Public Key Cryptography

Introduction

- Foundation of today's secure communication
- Allows communicating parties to obtain a shared secret key
- Public key (for encryption) and Private key (for decryption)
- Private key (for digital signature) and Public key (to verify signature)

Brief History Lesson

- Historically same key was used for encryption and decryption
- Challenge: exchanging the secret key (e.g. face-to-face meeting)
- 1976: Whitfield Diffie and Martin Hellman
 - key exchange protocol
 - proposed a new public-key cryptosystem
- 1978: Ron Rivest, Adi Shamir, and Leonard Adleman (all from MIT)
 - attempted to develop a cryptosystem
 - created RSA algorithm

Outline

- Public-key algorithms
 - Diffie-Hellman key exchange
 - RSA algorithm
 - Digital signature
- Public-key infrastructure
- SSL/TLS protocol

Diffie-Hellman Key Exchange

- Allows communicating parties with no prior knowledge to exchange shared secret keys over an insecure channel
- Alice and Bob want to communicate
- Alice and Bob agree on:
 - Number p: big prime number (such as a 2048-bit number)
 - Generator g: small prime number (such as 2 and 3)
- Alice picks a random positive integer x < p
- Bob picks a random positive integer y < p

Diffie-Hellman Key Exchange (Contd.)

Turn DH Key Exchange into a Public-Key Encryption Algorithm

- DH key exchange protocol allows exchange of a secret
- Protocol can be tweaked to turn into a public-key encryption scheme
- Need:
 - Public key: known to the public and used for encryption
 - Private key: known only to the owner, and used for decryption
 - Algorithm for encryption and decryption

Turn DH Key Exchange into a Public-Key Encryption Algorithm (Contd.)

RSA Algorithm

We will cover:

- Modulo Operation
- Euler's Theorem
- Extended Euclidean Algorithm
- RSA Algorithm
- Algorithm example on small and large number

Modulo Operation

- The RSA algorithm is based on modulo operations
- a mod n is the remainder after division of a by the modulus n
- Second number is called modulus
- For example, (10 mod 3) equals to 1 and (15 mod 5) equals to 0
- Modulo operations are distributive:

```
(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n
a*b \mod n = [(a \mod n)*(b \mod n)] \mod n
a^x \mod n = (a \mod n)^x \mod n
```

Euler's Theorem

- Euler's totient function $\phi(n)$ counts the positive integers up to a given integer n that are relatively prime to n
- $\varphi(n) = n 1$, if n is a prime number.
- Euler's totient function property:
 - if m and n are relatively prime, $\varphi(mn) = \varphi(m) * \varphi(n)$
- Euler's theorem states:
 - $a^{\varphi(n)} = 1 \pmod{n}$

Euler's Theorem (Contd.)

Example: to calculate 4 100003 mod 33

```
• \varphi(33) = \varphi(3) * \varphi(11) = (3 - 1) * (11 - 1) = 20
```

• $100003 = 5000\varphi(33) + 3$

```
4^{100003} \mod 33
= 4^{20*5000+3} \mod 33
= (4^{20})^{5000} * 4^3 \mod 33
= [(4^{20})^{5000} \mod 33)] * 4^3 \mod 33 \text{ (applying distributive rule)}
= [(4^{20} \mod 33)]^{5000} * 4^3 \mod 33 \text{ (applying distributive rule)}
= 1^{5000} * 64 \mod 33 \text{ (applying Euler's theorem)}
= 31.
```

Extended Euclidean Algorithm

- Euclid's algorithm: efficient method for computing GCD
- Extended Euclidean algorithm:
 - computes GCD of integers a and b
 - finds integers x and y, such that: ax + by = gcd(a, b)
- RSA uses extended Euclidean algorithm:
 - e and n are components of public key
 - Find solution to equation:

```
e * x + \phi(n) * y = gcd(e, \phi(n)) = 1
```

- x is private key (also referred as d)
- Equation results: $e * d mod \phi(n) = 1$

RSA Algorithm

We will cover:

- Key generation
- Encryption
- Decryption

RSA: Key Generation

- Need to generate: modulus n, public key exponent e, private key exponent d
- Approach
 - Choose p,q (large random prime numbers)
 - n = pq (should be large)
 - Choose e, $1 < e < \phi(n)$ and e is relatively prime to $\phi(n)$
 - Find d, ed mod $\varphi(n) = 1$
- Result
 - (e,n) is public key
 - d is private key

