Лекция 14 по курсу «Дискретные преобразования сигналов» 6 мая 2025 г.

10. Представление сигналов ортогональными рядами. Общий метод дискретизации. Полные ортонормированные системы. Обобщённые ряды Фурье.

Примеры базисных функций: функции отсчётов, комплексные экспоненциальные и дискретные экспоненциальные функции, функции Уолша, функции Хаара.

Обобщённые ряды Фурье

Представление сигналов ортогональными рядами. Общий метод дискретизации

Аналоговый сигнал x(t), определенный на интервале T, конечном или бесконечном, при соблюдении некоторых условий может быть представлен в виде

$$x(t) = \sum_{n} c_n \varphi_n(t),$$

где

- $\{\phi_n(t)\}$ ортогональный базис (возможно бесконечномерный),
- $\{c_n\}$ коэффициенты разложения сигнала по базису $\{\phi_n(t)\}$ (могут быть комплексными).

Считаем, что x(t) является функцией с интегрируемым квадратом:

$$\int_{T} |x(t)|^2 dt < \infty.$$

Для реальных физических сигналов это означает конечность их удельной энергии, выделяемой на единичном сопротивлении.

Базисные функции $\phi_n(t)$ ортогональны на интервале T:

$$\int_{T} \varphi_{n}(t) \varphi_{m}^{*}(t) dt = \begin{cases} 0, & m \neq n, \\ \| \varphi_{n} \|^{2} = \int_{T} |\varphi_{n}(t)|^{2} dt, & m = n. \end{cases}$$

Замена аналогового сигнала x(t) последовательностью $\{c_n\}$, представляющей коэффициенты разложения этого сигнала по какому-либо ортогональному базису, — самый общий метод дискретизации.

Вместо того, чтобы рассматривать функциональную зависимость x(t) в несчётном множестве точек, мы можем характеризовать сигнал счётной системой коэффициентов c_n . Базис выбирается из удобства физической реализации, и простоты вычисления коэффициентов.

Обобщённые ряды Фурье

Обобщённые ряды Фурье. Полные ортонормированные системы

Для практических расчетов часто требуется перейти бесконечномерного базиса к приближенным конечным представлениям, необходимым для численных расчетов и при физических измерениях сигналов:

$$x(t) \approx \sum_{|n| \le N} c_n \varphi_n(t).$$

В связи с этим возникает ряд математических и практических вопросов, к которым, в частности, относятся следующие.

1) Как следует выбирать коэффициенты c_n , чтобы минимизировать среднеквадратическую ошибку

$$\varepsilon^{2}(N) = \int_{T} \left| x(t) - \sum_{|n| \le N} c_{n} \varphi_{n}(t) \right|^{2} dt ?$$

$$\varepsilon^{2}(N) = \int_{T} \left(x(t) - \sum_{|n| \le N} c_{n} \varphi_{n}(t) \right) \left(x(t) - \sum_{|m| \le N} c_{m}^{*} \varphi_{m}^{*}(t) \right) dt.$$

2) В каких случаях можно также обеспечить

$$\lim_{N\to\infty}\varepsilon^2(N)=0.$$

Продифференцируем $\varepsilon^2(N)$ по некоторому фиксированному c_n . Используя ортогональность базисных функций, получаем

$$\frac{d\left(\varepsilon^{2}(N)\right)}{dc_{n}} = -2(\mathbf{x}, \, \mathbf{\varphi}_{n}) + 2c_{n}(\mathbf{\varphi}_{n}, \, \mathbf{\varphi}_{n}),$$
$$\frac{d^{2}\left(\varepsilon^{2}(N)\right)}{dc_{n}^{2}} = 2(\mathbf{\varphi}_{n}, \, \mathbf{\varphi}_{n}) > 0.$$

Приравняв производную нулю и решая относительно c_n , получим, что абсолютный минимум среднеквадратичной ошибки достигается при

$$c_n = \frac{(\mathbf{x}, \, \mathbf{\phi}_n)}{(\mathbf{\phi}_n, \, \mathbf{\phi}_n)} = \frac{1}{\|\mathbf{\phi}_n\|^2} \int_T x(t) \, \phi_n^*(t) \, dt.$$

Коэффициенты c_n , выбираемые по этому правилу, называются коэффициентами Фурье по системе $\{\phi_n(t)\}$.

