

PENGUJIAN PENETRASI ASPAL PADAT (SNI-06-2456-1991)

Tujuan

Untuk menentukan penetrasi bitumen keras atau lembek (solid atau semi solid) dengan memasukkan jarum penetrasi dengan satuan 0.1 mm, beban dan waktu tertentu dalam bitumen pada suhu 25°C.

Formulir Pengujian Penetrasi

SK SNI 21-1990-1

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal :12-02-2014 3. Domingos Savio

Selesai tanggal :12-02-2014 4. Muhammad Faid A. R

Penetrasi pada suhu 25° C,100 gr, 5 detik	I	II
Pengamatan 1	61	59
Pengamatan 2	60	66
Pengamatan 3	53	60
Pengamatan 4	53	62
Pengamatan 5	61	58
Rata-Rata	61.4	61

Kesimpulan:

Dari hasil pengujian penetrasi didapat rata-rata 61.2 dan telah memenuhi persyaratan pen 60/70, untuk itu, aspal dapat digunakan dalam perkerasan jalan.

PENGUJIAN TITIK LEMBEK ASPAL PADAT (SK-SNI M 20-1990-1)

Tujuan

Untuk menentukan angka titik lembek aspal yang berkisar 30°C sampai 175°C dengan menggunakan cincin dan bola (*ring and ball*).

Formulir Pengujian Titik Lembek

SK SNI 21-1990-1

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 05-02-2014 3. Domingos Savio

Selesai tanggal : 05-02-2014 4. Muhammad Faid A. R

No	Suhu yang diamati		Waktı	ı (detik)	Titik Lembek °C	
INO	°C	°C	I	II	I	II
1	5					
2	10					
3	15					
4	20					
5	25		0			
6	30		01:30			
7	35		02:48			
8	40		04:05			
9	45		05:20			
10	50		06:44	06:49	50	51
11	55					

Kesimpulan:

Menurut spesifikasi teknis 2010, hasil pengujian yang didapat 50 °C pada benda uji 1, dan 51 °C pada benda uji 2, telah memenuhi syarat dengan ketentuan selisih keduanya \pm 1 °C dan ketentuan untuk titik lembek aspak pen 60/70 min. 48, sehingga, aspal ini dapat digunakan di lapangan.

PENGUJIAN TITIK NYALA DAN TITIK BAKAR (SK SNI 20-1990-F)

Tujuan

Untuk mengetahui suhu dimana aspal menyala dan terbakar, demi keselamatan kerja

Formulir Pengujian Titik Nyala dan Titik Bakar

SK SNI M 20 – 1990-F

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 05-02-2014 3. Domingos Savio

Selesai tanggal : 05-02-2014 4. Muhammad Faid A. R

°C di bawah titik nyala	Waktu	°C	Titik Nyala	Titik Bakar
56				
51				
46				
41				
36				
31				
26				
21				
16				
11				
6				
1				
1. 1 17 . 1	<u> </u>	1	<u> </u>	

Analisa dan Kesimpulan:

Dari uji coba (Demo) Titik nyala didapat 339.5°C dan titik bakar 341°C sehingga memenuhi syarat SK SNI 06-2433-1991 dimana titik nyala ≥232°C.

PENGUJIAN DAKTILITAS (SK SNI M 18-1990-F)

Tujuan

Untuk mengetahui sifat kohesi dan plastisitas suatu aspal

Formulir Pengujian Daktilitas

SK SNI M 20 - 1990-F

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 05-02-2014 3. Domingos Savio

Selesai tanggal : 05-02-2014 4. Muhammad Faid A. R

Daktilitas pada 25 °C 5 cm per menit	Pembacaan pengukur pada alat
Pengamatan I	114.5 cm
II	114.5 cm
Rata-rata	114.5 cm

Kesimpulan dan Analisa:

Dari demo uji daktilitas diketahui bahwa aspal mulai putus pada jarak 114.5 cm, hal itu menandakan aspal mempunyai daya elastisitas sekitar 114.5 cm, sehingga aspal tersebut dapat digunakan karena memenuhi ketentuan menurut menurut SNI 06-2432-1991 yaitu daktilitas pada suhu 25° harus lebih besar atau sama dengan 100 cm.

PENGUJIAN VISKOSITAS (AASHTO T 72-90)

Tujuan

Untuk menentukan kekentalan dengan metode empiris dari saybolt dari aspal.

