Camera Parameters: Internal and External

Vinay P. Namboodiri

• Slide credit to Robert Collins

Object of Interest in World Coordinate System (U,V,W)

Camera Coordinate System (X,Y,Z).

- Z is optic axis
- Image plane located f units out along optic axis
- f is called focal length

Forward Projection onto image plane. 3D (X,Y,Z) projected to 2D (x,y)

Forward Projection

We want a mathematical model to describe how 3D World points get projected into 2D Pixel coordinates.

Our goal: describe this sequence of transformations by a big matrix equation!

Backward Projection

Note, much of vision concerns trying to derive backward projection equations to recover 3D scene structure from images (via stereo or motion)

But first, we have to understand forward projection...

Robert Collins CSE486, Penn State

Forward Projection

We will start here in the middle, since we've already talked about this when discussing stereo.

Perspective Projection Eqns

$$x = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$

Y

So how do we represent this as a matrix equation? We need to introduce homogeneous coordinates.

Homogeneous Coordinates

Represent a 2D point (x,y) by a 3D point (x',y',z') by adding a "fictitious" third coordinate.

By convention, we specify that given (x',y',z') we can recover the 2D point (x,y) as

$$x = \frac{x'}{z'}$$
 $y = \frac{y'}{z'}$

Note: (x,y) = (x,y,1) = (2x, 2y, 2) = (k x, ky, k) for any nonzero k (can be negative as well as positive)

Perspective Matrix Equation

(in Camera Coordinates)

$$x = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Forward Projection

Rigid Transformation (rotation+translation) between world and camera coordinate systems

CSE486, Penn World to Camera Transformation

Avoid confusion: Pw and Pc are not two different points. They are the same physical point, described in two different coordinate systems.

CSE486, Penn World to Camera Transformation

$$P_{C} = R (P_{W} - C)$$

CSE486, Pendate trix Form, Homogeneous Coords

$$P_{C} = R (P_{W} - C)$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$$

CSE486, Penn State Example: Simple Stereo System

Left camera located at world origin (0,0,0)and camera axes aligned with world coord axes.

Simple Stereo, Left Camera

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ \mathbf{1} \end{pmatrix}$$

camera axes aligned with world axes

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

located at world position (0,0,0)

CSE486, Penn Stimple Stereo Projection Equations

Left camera

$$\begin{bmatrix} x_l \\ y_l \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$x_l = f \frac{X}{Z} \qquad y_l = f \frac{Y}{Z}$$

CSE486, Penn State Example: Simple Stereo System

Right camera located at world location (Tx,0,0)and camera axes aligned with world coord axes.

CSE486, Penn State Simple Stereo, Right Camera

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 - \mathbf{T}_{\mathbf{x}} \\ 0 & 1 & 0 & \mathbf{0} \\ 0 & 0 & 1 & \mathbf{0} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ 1 \end{pmatrix}$$

camera axes aligned with world axes

located at world position $(T_x,0,0)$

$$= \begin{bmatrix} 1 & 0 & 0 & -T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

CSE486, Penn Stimple Stereo Projection Equations

Left camera

$$\begin{bmatrix} x_l \\ y_l \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$x_l = f \frac{X}{Z} \qquad y_l = f \frac{Y}{Z}$$

Right camera

$$\begin{bmatrix} x_r \\ y_r \\ 1 \end{bmatrix} \sim \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$x_r = f \frac{X - T_x}{Z} \qquad y_r = f \frac{Y}{Z}$$

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$$

$$P_{\mathbf{C}} = \mathbf{R} P_{\mathbf{W}}$$

what if world x axis (1,0,0) corresponds to camera axis (a,b,c)?

we can immediately write down the first column of R!

and likewise with world Y axis and world Z axis...

