

Estimating the impact of structural directionality:

How reliable are undirected connectomes?

Leonardo L. Gollo (Penelope Kale)

Citations 2019 1728 h-index 20 18

Computational & theoretical neuroscience University of Queensland, Australia

Andrew Zalesky

Citaties 13168 10646 h-index 51 46

Neuroimaging
University of Melbourne, Australia

Estimating the impact of structural directionality: How reliable are undirected connectomes?

بررسی تاثیر جهت دار بودن اتصالات در شبکه ساختاری: اتصالات غیرجهت دار چقدر قابل اعتماد هستند؟

OUTLINE

- ► Abstract
- ► Introduction
- ► Materials and Methods (17)
- ► Results (3)
- ► Discussion (4)
- ► Conclusions

Directed connectomes

Bidirectional connection

Network Measures

- Degree
- ► Betweenness Centrality
- ► Number of Triangles
- ► Clustering Coefficient
- ► Shortest Path Length
- ► Characteristic Path Length
- ► Global Efficiency
- ► Participation Index
- ► Small Worldness

Grap	h-the	oretic	Meas	sure
CONTRACTOR STATES				

Formula

Degree

(Rubinov and Sporns, 2010)

(both)
$$K_i = \sum_{j \in N} a_{ij}$$

$$K_i^{in} = \sum_{j \in N} a_{ji} K_i^{out} = \sum_{j \in N} a_{ij}$$

Betweenness

Centrality

(Freeman, 1978)

$$B_i$$
= betweenness centrality of
node i , $B_{hj}(i)$ = number of

of shortest paths between h &j

node
$$i$$
, $B_{hj}(i)$ = number of shortest paths between $h \& j$ passing through i , B_{hj} = number $= \frac{1}{(n-1)(n-2)} \sum_{h \neq j, h \neq i, j \neq i} \frac{B_{hj}(i)}{B_{hj}}$ of shortest paths between $h \& i$

Number of Triangles

(Rubinov and Sporns, 2010)

$$t_i^{\rightarrow}$$
 = number of triangles around node i

$$t_i^{\rightarrow} = \frac{1}{2} \sum_{j,h \in N} (a_{ij} + a_{ji}) (a_{ih} + a_{hi}) (a_{jh} + a_{hj})$$

Clustering Coefficient

(Fagiolo, 2007)

$$C_i^{\rightarrow}$$
 = clustering coefficient of node *i*

$$C_i^{\rightarrow} = \frac{1}{n} \sum_{i \in N} \frac{t_i^{\rightarrow}}{\left(K_i^{out} + K_i^{in}\right) \left(K_i^{out} + K_i^{in} - 1\right) - 2\sum_{i \in N} a_{ij} a_{ji}}$$

$$C^{\rightarrow}$$
= mean clustering coefficient of the network $C^{\rightarrow} = \sum_{i=1}^{N} \frac{c_i^{\rightarrow}}{N}$

Shortest

Path Length

(Rubinov and Sporns, 2010)

 d_{ij}^{\rightarrow} = shortest path length between nodes i & j, where $g_{i \rightarrow j}$ is the shortest path between i & j

$$d_{ij}^{\rightarrow} = \sum_{a_{ij} \in g_{i \rightarrow j}} a_{ij}$$

Characteristic Path Length

(Watts and Strogatz, 1998)

 L^{\rightarrow} = average distance between all nodes

$$L^{\rightarrow} = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}^{\rightarrow}}{n - 1}$$

Global Efficiency

(Latora and Marchiori, 2001)

 G^{\rightarrow} = global efficiency of the network

$$G^{\rightarrow} = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} (d_{ij}^{\rightarrow})^{-1}}{n-1}$$

Participation Index

(Guimera and Amaral, 2005)

 Y_i^{out} =out-participation index,

M =set of modules,

 $K_i^{out}(m)$ = number of outconnections between i & all nodes in module m

$$Y_i^{out} = 1 - \sum_{m \in M} \left(\frac{K_i^{out}(m)}{K_i^{out}} \right)^2$$

Small Worldness

(Humphries and Gurney, 2008)

 S_i^{\rightarrow} = small worldness of node i S^{\rightarrow} = small world index of network $C_i^{\rightarrow}_{rand}$ = clustering of a random network, L_{rand}^{\rightarrow} = path length of a random network

$$S_i^{\rightarrow} = \frac{C_i^{\rightarrow}/C_{i\,rand}^{\rightarrow}}{L^{\rightarrow}/L_{rand}^{\rightarrow}}$$

$$S^{\rightarrow} = \frac{C^{\rightarrow}/C_{rand}^{\rightarrow}}{L^{\rightarrow}/L_{rand}^{\rightarrow}}$$

Rank-shift index (RSI)

the maximum possible difference (D) in which the ranks of the network are reversed

