CS685: Data Mining Association Rule Mining

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs685/

> 1st semester, 2021-22 Mon 1030-1200 (online)

• Find which itemsets are associated

- Find which itemsets are associated
- Association denotes accessing together
- Dataset D is set of transactions T_i
- Each T_i is set of items $I_{ij} \in I$

- Find which itemsets are associated
- Association denotes accessing together
- Dataset D is set of transactions T_i
- Each T_i is set of items $I_{ij} \in I$
- Find itemsets A and B such that accessing A implies accessing B

$$A \Longrightarrow B$$

• This is called an association rule

- Find which itemsets are associated
- Association denotes accessing together
- Dataset D is set of transactions T_i
- Each T_i is set of items $I_{ij} \in I$
- Find itemsets A and B such that accessing A implies accessing B

$$A \Longrightarrow B$$

- This is called an association rule
- Called association rule mining or itemset mining or basket mining

- Find which itemsets are associated
- Association denotes accessing together
- Dataset D is set of transactions T_i
- Each T_i is set of items $I_{ij} \in I$
- Find itemsets A and B such that accessing A implies accessing B

$$A \Longrightarrow B$$

- This is called an association rule
- Called association rule mining or itemset mining or basket mining
- Extremely rare that this will happen always

Market Analysis

- Find which itemsets are associated
- Association denotes accessing together
- Dataset D is set of transactions T_i
- Each T_i is set of items $I_{ij} \in I$
- Find itemsets A and B such that accessing A implies accessing B

$$A\Longrightarrow B$$
 Similar, bushes $y \Rightarrow zeggs y$

- This is called an association rule
- Called association rule mining or itemset mining or basket mining
- Extremely rare that this will happen always
- Not useful if such itemsets occur rarely

Parameters of Association Rules

- For both A and B to occur, $A \cup B$ must occur
- Two thresholds or parameters

Parameters of Association Rules

- For both A and B to occur, $A \cup B$ must occur
- Two thresholds or parameters
- Support: A and B should occur in at least s (ratio of) transactions

$$P(A,B) = \frac{|A \cup B|}{|T|} \ge s$$

Parameters of Association Rules

- For both A and B to occur, $A \cup B$ must occur
- Two thresholds or parameters
- Support: A and B should occur in at least s (ratio of) transactions

$$P(A,B) = \frac{|A \cup B|}{|T|} \ge s$$

 Confidence: If A occurs, B should occur in at least c (ratio of) transactions

$$P(B|A) = \frac{|A \cup B|}{|A|} \ge c$$

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \Longrightarrow E$		

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \Longrightarrow E$	0.75	1.00
$C \Longrightarrow E$	0, 5	2/3

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \implies E$	0.75	1.00
$C \implies E$	0.50	0.67
$B,C\impliesE$		

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

P(E1C)
= P(Enc)
= 24 = 93
3 M

Rule	Support	Confidence
$B \Longrightarrow E$	0.75	1.00
$C \Longrightarrow E$	0.50	0.67
$B,C \Longrightarrow E$	0.50	1.00
$E \Longrightarrow B$	0.75)
	0.<	2/3

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \implies E$	0.75	1.00
$C \implies E$	0.50	0.67
$B,C\impliesE$	0.50	1.00
$E \implies B$	0.75	1.00
$E \implies C$		'

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \implies E$	0.75	1.00
$C \implies E$	0.50	0.67
$B,C\impliesE$	0.50	1.00
$E \implies B$	0.75	1.00
$E \implies C$	0.50	0.67
$E \implies B, C$		'

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \Longrightarrow E$	0.75	1.00
$C \implies E$	0.50	0.67
$B,C\impliesE$	0.50	1.00
$E \Longrightarrow B$	0.75	1.00
$E \Longrightarrow C$	0.50	0.67
$E \implies B, C$	0.50	0.67
$A \implies D$		'

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \Longrightarrow E$	0.75	1.00
$C \implies E$	0.50	0.67
$B,C\impliesE$	0.50	1.00
$E \Longrightarrow B$	0.75	1.00
$E \implies C$	0.50	0.67
$E \implies B, C$	0.50	0.67
$A \implies D$	0.25	0.50
$D \implies A$		

