

Faculdade de Ciências
Bacharelado em Ciência da Computação
Dispositivos e Circuitos Eletrônicos
Professor: Dr. Clayton Pereira

Exercícios AMP-OPs Igor dos Reis Gomes

Exercícios AMP-OPs

Igor dos Reis Gomes

17 de maio de 2024

1 Introdução

Exercícios sobre Amplificadores Operacionais.

Figura 1: Exercício 1

Figura 2: Simulação do Exercício 1

2- a)
$$R_1 = 1 \times \Omega$$
, $R_1 = 1, 2\Omega$

$$V_0 = \frac{R_1}{R_1} \cdot V_1 \qquad \frac{V_0}{V_1} = \frac{R_1}{R_1} \qquad \frac{V_1}{V_0} = \frac{1, 2}{1 \cdot 10^3} = \frac{-12 \cdot 10^{-4}}{1 \cdot 10^3}$$

b) $R_1 = 1 \times \Omega$, $R_2 = 9, 7 \times \Omega$

$$\frac{V_0}{V_1} = \frac{R_1}{R_1} \qquad \frac{V_1}{V_0} = \frac{-9, 7 \cdot 10^3}{1 \cdot 10^3} = \frac{-4}{7} = \frac{7}{7}$$

c) $R_1 = 2, 9 \times \Omega$, $R_2 = 4, 7 \times \Omega$

$$\frac{V_0}{V_1} = \frac{-9, 7 \cdot 10^3}{2, 9 \cdot 10^3} = -1, 96$$

$$\frac{V_0}{V_1} = \frac{-9, 7 \cdot 10^3}{2, 9 \cdot 10^3} = -1, 96$$

Figura 3: Exercício 2

d)
$$R_1 = 2,7 \text{ K} \Omega$$
, $R_1 = 8,2 \text{ K} \Omega$
 $\frac{V_0}{V_1} = -\frac{8,2 \cdot 10^3}{2,7 \cdot 10^3} = -3,04 \text{ M}$

e) $R_1 = 1,2 \text{ K} \Omega$, $R_1 = 2,3 \text{ K} \Omega$
 $\frac{V_0}{V_1} = -\frac{2,3 \cdot 10^3}{1,2 \cdot 10^3} = -1,92 \text{ M}$
 $\frac{V_0}{V_1} = \frac{2,3 \cdot 10^3}{1,2 \cdot 10^3} = -1,92 \text{ M}$

Figura 4: Exercício 2 - Continuação

Figura 5: Simulação do Exercício 2 - Caso da alternativa A

$$\frac{3-V_0=\left(\begin{array}{ccc}1+\frac{R_F}{R_I}\right)V_1&\frac{V_0}{V_1}&=1+\frac{R_F}{R_I}$$

$$\frac{V_0}{V_1} = \frac{1}{l} \frac{1}{10^3} = \frac{1}{10012}$$

$$\frac{V_0}{V_1} = 1 + \frac{4.7.10^3}{1.10^2} = 5.7$$

$$\frac{V_0}{V_1} = 1 + \frac{4.7 \cdot 10^3}{2.4 \cdot 10^3} = 2,96 \%$$

Figura 6: Exercício 3

d)
$$R_1 = 2,7 \text{ K}\Omega$$
, $R_1 = 8,2 \text{ K}\Omega$
 $\frac{V_0}{V_1} = 1 + \frac{8,2 \cdot 10^8}{2,7 \cdot 10^8} = 4,04$

e) $R_1 = 1,2 \text{ K}\Omega$, $R_1 = 2,3 \text{ K}\Omega$
 $\frac{V_0}{V_1} = 1 + \frac{2,3 \cdot 10^8}{1,2 \cdot 10^8} = 2,92$
 $\frac{V_0}{V_1} = 1,2 \cdot \frac{10^8}{1,2 \cdot 10^8} = 2,92$