RSA: Encryption and Decryption

- Encryption
 - treat the plaintext as a number
 - assuming M < n
 - $C = M^e \mod n$
- Decryption
 - $M = C^d \mod n$

```
M^{ed} \mod n = M^{k\phi(n)+1} \mod n
= M^{k\phi(n)} * M \mod n
= (M^{\phi(n)} \mod n)^k * M \mod n \text{ (applying distributive rule)}
= 1^k * M \mod n \text{ (applying Euler's theorem)}
= M
```

RSA Exercise: Small Numbers

- Choose two prime numbers p = 13 and q = 17
- Find e:
 - n = pq = 221
 - $\varphi(n) = (p 1)(q 1) = 192$
 - choose e = 7 (7 is relatively prime to $\phi(n)$)
- Find d:
 - ed = $1 \mod \varphi(n)$
- Solving the above equation is equivalent to: 7d + 192y = 1
- Using extended Euclidean algorithm, we get d = 55 and y = -2

RSA Exercise: Small Numbers (Contd.)

Encrypt M = 36

```
M^e \mod n = 36^7 \mod 221
= (36^2 \mod 221)^3 * 36 \mod 221
= 191^3 * 36 \mod 221
= 179 \mod 221.
```

Cipher text (C) = 179

RSA Exercise: Small Numbers (Contd.)

```
\mod n = 179^{55} \mod 221
       = (179^2 \mod 221)^{27} * 179 \mod 221
       =217^{27}*179 \mod 221
       = (217^2 \mod 221)^{13} * 217 * 179 \mod 221
       = 16^{13} * 217 * 179 \mod 221
       = (16^2 \mod 221)^6 * 16 * 217 * 179 \mod 221
       =35^6*16*217*179 \mod 221
       = (35^2 \mod 221)^3 * 16 * 217 * 179 \mod 221
       = 120^3 * 16 * 217 * 179 \mod 221
       = (120^2 \mod 221) * 120 * 16 * 217 * 179 \mod 221
       = 35 * 120 * 16 * 217 * 179 \mod 221
       = 36 \mod 221
```

Hybrid Encryption

- High computation cost of public-key encryption
- Public key algorithms used to exchange a secret session key

Key (content-encryption key) used to encrypt data using a

symmetric-key algorithm

Using OpenSSL Tools to Conduct RSA Operations

We will cover:

- Generating RSA keys
- Extracting the public key
- Encryption and Decryption

OpenSSL Tools: Generating RSA keys

Example: generate a 1024-bit public/private key pair

- openssl genrsa -aes128 -out private.pem 1024
- private.pem: Base64 encoding of DER generated binary output

```
$ more private.pem
----BEGIN RSA PRIVATE KEY----
MIICWgIBAAKBgQCuXJawrRzJNG9vt2Zqe+/TCT3OxuEKRWkHfE5uZBkLCMgGbYzK
...
mesOrjIfm0ljUNL4VRnrLxrl/1xEBGWedCuCPqeV
----END RSA PRIVATE KEY----
```

OpenSSL Tools: Generating RSA keys (Contd.)

Actual content of private.pem

```
$ openssl rsa -in private.pem -noout -text
Enter pass phrase for private.pem:
Private-Key: (1024 bit)
modulus:
    00:c4:5a:9d:8d:f7:ad:0d:e7:60:4e:b3:9c:76:93: ...
publicExponent: 65537 (0x10001)
privateExponent:
    00:a5:86:fe:6b:3f:f0:53:58:4a:88:0e:42:48:74: ...
prime1:
    00:ec:a0:f7:02:8d:79:a0:8b:c5:5b:e6:a0:25:2c: ...
prime2:
    00:d4:6d:9c:4a:35:6b:fb:db:42:20:d8:6e:45:a9: ...
exponent1:
    06:72:d4:88:73:46:8f:43:7f:db:63:4b:95:f7:c4: ...
exponent2:
    00:d1:3c:45:bd:32:71:72:59:bd:00:ed:2d:70:a0: ...
coefficient:
    22:f5:95:05:81:c4:fd:3e:52:99:16:b5:66:92:52: ...
```

OpenSSL Tools: Extracting Public Key

- openssl rsa -in private.pem -pubout > public.pem
- Content of public.pem:

----BEGIN PUBLIC KEY----

```
MIGFMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDEWp2N960N52Bos5x2k53WglVn
iAv5oUemZdfnGP1qUhTMZfhSbD27eOUJZAEdrMS/4Nax/BJIxz6N+L2K2cQQasJY
Gqf1PetXKtYakzgd5dBuB3aogOTJaBSt8/A0DBK2MtwNMnBxeZWnf4DK8Glsbp2S
nsGmCdceQ4nelGZbIwIDAQAB
----END PUBLIC KEY----
$ openssl rsa -in public.pem -pubin -text -noout
Public-Key: (1024 bit)
Modulus:
    00:af:1a:d9:ca:91:91:6b:b6:d0:1d:56:7a:1b:2d: ...
Exponent: 65537 (0x10001)
```

OpenSSL Tools: Encryption and Decryption

Plain Text

```
$ echo "This is a secret." > msg.txt
```

Encryption

Decryption

```
$ openssl rsautl -decrypt -inkey private.pem -in msg.enc
Enter pass phrase for private.pem:
This is a secret.
```

Paddings for RSA

- Secret-key encryption uses encryption modes to encrypt plaintext longer than block size.
- RSA used in hybrid approach (Content key length << RSA key length)
- To encrypt:
 - short plaintext: treat it a number, raise it to the power of e (modulo n)
 - large plaintext: use hybrid approach (treat the content key as a number and raise it to the power of e (modulo n)
- Treating plaintext as a number and directly applying RSA is called plain RSA or textbook RSA

Attacks Against Textbook RSA

- RSA is deterministic encryption algorithm
 - same plaintext encrypted using same public key gives same ciphertext
 - secret-key encryption uses randomized IV to have different ciphertext for same plaintext
- For small e and m
 - if me < modulus n
 - e-th root of ciphertext gives plaintext
- If same plaintext is encrypted e times or more using the same e but different n, then it is easy to decrypt the original plaintext message via the Chinese remainder theorem

Paddings: PKCS#1 v1.5 and OAEP

- Simple fix to defend against previous attacks is to add randomness to the plaintext before encryption
- Approach is called padding
- Types of padding:
 - PKCS#1 (up to version 1.5): weakness discovered since 1998
 - Optimal Asymmetric Encryption Padding (OAEP): prevents attacks on PKCS
- rsautl command provides options for both types of paddings (PKCS#1 v1.5 is default)

PKCS Padding

- Plaintext is padded to 128 bytes
- Original plaintext is placed at the end of the block
- Data inside the block (except the first two bytes) are all random numbers
- First byte of the padding is always 00 (so that padded plaintext as integer is less than modulus n)
- Second byte is 00, 01, and 02 (different strings used for padding for different types)

PKCS Padding (Contd.)

```
$ openssl rsautl -encrypt -inkey public.pem -pubin \
                -in msq.txt -out msq.enc -pkcs
$ openssl rsautl -decrypt -inkey private.pem \
                -in msg.enc -out newmsg.txt -raw
$ xxd newmsq.txt
00000000: 0002 1b19 331a 1ea8 049e 8667 3b55 057c
                                                ....3.....a;U.|
00000010: 1072 e2bb 0aca 9af0 dd0e 5706 b34d e4a3
                                                 00000020: 7df6 b4d3 5f9b 8303 5ce7 67ee 150e 0fe1
                                                }...\.g....
00000030: f73f 6dc4 af36 117d 0d63 72f1 88f2 337f .?m..6.}.cr...3.
00000040: 100b afac 8b26 fa65 d5a6 10b3 cf10 0b35
                                                .....&.e.....5
00000050: 171b 9cc2 3409 c3b6 d953 a8a4 4617 4356
                                                 ....4....S..F.CV
00000060: 3f5f 1a91 9a97 5863 eae2 8ec5 4a00 5468 ?....Xc....J.Th
00000070: 6973 2069 7320 6120 7365 6372 6574 2e0a is is a secret...
```

