

	ump		UnifShape	MargAdh	SingEpiSize	BlandChrom
NormNuc 0 1	l \ 5	1	1	1	2	3
1	5	4	4	5	7	3
2	3	1	1	1	2	3
3	6	8	8	1	3	3
, 4 1	4	1	1	3	2	3
694 1	3	1	1	1	3	1
695 1	2	1	1	1	2	1
696 10	5	10	10	3	7	8
697 6	4	8	6	4	3	10
698 4	4	8	8	5	4	10

	Mit	Class
0	1	2
1	1	2
2	1	2
3	1	2
4	1	2
 694		2

```
695
                2
        1
696
        2
                4
697
        1
                4
698
        1
                4
[699 rows x 9 columns]
X test
array([[10,
                   3, ...,
                             5,
                                  3,
                                      21,
              4,
        [ 5,
               1,
                   2, ...,
                              2,
                                  1,
                                       1],
               4,
                   2, ...,
                             4,
                                  3,
        [10,
                                     10],
               3,
                   3, ...,
                             3,
                                  3,
                                       1],
        [ 4,
                                 3,
        [ 5,
                   5, ...,
                             4,
                                       1],
                             8,
              5,
                   7, ...,
                                  9,
                                      1]], dtype=int64)
X test[:,1] #1 index col values .
array([ 4,
             1,
                  4, 7, 3,
                               1, 1, 8, 1, 10,
                                                      1, 5, 1,
                                                                    1,
                                                                         1,
                                                                             3,
1,
                                             1, 7,
                                                      9,
                                                           1,
         3,
             8,
                  1,
                      1,
                           1,
                                1,
                                    1,
                                         1,
                                                               1,
                                                                    1,
                                                                         1,
                                                                             2,
1,
                                    5,
         1,
             9, 10,
                      1,
                           1,
                                1,
                                         1, 10,
                                                  6,
                                                      1, 10, 10,
                                                                    3, 10,
                                                                             1,
1,
         1,
             1,
                                5,
                                    5,
                                         1,
                                             8,
                                                  1,
                                                      1,
                  1,
                      3,
                           1,
                                                          7,
                                                                5,
                                                                    1,
                                                                         1,
                                                                             2,
1,
         4,
             1,
                  7,
                      4,
                                1,
                                    3,
                                         1,
                                             4,
                                                      1,
                                                           1,
                                                                1,
                                                                             5,
                           1,
                                                  1,
                                                                    4,
                                                                         1,
1,
         1,
             2,
                                1,
                                    5,
                                         1,
                                                      1,
                  1,
                      1,
                           6,
                                             1,
                                                  1,
                                                           1,
                                                                1,
                                                                    1,
                                                                             1,
                                                                         1,
2,
                                                           3,
         1,
             1,
                  1,
                      1,
                           2,
                                1, 10, 1,
                                             4,
                                                  1,
                                                      7,
                                                                4,
                                                                    1,
                                                                         1,
                                                                             1,
6,
         3,
                           1, 1, 10, 10, 1, 1,
             6,
                  1,
                      1,
                                                      6,
                                                          8,
                                                               1,
                                                                    1,
                                                                         1,
                                                                             1,
10,
         2,
             3,
                  5, 5], dtype=int64)
X test[:,-2] #2nd last column values
array([ 3, 1, 3, 10, 1,
                                1, 1, 1,
                                             1,
                                                  3,
                                                      1,
                                                           4, 1,
                                                                    1,
                                                                         1,
                                                                             6,
1,
         1, 10,
                  1,
                      1,
                           1,
                                1,
                                    1,
                                         1,
                                             1,
                                                  4,
                                                      2,
                                                           1, 1,
                                                                    1,
                                                                         1,
                                                                             3,
2,
         1,
             7,
                  3,
                      1,
                                    1,
                                         1,
                                             3,
                                                  7,
                                                      1,
                                                           7, 10,
                           1,
                                1,
                                                                    4,
                                                                         1,
                                                                             1,
1,
         1,
                  1,
                           2,
                                4,
                                    5,
                                         1,
                                             8,
                                                  1,
                                                      1,
                                                           8,
                                                                3,
                                                                             2,
             1,
                      1,
                                                                    1,
                                                                         1,
1,
         3,
             1, 10,
                                    1,
                                         1,
                                                      1,
                                                                    3,
                                                                             9,
                      1,
                           1,
                                1,
                                             1,
                                                  1,
                                                           1,
                                                                1,
                                                                         1,
1,
             1,
         1,
                  1,
                      1, 10,
                                1,
                                    3,
                                         1,
                                             2,
                                                  1,
                                                      1,
                                                           1,
                                                                1,
                                                                    1,
                                                                         1,
                                                                             1,
1,
```

1, 1, 3, 1, 1, 1, 8, 1, 10, 1, 10, 4, 2, 1, 1, 1, 5,

1, 10, 1, 1, 1, 1, 8, 3, 1, 1, 10, 9, 1, 1, 1, 1, 3,

1, 3, 3, 9], dtype=int64)

plt.scatter(X_test[:,1],X_test[:,-2])

