Introducing Generative Adversarial Network (GAN)

Presentation on the module **Advance Machine Learning**

3048781 Sanchit Bhavsar

3044093 Sthitadhee Panthadas

Course: Advance Machine Learning

Prof. Dr. Ulf Brefeld

Agenda

- Understanding Generative Modeling
- Introducing GANs
 - Model Architecture
 - ➤ Theoretical Foundation & Algorithm
 - Limitations of Vanila GAN
 - Wasserstein GAN
- **♦** Timeline of GAN based Architecture
 - Conditional GAN (CGAN)
 - Deep-Convolutional GAN (DCGAN)
 - ➢ GAN with different loss function (Least Square GAN)
- **♦** Training GAN on MNIST Data
- Conclusion and Future Outlook

Quick Test: Which face is real?

Α

В

C

Supervised vs Unsupervised Learning

Supervised Learning	Unsupervised Learning
Data: (x,y) x is data, y is label	Data: (x) x is data, no labels!
Goal: Learn function to map x → y	Goal: Learn the hidden or underlying structure of data
Examples : Classification, regression, Object detection etc.	Examples : Clustering, dimensionality reduction etc.

Generative Models

Question: can we build a model to approximate a data distribution?

• We are given and a finite sample from this distribution,

$$X = \{x | x \sim p_{\mathsf{data}}(x)\}, |X| = n$$

 Goal: Given training data, learn a model that represents new samples from same distribution

$$p_{\mathsf{model}}(x;\theta) \approx p_{\mathsf{data}}(x)$$

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{model}(x)$

Why Care About Generative Models?

Often overused quote:

"What I cannot create, I do not understand" -R. Feynman

Capable of uncovering underlying features in a dataset,

- Noisy Input
- Simulated Data
- Features Representation of Data
- Prediction of Future State
- Missing Data

Taxonomy of Generative Models

- Addresses <u>density estimation</u>, a core problem in unsupervised learning
 - \triangleright **Explicit density estimation**: explicitly define and solve for $p_{model}(x)$
 - > Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

WHAT ARE GANS?

GAN Architecture: Two Player Game

Objective Function

A	
7	$B.C.E = H(p,q) = -p \log q + (1-p) \log(1-q)$

Notation	Description
D(x)	The discriminator network
G(z)	The generator network
z	STD Gaussian noise
p	Probability distribution or labels
q	Probability distribution or labels
H(p. a)	Binary Cross entropy

$$Err(1, D(x)) + Err(0, D(G(z))$$

$$= -[1 \cdot \log D(x) + 0 \cdot \log(1 - D(x))] - [0 \cdot \log D(G(z)) + 1 \cdot \log(1 - D(G(z)))]$$

$$= -\log D(x) - \log(1 - D(G(z)))$$

$$p = 1$$
$$q = D(.)$$

 $\log D(x) + \log(1 - D(G(z)))$ $\log(1 - D(G(z))$

Generator loss → must minimise

Discriminator loss → must maximise

Objective Function

Notation	Description
W	The discriminator parameters
θ	The generator parameters
E	Expectation with respect to distribution
X	Real data sample

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{data}} [\log D_w(x)] + \mathbb{E}_{z \sim p_{noise}} [\log (1 - D_w(G_{\theta}(z)))]$$

GAN Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Global Optimality

$$V(G,D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) dx + \int_{z} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) dz$$

$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_{g}(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) dx$$

$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_{g}(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) dx$$
Can be proven in 2 ways

$$y \to a \log(y) + b \log(1-y) \xrightarrow{\text{differentiate}} \frac{a}{a+b}$$

Note (a, b) $\in \mathbb{R}^2 \setminus \{0, 0\}$ and y achieves its maximum in the range [0,1]

$$D_G^*(oldsymbol{x}) = rac{p_{data}(oldsymbol{x})}{p_{data}(oldsymbol{x}) + p_g(oldsymbol{x})}$$
 = 0.5

- Global Optimality is reached at p_a = p_{data}
- At that point $D_G^*(x) = 0.5$

Notation	Description
p _{data}	Prob Distribution of real data space
p_g	Prob Distribution of generated data
D*(x)	Optimal discriminator at fixed G
p_z	Prob distribution of std normal
V(G, D)	General Loss function of GAN

Connection to Jensen-Shannon Divergence

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_G^*(G(\boldsymbol{z})))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\log (1 - D_G^*(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_g} \left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_g} \left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right]$$

Notation	Description
D*(x)	Optimal discriminator at fixed G
C(G)	Training Criterion at fixed G
V(G, D)	General Loss function of GAN

- Global Optimality is reached at p_g = p_{data}
 At that point D*_G(x) = 0.5

Connection to Jensen-Shannon Divergence

- Global Optimality is reached at p_q = p_{data}
- At that point $D_G^*(x) = 0.5$

