Mathematik (Elektrotechnik) — Nachklausur

Aufgabe 1. Berechnen Sie — wenn möglich — die inverse Matrix von

2 P.

$$\left(\begin{array}{rrr}
1 & 6 & 2 \\
-2 & -13 & -5 \\
1 & 8 & 3
\end{array}\right).$$

Führen Sie eine Probe durch.

Aufgabe 2. Es sei

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

Die Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ ist gegeben durch

$$\varphi\begin{pmatrix}1\\-1\\3\end{pmatrix}=\begin{pmatrix}-1\\1\\1\end{pmatrix}, \quad \varphi\begin{pmatrix}-2\\-1\\2\end{pmatrix}=\begin{pmatrix}1\\1\\1\end{pmatrix}, \quad \varphi\begin{pmatrix}-4\\-1\\1\end{pmatrix}=\begin{pmatrix}0\\1\\1\end{pmatrix}$$

a) Zeigen Sie, dass \mathcal{A} eine Basis des \mathbb{R}^3 ist.

1 P.

b) Bestimmen Sie die Matrix M der Abbildung bzgl. der Basis $\mathcal{A}.$

2 P.

c) Bestimmen Sie den Kern der Matrix M.

1 P.

Aufgabe 3. Es sei

$$A = \begin{pmatrix} \frac{1}{2} & 0 & 3 & -6\\ 0 & \frac{1}{3} & 0 & 0\\ 0 & 0 & 3 & -3\\ 0 & 0 & 2 & -4 \end{pmatrix}.$$

a) Bestimmen Sie alle Eigenvektoren von A. Führen Sie eine Probe durch.

4 P.

b) Geben Sie einen Vektor des \mathbb{R}^4 an, der kein Eigenvektor der Matrix A ist.

1 P.

Aufgabe 4. Bestimmen Sie das multiplikativ Inverse von $32 \in \mathbb{Z}_{53}$.

2 P.

$$f(x) = \frac{1}{x^2} \cdot e^{\frac{1}{1-x}}$$

und die Grenzwerte am Rande des Definitionsbereiches. Bestimmen Sie maximale Intervalle strenger Monotonie und die Extremstellen von f. Fertigen Sie eine grobe Skizze des Graphen an.

Aufgabe 6. Stellen Sie die Menge aller reellen Zahlen, die die Ungleichungen 2 P.

$$1 < \left| \frac{2 - 7x}{3x + 5} \right| \le 2$$

erfüllen, als Vereinigung von Intervallen dar.

Aufgabe 7. Bestimmen Sie

3 P.

$$\int_0^1 \frac{x - 14}{(x^2 + 4)(x + 1)^2} \, \mathrm{d}x.$$

Aufgabe 8. Durch die Gleichung

2 P.

$$\left| \frac{2z+4j}{z-2j+2} + 1 \right| \le 1$$

ist ein Kreis definiert. Bestimmen Sie Mittelpunkt und Radius dieses Kreises.

Aufgabe 9. Es sei $2 \le n \in \mathbb{N}$. Zeigen Sie

2 P.

$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right) = \ln(n+1) - \ln(2n).$$

Aufgabe 10. Berechnen Sie

2 P.

$$\lim_{x \to 0} \frac{\left(xe^{-\frac{x}{2}} + 1 - \sin(x) - \cos(x)\right)^5}{(x^3 + x^5)^5}.$$