This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 90/06317 (51) International Patent Classification 5: (11) International Publication Number: A1 C07H 15/04, A23L 1/236 14 June 1990 (14.06.90) (43) International Publication Date: A61K 7/16 (81) Designated States: AT (European patent), BE (European PCT/FI89/00142 (21) International Application Number: patent), CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent), US. 4 August 1989 (04.08.89) (22) International Filing Date: (30) Priority data: 1 December 1988 (01.12.88) 885588 Published With international search report. (71) Applicant (for all designated States except US): CULTOR LTD. [FI/FI]; Kyllikinportti 2, SF-00240 Helsinki (FI). (72) Inventors; and (75) Inventors/Applicants (for US only): HEIKKILÄ, Heikki, Olavi [FI/FI]; Aallonkohina 4 C 27, SF-02320 Espoo (FI). NURMI, Juha, Veikko [FI/FI]; Vasarasepäntie 4 D 6. ŚF-10330 Pinjainen (FI). (74) Agent: OY KOLSTER AB; Stora Robertsgatan 23, P.O. Box 148, SF-00121 Helsinki (FI).

(54) Title: A CRYSTALLINE LACTITOL MONOHYDRATE AND A PROCESS FOR THE PREPARATION THEREOF, USE THEREOF, AND SWEETENING AGENT

(57) Abstract

A crystalline lactitol monohydrate having lattice cell constants $a = 7.815 \pm 0.008$ Å, $b = 12.682 \pm 0.008$ Å, and $c = 15.927 \pm 0.008$ Å, and a melting range between 90 and 105°C, and a water content between 4.85 and 5.15%, as well as a process of preparing said crystalline lactitol monohydrate by evaporating the aqueous solution of lactitol to a concentration between 75 and 88% by weight, cooling the resultant mixture at a temperature ranging between 30 and 75°C, subsequently separating the lactitol monohydrate crystals from the mother liquor, and subsequently drying with air having a temperature between 120°C, and a relative humidity between 0 and 40 %, for a time period less than 24 hours. The invention also relates to the use of said crystalline lactitol monohydrate as a bulk sweetener for the total or partial replacement of sucrose in dietetic products, confectionery, bakery products, cereals, desserts, jams, beverages, chocolate, chewing-gum and ice-cream, and in pharmaceuticals and cosmetic products, such as tooth paste, as well as a special sweetening agent resembling sucrose, mainly composed of said crystalline lactitol monohydrate.

Ò

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

АT	Austria	ES	Ca.:		
ΑU	Australia	FI	Spain	MG	Madagascar
BB	Barbados		Finland	ML	Mair
BE	Belgium	FR	France	MR	Mauritania
BF	Burkina Fasso	GA	Gabon	MW	Mahwi
BG	Bulgaria	GB	United Kingdom	NL.	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	, nr	Italy	RO	Romania
CA	Canada	JP	lagan	SO	Sudan
CF		KP	Democratic People's Republic	SE	Sweden
CG	Central African Republic	•	of Korea	SN	Senegal.
CH CH	Congo	KR	Republic of Korea	SÜ	Soviet Union
	Switzerland	u	Liechtenstein	70	
CM	Cameroon	LK	Sri Lanka		Chad
DΕ	Germany, Federal Republic of	ш	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	LS	United States of America
	•				

WO 90/06317 PCT/FI89/00142

1

5

10

15

20

25

30

A crystalline lactitol monohydrate and a process for the preparation thereof, use thereof, and sweetening agent

The invention relates to a new crystalline lactitol monohydrate, and a process for the preparation thereof by crystallization from an aqueous solution, the use of the said new crystalline lactitol monohydrate in dietetic products, confectionery, bakery products, cereals, desserts, jams, beverages, chocolate, chewing gum and ice-cream, as well as in pharmaceutical and cosmetic products, such as tooth paste. The invention also relates to a new sweetening agent resembling sugar, mainly composed of the said new crystalline lactitol monohydrate.

Lactitol is a bulk sweetener which can be used as a total or partial replacement for sucrose, however, its energy content is only about half of that of sucrose, and it does not cause increased blood glucose content; furthermore, it is tooth-friendly (see Developments in Sweeteners, Ed. Grenby, T.H., Vol. 3, 1987, p. 65-81).

The preparation of lactitol from lactose has been known for a long time. Industrially, lactitol is prepared analogously with the preparation of sorbitol from glucose by hydrogenation in the presence of a Raney nickel catalyst. An aqueous solution of lactose, typically having a concentration between 30 and 40% by weight due to the poor solubility of lactose, is hydrogenated at 70 to 130°C at a pressure between 30 and 74 atm. The preparation is described in Wolfrom, M.L., Burke, W.J., Brown, K.R. and Rose, R.S., J. Am. Chem. Soc. 60, (1938) p. 571-573.

Crystalline lactitol is reported to occur in anhydrous form (anhydride) as well as in the form of a

WO 90/06317 PCT/F189/00142

monohydrate and dihydrate, which forms have been known for a long time with the exception of pure monohydrate. Among the crystal forms of lactitol, lactitol monohydrate is of considerable commercial interest on account of its low hygroscopicity.

In the preparation process mentioned above, lactitol anhydride can be crystallized by adding ethanol to a lactitol solution evaporated to a high concentration. After a crystallization time of one month, the yield of lactitol was 80%, and the melting point of the resulting crystal, which was found to be an anhydride, was between 144 and 146°C.