Transaction Id	Itemsets
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Rule	Support	Confidence
$B \implies E$	0.75	1.00
$C \implies E$	0.50	0.67
$B,C\impliesE$	0.50	1.00
$E \implies B$	0.75	1.00
$E \implies C$	0.50	0.67
$E \implies B, C$	0.50	0.67
$A \implies D$	0.25	0.50
$D \implies A$	0.25	1.00

• k-itemset: An itemset that contains k items, i.e., its length is k

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold
- Infrequent itemset: An itemset whose support is less than the support threshold

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold
- Infrequent itemset: An itemset whose support is less than the support threshold
- Closed itemset: An itemset X for which there does not exist any proper superset $Y \supset X$ having the same support as X

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold
- Infrequent itemset: An itemset whose support is less than the support threshold
- Closed itemset: An itemset X for which there does not exist any proper superset $Y \supset X$ having the same support as X
- Maximal frequent itemset or Max itemset: An itemset X that is frequent and for which there does not exist any proper superset Y ⊃ X which is also frequent

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold
- Infrequent itemset: An itemset whose support is less than the support threshold
- Closed itemset: An itemset X for which there does not exist any proper superset $Y \supset X$ having the same support as X
- Maximal frequent itemset or Max itemset: An itemset X that is frequent and for which there does not exist any proper superset Y \(\supset X\) which is also frequent
- Minimal infrequent itemset or Min itemset: An itemset X that is infrequent and for which there does not exist any proper subset Z

 X which is also infrequent

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold
- Infrequent itemset: An itemset whose support is less than the support threshold
- Closed itemset: An itemset X for which there does not exist any proper superset $Y \supset X$ having the same support as X
- Maximal frequent itemset or Max itemset: An itemset X that is frequent and for which there does not exist any proper superset Y \(\supset X\) which is also frequent
- Minimal infrequent itemset or Min itemset: An itemset X that is infrequent and for which there does not exist any proper subset Z ⊂ X which is also infrequent
- Strong rule: An association rule whose confidence is more than or equal to the confidence threshold

- k-itemset: An itemset that contains k items, i.e., its length is k
- Frequent itemset: An itemset whose support is more than or equal to the support threshold
- Infrequent itemset: An itemset whose support is less than the support threshold
- Closed itemset: An itemset X for which there does not exist any proper superset $Y \supset X$ having the same support as X
- Maximal frequent itemset or Max itemset: An itemset X that is frequent and for which there does not exist any proper superset $Y \supset X$ which is also frequent
- Minimal infrequent itemset or Min itemset: An itemset X that is infrequent and for which there does not exist any proper subset Z ⊂ X which is also infrequent
- Strong rule: An association rule whose confidence is more than or equal to the confidence threshold
- Weak rule: An association rule whose confidence is less than the confidence threshold

Finding Association Rules

- Mining association rules require two steps
 - Finding frequent itemsets
 - Generating strong association rules

Finding Association Rules

- Mining association rules require two steps
 - Finding frequent itemsets
 - Generating strong association rules
- The first step is more time-consuming

Brute-force Algorithm

- Generate a candidate itemset
- Test its support
- If frequent, accept
- Else, throw away

Brute-force Algorithm

- Generate a candidate itemset
- Test its support
- If frequent, accept
- Else, throw away
- Total number of possible itemsets is $2^n 1$
- Checking each itemset requires scanning the entire transaction database
- Too impractical

Apriori Principle

- Candidate-generation-and-test paradigm
- Apriori principle: If an itemset is frequent, all its subsets must also be frequent
- Conversely, if an itemset X is infrequent, all its supersets are also infrequent
- This is an *anti-monotonic* property: if a set fails, its supersets fail as well

Apriori Algorithm

- Generates candidate itemsets in order of length
- Tests each such candidate itemset for support threshold
- Uses all frequent itemsets of a particular length to generate candidates having length one more

Apriori Algorithm

- Generates candidate itemsets in order of length
- Tests each such candidate itemset for support threshold
- Uses all frequent itemsets of a particular length to generate candidates having length one more
- Stop till there is no more candidate or when length is exhausted