Из всех полиномов N-го порядка наименьшее среднеквадратическое отклонение от данного сигнала x(t) имеет N-я частичная сумма ряда Фурье по системе $\{\varphi_n(t)\}$.

Обобщённые ряды Фурье

Отметим, что при увеличении N величины ранее вычисленных коэффициентов c_n остаются неизменными. В результате значительно экономится объем вычислений, если после оценки ошибки приходится принять решение об улучшении качества аппроксимации.

Для ортонормированной системы функций

$$\phi_n(t) = \frac{\varphi_n(t)}{\|\mathbf{\varphi}_n\|}$$

коэффициенты Фурье будут вычисляться по формуле

$$a_n = \int_T x(t) \phi_n^*(t) dt.$$

Ответим теперь на второй вопрос

$$\varepsilon^{2}(N) = \int_{T} \left(x(t) - \sum_{|n| \le N} a_{n} \phi_{n}(t) \right) \left(x(t) - \sum_{|m| \le N} a_{m}^{*} \phi_{m}^{*}(t) \right) dt.$$

Тогда

$$\varepsilon^{2}(N) = \int_{T} x^{2}(t) dt - \sum_{|n| \le N} |a_{n}|^{2}.$$

Поэтому при любом конечном *N* имеет место *неравенство Бесселя*

$$\sum_{|n| \le N} |a_n|^2 \le \int_T x^2(t) dt$$

Тогда $\lim_{n\to\infty} |a_n| = 0.$

Если $\lim_{N \to \infty} \varepsilon^2(N) = 0$ для всех x(t)с конечной энергией, то

 $\{\phi_n(t)\}$ — полная ортонормированная система в пространстве ${\bf L}_2$. Смысл полноты системы заключается в том, что для такой системы ошибка $\epsilon^2(N)$ при увеличении N может быть сделана как угодно малой. Для полных ортонормированных систем имеет место равенство Парсеваля:

$$\int_{T} x^{2}(t) dt = \sum_{|n|=0}^{\infty} |a_{n}|^{2}.$$

$$\varepsilon^{2}(N) = \sum_{|n|>N} |a_{n}|^{2}.$$

Значит, ошибка определяется суммой квадратов модулей отброшенных коэффициентов Фурье.

Примеры систем базисных функций в L_2 . Функции отсчетов.

Примеры систем базисных функций в L_2 .

Функции отсчётов

Функциями отсчетов называют функции, определяемые как

$$\varphi_k(t) = \frac{\sin 2\pi f_{\varepsilon}(t - k\Delta t)}{2\pi f_{\varepsilon}(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_{\varepsilon}}.$$

Эти функции отличаются друг от друга только сдвигом на целое число интервалов Δt , они ортогональны на $(-\infty,\infty)$:

$$\int_{-\infty}^{\infty} \varphi_k(t)\varphi_l(t)dt = \begin{cases} 0, & k \neq l, \\ \|\varphi_n\|^2 = \Delta t = \frac{1}{2f_e}, & k = l. \end{cases}$$

Функции отсчетов используются для дискретного представления аналоговых сигналов по теореме отсчетов Котельникова. В случае сигнала с финитным спектром, ограниченным интервалом $(-f_e,\,f_e)$, коэффициенты Фурье c_k по этим функциям являются отсчётами сигнала при $t=k\Delta t$:

$$c_{k} = \frac{1}{\Delta t} \int_{-\infty}^{\infty} x(t) \frac{\sin 2\pi f_{e}(t - k\Delta t)}{2\pi f_{e}(t - k\Delta t)} dt = x(k\Delta t).$$

Простота вычисления коэффициентов c_k является большим преимуществом ряда

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \varphi_k(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin 2\pi f_e(t - k\Delta t)}{2\pi f_e(t - k\Delta t)},$$

который называется рядом Котельникова.

