

Configuration interaction approach A powerful tool in studies of nuclear many-body problems

- •De-facto most established many-body technique for nuclear many-body problem
- •Predict ground state to highly excited many-body configuration, density of states
- Advanced computational techniques allow for broad scope of configurations.
 - From Shell Model to Configuration Interaction
 - •Techniques: quantum chaos, Monte-Carlo, variational sampling, etc.
- Central technique to many-methods
 - With or without a core
 - Mean-field and RPA limits
 - •From ab-initio, to effective, to mean-field (monopole) interactions.
- Collective many-body effects:
 - pairing and superconductivity,
 - •Shape coexistence, phase transitions, connection to algebraic methods
 - Rotations.
- Reactions and decays
 - •EM and beta decay processes.
 - Exotic decays
 - Physics of overlapping resonances and decay collectivity

New look into clustering

- Numerous questions of present-day interest
 - •Role of clustering in structure: nuclear shapes, rotations, new experiments
 - •Interplay of cluster structures, particle decay, and EM transitions
 - Reactions of cluster transfer, astrophysics
 - Broad overlapping alpha resonances
- Revisiting old ideas with new tools and techniques

References:

Grigorescu, et.al. Phys. Rev. C. 47 (1997) 2666. F. Becchetti, et.al. Nucl. Phys. **A344** (1980) 336.

W. Chung, et.al Phys. Lett. B. 79 (1978) 381.

Yu. F. Smirnov, et. al Phys. Rev. C 15 (1977) 84.

M Ichimura, et.al. Nucl. Phys. A 244 (1975) 365.

I.V. Kurdumov, et. al. Nucl. Phys. **A145** (1970) 593.

From shell model to configuration interactions

State, equivalent to operator (polymorphism)

$$|\Psi\rangle \equiv \hat{\Psi}^\dagger |0\rangle = \sum_{\{1,2,3,\ldots A\}} \langle 1,2\ldots A |\Psi\rangle \, \hat{a}_1^\dagger \hat{a}_2^\dagger \ldots \hat{a}_A^\dagger |0\rangle$$

Construct relevant many-body operators, configurations

- Proper symmetry quantum numbers (S,T,J)
- Use SU(3) classification + permutation group

$$|\Phi^{\eta}_{(n,0):L}\rangle \equiv \left(\hat{\Phi}^{\eta}_{(n,0):L}\right)^{\dagger}|0\rangle \equiv \left|\{n_{i}^{\alpha_{i}}\}[f]=[4](n,0):L,S=0,T=0\right\rangle$$

Methods

- Direct diagonalization Casimir operators of SU(3), J^2 , $T^2 \dots$
- Coupling and U(N) Clebsh-Gordan coefficients (via diagonalization)
- Casimir projection techniques. Generators of algebra.

Notations

 $\{n_i^{lpha_i}\}$ configuration

 $lpha_i$ number of particles

 n_i oscillator shell

$$n = \sum_{i} \alpha_{i} n_{i}$$

$$A = \sum \alpha_i$$

Computational test; Bosonic nature of 4-nucleon operators

If Φ^\dagger is thought of as being a boson then $\Phi\Phi^\dagger=1+N_b$

$$\begin{split} |\Psi_D\rangle &= |\Phi\rangle \quad \langle \Phi_D|\hat{\Phi}\hat{\Phi}^\dagger|\Psi_D\rangle = \langle 0|\hat{\Phi}\hat{\Phi}\hat{\Phi}^\dagger\hat{\Phi}^\dagger|0\rangle = 2\\ L &= S = T = 0 \end{split}$$

Coefficients of fractional parentage

$$\mathcal{F}_{nl} = \langle \Psi_P(R_P) | \hat{\mathcal{A}} \left\{ \Phi_{(n,0):l}(R_\alpha) \Psi_D(R_D) \right\} \rangle \equiv \langle \Psi_P(R_P) | \Phi_{(n,0):l}^{\dagger}(R_\alpha) | \Psi_D(R_D) \rangle$$

