- Estimation Defined
- Confidence Levels
- Confidence Intervals
- Confidence Interval Precision
 - Standard Error of the Mean
 - Sample Size
 - Standard Deviation
- Confidence Intervals for Proportions

Estimation Defined:

 Estimation – A process whereby we select a random sample from a population and use a sample statistic to <u>estimate</u> a population parameter.

Point and Interval Estimation

- Point Estimate A sample statistic used to estimate the exact value of a population parameter
- Confidence interval (interval estimate) A range of values defined by the confidence level within which the population parameter is estimated to fall.
- Confidence Level The likelihood, expressed as a percentage or a probability, that a specified interval will contain the population parameter.

Estimations Lead to Inferences

Estimations Lead to Inferences

Inferential Statistics involves Three Distributions:

A population distribution – variation in the **larger group** that we want to know about.

A distribution of sample observations – variation in the sample that we can observe.

A sampling distribution — a normal distribution whose mean and standard deviation are unbiased estimates of the parameters and allows one to infer the parameters from the statistics.

The Central Limit Theorem Revisited

- What does this Theorem tell us:
 - Even if a population distribution is skewed, we know that the sampling distribution of the mean is normally distributed
 - As the sample size gets larger, the mean of the sampling distribution becomes equal to the population mean
 - As the sample size gets <u>larger</u>, the standard error of the mean <u>decreases</u> in size (which means that the variability in the sample estimates from sample to sample decreases as N increases).
- It is important to remember that researchers <u>do not</u> typically conduct repeated samples of the same population. Instead, they use the knowledge of **theoretical sampling distributions** to construct confidence intervals around estimates.

Confidence Levels:

- Confidence Level The likelihood, expressed as a percentage or a probability, that a specified interval will contain the population parameter.
 - 95% confidence level there is a .95 probability that a specified interval *DOES* contain the population mean. In other words, there are 5 chances out of 100 (or 1 chance out of 20) that the interval *DOES NOT* contain the population mean.
 - 99% confidence level there is 1 chance out of 100 that the interval *DOES NOT* contain the population mean.

Constructing a Confidence Interval (CI)

- The sample mean is the point estimate of the population mean.
- The sample standard deviation is the point estimate of the population standard deviation.
- The **standard error** of the mean makes it possible to state the **probability** that an interval around the point estimate **contains** the actual **population mean**.

What We are Wanting to Do

This is our Confidence Interval

The Standard Error

Standard error of the mean – the standard deviation of a **sampling distribution**

Standard Error
$$= \sigma_{\overline{y}} = \frac{\sigma_{\overline{y}}}{\sqrt{N}}$$

Estimating standard errors

$$\sigma_{\bar{y}} = \frac{\sigma_{y}}{\sqrt{N}}$$

Since the standard error is generally <u>not</u> known, we usually work with the <u>estimated standard</u> error:

$$s_{\overline{Y}} = \frac{s_{\overline{Y}}}{\sqrt{N}}$$

Determining a Confidence Interval (CI)

$$CI = \overline{Y} \pm Z \ (s_{\overline{Y}})$$

where:

 $Y = sample mean (estimate of <math>\mu$)

Z = Z score for one-half the acceptable error

 $\mathbf{S}_{\overline{\mathbf{Y}}}$ = estimated standard error

Confidence Interval Width

$$\overline{Y} \pm Z (\frac{S_Y}{\sqrt{N}})$$

• Confidence Level — Increasing our confidence level from 95% to 99% means we are <u>less</u> willing to draw the wrong conclusion — we take a 1% risk (rather than a 5%) that the specified interval does not contain the true population mean.

If we reduce our risk of being wrong, then we need a wider range of values . . . So the interval becomes less precise.

