Scilab Textbook Companion for Structural And Stress Analysis by T. H. G. Megson¹

Created by
Kukkunuri Venkata Phani Pradeep
Solid Mechanics
Chemical Engineering
IIT Bombay
College Teacher
Rochish Thaokar
Cross-Checked by
Lavitha Pereira

February 19, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Structural And Stress Analysis

Author: T. H. G. Megson

Publisher: Elsevier, Great Britain

Edition: 2

Year: 2005

ISBN: 9780750662215

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Principles of Statics	7
3	Normal Force Shear Force Bending Moment and Torsion	10
4	Analysis of Pin jointed Trusses	13
5	Cables	19
6	Arches	23
7	Stress and Strain	26
9	Bending of Beams	32
11	Torsion of Beams	37
12	Composite Beams	40
14	Complex stress and Strain	47
15	Virtual Work and Energy Methods	54
16	Analysis of Statically Indeterminate Structures	55
18	Plastic Analysis of Beams and Frames	64
20	Influenece Lines	67

List of Scilab Codes

Exa 2.1	chapter 2 example 1	7
Exa 2.2	chapter 2 example $2 \ldots \ldots \ldots \ldots$	7
Exa 2.3	chapter 2 example 3	8
Exa 2.4	chapter 2 example 4	9
Exa 3.1	chapter 3 example 1	10
Exa 3.2	chapter 3 example 2	10
Exa 3.3	chapter 3 example 3	11
Exa 3.12	chapter 3 example 12	11
Exa 4.2	chapter 4 example 2	13
Exa 4.3	chapter 4 example 3	14
Exa 4.4	chapter 4 example 4	15
Exa 4.6	chapter 4 example 6	16
Exa 5.1	chapter 5 example 1	19
Exa 5.2	chapter 5 example 2	20
Exa 5.4	chapter 5 example 4	20
Exa 5.5	chapter 5 example 5	21
Exa 6.1	chapter 6 example 1	23
Exa 6.2	chapter 6 example 2	24
Exa 7.1	chapter 7 example 1	26
Exa 7.2	chapter 7 example 2	26
Exa 7.3	chapter 7 example 3	27
Exa 7.4	chapter 7 example 4	28
Exa 7.5	chapter 7 example 5	28
Exa 7.6	chapter 7 example 6	29
Exa 7.7	chapter 7 example 7	30
Exa 7.8	chapter 7 example 8	30
Exa 9.1	chapter 9 example 1	32
Exa 9.2	chapter 9 example 2	32

Exa 9.3	chapter 9 example 3	33
Exa 9.4	chapter 9 example 4	34
Exa 9.5	chapter 9 example $5 \ldots \ldots \ldots \ldots$	34
Exa 9.6	chapter 9 example 6	35
Exa 9.8	chapter 9 example 8	35
Exa 11.1	chapter 11 example 1	37
Exa 11.2	chapter 11 example 2	38
Exa 12.8	chapter 12 example 8	38
Exa 12.1	chapter 12 example 1	40
Exa 12.2	chapter 12 example 2	41
Exa 12.3	chapter 12 example 3	41
Exa 12.4	chapter 12 example 4	42
Exa 12.5	chapter 12 example 5	42
Exa 12.6	chapter 12 example 6	43
Exa 12.7	chapter 12 example 7	43
Exa 12.8	chapter 12 example 8	44
Exa 12.9	chapter 12 example 9	44
Exa 12.10	chapter 12 example 10	45
Exa 12.11	chapter 12 example 11	45
Exa 14.1	chapter 14 example 1	47
Exa 14.2	chapter 14 example 2	48
Exa 14.3	chapter 14 example 3	48
Exa 14.5	chapter 14 example 5	49
Exa 14.6	chapter 14 example 6	50
Exa 14.7	chapter 14 example 7	51
Exa 14.8	chapter 14 example 8	52
Exa 14.9	chapter 14 example 9	52
Exa 14.10	chapter 14 example 10	53
Exa 15.3	chapter 15 example 3	54
Exa 16.1	chapter 16 example 1	55
Exa 16.2	chapter 16 example 2	55
Exa 16.3	chapter 16 example 3	56
Exa 16.4	chapter 16 example 4	56
Exa 16.7	chapter 16 example 7	57
Exa 16.13	chapter 16 example 13	58
Exa 16.18	chapter 16 example 18	59
Exa 16.19	chapter 16 example 19	60
	chapter 16 example 20	60

Exa 16.21	chapter 16 example 21	 . 61
Exa 16.22	chapter 16 example 22	 . 62
Exa 16.23	chapter 16 example 23	 . 62
Exa 18.1	chapter 18 example 1	 . 64
Exa 18.2	chapter 18 example 2	 . 64
Exa 18.3	chapter 18 example 3	 . 65
Exa 18.7	chapter 18 example 7	 . 65
Exa 20.1	chapter 20 example 1	 . 67
Exa 20.2	chapter 20 example 2	 . 68
Exa 20.3	chapter 20 example 3	 . 68
Exa 20.4	chapter 20 example 4	 . 69
Exa 20.6	chapter 20 example 6	 . 69
Exa 20.7	chapter 20 example 7	 . 70
Exa 20.8	chapter 20 example 8	 . 71

Principles of Statics

Scilab code Exa 2.1 chapter 2 example 1

```
1 clc
 2 //initialisation of variables
3 \text{ F1} = -2.0 \text{ //KN}
4 F2= 3.0 //KN
5 \text{ F3} = -6.0 \text{ //KN}
6 \text{ F4} = -1.0 \text{ //KN}
7 x 1 = 0 //m
8 \text{ x2} = 0.6 / \text{m}
9 \text{ x3} = 0.9 / \text{m}
10 x4 = 1.2 / m
11 //CALCULATIONS
12 R = -(F1+F2+F3+F4)
13 x = -(x1*F1+x2*F2+x3*F3+x4*F4)/R
14 //RESULTS
15 printf ('R=\%.2 \text{ f kN'}, R)
16 printf (' \ x=\%.2 \ f \ m',x)
```

Scilab code Exa 2.2 chapter 2 example 2

```
1 clc
2 //initialisation of variables
3 \text{ F1= } 5*\cos (60) //\text{KN}
4 F2= 5*sind(60) / KN
5 \text{ F3} = -3 / \text{KN}
6 \text{ x1} = 1.2 / \text{m}
7 \text{ x2} = 0.9 / \text{m}
8 \text{ x3} = 0.4 / \text{m}
9 //CALCULATIONS
10 Rah= F1
11 Rav= (-(F3*x2)+F2*x3)/1.2
12 \text{ Rd} = -F3+F2-Rav
13 //RESULTS
14 printf ('Rah= \%.1 \text{ f kN'}, Rah)
```

Scilab code Exa 2.3 chapter 2 example 3

```
1 clc
 2 //initialisation of variables
3 \text{ F1} = -2*\cos (45) / \text{KN}
4 F2= -2*sind(45) //KN
5 \text{ F3} = -5 / \text{KN}
6 \text{ x1} = 0.4 / \text{m}
7 \text{ x2} = 1.0 / \text{m}
8 \text{ Rc} = 2.5 / \text{m}
9 Rd= 3.7 / m
10 //CALCULATIONS
11 \quad Rah = -F1
12 \text{ Rav} = -F3-F2
13 \text{ Ma} = -F3*x1-F2*x2
14 Ra= sqrt (Rc^2+Rd^2)
15 theta= atan(Rc/Rd) *180/%pi
16 //RESULTS
```

```
17 printf ('Rah= %.1 f kN', Rah)
18 printf (' \n Rav=%.1 f KN', Rav)
19 printf (' \n Ma=%.1 f KNm', Ma)
20 printf (' \n Ra=%.1 f KN', Ra)
21 printf (' \n theta=%.1 f degrees', theta)
```

Scilab code Exa 2.4 chapter 2 example 4

```
1 clc
2 //initialisation of variables
3 alpha= atand(2.4/3) // degrees
4 F1= 5*sind(alpha) //KN
5 \text{ F2} = 10 * \text{sind(alpha)} / \text{KN}
6 \text{ F3} = 3 / \text{KN}
7 \text{ F4} = 2 / \text{KN}
8 F5= -5*cosd(alpha) //KN
9 F6= 10*cosd(alpha) //KN
10 \text{ x} 1 = 6 / \text{m}
11 x2 = 4.5 / m
12 \times 3 = 1.2 / m
13 x4 = 1.5 / m
14 \times 5 = 4 / m
15 \times 6 = 2 / m
16 //CALCULATIONS
17 Rah= F1+F2
18 Rav= ((-F5)*x2-x3*F1-F6*x4-F2*x3+F3*x5+F4*x6)/6
19 Rb= F3+F4-F5-Rav-F6
20 //RESULTS
21 printf ('Rah= \%.1 \text{ f kN'}, Rah)
22 printf (' \  \  \   Rav=%.1 f KN', Rav)
23 printf (' \n Rb=\%.1 f KN', Rb)
```

Normal Force Shear Force Bending Moment and Torsion

Scilab code Exa 3.1 chapter 3 example 1

```
1 clc
2 //initialisation of variables
3 Rah= -10 //KN
4 F= 10 //KN
5 //CALCULATIONS
6 Nab= -Rah
7 //RESULTS
8 printf ('Nab= %. f kN', Nab)
```

Scilab code Exa 3.2 chapter 3 example 2

```
1 clc
2 //initialisation of variables
3 Rah= -10 //KN
4 Fb= 10 //KN
5 //CALCULATIONS
```

```
6 Nab= -Rah
7 Nbc= Rah+Fb
8 //RESULTS
9 printf ('Nab= %.3 f KN (tension)', Nab)
10 printf (' \n Nbc= %.2 f KN', Nbc)
```

