2. 单周期处理器在一个周期内完成指令所有的微操作,思考:

• 寻址方式如何实现

不局限于RISC-V架构,直接寻址,间接寻址,寄存器寻址,寄存器间接寻址,立即寻址,隐含寻址,基址寻址,变址寻址,相对寻址,堆栈寻址等。

• 周期宽度如何确定

所有指令中延迟最大的指令执行所需时间。

• 能否"在一个clk内完成"

若一个clk大于所有指令的最大延迟,则可以。

• 能否将两个adder合二为一

可以,使用Mux选择下一条指令的偏移

• 能否将两个memory合二为一

可以,使用两读一写端口的Memory实现

3. 根据图4-22, 画出主控制器的PLA实现图

- 先写布尔表达式
- 请参考英文版教材附录C第2节
- 由于PLA规模不小,可以手绘,也可以用软件画完后打印出来

PLA 为主控制器画PLA实现图

主控制器真值表

Input or output	Signal name	R-format	ld	sd	beq	Oth
Inputs	I[6]	0	0	0	1	Not
	I[5]	1	0	1	1	
	I[4]	1	0	0	0	R/
	I[3]	0	0	0	0	ld/
	I[2]	0	0	0	0	sd/
	I[1]	1	1	1	1	beq
	I[0]	1	1	1	1	
Outputs	ALUSrc	0	1	1	0	X
	MemtoReg	0	1	X	X	X
	RegWrite	1	1	0	0	0
	MemRead	0	1	0	0	X
	MemWrite	0	0	1	0	0
	Branch	0	0	0	1	0
	ALUOp1	1	0	0	0	X
	ALUOp0	0	0	0	1	X

Input or output	Signal name	R-format		at	ld	sd	beq
Inputs	I[6]		0		0	0	1
	I[5]		1		0	1	1
	I[4]		1		0	0	0
	I[3]		0		0	0	0
	I[2]		0		0	0	0
	I[1]		1		1	1	1
	I[0]		1		1	1	1
Outputs	ALUSrc	0			1	1	0
	MemtoReg	0			1	Х	X
	RegWrite	1			1	0	0
	MemRead	0			1	0	0
	MemWrite	0			0	1	0
	Branch	0			0	0	1
	ALUOp1	1			0	0	0
	ALUOp0	0			0	0	1

写布尔表达式

AND平面

把n个inputs合成一个 布尔信号,再取个名字。 Inputs之间只需要做与 操作,称为 AND 平面

R-format = $\overline{I[6]} I[5] I[4] \overline{I[3]} \overline{I[2]} I[1] I[0]$, Only $I[6] \sim I[0] = 0110011$, R-format = 1

$$LD = \overline{I[6]} \overline{I[5]} \overline{I[4]} \overline{I[3]} \overline{I[2]} I[1] I[0], \text{ Only } I[6] \sim I[0] = 0000011, \text{ ld} = 1$$

$$SD = \overline{I[6]} I[5] \overline{I[4]} \overline{I[3]} \overline{I[2]} I[1] I[0], \text{ Only } I[6] \sim I[0] = 0100011, \text{ sd} = 1$$

$$BEQ = I[6] I[5] \overline{I[4]} \overline{I[3]} \overline{I[2]} I[1] I[0], \text{ Only } I[6] \sim I[0] = 1100011, \text{ beq} = 1$$

Input or output	Signal name	R-format	ld	sd	beq
Inputs	I[6]	0	0	0	1
	I[5]	1	0	1	1
	I[4]	1	0	0	0
	I[3]	0	0	0	0
	I[2]	0	0	0	0
	I[1]	1	1	1	1
	I[O]	1	1	1	1
Outputs	ALUSrc	0	1	1	0
	MemtoReg	0	1	X	Х
	RegWrite	1	1	0	0
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

写布尔表达式

OR平面

对与平面得到的布尔型 结果,根据outputs的真值 表组合运算得到输出。

得到输出只需要做或操作, 称为 OR 平面

ALUSrc = ld + sd MemtoReg = ld (+sd(+beq))

RegWrite = R + Id MemRead = Id

MemWrite = sd Branch = beq

ALUOp1 = R ALUOp0 = beq

![image-20220612170117433](C:\Users\User\Desktop\3\image-20220612170117433.png