Φ	Ψ_P	$\left \left \langle\Psi_P \hat{\Phi}^\dagger \Psi_D angle ight ^2$	$\langle \Psi_D \hat{\Phi} \hat{\Phi}^\dagger \hat{\Psi}_D \rangle$
$(p)^4 (4,0)$	$(p)^8 (0,4)$	1.42222*	1.42222
$(sd)^4 (8,0)$	$(sd)^8 (8,4)$	0.487903	1.20213
$(fp)^4 (12,0)$	$(fp)^8 (16,4)$	0.292411	1.41503
$(sdg)^4 (16,0)$	$(sdg)^8 (24,4)$	0.209525	1.5278

^{*} For p-shell the result is known analytically 64/45

Basis states configurations

m-scheme

- Computationally very fast
- Matrices are sparse
- poor choice for collective phenomena
- center-of-mass problem
- dynamic truncation, exponential convergence, importance sampling

Symmetry-based (SU(2), SU(3), U(N) ...)

- Somewhat smaller dimensionally, effective hash tables
- Not so sparse.
- Can be difficult numerically (expensive computationally & roundoff errors)
- Describe well certain collective features
- Center-of-mass and truncation convenience
- Faster convergence smaller basis?

Classic Example: ²⁴Mg, 8 nucleons in sd-shell

Classic Example: ²⁴Mg, 8 nucleons in sd-shell

USD realistic interaction

Ground state J=T=0 breakdown in SU(3) irreps

Classic Example: ²⁴Mg, 8 nucleons in sd-shell

Pairing and spin-orbit

Ground state J=T=0 breakdown in SU(3) irreps

Two-body random interaction on an oscillator shell

Two-body random ensemble

- Statistical study of Hamiltonian matrices
- Two-body matrix elements selected at random, but distributions are basis invariant (GOE)
- Important for generic numerical techniques
- Emergence of realistic patterns: dominance of J=0 g.s.; rotational bands.

Traditional Cluster Spectroscopic Characteristics

Radial amplitude function of cluster-daughter system relative to parent

$$\varphi_{\ell}(\rho') = \left\langle \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \Psi_{P}' \right\rangle$$

Definition in terms of projection

$$\mathcal{P}_{\ell m}(\rho') \equiv \hat{\mathcal{A}} \{ \frac{\delta(\rho - \rho')}{\rho^2} \, Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \, \Psi_D' \} \qquad \langle \mathcal{P}_{\ell m}(\rho) | \Psi_P' \rangle \equiv \varphi_{\ell}(\rho)$$

Expand radial motion in HO wave functions

$$\varphi_{\ell}(\rho) = \sum_{n} \langle \phi_{n\ell} | \varphi_{\ell} \rangle \, \phi_{n\ell}(\rho)$$

Expansion amplitudes are translationally invariant overlaps

$$\langle \phi_{n\ell} | \varphi_{\ell} \rangle = \langle \hat{\mathcal{A}} \{ \phi_{n\ell m}(\boldsymbol{\rho}) \, \Psi_{\alpha}' \, \Psi_{D}' \} | \Psi_{P}' \rangle$$

Summary of notations used

 $\phi_{n\ell}(\rho)$ radial HO wf.

 $\phi_{n\ell m}(\mathbf{r})$ full single-particle oscillator wf.

 $\Phi_{(n,0):L}^{\eta}$ many-body symmetry-based configuration

 $\Psi_{P,D..}$ arbitrary many-body (m-scheme) state or operator

 $\Psi_{P,D..}'$ arbitrary translationally invariant many-body state

 $\varphi_{\ell}(\rho)$ projected radial wf, traditional amplitude

 $\psi_{\ell}(\rho)$ projected radial function, new amplitude

Translational invariance

Shell model, Glockner-Lawson procedure

$$\Psi_D = \phi_{000}(\mathbf{R}_D) \, \Psi_D' \qquad \Psi_P = \phi_{000}(\mathbf{R}_P) \, \Psi_P'$$

