Option-Implied Bounds for the Crash Probability of a Stock

Ran Shi

October, 2021

Forward-looking crash probability of an individual stock

- ▶ An enormous body of literature on predicting expected returns: $\mathbb{E}[R_i]$
- ▶ Relatively thin on predicting a crash: $\mathbb{P}[R_i \leq q]$
 - Chen-Hong-Stein (2001), Daniel-Klos-Rottke (2017), Greenwood-Shleifer-You (2017), etc:
 - Mainly characteristics-driven and some are only about "skewness"
 - Bates (1991): a case study of the Black Monday using option prices
- Some measures of downside risk:
 - Ang-Chen-Xing (2006), Kelly-Jiang (2014), Lu-Murray (2018), etc.
 - Do not directly answer the question above
- ▶ Martin (2017) answers the question for the market: $\mathbb{P}[R_m \leq q]$

This paper

- Forecasting the crash probability of a stock
 - Not a point forecast, forecasting bounds
 - Probabilistic bounds, not statistical confidence intervals: 100% coverage
 - Directly computed from real-time option prices
 - No distributional assumption
 - No parameter estimation
 - Theoretically sharp and empirically tight
 - Drives out characteristics in-sample
 - Out-performs a data snooper out-of-sample
- Extensions: an upper bound on the expected return of a stock

Probabilities of a 20% crash in one year

Theory and method (1)

 A one-period CRRA investor chooses to hold the market: her first-order condition implies that there is a stochastic discount factor

$$M \propto R_m^{-\gamma}$$

- Let $M = R_m^{-\gamma}/\lambda$, λ is a constant
- ► The physical expectation of any random payoff *X* can be rewritten under the risk-neutral probabilities:

$$\mathbb{E}[X] = \mathbb{E}[\underbrace{M\lambda R_m^{\gamma}}_{=1}X] = \lambda \mathbb{E}[M(R_m^{\gamma}X)] = \frac{\lambda}{R_f} \mathbb{E}^*[R_m^{\gamma}X],$$

where $\mathbb{E}^*[\cdot]$ represents the risk-neutral expectation

Theory and method (2)

We have

$$\mathbb{E}[X] = \frac{\lambda}{R_f} \mathbb{E}^* [R_m^{\gamma} X]$$

Let X = 1,

$$1 = \frac{\lambda}{R_f} \mathbb{E}^* [R_m^{\gamma}]$$

Dividing each side:

$$\mathbb{E}[X] = \frac{\mathbb{E}^*[R_m^{\gamma}X]}{\mathbb{E}^*[R_m^{\gamma}]}$$

- ▶ A general framework for a payoff contingent on R_i : $X = h(R_i)$
 - ► $X = \mathcal{I}\{R_i \leq q\}$, crash probability of a stock: $\mathbb{E}[\mathcal{I}\{R_i \leq q\}] = \mathbb{P}[R_i \leq q]$

Theory and method (3)

For a payoff contingent on R_i :

$$\mathbb{E}[h(R_i)] = \frac{\mathbb{E}^*[R_m^{\gamma}h(R_i)]}{\mathbb{E}^*[R_m^{\gamma}]}$$
$$= \frac{\int x^{\gamma}h(y) \, \mathrm{d}Q_{mi}(x, y)}{\int x^{\gamma} \, \mathrm{d}Q_m(x)}$$

- $ightharpoonup Q_{mi}$: risk-neutral joint distribution of R_m and R_i
- \triangleright Q_m : risk-neutral marginal distribution of R_m
- \triangleright Q_i : risk-neutral marginal distribution of R_i (not appearing here)
- Probability CDFs
- Breeden and Litzenberger (1978)
 - Recovering risk-neutral (marginal) distributions from option prices

Theory and method (4)