The crystallization of lactitol dihydrate was presumably mentioned for the first time by Senderens, J.B., Compt. Rend. 170, (1920) p. 47-50. Lactitol solution obtained by hydrogenation was evaporated slowly at room temperature so that crystallization was initiated. The melting point of the resulting product was 78°C, and Senderens mistakenly regarded it as a monohydrate. However, it appears from European Patent 0039981 and Wolfrom, M.L., Hann, R.M. and Hudson, C.S., J. Am. Chem. Soc. 74 (1952) p. 1105 that the product obtained by Senderens was a dihydrate having a moisture content of 9.5%, determined by a Karl Fisher method, and a melting point between 76 and 78°C.

The next attempt to prepare lactitol monohydrate by crystallization was made in 1979; the end product, however, was an impure dihydrate, see van Velthuijsen, J.A., J. Agric. Food Chem., 27, (1979) p. 680. The solubility of the "monohydrate" so obtained was reported to be 64% by weight at 25°C; however, it has been proved that lactitol monohydrate cannot have such a solubility, see the above-mentioned European Patent 0039981. Taking into consideration that the alleged monohydrate was impure (4.5% of other sugars and dihydrate), the cor-

WO 90/06317 PCT/FI89/00142

3

5

10

15

20

25

30

35

rected solubility is the right solubility of lactitol (about 59% by weight on dry substance basis). The reported melting range from 94 to 97°C also indicates the presence of a slightly overdried (impure) dihydrate.

Another attempt to prepare lactitol monohydrate was made in 1981, see the above-mentioned European Patent 0039981. The low crystallization temperature, however, resulted in the formation of monohydrate and dihydrate either as mixed crystals or separately, the product being then dried into partially anhydrated monohydrate. The reported melting point 121-123°C is that of partially anhydrated monohydrate from which the lattice cell constants of monohydrate are obtained by means of a single-crystal X-ray diffractometer within the measuring accuracy. The surface layer of partially anhydrated monohydrate may be integral (double crystal) or fragmented or it may be composed of numerous separate anhydride crystals, which becomes apparent from the high scattering of the lattice cell constants when determined by the single-crystal method. Partially anhydrated monohydrate is at least as stable as a complete anhydride which does not bind water at room temperature at moderate relative humidities.

The surface layer of said partially anhydrated monohydrate is imperfect and under suitable conditions it will be restored partially or completely to the monohydrate form. Since the formation of a perfect lattice structure is irreversible, the restored crystal structure will never be perfect, i.e. if the anhydride or partially anhydrated monohydrate takes (binds) crystal water, the product obtained does not have the crystal structure of lactitol monohydrate. Both the anhydrated and partially restored monohydrate easily get cloddy and have a rather poor flowability and rather a high hygroscopicity on account of the fragmented surface and

 $\bigcap_{i \in I}$

WO 90/06317 PCT/F189/00142

4

high dust content of the product.

5

10

15

20

25

30

35

Monohydrate loses all of its crystal water as rapidly as in two hours when it is dried at 105°C in a conventional laboratory oven. The melting point of the "monohydrate" disclosed in European Patent 0039981, that is, 121-123°C, corresponds to that of a monohydrate anhydrated to a degree of anhydration of 10 to 15%. In addition, the "monohydrate" disclosed in this which lost 2% of its weight at 130°C during patent, 3 days, is originally a monohydrate anhydrated to a degree of anhydration of 60%. The "monohydrates" disclosed in the European patent are not monohydrates anhydrated from pure monohydrate; instead, overdried products formed from the mixtures of dihydrate and monohydrate due to the crystallization method.

Lactitol hydrate powders anhydrated to a moisture content of less than 3% have been prepared by drying both lactitol solution and crystalline hydrate. The hygroscopicity of these powders is utilized in drying moist mixtures (European Patent Application 0231643).

The preparation of pure lactitol monohydrate having lattice cell constants a = 7.815 ± 0.008 Å, b = 12.682 ± 0.008 Å, and c = 15.927 ± 0.008 Å; and a melting range between 94 and 100°C, preferably between 94 and 98°C, has now succeeded for the first time. The melting range was determined with a Büchi Tottol melting point apparatus. The lactitol content of the said pure lactitol monohydrate is more than 99.5% on a dry substance basis, and its moisture content is between 4.85 and 5.15%.

The new lactitol monohydrate has a good flow-ability and long shelf life, and it is stable at room temperatures, in relative humidities ranging from 25 to 75%. After having been stored under varying atmospheric conditions for about two years in an open paper sack,

WO 90/06317 PCT/F189/00142

5

5

10

15

20

25

30

35

the lactitol monohydrate did not become cloddy and its flowability was 5.1 s/100 g measured by a funnel technique, the inclination of the funnel being 60° , the pipe length 23 mm and the inner diameter 11 mm.

The infrared absorption of the lactitol monohydrate was measured by a Perkin-Elmer 398 spectrometer from a tablet having a composition of 1 g of lactitol monohydrate and 131 g of KBr. The infrared spectrum is shown in the drawing.

No more than 150 g of pure lactitol monohydrate on a dry substance basis dissolves in 100 ml of water at 25°C. Pure lactitol monohydrate crystals are colourless, odourless and transparent.

An accurate determination of the melting range of lactitol monohydrate can be most successfully carried out by introducing samples of milled lactitol into several capillary tubes and melting the open ends of the tubes before measuring. The measurements are carried out with a conventional melting point apparatus at different constant temperatures using one capillary tube per measurement until the extreme points of the melting range are found.