Scilab code Exa 3.3 chapter 3 example 3

```
1 clc
2 //initialisation of variables
3 Fb= -2 //KN
4 Fc= 6//KN
5 Fd= 4 //KN
6 a1= 60 //degrees
7 a2= 60 //degrees
8 //CALCULATIONS
9 Rah= Fd*cosd(a2)-Fc*cosd(a1)
10 Nac= Rah
11 Ncd= Fd*cosd(a2)
12 //RESULTS
13 printf ('Rah= %.3 f KN', Rah)
14 printf ('\n Nac=%.2 f KN(compression)', Nac)
15 printf ('\n Ncd=%.3 f KN(tension)', Ncd)
```

Scilab code Exa 3.12 chapter 3 example 12

```
1 clc
2 //initialisation of variables
3 Mb= 10 //KN
4 Mc= -8 //KN
5 x1= 1 //m
6 x2= 2 //m
7 //CALCULATIONS
```

```
8  Tab= Mb+Mc
9  Tbc= Mc
10    //RESULTS
11  printf ('Tab= %. f KN', Tab)
12  printf (' \n Tbc= %. f KN', Tbc)
```

Analysis of Pin jointed Trusses

Scilab code Exa 4.2 chapter 4 example 2

```
1 clc
2 //initialisation of variables
3 \text{ F1} = -2 //\text{KN}
4 \text{ F2} = -3 / \text{KN}
5 \text{ F3} = -1 / \text{KN}
6 \times 1 = 2 / m
7 \text{ x2} = 1.5 / \text{m}
8 x3 = 1 //m
9 \text{ x4= 0.5 } /\text{m}
10 //CALCULATIONS
11 Ra= (-F2*x4-F3*x3-F1*x2)/x1
12 Rd= -F1-F2-F3-Ra
13 Fab= -2.75/sind(60)
14 Fae= -Fab*cosd(60)
15 Fba= Fab
16 Fbe= (-2-\text{Fba}*\cos d(30))/\cos d(30)
17 Fbc= Fba*cosd(60)-Fbe*cosd(60)
18 Fdc= -Rd/sind(60)
19 Fde= -Fdc*cosd(60)
20 Fce= (-3-Fdc*cosd(30))/cosd(30)
21 //RESULTS
```

```
22 printf ('Ra= %.2 f KN',Ra)
23 printf (' \n Rd=%.2 f KN',Rd)
24 printf (' \n Fab=%.2 f KN(compression)',Fab)
25 printf (' \n Fae=%.2 f KN(tension)',Fae)
26 printf (' \n Fbe=%.2 f KN(tension)',Fbe)
27 printf (' \n Fbc=%.2 f KN(compression)',Fbc)
28 printf (' \n Fdc=%.2 f KN(compression)',Fdc)
29 printf (' \n Fde=%.2 f KN(tension)',Fde)
30 printf (' \n Fce=%.2 f KN(tension)',Fce)
```

Scilab code Exa 4.3 chapter 4 example 3

```
1 clc
2 //initialisation of variables
3 \text{ Re} = -4 / \text{KN}
4 Rh = -6 / KN
5 \text{ Ro} = 2 / \text{KN}
6 \text{ x1} = 1 / \text{m}
7 \text{ x2= 3 } //\text{m}
8 x3 = 5 //m
9 \times 4 = 4 / m
10 //CALCULATIONS
11 Rb= (Ro*x1-Re*x2-Rh*x3)/8
12 Rav= (-Ro*x1-Re*x3-Rh*x2)/8
13 Rah= Ro
14 Fcf = (Rav + Re)/cosd(45)
15 Fcd= (-Re*x1-Rav*x4-Ro*x1)/x1
16 Fef = (Rav * x2 + Ro * x1)/x1
17 //RESULTS
18 printf ('Rb= \%.1 \text{ f KN'}, Rb)
20 printf (' \n Rah=%.f KN',Rah)
21 printf (' \n Fcf=\%.2 f KN', Fcf)
22 printf (' \  \  \  \   rcd=%. f KN', Fcd)
23 printf (' \ \text{Fef}=\%.1 \text{ f KN', Fef})
```

Scilab code Exa 4.4 chapter 4 example 4

```
1 clc
 2 //initialisation of variables
 3 \text{ Rav} = 1 / \text{KN}
4 Re= 4 //KN
 5 Xac = 1.5 / m
 6 Xce= 1.5 //m
7 Fd= -5 / KN
8 \text{ Rah} = -3 //\text{KN}
9 \text{ xa} = 0 / \text{m}
10 ya= 0 //m
11 xc= 1.5 //m
12 \text{ yc} = 0 / \text{m}
13 xe=3 //m
14 ye= 0 //m
15 xf = 3 //m
16 yf = 1.5 / m
17 \text{ xd} = 1.5 / \text{m}
18 yd= 1.5 / m
19 xb = 0 /m
20 yb= 1.5 //m
21 \text{ Yef} = 1.5 / \text{m}
22 Fb= 3 //KN
23 //CALCULATIONS
24 \text{ tac= -Rah/(xc-xa)}
25 \text{ tab} = -\text{Rav}/(\text{yb}-\text{ya})
26 tba= tab
27 tbc= -tba*(ya-yb)/(yc-yb)
28 tbd= (-Fb-tbc*(xc-xb))/(xd-xb)
29 \text{ tdb} = \text{tbd}
30 \text{ tdf} = -\text{tdb}*(xb-xd)/(xf-xd)
31 \text{ tdc} = (-Fd-tdb*(yb-yd))/(yc-yd)
32 tec= 0
```

```
33 \text{ tfe=} -Re/(yf-ye)
34 tfc= (-tdf*(xd-xf)-tfe*(xe-xf))/(xc-xf)
35 Tab= tab*(yb-ya)
36 Tac= tac*(xc-xa)
37 Tbc= tbc*sqrt((xb-xc)^2+(yb-yc)^2)
38 Tbd= tbd*(xd-xb)
39 \text{ Tdf} = \text{tdf} * (xf - xd)
40 Tdc= tdc*(yd-yc)
41 Tfc= tfc*sqrt((xf-xc)^2+(yf-yc)^2)
42 Tfe= tfe*(yf-ye)
43 Tec= tec*(xe-xc)
44 //RESULTS
45 printf ('Tab= \%.2 \text{ f KN} (\text{compression})', Tab)
46 printf (' \n Tac=\%.2 f KN(tension)', Tac)
47 printf (' \ \  Tbc=%.2 f KN(tension)', Tbc)
48 printf (' \n Tbd=%.2 f KN(compression)', Tbd)
49 printf (' \n Tdf=\%.2 f KN(compression)', Tdf)
50 printf (' \ \ \text{Tdc}=\%.2\ f\ \ KN(compression)', Tdc)
51 printf (' \ \ Tfc=\%.2f\ KN(tension)',Tfc)
52 printf (' \n Tfe=\%.2 f KN(compression)', Tfe)
53 printf (' \ \text{Tec}=\%.2 \, \text{f KN(tension)}', \text{Tec})
```

Scilab code Exa 4.6 chapter 4 example 6

```
1 clc
2 //initialisation of variables
3 xa= -2
4 ya= -2
5 za= -4
6 xb= -2
7 yb= -2
8 zb= 2
9 xc= 2
10 yc= -2
11 zc= -4
```

```
12 xd = 2
13 \text{ yd} = -2
14 zd = 2
15 \text{ xf} = 0
16 \text{ yf} = 0
17 \text{ zf} = 0
18 \text{ xe= 0}
19 ye = 0
20 \text{ ze= } -2
21 \text{ Fe} = -60 / \text{KN}
22 \text{ Ff} = 40 / \text{KN}
23 //CALCULATIONS
24 A = [(xd-xf), (xb-xf), (xe-xf); (yd-yf), (yb-yf), (ye-yf);
        (zd-zf),(zb-zf),(ze-zf)]
25 b=[Ff;0;0]
26 c = A \setminus b
27 \text{ tfd} = c(1,1)
28 \text{ tfb} = c(2,1)
29 \text{ tfe= } c(3,1)
30 B=[(xb-xe),(xc-xe),(xa-xe); (yb-ye),(yc-ye),(ya-ye);
        (zb-ze),(zc-ze),(za-ze)]
31 e=[0-tfe*(xf-xe); -Fe-tfe*(yf-ye); -tfe*(zf-ze)]
32 f = B \setminus e
33 \text{ teb= } f(1,1)
34 \text{ tec} = f(2,1)
35 \text{ tea} = f(3,1)
36 Lfb= sqrt((xb-xf)^2+(yb-yf)^2+(zb-zf)^2)
37 Lfd= sqrt((xd-xf)^2+(yd-yf)^2+(zd-zf)^2)
38 Lfe= sqrt((xe-xf)^2+(ye-yf)^2+(ze-zf)^2)
39 Lec= sqrt((xc-xe)^2+(yc-ye)^2+(zc-ze)^2)
40 Lea= sqrt((xa-xe)^2+(ya-ye)^2+(za-ze)^2)
41 Leb= sqrt((xb-xe)^2+(yb-ye)^2+(zb-ze)^2)
42 Tfb= tfb*Lfb
43 Tfd= tfd*Lfd
44 Tfe= tfe*Lfe
45 Tec= tec*Lec
46 Tea= tea*Lea
47 Teb= teb*Leb
```

```
48 //RESULTS
49 printf ('Tfb= %.1 f KN(compression)', Tfb)
50 printf ('\n Tfd=%.1 f KN(tension)', Tfd)
51 printf ('\n Tfe=%.1 f KN', Tfe)
52 printf ('\n Tec=%.1 f KN(compression)', Tec)
53 printf ('\n Tea=%.1 f KN(compression)', Tea)
54 printf ('\n Teb=%.1 f KN(compression)', Teb)
```