Apriori Algorithm

- Generates candidate itemsets in order of length
- Tests each such candidate itemset for support threshold
- Uses all frequent itemsets of a particular length to generate candidates having length one more
- Stop till there is no more candidate or when length is exhausted
- Candidate itemsets of length k is C_k
- Frequent itemsets of length k-1 is F_{k-1}
- Join step: $C_k = F_{k-1} \bowtie F_{k-1}$
 - Join two candidates whose k-2 items are common
 - Perform subset checking
- Prune step: $F_k = \{I \in C_k : |I| \ge s\}$
 - Retain only frequent itemsets

Apriori Algorithm

- Generates candidate itemsets in order of length
- Tests each such candidate itemset for support threshold
- Uses all frequent itemsets of a particular length to generate candidates having length one more
- Stop till there is no more candidate or when length is exhausted
- Candidate itemsets of length k is C_k
- Frequent itemsets of length k-1 is F_{k-1}
- Join step: $C_k = F_{k-1} \bowtie F_{k-1}$
 - Join two candidates whose k-2 items are common
 - Perform subset checking
- Prune step: $F_k = \{I \in C_k : |I| \ge s\}$
 - Retain only frequent itemsets
- Requires k database scans for itemsets up to length k

Apriori Example

Transaction Id	Itemsets
0	1, 2, 5
1	2, 4
2	2, 3
3	1, 2, 4
4	1, 3
5	2, 3
6	1, 3
7	1, 2, 3, 5
8	1, 2, 3
9	6

Support threshold s = 2

Candidate set C_1

	-	
Itemset	Frequency	
1	6	
2	7	
3	6	′
4	2	
5	2	
6	1χ	

Candidate	set	C_1
-----------	-----	-------

Itemset	Frequency	
1	6	
2	7	١.
3	6	
4	2	
5	2	
6	1	

Itemset	Frequency
1	6
2	7
3	6
4	2
5	2

Candidate set C_1

Frequency	
6	
7	١.
6	
2	
2	
1	
	6 7 6 2

Frequent set F_1

Itemset	Frequency	
1	6	1
2	7	
3	6	
4	2	
5	2	

Candidate set C_2

	2	
Itemset	Frequency	
1, 2	4	
1, 3	4	
1, 4	1	
1, 5	2	_
2, 3	4	
2, 4	2	
2, 5	2	
3, 4	0	
3, 5	1	
4, 5	0	

Candidate set C_1

Itemset	Frequency
1	6
2	7
3	6
4	2
5	2
6	1

Frequent set F_1

r requerit set r		
Itemset	Frequency	
1	6	
2	7	
3	6	
4	2	
5	2	

Candidate set C_2

Candidate Set C ₂		
Itemset	Frequency	
1, 2	4	
1, 3	4	
1, 4	1	
1, 5	2	_
2, 3	4	
2, 4	2	
2, 5	2	
3, 4	0	
3, 5	1	
4, 5	0	

Itemset	Frequency	
1, 2	4	
1, 3	4	
1, 5	2	ĺ <i>'</i>
2, 3	4	
2, 4	2	
2. 5	2	

Candidate set C_1

Frequency
6
7
6
2
2
1

Frequent set F_1

r requerte set r 1		
Itemset	Frequency	
1	6	
2	7	
3	6	
4	2	
5	2	

Candidata sat C

Candidate set C_2		
Itemset	Frequency	
1, 2	4	
1, 3	4	
1, 4	1	
1, 5	2	_
2, 3	4	
2, 4	2	
2, 5	2	
3, 4	0	
3, 5	1	
4, 5	0	

Itemset	Frequency]
1, 2,	4	ĺ
1, 3	4	
1, 5°	2	\rightarrow
2, 3•	4	(31)
2, 4	2	(3,49)
2.5	2	(35)

Candidate set C_3			
	Itemset	Frequency	
	1, 2, 3	2	
>	1, 2, 5	2	l _
, .<	(1, 3, 5)	subset	
~	(2, 3, 4)	subset	
9)	(2, 3, 5)	subset	
5) ⁽	(2, 4, 5)	subset	