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \sum p(x)f(x)$$

$$\begin{split} C(G) &= \mathbb{E}_{x \sim p_{data}} \left[\log \frac{p_{data}}{p_{data} + p_G} \right] + \mathbb{E}_{x \sim p_G} \left[\log \frac{p_G}{p_{data} + p_G} \right] &\xrightarrow{p_G = p_{data} \text{ then D*}_{\mathbb{G}}(\mathbf{x}) = 0.5} \\ &= \mathbb{E}_{x \sim p_{data}} \left[\log \frac{\frac{p_{data}}{2}}{\frac{p_{data} + p_G}{2}} \right] + \mathbb{E}_{x \sim p_G} \left[\log \frac{\frac{p_G}{2}}{\frac{p_{data} + p_G}{2}} \right] \\ &= -\log 4 + \mathbb{E}_{x \sim p_{data}} \left[\log \frac{p_{data}}{\frac{p_{data} + p_G}{2}} \right] + \mathbb{E}_{x \sim p_G} \left[\log \frac{p_G}{\frac{p_{data} + p_G}{2}} \right] \\ &= -\log 4 + KL \left(p_{data} \| \frac{p_{data} + p_G}{2} \right) + KL \left(p_G \| \frac{p_{data} + p_G}{2} \right) \\ &= -\log 4 + 2JS(p_{data} \| p_G) & \text{JS Jensen Shannon Divergence} \end{split}$$

$$p_g = p_{data}$$
 then $D_G^*(x) = 0.5$ — log 4 or –2 log 2

Notation	Description
C(G)	Virtual Training Criterion for fixed G.
p_{G}	Prob Distribution of generated data
KL	Kullback-Liebler divergence
JS	Jensen Shannon Divergence
$D^*_{G}(x)$	Optimal discriminator
f(x)	A general function, here log(.)

Convergence of Algorithm

The argument follows that \rightarrow

- ★ Due to linearity of expectations
- \star Due to each term being convex functions in p_g

Intuitive explanation of the terms + the proof and concept of sampling from p_{α}

Sufficient small Gradient descent updates for p_g having a unique global optima D*, allows p_g to converge to p_{data} .

In practice,

- lacktriangle we optimize not $\mathbf{p_g}$ but the parameters of the generator neural network $\theta_{\mathbf{g}}$.

Limitations of Vanilla GAN

In practice,

- Models do not converge to a local minima
- Mode collapse problem

Real data space

Generated data space

Because of,

- Most real life cases functions are necessarily convex and continuous and therefore not differentiable.
- Vanishing or exploding gradients

Motivating Wasserstein

$$\delta(\mathbb{P}_r, \mathbb{P}_g) = \sup_{A \in \Sigma} |\mathbb{P}_r(A) - \mathbb{P}_g(A)|.$$

$$KL(\mathbb{P}_r || \mathbb{P}_g) = \int \log \left(\frac{P_r(x)}{P_g(x)} \right) P_r(x)$$

$$JS(\mathbb{P}_r, \mathbb{P}_g) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_g || \mathbb{P}_m)$$

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

Notation	Description
А	Set with which you calculate the prob example P _r (A)
Σ	Total countable set space
P_r	Prob distribution for real data samples
P_g	Probability distribution representing generated data
γ	Scalar transport mass values/energies
$\Pi(P_r, P_g)$	Joint distribution of the transport mass value
inf	Infimum
.	Norm
sup	Supremum
δ ($P_{r,}P_{g}$)	Total Variation (TV) distance
$W(P_{r_{i}}P_{g})$	1-Wasserstein or Earth Mover distance

Motivating Wasserstein

$$\delta(\mathbb{P}_r, \mathbb{P}_g) = \sup_{A \in \Sigma} |\mathbb{P}_r(A) - \mathbb{P}_g(A)|.$$

$$KL(\mathbb{P}_r || \mathbb{P}_g) = \int \log \left(\frac{P_r(x)}{P_g(x)} \right) P_r(x)$$

$$JS(\mathbb{P}_r, \mathbb{P}_q) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_q || \mathbb{P}_m)$$

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

$$W(\mathbb{P}_0, \mathbb{P}_{\theta}) = |\theta|,$$

$$JS(\mathbb{P}_0, \mathbb{P}_{\theta}) = egin{cases} \log 2 & \quad ext{if } \theta
eq 0 \ , \ 0 & \quad ext{if } \theta = 0 \ , \end{cases}$$

$$KL(\mathbb{P}_{\theta}||\mathbb{P}_{0}) = KL(\mathbb{P}_{0}||\mathbb{P}_{\theta}) = \begin{cases} +\infty & \text{if } \theta \neq 0 \ , \\ 0 & \text{if } \theta = 0 \ , \end{cases}$$

and
$$\delta(\mathbb{P}_0, \mathbb{P}_{\theta}) = \begin{cases} 1 & \text{if } \theta \neq 0 \ , \\ 0 & \text{if } \theta = 0 \ . \end{cases}$$

Motivating Wasserstein

- ❖ Wasserstein distance provides a **proportional value**, the further the distribution the greater the distance. In practical cases the generating sample distribution will **not overlap** the real data sample, wasserstein distance will be more practical than the other **metric measures** such as KL divergence or JSD or TV.
- Furthermore, Wasserstein distance or Earth mover distance is continuous and smoother function compared to the others.