When determining the melting point, one must take into account that molten lactitol monohydrate has a high viscosity at its melting temperature, wherefore it takes time (even 2 minutes) before the sample is spread evenly on the walls of the capillary tube. Furthermore, the melt often contains bubbles caused by the liberation of crystal water, which remain in the melt for a long time.

In the process according to the above-mentioned European Patent 0039981, lactitol monohydrate anhydride is prepared by crystallizing lactitol within the temperature range from 10 to 50°C from a seeded lactitol solution obtained by hydrogenation and evaporated to a

WO 90/06317 PCT/FI89/00142

б

5

10

15

20

25

30

concentration between 70 and 85% or from a mother liquor obtained from the first crystallization step. This process can be used for the crystallization of lactitol only when the purity of lactitol in the feed solution is high, and since dihydrate may already be crystallized from pure lactitol solution, the crystallization of pure monohydrate is difficult if not impossible.

In the crystallization process according to the invention, crystallization temperatures (in the range from 80 to 30°C) are considerably higher than in the prior art process (from 50 to 10°C), whereby it is possible to crystallize lactitol monohydrate in at least four successive crystallization steps. With the present new process the total yield of lactitol monohydrate (see the crystallization series of Example 1, wherein the total yield is 97.6% on lactitol) is considerably higher than can be achieved with the prior art process (no more than 85% on lactitol).

The crystallization tests showed that if the crystallization is to occur in a controlled manner for obtaining a desired crystal size without a wide crystal size distribution, the crystallization should be effected in such a manner that the supersaturation of the mother liquor remains below 1.3 (preferably 1.2) with respect to lactitol throughout the crystallization. The supersaturation can be maintained within a desired range either by using a sufficiently long crystallization time or by measuring the dry substance content of the mother liquor with a refractometer. The supersaturation can be calculated from the dry substance content of the mother liquor and from the sol-

ubility curve of lactitol. The supersaturation (s) is defined as follows:

$$s = \frac{Cml \cdot (100 - Cml')}{Cml' \cdot (100 - Cml)}$$

Cml = measured dry substance content of mother liquor, % by weight 10

Cml'= solubility of lactitol in the mother liquor

Tests carried out and their results

Monohydrate anhydride (Lacty-M, 15 partially restored during storage and having a melting range 97-103°C corresponding to 2% anhydration was cloddy and possessed a hygroscopity substantially greater than that of the monohydrate (from Test 2 in Example 1). Water absorptions at 20°C after storage for 3 days at various relative humidities are shown in the following Table I.

Table I. Hygroscopicity comparison

25	f	•	Monohydrate	Lacty-M
			(Example 1,	LCDE-31
			Test 2)	
	75%		0.05 wt %	0.2 wt %
30	85%		0.2 wt %	0.5 wt %
	95%		2.5 wt %	3.3 wt %

f = relative humidity of ambient air, %.

35 Drying tests were carried out on monohydrate in a conventional laboratory oven at a pressure of 1 bar. The samples were weighed and the

degree of anhydration was calculated as a function of the drying time. Table II shows the degree of anhydration under varying drying conditions.

		Table I	EI Anhyd	dration	tests			
	Drying	Degree	of anhy	ydration	າ (ક)			
	time	1	2	3	4	5	6	7
	(h)	20° C	40° C	60° C	70° C	8.0° C	90° C	105° C
5		O8	25%	15%	10%	5%	<5%	<5%
	0	0	0	0	0 .	0	0	0
	1	_	_	2	4	8	34	78
	2	_	_	4	10	26	86	100
10	4	_	_	6	20	78	100	_
	24	0.08	- ·	-	-	98	-	-
	55	-	0.3	-	. -	-	. -	-
	72	4.1	-	86	96		-	
	121	-	-	94	100	-	-	-
15	142	-	0.4	-	-	-	_	-
	144	12	-	-	-	- '	· _	-
	219	21	- .	-	-	-	- .	-
	338	38		-	-	_	-	-
20	1) samp	ole of 1	.0 g at	20°C wh	en f =	about 0	18,	
	2) samp	le of 1	0 g at	40°C wh	en f =	about 2	5%,	

- - 3) sample of 200 g at 60°C when f = about 15%,
 - 4) sample of 200 g at 70° C when f = about 10%,
 - 5) sample of 200 g at 80°C when f = about 5%,
- 6) sample of 200 g at 90°C when f < 5%, 25
 - 7) sample of 200 g at 105°C when f < 5%,
 - f = relative humidity of ambient air, %

WO 90/06317 PCT/FI89/00142

10

5

10

15

20

25

30

35

The melting ranges of the partially anhydrated monohydrates formed in the test are $100-146^{\circ}\text{C}$ (cf. Example 3).

account of On its excellent technical physiological properties, the new lactitol monohydrate is particularly suitable as a substitute for sugar in diabetic, dietetic or tooth-friendly products. By combining lactitol monohydrate with other bulk or intense sweeteners, such as saccharin, Aspartame, Acesulfame K, Alitane, Sucralose, Stevioside or xylitol, a product highly resembling sugar and yet having a lower energy content and further being tooth-friendly can be prepared. Also this product is novel, and can be used instead of sugar e.g. in sugar products, confectionery, jams, bakery products, table-top sweeteners, cereals, desserts, chocolate, beverages, chewing gum and icecreams, as well as in pharmaceutical and cosmetic products, such as toothpaste.

