

حص في التعلم الالب

Linear Regression - Logistic Regression Regularization - Neural Networks Clustering - Dimensionality Reduction

رضـــوان

سكيـنة

احـــمد

فهرس الحصة 2

- 1. مقدمة
- a. شناهو الانحدار الخطى Linear Regression ؟
- 2. الانحدار الخطي البسيط Simple Linear Regression
 - a. النموذج الرياضي Model
 - d. حالة الخطأ Error Function
- 3. الانحدار الخطي المتعدد Multiple Linear Regression
 - 4. خوارزمية أصل التدرج Gradient Descent
 - 5. أمثلة باستعمال Python و Colab

مقدمة

لغز خفیف ظریف

X	Y
3	6
7	14
9.5	19

تخیل معایا عطیتك هاد الأزواج
 دیال البیانات ۲۹ ۲۹

ایلا قلت لیك را كاینة علاقة
 بیناتهم و سولتك شنو قیمة ۷
 ایلا كان X هو 5 ؟

مقدمة

لغز خفیف ظریف

X	Y	
3	6	
7	14	
9.5	19	
5	10	

اسهل جواب هو Y=10 حیث النموذج
 الریاضی Y = 2X صالح لذوك البیانات

 التعلم الآلي مبني على هاذ القضية اللي درتي دابا: الخوارزمية كاتشوف البيانات و كاتقلب على النموذج الرياضي الأحسن اللي كايقدر يكون صالح للبيانات

الحياة صعبة

ثمن الدلاح على حسب وزنها 60 20 4 8 10 12 14 16 6

 البیانات فالحیاة الیومیة ماشي دیما محطوطة علی مستقیم!

فهرس الحصة 2

- 1. مقدمة
- a. شناهو الانحدار الخطى Linear Regression ؟
- 2. الانحدار الخطي البسيط Simple Linear Regression
 - a. النموذج الرياضي Model
 - d. حالة الخطأ Error Function
- 3. الانحدار الخطي المتعدد Multiple Linear Regression
 - 4. خوارزمية أصل التدرج Gradient Descent
 - 5. أمثلة باستعمال Python و Colab

النموذج الرياضي

- أول حاجة كايبداو بيها الناس اللي كايبغيو يدخلو للدومين
 ديال التعلم الآلي: الانحدار الخطي Linear Regression
 - النموذج اللي كانفترضو انه مزيان للبيانات كايكون على
 شكل دالة تألفية

$$Y = \alpha X + \beta \tag{1}$$

- opeال pa α ●
- هو الIntercept هβ ●

النموذج الرياضي

- ۷ و المحدو يكون متجهات Vectors عامرين بعدة أعداد. و لكن هنا عانبقاو فأسهل مثال اللي هو ملي كايكون البعد Dimension ديالهم هو 1، يعني فيهم قيمة وحيدة اللي كاتغير فالبيانات: Simple Linear Regression
 - X فهاذ الحالة β و β عددان حقيقيان مستقلان عن \bullet
- ایلا رسمنا النموذج اللي دوینا علیه سابقا ، من الواضح انه عا یکون مبیان هذه الدالة مستقیما معامله الموجه هو β و α هو أرتوبه عند الصفر

مثال

هذا مثال دیال بیانات تاع الوزن و الطول ديال 30 واحد، ایلا رسمناهم فمبیان و لقينا احسن انحدار خطي، عانلقاو ان α **= 0.6** β = **130.2** كاتبان قريبة بزاف من البيانات و كاتأكد أن النموذج مابيهش

كيفاش درنا تا لقينا هاذ الانحدار الخطي البسيط؟

- باش تلقى الانحدار الخطي البسيط اللي يجي مع البيانات ديالك،
 خاصك تلقى β و α
- ایلا شفتی المثال السابق عا تلاحظ ان الدالة ماکاتدوزش دیریکت من ^۲اع البیانات، کاین واحد **التیساع** بین البیانات و الدالة، وهاذ التیساع هو الخطأ Error اللی دارتو الدالة فذیك القیمة. لنفترض أن فکل نقطة أ درنا خطأ ٤٠ یعنی:
 ۲ و الخطأ ۴۰ یعنی:

 ايلا بغينا الانحدار الخطي البسيط ديالنا يكون مزيان، خاص المجموع ديال الأخطاء فمّاع البيانات يكون صغير.

كيفاش درنا تا لقينا هاذ الانحدار الخطي البسيط؟

باستعمال واحد الطريقة سميتها طريقة المربعات الصغرى
 βˆ g αˆ و الحنيا Least Squares عا يكون الهدف هو نلقاو βˆ g αˆ و الجمع ديال المربعات تاع الأخطاء

$$\hat{\alpha}, \hat{\beta} = \min_{\alpha, \beta} \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \min_{\alpha, \beta} \sum_{i=1}^{n} (Y_{i} - \beta - \alpha X_{i})^{2}$$

تورين: استعمل الاشتقاق باش تلقى الحل

$$\widehat{\alpha} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$
(2)

$$\widehat{\beta} = \overline{Y} - \widehat{\alpha}\overline{X} \tag{3}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 (4)