Breeden-Litzenberger for the marginal distribution Q of returns

$$put(K) = \frac{1}{R_f} \int_0^\infty \max(K - xS_0, 0) dQ(x)$$

Integrating by parts

$$put(K) = \frac{S_0}{R_f} \int_0^{\frac{K}{S_0}} Q(x) dx$$

Taking derivatives with regard to *K*

$$Q\left(\frac{K}{S_0}\right) = R_f \operatorname{put}'(K),$$

Applying the put-call parity

$$Q\left(\frac{K}{S_0}\right) = R_f \operatorname{call}'(K) + 1$$

▶ Q_i: stock option; Q_m: S&P 500 index option → B-L detail

Theory and method (5)

Recall that

$$\mathbb{E}[h(R_i)] = \frac{\mathbb{E}^*[R_m^{\gamma}h(R_i)]}{\mathbb{E}^*[R_m^{\gamma}]}$$
$$= \frac{\int x^{\gamma}h(y) \, dQ_{mi}(x, y)}{\int x^{\gamma} \, dQ_m(x)}$$

- ► The denominator is known invoking Breeden-Litzenberger
- What to do about the numerator?
 - Need to quantify the joint distribution

Theory and method (6)

- ► How to quantify $Q_{mi}(x, y)$?
 - Multivariate Breeden-Litzenberger?
 - Methodologically feasible (Martin, 2018)
 - Need a very large number of traded options written on $(S_m + \alpha S_i)$ (Ross, 1976; Martin, 2018)
 - ightharpoonup Many different values of α !
 - With different strikes for each of them
 - Deep market
 - ► In practice, it is almost impossible to fully characterize the joint distribution!
- ▶ No deterministic answer to $\mathbb{E}[h(R_i)]$

Theory and method (7)

- But we can bound it
- \triangleright What do we know about Q_{mi} ?
 - **b** Both the marginals Q_m and Q_i , using the Breeden-Litzenberger approach
- ► What remains unknown is the dependence structure between the stock return and the market return
- Use copula theory to obtain sharp bounds (Sklar, 1959)

Theory and method (8)

Dissecting ingredients in the joint distribution

Theory and method (8)

Dissecting ingredients in the joint distribution

Theory and method (8)

Dissecting ingredients in the joint distribution

Theory and method (9)

- A copula function glues two marginals together
- lt is a mapping from the square $[0,1]^2$ to [0,1]
- ▶ It is the joint distribution of two arbitrary U[0,1] random variables
- Now that $Q_{mi}(x,y) = C(Q_m(x), Q_i(y))$, changing variables in the integral, the numerator $\mathbb{E}^*[R_m^{\gamma}h(R_i)]$ is

$$\int x^{\gamma} h(y) \, \mathrm{d}Q_{mi}(x,y) = \int_{[0,1]^2} \underbrace{\left[Q_m^{-1}(u)\right]^{\gamma} h\left(Q_i^{-1}(v)\right)}_{\text{a known function}} \, \mathrm{d}C(u,v)$$

Our goal: bounding this integral

Theory and method (10)

A useful theorem:

Theorem (Fréchet-Hoeffding bounds)

If C(u, v) is a copula function, then

$$\max(u+v-1,0) \le C(u,v) \le \min(u,v)$$
, for all $(u,v) \in [0,1]^2$.

and an easy-to-handle special case: h is non-decreasing

Theory and method (11)

If $h(\cdot)$ is non-decreasing,

v

0

Theory and method (12)

Sharp bounds on the expectation of a payoff contingent on R_i

If function $h: \mathbb{R}_+ \mapsto \mathbb{R}$ is non-decreasing, then

$$\frac{\int_{0}^{1} \left[Q_{m}^{-1}(u) \right]^{\gamma} h\left(Q_{i}^{-1}(1-u) \right) du}{\int_{0}^{1} \left[Q_{m}^{-1}(u) \right]^{\gamma} du} \leq \mathbb{E}[h(R_{i})] \leq \frac{\int_{0}^{1} \left[Q_{m}^{-1}(u) \right]^{\gamma} h\left(Q_{i}^{-1}(u) \right) du}{\int_{0}^{1} \left[Q_{m}^{-1}(u) \right]^{\gamma} du}$$

