# Uniform Access to Interlinked (Digital Library) Sources

Bernhard Haslhofer University of Vienna

# Motivation

 Institutions use various incompatible metadata schemes\*

some are standardised

many are proprietary



 How to establish uniform access to institutional metadata repositories?

<sup>\*</sup> the terms schema / ontology / vocabulary are used interchangeably

## Motivation

#### • Problem:

 structural and semantic conflicts among metadata schemes/elements

#### • Solution:

metadata mappings / crosswalks

| MARC                                    | DC                                                                                         |
|-----------------------------------------|--------------------------------------------------------------------------------------------|
| 100 a Shakespeare William d 1564 - 1616 | <a href="https://dc.creator">dc:creator</a> Shakespeare, William, 1564 - 1616 /dc:creator> |
| 245 a Hamlet                            | <dc:title> Hamlet </dc:title>                                                              |
| 260 a New York b Penguin Books c 2003   | <dc:publisher> Penguin Books </dc:publisher>                                               |
|                                         | <dc:date> 2003 </dc:date>                                                                  |



- Workflow (high-level view)
  - 1. Application (A) formulates SPARQL query over a user selected mediation schema (SM)
  - 2. Mediator (M) reformulates query according to mappings / crosswalks into queries over the source schemes (Sx)
  - 3. Query plan calculation
  - 4. Mediator federates the queries to the data sources (DSx), collects the results and returns them to the user application (A)

- Query reformulation Step I
  - compile crosswalks into SPARQL query templates (assuming that DC is the mediation schema)

```
100 a Shakespeare William d 1564 - 1616
```

<dc:creator> Shakespeare, William, 1564 - 1616 </dc:creator>

```
CONSTRUCT {?x dc:creator ?c}
WHERE {
   ?x marc:100a ?name
   ?x marc:100d ?date
   (?name `, ` ?date) ext:concat ?c
}
```

- Query reformulation Step 2
  - analyse graph pattern of input query

```
SELECT ?x
WHERE{
    ?x dc:creator ?name .
    FILTER {REGEX(?name,i,"Shakespeare")}}
```

• choose and execute the matching templates

```
CONSTRUCT {?x dc:creator ?c}
```

## Related Issues

- Where are the SPARQL data sources?
  - Linking Open Data (LOD) Initative (<a href="http://linkeddata.org/">http://linkeddata.org/</a>)
    - exposing, sharing, and connecting data sources using URI, HTTP (and SPARQL)
    - Example Data Sources:
      - DBPedia (exposes Wikipedia data): 103 M triples
      - USCensus 2000 dataset: ~ I B triples
      - DBLP Bibliography: I5 M triples
  - Up-to-date list of all available sources:
    - http://esw.w3.org/topic/TaskForces/CommunityProjects/

## Related Issues

- Issue No. I when talking about SemWeb Technologies: "Triple Stores do not perform"
- Possibility #1: use a SPARQL-SQL translator
  - D2RQ Server: <a href="http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/">http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/</a>
- Possibility #2: use a triple store
  - they are not yet perfect; but they are getting better
  - Large Triple Stores: <a href="http://esw.w3.org/topic/">http://esw.w3.org/topic/</a>
     Large Triple Stores
    - AllegroGraph + Virtuoso (1 Bn), others 70 Mn 650 Mn

# Status & Future Work

- OAI2LOD Server v.0.1 ready
  - exposes any OAI-PMH compliant repository as LOD
  - Demo: <a href="http://mediaspaces.mminf.univie.ac.at:2020/">http://mediaspaces.mminf.univie.ac.at:2020/</a>
- Online mapping platform work in progress
  - choose data sources → retrieve schema info
  - create and deploy reusable mappings on the Web

# Contact

• bernhard.haslhofer@univie.ac.at

#### Motivation

- Current implementation of crosswalks: XSLT
  - 1. fetch original metadata record from source repository
  - 2. apply XSLT transformation using an XSL style sheet
  - 3. deliver transformed metadata record in target format
- This is fine for metadata aggregation but not for virtual integration
  - aggregation = copy / duplicate (and transform) metadata to a central repository
  - virtual integration = leave metadata in their repositories