فهرس الحصة 2

- 1. مقدمة
- a. شناهو الانحدار الخطى Linear Regression ؟
- 2. الانحدار الخطي البسيط Simple Linear Regression
 - a. النموذج الرياضي Model
 - d. حالة الخطأ Error Function
- 3. الانحدار الخطى المتعدد Multiple Linear Regression
 - 4. خوارزمية أصل التدرج Gradient Descent
 - 5. أمثلة باستعمال Python و Colab

مثال

ثمن بیع منزل لا یتعلق بمتغیر وحید...

	lon	lat	price	bedrooms	full_baths	
1	-123.2803	44.57808	267500	5	2	
2	-123.2330	44.59718	255000	3	2	
3	-123.2635	44.56923	295000	3	2	
4	-123.2599	44.59453	5000	0	1	
5	-123.2632	44.53606	13950	0	2	
6	-123.2847	44.59877	233000	3	2	

-123.2803, 44.57808

فهاذ الحالة كانوليو فنموذج رياضى ديال انحدار خطى متعدد

$$Y_{i} = \alpha_{1}X_{i1} + \alpha_{2}X_{i2} + \alpha_{3}X_{i3} + \alpha_{4}X_{i4} + ... + \beta + \epsilon_{i}$$

كتابة المسألة بطريقة المصفوفات

نقدرو نحطو المعادلات على شكل نظمة

$$\begin{cases} y_1 = \beta + \alpha_1 x_{1,1} + \ldots + \alpha_p x_{1,p} + \varepsilon_1 \\ y_2 = \beta + \alpha_1 x_{2,1} + \ldots + \alpha_p x_{2,p} + \varepsilon_2 \\ \ldots \\ y_n = \beta + \alpha_1 x_{n,1} + \ldots + \alpha_p x_{n,p} + \varepsilon_n \end{cases}$$

كتابة بطريقة المصفوفات

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,p} \end{pmatrix} \begin{pmatrix} \beta \\ \alpha_1 \\ \vdots \\ \alpha_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

$$\forall = \mathbf{X} \circlearrowleft + \mathbf{\varepsilon}$$

كيفاش تلقى أحسن انحدار خطى متعدد؟

نعاودو تانى نكتبو طريقة المربعات الصغرى

$$\min \sum_{i=1}^{n} \hat{\epsilon}_i^2 = \min \hat{\epsilon}^T \hat{\epsilon} = \min_{\hat{\alpha}} [(\mathbf{Y} - \mathbf{X}\hat{\alpha})^T (\mathbf{Y} - \mathbf{X}\hat{\alpha})]$$
 (1)

$$\min \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \min_{\hat{\beta},.,\hat{\alpha}_{p}} \sum_{i=1}^{n} \left(y_{i} - \hat{\beta} - \hat{\alpha}_{1} x_{i,1} - \dots - \hat{\alpha}_{p} x_{i,p} \right)^{2}$$
 (2)

$$\hat{\alpha} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{Y} \tag{3}$$

المعادلات الطبيعية Normal Equations

كاين بعض الملاحظات على المُقد ِّر Estimator اللي لقينا

$$\hat{\alpha} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{Y}$$

- المصفوفة مصفوفة $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ مربعة lacktriangle
- المصفوفة X^TX ماشي ديما عندها Inverse، أحيانا حنا مجبرين نقلبو على Pseudo-Inverse
- حساب المقلوب دیال المصفوفة X^TX یقدر یولی معقد جدا حسابیا إیلا عندك عدد كبیر جدا دیال البیانات (ملایین أو أكثر...)

كاينة واحد الطريقة أخرى باش تلقا الحل بلا من المعادلات الطبيعية، هاذ الطريقة سميتها **خوارزمية أصل التدرج Gradient Descent**

فهرس الحصة 2

- 1. مقدمة
- a. شناهو الانحدار الخطى Linear Regression ؟
- 2. الانحدار الخطي البسيط Simple Linear Regression
 - a. النموذج الرياضي Model
 - d. حالة الخطأ Error Function
- 3. الانحدار الخطى المتعدد Multiple Linear Regression
 - 4. خوارزمية أصل التدرج Gradient Descent
 - 5. أمثلة باستعمال Python و Colab

الفكرة العامة

الفكرة العامة

 $\mathbf{w}_{k+1} = \mathbf{w}_k - \gamma \nabla J\left(\mathbf{w}_k\right)$

خوارزمیة تحسین تکراریة Iterative Optimization Algorithm

أصل التدرج للانحدار الخطى البسيط

$$\hat{\alpha}, \hat{\beta} = \min_{\alpha, \beta} \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \min_{\alpha, \beta} \sum_{i=1}^{n} (Y_{i} - \beta - \alpha X_{i})^{2}$$

- و مثلا بجوج صفر) β و α (مثلا بجوج صفر) الخطوة 1: بدا من واحد البداية
- الخطوة 2: عاود واحد **K** عرة هاد "النزول" باستعمال معدل التعلم التعلم التعلم Learning rate γ

$$\beta_{k} = \beta_{k-1} - \gamma \frac{1}{n} \sum_{i=1}^{n} (\beta_{k-1} + \alpha_{k-1} X_{i} - Y_{i})$$

$$\alpha_{k} = \alpha_{k-1} - \gamma \frac{1}{n} \sum_{i=1}^{n} (\beta_{k-1} + \alpha_{k-1} X_{i} - Y_{i}) \cdot X_{i}$$

صورة متحركة

أمثلة باستعمال Python

ندوزو لشوية دلكود

