Problème

Concours commun MINES-PONTS 1998

MATH 2 (option PSI)

1ère partie:

1.*a*) Si X est un vecteur propre associé à λ , $AX = \lambda X$, d'où $||AX|| = |\lambda|||X|| \le ||A||_d ||X||$ et comme X n'est pas nul, $|\lambda| \le ||A||_d$.

1.b) Donc, si $\lambda > \|A\|_d$, λ n'est pas valeur propre et $\lambda I_d - A$ est inversible. Et comme $\lambda \neq 0$, $\left(I_d - \frac{1}{\lambda}A\right)\lambda(\lambda I_d - A)^{-1} = I_d$ ce qui prouve l'inversibilité de la matrice $I_d - \frac{1}{\lambda}A$.

1.c) Si $\lambda \to +\infty$, $I_d - \frac{1}{\lambda} A \to I_d$ d'après **P.2**. Le déterminant d'une matrice étant une fonction polynomiale donc continue des coefficients, la matrice des cofacteurs de $I_d - \frac{1}{\lambda} A$ a pour limite la matrice des cofacteurs de I_d et le déterminant de $I_d - \frac{1}{\lambda} A$ tend vers $\det(I_d) = 1$. Donc $\left(I_d - \frac{1}{\lambda} A\right)^{-1} \xrightarrow[\lambda \to +\infty]{} I_d$.

$$\begin{aligned} & \textbf{1.d.}) & \lim_{\lambda \to +\infty} (\lambda I_d - A)^{-1} = \lim_{\lambda \to +\infty} \frac{1}{\lambda} \left(I_d - \frac{1}{\lambda} A \right)^{-1} = 0 \; . \\ & \textbf{2.} & B_{\lambda} - I_d = \lambda (\lambda I_d - A)^{-1} - (\lambda I_d - A)^{-1} (\lambda I_d - A) = (\lambda I_d - A)^{-1} (\lambda I_d - (\lambda I_d - A)) = A \underset{\lambda \to +\infty}{\longrightarrow} 0 \; . \\ & C_{\lambda} - A = \lambda (B_{\lambda} - I_d) - A = \lambda (\lambda I_d - A)^{-1} A - A = (\lambda I_d - A)^{-1} (\lambda I_d - (\lambda I_d - A)) A = (\lambda I_d - A)^{-1} A^2 \underset{\lambda \to +\infty}{\longrightarrow} 0 \end{aligned}$$

2ème partie:

1.*a*) Si A est positive, le j-ème vecteur colonne, image du j-ème vecteur de la base canonique de IR^d par a doit être positif pour tout j. Donc $a_{ij} \ge 0 \quad \forall i, \forall j$. La réciproque est immédiate.

Si $a_{ijn} \xrightarrow[n \to +\infty]{} a_{ij}$ et si $a_{ijn} \ge 0$ pour tout n, alors $a_{ij} \ge 0$; donc la limite d'une suite de matrices positives est positive.

1.b) Supposons A positive. Alors
$$\left| \sum_{j=1}^{d} a_{ij} x_{j} \right| \le \sum_{j=1}^{d} a_{ij} |x_{j}| \quad \forall i = 1, ..., d$$
, c'est à dire $|a(x)| \le a(|x|)$.

Inversement, appliquons la relation $|a(x)| \le a(|x|)$ au j-ème vecteur de la base canonique de IR^d : on obtient $|a_{ij}| \le a_{ij}$ $\forall i = 1,...,d$ ce qui prouve que $a_{ij} \ge 0$ pour tout couple (i,j), et donc que A est positive.

1.c)
$$A^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
 n'est pas positive. $(\lambda I_2 - A)^{-1} = \begin{pmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 1 \end{pmatrix}^{-1} = \frac{1}{\lambda^2 - 3\lambda + 1} \begin{pmatrix} \lambda - 1 & 1 \\ 1 & \lambda - 2 \end{pmatrix}$.