<matplotlib.collections.PathCollection at 0x1c2ac2742e0>

cell_df

NormN		UnifSize	UnifShape	MargAdh	SingEpiSize	BlandChrom
0	lucl \ 5	1	1	1	2	3
1	5	4	4	5	7	3
2	3	1	1	1	2	3
3	6	8	8	1	3	3
7 4 1	4	1	1	3	2	3
694 1	3	1	1	1	3	1
695 1	2	1	1	1	2	1
696	5	10	10	3	7	8

```
10
697
           4
                       8
                                     6
                                                4
                                                                 3
                                                                              10
6
                                     8
                                                5
                                                                              10
698
           4
                       8
                                                                 4
4
            Class
      Mit
0
        1
                 2
1
        1
                 2
2
                 2
        1
3
                 2
        1
4
        1
                 2
694
        1
                 2
        1
                 2
695
        2
                 4
696
697
        1
                 4
698
        1
                 4
```

[699 rows x 9 columns]

import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c = y_test) # Coloring based on
actual values

<matplotlib.collections.PathCollection at 0x1c2ac2d7970>

import matplotlib.pyplot as plt
plt.scatter(X_test[:,1],X_test[:,-2],c = yhat)

<matplotlib.collections.PathCollection at 0x1c2ac331f10>

Q7: We are providing you a dataset apart from churn and cell dataset which is titanic dataset remove unnecessary column which are not usefull with aspect of machine learning and apply label encoding where ever its necessary and store processed data into your memory

Dependent Column: Survived

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

titanic_df = pd.read_csv("C:/Users/Lenovo/Documents/Data
Set/titanic.csv")

titanic df
```

Unnamed: 0	PassengerId	Survived	Pclass	\
0	1	0	3	
1	2	1	1	
2	3	1	3	
3	4	1	1	
4	5	0	3	
885	886	0	3	
886	887	0	2	
887	888	1	1	
889	890	1	1	
	0 1 2 3 4 885 886 887	0 1 1 2 2 3 3 4 4 5 885 886 886 887 887 888	0 1 0 1 2 1 2 3 1 3 4 1 4 5 0 885 886 0 886 887 0 887 888 1	886 887 0 2 887 888 1 1

SibS	Name	Sex	Age
0 1	Braund, Mr. Owen Harris	male	22.0
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0
1 2	Heikkinen, Miss. Laina	female	26.0
0 3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0
1 4 0	Allen, Mr. William Henry	male	35.0
707 0	Rice, Mrs. William (Margaret Norton)	female	39.0
708 0	Montvila, Rev. Juozas	male	27.0
709	Graham, Miss. Margaret Edith	female	19.0
0 710	Behr, Mr. Karl Howell	male	26.0
0 711 0	Dooley, Mr. Patrick	male	32.0
0 1 2 3 4 	Parch Ticket Fare Embarked 0 A/5 21171 7.2500 S 0 PC 17599 71.2833 C 0 STON/02. 3101282 7.9250 S 0 113803 53.1000 S 0 373450 8.0500 S 5 382652 29.1250 Q		
708 709	0 211536 13.0000 S		
710 711	0 112053 30.0000 S 0 111369 30.0000 C 0 370376 7.7500 Q		
[712	rows x 12 columns]		
tita	nic_df.head()		
0 1 2 3 4	Innamed: 0 PassengerId Survived Pclass \ 0		

```
Name
                                                          Sex
                                                                Age
SibSp \
                             Braund, Mr. Owen Harris
                                                         male 22.0
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
2
                              Heikkinen, Miss. Laina female 26.0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
1
                            Allen, Mr. William Henry
4
                                                         male 35.0
0
                                Fare Embarked
   Parch
                    Ticket
0
                 A/5 21171
                             7.2500
       0
                                            S
                                            C
1
       0
                  PC 17599
                            71.2833
2
                                            S
          STON/02. 3101282
                             7.9250
                                            S
3
                    113803
                            53,1000
4
                                            S
       0
                    373450
                             8.0500
titanic df.tail()
     Unnamed: 0 PassengerId Survived
                                         Pclass
707
            885
                         886
                                      0
                                              3
708
            886
                         887
                                      0
                                              2
                                      1
                                              1
709
            887
                         888
                         890
                                              1
710
            889
                                      1
                                              3
711
            890
                         891
                                               Sex
                                                     Age SibSp Parch
                                      Name
Ticket \
     Rice, Mrs. William (Margaret Norton)
                                                                     5
707
                                           female
                                                   39.0
                                                              0
382652
708
                    Montvila, Rev. Juozas
                                              male 27.0
                                                                     0
                                                              0
211536
             Graham, Miss. Margaret Edith female 19.0
709
                                                              0
                                                                     0
112053
710
                    Behr, Mr. Karl Howell
                                              male 26.0
                                                                     0
111369
                      Dooley, Mr. Patrick
711
                                              male 32.0
                                                              0
                                                                     0
370376
       Fare Embarked
707
     29.125
708
     13.000
                   S
                   S
709
     30,000
                   C
710
     30.000
711
      7.750
```