Cables

Scilab code Exa 5.1 chapter 5 example 1

```
1 clc
 2 //initialisation of variables
3 \text{ F} = -10 / \text{KN}
4 \times 1 = 1 //m
5 \text{ x2= 2 } //\text{m}
6 \text{ x3} = 3 / \text{m}
7 //CALCULATIONS
8 alpha= atand(x1/x3)
9 beta= atand(x1/x2)
10 \text{ Tca= } -F*\cos d(beta)
11 Tcb= Tca*cosd(alpha)/cosd(beta)
12 Rav= -F*x2/(x2+x3)
13 \text{ Rbv} = -F - Rav
14 Rah = Rav * x3/x1
15 Rbh= Rah
16 Tca= sqrt(Rav^2+Rah^2)
17 Tcb= sqrt(Rbv^2+Rbh^2)
18 //RESULTS
19 printf ('Tca= \%.1 \text{ f KN'}, Tca)
20 printf (' \n Tcb=%.1 f KN', Tcb)
21 printf (' \ \ \text{Rav}=\%. f KN', Rav)
```

```
22 printf ('\n Rbv=\%.f KN',Rbv)
23 printf ('\n Rah=\%.f KN',Rah)
24 printf ('\n Tca=\%.1 f KN',Tca)
25 printf ('\n Tcb=\%.1 f KN',Tcb)
```

Scilab code Exa 5.2 chapter 5 example 2

```
1 clc
2 //initialisation of variables
3 \text{ Fc} = -10.0 //\text{KN}
4 Fd= -6.0 / KN
5 y = 0.5 / m
6 \text{ x1= 1.5 } //\text{m}
7 \text{ x2} = 2.0 / \text{m}
8 \times 3 = 1.8 / m
9 //CALCULATIONS
10 //The values in the textbook are rounded off. hence,
       there is a small variation in the result of this
       code.
11 alpha= atand(y/x1)
12 Rav= (-Fd*x3-Fc*(x2+x3))/(x1+x2+x3)
13 Rah= Rav*x1/y
14 Tca= sqrt(Rah^2+Rav^2)
15 tanbeta= ((-Fc-Tca*sind(alpha)))/(Tca*cosd(alpha))
16 Tcd= Tca*cosd(alpha)/cosd(beta)
17 gama= atand((-Fd+Tcd*sind(beta)))/(Tcd*cosd(beta))
18 Tdb= (Tcd*cosd(beta))/cosd(gama)
19 //RESULTS
20 printf ('Tca= \%.1 \text{ f KN'}, Tca)
21 printf (' \n Tcd=\%.1 f KN', Tcd)
22 printf ('\n Tdb=\%.2 f KN', Tdb)
```

Scilab code Exa 5.4 chapter 5 example 4

```
1 clc
2 //initialisation of variables
3 L= 200 //m
4 D= 18 //m
5 h= 6 //m
6 w= 10 //KN/m
7 //CALCULATIONS
8 L2= L/(sqrt((D-h)/D)+1)
9 H= w*L2^2/(2*D)
10 Tmax= sqrt((w*L2)^2+H^2)
11 alphamax= atand(w*L2/H)
12 printf ('L2= %.1 f m',L2)
13 printf (' \n H=%.1 f KN',H)
14 printf (' \n Tmax=%.1 f KN',Tmax)
15 printf (' \n alphamax=%.1 f degrees',alphamax)
```

Scilab code Exa 5.5 chapter 5 example 5

```
1 clc
2 //initialisation of variables
3 \text{ w} = 120 / \text{KN}
4 D = 30 / m
5 L = 300 / m
6 sigmamax = 600 //N/mm^2
7 h = 50 / m
8 \text{ beta= } 45 \text{ } // \text{degrees}
9 //CALCULATIONS
10 Tmax = ((w*L)/2)*(sqrt(1+(L/(4*D))^2))
11 d= sqrt((4*Tmax*10^3)/(sigmamax*%pi))
12 H = (w*L^2)/(8*D)
13 alpha= atand((w*L)/(2*H))
14 Mt = Tmax*(cosd(alpha)-cosd(beta))*h
15 Vt= Tmax*(sind(alpha)+sind(beta))
16 Wa= Tmax*cosd(beta)
17 //RESULTS
```

```
18 printf ('Tmax= %.1 f KN', Tmax)

19 printf (' \n d=\%.1 f mm', d)

20 printf (' \n H=\%.0 f KN', H)

21 printf (' \n alpha=\%.1 f degrees', alpha)

22 printf (' \n Mt=\%.0 f KNm', Mt)

23 printf (' \n Vt=\%.0 f KN', Vt)

24 printf (' \n Wa=\%.0 f KN', Wa)
```

Arches

Scilab code Exa 6.1 chapter 6 example 1

```
1 clc
2 //initialisation of variables
3 \text{ F1} = -60 \text{ //KN}
4 \text{ F2} = -100 //\text{KN}
5 r = 6 / m
6 alpha1= 30 // degrees
7 alpha2= 45 / degrees
8 //CALCULATIONS
9 Rav= (-F1*(r*cosd(alpha1)+r)-F2*(r*sind(alpha1)+r))
      /(2*r)
10 \text{ Rbv} = -F1-F2-Rav
11 Rbh= Rbv
12 Rah = Rbh
13 Nx= -Rav*cosd(alpha2)-Rah*cosd(alpha2)-F1*cosd(
      alpha2)
14 Sx= -Rav*sind(alpha2)+Rah*cosd(alpha2)-F1*sind(
      alpha2)
15 Mx = Rav*(r-r*cosd(alpha2))-Rah*r*sind(alpha2)+F1*(r*)
      cosd(alpha1)-r*cosd(alpha2))
16 //RESULTS
17 printf ('Normal force= %.1 f KN', Nx)
```

```
18 printf ('\n Shear force=\%.1\,f KN',Sx)
19 printf ('\n Bending moment=\%.1\,f KNm',Mx)
```

Scilab code Exa 6.2 chapter 6 example 2

```
1 clc
2 //initialisation of variables
3 \text{ W} = -10 \text{ //KN/m}
4 Yac= 7 / m
5 \text{ xad} = -7.5 / \text{m}
6 \text{ xac} = -15 / \text{m}
7 \text{ xcb} = 10 / \text{m}
8 //CALCULATIONS
9 \text{ k= Yac/((xac)^2)}
10 yb = k*(xcb)^2
11 hb= Yac-yb
12 \text{ yd= k*(xad)^2}
13 hd= Yac-yd
14 A = [(xcb-xac), (hb); (xcb), (-yb)]
15 b=[-W*(-xac)*(-xad);0]
16 c = A \setminus b
17 Rbv= c(1,1)
18 Rbh= c(2,1)
19 Rah= Rbh
20 \quad Rav = -Rbv - W * (-xac)
21 \text{ dybydx} = 2*k*xad
22 alpha= atand(-2*k*xad)
23 Nd= -Rav*sind(alpha)-Rah*cosd(alpha)+((-W)*(-xad)*
       sind(alpha))
24 Sd= -Rav*cosd(alpha)+Rah*sind(alpha)+((-W)*(-xad)*
       cosd(alpha))
25 Md = Rav*(-xad)-Rah*hd+W*(-xad)*(-xad/2)
26 //RESULTS
27 printf ('Normal force= \%.2 \text{ f kN'}, Nd)
28 printf ('\n Shear force=\%.2 \text{ f KN',Sd})
```

29 printf (' \n Bending moment=%.1 f KNm',Md)

Stress and Strain

Scilab code Exa 7.1 chapter 7 example 1

```
1 clc
2 //initialisation of variables
3 P= 800*10^3
4 sigmamax= 400
5 //CALCULATIONS
6 Amin= P/sigmamax
7 B= sqrt(Amin/2)
8 //RESULTS
9 printf ('Amin= %.2 f mm^2', Amin)
10 printf ('\n B=\%.2 f mm(Therefore the min dimensions of the column cross section are 31.6mm*63.2mm)', B
)
```

Scilab code Exa 7.2 chapter 7 example 2

```
1 clc
2 //initialisation of variables
3 x1= %pi/4
```

```
4  y= 350^2-300^2
5  W= 2000*10^3
6  E= 200000
7  h= 5*10^3
8  //CALCULATIONS
9  A= x1*y
10  sigma= -(W/A)
11  epsilon= (sigma/E)
12  delta= -(epsilon*h)
13  //RESULTS
14  printf ('A= %.2 f mm^2', A)
15  printf (' \n sigma=%.2 f N/mm^2', sigma)
16  printf (' \n epsilon=%.5 f ', epsilon)
17  printf (' \n delta=%.2 f mm', delta)
```

Scilab code Exa 7.3 chapter 7 example 3

```
1 clc
2 //initialisation of variables
3 W= 10*10^3 //KN
4 L= 500 //mm
5 D= 200 //mm
6 T= 2 //mm
7 G= 25000 //N/mm^2
8 //CALCULATIONS
9 Tav= W/(D*T)
10 gama= Tav/G
11 deltas= gama*L
12 //RESULTS
13 printf ('Tav= %.2 f N/mm^2', Tav)
14 printf ('\n gama=%.3 f rad', gama)
15 printf ('\n deltas=%.2 f mm', deltas)
```

Scilab code Exa 7.4 chapter 7 example 4

```
1 clc
2 //initialisation of variables
3 mu= 0.3
4 E= 200000 //N/mm^2
5 R= 0.1*10^-2
6 //CALCULATIONS
7 K= E/(3*(1-2*mu))
8 sigma= R*K
9 linearstrain= R/3
10 //RESULTS
11 printf ('K= %. f N/mm^2', K)
12 printf ('\n sigma=\%. f N/mm^2', sigma)
13 printf ('\n linearstarin=\%.5 f ', linearstrain)
```

Scilab code Exa 7.5 chapter 7 example 5

```
1 clc
2 //initialisation of variables
3 \times 1 = 4
4 x2 = \%pi/x1
5 L = 400 / mm
6 h = 5 //m
7 d=20 / mm
8 W = 1000*10^3 //KN
9 Ys = 200000 / N/mm^2
10 Yc= 15000 //N/mm^2
11 //CALCULATIONS
12 As= x1*x2*(d^2)
13 Ac= L^2-As
14 sigmas= (Ys*W)/(Ac*Yc+As*Ys)
15 sigmac= (Yc*W)/(Ac*Yc+As*Ys)
16 delta= (sigmac*h*10^3)/(Yc)
17 //RESULTS
```

```
18 printf ('As= %.f mm^2',As)
19 printf (' \n Ac=% f mm^2',Ac)
20 printf (' \n sigmas=%.f N/mm^2(stress in the steel)'
        ,sigmas)
21 printf (' \n sigmac=%.1f N/mm^2(stress in the
        concrete)',sigmac)
22 printf (' \n delta;=%.1f mm(shortening of the column
        )',delta)
```