Alternative approach: sometimes it is easier to specify what camera X,Y,or Z axis is in world coordinates. Then do rearrange the equation as follows.

$$P_C = R P_W \longrightarrow R^{-1}P_C = P_W \longrightarrow R^TP_C = P_W$$

$$\begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{21} & \mathbf{r}_{31} & 0 \\ \mathbf{r}_{12} & \mathbf{r}_{22} & \mathbf{r}_{32} & 0 \\ \mathbf{r}_{13} & \mathbf{r}_{23} & \mathbf{r}_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{r}_{11} & \mathbf{r}_{21} & \mathbf{r}_{31} & 0 \\ \mathbf{r}_{12} & \mathbf{r}_{22} & \mathbf{r}_{32} & 0 \\ \mathbf{r}_{13} & \mathbf{r}_{23} & \mathbf{r}_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{U} \\ \mathbf{V} \\ \mathbf{W} \\ 1 \end{pmatrix}$$

$$\mathbf{R}^{\mathbf{T}} \mathbf{P}_{\mathbf{C}} = \mathbf{P}_{\mathbf{W}}$$

what if camera X axis (1,0,0) corresponds to world axis (a,b,c)?

we can immediately write down the first column of R^T , (which is the first row of R).

and likewise with camera Y axis and camera Z axis...

Robert Collins CSE486, Penn State

Note: External Parameters also often written as R,T

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -c_x \\ 0 & 1 & 0 & -c_y \\ 0 & 0 & 1 & -c_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U \\ V \\ W \\ 1 \end{pmatrix}$$

$$\mathbf{R} (\mathbf{P_W - C}) = \mathbf{R} \mathbf{P_W - R} \mathbf{C}$$

$$= \mathbf{R} \mathbf{P_W - R} \mathbf{C}$$

$$= \mathbf{R} \mathbf{P_W + T}$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Projection onto image plane. 3D (X,Y,Z) projected to 2D (x,y)

Forward Projection

We want a mathematical model to describe how 3D World points get projected into 2D Pixel coordinates.

Our goal: describe this sequence of transformations by a big matrix equation!

Intrinsic Camera Parameters

Affine Transformation

Intrinsic parameters

- Describes coordinate transformation between film coordinates (projected image) and pixel array
- Film cameras: scanning/digitization
- CCD cameras: grid of photosensors

Intrinsic parameters (offsets)

film plane (projected image)

pixel array

$$u = f \frac{X}{Z} + o_x \qquad v = f \frac{Y}{Z} + o_y$$

o_x and o_y called image center or principle point

Intrinsic parameters

sometimes one or more coordinate axes are flipped (e.g. T&V section 2.4)

pixel array

$$u = -f\frac{X}{Z} + o_x \qquad v = -f\frac{Y}{Z} + o_y$$

Intrinsic parameters (scales)

sampling determines how many rows/cols in the image

Effective Scales: s_x and s_y

$$u = \frac{1}{S_x} f \frac{X}{Z} + o_x \qquad v = \frac{1}{S_y} f \frac{Y}{Z} + o_y$$

Note, since we have different scale factors in x and y, we don't necessarily have square pixels!

Aspect ratio is s_y / s_x

Perspective projection matrix

Adding the intrinsic parameters into the perspective projection matrix:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f/s_x & 0 & o_x & 0 \\ 0 & f/s_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

To verify:

$$u = \frac{x'}{z'}$$

$$v = \frac{y'}{z'}$$

$$u = \frac{1}{S_x} f \frac{X}{Z} + o_x$$

$$v = \frac{1}{S_y} f \frac{Y}{Z} + o_y$$

Note 2

In general, I like to think of the conversion as a separate 2D affine transformation from film coords (x,y) to pixel coordinates (u,v):

$$\begin{pmatrix} u' \\ v' \\ w' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\mathbf{M}_{aff}$$

$$u = M_{int} P_C = M_{aff} M_{proj} P_C$$

CSE486, Penn State Summary: Forward Projection

CSE486, Penn State Summary: Projection Equation