Candidate set C_1

Frequency
6
7
6
2
2
1

Frequent set F_1

Itemset	Frequency	
1	6	1
2	7	-
3	6	
4	2	
5	2	
	•	•

Candidata sat C

J
]
ĺ
′
=

Frequent set F_2

Itemset	Frequency
1, 2	4
1, 3	4
1, 5	2
2, 3	4
2, 4	2
2, 5	2

Candidate set C_3	
Itemset	Frequency
1, 2, 3	2
1, 2, 5	2
(1, 3, 5)	subset
(2, 3, 4)	subset
(2, 3, 5)	subset
(2, 4, 5)	subset

Itemset	Frequency
1, 2, 3	2
1, 2, 5	2

Candidate set C_1

Frequency
6
7
6
2
2
1

Frequent set F_1

Itemset	Frequency	
1	6	
2	7	
3	6	
4	2	
5	2	

Candidate set C

Candidate set C_2		
Itemset	Frequency	
1, 2	4	
1, 3	4	
1, 4	1	
1, 5	2	\rightarrow
2, 3	4	<i>'</i>
2, 4	2	
2, 5	2	
3, 4	0	
3, 5	1	
4, 5	0	

Frequent set F_2

Itemset	Frequency
1, 2	4
1, 3	4
1, 5	2
2, 3	4
2, 4	2
2, 5	2

Candidate set C_3		
	Itemset	Frequency
	1, 2, 3	2
\rightarrow	1, 2, 5	2
,	(1, 3, 5)	subset
	(2, 3, 4)	subset
	(2, 3, 5)	subset
	(2, 4, 5)	subset

Frequent set F_3

Itemset	Frequency
1, 2, 3	2
1, 2, 5	2

Candidate set C₄

Itemset	Frequency
(1, 2, 3, 5)	subset

Partitioning

- Transaction-wise partitioning
 - Partition transactions into different sets
 - Find frequent and infrequent itemsets in each partition with support threshold s' (according to ratio of transactions in each partition)
 - For two equal partitions, s' = s/2
 - Report all itemsets that are frequent in all partitions
 - Prune all itemsets that are infrequent in all partitions

Partitioning

- Transaction-wise partitioning
 - Partition transactions into different sets
 - Find frequent and infrequent itemsets in each partition with support threshold s' (according to ratio of transactions in each partition)
 - For two equal partitions, s' = s/2
 - Report all itemsets that are frequent in all partitions
 - Prune all itemsets that are infrequent in all partitions
- Item-wise partitioning
 - Partition items into different sets
 - Find frequent itemsets in each partition
 - Join only these frequent itemsets to form global candidates

- Frequent pattern (FP)-growth
- Compact representation of entire transaction database as a tree
- FP-tree
- Resembles a prefix tree

- Frequent pattern (FP)-growth
- Compact representation of entire transaction database as a tree
- FP-tree
- Resembles a prefix tree
- First finds support of all 1-itemsets
- Items in descending order of support forms flist order
- Re-arranges items in every transaction in flist order

- Frequent pattern (FP)-growth
- Compact representation of entire transaction database as a tree
- FP-tree
- Resembles a prefix tree
- First finds support of all 1-itemsets
- Items in descending order of support forms flist order
- Re-arranges items in every transaction in flist order
- Root is "null"
- Nodes are items with corresponding count
- Each transaction is added as a path in the tree
- Count of common prefixes are incremented

- Frequent pattern (FP)-growth
- Compact representation of entire transaction database as a tree
- FP-tree
- Resembles a prefix tree
- First finds support of all 1-itemsets
- Items in descending order of support forms flist order
- Re-arranges items in every transaction in flist order
- Root is "null"
- Nodes are items with corresponding count
- Each transaction is added as a path in the tree
- Count of common prefixes are incremented
- Nodes of same item are linked using node links

- Frequent pattern (FP)-growth
- Compact representation of entire transaction database as a tree
- FP-tree
- Resembles a prefix tree
- First finds support of all 1-itemsets

- Items in descending order of support forms flist order
- Re-arranges items in every transaction in flist order
- Root is "null"
- Nodes are items with corresponding count
- Each transaction is added as a path in the tree

- Count of common prefixes are incremented
- Nodes of same item are linked using node links
- Two database scans

FP-Tree Example

Transaction Id	Itemsets	
0	1, 2, 5	ĺ
1	2, 4	
2	2, 3	
3	1, 2, 4	
4	1, 3	
5	2, 3	
6	1, 3	
7	1, 2, 3, 5	
8	1, 2, 3	
9	6	