- В пространстве $L_2. (-\infty, \infty)$ система функций отсчетов ортогональна, но не полна.
- Однако в подпространстве $B \subset L_2$. функций с финитным спектром в полосе $[-f_{_{\it B}},\,f_{_{\it B}}]$ она полна.

Примеры систем базисных функций в L_2 . Функции отсчетов.

Определим спектр функции отсчетов. Определим сначала спектр функции отсчетов с индексом нуль.

$$\varphi_0(t) = \frac{\sin 2\pi f_e t}{2\pi f_e t}, \ \Delta t = \frac{1}{2f_e}.$$

Будем использовать обозначение $\Pi_{2w}(t)$ —прямоугольная функция с ненулевыми значениями на интервале $t \in (-w,w)$ и единичной площадью.

Заметим, что для симметричного прямоугольного импульса единичной площади

$$\Pi_{\tau}(t) \longleftrightarrow \frac{\sin(\pi f \, \tau)}{\pi f \, \tau}.$$

Тогда найдем обратное преобразование Фурье для $\Pi_{2f_e}(f)$.

$$\int_{-\infty}^{\infty} \Pi_{2f_e}(f) \exp(j2\pi f t) dt = \frac{1}{2f_e} \int_{-f_e}^{f_e} \exp(j2\pi f t) dt = \frac{\sin 2\pi f_e t}{2\pi f_e t} = \varphi_0(t).$$

$$\varphi_0(t) = \frac{\sin 2\pi f_e t}{2\pi f_e t} \stackrel{FT}{\longleftarrow} \Pi_{2f_e}(f).$$

$$\varphi_k(t) = \frac{\sin 2\pi f_e(t - k\Delta t)}{2\pi f_e(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_e}.$$

Функция отсчетов с индексом k образуется сдвигом по времени функции $\phi_0(t)$ на $k\Delta t$:

$$\varphi_k(t) = \varphi_0(t - k\Delta t).$$

Тогда по теореме запаздывания для преобразования Фурье

$$\varphi_k(t) \stackrel{FT}{\longleftrightarrow} \Pi_{2f_s}(f) \exp(-j2\pi f k \Delta t).$$

Комплексные экспоненциальные функции. Функции Уолша.

Комплексные экспоненциальные функции

Комплексные экспоненциальные функции — это функции вида

$$\varphi_n(t) = \exp(j\frac{2\pi}{T}nt), \ n \in (-\infty, \infty).$$

Функции $\varphi_n(t)$ периодичны по оси t с периодом T . Система $\{\varphi_n\}$ составляет счетное бесконечное множество и является мультипликативной, ортогональной и полной в $L_2[0,T]$. Нетрудно убедиться, что

$$\int_{T} \varphi_{n}(t)\varphi_{m}^{*}(t) dt = \begin{cases} 0, & \text{при } n \neq m, \\ \|\varphi_{n}\|^{2} = T, & \text{при } n = m. \end{cases}$$

Поэтому для сигнала $x(t) \in \mathbf{L}_2[0, T]$ коэффициенты Фурье по этой системе определяются следующим образом:

$$c_n = \frac{1}{T} \int_0^T x(t) e^{-j\frac{2\pi}{T}nt} dt.$$

Пространство, натянутое на базис $\{\phi_n\}$, составляют T-периодические сигналы. Разложение сигналов по этим функциям называется разложением в ряд Фурье.

Функции Уолша

Система Уолша $\{ wal(n,\theta) \}$, где $\theta = \frac{t}{T}$ — безразмерное время и $t \in [0,T)$, была введена Уолшем (Walsh) в 1923 году как полная ортонормированная система функций в $\mathbf{L}_2[0,1)$, каждая из которых принимает значения ± 1 и обладает тем свойством, что ряд Фурье

$$\sum_{n=0}^{\infty} c_n \text{wal}(n, \theta),$$

$$c_n = \int_{0}^{1} x(\theta) \text{wal}(n, \theta) d\theta,$$

для непрерывной функции $x(\theta)$ равномерно сходится по подпоследовательности частичных сумм с номерами $N=2^{\nu}$, ν — целое, положительное число.