```
titanic df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 712 entries, 0 to 711
Data columns (total 12 columns):
     Column
                  Non-Null Count
                                   Dtype
- - -
     _ _ _ _ _ _
                   _____
                                    - - - - -
 0
     Unnamed: 0
                   712 non-null
                                    int64
     PassengerId 712 non-null
 1
                                    int64
 2
                                   int64
     Survived
                   712 non-null
 3
     Pclass
                  712 non-null
                                    int64
 4
                  712 non-null
     Name
                                    object
 5
                  712 non-null
                                   object
     Sex
 6
                  712 non-null
                                    float64
     Age
 7
     SibSp
                  712 non-null
                                    int64
 8
     Parch
                  712 non-null
                                    int64
 9
     Ticket
                   712 non-null
                                   object
 10
                  712 non-null
                                    float64
    Fare
     Embarked
                  712 non-null
                                   obiect
 11
dtypes: float64(2), int64(6), object(4)
memory usage: 66.9+ KB
titanic df.isnull().sum()
Unnamed: 0
               0
PassengerId
               0
Survived
               0
Pclass
               0
Name
               0
               0
Sex
               0
Age
SibSp
               0
Parch
               0
               0
Ticket
Fare
               0
Embarked
dtype: int64
titanic df.shape
(712, 12)
titanic df = titanic df.drop(["Name","Ticket","Unnamed:
0","PassengerId","Age"],axis = 1)
titanic df
     Survived
              Pclass
                                        Parch
                           Sex
                                SibSp
                                                  Fare Embarked
0
            0
                     3
                          male
                                                7.2500
                                                               S
                                    1
                                            0
1
            1
                     1
                       female
                                    1
                                            0
                                               71.2833
                                                               C
                                                               S
2
            1
                     3 female
                                    0
                                               7.9250
                                            0
                                                               S
3
            1
                     1
                        female
                                    1
                                               53.1000
```

```
4
             0
                     3
                           male
                                              0
                                                  8.0500
                                                                 S
                                      0
                    . . .
                                            . . .
                                                                . .
                        female
                                                 29.1250
707
             0
                      3
                                      0
                                              5
                                                                 Q
                                                                 S
708
             0
                     2
                           male
                                      0
                                              0 13.0000
                                                                 S
             1
                      1
                        female
                                      0
                                              0 30.0000
709
                                                                 C
710
             1
                      1
                           male
                                      0
                                              0 30.0000
             0
                     3
                                      0
                                              0
                                                                 0
711
                           male
                                                  7.7500
[712 rows x 7 columns]
X =
titanic df[["Pclass", "Sex", "SibSp", "Parch", "Fare", "Embarked"]].values
Χ
array([[3, 'male', 1, 0, 7.25, 'S'], [1, 'female', 1, 0, 71.2833, 'C'],
       [3, 'female', 0, 0, 7.925, 'S'],
       [1, 'female', 0, 0, 30.0, 'S'],
[1, 'male', 0, 0, 30.0, 'C'],
       [3, 'male', 0, 0, 7.75, 'Q']], dtype=object)
Label Encoding
from sklearn import preprocessing
le Sex = preprocessing.LabelEncoder()
le_Sex.fit(['female','male'])
X[:,1] = le Sex.transform(X[:,1]) # I AM UPDATING MY FIRST COLUMN
FROM F, M TO 0, 1
le Embarked = preprocessing.LabelEncoder()
le_Embarked.fit([ 'S', 'C', 'Q'])
X[:,5] = le Embarked.transform(X[:,5]) # I AM UPDATING MY SECOND
COLUMN FROM S,C,Q TO 0,1,2
X[0:6]
array([[3, 1, 1, 0, 7.25, 2],
       [1, 0, 1, 0, 71.2833, 0],
       [3, 0, 0, 0, 7.925, 2],
       [1, 0, 1, 0, 53.1, 2],
       [3, 1, 0, 0, 8.05, 2],
       [1, 1, 0, 0, 51.8625, 2]], dtype=object)
Χ
array([[3, 1, 1, 0, 7.25, 2],
       [1, 0, 1, 0, 71.2833, 0],
       [3, 0, 0, 0, 7.925, 2],
```

```
[1, 0, 0, 0, 30.0, 2],
                          [1, 1, 0, 0, 30.0, 0],
                          [3, 1, 0, 0, 7.75, 1]], dtype=object)
Y = titanic df[["Survived"]]
Υ
                  Survived
0
1
                                           1
2
                                           1
3
                                           1
4
                                           0
707
                                           0
708
                                           0
709
                                           1
710
                                           1
711
                                           0
[712 rows x 1 columns]
set(titanic df["Survived"])
\{0, 1\}
from sklearn import preprocessing
X = preprocessing.StandardScaler().fit(X).transform(X)
Χ
array([[ 0.90859974, 0.75613751, 0.52251079, -0.50678737, -
0.51637992,
                                0.51958818],
                          [-1.48298257, -1.32251077, 0.52251079, -0.50678737,
0.69404605,
                             -2.04948671],
                          [0.90859974, -1.32251077, -0.55271372, -0.50678737, -
0.50362035,
                                0.51958818],
                          [-1.48298257, -1.32251077, -0.55271372, -0.50678737, -
0.08633507,
                                0.51958818],
                          [-1.48298257, 0.75613751, -0.55271372, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.50678737, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.5067877, -0.506787, -0.506787, -0.506787, -0.506787, -0.506787, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -0.50678, -
0.08633507,
                             -2.04948671],
                          [0.90859974, 0.75613751, -0.55271372, -0.50678737, -
0.50692839,
                             -0.76494927]])
```