Pour que cette matrice soit positive, il faut et il suffit que $\begin{cases} \lambda - 1 \ge 0 \\ \lambda - 2 \ge 0 \end{cases}$, c'est à dire $\lambda \ge \frac{3 + \sqrt{5}}{2}$. $\lambda^2 - 3\lambda + 1 \ge 0$

2. ${}^{t}XC_{\lambda}X = \lambda^{2} {}^{t}X(\lambda I_{d} - A)^{-1}X - \lambda^{t}XX$. Si $(\lambda I_{d} - A)^{-1}$ est positive, l'inégalité triangulaire donne ${}^{t}X(\lambda I_{d} - A)^{-1}X \le {}^{t}|X|(\lambda I_{d} - A)^{-1}|X|$. Par ailleurs, $\lambda^{t}XX = \lambda^{t}|X|X|$. Donc ${}^{t}XC_{\lambda}X \le {}^{t}|X|C_{\lambda}|X|$. Lorsque $\lambda \to +\infty$, on obtient alors ${}^{t}XAX \le {}^{t}|X|A|X|$.

3ème partie:

1.a) $(x \ y)B\begin{pmatrix} x \\ y \end{pmatrix} = -x^2 - y^2 + 4xy$ est positif pour x = y = 1; donc B n'est pas dissipative. B admet une

$$\begin{pmatrix} x & y & z \end{pmatrix} C \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$
; donc C est dissipative. Son polynôme caractéristique est $\det(\lambda I_3 - C) = \lambda^3 + 3\lambda$ et

$$\operatorname{Sp}(C) = \left\{0, \pm i\sqrt{3}\right\}.$$

1.b) Si X est un vecteur propre associé à une valeur propre λ , 'XAX = λ 'XX ≤ 0 , d'où $\lambda \leq 0$.

1.c) Si A est symétrique, toutes ses valeurs propres sont réelles et si elle est dissipative, elles sont dans IR_{\perp} . Réciproquement, si A est symétrique et à valeurs propres négatives ou nulles, on peut écrire $A = ODO^{-1}$ où D est une matrice diagonale à éléments diagonaux négatifs ou nuls et O une matrice orthogonale. D'où $^{t}XAX = {^{t}XODO^{-1}X} = {^{t}YDY} = \sum_{i=1}^{d} d_{ii} y_{i}^{2} \le 0$, avec $Y = O^{-1}X$.

Or 'XAX='X'AX='X $\frac{A+'A}{2}$ X. Donc A est dissipative ssi les valeurs propres de A+'A sont dans IR_{-} .

1.d) ${}^{t}XBX = {}^{t}XAX - \|A\|_{d}{}^{t}XX \le \|X\| \|A\|_{d} \|X\| - \|A\|_{d} \|X\|^{2} = 0$ (on majore le premier terme en utilisant **P.1** et l'inégalité de Schwarz). Donc *B* est dissipative.

2.a) Soit X un vecteur propre pour la valeur propre 0. Alors ${}^t\!X\!AX = 0$. Or, d'après II.2., $^{t}XAX \le ^{t}|X|A|X|$ et si A est dissipative, $^{t}|X|A|X| \le 0$. Le vecteur Y = |X| est donc bien un vecteur positif non nul tel que ${}^{t}YAY = 0$.

2.b) Appliquons ce qui précède à la matrice symétrique $A' = A - s(A)I_d$ dont toutes les valeurs propres sont négatives ou nulles (et qui est donc dissipative d'après 1.c)), qui admet la valeur propre 0 et qui est telle que $(\lambda I_d - A')^{-1}$ soit positive pour λ assez grand (le seuil est celui relatif à A décalé de s(A)). Si X' est un vecteur propre de A pour la valeur propre s(A), alors 'Y'A'Y' = 0 avec Y' = |X'| et si Y' est propre pour A', ce ne peut être que pour la valeur propre 0 d'où il résulte que Y est bien positif et propre pour A relativement à la valeur propre s(A).

2.c) B admet 1 comme valeur propre évidente. les deux autres sont opposées (car Tr(B) = 0), de produit

égal à
$$det(B) = -2$$
. D'où $Sp(B) = \left\{ -\sqrt{2}, 1, \sqrt{2} \right\}$. Le vecteur $\begin{pmatrix} 1 \\ 0 \\ \sqrt{2} - 1 \end{pmatrix}$ est propre pour $\sqrt{2}$.