Scilab code Exa 7.6 chapter 7 example 6

```
1 clc
2 //initialisation of variables
3 \text{ Ao} = 2*300 / \text{mm}^2
4 Eo = 80000 / N/mm^2
5 Ei = 200000 //N/mm^2
6 Ai = 300 / \text{mm}^2
7 P = 100*10^3 / KN
8 deltaT= 100 // degrees
9 alphai = 1.2*10^-5 ///degreesc
10 alphao = 1.85*10^{-5} ///degreesc
11 L= 4*10^3 //mm
12 //CALCULATIONS
13 sigmaiload= (Ei*P)/(Ao*Eo+Ai*Ei)
14 sigmaoload= (Eo*P)/(Ao*Eo+Ai*Ei)
15 sigmaotemp= (deltaT*(alphai-alphao)*Eo*Ai*Ei)/(Ao*Eo
      +Ai*Ei)
16 sigmaitemp= (deltaT*(alphai-alphao)*Eo*Ao*Ei)/(Ao*Eo
      +Ai*Ei)
17 sigmai = sigmaiload+sigmaitemp
18 sigmao = sigmaoload-sigmaotemp
19 deltaload= (P*L)/(Ao*Eo+Ai*Ei)
20 deltatemp= (L*deltaT)*(alphao*Ao*Eo+alphai*Ai*Ei)/(
      Ao*Eo+Ai*Ei)
21 displacement = deltatemp-deltaload
```

```
22 //RESULTS
23 printf ('sigmai= %.2 f N/mm^2(stress in the column)',
         sigmai)
24 printf ('\n sigmao=% f N/mm^2(stress in the column)
        ',sigmao)
25 printf ('\n displacement=% f mm(elongation)',
         displacement)
```

Scilab code Exa 7.7 chapter 7 example 7

```
1 clc
2 //initialisation of variables
3 A = 120*300 / mm^2
4 At = 6*300 / mm^2
5 Ec= 150 //N/mm^2
6 Et= 150*15 / N/mm^2
7 P = 150*10^3 / N
8 //CALCULATIONS
9 \text{ Ac} = A - At
10 sigmaci = (Ec*At)/Ac
11 F= Ac*sigmaci
12 stressintheconcrete= (sigmaci)-((Ec*P)/(Ac*Ec+At*Et)
      )
13 stressinthesteel= (F/At)+((Et*P)/(Ac*Ec+At*Et))
14 printf ('stressintheconcrete= \%.1 \,\mathrm{f} \,\mathrm{N/mm}^2)
      compression)', stressintheconcrete)
15 printf (' \n stressinthesteel=\% f N/mm^2 (tension)',
      stressinthesteel)
```

Scilab code Exa 7.8 chapter 7 example 8

```
1 clc
2 //initialisation of variables
```

```
3 sigmac= 400 //N/mm^2
4 fs= 6
5 d= 2*10^3 //mm
6 t= 20 //mm
7 E= 200000 //N/mm^2
8 mu= 0.3
9 //CALCULATIONS
10 p= (sigmac*2*t)/(d*6)
11 volumestrain= (p*d)*((5/4)-mu)/(t*E)
12 //RESULTS
13 printf ('p= %.2 f N/mm^2',p)
14 printf (' \n volumestrain=% f percent',volumestrain)
```

Bending of Beams

Scilab code Exa 9.1 chapter 9 example 1

```
1 clc
2 //initialisation of variables
3 \text{ w} = 10 \text{ //KN/m}
4 L = 6 / m
5 sigmaxallowable = 155 //N/mm^2
6 Modulusofuniversalbeam = 307600 //mm<sup>3</sup>
7 Satisfactorybeam= 254*102*28
8 //CALCULATIONS
9 Mmaxnormal = (w*L^2)/8
10 Zemin= (Mmaxnormal)/sigmaxallowable
11 Totalload= w+((28*9.81)/10^3)
12 Mmaxload = (Totalload *L^2)/8
13 Allowablestress= (Mmaxload*10^3*10^3)/
      Modulusofuniversalbeam
14 //RESULTS
15 printf ('Satisafactorybeam=\% 2f (254*102*28)',
      Satisfactorybeam)
```

Scilab code Exa 9.2 chapter 9 example 2

```
1 clc
2 //initialisation of variables
3 M = 100*10^6 / Nmm
4 BeamB= 300 /mm
5 BeamL= 200 /mm
6 \text{ BeamT} = 25 / \text{mm}
7 BeamT2= 20 /mm
8 //CALCULATIONS
9 Iz=((BeamL*BeamB^3)/12)-((BeamL-BeamT)*(BeamB-2*
      BeamT2)^3)/12
10 \text{ sigmaxbyY} = -M/Iz
11 SB= sigmaxbyY*(BeamB/2)
12 ST= sigmaxbyY*(-BeamB/2)
13 //RESULTS
14 printf ('Stress at top of the beam= \%.2 fN/mm^2(
      Tension)', ST)
15 printf ('\n Stress at bottom of the beam= \%.2fN/mm
      ^2(compression)',SB)
```

Scilab code Exa 9.3 chapter 9 example 3

```
1 clc
2 //initialisation of variables
3 M= 100*10^6 //Nmm
4 BeamB= 300 //mm
5 BeamH= 200 //mm
6 BeamT= 25 //mm
7 BeamT2= 20 //mm
8 //CALCULATIONS
9 Iy= (2*BeamT2*BeamH^3/12)+((BeamB-2*BeamT2)*BeamT ^3/12)
10 alphabyz=-M/Iy
11 //RESULTS
12 printf ('sigmax= %.2 f *z',alphabyz)
```

Scilab code Exa 9.4 chapter 9 example 4

```
1 clc
2 //initialisation of variables
3 \text{ BeamB} = 300 / \text{mm}
4 BeamL= 200 /mm
5 \text{ BeamT} = 25 / \text{mm}
6 \text{ BeamT2} = 20 / \text{mm}
7 alpha= 30 // degrees
8 Mz= 100*10^6*\cos (\alpha) / Nmm
9 My= 100*10^6*sind(alpha)/Nmm
10 //CALCULATIONS
11 Iz= ((BeamL*BeamB^3)/12)-((BeamL-BeamT)*(BeamB-2*
      BeamT2)^3)/12
12 Iy= (2*BeamT2*BeamL^3/12)+((BeamB-2*BeamT2)*BeamT
      ^3/12)
13 sigmaxtl= (+Mz/Iz)*(BeamB/2)+(My/Iy)*(BeamH/2)
14 sigmaxtr= (+Mz/Iz)*(BeamB/2)+(My/Iy)*(-BeamH/2)
15 inclination= atand((My*Iz)/(Mz*Iy))
16 //RESULTS
17 printf ('Stress at top left of the beam= \%.2 fN/mm^2(
      Tension)',sigmaxtl)
18 printf ('\n Stress at top right of the beam= \%.2 \,\mathrm{fN}/
     mm<sup>2</sup>(compression)', sigmaxtr)
19 printf ('\n Incination= \%.2 \text{ fdegrees}', inclination)
```

Scilab code Exa 9.5 chapter 9 example 5

```
1 clc
2 //initialisation of variables
3 BeamB= 200 //mm
4 BeamH= 200 //mm
```

```
5 BeamT = 20 /mm
6 \text{ BeamT2} = 20 / \text{mm}
7 sigmaxtop= 150 //N/mm^2
8 sigmaxbottom= -150 / N/mm^2
9 //CALCULATIONS
10 y = ((BeamB*BeamT*BeamT/2) + (BeamH*BeamT2*((BeamH/2) +
      BeamT)))/(BeamB*BeamT+BeamH*BeamT2)
11 Iz= ((BeamB*(y^3))/3)-(((BeamB-BeamT2)*(y-BeamT)^3)
     /3) + (BeamT2*((BeamH+BeamT-y)^3)/3)
12 P1= sigmaxtop/((1/(BeamB*BeamT+BeamH*BeamT2))+((y-
      BeamT/2)*y/Iz))
13 P2= (sigmaxbottom/((1/(BeamB*BeamT+BeamH*BeamT2))+((
     y-BeamT/2)*(-(BeamH+BeamT-y))/Iz))
14 if (P1>P2)
       disp(P2)
15
16 else
       disp(P1)
17
18 end
```

Scilab code Exa 9.6 chapter 9 example 6

```
1 clc
2 //initialisation of variables
3 Height= 7 //m
4 Thickness= 0.6 //m
5 density= 2000 //Kg/m^3
6 //CALCULATIONS
7 W= density*9.81*Thickness*Height
8 p= 0.1*W*2/(Height*Height)
9 //RESULTS
10 printf ('p= %.2 f N/m^1',p)
```

Scilab code Exa 9.8 chapter 9 example 8

```
1 clc
2 //initialisation of variables
3 M = 1500 / Nm
4 \times 1 = 40 / mm
5 \text{ x2} = 80 / \text{mm}
6 \text{ x3} = 8 / \text{mm}
7 y1 = 8 / mm
8 \text{ y2} = 80 \text{ //mm}
9 //CALCULATIONS
10 Ycentroid= (((x1+x2)*y1*y1/2)+(y2*x3*((y2/2)+y1)))
      /((x1+x2)*y1+y2*x3)
11 Zcentroid= (((y2*x3*y1/2)+((x1+x2)*x3*((y2/2)+y1)/2)
      )/((x1+x2)*y1+y2*x3))
12 Iz= (((x1+x2)*(y1)^3)/12)+(x1+x2)*y1*((Ycentroid-(y1)^3)/12)
      (2))^2)+(x3/12)*(y2^3)+y2*x3*((y2/2)-(Ycentroid-
      y1))^2
13 Iy= (y1*(((x1+x2)^3)/12))+(x1+x2)*y1*(y1^2)+((x3^3)
      /12)*(y2)+y2*x3*((Zcentroid-(x3/2))^2)
14 Izy= (x1+x2)*y1*(-y1)*(Ycentroid-(y1/2))+y2*x3*(
      Zcentroid-(x3/2))*(-(y2/2)+(Ycentroid-y1))
15 sigmax= ((-M*10^3*Izy*x3)+(-M*10^3*Iy*(y2-Ycentroid+
      y1)))/((Iz*Iy)-(Izy)^2)
16 //RESULTS
17 printf ('Maximum direct stress= \%.2 \,\mathrm{f} \,\mathrm{N/mm^2}', sigmax)
```

