L2 Foundation of Physics 2B Optics 2019-20

O.WP.3 Fresnel diffraction, aperture functions and Fresnel zones

February 13, 2020

The field on-axis at a distance z downstream of a circularly symmetric aperture is given by

$$E^{(z)} = \frac{E_0 e^{ikz}}{i\lambda z} \int_0^\infty f(\rho') e^{ik\rho'^2/(2\pi)} 2\pi \rho' d\rho' ,$$

where $f(\rho')$ is the aperture function. Let the aperture function $f(\rho')$ be a uniformaly illuminated circular annulus with inner and outer radii ρ'_1 and ρ'_2 respectively.

- 1. Sketch the aperture function in the z=0 plane labelling ρ'_1 and ρ'_2 . [2 marks]
- 2. Derive an expression for the field on-axis in the plane z=z downstream of the annular aperture. [5 marks]
- 3. Any aperture function with circular symmetry can be considered to be made up of a series of Fresnel zones. Write an expression for the electric field $E_2^{(z)}$ produced by the second Fresnel zone only, in terms of E_0 . [3 marks]
- 4. Rewrite $E_2^{(z)}$ in terms of the electric field produced by the first Fresnel zone $E_1^{(z)}$. [2 marks]

[Hint:
$$\int_{\xi_1}^{\xi_2} e^{i\xi^2} 2\xi d\xi = -i \left(e^{i\xi_2^2} - e^{i\xi_1^2} \right)$$
]