OAEP Padding

- Original plaintext is not directly copied into the encryption block
- Plaintext is XORed with a value derived from random padding data

```
$ openssl rsautl -encrypt -inkey public.pem -pubin \
               -in msg.txt -out msg.enc -oaep
$ openssl rsautl -decrypt -inkey private.pem \
               -in msg.enc -out newmsg.txt -raw
$ xxd newmsq.txt
00000000: 006f 5f5e 5e0d e813 7fb0 3d45 e1ed d4fa .o ^^....=E....
                                             .....GE...."O.O.
00000010: 0688 1196 bb47 4501 b815 8922 51a0 5184
00000020: d6b1 9819 4c00 07d1 b985 0248 8822 7b4f
                                             00000030: 8470 b195 le4e 288f db91 f905 9d70 01de
                                             .p...N(....p..
00000040: e0f4 5b4c 5b8a 26df 7031 b4a6 6547 d07d
                                             ..[L[.&.pl..eG.}
00000050: e8ca 0006 3b65 a3ba 0f9f f865 6e80 6e0d
                                             ....; e....en.n.
00000060: 04ff 82a1 2c0b 3d1d 8d63 19b1 56f7 14f8
                                             ..., .=..c..V...
```

Digital Signature

- Goal: provide an authenticity proof by signing digital documents
- Diffie-Hellman authors proposed the idea, but no concrete solution
- RSA authors developed the first digital signature algorithm

Digital Signature using RSA

- Apply private-key operation on m using private key, and get a number s, everybody can get the m back from s using our public key
- For a message m that needs to be signed:

Digital signature = m^d mod n

- In practice, message may be long resulting in long signature and more computing time
- Instead, we generate a cryptographic hash value from the original message, and only sign the hash

Digital Signature using RSA (Contd.)

Generate message hash

```
# Generate the hash from the message

$ openssl sha256 -binary msg.txt > msg.sha256

$ xxd msg.sha256

00000000: 8272 61ce 5ddc 974b 1b36 75a3 ed37 48cd .ra.]..K.6u..7H.

00000010: 83cd de93 85f0 6aab bd94 f50c db5a b460 .....j.....Z.
```

Digital Signature using RSA (Contd.)

Generate and verify the signature

Attack Experiment on Digital Signature

- Attackers cannot generate a valid signature from a modified message because they do not know the private key
- If attackers modifies the message, the hash will change and it will not be able to match with the hash produced from the signature verification
- Experiment: modify 1 bit of signature file msg.sig and verify the signature

Attack Experiment on Digital Signature (Contd.)

After applying the RSA public key on the signature, we get a block of data that is significantly different

```
$ openssl rsautl -verify -inkey public.pem -in msg.sig -pubin \
                 -raw | xxd
00000000: 8116 cdc6 6b45 bcfc 98c3 7b09 514e 82fd
                                                   ...kE....{.ON..
00000010: 88a2 170b 414d 1ce8 7d18 d031 f03e db9f
                                                   ....AM...}..1.>..
00000020: 6f0f 3209 c1bc d2a6 a9d9 3f06 1e2c f970
                                                   o.2....p
00000030: 1d90 ae31 bc5c 010d de8b 9a4b 6060 71b6
                                                   ...1.\....K''a.
                                                  q.C.P^wYB...k...
00000040: 71ce 43eb 505e 7759 42b9 e6c1 6bf5 06b9
00000050: bd70 94fd 990f 2261 1257 76c2 7441 cbe0
                                                   .p...."a.Wv.tA..
00000060: 8538 8d9d 753e 4bd0 5c16 cb9c 57ea 8b62
                                                   .8..u>K.\...W..b
00000070: f804 76a2 d33b 7044 4ec7 93aa 56eb c0c1
                                                   ..v..;pDN...V...
```

Programming using Public-Key Cryptography APIs

- Languages, such as Python, Java, and C/C++, have well-developed libraries that implement the low-level cryptographic primitives for public-key operations
- Python:
 - no built-in cryptographic library
 - use Python packages (e.g. PyCryptodome)
- We will cover:
 - Key Generation
 - Encryption and Decryption
 - Digital Signature

Public-Key Cryptography APIs: Key Generation

- Python example (next slide) using Python Crypto APIs to generate a RSA key and save it to a file
- Lines in code:
 - Line (1): generate a 2048-bit RSA key
 - Line (2): export key() API serializes the key using the ASN.1 structure
 - Line (3): extract public-key component

Public-Key Cryptography APIs: Key Generation (Contd.)