Assume alpha structure to be (0s)4

$$|\Psi_{\alpha}\rangle \equiv \left| (0s)^{4} [f] = [4](0,0) : L = 0, S = 0, T = 0 \right\rangle$$

$$\Psi_{\alpha} = \phi_{000}(\mathbf{R}_{\alpha}) \, \Psi_{\alpha}'$$

Factorizing center of mass in overlap integral

$$\langle \Psi_P | \hat{\mathcal{A}} \{ \phi_{n\ell m}(\mathbf{R}_{\alpha}) \Psi_{\alpha}' \Psi_D \} \rangle = \langle \Psi_P' | \hat{\mathcal{A}} \{ \phi_{n\ell m}(\boldsymbol{\rho}) \Psi_{\alpha}' \Psi_D' \} \rangle \times \langle \phi_{000}(\mathbf{R}_P) \phi_{n\ell m}(\boldsymbol{\rho}) | \phi_{n\ell m}(\mathbf{R}_{\alpha}) \phi_{000}(\mathbf{R}_D) \rangle$$

Recoil factor (inverse of Talmi-Moshinsky coefficient)

$$\mathbf{R}_{P} = \frac{m_{D}\mathbf{R}_{D} + m_{\alpha}\mathbf{R}_{\alpha}}{m_{D} + m_{\alpha}}, \quad \boldsymbol{\rho} = \mathbf{R}_{D} - \mathbf{R}_{\alpha}$$

$$\left\langle \phi_{000}(\mathbf{R}_{P}) \, \phi_{n\ell m}(\boldsymbol{\rho}) | \phi_{n\ell m}(\mathbf{R}_{\alpha}) \, \phi_{000}(\mathbf{R}_{D}) \right\rangle \equiv \left\langle 00, n\ell : \ell | \{n\ell\}_{m_{\alpha}}, \{00\}_{m_{D}} : \ell \right\rangle$$

$$\mathcal{R}_{n\ell} \equiv \left(\langle 00, n\ell : \ell | \{ n\ell \}_{m_{\alpha}}, \{ 00 \}_{m_{D}} : \ell \rangle \right)^{-1} = (-1)^{n} \left(\frac{m_{D} + m_{\alpha}}{m_{D}} \right)^{n/2}$$

Cluster coefficients for SU(3) components

Expand SU(3) 4-nucleon structure in intrinsic+ relative all oscillator quanta of excitation are in relative motion.

$$\phi_{n\ell m}(\mathbf{R}_{\alpha})\Psi_{\alpha}' = \sum_{\eta} X_{n\ell}^{\eta} \, \Phi_{(n,0):\ell m}^{\eta}$$

$$X_{n\ell}^{\eta} \equiv \langle \Phi_{(n,0):\ell m}^{\eta} | \phi_{n\ell m}(\mathbf{R}_{\alpha}) \Psi_{\alpha}' \rangle = \sqrt{\frac{1}{4^n} \frac{n!}{\prod_i (n_i!)^{\alpha_i}}} \frac{4!}{\prod_i \alpha_i!}$$

Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).

M. Ichimura, A. Arima, E. C. Halbert, and T. Terasawa, Nucl. Phys. A 204, 225 (1973).

O. F. Nemetz, V. G. Neudatchin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil'sky, Nucleon Clusters in Atomic Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988), p. 295.

Traditional "old" spectroscopic factors

$$\mathcal{S}_{\ell}^{(\mathrm{old})} = \langle \varphi_{\ell} | \varphi_{\ell} \rangle = \int \rho^2 d\rho \, |\varphi_{\ell}(\rho)|^2 = \sum_{n} |\langle \phi_{n\ell} | \varphi_{\ell} \rangle|^2$$

$$\langle \phi_{n\ell} | \varphi_{\ell} \rangle = \mathcal{R}_{n\ell} \sum_{\eta} X_{n\ell}^{\eta} \mathcal{F}_{n\ell}^{\eta}$$
Recoil Factor Cluster Coefficient Fractional Parentage Coefficient

Issues with the traditional SF

- Non-orthogonal set of channels (over-complete set of configurations)
- Pauli exclusion principle
- Matching procedure, asymptotic normalization, connection to observables
- No agreement with experiment on absolute scale

Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).
M. Ichimura, A. Arima, E. C. Halbert, and T. Terasawa, Nucl. Phys. A 204, 225 (1973).

O. F. Nemetz, V. G. Neudatchin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil'sky, Nucleon Clusters in Atomic Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988), p. 295.