Example 1 Cooling crystallization

A four-step crystallization test sequence was carried out on lactitol monohydrate, starting from a filtered and de-ionised lactitol solution. The lactitol solution had been prepared from a lactose solution hydrogenated by the conventional technique.

All of the nine crystallization tests of this Example were carried out analogously with Test 1 which was performed in the following manner:

The crystallization was carried out according to the following steps: A lactitol solution having a purity of 98.3% lactitol in the dry matter was evaporated to 82.1% by weight at a temperature above 70°C, and 423 kg thereof was transferred into a crystallizer. The crystallizer was a conventional horizontal cylindrical batch-operated cooling crystallizer having a volume of 0.4 m³ and provided with a mixer and a recycling

WO 90/06317 PCT/F189/00142

11

5

<u>نې</u>

water jacket whose temperature was controlled by means of a microprocessor. In the crystallizer, the temperature of the solution was adjusted to 70°C, whereafter the solution was seeded with ground lactitol monohydrate crystals. The seed crystal size was 0.02-0.05 mm, and the quantity thereof was 0.004% by weight on the lactitol in the batch. After the seeding, the mass was cooled in 16 hours down to 40°C, first slowly and ultimately more rapidly.

10 . When the crystallization was complete the crystals were separated from the mother liquor with a conventional basket centrifuge wherein the crystals were also washed using 9.2% of water per obtained amount of crystal product. The centrifuged crystals were dried with a drum dryer using the conventional technique. The diameter of the cocurrent drum dryer used was 0.6 m, height 2.5 m and inclination about 1°; the speed of rotation was 3.5 rpm and the temperature of the drying air was 95°C. The feed rate of lactitol monohydrate was about 1.2 kg/min and the delay time about 30 minutes.

The performance conditions and results of the crystallization tests are presented in Tables III and IV hereinafter.

25 The total yield of lactitol monohydrate (four-step crystallization) was 97.6 %.

n tests
stallization t
tions of cooling crys
Jo
lance conditions of
erform
III P(
able

Table	III	Performance conditions of	conditi			cooling crystallization tests	ıllızati	on test	g
Test Step	нн	6 H	Э Н	· द н	ī 2	II	7 II	8 III	9 IV
e e	423	392	422	453	353	443	361	320	126
م ا	82,1	83,1	82,3	82,5	82,5	81,5	83,1	85,7	0.98
ပ	98,3	98,5	98.2	98.8	97.9	96.5	95,3	91,3	81,2
đ	0,004	0,005	0,004	0.004	0	0.004	0,009	0,007	0,014
υ	70	70	70	71	20	29	70	20	70
44	40	40	40	40	40	37	:40	40	40
Ç,	16	16	32	16	32	15	17	40	110
ڃ	9.2	11.1	9.5	9,4	7,8	14,2	13,8	19,0	. 19,5
ø	to	total amou	amount of me	mass to be		crystallized	I at the	at the time (of seeding,
q	dr	dry matter content of mass	content	of mas		at the time of		seeding, %	þχ
υ	la	lactitol p	purity of	mass,	. 45	by welght on dry matter	ı dry me	atter	
ď	am	amount of	seeds,	å by wej	lght on	by weight on lactitol in	ol in th	the mass	
a	8	seeding te	temperature,	.e, °c	•				
ч	£1	final temp	temperature of		crystallization,		၁၀		
6	cr	orystallization time,	ation ti	me, h					
ત	am	amount of	of washing water,	, water,	& by w	weight per product crystal	r prod	act cry	stal

Table IV Results of cooling crystallization tests

lest.	1	7	ဗ	4	ಬ	.و	7	8	6
Step	н	I	I	Ţ	H	II	II	III	IV
м	55,4	49.B	53,0	54.2	60,3	26,0	58,6	60.8	53,8
a	6.66	2.66	99.7	99,9	100	9.66	99,5	99,4	97.5
()	95.0	95,0	95.0	95,1	95,0	95,0	95.0	95,0	95.0
75	0,68	0.55	0.41	0.49	0,39	0.42	0.41	0.35	0.31
a	45	42	39	34	35	33	32	26	23
44	94-98	94-98	94-98	94-98	94-98	94-98	93-96	92-95	91-94
æ	crì	crystal yield after drying, 's by weight on lactitol	eld afte	r drytr	yd %', 91	, weight	on lac	titol	
Ω	la	ctitol p	urity of	produc	st cryst	al, & b	y weigh	ıt on dı	lactitol purity of product crystal, % by weight on dry matter
Ü	dr	dry matter content of	content	of pro	product crystal,	ystal,	ďP	by weight	
đ	aV	average crystal size of product crystal, mm	ystal si	ze of p	product	crystal			
a)	st	standard deviation from average	eviation	ı from a	average		produc	size of product crystal,	tal, %
4 4	me	melting range of product crystal,	nge of p	roduct	crysta]	7, °C			

WO 90/06317 - PCT/F189/00142

14

5

10

15

20

25

30 -

35

Crystallization Example 1 is intended to illustrate the practicability of the novel process, but the crystallization may also be carried out by modifying it in a manner as required by normal effective production operation. Thus the crystallization may also be performed without adding seed crystals, i.e. by allowing the solution to form seeds spontaneously as in crystallization test 5. Further, the crystallization may be effected entirely or partially by evaporative crystallization as demonstrated in Example 2. The crystallization may also be carried out in a continuous operation as long as the temperature is maintained in the range 80°C-30°C and the supersaturation of the mother liquor is maintained below 1.3.