- ▶ Widening effects of γ : \nearrow the upper bound and \searrow the lower bound
- $ightharpoonup \gamma = 0$: both equal $\mathbb{E}^*[h(R_i)]$
- $\gamma = \infty$: $\mathbb{E}[h(R_i)] \in [h(0), h(\infty)]$
 - ► Example: if $h(R_i) = \mathcal{I}\{R_i > q\}, h(0) = 0, h(\infty) = 1$
- Any $\gamma \in [1,2]$ gives tight bounds and similar results

Theory and method (13)

- Interpretations: countermonotonicity and comonotonicity under the risk-neutral distribution
- When achieving the lower bound

$$Q_m(R_m) + Q_i(R_i) = 1$$
 $\Rightarrow R_i = Q_i^{-1}(1 - Q_m(R_m)) \triangleq \mathcal{L}(R_m)$

the stock return is a monotonic decreasing function of the market return; the risk-neutral beta: $\beta^* \approx \mathcal{L}'(R_m^*) < 0$

When achieving the upper bound,

$$Q_m(R_m) = Q_i(R_i)$$
 $\Rightarrow R_i = Q_i^{-1}(Q_m(R_m)) \triangleq \mathcal{U}(R_m)$

the stock return is a monotonic increasing function of the market return; the risk-neutral beta: $\beta^* \approx \mathcal{U}'(R_m^*) > 0$

Theory and method (14)

- F-H bounds are sharp in two dimension: a mathematical fact
- An example
 - Consider $\gamma = 1$ and $h(R_i) = R_i$
 - Now $\mathbb{E}[R_i] = \mathbb{E}^*[R_m R_i] / \mathbb{E}^*[R_m] = \mathbb{E}^*[R_m R_i] / R_f$
 - An upper bound on the expected return based on Fréchet-Hoeffding

$$\mathbb{E}[R_i] \leq \underbrace{\frac{\mathbb{E}^* \left[R_m Q_i^{-1}(Q_m(R_m)) \right]}{R_f}}_{FH}$$

Another upper bound based on Cauchy-Schwartz:

$$\mathbb{E}[R_i] = \frac{\operatorname{cov}^*[R_m, R_i] + \mathbb{E}^*[R_m]\mathbb{E}^*[R_i]}{R_f} \le \underbrace{\frac{\sqrt{\operatorname{var}^*[R_m]\operatorname{var}^*[R_i]} + R_f^2}{R_f}}_{CS}$$

Theory and method (15)

Under the risk-neutral probability

Normal benchmark: $var^*[R_m] = \sigma_m^2$ and $var^*[R_i] = \sigma_i^2$

$$FH \equiv CS = \frac{R_f^2 + \sigma_m \sigma_i}{R_f},$$

FH bounds are trivial

► Lognormal case: $var^*[log R_m] = \sigma_m^2$ and $var^*[log R_i] = \sigma_i^2$

$$FH = R_f \exp(\sigma_m \sigma_i),$$

$$CS = R_f + R_f \sqrt{\left[\exp(\sigma_m^2) - 1\right] \left[\exp(\sigma_i^2) - 1\right]}$$

Theory and method (16)

Let $\sigma_m = 15\%, 25\%, 35\%$ and $\sigma_i = k\sigma_m, k \in [1/10, 10]$

Summary of theory and method

- ▶ Till now, I have introduced a methodological framework for bounding quantities like $\mathbb{E}[h(R_i)]$ using real-time option prices
- ▶ The bounds are sharp in theory, cannot be improved without
 - New data: not available
 - Additional assumptions: might be fragile
- Are these bounds tight in forecasting crash probabilities?
 - Being close to the true expectation
 - ▶ The interval between the bounds covering the true expectation
 - An empirical quest

Data

- ► S&P 500 index and stock constituents from **Compustat**
- Firm characteristics from Compustat
- Option implied volatilities from OptionMetrics
 - Underlying stocks belonging to the S&P 500 index
 - Monthly from 1996/01 to 2017/12
 - Maturing in 1, 3, 6 and 12 months
 - ► The total number of firms included is over 1,000
 - On average around 480 firms each month
 - Over 120,000 firm-month observations per maturity
- Risk-free rates from OptionMetrics
- Price, return, and volume data from CRSP