W. Chung, J. van Hienen, B. H. Wildenthal, and C. L. Bennett, Phys. Lett. B 79, 381 (1978)

Resonating Group Method and Ortogonality Condition

Cluster channel: relative motion of "frozen" intrinsic states

$$\Psi_{\rm ch}' = \hat{\mathcal{A}}\{f_{\ell}(\rho)Y_{\ell m}(\Omega_{\rho})\Psi_{\alpha}'\Psi_{D}'\} = \int f_{\ell}(\rho')\,\mathcal{P}_{\ell m}(\rho')\,{\rho'}^2d\rho'$$

Projector: $\mathcal{P}_{\ell m}(\rho') \equiv \hat{\mathcal{A}} \{ \frac{\delta(\rho - \rho')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi'_{\alpha} \Psi'_{D} \}$

The effective equation (RGM) for relative motion :

$$\hat{\mathcal{H}}_{\ell} f_{\ell}(\rho) = E \hat{\mathcal{N}}_{\ell} f_{\ell}(\rho)$$

$$\hat{\mathcal{N}}_{\ell}^{-1/2}\hat{\mathcal{H}}_{\ell}\,\hat{\mathcal{N}}_{\ell}^{-1/2}F_{\ell}(\rho) = EF_{\ell}(\rho) \quad F_{\ell}(\rho) \equiv \hat{\mathcal{N}}_{\ell}^{1/2}f_{\ell}(\rho).$$

Norm kernel and projection on relative motion

$$\langle \mathcal{P}_{\ell m}(\rho) | \Psi_{\mathrm{ch}}' \rangle = \hat{\mathcal{N}}_{\ell} f_{\ell} = \int \mathcal{N}_{\ell}(\rho', \rho) f_{\ell}(\rho) \rho^2 d\rho$$

$$\mathcal{N}_{\ell}(\rho',\rho'') = \langle \mathcal{P}_{\ell m}(\rho') | \mathcal{P}_{\ell m}(\rho'') \rangle = \left\langle \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m}(\Omega_{\rho}) \Psi_{\alpha}' \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m} \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m} \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m} \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m} \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m} \Psi_{D}' \right\} \middle| \hat{\mathcal{A}} \left\{ \frac{\delta(\rho - \rho'')}{\rho^2} Y_{\ell m} \Psi$$

Shell model strategy: we project parent state and match it with RGM projection

$$\langle \mathcal{P}_{\ell m}(\rho) | \Psi_P' \rangle \equiv \varphi_{\ell}(\rho) \leftrightarrow \langle \mathcal{P}_{\ell m}(\rho) | \Psi_{\rm ch}' \rangle = \hat{\mathcal{N}}_{\ell} f_{\ell}(\rho).$$

H. Feschbach et al. Ann. Phys. 41 (1967) 230 – 286

R. Lovas et al. Phys. Rep. 294, No. 5 (1998) 265 – 362.

T. Fliessbach and H. J. Mang, Nucl. Phys. A **263**, 75–85 (1976).

S. G. Kadmenskya, S. D. Kurgalina, and Yu. M. Tchuvil'sky Phys. Part. Nucl., 38, 699–742 (2007).

Ortogonality condition model, new SF

$$\psi_{\ell}(\rho) \equiv \hat{\mathcal{N}}_{\ell}^{-1/2} \varphi_{\ell}(\rho)$$

$$S_{\ell}^{(\text{new})} \equiv \langle \psi_{\ell} | \psi_{\ell} \rangle = \int \rho^2 d\rho \left| \psi_{\ell}(\rho) \right|^2$$

R. Id Betan and W. Nazarewicz Phys. Rev. C 86, 034338 (2012)

S. G. Kadmenskya, S. D. Kurgalina, and Yu. M. Tchuvil'sky Phys. Part. Nucl., 38, 699–742 (2007).

R. Lovas et al. Phys. Rep. 294, No. 5 (1998) 265 – 362.

T. Fliessbach and H. J. Mang, Nucl. Phys. A 263, 75–85 (1976).

H. Feschbach et al. Ann. Phys. 41 (1967) 230 – 286

Evaluation of norm kernel and SF in oscillator basis

$$\langle \phi_{n'\ell} | \hat{\mathcal{N}}_{\ell} | \phi_{n\ell} \rangle = \langle \hat{\mathcal{A}} \{ \phi_{n'\ell m}(\boldsymbol{\rho}) \, \Psi_{\alpha}' \, \Psi_{D}' \} | \hat{\mathcal{A}} \{ \phi_{n\ell m}(\boldsymbol{\rho}) \, \Psi_{\alpha}' \, \Psi_{D}' \} \rangle$$