Wasserstein and Continuity

What do you need for continuity for?

- **Smooth** gradient descent or ascent

What do we need for smooth gradient descent or ascent?

- Neural network G must be continuous in parameter $\theta \rightarrow$ which is the case in EM distance
- G must be locally Lipschitz

The slope of the curve at point X_n should be less than equal to K. (K-Lipschitz)

Wasserstein Loss

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|]$$

- Note, for most practical probability distributions **EM distance calculation is intractable** because for that we would be **needing the joint probability** $\Pi(P_r, P_g)$.
- So, we use **Kantorovich-Rubinstein duality** to get us a new formulae for EM distance that works.

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L < 1} \mathbb{E}_{x \sim \mathbb{P}_r} [f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}} [f(x)]$$

- Note here the **supremum** is over **1-Lipschitz functions**
- But this can be easily changed to **k-Lipschitz functions** with $K\cdot W(\mathbb{P}_r,\mathbb{P}_q)$

Notation	Description
sup	Supremum
f(x)	K-Lipschitz function
$ f _{L\leq 1}$	1-Lipschitz function(s)
$P_{_{ heta}}$	Prob distribution representing generated data
q	Probability distribution
K	Constant value for Lipschitz constraint

Wasserstein Loss

Vanilla GAN Objective function

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{data}} [\log D_w(x)] + \mathbb{E}_{z \sim p_{noise}} [\log (1 - D_w(G_\theta(z)))]$$

Wasserstein GAN

$$\min_{\theta} \max_{w} V(G, C) = \min_{\theta} \max_{w} \left[\mathbb{E}_{x \sim p_{data}} [C_w(x)] - \mathbb{E}_{z \sim p_{noise}} [(C_w(G_{\theta}(z)))] \right]$$

Where C_w should follow the K-Lipschitz constraint.

Weight Clipping

How do we ensure or **enforce Lipschitz constraint**?

- Gradient/weight clipping or gradient penalty

Solution:

Weight clipping is basically to cut off the value of the weights if it goes beyond a **threshold value** and then use the threshold value instead. This has a parameter that controls the amount of clipping. $[-c \le weight \le c]$

Problem:

This poses another problem. This reduces the optimality of the critic.

WGAN vs Vanilla GAN

WGAN	Vanilla GAN
 Discriminator acts as a critic and gives out real values (regression) Wasserstein motivated loss Loss contains no log Discriminator is updated 5 times for each update in generator Root Mean Squared Propagation is used Includes clipping of parameter values 	 Discriminator gives out 0 or 1 (classification) JSD motivated loss Loss contains log Discriminator is updated once for each update in generator Adam is used Includes no weight clipping
a managa mpipunga an pamamatan vanasa	

Timeline of GAN based architecture

Conditional GAN (CGAN)

- In an unconditioned generative model, there is no control on modes of the data being generated
- In CGAN, the generator learns to generate a fake sample with a specific condition (such as a label associated with an image or more detailed tag) rather than a generic sample from unknown noise distribution
- Simply feeding the data 'y' and conditioning both the generator and discriminator

Learning Loss of CGAN:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x}|\boldsymbol{y})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z}|\boldsymbol{y})))].$$

Generated MNIST digits, each row conditioned on one label

Deep Convolutional GAN (DCGAN)

- Generator is an upsampling network with fractionally-strided convolutions
- Discriminator is a convolutional network
- Eliminating fully connected layers on top of Convolutional Layers (instead of max polling)
- Batch Normalization
- Leaky ReLUs

Vector Arithmetic For Visual Concepts

Samples from the model

Average Z vectors, do arithmetic

Least Square GAN (LSGAN)

Idea: Use loss function that provides smooth and non-saturation gradient in Discriminator

$$\min_{G} \max_{D} V_{\text{GAN}}(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Training a GAN: MNIST Data

Epoch 1

Epoch 5

Epoch 10

Conclusion

GANS,

- Don't work with an explicit density function
- ❖ Game-theoretic approach: learn to generate from training distribution through two-player game

Pros:

Beautiful, state-of-the-art samples!

Cons:

Trickier / more unstable to train

Active areas of research:

- ❖ Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Explosion of GANs

LSGAN, Zhu 2017.

Wasserstein GAN, Arjovsky 2017. Improved Wasserstein GAN, Gulrajani 2017.

Progressive GAN, Karras 2018.