Nome: Cartão:

Prova 2

Dicas gerais:

- Lê todas as questões antes de começar e pergunta em caso de dúvidas.
- Responde a cada questão, ainda que a resposta não esteja completa.
- Em questões de formulação: documenta o significado de todas variáveis e restrições.

Questão 1 (Formulação, 2 pt)

O Instituto de Informática quer alugar novas copiadoras e tem a escolha entre dois modelos. Modelo A copia até 20000 folhas por dia e o aluguel é R\$ 600 por mês. Modelo B copia até 10000 folhas por dia e o aluguel é R\$ 400 por mês. O Instituto quer alugar ao menos seis copiadoras, e ao menos uma delas deve ser um modelo A. A capacidade agregada das copiadoras tem que ser maior que 75000 páginas por dia. Ainda, caso ao menos um modelo A é alugado, o Instituto tem que pagar R\$ 40 por mês para um contrato de manutenção. Caso ao menos um modelo B é alugado, o Instituto tem que pagar R\$ 30 por mês para um outro contra de manutenção.

Formule um programa inteiro que determina quantas copiadores de cada modelo o Instituto deve comprar tal que o custo mensal total é minimizado.

Questão 2 (Formulação, 2 pt)

Uma empresa de transporte tem que entregar produtos para nove clientes A, \ldots, I . Por razões técnicas (distribuição de clientes, volume das cargas, etc.) existem somente dez rotas candidatas para a entrega aos clientes. Tabela 1 mostra as rotas possíveis e os clientes que cada rota atende. (Por exemplo a rota 6 atende cliente D, depois cliente B, depois E.) A empresa tem três caminhões a disposição. Formule um programa inteira que seleciona entre as rotas possíveis três rotas tal que o tempo total de entrega é minimizada e tal que cada cliente é atendido exatamente uma vez.

Questão 3 (Formulação, 2 pt)

Supõe que a formulação matemática de um problema é linear exceto a restrição que $|x_1 - x_2| \in \{0, 3, 6\}$. Formule essa restrição usando programação inteira.

Tabela 1: Questão 2: Rotas possíveis. Os números definem a ordem de entrega.

	Rota									
Cliente	1	2	3	4	5	6	7	8	9	10
A	1				1				1	
В		2		1		2			2	2
$^{\mathrm{C}}$			3	3			3		3	
D	2					1		1		
${ m E}$			2	2		3				
\mathbf{F}		1			2					
G	3						1	2		3
${ m H}$			1		3					1
I		3					2			
Tempo [h]	6	4	7	5	4	6	5	3	7	6

Questão 4 (Otimalidade, 2 pt)

Um colega alega que o programa linear

possui as solução ótima

$$x_1 = 11; x_2 = 0; x_3 = 3; x_4 = 0;$$
 $y_1 = 2/3; y_2 = 1$

(com variáveis duais y_1, y_2). Dá uma prova sucinta da verdade ou falsidade dessa afirmação.

Questão 5 (Dualidade, 2 pt)

Dado uma coleção de $\mathcal C$ de subconjuntos de um conjunto finito U, o problema de encontrar o menor subconjunto $S\subseteq U$ tal que S contém no mínimo um elemento de cada conjunto $C\in \mathcal C$ é conhecido como MINIMUM HITTING SET ou TRANSVERSAL MÍNIMA. Uma formulação inteira com variáveis de decisão $x_u\in \mathbb B$ para todo $u\in U$ é

$$\begin{array}{ll} \mathbf{minimiza} & \sum_{u \in U} x_u \\ \mathbf{sujeito~a} & \sum_{u \in C} x_u \geq 1 & \forall C \in \mathcal{C} \\ & x_u \in \mathbb{B} & \forall u \in U. \end{array}$$

- a) Qual o dual desse problema no caso $U = \{1, ..., 4\}, C = \{\{1, 2\}, \{1, 4\}, \{3, 4\}\}\}$?
- b) Qual o dual desse problema no caso geral?

Questão 6 (Sensibilidade, 2 pt)

A dicionário ótima do sistema

(com variáveis de folga x_4 , x_5 , e x_6) é

Queremos modificar os coeficientes 2, -2, 3 das variáveis x_1 , x_2 e x_3 da função objetivo nas proporções -1:1:-1, i.e., obter uma solução com vetor de custos $(2-23)^t+t(-11-1)^t$ para um $t \in \mathbb{R}$.

- a) Em qual intervalo podemos escolher t tal que base atual mantem-se ótima?
- b) Qual o novo valor da função objetivo em função de t neste intervalo?

Dica:

Após a solução de um sistema linear, temos o dicionário ótimo

$$z = z^* - (y_N^*)^t x_N$$
$$x_B = x_B^* - B^{-1} N x_N$$

com

$$x_B^* = B^{-1}b$$

 $y_N^* = (B^{-1}N)^t c_B - c_N$
 $z^* = c_B^t B^{-1}b$.