Torsion of Beams

Scilab code Exa 11.1 chapter 11 example 1

```
1 clc
2 //initialisation of variables
3 Lab= 2 //m
4 Lbc= 0.5 / m
5 Dab= 200 /mm
6 Dbc = 100 / mm
7 \text{ T} = 50 / \text{KNm}
8 \text{ G} = 80000 / N/\text{mm}^2
9 //CALCULATIONS
10 Jab= %pi*Dab^4/32
11 Jbc= %pi*Dbc^4/32
12 Tc= T/((Lbc*Jab)/(Lab*Jbc)+1)
13 Ta= T-Tc
14 if (Dab < Dbc)
15
        Dbc=Dab; Tc=Ta;
16 else
17
       Dab=Dab; Tc=Tc
18 \text{ end}
19 Stressmax= (Tc*10^6*Dbc*32)/(2*%pi*Dbc^4)
20 angleoftwist= Ta*10^6*Lab*32*10^3*180/(G*%pi*Dab^4*
      %pi)
```

Scilab code Exa 11.2 chapter 11 example 2

```
1 clc
2 //initialisation of variables
3 d = 200 / mm
4 1 = 2 /m
5 Shearstressmax = 200 / N/mm^2
6 Maximumangleoftwist= 2 //degrees
7 Maxtorque= 30/2 / \text{KNm}
8 \text{ G} = 25000 //N/\text{mm}^2
9 //CALCULATIONS
10 tmin= (Maxtorque*10^6*4)/(2*%pi*d^2*Shearstressmax)
11 \times 1 = 1/2
12 c = 0
13 dtbydx= (Maxtorque*%pi*200*16)/(4*%pi^2*d^4*G*tmin)
14 theta= (Maxtorque*%pi*200*16)/(4*%pi^2*d^4*G*tmin)*
      x1+c
15 tminimum = (Maxtorque * %pi * 200 * 10^9 * 180 * 16) / (4 * %pi^2 * d
      ^4*G*Maximumangleoftwist*%pi)*x1
16 //RESULTS
17 printf ('minimum allowable thickness= %.1 f mm',
      tminimum)
```

Scilab code Exa 12.8 chapter 12 example 8

```
1 clc
2 b=250 //mm
3 BM=350*10^3 //Nm
```

```
4 SigmaCu=30 //N/mm<sup>2</sup>

5 SigmaY=400 //N/mm<sup>2</sup>

6 d1=sqrt(BM*10<sup>3</sup> /(0.15*SigmaCu*b))

7 lever=3*d1/4

8 As=BM*10<sup>3</sup>/(0.87*SigmaY*lever)

9 printf("As=%f mmm<sup>2</sup>", As)
```

Composite Beams

Scilab code Exa 12.1 chapter 12 example 1

```
1 clc
2 //initialisation of variables
3 \text{ TimberB} = 100 / \text{mm}
4 TimberH= 400 / \text{mm}
5 SteelB= 12 /mm
6 SteelH= 300 /mm
7 \text{ Bm} = 50 \text{ //KNm}
8 ratio= 12
9 //CALCULATIONS
10 It= 2*TimberB*TimberH^3/12
11 Is= ratio*SteelH^3/12
12 sigmat= -(Bm*10^6*TimberH/2)/(It+ratio*Is)
13 sigmas= -(Bm*10^6*SteelH/2)/(Is+It/ratio)
14 //RESULTS
15 printf ('Maximum stress in timber= %.1 f mm^2 (+ or
      -)', sigmat)
16 printf (' \n Maximum stress in steel=\%.1\,\mathrm{f} N/mm^2 (+
      or -)', sigmas)
```

Scilab code Exa 12.2 chapter 12 example 2

```
1 clc
2 \text{ TimberB=100 } / \text{mm}
3 TimberH=200 //mm
4 It=TimberB*TimberH^3 /12
5 SteelB=15 /mm
6 SteelH=100 //mm
7 \text{ ratio} = 15
8 Is=2*SteelB*SteelH*(SteelH+SteelB/2)^2
9 Load=10 //KN/m
10 Span=4 //m
11 Mmax=Load*Span^2*10^6 /8 //Nm
12 sigmaT=Mmax*TimberH/2/(It+ratio*Is)
13 sigmaS=Mmax*(SteelH+SteelB)/(Is+It/ratio)
14 printf ("The maximum stress in Timber=%f N/mm^2",
      sigmaT)
15 printf(" \n The maximum stress in Steel=%f N/mm^2",
      sigmaS)
16 Shear=Load*Span/2
17 printf("Max. Shear force in beam at the supports =
     %f kN", Shear)
18 Tav=Mmax/(TimberH*TimberB)
19 ShearPerlength=Tav*TimberB
20 printf("\n Shear force per unit length in timber/
      steel connection= %f N/m", ShearPerlength)
```

Scilab code Exa 12.3 chapter 12 example 3

```
1 clc
2 b=200 //mm
3 d=350 //mm
4 dia=20 //mm
5 BM=30*10^3 //Nm
6 m=15
```

Scilab code Exa 12.4 chapter 12 example 4

```
1 clc
2 b = 250 / mm
3 d=400 / mm
4 dia=20 /mm
5 n=3
6 SigmaC=7 //N/mm^2
7 SigmaS=140 //N/mm^2
8 m = 15
9 As=n*\%pi*dia^2/4
10 n=m*As*(sqrt(1+ 2*b*d/(m*As))-1)/b
11 BMC=SigmaC*b*n*(d-n/3)*10^(-6) /2
12 BMS=SigmaS*As*(d-n/3)*10^{(-6)}
13 if BMC>=BMS then
       printf ("Limiting material is Steel and moment of
14
           resistance of the beam is %f", BMS)
15 else
       printf("Limiting material is Concrete and moment
16
           of resistance of the beam is %f", BMC)
17 end
```

Scilab code Exa 12.5 chapter 12 example 5

```
1 clc
2 d=400 //mm
3 m=15
4 ASs=120 //N/mm^2
5 ASc=6.5 //N/mm^2
6 BM=40*10^3 //Nm
7 n=d/(ASs/(ASc*m) +1 )
8 As=BM*10^3/(ASs*(d-n/3))
9 printf("required area= %f mm^2", As)
```

Scilab code Exa 12.6 chapter 12 example 6

```
1 clc
2 b = 180 / mm
3 d=360 / mm
4 m = 15
5 \text{ BM} = 45 * 10^3 / \text{Nm}
6 \text{ depth=40} / \text{mm}
7 \text{ Sc} = 8.5 / N/\text{mm}^2
8 \text{ Ss} = 140 / N/\text{mm}^2
9 \text{ n=d/(Ss/(Sc*m)} +1)
10 Ast=(BM*10^3 - Sc*b*n*(n/3 - depth)/2)/(Ss*(d-depth)
      )
11 Asc=(m*Ast*(d-n) - b*n^2 /2)/((m-1)*(n-depth))
12 SigmaSC=-m*(n-depth)*Sc/n
13 printf("Area of reinforcement steel = %f mm^2", Ast)
14 printf("\n Area of reinforcement concrete= %f mm^2",
15 printf("\n Stress in compresson steel=%f N/mm^2
      compression", SigmaSC)
```

Scilab code Exa 12.7 chapter 12 example 7

```
1 //CLC
2 d= 600 //mm
3 b= 250 //mm
4 BM= 350 //KNm
5 t= 28
6 Sc= 30 //N/mm^2
7 T= 400 //N/mm^2
8 //CALCULATIONS
9 Mu= 0.15*Sc*b*d^2*10^-6
10 n= d-sqrt(d^2-(2*BM*10^6/(0.4*Sc*b)))
11 l= d-(n/2)
12 As= BM*10^6/(1*T*0.87)
13 //RESULTS
14 printf("As(mm^2) = %.2 f", As)
```

Scilab code Exa 12.8 chapter 12 example 8

```
1 clc
2 b=250 //mm
3 BM=350*10^3 //Nm
4 SigmaCu=30 //N/mm^2
5 SigmaY=400 //N/mm^2
6 d1=sqrt(BM*10^3 /(0.15*SigmaCu*b))
7 lever=3*d1/4
8 As=BM*10^3/(0.87*SigmaY*lever)
9 printf("As=%f mmm^2", As)
```

Scilab code Exa 12.9 chapter 12 example 9

```
1 clc
2 b=300 //mm
3 d=618 //mm
4 depth=60 //mm
```

```
5 SigmaCu=30 //N/mm^2
6 SigmaY=410 //N/mm^2
7 BM=650 //Nm
8 Mu=0.15*SigmaCu*b*d^2 *10^(-6)
9 Asc=(BM-Mu)*10^6 /((d-depth)*0.72*SigmaY)
10 Ast=Mu*10^6/(0.75*d*SigmaY*0.87) + (BM-Mu)*10^6/((d-depth)*0.87*SigmaY)
11 printf("Asc=%f mm^2", Asc)
12 printf("\n Ast=%f mm^2", Ast)
```

Scilab code Exa 12.10 chapter 12 example 10

```
1 //CLC
2 w= 1200 //mm
3 d= 618 //mm
4 t= 150 //mm
5 BM= 500 //KNm
6 Scu= 30 //N/mm^2
7 Sy= 410 //mm^2
8 //CALCULATIONS
9 Mu= 0.4*Scu*w*t*(d-(t/2))*10^-6
10 n= d-sqrt(d^2-(2*BM*10^6/(0.4*Scu*w)))
11 l= d-(n/2)
12 As= BM*10^6/(0.87*Sy*1)
13 //RESULTS
14 printf("As(mm^2) = %.2 f", As)
```