$$\langle \phi_{n'\ell} | \hat{\mathcal{N}}_{\ell} | \phi_{n\ell} \rangle = \mathcal{R}_{n'\ell} \mathcal{R}_{n\ell} \sum_{\eta \eta'} X_{n'\ell}^{\eta'} X_{n\ell}^{\eta} \left\langle 0 \left| \left\{ \hat{\Psi}_{(n',0):\ell}^{\eta'} \hat{\Psi}_D \right\} \right| \left\{ \hat{\Psi}_{(n,0):\ell}^{\eta} \hat{\Psi}_D \right\}^{\dagger} \left| 0 \right\rangle \right\rangle$$
4-body operator

We diagonalize norm kernel in oscillator basis $|\hat{\mathcal{N}}_\ell|k\ell\rangle = N_{k\ell}|k\ell
angle$

New Amplitudes
$$\langle \phi_{n\ell} | \psi_\ell \rangle = \sum_{k\,n'} \frac{1}{\sqrt{N_{k\ell}}} \langle \phi_{n\ell} | k\ell \rangle \langle k\ell | \phi_{n'\ell} \rangle \langle \phi_{n'\ell} | \varphi_\ell \rangle$$

New SF

$$S_{\ell}^{(\text{new})} = \sum_{k} \frac{1}{N_{k\ell}} \left| \sum_{n} \langle k\ell | \phi_{n\ell} \rangle \langle \phi_{n\ell} | \varphi_{\ell} \rangle \right|^{2}$$

Statistical normalization property of new SF

$$\langle \phi_{n'\ell} | \hat{\mathcal{N}}_{\ell} | \phi_{n\ell} \rangle = \langle \hat{\mathcal{A}} \{ \phi_{n'\ell m}(\boldsymbol{\rho}) \, \Psi_{\alpha}' \, \Psi_{D}' \} | \hat{\mathcal{A}} \{ \phi_{n\ell m}(\boldsymbol{\rho}) \, \Psi_{\alpha}' \, \Psi_{D}' \} \rangle$$

For an arbitrary set of parent states $\sum_{P} |\Psi_{P}\rangle\langle\Psi_{P}| \equiv \hat{1}$

$$\sum_{P} |\Psi_{P}\rangle\langle\,\Psi_{P}| \equiv \hat{1}$$

Thus, norm comes from projector on old amplitudes

$$\hat{\mathcal{N}}_{\ell} = \sum_{P} |\varphi_{\ell}^{(P)}\rangle \langle \varphi_{\ell}^{(P)}|$$

Sum of all new SF from all parent states to a given final state equals to the number of channels

$$\sum_{P} S_{\ell}^{(\text{new})}(P) = \sum_{P} \langle \varphi_{\ell}^{(P)} | \hat{\mathcal{N}}_{\ell}^{-1} | \varphi_{\ell}^{(P)} \rangle = \sum_{n} 1$$

For example for one channel:

$$S_{\ell}^{(\text{new})}(P) = \frac{S_{\ell}^{(\text{old})}(P)}{\sum_{P'} S_{\ell}^{(\text{old})}(P')} = \frac{(\mathcal{F}_{n\ell}^{(P)})^2}{\sum_{P'} (\mathcal{F}_{n\ell}^{(P')})^2}$$