```
from sklearn import preprocessing
Y = preprocessing.StandardScaler().fit(Y).transform(Y)
Υ
array([[-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
       [ 1.21335165],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
       [ 1.21335165].
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
```

[-0.82416338],

```
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
```

[1.21335165],

```
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
```

[-0.82416338],

```
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
  1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338]
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
```

```
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338]
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
```

[-0.82416338],

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
```

```
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.213351651,
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.213351651,
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
  1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
```

```
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.213351651,
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
```

```
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
```

```
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
```

```
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165].
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.8241633811)
```

Que.8 Use that processed titanic dataset and apply svm in it

Train and Test Dataset

```
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X, Y,
test size=0.2, random state=100)
print ('Train set:', X_train.shape, Y_train.shape)
print ('Test set:', X_test.shape, Y_test.shape)
Train set: (569, 6) (569, 1)
Test set: (143, 6) (143, 1)
X train
array([[ 0.90859974, 0.75613751, 4.82340884,
                                               1.83628152,
0.23312681,
         0.51958818],
       [ 0.90859974, 0.75613751, 3.74818432, 0.66474707, -
0.10287526,
        -0.76494927],
       [0.90859974, 0.75613751, 0.52251079, 0.66474707, -
0.19691804,
         0.51958818],
       [-1.48298257, 0.75613751, 0.52251079, 4.17935042, 4.3180803
         0.51958818],
       [ 0.90859974, 0.75613751, -0.55271372, -0.50678737, -
0.48983623,
         0.51958818],
```

```
[-1.48298257,
                      0.75613751,
                                  1.5977353 , -0.50678737,
1.87296816,
         0.51958818]])
X test
array([[-2.87191414e-01, -1.32251077e+00, -5.52713724e-01,
         6.64747074e-01, -2.96258635e-02,
                                            5.19588181e-011,
       [-1.48298257e+00, -1.32251077e+00,
                                           -5.52713724e-01,
         6.64747074e-01,
                           9.18520007e-01,
                                           -2.04948671e+00],
       [ 9.08599738e-01,
                           7.56137507e-01,
                                            5.22510788e-01,
         4.17935042e+00, -1.26031522e-01,
                                            5.19588181e-01],
       [ 9.08599738e-01, -1.32251077e+00,
                                            5.22510788e-01,
        -5.06787373e-01, -5.04958689e-01,
                                            5.19588181e-01],
                           7.56137507e-01,
       [ 9.08599738e-01,
                                           -5.52713724e-01,
                         -4.73848015e-01,
        -5.06787373e-01,
                                            5.19588181e-01],
       [-1.48298257e+00,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01,
                         -7.68835392e-02,
                                             5.19588181e-011,
       [-2.87191414e-01,
                           7.56137507e-01,
                                            5.22510788e-01,
        -5.06787373e-01, -2.56462707e-01,
                                            5.19588181e-01],
       [-1.48298257e+00,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01,
                           1.76318123e-02,
                                           -2.04948671e+00],
       [-2.87191414e-01,
                         -1.32251077e+00,
                                           -5.52713724e-01,
        -5.06787373e-01, -4.07687269e-01,
                                             5.19588181e-01],
                                           -5.52713724e-01,
                          7.56137507e-01,
       [-1.48298257e+00,
        -5.06787373e-01, -6.53427183e-01,
                                            5.19588181e-01],
       [-2.87191414e-01, -1.32251077e+00,
                                           -5.52713724e-01,
        -5.06787373e-01, -4.54944945e-01,
                                            5.19588181e-01],
       [-2.87191414e-01,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01, -4.54944945e-01,
                                            5.19588181e-01],
       [-1.48298257e+00, -1.32251077e+00,
                                           -5.52713724e-01,
         1.83628152e+00,
                           6.88690808e-01,
                                            5.19588181e-01],
       [ 9.08599738e-01, -1.32251077e+00,
                                            5.22510788e-01,
        -5.06787373e-01, -3.79332664e-01,
                                            5.19588181e-01],
       [-2.87191414e-01,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01, -3.69015368e-01,
                                           -2.04948671e+00],
       [ 9.08599738e-01,
                           7.56137507e-01,
                                           -5.52713724e-01,
                                             5.19588181e-011,
        -5.06787373e-01, -3.49087751e-01,
       [-1.48298257e+00, -1.32251077e+00,
                                            5.22510788e-01,
        -5.06787373e-01,
                           9.51344005e-02,
                                           -2.04948671e+00],
       [-2.87191414e-01,
                           7.56137507e-01,
                                             5.22510788e-01.
        -5.06787373e-01,
                         -1.61947356e-01,
                                            5.19588181e-01],
       [-2.87191414e-01, -1.32251077e+00,
                                            5.22510788e-01,
        -5.06787373e-01, -1.61947356e-01,
                                            5.19588181e-01],
       [-1.48298257e+00,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01, -4.24648288e-02,
                                            5.19588181e-01],
       [-1.48298257e+00, -1.32251077e+00,
                                           -5.52713724e-01,
        -5.06787373e-01, -8.63350744e-02,
                                            5.19588181e-01],
       [ 9.08599738e-01, -1.32251077e+00, -5.52713724e-01,
        -5.06787373e-01, -5.01650651e-01, -7.64949267e-01],
       [ 9.08599738e-01,
                          7.56137507e-01, -5.52713724e-01,
```

```
-5.06787373e-01, -5.04958689e-01,
                                     5.19588181e-01],
                                    -5.52713724e-01,
                   7.56137507e-01,