Confidence Interval Width

Confidence Interval Z Values

Table 12.1	Confidence Levels and Corresponding Z Values		
	Confidence Level	Z Value	
	90%	1.65	
	95%	1.96	
	99%	2.58	

Confidence Interval Width

$$\overline{Y} \pm Z \ (\frac{S_Y}{\sqrt{N}})$$

• Sample Size — Larger samples result in smaller standard errors, and therefore, in sampling distributions that are more clustered around the population mean. A more closely clustered sampling distribution indicates that our confidence intervals will be narrower and more precise.

Confidence Interval Width

$$\overline{Y} \pm Z \ (\underbrace{S_Y} \ N)$$

Standard Deviation — **Smaller** sample standard deviations result in **smaller**, more **precise confidence intervals**.

(Unlike sample size and confidence level, the researcher plays <u>no</u> role in determining the standard deviation of a sample.)

Example: Sample Size and Confidence Intervals

Table 12.2 95 Percent Confidence Interval and Width for Mean Income for Three Different Sample Sizes

Sample Size	Confidence Interval	Interval Width	S _Y	$S_{\overline{\gamma}}$
N = 472	\$27,259-\$31,421	\$4,162	\$23,067	1061.53
N = 945	\$27,869-\$30,811	\$2,942	\$23,067	750.39
N = 1,890	\$28,300-\$30,380	\$2,080	\$23,067	530.64

Example: Sample Size and Confidence Intervals

From 1980 Census data:

- Cubans had an average income of \$16,368 ($S_y = $3,069$), N=3895
- Mexicans had an average of \$13,342 $(S_y = $9,414)$, N=5726
- Puerto Ricans had an average of \$12,587 ($S_y = $8,647$), N=5908

Now, compute the 95% CI's for all three groups:

• Cubans: standard error = 3069/ $\sqrt{3895} = 49.17$ 95% CI = 16,368± 1.96(49.17) = 16,272 to 16,464 •Mexicans: s.e. = $9414/\sqrt{5726} = 124.41$

= 13,098 to 13,586

95% *CI* = $13,342 \pm 1.96(124.41)$

• Puerto Ricans, s.e. = 8647/ $\sqrt{5908} = 112.5$ 95% $CI = 12,587 \pm 1.96(112.5)$ = 12,367 to 12,807

• Estimating the standard error of a proportion – based on the Central Limit Theorem, a sampling distribution of proportions is **approximately normal**, with a mean, μ_p , equal to the population proportion, π , and with a standard error of proportions equal to:

$$\sigma_{p} = \sqrt{\frac{(\pi)(1-\pi)}{N}}$$

Since the standard error of proportions is generally <u>not</u> **known**, we usually work with the <u>estimated standard</u> <u>error</u>:

$$s_p = \sqrt{\frac{(p)(1-p)}{N}}$$

Determining a Confidence Interval for a Proportion

$$p \pm Z(s_p)$$

where:

```
p = observed sample proportion (estimate of <math>\pi)
```

Z = Z score for one-half the acceptable error

 s_p = estimated standard error of the proportion

Protestants in favor of banning stem cell research: N = 2,188, p = .37

Calculate the estimated standard error: $S_p = \sqrt{\frac{(.37)(1-.37)}{2,188}} = .10$ Determine the confidence level

Lets say we want to be 95% confident

$$= .37 + 1.96(.010)$$

= $.37 \pm .020$
= $.35 \text{ to } .39$

Catholics in favor of banning stem cell research:

$$N = 880, p = .32$$

Calculate the estimated standard error: $S_p = \sqrt{\frac{(.32)(1-.32)}{880}} = .16$

Determine the confidence level

$$= .32 + 1.96(.016)$$

$$= .32 \pm .031$$

$$= .29 \text{ to } .35$$

Interpretation: We are **95 percent confident** that the **true population proportion** supporting a ban on stem-cell research is somewhere **between .35 and .39** (or between 35.0% and 39.0%) for **Protestants**, and somewhere between .29 and .35 (or between 29.0% and 35.0%) for **Catholics.**