Построение базисных функций $wal(n, \theta)$.

Характерным для нумерации Уолша является то, что число перемен знака у функции $\operatorname{wal}(n,\theta)$ внутри интервала [0,1) равно n. Рассмотрим процедуру построения функции $\operatorname{wal}(n,\theta)$. По определению

$$wal(0, \theta) = 1,$$

 $wal(n, 0) = 1$ для всех n .

 $\mathrm{wal}(n,\,\theta)$ или симметрична (если n – чётное), или антисимметрична (если n – нечётное) относительно оси, проходящей через точку θ = 1/2.

Смена знака у функций Уолша может происходить только в двоично-рациональных точках. Представим номер функции n в двоичном виде:

$$n=\sum\limits_{i=0}^{\nu-1}n_{i}2^{i},$$
где или $n_{i}=0,\,\,$ или $n_{i}=1,\,n=(n_{\nu-1}\dots n_{1}\,n_{0}).$

Если $n_i = 1$, то должна происходить смена знака в точках

$$\theta = \frac{1}{2^{i+1}}, \ \frac{3}{2^{i+1}}, \ \frac{5}{2^{i+1}}, \dots, \left(1 - \frac{1}{2^{i+1}},\right).$$

Построение базисных функций в нумерации Пэли $\operatorname{pal}(p,\theta)$. В 1932 году Пэли (Paley) рассмотрел систему Уолша в другой нумерации. Обозначим её $\operatorname{pal}(p,\theta)$. Функции $\operatorname{pal}(p,\theta)$ определяются через функции Радемахера (меандровые функции).

$$R_0(\theta) = 1,$$

 $R_i(\theta) = \text{sgn}(\sin 2^i \pi \theta), i = 1, 2, 3, ...,$
 $\theta \in [0, 1).$

pal
$$(p, \theta) = \prod_{i=0}^{\nu-1} R_{i+1}^{p_i}(\theta).$$

$$p = \sum\limits_{i \, = \, 0}^{\mathrm{v-1}} \, p_i \, 2^i$$
, где $p_i = 0$, либо $p_i = 1;$

- Для некоторых сигналов ряд Фурье по системе Уолша— Пэли сходится быстрее, чем по системе Уолша.
- Функции Уолша *ортонормальны* на интервале [0, 1). Система Уолша является *мультипликативной*. Однако при перемножении двух функций сдвиг по индексу не арифметический, а *диадный*, определяемый через поразрядное сложение по модулю 2:

$$wal(n,\theta)wal(m,\theta) = wal((n+m) \bmod 2, \theta).$$

• Функции Уолша могут быть периодически продолжены по оси θ с периодом 1.

Рассмотрим теперь частичную сумму ряда Уолша-Фурье:

$$S_N(\theta) = \sum_{n=0}^{N-1} c_n \text{wal}(n, \theta),$$
$$c_n = \int_0^1 x(\theta) \text{wal}(n, \theta) d\theta.$$

При $N=2^{\rm v}$, где ${\rm v}$ – целое положительное число, частичная сумма $S_N(\theta)$ является кусочно-ступенчатой функцией с интервалами постоянства длиной 1/N, принимающей на

этих интервалах значения, равные средним значениям сигнала $x(\theta)$:

$$S_N(\theta) = \sum_{k=0}^{N-1} \overline{x}_k \; \Pi_k(\theta),$$

$$\overline{x}_k = N \int\limits_{\frac{k}{N}}^{\frac{k+1}{N}} x(\theta) \, d\theta,$$

$$\Pi_k(\theta) = \begin{cases} 1, \; \text{если} \; k/N \leq \theta \leq (k+1)/N, \\ 0, \; \text{при других } \theta. \end{cases}$$