Alpha clustering in sd-shell nuclei

$A_P - A_D$	$S_0^{(\exp)}$	$S_0^{(\exp)}$	$S_0^{(\exp)}$	$\mathcal{S}_0^{ ext{(old)}}$	$ \mathcal{S}_0^{(ext{old})} $	$S_0^{(\mathrm{new})}$
AP - AD	[1]	[2]	[3]	[4]	this	work
20 Ne- 16 O	1.0	0.54	1	0.18	0.173	0.755
²² Ne- ¹⁸ O			0.37	0.099	0.085	0.481
24 Mg- 20 Ne	0.76	0.42	0.66	0.11	0.091	0.411
26 Mg- 22 Ne			0.20	0.077	0.068	0.439
28 Si- 24 Mg	0.37	0.20	0.33	0.076	0.080	0.526
$^{30}\mathrm{Si}$ - $^{26}\mathrm{Mg}$			0.55	0.067	0.061	0.555
$^{32}S-^{28}Si$	1.05	0.55	0.45	0.090	0.082	0.911
$^{34}S^{-30}Si$				0.065	0.062	0.974
36 Ar- 32 S				0.070	0.061	0.986
38 Ar- 34 S			1.30	0.034	0.030	0.997
40 Ca- 36 Ar	1.56	0.86	1.18	0.043	0.037	1

USDB interaction [5] (8,0) configuration

- Old SF are small
- Old SF decrease with A

[5] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006)

^[1] T. Carey, P. Roos, N. Chant, A. Nadasen, and H. L. Chen, Phys. Rev. C 23, 576(R) (1981).

^[2] T. Carey, P. Roos, N. Chant, A. Nadasen, and H. L. Chen, Phys. Rev. C 29, 1273 (1984).

^[3] N. Anantaraman and et al., Phys. Rev. Lett. 35, 1131 (1975).

^[4] W. Chung, J. van Hienen, B. H. Wildenthal, and C. L. Bennett, Phys. Lett. B 79, 381 (1978).

Alpha cluster spectroscopic factors in ²⁴Mg

The sd valence space is considered with USDB interaction the operator is

Ф	Ψ =	$\left \langle \Psi_P \hat{\Phi}^{\dagger} \Psi_D \rangle \right ^2$	$\langle \Psi_D \hat{\Phi} \hat{\Phi}^{\dagger} \hat{\Psi}_D \rangle$
$(p)^4 (4,0)$	$(p)^{8}(0,4)$	1.42222*	1.42222
$(sd)^4$ (8,0)	$(sd)^8 (8,4)$	0.487903	1.20213
$(fp)^4$ (12, 0)	$(fp)^8$ (16, 4)	0.292411	1.41503
$(sdg)^4$ (16,0)	$(sdg)^8$ (24, 4)	0.209525	1.5278

Experimental results

Cumulative spectroscopic strength ²⁴Mg

²⁰Ne(g.s)+alpha channel.

Alpha clustering in ¹⁶O

p-sd effective hamiltonian

$$\langle \mathcal{P}_{\ell m}(
ho) | \Psi_{
m ch}'
angle = \hat{\mathcal{N}}_\ell f_\ell = \int \mathcal{N}_\ell(
ho',
ho) f_\ell(
ho)
ho^2 d
ho$$

For positive parity

$$|\Phi_{(8,0):L}\rangle = |(sd)^4[4](8,0), : LS = T = 0\rangle$$

$$|\Phi_{(6,0):L}\rangle = |p^2(sd)^4[4](6,0), : LS = T = 0\rangle$$

$$|\Phi_{(4,0):L}\rangle = |p^4[4](4,0), : LS = T = 0\rangle$$

Translational invariance

We use Lawson approach $F_\ell(\rho) \equiv \hat{\mathcal{N}}_\ell^{1/2} f_\ell(\rho)$.

$$\langle \Psi_P | \beta (H_{\rm c.m.} - ^3/_2 \hbar \omega) | \Psi_P \rangle \approx 0.3 \text{ MeV}$$

E. K. Warburton and B. A. Brown, Phys. Rev. C 46 (1992) 923

Y. Utsuno and S. Chiba, Phys. Rev. C83 021301(R) (2011)

Rotational structure in ¹⁶O

transition	$B(E2) e^2 fm^4$
$2^+(1) \to 0^+(1)$ $2^+(1) \to 0^+(2)$	$4.1 \\ 44.2$
$ \begin{array}{c} 2 & (1) & (2) \\ 4^{+}(1) \rightarrow 2^{+}(1) \\ 4^{+}(1) \rightarrow 2^{+}(2) \end{array} $	15.4 4.2
$6^+(1) \to 4^+(1)$ $6^+(2) \to 4^+(1)$	0.2 18.3
$8^{+}(1) \rightarrow 6^{+}(1)$	0.1
$8^+(1) \to 6^+(2)$	31.7

	Yamada*	This Work
0	0.6	0.8
0+	0.8	0.54
0+	0.2	0.22

^{*} Yamada, et. al Clusters in nuclei, Vol 2, (Springer-Verlag, 2012) page 229.