Scilab code Exa 12.11 chapter 12 example 11

```
1 clc
2 thick=150 //mm
3 width=1.8 //m
4 depth=562 //mm
```

```
5 SigmaCu=30 //N/mm^2
6 SigmaY=350 //N/mm^2
7 BM=709 //KNm
8 As=2*BM*10^6 /(0.87*SigmaY*depth)
9 Tensile=0.87*SigmaY*As
10 disp(Tensile)
11 Compressive=0.4*width*thick*SigmaCu*10^3
12 disp(Compressive)
13 n1=0.87*SigmaY*8530/(0.4*SigmaCu*width*10^3)
14 disp(n1)
15 Mu=0.87*SigmaY*8530*(SigmaY+6-n1/2)*10^(-6)
16 printf("Mu=%f KNm",Mu)
17 printf("\n This is greater than applied moment.
hence it is satisfactory")
```

Complex stress and Strain

Scilab code Exa 14.1 chapter 14 example 1

```
1 clc
2 //initialisation of variables
3 d = 2 / m
4 t = 20 / mm
5 p = 1.5 //N/mm^2
6 load= 2500 //KN
7 alpha= 60 // degrees
8 //CALCULATIONS
9 Cs= (p*d*10^3)/(2*t)
10 Ls= (p*d*10^3)/(4*t)
11 Ds= (load*10^3)/(pi*d*t*10^3)
12 Ts= Ls+Ds
13 sigman= (Ts*t*(cosd(90-alpha))^2+Cs*t*(cosd(alpha))
14 tab= Ts*sind(alpha)*cosd(alpha)-Cs*sind(alpha)*cosd(
      alpha)
15 \text{ tmax} = (Ts-Cs)/2
16 //RESULTS
17 printf ('direct stress= \%.1 \, f \, N/mm^2', sigman)
18 printf (' \n Shear stress=\%.1 \, f \, N/mm^2',tab)
19 printf (' \n maximum Shear stress=\%.1 \, \text{f N/mm}^2', tmax)
```

Scilab code Exa 14.2 chapter 14 example 2

```
1 clc
2 //initialisation of variables
3 \text{ load} = 50000 //N
4 torque= 1200 / Nm
5 d = 60 / mm
6 t = 1.5 / mm
7 alpha= 60 // degrees
8 //CALCULATIONS
9 BM= load*t
10 axialload= (load*4)/(%pi*d^2)
11 bendingmoment = (BM*d*64)/(\%pi*d^4*2)
12 Ts = axialload+bendingmoment
13 shearstress= (torque*10^3*d*32)/(2*%pi*d^4)
14 sigman= -Ts*(cosd(alpha-30))^2+shearstress*cosd(
      alpha-30)*sind(alpha-30)+shearstress*cosd(alpha
      -30)*sind(alpha-30)
15 T= -Ts*sind(alpha)*cosd(alpha)-shearstress*(sind(
      alpha))^2+shearstress*(cosd(alpha)^2)
16 //RESULTS
17 printf ('direct stress= \%.1 \, f \, N/mm^2', sigman)
18 printf (' \n Shear stress=\%.1 \, f \, N/mm^2',T)
```

Scilab code Exa 14.3 chapter 14 example 3

```
1 clc
2 //initialisation of variables
3 directstress= 80 //N.mm^2
4 shearstress= 45 //N/mm^2
5 //CALCULATIONS
```

```
6 Sx= directstress
7 \text{ Sy} = 0
8 Txy= shearstress
9 sigma1= ((Sx+Sy)/2)+(sqrt((Sx-Sy)^2+4*Txy^2))/2
10 sigma2 = ((Sx+Sy)/2) - (sqrt((Sx-Sy)^2+4*Txy^2))/2
11 theta= (atand(-((2*Txy)/(Sx-Sy))))/2
12 direction1= theta
13 direction2= theta-90
14 Tmax= (sigma1-sigma2) /2
15 theta1= direction1-45
16 theta2= direction2-45
17 //RESULTS
18 printf ('principal stress1= \%.1 f N/mm<sup>2</sup>', sigma1)
19 printf (' \n principal stress2=\%.1 f N/mm<sup>2</sup>', sigma2)
20 printf ('\n direction of principal stress1=\%.1f
      degrees', direction1)
21 printf ('\n.direction of principal stress2=\%.1f
      degrees', direction2)
22 printf ('\n: maximum shear stress=\%.1 f N/mm^2', Tmax)
23 printf (' \n derection of plane1=%.1f degrees',
      theta1)
24 printf ('\n.derection of plane2=\%.1f degrees',
      theta2)
```

Scilab code Exa 14.5 chapter 14 example 5

```
1 clc
2 //initialisation of variables
3 sigmax= 60 //N/mm^2
4 sigmay= -40 //N/mm^2
5 Txy= 50 //N/mm^2
6 E= 200000 //N/mm^2
7 mu= 0.3
8 //CALCULATIONS
9 Sx= (sigmax-mu*sigmay)/E
```

```
10 Sy= (sigmay-mu*sigmax)/E
11 G = E/(2*(1+mu))
12 gamaxy= Txy/G
13 e1= ((Sx+Sy)/2+(sqrt((Sx-Sy)^2+(gamaxy)^2))/2)
14 e2= ((Sx+Sy)-(sqrt((Sx-Sy)^2+gamaxy^2)))/2
15 theta= atand(-gamaxy/(Sx-Sy))/2
16 theta1= -90+theta
17 //RESULTS
18 printf ('direct strain in x direction= \%.2e ',Sx)
19 printf ('\n direct strain in y direction=%.2e',Sy)
20 printf (' \n Gamaxy=\%.2 e', gamaxy)
21 printf (' \n. principal strain1=%.9e',e1)
22 printf ('\n.principal strain2=\%.9e',e2)
23 printf ('\n.direction of plane1=%.1f degrees',theta
24 printf ('\n.direction of plane2=\%.1f degrees',
     theta1)
```

Scilab code Exa 14.6 chapter 14 example 6

```
1 clc
2 //initialisation of variables
3 ea= 1000*10^-6
4 eb= -200*10^-6
5 ec= -300*10^-6
6 sigmay= 0 //N/mm^2
7 E= 70000 //N/mm^2
8 mu= 0.3
9 d= 50 //mm
10 //CALCULATIONS
11 e1= ((ea+ec)/2)+sqrt(((ea-eb)^2+(ec-eb)^2)/2)
12 e2= ((ea+ec)/2)-sqrt(((ea-eb)^2+(ec-eb)^2)/2)
13 sigma1= (E*(e1+mu*e2))/(1-mu^2)
14 sigma2= (E*(e2+mu*e1))/(1-mu^2)
15 sigmax= sigma1+sigma2
```

```
16 Txy= sqrt((((sigma1*2)-(sigmax))^2-(sigmax^2)))/2
17 P= sigmax*((%pi/4)*(d^2))
18 T= Txy*((%pi/32)*(50^4)/25)
19 //RESULTS
20 printf ('T= %.2fNm',T)
21 printf ('\n P= %.2fN',P)
```

Scilab code Exa 14.7 chapter 14 example 7

```
1 clc
2 //initialisation of variables
3 \text{ sigmax} = 140 / N/\text{mm}^2
4 sigmay = -70 / N/mm^2
5 Txy = 60 //N/mm^2
6 \text{ T} = 225 / N/\text{mm}^2
7 //CALCULATIONS
8 sigma1 = (sigmax + sigmay) / 2 + (sqrt ((sigmax - sigmay))
      ^2+4*(Txy^2)))/2
  sigma2= (sigmax+sigmay)/2-(sqrt((sigmax-sigmay)
      ^2+4*(Txy^2)))/2
10 sigmaY = sigma1-sigma2
11 sigmaY1= sqrt(sigma1^2+sigma2^2-sigma1*sigma2)
12 if(sigmaY>T)
       disp("Tresca theory failure has ocurred")
13
14 else
       disp("Tresca theory failed")
15
16 \, \text{end}
17 if (sigmaY1<T)
       disp ("According to Von Mises theory material has
18
            not failed")
19 else
20
       disp("According to Von Mises theory material has
            failed")
21 end
```

Scilab code Exa 14.8 chapter 14 example 8

```
1 clc
2 //initialisation of variables
3 M = 250 / KNm
4 Torquemax = 200 //KNm
5 allowablestress= 180 //N/mm^2
6 L = 250 / mm
7 B = 500 / mm
8 t = 10 / mm
9 \text{ t1= } 12 \text{ } /\text{mm}
10 //CALCULATIONS
11 Stressmax= (Torquemax*10^6)/(2*B*L*t)
12 I= (2*t1*L*L^2)+((2*t*B^3)/12)
13 sigma= (M*10^6*B)/(2*I)
14 Stressallowable= sqrt(sigma^2+3*(Stressmax^2))
15 if (Stressallowable <allowablestress)
16
       disp("Box grider section is satisfactory")
17 else
       disp("Box grider section is not satisfactory")
18
19 end
```

Scilab code Exa 14.9 chapter 14 example 9

```
1 clc
2 //initialisation of variables
3 BeamL= 60 //mm
4 BeamB= 100 //mm
5 Load= 60000 //N
6 Stress= 150 //N/mm^2
7 //CALCULATIONS
8 sigmax= Load/(BeamL*BeamB)
```

```
9 stressmax1= sqrt((Stress/2)^2-(sigmax^2/4))
10 Sy1= (2*stressmax1*BeamL*BeamB)/3
11 stressmax2= sqrt((Stress^2-(sigmax^2/4))/3-(sigmax^2/4))
12 Sy2= (2*stressmax2*BeamL*BeamB)/3
13 //RESULTS
14 printf ('Shear force using Tresca= %.2e N',Sy1)
15 printf ('\n Shear force using Von Misses=%.2e N', Sy2)
```