Example 2 Evaporation crystallization

Crystallization of lactitol monohydrate was performed starting from a lactitol solution prepared by hydrogenation (the same as in Example 1). The solution was evaporatively crystallized for 5 hours at 60°C, whereafter the crystals were separated from a slightly cooled mass, washed, and dried, as explained in the following.

The lactitol solution was concentrated in a conventional 0.4 m³ evaporation crystallizer at 60°C at a pressure of about 180 mbar until the dry matter content of the solution was 80.9% by weight and there was approximately 30% of solution on the volume of the crystallizer, at which point the solution was seeded with lactitol monohydrate seed crystals. The amount of seed crystals was 0.008% by weight of the lactitol monohydrate content of the final batch, and the average size of the seed crystals was about 0.03 mm. After the seeding, more feed solution was supplied to the crystallizer, and the evaporation was continued at 59-65°C so that the dry matter content of the mother liquor was

10

15

in the range 78-82% by weight.

After evaporating for 5 hours, the crystallizer was replete with a mass which was transferred into a cooling crystallizer and cooled from 62°C to 55°C in 10 hours, whereafter the crystals were separated from the mother liquor by centrifuging and dried as in Example 1. The crystal yield was 49.7% on lactitol. The purity of the lactitol monohydrate product was 99.7% on a dry matter basis, the dry matter content was 95.0% and the melting range 94.5-98°C.

Example 3 Anhydration of monohydrate

The lactitol monohydrate produced in Test 2 of Example 1 was dried at 20-105°C with drying air having a relative humidity of 0-25% for varying periods of time, whereby different partially anhydrated monohydrates were obtained. The melting range of the anhydrated monohydrates obtained is shown as a function of the degree of anhydration in Table V:

20 Table V Melting ranges

	Ds	An	Mp'	Мр	
	95.00	0	94	98	monohydrate
25	95.15	3	100	105	
	95.25	5	103	118	
	96.10	22	113	128	
	98.40	68	129	140	
	99.10	82	138	143	
30	100.00	100	144	146	anhydride

Ds = dry matter content of product, % by weight

An = degree of anhydration, i.e. amount of removed crystal water, %

35 Mp' = starting point for melting, °C

Mp = melting point, °C

Like Example 1, Examples 2 and 3 are intended to illustrate the invention, but the crystallization can be carried out also by modifying it in a manner as required by normal effective production operation, as explained hereinabove.

Example 4 Lactitol plain chocolate

		g	
10	Cocoa butter	165	
•	Cocoa liquor	630	
	Lactitol monohydrate	719	
	Acesulfame K	2.3	
	Vanillin	0.3	
15	Lecithin	6	
	Procedure: Conch.	17 hours at 50° C and 3 h	ours
	at 60° C.		

Example 5 Lactitol milk chocolate

	•	g
20	Cocoa butter	345
	Cocoa liquor	195
	Milk powder, fat 26 %	209
	Lactitol monohydrate	789
	Acesulfame K	1.4
25	Vanillin	0.3
	Lecithin	6

Procedure: Conch. 20 hours at 50° C. Example 6 Lactitol chewy toffee

		g
30	Lactitol monohydrate	306
	Finmalt L (maltitol syrup)	306
	Acesulfame K	0.2
	Vegetable fat	39
	Emulsifier	3
35	(Glycerylmonostearate)	

	Gelatine	12
	Water	25
	Citric acid	8
	Flavour, colour	1.5
5	Procedure:	
	1. Mix lactitol monohydra	ate, Finmalt L, vegetable fat
	and emulsifier.	
	2. Heat to 120° C.	
	Add dissolved gelatine	•
10	4. Add citric acid, flavo	ur and colour.
	5. Pull the mass 2-4 minu	tes.
	6. Form the mass.	
	Example 7 Lactitol	gelatine jelly
		g
15	Lactitol monohydrate	200
	Finmalt L (maltitol syrup) 267
	Acesulfame K	0.63
	Water	50
	Gelatin 250 BL	35
20	Water	70
	Citric acid (50 % solution	n) 5
	Flavour, colour as require	eđ .
	Procedure:	
	1. Mix lactitol monohydra	te, Finmalt L, Acesulfame K
25	and water.	•
	2. Heat to 116° C.	
	3. Cool to 90°C and add di	issolved gelatine.
	4. Add citric acid, flavou	r and colour.
	5. Deposit into starch mou	ılds.
30	Example 8 Lactitol	pectin jelly
•		g
	Pectin (HM confectionery)	15 .
	Lactitol monohydrate	50
	Acesulfame K	0.7
35	Water	. 200

-	Sodium citrate	4
	Citric acid	3.7
	Lactitol monohydrate	265
	Finmalt L (maltitol syrup)	630
5	Citric acid (50 % solution)	
	Flavours, colours	2.5
	Procedure:	

- 1. Homogenise pectin and lactitol monohydrate.
- 2. Add a solution of water, sodium citrate and citric
- 10 acid.
 - 3. Heat to 100° C.
 - 4. Add a homogenised mixture of lactitol monohydrate, Acesulfame K, Finmalt L, flavours and colours.
 - 5. Heat to 106-108°C.
- 6. Add citric acid.
 - 7. Deposit into starch or plastic moulds.