[-1.48298257e+00,
                    1.64359541e-03,
                                    -2.04948671e+00],
 -5.06787373e-01,
[-1.48298257e+00,
                   7.56137507e-01,
                                    -5.52713724e-01.
 -5.06787373e-01, -1.51550667e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                  -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01, -4.26590340e-01,
                                    -2.04948671e+00],
[-2.87191414e-01, -1.32251077e+00,
                                     5.22510788e-01,
  3.00781597e+00, -2.18656566e-01,
                                     5.19588181e-01],
                   7.56137507e-01,
                                    -5.52713724e-01,
[-2.87191414e-01,
 -5.06787373e-01,
                  -4.36041875e-01,
                                     5.19588181e-01],
                                    -5.52713724e-01,
[-1.48298257e+00, -1.32251077e+00,
 -5.06787373e-01,
                    1.91045862e+00,
                                    -2.04948671e+00],
                                    -5.52713724e-01,
                   7.56137507e-01,
[ 9.08599738e-01,
 -5.06787373e-01, -4.89679337e-01,
                                     5.19588181e-01],
                  -1.32251077e+00,
[ 9.08599738e-01,
                                    -5.52713724e-01,
  6.64747074e-01, -3.99810360e-01,
                                    -2.04948671e+00],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.04172321e-01,
                                     5.19588181e-01],
[-1.48298257e+00,
                  -1.32251077e+00,
                                    -5.52713724e-01,
  6.64747074e-01,
                    3.34150044e+00,
                                     5.19588181e-01],
                                    -5.52713724e-01,
[-1.48298257e+00,
                   7.56137507e-01,
  6.64747074e-01,
                   5.18169991e-01,
                                    -2.04948671e+00],
[ 9.08599738e-01, -1.32251077e+00, -5.52713724e-01,
 -5.06787373e-01,
                  -5.16379924e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                                     5.19588181e-011,
                  -4.54944945e-01,
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.16379924e-01,
                                     5.19588181e-011,
[-1.48298257e+00,
                   7.56137507e-01,
                                    -5.52713724e-01,
                                    -2.04948671e+00],
 -5.06787373e-01,
                  -1.29418952e-01,
[-2.87191414e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
  6.64747074e-01,
                  -1.61947356e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
                  -4.36041875e-01,
                                     5.19588181e-01],
 -5.06787373e-01,
[-1.48298257e+00, -1.32251077e+00,
                                     5.22510788e-01,
 -5.06787373e-01,
                   4.03254446e-01,
                                     5.19588181e-01],
                   7.56137507e-01,
                                    -5.52713724e-01,
[-2.87191414e-01,
                                     5.19588181e-01],
 -5.06787373e-01,
                  -4.07687269e-01,
[-2.87191414e-01, -1.32251077e+00,
                                    -5.52713724e-01,
  6.64747074e-01, -2.18656566e-01,
                                     5.19588181e-01],
[-1.48298257e+00,
                  -1.32251077e+00,
                                     5.22510788e-01,
                    1.48781810e+00,
                                    -2.04948671e+00],
 -5.06787373e-01,
[-1.48298257e+00,
                  -1.32251077e+00,
                                     5.22510788e-01,
  6.64747074e-01,
                    1.44260763e+00,
                                    -2.04948671e+00],
[ 9.08599738e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
 -5.06787373e-01, -4.40924538e-01,
                                    -2.04948671e+001,
[-2.87191414e-01, -1.32251077e+00,
                                     5.22510788e-01,
                   5.75272386e-01,
                                     5.19588181e-01],
  1.83628152e+00,
[-2.87191414e-01, -1.32251077e+00,
                                     5.22510788e-01,
```

```
6.64747074e-01, -1.61947356e-01,
                                     5.19588181e-01],
[-1.48298257e+00, -1.32251077e+00,
                                    -5.52713724e-01,
                    2.46305964e+00,
                                     5.19588181e-01],
  1.83628152e+00,
[ 9.08599738e-01,
                  -1.32251077e+00,
                                    -5.52713724e-01,
                   9.67884191e-02,
                                     5.19588181e-01],
  5.35088486e+00,
[ 9.08599738e-01,
                    7.56137507e-01,
                                     5.22510788e-01,
                  -2.65441665e-01,
  6.64747074e-01,
                                     5.19588181e-01],
                                    -5.52713724e-01,
[ 9.08599738e-01,
                   7.56137507e-01,
 -5.06787373e-01,
                  -5.06062628e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
  1.83628152e+00,
                  -1.61947356e-01,
                                     5.19588181e-01],
[-2.87191414e-01, -1.32251077e+00,
                                    -5.52713724e-01,
  1.83628152e+00, -1.57221588e-01,
                                     5.19588181e-01],
                   7.56137507e-01,
                                    -5.52713724e-01,
[ 9.08599738e-01,
  6.64747074e-01, -4.92435404e-01,
                                    -2.04948671e+00],
                  -1.32251077e+00,
                                    -5.52713724e-01,
[-2.87191414e-01,
  1.83628152e+00, -3.79332664e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -4.54944945e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
 -5.06787373e-01,
                  -1.29418952e-01,
                                    -2.04948671e+00],
                                    -5.52713724e-01,
[-1.48298257e+00,
                   7.56137507e-01,
 -5.06787373e-01,
                  -1.51550667e-01,
                                     5.19588181e-01],
[-2.87191414e-01, -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -4.54944945e-01,
                                     5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                                     5.19588181e-01],
                  -4.73848015e-01,
[-2.87191414e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
                                     5.19588181e-011,
 -5.06787373e-01, -1.61947356e-01,
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
                  -5.04172321e-01,
                                     5.19588181e-01],
 -5.06787373e-01,
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.16379924e-01,
                                     5.19588181e-01],
                                     5.22510788e-01,
[-1.48298257e+00, -1.32251077e+00,
 -5.06787373e-01,
                   1.04784914e+00,
                                    -7.64949267e-01],
                                    -5.52713724e-01,
[ 9.08599738e-01, -1.32251077e+00,
  6.64747074e-01, -4.17611381e-01,