Formulir Pengujian Titik Nyala dan Titik Bakar

SK SNI 21-1990-1

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 05-02-2014 3. Domingos Savio

Selesai tanggal : 05-02-2014 4. Muhammad Faid A. R

Viskositas s.F 60 °C	CONTOH			
VISKOSITAS S.F OU C	Waktu detik	CSt		
Pengamatan I	22.69 (Furol)	40.58		
Pengamatan II	22 (Furol)	38.81		
Rata-Rata	22.345	39.664		

Kesimpulan:

Dari hasil pengujian viskositas didapat untuk saybolt furol = 39.664 CSt.

PENGUJIAN BERAT JENIS ASPAL CAIR (AASHTO T 227-89)

Tujuan

Untuk mengetahui berapakah berat jenis aspal cair untuk keperluan beban atatu pengangkutan

Formulir Pengujian Berat Jenis Aspal Cair

AASHTO T 227-89

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 05-02-2014 3. Domingos Savio

Selesai tanggal : 05-02-2014 4. Muhammad Faid A. R

Berat jenis aspal cair pada 25 °C	Pengamatan pada Aerometer
Pengamatan I	0.928
Pengamatan II	0.926
Pengamatan III	0.926
Rata-rata	0.927

Kesimpulan:

Dari uji coba berat jenis aspal cair, diperoleh rata-ratanya adalah 0.927

PENGUJIAN BERAT JENIS ASPAL PADAT (AASHTO T 228-90)

Tujuan

Untuk mengetahui berat jenis aspal padat untuk keperluan pembebanan atau pengangkutan.

Formulir Pengujian Berat Jenis Aspal Padat

AASHTO T 228-90

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 12-02-2014 3. Domingos Savio

Selesai tanggal : 12-02-2014 4. Muhammad Faid A. R

	I	II
Berat piknometer kosong + contoh	67.6	55.8
Berat piknometer kosong	45.2	36
1. Berat contoh	22.4	19.8
Berat piknometer + air	148	136
Berat piknometer	45.2	36
2. Berat air	102.8	100
Berat piknometer + contoh + air	149	136.9
Berat piknometer + contoh	67.6	55.8
3. Isi air	81.4	81.1
Isi contoh = $(2-3)$	21.4	18.9

Berat jenis I = $\frac{Berat\ Contoh}{Isi\ contoh} = 1.046$

Berat jenis II = $\frac{Berat\ Contoh}{Isi\ contoh}$ = 1.047

Kesimpulan:

Didapat berat jenis aspal padat dari benda uji pertama yaitu 1.046 dan berat jenis dari benda uji kedua yakni 1.047, sehingga rata-ratanya 1.0465. Maka aspal tersebut memenuhi ketentuan menurut SNI 06-2441-1991 yaitu berat jenis aspal padat harus lebih besar atau sama dengan 1,00.

PENGUJIAN ANALISIS SARINGAN AGREGAT KASAR, SEDANG, DAN HALUS (SK SNI M-08-1989-F)

Tujuan

Tujuan pengujian ini adalah untuk memperoleh distribusi besaran atau jumlah persentase butirann baik agregat halus maupun agregat kasar. Distribusi yang diperoleh dapat ditunjukan dalam tabel atau grafik.

Formulir Pengujian Analisis Saringan Agregat Kasar AASHTO T 27-88

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi

Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 19-02-2014 3. Domingos Savio

Selesai tanggal : 19-02-2014 4. Muhammad Faid A.

	Berat	Jumlah	Jumla	h Persen
Ukuran saringan	Tertahan	berat Tertahan	Tertahan	Lewat
75 mm/3"				
63 mm/2,5"				
50 mm/2"				
37,5 mm/1,5"				
25 mm/1"				
19 mm/ 3/4"	0	0	0,00	100,00
12,5 mm/ 1/2"	1696	1696	71,46	28,54
9,5 mm/3/8"	506	2202	92,78	7,22
4,75 mm/ no.4	73	2275	95,85	4,15
2,36 mm/no.8	84	2359	99,39	0,61
1,18 mm/N0.16	8,4	2367,4	99,75	0,25
0,6 mm/No. 30	1,5	2368,9	99,81	0,19
0,3 mm/ No.50	0,7	2369,6	99,84	0,16
0,15 mm/ No.100	1,1	2370,7	99,89	0,11
0,075 mm/No.200	1,2	2371,9	99,94	0,06
pan/Filler	1,5	2373,4	100,00	0,00
Total	2373,4	2373,4		100,00

Formulir Pengujian Analisis Saringan Agregat Sedang

AASHTO T 27-88

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi
Jenis contoh : 2. Ratih D. Shima

Diterima tanggal : 19-02-2014 3. Domingos Savio Selesai tanggal : 19-02-2014 4. Muhammad Faid A.