$$\left(\lambda I_3 - B\right)^{-1} = \begin{pmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda + 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{\lambda + 1}{\lambda^2 - 2} & 0 & \frac{1}{\lambda^2 - 2} \\ 0 & \frac{1}{\lambda - 1} & 0 \\ \frac{1}{\lambda^2 - 2} & 0 & \frac{\lambda - 1}{\lambda^2 - 2} \end{pmatrix} \text{ est positive ssi } \begin{cases} \lambda - 1 \ge 0 \\ \lambda + 1 \ge 0 & \text{donc ssi } \lambda \ge \sqrt{2} \\ \lambda^2 - 2 \ge 0 \end{cases} .$$

4ème partie:

1. $||x(t)||^2 = {}^t X(t)X(t)$. D'où $\frac{d}{dt} ||x(t)||^2 = {}^t X'(t)X(t) + {}^t X(t)X'(t) = 2 {}^t X(t)AX(t)$. A étant dissipative, cette quantité est négative ou nulle. Donc $||x(t)|| \le ||x_0|| \quad \forall t \ge 0$.

2.a) Le système
$$\begin{cases} \frac{dX}{dt} = AX & \text{a pour solution} & X(t) = \exp(At). X_0. \\ X(0) = X_0 \end{cases}$$

$$M(t) = \exp(At) = P \exp(Dt) P^{-1} = P \begin{pmatrix} e^{\lambda t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_d t} \end{pmatrix} P^{-1}.$$

$$M(t) = \exp(At) = P \exp(Dt) P^{-1} = P \begin{pmatrix} e^{\lambda t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_d t} \end{pmatrix} P^{-1}$$

 $2.b) \left(I_d - \frac{t}{n}A\right)^{-n} = \left(I_d - \frac{t}{n}PDP^{-1}\right)^{-n} = P\left(I_d - \frac{t}{n}D\right)^{-n}P^{-1}. \text{ Or on sait que } \left(1 - \frac{t}{n}\lambda\right)^{-n} \underset{n \to +\infty}{\longrightarrow} e^{\lambda t}.$ Donc $M(t) = \lim_{n \to +\infty} \left(I_d - \frac{t}{n}A\right)^{-n}. \text{ Alors si } \left(\lambda I_d - A\right)^{-1} \text{ est positive pour } \lambda \text{ assez grand, } \left(\frac{n}{t}I_d - A\right)^{-1} \text{ est positive pour } n \text{ assez grand, donc aussi } \left(I_d - \frac{t}{n}A\right)^{-1} = \frac{n}{t}\left(\frac{n}{t}I_d - A\right)^{-1} \text{ ainsi que } \left(I_d - \frac{t}{n}A\right)^{-n}. \text{ Par passage à la limite } (\mathbf{II.1.a}), M(t) \text{ est donc une matrice positive.}$

2.c) Sachant que pour $\lambda > \|A\|_d$, $\lambda I_d - A$ est inversible, on peut écrire $\int_0^x e^{-\lambda t} M(t) dt = \int_0^x \exp((-\lambda I_d + A)t) dt = -(\lambda I_d - A)^{-1} \left[\exp((-\lambda I_d + A)t) \right]_0^x = (\lambda I_d - A)^{-1} \left(I_d - e^{-\lambda x} M(x) \right).$

$$2.d) \|M(t)\|_{d} = \left\| \sum_{k=0}^{+\infty} \frac{A^{k} t^{k}}{k!} \right\|_{d} \leq \sum_{k=0}^{+\infty} \frac{\|A\|_{d}^{k} t^{k}}{k!} = e^{t\|A\|_{d}} \text{ . Donc, pour } \lambda > \|A\|_{d}, \|M(x)e^{-\lambda x}\|_{d} \leq e^{x(\|A\|_{d} - \lambda)} \underset{x \to +\infty}{\longrightarrow} 0$$
 et $\lim_{x \to +\infty} (\lambda I_{d} - A)^{-1} (I_{d} - e^{-\lambda x} M(x)) = (\lambda I_{d} - A)^{-1}$.

2.e) Si M(t) est positive pour tout t > 0, il en est de même de $e^{-\lambda t} M(t)$, donc aussi de $\int_0^x e^{-\lambda t} M(t) dt$ puisque les coefficients de cette matrice sont des intégrales sur le segment [0,x] de fonctions positives. Par passage à la limite, $(\lambda I_d - A)^{-1}$ est positive pour tout $\lambda > ||A||_d$.