Figura 7: Exercício 3 - Continuação

Figura 8: Simulação do Exercício 3 - Caso da alternativa C

5 Exercicio 4

$$V_{0} = -\frac{kf}{R_{1}} \cdot V_{1} \longrightarrow V_{0} = -\frac{1.2}{l \cdot 10^{3}} \cdot (2 \cdot 10^{-8} = -14, 4 \cdot 10^{-6} V = -14, 4 \mu V_{0})$$

$$V_{0} = -\frac{kf}{R_{1}} \cdot V_{1} \longrightarrow V_{0} = -\frac{1.2}{l \cdot 10^{3}} \cdot (2 \cdot 10^{-8} = -14, 4 \cdot 10^{-6} V = -14, 4 \mu V_{0})$$

$$V_{0} = -\frac{4.7 \cdot 10^{3}}{l \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -56, 4 \cdot 10^{-3} V = -56, 4 m V_{0})$$

$$V_{0} = -\frac{4.7 \cdot 10^{3}}{2.4 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -1, 36 \cdot 12 \cdot 10^{-3} = -23, 52 m V_{0})$$

$$V_{0} = -\frac{4.7 \cdot 10^{3}}{2.4 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0})$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0})$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0})$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0})$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0})$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0}$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -36, 48 m V_{0})$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0}$$

$$V_{0} = -\frac{8.2 \cdot 10^{3}}{2.7 \cdot 10^{3}} \cdot (12 \cdot 10^{-3} = -3, 04 \cdot 12 \cdot 10^{-3} = -36, 48 m V_{0}$$

Figura 9: Exercício 4

Vo = - 2,3.103 . 12.10-3 = -1,92.12.10-3 = -23,09 mV/

1,2.103

Figura 10: Simulação do Exercício 4 - Caso da alternativa B

Figura 11: Exercício 5

Figura 12: Teste do Exercício 5 (Simulação paga, não foi possível realizar)

6- Entrador digitais: OV ou 5V							
Valores de 0 ou 1 para verificio quais volores võõ foger porte da conta (onde tives 1, o V respectivoi extersi legido com volor de 5V.							
	А	В	c	D	ABCD	Va (V)	
	0	0	0	0	0000	0	
	0	0	0	ι	000 1	-5	
	0	o	1	٥	0010	-2,5	
	٥	0	ı	ι	1100	-7,5	
	a	١	0	Q	0100	-1,25	
	0	ı	٥	1	0101	-6,25	
	a	ı	2	۵	0110	- 3,75	
	٥	l	1	1	0111	-8,75	
	1	0	a	0	1000	- 0,625	
	1	0	۵	١	1001	- 5, 625	
	١	0	1	٥	1010	-3,125	
	1	0	1	1	1011	-8, 125	
	1		۵	۵	11 00	-1,875	
	١	1	0	ı	1101	-6, 875	
	1	l	1	۵	1110	-4,375	
	1	1	1	ł	Ш	-9,375	

Figura 13: Exercício 6

$$V_{0} = -\left(\frac{1 \cdot 10^{3}}{1 \cdot 10^{3}}\right) \cdot 5 = -5 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{1 \cdot 10^{3}}{2 \cdot 10^{3}}\right) \cdot 5 = -2.5 \text{ V}_{1}$$

$$V_{0} = -\left(5 + 2.5\right) = -7.5 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{1 \cdot 10^{3}}{4 \cdot 10^{3}}\right) \cdot 5 = -1.25 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{1.25 + 2.5}{2.5 + 5}\right) = -6.25 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{1.25 + 2.5 + 5}{2.5 + 5}\right) = -8.75 \text{ V}_{2}$$

$$V_{0} = -\left(\frac{1.10^{3}}{8 \cdot 10^{3}}\right) \cdot 5 = -0.625 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 5}{2.5 + 5}\right) = -3.125 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 2.5}{2.5 + 5}\right) = -8.125 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 1.25}{2.5 + 5}\right) = -6.875 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 1.25 + 5}{2.5 + 5}\right) = -6.875 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 1.25 + 5}{2.5 + 5}\right) = -4.375 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 1.25 + 5}{2.5 + 5}\right) = -4.375 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 1.25 + 2.5}{2.5 + 5}\right) = -3.375 \text{ V}_{1}$$

$$V_{0} = -\left(\frac{0.625 + 1.25 + 2.5}{2.5 + 5}\right) = -3.375 \text{ V}_{1}$$

Figura 14: Exercício 6 - Continuação

Figura 15: Teste do Exercício 6 (Simulação paga, não foi possível realizar). Caso ABCD = 1111