CSE512 Fall 2018 - Machine Learning - Homework 5

Name: Manideep Attanti

Solar Id: 112028167

Netid email: <u>manideep.attanti@stonybrook.edu</u>

H(x) =
$$sgn \{f(x)\}$$

 $f(x) = \frac{1}{2} x_1 h_1(x)$
To show:
Etraining = $\frac{1}{N} \stackrel{?}{\underset{j=1}{2}} S (H(xi) + yi)) \stackrel{?}{\underset{j=1}{2}} \frac{1}{N} \stackrel{?}{\underset{j=1}{2}} \exp(-f(xi)yi)$
 $S (H(xi) + yi) = \begin{cases} 1 & \text{if } H(xi) + yi \\ 0 & \text{otherwise} \end{cases}$
H(xi) = $sgn \{f(xi)\}$
 $S (H(xi) + yi) = \begin{cases} 1 & \text{if } yi \cdot f(xi) \\ 0 & \text{otherwise} \end{cases}$
 $S (H(xi) + yi) = \begin{cases} 1 & \text{if } yi \cdot f(xi) \\ 0 & \text{otherwise} \end{cases}$
Now $exp \left(-f(xi) \cdot yi\right) > 1 & \text{if } yi \cdot f(xi) < 0$
 $exp (ave) > 1$
and $exp \left(-f(xi) \cdot yi\right) > 0 & \text{if } yi \cdot f(xi) > 0$
Hence,
 $S (H(xi) + yi) < \frac{1}{N} \stackrel{?}{\underset{j=1}{2}} exp \left(-f(xi)yi\right)$
 $S (H(xi) + yi) < \frac{1}{N} \stackrel{?}{\underset{j=1}{2}} exp \left(-f(xi)yi\right)$

(12)
$$w_j^{(t+1)} = w_j^{(t)} \exp(-\alpha_t y^j h_t(\alpha_t^j))$$
 $Z_t = \sum_{j=1}^{N} w_j^{(t)} \exp(-\alpha_t y^j h_t(\alpha_t^j))$
 $Z_t = \sum_{j=1}^{N} \exp(-\alpha_t y^j h_t(\alpha_t^j))$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$$

=
$$\int \mathcal{E}_{t}(1-\mathcal{E}_{t}) + \int \mathcal{E}_{t}(1-\mathcal{E}_{t})$$

= $2\int \mathcal{E}_{t}(1-\mathcal{E}_{t})$
 $\therefore Z_{t}^{opt} = 2\int \mathcal{E}_{t}(1-\mathcal{E}_{t})$

(b)
$$\epsilon_{t} = \frac{1}{2} - \tau_{t}$$
 $= 2 \int \frac{1}{1} - \tau_{t} \int (1 - \epsilon_{t}) \int \frac{1}{1} - \tau_{t} \int \frac{1}{1} - \tau_{t}^{2} \int$

1+x < ex +x ER

since ex is convex, it will always be above its tangents

$$\Rightarrow 1+(-x) < e^{-x}$$

$$\Rightarrow 1-x < e^{-x}$$

$$\Rightarrow \sqrt{1-x} < e^{-x/2}$$

$$\Rightarrow \sqrt{1-u} \sqrt{2} < e^{-2x/2}$$

(c) from 1.1 and 1.2 we have

$$= exp(-2 \stackrel{T}{\neq} \gamma_{+}^{2})$$

each classifier is better than random

$$\Rightarrow$$
 $\forall t \neq r$ $\forall t \neq r$ $\Rightarrow \forall t \neq r$ $\Rightarrow \forall$

Q2.5.1)

For k = 2

Sum of squares = 5.3648 * 10^8

p1 = 79.8157

p2 = 54.8055

p3 = 67.3106

For k = 4

Sum of squares = 4.6111 * 10^8

p1 = 67.8812

p2 = 86.8329

p3 = 77.3571

For k = 6

Sum of squares = 4.3135 * 10^8

p1 = 55.1765

p2 = 94.435

p3 = 74.8058

Q2.5.2) 8 iterations for K = 6

Q2.5.3 and 2.5.4)

K	1	2	3	4	5	6	7	8	9	10
SS (10^8)	5.961	5.382	4.832	4.640	4.490	4.288	4.138	4.031	3.945	3.853
p1	100	86.14	81.75	71.45	63.49	51.02	46.33	41.06	37.90	33.86
p2	0	54.82	82.91	88.46	91.76	92.80	95.04	95.79	96.67	97.01
р3	50	70.48	82.33	79.95	77.63	71.91	70.68	68.42	67.29	65.43

SS (*10^8) vs. Iterations

p1, p2 and p3

Q3.4.2) 5-fold cross-validation accuracy = 15.6443%

Q3.4.3) Tuned the values of C and gamma for 12 different values each i.e. 144 iterations and found out the best value of C to be 2^11 and gamma to be 2.

For C = 2048 and gamma = 2, 5-fold cross-validation accuracy = 87.90%

Value of C is varied from 2^-5 to 2^17 with new C = 4*old_C
Value of gamma is varied from 2^-15 to 2^7 with new gamma = 4*gamma

Attached models.mat which contains the accuracies at other C and gamma. Each row corresponds to same C value and varying gamma.

Q3.4.5) Tuned the values of C and gamma for 12 different values each i.e. 144 iterations and found out the best value of C to be 32 and gamma to be 2.

For C = 32 and gamma = 2, 5-fold cross-validation accuracy = 93.75%

Value of C is varied from 2^-5 to 2^17 with new C = 4*old_C
Value of gamma is varied from 2^-15 to 2^7 with new gamma = 4*gamma

Attached models_2.mat which contains the accuracies at other C and gamma. Each row corresponds to same C value and varying gamma.

Q3.4.6) Kaggle accuracy 82.5%