Lecture 13: Turing Machines

CSC 320: Foundations of Computer Science

Quinton Yong
quintonyong@uvic.ca

Turing Machine: Formal Definition

A Turing machine (TM) is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where

- **Q** : set of states
- Σ : input alphabet (not containing blank symbol □)
- Γ : tape alphabet ($\sqcup \in \Gamma$ and $\Sigma \in \Gamma$ as well as other symbols)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function (**must move** tape head)

- If tape head reading 0, write x and move head right
- If we don't modify tape cell, can use shorthand $0 \to R$
 - This transition function is **deterministic** (one transition for every tape alphabet symbol)
- $q_0 \in Q$: single start state
- $q_{accept} \in Q$: single accept state
- $q_{reject} \in Q$: single reject state (with $q_{reject} \neq q_{accept}$)

Configuration of Turing Machines

- A TM configuration is a string description of the current state of the TM
- Given a TM M, a configuration of M consists of a description of:
 - Its current **state**
 - Its current tape content
 - Its current tape head location

- We write u q v for the configuration where:
 - Current state is q
 - Current tape content is uv where strings $u,v\in\Gamma^*$
 - ullet Current tape head location is first symbol of $oldsymbol{v}$
 - ullet Tape contains only blanks following last symbol of $oldsymbol{v}$

Configuration of Turing Machines

- For a TM M, let $a, b, c \in \Gamma$, let $u, v \in \Gamma^*$, and $q_i, q_i \in Q$
- Let $ua\ q_i\ bv$, $u\ q_j\ acv$, and $uac\ q_i\ v$ be configurations
- $ua q_i bv$ yields $u q_j acv$ if $\delta(q_i, b) = (q_j, c, L)$

Read \boldsymbol{b} , write \boldsymbol{c} , move **left**

• $ua q_i bv$ yields $uac q_j v$ if $\delta(q_i, b) = (q_j, c, R)$

$$q_i \longrightarrow b \rightarrow c, R \longrightarrow q_j$$

Read \boldsymbol{b} , write \boldsymbol{c} , move **right**

Special Configurations of Turing Machines

Tape head is at **left end**:

• $\delta(q_i, b) = (q_j, c, L)$: configuration $q_i bv$ yields $q_j cv$ (if transition moves left, prevent tape head from going off left-end of tape)

Tape head is at **right end**:

• Configuration $ua\ q_i$ is equivalent to $ua\ q_i$ \sqcup since we assume that blanks follow the last part of tape in configuration

Special Configurations of Turing Machines

Start configuration $q_0 w$:

• Input string is w, M is in start state q_0 , tape head at leftmost position

Halting configurations:

• **Accepting** configuration: any configuration where state is q_{accept}

• **Rejecting** configuration: any configuration where state is q_{reject}

Computation of a Turing Machine

• Turing machine *M* accepts input *w* if a sequence of configurations

$$C_1, C_2, \ldots, C_k$$

exists where:

- 1. C_1 is the **start** configuration
- 2. Each C_i yields C_{i+1}
- 3. C_k is an **accepting** configuration

• The language L(M) of M, or the language recognized by M, is the collection of all strings that M accepts

Outcomes of TM Computation

Possible outcomes of a TM on an input string \boldsymbol{w} are:

- Accept (halt and accept)
- Reject (halt and reject)
- Loop infinitely (considered non-accept, but not a halt reject)

A Turing machine that halts on every input (never loops) is called a decider

Turing-recognizable and Turing-decidable

If a language L is recognized by some TM, we call L Turing-recognizable

- Halts and accepts on input strings in L
- Halts and rejects or loops infinitely on inputs strings not in L

We say a language L is **Turing-decidable** or **decidable** if there exists a **decider** that recognizes L (we also say that M decides L)

- Halts and accepts on strings in L
- Halts and rejects on strings not in L
- Never loops infinitely

Turing-recognizable and Turing-decidable

• Note: Every Turing-decidable language is also Turing-recognizable

• Let $L = \{ \mathbf{0}^{2^n} \mid n \geq \mathbf{0} \}$ over $\mathbf{\Sigma} = \{ \mathbf{0} \}$. We describe a TM M that decides L.

Implementation level description:

- On input string $w \in \{0\}^*$
 - 1. Sweep left to right, crossing off every other **0**
 - 2. If the tape contains exactly one **0**, **accept**
 - 3. If the tape contains more than one $\mathbf{0}$, and the number of $\mathbf{0}$'s is odd, reject
 - 4. Otherwise, return to the left end of the tape
 - 5. Go to step 1

Input: 0000

Accept

Input: 000

Reject

Input: 000000

Reject

Formal Description of TM

 $M = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$ where:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- q_1 is the start state
- q_{accept} is the accept state
- q_{reject} is the reject state
- $\Sigma = \{0\}$
- $\Gamma = \{0, x, \sqcup\}$
- δ is described by state diagram

- This TM is a **decider** for $L = \{0^{2^n} \mid n \geq 0\}$ since it will not infinitely loop
- Therefore, L is a Turing-decidable language

- Design a TM that increments a binary number given as input by 1
- Note: Adding ${f 1}$ to a binary number will not change the length unless the entire string is ${f 1}$'s

Implementation level description:

- ullet If input consists of only ${f 1}'$ s, shift the string one to the right
- If right-most symbol is 0, change it to one. Done.
- If right-most symbol is ${\bf 1}$, change suffix of ${\bf 1}$'s to ${\bf 0}$'s, and previous right-most ${\bf 0}$ to ${\bf 1}$

Implementation level description:

- If input consists of only 1's, shift the string one to the right
- If right-most symbol is 0, change it to one. **Done**.
- If right-most symbol is $\mathbf{1}$, change suffix of $\mathbf{1}$'s to $\mathbf{0}$'s, and previous right-most $\mathbf{0}$ to $\mathbf{1}$

Next Lecture

The Turing machine we have learned so far has the **following characteristics**:

- Deterministic
- One tape, left-ended, unlimited to the right
- Read / write head

In the next lecture, we will learn about **TM variants**:

- Tape head can also **stop / pause**, not just move left and right
- Multiple tapes
- Nondeterministic Turing machines
- Enumerators