Support threshold s = 2

FP-Tree Example

Transaction Id	Itemsets
0	1, 2, 5
1	2, 4
2	2, 3
3	1, 2, 4
4	1, 3
5	2, 3
6	1, 3
7	1, 2, 3, 5
8	1, 2, 3
9	6

Support threshold s=2

Flist order of items

	Item	Frequency
	2	7
÷	1	6
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6
	4	2
	5	2

FP-Tree Construction

• Adding transaction 0: 2, 1, 5

• Adding transaction 1: 2, 4

• Adding transaction 2: 2, 3

• Adding transaction 3: 2, 1, 4

• Adding transaction 4: 1, 3

• Adding transaction 5: 2, 3

• Adding transaction 6: 1, 3

Adding transaction 7: 2, 1, 3, 5

• Adding transaction 8: 2, 1, 3

FP-Tree Mining

- Starts with the item with the least support, say x
- Projects its paths from the base tree
- x is the suffix in all such paths

FP-Tree Mining

- Starts with the item with the least support, say x
- Projects its paths from the base tree
- x is the suffix in all such paths
- A new FP-tree is built with only these paths (equivalently, transactions) with x removed
- This new FP-tree is recursively mined to find frequent patterns
- All such frequent patterns are appended with x and returned

FP-Tree Mining

- Starts with the item with the least support, say x
- Projects its paths from the base tree
- x is the suffix in all such paths
- A new FP-tree is built with only these paths (equivalently, transactions) with x removed
- This new FP-tree is recursively mined to find frequent patterns
- All such frequent patterns are appended with x and returned
- The item with the next lowest count is continued with

FP-Tree Mining Example

- For the least frequent item: 5
- Two prefix paths found by traversing node links are (2, 1): 1 and (2, 1, 3): 1
- This forms the conditional pattern base
- 3 is discarded as its support (=1) is less than threshold
- From conditional pattern base, conditional FP-tree is then constructed

FP-Tree Mining Example

- For the least frequent item: 5
- Two prefix paths found by traversing node links are (2, 1): 1 and (2, 1, 3): 1
- This forms the conditional pattern base
- ullet 3 is discarded as its support (=1) is less than threshold
- From conditional pattern base, conditional FP-tree is then constructed

• Frequent patterns found are (1, 5): 2, (2, 1, 5): 2 and (2, 5): 2

- For the next least frequent item: 4
- Two prefix paths found by traversing node links are (2, 1): 1 and (2):
- This forms the conditional pattern base
- ullet 1 is discarded as its support (=1) is less than threshold
- From conditional pattern base, conditional FP-tree is then constructed

- For the next least frequent item: 4
- Two prefix paths found by traversing node links are (2, 1): 1 and (2):
- This forms the conditional pattern base
- ullet 1 is discarded as its support (=1) is less than threshold
- From conditional pattern base, conditional FP-tree is then constructed

• Frequent patterns found are (2, 4): 2

- For the next least frequent item: 3
- Three prefix paths found by traversing node links are (2, 1): 2, (2): 2 and (1): 2
- This forms the conditional pattern base
- From conditional pattern base, conditional FP-tree is then constructed

- For the next least frequent item: 3
- Three prefix paths found by traversing node links are (2, 1): 2, (2): 2 and (1): 2
- This forms the conditional pattern base
- From conditional pattern base, conditional FP-tree is then constructed

• Frequent patterns found are (1, 3): 4, (2, 1, 3): 2 and (2, 3): 4

FP-Tree Mining Example (contd.)

- For the next least frequent item: 1
- One prefix path found by traversing node links is (2, 1): 4
- This forms the conditional pattern base
- From conditional pattern base, conditional FP-tree is then constructed

FP-Tree Mining Example (contd.)

- For the next least frequent item: 1
- One prefix path found by traversing node links is (2, 1): 4
- This forms the conditional pattern base
- From conditional pattern base, conditional FP-tree is then constructed

• Frequent patterns found are (2, 1): 4

FP-Tree Mining Example (contd.)