Scilab code Exa 14.10 chapter 14 example 10

```
1 clc
2 //initialisation of variables
3 BeamL= 250 //mm
4 BeamH= 500 //mm
5 spanlength= 4 //m
6 Failurestress= 1.5 //N/mm^2
7 //CALCULATIONS
8 W1= (Failurestress*BeamL*BeamH^3)/(10^3*BeamL*12)
9 W2= (4*Failurestress*BeamL*BeamH)/3
10 if(W1>W2)
11 printf ("W2= %.2 e kN", W2)
12 else
13 printf ("W2= %.2 e kN", W1)
```

Virtual Work and Energy Methods

Scilab code Exa ${\bf 15.3}$ chapter 15 example 3

```
1 clc
2 //initialisation of variables
3 Xae= 3 //m
4 Ycd= 4 //m
5 Yde= 4 //m
6 Fc= 30 //KN
7 //CALCULATIONS
8 Fba= Fc*Ycd/Xae
9 //RESULTS
10 printf ('Fba= %.2fKN',Fba)
```

Analysis of Statically Indeterminate Structures

Scilab code Exa 16.1 chapter 16 example 1

```
1 clc
2 //initialisation of variables
3 M= 4
4 N= 3
5 r= 5
6 //CALCULATIONS
7 Ns= 3*(M-N+1)-r
8 nk= 3*N-M
9 //RESULTS
10 printf ('Ns= %.f', Ns)
11 printf ('\n Nk= %.f', nk)
```

Scilab code Exa 16.2 chapter 16 example 2

```
1 clc
2 //initialisation of variables
```

Scilab code Exa 16.3 chapter 16 example 3

```
1 clc
2 //initialisation of variables
3 M= 7
4 N= 6
5 r= 3
6 n= 6
7 df= 3
8 //CALCULATIONS
9 ns= 3*(M-N+1)-r
10 nk= n*df-r
11 //RESULTS
12 printf ('Ns= %. f ',ns)
13 printf ('\n Nk= %. f ',nk)
```

Scilab code Exa 16.4 chapter 16 example 4

```
1 clc
2 //initialisation of variables
```

```
3  M= 19
4  N= 13
5  r= 0
6  n= 6
7  no= 13
8  c= 24
9   //CALCULATIONS
10  ns= n*(M-N+1)-r
11  nk= n*no-c
12  //RESULTS
13  printf ('Ns= %. f ', ns)
14  printf (' \n Nk= %. f ', nk)
```

Scilab code Exa 16.7 chapter 16 example 7

```
1 clc
2 //initialisation of variables
3 \text{ F1} = -6 / \text{KN}
4 \text{ F2} = -10 //\text{KN}
5 \text{ W} = -12 \text{ //KN/m}
6 E = 200000 / N/mm^2
7 I = 12000 / mm^4
8 \text{ x1} = 0.5 / \text{m}
9 \text{ x2} = 0.5 / \text{m}
10 \text{ x3} = 0.5 / \text{m}
11 x4 = 0.5 / m
12 \text{ x5} = 1.0 / \text{m}
13 //CALCULATIONS
14 \text{ vb0} = 8.88/(E*I)
15 \text{ vc0} = 9.089/(E*I)
16 \text{ all} = 0.45/(E*I)
17 \text{ a21} = 0.39/(E*I)
18 \ a22 = a11
19 a12= a21
20 A = [0.45 0.39; 0.39 0.45]
```

Scilab code Exa 16.13 chapter 16 example 13

```
1 clc
2 //initialisation of variables
3 \text{ W} = -10 \text{ //KN/m}
4 r = 5 / m
5 //CALCULATIONS
6 Rav= -W*2*r/2
7 \text{ Rbv} = \text{Rav}
8 function[y]=conv(x)
        y=125*(sin(x))^2*5*(sin(x))*5
9
10 endfunction
11  v=intg(0,%pi,conv)
12 function[y]=conk(x)
13
        y=25*(sin(x))^2*5
14 endfunction
15 \text{ k=intg}(0,\%\text{pi,conk})
16 Rbh= v/k
17 Rah= Rbh
18 //RESULTS
19 printf ('Rav= \%.2 \text{ f KN'}, Rav)
20 printf (' \n Rbv=\%.2 f KN', Rbv)
```

```
21 printf ('\n Rah=\%.2 f KN', Rah)
22 printf ('\n Rbh=\%.2 f KN', Rbh)
```

Scilab code Exa 16.18 chapter 16 example 18

```
1 //CLC
 2 \times 1 = 7 / m
3 \text{ x2= } 7 \text{ //m}
4 \times 3 = 4 //m
5 \text{ x4} = 4 / \text{m}
6 x5 = 4 /m
7 \times 6 = 12 / m
8 x7 = 4 //m
9 Fab= 12 //KN
10 Fbc1= 7 //KN
11 Fbc2= 7 //KN
12 Fcd= 22 //KN
13 Fe= 5 //KN
14 //CALCULATIONS
15 MfAB= -Fab*(x1+x2)/(x3+x4)
16 MfBC= -(Fbc1*x3*(x4+x5)^2/(x6)^2)-(Fbc2*x3^2*(x4+x5))
       /(x6)^2
17 MfCD = -Fcd * x6/x6
18 \text{ MfDE} = -\text{Fe} * x7
19 DFba= (3/(x1+x2))/((3/(x1+x2))+(4/(x3+x4+x5)))
20 DFbc= 1-DFba
21 DFcb= (4/(x3+x4+x5))/((3/(x6))+(4/(x3+x4+x5)))
22 DFcd= 1-DFcb
23 //RESULTS
24 printf ("DFba = \%.2 \text{ f}", DFba)
25 printf ("DFbc = \%.2 \text{ f}", DFbc)
26 printf("DFcb = \%.2 \,\mathrm{f}",DFcb)
27 printf ("DFcd = \%.2 \text{ f}", DFcd)
```

Scilab code Exa 16.19 chapter 16 example 19

```
1 clc
2 //initialisation of variables
3 \text{ W1} = 5 / \text{KN/m}
4 W2= 5 //KN/m
5 \text{ F} = -40 / \text{KN}
6 \ 11 = 6 \ //m
7 12 = 5 //m
8 \ 13 = 5 \ //m
9 14 = 6 / m
10 //CALCULATIONS
11 Mfab= -W1*11^2/12
12 Mfbc= F*12/8
13 DFab= (3/11)/((3/11)+(2/(12+13)))
14 DFbc= 1-DFab
15 //RESULTS
16 printf ('MFab= %.f KN m', Mfab)
17 printf (' \n MFbc= %.f KN m', Mfbc)
18 printf (' \ \ DFab= \%.2 f', DFab)
19 printf (' \n DFbc= \%.2 \, \text{f.}', DFbc)
```

Scilab code Exa 16.20 chapter 16 example 20

```
1 clc
2 //initialisation of variables
3 W= 6 //KN/m
4 F= 40 //KN
5 l1= 5 //m
6 l2= 3 //m
7 l3= 3 //m
8 l= 12 //mm
```

```
9 Smab = 9*10^6 / mm^4
10 Smbc= 12*10^6 / mm^4
11 E= 200000 //N/mm^2
12 //CALCULATIONS
13 MFab= (-W*11^2/12)+((-W*Smab*E*1))/((11*10^3)
      ^2*10^6)
14 MFba= (W*11^2/12)+((-W*Smab*E*1))/((11*10^3)^2*10^6)
15 MFbc= -(F*(12+13)/8)+(3*E*Smbc*1)/(((12+13)*10^3)
      ^2*10^6)
16 MFcb= (F*(12+13)/8)
17 DFba= ((4*E*Smab)/11)/(((4*E*Smab)/11)+((3*E*Smbc)/(
      12+13)))
18 \text{ DFbc} = 1 - \text{DFba}
19 //RESULTS
20 printf ('MFab= %.1 f KN m', MFab)
21 printf (' \n MFbc= %.1 f KN m', MFba)
22 printf ('\n MFbc= %.1 f KN m', MFbc)
23 printf (' \n MFbc= %.1 f KN m', MFcb)
24 printf (' \n DFab= \%.2 \,\mathrm{f} ', DFba)
25 printf (' \n DFbc= \%.2 \, \text{f.'}, DFbc)
```

Scilab code Exa 16.21 chapter 16 example 21

```
1 //CLC

2 x1= 4 //m

3 x2= 4 //m

4 x3= 4 //m

5 x4= 16 //m

6 F1= 12 //KN

7 F2= 12 //KN

8 F3= 1 //KNm

9 y= 12 //m

10 //CALCULATIONS

11 MFab= -(F1*x1*(x2+x3)^2/(y)^2)-(F2*x3^2*(x1+x2)/(y)^2)
```

```
12 MFbc= -F3*x4^2/y
13 DFad= (4/y)/((4/(x1+x2+x3))+(4/y))
14 DFab= 1-DFad
15 DFba= (4/(x1+x2+x3))/((4/x4)+(3/y)+(4/(x1+x2+x3)))
16 DFbc= (4/x4)/((4/x4)+(3/y)+(4/(x1+x2+x3)))
17 DFbe= 1-DFba-DFbc
18 //RESULTS
19 printf("DFab = %.2 f", DFab)
20 printf("DFbc = %.2 f", DFbc)
21 printf("DFba = %.2 f", DFba)
22 printf("DFad = %.2 f", DFad)
```

Scilab code Exa 16.22 chapter 16 example 22

```
1 //CLC
2 x1= 5 //m
3 x2= 10 //m
4 y= 10 //m
5 Fb= 2 //KN
6 Fbc= 4 //KN
7 Rbc= 2
8 //CALCULATIONS
9 MFbc= -Fbc*x1*x2^2/(x1+x2)^2
10 MFcb= Fbc*x2*x1^2/(x1+x2)^2
11 DFba= (4/y)/((4/y)+(4*Rbc/(x1+x2)))
12 DFbc= 1-DFba
13 //RESULTS
14 printf("DFba = %.2f", DFba)
15 printf("DFbc = %.2f", DFbc)
```