Computation

- ▶ The bounds are directly applicable to $h(R_i) = \mathcal{I}\{R_i > q\}$
- ► Crash probability bounds: $\mathbb{P}[R_i \leq q] = 1 \mathbb{E}[\mathcal{I}\{R_i > q\}]$
- Focus on a crash of 5%, 10% and 20%: q = 95%, 90% and 80%
- For stock i at month t, compute the lower and upper bounds for $\tau = 1, 3, 6$ and 12 months, denoted by

ProbLower_{$$i,t$$} (τ,q) , ProbUpper _{i,t} (τ,q)

which forecast $\mathbb{P}[R_{i,t\to t+\tau} \leq q]$, the (time-t conditional) probability of a (1-q)% crash at time $t+\tau$, for stock i

Summarizing the data: variations among firms

Probability of a 20% crash (one-year horizon), time-series median (obs. ≥ 48)

Summarizing the data: variations across time

Probability of a 20% crash (one-year horizon), cross-sectional median

Option implied bounds are tight: Tests

If both the bounds are close to the true probability of crashes, panel regressions like

$$\mathcal{I}[R_{i,t\to t+\tau} \leq q] = \alpha^L + \beta^L \operatorname{ProbLower}_{i,t}(\tau,q) + \varepsilon_{i,t+\tau},$$

or

$$\mathcal{I}[R_{i,t\to t+\tau} \leq q] = \alpha^U + \beta^U \operatorname{ProbUpper}_{i,t}(\tau,q) + \varepsilon_{i,t+\tau},$$

would give us

$$\alpha^L = \alpha^U = 0, \quad \beta^L \approx 1, \quad \beta^U \approx 1$$

for any horizon τ and return threshold q

ldeally, $\beta^L \gtrapprox 1$ and $\beta^U \lessapprox 1$ so that the bounds also offer good coverage

Option implied bounds are tight: Results (1)

Down by	5%,	i.e., <i>q</i>	= 0.95

		Lower	bound		Upper bound			
Mon.	1	3	6	12	1	3	6	12
α	-0.037	-0.049	-0.080	-0.021	-0.045	-0.042	-0.034	-0.009
	(0.016)	(0.021)	(0.026)	(0.028)	(0.022)	(0.037)	(0.046)	(0.051)
	[0.017]	[0.030]	[0.041]	[0.043]	[0.030]	[0.067]	[0.061]	[0.074]
β	1.129	1.144	1.239	1.051	0.923	0.813	0.717	0.578
	(0.083)	(0.078)	(0.087)	(0.092)	(0.090)	(0.104)	(0.112)	(0.108)
	[0.083]	[0.137]	[0.124]	[0.230]	[0.128]	[0.205]	[0.181]	[0.164]
R^2 -adj.	3.99%	2.54%	2.42%	1.77%	4.10%	2.35%	1.71%	1.26%

Option implied bounds are tight: Results (2)

Down by	10%, i.e., $q = 0.9$	

		Lower	bound		Upper bound			
Mon.	1	3	6	12	1	3	6	12
α	-0.023	-0.039	-0.063	-0.068	-0.031	-0.041	-0.044	-0.068
	(0.007)	(0.011)	(0.015)	(0.018)	(0.009)	(0.017)	(0.026)	(0.033)
	[0.009]	[0.012]	[0.029]	[0.036]	[0.008]	[0.018]	[0.041]	[0.061]
β	1.121	1.165	1.257	1.195	0.861	0.791	0.717	0.634
	(0.093)	(0.079)	(0.081)	(0.081)	(0.084)	(0.079)	(0.086)	(0.087)
	[0.122]	[0.091]	[0.159]	[0.142]	[0.074]	[0.071]	[0.140]	[0.138]
R^2 -adj.	7.05%	5.02%	4.27%	3.45%	7.04%	4.64%	3.22%	2.60%

Option implied bounds are tight: Results (3)