Example 9 Lactitol gum-arabic pastille

Gum arabic, 50 % solution 400 20 Lactitol monohydrate 220 Finmalt (maltitol syrup) 107 Acesulfame K 1.0 Water 100 Citric acid (50 % solution) 10 25 Flavour, colour 2

Procedure:

- 1. Mix lactitol and Finmalt to the water.
- 2. Heat to 120°C.
- 3. Add heated solution to gum arabic solution.
- 30 4. Add acid, flavour and colour.
 - 5. Deposit into starch moulds.
 - 6. Dry 48-60 hours at 60°C.

Example 10	Lactitol	hard	candy

Lactitol monohydrate 368

Finmalt L (maltitol syrup) 200

Acesulfame K 0.4

Water 100

Flavours, colour 2

Procedure:

- 1. Heat sweeteners and water to 160-162°C.
- 10 2. Keep the mass 10 minutes in vacuum (0.8-0.9).
 - 3. Cool the mass and mix flavours and colours.
 - 4. Form the mass.

Example 11 Lactitol strawberry jam

g 300 15 Strawberries 300 Water Pectin (Obi Violettband B) 500 Lactitol monohydrate Citric acid (50 % solution) . 20 Calcium citrate 0.2 Calcium lactate 0.3 1.7 Potassium sorbate

Procedure:

- 1. Dry mix the pectin and 50 g of the lactitol.
- 25 2. Heat the fruit and water for few minutes.
 - 3. Sprinkle the pectin/lactitol mixture into the fruit/-water mixture.
 - 4. Bring to boil and keep boiling for a moment to dissolve the pectin completely.
- 30 5. Add remainder of the lactitol and boil for a little while.
 - 6. Add the preservative and the calcium salts soluted in a small amount of water.
- 7. Boil until the weight of the batch is 1000 g or until desired solid content is reached.

- 8. Stop boiling and add acid solution.
- 9. Cool to 70°C stirring from time to time and pack.

Example 12 Lactitol biscuits

		g
5	Lactitol monohydrate	95
	Fructose	95
	Fat	10
	Whole egg	50
	Flour	175
10	Fibre (oat bran)	30
	Sodium bicarbonate	7.5
	Salt	1.5
	Ginger	1
	Water	40

15 Procedure:

- 1. Cream fat with lactitol and fructose.
- 2. Mix eggs in one by one.
- 3. Shift together dry ingredients and add beating throughly.
- 20 4. Cool a few hours or overnight.
 - 5. Bake in 170°C for about 11 minutes.

Example 13 Chocolate cake

		g
	Lactitol monohydrate	179.5
25	(milled)	
	Butter	180.0
	Whole egg	180.0
	Flour	150.0
-	Cocoa powder	30.0
30	Saccharin	0.5

Procedure:

- 1. Dry mix the milled lactitol monohydrate with the saccharin.
- 2. Cream with the butter until light and fluffy.
- 35 3. Gradually beat in the eggs.

- 4. Fold in the flour and cocoa powder.
- 5. Deposit into a greased cake tin (16 cm diameter).
- 6. Bake for 60 minutes at 180° C.

Example 14 Fatless sponge cake

5 g
Lactitol monohydrate (milled) 89.3
Eggs (separated) 180
Flour 90

10 Procedure:

Saccharin

- 1. Dry mix the milled lactitol with the saccharin.
- 2. Whisk egg yolks with lactitol mixture until thick and creamy.

0.2

- 3. Whisk egg whites until firm and dry.
- 15 4. Fold egg white into egg yolk mixture.
 - 5. Fold in flour.
 - 6. Deposit into a greased and floured cake tin (16 cm diameter).
 - 7. Bake for 40 minutes at 180° C.
- 20 Results:

Baked cake had golden colour and even crumb texture:

Weight 275 g
Height 3.7 cm
Volume 744 cm

25 Density 0.37 g/ml

Example 15 Ice cream

Lactitol monohydrate 140
Butterfat 80

Skimmed milk powder 110
Water 660
Emulsified (stabiliser)
(Grindstaad SE 33) 8.1
Aspartame 0.4

35 Colour (Bush Boake Allen Permucol

egg yellow powder)	0.06
Vanilla flavour	0.4

Procedure:

- Dissolve the lactitol and skimmed milk powder in the
 water (reserving about 5 % to dissolve the aspartame).
 - 2. Add the butterfat and emulsifier (stabiliser).
 - 3. Pasteurise at 72° C for 10 minutes.
 - 4. Homogenise.
 - 5. Rapidly cool to 5° C and age overnight at 2 4° C.
- 6. Add colour, flavour and pre-dissolved aspartame.
 - 7. Freeze to 100 % overrun.

Example 16 Frozen dessert

		g
	Lactitol monohydrate	100
15	Fructose	40
	Butterfat	40
	Skimmed milk powder	. 110
	Water	700
	Emulsifier (stabiliser)	
20	(Grindstaad SE 33)	9.3
	Aspartame	0.24
	Colour (Bush Boake Allan Permucol	
	egg yellow powder)	0.06
	Vanilla flavour	0.4
	· ·	

- 25 Procedure:
 - 1. Dissolve the lactitol, fructose and skimmed milk powder in most of the water (reserving about 5 % to dissolve the aspartame).
 - 2. Add the butterfat and emulsifier (stabiliser).
- 30 3. Pasteurise at 72° C for 10 minutes.
 - 4. Homogenise.
 - 5. Rapidly cool to 5° C and age overnight at 2 4°C.
 - 6. Add the colour, flavour and pre-dissolved aspartame.
- 35 7. Freeze to 100 % overrun.