Кусочно-ступенчатая аппроксимация средними значениями приводит к среднеквадратичной ошибке:

$$\varepsilon^{2}(N) = \int_{0}^{1} (x(\theta) - S_{N}(\theta))^{2} d\theta$$

для которой в [1] приводится простая инженерная формула для оценки этой ошибки при $N=2^{\mathrm{v}}$:

$$\hat{\varepsilon}^{2}(N) = \frac{1}{12N^{2}} \int_{0}^{1} (x'(\theta))^{2} d\theta + o\left(\frac{1}{N^{2}}\right).$$

[1] Романюк Ю.А. Дискретные преобразования сигналов. М.: МФТИ, 1981.

Двумерные функции Уолша

Двумерные функции Уолша получают как произведение одномерных:

$$\operatorname{wal}_{n,m}(\theta, \tau) = \operatorname{wal}(n, \theta) \operatorname{wal}(m, \tau).$$

Предполагается, что θ и тзаданы в прямоугольных координатах; $\theta \in [0,1), \, \tau \in [0,1),$

Это делается для того, чтобы упростить вычисление коэффициентов представления сигналов по таким двумерным функциям. Вычисление двумерного интеграла скалярного произведения сводится к вычислению двух одномерных.

Первые шестнадцать двумерных функций Уолша

Пространства I_2 и I_2^N .

• Элементами пространства I_2 являются счетномерные векторы — последовательности отсчетов

$$x = (x[0], x[1], ..., x[k], ...), x[k] \in \mathbb{C},$$

такие, что

$$\sum_{k=0}^{\infty} \left| x[k] \right|^2 < \infty.$$

• Ограничение размерности вектора до N приводит к пространству I_2^N :

$$\mathbf{x} = (x[0], x[1], ..., x[k], ..., x[N-1]), x[k] \in \mathbb{C},$$

Примеры базисных функций из I_2^N .

Система единичных импульсов

$$\varphi_n[k] = \mathbf{1}[n-k], 0 \le n, k \le N-1.$$

Коэффициенты разложения совпадают с отсчетами x[k].

Дискретные экспоненциальные функции (ДЭФ)

(повторение).

Функции ДЭФ определяются следующим образом:

$$\varphi_n[k] = W_N^{nk} = \exp\left(j\frac{2\pi}{N}nk\right).$$

Здесь n и k — целые числа, n, k = 0, 1, ..., N-1, т. е. число функций в системе равно числу отсчетов каждой функции. Система ДЭФ является ортонормированной и полной в пространстве $\mathbf{l}_2^{\mathbf{N}}$.

Основные свойства ДЭФ.

- 1. ДЭФ являются комплекснозначными функциями.
- 2. Матрица $\left\|W_N^{nk}\right\|$ является симметричной.
- 3. Система ДЭФ периодична с периодом N по обеим переменным.
- 4. Система ДЭФ ортогональна:

$$\sum_{k=0}^{N-1} \varphi_n[k] \varphi_m^*[k] = \sum_{k=0}^{N-1} W_N^{nk} W_N^{-mk} = \begin{cases} N, & n=m, \\ 0, & n \neq m. \end{cases}$$

5. Система ДЭФ мультипликативная:

$$W_N^{nk} W_N^{mk} = W_N^{lk},$$

где $l = (n+m)_{\bmod N}$, т. е. индексы суммируются по модулю N .

6. Ряд Фурье по этой системе

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n]W_N^{nk}$$
,

где коэффициенты Фурье

$$\tilde{X}[n] = \frac{1}{N} \sum_{n=0}^{N-1} x[k] W_N^{-nk}.$$

Эти два соотношения определяют пару (прямое и обратное) дискретного преобразования Фурье (ДПФ).