Detailed spectroscopy ¹⁶O

			•		
J_i^{π}	$E^{(sm)}$	$S_{\ell}^{(\mathrm{new})}$	$E^{(\exp)}$	θ_{α}^{2}	
0_{1}^{+}	0.000	0.794	0	0.86^{a}	
3_{1}^{-}	5.912	0.663	6.13	0.41^{a}	
0_{2}^{+}	6.916	0.535	6.049	0.40^{a}	
1_1	7.632	0.150	7.117	0.14	
2_{1}^{+}	8.194	0.500	6.917	0.47^{a}	
1-	no		9.585	0.67	
2_{2}^{+}	9.988	0.349	9.844	0.0015	
$ 4_{1}^{+} $	10.320	0.313	10.356	0.44	
0_{3}^{+}	10.657	0.216	11.26	0.77	
$2_3^+ \ 4_2^+$	11.307	0.158	11.52	0.033	
$ 4_{2}^{+} $	11.334	0.203	11.097	0.0014	
3^{-}	no		11.6	0.68	
2_{4}^{+}	12.530	0.123	no		
1_2^-	12.681	0.038	12.44	0.023	
0_{4}^{+}	12.764	0.049	12.049	0.00036	
2_{5}^{+}	13.125	0.015	13.02	< 0.04	
$ 6_{1}^{+} $	13.286	0.465	14.815	0.17	
$ 4_{3}^{+} $	13.308	0.160	14.62	0.19	
3_{3}^{-}	13.733	0.144	14.1	0.21	
0_{5}^{+}	13.767	0.054	14.032	0.037	
3_{4}^{-}	14.279	0.025	13.129	0.041	
2_{6}^{+}	14.646	0.102	14.926	< 0.0098	
4_{4}^{+}	15.002	0.067	13.869	0.043	
1_{4}^{-}	15.298	0.174	16.2	< 0.085	
1_{5}^{-}	15.884	0.009	10.2	₹0.000	
4_{5}^{+}	15.474	0.152			
4_{7}^{+}	16.611	0.048	16.844	0.13	
4_{8}^{+}	16.855	0.036			
2_{7}^{+}	15.589	0.040	15.26	< 0.052	
2_{8}^{+}	15.649	0.016	16.352	< 0.093	

θ_{α}^{2} <0.024 0.55 <0.028 0.43 0.14	
0.55 <0.028 0.43 0.14	
<0.028 0.43 0.14	
0.43 0.14	
0.14	
0.14	
< 0.04	
< 0.015	
< 0.022	
0.022	
0.022	
< 0.033	
< 0.077	
0.14	
0.0026	
0.44	
< 0.11	
< 0.044	
0.036	
< 0.023	
< 0.0036	
0.0000	
< 0.011	
0.051	
< 0.026	
< 0.024	

- Most states are well described
- alpha, electromagnetic and other properties
- Cumulative strength

$$\sum_{i} S_4^{(\text{exp})}(4_i^+) = 0.67$$
$$\sum_{i} S_4^{(\text{new})}(4_i^+) = 0.74$$

- Predicted but not observed states
- Missing 1⁻ (9.6 MeV) 3⁻ (11.6 MeV)

Interplay of clustering and nuclear superconductivity

What happens if all paring matrix elements are rescaled?