                                     5.19588181e-01],
[-2.87191414e-01, -1.32251077e+00,
                                     5.22510788e-01,
  6.64747074e-01, -8.63350744e-02,
                                     5.19588181e-01],
[ 9.08599738e-01, -1.32251077e+00,
                                     5.22510788e-01,
  4.17935042e+00, -1.26031522e-01,
                                     5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.11733549e-01,
                                     5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
  6.64747074e-01,
                  -3.55860722e-01,
                                    -2.04948671e+00],
[-1.48298257e+00,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -7.68835392e-02,
                                     5.19588181e-01],
[ 9.08599738e-01, -1.32251077e+00,
                                    -5.52713724e-01,
                                     5.19588181e-01],
 -5.06787373e-01, -4.72193997e-01,
[-2.87191414e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
```

```
6.64747074e-01, -1.61947356e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
                   -4.07687269e-01,
                                     5.19588181e-01],
 -5.06787373e-01,
[-1.48298257e+00.
                    7.56137507e-01,
                                    -5.52713724e-01,
                   8.07543862e-01,
                                      5.19588181e-01],
  6.64747074e-01,
[ 9.08599738e-01,
                    7.56137507e-01,
                                    -5.52713724e-01,
                   -5.18742807e-01,
 -5.06787373e-01,
                                     5.19588181e-01],
                                    -5.52713724e-01,
[-1.48298257e+00,
                   7.56137507e-01,
  1.83628152e+00,
                    1.48781810e+00, -2.04948671e+00],
[ 9.08599738e-01,
                    7.56137507e-01, -5.52713724e-01,
                                    -2.04948671e+00],
 -5.06787373e-01,
                   -5.16773107e-01,
[-1.48298257e+00,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                   2.82354189e-01,
                                    -2.04948671e+00],
                                    -5.52713724e-01,
                   7.56137507e-01,
[ 9.08599738e-01,
                                     5.19588181e-01],
 -5.06787373e-01,
                   -5.04172321e-01,
                   7.56137507e-01,
[ 9.08599738e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -5.06062628e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.03620351e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -5.06455812e-01,
                                     5.19588181e-01],
[-2.87191414e-01, -1.32251077e+00,
                                      5.22510788e-01,
  6.64747074e-01, -1.61947356e-01,
                                     5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                      5.22510788e-01,
  5.35088486e+00, -6.22336597e-02,
                                     5.19588181e-01],
[-2.87191414e-01, -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01, -4.07687269e-01,
                                      5.19588181e-01],
[-2.87191414e-01, -1.32251077e+00,
                                     5.22510788e-01,
  6.64747074e-01, -1.05238145e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -5.30636619e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                     5.22510788e-01,
  6.64747074e-01, -5.16773107e-01,
                                    -2.04948671e+00],
[ 9.08599738e-01, -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.10709002e-01,
                                     5.19588181e-01],
[ 9.08599738e-01, -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -5.11733549e-01,
                                     5.19588181e-01],
                   7.56137507e-01,
                                    -5.52713724e-01,
[-2.87191414e-01,
                                     5.19588181e-01],
 -5.06787373e-01,
                   -3.88784199e-01,
                   7.56137507e-01,
[ 9.08599738e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -4.79203255e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                    7.35948483e-01,
                                     5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -4.54944945e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -5.04958689e-01,
                                     5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01, -5.52713724e-01,
 -5.06787373e-01, -5.04172321e-01,
                                     5.19588181e-01],
[ 9.08599738e-01, -1.32251077e+00, -5.52713724e-01,
```

```
4.17935042e+00, -2.55044977e-01,
                                      5.19588181e-01],
                                    -5.52713724e-01,
[ 9.08599738e-01, -1.32251077e+00,
 -5.06787373e-01, -5.07244070e-01,
                                    -7.64949267e-01],
[ 9.08599738e-01,
                    7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.16852500e-01,
                                    -2.04948671e+00],
[ 9.08599738e-01,
                    7.56137507e-01,
                                     -5.52713724e-01,
                    4.14516896e-01,
                                      5.19588181e-01],
 -5.06787373e-01,
[ 9.08599738e-01,
                  -1.32251077e+00,
                                      1.59773530e+00,
  1.83628152e+00, -3.63414181e-03,
                                      5.19588181e-01],
[ 9.08599738e-01, -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -4.67388836e-01,
                                      5.19588181e-01],
                                     -5.52713724e-01,
                   7.56137507e-01,
[ 9.08599738e-01,
 -5.06787373e-01,
                  -5.04958689e-01,
                                      5.19588181e-01],
                  -1.32251077e+00,
                                     -5.52713724e-01,
[-1.48298257e+00,
                    2.21133312e+00,
                                      5.19588181e-01],
 -5.06787373e-01,
                    7.56137507e-01,
                                     -5.52713724e-01,
[-2.87191414e-01,
 -5.06787373e-01,
                  -1.61947356e-01,
                                      5.19588181e-01],
                    7.56137507e-01,
[-2.87191414e-01,
                                      5.22510788e-01,
                   -1.43044285e-01,
                                      5.19588181e-01],
 -5.06787373e-01,
[-1.48298257e+00,
                    7.56137507e-01,
                                      5.22510788e-01,
 -5.06787373e-01,
                    3.50325849e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                    7.56137507e-01,
                                     -5.52713724e-01,
                   -4.94562000e-01,
                                      5.19588181e-01],
  6.64747074e-01,
[ 9.08599738e-01,
                    7.56137507e-01,
                                      5.22510788e-01,
 -5.06787373e-01,
                   -3.53813519e-01,
                                      5.19588181e-01],
[-2.87191414e-01,
                   7.56137507e-01,
                                     -5.52713724e-01,
 -5.06787373e-01,