Пример. Вычислить 16-точечное ДПФ для периодической последовательности

$$x[k] = \cos\left(2\pi \frac{3}{16}k\right).$$

Обратное ДПФ:

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi k \frac{n}{16}) = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{-j2\pi k \frac{3}{16}}$$
$$x[k] = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{j2\pi k \frac{13}{16}}$$

Отсюда

$$\tilde{X}[n] = \begin{cases} \frac{1}{2}, & n = \pm 3 + 16m, m \in \mathbb{Z}, \\ 0, & n \neq \pm 3 + 16m, m \in \mathbb{Z}. \end{cases}$$

Значения ДПФ на основном периоде (n = 0, 1, ..., N-1)

n	3, 13	0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15
$ ilde{X}[n]$	0,5	0

Поскольку функции Уолша $\operatorname{wal}(n,\theta)$ кусочно постоянные на участках

$$\left[\frac{k}{N}, \frac{k+1}{N}\right], N = 2^{v}, k = 0, 1, ..., N-1,$$

то для аргумента θ достаточно указать принадлежность некоторому участку. Тогда можно рассмотреть функции Уолша дискретного аргумента $\mathrm{wal}(n,k)$. Первым $N=2^{\mathrm{v}}$ функциям Уошла можно поставить в соответствие матрицу.

 $W_{N}W_{N}^{T} = N E_{N}, W_{N} = W_{N}^{T}.$

Система Адамара $\operatorname{had}(h,k)$ — другой способ нумерации функций Уолша. Матрица Адамара H_N порядка $N=2^{\mathrm{v}}$ строится по правилу

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, H_{2L} = \begin{bmatrix} H_L & H_L \\ H_L & -H_L \end{bmatrix}.$$

Функции Хаара.

Система функций Хаара $\left\{ \mathrm{har}(r,m,\theta) \right\}_{,}$ где $\theta = t/T$ — безразмерное время и $t \in [0,T)$, является полной ортонормированной в $L_2[0,1)$. Введена Хааром в 1910 г.

Функции Хаара связаны с ортогональными вейвлетами Хаара.

Функции Хаара определяются следующим образом. $har(0,0,\theta)=1,\,\theta\in[0,1);$

$$\mathrm{har}(r,m,\theta) = \begin{cases} 2^{r/2}, \frac{m-1}{2^r} \leq \theta < \frac{m-0,5}{2^r} \\ -2^{r/2}, \frac{m-0,5}{2^r} \leq \theta < \frac{m}{2^r}; \\ 0, \text{ иначе}; \end{cases}$$

при $0 \le r < \log_2 N, 1 \le m \le 2^r$. Из них получают дискретные функции Хаара, которые могут быть определены матрицей $H_n, n = \log_2 N$. Пример матрицы H_3 из первых восьми функций Хаара приведен ниже.

Задачи с лекции

Задачи для самостоятельного решения

№1. Определить спектр функции отсчетов

$$\varphi_k(t) = \frac{\sin 2\pi f_e(t - k\Delta t)}{2\pi f_e(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_B}.$$

Воспользовавшись равенством Парсеваля для преобразования Фурье, показать, что в L_2 функции отсчетов ортогональны

$$\int_{-\infty}^{\infty} \varphi_k(t)\varphi_l(t)dt = \begin{cases} 0, & k \neq l, \\ \|\varphi_n\|^2 = \Delta t = \frac{1}{2f_e}, & k = l, \end{cases}$$

и имеют конечную удельную энергию

$$\int_{-\infty}^{\infty} \left| \varphi_k(t) \right|^2 dt.$$

№2. Изобразить первые шестнадцать функций Уолша в нумерации Уолша и в нумерации Пэли. Проверить, совпадают ли получившиеся множества (без учета нумерации) из первых 16 базисных функций. №3. Построить первые 16 функций Хаара.

№4 (повторение). Найти коэффициенты разложения в ряд по системе дискретных экспоненциальных функций

$$x[k] = \sum_{n=0}^{N-1} C_n \exp(j2\pi k \frac{n}{16})$$

периодической (с периодом N = 16) последовательности

$$x[k] = \cos\left(2\pi \frac{1}{16}k\right) + \sin\left(2\pi \frac{3}{16}k\right).$$

Сравнить их с коэффициентами ДПФ.