	Berat	Jumlah berat	Jumlah	Persen
Ukuran saringan	Tertahan	Tertahan	Tertahan	Lewat
75 mm/3"				
63 mm/2,5"				
50 mm/2"				
37,5 mm/1,5"				
25 mm/1"	0	0	0	100
19 mm/ 3/4"	0	0	0,00	100,00
12,5 mm/ 1/2"	112	112	7,04	92,96
9,5 mm/3/8"	262	374	23,52	76,48
4,75 mm/ no.4	557	931	58,55	41,45
2,36 mm/no.8	482	1413	88,87	11,13
1,18 mm/N0.16	95	1508	94,84	5,16
0,6 mm/No. 30	29	1537	96,67	3,33
0,3 mm/ No.50	11	1548	97,36	2,64
0,15 mm/ No.100	11	1559	98,05	1,95
0,075 mm/No.200	11	1570	98,74	1,26
pan/Filler	20	1590	100,00	0,00
Total	1590	1590		

Formulir Pengujian Analisis Saringan Agregat Halus

AASHTO T 27-88

Prt No. : Nama Penguji :

Contoh dari : 1. Randy Apriyandi
Jenis contoh : 2. Ratih D. Shima
Diterima tanggal : 19-02-2014 3. Domingos Savio

Diterima tanggal : 19-02-2014 3. Domingos Savio Selesai tanggal : 19-02-2014 4. Muhammad Faid A.

	Berat	Jumlah berat	Jumlah	Persen
Ukuran saringan	Tertahan	Tertahan	Tertahan	Lewat
75 mm/3"				
63 mm/2,5"				
50 mm/2"				
37,5 mm/1,5"				
25 mm/1"	0	0	0	100
19 mm/ 3/4"	0	0	0,00	100,00
12,5 mm/ 1/2"	0	0	0,00	100
9,5 mm/3/8"	0	0	0,00	100
4,75 mm/ no.4	4,4	4,4	0,40	99,60
2,36 mm/no.8	122,6	127	11,49	88,51
1,18 mm/N0.16	255,1	382,1	34,58	65,42
0,6 mm/No. 30	239,8	621,9	56,28	43,72
0,3 mm/ No.50	122,4	744,3	67,36	32,64
0,15 mm/ No.100	146,6	890,9	80,62	19,38
0,075 mm/No.200	118,6	1009,5	91,36	8,64
pan/Filler	95,5	1105	100,00	0,00
Total		1105	0,00	100,00

kesimpulan:

Berdasarkan data tersebut, maka kami mengambil spesifikasi standar untuk pembuatan Laston (AC) untuk WC-Halus. Kami melakukan tiga metode untuk menentukan proporsi agregat agar nantinya dapat digunakan pada saat pencampuran, yakni Metode Grafik, Metode Coba-coba, dan Metoda Analitis. Namun, yang akan kami tampilkan di halaman berikut ini adalah metode coba-coba dengan tiga kali iterasi. Untuk metoda yang lainnya, dapat dilihat di lampiran.

		Itera	asi 1		Iterasi 2				Iter	asi 3		
Gradasi	FK	FS	FH	Total	FK	FS	FH	Total	FK	FS	FH	Total
rencana	0,05	0,454	0,496		0,05	0,452	0,498		0,04	0,466	0,494	
100	5	45,4	49,60	100	5,000	45,200	49,800	100,00	4,000	46,600	49,400	100,00
95	1,427	42,20	49,60	93,23	1,427	42,018	49,800	93,24	1,142	43,319	49,400	93,86
81	0,361	34,72	49,60	84,68	0,361	34,569	49,800	84,73	0,289	35,640	49,400	85,33
61,5	0,208	18,82	49,40	68,43	0,208	18,735	49,601	68,54	0,166	19,316	49,202	68,68
46,05	0,031	5,05	43,90	48,98	0,031	5,031	44,073	49,13	0,024	5,187	43,719	48,93
35,8	0,013	2,34	32,44	34,80	0,013	2,332	32,574	34,92	0,010	2,405	32,313	34,73
26,55	0,010	1,51	21,67	23,19	0,010	1,505	21,758	23,27	0,008	1,552	21,583	23,14
18,75	0,008	1,20	16,17	17,38	0,008	1,193	16,240	17,44	0,006	1,230	16,109	17,35
12	0,006	0,89	9,59	10,48	0,006	0,881	9,631	10,52	0,004	0,909	9,554	10,47
7	0,003	0,57	4,27	4,84	0,003	0,570	4,283	4,86	0,002	0,587	4,248	4,84