                  -4.07687269e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                    7.56137507e-01,
                                     -5.52713724e-01,
                                      5.19588181e-01],
 -5.06787373e-01, -5.06062628e-01,
[ 9.08599738e-01,
                  -1.32251077e+00,
                                     -5.52713724e-01,
                                     -2.04948671e+00],
  1.83628152e+00, -3.65234754e-01,
[ 9.08599738e-01,
                   7.56137507e-01,
                                      5.22510788e-01,
  6.64747074e-01,
                  -4.42973631e-01,
                                      5.19588181e-01],
                   -1.32251077e+00,
                                      5.22510788e-01,
[-1.48298257e+00,
                    9.24506610e-01,
                                      5.19588181e-01],
 -5.06787373e-01,
[ 9.08599738e-01,
                    7.56137507e-01,
                                      5.22510788e-01,
  6.64747074e-01,
                   -3.81222971e-01,
                                      5.19588181e-01],
                    7.56137507e-01,
                                     -5.52713724e-01,
[-1.48298257e+00,
                                      5.19588181e-01],
 -5.06787373e-01,
                   -8.63350744e-02,
                    7.56137507e-01,
[-1.48298257e+00,
                                    -5.52713724e-01,
                                    -2.04948671e+00],
 -5.06787373e-01,
                    8.43695984e-01,
[ 9.08599738e-01,
                    7.56137507e-01,
                                     -5.52713724e-01,
 -5.06787373e-01, -5.06062628e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                  -1.32251077e+00,
                                    -5.52713724e-01,
 -5.06787373e-01, -5.06455812e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                   7.56137507e-01,
                                    -5.52713724e-01,
 -5.06787373e-01,
                  -5.04958689e-01,
                                      5.19588181e-01],
[ 9.08599738e-01,
                    7.56137507e-01,
                                      5.22510788e-01,
                                      5.19588181e-01],
 -5.06787373e-01,
                  -5.20239931e-01,
[ 9.08599738e-01,
                   7.56137507e-01, -5.52713724e-01,
```

```
-5.06787373e-01, -5.04172321e-01,
                                             5.19588181e-01],
       [ 9.08599738e-01, -1.32251077e+00, -5.52713724e-01,
        -5.06787373e-01, -5.16773107e-01, -2.04948671e+00],
                           7.56137507e-01,
       [ 9.08599738e-01,
                                           -5.52713724e-01.
        -5.06787373e-01, -5.04958689e-01,
                                             5.19588181e-01],
                                            -5.52713724e-01,
       [-1.48298257e+00, -1.32251077e+00,
                           4.42557710e-01,
         6.64747074e-01,
                                           -2.04948671e+00],
       [ 9.08599738e-01,
                           7.56137507e-01,
                                             5.22510788e-01,
         6.64747074e-01, -2.71348875e-01,
                                             5.19588181e-01],
       [ 9.08599738e-01, -1.32251077e+00,
                                             5.22510788e-01,
         5.35088486e+00, -6.01070643e-02,
                                             5.19588181e-011,
       [-1.48298257e+00,
                           7.56137507e-01,
                                           -5.52713724e-01,
                                            -2.04948671e+00],
         6.64747074e-01,
                           5.06828149e-01,
                                           -5.52713724e-01,
       [-2.87191414e-01, -1.32251077e+00,
        -5.06787373e-01, -4.54944945e-01,
                                             5.19588181e-01],
       [ 9.08599738e-01,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01, -5.06928388e-01,
                                           -7.64949267e-01],
       [ 9.08599738e-01,
                           7.56137507e-01,
                                           -5.52713724e-01,
                                           -2.04948671e+001,
        -5.06787373e-01, -5.16773107e-01,
       [-2.87191414e-01,
                           7.56137507e-01,
                                            -5.52713724e-01.
        -5.06787373e-01, -4.54944945e-01,
                                             5.19588181e-01],
       [ 9.08599738e-01, -1.32251077e+00,
                                             1.59773530e+00,
         6.64747074e-01, -2.89386185e-01,
                                            -2.04948671e+00],
       [-1.48298257e+00, -1.32251077e+00,
                                             5.22510788e-01,
                                             5.19588181e-01],
         1.83628152e+00,
                           2.21133312e+00,
       [-2.87191414e-01, -1.32251077e+00,
                                             5.22510788e-01,
        -5.06787373e-01, -1.61947356e-01,
                                             5.19588181e-01],
       [-2.87191414e-01, -1.32251077e+00,
                                            -5.52713724e-01,
        -5.06787373e-01, -4.14303344e-01,
                                             5.19588181e-011,
       [-2.87191414e-01, -1.32251077e+00,
                                             5.22510788e-01,
         1.83628152e+00,
                           5.75272386e-01,
                                             5.19588181e-01],
       [-1.48298257e+00, -1.32251077e+00,
                                             5.22510788e-01,
        -5.06787373e-01,
                           3.50325849e-01,
                                             5.19588181e-01],
       [ 9.08599738e-01,
                           7.56137507e-01,
                                             3.74818432e+00,
         6.64747074e-01,
                           9.67884191e-02,
                                             5.19588181e-01],
       [-2.87191414e-01,
                           7.56137507e-01,
                                            -5.52713724e-01,
                         -1.61947356e-01,
                                             5.19588181e-01],
        -5.06787373e-01,
       [-1.48298257e+00,
                           7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01, -1.51550667e-01,
                                             5.19588181e-01],
       [-2.87191414e-01,
                          7.56137507e-01,
                                           -5.52713724e-01,
        -5.06787373e-01, -4.07687269e-01,
                                            5.19588181e-01]])
Y train
array([[-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
       [-0.82416338],
```

```
1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338]
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.213351651,
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
```

```
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.213351651,
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[ 1.21335165],
```