- For the most frequent item: 2
- Nothing needs to be done
- Assumption is that all 1-itemsets are already returned

- Consider the item with the largest support, say x
- x partitions transactions into two parts
- Transactions containing x form the projected database P_x of x
- Transactions after removing x form the residual database R_x of x

- Consider the item with the largest support, say x
- x partitions transactions into two parts
- Transactions containing x form the projected database P_x of x
- Transactions after removing x form the residual database R_x of x
- Each partition is mined recursively by considering the next frequent item, say y

- Consider the item with the largest support, say x
- x partitions transactions into two parts
- Transactions containing x form the projected database P_x of x
- Transactions after removing x form the residual database R_x of x
- ullet Each partition is mined recursively by considering the next frequent item, say y
- Union of frequent itemsets from both partitions produce the final set of frequent itemsets

- Consider the item with the largest support, say x
- x partitions transactions into two parts
- Transactions containing x form the projected database P_x of x
- Transactions after removing x form the residual database R_x of x
- Each partition is mined recursively by considering the next frequent item, say y
- Union of frequent itemsets from both partitions produce the final set of frequent itemsets
- Why item with largest support?
 - Any item works
 - Item with largest support reduces work

- Consider the item with the largest support, say x
- x partitions transactions into two parts
- Transactions containing x form the projected database P_x of x
- Transactions after removing x form the residual database R_x of x
- Each partition is mined recursively by considering the next frequent item, say y
- Union of frequent itemsets from both partitions produce the final set of frequent itemsets
- Why item with largest support?
 - Any item works
 - Item with largest support reduces work
- Consider any (in-)frequent itemset I
 - If $x \in I$, then it will be (in-)frequent in P_x as well
 - If $x \notin I$, then it will be (in-)frequent in R_x as well
 - Frequency of I does not change in R_x

H-Mine

- H-mine is a partitioning-based algorithm
- It first sorts the items in flist order
- From each item, a pointer is linked to the first transaction that contain this item as the first in flist order
- All subsequent transactions of the same nature are chained
- Following the chain produces the projected database for that item
- The frequent itemsets are mined recursively then

Mining Closed and Maximally Frequent Itemsets

- Apriori algorithm works
- When checking candidates, check subsets
- If any subset has same support, remove that subset

Mining Closed and Maximally Frequent Itemsets

- Apriori algorithm works
- When checking candidates, check subsets
- If any subset has same support, remove that subset
- Apriori may be run in reverse direction, starting with all items and then generating subsets as candidates

Mining Closed and Maximally Frequent Itemsets

- Apriori algorithm works
- When checking candidates, check subsets
- If any subset has same support, remove that subset
- Apriori may be run in reverse direction, starting with all items and then generating subsets as candidates
- A single support threshold across all itemset lengths may not be useful
- Chances of itemsets with larger length occurring are less
- MLMS model: Multiple Length Minimum Support
- Apriori works again
- ullet If support at lesser length is smaller, e.g., $s_k < s_{k+1}$
 - ullet All k-length subsets of frequent itemsets of length k+1 are frequent
 - Conversely, if an itemset is pruned at length k, all its supersets of length k+1 will be infrequent

Are Strong Association Rules Always Good?

- Consider the original transaction database
- Consider the rule $3 \implies 2$
- Support is 0.4 and confidence is 0.67

Are Strong Association Rules Always Good?

- Consider the original transaction database
- Consider the rule $3 \implies 2$
- Support is 0.4 and confidence is 0.67
- However, support of 2 itself is 0.7

Are Strong Association Rules Always Good?

- Consider the original transaction database
- Consider the rule 3 ⇒ 2
- Support is 0.4 and confidence is 0.67
- However, support of 2 itself is 0.7
- When there is no influence, 2 occurs more frequently than when 3 is there
- The effect of 3 is thus negative on 2
- Just support and confidence thresholds are, therefore, not enough

Lift

- A correlation measure lift
- Lift measures how correlated the two itemsets are

$$lift(A \rightarrow B) = confidence(A \rightarrow B)/support(B)$$

Lift

- A correlation measure lift
- Lift measures how correlated the two itemsets are

$$lift(A \rightarrow B) = confidence(A \rightarrow B)/support(B)$$

• In terms of probabilities

$$lift(A \to B) = \frac{P(A \cup B)/P(A)}{P(B)}$$
$$= \frac{P(A \cup B)}{P(A).P(B)}$$