Down by 20% is a = 0.8

שַ	Down by 20%, i.e., $q = 0.8$									
			Lower	bound		Upper bound				
	Mon.	1	3	6	12	1	3	6	12	
	α	-0.005	-0.014	-0.021	-0.045	-0.011	-0.017	-0.017	-0.051	
		(0.002)	(0.005)	(0.008)	(0.009)	(0.003)	(0.007)	(0.012)	(0.016)	
		[0.002]	[0.008]	[0.015]	[0.025]	[0.003]	[0.008]	[0.023]	[0.040]	
	β	1.034	1.152	1.193	1.105	0.703	0.680	0.602	0.519	
		(0.136)	(0.105)	(0.097)	(0.085)	(0.104)	(0.076)	(0.074)	(0.065)	
		[0.154]	[0.184]	[0.201]	[0.151]	[0.116]	[0.083]	[0.110]	[0.162]	
	R^2 -adj.	6.88%	6.84%	5.90%	5.31%	6.67%	6.08%	4.46%	3.99%	

Option implied bounds are tight: Robustness (1)

- Logistic regressions
- ► Transform:

$$LogOdds = log\left(\frac{Prob}{1 - Prob}\right)$$

Model:

$$\mathcal{I}\{R \le q\} \sim \text{Bernoulli}(p)$$

$$p = \frac{\exp(\alpha + \beta \text{ LogOdds})}{1 + \exp(\alpha + \beta \text{ LogOdds})},$$

- Panel regressions
- ▶ Looking for $\alpha = 0$, $\beta^L \gtrsim 1$ and $\beta^U \lesssim 1$ across all horizons (τ) and thresholds (q)

Option implied bounds are tight: Robustness (2)

Down by 20%, i.e., q = 0.8, logistic regression

	Lower bound				Upper bound			
Mon.	1	3	6	12	1	3	6	12
α	0.232	0.408	0.416	0.311	-0.023	-0.476	-0.782	-1.330
	[0.179]	[0.282]	[0.281]	[0.223]	[0.324]	[0.266]	[0.282]	[0.208]
β	1.148	1.206	1.218	1.362	1.342	1.153	1.031	1.065
	[0.031]	[0.090]	[0.086]	[0.166]	[0.104]	[0.137]	[0.147]	[0.232]
R^2 -Adj.*	17.88%	11.35%	7.99%	7.01%	18.60%	10.58%	6.62%	5.59%

 $[\]star$: Adjusted McFadden's pseudo- R^2

Option implied bounds are tight: Robustness (3)

Controlling for eighteen characteristics:

- ► lagret¹, lagret^{2,12} (mom)
- $ightharpoonup vol^1$, vol^3 , vol^6
- \triangleright β , logsize, bm
- cape, prof (gross prof./asset), inv (inv./asset), lev (debt/asset), accrl (accrual/asset), debida (debt/EBITDA), cash (cce/curr. liability)
- tnover, dtnover (turnover ratio and detrended turnover ratio)
- shortint (short interest)

Option implied bounds are tight: Robustness (4.a)

Down by 20%, i.e., q = 0.8, without controls

		Lower	bound		Upper bound			
Mon.	1	3	6	12	1	3	6	12
α	-0.005	-0.014	-0.021	-0.045	-0.011	-0.017	-0.017	-0.051
	(0.002)	(0.005)	(0.008)	(0.009)	(0.003)	(0.007)	(0.012)	(0.016)
	[0.002]	[0.008]	[0.015]	[0.025]	[0.003]	[0.008]	[0.023]	[0.040]
β	1.034	1.152	1.193	1.105	0.703	0.680	0.602	0.519
	(0.136)	(0.105)	(0.097)	(0.085)	(0.104)	(0.076)	(0.074)	(0.065)
	[0.154]	[0.184]	[0.201]	[0.151]	[0.116]	[0.083]	[0.110]	[0.162]
R^2 -adj.	6.88%	6.84%	5.90%	5.31%	6.67%	6.08%	4.46%	3.99%

Option implied bounds are tight: Robustness (4.b)

