

Noisy Speech Recognition by using Output Combination of Discrete-Mixture HMMs and Continuous-Mixture HMMs

Authors: Tetsuo Kosaka, You Saito

and Masaharu Kato

Professor:陳嘉平

Reporter: 吳柏鋒

摘要

• 簡介

• 使用離散混合HMMs(DMHMMs)作強健語音辨 識

• 使用ROVER作系統整合

• 實驗

簡介

• 主要改善在不利情況下之固定(stationary) 與非固定(non-stationary)噪音的辨識效 果

• 使用離散混合HMMs(DMHMMs)與連續混合 HMMs(CMHMMs)作為聲學模型,並使用MAP估 算DMHMM參數

提出將兩種模型的系統輸出做整合,更進 一步改善在不同噪音環境下語音的辨識效果

- 使用雨種方法來減少量化大小:
 - (1) <u>subvector-based</u>
 - -將特徵向量分成幾個子向量並將它們 各別用codebooks作量化
 - (2) <u>scalar-based</u>
 - -將每個特徵向量的維度作常數化

• 針對DMHMMs提出MAP估算來更進一步減少 training data量

$$o_t = [o_{1t}, \dots, o_{st}, \dots, o_{St}]$$
:特徵向量之分割向量

$$q(\mathbf{o}_t) = [q_1(\mathbf{o}_{1t}), \dots, q_s(\mathbf{o}_{st}), \dots, q_S(\mathbf{o}_{St})]$$

:使用VQ codebook

· DMHMM的分散式輸出:

$$b_i(\boldsymbol{o}_t) = \sum_m w_{im} \prod_s \hat{p}_{sim}(q_s(\boldsymbol{o}_{st}))$$

where w_{im} is the mixture coefficient for the mth mixture in state i, and \hat{p}_{sim} is the probability of the discrete symbol for the sth subvector.

• 離散機率的Maximum likelihood(ML)估算:

$$p_{sim}(k) = \frac{\sum_{t=1}^{T} \gamma_{imt} \, \delta(q_s(\boldsymbol{o}_{st}), k)}{\sum_{t=1}^{T} \gamma_{imt}}$$
$$\delta(q_s(\boldsymbol{o}_{st}), k) = \begin{cases} 1 & q_s(\boldsymbol{o}_{st}) = k \\ 0 & \text{otherwise} \end{cases}$$

where k is the index of the subvector codebook and γ_{imt} is the probability of the mth mixture component being in state i at time t.

• DMHMM的MAP估算:

$$\hat{p}_{sim}(k) = \frac{\tau \cdot p_{sim}^{0}(k) + n_{im} \cdot p_{sim}(k)}{\tau + n_{im}}$$

$$n_{im} = \sum_{t=1}^{T} \gamma_{imt}$$

where $p_{sim}^0(k)$ is the constrained prior parameter and τ indicates the relative balance between the corresponding prior parameter and the observed data. In our experiments, τ was set to 10.0

8/15

Prior distribution參數-models轉換CMHMMs成DMHMMs

$$p_{sim}^{0}(k) = \frac{b'_{sim}(\boldsymbol{\nu}_{s}(k))}{\sum_{k} b'_{sim}(\boldsymbol{\nu}_{s}(k))}$$

where $b'_{sim}()$ is the probability density of the CMHMM, and $\nu_s(k)$ is the centroid for each subvector s.

使用histogram equation(HEQ) 作正規化

使用此方法主要應用在將特徵空間正規化, 可以補償訓練與測試環境不匹配之情況

$$\boldsymbol{o}'_{st} = HEQ_f(\boldsymbol{o}_{st}) = C_T^{-1}(C_E(\boldsymbol{o}_{st}))$$

where C_E is the CDF estimated from test data and C_T is the CDF from training data.

使用ROVER作系統整合

• 使用ROVER(Recognizer Output Voting Error Reduction)辨識系統結果投票結合法,整合 DMHMM與CMHMM兩個發聲模型所產生的輸出

當兩個系統有相對差異很大時,使用ROVER 會有很大的改進效果,ROVER是簡單的表決 (vote)機制,用來作出最適當選擇

- 使用<u>JNAS</u>語料庫 (Japanese Newspaper Article Sentences)
- 共15732句,由102個男生錄音
- · 分別在多條件環境下作training 汽車、展覽館、人群、火車
- · 分別在兩種多條件環境下作testing A. 汽車、展覽館、人群、火車(與train同)
 - B. 車站、工廠、交叉路口、電梯(與train異)

- 使用HEQ對特徵作正規化(normalization) 主要分為:
 - (1)<u>utterance</u>
 - 針對要做辨識的單一句子計算
 - (2)noise
 - 針對每個noise型態中的所有句子計算

Table 2: Results of output combination for tetstset A (WER(%)). Bold font shows the best performance among three methods.

w/o normalization					
SNR(dB)	CMHMM	DMHMM	combination		
∞	6.83	6.42	6.63		
20	7.96	8.85	7.79		
15	10.72	10.66	9.97		
10	15.55	14.88	14.65		
5	25.93	25.31	24.69		
ave.	16.75	16.53	15.93		
normalization by HEQ (utterance)					
∞	6.00	6.31	5.80		
20	8.03	8.28	7.63		
15	10.64	10.20	9.55		
10	14.67	14.57	13.72		
5	21.74	21.51	20.03		
ave.	15.27	15.22	14.18		
normalization by HEQ (noise)					
∞	5.80	6.52	5.69		
20	7.92	7.97	7.43		
15	10.07	9.97	9.45		
10	13.98	13.90	13.15		
5	21.92	23.27	21.74		
ave.	14.92	15.41	14.37		

Table 3: Results of output combination for tetstset B (WER(%)). Bold font shows the best performance among the three methods.

w/o normalization				
SNR(dB)	CMHMM	DMHMM	combination	
∞	6.83	6.42	6.63	
20	8.31	8.28	8.05	
15	16.75	14.26	15.19	
10	37.09	32.17	33.96	
5	67.80	61.96	64.34	
ave.	34.20	30.77	32.04	
normalization by HEQ (utterance)				
∞	6.00	6.31	5.80	
20	9.47	8.85	8.93	
15	14.57	13.87	13.46	
10	25.62	25.83	24.15	
5	53.65	50.75	50.21	
ave.	27.33	26.40	25.64	
normalization by HEQ (noise)				
∞	5.80	6.52	5.69	
20	8.60	8.54	8.28	
15	13.05	13.54	12.81	
10	26.48	26.71	25.11	
5	52.95	53.08	51.22	
ave.	26.72	27.10	25.78	