Pada tabel tersebut, kami mewarnai kolom dengan warna kuning untuk menunjukkan proporsi agregat mana yang kami gunakan untuk pencampuran pada Bab Pembuatan Beton Aspal pada perhitungan KAA.

METODE PENGUJIAN CAMPURAN ASPAL DENGAN ALAT MARSHALL

(SNI – 06-2489-1991) (AASHTO T 245 – 90) (ASTM D 1559 – 76)

Tujuan

Pengujian ini bertujuan mengukur kelelehan plastis (flow) dan ketahanan (stabilitas) dari benda uji berbentuk silinder terhadap pembebanan lateral permukaan silinder dengan mempergunakan alat Marshall.

Formulir Pengujian Campuran Marshall (Hotmix Kelas Berat)

	A	В	С	D	Е	F	G	Н
% Agregat	% Aspal	Berat Wadah (gram)	Berat wadah + Agregat dingin (gram)	Berat Wadah + Agregat Panas 170°C (gram)	Berat Agregat Panas (D-B) (gram)	Berat Aspal $\left(\frac{P_{A}}{100-A}\right) \times E$ (gram)	Berat Wadah + Agregat Panas + Aspal (D+F) (gram)	Kadar Air Agregat (C-D) (gram)
94	6	269,5	1303,3	1265,2	995,7	63,555	1328,755	38,1

INSTITUT TEKNOLOGI NASIONAL JIPH H Mustapa 23 Bandung 40124 Telp (022) 7272215 Fax (022) 7202892 LABORATORIUM MATERIAL PERKERASAN JALAN

Formulir Perhitungan Hasil Pengujian Marshall

Tanggal: 16 April 2014					Agregat :					Aspal : Pertamina									
Jenis Campuran : Berat jenis bulk (Gsb) : 2,450									Penetrasi : 61,2										
					Berat jenis apparent : 2,500					Berat Jenis (T): 1,036									
No. Benda uji	Kadar Aspal		Berat Jenis		Berat (gram)				Berat	% Volume		% Pori			Stabilitas				
	thdp total	% Berat thdp total campura	Gmm	Gse	Di udara (gram)	Dalam air (gram)	Kering permukaan (ssd) (gram)	l (cm³)	jenis bulk	Aspal terhadap campuran	Agregat efektif thdp campuran	VMA	VIM	VFA	Bacaa n dial	Justifikas i (kg)	Koreksi Volume	Flow (mm)	MQ
	Α	В	С	D	Е	F	G	Н	J	K	L	М	N	Р	Q	R	S	U	V
1	6.383	6	2.285	2.475	1050.7	577	1082.300	505.300	1.821	10.440	69.160	30.134	20.294	32.655	1184	1456.320	1492.728	5.9	253.005

Keterangan:

1.
$$A = \frac{B}{100 - B} \times 100$$

$$6. K = \frac{BJ}{T}$$

11. Q dan U hasil pengujian Marshall

$$7. L = \frac{J(100-B)}{D}$$

3.
$$D = \frac{100 - B}{\frac{100}{C} - B/T}$$

$$8. M = 100 - \frac{J(100-B)}{G_{sb}}$$

9.
$$N = \frac{100(C-J)}{C}$$

$$5. J = \frac{E}{H}$$

10.
$$P = \frac{100(M-N)}{M}$$

Analisa dan kesimpulan:

Berdasarkan Modifikasi Marshall (RSNI M-13-2004), diketahui bahwa VIM harus dalam jenjang 3.5 – 5.5 %, VMA min. 15%, dan VFA min. 65%, karena stabilitasnya yang diharapkan tinggi. Sedangkan hasil yang telah kita lihat pada tabel Perhitungan Hasil Pengujian Marshall, nilai VIM dan VFA tidak memenuhi acuan/spesifikasi. Kemungkinan besar, telah terjadi kesalahan saat menghitung atau menimbang, atau bisa jadi saat mendesain proporsi campuran.