- Lift is symmetric
- If lift is 1, A and B are independent
- If lift is < 1, they are *negatively* correlated
- If lift is > 1, they are *positively* correlated

Lift

- A correlation measure lift
- Lift measures how correlated the two itemsets are

$$lift(A \rightarrow B) = confidence(A \rightarrow B)/support(B)$$

In terms of probabilities

$$lift(A \to B) = \frac{P(A \cup B)/P(A)}{P(B)}$$
$$= \frac{P(A \cup B)}{P(A).P(B)}$$

- Lift is symmetric
- If lift is 1, A and B are independent
- If lift is < 1, they are negatively correlated
- If lift is > 1, they are *positively* correlated
- Lift of the rule $3 \implies 2 \text{ is } 0.67/0.7 = 0.95$
- Thus, 3 and 2 are negatively correlated

- Occurrence of an item in a transaction is not just presence or absence
- ullet It is present with a probability $p\in [0,1]$
- Applications
 - Medical: a patient may have cancer with 70% chance, hepatitis with 10% chance, etc.

Transaction id	Item A	Item B	Item C	Item D
0	0.9	0.8	0.0	0.2
1	0.7	0.7	1.0	0.3
2	0.2	0.5	0.9	0.5

- Support of 1-itemsets can be found by just adding the columns
- Support of larger itemsets can be found by adding the products of the corresponding probabilities
 - Support of (A) is 0.9 + 0.7 + 0.2 = 1.8
 - Support of (A,B) is $0.9 \times 0.8 + 0.7 \times 0.7 + 0.2 \times 0.5 = 1.31$

- Occurrence of an item in a transaction is not just presence or absence
- It is present with a probability $p \in [0, 1]$
- Applications
 - Medical: a patient may have cancer with 70% chance, hepatitis with 10% chance, etc.

Transaction id	Item A	Item B	Item C	Item D
0	0.9	0.8	0.0	0.2
1	0.7	0.7	1.0	0.3
2	0.2	0.5	0.9	0.5

- Support of 1-itemsets can be found by just adding the columns
- Support of larger itemsets can be found by adding the products of the corresponding probabilities
 - Support of (A) is 0.9 + 0.7 + 0.2 = 1.8
 - Support of (A,B) is $0.9 \times 0.8 + 0.7 \times 0.7 + 0.2 \times 0.5 = 1.31$
- More general model

- Occurrence of an item in a transaction is not just presence or absence
- ullet It is present with a probability $p\in [0,1]$
- Applications
 - Medical: a patient may have cancer with 70% chance, hepatitis with 10% chance, etc.

Transaction id	Item A	Item B	Item C	Item D
0	0.9	0.8	0.0	0.2
1	0.7	0.7	1.0	0.3
2	0.2	0.5	0.9	0.5

- Support of 1-itemsets can be found by just adding the columns
- Support of larger itemsets can be found by adding the products of the corresponding probabilities
 - Support of (A) is 0.9 + 0.7 + 0.2 = 1.8
 - Support of (A,B) is $0.9 \times 0.8 + 0.7 \times 0.7 + 0.2 \times 0.5 = 1.31$
- More general model
- Apriori can be modified easily to work

- Occurrence of an item in a transaction is not just presence or absence
- It is present with a probability $p \in [0, 1]$
- Applications
 - Medical: a patient may have cancer with 70% chance, hepatitis with 10% chance, etc.

Item A	Item B	Item C	Item D
0.9	0.8	0.0	0.2
0.7	0.7	1.0	0.3
0.2	0.5	0.9	0.5
	0.9 0.7 0.2	0.9 0.8 0.7 0.7 0.2 0.5	0.9 0.8 0.0 0.7 0.7 1.0 0.2 0.5 0.9

- Support of 1-itemsets can be found by just adding the columns
- Support of larger itemsets can be found by adding the products of the corresponding probabilities
 - Support of (A) is 0.9 + 0.7 + 0.2 = 1.8
 - Support of (A,B) is $0.9 \times 0.8 + 0.7 \times 0.7 + 0.2 \times 0.5 = 1.31$
- More general model
- Apriori can be modified easily to work
- FP-tree and H-mine cannot be