

Vehicle Blind Spot Assist # 2011317

Hani Hadidi, Valikhan Kuparov, Tanzim Mokammel Prof. M. Stickle, Ross Gillett, Section 7

Motivation

- Accidents during lane changes are common due to drivers not checking their blind spots
- •Companies such as BMW, Volvo, Ford etc have implemented blind spot assist devices on their models, however, universal devices are not widely available
- •Accident rates are decreasing as safety technology becomes more of a concern, but there's room for improvement

Figure 5: Fatal Collisions and Fatality Victims (1990-2009)

Project Goal

- •Assist in accident prevention through a device that will help users identify and anticipate obstacles in their vehicle's blind spot
- •Provide an additional level of accident prevention through the implementation of an automated steering lock feature based on relative danger levels

Proposed Concept

- •Obtain distance between user car, and obstacle car
- •Calculate the relative speed between the two vehicles
- •Calculate how long the obstacle will take to go from position 1 to position 2 (time remaining)
- •Provide lane change advice to the user based on the time remaining value
- •Lock the user vehicle's steering if the time is too low to prevent dangerous lane changes

System Level Overview

Module Level Tests

Speed Tests

Test	User Vehicle PWM %	Measured Relative speed, [cm/s]	Calculated Relative Speeds, [cm/s]	Error %	Plot of Calculated Relative Speeds
1	41%	75.78	72.00	5.20	10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0
2	51%	24.14	23.00	4.90	-10.0 -20.0 -30.0 -40.0 -50.0 -60.0
3	61%	-0.60	-0.6	0.00	40.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 1

Distance Tests

Ultrasonic

Actual	Test Result (cm)	Error, %	
distance (cm)			
5	5	0.00	
1	101	1.00	
2	201	0.50	
3	300	0.00	

Blind Spot Coverage Test

Infrared

7.00

12.00

20.00

7.20

12.08

20.26

2.70

0.60

1.30

System Level Test

Physical Design

Output Design

Danger Levels and Output Table

Situation	Time	Dange	LCD Screen	LED Output	
	Left [s]	r	Output		
		Level			
No Danger	t > 15	0	Distance to	Off	
			obstacle, "No		
			Danger"		
Obstacle	11 < t <	1		Brightness from	
Approaching	15	Distance to			
Obstacle	6 < t <	2	obstacle, relative	0% to 78%, depending on increasing	
Approaching	11		speed, "Obstacle		
Obstacle	3 < t < 6	3	Approaching"		
Approaching				distance	
Obstacle	t < 3	4	Distance to	Fully On	
Very Near			obstacle, relative		
			speed, "Caution"		
Obstacle at	$t \le 0$	5	"Danger, Check	Fully On +	
Blind Spot			Blind Spot"	Steering Lock	

Conclusions and Future Work

•The prototype meets the initial objectives within a scaled down environment

•Improvements can be made to:

- Noise filtering algorithms
- Response time of the device
- Sensor placement

•With advanced sensors and algorithm optimizations the detection/anticipation component of the device can be implemented on real vehicles

Acknowledgements

Micah Stickel, Ross Gillett, Khoman Phang, Lawrence Chan, Mike Mehramiz

References

[1] Transport Canada, "Canadian Motor Vehicle Traffic Collision Statistics: 2009", Internet: http://www.tc.gc.ca/eng/roadsafety/resources-researchstats-menu-847.htm, Jun. 01, 2011 [Sep.11, 2011].