Public-Key Cryptography APIs: Encryption

- To encrypt a message using public keys, we need to decide what padding scheme
- For better security, it is recommended that OAEP is used
- Lines in code (example on next slide):
 - Line (1): import the public key from the public-key file
 - Line (2): create a cipher object using the public key

Public-Key Cryptography APIs: Encryption (Contd.)

```
#!/usr/bin/python3

from Crypto.Cipher import PKCS1_OAEP
from Crypto.PublicKey import RSA

message = b'A secret message!\n'

key = RSA.importKey(open('public.pem').read()) ①
cipher = PKCS1_OAEP.new(key) ②
ciphertext = cipher.encrypt(message)
f = open('ciphertext.bin','wb')
f.write(ciphertext)
f.close()
```

Public-Key Cryptography APIs: Decryption

Uses the private key and the decrypt() API

```
#!/usr/bin/python3

from Crypto.Cipher import PKCS1_OAEP
from Crypto.PublicKey import RSA

ciphertext = open('ciphertext.bin', 'rb').read()

prikey_pem = open('private.pem').read()

prikey = RSA.importKey(prikey_pem, passphrase='dees')
cipher = PKCS1_OAEP.new(prikey)

message = cipher.decrypt(ciphertext)
print(message)
```

Public-Key Cryptography APIs: Digital Signature

- In Python code, one canuse PyCryptodome library's Crypto.Signature package
- Four supported digital signature algorithms:
 - RSASSA-PKCS1-v1_5
 - RSASSA-PSS
 - DSA
 - RSASSA-PSS
- Show example with RSASSA-PSS

Public-Key Cryptography APIs: Digital Signature using PSS

- Probabilistic Signature Scheme (PSS) is a cryptographic signature scheme designed by Mihir Bellare and Phillip Rogaway
- RSA-PSS is standardized as part of PKCS#1 v2.1
- Sign a message in combination with some random input.
- For same input:
 - two signatures are different
 - both can be used to verify

Public-Key Cryptography APIs: Digital Signature using PSS (Contd.)

- Lines in code example:
 - line (1): create a signature object
 - line (2): generate the signature for the hash of a message

```
#!/usr/bin/python3

from Crypto.Signature import pss
from Crypto.Hash import SHA256
from Crypto.PublicKey import RSA

message = b'An important message'
key_pem = open('private.pem').read()
key = RSA.import_key(key_pem, passphrase='dees')
h = SHA256.new(message)
signer = pss.new(key)
signature = signer.sign(h)
open('signature.bin', 'wb').write(signature)
```

Applications

We will cover:

- Authentication
- HTTPS and TLS/SSL
- Chip Technology Used in Credit Cards

Applications: Authentication

- Typical way to conduct authentication is to use passwords
- Disadvantage:
 - A sends password to B: B can get hacked and A may use same password for multiple accounts
 - cannot be used for many parties to authenticate a single party
- Fundamental problem: password authentication depends on a shared secret

Applications: Authentication (Contd.)

Solution:

- Making the encryption and decryption keys different
- generate the authentication data using one key, and verify the data using a different key

Applications: Authentication (Contd.)

SSH Case Study

- SSH uses public-key based authentication to authenticate users
- Generate a pair of public and private keys: ssh-keygen -t rsa
 - private key: /home/seed/.ssh/id_rsa
 - public key: /home/seed/.ssh/id_rsa.pub
- For Server:
 - send the public key file to the remote server using a secure channel
 - add public key to the authorization file~/.ssh/authorized_keys
 - Server can use key to authenticate clients

Applications: HTTPS and TLS/SSL

- HTTPS protocol is used to secure web services
- HTTPS is based on the TLS/SSL protocol (uses both public key encryption and signature
 - encryption using secret-key encryption algorithms
 - public key algorithms are mainly used for key exchange

Applications: HTTPS and TLS/SSL (Contd.)

Applications: Credit Card Chip

- Past: cards store card information in magnetic stripe (easy to clone)
- With Chip:
 - chips can conduct computations and store data (not disclosed to outside)
 - EMV standard (Europay, MasterCard, and Visa)
- We will cover how public key technologies are used for:
 - Card authentication
 - Transaction authentication

Applications: Credit Card Chip Authentication

- Card contains a unique public and private key pair
 - Private key is protected and will never be disclosed to the outside
 - Public key is digitally signed by the issuer, so its authenticity can be verified by readers

Applications: Credit Card Transaction Authentication

- Issuer needs to know whether the transaction is authentic
- Transaction needs to be signed by the card using its private key
- Verified Signature:
 - To issuers: card owner has approved the transaction
 - To honest vendor: enables the vendor to save the transactions and submit them later

Summary

We covered:

- the basics of public key cryptography
- both theoretical and practical sides of public key cryptography
- RSA algorithm and the Diffie-Hellman Key Exchange
- tools and programming libraries to conduct public-key operations
- how public key is used in real-world applications