End Semester Examination: MTH673A

Maximum Points = 40

1. Generate $(y_1, x_1), \ldots, (y_{1000}, x_{1000})$ from the model

$$y_i = e^{-x_i} + \epsilon_i,$$

where ϵ_i $(i=1,\ldots,1000)$ are generated from standard normal distribution, and x_i $(i=1,\ldots,1000)$ are generated from uniform distribution on (-3,3). Propose a test to check whether X and ϵ are independent or not and estimate the power of the test when

- (i) X and ϵ jointly follow bivariate normal distribution with E(X) = 0, $E(\epsilon) = 0$, Var(X) = 1, $Var(\epsilon) = 1$ and $E(X\epsilon) = \frac{2}{3}$. points = 6
 - (ii) X and ϵ jointly follow standard Cauchy distribution. points = 6
- 2. Let the data $\mathcal{X}=(x_1,\ldots,x_n)$ be generated from an unknown distribution F, and the α -trimmed mean based on the data \mathcal{X} is defined as $\bar{x}_{\alpha}=\frac{1}{n-2[n\alpha]}\sum_{i=[n\alpha]+1}^{n-[n\alpha]}x_{(i)}$, where $\alpha\in(0,\frac{1}{2})$, [.] denotes the greatest integer inside [.], and $x_{(i)}$ denotes the i-th order statistic. The population version of the α -trimmed mean is defined as $\theta_{\alpha}=\frac{1}{1-2\alpha}\int\limits_{F^{-1}(\alpha)}^{F^{-1}(1-\alpha)}xdF(x)$. Does $\sqrt{n}(\bar{x}_{\alpha}-\theta_{\alpha})$ follow asymptotically normal distribution? If F is standard normal distribution, is the asymptotic variance of $\sqrt{n}(\bar{x}_{\alpha}-\theta_{\alpha})$ an increasing function of α ? Justify your answers.
- 3. Let the data $\mathcal{X} = (x_1, \dots, x_n)$ be generated from an unknown distribution F. Suppose that $\hat{\theta}_{LTS}$, $\hat{\theta}_{LMS}$, $\hat{\theta}_{median}$, $\hat{\theta}_{mode}$ and $\hat{\theta}_{mean}$ denote the LTS, the LMS, the median, the mode and the mean, respectively based on the data \mathcal{X} . Compute the asymptotic efficiencies of the $\hat{\theta}_{LTS}$, $\hat{\theta}_{LMS}$, $\hat{\theta}_{median}$ and $\hat{\theta}_{mode}$ with respect to $\hat{\theta}_{mean}$ when F is a standard normal distribution.

points =
$$3 + 3 + 3 + 3$$