Scilab code Exa 16.23 chapter 16 example 23

```
1 //CLC
```

```
2 \times 1 = 6 / m
3 \text{ x2= } 4.5 \text{ //m}
4 y1 = 3 //m
5 \text{ y2} = 3 / \text{m}
6 Fba= 40 / KN
7 Fbc= 20 //\text{KNm}
8 //CALCULATIONS
9 MFba= -Fba*(y1+y2)/8
10 MFbc= Fbc*x1^2/12
11 x = sqrt(x1^2+x2^2)
12 DFba= (4/(y1+y2))/((4/(y1+y2))+(4/(x1)))
13 DFbc= 1-DFba
14 DFcb= (4/x1)/((4/x1)+(3/x))
15 DFcd= 1-DFcb
16 //RESULTS
17 printf("DFba = \%.2 f", DFba)
18 printf("DFbc = \%.2 \, \mathrm{f}",DFbc)
19 printf("DFcb = \%.3 \, f", DFcb)
20 printf("DFcd = \%.3 \, f",DFcd)
```

Plastic Analysis of Beams and Frames

Scilab code Exa 18.1 chapter 18 example 1

```
1 clc
2 //initialisation of variables
3 sigmay= 100 //N/mm^2
4 b= 10 //mm
5 d= 12 //mm
6 //CALCULATIONS
7 My= sigmay*b*d^3*2/(d*12)
8 Mp= sigmay*b*(d/2)*(d/2)
9 f= Mp/My
10 //RESULTS
11 printf ('f= %.1 f',f)
```

Scilab code Exa 18.2 chapter 18 example 2

```
1 clc
2 //initialisation of variables
```

```
3 d= 300 //mm
4 b= 150 //mm
5 tw= 8 //mm
6 tf= 12 //mm
7 //CALCULATIONS
8 Zp= b*tf*(d-tf)+(tw*((d-2*tf)^2))/4
9 Ze= (2/d)*((b*d^3)/12-((b-tw)*(d-2*tf)^3)/12)
10 f= Zp/Ze
11 //RESULTS
12 printf ('f= %.2 f',f)
```

Scilab code Exa 18.3 chapter 18 example 3

```
1 clc
2 //initialisation of variables
3 d = 200 / mm
4 b = 150 / mm
5 \text{ tw} = 7 / \text{mm}
6 \text{ tf} = 10 / \text{mm}
7 //CALCULATIONS
8 ye= (b*tf*(tf/2)+(d-tf)*tw*((d+tf)/2))/(b*tf+(d-tf)*
      tw)
9 I= ((b*ye^3)/3)-(b-tw)*(((ye-tf)^3)/3)+(tw*((d-ye)
      ^3)/3)
10 Ze= I/(d-ye)
11 yp = (b*tf+(d-tf)*tw)/(2*b)
12 Zp = b*yp*yp/2+b*(tf-yp)*(tf-yp)/2+(d-tf)*tw*((d-tf))
      /2+(tf-yp))
13 f = Zp/Ze
14 //RESULTS
15 printf ('fie= \%.2 \, \text{f',f})
```

Scilab code Exa 18.7 chapter 18 example 7

```
1 clc
2 //initialisation of variables
3 Load= 100 //KN
4 Length= 10 //m
5 yieldstress= 300 //N/mm^2
6 loadfactor= 1.5
7 //CALCULATIONS
8 requiredultimateload= loadfactor*Load
9 Mp= requiredultimateload*Length/6
10 Zp= Mp/yieldstress
11 //RESULTS
12 printf ('Zp= %.1e mm^3',Zp)
13 disp("The appropriate beam for this is 406*140*49")
```

Influenece Lines

Scilab code Exa 20.1 chapter 20 example 1

```
1 clc
 2 //initialisation of variables
3 Xac = 2 / m
4 Xcb=4 //m
5 \text{ Xbd} = 2 //\text{m}
6 Wa= 1 //N
7 Wc = 1 //N
8 \text{ Wd} = 1 //N
9 //CALCULATIONS
10 Rb= Wa*Xac/(Xac+Xcb)
11 \text{ Sc} = \text{Rb}
12 Ra= Wc*Xcb/(Xac+Xcb)
13 Sc1= -Ra
14 Ra1=-Wd*Xbd/(Xac+Xcb)
15 Mc= Ra*Xac
16 \text{ Mc1} = \text{Ra1} * \text{Xac}
17 //RESULTS
18 printf ('Rb= %.2 f KN', Rb)
19 printf (' \ \ \  Ra= \%.2 \ f \ \ KN ', Ra)
20 printf (' \n Ra= %.2 f KN', Ra1)
21 printf (' n Mc= \%.2 f KN m', Mc1)
```

Scilab code Exa 20.2 chapter 20 example 2

```
1 clc
2 //initialisation of variables
3 xac= 2 //m
4 xcb= 4 //m
5 xbd= 2 //m
6 //CALCULATIONS
7 Cle= xac/((xac)+(xcb))
8 Clf= xcb/ ((xac)+(xcb))
9 C2h= 1/((1/xac)+(1/xcb))
10 //RESULTS
11 printf ('Cle= %.2 f m',Cle)
12 printf (' \n Clf= %.2 f m',Clf)
13 printf (' \n C2h= %.2 f m',C2h)
```

Scilab code Exa 20.3 chapter 20 example 3

```
1 clc
2 //initialisation of variables
3 W1= 3 //KN
4 W2= 4 //KN
5 W3= 5 //KN
6 x1= 0.3 //m
7 x2= 0.1 //m
8 x3= 0.5 //m
9 x4= 0.7 //m
10 //CALCULATIONS
11 Skmax= W3*x1+W2*x2
12 Sk1= W1*(-x4)+W2*(-x3)+W3*(-x1)
13 Sk2= W1*(x2)+W2*(-x4)+W3*(-x3)
```

```
14 //RESULTS

15 printf ('Sk(max)= %.2 f KN', Skmax)

16 printf (' \n Sk= %.2 f KN', Sk1)

17 printf (' \n Sk= %.2 f KN', Sk2)
```

Scilab code Exa 20.4 chapter 20 example 4

```
1 clc
2 //initialisation of variables
3 \text{ W} = 2 //\text{KN/m}
4 1 = 2 /m
5 x1 = 0.05
6 x2 = 0.25
7 x3 = 0.75
8 x4 = 0.55
9 x5 = 1.5
10 \times 6 = 1.875
11 11= 0.5 //m
12 \quad 12 = 1.5 \ //m
13 //CALCULATIONS
14 Sk= W*1*(1/2)*(x1+x2)
15 Sk1 = -W*1*(1/2)*(x3+x4)
16 Mk= W*((1/2)*(x5+x6)*11+(1/2)*(x5+x6)*12)
17 //RESULTS
18 printf ('Sk(max +)= \%.2 \text{ f KN'}, Sk)
19 printf (' \n Sk(max -)= \%.2 f KN', Sk1)
20 printf (' \n Mk(max)= %.2 f KN m', Mk)
```

Scilab code Exa 20.6 chapter 20 example 6

```
1 clc
2 //initialisation of variables
3 W1= 9 //KN
```

```
4 \text{ W2} = 15 / \text{KN}
 5 \text{ W3} = 15 / \text{KN}
6 \text{ W4= 8 } / \text{KN}
 7 \text{ W5} = 8 / \text{KN}
 8 \text{ x1} = 2 //\text{m}
9 \text{ x2= } 2.3 \text{ } /\text{m}
10 \text{ x3} = 2.7 / \text{m}
11 x4 = 2.3 / m
12 1 = 20 / m
13 11= 10.105 //m
14 //CALCULATIONS
15 x = (W2 \times x1 + W3 \times (x1 + x2) + W4 \times (x1 + x2 + x3) + W5 \times (x1 + x2 + x3 + x4))
        /(W1+W2+W3+W4)
16 \text{ Ra} = (W1+W2+W3+W4+W5)*11/1
17 Mk = ((W1+W2+W3+W4+W5)/1)*11*11-W1*(x1+x2)-W2*x2
18 //RESULTS
19 printf ('Ra= \%.1 \text{ f KN'}, Ra)
20 printf (' \n Mk= %.1 f KN', Mk)
```

Scilab code Exa 20.7 chapter 20 example 7

```
1 clc
2 //initialisation of variables
3 W= 2.5 //KN/m
4 n= 8
5 x= 1.4 //m
6 y= 1.4 //m
7 l= 4 //m
8 x1= 2.5
9 x2= 3.2
10 x3= 0.25
11 x4= 0.3125
12 x5= 0.625
13 x6= 0.5
14 x7= 3.5
```

```
15 a= 45 //degrees
16 //CALCULATIONS
17 Fec= x1*x2*x3*(1/2)/sind(a)
18 Scd= W*(0.5*(x4+x5)*x6+0.5*(x5+x4)*x7)
19 Fec1= Scd/sind(a)
20 //RESULTS
21 printf ('Maximum compressive force= %.2 f KN', Fec)
22 printf ('\n Maximum tensile force= %.2 f KN', Fec1)
```

Scilab code Exa 20.8 chapter 20 example 8

```
1 clc
2 //initialisation of variables
3 \text{ W} = 1.5 / \text{KN/m}
4 W1= 1 //KN/m
5 n = 10
6 \text{ x = } 0.9 \text{ //m}
7 y = 1.2 / m
8 x1 = 5
9 x2 = 0.5
10 x3 = 4
11 x4 = 0.4
12 x5 = 6
13 \times 6 = 0.6
14 x7 = 3
15 \times 8 = 0.3
16 //CALCULATIONS
17 \text{ S5} = -1*0.5*x1*x2+2.5*0.5*x3*x4
18 \quad S51 = -1*0.5*x5*x6+2.5*0.5*x7*x8
19 //RESULTS
20 printf ('S5= \%.2 \text{ f KN',S5})
21 printf (' \n S4= \%.2 \text{ f KN'}, S51)
```