Down by 20%, i.e., q = 0.8, with controls

		Lower	bound		Upper bound			
Mont.	1	3	6	12	1	3	6	12
α	0.014	0.100	0.107	0.110	0.004	0.087	0.107	0.106
	(0.021)	(0.051)	(0.070)	(0.070)	(0.022)	(0.053)	(0.072)	(0.072)
	[0.030]	[0.068]	[0.146]	[0.102]	[0.022]	[0.052]	[0.085]	[0.113]
eta	0.802	1.062	1.418	1.046	0.529	0.460	0.434	0.287
	(0.159)	(0.174)	(0.187)	(0.153)	(0.152)	(0.109)	(0.103)	(0.075)
	[0.127]	[0.190]	[0.246]	[0.274]	[0.081]	[0.151]	[0.103]	[0.151]
R^2 -adj.	5.35%	5.57%	5.31%	4.92%	5.24%	5.03%	4.09%	3.95%

- Competitor: "Fishing" desperately
 - Include all eighteen characteristics
 - Train predicative models using data from 1996 to 2010
 - Both linear and logistic models
 - Variable selection using Lasso
 - Tuning parameters for Lasso: 10-fold CV using the training sample
 - Out-of-sample forecasting: 2011-2017
 - Have to remove any observations with missing data
- Option-implied bounds are directly used to forecast
- Gauging performances: ROC curves

Down by 20% in one year

Down by 20% in six months

Down by 20% in three months

Down by 20% in one month

Summary

- A methodological framework offering sharp bounds for $\mathbb{E}[h(R_i)]$ using option prices
 - Analytically tractable solution when h is monotonic
 - ightharpoonup Computational solution does exist for a general h (available in the paper)
 - Maybe of its own interest
- One variable to rule them all
 - Bounding the crash probability of a stock
 - Forecasting crashes
- New disciplined approach with lots of applications

Extension: An upper bound on the expected return (1)

Let
$$h(R_i) = R_i$$
 and consider the case when $\gamma = 1$, recall that
$$\mathbb{E}[R_i] \leq \frac{\mathbb{E}^*[R_mQ_i^{-1}(Q_m(R_m))]}{R_f}$$

$$= \frac{\mathbb{E}^*[g_i(S_m)]}{R_f}$$
 assuming no dividend $(R_m = S_m/S_0)$, where
$$g_i(S_m) = \frac{S_m}{S_0}Q_i^{-1}\left(Q_m\left(\frac{S_m}{S_0}\right)\right)$$

Extension: An upper bound on the expected return (2)

For any twice differentiable function g(x) defined on \mathbb{R}_+ ,

$$g(S) = g(F) + g'(F)(S - F) + \int_0^F g''(K)(K - S)^+ dK + \int_F^\infty g''(K)(S - K)^+ dK$$

Taking expectations with regard to S

$$\mathbb{E}^*[g(S)] = g(F) + g'(F)\underbrace{(\mathbb{E}^*[S] - F)}_{=0}$$

$$+ \int_0^F g''(K)R_f \operatorname{put}(K) dK + \int_F^\infty g''(K)R_f \operatorname{call}(K) dK$$

- ▶ Recall that $\mathbb{E}[R_i] \leq \mathbb{E}^*[g_i(S_m)]/R_f$
- ▶ Apply the result above to $g_i(S_m)$

Extension: An upper bound on the expected return (3)

With time horizon being T, define the comonotonic volatility index (CVIX) as

$$CVIX_{i}(T) = \frac{1}{R_{f}T} \left\{ \int_{0}^{F_{m}} g_{i}^{"}(K)put_{m}(K) dK + \int_{F}^{\infty} g_{i}^{"}(K)call_{m}(K) dK \right\}$$

An upper bound for the expected return of a stock, $\mathbb{E}[R_i]$

$$\frac{\mathbb{E}[R_i]}{TR_f} \le \frac{Q_i^{-1}(Q_m(R_f))}{TR_f} + \text{CVIX}_i(T)$$

Extension: An upper bound on the expected return (4)

Testing the theory by running the following regression

$$\frac{R_{i,t \to t + \tau}}{TR_f} = \alpha_t + \beta \; \text{CVIX}_{i,t}(T) + \epsilon_{i,t + \tau},$$