Example 17 Sorbet

		g
	Lactitol monohydrate	250
	Strawberry puree	150
5	Gelatin 125° Bloom	10
	Citric acid (50 %)	4.0
	Aspartame	0.8
	Colour (Hexacol Strawberry Red)	0.3
	Strawberry flavour	1.1
10	Water	584

· Procedure:

- 1. Dissolve the lactitol in the water.
- 2. Add the gelatin and mix.
- 3. Pasteurise at 72° C for 10 minutes.
- 15 4. Rapidly cool to 5° C and age overnight at 2 4°C.
 - 5. Add strawberry puree, citric acid, colour and flavour.
 - 6. Freeze to 65 % overrun.

Example 18 Table-top sweetener

20 (Equivalent sweetness to sugar)

Lactitol monohydrate 100
Sodium saccharin 0.23

Procedure:

25 Dry mix using a ribbon blade (or other suitable dry powder mixer) until a uniform dispersion is obtained.

Application:

Suitable for direct replacement of succrose in all applications.

30 <u>Example 19</u> Table-top sweetener (4 times as sweet as sugar)

Lactitol monohydrate 100
Acesulfame K 1.85

Procedure:

Dry mix using a ribbon blade (or other suitable dry powder mixer) until a uniform dispersion is obtained.

5 Applications:

Suitable for use in reduced caloric formulations where some bulk is needed.

Example 20 Table-top sweetener

(10 times as sweet as sugar)

10

g

Lactitol monohydrate

100

Aspartame

6.0

Procedure:

Dry mix using a ribbon blade (or other suitable dry powder mixer) until a uniform dispersion is obtained.

Applications:

Suitable for sprinkling or use in low caloric formulations where bulk is not required.

Example 21 Drinking chocolate

20

Œ

Lactitol monohydrate

200

Skimmed milk powder

70

Fat reduced cocoa powder

12

Procedure:

25 Reconstitute with 708 g hot water (total 1000 g).

PCT/F189/00142

5

10

15

Claims:

- 1. A crystalline lactitol monohydrate having lattice cell constants a = 7.815 ± 0.008 Å, b = 12.682 ± 0.008 Å, and c = 15.927 ± 0.008 Å, and a melting range between 90 and 105° C, pereferably between 94 and 98°C.
- 2. A crystalline lactitol monohydrate according to claim 1, c h a r a c t e r i z e d in that its water content is between 4.85 and 5.15 %.
- 3. A crystalline lactitol monohydrate according to claim 1, c h a r a c t e r i z e d in that its flowability is better than 25 s/100 g, preferably better than 10 s/100 g, calculated by a funnel technique, the inclination of the funnel being 60°, the pipe length 23 mm and the inner diameter 11 mm
- 4. A crystalline lactitol monohydrate according to claim 1, c h a r a c t e r i z e d in that its hygroscopicity is less than 0.2 % w/w humidity after 3 days at 20°C and 75 % relative humidity, and preferably less than 0.1 % w/w.
- 20 5. A process of preparing a crystalline lactitol monohydrate having lattice cell constants a = 7.815 \pm 0.008 Å, b = 12.682 \pm 0.008 Å, and c = 15.927 \pm 0.008 A; and a melting range between 90 and 105°C, preferably between 94 and 98°C, by crystallizing from an aqueous 25 solution which in addition to lactitol possibly contains impurities no more than 30 % on dry substance basis, characterized by evaporating the aqueous solution of lactitol to a concentration between 75 and 88 % by weight, seeding the evaporated solution at a temperature between 50 and 80°C, or allowing the solu-30 tion to form seeds spontaneously at said temperature, optionally evaporating within a temperature range from 50 to 80°C for increasing the crystal content, cooling the resultant mixture of a temperature ranging between 30 and 60°C, subsequently separating the lactitol mono-35

WO 90/06317 PCT/FI89/00142

26

5

35

hydrate crystals from the mother liquor, optionally washing, and subsequently drying with air having a temperature below 120°C, preferably between 60 and 100°C, and a relative humidity between 0 and 40 %, preferably between 5 and 20 %, for a time period less than 24 hours, preferably 5 to 50 minutes, whereby a final product is obtained having the water content between 4.85 and 5.15 %.

- 6. A process for preparing a crystalline lactitol 10 monohydrate having lattice cell constants a = 7.815 \pm 0.008 Å, b = 12.682 \pm 0.008 Å and c = 15.927 \pm 0.008 A; and a melting range between 90 and 105°C, preferably between 94 and 98°C, by crystallizing from an aqueous solution which in addition to lactitol possibly contains 15 impurities no more than 30 % on dry substance basis, characterized by evaporating the aqueous solution of lactitol to a concentration between 80 and 88 % by weight at a temperature between 70 and 80°C, cooling the solution to a temperature between 65 and 75°C, seeding the solution, or allowing the solution 20 to form seeds spontaneously at said temperature, subsequently cooling the resultant mixture slowly to a temperature within a range between 35 and 45°C, separating the lactitol monohydrate crystals from the mother liquor, optionally washing, and subsequently drying with 25 air having a temperature below 120°C, preferably between 60 and 100°C, and a relative humidity between 0 and 40 %, preferably between 5 and 20 %, for a time period less than 24 hours, preferably for 5 to 50 minutes, the water content of the obtained product being between 4.85 and 30 5.15 %.
 - 7. A process of preparing a crystalline lactitol monohydrate having lattice cell constants a = 7.815 ± 0.008 Å, b = 12.682 ± 0.008 Å and c = 15.927 ± 0.008 Å and a melting range between 90 and 100° C, preferably