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
  1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
```

```
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
  1.21335165],
 1.21335165],
 1.21335165],
  1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
```

```
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
```

```
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
```

```
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.213351651,
[-0.82416338],
[ 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
```

```
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
```

```
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
```

```
[-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
        [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165]])
Y_test
array([[ 1.21335165],
        [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
        [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [-0.82416338],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
         1.21335165],
        [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [ 1.21335165],
         1.21335165],
       [-0.82416338],
         1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
       [ 1.21335165],
       [-0.82416338],
```

```
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
 1.21335165],
 1.21335165],
 1.21335165],
  1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
 1.21335165],
 1.21335165],
[-0.82416338],
[-0.82416338],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
```

```
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
 1.21335165],
[ 1.21335165],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[ 1.21335165],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
[-0.82416338],
[ 1.21335165],
[-0.82416338],
[-0.82416338]
[ 1.21335165],
[-0.82416338],
```

```
[ 1.21335165],
  [ 1.21335165],
  [ 1.21335165],
  [-0.82416338].
  [-0.82416338],
  [-0.82416338],
  [-0.8241633811)
from sklearn import preprocessing
from sklearn import utils
#convert y values to categorical values
value = preprocessing.LabelEncoder()
Y train transformed = value.fit transform(Y train)
#view transformed values
print(Y train transformed)
1 0
1 1
1 0
1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0
0 1
1 1
1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1
```

```
C:\Users\Lenovo\anaconda3\lib\site-packages\sklearn\preprocessing\
label.py:115: DataConversionWarning: A column-vector y was passed
when a 1d array was expected. Please change the shape of y to
(n samples, ), for example using ravel().
 y = column or 1d(y, warn=True)
from sklearn import preprocessing
from sklearn import utils
#convert y values to categorical values
value = preprocessing.LabelEncoder()
Y test transformed = value.fit transform(Y test)
#view transformed values
print(Y test transformed)
[1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1
Modelling (Sciket-Learn)
from sklearn import svm
clf = svm.SVC(kernel='rbf')
clf.fit(X train, Y train transformed) # question and answers
SVC()
yhat = clf.predict(X test) #question
yhat [0:5]
array([1, 1, 0, 0, 0], dtype=int64)
Evaluation
from sklearn.metrics import fl score
fl score(Y test transformed, yhat) #actualvale, predvalue
0.6923076923076923
from sklearn import sym
clf2 = svm.SVC(kernel='linear')
clf2.fit(X train, Y train transformed)
yhat2 = clf2.predict(X test)
yhat2
```

```
array([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1,
1,
       0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
1,
       1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
1,
       1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1,
0,
       0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0,
0,
       0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
0,
       0, 1, 1, 1, 1, 1, 0, 0, 0, 0], dtype=int64)
from sklearn.metrics import f1 score
f1 score(Y test transformed, yhat2) #actualvale, predvalue
0.7627118644067797
from sklearn import svm
clf = svm.SVC(kernel='poly')
clf.fit(X train, Y train transformed) # question and answers
SVC(kernel='poly')
yhat3 = clf.predict(X test) #question
yhat3 [0:5]
array([1, 1, 0, 0, 0], dtype=int64)
Evaluation
from sklearn.metrics import fl score
f1 score(Y test transformed, yhat)
0.6923076923076923
```

Ans: The possible accuracy gives the kernel as linear that is 76.27%