№5. Для линейно меняющегося сигнала x(t) = t, $t \in [0,1)$ найти первые четыре коэффициента Фурье по системе Уолша $wal(n,\theta)$. Найти среднеквадратичную ошибку представления такого сигнала четырьмя первыми членами ряда Фурье по системе функций Уолша. Сравнить эту величину ее с оценкой

$$\hat{\varepsilon}^{2}(N) = \frac{1}{12N^{2}} \int_{0}^{1} (x'(\theta))^{2} d\theta + o\left(\frac{1}{N^{2}}\right).$$

№6. Записать матрицу Адамара порядка 8. Изобразить первые 8 функций Уолша в нумерации Адамара $had(h,\theta)$ с непрерывным временем.

Теоретические вопросы к диф. зачету

Теоретические вопросы к диф. зачету (программа курса).

- **1. Классификация сигналов.** Аналоговые, дискретные и цифровые сигналы. Понятия дискретизации и квантования. Шум квантования АЦП.
- 2. Спектры периодических и импульсных сигналов.

Преобразование Фурье, его свойства. Спектры гармонических сигналов. Примеры спектров импульсных сигналов (прямоугольный импульс, треугольный импульс, приподнятый косинус, гаусовский импульс). Растекание спектральных компонент при ограничении сигнала по длительности.

- **3. Дискретизация аналоговых сигналов.** Спектр дискретизованного сигнала. Эффект наложения. Теорема Котельникова во временной области. Выбор частоты дискретизации.
- **4.** Дискретное во времени преобразование Фурье (ДВПФ). Оценка спектра сигнала по последовательности его отсчетов. Формы записи ДВПФ для разных частотных переменных. Сходимость ДВПФ. Примеры. Свойства ДВПФ: линейность, теорема запаздывания, теорема смещения, равенство Парсеваля, теоремы о свертке, ДВПФ периодических последовательностей.
- **5. Дискретное преобразование Фурье (ДПФ)**: формы записи, свойства, области применения (периодические сигналы и сигналы конечной длительности). Матричная форма ДПФ.

- **6. Связь между ДПФ и ДВПФ.** Связь ДПФ и ДВПФ для периодических последовательностей, пример для отсчетов гармонического сигнала. Связь ДПФ и ДВПФ для последовательностей конечной длительности, интерполяция ДВПФ путем добавления нулевых отсчетов в сигнал. Интерполяционная формула восстановления ДВПФ по коэффициентам ДПФ. Частотная ось ДПФ, связь с частотами в спектрах аналогового и дискретного сигналов.
- 7. Окна в цифровом спектральном анализе методом ДПФ. Этапы обработки непрерывного сигнала при Фурье-анализе методом ДПФ. Эффекты растекания спектральных компонент («leakage») и утечки спектра через боковые лепестки окна. Примеры основных оконных функции (прямоугольное, треугольное, Ханна, Хемминга, Блэкмана) и их характеристики. Условия различения соседних гармонических компонент одинаковой амплитуды. Оценка амплитуд компонент: усиление преобразования, паразитная амплитудная модуляция спектра, коэффициент амплитудной модуляции, окно с плоской вершиной. Примеры параметрических окон: окно Чебышева, окно Кайзера.
- **8. Кратковременное дискретное преобразование Фурье (STFT).** Формула анализа. Разрешения по времени и по частоте. Обратимость.

Теоретические вопросы к диф. зачету

- **9. Быстрое преобразование Фурье.** Алгоритм БПФ для составной размерности N. Алгоритмы БПФ с основанием 2. Разбиение N-точечного ДПФ на два N/2-точечных. Алгоритм БПФ с основанием 4. Эффективное вычисление свертки с использованием БПФ.
- **10. Представление сигналов ортогональными рядами.** Полные ортонормированные системы. Обобщённые ряды Фурье. ДПФ как ряд Фурье по системе дискретных экспоненциальных функций.