PCT/FI89/00142

5

10

15

30

35

between 94 and 98°C, by crystallizing from a mother liquor obtained in a previous crystallization step and containing in addition to lactitol possibly impurities no more than 30 % on dry substance basis, c h a r a ct e r i z e d by evaporating said mother liquor to a concentration between 80 and 88 % by weight at a temperature between 70 and 80°C, cooling the solution to a temperature between 65 and 75°C, seeding the solution, or allowing the solution to form seeds spontaneously at said temperature, subsequently cooling the resultant mixture slowly to a temperature within a range between 35 and 45°C, separating the lactitol monohydrate crystals from the mother liquor, optionally washing, and subsequently drying with air having a temperature below 120°C, preferably between 60 and 100°C, and a relative humidity between 5 and 20 %, for a time period less than 24 hours, preferably for 5 to 50 minutes, the water content of the obtained product being between 4.85 and 5.15 %.

- 20 8. A process according to claim 5, 6 or 7, c h a r a c t e r i z e d in that the supersaturation of the mother liquor is maintained at a value below 1.3 (preferably 1.2) relative to lactitol throughout the crystallization.
- 9. A process according to claim 7, c h a r a ct e r i z e d in that said mother liquor is obtained from the previous, 2nd and 3rd crystallization step.
 - 10. Use of the crystalline lactitol monohydrate according to claim 1, 2, 3 or 4 as a bulk sweetener for the total or partial replacement of sucrose.
 - 11. Use of the crystalline lactitol monohydrate according to claim 1, 2, 3 or 4 in dietetic products, confectionery, bakery products, cereals, desserts, jams, beverages, chocolate, chewing gum and ice-cream, as well as in pharmaceutical and cosmetic products, such as

tooth paste.

12. A special sweetening agent resembling sucrose, characterized in that it is mainly composed of a crystalline lactitol monohydrate having lattice cell constants $a=7.815\pm0.008$ Å, $b=12.682\pm0.008$ Å and $c=15.927\pm0.008$ Å, and a melting range between 90 and 105°C, preferably between 94 and 98°C, and of a tooth-friendly sweetening agent such as saccharin or xylitol.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FI 89/00142

I. CLASSIFICAT	ION OF SUBJECT MATTER (il several dia	ssification symbols apply, indicate all)	
According to Inter	national Paterit Classification (IPC) or to both H 15/04, A 23 L 1/236, A	National Classification and IPC	·
II. FIELDS SEAR	CHED	 	·
	Minimum Docur	mentation Searched 7	
Classification System		Classification Symbols	
IPC5	C 07 H; A 23 L		
	<u> </u>	or than Minimum Documentation	
		nts are included in the Fleids Searched *	
SE,DK,FI,NO	classes as above	·	
	CONSIDERED TO BE RELEVANT		
	ation of Document, 11 with Indication, where a		Relevant to Claim No. 13
	A1, 0039981 (C.V. CHEMIE (C.C.A.) 18 November 1981, see the whole document, in pages 7-8		1-12
	gric. Food Chem., Vol. 27, van Velthuijsen: "Food add Lactose: Lactitol and Lact see page 680 - page 686 see particularly pages 680 alia p. 681, left-hand col from the bottom	litives derived from litol Palmitate ", 1-684, inter	1-12
	rnational dairy federation 1987 Cees J. Booy: "Lactit Ingredient" ", see page 62 	ol"A new food	1-12
"A" document deficing date "E" earlier document which is cited citation or oth "O" document rele other means "P" document publister than the process of the Actual Co.	impletion of the International Search 1990	"T" later document published after the or priority date and not in conflict cited to understand the principle invention "X" document of particular relevance cannot be considered novel or clinvolve an inventive step "Y" document of particular relevance cannot be considered to involve an document is combined with one or ments, such combination being obtain the art. "A" document member of the same pat	with the application but or theory underlying the ; the claimed invention annot be considered to ; the claimed invention inventive step when the more other such docurious to a person skilled ent family
International Searchin SWEI	DISH PATENT OFFICE	Gunilla Claesson Chille	The Classon

III. DOCU	MENT	S CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET	n
Category *		Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
X	DEV	ELOPMENTS IN SWEETENERS-3, Vol. 3, 1987 (London and New York) C.H. den Uyl: "Technical and commercial aspects of the use of lactitol in foods as a reduced-calorie bulk sweetener", see page 65 - page 81	1-12
A	DE,	B, 2133428 (MAIZENA GMBH) 25 January 1973, see the whole document	1,5,10- 12
Х	DE,	1,5,10- 12	
		<u>-</u>	
			•
		•	
	•	·	
		· -	
.			
į			
			·
		•	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. PCT/FI 89/00142

This annex lists, the patent family members relating to the patent documents cited in the above-mentioned international search report.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A1- 0039981	18/11/81	NL-A- AT-T-	8002823 4386	16/12/81 15/08/83
DE-A- 2133428	25/01/73	NONE		
DE-A- 2945672	22/05/80	NL-A- GB-A-B- US-A- CH-A-	7811204 2037143 4442132 646035	16/05/80 09/07/80 10/04/84 15/11/84