- ► Time-fixed effect for the $\frac{Q_i^{-1}(Q_m(R_f))}{TR_f}$ term
- ► $T = 12/\tau$ for monthly data
- ldeally $\beta = 1$

Extension: An upper bound on the expected return (5)

Mont.	1	3	6	12
β	0.924	0.902	1.044	0.543
	(0.728)	(0.510)	(0.433)	(0.215)
	[0.740]	[0.647]	[0.775]	[0.386]
R^2 -Adj.	21.47%	23.74%	24.10%	24.24%
Projected R ² -Adj.	0.00%	0.23%	0.80%	0.99%

Appendix: Risk-neutral marginals (1)

 American options and dividend payments: decomposing the premium as option pre.(EU wo. dividend)

- Proprietary dividend yield projection by OptionMetrics: q
- Fit a Binomial tree for each combination of maturity lengths and strike prices: $u = e^{\sigma \Delta t}$, $d = e^{-\sigma \Delta t}$, $R = e^{(r_f q)\Delta t}$
- Use the implied volatilities to compute the Black-Scholes prices
- ightharpoonup pprox computing the dividend adj. and early exercise premium under B-S

Appendix: Risk-neutral marginals (2)

- Microstructural concerns
 - Drop all options with non-standard settlement
 - The midpoints of the bid/ask price must be above the intrinsic value (remove all missing observations)
 - ► The dispersion parameter of the volatility surface must be smaller than 0.1 (a proprietary measure computed by OptionMetrics to monitor the fineness of the volatility surface)
 - Only use out-of-the-money options, that is,

$$Q\left(\frac{K}{S_0}\right) = \begin{cases} R_f \text{put}'(K), & K \le R_f S_0 \\ R_f \text{call}'(K) + 1, & K > R_f S_0 \end{cases}$$

Appendix: Risk-neutral marginals (3)

- ► Taking derivatives: put'(K) and call'(K)
 - Observables
 - ightharpoonup Let $x_i = K_i$
 - Let $y_i = \text{put}(K_i)$ if $K_i \leq R_f S_0$ and $y_i = \text{call}(K_i) S_0 + K_i/R_f$ if $K_i > R_f S_0$
 - Nonparametric shape-constrained fitting

$$\min_{f \in \mathcal{F}} \left\{ \sum_{i} [y_i - f(x_i)]^2 + \frac{1}{2} \lambda ||f||_2^2 \right\}$$

where $\mathcal{F} \triangleq \{f \in \mathcal{C}(\mathbb{R}) : f > 0, f' > 0, f'' > 0\}$ to rule out arbitrage opportunities. The tuning parameter λ is chosen by cross-validation

Appendix: Risk-neutral marginals (4)

- Tails of the risk-neutral distributions are hard (or even impossible) to pin down exactly in a model-free manner
 - Due to the lack of very deep out-of-the-money options
 - ightharpoonup We observe options with Delta in [0.2, 0.8] most of the time
 - Assume that the implied volatilities hold constant for deep out-of-the-money options
 - They all equal the implied volatility at the nearest strike prices
 - Asymptotic justifications: let $x = \log \left(\frac{K}{S_0 R_f}\right)$ be the log-moneyness,

Let
$$d_1 = \frac{x}{\sigma(x)\sqrt{\tau}} - \frac{\sigma(x)\sqrt{\tau}}{2}$$
 and $d_2 = -\frac{x}{\sigma(x)\sqrt{\tau}} - \frac{\sigma(x)\sqrt{\tau}}{2}$, then
$$-\frac{1}{K\sqrt{\tau}} \frac{\Phi(d_1)}{\phi(d_1)} \le \frac{\partial \sigma(K)}{\partial K} \le \frac{1}{K\sqrt{\tau}} \frac{\Phi(d_2)}{\phi(d_2)}$$

Appendix: Risk-neutral marginals (5)

$$-\frac{1}{K\sqrt{\tau}}\frac{\Phi(d_1)}{\phi(d_1)} \le \frac{\partial \sigma(K)}{\partial K} \le \frac{1}{K\sqrt{\tau}}\frac{\Phi(d_2)}{\phi(d_2)}$$