Detailed shell model analysis of ¹⁰Be and experimental data

J_s^π	S_l	\mathbf{E}_{x}^{th}	Γ_{lpha}^{th}	\mathbf{E}_{x}^{exp}	Γ_{α}^{exp}	$\theta_{\alpha}^{2}(r_{1})$	$\theta_{\alpha}^{2}(r_{2})$
0+	0.686	0.000		0			
2+	0.563	3.330		3.368			
0+	0.095	4.244		6.197			
$2^{\tilde{+}}_2$	0.049	5.741		5.958			
2+	0.052	6.123		(a)			
1-	0.027	6.290		5.96			
3-	0.098	6.926		7.371		$0.42^{(b,c)}$	
2+	0.116	7.650	3.10-4	7.542	5.10-4	$1.1^{(b,c)}$	0.19
0+	0.023	8.068	17				
4+	0.049	8.933	4.7				
1-2	0.045	9.755	180	10.57			
3_	0.046	9.897	61				
25+	0.027	10.819	50	9.56	141 ^(e)		0.074
26	0.023	11.295	43	9.50	141		0.074
05	0.153	11.403	800				
4+	0.370	11.426	180	10.15	185 ^(c)	$1.5^{(c)}$	0.38
5_1	0.148	11.440	150	11.93	200		0.20
15	0.013	12.650	76				
6+	0.013	13.134	24				
5-2	0.128	13.545	250	$13.54^{(c,f)}$	99	$1.0^{(c)}$	0.051
2_{10}^{+}	0.040	13.789	240				
4+3	0.011	13.992	20	11.76	121		0.066
4+	0.022	14.233	40	11.70	121		0.000
06	0.018	14.252	120				
3-7	0.014	14.468	77				
5-3	0.059	14.992	180				
4+	0.161	15.071	800	15.3(6 ⁻) ^(d)	800 ^(e)		0.16
	-						

- (a) The existence of this state is suggested by the existence of 8.070 MeV isobaric analog state in ¹⁰B, see analogous discussion in Ref. [20];
- (b) Widths deduced from the isobaric analog channel
- 10 B → 6 Li(0⁺)+α [21, 22];
- (c) results from Ref. [22];
- (d) results from Ref. [23].
- (e) Total width Γ^{tot} .
- (f) In Ref. [22] the state was assigned spin-parity 6+.

$$r_1$$
=4.77 r_2 =6.0 fm

[21] A. N. Kuchera et al.: Phys. Rev. C 84 (2011) 054615. [22] A. N. Kuchera http://diginole.lib.fsu.edu/etd/8585/

[23] D. R. Tilley et al.: Nucl. Phys. A 745 (2004) 155.

No-core shell model studies with JISP16 Hamiltonian, clustering in ¹⁰Be

	psd	N	N	N	N	Exp
SF	0.686	0.713	0.622	0.609	0.687	0.55 [2]
operators	3	1	7	7	20	
Radius [fm]		3.4	4.0	4.0	4.5	4.7-6

$$r \approx \sqrt{\frac{\hbar}{m\omega} \left(n_{\text{max}} + \frac{3}{2} \right)}$$
 $\hbar\omega = 20 \text{ MeV}$

In order to get to r=6 fm, n_{max} =16 is needed, relative to core this is N_{max} =10, 14

Summary, conclusions, and outlook

Results

- New look at cluster structure: from shell model to large scale configuration interaction method.
- Unified picture that includes transitional one-body observables, EM properties, and clustering.
- Demonstrated first results: good agreement with experiment and previous studies.
- Clustering and nuclear Hamiltonian.

Future studies

- Further studies and comparisons with data.
- no-core approach; do-neutron, clusters
- Extensions and modifications
 - Different oscillator frequencies, non-trivial (0s4) state of alpha.
 - Full RGM/GCM approach
 - Non-orthogonal second quantization basis
- Overlapping resonances and physics of configuration interactions in continuum of reaction states.

Acknowledgements:

Thanks to: Yu. Tchuvil'sky, K. Kravvaris, J. Vary, T Dytrych, G. Rogachev, V. Godberg.

Funding: U.S. DOE contract DE-SC0009883.

Publications:

A. Volya and Y. M. Tchuvil'sky, Phys.Rev.C 91, 044319 (2015); J. Phys. Conf. Ser. 569, 012054 (2014); (World Scientific, 2014), p. 215.

M. L. Avila, G. V. Rogachev, V. Z. Goldberg, E. D. Johnson, K. W. Kemper, Y. M. Tchuvil'sky, and A. Volya, Phys. Rev. C 90, 024327 (2014).